The influence of edaphic factors on bamboo population in Mount Baung Natural Tourist Park, Pasuruan, East Java, Indonesia

SITI SOFIAH1,*, DEDE SETIADI2,*, DIDIK WIDYATMOKO3,***

1Purwodadi Botanic Gardens, Indonesian Institute of Sciences. Jl. Raya Surabaya-Malang Km. 65, Pasuruan 67163, East Java, Indonesia. *email: sofie2291@yahoo.com
2Department of Biology, Faculty of Mathematics and Natural Sciences, Institut Pertanian Bogor. Jl. Meranti, Campus IPB Dramaga, Bogor 16680, West Java, Indonesia. Tel.: +62-251-8622833, **email: dede_setiadi@yahoo.co.id
3Center for Plant Conservation-Bogor Botanic Gardens, Indonesian Institute of Sciences. Jl. Ir. H. Juanda 13, Bogor 16122, West Java, Indonesia. Tel./fax.: +62-251-8322187, ***email: dalik_widyatmoko@yahoo.com

Abstract. Sofiah S, Setiadi D, Widyatmoko D. 2018. The Influence of Edaphic Factors on Bamboo Population in Mount Baung Natural Tourist Park, Pasuruan, East Java. Trop Drylands 2: 12-17. There are 1250 bamboo species in the world; an estimated 161 of them are in Indonesia. Mount Baung Natural Tourist Park (MBNTP) is one of the bamboo forests located in a conservation area in East Java. The purpose of this research was to study the influence of edaphic factors on the growth of bamboo. This research was carried out from September 2011 to May 2012. The principal component analysis (PCA) was performed to determine the relationships between edaphic components and bamboo occurrences. Seven species of bamboo were found in MBNTP, namely, Bambusa blumeana, Bambusa vulgaris, Dendrocalamus asper, Schizostachyum iratena, Gigantochloa atter, Gigantochloa apus, and Dinobrychium matsum. The edaphic factors affected the presence of bamboo in MBNTP. Phosphor (P) is one of the edaphic factors which contributes significantly to B. blumeana, B. vulgaris, D. asper and S. iratena presence in MBNTP. These bamboo grow in soil with high P levels of up to 27 ppm. The existence of G. apus was influenced by Manganese (Mn) and Sodium (Na) elements. This bamboo in this area was more commonly found in soil environments with low levels of Na (< 0.02 (cmol (+)) kg(-1)) and Mn (≤ 24 ppm). The species of bamboo with the densest population in Mount Baung, namely B. Blumeana, was influenced by environment factor, i.e., the slope. Each bamboo has its own uniqueness in its growth. G. apus and G. atter populations were affected by solar radiation.

Keywords: Bamboo, edaphic, Mount Baung

INTRODUCTION

Bamboo is one of the high-value plants in Indonesia because it has a range of value and usability as well as plays a vital role in biodiversity conservation. There are about 1250 species of bamboo that are found in the world, and Indonesia has 161 species that belong to 21 genera (Widjaja 1997). Human activities such as forest clearance, highway and housing construction, or cultivation of fields affect the distribution of bamboo geography (Holtum 1985). Since bamboo is a type of plant that has many benefits and utility for human life (Dransfield and Widjaja 1985), so many materials are produced from bamboo. Almost all parts of the bamboo can be used, from the roots to the leaves. Several sources of information and studies suggest that certain bamboo species is rare in Indonesia. One of that bamboo is B. blumeana. However, the species of bamboo in Indonesia are not listed in the International Union for the Conservation of Nature and Natural Resources (IUCN). It is essential to study the ecology of Indonesian bamboo species, given that bamboo is often used by the community. Distribution of endemic bamboo in Java Island is unique because some species are limitedly found in certain parts of the island (Widjaja 1987). In East Java, Indonesia, Mount Baung Natural Tourist Park (MBNTP) was one of the bamboo forests found at a conservation area. Results of an inventory work by the Indonesian Ministry of Forestry (1998) showed that there were six species of bamboo in MBNTP, including B. blumeana, B. vulgaris, D. asper, S. iratena, G. atter, and G. apus.

Bamboo is one of the supporting plants for the conservation of soil and water, which is often found along streams (riparian) and springs. The biological characteristics of bamboo make it a perfect tool for solving many environmental problems such as erosion control and CO2 sequestration. Bamboo serves as an efficient agent in ecosystem services such as water conservation and strengthening of embankments drainage (Zhou et al. 2005). Bamboo has rhizome-root system, wide and thick leaf litter, which enable them to resist erosion, with widespread roots that can absorb and store more water in the soil. Type of root owned bamboo, the fibrous root, also makes the bamboo can bind the soil well. Based on the previous observations, it was known that bamboo is capable of holding up to 84.63% of rainfall. Sikumbang (2010) stated that compared to trees that absorb only 35-40% of rainwater, bamboo absorbs more rainwater of up to 90%. Studies indicating the effect of soil factors on plant populations are still rare. Widyatmoko (2006) said that edaphic variables are important determinants of the abundance and distribution of palm lipstick (Chyrtostachys...
The C/N ratio of soils appears to influence palm densities and sizes.

The relationships between plant communities and environmental factors are among the most fundamental questions contributing to understanding plant species composition and structure in a particular habitat, landscape, and region, as well as understanding the ecological character of plants in their environment (Zhang et al. 2013). About a century back, Brandis (1899) rightly stated "each species has its particularities and its requirements." Studies on the effect of edaphic factors on the growth of bamboo population are still insufficient. This research aimed to study the influence of edaphic factors on bamboo’s growth in Mount Baung Natural Tourist Park, East Java, Indonesia.

MATERIALS AND METHODS

Study area

Area of Mount Baung Natural Tourist Park is shown in Figure 1. Soil sampling was conducted at five points in the form of a diagonal; soil sample from each point was then ground as a composite. Soil samples for analysis of soil physical and chemical properties were taken from the topsoil layer (0-30 cm) and subsoil layers (30-60 cm). The soil physiochemical properties were assessed in the soil science laboratory of Research Center for Soil and Agroclimate, Bogor and were analyzed through the drying stage temperature of 105°C. Soil physical property analysed included soil texture (sand, silt and clay), while the chemical properties included Potassium (K), Calcium (Ca), Magnesium (Mg), Sodium (Na), Soil-Cation Exchanges Capacity (CEC), Aluminum (Al), Forums (Fe), Manganese (Mn) and Zinc (Zn). Soil texture analysis was conducted by separation of sand, silt and clay particles by a quantitative method through the mechanical analysis process. This process consisted of spreading the aggregated soil into single grains, followed by sedimentation. Soil acidity (pH) was measured in soil and water mixture extracts with a ratio of 1:5, C content was analyzed by Walkley & Black method, while total N was determined by the Kjeldahl method.

Geographically, MBNTP is located between 7º49’9"-7º47’23" South Latitude and 112º16’23"-112º17’17" East Longitude. The altitude in this area ranged from 200-501 m above sea level. The average annual rainfall was 2654.10 mm, with an average number of the rainy day was 141.05 days.

Figure 1. Map of area of Mount Baung Natural Tourist Park, East Java, Indonesia

Figure 2. Map of soil sampling points in the research area
Procedures

The abundances and densities of bamboo were expressed as importance value index, namely the resultant of the sum of Relative Density, Relative Frequency, and Relative Abundance. Two hundred plots of different sizes were made; 20 m x 20 m plots for trees, 40 m x 5 m plots for saplings, and 5 m x 5 m plots for understory. Category of trees and saplings were determined by the size of diameter at breast height (DBH) of woody plants; tree (DBH > 30 cm) and saplings (DBH 5-30 cm). An understory plant is groundcover plant growing on the forest floor which is typically herbs. The observation of bamboo was done to explain the bamboo in the context of the individual that form the population. Measurement or observation activities undertaken included the number of clumps that was carried out on individual plant and diameter of the bamboo clump.

Data analysis

The relationship between bamboo and edaphic factor was revealed by using Principal Component Analysis (PCA). The PCA analysis was performed using Minitab 14.

RESULTS AND DISCUSSION

Soil chemical property

The results of soil chemical property analysis are presented in Figure 3. Figure 3 shows bamboo growth and development in soil conditions with soil acidity (pH) ranging from 5.6 to 6.5. This data showed that bamboo could grow on soil conditions with pH levels of slightly acidic (Hardjowigeno 2003). The C-organic content of the research area varied from 0.83 to 1.76% which fell into the low category, while soil nitrogen ranged from 0.07-0.18% which also classified into the low category. C/N ratio was 9-12. According to Tisdale et al. (1993), C/N ratio of <20 indicates that the decomposition process is imminent. The cation exchange capacity (CEC) shows the soil's ability to bind, and exchange between the cation elements controls the availability of several nutrients in cation form and regulates the mobilization of hydrogen ions (pH actual) and Al-dd (potential pH). The content of CEC in the research area was between 10.90-18.52 cmol kg⁻¹ which included in the medium category. The Ca, Mg, K and Na values in this area were, respectively. 12.40%, 4.66%, 1.23%, 0.09%. Even for potassium was very high.

Results of PCA analysis

The Principal Component Analysis (PCA) results on the observed parameters are presented in Figure 4. This figure shows that there were two groups of soil factors that naturally affected the growth of bamboo. The first factor is soil chemical elements such as Al, Ca, Mg, Zn, pH, and Mn which affected the growth of G. apus, and especially the Na. The second group of soil chemical element consists of CEC, phosphorus, K₂O, K-Morgan, while the most naturally occurring effect on the growth of some bamboo are: phosphorus. G. atter was not affected by any soil chemical substance.

Abiotic characteristics

Characteristics of abiotic factors influencing the bamboo growth are presented in Table 1. Data in Table 1 shows several variations of abiotic factors that affect bamboo species in MBNTP. Each bamboo has its own uniqueness in its growth. B. blumeana was affected by slope and altitude while B. vulgaris was affected by humidity, and D. asper was more affected by air temperature. B. blumeana and B. vulgaris have locally adapted to sloping/hilly terrain areas. The growing conditions of D. asper and S. iraten were on a slight slant. Gigantochloa genus, i.e., G. apus and G. atter are in place to grow in fall within the ramps criteria.
Values of C/N ratio in MBNTP ranged from 9-12, which was classified in a medium category. According to Tisdale et al. (1993), the C/N value of < 20 indicates the decomposition process to occur. It is also influenced by the nature of the soil colloids and cations sequestered in the soil. The organic matter quality is related to the provision of N, which is determined by the number of high nitrogen content, low lignin, and polyphenol concentrations. C/N ratio is an indicator to describe the speed of the reform process in the form of organic matter decomposition and mineralization of nutrient that are chemically bound in the form of complex compounds in the body of an organism. Bamboo is a plant species that has high silicate content in leaves as compared to other plant species (Lu et al. 2007); thus decomposition and mineralization of organic matter in this plant species are running very slow.

For Poaceae species, phosphorus is required for the elongation segment and the development of stem diameter. Moreover, it can strengthen the stem so as not to fall down easily. Figure 3 shows that phosphorus content in the Preserved Area was the highest. In Preserved Area, soil phosphorus content was included in a medium category with an average value of 20.33 ppm, while that in other areas was classified in a low category. The P element in the soil is bound in the form of a phosphate compound, a readily available compound for plants. P, N, and K elements are classified as the primary element, but the P element is absorbed in small amounts as compared to the other two elements (N and K). D. asper is a bamboo species with a large stick character. Therefore, this species would require large amounts of phosphorus for its growth. Figure 4 shows that G. atter did not have the variety of data variation (indicated by a line on the short axis), so it is not enough to provide information about the chemical elements that are most influencing this bamboo species growth.

Tiongco (1997) said that positive logarithmic relationships occurred between the culm/biomass production and culm height/soil pH/available P/exchangeable cations (K⁺, Ca++, Mg++)/CEC. The content of each of Ca, Mg, K and Na in the area of Mount Baung was respectively, 12.40%, 4.66%, 1.23%, and 0.09%, which were classified in high category. Soil base cations are closely related to soil pH. Generally, the soil
with high pH has high alkaline content. In MBTNP, although soil acidity was close to neutral, the content of base saturation was very high. The presence of soil pH content that was acidic could have come from the slow decomposition of bamboo litter so that when they are exposed to water, they will experience decay that is also running slowly. The high content of silicates in bamboo leaves causes the litter to decompose slowly so that the reshuffle of cellulose from bamboo litter leaves is also running slowly. Thus, this litter can cover the ground for a long time.

Results of Principal Component Analysis performed on 15 essential macronutrients showed that the soil chemical properties of the growing environment of bamboo can be grouped into two main components (Figure 4). Eigenvalues of > 1 indicate this. Two new components can explain about 81.4% (46.8% by the first component and 34.6% by the second component) of all variability in soil elements observed in the present study. Relatively, the first component had greater information than the second component, although the two components were not substantially different. Based on the analysis of the above components, the followings are the eigenvalue of each component.

Eigenvalues of Bamboo Habitat Index are as follows:

PC1 = 0.17 pH- 0.12 C/N-0.27 phosphorus-0.27 Molibdenum + 0.11 Calcium + 0.04 Magnesium-0.27 Pottasium + 0.27 Natrium-0.28 CEC-0.26 Manganese + 0.17 Zinc-0.22 Clumps of B. blumeana-0.22 clumps of B. vulgaris-0.22 clumps of D. asper-0.22 clumps of S. iraten + 0.27 G. apus + 0.05 clumps of G. attar. PC2 = 0.23 pH-0.32 C/N + 0.29 phosphorus + 0.09 Pottasium + 0.08 Molibdenum + 0.35 Calcium + 0.21 Natrium + 0.11 CEC-0.05 hidrogen-0.19 Zinc + 0.28 Aluminum + 0.21 Manganese + 0.18 Zinc + 0.27 clumps of B. blumeana + 0.27 clumps of B. vulgaris + 0.27 clumps of D. asper + 0.27 clumps of S. iraten + 0.15 clumps of G. apus-0.17 clumps of G. attar.

Nonetheless, based on Figure 4, the phosphorus element is an element that was strongly influenced the bamboo habitat, especially for almost all species of bamboo, except G. apus which was very strongly affected by the elements such as sodium (Na) and manganese (Mn). The Manganese is micro element, which takes little in plant growth, but it is essential. The effect of phosphorus on the presence of bamboo in MBTNP was highly significant and positive.

Bamboos are planted for hedging and landscaping. Bamboo groves also act as a windbreaker and to prevent soil erosion (Alam 1992). Generally, bamboo growth is affected by temperature (Uchimura 1981) and altitude. Some bamboo is affected by light intensity; however, sometimes the soil factors influence more specific for some particular types of bamboo. Uchimura (1981) said that growth of bamboo was highly correlated with temperature when it overlapped by an annual rainfall of more than 1000 mm year⁻¹. For information, G. atrovirens can intercept rainfall approximately 84.63% (Sofiah 2011). Additionally, Sikumbang (2010) mentioned that compared to trees that absorb only 35-40% of rainwater, bamboo could absorb rainwater up to 90%. Plant canopy layer that fills the room stems dimensions will be an essential factor in determining microclimate/local bamboo plants. It is important to note that area of leaf blade also affects the amount of interception of rainwater through rain run-off detention.

Bamboos are plants that display rapid biomass growth after long periods of exclusively vegetative growth (Griscom and Ashton 2003), culminating in explosive flowering followed by widespread population death. The size of new culm was determined by the nutrient supply from the rhizome (Ueda 1960). The agronomy/silvicultural trials were conducted on four bamboo species. Four bamboo species responded differently to treatment not only because of their genetic makeup but also because of their relative ages. The mature D. asper (giant bamboo) produced few shoots, on average c. 1 stalk per standing culm, but they were large if harvested for consumption (reaching 4.5 kg). In contrast, the young (3-7 years old during the trial) B. blumeana at the Capiz site produced very few stalks, although the poor soil or some other factors may have had an overriding effect, as average shoot number per clump did not increase during the 5-year course of the experiment (Midmore 2009).

The influence of slope on soil, especially in soil texture, partly determines the levels of available mineral nutrients, and consequently the establishment and spatial distribution of vegetation (Widyatmoko 2010). Based on Table 1, the pattern of bamboo population distribution in MBTBP was influenced by environmental factors. The slope more specifically determined the dominant species of bamboo in the region, namely B. blumeana. Soils on sloping areas tended to be coarser and better drained than those on flat ground where run-off creates accumulations of small soil particles (House 1984; Kessler 2000; Costa et al. 2008). Several studies have shown that soil factors influenced the floristic plant in bamboo-dominated forests. Significant intercorrelations were found between Ca, Mg and organic matter for eleven species of S. agittaria (Wooten 1986). Salinity was the most crucial edaphic factor for the distribution and density of C. americanum, and the higher its value, the higher its population density. The other elements analyzed seemed to have little or no influence over the population density of C. americanum. The analysis did not highlight any edaphic factor as the determinant factor for the height of the individuals of this species in the Massaguacu River estuary (Ribeiro 2011). Meanwhile, the texture of soil in the average research area was silty clay loam (Table 2). This texture soil shows the proportion of soil particle content that contains more dust, but also a considerable amount of clay content, while the sand content is minimal. Based on the analysis, the soil base saturation of the entire area of MBTBP was of high value. The high value of soil base saturation content is minimal. Based on the analysis, the soil base saturation of the entire area of MBTBP was of high value. The high value of soil base saturation content is minimal. Based on the analysis, the soil base saturation of the entire area of MBTBP was of high value. The high value of soil base saturation content is minimal. Based on the analysis, the soil base saturation of the entire area of MBTBP was of high value. The high value of soil base saturation content is minimal. Based on the analysis, the soil base saturation of the entire area of MBTBP was of high value. The high value of soil base saturation content is minimal. Based on the analysis, the soil base saturation of the entire area of MBTBP was of high value.
balance in favor of tree species tolerant of excessive moisture and/or drought or of other characteristics of soils occurring in bamboo-dominated soils, such as reduced soil cations exchange capacity (Griscom 2003). Forest is highly dynamic and its structure and composition change in time and space. Bamboo dominance could be foreseen as a step in this process (Vinha 2011). Studies investigating these topics, as well as the effect of different bamboo species dominance on the abundance and survival of tree species, are of prime importance for understanding the impact of other bamboo species on tropical forest regeneration and the implications for forest management. Further research on ecophysiological characteristics of species regarding edaphic constraints, shade tolerance, growth rate, and traits affecting tolerance for mass-loading is needed to improve our understanding of the bamboo-dominated plant community.

Bamboo is one of the plant species that have high adaptability. Based on research results, one of the edaphic factors that influenced the growing environment of B. blumeana, B. vulgaris, D. asper and S. irai species was the phosphorus element. The phosphorus element affects the existence of bamboo as it plays a vital role in the growth activity. Phosphorus can strengthen the culm so as not to fall easily, which is vital for Poaceae family. The presence of G. apus was influenced by Manganese (Mn) and Sodium (Na) elements. In soil, manganese dissolves at low soil pH. The higher the soil pH, the solubility of manganese in the soil decreases. The slightly acid soil-pH in Mount Baung Natural Tourist Park may be one factor leading to the high solubility of manganese in the soil. Bamboo species with the densest population in Mount Baung, i.e., B. Blumeana, was influenced by environment factor such as slope. Each bamboo has its uniqueness in its growth. Growth of G. apus and G. atter were affected by solar radiation.

ACKNOWLEDGEMENTS

This research was financially supported by Ministry of Research, Technology and Higher Education of the Republic of Indonesia. We thank the Indonesian Institute of Sciences (LIPI) and Ministry of Research, Technology and Higher Education of the Republic of Indonesia for the cooperation that has been established.

REFERENCES

Alam MK. 1992. A Note on Taxonomic Problems, Ecology, and Distribution of Bamboos in Bangladesh. J Amer Bamboo Soc 9: 1-2.
Brandis D. 1899. Biological notes on Indian Bamboos. Indian Forester 25: 1-25.
Costa FRC, Guillaumet J-C, Lima AP, Pereira OS. 2008. Gradient within gradients: The mesoscale distribution patterns of palms in a central Amazonian forest. J Veg Sci 20: 1-10.
Dransfield S, Widjaja EA. 1995. Plant Resources of South-East Asia Bamboos. 7th ed. Prosea Foundation, Bogor.
Gavrilescu T. 2012. The Influence of Electrolyte Solutions on Soil pH Measurements. Available from: https://www.researchgate.net/publication/28773051_The_Influence_of_Electrolyte_Solutions_on_Soil_pH_Measurements [accessed May 28 2018].
Griscom BW, Ashton PMS. 2003. Bamboo control of forest succession: Guadua saracurca in Southeastern Peru. For Ecol Manag 175 (1-3): 445-454.
Griscom BW. 2003. The influence of bamboo (Guadua saracurca and Guadua weberbaueri) on stand dynamics in lowland terra-firme forests of southeastern Peru. [Dissertation]. Yale University, Graduate School of Arts and Sciences, New Haven, CT, USA.
Hardjwigeno S. 2003. Ilmu Tanah. Akademika Pressindo. Jakarta.
[Irumbijeng, Indonesia]
Holtum RE. 1985. Bamboo of The Malay Peninsula. Sing Bull Bot Gard 1-135.
House AP. 1984. The ecology of Oncosperma horridum on Sibertur Island, Indonesia. Princi/Zes 28: 85-89.
Kessler M. 2000. Upland-directed mass effect in palms along an Andean elevational gradient: a cause for high diversity at mid-elevations? Biotropica 32: 756-759.
Lu SY, Liu CP, Huang LS, Wang CH. 2007. Hydrological characteristics of a Makino Bamboo Woodland in Central Taiwan. Taiwan J For Sci 22 (1): 81-93.
Midmore DJ. 2009. Overview of ACIAR bamboo project outcomes. In: Midmore DJ ed Chilivical management of bamboo in the Philippines and Australia for shoots and timber. Proceedings of a workshop Los Banos, Philippines, 22-23 November 2006.
Ministry of Forestry. 1998. Potential Assessment Report of Baung Mountain Tourism Park. Indonesian Ministry of Forestry, Jakarta.
Pratiwi ERT. 2006. Relationship Between Bamboo Betong Natural Spread (D. asper) with some soil properties. [Thesis]. Bogor Agricultural University, Bogor. [Indonesian]
Ribeiro JPN, Reginaldo SM, Leandro KT, Alberto CP, Maria ISL. 2011. Spatial distribution of Crinum angustifolium L. in tropical blind estuary: Hydrologic, edaphic and biotic drivers. Environ Exp Bot 71 (2): 287-291.
Sikumbang H. 2010. Bambu Untuk Menghadapi Pemanasan Global. http://ksupointer.com/2010/bambu-untuk-menghadapi-pemanasan-global. [June, 12th, 2010] [Indonesian]
Sofiah S, Figa AP. 2011. Karakterisasi (tipe kanopi dan perakaran) tumbuhan lokal untuk konservasi tanah dan air, studi kasus pada kluwih (Artocarpus altilis) dalam tegakan bambu hitam (Gigantochloa atroviolacea) di Wilayah J. Berkala Penelitian Hayati. Ed. Khusus, 5F: 17-20. [Indonesian]
Tiongco LE. 1997. Edaphic factors as related to productivity and nutrient uptake of Kauayun tinik (Bambusa blumeana Schultes F.) in Bukidnon, Philippines, May 1997.
Tisdale SL, Nelson WL, Beaton JD, Havlin J. 1993. Soil fertility and Fertilizers, 4th ed. Collar MacMillan Int. Inc. New York.
Uchimura E. 1981. Site conditions of growth and methods of multiplication of bamboo. In: Higuchi T ed. Bamboo Production and Utilization. Proceeding of the Congress Group 5-3A. IUFRO World Congress, Kyoto, Japan.
Ueda K. 1960. Studies on the physiology of bamboo. Bull Kyoto Univ For 30: 1-169.
Vinha D, Luciana FA, Lilian BPZ, Maria TG. 2011. The potential of the soil seed bank for the regeneration of a tropical urban forest dominated by bamboo. J Landsc Urban Plann 99: 178-185.
Widjaja EA. 1987. A revision of Malesian Gigantochloa (Poaceae-Bambusoideae). Reinwardtia 10: 291-380.
Widjaja EA. 1997. Jenis-spesies bambu endemik dan konservasinya di Indonesia. Proceeding of National Biology Seminar XV. PBI & Universitas Lampung, Lampung. 24-26 July 1997. [Indonesian]
Widyatmoko D, Mark AB. 2006. Influence of edaphic factors on the distribution and abundance of a rare palm (Clivastachys renda) in a peat swamp forest in Eastern Sumatra, Indonesia. J Austral Ecol 31: 964-974.
Widyatmoko D. 2010. Population status and ecological preference of the palm Sommieria leucophylla Beccari in Sarawati Island. Hayati J Biol 17 (3): 137-144.
Wooten JW. 1986. Edaphic factors associated with eleven species of Sagittaria (Alismataceae). Aquatic Bot 24 (1): 35-41.
Zhang ZH, Hu G, Ni J. 2013. Effects of topographical and edaphic factors on the distribution of plant communities in two subtropical karst forest, Southwestern China. J Mt Sci 10: 95-104.
Zhou B, Fu MY, Xie JZ, Yang XS, Li ZC. 2005. Ecological functions of bamboo forest: Research and Application. J For Res 16 (2): 143-147.