Structure, Infrared and Raman spectroscopic studies of new AII(SbV0.50CrIII0.50)(PO\textsubscript{4})\textsubscript{2} (A = Ba, Sr, Pb) yavapaiite phases

Hajar Bellefqih, Rachid Fakhreddine, Rachid Tigha and Abderrahim Aatiq*

University Hassan II of Casablanca, Faculty of Sciences Ben M'Sik, Chemistry Department. Laboratory of Physical-Chemistry of Applied Materials, Avenue Idriss El Harti, Po Box. 7955, Casablanca, Morocco

Abstract: Three new AII(Sb\textsubscript{0.5}Cr\textsubscript{0.5})(PO\textsubscript{4})\textsubscript{2} (AII = Ba, Sr, Pb) yavapaiite phases, abbreviated as [ASbCr], have been successfully synthesized by a conventional solid-state reaction in air atmosphere. Their crystal structures have been investigated by Rietveld analysis from the X-ray powder diffraction method. Results show that Ba(Sb\textsubscript{0.5}Cr\textsubscript{0.5})(PO\textsubscript{4})\textsubscript{2} crystallizes in monoclinic \textit{C2/m} space group (Z = 2) with cell parameters a = 8.140(1) Å; b = 5.175(1) Å; c = 7.802(1) Å and \(\beta = 94.387(1)^\circ\). Structures of AII(Sb\textsubscript{0.5}Cr\textsubscript{0.5})(PO\textsubscript{4})\textsubscript{2} (AII = Sr, Pb) compounds are comparable, and both crystallize in a distorted yavapaiite structure with \textit{C2/c} space group (Z = 4). Obtained monoclinic cell parameters are: a = 16.5038(2) Å; b = 5.1632(1) Å; c = 8.0410(1) Å; \(\beta = 115.85(1)^\circ\) for [SrSbCr] and a = 16.6842(2) Å; b = 5.156(1) Å; c = 8.115(1) Å; \(\beta = 115.35(1)^\circ\) for [PbSbCr]. Infrared and Raman spectroscopic study was undertaken to provide information about vibrations bonds within the studied yavapaiite materials.

Keywords: Rietveld Refinements analysis; X-ray powder diffraction; Yavapaiite structure; Infrared and Raman spectroscopy.

1. Introduction

Phosphates with general AIIMIV(PO\textsubscript{4})\textsubscript{2} formula have attracted significant attention for several decades due to their optical 1-5, magnetic 6, and dielectric properties 7. Furthermore, they have also proved attractive as potential candidates for the immobilization of tetravalent actinides 8-11. Therefore, it becomes of prime importance to investigate their crystal structure. Note that the nature and/or size of AII and MIV cations have a significant effect on the crystal structure of AIIMIV(PO\textsubscript{4})\textsubscript{2} phases, and this has prompted many researchers to build a relationship between the composition and the crystal structure of certain compounds 12,13. The larger AII cation can cause structural distortions, and more particularly, rotation of the PO\textsubscript{4} tetrahedra. This last phenomenon leads to the synthesis of new families of phases whose structures are linked to each other’s 12-28. Among these families, the attracted AIIMIV(PO\textsubscript{4})\textsubscript{2} yavapaiite-type phases have a structure consisting of layers of AII ions in tenfold coordination alternating with dense slabs of MIVO\textsubscript{6} and PO\textsubscript{4} polyhedra. Several derivatives have been observed, at room temperature, for the structure above type. It has been reported that in the case where the ionic radius of MIV shifts slightly towards high values, like in BaIIMIV(PO\textsubscript{4})\textsubscript{2} (MIV = Np, U, Th) 29,30, a super-yavapaiite, with a structure similar to the archetype RbEu(SO\textsubscript{4})\textsubscript{2} 31 (space group \textit{C2/c}, Z=4), is formed. Such a structure-type is made of layers of BaIIO\textsubscript{14} polyhedral alternating with dense slabs of MIVO\textsubscript{6} square-based antiprisms and PO\textsubscript{4} tetrahedra. The high coordination of BaII and MIV (MIV = Np, U, Th) ions was shown to be consistent with their large size. For small AII and MIV cations, as in the case of SrMIV(PO\textsubscript{4})\textsubscript{2} (MIV = Ge, Ti, Sn) 20,22 and PbMIV(PO\textsubscript{4})\textsubscript{2} (MIV = Ge and Ti) 2, a distorted yavapaiite structure-type with \textit{C2/c} space group (Z=4) was reported. This latter structure has a double lattice along the a-axis. Compared to the true-yavapaiite type, the MIV cation remains in octahedral polyhedral, whereas the AII cation coordination decreases to eight capped with two supplemental oxygen ions. The PbSn(PO\textsubscript{4})\textsubscript{2} structure crystallizes in the \textit{P2\textsubscript{1}/n} space group under noncompact yavapaiite form with a [Sn(PO\textsubscript{4})\textsubscript{2}]2- skeleton built of corner-linked SnO\textsubscript{6} octahedra and PO\textsubscript{4} tetrahedra. In contrast, the Pb6+ cations are distributed in double tunnels in place of sheets 22. On the other hand, SrM(PO\textsubscript{4})\textsubscript{2} (M = Np, U) was described as a modified cheralite structure (\textit{Cmca} space group, Z=8) 32.

The main aim of our present work is to investigate the possibility of synthesizing numerous compounds in which the transition metal exhibits a reduced

*Corresponding author: Abderrahim Aatiq

Email address: a_aatiq@yahoo.fr

DOI: http://dx.doi.org/10.13171/mjc10802108201448h
oxidation state. As a result of our investigation, \(\text{A}^{II}(\text{Sb}^{6+}, \text{Fe}^{3+})_{2}(\text{PO}_4)_{2}\) (\(\text{A}^{II} = \text{Sr}, \text{Pb}, \text{Ba}\)) and \(\text{Ba}^{4+}(\text{Nb}^{5+}, \text{M}^{3+})_{2}(\text{PO}_4)_{2}\) (\(\text{M}^{3+} = \text{Al}, \text{Cr}, \text{Fe}, \text{In}\)) compounds have been synthesized and characterized by some of us. The crystal structure of \(\text{Ba}^{4+}(\text{Sb}^{6+}, \text{Fe}^{3+})_{2}(\text{PO}_4)_{2}\) and \(\text{Ba}^{4+}(\text{Nb}^{5+}, \text{M}^{3+})_{2}(\text{PO}_4)_{2}\) belongs to the true-yavapaiite structure (\(\text{C}2/m\) space group, \(Z = 2\)). In contrast, \(\text{A}^{II}(\text{Sb}^{6+}, \text{Fe}^{3+})_{2}(\text{PO}_4)_{2}\) (\(\text{A}^{II} = \text{Sr}, \text{Pb}, \text{Ba}\)) phases exhibit a distorted yavapaiite structure type with \(\text{C}2/c\) space group (\(Z = 4\)). So, in a continuation of our scientific search, we synthesized new \(\text{A}^{II}(\text{Sb}^{6+}, \text{Cr}^{3+})_{2}(\text{PO}_4)_{2}\) (\(\text{A}^{II} = \text{Sr}, \text{Pb}, \text{Ba}\)) yavapaiite phases. The obtained materials have been structurally characterized by using X-ray powder diffraction. In order to get further structural information about the nature of bonding in the crystalline solids, Infrared and Raman spectroscopic study of selected phases is also presented.

2. Experimental

\(\text{A}^{II}(\text{Sb}_{0.5}\text{Cr}_{0.5})(\text{PO}_4)_{2}\) (\(\text{A}^{II} = \text{Ba, Sr, Pb}\)) materials were prepared by conventional solid-state reaction from stoichiometric amounts of carbonates \(\text{SrCO}_3\) (Riedel-de Haën, 99%), \(\text{BaCO}_3\) (Riedel-de Haën, 99%) or nitrates \(\text{Pb(NO}_3)_2\) (Prolabo, 99%), \(\text{Cr}_2\text{O}_3\) (Prolabo, 99%), \(\text{Sb}_2\text{O}_3\) (Riedel-de Haën, 99.9%), \(\text{NH}_4\text{H}_2\text{PO}_4\) (Riedel-de Haën, 99%). Powders were mixed and ground and then heated in an air atmosphere between 200 and 750°C. To obtain a pure sample, a final treatment at 800°C for 48 hours, with periodic intermediate regrinding, is necessary.

X-ray powder diffraction data (XRPD) for \(\text{A}^{II}(\text{Sb}_{0.5}\text{Cr}_{0.5})(\text{PO}_4)_{2}\) (\(\text{A}^{II} = \text{Ba, Sr, Pb}\)) were collected, at room temperature, on X-Ray diffractometer (PANalytical X'Pert Pro) using monochromatized CuK\(\alpha\) radiation (50 kV, 40 mA). The patterns were scanned in the 10–90° 2\(\theta\) range with a counting time of 30 s per step. The full pattern refinements were performed by the Rietveld refinement method with the aid of FullProf program 35 embedded in WinPlotr software. A pseudo-Voigt function described the peak shape, and the background level was modeled by linear interpolation. The refined parameters were: scale factor, zero shift, lattice constants, peak profile, asymmetry parameters, atomic positions, and independent isotropic atomic displacement parameters. Infrared spectroscopic analyses were performed using a Bruker’s VERTEX 70 spectrometer. All measurements were performed at room temperature. Raman scattering spectra were recorded on powder with a HORIBA, LabRAM HR Evolution spectrometer, equipped with an ionized argon laser. The finely ground substance is spread on a glass slide. The electrodes were illuminated with a 532 nm beam in ambient air.

3. Results and Discussion

3.1. Rietveld refinement and structural description of \(\text{Ba}(\text{Sb}_{0.5}\text{Cr}_{0.5})(\text{PO}_4)_{2}\)

According to the literature data, most barium orthophosphate compounds have been mentioned as entirely isotopic with true-yavapaiite (T.Y). Analysis of the powder XRD pattern using the Rietveld refinement in Le Bail’s of \([\text{BaSbCr}]\) phase revealed the presence of a crystallized phase exhibiting peak positions lines that match with \(\text{Ba}(\text{Sb}_{0.5}\text{Cr}_{0.5})(\text{PO}_4)_{2}\); monoclinic phase 33. Thus, starting structural parameters for the Rietveld refinement were taken from the true-yavapaiite phase mentioned above 33. This refinement yielded to acceptable reliability factors (i.e., \(R_{wp} = 8.9\%\); \(R_{p} = 6.4\%\); \(R_{B} = 3.7\%\); \(R_{F} = 2.5\%\)). The main refined parameters are given in Table 1. Observed, calculated, and difference XRD patterns of \([\text{BaSbCr}]\) phase are presented in Figure 1.

Atom	Site	Wyckoff positions	\(B_{ ext{int}}(\text{Å}^2)\)	Occupancy
\(\text{Ba}\)	2c	0	2.1(1)	1
\(\text{Sb(Cr)}\)	2a	0	2.0(5)	0.5/0.5
\(\text{P}\)	4i	0.3672(2)	2.014(3)	2.1(5)
\(\text{O(1)}\)	4i	0.2384(6)	0.0503(4)	1.2(1)
\(\text{O(2)}\)	4i	0.3050(6)	0.3867(6)	1.2(1)
\(\text{O(3)}\)	8j	0.4761(5)	0.2483(5)	0.1862(5)

Table 1. Crystallographic data of \(\text{Ba}(\text{Sb}_{0.5}\text{Cr}_{0.5})(\text{PO}_4)_{2}\) (\(\text{C}2/m\) space group, \(Z = 2\)).
The crystal structure of Ba(Sb\textsubscript{0.5}Cr\textsubscript{0.5})(PO\textsubscript{4})\textsubscript{2} can be described as made of layers of BaII cations in tenfold coordination, alternating with dense slabs built up of corner-connected of MIVO\textsubscript{6} octahedra and PO\textsubscript{4} tetrahedra (Figure 2). Note that each PO\textsubscript{4} tetrahedron presents one free oxygen pointing out of the layer. SbV and CrIII cations are octahedrally surrounded by nine oxygen atoms belonging to six PO\textsubscript{4} groups to form Sb(Cr)O\textsubscript{6} octahedral geometry. Reciprocally, each PO\textsubscript{4} tetrahedron is connected to three Sb(Cr)O\textsubscript{6} octahedra via vertex-sharing oxygen atoms. Oxygen atoms tenfold coordinate the BaII cation from eight bidentate PO\textsubscript{4} groups, and the other two oxygen atoms belong to the two other unidentate PO\textsubscript{4} groups. The BaO\textsubscript{10} is linked to six other BaO\textsubscript{10} adjacent polyhedra via edges and corners.

The main distances values of [BaSbCr] are reported in Table 2. The analysis of Ba-O distances values, within BaO\textsubscript{10} polyhedra, shows that they can be considered as formed by six slightly shortest values ranging from 2.695(6) to 2.767(4) Å and four longer one with an average value of 3.123(3) Å. Thus, the coordination of barium cations can be regarded as 6+4 type. Obtained Sb(Cr)-O bond distances values are comparable to those found for other antimony and chromium phosphate. Mean P-O bond lengths value (i.e.,1.55(1) Å) is fairly regular, and in good agreement with those usually found in the
yavapaiite-type phases. For more structural information, the bond valence sums (BVS) were calculated from Brown's method. Calculated values for Ba, Cr, Sb, and P are relatively compatible with their oxidation state in Ba(Sb0.5Cr0.5)(PO4)2 (Table 2). X-ray data, collected from the ‘observed intensities’ of the Rietveld refinement (CuKα1: 1.5406 Å), of [BaSbCr] compound, are listed in Table 3.

Table 2. Selected interatomic distances (Å) and calculated Bond Valence Sum (BVS) for Ba(Sb0.5Cr0.5)(PO4)2

BVS(Sb(Cr))	P-O distances (Å)	Ba-O distances (Å)
BaSb0.5Cr0.5(PO4)2		
2xSb(Cr)-O(2)	1.950(4)	2xBa-O(1) = 2.695(5)
4xSb(Cr)-O(3)	1.971(5)	4xBa-O(3) = 2.767(4)
Aver. <Sb(Cr)-O>	1.96(1)	Aver. <Ba-O> = 2.90(1)

Table 3. Powder diffraction data of Ba(Sb0.5Cr0.5)(PO4)2 compound. Diffraction lines with Iobs< 1 are omitted (CuKα1: λ = 1.5406 Å).

Ba(Sb0.50Cr0.50)(PO4)2	100 I/I0 (cal.)					
hkl	dobs (Å)	100 I/I0 (obs.)	HkI	dobs (Å)	100 I/I0 (obs.)	100 I/I0 (cal.)
------	--------	-----------------	-----	--------	-----------------	-----------------
001	7.7794	5	312	1.9819	4	5
110	4.3634	100	004	1.9448	7	8
200	4.0582	61	-222	1.9371	16	12
002	3.8897	33	222	1.8703	11	9
-111	3.8742	19	-402	1.8583	4	4
111	3.7405	36	-313	1.8231	3	2
-201	3.7165	22	-204	1.8086	12	11
201	3.4902	5	-114	1.8042	13	12
-112	2.9647	77	114	1.7498	10	10
-202	2.9220	9	402	1.7451	9	11
112	2.8459	53	130	1.6872	4	3
202	2.7066	11	131	1.6435	1	1
003	2.5931	22	420	1.5967	2	1
020	2.5874	26	-314	1.5631	4	3
310	2.3976	36	-132	1.5568	11	10
-311	2.3362	3	024	1.5546	11	10
-203	2.2651	2	510	1.5489	7	7
311	2.2487	2	132	1.5390	6	4
220	2.1817	3	-422	1.5093	8	5
022	2.1543	18	-224	1.4823	7	5
-221	2.1235	5	-512	1.4765	3	2
203	2.1130	9	314	1.4627	3	3
-312	2.1057	12	-404	1.4610	5	4

3.2. Rietveld refinement and structural description of A(Sb0.5Cr0.5)(PO4)2 (A = Sr, Pb) phases

The Rietveld refinement in Profil Matching of lead and strontium phases with the previous structural model (i.e., C2/m space group and Z = 2) leads to high-reliability factors. Furthermore, several small XRD diffraction lines (e.g., at 2θ ~ 18.17° and 28.33° for [PbSbCr]) remain unindexed, which appeared as the h+1l=2n+1 superstructure reflections of the C2/c doubled cell comparable to the Pb(Fe0.5Sb0.5)(PO4)2 material reported by Aatiq et al. It is of interest to note that the rotation of the oxygen atoms around their coordination polyhedra is the force driving for the crystal lattice distortion of [ASbCr] (A = Sr, Pb) concerning that of [BaSbCr]. Indeed, these alternating rotations of oxygen atoms cause a doubling of the crystal lattice and consequently lead to the appearance of superstructure lines in the [ASbCr] (A = Sr, Pb) X-ray powder diffraction spectra. Note that about the International Tables for Crystallography data, the C2/c (Z=4) is a subgroup of the C2/m (Z=2) so, the apparent relationship of the lattices and structures between the true (T, Y) (i.e., [BaSbCr]) and the distorted (D,Y) (i.e., [ASbCr] (A = Pb, Sr)) the
following vectorial equations link yavapaiite forms:

\[a_{(x,y)} = 2a_{(x,y)} + b_{(x,y)} + c_{(x,y)} = a_{(x,y)} \]

Thus, the structural model suggested for [PbFeSb] was chosen as starting model for the Rietveld refinement, with the following distribution for the atomic positions: A \(^{II}\) (A = Pb, Sr) in 4e (0, -y, 3/4), Sb(Cr) in 4c (1/4, 1/4, 0) and P, O(1), O(2), O(3) and O(4) in 8f (x, y, z) positions. Structural refinement using the aforementioned model gives rise to satisfactory results. Good agreements between the experimental and calculated patterns are seen in Figure 3. The structural data are reported in Tables 4 and 5 for [SrSbCr] and [PbSbCr], respectively.

Given that the structures of A \(^{II}\)(Sb\(_{0.5}Cr_{0.5}\))(PO\(_{4}\))\(_{2}\) (A \(^{II}\) = Sr, Pb) phases are comparable, we have select to describe only the structure of [PbSbCr].

Table 4. Crystallographic data of Sr(Sb\(_{0.5}Cr_{0.5}\))(PO\(_{4}\))\(_{2}\) (C2/c space group, Z=4).

Atom	Site	Wyckoff positions	B\(_{iso}\)(\(\AA^2\))	Occupancy		
Sr	4e	0	0.2916(6)	0.75	2.1(9)	1
Sb(Cr)	4c	0.25	0.25	0	1.0(7)	0.5/0.5
P	8f	0.1410(2)	0.7561(6)	0.7561(3)	0.9(9)	1
O(1)	8f	0.1419(7)	1.0124(5)	0.8464(1)	0.8(1)	1
O(2)	8f	0.1551(6)	0.5412(5)	0.8940(4)	1.8(1)	1
O(3)	8f	0.2217(3)	0.7779(2)	0.7161(8)	1.8(1)	1
O(4)	8f	0.0482(3)	0.7265(2)	0.5982(7)	1.8(1)	1

Table 5. Crystallographic data of Pb(Sb\(_{0.5}Cr_{0.5}\))(PO\(_{4}\))\(_{2}\) (C2/c space group, Z=4).

Atom	Site	Wyckoff positions	B\(_{iso}\)(\(\AA^2\))	Occupancy		
Pb	4e	0	0.3140(4)	0.75	4.5	1
Sb(Cr)	4c	0.25	0.25	0	2.6(1)	0.5/0.5
P	8f	0.1461(3)	0.7569(6)	0.7597(8)	2.5(1)	1
O(1)	8f	0.1473(6)	1.0154(2)	0.8690(2)	3.0(1)	1
O(2)	8f	0.1640(6)	0.5464(2)	0.9036(8)	2.0(1)	1
O(3)	8f	0.2245(7)	0.7708(3)	0.7065(7)	2.0(1)	1
O(4)	8f	0.0485(4)	0.7287(2)	0.6155(6)	2.0(1)	1

Indeed, the crystal structure can be considered as composed of an alternation of anionic [(Sb\(_{0.5}Cr_{0.5}\))(PO\(_{4}\))\(_{2}\)]\(^{7-}\) sheets running parallel to (bc) plane built up of corner-linked Sb(Cr)O\(_6\) octahedra and PO\(_4\) tetrahedra. While the Pb\(^{II}\) cationic sheets are located amongst [(Sb\(_{0.5}Cr_{0.5}\))(PO\(_{4}\))\(_{2}\)]\(^{7-}\) and join them through columnic interactions between the Pb\(^{II}\) and O\(^{II}\) ions to create the 3D framework of [PbSbCr] (Figures 4a and 4b). The lead atom is surrounded by ten oxygen atoms belonging to six PO\(_4\) groups. Six vertices of different PO\(_4\) groups octahedrally coordinate each Sb(Cr)O\(_6\). In such a
way, each PO₄ tetrahedra is vertex-connected to three Sb(Cr)O₆ octahedra; the remaining unshared oxygen atoms of each tetrahedron has one vertex points into the interlayer where the Pb²⁺ cation takes place. Even though [ASbCr] (A = Sr, Pb) compounds crystallize in the C2/c space group, and its a-axis parameter is double compared to that of [BaSbCr] (C2/m space group, Z=2), the crystal structure of the three compounds has a similar 3D network.

Figure 3. Experimental (••••) calculated (— — —), and difference (— — —) profile of the XRD patterns of Aᴵᴵ(Sb₀.₅Cr₀.₅)(PO₄)₂ (Aᴵᴵ = Sr, Pb).

Figure 4. (a) View of the structure of Pb(Sb₀.₅Cr₀.₅)(PO₄)₂ showing Pb atoms, Sb(Cr)O₆ octahedra and PO₄ tetrahedra; (b) Projection in (ac) plane.

Table 6. Selected interatomic distances (Å) and calculated Bond Valence Sum (BVS) for Sr(Sb₀.₅Cr₀.₅)(PO₄)₂.

SrSb₀.₅Cr₀.₅(PO₄)₂	P-O distances (Å)	Sr-O distances (Å)
Sb(Cr)-O distances (Å)	P-O(1) = 1.510(5)	2xSr-O(1) = 2.583(3)
2xSb(Cr)-O(1) = 2.071(4)	P-O(2) = 1.513(4)	2xSr-O(2) = 2.658(3)
2xSb(Cr)-O(2) = 2.067(5)	P-O(3) = 1.504(5)	2xSr-O(4) = 2.569(3)
2xSb(Cr)-O(3) = 1.992(5)	P-O(4) = 1.512(5)	2xSr-O(4) = 2.849(3)
Aver. <Sb(Fe)-O> = 2.04(1)	Aver. <P-O> = 1.51(1)	Aver. <Sr-O> = 2.81(2)

	Sr-O distances (Å)
BVS(Sb(Cr)) = 3.6	BVS (P) = 5.3
(should be 4)	BVS (Sr) = 1.9
Table 7. Selected interatomic distances (Å) and calculated Bond Valence Sum (BVS) for Pb(Sb0.5Cr0.5)(PO4)2.

PbSb0.5Cr0.5(PO4)2	P-O distances (Å)	Pb-O distances (Å)
Sb-0 distances (Å)	P-O(1) = 1.594(6)	2×Pb-O(1) = 2.700(6)
2xSb(Cr)-O(1) = 1.993(5)	P-O(2) = 1.528(5)	2×Pb-O(2) = 2.733(6)
2xSb(Cr)-O(2) = 2.010(5)	P-O(3) = 1.544(5)	2×Pb-O(4) = 2.692(6)
Aver.<Sb(Cr)-O> = 1.97(1)	P-O(4) = 1.553(5)	2×Pb-O(4) = 3.443(5)
Bond Valence Sums (BVS)	BVS (P) = 4.8	Aver. <Pb-O> = 2.86(1)
BVS(Sb(Cr)) = 4.3 (should be 4)		

Table 8. Powder diffraction data of Sr(Sb0.5Cr0.5)(PO4)2 compound. Diffraction lines with Iobs < 1 are omitted (CuKα; λ = 1.5406 Å).

Sr(Sb0.5Cr0.5)(PO4)2	hkl	dobs (Å)	100 I/Io (obs.)	100 I/Io (cal.)	hkl	dobs (Å)	100 I/Io (obs.)	100 I/Io (cal.)
	2 0 0	7.4256	15	16	0 0 4	1.8090	5	5
	1 1 0	4.8769	5	3	6 2 0	1.7867	1	1
	-1 1 1	4.3426	74	72	0 2 3	1.7624	3	3
	-2 0 2	4.0141	58	64	3 1 3	1.7588	4	4
	1 1 1	3.7997	36	29	7 1 1	1.7262	15	16
	4 0 0	3.7128	20	20	-8 0 4	1.7252	19	20
	-3 1 1	3.6996	33	33	6 0 2	1.7225	14	12
	0 0 2	3.6179	14	14	-6 2 3	1.7174	11	8
	3 1 0	3.5733	5	3	1 3 0	1.7096	2	2
	-4 0 2	3.4503	19	19	-9 1 1	1.6884	6	7
	-3 1 2	3.0713	3	3	-1 3 1	1.6828	6	6
	3 1 1	2.8657	100	100	4 2 2	1.6577	2	2
	2 0 2	2.8060	9	5	-10 0 2	1.6497	3	2
	-5 1 1	2.7802	76	73	1 3 1	1.6454	4	4
	-6 0 2	2.6518	8	9	1 1 4	1.6220	2	1
	0 2 0	2.5816	36	36	2 0 4	1.6040	2	2
	5 1 0	2.5746	24	23	2 2 3	1.6038	1	1
	6 0 0	2.4752	4	2	-8 2 1	1.5924	2	1
	0 2 1	2.4315	3	1	-4 2 4	1.5845	2	2
	-3 1 3	2.3759	60	57	-1 3 2	1.5766	2	2
	2 2 1	2.2167	6	4	-3 3 2	1.5692	1	1
	-4 2 1	2.1863	6	4	-2 2 4	1.5640	3	2
	5 1 1	2.1793	5	4	3 3 1	1.5396	9	5
	-2 2 2	2.1713	2	2	-5 1 5	1.5332	7	6
	4 2 0	2.1196	28	22	-5 3 1	1.5259	5	5
	0 2 2	2.1015	5	2	8 2 0	1.5072	5	4
	-4 2 2	2.0671	2	2	5 1 3	1.4999	5	3
	-8 0 2	2.0555	4	4	-7 1 5	1.4857	12	10
	1 1 3	2.0485	16	12	10 0 0	1.4851	5	5
	-4 0 4	2.0070	8	9	0 2 4	1.4815	11	10
	-7 1 3	1.9570	5	6	-3 3 3	1.4475	7	7
	4 2 1	1.9099	2	2	-1 1 5	1.4450	7	7
	2 2 2	1.8999	17	13	-8 2 4	1.4344	15	13
	8 0 0	1.8564	11	11	6 2 2	1.4329	10	10
	-6 2 2	1.8489	20	17	-11 1 3	1.4284	9	10
	-5 1 4	1.8440	9	7	3 3 2	1.4093	1	1
	-4 2 3	1.8347	2	2				

The main interatomic distances are listed in Tables 6 and 7 for [SrSbCr] and [PbSbCr], respectively. The AIII-O (AIII = Sr, Pb) distances in the AO10 polyhedra of both phases indicate that eight oxygen anions surround the AII cation with typical distances values ranging from 2.569(3) to 2.849(3) Å for [SrSbCr]. In the 2.692(6)-2.733(6) Å values range for [PbSbCr]. The two other AIII-O distance values
are relatively high (i.e., 3.412(3) Å for Sr-O distances and 3.443(5) Å for Pb-O ones) (Tables 6 and 7). Therefore, the coordination of lead and strontium atoms in both phases can be considered as 8+2 type. In both phases, the $A^{III}-O$ ($A =$ Sr, Pb) distances values are comparable to those already reported for PbTi(OPO$_4$)$_2$ and SrTi(OPO$_4$)$_2$ phases. Sb(Cr)-O bond lengths within SbCr(O)O$_8$ octahedra range between 1.900(8) and 2.071(9) Å for both compounds. Obtained values are compatible with those calculated from the ionic radii of SbIII and CrIII cations in six coordination (Tables 6 and 7). In the case of PO$_4$ tetrahedra, obtained P-O bond distances for both [ASbCr] ($A^{III} =$ Sr, Pb) are comparable to those generally observed in orthophosphates. Bonds valence sums (BVS) calculated from Brown's method 37, indicated that lead, strontium, antimony, chromium, and phosphorus atoms are compatible with their expected oxidation state (i.e., PbII, SrII, CrIII, SbIV) and PVII. X-ray data, collected from the ‘observed intensities’ of the Rietveld refinement (CuKα1: 1.5406 Å), for [SrSbCr] compound, as a selected example, are listed in Table 8.

3.3. Infrared and Raman vibrational study

Infrared and Raman spectra of [BaSbCr] and [PbSbCr] are shown in Figures 5(a) and 5(b) respectively. According to literature data of phosphates with yavapaiite phases 33,34,39, bands related to PO$_4$ unit, in A(SbSbCr)O$_5$(PO$_4$)$_2$ ($A^{III} =$ Ba, Pb), are relatively strong compared to that of Sb(Cr)-O one within SbCr(O)O$_8$ octahedra. Thus, assignment of the four (ν_1, ν_2, ν_3, and ν_4) PO$_4$ modes will take these last remarks into account. Note that in [ASbCr] ($A =$ Ba, Pb) materials, P–O distances vary between 1.52 and 1.59 Å with a mean P–O distance of 1.55 Å. Popovic et al. have formulated the following empirical relation $[\nu_{PO}(\text{cm}^{-1})] = 224500 \exp(-R/28.35)$, which connects P–O bond lengths and stretching frequencies where R is the P–O bond lengths in Picometer (pm) 40. By replacing obtained P-O distance values in the above expression, the calculated frequencies values corresponding to both phosphates are ranging between 850 and 1060 cm$^{-1}$. These last values are relatively in agreement with those observed experimentally, between 865 and 1073 cm$^{-1}$ in the IR and Raman spectra (Figure 5). Thus the symmetric non-degenerate PO stretching modes ($\nu_{1(PO)}$) can be assigned to bands ranging between 860-990 cm$^{-1}$ while antisymmetric and doubly degenerate PO stretching ($\nu_{2(PO)}$) are located in the 1006-1073 cm$^{-1}$ range. However, the possibility of coupling between $\nu_{1(PO)}$ and $\nu_{2(PO)}$ stretching bands, around 1000 cm$^{-1}$, cannot be excluded. Bands existing between 400 and 497 cm$^{-1}$ are attributed to the symmetric, triply degenerate OPO bending ($\nu_{1(OPO)}$) modes. In contrast, those ranging between 530-615 cm$^{-1}$ are attributed to the triply degenerate, antisymmetric, and harmonic OPO bending ($\nu_{2(OPO)}$). The bands detected between 646 and 668 cm$^{-1}$ in IR and Raman spectra of both compounds can be associated with the stretching Sb–O vibrations. Similar Sb-O vibrations are already found around 650 cm$^{-1}$ for AFSbCr, SbSbCr (A = Sr, Pb) 31, at 630 cm$^{-1}$ for SrSbSbFe (PO$_4$)$_2$ and SbSbFe (PO$_4$)$_2$ phases 27 and around 640 cm$^{-1}$ for MnSbSbFe (PO$_4$)$_2$ ($M =$ Al, Fe, Cr) 41 and Mn$_2$SbFe (PO$_4$)$_2$ ($M =$ Mg, Ni) 42. The Raman bands observed at 366 cm$^{-1}$ could be assigned to CrIII-O stretching modes of vibrations similar to those observed around 350 cm$^{-1}$ for CrII-O stretching modes in Na$_3$CrSbFe (PO$_4$)$_4$ 43. In low-frequency modes and more precisely for values below 270 cm$^{-1}$, the translational modes of AII (A = Sr, Pb), CrIII, and Sb$^{V+}$ ions, as well as vibrational modes of PO$_4$, CrO$_6$, and SbO$_6$ groups, should be expected.

![Figure 5. Infrared (a) and Raman (b) spectra of AIII(SbSbCr) (PO$_4$)$_2$ (A$^{III} =$ Ba, Pb) phases](image-url)

4. Conclusion

In the present work, the crystal structure of the three new AIII(SbSbCr) (PO$_4$)$_2$ ($A^{III} =$ Ba, Sr, Pb) compounds have been determined. The results of the Rietveld refinement show that Ba(SbSbCr) (PO$_4$)$_2$ crystallizes in monoclinic system with C2/m space
group \((Z=2)\) while \(A^2\left(Sb_{20}C_{60}\right)(PO_4)_{32}\) \((A^2=\text{Sr, Pb})\) phases have a monoclinic system with \(C2/c\) space group \((Z=4)\). The three studied compounds crystallize in the yavapaiite-type structure. Even though \([\text{ASbCr}]\) \((A=\text{Sr, Pb})\) compounds form in the \(C2/c\) space group and its \(a\)-axis parameter is double compared to that found for \([\text{BaSbCr}]\), the crystal structure of the three compounds has a similar 3D network. Observed Infrared and Raman bands are assigned according to the vibrations of \(\text{Sb(Cr)}O_6\) and \(\text{PO}_4\) polyhedra.

Acknowledgments

Financial support of the Moroccan Ministry of Higher Education, Scientific Research and Training of managerial staff (MESRSFC), National Center for Scientific and Technical Research (CNRST) are gratefully acknowledged.

References

1. G. Blasse, G.J. Dirksen, The luminescence of barium titanium phosphate \(\text{BaTi}(PO_4)_2\), Chem. Phys. Lett., 1979, 62, 19–20.

2. W.L. Zhang, C.S. Lin, Z.Z. He, H. Zhang, Z.Z. Luo, W.D. Cheng, Syntheses of three members of \(\text{A(I)M(IV)}(PO_4)_2\): luminescence properties of \(\text{PbGe}(PO_4)_2\) and its \(\text{Eu}^{3+}\)-doped powders, Cryst. En. Comm., 2013, 15, 7089–7094.

3. D. Zhao, F.X. Ma, H. Yang, W. Wei, Y.C. Fan, Z. Zhang, X. Xin, Structure twinning, electronic and photoluminescence properties of yavapaiite-type orthophosphate \(\text{BaTi}(PO_4)_2\), J. Phys. Chem. Solids, 2016, 99, 59–65.

4. C.R. Miao, C.C. Torardi, A New High-Efficiency UV-Emitting X-ray Phosphor, \(\text{BaHf}_{1-x}\text{Zr}_x(PO_4)_2\), J. Solid State Chem., 2000, 155, 229–232.

5. Y. Jiang, L. Wei, C. Xiyu, S. Ge, C. Lixin, G. Rongjie, Synthesis and luminescence of \(\beta-\text{SrGe}(PO_4)_2\): RE \((\text{RE}=\text{Eu}^{2+}, \text{Eu}^{3+}, \text{Th}^{4+})\) phosphors for UV light-emitting diodes, J. Rare Earths, 2017, 35, 142–148.

6. A.H. Abdeldaim, D.I. Badrdinov, A.S. Gibb, P. Manuel, H.C. Walker, M.D. Le, C.H. Wu, D. Wardecki, S.G. Eriksson, Y.O. Kvashnin, others, Large easy-axis anisotropy in the one-dimensional magnet \(\text{BaMo}(PO_4)_2\), Phys. Rev. B: Condens. Matter., 2019, 100, 214427.

7. F. Tudorache, K. Popa, L. Mitosu, N. Lupu, D. Bregiroux, G. Wallez, Dielectric investigation of \(\text{M}^4\text{M}^{IV}(PO_4)_2\) double orthophosphates \((M^4=\text{Ca, Sr, Ba}; M^{IV}=\text{Ti, Zr, Hf, Ge, Sn})\), J. Alloys Compd., 2011, 509, 9127–9132.

8. K. Popa, R.J.M. Konings, P. Boulet, D. Bouéxière, A.F. Popa, The high-temperature behavior of barium zirconium diorthophosphate, Thermochim. Acta, 2005, 436, 51–55.

9. K. Popa, R.J.M. Konings, T. Wiss, H. Leiste, Hydrothermal alteration of \(\text{Ba}_2\text{M}^{IV}\text{C}_{2-2x}(PO_4)_2\) \([\text{M}^{IV}=\text{Zr, Hf}]\) as hosts for minor actinides, J. Radioanal. Nucl. Chem., 2007, 273, 563–567.

10. S. Neumeier, Y. Arinicheva, Y. Ji, J.M. Heuser, P.M. Kowalski, P. Kegler, H. Schlenz, D. Bosbach, G. Deissmann, New insights into phosphate based materials for the immobilisation of actinides, Radiochim Acta, 2017, 105, 961–984.

11. A-J. Locock, Crystal chemistry of actinide phosphates and arsenates, In Structural Chemistry of Inorganic Actinide Compounds, Elsevier, 2007, 217–278.

12. D. Bregiroux, K. Popa, G. Wallez, Crystal chemistry of \(\text{M}^4\text{M}^{IV}(PO_4)_2\) double monophosphates, J. Solid State Chem., 2015, 230, 26–33.

13. N. Clavier, R. Podor, N. Dacheux, Crystal chemistry of the monazite structure, J. Eur. Ceram. Soc., 2011, 31, 941–976.

14. D. Kitaev, Y.F. Volkov, A. Orlova, Orthophosphates of tetravalent Ce, Th, U, Np, and Pu with the monazite structure, Radiochemistry, 2004, 46, 211–217.

15. A. Orlova, D. Kitaev, N. Kazantsev, S. Samoilov, V. Kurazhkovskaya, E. Vopilina, Double phosphates of Ce (IV) and some monovalent and divalent elements: synthesis and crystal structure, Radiochemistry, 2002, 44, 326–331.

16. A. Orlova, D. Kitaev, D. Kemenov, M. Orlova, G. Kazantsev, S. Samoilov, V. Kurazhkovskaya, Synthesis and Crystal-Chemical Properties of Phosphates \(\text{B}^4\text{R}^{III}\text{M}^{IV}(PO_4)_2\) Containing f, d, and Alkaline-Earth Elements, Radiochemistry, 2003, 45, 103–109.

17. R. Podor, M. Cunev, C.N. Trung, Experimental study of the solid solution between monazite-(La) and \((\text{Ca}_{x}\text{U}_{1-x})\text{PO}_4\) at 780 \(^\circ\)C and 200 MPa, Am. Mineral., 1995, 80, 1261–1268.

18. K. Fukuda, A. Moriyama, T. Iwata, Crystal structure, phase transition, and anisotropic thermal expansion of barium zirconium diorthophosphate, \(\text{BaZr}(PO_4)_2\), J. Solid State Chem., 2005, 178, 2144–2151.

19. K. Popa, D. Bregiroux, R.J.M. Konings, T. Gouder, A.F. Popa, T. Geisler, P.E. Raison, The chemistry of the phosphates of barium and tetravalent cations in the 1:1 stoichiometry, J. Solid State Chem., 2007, 180, 2346–2355.

20. K. Popa, G. Wallez, D. Bregiroux, P. Loiseau, \(\text{M}^4\text{Ge}(PO_4)_2\) \((M=\text{Ca, Sr, Ba})\): Crystal structure, phase transitions and thermal expansion, J. Solid State Chem., 2011, 184, 2629–2634.

21. A. Leclaire, M. Barel, J. Chardon, B. Raveau, A Mo (IV) monophosphate, \(\text{BaMo}(PO_4)_2\), with
the yavapaite layer structure, J. Solid State Chem., 1995, 116, 364–368.

22-E. Morin, G. Wallez, S. Jaulmes, J.C. Couturier, M. Quarton, Structure of PbIISnIV(PO\textsubscript{4})\textsubscript{2}: Stereoc hemical Activity of the Lead II Lone Pair, J. Solid State Chem., 1998, 137, 283–288.

23-K. Fukuda, K. Fukutani, Crystal structure of calcium zirconium diorthophosphate, CaZr(PO\textsubscript{4})\textsubscript{2}, Powder Diffr., 2003, 18, 296–300.

24-D. Zhao, H. Zhang, Z. Xie, W.L. Zhang, S.L. Yang, W.D. Cheng, Syntheses, crystal and electronic structures of compounds AM(PO\textsubscript{4})\textsubscript{2} (A = Sr, M = Ti, Sn; A = Ba, M = Sn), Dalton Trans., 2009, 5310–5318.

25-A. Aatiq, R. Hassine, M.R. Tigha, I. Saadoune, Structures of two newly synthesized A\textsubscript{0.50}SbFe(PO\textsubscript{4})\textsubscript{3} (A = Mn, Cd) Nasicon phases, Powder Difffr., 2005, 20, 33–39.

26-A. Aatiq, M.R. Tigha, R. Hassine, I. Saadoune, Crystallochemistry, and structural studies of two newly CaSb\textsubscript{0.50}Fe\textsubscript{1.50}(PO\textsubscript{4})\textsubscript{2} and Ca\textsubscript{0.50}SbFe(PO\textsubscript{4})\textsubscript{3} Nasicon phases, Powder Difffr., 2006, 21, 45–51.

27-A. Aatiq, M.R. Tigha, S. Bannokhtar, Structure, infrared, and Raman spectroscopic studies of new Sr\textsubscript{0.50}SbFe(PO\textsubscript{4})\textsubscript{3} and SrSb\textsubscript{0.50}Fe\textsubscript{1.50}(PO\textsubscript{4})\textsubscript{2} Nasicon phases, J. Mater. Sci., 2012, 47, 1354–1364.

28-M. Varma, H. Poswal, S. Velaga, Pressure-induced phase transitions in BaZr(PO\textsubscript{4})\textsubscript{2} studied using x-ray diffraction, Raman spectroscopy, and first-principles calculations, J. Appl. Phys., 2020, 127, 135902.

29-G. Wallez, D. Bregi roux, K. Popa, P.E. Raison, C. Apostolidis, P. Lindqvist-Reis, R.J.M. Konings, A.F. Popa, BaAnIV(PO\textsubscript{4})\textsubscript{2} (AnIV = Th, Np)-A New Family of Layered Double Phosphates, Eur. J. Inorg. Chem., 2011, 2011, 110–115.

30-M. Keskar, B.G. Vats, R. Phatak, K. Krishnan, S.K. Sali, S. Kannan, Structural and thermal studies of SrU(PO\textsubscript{4})\textsubscript{2} and BaU(PO\textsubscript{4})\textsubscript{2}, J. Alloys Compd., 2017, 725, 1199–1209.

31-N. Sarukhanyan, L. Ishkhakova, V. Trunov, Crystal structure of RbEu(SO\textsubscript{4})\textsubscript{2}, Kristallografiya, 1983, 28, 452–456.

32-K. Popa, G. Wallez, P.E. Raison, D. Bregi roux, C. Apostolidis, P. Lindqvist-Reis, R.J.M. Konings, SrNp(PO\textsubscript{4})\textsubscript{2} : an Original Ordered Modification of Cheralite, Inorg. Chem., 2010, 49, 6904–6908.

33-A. Aatiq, M.R. Tigha, R. Fakhreddine, D. Bregi roux, G. Wallez. Structure, infrared and Raman spectroscopic studies of newly synthetic AII(Sh0.50FeIII(PO\textsubscript{4})\textsubscript{2} (A = Ba, Sr, Pb) phosphates with yavapaite structure, Solid State Sci., 2016, 58, 44–54.

34-R. Fakhreddine, A. Aatiq. Structure, Infrared and Raman spectroscopic studies of the new Ba(Nb5+MIII)(PO\textsubscript{4})\textsubscript{2} (MIII =Al, Cr, Fe, In) yavapaite compounds ‘series, Mediterr. J. Chem., 2019, 8, 397–408.

35-J. Rodriguez-Carvajal, Collected abstract of powder diffraction meeting, Toulouse Fr, 1990, 127.

36-T. Roisnel, J. Rodriguez-Carvajal, WinPLOTR: a windows tool for powder diffraction pattern analysis, In Materials Science Forum, Transtec Publications, 1999, 378, 118–123.

37-I.D. Brown, D. Altermatt, Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database, Acta Crystallogr., Sect. B: Struct. Sci., 1985, 41, 244–247.

38-T. Hahn, U. Shmueli, J.W. Arthur, International Tables for Crystallography, Vol. A. space-group symmetry, D. Reidel Publ. Co., Dordrecht, Holland/Boston, Crystal Research and Technology, 1984, 1306.

39-M.T. Paques-Ledent, AIV(XO\textsubscript{4})\textsubscript{2} phosphates and arsenates with yavapaite structure I: isostructural relationship and vibrational study, J. Inorg. Nucl. Chem., 1977, 39, 11–17.

40-L. Popović, D. de Waal, J.C.A. Boeyens, Correlation between Raman wavenumbers and P-O bond lengths in crystalline inorganic phosphates, Journal Raman Spectroscopy, 2005, 36, 2–11.

41-N. Anantharamulu, K.K. Rao, M. Vithal, G. Prasad, Preparation, characterization, impedance, and thermal expansion studies of M\textsubscript{0.5}SbFe(PO\textsubscript{4})\textsubscript{3} (M = Al, Fe, and Cr), J. Alloys Compd., 2009, 479, 684–691.

42-A. Aatiq, A. Marchoud, H. Bellefqih, M.R. Tigha, Structural, and Raman spectroscopic studies of the two M\textsubscript{0.5}SbFe(PO\textsubscript{4})\textsubscript{3} (M=Mg, Ni) NASICON phases, Powder Diffrr., 2017, 32, S40–S51.

43-M. Barj, G. Lucazeau, C. Delmas, Raman, and infrared spectra of some chromium Nasicon-type materials: short-range disorder characterization, J. Solid State Chem., 1992, 100, 141-150.