Excellent electronic transport in heterostructures of graphene and monoisotopic boron-nitride grown at atmospheric pressure

To cite this article: J Sonntag et al 2020 2D Mater. 7 031009

View the article online for updates and enhancements.

Recent citations
- High-quality electrical transport using scalable CVD graphene
 Sergio Pezzini et al
Excellent electronic transport in heterostructures of graphene and monoisotopic boron-nitride grown at atmospheric pressure

J Sonntag, J Li, A Plaud, A Loiseau, J Barjon, J H Edgar and C Stampfer

Abstract
Hexagonal boron nitride (BN), one of the very few layered insulators, plays a crucial role in 2D materials research. In particular, BN grown with a high pressure technique has proven to be an excellent substrate material for graphene and related 2D materials, but at the same time very hard to replace. Here we report on a method of growth at atmospheric pressure as a true alternative for producing BN for high quality graphene/BN heterostructures. The process is not only more scalable, but also allows to grow isotopically purified BN crystals. We employ Raman spectroscopy, cathodoluminescence, and electronic transport measurements to show the high-quality of such monoisotopic BN and its potential for graphene-based heterostructures. The excellent electronic performance of our heterostructures is demonstrated by well developed fractional quantum Hall effect [14–16], the Hofstadter’s butterfly in moiré superlattices [17], charge density waves [18], single photon emitters [19] and to superconductivity in twisted bilayer graphene [20]. All these observations crucially rely on the material quality of the encapsulating BN. So far the very best and most used hexagonal BN is produced via a high pressure high temperature (HPHT) process (> 30 kbar) [21], and is kindly provided by T. Taniguchi and K. Watanabe to the extending 2D materials research community [22]. While the HPHT method produces BN of the highest quality, it is clearly limited in its scalability. An alternative method of growth using atmospheric pressure and high temperature (APHT) [23–26] is not only more suitable for larger scales [26, 27], but furthermore allows for the easy control of isotopic concentrations [28].

In comparison to BN with the natural distribution of boron (19.9% 10B and 80.1% 11B), isotopically purified BN exhibits a decrease in phonon-phonon scattering, leading to enhanced thermal transport [29–31] and to ultralow-loss polaritons.

1. Introduction
In recent years, a large number of two-dimensional (2D) materials have been discovered [1–6], investigated and used in first prototype devices. These materials cover almost all types of different material classes, including metals, semimetals, semiconductors, insulators, superconductors [7, 8], and even ferromagnets [9, 10]. However, the number of insulators is very limited since up to now only hexagonal boron nitride (BN) is available as a true 2D layered insulator. This gives hexagonal BN a special significance in particular since most properties of functional 2D materials - which consist only of surface atoms - are strongly influenced by the direct environment, making substrate materials and capping layers highly crucial for the effective material quality and device performance. Indeed, encapsulating 2D materials in hexagonal BN opened the way for improving device performance [1–3, 11–13] and to thoroughly studying the rich electronic, mechanical and optical properties of 2D materials. For example, phenomena observed in 2D materials thanks to the BN encapsulation range from the fractional quantum Hall effect [14–16], the Hofstadter’s butterfly in moiré superlattices [17], charge density waves [18], single photon emitters [19] and to superconductivity in twisted bilayer graphene [20]. All these observations crucially rely on the material quality of the encapsulating BN. So far the very best and most used hexagonal BN is produced via a high pressure high temperature (HPHT) process (> 30 kbar) [21], and is kindly provided by T. Taniguchi and K. Watanabe to the extending 2D materials research community [22]. While the HPHT method produces BN of the highest quality, it is clearly limited in its scalability. An alternative method of growth using atmospheric pressure and high temperature (APHT) [23–26] is not only more suitable for larger scales [26, 27], but furthermore allows for the easy control of isotopic concentrations [28].
[32], making monoisotopic BN interesting for nanophotonics. As the effective thermal management is one of the bottlenecks in nanoelectronics, monoisotopic BN is further a promising building block for high performance and high-power electronic applications, especially since the cooling can be further enhanced by hyperbolic phonon polariton cooling [33–35]. Furthermore, isotope purification modifies the electron density distribution and the van der Waals interaction between layers [36], which could alter the characteristics of the heterostructures, especially in regards to modifications to the phonon band structure with possible impact on the electronic transport [37]. Thus the APHT grown monoisotopic BN is not only interesting for applications, but also for fundamental research. However, so far there is not much known about the quality of this material with respect to its use for electronic devices based on heterostructures of graphene and such BN.

Here we report on electronic transport measurements on heterostructures based on graphene encapsulated in APHT grown monoisotopic BN [26, 28]. We assess the quality of the APHT grown monoisotopic BN via confocal Raman and cathodoluminescence spectroscopy measurements and we show that the graphene heterostructures—based on both 10BN and 11BN—exhibit excellent electronic performance, absolutely equivalent to state-of-the-art heterostructures based on HPHT hexagonal BN. At low temperature the charge carrier mobility is only limited by the device size, fractional quantum Hall effect appears below 14 T and magnetic focusing experiments allow to extract mean free paths very close to 10 μm. At room temperature the carrier mobility of all fabricated devices is only limited by electron-phonon scattering, even possibly outperforming present BN/graphene devices, making this material highly interesting for applications that require ultra-high carrier mobilities.

2. Results and discussion

The monoisotopic hexagonal boron nitride crystals were grown with the same metal flux method as reported in reference [28]. In short, elemental boron powder with high isotope purity (99.22% 10B or 99.41% 11B) are mixed with nickel and chromium powder and placed into an alumina crucible within an alumina tube furnace. During the growth process at 1550 °C, a continuous flow of N_2 and H_2 gases at a constant pressure of 850 Torr through the furnace is applied. Note that all the nitrogen elements in the BN crystal originate from the flowing N_2 gas and that the natural distribution of nitrogen isotopes already consists of > 99.6 % 14N [38], creating an isotopically pure BN crystal. During the cool down (0.5 °C/h) of the furnace the BN crystals precipitate on the metal surface. After removing the crystals from the metal...
We build heterostructures based on monoisotopic BN via dry-stacking of the individual flakes [12]. A heterostructure built from different isotopes 10BN and 11BN is shown as inset in figure 1(b). We characterize the heterostructures (both graphene and BN) via confocal Raman spectroscopy [39, 40]. As seen in figure 1(b) we can clearly distinguish the in-plane E_{2g} Raman mode of the two isotopes positioned at 1391.0 cm$^{-1}$ and 1355.2 cm$^{-1}$ for 10BN and 11BN respectively. The width of this peak is commonly used as a measure for the crystallinity of BN [41]. In the highest quality HPHT grown BN crystals with the natural distribution of boron the lowest width observed is 7.3 cm$^{-1}$ [41], mainly broadened by isotopic disorder. Similarly, we observe a comparable width of 7.5 cm$^{-1}$ for natural BN grown with a APHT process (see dashed line in figure 1(b)). For the monoisotopic BN we observe values of $\Gamma_{10BN} = 3.3$ cm$^{-1}$ and $\Gamma_{11BN} = 2.9$ cm$^{-1}$. This narrow width of the E_{2g} mode indicates a high isotope purity and a high crystal quality.

For the characterization of high quality hBN crystals, information gained from Raman spectroscopy is limited and needs to be completed by luminescence experiments [41]. To this end, we record cathodoluminescence (CL) spectra at low temperature ($T = 10$ K) with an acceleration voltage of 5kV and correct them for the spectral response of the detection system [42], see figure 1(c). The radiative recombination of free excitons dominates the CL spectra of both 10BN and 11BN exfoliated crystals with a maximum at 215 nm. The intensity of luminescence signals related to structural defects (227 nm) and deep defects (broadbands near 300 nm) remains much weaker than exciton signal (17.8 and 3.6 times lower for 10BN and 11BN), which indicates that the quality of APHT BN crystals is close to HPHT ones [41]. The control of the boron isotopes results in a slight energy shift for the series of narrow lines due to various phonon modes, including longitudinal and transverse optical (LO, TO) and longitudinal and transverse acoustic (LA, TA) phonons, which assist the indirect exciton recombination in BN, as seen in figure 1(d). The measured energies are consistent with previous observations [36] and confirm the good control of the isotope purity in the APHT crystals.

To further show the high quality of the monoisotopic BN we build BN/graphene/BN heterostructures6 in which we use the graphene sheet as a sensitive detector for any disorder within the BN. The inset of figure 1(e) shows such a heterostructure. To characterize the quality of the encapsulated graphene we employ spatially resolved confocal Raman spectroscopy, see figures 1(e) and (f). Besides some ‘bubbles’ within the heterostructure, resulting from a ‘self-cleaning’ mechanism of interfacially trapped hydrocarbons [43], we observe a homogeneous Raman response of pristine graphene. In particular, the width of the 2D-peak is approximately $\Gamma_{2D} \approx 16$ cm$^{-1}$ showing very little broadening due to strain variations [44]. As strain variations are the dominating scattering mechanism in high-quality graphene devices this very low Γ_{2D} indicates that these heterostructures promise high charge carrier mobilities [45].

The suitability of the monoisotopic BN as substrate for high-performance graphene devices is examined with BN/graphene/BN Hall bar devices fabricated via electron beam lithography and reactive ion etching, see inset of figure 2(b). In total we build one device from 10BN and five devices from 11BN, which all show similar electronic behavior. The BN thicknesses used in our devices ranges from \sim20 nm to \sim90 nm. First, we characterize the electronic quality of the heterostructure at low temperatures via 4-point electrical transport measurements. In figure 2(a) the conductivity σ and resistivity ρ at 1.7 K of the heterostructure built with 10BN is shown. The charge neutrality point (CNP) indicated by a sharp increase of the resistance is very close to $V_{BG} = 0$ V demonstrating low doping and low charge carrier inhomogeneity. To quantify the charge carrier density inhomogeneity n', we employ a double logarithmic plot of σ against the charge carrier density n, see figure 2(b), n' is defined as the crossing point between two linear fits corresponding to the saturation σ_{min} and $\sigma(n)$ at high n. We find low inhomogeneities of $n' \approx 6 \times 10^5$ cm$^{-2}$; a low value for BN-graphene heterostructures without graphite gates [43, 45–47].

To further probe that the monoisotopic BN does not disturb sensitive quantum states we investigate the quantum Hall effect in our 10BN-heterostructure. Thanks to low n' and a high carrier mobility of around $\mu \approx 500.000$ cm2/Vs), the integer quantum Hall effect emerges at values below 1 T, see figure 2(c), while four-fold degeneracy lifting [48] already occurs at ≈ 2 T, showing that electron-electron interactions are not masked by disorder. At higher magnetic fields additional quantum Hall plateaus occur at fractional filling factors. As can be seen in figure 2(d), we observe fully quantized fractional plateaux at fillings of 2/3, 4/3, 5/3... at magnetic fields of 13.8 T in both the longitudinal resistivity ρ_{xx} and transversal conductivity σ_{xy}. The $\nu = 1/3$ plateau is not clearly visible in σ_{xy}, possibly because of its proximity to the isolating $\nu = 0$ state [14] and the constant bias voltage measurement technique employed here. The well developed fractional quantum Hall states clearly show that the monoisotopic BN is a suitable substrate to investigate fragile quantum states within graphene and possibly in other 2D materials.

6The graphene flakes used are exfoliated from graphite crystals supplied by NGS Naturgraphit GmbH.
In figure 3(a) we show the charge carrier mobilities μ of the 10BN device and two 11BN devices as function of n, where the mobility is extracted from $\mu = \sigma/(en)$. We find values above 500,000 cm2/Vs, which are only limited by the dimensions of our devices, resulting in quasi-ballistic transport. In the case of ballistic transport the mean free path $l_m = \sigma \hbar/\left(2e\sqrt{\pi n}\right)$ is only restricted by the device dimension L, thus $l_m \approx L$. For our samples L represents both the width of the Hall bar and the distance between two voltage probes. Considering $\mu = \sigma/(en)$, this implies that for ballistic transport μ decreases as $\mu \approx 4eL/\sqrt{\pi \hbar^2 n}$. As seen in figure 3(a), we indeed observe a significant decrease of μ with increasing n and the measured mobilities for higher charge carrier densities are very close or even slightly above this limit. Similarly, the mobilities increase with the device dimension L, see inset in figure 3(a). This suggests that the dimensions of the device is limiting the mobility in our devices rather than intrinsic material properties of the graphene or the BN-substrate, indicating ballistic charge carriers. To further prove the ballistic nature of the electron transport in our devices we perform magnetic focusing experiments. To this end we apply a current I to one contact pair, while measuring the non-local voltage V at another pair, see the scheme illustrated in the inset of figure 3(c). The applied perpendicular magnetic field B bends the injected charge carriers. The electrons are focused into the voltage probe, when the cyclotron radius $r_c = \hbar \sqrt{\pi n}/(eB)$ is half of the distance L between the current injector and voltage probe, resulting in a maximum in $R = V/I$. Crucially, this effect breaks down if there is any scattering of the charge carriers. Additional maxima occur when the charge carriers are reflected specularly from the sample edge and the resonance condition $2\nu r_c = L$, with $\nu = 1, 2, 3...$, is met. As shown in figure 3(c), we observe magnetic focusing resonances starting from charge carrier densities of $|n| < 0.25 \times 10^{12}$ cm$^{-2}$ and up to an...
order of 4. This shows that the charge carriers travel ballistically over distances of at least $\pi L/2 \approx 9.6 \mu m$, proving that the APHT monoisotopic BN does not introduce any significant scattering and help to maintain the pristine properties of the graphene.

After having shown low-temperature transport data on graphene encapsulated in monoisotopic BN, highlighting device quality very much comparable to state-of-the-art BN/graphene sandwich devices built with HPHT BN, we will now focus on transport...
measurements at elevated temperatures. In figure 4 we show the conductivity of a 11BN device as a function of gate voltage (i.e. carrier density) for various temperatures. While the conductivity decreases due to increased electron-phonon scattering, conductivity values over 500 \ee^2 \hbar^{-1} ($\rho_{\text{min}} \approx 50 \Omega$) can still be reached at room temperature with monoisotopic BN/graphene devices. Importantly, the position of the CNP does not change with temperature, showing that no defects within the BN are thermally excited, which would result in a finite doping of the graphene flake. Similarly, the charge carrier inhomogeneity, expressed by n', stays low over the entire temperature range, see the inset of figure 4(a), only showing the expected broadening due to thermally excited charge carriers within graphene. In figure 4(b) we compare the extracted room temperature mobility of our monoisotopic BN/graphene Hall bars to a reference BN/graphene-heterostructure device R based on natural BN [12] and to other materials (see thick dashed lines). Notably, the shown reference sample R (see black line) is only limited by the intrinsic scattering of electrons with acoustic and optical phonons [12, 49]. Interestingly, all our fabricated devices are very close to this value and some of our devices (e.g. the one based on 13BN/graphene; see blue line) are even outperforming the one made from the natural BN resulting in carrier mobility values being consistently higher for increasing n (see inset in figure 4(b)). This is surprising and on one hand demonstrates the high potential of monoisotopic BN for graphene-based applications. On the other hand this also asks for further investigations to shed more light on the differences of these encapsulation and substrate materials.

3. Summary and outlook

To conclude, our work demonstrates excellent transport performance of van der Waals heterostructures based on graphene and atmospheric pressure high temperature grown monoisotopic boron nitride [26, 28]. Raman spectroscopy and cathodoluminescence spectra indicate that the quality of the APHT monoisotopic BN is very close to the conventional HPHT grown BN. Our transport measurements show that the charge carrier mobility in our BN/graphene devices is only limited by devices dimensions or temperature, rather than material imperfections. This shows, that APHT grown BN is a true alternative to HPHT BN. Since the method of growth is more suitable for extra-large devices and larger scales [26, 27], our findings are certainly highly interesting not only for fundamental research, but also for applications based on graphene and related 2D materials. Importantly, the APHT method also allows for the control of the isotopic concentrations. Thus, we believe that the presented work will trigger more studies exploring the potential and benefits of isotopically purified BN substrates.

Acknowledgments

The authors thank L. Banszerus, B. Beschoten and F. Haupt for helpful discussions. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 785 219 (Graphene Flagship) and from the European Research Council (ERC) (grant agreement No. 820 254). We acknowledge support by the Helmholtz Nanoelectronic Facility (HNF) [50] at the Forschungszentrum Jülich.

ORCID iDs

J Sonntag © https://orcid.org/0000-0002-6066-0436
J Li © https://orcid.org/0000-0002-5118-0908
J H Edgar © https://orcid.org/0000-0003-0918-5964

References

[1] Ajayan P, Kim P and Banerjee K 2016 Two-dimensional van der Waals materials Phys. Today 69 38
[2] Geim A K and Grigorieva I V 2013 Van der Waals heterostructures Nature 499 419–25
[3] Novoselov K S Mishchenko A Carvalho and Castro A H Neto 2016 2D materials and van der Waals heterostructures Science 353 66–4939
[4] Butler S Z et al 2013 Progress, Challenges and Opportunities in Two-Dimensional Materials Beyond Graphene ACS Nano 7 2898–926
[5] Mounet N et al 2018 Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds Nat. Nanotechnol. 13 246–252
[6] Haastrup S et al 2018 The Computational 2D Materials Database: high-throughput modeling and discovery of atomically thin crystals 2D Mater. 6 042002
[7] Xiaoliang Xi, Zhao L, Wang Z, Berger H, László Fó, Shan J and Fai Mak K 2015 Strongly enhanced charge-density-wave order in monolayer NbSe2 Nanotechnol. 10 765–9
[8] Cao Y et al 2015 Quality Heterostructures from Two-Dimensional Crystals Unstable in Air by Their Assembly in Inert Atmosphere Nano Lett. 15 4914–21
[9] Bonilla M et al 2018 Strong room-temperature ferromagnetism in VSe_2 monolayers on van der Waals substrates Nat. Nanotechnol. 13 288–93
[10] Huang B et al 2017 Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit Nature 546 270–3
[11] Dean C R et al 2010 Boron nitride substrates for high-quality graphene electronics Nat. Nanotechnol. 5 722–6
[12] Wang L et al 2013 One-dimensional electrical contact to a two-dimensional material Science 342 614–17
[13] Dauber J, Sagade A A, Oellers M, Watanabe K, Taniguchi T, Neumann D and Stampfer C 2015 Ultra-sensitive Hall sensors based on graphene encapsulated in hexagonal boron nitride Appl. Phys. Lett. 106 193501
[14] Dean C R et al 2011 Multicomponent fractional quantum hall effect in graphene Nat. Phys. 7 693
[15] Youngwook K, Balram A C, Taniguchi T, Watanabe K, Jain J K and Jurgen H S 2019 Even denominator fractional quantum Hall states in higher Landau levels of graphene Nat. Phys. 15 154–8
[16] Zibrov A A, Spanton E M, Zhou H, Kometter C, Taniguchi T, Watanabe K and Young A F 2018 Even-denominator
fractional quantum Hall states at an isospin transition in monolayer graphene *Nat. Phys.* **14** 930–5

[17] Dean C R et al 2013 Hofstadter’s butterfly and the fractal quantum hall effect in moire superlattices *Nature* **497** 598–602

[18] Xiaoxiang Xi, Zhao L, Wang Z, Berger H, László F, Shan J and Fai Mak K 2015 Strongly enhanced charge-density-wave order in monolayer NbSe2 *Nat. Nanotechnol.* **10** 765–9

[19] Koperski M, Nogajewski K, Arora A, Cherkez V, Mallet P, Veuillen J-Y, Marcus J, Kossacki P and Potemski M 2015 Single photon emitters in exfoliated WS2 structures *Nat. Nanotechnol.* **10** 503–6

[20] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Unconventional superconductivity in magic-angle graphene superlattices *Nature* **556** 43–50

[21] Watanabe K, Taniguchi T and Kanda H 2007 Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure *Science* **317** 932–4

[22] Zastrow M 2019 Meet the crystal growers who sparked a revolution in graphene electronics *Nature* **572** 429–32

[23] Kubota Y, Watanabe K, Tsuda O and Taniguchi T 2007 Deep ultraviolet light-emitting hexagonal boron nitride single crystal *Nat. Mater.* **3** 404–9

[24] Hoffmann T B, Clubine B, Zhang Y, Snow K and Edgar J H 2014 Optimization of Ni–Cr flux growth for hexagonal boron nitride single crystals *J. Cryst. Growth* **393** 114–18

[25] Liu S, Rui H, Zhipeng Y, Xiaozhang D, Lin J, Jiang H, Liu B and Edgar J H 2017 Large-scale growth of high-quality hexagonal boron nitride crystals at atmospheric pressure from an iron-chromium flux *Cryst. Growth Des.* **17** 4932

[26] Kumaravadivel P et al 2019 Strong magnetophonon oscillations in extra-large graphene *Nat. Commun.* **10** 1–6

[27] Liu S, Rui H, Xue L, Jianan Li, Liu B and Edgar J H 2018 Single crystal growth of millimeter-sized monoisotopic hexagonal boron nitride *Chem. Mater.* **30** 6222

[28] Morelli D T, Heremans J P and Slack G A 2002 Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors *Phys. Rev. B* **66** 195304

[29] Chang C W, Fennimore A M, Afanasiev A, Okawa D, Ikuno T, Garcia H, Deyu Li, Majumdar A and Zettl A 2006 Isotope Effect on the Thermal Conductivity of Boron Nitride *Nano Letters* **9** 075448

[30] Lindsay L and Broido D A 2011 Enhanced thermal conductivity and isotope effect in single-layer hexagonal boron nitride *Phys. Rev. B* **84** 155421

[31] Alexander J G et al 2017 Ultralow-loss polaritons in isotopically pure boron nitride *Nat. Mater.* **17** 134–9

[32] Tielrooij K J et al 2017 Out-of-plane heat transfer in van der Waals stacks through electron-hyperbolic phonon coupling *Nat. Nanotechnol.* **13** 41–6

[33] Yang W et al 2017 A graphene Zener–Klein transistor cooled by a hyperbolic substrate *Nat. Nanotechnol.* **13** 47–52

[34] Baudin E, Voisin C and Plaçais B 2019 Hyperbolic Phonon Polariton Electroluminescence as an Electronic Cooling *Phys. Rev. Lett.* **123** 041019

[35] Forster F, Molina-Sanchez A, Engels S, Epping A, Watanabe K, Taniguchi T, Wirtz L and Stapper M 2013 Dielectric screening of the Kohn anomaly of graphene on hexagonal boron nitride *Phys. Rev. B* **88** 085419

[36] Schüe Leonard, Stenger I, Fossard Fedéric, Loiseau A and Barjon J 2016 Characterization methods dedicated to nanometer-thick hBN layers *2D Mater.* **4** 015028

[37] Schüe Leonard, Sponza L, Plaud A, Benalal H, Watanabe K, Taniguchi T, Ducastelle Fclos, Loiseau A and Barjon J 2019 Bright Luminescence from Indirect and Strongly Bound Excitons in h-BN *Phys. Rev. Lett.* **122** 066401

[38] Kretinin A V et al 2014 Electronic Properties of Graphene Encapsulated with Different Two-Dimensional Atomic Crystals *Nano Lett.* **14** 3270

[39] Neumann C et al 2015 Raman spectroscopy as probe of nanometre-scale strain variations in graphene *Nat. Commun.* **6** 8429

[40] Couto N J G, Costanzo D, Engels S, Dong-Keun K, Watanabe K, Taniguchi T, Stapper C, Guinea F and Morpurgo A F 2014 Random strain fluctuations as dominant disorder source for high-quality on-substrate graphene *Phys. Rev. B* **90** 041409

[41] Banszerus L et al 2015 Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper *Sci. Adv.* **1** e1500222

[42] Purdie D G, Pugno N M, Taniguchi T, Watanabe K, Ferrari A C and Lombardo A 2018 Cleaning interfaces in layered materials heterostructures *Nat. Commun.* **9** 1–12

[43] Young A et al 2012 Spin and valley quantum hall ferromagnetism in graphene *Nat. Phys.* **8** 550–6

[44] Sohier T Calandra M and Mauri F 2017 Density functional perturbation theory for gated two-dimensional heterostructures: Theoretical developments and application to flexural phonons in graphene *Phys. Rev. B* **96** 075448

[45] Albrecht W, Meers J and Hermanns B 2017 Hfn-helmholtz nano facility *J. Large-Scale Res. Facil.* **3** 112