Haplotype structure defines effects of common DPYD variants c.85T > C (rs1801265) and c.496A > G (rs2297595) on dihydropyrimidine dehydrogenase activity: Implication for 5-fluorouracil toxicity

Seid Hamzic1,2 | Dominic Schärer1,2 | Steven M. Offer3 | Didier Meulendijks4 | Christos Nakas1,5 | Robert B. Diasio3 | Stefano Fontana6 | Marc Wehrli7 | Stefan Schürch8 | Ursula Amstutz1 | Carlo R. Largiadèr1

1Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, INO-F, Bern, Switzerland
2Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
3Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
4Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
5Laboratory of Biometry, University of Thessaly, Volos, Greece
6Regional Blood Transfusion Service of the Swiss RedCross, Bern, Switzerland
7Department of Medical Oncology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
8Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland

Correspondence
Carlo R. Largiadèr, Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, INO-F, CH-3010, Bern, Switzerland.
Email: carlo.largiader@insel.ch

Aims: The aim of this study was to identify risk variants and haplotypes that impair dihydropyrimidine dehydrogenase (DPD) activity and are, therefore, candidate risk variants for severe toxicity to 5-fluorouracil (5-FU) chemotherapy.

Methods: Plasma dihydrouracil/uracil (UH2/U) ratios were measured as a population marker for DPD activity in a total of 1382 subjects from 4 independent studies. Genotype and haplotype correlations with UH2/U ratios were assessed.

Results: Significantly lower UH2/U ratios (p<2×10^-16) were observed in carriers of the 4 well-studied 5-FU toxicity risk variants with mean differences (MD) of −43.7% for DPYD c.1905 + 1G > A (rs3918290), −46.0% for DPYD c.1679T > G (rs55886062), −37.1%, for DPYD c.2846A > T (rs67376798), and −13.2% for DPYD c.1129-5923C > G (rs75017182). An additional variant, DPYD c.496A > G (rs2297595), was also associated with lower UH2/U ratios (P<.0001, MD: −12.6%).

A haplotype analysis was performed for variants in linkage disequilibrium with c.496A > G, which consisted of the common variant c.85T > C (rs1801265) and the risk variant c.1129-5923C > G. Both haplotypes carrying c.496A > G were associated with decreased UH2/U ratios (H3, P = .003, MD: −9.6%; H5, P = .002, MD: −16.9%). A haplotype carrying only the variant c.85T > C (H2) was associated with elevated ratios (P = .004, MD: +8.6%).

Conclusions: Based on our data, DPYD-c.496A > G is a strong candidate risk allele for 5-FU toxicity. Our data suggest that DPYD-c.85T > C might be protective; however, the deleterious impacts of the linked alleles c.496A > G and c.1129-5923C > G likely limit this effect in patients. The possible protective effect of c.85T > C and linkage disequilibrium with c.496A > G and c.1129-5923C > G may have hampered prior association studies and should be considered in future clinical studies.
1 | INTRODUCTION

The uracil catabolizing enzyme dihydropyrimidine dehydrogenase (DPD), which is encoded by the DPYD gene, is crucial for the catabolism of the fluoropyrimidine (FP) drug 5-fluorouracil (5-FU). Cancer patients with impaired DPD activity are at higher risk of developing severe 5-FU related toxicities compared to patients with normal DPD function. Such impairment in DPD activity can result from genetic variation in DPYD. Currently, 4 DPYD risk variants (c.1905 + 1G > A, c.1679T > G, c.2846A > T, rs67376798; and c.1129-5923C > G, rs75017182, which is tagged by c.1236G > A/HapB3) are considered clinically relevant markers for predicting 5-FU-related toxicities pretherapy. While these 4 DPYD risk variants are clinically important, they account for only a fraction of toxicity cases. Other variants and haplotypes of the polymorphic DPYD gene remain to be evaluated for their effect on the DPD phenotype, as well as their clinical relevance.

The impact of certain additional DPYD variants is not as straightforward and requires further investigation to reconcile disparate results. For example, DPYD c.85T > C (rs1801265) and c.496A > G (rs2297595) are both exonic single nucleotide polymorphisms (SNPs) that lead to amino acid changes in the DPD protein (p.C29R and p.M166V, respectively). The c.85T > C variant was described as deleterious upon discovery because it was initially observed in DPD deficient patients. Recombinant p.C29R-containing DPD showed impaired protein function when expressed in Escherichia coli. However, later studies failed to corroborate those conclusions. Clinical studies also report disparate results in regard to the role of c.85T > C in 5-FU related toxicities. Two recent studies suggest a protective effect for the c.85C allele, which suggests that DPD activity might be higher in carriers of c.85C. However, other studies failed to show a protective effect or suggested association with increased toxicity risk, which could not be replicated. Similar discrepancies have been reported for c.496A > G: Some studies suggest that c.496G is linked to FP toxicity, while others fail to demonstrate an association. Another study has suggested a protective effect for the variant. In vitro studies have similarly yielded inconclusive data pertaining to the effect of these variants on DPD function. Guidelines from the Clinical Pharmacogenetics Implementation Consortium (CPIC) have graded both variants as normal-function alleles due to the lack of clear evidence linking these variants with 5-FU toxicity. Our previous study suggested linkage disequilibrium (LD) between c.85T > C and c.496A > G; however, detailed multi-SNP analyses of these variants have not been reported.

What is already known about this subject
- Rare enzyme impairing variants in the DPYD gene are predictive biomarkers for 5-FU related toxicities.
- However, not all cases can be explained by these rare variants.
- Two common DPYD variants (c.85T > C and c.496A > G) are controversially discussed for their impact on DPD phenotype and role in 5-FU toxicity.

What this study adds
- Our study found that the effects of c.85T > C and c.496A > G depend on haplotype structure.
- We observed an enzyme activity enhancing effect for c.85C, whereas c.496G was associated with impaired activity.
- Multi-locus effects within DPYD may evolve as a marker for prediction of 5-FU related toxicities.

In the present study, endogenous plasma dihydrouracil/uracil (UH2/U) ratios were used as a surrogate marker for systemic DPD activity. Previous studies have suggested that carriers of deleterious DPYD variants display significantly reduced steady-state plasma UH2/U ratios, consistent with lower systemic DPD activity. However, high interindividual variability and small population sizes limited the statistical power of these studies. The goals of the present study were to establish population-level reference values for UH2/U ratios in carriers of deleterious DPYD variants and to identify correlations between UH2/U ratios and multimarker DPYD haplotypes linked to c.85T > C and c.496A > G variants within a large population.

2 | METHODS

2.1 | Study populations

Four independent study cohorts were evaluated. For 2 cohorts, previously published UH2/U ratio data were used. These include data from 320 healthy blood donors, referred to herein as Sistonen et al. and pretreatment data from 550 cancer patients, referred to as Meulendijk et al. For the third cohort, plasma UH2/U ratios were measured in 204 subjects from the Mayo Clinic Biobank. Details of this cohort, which is referred to as Nie et al., have been previously reported. For the fourth cohort, plasma samples from 308 healthy donors were used.
In the Hamzic et al. and Nie et al. cohorts, endogenous plasma uracil and dihydrouracil levels were measured using a liquid chromatography-tandem mass spectrometry method previously detailed by Büchel et al. The mass spectrometric analysis was performed by multiple reaction monitoring on a Sciex QTrap 5500 mass spectrometer.

2.3 | SNP genotyping

The Hamzic et al. cohort was genotyped for DPYD variants (c.1905 + 1G > A, c.1679T > G, c.2846A > T, and c.1129-5923C > G) using previously validated TaqMan assays (Thermo Fisher Scientific) on a QuantStudio 6 in 384-well format. All DPYD risk variants were validated by Sanger sequencing. The DPYD variant c.85T > C (rs1801265) was genotyped using custom-designed KASP genotyping assays (KASP, Biosearch Technologies). Genotyping assays for c.85T > C and c.496A > G were retrospectively validated with previously genotyped samples from Sistonen et al. and Sanger sequencing. Genotype information on DPYD risk variants was previously reported for Nie et al.; c.85T > C and c.496A > G were newly genotyped for this study using custom-designed rhAMP SNP Assays (Integrated DNA Technologies) using a LightCycler 480 System.

2.4 | Data and statistical analysis

The data and statistical analysis comply with the recommendations on experimental design and analysis in pharmacology.

2.5 | Model building and single marker analysis

All statistical analyses were performed using R version 3.6.1 (R Foundation for Statistical Computing, Vienna, Austria) on R Studio v1.2.5001 (R-studio Inc., Boston, MA, USA). To analyse the association of DPYD variants with UH2/U-ratios, a linear mixed model was used to account for potential study cohort effects. UH2/U-ratios were log2-transformed to account for non-normal distributions (Figure S1). Age and sex were tested independently for association with UH2/U-ratios and were included in models analyzing the effect of genetic variants if P < .25. For genetic association testing, DPYD variants and sex were treated as fixed effects, whereas the study cohort was coded as a blocking factor and included as a random effect variable in the model. Linear mixed modelling was performed using the `lmerTest` package and the `lmer` function in R. In more detail, analysis of associations of DPYD risk variants with UH2/U-ratios included all 4 DPYD risk variants (c.1905 + 1G > A, c.1679T > G, c.2846A > T, and c.1129-5923C > G) in 1 linear mixed model with sex (female) as a fixed co-factor and cohort as a random factor: lmer (log2ratio ~ risk_name + female + (1|cohort), data=df). The model assessing associations of common DPYD polymorphisms with UH2/U-ratios was performed individually for each variant (c.85T > C and c.496A > G) and adjusted for DPYD risk variant carrier status (cofactor: risk): lmer (log2ratio ~ c.85T.C + female + risk + (1|cohort), data=df) and lmer (log2ratio ~ c.496A.G + female + risk + (1|cohort), data=df), respectively.
2.6 | Haplotype analysis

LD between individual DPYD variants was calculated with the genetics package in R. Variants, which were significantly linked consistently in all investigated cohorts, were used for haplotype analysis. The samples from Meulendijks et al. were excluded for this analysis because c.85T > C and c.496A > G genotypes were not available. The haplo.glm function of the haplo.stats package in R was used for haplotype inference. This method is permissive for ambiguous haplotypes and allows multivariate analysis (model was adjusted to sex and DPYD risk variant carrier status). To account for ambiguity in haplotype inference, the posterior probabilities of the haplotypes were used as weights for the regression coefficient. To compare haplotype frequencies in different populations, phase 3 data from the 1000 Genomes Project, accessed through the API of LDLink (https://ldlink.nci.nih.gov/), was assessed using the LDhap function. Circular bar plots were generated using ggplot2 in R-Studio.

2.7 | Correction for multiple testing

We set the threshold for statistical significance in the linkage analysis as $p < .0083$ (Bonferroni correction $n = 6, \alpha = .05$). Consistent significant LD was noted between 3 (c.85T > C, c.496A > G, and

![Table 1: Study characteristics](image)

Characteristics	Sistonen et al. (n = 320)	Hamzic et al. (n = 308)	Meulendijks et al. (n = 550)	Nie et al. (n = 204)
Study cohort	Healthy volunteers	Healthy volunteers	Cancer patients	Biobank samples
Median age (y)	46	50	59	61
Male (%)	228 (71%)	204 (66%)	232 (42%)	84 (41%)
Female (%)	92 (29%)	104 (34%)	318 (58%)	120 (59%)
Median UH2/U ratio (ng/mL)	11.4	11.2	11.2	8.7

UH2/U, dihydrouracil/uracil

![Figure 1: Distribution of dihydrouracil/uracil (UH2/U) ratios according to DPYD risk genotype. Boxplots represent UH2/U ratios according to study cohorts and DPYD risk variant carriers in different colours. From left to right, the populations carrying: none of the 4 risk variants (red), c.1129-5923G (orange), c.2846 T (yellow), c.1679G (green), and c.1905 + 1A (blue). All DPYD risk variant carriers were heterozygous for the mutation. The study from Meulendijks et al. excluded carriers of c.1905 + 1G > A in their study. The Nie et al. cohort was enriched for DPYD risk variant carriers (c.1129-5923C > G, c.1679T > G, c.1905 + 1G > A, and c.2846A > T). Each variant was significantly associated with decreased ratios (Table 2). The boxes represent the first and third quartile, and the black bar represents the median. The whiskers represent 1.5x of the interquartile range](image)
c.1129-5923C > G) of the 6 investigated variants. To account for this partial genetic correlation, we used a threshold of $P < .0125$ for the single-marker analysis (Bonferroni correction $n = 4, \alpha = .05$). A threshold of $P < .01$ was used for haplotype analyses because 5 haplotypes were tested for association with UH2/U ratios (Bonferroni correction $n = 5, \alpha = .05$).

2.8 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to corresponding entries in http://www.guidetopharmacology.org, and are permanently archived in the Concise Guide to PHARMACOLOGY 2019/20.23

3 | RESULTS

3.1 | Population characteristics

This study included data from 4 cohorts. Study characteristics are summarized in Table 1. Data on DPYD variants c.85T > C, c.496A > G, and c.1905 + 1G > A were available for 3 of the 4 cohorts (Table 2). Notably, the distribution and levels of UH2/U ratios measured in healthy volunteers (Sistonen et al.20 and Hamzic et al.) were comparable to the pretherapeutic UH2/U levels measured in cancer patients (Meulendijks et al.).21 The median UH2/U ratio was lower in Nie et al.22 compared to the other 3 cohorts (Table 1, Figure S1), which was accounted for in subsequent analyses by including study cohort as factor in the multivariate regression. Differences in age and sex distributions were noted among the cohorts, which was attributed to differences in study design. In the univariate model, we observed a P-value below the predefined model-inclusion threshold value of 0.2 for sex but not for age; therefore, sex was included as a factor in the multivariate model.

3.2 | The impact of known toxicity-associated DPYD variants on plasma UH2/U ratios

To determine the extent to which known toxicity-associated variants impact DPD function in vivo, we investigated the effects of c.1905 + 1G > A, c.1679T > G, c.2846A > T, and c.1129-5923C > G on plasma UH2/U ratios. As expected, all 4 risk variants were individually associated with lower UH2/U ratios (Figure 1 and Table 2; $P_{\text{anova}} < 2.0 \times 10^{-16}$), confirming impaired enzyme activity for carriers of these variants. As expected, a stronger mean decrease in UH2/U ratios was observed in individuals that were heterozygous for a nonfunctional variant, c.1905 + 1G > A or c.1679T > G, compared to heterozygous carriers of a decreased function variant, c.2846A > T or c.1129-5923C > G (Figure 1 and Table 2). No compound heterozygous or homozygous risk variant carriers were observed in any of the 4 cohorts. At the level of individual cohorts, we observed, in general, similar effect sizes (i.e. β-

Table 2

Genetic variant	P-value	Log2(β)	% change in ratios	Allele frequencies					
				Combined cohort	Sistonen et al.20	Hamzic et al.	Meulendijks et al.21	Nie et al.²²c	dbSNPd (EUR)
c.1129-5923C > G	.0003	-0.20	-13.2%	3.66%	1.56%	2.11%	2.00%	13.72%	2.39%
(rs75017182)									
c.1679T > G	9.2 × 10^{-7}	-0.89	-46.0%	0.29%	0.32%	0.32%	0.18%	0.49%	0.06%
(rs55886062)									
c.1905 + 1G > A	1.5 × 10^{-9}	-0.83	-43.7%	0.54%	0.16%	0.16%	0%	0.18%	0.50%
(rs3918290)									
c.2846A > T	8.0 × 10^{-10}	-0.67	-37.1%	0.83%	0.31%	0.48%	0.54%	2.90%	0.42%
(rs67376798)									
c.85T > C	.067	+.06	+2.4%	24.63%	22.50%	23.00%	NA	30.10%	21.79%
(rs1801265)									
c.496A > G	8.7 × 10^{-6}	-0.20	-12.6%	10.81%	12.50%	11.50%	NA	7.10%	11.93%
(rs2297595)									

²P-values and β-coefficients were calculated in the complete cohort using a multivariate model with sex, study cohort, and DPYD risk variants as independent variables; P-values < .01 are in bold, and % change in ratios is given per allele. DPYD risk variants have been included in the same linear mixed model using an ANOVA-based approach ($P_{\text{anova}} = 2 \times 10^{-16}$). For c.85T > C and c.496A > G, individual linear mixed models were performed including DPYD risk status as a co-factor.

²²The study from Meulendijks et al.21 excluded carriers of c.1905 + 1G > A in their study and was not genotyped for c.85T > C and c.496A > G; the complete study population size for c.85T > C and c.496A > G is $n = 832$.

²³The cohort of Nie et al.22 was enriched for DPYD risk variant carriers (c.1129-5923C > G, c.1679T > G, c.1905 + 1G > A, and c.2846A > T).

²⁴European population (EUR), https://www.ncbi.nlm.nih.gov/snp.
coefficients) for the associations of DPYD variants with UH₂/U ratios, indicating that our results were not likely to have been driven by a single study (Figure S3).

3.3 The effects of c.85T > C and c.496A > G on DPD activity depend on haplotype structure

We previously reported LD between c.85T > C and c.496A > G. In the present study, we observed statistically significant LD between c.85T > C, c.496A > G, and c.1129-5923C > G (Figure S2). Notably, statistically significant linkage between c.85C/c.496G and between c.85C/c.1129-5923G was consistently observed in all cohorts (P < .0083). The linkage between c.496G and c.1129-5923G was only significant in the combined cohort, probably due to a lack of statistical power in the other cohorts. The D’-values observed in the combined cohort were comparable to the values reported for the European population, as shown in Table 2, affecting the frequency differences between the combined cohort and the reference population in the LDLink database, i.e. 0.66 vs. 0.69 for c.85C/c.496G, 0.90 vs. 0.89 for c.85C/c.1129-5923G, and 0.99 vs. 1.0 for c.496G/c.1129-5923G (Figure S2). In contrast, the R²-values are slightly different for c.85C/c.496G and c.85C/c.1129-5923G compared to the values reported in the LDLink database: 0.16 vs. 0.24 and 0.12 vs. 0.07, respectively. This can be explained by the above-mentioned enrichment of c.1129-5923G- and other DPYD-risk variant carriers in the Nie et al. cohort. In more detail, this enrichment led to allele frequency differences between the combined cohort and the reference European population, as shown in Table 2, affecting the R²-values. No significant LD was detected between the 3 rare DPYD risk variants c.1679T > G, c.1905 + 1G > A and c.2846A > T and all other variants (Figure S2).

At the single variant level, c.496A > G was significantly associated with lower UH₂/U ratios (Table 2 and Figure S4). The c.85T > C variant did not show significant association with altered UH₂/U ratios (Table 2 and Figure S4).

Because of the LD observed between c.85T > C, c.496A > G and c.1129-5923C > G, as well as the discordant evidence in the literature concerning potential contributions of c.85T > C and c.496A > G to FP toxicity risk, we sought to perform expanded haplotype analyses on these 3 variants within our study cohorts. Haplotype phasing for most samples could be directly observed based on genotypes (n = 670, 81%). For the remaining samples (n = 162, 19%), paired diplootypes were inferred computationally. Posterior probabilities > 94.5% were observed for 160 (99%) of the 162 inferred haplotype pairs. The 2 remaining haplotype pairs (1%) had posterior probabilities of 80.0%. The most frequent haplotype was termed H1 and consisted of all wild-type alleles (Table 3). The H1 haplotype was therefore considered the base haplotype to which other haplotypes were compared. The c.85T > C variant was present in 3 haplotypes (H2–H4), and the c.496A > G variant was present in haplotypes H3 and H5. The c.1129-5923C > G variant was present in 2 haplotypes, H4 and H6.

Of the haplotypes containing c.85T > C, H3 and H4 were associated with lower UH₂/U ratios, whereas H2, which only contained...
c.85T > C, was associated with elevated UH2/U ratios (Table 3). Both c.496A > G-containing haplotypes, H3 and H5, were associated with significantly lower UH2/U ratios. A stronger effect size was observed for H5, which only contained c.496A > G, compared to H3, which also contained c.85T > C. Haplotype H4, which contained both c.1129-5923C > G and c.85T > C, was associated with significantly decreased UH2/U ratios. The rarest haplotype, H6, contained only c.1129-5923C > G and was the only haplotype with UH2/U ratios that were not significantly different from H1, which was probably due to its low frequency. Overall, our results indicate that within haplotypes, c.496A > G and c.1129-5923C > G impair DPD activity. In contrast, c.85T > C tends to increase DPD activity. Combinations of offsetting variables tended to moderate the effects, particularly as observed for haplotypes containing c.496A > G; the carrier frequency of H6 was too low to directly investigate this phenomenon in c.1129-5923C > G-containing haplotypes. Similar to our observations for single-variant analyses, our results do not appear to be driven by a single study because β-coefficients were similar between populations (Figure S3 C).

It is noted that the Nie et al. cohort was intentionally enriched for carriers of c.1129-5923C > G to address the original hypothesis of that study. Furthermore, the Sistonen et al. and Hamzic et al. populations were both collected within Switzerland. Therefore, to determine the relevance of these haplotypes in additional global populations, genotype data was retrieved from the 1000 Genomes Project (Figure 2). Estimated haplotype frequencies varied greatly among 1000 Genomes populations. The most common haplotype, H1, showed the highest frequency in East Asians, whereas haplotype H2 was most frequent in Africans. Both of these haplotypes were similarly distributed over sub-populations within the East Asian and African superpopulations. The rarer haplotypes, H3, H4, H5 and H6, showed comparably high

FIGURE 2 Haplotype frequencies across different world populations (1000 Genomes Project). Populations are clustered in superpopulations and visualized in different colours. Individual bars represent haplotype frequencies of populations with the corresponding population code. The shaded bars represent the average haplotype frequency in the superpopulation. The haplotype code H1–H6 refers to the corresponding haplotype, as defined in our study (Table 3). Haplotype data are based on the phase 3 analysis of the 1000 Genomes Project, including a total of n = 2504 genomes. Superpopulation code: AFR: African; AMR: Ad Mixed American; EAS: East Asian; EUR: European; SAS: South Asian. Population code: ACB: African Caribbeans in Barbados; ASW: Americans of African Ancestry in SW USA; BEB: Bengali from Bangladesh; GBR: British in England and Scotland; CDX: Chinese Dai in Xishuangbanna, China; CLM: Colombians from Medellin, Colombia; ESN: Esan in Nigeria; FIN: Finnish in Finland; GWD: Gambian in Western Divisions in the Gambia; GIH: Gujarati Indian from Houston, Texas; CHB: Han Chinese in Beijing, China; IBS: Iberian Population in Spain; ITU: Indian Telugu from the UK; JPT: Japanese in Tokyo, Japan; KHV: Kinh in Ho Chi Minh City, Vietnam; LWK: Luhya in Webuye, Kenya; MSL: Mende in Sierra Leone; MXL: Mexican Ancestry from Los Angeles, USA; PEL: Peruvians from Lima, Peru; PUR: Puerto Ricans from Puerto Rico; PHL: Punjabi from Lahore, Pakistan; CHS: Southern Han Chinese; STU: Sri Lankan Tamil from the UK; TSI: Toscani in Italia; CEU: Utah Residents (CEPH) with Northern and Western European Ancestry; YRI: Yoruba in Ibadan, Nigeria; AFR: African; AMR: Ad Mixed American; EAS: East Asian; EUR: European; SAS: South Asian.
variability in frequency. Interestingly, haplotype H4 was only detected in American, South Asian and European populations, whereas haplotype H5 was more widely distributed globally. The rarest haplotype, H6, was only observed in 4 subpopulations and was completely absent from the East Asian population.

4 | DISCUSSION

Using plasma UH2/U ratios as a surrogate marker for systemic DPD activity at a population level, we identified DPYD c.496A > G as a strong candidate risk variant for 5-FU toxicity that correlated with reduced UH2/U in both single marker and haplotype tests. The level of change associated with c.496A > G was similar to that for the well-characterized 5-FU toxicity risk variant c.1129-5923C > G. Our data also suggest that c.85T > C increases DPD enzyme activity and, therefore, might be protective against 5-FU toxicity. LD between c.85T > C and both c.496A > G and c.1129-5923C > G was also observed, which could moderate the impact of individual SNPs depending on the specific haplotype structure, indicating that haplotype-based tests consisting of these 3 variants could greatly improve predictive tests for 5-FU-associated adverse events.

In the present study, all 4 commonly tested 5-FU toxicity risk variants in DPYD, c.1905 + 1G > A, c.1679T > G, c.2846A > T and c.1129-5923C > G, were strongly associated with decreased UH2/U ratios in single variant tests (Table 2). Previous reports have shown that DPD function is differentially impaired by each of the 4 variants, with c.1905 + 1G > A completely ablating function and c.1679T > G being strongly deleterious to function, whereas c.2846A > T and c.1129-5923C > G are only partially deleterious to function.2,18,22 Consistent with these previous reports, we noted larger effect sizes in carriers of c.1905 + 1G > A and c.1679T > G compared to carriers of 2846A > T and c.1129-5923C > G (Table 2). These data indicate that, although UH2/U has been shown to have limited utility as a predictive biomarker of 5-FU toxicity at the individual patient level,2,20,21,35 given a sufficiently large sample size, endogenous plasma UH2/U ratios can be used as a surrogate marker for systemic DPD activity in correlative studies.

Within our study cohort, we noted evidence for linkage between the toxicity-associated variant c.1129-5923C > G and the variants c.85T > C and c.496A > G. Previous studies have reported unclear associations with 5-FU toxicity risk for c.85T > C and c.496A > G, with various studies reporting contradictory results.6-15 At the single variant level, both c.496A > G and c.1129-5923C > G were significantly associated with lower UH2/U ratios, and c.85T > C did not show evidence for association (Table 2). The most common haplotype containing c.496A > G (H3) displayed a modest but significant reduction in UH2/U ratios compared to the base haplotype (H1; −9.6%, $P = .003$; Table 3). Notably, H3 also contained c.85T > C. Compared to H3, the haplotype containing only c.85T > C (H2) showed a markedly increased UH2/U ratio that was significantly higher than the base haplotype (H1; +8.6%, $P = .004$). UH2/U ratios were 18.2% lower in H3 compared to H2, which is similar to the 16.9% reduction observed for the haplotype containing only c.496A > G compared to the base haplotype (H5; $P = .002$). The similar effect size for H5 and the most common c.1129-5923C > G-containing haplotype (H4) suggests that H5 might be similarly predictive of 5-FU toxicity risk. Further investigation of the clinical importance of haplotypes containing c.496A > G in the clinical trial setting is needed to fully establish correlations with 5-FU toxicity risk.

While c.85T > C was not significantly associated with altered UH2/U ratios at the single variant level (Table 2), haplotypes that contain c.85T > C tended to have higher UH2/U levels than matched haplotypes without the variant (Table 3). H2, which contains only c.85T > C, showed significantly higher UH2/U than the base haplotype containing no variants (H1; 8.6% higher ratio; $P = .004$). As discussed above, a similar effect was noted in haplotypes containing c.496A > G, with H3 showing a less severe reduction in UH2/U ratio from the base haplotype than H5 (−9.6% compared to −16.9%). Given this, we would expect c.85T > C to also modulate the effect of c.1129-5923C > G; however, there was an inadequate number of carriers of the recombinant haplotype (H6) to test this hypothesis (Table 3). Overall, these data indicate that c.85T > C might be associated with a modest increase in DPD activity. This conclusion is consistent with a previous report in which recombinant DPD protein containing p.C29R (the translated product of the c.85T > C variant) had elevated enzyme activity compared to wild-type DPD.37 Collectively, these data suggest that in single variant analyses, the increase in UH2/U associated with c.85T > C was likely masked because of linkage with c.496A > G and c.1129-5923C > G. This also suggests that the deleterious effects of c.496A > G and c.1129-5923C > G might be stronger than the enhancing effect of c.85T > C.

Consistent with our findings, similar effects were noted in a study in which haplotypes containing c.496A > G, but not c.85T > C or c.1129-5923C > G, were enriched in patients with severe FP toxicity.15 Furthermore, carriers of the haplotype consisting of just c.85T > C, corresponding to haplotype H2 in the present study, were enriched in the population that did not experience toxicity.15 Association of c.496A > G with FP toxicity was also suggested in another study, in which linkage between variants was assessed, but haplotype association was not tested.9 An additional study36 provides suggestive data that the H3 haplotype (Table 3) might contribute to reduced DPD function. While a direct haplotype assessment was not performed, individuals carrying both c.85T > C and c.496A > G, which would presumably be enriched for H3 carriers based on haplotype frequencies, exhibited significantly impaired DPD function.36

While our results suggest an impact of c.85T > C and c.496A > G on DPD activity, we cannot unambiguously conclude that the observed changes in UH2/U ratios are due to altered protein activity and not changes in gene expression. GTEx37 data indicate that c.85T > C is associated with higher DPYD gene expression in certain tissues, suggesting that altered regulation might contribute to the observed phenotype (Figure S5). We also note that GTEx37 data do not link c.496A > G with expression. Given the relative commonality of these variants and LD with the toxicity-associated variant rs75017182 (discussed above), future studies are warranted to
investigate the mechanism(s) through which these variants alter DPD function.

High variability in haplotype frequencies was noted for global populations in the 1000 Genomes Project data (Figure 2). Two haplotypes that showed similar frequencies and effect sizes in our study (H4 and H5; Table 3) showed varied global distributions. H4 was most common in European and South Asian populations, but it was absent from African and East Asian populations. H5 was present in all superpopulations, with higher frequencies than H4 in African, American and East Asian populations (Figure 2). Based on global frequencies, haplotype H5, which contains only c.496A > G, could potentially be more important for the prediction of FP-related toxicities on the global scale than H4, the primary haplotype containing the risk variant c.1129-5923C > G. Additionally, the H2 haplotype (suggestive for higher DPD activity) showed the highest frequency in African populations (Figure 2). It is noted that the deleterious DPYD variant rs115232898 (c.557A > G, p. Y186C) is in strong LD with c.85T > C (D’ = 1.00, data from 1000 Genomes Project). Additional studies are needed to evaluate the effect of these and other haplotypes on FP toxicity risk in varied racial/ethnic populations.

Collectively, our results highlight the importance of careful multivariant haplotype assessments in pharmacogenomic studies, even if evidence suggests that individual variants might only confer a weak or non-significant effect. Given the potential multilocus impact of c.85T > C and c.496A > G on DPD phenotype identified in this study, the further evaluation of these variants and associated haplotypes in the context of clinical outcomes using sufficiently sized patient populations is urgently needed.

ACKNOWLEDGEMENTS
The authors thank Daniel Schärer and Gisela Andrey-Zürcher for technical assistance. The authors also thank Claudia Bühler for technical assistance regarding mass spectrometry. The Regional Blood Transfusion Service of the Swiss Red Cross Bern is acknowledged for collecting blood samples of the healthy volunteers, and the Liquid Biobank Bern (www.biobankbern.ch) for sample storage and processing. The authors also thank The Mayo Clinic Center for Individualized Medicine for the use of biospecimens from the Mayo Clinic Biobank.

COMPETING INTERESTS
The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed. No writing assistance was utilized in the production of this manuscript.

CONTRIBUTORS
C.R.L., S.H., S.O. and U.A. were involved in the conception and design of the study and drafted the article. S.H. and D.S. organized and carried out the genetic and mass spectrometric analyses. C.R.L., S.H., S.O., R.D., C.N. and U.A. were involved in the analysis and interpretation of data. D.M., S.F., M.W. and S.S. provided additional samples, data, infrastructure, and/or expertise in statistical modelling and mass spectrometry. All authors were involved in the critical revision of the manuscript and gave final approval of the version to be published. Financial support for this study was provided by a research grant from the Swiss National Science Foundation (163205) to C.R. Largiadèr.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author, upon reasonable request.

ORCID
Seid Hamzic https://orcid.org/0000-0002-3316-0022
Christos Nakas https://orcid.org/0000-0003-4155-722X
Robert B. Diasio https://orcid.org/0000-0002-9648-9570
Carlo R. Largiadèr https://orcid.org/0000-0002-0889-8922

REFERENCES
1. Amstutz U, Froehlich TK, Largiadèr CR. Dihydropyrimidine dehydrogenase gene as a major predictor of severe 5-fluorouracil toxicity. Pharmacogenomics. 2011;12(9):1321-1336.
2. Amstutz U, Henricks LM, Offer SM, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for Dihydropyrimidine Dehydrogenase Genotype and Fluoropyrimidine Dosing: 2017 Update. Clin Pharmacol Ther. 2018;103(2):210-216.
3. Henricks LM, Lunenburg CATC, de Man FM, et al. DPYD genotype-guided dose individualisation of fluoropyrimidine therapy in patients with cancer: a prospective safety analysis. Lancet Oncol. 2018;19(11):1459-1467.
4. Vreken P, Van Kuilenburg ABP, Meinsma R, Van Gennip AH. Identification of novel point mutations in the dihydropyrimidine dehydrogenase gene. J Inherit Metab Dis. 1997;20(3):335-338.
5. van Kuilenburg ABP, De Abreu RA, van Gennip AH. Pharmacogenetic and clinical aspects of dihydropyrimidine dehydrogenase deficiency. Ann Clin Biochem. 2003;40(1):41-45.
6. Madi A, Fisher D, Maughan TS, et al. Pharmacogenetic analyses of 2183 patients with advanced colorectal cancer; potential role for common dihydropyrimidine dehydrogenase variants in toxicity to chemotherapy. Eur J Cancer. 2018;102:31-39.
7. Etienne-Grimaldi M-C, Boyer JC, Béroud C, et al. New advances in DPYD genotype and risk of severe toxicity under capecitabine. PLoS One. 2017;12(5):e0175998. https://doi.org/10.1371/journal.pone.0175998
8. Ruzzo A, Graziano F, Galli F, et al. Dihydropyrimidine dehydrogenase pharmacogenetics for predicting fluoropyrimidine-related toxicity in the randomised, phase III adjuvant TOSCA trial in high-risk colon cancer patients. Br J Cancer. 2017;117(9):1269-1277.
9. Gross E, Busse B, Riemenschneider M, et al. Strong Association of a Common Dihydropyrimidine Dehydrogenase Gene Polymorphism with Fluoropyrimidine-Related Toxicity in Cancer Patients. PLoS One. 2008;3:1-7.
10. Milano G. Highlight on DPYD gene polymorphisms and treatment by capecitabine. Scand J Clin Lab Invest. 2016;76(sup245):S30-S33.
11. Khushman M, Patel GK, Hosein PJ, et al. Germline pharmacogenomics of DPYD*9A (c.85T>C) variant in patients with gastrointestinal malignancies treated with fluoropyrimidines. J Gastrointest Oncol. 2018;9(3):416-424.
12. Maharjan AS, McMillin GA, Patel GK, et al. The Prevalence of DPYD*9A (c.85T>C) Genotype and the Genotype-Phenotype Correlation in Patients with Gastrointestinal Malignancies Treated With Fluoropyrimidines: Updated Analysis. Clin Colorectal Cancer. 2019; 18(3):e280-e286.
13. Falvella FS, Chelli S, Martinetti A, et al. DPD and UGT1A1 deficiency in colorectal cancer patients receiving triplet chemotherapy with fluoropyrimidines, oxaliplatin and irinotecan. Br J Clin Pharmacol. 2015;80(3):581-588.

14. Loganayagam A, Arenas Hernandez M, Corrigan A, et al. Pharmacogenetic variants in the DPYD, TYMS, CDA and MTHFR genes are clinically significant predictors of fluoropyrimidine toxicity. Br J Cancer. 2013;108(12):2505-2515.

15. Kleibl Z, Fidlerova J, Kleiblova P, et al. Influence of dihydroxydimidine dehydrogenase gene (DPYD) coding sequence variants on the development of fluoropyrimidine-related toxicity in patients with high-grade toxicity and patients with excellent tolerance of fluoropyrimidine-based chemotherapy. Neoplasma. 2009;56(4):303-316.

16. van Kullenberg ABP, Meijer J, Tanck MWT, et al. Phenotypic and clinical implications of variants in the dihydroxydimidine dehydrogenase gene. Biochim Biophys Acta - Mol Basis Dis. 2016;1862(4):754-762.

17. Offer SM, Wegner NJ, Fossum C, Wang K, Diasio RB. Phenotypic profiling of DPYD variations relevant to 5-fluorouracil sensitivity using real-time cellular analysis and in vitro measurement of enzyme activity. Cancer Res. 2013;73(6):1958-1968.

18. Offer SM, Fossum CC, Wegner NJ. Comparative Functional Analysis of DPYD Variants of Potential Clinical Relevance to Dihydroxydimidine Dehydrogenase Activity Comparative Functional Analysis of DPYD Variants of Potential Clinical Relevance to Dihydroxydimidine Dehydrogenase Activity. Cancer Res. 2014;74:2545-2554. https://doi.org/10.1158/0008-5472.CAN132482

19. Amstutz U, Farese S, Aebi S, Largiadèr CR. Dihydroxydimidine dehydrogenase gene variation and severe 5-fluorouracil toxicity: a haplotype assessment. Pharmacogenomics. 2009;10(6):931-944.

20. Sistonen J, Büchel B, Froehlich TK, et al. Predicting 5-fluorouracil toxicity: DPD genotype and 5,6-dihydrouracil:uracil ratio. Pharmacogenomics. 2014;15(13):1653-1666.

21. Meulendijks D, Henricks LM, Jacobs BAW, et al. Pretreatment serum uracil concentration as a predictor of severe and fatal fluoropyrimidine-associated toxicity. Br J Cancer. 2017;116(11):1415-1424.

22. Nie Q, Shrestha S, Tapper EE, et al. Quantitative Contribution of rs75017182 to Dihydroxydimidine Dehydrogenase mRNA Splicing and Enzyme Activity. Clin Pharmacol Ther. 2017;102(4):662-670.

23. Büchel B, Rhyn P, Schürch S, Bühr C, Amstutz U, R. Largiadèr C. LC-MS/MS method for simultaneous analysis of uracil, 5,6-dihydrouracil, 5-fluorouracil and 5-fluo-5,6-dihydrouracil in human plasma for therapeutic drug monitoring and toxicity prediction in cancer patients. Biomed Chromatogr. 2013;27(1):7-16.

24. Curtis MJ, Alexander S, Cirino G, et al. Experimental design and analysis and their reporting II: updated and simplified guidance for authors and peer reviewers. Br J Pharmacol. 2018;175(7):987-993.

25. Pardoe I. Applied Regression Modeling. Second ed. Hoboken, New Jersey: John Wiley & Sons, Inc.; 2013. https://doi.org/10.1002/9781118345054

26. Kuznetsova A, Brockhoff PB, Christensen RH. B InerTest Package: Tests in Linear Mixed Effects Models. J Stat Softw. 2017;82:1-26.

27. Bates D, Mächler M, Bolker BM, Walker SC. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1-48.

28. Warnes G, Gorjanc G, Leisch F, Man M. Genetics: Population genetics. R package version 1.3. 8.1. 2. R Foundation for Statistical Computing. 2019.

29. Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am J Hum Genet. 2002;70(2):425-434.

30. Sinnwell JP, Schaid DJ. Haplo Stats (Version 1.6.0): Statistical Methods for Haplotypes When Linkage Phase Is Ambiguous. Rochester, MN, USA: Mayo Clinic Division of Health Sciences Research; 2013.

31. LDlink/An Interactive Web Tool for Exploring Linkage Disequilibrium in Population Groups. Retrieve from: http://analysistools.nci.nih.gov/ LDlink/ (Accessed: 3rd February 2016)

32. Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag; 2016.

33. Alexander SPH, Fabbro D, Kelly E, et al. The Concise Guide to PHARMACOLOGY 2019/20: Enzymes. Br J Pharmacol. 2019;176: S297-S396.

34. Auton A, Abecasis GR, Altshuler DM, et al. A global reference for human genetic variation. Nature. 2015;526(7571):68-74.

35. Meulendijks D, Cats A, Beijnen JH, Schellens JHM. Improving safety of fluoropyrimidine chemotherapy by individualizing treatment based on dihydroxydimidine dehydrogenase activity – Ready for clinical practice? Cancer Treat Rev. 2016;50:23-34.

36. Gentile G, Botticelli A, Lionetto L, et al. Genotype-phenotype correlations in 5-fluorouracil metabolism: a candidate DPYD haplotype to improve toxicity prediction. Pharmacogenomics J. 2015;16:320-325. https://doi.org/10.1038/tpj.2015.56

37. Lonsdale J, Thomas J, Salvatore M, et al. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013;45(6):580-585.

38. Offer SM, Lee AM, Mattison LK, Fossum C, Wegner NJ, Diasio RB. A DPYD variant (Y186C) in individuals of african ancestry is associated with reduced DPD enzyme activity. Clin Pharmacol Ther. 2013;94(1):158-166.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Hamzic S, Schärer D, Offer SM, et al. Haploype structure defines effects of common DPYD variants c.85T > C (rs1801265) and c.496A > G (rs2297595) on dihydroxydimidine dehydrogenase activity: Implication for 5-fluorouracil toxicity. Br J Clin Pharmacol. 2021;87:3234-3243. https://doi.org/10.1111/bcp.14742