HAHN-BANACH OPERATORS

M. I. OSTROVSKI

Abstract. We consider real spaces only.

Definition. An operator $T : X \to Y$ between Banach spaces X and Y is called a Hahn-Banach operator if for every isometric embedding of the space X into a Banach space Z there exists a norm-preserving extension \tilde{T} of T to Z.

A geometric property of Hahn-Banach operators of finite rank acting between finite-dimensional normed spaces is found. This property is used to characterize pairs of finite-dimensional normed spaces (X, Y) such that there exists a Hahn-Banach operator $T : X \to Y$ of rank k. The latter result is a generalization of a recent result due to B. L. Chalmers and B. Shekhtman.

Everywhere in this paper we consider only real linear spaces. Our starting point is the classical Hahn-Banach theorem ([H], [B1]). The form of the Hahn-Banach theorem we are interested in can be stated in the following way.

Hahn-Banach Theorem. Let X and Y be Banach spaces, $T : X \to Y$ be a bounded linear operator of rank 1 and Z be a Banach space containing X as a subspace. Then there exists a bounded linear operator $\tilde{T} : Z \to Y$ satisfying

(a) $||\tilde{T}|| = ||T||$;

(b) $\tilde{T}x = Tx$ for every $x \in X$.

Definition 1. An operator $\tilde{T} : Z \to Y$ satisfying (a) and (b) for a bounded linear operator $T : X \to Y$ is called a norm-preserving extension of T to Z.

The Hahn-Banach theorem is one of the basic principles of linear analysis. It is quite natural that there exists a vast literature on generalizations of the Hahn-Banach theorem for operators of higher rank. See the papers G. P. Akilov [A], J. M. Borwein [Bor], B. L. Chalmers and B. Shekhtman [CS], G. Elliott and I. Halperin [EH], D. B. Goodner [Go], A. D. Ioffe [I], S. Kakutani [Kak], J. L. Kelley [Kel], J. Lindenstrauss [L1], [L2], L. Nachbin [N1] and M. I. Ostrovskii [O], representing different directions of such generalizations, and references therein. There exist two interesting surveys devoted to the Hahn-Banach theorem and its generalizations, see G. Buskes [Bus] and L. Nachbin [N2].

We shall use the following natural definition.

1991 Mathematics Subject Classification. 46B20, 47A20.

Key words and phrases. Hahn-Banach theorem, norm-preserving extension, support set.
Definition 2. An operator \(T : X \to Y \) between Banach spaces \(X \) and \(Y \) is called a Hahn-Banach operator if for every isometric embedding of the space \(X \) into a Banach space \(Z \) there exists a norm-preserving extension \(\tilde{T} \) of \(T \) to \(Z \).

The existence of non-Hahn-Banach operators was mentioned in the remarks to Chapter IV of Banach’s book, see [B2, p. 234]. S. Banach and S. Mazur [BM] proved that the identity operator on \(l_1 \) is a non-Hahn-Banach operator (in fact, this operator does not have even continuous extensions for some isometric embeddings). It has been known for a long time that there exist non-Hahn-Banach operators of rank 2 (see F. Bohnenblust [Boh], an important relevant result was proved relatively recently by H. König & N. Tomczak-Jaegermann [KT]). A problem of characterization of Hahn-Banach operators arises in a natural way.

Factorizational characterizations of Hahn-Banach operators are well known. In particular, using by now a standard technique (that goes back to G. P. Akilov [A], D. B. Goodner [Go, pp. 92–93] and R. Phillips [P, p. 538]) it is easy to show that an operator \(T : X \to Y \) is a Hahn-Banach operator if and only if for some set \(\Gamma \) there exist operators \(T_1 : X \to \ell_\infty(\Gamma) \) and \(T_2 : \ell_\infty(\Gamma) \to Y \) such that \(T_2T_1 = T \) and \(||T_2||||T_1|| = ||T|| \). (See [J] for the undefined terminology from the theory of Banach spaces.)

One of the main purposes of the present paper is to find a geometric property of Hahn-Banach operators of finite rank acting between finite-dimensional normed spaces (see Theorem 1). This property does not imply that the operator is a Hahn-Banach operator (see the remark after Theorem 1), but it can be used to answer the following question: given \(k \in \mathbb{N} \), for which pairs of finite-dimensional spaces \((X, Y)\) does there exist a Hahn-Banach operator \(T : X \to Y \) of rank \(k \)? (See Theorem 2.) This result is a generalization of a recent result due to B. L. Chalmers and B. Shekhtman [CS].

Remark. Let \(\alpha \in \mathbb{R}, \alpha \neq 0 \). It is clear that \(\alpha T \) is a Hahn-Banach operator if and only if \(T \) is a Hahn-Banach operator. Hence studying Hahn-Banach operators it is enough to consider Hahn-Banach operators of norm 1.

We need the following notation. By \(S(X) \) and \(B(X) \) we denote the unit sphere and the unit ball of a Banach space \(X \) respectively. Let \(X \) be a finite-dimensional Banach space. An intersection of \(B(X) \) with a supporting hyperplane of \(B(X) \) will be called a support set of \(B(X) \). By the dimension of a set in a finite-dimensional space we mean the dimension of its affine hull. (See [S] for the undefined terminology from the theory of convex bodies.) We define \(f(X) \) to be the maximal dimension of a support set of \(B(X) \). For \(x \in S(X) \) we define \(d(x) \) to be the dimension of the set \(\{ x^* \in S(X^*) : x^*(x) = 1 \} \). It is clear that \(d(x) = 0 \) if and only if \(x \) is a smooth point; in the general case \(d(x) \) indicates the number of linearly independent directions of non-smoothness of the norm at \(x \).

Theorem 1. Let \(X \) and \(Y \) be finite-dimensional Banach spaces and \(T : X \to Y \) be a Hahn-Banach operator of rank \(k \). Assume that \(||T|| = 1 \) and let \(x_0 \in S(X) \) be such that \(||Tx_0|| = 1 \). Then \(Tx_0 \) belongs to a support set of \(B(Y) \) of dimension \(\geq k - 1 - d(x_0) \).

Proof. Let \(C(S(X^*)) \) denote the space of all continuous functions on \(S(X^*) \) with the sup norm. We identify \(X \) with a subspace of \(C(S(X^*)) \) in the following way:
every vector is identified with its restriction (as a function on X^*) to $S(X^*)$. We introduce the following notation: $C = C(S(X^*))$ and $B_C = B(C(S(X^*)))$.

Since T is a Hahn-Banach operator, there exists $\tilde{T} : C \to Y$ such that $\tilde{T}|_X = T$ and $\|\tilde{T}\| = 1$. We shall use \tilde{T} to find a “large” support set of $B(Y)$.

Since $\|Tx_0\| = 1$, there exists $h \in S(Y^*)$ such that $h(Tx_0) = 1$. Let $F = \{x^* \in S(X^*) : x^*(x_0) = 1\}$. Observe that

$$T^*h \in F.$$ \hspace{1cm} (1)

Choose a basis $\{y_1, \ldots, y_m\}$ in Y such that $y_1 = Tx_0$ and $y_2, \ldots, y_m \in \ker h$.

The operator \tilde{T} can be represented in the form

$$\tilde{T} = \sum_{i=1}^{m} \mu_i \otimes y_i, \quad \mu_i \in C^*.$$

By the F.Riesz representation theorem (see e.g. [DS], p. 265) we may identify μ_i with (signed) measures on $S(X^*)$.

Our first purpose is to show that μ_1 is supported on $F \cup (-F)$. We have $\tilde{T}(B_C) \subset B(Y) \subset \{y : |h(y)| \leq 1\}$, $h(y_1) = 1$ and $y_2, y_3, \ldots, y_m \in \ker h$. Therefore for every $z \in B_C$ we have

$$\mu_1(z) = h(\sum_{i=1}^{m} \mu_i(z)y_i) = h(\tilde{T}(z))$$

and $|\mu_1(z)| = |h(\tilde{T}(z))| \leq 1$. Hence

$$||\mu_1|| \leq 1$$ \hspace{1cm} (2)

Also, since $\tilde{T}x_0 = y_1$, we have

$$\mu_1(x_0) = 1.$$ \hspace{1cm} (3)

Conditions (2), (3) and $||x_0|| = 1$ imply that μ_1 is supported on $F \cup (-F)$. (By this we mean that the restriction of μ_1 to $S(X^*)\setminus(F \cup (-F))$ is a zero measure.)

We decompose $\mu_i = \nu_i + \omega_i$, where ν_i is the restriction of μ_i to $F \cup (-F)$. Since μ_1 is supported on $F \cup (-F)$, then $\omega_1 = 0$.

Since T is of rank k, there exists a subspace $L \subset X$ of dimension k such that $T|_L$ is an isomorphism. Let

$$M = \{x \in L : \forall x^* \in F, \ x^*(x) = 0\}.$$

Then $\dim M \geq k - d(x_0) - 1$.

Let $x \in B(M)$. The definitions of M and ν_i imply that

$$\nu_i(x) = 0, \quad i \in \{1, \ldots, m\}.$$ \hspace{1cm} (4)
(Recall that we identify vectors in \(M \) with the corresponding functions in \(C \).)

Now we construct a “mixture” of \(x \) and \(x_0 \).

It is clear that for each \(\delta > 0 \) there exists a function \(g_\delta \in B_C \) such that

\[
g_\delta|_{F \cup (-F)} = x_0|_{F \cup (-F)}
\]

and the restrictions of \(g_\delta \) and \(x \) to the complement of the \(\delta \)–neighbourhood of \(F \cup (-F) \) coincide.

We have

\[
\lim_{\delta \downarrow 0} \tilde{T} g_\delta = \lim_{\delta \downarrow 0} \sum_{i=1}^{m} \mu_i(g_\delta) y_i = \lim_{\delta \downarrow 0} \sum_{i=1}^{m} (\nu_i(g_\delta) + \omega_i(g_\delta)) y_i.
\]

We have \(\nu_i(g_\delta) = \nu_i(x_0) \) for every \(\delta > 0 \) and \(i \in \{1, \ldots, m\} \).

It is clear that \(\omega_i(F \cup (-F)) = 0 \). By the definition of \(g_\delta \) it follows that \(\lim_{\delta \downarrow 0} g_\delta(x^*) = x(x^*) \) for \(x^* \in S(X^*) \setminus (F \cup (-F)) \) and that the functions \(g_\delta \) are uniformly bounded. By the Lebesgue dominated convergence theorem we get

\[
\lim_{\delta \downarrow 0} \omega_i(g_\delta) = \omega_i(x).
\]

Therefore

\[
\lim_{\delta \downarrow 0} \tilde{T} g_\delta = \sum_{i=1}^{m} (\nu_i(x_0) + \omega_i(x)) y_i.
\]

Equation (4) implies that \(\nu_i(x_0) = \nu_i(x_0 + x) \). Using this and the fact that \(\omega_1 = 0 \), we get

\[
\lim_{\delta \downarrow 0} \tilde{T} g_\delta = \sum_{i=1}^{m} \mu_i(x_0 + x) y_i - \sum_{i=2}^{m} \omega_i(x_0) y_i = T(x_0 + x) - \sum_{i=2}^{m} \omega_i(x_0) y_i.
\]

Since \(g_\delta \in B_C \), \(||\tilde{T}|| = 1 \) and \(B(Y) \) is closed, then

\[
T(x_0 + x) - \sum_{i=2}^{m} \omega_i(x_0) y_i \in B(Y)
\]

for every \(x \in B(M) \).

By (1) we have \(h(Tx) = 0 \) for every \(x \in M \). Recall, also, that \(y_2, \ldots, y_m \in \ker h \).

Therefore

\[
h \left(T(x_0 + x) - \sum_{i=2}^{m} \omega_i(x_0) y_i \right) = hTx_0 = 1
\]

for every \(x \in M \). Since \(T|_M \) is an isomorphism and the vector \(\sum_{i=2}^{m} \omega_i(x_0) y_i \) does not depend on \(x \), the intersection of \(B(Y) \) with the supporting hyperplane \(\{ y : h(y) = 1 \} \) has dimension \(\geq \dim M \geq k - d(x_0) - 1 \). □
Theorem 2. Let the space C be Banach operator it is enough to show that it has a norm-preserving extension to spaces such that there exists a Hahn-Banach operator T restriction on the dimension (spaces of dimension $\geq X, Y$ their results and to characterize pairs (L, S) of finite-dimensional normed linear spaces such as L being an embedding of the considered spaces into S. The approach is an embedding of the considered spaces into S. The extension is isomorphisms that are Hahn-Banach operators. One of the steps in their approach is the identity mapping of $X = l_1^k$ onto the space Y whose unit ball is the intersection of $(1 + \varepsilon)B(l_1^2)$, $(\varepsilon > 0)$ and $B(l_1^\infty)$. It is easy to see that

1. the norm of this operator is 1;
2. the only points where the operator attains its norm are $\pm e_1, \pm e_2, \ldots, \pm e_n$, where $\{e_1, \ldots, e_n\}$ is the unit vector basis;
3. the points $\pm e_1, \pm e_2, \ldots, \pm e_n$ are contained in $(n - 1)$-dimensional support sets of $B(Y)$.

Therefore T satisfies the condition of Theorem 1 with $k = n$. On the other hand, the operator T is not a Hahn-Banach operator if $n \geq 3$ and ε is small enough. In fact, $||T^{-1}|| = 1 + \varepsilon$. Therefore, if T were a Hahn-Banach operator it would imply that for every Banach space Z containing l_1^k as a subspace there exists a projection onto l_1^k with the norm $\leq 1 + \varepsilon$. It remains to apply the well-known result of B. Grünbaum (see [Gr] or [J, p. 81]).

B. L. Chalmers and B. Shekhtman [CS] characterized 2-dimensional spaces having isomorphisms that are Hahn-Banach operators. One of the steps in their approach is an embedding of the considered spaces into L_1. This is why they got the restriction on the dimension (spaces of dimension ≥ 3 may be non-isometric to any subspace of L_1, see J. Lindenstrauss [L2, p. 494]). Our next purpose is to extend their results and to characterize pairs (X, Y) of finite-dimensional normed linear spaces such that there exists a Hahn-Banach operator $T : X \to Y$ of rank k.

Theorem 2. Let X and Y be finite-dimensional normed linear spaces and let k be a positive integer satisfying $k \leq \min\{\dim X, \dim Y\}$. There exists a Hahn-Banach operator $T : X \to Y$ of rank k if and only if $f(X^*) + f(Y) \geq k - 1$.

Proof. The necessity has been already proved (see the corollary).

Sufficiency. Suppose that

$$k \leq \min\{\dim X, \dim Y, f(X^*) + f(Y) + 1\}.$$

It is well known (see e.g. [KS]) that in order to show that $T : X \to Y$ is a Hahn-Banach operator it is enough to show that it has a norm-preserving extension to the space $C = C(S(X^*))$ (The space X is embedded into C in the same way as in Theorem 1). Therefore, if an operator $Q : C \to Y$ is such that the restriction of Q to X has rank k and $||Q|| = ||Q|_X|| = 1$, then $T = Q|_X$ is a Hahn-Banach operator of rank k.

Our purpose is to construct such Q. Let $n = f(Y)$ and $m = f(X^*)$. Let $y_0, y_1, \ldots, y_n \in Y$ be linearly independent and such that

$$\{y : y = \theta y_0 + \sum_{i=1}^{n} a_i y_i, \text{ where } \theta = \pm 1, |a_i| \leq 1\} \subset S(Y).$$
Let $x_0^*, x_1^*, \ldots, x_m^* \in X^*$ be linearly independent and such that
\[\{ x^*: x^* = \theta x_0^* + \sum_{i=1}^{m} b_i x_i^*, \text{ where } \theta = \pm 1, \ |b_i| \leq 1 \} \subset S(X^*).\]

Let $x_0 \in S(X)$ be such that $x_0^*(x_0) = 1$. Let
\[x_0^*, x_1^*, \ldots, x_m^*, x_{m+1}^*, \ldots, x_r^*,\]
where $r = \dim X - 1$ be a basis in X^* satisfying the condition $x_{m+1}^*(x_0) = \cdots = x_r^*(x_0) = 0$. (Observe that the condition $x_1^*(x_0) = \cdots = x_m^*(x_0) = 0$ follows from our choice of the vectors.) Let x_0, x_1, \ldots, x_r be its biorthogonal vectors.

Let y_0, y_1, \ldots, y_s, where $s = \dim Y - 1$, be a basis in Y.
We suppose that $k > m + 1$. (It will be clear from our argument which changes should be made if it is not the case.)

We define an operator $Q_1 : C \to Y$ as follows. Let $\mu_0, \mu_{m+1}, \ldots, \mu_k$ be norm-preserving extensions of $x_0^*, x_{m+1}^*, \ldots, x_k^*$ to C. Let
\[Q_1(f) = \mu_0(f)y_0 + \sum_{i=1}^{k-m-1} \frac{\mu_{m+i}(f)}{\|\mu_{m+i}\|} y_i.\]

It is clear that for $x \in X$
\[Q_1(x) = x_0^*(x)y_0 + \sum_{i=1}^{k-m-1} \frac{1}{\|\mu_{m+i}\|} x_{m+i}^*(x)y_i.\] (5)

We have supposed that $k - m - 1 \leq n$. This and the choice of y_0, \ldots, y_n implies that $\|Q_1\| \leq 1$.

Our next step is to show that there exist signed measures $\nu_0, \nu_1, \ldots, \nu_m$ of norm 1 on $S(X^*)$ satisfying the conditions
\[\nu_i(x_j) = \delta_{i,j}, \ i = 0, \ldots, m, \ j = 0, \ldots, r\] (6)
and
\[\forall f \in B_C \ \forall j \in \{1, \ldots, m\} \ |\nu_j(f)| \leq 1 - |\nu_0(f)|.\] (7)

Let us verify that the following measures satisfy these conditions. We define $\nu_j, \ j = 1, \ldots, m$ as atomic measures with atoms at $x_0^* + \sum_{i=1}^{m} \theta_i x_i^*$, $\theta_i = \pm 1$ satisfying $\nu_j(x_0^* + \sum_{i=1}^{m} \theta_i x_i^*) = 2^{-m} \delta_j$ and ν_0 as an atomic measure satisfying $\nu_0(x_0^* + \sum_{i=1}^{m} \theta_i x_i^*) = 2^{-m}$.

Condition (6) follows from the fact that the sequences $\{x_0, \ldots, x_r\}$ and $\{x_0^*, \ldots, x_r^*\}$ are biorthogonal.

Let us verify condition (7). Denote by $\mathbb{1}$ the function that is identically 1 on $S(X^*)$. Let $f \in B_C, \ j \in \{1, \ldots, m\}$. Then $\nu_j(-f) = \nu_j(\mathbb{1} - f) \leq (\text{since the function } \mathbb{1} - f \text{ is nonnegative}) \leq \nu_0(\mathbb{1} - f) = 1 - \nu_0(f)$. (Here we explicitly use the fact that the spaces are real.)
This proves (7) in the case when $\nu_j(f)$ is negative and $\nu_0(f)$ is positive. It remains to observe that

A. Since we may consider $-f$ instead of f it is enough to prove (7) for functions with positive $\nu_0(f)$.

B. For each function $f \in B_C$ and $j \in \{1, \ldots, m\}$ there exists a function $f_j \in B_C$ such that $\nu_0(f_j) = \nu_0(f)$ and $\nu_j(f_j) = -\nu_j(f)$.

We introduce $Q_2 : C \rightarrow Y$ by the equality

$$Q_2(f) = \nu_0(f)y_0 + \sum_{i=1}^{m} \alpha_i \nu_i(f)y_{k-m-1+i}.$$

Condition (7) implies that there exists $\{\alpha_i\}_{i=1}^{m}$ such that $\alpha_i \neq 0$ for every i and $||Q_2|| \leq 1$.

Condition (6) implies that for $x \in X$ we have

$$Q_2(x) = x_0^*(x)y_0 + \sum_{i=1}^{m} \alpha_i x_i^*(x)y_{k-m-1+i}. \tag{8}$$

Now, let $Q = \frac{1}{2} (Q_1 + Q_2)$. Our estimates for $||Q_1||$ and $||Q_2||$ immediately imply $||Q|| \leq 1$. On the other hand, equations (5) and (8) imply that $Q(x_0) = y_0$. Hence $||Q|| = ||Q|_X|| = 1$.

Also, from (5) and (8) we get for every $x \in X$:

$$Q(x) = x_0^*(x)y_0 + \sum_{i=1}^{k-m-1} \frac{1}{2||\mu_{m+i}||} x_{m+i}^*(x)y_i + \sum_{i=1}^{m} \frac{1}{2} \alpha_i x_i^*(x)y_{k-m-1+i}.$$

Since the sequences $\{y_0, \ldots, y_s\}$ and $\{x_0^*, \ldots, x_i^*\}$ are linearly independent, it follows that $Q|_X$ is of rank k. □

Acknowledgement. The author would like to thank Prof. Bruce L. Chalmers for giving a copy of [CS] and for suggesting the problem considered here.

References

[A] G. P. Akilov, Necessary conditions for the extension of linear operations, Doklady Akad. Nauk SSSR (N.S.) 59 (1948), 417–418. (Russian)

[B1] S. Banach, Sur les fonctionelles linéaires, Studia Math. 1 (1929), 211-216; Reprinted in: S. Banach, Oeuvres, vol. II, PWN-Éditions Scientifiques de Pologne, Warsaw, 1979, pp. 375–380.

[B2] ______, Théorie des opérations linéaires, (This edition was reprinted by Chelsea Publishing Company), Monografje Matematyczne, Warszawa, 1932.

[BM] S. Banach and S. Mazur, Zur Theorie der linearen Dimension, Studia Math. 4 (1933), 100-112; Reprinted in: S. Banach, Oeuvres, vol. II, PWN-Éditions Scientifiques de Pologne, Warsaw, 1979, pp. 420–430.

[Boh] F. Bohnenblust, Convex regions and projections in Minkowski spaces, Ann. of Math. (2) 39 (1938), 301–308.

[Bor] J. M. Borwein, On the Hahn-Banach extension property, Proc. Amer. Math. Soc. 86 (1982), no. 1, 42–46.
G. Buskes, The Hahn-Banach theorem surveyed, Dissertationes Math. (Rozprawy Mat.) 327 (1993), 1–49.

B. L. Chalmers and B. Shekhtman, A two-dimensional Hahn-Banach theorem, preprint.

N. Dunford and J. T. Schwartz, Linear Operators, Part I: General Theory, Interscience Publishers, New York, 1958.

G. Elliott and I. Halperin, Linear normed spaces with extension property, Canad. Math. Bull. 9 (1966), 433–441.

D. B. Goodner, Projections in normed linear spaces, Trans. Amer. Math. Soc. 69 (1950), 89–108.

B. Grünbaum, Projection constants, Trans. Amer. Math. Soc. 95 (1960), 451–465.

H. Hahn, Über lineare Gleichungssysteme in linearen Räumen, J. für die reine und angew. Math. 157 (1927), 214–229.

A. D. Ioffe, A new proof of the equivalence of the Hahn-Banach extension and the least upper bound properties, Proc. Amer. Math. Soc. 82 (1981), no. 3, 385–389.

G. J. O. Jameson, Summing and nuclear norms in Banach space theory, London Mathematical Society Student Texts, vol. 8, Cambridge University Press, Cambridge-New York, 1987.

M. I. Kadets and M. G. Snobar, Certain functionals on the Minkowski compactum, Math. Notes 10 (1971), 694-696.

S. Kakutani, Some characterizations of Euclidean space, Jap. J. Math. 16 (1939), 93–97; Reprinted in: S. Kakutani, Selected Papers, vol. 1, Birkhäuser, Boston Basel Stuttgart, 1986, pp. 269–273.

J. L. Kelley, Banach spaces with the extension property, Trans. Amer. Math. Soc. 72 (1952), 323–326.

H. König and N. Tomczak-Jaegermann, Norms of minimal projections, J. Funct. Anal. 119 (1994), 253–280.

J. Lindenstrauss, Extension of compact operators, Memoirs of the Amer. Math. Soc. 48 (1964), 1–112.

J. Lindenstrauss, On the extension of operators with a finite-dimensional range, Illinois J. Math. 8 (1964), 488–499.

L. Nachbin, A theorem of the Hahn-Banach type for linear transformations, Trans. Amer. Math. Soc. 68 (1950), 28–46.

Some problems in extending and lifting continuous linear transformations, Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960), Jerusalem Academic Press & Pergamon, Jerusalem & Oxford, 1961, pp. 340–350.

M. I. Ostrovskii, Projections in normed linear spaces and sufficient enlargements, Archiv der Mathematik 71 (1998), 315–324.

R. Phillips, On linear transformations, Trans. Amer. Math. Soc. 48 (1940), 516–541.

R. Schneider, Convex Bodies: the Brunn–Minkowski Theory, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993.

Department of Mathematics, The Catholic University of America, Washington, D.C. 20064, USA

E-mail address: ostrovskii@cua.edu