COMPOSITION OF INVERSE PROBLEMS WITH A GIVEN LOGICAL STRUCTURE

JULIA NINOVA, VESSELKA MIHOVA

ABSTRACT. The paper presents a method for obtaining problems whose conclusions contain disjunctive propositions. These problems constitute a version of inverse problems with a given logical structure. The logical models in the groups of problems studied have been interpreted comprehensively. Equivalent problems have been given by keeping or not keeping the condition of homogeneity in their conclusion.

1. Preliminaries

In logic, a set of symbols is commonly used to express logical representations. Let \(p \) and \(q \) be two statements. We introduce the basic symbols and logical representations we deal with.

\[p \land q \] denotes **logical conjunction** (should be read as “\(p \) and \(q \)”)

The statement \(p \land q \) is true if \(p \) and \(q \) are both true; else it is false.

\[p \lor q \] denotes **logical disjunction** (should be read as “\(p \) or \(q \)”)

The statement \(p \lor q \) is true if \(p \) or \(q \) (or both) are true; if both are false, the statement is false.

\[p \oplus q \] denotes **exclusive disjunction** (should be read as “either \(p \) or \(q \)”)

The statement \(p \oplus q \) is true when either \(p \) or \(q \), but not both, are true.

\[\neg p \] denotes **negation** (should be read as “not \(p \)”)

The statement \(\neg p \) is true if and only if \(p \) is false.

\[p \rightarrow q \] denotes **logical implication** (should be read as “if \(p \) then \(q \)”)

\(p \rightarrow q \) is true just in the case that either \(p \) is false or \(q \) is true, or both.

The statements \(p \) and \(q \) aren’t necessarily related comprehensively to each other.

\[p \Rightarrow q \] denotes **material implication** (should be read as “\(p \) implies \(q \)” or “\(q \) follows \(p \)”)

\(p \Rightarrow q \) means that if \(p \) is true then \(q \) is also true; if \(p \) is false then nothing is said about \(q \).

The statements \(p \) and \(q \) are related comprehensively to each other.

\[p \leftrightarrow q \] denotes **logical equivalence** (should be read as “\(p \) if and only if \(q \)”)

\(p \leftrightarrow q \) is true just in case either both \(p \) and \(q \) are false, or both \(p \) and \(q \) are true.

The statements \(p \) and \(q \) aren’t necessarily related comprehensively to each other.

\[p \Leftrightarrow q \] denotes **material equivalence** (should be read as “\(q \) is necessary and sufficient for \(p \)”)

The statements \(p \) and \(q \) are related comprehensively to each other.

1991 Mathematics Subject Classification. Primary 51F20, Secondary 51M15.

Key words and phrases. inverse problems, composition of problems with given logical structures.
2. THEORETICAL BASIS OF THE PROPOSED METHOD FOR GENERATING PROBLEMS

In what follows \(p_1, p_2; t, p, q, r \) will stand for statements.

In this paper we deal with a generalization of the formal logical rule \(\textup{[7]} \)
\[
(p_1 \to r) \land (p_2 \to r) \iff (p_1 \lor p_2 \to r).
\]

(*)

Semantic rules connected with the material implication correspond to the formal derivation rules used in the proofs below. By semantic interpretations the formal derivation rules are called consequence rules \([1]\). Because of this correspondence we can formulate and use comprehensively the proposition below.

Proposition 2.1. The following equivalence is true

\[
(t \land p \to r) \land (t \land q \to r) \iff t \land (p \lor q) \to r.
\]

Proof. Let the statement \(p_1 \) in (*) have the structure \(t \land p \) and the statement \(p_2 \) in (*) have the structure \(t \land q \). Then
\[
(t \land p \to r) \land (t \land q \to r) \iff (t \land p) \lor (t \land q) \to r \iff t \land (p \lor q) \to r,
\]
i. e. the conjunction of the problems

(2) \(t \land p \to r \)

and

(3) \(t \land q \to r \)

is equivalent to the problem

(4) \(t \land (p \lor q) \to r. \)

Any true proposition could have more than one inverse proposition. However, not every inverse proposition is a true statement. The truth value of an inverse proposition of a given true proposition depends essentially on its composition principle. According to \([7]\) if a given proposition has the logical structure \(p_1 \land p_2 \to r \), then each one of the following propositions could be considered to be its inverse: \(r \to p_1 \land p_2 \), \(p_1 \land r \to p_2 \) and \(r \land p_2 \to p_1 \). The most interesting and important inverse propositions are those that are true as well as independent from the other possible inverse propositions, i. e. the strongest inverse propositions.

Equivalence (1) formally describes a method for composing new problems with a given logical structure and for formulating their inverse problems.

According to Proposition 2.1 problems with logical structures (2) and (3) generate a problem with a logical structure (4).

In this paper we consider only inverse problems of type (4) with the structure

(5) \(t \land r \to p \lor q. \)

Problems with logical structures (2) and (3) are said to be generating problems with structure (4) and their inverse problems with structure (5).

To change the logical structure in the conclusion of the inverse problem from logical disjunction to exclusive disjunction we need a dichotomic decomposition of the considered set of geometric objects with respect to any remarkable property and its negation. Such a decomposition guarantees the homogeneity of the statements (based on one and the same equivalence relation) in the conclusion of the problem \([5]\).
Proposition 2.2. The following equivalence is true
\[t \land r \rightarrow p \lor q \iff t \land r \rightarrow p \lor (\neg p \land q). \]

Proposition 2.2 gives the equivalence between problems with a logical structure (5) and problems with a logical structure
\[t \land r \rightarrow p \lor (\neg p \land q). \]

Any problem with a logical structure (7) satisfies the condition of homogeneity in the conclusion.

3. Application of the Method to Specific Groups of Problems

The problems in each of the proposed groups are comprehensively related to each other.

3.1. Problems of group I. The logical statements used for the formulation of these problems are

- \(t := \{ \text{The straight line } AD, D \in BC, \text{ is a median in } \triangle ABC. \} \)
- \(p := \{ AC = AB \} \)
- \(q := \{ \angle BAC = 90^0 \} \)
- \(r := \{ \angle DAC + \angle ABC = 90^0 \} \)

Problem 3.1. Let the straight line \(AD, D \in BC, \) be a median in \(\triangle ABC. \) If \(AC = AB, \) then \(\angle DAC + \angle ABC = 90^0. \)

This problem has a logical structure \(t \land p \rightarrow r. \)

The proof follows immediately from Figure 1.

Problem 3.2. Let the straight line \(AD, D \in BC, \) be a median in \(\triangle ABC. \) If \(\angle BAC = 90^0, \) then \(\angle DAC + \angle ABC = 90^0. \)

This problem has a logical structure \(t \land q \rightarrow r. \) The proof follows easily from Figure 2.

According to the logical structures of problems 3.1 and 3.2 and in view of Proposition 2.1 we construct the following inverse problem with logical structure \(t \land r \rightarrow p \lor q. \)
Problem 3.3. (III, Problem 3) Let the straight line AD, $D \in BC$, be a median in $\triangle ABC$. If $\angle DAC + \angle ABC = 90^0$, then $AC = AB$ or $\angle BAC = 90^0$.

The next two problems are equivalent to Problem 3.3 (see also [III], p. 211, Problem 246)

Problem 3.4. (III, Problem 2) Let the straight line AD, $D \in BC$, be a median in $\triangle ABC$. If $\angle DAC + \angle ABC = 90^0$ and $\angle BAC \neq 90^0$, then $AC = AB$.

Problem 3.5. (III, Problem 1) Let the straight line AD, $D \in BC$, be a median in $\triangle ABC$. If $\angle DAC + \angle ABC = 90^0$ and $AC \neq AB$, then $\angle BAC = 90^0$.

In view of Proposition 2.2, Problem 3.3 can be reformulated as follows (see also [III], Problem 4; [II], Problem 6; [I], p. 24, Problem 6; [I], p. 23, Problem 1; [II], p. 265, Problem 312).

Problem 3.6. Let the straight line AD, $D \in BC$, be a median in $\triangle ABC$. If $\angle DAC + \angle ABC = 90^0$, then $\triangle ABC$ is either isosceles ($AC = AB$), or not isosceles but right-angled ($\angle BAC = 90^0$).

3.2. Problems of group II. The logical statements used for the formulation of these problems are

$t := \{\text{In } \triangle ABC \text{ the straight line } AA_1, A_1 \in BC, \text{ is the bisector of } \angle CAB, \text{ the straight line } BB_1, B_1 \in AC, \text{ is the bisector of } \angle CBA \text{ and } AA_1 \cap BB_1 = J.\}$

$p := \{AC = BC\}$

$q := \{\angle ACB = 60^0\}$

$r := \{JA_1 = JB_1\}$

Problem 3.7. Let in $\triangle ABC$ the straight line AA_1, $A_1 \in BC$, be the bisector of $\angle CAB$, the straight line BB_1, $B_1 \in AC$, be the bisector of $\angle CBA$ and $AA_1 \cap BB_1 = J$. If $AC = BC$, then $JA_1 = JB_1$.

This problem has a logical structure $t \land p \rightarrow r$.

Proof. Since $AC = BC$, then $\angle CAB = \angle CBA$ and hence $\angle A_1BA = \angle B_1BA$ (fig. 3).

In view of the Criteria for congruence of triangles we have $\triangle A_1AB \cong \triangle B_1BA$. As a consequence it follows that $\triangle AJB$ is isosceles, $AA_1 = BB_1$, $AJ = BJ$ and $JA_1 = JB_1$.

□

Problem 3.8. Let in $\triangle ABC$ the straight line AA_1, $A_1 \in BC$, be the bisector of $\angle CAB$, the straight line BB_1, $B_1 \in AC$, be the bisector of $\angle CBA$ and $AA_1 \cap BB_1 = J$. If $\angle ACB = 60^0$, then $JA_1 = JB_1$.

This problem has a logical structure $t \land q \rightarrow r$.

Proof. Let us denote $\angle BAA_1 = \angle CAA_1 = \alpha$, $\angle ABB_1 = \angle CBB_1 = \beta$ (fig. 4).

Since J is the intersection point of the bisectors AA_1 and BB_1 of $\triangle ABC$, then CJ is the bisector of $\angle ACB$ and $\angle JCA = \angle JCB = \gamma = 30^0$. Since $\alpha + \beta + \gamma = 90^0$, then $\alpha + \beta = 60^0$, and $JA_1 = JB_1$.

□
$\angle AJB = 120^\circ$ and the quadrilateral CA_1JB_1 can be inscribed in a circle. Hence, $JA_1 = JB_1$, as chords corresponding to equal angles (arcs) in a circle.

According to the logical structures of problems 3.7 and 3.8 and in view of Proposition 2.1, we construct the following inverse problem with logical structure $t \land r \rightarrow p \lor q$.

Problem 3.9. ([4], Problem 7) Let in $\triangle ABC$ the straight line AA_1, $A_1 \in BC$, be the bisector of $\angle CAB$, the straight line BB_1, $B_1 \in AC$, be the bisector of $\angle CBA$ and $AA_1 \cap BB_1 = J$. If $JA_1 = JB_1$, then $AC = BC$ or $\angle ACB = 60^\circ$.

The next two problems are equivalent to Problem 3.9.

Problem 3.10. ([4], Problem 5) Let in $\triangle ABC$ the straight line AA_1, $A_1 \in BC$, be the bisector of $\angle CAB$, the straight line BB_1, $B_1 \in AC$, be the bisector of $\angle CBA$ and $AA_1 \cap BB_1 = J$. If $JA_1 = JB_1$ and $AC \neq BC$, then $\angle ACB = 60^\circ$.

Problem 3.11. ([4], Problem 6) Let in $\triangle ABC$ the straight line AA_1, $A_1 \in BC$, be the bisector of $\angle CAB$, the straight line BB_1, $B_1 \in AC$, be the bisector of $\angle CBA$ and $AA_1 \cap BB_1 = J$. If $JA_1 = JB_1$ and $\angle ACB \neq 60^\circ$, then $AC = BC$.

In view of Proposition 2.2, Problem 3.9 can be reformulated by keeping the condition of homogeneity in its conclusion.

Problem 3.12. ([4], Problem 8) Let in $\triangle ABC$ the straight line AA_1, $A_1 \in BC$, be the bisector of $\angle CAB$, the straight line BB_1, $B_1 \in AC$, be the bisector of $\angle CBA$ and $AA_1 \cap BB_1 = J$. If $JA_1 = JB_1$ then $\triangle ABC$ is either isosceles ($CA = CB$), or not isosceles but $\angle ACB = 60^\circ$.

3.3. **Problems of group III.** The logical statements used for the formulation of these problems are

$t := \{ \text{The straight line } CH, H \in AB, \text{ is the altitude and the straight line } CM, M \in AB, \text{ is the median of } \triangle ABC. \}$

$p := \{ AC = BC \}$

$q := \{ \angle ACB = 90^\circ \}$

$r := \{ \angle ACM = \angle BCH \}$

Problem 3.13. Let the straight line $CH, H \in AB$, be the altitude and the straight line $CM, M \in AB$, be the median of $\triangle ABC$. If $AC = BC$, then $\angle ACM = \angle BCH$.
This problem has a logical structure $t \land p \to r$.

Proof. In any isosceles triangle the altitude and the median to its base are congruent. Hence, $M \equiv H$ and $\angle ACM = \angle BCH$. □

Problem 3.14. Let the straight line CH, $H \in AB$, be the altitude and the straight line CM, $M \in AB$, be the median of $\triangle ABC$. If $\angle ACB = 90^0$, then $\angle ACM = \angle BCH$ (and also $\angle ACH = \angle BCM$).

This problem has a logical structure $t \land q \to r$.

Proof. In the right-angled not isosceles $\triangle ABC$ the location of the collinear points B, H and M is either H/BM, or M/BH. Let, for instance, H/BM (fig. 5). Let $\angle CAB = \alpha$ and $\angle CBA = \beta$. Then $\alpha + \beta = 90^0$. Since $AM = MC (= MB)$, then $\triangle AMC$ is isosceles and $\angle ACM = \alpha$. In the right-angled $\triangle BHC$ we have $\angle BCH = 90^0 - \beta = \alpha$. Hence, $\angle ACM = \angle BCH$ (and also $\angle ACH = \angle BCM$).

For a right-angled isosceles triangle see Problem 3.13. □

According to the logical structures of problems 3.13 and 3.14 and in view of Proposition 2.1 we construct the following inverse problem with logical structure $t \land r \to p \lor q$.

Problem 3.15. Let the straight line CH, $H \in AB$, be the altitude and the straight line CM, $M \in AB$, be the median of $\triangle ABC$. If $\angle ACM = \angle BCH$, then $AC = BC$ (i. e. $\triangle ABC$ is isosceles) or $\angle ACB = 90^0$ (i. e. $\triangle ABC$ is right-angled).

Proof. Let $\angle CAB = \alpha$ and $\angle CBA = \beta$. In any triangle at least two of the angles must be acute angles. Hence, in $\triangle ABC$ at least one of the angles α and β is acute. Let, for instance, $\beta < 90^0$.

If we assume that $\alpha \geq 90^0$ then the location of the collinear points A, H and M is either A/HM, or $A \equiv H$ (fig. 6). Then for the right-angled $\triangle BCH$ is valid $\angle ACM < \angle BCH$, which contradicts the given condition $\angle ACM = \angle BCH$. Hence, $\alpha < 90^0$ and the points H and M lie between the points A and B.

There are two possibilities for the points H and M - they either coincide or not.
(i) Let $H \equiv M$. In this case the median CM in $\triangle ABC$ coincides with the altitude CH, i. e. $\triangle ABC$ is isosceles. If in addition $\angle ACB = 90^\circ$, then $\triangle ABC$ is isosceles right-angled.

(ii) Let $H \neq M$ and H/BM (The considerations in the case M/BH are analogical.) In the considered case $\alpha < \beta$ (fig. 7).

Let L_1M be the perpendicular bisector of AB. The points C and L_1 lie on alternate sides of AB. The perpendicular projection of L_1 onto the chord AB is the middle point M. Then the straight line L_1M is the perpendicular bisector of AB.

The straight line CL_1 cuts the parallel lines CH ($CH \perp AB$) and L_1M ($L_1M \perp AB$) and hence the alternate angles $\angle HCL$ and $\angle ML_1L$ are equal, i. e. $\triangle CML_1$ is isosceles. Thus the point M also lies on the the perpendicular bisector of the chord CL_1.

Since the perpendicular bisectors of any two non parallel chords of a circle cut at its center, the point M is the center of k, the chord AB is a diameter of k and $\angle ACB = 90^\circ$.

Remark 3.16. Let $P = ML_1 \cap k$. Then PL_1 is a diameter of k and $\angle PCL_1 = 90^\circ$. It is easy to be seen that $\triangle MPC$ is isosceles and the point M is the center of k.

We reformulate Problem 3.15 by keeping the condition of homogeneity of the conclusion (see also [2], Problem 7.106).

Problem 3.17. Let the straight line CH, $H \in AB$, be the altitude and the straight line CM, $M \in AB$, be the median of $\triangle ABC$. If $\angle ACM = \angle BCH$, then $\triangle ABC$ is either isosceles ($AC = BC$), or not isosceles but right-angled ($\angle ACB = 90^\circ$).

3.4. Problems of group IV

The logical statements used for the formulation of these problems are

$t := \{ \text{The middle points of the sides } BC, CA \text{ and } AB \text{ of } \triangle ABC \text{ are } F, D, \text{ and } E \text{ respectively.} \}$

$p := \{ AC = BC \}$
\(q := \{ \angle ACB = 60^0 \} \)

\(r := \{ \text{The center } G \text{ of the circumscribing circle } k \text{ of } \triangle FDE \text{ lies on the bisector of } \angle ACB \} \).

Problem 3.18. Let the middle points of the sides \(BC, CA \) and \(AB \) of \(\triangle ABC \) be \(F, D, \) and \(E \) respectively. If \(AC = BC \), then the center \(G \) of the circumscribing circle \(k \) of \(\triangle FDE \) lies on the bisector of \(\angle ACB \).

This problem has a logical structure \(t \land p \implies r \).

Proof. The median \(CE \) of the isosceles \(\triangle ABC \) is the perpendicular bisector of \(AB \) and \(DF \) and the bisector of \(\angle ACB \). Hence, the center \(G \) of the circumscribing circle \(k \) of \(\triangle FDE \) lies on the bisector of \(\angle ACB \). \(\square \)

Problem 3.19. Let the middle points of the sides \(BC, CA \) and \(AB \) of \(\triangle ABC \) be \(F, D, \) and \(E \) respectively. If \(\angle ACB = 60^0 \), then the center \(G \) of the circumscribing circle \(k \) of \(\triangle FDE \) lies on the bisector of \(\angle ACB \).

This problem has a logical structure \(t \land q \implies r \).

Proof. The quadrilateral \(EFC \) (fig. 8) is a parallelogram with \(\angle DCF = 60^0 \). Hence, \(\triangle EFD \cong \triangle CDF \) and the circumscribing circles \(k \) and \(k' \) of \(\triangle EFD \) and \(\triangle CDF \) respectively have equal radii. The centers \(G \) and \(G' \) of these circles lie on the perpendicular bisector \(s \) of \(DF \). Let \(P = s \cap k \), \(Q = s \cap k' \). It is easy to be seen that the quadrilateral \(FPDQ \) is a rhombus with \(\angle PDQ = 60^0 \) and \(QD = QP = QF \), i.e. the point \(Q \) coincides with the center \(G \) of \(k \). Consequently, the point \(P \) coincides with the center \(G' \) of \(k' \). The point \(Q \) is also the middle point of the arc \(DQF \) of \(k' \) and then lies on the bisector of \(\angle DCF \equiv \angle ACB \). \(\square \)

According to the logical structures of problems 3.18 and 3.19 and in view of Proposition 2.1 we construct the following inverse problem with logical structure \(t \land r \implies p \lor q \) (see also \(\text{[8]} \), Problem 12):

Problem 3.20. Let the middle points of the sides \(BC, CA \) and \(AB \) of \(\triangle ABC \) be \(F, D, \) and \(E \) respectively. If the center \(G \) of the circumscribing circle \(k \) of \(\triangle FDE \) lies on the bisector of \(\angle ACB \), then \(AC = BC \) or \(\angle ACB = 60^0 \).
The next two problems are equivalent to Problem 3.20.

Problem 3.21. Let the middle points of the sides BC, CA and AB of $\triangle ABC$ be F, D, and E respectively. If the center G of the circumscribing circle k of $\triangle FDE$ lies on the bisector of $\angle ACB$ and $BC \neq AC$, then $\angle ACB = 60^0$.

Problem 3.22. Let the middle points of the sides BC, CA and AB of $\triangle ABC$ be F, D, and E respectively. If the center G of the circumscribing circle k of $\triangle FDE$ lies on the bisector of $\angle ACB$ and $\angle ACB \neq 60^0$, then $BC = AC$.

We reformulate Problem 3.20 by keeping the condition of homogeneity of the conclusion.

![Diagram](image)

Problem 3.23. Let the middle points of the sides BC, CA and AB of $\triangle ABC$ be F, D, and E respectively. If the center G of the circumscribing circle k of $\triangle FDE$ lies on the bisector of $\angle ACB$, then the $\triangle ABC$ is either isosceles ($AC = BC$), or not isosceles but $\angle ACB = 60^0$.

Proof. Let G' be the center of the circumscribing circle k' of $\triangle FDC$ (fig. 9). In view of the Criteria for congruence of triangles we get that $\triangle FDE \cong \triangle DFC$. It follows that the circumscribing circles k and k' of $\triangle FDE$ and $\triangle DFC$ respectively have equal radii. Let M be the middle point of DF and $L = GM \cap k'$. The point G' lies on the perpendicular bisector GM of DF. Hence, the point L is the middle point of the arc $\hat{D LF}$ of k' and CL is the bisector of $\angle DCF \equiv \angle ACB$.

Since the center G of k lies on the bisector CL (according to the condition of the Problem), then the straight lines CL and GM either cut at G (have no other common points), or coincide (all of their points are common).

(i) Let $CL \cap GM = L \equiv G$. In this case $G' \in k$ (fig. 8) and $\triangle G'DG$ is equilateral, the central $\angle DG'F$ of k' has a measure 120^0 and hence $\angle ACB = 60^0$.

(ii) Let $CL \equiv GM$ (fig. 10).

In this case the bisector CL of $\angle DCF$ coincides with the perpendicular bisector of DF. Then $\triangle DCF$ and also $\triangle ABC$ are isosceles, i. e. $AC = BC$. □
Finally, we formulate a problem whose proof emphasizes the importance and significance of the described method for generating problems.

The similar conclusions of problems 3.9 and 3.20 lead to

Problem 3.24. Let the middle points of the sides BC, CA and AB of $\triangle ABC$ be F, D, and E respectively. Let further the straight lines AA_1, $A_1 \in BC$, and BB_1, $B_1 \in AC$, be the bisectors of $\angle CAB$ and $\angle CBA$, respectively, and $AA_1 \cap BB_1 = J$.

The center G of the circumscribing circle k of $\triangle FDE$ lies on the bisector of $\angle ACB$ if and only if $JA_1 = JB_1$.

Proof.

(i) Let the center G of the circumscribing circle k of $\triangle FDE$ lie on the bisector of $\angle ACB$. From Problem 3.20 it follows that $AC = BC$ or $\angle ACB = 60^\circ$.

- If $AC = BC$ then from the generating Problem 3.7 it follows that $JA_1 = JB_1$.
- If $\angle ACB = 60^\circ$ then from the generating Problem 3.8 it follows that $JA_1 = JB_1$.

(ii) Let $JA_1 = JB_1$. From Problem 3.9 it follows that $AC = BC$ or $\angle ACB = 60^\circ$.

- If $AC = BC$ then from the generating Problem 3.18 it follows that the center G of the circumscribing circle k of $\triangle FDE$ lies on the bisector of $\angle ACB$.
- If $\angle ACB = 60^\circ$ then from the generating Problem 3.19 it follows that the center G of the circumscribing circle k of $\triangle FDE$ lies on the bisector of $\angle ACB$.

\[\square \]

Acknowledgements. The first author is partially supported by Sofia University Grant 159/2013. The second author is partially supported by Sofia University Grant 99/2013.
COMPOSITION OF INVERSE PROBLEMS WITH A GIVEN LOGICAL STRUCTURE

REFERENCES

[1] Vilenkin N. Y., *Sovremennye osnovi shkol’nogo kursa matematiki*, Prosveshtenie, Moskva, 1980.
[2] Kolarov K., Lesov H., *Sbornik ot zadachi po geometriya, VIII-XII klas*, Integral, Dobritsh, 2000.
[3] Modenov P. S., *Sbornik zadach special’nomu kursu elementarnoj matematiki*, Sovetskaja nauka, Moskva, 1957.
[4] Ninova J., Mihova V., *Equivalence Problems*, Mathematics and Education in Mathematics, Proceedings of the Forty Second Spring Conference of the Union of Bulgarian Mathematicians, Borovetz, April 26, 2013, 424-429.
[5] Poija D., *Kak da se reshava zadacha*, Narodna prosveta, Sofia, 1972.
[6] Prasolov V. V., *Zadachi po planimetrii, I*, Nauka, Moskva, 1986.
[7] Stoljar A. A., *Logicheskoe vvedenie v matematiku*, Vishejshaja shkola, Minsk, 1971.
[8] Tvorcheskij konkurs uchiyelej, *Zadacha 12*, 2004. [http://www.mccme.ru/oluch/]
[9] Sharigin I. F., *Zadachi po geometrii*, Bibliotechka Kvant, 17, Nauka, Moskva, 1982.
[10] Sharigin I. F., *Tursete variantite*, Obuchenie po matematika i informatika, (1988) 1, 5-12; 2, 21-30.
[11] Sharigin I. F., *Fakul’tativnyj kurs po matematike, reshenie zadach, 10. klassa*, Prosveshtnie, Moskva, 1989.
[12] Sharigin I. F., *Matematika dlja postupajushtih v vusi*, 6- izd., Drofa, Moskva, 2006.

Faculty of Mathematics and Informatics University of Sofia e-mail: julianinova@hotmail.com

Faculty of Mathematics and Informatics University of Sofia e-mail: mihova@fmi.uni-sofia.bg