Organic mulch sheet formulation as an effort to help plants adapt to climate change

Aniek Iriany1 · Mochammad Chanan2 · Gunomo Djoyowasito3

Received: 24 February 2017 / Accepted: 19 December 2017 / Published online: 29 December 2017
© The Author(s) 2017. This article is an open access publication

Abstract
Purpose This study aimed to discover the precise material composition and thickness (water hyacinth, rice straw, and banana pseudostem) of organic mulch sheet.
Methods This current research was conducted by means of a number of treatments with various material compositions and thickness of organic mulch sheet. Several tests were administered such as chemical analyses on organic mulch sheet, tensile strength, and Vilensky test.
Result Various compositions of materials resulted in various chemical analyses of organic mulch sheet. Organic mulch with the strongest tensile strength was during the treatment of 60% water hyacinth, 20% rice straw, and 20% banana pseudostem, reaching 3.28 N/m². The highest sunlight intensity of mulch composition was during the treatment of M4 (50% water hyacinth, 40% rice straw, and 10% banana pseudostem) with no hole and absorbing.
Conclusion The result showed that water hyacinth, rice straw, and banana pseudostem could be used as the materials for organic mulch sheets. They could add organic matters into the soil, have endurance and strength to apply as mulch in crop cultivation, as well as help plants adapt to climate change.

Keywords Organic mulch sheet · Organic matters · Tensile strength · Vilensky · Climate change

Introduction
Mulch is a soil cover that functions to maintain soil temperature and humidity, inhibit the growth of weeds, also lessen soil erosion (Díaz-Pérez and Batal 2002; Kar and Kumar, 2007; Ekinci and Dursun, 2009; Sinkevičienė et al. 2009; Ibarra-Jiménez et al. 2011; Dvořák et al. 2012). In horticulture plantation, both organic mulch and inorganic mulch have been into a common use (Dvořák et al. 2001; George Hochmuth et al. 2002; Kasirajan and Ngouajio 2012; Cowan 2013; Lakkenborg et al. 2014; Azad et al. 2015). Specifically, in this unstable climate and global warming condition (Wai et al. 2007), mulch is utilized to help plants adapt to climate change by modifying microclimate around the growing plants (Dvořák et al. 2001; Ibarra-Jiménez et al. 2011; Kasirajan and Ngouajio 2012). The following concern would be on the environment modification to optimize the growth of plants so as to improve potential production (Scholes et al. 1997; Peng et al. 2004; Widiatningrum and Pukan 2010; Kalra et al. 2013). The growth and productivity of plants generally are affected by rainfall, temperature, humidity, and soil fertility (Pereira and Nova 2008; Ayinde et al. 2011; Mahmood et al. 2012; Iriany et al. 2013; Nakano et al. 2013; Yaghi et al. 2013). Some previous studies have found that mulch usage increases plant productivity (Siwek et al. 2007; Miles et al. 2012; Haapala et al. 2015).

Mulch has been into a common use in crop cultivation, yet with a number of drawbacks, such as the use of environmentally unfriendly synthetic materials that are hard to degrade (transparent plastic, PHP, etc.), apart from their high price that are less affordable for farmers (O’Brine and Thompson 2010; Coolong 2012; Kasirajan and Ngouajio...
changes in pH occurred (Khan and Sarwar 2002; Nyawira et al. 2016; Sindhu et al. 2017). Water hyacinth commonly used as bio-absorption of heavy metal does not contain heavy metal on high proportion that will damage or affect the soil (Gavrilescu 2004).

With simple technology, this organic mulch sheet is cheaper in price as it recycles wastes, more practical and effective in usage, using simpler technology, environmentally friendly, and in long-term increases soil fertility. Accordingly, it is necessary to discover the precise material composition of organic mulch sheet.

Methods

The experiment was conducted in the laboratory of the University of Muhammadiyah Malang and in the farming field in Batu, East Java, in the altitude of 1670 meters above sea level. The experiment was done from March to July 2014.

Material

The making of organic mulch sheet requires the following materials: water hyacinth, rice straw, and banana pseudostem. The tools were: organic mulch sheet molds, a digital scale, scissors, knife, measuring cup, blender, sieve, stove, pan, and caliper.

Experimental design

This research was conducted by employing a completely randomized design. The treatment experiment included compositions of organic mulch sheet materials with six variations and two thickness (twelve combinations), then repeated three times. The variation of organic mulch sheet compositions included M1 = 40% water hyacinth:40% Rice straw:20% banana pseudostem; M2 = 50% water hyacinth:20% Rice straw:30% banana pseudostem; M3 = 50% water hyacinth:30% Rice straw:10% banana pseudostem; M4 = 50% water hyacinth:20% Rice straw:10% banana pseudostem; M5 = 60% water hyacinth:20% Rice straw:20% banana pseudostem; M6 = 0.60% water hyacinth:30% Rice straw:10% banana pseudostem. There are two levels of organic mulch sheet thickness, T1 = 0.5 mm and T2 = 1 mm.

Implementation of the study

Making of mold

Preparing Styrofoam and cloth; one hole was made on the Styrofoam with the size of 30 cm × 50 cm; the upper part of Styrofoam was covered by the cloth.
Preparation of tools and materials

Preparing water hyacinth, rice straw, banana pseudostem, and necessary tools.

Cutting and weighing

The total weight of mulch for each combination was 1000 g. Water hyacinth, rice straw, and banana pseudostem were weighted based on the set composition in each treatment before finally being cut into the size of 1 cm.

Pulping

Water hyacinth was blended for 15 min and banana pseudostems were blended for 20 min by the addition of water before being squeezed to take the pulp.

Molding

Molding process started by pouring and flattening the hot pulp into the prepared mold. Then, the pulp in the mold was dried while being steadily pressed to eliminate the water.

Measured variables and data analysis

The following tests were conducted: chemical analysis of the organic materials (C organic, N total, C/N ratio and organic matter), organic mulch sheet tensile strength by Brazilian test (N/cm²), Vilensky and sunlight exposure intensity tests. Tabulation was then conducted before statistically being analyzed by means of F Test. To detect the differences among the treatments, BNJ Test in the level of 5% was conducted. The data were analyzed by means of Minitab version 17 software.

Results and discussion

The organic mulch sheet was made of water hyacinth, banana pseudostem, and tannery waste. It produced a compact and strong structure (Li et al. 2010; Sutyasmi 2012; Sahari and Buku 2015). The high cellulose content in the water hyacinth and banana pseudostem (over than 60%) and low lignin content (lower than 5%) through the delignification process are used to remove the lignin contained in the materials (Li et al. 2010; Tumolva et al. 2013; Ramesh et al. 2014).

Chemical analysis

The results are shown in the following Table 1 about chemical analyses on organic materials for organic mulch sheet in various treatments. From various treatments, it could be seen that treatment M3 (50% water hyacinth: 30% rice straw, 20% banana pseudostem) and M1 (40% hyacinth: 40% rice straw, 20% banana pseudostem) showed the highest N total of contents compared to that of other treatments. Previous study showed 50% water hyacinth and 30 and 20% straw organic mulch sheet composition increased C-organic, N-total, and organic matter compared with 60% water hyacinth and 30% straw composition (Iriany et al. 2016). Besides, the nitrogen content of banana pseudostem is the highest than other raw materials. Nitrogen content of water hyacinth, straw, and banana pseudostem in dry matter, respectively, are 0.28%; 0.5–0.8%; and 0.93–1.87% (Dobermann and Fairhurst 2002; Abdullah et al. 2014).

Table 1 The results of chemical analyses on organic materials for organic mulch sheet

Treatment	C-organic (%)	N-total (%)	C/N ratio	Organic matter (%)
M1 (40:40:20)	27.69	10.16	3	47.90
M2 (50:20:30)	29.67	7.96	4	51.32
M3 (50:30:20)	31.41	11.93	3	54.33
M4 (50:40:10)	32.78	5.73	6	56.71
M5 (60:20:20)	32.89	7.8	4	56.91
M6 (60:30:10)	31.03	2.04	15	53.68

Table 2 The results of tensile strength analyses on composition treatment for organic mulch sheet

Treatment	Tensile strength (N/m²)
M1 (40:40:20)	28.1
M2 (50:20:30)	23.2
M3 (50:30:20)	27.5
M4 (50:40:10)	18.8
M5 (60:20:20)	32.8
M6 (60:30:10)	22.1

Tensile strength

Based on the test of the mulch tensile strength, it resulted in the following numbers as shown in Table 2. Table 2 showed that the highest tensile strength was during the treatment of M5. Previous researches have shown that 60% water hyacinth, 20% straw, and 20% banana pseudostem composition gained the highest tensile strength value than other treatments (Djojowasito et al. 2007; Indriyati et al. 2016). Water hyacinth has a compact, short, and soft fiber than others, therefore, it contributes more effects on the tensile strength of organic mulch sheet. Besides, the tensile strength of organic mulch sheet is higher than biodegradable paper made (patented) by Peter. F et al. (2003)
although it is still lower in tensile strength compared to that of fiber composite made from kenaf and pineapple (J, M.K and W.S 2015).

Figure 1 shows that the increase of rice straw proportion resulted in the decrease of tensile strength. Figure 2 shows the parabolic correlation between the proportion of banana pseudostem and tensile strength and the optimum proportion is shown to be 20%. The correlation between tensile strength and water hyacinth proportion displays an inverse manner from the correlation between tensile strength and banana pseudostem proportion (Fig. 3). The optimum proportions of water hyacinth are 40 and 60%. In each material, the maximum tensile strength was gained from rice straw proportion of 20%, banana pseudostem proportion of 20%, and water hyacinth of 60%. It is similar to the previous study revealing that the highest tensile strength has been gained from 20–30% banana pseudostem (Djojowasito et al. 2007); also, the other paper exhibited the highest tensile value of the sample at 15 wt% composition of fiber (MdRadzi et al. 2015).

Another paper has shown that the proper comparison of hyacinth plant and coconut coir was 88 and 12% (Nugroho et al. 2013) also the additional treatment to increase tensile strength was by alkali and enzyme treatments (Tumolva et al. 2013). For pulp from straw, tensile strength could gain 153.10^5 N/m² (Saragi, 2008). Each type of fiber source has its different characteristics as well as its effects on tensile strength of organic mulch sheet. Accordingly, it is crucial to find the proper combination of materials.

Fig. 1 The correlation between tensile strength and the percentage of rice straw contents in organic mulch sheet

Fig. 2 The correlation between tensile strength and the percentage of banana pseudostem contents in organic mulch sheet

Fig. 3 The correlation between tensile strength and the percentage of water hyacinth contents in organic mulch sheet

Treatment	Sunlight intensity	Note
Before	After	
Wet	Dry	
M₁ (40:40:20)	15 190 14	Without hole, absorbing
M₂ (50:20:30)	19 45 22	Without hole, non-absorbing
M₃ (50:30:20)	28 238 20	Without hole, absorbing
M₄ (50:40:10)	33 298 40	Without hole, absorbing
M₅ (60:20:20)	8 92 3	Without hole, absorbing
M₆ (60:20:20)	25 194 24	Without hole, absorbing

Table 3 The result of vilensky test of various organic mulch sheet composition

Vilensky test

Table 3 shows that based on Vilensky test, the highest sunlight intensity of mulch composition was during the treatment of M₄ (50% water hyacinth:40% rice straw:10% banana pseudostem). Viewed from the proportion of water hyacinth, the increase in the proportion of water hyacinth could increase sunlight intensity. The picture also portrays that the increase, as well as linear trends, was shown in dry mulch condition. It shows that the increase in the proportion of water hyacinth affects the increase in sunlight intensity (Fig. 4). Fibers from water hyacinth and banana pseudostem that have tied each other prevent the forming of the hole on the mulch (Djojowasito et al. 2007).

Viewed from rice straw proportion used in mulch both with the thickness of 0.5 mm and 1.0 mm, especially for mulch in wet condition, the quadratic curve with the peak/maximum cusp was formed in the proportion of 30%. The same case also occurred in the dry condition of mulch. It indicates that the increase and decrease in rice straw proportion affect the decrease in sunlight intensity (Figs. 5 and 6).

Viewed from banana pseudostem proportion used in mulch both with the thickness of 0.5 mm and 1.0 mm, especially for mulch in wet condition, the quadratic curve tended to decline. In the wet condition, the increase in banana pseudostem proportion affects the decrease in sunlight intensity.
However, in the dry condition, the quadratic curve tended to open upward. It is shown that the minimum cusp of sunlight intensity was formed in the proportion of 20–30%. The higher proportion of banana pseudostem resulted in the increase in sunlight intensity (Figs. 7 and 8).

Viewed from hyacinth proportion used in mulch both with the thickness of 0.5 mm and 1 mm, the quadratic and linear relationships were observed. The correlations were as follows:

- **0.5 mm organic mulch sheet:***
 - Hyacinth: $y = -0.362x^2 + 25.47x$ (before), $y = -0.7925x^2 + 50.125x - 185.5$ (after)
 - Straw mulch: $y = -0.362x^2 + 25.47x$ (before), $y = -0.69x^2 + 44.05x - 507.5$ (after)

- **1.0 mm organic mulch sheet:***
 - Hyacinth: $y = 0.07x^2 - 3.3x + 55$ (before), $y = -0.2783x^2 + 1.0833x + 263$ (after)
 - Straw mulch: $y = 0.07x^2 - 3.3x + 55$ (before), $y = -0.097x^2 + 5.475x - 49.5$ (after)

Table 4
The result of correlation analysis between chemical characteristics of mulch materials and tensile strength of mulch

Chemical characteristics of mulch materials	Correlation	p value
C-organic	-0.113	0.726
N-total	0.072	0.823
C/N	0.032	0.921
Organic materials	-0.113	0.726
curve tended to ascend along with the increasing proportion of hyacinth. In the wet and dry conditions, the increase in hyacinth proportion affects the increase in sunlight intensity. The higher proportion of hyacinth resulted in the increase in sunlight intensity (Figs. 4 and 9).

The result of correlation test between chemical characteristics of mulch materials and tensile strength of mulch has shown that chemical characteristics of all materials have p value more than 0.05. It proves that there is no significant correlation between C-organic contents, N Total, C/N, and organic materials and tensile strength of mulch (Table 4).

Conclusion

The result of this current research has revealed that water hyacinth, rice straw, and banana pseudostem could be used as materials for organic mulch sheet. The best composition has been shown during the treatment of 60% water hyacinth, 20% rice straw, and 20% banana pseudostem seen from tensile strength and endurance towards the water and normal mulch stretch. The best treatment was the composition of 50% water hyacinth, 40% rice straw, and 10% banana pseudostem. Organic mulch with the strongest tensile strength of 32.8 N resulted during the treatment of 60% water hyacinth, 20% rice straw, and 20% banana pseudostem; also the highest C-organic content was during this treatment that accounted for 32.89%.

Acknowledgement

The authors would like to thank University of Muhammadiyah Malang (UMM) for providing necessary facilities to carry out this research. Financial support from DIKTI (Directorate of High Education) for this research is gratefully acknowledged.

Open Access

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Abdullah N, Sulaiman F, Miskam MA, Taib RM (2014) Characterization of banana (Musa spp.) plantation wastes as a potential renewable energy source. Int J Biol Biomol 9(8):815–819. http://www.inderscience.com/doi/abs/10.5171/ijbb.2014.9.8.815

Ayinde OE, Mochie M, Olatunji GB (2011) Effect of climate change on agricultural productivity in Nigeria: a co-integration model approach. J Hum Ecol 35(3):189–194

Azad, B., Hassanokht, M. R. and Parvizi, K. (2015) ‘Effect of mulch on some characteristics of potato in Asadabad, Hamedan’, IJAAR, 6(3), pp. 139–147 http://www.inns.pub.net

Azubuike CP, Okhamafe AO (2012) Physicochemical, spectroscopic and thermal properties of microcrystalline cellulose derived from corn cobs. Int J Recyc Org Waste Agric 1(1):9. https://doi.org/10.1186/2251-7715-1-9

Bajorien K, Jodaugien D, Pupulien R, Sinkevi A (2013) Effect of organic mulches on the content of organic carbon in the soil. Est J Ecol 62(2):100–106. https://doi.org/10.3176.eco.2013.2.02

Bhatnagar R, Gupta G Y, adav, S. (2015) ‘A review on composition and properties of banana fibers’. Int J Sci Eng Res 6(5): 143–148 www.ijser.org

Coolong T. (2012) ‘Mulches for weed management in vegetable production’, Weed Control, Dr. Andrew Price (Ed.) http://cdn.intechopen.com/pdfs/29919/InTech-Mulches_for_weed_management.pdf

Cowan J S. (2013) The use of biodegradable mulch for tomato and broccoli production: crop yield and quality, mulch deterioration, and grower’s perception. Washington State University

Das S, Goswami S, Talukdar ADAS (2016) Physiological responses of water hyacinth, Eichhornia crassipes (Mart.) Solms, to cadmium and its phytoremediation potential. Turkish J Biol 40:84–94. http://dx.doi.org/10.3906/biy-1411-86

Díaz-Pérez J C, Batal K D (2002) ‘Colored plastic film mulches affect tomato growth and yield via changes in root-zone temperature’. J Amer Soc Hort.Sci, 127(1), pp. 127–135. http://journal.ashspublications.org/content/127/1/127.short

Djojowasito G, Ahmad AM, Wijaya K (2007) An evaluation of sheet mulch made from a combination of hyacinth (Eichhornia crassipes) and Musa paradisiaca (banana) biomass decomposed with either urea or caustic soda. J Teknol Pertan 8(2):110–118

Dobermann A, Fairhurst TH (2002) ‘Rice straw management’. Better Crop Int 16:7–11

Dvořák P, Hajišlová J, Hamouz K, Schulzová V, Kuchtová P, Tomášek J (2001) Black polypropylene mulch textile in organic agriculture. Lucr. Ştiinţifice, Prague

Dvořák P, Tomášek J, Kuchtová P, Hamouz K, Hajišlová J, Schulzová V (2012) Effect of mulching materials on potato production in different soil-climatic conditions. Rom Agric Res 29:201–209

Ekinci M, Dursun A (2009) Effects of different mulch materials on plant growth, some quality parameters and yield in melon (Cucumis melo L.) cultivars in high altitude environmental condition. Pak J Bot 41(4):1891–1901

Gavrilensc M (2004) Removal of heavy metals from the environment by biosorption removal of heavy metals from the environment by biosorption. Eng Life Sci. https://doi.org/10.1002/elsc.200420026

George Hochmuth, Robert Hochmuth, Steve Olson (2002) ‘New technologies in mulching for vegetable production in Florida’. Citrus Veg 1–4

Haapala T, Palonen P, Tamminen A, Ahokas J (2015) Effects of different paper mulches on soil temperature and yield of cucumber (Cucumis sativus L.) in the temperate zone. Agric Food Sci 24:52–58

Ibarra-Jiménez L, Lira-Saldivar RH, Valdez-Aguilar LA, Lozano-Del Río J (2011) ‘Colored plastic mulches affect soil temperature and tuber production of potato’. Acta Agric Scand Sect B 61(4):365–371. https://doi.org/10.1080/09064710.2010.495724

Indriyati W, Musriroh I, Kusmwanti R, Sриwidodo, Hasanah AN (2016) Characterization of carboxymethyl cellulose sodium (na-cmc) from water hyacinth (Eichhornia crassipes (mart.) solms) cellulose) growing in Jatinangor and Lembang. JPST 3(3):100–110

Iriany A, Syekhfi Soemarno, Suprayogo D (2013) Climate change impact to potato farming in the Java of Indonesia in the mountain range of Batu, East Java of Indonesia. J.App Environ Biol Sci 3(6):48–55

Iriany A, Lestari R, Chanan M (2016) Examining organic mulch sheet on the growth and yield of shallot (Allium ascalonicum L.). Malang

Jodaugien D, Pupulien R, Sinkevičienė A, Marcinkevičienė A, Žebrauskaitė M, Baltduonytė M, Čepulienė R (2010) The
influence of organic mulches on soil biological properties. Zemdirb Agric 97(2):33–40

Kalra N, Suneja P, Mendiratta N, Gupta N (2013) Simulating the impact of climate change and its variability on growth and yield of crops. Clim Chang Environ Sustain 1(1):11–19. https://doi.org/10.5958/j.2320-6411.1.0002

Kar G, Kumar A (2007) Effects of irrigation and straw mulch on water use and tuber yield of potato in eastern India. Agric Water Manag 94:109–116. https://doi.org/10.1016/j.agwat.2007.08.004

Kasirajan S, Ngouajio M (2012) Polyethylene and biodegradable mulches for agricultural applications: a review. Agro Sustain Dev 32(2):501–529. https://doi.org/10.1007/s13593-011-0068-3

Khan S, Sarwar K (2002) Effect of water hyacinth compost on physical, physico-chemical properties of soil and on rice yield. Pak J Agron 1(2):64–65

Lakkenborg H, Campagnelli G, Bavee F, Von Fragram P, Xie Y, Canani S, Titiradelli F. (2014) ‘Effect of an in-season living mulch on leaching of inorganic nitrogen in cauliflower (Brassica oleracea var botrytis) cropping in Slovenia, Germany and Denmark’. In the 4th ISOFAR Scientific Conference ‘Building Organic Bridges’ 13–15

Li K, Fu S, Zhan H, Zhan Y, Lucia LA (2010) Analysis of the chemical composition and morphological structure of banana pseudo-stem. BioResources 5(2):576–585. https://doi.org/10.1537/biores.5.2.576-585

Mahmood N, Ahmad B, Hassan S, Bakhsh K (2012) Impact of temperature ADN precipitation on rice productivity in rice-wheat cropping system of Punjab province. J Anim Plant Sci 22(4):993–997

Main NM, Talib RA, Ibrahim R, Rahman RA, Mohamed AZ (2014) Suitability of coir fibers as pulp and paper. In Agric Agric Sci Procedia 2:304–311. https://doi.org/10.1016/j.aaspro.2014.11.043

Matind CN, Ngugu PM, Kinyua R, Nemoto Y (2014) ‘Analysis of heavy metal content in water hyacinth (Eichhornia crassipes) from Lake Victoria, Kenya’. Int Conf Sustain Res Innov 196–199

Mawlana M, Hossain S, Ferdoushi A (2014) Usefulness of banana (Musa paradisiaca) wastes in manufacturing of bio-products: a review. Agri Int J 12(1):148–158. https://doi.org/10.3329/agri.v12i1.19870

MdRazi M K F, Sulon A B, Muthulalit M A, Ismail N F (2015) ‘Effect of Filler loading and NaOH addition on mechanical properties of moulded kenaf/polypropylene composite’. Pertanika J Trop Agric Sci 38(4):583–590. http://www.pertanika.upm.edu.my/

Miles C, Wallace R, Wszelaki A, Martin J, Cowan J, Walters T, Inglis D (2012) Deterioration of potentially biodegradable alternatives to black plastic mulch in three tomato production regions. HortScience 47(9):1270–1277

Moreno MM, Moreno C, Villena J, Mancebo I, Meco R, Campos JA (2011) Effect of different mulches on soil microbiological properties in processing tomato. Res. spain, Geophys

Nakano Y, Higuchi Y, Sumitomo K, Hisamatsu T (2013) Flowering retardation by high temperature in chrysanthemum: involvement of FLOWERING LOCUS T-like 3 gene repression. J Exp Bot 64(4):909–920. https://doi.org/10.1093/jxb/ers370

Nugroho WA, Rahayu FD, Luthi M (2013) Effect of ingredients formulation of mechanics traits on organic planting bag. J Teknol Pertan 14(2):115–122

Nyawira, M. C. (2016) Analysis of Heavy Metal Content in Water Hyacinth (Eichhornia crassipes) from Lake Victoria and Assessment of its Potential as a Feedstock for Biogas Production. University of Nairobi

O’Brine T, Thompson RC (2010) Degradation of plastic carrier bags in the marine environment. Mar Pollut Bull 60(12):2279–2283. http://doi.org/10.1016/j.marpolbul.2010.08.005

Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Centeno GS, Khusht GS, Cassman KG (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci 101(27):9971–9975. https://doi.org/10.1073/pnas.0403720101

Pereira A, Nova NV (2008) Potato maximum yield as affected by crop parameters and climatic factors in Brazil. HortScience 43(5):1611–1614

Peter F L, Cornelius E C, Potnis P S, Cleveland C S, Knaufl G H (2003) ‘Biodegradable paper-based agricultural substrate’. United States

Praatt, Medford E R, W. (1955) ‘Fertilizer Mulch Paper’. United States

Ramesh M, Ananda TS, Aswin US, Eashwar H, Deepa C (2014) Processing and mechanical property evaluation of banana fiber reinforced polymer composites. Procedia Eng. https://doi.org/10.1016/j.proeng.2014.12.284

Saha P, Shinde O, Sarkar S (2017) Phytoremediation of industrial minerals wastewater using water hyacinth. Int J Phytoremediation 19(1):87–96. https://doi.org/10.1080/15226514.2016.1216078

Sahari G N A, Buku A (2015) ‘Tensile strength of fiber for some type bananas (Amnon, Kepok, Susu)’. Int J Res Eng Technol 4(8) 2319–2322. www.iijret.org

Salleh J, Yusoh M.K, Ruzan WS (2015) ‘Tensile strength of some natural-fibre composites’. Pertanika J Trop Agric Sci, 38(4), pp. 575–582. http://www.pertanika.upm.edu.my/

Saragi, D. (2008) Forming and characteristic of paper made of mixture of straw pulp and cement bag pulp. Universitas Sumatera Utara

Sarika D, Singh J, Prasad R, Vishan I, Varma VS, Kalamdhad AS (2014) Study of physico-chemical and biochemical parameters during rotary drum composting of water hyacinth. Int J Recycl Org Waste Agric 3(3):63. https://doi.org/10.1007/s40093-014-0063-1

Scholes MC, Powell D, Tian GL (1997) Input control of organic matter dynamics. Geoderma 79(1–4):25–47. https://doi.org/10.1016/S0016-7061(97)0003-2

Sindhu R, Binod P, Pandey A, Madhavanan A, Alphonsa JA, Vivek N, Gnanousou E, Castro E, Faraco V (2017) Bioresource technology water hyacinth a potential source for value addition: an overview. Bioresource Technol 230:152–162. https://doi.org/10.1016/j.biortech.2017.01.035 Elsevier Ltd

Sinkevičienė A, Jodaugienė D, Pupalienė R, Urbanienė M (2009) The influence of organic mulches on soil properties and crop yield. Agron Res 7(1):485–491

Siwek P, Kalisz A, Wojciechowska R (2007) Effect of mulching with film of different colours made from original and recycled polyethylene on the yield of butterhead lettuce and celery. Folia Hortic 19(1):25–35

Sutysnas M (2012) ‘Recycling of shaving waste from tanning industry for art paper’. Maj Kult kur et dan Plast 28(2) 113–121 http://dx.doi.org/10.20543/mkkp.v28i2.114

Teyyger R (2000) ‘Water hyacinth paper’. Gentenaar and Torley Publisher, Contributions to a sustainable future

Tumolva T, Ortenero J, Kubouchi M, City Q (2013) Characterization and treatment of water hyacinth fibers for NFRP composites. Int Conf Compos Mater 28:1–11

Vidya S, Girish L (2014) ‘Water hyacinth as a green manure for organic farming’. Int J Res Applied Nat Sci 2(6) pp. 65–72. www.impajournals.us

Wai NM, Camerlengo A, Kairui A, Wahab A (2007) A study of global warming in Malaysia. J Teknol 42:1–10

Widiatningrum T, Pukan KK (2010) Growth and production of cauliflower (Brassica oleracea var Botrytis) by organic farming system at lowland climate. Biosaintifika 2(2):115–121

Wright H E (1936) ‘Mulch fertilizer paper’. United States

Yaghi T, Arsalan A, Naoum F (2013) Cucumber (Cucumis sativus, L.) water use efficiency (WUE) under Plastic Mulch and drip irrigation. Agric Water Manag. 128:149–157. https://doi.org/10.1016/j.agwat.2013.06.002

Yoko M, Sugiyama K, Osaawa J Haraka K. (1986) ‘Mulching Paper Sheet’. United States

Publisher’s Note Springer Nature remains neutral with regard to urisdictional claims in published maps and institutional affiliations.