Orientation and size of the ‘Z’ in X-shaped radio galaxies

C. Zier*
Raman Research Institute, Bangalore 560080, India

Accepted 2005 August 27. Received 2005 August 23; in original form 2005 May 22

ABSTRACT
Some X-shaped radio galaxies show a Z-symmetric morphology in the less luminous secondary lobes. Within the scenario of a merger between two galaxies, each hosting a supermassive black hole in its centre, this structure has been explained before. As the smaller galaxy spirals towards the common centre, it releases gas to the interstellar medium of the larger active galaxy. The ram pressure of this streaming gas will bend the lobes of the pre-merger jet into a Z-shape. After the black holes have merged, the jet propagates in a new direction that is aligned with the angular momentum of the binary black hole. In this paper we deproject the pre- and post-merger jets. Taking into account the expected angles between the jet pairs and with the assumption that their directions are uncorrelated, we show that one of three possible orientations of the jets with respect to the line of sight is more likely than the others. This actually depends on the distance where the bending occurs. Another result of our deprojection is that the streaming gas bends the jet into a Z-shape in a range between about 30 and 100 kpc distance to the centre of the primary galaxy. We confirm this finding by comparing our predictions for the properties of the rotational velocity field and its radius with observations and numerical simulations of merging galaxies. Thus, our results support the merger scenario as explanation for X- and Z-shaped radio galaxies with the jet pointing along the former axis of orbital angular momentum of the binary.

Key words: galaxies: active – galaxies: individual: NGC 326 – galaxies: individual: 3C 52 – galaxies: interactions – galaxies: jets – galaxies: kinematics and dynamics.

1 INTRODUCTION
A small subclass of radio galaxies is formed by the X-shaped radio galaxies (XRGs), which all have radio luminosities close to the Fanaroff–Riley type I/II (FR I/II) transition of 10^{25} W Hz$^{-1}$ at 178 MHz (Fanaroff & Riley 1974). These sources show two misaligned pairs of radio lobes of comparable extent (e.g. Ekers et al. 1978; Leahy & Parma 1992), which have also been referred to as wings and appear as X-shaped structures. After the discovery of this class of sources, various mechanisms for their formation have been proposed. Here we give only a short summary; for a more detailed discussion see, for example, Rottmann (2001) or Dennett-Thorpe et al. (2002).

According to the backflow model by Leahy & Williams (1984) jet material is streaming from the hotspots of the primary lobes back towards the host galaxy. It remains collimated until it hits the backflow from the opposite lobe and then expands laterally in a fat disc perpendicular to the radio lobes. It is not clear in this model how the plasma, falling back on the disc, can be diverted to just one side of the primary lobes in order to form the X-shape. Moreover, this mechanism cannot explain that the secondary lobes extend as far or even farther than the primary lobes and how such an extension can be achieved with subsonic velocities within the lifetime of the radio source.

The buoyancy model suggests that the radio lobes have a lower density than the ambient medium, resulting in buoyant forces (Gull & Northover 1973; Cowie & McKee 1975), which are thought to bend the lobes towards regions that provide density equilibrium. This model has the same problems as the backflow model to explain the symmetry of XRGs and the extension of the secondary lobes.

Apparently the radio jets, which are assumed to be aligned with the spin of the black hole at their origin (Wilson & Colbert 1995), have been stable for a long time-span before undergoing a short period of reorientation into another stable state (Rottmann 2001). This cannot be explained by a steady precession as has been originally done by Ekers et al. (1978). Gower et al. (1982) applied a precessing jet model to various galaxies, among them NGC 326. Although the wings could be reproduced, the inner symmetry is rotated by about 45°. Also, according to present-day deep radio images of NGC 326, a precessing jet seems highly unlikely to be the cause for its shape (Rottmann 2001). An interesting idea, pointed out by the referee, is whether such a structure could be related to the combination of a precessing jet and the recoil suffered by the merged black hole.

*E-mail: chzier@rri.res.in
due to anisotropic emission of gravitational waves (e.g. Blandford 1979). Without going into the details, which would be beyond the scope of this paper, this does not seem to be very likely for both the sources we are interested in here. Such a kick would give the black hole, i.e. the source of the post-merger jet, a linear momentum and hence break the symmetry. Although this might explain the apparent curve close to the centre in the post-merger jet of NGC 326, generally both jet pairs are seen to be symmetrical about the common centre. The symmetry can rather be explained by rapid realignment of the jet due to accretion from a misaligned disc or the coalescence of a supermassive binary black hole (BBH) on time-scales less than 10⁷ yr (Rottmann 2001; Zier & Biermann 2001, 2002). Such a BBH is formed previously in a merger of two galaxies, each of which host one of the supermassive black holes (SMBHs) in their centre (Begelman, Blandford & Rees 1980). The final stage of the merger is dominated by emission of gravitational radiation which leaves the spin of the resulting SMBH aligned with the orbital angular momentum L_{orb} of the binary (Rottmann 2001; Zier & Biermann 2001, 2002; Biermann et al. 2002; Chirvasa 2002). After a short time, a new jet will propagate along the spin axis, i.e. the jet flips from the direction of the spin of the pre-merger SMBH in the direction of L_{orb} (see fig. 9 in Zier & Biermann 2002). These ideas were also explored by Merritt & Ekers (2002).

In at least two XRGs the ridges of the secondary lobes have been observed to be offset from each other laterally by about their width, hence showing a Z-shaped symmetry about the nucleus (Fig. 1). Because a high angular resolution as well as a rather special aspect angle are necessary to see such an offset, it is possible that a Z-symmetry is more common than current detections suggest. To explain this symmetry Gopal-Krishna, Biermann & Wiita (2003, hereafter G-KBW) propose some modifications to the spin-flip model outlined above. As the captured galaxy spirals to the common centre, it induces a rotational stream-field in the ambient medium on large scales. If the trajectory of the secondary galaxy passes through the polar regions of the primary, the motion of the interstellar medium (ISM) bends the original jet into a Z-shape before the merger is completed. This means that purely Z-symmetric radio sources (i.e. without X-morphology) might be spotted before evolving to an XRG once the SMBHs have coalesced.

In this paper we deproject the Z-shaped sources in order to understand their geometry and possible orientation to us. Of interest is the distance in which the old jet is bent into a Z-shape because it gives us information about the strength of the jet and the properties of the gas stream in the wake of the secondary galaxy. Ultimately, this contributes to our knowledge of the history of a merger between two galaxies.

In the next section we explain the geometry of the jets and lobes and deduce limits for the involved angles before deriving the expressions for deprojecting the jets. In Section 3 we apply our model to the two Z-shaped sources NGC 326 and 3C 52. The results are discussed and compared with other observations in Section 4. A summary and conclusions are presented in Section 5.

2 JET ORIENTATIONS AND Z-SHAPE

2.1 Geometry of Z-shaped radio galaxies

In order to observe a source as XRG, both the primary and secondary lobes, i.e. the post- and pre-merger lobes respectively, have to be close to the plane of sky. Both pairs also have to subtend a sufficiently large angle on the sky so that we can distinguish them. Because the pre-merger spin of the primary SMBH and the orbital angular momentum of the merging binary, defining the later post-merger SMBH spin, are not correlated, we expect the angle between them to be large, on average. In his thesis, Rottmann (2001) used statistical methods to estimate the most likely distribution of the intrinsic angle θ between both pairs of lobes. For this purpose he constructed a theoretical distribution of projected angles θ' for an ensemble of XRGs with intrinsic angles uniformly distributed between θ_1 and θ_2. Taking into account various selection effects (the projected angle should not be too small or large; inclination of the jets with respect to the plane of sky should be small; the projected length of the secondary lobe should not be too short) and comparing the theoretical results with the observed distribution, he obtains the best fit if $60^\circ \leq \theta \leq 90^\circ$. This is in agreement with our expectation of the intrinsic angle to be large. However, Rottmann points out that the obtained distribution cannot reproduce the peak observed at $\sim 50^\circ$ in the distribution of the projected angle. He

![Figure 1](https://academic.oup.com/mnras/article-abstract/364/2/583/1034240/584)

Figure 1. Radio images of the two Z-shaped XRGs are shown: NGC 326 (Murgia et al. 2001) in the left panel at 1.4 GHz and 3C 52 (Leahy & Williams 1984) in the right panel at 1.6 GHz. In both sources, the secondary lobes are weaker and their ridges have a lateral offset of about their width, forming a Z-shape. While in 3C 52 primary and secondary lobes have about the same extension, the secondary ones in NGC 326 are much more extended.

© 2005 The Author. Journal compilation © 2005 RAS, MNRAS 364, 583–592
suggests that a non-uniform distribution of intrinsic angles will improve the fit.

Provided that the direction of the spin of the post-merger SMBH and hence also the direction of the post-merger jet are dominated by the orbital angular momentum of the binary, the directions of the pre- and post-merger jets are uncorrelated. This allows us to imagine both jets as a pair of uncorrelated arrows, which we can superpose so that both their centres lie on each other and they enclose an angle in the range $0^\circ \leq \theta \leq 180^\circ$. Without loss of generality we fix one arrow to be aligned with the z-axis. Asking now for the distribution of the intrinsic angles between both arrows is like looking for the distribution of the pinholes the second arrow pierces through the surface of the unit-sphere. Because both arrows are uncorrelated, this is analogue to a uniform distribution of stars projected on the unit-sphere. Therefore, the probability to find a star or pinhole in a solid angle element $d\Omega = \sin \theta \, d\theta \, d\phi$ around the coordinates (θ, ϕ) is

$$p(\theta, \phi) = \begin{cases} \frac{d\Omega}{4\pi} & 0 \leq \theta \leq \pi \quad \text{and} \quad 0 \leq \phi \leq 2\pi, \\ 0 & \text{otherwise.} \end{cases}$$

With the substitution $u = -\cos \theta$ a uniform distribution over the unit-sphere requires a uniform distribution of both coordinates in the ranges $-1 \leq u \leq 1$ and $0 \leq \phi \leq 2\pi$. Hence the intrinsic angle θ, instead of being uniformly distributed, is distributed according to $p(\theta) = 1/2 \sin \theta$, peaking at 90°. The less the orbital angular momentum of the binary dominates the post-merger spin, the more the maximum in the distribution of θ will shift to smaller angles and the more the distribution will deviate from a symmetric distribution about the maximum. Qualitatively, this seems to be in good agreement with the observed distribution that Rottmann shows in his thesis. A careful comparison of the theoretical with the observed distribution could give a clue about the nature of the formation of XRGs and which component dominates the post-merger spin after the SMBHs have merged due to emission of gravitational radiation. However, this requires much more and better data. We just keep the result in mind that the formation mechanism of XRGs is likely to create jet pairs with large intrinsic angles, while both lobes have to be close to the plane of sky so that we can actually observe the X-shape.

As the secondary galaxy is spiralling into the common centre of mass, it will generate a streaming motion in the merger plane due to mass loss and dragging along the ISM of the primary galaxy. For large distances, the density and velocity of the streaming motion will probably be strong enough to bend the jets into wings. As the secondary galaxy spirals inwards to smaller distances, the power of the jet will become stronger and beyond a certain distance no bending of the jet will be possible. In the following we refer to the distance where the bending occurs as r. The rotation stream will have some thickness $2h$ perpendicular to the merger plane and in the distance r be roughly confined to the surface of a cylinder, which is aligned with the orbital angular momentum of the galaxies. The possible orientations of both jet pairs and the line of sight (LOS) are shown in Fig. 2. The z-axis is aligned with the orbital angular momentum and hence identified with the post-merger jet. With the bold solid circle we denote the merger plane, and with the pair of thin solid and dashed circles we mark the rotation stream with radius r and minimum half-height h for the three possible secondary pairs of jets. The LOS is perpendicular to the paper plane and pointing straight to the centre. It encloses an angle δ_{LOS} with the merger plane and θ_{LOS} with the z-axis so that $\theta_{\text{LOS}} + \delta_{\text{LOS}} = 90^\circ$. If we would move around the z-axis with constant θ_{LOS} our LOS would intersect with the cylinder of the rotation stream along the dotted circle. The three possible orientations (a, b, c) of the pre-merger jet relative to the post-merger jet and the LOS are depicted by the bold lines with the wings on the circles following the rotational motion after they have been bent around (here shown in clockwise direction). θ_{jet} and δ_{jet} are the intrinsic angle between both jet pairs and the angle from the pre-merger jet to the merger plane, respectively. ψ denotes the angle between the planes defined by both jet pairs on the one hand, and the LOS and the z-axis on the other hand, and therefore lies in a plane parallel to the merger plane.

If we assume the height of the cylinder, i.e. the streaming matter, to be of the order of its radius or less, the trajectory of the secondary galaxy necessarily has to pass through the polar regions of the primary in order to bend the jet into a Z-shape. Therefore, the pre-merger jet and the orbital angular momentum (L_{orb}), i.e. the post-merger jet, will be roughly perpendicular to each other. This is consistent with our prediction for the intrinsic angle above and with the explanation of the Z-shape within the framework of the merger model. Hitting the rotation stream, the pre-merger jet will be deflected into the wings at some angle which is determined by the relative strengths of the ram pressure of the rotating matter and the jet. For a weak jet, the wings will be dragged along with the rotation stream and hence their projected extension would be limited by the radius of the stream. For NGC 326 and 3C 52, extensions of at least 50 and 100 kpc have been observed, respectively. So we can conclude that either the bending occurs on such large radii, or a stronger jet is deflected at a smaller angle. Fig. 1 shows that both wings are almost perpendicular to the post-merger jet and, because their brightness does not differ very much, both wings lie close the plane of sky. Now, a strong pre-merger jet would be deflected at a small angle and thus it would propagate at an angle a little larger than ψ in projection on the merger plane. Because we observe both wings close to the plane of sky, this means that the initial angle ψ must have been quite large, and as a consequence we should be
able to distinguish the pre-merger jet before the bending from the
post-merger jet. However, this has not been observed (φ is small)
and so we conclude that large radii of the rotating stream are more
likely than small deflecting angles. Because φ is small as well as the
angles δ_{LOS} (z-axis close to plane of sky) and δ_{jet} (\(\theta_{\text{jet}}\) intrinsically
large), the pre-merger jet will enclose only a small angle with the
LOS. This is consistent with the wings being almost perpendicu-
lar to the post-merger jet and lying in the plane of sky (see Figs 1
and 2).

Within these limits we have three different possibilities to align
both pairs of jets and the LOS relative to each other (see Fig. 2;
angles are positive in clockwise direction).

(a) $\delta_{\text{LOS}} < \delta_{\text{jet}}$. The LOS is closer to the merger plane than the
pre-merger jet. The upper part of the jet is approaching us, and the
lower receding (dotted blue/dark-grey lobes).

(b) $\delta_{\text{LOS}} > \delta_{\text{jet}}$. Same as (a), but with the pre-merger jet closer to the
merger plane than the LOS (dashed green/light-grey lobes).

(c) $\delta_{\text{LOS}} > 0$, $\delta_{\text{jet}} < 0$. The receding part of the jet and the LOS
are in the same hemisphere which is defined by the post-merger jet
(z-axis) as polar axis (solid red/grey lobes). In this case it does not
matter whether the LOS or the pre-merger jet is closer to the merger
plane.

If we measure the lateral offset of the ridges of the wings, we can
deproject the jets under assumptions for the bending radius. The
expressions thus obtained enable us to put some limits on this radius
and to decide which orientation is most likely. This will be done in
the following section.

2.2 Deprojection of the jets

With the observed projected angular extension in the sky of the
straight part of the Z-shape, Θ_p, and the known distance D of the
galaxy, we can determine the angle θ_{jet} between the pre- and post-
merger jets, provided we know the radius r where the jet is bent.
Fig. 3 shows the situation for orientation (a) ($\delta_{\text{LOS}} < \delta_{\text{jet}}$) of Fig. 2,
projected in a plane perpendicular to the merger plane and containing
both the LOS and z-axis. Because φ is assumed to be 0, the pre-
merger jet also lies in this plane and the wings are perpendicular to the
paper plane. As in Fig. 2, the angles δ and θ in Fig. 3 denote
the angle to the merger plane and z-axis, respectively (see Fig. 3
for the meaning of the other quantities). Projecting the sum of the
approaching and receding jet y_a and y_r in the plane of sky yields
the wanted relation between $\theta_p = \tan^{-1} \frac{y_p}{D}$, the bending radius r
and the angles θ_{jet} and θ_{LOS}.

Orientation (a): (dotted blue/dark-grey lobes in Fig. 2). With
$a = D \tan \delta_{\text{LOS}}$ and the definition $k \equiv \tan \delta_{\text{jet}} = h/r$ we obtain
from Fig. 3
\[
\tan \delta_a = \frac{a - h}{D - r} = \frac{h - y_a}{r},
\]
which can be solved for y_a:
\[
y_a = r \left(1 - \frac{\tan \delta_{\text{LOS}} - k \, r / D}{1 - r / D}\right).
\]
In the same way we obtain for the receding part of the jet
\[
y_r = r \left(1 - \frac{\tan \delta_{\text{LOS}} + k \, r / D}{1 + r / D}\right).
\]
and hence for their sum along the z-axis in the limit that the dis-
tance to the galaxy is much larger than the radius of the rotation
stream
\[
y_a + y_r = 2 \, r \left\lfloor \frac{1}{D \sin \Theta_{\text{p}}} \right\rfloor \left[\left(1 - \frac{\tan \delta_{\text{LOS}} - k \, r / D}{1 - r / D}\right)^2 \right] + 2 \, r (k - \tan \delta_{\text{LOS}}).
\]
Finally, after projecting y_z into the plane of sky we obtain for the
projected lateral offset of the ridges
\[
y_p = D \tan \Theta_{\text{p}} = y_z \cos \delta_{\text{LOS}} = 2 \, r \frac{\sin (\delta_{\text{jet}} - \delta_{\text{LOS}})}{\cos \delta_{\text{jet}}}. \tag{4}
\]

Proceeding in the same way we obtain the following for the other
possible orientations:

Orientation (b): (dashed green/light-grey lobes). Like orientation
(a), with the difference of the angles δ_{jet} and δ_{LOS} changing sign:
\[
y_p = 2 \, r \frac{\sin (\delta_{\text{LOS}} - \delta_{\text{jet}})}{\cos \delta_{\text{jet}}}. \tag{5}
\]

Orientation (c): (solid red/grey lobes). In the notation of Fig. 3 like
orientation (b) with the sign of δ_{jet} changed so that in the following
expression the angle varies in the range $0 < \delta_{\text{jet}} < 90^\circ$:
\[
y_p = 2 \, r \frac{\sin (\delta_{\text{LOS}} + \delta_{\text{jet}})}{\cos \delta_{\text{jet}}}. \tag{6}
\]

Figure 3. Projection of Fig. 2 from the side for orientation (a) with the same meaning of the symbols. D is the observer’s distance to the source, and a is the vertical distance to the merger plane. The angular offset of the ridges of the wings projected in the plane of sky is θ_p. δ_a and δ_r denote the angle between the merger plane and the line connecting the observer with the bending point of the approaching and receding jet, respectively. y_a and y_r are the offsets of the approaching and receding lobes, respectively, projected on the z-axis.
As we pointed out in Section 2.1, we expect δ_{LOS} to be small because the post-merger jet is lying close to the plane of sky and δ_{jet} is small because the intrinsic angle between both jets is expected to be large. The latter is larger than zero though, because otherwise we could not observe the offset of the wings.

3 APPLICATION TO NGC 326 AND 3C 52

In this section we apply the results obtained above to the two observed Z-shaped XRGs to derive limits for the bending radius and to find the possible orientations. Afterwards we check whether the jet can still be bent into the wings at the obtained distances.

3.1 Bending radius and orientation

Given the radius r for the rotation field we can solve equations (4)–(6) for δ_{LOS} and plot it in dependency of δ_{jet} in order to find the most likely orientation that minimizes both angles. The expressions we obtain are

$$
\delta_{\text{LOS}} = \begin{cases}
\mp \sin^{-1}[(y_p/2)\cos\delta_{\text{jet}}], & \text{orientation a,} \\
\pm \sin^{-1}[(y_p/2)\cos\delta_{\text{jet}}], & \text{orientation b,} \\
\pm \sin^{-1}[(y_p/2)\sin\delta_{\text{jet}}], & \text{orientation c.}
\end{cases}
$$

The lateral offset y_p of the ridges we take from observations of NGC 326 and 3C 52.

3.1.1 NGC 326

The distance to this source is about 160 Mpc. Therefore, the projected angular size of the middle part of the ‘Z’, $\Theta_p = 20$ arcsec, translates into a projected length of about $y_p = 16$ kpc. Schiminovich et al. (1994) and Charmandaris, Combes & van der Hulst (2000) have detected dense clouds that contain both HI and molecular gas in Cen A. With an assumed distance of ~ 3.5 Mpc to Cen A, they locate the gas at a radius of about 10 kpc to the centre. If we use this as the radius r of the rotation field and plot δ_{LOS} in dependency of δ_{jet} (equation 7) we obtain the thin curves in Fig. 4. Again the dotted blue/dark-grey line represents the solutions for orientation (a), the dashed green/light-grey line for orientation (b) and the solid red/grey line for orientation (c). Because the intrinsic angle is expected to be larger than $\sim 60^\circ$, δ_{jet} is less than 30° (left from the shaded area). This limit excludes orientation (a), which has a minimum of about $\delta_{\text{jet}} \approx 38^\circ$. The smallest pair of angles in configuration (b) is 0° for δ_{jet} and $\delta_{\text{LOS}} \approx 53^\circ$. Such a large angle violates the condition that primary lobes have to be close to the plane of sky in order to detect an X-shape (region below the shaded area). Hence also this orientation is ruled out and the only remaining possibility is orientation (c), where the LOS and the approaching part of the jet are in different hemispheres relative to the post-merger jet. To minimize both angles we obtain $\delta_{\text{LOS}} = \delta_{\text{jet}} \approx 23.6^\circ$, with not too much range left for them on curve c, if we assume the shaded areas outside the inner rectangle as not permitted. Being pushed to the limit for a radius of 10 kpc, the situation is much less restrictive if we allow for a larger radius. The thick curves in Fig. 4 show the results if the jet is bent at a distance of $r = 30$ kpc. On branch c, both angles are much smaller, with an upper limit of about 15° for δ_{jet}. For the larger radius also, the other orientations a and b are possible. These two branches appear in the allowed, not-shaded region of Fig. 4 only for $r \gtrsim 14$ kpc.

3.1.2 3C 52

For 3C 52, at a distance of about 1 Gpc, with $\Theta_p = 10$ arcsec, the projected offset of the wings is $y_p = 50$ kpc. This is five times the length of the assumed radius of 10 kpc. However, for equation (7) to have a solution, the argument of \sin^{-1} has to be less than 1 (δ_{jet} varies in a range where the cosine is positive), leaving us with the condition $\cos\delta_{\text{jet}} \leq \frac{2r}{y_p}$.

For $r = 10$ kpc, this is fulfilled only if δ_{jet} is larger than 66°, in contradiction with the intrinsic angle between the jet pairs to be large. So, for this small radius none of the orientations is within the allowed rectangle of Fig. 5. Only for r larger than $y_p/2 = 25$ kpc does the full range between 0° and 90° become mathematically possible for δ_{jet}. For this radius, the matching angles of the LOS are too large and none of the orientations provides a satisfying

![Figure 4](https://academic.oup.com/mnras/article-abstract/364/2/583/1034240/fig4)

Figure 4. For NGC 326 the angle of the LOS to the merger plane, δ_{LOS}, is plotted versus the angle δ_{jet} between this plane and the secondary lobes, with the bending radius r as parameter. Colours (grey-scale) of the lines refer to the different orientations. In the shaded area, both or one angle become too large to fulfill the condition of the primary lobes being close to the plane of sky and the angle between both pairs of lobes to be large.

![Figure 5](https://academic.oup.com/mnras/article-abstract/364/2/583/1034240/fig5)

Figure 5. The same as Fig. 4, but for 3C 52.
solution (see the thin lines in Fig. 5). A larger bending radius can solve the problem again. If we gradually increase the radius, first branch c offers physically reasonable results for both angles (r = 24 kpc) before the other two branches enter the allowed region for r > 44 kpc. The thick lines in Fig. 5 show the results for r = 75 kpc, with all orientations being possible.

These results show that the bending of the lobes into the wings occurs already much earlier during the merger at distances of more than 20 to maybe even 100 kpc. The smaller the radius is, the more likely the jets have orientation (c) relative to us, i.e. the receding pre-merger jet and the LOS are in the same hemisphere that is defined by the post-merger jet (axis of orbital angular momentum) as polar axis.

3.2 Bending the jet

If the bending of the jet occurs at the distances suggested above, we have to verify that the rotating stream is able to exert a large enough pressure on the jet at these radii to bend it into a Z-shape, as has been shown by G-KBW for a radius of 10 kpc. The bending of the jet is described by the Euler equation, which for a steady-state flow reads

\[
\rho \frac{(v \nabla) v}{v_{bend}} = -\nabla \rho \text{ISM},
\]

with the gradient of the ram pressure of the ISM being applied transverse to the beam (O’Donoghue, Eilek & Owen 1993). The velocity of the jet is assumed to change by order of itself over the bending scale \(l_{bend} \), so that the left-hand side of the equation can be written as \(\rho v^2_{jet} / l_{bend} \). As O’Donoghue et al. point out, a pressure gradient that provides a centripetal acceleration \(v^2_{jet} / l_{bend} \) around a curve with radius \(l_{bend} \) gives the same result for the left-hand side of equation (8). The pressure gradient due to ram pressure on the right-hand side, \(\nabla \rho \text{ISM} \), can be approximated by \(\rho \text{ISM} v^2_{ISM} / l_{press} \) if \(v_{ISM} \) is the relative velocity between the ISM and the galaxy, i.e. the rotation velocity. \(l_{press} \) is the length-scale over which the ISM exerts the ram pressure on the jet and is taken to be the radius of the jet (\(R_{jet} \)) at the bending point (r). Hence we can rewrite the Euler equation in the approximation for jet flows as

\[
\rho \frac{v^2_{jet}}{l_{bend}} = \rho \frac{v^2_{ISM}}{l_{press}}.
\]

Assuming that the clouds in Cen A represent the properties of the ISM reasonably well, the following reference values can be used: \(n_{ISM} = \rho \text{ISM}/(1.4 m_p) = 0.1 \text{ cm}^{-3} \) and \(v_{ISM} = 100 \text{ km s}^{-1} \), with \(l_{press} = R_{jet} \sim 1 \text{ kpc} \). The jet is assumed to be semirelativistic (\(v_{jet} = 10^7 \text{ km s}^{-1} \)) and made of ordinary proton–electron plasma that is bent over a scale of \(l_{bend} = 10 \text{ kpc} \). Thus, for the density of a jet that is bent into a Z-shape by ram pressure, a density of \(n_{jet} = 10^{-6} \text{ cm}^{-3} \) is obtained.

Now we have to scale up the values obtained at \(r_1 = 10 \text{ kpc} \) to larger distances \(r_2 \) such that equation (9) is still fulfilled. In the following, the additional indices 1 and 2 refer to the quantities for distances \(r_1 \) and \(r_2 \), respectively. If the half-opening angle of the jet is \(\delta \), then its spherical surface perpendicular to the direction of propagation at a distance of \(r = A = 2\pi r^2 (1 - \cos \delta) \). Taking the flux of momentum along the jet \(\rho v^2_{jet} \) to \(A \) to be constant we find

\[
\rho v^2_{jet} = \rho v^2_{ISM} \left(\frac{r_1}{r_2} \right)^2.
\]

With this expression, equation (9), the relation \(R_{jet} = R_{jet2}/r_2 \) and the assumption that \(l_{bend} \) scales linearly with \(r \), we finally obtain

\[
\rho v^2_{jet} = \rho v^2_{ISM} \left(\frac{r_1}{r_2} \right)^2.
\]

Hence, to be able to bend the jet in, say \(r = 50 \text{ kpc} \), the density of the ISM can be 25 times less than at \(r_1 = 10 \text{ kpc} \). For an annulus with a width from 50 to 60 kpc and of 10-kpc height that density corresponds to a total mass of \(\sim 3.4 \times 10^9 \text{M}_\odot \). For a velocity of about 200 km s\(^{-1}\), as has been observed for such distances (see Section 4), the mass is reduced by another factor of 4, so that it is less than \(10^9 \text{M}_\odot \). At \(r_1 \), the mass in a ring with inner and outer radii 7.5 and 12.5 kpc, respectively, and a height of 5 kpc, is \(\sim 4 \times 10^8 \text{M}_\odot \).

Thus, about the same mass that is required in a rotating stream with radius 10 kpc to bend the jet into a Z-shape is sufficient to bend the jet at much larger radii. The required mass and velocity at such distances is in agreement with observations (see the next section).

Hence our results show that the ram pressure of the rotating gas at a distance of \(\sim 50 \text{ kpc} \) is indeed strong enough to bend the jet in a Z-shape, as is required by the geometrical arguments above.

4 DISCUSSION

4.1 Geometry and dynamics of the jet

In the previous sections we have shown that the bending of the pre-merger jet into a Z-shape, as proposed by G-KBW within the merger model, must occur at distances larger than the 10 kpc that they have suggested. Because the half-thickness of the rotating gas stream will not be larger than its radius, it has to pass through the polar regions of the primary galaxy in order to bend the jet, and thus pre- and post-merger jets are approximately perpendicular to each other. This corresponds to the maximum of the distribution of the intrinsic angle (\(\theta_{jet} = 90^\circ \)) between both pairs of lobes in XRGs, if the directions of their propagation are uncorrelated. However, this is exactly what we expect in the merger model for XRGs, if the spin of the post-merger SMBH is dominated by the orbital angular momentum of the binary, as pointed out in Section 2.1. In Z-shaped radio galaxies (ZRGs) a larger bending radius is in favour of a larger angle \(\theta_{jet} \) between the jets. For example, \(y_p = 50 \text{ kpc} \) has been observed in 3C 52. Trying to minimize the half-height \(h \) for \(r = 10 \text{ kpc} \), i.e. maximizing \(\theta_{jet} \), we obtain with orientation (a) \(h = y_p/2 = 2.5 r \) at \(\theta_{jet} = 21.8^\circ \) and \(\delta_{LOS} = 0 \). For orientation (b), there is no solution at all for \(y_p \geq 2r \), and for orientation (c) we obtain \(h = 2.3 r \) at \(\theta_{jet} = 25.6^\circ \) and \(\delta_{LOS} = 23.6^\circ \). This is in direct contradiction with a slim gas stream and with the assumption of a large angle between both jet pairs and could be solved with a larger bending radius (Section 3.1).

As G-KBW estimated, the ram pressure of the rotation field at 10-kpc radius is strong enough to bend a jet with power close to the FR I/II transition into Z-symmetry. A stronger jet would not be much deflected by the rotating gas stream. Because the wings are in the plane of sky and extend almost perpendicular from the primary galaxy, the pre-merger jet would also have to be close to the plane of sky and hence distinguishable from the primary jet, as we pointed out at the end of Section 2.1. However, this has not been observed and thus also the appearance and morphology of the source argue for weaker jets which can be deflected by a large angle. However, the jet should also not be too weak, because then it would be just dragged along with the circular gas stream and hence have a maximum projected extension of the bending radius. Depending on the angle of the LOS to the merger plane, we might see the curvatures of the wings following the circular motion and exhibiting inversion.
4.2 Evidence for the required streams

In the present model we assume XRGs and ZRGs to be merger products. As such, it is expected that the secondary galaxy, while spiralling inwards, induces a stream of gas and dust on scales of tens of kiloparsecs in the primary galaxy. This stream is due to matter of the primary galaxy dragged along by the secondary as well as matter stripped off from the secondary galaxy. Now looking for such streams in other sources shows that they have been observed in various objects. These streams are always related to a merger between two galaxies. This is also in very good agreement with numerical simulations of mergers which produce tidal tails and streams with the properties required in our model (ρ, ν, r) and hence lends strong support to it. In the following we compile some information of these sources. We use \(H_o = 70\ \text{km s}^{-1}\ \text{Mpc}^{-1}\) and scale the values from the cited papers accordingly. A summary is given in Table 1.

Recent H I observations of M31 by Thilker et al. (2004) show a circumgalactic cloud population at ∼50 kpc distance. These clouds are moving with a velocity component along the LOS of \(v_{\text{sys}} = 215\ \text{km s}^{-1}\), matching the velocity extent of the disc of M31. Although \(H_o\) content of the halo cloud population is estimated to be only \(3–7 \times 10^7\ M_\odot\), it might trace more substantial amounts of ionized gas and dark matter. As an obvious source of the high-velocity H I gas, the authors give tidal stripping from mergers in agreement with Brown et al. (2003), who relate the young halo to a major merger or several minor mergers.

Braun, Thilker & Walterbos (2003) conducted a H I survey and found significant positional offsets exceeding 10 kpc in some of the sources, which they attribute to tidal interaction. While the mean observed offset of H I is about 66 kpc, in NGC 1161 H I is observed at 110 kpc distance to the centre at speeds that differ by \(\sim 200\ \text{km s}^{-1}\) from the systemic velocity. The H I mass is estimated to be about \(1.8 \times 10^9\ M_\odot\).

The H I detected by van Gorkom et al. (1986) in NGC 1052, an active elliptical galaxy, is distributed in a disc that extends 20–25 kpc along the minor axis and is seen almost edge on. The gas has a circular velocity of \(\sim 200\ \text{km s}^{-1}\) that is roughly constant with radius. The H I mass is about \(5.7 \times 10^9\ M_\odot\) and shows an outer structure that resembles tidal tails, which van Gorkom et al. attribute to a merger about 10^9 yr ago.

In another early-type galaxy, IC 5063, which has a Seyfert 2 nucleus, Morganti, Oosterloo & Tsvetanov (1998) detect H I that to first order is distributed in a disc of about 28-kpc radius. This disc is oriented very similar to a system of dust lanes and in projection rotates at 240 km s\(^{-1}\) with an H I mass of \(4.2 \times 10^9\ M_\odot\). Optical data from previous observations (e.g. Danziger, Goss & Wellington 1981) revealed ionized gas that also lies in a disc, which is extending to \(\sim 14.4\ \text{kpc}\). The faint structures in the outer regions could be tidal arms and the origin of H I is most likely a merger between spiral galaxies as in the other sources.

Among the five elliptical galaxies that Oosterloo et al. (2002) observed, they detected \(3.3 \times 10^9\ M_\odot\) of H I in NGC 3108 that is distributed in a disc-like structure perpendicular to the optical major axis of the galaxy and extends to \(\sim 30\ \text{kpc}\). They assume an inclination of 70° and thus obtain for the rotation velocity \(290\ \text{km s}^{-1}\), which appears to be constant from \(\sim 1\ \text{kpc}\) to the very outer regions. Within the central \(1\ \text{arcmin}\), the disc seems to have a hole that is filled by a disc seen in emission from ionized gas. While the boxy outer isophotes indicate that NGC 3108 has also undergone a major merger, the regular and settled appearance of the disc suggest that this happened some 10^9 yr ago.

Cen A is a giant elliptical galaxy with an active nucleus that shows strong radio lobes on both sides of a dust lane which is aligned with the minor axis (Clarke, Burns & Norman 1992) and a warped gaseous disc which is seen in optical and H I emission (Dufour et al. 1979; van Gorkom et al. 1990). Schiminovich et al. (1994) find the H I morphology to be closely correlated with diffuse shells seen in the optical range (Malin, Quinn & Graham 1983) and estimate the total mass in the shells to be \(1.5 \times 10^8\ M_\odot\). The position–velocity (PV) plot of H I in the shells is well fitted by a single ring with uniform rotation velocity \(\sim 250\ \text{km s}^{-1}\) and the rotation axis being roughly perpendicular to that of the inner H I disc. The rotation curve is flat out to 15 arcmin, which corresponds to a radius of 34 kpc for \(D = 8\ \text{Mpc}\), using a redshift of \(z = 0.001825\) (note that Schiminovich et al. used \(D = 3.5\ \text{Mpc}\), and hence \(r \sim 10\ \text{kpc}\), which we initially used as the bending radius in Section 3.1). As a possible explanation for the misalignment between the rotation axis of the H I in the shells and the disc, they suggest a merger which is not proceeding in the plane of Cen A, and differential precession of the stripped material. Later, Charmandaris et al. (2000) suggested that the morphology of the shells is a combination of both phase wrapping of tidal debris on nearly radial orbits (Quinn 1984) and spatial wrapping of matter in thin discs for mergers with large angular momentum (Dupraz & Combes 1987; Hernquist & Quinn 1989). They

Table 1. Observed masses and properties of rotating gas streams. \(H_o = 70\ \text{km s}^{-1}\ \text{Mpc}^{-1}\) has been used throughout. \(M_{\text{HI}}\) is the H I mass in discs or streams. This gas has been observed at distance \(r\) to the centre and is moving at circular velocities \(v\). Only for M31 has the velocity not been deprojected.

Source	\(\log (M_{\text{HI}}/M_\odot)\)	\(r\) (kpc)	\(v\) (km s\(^{-1}\))	\(D\) (Mpc)
M 31	7.5–7.9\(^a\)	50	+128\(^{+215}_{-215}\)	0.77
NGC 1161	9.3	110	200	28
NGC 1052	8.8	20–25	200	21
IC 5063	9.6	28	240	48.6
NGC 3108	9.4	30	290	38
Cen A	8.2	34	250	8
NGC 5266	10.1\(^b\)	51–100	270	44
NGC 4650A	10.1\(^c\)	10	120	41
IC 1182	10.3	60	100	146
Arp 105	9.8	100	200	125
NGC 7252	9.6	60	100	67

\(^a\)Mass of the halo cloud population, possibly tracing more substantial amounts of ionized gas and dark matter. \(^b\)Total H I mass. \(^c\)Luminous mass in polar structure (for details and references, see text).
also detect CO emission in the shells and associate it with the H\textsc{i} gas, which shows the same velocity signatures, and deduce an H\textsubscript{2} mass of $4.3 \times 10^7 M_\odot$.

In NGC 5266, a bright E4 galaxy, Morganti et al. (1997) find H\textsc{i} gas distributed in two perpendicular discs. The inner disc is aligned with the dust lane and fills the hole of ~2 arcmin diameter of the outer disc, which extends to 4 arcmin (51 kpc). For the rotation velocity of this disc, they obtain 270 km s$^{-1}$, which is constant in radius, and for the total H\textsc{i} mass $1.2 \times 10^{10} M_\odot$. They point out that the H\textsc{i} distribution is similar to that observed in Cen A, with most of H\textsc{i} being associated with the dust lane but a different kinematical behaviour at larger distances and forming a ring that is roughly perpendicular to the dust lane. This is unlike that in most polar-ring and dust-lane galaxies. The outer parts of H\textsc{i}, extending to ~ 100 kpc, could be a settled ring but are rather interpreted as tidal tails that formed during a merger of two gas-rich spiral galaxies. Numerical simulations by Hibbard & Mihos (1995) (see later in this section) have shown that after gas piling up in the centre and fuelling a starburst, the fraction that remains at larger distances in tidal tails will settle in a disc or a ring, depending on the initial conditions. Earlier observations in the optical range indicate that the kinematic axes of stars and gas are orthogonal, with the gas in the dust lane rotating about the optical major axis (Caldwell 1984). Goudfrooij et al. (1994) could show that ionized gas lies in a ring that is clearly associated with the dust ring detected. In CO observations, Sage & Galletta (1993) found that the molecular gas is also distributed in a ring that is corotating with the ionized gas at velocities of 270–300 km s$^{-1}$ within 1 arcmin (~ 13 kpc) and has a mass in H\textsubscript{2} of $2.7 \times 10^7 M_\odot$.

Recently, Swaters & Rubin (2003) observed the polar ring galaxy NGC 4650A and found the velocities of both stars and gas in the polar ring component to be closely correlated. The ring is seen close to edge on and rotates close to its outer parts (~ 10 kpc) with a velocity of 120 km s$^{-1}$. The flatness of the rotation curve suggests that the gas and stars are rather distributed in a disc than a narrow ring. This is supported by the results of Bekki (1998) who simulated a dissipational polar merger of two disc galaxies of about the same mass. In his numerical experiments he could reproduce polar ring galaxies, with the intruding galaxy being transformed into a SO-like host and the victim into a narrow polar ring. As a standard model, Bekki used $10^{10} M_\odot$ and 10 kpc for the disc mass and radius, respectively. These are quite small values and we scaled the model to masses in the range of $10^{11–12} M_\odot$. Then crude estimates of the size, velocity and mass of the polar ring result in the ranges that are required by our model, i.e. $30–100$ kpc, $100–300$ km s$^{-1}$ and $\sim 1/100 M_\text{gal}$, respectively. Bekki notes that he seemed to have failed to reproduce annular polar ring galaxies like NGC 4650A, unless the annular ring component with an apparent hole in the centre is apart from the galactic disc, in good agreement with the conjecture by Swaters & Rubin (2003) based on their observations.

In other numerical simulations of mergers, Bournaud et al. (2004) compared their results with the kinematics of tidal tails in interacting galaxies. Their main goal is to distinguish whether apparent massive condensations close to the tips of the tails are real or caused by projection effects. The PV plots can qualitatively distinguish both possibilities: either the difference between the systemic velocity and the tidal tail increases with position along the tail, reaching a maximum at its end, or it passes through a maximum before it decreases and even turns back to closer positions at smaller speeds, thus following a loop. We are more interested in the latter case which can give us information about the azimuthal component of the velocity in the tail, which we assume to be edge on. The matter in the tail is not streaming along its spatial extension and also has a velocity component perpendicular to the tangential one. As the velocity component aligned with the LOS is measured along the tail with increasing distance to the centre, the velocity increases. Before the tip is reached, the velocity assumes a maximum when the velocity in the tail is aligned with the LOS. As the observer moves on to the tip where only the azimuthal component is aligned with the LOS, the velocity decreases. Comparison with observations show that IC 1182 and the northern tail of Arp 105 fall in this category with a circular velocity of ~ 100 km s$^{-1}$ at about 60 kpc distance from the centre and ~ 200 km s$^{-1}$ at ~ 100 kpc, respectively. The corresponding H\textsc{i} mass at the end of the tails they estimate to be 1.8×10^{10} and $6.5 \times 10^9 M_\odot$, respectively.

NGC 7252 is a late stage merger of two gas-rich disc galaxies (e.g. Dupraz et al. 1990; Wang, Schweizer & Scoville 1992; Hibbard et al. 1994). Hibbard & Mihos (1995) have attempted to reproduce with numerical simulations the morphology and kinematical properties of the tidal tails. The PV plot in a previous paper by Hibbard et al. (1994) shows that the tails have a maximum velocity along the LOS of 100 km s$^{-1}$ at ~ 60 kpc before turning back in a loop in the PV plane. The H\textsc{i} mass in the tails is estimated to be $\sim 4 \times 10^8 M_\odot$. The best-fitting model of Hibbard & Mihos (1995) succeeds in reproducing both the observed spatial morphology and the velocity structure of the tails. By the time the simulated merger fits best the observations ($\sim 8.3 \times 10^8$ yr) about $4 \times 10^8 M_\odot$ H\textsc{i} is still in the tails, half of which will fall back to radii ≤ 20 kpc during the next 4.3×10^9 yr. We used the angular momentum–radius plot to compute the circular velocity of the matter falling back to 35 kpc from the range between 65 and 130 kpc and to obtain a velocity range from 100 to 200 km s$^{-1}$, respectively. Hence, for a long time a stream of gas strong enough to bend the jet is maintained in a distance of about 35 kpc. Some of the falling back material will form loops or shells and other structures. In more recent simulations, Mihos, Dubinski & Hernquist (1998) examined the effect of dark matter halo potentials on the morphology and kinematics of tidal tails. They basically confirm the previous results from Hibbard & Mihos (1995) which are relevant for our purposes. From the mass of the initial H\textsc{i} disc 10–20 per cent and about 15–20 per cent of the initial total disc mass ends as stellar mass in the tidal tails. Scaled to the Milky Way this is about 6.6×10^7 and $7.2 \times 10^8 M_\odot$, respectively, which circulates at velocities of 220 km s$^{-1}$ at distances more than 100 kpc around the centre.

Both the observations of galaxies showing signatures of mergers about 10^9 yr ago and simulations of merging galaxies are in good agreement with our model. With the properties shown in Table 1, the merger-induced gas stream is able to bend a jet with power close to the FR I/II transition into a Z-shape at distances larger than 30 kpc.

5 CONCLUSIONS

In this paper we have investigated the possible orientation and geometry of ZRGs. The formation of objects of this class has been explained by G-KBW within the framework of a merger model. As the secondary galaxy spirals in towards the common centre of mass, it generates a rotational velocity field of gas and dust in its wake that is made up of matter stripped off from the secondary galaxy and matter dragged along from the ambient medium of the primary galaxy. If the trajectory passes through the polar region of the primary galaxy, its jet can be bent into a Z-symmetric shape, depending on the relative pressure between the gas stream and the jet. Thus, for these sources the spin of the primary SMBH and the orbital
angular momentum L_{orb} of the binary are necessarily roughly perpendicular to each other. Provided that the spin of the post-merger SMBH is dominated by L_{orb} and that jets are aligned with the spin of the SMBH at their base, consequently the pre- and post-merger jets will also be perpendicular to each other. While this should be true for every ZRG, this holds for XRGs only on average because the direction of the L_{orb} and the pre-merger spin of the SMBH are uncorrelated, as explained in Section 2.1 (Rottmann 2001; Zier & Biermann 2001, 2002). We used this argument for large angles between the jet pairs and the assumption that the post-merger lobes are close to the plane of sky, because they are similarly luminous, to deproject the jets with respect to the LOS. Applied to the ZRGs NGC 326 and 3C 52 our results have shown that to fulfil both conditions the bending of the jet must occur on scales between about 30 and 100 kpc. One important result is that the possibility to see the source at one of the possible three orientations, indicated in Fig. 2, depends on the bending radius (Section 3.1). To maintain a large angle between the jet pairs and a primary jet close to the plain of sky, we used the following limits for the angles: $\delta \theta = 90^\circ - \delta \phi > 60^\circ$ and $\delta \theta_{\text{LOS}} < 35^\circ$, which we think to be quite conservative. For very small bending radii r, no solution is in the allowed range (white rectangle in Figs 4 and 5). As we increase r, first orientation (c), where the LOS and the approaching part of the pre-merger jet are in different hemispheres that are defined by the post-merger jet as polar axis, appears in the allowed region for $r \gtrsim \sqrt{3}/2$ (i.e. 8 and 25 kpc for NGC 326 and 3C 52, respectively). If we further increase r, both the other orientations also appear in the allowed rectangle at roughly the same radius $r \gtrsim \sqrt{3}/2$ (14 and 44 kpc for NGC 326 and 3C 52, respectively). Knowing the correct orientation we also know the sense of rotation, i.e. L_{orb}, and consequently the direction of the spin of the post-merger SMBH (Biermann et al. 2002; Chirvasa 2002; Zier & Biermann 2002). In future work this could be compared with the spin inferred from circular polarization measurements at cm-wavelengths, as has been discussed by Enßlin (2003) and suggested by G-KBW.

The radius of the bending will depend on the relative pressure between the jet and the gas stream. In Section 3.2 we have shown that for a jet with a power close to the FR I/II transition this occurs on scales of 50 kpc, in agreement with the results from the geometrical arguments above. Thus, the conclusion by G-KBW, that the jet is bent at a power close to the FR I/II transition, is also valid at radii in a range of 30–100 kpc. In fact, in Section 4.1 we have shown that neither very strong nor weak jets are in agreement with the geometry of ZRGs.

ZRGs cannot be explained by the rapid jet reorientation from instabilities in an accretion disc, which is also considered as one possible formation mechanism of XRGs (Dennett-Thorpe et al. 2002), and might not be easily reconciled with the observed distribution of angles between the jet pairs. Because ZRGs are a subset of XRGs, their existence strongly supports the merger model in favour of the accretion model as a formation mechanism of XRGs. In this context, our result that the angles between both jet pairs have to be large in ZRGs and are large on average in XRGs, as has been observed (Rottmann 2001), further strengthens the merger model.

This in turn will have some impact on the ‘final parsec problem’, i.e. the conjecture that after a merger of two galaxies the merging of SMBHs stalls at a distance of about 0.01–1 pc (Begelman et al. 1980). At this distance, dynamical friction is inefficient and gravitational radiation still unimportant so that slingshot ejection of individual stars provides the only mechanism to extract energy and angular momentum from the binary (Zier & Biermann 2001). If there are no stars with small enough pericentres as to interact with the binary (i.e. loss-cone depletion) the SMBHs are prevented from further merging. However, contrary to that, the existence of XRGs and ZRGs shows that the binary has merged. In ZRGs they probably merge on time-scales of some 10^7 yr after the bending of the jet at a distance of 50 kpc. While in XRGs the binary could have stalled for a long time on scales of 1 pc, in ZRGs the merger must have been completed after the bending in a time short enough to maintain the rotational gas stream and that we are still able to see the bent lobes, which are fading away and undergo spectral ageing (Rottmann 2001). Thus, in a way, the bending starts a stopwatch for the rest of the merger.

ACKNOWLEDGMENTS

I would like to thank Gopal-Krishna for helpful and valuable discussions on the rotational motion of the ISM. I am happy to have the opportunity to thank the Raman Research Institute (RRI) for the generous support and very kind hospitality. I would also like to thank Wolfram Krülls for his valuable comments which have improved this manuscript. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

REFERENCES

Begelman M. C., Blandford R. D., Rees M. J., 1980, Nat, 287, 307
Bekki K., 1998, ApJ, 499, 635
Biermann P. L., Chirvasa M., Falcke H., Markoff S., Zier C., 2002, in Sanchez N., de Vega H., eds, Proc. 7th Colloq. Cosmology, High Energy Astrophysics from and for Space, in press (astro-ph/0211503)
Blandford R. D., 1979, in Proc. Workshop Sources of Gravitational Radiation. Cambridge Univ. Press, Cambridge, p. 191
Bournaud F., Due P.-A., Amram P., Combes F., Gach J.-L., 2004, A&A, 425, 813
Braun R., Thilker D., Walterbos R. A. M., 2003, A&A, 406, 829
Brown T. M., Ferguson H. C., Smith E., Kimble R. A., Sweigart A. V., Renzini A., Rich R. M., VandenBerg D. A., 2003, ApJ, 592, L17
Calwell N., 1984, ApJ, 278, 96
Charmandaris V., Combes F., van der Hulst J. M., 2000, A&A, 356, L1
Chirvasa M., 2002, Master’s thesis, Univ. Bukarest
Clarke D. A., Burns J. O., Norman M. L., 1992, ApJ, 395, 444
Cowie L. L., McKee C. F., 1975, A&A, 43, 337
Daniel J. I., Goss W. M., Wellington K. J., 1981, MNRAS, 196, 845
Dennett-Thorpe J., Scheuer P. A. G., Laing R. A., Bridle A. H., Pooley G. G., Reich W., 2002, MNRAS, 320, 669
Dufour R. J., Harvel C. A., Martins D. M., Schiffer H. T., Talent D. L., Wells D. C., van den Bergh S., Talbot R. J., 1979, AJ, 84, 284
Dupraz C., Combes F., 1987, A&A, 185, L1
Dupraz C., Casoli F., Combes F., Knez L., 1990, A&A, 228, L5
Ekers R. D., Fant R., Lari C., Parma P., 1978, Nat, 276, 588
Enßlin T. A., 2003, A&A, 401, 499
Fanaroff B. L., Riley J. M., 1974, MNRAS, 167, 31p
Gopal-Krishna, Biermann P. L., Wiita P. J., 2003, ApJ, 594, L103 (G-KBW)
Goudfrooij P., de Jong T., Hansen L., Norgaard-Nielsen H. U., 1994, MNRAS, 271, 833
Gower A. C., Burns J. O., 1975, ApJ, 187, 67
Hibbard J. E., Guhathakurta P., van Gorkom J. H., Schweizer F., 1994, AJ, 107, 67

© 2005 The Author. Journal compilation © 2005 RAS, MNRAS 364, 583–592

Orientation and size of the ‘Z’ in XRGs 591

Downloaded from https://academic.oup.com/mnras/article-abstract/364/2/583/1034240 by guest on 25 July 2018
Leahy J. P., Parma P., 1992, in Roland J., Sol H., Pelleter G., eds, Extragalactic Radio Sources – from Beams to Jets. Cambridge Univ. Press, Cambridge, p. 307

Leahy J. P., Williams A. G., 1984, MNRAS, 210, 929

Malin D. F., Quinn P. J., Graham J. A., 1983, ApJ, 272, L5

Merritt D., Ekers R. D., 2002, Sci, 297, 1310

Mihos J. C., Dubinski J., Hernquist L., 1998, ApJ, 494, 183

Morganti R., Sadler E. M., Oosterloo T., Pizzella A., Bertola F., 1997, AJ, 113, 937

Morganti R., Oosterloo T., Tsvetanov Z., 1998, AJ, 115, 915

Murgia M., Parma P., de Ruiter H. R., Bondi M., Ekers R. D., Fanti R., Fomalont E. B., 2001, A&A, 380, 102

O’Donoghue A. A., Eilek J. A., Owen F. N., 1993, ApJ, 408, 428

Oosterloo T. A., Morganti R., Sadler E. M., Vergani D., Caldwell N., 2002, AJ, 123, 729

Quinn P. J., 1984, ApJ, 279, 596

Rottmann H., 2001, PhD thesis, Univ. Bonn

Sage L. J., Galletta G., 1993, ApJ, 419, 544

Schiminovich D., van Gorkom J. H., van der Hulst J. M., Kasow S., 1994, ApJ, 423, L101

Swaters R. A., Rubin V. C., 2003, ApJ, 587, L23

Thilker D. A., Braun R., Walterbos R. A. M., Corbelli E., Lockman F. J., Murphy E., Maddalena R., 2004, ApJ, 601, L39

van Gorkom J. H., Knapp G. R., Raimond E., Faber S. M., Gallagher J. S., 1986, AJ, 91, 791

van Gorkom J. H., van der Hulst J. M., Haschick A. D., Tubbs A. D., 1990, AJ, 99, 1781

Wang Z., Schweizer F., Scoville N. Z., 1992, ApJ, 396, 510

Wilson A. S., Colbert E. J. M., 1995, ApJ, 438, 62

Zier C., Biermann P. L., 2001, A&A, 377, 23

Zier C., Biermann P. L., 2002, A&A, 396, 91

This paper has been typeset from a \TeX/\LaTeX file prepared by the author.