Pedalium murex L.: Potential genetic resource for herbal medicine and mucilage

Sujata Shekhar
Dayalbagh Educational Institute

Rajat Rathur
Dayalbagh Educational Institute

Rajat P Singh
Dayalbagh Educational Institute

Akhilesh Kumar (akhilpbh@rediffmail.com)
Dayalbagh Educational Institute https://orcid.org/0000-0001-7274-1359

Research Article

Keywords: Pedalium murex, Bada Gokhru, Pedaliaceae, Reproductive disorders, leafy vegetable, Mucilage, Biodeisel

DOI: https://doi.org/10.21203/rs.3.rs-657864/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Pedalium murex (Pedaliaceae), commonly known as large caltrops in English and bada gokharu in Hindi is an underutilized mucilaginous medicinal herb having multiple uses in traditional system of medicine. It is mainly used to cure reproductive disorders, like impotency in men, nocturnal emissions, gonorrhoea as well as leucorrhoea in women. It is also useful in the treatment of urinary and gastrointestinal tract disorders. The present paper deals with botanical identity, vernacular names, ecology, environmental requirement and growth conditions, origin and geographical distribution, morphological/botanical description, propagation and cultivation, usages as a source of food, mucilage, medicine and biodiesel, important Ayurvedic formulations, phytochemical and pharmacological profile, future prospect.

Introduction

Genus Pedalium belongs to family Pedaliaceae (Sesame family). According to Stapf 1905, there are four species of Pedalium viz P. intermedium, P. caillaudii, P. filiforme and P. busseanum but according to modern databases (The Plant List and USDA GRIN-Global), it includes a single species with accepted name Pedalium murex L. whereas P. microcarpum Decne., P. muricatum Salisb., and Rogeria microcarpa Klotzsch are synonyms of P. murex. Other names were unable to establish their status either as an accepted species name or as a synonym of any accepted botanical name in modern database and are in unresolved status till date. It is generally known as large caltrops and land caltrops in English, Bada gokhru in Hindi and Gaja-daunstraka, Gokshura or Titta-gokshura in Sanskrit. Other vernacular names of P. murex are Pila gokhru, enugupalleru, pedda paleru, enuga palleru mulla, yenugapalleru (Telugu), annegalu – gida, aneneggilu, doddaneggilu (Kannada), motto ghokru, motherghokharu, hatti charatte, karonathia (Marathi), kadvaghokru, mothaghokru, mothangokharu, mottoghokru, ubbaghokru (Gujarathi), motto ghokru, baraghokhu, mothar ghokru (Bengali), gokshura, gokara (Oriya), gokrukalan (Punjabi), khas ake kabir (Arabic), sulegi (Burmese), Dakhini-gokhru (Rajasthan) Kaxar-marood (Somalia) ati neranchi (Singapore), khasake kalan (Persian) Vilyati gokhru, Dakhini gokhru, Brihat gokhru, Peru neranji, Yanai Nerinji, Peru Nerinji etc.

Ecology, environmental requirement and growth condition

P. murex generally grows as a weed at the edges/ open grassland near seashore, up to 500 m altitude. It is a saline soil indicator, and also occurs on sandy and limestone soils. It grows luxuriously in fertile soils and crop land as a weed at 25-30°C temperature. In Western Uttar Pradesh germination starts during the month of June-July and flowering fruiting occurs during September to December.

Geographical distribution

P. murex is native to Africa and Asia. It is distributed in most of the dry and coastal areas of Africa and Asia. In Africa, it is distributed in nearly all directions of Tropical Africa i.e., Northeast Tropical Africa (Djibouti, Somalia), East Tropical Africa (Kenya, Tanzania), West Tropical Africa (Ghana, Nigeria, Togo), South Tropical Africa (Mozambique) and in western Indian Ocean (Madagascar and Comoros). In Asia
the species is distributed in Arabian Peninsula (Yemen) and Indian Subcontinent (India and Sri Lanka) (Fig. 1). In India, it mainly occurs as a weed of waste places in the southern India especially in Deccan Peninsula and Coromandel coasts, and in saline sandy areas along river belts in the Tamil Nadu, Andra Pradesh, Haryana, Delhi, Rajasthan, Punjab, Gujarat and Madhy Pradesh, Uttar Pradesh etc.

Morphological description

Morphological study of *P. murex* collected from Bahadurpur site (established in 2017 for rehabilitation of degraded sandy soil and conservation of local phytodiversity) of Botany department, Dayalbagh Educational Institute (Deemed to be University), Dayalbagh, Agra shows that it is an annual, diffuse, succulent, mucilaginous herb of about 60-70 cm height (Fig. 2).

Root

Tap root system, 4 to 5 inch long, reddish brown in colour and bear a sweet aroma.

Stem

Stem is of about one cm diameter, much branched, succulent, glandular green in colour having branches spread up to 30 X 30 to 60 X 60 cm east-west and north-south diameter. The main shoot may be prostrate or erect. Phyllotaxy is opposite decussate.

Leaves

Leaves are simple, opposite, ovate, glabrous, alternate, fleshy, estipulate, petiolate and irregular in shape. Leaf length and width varies from 4.0-6.5 cm, and 4.0-5.0 cm respectively. Petiole length varies from 2.7-3.0 cm. Leaf contain prominent midrib, slightly thicker lateral veins, uniformly thick lamina with smooth surface, flat petiole and glandular trichomes are also found on both abaxial and adaxial sides of leaf. Venation is reticulate type with thick and straight veins.

Flowers

Flowers arise on leaf axis, pentamerous, gamopetalus, 2.5-3.0 cm long and 1.0-1.5 cm width and are yellow in colour with short pedicel. Calyx five, parietal with gamopetalous corolla, five lobes, round, tetradynamous stamens, bicarpellary stigma, ovules four celled.

Fruits

Fruits are 1.5-2.0 cm long, 0.8-1.5 cm diameter in size with pale yellowish to brown colour, indehiscent hard drupe, pyramidal glabrous surface and ovoid, globular in shape with four-ridges, having four spreading spines of 2.0-4.0 mm long at the base; attached with a short curved pedicle and having a terminal apex. Fruit possess 5-12 compartments having single seed in each compartment.

Seeds
Seeds are oblong, black in colour and covered with pappus. Seeds are mucilaginous, odourless and sweet in taste. Average weight of 1000 seeds was estimated to 151.69 grams.

Propagation And Cultivation

Plant is propagated by seeds in nature, but the germination requirement of seed and information regarding dormancy and viability period of the seeds are not known. There is no information regarding cultivation practices, requirement of nutrients and irrigation. Germination of seed without any seed treatment from the seeds collected from Bahadurpur site before one year was unsuccessful in soil as well as by filter paper method; however plant was propagated successfully by stem cuttings.

An experiment was carried out in the month of October, 2019 in the Department of Botany, Dayalbagh Educational Institute, Agra (27°13’45.57”N and 78°0’9.45”E). About 4-5 inches long and one cm thick stem cuttings were collected from natural vegetation with the help of a sharp sterilized knife. Leaves from the cutting were trimmed, and 6 cuttings were planted in four replicate in pots containing a potting mixture farm yard manure and sandy soil in a ratio of 1:3. The average environmental condition at that time in the month of October (post monsoon month) with temperature ranges of average high was 29.4°C (85°F) in day time and an average low of 20°C (68°F) during night and average relative humidity was near to about 40%. Sprouting started in 4th day after transplantation (DAT) and all the cuttings were sprouted in seven days. The number of sprouts’ increases with time (Fig. 3 and 4)

Usages As A Source Of Food, Mucilage, Medicine And Biodiesel

P. murex is a very important source of food, mucilage and medicine. Leaves are used as vegetable (Kirtikar and Basu, 1935). Various parts of the plant are used for the maintenance of general health and vitality, prevention and treatment of various disease and ailments of human being and domestic animals. The leaves and stems when agitated in cold water turn into tasteless, colourless thick mucilage, which is of high medicinal importance. It is a cheap and effective natural excipient that can be used as an effective alternative for the formulation of pharmaceutical suspensions. It have low rate of sedimentation, high viscosity, slightly basic pH and is easily redispersible (Yeole et al. 2010). An infusion of the stem and leaves is also used in gonorrhoea and dysuria (Kirtikar and Basu, 1935). It is a medicinal plant used in Ayurveda for the treatment of calculi, spermatorrhoea, amenorrhea, dysmenorrhrea, inflammation, ulcers, fevers and other disorders. In Ayurveda, it is used as a tonic, aphrodisiac, appetizer, strangury, bladder stone, cough, asthma, pain, heart trouble, piles, leprosy, blood purifier and to cure skin diseases (Chopra et al. 1956). It is a major constituent of Ayurvedic formulations such as Gokhuradiguggul, Gokhurkwath, Gokhuradiawalaha, and Deshnularishta (Sivarajan and Balchandra 1994). According to Unani system of medicine, it helps to cure gleet, lumbago, stomachache, emmenagogue etc. (Shukla and Khanuja 2004). Beside Ayurveda and Unani system of medicine various parts of the plant are used as ethno medicine by the indigenous communities for treatment and prevention from various diseases and ailments in various parts of the world (Table 1).
P. murex is also used for the biological synthesis nanoparticles. Biosynthesis of gold nanoparticle using cold and hot extract of P. murex showed that both the extracts produced nanoparticles in the range of 180-200nm. The biosynthesized AgNPs were found to have a potent antibacterial activity against E. coli, K. pneumonia, B. subtilis, S. aureus, etc. Ceramic SrO/CeO2 mixed oxide NPs biosynthesised from leaves of P. murex shows high antibacterial activity against S. aureus (G+) and E. coli (G−) bacteria and high antioxidant activity (Peter et al. 2014; Anandalakshmi et al. 2015; Pandiyan et al. 2019). Due to presence of high lipid content in areal parts P murex can be used for biodiesel production (Shivprakash et al. 2019).

Phytochemical And Pharmacological Profile

Phytochemical and pharmacological profile of the plant is studied well and documented in scientific literatures. P. murex is a rich source of various triterpenoids, fatty acids, steroids, flavonoids, tannins, saponins, vitamins, proteins, sugars, vanillin, ursolic acid. It contains higher concentrations of steroids and sterols, and moderate concentrations of flavanoids, phenols, glycosides, alkaloids, proteins, terpenes, carbohydrates, gums and mucilage. It has been reported that steroidal components found in the plants possess fertility potentiating properties, and they have been found to be useful in the treatment of impotence (Das et al. 1966; Subramanian and Nair 1972; Rastogi et al.1982; Zafar et al.1989; Bhakuni et al. 1992; Vedavathy et al. 1997; Srinivasrao et al. 1999; Suganthy 2000; Venkatarathina et al. 2005; Kapoor et al. 2006; Rajashekar et al. 2012; Ananth 2018).

Pharmacological profile of the P. murex is also well explored and documented. Various parts of the plant exhibit antimicrobial activity (moderate activity), anti-inflammatory, anti-nephrolithic, anti-hyperlipidemia, antioxidant, antiulcer, anti-pyretic; aphrodisiac, hepatoprotective, nephroprotective, increases testosterone properties (Balamurugan et al., 2010; Srinivas et al., 2011; Siva et al. 2012; Ananth 2018; Rathur 2019; Madhvan et al. 2020; Ramadevi et al. 2020; Abirami et al. 2021).

Conclusion And Future Perspectives

On the basis of multidimensional potential of P. murex it is concluded that the species is underutilized and used for the healthcare management only by the practiceners of Ayurveda, Unani, and folklore system of medicines. The plant has industrial value and hard and prickly fruits are traded as raw medicine in Indian herbal mandies and used by Aurvedic medicines manufacturers for the medicinal preparations. Due to edible nature of leaves as green vegetable and high mucilage and lipid content (to be used for industrial production) the plant may have high demand in near future. As the plant is collected from natural resources and seeds are collected for selling in local market/venders the species should be properly conserved and domesticated. Studies for the development of suitable agro-technology for commercial cultivation of P. murex should be conducted to utilize full potential of this species for human welfare.

Declarations
Funding

No specific fund was available from any funding agency. The research was conducted by using facilities available in the Department of Botany, Dayalbagh Educational Institute, Agra.

Conflicts of interest/Competing interests

Authors have no competing interests

Availability of data and material

All data and materials are available in the Department of Botany, Dayalbagh Educational Institute, Agra.

Code availability

Not applicable

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

All the authors have given their full consent for the publication of the Manuscript in Genetic Resources and Crop Evolution

References

Abirami S, Jabesta J, Renitta RE, Anand DA, Samrot AV (2021) Antimicrobial activity of flower extracts against wounds pathogen and fungi. Current Research in green and sustainable chemistry 4: 100076

Ali ZA (1998) Folk veterinary medicine in Moradabad District Uttar Pradesh, India. Fitoterapia 70: 340-347

Anandalakshmi A, Venugobal J, Ramasamy V (2015) Characterization of Silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Appl Nanosi 6:399-408

Ananth DA, Tietel Z, Aseervatham GSB, Garlapati D, Sivasudha T (2018) Phytochemical and pharmacological status of indigenous medicinal plant Pedalium murex L.—A review Biomedicine & Pharmacotherapy 103: 1456–1463.
Anis Mohammad, Sharma M.P and Iqbal M (2000) Herbal Ethnomedicine of the Gwalior Forest Division in Madhya Pradesh, India. Pharmaceutical Biology 38(4): 241–253

Balamurugan G, Muralidharan P, Polapala S (2010) aphrodisiac activity and curative effects of P. murex against ethanol-induced infertility in male rats, Turk Biol 153-163.

Bhakuni RS, Shukla YN, Thakur RS (1992) Flavonoids and other constituents from Pedalium murex Linn. Phytochemistry 31(8): 2917-2918

Bose MFJ, S Aron & P Mehalingam (2014) An Ethnobotanical Study of Medicinal Plants used by the Paliyars aboriginal community in Virudhunagar district, Tamil Nadu, India. Indian Journal of Traditional Knowledge 13(3): 613-618

Chaudhary G, Kaushik N (2017) Phtochemical and pharmacological studies in Pedalium murex. L. Phytochem Rev, 16:921-934

Chopra RN, Nayar SL, Chopra IC (1956) Glossary of Indain medicinal plants, vol 20, 1st edn. National Institute of Science Communication (C.S.I.R), New Delhi, p 330

Das VSR, Rao KN, Rao JVS (1966) Phenolic acid in some members of Pedaliaceae. Curr Sci 35:160

De Klerk, GJ (2002) Rooting of microcuttings: Theory and practice. In Vitro Cell Dev Biol -Plant 38, 415–422

Galav P, Jain A & Katewa S.S (2013) Traditional veterinary medicines used by livestock owners of Rajasthan, India. Indian Journal of Traditional Knowledge 12(1): 47-55

Ganesan S, Venkateshan G & Banumathy N (2006) Medicinal plants used by ethnic group Thottianaickans of Semmalai hills (reserved forest), Tiruchirappalli district, Tamil Nadu. Indian Journal of Traditional Knowledge 5(2): 245-252

Gehlot A, Arya S, Arya ID (2014) Vegetative propagation of Azadirachta indica A. Juss (Neem) through cuttings: A review. Nativa Sinop, 2:239-246

Harvey SK, (1967) A brief comparative pharmacognostic study of certain indigenous drugs. Natural Medicinal Journal 9: 519

Imran M, Kumar N, Nohri F, Kumar D, Kousar T, Sultan MT, Ilyas SA, Shahida S (2015) Phytochemical and pharmacological potentials of Pedalium murex Linn and its traditional medicinal uses. J Coast Life Med 3(9):737–743

Jain A, Katewa S.S, Chaudhary B.L, Galav Praveen (2004) Folk herbal medicines used in birth control and sexual diseases by tribals of southern Rajasthan. India Journal of Ethnopharmacology 90: 171–177
Jeeva S, Kiruba S, Mishra B.P, Venugopal N, Dhas S.S.M, Regini G.S, Kingston C, Kavitha A, Sukumaran S, Raj A.D.S & Laloo R.C (2006) Weeds of Kanyakumari district and their value in rural life. Indian Journal of Traditional Knowledge 5(4): 501-509

Kapoor BBS, Gaur R (2006) Evaluation of ascorbic acid from some herbal plants of Shekawati region of Rajasthan, J Phytol Res, 19(2): 297-298

Katewa SS and Galav P K (2005) Traditional herbal medicines from Shekhawati region of Rajasthan. Indian Journal of Traditional Knowledge 4(3): 237-245

Kirtikar, K.R. and Basu, B.D. (1935) Indian Medicinal Plants, Vol. II. Lalit Mohan Publication, Allahabad

Madhvan SA, Vinotha P, Uma V, Mahadevi M (2020) Anticancer activity of Pedalium murex methonolic leaves extract against A549 Human lung cancer cell line. Asean Journal of Advances in Research 5: 33-40.

Mangle, M.S. and Jolley, C.I. (1998) HPTLC studies on Tribulus terrestris (Chota ghokru) and Pedalium murex (Bada ghokru). Indian Drugs 35(4): 189-194

Mistry N, Silori C.S, Gupta L and Dixit A.M (2003) Indigenous knowledge on animal healthcare practices in district Kachchh, Gujarat. Indian Journal of Traditional Knowledge 2(3):240-254

Mohammed S, Kasera PK and Shukla JK (2004) Unexploited plants of potential medicinal value from the Indian Thar desert. Natural Product Radiance 3(2): 69-74

Nair NC, Chithra V, Henry AN, Kumari GR (1983) Flora of Tamil Nadu, India series-1. Botanical Survey of India, Coimbatore. 1-3:11

Nazar S, Ravikumar S & Williams G.P (2008) Ethnopharmacological Survey of Medicinal Plants along the Southwest Coast of India. Journal of Herbs, Spices & Medicinal Plants 14(3-4): 219-239

Pandiyan N, Murugesana B, Sonamuthub J, Samayananc S, Mahalingam S (2019) [BMIM] PF6 ionic liquid mediated green synthesis of ceramic SrO/CeO2 nanostructure using Pedalium murex leaf extract and their antioxidant and antibacterial activities Ceramics International 45: 12138–12148

Panduranga R.M, S Prasanthi & Reddi S.T.V.V (2011) Medicinal plants in Folk medicine for Women's diseases in use by Konda Reddis. Indian Journal of Traditional Knowledge 10(3): 563-567

Panghal M, Arya V, Yadav S, Kumar S, Yadav J.P (2010) Indigenous knowledge of medicinal plants used by Saperas community of Khetawas, Hjajjar District, Haryana, India. Journal of Ethnobiology and Ethnomedicine 6(4): 2-11

Patel DK, Laloo D,R Kumar , Hemalatha S (2011) Pedalium murex Linn.: An overview of its phytopharmacological aspects. Asian Pacific Journal of Tropical Medicine (2011)748-755
Rajashekar V, Rao EU, Srinivas P (2012) Biological activities and medicinal properties of Gokhru (*Pedalium murex* L.). Asian Pac J Trop Biomed 2(7):581–585.

Rajendran M, Chandra Sekar K, Sundaresan V (2002) Ethnomedicinallore of Valaya tribals in Seithur Hills of Virudunagar district, Tamil Nadu. India Indian Journal of Traditional Knowledge1(1): 59-71

Ramadevi S, Kaleeswaran B, Ilavenil S, (2020) Effect of traditionally used herb *Pedalium murex* L. and its active compound pedalitin on urease expression – For the management of kidney stone *Pedalium murex* L. Saudi Journal of Biological Sciences, https://doi.org/10.1016/j.sjbs.2020.01.014

Rastogi JN, Sharma OD, Loiwal SD (1982) Amino acids in certain medicinal plants. Bull Pure Appl Sci. 1982; 1(1):11-12.

Rathur, R (2019) Evaluation of anti-bacterial activity of *Pedalium murex* L. M Sc. Dissertation, submitted to Dayalbagh Educational Institute (Deemed to be University, Agra)

Reddy K.R, Sudarsanam G. Gopala Rao P (1989) Plant Drugs of Chittoor District, Andhra Pradesh, India. Int. J. Crude Drug Res. 27 (1): 41-54

Reddy M.B, Reddy K.R. Reddy M.N (1988) A Survey of Medicinal Plants of Chenchu Tribes of Andhra Pradesh, India. Int. J. Crude Drug Res 26(4):189-196

Samuelsson G, Farah MH, Claeson P, Hagos M, Thulin M, Hedberg O, Warfa AM, Hassan AO, Elmi AH, Abdurahman AD, Elmi AS, Abdi YA, Alin HM (1993) Inventory of plants used in traditional medicine in Somalia. IV. Plants of the families Passifloraceae-Zygophyllaceae. Journal of Ethnopharmacology 38: 1-29

Shelke TT, Kothai R, Adkar PP, Bhaskar VH, Juvale KC, Kamble BB, Oswal RJ (2009) Nephroprotective activity of ethanolic extract of dried fruits of *Pedalium murex* Linn. J Cell Tissue Res. 9(1):1687–1690

Peter J, Backialakshmi M, Karpagavinayagam P, Vedhi C (2015) Green synthesis and characterization of colloidal AuNPs for optical properties. J. Adv. Chem. Sci. 1 (1) 1–5.

Punjani B.L (2010) Herbal folk medicines used for urinary complaints in tribal pockets of Northeast Gujarat. Indian Journal of Traditional Knowledge 9(1): 126-130

Rajashekar V, Rao EU, Srinivas P (2012) Biological activities and medicinal properties of Gokhru (*Pedalium murex* L.). Asian Pac J Trop Biomed 2(7):581–585
Sivaprakash G, Mohanrasu K, Ravindran B, Chung WJ, Arun A, Al Farraj DA, Soliman Elshikh M, Al Khulaifi MM, Alkufeidy RM (2019) Integrated approach: Al2O3-CaO Nanocatalytic biodiesel production and antibacterial potential silver nanoparticle synthesis from Pedalium murex extract, Journal of King Saud University - Science (2019), https://doi.org/10.1016/j.jksus.2019.12.004

Shukla YN, Khanuja SPS (2004) Chemical, pharmacological and botanical studies on Pedalium murex. J Med Aromat Plant Sci. 26:64–69

Siva V, Bose NJJ, Mehalingam P, Thirupathi T (2012) Evaluation of Antipyretic Activity of Pedalium murex Against Brewer’s Yeast-Induced Pyrexia in Rats. Journal of Ornamental and Horticultural Plants 2: 131-137

Sivarajan VV, Balachandran I (1994) Ayurvedic drugs and their plant sources. Oxford and IBH publishing, p 570.

Srinivasrao M, Raman GV, Srinivasrao G, Venkateswarlu B (1999) Efficacy of Botanicals against gram podborer Helicoverpa armigera (Hub), Pestology 23(1):18-22

Srinivas P, Venkateshwarulu L, Kumar ACH (2011), “Antioxidant activity of Pedalium murex fruits in carbon tetra chloride-induced hepatopathy in rats.” Int J Pharma Bio Sciences 2: 622-628.

Stapf O (1905) Flora of tropical Africa. R Bot Gard Kew 4(2):538

Subramanian SS, Nair AGR (1972) Flavonoids of the leaves of Pedalium murex. Phytochemistry 11:464–465

Suganthy M (2000) Efficacy of different plant protection options on the oviposition preference of gram podborer Helicoverpa armigera (Hubner) in chickpea, Indian J Plant Prot, 28(1): 61-63

The Plant List http://www.theplantlist.org/ 18/06/21

Tiwari RKS, Das K (2010) Effect of stem cuttings and hormonal pre-treatment on propagation of Embelia tsjeriam-cottam and Caesalpinia bonduc, two important medicinal plant species. J Med Plants Res, 4:1577-1583

Upadhyay B, Parveen, Dhaker AK, Kumar A (2010) Ethnomedicinal and ethnopharmacaco-statistical studies of Eastern Rajasthan, India. Journal of Ethnopharmacology 129: 64–86

Upadhyay B, Singh K.P, Kumar A (2011) Ethno-veterinary uses and informants consensus factor of medicinal plants of Sariska region, Rajasthan, India. Journal of Ethnopharmacology 133: 14–25

USDA GRIN-Global https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomydetail?id=431293#distro 18/06/21
Vedhavathy S, Mrudula V, Sudhakar A (1997) Tribal medicine of Chittor District, A.P., Tirupati. Herbal Folklore Research Center

Venkatarathina KT, Muthusamy VA, Ramanathan S (2005) Evaluation of the petroleum ether extracts of Pedalium murex against Japanese Encephalitis vector culex Tritaeniorhynchus, antiseptic, 102: 335-336

Vimalanathan S, Ignacimuthu S. & Hudson J.B (2009) Medicinal plants of Tamil Nadu (Southern India) are a rich source of antiviral activities. Pharmaceutical Biology, 47(5): 422-429

Yadav J, Kumar S, Siwach P (2006) Folk medicine used in gynecological and other related problems by rural population of Haryana. Indian Journal of Traditional Knowledge 5(3): 323-326

Yeole NB, Sandhya P, Chandhan PS, Bhujbal PS (2010) Evaluation of Malva sylvestris and P. murex mucilage as suspending agent. Int J Pharm Tech Res, 2: 385-389

Zafar R, Gupta M. Flavone from stem and fruit of Pedalium murex. Indian Drugs 1989; 27 (3): 202.

Table

Table 1: Ethno medicinal uses of Pedalium murex L. in different parts of the world
Plant part	Method of medicine preparation and administration	Region and Local Name	References
Whole Plant	Water boiled with whole plant is fed to animals to help in expel out the placenta after delivery.	Gujarat (Sach gokhru)	Mistry et al. (2003)
	Whole plant extract is used as a tonic for health and vigour.	Rajasthan (Dakhini gokhru)	Katewa et al. (2005)
	Plant mucilage is administered to livestock for every delivery of young ones.	Tamil Nadu (Anai nerunji)	Ganesan et al. (2006)
	The entire plant is macerated and is given for ephemeral fever in cattle for 4 days.	Andhra Pradesh (Yenugu Palleru)	Reddy et al. (1989)
	Whole plant is fed to the animal for its cooling effect during summer.	Rajasthan (Dakhini-gokhru)	Galav et al. (2013)
	Fresh whole herb is soaked overnight in water. The sticky infusion mixed with cane sugar is taken daily once to cure painful urination, excess urination, haematuria, etc. An infusion is a remedy for dysuria.	Gujarat (Ubbu-gokhru)	Punjani B.L (2010)
	Plant infusion is given for common fever	Uttar Pradesh (Bara gokhru)	Ali Z.A (1998)
	Fine powder or paste is mixed with butter milk and given to drunk to reduce body heat in animals and plants are given as a fodder or soaked in water and this medicated water is given to drink to reduce the exposure to diseases in animals.	Rajasthan (Gokhru Bada)	Upadhyay et al. (2011)
Aerial Part	The plant twig is dipped in water seven to ten times and this water is taken orally to cure dysentery.	Rajasthan (Bada gokhru)	Upadhyay et al. (2010)
	Crushed plant is soaked in water, filtered in next morning, mixed with sugar candy and seed powder of black pepper and taken as refrigerant as well as skin diseases.	Haryana (Vilyati gokhru)	Panghal et al. (2010)
	Plant is used to cure male fertility disorders.	Haryana (Vilyati gokhru)	Panghal et al. (2010)
Leaves	Tamil Nadu	Author(s)	
--	---------------------	-----------	
Aerial part of the plant is stirred in cup of water, to make oil appearance preparation; taken orally once a day up to one week for the treatment of hyperacidity.	(Anaineringi)	Nazar et al. (2008)	
Stem and leaves are soaked and stirred in milk for few minutes until the milk becomes thick and is taken internally to treat diabetes, urinary irritations, uterine and puerperal diseases and local ulcers.	(Yanai nerunjil)	Vimalanathan et al. (2009)	
Leaves mixed with garlic are made into paste & administered orally for leucorrhoa.	Andhra Pradesh (Yenugu Palleru)	Reddy et al. (1989)	
Decoction prepared from the plant with leaves of *Azadirachta indica* is taken internally to treat fever.	Tamil Nadu (Anai Nerunji)	Bose et al. (2014)	
Paste prepared from the leaves, ginger and common salt is used to cure tympany.	Tamil Nadu (Peru nerunji)	Jeeva et al. (2006)	
Leaf decoction is used to cure diabetes.	Tamil Nadu (Yanai Nerinji or Peru Nerinji)	Bose et al. (2014)	
8-10 fresh leaves are boiled in half litre of water, the water becomes mucilaginous. Half cup of this water is taken once a day for seven days to cure gonorrhoea by the tribals.	Rajasthan (Gokhru, Halvi gokhru)	Jain et al. (2004)	
Leaves and stem are soaked & stirred in milk for few minutes until the milk becomes thick and is taken internally to treat diabetes, urinary irritations, uterine and puerperal diseases and local ulcers.	Tamil Nadu (Peru Nerunji)	Vimalanathan et al. (2004)	
Leaves soaked in water for twelve hours are crushed with sugar candy and cardamom, given to women suffering from leucorrhoea.	Rajasthan (Bada Gokhru)	Upadhyay et al. (2010)	
Leaf maceration is drunk for aspermatogonia.	Andhra Pradesh (Yenugu Palleru)	Reddy et al. (1988)	

Fruits	Rajasthan	Author(s)
Decoction of fruits is used for continuance of urine & other complaints of urinary system.	(Dakhini-gokhru)	Katewa et al. (2005)
Fruit powder is mixed with powdered sugar and ghee is	Haryana	Yadav et al.

taken for the treatment of leucorrhoea. (Bara gokhru) (2006)

Fruits are used to cure spermatorrhoea, urinary problems, nocturnal emission, impotency and tonic.	Rajasthan (Bara gokhru)	Mohammed et al. (2004)
A pinch of shade dried fruit powder is taken regularly for two weeks with honey for impotence.	Tamil Nadu (Anai Nerunji)	Bose et al. (2014)
Fruits are used to cure fertility problems by taking two spoonful of fruit powder mixed with the leaf juice of *Cleome viscosa* is administered from the fifth day of menstrual cycles before going to sleep daily once for 7 days.	Andhra Pradesh (Enugu palleru)	Pandurangana et al. (2011)
Two spoons of fruit powder mixed with *Cleome viscosa* L. leaf juice from the fifth day of menses before bed for seven days for fertility.	Tamil Nadu (Yanai Nerinji, Peru Nerinji)	Bose et al. (2014)
An extract of three fruits of gokhru and approx. 25 g of babool (*Acacia nilotica* L.) leaves mixed with sugar are given twice a day for a week in case of venereal diseases.	Madhya Pradesh (Gokhru)	Anis et al. (2000)
Powder of fruits with roots of *Capparis sepaia, Bombax ceiba* and *Chlorophyton* are taken orally with water as a cooling agent and also used as a tonic.	Rajasthan (Bada Gokhru)	Upadhyay et al. (2010)

Roots

The roots are powdered and mixed with cold water; the patient is bathed in the mixture once a day for 3 days to cure allergic infections.

Somalia (Kaxar-marood) | Anis et al. (1992) |

Root paste made into small pellets and 2-3 pellets given daily with boiled cow milk for increasing vigour in men

Tamil Nadu (Yanai Nerinji or Peru Nerinji) | Bose et al. (2014) |

Seeds

Laddus (a type of sweet) is prepared from the seeds are given to patients suffering from joint pain, lumbago and for better health.

Rajasthan (Dakhini-gokhru) | Katewa et al. (2005) |

Figures
Figure 1

Map showing the geographical distribution of P. murex throughout the world

Figure 2

Habit and Morphology of P. murex L. (A) Naturally growing plant in field (B) A plant with flowers (C) A flowering twig (D) Leaves with petiole (E) Flower (F) Stem bearing fruits (G) Dried fruits (H) Roots (I) A local women collecting the seeds for medicinal purposes.
Figure 3

Vegetative propagation through cuttings in *P. murex* L. (A) After 7 days (B) After 14 days (C) After 21 days (D) After 28 days
Figure 4

Sprouting in *P. murex* L. cuttings