Prevalence of stroke in China, 2013–2019: A population-based study

Wen-Jun Tu, a,b 1 Yang Hua, c 1 Feng Yan, d Hetao Bian, e Yi Yang, f Min Lou, g Li He, h Lan Chu, i Jingsheng Zeng, j Jian Wu, k Huisheng Chen, l Jianfeng Han, m Lin Ma, n Lei Cao, a and Longde Wang a

a The General Office of Stroke Prevention Project Committee, National Health Commission of the People’s Republic of China, Beijing, China
b Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
c Department of Ultrasound Vascular, Xuanwu Hospital Capital Medical University, Beijing, China
d Department of Neurosurgery, Capital Medical University Xuanwu Hospital, Beijing, China
e Department of Neurology, the First Bethune Hospital of Jilin University, Changchun, China
f Department of Neurology, the Second Affiliated Hospital of Zhejiang University, Hangzhou, China
g Department of Neurosurgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
h Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
i Department of Neurology, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
j Department of Neurology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
k Department of Neurology, Beijing Tsinghua Changgung Memoria Hospital, Beijing, China
l Department of Neurology, The General Hospital of Northern Theater Command of the Chinese People’s Liberation Army, Shenyang, China
m Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
n Department of Interventional Radiology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China

Summary
Background The stroke burden in China has increased during the past 40 years. The present study aimed to determine the recent trends in the prevalence of stroke from 2013 to 2019 stratified by sociodemographic characteristics, including sex, age, residence, ethnicity, and province within a population-based screening project in China.

Methods We made use of data generated from 2013 to 2019 in the China Stroke High-risk Population Screening Program. All living subjects with confirmed stroke at interview were considered to have prevalent stroke. All analyses of prevalence of stroke were weighted and results were presented as percentage and 95% confidence interval (CI).

Findings A total of 4229,616 Chinese adults aged ≥40 years from 227 cities in the 31 provinces were finally included. The enrollment rate ranged from 58.8% (2017) to 67.8% (2013). The weighted prevalence of stroke increased annually from 2013 to 2019, being 2.28% (95% CI: 2.28−2.28%) in 2013, 2.34% (2.34−2.35%) in 2014, 2.43% (2.43−2.43%) in 2015, 2.48% (2.48−2.48%) in 2016, 2.52% (2.52−2.52%) in 2017, 2.55% (2.55−2.55%) in 2018, and 2.58% (2.58−2.58%) in 2019 (p for trend <0.001). The weighted prevalence of stroke was higher for male sex, older age, and residence in rural and northeast areas.

Interpretation The prevalence of stroke in China and most provinces has continued to increase in the past 7 years (2013–2019). These findings, especially in provinces with high stroke prevalence, can help public health officials to increase province capacity for stroke and related risk factors prevention.

Fundings This study was supported by grants from the National Major Public Health Service Projects.

Copyright © 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Keywords: Stroke; Prevalence; China; Sociodemographic

Introduction
The stroke burden in China has increased during the past 40 years. In 2017, stroke was the leading cause of death, years of life lost, and disability-adjusted life-years at the national level in China.¹ In 2013, a nationally...
representative door-to-door survey that included 4,868,687 adults aged ≥20 years showed that the age-standardized prevalence and incidence rate of stroke were 1114.8/100,000 people and 246.8/100,000 person-years, respectively.

Ferri et al.1 reported that the prevalence of stroke in urban Chinese areas was nearly as high as that in industrialized countries. Wang et al.4 evaluated 15,438 residents from a township in Tianjin, and demonstrated that the incidence of stroke in rural China was increasing rapidly. Previous studies on prevalence of stroke in China were mainly cross-sectional studies in a single year or a few provinces, and lacked both ongoing research and subgroup analyses such as ethnicity and province.

Methods
To meet the challenge of stroke, the China Stroke Prevention Project Committee (CSPPC) was established in April 2011 in the Ministry of Health of China. The CSPPC launched the China Stroke High-risk Population Screening and Intervention Program (CSHPSIP) as a critical national project in 2011. Since 2013, the program has covered all 31 provinces across mainland China. We made use of data generated from January 2013 to December 2019 in the CSHPSIP, an ongoing population-based screening project that enrolled around 0.8 million community-dwelling adults aged ≥40 years each year from all 31 provinces in mainland China. Around 0.8 million community-dwelling adults aged ≥40 years was enrollment separately at each year from 2013 to 2019 through CSHPSIP (covering 0.15% of the target population across the country each year). The participating hospitals and screening sites in each province were determined according to the economic development status, population size, and work foundation. The enrollment criteria of community-dwelling adults were: (1) community residents aged ≥40 years (residence for >6 months) and (2) provision of informed consent. The demographic information (age, gender, and residence [urban and rural]) of participants among every province and city should be consistent with the 2010 Population Census of China.

Data were obtained from the Bigdata Observatory platform for Stroke of China (BOSC, formerly known as the China Stroke Data Center data reporting platform), and the data collection process was reported previously. Briefly, a two-stage stratified cluster sampling method was adopted for screening. In the first stage of sampling, a county/district proportional to the population size of that area was selected in each of the survey sites. In the next stage, in each selected location, at least one communities/villages with a total population of at least 4000 residents were selected by using the random sampling method. Participants completed a face-to-face interviewer-administered questionnaire on sociodemographic characteristics (age, sex, body weight, height, abdominal circumference, marital status, education level, social healthcare insurance status, living condition, number of siblings or children), lifestyle factors (history of alcohol drinking and smoking, diet, consumption of vegetables and fruits), personal and family medical history (overweight, hypertension, dyslipidemia, diabetes mellitus, atrial fibrillation, transient ischemic attack [TIA], family history of stroke, physical inactivity), and current medications at the screening point by trained technicians using calibrated instruments with standard protocols. Physical inactivity was defined according to WHO recommendations standard (at least 150 min of moderate-intensity, or 75 min of vigorous-intensity physical activity per week, or any equivalent combination of the two). The CSHPSIP performs stroke screening nationwide each year and follow-up
interventions for screened populations every 2 years (Supplementary methods and Table S1-2). The staff involved in the survey were trained in the program and evaluated by theoretical and practical tests. The Ethics Committee of Capital Medical University Xuanwu Hospital approved the trial protocol according to the Declaration of Helsinki (No. 2012045). Written informed consent was obtained from all participants before entering the study.

Living subjects with confirmed stroke at interview were considered to have prevalent stroke. All patients with stroke (ischemic stroke [IS, I63{ICD-10}], intracerebral hemorrhage [ICH, I61], subarachnoid hemorrhage [SAH, I60], stroke of undetermined type) were recorded. Individuals with suspected stroke were re-interviewed by trained neurologists. The diagnosis of stroke required the investigator to provide a diagnosis certificate and/or an imaging certificate (CT/MRI) from a secondary or higher medical unit (Level II and above hospitals). TIA was defined as G45,8 and participants with TIA were excluded from the stroke group.

Physical activity was defined as regular physical exercise performed for >1 year, >2 times per week, and at least 30 minutes each time, or heavy physical labor. Obesity was defined as body mass index ≥28 kg/m² in accordance with the guidelines established for Chinese adults.9 Hypertension was defined as: (1) systolic blood pressure ≥140 mm Hg and/or diastolic blood pressure ≥90 mm Hg; (2) self-reported hypertension; (3) use of antihypertension medications. Diabetes mellitus was defined as: (1) fasting plasma glucose ≥7.0 mmol/L; (2) self-reported diabetes mellitus; (3) use of oral hypoglycemic agents or insulin injections. Dyslipidemia was defined as: (1) abnormal fasting plasma markers (triglycerides ≥2.26 mmol/L, total cholesterol ≥6.22 mmol/L, high-density lipoprotein cholesterol <1.04 mmol/L, low-density lipoprotein cholesterol ≥4.14 mmol/L); (2) self-reported dyslipidemia; (3) use of anti-dyslipidemia medications.10 Atrial fibrillation was defined as self-reported history of persistent atrial fibrillation or electrocardiogram (ECG) results (Supplementary methods).

Statistical analysis
We summarized continuous variables as mean with standard deviation and categorical variables as frequency and percentage. We assessed the characteristics of all participants according to participation year. Prevalence rate calculations were performed separately by sex (men/women), locality of residence (urban/rural), age (five groups), ethnic group (6 groups) and province (31 groups). When results were not stratified by age, sex—and age—standardised rates were weighted to represent the overall national population. Sampling weights were multiplied by design (age, geographic location [central, east, west], and geographical area [urban, rural]), nonresponse, and post—stratification weights. Post—stratification weights were adjusted for residence (rural or urban), geographic location (northeast, north, northwest, southwest, south, central, or east), sex (male or female), and age (40–49, 50–59, 60–69, 70–79, and ≥80 years) using the 2010 China census data. Weighted prevalence of stroke among different provinces in 2019 stratified by stroke type (IS, ICH and SAH), sex(men/women) and residence(rural/urban) was further assessed. All analyses accounted for complex sample design, including clustering, stratification, and sample weights (Supplementary methods) and results were presented as percentage and 95% confidence interval (CI).

Linear trends across study periods were assessed using orthogonal polynomial coefficients, and results with a p-value <0.05 were considered significant. For ordinal categorical variables, Rao–Scott χ² tests were used to assess differences. The prevalence rates between the different groups were compared and results were expressed as absolute difference (95%CI) and odds ratio (OR, 95%CI). A p—value of <0.05 was considered statistically significant. All statistical analyses were done in SAS software (SAS Institute Inc, Cary, North Carolina, version 9.4), and data was visualized in R version 4.0.0 (R Foundation for Statistical Computing, Vienna, Austria).

Data sharing
The data that support the findings of this study are available from the corresponding author upon reasonable request.

Role of funding source
The funders of the study had no role in the design or conduct of the study, including data collection, management, analysis, or interpretation of the results; preparation, review, or approval of the manuscript; or the decision to submit the manuscript for publication.

Results
A total of 4,229,616 Chinese adults aged ≥40 years from 223 cities in the 31 provinces were finally included (Tables S3–S4). The total number of enrolled people ranged from 513,147 (2016) to 723,571 (2013). The enrollment rate ranged from 58.8% (2017) to 67.8% (2013).

In provinces level, the enrollment rate ranged from 43.6% (Tianjin) to 85.7% (Jiangsu), Table S5. The sample size in the provinces ranged from 400 (Tibet, 2013) to 80,332 (Shandong, 2013). Characteristics of the study participants including from 2013 to 2019 are summarized in the Table 1.

The weighted prevalence of stroke increasing annually from 2013 to 2019, being 2.28% (95% CI: 2.28–2.28%) in 2013, 2.34% (2.34–2.35%) in 2014, 2.43%
Characteristics	2013	2014	2015	2016	2017	2018	2019
Participants	7,23,571	6,70,603	6,99,459	5,13,147	5,32,443	5,50,975	5,39,418
Mean age (SD), years	58±11.43	58±11.50	59±11.42	60±10.90	60±10.90	60±10.95	60±10.95
Age groups							
40–49	2,14,596	1,99,657	1,73,388	1,20,936	1,06,639	1,11,619	1,02,680
50–59	2,07,677	1,94,421	1,90,055	1,50,304	1,54,467	1,63,645	1,63,937
60–69	1,80,945	1,63,683	1,87,078	1,41,431	1,63,125	1,61,199	1,55,229
70–79	91,651	84,000	97,944	73,561	82,521	88,394	92,112
≥80	28,702	28,842	35,994	26,915	25,691	26,118	25,460
Sex-Men	3,30,053	3,10,636	3,19,706	2,34,639	2,28,987	2,34,633	2,25,551
Residence-urban	3,72,814	3,33,970	3,67,547	2,59,307	2,63,645	2,85,663	2,85,663
Mean BMI (SD), kg/m²	24.0	24.2	24.2	24.3	24.3	24.5	24.5
BMI group							
<18.5 kg/m²	17,468	14,137	16,692	10,019	12,044	11,084	11,374
18.5–23.9 kg/m²	3,71,399	3,44,638	3,63,196	2,60,116	2,51,835	2,54,260	2,44,865
24.0–27.9 kg/m²	2,64,144	2,44,691	2,55,108	1,90,297	2,04,848	2,14,322	2,13,569
≥28.0 kg/m²	70,560	67,137	64,463	52,715	63,716	71,199	69,610
Ethnicity							
Han	7,02,930	6,46,596	6,73,765	4,87,790	5,08,396	5,23,939	5,19,747
Zhuang	739	666	5578	5259	4463	4054	3353
Hui	561	502	3445	4549	3333	4531	2775
Manchu	675	879	995	1153	1196	1274	970
Uygur	1034	2677	1705	1567	758	1776	1328
Education							
Compulsory education	3,59,264	3,22,719	3,43,734	4,02,892	4,12,993	4,29,446	4,05,925
High School	76,058	62,103	81,138	82,074	85,797	88,332	45,108
College and above	37,411	27,287	29,053	37,360	35,725	46,625	25,000
Missing	250,291	258,494	2435	64	7	53	
Annual income, CNY							
<5000	982	2791	1,97,267	1,48,046	1,47,014	1,50,167	1,32,006
5000—10,000	699	510	1,18,184	88,560	82,350	86,481	81,478
10,000—20,000	537	413	1,25,005	79,737	86,961	85,724	83,953
>20,000	1518	1282	2,56,517	1,93,701	2,16,094	2,28,581	2,41,976
Missing	7,19,835	6,65,607	2486	3103	24	22	5
Meat: own expense	7529	4509	7509	2965	2088	2586	1634
Marital status							
Married	4,57,442	3,97,006	6,56,608	4,86,044	4,94,505	5,13,864	4,97,976

Table 1 (Continued)
Characteristics of the Study Participants (≥40 Years), 2013–2019

Characteristics	2013 (n, %)	2014 (n, %)	2015 (n, %)	2016 (n, %)	2017 (n, %)	2018 (n, %)	2019 (n, %)
Single	1046 (0.22)	3350 (0.8)	5844 (0.84)	3601 (0.7)	4983 (0.94)	4898 (0.89)	4045 (0.75)
Widowed	18,436 (3.84)	15,958 (3.81)	30,826 (4.42)	19,545 (3.81)	27,889 (5.24)	27,127 (4.92)	29,802 (5.55)
Missing	2,43,007	2,51,416	1661	69	10	37	2486

Vascular risk factors

Smoking status

- **Nonsmokers**: 6,05,493 (83.68) | 5,67,071 (84.56) | 5,83,880 (83.48) | 4,33,859 (84.55) | 4,50,197 (84.55) | 4,67,543 (84.86) | 4,58,539 (85.01)
- **Past smokers**: 9644 (1.33) | 6499 (0.97) | 12,826 (1.83) | 9877 (1.92) | 8745 (1.64) | 7965 (1.45) | 8015 (1.49)
- **Current smokers**: 1,08,434 (14.99) | 97,033 (14.47) | 1,02,753 (14.69) | 69,411 (13.53) | 73,501 (13.80) | 75,467 (13.70) | 72,864 (13.51)

Consumption of alcohol

- 29,372 (13.19) | 24,481 (16.02) | 82,571 (11.8) | 56,683 (11.05) | 85,831 (16.21) | 90,555 (16.44) | 90,307 (16.74)

Family history of stroke

- 55,459 (7.66) | 47,250 (7.05) | 81,494 (11.65) | 40,485 (7.89) | 51,294 (9.63) | 55,168 (10.01) | 53,850 (9.98)

Hypertension

- 2,81,850 (38.95) | 2,67,116 (39.83) | 2,81,408 (40.23) | 2,08,965 (40.72) | 2,40,567 (45.18) | 2,50,459 (45.46) | 2,64,178 (45.64)

Diabetes

- 1,14,304 (15.8) | 1,07,861 (16.08) | 1,14,157 (16.32) | 83,862 (16.34) | 1,14,256 (21.46) | 1,19,902 (21.76) | 1,17,205 (21.73)

Hyperlipidemia

- 2,47,329 (34.18) | 2,34,903 (35.03) | 2,46,239 (35.2) | 1,80,821 (35.24) | 2,14,915 (40.36) | 2,23,692 (40.46) | 2,21,574 (41.08)

Atrial fibrillation

- 7769 (1.07) | 7228 (1.08) | 6701 (0.96) | 5376 (1.05) | 5732 (1.08) | 5986 (1.09) | 6399 (1.19)

Obesity

- 70,181 (9.7) | 66,882 (9.97) | 64,183 (9.18) | 52,499 (10.23) | 63,254 (11.88) | 70,879 (12.86) | 69,247 (12.84)

Lack of exercise

- 1,89,339 (26.17) | 1,40,942 (21.02) | 2,17,003 (31.02) | 1,54,214 (30.05) | 1,51,030 (28.37) | 1,49,891 (27.2) | 1,47,580 (27.36)

TIA

- 11,949 (1.65) | 11,992 (1.79) | 12,480 (1.78) | 9748 (1.9) | 9731 (1.83) | 9912 (1.8) | 9842 (1.82)

Stroke

- 19,402 (2.68) | 19,291 (2.88) | 20,894 (2.99) | 16,574 (3.23) | 18,277 (3.43) | 18,791 (3.41) | 19,466 (3.61)

Table 1: Characteristics of the Study Participants (≥40 Years), 2013–2019.

- *The results were presented as n (percentages) for categorical variables and as mean (Standard deviation, SD) for continuous variables. The 2010 China Census data: male ratio: 51.27%; age stratification (40–49, 50–59, 60–69, 70–79, ≥80 years): 38.2%, 28.2%, 18.9%, 10.7%, 4.0%; urban population ratio: 49.68%.
- †Diagnostic criteria were a self-reported diagnosis from 2013 to 2016.
- ‡Obesity was defined as BMI≥28.0 kg/m².

BMI, Body Mass Index; CNY, Chinese Yuan Renminbi; TIA, Transient Ischemic Attack; MI, Medical insurance; SD, Standard Deviation.
Characteristic	2013	2014	2015						
	All	Stroke	% (95%CI)	All	Stroke	% (95%CI)	All	Stroke	% (95%CI)
Total	7,25,332	19,402	2.28 (2.28,2.28)	6,70,603	19,291	2.34 (2.34,2.35)	6,99,459	20,894	2.43 (2.43,2.43)
IS	16,876	1.91 (1.91–1.91)	16,785	1.96 (1.95–1.96)	18,180	2.05 (2.05–2.05)			
ICH	2325	0.30 (0.29–0.30)	2301	0.30 (0.30–0.30)	2495	0.31 (0.31,0.31)			
SAH	286	0.05 (0.05–0.05)	282	0.04 (0.04–0.04)	306	0.04 (0.045,0.04)			
Sex									
Male	3,29,858	9797	2.49 (2.49,2.50)	3,10,636	9756	2.53 (2.53,2.54)	3,19,706	10,507	2.62 (2.62,2.62)
Female	3,95,474	9605	2.07 (2.06,2.07)	3,59,967	9535	2.15 (2.15,2.15)	3,9,753	10,387	2.23 (2.23,2.23)
Residence									
Rural	3,52,181	9119	2.32 (2.32,2.32)	3,30,633	9876	2.48 (2.48,2.48)	3,31,912	9757	2.56 (2.55,2.56)
Urban	3,73,151	10,283	2.21 (2.21,2.22)	3,39,970	9415	2.15 (2.15,2.15)	3,67,547	11,137	2.26 (2.26,2.26)
Age, years									
40–49	2,14,375	1332	0.62 (0.620,62)	1,99,657	1168	0.58 (0.57,0.58)	1,73,888	1096	0.60 (0.60,0.60)
50–59	2,07,600	4259	2.14 (2.13,2.14)	1,94,421	4189	2.14 (2.14,2.14)	2,05,055	3961	2.19 (2.19,2.19)
60–69	1,81,663	7683	4.24 (4.23,4.24)	1,63,683	7923	4.62 (4.61,4.62)	1,87,078	8099	4.47 (4.47,4.48)
70–79	91,474	4894	5.30 (5.30,5.31)	84,000	4809	5.51 (5.50,5.51)	97,944	5905	6.03 (6.03,6.04)
≥80	28,656	1234	4.06 (4.05,4.07)	28,842	1202	3.87 (3.86,3.88)	35,994	1833	4.69 (4.68,4.70)
Ethnic group									
Han	7,04,629	18,787	2.27 (2.27,2.27)	6,46,569	18644	2.36 (2.36,2.37)	6,73,765	20,352	2.47 (2.46,2.47)
Zhuang	739	9	0.99 (0.97,1.02)	666	11	1.04 (1.03,1.07)	5578	72	1.07 (1.06,1.07)
Hui	5657	146	2.38 (2.36,2.39)	5022	141	2.29 (2.28,2.31)	3445	92	2.34 (2.32,2.35)
Manchu	2991	134	3.18 (3.15,3.20)	6110	262	3.50 (3.48,3.52)	2985	139	4.50 (4.48,4.53)
Uyghur	1034	25	1.14 (1.14,1.16)	2677	41	1.05 (1.03,1.06)	1705	26	1.14 (1.13,1.15)
Mongolian	4337	132	3.31 (3.29,3.33)	3852	161	3.48 (3.45,3.50)	2784	106	3.35 (3.33,3.37)
Provinces									
Beijing	38,626	1105	2.47 (2.46,2.48)	25,170	765	2.56 (2.54,2.57)	15,648	460	2.60 (2.59,2.61)
Tianjin	19,448	555	2.51 (2.49,2.52)	16,281	494	2.58 (2.57,2.60)	10,848	323	2.62 (2.61,2.64)
Hebei	46,326	1180	2.82 (2.81,2.83)	49,172	1516	2.93 (2.93,2.94)	32,970	1259	3.04 (3.04,3.05)
Shandong	28,805	800	2.54 (2.53,2.55)	41,021	957	2.61 (2.61,2.62)	27,322	784	2.69 (2.68,2.70)
IM	20,355	689	3.38 (3.37,3.39)	14,599	546	3.51 (3.50,3.52)	15,166	613	3.57 (3.56,3.58)
Liaoning	27,962	1213	3.39 (3.38,3.39)	32,920	1430	3.50 (3.49,3.51)	28,048	1194	3.57 (3.56,3.58)
Jilin	23,869	926	3.46 (3.45,3.47)	30,320	1379	3.56 (3.55,3.57)	23,660	518	3.63 (3.62,3.64)
Heilongjiang	25,565	952	3.53 (3.53,3.54)	28,511	1234	3.65 (3.64,3.66)	33,946	1151	3.74 (3.73,3.75)

Table 2 (Continued)
Characteristic	2013	2014	2015
	All Stroke % (95%CI)	All Stroke % (95%CI)	All Stroke % (95%CI)
Shanghai	5860 140 1.91 (1.89,1.93)	5892 128 1.97 (1.95,1.98)	4148 130 1.98 (1.97,2.00)
Jiangsu	49,281 998 1.78 (1.77,1.78)	48,101 1031 1.84 (1.83,1.84)	51,787 1297 1.88 (1.81,1.89)
Zhejiang	18,707 445 2.01 (2.00,2.02)	17,911 407 2.09 (2.09,2.10)	26,891 694 2.13 (2.12,2.14)
Anhui	26,207 904 2.28 (2.28,2.29)	30,385 1012 2.37 (2.37,2.38)	24,746 1088 2.47 (2.46,2.48)
Fujian	3744 79 1.84 (1.82,1.86)	5912 120 1.89 (1.88,1.91)	4871 153 1.94 (1.92,1.95)
Jiangxi	20,893 686 1.97 (1.96,1.98)	11,306 280 1.99 (1.99,2.00)	30,850 1095 2.06 (2.05,2.06)
Shandong	80,332 2075 2.21 (2.20,2.21)	68,342 1945 2.30 (2.30,2.30)	70,882 2083 2.39 (2.39,2.40)
Henan	66,523 2273 2.75 (2.75,2.76)	43,514 1344 2.87 (2.87,2.88)	71,513 2854 2.96 (2.95,2.96)
Hubei	39,151 754 1.98 (1.98,1.99)	20,345 552 2.06 (2.05,2.06)	32,473 843 2.11 (2.11,1.12)
Hunan	23,537 637 1.97 (1.96,1.97)	26,971 863 2.00 (2.00,2.01)	32,293 980 2.04 (2.03,2.05)
Guangdong	27,973 345 1.47 (1.46,1.47)	15,761 337 1.52 (1.51,1.53)	13,187 283 1.54 (1.54,1.55)
Guangxi	15,667 117 1.52 (1.51,1.53)	13,034 171 1.56 (1.56,1.57)	29,664 358 1.60 (1.60,1.61)
Hainan	3437 53 1.58 (1.57,1.60)	5263 118 1.65 (1.64,1.66)	2026 44 1.67 (1.65,1.68)
Chongqing	14,192 260 1.64 (1.64,1.65)	5927 117 1.71 (1.69,1.72)	12,810 246 1.75 (1.74,1.76)
Sichuan	36,544 666 1.63 (1.63,1.64)	33,307 681 1.70 (1.69,1.70)	27,884 609 1.73 (1.72,1.73)
Guizhou	762 37 1.67 (1.66,1.69)	7127 122 1.76 (1.75,1.76)	9226 162 1.79 (1.78,1.79)
Yunnan	4697 147 1.59 (1.58,1.60)	11,913 219 1.64 (1.64,1.64)	20,780 340 1.66 (1.65,1.66)
Tibet	600 19 2.01 (1.97,2.05)	578 14 2.11 (2.09,2.13)	833 20 2.18 (2.16,2.20)
Shaanxi	17,118 494 2.20 (2.19,2.21)	28,005 591 2.30 (2.30,2.31)	24,675 700 2.33 (2.32,2.34)
Gansu	15,423 396 1.98 (1.97,1.98)	13,922 442 2.05 (2.03,2.06)	5702 177 2.05 (2.03,2.06)
Qinghai	4249 112 1.94 (1.92,1.95)	6332 146 2.01 (2.00,2.02)	3521 88 2.05 (2.03,2.08)
Ningxia	9650 145 1.94 (1.93,1.96)	3680 95 2.02 (2.01,2.04)	2457 73 2.07 (2.05,2.09)
Xinjiang	8278 210 1.95 (1.94,1.96)	9081 235 2.03 (2.01,2.04)	8676 275 2.06 (2.05,2.07)
P	<.0001	<.0001	<.0001

Characteristic	2016	2017	2018
	All Stroke % (95%CI)	All Stroke % (95%CI)	All Stroke % (95%CI)
Shanghai	5,13,147 16,574 2.48 (2.48,2.48)	5,32,243 18,277 2.52 (2.52,2.52)	5,50,975 18,791 2.55 (2.55,2.55)
Jiangsu	14,697 2.16 (2.16,2.17)	16,090 2.18 (2.18,2.18)	16,414 2.19 (2.19,2.19)
Zhejiang	1815 0.31 (0.31,0.31)	2272 0.35 (0.35,0.35)	2366 0.36 (0.36,0.36)
Anhui	384 0.06 (0.06,0.06)	300 0.04 (0.04,0.04)	351 0.05 (0.05,0.05)
Fujian	2,34,644 8315 2.70 (2.70,2.70)	2,29,322 8991 2.76 (2.76,2.76)	2,34,488 9279 2.85 (2.85,2.85)
Jiangxi	2,78,503 8266 2.26 (2.26,2.26)	3,02,921 9286 2.27 (2.27,2.27)	3,16,487 9522 2.25 (2.25,2.26)

Table 2 (Continued)
Characteristic	2016	2017	2018						
	All Stroke % (95%CI)	All Stroke % (95%CI)	All Stroke % (95%CI)						
P	<.0001	<.0001	<.0001						
Residence	Rural 2,53,843	8678	2.62 (2.62,2.63)	2,65,983	8680	2.58 (2.57,2.58)	2,70,332	8995	2.60 (2.60,2.60)
	Urban 25,930	4	2.29 (2.29,2.29)	2,66,260	9597	2.43 (2.43,2.43)	2,80,643	9806	2.49 (2.48,2.49)
P	<.0001	<.0001	<.0001						
Age, years	40−49 1,20,936	667	0.53 (0.53,0.53)	1,06,832	619	0.57 (0.57,0.57)	5,09,130	17,462	2.51 (2.51,2.51)
	50−59 1,50,300	2825	0.21 (0.21,0.21)	1,54,720	2974	2.12 (2.12,2.12)	1,11,647	599	0.57 (0.57,0.57)
	60−69 1,41,432	6725	4.64 (4.64,4.64)	1,62,329	7488	4.52 (4.52,4.53)	1,61,273	763	4.70 (4.70,4.71)
	70−79 73,565	4863	6.62 (6.61,6.63)	82,637	5551	6.71 (6.71,6.72)	88,451	5826	6.71 (6.71,6.72)
	≥80 26,917	1501	5.18 (5.18,5.19)	25,725	1645	5.95 (5.94,5.96)	26,128	1659	6.01 (6.00,6.02)
P	<.0001	<.0001	<.0001						
Ethnic group	Han 4,87,797	15,982	2.54 (2.54,2.54)	5,09,130	17,462	2.51 (2.51,2.51)	5,24,182	17,992	2.56 (2.56,2.56)
	Zhuang 5259	86	1.15 (1.14,1.15)	4463	96	1.24 (1.23,1.25)	4054	79	1.30 (1.29,1.31)
	Hui 4549	137	2.66 (2.64,2.67)	3340	142	2.72 (2.71,2.73)	4531	212	2.84 (2.82,2.85)
	Mongolian 2,700	102	3.24 (3.22,3.25)	2630	79	3.11 (3.09,3.13)	1933	47	2.92 (2.89,2.95)
Provinces	Beijing 13,021	436	2.67 (2.66,2.69)	9411	307	2.72 (2.70,2.73)	9863	330	2.78 (2.76,2.79)
	Tianjin 13,518	462	2.68 (2.67,2.70)	6666	227	2.74 (2.72,2.74)	6735	218	2.72 (2.70,2.74)
	Hebei 36,668	1365	3.16 (3.16,3.17)	26,553	1331	3.23 (3.22,3.23)	36,809	1636	3.29 (3.28,3.29)
	Shanxi 28,908	823	2.79 (2.79,2.80)	16,883	609	2.81 (2.80,2.81)	16,729	577	2.84 (2.84,2.85)
	IM 9050	361	3.70 (3.69,3.71)	12,610	504	3.70 (3.69,3.71)	12,884	484	3.78 (3.77,3.79)
	Liaoning 22,449	1132	3.68 (3.67,3.68)	26,426	1173	3.70 (3.69,3.70)	20,843	1053	3.79 (3.78,3.80)
	Jilin 21,807	878	3.77 (3.76,3.78)	15,368	800	3.81 (3.80,3.82)	10,344	548	3.94 (3.93,3.95)
	Heilongjiang 14,737	737	3.89 (3.87,3.90)	21,228	675	3.93 (3.92,3.94)	14,436	985	3.99 (3.98,4.00)
	Shanghai 4015	90	2.03 (2.02,2.05)	4524	204	2.00 (1.99,2.02)	12,695	466	2.06 (2.05,2.06)
	Jiangsu 38,990	994	1.95 (1.94,1.95)	39,431	1257	1.97 (1.97,1.98)	36,877	1100	2.01 (2.00,2.01)
	Zhejiang 17,206	442	2.19 (2.19,2.20)	27,041	699	2.19 (2.18,2.20)	21,858	589	2.26 (2.25,2.26)
	Anhui 17,092	572	2.58 (2.57,2.58)	23,456	1165	2.58 (2.57,2.58)	31,134	954	2.68 (2.67,2.68)
	Fujian 10,019	294	2.00 (1.99,2.01)	6813	217	1.98 (1.97,1.99)	12,778	307	2.03 (2.02,2.03)
	Jiangxi 11,560	318	2.15 (2.14,2.15)	17,307	647	2.15 (2.15,2.16)	15,066	592	2.15 (2.14,2.16)
	Shandong 56,958	1867	2.50 (2.49,2.50)	50,833	1577	2.51 (2.50,2.51)	52,420	1714	2.59 (2.59,2.60)

Table 2 (Continued)
Characteristic	2016	2017	2018						
	All	Stroke	% (95%CI)	All	Stroke	% (95%CI)	All	Stroke	% (95%CI)
Henan	40,419	1520	3.07 (3.07,3.08)	43,007	1594	3.11 (3.11,3.12)	44,255	1925	3.20 (3.19,3.20)
Hubei	18,046	652	2.19 (2.18,2.20)	20,814	778	2.21 (2.21,2.22)	21,470	651	2.26 (2.25,2.27)
Hunan	24,409	831	2.13 (2.13,2.14)	28,961	875	2.10 (2.10,2.11)	23,433	802	2.12 (2.11,2.12)
Guangdong	4894	105	1.58 (1.57,1.59)	11,053	264	1.58 (1.58,1.59)	13,672	287	1.62 (1.62,1.63)
Guangxi	23,799	405	1.65 (1.64,1.65)	20,959	495	1.64 (1.63,1.64)	21,278	456	1.64 (1.63,1.64)
Hainan	2973	79	1.73 (1.72,1.74)	3513	80	1.69 (1.68,1.70)	3706	120	1.75 (1.74,1.77)
Chongqing	5072	124	1.82 (1.81,1.84)	8574	214	1.83 (1.82,1.84)	8374	193	1.85 (1.83,1.86)
Sichuan	14,626	350	1.79 (1.79,1.80)	29,869	764	1.81 (1.81,1.82)	35,746	881	1.86 (1.86,1.87)
Guizhou	7347	123	1.85 (1.84,1.85)	6326	162	1.84 (1.83,1.84)	9160	154	1.87 (1.86,1.87)
Yunnan	8398	224	1.73 (1.72,1.73)	17,740	340	1.73 (1.72,1.73)	16,334	413	1.75 (1.74,1.75)
Tibet	873	21	2.28 (2.26,2.29)	1113	24	2.26 (2.25,2.27)	1177	26	2.30 (2.28,2.31)
Shaanxi	19,492	500	2.43 (2.42,2.43)	18,067	706	2.45 (2.44,2.46)	18,418	645	2.55 (2.55,2.56)
Gansu	8959	356	2.14 (2.13,2.15)	4425	157	2.15 (2.14,2.16)	7525	240	2.21 (2.19,2.22)
Qinghai	5156	141	2.14 (2.13,2.15)	3549	97	2.19 (2.17,2.20)	3417	115	2.21 (2.20,2.22)
Ningxia	6342	169	2.18 (2.17,2.19)	5533	189	2.22 (2.21,2.23)	4502	128	2.30 (2.28,2.31)
Xinjiang	6444	210	2.14 (2.13,2.16)	4190	146	2.17 (2.16,2.19)	7037	212	2.27 (2.26,2.28)

Characteristic	2019	2018				
	All	Stroke	% (95%CI)	Total	Stroke	% (95%CI)
Henan	5,39,418	19,466	2.58 (2.58,2.58)	5,39,418	19,466	2.58 (2.58,2.58)
Hubei	17,304	2.24 (2.24,2.24)	17,304	2.24 (2.24,2.24)		
Hunan	2232	0.35 (0.35,0.35)	2232	0.35 (0.35,0.35)		
Guangdong	278	0.04 (0.04,0.04)	278	0.04 (0.04,0.04)		
Guangxi	9597	2.94 (2.93,2.94)	9597	2.94 (2.93,2.94)		
Hainan	9869	2.22 (2.22,2.22)	9869	2.22 (2.22,2.22)		
Chongqing	287	0.04 (0.04,0.04)	287			
Sichuan	17,304	2.24 (2.24,2.24)	17,304			
Guizhou	2232	0.35 (0.35,0.35)	2232			
Yunnan	278	0.04 (0.04,0.04)	278			
Tibet	9597	2.94 (2.93,2.94)	9597			
Shaanxi	9869	2.22 (2.22,2.22)	9869			
Gansu	287	0.04 (0.04,0.04)	287			
Qinghai	9597	2.94 (2.93,2.94)	9597			
Ningxia	9869	2.22 (2.22,2.22)	9869			
Xinjiang	278	0.04 (0.04,0.04)	278			

Table 2 (Continued)
Characteristic	2019	All	Stroke	% (95%CI)	A relative change from 2013 to 2019, %
50–59	1,63,937	3150	2.14 (2.14,2.15)	0.00%	
60–69	1,55,229	7602	4.70 (4.70,4.71)	10.85%	
70–79	92,112	6413	7.00 (6.99,7.00)	32.08%	
≥80	25,460	1739	6.30 (6.29,6.31)	55.17%	
P	<.0001				
Ethnic group					
Han	5,19,747	18,855	2.62 (2.62,2.62)	15.42%	
Zhuang	3353	78	1.43 (1.41,1.44)	44.44%	
Hui	2775	106	3.02 (3.00,3.04)	26.89%	
Manchu	3717	174	3.25 (3.23,3.27)	2.20%	
Uyghur	1328	27	1.68 (1.66,1.70)	47.37%	
Mongolian	1538	54	3.19 (3.17,3.21)	-3.63%	
P	<.0001				
Provinces					
Beijing	4290	133	2.83 (2.81,2.85)	14.57%	
Tianjin	6842	230	2.76 (2.74,2.77)	9.96%	
Hebei	23,871	1154	3.35 (3.35,3.36)	18.79%	
Shanxi	16,899	644	2.87 (2.86,2.88)	12.99%	
IM	10,562	385	3.82 (3.81,3.83)	13.02%	
Liaoning	26,068	1375	3.82 (3.82,3.83)	12.68%	
Jilin	15,761	989	4.02 (4.01,4.03)	16.18%	
Heilongjiang	21,703	1207	4.07 (4.06,4.08)	15.30%	
Shanghai	5387	197	2.08 (2.06,2.09)	8.90%	
Jiangsu	43,819	1364	2.02 (2.02,2.03)	13.48%	
Zhejiang	21,311	693	2.30 (2.29,2.31)	14.43%	
Anhui	18,214	712	2.71 (2.71,2.72)	18.86%	
Fujian	10,142	283	2.04 (2.03,2.05)	10.87%	
Jiangxi	18,789	634	2.16 (2.16,2.17)	9.64%	
Shandong	52,966	1791	2.66 (2.66,2.67)	20.36%	
Henan	44,790	1774	3.27 (3.27,3.28)	18.91%	
Hubei	17,563	532	2.30 (2.29,2.31)	16.16%	
Hunan	29,115	934	2.13 (2.12,2.13)	8.12%	
Guangdong	18,141	438	1.66 (1.66,1.67)	12.93%	
Guangxi	17,517	415	1.66 (1.65,1.66)	9.21%	
Hainan	3793	73	1.80 (1.79,1.81)	13.92%	
Chongqing	13,255	335	1.87 (1.86,1.88)	14.02%	

Table 2 (Continued)
In 2019, the prevalence of stroke was highest in persons aged 70–79 years in 2019, and a nearly 18-fold difference in estimated prevalence of stroke was observed between persons aged 70–79 years and 40–49 years (70–79 vs. 40–49: 7.06% vs. 0.33%; OR: 18.12 [95% CI: 18.01–18.26]). The same pattern appeared consistent from 2013 to 2019 (Figure 2B).

The weighted prevalence of stroke varied substantially by ethnicity. From 2013 to 2019, the three ethnic groups with the highest prevalence were Manchu, Mongolian, and Hui. In 2019, the respective prevalence rates were 3.25% (95% CI: 3.23–3.27%), 3.19% (3.17–3.21%), and 3.02% (3.00–3.04%) (Table 2). In 2013, the weighted prevalence of stroke ranged from 1.47% (Guangdong) to 3.53% (Heilongjiang). In 2019, the weighted prevalence of stroke ranged from 1.66% (Guangdong and Guangxi) to 4.07% (Heilongjiang) (Table 2). In 2019, the provinces in China with high prevalence of stroke exceeding 3.50% were generally in the northeast, while the provinces with low prevalence of stroke below 2.00% were generally in the south (Figure 3A and Table 3). For male and female participants, the prevalence of stroke ranged from 1.74% (Shanghai and Yunnan) to 4.56%...
(Liaoning) and from 1.05% (Tibet) to 3.80% (Jilin), respectively (Figure 3B and Table 3). Regarding rural and urban areas, the prevalence in rural areas ranged from 1.32% (Guangxi) to 4.91% (Inner Mongolia), and the prevalence in urban areas ranged from 0.74% (Hainan) to 5.70% (Shaanxi) (Figure 3D–E and Table 3). During the entire study period from 2013 to 2019, the prevalence of stroke in all provinces increased to varying degrees (Figure 4). The three provinces with the highest increases were Shaanxi (2.20% to 2.64%; 20.00%), Shandong (2.21% to 2.66%; 20.36%), and Xinjiang (1.95% to 2.35%; 20.51%), while the three provinces with the lowest increases were Hunan (1.97% to 2.13%; 8.12%), Shanghai (1.91% to 2.08%; 8.90%), and Guangxi (1.52% to 1.66%; 9.21%) (Table 2).

As shown in the Table 3, the three provinces with the highest prevalence of IS in 2019 were Inner Mongolia (3.62%; 95%CI: 3.61–3.63%), Jilin (3.80%; 3.79–3.81%), and Heilongjiang (3.73%; 3.72%–3.74%); while the three provinces with the lowest prevalence were Tibet (1.24%; 1.23–1.25%), Guangdong (1.31%; 1.31%–1.31%), and Guangxi (1.48%; 1.47–1.48%). The prevalence of ICH and SAH in 2019 stratified by provinces are presented in Table 3.

As shown in the Table 4, the most prevalent risk factors among stroke were hypertension (81.54%), hyperlipidemia (60.99%), and physical inactivity (40.09%). The least prevalent were atrial fibrillation (3.27%) and TIA (7.08%). Stroke survivors were older and more frequently were male, widowhood, living in urban, low income, and education. The prevalence of hypertension, diabetes mellitus, hyperlipidemia, atrial fibrillation, obesity, physical inactivity, TIA and family history of stroke was significantly greater in stroke than in other participants.

Discussion

This study performed the first comprehensive assessment of the trends in prevalence of stroke in China from 2013 to 2019 stratified by sociodemographic characteristics. The findings showed large disparities in the prevalence of stroke by sex, age, residence, ethnicity, and province. During the 7-year study period, the weighted prevalence of stroke increased significantly from 2.28% to 2.58%. The three provinces of Shaanxi, Shandong, and Xinjiang had the most obvious increasing trends (all >20%). Furthermore, a nearly 2.5-fold difference in estimated prevalence of stroke was observed between northeast areas and southeast coastal areas.

The current prevalence of stroke in Chinese adults aged ≥40 years is 2.58% (≈17.5 million). Interestingly, one study showed that the adjusted prevalence of stroke in adults aged ≥40 years in Argentina was 1.97%. Previous data for the Chinese population indicated that the prevalence of stroke among adults aged ≥40 years was approximately twice that of adults aged ≥18 years. Thus, we speculate that the prevalence of stroke among Chinese adults is about 1.29%, suggesting that the prevalence of stroke in China has exceeded that in developing countries such as India (0.56%) and Sri Lanka (1.04%), but remains lower than those in developed countries such as the Benin (3.22%), United States (2.6%), and United Kingdom (1.7%). Meanwhile, another study showed that the prevalence of stroke in older adults aged ≥60 years in Singapore was 7.6%. In this study, we found that the prevalence of stroke in older Chinese adults aged ≥60 years ranged from 4.68% (2013) to 5.36% (2019), which was still lower than in Singapore. These data show that the prevalence of stroke in China has not significantly exceeded the prevalence in developed countries.
The age-standardized prevalence of stroke in Chinese adults aged ≥20 years was 0.26% in 1986 and increased to 0.79% in 2008. Wang et al. indicated that the prevalence of stroke in Chinese adults aged ≥20 years was 1.11% in 2013. We speculate that the current prevalence of adult stroke in Chinese adults aged ≥20 years has risen to 1.29%, being 4.9, 1.6, and 1.2 times higher than the prevalence in 1986, 2008, and 2013, respectively. Findings from the 2016 Global Burden of Disease Study showed that the age-standardized prevalence rates for stroke had increased from 1.48% in 1990 to 1.89% in 2016. The 2019 Global Burden of Disease Study found that the age-standardized prevalence rates for stroke was 2.24% in 2019, which might be overvalued. It should be noted that the prevalence and incidence of stroke have risen faster in China than in other countries. The main possible reason for the increased prevalence of stroke is aging of the general population. China faces an aging tsunami. By the end of 2016, the number of adults aged ≥60 years reached 230 million (16.0%). Aging increases the incidence of stroke risk factors such as diabetes and hypertension, which further increase the burden of stroke. Furthermore, the ongoing high prevalence of risk factors like hypertension and diabetes and the inadequate management act as catalysts for the occurrence of stroke. In the China Hypertension Survey (2012–2015), 23.2% (≈244.5 million) of Chinese adults aged ≥18 years had hypertension, and among individuals with hypertension, 46.9% were aware of their condition, 40.7% were taking prescribed antihypertensive medications, and 15.3% had controlled...
hypertension. Another study on approximately 1.7 million community-dwelling adults aged 35–75 years from all 31 provinces in mainland China suggested that the rate of hypertension control was less than one in ten (7.2%). Meanwhile, the prevalence of diabetes in China rose from 10.9% in 2013 to 12.8% in 2019, but its rate of control showed no significant change (49.2% vs. 49.4%). Secondly, these upward trends may have arisen through changes toward prolonged survival and reduced mortality among stroke patients. This

Figure 3. Weighted prevalence of stroke (%) among Chinese adults aged ≥40 years Stratified by sex and residence in the 31 provinces in China in 2019. (A) Weighted prevalence of stroke among Chinese adults aged ≥40 years (China map ID: 1012072252); (B) Weighted prevalence of stroke among males aged ≥40 years (China map ID: 1012051844); (C) Weighted prevalence of stroke among females aged ≥40 years (China map ID: 1012037076); (D) Weighted prevalence of stroke among rural residents aged ≥40 years (China map ID: 1012046738); (E) Weighted prevalence of stroke among urban residents aged ≥40 years (China map ID: 1012091064).
Provinces	All	Classification		
	IS	ICH	SAH	
Beijing	2.83 (2.81,2.85)	2.75 (2.73,2.77)	0.15 (0.14,0.15)	0.14 (0.14,0.15)
Tianjin	2.76 (2.74,2.77)	2.46 (2.45,2.47)	0.30 (0.30,0.31)	0.04 (0.03,0.04)
Hebei	3.35 (3.35,3.36)	2.82 (2.82,2.83)	0.55 (0.54,0.55)	0.03 (0.03,0.03)
Shanxi	2.87 (2.86,2.88)	2.99 (2.98,3.00)	0.26 (0.26,0.26)	0.12 (0.12,0.12)
IM	3.82 (3.81,3.83)	3.62 (3.61,3.63)	0.25 (0.25,0.25)	-
Liaoning	3.82 (3.82,3.83)	3.44 (3.44,3.45)	0.46 (0.45,0.46)	0.03 (0.03,0.03)
Jilin	4.02 (4.01,4.03)	3.80 (3.79,3.81)	0.30 (0.30,0.30)	0.03 (0.03,0.03)
Heilongjiang	4.07 (4.06,4.08)	3.73 (3.72,3.74)	0.36 (0.35,0.36)	0.04 (0.04,0.04)
Shanghai	2.08 (2.06,2.09)	1.94 (1.92,1.95)	0.11 (0.10,0.11)	0.04 (0.04,0.04)
Jiangsu	2.02 (2.02,2.03)	1.82 (1.81,1.83)	0.21 (0.21,0.22)	0.04 (0.04,0.04)
Zhejiang	2.30 (2.29,2.31)	1.78 (1.77,1.79)	0.50 (0.50,0.51)	0.06 (0.06,0.06)
Anhui	2.71 (2.71,2.72)	2.40 (2.39,2.41)	0.31 (0.31,0.31)	0.09 (0.09,0.09)
Fujian	2.04 (2.03,2.05)	1.76 (1.75,1.77)	0.29 (0.28,0.29)	0.02 (0.02,0.02)
Jiangxi	2.16 (2.16,2.17)	1.81 (1.80,1.82)	0.35 (0.35,0.35)	0.03 (0.03,0.03)
Shandong	2.66 (2.66,2.67)	2.32 (2.32,2.33)	0.36 (0.36,0.36)	0.03 (0.03,0.03)
Henan	3.27 (3.27,3.28)	2.86 (2.86,2.87)	0.43 (0.43,0.43)	0.03 (0.03,0.03)
Hubei	2.30 (2.29,2.31)	1.96 (1.95,1.97)	0.36 (0.35,0.36)	0.09 (0.08,0.09)
Hunan	2.13 (2.12,2.13)	1.69 (1.69,1.70)	0.45 (0.45,0.45)	0.05 (0.05,0.05)
Guangdong	1.66 (1.66,1.67)	1.31 (1.31,1.31)	0.32 (0.32,0.32)	0.07 (0.07,0.07)
Guangxi	1.87 (1.86,1.88)	1.57 (1.56,1.58)	0.28 (0.27,0.28)	0.00 (0.00,0.00)
Sichuan	1.87 (1.87,1.88)	1.52 (1.51,1.52)	0.32 (0.31,0.32)	0.07 (0.07,0.07)
Guizhou	1.86 (1.86,1.87)	1.69 (1.68,1.69)	0.22 (0.22,0.22)	0.04 (0.04,0.04)
Yunnan	1.75 (1.74,1.76)	1.51 (1.50,1.52)	0.31 (0.31,0.31)	0.01 (0.01,0.01)
Tibet	2.31 (2.30,2.32)	1.24 (1.23,1.25)	0.94 (0.93,0.94)	0.18 (0.17,0.18)
Shaanxi	2.64 (2.64,2.65)	2.36 (2.35,2.37)	0.32 (0.31,0.32)	0.02 (0.02,0.02)
Gansu	2.25 (2.24,2.26)	1.75 (1.74,1.76)	0.42 (0.42,0.43)	0.10 (0.10,0.11)
Qinghai	2.24 (2.22,2.26)	2.07 (2.05,2.09)	0.27 (0.26,0.28)	-
Ningxia	2.32 (2.31,2.33)	2.14 (2.13,2.15)	0.35 (0.34,0.35)	-
Xinjiang	2.35 (2.34,2.36)	2.02 (2.01,2.03)	0.38 (0.38,0.38)	-

Table 3 (Continued)
may indicate the higher prevalence isn't necessarily a bad thing if it is that folks are living longer post-stroke. The outcomes for patients with stroke have gradually improved from 2002 to 2013 due to the improvement in the quality of stroke treatment and care, and improvement in outcomes is reflected a slightly decreased mortality of stroke patients from 1985 to 2013. Cheng et al. reported that from 2004 to 2019, the age-standardized mortality rate (ASMR) of stroke substantially decreased, with a reduction of 39.8%. Furthermore, in the past 7 years (2013–2019), some specific programs for patients with stroke are implemented in the

Provinces	Sex						
	Male	Female	Rural	Urban			
Hunan	2.51 (2.50,2.51)	1.73 (1.73,1.74)	2.00 (1.99,2.01)	2.37 (2.36,2.38)			
Guangdong	2.09 (2.08,2.09)	1.26 (1.26,1.27)	1.76 (1.75,1.77)	1.58 (1.57,1.58)			
Guangxi	1.91 (1.90,1.92)	1.41 (1.40,1.42)	1.32 (1.32,1.33)	2.20 (2.19,2.20)			
Hainan	2.58 (2.56,2.60)	1.13 (1.12,1.14)	1.90 (1.89,1.91)	0.74 (0.71,0.76)			
Chongqing	2.26 (2.25,2.28)	1.51 (1.50,1.52)	2.88 (2.86,2.91)	1.61 (1.60,1.62)			
Sichuan	2.01 (2.00,2.01)	1.73 (1.72,1.74)	1.73 (1.72,1.74)	2.09 (2.08,2.10)			
Guizhou	2.08 (2.08,2.09)	1.65 (1.65,1.66)	1.98 (1.97,1.99)	1.78 (1.77,1.78)			
Yunnan	1.74 (1.73,1.75)	1.76 (1.75,1.78)	2.67 (2.65,2.69)	1.47 (1.46,1.48)			
Tibet	3.23 (3.21,3.25)	1.05 (1.04,1.06)	2.01 (1.99,2.03)	2.45 (2.44,2.47)			
Shaanxi	2.75 (2.74,2.76)	2.53 (2.52,2.55)	2.38 (2.37,2.38)	5.70 (5.66,5.74)			
Gansu	2.37 (2.36,2.39)	2.10 (2.08,2.12)	1.95 (1.94,1.96)	2.99 (2.96,3.01)			
Qinghai	1.98 (1.96,2.01)	2.53 (2.50,2.56)	2.25 (2.23,2.27)	2.20 (2.14,2.26)			
Ningxia	3.42 (3.40,3.44)	1.46 (1.45,1.48)	2.52 (2.50,2.54)	2.10 (2.08,2.11)			
Xinjiang	3.06 (3.04,3.08)	1.49 (1.48,1.50)	3.43 (3.40,3.46)	2.07 (2.06,2.08)			

Table 3: Weighted prevalence of stroke among different provinces in 2019 by classification, sex and residence(%[95%CI]).
* Standardized prevalence of stroke adjusted to the 2010 China standard population, gender, age, regions, urban and rural; weighted estimates.
IS, ischemic stroke; ICH, intracerebral hemorrhage; SAH, subarachnoid hemorrhage; IM, Inner Mongolia.

Figure 4. The relative change (%) in the weighted prevalence of stroke among Chinese adults aged ≥ 40 years from 2013 to 2019 by each province (China map ID: 1122825493).
Table 4: Characteristics of the all the study participants stratified by stroke.

The results were presented as n (percentages) for categorical variables and as mean (Standard deviation, SD) for continuous variables.

1 Diagnostic criteria were a self-reported diagnosis from 2013 to 2016.
2 Obesity was defined as BMI ≥ 28.0 kg/m².

BMI, Body Mass Index; CNY, Chinese Yuan Renminbi; TIA, Transient Ischemic Attack; MI, Medical insurance; SD, Standard Deviation.
health care system. Stroke 1-2-0 educational programme and stroke emergency map greatly reduces prehospital rescue time. The China Stroke Center Project, led by the CSPPC (since 2011) and the Chinese Stroke Association (since 2015), has played a major role in standardizing stroke treatment and improving stroke prognosis. Those programs reduce stroke mortality, which in turn leads to the increasing prevalence of stroke.

It has been reported that a belt for high incidence of stroke exists in nine provincial regions within north and west China. In the present study, we confirmed that the northern and eastern regions had the highest prevalence of stroke. An 18-year prospective cohort study from 1997 to 2015 provided an extension of the current evidence on the north-to-south gradient by demonstrating that the differences varied across urban and rural China. The existing evidence suggests that adherence to healthy diets (Mediterranean, DASH, or plant-based “prudent”) was associated with reduced risk of stroke. The geographical environments, food cultures, and dietary habits differ substantially between the southern and northern regions of China. Unhealthy diets in the northern regions may cause chronic diseases such as hypertension and diabetes that can lead to the occurrence of stroke. Furthermore, PM2.5 pollution in wintertime has been worsening, especially in northern China. Wellenius et al. demonstrated that exposure to PM2.5 levels considered generally safe by the United States Environmental Protection Agency increased the risk of ischemic stroke onset within hours of exposure. There also have been a number of papers conducted in China that have looked at acute stroke risk with air pollution, suggesting that atmospheric PM2.5 is an independent risk factor for stroke risk. We further found that the difference in prevalence of stroke between urban and rural areas has been declining, and that the prevalence in urban areas surpassed that in rural areas in 2019. China’s rapid urbanization growth during the past few decades has narrowed the urban-rural gap. Moreover, increasing trends in stroke risk factors such as hypertension and diabetes were more obvious in urban populations than in rural populations. Lastly, there are more barriers to care or access in the north than in the south in China. The China’s seventh national population census shows that the urbanization rates in the northern and southern regions of China are 63% and 65%, respectively, suggesting that these are more rural areas where resources are sparse in the Northern China. In addition, the economic level and medical resources of Southern China is significantly better than that of Northern China. These would be upstream factors that would lead to different food cultures or dietary habits as suggested.

We found that the prevalence of stroke was higher in male participants than in female in China. Truelsen et al. reviewed the published data from EU countries, Iceland, Norway, and Switzerland and showed that stroke prevalence increased exponentially with age and were in most countries higher for men than for women. Similarly, in 2012, CDC reported state-specific stroke prevalence based on Behavioral Risk Factor Surveillance System (BRFSS) data for 2006-2010, showing that age-adjusted stroke prevalence was also higher for men than for women. Furthermore, the prevalence of stroke and its risk factors were also higher among men in Sri Lanka. Stroke incidence and mortality were higher in rural than in urban areas in North America. In this study, we also found that the prevalence of stroke was higher in rural areas than in urban areas. However, Kusuima et al. reported that stroke prevalence was 0.0017% in rural Indonesia, 0.022% in urban Indonesia, 0.5% among urban Jakarta adults, and 0.8% overall. Another study also showed that rural parts of South Asia have a lower stroke prevalence compared with urban areas. Those different might represent varying degrees of urbanization in those countries.

The main strength of the present study is the assessment of trends in prevalence of stroke in China from 2013 to 2019. In addition, the prevalence was stratified by sociodemographic characteristics, including sex, age, residence, ethnicity, and province. These adjustments can be of great significance for the development of stroke prevention and control strategies across China and its provinces. Finally, enrolling at least 500,000 people each year made our research have extensive national coverage. The present study also has some limitations. First, we only included Chinese adults aged ≥40 years. Thus, our findings are not representative of all Chinese adults and it only show the status of the middle-aged and elderly people (≥40 years) in China. However, a previous study found that stroke patients aged <40 years accounted for <2% of all stroke patients. For the high-risk population screening and intervention project, it is considered effective to select people aged ≥40 years. In addition, the screening points with a stroke prevalence of 0 will be deleted. This exclusion will lead to biased estimates, specifically the overestimation of stroke rates due to selective sampling based on our outcome of interest. Second, the northern-south gradient in prevalence of stroke across China warrants further research. Such research could be used for the adoption of stroke prevention strategies according to local conditions. Third, the study did not use representative samples because this was not possible with such rapid large-scale recruitment. The enrollment rate varied within the study period and the provinces. These disparities may have affected the estimates for prevalence and incidence of stroke. However, we used a multi-factor weighting method to calculate the prevalence of stroke, which can effectively reduce these effects. In addition, there are huge variations in the sample size between provinces. The prevalence of stroke in some provinces with limited sample size might be overestimated. And the differences across provinces may be to
Conclusion
The prevalence of stroke in China and most provinces has continued to increase in the past 7 years (2013–2019) and warrants a broad-based nationwide strategy for improved prevention as well as greater efforts in screening and more effective and affordable interventions. For provinces with high prevalence of stroke in particular, the present data will be useful for the Provincial Health Committee to develop targeted programs for stroke prevention and allocate medical resources.

Contributors
Dr WL had full access to all the data in the study and took responsibility for the integrity of the data and the data analysis accuracy. Study concept and design: All authors; Acquisition of data: TW, YF, BH, WL; Analysis and interpretation of data: TW, YF, ML, CL; Drafting of the manuscript: TW, YF; Critical revision of the manuscript for important intellectual content: BH, ML, CL; Administrative, technical, or material support: all authors; Obtained funding: WL, TW; Study supervision: WL.

Data sharing statement
Please contact the corresponding author (Pro. Wang) for the data request.

Declaration of interests
None.

Acknowledgment
We thank all the patients, hospitals, and staff involved in the project. We especially want to express our gratitude to those doctors and medical staff who participated in the clinical data collection and follow-up. We need special thanks, Mr. Niu XD and Mrs. Liu JJ (China Stroke Data Center, Beijing, China), who helped us collect data and perform statistical processing. We also thank Alison Sherwin, PhD, from Liwen Bianji, Edanz Group China (www.liwenbianji.cn/ac) for editing the English text of a draft of this manuscript.

Participating hospitals
The following hospitals took part in the China Stroke High-risk Population Screening and Intervention Program from Jan, 2013, to Dec, 2019:

The First Hospital of Hebei Medical University, Changzhou Central Hospital, The First People's Hospital of Jingmen City, Second People's Hospital of Jiaozuo City, Anhui Provincial Hospital, Handan City First Hospital, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Hebei Provincial People's Hospital, Second Affiliated Hospital of Zhejiang University School of Medicine, The First People's Hospital of Huainan City, Anyang People's Hospital, Zhejiang Provincial People's Hospital, The First People's Hospital of Yibin City, Lianyungang First People's Hospital, Nanyang Nanshi Hospital, Nanjing Gulou Hospital, Luoyang Central Hospital, Affiliated Hospital of Southwest Medical University, Zhuzhou Central Hospital, The First Affiliated Hospital of Soochow University, Suzhou Municipal Hospital, Shanxi Provincial People's Hospital, Hunan Provincial People's Hospital, Shanghai Pudong Hospital, Xiangtan Central Hospital, The Second Hospital of Hebei Medical University, Yichun People's Hospital, The First People's Hospital of Huaihua City, Qingyuan People's Hospital, The First People's Hospital of Yunnan Province, Jiuquan People's Hospital, Hunan Provincial Brain Hospital, Mianyang People's Hospital, The Third People's Hospital of Datong City, Changde First People's Hospital, Yueyang First People's Hospital, 3201 Hospital, Shaoyang Central Hospital, Sichuan Provincial People's Hospital, Shengli Oilfield Central Hospital, Yongzhou Central Hospital, Xingtai People's Hospital, Chengu Central Hospital, Zhalong People's Hospital, Changsha.

Central Hospital, Liao-cheng People's Hospital, Deyang People's Hospital, Affiliated Hospital of North Sichuan Medical College, Shenzhen Second People's Hospital, Hengshui City People's Hospital, First People's Hospital of Baiyin City, Affiliated Hospital of Guizhou Medical University, Lishui Central Hospital, General Hospital of Ningxia Medical University, Shijiazhuang Third Hospital, Pingxiang City People's Hospital, Yingkou Central Hospital, The Second Affiliated Hospital of Harbin Medical University, Nantong University Hospital, Wuhan First Hospital, Three Gorges

some extent true, but may have been exaggerated by selection bias. Future work needs to remove these variations. Fourth, the subsequent round of the survey might include participants from the previous round and it was possible that those stroke patients may have larger motivation to participate in the study than those non-patients, which might cause potential selection bias. Fifth, minority groups in China tend to live in specific areas. The current study compared the minority groups with Han Chinese across the country, which is inappropriate. It might be more suitable to compare the minority groups with those people living in the same areas. However, at this stage, it is difficult for us to match the Han and ethnic minorities according to the place of residence. This will be a good direction for our future research. Finally, we did not obtain information on patient adherence to medications, which reduced our ability to investigate some potential reasons for suboptimal treatment. In addition, the prevalence rate can increase with increased incidence rates as well as with reduced fatality rates. However, the change in incidence rates of this study was not obtained.
Second Hospital; Fujian Provincial Hospital; Songyuan Central Hospital; Shaanxi Provincial People’s Hospital; People’s Hospital of Xinjiang Uygur Autonomous Region; Tianjin Huahnu Hospital; The First Affiliated Hospital of Army Medical University; Yichang Central People’s Hospital; Siping Central Hospital; Special Medical Center of the PLA Strategic Support Force; The First People’s Hospital of Kashgar; Beijing Tiantan Hospital, Capital Medical University; Tianjin Medical University General Hospital; The First Affiliated Hospital of Xinjiang Medical University; Shanghai Changhai Hospital; Beijing Tsinghua Chang Gung Memorial Hospital; Huazhong University of Science Tongji Hospital, Tongji Medical College; The First Affiliated Hospital of Shihze University School of Medicine; People’s Hospital of Tibet Autonomous Region; Second People’s Hospital of Tibet Autonomous Region; General Hospital of Tibet Military Region; Peking Union Medical College Hospital, Chinese Academy of Medical Sciences; Beijing Luhe Hospital, Capital Medical University.

Funding statement
This study was supported by grants from the National Major Public Health Service Projects (No. Z1350800000022). The funding organizations had no role in the study’s design and concept; the collection, management, analysis, and interpretation of the data; or the manuscript’s preparation, review, or approval.

Ethics approval
The Ethics Committee of Capital Medical University Xuanwu Hospital approved the trial protocol according to the Declaration of Helsinki (No. 2012045). Written informed consent was obtained from all participants before entering the study.

Supplementary materials
Supplementary material associated with this article can be found in the online version at doi:10.1016/j.lanwpc.2022.100550.

References
1. Wu S, Wu B, Liu M, et al. Stroke in China: advances and challenges in epidemiology, prevention, and management. Lancet Neurol. 2019;18(4):394–405.
2. Wang W, Jiang B, Sun H, et al. Prevalence, incidence, and mortality of stroke in China: results from a nationwide population-based survey of 480,687 adults. Circulation. 2017;135(11):1189–1197.
3. Ferri CP, Schonhorn C, Kalra L, et al. Prevalence of stroke and related burden among older people living in Latin America, India and China. J Neurol. Neurosciences. 2011;8210:(1074–1082).
4. Wang J, An Z, Li B, et al. Increasing stroke incidence and prevalence of risk factors in a low-income Chinese population. Neurology. 2015;84(4):374–381.
5. Guan T, Ma J, Li M, et al. Rapid transitions in the epidemiology of stroke and its risk factors in China from 2002 to 2013. Neurology. 2017;88(1):14–21.
6. Chao BH, Yan F, Hua Y, et al. Stroke prevention and control system in China: CSPPC-stroke program. Int J Stroke. 2021;6(1):165–172.
7. Qi W, Ma J, Guan T, et al. Risk factors for incident stroke and its subtypes in China: a prospective study. J Am Heart Assoc. 2020;9(2):e015225.
8. Stroke—1589. Recommendations on stroke prevention, diagnosis, and therapy. Report of the WHO task force on stroke and other cerebrovascular disorders. Stroke. 1989;20:1407–1413.
9. Chen C, Lu FC. The guidelines for prevention and control of overweight and obesity in Chinese adults. Biomed Environ Sci. 2004;17(1):1–36.
10. Joint Committee for Developing Chinese guidelines on Prevention and Treatment of Dyslipidemia in Adults. Chinese guidelines on prevention and treatment of dyslipidemia in adults (no abstract). Chin J Cardiol. 2007;35(1):390.
11. Ameriso SF, Gomez-Schneider MM, Hawkes MA, et al. Prevalence of stroke in Argentina: a door-to-door population-based study (EntEPA). Int J Stroke. 2021;16(1):180–187.
12. Kamalakarnan S, Gudavalli AS, Gudavalli VSM, Gokela S, Kuper H. Incidence & prevalence of stroke in India: a systematic review. Indian J Med Res. 2017;146(2):173–185.
13. Chang T, Gajasinghe S, Arambepola C. Prevalence of stroke and its risk factors in urban Sri Lanka: population-based study. Stroke. 2015;46(7):2956–2968.
14. Adoukomou T, Yahoudiehou B, Aghetou M, et al. Prevalence of stroke survivors in Panzou in northern Benin: a door-to-door community survey. Revue Neurol. 2020;176(10):839–843.
15. Fang J, Shaw KM, George MG, et al. Prevalence of stroke—United States, 2006–2010. MMWR. 2012;61(12):379–382.
16. BHF, Stroke Statistics 2009. British Heart Foundation Statistics, 2010. http://www.bhf.org.uk/heart-health/statistics/statistics-publications.aspx.
17. Teh WL, Abdin E, Vaingankar JA, et al. Prevalence of stroke, risk factors, disability and care need in older adults in Singapore: results from the WiSE study. BMJ Open. 2018;8(5):e022284.
18. Xue GB, Yu BX, Wang XZ, Wang GQ, Wang ZY. Stroke in urban and rural areas of China. Chin Med J. 1991;104(8):697–704.
19. Yang ZL, Liu J, Ge JP, Chen L, Zhao ZG, Yang WY. Prevalence of cardiovascular disease risk factor in the Chinese population: the 2007–2008 China national diabetes and metabolic disorders study. Eur Heart J. 2013;34(2):219–220.
20. Liu S, Li Y, Zeng X, et al. Burden of cardiovascular diseases in China. 1990–2016: findings from the 2016 global burden of disease study. JAMA Cardiol. 2019;4(1):342–352.
21. Ma Q, Li R, Wang L, et al. Temporal trend and attributable risk factors of stroke burden in China, 1990–2019: an analysis for the global burden of disease study 2019. Lancet Public Health. 2021;6(12):e987–e996. https://doi.org/10.1016/S2468-2667(21)00228-0.
22. Tu WJ, Chao B, Wang L. Prevalence of stroke in China: overestimated? Lancet Public Health. 2022;7(3):e404.
23. Li Z, Jiang Y, Li H, Xian Y, Wang Y. China’s response to the rising stroke burden. BMJ. 2015;354:h379.
24. Sharrief A, Grotta JC. Stroke in the elderly. Handbook of Clinical Neurology. 167. Elsevier; 2019:393–418.
25. Li X, Fan L, Leng SX. The aging tsunami and senior healthcare development in China. J Am Geriatr Soc. 2018;66(8):1462–1468.
26. Budoff TW. Hypertension and aging. Aging Res Rev. 2016;26:96–111.
27. Aihma RS. Connecting obesity, aging and diabetes. Nutr Med. 2009;1(5):396–397.
28. Wang Z, Chen Z, Zhang L, et al. Status of hypertension in China: results from the China hypertension survey, 2012–2015. Circulat. 2018;137(72):2344–2356.
29. Lu J, Lu Y, Wang L, et al. Prevalence, awareness, treatment, and control of hypertension in China: data from 1.7 million adults in a population-based screening study (China PEACE Million Persons Project). Lancet. 2017;390(10012):2349–2358.
30. Wang L, Gao P, Zhang M, et al. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2014. JAMA. 2017;317(24):2515–2523.
31. Li Y, Teng D, Shi X, et al. Prevalence of diabetes recorded in mainland China using 2008 diagnostic criteria from the American Diabetes Association: national cross-sectional study. BMJ. 2020;369: m9997.

www.thelancet.com Vol 28 November, 2022 21
32 Avan A, Digaleh H, Di Napoli M, et al. Socioeconomic status and stroke incidence, prevalence, mortality, and worldwide burden: an ecological analysis from the global burden of disease study 2017. BMC Med. 2019;17(1):191.
33 Li Z, Wang C, Zhao X, et al. Substantial progress yet significant opportunity for improvement in stroke care in China. Stroke. 2016;47(2):284–289.
34 Cheng J, Wang W, Xu J, Yin L, Liu Y, Wu J. Trends in Stroke Mortality Rate — China, 2004–2015. [J]. China CDC Wkly. 2022;4(24):513–517.
35 Zhao J, Liu R. Stroke 1-2-0: a rapid response programme for stroke in China. Lancet Neurol. 2017;16(1):27–28.
36 Chao BH, Tu WJ, Wang LD. Initial establishment of a stroke management model in China: 10 years (2011–2020) of stroke prevention project committee, national health commission. Chin Med J. 2021;134(20):2418–2420.
37 Shen Y, Chao BH, Cao L, Tu WJ, Wang LD. Stroke center care and outcome: results from the CSPPC stroke program. Transl Stroke Res. 2020;11(1):377–386.
38 Xu G, Ma M, Liu X, Hankey GJ. Is there a stroke belt in China and why? Stroke. 2013;44(7):1775–1781.
39 Xia F, Yu X, Li Y, Chen Y, Zhang W, You C, Hu X. Geographic variations of stroke incidence in Chinese communities: an 18-year prospective cohort study from 1997 to 2015. J Stroke. 2020;22(2):345–356.
40 Kontogianni MD, Panagiotakos DB. Dietary patterns and stroke: a systematic review and re-meta-analysis. Maturitas. 2014;79(1):41–47.
41 Song F, Cho MS. Geography of food consumption patterns between south and North China. Foods. 2017;6(5):134.
42 Song C, Wu L, Xie Y, et al. Air pollution in China: status and spatiotemporal variations. Environ Pollut. 2017;227:334–347.
43 Wellenius GA, Burger MR, Cousi LA, et al. Ambient air pollution and the risk of acute ischemic stroke. Arch Intern Med. 2012;172(3):229–234.
44 Yu W, Liu S, Jiang J, et al. Burden of ischemic heart disease and stroke attributable to exposure to atmospheric PM2.5 in Hubei province, China. Atmos Environ. 2020;221:117679.
45 Ban J, Wang Q, Ma R, et al. Associations between short-term exposure to PM2.5 and stroke incidence and mortality in China: a case-crossover study and estimation of the burden. Environ Pollut. 2021;268:117674.
46 Huang F, Luo Y, Guo Y, et al. Particulate matter and hospital admissions for stroke in Beijing, China: modification effects by ambient temperature. J Am Heart Assoc. 2016;5(7):e003477.
47 Li Y, Jia L, Wu W, Yan J, Liu Y. Urbanization for rural sustainability—Rethinking China’s urbanization strategy. J Clean Prod. 2018;178:380–386.
48 Tu WJ, Zeng X, Liu Q. Aging tsunami coming: the main finding from China’s seventh national population census. Aging Clin Exp Res. 2022;34(5):1159–1163.
49 Wang X, Fan G. Analysis on the regional disparity in China and the influential factors. Econ Res J. 2004;14(3):33–44.
50 Choi KC, Zhang YB, Chang KC. Regional disparity of medical resources and its effect on mortality rates in China. Front Public Health. 2020;8:
51 Truelsen T, Piechowski-Jóźwiak B, Bonita R, Mathers C, Bogousslavsky J, Boysen G. Stroke incidence and prevalence in Europe: a review of available data. Eur J Neurol. 2006;13(6):581–598.
52 Kapral MK, Austin PC, Jeyakumar G, et al. Rural-urban differences in stroke risk factors, incidence, and mortality in people with and without prior stroke: the CANHEART stroke study. Circul: Cardiovasc Qual Outcomes. 2015;8(2):314–325.
53 Kusutama Y, Venkatasubramanian N, Kernas LS, Misbach J. Burden of stroke in Indonesia. Int J Stroke. 2009;4(3):179–186.
54 Kulusheeshtha A, Anderson LM, Goyal A, Keenan NL. Stroke in South Asia: a systematic review of epidemiologic literature from 1980 to 2010. Neuroepidemiology. 2012;38(1):123–129.