BACKGROUND
A 78-year-old patient presented with a tumor in the left parotid area. His medical history included type 2 diabetes, hyperlipidemia, gout, and essential hypertension. He had a total hip prosthesis on his left side. He was a former smoker of approximately five cigarettes per day but ceased the tobacco use 40 years before. The patient reported to have no previous or current alcohol consumption. Two skin lesions were removed from his left cheek and temporal region at a different hospital 5 months and 1 week prior to his first consultation. Both lesions were histologically classified as basal cell carcinomas (BCC) removed with narrow margins (1-3mm).

METHODS
2.1 Investigations
The patient was referred for assessment of a growing mass in the left parotid area. Computer tomography (CT) showed a tumor extending to the left mandibular condyle. MRI also described a tumor located in close proximity to the mandibular neck and condyle (Figure 1A), with probable infiltration of the masseter muscle and reactive inflammatory changes in the lateral pterygoid musculature (Figure 1B). There were no enlarged lymph nodes and no signs of a primary skin tumor. Fine-needle aspiration cytology (FNAC) was performed showing malignant epithelial cells. Further, a core needle biopsy confirmed a squamous cell carcinoma. It was at this stage not clear whether the tumor was a metastasis or a primary parotid tumor. Preoperative MRI showed no enlarged local lymph nodes, but lymph nodes with increased signal intensity in the masticatory space and subcutaneously on the left side. However, ultrasound of the neck did not detect pathological lymph nodes and it was therefore decided not to perform a neck dissection in addition to resection of the tumor and adjacent lymph nodes. CT including the neck and thorax showed no signs of a primary tumor, regional or lung metastasis. The histopathological report confirmed the initial diagnosis of squamous cell carcinoma, suggested as metastasis from skin cancer but difficult to distinguish from a
primary parotid tumor histologically. The skin biopsies were re-examined, but the diagnosis of a basal cell carcinoma was not changed. Therefore, it could not be conclusively clarified that the tumor was in fact a metastasis from the skin lesions. However, no other primary tumor has been identified.

2.2 | Treatment

A total parotidectomy was performed with resection of overlying skin and the mandibular ramus and condyle (Figure 2A). A tumor sized 37x30x25 mm was removed. The tumor penetrated the superior branches of the facial nerve, which were cut. Adjacent lymph nodes were removed and were not invaded by the tumor in the final surgical pathology report. A stock total mandibular joint prosthesis was implanted (Biomet Microfixation, Jacksonville, FL, USA) with a mandibular component of titanium, and a fossa component of ultrahigh molecular weight polyethylene. The fossa component was attached with five 2.0 mm screws, 4 of 9 mm length, and 1 of 7 mm length. A standard size (55 mm) mandible component was fixed with four 2.7 mm bicortical screws of 8 mm length. Two polydioxanone (PDS) sutures were placed from the mandible to the fossa to stabilize the joint, due to the removal of the majority of masticatory muscle attachments (Figure 2B). The remaining part of the temporal muscle was mobilized and sutured to the buccal fat pad for improved soft tissue coverage of the prosthesis (Figure 2C). The skin flap was modified for primary closure without a skin graft (Figure 2D). Four mandibulo-maxillary fixation (MMF) screws were installed in a non tooth-bearing area, one in each quadrant, and elastics were applied to prevent early luxation of the joint. Cefuroxime 1.5 g was administered intravenously 3 times daily for 5 days after the operation. Postoperative radiation was planned and administered, starting 32 days after the operation. The total dose was 2 Gy x 32 (total 64 Gy) to the parotid area and 1.7 Gy
Invasion of SCC to the parotid gland is rare, and local symptoms can be mistaken for temporomandibular disorders, which can possible delay the diagnosis. It has been shown that the majority of patients with SCC in the parotid gland had prior skin lesions in an area known to drain to the gland. A minority of patients had a primary SCC of the parotid gland. Also, patients where gland involvement was detected more than 4 month after excision of the skin lesion had a poor prognosis. Metastasis from head/neck cutaneous SCCs can be found in the parotid gland region due to the anatomy of the lymphatic vessels, and up to 60-70% of metastatic nodes from facial skin SCCs have been detected in the parotid gland. Also, tumor size > 6 cm or facial nerve involvement has been identified as poor prognostic factors, the latter being the case in the presented patient.5

Also, skin lesions were removed 5 months prior to gland involvement, suggesting reduced prognosis. However, both lesions were histologically BCC and not SCC, and therefore, it could not be confirmed that the tumor was in fact a metastasis from the skin. As the tumor extended to the mandibular condyle, a resection was performed in order to achieve adequate surgical margins.

A total joint prosthesis is an established treatment modality for advanced disease of the TMJ, such as ankylosis and advanced ostheoarthritis. Also, TMJ prostheses have been applied after trauma and even benign tumors. For malignant disease involving the TMJ, a bone graft is the standard treatment for reconstruction of the hard tissue in combination with appropriate soft tissue grafting when needed. Costochondral grafts or reconstruction plates with a condylar component can be used, and delayed reconstruction can in some cases be an alternative. Nonvascularised grafts are however unsuitable when radiation therapy is indicated. Combined surgical and radiotherapy have been shown to achieve a better outcome with less relapse and higher survival compared with single modality treatment.3 Prosthetic reconstruction of the joint has been shown in a case of adenoid cystic carcinoma of the external auditory canal where a condylectomy was performed along with the tumor removal. Reconstruction was performed 8 months after the first operation, and no radiation therapy was administered. Unfortunately, recurrence of the tumor occurred shortly after the reconstruction.6

One disadvantage of bone grafts is the donor site morbidity. Also, accurate reconstruction of joint function is difficult, in particular if part of the fossa is missing. Reconstruction plates are prone to exposure and infection, in particular following postoperative radiation therapy. Radiation also complicates delayed reconstruction due to the permanent reduced blood supply in the area. Implantation of a total joint prosthesis enables immediate restoration of joint function, but the risk of exposure of the prosthesis and potential infection due to decreased vascularisation to overlying soft tissue and fibrosis should be considered. To reduce radiation scattering, a titanium ramus component was used, with less density than the standard cobalt chromium alloy. Part of the skin and soft tissue surrounding the joint was removed increasing the risk of exposure and infection. A free flap was not performed for soft tissue augmentation, but pedicled temporal muscle and fat was rotated over the reconstructed area for increased soft tissue coverage. The report illustrates that this approach can be implemented, but further follow-up is scheduled in the coming 5 years to evaluate the long-term treatment outcome. No complications related to the joint prosthesis have been observed so far.
CONFLICT OF INTEREST
None declared.

AUTHOR CONTRIBUTIONS
TØP: contributed to clinical assessment of the patient, drafting the manuscript, and approving the final version. SL, BL, and SL: contributed to clinical assessment of the patient, critical revision of the manuscript, and approving the final version.

ETHICAL APPROVAL
Consent from the patient was considered sufficient, and additional ethical approval was not required.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID
Torbjørn Ø. Pedersen https://orcid.org/0000-0001-9463-3076

REFERENCES
1. Klasser GD, Epstein JB, Utsman R, Yao M, Nguyen PH. Parotid Gland Squamous Cell Carcinoma Invading the Temporomandibular Joint. J Am Dent Assoc. 2009;140(8):992-999.
2. Marks MW, Ryan RF, Litwin MS, Sonntag BV. Squamous cell carcinoma of the parotid gland. Plast Reconstr Surg. 1987;79(4):550-554.
3. Veness MJ, Porceddu S, Palme CE, Morgan GJ. Cutaneous head and neck squamous cell carcinoma metastatic to parotid and cervical lymph nodes. Head Neck. 2007;29(7):621-631.
4. O’Brien CJ. The parotid gland as a metastatic basin for cutaneous cancer. Arch Otolaryngol Head Neck Surg. 2005;131(7):551-555.
5. Audet N, Palme CE, Gullane PJ, et al. Cutaneous metastatic squamous cell carcinoma to the parotid gland: analysis and outcome. Head Neck. 2004;26:727-732.
6. Park JH, Jo E, Cho H, Kim HJ. Temporomandibular joint reconstruction with alloplastic prosthesis: the outcome of four cases. Maxillofac Plast Reconstr Surg. 2017;39:6.
7. Patel A, Maisel R. Condylar prosthesis in head and neck cancer reconstruction. Arch Otolaryngol Head Neck Surg. 2001;127(7):842-846.

How to cite this article: Pedersen TØ, Lybak S, Lund B, Løes S. Temporomandibular joint prosthesis in cancer reconstruction preceding radiation therapy. Clin Case Rep. 2021;9:1438–1441. https://doi.org/10.1002/ccr3.3794