Significance of the Study

- Rheumatoid arthritis not only affects the joints but can also affect internal organs, thus causing permanent disability in many instances. Currently, there is no cure for this autoimmune disease, rather, symptoms are addressed on an individual basis. Here, we succinctly summarize the classic and current treatment options available for the management of patients suffering from this complex disease.

Keywords
Rheumatoid arthritis · Boutonnière deformity · Swan neck deformity

Abstract
Rheumatoid arthritis (RA) is a chronic, inflammatory, systemic autoimmune disease, affecting the joints with varying severity among patients. The risk factors include age, gender, genetics, and environmental exposure (cigarette smoking, air pollutants, and occupational). Many complications can follow, such as permanent joint damage requiring arthroplasty, rheumatoid vasculitis, and Felty syndrome requiring splenectomy if it remains unaddressed. As there is no cure for RA, the treatment goals are to reduce the pain and stop/slow further damage. Here, we present a brief summary of various past and present treatment modalities to address the complications associated with RA.

Introduction

Rheumatoid arthritis (RA) is a chronic, symmetrical, inflammatory autoimmune disease that initially affects small joints, progressing to larger joints, and eventually the skin, eyes, heart, kidneys, and lungs. Often, the bone and cartilage of joints are destroyed, and tendons and ligaments weaken [1]. All this damage to the joints causes deformities and bone erosion, usually very painful for a patient. Common symptoms of RA include morning stiffness of the affected joints for > 30 min, fatigue, fever, weight loss, joints that are tender, swollen and warm, and rheumatoid nodules under the skin. The onset of this dis-
ease is usually from the age of 35 to 60 years, with remis-

sion and exacerbation. It can also afflict young children
even before the age of 16 years, referred to as juvenile RA
(JRA), which is similar to RA except that rheumatoid fac-
tor is not found [2–5]. In the West, the prevalence of RA
is believed to be 1–2% [5, 6], and 1% worldwide [7].

Clinically, the diagnosis of RA can be differentiated
from osteoarthritis (OA) as the affected areas in RA are
the proximal interphalangeal (PIP) and metacarpopha-
langeal (MP) joints; OA typically affects the distal inter-
phalangeal (DIP) joint (Fig. 1). OA is the most common
type of arthritis and is caused by wear and tear rather than
an autoimmune condition. It has no effects on the lungs,
heart, or immune system. In addition, OA typically af-
fects only one side of the body, as opposed to the sym-
metrical nature of RA. Another differentiating factor is
that RA patients suffer from persistent morning stiffness
for at least ≥1 h. Patients with OA may have morning
stiffness, but this typically resolves or decreases within
20–30 min [8, 9].

The goals of treatment for RA are to reduce joint in-
flammation and pain, maximize joint function, and pre-
vent joint destruction and deformity. Treatment regi-
mens consist of combinations of pharmaceuticals, weight-
bearing exercise, educating patients about the disease,
and rest. Treatments are generally customized to a pa-

Fig. 1. A classic example of joint deformities associated with rheumatoid arthritis. Boutonniere deformity is vis-
ible in the 5th digit of the right hand, Swan neck deformity in the 5th digit of the left hand, and hallux valgus can
be seen in the foot.
tient’s needs and depend on their overall health. This includes factors such as disease progression, the joints involved, age, overall health, occupation, compliance, and education about the disease [10]. This review briefly highlights the classic and current treatment options available to address the discomfort/complications of RA. An exhaustive review was recently published by Smolen et al. [11].

First-Line Management: NSAIDS and Corticosteroids

The overall goal of first-line treatment is to relieve pain and decrease inflammation. Medications, considered to be fast-acting, are nonsteroidal anti-inflammatory drugs (NSAIDs) including acetylsalicylate (Aspirin), naproxen (Naprosyn), ibuprofen (Advil and Motrin), and etodolac (Lodine). Aspirin is an effective anti-inflammatory for RA when used at high doses, due to the inhibition of prostaglandins. It is one of the oldest NSAIDs used for joint pain. Side effects of aspirin at high doses include tinnitus, hearing loss, and gastric intolerance. There are other NSAIDs that are newer on the market than aspirin and just as effective. In addition, these drugs require fewer doses per day. NSAIDs work by inhibiting cyclo-oxygenase to prevent the synthesis of prostaglandins, prostacyclin, and thromboxanes. Common side effects are nausea, abdominal pain, ulcers, and gastrointestinal (GI) bleeding. These symptoms can be reduced if taken with food, antacids, proton pump inhibitors, or misoprostol (Cytotec). An even newer NSAID called celecoxib (Celebrex) is a selective Cox-2 inhibitor that has less risk of GI side effects [12].

Corticosteroids are a more potent anti-inflammatory medication than NSAIDs, but they come with greater side effects. For this reason, they are only indicated for a short period of time at low doses, during exacerbations or flares of RA. Intra-articular injections of corticosteroids can be used for the local symptoms of inflammation [13]. They work by preventing the release of phospholipids and decreasing the actions of eosinophils, thereby decreasing inflammation. Their side effects include bone-thinning, weight gain, diabetes, and immunosuppression. Advising the patient to take calcium and vitamin D supplementation can prevent thinning of the bone. Side effects can be reduced by gradually tapering doses as a patient’s condition improves. It is important to not abruptly discontinue injected or oral corticosteroids as this can lead to suppression of the hypothalamic-pituitary-adrenal axis (HPA) or flares of RA [14].

Opioid Analgesics

Whittle et al. [15] addressed the question of the use of opioid analgesics for patients with pain due to RA. From their conclusions, weak opioids such as codeine, dextropropoxyphene, and tramadol may play an effective role in the short-term management of pain caused by RA, but the adverse effects outweigh the benefits. They recommend that other analgesics be considered first [16].

Second-Line Management: Disease-Modifying Antirheumatic Drugs

The overall goal of second-line treatment is to promote remission by slowing or stopping the progression of joint destruction and deformity. Medications are considered to be slow-acting because they take from weeks to months to be effective. Disease-modifying antirheumatic drugs (DMARDs) can also reduce the risk of developing lymphoma that can be associated with RA [17].

Methotrexate (MTX) is the initial second-line drug (also considered an anchor drug). It is an analog to folic acid that competitively inhibits the binding of dihydrofolic acid (FH2) to the enzyme that is responsible for converting FH2 to folinic acid (FH4). Without FH4, the metabolism of purine and pyrimidine is impaired, and the synthesis of amino acids and polyamine is inhibited. MTX is an immunosuppressive drug that requires regular blood tests due to its side effects, i.e., liver problems, cirrhosis, and bone marrow deterioration. Folic acid supplementation can reduce the risk of side effects. It is an effective DMARD, has a lower incidence of side effects than other DMARDs, and has dosage flexibility, meaning that doses can be adjusted as needed [18]. Until now, there is convincing data showing the benefits of combinations of conventional synthetic DMARDs over MTX monotherapy. However, biological and synthetic DMARDs in combination are reported to be better than MTX but with more side effects and greater costs [11, 14, 19].

Hydroxychloroquine (Plaquenil) is an antimalarial drug and can be used for long-term treatment of RA. This drug decreases the secretion of monocyte-derived proinflammatory cytokines. Common side effects include problems in the GI tract, skin, and central nervous system. The eyes, in particular, can be affected when this drug is taken at high doses. Patients on this medication require routine consultation with an ophthalmologist [20].

Sulfasalazine (Azulfidine) is a DMARD typically used in the treatment of irritable bowel disease. Combined with
anti-inflammatory medications, this DMARD can be used to treat RA. The mechanism of action of this drug in the treatment of RA has not been identified. It is thought that sulfa-pyridine, a reduced form of the medication after administration, may reduce secretions of interleukin (IL)-8 and monocyte chemoattractant protein (MCP). This drug has side effects of GI and central nervous system symptoms as well as rash. It is usually well-tolerated among patients, but should be avoided in patients with sulfalallergies since it contains sulfal and salicylate compounds [21].

Gold salts, such as aurothioglucose (Solganal), auranofin (Ridaura), gold sodium thiomalate (Myochrysine), and D-penicillamine (Depen and Cuprimine) have been used frequently in the treatment of RA. These DMARDs require frequent blood and urine tests due to damage to the bone marrow and kidneys. They have not been used recently due to the more effective treatments, particularly MTX. Other immunosuppressive medications like azathioprine (Imuran), cyclophosphamide (Cytoxan), chlorambucil (Leukeran), and cyclosporine (Sandimmune) can be employed but are typically reserved for patients with very aggressive RA or complications of the disease [22, 23].

Newer Medications

Leflunomide is an oral medication that is converted to malononitrilamide, which inhibits the synthesis of ribonucleotide uridine monophosphate pyrimidine. It relieves symptoms and retards the progression of RA. It is recommended to be used in combination with MTX but can constitute a monotherapy if patients do not respond to MTX. Side effects include hypertension, GI upset, liver damage, leukopenia, interstitial lung disease, neuropathy, rash, and bone marrow damage [24, 25].

Biologics, also known as biological DMARDs, are rapidly effective in retarding the progression of the joint damage caused by RA. They are considered to be a more “direct, defined and targeted” method of treatment [26]. Nonetheless, biologics pose the problem of serious side effects, such as increased risk of infections. Other common side effects include neurologic diseases like multiple sclerosis and lymphoma [27–29].

Tumor necrosis factor (TNF) is a messenger protein that promotes inflammation in joints. Biologic medications such as etanercept (Enbrel), infliximab (Remicade), adalimumab (Humira), golimumab (Simponi), and certolizumab pegol (Cimzia) are all TNF inhibitors that prevent the recruitment of the cells that cause inflammation, bringing rapid symptom relief. They are recommended if other second-line medications are not effective. Unfortunately, these medications tend to be very expensive and their role in treating patients at various stages of RA and with various mechanisms of action is a matter of continuous investigation. They are often used in combination with other DMARDs, especially MTX. TNF inhibitors are contraindicated in patients with congestive heart failure of demyelinating diseases. Each biologic medication has a different mode of administration [30–32].

Anakinra (Kineret) is a drug that is injected subcutaneously daily. It works by binding to IL-1, a chemical messenger of inflammation. It can be used in combination with other DMARDs or as a monotherapy, but due to its low response rate compared to other biologics, it is not used as frequently [33, 34]. Rituximab (Rituxan) is useful in RA because it depletes the B cells responsible for inflammation and the production of abnormal antibodies. Typically used in the treatment of lymphoma, this drug can be used in cases of RA where TNF inhibitors have failed. In addition, rituximab has shown benefits in treating the complications of RA, such as vasculitis and cryoglobulinemia. It is administered as an intravenous infusion in 2 doses, 2 weeks apart, every 6 months [35, 36]. Abatacept (Orencia) is a biologic medication that works by blocking T cell activation. This is given as an intravenous infusion once a month or subcutaneously once a week. It is used in patients who have not been effectively treated with traditional DMARDs [37].

Tocilizumab (Actemra) is a biologic that works by blocking IL-6, a chemical messenger of inflammation. It is administered via intravenous infusion given monthly or via weekly subcutaneous injections. It is also used for patients who have not been effectively treated with traditional DMARDs [38]. Lastly, tofacitinib (Xeljanz) has a different mechanism of action and works by blocking Janus kinases within cells, which are enzymes of inflammation. For this reason, it is known as a JAK inhibitor. This medication is used for patients who have not been effectively treated with MTX. Tofacitinib is taken orally twice daily, alone or in combination with MTX. It should not be used in combination with traditional biologic medications or other potent immunosuppressants [39, 40].

Surgery

Joint surgery in patients with RA reached a peak in the 1990s. However, a 2010 study showed decreased rates of joint surgery in RA patients 40–59 years of age. In contrast, patients older than 60 years had increased rates of
A Brief Overview of Treatment of RA

Surgery [41]. Surgery is a last resort for the treatment of RA. Indications include intractable joint pain or functional decline due to joint destruction after all nonsurgical approaches have failed. At this point, the disease is considered “end-stage.” The goal of surgical management is to relieve pain for the patient and restore the function of the joints. A patient needing surgical treatment should be evaluated based on their customized needs because there are many different types of surgery.

A tenosynovectomy involves the excision of inflamed tendon sheaths or repairing a recent tendon rupture, most commonly in the hand [42]. Radiosynovectomy is an alternative to surgical synovectomy; it involves intra-articular injection of small radioactive particles, is cost-effective, and can treat multiple joints simultaneously [43]. Repair of ruptured tendons can also be done through arthroscopy, most commonly in the rotator cuff of the shoulder. Excision of an inflamed synovium via arthroscopy or open synovectomy is no longer commonly used due to the availability of more effective options. Another surgical option is osteotomy. In this procedure, weight-bearing bones are realigned to correct valgus or varus deformities, most commonly in the knee [44]. Joint fusion can be done to stabilize joints that are not easily replaceable such as the ankle, wrist, thumb, and cervical spine. A procedure for soft-tissue release can be done to correct severe contractures around joints causing decreased range of motion; this is an older procedure that is not commonly utilized [45]. Small-joint implant arthroplasty can be done to reduce pain and improve hand function, most commonly in the metacarpophalangeal joints. Metatarsal-head excision arthroplasty is done to alleviate severe forefoot pain. Lastly, a total joint replacement involves removing the damaged joint and replacing it with a metallic, plastic, or ceramic prosthesis. This is most commonly done in the shoulder, elbow, wrist, hip, knee, and ankle [46, 47]. The major contraindication for surgical joint replacements is the presence of active systemic arthritic infection.

Other Therapies

It has been found that, in contrast to suggestions in the past, there are no specific foods that patients with RA should avoid. The idea that diet can “aggravate” symptoms is no longer accepted as true [48]. Home remedies have been proven to be helpful for patients suffering from RA, although they are not as effective as DMARDs. Fish oils and omega-3 fatty acid supplements are beneficial for the short-term symptoms of RA. Cumin has been shown to have anti-inflammatory effects in patients with this disease. Calcium and vitamin D supplementation can be helpful in preventing osteoporosis. Lastly, folic acid can help to prevent the side effects of MTX [49].

Patients with RA also benefit from physical and occupational therapy. It is recommended that they perform exercise regularly to maintain joint mobility and strengthen the muscles around the joints. Movement exercises that are less traumatic for joints but good for muscle strength include swimming, yoga, and tai chi. Applying heat- and cold-packs before and after exercise minimizes painful symptoms. Studies are being done on different types of connective tissue collagen, to better understand and reduce RA disease activity. Lastly, with the scientific advancements and enhanced understanding of the molecular mechanisms, newer and better treatment options should become available in the near future [50–55].

Conclusion

RA is a debilitating, chronic, inflammatory disease, capable of causing joint damage as well as long-term disability. Early diagnosis and intervention are essential for the prevention of serious damage and loss of essential bodily functions. The treating physician should consider adhering to treat-to-target (T2T) recommendations [56], by first outlining the aims and then implementing the protocols to achieve and assess them. Furthermore, early referral to a specialist can help to ensure better treatment outcomes. With advances in the field of molecular medicine, we have a better understanding of disease mechanisms which can aid in the designing of more effective treatments. Old treatment modalities have been optimized and new ones have been produced. Gene array analysis is proving beneficial in finding out which patients will be more responsive to specific medications. This customization will allow for more rapid treatment as well as decrease the likelihood of disease progression during the experimental phase to seek an appropriate treatment for a particular patient. Gene array analysis is also being used to determine which patients are at greater risk for more aggressive forms of RA. It is foreseen that treatment methods will face tremendous improvements in the management of RA.

Disclosure Statement

The authors declare no conflict of interest.
References

1. Lee JE, Kim JJ, Cho MS, Lee J. A Case of Rheumatoid Vasculitis Involving Hepatic Artery in Early Rheumatoid Arthritis. J Korean Med Sci. 2017 Jul;32(7):1207–10.
2. Fox CQ, Ahmed SS. Physician Assistant’s Clinical Review Cards. Philadelphia: F. A. Davis Company; 2002. pp. 18–9.
3. McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011 Dec; 365(23):2205–19.
4. Chaudhari K, Rizvi S, Syed BA. Rheumatoid arthritis: current and future trends. Nat Rev Drug Discov. 2016 May;15(5):305–6.
5. Picerno V, Ferro F, Adinolfi A, Valentini E, Tani C, Alunno A. One year in review: the pathogenesis of rheumatoid arthritis. Clin Exp Rheumatol. 2015 Jul-Aug;33(4):551–8.
6. Alamanos Y, Voulgari PV, Drosos AA. Incidence and prevalence of rheumatoid arthritis, based on the 1987 American College of Rheumatology criteria: a systematic review. Semin Arthritis Rheum. 2006 Dec;36(3):182–8.
7. Chopra A, Abdel-Nasser A. Epidemiology of rheumatic musculoskeletal disorders in the developing world. Best Pract Res Clin Rheumatol. 2008 Aug;22(4):583–604.
8. McGonagle D, Herrmann KG, Tan AL. Differentaliation between osteoarthritis and psoriatic arthritis: implications for pathogenesis and treatment in the biologic therapy era. Rheumatology (Oxford). 2015 Jan;54(1):29–38.
9. Piyarulli D, Koolaee RM. A 22-Year-Old Female With Joint Pain. In: Piyarulli D, Koolaee RM, editors. Medicine Morning Report: Beyond the Pearls. Philadelphia: Elsevier; 2016. pp. 65–77.
10. Staheli LT. Lower extremity management. In: Staheli LT, Hall JG, Jaffe KM, Paholke DO, editors. Arthrogryposis: A Text Atlas. Cambridge: Cambridge University Press; 1998. pp. 55–73.
11. Smolen JS, Aletaha D, Barton A, Burmester GR, Emery P, Firestein GS, et al. Rheumatoid arthritis. Nat Rev Dis Primers. 2015 Jan;5(1):75.
12. Onck PK, Lirk P, Tan CH, Seymour RA. An evidence-based update on nonsteroidal anti-inflammatory drugs. Clin Med Res. 2007 Mar;5(1):19–34.
13. Combe B, Landewe R, Daës CI, Hua C, Aletaha D, Álvaro-Gracia JM, et al. 2016 update of EULAR recommendations for the management of early arthritis. Ann Rheum Dis. 2017 Jun;76(6):948–59.
14. Liu D, Ahmet A, Ward L, Krishnamoorthy P, Mandelcorn ED, Leigh R, et al. A practical guide to the monitoring and management of the complications of systemic corticosteroid therapy. Allergy Asthma Clin Immunol. 2013 Aug;9(1):30.
15. Whittle SL, Colebatch AN, Buchbinder R, Edwards CJ, Adams K, Englbrecht M, et al. Multinational evidence-based recommendations for pain management by pharmacotherapy in inflammatory arthritis: integrating systematic literature research and expert opinion of a broad panel of rheumatologists in the 3e Initiative. Rheumatology (Oxford). 2012 Aug;51(8):1416–25.
16. Richards BL, Whittle SL, van der Heijde DM, Buchbinder R. The efficacy and safety of anti-inflammatory drugs: a Cochrane systematic review. J Rheumatol Suppl. 2012 Sep;90(0):21–7.
17. Smolen JS, Landewé R, Breedveld FC, Dougados M, Emery P, Gaujoux-Viala C, et al. EU-LAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs. Ann Rheum Dis. 2010 Jun;69(6):964–75.
18. Tian H, Cronstein BN. Understanding the mechanisms of action of methotrexate: implications for the treatment of rheumatoid arthritis. Bull NYU Hosp Jt Dis. 2007;65S:168–73.
19. Daës CI, Hua C, Combe B, Landewe R. Non-pharmacological and pharmacological interventions in patients with early arthritis: a systematic literature review informing the 2016 update of EULAR recommendations for the management of early arthritis. RMD Open. 2017 Jan;3(1):e000404.
20. Silva JC, Mariz HA, Rocha LF Jr, Oliveira PS, Dantas AT, Duarte AL, et al. Hydroxychloroquine decreases Th17-related cytokines in systemic lupus erythematosus and rheumatoid arthritis patients. Clínicos (São Paulo). 2013 Jun;68(6):766–71.
21. Volin MV, Harlow LA, Woods JM, Campbell PL, Amin MA, Tokuhira M, et al. Treatment with sulfasalazine or sulfa pyridine, but not 5-aminosalicyclic acid, inhibits basic fibroblast growth factor-induced endothelial cell chemotaxis. Arthritis Rheum. 1999 Sep;42(9):1927–35.
22. Saiala AK. An overall review on rheumatoid arthritis. J Curr Pharma Res. 2014;4:1138–43.
23. Kumar P, Banik S. Pharmacotherapy options in rheumatoid arthritis. Clin Med Insights Arthritis Musculoskelet Disord. 2013 Aug;6:35–43.
24. Fox RJ, Herrmann ML, Frangou CG, Wahl GM, Morris RE, Kirschbaum BJ. How does leflunomide modulate the immune response in rheumatoid arthritis? BioDrugs. 1999 Oct;12(4):301–15.
25. Gibošky A. Combination therapy for rheumatoid arthritis in the era of biologicals. HSS J. 2006 Feb;2(1):30–41.
26. Shid WC Jr. Rheumatoid Arthritis. 2017. (accessed 2017 May 12). Available from: http://www.medicinenet.com/rheumatoid_arthritis/article.htm.
27. Rein P, Mueller RB. Treatment with Biologics in Rheumatoid Arthritis: an Overview. Rheumatol Ther. 2017 Dec;4(2):247–61.
28. den Broeder AA, van Herwaarden N, van den Bemt BJ. Therapeutic drug monitoring of biologics in rheumatoid arthritis: a disconnect between beliefs and facts. Curr Opin Rheumatol. 2018 May;30(3):266–75.
29. Tovey MG, Lallemand C. Immunogenicity and other problems associated with the use of biopharmaceuticals. Ther Drug Monit. 2011 Jun;33(2):113–28.
30. Gay RD, Clarke AW, Elgundi Z, Domagala T, Simpson RJ, Le NB, et al. Anti-TNFα domain antibody construct CEP-37247: full antibody functionality at half the size. MAbs. 2010 Nov-Dec;2(6):625–38.
31. Lis K, Kuzawinska O, Balkowiec-Iksza E. Tumor necrosis factor inhibitors – state of knowledge. Arch Med Sci. 2014 Dec;10(6):1175–85.
32. Perpétus IP, Caetano-Lopes J, Rodrigues AM, Campanilho-Marques R, Ponte C, Canhão H, et al. Effect of Tumor Necrosis Factor Inhibitor Therapy on Osteoclast Precursors in Rheumatoid Arthritis. BioMed Res Int. 2017;2016:260402.
33. Mann DL. Innate immunity and the failing heart: the cytokine hypothesis revisited. Circ Res. 2015 Mar;116(7):1254–68.
34. Curtis JR, Singh JA. Use of biologics in rheumatoid arthritis: current and emerging paradigms of care. Clin Ther. 2011 Jun;33(6):679–707.
35. Mok CC. Rituximab for the treatment of rheumatoid arthritis: an update. Drug Des Devel Ther. 2013 Dec;8:87–100.
36. Emer JJ, Claire W. Rituximab: a review of dermatological applications. J Clin Aesthet Dermatol. 2009 May;2(3):29–37.
37. Rosman Z, Shoenfeld Y, Zandman-Goddard G. Biologic therapy for autoimmune diseases: an update. BMC Med. 2013 Apr;11(1):88.
38. Gómez-Gómez GJ, Masedo Á, Yela C, Martínez-Montiel MP, Casis B. Current stage in inflammatory bowel disease: what is next? World J Gastroenterol. 2015 Oct;21(40):11282–303.
39. Hodge JA, Kawabata TT, Krishnaswami S, Clark JD, Telliez JB, Dowty ME, et al. The mechanism of action of tofacitinib – an oral Janus kinase inhibitor for the treatment of rheumatoid arthritis. Clin Exp Rheumatol. 2016 Mar-Apr;34(2):318–28.
40. Cada DJ, Demaris K, Levien TL, Baker DE. Tofacitinib. Hosp Pharm. 2013 May;48(5):413–24.
41. Louie GH, Ward MM. Changes in the rates of joint surgery among patients with rheumatoid arthritis in California, 1983-2007. Ann Rheum Dis. 2010 May;69(5):868–71.
42. Chung KC, Pushman AG. Current concepts in the management of the rheumatoid hand. J Hand Surg Am. 2011 Apr;36(4):736–47.
A Brief Overview of Treatment of RA

43 Knut L. Radiosynovectomy in the therapeutic management of arthritis. World J Nucl Med. 2015 Jan-Apr;14(1):10–5.
44 Puddu G, Cipolla M, Cerullo G, Franco V, Giannì E. Which osteotomy for a valgus knee? Int Orthop. 2010 Feb;34(2):239–47.
45 Brooks F, Harirahan K. The rheumatoid forefoot. Curr Rev Musculoskelet Med. 2013 Dec;6(4):320–7.
46 Rheumatic surgery-overview/Surgical treatment-general opinions. Acta Orthop Scand. 2000;71(Suppl 294):8–14.
47 Pajarinen J, Lin TH, Sato T, Yao Z, Goodman SB. Interaction of Materials and Biology in Total Joint Replacement - Successes, Challenges and Future Directions. J Mater Chem B Mater Biol Med. 2014 Nov;2(41):7094–108.
48 Halstead JA, Stoten S. Orthopedic Nursing: Caring for Patients with Musculoskeletal Disorders. Bridgewater: Western Schools; 2010.
49 Escott-Stump S. Nutrition and Diagnosis-Related Care. Philadelphia: Lippincott Williams & Wilkins; 2011.

50 Centers for Disease Control and Prevention. Physical Activity for Arthritis (accessed 2017 April 25). Available from: https://www.cdc.gov/arthritis/basics/physical-activity-overview.html.
51 Cooney JK, Law RJ, Matschke V, Lemmey AB, Moore JP, Ahmad Y, et al. Benefits of exercise in rheumatoid arthritis. J Aging Res. 2011 Feb;2011:681640.
52 Zitnay JL, Li Y, Qin Z, San BH, Depalle B, Reese SP, et al. Molecular level detection and localization of mechanical damage in collagen enabled by collagen hybridizing peptides. Nat Commun. 2017 Mar;8:14913.
53 Burska AN, Roget K, Blits M, Soto Gomez I, van de Loo F, Hazelwood LD, et al. Gene expression analysis in RA: towards personalized medicine. Pharmacogenomics J. 2014 Apr;14(2):93–106.
54 Nakamura S, Suzuki K, Iijima H, Hata Y, Lim CR, Ishizawa Y, et al. Identification of baseline gene expression signatures predicting therapeutic responses to three biologic agents in rheumatoid arthritis: a retrospective observational study. Arthritis Res Ther. 2016 Jul;18(1):159.
55 González-Alvaro I, Ortiz AM, Seoane IV, García-Vicuña R, Martínez C, Gomariz RP. Biomarkers predicting a need for intensive treatment in patients with early arthritis. Curr Pharm Des. 2015;21(2):170–81.
56 Smolen JS, Breedveld FC, Burmester GR, Bykerk V, Dougados M, Emery P, et al. Treating rheumatoid arthritis to target: 2014 update of the recommendations of an international task force. Ann Rheum Dis. 2016 Jan;75(1):3–15.