Inversion of the V\(\delta 1\) to V\(\delta 2\) \(\gamma\delta\) T cell ratio in CVID is not restored by IVIg and is associated with immune activation and exhaustion

Dominic Paquin-Proulx, PhD\(^a\), Nathália Silveira Barsotti, PhD\(^b\), Bianca A. N. Santos, MSC\(^b\), Ana Karolina B. B. Marinho, MD, PhD\(^b\), Cristiana M. Kokron, MD, PhD\(^b\), Karina I. Carvalho, PhD\(^c\), Myrthes T. Barros, MD, PhD\(^b\), Jorge Kalil, MD, PhD\(^b\), Douglas F. Nixon, MD, PhD\(^a\), Esper G. Kallas, MD, PhD\(^b\)

Abstract

Common variable immunodeficiency (CVID) is defined by low levels of IgG and IgA, but perturbations in T cells are also commonly found. However, there is limited information on \(\gamma\delta\) T cells in CVID patients. Newly diagnosed CVID patients \((n=15)\) were enrolled before and after intravenous IgG (IVIg) replacement therapy. Cryopreserved peripheral blood mononuclear cells were then used to study \(\gamma\delta\) T cells and CVID patients were compared to healthy controls \((n=22)\). The frequency and absolute count of V\(\delta 1\) \(\gamma\delta\) T cells was found to be increased in CVID (median 0.60% vs 2.64%, \(P<0.01\) and 7.5 vs 39, \(P<0.01\) respectively), while they were decreased for V\(\delta 2\) \(\gamma\delta\) T cells (median, 23.6% vs 0.74%, \(P<0.01\) and 37.8 vs 13.9, \(P<0.01\) respectively) resulting in an inversion of the V\(\delta 1\) to V\(\delta 2\) ratio (0.24 vs 1.4, \(P<0.001\)). Markers of immune activation were elevated on all subsets of \(\gamma\delta\) T cells, and HLA-DR expression was associated with an expansion of V\(\delta 1\) \(\gamma\delta\) T cells \((r=0.73, P=0.003)\). Elevated PD-1 expression was found only on V\(\delta 2\) \(\gamma\delta\) T cells (median 1.15% vs 3.08%, \(P<0.001\)) and was associated with the decrease of V\(\delta 2\) \(\gamma\delta\) T cells \((r=-0.67, P=0.007)\). IVIg had no effect on the frequency of V\(\delta 1\) and V\(\delta 2\) \(\gamma\delta\) T cells or HLA-DR expression, but alleviated CD38 expression on V\(\delta 1\) \(\gamma\delta\) T cells (median MFI 965 vs 736, \(P<0.05\)). These findings suggest that immunological perturbations of \(\gamma\delta\) T cells are a general feature associated with CVID and are only partially reversed by IVlg therapy.

Abbreviations: CVID = common variable immunodeficiency, DN = double negative, IVlg = intravenous immunoglobulin, PD-1 = Programmed Death 1.

Keywords: CVID, gamma delta T cells, immune activation, IVlg, PD-1, V\(\delta 1\), V\(\delta 2\)

1. Introduction

Common variable immunodeficiency (CVID) is characterized by low levels of IgG and IgA and/or IgM (2 standard deviations below the normal level) and by an impaired antibody response to vaccination.\(^{[1]}\) While some genetic mutations causing CVID have been identified, it is thought to be a polygenic disease with multiple susceptibility loci involved.\(^{[2]}\) The poor antibody response in CVID patients results in recurrent infections of the respiratory and gastrointestinal tracts. CVID patients also have an increased incidence of some forms of cancer and autoimmunity.\(^{[3,4]}\) Probably due to the chronic state of immune activation and loss of key regulatory cells.\(^{[5-8]}\) Treatment for CVID consists of IgG replacement that can be given subcutaneous or intravenously (IVIg). Replacement therapy significantly reduces the number of infections\(^{[9]}\) and corrects some immune abnormalities,\(^{[10]}\) while other perturbations are only partially restored or unchanged.\(^{[10]}\)

In humans, \(\gamma\delta\) T cells represent between 0.5% and 16% of T cells in the blood with an average of approximately 4%.\(^{[1]}\) The major subsets are designated V\(\delta 1\) and V\(\delta 2\), the latter being the most abundant. Similar to \(\alpha\beta\) T cells, \(\gamma\delta\) T cells develop in the thymus and undergo gene rearrangement, but they are not subjected to positive selection.\(^{[12]}\) They can produce similar cytokines to conventional \(\alpha\beta\) T cells, including IL-17,\(^{[13]}\) and can also have cytotoxic functions. Following infection, \(\gamma\delta\) T cells are activated earlier than \(\alpha\beta\) T cells and are involved in the initiation of the inflammatory response.\(^{[11]}\) The antigens recognized by \(\gamma\delta\)
T cells are very diverse and include phosphoantigens, peptides, and glycolipids. The γδ TCR can also recognize stress-induced ligands. For instance, a Vγ4Vδ6 T cell clone has been shown to recognize EPCR expression on tumor cell and CMV-infected cells.

HIV infection leads to a profound perturbation of the γδ T cell population, characterized by an early expansion of the Vδ1 T cells, while Vδ2 T cells are greatly reduced in number. Vδ2 T cells from HIV patients were also found to have a lower capacity to respond to phosphoantigens. The expansion of Vδ1 T cells has been associated with increased microbial translocation, now recognized as a major contributor of chronic immune activation in HIV infection. CVID patients share several immunological features with HIV patients, namely CD4+ and CD8+ T cell activation, loss of iNKT cells and of regulatory T cells. In contrast to CVID, HIV is characterized by hypergammaglobulinemia, but HIV disease progression is characterized by loss of memory B cell subsets and impaired antibody response to vaccination. Increased microbial translocation has also been suggested to occur in CVID. Two case report studies have shown an increase in γδ T cells in 1 CVID patient each; however, no γδ T cells study has been performed on a larger cohort of CVID patients. We hypothesized that chronic immune activation in CVID patients would lead to perturbations in γδ T cells populations. Thus, we evaluated the frequency and phenotype of γδ T cells in a cohort of CVID patients.

2. Materials and methods

2.1. Study cohort and samples

Fifteen CVID patients (10 females and 5 males aged 6–51, average 34) from the Primary Immunodeficiency Outpatient Clinic of the Clinical Immunology and Allergy Division of HC-FMUSP, fulfilling the PagID/DESID criteria (1999) for CVID diagnosis and 22 healthy controls (14 females, 8 males aged 25–45, average 36) were enrolled in the study. Group size was based on sample availability. All patients were HIV negative. The study was approved by the Hospital das Clinicas, University of Sao Paulo Medical School Ethics Committee (CAPesq), and written informed consent was provided by all participants or their legal guardians. Peripheral blood mononuclear cells (PBMC) were isolated by density-gradient sedimentation using Ficoll-Paque (Lymphoprep; Nycomed Pharma, Oslo, Norway). Isolated PBMC were washed twice in Hank balanced salt solution (Gibco, Grand Island, NY), and cryopreserved in RPMI 1640 (Gibco), supplemented with 20% heat inactivated fetal bovine serum (FBS; Hyclone Laboratories, Logan, UT), 50 μM of penicillin (Gibco), 50 μg/mL of streptomycin (Gibco), 10 mM glutamine (Gibco) and 7.5% dimethylsulfoxide (DMSO; Sigma, St Louis, MO). Cryopreserved PBMC from all subjects were stored in liquid nitrogen until used in the assays. For CVID patients, samples were collected before and after initiation of IVlg treatment.

2.2. Flow cytometry and mAbs

Cryopreserved specimens were thawed, washed, and counted and viability were assessed using the Countess Automated Cell Counter system (Invitrogen, Carlsbad, CA). PBMC were washed and stained in Brilliant Violet Stain Buffer (BD Biosciences, San Jose, CA) at room temperature for 15 min in 96-well V-bottom plates in the dark. Samples were then washed and fixed using Cytofix/Cytoperpe (BD Biosciences) before flow cytometry data acquisition. mAbs used in flow cytometry: CD3 AF700 (clone UCHT1), CD4 PE-CF594 (clone RPA-T4), CD8 BV711 (clone RPA-T8), CD38 APC-H7 (clone HB7), CD161 BV421 (clone DX12), HLA-DR APC (clone L243), TCR γδ BV550 (clone B1), and PD-1 PE-Cy7 (clone EH12.1) were all from BD Biosciences, TCR Vδ1 FITC (clone TS8.2) was from Abcam (Cambridge, MA), and TCR Vδ2 PE (clone B6) was from Biolegend (San Diego, CA). Live/dead aqua fixable cell stain was from Life Technologies (Eugene, OR). All antibodies were used together in 1 panel. A minimum number of 200 events were recorded for all subsets of γδ T cells. Data were acquired on a BD LSRFortessa instrument (BD Biosciences) and analyzed using FlowJo Version 9.8.5 software (TreeStar, Ashland, OR).

3. Results

3.1. Expansion of Vδ1+ and loss of Vδ2+ in CVID

Table 1 shows the demographic details of the subjects included in this study. We used cryopreserved PBMCs samples from a treatment naive cohort of CVID patients followed 9 to 15 months after initiation of monthly intravenous immunoglobulin replacement therapy (400–600 mg/kg) to study γδ T cells by flow cytometry. The viability of the thawed PBMC was over 95% and there was no difference in the viability between the groups. First, we evaluated the frequency of the Vδ1+, Vδ2+, and Vδ1–Vδ2–γδ T cell subsets in healthy controls and in treatment naive CVID patients. In healthy controls, Vδ1+ cells typically represented less than 1% of the T cells and Vδ2+ represented the major subset of γδ T cells (Supplementary file 1, http://links.lww.com/MD/B140). Supplementary file 2, http://links.lww.com/MD/B141 summarized all comparisons between CVID patients and healthy controls. In CVID patients Vδ1+ were significantly increased (median 0.60% vs 2.64%, P < 0.01) while Vδ2+ were reduced (median, 2.36% vs 0.74%, P < 0.01) compared with healthy controls (Fig. 1A). The frequency of the Vδ1+ Vδ2+ γδ T cell subset was also increased in CVID patients (Fig. 1A, median 0.39% vs 0.59%, P < 0.05). Overall, this led to a significant increase in the ratio of Vδ1+ to Vδ2+ (Fig. 1B, 0.24 vs 1.4, P < 0.001).

Importantly, the frequency of all subsets of γδ T cells was not changed after IgG replacement therapy (median 2.64% vs 5.25%, P = 0.17; 0.74% vs 1.33% P = 0.58; 0.59% vs 0.60%, P = 0.21 for Vδ1+, Vδ2+, and Vδ1–Vδ2–γδ T cell respectively).

Next, we compared the absolute count of each subset of γδ T cells in CVID patients to those observed in healthy controls. Again, Vδ1+ were increased (median 7.5 vs 39, P < 0.01) and Vδ2+ were decreased (median 37.8 vs 13.9, P < 0.01; Fig. 1B). However, the absolute count of Vδ1–Vδ2–γδ T was normal in
CVID patients (median 7.3 vs 9.5, $P=0.69$; Fig. 1B). The absolute count of all subsets of γδ T cells was not affected by IVIg (median, 39 vs 78.3 $P=0.81$; 13.9 vs 23.9, $P=0.58$; 9.5 vs 7.9 $P=0.69$ for Vd1+, Vd2+, and Vd1+/C0 Vd2+/C0 γδ+ T cell respectively). Thus, our results suggest a specific expansion of Vd1+ and loss of Vd2+ subsets in CVID.

3.2. Differential redistribution of CD4+ and CD8+ on γδ T cells in CVID

We evaluated the distribution of CD4 and CD8 expression on γδ T cells for each of the γδ T cells subsets individually. As expected, the major population for all subsets of γδ T cells was double negative (DN). CD4 expression was reduced for Vd1+ and Vd1+/C0 Vd2+/C0 γδ+ T cells in CVID (median 11.6% vs 1.74%, $P<0.01$; 27.5% vs 8.04%, $P<0.001$ respectively; Fig. 2A). Vδ1+ presented an increased DN population while the CD8 population was increased for Vd1+/C0 Vd2+ γδ+ T cells (median 4.55% vs 64.4%, $P<0.01$; 29.6% vs 32.4%, $P<0.05$; Fig. 2B and C). On the other hand, CD4 and CD8 expression was normal on Vd2+ cells (median 2.62% vs 3.12%, $P=0.96$; 29.6% vs 32.4%, $P=0.4$ respectively). Expression of CD4 and CD8 on all subsets of γδ T cells was not changed after IVIg. Thus, our results show that γδ T cells subsets in CVID have differential distribution of CD4 and CD8 expression.

3.3. High levels of γδ T cells activation in CVID

CVID is characterized by elevated CD4+ and CD8+ T cell activation,\(^6\) therefore, we hypothesized that γδ T cells also had high levels of activation. We observed elevated levels of CD38, HLA-DR and coexpression of CD38 and HLA-DR on Vd1+ (median MFI 576 vs 965, $P<0.001$; 44.9% vs 73.1%, $P<0.01$; 30.5% vs 50.3%, $P<0.001$ respectively), Vd2+ (median MFI 99.1 vs 299, $P<0.01$; 18.1% vs 44.9%, $P<0.01$; 8.41% vs 17.2%, $P<0.001$ respectively), and Vd1+/C0 Vd2+/C0 γδ+ T cells (median MFI 652 vs 968, $P<0.01$; 43.7% vs 65.6%, $P<0.01$; 26.1% vs 49%, $P<0.001$ respectively, Fig. 3A–C) confirming our hypothesis. Following replacement therapy CD38 levels and CD38 and HLA-DR coexpression were reduced only on Vd1+ (median MFI 965 vs 736, $P<0.05$; 50.3% vs 38.3%, $P<0.05$ respectively; Fig. 3A and C) but remained higher compared with healthy controls (median MFI 576 vs 736, $P<0.05$; 30.5% vs 38.3%, $P<0.05$ respectively).

Table 1

Gender	Age	CD3 (cell/μL)	IgG (mg/mL)	IgA (mg/mL)	IgM (mg/mL)	
CVD 1	M	32	1118	63	<25	<12.5
CVD 2	F	27	1028	NA	NA	NA
CVD 3	M	24	2373	2	3.7	0.7
CVD 4	F	25	1172	440	2.8	3.4
CVD 5	F	31	1523	273	0.6	63.8
CVD 6	F	31	2184	59	<25	167.7
CVD 7	F	6	NA	NA	NA	NA
CVD 8	F	31	1643	<300	<50	<25
CVD 9	M	41	2480	<300	<50	<25
CVD 10	F	40	2985	<300	<50	<25
CVD 11	F	34	1092	<300	<50	33.1
CVD 12	M	34	1148	98	<50	<25
CVD 13	F	51	1077	86	4	4
CVD 14	F	35	2623	79	<50	25.9
CVD 15	M	62	781	69	<50	<25
CTRL 1	M	28	911	NA	NA	NA
CTRL 2	F	25	1678	NA	NA	NA
CTRL 3	M	36	2226	NA	NA	NA
CTRL 4	M	36	1991	NA	NA	NA
CTRL 5	M	30	2053	NA	NA	NA
CTRL 6	F	28	1695	NA	NA	NA
CTRL 7	F	31	877	NA	NA	NA
CTRL 8	F	33	1407	NA	NA	NA
CTRL 9	F	38	1912	NA	NA	NA
CTRL 10	M	59	1652	NA	NA	NA
CTRL 11	F	63	1932	NA	NA	NA
CTRL 12	F	64	1254	NA	NA	NA
CTRL 13	F	17	1763	NA	NA	NA
CTRL 14	F	35	1712	NA	NA	NA
CTRL 15	M	45	NA	NA	NA	NA
CTRL 16	F	25	NA	NA	NA	NA
CTRL 17	M	21	4420	NA	NA	NA
CTRL 18	M	37	4938	NA	NA	NA
CTRL 19	F	33	1675	NA	NA	NA
CTRL 20	F	33	1428	NA	NA	NA
CTRL 21	F	30	1330	NA	NA	NA

Paquin-Proulx et al. Medicine (2016) 95:30 www.md-journal.com
3.4. Elevated PD-1 expression by V\(\delta^{2+}\) T cells in CVID

Programmed death 1 (PD-1) is an inhibitory receptor and its expression is associated with immune exhaustion in chronic infections.[26] We have previously reported that PD-1 expression is elevated on CD4+ T cells in CVID.[6] Thus, we investigated PD-1 expression by V\(\delta^{1+}\) and V\(\delta^{1/2}/\delta^{0}\) V\(\delta^{2+}\) T cells (median, 33.0% vs 43.0%, \(P=0.22\); 33.9% vs 32.7%, \(P=0.88\) respectively) but elevated on V\(\delta^{2+}\) (median 1.15% vs 3.08%, \(P<0.001\); Fig. 4A). PD-1 remained elevated on V\(\delta^{2+}\) after immune reconstitution (median 1.15% vs 3.09%, \(P<0.001\); but was reduced on V\(\delta^{1+}\) (median 43.0% vs 36.5%, \(P<0.05\)).

3.5. Activation and exhaustion are associated with \(\gamma\delta\) T cells frequency in CVID

Finally, we investigated if the elevated levels of activation and exhaustion could be associated with the change in \(\gamma\delta\) T cells frequency that we observed. HLA-DR expression was positively associated with the frequency of V\(\delta^{1+}\) and V\(\delta^{1/2}\)-\(\gamma\delta^{+}\) T cells (\(r=0.73, P=0.003\); \(r=0.68, P=0.006\) respectively; Fig. 5A and B) but not with V\(\delta^{2+}\) T cell frequency (\(r=0.022, P=0.94\); Fig. 5C) in treatment naive CVID patients. V\(\delta^{2+}\) T cell frequency was negatively associated with PD-1 expression (\(r=-0.67, P=0.007\); Fig. 5D).

4. Discussion

Previous case reports described an expansion of \(\gamma\delta\) T cells in 2 CVID patients and this expansion was associated with Mycobacterium infection for one of them.[24,25] Our findings now suggest that perturbations in \(\gamma\delta\) T cells are a general feature of CVID patients. We observed an increase of V\(\delta^{1+}\) and a decrease of V\(\delta^{2+}\)-\(\gamma\delta^{+}\) T cells in CVID, leading to an inversion of the V\(\delta^{1+}\) to V\(\delta^{2+}\)-\(\gamma\delta^{+}\) T cell ratio. Interestingly, the majority of sulfatide reactive type II NKT cells have been described to express V\(\delta^{1}\),[27] however it remains to be determined if this population of type II NKT cells is expanded in CVID patients together with V\(\delta^{1+}\) T cells or reduced like type I NKT cells.[28,29] V\(\delta^{2+}\)-\(\gamma\delta^{+}\) T cells are known to interact with many immune cells to shape immune responses, including B cells to stimulate humoral immunity[30] and activated V\(\delta^{2+}\)-\(\gamma\delta^{+}\) T cells have been shown to act as antigen-presenting cells.[31,32] Furthermore, V\(\delta^{2+}\)-\(\gamma\delta^{+}\) T cells can recognize mevalonate metabolites in tumor cells and are believed to have an important antitumor activity.[33] Therefore, loss of this cell population could partially explain some of the immunological perturbation seen in CVID and the increased incidence of some forms of cancer. More studies are required to determine if the reduced frequency of V\(\delta^{2+}\)-\(\gamma\delta^{+}\) T cells in the blood of CVID patients is due to redistribution to tissues or to a complete loss of those cells. More studies are also needed to evaluate the functionality of the remaining V\(\delta^{2+}\)-\(\gamma\delta^{+}\) T cells. A mutation in Vav1 has been associated with impaired Th2
response in a subset of CVID patients, more experiments are needed to assess the impact of this mutation on γδ T cell functionality.

The high levels of activation of all subsets of γδ T cells that we report here were not affected by IVIg treatment, suggesting that IVIg is not controlling the factors responsible for γδ T cells activation. However, it is possible that a longer period of time on replacement therapy is needed to observe a reduction in γδ T cells activation. There is now accumulating evidence that IgG replacement does not restore a normal immune system in CVID. Complementary therapies aiming to restore normal cellular immunity should be considered and could prevent some of the complications associated with CVID. Long-term low-dose IL-2 has been shown to enhance T cell function in CVID patients but other compartments of the cellular immune system were not studied.

Interestingly, the expansion of Vδ1+ and the reduction in Vδ2- γδ T cells in CVID is similar to that which has been described for

![Figure 2. Altered CD4 and CD8 expression on γδ T cells in CVID. Proportion of γδ+ T cells expressing CD4 (A), CD8 (B), or DN (C) in healthy controls, treatment naive, and IVIg-treated CVID patients. * indicates P < 0.05, the lines and whiskers represent the median and interquartile range respectively.](image1)

![Figure 3. Elevated γδ T cells activation in CVID. CD38 MFI (A), levels of HLA-DR (B), and coexpression of CD38 and HLA-DR (C) by γδ+ T cells in healthy controls, treatment naive, and IVIg-treated CVID patients. * indicates P < 0.05, the lines and whiskers represent the median and interquartile range respectively.](image2)

![Figure 4. Expression of PD-1 by γδ T cells in CVID. Levels of PD-1 expression by γδ+ T cells (A) in healthy controls, treatment naive, and IVIg-treated CVID patients. * indicates P < 0.05, the lines and whiskers represent the median and interquartile range respectively. PD-1 = Programmed Death 1.](image3)
HIV infection, suggesting that common drivers in the pathology associated with primary and secondary immunodeficiency might exist. In this regard, microbial translocation has been implicated in the inversion of the Vδ1+ to Vδ2+ ratio in SIV infection and in CD4 T cell exhaustion in CVID. Expansion of Vδ1+ and Vδ1/Vδ2+ T cells in CVID was associated with activation, suggesting an implication for chronic inflammation in expending those subsets of γδ T cells. Therefore, we propose that inversion of the Vδ1 to Vδ2 ratio in CVID is a reflection of the infection burden.

Altogether, our results suggest that IVIg replacement therapy is not sufficient to normalize change in γδ T cells frequency and activation in CVID. Furthermore, our results add to the list of similarities between primary and secondary immunodeficiencies, such as HIV infection.

Acknowledgments

The authors thank all patients and healthy controls for their time and efforts toward this study. The authors thank Carla Alves for her support in the laboratory work.

References

[1] Park MA, Li JT, Hagan JB, et al. Common variable immunodeficiency: a new look at an old disease. Lancet 2008;372:489–502.
[2] van Schouwenburg PA, Davenport EE, Kienzler AK, et al. Application of whole genome and RNA sequencing to investigate the genomic landscape of common variable immunodeficiency disorders. Clin Immunol 2015;160:301-14.
[3] Cunningham-Rundles C, Bodian C. Common variable immunodeficiency: clinical and immunological features of 248 patients. Clin Immunol 1999;92:34-48.
[4] Resnick ES, Mosnier EL, Godbold JH, et al. Morbidity and mortality in common variable immune deficiency over 4 decades. Blood 2012;119:1650–7.
[5] Paquin-Proulx D, Sandberg JK. Persistent immune activation in CVID and the role of IVlg in its suppression. Front Immunol 2014;5:637.
[6] Paquin-Proulx D, Santos BA, Carvalho KI, et al. IVlg immune reconstitution treatment alleviates the state of persistent immune activation and suppressed CD4 T cell counts in CVID. PLoS One 2013;8:e75199.
[7] Vlkova M, Ticha O, Nechvatalova J, et al. Regulatory B cells in CVID patients fail to suppress multifunctional IFN-gamma+ TNF-alpha+ CD4+ T cells differentiation. Clin Immunol 2015;160:292–100.
[8] Barsotti NS, Almeida RR, Costa PR, et al. IL-10-producing regulatory B cells are decreased in patients with common variable immunodeficiency. PLoS One 2016;11:e0151761.
[9] Duraisingham SS, Buckland M, Dempster J, et al. Primary vs. secondary antibody deficiency: clinical features and infection outcomes of immunoglobulin replacement. PLoS One 2014;9:e100324.
[10] Paquin-Proulx D, Santos BA, Carvalho KI, et al. Dysregulated CD1 profile in myeloid dendritic cells in CVID is normalized by IVlg treatment. Blood 2013;121:4963–4.
[11] Chien YH, Meyer C, Bonneville M. gammadelta T cells: first line of defense and beyond. Annu Rev Immunol 2014;32:121–55.
[12] Schweighoffer E, Fowlkes BJ. Positive selection is not required for thymic maturation of transgenic gamma delta T cells. J Exp Med 1996;183:2033–41.
[13] Haas JD, Ravens S, Duber S, et al. Development of interleukin-17-producing gammadelta T cells is restricted to a functional embryonic wave. Immunity 2012;37:48–59.
[14] Adams RJ, Gu S, Luoma AM. Human gammadelta T cells: evolution and ligand recognition. Cell Immunol 2015;296:31–40.
Willcox CR, Pitard V, Netzer S, et al. Cytomegalovirus and tumor stress surveillance by binding of a human gammadelta T cell antigen receptor to endothelial protein C receptor. Nat Immunol 2012;13:872–9.

Pauza CD, Poonia B, Li H, et al. Gammadelta T cells in HIV disease: past, present, and future. Front Immunol 2014;5:887.

De Paoli P, Gennari D, Martelli P, et al. A subset of gamma delta lymphocytes is increased during HIV-1 infection. Clin Exp Immunol 1991;83:187–91.

Wallace M, Scharko AM, Pauza CD, et al. Functional gamma delta T-lymphocyte defect associated with human immunodeficiency virus infection. Mol Med 1997;3:60–71.

Harris LD, Klatt NR, Vinton C, et al. Mechanisms underlying gammadelta T-cell subset perturbations in SIV-infected Asian rhesus macaques. Blood 2010;116:4148–57.

Brenchley JM, Price DA, Schacker TW, et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med 2006;12:1365–71.

Titanji K, De Milito A, Cagigi A, et al. Loss of memory B cells impairs maintenance of long-term serologic memory during HIV-1 infection. Blood 2006;108:1380–7.

Hart M, Steel A, Clark SA, et al. Loss of discrete memory B cell subsets is associated with impaired immunization responses in HIV-1 infection and may be a risk factor for invasive pneumococcal disease. J Immunol 2007;178:8212–20.

Perreau M, Vignan S, Bellanger F, et al. Exhaustion of bacteria-specific CD4 T cells and microbial translocation in common variable immunodeficiency disorders. J Exp Med 2014;211:2033–43.

Viallard JF, Bloch-Michel C, Cauvet O, et al. Gammadelta T lymphocytes associated with granulomatous disease in a patient with common variable immunodeficiency. Clin Infect Dis 2002;35:e134–137.

Katali RK, Lieberman MM, Muchlauer SL, et al. Gamma delta T lymphocytes associated with common variable immunodeficiency. J Clin Immunol 1997;17:34–42.

Khaitan A, Unutmaz D. Revisiting immune exhaustion during HIV infection. Curr HIV/AIDS Rep 2011;8:4–11.

Bai L, Picard D, Anderson R, et al. The majority of CD1d-sulfatide-specific T cells in human blood use a seminvariant Vdelta1 TCR. Eur J Immunol 2012;42:2503–10.

Carvalho K, Melo KM, Bruno FR, et al. Skewed distribution of circulating activated natural killer T (NKT) cells in patients with common variable immunodeficiency disorders (CVID). PLoS One 2010;5:e12652.

Fulcher DA, Avery DT, Fewings NL, et al. Invariant natural killer (iNK) T cell deficiency in patients with common variable immunodeficiency. Clin Exp Immunol 2009;157:365–9.

Tyler CJ, Doherty DG, Moser B, et al. Human Vgamma9/Vdelta2 T cells: innate adaptors of the immune system. Cell Immunol 2015;296:10–21.

Brandes M, Willimann K, Moser B. Professional antigen-presentation function by human gammadelta T Cells. Science 2005;309:264–8.

Muto M, Baghdadi M, Maekawa R, et al. Myeloid molecular characteristics of human gammadelta T cells support their acquisition of tumor antigen-presenting capacity. Cancer Immunol Immunother 2015;64:941–9.

Gober HJ, Kistowska M, Angman L, et al. Human T cell receptor gammadelta cells recognize endogenous mevalonate metabolites in tumor cells. J Exp Med 2003;197:163–8.

Capitani N, Ariani F, Amedei A, et al. Vav1 haploinsufficiency in a common variable immunodeficiency patient with defective T-cell function. Int J Immunopathol Pharmacol 2012;25:811–7.

Capitani N, Ariani F, Paccani SR, et al. Impaired TH2 response in patients with Vav1-deficient common variable immunodeficiency with T-cell defects. J Allergy Clin Immunol 2010;126:671–5.

Cunningham-Rundles C, Bodian C, Ochs HD, et al. Long-term low-dose IL-2 enhances immune function in common variable immunodeficiency. Clin Immunol 2001;100:181–90.