THE OPERATOR ALGEBRA GENERATED BY THE TRANSLATION,
DILATION AND MULTIPLICATION SEMIGRUPS

E. KASTIS AND S. C. POWER

Abstract. The weak operator topology closed operator algebra on $L^2(\mathbb{R})$ generated by
the one-parameter semigroups for translation, dilation and multiplication by $e^{i\lambda x}$, $\lambda \geq 0$,
is shown to be a reflexive operator algebra, in the sense of Halmos, with invariant subspace
lattice equal to a binest. This triple semigroup algebra, A_{ph}, is antisymmetric in the sense
that $A_{ph} \cap A^*_{ph} = CI$, it has a nonzero proper weakly closed ideal generated by the finite-
rank operators, and its unitary automorphism group is \mathbb{R}. Furthermore, the 8 choices
of semigroup triples provide 2 unitary equivalence classes of operator algebras, with A_{ph}
and A^*_{ph} being chiral representatives.

1. Introduction

Let D_μ and M_λ be the unitary operators on the Hilbert space $L^2(\mathbb{R})$ given by
$$D_\mu f(x) = f(x - \mu), \quad M_\lambda f(x) = e^{i\lambda x} f(x)$$
where μ, λ are real. As is well-known, the 1-parameter unitary groups \{\(D_\mu, \mu \in \mathbb{R}\) and
\{\(M_\lambda, \lambda \in \mathbb{R}\) provide an irreducible representation of the Weyl-commutation relations,
$M_\lambda D_\mu = e^{i\lambda \mu} D_\mu M_\lambda$, and the weakly closed operator algebra they generate is the von Neumann algebra $B(L^2(\mathbb{R}))$ of all bounded operators. (See Taylor [18], for example.) On the
other hand it was shown in Katavolos and Power [7] that the weakly closed nonselfadjoint
operator algebra generated by the semigroups for $\mu \geq 0$ and $\lambda \geq 0$ is a proper subalgebra
containing no self-adjoint operators, other than real multiples of the identity, and no nonzero finite rank operators. We consider here an intermediate weakly closed operator
algebra which is generated by the semigroups for $\mu \geq 0$ and $\lambda \geq 0$, together with the
semigroup of dilation operators V_t, $t \geq 0$, where
$$V_t f(x) = e^{t/2} f(e^{t} x).$$

Our main result is that this operator algebra is reflexive in the sense of Halmos [15] and,
moreover, is equal to $\text{Alg} \mathcal{L}$, the algebra of operators that leave invariant each subspace
in the lattice \mathcal{L} of closed subspaces given by
$$\mathcal{L} = \{0\} \cup \{L^2(-\alpha, \infty), \alpha \geq 0\} \cup \{e^{i\beta x} H^2(\mathbb{R}), \beta \geq 0\} \cup \{L^2(\mathbb{R})\}$$
where $H^2(\mathbb{R})$ is the usual Hardy space for the upper half plane. This lattice is a binest,
being the union of two complete nests of closed subspaces.

We denote the triple semigroup algebra by A_{ph} since it is generated by A_p, the operator
algebra for the translation and multiplication semigroups, and A_h, the operator algebra for

2010 Mathematics Subject Classification. 47L75, 47L35
Key words and phrases: operator algebra, nest algebra, binest, Lie semigroup.
the multiplication and dilation semigroups. The notation reflects the fact that translation
unitaries here are induced by the biholomorphic automorphims of the upper half plane
which are of parabolic type, and the dilation unitaries are induced by those of hyperbolic
type. The hyperbolic algebra A_h was considered in Katavolos and Power \cite{KatavolosPower1992} and the
invariant subspace lattice $Lat A_h$, viewed as a lattice of projections with the weak operator
topology, was identified as a 4-dimensional manifold. See also Levene and Power \cite{LevenePower1993} for
an alternative derivation.

The operator algebras considered here are basic examples of Lie semigroup algebras \cite{Faris1976} by which we mean a weak operator topology closed algebra generated by the image of
a Lie semigroup in a unitary representation of the ambient Lie group. A complexity in
the analysis of such algebras, defined in terms of generators, is the task of constructing
operators within them with prescribed properties. Establishing reflexivity can provide a
route to constructing such operators and thereby deriving further algebraic properties. The
reflexivity of the hyperbolic algebra, that is, the identity $A_h = Alg Lat A_h$, was obtained in
Levene and Power \cite{LevenePower1992} while the reflexivity of the parabolic algebra A_p was shown earlier in
\cite{Faris1976}. We also note that Levene \cite{Levene1992} has shown the reflexivity of the Lie semigroup operator
algebra of $SL_2(\mathbb{R})$ for its standard representation on $L^2(\mathbb{R})$ in terms of the composition
operators of biholomorphic automorphisms.

The parabolic algebra A_p in fact coincides with the Fourier binest algebra $Alg L_{FB}$, the
reflexive algebra for the lattice L_{FB}, the Fourier binest, given by

$$L_{FB} = \{0\} \cup \{L^2(-\alpha, \infty), \alpha \in \mathbb{R}\} \cup \{e^{i\beta x}H^2(\mathbb{R}), \beta \in \mathbb{R}\} \cup \{L^2(\mathbb{R})\}$$

With the weak operator topology for the orthogonal projections of these spaces, L_{FB} is
homeomorphic to the unit circle and forms the topological boundary of a bigger lattice
$Lat Alg L_{FB}$, the so-called reflexive closure of L_{FB}. This lattice is equal to the full lattice
$Lat A_p$ of all closed invariant subspaces of A_p and is homeomorphic to the unit disc. In
contrast we see that the binest L for A_{ph} is reflexive as a lattice of subspaces; $L = Lat Alg L$.

A complexity in establishing the reflexivity of A_p, A_h and A_{ph} is the absence of an
approximate identity of finite rank operators, a key device in the theory of nest algebras
(Erdos and Power \cite{Erdos1993}, Davidson \cite{Davidson1980}). The same might be said of $H^\infty(\mathbb{R})$, the classical Lie
semigroup algebra with which these operator algebras bear some affinities. As a substitute
we identify the dense subspace $A_{ph} \cap C_2$ of Hilbert-Schmidt integral operators. Also, by
exploiting the Hilbert space geometry of C_2 we are able to identify various subspaces of
C_2 associated with the algebras A_p, A_h, A_{ph} and their containing nest algebras.

We also obtain a number of further interesting properties. The triple semigroup algebra
A_{ph} is antisymmetric (or triangular \cite{Faris1976}) in the sense that $A_{ph} \cap A_{ph}^* = \mathbb{C} I$. In contrast to
A_p and A_h the algebra contains non-zero finite rank operators which generate a proper
weak operator topology closed ideal. The unitary automorphism group is isomorphic to
\mathbb{R} and is implemented by the group of dilation unitaries.

We also see that, unlike the parabolic algebra, A_{ph} has chirality in the sense that A_{ph} and A_{ph}^* are the reflexive algebras of spectrally isomorphic binests which are not unitarily
equivalent. Also the 8 choices of triples of continuous proper semigroups from \{Mλ, $\lambda \in \mathbb{R}$\},
\{$D_\mu : \mu \in \mathbb{R}\} and \{V_t : t \in \mathbb{R}\}$ gives rise to exactly 2 unitary equivalence classes of operator
algebras.
2. Preliminaries

We start by introducing notation and terminology and by recalling some basic facts about the parabolic algebra, its subspace of Hilbert-Schmidt operators and its invariant subspaces.

The Volterra nest N_v is the continuous nest consisting of the subspaces $L^2([\lambda, +\infty))$, for $\lambda \in \mathbb{R}$, together with the trivial subspaces $\{0\}, L^2(\mathbb{R})$. The analytic nest N_a is defined to be the unitarily equivalent nest $F N_v F^*$, where F is Fourier-Plancherel transform with

$$F f(x) = \frac{1}{\sqrt{2\pi}} \int_\mathbb{R} f(t) e^{-itx} dt$$

By the Paley-Wiener theorem the analytic nest consists of the chain of subspaces $e^{i\beta x} H^2(\mathbb{R}), s \in \mathbb{R}$, together with the trivial subspaces. These nests determine the Volterra nest algebra $A_v = \text{Alg} N_v$ and the analytic nest algebra $A_a = \text{Alg} N_a$ both of which are reflexive operator algebras.

The Fourier binest is the subspace lattice $L_{FB} = N_v \cup N_a$ and the Fourier binest algebra A_{FB} is the non-selfadjoint algebra $\text{Alg} L_{FB}$ of operators which leave invariant each subspace of L_{FB}. It is elementary to check that A_{FB} is a reflexive algebra, being the intersection of two reflexive algebras. Also, since the spaces $e^{isx} H^2(\mathbb{R})$ and $L^2(\gamma, \infty)$ have trivial intersections it is elementary to see that A_{FB} contains no non-zero finite rank operators and is an antisymmetric operator algebra.

The parabolic algebra A_p is defined as the weak operator topology closed operator algebra on $L^2(\mathbb{R})$ that is generated by the two strong operator topology continuous unitary semigroups $\{M_\lambda, \lambda \geq 0\}, \{D_\mu, \mu \geq 0\}$. Since the generators of A_p leave the the subspaces of the binest L_{FB} invariant, we have $A_p \subseteq A_{FB}$. Katavolos and Power showed in [7] that these two algebras are equal and we next give the proof of this from Levene [10].

Write C_2 for the ideal of Hilbert-Schmidt operators on $L^2(\mathbb{R})$ and let Int_k denote the Hilbert-Schmidt integral operator given by

$$(\text{Int}_k f)(x) = \int_\mathbb{R} k(x,y) f(y) dm(y)$$

where $k \in L^2(\mathbb{R}^2)$. Also let Θ_p be the unitary operation on the space of kernel functions $k(x,y)$ given by $\Theta_p(k)(x,t) = k(x, x - t)$. Since a Hilbert-Schmidt operator in A_p lies in both the nest algebras $\text{Alg} N_v$ and $\text{Alg} N_a$ and in this sense is doubly upper triangular, it is straightforward to verify the following inclusion.

Proposition 2.1. The subspace of Hilbert-Schmidt operators in the Fourier binest algebra satisfies the inclusion

$$A_{FB} \cap C_2 \subseteq \{ \text{Int}_k | \Theta_p(k) \in H^2(\mathbb{R}) \otimes L^2(\mathbb{R}_+) \}$$

For $h \in H^2(\mathbb{R})$ and $\phi \in L^1(\mathbb{R}) \cap L^2(\mathbb{R}_+)$ let $h \otimes \phi$ denote the function $(x, y) \mapsto h(x)\phi(y)$. Then the integral operator Int_k induced by the function $k = \Theta_p^{-1}(h \otimes \phi)$ is equal to $M_h \Delta_\phi$.

where Δ_ϕ is the bounded operator defined by the sesquilinear form

$$\langle \Delta_\phi f, g \rangle = \int_\mathbb{R} \int_\mathbb{R} \phi(t) D_t f(x) \overline{g(x)} dx dt,$$

where $f, g \in L^2(\mathbb{R})$.

Noting that Δ_ϕ lies in the weak operator topology closed algebra generated by $\{D_t, t \geq 0\}$ it follows that the integral operator Int_k actually lies in the smaller algebra A_p. Since the linear span of such functions k with separable variables is dense in the Hilbert space $H^2(\mathbb{R}) \otimes L^2(\mathbb{R}^+)$ it follows from the proposition that

$$A_{FB} \cap \mathcal{C}_2 \subseteq \{ \text{Int}_k | \Theta_p(k) \in H^2(\mathbb{R}) \otimes L^2(\mathbb{R}^+) \} \subseteq A_p \cap \mathcal{C}_2 \subseteq A_{FB} \cap \mathcal{C}_2$$

and so these spaces coincide.

Choose sequences $h_n, \phi_n, n = 1, 2, \ldots$, of such functions so that the operators M_{h_n} and Δ_{ϕ_n} are bounded in operator norm and converge to the identity in the strong operator topology. This leads to the following proposition.

Proposition 2.2. $A_p \cap \mathcal{C}_2$ contains a bounded approximate identity - that is, a sequence that is bounded in operator norm and converges in the strong operator topology to the identity.

Combining this fact with the identification $A_p \cap \mathcal{C}_2 = A_{FB} \cap \mathcal{C}_2$ we obtain the following theorem.

Theorem 2.3. The parabolic algebra A_p is equal to the Fourier binest algebra A_{FB}.

We now describe $\text{Lat}A_p$ from which it follows in particular that the binest $N_a \cup N_v$ is not a reflexive subspace lattice.

Let $K_{\lambda,s} = M_{\lambda} M_{\phi_s} H^2(\mathbb{R})$ where $\phi_s(x) = e^{-isx^2/2}$. This is evidently an invariant subspace for the multiplication semigroup and for $s \geq 0$ one can check that it is invariant for the translation semigroup. Thus for $s \geq 0$ the nest $N_s = M_{\phi_s} N_a$ is contained in $\text{Lat}A_p$ and these nests are distinct. In fact any two nontrivial subspaces from nests with distinct s parameter have trivial intersection. With the strong operator topology for the associated subspace projections it can be shown that the set of these nests for $s \geq 0$, together with the Volterra nest N_v, is homeomorphic to the closed unit disc. A cocycle argument given in [7] leads to the fact that every invariant subspace for A_p is one of these subspaces. Thus we have

$$\text{Lat}A_p = \{ K_{\lambda,s} | \lambda \in \mathbb{R}, s \geq 0 \} \cup N_v$$

3. **Antisymmetry**

We now show that A_{pb}, like its subalgebras A_p and A_h, is an antisymmetric operator algebra. In fact we shall prove that the containing algebra $\text{Alg}\mathcal{L}$ is antisymmetric. A key step of the proof is the next lemma which will also be useful in the analysis of unitary automorphisms.

Let \mathbb{C}^+ be the set of complex numbers with positive imaginary part and let $\mathcal{B}(\mathbb{R})$ be the σ-algebra of Borel subsets of the real line.
Lemma 3.1. Let \(h, g \in H^2(\mathbb{R}) \), \(c, d \in \mathbb{C}^+ \) and let \((x + c)h(x) = (x + d)g(x)\) for almost every \(x \) in a set \(A \in \mathcal{B}(\mathbb{R}) \) of positive Lebesgue measure. Then \((x + c)h(x) = (x + d)g(x)\) almost everywhere in \(\mathbb{R} \).

Proof. We have
\[
(x + c)h(x) = (x + d)g(x) \Leftrightarrow x(h(x) - g(x)) + c(h(x) - g(x)) + (c - d)g(x) = 0
\]
\[
\Leftrightarrow (x + c)(h(x) - g(x)) + (x + c)\frac{(c - d)g(x)}{x + c} = 0
\]
\[
\Leftrightarrow (x + c)\left(h(x) - g(x) + \frac{(c - d)g(x)}{x + c}\right) = 0.
\]
Since \(\frac{1}{x + c} \in H^\infty(\mathbb{R}) \) we have \(h(x) - g(x) + \frac{(c - d)g(x)}{x + c} \in H^2(\mathbb{R}) \) and so it suffices to prove the following. Given \(h \in H^2(\mathbb{R}) \) and \(c \in \mathbb{C}^+ \), with \((x + c)h(x) = 0\) almost everywhere in \(A \), then \((x + c)h(x) = 0\) almost everywhere, and this is evident from basic properties of functions in \(H^2(\mathbb{R}) \).

In the next proof we write \(D_g \) for the operator \(FM_gF^* \) with \(g \in H^\infty(\mathbb{R}) \). This lies in the weak operator topology closed algebra generated by the operators \(D_\mu = FM_\mu F^* \), for \(\mu \geq 0 \), and so belongs to \(\mathcal{A}_p \) and to \(\text{Alg} \mathcal{L} \).

Theorem 3.2. The selfadjoint elements of \(\text{Alg} \mathcal{L} \) are real multiples of the identity.

Proof. Let \(A \in \text{Alg} \mathcal{L} \cap (\text{Alg} \mathcal{L})^* \). Then \(A \) is reduced by subspaces \(L^2(-\mu, +\infty) \), for \(\mu \geq 0 \), and \(M_\lambda H^2(\mathbb{R}) \), for \(\lambda \geq 0 \). It follows that \(A \) admits two direct sum decompositions
\[
A = P_{L^2(\mathbb{R}_-)}M_f P_{L^2(\mathbb{R}_-)} + P_{L^2(\mathbb{R}_+)}XP_{L^2(\mathbb{R}_+)} = P_{H^2(\mathbb{R})}D_g P_{H^2(\mathbb{R})} + P_{H^2(\mathbb{R})}YP_{H^2(\mathbb{R})},
\]
where \(f \in L^\infty(\mathbb{R}_-) \) and \(g \in H^\infty(\mathbb{R}) \). Let \(h(x) = \frac{1}{x+c} \) with \(c \in \mathbb{C}^+ \). Then, by the first decomposition,

\[
Ah = M_f h + PL^2(\mathbb{R}_+)XP_{L^2(\mathbb{R}_+)} h,
\]

\[
h^{-1}Ah = f + h^{-1}PL^2(\mathbb{R}_+)XP_{L^2(\mathbb{R}_+)} h
\]

and so for \(x \in \mathbb{R}_- \) we have \(h^{-1}(x)(Ah)(x) = f(x) \). Also \(Ah \) is in \(H^2(\mathbb{R}) \) and so by the previous lemma, \(h^{-1}Ah \) is determined by \(f \) and there is a function \(\phi \) independent of \(c \) which extends \(f \). Thus \(h^{-1}Ah = \phi \) and \(Ah = \phi h \). Since the linear span of the family \(\{ h : \mathbb{R} \to \mathbb{C} \mid h(x) = \frac{1}{x+c}, \; c \in \mathbb{C}^+ \} \) is dense in \(H^2(\mathbb{R}) \), we have \(A|_{H^2(\mathbb{R})} = M_\phi|_{H^2(\mathbb{R})} \).

However, by the second decomposition \(A|_{H^2(\mathbb{R})} = D_g|_{H^2(\mathbb{R})} \). Thus, given \(h_1 \in H^2(\mathbb{R}) \setminus \{0\} \), we have for every \(\mu \in \mathbb{R} \),

\[
M_\phi D_\mu h_1 = D_g D_\mu h_1 = D_\mu D_g h_1 = D_\mu M_\phi h_1.
\]

Thus \(\phi(x)h_1(x-\mu) = \phi(x-\mu)h_1(x-\mu) \) for almost every \(x \in \mathbb{R} \) and so \(\phi(x) = c \) almost everywhere for some \(c \in \mathbb{C} \). Now we have \(A|_{H^2(\mathbb{R})} = A|_{L^2(\mathbb{R}_-)} = cI \) and it follows that \(A = cI \), as required. \(\square \)

4. The Unitary Automorphism Group of \(\text{Alg}\mathcal{L} \)

In the case of the parabolic algebra the group of unitary automorphisms, \(X \to AdU(X) = UXU^* \), was identified in [7] as the 3-dimensional Lie group of automorphisms \(Ad(M_\lambda D_\mu V_t) \) for \(\lambda, \mu \) and \(t \) in \(\mathbb{R} \). We now show that the larger algebra \(A_{ph} \) is similarly rigid.

Theorem 4.1. The unitary automorphism group of \(\text{Alg}\mathcal{L} \) is isomorphic to \(\mathbb{R} \) and equal to \(\{ Ad(V_t) : t \in \mathbb{R} \} \).

Proof. Let \(Ad(U) \) to be an unitary automorphism of \(\text{Alg}\mathcal{L} \). Then

\[
(4.1) \quad UH^2(\mathbb{R}) = H^2(\mathbb{R}), \quad UM_\lambda H^2(\mathbb{R}) = M_\lambda H^2(\mathbb{R})
\]

where \(\mu \geq 0 \) depends on \(\lambda \geq 0 \) and \(\mu : \mathbb{R}_+ \to \mathbb{R}_+ \) is a continuous bijection. Also

\[
(4.2) \quad UL^2(\mathbb{R}_-) = L^2(\mathbb{R}_-), \quad UL^2(-\lambda', 0) = L^2(-\mu', 0)
\]

\(\mu' : \mathbb{R}_+ \to \mathbb{R}_+ \) is a continuous bijection.

Note that the subspaces \(L^2(-\lambda, \infty) \) of \(L^2(\mathbb{R}_-) \) form a continuous nest of multiplicity one and so it follows from (4.2) and elementary nest algebra theory (see Davidson [2] for example) that the bijecting unitary operator \(U \) has the form \(U = M_\psi C_f \oplus U_1 \), where \(\psi \) is a unimodular function in \(L^\infty(\mathbb{R}_-) \), \(f : \mathbb{R}_- \to \mathbb{R}_- \) is a strictly increasing bijection, and \(C_f \) is the unitary composition operator on \(L^2(\mathbb{R}_-) \) with

\[
(C_f g)(x) = (f'(x))^{1/2} g(f(x)).
\]

Let \(h \in H^2(\mathbb{R}) \). Then for \(x \in \mathbb{R}_- \) we have

\[
(UM_\lambda h)(x) = (\psi C_f M_\lambda h)(x) = \psi(x)e^{i\lambda f(x)}(f'(x))^{1/2} h(f(x)) = e^{i\lambda f(x)}(Uh)(x)
\]

Take \(c \in \mathbb{C}^+ \) and let \(h_c \in H^2(\mathbb{R}) \) be the function for which \((Uh_c)(x) = \frac{1}{x+c} \). Then

\[
(UM_\lambda h_c)(x) = e^{i\lambda f(x)} \frac{1}{x + c}
\]
and so

\[(x + c)g_{\lambda,c}(x) = e^{i\lambda f(x)},\]

where \(g_{\lambda,c} = UM_{\lambda}h_c \in H^2(\mathbb{R})\). By Lemma 3.1 the functions \((x + c)g_{\lambda,c}(x)\) are independent of \(c\) and agree for all real \(x\). Thus there is a unique extension of \(e^{i\lambda f(x)}\) to \(\mathbb{R}\), say \(\phi_\lambda(x)\) such that

\[\phi_\lambda(x) = e^{i\lambda f(x)}, \quad \text{for almost every } x \in \mathbb{R}_-\]

and

\[\phi_\lambda(x) = (x + c)g_{\lambda,c}(x), \quad \text{for almost every } x \in \mathbb{R}.\]

It now follows that

\[UM_{\lambda}h_c = M_{\phi_{\lambda}}U h_c.\]

Since the closed linear span of the functions \(h_c = U^* \frac{1}{x + c}, c \in \mathbb{C}^+, \) is equal to \(H^2(\mathbb{R})\), we obtain

\[UM_{\lambda}H^2(\mathbb{R}) = M_{\phi_{\lambda}}UH^2(\mathbb{R}).\]

Now (4.1) implies that

\[M_{\mu}H^2(\mathbb{R}) = M_{\phi_{\lambda}}H^2(\mathbb{R}).\]

Therefore, \(\phi_{\lambda}\) is inner and \(\phi_{\lambda}(x)/e^{i\mu x}\) is equal to a unimodular constant \(c_{\lambda} = e^{i\alpha_{\lambda}}\) depending on \(\lambda\). Thus, for every \(x \in \mathbb{R}_-\), we have

\[i\lambda f(x) - i\mu x = i\alpha_{\lambda}\]

or equivalently

\[f(x) = \frac{\mu}{\lambda} x + \frac{\alpha_{\lambda}}{\lambda}.\]

It follows that \(\alpha_{\lambda} = 0\), since \(f(0) = 0\), and that \(\mu = \beta \lambda\) for some positive constant \(\beta\). Thus, for \(x < 0\),

\[(C_{f}h)(x) = \beta^{1/2}h(\beta x) = (V_{\log \beta}h)(x).\]

Writing \(t = \log \beta\), we have \(Uh = \psi V_{t} h + U_{1} h\), and so with \(h(x) = \frac{1}{x + \alpha}\) and \(x < 0\) we have

\[(Uh)(x) = \psi(x)(V_{t}h)(x)\]

and

\[e^{tx + d}e^{t/2}(Uh)(x) = \psi(x).\]

By Lemma 3.1 again, \(e^{tx + d}e^{t/2}Uh\) is determined by \(\psi\) and there is analytic function \(\phi\) such that

\[e^{tx + d}e^{t/2}Uh = \phi.\]

We conclude that \(Uh = \phi V_{t}h\) for all such \(h\) and so \(\phi\) is unimodular. Since \(UH^2(\mathbb{R}) = H^2(\mathbb{R})\) it follows that \(\phi\) is a unimodular constant, \(\eta\) say. Thus \(U = \eta V_{t}\) and the proof is complete. \(\square\)
Remark 4.2. Note that the binest \(\mathcal{L}_{\alpha,\beta} \) given by

\[
\mathcal{L}_{\alpha,\beta} = \{0\} \cup \{L^2(\alpha', \infty), \alpha' \leq \alpha\} \cup \{e^{i\beta' x} H^2(\mathbb{R}), \beta' \geq \beta\} \cup \{L^2(\mathbb{R})\}
\]

is equal to \(D_\alpha M_\beta \mathcal{L} \). Thus \(\mathcal{L}_{\alpha,\beta} \) is unitarily equivalent to \(\mathcal{L} \). Also the unitary operator \(U = D_\alpha M_\beta \) provides a unitary isomorphism \(\text{Ad} U : \text{Alg} \mathcal{L} \rightarrow \text{Alg} \mathcal{L}_{\alpha,\beta} \) between their reflexive algebras.

5. Reflexivity

We now show that the algebra \(\mathcal{A}_{ph} \) is reflexive, that is \(\mathcal{A}_{ph} = \text{AlgLat} \mathcal{A}_{ph} \), and for this it will be sufficient to show that \(\mathcal{A}_{ph} \) is the binest algebra \(\text{Alg} \mathcal{L} \).

Lemma 5.1. \(\text{Lat} \mathcal{A}_{ph} = \mathcal{L} \)

Proof. Since \(\mathcal{A}_{ph} \) is a superalgebra of \(\mathcal{A}_p \) we have \(\text{Lat} \mathcal{A}_{ph} \subseteq \text{Lat} \mathcal{A}_p \). Given a subspace \(K \in \text{Lat} \mathcal{A}_p \), as in Equation 2.1 there are two cases to consider.

Suppose first that \(K = M_\lambda M_\phi H^2(\mathbb{R}) \), where \(\phi(x) = e^{-ix^2/2} \), where \(s \geq 0, \lambda \in \mathbb{R} \). Then \(K \in \text{Lat} \mathcal{A}_{ph} \) if and only if \(V_t K \subseteq K \) for \(t \geq 0 \). Given \(f \in H^2(\mathbb{R}) \), we have

\[
V_t(e^{-ix^2/2} e^{ix} f(x)) = e^{it/2} e^{-is(x^2/2 + i\lambda x)} f(e^t x) = e^{it/2} e^{-i(xe^{2i} x^2/2 + i\lambda x^2)} f(e^t x)
\]

Thus \(V_t K \subseteq K \) if and only if \(s = 0 \) and \(\lambda \geq 0 \).

For the second case let \(K = L^2(\alpha, +\infty) \), for \(\alpha \in \mathbb{R} \). Then \(V_t K \subseteq K \) if and only if \(\alpha \leq 0 \) and so the proof is complete. \(\square \)

Figure 2. The binest \(\mathcal{L} \) shown (in bold lines) as a subset of the Fourier binest.

Since \(\mathcal{A}_{ph} \subseteq \text{Alg} \mathcal{L} \) is evident, it suffices to prove the converse inclusion. Our strategy is once again to identify the Hilbert Schmidt operators in these two algebras.
Define now the following sets of \mathbb{R}^2. Let
\[Q_1 = \{(x, y) \in \mathbb{R}^2 : x \geq y\} \cup \{(x, y) \in \mathbb{R}^2 : x \geq 0\} \]
\[Q_2 = \{(x, y) \in \mathbb{R}^2 : x \geq y\} \cup \{(x, y) \in \mathbb{R}^2 : y \leq 0\} \]
Furthermore, given a function $k \in L^2(\mathbb{R}^2)$ let k^F and $V_t k$ denote the kernel functions of the integral operators $FIntkF^*$ and V_tIntk respectively. Note that given $k \in L^2(\mathbb{R}^2)$ with essential support $\text{ess-sup } k \subseteq \{(x, y) \in \mathbb{R}^2 : x \geq y\}$, it follows, as illustrated in Figure 3, that $\text{ess-sup } V_t k \subseteq \{(x, y) \in \mathbb{R}^2 : e^t x \geq y\}$.

Figure 3. Given a function $k \in L^2(\mathbb{R}^2)$, such that $Intk \in \mathcal{A}_v$ (left), the essential support of V_tIntk (right) comes from a suitable rotation of ess-sup k.

Lemma 5.2. $\text{Alg} \mathcal{L} \cap C_2 \subseteq \{Intk : \text{ess-sup } k \subseteq Q_1\} \cap \{Intk : \text{ess-sup } k^F \subseteq Q_2\}$.

Proof. Suppose first that $k \in L^2(\mathbb{R}^2)$ is a kernel function such that $IntkL^2[\lambda, +\infty)$ is a subspace of $L^2[\lambda, +\infty)$, for every $\lambda \leq 0$. Let $x < \lambda < 0$, and take $f \in L^2(\lambda, +\infty)$. Then
\[\int_{\mathbb{R}} k(x, y)f(y)dy = (Intk f)(x) = 0. \]
Thus $k(x, y) = 0$ for almost for every $y > \lambda$ and ess-sup $k \subseteq Q_1$.

Suppose next that $k \in L^2(\mathbb{R}^2)$ and $IntkM_\lambda H^2(\mathbb{R}) \subseteq M_\lambda H^2(\mathbb{R})$ for every $\lambda \geq 0$. Then the following equivalent inclusions hold for all $\lambda > 0$.
\[IntkM_\lambda H^2(\mathbb{R}) \subseteq M_\lambda H^2(\mathbb{R}), \]
\[FIntkF^* F\lambda H^2(\mathbb{R}) \subseteq F\lambda H^2(\mathbb{R}), \]
\[FIntkF^* D\lambda F^2(\mathbb{R}) \subseteq D\lambda F^2(\mathbb{R}), \]
\[FIntkF^* D\lambda L^2(\mathbb{R}^+) \subseteq D\lambda L^2(\mathbb{R}^+), \]
\[FIntkF^* L^2[\lambda, +\infty) \subseteq L^2[\lambda, +\infty). \]
Thus $IntkF^* L^2[\lambda, +\infty) \subseteq L^2[\lambda, +\infty)$, for every $\lambda \geq 0$. Given $x < 0$ and $f \in L^2(\mathbb{R}^+)$ we have
\[\int_{\mathbb{R}} k^F(x, y)f(y)dy = (Intk^F f)(x) = 0 \]
and so it follows that $k^F(x, y) = 0$ for almost for every $y > 0$. Also, for $x \geq 0$ and $f \in L^2[\lambda, +\infty)$ with $\lambda > x$, we again have $(Intk^F f)(x) = 0$ and so ess-sup $k^F \subseteq Q_2$. This completes the proof. \[\square \]
In general the orthogonal complement of the intersection of two closed subspaces of a Hilbert space is the closure of the sum of their orthogonal complements. In the next lemma we see that the closure is not necessary and this fact enables a key step in the proof of the subsequent lemma.

Lemma 5.3. \((A_p \cap \mathcal{C}_2)^\perp = ((A_v \cap \mathcal{C}_2) \cap (A_a \cap \mathcal{C}_2))^\perp = (A_v \cap \mathcal{C}_2)^\perp + (A_a \cap \mathcal{C}_2)^\perp \)

Proof. It will be sufficient to show that \((A_p \cap \mathcal{C}_2)^\perp \subseteq (A_v \cap \mathcal{C}_2)^\perp + (A_a \cap \mathcal{C}_2)^\perp \) since the reverse inclusion is trivial. Recall from Section 2 that

\[
A_p \cap \mathcal{C}_2 = \{ \text{Int}_k | \Theta_p(k) \in H^2(\mathbb{R}) \otimes L^2(\mathbb{R}_+) \}
\]

Write \(\mathcal{M}_1 \) for this space and let

\[
\mathcal{M}_2 = \{ \text{Int}_k | \Theta_p(k) \in H^2(\mathbb{R})^\perp \otimes L^2(\mathbb{R}_+) \}
\]
\[
\mathcal{M}_3 = \{ \text{Int}_k | \Theta_p(k) \in H^2(\mathbb{R}) \otimes L^2(\mathbb{R}_-) \}
\]
\[
\mathcal{M}_4 = \{ \text{Int}_k | \Theta_p(k) \in H^2(\mathbb{R})^\perp \otimes L^2(\mathbb{R}_-) \}
\]

Then \(\mathcal{C}_2 = \mathcal{M}_1 \oplus \cdots \oplus \mathcal{M}_4 \) and \(\mathcal{M}_1^\perp = \mathcal{M}_2 \oplus \mathcal{M}_3 \oplus \mathcal{M}_4 \). Also it is straightforward to verify that \((A_v \cap \mathcal{C}_2)^\perp = \mathcal{M}_3 \oplus \mathcal{M}_4 \). It will be sufficient then to show that \(\mathcal{M}_2 \subseteq (A_a \cap \mathcal{C}_2)^\perp \).

It follows, as in Section 2, that operators of the form \(M_{h_1} \Delta_{\phi_1} \) with \(h_1 \) in \(H^2(\mathbb{R})^\perp \) and \(\phi_1 \) in \(L^2(\mathbb{R}_+) \) are Hilbert-Schmidt operators with dense linear span in the Hilbert space subspace \(\mathcal{M}_2 \). Similarly the operators \(M_{h_2} \Delta_{\phi_2} \) with \(h_2 \) in \(H^2(\mathbb{R}) \) and \(\phi_2 \) in \(L^1(\mathbb{R}) \cap L^2(\mathbb{R}) \) have dense linear span in the Hilbert space \(A_a \cap \mathcal{C}_2 \). Since \(\langle h_1, h_2 \rangle_{L^2(\mathbb{R})} = 0 \) it follows that \((M_{h_1} \Delta_{\phi_1}, M_{h_2} \Delta_{\phi_2}) \in \mathcal{C}_2 \) for all such operators and so the desired inclusion follows. \(\square \)

Lemma 5.4. The algebras \(A_{ph} \cap \mathcal{C}_2 \) and \(\text{AlgL} \cap \mathcal{C}_2 \) coincide.

Proof. By Lemma 5.2, we have

\[
\text{AlgL} \cap \mathcal{C}_2 \subseteq \{ \text{Int}_k : \text{ess-sup } k \subseteq Q_1 \} \cap \{ \text{Int}_k : \text{ess-sup } k^F \subseteq Q_2 \}
\]

which implies that

\[
(\text{AlgL} \cap \mathcal{C}_2)^\perp \supseteq \left(\{ \text{Int}_k : \text{ess-sup } k \subseteq Q_1 \} \right)^\perp + \left(\{ \text{Int}_k : \text{ess-sup } k^F \subseteq Q_2 \} \right)^\perp
\]

\[
= \{ \text{Int}_k : \text{ess-sup } k \subseteq \mathbb{R}^2 \setminus Q_1 \} + \{ \text{Int}_k : \text{ess-sup } k^F \subseteq \mathbb{R}^2 \setminus Q_2 \}.
\]

By our earlier remarks (see also Figure 3) it follows that if the Hilbert-Schmidt integral operator \(\text{Int}_k \) has the property that \(V_{-t} \text{Int}_k \in (A_v \cap \mathcal{C}_2)^\perp \) for every \(t \geq 0 \), then we have ess-sup \(k \subseteq \mathbb{R}^2 \setminus Q_1 \). Therefore,

\[
(\text{AlgL} \cap \mathcal{C}_2)^\perp \supseteq \left\{ \text{Int}_k : \text{ess-sup } k \subseteq \mathbb{R}^2 \setminus Q_1 \right\} + \left\{ \text{Int}_k : \text{ess-sup } k^F \subseteq \mathbb{R}^2 \setminus Q_2 \right\} =
\]

\[
= \left\{ \text{Int}_k : V_{-t} \text{Int}_k \in (A_v \cap \mathcal{C}_2)^\perp, \ t \geq 0 \right\} + \left\{ \text{Int}_k : V_{-t} \text{Int}_k F^\ast \in (A_v \cap \mathcal{C}_2)^\perp, \ t \geq 0 \right\}
\]

\[
= \left\{ \text{Int}_k : V_{-t} \text{Int}_k \in (A_v \cap \mathcal{C}_2)^\perp, \ t \geq 0 \right\} + \left\{ \text{Int}_k : V_{-t} \text{Int}_k \in (F^\ast A_v F \cap \mathcal{C}_2)^\perp, \ t \geq 0 \right\}
\]

\[
= \left\{ \text{Int}_k : V_{-t} \text{Int}_k \in (A_v \cap \mathcal{C}_2)^\perp, \ t \geq 0 \right\} + \left\{ \text{Int}_k : V_{-t} \text{Int}_k \in (A_a \cap \mathcal{C}_2)^\perp, \ t \geq 0 \right\}
\]

By Lemma 5.3 we obtain the inclusion

\[
(\text{AlgL} \cap \mathcal{C}_2)^\perp \supseteq \left\{ \text{Int}_k : V_{-t} \text{Int}_k \in (A_p \cap \mathcal{C}_2)^\perp, \ t \geq 0 \right\}.
\]
Moreover, if $Intk \in (A_{ph} \cap \mathcal{C}_2)^\perp$ then $Intk \perp V_iIntk_p$, for every $t \geq 0$ and $Intk_p \in A_p$. Thus $V_{-t}Intk \perp Intk_p$, for every $t \geq 0$ and $Intk_p \in A_p$ and we conclude that

$$(AlgL \cap \mathcal{C}_2)^\perp \supseteq (A_{ph} \cap \mathcal{C}_2)^\perp.$$

The reverse inclusion is elementary and so the proof is complete. \hfill \Box

We have noted in Section 2 that $A_p \cap \mathcal{C}_2$ contains an operator norm bounded sequence which is an approximate identity for the space of all Hilbert-Schmidt operators. Since this sequence also lies in A_{ph} it follows from the previous lemma that the weak operator topology closures of $A_{ph} \cap \mathcal{C}_2$ and $AlgL \cap \mathcal{C}_2$ coincide. Thus, the following theorem is proved.

Theorem 5.5. The operator algebra A_{ph} is reflexive, with $A_{ph} = AlgL$.

It follows immediately from this identification that the weak operator topology closed space

$$J = P_+B(L^2(\mathbb{R}))(I - Q_+)$$

is contained in A_{ph}, where P_+ and Q_+ are the orthogonal projections for $L^2(\mathbb{R}_+)$ and $H^2(\mathbb{R})$. From this we see that, in contrast to the subalgebras A_p and A_n, the algebra A_{ph} contains finite rank operators. Also, it is straightforward to construct a pair of nonzero operator in A_{ph} whose product is zero, and so, unlike the semigroup algebra $H^\infty(\mathbb{R})$, the triple semigroup algebra A_{ph} is not an integral domain.

We may now also obtain the following characterisation of finite rank operators in A_{ph}. Let \mathcal{N}_v and \mathcal{N}_a be the subnests of \mathcal{N}_v and \mathcal{N}_a whose union is L.

Proposition 5.6. The weak operator topology closed ideal generated by the finite rank operators in A_{ph} is the space J. Moreover, each operator of rank n is decomposable as a sum of n rank one operators in A_{ph}

Proof. Let

$$Intk : f \mapsto \sum_{j=1}^n \langle f, h_j \rangle g_j$$

be a nonzero finite rank operator in A_{ph}, with $\{h_j\}$ and $\{g_j\}$ linearly independent functions in $L^2(\mathbb{R})$. There is some $\lambda_0 \geq 0$, such that $M_{\lambda_0}H^2(\mathbb{R}) \cap \text{span}\{g_i : i = 1, \ldots, n\} = \{0\}$. Since $M_{\lambda_0}H^2(\mathbb{R}) \subseteq \text{Lat}A_{ph}$ it follows that if $f \in M_{\lambda_0}H^2(\mathbb{R})$ then $\langle h_i, f \rangle = 0$, for every $i = 1, \ldots, n$. This in turn implies that $h_i \in M_{\lambda_0}\overline{H^2(\mathbb{R})}$.

We see now that the functions h_i have full support and, moreover, their set of restrictions to \mathbb{R}_+ is a linearly independent set of functions. Thus there are functions f_1, \ldots, f_n in $L^2(\mathbb{R}_+)$ with $\langle f_i, h_j \rangle = \delta_{ij}$. Since $Intk$ is in $Alg\mathcal{N}_v$ it follows that each function g_i lies in $L^2(\mathbb{R}_+)$. Since $Intk \in Alg\mathcal{N}_a$ it now follows that if $f \in H^2(\mathbb{R})$ then $\langle f, h_j \rangle = 0$ for each j. This holds for all such f and so $h_j \in H^2(\mathbb{R})^\perp$ for each j. Since $J \subseteq A_{ph}$ the rank one operators determined by the h_j and g_j lie in A_{ph} and the second assertion of the proposition follows. The first assertion follows from this. \hfill \Box
6. Further binests

Once again, write \(N_v^- \) and \(N_v^+ \) for the subnests of \(N_v \) and \(N_a \) whose union is \(\mathcal{L} \). Also let \(N_a^- \), \(N_a^+ \) be the analogous subnests of \(N_a \) and \(N_a \) for which \(P_- = (I - P_+) \) is the atomic interval projection for \(N_a^+ \) and \(Q_+ \) is the atomic interval projection for \(N_a^- \).

By the F. and M. Riesz theorem the orbit of \(H^2(\mathbb{R}) \) under the Fourier-Plancherel transform \(F \) is the subspace \(H^2(\mathbb{R}) \) together with the three subspaces

\[
FH^2(\mathbb{R}) = L^2(\mathbb{R}_+), \quad F^2H^2(\mathbb{R}) = \overline{H^2(\mathbb{R})}, \quad F^3H^2(\mathbb{R}) = L^2(\mathbb{R}_-).
\]

More generally, the lattice \(\text{Lat} \mathcal{A}_p \) with the weak operator topology for subspace projections, forms one quarter of the Fourier-Plancherel sphere, and the Fourier-Plancherel transform \(F \) effects a period 4 rotation of this sphere. (See [8], [13].)

We now note that there are 8 binest lattices which are pairwise order isomorphic as lattices and which have a similar status to \(L \) and \(V \). We view these fall naturally into two groupings of 4. Writing \(J \) for the unitary operator \(F^2 \), so that \(Jf(x) = f(-x) \), and writing \(K \) for \(\{ f : f \in K \} \), these groupings are

\[
N_a^+ \cup N_v^-, \quad N_v^+ \cap \overline{N_a^-}, \quad \overline{N_a^+} \cup JN_v^-, \quad JN_v^+ \cap N_a^-
\]

and

\[
N_a^- \cup N_v^+, \quad N_v^- \cap \overline{N_a^+}, \quad \overline{N_a^-} \cup JN_v^+, \quad JN_v^- \cap N_a^+
\]

forming the orbits of the subspace lattices \(N_a^+ \cup N_v^- \) and \(N_a^- \cup N_v^+ \) under \(F \). Note that the symbols “+” and “−” indicate the “upper” and “lower” choices for the atomic interval of the nest. Since \(F \) induces an order isomorphism of the lattices, \(F \) respects these symbols. By Theorem 2.3 and the identities

\[
FM\lambda F^* = D_\lambda, \quad FD_\mu F^* = M_{-\mu}, \quad FV_\nu F^* = V_{-\nu}
\]

it follows that the binest algebras for these 8 binests are (respectively) equal to weak operator closed operator algebras for the following generating semigroup choices for \(\{ M_\lambda \} \), \(\{ D_\mu \} \) and \(\{ V_\nu \} \):

\[
+++, -++, --+, +++, --, --+, +++
\]

View the lattice \(\mathcal{L} = N_a^+ \cup N_v^- \) as the right-handed choice in Figure 2, write \(\mathcal{L}_r \) for \(\mathcal{L} \), and view \(\mathcal{L}_l = N_a^- \cup N_v^+ \) as the left-handed choice. From the observations above the 8 binests determine either 1 or 2 unitary equivalence classes of triple semigroup algebras. In fact there are two classes.

Theorem 6.1. The triple semigroup algebra \(\mathcal{A}_{ph} = \text{Alg} \mathcal{L}_r \) is not unitarily equivalent to triple semigroup algebra \(\mathcal{A}_{ph}^* = \text{Alg} \mathcal{L}_l \)

Proof. By Theorem 2.3 \(\mathcal{A}_{ph}^* = (\text{Alg}(N_a^+ \cup N_v^-))^* \) which is the binest algebra for the union of the nests \((N_a^+)^\perp \) and \((N_v^-)^\perp \). We have

\[
(N_a^+)^\perp = JN_v^-, \quad (N_v^-)^\perp = JN_a^+
\]

and so it suffices to show that the binests

\[
N_a^+ \cup N_v^- \cup N_a^-, \quad N_a^- \cup N_v^+
\]

are not unitarily equivalent.
Suppose, by way of contradiction, that for some unitary U the binest $U(N^+_a \cup N^-_c)$ coincides with $N^-_a \cup N^+_c$. Then

$$FU(N^+_a \cup N^-_c) = F(N^-_a \cup N^+_c) = N^-_a \cup N^+_c$$

We have $N^-_a = \{L^2(\lambda, \infty), \lambda \leq 0\}$ and so by elementary nest algebra theory, as in the proof of Theorem 4.1,

$$FU = M_\psi C_f \oplus X$$

for some unimodular function ψ on \mathbb{R}_- and a composition operator C_f on $L^2(\mathbb{R}_-)$ associated with a continuous bijection f.

We have

$$FU : e^{i\lambda x} H^2(\mathbb{R}) \to e^{-i\mu x} H^2(\mathbb{R})$$

with $\mu = \mu(\lambda) : \mathbb{R}_+ \to \mathbb{R}_+$ a bijection.

Take $h_c \in H^2(\mathbb{R})$ such that $FU h_c = \frac{1}{x-c} \in \overline{H^2(\mathbb{R})}$, with $c \in \mathbb{C}_+$. Then, for $x < 0, \lambda > 0$,

$$(FU M_\lambda h_c)(x) = (M_\psi C_f M_\lambda h_c)(x),$$

$$(FU M_\lambda h_c)(x) = (e^{i\lambda(f(x))} M_\psi C_f h_c)(x),$$

$$(FU M_\lambda h_c)(x) = e^{i\lambda f(x)} (FU h_c)(x),$$

$$g_{\lambda,c}(x) = e^{i\lambda f(x)} \frac{1}{x-c}.$$

where $g_{\lambda,c} = FU M_\lambda h_c \in \overline{H^2(\mathbb{R})}$. We may apply Lemma 5.4 as in the proof of Theorem 4.1 (although to $\overline{H^2(\mathbb{R})}$ functions here) to deduce that $FU = M_\phi V_I$ for some unimodular function ϕ and some real t. Thus we obtain

$$\overline{H^2(\mathbb{R})} = FU(\overline{H^2(\mathbb{R})}) = \phi(\overline{H^2(\mathbb{R})}).$$

This implies that $\overline{H^2(\mathbb{R})}$ is invariant for multiplication by M_λ for $\lambda > 0$, as well for $\lambda < 0$, and so is a reducing subspace for the full multiplication group $\{M_\lambda : \lambda \in \mathbb{R}\}$. This is a contradiction, as desired, since such spaces have the form $L^2(E)$. \qed

The fact that $\mathcal{A}_{ph} = \text{Alg} \mathcal{L}_r$ and $\mathcal{A}_{ph}^* = \text{Alg} \mathcal{L}_l$ fail to be unitarily equivalent expresses the following chirality property. We say that a reflexive operator algebra \mathcal{A} is \textit{chiral} if

(i) \mathcal{A} and \mathcal{A}^* are not unitarily equivalent, and

(ii) $\text{Lat} \mathcal{A}$ and $\text{Lat} \mathcal{A}^*$ are spectrally equivalent in the sense that there is an order isomorphism $\theta : \text{Lat} \mathcal{A} \to \text{Lat} \mathcal{A}^*$ such that for each pair of interval projections $\{P_1 - P_2, Q_1 - Q_2\}$ for $\text{Lat} \mathcal{A}$ the projection pairs

$$\{P_1 - P_2, Q_1 - Q_2\}, \quad \{\theta(P_1) - \theta(P_2), \theta(Q_1) - \theta(Q_2)\}$$

are unitarily equivalent.

While the spectral invariants for a pair of projections are well-known (Halmos [5]) there is presently no analogous classification of binests.
Remark 6.2. The examination of reflexivity for nonself-adjoint operator algebras has its origins in Sarason’s consideration \([17]\) of the Banach algebra \(H^\infty(\mathbb{R})\) with the weak star topology. This algebra is isomorphic to both the basic Lie semigroup algebra, for \(\mathbb{R}_+\), and the discrete semigroup left regular representation algebra for \(\mathbb{Z}_+\). In the case of noncommutative discrete groups the property of reflexivity has been obtained in many settings, including free semigroups (Davidson and Pitts \([3]\)), free semigroupoids (Kribs and Power \([9]\)), and the discrete Heisenberg group (Anoussis, Katavolos and Todorov \([1]\)). These operator algebras satisfy double commutant theorems and partly for this reason their algebraic and spatial properties, such as semisimplicity and invariant subspace structure, are somewhat more evident than in the case for Lie semigroup algebras. We note, for example, that the following questions seem to be open.

Question 1. \([14]\) Does \(A_p\) contain nonzero operators with product zero?

Question 2. Does the Jacobson radical of \(A_p, A_h\) or \(A_{ph}\) admit an explicit characterisation bearing some analogy to Ringrose’s characterisation \([16]\) for a nest algebra?

Question 3. \([11]\) Is the Lie semigroup algebra of an arbitrary irreducible representation of \(SL_2(\mathbb{R}_+)\) a reflexive operator algebra?

REFERENCES

[1] M. Anoussis, A. Katavolos and I.G. Todorov, Operator algebras from the Heisenberg semigroup, Proc. Edin. Math. Soc., 55 (2012), 1-22.
[2] K. R. Davidson, Nest Algebras, Pitman Research Notes in Math., 191, Longman 1988.
[3] K. R. Davidson and D. R. Pitts, Invariant subspaces and hyper-reflexivity for free semigroup algebras, Proc. London Math. Soc., 78 (1999), 401-430.
[4] J. A. Erdos and S. C. Power, Weakly closed ideals of nest algebras, J. Operator Th., 7 (1982), 219-235.
[5] P. R. Halmos, Two subspaces, Trans. Amer. Math. Soc., 144 (1969), 381-389.
[6] R. V. Kadison and I. M. Singer, Triangular operator algebras, Amer. J. Math., 82 (1960), 227-259.
[7] A. Katavolos, S. C. Power, The Fourier binest algebra, Math. Proc. Cambridge Philos. Soc., 122 (1997), 525–539.
[8] A. Katavolos, S. C. Power, Translation and dilation invariant subspaces of \(L^2(\mathbb{R})\), J. Reine Angew. Math., 552 (2002), 101–129.
[9] D. W. Kribs and S. C. Power, Free semigroupoid algebras, J. Ramanujan Math. Soc., 19 (2004), 117-159.
[10] R. H. Levene, Lie semigroup operator algebras, Ph.D. Thesis, Lancaster University, 2004.
[11] R. H. Levene, A double triangle operator algebra from \(SL_2(\mathbb{R}_+)\), Canad. Math. Bull., 49 (2006), 117-126.
[12] R. H. Levene, S. C. Power, Reflexivity of the translation-dilation algebras on \(L^2(\mathbb{R})\), International J. Math., 14 (2003), 1081–1090.
[13] R. H. Levene, S. C. Power, Manifolds of Hilbert space projections, Proc. London Math. Soc., 100 (2010), 485-509.
[14] S. C. Power, Invariant subspaces of translation semigroups, Proceedings of the First Advanced Course in Operator Theory and Complex Analysis, Ed. Afonso Montes Rodríguez, University of Seville, 2006.
[15] H. Radjavi and P. Rosenthal, Invariant subspaces, Dover, 2003.
[16] J. R. Ringrose, On some algebras of operators. Proc. London Math. Soc., 15 (1965), 61-83.
[17] D. Sarason, Invariant subspaces and unstarred operator algebras, Pacific J. Math., 17 (1966), 511-517.
[18] M. E. Taylor, Noncommutative Harmonic Analysis, Math. Surveys and Monographs, vol 22, Amer. Math. Soc., 1986.
