Nonlocal Conformable-Fractional Differential Equations with a Measure of Noncompactness in Banach Spaces

1. Introduction

Many dynamical processes in physics, biology, economics, and other areas of applications can be governed by abstract ordinary differential evolution equations of the following form:

\[\frac{d^\alpha x(t)}{dt^\alpha} = Ax(t) + f(t, x(t)), \quad x(0) = x_0 + g(x), \quad t \in [0, T], \]

where \(d^\alpha(.)/dt^\alpha \) is the conformable fractional derivative of the order \(\alpha \in [0, 1] \). The linear part \(A \) is the infinitesimal generator of a uniformly continuous semigroup \((T(t))_{t \geq 0} \) on a Banach space \(X \). and \(g \) is a given function. The nonlocal condition attracts the attention of many authors in several works [27, 28]. The vector \(x_0 \) is an element of \(X \) and \(g: \mathcal{C} \to X \) is a given function, with \(\mathcal{C} \) is the space of continuous functions \(x(.) \) defined from \([0, T]\) into \(X \). Throughout this paper, we endow the space \(\mathcal{C} \) with the norm \(\| x \| = \sup_{t \in [0, T]} \| x(t) \| \). It is well known that the space \((\mathcal{C}, \| . \|) \) is a Banach space. We also denote by \(\| . \| \) the norm in the space \(\mathcal{L}(X) \) of bounded operators defined form \(X \) into itself.
Our goal in this paper is to prove the existence of mild solutions for the Cauchy problem (2) by means of the Darbo–Sadovskii fixed point theorem without assuming the compactness of the family \((T(t))_{t \geq 0} \) and the Lipschitz condition on the nonlocal part \(g \).

The content of this paper is organized as follows. In section 2, we recall some preliminary facts on the conformable fractional calculus and measure of noncompactness. Section 3 is devoted to prove the main result.

2. Preliminaries

Recalling some preliminary facts on the conformable fractional calculus.

Definition 1 (see [10]). Let \(\alpha \in (0, 1] \). The conformable fractional derivative of order \(\alpha \) of a function \(x(\cdot) \) for \(t > 0 \) is defined as follows:

\[
\frac{d^\alpha x(t)}{dt^\alpha} = \lim_{\epsilon \to 0} \frac{x(t + \epsilon t^{1-\alpha}) - x(t)}{\epsilon},
\]

For \(t = 0 \), we adopt the following definition:

\[
\frac{d^\alpha x(0)}{dt^\alpha} = \lim_{\epsilon \to 0^+} \frac{d^\alpha x(t)}{dt^\alpha}.
\]

The fractional integral \(I^\alpha(\cdot) \) associated with the conformable fractional derivative is defined by

\[
I^\alpha(x)(t) = \int_0^t s^{\alpha-1} x(s)ds.
\]

Theorem 1 (see [10]). If \(x(\cdot) \) is a continuous function in the domain of \(I^\alpha(\cdot) \), then we have

\[
\frac{d^\alpha I^\alpha(x)(t)}{dt^\alpha} = x(t).
\]

Definition 2 (see [8]). The Laplace transform of a function \(x(\cdot) \) is defined by

\[
\mathcal{L}(x(t))(\lambda) = \int_0^{\infty} e^{-\lambda t} x(t)dt, \quad \lambda > 0.
\]

It is remarkable that the above transform is not compatible with the conformable fractional derivative. For this, the adapted transform is given by the following definition.

Definition 3 (see [11]). The fractional Laplace transform of order \(\alpha \in (0, 1] \) of a function \(x(\cdot) \) is defined by

\[
\mathcal{L}_\alpha(x(t))(\lambda) = \int_0^{\infty} t^{\alpha-1} e^{-\lambda t^{\alpha}} x(t)dt, \quad \lambda > 0.
\]

The following proposition gives us the actions of the fractional integral and the fractional Laplace transform on the conformable fractional derivative, respectively.

Proposition 1 (see [11]). If \(x(\cdot) \) is a differentiable function, then we have the following results:

\[
I^\alpha \left(\frac{d^\alpha x(\cdot)}{dt^\alpha} \right)(t) = x(t) - x(0),
\]

\[
\mathcal{L}_\alpha \left(\frac{d^\alpha x(t)}{dt^\alpha} \right)(\lambda) = \lambda \mathcal{L}_\alpha(x(t))(\lambda) - x(0).
\]

According to [15], we have the following remark.

Remark 1. For two functions \(x(\cdot) \) and \(y(\cdot) \), we have

\[
\mathcal{L}_\alpha \left(\frac{t^\alpha - s^\alpha}{\alpha} \right) x(s)ds \right)(\lambda) = \mathcal{L}_\alpha(x(t))(\lambda)\mathcal{L}_\alpha(y(t))(\lambda).
\]

Now, we recall some concepts on the Hausdorff measure of noncompactness.

Definition 4 (see [29, 30]). For a bounded set \(B \) in a Banach space \(X \), the Hausdorff measure of noncompactness \(\sigma \) is defined as

\[
\sigma(B) = \inf \{ \varepsilon > 0 : B \text{ can be covered by a finite number of balls with radius } \varepsilon \}.
\]

The following lemma presents some basic properties of the Hausdorff measure of noncompactness.

Lemma 1 (see [29, 30]). Let \(X \) be a Banach space and \(B, C \subset X \) be bounded. Then, the following properties hold.

1. \(B \) is precompact if and only if \(\sigma(B) = 0 \);
2. \(\sigma(B) = \sigma(\overline{B}) = \sigma(\text{conv}(B)) \), where \(\overline{B} \) and \(\text{conv}(B) \) mean the closure and convex hull of \(B \), respectively;
3. \(\sigma(B) \leq \sigma(C) \), where \(B \subset C \);
4. \(\sigma(B + C) \leq \sigma(B) + \sigma(C) \), where \(B + C = \{ x + y : x \in B, y \in C \} \);
5. \(\sigma(B \cup C) \leq \text{max}\{\sigma(B), \sigma(C)\} \);
6. \(\sigma(\lambda B) = |\lambda|\sigma(B) \) for any \(\lambda \in \mathbb{R} \), when \(X \) be a real Banach space;
7. If the operator \(Q : D(Q) \subset X \to Y \) is Lipschitz continuous with constant \(k \geq 0 \) then we have \(\rho(Q(B)) \leq k\sigma(B) \) for any bounded subset \(B \subset D(Q) \), where \(Y \) is another Banach space and \(\rho \) represents the Hausdorff measure of noncompactness in \(Y \).

Definition 5 (see [30]). The operator \(Q : D(Q) \subset X \to X \) is said to be a \(\sigma \)-contraction if there exists a positive constant \(k < 1 \) such that \(\sigma(Q(B)) \leq k\sigma(B) \) for any bounded closed subset \(B \subset D(Q) \).

Lemma 2 (see [29, 30] (Darbo–Sadovskii theorem)). Let \(B \subset X \) be a bounded, closed, and convex set. If \(Q : B \to B \) is a continuous and \(\sigma \)-contraction operator. Then, \(Q \) has at least one fixed point in \(B \).
Lemma 3 (see [31, 32]). Let $D \subset X$ be a bounded set, then there exists a countable set $D_0 \subset D$ such that $\sigma(D) \leq 2\sigma(D_0)$.

We denote by σ_c the Hausdorff measure of non-compactness in the space \mathcal{C} of continuous functions $x(.)$ defined from $[0, r]$ into X.

Lemma 4 (see [33]). Let $D_0 = \{x_n\} \subset \mathcal{C}$ be a countable set, then

1. $\sigma(D_0(t)) = \sigma(\{x_n(t)\})$ is Lebesgue integral on $[0, r]$,
2. $\sigma(\int_0^r D_0(s)ds) \leq 2 \int_0^r \sigma(D_0(s))ds$, where $\sigma(\int_0^r D_0(s)ds) = \sigma(\int_0^r x_n(s)ds)$.

Lemma 5 (see [29]). Let $D \subset \mathcal{C}$ be bounded and equi-continuous, then

1. $\sigma(D(t))$ is continuous on $[0, r]$,
2. $\sigma_c(D) = \max_{t \in [0, r]}(\sigma(D(t)))$.

3. Main Result

We first give the definition of mild solutions for the Cauchy problem (2). To do so, applying the fractional Laplace transform in equation (2), we obtain

$$\lambda \mathcal{L}_\alpha(x(t))(\lambda) = x_0 + g(x) + A\mathcal{L}_\alpha(x(t))(\lambda) + \mathcal{L}_\alpha(f(t, x(t)))(\lambda).$$

(12)

Then, one has

$$\mathcal{L}_\alpha(x(t))(\lambda) = (\lambda - A)^{-1} (x_0 + g(x)) + (\lambda - A)^{-1} \mathcal{L}_\alpha(f(t, x(t)))(\lambda).$$

(13)

Using the inverse fractional Laplace transform combined with Remark 1, we obtain

$$x(t) = T\left(\frac{t^\alpha}{\alpha}\right) \{x_0 + g(x)\} + \int_0^t s^\alpha T\left(\frac{t^\alpha - s^\alpha}{\alpha}\right) f(s, x(s))ds.$$

(14)

Motivate by the above calculus, we can introduce the following definition.

Definition 6. A function $x \in \mathcal{C}$ is called a mild solution of the Cauchy problem (2) if

$$x(t) = T\left(\frac{t^\alpha}{\alpha}\right) \{x_0 + g(x)\} + \int_0^t s^\alpha T\left(\frac{t^\alpha - s^\alpha}{\alpha}\right) f(s, x(s))ds.$$

(15)

To obtain the existence of mild solutions, we will need the following assumptions:

(H1) The function $f(t, .): X \rightarrow X$ is continuous, and for all $r > 0$ there exists a function $\mu_r \in L^\infty([0, r], \mathbb{R}^+)$ such that $\sup_{t \in [0, r]} ||f(t, x)|| \leq \mu_r(t)$, for all $t \in [0, r]$.

(H2) The function $f(., x): [0, r] \rightarrow X$ is continuous, for all $x \in X$.

(H3) The function $g: \mathcal{C} \rightarrow X$ is continuous and compact.

(H4) There exist positive constants a and b such that $||g(x)|| \leq a|x|_c + b$, for all $x \in \mathcal{C}$.

(H5) There exists a positive constant L such that $\sigma(\int f(t, D_0)) \leq L\sigma(D_0)$, for any countable set $D_0 \subset X$ and $t \in [0, r]$.

Theorem 2. Assume that (H1) – (H5) hold, then the Cauchy problem (2) has at least one mild solution provided that

$$\sup_{t \in [0, r]} T\left(\frac{t^\alpha}{\alpha}\right) \max\left(a, \frac{4Lr^\alpha}{\alpha}\right) < 1.$$

(16)

Proof. In order to use the Darbo–Sadovskii fixed point theorem, we put $B_{\delta} = \{x \in \mathcal{C}, ||x|| \leq \delta \}$ for $r > 0$ and define the operator $\Gamma: \mathcal{C} \rightarrow \mathcal{C}$ by

$$\Gamma(x)(t) = T\left(\frac{t^\alpha}{\alpha}\right) \{x_0 + g(x)\} + \int_0^t s^\alpha T\left(\frac{t^\alpha - s^\alpha}{\alpha}\right) f(s, x(s))ds.$$

(17)

The proof will be given in four steps.

Step 1. Prove that there exists a radius $\delta > 0$ such that $\Gamma: B_{\delta} \rightarrow B_{\delta}$.

Let $x \in \mathcal{C}$, we have

$$||\Gamma(x)(t)|| \leq \left|\left. T\left(\frac{t^\alpha}{\alpha}\right) \right| \{x_0 + g(x)\} \right| + \int_0^t s^\alpha \left|\left. T\left(\frac{t^\alpha - s^\alpha}{\alpha}\right) f(s, x(s)) \right| \right|ds.$$

(18)

Taking the supremum, we obtain

$$||\Gamma(x)||_c \leq \sup_{t \in [0, r]} T\left(\frac{t^\alpha}{\alpha}\right) \left|\left. \{x_0 + g(x)\} \right| \right| + \int_0^t s^\alpha \left|\left. \|f(s, x(s))\| \right| \right|ds.$$

(19)

Using assumption (H4), we deduce that

$$||\Gamma(x)||_c \leq \sup_{t \in [0, r]} T\left(\frac{t^\alpha}{\alpha}\right) \left|\left. \{x_0\} + a|x|_c \right| \right| + b + \int_0^t s^\alpha \left|\left. \|f(s, x(s))\| \right| \right|ds.$$

(20)

Hence, it suffices to consider δ as a solution of the following inequality:

$$\sup_{t \in [0, r]} T\left(\frac{t^\alpha}{\alpha}\right) \left|\left. \{x_0\} + ar + b + \frac{s^\alpha}{\alpha} \mu_r \right|_{L^\infty([0, r], \mathbb{R}^+)} \right| \leq \delta.$$

(21)
\[
\delta \geq \sup_{t \in [0, r]} \left| T(t^{\alpha}/\alpha) \right| \left[\| x_0 \| + b + \frac{t^\alpha}{\alpha} \mu^\delta_{L^p([0, r], \mathbb{R}^n)} \right].
\]

(22)

Step 2. Prove that \(\Gamma : B_\delta \rightarrow B_\delta \) is continuous.
Let \((x_n) \subset B_\delta \) such that \(x_n \rightarrow x \) in \(B_\delta \). We have
\[
\Gamma(x_n)(t) - \Gamma(x)(t) = T \left(\frac{t^\alpha}{\alpha} \right) [g(x_n) - g(x)]
\]
\[
+ \int_0^t s^{\alpha-1} T \left(\frac{t^\alpha - s^\alpha}{\alpha} \right) \cdot \left[f(s, x_n(s)) - f(s, x(s)) \right] ds.
\]

(23)

Then, by using a direct computation, we obtain
\[
\left\| \Gamma(x_n) - \Gamma(x) \right\|_{\infty} \leq \sup_{t \in [0, r]} \left[T \left(\frac{t^\alpha}{\alpha} \right) \right] \left[\| g(x_n) - g(x) \| + \int_0^t s^{\alpha-1} \left\| f(s, x_n(s)) - f(s, x(s)) \right\| ds \right].
\]

(24)

Using assumption \((H_1)\), we get \(\| s^{\alpha-1} [f(s, x_n(s)) - f(s, x(s))] \| \leq 2 \mu \delta(s) s^{\alpha-1} \) and \(f(s, x_n(s)) \rightarrow f(s, x(s)) \) as \(n \rightarrow +\infty \).

The Lebesgue dominated convergence theorem proves that \(\int_0^t s^{\alpha-1} \left\| f(s, x_n(s)) - f(s, x(s)) \right\| ds \rightarrow 0 \) as \(n \rightarrow +\infty \). According to continuity of the function \(g \), we deduce that \(\lim_{n \rightarrow +\infty} \| g(x_n) - g(x) \| = 0 \). Hence, \(\Gamma \) is continuous.

Step 3. Prove that \(\Gamma(B_\delta) \) is equicontinuous.
For \(x \in B_\delta \) and \(t_1, t_2 \in [0, r] \) such that \(t_1 < t_2 \), we have
\[
\Gamma(x)(t_2) - \Gamma(x)(t_1) = T \left(\frac{t_2^{\alpha} - t_1^{\alpha}}{\alpha} \right) - I \left[T \left(\frac{t_1^{\alpha}}{\alpha} \right) \right] (x_0 + g(x))
\]
\[
+ \int_{t_1}^{t_2} s^{\alpha-1} T \left(\frac{t_2^\alpha - s^\alpha}{\alpha} \right) f(s, x(s)) ds
\]
\[
+ \int_{t_1}^{t_2} s^{\alpha-1} T \left(\frac{t_1^\alpha - s^\alpha}{\alpha} \right) f(s, x(s)) ds.
\]

(25)

By using assumptions \((H_1)\) and \((H_4)\), we obtain
\[
\left\| \Gamma(x)(t_2) - \Gamma(x)(t_1) \right\|
\leq \left(\| x_0 \| + a \delta + b + \frac{t_2^\alpha}{\alpha} \mu^\delta_{L^p([0, r], \mathbb{R}^n)} \right) \sup_{t \in [0, r]} \left[T \left(\frac{t^\alpha}{\alpha} \right) \right]
\]
\[
\cdot \left[T \left(\frac{t_2^\alpha - t_1^\alpha}{\alpha} \right) - I \right] + \sup_{t \in [0, r]} \left[T \left(\frac{t_1^\alpha}{\alpha} \right) \right] \| \mu^\delta_{L^p([0, r], \mathbb{R}^n)} \left[t_2^\alpha - t_1^\alpha \right] \right].
\]

(26)

The above inequality combined with the uniform continuity of the family \((T(t))_{t \geq 0} \) proves that \(\Gamma(B_\delta) \) is equicontinuous on \([0, r]\).

Step 4. Prove that \(\Gamma : B_\delta \rightarrow B_\delta \) is a \(\sigma \)-contraction operator.
Let \(D \subset B_\delta \), then by Lemma 3 there exists a countable set \(D_0 \) such that \(D_0 = \{ x_0 \} \subset D \). Hence, \(\Gamma(D_0) \) becomes a countable subset of \(\Gamma(D) \). Thus, Lemma 3 proves that \(\sigma_e (\Gamma(D)) \leq 2 \sigma_e (\Gamma(D_0)) \). Since \(\Gamma(D_0) \) is bounded and equicontinuous, then by using Lemma 5, we obtain
\[
\sigma_e (\Gamma(D_0)) = \max_{t \in [0, r]} \left(\sigma (\Gamma(D_0)(t)) \right).
\]

(27)

Then, one has
\[
\sigma_e (\Gamma(D)) \leq 2 \sigma_e (\Gamma(D_0))
\]
\[
= 2 \max_{t \in [0, r]} \left(\sigma \left(T \left(\frac{t^\alpha}{\alpha} \right) \right) [x_0 + g(D_0)] \right)
\]
\[
+ \sigma \left(\int_0^t s^{\alpha-1} T \left(\frac{t^\alpha - s^\alpha}{\alpha} \right) f(s, D_0(s)) ds \right) \right).
\]

(28)

By using point (4) of Lemma 1, we deduce that
\[
\sigma_e (\Gamma(D)) \leq 2 \max_{t \in [0, r]} \sigma \left(T \left(\frac{t^\alpha}{\alpha} \right) \right) [x_0 + g(D_0)]
\]
\[
+ \sigma \left(\int_0^t s^{\alpha-1} T \left(\frac{t^\alpha - s^\alpha}{\alpha} \right) f(s, D_0(s)) ds \right) \right).
\]

(29)

Since \(g \) is compact, then \(T(t^\alpha/\alpha) [x_0 + g(D_0)] \) is relatively compact. Hence, using point (1) of Lemma 1 in the above inequality, we obtain
\[
\sigma_e (\Gamma(D)) \leq 2 \max_{t \in [0, r]} \left(\int_0^t s^{\alpha-1} T \left(\frac{t^\alpha - s^\alpha}{\alpha} \right) f(s, D_0(s)) ds \right).
\]

(30)

In view of Lemma 4, we get
\[
\sigma_e (\Gamma(D)) \leq 4 \max_{t \in [0, r]} \left(\int_0^t s^{\alpha-1} \sigma \left(T \left(\frac{t^\alpha - s^\alpha}{\alpha} \right) f(s, D_0(s)) ds \right) \right).
\]

(31)

Next, point (7) of Lemma 1 shows that
\[
\sigma_e (\Gamma(D)) \leq 4 \sup_{t \in [0, r]} \left| T \left(\frac{t^\alpha}{\alpha} \right) \right| \max_{t \in [0, r]} \left(\int_0^t s^{\alpha-1} \sigma (f(s, D_0(s))) ds \right).
\]

(32)

By using assumption \((H_3)\), we obtain
\[
\sigma_e (\Gamma(D)) \leq 4L \sup_{t \in [0, r]} \left(\left| T \left(\frac{t^\alpha}{\alpha} \right) \right| \right) \max_{t \in [0, r]} \left(\int_0^t s^{\alpha-1} \sigma (D_0(s)) ds \right).
\]

(33)
Hence, by using a direct computation combined with point (2) of Lemma 5, we obtain
\[
\sigma_c(\Gamma(D)) \leq 4L \sup_{t \in [0,T]} \left| T\left(\frac{t^\alpha}{\alpha}\right)\right| \sigma_c(D) \int_0^T s^{\alpha-1} ds = \frac{4Lt^\alpha}{\alpha} \sup_{t \in [0,\tau]} \left| T\left(\frac{t^\alpha}{\alpha}\right)\right| \sigma_c(D).
\]
(34)

In consequence, we have
\[
\sigma_c(\Gamma(D)) \leq \frac{4Lt^\alpha}{\alpha} \sup_{t \in [0,\tau]} \left| T\left(\frac{t^\alpha}{\alpha}\right)\right| \sigma_c(D).
\]
(35)

Since \(4Lt^\alpha/\alpha \sup_{t \in [0,\tau]} |T(t^\alpha/\alpha)| < 1\), then \(\Gamma\) is a \(\sigma_c\)-contraction operator.

In conclusion, Lemma 2 shows that \(\Gamma\) has at least one fixed point, which is a mild solution of the Cauchy problem (2).

\(\square\)

Remark 2. We note that Theorem 2 improves Theorem 3 in [18] because in Theorem 2 we have not imposed the compactness of the family \((T(t))_{t>0}\) and the Lipschitz condition on the nonlocal part \(g\).

4. Conclusion

Without imposing the compactness condition on the semigroup family and the Lipschitz condition on the nonlocal condition, we have proved the existence of mild solutions for a class of conformable-fractional differential equations with nonlocal conditions in a Banach space. The main result is obtained by means of semigroup theory combined with the Darbo–Sadovskii fixed point theorem.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] P. Chen, X. Zhang, and Y. Li, “Fractional non-autonomous evolution equation with nonlocal conditions,” Journal of Pseudo-Differential Operators and Applications, vol. 10, no. 4, pp. 955–973, 2019.
[2] P. Chen, X. Zhang, and Y. Li, “A blowup alternative result for fractional nonautonomous evolution equation of Volterra type,” Communications on Pure and Applied Analysis, vol. 17, 2018.
[3] P. Chen, X. Zhang, and Y. Li, “Approximation technique for fractional evolution equations with nonlocal integral conditions,” Mediterranean Journal of Mathematics, vol. 14, p. 226, 2017.
[4] P. Chen, X. Zhang, and Y. Li, “Study on fractional non-autonomous evolution equations with delay,” Computers and Mathematics with Applications, vol. 73, no. 5, pp. 794–803, 2017.
[5] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, Netherland, 2006.
[6] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, NY, USA, 1993.
[7] K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, San Diego, CA, USA, 1974.
[8] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, CA, USA, 1999.
[9] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives Theory and Applications, Gordon & Breach Science Publishers, Amsterdam, Netherlands, 1993.
[10] R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh, “A new definition of fractional derivative,” Journal of Computational and Applied Mathematics, vol. 264, pp. 65–70, 2014.
[11] T. Abdeljawad, “On conformable fractional calculus,” Journal of Computational and Applied Mathematics, vol. 279, pp. 57–66, 2015.
[12] W. S. Chung, “Fractional Newton mechanics with conformable fractional derivative,” Journal of Computational and Applied Mathematics, vol. 290, pp. 150–158, 2015.
[13] L. Martínez, J. J. Rosales, C. A. Carreño, and J. M. Lozano, “Electrical circuits described by fractional conformable derivative,” International Journal of Circuit Theory and Applications, pp. 1–10, 2018.
[14] D. Zhao and M. Luo, “General conformable fractional derivative and its physical interpretation,” Calculo, vol. 54, no. 3, pp. 903–917, 2017.
[15] M. Bouaouid, M. Atraoui, K. Hilal, and S. Melliani, “Fractional differential equations with nonlocal-delay condition,” Journal of Advanced Mathematical Studies, vol. 11, pp. 214–225, 2018.
[16] M. Bouaouid, K. Hilal, and S. Melliani, “Sequential evolution conformable differential equations of second order with nonlocal condition,” Advances in Difference Equations, vol. 2019, no. 1, p. 21, 2019.
[17] M. Bouaouid, K. Hilal, and S. Melliani, “Nonlocal telegraph equation in frame of the conformable time-fractional derivative,” Advances in Mathematical Physics, vol. 2019, pp. 1–7, 2019.
[18] M. Bouaouid, K. Hilal, and S. Melliani, “Nonlocal conformable fractional Cauchy problem with sectorial operator,” Indian Journal of Pure and Applied Mathematics, vol. 50, no. 4, pp. 999–1010, 2019.
[19] M. Bouaouid, K. Hilal, and S. Melliani, “Existence of mild solutions for conformable-fractional differential equations with nonlocal conditions,” Rocky Mountain Journal of Mathematics, https://projecteuclid.org/euclid.rmjm/1573354832, 2019.
[20] H. Eltayeb, I. Bachar, and M. Gad-Allah, “Solution of singular one-dimensional Boussinesq equation by using double conformable Laplace decomposition method,” Advances in Difference Equations, vol. 2019, p. 293, 2019.
[21] T. T. Binh, N. H. Luc, D. O’Regan, and N. H. Can, “On an initial inverse problem for a diffusion equation with a conformable derivative,” Advances in Difference Equations, vol. 2019, p. 481, 2019.
[22] N. H. Tuan, T. N. Thach, N. H. Can, and D. O’Regan, “Regularization of a multidimensional diffusion equation with conformable time derivative and discrete data,” Mathematical Methods in the Applied Sciences, pp. 1–13, 2019.
[23] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, NY, USA, 1983.
[24] L. Byszewski, “Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem,” Journal of Mathematical Analysis and Applications, vol. 162, no. 2, pp. 494–505, 1991.

[25] K. Deng, “Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions,” Journal of Mathematical Analysis and Applications, vol. 179, no. 2, pp. 630–637, 1993.

[26] W. E. Olmstead and C. A. Roberts, “The one-dimensional heat equation with a nonlocal initial condition,” Applied Mathematics Letters, vol. 10, no. 3, pp. 89–94, 1997.

[27] P. Chen, X. Zhang, and Y. Li, “Approximate controllability of non-autonomous evolution system with nonlocal conditions,” Journal of Dynamical and Control Systems, vol. 26, no. 1, pp. 1–16, 2018.

[28] P. Chen, X. Zhang, and Y. Li, “Non-autonomous parabolic evolution equations with non-instantaneous impulses governed by noncompact evolution families,” Journal of Fixed Point Theory and Applications, vol. 21, p. 84, 2019.

[29] J. Banas and K. Goebel, “Measures of noncompactness in Banach spaces,” in Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, New York, NY, USA, 1980.

[30] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, New York, NY, USA, 1985.

[31] P. Chen and Y. Li, “Monotone iterative technique for a class of semilinear evolution equations with nonlocal conditions,” Results in Mathematics, vol. 63, no. 3-4, pp. 731–744, 2013.

[32] Y. Li, “Existence of solutions of initial value problems for abstract semilinear evolution equations,” Acta Mathematica Sinica-Chinese Edition, vol. 48, pp. 1089–1094, 2005.

[33] H.-P. Heinz, “On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions,” Nonlinear Analysis: Theory, Methods and Applications, vol. 7, no. 12, pp. 1351–1371, 1983.