Homogenization of random convolution energies in heterogeneous and perforated domains

ANDREA BRAIDES
Dipartimento di Matematica, Università di Roma ‘Tor Vergata’
via della Ricerca Scientifica, 00133 Rome, Italy

ANDREY PIATNITSKI
The Arctic University of Norway, UiT, Campus Narvik,
P.O. Box 385, Narvik 8505, Norway
and
Institute for Information Transmission Problems of RAS,
127051 Moscow, Russia

Abstract. We prove a homogenization theorem for a class of quadratic convolution energies with random coefficients. Under suitably stated hypotheses of ergodicity and stationarity we prove that the Γ-limit of such energy is almost surely a deterministic quadratic Dirichlet-type integral functional, whose integrand can be characterized through an asymptotic formula. The proof of this characterization relies on results on the asymptotic behaviour of subadditive processes. The proof of the limit theorem uses a blow-up technique common for local energies, that can be extended to this ‘asymptotically-local’ case. As a particular application we derive a homogenization theorem on random perforated domains.

Keywords. Homogenization, convolution functionals, random functionals, random perforated domains, non-local energies

1 Introduction

In this paper we consider random energies of convolution type. Such energies may be interpreted for example in the context of mathematical models in population dynamics where macroscopic properties can be reduced to studying the evolution of the first-correlation functions describing the population density u in the system [22 [16]. Our model energies are defined on L^2-functions in a reference domain D and are of the form

$$
\frac{1}{\varepsilon^{d+2}} \int_{D \times D} B^d \left(\frac{x - y}{\varepsilon} \right) a \left(\frac{y - x}{\varepsilon} \right) (u(y) - u(x))^2 \, dy \, dx,
$$

or

$$
\frac{1}{\varepsilon^{d+2}} \int_{(D \cap E^c) \times (D \cap E^c)} a \left(\frac{y - x}{\varepsilon} \right) (u(y) - u(x))^2 \, dy \, dx.
$$

1
Here $a : \mathbb{R}^d \to \mathbb{R}$ is a convolution kernel which describes the strength of the interaction at a given distance and ε is a scaling parameter. In order that the limit of energies above be well-defined on $H^1(\Omega)$ we require that

$$\int_{\mathbb{R}^d} a(\xi)(1 + |\xi|^2) \, dx < +\infty. \quad (3)$$

In (1) the strictly positive coefficient B^ω represents the features of the environment, while in (2) E^ω is a random perforated domain giving the regions where interaction actually occurs, both depending on the realization of a random variable. Note that functionals (2) can be also written as (1) with the degenerate coefficient $B^\omega(x, y) = \chi_{E^\omega}(x)\chi_{E^\omega}(y)$, where χ_{E} denotes the characteristic function of E. Note that more in general we may consider oscillations on a different scale than ε; e.g. taking coefficients $B^\omega(x/\delta, y/\delta)$ with $\delta = \delta_\varepsilon$, but the case when these two scales differ can be treated more easily by a separation-of-scale argument.

The effect of the scaling parameter ε as $\varepsilon \to 0$ is twofold, on one hand producing a local limit model as the convolution kernel concentrates, and on the other hand ensuring a homogenization effect through the oscillations provided by B^ω. To illustrate the first issue, we may consider the underlying energies (those with the perturbation B^ω set to 1)

$$\frac{1}{\varepsilon^{d+2}} \int_{D \times D} a\left(\frac{y-x}{\varepsilon}\right) (u(y) - u(x))^2 \, dy \, dx. \quad (4)$$

We note that if $u \in C^1(D)$ then $u(y) - u(x) \approx \langle \nabla u(x), y-x \rangle$ and, using the change of variables $y = x + \varepsilon \xi$,

$$\lim_{\varepsilon \to 0} \frac{1}{\varepsilon^{d+2}} \int_{D \times D} a\left(\frac{y-x}{\varepsilon}\right) (\langle \nabla u(x), y-x \rangle)^2 \, dy \, dx = \int_D \int_{\mathbb{R}^d} a(\xi) (\langle \nabla u(x), \xi \rangle)^2 \, d\xi \, dx, \quad (5)$$

so that the quadratic functional

$$\int_D \langle A\nabla u, \nabla u \rangle \, dx, \quad \text{with} \quad \langle Az, z \rangle = \int_{\mathbb{R}^d} a(\xi) (\langle z, \xi \rangle)^2 \, d\xi, \quad (6)$$

gives an approximation of (4). Conversely, we may think of (4) as giving a more general form of quadratic energies allowing for interactions between points at scale ε. In terms of Γ-convergence this computation can be extended to a Γ-limit result and obtain the corresponding convergence of minimum problems. To that end we will suppose that $a : \mathbb{R}^d \to \mathbb{R}$ satisfies

$$0 \leq a(\xi) \leq \frac{1}{C + (1 + |\xi|)^{d+2+\kappa}}, \quad (7)$$

for some $C, \kappa > 0$ (which is a quantified version of (3)), and

$$a(\xi) \geq c > 0 \quad \text{if} \quad |\xi| \leq r_0 \quad (8)$$

for some $r_0 > 0$ and $c > 0$.

In a Γ-convergence context energies (4) have been considered as an approximation of a Dirichlet-type integral in phase-transition problems (see e.g. [1]) and more recently in connection with minimal-cut problems in Data Science [19]. Limits of energies similar to (4), of the form

$$\frac{1}{\varepsilon^d} \int_{D \times D} a\left(\frac{y-x}{\varepsilon}\right) \frac{|u(y) - u(x)|^2}{y-x} \, dy \, dx, \quad (9)$$

are
have also been studied by Bourgain et al. [5] as an alternative definition of the \(L^p\)-norm of the gradient of a Sobolev function, while, in the context of Free-Discontinuity Problems, functionals of the form

\[
\frac{1}{\varepsilon^d} \int_{D \times D} a \left(\frac{y - x}{\varepsilon} \right) \min \left\{ \left| \frac{u(y) - u(x)}{y - x} \right|, \frac{1}{\varepsilon} \right\} dy \, dx,
\]

have been proved to provide an approximation of the Mumford-Shah functionals by Gobbino [20] after a conjecture by De Giorgi. Furthermore, discrete counterparts of functionals (4); i.e., energies of the form

\[
\frac{1}{\varepsilon^{d+2}} \sum_{i,j \in \mathcal{L}} a_{ij} (u_i - u_j)^2
\]

where \(\mathcal{L}\) is a \(d\)-dimensional lattice have been widely investigated (see e.g. [18, 2, 9, 13]) as a discrete approximation of quadratic integral functionals. Such type of functionals or the corresponding operators have been analyzed in different ways under various inhomogeneity and randomness assumptions (see e.g. [21, 18, 4, 12, 3, 4, 19, 10]).

In our case, we will prove a general homogenization result, which, under proper stationarity and ergodicity assumptions, will comprise both random coefficients and random perforated domains as in (1), assuming that \(B^\omega\) satisfies \(0 < \lambda_1 \leq B^\omega(x, y) \leq \lambda_2 < +\infty\), and (2) where \(E^\omega\) is a random perforated domain consisting of a unique connected component. The limit behaviour of these energies is described by their \(\Gamma\)-limit in the \(L^2(D)\) topology as a standard elliptic integral, of the form

\[
F_{\text{hom}}(u) = \int_D \langle A_{\text{hom}} \nabla u, \nabla u \rangle \, dx.
\]

The matrix \(A_{\text{hom}}\) is characterized by an asymptotic formula obtained using a limit theorem for subadditive processes. The choice of the \(L^2(D)\) topology is justified by the coerciveness of the convolution energies, which ensures the convergence of minimum problems.

The plan of the paper is as follows. In Section 2 we define the general form of the random functionals that we are going to consider. Section 3 is devoted to the statement and proof of a compactness theorem. The proof of this result follows closely that of the compactness result for non-linear convolution energies used to approximate Free-Discontinuity Problems obtained by Gobbino [20, 6]; thanks to the quadratic growth conditions on the energies we can improve that result from \(L^1\) to \(L^2\) compactness. In Section 4 we prove Poincaré and Poincaré-Wirtinger inequalities, which, together with the compactness result, justify the application of the direct method of the Calculus of Variations to minimum problems, and hence the asymptotic study of convolution energies in terms of \(\Gamma\)-convergence. In Section 5 we use the stationarity and ergodicity properties of the energies to prove the existence of an asymptotic homogenization formula giving a deterministic homogeneous integrand using results on the asymptotic behaviour of almost-subadditive processes in [23]. The formula is used in Section 6 to prove the homogenization theorem using an adaptation to (non-local) homogenization problems of the blow-up technique of Fonseca and Müller [17, 14]. Finally, in Section 7 we remark that the result can be applied to the homogenization of random perforated domains.
2 Setting of the problem

Let D be an open subset of \mathbb{R}^d. For all $\varepsilon > 0$ and $u \in L^2(D)$ we will consider convolution-type energies of the form

$$F_\varepsilon(u) = \frac{1}{\varepsilon^{d+2}} \int_D \int_D b^\varepsilon(x, y)(u(y) - u(x))^2 \, dy \, dx,$$

(13)

where b^ε are stationary ergodic integrands satisfying

$$0 \leq b^\varepsilon(x, y) \leq C \frac{1}{(1 + |x - y|)^{d+2+\kappa}}.$$

(14)

More precisely, given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with an ergodic dynamical system τ_x, we assume that

$$b^\varepsilon(x, y) = b(\tau_x \omega, \tau_y \omega, x - y),$$

(15)

where $b(\omega_1, \omega_2, \xi)$ is a function define on $\Omega \times \Omega \times \mathbb{R}^d$ such that

$$0 \leq b(\omega_1, \omega_2, \xi) \leq C \frac{1}{(1 + |\xi|)^{d+2+\kappa}}.$$

(16)

In order to make the definition of a function b in (15) well defined we need additional assumptions on b. One option is to assume that $b(\omega_1, \omega_2, \xi) = b_1(\omega_1)b_2(\omega_2)a(\xi)$, where b_1 and b_2 are nonnegative bounded random variables, and $a(\xi)$ is a measurable function in \mathbb{R}^d that satisfies estimate (17). Another option is to assume that Ω is a topological space, the group τ_x is continuous in x, and the function $b = b(\omega_1, \omega_2, \xi)$ is continuous in ω_1 and ω_2 and measurable in ξ and $b(\omega_1, \omega_2, \xi) \leq a(\xi)$ with a as above. In both cases the definition of b^ε in (16) makes sense.

In order to obtain coerciveness properties which allow to include in our results both types of models (11) and (2), i.e., with integrands

- $b^\varepsilon(x, y) = B^\varepsilon(x, y)a(x - y)$ with $0 < \lambda_1 \leq B^\varepsilon(x, y) \leq \lambda_2 < +\infty$, or
- $b^\varepsilon(x, y) = \chi_{E^\varepsilon}(x)\chi_{E^\varepsilon}(y)a(x - y)$,

we will make the following abstract assumption.

Definition 2.1. We say that b^ε is a coercive energy function if there exist constants C and Ξ_0 such that for all U open subsets of \mathbb{R}^d, $z \in \mathbb{R}^d$, $\Xi \geq \Xi_0$ and $u \in L^2(U)$ satisfying the boundary condition

$$u(x) = \langle z, x \rangle \quad \text{if dist}(x, \partial U) < \Xi$$

there exists a function $v \in L^2(U)$ satisfying the boundary condition

$$v(x) = \langle z, x \rangle \quad \text{if dist}(x, \partial U) < \Xi/2$$

such that

$$\int_{U \times U} b^\varepsilon(x, y)(v(y) - v(x))^2 \, dy \, dx \leq \int_{U \times U} b^\varepsilon(x, y)(u(y) - u(x))^2 \, dy \, dx,$$

(17)

and

$$\int_{\{x,y \in U: |x-y|<1\}} (v(y) - v(x))^2 \, dy \, dx \leq C \int_{U \times U} b^\varepsilon(x, y)(v(y) - v(x))^2 \, dy \, dx.$$

(18)
Remark 2.2. Note that if $b^u(x, y) \geq C > 0$ when $|x - y| < 1$ and we take $u = v$ in the definition above, or if $b^u(x, y) = \chi_E(x)\chi_E(y)a(x - y)$ with E a deterministic periodic perforated domain with v a suitable extension of u in the perforation constructed in [15], then b^u is coercive.

Remark 2.3 (coerciveness). The terminology in Definition 2.1 is justified by the Compactness Theorem in Section 3, which ensures that if b^u is a coercive energy function, then sequences bounded in $L^2(D)$ and for which the energy on the left-hand side of (18) is equibounded admit $L^2_{\text{loc}}(D)$ converging subsequences and their limit is in $H^1(D)$.

2.1 Notation

Unless otherwise stated C denotes a generic strictly positive constant independent of the parameters of the problem taken into account.

$Q_T = [-T/2, T/2]^d$ denotes the d-dimensional coordinate cube centered in 0 and with side-length T. If $T = 1$ then we write $Q = Q_1$.

If $x, y \in \mathbb{R}^d$ then $|y - x| = \sum_{j=1}^d |y_j - x_j|$.

$\lfloor t \rfloor$ denotes the integer part of $t \in \mathbb{R}$.

χ_A denotes the characteristic function of the set A.

For all $t > 0$ and D open subset of \mathbb{R}^d we denote $D(t) = \{ x \in D : \text{dist}(x, \partial D) > t \}$.

As a shorthand, the notation \{P(\xi)\} will stand for \{\xi \in \mathbb{R}^d : P(\xi) \text{ holds}\} if no confusion may arise.

3 A compactness theorem

Let D be an open set with Lipschitz boundary. We show that families of functions that have bounded energies of the type (14) is compact in $L^2_{\text{loc}}(D)$. To this end, for $0 < r \leq \sigma$, we define the functional

$$F_\varepsilon^{\sigma, r}(w) = \int_{D(\sigma)} \int_{\{ |\xi| \leq r \}} \left(\frac{w(x + \varepsilon \xi) - w(x)}{\varepsilon} \right)^2 \, d\xi \, dx, \quad w \in L^2(D).$$

In the case when $D = \mathbb{R}^d$ the L^2_{loc}-compactness can be directly obtained by comparison with finite-difference energies approximating the Mumford-Shah functional studied by Gobbino [20]. Here we follow his proof, to deduce the L^2_{loc}-compactness.

Theorem 3.1 (compactness theorem). Let D be an open set with Lipschitz boundary, and assume that for a family \{w_\varepsilon\}_{\varepsilon > 0}$, $w_\varepsilon \in L^2(D)$, the estimate

$$F_\varepsilon^{\sigma, r}(w_\varepsilon) := \int_{D(\sigma)} \int_{\{ |\xi| \leq r \}} \left(\frac{w_\varepsilon(x + \varepsilon \xi) - w_\varepsilon(x)}{\varepsilon} \right)^2 \, d\xi \, dx \leq C$$

is satisfied with some $k > 0$ and $r > 0$. Assume moreover that the family \{w_\varepsilon\} is bounded in $L^2(D)$. Then for any sequence ε_j such that $\varepsilon_j > 0$ and $\varepsilon_j \to 0$, as $j \to \infty$, and for any open subset $D' \Subset D$ the set \{w_\varepsilon_j\}_{j \in \mathbb{N}} is relatively compact in $L^2(D')$ and every its limit point is in $H^1(D)$.

Before proving the theorem we prove some auxiliary results. We first introduce the local average of a function $u \in L^2(D)$ by

$$\bar{u}_\delta = \int_{\{ |\xi| \leq 1 \}} u(x + \delta \xi) \phi(\delta) \, d\xi,$$
where ϕ is a symmetric non-negative C^∞_0 function in \mathbb{R}^d supported in the unit ball centered at the origin, $\int \phi(\xi) \, d\xi = 1$. In our framework the function \hat{u}_δ is well defined in $D(\delta)$. The properties of the local average operator are described in the following statement.

Proposition 3.2. Let δ and σ be positive numbers with $\delta < \sigma$. Then we have

$$
\|\hat{u}_\delta - u\|_{L^2(D(\sigma))} \leq C_\delta \delta^2 F^{\sigma,1}_\delta(u). \tag{20}
$$

For any $\delta > 0$ such that $D' \subset D(\delta)$ the function \hat{u}_δ is smooth in D' and satisfies the inequalities

$$
\|\hat{u}_\delta\|_{L^\infty(D')} \leq C_\delta \delta^{-\frac{d}{2}} \|u\|_{L^2(D)}, \quad \|\nabla \hat{u}_\delta\|_{L^\infty(D')} \leq C_\delta \delta^{-\frac{d-1}{2}} \|u\|_{L^2(D)}. \tag{21}
$$

Proof. For any $u \in L^2(D)$ by the Cauchy-Schwartz inequality we have

$$
\|\hat{u}_\delta - u\|_{L^2(D(\sigma))}^2 = \int_{D(\sigma)} \int_{\{\xi \leq 1\}} \int_{\{|\eta| \leq 1\}} (u(x + \delta \xi) - u(x)) (u(x + \delta \eta) - u(x)) \phi(\xi) \phi(\eta) \, d\eta \, d\xi \, dx.
$$

$$
\leq \delta^2 \left(\int_{D(\sigma)} \int_{\{|\xi| \leq 1\}} \int_{\{|\eta| \leq 1\}} \left(\frac{u(x + \delta \xi) - u(x)}{\delta} \right)^2 \phi(\xi)^2 \, dx \, d\eta \right) \times \left(\int_{\{|\xi| \leq 1\}} \int_{\{|\eta| \leq 1\}} \left(\frac{u(x + \delta \eta) - u(x)}{\delta} \right)^2 \phi(\eta)^2 \, dx \, d\eta \right)^{\frac{1}{2}}
$$

$$
\leq C_\delta \delta^2 F^{\sigma,1}_\delta(u).
$$

The estimates in (21) are standard. \square

Proposition 3.3. For any $j \in \mathbb{N}$ such that $j \xi \leq \text{dist}(D', \partial D) - k\varepsilon$ the following inequality holds:

$$
F^{(j+k)\varepsilon,1}_{\varepsilon}(u) \leq F^{k\varepsilon,1}_{\varepsilon}(u) \tag{22}
$$

for all $u \in L^2(D)$.

Proof. Representing $u(x + j\varepsilon \xi) - u(x)$ as $(u(x + j\varepsilon \xi) - u(x + (j-1)\varepsilon \xi)) + (u(x + (j-1)\varepsilon \xi) - u(x + (j-2)\varepsilon \xi)) + \ldots + (u(x + \varepsilon \xi) - u(x))$ we obtain

$$
F^{(j+k)\varepsilon,1}_{\varepsilon}(u) \leq j \int_{D((j+k)\varepsilon)} \int_{\{|\xi| \leq 1\}} \sum_{m=1}^{j} \frac{(u(x + m\varepsilon \xi) - u(x + (m-1)\varepsilon \xi))^2}{(j\varepsilon)^2} \, dx \, d\xi
$$

$$
\leq j^2 \int_{D(k\varepsilon)} \int_{\{|\xi| \leq 1\}} \frac{(u(x + \varepsilon \xi) - u(x))^2}{(j\varepsilon)^2} \, dx \, d\xi = F^{k\varepsilon,1}_{\varepsilon}(u)
$$

as desired. \square

Proof of Theorem 3.1 One may assume without loss of generality that $r = 1$. In order to prove the compactness result, it suffices to show that, fixed D', for each $\delta > 0$ there exists a relatively compact set K_δ in $L^2(D')$ such that for any $j \in \mathbb{N}$ we have

$$
\|w_{\varepsilon_j} - h_j\|_{L^2(D')} \leq \delta \tag{23}
$$
for some $h_j \in K_{\delta}$.

We define K_{δ} as follows. If $\epsilon_j \geq \delta$, we set $h_j = w_{\epsilon_j}$; otherwise,

$$h_j = w_{\epsilon_j, \delta_j} = \int_{|\xi| \leq 1} w_{\epsilon_j}(x + \delta_j \xi) \phi(\xi) \, d\xi,$$

where $\delta_j = \left\lfloor \frac{\delta}{\epsilon_j} \right\rfloor \epsilon_j$. Note that $\frac{1}{2} \delta < \delta_j \leq \delta$ for any j such that $\epsilon_j < \delta$. We finally set $K_{\delta} = \bigcup_{j=1}^{\infty} \{h_j\}$.

It is convenient to represent K_{δ} as a union $K_{\delta} = K_{\delta,1} \cup K_{\delta,2}$ with

$$K_{\delta,1} = \bigcup_{\{j: \epsilon_j \geq \delta\}} h_j, \quad K_{\delta,2} = \bigcup_{\{j: \epsilon_j < \delta\}} h_j.$$

Since ϵ_j tends to zero as $j \to \infty$, the first set consists of a finite number of elements and thus is compact. By (21) for any $h_j \in K_{\delta,2}$ we obtain

$$|h_j(x)| \leq C(\delta), \quad |\nabla h_j(x)| \leq C(\delta) \quad \text{for all} \quad x \in D'.$$

Therefore, by the Arzelà-Ascoli theorem, the set $K_{\delta,2}$ is relatively compact in $C(D')$. Consequently, this set is also relatively compact in $L^2(D')$. This yields the desired relative compactness of K_{δ}.

If $\epsilon_j \geq \delta$ then $h_j = w_{\epsilon_j}$, and (23) holds. If $\epsilon_j < \delta$, then by (20) we get

$$\|w_{\epsilon_j} - h_j\| \leq C \phi \delta_j F_{\epsilon_j,1}^{(\delta_j + k \epsilon_j)}(w_{\epsilon_j}).$$

Combining this inequality with (22) and recalling that $\delta_j = \left\lfloor \frac{\delta}{\epsilon_j} \right\rfloor \epsilon_j$, we obtain

$$\|w_{\epsilon_j} - h_j\| \leq C \phi \delta_j F_{\epsilon_j,1}^{(\delta_j + k \epsilon_j)}(w_{\epsilon_j}) \leq C \delta_j \leq C \delta;$$

here we have also used (19). The last inequality implies (23).

It remains to show that each limit point w is in $H^1(D)$. To that end we may use the ‘slicing technique’ (see e.g. [6] Section 4.1, [7] Chapter 15 or [8] Section 3.4). This general method allows to reduce the analysis to that of one-dimensional sections, and recover a lower bound by integrating over all sections. It has already been applied in [20] to sequences of nonlinear functionals of the form

$$\frac{1}{\varepsilon^{d+1}} \int_{D} \int_{D} a\left(y - x, \frac{u(y) - u(x)}{\varepsilon}\right) f\left(\frac{u(y) - u(x)}{\varepsilon}\right) \, dy \, dx \quad (24)$$

in order to obtain compactness in spaces of functions with bounded variation. In our case we are in a simplified situation with f equal the identity and we can improve the result to compactness in $H^1(D)$.

In the one-dimensional case it is not restrictive to study functionals of the form

$$G_{\varepsilon}(u) = \int_{(0,1)} \left(\frac{u(x + \varepsilon \xi) - u(x)}{\varepsilon}\right)^2 \, d\xi, \quad (25)$$

and regard all functions as defined on \mathbb{R}. With Fatou’s lemma in mind, in order to have a lower bound it suffices to examine separately the functionals

$$G_{\varepsilon}^\xi(u) = \int_{(0,1)} \left(\frac{u(x + \varepsilon \xi) - u(x)}{\varepsilon}\right)^2 \, dx \quad (26)$$
for fixed \(\xi \in (-1, 1) \).

For simplicity, we treat the case \(\xi \in (0, 1) \). We may suppose that \(u_\varepsilon \to u \) in \(L^2(\mathbb{R}) \). Note that for almost all \(t \in (0, 1) \) the piecewise-constant functions \(u_{\varepsilon, \xi, t} \) defined by

\[
u_{\varepsilon, \xi, t}(x) = u_\varepsilon(\varepsilon \xi t + \varepsilon \xi k) \quad \text{if} \quad \varepsilon \xi k \leq x < \varepsilon \xi (k + 1)
\]

converge to \(u \) in \(L^2(\mathbb{R}) \), and we have

\[
G_\xi^\varepsilon(u_\varepsilon) \geq \sum_{k=1}^{[1/\xi]-1} \int_{k\xi}^{(k+1)\xi} \left(\frac{u_\varepsilon(x + \varepsilon \xi) - u_\varepsilon(x)}{\varepsilon} \right)^2 \, dt
\]

\[
= \sum_{k=1}^{[1/\xi]-1} \int_0^1 \varepsilon \xi \left(\frac{u_\varepsilon((k+1)\xi + t\xi) - u_\varepsilon(k\xi + t\xi)}{\varepsilon} \right)^2 \, dt
\]

\[
= \xi^2 \int_{(0,1)} \sum_{k=1}^{[1/\xi]-1} \varepsilon \xi \left(\frac{u_{\varepsilon, \xi, t}((k+1)\xi) - u_{\varepsilon, \xi, t}(k\xi)}{\varepsilon \xi} \right)^2 \, dt
\]

\[
\geq \xi^2 \int_{(0,1)} \int_{(\delta, 1-\delta)} (u'_{\varepsilon, \xi, t}(x))^2 \, dx \, dt
\]

eventually for all \(\delta > 0 \) fixed, where we have identified the discrete function \(k\xi \mapsto u_{\varepsilon, \xi, t}(k\xi) \) defined on \(\varepsilon \xi \mathbb{Z} \) with its piecewise-affine interpolation. Note that for almost all \(t \) this functions still converge to \(u \). From (27) we deduce that \(u \in H^1(\delta, 1-\delta) \). By the arbitrariness of \(\delta \) and the uniformity of the bound on the \(L^2 \)-norm of \(u' \) we deduce that \(u \in H^1(0, 1) \). For more details on this proof we refer to [6], where the nonlinear case is treated.

4 Poincaré inequalities

We first prove a Poincaré-Wirtinger inequality as follows.

Theorem 4.1 (Poincaré-Wirtinger inequality). Let \(D \) be a Lipschitz bounded domain. For each fixed \(r_0 > 0 \) there exists a constant \(C > 0 \) such that for any \(v \in L^2(D) \) we have

\[
\int_D (v(x) - v_D)^2 \, dx \leq C \int_D \int_{\|\xi\| \leq r_0, x + \varepsilon \xi \in D} \left(\frac{v(x + \varepsilon \xi) - v(x)}{\varepsilon} \right)^2 \, d\xi \, dx,
\]

and \(v_D \) is the average of \(v \) over \(D \). The constant \(C \) does not depend on \(\varepsilon \).

Corollary 4.2. Let \(r_0 > 0 \) be defined in (3). Let \(k \geq 0 \) and \(r > 0 \) be the same as in Theorem 7.3. Then for any \(u \in L^2(D) \) the following inequality holds:

\[
\int_{D(k\varepsilon) \cap \varepsilon E} (u(x) - u_{D(k\varepsilon) \cap \varepsilon E})^2 \, dx \leq CF_\varepsilon(u);
\]

here

\[
u_{D(k\varepsilon) \cap \varepsilon E} = \frac{1}{|D(k\varepsilon) \cap \varepsilon E|} \int_{D(k\varepsilon) \cap \varepsilon E} u(x) \, dx.
\]
Proof of Theorem 4.1. We set

\[F^0(r, v) = \int_D \int_{\{\xi: |\xi| \leq r \epsilon \xi \in D\}} \left(\frac{v(x + \epsilon \xi) - v(x)}{\epsilon} \right)^2 d\xi \ d x \]

and

\[F^1(G_1, G_2, v) = \int_{G_1} \int_{G_2} (v(x) - v(y))^2 \ d x \ d y. \]

In what follows the notation \(D^c \) is used for \(\frac{1}{\epsilon} D \).

We first consider the case when \(D \) is a cube, \(D = (-\frac{1}{2}, \frac{1}{2})^d \), and \(r \) is a sufficiently large number, say \(r \geq 3\sqrt{d} \). We also assume that \(L/\epsilon \) is an integer number.

Denote \(S^c = \{ j \in \mathbb{Z}^d : j + [\frac{1}{2}, \frac{1}{2}]^d \cap D^c \neq \emptyset \} \). For any \(i \in S^c \) and \(j \in S^c \) construct a path \(\gamma(i, j) = \{ j_k \}_{k=1}^N \) in \(\mathbb{Z}^d \) such that \(j_1 = i, j_N = j, |j_k - j_{k+1}| = 1 \). The path is constructed in such a way that it starts along the first coordinate direction until the first coordinate of \(j_k \) coincides with the first coordinate of \(j \), then it follows the second coordinate direction and so on. We then have

1. the length of each path is not greater than \(d \frac{L}{\epsilon} \),

2. For each \(j \in S^c \) the total number of paths \(\{ \gamma(i, l) : i, l \in S^c \} \) that pass through \(j \) is not greater than \(\left(\frac{L}{\epsilon} \right)^{d+1} \):

\[\# \{ \gamma(i, l) : i, l \in S^c, j \in \gamma(i, l) \} \leq \left(\frac{L}{\epsilon} \right)^{d+1}. \]

For any \(j \in S^c \) denote \(Q_j = \epsilon j + \epsilon [\frac{1}{2} \epsilon, \frac{1}{2} \epsilon]^d \). For \(i \) and \(j \) in \(S^c \) the “interaction energy of the cubes \(Q_i \) and \(Q_j \)” can be estimated as follows. We consider a path \(\gamma(i, j) \), denote the length of this path by \(N \) and its elements by \(\gamma_1, \gamma_2, \ldots, \gamma_N \), and introduce the variables \(\eta_2, \ldots, \eta_{N-1}, \eta_N \in Q_0 \). Then we have

\[
\int_{Q_0} \int_{Q_i} \left(\frac{u(x) - u(\epsilon \xi)}{\epsilon} \right)^2 d\xi \ d x \\
= \varepsilon^{d-2} \int_{Q_0} \int_{Q_i} \left(u(\varepsilon \gamma_1 + \varepsilon \eta_1) - u(\varepsilon \gamma_N + \varepsilon \eta_N) \right)^2 \ d \eta_1 \ d \eta_N \\
= \varepsilon^{d-2} \int_{Q_0} \ldots \int_{Q_0} \left(u(\varepsilon \gamma_1 + \varepsilon \eta_1) - u(\varepsilon \gamma_2 + \varepsilon \eta_2) + u(\varepsilon \gamma_2 + \varepsilon \eta_2) - \ldots \
- u(\varepsilon \gamma_N + \varepsilon \eta_N) \right)^2 \ d \eta_1 \ d \eta_2 \ldots \ d \eta_N \\
\leq N \varepsilon^{d-2} \sum_{i=1}^{N-1} \int_{Q_0} \int_{Q_0} \left(u(\varepsilon \gamma_i + \varepsilon \eta_i) - u(\varepsilon \gamma_{i+1} + \varepsilon \eta_{i+1}) \right)^2 \ d \eta_i \ d \eta_{i+1} \\
\leq (Ld) \varepsilon^{d-3} \sum_{i=1}^{N-1} \int_{Q_0} \int_{Q_0} \left(u(\varepsilon \gamma_i + \varepsilon \xi) - u(\varepsilon \gamma_{i+1} + \varepsilon \eta) \right)^2 \ d \xi \ d \eta \\
\leq (Ld) \varepsilon^{d-3} \sum_{i=1}^{N-1} \int_{Q_0} \int_{\{x + \epsilon \xi \in D, |\xi| < \epsilon r\} \left(u(\varepsilon \gamma_i + x) - u(\varepsilon \gamma_{i+1} + x + \varepsilon \xi) \right)^2 \ d x \ d \xi. \]
Considering \(\tilde{B} \) we deduce from the last inequality that
\[
\int_{D} \int_{D} (u(x) - u(y))^2 \, dx \, dy = \sum_{i, j \in \mathcal{S}} \int_{Q_i} \int_{Q_j} \left(\frac{u(x) - u(\xi)}{\varepsilon} \right)^2 \, d\xi \, dx \\
\leq (L\varepsilon)^{d-1} \sum_{j \in \mathcal{S}} \int_{Q_j} \left(\frac{u(\varepsilon j + x) - u(\varepsilon j + x + \varepsilon \xi)}{\varepsilon} \right)^2 \, dx \, d\xi \\
\leq L^d \varepsilon^{d-1} \sum_{x \in \mathcal{S}_0} \int_{\{x : |x| \leq r\}} \left(\frac{u(x) - u(x + \varepsilon \xi)}{\varepsilon} \right)^2 \, dx \, d\xi.
\]

Since
\[
\int_{D} \int_{D} (u(x) - u(y))^2 \, dx \, dy = 2 \int_{D} (u(x) - u_D)^2 \, dx,
\]
this yields the desired inequality in the case of a cubic domain.

The case of an arbitrary \(r > 0 \) and \(L > 0 \) can be reduced to the one just studied by standard scaling arguments.

If \(D \) is a strongly star-shaped domain, then there exists a cube \(B \) and a Lipschitz isomorphism \(J : D \to B \) such that \(|J(x) - J(y)| \leq \ell |x - y| \), \(|\frac{\partial J}{\partial x}| \leq \ell \), \(|\frac{\partial J}{\partial x}|^{-1} \leq \ell \) for some \(\ell > 0 \). For an arbitrary \(u \in L^2(D) \) denote \(u_J(x) = u(J^{-1}(x)) \) and \(u_{B,J} = \int_B u_J(x) \, dx \). Also, we set \(r_1 = r/\ell \).

Since the desired inequality has been proved for cubic domains, we have
\[
\int_{D} \int_{D} (u(x) - u(y))^2 \, dx \, dy = \int_{B} \int_{B} (u_J(x) - u_J(y))^2 \, dx \, dy \\
= \int_{B} \int_{B} (u_J(x) - u_J(y))^2 \left| \frac{\partial J}{\partial x}(x) \right| \, dx \, dy \\
\leq \ell^2 \int_{B} \int_{B} (u_J(x) - u_J(y))^2 \, dx \, dy \\
\leq Ce^{-d^2 \ell^2} \int_{\{y \in B : |y - x| < r_1\}} \frac{(u_J(x) - u_J(y))^2}{\varepsilon} \, dy \, dx \\
\leq Ce^{-d^2 \ell^2} \int_{D} \int_{\{x : |x + \xi| < r\}} \frac{(u(x) - u(\xi))^2}{\varepsilon} \, dx \, dy \\
\leq Ce^{-d^4 \ell^2} \int_{D} \int_{\{x : |x + \xi| < r\}} \frac{(u(x) - u(\xi))^2}{\varepsilon} \, dy \, dx,
\]
where the constant \(C \) depends only on the size of \(B \), \(r_1 \) and \(d \).

It remains to consider an arbitrary bounded Lipschitz set \(D \). Such a set can be represented as a union of a finite number of strongly star shaped domains, we denote these domains \(D_1, \ldots, D_N \).

We first consider the case \(N = 2 \), we denote by \(\bar{B} \) a cube such that \(\bar{B} \subset D \), \(|\bar{B} \cup D_1| \geq \frac{1}{2} |\bar{B}| \), \(|\bar{B} \cup D_2| \geq \frac{1}{2} |\bar{B}| \). Notice that \(|\bar{B} \cup D_1| = |\bar{B} \cup D_2| = \frac{1}{2} |\bar{B}| \) if the interiors of \(D_1 \) and \(D_2 \) do not intersect. In the rest of the proof the symbols \(\bar{B}_1 \) and \(\bar{B}_2 \) stand for \(\bar{B} \cup D_1 \) and \(\bar{B} \cup D_2 \), respectively.
If we denote
\[u_k = \frac{1}{|D_k|} \int_{D_k} u(x) \, dx, \quad k = 1, 2; \quad \overline{u}_{0,k} = \frac{1}{|B_k|} \int_{B_k} u(x) \, dx, \quad k = 1, 2; \quad \overline{u}_0 = \frac{1}{|B|} \int_{B} u(x) \, dx \]
then
\[(\overline{u}_1 - \overline{u}_{0,1})^2 = \left(\frac{1}{|B_1|} \int_{B_1} \int_{D_1} u(x) \, dx \, dy - \frac{1}{|B_1|} \int_{B_1} \int_{D_1} u(y) \, dx \, dy \right)^2 \]
\[\leq \frac{1}{|B_1|} \int_{B_1} \int_{D_1} (u(x) - u(y))^2 \, dx \, dy \]
\[\leq \frac{1}{|B_1|} \int_{D_1} \int_{D_1} (u(x) - u(y))^2 \, dx \, dy \]
\[\leq C\varepsilon^{-d} \int_{D_1} \int_{\{y \in D_1 : |y-x| < \varepsilon r\}} \left(\frac{u(x) - u(y)}{\varepsilon} \right)^2 \, dy \, dx \]
\[\leq C\varepsilon^{-d} \int_{D} \int_{\{y \in D : |y-x| < \varepsilon r\}} \left(\frac{u(x) - u(y)}{\varepsilon} \right)^2 \, dy \, dx; \]
here we have used inequality \([28]\) in \(D_1\) that holds because \(D_1\) is a strongly star shaped domain.
In the same way we prove that
\[(\overline{u}_{0,1} - \overline{u}_{0,2})^2 \leq C\varepsilon^{-d} \int_{D} \int_{\{y \in D : |y-x| < \varepsilon r\}} \left(\frac{u(x) - u(y)}{\varepsilon} \right)^2 \, dy \, dx, \]
and
\[(\overline{u}_{0,2} - \overline{u}_2)^2 \leq C\varepsilon^{-d} \int_{D} \int_{\{y \in D : |y-x| < \varepsilon r\}} \left(\frac{u(x) - u(y)}{\varepsilon} \right)^2 \, dy \, dx. \]
Therefore,
\[(\overline{u}_1 - \overline{u}_2)^2 \leq C\varepsilon^{-d} \int_{D} \int_{\{y \in D : |y-x| < \varepsilon r\}} \left(\frac{u(x) - u(y)}{\varepsilon} \right)^2 \, dy \, dx. \]
Since \(u_D \in (\overline{u}_1, \overline{u}_2)\), the last inequality yields
\[\int_{D} (u(x) - u_D)^2 \, dx \leq \sum_{k=1}^{2} \left(2 \int_{D_k} (u(x) - \overline{u}_k)^2 \, dx + 2|D_k|(|\overline{u}_k - u_D|^2) \right) \]
\[\leq 2 \sum_{k=1}^{2} \int_{D_k} (u(x) - \overline{u}_k)^2 \, dx + 2|D_1|(|\overline{u}_1 - \overline{u}_2|^2) \]
\[\leq C\varepsilon^{-d} \int_{D} \int_{\{y \in D : |y-x| < \varepsilon r\}} \left(\frac{u(x) - u(y)}{\varepsilon} \right)^2 \, dy \, dx. \]
The case \(N > 2\) can be achieved by induction. \(\square\)
We next consider functions with given boundary data.
Lemma 4.3 (Poincaré inequality). Let D be a bounded set and let $u \in L^2(D)$ be such that $u = 0$ on a 2ε-neighbourhood of ∂D (and extended to 0 outside D). Then there exists a constant C depending only on the diameter of D such that

$$
\int_D |u(x)|^2 \, dx \leq C \frac{1}{\varepsilon^{d+2}} \int_D \int_{|\xi| \leq \varepsilon} (u(x) - u(x))^2 \, d\xi \, dx.
$$

(31)

Proof. It suffices to treat the case $d = 1$ and $D = (0, 1)$, the general case being recovered from this one by considering one-dimensional stripes. For notational convenience we replace ε by 2ε, so that our claim becomes that

$$
\int_0^1 |u(x)|^2 \, dx \leq C \frac{1}{\varepsilon^2} \int_{-\infty}^{+\infty} \int_{-2\varepsilon}^{x+2\varepsilon} (u(y) - u(x))^2 \, dy \, dx,
$$

(32)

keeping in mind that the first integral in the right-hand side is indeed restricted to $(0, 1)$.

For all $k \in \mathbb{N}$ we note that, since

$$(x - 2\varepsilon, x + 2\varepsilon) \supset (k\varepsilon - \varepsilon, k\varepsilon + \varepsilon)$$

if $x \in (k\varepsilon - \varepsilon, k\varepsilon + \varepsilon)$, we have

$$
\begin{align*}
\int_{k\varepsilon - \varepsilon}^{k\varepsilon + \varepsilon} \int_{x-2\varepsilon}^{x+2\varepsilon} (u(y) - u(x))^2 \, dy \, dx & \\
& \geq \int_{k\varepsilon - \varepsilon}^{k\varepsilon + \varepsilon} \int_{k\varepsilon - \varepsilon}^{k\varepsilon + \varepsilon} (u(y) - u(x))^2 \, dy \, dx \\
& \geq \int_{k\varepsilon - \varepsilon}^{k\varepsilon + \varepsilon} (u(y) - u(x))^2 \, dy \, dx \\
& = \varepsilon \int_{k\varepsilon - \varepsilon}^{k\varepsilon + \varepsilon} |u(x)|^2 \, dx - 2 \int_{k\varepsilon - \varepsilon}^{k\varepsilon + \varepsilon} u(x) \, dx \int_{k\varepsilon - \varepsilon}^{k\varepsilon + \varepsilon} u(y) \, dy + \varepsilon \int_{k\varepsilon - \varepsilon}^{k\varepsilon + \varepsilon} |u(y)|^2 \, dy \\
& = \varepsilon \left(\int_{k\varepsilon - \varepsilon}^{k\varepsilon + \varepsilon} |u(x)|^2 \, dx - 2 \int_{k\varepsilon - \varepsilon}^{k\varepsilon + \varepsilon} |u(x)|^2 \, dx \int_{k\varepsilon - \varepsilon}^{k\varepsilon + \varepsilon} |u(y)|^2 \, dy + \int_{k\varepsilon - \varepsilon}^{k\varepsilon + \varepsilon} |u(y)|^2 \, dy \right) \\
& = \varepsilon \left(\sqrt{\int_{k\varepsilon - \varepsilon}^{k\varepsilon + \varepsilon} |u(x)|^2 \, dx} - \sqrt{\int_{k\varepsilon - \varepsilon}^{k\varepsilon + \varepsilon} |u(y)|^2 \, dy} \right)^2.
\end{align*}
$$

(33)

Note that for $k = 0$ this gives

$$
\int_{-\varepsilon}^{\varepsilon} |u(y)|^2 \, dy \leq \frac{1}{\varepsilon} \int_{-2\varepsilon}^{2\varepsilon} (u(y) - u(x))^2 \, dy \\
$$

By a recursive argument from $k = 0$ we deduce that

$$
\begin{align*}
\int_{k\varepsilon}^{k\varepsilon + \varepsilon} |u(y)|^2 \, dy & \leq \frac{1}{\varepsilon} \left(\sum_{j=0}^{k} \int_{j\varepsilon - \varepsilon}^{j\varepsilon + \varepsilon} \int_{x-2\varepsilon}^{x+2\varepsilon} (u(y) - u(x))^2 \, dy \, dx \right)^2 \\
& \leq \frac{1}{\varepsilon^2} \sum_{j=0}^{k} \int_{j\varepsilon - \varepsilon}^{j\varepsilon + \varepsilon} \int_{x-2\varepsilon}^{x+2\varepsilon} (u(y) - u(x))^2 \, dy \, dx \\
& \leq \frac{2}{\varepsilon^2} \int_{-\infty}^{+\infty} \int_{x-2\varepsilon}^{x+2\varepsilon} (u(y) - u(x))^2 \, dy \, dx,
\end{align*}
$$

(34)
where the factor 2 takes into account that the intervals \((j \varepsilon - \varepsilon, j \varepsilon + \varepsilon)\) overlap for consecutive values of \(j\). Noting that indeed the term with \(k = 0\) is 0 by our assumptions on the values of \(u\) close to the boundary, it suffices now to sum up the contribution over all \(k \in \{1, \ldots, \lfloor 1/\varepsilon \rfloor \}\) to obtain
\[
\int_0^1 |u(y)|^2 \, dy \leq 2 \frac{1/\varepsilon}{\varepsilon^2} \int_{-\infty}^{+\infty} \int_{x-2\varepsilon}^{x+2\varepsilon} (u(y) - u(x))^2 \, dy \, dx,
\]
which gives (32) with \(C = 2\). Note that if the interval \((0, 1)\) is substituted by any interval then we can take \(C\) as twice the length of the interval. □

5 Definition of the homogenized energy density

Let \(b\) be as in Section 2. For all \(K \in \mathbb{N}\) we set
\[
b^\omega_K(x, y) = \begin{cases}
b^\omega(x, y) & \text{if } |x - y| < K \\
0 & \text{otherwise}, \end{cases}
\] (34)
and, for \(z \in \mathbb{R}^d\), \(U\) open subset of \(\mathbb{R}^d\), and \(K \in \mathbb{N}\) we define
\[
\mathcal{M}_K^\omega(z, U) = \inf \left\{ \int_U \int_{\mathbb{R}^d} b^\omega_K(x, y)(v(x) - v(y))^2 \, dx \, dy : v(x) = \langle z, x \rangle \text{ if } \text{dist}(x, \partial U) < K \right\}.
\] (35)
Note that, using \(v(x) = \langle z, x \rangle\) as a test function, we get
\[
\mathcal{M}_K^\omega(z, x + Q_R) \leq CR^d|z|^2
\] (36)
for all \(x\) and \(R\).

Lemma 5.1. For all \(K\) and \(z\) the limit
\[
\gamma_K(z) = \lim_{R \to +\infty} \frac{\mathcal{M}_K^\omega(z, Q_R)}{R^d}
\] (37)
exists almost surely, it is independent of \(\omega\), and \(K \mapsto \gamma_K(z)\) is an increasing function. Moreover, there exists an increasing function \(f_K\) with
\[
\lim_{R \to +\infty} f_K(R) = +\infty
\]
such that
\[
\gamma_K(z) = \lim_{R \to +\infty} \frac{\mathcal{M}_K^\omega(z, x_R + Q_R)}{R^d}
\] (38)
for all \(\{x_R\}\) such that \(|x_R| \leq Rf_K(R)\).

Proof. Our arguments rely on a uniform version of the sub-additive ergodic theorem, see [23, Theorem 1]. For any \(j \in \mathbb{Z}^{d,+} = \{0, 1, 2, \ldots\}^d\) we define \(Q^j = J + \frac{1}{2} + Q\), where \(\frac{1}{2}\) is the vector \((\frac{1}{2}, \frac{1}{2}, \ldots, \frac{1}{2})\). For any finite subset \(A\) of \(\mathbb{Z}^{d,+}\) denote \(Q^A = \bigcup_{j \in A} Q^j\), and \(\Phi_K(z, A) = \mathcal{M}_K^\omega(z, Q^A)\).

From definition (35) for any non-intersecting finite sets \(A\) and \(B\) we have
\[
\Phi_K(z, A \cup B) \leq \Phi_K(z, A) + \Phi_K(z, B).
\]
Since $b^\omega_K(x, y)$ is statistically homogeneous, the family $\{\Phi_K(z, A)\}$ is stationary; that is, for any $j \in \mathbb{Z}^d$ and any finite collection A_1, \ldots, A_N the joint law of $\{\Phi_K(z, A_1 + j), \ldots, \Phi_K(z, A_N + j)\}$ is the same as the joint law of $\{\Phi_K(z, A_1), \ldots, \Phi_K(z, A_N)\}$. Then according to Theorem 1 in [23] there exists $\gamma_K(z)$ such that for any $N > 0$ we have

$$\lim_{R \to \infty} \sup_{|x| \leq N} \left\{ \frac{M^\omega_K(z, R(x + Q))}{R^d} - \gamma_K(z) \right\} = 0$$

almost surely. This implies (37); moreover, since $b^\omega > 0$, $K \mapsto \gamma_K(z)$ is an increasing function.

Note that we can choose a (slowly growing) sequence $N = N^\omega(R)$ such that (39) still holds, which yields (38).

Definition 5.2 (homogenized energy function). We define

$$\gamma(z) = \lim_{K \to +\infty} \gamma_K(z) = \sup_{K > 0} \gamma_K(z).$$

For $z \in \mathbb{R}^d$, U open subset of \mathbb{R}^d, and $K \in \mathbb{N}$ we set

$$\tilde{M}^\omega_K(z, U) = \inf \left\{ \int_U \int_U b^\omega(x, y)(v(x) - v(y))^2 dx \, dy : v(x) = \langle z, x \rangle \text{ if } \text{dist}(x, \partial U) < K \right\}$$

(40)

Note that $\tilde{M}^\omega_K(z, U)$ cannot be directly compared with $M^\omega_K(z, U)$ as defined in (35) since on one side $b^\omega_K \leq b^\omega$ while the second integral is performed on U and not \mathbb{R}^d. However, still using $v(x) = \langle z, x \rangle$ as a test function, we get

$$\tilde{M}^\omega_K(z, x + Q_R) \leq CR^d|z|^2$$

(41)

for all x and R.

Lemma 5.3. Let b^ω be coercive. For all K and z we have

$$\gamma(z) = \lim_{K \to +\infty} \limsup_{R \to +\infty} \frac{\tilde{M}^\omega_K(z, Q_R)}{R^d} = \lim_{K \to +\infty} \liminf_{R \to +\infty} \frac{\tilde{M}^\omega_K(z, Q_R)}{R^d}$$

(42)

almost surely.

The proof of this lemma is based on the following proposition.

Proposition 5.4. If U is a cube in \mathbb{R}^d and $v \in L^2(U)$ then we have

$$\int_{\{x, y \in U : |x - y| > K\}} b^\omega(x, y)(v(x) - v(y))^2 dx \, dy \leq C K^{-\kappa} \int_{\{x, y \in U : |x - y| < 1\}} (v(x) - v(y))^2 dx \, dy,$$

(43)

with C depending only on the bounds on b^ω and the dimension d.

14
Proof of Proposition 5.4. Without loss of generality we may assume that the cube \(U \) is centered at the origin; i.e., \(U = Q_T \) for some \(T > 0 \). Furthermore, we may suppose that \(T \) is integer, and cover \(Q_T \) with the set of unit cubes \(Q(j) = Q + j, \ j \in \mathbb{Z}^d \cap U \). If \(K > T \), the statement trivially holds. Otherwise, for any \(j' \) and \(j'' \) such that \(|j' - j''|_1 = n \) with \(n \geq K \) we consider a path (i.e., an array of points in \(\mathbb{Z}^d \)), \(j' = j_0, j_1, \ldots, j_n = j'' \), with \(|j_i - j_{i+1}|_1 = 1 \), that has the following properties: in the starting segment of this path \(j_0, j_1, \ldots, j_n \), only the first coordinate is changed until it is equal to the first coordinate of \(j'' \) (i.e., \(n_1 = j'_1 - j_1 \), and \(j_{n+1} = j_1 + (1, 0, \ldots, 0) \)). Then we proceed with the second coordinate, and so on.

In order to estimate the contribution to the energy of the interaction between the cubes \(Q(j') \) and \(Q(j'') \), with fixed \(n \) we first estimate the integral

\[
\int_{\{(y_0, y_n) \in Q \times Q\}} (v(y_0 + j_0) - v(y_n + j_n))^2 \, dy_0 \, dy_n
\]

\[
= \int_Q \cdots \int_Q \left(\sum_{i=0}^{n-1} (v(y_i + j_i) - v(y_{i+1} + j_{i+1})) \right)^2 \, dy_0 \, dy_1 \cdots dy_n
\]

\[
\leq n \int_Q \sum_{i=0}^{n-1} (v(x + j_i) - v(y + j_{i+1}))^2 \, dx \, dy.
\]

Note that each pair of neighbouring points in \(U \cap \mathbb{Z}^d \) belongs to not more than \(n^d \) paths as described above for some pair \(j', j'' \) in \(U \) such that \(|j' - j''|_1 = n \). Taking this into account and summing up over all \(j', j'' \) in \(U \cap \mathbb{Z}^d \) with \(|j' - j''|_1 = n \) we obtain

\[
\sum_{j', j'' \in U \cap \mathbb{Z}^d \atop |j' - j''|_1 = n} \int_{Q \times Q} (v(x + j') - v(y + j''))^2 \, dx \, dy \leq n^{d+1} \int_{(U \times U) \cap \{|x - y|_1 \leq 2\}} (v(x) - v(y))^2 \, dx \, dy.
\]

Taking (16) into account, we have

\[
\int_{\{(x, y) \in U \times U : |x - y| > K\}} b^\omega(x, y)(v(x) - v(y))^2 \, dx \, dy
\]

\[
\leq C \sum_{n=K}^{T} n^{d+1} \int_{(x, y) \in U \times U : |x - y|_1 \leq 2} (v(x) - v(y))^2 \, dx \, dy
\]

\[
\leq CK^{-\kappa} \int_{\{(x, y) \in U \times U : |x - y|_1 \leq 2\}} (v(x) - v(y))^2 \, dx \, dy.
\]

The desired statement follows from the last inequality by a scaling argument. \(\square \)

Proof of Lemma 5.3. Denote

\[
\overline{\mathcal{M}}_K^\omega(z, U) = \inf \left\{ \int_U \int_U b^\omega_K(x, y)(v(x) - v(y))^2 \, dx \, dy : v(x) = \langle z, x \rangle \text{ if } \text{dist}(x, \partial U) < K \right\}.
\]

Then

\[
0 \leq \mathcal{M}^\omega_K(z, U) - \overline{\mathcal{M}}_K^\omega(z, U) = \int_U \int_{\mathbb{R}^d \setminus U} b^\omega_K(x, y)(z, (x - y))^2 \, dx \, dy
\]

\[
\leq C \|z\|^2 K^{1-\kappa} \mathcal{H}^{d-1}(\partial U).
\]
Let \(u \) be a minimizer for \(M^\omega_\kappa(z, U) \) (which we may assume exists). Let \(v \) be given by Definition 2.1 with \(\Xi = 2\kappa \). We then have

\[
\tilde{M}^\omega_\kappa(z, U) \leq \int_U \int_U b^\omega_\kappa(x, y)(v(x) - v(y))^2 \, dx \, dy
\]

\[
= \int_U \int_U b^\omega_\kappa(x, y)(v(x) - v(y))^2 \, dx \, dy + \int_{\{x, y \in U : |x - y| > 2\kappa\}} b^\omega_\kappa(x, y)(v(x) - v(y))^2 \, dx \, dy
\]

\[
\leq \tilde{M}^\omega_{2\kappa}(z, U) + CK^{-\kappa} \int_{\{x, y \in U : |x - y| < 1\}} (v(x) - v(y))^2 \, dx \, dy
\]

\[
\leq \tilde{M}^\omega_{2\kappa}(z, U) + CK^{-\kappa} \int_{U \times U} b(x, y)(v(x) - v(y))^2 \, dx \, dy
\]

\[
\leq \tilde{M}^\omega_{2\kappa}(z, U) + CK^{-\kappa}|z|^2|U|
\]

\[
\leq M^\omega_{2\kappa}(z, U) + CK^{-\kappa}|z|^2|U| + C|z|^2K^{1-\kappa}\mathcal{H}^{d-1}(\partial U),
\]

(46)

Conversely, since \(\tilde{M}^\omega_\kappa(z, U) \leq \tilde{M}^\omega_{2\kappa}(z, U) \) we have

\[
M^\omega_\kappa(z, U) \leq \tilde{M}^\omega_{\kappa}(z, U) + C|z|^2K^{1-\kappa}\mathcal{H}^{d-1}(\partial U)
\]

(47)

Dividing by \(R^d \), taking the upper limit in (46) and the lower limit in (47) with \(U = Q_R \) we obtain

\[
\gamma_K(z) = \liminf_{R \to +\infty} \frac{M^\omega_\kappa(z, Q_R)}{R^d} \leq \liminf_{R \to +\infty} \frac{\tilde{M}^\omega_\kappa(z, Q_R)}{R^d}
\]

\[
\leq \limsup_{R \to +\infty} \frac{\tilde{M}^\omega_\kappa(z, Q_R)}{R^d}
\]

\[
\leq \limsup_{R \to +\infty} \frac{M^\omega_{2\kappa}(z, Q_R)}{R^d} + CK^{-\kappa}|z|^2
\]

\[
= \gamma_{2\kappa}(z) + CK^{-\kappa}|z|^2
\]

Taking the limit as \(K \to +\infty \) we obtain the claim. \(\square \)

6 Homogenization

We now state and prove a homogenization result with respect to the strong \(L^2 \)-convergence.

Theorem 6.1. Let \(D \) be an open set with Lipschitz boundary, and let \(F^\omega_\epsilon \) be given by (13) on \(L^2(\Omega) \). Then \(F^\omega_\epsilon \) almost surely \(\Gamma \)-converge with respect to the \(L^2 \)-convergence to the functional

\[
F_{\text{hom}}(u) = \int_D \langle A_{\text{hom}} \nabla u, \nabla u \rangle \, dx
\]

(48)

on \(H^1(D) \), where \(A_{\text{hom}} \) is a symmetric matrix which satisfies

\[
\langle A_{\text{hom}} z, z \rangle = \gamma(z).
\]

(49)
The proof of this theorem will make use of a ‘convolution version’ of a classical lemma by De Giorgi that allow to match the boundary values of a target function (see [15]).

Proposition 6.2 (treatment of boundary values). Let \(A \) be a bounded open set with Lipschitz boundary, let \(v_\eta \to v \) in \(L^2(A) \) with \(v \in H^1(A) \). For every \(\delta > 0 \) there exist \(v_\eta^\delta \) converging to \(v \) in \(L^2(A) \) such that

\[
v_\eta^\delta = v \text{ in } A \setminus A(\delta), \quad v_\eta^\delta = v_\eta \text{ in } A(2\delta)
\]

and

\[
\limsup_{\eta \to 0} (F_\eta^\omega(v_\eta^\delta) - F_\eta^\omega(v_\eta)) \leq o(1)
\]
as \(\delta \to 0 \).

Proof of Theorem 6. By Remark 2.3 it suffices to describe the \(\Gamma \)-limit in \(H^1(D) \).

We note that \(F_\omega^\epsilon \) are quadratic functionals, so that also their \(\Gamma \)-limit is a quadratic functional (see [7]). Then, if we prove that the \(\Gamma \)-limit exists and admits the representation

\[
F_{\text{hom}}(u) = \int_D \gamma(\nabla u) \, dx,
\]
then also \(\gamma \) must be a quadratic form on \(\mathbb{R}^d \), from which the existence of a matrix \(A_{\text{hom}} \) satisfying (49) follows.

We now prove (50), first showing a lower bound. We fix \(\omega, u \in H^1(D) \) and a sequence \(u_\epsilon \to u \) with bounded \(F_\epsilon(u_\epsilon) \). As in [15], we use a variation of the Fonseca-Müller blow-up technique [17]. We first define the measures on \(D \) given by

\[
\mu_\epsilon(A) = \frac{1}{\epsilon^{d+2}} \int_A \int_D b^\omega \left(\frac{x}{\epsilon}, \frac{y}{\epsilon} \right) (u_\epsilon(y) - u_\epsilon(x))^2 \, d\xi \, dx.
\]

Since \(\mu_\epsilon(D) = F_\epsilon(u_\epsilon) \), these measures are equibounded, and we may suppose that they converge weakly* to some measure \(\mu \). We now fix an arbitrary Lebesgue point \(x_0 \) for \(u \) and \(\nabla u \), and set \(z = \nabla u(x_0) \). The lower-bound inequality is proved if we show that

\[
\frac{d\mu}{dx}(x_0) \geq \gamma(z).
\]

Upon a translation argument it is not restrictive to suppose that \(x_0 \) be a Lebesgue point of all \(u_\epsilon \) (upon passing to a subsequence), and that \(u_\epsilon(x_0) = u(x_0) = 0 \). We note that for almost all \(\rho > 0 \) we have \(\mu_\epsilon(x_0 + Q_\rho) \to \mu(x_0 + Q_\rho) \). Since

\[
\frac{d\mu}{dx}(0) = \lim_{\rho \to 0^+} \frac{\mu(x_0 + Q_\rho)}{\rho^d},
\]
and for almost all \(\rho > 0 \)

\[
\mu(Q_\rho) = \lim_{\epsilon \to 0} \mu_\epsilon(x_0 + Q_\rho)
\]
we may choose (upon passing to a subsequence) \(\rho = \rho_\epsilon \) with \(1 >> \rho >> \epsilon \) such that

\[
\frac{d\mu}{dx}(0) = \lim_{\epsilon \to 0^+} \frac{\mu_\epsilon(x_0 + Q_\rho)}{\rho^d}.
\]
Note that we may choose ρ_ε tending to zero “arbitrarily slow”; i.e., for all f with $\lim_{\varepsilon \to 0} f(\varepsilon) = 0$ we may choose ρ_ε with
\[\rho_\varepsilon \geq f(\varepsilon). \] (52)
Note moreover that
\[\mu_\varepsilon(x_0 + Q_\rho) = \frac{1}{\varepsilon^d} \int_{x_0 + Q_\rho} \int_D b^\varepsilon(x, y) \left(\frac{u_\varepsilon(y) - u_\varepsilon(x)}{\varepsilon} \right)^2 \, dx \, dy \]
\[\geq \frac{1}{\varepsilon^d} \int_{x_0 + Q_\rho} \int_{x_0 + Q_\rho} b^\varepsilon(x, y) \left(\frac{u_\varepsilon(y) - u_\varepsilon(x)}{\varepsilon} \right)^2 \, dx \, dy. \]

We now change variables and set
\[v_\varepsilon(y) = \frac{u_\varepsilon(x_0 + \rho y)}{\rho} \quad \text{for } y \in Q_1. \]
Note that, since $u(\rho y)$ converges to (z, y) as $\rho \to 0$ as we have assumed that $u(x_0) = 0$, and we also have assumed that $u_\varepsilon(x_0) = 0$, we may choose $\rho = \rho_\varepsilon$ above so that
\[v_\varepsilon \to (z, y) \text{ in } L^2(Q_1). \]

By Proposition \[\ref{prop:convergence} \] above, applied with $v = (z, x)$, $A = Q_1$ and $\eta = \varepsilon/\rho$, for all $\delta > 0$ there exists a sequence v^δ such that $v^\delta(y) = (z, y)$ on $Q_1 \setminus Q_{1-\delta}$ and
\[\frac{1}{\varepsilon^d \rho^d} \int_{Q_\rho} \int_{Q_\rho} b^\varepsilon(x, y) \left(\frac{u_\varepsilon(x) - u_\varepsilon(y)}{\varepsilon} \right)^2 \, dx \, dy \geq \frac{\rho^d}{\varepsilon^d} \int_{Q_1} \int_{Q_1} b^\varepsilon(x, y) + \frac{x}{\varepsilon/\rho} + \frac{y}{\varepsilon/\rho} \left(\frac{v^\delta(x) - v^\delta(y)}{\varepsilon/\rho} \right)^2 \, dx \, dy + o(1) \]
as $\delta \to 0$ uniformly in ε.

If we set $R = R_\varepsilon = \rho/\varepsilon$ and change variables, we get
\[\frac{1}{\rho^d} \mu_\varepsilon(x_0 + Q_\rho) \geq \frac{1}{R^d} \int_{x_0 + Q_{2R}} \int_{x_0 + Q_{2R}} b^\varepsilon(x, y)(v_R(x) - v_R(y))^2 \, dx \, dy + o(1) \]
as $\delta \to 0$, where
\[v_R(x) = v^\delta\left(\frac{x}{R} - \frac{x_0}{\rho}\right). \]
For every fixed $K > 0$ we have that
\[v_R(x) = (z, x) \text{ if dist}\left(x, \partial\left(\frac{x_0}{\varepsilon} + Q_\varepsilon\right)\right) < K \]
for ε small enough (and hence R large enough). Hence, we may use v_R as a test function in the definition on $\mathcal{M}_K^\varepsilon(z, Q_R)$. We also note that suitably choosing f in (52) we have that $x_R = x_0/\rho$ satisfies $|x_R| \leq R f_K(R)$ in Lemma \[\ref{lemma:bound} \] so that we finally obtain
\[\lim_{\varepsilon \to 0} \frac{1}{\rho^d} \mu_\varepsilon(x_0 + Q_\rho) \geq \lim_{R \to +\infty} \frac{\mathcal{M}_K^\varepsilon(z, x_R + Q_R)}{R^d} + o(1) = \gamma_K(z) + o(1) \]
as $\delta \to 0$. Hence we have
\[
\Gamma \liminf_{\varepsilon \to 0} F_\varepsilon(u) \geq \int_U \gamma_K(\nabla u) \, dx + o(1)
\]
By taking the supremum in K, using the Monotone Convergence Theorem, and by the arbitrariness of δ we get the desired lower bound.

The proof of the upper bound is obtained by a standard density argument by piecewise-affine functions (see also [15]) once it is shown for D a d-dimensional simplex S and $u(x) = \langle z, x \rangle$ a linear function. We consider L large enough so that $Q_L \supset D$ for some $L > 0$. We fix $m \in \mathbb{N}$ and subdivide Q_L into m^d cubes $Q_{i,m} = x_i^m + Q_L/m$ of side-length L/m and disjoint interiors. With fixed $K \in \mathbb{N}$ we choose $u_i^\varepsilon \in L^2(\frac{1}{\varepsilon} Q_{i,m})$ such that $v(x) = \langle z, x \rangle$ if $\text{dist}(x, \frac{1}{\varepsilon} \partial Q_{i,m}) < K$ and
\[
\int_{\frac{1}{\varepsilon} Q_{i,m} \times \frac{1}{\varepsilon} Q_{i,m}} b^\varepsilon(x,y)(u_i^\varepsilon(x) - u_i^\varepsilon(y))^2 \, dx \, dy \leq m^d \varepsilon \int_{\frac{1}{\varepsilon} Q_{i,m}} (z, x_i^m + Q_L/m) + 1
\]
\[
\leq \frac{L^d}{m^d \varepsilon d} (\gamma_K(z) + o(1)) + 1
\]
as $\varepsilon \to 0$ and $K \to +\infty$.

We then define $u_{i,m}^\varepsilon \in L^2(Q)$ by setting
\[
u_{i,m}^\varepsilon(x) = \varepsilon u_i^\varepsilon(\frac{x}{\varepsilon}) \text{ if } x \in Q_{i,m}.
\]
We set
\[
I^m = \{I : Q_{i,m} \cap D \neq \emptyset\},
\]
and compute
\[
F_\varepsilon(u_{i,m}^\varepsilon) \leq \sum_{i \in I^m} \frac{1}{\varepsilon^{d+2}} \int_{Q_{i,m} \times \frac{1}{\varepsilon} Q_{i,m}} b^\varepsilon\left(\frac{x}{\varepsilon}, \frac{y}{\varepsilon}\right)(u_i^\varepsilon(x) - u_i^\varepsilon(y))^2 \, dx \, dy
\]
\[
+ \frac{1}{\varepsilon^{d+2}} \sum_{i \neq j} \int_{\text{dist}(x, \partial Q_{i,m}) < K} \int_{\text{dist}(x, \partial Q_{j,m}) < K} b^\varepsilon\left(\frac{x}{\varepsilon}, \frac{y}{\varepsilon}\right)(z, x_i^m + Q_L/m) + 1
\]
\[
\leq \sum_{i \in I^m} \frac{1}{\varepsilon^{d+2}} \int_{Q_{i,m} \times \frac{1}{\varepsilon} Q_{i,m}} b^\varepsilon\left(\frac{x}{\varepsilon}, \frac{y}{\varepsilon}\right)(u_i^\varepsilon(x) - u_i^\varepsilon(y))^2 \, dx \, dy + CK \varepsilon |z|^2 + CK^{-n}
\]
\[
\leq \left(|U| + O\left(\frac{1}{m}\right)\right) \gamma_K(z) + o(1) + CK \varepsilon |z|^2 + CK^{-n}.
\]
Note that we have used assumption [13] to estimate the second term in the sum, and Proposition [5,4] with $U = \frac{1}{\varepsilon} \omega$ and the coerciveness of b^ε to estimate the third term in the sum.

We may now choose $m = m_\varepsilon \to +\infty$ such that
\[
\limsup_{\varepsilon \to 0} F_\varepsilon(u_{i,m}^\varepsilon) \leq L^d \gamma_K(z) + o(1)
\]
as $K \to +\infty$. Note that, since $u_{i,m}^\varepsilon(x) = \langle z, x \rangle$ if $\text{dist}(x, \bigcup \partial(Q_{i,m})) < \varepsilon K$ then $u_{i,m}^\varepsilon \to \langle z, x \rangle$ in $L^2(D)$ and we obtain an upper bound with $\gamma_K(z) + o(1)$. Letting $K \to +\infty$ we finally have the desired estimate. squad
7 Random perforated domains

In this section we note that Theorem 6 can be applies to the homogenization on randomly perforated domains.

First we define random sets in \(\mathbb{R}^d \). Let \((\Omega, \mathcal{F}, P)\) be a standard probability set, and assume that \(\tau_x, x \in \mathbb{R}^d \) is a measure-preserving dynamical system on this probability space; that is, \(\{\tau_x\}_{x \in \mathbb{R}^d} \) is a group of measurable mappings \(\tau_x : \Omega \to \Omega \) such that

- \(\tau_x \circ \tau_y = \tau_{x+y} \), \(\tau_0 = \text{Id} \),
- \(P(\tau_x A) = P(A) \) for all \(x \in \mathbb{R}^d \) and \(A \in \mathcal{F} \),
- \(\tau : \mathbb{R}^d \times \Omega \to \Omega \) is a measurable map. We assume here that \(\mathbb{R}^d \times \Omega \) is equipped with a product \(\sigma \)-algebra \(\mathcal{B} \times \mathcal{F} \), where \(\mathcal{B} \) is a Borel \(\sigma \)-algebra in \(\mathbb{R}^d \).

We also assume that \(\{\tau_x\} \) is ergodic; that is, the measure of any set \(A \in \mathcal{F} \) which is invariant with respect to \(\tau_x \) for all \(x \in \mathbb{R}^d \) is equal to 0 or 1.

Definition 7.1 (random sets and random perforations). We say that \(E_\omega = \{x \in \mathbb{R}^d : \chi_{\Omega_1}(\tau_x \omega) = 1\} \) is a random set in \(\mathbb{R}^d \) if \(\Omega_1 \in \mathcal{F} \) is such that \(P(\Omega_1) > 0 \). A random set \(E_\omega \) is called a random perforated domain if it possesses the following properties:

1. Almost surely \(\mathbb{R}^d \setminus E_\omega \) is a union of bounded open sets in \(\mathbb{R}^d \);
2. The diameters of these sets are uniformly bounded.
3. The distance between any two distinct sets is bounded from below by a positive constant.
4. The boundary of these sets are uniformly Lipschitz continuous; i.e., there exist constants \(L > 0 \) and \(\rho_1, \rho_2 > 0 \) such that for any point \(x \in \partial E_\omega \) there exists a set \(C \) which, up to translation by \(x \) and rotation, is of the form \((-\rho_1, \rho_1)^d \times (-\rho_2, \rho_2) \) such that \(C \cap E_\omega \) is the sub-graph of a \(L \)-Lipschitz function defined on \((-\rho_1, \rho_1)^d \).

We now assume that \(E_\omega \) is a random perforated domain, and we set

\[b_\omega(x, y) = \chi_{E_\omega}(x)\chi_{E_\omega}(y)a(x-y). \] (54)

The key observation is that such \(b_\omega \) is coercive. This is implied by the following theorem in [15].

Theorem 7.2 (extension theorem). Let \(E_\omega \) be a random perforated domain that satisfies condition (1)–(4) above. Let \(b_\omega \) be defined by (54). Then there exists \(k > 0 \) and \(r > 0 \) such that almost surely for all \(u \in L^2(D \cap \epsilon E_\omega) \) there exists \(v \in L^2(D) \) such that

\[v = u \quad \text{on} \quad D \cap \epsilon E_\omega, \] (55)

\[\int_{D(k\epsilon)} \int_{\{\xi| \leq r\}} \left(\frac{v(x + \epsilon \xi) - v(x)}{\epsilon} \right)^2 d\xi dx \leq C F_\epsilon^2(u) \] (56)

and

\[\int_{D(k\epsilon)} |v|^2 dx \leq C \int_{D \cap \epsilon E} |u|^2 dx. \] (57)
Theorem 7.3 can be rephrased as follows.

Theorem 7.3. Let D be an open set with Lipschitz boundary, let E^ω be a random perforated domain as above, and let F^ω_ϵ be given by

$$F^\omega_\epsilon(u) = \frac{1}{\epsilon^{d+2}} \int_{(D \setminus \epsilon E^\omega) \times (D \setminus \epsilon E^\omega)} a\left(\frac{x-y}{\epsilon}\right)(u(y) - u(x))^2 \, dy \, dx,$$

Then F^ω_ϵ almost surely Γ-converges with respect to the L^2-convergence to the functional (48) on $H^1(D)$, where A_{hom} is a symmetric matrix which satisfies

$$\langle A_{\text{hom}} z, z \rangle = \lim_{K \to +\infty} \lim_{R \to +\infty} \frac{1}{R^d} \inf \left\{ \int_{Q_R \cap E^\omega} \int_{E^\omega} a(x-y)(v(x) - v(y))^2 \, dx \, dy : v(x) = \langle z, x \rangle \text{ if } \text{dist}(x, \partial Q_R) < K \right\}.$$

Acknowledgments.

The authors acknowledge the MIUR Excellence Department Project awarded to the Department of Mathematics, University of Rome Tor Vergata, CUP E83C18000100006.

References

[1] G. Alberti and G. Bellettini, A non-local anisotropic model for phase transitions: asymptotic behaviour of rescaled energies, *European Journal of Applied Mathematics*, 9.3 (1998), 261-284.

[2] R. Alicandro and M. Cicalese. A general integral representation result for continuum limits of discrete energies with superlinear growth. *SIAM J. Math. Anal.* 36 (2004), 1–37.

[3] R. Alicandro, M. Cicalese and A. Gloria. Integral representation results for energies defined on stochastic lattices and application to nonlinear elasticity. *Arch. Ration. Mech. Anal.* 200 (2011), 881–943

[4] X. Blanc, C. Le Bris, and P. L. Lions. The energy of some microscopic stochastic lattices. *Arch. Ration. Mech. Anal.* 184 (2007), 303–339

[5] J. Bourgain, H. Brezis and P. Mironescu. Another look at Sobolev spaces, in *Optimal Control and Partial Differential Equations* (J.L. Menaldi, E. Rofman, A. Sulem eds.). IOS Press, Amsterdam, 2001, pp. 439–455.

[6] A. Braides, *Approximation of Free-Discontinuity Problems*, Lecture Notes in Mathematics 1694, Springer Verlag, Berlin, 1998.

[7] A. Braides, *Γ-convergence for Beginners*, Oxford University Press, Oxford, 2002.

[8] A. Braides, A handbook of Γ-convergence. In *Handbook of Differential Equations. Stationary Partial Differential Equations*, Volume 3 (M. Chipot and P. Quittner, eds.), Elsevier, 2006.

[9] A. Braides. Discrete-to-continuum variational methods for lattice systems. *Proceedings of the International Congress of Mathematicians August 13–21, 2014, Seoul, Korea* (S. Jang, Y. Kim, D. Lee, and I. Yie, eds.) Kyung Moon Sa, Seoul, 2014, Vol. IV, pp. 997–1015
[10] A. Braides, M. Cicalese, and M. Ruf. Continuum limit and stochastic homogenization of discrete ferromagnetic thin films, *Anal. PDE* **11** (2018), 499–553

[11] A. Braides and A. Defranceschi, *Homogenization of Multiple Integrals*. Oxford University Press, Oxford, 1998.

[12] A. Braides and G. Francfort, Bounds on the effective behavior of a square conducting lattice. *R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci.* **460** (2004), 1755–1769

[13] A. Braides and L. Kreutz. An integral-representation result for continuum limits of discrete energies with multi-body interactions. *SIAM J. Math. Analysis* **50** (2018), 1485–1520.

[14] A. Braides, M. Maslennikov, and L. Sigalotti. Homogenization by blow-up. *Applicable Anal.* **87** (2008), 1341–1356.

[15] A. Braides and A. Piatnitski. Homogenization of quadratic convolution energies in periodically perforated domains. Preprint, 2019.

[16] D. Finkelshtein, Yu. Kondratiev and O. Kutoviy. Semigroup approach to birth-and-death stochastic dynamics in continuum. *J. Funct Anal.* **262** (2012), 1274–1308.

[17] I. Fonseca and S. Müller. Quasi-convex integrands and lower semicontinuity in L^1. *SIAM J. Math. Anal.* **23** (1992), 1081–1098.

[18] A. Piatnitski and E. Remy. Homogenization of elliptic difference operators. *SIAM J. Math. Analysis* **33** (2001), 53–83.

[19] N. García Trillos and D. Slepčev, Continuum limit of total variation on point clouds, *Arch. Ration. Mech. Anal.* **220** (2016), 193–241.

[20] M. Gobbino. Finite difference approximation of the Mumford-Shah functional. *Comm. Pure Appl. Math.* **51** (1998), 197–228

[21] S.M. Kozlov. Averaging of difference schemes. *Math. USSR Sbornik* **57** (1987), 351–36

[22] Yu. Kondratiev, O. Kutoviy and S. Pirogov. Correlation functions and invariant measures in continuous contact model. *Infin. Dimens. Anal. Quantum Probab. Relat. Top.*, **11** (2008), 231–258.

[23] U. Krengel, R. Pyke, Uniform pointwise ergodic theorems for classes of averaging sets and multiparameter subadditive processes. *Stoch. Proc. Appl.*, **26**, 298–296, (1987).