Robust Power System Stabilizer Design Based on $H\infty/\mu$

Firas Ahmed Aldurze
dr.firasaldurze@umosul.edu.iq
Mechatronics Engineering Department, Collage of Engineering, University of Mosul

Received: 18/6/2020
Accepted: 28/8/2020

ABSTRACT
In this article, $H\infty/\mu$ controller is relied on to control the power system stabilizer (PSS) using state space approach for a single machine infinite bus (SMIB) system. Design a robust feedback controller for the system using the $H\infty/\mu$ technology supported by the Matlab / Simulink. The $H\infty/\mu$ design method leads to a robust controller with a fixed structure and fixed parameters. The uncertainties of the model are taken into account when specifying the weights. The controller demeanor obtained was analyzed through the input represented by the step response and the output response of the power system (PS) in the case of normal operation and then the system with changed parameters. The suggested controller proved its effectiveness by maintaining the stability of the system with acceptable limits of disturbances.

Keywords:
Robust control, $H\infty/\mu$ controller, PSS, Uncertain parameters.
constraint limits are initially set when the goal is to dampen vibrations while minimizing (ts).

2. SYSTEM DESCRIPTION

The linearized model of the studied (PS) consisted of (SMIB). This is shown in a functional diagram, as shown in Figure 1, it can be expressed state space formulation as follows [13].

\[
\Delta \delta = \omega_0 \delta \Delta \omega \\
\Delta \Delta \omega = \frac{1}{M} \left(-K_4 \Delta \delta - D \Delta \omega - K_6 \Delta E'q + \Delta T_m \right) \\
\Delta \Delta E'q = \frac{1}{T'_{do}} \left(-K_4 \Delta \delta - \Delta \Delta E'q \right) \\
\Delta E_{FD} = \frac{1}{T_A} \left(-K_4 K_5 \Delta \delta - K_4 K_6 \Delta E'q - \Delta E_{FD} + K_4 \Delta V_{ref} \right)
\]

In a matrix form as follows:

\[
\dot{X}(t) = AX(t) + Bu(t) \]

Figure 1 shows the block diagram of (PS) model

Where,

\[
\begin{bmatrix}
\Delta \delta \\
\Delta \Delta \omega \\
\Delta \Delta E'q \\
\Delta E_{FD}
\end{bmatrix} =
\begin{bmatrix}
0 & \omega_0 & 0 & 0 \\
-k_k & M & -k_k & 0 \\
-k_k & 0 & k_k T_{so} & T_{so} \\
-k_k & 0 & -k_k T_A & T_A
\end{bmatrix}
\begin{bmatrix}
\Delta \delta \\
\Delta \Delta \omega \\
\Delta \Delta E'q \\
\Delta E_{FD}
\end{bmatrix}
\]

3. DESCRIPTION AND REPRESENTATION OF THE SYSTEM UNCERTAINTY IN THE INTERCONNECTION MATRIX

Two physical parameters \((T_A, T'_{do})\) can be taken into account; these parameters are mostly unknown. Is being added \(\delta\) to the parameters \((T_A, T'_{do})\) to exemplify the uncertainty parameters.

where \(\delta\) is the weight of the parameter's uncertainty and \(\Delta\) is 1 or -1. Figure 2 shows the procedure with which the uncertainty parameter \((T'_{do})\) is entered. The perturbations entered are \(\delta T_A, \delta T'_{do}\) the \((1+\delta)\) can be added to the \((T_A, T'_{do})\) parameters to display the fluctuations in the uncertainty as shown in Figure 3.

Figure 3 uncertainty parameters of (PS) block diagram.

4. THEORY OF SYNTHESIS \(H_\infty/\mu\)

The \(H_\infty/\mu\) control synthesis method contains three stages: first is \(H_\infty\) optimal control synthesis.
is calculated based on the synthesis configuration, which consists of a state-space model, second: μ-analysis, third: a D-scale, which are nested in an iterative scheme [14].

4.1 Singular value structure and μ-synthesis

Using linear fractional transformations (LFTs) the general structure is built for μ-analysis and synthesis as shown in a diagram in Figure 4 [15], it is shown all interconnection of inputs, outputs and a controller with disturbance and reorganized according to this diagram. For analysis, the controller K is acquired in the structure plant P to form the interconnected matrix structure shown in “Figure 4-a”.

\[\Delta = \{ \text{diag}(\delta_1 \times I_{r1}, \ldots, \delta \times I_{r2}, \Delta_i, \ldots, \Delta_p), \delta_i \in C, \Delta_i \in C^{m_i \times m_i} \} \] …………………………………..(7)

\[\Delta = \{ \Delta / \sigma(\Delta) \leq 1 \} \]

to define singular structure value μ for complex matrix, \(M \in C^{m \times n} \), as:

\[\mu_M(M) = \frac{1}{\min(\theta(\Delta) : \delta \Delta, \det(I-M\Delta) = \text{zero})} \] ……(8)

Thus, is a measure of the smallest structure that gives rise to the instability of the feedback-loop constant matrix shown in “Fig.4-b”. Given a required uncertainty level, the objective of this design is to look for a control law, which can minimize the μ level closed-loop system and secure the stability of the system for all prospective uncertainty attributable.

The performance and stability conditions of a system in the presence of a structured uncertainty in relation to the μ are given by:

1. Robust stability

\[F_\theta(M, \Delta) \text{ stable } \iff \sup_{\omega} \mu(M_{11}(j\omega)) \leq 1 \] ……(9)

2. Robust performance

\[F_\theta(M, \Delta) \text{ stable and } \|F_\theta(M, \Delta)\|_\infty \leq 1 \iff \sup_{\omega} \mu(M_{11}(j\omega)) \leq 1 \] …….(10)

The control error \(e' \) can be expressed as the following LFT:

\[\dot{e} = F_L(P, K)\dot{u} = [P_{11} + P_{12}K(I - P_{22}K)^{-1}P_{12}]\dot{u} \]

Ideally, the value of the controller K is calculated as follows \(\|F_L(P, K)\|_\mu \text{ less than or equal 1} \)

However, since there is no efficient mechanism to get this K directly, the D-scale matrix is calculated indirectly.

\[\min_K \inf_D \|DF_L(P, K)D^{-1}\|_\infty \leq 1 \] ……(11)

\[D = \{ \text{diag}(d_1, d_2, \ldots, d_n) \uparrow d_i \in R \} \]

During the minimization process, the fixation of D or K is specifically referred to as iteration D-K. It has no practical meaning and can be widespread [16].

![Diagram](Image)

Fig. 4 μ-analysis and synthesis structure

The goal of designing a controller in a model of an interconnected (PS) is to dampen the angular velocity deviation. Therefore, the angular velocity (speed) deviation (\(\Delta \omega \)) of power system is treated as controller inputs. The state-space model will be separated from the uncertainty as follows:

\[P_0 = \begin{pmatrix} x' = A_0x + B_0u_1 + B_1w \\ Z = Cx + D_1u_1 \\ y = Cx \\ w = \Delta z \end{pmatrix} \] ………(12)

Where the matrix \(\Delta \) is given by:

\[\Delta = \{ \text{diag}(\delta_1 \times I_{r2}, \ldots, \delta \times I_{r2}, \Delta_i), \delta_i \} \cdot R, \|\Delta\| \text{ less than or equal 1} \}

The figuration of the controller design based on μ is shown in Figure 5. In this diagram, \(P_0 \) is the interconnection between the nominal installation and all parametric uncertainties. In order to take into account the modeling error, a parameter of uncertainty (Wc) was added as an
input to the system. Whereas, (Wp) represents the system performance specifications [17].

Fig. 5 The figuration of the controller design based on μ.

4.2. Uncertain system robust performance
At this stage, some parameters such as Wc and Wp are added to the system as improved parameters, as shown in Figure 6.

where, Wc and Wp are represent input and output uncertainties weight.

Fig. 6 Input output uncertainty representation

5. Design procedure H∞/μ Algorithm
The H∞/μ controller design using μ-synthesis can be summarized in the following steps:
1. Forming the interconnection matrix. This step includes linearization of the non-linear model. The H∞-synthesis. When the interconnection matrix has been defined, an H∞ controller is designed. This involves the solution of two Riccati equations iterated over a scalar parameter in a one dimensional search. The result is a controller K. When the plant matrix P is closed-loop with the controller K results in a closed-loop system matrix M.
2. μ-analysis. In this step μ-analysis of the closed loop system matrix M is carried out, the structured singular values of M is calculated[18].
3. Rational approximation of D-scaling. In this step, the D-scaling calculated in the μ-analysis (step3) is approximated by rational transfer functions.
4. Ds-K iteration. The interconnection matrix P is improved with the coherent transport utilities. H∞-synthesis, μ-analysis and D-scaling approximations are repeated until no longer changes occur in it.
5. Changing weights. If Ds and K have converged but the requirements are not fulfilled, then the weights must be changed. The design objectives must be stopped and a new Ds-K iteration must be done. μ-analysis can be used to know which design objectives are driving the problem.

The algorithm steps are given in the flowchart shown in Figure (7).
6. SIMULATION AND RESULTS

Using the MATLAB / SIMULINK program, the proposed H_{∞}/μ controller performance has been tested by performing multiple simulation tests and comparing them to a CPSS system to check if the proposed controller is better and more robust than the CPSS or not. For comparison, simulation tests of the reaction to the speed deviation depending on the nominal condition and the variation of the uncertainty parameters of the (PS) were carried out. Figure 8 shows the control of the speed deviation responses of the CPSS power system and the H_{∞}/μ controller. Based on the simulation results, the H_{∞}/μ controller offers the best performance compared to the CPSS.

In order to be a high performance H_{∞}/μ controller, it must be strong and robust during the change in the parameters (T_A, T_{do}) examined by simulations by changing one parameter at a time, while the other parameters remain unchanged.

Figures 9 and 10 show the responses of (PS) based on H_{∞}/μ controller when T_A and T_{do} are incremented by 30% and 50% of the main value. Figures 11 and 12 show the responses of (PS) based on H_{∞}/μ controller when T_A and T_{do} are changed from the main value by -30% and -50%.
Fig.12. The responses of speed deviation with H_∞/μ controller a- $\delta_{T_{do}}=0\%$ b- $\delta_{T_{do}}=-30\%$ c- $\delta_{T_{do}}=-50\%$

Table (1) shows the effect of changing each parameter alone on the system performance for each H_∞/μ controller and CPSS with the rest of the parameters remain constant . According to Table 1, the controller H_∞/μ has the fastest (ts) of 0.528 seconds, whereas the CPSS has the slowest (ts) of 2.58 seconds. For the overshoot percentage, the K controller has a percentage overshoot value of 0.743%, while the CPSS has a percentage overshoot value of 1.9% (Figure 8). It is obvious that changing the uncertainty of the T_A parameter has little effect on the behavior of the model. Figure 9 and Figure 10. While the parameter T_{do} (Figure 12) changes the behavior of the model compared to other parameters.

Table 1: The effect of changing one of the parameters on the performance of the system, with the other parameters remaining constant for each time.

System	Change δ_k	System with CPSS	System with H_∞/μ controller
Without any change in parameter			
	0	1.9	0.743
	-20	1.89	0.743
	-40	1.87	0.743
	-60	1.87	0.743
	-80	1.95	0.743
	-100	1.95	0.743
$\delta_{T_{do}}$ and other parameter are constant			
	-10	1.87	0.743
	-20	1.87	0.743
	-30	1.87	0.743
	-40	1.87	0.743
	-50	1.87	0.743
	-60	1.87	0.743
$\delta_{T_{do}}$ and other parameter are constant			
	-10	1.87	0.743
	-20	1.87	0.743
	-30	1.87	0.743
	-40	1.87	0.743
	-50	1.87	0.743
	-60	1.87	0.743

7. CONCLUSION

In this work, the designed H_∞/μ controller deals with a (PS) model with the presence of uncertain parameters using Matlab Simulink. This controller is applied to control the speed deviation. The performance of both the designed H_∞/μ controller and CPSS was tested through simulation and it was found that the designed H_∞/μ controller maintains the stability of the power system in a manner Durable when changing uncertain parameters. It was concluded that the dominant had a high dynamic behavior of the power system with a rapid (ts) and very small overshoot compared to CPSS. The designed H_∞/μ controller can realize robustness and good performance.

REFERENCES

[1] G.Y. Rajaa Vikhram, S.Latha “Design of Power System Stabilizer for Power System Damping Improvement with Multiple Design Requirements” International Journal of Soft Computing and Engineering (IJSCCE), ISSN: 2231-2307, Volume-2, Issue-5, November 2012.

[2] Jafaru Usman, Mohd Wazir Mustafa, Garba Aliyu “Design of AVR and PSS for Power System Stability based on Iteration Particle swarm Optimization” International Journal of Engineering and Innovative Technology (IJEIT), Volume 2, Issue 6, December 2012.

[3] Neeraj gupta, Sanjay k. Jain, ”Comparative analysis of fuzzy power system stabilizer using different membership functions”, International journal of computer and electrical engineering, Vol.2, No. 2, April 2010, 1793-8163.

[4] Jenica Ileana corcau,Eleonor stoenecu, “Fuzzy logic controller as a power system stabilizer” ,International journal of circuits, systems and signal processing, Issue 3, Volume 1,2007.

[5] Hasan Fayazi Boroujeni, Sayed Mojtaba Shirvani Boroujeni and Reza Hemmati “Robust PID power system stabilizer design based on pole placement and nonlinear programming methods” Indian Journal of Science and Technology, Vol. 4 No. 4 (April 2011).

[6] Sambariya DK, Prasad Rajendra. Design of PSS for SMIB systems using robust fast output sampling feedback technique. 978-1-4673-0/12$31.00. IEEE; 2012.

[7] Magazoub Muawia A, Saad Nordan B, Ibrahim Rosasdiazli B. Power system stabilizer for single machine infinite bus based on optimal control methods. In:2014 IEEE 8th international power system engineering and optimization conference (PEOCON’ 2014),
فريس أحمد الدرزي

Robust Power System Stabilizer Design

جامعة الموصل - كلية الهندسة - قسم هندسة الميكروكنز

الملخص

في هذا البحث, تم الاعتماد على المسيطر H∞/μ للتحكم في مثبت نظام القدرة باستخدام نهج فضاء الحالة لنظام القدرة مكون من ماكينة أحادية مربوطة إلى عمومي لانهائي. تم تصميم مسيطر متين ذو تغذية خلفية للنظام بالاعتماد على تقنية H∞/μ. تم استخدام تكنولوجيا متين للتحكم بشكل ثابت مع استخدام تكنولوجيا متين للتحكم بشكل ثابت. تم تصميم مسيطر متين من خلال استخدام تقنية H∞/μ. تم استخدام تقنية متين للتحكم بشكل ثابت مع استخدام تكنولوجيا متين للتحكم بشكل ثابت. تم تصميم مسيطر متين من خلال استخدام تقنية H∞/μ. تم استخدام تقنية متين للتحكم بشكل ثابت مع استخدام تكنولوجيا متين للتحكم بشكل ثابت. تم تصميم مسيطر متين من خلال استخدام تقنية H∞/μ. تم استخدام تقنية متين للتحكم بشكل ثابت مع استخدام تكنولوجيا متين للتحكم بشكل ثابت.

المصطلحات

H∞/μ: مثبت نظام القدرة
ال控股: متين

A .Packand and J.C Doyle “The complex structured singular value ” Automatica, Vol.29, No.1, pp.77-109, 1993.
G .J.Balas , J.C Doyle, K .Glover ,A.Pacand ,and R.Smith “The μ analysis and synthesis toolbox for use with matlab” Mathwork Inc.South Notick ,1998.
H .Shayeghi , H . A. Shayanfar , “Power system load frequency control using RBF neural networks based on μ-synthesis theory ” Proceedings of the 2004 IEEE Conference on Cybernetics and Intelligent Systems Singapore, 1-3 December, 2004.
J. MARKERINK, S. BENNANI and B. MULDER, “esign of a Robust, scheduled controller for the HIRM using μ-synthesis ”,Delft University of Technology, Department of Aerospace Engineering, Technical Report TP-088-29, Gateur, April 1997.