Cardiac complications in patients hospitalised with COVID-19

Marijke Linschoten1, Sanne Peters2,3,4, Maarten van Smeden2, Lucia S Jewball5,6, Jeroen Schaap7, Hans-Marc Siebelink8, Peter C Smits9, Robert G Tieleman10, Pim van der Harst1, Wiek H van Gilst11 and Folkert W Asselbergs1,12,13, for the CAPACITY-COVID collaborative consortium

Abstract
Aims: To determine the frequency and pattern of cardiac complications in patients hospitalised with coronavirus disease (COVID-19).

Methods and results: CAPACITY-COVID is an international patient registry established to determine the role of cardiovascular disease in the COVID-19 pandemic. In this registry, data generated during routine clinical practice are collected in a standardised manner for patients with a (highly suspected) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection requiring hospitalisation. For the current analysis, consecutive patients with laboratory confirmed COVID-19 registered between 28 March and 3 July 2020 were included. Patients were followed for the occurrence of cardiac complications and pulmonary embolism from admission to discharge. In total, 3011 patients were included, of which 1890 (62.8%) were men. The median age was 67 years (interquartile range 56–76); 937 (31.0%) patients had a history of cardiac disease, with pre-existent coronary artery disease being most common (n=463, 15.4%). During hospitalisation, 595 (19.8%) patients died, including 16 patients (2.7%) with cardiac causes. Cardiac complications were diagnosed in 349 (11.6%) patients, with atrial fibrillation (n=142, 4.7%) being most common. The incidence of other cardiac complications was 1.8% for heart failure (n=55), 0.5% for acute coronary syndrome (n=15), 0.5% for ventricular arrhythmia (n=14), 0.1% for bacterial endocarditis (n=4) and myocarditis (n=3), respectively, and 0.03% for pericarditis (n=1). Pulmonary embolism was diagnosed in 198 (6.6%) patients.

Conclusion: This large study among 3011 hospitalised patients with COVID-19 shows that the incidence of cardiac complications during hospital admission is low, despite a frequent history of cardiovascular disease. Long-term cardiac outcomes and the role of pre-existing cardiovascular disease in COVID-19 outcome warrants further investigation.

Keywords
COVID-19/coronavirus, cohorts, patient registry, cardiac complications, pulmonary embolism

Date received: 27 August 2020; accepted: 8 June 2020

1Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
2Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
3The George Institute for Global Health, University of Oxford, Oxford, UK
4The George Institute for Global Health, University of New South Wales, Sydney, Australia
5Department of Intensive Care Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
6Department of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands
7Department of Cardiology, Amphia Hospital, Breda, the Netherlands
8Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
9Department of Cardiology, Maasstad Hospital, Rotterdam, the Netherlands
10Department of Cardiology, Martini Hospital, Groningen, the Netherlands
11Department of Cardiology, University Medical Center Groningen, Groningen, the Netherlands
12Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK
13Health Data Research UK and Institute of Health Informatics, University College London, London, UK

Corresponding author:
Folkert W Asselbergs, Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Room E03.511, PO Box 8550, Utrecht, 3508 GA, the Netherlands.
Email: f.w.asselbergs@umcutrecht.nl
Introduction

Coronavirus disease 19 (COVID-19) is a global pandemic with more than 50 million confirmed cases across 191 countries as of the 15th of November 2020.1 While respiratory symptoms are the dominant feature of this disease, the occurrence of acute cardiac injury and cardiovascular complications has generated considerable concern and the number of such reports is rapidly accumulating.2–8 A study of 41 patients in Wuhan, China reported that 12% of patients with COVID-19 had virus-related acute cardiac injury.2 Subsequent larger studies from China, with sample sizes ranging from 138 to 416 patients, reported acute cardiac injury in 7.2% to 27.8% among hospitalised patients.3–5 For all these studies, cardiac injury has been defined as serum levels of cardiac biomarkers above the 99th percentile reference limit, regardless of abnormalities on electro and/or echocardiography. In addition to these studies, case reports of patients with myocarditis have been published both in the context of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)6–8 and Middle East respiratory syndrome coronavirus (MERS-CoV).9 A systematic recording of the incidence of myocarditis and other cardiac complications in larger cohorts has been lacking thus far.10 In this study, we evaluated the incidence and pattern of clinically diagnosed cardiac complications and the occurrence of pulmonary embolism within the CAPACITY-COVID collaborative consortium (www.capacity-covid.eu) (NCT04325412).

Methods

CAPACITY-COVID is an international patient registry that has specifically been established to determine the role of cardiovascular disease in the COVID-19 pandemic.11 Currently, 79 centres across 13 countries (Belgium, Egypt, France, Iran, Israel, Italy, The Netherlands, Portugal, Russia, Saudi Arabia, Spain, Switzerland and the United Kingdom) have joined the consortium. A list of all participating hospitals can be found on our website (www.capacity-covid.eu).

Within CAPACITY-COVID, the case report form (CRF) of the International Severe Acute Respiratory and emerging Infection Consortium (ISARIC)12 and the World Health Organization (WHO) has been extended by the addition of approximately 400 variables for the collection of in-depth information regarding cardiovascular history, the use of cardiovascular medications, ECG, cardiac biomarkers, echocardiography and cardiac outcomes. Data are collected in a standardised manner from electronic medical records. All adult patients (≥18 years) with (highly suspected) COVID-19 that have been admitted to a hospital are eligible for inclusion. In The Netherlands, 45 hospitals contribute to the registry and together these sites have included 48.3% of all hospitalised patients during the first wave of the pandemic between the 27 March and 24 August 2020.

Local ethics approval was obtained in all participating hospitals. For hospitals asking for informed consent, the procedure varied among sites, with some centres handling an opt-in approach and others opt-out following local and national rules and regulations. In some centres, informed consent was not required for the retrospective collection of (pseudo)anonymised data generated during routine clinical care.

In the current study, data from centres that had initiated data collection before 3 July were used. The occurrence of cardiac complications during hospitalisation was determined according to the diagnostic criteria of the European Society of Cardiology (ESC) guidelines for myocarditis,13 pericarditis,14 endocarditis,15 heart failure16 and acute coronary syndrome.17 For arrhythmias, the American College of Cardiology (ACC)/American Heart Association (AHA)/Heart Rhythm Society (HRS) 2006 key data elements and definitions for electrophysiological studies and procedures were used.18

Missing data were not imputed due to the descriptive nature of this study. Continuous variables are summarised as median (interquartile ranges (IQR)) or mean (standard deviation (SD)) and categorical data with frequency (percentages). For univariate comparisons, the independent sample t-test or Mann–Whitney U test were used as appropriate. Categorical data were compared using the chi-square test. A P value less than 0.05 was considered statistically significant. Statistical analyses were performed by using R Studio (version 1.3.959; Vienna, Austria).

Results

For this analysis, outcome data of 3011 patients were available (Supplementary Figure 1). The median age was 67 years (IQR 56–76 years) and 62.8% were men. Nearly one-third of patients (31.0%) had a history of cardiovascular disease, most commonly coronary artery disease (n=463, 15.4%) and arrhythmia/conduction disorders (n=453, 15.1%) (Table 1). The median duration of hospital admission was 7 days (IQR 4–14 days). During hospitalisation, 837 (27.8%) patients required admission to a critical care unit (high dependency unit (HDU) or intensive care unit (ICU)) of which 731 (87.3%) received mechanical ventilation. The median duration of stay at a critical care unit was 13 days (IQR 7–23 days). Compared to patients admitted to the general ward, patients admitted to a critical care unit tended to be younger and have fewer comorbidities (Supplementary Table 1). At discharge, 595 patients (19.8%) had died (median age 76 years (IQR 69–82 years) and 68.4% were men), with a high proportion of these patients having pre-existing comorbidities (Supplementary Table 1).

In total, 349 (11.6%) patients were diagnosed with a cardiac complication during hospitalisation (Table 2). When compared with patients that did not develop cardiac complications, patients that did develop these complications were older, more
often men and frequently had a history of dyslipidemia, hypertension, chronic obstructive pulmonary disease (COPD) and chronic kidney disease (CKD) (Table 1). Cardiac complications occurred more frequently in patients admitted to a critical care unit (Supplementary Table 2). Arrhythmias and conduction disorders were the most common cardiac complications, occurring in 258 patients (8.6%) and most often concerned atrial fibrillation (n = 142, 4.7%). Malignant ventricular rhythm disturbances were observed in 14 patients (0.5%). Other cardiac complications, including acute coronary syndrome, heart failure, endocarditis and pericarditis were diagnosed in 2% or fewer patients (Table 2). Endocarditis was of bacterial origin in all patients. All three patients diagnosed with COVID-19-related myocarditis had repolarisation abnormalities on ECG. One patient had severe left ventricular dysfunction (left ventricular ejection fraction (LVEF) 30%) with local wall motion abnormalities and raised levels of troponin, without chest pain. One patient underwent a magnetic resonance imaging (MRI) scan in an outpatient setting, confirming myocarditis with anteroseptal epicardial delayed enhancement. Next to these three patients, myocarditis was suspected in four additional patients but none fulfilled the diagnostic criteria.

Patients with pre-existing cardiac disease were overall more likely to develop cardiac complications during admission (Table 1), with 27.5% (n = 11/40) and 30.9% (n = 17/55) of patients diagnosed with cardiac ischaemia and heart failure, respectively, having a history of coronary artery disease or heart failure, suggestive of exacerbation of underlying disease.

Pulmonary embolism was reported in 198 cases (6.6%), with an incidence of 18.9% (n = 158) in patients admitted to a critical care unit compared to 1.8% (n = 40) in patients admitted to the general ward (Supplementary Table 2).

Among the 595 patients that died in hospital, the cause of death was of primary cardiac origin in 2.7% (n = 16), with eight patients dying of heart failure, two of acute coronary syndrome, three of arrhythmia, two of endocarditis and one patient of COVID-19-related myocarditis. Twelve out of 16 patients in which the primary cause of death was deemed to be cardiac had an underlying pneumonia.

Discussion

To our knowledge, this is the largest cohort of patients with COVID-19 to date in which the occurrence of cardiac complications has been systematically recorded. The overall incidence of cardiac complications in this population is 11.6%, with atrial fibrillation being the most frequent complication.

Interestingly, only three patients were diagnosed with myocarditis during hospitalisation in this large study. Our
findings suggest that the high frequency of raised troponin levels in previous studies\(^2\)\(^-\)\(^5\) may predominantly reflect the occurrence of demand ischaemia and non-cardiac causes rather than acute myocardial infarction and myocarditis. In a meta-analysis of critically ill patients admitted to the ICU, involving trauma, surgical and sepsis patients among others, elevated troponin levels were found in a median of 43\% of patients demonstrating the non-specific nature of this biomarker in severely ill patients.\(^19\) An analysis of the frequency of raised troponin levels in our cohort on the subset of patients that did not develop cardiac complications was not possible, because troponins were only measured on clinical grounds. However, in the absence of corroborating evidence from electro and/or echocardiography caution should be exercised when interpreting troponin release as ‘viral-related cardiac injury’. Intriguingly, one recent study by Puntmann et al. performing MRI in 100 recovered COVID-19 patients, found that 60\% had signs of

| Table 2. Frequency of cardiac and other complications and cause of death. |
|-----------------------------|-----------------------------|-----------------------------|
| **Cardiac complications** | **% of total cohort (95% CI)\(^a\)** | **% of patients with cardiac complications (95% CI)\(^a\)** |
| No cardiac complication | 2662 | 88.4 (87.3–89.6) |
| Arrhythmia/conduction disorder | 258 | 8.6 (7.6–9.6) |
| Supraventricular tachycardia | 189 | 6.3 (5.4–7.1) |
| Atrial fibrillation | 142 | 4.7 (4.0–5.5) |
| Atrial flutter | 33 | 1.1 (0.7–1.5) |
| Ventricular arrhythmia | 14 | 0.5 (0.2–0.7) |
| Conduction disorders\(^b\) | 37 | 1.2 (0.8–1.6) |
| AV-block grade 1 | 4 | 0.1 (0.0–0.3) |
| AV-block grade 2 | 1 | 0.03 (0.0–0.09) |
| AV-block grade 3 | 1 | 0.03 (0.0–0.09) |
| Left bundle branch block | 4 | 0.1 (0.0–0.3) |
| Right bundle branch block | 11 | 0.4 (0.1–0.6) |
| QTc prolongation | 15 | 0.5 (0.2–0.7) |
| Sinus node dysfunction | 10 | 0.3 (0.1–0.5) |
| Cardiac ischaemia\(^c\) | 40 | 1.3 (0.9–1.7) |
| Acute coronary syndrome | 15 | 0.5 (0.2–0.7) |
| Type II ischemia | 24 | 0.8 (0.5–1.1) |
| Bacterial endocarditis | 4 | 0.1 (0.0–0.3) |
| Heart failure | 55 | 1.8 (1.3–2.3) |
| De novo | 38 | 1.3 (0.9–1.7) |
| Myocarditis | 3 | 0.1 (0.0–0.2) |
| Pericarditis | 1 | 0.03 (0.0–0.09) |
| Other\(^d\) | 21 | 0.7 (0.4–1.0) |
| **Other complications** | | |
| Acute kidney injury | 410 | 13.7 (12.4–14.8) |
| ARDS | 751 | 25.1 (23.4–26.5) |
| Pulmonary embolism | 198 | 6.6 (5.7–7.5) |
| Shock | 128 | 4.3 (3.5–5.0) |
| **Outcome** | | |
| Death | 595 | 19.8 (18.3–21.2) |
| Cardiac\(^e\) | 16 | 0.5 (0.3–0.8) |
| Other | 513 | 17.0 (15.7–18.4) |
| Unknown | 66 | 2.2 (1.7–2.7) |

AV: Atrioventricular; ARDS: Acute respiratory distress syndrome.
\(^a\)Wald 95\% confidence intervals (CIs) for proportions.
\(^b\)For one patient, conduction disorder not specified.
\(^c\)For one patient, unknown whether acute coronary syndrome or type II ischaemia.
\(^d\)In-hospital cardiac arrest n=5; repolarisation abnormalities n=5; Takotsubo cardiomyopathy n=3; cardiogenic shock n=2; pericardial effusion n=2; sudden death n=1; pacemaker implantation n=1; perforation of mitral valve leaflet n=1; pneumopericardium n=1.
\(^e\)Heart failure n=8; acute coronary syndrome n=2; primary arrhythmia n=3; endocarditis n=2; myocarditis n=1.
showed myocardial oedema on MRI in 57% of patients.21

...patients that had all been hospitalised for COVID-19 been hospitalised. Another study among 26 recovered patients with H1N1 influenza and cardiac symptoms, 10 (31%) patients were positive for myocarditis on MRI.22

Pulmonary embolism appears to occur frequently in patients infected with SARS-CoV-2, diagnosed in 6.6% of patients and in 18.9% among the critically ill. An incidence of pulmonary embolism of 20.6% and 31.0% has also been described in two cohorts of COVID-19 patients admitted to the ICU.23,24 One of these studies compared the incidence of pulmonary embolism during the same time interval in 2019 and found an absolute increased risk of 14.4% (20.6% vs. 6.1%).23 Also, when compared to 40 patients with influ-

...pulmonary embolism during the same time interval in 2019 and found an absolute increased risk of 14.4% (20.6% vs. 6.1%).23 Also, when compared to 40 patients with influ-

In conclusion, this large study in 3011 hospitalised patients with confirmed COVID-19 shows that the overall incidence of serious cardiac complications is low, despite a frequent history of cardiovascular disease. Long-term cardiac outcomes and the role of different pre-existing cardiovascular diseases in COVID-19 outcome warrants further investigation.

Acknowledgements

The author(s) would like to express their gratitude and appreciation to all participating sites and researchers part of the CAPACITY-COVID collaborative consortium and all research professionals that have contributed to the data collection. They gratefully acknowledge the following organisations for their assistance in the development of the registry and/or coordination regarding the data registration in the collaborating centres: partners of the Dutch CardioVascular Alliance (DCVA), the Dutch Association of Medical Specialists (FMS) and The NIHR-BHF Cardiovascular Partnership framework for Covid-19 research. They are thankful for the endorsement of the CAPACITY-COVID initiative by the European Society of Cardiology (ESC), the European Heart Network (EHN) and the Society for Cardiovascular Magnetic Resonance (SCMR).

Author contributions

Collaborators: van Kesteren HAM, van de Watering DJ, Schaap J, Aliings AMW, Asselbergs-Koning AMH, Pinto Y, Tjong FVY, de Vries JK, van Craenembroeck EM, Kwakkel — van Erp HM, van Ierssel S, de Sutter J, Saxena M, Westendorp PHM, van de Wal RMA, Dorman HGR, van Boxem AJM, Tio RA, Gabriel LG, Badings EA, van Oeffgen-Hanekemp CEE, Wierda E, Schut A, Monraats PS, Hello EH, den Uil CA, Jewbali LS, Nierop PR, van der Linden MMJ, Groenemeijer BE, Al-Windy NYY, van Hessen MWJ, van de Heijden DJ, Ribeiro MIA, Linssen GCM, Ferreira JB, Prasad S, Kopylov Ph. Yu., Blagova OV, Emans ME, Reddon J, Forner MJ, Hermanides RS, Haerkens-Arends HE, Timmermans P Jr, Messiaen P, van Smeden M, Al-Ali AK, Al-Muhanna FA, Al-Rubaish AM, Almubarak YA, Alnafie AN, Alshahriani M, Alshehrri A, van der Meer P, Kearney M, van den Brink FS, Siebelink HJ, Smits PC, Heymans SRB, Buch M, Tielman RG, Reidinga AC, Mosterd A, Meij MFL, Delsing CE, van Veen HPAA, Hermans-van Ast W, Iperen EPA, Aujayeb A, Salah R, Touzy R, Seelig J, Westendorp ICD, Veldhuis LI, Prasad S, Shore AC, Captur G, Dark P, Montagna LM, Bianco MB, Mazzilli SGM, Kaplan R, Drost JT, Schellings DAAM, Moriarty A, Kuijper AFM, Charlotte NC, ten Berg JM, van der Zee PM, Shafee A, Hedayat B, Poorhosseini H, Saneei E, Zaman A, Anthonio RL, Williams B, Patel R, Bell R, Caputo M, Weytjens C, Macias-Ruiz R, Tessitore E, McCann GP, van Gilst WH, Asselbergs FW, van der Harst P, Linschoten M, Wu KW, Verschure DO, Kietseelaer BLJH.

Conflict of interest

The author(s) declare that there is no conflict of interest.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The CAPACITY-COVID registry is funded by the Dutch Heart Foundation, Novartis Global, Novo Nordisk Nederland, Servier Nederland and Amgen Europe.
Marijke Linschoten is supported by the Alexandre Suerman Stipend of the University Medical Center Utrecht. Folkert W Asselbergs is supported by University College London Hospitals National Institute for Health Research Biomedical Research and CardioVasculair Onderzoek Nederland 2015-12 eDETECT.

Supplementary material
Supplementary material for this article is available online.

References
1. Johns Hopkins Coronavirus Research Center. https://coronavirus.jhu.edu/map.html (accessed 15 November 2020).
2. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395: 497–506. DOI: 10.1016/S0140-6736(20)30183-5
3. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020; 323: 1061–1069. DOI: 10.1001/jama.2020.1585
4. Shi S, Qin M, Shen B, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol 2020; e200950. DOI: 10.1001/jamacardio.2020.0950
5. Guo T, Fan Y, Chen M, et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol 2020; e201107. DOI: 10.1001/jamacardio.2020.1017
6. Inciardi RM, Lupi L, Zaccone G, et al. Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19). JAMA Cardiol 2020; 5: 819–824. DOI: 10.1001/jamacardio.2020.1096
7. Kim IC, Kim JY, Kim HA, et al. COVID-19-related myocarditis in a 21-year-old female patient. Eur Heart J 2020; 41: 1859. DOI: 10.1093/eurheartj/ehaa288
8. Doyen D, Moceri P, Dureux D, et al. Myocarditis in a patient with COVID-19: a cause of raised troponin and ECG changes. Lancet 2020; 395: 1516. DOI: 10.1016/S0140-6736(20)30912-0
9. Alhognabi T. Acute myocarditis associated with novel Middle East respiratory syndrome coronavirus. Ann Saudi Med 2016; 36: 78–80. DOI: 10.5144/0256-4947.2016.78
10. Madjid M, Safavi-Naeini P, Solomon SD, et al. Potential effects of coronaviruses on the cardiovascular system: a review. JAMA Cardiol 2020; 5: 831–840. DOI: 10.1001/jamacardio.2020.1286
11. Linschoten M and Asselbergs FW. CAPACITY-COVID: a European Registry to determine the role of cardiovascular disease in the COVID-19 pandemic. Eur Heart J 2020; 41: 1795–1796. DOI: 10.1093/eurheartj/ehaa280
12. ISARIC COVID-19 Clinical Research Resources. https://isaric.tghn.org/covid-19-clinical-research-resources/ (accessed 26 August 2020).
13. Cafferio AL, Pankuweit S, Arbustini E, et al.; European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 2013; 34: 2636–2648, 2648a–2648d. DOI: 10.1093/eurheartj/eh210
14. Adler Y, Charron P, Imazio M, et al.; ESC Scientific Document Group. 2015 ESC Guidelines for the diagnosis and management of pericardial diseases: the Task Force for the Diagnosis and Management of Pericardial Diseases of the European Society of Cardiology (ESC). Endorsed by: the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J 2015; 36: 2921–2964. DOI: 10.1093/eurheartj/ehv318
15. Habib G, Lancellotti P, Antunes MJ, et al.; ESC Scientific Document Group. 2015 ESC Guidelines for the management of infective endocarditis: the Task Force for the Management of Infective Endocarditis of the European Society of Cardiology (ESC). Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). Eur Heart J 2015; 36: 3075–3128. DOI: 10.1093/eurheartj/ehv319
16. Ponikowski P, Voors AA, Anker SD, et al.; ESC Scientific Document Group. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 2016; 37: 2129–2220. DOI: 10.1093/eurheartj/ehw128
17. Roffi M, Patrono C, Collet JP, et al.; ESC Scientific Document Group. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: the Task Force for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC). Eur Heart J 2016; 37: 267–315. DOI: 10.1093/eurheartj/ehv320
18. Buxton AE, Calkins H, Callans DJ, et al.; American College of Cardiology; American Heart Association Task Force on Clinical Data Standards; (ACC/AHA/HRS Writing Committee to Develop Data Standards on Electrophysiology). ACC/AHA/HRS 2006 key data elements and definitions for electrophysiological studies and procedures: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Data Standards (ACC/AHA/HRS Writing Committee to Develop Data Standards on Electrophysiology). J Am Coll Cardiol 2006; 48: 2360–2396. DOI: 10.1016/j.jacc.2006.09.020
19. Lim W, Qashmaq I, Devereaux PJ, et al. Elevated cardiac troponin measurements in critically ill patients. Arch Intern Med 2006; 166: 2446–2454. DOI: 10.1001/archinte.166.22.2446
20. Puntmann VO, Carerj ML, Wieters I, et al. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA Cardiol. Epub ahead of print 27 July 2020. DOI: 10.1001/jamacardio.2020.3557
21. Huang L, Zhao P, Tang D, et al. Cardiac involvement in recovered COVID-19 patients identified by magnetic resonance imaging. JACC Cardiovasc Imaging. Epub ahead of print 12 May 2020. DOI: 10.1016/j.jcmg.2020.05.004
22. Mavrogeni S, Bratis C, Kitsiou A, et al. CMR assessment of myocarditis in patients with cardiac symptoms during H1N1 viral infection. JACC Cardiovasc Imaging 2011; 4: 307–309.
23. Poissy J, Goutay J, Caplan M, et al.; Lille ICU Haemostasis COVID-19 group. Pulmonary Embolism in COVID-19 Patients: awareness of an increased prevalence. *Circulation*. 2020; 142: 184–186. DOI: 10.1161/CIRCULATIONAHA.120.047430

24. Klok FA, Kruip MJHA, van der Meer NJM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. *Thromb Res* 2020; S0049-3848(20)30120-1. DOI: 10.1016/j.thromres.2020.04.013