Natural Infection of Pregnant Cows with Schmallenberg Virus – A Follow-Up Study

Kerstin Wernike1*, Mark Holsteg2*, Horst Schirrmeier1, Bernd Hoffmann1, Martin Beer1,4

1 Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Greifswald - Insel Riems, Germany, 2 Bovine Health Service, Chamber of Agriculture for North Rhine-Westphalia, Bonn, Germany

Abstract

Schmallenberg virus (SBV), an orthobunyavirus discovered in European livestock in late 2011 for the first time, causes premature or stillbirth and severe fetal malformation when cows and ewes are infected during pregnancy. Therefore, cattle of two holdings in the initially most affected area in Germany were closely monitored to describe the consequence for fetuses and newborn calves. Seventy-one calves whose mothers were naturally infected during the first five months of pregnancy were clinically, virologically, and serologically examined. One calf showed typical malformation, another one, born without visible abnormalities, was dead. Two cows aborted during the studied period; spleen and brain samples or meconium swabs were tested by real-time PCR, in none of the fetuses SBV-specific RNA was detectable and the tested fetal sera were negative in a commercially available antibody ELISA. In contrast, in nine clinically healthy calves high SBV-antibody titers were measurable before colostrum intake, and in meconium swabs of six of these animals viral RNA was present as well. The mothers of all nine seropositive calves were presumably infected between days 47 and 162 of gestation, which is within the critical timeframe for fetal infection suggested for SBV and related viruses.

Introduction

Schmallenberg virus (SBV), an insect-transmitted orthobunyavirus that infects ruminants emerged at the German-Dutch border in late 2011, and thereafter spread rapidly within European livestock [1,2]. In spring 2012 a high scrooperabulation of about 70 to nearly 100% was found in cattle in the 2011 most affected region (German-Dutch-Belgian border) [3–5].

Affected adult ruminants show none or only mild clinical signs and milk drop for a few days, but an infection during a vulnerable gestation period may lead to premature or stillbirth and the birth of severe malformed calves and lambs. Related to the cattle population of a country, the rate of virus transmission from the dam to the fetus and a subsequent induction of malformation seems low [6]. In the present study, the ratio of animals infected during gestation and a vertical transmission was assessed for an individual farm. In addition to the impact on farm level, the exact gestation period for fetal SBV-infection and the induction of miscarriage or the birth of malformed calves is unknown. During an infection of the dam in the first month of pregnancy with Akabane virus (AKAV), another teratogenic virus closely related to SBV, the virus is usually not transferred to the embryo. Later on in gestation AKAV may cause varying degrees of fetal malformation primarily in the central nervous system and skeletal muscle [7]. The critical phase for cattle is most probably between the 31st and 60th month of the nine-month gestation [7–9]. However, to verify this assumption for SBV-infection too, calves whose mothers were naturally infected with SBV between days 13 and 162 of pregnancy were monitored in two farms in Germany.

Materials and Methods

Cattle farms

Two private dairy cattle holdings were monitored; both farms are located in the federal state North Rhine-Westphalia (46459 Rees and 46534 Dinslaken), Germany, in the core region of the 2011 SBV-epidemic. On farm A, the approximately 130 lactating cows (Holstein-Friesian) were kept indoors; the milk yield per cow and year is about 10 500 kg. On holding B, 44 lactating Holstein-Friesian cows were kept in September 2011 in a combination of stable and pasture; the annual milk yield per animal is about 9 800 kg. Robotic milking systems were used on both farms. On both farms only diary cows were kept; the study did not involve endangered or protected species.

Starting in early September 2011, fever and a significantly reduced milk yield were reported from holding A. Whole blood and serum samples taken from 8 dairy cattle on 07th of September were tested by an SBV L-segment specific real-time RT-PCR [2]. One cow sampled during the phase of decrease in milk production tested positive (serum quantification cycle value (Cq): 26.3, whole blood Cq: 27.2). Seven serum samples were examined by a
commercially available SBV antibody ELISA (ID Screen Schmallenberg virus Indirect, IDvet, France), all of them tested negative.

In mid of September similar clinical symptoms were reported from holding B, in addition some cows showed diarrhea for several days. On 16th of September from 5 dairy cattle whole blood samples were taken, two samples scored positive. One of them was obtained from a cow with diarrhea (Cq: 39.9), the second one from samples were taken, two samples scored positive. One of them was obtained from a cow with diarrhea (Cq: 39.9), the second one from samples were taken, two samples scored positive. One of them was obtained from a cow with diarrhea (Cq: 39.9), the second one from samples were taken, two samples scored positive. One of them was obtained from a cow with diarrhea (Cq: 39.9), the second one from samples were taken, two samples scored positive. One of them was obtained from a cow with diarrhea (Cq: 39.9), the second one from samples were taken, two samples scored positive. One of them was obtained from a cow with diarrhea (Cq: 39.9), the second one from samples were taken, two samples scored positive. One of them was obtained from a cow with diarrhea (Cq: 39.9), the second one from samples were taken, two samples scored positive. One of them was obtained from a cow with diarrhea (Cq: 39.9), the second one from samples were taken, two samples scored positive. One of them was obtained from a cow with diarrhea (Cq: 39.9), the second one from samples were taken, two samples scored positive. One of them was obtained from a cow with diarrhea (Cq: 39.9), the second one from samples were taken, two samples scored positive. One of them was obtained from a cow with diarrhea (Cq: 39.9), the second one from samples were taken, two samples scored positive. One of them was obtained from a cow with diarrhea (Cq: 39.9), the second one from samples were taken, two samples scored positive. One of them was obtained from a cow with diarrhea (Cq: 39.9), the second one from samples were taken, two samples scored positive.
was present in serum samples as well. An infection before day 47 (n = 10) or between days 108 and 136 (n = 17) resulted neither in pre-costral antibodies nor in detectable viral genome after birth (table 1). All calves that tested positive by real-time RT-PCR and/or ELISA were borne alive with no visible clinical signs.

Discussion

In autumn 2011, a hitherto unknown, insect-transmitted orthobunyavirus related to AKAV was identified in blood samples of diseased German cattle. So far, SBV-specific antibodies were not detected in European livestock before 2011 [10,12,13], while thereafter nearly every animal seroconverted in the core region of the epidemic [3,4,14]. In the present study, an identically high seroprevalence among adult animals was observed, and more than 80% of the cows tested in December 2011 were seropositive. Thus, nearly every dam whose offspring was examined became infected during pregnancy; time points of gestation, however, differed among the animals.

Based on the PCR results, animals of both holdings were infected in autumn, the season with the highest activity of the insect-vectors responsible for virus transmission. As suggested by another cattle farm located in the same area, SBV spread extremely rapidly within a naive herd in that period [15]. On the aforementioned farm, blood samples were regularly taken from all cows and in only 6 out of 58 animals SBV-genome was detected, however, the seroprevalence reached 100% within 3 weeks. Accordingly, in 1 out of 8 (holding A) and 2 out of 5 (holding B) blood samples taken at the beginning of the present study viral genome was present. Consequently, all animals of holding A and B, respectively, are considered to be infected at the same time, and the calculation of the gestation day at infection based on the day of detectable viral RNA in individual blood samples.

Until now, most of the presumably SBV-caused births of dead and/or malformed lambs and calves were reported after full-term pregnancy [16,17]. The same was observed in the present study, the only exception was an abortion after 190 days of gestation. Additionally, the birth of both, one malformed and one healthy offspring within the same litter was observed in one cow, and this is not unusual after an SBV- or AKAV-infection [18,19]. However, SBV could not be confirmed as the causative agent in any abnormal pregnancy in the present study and viral RNA was not detectable in the fetuses and newborns. Accordingly, not all malformed fetuses suspected of SBV or AKAV infection tested positive by PCR or virus isolation in recent studies [20–22]. The most accepted explanation is that the virus that caused the initial lesions months before abortion, stillbirth or birth is no longer present in the newborns [7]. Hence, SBV genome is detected much more frequently in aborted, stillborn and/or malformed lambs (length of gestation in sheep approximately 5 months) than in calves (9 months) [23]. Furthermore, compared to meconium swabs used in this study, brain samples are a more suitable material [21], but sampling is complicated and only possible in dead calves.

In contrast to the aborted or stillborn calves, SBV-RNA was found in the meconium of 6 clinically health newborns, in one of...
them viral RNA was present in serum samples as well. Since in all pre-colostral sera of the PCR-positive fetuses high titers of SBV-specific antibodies were detected as well, the genome detection does not indicate the possibility to develop immunotolerance to and establish a persistent infection with SBV. The reason for the detection of viral RNA despite the presence of antibodies remains unclear. However, it can be speculated that both an antibody response and the detection of SBV-RNA in those fetuses is the consequence of extensive SBV-replication, which only seldom leads to abortion, malformation or stillbirth. The considerable virus replication leads to high viral load in several fetal organs and placental fluid [11] from where it potentially ends up in the meconium.

In addition to real-time PCR results, the detection of pre-colostral SBV-specific antibodies that are produced by the fetus itself once it became immunocompetent [24], is a valuable tool to confirm an SBV-infection of the fetus during pregnancy [21,22]. Indeed, 9 out of 71 calves tested positive by ELISA, and only 6 of them also by PCR; and all of them were born alive with no visible clinical signs. As also described for AKAV before [9,25], the presence of SBV-specific antibodies before colostrum intake in clinically inconstant calves indicates that in cattle only a small proportion of infection causes the birth of malformed and/or dead animals. Moreover, not nearly every experimental inoculation with AKAV during the critical period of pregnancy lead to fetal infection resulting in abnormalities or antibody response [18]. Our results fully confirm this observation for natural infection with SBV as well. Moreover, the small amount of aborted or malformed calves related to the total number of calves borne on the monitored holding during the study period are in agreement with the low rate of stillbirth or malformation caused by fetal SBV-infection on population level [approximately 0.5% in Dutch dairy herds] [6].

From the large number of dams (n = 70) naturally infected between days 13 and 162 of pregnancy, only a limited amount gave birth to malformed or virus and/or antibody positive calves. The low number of pre-colostral seropositive calves from infected cows can only be explained by the absence of fetal infection in most of the cases or if the fetus was infected, by the absence of an antibody response detectable by ELISA. The time point of infection of the 9 seropositive calves is also indicating that within a large time frame no immunotolerance was induced. High titers of SBV-specific antibodies could be detected even if the fetuses were most likely infected before day 90 of pregnancy, which is the well know period e.g. for the generation of BVDV immunotolerant persistently infected calves. After experimental inoculation of cows with AKAV pre-colostral antibodies were detected at the earliest in the newborn when the dam was infected at day 70 of gestation [9]. In the present study, blood samples taken from every dam during the acute phase of the disease are not available and, therefore, the exact date of infection for every animal is not known. Consequently, a possible explanation for seropositve calves whose mothers were presumably infected before day 70 may be an SBV-infection later in pregnancy.

Unfortunately, samples of calves whose mothers were infected with SBV between day 162 and the end of pregnancy were not available (calves borne between infection of the dams and the first identification of SBV); consequently, the percentage of malformed calves, abortion or seroconversion in this timeframe is unknown and should be evaluated in further studies. However, the mothers of all nine calves with high pre-colostral antibody titers were presumably infected between days 47 and 162 of gestation, and malformed or dead calves were borne after an infection between days 60 and 144 which is within the critical timeframe suggested by viruses closely related to SBV [7–9].

Acknowledgments

We are grateful to Bianka Hillmann, Patrick Zitzow, Christian Korthase and Karin Lissek for excellent technical assistance.

Author Contributions

Conceived and designed the experiments: HS BH. Performed the experiments: HS BH. Analyzed the data: KW MH HS BH MB. Wrote the paper: KW MH HS BH MB.

References

1. European Food Safety Authority (2012) “Schmallenberg” virus: Analysis of the Epidemiological Data and Assessment of Impact EFSA Journal 2012;10(6):2768 [89 pp].

2. Hoffmann B, Scheuch M, Höper D, Jungblut R, Holsteg M, et al. (2012) Novel orthobunyavirus in cattle, Europe. 2011. Emerg Infect Dis 18: 460–472.

3. Elbers AR, Loeffen WL, Quak S, de Beer-Luijtje E, van der Spek AN, et al. (2012) Seroprevalence of Schmallenberg Virus Antibodies among Dairy Cattle, the Netherlands, Winter 2011-2012. Emerg Infect Dis 18: 1063–1071.

4. Meroc E, Poskin A, Van Loo H, Quinet C, Van Driessche E, et al. (2012) Large-Scale Cross-Sectional Serological Survey of Schmallenberg Virus in Belgian Cattle at the End of the First Vector Season. Transbound Emerg Dis.

5. Wernike K, Conraths F, Zanella G, Granzow H, Gache K, et al. (2014) Schmallenberg virus-Two years of experiences. Prev Vet Med. 111: 1–12.

6. Veldhuis AM, Dijkers SC, van Wuijckhuise L, Witteveen G, van Schaik G (2013) Schmallenberg virus in Dutch dairy herds: Potential risk factors for high within-herd seroprevalence and malformations in calves, and its impact on productivity. Vet Microbiol.

7. Konno S, Moriwaki M, Nakagawa M (1982) Akabane disease in cattle: congenital abnormalities caused by viral infection. Spontaneous disease. Vet Pathol 19: 246–266.

8. Kirkland PD, Barry RD, Harper PA, Zelski RZ (1988) The development of Akabane virus-induced congenital abnormalities in cattle. Vet Rec 122: 582–586.

9. Kuropy H, Inaba Y, Takahashi E, Sato K, Satoda K (1977) Congenital abnormalities in newborn calves after inoculation of pregnant cows with Akabane virus. Infect Immun 17: 338–343.

10. Breed E, Lara E, Connet I, Viorauge C, Docué V, et al. (2013) Validation of a Commercially Available Indirect Elisa Using a Nucleoplaside Recombinant Protein for Detection of Schmallenberg Virus Antibodies. PLoS One 8: e53446.

11. Bilk S, Schulze C, Fischer M, Beer M, Hlinak A, et al. (2012) Organ distribution of Schmallenberg virus RNA in malformed newborns. Vet Microbiol 159: 236–239.

12. Garigliany MM, Bayrou C, Kleijnen D, Cassart D, Desmecht D (2012) Schmallenberg virus in domestic cattle, Belgium. 2012. Emerg Infect Dis 18: 1512–1514.

13. Conraths FJ, Peters M, Beer M (2013) Schmallenberg virus, a novel orthobunyavirus infection in ruminants in Europe: potential global impact and preventive measures. N Z Vet J 61: 63–67.

14. Meroc E, De Regge N, Kriecoux F, Caij AB, van den Berg T, et al. (2013) Distribution of Schmallenberg Virus and Seroprevalence in Belgian Sheep and Goats. Transbound Emerg Dis.

15. Wernike K, Slaghi G, Nieder M, Pfeifer M, Beer M (2013) Dynamics of Schmallenberg virus infection within a cattle herd in Germany, 2011. Epidemiol Infect: 1–4.

16. Dominguez M, Hendrikx P, Zientara S, Calavas D, Jay M, et al. (2012) Preliminary estimate of Schmallenberg virus infection impact in sheep flocks - France. Vet Rec 171: 426.

17. Garigliany MM, Hoffmann B, Drive M, Sartelet A, Bayrou C, et al. (2012) Schmallenberg virus in calf born at term with porencephaly, Belgium. Emerg Infect Dis 18: 1005–1006.

18. Parsonson IM, Della-Porta AB, Snowdon WA, Murray MD (1975) Congenital abnormalities in foetal lambs after inoculation of pregnant ewes with Akabane virus. Australian veterinary journal 53: 319–325.

19. Anonymous (2012) Geographical spread of UK cases of SBV ‘within expectations’. Vet Rec 170: 217.

20. Hartley WJ, De Saram WG, Della-Porta AJ, Snowdon WA, Shepherd NG (1977) Pathology of congenital bovine epizootic arthrogryposis and hydranencephaly and its relationship to Akabane virus. Australian veterinary journal 53: 319–325.
21. De Regge N, van den Berg T, Georges L, Cay B (2013) Diagnosis of Schmallenberg virus infection in malformed lambs and calves and first indications for virus clearance in the fetus. Vet Microbiol 162: 595–600.
22. van Maanen C, van der Heijden H, Wellenberg GJ, Witteveen G, Luttikholt S, et al. (2012) Schmallenberg virus antibodies in bovine and ovine fetuses. Vet Rec 171: 299.
23. Bouwstra RJ, Kooi EA, de Kluijver EP, Verstraten ER, Bongers JH, et al. (2013) Schmallenberg virus outbreak in the Netherlands: routine diagnostics and test results. Vet Microbiol 165: 102–108.
24. St. George TD, Kirkland PD (2004) Diseases caused by Akabane and related Simbu-group viruses. Coetzer J A W, Tustin R C (Eds), Infectious Diseases of Livestock, 2nd ed Oxford, UK: Oxford University Press: 1029–1036.
25. Kurogi H, Inaba Y, Goto Y, Miura Y, Takahashi H (1975) Serologic evidence for etiologic role of Akabane virus in epizootic abortion-arthrogryposis-hydramnephaly in cattle in Japan, 1972-1974. Arch Virol 47: 71–83.