“Slow Service” → “Great Food”:
Enhancing Content Preservation in Unsupervised Text Style Transfer

Wanzheng Zhu and Suma Bhat
University of Illinois at Urbana-Champaign, USA
wz6@illinois.edu, spbhat2@illinois.edu

Abstract

Text style transfer aims to change the style (e.g., sentiment, politeness) of a sentence while preserving its content. A common solution is the prototype editing approach, where stylistic tokens are deleted in the “mask” stage and then the masked sentences are infilled with the target style tokens in the “infill” stage. Despite their success, these approaches still suffer from the content preservation problem.

By closely inspecting the results of existing approaches, we identify two common types of errors: 1) many content-related tokens are masked and 2) irrelevant words associated with the target style are infilled. Our paper aims to enhance content preservation by tackling each of them. In the “mask” stage, we utilize a BERT-based keyword extraction model that incorporates syntactic information to prevent content-related tokens from being masked. In the “infill” stage, we create a pseudo-parallel dataset and train a T5 model to infill the masked sentences without introducing irrelevant content. Empirical results show that our method outperforms the state-of-the-art baselines in terms of content preservation, while maintaining comparable transfer effectiveness and language quality.

1 Introduction

There is growing research interest in text style transfer recently, with the aim of altering the text style (e.g., sentiment, politeness, formality) of a sentence while preserving its content. For example, a sentiment transfer model may transfer a positive-sentiment sentence from “This is the best book I’ve read ever!” to “This is the worst book I’ve read ever!”. As another example, “what happened to my personal station?” may be transferred to “could you please let me know what happened to my personal station?” for a more polite expression. Text style transfer has been shown to be useful in many downstream applications, such as author obfuscation (Shetty et al., 2018), data augmentation (Xie et al., 2020; Kaushik et al., 2019), text simplification (Xu et al., 2015), and writing assistance (Heidorn, 2000).

Unsupervised style transfer has been extensively explored since parallel data are difficult to obtain. One intuitive and promising solution is the prototype editing approach (Li et al., 2018; Wu et al., 2019; Reid and Zhong, 2021), where the “mask” and “infill” steps are sequentially applied. In the “mask” stage, stylistic tokens are identified and deleted by frequency-ratio based methods (e.g., TF-IDF) and/or attention-based methods, resulting in a content-only masked sentence. In the “infill” stage, the masked sentence is infilled by adding new style markers through template-based methods (Li et al., 2018) or masked language models (Wu et al., 2019; Malmi et al., 2020).

While these models have shown their power to transfer the input text to the target style with high transfer effectiveness, most of them, if not all, suffer from the content preservation issue. As shown in Table 1, despite the style has been transferred successfully, the content is partially changed too (e.g., “service” → “food”).

In this paper, we propose a novel approach to enhance content preservation for unsupervised text style transfer. We first summarize two important observations of common errors made by the existing models:

- In the “mask” stage, content-related tokens may be removed (e.g., underlined tokens in cases (a), (c), (d), (e) in Table 1);

- In the “infill” stage, irrelevant words with strong styles may be generated (e.g., underlined tokens in (a), (b), (d), (e) in Table 1).

To preserve content-related tokens in the “mask” stage, we extract the central component of the sentence and prevent them from being masked. Specif-
Table 1: Error analysis of existing state-of-the-art models. Tokens masked are in red, and new tokens generated are in blue. Tokens underlined are either content-related tokens removed or irrelevant words generated.

Transfer Type	Source Sentences	Transferred Sentences
(a) Negative → Positive	we sit down and we got some really slow and lazy service.	we sit down and we got some really good food and loved it.
(b) Positive → Negative	the taste is awesome.	the taste is not good and the service is slow.
(c) Factual → Romantic	a man and a woman show their tattooed hearts on their wrists.	a man and a woman show their loved hearts on their anniversary.
(d) Male → Female	the locker room is clean.	the locker room is cute.
(e) Toxic → Civil	as stupid and arrogant as his boss.	as warm hearted as his boss.

2. Proposed Model

2.1 Problem Formulation

In this paper, we formulate the unsupervised text style transfer as follows: for two non-parallel corpora $X = \{x_1, x_2, ..., x_m\}$ and $Y = \{y_1, y_2, ..., y_n\}$ with styles S_X and S_Y respectively, the goal is to train a style transfer model G that generates a corpus $\hat{X} = \{\hat{x}_1, \hat{x}_2, ..., \hat{x}_m\}$ conditioned on the corpus X. The generated corpus \hat{X} is expected to be in the target style S_Y and preserves the content of X.

2.2 Model Overview

Figure 1 illustrates our proposed model architecture. Following Li et al. (2018); Wu et al. (2019), we assume that style is localized to certain tokens in a sentence and those tokens can be deleted to form a style-free corrupted sentence.1

At the training stage, we first build a style removal model G_d to obtain corrupted sentences Y_c from Y, the collection of sentences in the target corpus.2 Such corrupted sentences Y_c are considered style-free under our aforementioned assumption, and ideally there is little loss of content. Second, we train a sentence recovery model G_r to recover the original sentences Y from the corrupted sentences Y_c. Such a sentence recovery model G_r is expected to recover the style-free corrupted sentences Y_c to the original sentences Y in the target

1Note that this assumption is not always true. Readers are referred to Jafaritazehjani et al. (2020) for a more detailed discussion.

2“Corrupted sentences” and “masked sentences” are used interchangeably.
We sit down and we got some really slow service.

We sit down and we got some really ___ service.

We sit down and we got some really fast service.

We sit down and we got some really slow service.

Figure 1: Overview of the model architecture.

After training, we have a style removal model \(G_d \) and a sentence recovery model \(G_r \). Now at the inference stage, we apply the style removal model \(G_d \) on the source style sentences \(X \) and obtain style-free corrupted sentences \(X_c \). Then, we produce the final output \(\hat{X} \) using the sentence recovery model \(G_r \), which is trained to recover corrupted sentences to the target style \(S_y \).

Next, we introduce the details of the style removal model \(G_d \) in Section 2.3 and the sentence recovery model \(G_r \) in Section 2.4.

2.3 The Style Removal Model

Existing models typically make use of frequency-ratio based methods (e.g., TF-IDF) and/or attention based methods to remove the stylistic tokens (Li et al., 2018; Wu et al., 2019). However, they achieve mediocre performance as many content-related and style-free tokens are masked too. Section 2.3.1 explains how content-related tokens are preserved and Section 2.3.2 shows how the style-related tokens are masked.

2.3.1 Keyword Extraction

To preserve the relevant content, we explicitly utilize a keyword extraction model, which incorporates syntactic information (e.g., dependency parsing) to highlight the content-related tokens and prevent them from removal.

With a source style sentence \(x = \{t_1, t_2, ..., t_k\} \), where \(t_i \) is the \(i \)-th token, the model extracts content-related keywords in three steps:

(a) **Embedding**: we use BERT embeddings\(^3\) to represent all of the keywords \(e_{t_1}, e_{t_2}, ..., e_{t_k} \) and the entire sentence \(e_x \) in a high-dimensional vector space.

(b) **Dependency Parsing**: we construct a dependency tree that captures word-level relations with the Stanford dependency parser (Manning et al., 2014). From the dependency tree, we obtain the depth \(d_i \) and the outdegree \(o_i \) for each word token \(t_i \). In dependency parsing, the head word of a constituent was the central organizing word of a larger constituent (Jurafsky, 2000). The more central the words are (higher depth or larger outdegree), the more likely it contains meaningful content and therefore, the less likely they should be masked.

(c) **Ranking**: all candidates are ranked to represent the keywords of the sentence:

\[
 r_{t_i} = \alpha \cdot \cos(e_{t_i}, e_x) + \beta \cdot d_i + \gamma \cdot o_i
\]

To alleviate the redundant keywords issue, we follow Bennani-Smires et al. (2018) to use Maximal Marginal Relevance (MMR) (Carbonell and Goldstein, 1998) for diversified candidates by optimizing keyword informativeness with dissimilarity among selected candidates.

Finally, we select candidates over a threshold \(\text{thres} \) and prevent them from being masked. Em-

\(^3\)We use “bert-base-uncased” in https://huggingface.co/docs/transformers/model_doc/bert.
prically, we take $\alpha = 0.8$, $\beta = 0.1$, $\gamma = 0.1$, and $\text{thres} = 0.74$, based on the results of the validation data in the Yelp dataset.

2.3.2 Attention

After the keywords have been extracted, we train an attention-based classifier to identify the style-related tokens. We simply encode the sentence and concatenate the forward and the backward hidden states for each word with a bidirectional LSTM. After training, the attention-based classifier is expected to generate attention weights, which capture the style information of each word. For simplicity, we follow Wu et al. (2019) and set the averaged attention value in a sentence as the threshold. Words with attention weights higher than the threshold are viewed as style markers. Note that the content-related keywords identified in Section 2.3.1 are preserved and not classified as style markers.

2.4 The Sentence Recovery Model

With style-free corrupted sentences \mathbf{X}_c, we focus on recovering them to the target style S_y. Here, we introduce to solve the problem by creating a pseudo-parallel training dataset and training a model G_r for sentence recovery explicitly. Recall that in Section 2.3, we obtain corrupted sentences \mathbf{Y}_c given the original sentences \mathbf{Y}. Therefore, if we take them in a reverse direction, we then have a parallel training dataset to learn from (i.e., $\mathbf{Y}_c \rightarrow \mathbf{Y}$).

We select T5 (Raffel et al., 2020), a strong pre-trained text-to-text model, as the base architecture, and fine-tune it on the constructed pseudo-parallel dataset. After being trained, the model is expected to take as input a corrupted style-free input \mathbf{Y}_c and generate sentences in the target style without introducing additional irrelevant content. Finally, we apply the trained T5 model on corrupted input \mathbf{X}_c and generate the final output $\hat{\mathbf{X}}$, which is expected to be of the target style S_y.

Intuition: As demonstrated by Wu et al. (2019); Malmi et al. (2020), it is an intuitive idea to treat the “infill” step as a fill-in-the-mask problem, and generate sentences by a fine-tuned masked language model. However, such masked language models (e.g., BERT) are designed to predict tokens for a “mask” and generate sentences with the highest sentence probability. Despite that they are able to generate fluent sentences in the target style, they may introduce tokens that are irrelevant to the source sentence (e.g., case (b) in Table 1) and therefore, may potentially change the content. Here, what we expect is not a general model for generating a fluent sentence, but rather a specialized model that works only for sentence recovery without introducing irrelevant content. Therefore, we construct a pseudo-parallel training dataset and train the model in a supervised manner explicitly for this task. After training on such a dataset, the T5 model is expected to learn specifically to generate sentences in the target style without introducing additional and irrelevant information.

3 Empirical Evaluation

In this section, we empirically evaluate the performance of our proposed approach (denoted as “STEC”\footnote{short for “Style Transfer with Enhanced Content”}) and a set of baseline models. We implemented all models in Python 3.7 and conducted all the experiments on a computer with twenty 2.9 GHz Intel Core i7 CPUs and one GeForce GTX 1080 Ti GPU.

3.1 Datasets

Sentiment Transfer: We use the Yelp dataset and the Amazon dataset (Li et al., 2018), which are business reviews on Yelp and product reviews on Amazon respectively. Each of the dataset consists of two non-parallel corpora with positive and negative sentiments. Each example is labeled as having either positive or negative sentiment.

Captions: The Captions dataset (Gan et al., 2017; Li et al., 2018) has image captions labeled as being factual, romantic or humorous. We focus on the task of converting factual sentences into romantic and humorous ones.

Politeness: The Politeness dataset (Madaan et al., 2020) is produced by filtering through the Enron Email corpus (Klimt and Yang, 2004). We aim to transform the tone of a sentence from impolite to polite.

Detoxification: We employed the largest publicly available toxicity detection dataset to date from “Jigsaw Unintended Bias in Toxicity Classification” Kaggle challenge.\footnote{https://www.tensorflow.org/datasets/catalog/civil_comments} We follow Dale et al. (2021) to obtain non-parallel data, and focus on transferring from toxic to non-toxic.

Dataset statistics are presented in Table 2. For the Yelp, Amazon and Captions datasets, human
annotated solutions are also provided for measuring content preservation.

3.2 Baselines

We compare our proposed approach with the following competitive baseline models:

1. **CAE**: it achieves style transfer from nonparallel text by cross alignment of latent representations (Shen et al., 2017).[^6]

2. **DRG** (Li et al., 2018): this is one of the first successful prototype editing methods. We compare against the full method—delete-retrieve-generate.[^7]

3. **Mask and Infill (MI)** (Wu et al., 2019): the style tokens are first separated from content by masking the positions of sentimental tokens with a fusion model. Then, a masked language model is trained to predict words/phrases conditioned on the context and the target style.

4. **Tag and Generate (TAG)** (Madaan et al., 2020): it first tags tokens with the original style and/or adds new tags inside a sentence. Then, it conditionally generates the target sentence from the tagged source sentence.[^8]

5. **NAST** (Huang et al., 2021): it first predicts word alignments conditioned on the source sentence, and then generates the transferred sentence with a non-autoregressive decoder. We report results by the model building upon StyTrans (Dai et al., 2019).[^9]

6. **RACoLN** (Lee et al., 2021): it implicitly removes style at the token level using reverse attention, and fuses content information to style representation using conditional layer normalization.[^10]

3.3 Evaluation

Following prior work (Madaan et al., 2020; Reid and Zhong, 2021), we evaluate all model outputs along three dimensions: transfer effectiveness, content preservation and language quality.

Transfer effectiveness refers to whether the transferred sentences reveal the target style property. **Content preservation** captures how a sentence maintains its original content throughout the transfer process. **Language quality** measures whether the generated sentences are grammatical, fluent and readable.

3.3.1 Automatic Evaluation

Effectiveness: We follow Reid and Zhong (2021) and train a RoBERTa-base classifier on the training data for the respective dataset. Our evaluation classifier achieves accuracy of 98.0% on Yelp, 84.2% on Amazon, 79.6% on Captions, 88.3% on Politeness, and AUC-ROC of 0.97 on Detoxification. We measure the percentage of the generated sentences classified to be in the target domain by the classifier.

Content Preservation: The standard metric for measuring content preservation is BLEU-self (BL-s) (Papineni et al., 2002) which is compared with respect to the original sentences. However, BLEU scores can measure syntactic content preservation only. Besides, to measure semantic content preservation, we report BERTScore-self (BS-s) (Zhang et al., 2019) against the source sentences. In addition, we report BLEU-reference (BL-r) and BERTScore-reference (BS-r) using the human reference sentences on the Yelp, Amazon and Captions datasets (Li et al., 2018).

Language Quality: We adopt GRUEN (Zhu and Bhat, 2020) to evaluate the language quality.

3.3.2 Human Evaluation

In addition to automatic evaluation, we validate the generated outputs with human evaluation. With each model except CAE, we randomly sample 100 outputs from each dataset.[^11] Given the target style

[^6]: https://github.com/shentianxiao/language-style-transfer
[^7]: https://worksheets.codalab.org/workshops/0xe3eb416773ed4883bb737662b31b4948/
[^8]: https://github.com/tag-and-generate
[^9]: https://github.com/thu-coai/NAST
[^10]: https://github.com/MovingKyu/RACoLN
[^11]: We excluded CAE for human evaluation because it performs poorly as determined by the automatic evaluation.
and the original sentence, two annotators (graduate students who are specialized in NLP) are asked to evaluate the model generated sentence with a score range from 1 (Very Bad) to 5 (Very Good) on style transfer accuracy, content preservation, and language quality respectively.

3.4 Results
The automatic evaluation results based on best-found hyperparameters are summarized in Table 3. We observe a significant improvement in content preservation scores across various datasets (specifically in the Captions dataset and the Detoxification dataset), highlighting the ability of our model to retain content better than the baseline models. Alongside, we observe comparable performance of our model on transfer effectiveness and language quality across various datasets.

As for the human evaluation, we report the average scores from the 2 annotators in Table 4. We observe that the result mainly conforms with the automatic evaluation. Our model received the highest score on the content evaluation metric, while maintaining comparable score on transfer effectiveness and language quality. Both automatic and human evaluation depict the strength of our proposed model in preserving content.

Among all the baselines, TAG has the best performance consistently in both automatic evaluation and human evaluation, in particular, on the Politeness dataset. This is expected as the “tagger” component is designed to find place for insertion of polite expressions inside a sentence.12

For the two state-of-the-art papers that tackles content preservation—RACoLN and NAST, though they perform well on some datasets, the models are not robust across different datasets. Comparably, our approach has consistently good performance and therefore, demonstrates its better generalizability.

3.5 Ablation Study
We compare with the following ablations of STEC and show the results in Figure 2:

1. no-parsing: we exclude the dependency parsing information and use BERT embeddings only to preserve the keywords.

2. tfidf: instead of using the attention network for masking the style-related works, we follow (Li et al., 2018) to use the TF-IDF to mask the style-related words.

3. no-keyword: we exclude the entire keyword extraction model and use the attention network directly to mask the style-related words.

4. no-parallel: instead of constructing a pseudo-parallel dataset and train the T5 model in the “infill” stage, we treat it as a fill-in-the-mask problem and solve it by a fine-tuned masked language model.

We observe that our approach performs better than all ablations in terms of content preservation, and all ablations have comparable performance for transfer effectiveness and language quality. Compared with no-keyword and no-parallel, we conclude that each of the proposed model (i.e., Section 2.3 and Section 2.4) contributes to content preservation well respectively. Besides, by comparing no-keyword and no-parsing, we demonstrate that dependency parsing information can help preserve the content too. In addition, the performance drop by tfidf indicates that an attention network works better in masking stylistic tokens.

3.6 Case Study
Examples of the transferred results by our model are presented in Table 5. We find that our proposed keyword extraction model can preserve the content-related words well. Besides it, we also observe that the T5 model is able to recover the corrupted sentences in the target style without introducing irrelevant content.

12Politeness transfer is slightly different from sentiment transfer, and readers are referred to Madaan et al. (2020) for more detailed discussions.
Table 3: Automatic evaluation results on sentiment transfer. Best results are in bold. Acc: Accuracy; BL-s: BLEU-self; BL-r: BLEU-reference; BS-s: BERTScore-self; BS-f: BERTScore-reference; GR: GRUEN.

(b) Style transfer on other forms.

Table 4: Human evaluation results. Best results are in bold. Eff.: Transfer Effectiveness; CP: Content Preservation; LQ: Language Quality.

4 Related Work

Textual style transfer, the task of changing the style of an input sentence while preserving its content, has recently received increasing attention (Jin et al., 2021). To date, a wide range of solutions have been proposed to solve the task of textual style transfer, such as latent representation disentanglement (Shen et al., 2017; Fu et al., 2018; Riley et al., 2021; Nangi et al., 2021), prototype editing (Li et al., 2018; Wu et al., 2019; Malmi et al., 2020; Madaan et al., 2020; Reid and Zhong, 2021), and others (Gong et al., 2019; Jin et al., 2019; Goyal et al., 2021; Liu et al., 2021).

Many recent works have reported good performance on several aspects of style transfer, including sentiment (Li et al., 2018; Gong et al., 2019), formality (Rao and Tetreault, 2018), simplicity (Van den Bercken et al., 2019; Cao et al., 2020), politeness (Madaan et al., 2020), gender (Prabhumoye et al., 2018), authorship (Jhantani et al., 2017; Carlson et al., 2018). For instance, Li et al. (2018) propose a simple pipeline approach—delete-retrieve-generate and have shown promising performance on sentiment transfer. Gong et al. (2019) design a reinforcement learning based model for sentiment and formality transfer. It takes style rewards, semantic rewards and fluency rewards from the evaluator and updates the generator for better transfer quality. Madaan et al. (2020) introduce a tag and generate pipeline to identify stylistic words and/or insertion positions. It works particularly well on the Politeness dataset, and shows superior performance on other datasets too.

Content preservation still remains as a major challenge and yet to be solved (Jin et al., 2021; Lee et al., 2021; Huang et al., 2021). To enhance content preservation, researchers have made some
Table 5: Case study: style transfer results by our proposed model. Tokens masked are in red, and new tokens generated are in blue.

Transfer Type Source Sentences	Transferred Sentences
(a) Negative → Positive: we sit down and we got some really slow and lazy service.	we sit down and we got some really great service.
(b) Positive → Negative: the taste is awesome.	the taste is really bad.
(c) Factual → Humorous: the group of hikers is resting in front of a mountain.	the group of hikers is being pulled in front of a mountain.
(d) Factual → Romantic: several young people celebrate by clapping and cheering.	several young people celebrate their lovely friendship by clapping and cheering.
(e) Impolite → Polite: yes go ahead and remove it	could you please go ahead and remove it
(f) Toxic → Civil: suggesting that people change their commute times is stupid.	suggesting that people change their commute times is useless.

Recent progress (Samanta et al., 2021; Garcia et al., 2021; Krishna et al., 2022). For instance, Lee et al. (2021) propose to implicitly remove style at the token level using reverse attention, and fuse content information to style representation using conditional layer normalization. Besides it, Huang et al. (2021) study a non-autoregressive generator, which can serve as an alternative generator for other established models. It explicitly models word alignments to suppress irrelevant words, exploits the word-level transfer between different styles, and is shown to improve content preservation for cycle-loss-based models. In addition, Gong et al. (2020) propose to encode rich syntactic and semantic information with a graph neural network and show its ability on sentiment transfer.

Our work differs from them in the following two aspects: 1) Existing approaches for enhancing content preservation falls in the category of latent representation disentanglement approach, while, to the best of our knowledge, we have proposed the first model to enhance content preserve in the category of prototype editing. 2) Existing approaches rely on the assumption that latent representation can implicitly partially retain both content and style information. However, this assumption lacks justification and remains challengeable (Jin et al., 2021; Jafaritazehjani et al., 2020).

5 Conclusion

In this paper, we identify two common types of errors on content preservation by existing style transfer models. To solve them, we propose to utilize a keyword extraction model to preserve the content-related tokens in the “mask” stage, and to leverage the self-supervision scheme to create a pseudo-parallel dataset in the “infill” stage. With the two core components, our model is able to enhance content preservation while keeping the outputs with target style. Both automatic and human evaluation shows that our model has strong ability in preserving content and show comparable performance in other evaluation measures too.

Limitation and Future work: 1) we rely on the assumption that style is localized to certain tokens in a sentence and we can delete those tokens to obtain a style-free corrupted sentence. However, this assumption is not always true, especially for more complicated styles (e.g., from modern English to Shakespearean English) (Jafaritazehjani et al., 2020). 2) In more complicated forms of styles, there could be few words associated with the source target, which makes the “mask” model difficult to work well. For instance, in the Politeness dataset, “send me the data” is not a polite expression, but there are no impolite words associated either (Madaan et al., 2020). 3) We focus on the problem of unsupervised style transfer, where access to a large corpus of unpaired sentences with style labels are required. This could be a strong requirement, especially for low-resource settings. Besides, the models built are style-specific and are not generalizable to other styles. It could be an interesting future work to extend our model to the few shot problem setting (Krishna et al., 2022; Garcia et al., 2021).

Acknowledgements

We thank the anonymous reviewers for their helpful comments on earlier drafts that significantly helped improve this manuscript. This study was funded in part by the Jump ARCHES endowment through
the Health Care Engineering Systems Center award number P304.

Ethical Considerations

Risks in deployment: Recent works have highlighted the issues with text style transfer, such as improper usage with malicious intention (Lee et al., 2021) and unintended bias (Krishna et al., 2022). We acknowledge these issues, and given the limited scope of the present study, we call for attention to these aspects by way of well-designed experiments before deployment.

Risks in annotation: The data we use in this paper were posted on publicly accessible websites, and do not contain any personally identifiable information (i.e., no real names, email addresses, IP addresses, etc.). The annotators were warned about the toxic content before they read the data, and were informed that they could quit the task at any time if they were uncomfortable with the content. The annotators in our study were evaluating the quality of the generated sentences only.

References

Kamil Bennani-Smires, Claudiu Musat, Andreea Hossmann, Michael Baeriswyl, and Martin Jaggi. 2018. Simple unsupervised keyphrase extraction using sentence embeddings. In Proceedings of the 22nd Conference on Computational Natural Language Learning.

Yixin Cao, Ruihao Shui, Liangming Pan, Min-Yen Kan, Zhiliyuan Liu, and Tat-Seng Chua. 2020. Expertise style transfer: A new task towards better communication between experts and laymen. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (ACL).

Jaime Carbonell and Jade Goldstein. 1998. The use of mmr, diversity-based reranking for reordering documents and producing summaries. In Proceedings of the 21st annual international ACM SIGIR conference on Research and development in Information Retrieval.

Keith Carlson, Allen Riddell, and Daniel Rockmore. 2018. Evaluating prose style transfer with the bible. Royal Society Open Science, 5(10):171920.

Ning Dai, Jianze Liang, Xipeng Qiu, and Xuan-Jing Huang. 2019. Style transformer: Unpaired text style transfer without disentangled latent representation. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (ACL).

David Dale, Anton Voronov, Daryna Dementieva, Varvara Logacheva, Olga Kozlova, Nikita Semenov, and Alexander Panchenko. 2021. Text detoxification using large pre-trained neural models. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP).

Zhenxin Fu, Xiaoye Tan, Nanyun Peng, Dongyan Zhao, and Rui Yan. 2018. Style transfer in text: Exploration and evaluation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32.

Chuang Gan, Zhe Gan, Xiaodong He, Jianfeng Gao, and Li Deng. 2017. Stylenet: Generating attractive visual captions with styles. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Xavier Garcia, Noah Constant, Mandy Guo, and Orhan Firat. 2021. Towards universality in multilingual text rewriting. arXiv preprint arXiv:2107.14749.

Hongyu Gong, Suma Bhat, Lingfei Wu, JinJun Xiong, and Wen-Mei Hwu. 2019. Reinforcement learning based text style transfer without parallel training corpus. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT).

Hongyu Gong, Linfeng Song, and Suma Bhat. 2020. Rich syntactic and semantic information helps unsupervised text style transfer. In Proceedings of the 13th International Conference on Natural Language Generation.

Navita Goyal, Balaji Vasan Srinivasan, N Anandhavelu, and Abhilasha Sancheti. 2021. Multi-style transfer with discriminative feedback on disjoint corpus. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT).

George Heidorn. 2000. Intelligent writing assistance. A handbook of natural language processing: Techniques and applications for the processing of language as text, 8.

Fei Huang, Zikai Chen, Chen Henry Wu, Qihan Guo, Xiaoyan Zhu, and Minlie Huang. 2021. Nast: A non-autoregressive generator with word alignment for unsupervised text style transfer. In Findings of the Association for Computational Linguistics (ACL-IJCNLP).

Somayeh Jafaritazehjani, Gwéno Lêcorvéré, Damien Loline, and John Kelleher. 2020. Style versus content: A distinction without a (learnable) difference? In Proceedings of the 28th International Conference on Computational Linguistics.

Harsh Jhamtani, Varun Gangal, Eduard Hovy, and Eric Nyberg. 2017. Shakespearizing modern language using copy-enriched sequence to sequence models. In Proceedings of the Workshop on Stylistic Variation.
Di Jin, Zhijing Jin, Zhiting Hu, Olga Vechtomova, and Rada Mihalcea. 2021. Deep learning for text style transfer: A survey. *Computational Linguistics*, pages 1–51.

Zhijing Jin, Di Jin, Jonas Mueller, Nicholas Matthews, and Enrico Santus. 2019. Imat: Unsupervised text attribute transfer via iterative matching and translation. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*.

Dan Jurafsky. 2000. *Speech & language processing*. Pearson Education India.

Divyansh Kaushik, Eduard Hovy, and Zachary Lipton. 2019. Learning the difference that makes a difference with counterfactually-augmented data. In *International Conference on Learning Representations (ICLR)*.

Bryan Klimt and Yiming Yang. 2004. Introducing the enron corpus. In *CEAS*.

Kalpesh Krishna, Deepak Nathani, Xavier Garcia, Bidisha Samanta, and Partha Talukdar. 2022. Few-shot controllable style transfer for low-resource multilingual settings. In *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (ACL)*.

Dongkyu Lee, Zhiliang Tian, Lanqing Xue, and Nevin L Zhang. 2021. Enhancing content preservation in text style transfer using reverse attention and conditional layer normalization. In *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (ACL-IJCNLP)*.

Juncen Li, Robin Jia, He He, and Percy Liang. 2018. Delete, retrieve, generate: A simple approach to sentiment and style transfer. In *Proceedings of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT)*. Association for Computational Linguistics (ACL).

Yixin Liu, Graham Neubig, and John Wieting. 2021. On learning text style transfer with direct rewards. In *Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT)*.

Aman Madaan, Amrith Setlur, Tanmay Parekh, Barnabas Poczos, Graham Neubig, Yiming Yang, Ruslan Salakhutdinov, Alan W Black, and Shrimai Prabhumoye. 2020. Politeness transfer: A tag and generate approach. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (ACL)*.

Eric Malmi, Aliaksei Severyn, and Sascha Rothe. 2020. Unsupervised text style transfer with padded masked language models. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*.

Christopher D Manning, Mihai Surdeanu, John Bauer, Jenny Rose Finkel, Steven Bethard, and David McColisky. 2014. The stanford corenlp natural language processing toolkit. In *Proceedings of 52nd annual meeting of the association for computational linguistics: system demonstrations*.

Sharmila Reddy Nangi, Niyati Chhaya, Sopan Khosla, Nikhil Kaushik, and Harshit Nyati. 2021. Counterfactuals to control latent disentangled text representations for style transfer. In *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (ACL-IJCNLP)*.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a method for automatic evaluation of machine translation. In *Association for Computational Linguistics (ACL)*.

Shrimai Prabhumoye, Yulia Tsvetkov, Ruslan Salakhutdinov, and Alan W Black. 2018. Style transfer through back-translation. In *Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (ACL)*.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the limits of transfer learning with a unified text-to-text transformer. *Journal of Machine Learning Research*, 21(140):1–67.

Sudha Rao and Joel Tetreault. 2018. Dear sir or madam, may i introduce the gyafc dataset: Corpus, benchmarks and metrics for formality style transfer. In *Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT)*.

Machel Reid and Victor Zhong. 2021. Lewis: Levenshtein editing for unsupervised text style transfer. In *Findings of the Association for Computational Linguistics (ACL-IJCNLP)*.

Parker Riley, Noah Constant, Mandy Guo, Girish Kumar, David C Uthus, and Zarana Parekh. 2021. Textsettr: Few-shot text style extraction and tunable targeted restyling. In *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (ACL-IJCNLP)*.

Bidisha Samanta, Mohit Agrawal, and Niloy Ganguly. 2021. A hierarchical vae for calibrating attributes
while generating text using normalizing flow. In *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (ACL-IJCNLP)*.

Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2017. Style transfer from non-parallel text by cross-alignment. *Advances in neural information processing systems (NIPS)*, 30.

Rakshith Shetty, Bernt Schiele, and Mario Fritz. 2018. {A4NT}: Author attribute anonymity by adversarial training of neural machine translation. In *27th USENIX Security Symposium*.

Laurens Van den Bercken, Robert-Jan Sips, and Christoph Lofi. 2019. Evaluating neural text simplification in the medical domain. In *The World Wide Web Conference*.

Xing Wu, Tao Zhang, Liangjun Zang, Jizhong Han, and Songlin Hu. 2019. “Mask and Infill”: Applying masked language model to sentiment transfer. In *International Joint Conference on Artificial Intelligence (IJCAI)*.

Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and Quoc Le. 2020. Unsupervised data augmentation for consistency training. *Advances in Neural Information Processing Systems (NIPS)*, 33:6256–6268.

Wei Xu, Chris Callison-Burch, and Courtney Napoles. 2015. Problems in current text simplification research: New data can help. *Transactions of the Association for Computational Linguistics*, 3:283–297.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. 2019. Bertscore: Evaluating text generation with bert. In *International Conference on Learning Representations (ICLR)*.

Wanzheng Zhu and Suma Bhat. 2020. GRUEN for evaluating linguistic quality of generated text. In *Empirical Methods in Natural Language Processing: Findings (Findings of EMNLP)*.