Exclusive Maternal Milk Compared With Exclusive Formula on Growth and Health Outcomes in Very-Low-Birthweight Preterm Infants: Phase II of the Pre-B Project and an Evidence Analysis Center Systematic Review

Sarah N. Taylor 1, Tanis R. Fenton 2,3,4, Sharon Groh-Wargo 5, Kathleen Gura 6, Camilia R. Martin 7, Ian J. Griffin 8,9, Mary Rozga 10 and Lisa Moloney 11*

1 Division of Neonatology, Department of Pediatrics, Yale School of Medicine, New Haven, CT, United States, 2 Community Health Sciences, Institute of Public Health, Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada, 3 Nutrition Services, Alberta Health Services, Calgary, AB, Canada, 4 Departments of Nutrition and Pediatrics, Case Western Reserve University at MetroHealth Medical Center, Cleveland, OH, United States, 5 Clinical Research Program, Department of Pharmacy, Boston Children’s Hospital, Boston, MA, United States, 6 Division of Translational Research, Department of Neonatology, Harvard Medical School, Neonatal Intensive Care Unit (NICU), Beth Israel Deaconess Medical Center, Boston, MA, United States, 7 Biomedical Research Institute of New Jersey, Cedar Knolls, NJ, United States, 8 Department of Pediatrics, Morristown Medical Center, Morristown, NJ, United States, 9 Academy of Nutrition and Dietetics, Evidence Analysis Center, Chicago, IL, United States, 10 Academy of Nutrition and Dietetics, Evidence Analysis Center, Chicago, IL, United States

As part of the Pre-B Project, a systematic review was conducted to evaluate associations between exclusive maternal milk (≥75%) intake and exclusive formula intake and growth and health outcomes in very-low-birthweight (VLBW) preterm infants. The protocols from the Academy of Nutrition and Dietetics’ Evidence Analysis Center and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist were followed. Thirteen observational studies were included; 11 studies reported data that could be synthesized in a pooled analysis. The evidence is very uncertain (very low quality) about the effect of exclusive maternal milk on all outcomes due to observational study designs and risk of selection, performance, detection, and reporting bias in most of the included studies. Very-low-quality evidence suggested that providing VLBW preterm infants with exclusive maternal milk was not associated with mortality, risk of necrotizing enterocolitis, sepsis, or developing bronchopulmonary dysplasia, as compared with exclusive preterm formula, but exclusive maternal milk was associated with a lower risk of retinopathy of prematurity (very low certainty). Results may change when additional studies are conducted. There was no difference in weight, length, and head circumference gain between infants fed fortified exclusive maternal milk and infants receiving exclusive preterm formula; however, weight and length gain were lower in infants
fed non-fortified exclusive maternal milk. Given the observational nature of human milk research, cause-and-effect evidence was lacking for VLBW preterm infants.

Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=86829, PROSPERO ID: CRD42018086829.

Keywords: mother’s milk, maternal milk, preterm infant, very low birthweight, enteral nutrition, systematic review

INTRODUCTION

Human milk contains nutritional and immunologic factors that have been associated with healthy development in full-term infants. In a meta-analysis of cohort and cross-sectional studies, breastfeeding has been associated with decreased risk of infection, autoimmune diseases, and cancer in full-term newborns (1). For infants born preterm (<37 weeks), human milk feeding has demonstrated associated benefits including fewer infections and fewer inflammatory diseases such as necrotizing enterocolitis (NEC) compared with formula feeding (2–5). For very-low-birthweight (VLBW) preterm infants (≤1,500 g), therefore, human milk fortification is recommended at least during the initial hospitalization (6). Compared with full-term infants, VLBW infants are at higher risk for nutritional deficiencies and diseases such as NEC. According to the analysis conducted in 2008, ~7% of VLBW infants develop NEC. Systematic reviews (SRs) that include infants with higher birthweights increase the heterogeneity and indirectness of the evidence. Populations with a birthweight of <1,500 kg should lower heterogeneity, increase directness, and provide results about the subpopulation that require more neonatal intensive care.

SRs have been conducted on the outcomes after human milk intake in VLBW infants (7, 8). Miller et al. conducted an SR in 2018 to evaluate the association between human milk feeding and morbidity, and Saguna conducted an SR in 2021 on the association between human milk feeding and short-term growth in VLBW preterm infants (7, 8). Both SRs compared the intake of exclusive human milk with exclusive formula, any milk compared with formula, and pasteurized compared with unpasteurized human milk, as well as dose–response associations with human milk intake. The authors of these two SRs included maternal milk (MM) and donor milk studies, and a sub-analysis was not provided for MM. MM has unique advantages because it is tailored to each parent–infant dyad. Donor milk has been explored as a comparable alternative to MM; however, the biochemical profiles of MM differ from those of donor breast milk (9). To improve the directness of the evidence, it is imperative to restrict to articles that report milk sources, as well as quantity or proportion of intake, when evaluating the association between MM and outcomes.

The limitations of studies examining the effects of human milk are substantial. Due to the maternal right to choose whether a mother provides her milk and the high prevalence of lactation insufficiency, infants cannot be randomized to MM vs. infant formula. Additionally, in these observational studies, social determinants of health are associated with the maternal choice to provide milk, with maternal factors related to lactation insufficiency and with health outcomes. Thus, the specific benefit of MM may be difficult to differentiate from other factors known to influence health outcomes.

Therefore, under Phase II of the Pre-B Project, the Evidence Analysis Center (EAC) Preterm Panel undertook SRs to develop evidence-based nutrition recommendations for VLBW infants and a foundation upon which to build future studies. The Panel conducted several SRs to support human milk recommendations including MM compared with formula, MM dose–response, fortification of MM with donor milk compared with formula, and donor milk compared with formula (10). The objective of this supporting SR was to examine the research question: in VLBW (≤1,500 g at birth) preterm infants, what is the association between exclusive MM (≥75%) and exclusive formula intake on growth and health outcomes?

METHODS

This SR followed the protocols from the Academy of Nutrition and Dietetics’ EAC (11) and adhered to the parameters described on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist (12). This SR was part of the larger Pre-B Project to inform an evidence-based practice guideline on enteral nutrition for VLBW preterm infants (13) and was prospectively registered at PROSPERO (ID CRD42018086829) (14). For the purposes of this review, the term “maternal milk” is used. The Preterm Panel recognizes that not all people who give birth and are lactating identify as women, but since early postpartum milk has a different composition from mature milk, the milk provided by the biological mother of the infant is referred to as “maternal milk.”

Eligibility Criteria

The research question was formulated according to the Population, Intervention/Exposure, Comparison, Outcome (PICO) format. To be included, studies were required to address each part of the PICO question. The target population was preterm infants weighing ≤1,500 g at birth. Studies were excluded if authors did not limit inclusion to infants ≤1,500 g at birth or if reported mean birthweight plus two standard deviations suggested that infants with birthweight >1,500 g had been included. To be included, studies must have compared infants receiving ≥75% of intake from MM with infants receiving exclusive formula. The authors defined exclusive MM...
TABLE 1 | Inclusion criteria for the SR examining the association between MM intake and formula intake on growth and health outcomes in VLBW preterm infants.

Criteria	Included	Excluded
Peer-review status	Published in a peer-reviewed journal	Non-peer-reviewed articles, such as government reports and gray literature
Population	Preterm infants ≤1,500 g	Term infants or infants >1,500 g
Location	Countries with developed economies according to United Nations (15)	Countries with developing economies
Search dates	January 1, 1980, to November 1, 2018: Embase, PubMed, CINAHL Complete, Cochrane central register of controlled trials, and Cochrane Database of Systematic Reviews databases. November 1, 2018, to June 5, 2020 (PubMed only)	Outside inclusion dates
Exposure	≥75% of intake from MM	Intake of MM <75% or not reported; donor milk
Comparison	Exclusively formula fed	Exclusively formula fed
Study design	Cohort studies, randomized or clinical trials	All other study designs
Outcomes	Mortality/survival morbidity [e.g., retinopathy of prematurity (ROP), sepsis, bronchopulmonary dysplasia (BPD), rickets, allergies, anemia, and necrotizing enterocolitis (NEC)]	Other outcomes not indicated in inclusion criteria
	Growth [weight/length/head circumference change (cm/week) including growth velocity; change in z-scores, g/kg/day]	
	Anthropometrics [weight/BMI, length, head circumference including z-scores, body composition]	
	Development [neuro/cognitive, motor, vision/retinal, behavior]	
	Bone mineralization	
	Gastrointestinal health [days on TPN, or time to full enteral feeds]	
	Adverse events/safety [tolerance including metabolic acidosis, adverse events]	
Language	Articles published in the English Language	Articles not published in the English language

SR, systematic review; MM, maternal milk; VLBW, very low birthweight; BMI, body mass index; TPN, total parenteral nutrition.

intake as 75%, as that is the percentage commonly reported in preterm infant feeding literature. The outcomes of interest were defined a priori and included health and growth outcomes, including mortality, NEC, sepsis, bronchopulmonary dysplasia (BPD), retinopathy of prematurity (ROP), visual acuity, bone mineralization, weight and length gain, body composition, and head circumference.

Studies taking place in countries without developed economies according to the United Nations classification were excluded because neonatal intensive care unit (NICU) and feeding practices may vary considerably compared with those in countries with developed economies. Included studies were limited to those published in the English language due to resource constraints. Articles published after the a priori specified date of January 1, 1980, until the final search date of June 2020 were eligible for inclusion. A full description of the eligibility criteria can be found in Table 1.

Study Selection
Each title/abstract was screened independently by at least two experienced practitioners from the Preterm Panel or EAC SR methodologists using Abstrakr software (16). All included title/abstracts progressed to full-text review. Each study was reviewed for inclusion according to eligibility criteria by at least two Preterm Panel members. Conflicts during the title/abstract and full-text review phases were settled through consensus or discussion with the full Preterm Panel. Each stage of the study selection process was documented on a PRISMA flow diagram (12).

Data Extraction
Data from included articles were extracted by trained Evidence Analysts onto a standardized data extraction template (11) and were reviewed for accuracy by the lead analyst (MR) or project manager (LM). Extracted data included the following: bibliographic information; eligibility criteria; study location and funding source; sample size; participant characteristics (birthweight, gestational age, race, sociodemographic data, and comorbidities); proportion
or quantity of total intake from MM or formula, types of enrichment, fortification, and infant formula when applicable; and results of outcomes that were prioritized a priori.

Risk of Bias and Quality of Evidence

For each included study, risk of bias was assessed independently by an Evidence Analyst and a Lead Analyst or Project Manager using the Academy of Nutrition and Dietetics’ Quality Criteria Checklist (17). This tool uses guiding sub-questions to determine risk of selection, attrition, performance, detection, and reporting bias. Discrepancies were resolved by a third reviewer.

The quality of evidence for each outcome was determined using the Academy (17) and GRADE (18) methods and GRADE recommended terminology (19). The outcomes were graded according to the study design, risk of bias of the included studies, sample sizes of studies reporting the outcome, consistency in findings between studies, generalizability, precision, effect size, and other factors. Risk of bias and quality of evidence determinations were reviewed by the Preterm Panel. Quality/certainty of the evidence was rated as high, moderate, low, and very low.

Synthesis of Results

All included studies were described in a study characteristics table and summarized narratively by the outcome. Certainty/quality of evidence was summarized by the outcome in a GRADE summary of findings table. If more than one study included quantitative results that could be pooled, they were included in a meta-analysis using a random-effects model. Studies reporting sample size and mean effect size with variance for continuous variables, or event numbers for categorical variables, for each group were included in the meta-analyses. Studies that did not report data that could be pooled in a meta-analysis were described in narrative synthesis only. Continuous variables were summarized using mean difference (MD) or standardized MD (SMD) between groups with 95% CI. Categorical variables were described as odds ratio (OR) (95% CI). Meta-analyses were performed using RStudio (20) and reported in forest plots. Publication bias was tested for...
using funnel plots, and heterogeneity was determined using I^2 measures. The Preterm Panel composed a conclusion statement that directly answered the PICO question for each outcome based on the narrative and quantitative results and evidence quality/certainty.

RESULTS

A total of 21,066 unique studies were identified in the databases and hand-searches for the entire Pre-B preterm nutrition guideline project. For the current SR, 104 full-text articles were reviewed, and 13 studies (represented in 15 articles) (21–35) were included in narrative synthesis, with 11 studies reporting quantitative data that could be synthesized in pooled analysis (Figure 1, Table 2). Sample sizes ranged from 9 to 498 participants, and study duration ranged from 2 to 27 weeks. Study designs included 10 prospective cohort studies (21–23, 25–30, 32, 34, 35), 2 retrospective cohort studies (31, 33), and 1 non-randomized trial. The percentage of MM intake and fortification can be found in Table 2. To be included in the MM group, infants must have consumed at least 75% of the intake from MM. However, some study authors did not describe intake of the remainder of feedings, which may have been up to 25% of intake. The summary of findings for each outcome is described in Table 3.

None of the identified studies controlled for social determinants of health, maternal morbidities, or smoking. Due to the ethical nature of breastfeeding choice, there was no evidence from high-quality randomized studies.

Mortality

One study demonstrating risk of selection and attrition bias examined the relationship between exclusive fortified MM and exclusive preterm formula and death by time of hospital discharge (31). The authors reported no significant difference in the incidence of death between groups (3.6 vs. 8.2%; $p = 0.18$); however, per analysis by authors of this SR, the results were statistically significant. SR authors attempted to contact study authors for clarification; unfortunately, no response was received. Conclusion: In VLBW preterm infants, the relationship between providing exclusive fortified MM or preterm formula and death prior to hospital discharge is uncertain.

Grade: very low.

Necrotizing Enterocolitis

Three cohort studies examined the relationship between providing VLBW preterm infants with either at least 75% MM or exclusive formula and incidence of NEC (29, 31, 34). In Manzoni et al. (31) and Mol et al. (34), the MM intake was exclusive, and in Hendrickse et al. (29), MM was provided for more than 95% of feedings but was supplemented with SMA Gold cap formula in some cases. MM fortification was not described in Manzoni et al. (31) or Hendrickse et al. (29) and was described as being at a “standard dose” beginning at when milk intake was 140 ml per kg per day in Mol et al. Intake of MM was exclusive, and observations ranged from 7 to 11 weeks. Both studies demonstrated risk of selection bias: Manzoni et al. demonstrated risk of selection bias; Mol et al. demonstrated risk of performance bias. Hendrickse et al. found no difference in odds of late-onset NEC between groups, and Mol et al. found no difference in the incidence of death between groups (31, 34). In a pooled analysis, there was no difference in odds of late-onset NEC between groups, and Mol et al. found no difference in the odds of acquiring NEC within 7–11 weeks (OR (95% CI): 0.73 (0.45, 1.18)).

Grade: very low.

Sepsis

Two cohort studies evaluated associations between exclusive MM (≥75%) intake compared with exclusive formula intake and sepsis or late-onset sepsis in VLBW preterm infants (31, 34). MM fortification was not described in Manzoni et al. and was described as being at a “standard dose,” beginning at when milk intake was 140 ml per kg per day in Mol et al. Infants in the formula group received preterm formula in both studies, and observations ranged from 7 to 11 weeks. Both studies demonstrated risk of selection bias: Manzoni et al. demonstrated risk of attrition bias; Mol et al. demonstrated risk of performance bias. Manzoni et al. found no difference in odds of late-onset sepsis between groups, and Mol et al. found no difference in the incidence of sepsis between groups (31, 34). In a pooled analysis, there was no difference in odds of late-onset sepsis or sepsis between groups (OR (95% CI): 0.73 (0.45–1.18); $I^2 = 0%$) (Figure 3).

Conclusion: Very-low-quality evidence suggested that providing exclusive MM to VLBW preterm infants, compared with providing exclusive preterm formula, likely results in little to no difference in the odds of acquiring sepsis after 7–11 weeks (OR (95% CI): 0.73 (0.45, 1.18)).

Grade: very low.

Bronchopulmonary Dysplasia

One prospective cohort study evaluated associations between exclusive MM (≥75%) intake compared with exclusive formula intake and BPD in VLBW preterm infants (34). Intake of MM resulted in no significant difference in the number of infants who developed BPD by 40 weeks post-menstrual age between groups (54.5 vs. 26.1%; $p = 0.12; n = 34$).

Conclusion: In one small cohort study, providing ≥75% MM to VLBW preterm infants, compared with providing exclusive preterm formula, likely results in little to no difference in the odds of developing BPD.

Grade: very low.
TABLE 2 | Study characteristics and results of articles evaluating the association between ≥75% MM and exclusive formula intake and growth and health outcomes in VLBW (≤1,500 g) preterm infants.

Study (author, study design, PMID)	Sample characteristics	Intervention/duration	Results	Conclusions and confounding variables	Risk of bias domain(s)
Mortality/survival					
Manzoni et al. (31) Retrospective cohort study, observational analysis of multicenter RCTs of other topics PMID 23809355	Mean (±SD) birthweight (g) MM: 1,125 (±247) Preterm formula: 1,100 (±272) % SGA: NR Mean (±SD) GA (weeks) MM: 29.4 (±2.5) Preterm formula: 29.2 (±2.8)	MM was provided exclusively, and fortification was not described. Formula was provided exclusively and was “standard preterm formula” Mean duration of NICU days MM: 50 Preterm formula: 54	MM (N = 314) % death prior to discharge 3.6	Preterm formula (N = 184) % death prior to discharge 8.2	There was no statistically significant difference in death prior to discharge according to feeding group (p = 0.18) Results were not adjusted for confounding variables. SES and maternal smoking were not described.
Morbidities					
Hendrickse et al. (29) Prospective cohort study PMID 6510430	Mean birth weight (g): LBW formula: 1,214 % SGA: NR Mean GA (weeks): 30	Infants received >95% of intake from respective milk. MM was supplemented with SMA Goldcap in some cases. Comparison infants low birth weight (LBW) formula with 76 kcal, 1.8 g/protein, 100 mg calcium, and 50 mg phosphorus/100 ml formula Infants spent at least 4 weeks on study milk	MM (N = 32) N NEC 6 weeks: 3	LBW formula (N = 34) N NEC 6 weeks: 3	There was no difference in incidence of NEC at 6 weeks
Manzoni et al. (31) Retrospective Cohort Study, observational analysis of Multicenter RCTs of other topics PMID 23809355	Mean (±SD) birthweight (g) MM: 1,125 (±247) Preterm formula: 1,100 (±272)	MM was provided exclusively, and fortification was not described. Formula was provided exclusively and was “standard preterm formula”	MM (N = 314) % NEC (≥2nd stage) 1.3 Preterm formula (N = 184) % NEC (≥2nd stage) 4.1	Infants receiving exclusive MM had an OR (95% CI) of 0.14 (0.12, 0.62) of all stages of ROP compared with those receiving preterm formula (p = 0.0004)	Risk of selection and attrition bias
Multicenter RCTs of other topics	% SGA: NR Mean (±SD) GA (weeks) MM: 29.4 (±2.5) Preterm formula: 29.2 (±2.8)	Exclusively and was “standard preterm formula” Mean duration of NICU days MM: 50 Preterm formula: 54	% Late-onset sepsis 13.4	% Late-onset sepsis 17.3	There were no significant differences in odds of NEC or late-onset sepsis between groups at hospital discharge (not adjusted for confounders and no data provided)

(Continued)
Study (author, study design, PMID)	Sample characteristics	Intervention/duration	Results	Conclusions and confounding variables	Risk of bias domain(s)	
Mol et al. (34)	Mean (±SD) birthweight (g)	Infants received exclusive MM ("standard" dose of fortifier (Bebilon HMF, Nutricia) beginning at 140 ml/kg/day) or exclusive preterm formula	MM group (≥75% of intake)	Formula group	There were no significant differences in the number of infants with BPD, NEC, sepsis, or ROP (requiring laser coagulation) between groups at 40 weeks PMA Results were not adjusted for confounding variables	
Prospective Cohort Study	MM: 1,210 (±161) Preterm formula: 1,240 (±180) % SGA: NR	Outcomes measured at 40 weeks PMA	MM (N = 11)	Preterm formula (N = 23)	Risk of selection and performance bias	
PMID 29784603	Median (IQR) GA (weeks) MM: 29 (28–32) Preterm formula: 29 (28–31.75)		N (%): BPD 6 (54.5) N (%) NEC 2 (18.2) N (%) Sepsis 3 (27.3) N (%) ROP (requiring laser coagulation) 0 (0)	N (%): BPD 6 (26.1) N (%) NEC 4 (17.4) N (%) Sepsis 8 (34.8) N (%) ROP (requiring laser coagulation) 2 (8.7)		
Anthropometrics						
Atkinson et al. (21)	Mean Birthweight (g): 970 All infants AGA	Infants were exclusively fed MM (fortification not mentioned) or formula (SMA20 or SMA24)	MM (N = 8)	SMA 20 (Balance 1) or 24 (Balance 2) (N = 8)	There were no differences in weight, length, or head circumference between groups in either balance study (data in figure only) Results were not adjusted for confounding variables	
Prospective cohort study (Balance study)	GA: 28.3 weeks	Balance studies were conducted at the end of the 1st and 2nd weeks of the study	Weight	Weight	Risk of selection, performance, detection bias	
PMID 7277107			Data only presented in figure.	Data only presented in figure.		
Atkinson et al. (22)	Mean (±SEM) birthweight (g): MM 1,060 (±77) Formula 1,065 (±55) All infants were AGA Mean (±SEM) GA (weeks) MM 28.6 (±0.7) Formula 28.4 (±0.7)	Fortification of MM was not described. Infants in the formula group received 67 kcal/dl formula, then 80 kcal/dl after 8 days postpartum Study duration was 28 days	MM (N = 5)	Formula (N = 5)	At 4 weeks, infants receiving 67 and 80 kcal/dl formula had a significantly greater increase in weight gain, head circumference (p < 0.01 for both), and length (p < 0.05) than the group receiving MM. This trend began at 1 week and persisted until 4 weeks Results were not adjusted for confounding variables	
Prospective cohort study (Balance studies)			Mean (±SE) weight change (g/day) 15 (±2) Mean (±SE) length change (cm/week) 1.0 (±0.1) Mean (±SE) head circumference change (cm/week) 1.0 (±0.1)	Mean (±SE) weight change (g/day) 27 (±5) Mean (±SE) length change (cm/week) 1.2 (±0.1) Mean (±SE) head circumference change (cm/week) 1.3 (±0.1)	Risk of selection, attrition, performance bias	
PMID 6848738						
Table 2: Continued

Study (author, study design, PMID)	Sample characteristics	Intervention/duration	Results	Conclusions and confounding variables	Risk of bias domain(s)		
Chan et al. (26) Prospective Cohort study PMID 8355124	Mean (±SEM) birthweight (g) MM: 1,191 (±59) Standard formula: 1,215 (±78) LBW formula: 1,197 (±85) Premature formula: 1,128 (±48) % SGA: NR	Infants were outpatient MM was fortified during hospitalization Study formulas were 20 kcal/oz Intervention duration was 120 days	MM (N = 16) Mean (±SEM) weight (g) discharge: 2,037 (±81) 16 weeks: 4,620 (±178) Mean (±SEM) length gain (mm/day) 16 weeks: 1.02 (±0.04)	Infants in each formula group were heavier than the infants receiving MM at 16 weeks post-discharge (p < 0.01). Infants receiving LBW or premature formula had significantly greater length gain than infants receiving MM at 16 weeks post-discharge (p < 0.05). Results were not adjusted for confounding variables	Risk of selection, attrition, performance, detection bias		
Doege et al. (27) Prospective cohort study PMID 17655982	Mean (±SD) birthweight (g) MM: 822 (±133) Preterm formula: 832 (±132) % SGA: NR Mean GA (weeks): 26.3 (±0.9) Preterm formula: 26.6 (±0.8) Age at start of observation: 3 weeks postnatal	Infants received either MM fortified with protein and phosphorus (≥80% of feedings) or exclusive preterm formula Observation duration: ~12 weeks	MM (N = 60) Mean (±SD) body weight (g) 3 weeks postnatal: 936 (±152) 38 weeks GA: 3,004 (±116) Mean (±SD) body length (cm) 3 weeks postnatal: 36 (±0.9) 38 weeks GA: 49 (±2) Mean (±SD) head circumference (cm) 3 weeks postnatal: 26 (±1.1) 38 weeks GA: 34 (±1.1)	There were no differences in weight, length, or head circumference between groups at 38 weeks GA, but between-group changes were not reported	Risk of selection, attrition, performance bias		
			Standard formula (N = 15) LBW formula (N = 14) Premature formula (N = 14) Mean (±SEM) weight (g) Standard formula Discharge: 2,140 (±82) 16 weeks: 5,020 (±198) LBW formula Discharge: 2,114 (±57) 16 weeks: 5,286 (±199) Premature formula Discharge: 2,217 (±58) 16 weeks: 5,150 (±204) Mean (±SEM) length gain (mm/day) Standard formula 16 weeks: 1.19 (±0.06) LBW formula 16 weeks: 1.21 (±0.05) Premature formula 16 weeks: 1.23 (±0.05)				

(Continued)
Study (author, study design, PMID)	Sample characteristics	Intervention/duration	Results	Conclusions and confounding variables	Risk of bias domain(s)	
Genzel Boroviczeny et al. (28) Prospective Cohort Study PMID 9438148	Mean (±SD) birthweight (g): MM: 963 (±245)	Infants whose mothers did not breastfeed (fortification not described) received formula (50% MCT, 12% linoleic and 1% α-linolenic acid) Observed until 7 weeks of life	MM (N = 18) Mean (±SD) weight gain (g/kg/week) Weeks 2–6: 102 (±4.8)	There was no difference in weight between groups at 7 weeks Results were not adjusted for confounding variables	Risk of selection, performance, detection bias	
Hendrickse et al. (29) Prospective cohort study PMID 6510430	Mean birth weight (g): MM: 1,171 LBW formula: 1,214	Infants received >95% of intake from respective milk. MM was supplemented with SMA Goldcap in some cases, Comparison infants low birth weight (LBW) formula with 76 kcal, 1.8 g/protein, 100 mg calcium, and 50 mg phosphorus/100 ml formula Infants spent at least 4 weeks on study milk	MM (N = 10) Mean (±SE) weight gain (g/kg/week) Weeks 2–6: 102 (±4.8)	Weekly weight gain from weeks 2 to 6 was significantly higher in the LBW formula group compared with the MM group (p < 0.02) Results were not adjusted for confounding variables	Risk of selection, attrition, performance, detection, reporting bias	
Modanlou et al. (32) Prospective cohort study PMID 3761107	Mean (±SD) birthweight (g): MM + fortifier: 1,086 (±161)	Infants in MM group received ≥90% MM; fortified to 24 kcal/fluid oz (per 100 ml MM: 14 kcal, 0.7 g protein, 2.7 g carb, vitamins, and minerals) Premature formula was 24 kcal/oz Intervention continued until discharge or until infant was ≥1,800 g. Average duration: 33.1 (±7.5) days	MM + fortifier (N = 8) Mean (±SD) weight gain (g/day) 29.4 (±3.7) Mean (±SD) head circumference growth (cm/week) 1.09 (±0.07)	There were no differences in weight, length, or head circumference between groups at ~30 days Results were not adjusted for confounding variables	Risk of selection, performance bias	
Study (author, study design, PMID)	Sample characteristics	Intervention/duration	Results	Conclusions and confounding variables	Risk of bias domain(s)	
-----------------------------------	------------------------	----------------------	---------	---------------------------------------	-----------------------	
TABLE 2	Continued			**MM group (≥75% of intake)**	**Formula group**	
	Mean (±SD) age at start of intervention (days): MM + fortifier 9.8 (±3.8) Premature formula: 8.7 (±4.8)			Mean (±SD) length growth (cm/week) 0.99 (±0.40)	Mean (±SD) length growth (cm/week) 1.2 (±0.29)	
Mol et al. (34) Prospective cohort study PMID 29784603	GA: NR	Infants received exclusive MM (fortified beginning at 140 ml/kg/day) or exclusive preterm formula	MM (N = 11) Mean (±SD) weight (g) Birth: 1,210 (±161) 40 weeks PMA: 3,336 (±385) Mean (±SD) length (cm) Birth: 40.3 (±3.0) 40 weeks PMA: P50 (±2)	Preterm formula (N = 23) Mean (±SD) weight (g) Birth: 1,240 (±180) 40 weeks PMA: 3,683 (±690) Mean (±SD) length (cm) Birth: 39.8 (±2.8) 40 weeks PMA: 52 (±3)	Infants fed fortified MM and those fed high-calorie formula had greater weight gain, head circumference, and length compared with infants receiving unfortified MM	
Morlacchi et al. (33) Retrospective cohort study PMID 29529139	Mean (±SD) birthweight (g) MM: 1,214.8 (±248)	Infants received exclusive MM or preterm formula from birth to discharge.	MM (N = 17) Mean (±SD) weight change from birth to discharge (z-score) −0.6 (±0.7) Mean (±SD) Length Change from birth to discharge (z-score)	Preterm formula (N = 15) Mean (±SD) weight change from birth to discharge (z-score) 0.6 (±0.7) Mean (±SD) Fat-Free Mass Change from birth to discharge (z-score) 0.2 (±0.1)	Infants receiving preterm formula were heavier (p = 0.02) and had greater head circumference (p = 0.002) than MM fed infants at 40 weeks PMA, but changes between groups were not compared	

There was no difference in length, FM, or FFM between groups at 40 weeks PMA, but changes between groups were not compared, and there were no baseline values reported for FM and FFM. Results were not adjusted for confounding variables. There was significantly more decrease in weight z-score from birth to discharge in the MM group |

Risk of selection, performance bias |
TABLE 2 | Continued

Study (author, study design, PMID)	Sample characteristics	Intervention/duration	Results	Conclusions and confounding variables	Risk of bias domain(s)
Schanler et al. (35) Prospective cohort study PMID 4032137	Mean (±SD) birthweight (g) MM: 1,180 (±35) Formula: 1,195 (±30) All infants were AGA Mean (±SD) GA (weeks): MM: 29.0 (±0.2) Formula: 29.0 (±0.2)	Infants received MM fortified with skim and cream from donor milk or bovine fortifier. Infants in the formula group received 100 kcal/dl and then 80 kcal/dl formula. The intervention continued until infants were 1,800 g, about 8 weeks	Fortified MM (N = 14) Mean (±SEM) weight gain (g/kg/day): 22 (±3) Mean (±SEM) length gain (cm/week) (±0.1) Mean (±SEM) head circumference (cm/week) 0.9 (±0.1) Mean (±SEM) sum skinfolds (mm/week) 0.6 (±0.1)	The intervention continued until infants were 1,800 g, about 8 weeks	There were no differences in weight, length, head circumference, or skinfold gains between groups
Preterm formula: 1,293 (±138) % SGA: NR Mean (±SD) GA MM: 29.2 (±1.6) Preterm formula: 30.2 (±1)	MM was fortified with bovine-based fortifiers at 100 ml/kg/day There was no difference in volume, energy, or macronutrient intake between groups at hospital discharge Mean LOS was 49.1–52.0 days	MM group (≥75% of intake)	−1.1 (±0.7) Mean (±SD) length change from birth to discharge (z-score) −1.0 (±0.7) Mean (±SD) head circumference change from birth to discharge (z score) −1.0 (±0.7) Mean (±SD) body fat mass (g) Discharge: 242 (±99) Term-corrected age (TCA): 458 (±118) Mean (±SD) body fat-free mass (g) Discharge: 1,877 (±371) TCA: 2,622 (±406)	compared with the preterm formula group (p = 0.018) There were no differences between groups in length or head circumference z-score change. There were also no differences in weight, length, or head circumference at follow-up of TCA, though feeding type in the interim was unclear (data not shown here) Body fat and fat-free mass were not different between groups at discharge. However, by TCA, the preterm formula group had significantly greater fat mass (g and %; p = 0.004 and 0.002), and the MM group had significantly greater fat-free mass (% but not g; p = 0.002 and NS) Results were not adjusted for confounders	
Preterm formula: 1,293 (±138) % SGA: NR Mean (±SD) GA MM: 29.2 (±1.6) Preterm formula: 30.2 (±1)	MM was fortified with bovine-based fortifiers at 100 ml/kg/day There was no difference in volume, energy, or macronutrient intake between groups at hospital discharge Mean LOS was 49.1–52.0 days	Formula group	−1.0 (±1.1) Mean (±SD) head circumference change from birth to discharge (z score) −0.9 (±0.8) Mean (±SD) body fat mass (g) Discharge: 297 (±134) TCA: 632 (±141) Mean (±SD) body fat-free mass (g) Discharge: 1,984 (±248) TCA: 2,632 (±249)	There were no differences between groups in length or head circumference z-score change. There were also no differences in weight, length, or head circumference at follow-up of TCA, though feeding type in the interim was unclear (data not shown here) Body fat and fat-free mass were not different between groups at discharge. However, by TCA, the preterm formula group had significantly greater fat mass (g and %; p = 0.004 and 0.002), and the MM group had significantly greater fat-free mass (% but not g; p = 0.002 and NS) Results were not adjusted for confounders	

(Continued)
TABLE 2 | Continued

Study (author, study design, PMID)	Sample characteristics	Intervention/duration	Results	Conclusions and confounding variables	Risk of bias domain(s)
Development			MM group (≥75% of intake)	Formula group	
Birch et al. (23)	Infants in the human milk group received at least 75% of feedings from MM, No fortification described	Mean birthweight (g): MM: 1,285	Mean (±SD) visual evoked potentials (VEP) (logMAR): 36 weeks of PCA: 0.51 (±0.27)	Formulas: soy/marine oil (N = 13)	Risk of selection, attrition, performance, detection bias
Hoffman, et al. (30)	Soy/marine oil: 1,305	Mean visual evoked potentials (Snellen): 36 weeks of PCA: 20/65 (±0.25)	Soy/Mean (N = 16)	Soy oil 36 weeks of PCA: 0.67 (±0.15)	Soy oil 36 weeks of PCA: 0.63 (±0.22)
Cohort study, observational analysis of RCT of n−3 fatty acids in formulas	Corn oil: 1,324	Mean (±SD) forced-choice preferential looking acuities (Snellen): 36 weeks of PCA: 20.5 (±0.15)	Corn oil	Corn oil 36 weeks of PCA: 0.40 (±0.14)	Corn oil 36 weeks of PCA: 0.73 (±0.16)
PMIDs 1399429 (25)	Soy oil: 1,277 All AGA	Mean (±SD) rod electroretinogram function log threshold (scot td-sec): 36 weeks of PCA: 1.20 (±0.14)	Soy oil	Soy oil 36 weeks of PCA: 0.85 (±0.13)	Soy oil 36 weeks of PCA: 0.01 (±0.11)
1386065 (23)	Mean GA (weeks): MM: 30.0	Mean forced-choice preferential looking acuities Snellen: 36 weeks of PCA: 20.11	Corn oil	Corn oil 36 weeks of PCA: 0.40 (±0.25)	Corn oil 36 weeks of PCA: 0.19 (±0.05)
8475899 (30)	Soy/marine oil: 30.4	Mean (±SD) rod electroretinogram function log Vmax: 36 weeks of PCA: 1.20 (±0.14)	Soy oil	Soy oil 36 weeks of PCA: 0.85 (±0.13)	Soy oil 36 weeks of PCA: 0.43 (±0.11)
	Corn oil: 30.5	Mean (±SD) cone electroretinogram function log k (scot td-sec): 36 weeks of PCA: 1.25 (±0.54)	Soy oil	Soy oil 36 weeks of PCA: 0.85 (±0.13)	Soy oil 36 weeks of PCA: 0.85 (±0.13)
	Soy oil: 30.1	Mean (±SD) cone electroretinogram function log threshold (pot td-sec): 36 weeks of PCA: 1.25 (±0.54)	Soy oil	Soy oil 36 weeks of PCA: 0.85 (±0.13)	Soy oil 36 weeks of PCA: 0.85 (±0.13)

Infants in the formula groups received either corn and coconut oil (MCT and linoleic acid (18:2 co-6) as EFA) or soy and coconut oil (MCT and 18:2 co-6 and 18:3 co-3) or soy/marine oil (DHA 0.4%) in the formulas.

Intervention duration: from 10 days postnatal to 57 weeks of PCA (~27 weeks).

At 36 weeks, there was significantly higher VEP (logMAR) in the MM group compared with the corn oil-based formula group (p < 0.05 for each measurement method). Infants receiving MM had lower Rod thresholds (p < 0.05) and log k (p < 0.05) than those receiving corn oil-based formula at 36, but not 57 weeks. There were no differences in cone function at either time point.
TABLE 2 | Continued

Study/author, study design/PMID	MM group (≥75% of intake)	Formula group	Sample characteristics	Intervention/duration	Results	Conclusions and confounding variables						
						Risk of bias domain(s)						
						Mean forced-choice preferential looking acuities Snellen (Snellen)	Soy/marine oil	36 weeks of PCA: 20.13	Corn oil	36 weeks of PCA: 20.17	Soy oil	36 weeks of PCA: 20.14
						Mean (±SD) cone electroretinogram function CFF (Hz) 0.3 microV criterion	Soy/marine oil	36 weeks of PCA: 51.5 (±6.6)	Corn oil	36 weeks of PCA: 53.1 (±10.3)		
						Mean (±SD) rod electroretinogram function log threshold (scot td-sec)	Soy/marine oil	36 weeks of PCA: 0.41 (±0.61)	Corn oil	36 weeks of PCA: 1.08 (±0.37)		
						Mean (±SD) rod electroretinogram function log Vmax	Soy/marine oil	36 weeks of PCA: 1.22 (±0.18)	Corn oil	36 weeks of PCA: 1.26 (±0.11)		
						Mean (±SD) rod electroretinogram function log k (scot td-sec)	Soy/marine oil	36 weeks of PCA: 57.1 (±10.3)	Corn oil	36 weeks of PCA: 57.0 (±10.0)		
						Mean (±SD) rod electroretinogram function log Vmax	Soy/marine oil	36 weeks of PCA: 20.13 (±4.02)	Corn oil	36 weeks of PCA: 20.17 (±4.07)		
						Mean (±SD) rod electroretinogram function log k (scot td-sec)	Soy/marine oil	36 weeks of PCA: 57.1 (±10.3)	Corn oil	36 weeks of PCA: 57.0 (±10.0)		
TABLE 2 | Continued

Study (author, study design, PMID)	Sample characteristics	Intervention/duration	Results	Conclusions and confounding variables	Risk of bias domain(s)
MM group (≥75% of intake)	Formula group	36 weeks of PCA: 1.24 (±0.47)	57 weeks of PCA: 0.43 (±0.18)		
Soy oil (N=12)	36 weeks of PCA: 1.73 (±0.55)	57 weeks of PCA: 0.44 (±0.26)			
Mean (±SD) cone electroretinogram function log threshold	Soy/marine oil (N=14)	36 weeks of PCA: −0.09 (±0.32)	57 weeks of PCA: −0.22 (±0.19)		
Corn oil (N=12)	36 weeks of PCA: 0.1 (±0.28)	57 weeks of PCA: −0.21 (±0.27)			
Soy oil (N=17)	36 weeks of PCA: −0.09 (±0.32)	57 weeks of PCA: −0.21 (±0.17)			
Mean (±SD) cone electroretinogram function CFF (Hz)	Soy/marine oil (N=14)	36 weeks of PCA: 52.4 (±8.4)	57 weeks of PCA: 51.6 (±6.5)		
Corn oil (N=12)	36 weeks of PCA: 1.24 (±0.43)	57 weeks of PCA: 0.43 (±0.27)			
Soy oil (N=17)	36 weeks of PCA: 1.73 (±0.55)	57 weeks of PCA: 0.44 (±0.28)			
Study (author, study design, PMID)	Sample characteristics	Intervention/duration	Results	Conclusions and confounding variables	Risk of bias domain(s)
-----------------------------------	------------------------	----------------------	---------	---------------------------------------	-----------------------
Birch et al. (23) NRCT PMID 8455123	Birthweight: 1,000–1,500 g Infants were fed MM or corn oil-based formula Infants received the intervention until 57 weeks of PCA (4 months adjusted age)	MM (N not reported for each group; 30 total) Mean VEP acuity (logMAR) 57 weeks of PCA: 0.46 [20/58] Mean FPL acuity (logMAR) 57 weeks of PCA: 0.76 [20/115]	Corn oil-based formula (N not reported for each group; 30 total) Mean VEP acuity (logMAR) 57 weeks: 0.71 [20/103] Mean FPL acuity (logMAR) 57 weeks: 0.90 [20/159]	At 57 weeks of PCA, both VEP and FPL acuity were significantly lower in the group receiving MM compared with the group receiving corn oil-based formula (p = 0.04 for each measure)	Risk of selection, performance, and detection bias

AGA, appropriate for gestational age; BPD, bronchopulmonary dysplasia; FPL, forced-choice preferential looking; GA, gestational age; HMF, human milk fortifier; LBW, low birthweight; MM: maternal milk; N, study sample size; NEC, necrotizing enterocolitis; NICU, neonatal intensive care unit; NR, not reported; OR, odds ratio; PMA, post-menstrual age; PCA, post-conceptual age; RCT, randomized controlled trial; ROP, retinopathy of prematurity; SES, socioeconomic status; SGA, small for gestational age; VEP, visual evoked potential; NRCT, non-randomized controlled trial.
TABLE 3 | Summary of findings table.

Outcomes	Anticipated absolute effects* (95% CI)	Relative effect (95% CI)	No. of participants (studies)	Certainty of the evidence (GRADE)	Comments
	Risk with exclusive formula	Risk with ≥75% human milk			
Mortality Follow-up: range 50 days to 54 days	82 per 1,000	35 per 1,000 (16–75)	OR 0.409 (0.184–0.911)	498 (1 observational study) (31)	☄️ ☄️ ☄️ very low** Providing very low birthweight preterm infants with exclusive MM compared with exclusive preterm formula was not associated with incidence of death prior to hospital discharge.
Necrotizing enterocolitis Follow-up: range 6 to 11 weeks	62 per 1,000	35 per 1,000 (14–84)	OR 0.550 (0.22–1.39)	598 (3 observational studies) (29, 31, 34)	☄️ ☄️ ☄️ very low** Providing near-exclusive MM to very low birthweight preterm infants, compared with providing exclusive preterm formula, was not significantly associated with odds of acquiring necrotizing enterocolitis within 6–11 weeks.
Sepsis Follow-up: range 7 weeks to 11 weeks	217 per 1,000	169 per 1,000 (111–247)	OR 0.730 (0.45 to 1.18)	532 (2 observational studies) (31, 34)	☄️ ☄️ ☄️ very low** Providing exclusive MM to very-low-birthweight preterm infants, compared with providing exclusive preterm formula, was not significantly associated with odds of acquiring sepsis/late-onset sepsis after ~7–11 weeks.
Bronchopulmonary dysplasia Follow-up: mean 11 weeks	261 per 1,000	545 per 1,000 (210–844)	OR 3.400 (0.752 to 15.364)	34 (1 observational study) (34)	☄️ ☄️ ☄️ very low** In one small cohort study, providing exclusive MM to very-low-birthweight preterm infants, compared with providing exclusive preterm formula, was not significantly associated with the odds of developing bronchopulmonary dysplasia.
Retinopathy of prematurity Follow-up: range 7 weeks to 11 weeks	116 per 1,000	14 per 1,000 (5–39)	OR 0.110 (0.04–0.31)	532 (2 observational studies) (31, 34)	☄️ ☄️ ☄️ very low** Providing exclusive MM to very-low-birthweight preterm infants, compared with providing exclusive preterm formula, was associated with lower odds of retinopathy of prematurity after ~7–11 weeks.
Visual Acuity	Not estimable	–	–	(2 observational studies) (24, 25, 30)	☄️ ☄️ ☄️ very low** Two studies examined the relationship between providing MM or various formulas that varied by fat sources until up to 57 weeks of PCA in very-low-birthweight preterm infants, and findings were unclear due to inconsistencies between studies and the use of experimental (non-commercially available) formulas.
Weight gain Follow-up: range 2 weeks to 6 months	SMD 0.3 SD higher (0.55 lower to 0.06 higher) Fortified groups SMD –0.30 lower (–0.86 to 0.06) Not fortified SMD, –0.57 lower (–1.10 to –0.06)	–	–	360 (11 observational studies) (21, 22, 26–29, 32–35)	☄️ ☄️ ☄️ very low** When very-low-birthweight preterm infants were provided with ≥75% fortified MM, there was no difference in weight gain compared with infants receiving exclusive preterm formula.

(Continued)
Outcomes	Anticipated absolute effects* (95% CI)	Relative effect (95% CI)	No. of participants (studies)	Certainty of the evidence (GRADE)	Comments
Length gain Follow-up:	SMD 0.28 SD higher (0.53 lower to 0.05 higher)	–	270 (8 observational studies)	low	When very-low-birthweight preterm infants were provided with ≥75% fortified MM, there was no difference in length gain compared with infants receiving exclusive preterm formula.
range 2 weeks to 120 days					
Head circumference Follow-up: range 2 to 12 weeks	SMD 0.25 SD lower (0.53 lower to 0.03 higher)	–	240 (7 observational studies)	low	When very-low-birthweight preterm infants were provided with ≥75% fortified MM, there was no difference in head circumference gain compared with infants receiving exclusive preterm formula.
Fat mass and fat-free mass	Not estimable	–	66 (2 observational studies)	low	In very-low-birthweight preterm infants, the relationship between providing exclusive fortified MM or preterm formula and body composition was unclear.
Skinfold measures Follow-up: mean 6 weeks	Not estimable	–	24 (1 observational study)	low	In very-low-birthweight preterm infants, one small cohort study found no relationship between providing fortified MM compared with formula and gains in skinfold measurements after ∼8 weeks.

The risk in the intervention group (and its 95% CI) was based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

CI, Confidence interval; SMD, standardized mean difference.

GRADE Working Group grades of evidence.

High certainty: We are very confident that the true effect lies close to that of the estimate of the effect.

Moderate certainty: We are moderately confident in the effect estimate: the true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different.

Low certainty: Our confidence in the effect estimate is limited: the true effect may be substantially different from the estimate of the effect. Very low certainty: We have very little confidence in the effect estimate: the true effect is likely to be substantially different from the estimate of effect.

Risk of selection and attrition bias.

Risk of selection, attrition, performance, and detection bias.

Inconsistent results between studies.

Risk of selection and performance bias.

Small sample size.

Each study demonstrated risk of selection bias, but attrition, performance, and detection bias were also present throughout the included studies and several studies demonstrated risk of bias in three or four domains. Risk of selection, performance, detection, and reporting bias.
Retinopathy of Prematurity

Two cohort studies evaluated the associations between exclusive MM (≥75%) compared with exclusive formula intake and ROP in VLBW preterm infants (31, 34). Infants in the formula groups received preterm formulas. Sample sizes ranged from 34 to 498, and observations ranged from 7 to 11 weeks. The small study by Mol et al. found no difference in odds of ROP at 40 weeks PMA. In the study by Manzoni et al., infants receiving exclusive MM had an OR of 0.19 (95% CI, 0.05 to 0.69) of threshold ROP compared with those receiving preterm formula (p = 0.009) in univariate analysis. The authors did report odds of ROP according to preterm formula feeding, which were adjusted for confounding factors, but there appeared to be an error in the CI, and adjusted data that could be used in a pooled analysis were not included. In a pooled analysis from both studies, there was a significantly decreased OR in ROP for infants fed exclusively with MM compared with infants fed exclusively with preterm formula [OR (95% CI) 0.11 (0.04–0.31); I² = 0%] (Figure 4), but the results were not adjusted for potentially confounding variables. Conclusion: Providing ≥75% MM to VLBW preterm infants, compared with providing exclusive preterm formula, is associated with lower odds of ROP after 7–11 weeks [OR (95% CI): 0.11 (0.04, 0.31)].

Grade: very low.

Visual Acuity

Two studies by Birch et al. examined the association between infant feeding type (MM without fortification vs. infant formulas) and visual acuity in secondary analyses of randomized trials (23–25, 30). Sample sizes ranged from 52 to 60 participants. These studies demonstrated risk of bias in all domains. Results were not adjusted for confounding variables in either study.

One study by Birch (23, 25, 30) examined the association between infant feeding type (MM without fortification vs. infant formulas containing fats that included soy or marine, corn, or soy oil) and visual acuity. At 36 weeks post-conceptual age (PCA), there was a significantly higher visual evoked potential (VEP) (logMAR) in the MM group compared with the corn oil and soy oil infant formula groups. Forced-choice preferential-looking (FPL) acuities were significantly lower compared with the corn infant formula group (p < 0.05 for each measurement method). Infants receiving MM had lower rod thresholds (p < 0.05) and
log k (p < 0.05) than those receiving corn infant formula at 36, but not at 57 weeks. There were no differences in cone function at either time point. In another study by Birch et al. (24), infants were fed MM or corn oil containing infant formula (n = 30) until 57 weeks of PCA (4 months of adjusted age). At 57 weeks of PCA, both VEP and FPL acuity were significantly lower in the group receiving MM compared with the group receiving corn oil containing infant formula (p = 0.04 for each measure). Conclusion: Two studies examined the relationship between providing unfortified MM or infant formulas until up to 57 weeks of PCA in VLBW preterm infants and visual acuity, and the findings were unclear due to inconsistencies between studies and the use of experimental (non-commercially available) formulas.

Grade: very low.

Weight Gain
Ten cohort studies evaluated associations between exclusive MM (≥75%) intake compared with exclusive formula intake and weight gain in VLBW preterm infants (21, 22, 26–29, 32–35). Infants in the MM group received MM exclusively in five studies (26, 28, 33–35) and received ≥75% to <100% in three studies (27, 29, 32). The authors indicated that MM was fortified in five studies (27, 32–35). In most of the studies, the formula consumed in the comparison group was either preterm or LBW formula, though the formula type was not reported in Genzel Boroviczény et al. Observation duration ranged from 2 weeks to ~3 months (21, 27). Each study demonstrated risk of selection bias, but attrition, performance, and detection bias were also present throughout the included studies, and several studies demonstrated risk of bias in three or four domains. Most of the studies had sample sizes ranging from 10 to 34, but Doege et al. (n = 120) and Birch et al. (n = 83) had larger sample sizes. None of the studies found that weight gain was greater in the group receiving MM. Half of the studies found no difference in weight gain between groups (21, 22, 27, 28, 32, 35); the other half found that the group receiving MM had significantly less weight gain over the study duration than did the group receiving formula (22, 26, 29, 33, 34).

Atkinson et al. did not report data that could be included in a pooled analysis. The measure of SMD was used in a meta-analysis due to heterogeneity in how the outcome was reported (e.g., g per day, and g per kg per day). Results were stratified according to whether MM was fortified. When infants in the MM group were given unfortified MM, they had significantly less weight gain than infants receiving preterm or LBW formula (SMD, −0.57; 95% CI, −1.10 to −0.05). However, when MM was fortified, there was no significant difference in weight gain between groups (−0.30; −0.66 to 0.06) (Figure 5). Conclusion: When VLBW infants were provided with ≥75% fortified MM, there was no difference in weight gain as compared with infants receiving exclusive preterm formula.

Grade: very low.

Length
Eight cohort studies evaluated associations between exclusive MM (≥75%) intake compared with exclusive formula intake and length gain in VLBW preterm infants (21, 22, 26, 27, 32–35). Infants in the MM groups received MM exclusively in Chan et al., Mol et al., Morlacchi et al., and Schanler et al. and received 75% to <100% in Modanlou et al. and Doege et al. In most of the studies, the formula consumed in the respective group was either preterm or LBW formula. Observation duration ranged from 2 weeks to 120 days (21, 26). Due to the ethical nature of breastfeeding choice, there was no evidence from high-quality randomized studies. Each study demonstrated risk of selection bias, but attrition, performance, and detection bias were also present throughout the included studies, and several studies demonstrated risk of bias in three or four domains. Most of the studies had sample sizes ranging from 10 to 34, but Doege had a sample size of 120. None of the studies found that length gain was greater in the group receiving MM. Six studies found no difference in length gain between groups (21, 27, 32–35). Two studies found that the groups receiving MM had significantly less length gain over the study duration, than had with the groups receiving formula (21, 26).
Atkinson et al. (21) did not report results that could be included in a meta-analysis. SMD was used as the outcome measure since authors reported length gain using heterogeneous measures (e.g., cm, cm per week, and mm per day). When infants in the MM groups were given unfortified MM, infants in this group had significantly less length gain than infants receiving preterm or LBW formula (SMD, −1.08; 95% CI, −1.75 to −0.42). However, when MM was fortified, there was no significant difference in length gain between groups (−0.28; 95% CI, −0.63 to 0.06) (Figure 6). Conclusion: When VLBW preterm infants were provided with ≥75% fortified MM, there was no difference in length gain compared with infants receiving exclusive preterm formula.

Grade: very low.

Head Circumference

Seven cohort studies evaluated associations between exclusive MM (≥75%) compared with exclusive formula intake and head
circumference gain in VLBW preterm infants (21, 22, 27, 32–35). Infants in the MM groups received MM exclusively in three studies (33–35) and received 75–100% in two studies (27, 32). The authors indicated that MM was fortified in five studies (27, 32–35). The formula consumed in the respective group was either preterm or LBW formula. Observation duration ranged from 2 to ∼12 weeks (21, 27). Each study demonstrated risk of selection bias, but attrition, performance, and detection bias were also present throughout the included studies, and several studies demonstrated risk of bias in three or four domains. Most of the studies had sample sizes ranging from 10 to 34, but Doege had a sample size of 120. None of the studies found that head circumference gain was greater in the group receiving MM. Five studies found no difference in head circumference gain between groups (21, 27, 32–35). Two studies found that the group receiving MM had significantly less head circumference gain over the study duration, compared with the group receiving formula (22, 34).

Atkinson et al. (21) did not report results that could be included in the meta-analysis. SMD was used as the outcome measure since the authors reported head circumference gain using heterogeneous measures (e.g., cm and cm per week). Results were stratified according to whether MM was fortified. There was no difference in head circumference gain between groups [−0.25 (−0.53, 0.03)] (Figure 7). Conclusion: When VLBW preterm infants were provided with ≥75% fortified MM, there was no difference in head circumference gain compared with infants receiving exclusive preterm formula.

Grade: very low.

Fat Mass and Fat-Free Mass
Two cohort studies demonstrating risk of selection bias examined the association between providing fortified MM and preterm formula exclusively on fat mass (FM) and fat-free mass (FFM) in VLBW preterm infants (33, 34). Sample sizes ranged from 32 to 34 participants. In Mol et al., there were no differences between groups in FM or FFM at 40 weeks post-menstrual age, although baseline values were not provided. In Morlachi et al., body fat and FFM were not different between groups at discharge. However, by term-corrected age (TCA), the preterm formula group had significantly greater FM (g and percentage; \(p = 0.004 \) and \(p = 0.002 \)), and the MM group had significantly greater FFM (percentage but not g; \(p = 0.002 \) and NS). Baseline values were not provided in either study, so the pooled analysis was not possible. Conclusion: In VLBW preterm infants, the relationship between providing exclusive fortified MM or preterm formula and body composition is unclear.

Grade: very low.

Skinfold Measurement
One cohort study conducted by Schanler et al. in 1985 demonstrating selection, performance, detection, and reporting bias evaluated the association between providing VLBW preterm infants with MM fortified with either cream from donor milk or bovine fortifier and skinfold measurement (35). Both groups were compared with infants consuming the commercial formula. The formula group included 10 infants, and the MM group fortified with donor milk included 14 infants. Infants in the standard formula group received 100 kcal per dl and then 80 kcal per dl of formula. The intervention continued for about 8 weeks until infants were 1,800 g. There were no differences in skinfold gains between groups.

Conclusion: One small cohort study found no relationship between providing fortified MM compared with formula and gains in skinfold measurements after ∼8 weeks.

Grade: very low.
Gastrointestinal Health and Bone Mineral Content

No studies were identified that evaluated the association between ≥75% MM intake compared with formula intake and gastrointestinal health or bone mineral content.

DISCUSSION

The very-low-quality evidence identified through this SR demonstrated that the odds of ROP may be lower with MM intake ≥75% of VLBW preterm infant's enteral nutrition compared with exclusive formula. Specifically, the predominantly MM-fed infants exhibited 0.11 (95% CI 0.04, 0.31) lower odds of ROP after 7–11 weeks (very low quality).

In this meta-analysis of studies specific to VLBW preterm infants, there were no differences observed in mortality, NEC, late-onset sepsis, BPD, or visual acuity according to feeding type (very-low quality evidence for each outcome). The lack of statistical difference between groups in this meta-analysis differs from individual study results, which have shown decreased morbidity, especially in NEC and late-onset sepsis, with the intake of MM (2, 4, 35, 36). These studies did not meet the specific criteria of this SR because they did not compare an exclusively formula-fed group with a predominately MM-fed group and instead compared outcomes based on the dose of MM received. Furthermore, these studies were not limited to preterm infants with birthweight ≤1,500 g. With the known anti-infectious and anti-inflammatory bioactive factors in MM, the potential protection afforded by MM against these infectious and inflammatory diseases is biologically plausible (37–40). The lack of significant difference for these outcomes in this meta-analysis may reflect more the lack of well-designed studies rather than the absence of an effect. Therefore, this meta-analysis serves as a foundation upon which to build future studies to address the role of MM intake in VLBW preterm infant morbidity and mortality.

For anthropometric growth, the results differed by whether or not MM was fortified. There were no differences in weight, length, and head circumference between infants fed fortified MM and those fed LBW or preterm formula. In contrast, when MM was not fortified, the infants' weight gain and length gain were significantly lower than those of the formula-fed infants. There was no difference in head circumference growth, regardless of whether the human milk was fortified. Similar results were found in the SR conducted by Suganuma et al. in 2021, in which there was no significant association between short-term growth outcomes with feeding type (7). The authors reported insufficient evidence to determine effects on any outcomes.

Selection bias was pervasive in the studies included in meta-analyses. Due to maternal autonomy in whether a mother provides her own milk, randomization of infants to MM or formula is not ethical. Since the provision of MM depends on a maternal decision as well as maternal lactation physiology, selection bias is a universal limitation in studies of MM vs. formula feeding. Moreover, at this time, social determinants of health are associated with maternal lactation success (41, 42). None of the studies included in this SR controlled for these factors. Therefore, though some limitations in MM studies are fixed, others are modifiable and should be measured and compared in future studies of VLBW preterm infant outcomes in relation to MM intake. Another bias that is common in studies comparing predominantly MM and formula-fed VLBW preterm infants is performance bias since blinding, like randomization, is difficult in these studies. Detection bias and reporting bias also occurred but not as frequently. These biases are especially hard to avoid in studies comparing the extremes of milk intake, predominately MM and exclusively formula, as the mothers in these two groups may vary greatly in intent and ability to provide milk, morbidities related to lactation insufficiency, maternal self-efficacy regarding milk production, and maternal stress (2, 43–51). Studies comparing less extreme proportions of MM may have fewer inherent differences between groups. Lack of randomized studies and potential for infant health outcomes to be affected by maternal factors may influence MM expression and therefore warrant consideration in the interpretation of these results.

Another limitation of the review was that one of the studies that met the inclusion criteria was a post-discharge study of weight gain (26), and differences between human milk and formula on weight gain may be different after discharge.

Despite these limitations, opportunities to improve the design of infant feeding studies do exist. The collection of data to assess social determinants of health, maternal morbidities related to milk production, and maternal intent for infant feeding would provide opportunities for adjusted models to focus the comparison on the bioactive components of milk rather than the factors related to milk production. Future studies should report the amount of MM intake, donor milk, formula, and any fortification as well as limitations from the observational nature and lack of randomization of these studies. Longer-term studies are needed to further assess morbidities, mortality, and developmental outcomes.

The strengths of this review include its focus on VLBW preterm infants, its broad and comprehensive literature search, the inclusion of the highest level of evidence available, strict inclusion criteria to improve directness and precision of evidence including a focus on MM only, and its recognition of inadequate attention to factors related to MM production such as social determinants of health. The limitations of this SR are reflective of the primary included literature, including risk of selection and other biases that limit the certainty of conclusions.

CONCLUSIONS

This SR demonstrates that fortified MM in comparison with formula may decrease odds of ROP for VLBW preterm infants, but no effect was found in all other outcomes. Given the observational nature of human milk research, cause-and-effect evidence was lacking. Future research should include minimization of bias through careful and standardized measurement of milk intake and important confounding variables, including social determinants of
health. The results of this review were utilized in an evidence to decision framework by the Preterm Panel to develop evidence-based VLBW preterm infant enteral feeding recommendations (52).

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article, further inquiries can be directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

ST, TF, MR, and LM wrote the first draft of this manuscript. All authors reviewed and commented on subsequent drafts of the manuscript. All authors were involved in developing this systematic review, from question formulation to evidence grading.

REFERENCES

1. Pediatrics A Ao. Breastfeeding and the use of human milk. Pediatrics. (2012) 129:827–41. doi: 10.1542/peds.2011-3552
2. Furman L, Taylor G, Minich N, Hack M. The effect of maternal milk on neonatal morbidity of very low-birth-weight infants. Arch Pediatr Adolesc Med. (2003) 157:66–71. doi: 10.1001/archpeds.157.1.66
3. Schanler RJ, Shulman RJ, Lau C. Feeding strategies for premature infants: beneficial outcomes of feeding fortified human milk versus preterm formula. Pediatrics. (1999) 103(6 Pt 1):1150–7. doi: 10.1542/peds.103.6.1150
4. Sisk PM, Lovelady CA, Dillard RG, Gruber KJ, O’Shea TM. Early human milk feeding is associated with a lower risk of necrotizing enterocolitis in very low birth weight infants. J Perinatol. (2007) 27:428–33. doi: 10.1038/sj.jp.7211758
5. Hair AB, Peluso AM, Hawthorne KM, Perez J, Smith DP, Khan JY, et al. Beyond necrotizing enterocolitis prevention: improving outcomes with an exclusive human milk-based diet. Breastfed Med. (2016) 11:70–4. doi: 10.1089/bfm.2015.0134
6. Brown JY, Embleton ND, Harding JE, McGuire W. Multi-nutrient fortification of human milk for preterm infants. Cochrane Database Syst Rev. (2016) 8:CD003343. doi: 10.1002/14651858.CD003343.pub3
7. Suganuma M, Rumbold AR, Miller J, Chong YF, Collins CT. A systematic review and meta-analysis of human milk feeding and short-term growth in preterm and very low birth weight infants. Nutrients. (2021) 132089. doi: 10.3390/nut13062089
8. Miller J, Tonkin E, Damarell RA, McPhee AJ, Suganuma M, Suganuma H, et al. A systematic review and meta-analysis of human milk feeding and morbidity in very low birth weight infants. Nutrients. (2018) 10:707. doi: 10.3390/nut10060707
9. Narasimhan S, Kinchen J, Kifle A, Jegatheesan P, Song D. Metabolomic differences between mothers’ own breast milk and donor breast milk. Pediatrics. (2018) 141:272. doi: 10.1542/peds.141.1.MEETINGABSTRACT272
10. Academy of Nutrition and Dietetics. Very Low Birthweight Preterm Infant Enteral Nutrition Project. Chicago, IL: Academy of Nutrition and Dietetics. Available online at: https://www.andean.org/topic.cfm?menu=5716 (accessed November 4, 2021).
11. Academy of Nutrition and Dietetics Evidence Analysis Library. Evidence analysis manual: steps in the evidence analysis process. In: Academy of Nutrition and Dietetics Evidence Analysis Library, editor. Chicago, IL: Academy of Nutrition and Dietetics Evidence Analysis Library (2016).
12. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. (2009) 6:e1000097. doi: 10.1371/journal.pmed.1000097
13. Academy of Nutrition and Dietetics Evidence Analysis Library. In VLBW preterm infants (less than or equal to 1,500 g at birth), what is the effect of protein amount via enteral nutrition on nutrition outcomes?: Evidence Analysis Center. (2020). Available online at: https://www.andean.org/topic.cfm?menu=5716&pcat=5717&cat=8022 (accessed November 4, 2021).
14. Moloney L, Rozga M, Fenton T, Groh-Wargo S, Martin C, Taylor S, et al. Enteral nutrition and association with health outcomes in preterm infants <1500 grams PROSPERO 2018 CRD42018086829: PROSPERO. (2018). Available online at: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42018086829 (accessed October 20, 2021).
15. United Nations. World Economic Situation and Prospects 2019 Available online at: https://www.un.org/development/desa/dpad/wp-content/uploads/sites/45/WESP2019_BOOK-ANNEX-en.pdf (accessed March 31, 2020).
16. Rathbone J, Hoffmann T, Glassiou P. Faster title and abstract screening? Evaluating Abstrackr, a semi-automated online screening program for systematic reviewers. Syst Rev. (2015) 4:80. doi: 10.1186/s13643-015-0067-6
17. Handu D, Moloney L, Wolfram T, Ziegler P, Acosta A, Steiber A. Academy of nutrition and dietetics methodology for conducting systematic reviews for the evidence analysis library. J Acad Nutr Diet. (2016) 116:311–8. doi: 10.1016/j.jand.2015.11.008
18. Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al. Cochrane Handbook for Systematic Reviews of Interventions. 2nd ed. Chichester: John Wiley and Sons (2019). p. 728.
19. Santesso N, Carrasco-Labra A, Langendam M, Brignardello-Petersen R, Mustafa RA, Heus P, et al. Improving GRADE evidence tables part 3: detailed guidance for explanatory footnotes supports creating and understanding GRADE certainty in the evidence judgments. J Clin Epidemiol. (2016) 74:28–39. doi: 10.1016/j.jclinepi.2015.12.006
20. Team R. RStudio: Integrated Development for R. Boston, MA: RStudio, Inc. (2016).
21. Atkinson SA, Bryan MH, Anderson GH. Human milk feeding in premature infants: protein, fat, and carbohydrate balances in the first two weeks of life. J Pediatr. (1981) 99:617–24. doi: 10.1016/S0022-3476(81)80275-2
22. Atkinson SA, Radde IC, Anderson GH. Macronutrient balances in premature infants fed their own mothers’ milk or formula. J Pediatr. (1983) 102:99–106. doi: 10.1016/S0022-3476(83)80302-3
23. Birch DG, Birch EE, Hoffman DR, Uauy RD. Retinal development in very low-birth-weight infants fed diets differing in omega-3 fatty acids. Invest Ophthalmol Vis Sci. (1992) 33:2365–76.
24. Birch E, Birch D, Hoffman D, Hale L, Everett M, Uauy R. Breast-feeding and optimal visual development. J Pediatr Ophthalmol Strabismus. (1993) 30:33–8. doi: 10.3928/0191-5913-19931010-09
25. Birch EE, Birch DG, Hoffman DR, Uauy R. Dietary essential fatty acid supply and visual acuity development. Invest Ophthalmol Vis Sci. (1992) 33:3242–53.
26. Chan GM. Growth and bone mineral status of discharged very low birth weight infants fed different formulas or human milk. J Pediatr. (1993) 123:439–43. doi: 10.1016/S0022-3476(05)81754-8
27. Doee C, Bauer J. Effect of high volume intake of mother’s milk with an individualized supplementation of minerals and protein on early growth.

FUNDING

This work was supported by the Academy of Nutrition and Dietetics.

ACKNOWLEDGMENTS

We would like to acknowledge and thank the evidence analysts who extracted data for this systematic review.
of preterm infants <28 weeks of gestation. Clin Nutr. (2007) 26:581–8. doi: 10.1016/j.clnu.2007.06.002
28. Genzel-Boroviczeny O, Hrboticky N. Plasma values of polyunsaturated fatty acids in extremely low birth weight (ELBW) infants fed breast milk or formula very early in life. Eur J Med Res. (1996) 1:495–8.
29. Hendrickse WA, Spencer SA, Roberton DM, Hull D. The calorie intake and weight gain of low birth weight infants fed on fresh breast milk or a special formula milk. Eur J Pediatr. (1984) 143:49–53. doi: 10.1007/BF00447248
30. Hoffman DR, Birch EE, Birch DG, Uauy RD. Effects of supplementation with omega 3 long-chain polyunsaturated fatty acids on retinal and cortical development in premature infants. Am J Clin Nutr. (1993) 57(Suppl.):807S–12. doi: 10.1093/ajcn/57.5.807S
31. Manzoni P, Stolfi I, Pedicino R, Vagnarelli F, Mosca F, Pugni L, et al. Human milk feeding prevents retinopathy of prematurity (ROP) in preterm VLBW neonates. Early Hum Dev. (2013) 89(Suppl. 1):564–8. doi: 10.1016/S0378-3782(13)70019-7
32. Modanlou HD, Lim MO, Hansen JW, Sickles V. Growth, biochemical status, and mineral metabolism in very-low-birth-weight infants receiving fortified preterm human milk. J Pediatr Gastroenterol Nutr. (1986) 5:762–7. doi: 10.1097/00005176-198609000-00017
33. Morlacchi L, Roggero P, Gianni ML, Bracco B, Porri D, Battiato E, et al. Protein use and weight-gain quality in very-low-birth-weight preterm infants fed human milk or formula. Am J Clin Nutr. (2018) 107:195–200. doi: 10.1093/ajcn/nqz001
34. Mol N, Zasada M, Kwinta P. Does type of feeding affect body composition in very low birth weight infants? - a prospective cohort study. Pediatr Neonatol. (2019) 60:135–40. doi: 10.1016/j.pedneo.2018.04.010
35. Schanler RJ, Garza C, Nichols BL. Fortified mothers’ milk for very low birth weight infants: results of growth and nutrient balance studies. J Pediatr. (1985) 107:437–45. doi: 10.1016/S0022-3476(85)80531-X
36. Meinen-Derr J, Poindexter B, Wrage L, Morrow AL, Stoll B, Donovan EF. Role of human milk in extremely low birth weight infants’ risk of necrotizing enterocolitis or death. J Perinatol. (2009) 29:57–62. doi: 10.1038/jp.2008.117
37. Wagner CL, Taylor SN, Johnson D. Host factors in amniotic fluid and breast milk that contribute to gut maturation. Clin Rev Allergy Immunol. (2008) 34:191–204. doi: 10.1007/s12016-007-8032-3
38. Buescher ES. Anti-inflammatory characteristics of human milk: how, where, why. Adv Exp Med Biol. (2001) 501:207–22. doi: 10.1007/978-1-4615-1371-1_27
39. Rogier EW, Frantz AL, Bruno ME, Wedlund L, Cohen DA, Stromberg AJ, et al. Lessons from mother: long-term impact of antibodies in breast milk on the gut microbiota and intestinal immune system of breastfed offspring. Gut Microbes. (2014) 5:663–8. doi: 10.4161/gmic.2014.969984
40. Hamosh M. Protective function of proteins and lipids in human milk. Biol Neonate. (1998) 74:163–76. doi: 10.1159/000014021
41. El-Bayoumi J. Why should we care about health equity? Breastfeed Med. 2017;12:462–4. doi: 10.1089/bfm.2017.0131
42. Farkas C, Girard LC. Breastfeeding initiation and duration in Chile: understanding the social and health determinants. J Epidemiol Community Health. (2019) 73:637–44. doi: 10.1136/jech-2018-211148
43. Casavant SG, McGrath JM, Burke G, Briere CE. Caregiving factors affecting breastfeeding duration within a neonatal intensive care unit. Adv Neonatal Care. (2015) 15:421–8. doi: 10.1097/ANC.0000000000000234
44. Fewtrell MS, Kennedy K, Ahiwuwalia JS, Nicholl R, Lucas A, Burton P. Predictors of expressed breast milk volume in mothers expressing milk for their preterm infant. Arch Dis Child Fetal Neonatal Ed. (2016) 101:F502–6. doi: 10.1136/archdischild-2015-308321
45. Furman L, Minich N, Hack M. Correlates of lactation in mothers of very low birth weight infants. Pediatrics. (2002) 109:e57. doi: 10.1542/peds.109.4.e57
46. Gertz B, DeFranco E. Predictors of breastfeeding non-initiation in the NICU. Matern Child Nutr. (2019) 15:e12797. doi: 10.1111/mcn.12797
47. Hallowell SG, Rogowski JA, Spatz DL, Hanlon AL, Kenny M, Lake ET. Factors associated with infant feeding of human milk at discharge from neonatal intensive care: cross-sectional analysis of nurse survey and infant outcomes data. Int J Nurs Stud. (2016) 53:190–203. doi: 10.1016/j.ijnurstu.2015.09.016
48. Niela-Vilén H, Melender HL, Axelin A, Loyttyniemi E, Salantera S. Predictors of breastfeeding initiation and frequency for preterm infants in the NICU. J Obstet Gynecol Neonatal Nurs. (2016) 45:346–58. doi: 10.1016/j.jogn.2016.01.006
49. Orr SK, Dachner N, Frank L, Tarasuk V. Relation between household food insecurity and breastfeeding in Canada. CMAJ. (2018) 190:E312–9. doi: 10.1503/cmaj.170880
50. Santana GS, Giugliani ERI, Vieira TO, Vieira GO. Factors associated with breastfeeding maintenance for 12 months or more: a systematic review. J Pediatr. (2018) 94:104–22. doi: 10.1016/j.jped.2017.06.013
51. Woolhouse H, James J, Garthland D, McDonald E, Brown SJ. Maternal depressive symptoms at three months postpartum and breastfeeding rates at six months postpartum: implications for primary care in a prospective cohort study of primiparous women in Australia. Women Birth. (2016) 29:381–7. doi: 10.1016/j.wombi.2016.05.008
52. Fenton TR, Griffin JI, Groh-Wargo S, Gura K, Martin CR, Taylor SN, et al. Very low birthweight preterm infants: a 2020 evidence analysis center evidence-based nutrition practice guideline. J Acad Nutr Diet. (2021) 122:182–206. doi: 10.1016/j.jand.2021.02.027

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.