Development of a fixed list of descriptors for the qualitative behavioural assessment of shelter dogs

Laura Arena a,b,c, Françoise Wemelsfelder c, Stefano Messori a, Nicola Ferri a, Shanis Barnard d

a Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G. Caporale’, Teramo, Italy
b Università di Teramo, Facoltà di Medicina Veterinaria, Piano d’Accio, Teramo, Italy
c Animal & Veterinary Sciences, Scotland’s Rural College, Easter Bush, Midlothian, United Kingdom
d Center for Animal Welfare Science, Purdue University, West Lafayette, IN, USA

c Corresponding author:
E-mail address: laurarena@hotmail.it (LA)

\textit{Short title:} Qualitative Behavioural Assessment for shelter dogs
ABSTRACT

The shelter environment may have a severe impact on the quality of life of dogs, and there is thus a need to develop valid tools to assess their welfare. These tools should be sensitive not only to the animals’ physical health but also to their mental health, including the assessment of positive and negative emotions. Qualitative Behaviour Assessment (QBA) is an integrative ‘whole animal’ measure that captures the expressive quality of an animal’s demeanour, using descriptors such as ‘relaxed’, ‘anxious’, and ‘playful’. In this study, for the first time, we developed and tested a fixed-list of qualitative QBA descriptors for application to dogs living in kennels. A list of 20 QBA descriptors was developed based on literature search and an expert opinion survey. Inter-observer reliability was investigated by asking 11 observers to use these descriptors to score 13 video clips of kennelled dogs. Principal Component Analysis (PCA) was used to extract four main dimensions together explaining 70.9% of the total variation between clips. PC1 characterised curious/playful/excitable, sociable demeanour, PC2 ranged from comfortable/relaxed to anxious/nervous/stressed expression, PC3 described fearful demeanour, and PC4 characterized bored/depressed demeanour. Observers’ agreement on the ranking of video clips on these four expressive dimensions was good (Kendall’s W: 0.60-0.80). ANOVA showed a significant effect of observer on mean clip score on all PCs (p<0.05) due to a few observers scoring differently from the rest of the group. These results indicate the potential of the proposed list of QBA terms for sheltered dogs to serve as a non-invasive, easy-to-use assessment tool. However, the observers’ effect on mean scores points towards the need for adequate observer training. The QBA scoring tool can be integrated with existing welfare assessment protocols for shelter dogs and strengthen the power of those protocols to assess and evaluate the animals’ experience in shelters.

1. INTRODUCTION

Kennel dog welfare is a concern affecting thousands of animals all around the world held in temporary or permanent confinement for a variety of reasons [1,2]. There is evidence that shelter environments may have a severe impact on the quality of life of dogs [3,4]. This is likely due to factors such as social isolation and novel surroundings [5], especially if these are protracted over long periods of time [6]. For this reason, there
has been an increasing interest by the scientific community to develop validated tools to assess the welfare of
sheltered dogs [3,7].

Over the last decades, the concept of animal welfare has evolved from focusing primarily on the
animal’s physical health and ability to cope with its environment [8], to recognising that animals are sentient
beings capable of experiencing positive and negative emotions [9]. It is now accepted that animals, though
healthy, can nevertheless experience negative emotions when housed in unsuitable environments [10]. In
addition the concept of animal welfare has shifted in recent times from focusing on the reduction of negative
emotions (e.g. fear, pain) to ensuring that captive/domestic animals are also experiencing positive emotions
(e.g. pleasure, happiness) [11,12]. It is therefore essential that animal welfare assessment tools include
measures of positive welfare.

The potential of qualitative methods for assessing behaviour and welfare to play a role in such
developments, and, alongside quantitative measure, to contribute to useful measures of positive animal
welfare, has been a subject of review and discussion [13,14]. Qualitative Behavioural Assessment (QBA) is
one such method which to date has generated a substantial body of research assessing emotional expressivity
in a range of animal species [15–18]. QBA is a ‘whole-animal’ approach measuring not so much what the
animal is doing physically, as how it is performing these behaviours, i.e. the expressive style or demeanour
with which the animal is moving [19]. QBA uses a range of positive and negative qualitative descriptors
such as ‘relaxed’, ‘sociable’, ‘anxious’ or ‘fearful’ in order to quantify an animal’s experience in different
situations and conditions [19].

The descriptive terms used in QBA can either be developed through an experimental procedure
known as Free-Choice Profiling (FCP), in which each assessor generates his/her own descriptors based on
the observation of animals in different situations [20,21], or are provided in the form of a pre-determined list
of QBA descriptors given to observers to assess animals. When standardisation of measurement tools is
required, for example for the purpose of on-farm welfare inspections, the use of a fixed-list designed for the
purpose of welfare assessment in a particular species is more feasible than FCP. Pre-fixed QBA protocols are
for example included in Welfare Quality® protocols for cattle, poultry and pigs [22] and in AWIN protocols
for sheep, goats, horses, and donkeys [23–25], where they serve as a measure for positive emotional state.

Initial validation of the application of QBA to dogs was done by Walker et al. [26,27]. In these two
studies Walker and colleagues applied FCP for the first time to assessing emotional expressivity in working
dogs (all Beagles), and in shelter dogs in home pen and novel test pen environments. Outcomes showed, in
the different dog groups, overlapping dimensions of emotional expressivity such as confidence/contentment,
anxiousness/unsureness, alertness/attentiveness or curiousness/inquisitiveness. Walker et al. [27] also
showed significant and meaningful correlations between QBA dimensions and quantitative ethogram-based
behavioural measures, suggesting the potential value of QBA as a welfare assessment tool for dogs. Arena
and colleagues [28] further investigated this potential by applying FCP to shelter dogs in a wide variety of
shelter environments and social contexts including outdoor/indoor pens, single/pair/group housing, and the
presence/absence of human activity. Results showed that by presenting more complex contexts and giving
the animals more opportunities to express a wider repertoire of emotions, the observers generated ‘richer’
expressive dimensions than was the case in Walker et al.’s [26,27] studies which used relatively standardised
experimental settings.

The present study aimed to build on these outcomes by developing a fixed-term QBA descriptor list
that might be integrated with existing on-shelter welfare assessment protocols. Adding QBA could provide
information complementary to that provided by quantitative measures, extending a protocol’s power to
identify and detect emotional shifts in dogs across the positive and negative emotional spectrum [7,27,28].
Recognising that QBA relies on context-specific qualitative judgment of behavioural expression [19],
descriptors included in a pre-fixed list should be representative of the large range of behavioural expressions
that dogs could potentially show in variable kennel conditions. To achieve this goal, we generated a list of
suitable terms based on the available dog behaviour and welfare literature, and then used an expert opinion
survey to refine this list into a final set of 20 QBA terms. The inter-observer reliability of these terms was
subsequently investigated by instructing eleven observers to score the emotional expressivity of dogs viewed
in a sample of videos reflecting a wide range of shelter conditions.

2. MATERIAL AND METHODS

2.1 Ethics statement

No special permission for use of dogs in such behavioural studies is required in Italy, since dogs were
observed during their daily life and within their familiar shelter pens. When dogs were exposed to people, no
physical interaction was required.
All procedures were performed in full accordance with Italian legal regulations and the guidelines for the
treatments of animals in behavioural research and teaching of the Association for the Study of Animal
Behavior (ASAB).

No IRB approval was sought for the use of students as observers, but they provided informed signed consent
to participate in the study and they were fully informed about the purpose and background of the study.

Students ranged in age from 25 and 34 years.

2.2 Selection of terms

2.2.1 Literature review

In a previous QBA study by this research group [28], 13 observers generated a number of terms to describe
the emotional expression of shelter dogs from videos, using a Free Choice Profiling (FCP) methodology
[15]. The FCP in Arena et al. [28] generated over 50 terms and the analysis extracted three main consensus
dimensions. From that work, we selected 16 high-loading terms characterising each of the three main
dimensions (Table 1). These 16 terms were used as a starting-point for the current study. Additional
qualitative descriptors were selected from the relevant scientific literature on dogs’ emotions [26,27,29],
behaviour [30], personality and temperament [31–34], and from other QBA research [13,35,36]. Thus, nine
new terms were added (affectionate, aloof, attention-seeking, boisterous, excited, explorative, happy, self-
confident and serene), creating a preliminary list of 25 terms.

Table 1: List of terms summarising the highest positive and negative loadings on each consensus dimension
generated through Free Choice Profile methodology in Arena et al. [28].

Positive	Negative
Dimension 1	**Dimension 2**
playful/sociable/curious	stressed/bored/anxious
bored/uncomfortable/apathetic	nervous/alert/fearful
relaxed/tranquil	wary/timorous/hesitant

2.2.2 Expert opinion
To check for the appropriateness, relevance and ease of understanding of the 25 terms on the preliminary list, we performed an expert opinion survey. For this purpose, we selected a panel of 15 international experts in the field of dog personality and behaviour, shelter dog welfare and QBA methodology. The panel was composed of 12 females and three males. A one-round on-line survey was arranged using the SurveyMonkey® platform. In an introductory letter, experts were told that the goal of the project was to develop a comprehensive list of terms for qualitative assessment of the emotional state and welfare of dogs housed in different shelter environments. Eight out of 15 experts answered the survey anonymously.

For each descriptor, we provided a brief semantic characterisation and asked the experts to score that term on the basis of four brief statements using a likert-scale from 1 to 5, where 1 corresponded to ‘not at all’, and 5 to ‘completely’ (Table 2). Experts also had the possibility to add comments in a free space if wanted. Furthermore, at the end of the survey the experts could suggest a maximum of three terms that, in their opinion, were missing but that they considered important to describe the emotional state of sheltered dogs. This expert opinion was used to refine our original list by deleting and/or adding terms, in order to eliminate synonyms, select the terms most relevant to describing shelter dog emotional state, and ensure that terms were easy to understand.

Table 2. Mean scores for the four statements presented in the survey for each term.

In your opinion, this descriptor is:	Survey mean scores*
1. easily comprehensible and intuitive	3.60
2. ambiguous, might be interpreted with different meanings	2.75
3. useful to describe the emotional state of sheltered dogs	3.49
4. relevant to assess the welfare of sheltered dogs	3.25

*calculated by averaging for each statement the experts’ scores across all terms.

2.2.3 Generating the final list

The SurveyMonkey® software automatically generated a matrix with the average scores assigned by the experts to each term. We then calculated the mean scores of each of the four statements for all terms (Table 2). To decide whether to keep or delete a term, we used those total mean scores to establish thresholds for
each statement: to be considered for inclusion, a term had to receive a mean score of 3 or more in statements #1, #3 and #4, and less than 3 in statement #2. Furthermore, we summarised and classified the negative comments provided by the experts as ‘prone to anthropomorphism’; ‘too generic’; ‘too similar to other terms’; ‘is not an emotional state’. We put aside inapplicable comments such as those repeating the same concept expressed in the statement (e.g. “not useful to assess animal welfare”), those referring to the definition given by the authors (e.g. “I would include ‘interest’ in the definition”) and comments without justification (e.g. “I suggest to delete this term from the list”).

Finally, we defined inclusion/exclusion criteria in order to refine our list. As exclusion criteria, we established that a descriptor would be excluded from the list if it had at least:

- two insufficient scores
- one insufficient score and one negative comment
- no insufficient scores, but three or more negative comments.

2.3 Inter-observer reliability

The final list of terms resulting from the previous steps was subsequently used to test for inter-observer reliability.

2.3.1 Animals and video-clips

A convenience sample of dogs in thirteen kennels were video-recorded in seven different Italian shelters: three in Northern Italy (Emilia-Romagna and Piemonte Regions), two in the Centre (Abruzzo Region) and two in the South (Puglia Region). The aim was to record dogs in different environments and scenarios to capture a variety of dog behavioural expressions. All dogs were in the kennels on a long-term basis (> 6 months since admittance). In each kennel, all resident dogs were video-recorded using a smartphone (Samsung GT-I9100P) that had been mounted on a tripod positioned a few meters from the fence. Dogs were housed singly in 4 videos, in pairs in another 4 videos and in groups of 3 or more dogs in 5 videos. Nine kennels were located outdoors and four indoors.

To trigger different responses, dogs were recorded during three different scenarios common in a shelter environment: under normal conditions with no external intervention, in the presence of an unknown person,
and in presence of a familiar person. The unfamiliar person was one of two researchers (one female and one
male), while the familiar person was a shelter operator available at the time of recording. The unfamiliar
person followed a simple protocol, approaching the fence of the kennel and standing one metre from the
fence ignoring the dogs (1 min) and subsequently talking gently to the dog moving a hand slowly along the
fence (1 min). Shelter operators were asked to enter the kennel and interact with the dog/s for 2 minutes.
The 13 recorded clips were cut (using the Avidemux 2.6.8 programme) to obtain clips of 1.5 minutes average
length during which all dog/s in the kennel were visible at all time.

2.3.2 Observers and observation session

Eleven students enrolled in a course for dog trainers were recruited as observers (8 females and 3 males). All
participants had previous experience with dogs and owned at least one dog. Five of them were dog trainers,
four were volunteers at dog shelters, two had graduated at the Faculty of Animal Welfare and Protection, and
one was a veterinarian. None of the observers had previous experience with QBA.

Before starting the assessment of the video clips, approximately 1 hour was dedicated to an introduction with
the goal of explaining the aim of the study and the operative procedures. A brief characterisation of each
term was provided and, where necessary, terms were discussed further among the observers.

Observers were told that the study had the aim of investigating whether observers can agree in using a fixed
list of QBA terms to assess emotional expressivity in shelter dogs. Emotional expressivity was defined as an
animal’s style of interaction with its environment, conspecifics and humans (how the animal behaves as
opposed to what it does). Each observer was provided with scoring sheets (one for each video clip) on which
Visual Analogue Scales (VAS) of 125 mm of length were placed next to each term. Participants were told to
use every qualitative descriptor in the list to score the animals visible in the clips. They were instructed on
how to use the VAS for scoring: the left end of the scale corresponded to the minimum score (0 mm),
meaning the expressive quality indicated by the term was entirely absent in that dog or group of dogs,
whereas the right end represented the maximum score (125 mm), meaning that the expressive quality
indicated by the term was strongly dominant in that dog or group of dogs. Observers were asked to avoid
talking during the session.
Once instructions had ended, observers watched the 13 clips projected onto a lecture hall screen and, after each clip, they had approximately 2 mins to score the animals’ expressions on the rating scales, by drawing a vertical line across the VAS at the point they felt was appropriate. A score was assigned to each term for each clip by measuring with a ruler the distance in millimetres between the minimum point of the VAS and the point where the observer marked the line.

2.3.3 Statistical analysis

IBM SPSS Statistics 21 software (IBM Corp., 2012) was used for statistical analysis. QBA data were analysed using a Principal Component Analysis (PCA, correlation matrix, varimax rotation). Before running the PCA, we explored the sampling adequacy by checking Kaiser-Meyer-Olkin (KMO) and anti-correlation image matrix values. The output scores of the main dimensions extracted by the PCA were then used to test the inter-observer reliability, using Kendall’s W coefficient of concordance [37]. Kendall’s W values can vary from 0 (no agreement at all) to 1 (complete agreement), with values higher than 0.6 showing substantial agreement. To check that mean scores did not differ between observers, a one-way ANOVA was used on each of the four PCA dimensions with observer as fixed factor and video clip as random factor. Post-hoc multiple comparisons (using Tukey HSD test) and homogeneous subsets were inspected to check which and how many observers were in disagreement. Finally, we assessed the inter-observer agreement for each descriptor separately, again using the Kendall’s W test.

3. RESULTS

3.1 Generation of the list of terms

Mean scores attributed to each statement and for each term by the panel of responding experts are summarised in Table 3.
Table 3. Mean scores attributed by the experts to each term for each statement. Underlined are the ‘insufficient’ scores and in bold the deleted terms. #Q: numbers 1 to 4 correspond to the statements as listed in Table 2.

Terms	#Q	Score	Terms	#Q	Score	Terms	#Q	Score
Playful	1	4.38	Nervous	1	3.63	Wary	1	3.75
	2	1.75		2	2.75		2	3.00
	3	4.13		3	3.75		3	4.13
	4	4.13		4	3.13		4	3.88
Sociable	1	4.25	Alert	1	3.75	Hesitant	1	3.88
	2	1.88		2	2.75		2	2.75
	3	4.00		3	4.00		3	3.00
	4	4.13		4	3.00		4	2.75
Curious	1	3.75	Boisterous	1	2.38	Aloof	1	3.00
	2	2.00		2	3.75		2	3.13
	3	3.50		3	2.88		3	2.63
	4	3.25		4	2.50		4	2.75
Happy	1	3.88	Excited	1	3.25	Fearful	1	4.75
	2	2.75		2	2.63		2	1.63
	3	3.50		3	3.75		3	4.50
	4	3.25		4	3.00		4	4.25
Affectionate	1	3.25	Apathetic	1	3.13	Timorous	1	3.25
	2	2.13		2	3.13		2	3.25
	3	3.38		3	2.88		3	3.38
	4	2.88		4	2.63		4	2.88
Attention-seeking	1	3.88	Uncomfortable	1	3.25	Stressed	1	3.88
	2	2.38		2	2.75		2	2.38
On the basis of the inclusion/exclusion criteria, nine terms were deleted from the list: boisterous, aloof, timorous, tranquil, serene, apathetic (all had at least two insufficient scores, and some also had negative comments), affectionate, self-confident (one insufficient score and at least one negative comment), happy (at least three negative comments). We evaluated the additional terms suggested by the panel of experts, and we added interested, depressed and aggressive (each one, suggested three times) and reactive (suggested twice). Finally, the term uncomfortable was replaced by the positive form comfortable.

As a result, the final list was composed of 20 terms. (Table 4). Overall this list was balanced in term of their semantic meaning (positive versus negative emotional state) and level of arousal they expressed (high versus low arousal). A brief characterisation of each term was produced on the basis of previous QBA studies [25–27]. These characterisations were then translated onto Italian to facilitate scoring by the observers.

Table 4 Final list of terms and their characterisations
Term	Definition
aggressive	impetuous, shows signs and posture of defensive or offensive aggression
alert	vigilant, inquisitive, on guard
anxious	worried, unable to settle or cope with its environment, apprehensive
attention-seeking	interactive, looking for contact/interaction, vying for people’s attention, affectionate
bored	disinterested, passive, showing sub-optimal arousal levels/drowsiness signs
comfortable	without worries, settled in its environment, peaceful with other dogs, people and external stimuli
curious	actively interested in people or things, explorative, inquiring, in a positive relaxed manner
depressed	dull, sad demeanour, disengaged from and unresponsive to the environment, quiet, apathetic
excited	positively agitated in response to external stimuli, euphoric, exuberant, thrilled
explorative	confident in exploring the environment or new stimuli, investigative
fearful	timid, scared, timorous, doesn’t approach people or moves away, shows postures typical of fear
hesitant	unsure, doubtful, shows conflicting behaviour, uncertain whether to approach or trust a stimulus, other dog or person
interested	attentive, attracted to stimuli and attempting to approach them
nervous	uneasy, agitated, shows fast arousal, unsettled, restless, hyperactive
playful	cheerful, high spirits, fun, showing play-related behaviour, inviting others to play
reactive	responsive to external stimuli
relaxed	easy going, calm or acting in a calm way, doesn’t show tension
sociable	confident, friendly toward humans and other dogs, appreciates human attentions, shows greeting behaviour
stressed	tense, shows signs of distress
wary caution, prudent, suspicious, circumspect

Inter-observer reliability of terms

KMO was well above the threshold of 0.50 (0.83) and the anti-image correlations were also high for all individual variables (> 0.55). After visual inspection of the scree plot, four components were extracted which together explained 70.9% of the total variance and all with Eigenvalues >1 (Table 5). The observers’ agreement on these four dimensions varied between 0.60 and 0.80, all significant at \(p < 0.001 \) (Table 5).

Table 5. Principal component (PC) analysis outcomes and inter-observer agreement (using Kendall’s W) for QBA rating scales.

	PC1	PC2	PC3	PC4
Eigenvalue	5.66	5.18	1.78	1.56
% explained variance	28.3	25.9	8.9	7.8
% cumulative variance	28.3	54.2	63.1	70.9
Kendall W	0.61	0.80	0.71	0.60
p-value	\(p<0.001 \)	\(p<0.001 \)	\(p<0.001 \)	\(p<0.001 \)

Table 6 shows the loadings of each descriptor on the four principal components (PC). PC1 was characterized by positive terms curious/attention-seeking/playful/excited/sociable/interested and explorative; PC2 characterized dogs as ranging from comfortable/relaxed to anxious/nervous/stressed. Figure 1 shows the 20 QBA descriptors plotted along these first two PCs. PC3 was characterized by the terms fearful/hesitant/wary, and finally, PC4 by the terms depressed/bored. Figure 2 shows the 20 QBA descriptors plotted along PC3 and PC4.

Table 6. Loadings for each QBA descriptor on the four principal components (PC1, PC2, PC3 and PC4) extracted by the PCA analysis. Loadings higher than 0.60 for each term are bold typed.
Word	Value1	Value2	Value3	Value4
curious	0.885	-0.020	-0.095	-0.168
attention-seeking	0.839	0.090	-0.236	0.102
playful	0.834	-0.057	-0.145	0.016
excited	0.809	0.108	0.013	-0.132
sociable	0.779	-0.124	-0.364	0.074
interested	0.770	-0.010	0.211	-0.230
explorative	0.627	-0.116	0.420	-0.180
anxious	0.102	0.870	0.193	0.072
nervous	0.104	0.864	0.164	-0.075
stressed	-0.046	0.843	0.199	0.156
comfortable	0.245	-0.765	-0.217	0.231
relaxed	0.046	-0.761	-0.172	0.245
reactive	0.511	0.514	-0.030	-0.406
fearful	-0.068	0.299	0.818	0.026
hesitant	-0.039	0.104	0.803	0.157
wary	-0.180	0.352	0.777	0.001
alert	0.035	0.499	0.596	-0.318
depressed	-0.181	0.130	0.161	0.807
bored	-0.201	-0.276	0.001	0.758
aggressive	-0.101	0.144	0.339	-0.385
Figure 1. Distribution of the 20 QBA descriptors on Component 1 (PC1) and Component 2 (PC2) plot rotated in space.
Figure 2. Distribution of the 20 QBA descriptors on Component 3 (PC3) and Component 4 (PC4) plot rotated in space.

ANOVA showed that there was a significant effect of observer on mean QBA scores on all four PCs (PC1: $F = 13.7$, $p < 0.001$; PC2: $F = 3.5$, $p < 0.001$; PC3: $F=15.6$, $p<0.001$; PC4: $F=6.4$, $p<0.001$). This means that although observers were in agreement on the ranking of the dogs in the videos, their average clip scores for the different PCs differed. Inspection of post-hoc multiple comparisons indicated that for PCs 1, 3 and 4 most observers (>7) presented homogeneous means, with the remaining 3-4 observers scoring differently from the rest of the group. The observers scoring differently were often the same across all PCs. Post-hoc analysis for PC2 highlighted one clear outlier (observer 10), with the remaining observers not differing from each other in mean clip score. When running the ANOVA again, without observer 10, observer effect was not significant ($F=1.62$, $p=0.12$).
The Kendall W values for individual descriptors were all significantly different from chance (p<0.001), but only 8 terms reached values higher than 0.60, while the term ‘depressed’ showed a particularly low value (Table 7).

Table 7. Kendall’s W coefficients of concordance (n=11) for the 20 used QBA descriptors. Values larger than 0.60 are bold typed.

Variable	Kendall W	Variable	Kendall W
Aggressive	0.489	Fearful	0.561
Alert	0.579	Hesitant	0.524
Anxious	**0.686**	Interested	0.503
Attention-seeking	**0.679**	Nervous	**0.683**
Bored	0.540	Playful	0.563
Comfortable	**0.700**	Reactive	**0.611**
Curious	0.576	Relaxed	**0.689**
Depressed	0.320	Sociable	**0.793**
Excited	0.497	Stressed	0.579
Explorative	0.466	Wary	**0.714**

4. DISCUSSION

The aim of this research was to develop and test the inter-observer reliability of a fixed Qualitative Behaviour Assessment (QBA) rating scale for the purpose of field assessment of emotional expressivity in dogs in a shelter environment. Attempts had previously been made to develop and validate welfare assessment protocols for kennelled dogs [4,7], however, these protocols did not include measures addressing animals’ emotions. To our knowledge, our study is the first to generate a fixed QBA rating scale for the assessment of shelter dogs’ emotion. A previous Free Choice Profiling study served as a basis for generating an initial list of terms [28], and subsequently we searched the literature and consulted expert opinion to create a final list of 20 terms covering as much as possible the relevant behavioural expressions appropriate
for the assessment of dogs in kennels. Eleven observers then used this list to score kennelled dogs in 13 video clips, and PCA of these scores generated four Principal Components (PCs) explaining 70.9% of the total variance. PC1 was characterised by the terms ‘curious/attention-seeking/playful/excited/sociable’, describing the animals’ interest in their environment and their engagement with people and pen-mates. PC2 ranged from ‘comfortable/relaxed’ to ‘anxious/nervous/stressed’, a demeanour apparently indicating the dogs’ ability to cope with and be comfortable in the kennel environment. PC3 describes fearful demeanour summarised by the terms ‘fearful/hesitant/wary’, whilst PC4 is characterised by the terms ‘depressed/bored’, which indicate a negative yet more low energy mood than fear, anxious and stress. Reference to emotional states with positive and negative valence has previously been made in assessments of shelter dog welfare: Titulaer et al. (2014) for example used cognitive measures to assess the effect of long versus short term permanence in kennel, whereas Mendl et al (2010) demonstrated how shelter dogs suffering from separation anxiety were more likely to be experiencing a negative affective state. As discussed in the introduction, Walker et al (2016) used comparable QBA dimensions to describe the emotional state of dogs in kennel versus home environment and compare short versus long term housing. Nevertheless, most of the scientific literature on shelter dogs’ welfare has relied, so far, mainly on behavioural and physiological indicators [38–40].

These four dimensions of emotional expressivity address dynamic aspects of welfare including important subtle differentiations, such as that between relaxation and depression, or between emotionally positive and negative excitement (excited vs nervous). From a ‘whole-animal’ perspective, the aim of QBA is not to identify a minimal set of core descriptive terms, but to capture wider patterns of expression and their context through a larger range of terms. Three terms (i.e. reactive, alert and aggressive) did not load highly on any of the four extracted PCs. Looking at Figures 1 and 2 it appears these terms co-load with stress and anxiety on PC2, and group together on PC4 opposite to ‘bored/depressed’, thus appearing to mostly reflect a tense reactivity associated with a negative emotional state in dogs struggling to cope with the environment. However, terms such as ‘alert’ and ‘reactive’ do not in themselves have a strong negative connotation – animals in positive playful mood can also be alert and reactive, or even mildly aggressive, and this likely explains why these terms often do not necessarily load highly on either positive or negative ends of emotional dimensions. This, however, does not make them superfluous, they can still serve to support and specify patterns of positive and negative mood in dogs assessed in different situations. Overall, the four PCs
identified by this study cover the four quadrants of emotional expression defined by valence and arousal axes which tend to be typical of dimensional models of affect [41], and as such should be expected to offer a comprehensive assessment tool of dog emotional expression.

An important element of any measurement tool is its reliability, i.e. that measures used provide consistent results when applied by different assessors [42]. Inter-observer reliability with regard to QBA has two aspects: agreement in qualitative ranking of animals on expressive dimensions, and agreement in mean value of animal scores on expressive dimensions [43]. Agreement on qualitative ranking in the present study was good for all four PCs, (W=0.60-0.80), which aligns with previous studies testing the reliability of QBA fixed lists in a range of species [25,44,45], though some recent studies indicate that in field conditions as opposed to video-based conditions, achieving good agreement on qualitative ranking of animals on QBA dimensions can be more difficult [45,46]. There was however a significant observer effect on the mean value of animal scores for all four PCs suggesting differences between observers in how they used VAS scales for scoring across most terms. Post-hoc analysis, however, revealed that most observers (60-70%) did not differ significantly in their mean score for the 4 PCs, with fewer than 4 observers diverging significantly from this mean. Some of these outliers were often the same, suggesting that these observers had overall different scoring habits across all terms. For PC2 particularly mean scores were quite homogeneous, in fact, there was only one outlier. When running the analysis without that observer, no significant difference between the remaining observers was found. The higher homogeneity between scores associated to PC2 could be due to PC2 being the only dimension for which high loading terms described a clear contrast between positive and negative expressions. For the other three dimensions the emphasis was on either a positive or a negative expression, providing less conceptual anchoring for observers to place their scores on the visual analogue scale, making variation between observer scores more likely. Other studies have reported variation in ‘scoring styles’ between observers (e.g. [43]), creating observer effects on mean animal scores on some PCs.

Such effects are to an important extent due to differences in how observers score the various individual descriptors that are part of a QBA fixed-term list. Most QBA studies report differences in the level of agreement with which various individual terms were applied by observers (e.g. [25]) In the present study 12 out of 20 individual descriptors were applied at a level of agreement lower than 0.60, while 3 terms (depressed, explorative, aggressive) fell below 0.50. This lack of agreement may to some extent be due to the relatively low prevalence of these expressions in the video clips, however depressed demeanour may
generally be difficult to distinguish reliably from other low energy expressions such as relaxed and/or bored [29,47]. Research on QBA assessment in donkeys and goats addressing such scoring issues under field conditions, has shown that training observers, i.e. taking time to discuss the meaning of individual terms and to compare how these terms are used for scoring, significantly improves the reliability of such terms [25,43]. Thus, any future practical application of the QBA term list for shelter dog welfare proposed in this study should provide ample training (including field assessments), until consistently high agreement between observers can be reached.

In recent efforts to promote the expression of positive emotions in captive/domestic animals (e.g. through appropriate environment enrichment), welfare scientists have directed a lot of attention toward the validation of outcome (i.e. animal-based) measures that could be integrated into welfare assessment tools to ensure that standards of positive welfare are maximised [48]. QBA has been successfully applied to farm animal welfare assessment protocols [22] and it has the potential to provide a valuable measure of dogs’ behavioural expression in confinement. Effective interventions to minimise signs of poor welfare in shelter dogs should be based on the evaluation of dogs’ individual ability to cope and adapt to confinement in kennels. QBA focuses on the dynamic expressivity of behavioural demeanour, describing and quantifying the emotional connotation of this expressivity that we naturally perceive. The comprehensive range of qualitative descriptors developed in this study may function as an integrative screening tool of kennelled dogs’ welfare, with special attention to positive welfare. A low expression of certain descriptors might prompt the implementation of certain types of enrichment that may have been neglected. For example, it has been demonstrated that stress upon entering a rehoming shelter can be mitigated by short sessions of positive human interaction [5]. Hence, low overall scores on the descriptors characterising PC1 may raise awareness for the need of targeted socialisation programs on animals struggling to adapt to the novel kennel environment. The QBA pre-fixed list developed in this study could be used as a monitoring system to detect early warning signs of reduced welfare state in kennelled dogs as well as detect areas of improvement to ensure good quality of life.

5. CONCLUSIONS
The present study aligns with previous QBA studies on other animal species in finding mainly good inter-observer reliability for a fixed-list of QBA descriptors applied to video-based assessments of dogs living in a shelter environment. Agreement in ranking dogs on the four expressive dimensions was good, but a few observers produced significantly different mean scores for observed dogs on the four main PCs, indicating a need for training and alignment of observer ‘scoring styles’ [43]. The scientific community recognises that welfare is a complex multidimensional concept, and that no single indicator can be considered exhaustive to evaluate the welfare of animals. It will be preferable therefore to apply QBA in conjunction with other physiological, behavioural or health indicators for animal welfare [49]. The QBA scoring tool developed and tested in the present study can be integrated into existing welfare assessment protocols for shelter dogs, and strengthen the power of those protocols to assess and evaluate the animals’ experience [7].

Acknowledgments

The authors wish to thank the group of experts that anonymously participated in this study as well as all the observers for their contribution.

References

1. Taylor KD, Mills DS. The effect of the kennel environment on canine welfare: A critical review of experimental studies. Anim Welf. 2007;16: 435–447.

2. Bollen KS, Horowitz J. Behavioral evaluation and demographic information in the assessment of aggressiveness in shelter dogs. Appl Anim Behav Sci. Elsevier; 2008;112: 120–135. doi:10.1016/J.APPLANIM.2007.07.007

3. Kiddie JL, Collins LM. Development and validation of a quality of life assessment tool for use in kennelled dogs (Canis familiaris). Appl Anim Behav Sci. 2014;158: 57–68. doi:10.1016/j.applanim.2014.05.008

4. Kiddie J, Collins L. Identifying environmental and management factors that may be associated with the quality of life of kennelled dogs (Canis familiaris). Appl Anim Behav Sci. Elsevier B.V.;
5. Coppola CL, Grandin T, Enns RM. Human interaction and cortisol: Can human contact reduce stress for shelter dogs? Physiol Behav. 2006;87: 537–541. doi:10.1016/j.physbeh.2005.12.001

6. Hewson CJ, Hiby EF, Bradshaw JWS. Assessing quality of life in companion and kennelled dogs: a critical review. Anim Welf. 2007;16: 89–95.

7. Barnard S, Pedernera C, Candeloro L, Ferri N, Velarde A, Villa PD. Development of a new welfare assessment protocol for practical application in long-term dog shelters. Vet Rec. 2016;178: 18. doi:10.1136/vr.103336

8. Broom DM. The scientific assessment of animal welfare. Appl Anim Behav Sci. Elsevier; 1988;20: 5–19.

9. Duncan IJH. The changing concept of animal sentience. Appl Anim Behav Sci. Elsevier; 2006;100: 11–19. doi:10.1016/J.APPLANIM.2006.04.011

10. Dawkins MS. Animal Minds and Animal Emotions. Am Zool. 2000;40: 883–888.

11. Boissy A, Manteuffel G, Jensen MB, Moe RO, Spruijt B, Keeling LJ, et al. Assessment of positive emotions in animals to improve their welfare. Physiol Behav. 2007;92: 375–397. doi:10.1016/j.physbeh.2007.02.003

12. Yeates JW, Main DCJ. Assessment of positive welfare: a review. Vet J. Elsevier; 2008;175: 293–300.

13. Napolitano F, De Rosa G, Braghieri A, Grasso F, Bordi A, Wemelsfelder F. The qualitative assessment of responsiveness to environmental challenge in horses and ponies. Appl Anim Behav Sci. Elsevier; 2008;109: 342–354. doi:10.1016/J.APPLANIM.2007.03.009

14. Meagher RK. Observer ratings: Validity and value as a tool for animal welfare research. Appl Anim Behav Sci. Elsevier; 2009;119: 1–14. doi:10.1016/J.APPLANIM.2009.02.026

15. Wemelsfelder F, Hunter TEA, Mendl MT, Lawrence AB. Assessing the ‘whole animal’: a free choice profiling approach. Anim Behav. Academic Press; 2001;62: 209–220. doi:10.1006/ANBE.2001.1741

16. Wemelsfelder F, Hunter E., Mendl M., Lawrence A. The spontaneous qualitative assessment of behavioural expressions in pigs: first explorations of a novel methodology for integrative animal welfare measurement. Appl Anim Behav Sci. Elsevier; 2000;67: 193–215. doi:10.1016/S0168-1591(99)00093-3

17. Fleming PA, Wickham SL, Stockman CA, Verbeek E, Matthews L, Wemelsfelder F. The sensitivity
of QBA assessments of sheep behavioural expression to variations in visual or verbal information provided to observers. animal. Cambridge University Press; 2015;9: 878–887.
doi:10.1017/S1751731114003164

18. Wemelsfelder F, Mullan S. Applying Ethological and Health Indicators to Practical Animal Welfare Assessment. Sci Tech Rev Off Int des Epizoot. 2014;33: 111–120.

19. Wemelsfelder F. How Animals Communicate Quality of Life: The Qualitative Assessment of Behaviour. Anim Welf. 2007;S: 25–31.

20. Wemelsfelder F, Hunter AE, Paul ES, Lawrence AB. Assessing pig body language: Agreement and consistency between pig farmers, veterinarians, and animal activists1. J Anim Sci. Oxford University Press; 2012;90: 3652–3665. doi:10.2527/jas.2011-4691

21. Hintze S, Murphy E, Bachmann I, Wemelsfelder F, Würbel H. Qualitative Behaviour Assessment of horses exposed to short-term emotional treatments. Appl Anim Behav Sci. Elsevier; 2017;196: 44–51. doi:10.1016/J.APPLANIM.2017.06.012

22. Keeling L, Evans A, Forkman B, Kjaernes U. Welfare Quality® principles and criteria. Improving farm animal welfare. Wageningen: Wageningen Academic Publishers; 2013. pp. 91–114.
doi:10.3920/978-90-8686-770-7_5

23. Battini M, Vieira A, Barbieri S, Ajuda I, Stilwell G, Mattiello S. Invited review: Animal-based indicators for on-farm welfare assessment for dairy goats. J Dairy Sci. Elsevier; 2014;97: 6625–6648.
doi:10.3168/JDS.2013-7493

24. Dalla Costa E, Minero M, Lebelt D, Stucke D, Canali E, Leach MC. Development of the Horse Grimace Scale (HGS) as a Pain Assessment Tool in Horses Undergoing Routine Castration. Hillman E, editor. PLoS One. Public Library of Science; 2014;9: e92281. doi:10.1371/journal.pone.0092281

25. Minero M, Dalla Costa E, Dai F, Murray LAM, Canali E, Wemelsfelder F. Use of Qualitative Behaviour Assessment as an indicator of welfare in donkeys. Appl Anim Behav Sci. Elsevier; 2016;174: 147–153. doi:10.1016/J.APPLANIM.2015.10.010

26. Walker J, Dale A, Waran N, Clarke N, Farnworth M, Wemelsfelder F. The assessment of emotional expression in dogs using a Free Choice Profiling methodology. Anim Welf. [Walker, J Dale, A Waran, N Clarke, N Farnworth, M] Unitec, Dept Nat Sci, Auckland, New Zealand. [Clarke, N] Univ Bristol, Dept Vet Clin Sci, Anim Behaviour & Welf Grp, Bristol BS40 5DU, Avon, England.
27. Walker JK, Dale AR, D’Eath RB, Wemelsfelder F. Qualitative Behaviour Assessment of dogs in the shelter and home environment and relationship with quantitative behaviour assessment and physiological responses. Appl Anim Behav Sci. 2016;184: 97–108. doi:10.1016/j.applanim.2016.08.012

28. Arena L, Wemelsfelder F, Messori S, Ferri N, Barnard S. Application of Free Choice Profiling to assess the emotional state of dogs housed in shelter environments. Appl Anim Behav Sci. 2017;195: 72–79. doi:10.1016/j.applanim.2017.06.005

29. Konok V, Nagy K, Miklósi Á. How do humans represent the emotions of dogs? The resemblance between the human representation of the canine and the human affective space. Appl Anim Behav Sci. Elsevier; 2015;162: 37–46. doi:10.1016/J.APPLANIM.2014.11.003

30. Tami G, Gallagher A. Description of the behaviour of domestic dog (Canis familiaris) by experienced and inexperienced people. Appl Anim Behav Sci. <Go to ISI>:://WOS:000270421600005; 2009;120: 159–169.

31. Jones AC, Gosling SD. Temperament and personality in dogs (Canis familiaris): A review and evaluation of past research. Appl Anim Behav Sci. 2005;95: 1–53.

32. Kubinyi E, Turcsán B, Miklósi Á. Dog and owner demographic characteristics and dog personality trait associations. Behav Processes. 2009;81: 392–401. doi:10.1016/j.beproc.2009.04.004

33. Ley J, Bennett P, Coleman G. Personality dimensions that emerge in companion canines. Appl Anim Behav Sci. 2008;110: 305–317. doi:http://dx.doi.org/10.1016/j.applanim.2007.04.016

34. Ley JM, Bennett PC, Coleman GJ. A refinement and validation of the Monash Canine Personality Questionnaire (MCPQ). Appl Anim Behav Sci. Elsevier B.V.; 2009;116: 220–227. doi:10.1016/j.applanim.2008.09.009

35. Minero M, Tosi MV, Canali E, Wemelsfelder F. Quantitative and qualitative assessment of the response of foals to the presence of an unfamiliar human. Appl Anim Behav Sci. Elsevier; 2009;116: 74–81. doi:10.1016/J.APPLANIM.2008.07.001

36. Rousing T, Wemelsfelder F. Qualitative assessment of social behaviour of dairy cows housed in loose housing systems. Appl Anim Behav Sci. <Go to ISI>:://WOS:000242352400004; 2006;101: 40–53.

37. Martin P, Bateson P. Measuring behaviour: an introductory guide. Cambridge Univ Press. Cambridge
Bergamasco L, Osella MC, Savarino P, Larosa G, Ozella L, Manassero M, et al. Heart rate variability and saliva cortisol assessment in shelter dog: Human-animal interaction effects. Appl Anim Behav Sci. 2010;125: 56–68. doi:10.1016/j.applanim.2010.03.002

Wells D, Hepper PG. The Behaviour of Dogs in a Rescue Shelter. Anim Welf. Universities Federation for Animal Welfare; 1992;1: 171–186.

Hiby EF, Rooney NJ, Bradshaw JWS. Behavioural and physiological responses of dogs entering re-homing kennels. Physiol Behav. 2006;89: 385–391. doi:10.1016/j.physbeh.2006.07.012

Mendl M, Burman OHP, Paul ES. An integrative and functional framework for the study of animal emotion and mood. Proc R Soc B Biol Sci. 2010;277: 2895–2904. doi:10.1098/rspb.2010.0303

Kaler J, Wassink GJ, Green LE. The inter- and intra-observer reliability of a locomotion scoring scale for sheep. Vet J. W.B. Saunders; 2009;180: 189–194. doi:10.1016/J.TVJL.2007.12.028

Grosso L, Battini M, Wemelsfelder F, Barbieri S, Minero M, Dalla Costa E, et al. On-farm Qualitative Behaviour Assessment of dairy goats in different housing conditions. Appl Anim Behav Sci. Elsevier; 2016;180: 51–57. doi:10.1016/J.APPLANIM.2016.04.013

Phythian C, Michalopoulou E, Duncan J, Wemelsfelder F. Inter-observer reliability of Qualitative Behavioural Assessments of sheep. Appl Anim Behav Sci. Elsevier; 2013;144: 73–79. doi:10.1016/J.APPLANIM.2012.11.011

Czycholl I, Beilage EG, Henning C, Krieter J. Reliability of the qualitative behavior assessment as included in the Welfare Quality Assessment protocol for growing pigs1. J Anim Sci. Oxford University Press; 2017;95: 3445–3454. doi:10.2527/jas.2017.1525

Bokkers E, de Vries M, Antonissen I, de Boer I. Inter- and intra-observer reliability of experienced and inexperienced observers for the Qualitative Behaviour Assessment in dairy cattle. Anim Welf. 2012;21: 307–318. doi:10.7120/09627286.21.3.307

Morris PH, Doe C, Godsell E. Secondary emotions in non-primate species? Behavioural reports and subjective claims by animal owners. Cogn Emot. Taylor & Francis Group; 2008;22: 3–20. doi:10.1080/02699930701273716

Boissy A, Lee C. How assessing relationships between emotions and cognition can improve farm animal welfare. Rev Sci Tech Int Des Epizoot. <Go to ISI>://WOS:000337765700010; 2014;33: 103–
Andreasen SN, Wemelsfelder F, Sandøe P, Forkman B. The correlation of Qualitative Behavior Assessments with Welfare Quality® protocol outcomes in on-farm welfare assessment of dairy cattle. Appl Anim Behav Sci. Elsevier; 2013;143: 9–17. doi:10.1016/J.APPLANIM.2012.11.013
