Phosphorylation of p27\(^{\text{Kip1}}\) on Serine 10 Is Required for Its Binding to CRM1 and Nuclear Export*

Received for publication, December 26, 2001, and in revised form, March 8, 2002. Published, JBC Papers in Press, March 11, 2002, DOI 10.1074/jbc.C100762200

Noriko Ishida‡§, Taichi Hara‡§, Takumi Kamura‡§, Minoru Yoshida†, Keiko Nakayama§§, and Keiichi I. Nakayama¶¶††

From the Departments of Molecular and Cellular Biology and Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan; §Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; and the ‡Department of Biotechnology, Graduate School of Agriculture and Life Sciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan

Phosphorylation of the cyclin-dependent kinase inhibitor p27\(^{\text{Kip1}}\) has been thought to regulate its stability. Ser\(^{10}\) is the major phosphorylation site of p27\(^{\text{Kip1}}\), and phosphorylation of this residue affects protein stability. Phosphorylation of p27\(^{\text{Kip1}}\) on Ser\(^{10}\) has now been shown to be required for the binding of CRM1, a carrier protein for nuclear export. The p27\(^{\text{Kip1}}\) protein was translocated from the nucleus to the cytoplasm at the G\(_0\)-G\(_1\) transition of the cell cycle, and this export was inhibited by leptomycin B, a specific inhibitor of CRM1-dependent nuclear export. The nuclear export and subsequent degradation of p27\(^{\text{Kip1}}\) at the G\(_0\)-G\(_1\) transition were observed in cells lacking Skp2, the F-box protein component of an SCF ubiquitin ligase complex, indicating that these early events are independent of Skp2-mediated proteolysis. Substitution of Ser\(^{10}\) with Ala (S10A) markedly reduced the extent of p27\(^{\text{Kip1}}\) export, whereas substitution of Ser\(^{10}\) with Asp (S10D) or Glu (S10E) promoted export. Co-immunoprecipitation analysis showed that CRM1 preferentially interacted with S10D and S10E but not with S10A, suggesting that the phosphorylation of p27\(^{\text{Kip1}}\) on Ser\(^{10}\) is required for its binding to CRM1 and for its subsequent nuclear export.

The cell cycle of eukaryotic cells is regulated by a series of protein complexes composed of cyclins and cyclin-dependent kinases (CDKs)\(^1\), the activity of which is suppressed by a group of CDK inhibitors (CKIs)\(^1\), 2). Among the CKIs, p27\(^{\text{Kip1}}\) plays a pivotal role in the control of cell proliferation\(^3\)–7). The amount of p27\(^{\text{Kip1}}\) is high during the G\(_1\) phase of the cell cycle in normal cells, but it rapidly decreases on reentry of cells into G\(_1\) phase\(^8\), 9). We and others have shown that mice homozygous for deletion of the p27\(^{\text{Kip1}}\) gene are larger than normal mice and that they exhibit multiple organ hyperplasia as well as a predisposition to cancer\(^10\)–13). These observations support the notion that p27\(^{\text{Kip1}}\) is a key determinant of both body size and the size of organs as a result of its role in the control of cell proliferation and that the loss of p27\(^{\text{Kip1}}\) function may lead to carcinogenesis. Indeed many studies have shown that the expression of p27\(^{\text{Kip1}}\) is deregulated in various human cancers (for review, see Ref. 14).

The function of p27\(^{\text{Kip1}}\) is regulated by changes in its concentration as well as in its localization in the cell. The concentration of p27\(^{\text{Kip1}}\) is thought to be controlled predominantly by the ubiquitin-proteasome pathway\(^15\). Degradation of p27\(^{\text{Kip1}}\) is promoted by its phosphorylation on Thr\(^{187}\) by the cyclin E-CDK2 complex\(^16\), 17), and the phosphorylation of this residue is required for the binding of p27\(^{\text{Kip1}}\) to Skp2, an F-box protein that is thought to function as the receptor component of an SCF ubiquitin ligase complex; such binding then results in the ubiquitination and degradation of p27\(^{\text{Kip1}}\)\(^18\)–22). We have recently shown that the degradation of p27\(^{\text{Kip1}}\) at the G\(_0\)-G\(_1\) transition is independent of Skp2 and occurs in the cytoplasm, whereas the Skp2- and Thr\(^{187}\) phosphorylation-dependent degradation of p27\(^{\text{Kip1}}\) occurs in the nucleus\(^23\). These observations suggest that the nuclear export of p27\(^{\text{Kip1}}\) may be critical for its down-regulation early during reentry of quiescent cells into the cell cycle. Consistent with this notion, Jab1 promotes the translocation of p27\(^{\text{Kip1}}\) from the nucleus to the cytoplasm, decreasing the amount of p27\(^{\text{Kip1}}\) in the cell by accelerating its degradation\(^24\).

We previously identified Ser\(^{10}\) as a major phosphorylation site of p27\(^{\text{Kip1}}\), accounting for ~70% of the total phosphorylation of this protein, and the extent of phosphorylation at this site was 75-fold greater than that at Thr\(^{187}\)\(^25\). The extent of Ser\(^{10}\) phosphorylation was markedly increased in cells in the G\(_0\)-G\(_1\) phase of the cell cycle compared with that apparent for cells in S or M phase. Mutation analysis revealed that phosphorylation of Ser\(^{10}\), like that of Thr\(^{187}\), contributes to regulation of p27\(^{\text{Kip1}}\) stability. We now show that Ser\(^{10}\) phosphorylation is required for the binding of p27\(^{\text{Kip1}}\) to CRM1, a carrier protein for nuclear export, and that the substitution of Ser\(^{10}\) with other residues affects the nuclear export of p27\(^{\text{Kip1}}\). Our data suggest that Ser\(^{10}\) phosphorylation is a key event in regulation of the function of p27\(^{\text{Kip1}}\) at the G\(_0\)-G\(_1\) transition.

EXPERIMENTAL PROCEDURES

Cell Culture and Synchronization—Mouse embryonic fibroblasts (MEFs) were prepared from 13.5-day-postcoitum Skp2\(^{-/-}\) and Skp2\(^{-/-}\) embryos as described previously\(^26\). Only nonsenescent MEFs (no other with other residues affects the nuclear export of p27\(^{\text{Kip1}}\). Our data suggest that Ser\(^{10}\) phosphorylation is a key event in regulation of the function of p27\(^{\text{Kip1}}\) at the G\(_0\)-G\(_1\) transition.

EXPERIMENTAL PROCEDURES

Cell Culture and Synchronization—Mouse embryonic fibroblasts (MEFs) were prepared from 13.5-day-postcoitum Skp2\(^{-/-}\) and Skp2\(^{-/-}\) embryos as described previously\(^26\). Only nonsenescent MEFs (no other with other residues affects the nuclear export of p27\(^{\text{Kip1}}\). Our data suggest that Ser\(^{10}\) phosphorylation is a key event in regulation of the function of p27\(^{\text{Kip1}}\) at the G\(_0\)-G\(_1\) transition.

The abbreviations used are: CDK, cyclin-dependent kinase; CKI, CDK inhibitor; MEF, mouse embryonic fibroblast; GFP, green fluores-
Nuclear Export of Phosphorylated p27Kip1 by CRM1

When the nuclear export of p27Kip1 was monitored by immunoblot analysis of nuclear and cytoplasmic fractions of the cells (Fig. 1B). The amount of p27Kip1 in the nuclear fraction thus gradually decreased, whereas that in the cytoplasmic fraction was transiently increased at 7–10.5 h after the onset of serum stimulation. Given that the expression of Skp2 was not detected until 10.5 h after the onset of stimulation and that Skp2 was localized predominantly to the nucleus (28), Skp2 likely does not contribute to the translocation and degradation of p27Kip1 during this time period. Treatment of cells with leptomycin B, a specific inhibitor of CRM1-dependent nuclear export (29), blocked the translocation of p27Kip1 but did not prevent the decrease in the abundance of this protein (Fig. 1A), suggesting that the nuclear export of p27Kip1 is not required for its degradation. Furthermore, the addition of MG132, a rapid-acting inhibitor of the proteasome, to the culture medium together with leptomycin B inhibited the degradation of p27Kip1 in the nucleus. These data suggest the existence of two independent pathways for p27Kip1 proteolysis, one in the nucleus and one in the cytoplasm.
Our previous report demonstrated that the extent of Ser¹⁰ phosphorylation was markedly increased in cells in the G₀ phase of the cell cycle compared with that apparent for cells in S or M phase (25). We thus examined the relative amounts of two (phosphorylated versus nonphosphorylated) forms of p27^Kip₁ in the nucleus versus cytoplasm (Fig. 1C). Two-dimensional electrophoresis and immunoblot analysis with antibodies against endogenous p27^Kip₁ (upper panels of each set), and the resulting images were superimposed with those of nuclear staining with Hoechst 33258 (lower panels). A, Skp2⁺/⁺ and Skp2⁻/⁻ MEFs synchronized at G₀ phase by serum deprivation for 96 h were restimulated to enter the cell cycle by exposure to 20% serum for the indicated times. Cells were then subjected to immunostaining for endogenous p27^Kip₁ (upper panels) and/or its S10D, S10E, S10A, or T187A mutants.

Nuclear Export of Phosphorylated p27^Kip₁ by CRM1

The stimulation-induced translocation of the S10A mutant of p27^Kip₁ was markedly inhibited compared with that observed with the wild-type and S10D proteins. Quantitative analysis revealed that wild-type, S10D, and S10A derivatives of p27^Kip₁ were located in the nucleus in the absence of serum stimulation (Fig. 4A), suggesting that Ser¹⁰ phosphorylation is not sufficient for nuclear export. This notion is consistent with our previous observation that p27^Kip₁ was highly phosphorylated at Ser¹⁰ in the nucleus of quiescent cells even though Ser¹⁰ is highly phosphorylated (25).

Finally we examined the ability of the various p27^Kip₁ derivatives to undergo translocation from the nucleus to the cytoplasm. Wild-type and mutant derivatives of p27^Kip₁ were expressed in NIH 3T3 cells with the use of the retroviral Dox-regulated system. The expression of the p27^Kip₁ derivatives was induced by Dox during serum deprivation for 96 h and was then terminated by removal of Dox from the medium at which time serum was added back to the medium to induce the translocation of p27^Kip₁. Immunofluorescence analysis revealed that wild-type, S10D, and S10A derivatives of p27^Kip₁ were located in the nucleus in the absence of serum stimulation (Fig. 4A), suggesting that Ser¹⁰ phosphorylation is not sufficient for nuclear export. This notion is consistent with our previous observation that p27^Kip₁ was highly phosphorylated at Ser¹⁰ in the nucleus of quiescent cells even though Ser¹⁰ is highly phosphorylated (25). The stimulation-induced translocation of the S10A mutant of p27^Kip₁ was marked reduced compared with that observed with the wild-type and S10D proteins. Quantitative analysis indicated that the efficiency of export was greater for the S10D mutant than for wild-type p27^Kip₁ (Fig. 4B). The amount of the S10A mutant remaining in the nucleus was markedly greater than that for p27^Kip₁ (Fig. 4B). The amount of this protein in the nucleus of stimulated cells never achieved the level apparent in quiescent cells (Fig. 4B) suggest that a...
fraction of p27^{Kip1} is exported from the nucleus by a mechanism independent of CRM1 and Ser¹⁰ phosphorylation. These results indicate that phosphorylation of Ser¹⁰ of p27^{Kip1} is required for the binding of CRM1 and subsequent translocation of p27^{Kip1} to the cytoplasm. However, the phosphorylation is not sufficient for the nuclear export, and another factor(s) may be necessary in addition to the phosphorylation of Ser¹⁰.

Nuclear Export Controlled by Ser¹⁰ Phosphorylation Is Important for p27^{Kip1} Down-regulation at the G_S-G₁ Transition—We have recently shown that the ubiquitin-mediated proteolysis of p27^{Kip1} at the G_S-G₁ transition occurs normally in Skp2^{−/−} cells (23), whereas the degradation of this protein during S and G₂ phases is markedly impaired in these cells. Given also that Skp2 is not expressed in the early phase (G₀-S), whereas the degradation of this protein in the nucleus and are means ± S.E. of values from three independent experiments. WT, wild type.

nuclear export of p27^{Kip1}. Although our present results are mostly consistent with those of Rodier et al., these latter researchers demonstrated that endogenous p27^{Kip1} phosphorylated on Ser¹⁰ is translocated from nucleus into cytoplasm by using the antibody that is specific for p27^{Kip1} phosphorylated on Ser¹⁰. We added the finding that p27^{Kip1} physically associates with the carrier protein CRM1 and that the formation of this complex is controlled by the phosphorylation of p27^{Kip1} on Ser¹⁰. Both reports suggest that the nuclear export of p27^{Kip1} is regulated by the phosphorylation on Ser¹⁰ and plays a critical role to decrease the abundance of p27^{Kip1} protein below a certain threshold to allow the activation of cyclin-CDK complexes.

Acknowledgments—We thank S. Hatakeyama and M. Kitagawa for helpful discussion; R. Shimoharada, R. Yasukochi, N. Nishimura, and M. Kimura for help in preparation of the manuscript.