Emergency Surgery for Acute Complicated Diverticulitis

Ferdinand Köckerling

Department of Surgery, Vivantes Hospital, Berlin, Germany

Introduction

The optimal treatment of acute complicated diverticulitis is a matter of debate and has undergone significant changes. Currently, the main focus of surgical treatment concepts is on controlling the emergency situation triggered by acute complicated sigmoid diverticulitis through interventional and minimally invasive measures. Historically, Hartmann’s procedure has been the operation of choice and is still favored by many surgeons. It is associated with morbidity and mortality rates of 43 and 10%, respectively. Hartmann’s procedure also requires a second laparotomy to reverse the stoma and secondary anastomosis of the left colon to the rectum. Approximately 30% of patients end up with permanent stomas. Primary resection and anastomosis with or without stoma is an appealing alternative which may provide acceptable outcomes in terms of morbidity and mortality rate.

Currently, the main focus of surgical treatment concepts is on controlling the emergency situation triggered by acute complicated sigmoid diverticulitis through interventional and minimally invasive measures. These include abscess drainage or abdominal lavage and drainage as well as conservative treatment aimed at paving the way for elective sigmoid resection with anastomosis without a stoma. This paradigm shift has been made possible in large part because of advances in antibiotic development, interventional radiology techniques, critical care medicine, and the development of minimally invasive surgery.

Definition and Incidence of Acute Complicated Diverticulitis

The standardized incidence rate of hospitalization for acute diverticulitis was found – on the basis of a sample consisting of...
and Hinchey staging of patients with suspected diverticulitis, to as-
to 20% of the US population – to have risen from 59 per 100,000 per
year to 71 per 100,000 per year from 1998 to 2005 [3]. Overall an-
annual age-adjusted admissions for acute diverticulitis increased
from 120,500 in 1998 to 151,900 in 2005 (26% increase) [3]. Ex-
trapolated to Germany that amounts to around 60,000 cases of in-
patient treatment because of acute sigmoid diverticulitis. Acute di-
verticulitis is divided into uncomplicated and complicated diver-
ticulitis. Acute complicated diverticulitis is mainly stage-divided by
the Hinchey classification [4]. The Hinchey classification, de-
veloped before the advent of routine computed tomography (CT) im-
aging, remains the most widely used classification [5] for acute
complicated diverticulitis. The original Hinchey classification di-
vided acute complicated diverticulitis into pericolic abscess con-
fined to the mesentery of the colon (stage I), pelvic abscess result-
ing from a local perforation of a pericolic abscess (stage II), gener-
alized peritonitis resulting from rupture of pericolic/pelvic abscess
into the peritoneal cavity (stage III), and feculent peritonitis result-
ing from the free perforation of a diverticulum (stage IV) [5].

Most patients with acute uncomplicated sigmoid diverticulitis
respond to medical treatment and generally experience significant
decrease in their abdominal pain, temperature, and white blood
cell count within the first 48 h after initiation of antibiotic treat-
ment [5]. In a minority of patients, non-operative treatment fails
and symptoms either persist or worsen. In these cases, urgent or
semi-urgent surgery may become necessary during the same hospi-
tal stay [5].

In general, percutaneous drainage or surgery is necessary for
acute complicated diverticulitis in the Hinchey stages II–IV.

Between 2002 and 2007, data on 1,073,397 patients who were
admitted to hospital because of diverticulitis were entered into the
American National Inpatient Sample Database. Of these, 78.3%
were emergency admissions, and 21.7% elective admissions. It was
possible to successfully treat 85.92% of emergency admissions with
antibiotics. 1.88% underwent percutaneous abscess drainage, and
surgery was needed for 12.2% [6]. In other studies, the proportion
of patients needing surgical intervention was 25% [7]. Hence,
around 15–25% of patients admitted to hospital because of acute
diverticulitis require urgent percutaneous abscess drainage or sur-
gical treatment.

Diagnosis in Acute Complicated Diverticulitis for
Hinchey Staging

CT imaging has become a standard tool to aid in the diagnosis
and Hinchey staging of patients with suspected diverticulitis, to as-
sess disease severity, and to help plan treatment [7]. In a prospec-
tive study of 542 patients with acute left-sided diverticulitis, triple-
contrast CT scans (intravenous, oral, and rectal) were compared to
water-soluble contrast enema. CT scan had a significantly higher
diagnostic sensitivity of 0.98 versus 0.92 (p < 0.01). Only in 29% of
cases with CT-proven abscess did colonic contrast enema show in-
direct evidence of this [8]. According to the American College of
Radiology, CT with intravenous and possibly supplementary oral
and rectal contrast is the investigation of choice for suspected acute
diverticulitis [9]. The Clinical Practice Guideline Task Force of the
American Society of Colon and Rectal Surgeons also recommend
CT scans of the abdomen and pelvis as the most appropriate initial
imaging modality in the assessment of suspected diverticulitis [7].

Indication for Surgery in Acute Complicated
Diverticulitis

In general, surgery is recommended for complicated diverticulitis
after the first episode since the risk of recurrent disease without sur-
gery is very high. However, when age or comorbidities prohibitively
increase perioperative risks, it may be appropriate to approach com-
plicated diverticulitis with conservative treatment alone [5].

Patients with multiquadrant peritonitis or overwhelming infec-
tion due to purulent (Hinchey stage III) or feculent (Hinchey stage
IV) peritonitis are typically acutely ill or appear toxic and require
expedited fluid resuscitation, antibiotic administration, and opera-
tion without delay [7].

Following successful conservative treatment of mesocolic ab-
cesses (Hinchey stage I) of <3–4 cm or mesocolic abscesses
(Hinchey stage I) of >4 cm or pelvic abscesses (Hinchey stage II)
with percutaneous drainage or laparoscopic lavage, elective colec-
tomy should typically be advised, because retrospective data have
shown recurrence rates as high as 40% [7].

Interventional and Surgical Treatment of Acute
Complicated Sigmoid Diverticulitis in Hinchey
Stages I and II

Abscess formation, probably the result of a contained perfora-
tion, is a common complication of acute diverticulitis and occurs
in 15–20% of patients [7]. The literature supports the concept that
percutaneous drainage allows a majority of patients (52–74%) to
avoid urgent operation and undergo interval elective, one-stage
colecotomy [10–14].

Not all abscesses require interventional drainage for resolution.
Abscesses smaller than 3–4 cm in size are often treated conserva-
tively with antibiotic therapy alone [11]. However, patients who do
not clinically improve without drainage should undergo percuta-
aneous drain placement or laparoscopic lavage and drainage [7]. Pa-
tients with abscesses larger than or equal to 4 cm can be managed
with CT-guided abscess drainage followed by referral for surgical
treatment [11].

There are several limitations to percutaneous drainage of diver-
ticulum abscesses. First, accessibility is not always possible because
of small bowel loops in contiguity with the fluid collection [10]. Sec-
ond, drainage, when feasible, is not always successful. Reported
failure rates for diverticular abscesses range from 15 to 30%. Third,
when drainage is feasible and initially successful, abscess recur-
rence or fistulas may occur, compromising the performance of an
elective surgical resection [10].
Patients without an adequate radiographic window to permit safe percutaneous drainage may be candidates for operative drainage that is typically accomplished laparoscopically [7].

In a systematic review [15], it was possible to successfully treat 39 of 44 pelvic abscesses (Hinchey stage II) through laparoscopic lavage and drainage. This has led to the creation of a decision tree for acute complicated sigmoid diverticulitis in Hinchey stages I and II depicted in figure 1.

Open Surgical Treatment of Acute Complicated Sigmoid Diverticulitis in Hinchey Stages III and IV

In the majority of cases, the first diverticulitis attack is the most dangerous and is associated with the highest perforation risk [16]. Free perforation with generalized purulent or feculent peritonitis often necessitates emergency sigmoid resection, and indeed discontinuity resection of the sigmoid colon using Hartmann’s procedure, with its attendant high morbidity and mortality [17]. There continues to be a lively debate about whether sigmoid resection with primary anastomosis, and possibly a protective stoma, or discontinuity resection using Hartmann’s procedure should be performed in cases of free perforation with purulent (Hinchey stage III) or feculent (Hinchey stage IV) peritonitis. 16 retrospective studies have been published on this topic and their results analyzed in 3 systematic reviews [18]. The systematic reviews [2, 17, 19] showed that discontinuity resection using Hartmann’s procedure was associated with a mortality rate of 15–19%, whereas for primary anastomosis it was only 4.9–9.9%. Only for 45% of patients a reversal of Hartmann’s procedure was performed, i.e. continuity was later restored. Besides, the reversal operation was associated with a morbidity rate of 30–40% and a mortality rate of 5%. Furthermore, the quality of life following discontinuity resection and subsequent reversal operation was poorer than after primary anastomosis [20].

In addition to the systematic reviews, 2 prospective randomized multicenter trials have been published in the past 2 years [21, 22]. The first study did not find any difference in morbidity and mortality between primary anastomosis with a protective ileostomy and Hartmann’s discontinuity resection in similar patient collectives. Reversal ileostomy was carried out significantly more often than reversal of Hartmann’s procedure (90 vs. 57%; \(p = 0.005 \)). Reversal ileostomy had a lower complication rate, shorter duration of operation, shorter hospital stay, as well as lower costs [21]. Likewise, the second study did not discern any difference in morbidity and mortality between primary anastomosis with a protective ileostomy and Hartmann’s discontinuity resection. However, in that study the stoma reversal rates were identical (64.3 vs. 60%; \(p = 0.659 \)) [22].

Based on the available data, it is no doubt advisable to use the patient’s risk profile as the chief determinant when deciding whether to opt for primary anastomosis with a protective stoma or discontinuity resection using Hartmann’s procedure. If the patient has comorbidities (ASA III or IV), severe sepsis, or long-standing feculent peritonitis, preference should definitely be given to Hartmann’s discontinuity resection. If the patient is in a relatively good general state and there is peritonitis of recent onset and only a mild septic reaction, creation of a primary anastomosis, possibly with a protective stoma, can be considered [23].

Laparoscopic Treatment of Acute Complicated Sigmoid Diverticulitis in Hinchey Stages III and IV

In recent years, laparoscopic treatment of perforated sigmoid diverticulitis has been increasingly used as an alternative to open...
surgery for Hinchey stages III and IV [15, 24]. Sigmoid resection is now completely omitted in emergency procedures, and only abdominal lavage and drainage are performed. A systematic review reported the findings for 231 patients treated by means of laparoscopic lavage and drainage. Here 44 patients had Hinchey stage II, i.e. abscess of the small pelvis, 178 patients had Hinchey stage III with purulent peritonitis, and 8 patients had Hinchey stage IV with feculent peritonitis [15]. It was possible to successfully treat 95.7% of patients using lavage and drainage alone. The morbidity rate was only 10.4%, and mortality was 1.7%. It was possible to conduct elective sigmoid resection in the later course for 87% of patients. These positive outcomes have since been confirmed in 17 retrospective studies with a total of 768 patients [18].

Two prospective randomized multicenter trials are currently being carried out, one in the Netherlands [25] and one in Scandinavia [26], with the aim to ascertain the role of laparoscopic lavage and drainage compared with resection of purulent and feculent perforated sigmoid diverticulitis (Hinchey stages III, IV). The indication for laparoscopic lavage and drainage should be based on stringent criteria until such time as the findings of these studies are published. Feculent peritonitis with a visible perforation site no doubt constitutes an exclusion criterion [18].

Disclosure Statement

The author has no conflict of interest or financial ties to disclose.

References

[1] Dharmarajan S, Hunt SR, Birnbaum EH, Fleshman JW, Mutch MG: The efficacy of nonoperative management of acute complicated diverticulitis. Dis Colon Rectum 2011;54:663–671.

[2] Abbas S: Resection and primary anastomosis in acute complicated diverticulitis, a systematic review of the literature. Int J Colorectal Dis 2007;22:351–357.

[3] Ertzoni DA, Mack TM, Beart RW, Kaiser AM: Diver-
ticular peritonitis: Treatment of acute complicated diverticulitis. Dan Med J 2012;59:C4453.

[4] Stocchi L: Current indications and role of surgery in the management of sigmoid diverticulitis. World J Gastroenterol 2010;16:804–817.

[5] Modesto H, Buchberg BS, Magno C, Mills SD, Stamos MJ: Trends in diverticulitis management in the United States from 2002 to 2007. Arch Surg 2011;146:400–406.

[6] Feingold D, Steele SR, Lee S, Kaiser A, Boushey R, Ruie WD, Rafferty JF: Practice parameters for the treatment of sigmoid diverticulitis. Dis Colon Rectum 2014;57:284–294.

[7] Ambrosini P: Acute diverticulitis of the left colon: value of the initial CT and timing of elective colec-
tomy. J Gastrointest Surg 2008;12:1318–1320.

[8] American College of Radiology: ACR Appropriateness Criteria®. Left Lower Quadrant Pain – Suspected Di-
verticulitis. ACR, 2014. www.acr.org.

[9] Durmus Y, Gervaz P, Brandt D, Bucher P, Platon A, Morel P, Poletti PA: Results from percutaneous drainage of Hinchey stage II diverticulitis guided by computed tomography scan. Surg Endosc 2006;20:1129–1133.

[10] Stewart B, Tye G, Kruskal J, Sonja J, Opdeka F: Impact of CT-guided drainage in the treatment of diverticular abscesses: size matters. AJR Am J Roentgenol 2006;186:680–686.

[11] Brandt D, Gervaz P, Durmus Y, Platon A, Morel P, Poletti PA: Percutaneous CT scan-guided drainage vs antibiotic therapy alone for Hinchey II diverticulitis: a case-control study. Dis Colon Rectum 2006;49:1533–1538.

[12] Ambrosini P, Chauhans R, Soraya C, Peiris-Waser N, Terrier F: Long-term outcome of mesoscopic and pelvic diverticular abscesses of the left colon: a prospective study of 73 cases. Dis Colon Rectum 2005;48:787–791.

[13] Kaiser AM, Jiang JK, Lake JP, Auli G, Artzay A, Gonzalez-Ruiz E, Eissani R, Beart RW: The management of complicated diverticulitis and the role of computed to-
ography. Am J Gastroenterol 2005;100:910–917.

[14] Toorvenlijt BR, Swanek H, Schoones JW, Hamming JF, Benemelmann WA: Laparoscopic peritoneal lavage for perforated colonic diverticulitis: a systematic review. Colorectal Dis 2010;12:862–867.

[15] Anaya DA, Flum DR: Risk of emergency colectomy and colostomy in patients with diverticular disease. Arch Surg 2005;140:681–685.

[16] Constantinides VA, Tekkis PP, Athanasiou T, Aziz O, Purkayastha S, Remzi FH, Fazio VW, Aydin N, Darzi A, Senapati A: Primary reanastomosis with Hartmann’s procedure in nonelective surgery for acute colonic diverticulitis: a systematic review. Dis Colon Rectum 2006;49:966–981.

[17] Holmer C, Krisz ME: Diverticular disease – choice of surgical procedure. Chirurg 2014;85:308–313.

[18] Salem L, Flum DR: Primary anastomosis or Hart-
mann’s procedure for patients with diverticular perito-
neal peritonitis: A systematic review. Dis Colon Rectum 2004;47:1953–1964.

[19] Vermeulen J, Gosselink MP, Busschbach IV, Lange JF: Avoiding or reversing Hartmann’s procedure provides improved quality of life after perforated diverticulitis. J Gastrointest Surg 2010;14:651–657.

[20] Oberkofler CE, Rickenbacher A, Rapits DA, Lehmah K, Villetger F, Buchli C, Grider F, Gelpke H, Deccurtins M, Tempia-Calieri AA, Demartines N, Hahlosoer D, Clevinan PA, Breitenstein S: A multicenter randomized clinical trial of primary anastomosis or Hartmann’s pro-
cedure for perforated left colonic diverticulitis with pu-
rulent or fecal peritonitis. Ann Surg 2012;256:619–827.

[21] Binda GA, Karas JR, Serventi A, Sokmen S, Amato A, Hydo L, Bergamaschi R: Primary anastomosis versus non-
restorative resection for perforated diverticulitis with peritonitis: a prematurely terminated. Colorectal Dis 2012;14:1403–1410.

[22] Constantinides VA, Heriot A, Remzi F, Darzi A, Sena-
pati A, Fazio VW, Tekkis PP: Operative strategies for diverticular peritonitis – a decision analysis between primary resection and anastomosis versus Hartmann’s procedures. Ann Surg 2007;245:94–103.

[23] Myers E, Hurley M, O’Sullivan GC, Kavanagh D, Wilson I, Winter DC: Laparoscopic peritoneal lavage for generalized peritonitis due to perforated diverticulitis. Br J Surg 2008;95:97–101.

[24] Swanek H, Vermeulen J, Lange JF, et al.; Dutch Diver-
ticular Disease (3D) Collaborative Study Group: The ladies trial: laparoscopic peritoneal lavage or resection for purulent peritonitis and Hartmann’s procedure or resection with primary anastomosis for purulent or faec-
ulent peritonitis in perforated diverticulitis (NTR2037). BMC Surg 2010;10:29.

[25] Thornell A, Angenete E, Gonzales E, Heath J, Jess P, Lackberg Z, Ovesen H, Rosenberg J, Skullman S, Hag-
lind E: Treatment of acute diverticulitis laparoscopic lavage vs resection (DILALA): study protocol for a randomized controlled trial. Trials 2011;12:186.