Most Frequently Asked Questions about the Coercivity of Nd-Fe-B Permanent Magnets

Jiangnan LI, Hossein SEPEHRI-AMIN, Taisuke SASAKI, Tadakatsu OHKUBO and Kazuhiro HONO*

Elements Strategy Initiative Center for Magnetic Materials (ESICMM), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Japan.

Received August 31, 2021; Revised October 4, 2021; Accepted October 11, 2021

ABSTRACT

Physically, the coercivity of permanent magnets should scale with the anisotropy field of ferromagnetic compounds, \(H_a \); however, the typical coercivity values of commercial polycrystalline sintered magnets are only \(-0.2 \, H_a\), which is known as Brown’s paradox. Recent advances in multi-scale microstructure characterizations using focused ion beam scanning electron microscope (FIB/SEM), aberration corrected scanning transmission electron microscopy (C-Corrected STEM), and atom probe tomography (APT) revealed detailed microstructural features of commercial and experimental Nd-Fe-B magnets. These investigations suggest the magnetism of a thin layer formed along grain boundaries (intergranular phase) is a critical factor that influence the coercivity of polycrystalline magnets. To determine the magnetism of the thin intergranular phase, soft X-ray magnetic circular dichroism (XMCD) and electron holography played critical role. Large scale micromagnetic simulations using the models that are close to real microstructure incorporating the recent microstructure characterization results gave insights on how the coercivity and its thermal stability is influenced by the microstructures. Based on these new findings, coercivity of Nd-Fe-B magnets are being improved to its limit. This review replies to most frequently asked questions about the coercivity of Nd-Fe-B permanent magnets based on our recent studies.

KEY WORDS

Nd-Fe-B magnets, coercivity, thermal stability, microstructure, micromagnetic simulations

1 はじめに

1982年にSagawaとCroatにより独立に発明されたNd-Fe-B系永久磁石はモータ、発電器、アクチュエータ等で磁束を発生させるために使用される最も重要な工業材料の一つである。今後、電気自動車、ドローン、ロボット、風力発電機などのグリーンエネルギー分野での用途拡大に伴い、高性能なNd-Fe-B系永久磁石のニーズがさらに高まることができるが予想されている1。Nd-Fe-Bの最大エネルギー積は理論限界に近づきつつあるが、永久磁石用途で最も重要な「磁石力」とは、構造の特性であり、その価はまだ理論限界をはるかに下回っている。物理的には、永久磁石の磁石力は強磁性化合物の異方性磁場である \(H_a \) に比例するはずだが、市販の多結晶

* Corresponding author, E-mail: kazuhiro.hono@nims.go.jp

Key Words	Description
Nd-Fe-B magnets	coercivity, thermal stability, microstructure, micromagnetic simulations
なる。これまでに Nd-Fe-B 磁石の微細構造と保磁力の関係を理解するために、数多くの研究が行われてきた。しかし、1980年代の構造評価技術の限界から、微細構造と磁気特性に関しては数多くの疑問が残っていた。本稿では、ここ10年間あまりに不思議な新興プロジェクトで行われた Nd-Fe-B 磁石材料の微細構造とマイクロマグネットィクス・シミュレーションによる研究成果に基づき、Nd-Fe-B 系磁石の保磁力に関して研究者や技術者が抱えてきた疑問について答える。また、重合土種元素の Dy か Tb を使用し、あるいは最小の使用で、高保磁力が得られるような最適な微細構造を実現する方法についても最近の論文成果を概観する。

2 なぜ焼結磁石の保磁力 H_r は 0.2 H_r 程度なのか？

Nd-Fe-B 為結磁石は、液磁焼結法で製造される、単結晶の微粒子を磁場配向し、圧粉により成形体を作り、その後、950～1100°Cの高温で液磁焼結する。焼き直後の Nd-Fe-B 磁石の保磁力は0.8～0.9 T に非常に小さいが、これを520～600°Cでアニールすると、保磁力が25～30%程度増加する【20】。Fig. 1は Nd-Fe-B 系焼結磁石の走査電子顕微鏡によるインレーン二次電子像であるが、NdFeB結晶粒が薄い粒界で分離されていることが観察される。さらに、金属 Nd、NdO、NdFeBなどのNd リッチな副成分の粒子も存在している。Vialらによる BSE-SEM 観察では、焼き後の熱処理による保磁力の増加は、NdFeB粒界に沿って連続的な Nd リッチな粒界相が形成されることによるものであることが示された【22】。Fig. 2(a)および(c)に示す粒子を用いた高分解能 TEM 観察結果によると、焼結材ならびに最適熱処理材のいずれの試料でもこの粒界相はアモルファス構造を持つことが確認されている【23】。Sepahi-AminらのD3AP研究によると、焼き直後の試料では Ndの粒界偏析が観察されるだけですべて粒界相が形成されていない。しかし、焼き後に最適化熱処理された試料では、粒界に沿って平均厚さ3nm程度の明瞭なアモルファス相が観察される。この相は、Fig. 2(b, d)に示すように、65at.%以上のFeおよびCoを含むアモルファスであることが確認された【24】。従来、この粒界相は非磁性であり、熱処理により粒間交換結合が形成されるために保磁力が増大すると考えられていたが、3DAP解析結果では強磁性相が65%も含まれているため、強磁性である可能性があると考えられた。そこで、粒界相の磁化を推定するために、3DAPで決定された粒界相と同様成分組成の薄膜（Nd30Fe70Cu3）の構成と磁気特性が調査された。その結果、この薄膜はアモルファス構造を持つ0.6 Tの磁化を持つ磁性体であることがわかった【25】。この研究は、最適化熱処理された焼結磁石のNdFeB結晶粒は、薄い強磁性粒界相を介して交換結合していることを明らかにした。

この研究に触発されて、Nd-Fe-B 燃結磁石の薄い粒界相の磁性を様々な手法で直接測定した結果が報告された。中村らは、Nd-Fe-B 燃結磁石の粉末試料に表面感応型X線磁気性二色性（XMCD）を使用し、Fig. 3に示すように、燃結磁石の粒界相は、室温で1.0 Tの飽和磁化を持ち、キュリー温度は260°Cであることを明らかにした【26】。また、Kohashiら【27】とMurakamiら【28】は、Nd-Fe-B燃結磁石の粒界相が強磁性を示すことを、それぞれスピン偏極走査電子顕微鏡と電子線ホログラフィーを用いて報告している。なお、粒界相の
Fig. 3 (a) Schematic diagram of XMCD measurement on fractured surface of magnet. (b) Temperature dependence of Fe magnetic moments in the GB phase \(m_{\text{GB}}\) estimated for \(t_{\text{GB}}\sim 3\) nm. \(m_{\text{XMCD}}\) is the Fe magnetic moment, \(m_{\text{NFB}}\) corresponds to the magnetic moment averaged over Fe sites in Nd2Fe14B crystal. The inset represents the magnetic field dependences of \(m_{\text{XMCD}}\) (open circles) and \(M\) (open squares) recorded at 30°C. Reproduced from Nakamura et al.\(^{25}\) with the permission of AIP Publishing.

Fig. 4 HAADF-STEM images, superimposed STEM-EDS maps, and composition line profiles obtained from EDS maps showing intergranular phase in Nd-Fe-B sintered magnets located (a, b) at the c-plane and (c, d) at the side plane of Nd2Fe14B grains. c-axis in Nd2Fe14B grain is shown with a white arrow. Adapted from Sasaki et al.\(^{23}\) with permissions from Elsevier.

The inset represents the magnetic field dependences of \(m_{\text{XMCD}}\) (open circles) and \(M\) (open squares) recorded at 30°C. Reproduced from Nakamura et al.\(^{25}\) with the permission of AIP Publishing.

Nd-Fe-B 焼結磁石に少量の Ga を添加すると、焼結後の最適化熱処理時に粒子相の濡れ性が改善され、保磁力が向上することが知られている\(^{28,29}\)。過去の Nd-Fe-B 焼結磁石の開発では高残留磁束密度を達成することが優先されてきた。一方、保磁力を高めるために、Nd の一部の Dy 置換により対応してきた。その結果、N50 系焼結磁石の化学組成は、Nd\(_{13}\)Fe\(_{75}\)B\(_{8}\)程度となり、Nd-Fe-B の化学量論である垂直な粒界の Nd 濃度は、c-軸に平行な粒界相の Nd 濃度よりも系統的に低いことを示した（Fig. 4\(^{23}\)）。このような粒界相の組成変化は、焼結過程に大きな影響を与えると考えられる。佐々木らは fcc 相の Fe\(_{1-x}\)Nd\(_x\)の磁化を第一原理計算により計算し、\(x < 0.7\) でアモルファス Fe\(_{1-x}\)Nd\(_x\)相は強磁性であることを見出した。それ故、焼結磁石の磁化強度を大きくすることが可能である。
Nd$_{11.7}$Fe$_{82.4}$B$_{5.8}$に対して、Ndが若干多い程度の組成である。Nd-Fe-B焼結磁石の保磁力を newbieをわずかに向上させるために、中島らはこのN50の標準組成に対し若干Ndリッチな組成について検討した。すなわち、Nd$_{3}$Fe$_{14}$B、Nd$_{5}$Fe$_{17}$B$_{2}$、Nd$_{14}$Fe$_{3}$Ga$_{2}$を焼結磁石用のストリップキャスト合金として開発し、これを原料とした5μm程度の粒径の焼結磁石で$H_c = 1.8$Tを、従来の標準的なNd-Fe-B系焼結磁石から大幅に保磁力を向上させることができた35。佐々木らはSTEMによる詳細な微細構造解析の結果（Fig.6）、最適化処理により3種類の非強磁性粒界相（α3、アモルファスNdリッチ相、Nd$_6$Fe$_5$Ga相）が形成され、これが粒間交換結合を弱めて1.8T高い保磁力が発現することを示した36。また、新津ら38は、電子線ホログラフィーを用いて、これら3種類の粒界相が非強磁性であることを報告している。Soderznikらによる磁気光学カーポケット測定では、高い非強磁性粒界相の形成により、減磁過程における磁性のカスクード伝播が抑制され、これが保磁力の向上につながっていると考えられている37。

要約すると、Nd-Fe-B焼結磁石の保磁力がNd$_6$Fe$_5$B相の異方性磁場H_Kに対して、わずか0.2H_Kと低いのは、Nd$_6$Fe$_5$B結晶が強磁性粒界相を介して粒間交換結合しており、保磁力を起源が粒界における磁壁の弱いビニングによるものであるからである。粒界非強磁性粒界相を形成させて粒間交換結合を弱めることにより、高保磁力化は可能である。

3 何故結晶粒径を微細化するとH_cが増大するか？

Fig.7に示すように、異方性Nd-Fe-B系磁石の保磁力が粒径の微細化に伴い増大することはよく知られている36-40。Rameshaらは、焼結磁石の保磁力は$H_c = a - bH_D$従来の結晶粒径に依存することを実験的に示し、その理由としてNd$_6$Fe$_5$Bの粒子径（表面積）が減少するとともに表面での欠陥数が減少するためと説明した36。しかし、最近の研究によると、異方性Nd-Fe-B焼結磁石ではNd$_6$Fe$_5$B結晶粒が交換結合しており、粒界における欠陥数の減少では保磁力の粒径依存性を説明できないことは明らかである。さらに、3μm以下の粒径ではH_Dの粒径依存性から外れて、保磁力が急激に減少することも古くから知られていた（Fig.7）Liらは、従来の粉末プロセスで製造された微細粒径の焼結磁石の保磁力低下は、粉体プロセスで金属Ndが酸化され、Ndに富む粒界相が形成されるからであると報告している41。前節で述べたように、粒界相を均一に形成するためには、Ndと共存する金属Ndが必要である。Ndが酸化されると、焼結後の焼結過程でNd/NdCuの共晶反応が起こらなくなる。よって、$D < 3 \mu m$における保磁力の低下を抑制するために、粉末冶金プロセスにおける金属Nd相の酸化を抑制する必要がある。この問題を解決するために、Uneらは従来のNdFe-B/Nd超微粉末（$D < 1 \mu m$）
Fig. 8 (a) H_c/M_s as a function of H_a/M_s of the micromagnetic models with an average grain size of 30, 50, and 130 nm. The micromagnetic parameters of α and N_{eff} are measured from the slope and intercept of a linear fit to this graph.
(b) Simulated N_{eff} at different modeled grain sizes. Reproduced from Sepehri-Amin et al. with permissions from Elsevier.

Fig. 9 (a) Magneto optical Kerr effect (MOKE) microscopy of the surface of Nd-Fe-B sintered magnet in the remanent state after full magnetization under 5 T magnetic field and (b) simulations of stray field from the surface grain to the interior grains in anisotropic sintered magnet and (c) calculated maximum stray field from cross-sectional slices at $Z = 0$ to $Z = 8 \mu m$ for different grain sizes. Reproduced from Sepehri-Amin et al. with permissions from Elsevier.
なぜDy, Tb粒界拡散プロセスによりH_{k}が高くなるのか？

DyまたはTbを用いた結晶粒界拡散法は、Nd-Fe-B焼結磁石をDyまたはTbの酸化物、フッ化物、または金属の形でコーティングし、その後熱処理を行って粒界部分のDyまたはTb濃度を高めることで残留磁化を低下させることなく保磁力を増大させる手法である15-22。コーティング後は800-1000°Cの高温で3-10時間の熱処理を行い、その後最適熱処理を行うことで、Nd-Fe-B系内に重希土類元素（HRE）リチ化粒（シェル）を形成すると同時に結晶粒界にNdリチ化粒界相を形成する。HREに富む高H_{k}シェルの形成により磁石の保磁力が向上する一方。2:14:1粒のコア部分にはHREが固溶しないので、HREを合金化する場合に比べるとHRE使用量を著しく節約できる。その結果、合金化の場合に問題となる2:14:1相のDyとFeの反強磁性結合による残留磁化の損失は最小限に抑えられる。現在、HRE法は、電気自動車の駆動モータや風力発電用の高保磁力Nd-Fe-B焼結磁石の製造に広く用いられているが、この方法に特有のHREリッチシェル構造の非対称性の形成メカニズムや到達しうる保磁力の上限については、十分に理解されていなかった。

Kimらは、Dy拡散とその後の熱処理工程を含む全粒界拡散過程における保磁力増加の効果を理解するために、DyフリーやDy含有試料の各処理過程における保磁力変化とその微細構造変化を詳細に調査した15,26。Fig. 10 (a)は、DyフリーやNd-Fe-B磁石とDy含有磁石試料を粒界拡散法を適用した場合の保磁力をDy拡散量に対して整理した結果である。保磁力は、Dyの供給量が増えるに従って増加する一定値で飽和する。Fig. 10 (b)に示すように、Dyを含まない試料にGBD処理を施しても、保磁力は2.1 Tで飽和するが、初期保磁力2.3 TのDy含有試料に0.1 wt.%のDyを拡散させると、保磁力は3 Tにまで増大する。GBD処理した高保磁力磁石からDyの量を減らす場合には、出発試料にDyを合金化することなく、保磁力3 T以上に高めることが可能である。また、拡散プロセス後に最適熱処理を行った場合にのみ高い保磁力が得られるメカニズムも十分に理解されていなかった。Fig. 10 (c, d)はDy拡散後に最適化熱処理を行った試料のSTEM-EDS解析結果であるが、粒界に2次的なDyリッチシェルが形成されていることが観察される。これは最適化処理によりDy原子が粒界からシェルに拡散したことを示している。その結果、Dyリッチシェルから粒界に排除されたDyが粒界として濃縮され、高Nd濃度の高い粒界相が形成され、GBD処理を行った試料により保磁力が大きく増加する。

DyならびにTbを用いたGBDプロセスに関するひとつの疑問は、HREリッチシェルが粒界に対して非対称に形成されるメカニズムである。Seclamら15は、HREリッチシェルは拡散処理温度からの冷却中に液相を凝固したものであり、コアとシェルの境界は固液界面であり、固液平衡により固相粒子のセットがコアの形状に反映されるとした。これにより、赤道付近のHREリッチシェルの非対称性を説明できない。最近、KimらはSTEMによる詳細な微細構造評価とフェーズフィールドシミュレーションを用いて、Tb拡散処理したNd-Fe-B焼結磁石においてTbリッチシェルが形成されるメカニズムを検討した27。Fig. 11に示すように、Tbリッチシェルは粒界に沿って常に非対称に形成されている。シェル内部では、粒界側からコア側に向けつつTb濃度が徐々に上昇し、その後、コア領域で急激に低下する（Fig. 11 (e)参照）。さらにTEM観察を行うと、コア界面に積層欠陥が存在することがわかった27。このような微細構造の特徴を説明するため、Kimらは、Tbリッチシェル構造が形成される液膜運動（Chemically Induced Liquid Film Migration, CILFM）メカニズムによるものであると提案した。Fig. 12は実験で得られた微細構造変化を再現するため、液相の体積分率を固定した仮想的なAB2三元合金の粒界の粒成長シミュレーションを行った結果を示している。Aでは溶質濃度が黄色の輝度で表している。Tbを用いた粒界拡散処理ではプロセス中に溶質元素（Tb）が外部から連続的に供給されるため、液相中の溶質含有量をA-10 at%Bに固定している。シミュレーションでは、固相の平衡組成をA-3 at%Bと仮定し、固相の初期組成をA-0 at%Bとしているため、CILFMでは、溶質に富んだシェル領域が粒成長の背後に関与する（Fig. 12 (A) e）の矢印）。興味深いことに、Bリッチシェルは、結晶粒の粗大化の過程で小粒が消滅したとき

Fig. 10 (a) Variations in coercivity as functions of the amount of Dy diffusion for GBD processed Dy-free and Dy-containing magnets. (b) ΔH_{k} of sample A and B in (a) with GBD process steps (GBD treatment and post-diffusion annealing). EDS elemental map of Nd and EDS line profiles across GB phase in (c) GBD treated and (d) post-diffusion annealed Dy-free magnet. Reproduced from Kim et al.50 with permissions from Elsevier.
Fig. 11 EDS elemental map for (a) Nd and (b) Tb. The line scan profile of Tb across the shell (dashed line in Tb map) is shown in (c). Reproduced from Kim et al.55 with permissions from Elsevier.

Fig. 12 (A) 2D phase-field simulation of the microstructure changes of an hypothetical A-B binary alloy based on the CILFM mechanism during isothermal ageing for (a) $t' = 0$, (b) $t' = 0.5$, (c) $t' = 2.5$, (d) $t' = 5$ and (e) $t' = 10$ (t' is dimensionless time). (B) 1D phase-field simulation of the real scale calculation on the shell formation process during isothermal ageing for (a) $t' = 0$, (b) $t' = 5 \times 10^3$ and (c) $t' = 3 \times 10^4$ (t' is dimensionless time). Reproduced from Kim et al.57 with permissions from Elsevier.

Fig. 13 (a) Magnetization curves of hot-deformed, Nd-Dy-Al diffusion-processed and Dy-vapor diffusion-processed magnet samples. (b) BSE-SEM image of Nd$_6$Dy$_{20}$Al$_{18}$ eutectic diffusion-processed hot-deformed magnet. The inset shows the TEM-EDS elemental mapping image. (c) BSE-SEM image of Dy-vapor diffusion-processed hot-deformed magnet. Reproduced from Liu et al.62 with permissions from Elsevier.
Fig. 14 (a) Initial and demagnetization curves of sintered magnet with different grain sizes. (b) Initial and demagnetization curves of hot-deformed magnet with different grain sizes. (c) Simulated initial curves and hysteresis loops of models with different grain sizes. Reproduced from Sepehri-Amin et al. and Liu et al. with permissions from Elsevier.
Fig. 15 (a) Angular dependence of coercivity of Ga-doped sintered Nd-Fe-B magnet with or without post-sinter annealing. (b) Simulated angular dependence of coercivity of a modeled polycrystalline Nd-Fe-B magnet. (c) The simulated $H_c(\theta)$ corresponding to (b), where the reversal mechanism is controlled by the anisotropy energy of the defect grain, K_{def}. Reproduced from Li et al.70 with permissions from Elsevier.

7. H_c的熱安定性を向上させるには？

Nd-Fe-B 磁石の H_c は温度上昇に伴う急激に低下するので，駆動モータ等の動作中に温度が上昇する応用では Nd を一部 Dy で置換した高保磁力磁石が用いられてきた。この保磁力の温度による低下を改善することは希釈系元素使用の削減にも繋がるので，Nd-Fe-B 磁石の磁石の温度依存性を理解することは応用上極めて重要である。Fig. 16 (a) は，Nd$_{14}$Fe$_{76}$Ga$_2$の異方性磁石 μH_c と N50 クラスの焼結磁石の保磁力 μH_c の温度依存性である71。保磁力の温度依存性に関して $H_c(T)$ は直線的に変化するのに対し，$H_c(T)$ が下向きに凹の非線形に変化する理由は長年謎とされてきた。Fig. 16 (a) と (b) と $H_c(T)$ の不一致，$H_c = A H_0 - M_0$ という保磁力の現象論で，微細構造パラメータが温度によらず一定であると仮定すると説明できない，前述のように，中村らは焼結磁石破断面の軸 X 線による MCD 測定により，粒相側の磁化の温度依存性を測定することに成功している72。Li らはこの温度依存する粒相側の磁化を異方性多結晶磁石のマイクロマグネティックシミュレーションに導入して μH_c の温度依存性を計算した結果，Fig. 16 (b) に示されるように $\mu H(T)$ の凹みを再現することに成功した73。これは，粒相側の磁化が温度依存性を持つため，α の値も温度により変化することを示すためである。この議論に従うと，粒相側の磁化が消失した多結晶磁石では，$H_c(T)$ は直線的な変化を示すはずである74。

実際，共晶合金拡散処理された粒間の接合が弱くなった焼結磁石では，Fig. 17 に示されるように $H_c(T)$ が温度に対し線形に変化することが実験的に示され，これは粒相側の磁化を考慮したシミュレーション結果と良く一致する67,68。

Nd-Fe-B 磁石の保磁力の熱安定性は，保磁力の温度係数 $\beta_{H_c} = (\Delta H_c/\Delta H_0)/(H_c(\text{RT}) \cdot \Delta T)$ で記述され，H_c の温度依存性は β_{H_c} の絶対値で評価される。Dy フリーネ Nd-Fe-B の β_{H_c} の典型的な値は，160℃で約-0.6%/K である。β_{H_c} の値は結晶粒子と粒間の磁気的結合状態などの微細構造に大きく依存するので，磁石製造のプロセスを改善し微細構造を最適化すること

$$H_c(\theta)$$ が下に凸になるか，単調増加になるかが決まるとしている (Fig. 15 (c), (d))75。実験的に測定された焼結磁石と熱間変形磁石の $H_c(\theta)$ は 0 とともに単調に増加し，$H_c(90^\circ)/H_c(0^\circ)$ は 1.6 - 2.0 となることから76,77。交換結合磁石の磁化軸には磁石のビンミングが支配的であることを示している。保磁力の外部磁場への角度依存性に似た現象として，Nd-Fe-B 磁石の保磁力が結晶粒の配向性が高くなると単調に減少することが挙げられるが78。この挙動はマイクロマグネティックシミュレーションにおいて，多結晶系多軸磁化の密度に対応させて考えることにより初めて再現されることが報告されている。つまり，保磁力が磁石の磁石のビンミングに支配されることにより再現できる特徴である79。つまり，保磁力が核生成に支配されると仮定すると，マイクロマグネティックシミュレーションではなく交換結合した多結晶磁石の保磁力の磁石の角度依存性，粒子の配向依存性も再現できないことになる。興味深いことに，Nd に富む非磁性粒子を含む異方性磁石では，$H_c(0)$ の角度依存性が強まる。例えば，最適な処理を施した Ga ドープ Nd リッチ焼結磁石では，$H_c(0)$ の角度依存性が強まり（Fig. 15 (a)），Nd-Cu 合金を多量に浸透させた熱間加工磁石では，$H_c(0)$ は 0 に対して緩やかに変化する80。これらの $H_c(0)$ の角度依存性は，ビンミング型の磁化軸に対する角度°角を持つ 1/2 の磁化の強さを大きく保つことにより，Stoner-Wohlfarth のような局所点を想定した理論的な交換指標モデルから期待される結果にも一致しない81。

このことから，H_c のメカニズムをビンミング型や核生成型として分類するのは若干無理があるものの，交換結合した焼結磁石や熱間加工磁石の保磁力は従来言われてきたような核生成型ではなく，$H_c(0)$ から結論すれば，むしろビンミング型と解釈できる。マイクロマグネティックシミュレーションによると，結晶粒が完全に交換分断した場合には，このメカニズムは核生成型に変化するが，Nd-Fe-B 系では，このような交換指標の磁石は再現されていない。

要約すると，交換結合したNd-Fe-B 磁石の保磁力は，粒界での磁石のビンミングによって説明できる。一般の焼結磁石の初期磁化曲線にビンミングの特徴が見られないのは，結晶粒の粗大で消磁状態で多磁区粒子になっているからにすぎない。粒界が単結晶粒子同士で同程度（1 μm）になると，粒界による磁石のビンミングが初期磁化曲線に現れるとなる。
Fig. 16 (a) Comparison of $H_c(T)$ and $H_r(T)$ of a conventional Nd-Fe-B sintered magnet. (b) Simulated $H_c(T)$ of a modeled sintered magnet. Reproduced from Li et al.39 with permissions from Elsevier.

Fig. 17 (a) Temperature dependence of coercivity of as-hot-deformed and eutectic diffusion-processed Nd-Fe-B magnets42. (b) The temperature coefficient of coercivity for samples in (a). Adapted from Li et al.39 with permissions from Elsevier.

Nd-Fe-B 系永久磁石の保磁力に関するよくある質問

8 なぜCe置換(Nd$_{0.8}$Ce$_{0.2}$)-Fe-B磁石の保磁力の熱安定性が改善されるか？

Nd-Fe-B系永久磁石の需要が増大し続けていることから、磁石に使われる主要な希土類元素であるNdの将来の安定供給が懸念されている。Ndは中希土類元素の中では比較的豊富な元素であるが、軽希土類（LRE）元素はNdの副産物として常に過剰に生産されており、それを有効利用することにより希土類元素全体のコスト削減が期待されている。Pathakらは、Ndの一部を軽希土類元素のCeで置換することで、コストパースに優れた永久磁石の可能性を提案した83。
LRE₆Fe₂B化合物の飽和磁化や異方性磁化などの固有磁気特性はNd₀.₇₅Ce₀.₂₅-Fe-Bよりも劣っており、LRE置換永久磁石の性能は限られている。例えば、Ce₆Fe₂B₃化合物は、Nd₀.₇₅Ce₀.₂₅-Fe-Bのμₜ=7.5 T, μ₀Mₜ=1.6 T, Tₙ=320°Cに対し、μₜ=2.6 T, μ₀Mₜ=1.17 T, Tₙ=150°Cである(59)。そこで、Susnerらによると(59)，(Nd₀.₇₅Ce₀.₂₅)-Fe-B単結晶の磁気性を測定した結果によると、x=0.22まで磁化異方性磁化の大きさはx=0.27まで大きく劣化しないことが報告されている(60)。したがって、CeのようなLRE元素をNdに限定的に置換した(Nd₀.₇₅Ce₀.₂₅)-Fe-B系磁石で、磁石特性の劣化を最小限に抑えることができればLRE置換磁石の利用は拓けていくと期待する。Zhuらの初期の研究では、Nd₀.₇₅Ce₀.₂₅-Fe-Bと(Nd₀.₇₅Ce₀.₂₅)-Fe-Bの混合粉末を用いる一わゆる二合金法による(Nd₀.₇₅Ce₀.₂₅)-Fe-B系磁石の磁石特性は1.2 T、残留磁束が1.37 Tであることなどが報告されている(61)。FanらはNdをCeに25%置換することで、(Nd₀.₇₅Ce₀.₂₅)-Fe-B系磁石において1.21 Tの中程度の磁石特性と1.33 Tの残留磁束が得られることを示している(62)。しかし、(Nd₀.₇₅Ce₀.₂₅)-Fe-B系永久磁石を高性能磁石として考えるには、この程度の磁石特性ではまだ不十分である。Ce置換による異方性磁化と残留磁化の低下に加え、Ce₆Fe₂Bのような副相を形成することにより、REリッチ粒子相の形成が阻害されることも(Nd₀.₇₅Ce₀.₂₅)-Fe-B系磁石の磁石特性が十分に伸びないとの原因が報告されている(63,64)。

最近、トヨタ自動車株式会社は、LRE置換した熱間変形磁石が従来の焼き磁石に比べて優れた磁石の温度係数を示すことを見出している(65)。この詳細は未だ公開されていないが、TangらはFig.18に示すように、(Nd₀.₇₅Ce₀.₂₅)-Fe-B系の熱間加工磁石がN42Hクラスの商用焼き磁石と同等の永久磁石特性を示すことを示した(66)。さらに、(Nd₀.₇₅Ce₀.₂₅)-Fe-B系熱間加工磁石にNd-Cu共結合金を一部用い(Nd₀.₇₅Ce₀.₂₅-Cu)リッチ粒子相を形成させると、磁石特性は1.83 Tにまで向上した。同時にNdリッチシェルが結晶粒を覆うように形成されるが、これも磁石特性向上に寄与している。Ce₆Fe₂Bのキュリー温度はNd₀.₇₅Ce₀.₂₅-Fe-Bよりも低いが、20%Ce置換異方性磁石は、Fig.18(a)に示すように、RE濃度が15%と同等程度のN42Hクレードの市販焼き磁石と同等の磁石特性を示した。Ce置換磁石の磁石特性は−59%Kで、N42Hよりも劣っていた。Ce置換変形磁石の磁石特性の温度係数が向上した原因是、(Nd₀.₇₅Ce₀.₂₅)に富む粒子相の形状が大きく、HₙがNdリッチシェルが形成されたためと考えられる。これらの報告は、微細構造を最適化した(Nd₀.₇₅Ce₀.₂₅)-Fe-B系間加工磁石が、低コストな高性能永久磁石としての可能性を有していることを示している(67)。

まとめると、Ce濃度比(Ce/RE)を30%以下に制限し、微細構造を最適化することによりCo置換Nd₀.₇₅Fe₀.₂₅磁石の磁石特性と残留磁束密度の劣化を制約できるだけでなく、磁石特性の温度係数を改善することができる。磁石特性の温度係数が向上したのは、(Nd₀.₇₅Ce₀.₂₅)リッチ粒子相により反磁界が低減されると、Ndリッチ剝が形成されたためである。

9. 完能の性能を持つNd₀.₇₅Fe₀.₂₅磁石とは？
Nd₀.₇₅Fe₀.₂₅系磁石の磁石特性を最大限に引き出すためには、マイクロマグネットパラメータαを1に近づけ、有効磁石係数N₉ₐを最小にし、磁石特性をHₙの限界に近づける必要がある。αは2:14:1の結晶粒非強磁性粒相で完全に孤立させることにより、核生成時の磁化反転モードとなり、結晶粒子群の界面での欠損を無くすことによりαを1に近づけることができる。N₉ₐを最小化するためには、結晶粒径を微細化することが有効である。しかし、粉末プロセスに、実用的な粒子径は3 μm程度とされている。実験室レベルではHeジェットミリングによる1 μm径が最小の値である。さらに、水素化・不均一・脱灰・再結合法(HDDR)により作製されたサブミクロン粒をプレススレ焼きしサブミクロンの半径を持つ異方性磁石の試作例があるが、粒界相の制御が困難で高磁石力は達成されていない(68)。この結果はNd₀.₇₅Fe₀.₂₅の結晶粒を完全に分離する非強磁性粒子相の形成が微細粒焼き磁石の磁石力のさらなる改善に必要であることを示唆している。サブミクロンサイズの結晶粒で構成された熱間加工磁石のμₜと自重1.0 - 2.0 Tの範囲であり、1 μm以上の結晶粒を持つ焼き磁石

Fig.18 (a) Remanence versus coercivity of Ce-substituted sintered magnets with 18-27 at.% Ce substitution for Nd. The N42H-grade sintered magnets(59,62,103) of Nd₀.₇₅Fe₀.₂₅ for Nd₀.₇₅Fe₀.₂₅-Fe-B sintered magnets plotted for comparison. (b) Temperature dependence of coercivity of (Nd₀.₇₅Fe₀.₂₅)-Fe-B sintered magnet with RE concentration of 15 at.% Nd₀.₇₅Fe₀.₂₅-Fe-B sintered magnet with RE concentration of 15 at.% Nd₀.₇₅Fe₀.₂₅-Fe-B sintered magnet and Nd-Cu diffusion processed (Nd₀.₇₅Ce₀.₂₅)-Fe-B hot-deformed magnet. Reproduced from Tang et al.(84) with permissions from Elsevier.
磁石と同等の値を示している。共晶拡散プロセスによる粒界エンジニアリングによって保磁力を大幅に向上したが、粒界を常磁性化できれば、さらなる保磁力の向上が期待できる。

一方、粒径を小さくすると粒界相の体積分率が大きくなり、すべての粒界が非強磁性になると残留磁束の低下を招くことになる。簡単な例として、立方面の結晶粒での粒界相の体積分率は、\(f_{\text{gb}} = (L/D) \cdot 3D^2 \cdot \pi / 6 \) となる。ここで、\(L \) は全体の大きさ、\(D \) は立方面結晶粒の厚さ、\(t \) は粒界相の厚さを表す。粒界相の厚さが \(t = 3 \) nmで、粒界相の体積分率の上限を \(M = 2:14:1 > 90\% \) を達成するために\(f_{\text{gb}} = 10\% \)となり、\(D > 90 \) nmとなる。つまり、Nd-Fe-B 磁石の最適な粒径は 100 nmオーダーであり、これ以上粒径を小さくすると粒界相の体積分率の増大により飽和磁化が著しく低減してしまう。

以上のことから、径径が数 100 nm程度で、形状が等軸で、結晶粒が非強磁性の粒界相で一様に割断されている磁石ができるれば、究極磁石特性が得られる期待される。参考までに、交換割断された粒径 100 nm以上の等軸粒からなるマイクロネックテック・シミュレーションでは、3.5 T（〜\(H_{c2} \)）の保磁力が予測されている(2)。交換割断したNdFeB粒子を包む高\(H_{c1} \)シェルの形成は、\(H_{c1} \)と\(\mu_{\text{B}} \)をさらに向上させ、NdFeB粒子同の有効\(H_{c1} \)の限界を克服することができる。そのメカニズムは、核生成サイトを結晶表面から残留磁性の小さいコア/シェル界面に移動させることである(2)。結晶粒径が一定の場合、シェルが厚くなると\(H_{c2} \)を改善する。NdFeB粒子と同等またはそれ以上の\(\mu_{\text{B}} \)を持ちDyまたはTbリッチなシェル領域が必要である。

最近のマルチスケール微細構造評価の進歩により、Nd-Fe-B系磁石の保磁力メカニズムに関する理解が深まり、過去10年間で保磁力と熱安定性が大幅に改善されてきた。しかし、実験で得られた保磁力（\(\sim H_{c2} \)）と、シミュレーションで予測された最適な微細構造での保磁力（〜\(H_{c2} \)）との間には、依然としてギャップがある。このギャップを埋めるためには、粒径のさらなる微細化と、NdFeB粒子を薄く非強磁性粒界相で磁気的に隔離することが必要である。永久磁石のコミュニティではまだ根本的に活用されていないデータ駆動型の研究。マテリアルズ・インフォマティクスやアクティブ・ラーニング(20-200)を導入すれば、保磁力最大化のための異方性ネオジム磁石の微細構造をさらに効率的に最適化できるであろう(2)。Nd-Fe-B系磁石の現状。プロセス、微構造に関する論文を再検討し、マテリアルインフォマティクスを活用することにより、希素土類元素に頼らずに、粒径の性能を持ちNd-Fe-B系永久磁石を実現するためのツールとなり得る。

謝辞
本論文は科学技術振興機構（JST）の産学共創研究（助成番号 PMJSK1618）および、文部科学省（MEXT）の戦略磁性材料研究センター（ESICMM）（助成番号 JPMXP011210004）の支援を受けて実施された成果に基づいている。Nd-Fe-B系永久磁石材料の研究を通じて貴重なご意見をいただいた佐川義人博士、広沢哲博士に感謝いたします。

文献
1) M. Sagawa, S. Fujimura, N. Togawa, H. Yamamoto, Y. Matsuura: J. Appl. Phys., 55 (1984) 2083-2087.
2) J. J. Croat, J. F. Herbst, R. W. Lee, F. E. Pinkerton: J. Appl. Phys., 55 (1984) 2078-2082.
3) Y. Yang, A. Walton. R. Sheridan, K. Güth, R. Gauß, O. Gutfleisch, M. Buchert, B. M. Steenari, T. Van Gerven, P. T. Jones, K. Binnemans: J. Sustain. Met., 3 (2017) 122-149.
4) M. Sagawa, S. Fujimura, H. Yamamoto, Y. Matsuura, K. Hiraga: IEEE Trans. Magn., 20 (1984) 1584-1589.
5) S. Hirosawa, Y. Matsuura, H. Yamamoto, S. Fujimura, M. Sagawa, H. Yamauchi: J. Appl. Phys., 59 (1986) 873-879.
6) K. Hono, H. Sepehri-Amin: Scr. Mater., 67 (2012) 530-535.
7) K. Hono, H. Sepehri-Amin: Scr. Mater., 151 (2018) 6-13.
8) R. K. Mishra, J. K. Chen, G. Thomas: J. Appl. Phys., 59 (1986) 2244-2246.
9) J. Fidler, J. Bernardi: J. Appl. Phys., 70 (1991) 6456-6458.
10) H. J. Engelmann, A. S. Kim, G. Thomas: Scr. Mater., 36 (1997) 55-62.
11) J. Bernardi, J. Fidler: J. Appl. Phys., 76 (1994) 6241-6243.
12) F. Vial, F. Joly, E. Nevalainen, M. Sagawa, K. Hiraga, K. T. Park: J. Magn. Magn. Mater., 242-245 (2002) 1329-1334.
13) M. Velicescu, W. Fernengel, W. Rodewald, P. Schrey, B. Wall: J. Magn. Magn. Mater., 157-158 (1996) 47-48.
14) A. M. Gabay, Y. Zhang, G. C. Hadjipanayis: J. Magn. Magn. Mater., 238 (2002) 226-232.
15) S. Pandian, V. Chandrasekaran, G. Markandeyulu, K. J. L. Iyer, K. V. S. Rama Rao: J. Appl. Phys., 92 (2002) 6082-6086.
16) I. Ahmad, H. A. Davies, R. A. Buckley: Mater. Lett., 20 (1994) 139-142.
17) A. Yan, X. Song, Z. Chen, X. Wang: J. Magn. Magn. Mater., 185 (1998) 369-374.
18) W. F. Li, T. Ohkubo, T. Akiya, H. Kato, K. Hono: J. Mater. Res., 24 (2009) 413-420.
19) W. F. Li, T. Ohkubo, K. Hono: Acta Mater., 57 (2009) 1337-1346.
20) J. Fidler, T. Schrefl: J. Appl. Phys., 79 (1996) 5029.
21) H. Sepehri-Amin, T. Ohkubo, T. Shima, K. Hono: Acta Mater., 60 (2012) 819-830.
22) J. Fidler, T. Schrefl, S. Sasaki, D. Suess: Proceedings of XI Int. Symposium on Magnetic Anisotropy and Coercivity in Rare Earth Transition Metal Alloys, (2000).
23) T. T. Sasaki, T. Ohkubo, K. Hono: Acta Mater., 115 (2016) 269-277.
24) A. Sakuma, T. Suzuki, T. Furuchich, T. Shima, K. Hono: Appl. Phys. Express, 9 (2016) 013002.
70) D. Givord, P. Tenaud, T. Viadieu: J. Magn. Magn. Mater., 72 (1988) 247-252.
71) D. Givord, Q. Lu, M. F. Rossignol, P. Tenaud, T. Viadieu: J. Magn. Magn. Mater., 83 (1990) 183-188.
72) G. Martinek, H. Kronmüller: J. Magn. Magn. Mater., 86 (1990) 177-183.
73) F. Cebollada, M. F. Rossignol, D. Givord, V. Villas-Boas, J. M. González: Phys. Rev. B, 52 (1995) 13511-13518.
74) E. C. Stoner, E. P. Wohlfarth: Phil. Trans. R Soc. Lond. A, 240 (1948) 599-642.
75) S. Bance, H. Oezelt, T. Schrefl, G. Ciuta, N. M. Dempsey, D. Givord, M. Winklhofer, G. Hrkac, G. Zimanyi, O. Gutleisch, T. G. Woodcock, T. Shoji, M. Yano, A. Kato, A. Manabe: Appl. Phys. Lett., 104 (2014) 182408.
76) J. Li, X. Tang, H. Sepehri-Amin, T. T. Sasaki, T. Ohkubo, K. Hono: Acta Mater., 187 (2020) 66-72.
77) Y. Matsusura, J. Hoshijima, R. Ishii: J. Magn. Magn. Mater., 336 (2013) 88-92.
78) J. Fujisaki, A. Furuya, Y. Uehara, K. Shimizu, H. Oshima, T. Ohkubo, S. Hirosawa, K. Hono: IEEE Trans. Magn., 50 (2014) 7100704.
79) J. Li, X. Tang, H. Sepehri-Amin, T. Ohkubo, K. Hono: Acta Mater., 199 (2020) 288-296.
80) R. Li, H. R. Zhang, Y. Liu, S. L. Zuo, J. F. Xiong, W. L. Zuo, T. Y. Zhao, F. X. Hu, J. R. Sun, B. G. Shen: Mater. Res. Express, 5 (2018) 056101.
81) J. Thielsch, D. Suess, L. Schultz, O. Gutleisch: J. Appl. Phys., 114 (2013) 223909.
82) X. Tang, J. Li, Y. Miyazaki, H. Sepehri-Amin, T. Ohkubo, T. Schrefl, K. Hono: Acta Mater., 183 (2020) 408-417.
83) T. Akiya, J. Liu, H. Sepehri-Amin, T. Ohkubo, K. Hono: Acta Mater., 81 (2014) 48-51.
84) L. Liu, H. Sepehri-Amin, T. T. Sasaki, T. Ohkubo, M. Yano, N. Sakuma, A. Kato, T. Shoji, K. Hono: AIP Advances, 8 (2018) 056205.
85) X. Xia, M. Liu, T. Zhang, H. Wen, Q. Dong, L. Zhang, L. Zhou, M. Li: Scr. Mater., 178 (2020) 129-133.
86) X. Tang, S. Y. Song, J. Li, H. Sepehri-Amin, T. Ohkubo, K. Hono: Acta Mater., 190 (2020) 8-15.
87) H. Sepehri-Amin, L. Liu, T. Ohkubo, M. Yano, T. Shoji, A. Kato, T. Schrefl, K. Hono: Acta Mater., 99 (2015) 297-306.
88) A. K. Pathak, M. Khan, K. A. Gschneidner Jr, R. W. McCallum, L. Zhou, K. Sun, K. W. Dennis, C. Zhou, F. E. Pinkerton, M. J. Kramer, V. K. Pecharsky: Adv. Mater., 27 (2015) 2663-2667.
89) M. Zhang, Z. Li, B. Shen, F. Hu, J. Sun: J. Alloys Compd., 651 (2015) 144-148.
90) A. K. Pathak, M. Khan, K. A. Gschneidner Jr, R. W. McCallum, L. Zhou, K. Sun, M. J. Kramer, V. K. Pecharsky: Acta Mater., 103 (2016) 211-216.
91) B. Peng, T. Ma, Y. Zhang, M. Yan: Scr. Mater., 131 (2017) 11-14.
92) X. Fan, K. Chen, S. Guo, R. Chen, D. Lee, A. Yan, C. You: Appl. Phys. Lett., 110 (2017) 172405.
93) K. P. Skokov, O. Gutleisch: Scr. Mater., 154 (2018) 289-294.
94) X. Tang, H. Sepehri-Amin, M. Matsumoto, T. Ohkubo, K. Hono: Acta Mater., 175 (2019) 1-10.
95) J. F. Herbst: Rev. Mod. Phys., 63 (1991) 819-898.
96) M. A. Susner, B. S. Conner, B. I. Saparov, M. A. McGuire, E. J. Crumlin, G. M. Veith, H. Cao, K. V. Shanavas, D. S. Parker, B. C. Chakoumakos, B. C. Sales: J. Magn. Magn. Mater., 434 (2017) 1-9.
97) M. Zhu, W. Li, J. Wang, L. Zheng, Y. Li, K. Zhang, H. Feng, T. Liu: IEEE Trans. Magn., 50 (2014) 100104.
98) X. Fan, S. Guo, K. Chen, R. Chen, D. Lee, C. You, A. Yan: J. Magn. Magn. Mater., 419 (2016) 399-394.
99) X. Fan, G. Ding, K. Chen, S. Guo, C. You, R. Chen, D. Lee, A. Yan: Acta Mater., 154 (2018) 343-354.
100) X. Tang, H. Sepehri-Amin, T. Ohkubo, M. Yano, M. Ito, A. Kato, N. Sakuma, T. Shoji, T. Schrefl, K. Hono: Acta Mater., 144 (2018) 884-895.
101) https://global.toyota/en/newsroom/corporate/21139684.html.
102) M. Zhu, R. Han, W. Li, S. Huang, D. Zheng, L. Song, X. Shi: IEEE Trans. Magn., 51 (2015) 2104604.
103) Y. J. Zhang, T. Ma, J. Jin, J. Li, C. Wu, B. Shen, M. Yan: Acta Mater., 128 (2017) 22-30.
104) G. Ding, S. Guo, L. Chen, J. Di, K. Chen, R. Chen, D. Lee, A. Yan: J. Alloys Compd., 735 (2018) 1176-1180.
105) X. D. Xu, T. T. Sasaki, Y. Une, H. Kubo, T. Ohkubo, M. Sagawa, K. Hono: Acta Mater., 151 (2018) 293-300.
106) C. C. Fischer, K. J. Tibbetts, D. Morgan, G. Ceder: Nature Mater., 5 (2006) 641-646.
107) S. Curtarolo, G. L. W. Hart, M. B. Nardelli, N. Mingo, S. Sanvito, O. Levy: Nature Mater., 12 (2013) 191-201.
108) R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, C. Kim: Npj Comput. Mater., 3 (2017) 54.
109) R. Yuan, Z. Liu, P. V. Balachandran, D. Xue, Y. Zhou, X. Ding, J. Sun, D. Xue, T. Lookman: Adv. Mater., 30 (2018) 1702884.
110) G. Lombard, T. T. Sasaki, K. Sodeyama, T. Ohkubo, K. Hono: Scripta Materialia, submitted.