Population genetics of Aedes albopictus (Diptera: Culicidae) in its native range in Lao People’s Democratic Republic

Maysa Tiemi Motoki, Dina Madera Fonseca, Elliott Frederic Miot, Bruna Demari-Silva, Phoutmany Thammavong, Somsanith Chonephetsarath, Nothasine Phommavanh, Jeffrey Conrad Hertz, Pattamaporn Kittayapong, Paul Trevor Brey, et al.

To cite this version:
Maysa Tiemi Motoki, Dina Madera Fonseca, Elliott Frederic Miot, Bruna Demari-Silva, Phoutmany Thammavong, et al.. Population genetics of Aedes albopictus (Diptera: Culicidae) in its native range in Lao People’s Democratic Republic. Parasites & Vectors, 2019, 12 (1), pp.477. 10.1186/s13071-019-3740-0. pasteur-03240193

HAL Id: pasteur-03240193
https://pasteur.hal.science/pasteur-03240193
Submitted on 28 May 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
Population genetics of *Aedes albopictus* (Diptera: Culicidae) in its native range in Lao People’s Democratic Republic

Maysa Tiemi Motoki1,2,3*, Dina Madera Fonseca4, Elliott Frederic Miot1,5,6,7, Bruna Demari-Silva8, Phoutmany Thammavong1, Somsanith Chonephetsarath1, Nothasine Phommavanh1, Jeffrey Conrad Hertz9, Pattamaporn Kittayapong10, Paul Trevor Brey1† and Sebastien Marcombe1†

Abstract

Background: The Asian tiger mosquito, *Aedes (Stegomyia) albopictus* (Skuse) is an important worldwide invasive species and can be a locally important vector of chikungunya, dengue and, potentially, Zika. This species is native to Southeast Asia where populations thrive in both temperate and tropical climates. A better understanding of the population structure of *Ae. albopictus* in Lao PDR is very important in order to support the implementation of strategies for diseases prevention and vector control. In the present study, we investigated the genetic variability of *Ae. albopictus* across a north-south transect in Lao PDR.

Methods: We used variability in a 1337-bp fragment of the mitochondrial cytochrome c oxidase subunit 1 gene (*cox1*), to assess the population structure of *Ae. albopictus* in Lao PDR. For context, we also examined variability at the same genetic locus in samples of *Ae. albopictus* from Thailand, China, Taiwan, Japan, Singapore, Italy and the USA.

Results: We observed very high levels of genetic polymorphism with 46 novel haplotypes in *Ae. albopictus* from 9 localities in Lao PDR and Thailand populations. Significant differences were observed between the Luangnamtha population and other locations in Lao PDR. However, we found no evidence of isolation by distance. There was overall little genetic structure indicating ongoing and frequent gene flow among populations or a recent population expansion. Indeed, the neutrality test supported population expansion in Laotian *Ae. albopictus* and mismatch distribution analyses showed a lack of low frequency alleles, a pattern often seen in bottlenecked populations. When samples from Lao PDR were analyzed together with samples from Thailand, China, Taiwan, Japan, Singapore, Italy and the USA, phylogenetic network and Bayesian cluster analysis showed that most populations from tropical/subtropical regions are more genetically related to each other, than populations from temperate regions. Similarly, most populations from temperate regions are more genetically related to each other, than those from tropical/subtropical regions.

Conclusions: *Aedes albopictus* in Lao PDR are genetically related to populations from tropical/subtropical regions (i.e. Thailand, Singapore, and California and Texas in the USA). The extensive gene flow among locations in Lao PDR indicates that local control is undermined by repeated introductions from untreated sites.

Keywords: *Aedes albopictus*, *cox1* gene, Genetic population, Lao PDR
Background

Dengue fever, the potentially deadly outcome of infection with a mosquito borne flavivirus (DENV, *Flaviviridae, Flavivirus*), is one of the most challenging public health problems in the Greater Mekong Subregion (GMS) composed of Cambodia, China, Myanmar, Thailand, Vietnam and Lao People’s Democratic Republic (PDR) [1, 2]. From 2009 to 2012, dengue was reported in all provinces in Lao PDR, except for Phongsaly and Huaphanh provinces in northern region [3]. All four serotypes of dengue flaviviruses (DENV1-4) now circulate in rural and urban areas in Lao PDR [3–7]. In Lao PDR, an extensive dengue outbreak, mostly attributed to serotype 3 (DENV3) in 2013, caused 44,098 cases and 95 deaths [8, 9]. Again in 2017, 9832 cases of dengue fever were reported in Lao PDR, including 14 deaths, with the most affected provinces being Vientiane Capital and Champasak [10]. Both *Aedes (Stegomyia) aegypti* (Linnaeus) and *Aedes (Stegomyia) albopictus* (Skuse, 1894) were suspected to have been involved in these epidemics [11, 12]. However, still there is no study proving their vector status in the country.

Aedes albopictus, the Asian tiger mosquito, is thought to be native to Southeast Asia [13]. In recent decades, *Ae. albopictus* has spread throughout the world and is now found on all continents except Antarctica [14–16]; it is considered one of the most invasive and widespread mosquito species in the world [14, 17]. Despite *Ae. albopictus* being considered a secondary vector of dengue and chikungunya (CHIKV, *Togaviridae, Alphavirus* relative to *Ae. aegypti* [18], in some instances such as in central Africa, China and Mediterranean Europe [19–21] it can become the primary vector. Of note, several laboratory studies have shown that *Ae. albopictus* can be more competent at transmitting DENV and CHIKV than *Ae. aegypti* [22–24]. Furthermore, *Ae. albopictus* has been associated with the emergence of Zika virus from its native Africa, although this is still in early stages of investigation [25–27].

Although mosquito populations with different genetic makeup may differ in vector competence [28], there is currently no information about the population genetics of *Ae. albopictus* in Lao PDR. Information about genetic diversity and population structure can be a tool in the development of effective mosquito control programmes [29, 30]. Therefore, we obtained samples of *Ae. albopictus* from eight provinces from the northwest, northern, central and southern regions of Lao PDR including the two most affected provinces, Vientiane Capital and Champasak, and sequenced a fragment of the cytochrome c oxidase subunit 1 gene (*cox1*) mitochondrial (mt) DNA. First, we analyzed the genetic variability of samples from Lao PDR, then compared against other samples from China, Japan, Taiwan, Singapore, the USA, Italy [31] and Thailand to check the genetic relationships among them. Our primary aim was to increase our understanding of the population structure of *Ae. albopictus* in Laos in order to develop better strategies for dengue prevention and vector control in Lao PDR.

Methods

Mosquito collection and identification

The collections were carried out in eight localities from the northwest [Bokeo (BK), Luangnamtha (LN) and Xayabouly (XB) Provinces], northern [Luang Prabang (LP) Province], central [Vientiane prefecture (VC), Borikhamxay (BK) and Khammuane (KM) Provinces] and southern [Champasak (CH) Province] regions of Lao PDR (Fig. 1). *Aedes albopictus* larvae and pupae were collected between 2014 and 2016 from domestic containers (tanks and jars) and peri-domestic habitats (used tires, discarded containers, etc.), then carefully transferred into WhirlPak plastic bags (BioQuip, Rancho Dominguez, CA, USA) and sent to the insectaries in Vientiane for rearing (field generation, F0). Each mosquito population sample consisted of larvae and pupae collected from at least 10 breeding sites per locality to reduce the likelihood of re-sampling them. Female mosquitoes were then stored individually in a desiccated tube at −80 °C until molecular analyses. All mosquitoes were morphologically identified as *Ae. albopictus* using available keys [32] and confirmed by comparison of *cox1* barcode region sequences available on GenBank.

DNA extraction and sequencing

Total genomic DNA was extracted from single whole mosquitoes using a NucleoSpin® Tissue kit (Macherey-Nagel, Duren, Germany) according to manufacturer’s instructions. The fragment of mtDNA cytochrome c oxidase subunit 1 (*cox1*) gene was amplified using two sets of primers, 1454F (5′-GGT CAA CAA ATC ATA AAG ATA TTG G-3′) and 2160R (5′-ATG GGG TTA GCC GGA GCT AT-3′); and 2027F (5′-CCC GTA TTA GCC GGA GCT AT-3′) and 2886R (5′-ATG GGG AAA GAA GGA GTT CG-3′), following the polymerase chain reaction (PCR) protocol explicitly detailed in Zhong et al. [31]. Aliquots of the PCR products were visualized on 1.5% agarose gels and successful amplifications were purified using ExoSpriIT® (USB Co, Cleveland, OH, USA). All sequencing reactions were carried out in both directions using an ABI Big Dye Terminator Kit v.3.1 (Applied Biosystems, Warrington, UK) and analyzed on an ABI Prism 3500xL—Avant Genetic Analyzer (Applied Biosystems, Foster City, CA, USA) at the Institut Pasteur du Laos sequencing facilities in Vientiane.
Fig. 1 Collection information of *Aedes albopictus* in Lao PDR

Population code	Province	Location	Coordinates	Sample size
BK	Borikhamxay	Paksan	18.37134, 103.66586	20
BO	Bokoe	Huayxai	20.27569, 100.44257	20
CH	Champasak	Chatsan	15.10352, 105.86502	20
KM	Khammuane	Nam Noy	18.28333, 105.63333	15
LN	Luangnamtha	Namtha city	21.00975, 101.40573	20
LP	Luang Prabang	Nasangvey	19.55045, 101.99512	20
VC	Vientiane Capital	Saysettha District	17.9666, 102.6	20
XB	Xayabouly	Xayabouly	19.26509, 101.71194	20
Data analyses

The cox1 gene sequences were edited using Sequencher® version 5.4.6 (Gene Codes Corporation, Ann Arbor, MI, USA) and automatically aligned in Geneious v.9.1.6. [33].

The number of haplotypes (H), haplotype diversity (Hd), nucleotide diversity (n) and (K) average of nucleotide differences within each site were generated using DnaSP v.5.0 [34]. The pairwise FST was calculated to estimate population differentiation based on differences in haplotype frequencies, whereas Nei’s Nm estimated gene flow is based on GST [35] using Arlequin v.3.5 [36].

Analysis of molecular variance (AMOVA) was conducted to determine the distribution of genetic variation within and among populations using 1000 permutations implemented in Arlequin v.3.5 [36]. Additionally, a spatial analysis of molecular variance (SAMOVA) v.1.0 [37] was used to cluster the 1337-bp cox1 sequences into genetically and geographically homogeneous populations. SAMOVA generates F-statistics (FSC, FST, FCT), using the AMOVA approach, into K groups to maximize the between group variation. SAMOVA estimates were computed for K=2–8, with 1000 simulated annealing steps from each of 100 sets of initial starting conditions. Isolation by distance (IBD) was checked using a Mantel tests [38]. IBD was estimated in GenAlEx v.6.5 [39, 40] between the genetic and geographical distances with 10,000 permutations.

The hypothesis of strict neutrality among Ae. albopictus populations from Lao PDR was examined using the statistics D [41] and Fu’s Fs [42], calculated using DnaSP v.5.0 [34]. The mismatch distribution (simulated in Arlequin v.3.5) was performed to distinguish between a smooth unimodal distribution and a multimodal or ragged distribution [43–45]. Statistically significant differences between observed and simulated distributions were evaluated with the sum of square deviations (SSD) to reject the hypothesis of demographic expansion [46].

To make broader comparisons among haplotypes from Lao PDR and other geographical regions, we analyzed samples from Thailand and downloaded available data in GenBank from China, Taiwan, Japan, Singapore, Italy and the USA [31]. The parsimony network was performed using TCS network inference method [47] in Population Analysis with Reticulate Trees (PopART) [48]. We also checked the number of haplotypes, FST, Nm and AMOVA using the same methodology described earlier.

In addition, a Bayesian clustering algorithm implemented in the program STRUCTURE v.2.3 was used to investigate genetic structure of individuals. The program was run under varying assumptions on Hardy-Weinberg (HW) and linkage equilibriums [49], with ten independent runs performed for each value of K (K=1 to 21). In this analysis, the most likely number of genetic clusters (K) in the dataset is determined without prior information of the sampling locations, and then assigns proportion of the ancestry of each individual into the different clusters implemented in the program. The method of Evanno et al. [50] was used to determine the most likely number of clusters. This approach uses an ad hoc quantity, based on the second rate of change of the likelihood function between successive values of K. Poterior probability values were estimated using a Markov Chain Monte Carlo (MCMC) method and 1,000,000 interactions of each chain following the 100,000 iteration burn-in period were performed, as recommended by Pritchard et al. [49]. We visualized the partitioning of clusters using the program DISTRUCT [51].

Results

Genetic diversity

Partial sequences of the mtDNA cox1 (1337-bp) were amplified from 172 specimens, representing populations from Lao PDR (n=155) and Thailand (n=17). No insertions, deletions or stop codons were detected across all samples, which minimizes the likelihood of pseudogene amplification.

A total of 44 haplotypes were identified among the Lao populations (Table 1); of these, 13 haplotypes (30%) were shared among Lao populations and 31 (70%) were unique to single Lao populations. When the data was combined with Zhong et al. [31] (H1–H66) and the Thailand samples, a total of 46 haplotypes were found. These newly identified haplotypes are H67–H112 and were deposited in GenBank under accession numbers MN080720–MN080765 (Table 1). Lao PDR sequences shared five haplotypes with Thailand, two haplotypes (H45 and H56) with the USA (California and Texas, respectively) and Thailand, and one haplotype (H46) with the USA (California) (Table 1).

Zhong et al. [31] amplified a fragment of 1433-bp of the mtDNA cox1, and identified 66 haplotypes of Ae. albopictus in 6 different countries (Italy, Japan, Taiwan, China, Singapore and the USA; 12 populations). The trimmed fragment we used is 96-bp smaller (1337-bp) than that of Zhong et al. [31]; however, no polymorphic sites were included in the trimmed sequence. Therefore, when we trimmed all fragments to 1377-bp, we still have the same 66 haplotypes as Zhong et al. [31] and 46 new haplotypes were recognized, totaling 112 haplotypes (Table 1).

The average number of nucleotide differences in Ae. albopictus in Lao PDR populations ranged from 0.537 (LN) to 3.105 (KM), corresponding with the range of the nucleotide diversity (n) 0.00040 (LN) to 0.00232 (KM). Haplotype diversity (Hd) ranged from 0.416±0.116 (mean ± SD) (LN) to 0.942±0.029 (VC) (Table 2).
Table 1 | Haplotypes of *Aedes albopictus* based on the mtDNA cox1 marker

Haplotype	n	Country (code)	GenBank ID
H01a	6	China (GZ, XM), USA (LA01)	KC690896
H02a	5	China (GZ)	KC690897
H03a	113	China (GZ, XM, JS), Taiwan (TW), Japan (JP), Italy (IT), USA (LA01, LA11, HW)	KC690898
H04a	3	China (GZ)	KC690899
H05a	1	China (GZ)	KC690900
H06a	2	China (GZ)	KC690901
H07a	1	China (XM)	KC690902
H08a	9	China (XM)	KC690903
H09a	1	China (XM)	KC690904
H10a	1	China (XM)	KC690905
H11a	1	China (XM)	KC690906
H12a	2	China (XM)	KC690907
H13a	2	China (XM)	KC690908
H14a	1	China (XM)	KC690909
H15a	1	China (XM)	KC690910
H16a	7	China (JS)	KC690911
H17a	26	Taiwan (TW), Italy (IT), USA (LA11, TX, HW)	KC690912
H18a	1	Taiwan (TW)	KC690913
H19a	2	Taiwan (TW), USA (LA11)	KC690914
H20a	1	Taiwan (TW)	KC690915
H21a	1	Taiwan (TW)	KC690916
H22a	3	Taiwan (TW), USA (LA11)	KC690917
H23a	1	Taiwan (TW)	KC690918
H24a	23	Japan (JP), Singapore (SG)	KC690919
H25a	1	Japan (JP)	KC690920
H26a	1	Singapore (SG)	KC690921
H27a	8	Singapore (SG)	KC690922
H28a	1	Singapore (SG)	KC690923
H29a	1	Singapore (SG)	KC690924
H30a	2	Singapore (SG)	KC690925
H31a	2	Singapore (SG)	KC690926
H32a	1	Singapore (SG)	KC690927
H33a	1	Singapore (SG)	KC690928
H34a	1	Singapore (SG)	KC690929
H35a	1	Singapore (SG)	KC690930
H36a	1	Italy (IT)	KC690931
H37a	40	Italy (IT), USA (NJ, TX)	KC690932
H38a	1	Italy (IT)	KC690933
H39a	6	Italy (IT), USA (TX)	KC690934
H40a	2	Italy (IT)	KC690935
H41a	4	Italy (IT)	KC690936
H42a	1	Italy (IT)	KC690937
H43a	1	Italy (IT)	KC690938
H44a	1	Italy (IT)	KC690939
H45ab	52	USA (LA01), Laos (BK, BO, CH, KM, LN, LP, VC, XB), Thailand (TH)	KC690940
H46ab	5	USA (LA01), Laos (BK, BO, CH)	KC690941

Table 1 (continued)

Haplotype	n	Country (code)	GenBank ID
H47a	1	USA (LA01)	KC690942
H48a	2	USA (LA01)	KC690943
H49a	7	USA (LA11)	KC690944
H50a	1	USA (LA11)	KC690945
H51a	2	USA (NJ)	KC690946
H52a	4	USA (NJ)	KC690947
H53a	2	USA (NJ)	KC690948
H54a	2	USA (NJ)	KC690949
H55a	3	USA (TX)	KC690950
H56ab	5	USA (TX), Laos (BK, BO), Thailand (TH)	KC690951
H57a	1	USA (TX)	KC690952
H58a	1	USA (TX)	KC690953
H59a	1	USA (TX)	KC690954
H60a	1	USA (TX)	KC690955
H61a	16	USA (HW)	KC690956
H62a	2	USA (HW)	KC690957
H63a	1	USA (HW)	KC690958
H64a	1	USA (HW)	KC690959
H65a	1	USA (HW)	KC690960
H66a	1	USA (HW)	KC690961
H67c	1	Lao PDR (BK)	MN080720
H68c	1	Lao PDR (BK)	MN080721
H69c	4	Lao PDR (BK, CH), Thailand (TH)	MN080722
H70c	1	Lao PDR (BK)	MN080723
H71c	11	Lao PDR (BK, BO, LP)	MN080724
H72c	1	Lao PDR (BK)	MN080725
H73c	1	Lao PDR (BK)	MN080726
H74c	1	Lao PDR (BK)	MN080727
H75c	6	Lao PDR (BO, CH, LN)	MN080728
H76c	20	Lao PDR (BO, LN, XB), Thailand (TH)	MN080729
H77c	4	Lao PDR (BO)	MN080730
H78c	2	Lao PDR (CH)	MN080731
H79c	1	Lao PDR (CH)	MN080732
H80c	1	Lao PDR (CH)	MN080733
H81c	1	Lao PDR (CH)	MN080734
H82c	1	Lao PDR (CH)	MN080735
H83c	1	Lao PDR (CH)	MN080736
H84c	3	Lao PDR (CH, LP, VC)	MN080737
H85c	2	Lao PDR (KM)	MN080738
H86c	6	Lao PDR (KM, VC)	MN080739
H87c	4	Lao PDR (KM, VC)	MN080740
H88c	1	Lao PDR (KM)	MN080741
H89c	2	Lao PDR (KM)	MN080742
H90c	3	Lao PDR (KM, XB)	MN080743
H91c	1	Lao PDR (LP)	MN080744
H92c	2	Lao PDR (LP)	MN080745
H93c	2	Lao PDR (LP, VC)	MN080746
H94c	1	Lao PDR (LP)	MN080747
H95c	1	Lao PDR (LP)	MN080748
The highest level of genetic differentiation in Lao PDR based on the fixation index F_{ST} was between LN and LP ($F_{ST}=0.33288$, $P \leq 0.05$). Gene flow (Nm) was > 1 among all populations, except LN and XB (Table 3). When analyzed all together including the samples of Zhong et al. [31], the highest F_{ST} was between LN (Luangnamtha, Lao PDR) and JS (Jiangsu, China) ($F_{ST}=0.610$, $P \leq 0.05$) (Additional file 1: Table S1).

Global AMOVA tests indicated a high proportion of the total genetic variance was attributable to within-population variation (85.98%), suggesting low and significant genetic structure among populations ($F_{ST}=0.14$, $P \leq 0.001$) in Lao PDR. When we added all samples including that of Zhong et al. [31], global AMOVA found a significant overall population structure in *Ae. albopictus* ($F_{CT}=0.43$, $P \leq 0.001$), with 56.8% of genetic variation found within-population and 43.2% among-populations. The spatial analysis of molecular variance (SAMOVA), based on mtDNA data, showed no genetically distinct population groups. Partitions of the sampling areas for each K value were not informative. F_{CT} values presented a narrow range between 0.18 and 0.23. (Additional file 2: Figure S1). Mantel tests showed that genetic and geographical distances (Additional file 3: Table S2) among populations in Lao PDR do not support a pattern of isolation by distance ($r=0.0846$, $P=0.1433$).

Assessment of population expansion based on neutrality test resulted primarily in negative values but most were not statistically significant, with the exception of Tajima’s D for CH, and Fu’s Fs for BK, CH, LN and LP (Table 4). Mismatch distribution models revealed poor fit to equilibrium distribution (Additional file 4: Figure S2); both the sum of squared deviation (SSD) values (0.016, $P=0.29$) and raggedness index (0.09) were not statistically significant in almost all the populations, except the SSD value for BO and CH and Rag for CH (Table 4), indicating further support for population expansion based on cox1 gene.

Genetic relationships among haplotypes

The parsimony network showed that the genealogical relationships among the haplotypes differed by 4–9 mutational steps (Fig. 2) and can be divided into three Groups: Group 1 mainly contained haplotypes from China, and a number of haplotypes from Japan, Italy, Taiwan and the USA; Group 2 contained haplotypes from China, Japan, Italy, Taiwan, the USA, and 50% of the haplotypes in Singapore; and Group 3 contained haplotypes from Lao PDR, Thailand, the remaining 50% from Singapore, and three haplotypes shared with the USA. The most common haplotypes were 3 ($n=113$) and 45 ($n=52$) (Fig. 2, Table 2). Haplotype 3 was shared among populations from China, Taiwan, Japan, Italy and the USA, while H45 was shared among the USA, Thailand and all populations from Lao PDR (Fig. 2, Table 1).

Genetic clustering of individuals

Bayesian inference implemented in STRUCTURE revealed that the optimal partitioning of all *Ae. albopictus*
samples (China, Taiwan, Japan, Singapore, Italy, USA from Zhong et al. [31], Lao PDR and Thailand) was $K=8$. The individuals analyzed from the 21 populations were assigned to eight clusters with a certain probability value (Fig. 3, Additional file 5: Table S3). Most individuals from Lao PDR and Thailand were represented in clusters 1 and 2, and partially in clusters 4 and 8, sharing with Singapore, Japan and the USA (California samples). Samples from China were mainly found in clusters 3, 6 and 7, sharing with USA and Italy, and cluster 5 included the highest proportion of individuals from the USA (New Jersey and Texas samples: 86 and 72%, respectively), as observed in Zhong et al. [31].

Discussion

The barcoding mitochondrial gene, *cox1*, has been widely used to analyze genetic diversity in *Ae. albopictus* [31, 52–59]. In this study, we followed the recommendation of Goubert et al. [60] that reviewed the literature on the use of the *cox1* for population genetic studies, and employed a longer mtDNA marker designed by Zhong et al. [31].

Genetic diversity in *Ae. albopictus* from Lao PDR

Overall, we detected very high haplotype diversity in *Ae. albopictus* in Lao PDR, with 44 haplotypes identified from only eight populations. Among them, 13 haplotypes were shared (Table 1), in some cases by all eight populations. Low and significant genetic structure (Table 3) were observed, supporting the finding of other studies [55, 57, 59, 61].

The higher and significant differentiation among LN (Luangnamtha) and other locations in Lao PDR ($F_{ST}=0.126–0.371$), except CH (Champasak), may be due to climate (Table 3). Indeed, while Lao PDR has a predominantly tropical climate, the mountainous topography and the extensive Mekong River network in the northern and southern regions, results in variation in average temperature conditions and creates significantly different microclimates that may be highly relevant to mosquito development. On the other hand, the Mantel test revealed no correlation between genetic and geographical distances, indicating no isolation by distance of *Ae. albopictus* in Lao PDR. Similar results were observed within countries [60, 62–65], except in Schmidt et al. [66]; they analyzed genetic structure of *Ae. albopictus* from 12 localities in China using single nucleotide polymorphism (SNPs) and found evidence for IBD.

Signs of recent expansion observed in *Ae. albopictus* across Lao PDR are evidenced by economic development, which is characterized by high rates of urbanization in the Association of South East Asian Nations (ASEAN) community. This has led to a better road infrastructure throughout the country and has increased connectivity between all the provinces, which has the potential to facilitate human-assisted movement of *Aedes* mosquitoes (SM, personal observation) and their pathogens.

Population code	Neutrality tests	Mismatch analysis		
	D	F_S	SSD	Rag
BK	-1.25890	-6.03835^*	0.012	0.056
BO	0.11573	-1.61256	0.040*	0.144
CH	-2.03130^*	-8.03746^*	0.017*	0.131*
KM	-1.10557	-1.58578	0.017	0.059
LN	-0.97524	-0.07875^*	0.000	0.132
LP	0.47276	-6.25889^*	0.008	0.046
VC	0.54226	-5.33883	0.007	0.038
XB	0.88892	-0.12444	0.028	0.144
Mean	-0.41892	-3.64001	0.016	0.09
Fig. 2 Phylogenetic network of 112 mitochondrial haplotypes (1337 bp) of the cox1 gene in *Ae. albopictus*. Localities are indicated by different colors (bottom-right). The area of each circle is approximately proportional to the frequency of the haplotype. *α*Samples available in Genbank from Zhong et al. [31]. *β*Samples from Lao PDR

Fig. 3 Pie charts representing the proportional membership of *Ae. albopictus* identified in Bayesian cluster analysis (optimal partitioning of all samples, $K=8$). *Abbreviations:* China: GZ, Guangzhou; XM, Xiamen; JS, Jiangsu; Taiwan: TW, Xinzhu; Japan: JP, Nagazaki; Singapore: SG, Helios Block; Italy: IT, Trentino; USA: LA01, California; LA11, California; NJ, New Jersey; TX, Texas; and HW, Hawaii – are samples from Zhong et al. [31]; Lao PDR: BK, Borikhamxay; BO, Bokeo; CH, Champasak; KM, Khammuane; LN, Luangnamtha; LP, Luang Prabang; VC, Vientiane Capital; XB, Xayabouly; Thailand: TH, Thailand
In addition, rubber plantations provided several potential breeding sites for *Ae. albopictus* including latex-collection cups [68, 69]. According to Tangena et al. [12], the risk of dengue infection in natural forests and rubber plantations is higher than in northern region villages in Luang Prabang Province. *Aedes albopictus* is highly adaptable and successfully spread from its preferred forested environments to different rural and urban habitats, which has increased its potential as a vector and, consequently, arboviruses transmission risk in these more populated areas.

Genetic relationship among *Ae. albopictus* in Lao PDR and the available haplotypes from other geographical regions and genetic clustering of individuals

When populations of *Ae. albopictus* were analyzed from many different geographical regions, three haplotypes were observed to be shared between Lao PDR and other countries. H45 and H46 were shared with the USA (California) and Thailand, and H56 with the USA (Texas). H45 and H46 are shared haplotypes from Los Angeles, California, where samples were collected in 2001. Similarly, Zhong et al. [31] observed those haplotypes were shared with Singaporean populations and were not found in their collection in 2011; hence, the authors suggested that only specimens from subtropical/temperate climates could have established successfully in the USA. In addition, the F_{ST} was lower when comparing Lao PDR with the 2001 California samples (0.093–0.323, $P \leq 0.05$) than the ones collected 10 years later in 2011 (0.286–0.529, $P \leq 0.05$) (Additional file 1: Table S1).

The phylogenetic network and the Bayesian cluster analyses corroborated the results from Zhong et al. [31]. Groups 1 and 2 (in the network analysis) and clusters 3, 5–7 (in the Bayesian analysis) included samples from temperate regions and most of group 3 and clusters 1, 2, 4, 8 (network and Bayesian analyses, respectively) included the majority of samples from tropical/subtropical regions (Figs. 2, 3). Allozyme studies have shown that populations of *Ae. albopictus* from Japan are likely distinct from the remaining samples in the world [70] and Southeast Asia (Borneo, peninsula Malaysia) and southern Asian populations (India, Sri Lanka) can both be differentiated from northern Asian populations (China, Japan) [71]. Worldwide mitogenome diversity of *Ae. albopictus* was studied and three major haplogroups were found; the first haplogroup was mostly distributed in tropical regions, the second in temperate regions and the third appeared to be important in the spread of *Ae. albopictus* from Asia [61]. A possible explanation for these differences is the presence of a photoperiodic diapause in *Ae. albopictus* from temperate regions [72–74], and absence of diapause among *Ae. albopictus* in tropical regions, such as in Brazil [72]. However, it is worth noting that the Singapore population represents a particular case in Southeast Asia. Its population is genetically connected both with tropical and temperate strains (Figs. 2, 3).

Although no study has performed a comprehensive analysis of the species’ full native range [60], the genetic differentiation of native Asian populations of *Ae. albopictus* may confer both north-south (Korea to Indonesia) and east-west (Japan to India) pattern of genetic differentiation [61]; our results partially support the pattern of north-south as in Battaglia et al. [61].

Overall, we observed significant population structure in *Ae. albopictus* ($F_{ST}=0.43, P \leq 0.001$). Similar results were observed in Zhong et al. [31] and Maynard et al. [75]. As mentioned, Zhong et al. [31] analyzed *cox1* of *Ae. albopictus* from China, Taiwan, Japan, Singapore, Italy and the USA. Maynard et al. [75] using both microsatellite and mitochondrial markers observed significant relationship between genetic variability and geographical distance, but weak correlation in *Ae. albopictus* of Indo-Pacific regions.

Laotian *Ae. albopictus* populations were found to be very genetically related to the tropical Thailand strain. An allozyme study suggested that populations of *Ae. albopictus* in the eastern USA possibly originated from temperate Asian regions [67], while mtDNA variations revealed that populations in Represa do Congo and Sao Luis in Brazil formed a lineage paraphyletic to tropical Southeast Asian lineages, such as Cambodia, Vietnam, Thailand [52, 76] and likely Lao PDR.

Conclusions

To our knowledge, this study represents the first genetic analysis of *Ae. albopictus* in Lao PDR. Laotian *Ae. albopictus* are genetically related to populations from tropical/subtropical regions. The high polymorphism but shallow population structure across Lao PDR and signs of a recent population expansion in *Ae. albopictus* may be the result of recent economic development that facilitates human-mediated movement of *Ae. albopictus*. We suggest that extensive movement and likely common reintroductions of *Ae. albopictus* to treated sites represent a major challenge to dengue control in Lao PDR.

Supplementary information

Additional file 1: Table S1. Pairwise differentiation, F_{ST} among populations of *Ae. albopictus*. Abbreviations: China: GZ, Guangzhou; XM, Xiamen; JS, Jiangsu; Taiwan: TW, Xinzhu; Japan: JP, Nagasaki; Singapore: SG, Helios Block; Italy: IT, Trentino; USA: LA01, California; LA11, California; NJ, New
Acknowledgements
Our sincere thanks to the public health officers from the eight provinces for helping us in the fieldwork, and to the Ministry of Public Health of Lao PDR for
prepared by a military service member or employee of the U.S. Government as
copyright protection under this title is not available for any work of the U.S.
was prepared as part of my official duties. Title 17, U.S.C., §105 provides that
Institut Pasteur du Laos. I (JCH) am a military service member. This work
D1428, in support of the Military Infectious Diseases Research Program and
supported by the U.S. Naval Medical Research Unit TWO, work unit number
Department of Defense, nor the U.S. Government. This study was partially
necessarily reflect the official policy or position of the Department of the Navy,

References
1. Undurraga EA, Halasa YA, Shepard DS. Use of expansion factors to esti-
rate the burden of dengue in Southeast Asia: a systematic approach. PLoS Negl Trop Dis. 2013;7:e2056.
2. Banu S, Hu W, Guo Y, Nash S, Tong S. Dynamic spatiotemporal trends of
dengue transmission in the Asia-Pacific region, 1955–2004. PLoS ONE. 2014;9:e89440.
3. Khampapongpane B, Lewis HC, Ketmayoong P, Phonekeo D, Somoulav V, Khamsing A, et al. National dengue surveillance in the Lao People's
Democratic Republic, 2006–2012: epidemiological and laboratory find-
ings. Western Pac Survellion Res J. 2014;5:7–13.
4. Bounlu K, Tadano M, Makino Y, Arakaki K, Fukunaga T. A seroepide-
miological study of dengue and Japanese encephalitis viruses infections in
Vientiane, Lao PDR. Jpn J Trop Med Hyg. 1992;38:172–80.
5. Fukunaga T, Phommasack B, Bounlu K, Saito M, Tadano M, Makino Y, et al. Epidemiological situation of dengue infection in Lao PDR Trop Med.
1994;35:219–27.
6. Makino Y, Saito M, Phommasack B, Vongray P, Kanemura K, Pothawan T, et al. Arbovirus infections in pilot areas in Laos. Trop Med. 1993;36:131–9.
7. Guo X, Zhao Q, Wu C, Zuo S, Zhang X, Jia N, Liu J, Zhou H, Zhang J. First
isolation of dengue virus from Lao PDR in a Chinese traveler. Virol J. 2013;10:70.
8. Lao M, Caro V, Thiberge JM, Bournam P, Vongpayloth K, et al. Co-circula-
tion of dengue virus type 3 genotypes in Vientiane Capital, Lao PDR. PLoS ONE. 2014;9:e115569.
9. WHO. Dengue guideline for diagnosis, treatment, prevention and control.
Geneva: World Health Organization; 2009. http://www.who.int/tdr/publica-
tions/training-guideline-publications/dengue-diagnosis-treatment/en/.
Accepted 10 Jan 2019.
10. WHO. Update on dengue situation in the Western Pacific Region. Geneva: World Health Organization; 2017. http://www.wpro.who.int/emerg-
ing_diseases/dengue_Biweekly_report_20171024.pdf. Accessed 10 Jan 2019.
11. Tangena JAA, Thanmavong P, Malaithong N, Inthavong T, Ouanas-
mon P, Brey PT, Lindsay SW. Diversity of mosquitoes (Diptera: Culicidae)
attracted to human subjects in rubber plantations, secondary forests, and
villages in Luang Prabang province, Northern Lao PDR. J Med Entomol. 2017;54:1589–604.
12. Tangena JAA, Thanmavong P, Lindsay SW, Brey PT. Risk of exposure to
potential vector mosquitoes for rural workers in northern Lao PDR. PLoS Negl Trop Dis. 2017;21:e0005802.
13. Gratzi NG. Critical review of the vector status of Aedes albopictus. Med Vet
Entomol. 2004;18:215–21.
14. Benedict MQ, Levine RS, Hawley WA, Lounibos LP. Spread of the tiger:
global risk of invasion by the mosquito Aedes albopictus. Vector Borne
Zoonotic Dis. 2007;7:76–85.
15. Lambrechts L, Scott TW, Gubler DJ. Consequences of the expanding
global distribution of Aedes albopictus for dengue virus transmission.
PLoS Negl Trop Dis. 2010;4:e456.
16. Kraemer MU, Sinka ME, Duda KA, Mylne AQ, Shafer MM, Barker CM, et al. The
global distribution of the arbovirus vectors Aedes aegypti and Aedes
albopictus. eLife. 2015;4:e08347.
17. Reiter P, Sprenger D. The used tire trade: a mechanism for the worldwide dispersal of container breeding mosquitoes. J Am Mosq Control Assoc. 1987;3:494–501.

18. Coffey LL, Falloux AB, Weaver SC. Chikungunya virus-vector interactions. Viruses. 2014;6:4628–63.

19. Paupy C, Ollomo B, Kamgang B, Mountailler S, Rouset D, Demanou M, et al. Comparative role of Aedes albopictus and Aedes aegypti in the emergence of dengue and chikungunya in Central Africa. Vector Borne Zoonotic Dis. 2010;10:259–66.

20. Tomassello D, Schlagenhaufer P. Chikungunya and dengue autochthonous cases in Europe, 2007–2012. Travel Med Infect Dis. 2013;11:274–84.

21. Lai S, Huang Z, Zhou H, Anders KL, Perkins TA, Yin W, et al. The changing epidemiology of dengue in China, 1990–2014: a descriptive analysis of 25 years of nationwide surveillance data. BMC Med. 2015;13:100.

22. Rosen L, Roseboom LE, Gubler DJ, Lien JC, Chaniotsis BN. Comparative susceptibility of mosquito species and strains to oral and parental infection with Japanese and Nepalese encephalitis viruses. Am J Trop Med Hyg. 1985;34:603–15.

23. Vega-Rua A, Zouache K, Caro V, Diancourt L, Delaunay P, Grandadam M, et al. High efficiency of temperate Aedes albopictus to transmit chikungunya and dengue viruses in the southeast of France. PLoS ONE. 2013;8:e59716.

24. Mendenhall IH, Manuel M, Moorthy M, Lee TTM, Low DHW, Misse D, et al. Peridomestic Aedes melasynosis and Aedes albopictus are capable vectors of arboviruses in cities. PLoS Negl Trop Dis. 2017;11:e0005657.

25. Wong PS, Li MZI, Chong CS, Ng LC, Tan CH. Aedes (Stegomyia) albopictus (Skuse): a potential vector of Zika virus in Singapore. PLoS Negl Trop Dis. 2013;7:e2348.

26. Gardi G, Caron M, Mombio IM, Nkoghe D, Mbouei Ondo S, Jiolle D, et al. Zika virus in Gabon (Central Africa)—2007: a new threat from Aedes albopictus? PLoS Negl Trop Dis. 2014;8:e2681.

27. Gardner LM, Chen N, Sarkar S. Global risk of Zika virus depends critically on vector status of Aedes albopictus. Lancet Infect Dis. 2016;16:522–3.

28. Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and Plasmodium. Cell. 2009;139:1268–78.

29. Campos M, Spensassato C, Da Graca Maconis M, Paduan KS, Pinto J, Ribolla PE. Seasonal population dynamics and the genetic structure of the mosquito vector Aedes aegypti in Sao Paulo, Brazil. Ecol Evol. 2012;2:2794–802.

30. Rasic G, Filipovic I, Weeks AR, Hoffmann AA. Genome-wide SNPs lead to the identification of Aedes albopictus invasive populations in Los Angeles County, California and its potential public health impact. PLoS ONE. 2013;8:e68586.

31. Rattanarithikul R, Harbach RE, Harrison BA, Panthusiri P, Coleman RE, Harrison BA, et al. Genetic variation in East-Adriatic populations of the Asian tiger mosquito, Aedes albopictus (Diptera: Culicidae), inferred from NADH5 and COI sequence variability. Eur J Epidemiol. 2015;30:141–52.

32. Rattanarithikul R, Harbach RE, Harrison BA, Panthusiri P, Coleman RE, Harrison BA, et al. Genetic variation in East-Adriatic populations of the Asian tiger mosquito, Aedes albopictus (Diptera: Culicidae), inferred from NADH5 and COI sequence variability. Eur J Epidemiol. 2015;30:141–52.

33. Radovcic V, Cao M, Gubler DJ, Roumeliotis S, Kay BH, et al. Comparative role of Aedes albopictus and Aedes aegypti in the emergence of dengue and chikungunya in Central Africa. Vector Borne Zoonotic Dis. 2010;10:259–66.

34. Motoki et al. Parasites Vectors (2019) 12:477

35. Zawani MKN, Abu HA, Sazaly AB, Zary SY, Darlina MN. Population genetic structure and competence as a vector for dengue virus. Insights inVec. 2013;7:e44515.

36. Zavani MRN, Abu HA, Sazaly AB, Zary SY, Darlina MN. Population genetic structure of Aedes albopictus in Penang, Malaysia. Gen Mol Res. 2013;12:8184–96.

37. Futami K, Valderrama A, Baldi M, Minakawa N, Marin Rodrigues R, Chaves LF. New and common haplotypes shape genetic diversity in Asian tiger mosquito populations from Costa Rica and Panama. J Econ Entomol. 2015;108:761–8.

38. Ismail N-A, Dom NC, Ismail R, Ahmad AH, Zaki A, Camalxaman SN. Genetic diversity and microsatellite locations of Aedes albopictus from La Reunion Island (Indian Ocean) with respect to Aedes albopictus from Europe. J Econ Entomol. 2013;106:1411–8.

39. Beebe NW, Ambrose L, Hill LA, Davis JB, Hagpool G, Cooper RD, et al. Genetic diversity and microsatellite locations of Aedes albopictus from La Reunion Island (Indian Ocean) with respect to Aedes albopictus from Europe. J Econ Entomol. 2013;106:1411–8.

40. Peakall R, Smouse PE. GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes. 2006;6:288–95.

41. Peakall R, Smouse PE. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformat. 2012;28:2537–9.
dengue type 2 virus of Aedes aegypti and Aedes albopictus from Madagascar. Am J Trop Med Hyg. 2001;65:491–7.

65. Maia R, Scarpassa V, Maciel-Litaiff L, Tadei W. Reduced levels of genetic variation in Aedes albopictus (Diptera: Culicidae) from Manaus, Amazonas State, Brazil, based on analysis of the mitochondrial DNA ND5 gene. Gen Mol Res. 2009;8:998–1007.

66. Schmidt TL, Rasch G, Zhang D, Zheng X, Xi Z, Hoffmann AA. Genome-wide SNPs reveal the drivers of gene flow in an urban population of the Asian tiger mosquito, Aedes albopictus. PLoS Negl Trop Dis. 2017;11:e0006009.

67. Novak R. The Asian tiger mosquito, Aedes albopictus. Wing Beats. 1992;3:5.

68. Paily KP, Chandhiran K, Vanamali P, Kumar NP, Jambulingam P. Efficacy of a nematode (Romanomermis iyengari) (Nematoda: Mermithidae) in controlling tree hole-breeding mosquito Aedes albopictus (Skuse) in a rubber plantation area of Kerala, India. Parasitol Res. 2013;112:1299–304.

69. Sumodan PK, Vargas RM, Pothikasikorn J, Sumanrote A, Lefait-Robin R, Dujardin J-P. Rubber plantations as a mosquito box amplification in South and Southeast Asia. In: Morand S, Dujardin J-P, Lefait-Robin R, Apiwathanasorn C, editors. Socio-ecological dimensions of infectious diseases in Southeast Asia. Singapore: Springer; 2015. p. 155–67.

70. Urbanelli S, Bellini R, Carrieri M, Salicicandro P, Celli G. Population structure of Aedes albopictus (Skuse): the mosquito which is colonizing Mediterranean countries. Heredity. 2000;84:331–7.

71. Khambhampats S, Black WC, Rai KS. Geographic origin of the US and Brazilian Aedes albopictus inferred from allozyme analysis. Heredity. 1991;67:85–94.

72. Hawley WA, Reiter P, Copeland RS, Pumpuni CB, Craig GB. Aedes albopictus in North America probable introduction in used tires from northern Asia. Science. 1987;236:1114–6.

73. Urbanski J, Magi M, O’Donnell D, De Cotiis M, Toma T, Armbruster P. Rapid adaptive evolution of photoperiodic response during invasion and range expansion across a climatic gradient. Am Nat. 2012;179:490–500.

74. Poelchau MF, Reynolds JA, Elsk CG, Denlinger DL, Armbruster PA. Deep sequencing reveals complex mechanisms of diapause preparation in the invasive mosquito, Aedes albopictus. Proc Biol Sci. 2013;280:20130143.

75. Maynard AJ, Ambrose L, Cooper RD, Chow WK, Davis JB, Muzari MO, et al. Tiger on the prowl: Invasion history and spatio-temporal genetic structure of the Asian tiger mosquito Aedes albopictus (Skuse, 1894) in the Indo-Pacific. PLoS Negl Trop Dis. 2017;11:e0005546.

76. Birungi J, Munstermann LE. Genetic Structure of Aedes albopictus (Diptera: Culicidae) populations based on mitochondrial ND5 sequences: evidence for an independent invasion into Brazil and United States. Ann Entomol Soc Am. 2002;95:125–32.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.