Development and Validation of a predictive model based on Radiomics to predict the short-term outcomes of patients with COVID-19

Juanjuan Xu
Wuhan Union Hospital

Mei Zhou
Wuhan Union Hospital

Zhilei Lv
Wuhan Union Hospital

Zhihui Wang
Wuhan Union Hospital

Tingting Liao
Wuhan Union Hospital

Yanling Ma
Wuhan Union Hospital

Guorong Hu
Wuhan Union Hospital

Sufei Wang
Wuhan Union Hospital

Jin Gu
Wuhan Union Hospital

Zhengrong Yin
Wuhan Union Hospital

Yang Jin
whuhjy@126.com

Wuhan Union Hospital
https://orcid.org/0000-0003-2409-7073

Research

Keywords: COVID-19, chest CT, radiomics, short-term outcomes, nomogram.

DOI: https://doi.org/10.21203/rs.3.rs-74208/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Coronavirus disease-2019 (COVID-19) is sweeping the globe and the situation is precarious. Aim of our study is to develop and validate a radiomics-based model to predict the short-term prognosis of COVID-19 patients and to improve hospital survival.

Methods: In our multi-center study, a first batch of 148 patients in the training set was used to build prognosis prediction model, and a second batch of 264 patients was assigned as validation set to verify the predictive performance. Patients were divided into two groups (good/poor prognosis) according to the outcome evaluation both on the 14th day after admission. Data were collected at admission involving demographic and epidemiological features, symptoms, laboratory results and CT images. The latter contained direct CT findings and radiomic features. Radiomic scores (Rad-scores) were calculated for each patient by a linear combination of the extracted features with their respective coefficients. Univariable and multivariable Logistic regression analysis were conducted in sequence to select variables for building a nomogram prediction model, which was applied for prognostic evaluation.

Results: We reported that the nomogram scoring system, including age, central/peripheral lesion location in CT findings, C-reactive protein (CRP) and Rad-score, could effectively predict the short-term outcomes of COVID-19 patients with a sensitivity of 81.25% and specificity of 87.27%. The predictive performance of this model was also validated in the independent validation dataset yielding a sensitivity of 88.76%, specificity of 72.97% (AUC: 0.882).

Conclusions: This radiomics-based model could predict the short-term prognosis of COVID-19 patients and to improve hospital survival.

Background

In December, 2019, a novel coronavirus pneumonia (COVID-19) broke out in Wuhan, Hubei province, China, and is causing concern both domestically and internationally [1,2] which is designated as a pandemic by the WHO, Causing mass infections and deaths worldwide. Compared to SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), the 2019-nCoV poses a much higher pandemic risk [3,4]. The epidemic is enormously destructive, and the virus is very different from its two previous counterparts, for the reason that it has a long incubation period and is highly contagious [5]. As a consequence, the fight against the current COVID-19 epidemic is much more resource-intensive in terms of manpower and materials [6]. Compared to other viral pneumonia, the COVID-19 may have higher morbidity and mortality, and nearly 20% of confirmed cases are severely ill [7], having dyspnea (55%), impaired functions of organs (33%), ARDS (17%), acute respiratory injury (8%), acute renal injury (3%), septic shock (4%), ventilator-associated pneumonia (1%) [8,9]. The rapid global spread, mounting fatalities, unknown animal reservoirs, and person-to-person transmission potential of the infection pose a much greater threat to human health than SARS and MERS.

Apparently, a simple but accurate method is urgently needed for predicting the short-term outcomes of patients with COVID-19 to allow early intervention. However, so far, predictive models of computed tomography for COVID-19 patients who progressed to severe conditions were rarely reported. What’s more, in several countries, the epicenter of the epidemic, medical resources, including medicines, respiratory support equipment, medical consumables, and medical protective equipment are currently in serious shortage [10]. Therefore, it is of great urgency to establish an effective prognostic prediction strategy to minimize the likelihood of the condition developing to serious illness and reduce mortality, thereby easing the pressure on medical resources in this area. Nomograms are extensively used for event prediction in clinical practice, since they can reduce complicated statistical prediction models to a single number of the probability, which substantially simplifies the prediction process [11,12].

In this study, we constructed a predictive of computed tomography early warning model, and translated it into a form of nomogram scoring system, it could be conductive to early judgment or assessment of short-term outcomes of patients with COVID-19, which may help allow early intervention and minimizing the likelihood of its development to serious illness, easing pressure on medical resources and personnel.

Methods

Patients and inclusion criteria

Firstly, we retrospectively reviewed the first batch of patients that were admitted to the isolation wards of Wuhan Union Hospital and West Union Hospital from Jan 16, 2020 to Jan 31, 2020 during the outbreak. A total of 148 patients were ultimately included in this study as a retrospective training dataset. Then 264 patients that were admitted to isolation wards of Wuhan Union Hospital, West Union Hospital and Wuhan central Hospital from Feb 1 to Feb 24, 2020 were later included as an independent validation cohort. All patients were laboratory-confirmed to be positive for 2019-nCoV nucleic acid. Since our goal is to build a model that can implement early warning functions, the time point of outcome evaluation was then designed to be the fourteenth day after admission. The criteria for poor and good outcomes were as follows: Patients who met those three criteria on the fourteenth day were deemed as having good prognosis: (1) Symptoms and manifestation of chest CT improved; (2) No respiratory support was required; (3) Two RNA tests, over 24 hours apart, yielded negative results for 2019-nCoV. Patients were taken as having poor prognosis if they satisfied one of the following criteria on the fourteenth day: (1) Condition or manifestation of chest CT deteriorated; (2) Respiratory support needs to be sustained (high flow nasal cannula, ventilation support); (3) Patient deceased. This study was registered on the Clinical Trials website (No.ChicTR2000029770). The protocol used in this project was reviewed and approved by the institutional review boards of Medical Ethics Committee of Union Hospital (NO.0036) and the informed consent was waived by the Ethics committee for this special emergency.

Data collection

Data were collected at patient admission. The demographic and epidemiological data included age, gender, occupation, smoking history, history of travel to the Huanan seafood wholesale market and exposure history. Symptoms were recorded at admission, including fever, cough, sputum, fatigue, myalgia, hemoptysis, dyspnea, stomachache, diarrhea, conjunctivitis, headache and chest tightness. Laboratory results were collected from medical records, including counts of Leucocytes, neutrophils and lymphocytes, C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), procalcitonin (PCT) and serum
biochemistry (including renal and hepatic function). CT findings included computer-aided objective radiomic features and direct findings to be interpreted by doctors (lung involvement ratio, uni-/bilateral pneumonia, central/peripheral lesion location, ground-glass opacity, patchy exudation, consolidation, white lung, pleural effusion). The extraction of radiomic features and definition of direct interpreted CT findings were detailed in the ensuing section.

Pathogen identification

The virus of COVID-19 was tested by real-time RT-PCR through using specific primers and probes. RNA was extracted from patients’ samples including nasopharyngeal swabs or sputum. Patients were defined as infected with COVID-19 when the RT-PCR results were positive for two targets (open reading frame 1a or 1b, nucleocapsid protein) [13].

Evaluation of hematologic indicators

Basic laboratory tests included blood routine test, CRP, PCT and serum biochemical tests (including renal and liver function). To characterize the effect of 2019-nCoV on patient immune system, the frequency of immune cells, including CD3+ T lymphocytes, CD8+ T lymphocytes, CD4+ T lymphocytes, B lymphocytes and natural killer (NK) cells, were examined. Immunity-associated factors, including Interleukin-2 (IL-2), IL-4, IL-6, IL-10, interferon γ (IFN-γ), tumor necrosis factor α (TNF-α), serum immunoglobulins and complement 3, 4 (C3, C4) were also detected.

CT data acquisition

The CT scans were performed at admission by using a number of multislice detector CT scanners, 1212LightSpeed VCT (General Electric Medical Systems, USA), Somatom Sensation (Siemens Heathcare), Somatom Definition (Siemens Heathcare), and Somatom Definition AS+ (Siemens Heathcare). Standard departmental protocols were used with volumetric datasets acquired with or without contrast as indicated clinically14. All images were reconstructed into axial images at a 1.5/2-mm slice thickness at 1.5/2-mm intervals using lung and soft tissue algorithms.

Direct interpreted findings of chest CT

Direct CT findings were performed by two experienced thoracic radiologists blinded to the clinical data. The disagreement was resolved by comparing notes and reaching a consensus. Direct interpreted features included the lesion-occupying ratio of the whole lung field (lung involvement ratio), lesion distribution (uni-/bilateral pneumonia, central/peripheral lesion location), lesion density (consolidation, patchy exudation, ground-glass opacity), pleural effusion and lymph node enlargement. The peripheral lesion location was defined as predominant distribution of lesions in the subpleural position, and the otherwise was defined as central location. Lymph node enlargement was defined as that the maximum short diameter of lymph node exceeded 1 cm [14].

Extraction of radiomic features

Radiomic features were extracted by mathematical calculations on image-based data matrices according to the formulas for each feature. Two basic elements of feature extraction are matrices and formulas (formulas were detailed in [https://pyradiomics.readthedocs.io/en/latest/features]). We extracted six aspects of the features, including shape, histogram and four high-order matrices transformed from the pixel matrix, namely, the gray level co-occurrence matrix (GLCM), gray level run length matrix (GLRLM), gray level size zone matrix (GLSZM) and gray level dependence matrix (GLDM). Each radiomic feature was calculated on the corresponding matrix according to each specific formula. Shape and histogram features were based on a pixel matrix. The last four categories were calculated from the four corresponding high-order matrices. Features of these six categories matrices are listed in e-Table 1. A total of 4327 features were extracted under four pixel size parameters.

Radiomic signature building

In the training cohort, we adopted the least absolute shrinkage and selection operator (LASSO) method for feature selection to identify the relevant features. Radiomic scores (Rad-scores) were calculated for each patient by a linear combination of the extracted features with their respective coefficients for the prediction model [15].

Nomogram

The nomogram was used to visually score the patients’ various parameters, and then to compute the probability of the event based on the patients’ total score. To construct a highly accurate prediction model, we combined variables filtered through aforementioned two models to build nomograms [11]. The Receiver Operating Characteristic Curve (ROC) was generated by using a validation set dataset to validate the distinguishing power of the nomogram. And the calibration curve by plotting the observed probability against the predicted probability of poor outcomes was used to evaluate the calibration of the nomogram [16].

Statistical analysis

Categorical variables were presented as frequency rates and percentages, and continuous variables were expressed as mean (standard deviation [SD]) if they were normally distributed or median (interquartile range [IQR]) if they were not. Proportions for categorical variables were compared using the χ2 test or Fisher’s exact test. Means for continuous variables were compared using independent group t test when the data were normally distributed. Otherwise, the Wilcoxon rank-sum test was used. Some indicators were converted to binary variables according to the optimal cutoff values by employing receiver operating characteristic (ROC) analyses. Variables with P < 0.05 were regarded as potential risk factors and were included in multivariable Logistic regression analysis using the stepwise selection procedure with default setting. ROC curves were drawn to evaluate the distinguishing power of the constructed models and the difference between AUCs was compared using Delong’s test. All statistical analyses were performed using SAS software package (version 9.4).

Results

Description of the population in training cohort
A total of 148 patients in the first cohort (Wuhan Union Hospital and West Union Hospital from Jan 16 to Jan 31, 2020) and 264 patients in the second validation cohort (Wuhan Union Hospital, West Union Hospital and Wuhan Central Hospital from Feb 1 to Feb 24, 2020) were included in this study. The flowchart of study design showed in Fig. 1.

In the training set of 148 patients, 77 patients showed conspicuous improvement and the other 71 patients were deemed as having poor outcomes. Univariable analyses were used to preliminarily compare the differences between patients with good prognosis and those with poor outcomes, and we screened out 24 indicators out of 63 variables analyzed that were associated with patients' outcomes (Table 1).
Table 1
Univariable analysis of the association between variables and patients’ outcomes in the training set

Variables	All patients	Poor outcome	Good outcome	χ^2	P value
Demographics and epidemiological features					
Age (year)					
< 65, n(%)	118(79.73)	50(70.42)	68(88.31)	7.3145	0.0068
\geq 65, n(%)	30(20.27)	21(29.58)	9(11.69)		
Gender					
female, n(%)	81(54.73)	36(50.70)	45(58.44)	0.8926	0.3448
male, n(%)	67(45.27)	35(49.30)	32(41.56)		
Occupation					
professional and technical personnel, n(%)	28(22.22)	9(15.52)	19(27.94)	Fisher’s	0.0649
retired personnel, n(%)	20(15.87)	13(22.41)	7(10.29)		
doctor, n(%)	2(1.59)	0(0.00)	2(2.94)		
student, n(%)	1(0.79)	1(1.72)	0(0.00)		
other, n(%)	75(22.22)	35(60.34)	40(58.82)		
Smoke					
no, n(%)	98(70.50)	47(68.12)	51(72.86)	0.3756	0.5400
yes, n(%)	41(29.50)	22(31.88)	19(27.14)		
Severe chronic diseases					
without, n(%)	129(87.16)	61(85.92)	68(88.31)	0.1895	0.6633
with, n(%)	19(12.84)	10(14.08)	9(11.69)		
History of travel to Huanan seafood wholesale market					
no, n(%)	141(97.92)	66(97.06)	75(98.68)	Fisher’s	0.6023
yes, n(%)	3(2.08)	2(2.94)	1(1.32)		
History of exposure to suspected patient					
no, n(%)	138(94.52)	66(94.29)	72(94.74)	Fisher’s	1.0000
yes, n(%)	8(5.48)	4(5.71)	4(5.26)		
Familial cluster					
no, n(%)	142(97.26)	67(97.10)	75(97.40)	Fisher’s	1.0000
yes, n(%)	4(2.74)	2(2.90)	2(2.60)		
Patients’ symptoms at admission					
Days from symptom onset to admission					
\leq 6, n(%)	58(39.19)	19(26.76)	39(50.65)	8.8456	0.0029
$>\ 6$, n(%)	90(60.81)	52(73.24)	38(49.35)		
Fever					
no, n(%)	35(23.65)	15(21.13)	20(25.97)	0.4807	0.4881
yes, n(%)	113(76.35)	56(78.87)	57(74.03)		
Sore throats					
no, n(%)	90(60.81)	47(66.20)	43(55.84)	1.6614	0.1974
yes, n(%)	58(39.19)	24(33.80)	34(44.16)		
Fatigue					
no, n(%)	62(43.06)	31(43.66)	31(42.47)	0.021	0.8848
yes, n(%)	82(56.94)	40(56.34)	42(57.53)		
Myalgia					
no, n(%)	88(59.46)	44(61.97)	44(57.14)	0.3573	0.5500
yes, n(%)	60(40.54)	27(38.03)	33(42.86)		
Cough					
no, n(%)	42(30.66)	20(32.26)	22(29.33)	0.1366	0.7117
yes, n(%)	95(69.34)	42(67.74)	53(70.67)		
Expectoration					
no, n(%)	77(56.20)	35(56.45)	42(56.00)	0.0028	0.9577
yes, n(%)	60(43.80)	27(43.55)	33(44.00)		
Hemoptysis					
no, n(%)	131(94.93)	58(92.06)	73(97.33)	Fisher’s	0.2458
yes, n(%)	7(5.07)	5(7.94)	2(2.67)		

N: patients included in this study. Missing: patients missing this item. SD: standard deviation. #: t value; *: Z value
Variables	All patients	Poor outcome	Good outcome	χ^2	P value	
Shortness of breath						
no, n(%)	94(68.61)	41(66.13)	53(70.67)	0.3245	0.5689	
yes, n(%)	43(31.39)	21(33.87)	22(29.33)			
Stomachache						
no, n(%)	128(94.12)	58(95.08)	70(93.33)	Fisher's	0.7305b	
yes, n(%)	8(5.88)	3(4.92)	5(6.67)			
Diarrhoea						
no, n(%)	122(90.37)	53(88.33)	69(92.00)	0.515	0.4730	
yes, n(%)	13(9.63)	11(16.67)	6(8.00)			
Conjunctivitis						
no, n(%)	132(98.51)	59(98.33)	73(98.65)	Fisher's	1.0000b	
yes, n(%)	2(1.49)	1(1.67)	1(1.35)			
Headache						
no, n(%)	97(72.39)	41(69.49)	56(74.67)	0.4425	0.5059	
yes, n(%)	37(27.61)	18(30.51)	19(25.33)			
Chest tightness						
no, n(%)	88(63.77)	41(65.08)	47(62.67)	0.0863	0.7690	
yes, n(%)	50(36.23)	22(34.92)	28(37.33)			
CT radiomics and direct CT findings						
Rad-score	Mean(SD)	0.01(0.32)	0.14(0.19)	-0.11(0.36)	-4.8165#	< 0.0001
Lung involvement ratio						
< 30%, n(%)	85(57.43)	23(32.39)	62(80.52)	34.9941	< 0.0001	
≥ 30%, n(%)	63(42.57)	48(67.61)	15(19.48)			
Uni-/bilateral pneumonia						
single, n(%)	37(25.00)	8(11.27)	29(37.66)	13.7253	0.0002	
double, n(%)	111(75.00)	63(88.73)	48(62.34)			
Central/Peripheral lesion location						
either central or peripheral location, n(%)	89(60.14)	19(26.76)	70(90.91)	63.4077	< 0.0001	
both central and peripheral location, n(%)	59(39.86)	52(73.24)	7(9.09)			
Consolidation						
no, n(%)	47(31.76)	7(9.86)	40(51.95)	30.1944	< 0.0001	
yes, n(%)	101(68.24)	64(90.14)	37(48.05)			
Patchy exudation						
no, n(%)	34(22.97)	11(15.49)	23(39.87)	4.3149	0.0378	
yes, n(%)	114(77.03)	60(84.51)	54(62.34)			
Ground-glass opacity						
no, n(%)	13(8.90)	2(2.90)	11(14.29)	Fisher's	0.0193	
yes, n(%)	133(91.10)	67(87.10)	66(85.71)			
Pleural effusion						
no, n(%)	92(62.16)	31(43.66)	61(79.22)	19.8577	< 0.0001	
yes, n(%)	56(37.84)	40(56.34)	16(20.78)			
Lymph node enlargement						
no, n(%)	115(77.70)	41(57.75)	74(96.10)	31.3688	< 0.0001	
yes, n(%)	33(22.30)	30(42.25)	3(3.90)			
Immune cells and relevant indicators						
Leucocytes (× 109/L)						
< 8, n(%)	122(88.41)	52(82.54)	70(93.33)	3.9266	0.0475	
≥ 8, n(%)	16(11.59)	11(17.46)	5(6.67)			
Neutrophils (× 109/L)						
< 2.7, n(%)	68(49.28)	21(33.33)	47(62.67)	11.7868	0.0006	
≥ 2.7, n(%)	70(50.72)	42(66.67)	28(37.33)			
Lymphocytes (× 109/L)						
< 0.9, n(%)	58(42.03)	36(57.14)	22(29.33)	10.8680	0.0010	
≥ 0.9, n(%)	80(57.97)	27(42.86)	53(70.67)			

N: patients included in this study. Missing: patients missing this item. SD: standard deviation. #: t value; *: Z value
Variables	All patients	Poor outcome	Good outcome	χ^2	P value	
Eosinophils (x 10^9/L)						
$< 0.003, n(\%)$	57(41.30)	36(57.14)	21(28.00)	11.9946	0.0005	
$\geq 0.003, n(\%)$	81(58.70)	27(42.86)	54(72.00)			
Erythrocyte sedimentation rate (ESR) (mm/h)						
$< 23, n(\%)$	38(39.18)	9(20.00)	29(55.77)	12.9530	0.0003	
$\geq 23, n(\%)$	59(60.82)	36(80.00)	23(44.23)			
C-Reactive Protein (CRP) (mg/L)						
$< 20, n(\%)$	75(58.59)	20(33.90)	55(79.71)	27.5125	< 0.0001	
$\geq 20, n(\%)$	53(41.41)	39(66.10)	14(20.29)			
Procalcitonin (PCT) (ng/ml)						
$< 0.22, n(\%)$	90(76.92)	37(66.07)	53(86.89)	7.1253	0.0076	
$\geq 0.22, n(\%)$	27(23.08)	19(33.93)	8(13.11)			
CD3 + lymphocytes (%)	Mean(SD)	71.81(9.59)	69.27(9.84)	73.19(8.78)		
N(Missing)	50(98)	26(45)	24(53)			
CD4 + lymphocytes (%)	Mean(SD)	40.21(8.90)	40.11(9.23)	39.09(6.93)		
N(Missing)	50(98)	26(45)	24(53)			
CD8 + lymphocytes (%)	Mean(SD)	26.55(9.81)	24.54(10.60)	28.45(7.36)	1.5027	0.1395
N(Missing)	50(98)	26(45)	24(53)			
B lymphocytes (%)	Mean(SD)	11.63(5.37)	12.70(6.73)	10.76(3.70)		
N(Missing)	49(99)	25(46)	24(53)			
NK cells (%)	Mean(SD)	13.14(7.85)	15.04(7.62)	12.20(7.86)		
N(Missing)	49(99)	25(46)	24(53)			
CD4+/CD8+ ratio	Mean(SD)	1.98(1.85)	2.19(1.94)	1.50(0.66)		
N(Missing)	50(98)	26(45)	24(53)			
IL-2 (pg/L)	Mean(SD)	2.63(0.47)	2.71(0.57)	2.55(0.35)		
N(Missing)	37(111)	18(53)	19(58)			
IL-4 (pg/L)	Mean(SD)	1.97(0.41)	2.01(0.34)	1.93(0.47)		
N(Missing)	37(111)	18(53)	19(58)			
IL-6 (pg/L)	Mean(SD)	16.26(29.85)	27.77(40.01)	5.35(3.32)		
N(Missing)	37(111)	18(53)	19(58)			
IL-10 (pg/L)	Mean(SD)	4.64(2.31)	5.83(2.64)	3.51(1.16)		
N(Missing)	37(111)	18(53)	19(58)			
TNF-α (pg/ml)	Mean(SD)	2.33(1.39)	2.11(0.34)	2.54(1.91)		
N(Missing)	37(111)	18(53)	19(58)			
IFN-γ (pg/ml)	Mean(SD)	2.69(1.49)	3.22(1.90)	2.19(0.72)		
N(Missing)	37(111)	18(53)	19(58)			
IGE (IU/ml)	Median(IQR)	47.93(84.47)	98.84(11.44)	36.45(70.82)		
N(Missing)	19(129)	5(66)	14(63)			
IGG (g/L)	Median(IQR)	11.20(3.00)	11.20(2.20)	11.20(3.46)		
N(Missing)	19(129)	5(66)	14(63)			
IGA (g/L)	Median(IQR)	1.77(0.93)	2.01(1.02)	1.66(1.30)		
N(Missing)	19(129)	5(66)	14(63)			

N: patients included in this study. Missing: patients missing this item. SD: standard deviation. t: t value; *: Z value
Among demographic and epidemiological features, age was the only factor in which significant difference was found between the two groups (P= 0.0068). The average age of the patients was 49.7 years, and advanced age (≥ 65 years old) was associated with unfavorable outcomes. Only three patients had a history of travel to the Huanan seafood wholesale market, and no statistically significant difference was revealed in such travel history between the two groups. In our study populations, only 19 (12.8%) patients had chronic diseases, including diabetes (8[5%]), hypertension (6[4%]), coronary heart disease (6[4%]), malignancy (4[2.7%]), cerebrovascular disease (3[2%]), hematological diseases (2[1.3%]) and no statistically significant difference existed in severe chronic diseases between patients with poor outcomes and those with good ones (Table 1).

Days from symptoms onset to hospital admission were statistically significant between two groups (P= 0.0029), and the longer time (> 6 days) correlated with poor prognosis. All symptoms bore no association with the outcomes of the patients (Table 1). The common symptoms of patients with COVID-19 included fever (n = 113 [76.3%]), cough (n = 95 [69.3%]), fatigue (n = 82 [56.9%]), expectoration (n = 60 [43.8%]), myalgia (60 patients[40.5%]), sore throats (n = 58 [39.1%]), chest tightness (n = 50 [36.2%]), shortness of breath (n = 43 [31.4%]), headache (n = 37 [27.6%]), diarrhoea (n = 13 [9.6%]), stomachache (n = 8 [5.9%]), hemoptysis (n = 7 [5.1%]) and conjunctivitis (n = 2 [1.5%]) (Table 1).

CT examination exhibited that, in 89 patients (60.1%), lesions were located in either central or peripheral lung field and, and in 59 patients (39.8%), the lesions were both centrally and peripherally situated (Table 1, e-Figure 1). One hundred and eleven patients (75%) had bilateral pneumonia. All indicators involving direct interpreted CT findings were linked to patients’ outcomes, including Rad-score, lung involvement ratio, laterality (uni-/bilateral) of pneumonia, central/peripheral lesion location, consolidation, patchy exudation, ground-glass opacity, pleural effusion, and lymph node enlargement (all P< 0.05) (Table 1).

We analyzed the association between common immune cells, relevant indicators and patients’ outcomes. The immune cells and other factors found to be associated with patients’ outcomes included the counts of leucocytes, neutrophils, lymphocytes, eosinophils, and ESR, CRP, PCT, Complement 3 (C3), D-Dimer, IL-6, IL-10, ALT and albumin (all P< 0.05) (Table 1).

Radiomic feature selection and radiomic signature construction

Computer-aided extraction of CT radiomic analysis extracted six categories of features (e-table 1) and identified a total of 4,327 features from each patient in this study (more details are described in methods). The workflow of radiomic feature extraction is available in the supplementary files (see e-Figure 2). In the training dataset, LASSO-regression analysis was used to evaluate the association between radiomic features and patients’ outcomes. Then, 6 radiomic features that were most associated with patient outcome were selected, including log.sigma.4.0.mm.3D_glcm_Correlation,log.sigma.5.0.mm.3D_glcm_Correlation,log.sigma.4.0.mm.3D_glcm_Correlation,wavelet.LLL_gldm_LargeDependenceL...
The coefficients of them were 0.959222048, 0.968288021, 0.949917087, 0.005205795, 1027.865081 and 570.4715897 respectively (Fig. 2a, b). The Rad-score was defined as linear combination of the extracted features with their respective coefficients. ROC analyses showed that the AUC of Rad-score for differentiating patients’ outcome were 0.76, 0.69 and 0.71 in the training dataset, testing dataset and the entire patient cohort, respectively (Fig. 2c, d, e).

Selection of clinical parameters and CT findings associated with patients’ short-term outcomes
We then included indicators with \(P \) values less than 0.05 in the univariable analysis and conducted multivariable regression analyses to assess the separate contribution of each single parameter to the prediction of patients’ outcomes. The result showed that CRP was an independent outcome predictor in the model. Among all directly interpreted CT features included for multivariable analysis, lesion location (in both central and peripheral field) was the only CT feature that possessed independent predictive value (OR: 16.22, 95% CI: 5.72–46.01, \(P < 0.0001 \)) (Table 2). Also, Rad-score in radiomics was shown to be an independent predictor (OR: 27.66, 95% CI: 3.35-228.13, \(P = 0.002 \)) (Table 2).

Variables	Group	\(\beta \) coefficient	OR (95%CI)	\(P \) value	Nomogram Score
Age(year)	< 65	reference	reference	0.00	
	\(\geq 65 \)	0.294	1.34 (0.32, 5.62)	0.685	7.81
Central/Peripheral lesion location	Either central or peripheral lesion location	reference	reference	0.00	
	Both central and peripheral lesion location	2.84	17.17 (5.58, 52.79)	0.0001	75.53
CRP(ng/ml)	< 20	reference	reference	0.00	
	\(\geq 20 \)	1.16	3.18 (1.06, 9.59)	0.0397	30.75
Rad-score		1.88	6.57 (1.33, 32.37)	0.02	50*

*: For each unit increment of Rad-score, the score increases by 50 points.

Construction of nomogram scoring system for short-term outcome prediction
In order to facilitate clinical application, we employed nomogram scoring systems to directly indicate the probability of poor prognosis in patients with COVID-19 based on the total score calculated. We developed nomogram scoring system on the basis of multivariable Logistic regression analyses for predicting the short-term outcomes of COVID-19 patients in the training set. The relevant parameters in the multivariable analysis were used to construct nomogram. Age is artificially incorporated into the model. Accordingly, four indicators (age, CRP, Rad-score, lesion location) were selected to construct the nomogram (Fig. 3a) and the scores of variables were displayed (Table 2). The ROC analysis yielded an AUC value of 0.880 (Fig. 3b), and the sensitivity and specificity at the optimal cut-off score of 77.50 were 81.25% and 87.27%, respectively.

Predictive performance of the nomogram scoring system in the independent validation set
To validate the predictive performance of the constructed nomogram scoring system, 264 patients were enrolled from Feb 1 to Feb 24, 2020 in three hospitals, and we found that the nomogram scoring system in the validation set exhibited comparable differentiating power to the training set, as reflected by an AUC of 0.882 [95% CI: 0.833–0.920], and a sensitivity of 88.76%, and a specificity of 72.97% (Fig. 3e). Then we employed the calibration curve that plotted the observed probability against the predicted probability of poor outcomes to evaluate the calibration of the nomogram. The ideal calibration curve is the diagonal line which means that observed probability overlapped with the predicted probability of patient’s short-term outcomes. In our independent validation dataset, the scoring system showed good calibration which was close to the diagonal line (Fig. 3d). All of the above further confirmed the feasibility and accuracy of this model.

Discussion
In this study, we identified 24 indicators that were related to patients’ outcomes, including age, lesion location (central/peripheral), Rad-score, ground-glass opacity, counts of neutrophils, lymphocytes, CRP, IL-6, IL-10, IFN-\(\gamma \), D-Dimer, among others.

As for demographic and epidemiological indicators, age was the sole statistically significant contributor, but the chronic underlying disease was not though it had been generally believed to be a prognostic factor [17]. The possible reason is that the number of people with chronic underlying diseases included in our subjects of training set was small, being only 19. All clinical symptoms except days from symptoms onset to hospital admission exhibited no association with the outcomes of the patients, which is also consistent with other studies [18]. Notably, all features of interpreted CT findings were linked to patients’ outcomes, including Rad-score, lung involvement ratio, laterality (uni-/bilateral) of pneumonia etc., which further illustrated the significance of CT imaging in the prognostic evaluation of COVID-19. In fact, according to the multivariable analysis, we found that the CT interpretation of lesion location (central/peripheral distribution) and Rad-score is the independent predictive factor compared to the other CT features (ground-glass opacity, patchy exudation, consolidation etc.), however, the latter were most focused in evaluating the outcomes of patients with COVID-19 in other research [19].
Recently, construction of mathematical models based on multiple markers has been increasingly applied in the field of medicine. This approach combines a series of relevant parameters to generate a more accurate predictive model [20–22]. In this study, we constructed a predictive early warning model by using the most significant indicators based on the β-coefficient generated by multivariable Logistic regression analysis. Moreover, this model was in a form of nomogram scoring system, which makes it much more convenient for clinicians to use. This study integrated a total of 63 indicators, including not only the common indicators, but also the radiological characteristics of chest CT and immunological indicators used in other studies, such as IL-6, IL-10, C3, C4 [8].

To date, several studies have reported that patients with COVID-19 have decreased lymphocyte counts and increased serum inflammatory cytokine levels [18]. Inflammatory storm, which can overwhelmingly cause single or multiple organ failure, is believed to be an important cause of death in COVID-19 patients in severe or critical conditions [9]. Similarly, we also found that lymphocyte counts and IL-6 and IL-10 levels were correlated with patients’ outcomes in our cohort. However, for hospitals at all levels, the detection of IL-6 or IL-10 is not suitable for large-scale disease prevention or screening in an epidemic, because only few people will be tested for the two cytokines. Similarly, only about 25% (37 out of 148) of patients in our training set received this test. For these reasons, apart from the basic indicator (age), we included the Rad-score plus the other two indicators (CT features and CRP) to build prognostic evaluation models for patients with COVID-19. The difference between the Radiomics and direct CT features lies in that it entails complicated calculation on CT images, and has potential power to facilitate better clinical decision making. As we know it, direct CT findings are easier to judge, while the radiomic features have better advantage for the nature than the extent of the lesion. So they could complement each other. The sensitivity and specificity of the model which combined radiomic and direct CT features were 81.25% and 87.27% (cut-off score: 77.50) respectively. Consistently, the results of the independent validation set also confirmed the validity and accuracy of this model (AUC: 0.882; sensitivity: 88.76%; specificity: 72.97%).

In conclusion, the nomograms we developed based on four relevant variables, was easy to use and conductive to early judgment or assessment of short-term outcomes of patients with COVID-19. Since, clinically, the risk factors included in the prediction model are readily available. The nomogram can be used by physicians and medical settings effectively. Hopefully, its application may help to start intervention early and minimizing the likelihood of its development to serious illness, and ultimately, reducing mortality and easing pressure on medical resources.

Abbreviations

COVID-19: Coronavirus disease-2019

Rad-scores: Radiomic scores

CRP: C-reactive protein

MERS-CoV: Middle East respiratory syndrome coronavirus

ESR: Erythrocyte sedimentation rate

PCT: Procalcitonin

NK cells: Natural killer cells

IL-2: Interleukin-2

IFN-γ: Interferon γ

TNF-α: Tumor necrosis factor α

C3, C4: Complement 3, 4

GLCM: Gray level co-occurrence matrix

GLRLM: Gray level run length matrix

GLSZM: Gray level size zone matrix

GLDM: Gray level dependence matrix

LASSO: Least absolute shrinkage and selection operator

ROC: Receiver Operating Characteristic Curve

Declarations

Ethics approval and consent to participate

The protocol used in this project was reviewed and approved by the institutional review boards of Medical Ethics Committee of Union Hospital (NO.0036) and the informed consent was waived by the Ethics committee for this special emergency.

Availability of data and material
Anonymized clinical and laboratory test data are available on request, subject to an internal review by YJ, JX, MZ, ZL, ZW, and TL to ensure that the participants’ anonymity and confidentiality are protected, with completion of a data-sharing agreement, and in accordance with the Wuhan Union hospital’s institutional review boards and institutional guidelines. Material requests, that is marketing campaign information or economics data requests, will be considered based on a proposal review, and completion of a material transfer agreement and/or a data use agreement. Please submit requests for participant-related clinical and other data to YJ (whuhjy@126.com).

Funding
This paper was supported in part by the National natural science special foundation of China (82041018, 81800094), the Fundamental Research Funds for the Central Universities, HUST: 2020kfyXGYJ011.

Competing interests
The authors declare no competing interests.

Authors’ contributions
YJ and YZ designed the study, JX, ZL, LM, GH, HL, GM and QM collected the epidemiological and clinical data. ZL, ZW, MZ, ID, SW, WX, ZY, WG and TL summarized and analysed all data. JG and CL interpreted the CT feature. JX, MZ, ZL, ZW, and TL drafted the manuscript. YJ and YZ revised the final manuscript.

Acknowledgements
We thank all of the medical staff who fought on the front line and all the patients for their relevant valuable data.

References
[1] Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. The Lancet 2020.
[2] Phelan AL, Katz R, Gostin LO. The Novel Coronavirus Originating in Wuhan, China: Challenges for Global Health Governance. Jama 2020.
[3] Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. Lancet (London, England) 2020.
[4] Guarner J. Three Emerging Coronaviruses in Two Decades. American journal of clinical pathology 2020.
[5] Mahase E. China coronavirus: mild but infectious cases may make it hard to control outbreak, report warns. Bmj 2020; 368: m325.
[6] Wang F-S, Zhang C. What to do next to control the 2019-nCoV epidemic? The Lancet 2020; 395(10222): 391-3.
[7] Burki TK. Coronavirus in China. The Lancet Respiratory Medicine 2020.
[8] Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet 2020.
[9] Nanshan Chen MZ, Xuan Dong, Jieming Qu, Fengyun Gong, Yang Han, Yang Qiu, Jingli Wang, Ying Liu, Yuan Wei, Jia’an Xia, Ting Yu, Xinxin Zhang LZ. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet January 29, 2020.
[10] Wang X, Zhang X, He J. Challenges to the system of reserve medical supplies for public health emergencies: reflections on the outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic in China. BioScience Trends 2020.
[11] Tang X-R, Li Y-Q, Liang S-B, et al. Development and validation of a gene expression-based signature to predict distant metastasis in locoregionally advanced nasopharyngeal carcinoma: a retrospective, multicentre, cohort study. The Lancet Oncology 2018; 19(3): 382-93.
[12] Lamberink HJ, Otte WM, Geerts AT, et al. Individualised prediction model of seizure recurrence and long-term outcomes after withdrawal of antiepileptic drugs in seizure-free patients: a systematic review and individual participant data meta-analysis. The Lancet Neurology 2017; 16(7): 523-31.
[13] Zhu N, Zhang D, Wang W, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. The New England Journal of medicine 2020.
[14] Shi H, Han X, Zheng C. Evolution of CT Manifestations in a Patient Recovered from 2019 Novel Coronavirus (2019-nCoV) Pneumonia in Wuhan, China. Radiology 2020: 200269.
[15] Sun R, Limkin EJ, Vakalopoulou M, et al. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. The Lancet Oncology 2018; 19(9): 1180-91.
[16] Wei J-H, Feng Z-H, Cao Y, et al. Predictive value of single-nucleotide polymorphism signature for recurrence in localised renal cell carcinoma: a retrospective analysis and multicentre validation study. The Lancet Oncology 2019; 20(4): 591-600.
Figures

Flowchart of the early prediction model based on Radiomics for the short-term outcome in patients with COVID-19
Figure 2

Radiomic features selection and radiomic signature building. (a, b) LASSO-regression analysis selected 6 prognostic features with non-zero coefficient. (c) ROC curve of constructed radiomic signature based on linear combination of the extracted features with their respective coefficients for distinguishing patients’ outcomes in the training dataset. (d) ROC curve of constructed radiomic signature in the testing dataset. (e) ROC curve of constructed radiomic signature in all patients.
Figure 3

Construction and evaluation of nomograms for predicting patients' outcomes based on factors selected from multivariable Logistic analyses in the training set. (a) Nomogram based on factors including age, lesion location, CRP and Rad-score. (b) Calibration curve of the nomogram scoring system in the training set; (c) ROC curve of patients' total points based on nomogram for outcome prediction.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Supplementarymaterial.docx