Control of C31 integrase-mediated site-specific recombination by protein trans-splicing

Citation for published version:
Olorunniji, FJ, Lawson-williams, M, Mcpherson, AL, Paget, JE, Stark, WM & Rosser, SJ 2019, 'Control of C31 integrase-mediated site-specific recombination by protein trans-splicing', Nucleic Acids Research, vol. 47, no. 21, pp. 11452-11460. https://doi.org/10.1093/nar/gkz936

Digital Object Identifier (DOI):
10.1093/nar/gkz936

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher’s PDF, also known as Version of record

Published In:
Nucleic Acids Research

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Control of \(\phi C31 \) integrase-mediated site-specific recombination by protein trans-splicing

Femi J. Olorunniji\(^1\), Makeba Lawson-Williams\(^1\), Arlene L. McPherson\(^2\), Jane E. Paget\(^3,4\), W. Marshall Stark\(^2\) and Susan J. Rosser\(^3,4\)

\(^1\)School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK, \(^2\)Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK, \(^3\)UK Centre for Mammalian Synthetic Biology at the Institute of Quantitative Biology, Biochemistry, and Biotechnology, SynthSys, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JD, UK and \(^4\)Institute for Bioengineering, University of Edinburgh, Faraday Building, The King’s Buildings, Edinburgh, 2 EH9 3DW, UK

Received February 09, 2019; Revised September 30, 2019; Editorial Decision October 04, 2019; Accepted October 07, 2019

ABSTRACT

Serine integrases are emerging as core tools in synthetic biology and have applications in biotechnology and genome engineering. We have designed a split-intein serine integrase-based system with potential for regulation of site-specific recombination events at the protein level in vivo. The \(\phi C31 \) integrase was split into two extein domains, and intein sequences (Npu DnaEN and Ssp DnaEC) were attached to the two termini to be fused. Expression of these two components followed by post-translational protein trans-splicing in Escherichia coli generated a fully functional \(\phi C31 \) integrase. We showed that protein splicing is necessary for recombination activity; deletion of intein domains or mutation of key intein residues inactivated recombination. We used an invertible promoter reporter system to demonstrate a potential application of the split intein-regulated site-specific recombination system in building reversible genetic switches. We used the same split inteins to control the reconstitution of a split Integrase-Recombination Directionality Factor fusion (Integrase-RDF) that efficiently catalysed the reverse att\(R \times \) att\(L \) recombination. This demonstrates the potential for split-intein regulation of the forward and reverse reactions using the intease and the intease-RDF fusion, respectively. The split-intein integrase is a potentially versatile, regulatable component for building synthetic genetic circuits and devices.

INTRODUCTION

It has recently become possible to create computational and memory systems in cells (1–3) allowing us to foresee many new ways to enhance the applications of living organisms (4,5). Engineered cells could act as powerful biosensors with applications in health, environmental and industrial processes. As well as sensing components, it is necessary to process the received information and express it as outputs in the form of specific biological responses (3,6). However, the genetic switches and logic gates that have been constructed to date are based on a limited repertoire of biological component types (7), and there is a need for new systems that can be used to implement more elaborate and robust devices.

DNA site-specific recombination has been much exploited for rapid DNA assembly, and to build genetic switches and memory devices (4,8–10). In a typical module, two recombination sites flank a promoter sequence. Expression of the recombinase promotes inversion of the orientation of the promoter sequence, thus switching between expression of two genes which are divergently transcribed from the module (Figure 1A). One group of site-specific recombinases known as the serine integrases is especially suited for the construction of switching devices, particularly because these enzymes promote very efficient and highly directional recombination (11). For such modules to be useful, fully integrated components of the cell, activity of the recombinase must be tightly regulated, so that switching occurs only when other cellular conditions are fulfilled. Here we demonstrate a powerful new approach to regulation of serine integrase activity, in which the enzyme itself is assembled by intein-mediated fusion of two precursor components.

Inteins are naturally occurring autocatalytic systems that catalyse protein splicing reactions to generate active proteins from precursor polypeptides (12). Synthetic ‘split in-
tems’ have been developed to carry out protein splicing in trans, covalently joining two proteins together for a wide range of biotechnological applications (13,14). For example, Schaerli et al. (15) split T7 polymerase into two parts and fused each part to split-intein sequences so that the two parts were covalently joined together by trans-splicing. Expression of each of the two individual parts was placed under the control of an inducible promoter to allow conditional expression of polymerase activity.

A key requirement for the construction of split-intein systems is the need to introduce an intein nucleophilic residue (typically Cys, Ser or Thr; Figure 1C) by mutation of the sequence of the target protein adjacent to the junction between the two ‘exteins’. Such changes can potentially lead to reduction or loss of enzyme activity. However, inteins have been engineered that tolerate variations of these flanking residues, thereby minimizing the number of changes that need to be made in the target protein (16,17).

Conditional site-specific recombinase activation by assembly of split protein fragments has been achieved; for example, for the popularly used tyrosine recombinase Cre (18–22). Wang et al. (22) used a Cre split-intein system to reconstitute functional recombinase in transgenic mice. However, there are no reports to date of analogous systems using split serine inteins. The transposase TnpX (distantly related to the serine inteins) was split into two parts and some DNA-binding activity was reconstituted when both parts were present, but no recombination (transposition) activity was observed (23).

With the increasing importance of serine inteins as tools in synthetic biology, methods for signal-induced post-translational regulation of intein activity are becoming very desirable. Here, we report post-translational activation of site-specific recombination by reconstitution of functional φC31 intease using split intein-catalysed reactions.

MATERIALS AND METHODS

Plasmids and DNA

The codon-optimized φC31 intease sequence was derived from pFM141 (24). Codon-optimized sequences of NpuN, a 102-amino acid residue split intein from Nostoc punctiforme DnaE and SspC, a 36-amino acid residue split intein from Synechocystis sp. DnaE, were from GeneArt (Invitrogen). Plasmids for constitutive expression of the C-terminal extein-intein fusion protein (Integrase-Ext^N·^IN) in Escherichia coli (Figure 2) were made by inserting protein-coding DNA sequences between NdeI and Acc65I sites in pMS140, a low-level expression vector with a pMB1 origin of replication (24). Plasmids for constitutive expression of the C-terminal intein–extein fusion protein (Integrase-Ext^I·^CI) were made in a similar way by inserting the coding sequence between NdeI and Acc65I sites in pEK76, which has a p15a (pACYC184) origin (24,25). Detailed properties of the vectors used here for expression of the recombinases have been described in detail elsewhere (9,24–27).

Plasmids for tet-inducible expression of the split intein components were made by cloning the protein-coding DNA sequences between SacI and SalI sites in pTet (28), whilst those for ara-inducible expression were made by cloning the protein-coding sequences between SacI and Sal sites in pBAD (29).

The plasmid substrate for assessing recombination (deletion) by native φC31 intease or trans-spliced φC31 intease (φC31-dePB) was described in Olorunniji et al. (24). The sequences of φC31 att sites are shown in Supplementary Table S1. The test substrate contains a galk gene flanked by attP and attB sites arranged in direct repeat (head-to-tail orientation) resulting in deletion of the galk gene upon intein-catalysed recombinase. The plasmid substrate for assessing recombination (inversion) activity (φC31-invPB) was made by cloning the invertible promoter device shown in Figure 3A in a pSC101 origin plasmid with kanamycin resistance selection.

The DNA sequences of all protein constructs and plasmid substrates used in this study are shown in Supplementary Table S2.

Recombination analysis

Assays for intease-mediated recombination were carried out in *E. coli* strain DS941 (24). DS941 was transformed with the test substrate plasmid (φC31-dePB or φC31-invPB). The substrate plasmid-containing strains were then either transformed with an intein-expressing plasmid (pFM141), or co-transformed with two plasmids,
family based on published structures and similar alignments. Amino acid sequences in the loop region where dC31 integrase is split are highlighted with a red box. (B) Structures of the split integrase-intein constructs. Changes made to the integrase sequence at the junctions where the fragments are fused to the split inteins are shown. The functional domains are shown as rectangular boxes: Integrase-EN (orange), Ssp DnaEC (green). Intein-catalysed protein trans-splicing generates an active version of the integrase in which residues at positions 308–312 of wild-type integrase (EGYRIQ) are shorter than the native integrase. (C) Variants of the split dC31 integrase designed to probe the requirements for reconstitution of integrase activity. (i) Integrase-EN; dC31 integrase (1–307). (ii) Integrase-EN*·IN*, Integrase-EN (residues 1–307) fused to the 102-amino acid residue Npu DnaEN (102 aa) using the two-residue EY and the N-terminal Cys residue from Npu DnaEN. (iii) Integrase-EN*·IN*; dC31 integrase (1–307) fused to Npu DnaEN as described in (i) but with the EY residue at the splice site changed to GA to inactivate splicing activity. (iv) Integrase-EC; dC31 integrase C-extein (residues 314–605). (v) IC-Integrase-EC*; dC31 integrase C-extein (residues 314–605) fused directly to Ssp DnaEC (EF). Ssp DnaEC nucleophile cysteine residue and the flanking residues required for splicing are highlighted (CFN). (vi) IC-Integrase-EC*; dC31 integrase C-extein fused to Ssp DnaEC* as described in (i) but with the CFN residue at the splice site changed to ASA to inactivate splicing activity.

Figure 2. Design of split dC31 integrase. (A) Sequence alignment of dC31 integrase with related members of the 'large serine recombinase' protein family based on published structures and similar alignments. (B) Design of split dC31 integrase. (C) Assay of recombination activities (galK colour assay) of integrase constructs on attP × attB deletion substrates (pC31-delPB). In these assays, cells containing the substrate plasmid (pC31-delPB) were transformed with the expression vectors indicated and grown for 20 h in selection media. For analysis in vivo recombination products, plasmid DNA was recovered from cells (24) and separated by means of 1.2% agarose gel electrophoresis. (i) Substrate only (blank control); (2) FEM141: dC31 Integrase; (3) FEM136: Integrase-EN·IN*; (4) FEM137: IC-Integrase-EC*; (5) FEM155 (Integrase-EN*·IN*); (6) FEM136 (Integrase-EC*·IN*); (7) FEM136 (Integrase-En*·In*) and FEM162 (IC-Integrase-EC*); (8) FEM137 (IC-Integrase-EC*) and FEM161 (Integrase-En*·In*).
dilution), and the culture was incubated overnight at 37°C with kanamycin selection for the substrate and recombinant plasmids. Plasmid DNA was prepared using a Qiagen miniprep kit, and analysed by 1.2% agarose gel electrophoresis.

Inducible expression of integrase-intein fusions for trans-splicing

In vivo expression of the integrase-intein fusion proteins under the control of arabinose and tet inducible promoters was carried out in strain DS941/Z1 (30), which constitutively expresses TetR, required for regulation of the pTet promoter. The DS941/Z1 strain was made competent by a standard calcium chloride method (31). The cells were transformed with the plasmid substrate pΔC31-invPB, then cultured for 90 min and selected on L-agar plates containing kanamycin (50 μg/mL). A single colony was picked and grown in kanamycin-containing L-broth (5 mL) to make a stationary phase overnight culture. An aliquot of the stationary phase culture was then diluted into L-broth containing kanamycin and grown to mid-log phase. These cells were made ‘chemically competent’ (as above) and transformed with the two vectors containing the coding sequences of the intein-integrase fragments. The plasmid vector pFEM148 (ampicillin selection) expresses Integrase-\(^{\text{E}^{\text{N}}}\)\(^{\text{I}}\) under the control of the pTet promoter. The second plasmid pFEM149 (chloramphenicol selection) expresses \(^{\text{I}^{\text{E}}}\) Integrase-\(^{\text{E}^{\text{N}}}\)\(^{\text{I}}\) under the control of the pBAD promoter.

The transformant cells were cultured for 90 min, and selected on L-agar plates containing kanamycin (50 μg/mL), ampicillin (100 μg/mL) and chloramphenicol (25 μg/mL). To carry out the recombination assays, a culture from a single colony was grown overnight in L-broth in the presence of the three antibiotics, to stationary phase. The culture was diluted further (1:100) and grown to mid-log phase (about 90 min), after which expression of the split-intein-integrase fragments was induced by the addition of anhydrotetracycline, aTc (0.1 μg/mL), arabinose, Ara (0.2% w/v) or both. Glucose was added to 0.4% concentration to the cultures where it is required to turn off expression of the arabinose promoter. The induced cultures were grown for 24 h at 37°C, after which the cultures were left at room temperature for 8 h. Next, aliquots of each culture (50 μl) were diluted with 950 μl phage buffer (10 mM Tris, pH 7.5, 10 mM MgCl₂, 68 mM NaCl), and GFP expression was measured by means of fluorescence.

Fluorescence measurements

Fluorescence measurements were carried out on a Typhoon FLA 9500 fluorimeter (GE Healthcare). Aliquots of the diluted cultures (200 μl) were added to a 96-well plate, and the fluorescence of the expressed proteins was measured (GFP: excitation, 485 nm; emission, 520 nm and RFP: excitation, 532 nm; emission, 575 nm). To determine cell density for each sample, 50 μl aliquots were diluted to 1000 μl and the spectrophotometric absorbance was read at 600 nm. The GFP-independent background signals of the cells were determined by measuring the fluorescence of DS941/Z1 strain (containing the test substrate but without the split-intein-integrase expression vectors). The background fluorescence was subtracted from the values measured for samples in the different treatment groups, after normalization using the cell density measurements.

Flow cytometry

Flow cytometry was used to measure single-cell fluorescence on a BD Accuri C6 instrument. Cells were washed in phosphate buffered saline and diluted to ~10⁶ cells/mL. For each sample, GFP (λex 488 nm; λem 533/30 nm) and RFP (λex 488 nm; λem 585/40 nm) fluorescence was recorded. The forward scatter threshold was lowered to 10 000 to ensure acquisition of bacteria, and gating was performed to tightly select the dense population of bacteria depicted on a log scale plot of forward versus side scatter. Samples were acquired at a slow flow rate of 14 μl/min. Data were analysed using FlowJo™ software (Version 10.6.1).

RESULTS AND DISCUSSION

Design of split-intein serine integrase

We designed our split-intein system for conditional expression of φC31 integrase, a prototype serine integrase, based on previously reported systems (15). Since the natural DnaE split inteins used in this work require an invariant active site cysteine to remain in the spliced product protein (32–34), their use for split integrase reconstitution depends upon the identification of a short region of the protein sequence where insertion of a cysteine does not disrupt activity. In addition, for *trans*-splicing to be essential, the two extein components of the spliced integrase must not associate non-covalently to reconstitute a functional enzyme. We started by analysing the domain structure of serine inteinases to determine where to split the protein, since a functional split intein could require introduction of mutations that would remain in the spliced protein product, if suitably placed natural Cys, Ser or Thr residues were unavailable. Based on sequence alignments of serine inteinases (Figure 2A) and published crystal structures (35), we split φC31 integrase at the non-conserved region of the recombinate domain between the β9 and α1 domains; this region includes a 10–12 residue loop which is absent in some related serine inteinases (36) (Figure 2A). We therefore predicted that introduction of the required intein nucleophilic residue and any flanking residues would not have a deleterious effect on intein activity. Furthermore, Lucet *et al.* (23) found that when the related large serine recombinate TnpX (from *Clostridium perfringens*) was split between the β9 and α1 domains, the two fragments complemented each other to restore DNA binding (but not recombination) activity.

We then attached two well-characterised split-intein components to the φC31 integrase sequences; *Npu* DnaEn\(^{\text{I}}\) (102 amino acids) from *Nostoc punctiforme* DnaE, and *Ssp* DnaEc\(^{\text{I}}\) (36 amino acids) from *Synechocystis sp.* DnaE. The *Npu* DnaEn\(^{\text{I}}\) variant contains a L22S change and the *Ssp* DnaEc\(^{\text{I}}\) variant has a P21R mutation (32). This pair was chosen based on previous reports that the mutations confer high *trans*-splicing activity at 37°C in *E. coli* and tolerance to changes in amino acid sequence at the splicing junctions (15,32,37). *Npu* DnaEn\(^{\text{I}}\) (I\(^{\text{N}}\)) was fused to the C-terminus of the N-terminal moiety of φC31 Integrase (Integrase-\(^{\text{E}^{\text{N}}}\)),
and Ssp DnaE_C (I^C) was fused to the N-terminus of the C-terminal moiety of φC31 Integrase (Integrase-E^C) (Figure 2B). Also, residues 308–310 of Integrase-E^N were changed from EGY to EY, since these sequences exist naturally at the extein-intein junction of Npu DnaE_N^*, and Integrase-E_N^* residues 311–313 were changed from RIQ to CFN, sequences found at the intein-extein junction of Ssp DnaE_C (32,37). It is known that these flanking residues are involved in enhancing the splicing efficiencies of this pair of split inteins (33,37). In the reconstituted trans-spliced intein (φC31.Int^*)^*, the natural 6-residue sequence at positions 308 to 313, EGYRIQ, is replaced with the 5-residue sequence EYCFN. We made these changes to maximize the efficiency of the splicing reaction in order to optimize activity in E. coli. Hence the reconstituted trans-spliced intein, φC31.Int^* is one amino acid residue shorter than the wild-type φC31 intein. Since these changes are in a non-conserved region (see above), we predicted that they would not substantially affect recombination activity.

Intein-mediated reconstitution of functional φC31 intein

To assay in vivo recombination activity of our split-intein φC31 intein, we used a well-characterized colour-based galK assay (Figure 3A; 26,27,38). The attP and attB recombination sites (Supplementary Table S1) on the substrate plasmid pC31-delPB are in a direct repeat orientation, so that recombination between them causes deletion of the galK gene. Pale-coloured (galK−) colonies on the indicator plates indicate recombination proficiency, whereas red (galK+) colonies indicate incomplete or zero recombination. The coding sequences for Integrase-E^N-I^N and I^C-Integrase-E^C (and also appropriate control proteins; see Figure 2C) were cloned into separate low-level expression vectors (24), as illustrated in Figure 3B. An E. coli strain containing the test substrate was transformed with these plasmids, and recombination activity was assessed by colony colour and by gel electrophoresis analysis of plasmid DNA recovered from the cells (Figure 3C).

Neither Integrase-E^N-I^N (Figure 3C, lane 3) nor I^C-Integrase-E^C (Figure 3C, lane 4) on their own were able to catalyse attP x attB recombination. Furthermore, co-expression of the N-extein (Integrase-E^N) and C-extein (Integrase-E^C) components of the intein (lane 5) gave no recombination. This important control shows that the intein-less precursor proteins Integrase-E^N and Integrase-E^C do not complement each other by non-covalent association to give recombination activity. This contrasts with reported split tyrosine recombinases, the components of which associate to reconstitute recombination activity without protein splicing (18–20). When the intein-tagged intein extends Integrase-E^N-I^N and I^C-Integrase-E^C were co-expressed, reconstitution of intein recombination activity was observed (lane 6). The DNA analysis shown in the lower panel of Figure 3c (lanes 1–6) suggests that recombination by the trans-spliced intein (φC31.Int^*) has proceeded to over 80%.

Our results show that the changes from the wild-type intein sequence that had to be introduced at the splice site are compatible with recombination activity. As many other serine inteinates have similarly non-conserved, variable lengths of amino acid sequence in the region of the protein between β9 and αI (Figure 2A), we predict that these enzymes could also be engineered to create active split-intein systems.

Trans-splicing is required for intein recombination activity

The results shown in Figure 3C show that the Npu DnaE and Ssp DnaE intein moieties are required for reconstitution of recombination activity, but these experiments do not unambiguously establish the requirement for trans-splicing. Some split inteins are known to associate tightly via non-covalent interactions (39), and this can lead to reconstitution of the split protein activity, without splicing (40). To test whether this applies in our split intein system, we mutated the nucleophilic cysteine residue and rate-enhancing flanking residues at the active sites of the two intein moieties (29) to render them catalytically inactive. We changed the junction residues ‘EY’ in the Integrase-E^N moiety to ‘GA’ and the Cys residue in the Npu DnaE_N moiety of Integrase-E^N-I^N to ‘A’ to give the mutated version Integrase-E^N-I^N* (Figure 2C). Similarly, the residues ‘CFN’ in the Ssp DnaE_C moiety of I^C-Integrase-E^C were changed to ‘ASA’, to derive the mutated version I^C*-Integrase-E^C (Figure 2C). No recombination activity was observed when active Integrase-E^N-I^N was co-expressed with inactive I^C*-Integrase-E^C (Figure 3C, lane 7), nor when active I^C, Integrase-E^C was co-expressed with inactive Integrase-E^N-I^N* (Figure 3C, lane 8), showing that reconstitution of recombination activity requires the catalytic activities of both split intein fragments. In this aspect, serine inteinates differ from inteinates of the tyrosine recombinase family where non-covalent association is sufficient to allow reconstitution of activity from split protein fragments (18–20). The attP x attB in vivo deletion reactions were slower in cultures where recombination required post-translational trans-splicing to reconstitute functional inteinase, when compared to recombination by native inteinase (see Supplementary Figure S1). It is therefore likely that the rate of trans-splicing between Npu DnaE_N and Ssp DnaE_C in our cell cultures is significantly slower than the fast splicing reaction rate observed in vitro for these intein pairs (37). The reduced rate might be due to limiting amounts of the two precursor polypeptides expressed in the cells. It is possible that this delay is caused by the different rates of expression of the intein fragments from the two different expression vectors used in this study, rather than the actual trans-splicing reaction in vivo.

Split intein-regulated intein-catalysed inversion system

To demonstrate the potential application of our split intein φC31 intein in conditional expression of recombination activity, we designed an invertible genetic system based on an inversion substrate plasmid, pC31-invPB. Recombination between attP and attB sites in pC31-invPB inverts the orientation of a constitutive promoter sequence (Biobrick J23104), thereby switching expression from RFP to GFP (Figure 4A). The E. coli strain DS941/Z1/pC31-invPB was co-transformed with two vectors, each expressing one of the two split-intein intein fragments. Expression of Integrase-E^N-I^N was placed under the control of
the P_{BAD} promoter, and expression of I^C-Integrase-E^C was placed under the control of the P_{tet} promoter (Figure 4B). Co-expression of the split-intein fragments (and thus recombination) is dependent on the presence of both of the inducers arabinose and anhydrotetracycline (aTc) (Figure 4C). No recombination (GFP expression) was observed unless both split-intein components were expressed (when aTc and arabinose were added to the growth medium; column IV).

The split-intein regulated serine integrase can be deployed as an effective tool for transient inversion of genetic regulatory modules (Figure 4). The ability to reconstitute integrase activity from inactive protein fragments using split inteins could allow faster control of site-specific recombination by specific activation of intein splicing. This could be achieved by means of light-sensitive protein domains that regulate intein splicing (39,40) or small molecule ligands that act directly on the split inteins (41) to control the protein-protein association step that precedes protein trans-splicing. Fast, accurate switching on of enzyme activity in vivo could be achieved if methods for efficient conditional activation of protein trans-splicing were available (42). An engineered photo-activatable gp41-1 split intein system was recently shown to work in bacterial cells (43), demonstrating the feasibility of this approach. Others have demonstrated the use of pH changes (44) and temperature (45) as tools for regulating intein functions in vitro. In our system, conditional splicing would enable fast activation of recombination by reconstituting intein from the precursors which are already present. Further development of these technologies can enhance capacity for building orthogonal logic gate components for conditional gene expression regulation and genome engineering applications, and add to the existing tools for programmable cellular functions (46,47).

Figure 4. Controlling the function of an invertible promoter system using split intein-regulated ϕC31 integrase activity. (A) Design of a recombinase-operated switch using an invertible promoter reporter system. The constitutive promoter sequence (cyan rectangle; Biobrick J23104) is flanked by ϕC31 integrase $attP$ and $attB$ sites (grey arrows) that are arranged in inverted orientation. In its default state, the promoter constitutively drives expression of a red fluorescent protein (rfp) gene (pink arrow). The T1 terminator sequence (red squares) located immediately upstream of the promoter prevents transcriptional read-through to the green fluorescent protein (gfp) gene (green arrow). Upon integrase-catalysed site-specific recombination, the orientation of the promoter is reversed to allow the expression of GFP and block RFP production. A Biobrick ribosomal binding site, RBS, (RBS_B0034, blue rectangles), is positioned 5′ of the rfp and gfp genes to drive optimal translation of the synthesized mRNAs. (B) Conditional expression of ϕC31 intein fragments and split intein-mediated reconstitution of activity. The two split-intein integrase fragments are expressed from two inducible promoter vectors. Arabinose (ara) induces expression of Integrase-E^N-I^N under the control of the pBAD promoter (pFEM148), whilst anhydrotetracycline (aTc) induces expression of I^C-Integrase-E^C under the control of the P_{tet} promoter (pFEM148). Post-translational trans-splicing of the split-intein integrase fragments generates the functional reconstituted integrase (ϕC31.Int$^{+}$). Catalysis of $attP \times attB$ inversion by ϕC31.Int$^{+}$ results in reversal of the orientation of the promoter. (C) Validation of the split-intein ϕC31 integrase recombinational AND-gate. Fluorescence measurements indicating the expression of GFP and RFP in cells induced with aTc and/or ara. Cells were grown at 37°C for 24 h in the presence of aTc (0.1 μg/ml) and ara (0.2%). Glucose was added to 0.4% concentration to treatments A and C to turn off expression of the arabinose promoter. Each bar represents mean and standard deviation of four determinations. Below the bar chart are images of Eppendorf tubes showing the pellet obtained after centrifugation of 5 ml of bacterial culture.

Intein-mediated assembly of integrase-RDF fusion recombinase and catalysis of $attR \times attL$ recombination.

We recently showed that recombination between $attR \times attL$ sites can be catalysed efficiently by artificial proteins in which the recombination directionality factor (RDF) is fused to the integrase using a short peptide linker. The fusion recombinase ϕC31.integrase-gp3 catalysed $attR \times attL$ recombination efficiently (24) (Figure 5A). This system allows more predictable regulation of integrase-catalysed conversion of $attP/attB$ to $attR/attL$ and vice versa, with potential applications in building genetic switches and recombinase-based counters.

To demonstrate the use of our split-intein regulated system in $attR \times attL$ recombination, we split ϕC31.integrase-
gp3 between the β9 and αI domains of the integrase (Figure 5B), at the same position as described above for φC31 integrase itself. To test for recombination activity, we used a test substrate (pφC31-delPB) similar to the attP x attB substrate (pφC31-delRL) but with the attP and attB sites replaced by attR and attL, respectively (Supplementary Table S1). The sites are arranged in the head-to-tail orientation such that deletion of the galK gene leads to a reaction product that is smaller in size than the starting substrate (Figure 5C). As expected, neither integrase (Figure 5D, lane 2) nor co-expression of the Integrase-E^N-^F and Integrase-E^C-^C (lane 4) were able to catalyse attR x attL recombination. In contrast, co-expression of the intein-tagged integrase N-exter (Integrase-E^N-^F) and C-exter-gp3 (Integrase-E^C-^C-gp3) results in efficient attR x attL recombination (lane 5). The extent of recombination by the trans-spliced fusion recombines (φC31.Int^α-gp3) was lower than that catalysed by native φC31.integrase-gp3 (lane 3), in line with our observations for wild-type integrase and its trans-spliced analogue (see above).

Time courses of recombination by wild-type and trans-spliced integrase

To characterize further the effects of the EYCFN mutations introduced into the reconstituted integrase (φC31.Int^α) after trans-splicing, we carried out a time course comparison of recombination catalysed by reconstituted and wild-type integrase. To do this, we made a plasmid expressing the expected product of trans-splicing, with the EYRIQ sequence in wild-type φC31 integrase replaced with EYCFN. We refer to this construct as φC31.Int^B. Recombination activity was measured using the invertible promoter reporter system (see Figure 4). The extent of recombination was monitored by measuring the progress of switching from RFP to GFP expression, using single-cell flow cytometry (Figure 6A). *Escherichia coli* DS941 cells containing the pφC31-invPB substrate were transformed with appropriate vector plasmids expressing wild-type φC31 integrase, φC31.Int (Figure 6B); full length φC31 integrase with the EYCFN mutations, φC31.Int^B (Figure 6C); and reconstituted trans-spliced φC31 integrase, φC31.Int^α (Figure 6D). Cells were cultured with appropriate antibiotic selection and sampled at 8, 9, 10, 10.5, 11, 11.5, 12 and 24 h. The expression of GFP following recombination by wild-type integrase was observable early and peaked at about 10.5 h; a slight further increase in GFP expression was observed at 24 h (Figure 6B). The progress of the reaction by the φC31 integrase with the EYCFN mutations, φC31.Int^B, was slightly slower, showing a steady increase in GFP expression from 9 to 11.5 h and an even higher level of expression after 24 h. The mutations thus caused a slight decrease in integrase activity (Figure 6C). In contrast, increase in GFP expression was noticeably slower when protein trans-splicing (φC31.Int^α) was required to reconstitute the integrase and activate recombination activity (Figure 6D). This is consistent with our interpretation of the lower activity of trans-spliced integrase in the experiment shown in Figure 3.

CONCLUSION

Serine integrases promote efficient directional DNA site-specific recombination, and thus have major potential applications in genome engineering and metabolic pathway engineering (9,11,48–51). They have also been incorporated into the design of cellular state machines and biocomputing devices (4,8,11). Here we have demonstrated a novel method for regulation of serine integrase activity by making activity dependent on post-translational trans-splicing of two integrase extein components. Our experiments demonstrate that the split-intein regulated recombination system can potentially be used to toggle between two DNA states in which the forward reaction is catalysed by a serine integrase, and the reverse reaction by an integrase-RDF fusion. In a practical application, reconstitution of the integrase and the integrase-RDF fusion could be mediated by two pairs of orthogonal split inteins. Several types of split inteins have been described in the literature (52,53), and further characterization of their properties would make them available as orthogonal functional parts. Recently, mutations of the Npu DnaE split intein have been identified that affect the specificity, reaction rates, and tolerance to changes in the flanking residues (16,17). Use of these intein variants that tolerate a wider range of amino acid residues around the splice site would require fewer changes to the extein sequence of the target integrase, thereby reducing the potential risk of introducing deleterious mutations and making it easier to find suitable split positions.
Figure 6. Cytometry time course assays of attP x attB recombination. (A) The assays were carried out using the invertible promoter system described in Figure 4, in which integrase-catalysed inversion switches expression from RFP to GFP. (B) Wild-type ϕC31 integrase. (C) Full length ϕC31 integrase with ‘EYCFN’ mutations (ϕC31.IntEYCFN). (D) Trans-spliced ϕC31 integrase formed in situ (ϕC31.IntEYCFN). Integrase mutants were expressed from appropriate plasmid vectors as follows: (B) ϕC31 Integrase, pFEM141; (C) EYCFN ϕC31 Integrase, pFEM204; (D) Splicing precursor proteins Integrase-EYCFN, pFEM136 and Integrase-EYCFN, pFEM137. The extent of recombination at the indicated time points was monitored by measuring the amount of GFP formed.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We thank Dr Sean Colloms and Dr Steve Kane for the gift of the plasmid template (pSWITCH) used in constructing the invertible promoter assay substrate, and Dr Darren Sexton for technical assistance.

FUNDING

Biotechnology and Biological Sciences Research Council [BB/003356/1, BB/M018040/1, BB/M018229/1]; Medical Research Council Proximity [MC_PC_16077]. Funding for open access charge: Liverpool John Moores University grant number [MC_PC_16077].

Conflict of interest statement. None declared.

REFERENCES

1. Anderson, J.C., Voigt, C.A. and Arkin, A.P. (2007) Environmental signal integration by a modular AND gate. Mol. Syst. Biol., 3, 133.
2. Moon, T.S., Lou, C., Tamsir, A., Stanton, B.C. and Voigt, C.A. (2012) Genetic programs constructed from layered logic gates in single cells. Nature, 491, 249-253.
3. Glasscock, C.J., Lucks, J.B. and DeLisa, M.P. (2016) Engineered protein machines: emergent tools for synthetic biology. Cell Chem. Biol., 23, 45-56.
4. Bonnet, J., Subsoontorn, P. and Endy, D. (2012) Rewritable digital data storage in live cells via engineered control of recombination directionality. Proc. Natl. Acad. Sci. U.S.A., 109, 8884-8889.
5. Bonnet, J., Yin, P., Ortiz, M.E., Subsoontorn, P. and Endy, D. (2013) Amplifying genetic logic gates. Science, 340, 599-603.
6. Brophy, J.A.N. and Voigt, C.A. (2014) Principles of genetic circuit design. Nat. Methods, 11, 508-520.
7. Wang, B., Kitney, R.I., Joly, N. and Buck, M. (2011) Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology. Nat. Commun., 2, 508.
8. Yang, L., Nielsen, A., Fernandez-Rodriguez, J., McClune, C.J., Laub, M.T., Lu, T.K. and Voigt, C.A. (2014) Permanent genetic memory with >1-byte capacity. Nat. Methods, 11, 1261-1266.
