Risk Identification and Risk Assessment Using Failure Mode and Effect Analysis in a Textile Industry

Atefeh Mohammadinejad1, Parviz Kakaei2, Tayebeh Nickdel3, Mahin Khalil Tahmasebi3, Norooz Tamoradi4, Razieh Janizadeh1*

1 Department of Occupational Health, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
2 Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
3 Department of Occupational Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
4 Morvarid Petrochemical Company, Assaluyeh, Bushehr, Iran

*Corresponding author: Razieh Janizadeh
Email: janizadehraziyeh@yahoo.com

ABSTRACT

Background: Today with growth of industry, occupational hazards are increasing proportionally. One of the most important parts of these industries are human resources, which face with many various hazards. The aim of this study was to conduct an assessment of potential hazards in the textile industry using Failure Mode and Effect Analysis (FMEA).

Methods: This cross-sectional study was conducted in the spinning sector of textile industry. FMEA as one of the systematic risk assessment technique applied to each unit of the spinning sector to find out potential failure mods and its effects. Risk priority number (RPN) was determined based on severity, detectability and occurrence of hazards. Then PRN were categorized into low-risk (RPN ≤ 89), moderate risk (RPN = 90-199), and high risk level (RPN ≥ 200).

Results: A total of 58 risk were found in 6 units of the spinning sector. 38% were found to be at high level 45% at middle level and 17% at low level. The packing unit, had the highest risk compared to other units. Lifting heavy loud in the packing unit has the highest RPN (384) and bobbin falling down in the ring unit has the lowest RPN (24).

Conclusion: This study revealed that more than 80% of detected risk were unacceptable that showed hazardous condition for workers in textile industry. The implementation of safety measures such as training programs, engineering and management controls were recommended.

Keywords: Failure Mode and Effect Analysis, Textile industry, Risk assessment

Introduction

Textile industries play an important role in the economy of the countries. Textile industries have different segments such as spinning, weaving, dyeing, wet processing and knitting (1). By the growth of technology in this industry hazard and accident increased proportionally. In the textile industry, as in other industries, there are many safety and health risks that can endanger worker health and create a potential condition for accident occurrence and eventually reduce economic efficiency. There are different types of hazards in this textile sector including Musculoskeletal disorders such as; awkward posture, repetitive movements, static work, inadequate space,
pushing and pulling loads, working over shoulder height, exposure to chemical and physical agents such as; solvents, fibers, dusts, loud noise, vibration, and Psychosocial issues such as; work-related stress. Therefore, identification, assessment, and management of risks are very necessary for this industry to increase workplace safety and productivity.

Failure Mode and Effect Analysis (FMEA) is an inductive and proactive method for systematics evaluation of systems components failures and their possible effects (2). It was originally developed by NASA to improve and verify system reliability. FMEA reduces the risk of defects by identifying, analyzing and eliminating deficiencies and therefore decreases the costs of these defects and, consequently, increases system reliability and quality improvement (3). This method has been used in a number of occupation and industries including risk assessment of blast furnace as a vital part of integrated steel plant (4) engine piston casting (5) cement factory (6) risks of the onshore and offshore turbine (7) risk assessment of Yazd steel complex (8), can stock production (9), and blood transfusion failures in hospital (10). But there are limited research for evaluating failures in textile industry as a potential hazardous place for workers using FMEA method (11). Therefore, in this study we aimed to identify and assess possible risks in a textile industry and provide solutions to remove or minimize these risks using the FMEA method.

Methods
This cross-sectional study was conducted in the spinning sector of textile industry in Esfahan, Iran. The spinning unit was selected for risk assessment because most workers work in this unit, as well as the working hours of this unit is 24 hours. In the Spinning sector, 130 employers were working in 3 shift. The average age of workers was 32 years and the working shift was 8 hours. All the participants were male. A team of interdisciplinary experts were gathered and the process and main tasks and subtasks were described and trained for them. The spinning process is composed of different process including cotton batting, cotton slashing, carding (cotton becomes wicker), tightening (wicker becomes multi-layer), flyer (the wicker is turned in to semi string), ring (main stage, semi string becomes string), Autoconer (preparing strings for packing) and packing, respectively. The main workstations were identified based on the interview and observation of unit. Then, for each operator, the potential hazards were identified through direct observation, interviewing and reviewing documentation of chemical and physical injuries. All details of duties and stages of the job were identified and operators were observed during the task by experts. Then the possible consequences of each hazard were identified.

The Priority risk number (PRN) was calculated by multiplying the three scoring parameters of severity, occurrence and detection (12). These parameters rate the failures by using a numerical scale from 1 to 10. The number 1 represents the best conditions for each state and, as the situation worsens, the number increases, so that the number 10 represents the worst condition for each state (13). Table 1 shows the rating scale of PRN based on severity, occurrence and detectability.

Table 1. Hazard Scoring Matrix Based on Severity, Occurrence and Detectability

Rating	Severity of hazard (S)	Occurrence of hazard (O)	Detectability of hazard (D)
10	Hazardous: It suspends operation of the system and/or involves noncompliance with government regulations, may cause death of worker or major injury to public.	Extremely high (Failure occurrence rate: \(\geq 1\ in\ 2\))	Absolute Uncertainty: Design control cannot detect potential cause/mechanism and subsequent failure mode (Probability of detection is 0-5 %)
9	Serious: Failure involves hazardous outcomes and/or noncompliance with government regulations or standards. May result in major injury or death of worker or major injury to public.	Very high (Failure occurrence rate: 1 in 3)	Very remote: Defect most likely remains undetected (Probability of detection is 6-15 %)
8	Extreme: Failure is hazardous and occurs without warning. May result in major injury to worker or moderate injury to public.	Repeated failures (Failure occurrence rate: 1 in 8)	Remote: Remote chance that the design/operation control will detect a potential failure mode (Probability of detection is 16-25 %)
7	Major: Product performance is severely affected but functions. The system may not operate, moderate to major injury to worker or minor injury to public.	High (Failure occurrence rate: 1 in 20)	Very low: Very low chance that the design/operation control will detect a potential failure mode (Probability of detection is 26-35 %)
6	Significant: Product performance is degraded. Comfort or convince functions may not operate, minor to moderate injury to worker.	Moderately high (Failure occurrence rate: 1 in 80)	Low: Low chance that the Design/operation control will detect a potential failure mode (Probability of detection is 36-45 %)
5	Moderate: Moderate effect on product performance. The product requires repair, minor injury to worker.	Moderate (Failure occurrence rate: 1 in 400)	Moderate: Moderate chance that the Design/operation control will detect a potential failure mode (Probability of detection is 46-55 %)
4	Low: Small effect on product performance. Minor or no injury to worker.	Relatively low (Failure occurrence rate: 1 in 2000)	Low: Low chance that the Design/operation control will detect a potential failure mode (Probability of detection is 56-65 %)
3	Minor: Minor effect on product or system performance. No injury to worker or people.	(Failure occurrence rate: 1 in 15000)	High: High chance that the design/operation control will almost certainly detect a potential failure mode. (Probability of detection is 66-75 %)
2	Very minor: Very minor effect on product or system performance. Slight danger- no injury to worker or public.	Remote (Failure occurrence rate: 1 in 1500000)	Very high: Very high chance the design control will detect potential cause/mechanism and subsequent failure mode. (Probability of detection is 76-85 %)
1	None: No reason to expect failure. Slight annoyance- no injury to worker or public.	Nearly impossible (Failure occurrence rate: 1 in 15000000)	Almost certain: Design/operation control will almost certainly detect a potential failure mode. (Probability of detection is 86-100 %)
The PRN were then classified into low-risk (RPN ≤ 89), moderate risk (RPN = 90-199), and high risk level (RPN ≥ 200). The first group was considered as acceptable and the second two groups as unacceptable risk.

Results

Based on PRN calculation, a total of 58 risks were identified in 6 unit of spinning sector of textile industry. The associated PRN scores ranging from 24 to 384 (Table 2). For each unit some appropriate recommendations were proposed that are shown in table 2. The highest PRN was related for heavy loud lifting in the packing unit and the lowest PRN was related for bobbin falling down and insufficient space in the ring unit. Among six units under the study, packing unit has the highest and Carding and Ring unit have the lowest PRN. Figure 1 shows the percent of risk level in each unit of study. Of total, 38 % of risks were at a high level, 45% were in the middle level and 17 % were at low level.

Table 2. Characteristics of Failures and Risk Priority Number in Six Units of Study

Unit	Failure mode	Potential effect	(O) ×(D) ×(S) = RPN	Risk level	Action
Flyer	Roll over with excessive pressure	Hand damage, damage to device and stop working	6x2x7 = 84	Low	use appropriate tools instead of workers hands and RPM control
	Loud noise	Hearing loss	6x5x8 = 240	High	Use Air plug and air muff
	Weeding and rubbing of needles, nip points and Inappropriate function due to disability	Amputation and damage to devices	6x2x8 = 60	Low	Use brushes instead of hands to cleaning, Turn off the devices when cleaning and periodic visits.
	Lack of Illumination	Vision weakne	6x3x6 = 108	Middle	Modify the Illumination intensity
	Exposure to dust	Respiratory discomfort	6x6x5 = 180	Middle	Machine appropriate guarding, using appropriate breathing masks, Machine appropriate guarding and worker training.
	In-running nip point	Death, Amputation and severe injuries	6x2x9 = 108	Middle	Machine appropriate guarding, using appropriate breathing masks, Machine appropriate guarding and worker training.
	Moving and changing the distance between the rollers	Hand crushing	6x4x7 = 168	Middle	Hand tools using
Tightening	Nip-points	Amputation and hand crush	6x4x10 = 240	High	Precaution in work
	Inappropriate stairs	Severe injuries and temporary disability	6x8x5 = 240	High	Machine regular inspection
	Cables erosion	Death and fire	6x4x10 = 240	High	Good arrangement of tools and materials
	Falling tools and materials	Severe injuries and working time lost	6x6x5 = 180	Middle	Good arrangement of tools and materials
	Exposure to loud noise	Hearing loss	6x8x7 = 336	High	Using air plug and air muff
	Exposure to dusts	Respiratory discomfort	6x4x4 = 96	Middle	Using respiratory masks
	Lack of illumination	Vision weakness	6x4x4 = 96	Middle	Redesigning illumination system
	Polling and awkward postures	Musculoskeletal Disorders	6x7x5 = 240	High	Redesigning work station
	Shift work	Digestive disorders-stomach upset	6x8x5 = 240	High	Avoid recruiting people with a stomach trouble
Packing	Long time standing	Musculoskeletal disorders	6x4x7 = 168	Middle	Redesigning work station
	Long time standing	Musculoskeletal disorders	6x4x7 = 68	Low	Redesigning work station
	Back rotation and bending	Musculoskeletal disorders	6x6x8 = 288	High	Load holding training
	Heavy load carrying	Waist disk	6x8x8 = 384	High	Using load carrying tools
	Accident with lift truck	Body injuries	6x4x7 = 168	Middle	Safety training,
	Inappropriate hand tools	Musculoskeletal disorders	6x8x5 = 240	High	Ergonomic design
	Repetitive tasks	Musculoskeletal disorders	6x6x7 = 252	High	Training ergonomics principles
	Lack of Illumination	Vision weakness	6x4x4 = 96	Middle	Redesigning illumination system
	Sharp edge	Body injuries	3x2x5 = 30	Low	Appropriate arrangement
	Slider level	Body injuries	3x2x5 = 30	Low	Suitable flooring, safety shoes, and soaking the floor of the work area
Autoconer	Exposure to dust	Breathing discomfort	6x4x4 = 96	Middle	Using breathing mask
	Exposure to load noise	Hearing loss	6x8x7 = 336	High	Using Ear muff and ear plug
	Electricity	Electrical shock	3x8x10 = 240	High	Regular monitoring , earth connecting
	Rotational parts	Hand and finger injury	6x8x4 = 190	Middle	Using guard and shield
	Dust exposure	Respiratory damage	6x4x4 = 96	Middle	Using appropriate respiratory protecting equipment, redesigning Industrial ventilation system
In recent years, organization and industries are gradually increasing their concern with safety issues related to the environment. FMEA is a useful systematic approach for tracking failures that has been extensively used in organization and industries (14-17). In this study, risk assessment of spinning sector as one of the most important part of textile industry was carried out using FMEA method.

The results showed 58 different risk types in 6 units under the study. The highest PRN was related to ergonomic factors such as heavy load carrying in the packing unit. In accordance with this finding, Kazemi et al in their study using relative stress index found that awkward posture and manual work were the most effective factors on occupational disorders in textile industry (18). FMEA has also been used to detect failures in the production process (3).

Discussion

Unit	Failure mode	Potential effect	(O × (D) × (S)) = RPN	Risk level	Action
Insufficient lighting	Reducing visibility		6×4×4 = 96	Middle	Redesigning lighting system, modifying lighting intensity
Excessive noise exposure	Hearing damage, Job stress, concentration disturbance		6×8×7 = 336	High	Using Earmuff and earplug
Inappropriate manual handling	Musculoskeletal disorders		6×8×7 = 336	High	Training on ergonomic principles, use of automatic load carrying devices
Bobbin falling down	Foot injury		6×8×4 = 192	Middle	Regular maintenance, using the right distance between the device and the operator
Awkward posture	Musculoskeletal disorders		6×8×5 = 240	High	Redesigning work station, training
Insufficient lighting	Reducing visibility		6×4×4 = 96	Middle	Redesigning lighting system, modifying lighting intensity
Work above shoulder high	Neck and shoulder damage		6×6×5 = 180	Middle	Training on ergonomic principles
Insufficient lighting	Reducing visibility		6×4×4 = 96	Middle	Redesigning lighting system, modifying lighting intensity
Work above shoulder high	Neck and shoulder damage		6×6×5 = 180	Middle	Training on ergonomic principles
Objects falling down	Foot injuries		3×2×4 = 24	Low	Instrument monitoring, Regular maintenance
Slipping	Body injuries		3×2×5 = 30	Low	Regular cleaning, proper safety shoes
Back bending	Back and neck damage		6×4×7 = 168	Middle	Training on ergonomic principles
Shift work	Gastrointestinal disorders, sleep disorders		6×8×5 = 240	High	Choosing suitable workers, conducting periodic examinations
Dust exposure	Respiratory damage		6×4×4 = 96	Middle	Using appropriate respiratory protective equipment, redesign ventilation system
Ring	Work above shoulder high	Neck and shoulder damage	6×6×5 = 180	Middle	Care in working, training Instrument monitoring, Regular maintenance
Bobbin falling down	Head and body damage		3×2×4 = 24	Low	redesign ventilation system
Awkward posture	Musculoskeletal disorders		6×8×5 = 240	High	Redesigning work station, training
Nip points	Hand crush		6×6×5 = 180	Middle	Appropriate guard
Electricity	Electrical shock		3×4×9 = 108	Middle	Regular monitoring , earth connecting
Sharp edges and wins	Hand injury		3×4×4 = 48	Low	Appropriate guard , training
Excessive noise exposure	Hearing damage, Job stress		6×8×7 = 336	High	Using Earmuff and earplug
Dust exposure	Respiratory damage		6×4×4 = 96	Middle	Using appropriate respiratory protective equipment, redesign ventilation system
Insufficient work space	Musculoskeletal disorders		3×2×4 = 24	Low	Redesigning work station, provide work and rest schedule
Long standing	Musculoskeletal disorders		6×3×6 = 108	Middle	Redesigning work station, provide work and rest schedule

Table 2. Characteristics of Failures and Risk Priority Number in Six Units of Study (continue)
Ahmad et al, investigated workplace environment in terms of indoor air quality, lighting, furniture and tools, acoustic and building general environment in four textile industries in Pakistan. They found that the finding of their study showed that Acoustic, indoor air quality and building general environment have a significant effect on employee health compliance (19). In current study Health, Safety and Musculoskeletal Disorders risks such as loud noise, rotating parts, bobbin distance change, electric shock, electrical wires erosion, heavy load lifting, awkward posture, tools falling had the highest RPN. Biswas et al found that poor working postures and subsequent musculoskeletal disorders are prevalent among the dyeing workers in textile industry (1). In contrast, some studies found environmental factors such as a high temperature in the work and bad ventilation as the main complaints in the textile industry (11). In this study more than half of identified risk were unacceptable requiring urgent safety control and modification to reduce risk. The high prevalence of unacceptable risk within factories were also identified in other research (20).

Considering that the highest risk priority number is related to ergonomic factors and exposure to loud noise, there are some recommendations to remove defects originating including Apply automatic system for lifting heavy load, Redesign work station with ergonomic problem, Electrical wiring replacement and using earth system, Applying sound absorber, Designing appropriate barrier for sharp, Winning...}

Conclusion This study found potential risk in the textile industry using FMEA method and priorities them according to PRN score. Applying appropriate control such as engineering controls, management controls, safety training programs were recommended.

Acknowledgements We sincerely thank the management of the Department of Occupational Health of Isfahan University of Medical Sciences for help in this research.

Ethical consideration The current study was approved by the Research Committee of Isfahan University of Medical Sciences.

Conflicts of interests Authors declared no conflict of interest.

Funding None.

References
1. Biswas G, Bhattacharyya A, Bhattacharya R. A review on the health status of textile dyeing workers. Int J Sci Res. 2016;5(8):594-596. doi: 10.15373/22778179.
2. Mohamad Fam I. Safety engineering [in Persian]. Tehran, Iran: Fanavar; 2014: 110.
3. Únal ZB, Acar E. Failure mode and effect analysis: An application in jeans production process. Textilst. 2016; 65(1):30-34.
4. Suresh R, Sathyanathan M, Visagavel K, Rajesh Kumar M. Risk assessment for blast furnace using fmea. Int J Res Eng Technol. 2014;3(11). doi: 10.15623/jiret.2014.0323007.
5. Piątkowski J, Kaminski P. Risk assessment of defect occurrences in engine piston castings by FMEA method. Arch Foundry Eng. 2017;17(3):107-110. doi: https://doi.org/10.1515/afe-2017-0100.
6. Lotolfolahzadeh A, Mri Lavasani M, Dehghani A. Risk Assessment and Determination of Insurance Rate by FMEA Method - Case Study in a Cement Factory [in Persian]. Occup Environ Health. 2017; 2 (4) :311-322.
7. Shafiee M, Dinmohammad F. An FMEA-based risk assessment approach for wind turbine systems: a comparative study of onshore and offshore. Energies. 2014;7(2):619-642.
8. Ebrahemzadith M, Halvani GH, Shahmoradi B, Giahi O. Assessment and risk management of potential hazards by failure modes and effect analysis (FMEA) method in Yazd Steel Complex. Open J Safe Sci Tech. 2014;4(3):127-135. doi: 10.4236/ijosst.2014.43014.
9. Klochikov Y, Its A, Vasilieva I. Development of FMEA method with the purpose of quality assessment of can stock production. Key Engineering Materials. 2016;684:473-476. doi: 10.4028/www.scientific.net/KEM.684.473.
10. Najafpour Z, Hasoumi M, Behzadi F, Mohamadi E, Jafary M, Saeedi M. Preventing blood transfusion failures: FMEA, an effective assessment method. BMC Health Serv Res. 2017;17(1):453. doi: 10.1186/s12913-017-2380-3.
11. Reinhold K, Tint P, Kiivet G. Risk assessment in textile and wood, processing industry. Int J Reliab Qual Saf Eng. 2006;13(2):115-125. doi: 10.1142/S021853930600215X.
12. Martins EF, Lima GBA, Sant’anna AP, da Fonseca RA, da Silva PM, Gaviao LO. Stochastic risk analysis: Monte Carlo simulation and FMEA (Failure mode and effect analysis). Espacios. 2017;38(4):26.
13. Shariat S. Underground mine risk assessment by using FMEA in the presence of uncertainty. Decision Science Letters. 2014;3(3):295-304. doi: 10.5267/dsl.2014.4.002.
14. Nuchpho P, Namsaangs S, Pongpuplonsak S. Risk Assessment in the Organization by using FMEA Innovation: A Literature Review. Presented at: Proceedings of the 7th International Conference on Educational Reform; 2014.
15. Rah JE, Manger RP, Yock AD, Kim GY. A comparison of two prospective risk analysis methods: Traditional FMEA and a modified healthcare FMEA. Med Phys. 2016;43(12):6347.
16. Liu HC. Improved FMEA methods for proactive healthcare risk analysis. Berlin, Germany: Springer; 2019.
17. Shi JL, Wang YJ, Jin H-H, Fan SJ, Ma QY, Zhou MJ. A modified method for risk evaluation in failure mode and effects analysis. J Appl Sci Eng. 2016;19(2):177-186. doi: 10.6180/jase.2016.19.2.08.
18. Kazemi M, Safari S, Akbari J, Mououdi MA, Mahaki B. Macro-ergonomic risk assessment with the relative stress index method in textile industry. Int J Environ Health Eng. 2014;3(1):3.doi: 10.4103/2277-9183.131803.
19. Ahmad N, Khan S, Ali F. An investigation of workplace environment in karachi textile industry towards emotional health. J Ind Stud Res. 2016;14(1):63-78. doi: 10.31384/jisrmsse/2016.14.1.5.
20. Ghaljahii M, Namruvi S. Identification and assessment of...
hazard risks in a flour mill by the JSA and FMEA methodology [in Persian]. J Health Res Commun. 2017;3(3):82-89.

21. Chin KS, Chan A, Yang JB. Development of a fuzzy FMEA based product design system. Int J Adv Manuf Technol. 2008;36(7-8):633-649. doi: 10.1007/s00170-006-0898-3.

22. Wang YM, Chin KS, Poon GKK, Yang JB. Risk evaluation in failure mode and effects analysis using fuzzy weighted geometric mean. Expert Syst Appl. 2009;36(2):1195-1207. doi: 10.1016/j.eswa.2007.11.028.