PALINDROMIC BRAIDS

FLORIAN DELOUP, DAVID GARBER, SHMUEL KAPLAN, AND MINA TEICHER

Abstract. The braid group B_n, endowed with Artin's presentation, admits an antiautomorphism $B_n \rightarrow B_n$, such that $v \mapsto v^\frown$ is defined by reading braids in reverse order (from right to left instead of left to right). We prove that the map $B_n \rightarrow B_n$, $v \mapsto v^\frown$ is injective. We also give some consequences arising due to this injectivity.

1. Introduction

Let $n \geq 2$. Any free group F_{n-1} on $n-1$ generators $\sigma_1, \ldots, \sigma_{n-1}$ supports the antiautomorphism $\text{rev} : w \mapsto \overline{w}$ defined by

$$\sigma_{i_1}^{\alpha_1} \cdots \sigma_{i_r}^{\alpha_r} \mapsto \sigma_{i_r}^{\alpha_r} \cdots \sigma_{i_1}^{\alpha_1},$$

which reverses the order of the word w with respect to the prescribed set of generators. It follows that any group G presented by generators and relations admits such an antiautomorphism rev. The elements of G which are order-reversing invariant are called palindromic. In this paper, we consider palindromic elements of Artin’s Braid group B_n, equipped with Artin’s presentation, which will be called palindromic braids. Artin’s presentation of the braid group B_n consists of $n-1$ generators $\sigma_1, \ldots, \sigma_{n-1}$ and relations

(1.1) $\sigma_i \sigma_j = \sigma_j \sigma_i$ for $|i - j| \geq 2$,

(1.2) $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$ for $1 \leq i \leq n-2$.

We distinguish between two equivalence relations on the elements of the braid group. For $a, b \in B_n$ we write $a \equiv b$ to denote that a and b represent the same element in the group, and $a \equiv b$ to denote that a and b are actually the same element written letter by letter (i.e., $a \equiv b$ means that a and b are equal in the free group using only the generators of the braid group, with no relators).

Palindromic braids have a particularly nice geometric interpretation. Given a geometric braid β, denote by $\hat{\beta}$ its closure into a link inside a fixed solid torus $D^2 \times S^1$. The solid torus admits the involution

$$\text{inv} : D^2 \times S^1 \rightarrow D^2 \times S^1, \ (re^{it}, \theta) \mapsto (re^{-it}, -\theta),$$

Date: March 29, 2022.

2000 Mathematics Subject Classification. 11E81, 11E39.

Key words and phrases. braid, palindrome, Garside, Jacquemard.

This paper is a part of the third author’s Ph.D. Thesis at Bar-Ilan University.

The first author is a E.U. Marie Curie Research Fellow (HMPP-CT-2001-01174). The second author is partially supported by the Golda Meir Fellowship and wishes to thank Ron Livne and the Einstein Institute of Mathematics in the Hebrew University for hosting his stay. Third and Fourth authors are partially supported by EU-network HPRN-CT-2009-00099 (EAGER), Emmy Noether Research Institute for Mathematics, the Minerva Foundation, and the Israel Science Foundation grant #8008/02-3.
whose set of fixed points consists of two segments \((t \equiv 0 \pmod{\pi})\) and \((\theta \equiv 0 \pmod{\pi})\), which is the intersection of the axis of the \(180^\circ\) rotation with the solid torus. Observe that \(\text{rev}(\beta)\) is nothing else than \(\text{inv}(\hat{\beta})\) with the opposite orientation. In particular, if a braid \(\beta \in B_n\) is palindromic then \(\hat{\beta}\) coincides with \(\text{inv}(\beta)\) with the opposite orientation, see Figure 1.1.

![Figure 1.1. The involution inv and palindromic braids.](image)

We prove the following rigidity result for palindromic braids.

Theorem 1.1. Let \(\beta \in B_n\) be a palindromic braid such that
\[
(1.3) \quad \beta = v\bar{v}
\]
for some braid \(v \in B_n\). Then the decomposition (1.3) is unique. Equivalently, let \(\beta = v\bar{v}\) and \(\beta' = v'\bar{v}'\) be two words in Artin’s generators \(\sigma_1, \ldots, \sigma_{n-1}\). Then, \(\beta = \beta'\) in \(B_n\) if and only if \(v = v'\) in \(B_n\).

Of course one implication is obvious. Only the “only if” part of the statement deserves a proof.

Remark 1.2. Note that Theorem 1.1 cannot be generalized into the case of palindromic braid words of odd length. For example the two equal words \(\sigma_1\sigma_2\sigma_1 = \sigma_2\sigma_1\sigma_2\) are of the form \(w\tau\overline{w}\) and \(v\sigma\overline{v}\), however \(\sigma_1 = w \neq v = \sigma_2\). Moreover, not all palindromic braids of even length are of the form (1.3). For example, \(\sigma_1\sigma_3 = \sigma_3\sigma_1\) however, \(\sigma_1 \neq \sigma_3\).

After this work was finished, F. Deloup communicated to us an alternative proof for Theorem 1.1 which is presented in [2], and is derived from the properties of the Dehornoy ordering of braids. The construction of the latter is a long process that requires rather sophisticated methods. In this paper we give an elementary proof, based on Garside normal form and its variant as developed by Jacquemard.

2. **Preliminaries and the Jacquemard Algorithm**

This section is devoted to the building blocks we use in order to prove Theorem 1.1. Mainly, this section is intended to fix notations and recall some of the algorithms we use in this paper.
The monoid B_n^+ of positive braids consists of braids which admit a word representative which does not contain σ_i^{-1}, $1 \leq i \leq n-1$.

Among positive braids, we can consider those whose number of crossings between any two strands is less or equal to 1: they form the subset $S_n^+ \subset B_n^+$ of positive permutation braids.

There is a canonical epimorphism $B_n \to S_n$. The image of a braid γ is the permutation associated to γ. In particular, it is known that S_n^+ is in canonical bijection with the symmetric group S_n, which justifies the name of positive permutation braids.

There is only one positive braid $\Delta \in B_n^+$ in which any pair of strings crosses exactly once. It corresponds geometrically to a generalized half-twist which consists of all the strands $1, \ldots, n$, and is called the Garside element. Δ is given by the formula:

$$\Delta = (\sigma_1 \sigma_2 \ldots \sigma_{n-1}) (\sigma_1 \sigma_2 \ldots \sigma_{n-2}) \cdots (\sigma_1 \sigma_2) \sigma_1.$$

A basic result asserts that the center of B_n is generated by Δ^2. Abelianization of B_n yields a canonical homomorphism $B_n \to \mathbb{Z}$ which, when restricted to B_n^+, coincides with word length with respect to Artin generators. We denote by $|\beta|$ the length of $\beta \in B_n^+$; we have $|\sigma_i| = 1$ and the trivial braid e is the only positive braid such that $|e| = 0$.

We recall the algorithm given by Jacquemard [5], which manipulates a positive braid word $w \in B_n^+$ in order to write it using a given leading letter σ_i. The output of the algorithm is an equivalent positive braid word $\sigma_i w' = w$ or an indication that no w' exists such that equality holds.

The basic nature of the algorithm is greedy. It starts by asking whether $w = \sigma_i w'$ and stops if it does. If not, it looks for σ_i inside w. In case σ_i is not one of the letters of w, the algorithm returnsfalse which indicates nonexistence of $w' \in B_n^+$ such that $\sigma_i w' = w$.

When the algorithm found the leftmost σ_i it works in two steps:

1. Switch σ_i with its left neighbor σ_j as long as $|i - j| \geq 2$. If σ_i becomes the first letter of the word we are done. However, in case that $|i - j| = 1$, the word is of the form $w = w_0 \sigma_j \sigma_i w_1$, and so in order to move σ_i to the left one must use the triple relation (1.2) between $\sigma_j \sigma_i$ and the left most letter of w_1. If this is the case, the algorithm goes to step (2).

2. The algorithm calls itself recursively with the word w_1 and the letter σ_j. Upon success of the recursive call the word looks like $w = w_0 \sigma_j \sigma_i w_1'$ and therefore, we activate relation (1.2) on $\sigma_j \sigma_i \sigma_j$ resulting with $w = w_0 \sigma_j \sigma_i \sigma_j w_1'$, and return to step (1). However, if the recursive call fails to extract σ_j to the left of w_1 the algorithm returnsfalse.

To finish this section, we recall another result on the decomposition of braids, due to F. A. Garside [4] and later refined by W. P. Thurston [7], and by E. A. Elrifai and H. R. Morton [3].

Definition 2.1. We say that a product $\alpha_1 \ldots \alpha_r$ satisfies Thurston’s condition if each α_i is a nontrivial positive permutation braid, and for any $1 \leq i \leq r - 1$ we have that any j such that $\alpha_{i+1} = \sigma_j \gamma_{i+1}$ also satisfies $\alpha_i = \gamma_i \sigma_j$ where $\gamma_i, \gamma_{i+1} \in S_n^+$.
Proposition 2.2 (Left-canonical form of a braid). Given any braid \(\beta \in B_n \), there exists a unique decomposition
\[
\beta = \Delta^k \alpha_1 \cdots \alpha_r,
\]
where \(k \in \mathbb{Z} \) is maximal, \(\alpha_i \in S_n^+ \) and the product \(\alpha_1 \cdots \alpha_r \) satisfies Thurston’s condition.

3. Proof of Theorem 1.1

Our first step consists of looking at the behavior of \(\Delta \) and permutation braids under the antiautomorphism \(\text{rev} \).

Lemma 3.1. The following properties hold:

1. \(\Delta = \Delta^\top \)
2. The set of permutation braids is invariant under \(\text{rev} : w \mapsto \overline{w} \).
3. \(v^{-1} = \overline{v}^{-1} \) for all \(v \in B_n \).

We now identify the basic problem. Let \(\beta = \Delta^k \alpha_1 \cdots \alpha_r \) be the left-canonical form for a braid \(\beta \in B_n \). We cannot assume that the decomposition \(v = \alpha_1 \cdots \alpha_r \) remains in left-canonical form when viewed in \(v \overline{v} \). Indeed, after multiplying on the right by the reversed braid, the product \(\alpha_1 \cdots \alpha_r \) (viewed in \(v \overline{v} \)) may cease to satisfy Thurston’s condition. A simple example is provided by
\[
\alpha_1 = \sigma_1 \sigma_3, \quad \alpha_2 = \sigma_3.
\]
Both \(\alpha_1 \) and \(\alpha_2 \) are positive permutation braids and the product \(\gamma = \alpha_1 \alpha_2 \) satisfies Thurston’s condition. However, when we write \(\beta = \alpha_1 \alpha_2 \overline{\alpha_2 \alpha_1} \) in left-canonical form, we find
\[
\beta = \sigma_3 \sigma_1 \sigma_3 \sigma_1 \sigma_3 \sigma_3 \sigma_3 \overline{\sigma_3 \sigma_1 \sigma_3 \sigma_1 \sigma_3 \sigma_3 \sigma_3}
\]
so that the second canonical factor \(\alpha_2' \) does not coincide with \(\alpha_2 \).

We start by proving the Theorem 1.1 for positive braids.

3.1. Proof of Theorem 1.1 for positive braid words. We start by proving the following lemma:

Lemma 3.2. Let \(v \overline{v} = \sigma w \overline{w} \sigma \) and let \(v \overline{v} \equiv w_0 = w_1 = \cdots = w_k = \sigma v' \) be a sequence of positive braid words such that each \(w_{i+1} \) is the outcome of the activation of one relation out of the relations in the semigroup \(B_n^+ \) on \(w_i \) according to Jacquemard’s algorithm. Then, all relations are performed only within the first half of the word \(w_i \) which implies they all involve only letters from \(v \).

Proof. Notice that since \(v \overline{v} = \sigma w \overline{w} \sigma \), the success of the Jacquemard’s algorithm is guaranteed. Hence we know that \(\sigma \) is one of the letters of \(v \). Now, we need to prove that in each step of Jacquemard’s algorithm that uses a relation, it occurs in the first half of the word \(v \).

For step (1) of the algorithm, this is obvious: all relations involve \(\sigma \) and left neighbors of \(\sigma \); since \(\sigma \) is in \(v \), all relations occur inside \(v \). Moreover, relations can be activated mirror like on \(\overline{v} \) as well; Hence, we maintain the
palindromic structure of the word. This implies that when we need to move to step (2) of the algorithm we have

\[v\overline{v} = v_1 \tau \sigma v_2 \overline{v} = v_1 \tau \sigma v_2 \overline{v_2} \sigma \tau \overline{v_1}, \]

where \(\tau \) and \(\sigma \) do not commute, and \(\sigma \) is not in \(v_1 \).

If this is the case, the algorithm calls itself recursively using \(v_2 \overline{v} = v_2 \overline{v_2} \sigma \tau \overline{v_1} \) and \(\tau \), trying to extract \(\tau \) to the left, first by looking for the leftmost \(\tau \) letter in \(v_2 \overline{v} = v_2 \overline{v_2} \sigma \tau \overline{v_1} \).

Assume by contradiction that \(\tau \) is not a letter of \(v_2 \) (hence it is not a letter of \(\overline{v_2} \)). Then the leftmost \(\tau \) letter in \(v_2 \overline{v} = v_2 \overline{v_2} \sigma \tau \overline{v_1} \) appears to the right of \(\sigma \) and to the left of \(\overline{v_1} \). In order to extract this \(\tau \) to the left of \(v_2 \), we need to activate another recursive call of the algorithm on \(\overline{v_1} \) with the letter \(\sigma \) (since in our case \(\sigma \) and \(\tau \) do not commute and we have to use step (2) of the algorithm). But, \(\sigma \) is not in \(\overline{v_1} \) (since it is not in \(v_1 \)). Therefore \(\sigma \) cannot be extracted to the left of \(\overline{v_1} \). This implies that Jacquemard’s algorithm failed, and this is a contradiction.

If \(\tau \) is found within \(v_2 \) and during the process of extracting it to the left we do not encounter the need to use letters from the right half of \(v\overline{v} \) we are finished. Therefore, assume by contradiction that at some point in the process we encounter a relation involving a letter of \(\overline{v} \). Again, since until this step all relations were activated only in the left half of the word their mirror image can be activated on the right half of the word, so the palindromic structure of the word is preserved.

Suppose that we performed \(k \) recursive steps of the algorithm. Then, our word looks like:

\[
v\overline{v} = v_1 \tau_1 \sigma v_2 \tau_2 \tau_1 v_3 \tau_3 \tau_2 \cdots v_{k-1} \tau_{k-1} \tau_k \tau_{k-2} v_{k-1} \tau_k \tau_{k-1} \tau_{k-2} v_{k-1} \cdots v_k \overline{v_{k+1}} \tau_{k+1} \tau_k \tau_{k-1} \tau_k \tau_{k-2} v_{k-1} \tau_k \tau_{k-1} \tau_k \tau_{k-2} v_{k-1} \cdots v_3 \tau_3 \tau_2 \tau_3 \tau_2 v_2 \sigma \tau_1 \overline{v_1}
\]

where \(\tau_i \) and \(\tau_{i+1} \) are two noncommuting letters, \(\sigma \) does not commute with \(\tau_1 \) and is not a letter of \(v_1 \). Moreover, \(\tau_i \) is not a letter of \(v_{i+1} \) for any \(i = 1, \cdots, k \).

Now, in this recursion step, we have called the algorithm with the letter \(\tau_k \) and the word \(v_{k+1} \overline{v_{k+1}} \tau_{k+1} \tau_{k-1} \tau_k \tau_{k-2} v_{k-1} \cdots v_3 \tau_3 \tau_2 \tau_3 \tau_2 v_2 \sigma \tau_1 \overline{v_1} \). However, since \(\tau_k \) is not a letter of \(v_{k+1} \) and of \(\overline{v_{k+1}} \) the leftmost \(\tau_k \) in this recursion call is to the right of \(\tau_{k-1} \) and to the left of \(\tau_k \). Since \(\tau_{k-1} \) does not commute with \(\tau_k \), another recursion call is needed with the letter \(\tau_{k-1} \) and the word \(v_{k+1} \overline{v_{k+1}} \tau_{k-1} v_{k-1} \cdots v_3 \tau_3 \tau_2 \tau_3 \tau_2 v_2 \sigma \tau_1 \overline{v_1} \). Again, \(\tau_{k-1} \) is not a letter of \(\overline{v_k} \) hence the leftmost \(\tau_{k-1} \) in this recursion call is to the right of \(\tau_{k-2} \) and to the left of \(\overline{v_k} \). Similarly \(\tau_{k-2} \) does not commute with \(\tau_{k-1} \), so we continue \(k-3 \) recursion calls until we reach a recursion call with the letter \(\tau_1 \) and the word \(v_2 \sigma \tau_1 \overline{v_1} \). Since \(\tau_1 \) is not a letter in \(\overline{v_2} \), the leftmost \(\tau_1 \) in this call is to the right of \(\sigma \) and to the left of \(\overline{v_1} \). This implies that another recursion call is needed in order to extract the letter \(\sigma \) from the word \(\overline{v_1} \). However, this contradicts the hypothesis on \(v_1 \).

This concludes the proof of all cases, hence all relations are activated inside the left half of the word \(v\overline{v} \) as claimed.

Now we are ready to prove the theorem for positive braid words.
Theorem 3.3. Let $\beta, \beta' \in B_n^+ \text{ be two palindromic positive braids of even length such that } \beta = v\overline{v} \text{ and } \beta' = w\overline{w} \text{ for some braids } v, w \in B_n^+$. Then, $\beta = \beta'$ in B_n if and only if $v = w$ in B_n.

Proof. By induction on the length $l = |w|$ of w. Assume that $w \equiv \sigma w'$ where $w' \in B_0^+$, i.e., σ is the first letter in w. Then, $w\overline{w} = \sigma w'\overline{w}\sigma$. This means that $v\overline{v}$ can be written such that its first letter is σ, that is, $v\overline{v} = \sigma v'$ for some $v' \in B_n^+$.

By the embedding theorem of Garside [4] it follows that there is a sequence of words $v\overline{v} \equiv w_0 = w_1 = \cdots = w_k \equiv \sigma v'$, such that each w_{i+1} is obtained from w_i by activating one relation out of the relations in the semigroup B_n^+. One possible sequence is the one which uses the relations suggested by the algorithm of Jacquemard given in [5]. Now, Lemma 3.2 shows that every relation used in the sequence is fully contained in v (the left half of the word), and does not effect \overline{v}. Therefore, it is possible to activate all relations described in the sequence in a mirror-like image on \overline{v} and get $w\overline{w} = \sigma w'\overline{w}\sigma = v\overline{v} = \sigma v' = \sigma v'\overline{v}' \sigma$.

However, if this is the case the case $w\overline{w} = v'\overline{v}'$ where $|w\overline{w}| = |v'\overline{v}'| = l - 2$. Therefore, by the induction hypothesis we have $w' = v'$ which implies that $\sigma w' = w = v = \sigma v'$.

Next, we use the above, and give the proof of Theorem 1.1.

3.2. Proof of Theorem 1.1 for the general case. Let $v \in B_n$ and set $\beta = v\overline{v}$. We need to prove that if $\beta = w\overline{w}$, then $v = w$.

Let $v = \Delta^k\alpha_1 \cdots \alpha_r$ be the left-canonical form of v. Then $\overline{v} = \overline{\alpha_r} \cdots \overline{\alpha_2\alpha_1} \Delta^k$ (Lemma 3.1(1)). Hence,

$$\beta = v\overline{v} = \Delta^k\alpha_1 \cdots \alpha_r\overline{\alpha_r} \cdots \overline{\alpha_1} \Delta^k.$$

Moreover, let $w = \Delta^j\beta_1 \cdots \beta_p$ be the left-canonical form of w. We have

$$\beta = w\overline{w} = \Delta^j\beta_1 \cdots \beta_p\overline{\beta_p} \cdots \overline{\beta_1} \Delta^j$$

(Note that it is not necessary that $r = p$).

Without loss of generality, we may assume that $j < k < 0$ (Otherwise, $\beta \in B_n^+$ and we use Theorem 3.3). By multiplying β by Δ^{-j} on the left and on the right, we obtain:

$$\Delta^{-j}\beta\Delta^{-j} = \Delta^{-j}v\overline{v}\Delta^{-j} = \Delta^{k-j}\alpha_1 \cdots \alpha_r\overline{\alpha_r} \cdots \overline{\alpha_1} \Delta^{k-j},$$

and

$$\Delta^{-j}\beta\Delta^{-j} = \Delta^{-j}x\overline{x}\Delta^{-j} = \beta_1 \cdots \beta_p\overline{\beta_p} \cdots \overline{\beta_1}. $$

These are two equal positive braid words and have the form $v\overline{v}' = w\overline{w}'$, where $v' = \Delta^{k-j}\alpha_1 \cdots \alpha_r$ and $w' = \beta_1 \cdots \beta_p$ respectively. Therefore, Theorem 3.3 applies and we conclude that $v = w$.

As a consequence, we obtain the following corollaries:

Corollary 3.4. Let $\beta = x\overline{x} \in B_n^+$ be a positive palindromic braid of even length, and let the left-canonical normal form of x be $\alpha_1 \cdots \alpha_r$ such that
Then, the left-canonical normal form of $x\overline{x}$ is $\beta_1 \cdots \beta_p$ where $\beta_1 \neq \Delta$.

Proof. Otherwise because the process of Jacquemard’s algorithm may be used to transform the word $\alpha_1 \cdots \alpha_r \overline{\alpha}_r \cdots \overline{\alpha}_1$ into its left-canonical form, and since it extracts letters to the left only from the first half of the word, we might have

$$\beta = \alpha_1 \cdots \alpha_r \overline{\alpha}_r \cdots \overline{\alpha}_1 = \Delta \gamma_1 \cdots \gamma_q \overline{\gamma}_q \cdots \overline{\gamma}_1 \Delta,$$

which means, by Theorem 3.3 that $\alpha_1 \cdots \alpha_r = \Delta \gamma_1 \cdots \gamma_q$. By the uniqueness of the left-canonical normal form, we deduce that $\alpha_1 = \Delta$, which is a contradiction. □

We may generalize Corollary 3.4:

Corollary 3.5. Let $v \in B^+_n$ be a positive braid, and let $n(v)$ denote the number of leading permutation braids which are Δ when v is written in its left-canonical normal form. Then, for $\beta = v \overline{v}$, we have $n(v \overline{v}) = 2n(v)$.

Proof. Since v is written in left-canonical form as $\Delta^{n(v)} \alpha_1 \cdots \alpha_r$ where $\alpha_1 \neq \Delta$, we have that $\beta = \Delta^{n(v)} \alpha_1 \cdots \alpha_r \overline{\alpha}_r \cdots \overline{\alpha}_1 \Delta^{n(v)}$. Note that since Δ almost commutes with any permutation braid, we may write

$$\beta = \Delta^{2n(v)} \alpha'_1 \cdots \alpha'_r \overline{\alpha}'_r \cdots \overline{\alpha}'_1,$$

where $\alpha'_i = \alpha_i$ if $n(v)$ is even and α'_i is obtained from α_i by replacing each σ_j by σ_{n-j} in case that $n(v)$ is odd. In any of the cases, the product $\alpha'_1 \cdots \alpha'_r$ keeps its left-canonical form. Hence, using the same argument as in Corollary 3.4 we get that $n(v \overline{v}) = 2n(v)$. □

References

[1] J.S. Birman, *Braids, Links and Mapping Class Groups*, Ann. Math. Studies 86, Princeton University Press, 1975.

[2] F. Deloup, *involutive braids*, preprint math.GT/0410275

[3] E. A. Elrifai and H. R. Morton, *Algorithms for positive braids*, Oxford Quart. J. Math. (2) 45, 479–497 (1994).

[4] F.A. Garside, *The Braid group and other groups*, Oxford Quart. J. of Math. 20, 235–254 (1969).

[5] A. Jacquemard, *About the effective classification of conjugacy classes of braids*, J. Pure. Appl. Alg. 63 (1990), 161-169.

[6] H.R. Morton and H. Short, *Calculating the 2-variable polynomial for knots presented as closed braids*, J. Algorithms 11, 117 – 131 (1990).

[7] W.P. Thurston, “Braid Groups”, Chapter 9 in *Word Processing in Groups*, 181–209, Ed. D.B.A. Epstein, Jones and Bartlett, Boston, 1992.
