Antimicrobial resistance pattern in ventilator-associated pneumonia in an intensive care unit of Babol, northern Iran

Mahmoud Sadeghi-Haddad-Zavareh¹, Hadi Ahmadi Jouybari¹, Mostafa Javanian¹, Mehran Shokri¹, Masomeh Bayani¹, Mohammad Reza Hasanjani Roushan¹, Arefeh Babazadeh¹, Soheil Ebrahimpour¹, Parviz Amri Maleh²

¹Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, I.R. Iran
²Department of Anesthesiology, School of Medicine, Babol University of Medical Sciences, Babol, I.R. Iran

ARTICLE INFO

Article history:
Received 28 January 2018
Revision 15 February 2018
Accepted 18 February 2018
Available online 1 March 2018

Keywords:
Antibacterial resistant
Ventilator-associated pneumonia
Intensive care unit

ABSTRACT

Objective: To investigate antibiotic resistance pattern of ventilator-associated pneumonia (VAP) generating microorganisms, and quantitative culture and determining antibiotic sensitivity.

Methods: This cross sectional study was performed on 50 patients suffering from VAP in intensive care unit of Ayatollah Rouhani Hospital, Babol, Iran during 2014–2015. VAP was probable for them based on clinical signs and the criteria of Clinical Pulmonary Infection Score standards. Lower respiratory samples were given under bronchoalveolar lavage and quantitative culture was done on them. Afterwards by microdilution method, minimal inhibitory concentration based on respective microorganisms, considering clinical pulmonary infection score were determined.

Results: From 50 investigated samples in this study, the most common microorganisms were Acinetobacter baumannii (A. baumannii) (70%) then Pseudomonas aeruginosa (12%), Staphylococcus aureus (8%) and Klebsiella pneumonia (3%). In our study A. baumannii showed approximate 100% resistance to all antibiotics, in a way that A. baumannii resistance to imipenem and meropenem and piperacillin/tazobactam each was 97.1%. The most resistance of Pseudomonas aeruginosa was 66.7% to each cefepime and ceftazidime and clavulanate/ticarcillin. Staphylococcus aureus showed 75% resistance to nafcillin, cloxacillin and resistance in case of vancomycin was not seen.

Conclusion: In current study, A. baumannii had the most prevalence among VAP and this species is resistant to most of antibiotics. Using cefazidime, cefepime and clavulanate/ticarcillin, in treatment of the patients suffering VAP is not reasonable.

1. Introduction

Ventilator-associated pneumonia (VAP) is one of the most common infectious complications and the leading cause of death in intensive care units (ICUs)¹,². VAP based on time event is divided into two types: early VAP that occurs within 4 d and late VAP which happens after the 5th day of hospitalization[³]. Risk factors of VAP include oropharyngeal colonization, trauma, surgery, immunosuppression, old age, urgent intubation, prolonged admission in ICU, sedative drugs steroids usage and previous hospitalization. Prevalent etiological agents in generating VAP in several studies

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com
©2018 Journal of Acute Disease Produced by Wolters Kluwer - Medknow

How to cite this article: Sadeghi-Haddad-Zavareh M, Jouybari HA, Javanian M, Shokri M, Bayani M, Roushan MRH, et al. Antimicrobial resistance pattern in ventilator-associated pneumonia in an intensive care unit of Babol, northern Iran. J Acute Dis 2018; 7(2): 74-77.
consist of *Staphylococcus aureus* (*S. aureus*), *Pseudomonas aeruginosa* (*P. aeruginosa*), *Acinetobacter baumannii* (*A. baumannii*) [14,5]. Generally, etiological agents of VAP are different based on hospital or geographical position and their antibiotic resistance rates is also different among various areas[6]. The results of the different studies show that resistance rates of bacteria are increasing[7]. Increasing resistance to antibiotics raises the mortality rate, admission duration and expenses, in patients who suffer VAP in ICU. The mortality rate in VAP was reported 20%—76% in different studies[8,9].

In various studies of *P. aeruginosa* and *A. baumannii* in VAP the mortality was of was 65% and 87% and for MRSA to was 84%[10].

In some study, using antibiotics of choice for treating VAP based on antibiotic resistance pattern in the same hospitals could decrease usage of inappropriate antibiotics and increase treatment success[11]. Considering that a study based on Bronchoscopy sampling method and bronchoalveolar lavage (BAL) and quantitative culture performance and investigating microorganisms resistance with microdilution method and determining minimal inhibitory concentration (MIC) of antibiotic, has not been carried out so far in ICU of Ayatollah Rouhani Hospital of Babol (northern Iran), this study was done with the purpose of determining microorganisms involved in creating pneumonia from ventilation and their antibiotic resistance evaluation noticing method above.

2. Materials and methods

This cross-sectional study was conducted on 50 patients suffering ventilator-associated pneumonia in ICU of Ayatollah Rouhani Hospital of Babol during the 2014–2015.

In this study with daily visit of hospitalized patients in Ayatollah Rouhani ICU, considering clinical criteria based on Clinical Pulmonary Infection Score (CPIS), patients who at least acquired six points based on CPIS and from the clinical signs, diagnosis of pneumonia was possible for them, were under sampling method BAL and bronchoscopy[12]. The samples were cultured in blood agar and MacConkey agar, and culture media after 24–48 h incubation at (35±2) °C were evaluated. Samples were cultured under quantitative method and if growth of more than 10^6 CFU/mL bacteria were detected presumed as V AP etiological agents, in next step for sampling method and bronchoalveolar lavage (BAL) and quantitative culture performance and investigating microorganisms resistance in our study including that ciprofloxacin, ceftazidime, amikacin, clavulanate/ticarcillin and cefepime. Meropenem, imipenem and piperacillin/tazobactam had 97.1% resistance respectively, and gentamycin had 94.3% resistance (Table 1).the most common cause of admission of patients was neurologic disease (36%) and then respiratory disease. 12% of patients admitted with sepsis. And16%of patients was on stroid therapy. Demographic data of the patients are shown in Table 1. The most common microorganisms in our study were *A. baumannii* (70%), *P. aeruginosa* (12%), *S. aureus* (8%) and *Klebsiella pneumonia* (*K. pneumonia*) (6%). Meanwhile, from these 50 investigated samples, two samples (4%) did not grow in culture media.

3. Results

Of the 50 patients who suffer VAP in our study, 33 (66%) are male and 17 (34%) were female. The mean age of the patients was 67.43 year old. Among the patients 52% previously admitted in hospital and 60% had a history of antibiotic use in past 3 months (Table 1). the most common cause of admission of patients was neurologic disease (36%) and then respiratory disease. 12% of patients admitted with sepsis. And16%of patients was on stroid therapy. Demographic data of the patients are shown in Table 1. The most common microorganisms in our study were *A. baumannii* (70%), *P. aeruginosa* (12%), *S. aureus* (8%) and *Klebsiella pneumonia* (*K. pneumonia*) (6%). Meanwhile, from these 50 investigated samples, two samples (4%) did not grow in culture media.

| Antibiotics                | Sensitive | Intermediate | Resistant |
|---------------------------|-----------|--------------|-----------|
| Ciprofloxacin             | 0(0.0)    | 0(0.0)       | 35(100.0) |
| Ceftazidime               | 0(0.0)    | 0(0.0)       | 35(100.0) |
| Piperacillin/tazobactam   | 1(2.9)    | 0(0.0)       | 34(97.1)  |
| MeroPenem                 | 1(2.9)    | 0(0.0)       | 34(97.1)  |
| ImiPenem                  | 1(2.9)    | 0(0.0)       | 34(97.1)  |
| Amikacin                  | 1(2.9)    | 0(0.0)       | 35(100.0) |
| Gentamycin                | 2(5.7)    | 0(0.0)       | 33(94.3)  |
| Cefepime                  | 0(0.0)    | 0(0.0)       | 35(100.0) |
| Clavulanate/Ticarcillin   | 0(0.0)    | 0(0.0)       | 35(100.0) |

3.2. Evaluation of antibiotic resistance based on microdilution method in *P. aeruginosa*
In our study, the most resistance was related to ceftazidime, clavulanate/ticarcillin, cefepime, (each with 66.7% resistance) and the least resistance was related to imipenem (16.7%) and gentamycin (16.7%) (Table 2).

**Table 2**

Resistance pattern of antibiotics in *P. aeruginosa* [n, (%)].

| Antibiotics              | Sensitive | Intermediate | Resistant |
|-------------------------|-----------|--------------|-----------|
| Ciprofloxacin           | 3(50.0)   | 1(16.7)      | 2(33.3)   |
| Ceftazidime             | 1(16.7)   | 1(16.7)      | 4(66.7)   |
| Piperacillin/tazobactam | 4(66.7)   | 0(0.0)       | 2(33.3)   |
| MeroPenem               | 4(66.7)   | 0(0.0)       | 2(33.3)   |
| ImiPenem                | 4(66.7)   | 1(16.7)      | 1(16.7)   |
| Amikacin                | 4(66.7)   | 0(0.0)       | 2(33.3)   |
| Gentamycin              | 5(83.3)   | 0(0.0)       | 2(33.3)   |
| Cefepime                | 2(33.3)   | 0(0.0)       | 4(66.7)   |
| Clavulanate/Ticarcillin | 2(33.3)   | 0(0.0)       | 4(66.7)   |

3.3. Evaluation of antibiotic resistance based on microdilution method in *K. pneumonia*

Among the three samples of *K. pneumonia* in our study, the most resistance was related to ceftazidime, cefepime and clavulanate/ticarcillin each with 100% of resistance. Gentamycin, meropenem, imipenem, piperacillin/tazobactam and ciprofloxacin each with 33.3% had the least resistance (Table 3).

**Table 3**

Resistance pattern of antibiotics in *K. pneumonia* [n, (%)].

| Antibiotics             | Sensitive | Intermediate | Resistant |
|-------------------------|-----------|--------------|-----------|
| Ciprofloxacin           | 1(33.3)   | 1(33.3)      | 1(33.3)   |
| Ceftazidime             | 0(0.0)    | 0(0.0)       | 3(100.0)  |
| Piperacillin/tazobactam | 1(33.3)   | 1(33.3)      | 1(33.3)   |
| MeroPenem               | 2(66.7)   | 0(0.0)       | 1(33.3)   |
| ImiPenem                | 2(66.7)   | 0(0.0)       | 1(33.3)   |
| Amikacin                | 2(66.7)   | 0(0.0)       | 1(33.3)   |
| Gentamycin              | 2(66.7)   | 0(0.0)       | 1(33.3)   |
| Cefepime                | 0(0.0)    | 0(0.0)       | 3(100.0)  |
| Clavulanate/Ticarcillin | 0(0.0)    | 0(0.0)       | 3(100.0)  |

3.4. Evaluation of antibiotic resistance based on microdilution method in *S. aureus*

Among the four samples of *S. aureus* in our study, resistance to cloxacillin and nafcillin was 75%. 25% of cases were sensitive to co-trimoxazole and no complete resistance to vancomycin was reported (Table 4).

**Table 4**

Resistance pattern of antibiotics in *S. aureus* [n, (%)].

| Antibiotics     | Sensitive | Intermediate | Resistant |
|-----------------|-----------|--------------|-----------|
| Co-trimoxazole  | 1(25)     | 1(25)        | 1(25)     |
| Cefazolin       | 0(0)      | 3(75)        | 1(25)     |
| Cloxacillin     | 1(25)     | 0(0)         | 3(75)     |
| Nafcillin       | 1(25)     | 0(0)         | 1(25)     |
| Vancomycin      | 3(75)     | 1(25)        | 0(0)      |

4. Discussion

Considering the extension of antibiotic resistance, early diagnosis of VAP and identification of the type of microorganisms and antibiotics resistance pattern, can modify the method of antibiotic prescription and as result decrease medication resistance. In our study the most common microorganisms of causing VAP were *A. baumannii*, *P. aeruginosa* and *S. aureus* that these results are similar to other studies[14-16].

The resistance rate of *A. baumannii* to carbapenemes like imipenem and meropenem in our study was 97.1% and in study done with Balkhy *et al*., in Saudi Arabia was 64.1% and in study of Salehifar *et al*., in Imam khomeili hospital of sari (Iran) was 100%[15,16]. In current study, the resistance rate of *P. aeruginosa* to carbapenem as meropenem was 33.3% and to imipenem 16.7%, while the resistance rate to carbapenem was reported 14.7% in study of Jamaati *et al*., that was accomplished in Masih Daneshvari hospital of Tehran and it was reported 32.8% by Balkhy *et al*., in Saudi Arabia[16].

The resistance rate of *S. aureus* in our study to nafcillin and cloxacillin was 75% and it was reported 80%, 41.1%, 65.4% and 66.7% by some studies[16-18]. One of the features of this study in comparison with many other studies, like the study was carried outby Aziz Japoni *et al*., in shiraz in 2008–2009 and Balkhy *et al*., study that was done in Saudi Arabia in 2004 to 2009 was related to sampling method that in our study bronchoscopy method and BAL were applied which were often more precise than ETA method[16,19]. Also, in our study one of the characteristics was using CPIS and performing quantitative culture in order to positive consideration of BAL sample with colon of more than 10⁷ cfu/mL[10,20]. The value of quantitative culture was much more than qualitative culture for diagnosing and deciding to start the treatment of VAP.

The prevalence of *A. baumannii* in our study was 70% and it was reported by some studies 35.1%, 29% and 18% which shows that high prevalence of *A. baumannii* as a producing organism of VAP at our hospital relative to the other studies and can be a serious warning in outbreaks of hospital acquired infections caused by *A. baumannii*[15,17].

The clear role of *A. baumannii* types among gram-negative microorganisms in hospital acquired infections like bacteremia, urinary tract infection, soft tissue infections and especially VAP and also high ability of these microorganisms in generating...
antibiotic resistance with various mechanisms, now a days is a major problem[21,22]. Various studies about antibiotic resistance of A. baumannii was carried out which often they have reported high resistance of this microorganism[23,24].

In many countries, in case of severe infections of A. baumannii. Use of carbenepens as a treatment choice is a rule but resistance toward them is also increasing[25-27].

The most common microorganisms involved in were A. baumannii, P. aeruginosa and S. aureus that among them A. baumannii was much more one and antibiotic resistance on all of the investigated antibiotics was about 100%. Noticing the results, high resistance of gram negative organisms to ceftazidime, cefepime and clavulanate/ticarcillin makes their use in empirical treatment of the VAP patients not appropriate.

Conflicts of interest statement

The authors declare that there is no conflict of interest.

References

1. Rea-Neto A, Youssef NCM, Tuche F, Brunkhorst F, Ranieri VM, Reinhart K, et al. Diagnosis of ventilator-associated pneumonia: A systematic review of the literature. Crit Care 2008; 12(2): R56.
2. Shokri M, Ghasemian R, Bayani M, Maleh VA, Kamrani M, Sadeghi-Haddad-Zavareh M, et al. Serum and alveolar procalcitonin had a weak diagnostic value for ventilator-associated pneumonia in patients with pulmonary infection score 6. Rom J Intern Med 2018; 56(1): 9-14.
3. Joseph NM, Sistla S, Dutta TK, Badhe AS, Parija SC. Ventilator-associated pneumonia: A review. Eur J Intern Med. 2010; 21(5): 360-368.
4. Resende MM, Monteiro SG, Callegari B, Figueiredo PM, Monteiro CR, Monteiro-Neto V. Epidemiology and outcomes of ventilator-associated pneumonia in northern Brazil: An analytical descriptive prospective cohort study. BMC Infect Dis 2013; 13(1): 119.
5. Rello J, Ollendorf DA, Oster G, Vera-Llonch M, Bellin L, Redman R, et al. Epidemiology and outcomes of ventilator-associated pneumonia in a large US database. Chest J 2002; 122(6): 2115-2121.
6. Koenig SM, Truwit JD. Ventilator-associated pneumonia: diagnosis, treatment, and prevention. Clin Microbiol Rev 2006; 19(4): 637-657.
7. Chi SY, Kim TO, Park CW, Yu JY, Lee B, Lee HS, et al. Bacterial pathogens of ventilator associated pneumonia in a tertiary referral hospital. Tuberc Respir Dis 2012; 73(1): 32-37.
8. Alp E, Voss A. Ventilator associated pneumonia and infection control. Ann Clin Microbiol Antimicrob 2006; 5(1): 7.
9. Banjar A, Felemban M, Dhafar K, Gazzaz Z, Al Harthi B, Baig M, et al. Surveillance of preventive measures for ventilator associated pneumonia (VAP) and its rate in Makkah Region hospitals, Saudi Arabia. Turk J Med Sci 2017; 47(1): 211-216.
10. Chastrue J, Fagon J-Y. Ventilator-associated pneumonia. Am J Respir Crit Care Med 2002; 165(7): 867-903.
11. Porzecanski I, Bowton DL. Diagnosis and treatment of ventilator-associated pneumonia. Chest J 2006; 130(2): 597-604.