A Dyson realization and a Holstein-Primakoff realization for the quantum superalgebra $U_q[gl(n/m)]$

Tchavdar D. Palev*
Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627

Abstract. The Holstein-Primakoff and the Dyson realizations of the Lie superalgebra $gl(n/m)$ are generalized to the class of the quantum superalgebras $U_q[gl(n/m)]$ for any n and m. It is shown how the elements of $U_q[gl(n/m)]$ can be expressed via $n - 1$ pairs of Bose creation and annihilation operators and m pairs of Fermi creation and annihilation operators.

* Permanent address: Institute for Nuclear Research and Nuclear Energy, 1784 Sofia, Bulgaria; e-mail: tpalev@inrne.acad.bg
Recently an analogue of the Dyson (D) and of the Holstein-Primakoff (HP) realization for the superalgebras $gl(n/m)$ of any rank was given [1]. In the present paper the results are extended to the quantum superalgebras $U_q[gl(n/m)]$. The elements of $U_q[gl(n/m)]$ are expressed via $n-1$ pairs of Bose creation and annihilation operators (CAOs) and of m pairs of Fermi CAOs. In the case $m=0$ the results reduce to those announced in [2], namely to D and HP realizations of $U_q[gl(n)]$ in terms of $n-1$ pairs of only Bose operators.

Initially the D and the HP realizations were given for $sl(2)$ [3, 4]. The generalization for $gl(n)$ is due to Okubo [5]. The “quantum case” was worked out also first for $U_q[sl(2)]$ [6] and $U_q[sl(3)]$ [7]. Very recently it was extended to $U_q[sl(n)]$ [2]. To the best of our knowledge analogues of D and of HP realizations for quantum superalgebras have not been published in the literature so far. The available realizations are of Jordan-Schwinger type, requiring n pairs of Bose CAOs and m pairs of Fermi CAOs in case of $U_q[gl(n/m)]$ [8].

The motivation in the present work stems from the various applications of the Holstein-Primakoff and of the Dyson realizations in theoretical physics. Beginning with [2] and [3] the HP and D realizations were constantly used in condensed matter physics. Some early applications can be found in the book of Kittel [9] (more recent results are contained in [10]). For applications in nuclear physics see [11, 12] and the references therein, but there are, certainly, several other publications. Once the q-analogues of D and of HP realizations for $U_q[sl(2)]$ and $U_q[sl(3)]$ were established, they found also immediate applications [13-18]. One can expect therefore that the generalization of the results to an arbitrary rank $U_q[gl(n/m)]$ superalgebra may prove useful too.

To begin with we recall the definition of $U_q[gl(n/m)]$ in the sense of Drinfeld [19], keeping close to the notation in [20]. Let $\mathbb{C}[[h]]$ be the complex algebra of formal power series in the indeterminate h, $q = e^{h/2} \in \mathbb{C}[[h]]$. Then $U_q[gl(n/m)]$ is a Hopf algebra, which is a topologically free $\mathbb{C}[[h]]$ module (complete in the h–adic topology), with generators h_j, $(j = 1, 2, \ldots, r \equiv n + m)$ and e_i, f_i $(i = 1, 2, \ldots, r-1)$ subject to the following relations (unless stated otherwise, the indices below run over all possible values):

The Cartan-Kac relations:

\[
[h_i, e_j] = (\delta_{ij} - \delta_{i,j+1})e_j;
\]
\[
[h_i, f_j] = (-\delta_{ij} + \delta_{i,j+1})f_j;
\]
\[
e_i f_j - f_j e_i = 0, \quad \text{if} \quad i \neq j;
\]
\[
e_i f_i - f_i e_i = \frac{q^{h_i - h_{i+1}} - q^{h_i + h_{i+1}}}{q - q^{-1}}, \quad \text{if} \quad i \neq n;
\]
\[
e_n f_n + f_n e_n = \frac{q^{h_n + h_{n+1}} - q^{h_n - h_{n+1}}}{q - q^{-1}};
\]
The Serre relations for the e_i (e-Serre relations):

$$e_i e_j = e_j e_i, \quad \text{if} \quad |i - j| \neq 1; \quad e_i^2 = 0;$$

$$e_i^2 e_{i+1} - (q + q^{-1})e_i e_{i+1} e_i + e_{i+1} e_i^2 = 0,$$

for $i \in \{1, \ldots, n - 1\} \cup \{n + 1, \ldots, n + m - 2\};$ (6)

$$e_{i+1}^2 e_i - (q + q^{-1})e_{i+1} e_i e_{i+1} + e_{i+2}^2 e_i = 0,$$

for $i \in \{1, \ldots, n - 2\} \cup \{n, \ldots, n + m - 2\};$ (7)

$$e_n e_{n-1} e_n e_{n+1} + e_{n-1} e_n e_{n+1} e_n + e_n e_{n+1} e_n e_{n-1}
+ e_{n+1} e_{n-1} e_n - (q + q^{-1})e_n e_{n-1} e_n e_n = 0;$$

for $i \in \{1, \ldots, n - 1\} \cup \{n + 1, \ldots, n + m - 2\};$ (8)

The relations obtained from (6)-(9) by replacing every e_i by f_i (f-Serre relations).

Let

$$\theta_i = \begin{cases} 0, & \text{if } i < n; \\ 1, & \text{if } i \geq n. \end{cases}$$

Then

$$\deg(h_i) = 0, \quad \deg(e_j) = \deg(f_j) = \theta_j - 1 + \theta_j,$$

i.e. the generators e_n and f_n are odd and all other generators are even.

We do not write the other Hopf algebra maps (Δ, ε, S) (see [20]), since we will not use them. They are certainly also a part of the definition.

The Dyson and the Holstein-Primakoff realizations are different embeddings of $U_q[gl(n/m)]$ into the algebra $W(n-1/m)$ of $n-1$ pairs of Bose CAOs and m pairs of Fermi CAOs. The precise definition of $W(n-1/m)$ is the following. Let $A_1^\pm, \ldots, A_{n+m-1}^\pm$ be \mathbb{Z}_2-graded indeterminates:

$$\deg(A_i^\pm) = \theta_i.$$ (12)

Then $W(n-1/m)$ is a topologically free $C[[h]]$ module and an associative unital superalgebra with generators $A_1^\pm, \ldots, A_{n+m-1}^\pm$ subject to the relations

$$[A_i^-, A_j^+] = \delta_{ij}, \quad [A_i^+, A_j^+] = [A_i^-, A_j^-] = 0.$$ (13)

Here and throughout

$$[x, y] = xy - (-1)^{\deg(x)\deg(y)}yx, \quad [x, y]_q = xy - (-1)^{\deg(x)\deg(y)}qyx$$ (14)

for any two homogeneous elements x and y. With respect to the supercommutator $[x, y] W(n-1/m)$ is also a Lie superalgebra.
From (13) one concludes that A^+_i, \ldots, A^+_{n-1} are Bose CAOs, which are even variables; $A^-_n, \ldots, A^-_{n+m-1}$ are Fermi CAOs, which are odd. The Bose operators commute with the Fermi operators.

In the physical applications it is often more convenient to consider h and q as complex numbers, $h, q \in \mathbb{C}$. Then all our considerations remain true provided q is not a root of 1. The replacement of $q \in \mathbb{C}[[h]]$ with a number corresponds to a factorization of $U_q[gl(n/m)]$ and $W(n-1/m)$ with respect to the ideals generated by the relation $q = \text{number}$. The factor-algebras $U_q[gl(n/m)]$ and $W(n-1/m)$ are complex associative algebras. However the completion in the h-adic topology leaves a relevant trace: after the factorization the elements of $U_q[gl(n/m)]$ and of $W(n-1/m)$ are not simply polynomials of their generators. In particular the functions of the CAOs, which appear in the D and in the HP realizations (see below) are well defined as elements from $W(n-1/m)$.

Now we are ready to state our main results. Let

$$\tilde{q} = q^{-1}, \quad [x] = \frac{q^x - \bar{q}^x}{q - \bar{q}}, \quad N_i = A^+_i A^-_i, \quad N = N_1 + \ldots + N_{n+m-1}. \quad (15)$$

Proposition 1 (Dyson realization). The linear map $\varphi : U_q[gl(n/m)] \to W(n-1/m)$, defined on the generators as

$$\varphi(h_1) = p - N, \quad \varphi(h_i) = N_{i-1}, \quad i = 2, \ldots, n + m \equiv r,$$

$$\varphi(e_1) = \frac{[N_1 + 1]}{N_1 + 1} (p - N) A^+_1, \quad \varphi(e_i) = \frac{[N_1 + 1]}{N_i + 1} A^+_i A^-_{i-1}, \quad i = 2, \ldots, n - 1,$$

$$\varphi(e_i) = A^+_i A^-_{i-1}, \quad i = n, \ldots, n + m - 1, \quad (16)$$

is a homomorphism of $U_q[gl(n/m)]$ into $W(n-1/m)$ for any $p \in \mathbb{C}$.

The proof is straightforward. One has to verify that Eqs. (1)-(9) with $\varphi(h_i), \varphi(e_i), \varphi(f_i)$ substituted for h_i, e_i and f_i, respectively, hold. In the intermediate computations the relations

$$[N_i, A^+_i] = \pm A^+_i, \quad [N, A^+_i A^-_j] = 0. \quad (17)$$

$$F(N_i) A^+_i = A^+_i F(N_i + 1), \quad F(N_i) A^-_i = A^-_i F(N_i - 1), \quad (18)$$

are repeatedly used. The verification of Eqs. (4), (5) and (7)-(9) is based also on the identity

$$[x + 1] - (q + \bar{q})[x] + [x - 1] = 0. \quad (19)$$

are repeatedly used. The verification of Eqs. (4), (5) and (7)-(9) is based also on the identity

$$q^{N_n} = 1 - N_n + q N_n, \quad \bar{q}^{N_n} = 1 - N_n + \bar{q} N_n. \quad (20)$$

Similar as for $gl(n-1/m)$ [1], the Dyson realization defines an infinite-dimensional representation of $U_q[gl(n/m)]$ (for $n > 0$) in the Fock space $\mathcal{F}(n-1/m)$ with orthonormed basis

$$|l\rangle \equiv |l_1, \ldots, l_{r-1}\rangle = \frac{(A^+_1)^{l_1} \ldots (A^+_r)^{l_{r-1}}}{\sqrt{l_1! \ldots l_{r-1}!}} |0\rangle, \quad (20)$$

4
where \(l_1, \ldots, l_{n-1} \in \mathbb{Z}_+ \equiv \{0, 1, 2, \ldots\}; \ l_n, \ldots, l_{r-1} \in \mathbb{Z}_2 \equiv \{0, 1\} \).

If \(p \) is a positive integer, \(p \in \mathbb{N} \), the representation is indecomposable: the subspace
\[
\mathcal{F}_1(p; n-1, m) = \text{lin.env.}\{ |l_1, \ldots, l_{r-1}| \mid l_1 + \ldots + l_{r-1} > p \}
\]
(21)
is an invariant subspace, whereas its orthogonal compliment
\[
\mathcal{F}_0(p; n-1, m) = \text{lin.env.}\{ |l_1, \ldots, l_{r-1}| \mid l_1 + \ldots + l_{r-1} \leq p \}
\]
(22)
is not an invariant subspace. If \(p \notin \mathbb{N} \), the representation is irreducible. In all cases however, and this is the disadvantage of the D realization, the representation of \(U_q[gl(n/m)] \) in \(\mathcal{F}(n-1, m) \) is not unitarizable with respect to the antilinear anti-involution \(\omega : U_q[gl(n/m)] \to U_q[gl(n/m)] \), defined on the generators as
\[
\omega(h_i) = h_i, \quad \omega(e_i) = f_i.
\]
(23)

In order to turn \(\mathcal{F}_0(p; n-1, m) \) into an unitarizable \(U_q[gl(n/m)] \) module we pass to introduce the HP realization. To this end set
\[
\langle N_i + c \rangle = \left(\frac{[N_i + c]}{N_i + c} \right)^{\frac{1}{2}}.
\]
(24)

Proposition 2 (Holstein-Primakoff realization). The linear map \(\pi : U_q[gl(n/m)] \to W(n-1/m) \), defined on the generators as:
\[
\pi(h_1) = p - N, \quad \pi(h_i) = N_{i-1}, \quad i = 2, \ldots, n + m \equiv r,
\]
\[
\pi(e_1) = \sqrt{[p - N]} \langle N_i + 1 \rangle A_i^-, \quad \pi(f_1) = \sqrt{[p - N + 1]} \langle N_i \rangle A_i^+,
\]
\[
\pi(e_i) = \langle N_{i-1} \rangle \langle N_i + 1 \rangle A_{i-1}^- A_i^-, \quad i = 2, \ldots, r - 1,
\]
\[
\pi(f_i) = \langle N_{i-1} + 1 \rangle \langle N_i \rangle A_i^+ A_{i-1}^-, \quad i = 2, \ldots, r - 1
\]
(25)
is a homomorphism of \(U_q[gl(n/m)] \) into \(W(n-1/m) \). If \(p \in \mathbb{N} \), then \(\mathcal{F}_0(p; n-1, m) \) and \(\mathcal{F}_1(p; n-1, m) \) are invariant subspaces; \(\mathcal{F}_0(p; n) \) carries a finite-dimensional irreducible representation; it is unitarizable with respect to the anti-involution (23) and the metric defined with the orthonormed basis (20), provided \(h \in \mathbb{R} \).

The representations, corresponding to different \(p \in \mathbb{N} \) are inequivalent.

We scip the proof. The circumstance that \(\mathcal{F}(n-1, m) \) is a direct sum of its invariant subspaces \(\mathcal{F}_0(p; n-1, m) \) and \(\mathcal{F}_1(p; n-1, m) \) is due to the the factor \(\sqrt{[p - N]} \) in \(\pi(e_1) \) and \(\sqrt{[p - N + 1]} \) in \(\pi(f_1) \). If \(h \in \mathbb{R} \), then \((,) \) denotes the scalar product
\[
(\pi(h_i)|l), (\pi(h_i)|l') = (|l|, \pi(h_i)|l') \quad (\pi(e_i)|l), (\pi(e_i)|l') = (|l|, \pi(f_i)|l')
\]
for all \(|l|, |l'| \in \mathcal{F}_0(p; n-1, m) \); \(i = 1, \ldots, r - 1 \). Hence the representation of \(U_q[gl(n/m)] \) in \(\mathcal{F}_0(p; n-1, m) \) is unitarizable.
Let us say a few words about the place of the Fock representations among all known representations. Any highest weight finite-dimensional irreps \(\psi \) of \(gl(n/m) \) or \(U_q[gl(n/m)] \) is labeled by its signature \(\{m\} \equiv \{m_1, m_2, \ldots, m_r\} \), where each \(m_i \) is determined from \(\psi(h_i)x_0 = m_ix_0 \). Here \(x_0 \) is the highest weight vector. So far explicit expressions for all (finite-dimensional) irreps are available only for \(gl(n/m) \) with \(m = 1 \) [21, 22]. Each such representation can be deformed also to an irreps of \(U_q[gl(n/1)] \) [23].

In case of \(gl(n/m) \) or \(U_q[gl(n/m)] \) with \(m \neq 1 \) explicit constructions were carried out for the so called essentially typical representations [24, 20]. A representation is essentially typical, if

\[
\{l_1, l_2, \ldots, l_n\} \cap \{l_{n+1}, l_{n+1} + 1, l_{n+1} + 2, \ldots, l_r\} = \emptyset,
\]

where \(l_i = m_i - i + n + 1 \) for \(1 \leq i \leq n \) and \(l_j = -m_j + j - n \) for \(n + 1 \leq j \leq r \).

In case of \(\mathcal{F}_0(p; n - 1, m) \) the highest weight vector is the vacuum. Then \(m_i = p\delta_{1i}, \; i = 1, \ldots, r \) and therefore (26) is not fulfilled. Hence the Fock space representations of \(U_q[gl(n/m)] \) in \(\mathcal{F}_0(p; n - 1, m), \; p \in \mathbb{N} \) describe finite-dimensional irreps in addition to those studied in [20]. As mentioned already, if \(q \) is taken to be a number, it should not be a root of 1.

In conclusion we note that the operators [25]

\[
\hat{A}_i^- = (N_i + 1)A_i^- , \quad \hat{A}_i^+ = (N_i)A_i^+ , \quad \hat{N}_i = N_i , \quad i = 1, \ldots, n + m - 1
\]

satisfy the relations

\[
[\hat{A}_i^-, \hat{A}_j^+] = \delta_{ij}q^{-\hat{N}_i} , \quad [\hat{N}_i, \hat{A}_j^\pm] = \pm \delta_{ij} \hat{A}_j^\pm , \quad [\hat{A}_i^\pm, \hat{A}_k^\pm] = [\hat{N}_i, \hat{N}_k] = 0. \quad i \neq k.
\]

Therefore \(\hat{A}_i^\pm, \; i = 1, \ldots, n - 1 \), give a representation of the algebra of the deformed Bose operators [26-28], whereas \(\hat{A}_i^\pm, \; i = n, \ldots, n + m - 1 \), yield a representation of the deformed Fermi operators [8]. In terms of the deformed operators Eqs. (25) read:

\[
\pi(h_1) = p - \hat{N}, \quad \pi(e_1) = \sqrt{|p - \hat{N}|} \hat{A}_1^- , \quad \pi(f_1) = \sqrt{|p - \hat{N} + 1|} \hat{A}_1^+, \quad (29a)
\]

\[
\pi(h_i) = \hat{N}_{i-1}, \quad \pi(e_i) = \hat{A}_{i-1}^- \hat{A}_i^- , \quad \pi(f_i) = \hat{A}_i^+ \hat{A}_{i-1}^- , \quad i \neq 1. \quad (29b)
\]

The equations (29) could be called a \(q \)-deformed analogue of the Holstein-Primakoff realization for \(gl(n/m) \) [1], whereas only Eqs. (29b) correspond to a \(q \)-deformed Jordan-Schwinger realization of \(U_q[gl(n - 1/m)] \) [.

The author is thankful to Prof. S. Okubo for the kind invitation to conduct the research under the Fulbright Program in the Department of Physics and Astronomy, University of Rochester. This work was supported by the Fulbright Program, Grant No 21857.
References

[1] Palev T D 1997 J. Phys. A: Math. Gen. 30 8273
[2] Palev T D 1998 [math.QA/9804017]
[3] Holstein T and Primakoff H 1949 Phys. Rev. 58 1098
[4] Dyson F J 1956 Phys. Rev. 102 1217
[5] Okubo S 1975 J. Math. Phys. 16 528
[6] Chaichian M, Ellinas D and Kulish P P 1990 Phys. Rev. Lett. 65 980
[7] da-Providencia J 1993 J. Phys. A: Math. Gen. 26 5845
[8] Floreanini R, Spiridonov V P and Vinet L 1990 Comm. Math. Phys. 137 (1991) 149
[9] Kittel C 1963 Quantum Theory of Solids (Willey, New York)
[10] Caspers W J 1989 Spin Systems (World Sci. Pub. Co., Inc., Teanek)
[11] Klein A and Marshalek E R 1991 Rev. Mod. Phys. 63 375
[12] Ring P and Schuck P The Nuclear Mani-Body Problem,
 (Springer-Verlag, New York, Heidelberg, Berlin)
[13] Quesne C 1991 Phys. Lett. A 153 303
[14] Chakrabarti R and Jagannathan R 1991 J. Phys. A: Math. Gen. 24 L711
[15] Katriel J and Solomon A I 1991 J. Phys. A: Math. Gen. 24 2093
[16] Yu Z R 1991 J. Phys. A: Math. Gen. 24 L1321
[17] Kundu A and Basu Mallich B 1991 Phys. Lett. A 156 175
[18] Pan F 1991 Chin. Phys. Lett. 8 56
[19] Drinfeld V 1986 Quantum Groupd (Proc. Int. Congress of Mathematics (Berkeley, 1986)),
 Ed.Gleason A M (Providence, RI: American Physical Society) p 798
[20] Palev T D, Stoilova N I and Van der Jeugt J 1994 Comm. Math. Phys. 166 367
[21] Palev T D 1987 Funct. Anal. Appl. 21 245 (English translation)
[22] Palev T D 1989 Journ. Math. Phys. 30 1433
[23] Palev T D and Tolstoy V N 1991 Comm. Math. Phys. 141 549
[24] Palev T D 1989 Funct. Anal. Appl. 23 141 (English translation).
[25] Polychronakos A P 1990 Mod. Phys. Lett. 5 2325
[26] Macfarlane A J 1989 J. Phys. A : Math. Gen. 22 4581
[27] Biedenharn L C 1989 J. Phys. A: Math. Gen. 22 L873
[28] Sun C P and Fu H C 1989 J. Phys. A: Math. Gen. 22 L983