1. Introduction

Knowledge is transmitted orally, in writing and through media. As such, reading is one of the most useful tools in the learning process, since it is our reading capability the one that let us access all this information (PISA, 2009).

Three interrelated components assess the complexity in the reading comprehension process: i) qualitative dimension, where complexity is assessed by the meaning or purpose of the text; ii) quantitative dimension, where indices related to quantitative aspects of the texts (word length, frequency, incidence of grammar structures, etc.) are used to assess complexity; and iii) reader-task, where variables related to the reader, like motivation and knowledge of the task, are considered (Fisher et al., 2012).

Qualitative and reader-task assessments require human readers, professional judgment and experience. However, quantitative assessment can be automated, thereby giving the opportunity to explore linguistic features and analyse how they reflect the complexity of the text.

For quantitative assessment of the complexity of texts written in Spanish, there exist superficial formulae, like Flesh-Fernandez (Fernández Huerta, 1959), that classify texts depending on the score given by the formula. The information produced by this approach is limited and does not detect subtle changes related to the coherence and cohesion of the texts, which are factors related to its structure and the mental image formed as a representation of the texts by the reader (Graesser et al., 2004).

In this paper, we focus on the quantitative dimension of text complexity and analyze how readability indices behave in text complexity assessment. We adapted 45 Coh-metrix indices (Section 3.) to Spanish integrating different natural language processing (NLP) resources (Section 3.1.). To validate the indices, we present an analysis of text complexity for texts written in Spanish (Section 4.). The corpus used in this analysis is composed of tales for kids (considered as “simple”) and adults (considered as “complex”) (Section 4.1.). We assessed how these indices relate to the complexity characteristics of our corpus and also implemented a binary classifier to evaluate the behavior of the indices as complexity features for texts written in Spanish (Section 4.2.).

2. Related Works: Coh-Metrix

Coh-metrix is a language analysis tool developed in the University of Memphis. It assess texts via cohesion\(^1\), coherence relations\(^2\) and readability measures. The main difference between readability formulae and Coh-Metrix is that the former is sensitive to a broad profile of language and cohesion characteristics (Graesser et al., 2004).

Coh-Metrix 3.0 provides 110 indices in its free version. These indices are classified in 11 groups: Descriptives, used to analyze patterns in the texts such as number of paragraphs, words or syllables per word; Text easability principal components scores, which assesses linguistic features in the text such as temporality, narrativity and connectiveness; Referential cohesion, which assesses the number of cohesion relations that a human reader could do based on the propositions and sentences of the text; Latent semantic analysis, which assesses the similarities of the sentences and paragraphs; Lexical diversity, which measures the type token ratios to deduce high cohesion; Connectives, which counts the incidence of connectives in the text; Situation model, with indices related to the reader’s mental representation of the text; Syntactic complexity, which syntactically analyzes the sentence and assesses the word density; Syntactic pattern density, which assesses the incidence of different types of patterns in the texts; Word Information, which shows the word type density in the text; and Read-
ability, which assesses the text readability with formulae such as Flesch Reading Ease and Flesch-Kincaid Grade Level (Graesser et al., 2005).

For Portuguese, Coh-Metrix-Port was developed to support complexity textual analysis and text simplification (Scarton and Aluísio, 2010). This tool is based on Coh-Metrix 2.0 and the authors adapted 40 Coh-Metrix indices related to cohesion, coherence and the difficulty of text comprehension, using the different linguistic levels.

3. Building Coh-Metrix-Esp

In this section we describe how Coh-Metrix-Esp was developed. First, we outline the resources and tools used in the implementation process, and then we overview the indices that the tool can compute.

3.1. Tools and resources

We used Freeling (Atserias et al., 2006) for most of our NLP needs. It is an open source library that provides text analysis services for many languages, including Spanish. We used Freeling’s tokenizer and splitter to process plain text into word and sentence objects, and its morphological analyzer to detect and tag numbers, dates, multiwords, etc. Its PoS-tagger was also used to detect the morphosyntactic category of each word. This tagger has two engines, but we used the one based on HMMs (Brants, 2000) that has an accuracy of 97% (Padró and Stanilovsky, 2012). This module helped us detect adjectives, adverbs, determinants, pronouns and conjunctions.

To detect syntactic structures (like nominal phrases and verbal phrases), we used Freeling’s chunker parser, which produces a shallow parse tree for each sentence. This is a chart parser based on a set of rules. We used Freeling’s default list of rules that detect noun phrases and provide information about temporality. Additionally, we elaborated a list of connectives and its categories, merging some online sources. Each connective was tagged as adversative, causal, temporal, logical and/or additive. This list was necessary because Freeling’s tagger doesn’t support this type of labeling.

Finally, we implemented a syllable splitter based on regular expressions and using rules established for Spanish by the Real Academia Española (Warck, 2005).

3.2. Adapting and implementing indices

In order to decide which metrics to implement for the tool, we analyzed the indices provided by Coh-Metrix 3.0 and Coh-Metrix-Port. First, we determined, for each metric in the English version, if there was an equivalent for Spanish or if it need to be adapted. Then, for each metric, we verified if it had been implemented in the Portuguese version and checked for the details in its implementation. After that, we determined the tools and external resources that would be required to implement each index in our tool. After taking all this into account, we adapted 45 Coh-Metrix indices for the Spanish version.

- **Descriptive:** number of paragraphs, number of sentences, number of words, number of sentences per paragraph, words per sentence, syllables per word and letters per word. A paragraph was defined as sentences separated by a hard break. Also, the point and exclamation symbols were considered as sentence separators allowing nesting. We also used the syllable splitter described previously.

- **Referential Cohesion:** noun overlap, argument overlap, stem overlap, content word overlap and anaphor overlap. These indices measure the connections that exist within the text. Each index evaluates a particular type of connexion between adjacent pairs or all pairs of sentences. In each connexion category, counting is done without repetition\(^3\). Comparison between each pair of sentences can be slow, but allowing repetitions speeds up this process.

- **Lexical Diversity:** type-token ratio of content words and between all words. These indices estimate vocabulary diversity in the text. In our implementation, content words can be nouns, verbs, adjectives or adverbs.

- **Connectives:** casual connectives incidence, logical connectives incidence, adversative connectives incidence, temporal connectives incidence, additive connectives incidence, all connectives incidence. “Incidence” is the number of classified units per one thousand words. Here we used the list of connectives and its categories described in the previous section.

- **Syntactic Complexity:** number of modifiers per noun phrase. We considered modifiers as the adjectives within a noun phrase.

- **Syntactic Pattern Density:** noun phrase density, verbal phrase density and negations. The rationale here is that the relative density of each of these could affect how difficult it is to process a text, particularly with respect to other features in a text. Negations were determined by the use of Spanish negation words, like No.

- **Word information:** noun incidence, verb incidence, adjective incidence, adverb incidence, pronoun incidence and all variations for pronouns (first person singular, plural, etc). Freeling’s tagset supports all of them.

- **Readability:** Flesch Grade Level. We used the adapted version for Spanish of this index called Flesh-Fernandez Huertas:

\[
Flesh = 206.84 - 100 \times \frac{mean\text{SyllablesPerWord}}{mean\text{WordPerSentence}}
\]

For a detailed explanation of the rationale behind each of these metrics, we refer the reader to the Coh-Metrix documentation\(^4\). Coh-Metrix-Esp was implemented using Java because of it was easier to integrate with Freeling. We also used the statistics library Common-Math (Andersen et al., 2011).

\(^{3}\)A variant could be explored, because the index can also be interpreted as a relation each time a word in an overlap occurs

\(^{4}\)http://cohmexrix.com/
4. Complexity Assessment of Texts in Spanish

In order to validate the correctness of the values calculated by the implemented tool, we gathered a corpus of "simple" and "complex" texts and analyzed the indices’ values on them. Then, we decided to test if the indices could also be used as features for classifiers that could automatically categorize a text according to its complexity level. This section describes both application tests.

4.1. Analyzing the complexity of texts in a corpus

We used a corpus composed of 100 texts in Spanish classified as either simple or complex (50 texts for each category). Our “simple” texts are mainly children’s fables while the “complex” ones are stories for adults. Table 1 shows the average values of some indices, for each category of texts in the corpus.

Table 1: Corpus analysis with Coh-Metrix-Esp indices

Group	Feature	Simple	Complex
Descriptives	# of paragraphs	224.00	821.00
	# of sentences	907.00	2432.00
	# of words	16552.00	33326.00
	# of syllables in words	98.51	101.21
Referential	Noun overlap	16.67	6.83
Cohesion	Argum. overlap	29.33	16.15
(adjacent	Stem overlap	19.55	8.01
sentences			
Lexical	Type-token ratio	28.03	26.07
Diversity	Type-token ratio	24.90	22.48
Connectives	All incidence	1.00	1.98
(incidence)	Causal	0.09	0.11
	Logical	0.59	1.17
	Adversative	0.18	0.27
	Temporal	0.14	0.34
	Additive	0.60	1.25
Syntactic	Mean number of modifiers	32.35	36.74
Complexity	per noun phrase		
Syntactic	Verb phrase	852.00	2187.00
Pattern Density	Negation	222.00	511.00
(incidence)			
Word	Noun	3.42	6.83
Information	Verb	3.59	6.99
(incidence)	Adjective	0.77	1.60
	Pronoun	0.54	1.16
	Adverb	1.04	2.04
Readability	Flesh-Fernandez	83.77	79.09

As expected, indices that do basic counting (descriptive and word information) have higher values for the complex texts, because these are generally longer than the simple ones. For referential cohesion, there is a higher overlap in content words for the simple texts. That may be because, in simpler texts, the writer tends to repeat the nouns between adjacent sentences to make it easier to understand. Also, connectives incidence measures in complex texts are higher for every category. Looking at the syntactic pattern density, we see that the verb phrase incidence is much higher in the case of complex sentences. This is also expected because, according to the Coh-Metrix documentation, “if a text has a higher verb phrase incidence, it is more likely to be informationally dense with complex syntax”. Finally, the Flesh-Fernandez index gives a standard measure for readability of the text, with a higher score indicating easier reading. As such, results show a higher value for the simple texts.

4.2. Building automatic complexity classifiers

We wanted to test if Coh-Metrix-Esp indices could be used to build a tool that could automatically assess the readability of a text and determine its complexity level according to certain predefined categories. For that reason, we implemented a classifier that uses the calculated indices as features for its predictions.

In our first experiment, we tested the metrics individually to analyze how well each one helps in the complexity classification task. The corpus used for training and testing was the one described in Section 4.1., which has two classes: simple and complex. We trained and tested several classifiers provided by WEKA(Witten and Frank, 2005) with 10-fold cross-validation. Table 2 presents the classifier with the best result for each individual metric, sorted by F-Measure. Results show that Descriptives and Connectives metrics are the ones with better performance values when used individually, with 8 metrics getting an F-Measure of at least 0.8. Also, almost half of all metrics obtained an F-Measure between 0.7 and 0.79, and most of them are in Referential Cohesion and Lexical Diversity groups. This can be explained because there are no significant differences in average between the two classes (simple and complex) as seen in Table 1. Moreover, the worst results were obtained using metrics involving first person pronouns and anaphors. Finally, the classification models that most frequently get the best results were NaiveBayes (5 metrics) and MultiLayer-Perceptron (4 metrics).

For our second experiment, we evaluated all metrics together as features for text complexity classification. Once again, we tested several Machine Learning algorithms provided by WEKA on the corpus cited in Subsection 4.1.. The OneR and ZeroR algorithms were used as baselines. Results of the top three algorithms are presented in Table 3.

As it can be seen, the SMO5 algorithm obtained the best results (0.9 F-measure). Even though the results of the SMO algorithm outperformed the baselines, we should highlight that the OneR algorithm6 got a good result as well (0.8 F-measure). This may be due to two reasons: this binary text classification task on the simple/complex corpus is too easy to be performed, or the implemented indices provide significant information about texts, making the classification task fairly easy.

5Sequential Minimal Optimization for support vector machines
6This method makes choices focusing on only one feature. In our case, we used the “All Connectives Incidence” index as the only one feature.
Table 2: Best classifiers using only one metric at time sorted by F-Measure

Classifier	Precision	Recall	F-Measure	Metric
IBk	0.86	0.85	0.85	DESPCBagging
OneR	0.83	0.83	0.83	CNCAllJRip
J48	0.85	0.83	0.83	DRVP
AdaBoostM1	0.84	0.82	0.82	DESSSC
HoofidingTree	0.83	0.81	0.81	DESWC
NaiveBayes	0.83	0.80	0.80	CNCAdj
MultilayerPerceptron	0.81	0.80	0.80	CRFS0a
NaiveBayes	0.88	0.80	0.80	CRFS10a
RandomSubSpace	0.81	0.79	0.79	CRFOWod
Logistic	0.80	0.79	0.79	WRDADJ
HoofidingTree	0.82	0.79	0.79	WREDVERB
OneR	0.78	0.78	0.78	CRF0A
AttributeSelectoClassifier	0.78	0.78	0.78	CRF0A
MultilayerPerceptron	0.77	0.77	0.77	CRFS01
LWL	0.79	0.76	0.76	CRF01
NaiveBayes	0.77	0.76	0.76	LDTTRa
MultilayerPerceptron	0.79	0.76	0.76	CRF0a
LogitBoost	0.79	0.76	0.76	DRNEQ
LogitBoost	0.74	0.74	0.74	CRFCWOa
KStar	0.74	0.74	0.74	DESSL
NaiveBayes	0.78	0.74	0.74	CNCTemporal
AttributeSelectoClassifier	0.72	0.72	0.72	DESW1nd
IBk	0.72	0.72	0.72	WREDVERB
BayesNet	0.81	0.74	0.74	WREDADV
NaiveBayes	0.76	0.72	0.72	WRPDRO
MultilayerPerceptron	0.70	0.70	0.70	DESWLogy
RandomForest	0.69	0.69	0.69	DESWLogy
AdaBoostM1	0.60	0.69	0.69	DESWLogy
RandomForest	0.68	0.68	0.68	WRPDPRP2
RandomForest	0.67	0.67	0.67	WRPDPRP1
MultiClassClassifierUpdateable	0.66	0.66	0.66	LDTTRc
SimpleLogistic	0.66	0.66	0.66	SYNNP
Bagging	0.65	0.65	0.65	CRFCWO1d
J48	0.63	0.63	0.63	CRFCWO1
AdaBoostM1	0.63	0.62	0.62	WRPDPP3
SimpleLogistic	0.63	0.62	0.62	WRPDPP3
Logistic	0.61	0.61	0.61	DESPL
LMT	0.62	0.61	0.61	CNADC
Logistic	0.58	0.56	0.56	CNADC
Logistic	0.52	0.52	0.52	DESWLogy
DecisionTable	0.50	0.50	0.50	CRFANP1
DecisionTable	0.50	0.50	0.50	CRFANP1
DecisionTable	0.50	0.50	0.50	DRNP
NaiveBayesMultinomial1Updateable	0.52	0.52	0.52	WRPDPRP1

On the other hand, the ZeroR algorithm got 0.33 F-measure (too low in comparison with the SMO algorithm). This result was obtained because text distribution in the training corpus was balanced (considering that the ZeroR algorithm uses the class with the higher number of instances as reference).

Table 3: Classifiers with the best results + Simple/Complex corpus

Algorithm	Precision	Recall	F-Measure
SMO	0.9	0.9	0.9
SimpleLogistic	0.88	0.88	0.88
LMT	0.88	0.88	0.88
OneR	0.82	0.8	0.8
ZeroR	0.25	0.5	0.33

For our last experiment, we collected 31 texts written for students of Spanish as a foreign language. Of those texts, 12 were considered as “basic”, 18 as “intermediate” and 3 as “advanced”. We performed a similar experiment as the previous one. The results of this experiment are presented in Table 4.

In general, the performance of the algorithms decreased when a new class was added and the best result was obtained by the FilteredClassifier algorithm (0.73 F-measure). However, the OneR algorithm got a high F-measure (near to FilteredClassifier algorithm). One disadvantage of this experiment was the unbalancing of classes (3 for advanced class), which significantly affected the classifiers’ performance.

To solve this unbalancing problem, we performed the experiment a second time, with just the texts of the first two categories. The results are presented in Table 5. In comparison with the previous experiment (using three classes), the performance of the classifiers was improved. The Logistic Regression algorithm obtained the best result (0.82 F-measure), outperforming the baselines (OneR and ZeroR algorithms) one more time.

Table 4: Classifiers with the best results + Basic/Intermediate/Advanced corpus

Algorithm	Precision	Recall	F-Measure
FilteredClassifier	0.72	0.77	0.73
AdaBoostM1	0.7	0.74	0.69
DecisionTable	0.7	0.74	0.69
OneR	0.69	0.71	0.68
ZeroR	0.27	0.52	0.35

5. Conclusions and Future Work

This paper provides basic work on complexity analysis of texts in Spanish. We adapted 45 indices of Coh-Metrix, a system that can help estimate the difficulty of written texts. These indices proved to be useful and significant when comparing texts considered as simple or complex. In addition, they can be used to implement automatic complexity classifiers using standard machine learning algorithms. As future work, more Coh-Metrix indices could be adapted. Of special interest are the text easability component scores (like narrativity, syntactic simplicity and word concreteness) which should provide a more complete picture of text ease (and difficulty). Furthermore, more studies should be performed on how to use the indices as features for automatic complexity classifiers. For example, we could carry out a feature selection process to determine which indices provide more information and are more useful for the classification task. Finally, it is important to mention that both training/test corpora and Coh-Metrix-Esp are publicly available as open source resources.

7. This method makes choices using only the class with the higher number of instances as reference.

8. We used the ”Noun Incidence” indice in this experiment.

9. https://github.com/andreqi/coh-metrix-esp
6. Bibliographical References

Andersen, M., Barker, B., Chou, A., Diggory, M., Donkin, R., OBrien, T., Maisonobe, L., Pietschmann, J., Pourbaix, D., Steitz, P., et al. (2011). Commons Math: The Apache Commons Mathematics Library. online. Technical report, accessed 28/9.

Atserias, J., Casas, B., Comelles, E., González, M., Padró, L., and Padró, M. (2006). FreeLing 1.3: Syntactic and semantic services in an open-source NLP library. In Proceedings of LREC, volume 6, pages 48–55.

Brants, T. (2000). TnT: a statistical part-of-speech tagger. In Proceedings of the sixth conference on Applied natural language processing, pages 224–231. Association for Computational Linguistics.

Fernández Huerta, J. (1959). Medidas sencillas de lectabilidad. Consigna, 214:29–32.

Fisher, D., Frey, N., and Lapp, D. (2012). Text Complexity: Raising Rigor in Reading. International Reading Association.

Graesser, A. C., McNamara, D. S., Louwerse, M. M., and Cai, Z. (2004). Coh-Metrix: Analysis of text on cohesion and language. Behavior Research Methods, Instruments, & Computers, 36(2):193–202.

Graesser, A. C., Petschonek, S., Lenderking, W., and Revicki, D. (2005). Automated systems that analyze text and discourse: QUAID, Coh-Metrix, and AutoTutor. Advancing health outcomes research methods and clinical applications, McLean, VA: Degnon Associates.

Lightman, E. J., McCarthy, P. M., Dufty, D. F., and McNamara, D. S. (2006). Using Coh-Metrix to assess the structural organization of narratives. In Society for Text and Discourse conference, Minneapolis, MN.

Padró, L. and Stanilovsky, E. (2012). Freeling 3.0: Towards wider multilinguality. In Proceedings of the Language Resources and Evaluation Conference (LREC 2012), Istanbul, Turkey, May. ELRA.

PISA. (2009). Student Performance in reading, mathematics and science, 2009. Technical report, Organization for Economic Co-operation and Development.

Scarton, C. E. and Aluíso, S. M. (2010). Análise da Intelligibilidade de textos via ferramentas de Processamento de Língua Natural: adaptando as métricas do Coh-Metrix para o Português. Linguamática, 2(1):45–61.

Warck, J. A. (2005). Segmentación de palabras en sílabas. Tesis de Licenciatura.

Witten, I. H. and Frank, E. (2005). Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, San Francisco, 2nd edition.