SPECTRAL PERTURBATION THEORY AND THE TWO WEIGHTS PROBLEM

ALEXANDER PUSHNITSKI AND ALEXANDER VOLBERG

Abstract. The famous two weights problem consists in characterising all possible pairs of weights such that the Hardy projection is bounded between the corresponding weighted L^2 spaces. Koosis’ theorem of 1980 gives a way to construct a certain class of pairs of weights. We show that Koosis’ theorem is closely related to (in fact, is a direct consequence of) a spectral perturbation model suggested by de Branges in 1962. Further, we show that de Branges’ model provides an operator-valued version of Koosis’ theorem.

1. Introduction and main result

1.1. Introduction. Let P_{\pm} be the Hardy projections in $L^2(T)$ (T is the unit circle parameterised by $(0, 2\pi)$):

$$ (P_{\pm}f)(e^{i\theta}) = \pm \lim_{r \to 1 \mp 0} \int_0^{2\pi} \frac{f(e^{it})}{1 - re^{i(\theta - t)}} \frac{dt}{2\pi}. \quad (1.1) $$

In its simplest form, the two weights problem consists in the characterisation of all pairs of weights $v_j : T \to [0, \infty)$, $j = 0, 1$, such that

$$ P_+ : L^2(T, v_0(e^{it})dt) \mapsto L^2(T, v_1(e^{it})dt) \quad (1.2) $$

is a bounded operator. (Of course, one could equally speak of P_-. If $v_1 = v_0$, then the characterisation of such weights is given by the celebrated Muckenhoupt condition [8]:

$$ \sup_{\Delta} \left(\frac{1}{|\Delta|} \int_{\Delta} v_0(e^{it})dt \cdot \frac{1}{|\Delta|} \int_{\Delta} v_0(e^{it})^{-1}dt \right) < \infty, $$

where the supremum is taken over the set of all intervals $\Delta \subset (0, 2\pi)$ and $|\Delta|$ is the length of the interval Δ. If there is no a priori relation between v_0 and v_1, the two weights problem is open, despite many years of efforts. Some necessary and some sufficient conditions are known but no effective complete description of all pairs of weights v_0, v_1 was available available till recently. The recent news at the time of writing is that the conjunction of three preprints [9], [7], [6] proved a long-standing conjecture of Nazarov–Treil–Volberg (see [14]), stating that for the Hilbert transform the so-called two-weight $T1$ theorem is valid. However, the conditions of $T1$ theorem are not easily translated (if at all) into conditions on weights.

2010 Mathematics Subject Classification. 47G10, 47A40.

Key words and phrases. Two weights problem, scattering theory, operator valued weights.
Under these circumstances, any partial information on the problem is valuable. One such piece of information is Koosis’ theorem [3]:

Theorem (Koosis). For every weight \(v_0 \geq 0 \) such that \(0 < v_0(e^{it}) < 1 \) for a.e. \(t \in (0, 2\pi) \) and \(v_0^{-1} \in L^1(\mathbb{T}) \), one can find another weight \(v_1 \), \(0 \leq v_1 \leq v_0 \), such that \(\log v_1 \in L^1(\mathbb{T}) \) and such that the Hardy projection \(P_+ \) is bounded between the weighted spaces \(L^2(v_0) \). (Koosis, version 2)

Koosis’ proof (see also [10, Appendix]) is an ingenious calculation, but one can argue that it has a rather ad hoc flavour. The purpose of this note is to point out that Koosis’ theorem follows naturally from the formalism of spectral perturbation theory (more precisely, scattering theory) in the form suggested by de Branges in [1]. In fact, the statement we get in this way is more general than the original Koosis’ theorem; we obtain an operator-valued analogue. That is, our \(L^2 \) spaces consist of functions on \(\mathbb{T} \) with values in a Hilbert space \(\mathcal{K} \) and our weights are functions with values in the Schatten classes of compact operators in \(\mathcal{K} \).

We hope that this note will attract the attention of experts to the connection between the two weights problem and scattering theory. We believe that this connection is yet to be thoroughly explored.

1.2. Preliminaries. First we would like to rewrite the two weights problem in an equivalent form. Let \(f \in L^2(\mathbb{T}, v_0(e^{it})dt) \) and suppose that the weight \(v_0 \) vanishes on some open set. Then the function \(f \) is not defined on this open set, and therefore it is not clear how to define the projections \(P_{\pm}f \) by (1.1). This suggests that the integration in the definition (1.1) of the projections \(P_{\pm} \) should be performed with respect to the weighted measure \(v_0(e^{it})dt \). Thus, for a weight \(w_0 : \mathbb{T} \to [0, \infty) \), we define the weighted Hardy projections \(P_{\pm}^{(w_0)} \) by

\[
(P_{\pm}^{(w_0)}f)(e^{i\theta}) = \pm \lim_{r \to 1^\pm} \int_0^{2\pi} \frac{w_0(e^{it})f(e^{it})}{1 - r e^{i(\theta - t)}} \frac{dt}{2\pi};
\]

the existence of the limits will be discussed separately.

If \(v_0(e^{it}) > 0 \) for a.e. \(t \), then a simple argument with replacing \(f \) by \(v_0f \) shows that \(P_+ \) is a bounded operator between the spaces (1.2) if and only if

\[
P_{+}^{(w_0)} : L^2(\mathbb{T}, w_0(e^{it})dt) \to L^2(\mathbb{R}, w_1(e^{it})dt)
\]

is bounded, where \(w_1 = v_1 \) and \(w_0 = v_0^{-1} \). Thus, we obtain

Theorem (Koosis, version 2). For every weight \(w_0 \geq 0 \) such that \(w_0(e^{it}) > 0 \) for a.e. \(t \in (0, 2\pi) \) and \(w_0 \in L^1(\mathbb{T}) \), one can find another weight \(w_1 \geq 0 \) with \(w_1w_0 \leq 1 \) and \(\log w_1 \in L^1(\mathbb{T}) \) such that the weighted Hardy projection \(P_{+}^{(w_0)} \) is a bounded operator between the spaces (1.4).

It is this second version of Koosis’ theorem that we will discuss in this paper.

1.3. Operator valued functions. Let \(\mathcal{K} \) be a Hilbert space; the case \(\dim \mathcal{K} < \infty \) is not excluded, neither it is trivial. We denote by \(\langle \cdot, \cdot \rangle \) the inner product in \(\mathcal{K} \) and by \(\| \cdot \| \) the norm in \(\mathcal{K} \). Notation \(\mathcal{B}(\mathcal{K}) \) stands for the set of all bounded linear operators on \(\mathcal{K} \) and \(\mathcal{S}_p, 1 \leq p < \infty \), denotes the Schatten class of compact operators in \(\mathcal{K} \);
in particular, S_1 is the trace class. We denote by $\|\cdot\|_p$ the norm in S_p and by $\|\cdot\|_B$ the norm in $B(K)$. As usual, for $w \in B(K)$, notation $w \geq 0$ means that $(w\chi, \chi) \geq 0$ for all elements $\chi \in K$, and in the same way $w \leq C$, where C is a constant, means $(w\chi, \chi) \leq C\|\chi\|^2$ for all $\chi \in K$. For any $w \in B(K)$ such that $w \geq 0$, the square root $w^{1/2}$ is defined via the functional calculus for self-adjoint operators.

Below we work with “nice” K-valued functions of the form

$$f(\mu) = \sum_i (\mu - z_i)^{-1} \chi_i, \quad \mu \in \mathbb{T}, \quad \chi_i \in K, \quad |z_i| \neq 1,$$

where the sum has finitely many terms. We will denote by L the set of all such “nice” functions f.

Let $w : \mathbb{T} \to B(K)$ be a Borel measurable function. Suppose that w is non-negative i.e. $w(e^{it}) \geq 0$ for a.e. $t \in (0, 2\pi)$, and that w satisfies

$$\int_0^{2\pi} (w(e^{it})\chi, \chi) \frac{dt}{2\pi} \leq C\|\chi\|^2$$

for some constant C and all $\chi \in K$. Then for any $f \in L$ we can define the quasi-norm

$$\|f\|_{L^2(w)} = \int_0^{2\pi} (w(e^{it})f(e^{it}), f(e^{it})) \frac{dt}{2\pi}.$$

After taking the quotient over the subspace of functions f with $\|f\|_{L^2(w)} = 0$, we obtain a norm on the quotient space; the space obtained by taking the closure is, by definition, the weighted space $L^2(w)$. Thus, by construction, L is dense in $L^2(w)$.

1.4. Main result and discussion. Let $1 \leq p < \infty$, and let $w_0 : \mathbb{T} \to S_p$ be a Borel measurable non-negative (i.e. $w_0 \geq 0$ a.e.) weight function which satisfies (1.8). Then for all $f \in L$ (i.e. for all f of the form (1.5)) and for a.e. $\theta \in (0, 2\pi)$, the limits in (1.3) exist in the norm of K. Further, there exists a non-trivial Borel measurable non-negative weight function $w_1 : \mathbb{T} \to B(K)$, which satisfies

$$\int_0^{2\pi} (w_1(e^{it})\chi, \chi) \frac{dt}{2\pi} \leq \|\chi\|^2, \quad \forall \chi \in K,$$

For such weight w_0 and for $f \in L$, we define the weighted Hardy projections $P_{\pm}^{(w_0)}$, as in the scalar case, by (1.3). It is clear that for every $r \neq 1$, the integrals in (1.3) converge absolutely in the norm of K.

Theorem 1.1. Let $1 \leq p < \infty$, and let $w_0 : \mathbb{T} \to S_p$ be a Borel measurable non-negative (i.e. $w_0 \geq 0$ a.e.) weight function which satisfies (1.8). Then for all $f \in L$ (i.e. for all f of the form (1.5)) and for a.e. $\theta \in (0, 2\pi)$, the limits in (1.3) exist in the norm of K. Further, there exists a non-trivial Borel measurable non-negative weight function $w_1 : \mathbb{T} \to B(K)$, which satisfies
and there exist contractions (i.e. operators of norm ≤ 1) X, Y_+, Y_-, acting from $L^2(w_0)$ to $L^2(w_1)$, such that the weighted Hardy projections $P_{\pm}^{(w_0)}$ can be represented as

$$P_{\pm}^{(w_0)} = \pm \frac{i}{2} (X - Y_\pm).$$

(1.9)

In particular,

$$P_{\pm}^{(w_0)} : L^2(w_0) \to L^2(w_1)$$

are contractions.

Let us discuss this result.

1. It is easy to see that the sum $P_+^{(w_0)} + P_-^{(w_0)}$ is simply the operator of multiplication by w_0:

$$(P_+^{(w_0)} f)(e^{i\theta}) + (P_-^{(w_0)} f)(e^{i\theta}) = w_0(e^{i\theta}) f(e^{i\theta}).$$

By (1.9), it follows that this operator of multiplication has norm ≤ 1. From this it follows that

$$w_0(e^{i\theta})^{1/2} w_1(e^{i\theta}) w_0(e^{i\theta})^{1/2} \leq 1$$

(1.10)

for a.e. $\theta \in (0, 2\pi)$; see the end of Section 4 for the details of this argument.

2. In fact, more than (1.10) is true; we note without proof that the boundedness of $P_{\pm}^{(w_0)}$ implies that

$$(P_r * w_0)^{1/2}(P_r * w_1)(P_r * w_0)^{1/2} \leq C$$

for all $r < 1$ with some constant C; here $P_r * w_{0,1}$ is the convolution with the Poisson kernel

$$P_r(\theta) = \frac{1 - r^2}{1 + r^2 - 2r \cos \theta}.$$

(1.11)

3. Of course, the boundedness of $P_{\pm}^{(w_0)}$ implies that the weighted Hilbert transform

$$(H^{(w_0)} f)(e^{i\theta}) = \lim_{r \to 1} \int_0^{2\pi} w_0(e^{it}) \frac{2 \sin(\theta - t)}{1 + r^2 - 2r \cos(\theta - t)} f(e^{it}) \frac{dt}{2\pi}$$

is a bounded map from $L^2(w_0)$ to $L^2(w_1)$.

4. If $p = 1$, the weight w_1 can be chosen to satisfy

$$\int_0^{2\pi} \|w_1(e^{it})\|_1 \frac{dt}{2\pi} < \infty;$$

see the end of Section 4.

5. The weight function w_1 constructed in the Koosis theorem is non-degenerate in the sense that $\log w_1 \in L^1(\mathbb{T})$. The weight function w_1 that we construct in Theorem 1.1 is also non-degenerate in the following sense. One has

$$w_0(\mu) = D_0^+(\mu)^* w_1(\mu) D_0^+(\mu), \quad \text{a.e. } \mu \in \mathbb{T},$$

where D_0^+ is an operator valued function to be constructed below (see (1.28)). The function D_0^+ satisfies $\|D_0^+(\cdot)\|_{B} \in L^{1,\infty}(\mathbb{T})$ and $D_0^+(\mu)$ has a bounded inverse for a.e. $\mu \in \mathbb{T}$. In particular,

$$\operatorname{rank} w_0(\mu) = \operatorname{rank} w_1(\mu), \quad \text{a.e. } \mu \in \mathbb{T},$$

(1.13)
and
\[\|w_1(\mu)\|_B \geq \frac{\|w_0(\mu)\|_B}{\|D_0^+(\mu)\|_B^2}, \quad \text{a.e. } \mu \in \mathbb{T}. \tag{1.14} \]

By (1.14), we have
\[\log \|w_1(\mu)\|_B \geq \log \|w_0(\mu)\|_B - 2 \log^+ \|D_0^+(\mu)\|_B, \]
and \(\|D_0^+(\cdot)\|_B \in L^{1,\infty}(\mathbb{T}) \) implies \(\log^+ \|D_0^+(\cdot)\|_B \in L^p(\mathbb{T}) \) for all \(p < \infty \).

1.5. **The outline of the proof.** We consider the absolutely continuous (a.c.) operator valued measure on \(\mathbb{T} \) given by
\[d\nu_0(e^{i\theta}) = w_0(e^{i\theta}) \frac{d\theta}{2\pi}. \tag{1.15} \]

For this measure \(\nu_0 \), we exhibit (see Lemma 2.1) a Hilbert space \(\mathcal{H} \), a unitary operator \(U_0 \) in \(\mathcal{H} \) and a contraction \(G : \mathcal{H} \to \mathcal{K} \) such that
\[\nu_0(\delta) = GE_{U_0}(\delta)G^*, \quad \delta \subset \mathbb{T}, \tag{1.16} \]
where \(E_{U_0} \) is the projection-valued spectral measure of \(U_0 \), and \(\delta \subset \mathbb{T} \) is any Borel set. Next, we construct (see (2.2)) a unitary operator \(U_1 \) in \(\mathcal{H} \) such that the identities
\[(\alpha + \psi_0(z))(\alpha - \psi_1(z)) = I, \tag{1.17} \]
\[(\alpha - \psi_1(z))(\alpha + \psi_0(z)) = I, \tag{1.18} \]
hold true for all \(|z| \neq 1 \); here \(\alpha \) is the auxiliary bounded self-adjoint operator given by
\[\alpha = \sqrt{I - (GG^*)^2}, \tag{1.19} \]
and
\[\psi_j(z) = iG \frac{U_j + z}{U_j - z} G^*. \tag{1.20} \]

Further, similarly to (1.16), we set
\[\nu_1(\delta) = GE_{U_1}(\delta)G^*, \quad \delta \subset \mathbb{T}. \tag{1.21} \]

We will be able to prove (in Lemma 3.2) that the a.c. part of the measure \(\nu_1 \) can be represented as
\[d\nu_1^{(ac)}(e^{i\theta}) = w_1(e^{i\theta}) \frac{d\theta}{2\pi} \]
with some operator valued non-negative weight function \(w_1 \). Note that this is not automatic: the Radon-Nikodym theorem for operator valued measures in general fails; to see this, consider the spectral measure of a self-adjoint or unitary operator with a non-trivial a.c. component.

Key to our construction is the connection between the weighted Hardy projections \(P_{\pm}^{(w_0)} \) and certain operators appearing in scattering theory for the pair \(U_0, U_1 \). We use the formalism suggested by de Branges [1] with some simplifications due to Kuroda [4]. This formalism makes use of the weighted Hilbert spaces \(L^2(\nu_j), j = 0, 1 \) of
\(K \)-valued functions on \(\mathbb{T} \). They are defined, similarly to (1.7), starting from the quasi-norm
\[
\| f \|_{L^2(v_\alpha)}^2 = \int_0^{2\pi} d(\nu)e^{it}f(e^{it}), f(e^{it})
\]
on the set \(L \), by taking a quotient and then a closure. We note that \(\nu_0 = \nu_0^{(ac)} \) and
\[
L^2(\nu_1) \subset L^2(\nu_1^{(ac)}) \quad \text{and} \quad \| f \|_{L^2(\nu_1^{(ac)})} \leq \| f \|_{L^2(\nu_1)}.
\]
(1.22)

Following de Branges, we define some auxiliary bounded operators \(X, Y_+ \) and \(Y_- \) acting from \(L^2(\nu_0) \) to \(L^2(\nu_1^{(ac)}) \). First we denote (cf. (1.17), (1.18))
\[
D_0(z) = \alpha + \psi_0(z), \quad D_1(z) = -\alpha + \psi_1(z).
\]
(1.23)

By (1.17), (1.18) we have
\[
D_0(z)D_1(z) = D_1(z)D_0(z) = -I, \quad |z| \neq 1.
\]
(1.24)

Let
\[
X : L^2(\nu_0) \to L^2(\nu_1)
\]
be the linear operator, defined on the dense set \(L \) by
\[
(Xf)(\mu) = \sum (\mu - z_i)^{-1}D_0(z_i)\chi_i, \quad f(\mu) = \sum (\mu - z_i)^{-1}\chi_i.
\]
(1.25)

It turns out (see Lemma 2.4) that \(X \) is a unitary operator between the spaces (1.25). Moreover, this is true for any operators \(U_0, U_1, G, \alpha \), related by (1.17)–(1.20); assumption (1.8) is not relevant here. This fact is part of de Branges’ construction [1]. Bearing in mind the embedding (1.22), we see that \(X \) is a contraction as a map from \(L^2(\nu_0) \) to \(L^2(\nu_1^{(ac)}) \).

Further, by the spectral theorem for the unitary operator \(U_0 \), we have
\[
\psi_0(z) = i \int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} d\nu_0(e^{it}) = i \int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} w_0(e^{it}) \frac{dt}{2\pi}.
\]
(1.27)

Thus, \(\psi_0 \) is the Cauchy transform of \(w_0 \). Using assumption (1.8) on the weight \(w_0 \) and the UMD property (see e.g. [12]) of the space \(S_p, 1 < p < \infty \), we check (in Lemma 3.1) that the limits
\[
D_0^\pm(e^{i\theta}) = \lim_{r \to 1^\pm} D_0(re^{i\theta}), \quad D_1^\pm(e^{i\theta}) = \lim_{r \to 1^\pm} D_1(re^{i\theta})
\]
exist for a.e. \(\theta \in (0,2\pi) \) in the operator norm. For \(p = 1 \), this was proven in [1]; for \(p > 1 \), this fact is borrowed from our related work [1].

Again following de Branges, we consider the operators
\[
Y_\pm : f(\mu) \mapsto D_0^\pm(\mu)f(\mu), \quad \mu \in \mathbb{T},
\]
(1.29)
defined initially on the set \(L \), and show that \(Y_\pm \) extend as isometric operators
\[
Y_\pm : L^2(\nu_0) \to L^2(\nu_1^{(ac)}).
\]
Finally, a simple calculation (see Section 1) shows that \(P_\pm(w_0) \), \(X, Y_\pm \) are related by (1.9). We note that \(Y_\pm \) are unitarily equivalent to the wave operators \(W_\pm(U_1, U_0) \) (see [5]), although we will not need this fact.
2. Identities (1.17), (1.18) and the map X

2.1. The construction of G, U_0, U_1, α. Let \mathcal{H} be the Hilbert space of all Borel measurable \mathcal{K}-valued functions on \mathbb{T} with the norm

$$
\|f\|_{\mathcal{H}}^2 = \int_0^{2\pi} \|f(e^{it})\|^2 \frac{dt}{2\pi}.
$$

Let U_0 be the operator of multiplication by e^{it} in \mathcal{H}. Let $G : \mathcal{H} \to \mathcal{K}$ be defined by

$$
Gf = \int_0^{2\pi} w_0(e^{it})^{1/2} f(e^{it}) \frac{dt}{2\pi}.
$$

Then our assumption (1.8) implies that G is a contraction:

$$
\|Gf\| \leq \left(\int_0^{2\pi} \|w_0(e^{it})\|^{1/2} \frac{dt}{2\pi} \right)^{1/2} \left(\int_0^{2\pi} \|f(e^{it})\|^2 \frac{dt}{2\pi} \right)^{1/2}
= \left(\int_0^{2\pi} \|w_0(e^{it})\| \frac{dt}{2\pi} \right)^{1/2} \|f\|_{\mathcal{H}} \leq \|f\|_{\mathcal{H}}.
$$

It is clear that setting $\nu_0(\delta) = G E_{U_0}(\delta) G^*$ (see (1.16)) yields (1.15). Next, let

$$
\Theta = 2 \sin^{-1}(G^* G);
$$

thus, Θ is a bounded self-adjoint operator in \mathcal{H} with $\sigma(\Theta) \subset [0, \pi)$ and

$$
G^* G = \sin(\frac{1}{2} \Theta). \tag{2.1}
$$

Set

$$
U_1 = \exp\left(\frac{i}{2} \Theta\right) U_0 \exp\left(\frac{i}{2} \Theta\right) \tag{2.2}
$$

and let α be defined by (1.19).

Lemma 2.1. Let U_0, U_1, G, α be as described above. Then identities (1.17), (1.18) hold true. The measure ν_1, defined by (1.21), satisfies $\nu_1(\mathbb{T}) = \nu_0(\mathbb{T})$ and

$$
\|\nu_1(\mathbb{T})\| \leq 1. \tag{2.3}
$$

Proof. Denote

$$
\beta = \sqrt{I - (G^* G)^2};
$$

clearly, we have

$$
\alpha G = G \beta. \tag{2.4}
$$

Comparing (2.1) and the definition of β, we find that

$$
\beta = \cos(\frac{1}{2} \Theta).
$$

Using this and a little algebra, we obtain

$$
U_1 G^* G + G^* G U_0 + i(U_1 \beta - \beta U_0) = 0.
$$

From here by straightforward manipulation we obtain the identity

$$(U_1 - z) G^* G (U_0 - z) + i((U_1 + z) \beta (U_0 - z) - (U_1 - z) \beta (U_0 + z)) - (U_1 + z) G^* G (U_0 + z) = 0$$
for any \(z \in \mathbb{C} \). Taking \(|z| \neq 1\) and multiplying by \((U_1 - z)^{-1}\) on the left and by \((U_0 - z)^{-1}\) on the right, we get
\[
G^*G + i \left(\frac{U_1 + z}{U_1 - z} - \beta \frac{U_0 + z}{U_0 - z} \right) - \frac{U_1 + z}{U_1 - z} G^*G \frac{U_0 + z}{U_0 - z} = 0.
\]

Multiplying this by \(G \) on the left and by \(G^* \) on the right and using that (by (1.19))
\[
(GG^*)^2 = I - \alpha^2,
\]
we obtain
\[
-\alpha^2 + iG \frac{U_1 + z}{U_1 - z} \beta G^* - iG \beta \frac{U_0 + z}{U_0 - z} G^* - G \frac{U_1 + z}{U_1 - z} G^* \frac{U_0 + z}{U_0 - z} G^* = -I.
\]

Finally, using (2.4), this transforms into (1.18). The relation (1.17) is obtained by taking adjoints in (1.18) and changing \(z \) to \(\bar{z}^{-1} \). By (1.16), (1.21), we have \(\nu_0(\mathbb{T}) = \nu_1(\mathbb{T}) = GG^* \). The estimate (2.3) follows from the inequality \(\|G\| \leq 1 \).

Remark 2.2. In fact, the construction of [1, 5] allows for a whole family of possible choices for operators \(G, U_0, U_1 \), suitable for our argument. For simplicity, we have chosen only one representative of this family.

Remark 2.3. In order to clarify the ideas behind Lemma 2.1, let us sketch the analogous argument for the case of the weights \(w_0, w_1 \) on the real line. In this case the construction naturally leads to self-adjoint (rather than unitary) operators and the algebra is somewhat more transparent. Let a non-negative weight \(w_0 : \mathbb{R} \to \mathcal{B}(\mathcal{K}) \) satisfy
\[
\int_{\mathbb{R}} \|w_0(t)\| dt < \infty.
\]

Let \(\mathcal{H}_\mathbb{R} \) be the \(L^2 \) space of \(\mathcal{K} \)-valued functions on \(\mathbb{R} \) with the norm
\[
\|f\|_{\mathcal{H}_\mathbb{R}}^2 = \int_{\mathbb{R}} \|f(t)\|^2 dt.
\]

Let \(A_0 \) be the operator of multiplication by the independent variable \(t \) in \(\mathcal{H}_\mathbb{R} \) and let \(G_\mathbb{R} : \mathcal{H}_\mathbb{R} \to \mathcal{K} \) be given by
\[
G_\mathbb{R}f = \int_{\mathbb{R}} w_0(t)^{1/2} f(t) dt.
\]

We set \(A_1 = A_0 + G_\mathbb{R}^* G_\mathbb{R} \). Then from the standard resolvent identity we get
\[
(I + G_\mathbb{R}(A_0 - z)^{-1} G_\mathbb{R}^*)(I - G_\mathbb{R}(A_1 - z)^{-1} G_\mathbb{R}^*)
= (I - G_\mathbb{R}(A_1 - z)^{-1} G_\mathbb{R}^*)(I + G_\mathbb{R}(A_0 - z)^{-1} G_\mathbb{R}^*) = I;
\]
this is the analogue of (1.17), (1.18). One sets
\[
\nu_j^\mathbb{R}(\delta) = G_\mathbb{R} E_{A_j}(\delta) G_\mathbb{R}^*, \quad j = 0, 1, \quad \delta \subset \mathbb{R},
\]
and the rest of the construction is very similar to the case of measures on \(\mathbb{T} \).
2.2. The map X. Let the map X be defined by (1.25), (1.26).

Lemma 2.4. The map X is unitary between the spaces $L^2(\nu_0)$ and $L^2(\nu_1)$.

Proof. For $j = 0, 1$, the functions ψ_j (see (1.20)) can be expressed as

$$\psi_j(z) = i \int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} d\nu_j(e^{it}).$$

(2.5)

We note two identities for ψ_j:

$$\frac{\psi_j(z_1) - \psi_j(z_2)}{z_1 - z_2^{-1}} = 2i \int_0^{2\pi} \frac{e^{it}}{(e^{it} - z_1)(e^{it} - z_2^{-1})} d\nu_j(e^{it}),$$

(2.6)

$$\psi_j(z)^* = \psi_j(z^{-1}).$$

(2.7)

Next, using (1.23), (1.24), we have for $|z_{1,2}| \neq 1$:

$$\psi_0(z_1) - \psi_0(z_2) = D_0(z_1) - D_0(z_2)^* = -D_0(z_2)^* D_1(z_2)^* D_0(z_1) + D_0(z_2)^* D_1(z_1) D_0(z_1)$$

$$= D_0(z_2)^* (-\psi_1(z_2)^* + \psi_1(z_2)) D_0(z_1).$$

Combining this with (2.6), (2.7), we get

$$\int_0^{2\pi} \frac{d\nu_0(e^{it})}{(e^{-it} - z_2)(e^{it} - z_1)} = D_0(z_2)^* \int_0^{2\pi} \frac{d\nu_1(e^{it})}{(e^{-it} - z_2)(e^{it} - z_1)} D_0(z_1).$$

(2.8)

Now let

$$f_1(\mu) = (\mu - z_1)^{-1} \chi_1, \quad f_2(\mu) = (\mu - z_2)^{-1} \chi_2, \quad \mu \in \mathbb{T},$$

(2.9)

where $|z_{1,2}| \neq 1$ and $\chi_{1,2} \in \mathcal{K}$. Then from (2.8) we get

$$(f_1, f_2)_{L^2(\nu_0)} = (X f_1, X f_2)_{L^2(\nu_1)}.$$

This extends to all $f_1, f_2 \in \mathcal{L}$. It follows that X is an isometry. By considering an operator X_1 defined in a similar way with D_1 instead of D_0, and using (1.24), we obtain $X X_1 = -I$, hence X is a surjection. Thus, X is a unitary operator. \hfill \Box

3. The boundary values of D_0 and D_1

3.1. Existence of boundary values of D_0 and D_1.

Lemma 3.1. The limits $D_0^\pm(e^{i\theta})$, $D_1^\pm(e^{i\theta})$ (see (1.28)) exist for a.e. $\theta \in (0, 2\pi)$ in the operator norm.

For $p = 1$, this was proven in [1].

Proof. 1. First we consider the limits D_0^\pm. We have

$$D_0(z) = \alpha + \psi_0(z),$$

where $\psi_0(z)$ is given by (2.5). Thus, it suffices to consider the limits of ψ_0. By (2.7), it suffices to consider the limits as z approaches the unit circle from inside the unit.
disk. Without loss of generality assume $p > 1$ in (1.8). In fact, we will prove the existence of the non-tangential limits

$$\lim_{z \to e^{i\theta}} \psi_0(z)$$

in the norm of S_p. Here S_θ is the appropriate sector of opening $\pi/2$ with the vertex at $e^{i\theta}$ (see e.g. [4, Section VIII:C3]). The argument below is presented in more detail in our related work [11].

The function ψ_0 is the Cauchy transform of the weight function w_0 (see (1.27)). Consider the non-tangential maximal function

$$(Tw_0)(e^{i\theta}) = \sup \left\{ \| \psi_0(z) \|_p : z \in S_\theta \right\}.$$

The key fact is that for $1 < p < \infty$, the Banach space S_p possesses the UMD property, see [12]; that is, the Hilbert transform and many other integral transforms are bounded as operators in L^2 spaces of S_p-valued functions. Using this, one can prove that the (non-linear) operator T is of the weak 1-1 type, i.e. Tw_0 belongs to the weak $L^1,\infty(T)$ class.

Next, using this fact and repeating the classical construction of Privalov’s uniqueness theorem (see e.g. [4, Section III:D]), for any $\varepsilon > 0$ one constructs a simply connected domain D in the unit disk such that $\| \psi_0 \|_p$ is bounded in D and the boundary of D contains the unit circle \mathbb{T} up to a set of measure ε. Let φ be a conformal map of the unit disk onto D. Then $F(z) = \psi_0(\varphi(z))$ is a bounded S_p-valued analytic function on the unit disk. By standard results on Banach space valued analytic functions (see e.g. [2]), $F(z)$ attains non-tangential boundary values in S_p norm a.e. on the unit circle. It follows that the function ψ_0 attains non-tangential boundary values in S_p norm on the unit circle minus a set of measure ε. Sending $\varepsilon \to 0$, one obtains the desired result.

2. Let us consider the limits of D_1. Since $D_1(z) = -D_0(z)^{-1}$, it suffices to prove that the limiting operators $D_0^\pm(e^{i\theta})$ have bounded inverses for a.e. θ. We do this by employing an argument from [13]. We have

$$D_0(z) = D_0(0) \left(I + D_0(0)^{-1}(D_0(z) - D_0(0)) \right),$$

and therefore it suffices to check that the operators

$$I + D_0(0)^{-1}(D_0^\pm(e^{i\theta}) - D_0(0))$$

have a bounded inverse for a.e. θ. By (1.8), we have $\psi_0(z) \in S_p$ for all $|z| \neq 1$. Let $q \geq p$ be any integer; consider the regularised determinant

$$d(z) = \text{Det}_q(I + D_0(0)^{-1}(\psi_0(z) - \psi_0(0))).$$

The functional $A \mapsto \text{Det}_q(I + A)$ is continuous (in fact, analytic) on S_q. Thus, $d(z)$ is analytic in z and by the previous step of the proof, $d(z)$ has non-tangential boundary values a.e. on the unit circle. Applying Privalov’s uniqueness theorem, we obtain that these boundary values are non-zero a.e. on the unit circle. Now since $\text{Det}_q(I + A) \neq 0$ if and only if $I + A$ has a bounded inverse, we conclude that the operators (3.1) have bounded inverses for a.e. θ. \qed
3.2. The a.c. part of ν_1. Taking $z_1 = z_2 = re^{i\theta}$ in (2.6), one obtains

$$\psi_j(re^{i\theta}) - \psi_j(re^{i\theta})^* = 2i \int_0^{2\pi} P_r(\theta - t) d\nu_j(e^{it}),$$

(3.2)

where P_r is the Poisson kernel (1.11) on \mathbb{T}. From the existence of the boundary values of ψ_j on \mathbb{T} (see Lemma 3.1) it follows that the r.h.s. of (3.2) attains a limit (in the operator norm) as $r \to 1$ for a.e. $\theta \in (0, 2\pi)$. Of course, by the definition (1.15) of ν_0 we have

$$w_0(e^{i\theta}) = \lim_{r \to 1} \int_0^{2\pi} P_r(\theta - t) d\nu_0(e^{it})$$

(3.3)

for a.e. θ. Similarly, we define the weight function w_1 by

$$w_1(e^{i\theta}) = \lim_{r \to 1} \int_0^{2\pi} P_r(\theta - t) d\nu_1(e^{it})$$

(3.4)

for a.e. θ. In Lemmas 3.2 and 3.3 we follow de Branges’ work [1].

Lemma 3.2. The a.c. part of the measure ν_1 is given by

$$d\nu_1^{(ac)}(e^{i\theta}) = w_1(e^{i\theta}) \frac{d\theta}{2\pi}, \quad \text{a.e. } \theta \in (0, 2\pi).$$

(3.5)

Proof. Of course, in the scalar case $\dim K < \infty$ formula (3.5) follows directly from (3.4); the point here is to consider the general case. Let $\chi_1, \chi_2 \in \mathcal{K}$; consider the scalar (complex-valued) measure $\langle \nu_1(\cdot)\chi_1, \chi_2 \rangle$. If $\nu_1^{(ac)}$ and $\nu_1^{(sing)}$ are the a.c. and the singular parts of ν_1 with respect to the Lebesgue measure on \mathbb{T}, then

$$\langle \nu_1(\cdot)\chi_1, \chi_2 \rangle = \langle \nu_1^{(ac)}(\cdot)\chi_1, \chi_2 \rangle + \langle \nu_1^{(sing)}(\cdot)\chi_1, \chi_2 \rangle$$

gives the unique decomposition of the scalar measure $\langle \nu_1(\cdot)\chi_1, \chi_2 \rangle$ into the a.c. and singular parts. By the scalar theory, we have

$$\lim_{r \to 1} \int_0^{2\pi} P_r(\theta - t) d\nu_1^{(sing)}(e^{it}) \chi_1, \chi_2 = 0$$

for a.e. θ. Thus, using (3.4), we obtain

$$\langle w_1(e^{i\theta}) \chi_1, \chi_2 \rangle = \lim_{r \to 1} \int_0^{2\pi} P_r(\theta - t) d\nu_1^{(ac)}(e^{it}) \chi_1, \chi_2. \quad (3.6)$$

Now take f_1, f_2 as in (2.9); multiplying (3.6) by $(e^{i\theta} - z_1)^{-1}(e^{-i\theta} - \bar{z}_2)^{-1}$ and integrating, we get

$$\int_0^{2\pi} \langle w_1(e^{i\theta}) f_1(e^{i\theta}), f_2(e^{i\theta}) \rangle \frac{d\theta}{2\pi} = \int_0^{2\pi} d\nu_1^{(ac)}(e^{i\theta}) \langle f_1(e^{i\theta}), f_2(e^{i\theta}) \rangle.$$

By linearity, this extends to all $f_1, f_2 \in \mathcal{L}$. This yields (3.5). □
3.3. The operators Y_{\pm}. Next, we consider the operators Y_{\pm} of multiplication by D_{0}^{\pm}, see (1.29).

Lemma 3.3. The operators Y_{\pm} are unitary maps from $L^{2}(\nu_{0})$ to $L^{2}(\nu_{1}^{(ac)})$.

Proof. Taking $z_{1} = z_{2} = re^{i\theta}$ in (2.8), we obtain

$$
\int_{0}^{2\pi} P_{r}(\theta - t)d\nu_{0}(e^{it}) = D_{0}(re^{i\theta})\ast \int_{0}^{2\pi} P_{r}(\theta - t)d\nu_{1}(e^{it}) D_{0}(re^{i\theta}).
$$

Taking $r \to 1 \pm 0$ and using Lemma 3.2, we get

$$
w_{0}(\mu) = D_{0}^{\pm}(\mu)w_{1}(\mu)D_{0}^{\pm}(\mu), \quad \text{a.e. } \mu \in \mathbb{T}.
$$

This shows that Y_{\pm} are isometries. Considering the operators of multiplication by the boundary values of D_{1} and using the identity (1.24), it is easy to prove that Y_{\pm} are surjections, so they are unitary operators. \(\square\)

4. The proof of Theorem 1.1

Proof of Theorem 1.1. The weight function w_{1} has been defined by (3.4). By construction, it is non-negative. It is Borel measurable as a pointwise norm limit of continuous weight functions. Let us prove that the limits in (1.1) exist in K and

$$
(P_{\pm}^{(w_{0})} f)(e^{i\theta}) = \pm \frac{i}{2}((X f)(e^{i\theta}) - (Y_{\pm} f)(e^{i\theta})) \quad (4.1)
$$

for a.e. θ. Take $f(\mu) = (\mu - z)^{-1} \chi, \chi \in K, |z| \neq 1$. We have

$$
D_{0}(z) = \alpha + i \int_{0}^{2\pi} d\nu_{0}(e^{it}) \frac{e^{it} + z}{e^{it} - z} = \alpha - i \int_{0}^{2\pi} d\nu_{0}(e^{it}) + 2i \int_{0}^{2\pi} d\nu_{0}(e^{it}) \frac{e^{it}}{e^{it} - z},
$$

and therefore, by the definition (1.26) of X,

$$
(X f)(e^{i\theta}) = \left(\alpha - i \int_{0}^{2\pi} d\nu_{0}(e^{it})\right) f(e^{i\theta}) + 2i \int_{0}^{2\pi} d\nu_{0}(e^{it}) \frac{e^{it}}{(e^{i\theta} - z)(e^{i\theta} - z)} \chi.
$$

For the second term in the above sum, we have

$$
\int_{0}^{2\pi} d\nu_{0}(e^{it}) \frac{e^{it}}{(e^{i\theta} - z)(e^{i\theta} - z)} \chi = \int_{0}^{2\pi} d\nu_{0}(e^{it}) \frac{f(e^{i\theta}) - f(e^{it})}{e^{i\theta} - e^{it}} e^{it}
$$

$$
= \lim_{r \to 1} \left\{ \int_{0}^{2\pi} d\nu_{0}(e^{it}) \frac{f(e^{i\theta})}{1 - re^{i(\theta - t)}} - \int_{0}^{2\pi} d\nu_{0}(e^{it}) \frac{f(e^{it})}{1 - re^{i(\theta - t)}} \right\},
$$

where the limits exist in the norm of K. Putting this together, after a little algebra we get

$$
(X f)(e^{i\theta}) = \lim_{r \to 1} \left\{ D_{0}(re^{i\theta}) f(e^{i\theta}) - 2i \int_{0}^{2\pi} d\nu_{0}(e^{it}) \frac{f(e^{it})}{1 - re^{i(\theta - t)}} \right\} \quad (4.2)
$$

By Lemma 3.1 the limits

$$
\lim_{r \to \pm 1} D_{0}(re^{i\theta}) f(e^{i\theta})
$$

exist in the norm of K. Thus, the limits of the integral in (1.2) also exist. Recalling the definition (1.1) of $P_{\pm}^{(w_{0})}$, we obtain (4.1). \(\square\)
Proof of (1.10). By (3.2) and (3.3), we have

\[w_0(e^{i\theta}) = \lim_{r \to 1} \int_0^{2\pi} P_r(\theta - t) d\nu_0(e^{it}) \]

\[= \frac{1}{2i} \lim_{r \to 1} (\psi_0(re^{i\theta}) - \psi_0(\frac{1}{r}e^{i\theta})) = \frac{1}{2i} \lim_{r \to 1} (D_0(re^{i\theta}) - D_0(\frac{1}{r}e^{i\theta})). \]

Thus, if we denote by \(Y_0 \) the operator of multiplication by \(w_0(e^{i\theta}) \), acting from \(L^2(\nu_0) \) to \(L^2(\nu_1^{(ac)}) \), we obtain

\[Y_0 = \frac{1}{2i} (Y_+ - Y_-), \]

and therefore \(\|Y_0\| \leq 1 \). This yields

\[\int_0^{2\pi} (w_1(e^{i\theta})w_0(e^{i\theta})f(e^{i\theta}), w_0(e^{i\theta})f(e^{i\theta})) \frac{d\theta}{2\pi} \leq \int_0^{2\pi} (w_0(e^{i\theta})f(e^{i\theta}), f(e^{i\theta})) \frac{d\theta}{2\pi}, \]

which implies (1.10). \qed

Proof of (1.12). Suppose \(p = 1 \). Then

\[\text{Tr}(GG^*) = \int_0^{2\pi} \text{Tr}(w_0(e^{i\theta})) \frac{d\theta}{2\pi} \leq 1, \]

hence \(G \) is Hilbert-Schmidt. Then

\[\int_0^{2\pi} \|w_1(e^{i\theta})\|_1 \frac{d\theta}{2\pi} = \int_0^{2\pi} \text{Tr}(w_1(e^{i\theta})) \frac{d\theta}{2\pi} = \text{Tr}(\nu_1^{(ac)}(\mathbb{T})) \leq \text{Tr}(\nu_1(\mathbb{T})) = \text{Tr}(GG^*) \leq 1, \]

i.e. \(\|w_1(\cdot)\|_1 \in L^1(\mathbb{T}) \). \qed

References

[1] L. de Branges, Perturbations of self-adjoint transformation, American Journal of Mathematics, 84, no. 4 (1962), 543–560.
[2] A. V. Buhvalov, Hardy spaces of vector-valued functions. (Russian) Investigations on linear operators and theory of functions, VII. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 65 (1976), 5–16.
[3] P. Koosis, Moyennes quadratiques pondérées de fonctions périodiques et de leurs conjuguées harmoniques, C. R. Acad. Sci. Paris, Ser. A, 291 (1980), 255–257.
[4] P. Koosis, Introduction to \(H_p \) spaces. Second edition. Cambridge University Press, Cambridge, 1998.
[5] S. T. Kuroda, On a stationary approach to scattering problem, Bull. Amer. Math. Soc. 70 (1964), 556–560.
[6] M. Lacey, Two Weight Inequality for the Hilbert Transform: A Real Variable Characterization, II, preprint, arXiv:1301.4663v3.
[7] M. Lacey, E. Sawyer, C.-Y. Shen, I. Uriarte-Tuero, Two weight inequality for the Hilbert transform: a real variable characterization, preprint, arXiv 1201.4319v6.
[8] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. AMS 165 (1972), 207–226.
[9] F. Nazarov, S. Treil, A. Volberg, Two weight estimate for the Hilbert transform and Corona decomposition for non-doubling measures, preprint, arXiv:1003.1596.
[10] F. Nazarov, A. Volberg, P. Yuditskii, Asymptotics of orthogonal polynomials via the Koosis’ theorem, Math. Res. Lett. 13, no. 5–6 (2006), 975–983.
[11] A. Pushnitski, A. Volberg, *Scattering theory and Banach space valued singular integrals*, preprint, [arXiv:1211.6694](https://arxiv.org/abs/1211.6694).

[12] J. Rubio de Francia, *Martingale and integral transforms of Banach space valued functions*. Probability and Banach spaces (Zaragoza, 1985), 195–222, Lecture Notes in Math., 1221, Springer, Berlin, 1986.

[13] D. R. Yafaev, *Mathematical scattering theory. General theory*. American Mathematical Society, Providence, RI, 1992.

[14] A. Volberg, *Calderón–Zygmund capacities and operators on non-homogeneous spaces*, CBMS Series in Math., v. 100, Amer. Math. Soc., 2003, pp. 1–165.

Department of Mathematics, King’s College London, Strand, London, WC2R 2LS, U.K.

E-mail address: alexander.pushnitski@kcl.ac.uk

Department of Mathematics, Michigan State University, East Lansing, MI 48824, U.S.A.

E-mail address: volberg@math.msu.edu