Hopf cyclic cohomology and transverse characteristic classes
Lecture 2: Hopf cyclic complexes

Bahram Rangipour, UNB

Based on joint works with Henri Moscovici and with Serkan Sütlü

Vanderbilt University

May 2011
Contents

- Section 1: Hopf cyclic cohomology with coefficients in SAYD modules
- Section 2: Hopf cyclic Bicomplexes of a Lie-Hopf algebra and van Est isomorphism
- Section 4: Hopf cyclic cohomology of \mathcal{H}_n
- Section 5: Hopf cyclic cohomology of \mathcal{K}_n
Hopf cyclic cohomology and SAYD modules

- MPI and SAYD and their examples
- Hopf cyclic cohomology
- Lie algebra cohomology
- Examples
Hopf cyclic cohomology invented by Connes and Moscovici as a computational tool for computing the index cocycle appears in the local index formula. Roughly speaking, they used the Hopf algebra of general transverse symmetry to compute their desire part of the cyclic cohomology, differential cyclic cohomology, of the crossed product algebra representing the transverse manifold of a foliation.

The ingredient for Hopf cyclic cohomology is a Hopf algebra endowed with a modular pair in involution.

Based on different needs we generalize Hopf cyclic cohomology in different directions:

- Allowing noncommutative symmetries, i.e., Hopf (co)module (co)algebra
- Allowing higher dimensional coefficients, i.e., SAYD modules
- Allowing Hopf algebras and (co)algebras with several objects, i.e., \times-Hopf algebras
SAYD modules

Let \mathcal{H} be a Hopf algebra. By definition, a character $\delta : \mathcal{H} \to \mathbb{C}$ is an algebra map. A group-like $\sigma \in \mathcal{H}$ is the dual object of the character, i.e., $\Delta(\sigma) = \sigma \otimes \sigma$. The pair (δ, σ) are called modular pair in involution if

$$\delta(\sigma) = 1, \quad \text{and} \quad S^{2}_\delta = Ad_\sigma.$$

Here $Ad_\sigma(h) = \sigma h \sigma^{-1}$ and S_δ is defined by

$$S_\delta(h) = \delta(h^{(1)}) S(h^{(2)}).$$

A right-left stable-anti-Yetter-Drinfeld module over a Hopf algebra \mathcal{H} is a right \mathcal{H}-module M, which is also a left \mathcal{H}-comodule and satisfying

$$\nabla(m \cdot h) = S(h^{(3)}) m_{<{-1}>} h^{(1)} \otimes m_{<0>} \cdot h^{(2)}, \quad m_{<0>} \cdot m_{<-1>} = m,$$

Lemma Any MPI defines a one dimensional SAYD module and all one dimensional SAYD modules come this way.
 canonical MPI associated to Lie-Hopf algebras

Let \((g, F)\) be a Lie Hopf algebra.

1. Define the derivation \(δ_g : g \to \mathbb{C}, \quad δ_g(X) = \text{Tr}(Ad_X)\).
2. Extend \(δ_g\) to an algebra map on \(F \bowtie U\)

\[
δ := ε ◁ δ_g : F ▶ U(g) \to \mathbb{C} \text{ by } δ(f ▶ u) = ε(f)δ_g(u)
\]

3. The canonical rep. functions \(f^i_j ∈ F\) defined for a fixed basis \(X_1, \ldots, X_m\) of \(g\),

\[
∇(X_j) = \sum_{i=1}^{m=\dim g} X_i \otimes f^i_j.
\]

It is clear that \(f^i_j\) are independent of \(\{X_1, \ldots, X_m\}\). Set

\[
σ_F := \sum_{π ∈ S_m} (-1)^π f^{π(1)}_1 \cdots f^{π(m)}_m.
\]

Theorem The pair \((δ, σ)\) is a modular pair involution for the Hopf algebra \(F ▶ U\).
Let M be a left g-module and a right \mathcal{F}-comodule via $\nabla_M : M \to M \otimes \mathcal{F}$. We say that M is an induced module if

$$\nabla_M (X \cdot m) = \sum X_{<0>} \cdot m_{<0>} \otimes X_{<1>} m_{<1>} + m_{<0>} \otimes X \triangleright m_{<1>}$$

\mathcal{H} act on M from left via $(f \blacktriangleright u) \cdot m = \varepsilon(f) u \cdot m$

\mathcal{H} coact on M via, $\nabla_M (m) = \sum m_{<0>} \otimes m_{<1>} \blacktriangleright 1$

Lemma Any induced module is a YD-module over $\mathcal{F} \blacktriangleright \triangleright \mathcal{U}$.

Let $\sigma M_{\delta} := M$ as a vector space.

Then the following make σM_{δ} a SAYD module over $\mathcal{F} \blacktriangleright \triangleright \mathcal{U}$.

$$m \blacktriangleleft (f \blacktriangleright u) := \sum \varepsilon(f) \delta(u_{(2)}) S(u_{(2)}) m.$$

$$\nabla(m) := \sum \sigma S(m_{<1>}) \blacktriangleright 1 \otimes m_{<0>}.$$
Induced Hopf cyclic coefficients in geometric cases

Let M be a left $\mathfrak{g} := \mathfrak{g}_1 \bowtie \mathfrak{g}_2$-module such that the restriction of the action results a locally finite \mathfrak{g}_2-module. Then, via the \mathfrak{g}_1 action on M, by restriction, and the coaction defined by

$$\nabla(m) = \sum m_{<0>} \otimes m_{<1>}, \quad \text{iff} \quad v \cdot m = \sum m_{<1>}(v)m_{<0>}.$$

M becomes an induced $(\mathfrak{g}_1, R(\mathfrak{g}_2))$-module. Conversely, every induced $(\mathfrak{g}_1, R(\mathfrak{g}_2))$-module comes this way.

So for any representation M of $\mathfrak{g} = \mathfrak{g}_1 \bowtie \mathfrak{g}_2$ we have a σM_δ as a SAYD module on $R(\mathfrak{g}_2) \bowtie U(\mathfrak{g}_1)$.

Similarly for a matched pair of Lie groups $G = G_1 \bowtie G_2$, and any representation M so that the action of G_2 is locally finite we have a SAYD module σM_δ on $R(G_2) \bowtie U(\mathfrak{g}_1)$.

For a complete characterization of SAYD modules on geometric bicrossed product Hopf algebras one needs more advanced technology which is not suitable to be discussed in this lecture series.
Cyclic module of a Hopf algebra with a SAYD module

\[C^q(H, M) := M \otimes H^{\otimes q}, \quad q \geq 0. \]

We recall the following operators on \(C^*(H, M) \):

- face operators \(\partial_i : C^q(H, M) \to C^{q+1}(H, M), \quad 0 \leq i \leq q + 1 \)
- degeneracy operators \(\sigma_j : C^q(H, M) \to C^{q-1}(H, M), \quad 0 \leq j \leq q - 1 \)
- cyclic operators \(\tau : C^q(H, M) \to C^q(H, M) \),

by

\[
\begin{align*}
\partial_0(m \otimes h^1 \otimes \ldots \otimes h^q) &= m \otimes 1 \otimes h^1 \otimes \ldots \otimes h^q, \\
\partial_i(m \otimes h^1 \otimes \ldots \otimes h^q) &= \sum m \otimes h^1 \otimes \ldots \otimes h_{(1)}^i \otimes h_{(2)}^i \otimes \ldots \otimes h^q, \\
\partial_{q+1}(m \otimes h^1 \otimes \ldots \otimes h^q) &= \sum m_{<0>} \otimes h^1 \otimes \ldots \otimes h^q \otimes m_{<-1>}, \\
\sigma_j(m \otimes h^1 \otimes \ldots \otimes h^q) &= m \otimes h^1 \otimes \ldots \otimes \varepsilon(h^{j+1}) \otimes \ldots \otimes h^q, \\
\tau(m \otimes h^1 \otimes \ldots \otimes h^q) &= \sum m_{<0>} h_{(1)}^1 \otimes S(h_{(2)}^1) \cdot (h^2 \otimes \ldots \otimes h^q \otimes m_{<-1>}),
\end{align*}
\]

where \(H \) acts on \(H^{\otimes q} \) diagonally.
The graded module $C^*(Hc, M)$ endowed with the above operators is then a cocyclic module. This means that ∂_i, σ_j and τ satisfy the following identities:

$$\partial_j \partial_i = \partial_i \partial_{j-1}, \quad \text{if} \quad i < j,$$
$$\sigma_j \sigma_i = \sigma_i \sigma_{j+1}, \quad \text{if} \quad i \leq j,$$
$$\sigma_j \partial_i = \begin{cases}
\partial_i \sigma_{j-1}, & \text{if} \quad i < j \\
\text{Id} & \text{if} \quad i = j \text{ or } i = j + 1 \\
\partial_{i-1} \sigma_j & \text{if} \quad i > j + 1
\end{cases},$$
$$\tau \partial_i = \partial_{i-1} \tau, \quad 1 \leq i \leq q,$$
$$\tau \partial_0 = \partial_{q+1},$$
$$\tau \sigma_i = \sigma_{i-1} \tau, \quad 1 \leq i \leq q,$$
$$\tau \sigma_0 = \sigma_n \tau^2,$$
$$\tau^{q+1} = \text{Id}.$$
One uses the face operators to define the Hochschild coboundary $b : C^q(H, M) \to C^{q+1}(H, M)$, by

$$b := \sum_{i=0}^{q+1} (-1)^i \partial_i$$

One uses the rest of the operators to define the Connes boundary operator, $B : C^q(H, M) \to C^{q-1}(H, M)$, by

$$B := \left(\sum_{i=0}^{q} (-1)^q i \tau^i \right) \sigma_{q-1}(1 - \tau).$$

It is shown for any cocyclic module that $b^2 = B^2 = (b + B)^2 = 0$.
As a result, one defines the cyclic cohomology of H with coefficients in SAYD module M, which is denoted by $HC^*(H, M)$, as the total cohomology of the bicomplex

$$C^{p,q}(\mathcal{H}, M) = \begin{cases} M \otimes \mathcal{H}^{\otimes q}, & \text{if } 0 \leq p \leq q, \\ 0, & \text{otherwise}. \end{cases}$$ \quad (1)$$

One also defines the periodic cyclic cohomology of \mathcal{H} with coefficients in M, which is denoted by $HP^*(\mathcal{H}, M)$, as the total cohomology of direct sum total of the following bicomplex

$$C^{p,q}(\mathcal{H}, M) = \begin{cases} M \otimes \mathcal{H}^{\otimes q}, & \text{if } p \leq q, \\ 0, & \text{otherwise}. \end{cases}$$ \quad (2)$$

It is seen that the periodic cyclic complex and hence cohomology is \mathbb{Z}_2 graded.
Let \(g \) be a finite dimensional Lie algebra and \(V \) is a right \(g \)-module. The Chevalley-Eilenberg complex of the \((g, V)\) is defined by \(C^n(g, V) = \text{Hom}(\wedge^q g^*, V) \) \(q \geq 0 \) with

\[
V \xrightarrow{\partial_0} C^1(g, V) \xrightarrow{\partial_1} C^2(g, V) \xrightarrow{\partial_2} \cdots ,
\]

\[
\partial(\omega)(Y_0, \ldots, Y_q) = \sum_{i<j} (-1)^{i+j} \omega([Y_i, Y_j], Y_0, \ldots, \widehat{Y_i}, \ldots, \widehat{Y_j}, \ldots, Y_q) + \sum_i (-1)^i \omega(Y_0, \ldots, \widehat{Y_i}, \ldots Y_q) Y_i.
\]

Alternatively, for \(\{\theta^i, X_i\} \) as a dual basis pair for \(g^* \) and \(g \)

\[
\partial_0(v) = vX_i \otimes \theta^i, \quad \partial_q(v \otimes \omega) = vX_i \otimes \theta^i \wedge \omega + v \otimes \partial_{dR}(\omega).
\]

Here \(\partial_{dR} : \wedge^q g^* \rightarrow \wedge^{q+1} g^* \) is the de Rham coboundary which is a derivation of degree 1 and recalled here by

\[
\partial_{dR}(\theta^k) = \frac{1}{2} C_{ij}^k \theta^i \wedge \theta^j
\]
Let V be a representation of g. We easily see that V is a SAYD module on $U(g)$ provided the coaction defined trivially.

The antisymmetrization map $\alpha : V \otimes \wedge^q g \to V \otimes U(g)^{\otimes q}$ defined by

$$\alpha(v \otimes Y_1 \wedge \cdots \wedge Y_q) = \frac{1}{q!} \sum_{\sigma \in S_q} v \otimes Y_{\sigma(1)} \otimes \cdots \otimes Y_{\sigma(q)}$$

We see that $b\alpha = 0$, $B\alpha = \alpha \partial$

Using some standard homotopy arguments we see

$$HP^*(U(g), V) \simeq \bigoplus_{i \equiv \ast \mod 2} H_i(g, V)$$
Hopf cyclic cohomology of $R(\mathfrak{g})$, and $R(G)$

Let \mathfrak{l} be the solvable radical of \mathfrak{g}, i.e., \mathfrak{l} is the unique maximal solvable ideal of \mathfrak{g}. The Levi decomposition of Lie algebras implies that $\mathfrak{g} = \mathfrak{s} \ltimes \mathfrak{l}$, where \mathfrak{s} is a semisimple subalgebra of \mathfrak{g} called a Levi subalgebra.

$\mathcal{D}_{\text{Gr}} : V \otimes \mathcal{F}^{\otimes q} \rightarrow C^q(\mathfrak{g}, \mathfrak{h}, V),$

$\mathcal{D}_{\text{Gr}}(v \otimes f^1 \otimes \ldots \otimes f^q)(X_1, \ldots, X_q) =$

$$\sum_{\mu \in S_q} (-1)^\mu \left. \frac{d}{dt_1} \right|_{t_1=0} \ldots \left. \frac{d}{dt_q} \right|_{t_q=0} f^1(\exp(t_1 X_{\mu(1)})) \cdots f^q(\exp(t_q X_{\mu(q)}))v.$$

Theorem Let G be a Lie group, V a representative G-module, and $\mathfrak{g} = \mathfrak{s} \ltimes \mathfrak{l}$ be a Levi decomposition. Then \mathcal{D}_{Gr} induces the isomorphism

$$HP^*(R(G), V) \cong \bigoplus_{* = i \mod 2} H^i(\mathfrak{g}, \mathfrak{s}, V).$$
$D_{\text{Alg}} : V \otimes R(g)^{\otimes q} \rightarrow (V \otimes \wedge^q l^*)^s,$

$D_{\text{Alg}}(v \otimes f^1 \otimes \ldots \otimes f^q)(X_1, \ldots, X_q)$

$= \sum_{\sigma \in S_q} (-1)^{\sigma} f^1(X_{\sigma(1)}) \ldots f^q(X_{\sigma(q)})v.$

Theorem Let g be a finite dimensional Lie algebra with a Levi decomposition $g = s \ltimes l$. Then for any finite dimensional g-module V, the map D_{Alg} induces the isomorphism

$HP^*(R(g), V) \cong \bigoplus_{* = i \mod 2} H^i(g, s, V).$
Hopf cyclic cohomology of Lie-Hopf algebras

- Bicomplexes associated to Lie Hopf algebras
- van Est isomorphism
Let F a g-Hopf algebra. We denote the bicrossed product Hopf algebra $F
hd U(g)$ by H. Let the character δ and the group-like σ be the canonical modular pair in involution. In addition, let M be an induced (g, F)-module and σM_δ be the associated SAYD module over Hc.

The Hopf algebra $U := U(g)$ admits the following right action on $\sigma M_\delta \otimes F \otimes q$, which plays a key role in the definition of the next bicocyclic module:

$$ (m \otimes \tilde{f})u = \sum \delta_g(u_{(1)})S(u_{(2)}) \cdot m \otimes S(u_{(3)}) \otimes \tilde{f}, $$

$$ u \cdot (f^1 \otimes \ldots \otimes f^n) := \sum u_{(1)}{_{<0>}} \rhd f^1 \otimes u_{(1)}{_{<1>}} u_{(2)}{_{<0>}} \rhd f^2 \otimes \ldots \otimes u_{(1)}{_{<n-1>}} \ldots u_{(n-1)}{_{<1>}} u_{(n)} \rhd f^n. $$
One then defines a bicocyclic module $C^{\bullet, \bullet}(U, F, M)$, where

$$C^{p,q}(U, F, sM_\delta) := sM_\delta \otimes U^{\otimes p} \otimes F^{\otimes q}, \quad p, q \geq 0, \quad (3)$$

whose horizontal part is the cocyclic module associated to U with coefficients in

$$\sigma M_\delta \otimes F^{\otimes q}$$

The vertical part is the cocyclic module associated to F with coefficients in

$$\sigma M_\delta \otimes U^{\otimes p}$$

One notes that, by definition, a bicocyclic module is a bigraded module whose rows and columns form cocyclic modules and any horizontal arrow commute with any vertical one.
Bicomplex associated to Lie Hopf algebra

So each row and column have their own Hochschild coboundary and Connes boundary maps. These boundaries and coboundaries are denoted by B, $\uparrow B$, b, and $\uparrow b$, which are demonstrated in the following diagram.
In the next move, we identify the standard Hopf cocyclic module $C^*(H, \sigma M_\delta)$ with the diagonal subcomplex D^* of $C^{\bullet,\bullet}$. This is achieved by means of the map $\Psi : D^* \rightarrow C^*(H, \sigma M_\delta)$ together with its inverse $\Psi^{-1} : C^*(H, \sigma M_\delta) \rightarrow D^*$. They are explicitly defined as follows:

$$\Psi(m \otimes u^1 \otimes \ldots \otimes u^n \otimes f^1 \otimes \ldots \otimes f^n) = \sum m \otimes f^1 \triangleright u^1_{<0>} \otimes f^2 u^1_{<1>} \triangleright u^2_{<0>} \otimes \ldots$$

$$\ldots \otimes f^n u^1_{<n-1>} \ldots u^{n-1}_{<1>} \triangleright u^n,$$

respectively

$$\Psi^{-1}(m \otimes f^1 \triangleright u^1 \otimes \ldots \otimes f^n \triangleright u^n) = \sum m \otimes u^1_{<0>} \otimes \ldots \otimes u^{n-1}_{<0>} \otimes u^n \otimes f^1 \otimes$$

$$\otimes f^2 S(u^1_{<n-1>}) \otimes f^3 S(u^1_{<n-2>} u^2_{<n-2>}) \otimes \ldots \otimes f^n S(u^1_{<1>} \ldots u^{n-1}_{<1>}).$$
Simplification of the bicomplex

The bicocyclic module $C^{•,•}(U,\mathcal{F}, \sigma M_\delta)$ can be further reduced to the bicomplex

$$C^{•,•}(g,\mathcal{F}, \sigma M_\delta) := \sigma M_\delta \otimes \wedge^q g \otimes \mathcal{F}^{\otimes p},$$

via the antisymmetrization map

$$\tilde{\alpha} : \sigma M_\delta \otimes \wedge^q g \otimes \mathcal{F}^{\otimes p} \otimes \mathcal{F} \rightarrow \sigma M_\delta \otimes U^{\otimes q} \otimes \mathcal{F}^{\otimes p}, \quad \tilde{\alpha}_g = \alpha \otimes \text{Id},$$

the pullback of the vertical b-coboundary in vanishes, while the vertical B-coboundary becomes ∂_g

On the other hand, since \mathcal{F} is commutative, the coaction $\nabla : g \rightarrow g \otimes \mathcal{F}$, extends from g to a unique coaction $\nabla_g : \wedge^p g \rightarrow \wedge^p g \otimes \mathcal{F}$. After tensoring with the right coaction of σM_δ, we have

$$\nabla(m \otimes X^1 \wedge \cdots \wedge X^q)$$

$$= m_{<0>} \otimes X^1_{<0>} \wedge \cdots \wedge X^q_{<0>} \otimes \sigma^{-1} m_{<1>} X^1_{<1>} \cdots X^q_{<1>}.$$
We arrive at the bicomplex $C^{\bullet, \bullet}(g, \mathcal{F}, \sigma M_\delta)$, described by the diagram

\[
\begin{array}{ccc}
\vdots & \xrightarrow{\partial_g} & \vdots \\
\uparrow{\partial_g} & & \uparrow{\partial_g} \\
\sigma M_\delta \otimes \wedge^2 g & \xrightarrow{b_\mathcal{F}} & \sigma M_\delta \otimes \wedge^2 g \otimes \mathcal{F} \\
\downarrow{\partial_g} & & \downarrow{\partial_g} \\
\sigma M_\delta \otimes g & \xrightarrow{b_\mathcal{F}} & \sigma M_\delta \otimes g \otimes \mathcal{F} \\
\downarrow{\partial_g} & & \downarrow{\partial_g} \\
\sigma M_\delta & \xrightarrow{b_\mathcal{F}} & \sigma M_\delta \otimes \mathcal{F} \\
\downarrow{\partial_g} & & \downarrow{\partial_g} \\
\sigma M_\delta & \xrightarrow{b_\mathcal{F}} & \sigma M_\delta \otimes \mathcal{F} \otimes 2 \\
\end{array}
\]
Let $C^{p,q}(g^*, \mathcal{F}, M) = M \otimes \wedge^p \otimes \mathcal{F} \otimes^q$

We apply the Poincaré isomorphism $\mathcal{D}_P : C^{p,q}(g, \mathcal{F}, \sigma M_\delta) \to C^{m-p,q}(g^*, \mathcal{F}, M)$

The result is the following bicomplex whose columns are Lie algebra cohomology complex and the row are Hopf cyclic cohomology.
One uses the facts that $a = g_1 \ltimes g_2$, and $g_2 = h \ltimes l$ is a Levi decomposition to see that the relative Lie algebra cohomology $H(a, h, M)$ is computed by the total complex of the following bicomplex. Here the vertical and horizontal arrows are induced by the Lie algebra cohomology coboundaries of g_1 and g_2 with values in $M \otimes \wedge^\bullet g_2$ and $M \otimes \wedge^\bullet g_1$.

\[H(g_1 \ltimes g_2, h, M) \]
Let \((g, g_2)\) be a matched pair of Lie algebras and \(M\) be a finite dimensional representation of \(g_1 \bowtie g_2\).

Let \(\mathcal{F}\) be \((g_1, g_2)\)-related Hopf algebra, that is \(\mathcal{F}\) is a \(g_1\)-Hopf algebra with a \(g_1\) respected Hopf duality from \(U(g_2)\).

One then defines the following Van Est Isomorphism

\[
\mathcal{V} : M \otimes \wedge^p g_1^* \otimes \mathcal{F} \otimes q \to M \otimes \wedge^p g_1^* \otimes \wedge^q g_2^*
\]

\[
\mathcal{V}(m \otimes \omega \otimes f^1 \otimes \ldots \otimes f^q)(Y_1, \ldots, Y_p, \zeta_1, \ldots, \zeta_q)
= \sum_{\sigma \in S_q} (-1)^{\sigma} \omega(Y_1, \ldots, Y_p) f^1(\zeta_{\sigma(1)}) \cdots f^q(\zeta_{\sigma(q)})
\]
Theorem Let \((g_1, g_2)\) be a matched pair of Lie algebras and \(F\) a \((g_1, g_2)\)-related Hopf algebra such as \(R(g_2), R(G_2),\) or \(\mathcal{P}(G_2)\). Assume that \(g_2 = h \ltimes l\) is a Levi decomposition such that \(h\) is \(g_1\)-invariant and the natural action of \(h\) on \(g_1\) is given by derivations. Then for any \(F\)-comodule and \(g_1\)-module \(M\), the Van Est map \(\mathcal{V}\), is a map of bicomplexes and induces an isomorphism between Hopf cyclic cohomology of \(F \Join U(g_1)\) with coefficients in \(\sigma M_\delta\) and the Lie algebra cohomology of \(\alpha := g_1 \Join g_2\) relative to \(h\) with coefficients in the \(\alpha\)-module induced by \(M\). In other words,

\[
HP^\bullet(F \Join U(g_1), \sigma M_\delta) \cong \bigoplus_{i=\bullet \mod 2} H^i(g_1 \Join g_2, h, M).
\]
Hopf cyclic cohomology of \mathcal{H}_n

- Hopf-Koszul bicomplex
- Group cohomology bicomplex
- Equivariant bicomplex
- Wedge-Equivariant bicmplex
- Hopf cyclic cohomology of \mathcal{H}_n relative to gl_n
- Hopf cyclic cohomology of \mathcal{H}_n
Passage to Lie algebra cohomology

We recall that the Koszul resolution associated to the Lie algebra \mathfrak{g} is the complex

$$V(\mathfrak{g}^*) : \mathcal{U} \xrightarrow{\partial_K} \mathfrak{g}^* \otimes \mathcal{U} \xrightarrow{\partial_K} \bigwedge^2 \mathfrak{g}^* \otimes \mathcal{U} \xrightarrow{\partial_K} \ldots,$$

\mathfrak{g} acts on \mathcal{U} from the right via $u \triangleleft X = -Xu$

$\nabla_K : V^\oplus(\mathfrak{g}^*) \rightarrow \mathcal{F} \otimes V^\oplus(\mathfrak{g}^*)$ defined as follows:

$$\nabla_K(\omega \otimes u) = S(u_{<0>(2)}) \triangleright S(u_{<1>} \omega_{<1>}) \otimes \omega_{<0>} \otimes u_{<0>(1)}.$$

$$V^\bullet(\mathfrak{g}^*) \otimes \mathcal{U} \xrightarrow{b_{\mathcal{F},K}} V^\bullet(\mathfrak{g}^*) \otimes \mathcal{F} \xrightarrow{b_{\mathcal{F},K}} V^\bullet(\mathfrak{g}^*) \otimes \mathcal{F} \otimes^2 \xrightarrow{b_{\mathcal{F},K}} \ldots$$

Theorem

$C^\bullet_{\mathcal{U}}(\mathcal{F}, V^\bullet(\mathfrak{g}^*))$ is a \mathfrak{g}-equivariant Hopf cyclic complex of \mathcal{F} with coefficients in the differential graded SAYD $V^\bullet(\mathfrak{g}^*)$, and the map $\kappa : C^\bullet_{\mathcal{U}}(\mathcal{F}, V^\bullet(\mathfrak{g}^*)) \rightarrow C^\bullet(\mathcal{F}, \mathfrak{g}^*)$ induces an isomorphism of total complexes. $\kappa(\omega \otimes u \otimes u f^1 \otimes \ldots \otimes f^q) = \omega \otimes u \bullet (f^1 \otimes \ldots \otimes f^q)$,
We define \(C_{\text{coinv}}^{p,q}(\mathfrak{g}^*, \mathcal{F}) := (\wedge^p \mathfrak{g}^* \otimes \mathcal{F}^{\otimes q+1})^\mathcal{F} \) by
\[
\alpha \otimes \tilde{f} \in (\wedge^p \mathfrak{g}^* \otimes \mathcal{F}^{\otimes q+1})^\mathcal{F}
\]
if \(\alpha_{<0>} \otimes \tilde{f} \otimes S(\alpha_{<1>}) = \alpha \otimes \tilde{f}_{<0>} \otimes \tilde{f}_{<1>} \);

We define \(\mathcal{I} : \wedge^p \mathfrak{g}^* \otimes \mathcal{F}^{\otimes q} \rightarrow (\wedge^p \mathfrak{g}^* \otimes \mathcal{F}^{\otimes q+1})^\mathcal{F} \) by
\[
\mathcal{I}(\alpha \otimes \tilde{f}) =
\]
\[
= a_{<0>} \otimes f^1_{(1)} \otimes S(f^1_{(2)}) f^2_{(1)} \otimes \ldots \otimes S(f^{q-1}_{(2)}) f^q_{(1)} \otimes S(\alpha_{<1>} f^q_{(2)})
\]
induces an isomorphism

The isomorphism \(\mathcal{I} \) turns the \(\bullet \) action into the diagonal action
\[
\chi \triangleright (f^0 \otimes \ldots \otimes f^q) = \sum_{i=0}^{q} f^0 \otimes \ldots \otimes \chi \triangleright f^i \otimes \ldots \otimes f^q.
\]
One obtains the bigraded module

\[
\begin{align*}
\partial_{\text{coinv}}^{g_{\text{coinv}}} & \quad b_{g_{\text{coinv}}}^{\text{coinv}} & \quad \partial_{g_{\text{coinv}}}^{\text{coinv}} & \quad b_{g_{\text{coinv}}}^{\text{coinv}} \\
(\wedge^2 g^* \otimes F)^{\mathcal{F}} & \quad (\wedge^2 g^* \otimes F^\otimes 2)^{\mathcal{F}} & \quad (\wedge^2 g^* \otimes F^\otimes 3)^{\mathcal{F}} \\
\partial_{g_{\text{coinv}}}^{\text{coinv}} & \quad b_{g_{\text{coinv}}}^{\text{coinv}} & \quad \partial_{g_{\text{coinv}}}^{\text{coinv}} & \quad b_{g_{\text{coinv}}}^{\text{coinv}} \\
(g^* \otimes F)^{\mathcal{F}} & \quad (g^* \otimes F^\otimes 2)^{\mathcal{F}} & \quad (g^* \otimes F^\otimes 3)^{\mathcal{F}} \\
\partial_{g_{\text{coinv}}}^{\text{coinv}} & \quad b_{g_{\text{coinv}}}^{\text{coinv}} & \quad \partial_{g_{\text{coinv}}}^{\text{coinv}} & \quad b_{g_{\text{coinv}}}^{\text{coinv}} \\
(C \otimes F)^{\mathcal{F}} & \quad (C \otimes F^\otimes 2)^{\mathcal{F}} & \quad (C \otimes F^\otimes 3)^{\mathcal{F}} \\
\partial_{g_{\text{coinv}}}^{\text{coinv}} & \quad b_{g_{\text{coinv}}}^{\text{coinv}} & \quad \partial_{g_{\text{coinv}}}^{\text{coinv}} & \quad b_{g_{\text{coinv}}}^{\text{coinv}}
\end{align*}
\]

...
We set $\mathcal{N} := \lim_{k \to \infty} \mathcal{N}_k$, with $\mathcal{N}_k := \text{Jet}_0^{(k)}(\mathcal{N})$. Recall that the algebra \mathcal{F} is precisely the polynomial algebra generated by the components of such jets. By $\psi \in \mathcal{N}$ we mean $j_0^\infty(\psi) \in \mathcal{N}$ with $\psi \in \mathcal{N}$.

Let $C_{\text{pol}}^q(\mathcal{N}, \wedge^p g^*)$ be the set of polynomial functions

$$c : \underbrace{\mathcal{N} \times \ldots \times \mathcal{N}}_{q+1 \text{ times}} \to \wedge^p g^*$$

satisfying the covariance condition

$$c(\psi_0 \psi, \ldots, \psi_q \psi) = \psi^{-1} \triangleright c(\psi_0, \ldots, \psi_q), \quad \forall \psi \in \mathcal{N},$$

$$b_{\text{pol}} c(\psi_0, \ldots, \psi_{q+1}) = \sum_{i=0}^{q+1} (-1)^i c(\psi_0, \ldots, \hat{\psi}_i, \ldots, \psi_{q+1}).$$

$$\tau_{\text{pol}}(c)(\psi_0, \ldots, \psi_q) = c(\psi_1, \ldots, \psi_q, \psi_0)$$
We thus arrive at a bicomplex which mixes group cohomology of \(\mathcal{N} \) with coefficients in \(\wedge^\bullet g^* \) and Lie algebra cohomology of \(g \) with coefficients in \(\mathcal{F} \), described by the diagram
In turn, this can be related to the bicomplex (4) via the obvious map \(\mathcal{J} : C_{\text{coinv}}^{\bullet, \bullet}(g^*, F) \to C_{\text{pol}}^{\bullet}(\mathcal{N}, \wedge^\bullet g^*) \) defined, with the self-explanatory notation, by the formula

\[
\mathcal{J} \left(\sum \alpha \otimes \tilde{f} \right)(\psi_0, \ldots, \psi_q) = \sum f^0(\psi_0) \ldots f^q(\psi_q)\alpha. \tag{5}
\]

Proposition

The map \(\mathcal{J} : C_{\text{coinv}}^{\bullet, \bullet}(g^*, F) \to C_{\text{pol}}^{\bullet}(\mathcal{N}, \wedge^\bullet g^*) \) is an isomorphism of bicomplexes.
Since \mathcal{F} is commutative we may consider the subcomplex $C_{c-w}^{p,q}(g^*, \mathcal{F}) \subset C_{\text{coinv}}^{\bullet,\bullet}(g^*, \mathcal{F})$

\[\begin{array}{ccc}
\begin{array}{ccc}
\partial_{c-w} & & \\
\wedge^2 g^* & \xrightarrow{b_{c-w}} & (\wedge^2 g^* \otimes \wedge^2 \mathcal{F})^\mathcal{F} \\
\end{array} & \begin{array}{ccc}
\partial_{c-w} & & \\
\wedge^2 g^* & \xrightarrow{b_{c-w}} & (\wedge^2 g^* \otimes \wedge^3 \mathcal{F})^\mathcal{F} \\
\end{array} & \begin{array}{ccc}
\partial_{c-w} & & \\
\wedge^2 g^* & \xrightarrow{b_{c-w}} & (\wedge^2 g^* \otimes \wedge^3 \mathcal{F})^\mathcal{F} \\
\end{array} \\
\begin{array}{ccc}
\partial_{c-w} & & \\
\mathbb{C} & \xrightarrow{b_{c-w}} & (\mathbb{C} \otimes \wedge^2 \mathcal{F})^\mathcal{F} \\
\end{array} & \begin{array}{ccc}
\partial_{c-w} & & \\
\mathbb{C} & \xrightarrow{b_{c-w}} & (\mathbb{C} \otimes \wedge^3 \mathcal{F})^\mathcal{F} \\
\end{array} & \begin{array}{ccc}
\partial_{c-w} & & \\
\mathbb{C} & \xrightarrow{b_{c-w}} & (\mathbb{C} \otimes \wedge^3 \mathcal{F})^\mathcal{F} \\
\end{array} \\
\end{array} \xrightarrow{b_{c-w}} \ldots \]

Proposition

The antisym. map $\tilde{\alpha}_\mathcal{F} : C_{c-w}^{p,q}(g^*, \mathcal{F}) \to C_{\text{coinv}}^{p,q}(g^*, \mathcal{F})$ is a quasi-isomorphism.
To construct the desired homomorphism, we associate to any $\omega \in C^r_{GF}(a)$ and any pair of integers (p, q), $p + m = q + r$, $0 \leq q \leq m = \dim G$, a p-cochain $C_{p,q}(\omega)(\psi_0, \ldots, \psi_p)$ on the group \mathfrak{N} with values in q-currents on G as follows. For each q-form with compact support $\zeta \in \Omega^q_{c}(G)$, one sets

$$\langle C_{p,q}(\omega)(\psi_0, \ldots, \psi_p), \zeta \rangle = \int_{\Sigma(\psi_0, \ldots, \psi_p)} \pi_1^\infty (\zeta) \wedge \tilde{\omega};$$

the integration is taken over the finite dimensional cycle in \mathcal{J}_0^∞.

Theorem

The map $C : C^\bullet_{top}(a) \to C^\bullet_{top}(\mathfrak{N}, \Omega^\bullet_{c}(G))$ is a map of complexes. It lands in $C^\bullet_{c-w}(g^*, \mathcal{F})$ and induces an isomorphism in the level of cohomology.