235U capture cross-section adjustment in criticality benchmarks using ENDF/B-VII.1 evaluation

M. Makhoul*, H. Boukhal, M. Kaddour†, E. Chakir‡, M. Maged* and A. Abdulaziz*

*Faculty of Sciences of Tetuan, Radiations and Nuclear Systems Laboratory, University Abdelmalek Essaadi, Tetuan, Morocco; †Faculty of Sciences of Kenitra, Nuclear Physics Laboratory, Kenitra, Morocco

ABSTRACT
This present study aims to evaluate the nuclear data uncertainty on the neutron multiplication factor (k_{eff}) in order to adjust the 235U capture multigroup cross sections and the covariance matrix of the ENDF/B-VII.1 evaluation. For this purpose, the generalized linear-least squares method is applied. The 44 multigroup cross sections and the covariance matrix are processed with NJOY99 nuclear software, while MCNP6.1 nuclear code is used for the k_{eff} and sensitivity profile calculations. The obtained results show that the 235U capture cross sections require an adjustment of approximately −1% in 0–6 eV, −0.5% in 6 eV to 3 keV, 2% in 3 keV to 0.4 MeV, and −10% in 0.4–20 MeV.

1. Introduction
During these last years, the deterministic and Monte Carlo methods used in neutronic calculations have been improved. The main parameters of these calculations are the neutron cross sections, which are based on theories and nuclear experiments. Nevertheless, the values of these cross sections always still contain uncertainties and a necessary improvement. In order to reduce these uncertainties, several methods have been adopted: the generalized least squares method (Dupont, Ishikawa, Palmiotti, Salvatores, & de Saint-Jean, 2010), etc. The 235U capture cross section has a large difference from 30 keV to 1 MeV in the latest nuclear data libraries (Chadwick & Trkov, 2016; Iwamoto & McKnight, 2010; Mingrone, Vannini, Calviani, Ferrari, & Wallner, 2017), which leads to differences in the prediction of nuclear calculations for certain neutron parameters in nuclear reactors, such as k_{eff}. According to Iwamoto, this cross section requires a relative change of about 15% in 1 keV to 10 MeV energy range. In addition, other authors studied this subject (Leal, Derrien, Larson, & Wright, 1999; Leal, Mueller, Arbanas, Wiarda, & Derrien, 2008) and concluded that the relative standard deviation of k_{eff} due to this cross section, is approximately 200 pcm for the HST001.001 benchmark and ENDF/B-VII.0.

Thus, it is desirable to adjust this cross section given that it’s possible to calculate its sensitivity and covariance matrix (Dupont et al., 2010).

In the first part of this paper, theories of sensitivity, uncertainty, and adjustment are presented. In the second part, the prior and posterior uncertainties on the effective multiplication factor, the adjusted capture cross section of 235U nucleus, and its covariance matrix in ENDF/B-VII.1 have been evaluated. For these, many benchmarks from IHECSBE (Briggs, 2004) have been taken with different geometries (spherical, cylindrical, etc.) and diverse fuel forms (mixed metallic, solution, solid). Also, a large neutron spectrum (thermal, epithermal, and fast) which covers all neutron energy groups was used. In order to obtain the adjusted cross section and its covariance matrix, the generalized linear-least squares method (GLLSM) (Dragt & Dekker, 1977; Lewins & Becker, 1982) was used, which was based on chi-square (chi²) distribution. To apply the GLLS method, sensitivity and multigroup covariance matrices have been calculated and prepared using MCNP6.1 (Pelowitz, 2013) and NJOY99 codes (MacFarlane & Muir, 1994), respectively. Also, 44 neutron energy groups was used (Bowman, 2000; Zhu, 2015).

2. Methodology and study approach
2.1. Sensitivity and uncertainty theory
The sensitivity coefficients are the ratio of the resulting relative change in multiplication factor to the relative change in a system parameter x (cross section, fission nubar, etc.) over some small energy range $E + dE$. Assuming that the change in parameter x is small enough such that k_{eff} changes linearly with respect the parameter, the following relationship holds (Kiedrowski, 2013)

$$S_{k_{\text{eff}}, x} = \frac{x}{k_{\text{eff}}} \cdot \frac{\partial k_{\text{eff}}}{\partial x}$$

(1)

The use of the first order in the perturbation theory gives the expression of the sensitivity coefficient of
k_{eff} according to the following equation (Kiedrowski, 2013; Williams & Weisbin, 1978):

$$S_{k_{\text{eff}},x} = \frac{\langle \Psi^+, (\sum_x - S_x - k_{\text{eff}}^{-1} F_x) \Psi \rangle}{\langle \Psi^+, F \Psi \rangle}$$ (2)

where the brackets denote integration over all space (direction and energies), the term Ψ is the neutron angular flux, and Ψ^+ its adjoint. S_x is the macroscopic cross section of interest (zero if not a cross section), S_x is the scattering integral for nuclear data x (zero if not scattering), and F_x is the fission integral for nuclear data x (zero if not fission). At last, F designates the integral fission operator for the entire system.

For each nuclear parameter x and y, the sensitivity coefficients ($S_{k_{\text{eff}},x}$ and $S_{k_{\text{eff}},y}$) are evaluated by the Iterated Fission Probability method which is included in Monte Carlo N-Particle transport code MCNP6.1, whereas the covariance matrix (cov(x, y)) between these two nuclear parameters x and y (cross sections, fission nubar, etc.) in the 44 energy groups is calculated via the NJOY99 software. Thus, the relative uncertainty on the multiplication factor due to the uncertainties of nuclear data can be assessed as follows (Kiedrowski, Wilson, & Brown, 2011; Salvatore et al., 2014):

$$\frac{\Delta k_{\text{eff}}}{k_{\text{eff}}} \leq \sqrt{S_{k_{\text{eff}},x} \cdot \text{cov}(x,y) \cdot S_{k_{\text{eff}},y}}$$ (3)
In the following this uncertainty is denoted by Δk_{eff}–nucl.

2.2. Adjustment theory

Quantifying the uncertainty of the 235U capture cross section in the preceding paragraph brings us to the second step of calculating where the least squares theory is applied to reduce these uncertainties. Figure 1 shows the main steps used in this study.

The following quantities are used in this work:

- $K_{E,i} (i = 1, N_x)$: Experimental value of k_{eff} in benchmark i.
- $K_{C,i} (i = 1, N_x)$: ‘a priori’ calculated value of k_{eff} in benchmark i.
- $K'_{E,i} (i = 1, N_x)$: ‘a posteriori’ calculated value of k_{eff} in benchmark i.
- σ_{ij}: ‘a priori’ cross sections; σ'_{ij}: ‘a posteriori’ cross sections; S_{ji}: sensitivity

Table 1. Effective multiplication factor k_{eff} of selected benchmarks and their statistical uncertainties (1o).

Benchmark cases	k_{eff} (ENDF/B.VII.1)	k_{eff} (HEC580)
Hist01.002	0.99722 ± 0.00006	1.0021 ± 0.0072
Hist01.004	0.99815 ± 0.00005	1.0008 ± 0.0053
Hist01.007	0.99781 ± 0.00005	1.0008 ± 0.004
Hist001.008	0.99797 ± 0.00005	0.9998 ± 0.0038
Hist001.009	0.99412 ± 0.00006	1.0008 ± 0.0054
Hist001.010	0.99241 ± 0.00005	0.9993 ± 0.0054
Hist009.001	0.99695 ± 0.00005	0.999 ± 0.0043
Hist009.001R	0.99745 ± 0.00005	1.000 ± 0.0057
Hist009.002	0.99686 ± 0.00005	1.000 ± 0.0039
Hist009.003	0.99556 ± 0.00005	1.000 ± 0.0036
HST011.001	0.99859 ± 0.00004	1.0000 ± 0.0023
HST011.002	0.99666 ± 0.00004	1.0000 ± 0.0023
HST012.001	0.99723 ± 0.00003	0.9999 ± 0.0058
HST013.001	0.99868 ± 0.00003	1.0012 ± 0.0026
HST035.007	1.00467 ± 0.00005	1.000 ± 0.0035
HMF003.001	0.99501 ± 0.00003	1.000 ± 0.005
HMF003.002	0.99436 ± 0.00003	1.000 ± 0.005
HMF003.004	0.99721 ± 0.00003	1.000 ± 0.005
HMF003.005	1.00146 ± 0.00003	1.000 ± 0.003
HMF003.008	1.00214 ± 0.00003	1.000 ± 0.003
HMF003.009	1.00244 ± 0.00003	1.000 ± 0.005
HMF003.010	1.00505 ± 0.00003	1.000 ± 0.005
HMF014	0.99774 ± 0.00003	0.9989 ± 0.0017
HMF021.002	0.9975 ± 0.00003	1.000 ± 0.0024
HMF022.002	0.99746 ± 0.00003	1.000 ± 0.0021
HMF026.011	1.00312 ± 0.00004	0.9982 ± 0.0042
HMF028	1.00286 ± 0.00003	1.000 ± 0.0030

Table 2. Energy groups used in sensitivity and uncertainty analysis (Bowman, 2000; Zhu, 2015).

Group number	Energy range (eV)	Group number	Energy range (eV)
1	1.0000E-05–3.0000E-03	23	3.0000E-03–4.7500E+00
2	3.0000E-03–7.5000E-03	24	4.7500E-00–6.0000E+00
3	7.5000E-03–1.0000E-02	25	6.0000E-00–8.1000E+00
4	1.0000E-02–2.5300E-02	26	8.1000E-00–1.0000E+01
5	2.5300E-02–3.0000E-02	27	1.0000E-01–3.0000E+01
6	3.0000E-02–4.0000E-02	28	3.0000E-01–1.0000E+02
7	4.0000E-02–5.0000E-02	29	1.0000E-02–3.5000E+02
8	5.0000E-02–7.0000E-02	30	5.5000E-02–3.0000E+03
9	7.0000E-02–1.0000E-01	31	3.0000E-03–1.7000E+04
10	1.0000E-01–1.5000E-01	32	1.7000E-04–2.5000E+04
11	1.5000E-01–2.0000E-01	33	2.5000E-04–1.0000E+05
12	2.0000E-01–2.2500E-01	34	1.0000E-05–4.0000E+05
13	2.2500E-01–2.5000E-01	35	4.0000E-05–9.0000E+05
14	2.5000E-01–2.7500E-01	36	9.0000E-05–1.4000E+06
15	2.7500E-01–3.2500E-01	37	1.4000E-06–1.8500E+06
16	3.2500E-01–3.5000E-01	38	1.8500E-06–2.3540E+06
17	3.5000E-01–3.7500E-01	39	2.3540E-06–2.4790E+06
18	3.7500E-01–4.0000E-01	40	2.4790E-06–3.0000E+06
19	4.0000E-01–6.2500E-01	41	3.0000E-06–4.8000E+06
20	6.2500E-01–1.0000E+00	42	4.8000E-06–6.4340E+06
21	1.0000E+00–1.7700E+00	43	6.4340E-06–8.1873E+06
22	1.7700E+00–3.0000E+00	44	8.1873E+06–2.0000E+07
coefficients for k_{eff} in benchmark i with respect to cross section j; $C_{EC} = (C_E + C_C)$: k_{eff} covariance matrix; C_E: k_{eff} covariance matrix due to measurement; C_C: k_{eff} covariance matrix due to calculation; C_{σ}: 'a priori' cross-section covariance matrix; $C_{\sigma}': 'a posteriori' cross-section covariance matrix; χ^2: 'a priori' chi-square; I: unity matrix; $C_d = (C_{EC} + S C_{\sigma} S^T)$: total covariance matrix.

With these parameters, we can define the χ^2 before adjustment (David & Jackson, 1988; Gibbs, 2011; Palmiotti, Salvatores, & Aliberti, 2015; Williams & Weisbin, 1978):

$$
\chi^2 = (\sigma' - \sigma)^T C_{\sigma}^{-1} (\sigma' - \sigma) + (K_E - K_C)^T C_{EC}^{-1} (K_E - K_C)
$$ (5)

The minimization of χ^2 with respect to cross section gives the following two formulas:

$$
\sigma' - \sigma = C_{\sigma} S^T C_d^{-1} (K_E - K_C)
$$ (6)

and

$$
C_{\sigma}' = C_{\sigma} - C_{\sigma} S^T C_d^{-1} S C_{\sigma} = C_{\sigma} (I - S^T C_d^{-1} S C_{\sigma})
$$ (7)

where the above equations, respectively, give the adjusted cross section σ' and the associated covariance matrix C_{σ}'.

In order to select the appropriate benchmarks to adjust the nuclear data and their covariance matrices, the reduced χ^2_N (individual χ^2 divided by the total number of benchmarks) is calculated. This parameter must be included in the confidence interval of χ^2 distribution for each selected benchmark, as shown below (Hirotsu, 2017; Lewins & Becker,
The posterior cross section and its covariance matrix found previously allow to calculate the posterior parameters (\(k_{\text{eff}} \) and nuclear data uncertainty) using Equations (9) and (10), respectively.

\[
K_0 = K_C \left[1 + S^T \frac{(\sigma' - \sigma)}{\sigma} \right]
\]

where \(\text{cov}'(x,y) \) denotes the adjusted covariance matrix.

2.3. Study approach

In this study, to perform the adjustment of the \(^{235}\text{U} \) capture cross section, we selected several benchmarks: 12 fast, 15 thermal, and in Table 1, we presented these benchmarks, their standard deviations, and \(k_{\text{eff}} \). The \(k_{\text{eff}} \) calculations are performed using the Monte Carlo code MCNP6.1 and the ENDF/B-VII.1 evaluation where, in all simulations, a relatively high number of neutron histories (4000 active cycles of 100,000 neutrons) are used to neglect statistical uncertainties (3–6 pcm). In addition, the 44 energy groups used in these simulations are listed in Table 2.

Since the value of each physical quantity is given with uncertainty, our job is to reduce this uncertainty by applying the least squares method. For this, we need input parameters (anterior \(k_{\text{eff}} \) anterior covariance and sensitivity matrix, etc.), which allows us to calculate the adjusted output parameters (posterior \(k_{\text{eff}} \) posterior covariance matrix, and cross section) using Equations (6), (7), and (9).

The files used in this study are carefully processed and include the MCNP6.1 input files describing the benchmark simulation, the ACE (A Compact ENDF) nuclear data libraries, and the NJOY99 input files required for the processing of data covariance. The MCNP6.1 code uses this format (ACE) to calculate the multiplication factors using the KCODE card and sensitivity matrices using the KSEN card. As shown in Equations (3) and (4), the sensitivity matrices of the nuclear data are multiplied by their corresponding covariance matrices to calculate the uncertainty.

3. Results and discussion

3.1. Covariance of the \(^{235}\text{U} \) capture multigroup cross section

In this step, the NJOY99 system was used to generate the \(^{235}\text{U} \) capture multigroup cross section and
its covariance matrix of the ENDF/B-VII.1 evaluation. For this, the input file NJOY contains several modules, the main ones are GROUPR and ERROR for the multigroup cross sections (MF = 3) and the covariances (MF = 33), respectively. The results of the multi-capture group cross sections are shown in Figure 2 and the covariance generated with the VIEWR module of the NJOY system is shown in Figure 3.

Figure 3 shows the percent standard deviation of the ^{235}U capture cross-section uncertainty. These results can be used in turn to judge the adequacy of ENDF/B-VII.1 data. Covariance data improve the evaluation of cross sections using integral measurements (MacFarlane & Muir, 1994).

3.2. k_{eff} and sensitivity

The sensitivities and multiplication factors (k_{eff}) are calculated for the selected benchmarks using the KSEN card of the MCNP6.1 code (Pelovitz, 2013). The sensitivity simulations of four benchmarks are shown in Figure 4.

The results obtained indicate that the k_{eff} sensitivities caused by the ^{235}U capture cross section are remarkable for all energy groups greater than 10 and that large uncertainty is expected for fast benchmarks because they have a high sensitivity.

3.3. Uncertainty of the ^{235}U capture multigroup cross section

The uncertainty of nuclear data on the k_{eff} caused by the capture multigroup cross section of the ^{235}U is calculated using Equations (3) and (4). Table 3 summarizes the values found.

From the above table, high uncertainty values are observed for fast benchmarks and mean values for the other benchmarks. This demonstrated that it is necessary to adjust the nuclear data of the ^{235}U capture cross section to reduce these uncertainties.

3.4. The relative correction of the ^{235}U capture cross section

Figure 5 represents the relative correction of the ^{235}U capture cross section using ENDF/B-VII.1 evaluation in 44 neutron energy groups.

Table 3. Nuclear data uncertainty (in pcm) on k_{eff} for the selected benchmarks.

Benchmark cases	$\Delta k_{\text{eff-nucl ENDF/B-VII.1}}$
Hst001.002	72.249950
Hst001.004	70.865330
Hst001.007	32.842850
Hst001.008	68.380810
Hst001.009	72.183650
Hst001.010	34.785670
Hst009.001	242.456000
Hst009.001R	242.423800
Hst009.002	193.746700
Hst009.003	131.152100
HST011.001	27.772630
HST011.002	27.327540
HST012.001	14.374460
HST013.001	13.730140
HST035.007	69.771800
HMF003.001	1001.716000
HMF003.002	1038.204000
HMF003.003	1087.869000
HMF003.004	1111.644000
HMF003.005	1183.479000
HMF003.006	1299.690000
HMF003.010	1386.870000
HMF014	1018.521000
HMF021.002	963.558800
HMF022.002	928.469100
HMF026.011	793.130900
HMF028	1112.792000

Figure 5. The relative correction of the ^{235}U capture cross section in 44 energy groups.
Table 4. Estimation of the relative correction (%) of ^{235}U capture cross section in 44 energy groups.

Energy groups	1–24	24–30	30–34	33–44
Cross section	0–6 eV	6 eV–3 keV	3 keV–0.4 MeV	>0.4 MeV
^{235}U (ENDF/B-VII.1)	−1%	−0.5%	2%	−10%

Figure 6. Ratio of posterior/prior covariance matrix of the ^{235}U capture cross section in the evaluation ENDF/B-VII.1.

Figure 7. Prior, posterior, and experimental k_{eff} with one standard deviation in the evaluation ENDF/B-VII.1.

Figure 8. Prior, posterior, and experimental k_{eff} with two standard deviation in the evaluation ENDF/B-VII.1.
The relative corrections obtained for the 235U capture cross section in 44 neutron energy groups are summarized in Table 4 for the evaluation ENDF/B-VII.1.

3.5. Adjusted multigroup covariance matrix of the 235U capture cross section

Using the previous results and Equation (7), we calculated the posterior covariance matrix of the 235U capture cross section. Its ratio to that of the one prior is shown in Figure 6.

Figure 6 shows that the ratio of the posterior and prior covariance matrix of the 235U capture cross section is less than the unit in the energy groups 22 to 29 (1.77–550 eV). This indicates that the covariance improved. The studied ratio is null in the energy groups 29 to 44, for this reason, it is not presented in this figure.

3.6. Comparison between prior posterior and experimental k_{eff}

To validate the accuracy of the adjustment process of the 235U capture cross section in the ENDF/B-VII.1 evaluation, the k_{eff} is calculated with the adjusted nuclear data using Equation (9). The following figures show the anterior, posterior, and experimental k_{eff}, where the experimental k_{eff} is plotted with one and two standard deviations, respectively, in the two figures below.

Figures 7 and 8 show that in some thermal and fast benchmarks, the calculated posterior k_{eff} is improved and there is an improvement in the adjusted values. But in the other benchmarks, the calculated anterior and posterior k_{eff} stay the same. In addition, Figure 8 show that the anterior and posterior k_{eff} are all included in the experimental confidence interval.

To investigate the preceding results, prior and posterior ratios of the calculated k_{eff} to the experimental are calculated and presented in Figure 9.

The figure above clearly indicates that the adjusted k_{eff} is close to the experimental one in almost studied benchmarks.

3.7. Comparison between prior and posterior nuclear uncertainty on k_{eff}

The last step of this work is to test the effect of the adjusted covariance matrix on the calculated nuclear uncertainties using Equation (10). Table 5 presents these uncertainties as well as the previous ones.

The results presented in Table 5 show a significant improvement in nuclear data uncertainty caused by the capture cross section of uranium 235. Posterior uncertainties on k_{eff} were reduced by about 40% in thermal benchmarks and about 90% in fast benchmarks in the ENDF/B-VII.1 evaluation.
4. Conclusion

In this paper, nuclear data uncertainty on k_{eff} was studied to adjust the 235U capture cross section taken from ENDF/B-VII.1, with the MCNP6.1 Monte Carlo code, NJOY99 nuclear data processing system, and the GLLSM processed by a FORTRAN 95 program. Several critical benchmarks showed that the 235U capture cross section and its covariance matrix require an adjustment in the studied evaluation. Also, the obtained results have proved amelioration of the calculated k_{eff} and its nuclear uncertainty. The proposed adjustment in the 235U capture cross-section and its covariance matrix of the ENDF/B-VII.1 evaluation reduced the difference between the experimental k_{eff} and the k_{eff} calculated in several benchmarks. In addition, a significant decrease in nuclear uncertainties on the k_{eff} was observed after adjustment. In general, all the results obtained in this paper are satisfactory, but to further increase the criticality safety margin, the difference between experimental and calculated k_{eff} must be further reduced by improving the cross section studied and its covariance matrix.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

Bowman, S. M. (2000). Experience with the SCALE criticality safety cross-section libraries. Washington, DC: The Office of Nuclear Material Safety and Safeguards. ISBN: 978-0-16-050570-6.

Briggs, J. B. (2004). International handbook of evaluated criticality safety benchmark experiments, nuclear energy agency, Paris, France (Experimental Needs in Critical and Safety NEA/NSC/DCC (95) 03/0). Organisation for Economic Co-operation and Development, Nuclear Energy Agency.

Chadwick, M., & Trkov, A., 2016. The CIELO collaboration: Progress in international evaluations of neutron reactions on oxygen, iron, uranium and plutonium. ND2016. International conference on nuclear data for science and technology. Idaho National Laboratory, Idaho Falls, ID, USA. doi:10.1016/j.nds.2018.02.003

David, C. W., & Jackson, H. (1988). Application of critical experiments and operating data to core design via formal methods of cross section data adjustment (No. NEA/NEACRP/L(1988)307). Argonne National Laboratory, U.S.A. Retrieved from https://www.oecd-nea.org/science/docs/1988/neacrp-l-1988-307.pdf

Dragt, J. B., & Dekker, J. W. M. H. J. (1977). Methods of adjustment and error evaluation of neutron capture cross sections; application to fission product nuclides. Nuclear Science and Engineering, 62(1), 117–129. doi:10.13182/nse77-3

Dupont, E., Ishikawa, M., Palmiotti, G., Salvatores, M., & de Saint-Jean, C., 2010. Assessment of existing nuclear data adjustment methodologies, International Evaluation Cooperation, Intermediate Report of WPEC Subgroup 33, NEA/NSC/WPEC/DOC(2010)429, OECD/ NEA,Paris, 2011 RN:44089399.

Gibbs, B. P. (2011). Least-squares estimation, kalman filtering, and modeling: A practical handbook. Hoboken, N.J.: Wiley. ISBN: 978-0-470-52970-6 978-0-470-89004-2.

Hirotsu, C. (2017). Advanced analysis of variance, Wiley series in probability and statistics. Hoboken, NJ: John Wiley & Sons. ISBN 9781119303343.

Iwamoto, O., & McKnight, R. (2010). Uranium-235 capture cross-section in the keV to MeV energy region. NEA Nuclear Science Committee. Retrieved from https://www.oecd-nea.org/science/wpec/

Kiedrowski, B. C. (2013). MCNP6. 1 k-Eigenvalue sensitivity capability: A user's guide (MCNP Documentation & Website). Los Alamos National Laboratory (LANL). Retrieved from https:mcpn.lanl.gov/References.shtml

Kiedrowski, B. C., Wilson, P. P. H., & Brown, F. B. (2011). Adjoint-weighted tallies for k-eigenvalue calculations with continuous-energy Monte Carlo. Transactions of the American Nuclear Society, 168. doi:10.13182/NSE10-22

Leal, L. C., Derrien, H., Larson, N. M., & Wright, R. O. (1999). R-matrix analysis of 235U neutron transmission and cross-section measurements in the 0-to 2.25-keV energy range. Nuclear Science and Engineering: the Journal of the American Nuclear Society, 131, 230–253.

Leal, L., Mueller, D., Árbanas, G., Wiarda, D., & Derrien, H. (2008). Impact of the 235U covariance data in benchmark calculations. Citeseer. Retrieved from https://inis.iaea.org/search/search.aspx?orig_q=RN:40091778

Lewins, J., & Becker, M. (Eds.). (1982). Advances in nuclear science and technology: Volume 14 sensitivity and uncertainty analysis of reactor performance parameters. Boston, MA: Springer US. 10.1007/978-1-4613-3461-3

MacFarlane, R. E., & Muir, D. W. (1994). The njoy nuclear data processing system version 91 LA-12740-M. Los Alamos National Laboratory Research Library, USA. Retrieved from http://t2.lanl.gov/codes/njoy99

Makhloul, M., Boukhal, H., El Bardouni, T., Kaddour, M., Chakir, E., & El Ouahdani, S. (2018). 235U elastic cross-section adjustment in criticality benchmarks – Comparison between JENDL-4.0 and ENDF/-VII.1. Ann. Journal of Nuclear Energy, 114, 541–550.

Mingrone, F., Vannini, G., Calviani, M., Ferrari, A., & Wallner, A. (2017). Neutron capture cross section measurement of U 238 at the CERN n_TOF facility in the energy region from 1 eV to 700 keV. Physical Review C, 95. doi:10.1103/PhysRevC.95.034604

Palmiotti, G., Salvatores, M., & Albright, G. (2015). A-priori and A-posteriori covariance data in nuclear cross section adjustments: Issues and challenges. Nuclear Data Sheets, 123, 41–50.

Pelowitz, D. B. (Ed.). (2013). MCNP6 user’s manual May 2013 LA-CP-13-00634. Los Alamos National Laboratory. Retrieved from http://scholar.google.com/scholar_lookup?q=en&author=DB+Pelowitz&title=editor. +MCNP6+user%27s+manual%2C+version+1.0

Ralph, A. B. J., Stuart, H., & David, G. K. (1958). Statistics-An Introduction. New York, NY: John Wiley And Sons, Inc. doi:10.1002/bimj.19610030206

Salvatores, M., Palmiotti, G., Albright, G., Archier, P., De Saint Jean, C., Dupont, E., . . . Ivanova, T. (2014). Methods and issues for the combined use of integral experiments and covariance data: Results of a NEA international collaborative study. Nuclear Data Sheets, 118, 38–71.

Williams, M., & Weisbin, C. R. (1978). Sensitivity and uncertainty analysis for functions of the time-dependent nuclide density field. (No. 5010833). Oak Ridge National
Zhu, T. (2015). Sampling-based nuclear data uncertainty quantification for continuous energy Monte Carlo Codes. doi:10.5075/epfl-thesis-6598