SYZYGIES FOR THE VECTOR INVARIANTS OF THE DIHEDRAL GROUP

MÁTYÁS DOMOKOS

Abstract. The problem of finding generators of the \(GL \)-ideal of the relations between the generators of the algebra of invariants of the dihedral group acting on \(m \)-tuples of vectors from its defining 2-dimensional representation is studied. It is shown that this \(GL \)-ideal is generated by relations depending on no more than 3 vector variables. A minimal \(GL \)-ideal generating system is found for the case when \(m = 2 \), and for the case of the dihedral group of order 8 and arbitrary \(m \).

1. Introduction

Given a group \(G \) of linear transformations on a finite dimensional complex vector space \(V \) and a positive integer \(m \), consider the diagonal action of \(G \) on the space \(V^m \) of \(m \)-tuples of vectors from \(V \). We call the algebra \(R(m) := \mathbb{C}[V^m]^G \) of polynomial functions on \(V^m \) constant along the \(G \)-orbits the algebra of vector invariants of \(G \). Following Weyl [17] who gave a systematic study of the case when \(G \) is one of the classical subgroups of the general linear group \(GL(V) \), a description of the generators of \(R(m) \) is referred to as a First Fundamental Theorem, whereas a description of the generators of the ideal of relations between the generators of \(R(m) \) is referred to as a Second Fundamental Theorem for the vector invariants of \(G \). An indispensable tool to establish such theorems is to take into account a natural right action of the group \(GL_m(\mathbb{C}) \) of invertible \(m \times m \) matrices on \(V^m \) that commutes with the \(G \)-action: for \(g = (g_{ij})_{i,j=1}^m \in GL_m(\mathbb{C}) \) and \(v = (v_1, \ldots, v_m) \in V^m \) we set

\[
v \cdot g = \left(\sum_{i=1}^m g_{i1}v_i, \ldots, \sum_{i=1}^m g_{im}v_i \right).
\]

This induces a left action of \(GL_m(\mathbb{C}) \) on \(\mathbb{C}[V^m] \) via \(\mathbb{C} \)-algebra automorphisms. Namely, for \(f \in \mathbb{C}[V^m] \), \(v \in V^m \) and \(g \in GL_m(\mathbb{C}) \) we have \((g \cdot f)(v) = f(v \cdot g)\). The subalgebra \(R(m) \) is a \(GL_m(\mathbb{C}) \)-invariant subspace. Moreover, \(R(m) \) is a graded subalgebra of \(\mathbb{C}[V^m] \), where the latter is endowed with the standard grading. Write \(R(m)_+ \) for the maximal ideal of \(R(m) \) spanned by its homogeneous elements of positive degree. It is clearly a \(GL_m(\mathbb{C}) \)-submodule, just like \((R(m)_+)^2\). Let \(W(m) \) be a \(GL_m(\mathbb{C}) \)-module direct complement of \((R(m)_+)^2\) in \(R(m) \). Then the subspace \(W(m) \) minimally generates the algebra \(R(m) \). For example, for

\[2010 \text{ Mathematics Subject Classification.} \text{ Primary} 13A50; \text{ Secondary} 14L30, 20G05. \]

\textit{Key words and phrases.} \(GL \)-ideal, vector invariants, ideal of relations, dihedral group.

Partially supported by the Hungarian National Research, Development and Innovation Office, NKFIH K 138828, K 132002.
the case when $G = GL_3(\mathbb{C})$ acting on the space $V = \mathbb{C}^{3 \times 3}$ of 3×3 matrices by conjugation, an explicit description of a minimal homogeneous generating system of $R(m)$ for general m is rather complicated. This was made transparent in [1] by determining the $GL_m(\mathbb{C})$-module structure of $W(m)$. Let us turn next to the relations between the generators of $R(m)$. The identity map $W(m) \to W(m)$ induces a \mathbb{C}-algebra surjection

\[\varphi(m) : S(W(m)) \to R(m) \]

from the symmetric tensor algebra $S(W(m))$ of $W(m)$ onto $R(m)$, and $\ker(\varphi(m))$ is the ideal of relations for the minimal generating subspace $W(m)$ of $R(m)$. Clearly, $\ker(\varphi(m))$ is a GL-ideal, i.e. a $GL_m(\mathbb{C})$-stable ideal in $S(W(m))$. A sensible way to describe $\ker(\varphi(m))$ is to find elements in it which generate irreducible $GL_m(\mathbb{C})$-submodules of $S(W(m))$, such that the sum of these $GL_m(\mathbb{C})$-submodules is direct and forms a minimal generating subspace of the ideal $\ker(\varphi(m))$ (so in particular, these elements constitute a minimal generating system of $\ker(\varphi(m))$ as a GL-ideal). For example, in the special case $G = GL_3(\mathbb{C})$ and $V = \mathbb{C}^{3 \times 3}$, the $GL_3(\mathbb{C})$-module structure of the minimal degree non-zero homogeneous component of $\ker(\varphi(m))$ was computed in [3].

In this paper we study the problem of finding generators of the GL-ideal $\ker(\varphi(m))$ for the defining 2-dimensional representation of the dihedral group D_{2n} of order $2n$ ($n \geq 3$ is a positive integer). For the case $n = 3$ the result can be easily deduced from [10], see Theorem 6.9. For arbitrary n and $m = 2$ the solution will be given in Theorem 5.1. Moreover, for arbitrary n we reduce the problem to the case $m = 3$ (see Theorem 4.8). As an application of this reduction we give a complete solution of the problem when $n = 4$ in Theorem 6.8.

2. First Fundamental Theorem for the dihedral group

Let $n \geq 3$ be a positive integer and ω a complex primitive nth root of 1. We take for G the dihedral group D_{2n}, the subgroup of $GL_2(\mathbb{C})$ generated by the matrices

\[
\begin{pmatrix}
\omega & 0 \\
0 & \omega^{-1}
\end{pmatrix}
\]

and

\[
\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}.
\]

The given representation of D_{2n} is the complexification of the defining real representation of D_{2n} as the group of isometries of the Euclidean plane mapping a given regular n-gon into itself. Denoting by x, y the coordinate functions on $V := \mathbb{C}^2$, the algebra $\mathbb{C}[x, y]^{D_{2n}}$ of polynomial invariants is generated by the algebraically independent invariants

\[q := xy, \quad p := x^n + y^n. \]

Consider now the diagonal action of D_{2n} on the space $V^m := V \oplus \cdots \oplus V$ (m direct summands) of m-tuples of vectors. Denote by x_i (respectively y_i) the function mapping an m-tuple of vectors to the first (respectively second) coordinate of its ith vector component, $i = 1, \ldots, m$. The coordinate ring $\mathbb{C}[V^m]$ is the $2m$-variable polynomial ring $\mathbb{C}[x_1, y_1, \ldots, x_m, y_m]$. For a degree d homogeneous element $g \in \mathbb{C}[x, y]$ and $\alpha = (\alpha_1, \ldots, \alpha_m)$ with $\sum_j \alpha_j = d$ denote by g_{α} the multihomogeneous component of
where $\binom{d}{\alpha}$ stands for the d-th symmetric tensor power of the kth symmetric tensor power of the $GL(U)$-module U.

Write $\mathcal{F}(n, m) := S(W(m)) = \sum_{d=0}^{\infty} S^d(W(m))$ for the symmetric tensor algebra of $W(m)$ (endowed with the natural $GL_m(C)$-module structure induced by the $GL_m(C)$-action on $W(m)$). Although $S^1(W(m)) \subset \mathcal{F}(n, m)$ is just $W(m)$, to avoid confusion later we need to distinguish in the notation the elements of $W(m)$ when they are considered as elements of $\mathcal{F}(n, m)$. We shall write $\rho_\alpha \in \mathcal{F}(n, m)$ for the element corresponding to q_α, and $\pi_\beta \in \mathcal{F}(n, m)$ for the element corresponding to p_β. So $\mathcal{F}(n, m)$ is the polynomial ring

$$\mathcal{F}(n, m) = \mathbb{C}[\rho_\alpha, \pi_\beta \mid \sum \alpha_i = 2, \sum \beta_j = n].$$

Theorem 2.1. [12] Theorem 4.1] The polarizations of q and p form a minimal homogeneous generating system of the \mathbb{C}-algebra $\mathbb{C}[V^m]^{D_{2n}}$.

Remark 2.2. In fact [12] works over the real field, but by well known basic principles [12, Theorem 4.1] implies the variant Theorem 2.1 above.

Therefore in this case $W(m)$ (cf. Section 1) is

$$W(m) = \langle q \rangle_{GL_m(C)} \oplus \langle p \rangle_{GL_m(C)} = \text{Span}_C \{q_\alpha, p_\beta \mid \alpha, \beta \in \mathbb{N}_0^m, \sum_{i=1}^{m} \alpha_i = 2, \sum_{j=1}^{m} \beta_j = n\}.$$

We have the $GL_m(C)$-module isomorphisms

$$\langle q \rangle_{GL_m(C)} \cong S^2(C^m) \quad \text{and} \quad \langle p \rangle_{GL_m(C)} \cong S^n(C^m)$$

where $S^k(U)$ stands for the kth symmetric tensor power of the $GL(U)$-module U.
Thus in our case $\varphi(m)$ (cf. [1] in Section 1) is the \mathbb{C}-algebra (as well as $GL_m(\mathbb{C})$-module) surjection

$$\varphi(n, m) : \mathcal{F}(n, m) \rightarrow \mathbb{C}[V^m]^{D_{2n}}, \quad \rho_\alpha \mapsto q_\alpha, \quad \pi_\beta \mapsto p_\beta.$$

Throughout the paper for $l \leq m$ we shall treat $\mathbb{C}[V^l]$ and $\mathcal{F}(n, l)$ as a subalgebra of $\mathbb{C}[V^m]$ and $\mathcal{F}(n, m)$ in the obvious way. Our aim is to describe the kernel $\ker(\varphi(n, m))$ of $\varphi(n, m)$ as a GL-ideal.

3. Preliminaries on $GL_m(\mathbb{C})$-modules

As a general reference to the material in this section, see for example the book [14]. Recall that the isomorphism classes of the irreducible polynomial $GL_m(\mathbb{C})$-modules of degree d are labeled by partitions of d with m parts, where by a partition λ of d with m parts (notation: $\lambda \in \text{Par}_m(d)$) we mean a sequence $(\lambda_1, \ldots, \lambda_m)$ of non-negative integers with $\lambda_1 \geq \cdots \geq \lambda_m$ and $\lambda_1 + \cdots + \lambda_m = d$. We denote by $\text{ht}(\lambda)$ the number of non-zero elements in the sequence $(\lambda_1, \ldots, \lambda_m)$. Moreover, for $l < m$ and non-negative integers $\lambda_1 \geq \cdots \geq \lambda_l$ with $\sum \lambda_i = d$ we identify the sequence $(\lambda_1, \ldots, \lambda_l)$ with $(\lambda_1, \ldots, \lambda_l, 0, \ldots, 0) \in \text{Par}_m(d)$.

For an ℓ-dimensional vector space U write $S^\lambda(U)$ for the $GL(U)$-module associated to U by the Schur functor $S^\lambda(-)$. This is an irreducible polynomial $GL(U)$-module if $\text{ht}(\lambda) \leq \ell$ and $S^\lambda(U)$ is the zero module when $\text{ht}(\lambda) > \ell$. For example, for the partition $\lambda = (n, 0, \ldots)$ with only one non-zero part we have $S^\lambda(U) = S^n(U)$, the nth symmetric tensor power of U. Moreover, for $\lambda \in \text{Par}_m(d)$, $S^\lambda(\mathbb{C}^m)$ is the irreducible polynomial $GL_m(\mathbb{C})$-module labeled by λ. Note that when U has a $GL_m(\mathbb{C})$-module structure (m may differ from ℓ), then $S^\lambda(U)$ becomes naturally a (typically not irreducible) $GL_m(\mathbb{C})$-module.

$\mathcal{F}(n, m)$ and $\mathbb{C}[V^m]$ are polynomial $GL_m(\mathbb{C})$-modules. An element v of a polynomial $GL_m(\mathbb{C})$-module generates a submodule isomorphic to $S^\lambda(\mathbb{C}^m)$ if

1. it is fixed by $UT_m(\mathbb{C})$, the subgroup of upper triangular unipotent matrices;
2. for a diagonal element $\text{diag}(z_1, \ldots, z_m) \in GL_m(\mathbb{C})$ we have $\text{diag}(z_1, \ldots, z_m) \cdot v = z_1^{\lambda_1} \cdots z_m^{\lambda_m} \cdot v$.

Such an element is called a highest weight vector. An irreducible polynomial $GL_m(\mathbb{C})$-module contains a unique (up to non-zero scalar multiples) highest weight vector.

The action of $GL_m(\mathbb{C})$ on $\mathcal{F}(n, m)$ and on $\mathbb{C}[V^m]$ induces a representation of its Lie algebra $\mathfrak{gl}_m(\mathbb{C})$ on $\mathcal{F}(n, m)$ and on $\mathbb{C}[V^m]$, such that $\varphi(n, m)$ is a homomorphism of $\mathfrak{gl}_m(\mathbb{C})$-modules. In particular, $\ker(\varphi(n, m))$ is preserved by $\mathfrak{gl}_m(\mathbb{C})$. To detect explicit highest weight vectors it is convenient to pass to the Lie algebra action. Therefore for later use we shall record the formulae determining this $\mathfrak{gl}_m(\mathbb{C})$-representation on $\mathcal{F}(n, m)$ in the case $m = 3$. Denote by $E_{i, j}$ the matrix unit having entry 1 in the (i, j) position and the entry 0 in all other positions. The Lie algebra $\mathfrak{gl}_m(\mathbb{C})$ of $GL_m(\mathbb{C})$ has basis $\{E_{i, j} \mid 1 \leq i, j \leq m\}$. We have

$$E_{1, 2} \pi_{i, j, k} = j \pi_{i+1, j-1, k}, \quad E_{2, 3} \pi_{i, j, k} = k \pi_{i, j+1, k-1}, \quad E_{ss} \pi_{\alpha_1, \alpha_2, \alpha_3} = \alpha_s \pi_\alpha$$

$$E_{2, 1} \pi_{i, j, k} = i \pi_{i-1, j+1, k}, \quad E_{3, 2} \pi_{i, j, k} = j \pi_{i-1, j+1, k}$$

$$E_{1, 2} \rho_{i, j, k} = j \rho_{i+1, j-1, k}, \quad E_{2, 3} \rho_{i, j, k} = k \rho_{i, j+1, k-1}, \quad E_{ss} \rho_{\alpha_1, \alpha_2, \alpha_3} = \alpha_s \rho_\alpha$$
\[E_{2,1} \cdot \rho_{i,j,k} = i \rho_{i-1,j+1,k}, \quad E_{3,2} \cdot \rho_{i,j,k} = j \rho_{i,j-1,k+1} \]

where in the above formulae \(\pi_{a,b,c} \) or \(\rho_{a,b,c} \) is interpreted as zero unless \(a, b, c \) are all non-negative.

4. Reduction to the case \(m = 3 \)

The algebra \(\mathbb{C}[V^m]^{D_{2n}} \) is a graded subalgebra of \(\mathbb{C}[V^m] \), where the latter is endowed with the standard grading. We introduce a grading on \(F \) by making the homomorphism \(\varphi(n, m) \) degree preserving; that is, the degree of the variables \(\rho_\alpha \) is 2, and the degree of the variables \(\pi_\beta \) is \(n \). We shall denote by \(F(n, m)_d \) and by \(\ker(\varphi(n, m))_d \) the degree \(d \) homogeneous component of \(F(n, m) \) and its graded subspace \(\ker(\varphi(n, m)) \), and we write \(F(n, m)_{\leq d} \) and \(\ker(\varphi(n, m))_{\leq d} \) for the sum of the homogeneous components of degree at most \(d \) in \(F(n, m) \) and \(\ker(\varphi(n, m)) \).

Proposition 4.1. The ideal \(\ker(\varphi(n, m)) \) is generated by its elements of degree at most \(2n + 2 \).

Proof. By a general result of Derksen [8, Theorem 2] the ideal \(\ker(\varphi(n, m)) \) is generated by its elements of degree at most \(2\tau_{D_{2n}}(V^m) \), where \(\tau_{D_{2n}}(V^m) \) denotes the minimal positive integer \(k \) such that all homogeneous polynomials in \(\mathbb{C}[V^m] \) of degree \(k \) are contained in the ideal \(\mathbb{C}[V^m]^{D_{2n}} \cdot \mathbb{C}[V^m] \) of \(\mathbb{C}[V^m] \) generated by the homogeneous \(D_{2n} \)-invariants of positive degree (called the Hilbert ideal). The number \(\tau_{D_{2n}}(V^m) \) is bounded by the Noether number of \(D_{2n} \) by [7, Lemma 1.6]. The Noether number of \(D_{2n} \) is \(n + 1 \) by [15] (see also [6, Corollary 5.6] for a stronger statement). This implies \(\tau_{D_{2n}}(V^m) \leq n + 1 \). Note finally that obviously \(\tau_{D_{2n}}(V^m) \geq \tau_{D_{2n}}(V) \), and the latter number is known to be \(n + 1 \): indeed, \(\mathbb{C}[V]^{D_{2n}} \) is generated by algebraically independent homogeneous invariants of degree 2 and \(n \), and thus the Hilbert series of the corresponding coinvariant algebra \(\mathbb{C}[V^m]/\mathbb{C}[V^m]^{D_{2n}} \cdot \mathbb{C}[V^m] \) equals \((1 + t)(1 + t + \cdots + t^{n-1}) \) (see [5]).

Note that \(F(n, m) \) has the tensor product decomposition \(F(n, m) = D(m) \otimes E(n, m) \) where

- \(D(m) = S(\langle q \rangle_{\text{GL}_m(\mathbb{C})}) = \mathbb{C}[\rho_\alpha \mid \alpha \in \mathbb{N}_0^m, \sum \alpha_i = 2] \)
- \(E(n, m) = S(\langle p \rangle_{\text{GL}_m(\mathbb{C})}) = \mathbb{C}[\pi_\beta \mid \beta \in \mathbb{N}_0^m, \sum \beta_j = n] \)

For \(m \geq 3 \) set

\[R_{2,2,2} := \det \begin{pmatrix} \rho_{2,0,0} & \rho_{1,1,0} & \rho_{1,0,1} \\ \rho_{1,1,0} & \rho_{0,2,0} & \rho_{0,1,1} \\ \rho_{1,0,1} & \rho_{0,1,1} & \rho_{0,0,2} \end{pmatrix} \in D(m) \subset F(n, m). \]

Lemma 4.2. For \(m \geq 3 \) the element \(R_{2,2,2} \) belongs to \(\ker(\varphi(n, m)) \), and \(\langle R_{2,2,2} \rangle_{\text{GL}_m(\mathbb{C})} \cong S^{(2,2,2)}(\mathbb{C}^m) \) as \(\text{GL}_m(\mathbb{C}) \)-modules.
Proof. The matrix
\[
\begin{pmatrix}
q_{2,0,0} & q_{1,1,0} & q_{1,0,1} \\
q_{1,1,0} & q_{0,2,0} & q_{0,1,1} \\
q_{1,0,1} & q_{0,1,1} & q_{0,0,2}
\end{pmatrix}
= \begin{pmatrix} x_1 & y_1 \\
x_2 & y_2 \\
x_3 & y_3 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1/2 \\
1/2 & 0 \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_2 & x_3 \\
y_1 & y_2 & y_3 \end{pmatrix}
\]
has rank 2, implying that its determinant is zero. On the other hand, this determinant is \(\varphi(n,m)\)(\(R_{2,2,2}\)). Thus \(R_{2,2,2} \in \ker(\varphi(n,m))\). A straightforward calculation yields \(E_{1,2}R_{2,2,2} = 0, E_{2,3}R_{2,2,2} = 0,\) and \(E_{i,j}R_{2,2,2} = 2R_{2,2,2}\) (\(i = 1, 2, 3\)), hence \(R_{2,2,2}\) is a highest weight vector in \(F(n,m)\) with weight \((2,2,2)\).

\[\square\]

Remark 4.3. In fact it is known that \(R_{2,2,2}\) generates as a \(GL\)-ideal the kernel of the restriction of \(\varphi(n,m)\) to \(D(m)\) (see the Second Fundamental Theorem for the orthogonal group in \([17, \text{Theorem} 2.17.A]\)).

Setting \(\bar{D}(m) := D(m)/(R_{2,2,2})GL_m(\mathbb{C})D(m)\), by Lemma 4.2 we conclude that \(\varphi(n,m)\) factors through the natural surjection \(F(n,m) \to \bar{D}(m) \otimes E(n,m)\), so we get the graded \(GL_m(\mathbb{C})\)-module algebra surjection
\[
\bar{\varphi}(n,m) : \bar{D}(m) \otimes E(n,m) \to \mathbb{C}[V^m]^{D_{2n}}.
\]

Lemma 4.4. For \(m \geq 3\) the \(GL\)-ideal \(\ker(\varphi(n,m))\) is generated by \(R_{2,2,2}\) and any subset of \(\ker(\varphi(n,m))\) whose image under the natural surjection \(F(n,m) \to \bar{D}(m) \otimes E(n,m)\) generates \(\ker(\varphi(n,m))\) as a \(GL\)-ideal.

Proof. This is an immediate consequence of the construction of \(\bar{\varphi}(n,m)\).

Our next aim is to compute the \(GL_m(\mathbb{C})\)-module structure of the homogeneous components of \(\bar{D}(m) \otimes E(n,m)\) up to degree \(2n + 2\).

Proposition 4.5. We have the following isomorphisms of \(GL_m(\mathbb{C})\)-modules:

(i) \(\bar{D}(m) \cong \sum_{d=0}^{\infty} \sum_{\lambda \in \text{Par}_m(d)} S^{2\lambda}(\mathbb{C}^m)\) where \(2\lambda\) stands for the partition \((2\lambda_1, \ldots, 2\lambda_m)\) of \(2d\).

(ii) \(\bar{D}(m) \cong \sum_{d=0}^{\infty} \sum_{\lambda \in \text{Par}_m(d), \text{ht}(\lambda) \leq 2} S^{2\lambda}(\mathbb{C}^m)\).

(iii) \(E(n,m) \cong S(S^n(\mathbb{C}^m)) = \bigoplus_{d=0}^{\infty} S^d(S^n(\mathbb{C}^m))\) (the symmetric tensor algebra of \(S^n(\mathbb{C}^m)\)).

(iv) \(S^2(S^n(\mathbb{C}^m)) \cong \sum_{j=0}^{\left\lfloor \frac{n}{2} \right\rfloor} S^{2(n-2j,2j)}(\mathbb{C}^m)\).

Proof. (i) We have \(\langle q \rangle_{GL_m(\mathbb{C})} \cong S^2(\mathbb{C}^m)\) and therefore (i) follows from the well-known decomposition
\[
S^d(S^2(\mathbb{C}^m)) \cong \sum_{\lambda \in \text{Par}_m(d)} S^{2\lambda}(\mathbb{C}^m)
\]
(see for example \([14, \text{Section} 11.4.5, \text{Theorem}]\)).

(ii) \(\bar{D}(m)\) can be identified with the coordinate ring of the variety of \(m \times m\) symmetric matrices of rank at most 2 endowed with the natural \(GL_m(\mathbb{C})\)-action. For the well-known decomposition of this \(GL_m(\mathbb{C})\)-module see for example \([14, \text{Section} 11.5.1, \text{Second Fundamental Theorem}]\).

(iii) follows from the isomorphism \(\langle p \rangle_{GL_m(\mathbb{C})} \cong S^n(\mathbb{C}^m)\).
Corollary 4.6.\ As a $GL_m(\mathbb{C})$-module, $(\bar{D}(m) \otimes \mathcal{E}(n, m))_{\leq d}$ is isomorphic to

$$
\sum_{d=0}^{n+1} \sum_{\lambda \in \text{Par}_m(n(d), \text{ht}(\lambda) \leq 2)} S^{2\lambda}(\mathbb{C}^m) + \sum_{d=0}^{n+2} \sum_{\lambda \in \text{Par}_m(n(d), \text{ht}(\lambda) \leq 2)} S^m(\mathbb{C}^m) \otimes S^{2\lambda}(\mathbb{C}^m)
$$

$$
+ \sum_{j=0}^{\lfloor \frac{d}{2} \rfloor} (S^{(2n-2j, 2j)}(\mathbb{C}^m) + S^{(2n-2j, 2j)}(\mathbb{C}^m) \otimes S^2(\mathbb{C}^m)).
$$

Proof. As $\mathcal{E}(n, m)_d$ is non-zero only if d is a multiple of n, the sum of the homogeneous components of $\bar{D}(m) \otimes \mathcal{E}(n, m)$ of degree at most $2n + 2$ is

$$
\sum_{d=0}^{2n+2} \bar{D}(m)_d \otimes \mathcal{E}(n, m)_0 + \sum_{d=0}^{n+2} \bar{D}(m)_d \otimes \mathcal{E}(n, m)_n + \sum_{d=0}^{2} \bar{D}(m)_d \otimes \mathcal{E}(n, m)_2.
$$

Now the statement follows from the $GL_m(\mathbb{C})$-module isomorphisms given in Proposition 4.5. \qed

Recall that for $l \leq m$ we view $\mathcal{F}(n, l)$ as a subspace of $\mathcal{F}(n, m)$ in the obvious way. Similarly, $\bar{D}(l)$, $\mathcal{D}(l)$, $\mathcal{E}(n, l)$, are viewed as subspaces of $\bar{D}(m)$, $\mathcal{D}(m)$, $\mathcal{E}(n, m)$, and so $\mathcal{D}(l) \otimes \mathcal{E}(n, l)$ is viewed as a subspace of $\bar{D}(m) \otimes \mathcal{E}(n, m)$.

Proposition 4.7. Let U be a $GL_m(\mathbb{C})$-invariant subspace of $(\bar{D}(m) \otimes \mathcal{E}(n, m))_{\leq 2n+2}$. Then

$$
U = (U \cap \bar{D}(3) \otimes \mathcal{E}(n, 3))_{GL_m(\mathbb{C})}.
$$

Proof. By complete reducibility of $GL_m(\mathbb{C})$-modules, it is sufficient to prove the statement in the special case when U is a minimal $GL_m(\mathbb{C})$-invariant subspace of $(\bar{D}(m) \otimes \mathcal{E}(n, m))_{\leq 2n+2}$. So assume that U is a minimal $GL_m(\mathbb{C})$-invariant subspace. Pieri’s Formula (cf. [13, I.5.16]) implies that if $S^\nu(\mathbb{C}^m)$ occurs as a summand in $S^\lambda(\mathbb{C}^m) \otimes S^\mu(\mathbb{C}^m)$ then $\text{ht}(\nu) \leq \text{ht}(\lambda) + \text{ht}(\mu)$. Thus by Corollary 4.6 we conclude that $U \cong S^\lambda(\mathbb{C}^m)$ for some partition λ with $\text{ht}(\lambda) \leq 3$. It follows that $U = (w)_{GL_m(\mathbb{C})}$ for some highest weight vector w with weight λ. That is, w is a non-zero element of U fixed by the subgroup of unipotent upper triangular matrices in $GL_m(\mathbb{C})$, and for a diagonal element $\text{diag}(z_1, \ldots, z_m) \in GL_m(\mathbb{C})$ we have $\text{diag}(z_1, \ldots, z_m) \cdot w = z_1^{\lambda_1} \cdots z_m^{\lambda_m} w$. In particular, $\text{ht}(\lambda) \leq 3$ implies that w belongs to $\bar{D}(3) \otimes \mathcal{E}(n, 3)$. \qed

We arrived at the main result of this Section:

Theorem 4.8. For $m \geq 3$ the ideal $\ker(\varphi(n, m))$ of $\mathcal{F}(n, m)$ is generated by the $GL_m(\mathbb{C})$-submodule $\langle \ker(\varphi(n, 3))_{\leq 2n+2} \rangle_{GL_m(\mathbb{C})}$ of $\mathcal{F}(n, m)$. That is, $\ker(\varphi(n, m))$ is generated as a GL-ideal by elements of degree $\leq 2n + 2$ contained in the kernel of $\varphi(n, 3)$. \qed
Proof. The natural surjection $F(n, m) \to \mathcal{D}(m) \otimes \mathcal{E}(n, m)$ maps $\ker(\varphi(n, m))$ onto $\ker(\varphi(n, m))$, therefore by Proposition 4.7, the latter is generated as an ideal by $\ker(\varphi(n, m))_{\leq 2n+2}$. Now $\ker(\varphi(n, m))_{\leq 2n+2}$ is a $GL_m(\mathbb{C})$-invariant subspace of $(\mathcal{D}(m) \otimes \mathcal{E}(n, m))_{\leq 2n+2}$, hence by Proposition 4.7 we have

$$\ker(\varphi(n, m))_{\leq 2n+2} = \langle \ker(\varphi(n, m))_{\leq 2n+2} \rangle_{\leq 2n+2} \cap (\mathcal{D}(3) \otimes \mathcal{E}(n, m))_{\leq 2n+2} = \langle \ker(\varphi(n, m))_{\leq 2n+2} \rangle_{\leq 2n+2} \cap \mathcal{E}(n, m)_{\leq 2n+2}.$$

So the image $\ker(\varphi(n, m))_{\leq 2n+2}$ of $\ker(\varphi(n, m))_{\leq 2n+2}$ under the natural surjection $F(n, m) \to \mathcal{D}(m) \otimes \mathcal{E}(n, m)$ generates $\ker(\varphi(n, m))$ as a GL-ideal. Since the element $R_{2,2,2}$ belongs to $\ker(\varphi(n, m))_{\leq 2n+2}$, we can conclude by Lemma 4.4 that $\ker(\varphi(n, m), 3)_{\leq 2n+2}$ generates $\ker(\varphi(n, m))$ as a GL-ideal. Equivalently, $\ker(\varphi(n, m))$ is generated as an ideal of $F(n, m)$ by its subspace $\langle \ker(\varphi(n, m))_{\leq 2n+2} \rangle_{\leq 2n+2}$.

\[\square \]

5. The case $m = 2$

Set

\[\mathcal{R}(n)_{2n-2k, 2k} := \pi_{n,0}\rho_{0,2} - 2\pi_{n-1,1}\rho_{1,1} + \pi_{n-2,2}\rho_{2,0}. \]

For $k = 1, \ldots, \lfloor \frac{n}{2} \rfloor$ set

\[\mathcal{R}(n)_{2n-2k, 2k} := (-1)^k \frac{1}{2} \binom{2k}{k} \pi_{n-k,k}^2 + \sum_{j=0}^{k-1} (-1)^j \binom{2k}{j} \pi_{n-j,j} \pi_{n-2k+j, 2k-j} - 4^n \rho_{2,0}^2 (\rho_{1,1} - \rho_{2,0} \rho_{0,2})^k. \]

Theorem 5.1. For $\lambda \in \{(n, 2), (2n-2, 2), (2n-4, 4), \ldots, (2n-2 \lfloor \frac{n}{2} \rfloor, 2 \lfloor \frac{n}{2} \rfloor)\}$ consider the element $\mathcal{R}(n)_\lambda$ in $F(n, 2)$ introduced above.

(i) For $m \geq 2$ the element $\mathcal{R}(n)_\lambda$ generates a $GL_m(\mathbb{C})$-submodule in $\ker(\varphi(n, m))$ isomorphic to $S^\lambda(\mathbb{C}^m)$.

(ii) For $m = 2$ the ideal, $\ker(\varphi(n, 2))$ is minimally generated by the above elements $\mathcal{R}(n)_\lambda$ as a $GL_2(\mathbb{C})$-ideal.

Remark 5.2. A minimal presentation of the algebra $\mathbb{C}[V \oplus V^*]^{D_{2n}}$ by generators and relations is given in [2] for $n = 3, 4, 6$ and in [4] Theorem 2.1 for arbitrary n. Since $V^* \cong V$ as D_{2n}-modules, these results can be translated to an explicit minimal presentation by generators and relations of $\mathbb{C}[V^2]^{D_{2n}}$. So the novel part of our Theorem 5.1 is the nice explicit form of the relations $\mathcal{R}(n)_\lambda$ and the understanding of the $GL_2(\mathbb{C})$-module structure of the minimal syzygies.

Proof of Theorem 5.1(i). We have $E_{1,2}.\mathcal{R}(n)_{n,2} = 0$, $E_{1,1}.\mathcal{R}(n)_{n,2} = n\mathcal{R}(n)_{n,2}$, $E_{2,2}.\mathcal{R}(n)_{n,2} = 2\mathcal{R}(n)_{n,2}$. Thus $\mathcal{R}(n)_{n,2}$ is a highest weight vector with weight $(n, 2)$, and therefore it generates an irreducible $GL_m(\mathbb{C})$-submodule of $F(n, m)$ isomorphic to $S^{(n,2)}(\mathbb{C}^m)$ for $m \geq 2$. The elements $\rho_{2,0}, \rho_{1,1}^2 - \rho_{2,0} \rho_{0,2}$ and $(-1)^k \frac{1}{2} \binom{2k}{k} \pi_{n-k,k}^2 + \sum_{j=0}^{k-1} (-1)^j \binom{2k}{j} \pi_{n-j,j} \pi_{n-2k+j, 2k-j}$ are annihilated by $E_{1,2} \in \mathfrak{sl}_2(\mathbb{C})$, so they are highest weight vectors with weights $(2, 0)$, $(2, 2)$ and $(2n-2k, 2k)$. It follows that $\mathcal{R}(n)_{2n-2k, 2k}$ is a highest weights vector of weight.
Note that the equalities (3), (4), (5) show that this gives an explicit formula for the highest weight vector of the summand $S^{(2n-2k,2k)}(C^m)$ for $m \geq 2$. The equality
\[p_{n,0}q_{0,2} - 2p_{n-1,1}q_{1,1} + p_{n-2,2}q_{2,0} = 0 \]
can be verified by direct computation, showing that $\varphi(n,2)(\mathcal{R}(n)_{2n-2k,2k}) = 0$. To verify that $\mathcal{R}(n)_{2n-2k,2k}$ belongs to $\ker(\varphi(n,2))$ for $k = 1, \ldots, \lfloor \frac{n}{2} \rfloor$ we need to prove the equality
\[(-1)^k \frac{1}{2} \binom{2k}{k} p_{n-k,k}^2 + \sum_{j=0}^{k-1} (-1)^j \binom{2k}{j} p_{n-j,j} p_{n-2k+j,2k-j} - 4^k q_{2,0}^{n-2k} (q_{1,1}^2 - q_{2,0} q_{0,2})^k = 0. \]

Since $\mathcal{R}(n)_{2n-2k,2k}$ is a highest weight vector, it is fixed by the subgroup $UT_2(C)$ of unipotent upper triangular matrices in $GL_2(C)$. Therefore $\varphi(n,2)(\mathcal{R}(n)_{2n-2k,2k})$ (the left hand side of (4)) is a $UT_2(C)$-invariant in $C[V^2]$, and thus it is constant along the $UT_2(C)$-orbits in V^2. The $UT_2(C)$-orbit of each point from a Zariski dense open subset in V^2 has non-empty intersection with the subset of lower triangular matrices in $C^{2 \times 2} = V^2$. Therefore it is sufficient to show that $\sigma(\varphi(n,2)(\mathcal{R}(n)_{2n-2k,2k})) = 0$, where σ is the homomorphism $C[x, y_1, x_2, y_2] \rightarrow C[x, y_1, y_2]$ given by the specialization $x_2 \mapsto 0$. Now $\sigma(p_{n-j,j}) = y_1^{n-j} y_2^j$ for $j > 0$, $\sigma(q_{0,2}) = 0$, $\sigma(q_{1,1}) = \frac{1}{2} x_1 y_2$, hence
\[\sigma(4^k q_{2,0}^{n-2k} (q_{1,1}^2 - q_{2,0} q_{0,2})^k) = x_1^{n-2k} y_2^k. \]

On the other hand, we have
\[\sigma((-1)^k \frac{1}{2} \binom{2k}{k} p_{n-k,k}^2 + \sum_{j=0}^{k-1} (-1)^j \binom{2k}{j} p_{n-j,j} p_{n-2k+j,2k-j}) \]
\[= ((-1)^k \frac{1}{2} \binom{2k}{k}) + \sum_{j=0}^{k-1} (-1)^j \binom{2k}{j}) y_1^{2n-2k} y_2^k + x_1^n y_1^{-2k} y_2^k. \]

Note that
\[(-1)^k \frac{1}{2} \binom{2k}{k} + \sum_{j=0}^{k-1} (-1)^j \binom{2k}{j} = \frac{1}{2} \sum_{j=0}^{2k} \binom{2k}{j} = \frac{1}{2} (1 - 1)^{2k} = 0. \]

The equalities (5), (6), (7) show $\sigma(\varphi(n,2)(\mathcal{R}(n)_{2n-2k,2k})) = 0$, implying in turn the equality (4), and thus (i) is proved. \[\Box\]

Remark 5.3. The expression $(-1)^k \frac{1}{2} \binom{2k}{k} \pi_{n-k,k}^2 + \sum_{j=0}^{k-1} (-1)^j \binom{2k}{j} \pi_{n-j,j} \pi_{n-2k+j,2k-j}$ appears in the invariant theory of m-ary forms of degree n, see \[11\] Section 114. Note also that this gives an explicit formula for the highest weight vector of the summand $S^{(2n-2k,2k)}(C^m)$ of $S^2(S^n(C^m))$ in the decomposition given in Proposition 4.3 (iv).
5.1. Hironaka decomposition. The following statement is known, see for example [4] Theorem 2.1. We shall present an alternative proof.

Proposition 5.4. The elements \(p_{n,0}, q_{2,0}, p_{0,n}, q_{0,2}\) form a homogeneous system of parameters in \(\mathbb{C}[V^2]^{D_{2n}}\), and \(\mathbb{C}[V^2]^{D_{2n}}\) is a free module over the subalgebra \(P(n,2) := \mathbb{C}[p_{n,0}, q_{2,0}, p_{0,n}, q_{0,2}]\) generated by

\[
\{q_{1,1}, p_{n-i,i} \mid j = 0, 1, \ldots, n; \ i = 1, \ldots, n-1\}.
\]

Proof. The common zero locus in \(V^2\) of \(p_{n,0}, q_{2,0}, p_{0,n}, q_{0,2}\) is the zero element of \(V^2\), hence these polynomials form a homogeneous system of parameters in \(\mathbb{C}[V^2]^{D_{2n}}\) and in \(\mathbb{C}[V^2]\) (so both of these algebras are finitely generated free modules over their subalgebra \(P(n,2)\), see for example [8, Section 2.3]).

Denote by \(H\) the cyclic subgroup of \(D_{2n}\) generated by \(\begin{pmatrix} \omega & 0 \\ 0 & \omega^{-1} \end{pmatrix}\). Then \(\mathbb{C}[V^2]^H\) is spanned as a \(\mathbb{C}\)-vector space by the monomials \(x_1^{\alpha_1}x_2^{\alpha_2}y_1^{\beta_1}y_2^{\beta_2}\) where \(\alpha_1 + \alpha_2 - \beta_1 - \beta_2\) is divisible by \(n\). One can easily deduce (see for example the method of the proof of Proposition 5.3) that \(\mathbb{C}[V^2]^H\) is a free \(P(n,2)\)-module generated by

\[
\{(x_1y_2)^j, (x_2y_1)^j, x_1^{n-i}x_2^i, y_1^{n-i}y_2^i, x_1^n, x_2^n, x_1^n x_2^n \mid j = 0, 1, \ldots, n-1, \ i = 1, \ldots, n-1\}.
\]

Denote by \((P(n,2)_+)\) the ideal in \(\mathbb{C}[V^2]\) generated by \(p_{n,0}, q_{2,0}, p_{0,n}, q_{0,2}\). The other generator \(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\) of \(D_{2n}\) maps the cosets of \(x_1^n\) and \(x_2^n\) in \(\mathbb{C}[V^2]/(P(n,2)_+)\) to their negative, fixes the coset of \(x_1^n x_2^n\) in \(\mathbb{C}[V^2]/(P(n,2)_+)\), permutes the other elements in the above \(P(n,2)\)-module generating system of \(\mathbb{C}[V^2]^H\), and fixes all elements of \(P(n,2)\). It follows that \(\mathbb{C}[V^2]^{D_{2n}}\) is a free \(P(n,2)\)-module generated by \(\mathbb{C}[V^2]/(P(n,2)_+)\)

\[
\{(x_1y_2)^j + (y_1x_2)^j, x_1^{n-i}x_2^i + y_1^{n-i}y_2^i, x_1^n, x_2^n \mid j = 0, 1, \ldots, n-1, \ i = 1, \ldots, n-1\}.
\]

Note finally that \((x_1y_2)^j + (y_1x_2)^j\) is congruent to \(2^j q_{1,1}^j\) modulo \((P(n,2)_+)\), and \(x_1^n x_2^n\) is congruent to \(-\frac{1}{2}(2q_{1,1})^n\) modulo \((P(n,2)_+)\). This shows that \(\mathbb{C}[V^2]^{D_{2n}}\) is a free module over \(P(n,2)\) generated by [8].

5.2. Further relations. Define \(R(n)_{n,2}^{n-j,2+j}\) for \(j = 0, 1, \ldots, n-2\) recursively by setting \(R(n)_{n,2}^{n,2} := R(n,n,2)\), and set

\[
R(n)_{n,2}^{n-j,2+j} := \frac{1}{n-2-j}E_{2,1}\cdot R(n)_{n,2}^{n-j,2+j}
\]

for \(j = 0, 1, \ldots, n-3\). Then \(\{R(n)_{n,2}^{n-j,2+j} \mid j = 0, 1, \ldots, n-2\}\) is a \(\mathbb{C}\)-vector space basis in \(\langle R(n)_{n,2} \rangle_{GL_2(\mathbb{C})}\). Moreover, one shows by induction on \(j\) that

\[
R(n)_{n,2}^{n-j,2+j} = \pi_{n-j,j}p_{0,2} - 2\pi_{n-j-1,j+1}p_{1,1} + \pi_{n-j-2,j+2}p_{2,0}.
\]

Proof of Theorem 5.1 (ii). The elements \(q_{2,0}, q_{1,1}, q_{0,2}\) in \(\mathbb{C}[V^2]^{D_{2n}}\) are algebraically independent. Therefore any non-zero element in \(\text{ker}(\varphi(n,2))\) involves a variable \(\pi_{n-j,j}\) for some \(j\). Moreover, a non-trivial linear combination of the elements \(p_{n-j,j} \in \mathbb{C}[V^2]^{D_{2n}}\)
Let \(P \) be any monomial of the form \(x_1^{j_1}x_2^{j_2} \). Consider the term \(-\sum_{j=1}^{n-1} \rho_{1,j} \pi_{n-j,j} \) to an element of the ideal of \(\ker(\varphi(n,2)) \). It follows from Proposition \ref{prop} that there must exist \(\lambda \) elements of degree 2n in \(\ker(\varphi(n,2)) \) that allow to rewrite the products \(\pi_{n-j,j} \pi_{n-i,i} \) as an element of \(\sum_{i=0}^{n-1} \mathcal{P} \rho_{1,1}^{i} + \sum_{j=1}^{n-1} \mathcal{P} \pi_{n-j,j} \), and these relations together with the earlier relations of degree 2 are sufficient to generate \(\ker(\varphi(n,2)) \) up to degree 2n. Consider the element \(\rho_{1,1}^{n+1} \) to an element in \(\sum_{i=0}^{n} \mathcal{P} \rho_{1,1}^{i} + \sum_{j=1}^{n-1} \mathcal{P} \pi_{n-j,j} \). When \(n \) is even, consider the element \(\rho_{1,1}^{n+1} \mathcal{R}_{n,n} \). It belongs to \(\mathcal{J} \) and has the term \(-4^{n} \rho_{1,1}^{n+1} \). The other terms of \(\rho_{1,1} \mathcal{R}_{n,n} \) are congruent modulo \(\mathcal{I} \) to an element of the ideal of \(\mathcal{F}(n,2) \) generated by \(\pi_{n,0}, \pi_{0,n}, \rho_{2,0}, \rho_{0,2} \) by \(\mathcal{J} \). It follows that \(\rho_{1,1}^{n+1} \) is congruent modulo \(\mathcal{J} \) to an element of \(\sum_{i=0}^{n} \mathcal{P} \rho_{1,1}^{i} + \sum_{j=1}^{n-1} \mathcal{P} \pi_{n-j,j} \). So we are done when \(n \) is even. For odd \(n \) consider the element \(\rho_{1,1}(E_{2,1} \mathcal{R}_{n+1,n-1}) \) of \(\mathcal{J} \). It has the term \(-2^{n} \rho_{1,1}^{n+1} \), and all the other terms are congruent modulo \(\mathcal{I} \) to elements in \(\sum_{i=0}^{n} \mathcal{P} \rho_{1,1}^{i} + \sum_{j=1}^{n-1} \mathcal{P} \pi_{n-j,j} \). This finishes the proof also for the case of odd \(n \). \(\square \)
6. The case \(n = 4 \)

6.1. Secondary S-generating systems. In this subsection we return to the general setup of Section 6.1. The action of the subgroup of diagonal matrices in \(GL_m(\mathbb{C}) \) induces an \(\mathbb{N}_0^m \)-grading on \(\mathbb{C}[V^m] \) and \(\mathbb{C}[V^m]^G \). Write \(\mathbb{C}[V^m]_\alpha \) and \(\mathbb{C}[V^m]^G_\alpha \) for the multihomogeneous component of \(\mathbb{C}[V^m] \) and \(\mathbb{C}[V^m]^G \) of multidegree \(\alpha = (\alpha_1, \ldots, \alpha_m) \).

Now assume that \(G \) is finite. Take a homogeneous system of parameters \(p_1, \ldots, p_k \) in \(\mathbb{C}[V]^G \) (so \(k = \dim(V) \)). For \(j = 1, \ldots, m \) and \(i = 1, \ldots, k \) denote by \(p_i^{(j)} \) the element of \(\mathbb{C}[V^m]^G \) that maps \((v_1, \ldots, v_m) \in V^m \) to \(p_i(v_j) \). Then

\[
(10) \quad p_1^{(j)}, \ldots, p_k^{(j)} \quad (j = 1, \ldots, m)
\]

is a homogeneous system of parameters for \(\mathbb{C}[V^m]^G \). This means that denoting by \(P(m) \) the \(\mathbb{C} \)-subalgebra of \(\mathbb{C}[V^m]^G \) generated by the (algebraically independent) elements \(\{10\} \), the space \(\mathbb{C}[V^m]^G \) is a finitely generated free \(P(m) \)-module. The elements \(\{10\} \) are called primary generators of \(\mathbb{C}[V^m]^G \), whereas a finite free \(P(m) \)-module generating system of \(\mathbb{C}[V^m]^G \) is called a system of secondary generators of \(\mathbb{C}[V^m]^G \). By the Graded Nakayama Lemma a set of homogeneous elements in \(\mathbb{C}[V^m]^G \) forms a system of secondary generators if and only if they form a basis in a vector space direct complement in \(\mathbb{C}[V^m]^G \) of \((P(m))^+ \), the ideal in \(\mathbb{C}[V^m]^G \) generated by the elements \(\{10\} \).

View the symmetric group \(S_m \) as the subgroup of permutation matrices in \(GL_m(\mathbb{C}) \). Then \(s \in S_m \) maps \(\mathbb{C}[V^m]_\alpha \) to \(\mathbb{C}[V^m]_{s^\alpha} \), where \(s \cdot \alpha = (\alpha_{s^{-1}(1)}, \ldots, \alpha_{s^{-1}(m)}) \).

Definition 6.1. A subset \(L \) of \(\mathbb{C}[V^m]^G \) is called a system of secondary S-generators of \(\mathbb{C}[V^m]^G \) if \(L \) consists of multihomogeneous elements of decreasing multidegrees and

\[
L^* := \{ s \cdot f \mid f \in L, \quad s \in S_m/\text{Stab}(\deg(f)) \},
\]

is a system of secondary generators of \(\mathbb{C}[V^m]^G \) where \(\deg(f) \in \mathbb{N}_0^m \) stands for the multidegree of \(f \) and \(S_m/\text{Stab}(\deg(f)) \) stands for a chosen set of left coset representatives in \(S_m \) with respect to the stabilizer subgroup \(\text{Stab}(\deg(f)) \) of the multidegree of \(f \). (Note that this notion depends on the choice \(p_1, \ldots, p_k \) of homogeneous system of parameters in \(\mathbb{C}[V]^G \).)

Proposition 6.2. A system of secondary S-generators of \(\mathbb{C}[V^m]^G \) exists.

Proof. Since the elements in \(\{10\} \) are multihomogeneous, the ideal \((P(m))^+ \) of \(\mathbb{C}[V^m]^G \) is spanned by multihomogenous elements, and therefore a system of secondary generators consisting of multihomogeneous elements exist. Moreover, a set \(M \) of multihomogeneous elements forms a system of secondary generators if and only if for each multidegree \(\alpha \in \mathbb{N}_0^m \) the subset \(M \cap \mathbb{C}[V^m]_\alpha \) is a \(\mathbb{C} \)-vector space basis in a direct complement in \(\mathbb{C}[V^m]^G_\alpha \) of \((P(m))^+ \cap \mathbb{C}[V^m]^G_\alpha \).

The action of \(S_m \) preserves the set \(\{10\} \), hence it preserves the algebra \(P(m) \) and the ideal \((P(m))^+ \) in \(\mathbb{C}[V^m]^G \). An element \(s \in S_m \) gives a vector space isomorphism between \(\mathbb{C}[V^m]_\alpha \) and \(\mathbb{C}[V^m]_{s^\alpha} \), such that the subspace \(\mathbb{C}[V^m]^G_\alpha \) is mapped onto \(\mathbb{C}[V^m]_{s^\alpha}^G \) and \(\mathbb{C}[V^m]^G_\alpha \cap (P(m))^+ \) is mapped onto \(\mathbb{C}[V^m]_{s^\alpha} \cap (P(m))^+ \). Therefore to get a system of secondary S-generators of \(\mathbb{C}[V^m]^G \) we just need to take for each decreasing multidegree \(\alpha \) a
basis in a direct complement in $\mathbb{C}[V^m]^G$ of $\mathbb{C}[V^m]_\alpha \cap (P(m)^+)$, and the union of these sets as α ranges over all decreasing multidegrees will be a system of secondary S-generators. □

6.2. Hironaka decomposition for $n = 4, m = 3$. The elements

\[(11)\]

\[p_{4,0,0}, p_{0,4,0}, p_{0,0,4}, q_{2,0,0}, q_{0,2,0}, q_{0,0,2}\]

constitute a homogeneous system of parameters in the algebras $\mathbb{C}[V^3]$ and $\mathbb{C}[V^3]^{D_8}$. We shall refer to the elements (11) as the primary generators of $\mathbb{C}[V^3]^{D_8}$, and denote by $P(4,3)$ the subalgebra of $\mathbb{C}[V^3]$ generated by them. We are looking for an explicit free $P(4,3)$-module generating system (called system of secondary generators) of $\mathbb{C}[V^3]^{D_8}$.

Denote by H the cyclic subgroup of D_8 generated by \(\left(\begin{array}{cc} \omega & 0 \\ 0 & \omega^{-1} \end{array} \right) \). The elements (11) constitute a homogeneous system of parameters in $\mathbb{C}[V^3]^H$ as well.

Proposition 6.3. The following table gives a secondary S-generating system of $\mathbb{C}[V^3]^H$ with respect to $P(4,3)$:

multidegree	generator
(0, 0, 0)	\(x_1y_2, y_1x_2 \)
(1, 1, 0)	\(x_1^2x_2x_3, y_1^2y_2y_3, x_1^2y_2y_3, y_1^2x_2x_3 \)
(2, 1, 1)	\(x_1^3y_2y_3, y_1^3x_2^2x_3, x_1^3x_2^2x_3, y_1^3y_2^2x_3 \)
(2, 2, 0)	\(x_1y_2, y_1y_2 \)
(3, 1, 0)	\(x_1^4, y_1^4 \)
(3, 2, 1)	\(x_1^2y_2, y_1^2x_2, x_1^2y_2y_3, y_1^2x_2x_3 \)
(3, 3, 0)	\(x_1^3y_2, y_1^3x_2, x_1^3y_2y_3, y_1^3x_2x_3 \)
(4, 1, 1)	\(x_1^4x_2y_3, x_1^4y_2x_3 \)
(4, 2, 2)	\(x_1^3x_2^2, y_1^3x_2^2, x_1^3x_2^2, y_1^3y_2x_3 \)
(4, 3, 1)	\(x_1^4x_2^2, x_1^4y_2x_3 \)
(4, 4, 0)	\(x_1^4x_2^2, x_1^4y_2x_3 \)
(4, 3, 3)	\(x_1^4y_2^2, x_1^4y_2^2 \)
(4, 4, 4)	\(x_1^4x_2^3, x_1^4x_2^3 \)

Proof. $\mathbb{C}[V^3]^H$ is spanned as a \mathbb{C}-vector space by the monomials $x_1^iy_2x_3^jy_1^my_2^n$ such that $i + j + k - m - n$ is divisible by 4. Consider the lexicographic monomial order in $\mathbb{C}[x, y]$ induced by the order $x < y$ of the variables. Then it is easy to check that the ideal generated by xy and $x^4 + y^4$ has the Gröbner basis $xy, x^4 + y^4, x^5 = x(x^4 + y^4) - y^3(xy)$, hence the ideal generated by the initial monomials in $(xy, x^4 + y^4)$ is (xy, y^4, x^5). It follows that the monomials not divisible by any of $x_1y_1, x_2y_2, x_3y_3, y_1^4, y_2^4, y_3^4, x_1^3, x_2^3, x_3^3, y_1^3, y_2^3, y_3^3, x_1^2, x_2^2, x_3^2, y_1^2, y_2^2, y_3^2$ form a basis in a vector space direct complement of the ideal in $\mathbb{C}[V^3]$ generated by the elements in (11). As each monomial spans an H-invariant subspace in $\mathbb{C}[V^3]$, the H-invariant monomials among them form a system of secondary generators for $\mathbb{C}[V^3]^H$, and the table above contains all those with decreasing multidegree. □
Proposition 6.4. The following table gives a secondary S-generating system of $\mathbb{C}[V^3]^{D_8}$:

multidegree	generator
$(0, 0, 0)$	1
$(1, 1, 0)$	$q_{1,1,0}$
$(2, 1, 1)$	$p_{2,1,1}$, $q_{1,0,0}q_{1,0,1}$
$(2, 2, 0)$	$p_{2,2,0}$, $q_{1,2,0}$
$(3, 1, 0)$	$p_{3,1,0}$
$(3, 2, 1)$	$p_{3,1,0}q_{0,1,0}$, $q_{1,2,0}q_{1,0,1}$
$(3, 3, 0)$	$q_{1,2,0}$
$(4, 1, 1)$	$p_{3,1,0}q_{1,0,1}$
$(3, 3, 2)$	$p_{2,1,1}p_{1,2,1}$, $p_{3,1,0}q_{0,1,0}^2$
$(4, 2, 2)$	$p_{3,1,0}q_{1,0,1}q_{0,1,0}$, $q_{1,2,0}q_{1,0,1}$
$(4, 3, 1)$	$q_{1,2,0}^3$
$(4, 4, 0)$	$q_{1,2,0}$
$(4, 3, 3)$	$p_{3,1,0}q_{1,0,1}q_{0,1,0}^2$

Proof. Following the notation of Section 6.1, $(P(4, 3)^+)$ stands for the ideal in $\mathbb{C}[V^3]^{D_8}$ generated by the elements $\langle 11 \rangle$. The element $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ of D_8 permutes up to sign the cosets modulo $(P(4, 3)^+)$ of the monomials in the table in Proposition 6.3 (note that x^4 is congruent to $-y^4$ modulo $(P(4, 3)^+)$). It follows by Proposition 6.3 that a D_8-invariant direct complement of $(P(4, 3)^+)$ in the sum of the homogeneous components of $\mathbb{C}[V^3]^H$ with decreasing multidegree has the basis $C_+ \cup C_-$, where

$$C_+ = \{1, x_1 y_2 + y_1 x_2, x_1^2 x_2 x_3 + y_1^2 y_2 y_3, x_1^3 y_2 y_3 + y_1^3 x_2 x_3, x_1^2 x_2^2 + y_1^2 y_2^2, x_1^2 y_2^2 + y_1^2 x_2^2,$$

$$x_1^3 x_2 + y_1^3 y_2 y_3 + y_1^3 x_2 x_3, x_1^3 x_2^2 y_3 + y_1^3 y_2^2 y_3, x_1^3 x_2 y_3 + y_1^3 x_2^2 x_3 + y_1^3 y_2^2 x_3, x_1^3 x_2 y_3 + y_1^3 x_2^2 x_3 + y_1^3 y_2^2 x_3,$$

$$x_1^3 y_2 x_3 + y_1^3 x_2 y_3, x_1^3 x_2^2 y_3 + y_1^3 y_2^2 x_3 - x_1^3 y_2 y_3, x_1^3 x_2^2 x_3 + y_1^3 x_2 y_3 - x_1^3 x_2 x_3 \}$$

and

$$C_- = \{x_1 y_2 - y_1 x_2, x_1^2 x_2 x_3 - y_1^2 y_2 y_3, x_1^2 y_2 y_3 - y_1^2 x_2 x_3, x_1^3 x_2 x_3 - y_1^3 y_2 y_3, x_1^3 y_2 y_3 - y_1^3 x_2 x_3,$$

$$x_1^3 x_2 y_3 - y_1^3 y_2^2 y_3, x_1^3 x_2^2 x_3 + y_1^3 x_2 y_3 - x_1^3 x_2 x_3, x_1^3 x_2 x_3 - y_1^3 y_2^3 x_3 - y_1^3 x_2^2 x_3 + y_1^3 y_2^2 x_3 - y_1^3 x_2^2 x_3 + y_1^3 y_2^2 x_3,$$

$$x_1^3 x_2 y_3 - y_1^3 y_2 y_3, x_1^3 x_2^2 x_3 + y_1^3 x_2 y_3 - x_1^3 x_2 x_3 \}.$$

The elements in C_+ are D_8-invariant, whereas the elements in C_- span a 1-dimensional D_8-invariant subspace on which D_8 acts via the determinant representation. It follows that C_+ is a system of secondary S-generators for $\mathbb{C}[V^3]^{D_8}$. It is easy to see that modulo the ideal $(P(4, 3)^+)$ the elements listed in the table in the statement of our proposition agree with non-zero scalar multiples of the elements in C_+. \square
6.3. Relations for \(n = 4 \) and \(m = 3 \).

Proposition 6.5. The \(GL_3(\mathbb{C}) \)-ideal \(\ker(\varphi(4,3)) \) is minimally generated by \(R_{2,2,2}, R(4)_{4,2}, R(4)_{6,2}, \) and \(R(4)_{4,4} \).

Remark 6.6. We have \(\dim(S^{(4,2)}(\mathbb{C}^3)) = 27 \), \(\dim(S^{(6,2)}(\mathbb{C}^3)) = 60 \), \(\dim(S^{(4,4)}(\mathbb{C}^3)) = 15 \), and \(\dim(S^{(2,2,2)}(\mathbb{C}^3)) = 1 \). Therefore Proposition 6.5 implies that a minimal homogeneous generating system of the ideal \(\ker(\varphi(4,3)) \) consists of 103 elements. For comparison we mention that a minimal homogeneous generating system of \(\ker(\varphi(4,2)) \) consists of \(3 + 5 + 1 = 9 \) elements.

The logic of the proof of Proposition 6.5 is furnished by the following general lemma:

Lemma 6.7. Let \(\varphi : F \to R \) be a surjective homomorphism of graded \(\mathbb{C} \)-algebras, where \(R \) is a connected graded Cohen-Macaulay algebra (cf. Section 2.3), so there exist homogeneous elements \(h_1, \ldots, h_k \) and \(t_1, \ldots, t_l \) in \(F \) with the following properties:

1. \(\varphi(h_1), \ldots, \varphi(h_k) \) is a homogeneous system of parameters in \(R \).
2. \(R = \mathbb{P} \varphi(t_1) \oplus \cdots \oplus \mathbb{P} \varphi(t_l) \) where \(\mathbb{P} = \mathbb{C}[\varphi(h_1), \ldots, \varphi(h_k)] \).

Let \(\mathcal{K} \) be a homogeneous ideal in \(F \) contained in \(\ker(\varphi) \), and assume that for some \(d \in \mathbb{N} \) we have

\[
F_{\leq d} = \text{Span}_\mathbb{C} \mathcal{T}_{\leq d} + \mathcal{H}_{\leq d} + \mathcal{K}_{\leq d}
\]

where \(\mathcal{H} \) is the ideal in \(F \) generated by \(h_1, \ldots, h_k \), \(\mathcal{T} := \{ t_1, \ldots, t_l \} \), \(d \in \mathbb{N} \) and for a subset \(A \) of homogeneous elements (respectively graded subspace) in \(F \) we write \(A_{\leq d} \) for the set of elements (respectively sum of homogeneous components) of \(A \) with degree \(\leq d \).

Then we have \(\mathcal{K}_{\leq d} = \ker(\varphi)_{\leq d} \).

Proof. One can show by an induction on the degree that our assumptions imply the equality

\[
F_{\leq d} = \mathcal{K}_{\leq d} + \mathcal{P}_{\leq d - \deg(t_1)} t_1 + \cdots + \mathcal{P}_{\leq d - \deg(t_l)} t_l,
\]

where \(\mathcal{P} = \mathbb{C}[h_1, \ldots, h_k] \). Moreover, the restriction of \(\varphi \) to \(\mathcal{P} \) and to \(\mathcal{P} t_1 + \cdots + \mathcal{P} t_l \) is injective. This clearly implies the desired equality \(\mathcal{K}_{\leq d} = \ker(\varphi)_{\leq d} \).

Proof of Proposition 6.5. For a decreasing multidegree \(\alpha = (\alpha_1, \alpha_2, \alpha_3) \) denote by \(\mathcal{T}_\alpha \) the set of products of the variables \(\pi_{i_1,j_2,k_3}, \rho_{j_1,j_2,j_3} \) having multidegree \(\alpha \) that correspond to the elements of multidegree \(\alpha \) in the secondary \(S \)-generating system of \(\mathbb{C}[V^3]^D_8 \) given in Proposition 6.2. For example, \(\mathcal{T}_{1,1,1} = \emptyset \) and \(\mathcal{T}_{4,2,2} = \{ \pi_{3,1,0}\rho_{1,0,1}, \pi_{0,1,1}, \rho_{1,1,0}^2 \} \). Denote by \(\mathcal{K} \) the \(GL \)-ideal in \(F_3 \) generated by \(R_{2,2,2}, R(4)_{4,2}, R(4)_{6,2}, \) and \(R(4)_{4,4} \), and write \(\mathcal{H} \) for the ideal in \(F(4,3) \) generated by \(\pi_{4,0,0}, \pi_{0,4,0}, \pi_{0,0,4}, \rho_{2,0,0}, \rho_{0,2,0}, \rho_{0,0,2} \). The subspaces \(\mathcal{K} \) and \(\mathcal{H} \) are spanned by multihomogeneous elements of \(F(4,3) \), and we shall write \(\mathcal{K}_\alpha, \mathcal{H}_\alpha, F(4,3)_\alpha \) for their components of multidegree \(\alpha \). We shall show that

\[
(12) \text{Span}_\mathbb{C} \{ \mathcal{T}_\alpha \} + \mathcal{K}_\alpha + \mathcal{H}_\alpha = F(4,3)_\alpha \text{ for all decreasing } \alpha \in \mathbb{N}_0^3 \text{ with } \alpha_1 + \alpha_2 + \alpha_3 \leq 10.
\]

Note that \(\mathcal{H} \) is not a \(GL \)-ideal in \(F(4,3) \), however, it is preserved by the subgroup \(S_3 \) of \(GL_3(\mathbb{C}) \). For \(s \in S_3 \) we have \(s \cdot \mathcal{H}_\alpha = \mathcal{H}_{s \cdot \alpha} \) and \(s \cdot \mathcal{K}_\alpha = \mathcal{K}_{s \cdot \alpha} \). Thus (12) implies...
\(F_{s\alpha} = \text{Span}_C\{s \cdot T_\alpha\} + H_{s\alpha} + K_{s\alpha} \). Set
\[
T := \bigcup_{\alpha \in \mathbb{N}_0^3, \alpha_1 \geq \alpha_2 \geq \alpha_3 \in S_3/\text{Stab}_{S_3}(\alpha)} s \cdot T_\alpha.
\]
Then the generators of \(H \) are mapped to a homogeneous system of parameters in \(R := \mathbb{C}[V^3]^{D_8} \) and \(T \) is mapped by \(\varphi(4, 3) \) to a system of secondary generators of \(R \) (see Definition 6.1). Given (12) the above considerations show that the assumptions of Lemma 6.7 hold for \(F = F(4, 3) \), \(\varphi = \varphi(4, 3) \) and \(d = 10 \), and therefore by Lemma 6.7 we conclude that \(K_{\leq 10} = \ker(\varphi(4, 3))_{\leq 10} \). Now \(\ker(\varphi(4, 3)) \) is generated by its elements of degree at most 10 by Proposition 4.4, implying the equality \(K = \ker(\varphi(4, 3)) \).

It remains to prove (12). For multidegrees \(\alpha \) with \(\alpha_3 = 0 \) this was done in the proof of Theorem 5.1. Note also that \(F_{\alpha} = \{0\} \) if \(\alpha_1 + \alpha_2 + \alpha_3 \) is odd.

Denote by \(M_\alpha \) the products of multidegree \(\alpha \) in \(\{\pi_\beta, \rho_\gamma \mid \beta_i < 4, \gamma_j < 2\} \) (the generators of \(F(4, 3) \) different from \(\pi_4, 0, 0, \pi_4, 4, 0, \pi_0, 0, 4, \rho_2, 0, 0, \rho_0, 2, 0, \rho_0, 0, 2 \)). In the first table below we collect for all decreasing \(\alpha \in \mathbb{N}_0^3 \) with \(\alpha_3 > 0 \) and \(\sum_{i=1}^3 \alpha_i \leq 6 \) even the elements of \(M_\alpha \).

\(\alpha \)	\(T_\alpha \)	\(M_\alpha \)	\(\mathcal{M}_\alpha \)
(2, 1, 1)	\(\pi_{2,1,1}, \rho_{1,1,0}\rho_{1,0,1} \)	\(\pi_{3,0,1}\rho_{1,1,0} \)	
(4, 1, 1)	\(\pi_{3,1,0}\rho_{1,0,1} \)	\(\pi_{3,0,1}\rho_{1,1,0} \)	
(3, 2, 1)	\(\rho_{1,1,0}\rho_{1,0,1}, \pi_{3,1,0}\rho_{0,1,1} \)	\(\pi_{2,1,1}\rho_{1,1,0}, \pi_{2,2,0}\rho_{1,0,1} \)	
(2, 2, 2)	\(\rho_{1,1,0}\rho_{1,0,1}\rho_{0,1,1}, \pi_{2,1,1}\rho_{1,1,0}, \pi_{1,2,1}\rho_{1,0,1}, \pi_{1,1,2}\rho_{1,1,0} \)		

Now going multidegree by multidegree we shall show that the products \(M_\alpha \) are congruent modulo \(H + K \) to a \(\mathbb{C} \)-linear combination of the elements in \(T_\alpha \). Denote by \(I \) the \(GL \)-ideal of \(F(4, 3) \) generated by \(R_{2,2,2} \) and \(R_{4,2,2} \), and we shall write \(a \equiv_I b \) for some \(a, b \in F(4, 3) \) if \(a - b \in H + I \). We shall write \(a \equiv b \) for \(a, b \in F(4, 3) \) if \(a - b \in H + K \). Note that \(I \subseteq K \) and therefore \(a \equiv_I b \) implies \(a \equiv b \).

There is nothing to do for the multidegree (2, 1, 1). Taking into account Theorem 5.1 this shows also that for \(d < 6 \) we have \(\ker(\varphi(4, 3))_d = \{0\} \).

(4, 1, 1): The relation (2) in the special case \(n = 4, m = 3 \) is
\[
R_{4,2,2} := \pi_{4,0,0}\rho_{0,2,0} - 2\pi_{3,1,0}\rho_{1,1,0} + \pi_{2,2,0}\rho_{2,0,0}.
\]
Applying \(E_{3,2} \in gl_3(\mathbb{C}) \) to \(R_{4,2,2} \) we get the following element of \(\langle R_{4,2,2} \rangle_{GL_3(\mathbb{C})} \):
\[
R_{4,1,1} := \frac{1}{2} E_{3,2} R_{4,2,2} = \pi_{4,0,0}\rho_{0,1,1} - \pi_{3,1,0}\rho_{1,1,0} + \pi_{2,1,1}\rho_{2,0,0}
\]
This relation implies that
\[
\pi_{3,0,1}\rho_{1,1,0} \equiv_I -\pi_{3,1,0}\rho_{1,1,0}.
\]

(3, 2, 1): Consider the following elements of \(\langle R_{4,2,2} \rangle_{GL_3(\mathbb{C})} \):
\[
R_{4,3,1} := \frac{1}{2} E_{3,1} R_{4,2,2} = -\pi_{3,1,0}\rho_{0,1,1} + \pi_{2,2,0}\rho_{1,0,1}
\]
\[
+ 2\pi_{3,0,1}\rho_{0,2,0} + \pi_{1,2,1}\rho_{2,0,0}
\]
ideal zero term of any element of $\pi(19)$ and (16) and (18) imply π

Set, Consequently, ker(π and taking into account that the ideal π Denote by B

The relations (9) in the special case n give that

Moreover, for later reference we mention some consequences of the relations of degree 6.

The relations (9) in the special case $n = 4$ give that

Denote by A the union of the S_3-orbits of $\pi_{2,1,1}\rho_{1,1,0}$, $\pi_{2,1,1}\rho_{0,1,1}$, $\rho_{1,1,0}\rho_{1,0,1}\rho_{1,0,1}$, $\pi_{3,1,0}\rho_{1,1,0}$ and $\pi_{2,2,0}\rho_{1,1,0}$. Each element of A is congruent to zero modulo $H + I$ by (19), (20), (21) (and taking into account that the ideal $H + I$ is preserved by the action of S_3 on $F(4,3)$). Denote by B the S_3-orbit of $\pi_{2,2,0}\rho_{1,0,1}$. By (19) and as $I + H$ is S_3-stable, we conclude that each element of B is congruent modulo $H + I$ to an element of the S_3-orbit of $\pi_{3,1,0}\rho_{0,1,1}$. Set $C := \{\pi_{3,0,1}\rho_{1,1,0}\}$, by (19) the element of C is congruent modulo $H + I$ to $-\pi_{3,1,0}\rho_{0,1,1}$. Summarizing, we have that the factor space

Now we turn to the relations of degree 8. Every non-zero term in any element of the GL-ideal I of $F(4,3)$ generated by $R_{2,2,2}$ and $R(4)_{4,2}$ involves a variable $\rho_{i,j,k}$, and every non-zero term of any element of H involves a variable from $\{\pi_{4,0,0}, \pi_{0,4,0}, \pi_{0,0,4}, \rho_{2,0,0}, \rho_{0,2,0}, \rho_{0,0,2}\}$.
Hence none of $\mathcal{R}(4)_{6,2}$ or $\mathcal{R}(4)_{4,4}$ is contained in $I + H$. Consequently, by basic principles about semisimple representations we have

$$\mathcal{R}(4)_{6,2} \cup \mathcal{R}(4)_{4,4} = \emptyset.$$
the number of semi-standard tableaux of shape λ and content α. The dimensions relevant to us are given in the following table:

α	$(6,1,1)$	$(5,2,1)$	$(4,3,1)$	$(4,2,2)$	$(3,3,2)$
dim($S^{(6,2)}(\mathbb{C})_\alpha$)	1	2	2	3	3
dim($S^{(4,4)}(\mathbb{C})_\alpha$)	0	0	1	1	1

In the above table the sum of the dimensions in the column of α agrees with $|N_\alpha|$, hence we showed that

$$\mathcal{K}_{\leq 8} = \langle \mathcal{R}(4,6,2)_{GL_4(\mathbb{C})} \rangle \oplus \langle \mathcal{R}(4,4,4)_{GL_4(\mathbb{C})} \rangle \oplus I_{\leq 8}.$$

Finally we turn to the relations of degree 10. Our study of the degree 8 relations implies that any product $\pi_{i_1,i_2,i_3} \pi_{j_1,j_2,j_3}$ is congruent modulo $\mathcal{K} + \mathcal{H}$ to a linear combination of elements from the S_3-orbit of $\pi_{2,1,1} \pi_{1,2,1}$ and products of the variables of $\mathcal{F}(4,3)$ involving at most one factor of the form π_{k_1,k_2,k_3}. Moreover,

$$\pi_{2,1,1} \pi_{1,2,1} \rho_{i,j,k} \equiv I \ 0$$

by (18) and (21). Taking into account (22) we conclude that

$$(27) \quad \mathcal{F}(4,3)_{10} \text{ is spanned modulo } \mathcal{H} + \mathcal{K} \text{ by products involving at most one variable of the form } \pi_{i_1,i_2,i_3} \text{ and not divisible by any element of } A \cup B \cup C.$$

For a decreasing α with $\alpha_1 + \alpha_2 + \alpha_3 = 10$ denote by \mathcal{V}_α the subset of $\mathcal{M}_\alpha \setminus \mathcal{T}_\alpha$ obtained by removing the products divisible by some $\pi_{i_1,i_2,i_3} \pi_{j_1,j_2,j_3}$ or by any element of $A \cup B \cup C$. By (27) it is sufficient to prove that every element of \mathcal{V}_α is congruent modulo $\mathcal{K} + \mathcal{H}$ to an element in $\text{Span}_{\leq} \mathcal{T}_\alpha$. The table below gives \mathcal{T}_α and \mathcal{V}_α for all decreasing α with $\alpha_3 \neq 0$ and $\sum \alpha_i = 10$.

α	\mathcal{T}_α	\mathcal{V}_α
$(8,1,1)$		
$(7,2,1)$		
$(6,3,1)$		
$(6,2,2)$		
$(5,4,1)$	$\rho_{1,1,0}^1 \rho_{1,0,1}^1$	
$(5,3,2)$	$\rho_{1,1,0}^2 \rho_{1,0,1}^2$	
$(4,4,2)$		
$(4,3,3)$	$\pi_{3,1,0} \rho_{1,0,1} \rho_{0,1,1} \rho_{1,0,1}$	$\pi_{1,3,0} \rho_{1,0,1} \rho_{1,1,0} \pi_{1,0,3} \rho_{1,1,0}$

We see that \mathcal{V}_α is non-empty only for $\alpha \in \{(5,4,1), \ (5,3,2), \ (4,3,3)\}$.

$(5,4,1)$: The relation $\mathcal{R}_{2n-4,4,4}$ in the special case $n = 4$ is

$$\mathcal{R}(4,4,4) := \pi_{4,0,0} \pi_{0,4,0} - 4 \pi_{3,1,0} \pi_{1,3,0} + 3 \pi_{2,2,0}^2 - 16 (\rho_{1,1,0}^2 + \rho_{2,0,0} \rho_{0,2,0})^2.$$

Apply $\frac{1}{4}E_{4,2}$ to $\mathcal{R}(4,4,4)$ we get

$$\mathcal{R}(4,4,4) := \frac{1}{4}E_{3,2} \mathcal{R}(4,4,4) = \pi_{4,0,0} \pi_{0,3,1} - \pi_{3,0,1} \pi_{1,3,0} - 3 \pi_{3,1,0} \pi_{1,2,1} + 3 \pi_{2,2,0} \pi_{2,1,1}.$$
\[-16(\rho_{2,0,0}\rho_{0,2,0} - \rho_{1,1,0}^2)(\rho_{2,0,0}\rho_{0,1,1} - \rho_{1,1,0}\rho_{1,0,1}).\]

We deduce from $R(4)^{4,3,1}_{4,4} \in K$ that

\[(28) \quad \rho_{1,1,0}^3 \rho_{1,1,0} \equiv \frac{1}{16}(-\pi_{3,0,1}\pi_{1,3,0} - 3\pi_{3,1,0}\pi_{1,2,1} + 3\pi_{2,2,0}\pi_{2,1,1}).\]

Multiplying (28) by $\rho_{1,1,0}$ and using

\[\pi_{1,3,0}\rho_{1,1,0} \equiv 0, \quad \pi_{3,1,0}\rho_{1,1,0} \equiv 0, \quad \pi_{2,2,0}\rho_{1,1,0} \equiv 0\]

we get

\[\rho_{1,1,0}^4 \rho_{1,1,0} \equiv \mathcal{I} 0.\]

\[(5,3,2): \quad \text{Multiplying (28) by } \rho_{1,0,1} \text{ and using} \]

\[\pi_{3,0,1}\rho_{1,0,1} \equiv \mathcal{I} 0, \quad \pi_{1,2,1}\rho_{1,0,1} \equiv \mathcal{I} 0, \quad \pi_{2,1,1}\rho_{1,0,1} \equiv \mathcal{I} 0\]

we get

\[\rho_{1,1,0}^3 \rho_{1,0,1}^2 \equiv \mathcal{I} 0.\]

\[(4,3,3): \quad \text{Applying the transposition } (1,2) \in S_3 \text{ to (19) we get} \]

\[\pi_{1,3,0}\rho_{1,0,1} \equiv \mathcal{I} \pi_{2,2,0}\rho_{0,1,1}.\]

Multiplying this by $\rho_{1,0,1}^2$ we get

\[\pi_{1,3,0}\rho_{1,0,1}^3 \equiv \mathcal{I} \pi_{2,2,0}\rho_{1,0,1}\rho_{0,1,1} \equiv \mathcal{I} \pi_{3,1,0}\rho_{1,0,1}^2 \rho_{0,1,1}^2\]

(for the second congruence see (19)). Finally, applying the transposition $(2,3) \in S_3$ to the congruence $\pi_{1,3,0}\rho_{1,0,1}^3 \equiv \mathcal{I} \pi_{3,1,0}\rho_{1,0,1}^2 \rho_{0,1,1}^2$ and using (15) we obtain

\[\pi_{1,0,3}\rho_{1,1,0}^3 \equiv \mathcal{I} -\pi_{3,1,0}\rho_{1,0,1}\rho_{0,1,1}^2.\]

□

\textbf{Theorem 6.8.} For arbitrary $m \geq 3$ the kernel of $\varphi(4, m) : F(4, m) \to \mathbb{C}[V^m]^D_8$ is minimally generated as a GL-ideal by $R_{2,2,2}, R(4)_{4,2}, R(4)_{6,2}, R(4)_{4,4}$.

\textit{Proof.} This is an immediate consequence of Proposition 6.5 and Theorem 4.8 □

The symmetric group S_3 is isomorphic to the dihedral group D_6 of order 6, and the natural 3-dimensional permutation representation of S_3 can be identified with the sum of the trivial representation and the defining 2-dimensional representation of D_6. Therefore \cite{10} Theorem 3.1] dealing with multisymmetric polynomials can be restated in the notation of the present paper as follows:

\textbf{Theorem 6.9.} For arbitrary $m \geq 3$ the kernel of $\varphi(3, m) : F(3, m) \to \mathbb{C}[V^m]^D_6$ is minimally generated as a GL-ideal by $R_{2,2,2}, R(3)_{3,2}, R(3)_{4,2}$.

\textbf{Remark 6.10.} (i) The method of the present paper would yield a shorter proof of Theorem 6.9 than the proof in \cite{10}.
(ii) For \(n = 2 \) the group \(D_4 \) is isomorphic to Klein’s four group, so it is abelian and its action on \(V \) is diagonalizable. In an appropriate basis we have \(\mathbb{C}[V]^{D_4} = \mathbb{C}[x^2, y^2] \), and \(\mathbb{C}[V^m] = \mathbb{C}[x_i x_j, y_i y_j \mid 1 \leq i \leq j \leq m] \). The corresponding \(GL \)-ideal of \(GL \)-induces an action of \(\mathbb{C} \) on \(\mathbb{C}[V^m]^{D_4} \) is generated by the two relations \(x_1 x_2^2 = 0 \) and \(y_1^3 y_2^2 - (y_1 y_2)^2 = 0 \). For some results on presentations of rings of invariants of abelian groups see for example [9] and the references therein.

7. Some computations

Next we determine the \(GL_m(\mathbb{C}) \)-module structure of \(\mathbb{C}[V^m]^{D_{2n}} \). It turns out that the multiplicities of the irreducible summands are conveniently expressed in terms of the coefficients of the Hilbert series of \(\mathbb{C}[V^m]^{D_{2n}} \). Denote by \(h(d) \) the dimension of the degree \(d \) homogeneous component of \(\mathbb{C}[x, y]^{D_{2n}} \). Note that in the formal power series ring \(\mathbb{Z}[t] \) we have the equality

\[
\sum_{d=0}^{\infty} h(d) t^d = \frac{1}{(1 - t^2)(1 - t^4)}.
\]

Proposition 7.1. The multiplicity of \(S^\lambda(\mathbb{C}^m) \) as a summand in \(\mathbb{C}[V^m]^{D_{2n}} \) is non-zero only if \(\text{ht}(\lambda) \leq 2 \), and in this case the multiplicity is

\[
\begin{cases}
 h(\lambda_1 - \lambda_2) & \text{if } 2 \mid \lambda_2 \\
 h(\lambda_1 - \lambda_2 - n) & \text{if } 2 \nmid \lambda_2.
\end{cases}
\]

Proof. Identify \(V^m \) with the space \(\mathbb{C}^{2 \times m} \) of \(2 \times m \) matrices, endowed with the \(GL_2(\mathbb{C}) \times GL_m(\mathbb{C}) \)-action \((g, h) \cdot A := gAh^{-1} \) for \(g \in GL_2(\mathbb{C}) \), \(h \in GL_m(\mathbb{C}) \), and \(A \in \mathbb{C}^{2 \times m} \). This induces an action of \(GL_2(\mathbb{C}) \times GL_m(\mathbb{C}) \) on \(\mathbb{C}[V^m] \) via \(\mathbb{C} \)-algebra automorphisms in the standard way: \(((g, h) \cdot f)(A) = f(g^{-1}Ah) \) for \(g \in GL_2(\mathbb{C}) \), \(h \in GL_m(\mathbb{C}) \), \(A \in \mathbb{C}^{2 \times m} \) and \(f \in \mathbb{C}[V^m] \). Note that the restriction of this action to the subgroup \(GL_m(\mathbb{C}) \) agrees with the \(GL_m(\mathbb{C}) \)-action on \(\mathbb{C}[V^m] \) considered in the previous sections. By the Cauchy Formula (see for example [14] Section 9.6.3) we have

\[
\mathbb{C}[V^m]_d \cong \sum_{\lambda \in \text{Par}_m(d), \ \text{ht}(\lambda) \leq 2} S^\lambda(V^*) \otimes S^\lambda(\mathbb{C}^m)
\]

as \(GL_2(\mathbb{C}) \times GL_m(\mathbb{C}) \)-modules. It follows that we have the following isomorphism of \(GL_m(\mathbb{C}) \)-modules:

\[
\mathbb{C}[V^m]^{{D_{2n}}} \cong \sum_{\lambda \in \text{Par}_m(d), \ \text{ht}(\lambda) \leq 2} S^\lambda(V^*)^{{D_{2n}}} \otimes S^\lambda(\mathbb{C}^m).
\]

Note that for a partition \(\lambda = (\lambda_1, \lambda_2) \), we have the \(D_{2n} \)-module isomorphism \(S^\lambda(V^*) \cong S^{\lambda_1 - \lambda_2}(V^*) \) when \(\lambda_2 \) is even, whereas for \(\lambda_2 \) odd we have \(S^\lambda(V^*) \cong \det \otimes S^{\lambda_1 - \lambda_2}(V^*) \), where \(\det \) stands for the 1-dimensional representation of \(D_{2n} \) obtained by composing the determinant with the 2-dimensional defining representation of \(D_{2n} \). Now the result follows from the well-known description of \(\mathbb{C}[V] \cong S(V^*) \) as a \(D_{2n} \)-module. \(\square \)
For a fixed n Proposition 7.1 and Corollary 4.6 allow us to compute the multiplicities of the simple $GL_3(\mathbb{C})$-module summands of the homogeneous components of $\ker(\bar{\varphi}(n, 3))$ up to degree $2n + 2$. We shall do this computation for the case $n = 4$. To simplify notation write $S(\lambda)$ for $S^\lambda(\mathbb{C}^m)$. Corollary 4.6 yields

\begin{equation}
\bar{\mathcal{D}}(m) \otimes \mathcal{E}(4, m)_{\leq 10} \cong S(0) + S(2) + 2S(4) + S(2, 2) + 2S(6) + S(5, 1) + 2S(4, 2) + 3S(8) + S(7, 1) + 4S(6, 2) + S(5, 3) + 3S(4, 4) + 3S(10) + 2S(9, 1) + 5S(8, 2) + 3S(7, 3) + 5S(6, 4) + S(5, 2, 1) + S(4, 2, 2) + 2S(7, 2, 1) + 2S(6, 3, 1) + 2S(5, 4, 1) + 2S(6, 2, 2) + S(5, 3, 2) + 2S(4, 4, 2).
\end{equation}

By Proposition 7.1 and (29) we have

\begin{equation}
\mathbb{C}[V_{nm}]_{D_8} \cong S(0) + S(2) + 2S(4) + S(2, 2) + 2S(6) + S(5, 1) + S(4, 2) + 3S(8) + S(7, 1) + 2S(6, 2) + S(4, 4) + 3S(10) + 2S(9, 1) + 2S(8, 2) + S(7, 3) + S(6, 4).
\end{equation}

Combining (30) and (31) we get

\begin{equation}
\ker(\bar{\varphi}(4, m)_{\leq 10}) \cong S(4, 2) + 2S(6, 2) + 2S(4, 4) + 3S(8, 2) + 4S(6, 4) + S(5, 3) + 2S(7, 3) + S(5, 2, 1) + S(4, 2, 2) + 2S(7, 2, 1) + 2S(6, 3, 1) + 2S(6, 2, 2) + 2S(5, 4, 1) + 2S(4, 4, 2) + S(5, 3, 2).
\end{equation}

An alternative approach to Theorem 6.8 would be to find the highest weight vectors in the GL-ideal generated by $R_{2, 2, 2}$, $R(4)_{4, 2}$, $R(4)_{6, 2}$, $R(4)_{4, 4}$ required by the decomposition (32). However, this seems to be more laborious than the approach in Section 6 based on the Hironaka decomposition.

References

[1] S. Abeasis, M. Pittaluga, On a minimal set of generators for the invariants of 3×3 matrices, Comm. Algebra 17 (1989), 487-499.
[2] J. Alev, L. Foissy, Le groupe des traces de Poisson de certaines algèbres d’invariants, Comm. Algebra 37 (2009), 368-388.
[3] F. Benanti, V. Drensky, Defining relations of minimal degree of the trace algebras of 3×3 matrices, J. Algebra 320 (2008), 756-782.
[4] C. Bonnafé, On the Calogero-Moser space associated with dihedral groups, Annales Mathémathiques Blaise Pascal 25 (2018), 265-298.
[5] C. Chevalley, Invariants of finite groups generated by reflections, American Journal of Mathematics 77 (1955), 778-782.
[6] K. Cziszter, M. Domokos, The Noether number for the groups with a cyclic subgroup of index two, Journal of Algebra 399 (2014), 546-560.
[7] K. Cziszter, M. Domokos, Lower bounds on the Noether number, Transform. Groups 24 (2019), 823-834.
[8] H. Derksen, Degree bounds for syzygies of invariants, Adv. Math. 185 (2004) 207-214.
[9] M. Domokos, On syzygies for rings of invariants of abelian groups, Advances in Rings, Modules and Factorizations, Graz, Austria, February 19-23, 2018, Springer Proceedings in Mathematics & Statistics 321, pp. 105-124, 2020.
[10] M. Domokos and A. Puskás, Multisymmetric polynomials in dimension three, J. Algebra 356 (2012), 283-303.
[11] E. B. Elliott, An Introduction to the Algebra of Quantics, Second Edition, Clarendon Press, Oxford, 1913.
[12] M. Hunziker, Classical invariant theory for finite reflection groups, Transformation Groups 2 (1997), 147-163.
[13] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Second Edition (1995), Clarendon Press, Oxford.
[14] C. Procesi, Lie Groups (An Approach through Invariants and Representations), Springer, 2007.
[15] B. J. Schmid, Finite groups and invariant theory, Topics in Invariant Theory, Lecture Notes in Mathematics, vol. 1478, Springer, 1991, pp. 35-66.
[16] B. Sturmfels, Algorithms in Invariant Theory, Second Edition, Springer-Verlag, Wien, 2008.
[17] H. Weyl, The Classical Groups, Second edition, Princeton University Press, Princeton, 1946.

Alfréd Rényi Institute of Mathematics, Réáltaanoda utca 13-15, 1053 Budapest, Hungary, ORCID iD: https://orcid.org/0000-0002-0189-8831
Email address: domokos.matyas@renyi.hu