Average order in wreath products

Supravat Sarkar

Abstract

We obtain an exact formula for the average order of elements of a wreath product of two finite groups. Then focusing our attention on p-groups for primes p, we give an estimate for the average order of a wreath product $A \wr B$ in terms of maximum order of elements of A and average order of B and an exact formula for the distribution of orders of elements of $A \wr B$. Finally, we show how wreath products can be used to find several rational numbers which are limits of average orders of a sequence of p-groups with cardinalities going to infinity.

Keywords: Group, average order, wreath product, maximum order, order distribution, semidirect product

MSC number: 20D15

1 Introduction

For a finite group G, define the average order of elements to be $a(G) = \frac{\sum_{g \in G} \text{order}(g)}{|G|}$ and denote the maximum order of an element of G by $m(G)$. It is well known that among all groups of a fixed cardinality, the cyclic group has the largest average order (see [1], [2]). Other authors have studied the average order function with a view to deriving characterization theorems for nilpotency and solvability (see [3], [4]).

Wreath products of groups often provide examples and counter-examples for various group theoretic questions. The famous Krasner-Kaloujnine embedding theorem shows that for any two groups A and H, any extension of A by H is isomorphic to a subgroup of the wreath product $A \wr H$ (see [5]).

In this article, we obtain an exact formula for the average order of a wreath product of two finite groups. Following that, we focus our attention on p-groups for primes p. We give an estimate for the average order of a wreath product $A \wr B$ in terms of $m(A)$ and $a(B)$. In addition, we obtain an exact formula for the distribution of orders of elements of $A \wr B$, in terms of distributions of orders of elements of A and B. Finally, we show how wreath products can be used to find several rational numbers which are limits of average orders of a sequence of p-groups with cardinalities going to infinity.
2 Notations and Conventions

1. Given two groups A and B, let $K = \prod_{b \in B} A$. The group B naturally acts on K by $x \cdot (\alpha_b)_b = (\alpha_{x^{-1}b})_b$, for $x \in B$, $(\alpha_b)_b \in K$. The semidirect product $K \rtimes B$ is called the wreath product of A by B and is denoted by $A \wr B$.

2. $\mu : \mathbb{N} \to \mathbb{Z}$ denotes the Mobius function. Recall that if n is square-free, $\mu(n) = (-1)^m$, where m is the number of distinct prime divisors of n. If n is not square-free, $\mu(n) = 0$.

3. For a natural number n, define $\tau(n) = \prod_{p|n, p \text{ prime}} (1 - \frac{1}{p})$. It is easy to see that $\tau(n) = \sum_{d|n} d \mu(d)$.

4. For real valued functions f and g we adopt the notation $g = O(f)$ to mean that there is a constant $M > 0$ such that $|g| \leq M |f|$ always.

5. Define $\psi(A, B) = a(A \wr B) \cdot a(B)^{m(A)}$, for p-groups A and B.

6. Let A be a p-group of cardinality p^a and $m(A) = p^d$. For $k \in \mathbb{Z}$ define $r_{A,k} = \frac{1}{p^d} \times \text{Number of elements of order at most } p^{d-k}$.
 This essentially denotes the cumulative distribution function of the order distribution. So, $r_{A,k}$ is a non-increasing function of k, and $r_{A,k} = 1$ for $k \leq 0$, $r_{A,k} = 0$ for $k > d$.

7. Fix a prime p. Let us call a real number β an “Average Order Limit” if there is a sequence of p-groups G_n with $|G_n| \to \infty$ and $a(G_n) \to \beta$.

3 Main Results

Theorem 1 Let A, B be finite groups with at least 2 elements. For $m \geq 1$, let s_m be the number of elements of A whose m-th power is 1. For $n|b$, let d_n be the number of elements of B of order n. Then

$$a(A \wr B) = \sum_{m \mid |A|, n \mid |B|} \frac{m s_m}{|A|^n d_n} \cdot \frac{|A|}{m} \tau \left(\frac{|A|}{m} \right).$$

Let p be a prime. From now on, assume A, B are p-groups, $|A| = p^a$, $|B| = p^b$, $a, b \geq 1$.

Theorem 2 With notations as in theorem 1,

$$a(A \wr B) = p^d a(B) - (p - 1) a(B) \sum_{n \leq b} k_n \cdot \left[\sum_{m \leq p^{d-1}} p^m \left(\frac{v_m}{p^a} \right)^n \right],$$

where $k_n = \frac{p^{-n} d_{b-n} \cdot \psi(A, B)}{a(B)}$. Note that $k_n \geq 0 \forall n$, $\sum_{n \leq b} k_n = 1$.

Theorem 3 $a(B) \leq a(A \wr B) \leq p^d a(B)$.

\[2\]
Note that Theorem 3 implies that $0 \leq \psi(A, B) \leq 1$.

Theorem 4 With notations as in theorem 1,

$$a(A \wr B) = p^d a(B) - (p - 1)a(B) \sum_{n \leq b} k_n [p^{nd-1} \left(\frac{8p^{d-1}}{p^a} \right) p^n] + O(p^{d-1}a(B)).$$

Here, the implicit constant in $O(p^{d-1}a(B))$ is independent of p as well as of the groups. Now, we explicitly write the order distribution of $A \wr B$ in terms of the order distributions of A and B.

Theorem 5 Let $m(A) = p^d$, $m(B) = p^e$. Then we have $m(A \wr B) = p^{d+e}$, and $r_{A,B,k} = \sum_{i=0}^{r} (r_{B,i} - r_{B,i+1}) r_{A,k-i}^1$.

Corollary 1 $r_{A/Z/pZ,k} = (1 - p^{-1}) r_{A,k} + \frac{r_{A,k-1}}{p}$.

In view of theorem 4, it is natural to ask whether $a(A \wr B) = p^d a(B) + O(p^{d-1}a(B))$, i.e., whether “$\psi(A, B) = 1 + O(\frac{1}{p})$”. We shall show that this is not true in general. However, if we assume A is abelian, then it is true.

Corollary 2 Let A be a p-group. Define p-groups A_n recursively by $A_0 = A$, $A_n = A_{n-1} \wr \mathbb{Z}/p^k \mathbb{Z}$. Let B be a p-group. Then $\psi(A_n, B) \to 0$ as $n \to \infty$.

Note that corollary 5.2 shows that “$\psi(A, B) = 1 + O(\frac{1}{p})$” cannot be true in general. Now we show how the situation differs if we assume A to be abelian.

Theorem 6 For abelian p-groups A, define $t(A)$ to be the unique positive integer such that $A \cong \mathbb{Z}/p^{d_1} \mathbb{Z} \oplus \mathbb{Z}/p^{d_2} \mathbb{Z} \oplus \ldots \oplus \mathbb{Z}/p^{d_k} \mathbb{Z} \oplus (\mathbb{Z}/p^d \mathbb{Z})^{t(A)}$, where $d_1 \leq d_2 \leq \ldots \leq d_k < d$. Then,

(i) For each noncyclic group B, $1 - p^{-t(A)p} \leq \psi(A, B) \leq 1$.

(ii) For cyclic groups B, $\psi(A, B) = 1 - p^{-t(A)} + O(p^{-t(A)-1})$.

In particular, $\psi(A, B) = 1 + O(\frac{1}{p})$ holds if A is abelian.

Now we prove a result about limiting value of average orders for a sequence of groups whose sizes go to infinity.

Theorem 7 Suppose B_n is a sequence of p-groups with $a(B_n) \to \beta$. Then $a((\mathbb{Z}/p^k \mathbb{Z})^n \wr B_n) \to p \beta$. So, if β is an Average Order Limit, then $p \beta$ is also. Hence $p \beta$ is an Average Order Limit for each nonnegative integer r.

Note that whatever the sizes of B_n be, sizes of $(\mathbb{Z}/p^k \mathbb{Z})^n \wr B_n$ always go to infinity. So, taking $\{B_n\}$ to be a constant sequence B, we see that $p^r a(B)$ is an Average Order Limit, for any $r \geq 2$. This guarantees the existence of many non-integral Average Order Limits. For example, taking $B = (\mathbb{Z}/p^k \mathbb{Z})^b$ and $2 \leq r \leq b - 1$, we get $p^{r+b+1} \left(1 - \frac{1}{p^r} \right)$ as an Average Order Limit.

Corollary 3 Given any p-group B, and integer $r \geq 2$, there are sequences G_n, H_n of p-groups with $|G_n| \to \infty$, $|H_n| \to \infty$ and $a(G_n \wr H_n) \to p^r a(B)$.
4 Proofs of the Theorems

We start with two preliminary lemmas.

Lemma 1 For any semidirect product \(H \rtimes K \), we have \(a(H \rtimes K) \geq a(K) \). Also, for \((h, k) \in H \rtimes K\), we have \(\text{order}(k) | \text{order}(h) \).

Proof. For any \((h, k) \in H \rtimes K\), \((h, k)^m\) has \(k^m \) as 2nd coordinate. So, \((h, k)^m = 1 \implies k^m = 1\). So, \(\text{order}(k) | \text{order}(h) \), in particular \(\text{order}(h) \geq \text{order}(k) \), for all \(h \in H \). So, \(a(H \rtimes K) \geq \sum_{k \in K} \text{order}(k) = \frac{|H|}{|K|} \sum_{k \in K} \text{order}(k) = a(K) \).

Lemma 2 Let \(p \) be a prime and \(b \geq 1 \) an integer. Then \(a(\mathbb{Z}/p^b\mathbb{Z}) = p^b + O(p^{b-1}) \).

Proof. In \(\mathbb{Z}/p^b\mathbb{Z} \), there are exactly \(\phi(p^n) = p^n(1 - p^{-1}) \) elements of order \(p^n \), for each \(1 \leq n \leq b \). So,

\[
a(\mathbb{Z}/p^b\mathbb{Z}) = \frac{1 + \sum_{n=1}^{b} p^n \cdot p^n \cdot (1 - p^{-1})}{p^b} = \frac{1 + p(p - 1) \sum_{n=0}^{b-1} p^{2n}}{p^b} = 1 + \frac{(p^2 - p) \binom{2b-1}{p-1}}{p^b} = \frac{1 + \frac{p}{p+1}(p^2b - 1)}{p^b} = p^{-b} + \frac{p}{p+1}(p^b - p^b) = p^b + O(p^{b-1}).
\]

Let us recall some standard facts before starting the proof of theorem 1. For groups \(H, K \), and injective group homomorphism \(\psi : K \to Aut(H) \), we have an injective group homomorphism \(\psi : H \rtimes K \to Perm(H) \) defined by \(\psi((h, k)) = h \phi(k) \). So, \(H \rtimes K \) can be regarded as a subgroup of \(Perm(H) \), consisting of the transformations \(T_{h,k} \), defined by \(T_{h,k}(x) = h \phi(k)(x) \).

So, if \(A \) and \(B \) has at least 2 elements, \(A \) is the subgroup of \(Perm(\Pi_{b \in B} A) \), consisting of the permutations \(T_{a,x}, a \in \Pi_{b \in B} A, x \in B \), where \(T_{a,x}(b) = (\alpha_b \alpha_{x^{-1}} b, (a = (a_b)b)) \).

Proof of Theorem 1. Note that lemma 1 yields \(\text{order}(x) | \text{order}(T_{a,x}) \) for all \((a, x) \in A \ast B\). Fix \(x \in B \). Let \(d = \text{order}(x) \). For \(m \geq 1 \), we have \(T_{a,x}^{dm - 1}(a) = (\alpha_b \alpha_{x^{-1}} b, (a = (a_b)b)) \).

So,

\[
T_{a,x}^{dm - 1} = 1 \iff \alpha_b \alpha_{x^{-1} b} \alpha_{x^{-1} b}^{m - 1} b = 1 \quad \forall \quad b \in B
\]

Name this condition (1).

Multiplication by \(x \) divides \(B \) into \(\frac{|B|}{d} \) orbits of size \(d \), and (1) is equivalent to saying that product of \(\alpha_b \)'s, for \(b \) running in each orbit in cyclic order, has \(m \)'th power = 1.
Number of $\alpha \in \prod_{b \in B} A$ satisfying (1) is exactly $\binom{|A|^{d-1}s_m}{B}$. The reason is as follows. Fix a point p in a orbit. For each $b \neq p$ in that orbit, α_b can be chosen to be anything in A. After that α_p has exactly s_m choices. Altogether we get α_b’s for b running over a fixed orbit has exactly $|A|^{d-1}s_m$ choices. There are $\binom{|B|}{d}$ orbits. So in total we have $\binom{|A|^{d-1}s_m}{B}$ choices for α.

From (1), it is clear that $T^{d|A|} = 1$. So, $\text{order}(T_{\alpha_{x^{-1}}}) = |A|$

For $m \geq 1$, let $g_m = \text{number of } \alpha \in \prod_{b \in B} A \text{ with order}(T_{\alpha_{x^{-1}}}) = dm$. We have just shown that unless $m \mid |A|$, we have $g_m = 0$. Also, for all $k \geq 1$,

$$\sum_{m \mid k} g_m = \text{number of } \alpha \text{ with } (T_{\alpha_{x^{-1}}})^{dk} = 1 = \binom{|A|^{d-1}s_m}{B}$$

By Mobius inversion, $g_m = |A|^{B(d-1)} \sum_{n \mid m} \mu(m) s_n^m$ for all $m \geq 1$. So,

$$\sum_{\alpha \in \prod_{b \in B} A} \text{order}(T_{\alpha_{x^{-1}}}) = \sum_{m} \binom{A}{B} m \mu(m) s_n^m$$

This is true for any $x \in B$ or order d. There are d_n elements of order n in B, for each $n \mid |B|$. So,

$$\sum_{x \in A \setminus B \text{ order } x} = \sum_{n \mid |B|} d_n \binom{A}{B} m \mu(m) s_n^m$$

Proof of Theorem 2. Theorem 1, together with the observation that $s_p^m = p^a$ for $m \geq d$ yields

$$a(A \setminus B) = \sum_{n \leq b} p^a \sum_{p^a} p^n d_{p^b-n}$$

$$- (p-1) \sum_{m \leq a-1, n \leq b} p^m \sum_{p^m} p^n d_{p^b-n}$$

$$= p^a \sum_{n \leq b} p^n d_{p^b-n}$$

$$- (p-1) \sum_{d \leq m \leq a-1, n \leq b} p^m \sum_{p^m} p^n d_{p^b-n}$$

$$- (p-1) \sum_{m \leq d-1, n \leq b} p^m \sum_{p^m} p^n d_{p^b-n}$$

$$= p^a a(B) - (p-1)p^d \sum_{m \leq a-d-1} p^m \sum_{n \leq b} p^n d_{p^b-n}$$
\[(p - 1) \sum_{m \leq d - 1, n \leq b} \frac{\mu_m}{p^m} (\frac{s_m}{p^n})^n d_{p^n} = p^d a(B) - (p^d - 1) p^d a(B) \]
\[(p - 1) \sum_{m \leq d - 1, n \leq b} \frac{\mu_m}{p^m} (\frac{s_m}{p^n})^n d_{p^n} = p^d a(B) - (p - 1) \sum_{m \leq d - 1, n \leq b} p^m (\frac{s_m}{p^n})^n d_{p^n} \]
\[(p - 1) \sum_{m \leq d - 1, n \leq b} \frac{\mu_m}{p^m} (\frac{s_m}{p^n})^n d_{p^n} = p^d a(B) - (p - 1) \sum_{n \leq k} p^n d_{p^n} - \sum_{m \leq d - 1} p^m (\frac{s_m}{p^n})^n \]
\[(p - 1) a(B) - (p - 1) a(B) \sum_{n \leq b} k_n \| \sum_{m \leq d - 1} p^m (\frac{s_m}{p^n})^n \].

Proof of theorem 3. Theorem 2 proves the second inequality, and the first inequality follows from lemma 1.

Proof of theorem 4. Let us look at theorem 2 more closely. \(\frac{s_m}{p^n} < 1 \) \(\forall m \leq d - 1 \). So, \(\sum_{m \leq d - 2} p^m (\frac{s_m}{p^n})^n \leq \sum_{m \leq d - 2} p^m = \frac{d^2 - 1}{d - 1} \), for each \(n \leq b \).
We also have \(k_n \geq 0 \) \(\forall n \), \(\sum_{n \leq b} k_n = 1 \). Hence,
\[(p - 1) a(B) \sum_{n \leq b} k_n \| \sum_{m \leq d - 2} p^m (\frac{s_m}{p^n})^n \] = \(O(p^d a(B)) \).

Proof of theorem 5. Let \(x \in B \), order \((x) = p^{e_1} \), \(\alpha \in \prod_{b \in B} A \). Multiplication by \(x \) divides \(B \) into \(p^{d - e_1} \) orbits of size \(p^{e_1} \); let \(b_1, b_2, ..., b_{p^{e_1}} \) be representatives of distinct orbits. By (1) of theorem 1, the order of \(T_{\alpha, x} \) equals \(m(\alpha) = \sum_{i=1}^{d} \alpha_i \).

If \(x \in B \) is of order \(p^e \), and \(y \in A \) is of order \(p^e \), then the order of \(T_{\alpha, x} \) equals \(p^d + e \), where \(\alpha \) is defined by \(\alpha_1 = y \), \(\alpha_2 = 1 \forall b \neq 1 \). So, \(m(\alpha) = p^d + e \).

Now we prove the second statement.

Again, let \(x \in B \), order \((x) = p^{e_1} \). Let \(k \leq d + e - e_1 \). Note that
\[
T_{\alpha, x} = 1 \iff (\alpha_0, \alpha_{b_1}, ..., \alpha_{p^{e_1} - 1}) = 1 \forall i.
\]

Lemma 3 For all \(k \), \(\lim_{n \to \infty} r_n k = 1 \).

Proof. We proceed by induction on \(k \). For \(k \leq 0 \), we have \(r_n k = 1 \) \(\forall n \), and nothing to show. For the induction step, \(k \geq 1 \) and assume \(\lim_{n \to \infty} r_n k-1 = 1 \). By corollary 5.1., \(r_{n+1,k} = (1 - p^{-1}) r_n k + \frac{r_{n,k-1}}{p} \). So,
\[\lim\inf_{n \to \infty} r_{n+1,k} = (1-p^{-1}) \lim\inf_{n \to \infty} r_{n,k} + p^{-1}, \] as induction hypothesis implies \(\lim_{n \to \infty} r_{n,k-1} = 1. \]

But \(\lim\inf_{n \to \infty} r_{n+1,k} = \lim\inf_{n \to \infty} r_{n,k}. \) Hence, \(\lim\inf_{n \to \infty} r_{n,k} = (1-p^{-1}) \lim\inf_{n \to \infty} r_{n,k} + p^{-1}; \) that is, \(\lim\inf_{n \to \infty} r_{n,k} = 1. \) Since we always have \(0 \leq r_{n,k} \leq 1, \) we get \(\lim_{n \to \infty} r_{n,k} = 1. \) Induction completes the proof.

Proof of corollary 5.2. Let \(m(A) = p^d, |B| = p^b. \) By theorem 5, \(m(A_n) = p^{d+n} \) for all \(n. \) By theorem 2,

\[
\psi(A_n, B) = 1 - \frac{p^{-1}}{p^d+n} \sum_{r \leq b} k_r \left(\sum_{m=0}^{d+n-1} p^m p^{r-m} \right) \\
= 1 - \left(1 - p^{-1} \right) \sum_{r \leq b} k_r \left(\sum_{m=0}^{d+n-1} p^{-(d+n-1-m)} r_{n,(d+n-1-m)+1} \right) \\
= 1 - \left(1 - p^{-1} \right) \sum_{r \leq b} k_r \left(\sum_{m=0}^{d+n-1} p^{-m} r_{n,m+1} \right) \quad \text{(replace } m \text{ by } d+n-1-m). \]

Fix \(M \in \mathbb{N}. \) For all sufficiently large \(n, \) we have \(d+n-1 > M, \) hence \(\psi(A_n, B) \leq 1 - (1-p^{-1}) \sum_{r \leq b} k_r \left(\sum_{m=0}^{M} p^{-m} r_{n,m+1} \right). \) Since \(\lim\inf_{n \to \infty} r_{n,m+1} = 1 \) by lemma 3, we get

\[
\limsup_{n \to \infty} \psi(A_n, B) \leq 1 - (1-p^{-1}) \sum_{r \leq b} k_r \left(\sum_{m=0}^{M} p^{-m} r_{n,m+1} \right) \\
= 1 - (1-p^{-1}) \sum_{m=0}^{M} p^{-m} \quad \text{(as } \sum_{r \leq b} k_r = 1 \text{ for all } M \in \mathbb{N}). \]

Taking \(M \to \infty, \) we get \(\limsup_{n \to \infty} \psi(A_n, B) \leq 0, \) that is, \(\lim_{n \to \infty} \psi(A_n, B) = 0. \)

Proof of theorem 6. We use the notation of theorem 2, and write \(t \) instead of \(t(A). \) Projection gives a surjective group homomorphism \(\phi: A \to (\mathbb{Z}/p^d\mathbb{Z})^t. \)

Note that the subgroup of \(p^{d-1} \)-torsion elements of \(A \) is \(\phi^{-1}(p\mathbb{Z}/p^d\mathbb{Z}) \), and for \(0 \leq m \leq d-2 \), the subgroup of \(p^{d-m} \)-torsion elements of \(A \) is contained in \(\phi^{-1}(p^m\mathbb{Z}/p^d\mathbb{Z}) \). So, \(\frac{p^{d-1}}{p^m} = p^{-1}, \) and for each \(0 \leq m \leq d-2, \) we have \(\frac{s_m}{p^m} \leq p^{-mt} \leq p^{-2t}. \) By theorem 2,

\[
p^d a(B) - a(A \langle B \rangle) = (p-1) a(B) k_0 \cdot \left[\sum_{m=0}^{d-1} p^m \frac{s_m p^m}{p^d} \right] \\
= (p-1) a(B) \sum_{1 \leq n \leq b} k_n \cdot \left[\sum_{m=0}^{d-1} p^m \left(\frac{s_m}{p^d} \right) p^n \right] \\
\leq (p-1) a(B) \sum_{1 \leq n \leq b} k_n \sum_{m=0}^{d-1} \frac{p^m}{p^d p^n} \\
= (p-1) a(B) \left(\sum_{1 \leq n \leq b} k_n p^{-tp^n} \right) \cdot \frac{p^d-1}{p-1} \\
\leq a(B) \sum_{1 \leq n \leq b} p^{d-tp^n} k_n \\
\leq a(B) p^{d-tp} \sum_{1 \leq n \leq b} k_n \leq a(B) p^{d-tp}. \]

If \(B \) is noncyclic, \(k_0 = 0; \) so \(p^d a(B) - a(A \langle B \rangle) \leq a(B) p^{d-tp}. \) Dividing by \(p^d a(B), \) we get \(1 - p^{-tp} \leq \psi(A, B). \) If \(B \) is the cyclic group \(\mathbb{Z}/p^d\mathbb{Z}, \) we have
\[k_0 = \frac{d(p^h)}{n(B)} = \frac{1}{p} - \frac{p^h}{n(B)} = (1 + O(\frac{1}{p}))(1 + O(\frac{1}{t})) = 1 + O(\frac{1}{p}). \]

Here, we used lemma 2, and the observation that \((1 + O(p^{-1}))^{-1} = 1 + O(p^{-1})\). So, \(\sum_{m \leq d-1} p^{m_s_m} = p^{d-1} + O(\sum_{m \leq d-2} p^{m-2t}) = p^{d-1} + O\left(\frac{p^{d-1} - 1}{p-1}\right) \cdot p^{d-2t} = p^{d-1} + O(\frac{p^{d-2-2t}}{p^t})\).

Hence, \(\frac{(p-1)a(B)k_0 \cdot \sum_{m \leq d-1} p^{m_s_m}}{p^d a(B)} = \frac{(p-1)(1 + O(p^{-1}))(p^{d-1} + O(p^{d-2-2t}))}{p^t} = \frac{p^{d-t} + O(p^{d-1-t})} = p^{-t} + O(p^{-1}).\)

We have shown
\[0 \leq p^t a(B) - a(A \uplus B) - (p - 1)a(B)k_0 \cdot \sum_{m \leq d-1} p^{m_s_m} \leq a(B)p^{d-t}. \]

So, dividing by \(p^t a(B)\) we get
\[\psi(A, B) = 1 - \frac{(p-1)a(B)k_0 \cdot \sum_{m \leq d-1} p^{m_s_m}}{p^d a(B)} + O(p^{-t}) \]
\[= 1 + p^{-t} + O(p^{-t+1}) + O(p^{-1}) = 1 + p^{-t} + O(p^{-1}). \]

Proof of theorem 7. Let \(|B_n| = p^{bn}.\) By theorem 2,
\[a((Z/pZ)^n \uplus B_n) = p \cdot a(B_n) - (p - 1)a(B_n) \sum_{m \leq b_n} k_{m,n}(\frac{1}{p^n})p^n, \]
for some \(0 \leq k_{m,n} \leq 1,\) with \(\sum_{m \leq b_n} k_{m,n} = 1\) for each \(n.\)

So, for all sufficiently large \(n,\) so that \(a(B_n) \leq \beta + 1;\) we have
\[|a((Z/pZ)^n \uplus B_n) - p\beta| \leq p|a(B_n) - \beta| + (p - 1)(\beta + 1)p^{-n} \to 0. \]

Proof of corollary 7.1. Let \(G_n = (Z/pZ)^n, H_n = (Z/pZ)^n \uplus ((Z/pZ)^n \uplus (\ldots((Z/pZ)^n \uplus B)),\) there are \(r - 1\) \((Z/pZ)^n)’s here. Now corollary 7.1 follows by repeated application of theorem 7.

5 Acknowledgement

I am grateful to Professor B. Sury of Indian Statistical Institute, Bangalore, who encouraged me to investigate many of the questions I addressed in this article. He also helped me very much to arrange the article in proper order.

6 Declaration of interest

No potential conflict of interest was reported by the author.

References

[1] H. Amiri and S. M. Jafarian Amiri, Sum of element orders on finite groups of the same order, J. Algebra Appl. 10(2) (2011) 187-190.

[2] H. Amiri, S. M. Jafarian Amiri and I. M. Isaacs, Sums of element orders in finite groups, Comm. Algebra 37 (2009) 2978-2980.
[3] J.D.P. Meldrum, Wreath Products of Groups and Semigroups, Longman Group Limited, 1995

[4] Marcel Herzog, Patrizia Longobardi, Marcede Maj, New criteria for solvability, nilpotency and other properties of finite groups in terms of the order elements or subgroups, International Journal of Group Theory, 2022

[5] Marcel Herzog, Patrizia Longobardi, Marcede Maj, Two new criteria for solvability of finite groups, Journal of Algebra 511 (2018) 215-226.