Synthesis and Electrochemistry of Novel Dumbbell-Shaped Bis-pyrazolino[60]fullerene Derivatives Formed Using Microwave Radiation

Mohammad H. BinSabt,* Hamad M. Al-Matar,* Alan L. Balch, and Mona A. Shalaby

ABSTRACT: The design of covalently linked [60]fullerene dimers has gained increased attention, as the linked electron donors or acceptors are in close proximity to the surface of the C_{60} providing a valuable approach to novel molecular electronic devices. Herein, new compounds involving C_{60} dumbbells covalently connected by the π-conjugated system from azobenzene and diaryl ether linkers were synthesized following the bifunctional cycloaddition reactions to C_{60} using microwave radiation. The structural identity of the fullerene dimers has been determined using spectroscopic techniques including Fourier transform infrared (FT-IR), matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF), and NMR spectroscopy, and the photophysical and the electrochemical properties for the new dumbbells have been examined using UV–vis spectroscopy, fluorescence spectroscopy, cyclic voltammetry, and square wave voltammetry. Both new dimers show electronic interaction with the fullerene cage and higher electron affinity than the pristine C_{60}.

INTRODUCTION

The discovery of fullerenes in 1985 and the subsequent isolation present the first phase of fullerene chemistry, which has expanded to many fields and produced many new compounds. As a consequence of their unique physicochemical properties originating from their high symmetries and extended conjugated π-systems, fullerenes and related analogues have inspired researchers to design new fullerene-based structures. [60]-Fullerene (C_{60}) is considered the most iconic interstellar material and is marked as a perfect icosahedral π framework. This promising class of molecules is considered the state-of-art material in many applications such as materials science, biology, antiviral therapy, and photodynamic therapy (PDT) for the treatment of multiple diseases, including mainly cancer, as acceptor and cathode but also inorganic solvents. This problem can be overcome by applying chemical modifications for C_{60}. On the other hand, the dumbbell-type dimeric fullerene materials with different spacers between the fullerene units represent an interesting class of molecules. Fullerene dimers are an important, versatile class of organic functional materials not only because they are subunits for fullerene polymers, but also because they have found extensive applications as organic electronic materials for light harvesting, optical switches, charge separation, and photovoltaic devices due to the presence of two fullerene cages in one molecule. Dimers have gained particular interest due to the several structural variations produced by the linking organic functionalities. Fullereno-triads are labeled for the platform of two C_{60} groups covalently attached to electroactive species. There is a growing interest to design and synthesize new [60]fullerene dimers for use in different areas such as molecular electronic devices and supramolecular chemistry. Hence, many synthetic protocols have been adapted to obtain novel designs with optimum properties for the intended applications. One of the most interesting architectures is the symmetric C_{60}−donor−C_{60} (ADDA), where C_{60} acts as an acceptor (A). The electronic and electrochemical properties of C_{60} in these compounds are modulated to allow energy and electron transfer between the sites. Our group is interested in fulleropyrazoline...
derivatives due to the enhancement of the electron affinity of these compounds that results from the inductive effect of the pyrazoline ring.34 In addition, the pyrazoline−C\(_{60}\) unit has been found to act as a charge-separation module for the construction of photoactive and tunable devices.35 Azobenzenes are considered as attractive classes of molecular switches in material science due to their ability to convert light into mechanical energy, which is supposed to be an essential component in future nanoscale devices.36,37 Also, the diaryl ether structure framework is found in many biologically important natural products.38 Recently, there has been rapid growth in the field of molecular electronics using \(\pi\)-conjugated linker moieties between two C\(_{60}\) end-capped structures that act as anchoring groups to form “molecular wires.”39−41 Microwave (MW) irradiation is a very useful tool in cycloaddition reactions and fullerene chemistry, where the reaction times that are required for the formation of the target compounds in synthetic organic chemistry are shorter compared to the conventional heating method.42−44

In this study, we used azobenzene and diaryl ether moieties as \(\pi\)-conjugated linkers of the central wire between two C\(_{60}\) molecules. The quest is for an economical and environment-friendly alternative synthesis methodology. Thus, we successfully prepared novel fullerene dimers using 1,3-dipolar cycloaddition of different precursors to C\(_{60}\) under microwave (MW) irradiation. Both dumbbells displayed enhanced photophysical and electrochemical properties when compared to pristine C\(_{60}\).

\section*{RESULTS AND DISCUSSION}

\textbf{Synthesis.} In order to prepare the symmetric dumbbell-shaped molecules consisting of the \(\pi\)-system between two units of C\(_{60}\) bis-aldehyde precursors \(\text{5a and 5b}\) were synthesized according to the strategy shown in Scheme 1. We incorporated a photoswitchable azobenzene unit and diaryl ether moiety as a bridge between the two C\(_{60}\) units. First, \(p\)-nitrobenzaldehyde \(\text{1}\) was selected to prepare our precursor compounds \(\text{5a and 5b}\). (\(E\))-4,4’-(diazene-1,2-diyl) dibenzaldehyde \(\text{5a}\) was synthesized using a similar procedure reported in the literature for the synthesis of (\(E\))-3,3’-(diazene-1,2-diyl) dibenzaldehyde from compound \(\text{1}\) under argon.45 The spectroscopic data are in agreement with the published data for the same compound in the literature.46 Also, 4,4’-oxydibenzaldehyde \(\text{5b}\) was synthesized using the cross-coupling of 4-hydroxybenzaldehyde \(\text{4}\) and \(p\)-nitrobenzaldehyde \(\text{1}\) by a ligand-free, copper-catalyzed method reported previously.47 Next, the bis-hydrazones \(\text{6a and 6b}\) were synthesized from the corresponding aldehyde compounds \(\text{1}\) with phenylhydrazine (Scheme 2). The structures of the bis-hydrazones \(\text{6}\) were characterized by NMR spectroscopy and electrospray
ionization mass spectrometry (ESI-MS). The crystal structure of compound 6b is illustrated in Figure 1.

The last step depends on grafting two units of C₆₀ to the bis-hydrazone compound 6 by means of a double [3 + 2] cycloaddition reaction to produce the dumbbell-shaped triads compound 7 (Scheme 2), by which the dinitrile imine intermediate was generated. In order to get the bridged dimers 7, we started our approach by using the conventional heating method, where the cycloaddition was carried out at 80 °C for 24 h (method A). Also, we examined the same reaction under microwave irradiation (200 W), where the reaction was carried out at 80 °C for 1 h to yield compounds 7 (method B). The reaction progress was monitored by thin-layer chromatography (TLC). As shown in Table 1, the microwave irradiation method (method B) was found to be better than the conventional heating method (method A) from both yield and time-consumed perspectives. The triad products 7 were purified using column chromatography (silica gel, toluene) and isolated using high-performance liquid-chromatography (HPLC) (Buckyprep, toluene).

The dumbbell compounds 7a and 7b show good solubility in common organic solvents such as CS₂, CHCl₃, and o-dichlorobenzene (ODCB), thus allowing the compounds to be characterized by ¹H and ¹³C NMR, and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry, which confirmed their expected structures (see Supporting Information). Unfortunately, no exact-mass molecular ion was observed using the fast-atom bombardment (FAB) technique in both positive and negative ion modes, as it has been reported that some dumbbell compounds resist all mass spectrometric attempts, including electrospray techniques.

Table 1. Synthesis of Bis-pyrazolino[60]fullerene Derivatives 7 under Conventional and Microwave Conditions

entry	product	yield (%)	recovered C₆₀ (%)	yield (%)	recovered C₆₀ (%)
6a	7a	7	71	9	56
6b	7b	6	72	10	71

Reaction of bis-hydrazone, C₆₀, and PhI(OAc)₂ in o-dichlorobenzene (ODCB) under conventional conditions (80 °C) for 24 h. Reaction of bis-hydrazone, C₆₀, and PhI(OAc)₂ in ODCB under microwave irradiation for 1 h. †Isolated yields based on the reacted C₆₀.
Figure 2. UV−vis spectra of 6a, 6b, 7a, and 7b in toluene solution at room temperature ($c = 1.6 \times 10^{-5}$ mol/L). The inset shows the expansion from 360 to 800 nm.

Figure 3. UV−vis spectra of 6a, 6b, 7a, and 7b in chloroform solution at room temperature ($c = 1.6 \times 10^{-5}$ mol/L). The inset shows the expansion from 360 to 800 nm.

Scheme 3. Diagram for E/Z Isomerization
The main molecular ion peak at \(m/z \) 720 for the C\(_{60}\) of both dumbbells was observed in FAB.

UV−Vis Spectra. The UV−vis spectra of dumbbells 7a and 7b compounds and their precursors 6a and 6b are represented in Figures 2 and 3, using toluene and chloroform as organic solvents, respectively. Both dumbbells display a main absorption band peak at 327 nm in toluene, whereas in chloroform, the peaks occur at 258 and 320 nm. In that region, the absorption bands of the fullerene overlap with the absorption bands of the central \(\pi \)-system. In the visible region, two absorption bands were observed for the two dumbbells in both solvents, one as a shoulder at 427 nm and the other as a weak band at 690 nm. The signal at 430 nm is characteristic for \([6,6]\)-adducts of C\(_{60}\).\(^{49,50}\) Moreover, the maximum absorption peaks of 6a are at 453 and 448 nm, while for 6b they are at 354 and 352 nm in toluene and chloroform, respectively. For 6b, a weak absorption peak was observed around 443 and 444 nm in toluene and chloroform, respectively, as shown in Figures 2 and 3.

Azobenzenes are known as useful organic dyes and photochromic molecules, where their \(E/Z \) photoisomerization generates worm-like motions.\(^{25,51,52}\) The \(E/Z \) photoisomerization of 7a is shown in Scheme 3. It is known that the \(E \) isomer is the most stable, and the two photochemical conversions for many azobenzenes occur on the scale of picoseconds, while the thermal relaxation of the \(Z \) isomer to the \(E \) isomer is much slower (milliseconds to days).\(^{53}\) The azo fullerene compound 7a has the maximum absorption band at 320 nm with a shoulder at 450 nm arising from \(\pi−\pi^* \) and \(n−\pi^* \) transitions, respectively.

Figure 4. Absorption spectra of 7a in chloroform solution recorded during its irradiation with UV light. (Inset) Absorption differences between 7a before and after UV irradiation for 15 min. The arrows show the remarkable peaks of the absorption differentials.

Figure 5. Absorption spectra of 6a in chloroform solution recorded during its irradiation with UV light. (Inset) Absorption differences between 6a before and after UV irradiation for 15 min. The arrows show the remarkable peaks of the absorption differentials.
The shoulder at 450 nm showed that the E isomer had an elongating π-conjugation length and a lower band-gap energy of $\pi-\pi^*$ transition. A UV light radiation at 365 nm was used to switch the E isomer to Z isomer. \(^5\) Figure 4 illustrates the absorption spectra of compound 7a irradiated at 365 nm at room temperature and for different times in chloroform. As the time of irradiation increased from 0 to 90 min, the absorption band at around 452 nm slightly decreased while the other two bands at 330 and 259 nm gradually increased. The inset of Figure 4 shows the differences between the absorption values of 7a before and after UV irradiation for 15 min. The partial decrease in the absorbance peak at 450 nm is due to the formation of the Z product with a relatively poor π-conjugation system. \(^5\)\(^1\)\(^4\) Figure 5 illustrates the absorption spectra of compound 6a irradiated at 365 nm at room temperature and for different times in chloroform. A similar behavior was found for the parent compound 6a: as the time of irradiation increased from 0 to 90 min, the absorption band at around 464 nm slightly decreased while the other two bands at 331 and 283 nm gradually increased.

Fluorescence Spectra. The emission properties of the dumbbell compounds 7a and 7b and the corresponding hydrazones 6a and 6b were investigated to examine the possible electronic communication between the central unit of the dumbbells and the C\(_{60}\) moieties. The fluorescence spectra of 7a and 7b were recorded in toluene and chloroform at room temperature using a 430 nm excitation wavelength, where the excited state (S_1) of C\(_{60}\) moiety ($^1C_{60}^\pi$) was generated. Also, the
fluorescence spectra of hydrazones 6a and 6b were recorded at the same wavelength. The fluorescence peaks of compounds 6a are at 556 and 587 nm, while for 6b, they are at 526 and 584 nm in toluene and chloroform, respectively. The observed fluorescence peaks for 7a and 7b at around 550 nm are due to the emission of the linkers between the two fullerene moieties. Significant quenching for 7a in the fluorescence peak intensity at around 550 nm was observed in chloroform more than in toluene, suggesting an electronic communication between the donor addend and the C60 moieties. For dumbbell 7b, the fluorescence peak intensity at around 550 nm was quenched in toluene, while in chloroform no quenching was observed at 550 nm. A second observed fluorescence peak was observed at 756 nm for 7a due to the fullerene moiety, while it was totally quenched for 7b in both solvents, as shown in Figures 6 and 7.

Electrochemistry. The electrochemical properties of C60 and triads 7a and 7b were studied by cyclic voltammetry (CV) and square wave voltammetry (SWV) at room temperature using tetrabutylammonium perchlorate (TBAP) as a supporting electrolyte in toluene/acetonitrile (ACN) (4:1) as the solvent. The resulting CV and SWV data are depicted in Figure 8 and listed in Table 2. Also, the electrochemical properties of the hydrazones 6a and 6b were studied by CV. As a general feature on the reduction side, both triads 7a and 7b showed four reduction waves, which are assigned to the successive reductions of the C60 cage. In order to investigate the effect of the central substituents group linked to the carbon atom of the two pyrazolino systems (C-3), while benzene rings are located on the N-1 side of the same ring systems on both sides of the central group, the first reduction potentials ($E_{1\text{red}}^1$) were studied.

![Figure 8](image_url). CV of C$_{60}$ and dumbbells 7a and 7b (top), and SWV (bottom) in toluene/CH$_3$CN (4:1) and 0.1 M TBAP; V vs Fc/Fc$^+$; scan rate was 100 mV/s.

Table 2. Redox Potentials of C$_{60}$ and Dumbbells 7a and 7b Determined by SWVa

	$E_{1\text{red}}^1$	$E_{2\text{red}}^1$	$E_{3\text{red}}^1$	$E_{4\text{red}}^1$	$E_{1\text{ox}}^1$
7a	0.948	-1.479	-1.849	-2.629	0.606b
6a	-1.804	-2.1952			0.452b
7b	-0.915	-1.417	-1.841 (-1.931)	-2.426	0.401b
6b	-1.532				0.354b
C$_{60}$	-1.001	-1.424	-1.907	-2.449	

aExperimental conditions: V vs ferrocene/ferrocenium (Fc/Fc$^+$); the reference electrode is Ag/AgCl; the working electrode is a glassy carbon electrode (GCE); 0.1 M tBu$_4$NClO$_4$; scan rate: 100 mV/s; measured in toluene/CH$_3$CN (4:1 v/v) at room temperature.

bMeasured by CV.

Interestingly, unlike the standard behavior found in most of the C$_{60}$ derivatives that showed reduction potentials shifted to more negative values, both triads 7a and 7b show an anodic shift to more positive values (53–86 mV) relative to the pristine C$_{60}$ due to the negative inductive effect ($-I$) of the pyrazoline rings, as shown in Table 2. Consequently, both triads 7a and 7b show a higher electron affinity than the parent C$_{60}$. In the anodic region, the first oxidation $E_{1\text{ox}}^1$ values of 7a and 7b, attributed to the organic addend linked with C$_{60}$, are positively shifted by 154 and 47 mV, respectively, compared to the hydrazones 6a and 6b, suggesting the existence of some electronic interaction with the fullerene cage.

CONCLUSIONS

We have synthesized a new series of dumbbell-shaped compounds via [3 + 2] cycloaddition reaction mediated with PhI(OAc)$_2$ as an oxidant and enhanced by microwave radiation.
The formed compounds were investigated using Fourier transform infrared (FT-IR), MALDI-TOF, NMR, UV–vis, fluorescence spectra, and electrochemical properties. According to the first reduction potential, both dumbbells showed an improved electron acceptor ability than the pristine C_{60} in the ground state, which is important for further applications in the preparation of optoelectronic devices. Also, the fluorescence data at λ_{ex} = 430 nm for dumbbell 7b show a complete quenching at about 750 nm compared to the dumbbell 7a, and a significant quenching for 7a at about 550 nm was observed in chloroform, more than in toluene, indicating an electronic communication between the donor addend and C_{60} moieties. These compounds are potentially useful for applications in material science; hence, the photophysical and photochemical measurements of both compounds will be studied.

EXPERIMENTAL SECTION

General Methods.
All cycloaddition reactions were performed in standard glassware under an inert atmosphere of argon. C_{60} was purchased from Sigma-Aldrich. All solvents used in this study were purchased from Aldrich. Thin-layer chromatography (TLC) was performed using Polygram SIL G/UV 254 TLC plates, and visualization was performed under ultraviolet light at 254 and 365 nm. Column chromatography was performed using Merck silica gel 60 of mesh size 0.040–0.063 mm. Melting points were recorded using a Griffin melting point apparatus and are reported unmodified. Mass analyses were done by electron impact (EI) and fast-atom bombardment (FAB) using a Thermo DFS mass spectrometer. High-resolution mass spectrometry (HRMS) analysis was performed using a Xevo G2-S QTof mass spectrometer. IR spectra were obtained using a JASCO 6300 FT-IR. The clusters of peaks that corresponded to the calculated isotope compositions of the molecular ions were observed by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF) via an ultrafleXtreme (Bruker).

Synthesis.

General Synthesis Procedure of the Bis-hydrazone (6a and 6b).
These compounds were obtained by mixing 1 molar equiv of the corresponding bis-aldehyde 5 and 2 molar equiv of phenylhydrazine in ethanol under reflux conditions for 5 h. The precipitated bis-hyrazones were filtered, washed, and recrystallized from ethanol.

Bis-hydrazone (6a).
Red color; m.p. 233–236 °C; FT-IR (KBr) ν (cm⁻¹) 3428.8, 3309.2, 3035.4, 1592.9. ¹H NMR (dimethyl sulfoxide (DMSO)) δ 6.79 (m, 2H), 7.12 (d, 4H, J = 7.8 Hz), 7.24 (t, 4H, 3.6 Hz), 7.80–7.93 (m, 8H), 8.21–8.28 (m, 2H), 10.65 (s, 2H, D₂O exchange); ¹³C NMR (DMSO) δ 112.2, 119.3, 123.1, 126.3, 129.1, 131.5, 138.8, 144.8, 151.2, MS (EI, 70 eV): m/z (%) = 418.3 (M⁺, 100); HRMS (EI): m/z calcd for C_{26}H_{23}N_{4}O: 419.1984; found: 419.2182.

General Synthesis Procedure of the Bis-cycloadducts (7a and 7b).

Method A: A mixture of C_{60} (124 mg, 0.172 mmol), substituted hydrazones (6a and 6b) (0.068 mmol), and Ph(OAc)_{2} (0.068 mmol) was dissolved in 10 mL of ODCB and stirred at 80 °C overnight. The reaction progress was monitored by TLC with toluene as an eluent. At the end of the reaction, hexane was added, and the precipitate was filtered and then purified on a silica gel column using toluene as eluent to afford the adducts (7a and 7b). The reaction products 7a and 7b were separated by HPLC using toluene as an eluent.

Method B: Using a similar process, the mixture was irradiated by microwave irradiation (200 W) for 1 h at 60 °C.

Compound 7a.
Dark orange solid; FT-IR (KBr) ν (cm⁻¹) 3432.6, 1704.7, 1671.4, 1596.7, 1492.6, 1452.1, 1353.5, 1197.7, 1137.8, 1134.5, 1132.6, 1131.7, 1065.4, 963.4, 954.4, 848.5, 820.2, 769.3, 726.4. ¹H NMR (CDCl₃) δ 7.307 (t, 7.8 Hz), 7.30 (t, 2H, J = 7.8 Hz), 7.30–7.35 (m, 3H), 7.99 (d, 2H, J = 7.8 Hz), 8.04–8.07 (m, 4H), 8.12 (d, 2H, J = 9 Hz), 8.26 (d, 2H, J = 9 Hz), 8.55 (d, 2H, J = 9 Hz), 13.50 (CDCl₃) δ 150.6, 152.6, 152.3, 147.8, 147.4, 146.6, 146.5, 146.2, 146.1, 146.0, 145.6, 145.4, 145.3, 145.1, 144.6, 144.4, 144.3, 143.1, 143.0, 142.8, 142.6, 142.4, 142.3, 142.0, 140.5, 139.9, 136.7, 136.5, 136.2, 133.9, 132.7, 131.9, 130.9, 130.7, 130.4, 129.6, 127.9, 125.8, 124.3, 124.0, 123.7, 123.1. UV–vis (toluene): λ_{max} (nm) (ε) = 686 (50.08), 427 (3495.16), 327 (10 539.95), 286 (10 804.29); UV–vis (CHCl₃) λ_{max} (nm) (ε) = 686 (43.98), 427 (3526.59), 327 (10 964.82), 320 (11 403.66), 258 (11 945.6). FAB-MS m/z: 918, 720 (C_{26}O). MALDI-TOF mass: calc: 1855.162, found 1854.927 (M – H).
8.02 (d, 1H, J = 8.4 Hz), 8.27 (d, 2H, J = 7.8 Hz); 13C NMR (CDCl3) δ 152.2, 147.7, 147.4, 146.5, 146.4, 146.2, 146.1, 146.0, 145.9, 145.6, 145.4, 145.3, 144.9, 144.6, 144.4, 143.3, 143.2, 143.0, 142.5, 142.4, 142.3, 142.0, 140.5, 139.9, 136.7, 136.4, 133.7, 133.2, 132.2, 130.8, 129.5, 129.1, 126.0, 125.5, 124.1, 123.8, 120.4, 119.3, 118.3. UV-vis (toluene) λmax (nm) (ε) 686 (61.45), 427 (8895.45), 286 (11 653.63); UV-vis (CHCl3) λmax (nm) (ε) 686 (38.80), 427 (646.08), 327 (9333.77), 258 (12 341.88). FAB-MS m/z: 1808, 720 (C86O), MALDI-TOF mass: calc'd 1843.151, found 1834.934 (M – O + 7H)⁺.

ACKNOWLEDGMENTS

This research work was financially supported by the University of Kuwait through a research grant (SC12/18). The RSP unit general facilities of the Faculty of Science (GFS) supported by research grants GS01/05, GS01/03, GS03/01, GS02/01, and GS03/08 are greatly appreciated. The authors thank the Chemistry Department at Kuwait University for the use of the MALDI-TOF mass spectrometer.

REFERENCES

(1) Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163.
(2) Krätschmer, W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D. R. Solid C60: a new form of carbon. Nature 1990, 347, 354–358.
(3) Montellano López, A.; Mateo-Alonso, A.; Prato, M. Materials chemistry of fullerene C60 derivatives. J. Mater. Chem. 2011, 21, 1305–1318.
(4) Haddon, R. C. Chemistry of the Fullerenes: The Manifestation of Strain in a Class of Continuous Aromatic Molecules. Science 1993, 261, 1545.
(5) Haddon, R. C. Electronic structure, conductivity and superconductivity of alkali metal doped (C60). Acc. Chem. Res. 1992, 25, 127–133.
(6) Cataldo, F.; Da Ros, T. Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes; Springer Science & Business Media, 2008; Vol. 1, pp 1–408.
(7) Pietrowski, P.; Jakubow, K.; Kowalewska, B.; Kain, A. Dioxyn insensitive C70/AnNPs hybrid system for rapid and quantitative glucose biosensing. RSC Adv. 2017, 7, 45634–45640.
(8) Gross, S.; Gilead, A.; Scherz, A.; Neeman, M.; Salomon, Y. Monitoring photodynamic therapy of solid tumors online by BOLD-contrast MRI. Nat. Med. 2003, 9, 1327–1331.
(9) Taylor, R. C60, C70, C76, C78 and C84: numbering, π-bond order calculations and addition pattern considerations. J. Chem. Soc., Perkin Trans. 2 1993, 813–824.
(10) Chang, C.-L.; Hu, C.-W.; Tseng, C.-Y.; Chuang, C.-N.; Ho, K.-C.; Leung, M.-k. Ambipolar Freestanding Triphenylamine/Fullerene Thin-film by Electrochemical Deposition and Its Read-Writable Properties by Electrochemical Treatments. Electrochim. Acta 2014, 116, 69–77.
(11) Hirsch, A.; Brettreich, M. Fullerenes: Chemistry and Reactions; John Wiley & Sons, 2006.
(12) Martin, N. New challenges in fullerene chemistry. Chem. Commun. 2006, 2093–2104.
(13) Tzirakis, M. D.; Orfanopoulos, M. Radical Reactions of Fullerenes: From Synthetic Organic Chemistry to Materials Science and Biology. Chem. Rev. 2013, 113, 5262–5321.
(14) Zhu, S.-E.; Li, F.; Wang, G.-W. Mechanochemistry of fullerenes and related materials. Chem. Soc. Rev. 2013, 42, 7535–7570.
(15) Xiao, S.; Xu, J.-H.; Li, Y.-S.; Du, C.-M.; Li, Y.-L.; Jiang, L.; Zhu, D. Preparation and characterization of a novel dumbbell-type [60]-fullerene dimer containing a cyanine dye. New J. Chem. 2001, 25, 1610–1612.
(16) Friedman, S. H.; DeCamp, D. L.; Sijbesma, R. P.; Srdanov, G.; Wudl, F.; Kenyon, G. L. Inhibition of the HIV-1 protease by fullerene derivatives: model building studies and experimental verification. J. Am. Chem. Soc. 1993, 115, 6506–6509.
(17) Shoji, M.; Takahashi, E.; Hatakeyama, D.; Iwai, Y.; Morita, Y.; Shirayama, R.; Echigo, N.; Kido, H.; Nakamura, S.; Mashino, T.; et al. Anti-influenza activity of C60 fullerene derivatives. PLoS One 2013, 8, e66337.
(18) Kataoka, H.; Ohe, T.; Takahashi, K.; Nakamura, S.; Mashino, T. Novel fullerene derivatives as dual inhibitors of Hepatitis C virus NS5B polymerase and NS3/4A protease. Bioorg. Med. Chem. Lett. 2016, 26, 4565–4567.
(19) Okumura, M.; Mikawa, M.; Yokawa, T.; Kanazawa, Y.; Kato, H.; Shinohara, H. Evaluation of water-soluble metallofullerenes as MRI contrast agents. Acad. Radiol. 2002, 9, 5495–5497.
(20) Meng, H.; Xing, G.; Sun, B.; Zhao, F.; Lei, H.; Li, W.; Song, Y.; Chen, Z.; Yuan, H.; Wang, X.; Long, J.; Chen, C.; Liang, X.; Zhang, N.; Chai, Z.; Zhao, Y. Potent Angiogenesis Inhibition by the Particulate Form of Fullerene Derivatives. ACS Nano 2010, 4, 2773–2783.
(21) Xing, G.; Yuan, H.; He, R.; Gao, X.; Jing, L.; Zhao, F.; Chai, Z.; Zhao, Y. The Strong MRI Relaxivity of Paramagnetic Nanoparticles. J. Phys. Chem. B 2008, 112, 6288–6291.
Substituted with an oligophenylenevinylene moiety. Processes in fullerenopyrrolidine and fullerenopyrazoline derivatives.

Krasnikov, V.; Tsamouras, D.; Hadziioannou, G.; Gómez-Escalonilla, (34) Al-Matar, H. M.; BinSabt, M. H.; Shalaby, M. A. Synthesis and characterization of single-bond fullerene oligomers: the unexpected enhancement and its use for rational design of fullerene-based nanostructures with adjustable properties.

ACS Omega 2020, 5, 13474–13482.

(35) Armaroli, N.; Accorsi, G.; Gisselbrecht, J.-P.; Gross, M.; Bléger, D.; Schwarz, J.; Brouwer, A. M.; Hecht, S. o-Fluoroxobenzences as Readily Synthesized Photoswitches Offering Nearly Quantitative Two-Way Isomerization with Visible Light. J. Am. Chem. Soc. 2012, 134, 20597–20600.

(36) Bedos-Belval, F.; Schomburg, M.; Sambo, M. R.; Harmer, J.; Xiao, L.; Ardavan, A.; Briggs, G. A. D. Photosomerization of a Fullerene Dimer. J. Phys. Chem. C 2008, 112, 2802–2804.

(37) Collavini, S.; Delgado, J. L. Fullerenes: the stars of photovoltaics. Sustainable Energy Fuels 2018, 2, 2480–2493.

(38) Gerstel, P.; Klink, S.; Henrich, F.; Poschlad, A.; Meded, V.; Blasco, E.; Wenzel, W.; Rappes, M. M.; Baner-Jow-Kowillick, C. Highly Selective Dispersion of Single-Walled Carbon Nanotubes via Polymer Wrapping: A Combinatorial Study via Modular Conjugation. ACS Macro Lett. 2014, 3, 10–15.

(39) Chen, J.; Wang, X.; Zheng, X.; Ding, J.; Liu, M.; Wu, H. Ligand-free copper-catalyzed O-arylation of nitroaranes with phenols. Tetrahedron 2012, 68, 8905–8907.

(40) de Lucas, A. I.; Martin, N.; Sánchez, L.; Seoane, C. The first dumbbell-type C60 dimer connected by a double donor spacer. Tetrahedron Lett. 1996, 37, 9391–9394.

(41) Mitrović, A.; Stevanović, J.; Milić, M.; Žekić, A.; Stanković, D.; Chen, S.; Badić, J. D.; Milić, D.; Maslak, V. Fulleropyrrolylilene molecular dumbbells act as multi-electron-acceptor triads. Spectroscopic, electrochemical, computational and morphological characterizations. RSC Adv. 2015, 5, 88241–88248.

(42) Lebedeva, M. A.; Chamberlin, T. W.; Schröder, M.; Khlobystov, A. N. An efficient route to the synthesis of symmetric and asymmetric diastereomerically pure fullerene triads. Tetrahedron 2012, 68, 4976–4985.

(43) Sasaki, T.; Tsur, J. M. Synthesis of a New Photoactive Nanovehicle: A Nanoworm. Org. Lett. 2008, 10, 897–900.

(44) Dordović, L.; Casimiro, L.; Demitri, N.; Baricioni, M.; Silvi, S.; Arcudi, F.; Credi, A.; Prato, M. Light-Controlled Regioselective Synthesis of Fullerene Bis-Adducts. Angew. Chem., Int. Ed. 2021, 60, 313–320.

(45) Merino, E.; Ribagorda, M. Control over molecular motion using the cis–trans photosomerization of the azo group. Beilstein J. Org. Chem. 2012, 8, 1071–1090.

(46) Chu, C.-C.; Chang, Y.-C.; Tsai, B.-K.; Lin, T.-C.; Lin, J.-H.; Hsiao, V. K. S. trans/cis-Isomerization of Fluorene-Bridged Azo Chromophore with Significant Two-Photon Absorbility at Near-Infrared Wavelength. Chem. – Asian J. 2014, 9, 3390–3396.

(47) Oswald, F.; Chopin, S.; de la Cruz, P.; Orduna, J.; García, J.; Sandanayaka, A. S. D.; Araki, Y.; Ito, O.; Delgado, J. L.; Cousseau, J.; Langa, F. Through-space communication in a TTF–C60–TTF triad. New J. Chem. 2007, 31, 230–236.

(48) Oswald, F.; de la Cruz, P.; Langa, F. Nitration of fullerene derivatives under mild conditions. Synlett 2007, 2007, 1051–1054.

(49) Delgado, J. L.; de la Cruz, P.; López-Arza, V.; Langa, F.; Kimball, D. B.; Haley, M. M.; Araki, Y.; Ito, O. The Isindazole Nucleus as a Donor in Fullerene-Based Dyads. Evidence for Electron Transfer. J. Org. Chem. 2004, 69, 2661–2668.