Electronic Supplementary Information (ESI)

for

Direct C–H Functionalization of Difluoroboron Dipyrromethenes (BODIPYs) at β-position by Iodonium Salts and Its Application

Wenming Ren,‡,a Huaijiang Xiang,‡,b Chengyuan Peng,a Zulipali Musha,ac Jingjing Chen,ac Xin Li,b Ruimin Huang,*ac and Youhong Hu*ac

aState Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
bCollege of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China

cUniversity of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 110039, China

E-mail: yhhu@simm.ac.cn, rmhuang@simm.ac.cn
Table of contents

1. Experimental Details and Compound Characterization.................................3
 1.1. Materials and Instrumentation..3
 1.2. Experimental procedures for the synthesis of SA1-17.................................3
2. Optical properties of BODIPY dyes...7
3. Cell viability assay for photocytotoxic effect...13
4. 1H and 13C NMR Spectra..13
1. Experimental Details and Compound Characterization

1.1. Materials and Instrumentation

All commercially available reagents were used as received. Unless otherwise specified, all reactions were carried out under an atmosphere of argon in oven-dried glassware with magnetic stirring. 1H NMR spectra and proton-decoupled 13C NMR spectra were obtained on a 400 MHz or 500 MHz Bruker NMR spectrometer. 1H Chemical shifts (δ) are reported in parts per million (ppm) relative to TMS (s, δ 0). Multiplicities are given as: s (singlet), d (doublet), t (triplet) and m (multiplet). Complex splitting will be described by a combination of these abbreviations, i.e. dd (doublet of doublets). 13C NMR chemical shifts are reported relative to CDCl$_3$ (t, δ 77.4). High-resolution mass spectra were recorded on positive ESI mode. Chromatographic purifications were performed by flash chromatography with silica gel (40–63 μm) packed in glass columns. The eluting solvent for the purification of each compound was determined by thin-layer chromatography (TLC) on glass plates coated with silica gel 60 F254 and visualized by ultraviolet light. High-resolution mass data were obtained on an Agilent 6224 Accurate-Mass TOF LC/MS. Absorption spectra were acquired using a Varian Cary 300 spectrophotometer. Fluorescence measurements were carried out on a Horiba FluoroMax 4 spectrometer. Quantum yields were determined in reference to either Fluorescein or Rhodamine 6G and corrected for solvent refractive index. The extinction coefficients were determined through Beer’s Law plots. All data were measured at room temperature. Human breast cancer cell line MDA-MB-231 and human epidermoid carcinoma cell line A-431 were obtained from the American Type Culture Collection (Manassas, VA, USA) and were cultured in DMEM (high glucose) and RPMI 1640 medium respectively, supplemented with 10% fetal bovine serum (HyClone, Logan, UT). Cells were incubated at 37°C in 5% CO$_2$ in air.

1.2. Experimental procedures for the synthesis of 3a-k, 4a-k and 6a-f

Diaryliodonium salts SA1-11 were prepared according to the literature procedures.1,2

*mesityl(phenyl)- 3$^\lambda$-iodanyl trifluoromethanesulfonate (SA1)

![Image of SA1 structure]

A white powder. 1H NMR (400 MHz, CDCl$_3$) δ 7.72 – 7.67 (m, 2 H), 7.56 – 7.49 (m, 1 H), 7.44 – 7.38 (m, 2 H), 7.11 (s, 2 H), 2.63 (s, 6 H), 2.36 (s, 3 H).

*mesityl(p-tolyl)- 3$^\lambda$-iodanyl trifluoromethanesulfonate (SA2)

![Image of SA2 structure]

A white powder. 1H NMR (400 MHz, CDCl$_3$) δ 7.57 (d, $J = 8.5$ Hz, 2 H), 7.22 (d, $J = 8.5$ Hz, 2 H), 7.10 (s, 2 H), 2.63 (s, 6 H), 2.38 (s, 3 H), 2.36 (s, 3 H).

*mesityl(m-tolyl)- 3$^\lambda$-iodanyl trifluoromethanesulfonate (SA3)

![Image of SA3 structure]

A white powder. 1H NMR (400 MHz, CDCl$_3$) δ 7.59 (s, 1 H), 7.40 (d, $J = 8.1$ Hz, 1 H), 7.33 (d, $J = 7.5$ Hz, 1 H).
Hz, 1 H), 7.27 (t, J = 8.1 Hz & 7.5 Hz, 1 H), 7.11 (s, 2 H), 2.63 (s, 6 H), 2.36 (s, 6 H).

mesityl(o-tolyl)- 3^3^-iodanyl trifluoromethanesulfonate (SA4)

A white powder. 1H NMR (400 MHz, CDCl$_3$) δ 7.50 – 7.41 (m, 3 H), 7.20 – 7.15 (m, 1 H), 7.12 (s, 2 H), 2.60 (s, 9 H), 2.36 (s, 3 H).

methyl 4-(mesityl(((trifluoromethyl)sulfonyl)oxy)- 3^3^-iodanyl)benzoate (SA5)

A white powder. 1H NMR (400 MHz, CDCl$_3$) δ 8.01 (d, J = 8.7 Hz, 2 H), 7.78 (d, J = 8.7 Hz, 2 H), 7.11 (s, 2 H), 3.91 (s, 3 H), 2.62 (s, 6 H), 2.36 (s, 3 H).

mesityl(4-(trifluoromethyl)phenyl)- 3^3^-iodanyl trifluoromethanesulfonate (SA10)

A white powder. 1H NMR (400 MHz, CDCl$_3$) δ 7.81 (d, J = 8.3 Hz, 2 H), 7.66 (d, J = 8.3 Hz, 2 H), 7.15 (s, 2 H), 2.63 (s, 6 H), 2.39 (s, 3 H).
mesityl(4-methoxyphenyl)-3\(^\text{iodanyl trifluoromethanesulfonate (SA11)}\)

\[
\begin{align*}
\text{OTf} & \\
\text{O} & \\
\text{A white powder.} & \\
\end{align*}
\]

\(^1\text{H NMR (400 MHz, CDCl}_3\) \(\delta\) 7.67 (d, \(J = 9.1\) Hz, 2 H), 7.07 (s, 2 H), 6.92 (d, \(J = 9.1\) Hz, 2 H), 3.80 (s, 3 H), 2.64 (s, 6 H), 2.33 (s, 3 H).

The general synthetic method for SA12-17

Micro copper powder (0.5 mmol) and sodium methanolate (0.5 mmol) were added to a stirred solution of phenylacetylene or alkyne (5.0 mmol) and bis(pinacolato)diboron (7.5 mmol) in 100 mL anhydrous ethanol at room temperature. After the phenylacetylene or alkyne was completely consumed according to TLC, the product was extracted with brine and acetic ether. The organic layer was dried with \(\text{Na}_2\text{SO}_4\) and concentrated. The residue was purified by silica gel column chromatography (hexane: acetic ether = 50 : 1 to 20:1) to afford pure product.

To a solution of first step product (1 mmol) in acetone (30 mL) and water (15 mL) were added \(\text{NH}_4\text{OAc}\) (6 mmol) and \(\text{NaIO}_4\) (6 mmol). The resulting reaction mixture was stirred at room temperature overnight until the material was consumed. The reaction mixture was diluted with \(\text{Et}_2\text{O}\), and filtered through a pad of cellite. The filtrate was concentrated to give aryl boronic as a solid.

The corresponding alkenyl boronic acid (1.00 mmol) was suspended in dry dichloromethane (30 mL) at 0 °C. Boron trifluoride diethyl etherate (1.2 mmol) was added dropwise via syringe and stirred at 0 °C for 15 min or until all the boronic acid had dissolved. Iodo-mesitylene diacetate (1.2 mmol) was added as a solution in dichloromethane (15 mL) via syringe. The reaction mixture was stirred for 1 hour or until complete consumption of the iodoarene diacetate, at which point trifluoromethanesulfonic acid (1.2 mmol) was added. After stirring 15 min, \(\text{H}_2\text{O}\) (50 mL) was added. The aqueous phase was extracted with dichloromethane (3 * 50 mL) and the combined organic phases were dried by \(\text{Na}_2\text{SO}_4\) and concentrated. The crude residue was then recrystallized from dichloromethane/\(\text{Et}_2\text{O}\) or triturated with \(\text{Et}_2\text{O}\) to obtain the desired compound as a white powder.

SA12 (E)-mesityl(styryl)-3\(^\text{iodanyl trifluoromethanesulfonate.}\)
I

OTf

A white powder.(219mg, 44%). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.38 – 7.29 (m, 6 H), 7.14 (s, 2 H), 6.97 (d, \(J = 14.4\) Hz, 1 H), 2.64 (s, 6 H), 2.38 (s, 3 H). \(^1\)C NMR (126 MHz, CDCl\(_3\)) \(\delta\) 144.6, 143.9, 143.0, 134.4, 130.6, 130.3, 129.1, 127.6, 121.6, 119.0, 116.8, 97.1, 27.0, 21.2.

SA13 (E)-(4-fluorostyryl)(mesityl)- 3'-iodanyl trifluoromethanesulfonate.

I

OTf

F

A white powder(332mg, 64%). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.34 (m, 2 H), 7.28 – 7.24 (m, 1 H), 7.14 (s, 2 H), 7.08 – 6.96 (m, 3 H), 2.64 (s, 6 H), 2.38 (s, 3 H). \(^1\)C NMR (126 MHz, CDCl\(_3\)) \(\delta\) 165.0, 163.0, 144.7, 143.1, 136.8, 132.8, 130.4, 129.7, 129.6, 116.3, 116.1, 96.1, 27.0, 21.2.

SA14 (E)-(4-chlorostyryl)(mesityl)- 3'-iodanyl trifluoromethanesulfonate

I

OTf

Cl

A white powder(420mg, 79%). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.36 – 7.26 (m, 5 H), 7.15 (s, 2 H), 6.96 (d, 1 H), 2.64 (s, 6 H), 2.39 (s, 3 H). \(^1\)C NMR (126 MHz, CDCl\(_3\)) \(\delta\) 144.8, 143.1, 130.4, 129.3, 128.9, 116.5, 97.2, 27.0, 21.2.

SA15 (E)-(4-bromostyryl)(mesityl)- 3'-iodanyl trifluoromethanesulfonate.

I

OTf

Br

A white powder (340mg, 59%). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.50 – 7.45 (m, \(J = 8.5\) Hz, 2 H), 7.35 (d, \(J = 14.4\) Hz, 1 H), 7.20 (m, \(J = 8.5\) Hz, 2 H), 7.15 (s, 2 H), 6.92 (d, \(J = 14.4\) Hz, 1 H), 2.64 (s, 6 H), 2.39 (s, 3 H). \(^1\)C NMR (126 MHz, CDCl\(_3\)) \(\delta\) 144.7, 143.0, 142.7, 133.2, 132.3, 130.4, 129.0, 125.1, 116.6, 97.8, 27.0, 21.2.

SA16 (E)-mesityl(4-methylstyryl)- 3'-iodanyl trifluoromethanesulfonate.

I

OTf

A white powder.(130mg, 25%). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.25 (d, \(J = 8.6\) Hz, 1 H), 7.21 (s, 2 H), 7.14 (d, \(J = 8.6\) Hz, 4 H), 6.97 (d, \(J = 14.3\) Hz, 1 H), 2.64 (s, 6 H), 2.38 (s, 3 H), 2.33 (s, 3 H). \(^1\)C NMR (126 MHz, CDCl\(_3\)) \(\delta\) 144.5, 144.4, 143.0, 141.3, 131.6, 130.3, 129.7, 127.6, 116.8, 95.5, 27.0, 21.4, 21.2.

SA17 (E)-mesityl(pent-1-en-1-yl)- 3'-iodanyl trifluoromethanesulfonate.
Acetyl chloride (3.4 mL, 47.77 mmol) was dropwisely added via syringe to a stirred solution of 2,4-dimethylpyrrole (10.8 mL, 105.1 mmol, 2.2 eq) in dry dichloromethane (200 mL) at 0 °C under an argon atmosphere. After acetyl chloride was completely added, the resulting solution was taken into 50-60 °C oil bath pan and stirred for additional 1-2 hours. After removed the most solvent in vacuo, the residue was dissolved in 500 mL dry dichloromethane/toluene (5/95, v/v). Trimethylamine (39.8 mL, 286.64 mmol) and BF₃·Et₂O (47.2 mL, 382.19 mmol) were sequentially added to the solution at 0 °C. Then the reaction was stirred at 50-60 °C for 1-2 h until the intermediate was consumed according to TLC. Then pour the reaction solution into ice-cold water and extract with dichloromethane. The organic layer was washed by water (3*500 mL), brine (3*500 mL), dried with Na₂SO₄ and concentrated. The residue was purified by silica gel column chromatography (hexane/acetic ether = 50/1 to 10/1) to afford pure product 1 (5.2 g, 42%) as a brownish red solid. ¹H NMR (400 MHz, CDCl₃) δ 6.08 (s, 2H), 2.60 (s, 3H), 2.54 (s, 6H), 2.44 (s, 6H).

2,4-Dimethylpyrrole (2.15 g, 22 mmol) and benzaldehyde (1.06 g, 11 mmol) were dissolved in 150 mL CH₂Cl₂ with a catalytic amount of TFA (0.5 mL). The mixture was stirred for 16 h at r.t. Then a solution of 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) (2.27 g, 10 mmol) was added, and the mixture was stirred for 15 min. Finally, BF₃·Et₂O (20 mL, excess) and triethylamine (20 mL, excess) were added, and the mixture was stirred for 3 h at r.t. The crude mixture was diluted with CH₂Cl₂ and washed with H₂O. The organic extracts were dried over MgSO₄, filtered and evaporated under reduced pressure. Flash chromatography (hexane:CH₂Cl₂ 1:1). 2.00 g of compound 6 as an orange solid (61% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.54 – 7.47 (m, 3H), 7.33 – 7.29 (m, 2H), 6.00 (s, 2H), 2.58 (s, 6H), 1.39 (s, 6H).

2. Optical properties of BODIPY dyes

dyes	λabs (nm)	ε (M⁻¹·cm⁻¹)	λex (nm)	λem (nm)	ϕF	Stokes shift (nm)
1	497	104500	496	509	0.79	13
3a	509	95000	507	532	0.61	25
Data were measured in a concentration of 3.0×10^{-6} M. bData were measured in a concentration of 1.0×10^{-6} M. cThe fluorescence quantum yields (Φ) were calculated using Fluorescein in 0.1N NaOH solution ($\Phi = 0.91$, excitation = 488 nm).

Table S2 Photophysical properties of BODIPY dyes 1, 3a-k in EtOH at room temperature

dyes	λ_{ab}	ϵ	λ_{ex}	λ_{em}	$\Phi^{a,c}$	Stokes shift
	(nm)	(M$^{-1}$ cm$^{-1}$)	(nm)	(nm)		(nm)
1	495	72400	493	505	1.04	12
3a	505	85800	505	531	0.76	26
3b	507	79000	506	539	0.64	33
3c	507	36100	505	531	0.64	26
3e	507	76500	506	551	0.27	45
3f	503	72000	504	524	0.74	20
3g	505	85700	505	527	0.71	22
3h	505	75100	504	529	0.66	25
3i	505	69900	503	530	0.55	27
3j	505	79400	505	529	0.65	24
3k	505	88600	503	525	0.64	22

aData were measured in a concentration of 3.0×10^{-6} M. bData were measured in a concentration of 1.0×10^{-6} M. cThe fluorescence quantum yields (Φ) were calculated using Fluorescein in 0.1N NaOH solution ($\Phi = 0.91$, excitation = 488 nm).

Table S3 Photophysical properties of BODIPY dyes 4a-k, 5 and 7 in CH$_2$Cl$_2$ at room temperature

dyes	λ_{ab}	ϵ	λ_{ex}	λ_{em}	$\Phi^{a,c}$	Stokes shift
	(nm)a	(M$^{-1}$ cm$^{-1}$)	(nm)b	(nm)b		(nm)
4a	521	98800	521	552	0.56	31
4b	523	60800	523	561	0.41	38
4c	523	89900	523	554	0.50	31
4e	527	57500	526	574	0.37	48
4f	518	108200	517	546	0.43	29
4g	522	101400	522	552	0.51	30

aData were measured in a concentration of 3.0×10^{-6} M. bData were measured in a concentration of 1.0×10^{-6} M. cThe fluorescence quantum yields (Φ) were calculated using Fluorescein in 0.1N NaOH solution ($\Phi = 0.91$, excitation = 488 nm).
Data were measured in a concentration of 3.0×10^{-6} M. Data were measured in a concentration of 1.0×10^{-6} M. The fluorescence quantum yields (Φ) were calculated using Rhodamine 6G in anhydrous ethanol ($\Phi = 0.95$, excitation = 530 nm).

Table S4 Photophysical properties of BODIPY dyes 4a-k in CH$_3$CN at room temperature

dyes	λ_{abs} (nm)a	ϵ (M$^{-1}$·cm$^{-1}$)	λ_{ex} (nm)b	λ_{em} (nm)b	$\Phi_{Fa,c}^a$	Stokes shift (nm)
4a	517	87500	515	550	0.53	35
4b	519	51600	518	557	0.34	39
4c	518	78900	517	552	0.52	35
4e	520	49100	519	570	0.31	51
4f	513	90600	512	541	0.25	29
4e	517	88200	516	549	0.49	33
4h	515	68600	513	548	0.55	35
4i	515	63000	515	550	0.56	35
4j	515	58800	515	549	0.86	34
4k	514	72100	513	546	0.52	33

aData were measured in a concentration of 3.0×10^{-6} M. bData were measured in a concentration of 1.0×10^{-6} M. cThe fluorescence quantum yields (Φ) were calculated using Rhodamine 6G in anhydrous ethanol ($\Phi = 0.95$, excitation = 530 nm).

Table S5 Photophysical properties of BODIPY dyes 4a-k, 5 and 7 in EtOH at room temperature

dyes	λ_{abs} (nm)a	ϵ (M$^{-1}$·cm$^{-1}$)	λ_{ex} (nm)b	λ_{em} (nm)b	$\Phi_{Fa,c}^a$	Stokes shift (nm)
4a	518	89300	518	552	0.54	34
4b	520	51400	520	557	0.36	37
4c	520	84600	520	553	0.49	33
4e	523	54300	522	574	0.33	52
4f	515	38300	515	541	0.42	26
4e	518	58500	517	550	0.47	33
4h	517	69300	516	549	0.56	33
4i	518	62400	517	551	0.57	34

aData were measured in a concentration of 3.0×10^{-6} M. bData were measured in a concentration of 1.0×10^{-6} M. cThe fluorescence quantum yields (Φ) were calculated using Rhodamine 6G in anhydrous ethanol ($\Phi = 0.95$, excitation = 530 nm).
Table S6 Photophysical properties of BODIPY dyes 9a-f in CH₂Cl₂ at room temperature

dyes	λabs (nm)ᵃ	ε (M⁻¹.cm⁻¹)	λex (nm)ᵇ	λem (nm)ᵇ	ϕᵣᵃ,c	Stokes shift (nm)
9a	527	60200	524	606	0.017	82
9b	528	44300	527	615	0.016	88
9c	523	57600	516	599	0.022	83
9d	527	83200	526	601	0.021	75
9e	528	55300	527	602	0.027	75
9f	515	48900	539	598	0.11	59

ᵃData were measured in a concentration of 3.0 × 10⁻⁶ M. ᵇData were measured in a concentration of 1.0 × 10⁻⁶ M. ᶜThe fluorescence quantum yields (Φ) were calculated using Rhodamine 6G in anhydrous ethanol (Φ = 0.95, excitation = 530 nm).

Table S7 Photophysical properties of BODIPY dyes 9a-f in EtOH at room temperature

dyes	λabs (nm)ᵃ	ε (M⁻¹.cm⁻¹)	λex (nm)ᵇ	λem (nm)ᵇ	ϕᵣᵃ,c	Stokes shift (nm)
9a	523	50300	521	606	0.011	85
9b	525	38200	523	618	0.010	95
9c	523	52200	512	598	0.013	86
9d	523	70300	522	603	0.014	81
9e	525	47100	522	603	0.016	81
9f	513	45200	539	596	0.096	57

ᵃData were measured in a concentration of 3.0 × 10⁻⁶ M. ᵇData were measured in a concentration of 1.0 × 10⁻⁶ M. ᶜThe fluorescence quantum yields (Φ) were calculated using Rhodamine 6G in anhydrous ethanol (Φ = 0.95, excitation = 530 nm).

Figure S1: Fluorescent emission spectra of dye 3a in different solvents (CH₂Cl₂, CH₂CN and EtOH, 5.0 × 10⁻⁶ M, excited at λₘₐₓ, respectively)
Figure S2: Absorbance spectra of dye 3a in different solvents (CH$_2$Cl$_2$, CH$_3$CN and EtOH, 1.0 × 10$^{-6}$ M)

Figure S3: Fluorescent Emission spectra of 3a, 3e, 3g, and 4l in CH$_2$Cl$_2$ (5.0 × 10$^{-6}$ M, excited at their λ_{max}, respectively)

Figure S4: Absorbance spectra of 3a, 3e, 3g and 4l in CH$_2$Cl$_2$ (1.0 × 10$^{-6}$ M)
Figure S5: Fluorescent Emission spectra of 6a-e in EtOH (5.0 × 10⁻⁶ M, excited at their λ_{max}, respectively)

Figure S6: Absorbance spectra of 6a-e in EtOH (1.0 × 10⁻⁶ M)
Figure S7. Morphological changes of MDA-MB-231 cells after laser irradiation in presence of solvent control (Column 1), compound 6a (Column 2 and 3), 6b (Column 4 and 5) and 6f (Column 6 and 7), respectively. Three compounds (6a, 6b and 6f) were added to MDA-MB-231 cells with two different concentrations (2.5 μM and 5.0 μM) respectively. During the period of laser irradiation for 10 min, fluorescent images (showing the presence of the compound in cells) and brightfield images were acquired at 0 min (Row 1 and 2), 5 min (Row 3 and 4) and 10 min (Row 5 and 6). Blue boxes, laser irradiated regions; Scale bar: 50 μm.

Reference:

1. Toh, Q. Y.; McNally, A.; Vera, S.; Erdmann, N.; Gaunt, M. J., Organocatalytic C–H Bond Arylation of Aldehydes to Bis-heteroaryl Ketones. *Journal of the American Chemical Society* **2013**, *135* (10), 3772-3775.
2. Bigot, A.; Williamson, A. E.; Gaunt, M. J., Enantioselective α-Arylation of N-Acyloxazolidinones with Copper(II)-bisoxazoline Catalysts and Diaryliodonium Salts. *Journal of the American Chemical Society* **2011**, *133* (35), 13778-13781.

4. 1H and 13C NMR Spectra
OTf

SA19

H_2CO_2

7.45
7.47
7.33
7.26
7.19
7.15
6.93
6.40

2.64
2.38
1.63
0.00

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0
9a
