diagonals of real symmetric matrices of given spectra as a measure space
Avital Frumkin and Assaf Goldberger

Abstract
The set of diagonals of real symmetric matrices of given non negative spectrum is endowed with a measure which is obtained by the push forward of the Haar measure of the real orthogonal group.
We prove that the Radon Nicodym derivation of this measure with respect to the relative Euclidean measure is approximated by the coefficients of a sequence of zonal sphere polynomials corresponding with the given spectrum. There is a striking similarity between the role of the zonal sphere polynomials in the orthogonal case, and that of the Schur function in the Hermitian case.
Following this we obtain a combinatorial approximation for the probability of real symmetric matrix of a given spectrum to appear as the sum of two real symmetric matrices, each of a given spectrum. In addition we obtain a real orthogonal analogue to the Zuber Itzykson Harish Chandra integration formula.

Preliminaries and main result
We use Greek letters to denote partitions of unity,
\[\delta = \delta_1, \delta_2, ..., \delta_n \] where \(\delta_i \geq 0 \) and \(\sum_i \delta_i = 1 \), as well as for partitions of integers, \(\gamma \vdash N \).
Let \(\lambda = (\lambda_1, \lambda_2, ..., \lambda_n) \) be a positive real vector so that \(\sum \lambda_i = 1 \)

For simplicity, we assume that all \(\lambda_i \) are rational.
Define a diagonal matrix by
\[D_\lambda = \text{diag}(\lambda_1, \lambda_2, ..., \lambda_n) \quad (1) \]
Let O_n be the real orthogonal group of n by n matrices.

By the Horn-Schur theorem, the set

$$((oD_{\lambda}o)^{t})_{11}, (oD_{\lambda}o)^{t}_{22},..., (oD_{\lambda}o)^{t}_{nn}/o \in O_n)$$

is the permutahedron PH_{λ}, defined by the vector λ. That is the convex hull of all the vectors $(\lambda_{\sigma(1)}, \lambda_{\sigma(2)},...\lambda_{\sigma(n)})$ for $\sigma \in S_n$.

PH_{λ} is endowed with a measure, given by pushing forward of the Haar measure of the real orthogonal group. We denote this measure by DH_{λ}^{O}. (In the Hermitian case DH_{λ}^{U} (see [FG]))

We assume that the Radon Nicodym derivation of DH_{λ}^{U} with respect to the relative Euclidian measure of PH_{λ} exists, and is almost everywher continuous. Furthermore the suspected points of the Radon Nicodym derivation function are included in several affine spaces, their intersections with PH_{λ}, is of posetiv codimension. The proof will be given elsewhere.

Remark As not as in our case, the Radon Nicodym derivation of DH_{λ}^{U} with respect to the relative Euclidian measure of PH_{λ} can be computed directly using representation theory, thereby avoiding any need for differential geometry. See [FG] for more details.

Let λ be a partition of a positive integer N ($\lambda \vdash N$). Further, let

$$Z_{\lambda}(X) = \sum_{\eta \vdash N} a_{\eta} X^{\eta}$$

(3)

denote the zonal sphere polynomial corresponding to the partition λ (see [Mac] section 7 and [J 1])

The next theorem is our main result.

Theorem 1. Let $\lambda = \lambda_1 \leq \lambda_2 \ldots \leq \lambda_n$ be a non negative rational vector so that $\sum \lambda_i = 1$, and let N be a positive integer, such that $N\lambda$ is a vector of
Let η be a continuous point of the density function (Radon-Nikodym derivative of DH_λ with respect to the relative Euclidian measure on PH_λ).

Then as N tends to infinity, $\frac{a_N^N}{Z_N^N(I_n)} (I_n$ is the corresponding unit matrix) approximates this density function at the point η in PH_λ.

Remark Compare to the characterization of the zonal sphere polynomials coefficient in [Mac 2.27]page 409

Remark In the Hermitian case the zonal sphere polynomials are replaced by the Schur functions in order to obtain a similar approximation. See [F G] for more details.

Corollaries of the main result

Theorem 1 leads to two corollaries we introduce now
Let $\gamma = (\gamma_1, \gamma_2, ..., \gamma_n)$ be another vector of rational non negative numbers such that $\sum \gamma_i = 1$, and $D_\gamma = diag(\gamma_1, \gamma_2, ..., \gamma_n)$.

Let N be a large integer so that N^λ and N^γ are integral vectors. Let

$$Z_{N^\lambda}(X)Z_{N^\gamma}(X) = \sum_{\eta \vdash 2N} C^{N^\lambda, N^\gamma}_\eta Z_\eta(X)$$

be the linearization of the product of the two zonal sphere polynomials. (see [Mac] page 409)

Claim 1. Using the Haar measure of the orthogonal group as a probability measure, the Radon-Nikodym derivative at $\frac{\eta}{N}$ of the distribution of the random variable, $\frac{\eta}{N}$ satisfying the equation $oD_\lambda o' + oD_\gamma o'' = D_\eta : o, o' \in O_n$, with respect to the relative Euclidian measure on the simplex, is approximated, up to normalization, by $C^{N^\lambda, N^\gamma}_\eta$.

3
Simply speaking, the probability to obtain a matrix with spectra close to $\frac{\eta}{N}; \eta \vdash N$, as the sum of two symmetric matrices of spectra λ and γ, chosen randomly with respect to the Haar measure of the real orthogonal group, can be evaluated by the linearization coefficients as above.

The reason for this is that one can define a measure on the set
\[\{ \frac{1}{2}((D_\lambda^o + D_\gamma^o)_{11}, (D_\lambda^o + D_\gamma^o)_{22}, \ldots, (D_\lambda^o + D_\gamma^o)_{nn}) \} \]
(using the notation $A^o \equiv oAot$), given by the push forward the Haar measure of $O_n \times O_n$. Since this measure is $DH^o_\lambda \ast DH^o_\gamma$ (the convolution of the two measures), the main result tells us that it can be approximated by the coefficients of the product $Z_{N\lambda}(X)Z_{N\gamma}(X)$.

Remark In the Hermitian case, the Littlewood Richardson coefficients replace the coefficients $C^{N\lambda,N\gamma}_\eta$ in (4). See [F G] for more details.

The second corollary deals with the real symmetric version of the Zuber Itzykson Harish Chandra integral.

Assume that C is a real symmetric matrix. For λ and D_λ as in (1), define
\[I_\lambda(C) \equiv \int \exp(\text{trace}(CD_\lambda^o))dO \] integrated over O_n with respect to its Haar measure.

Without loss of generality, one can assume that C is a diagonal matrix. Now, the integral may be taken over PH_λ, with respect to DH^o_λ.

$C_1, C_2 \ldots C_n$ be the spectra of C, then for arbitrary N we have
\[I_\lambda(C) = \int_{PH_\lambda} \prod (\exp \frac{C_i}{N})^N(D^o_\lambda)_i d(DH^o_\lambda) \] (6)

By using Riemann-sums to approximate the integration over PH_λ, computing the integrand at the points of type $\frac{\gamma}{N} : \gamma \vdash N$ in PH_λ, and then by the main result approximate the density function of DH^o_λ at those points using the coefficients of the zonal sphere polynomial $Z_{N\lambda}(X)$ we obtain the following.
Claim 2. If λ is a unit partition as given above, then

$$I_\lambda(C) \sim \frac{1}{Z_{N\lambda}(I_n)} Z_{N\lambda}(exp \frac{C_1}{N}, exp \frac{C_2}{N}, ... exp \frac{C_n}{N}) \quad (7)$$

Remark One can ignore the points of PH_λ in which the Radon Nicodym derivation is not continues thanks to our assumptions on DH_λ.

Remark In the Hermitian version of this process, one may replace the zonal sphere polynomial in the right hand side with the Schur function with respect to the same parametrization. The very elegant determinant formula of Harish Chandra Zuber Itzykson is accepted as the limit of the determinants formula for the corresponding sequence of Schur functions. Unfortunately, the zonal sphere polynomial, do not yield such nice expression for their computations.

Proof of the main result

Proof. Let us define a sequence of polynomials as follows:

$$P^N_\lambda(X) = \int_{O_n} trace^N(D^\alpha_\lambda D_X) do \quad (8)$$

once integrated over the orthogonal group with respect to its Haar measure, and X is a vector of indeterminants $X_1, X_2, ... X_n$.

Remark In [J 2] Identity

$$P^N_\lambda(X) = \sum_{\eta \leq N} c_\eta Z_\eta(D_X) Z_\eta(D_\lambda) \quad (9)$$

was obtained, and the coefficients c_η were investigated. However we avoid it in our treatment.

Now we rewrite (8) as

$$trace^N(D^\alpha_\lambda D_X) = (\sum (D^\alpha_\lambda)_{ii} X_i)^N \quad (10)$$

One can observe the similarity between the sequence of polynomials, $P^N_\lambda(X)$, and the sequence of Bernstein polynomials approximating the density of
DH_λ^o (see [Lo] page 54)

More explicitly, by writing

$$P_\lambda^N(X) = \sum_{\eta \vdash N} a_\eta^N X^\eta$$ \hspace{1cm} (11)

and combining with (10), we obtain

$$a_\eta^N = \int \binom{N}{\eta} \prod_i (D_\lambda^o)^{n_i}_{ii} dO$$ \hspace{1cm} (12)

Where the integral is over the orthogonal group with respect to its Haar measure.

Let $Y = Y_1, Y_2, ... Y_n$ be a real vector such that $\sum_i Y_i = 1 : Y_i \geq 0$. The next polynomials

$$\binom{N}{\eta} \prod_i Y_i^{n_i}$$ \hspace{1cm} (13)

are special members of the family of “Dirichlet distributions”, so the integrand of equation (12) tends to δ_{η} (the delta function concentrated around the points η) over the n-1 dimensional simplex, as N tends to infinity

Therefore, as N tends to infinity, one finds that the coefficients a_η^N tend to the density of DH_λ^o at the points $\frac{\eta}{N}$ in which it is continuous.

Next, we treat the left hand side of (10) by writing

$$trace^N(D_\lambda^o D_X) = trace((D_\lambda^o D_X)^{\otimes N})$$ \hspace{1cm} (14)

Let V denotes an n dimensional vector space over the reals, and let $v_1, v_2, ... v_n$ be an orthogonal basis of V. Let us define the η weight space for any partition η of N, of no more than n parts, by the formula

$$V^{\otimes N}_\eta = \text{span}\{v_{i_1} \otimes v_{i_2} \otimes ... \otimes v_{i_N} : \#\{l : i_l = j\} = \eta_j\}$$ \hspace{1cm} (15)

Now because D_λ is a diagonal matrix, we have
trace^{N}(D_{\lambda}D_{X}) = trace((D_{\lambda}D_{X})^{\otimes N}) = \sum_{\eta} trace(D_{\lambda}D_{X})^{\otimes N}|_{V^{\otimes N}_{\eta}} \tag{16}

and

trace((D_{\lambda}D_{X})^{\otimes N})|_{V^{\otimes N}_{\eta}} = \left(\begin{array}{c} N \\ \eta \end{array}\right) \prod_{i} \lambda_{i}^{\eta_{i}} X_{i}^{\eta_{i}} \tag{17}

Now, using spectral factorization of real symmetric operators, one obtain that

(D_{\lambda})^{\otimes N} = \sum_{\eta \vdash N} \gamma_{\eta} \sum \alpha_{\gamma}^{t} \alpha_{\gamma} \tag{18}

where the second summation runs over a basis of the the eigenspace of weight \eta with eigenvalue \gamma_{\eta} = \prod \lambda_{i}^{\eta_{i}} ,

(One can choose the basis as the standard unit vectors in V^{\otimes N}_{\eta}).

Now, one can use the central limit law (using equation (17)) to write

P_{\lambda}^{N}(X) \sim \int_{O_{n}} \sum_{\eta \vdash N} \gamma_{\eta} \sum_{\gamma} trace((o^{\otimes N} \alpha_{\gamma})(o^{\otimes N} \alpha_{\gamma})^{t}D_{X}^{\otimes N})do \tag{19}

summed over \eta \vdash N such that \frac{\eta}{N} \sim \lambda.

The first \sim in the equation means that contribution of the other summands to the coefficients a^{N}_{\eta} vanishes to zero. The second \sim denotes the closeness of real vectors at any coordinate.

To get closer to our goal one may apply representation theory of \textit{Gl}_{n}(R)

By the Schur Weyl duality we have

V^{\otimes N} = \bigoplus V_{\eta} \otimes M_{\eta} \tag{20}

where the sum is over \eta \vdash N of no more than n parts,

and \(V_{\eta}(M_{\eta}) \) are the \textit{Gl}_{n}(R)(S_{N}) simple modules in their actions on the
The striking fact is that, as \(N \) tends to infinity

\[
\text{trace}^N(D_\lambda D_X) \sim \sum_{\frac{\eta}{N} \sim \lambda} \text{trace}((D_\lambda D_X)^{\otimes N}|_{V_\eta \otimes M_\eta})
\]

(21)

(see the remarks on \(\sim \) after (19)).

The discovery of this concentration phenomena is, some times, attributed to Kyel and Werner and has been rediscovered several times. (See [Ch] for a nice proof of it).

Remark At this point, one can easily see the full Hermitian perspective of the problem. See [F G] for more details. For symmetric real matrices one has more work to do.

Using (19) and (21), one can write

\[
P_\lambda^N(X) \sim \int \sum_{\gamma} c_\gamma (\text{trace}((o^{\otimes N} \alpha_\gamma)(o^{\otimes N} \alpha_\gamma)^t D_\lambda^{\otimes N})) do
\]

summed over a basis of eigenvectors (of eigenvalues \(c_\gamma \)) of \(D_\lambda^{\otimes N} \) in \((V_{\delta'} \otimes M_{\delta'}) \cap (V^{\otimes N})_{\delta} \), where \(\frac{\delta}{N}, \frac{\delta'}{N} \sim \lambda \).

Now, for each vector \(\alpha \) in \(V^{\otimes N} \), we define a polynomial by the formula

\[
Q_\alpha(m) = \text{trace}(\alpha^t \alpha m^{\otimes N})
\]

for any \(n \) by \(n \) matrix \(m \)

Before introducing the next lemma, we quote the definition of zonal sphere polynomials from the first page of [J 2]

"... Denote by \(V_f \) the space of polynomials of degree \(f \) over the real symmetric positive definite \(n \) by \(n \) matrices.

\(GL_n(R) \) acts on \(V_f \) as follows

(For \(g \in GL_n(R), P \in V_f : g(P(m)) = P(gmg^t) \)).

As \(GL_n(R) \) module \(V_f = \bigoplus (f) V(f) \) where \((f) = f_1, f_2...f_n \) is a partition of
f and \(V_{(f)} \) is the subspace of \(V_f \) on which \(GL_n(R) \) acts irreducibly corresponding to the partition \(2(f) \).

The zonal polynomial \(Z_f \) spans the real orthogonal group invariant vector space in \(V_f \)...

To complete the proof of Theorem 1 we need the following lemma

Lemma 1. Using the notations from [J2], for \(\alpha, \gamma \) as in (22), we have that \(Q_{\alpha,\gamma}(m) \in \bigoplus V_{(f)} \) summed over \((f) \) such that \(\frac{f}{\lambda} \sim \lambda \).

Proof. One need to apply some basic representation theory of \(gl_n(R) \), the Lie algebra of \(Gl_n(R) \). [G W] page 228 is good reference to refer. We note that the weights referred to in (15) and the weights in the context of Lie algebras representation theory coincide for an appropriates choice of basic positive roots vectors.

Now, since the map \(\alpha \mapsto \alpha'\alpha \) is bilinear, it can be factorized through the tensor product. \(\alpha \mapsto \alpha \otimes \alpha \mapsto \alpha'\alpha \).

Furthermore for \(\delta \vdash N \) we have \(V_\delta \otimes V_\delta = \bigoplus V_\omega \), summed over \(\omega \preceq 2\delta \), where \(\preceq \) is the dominant order defined on the weight lattice (see page 237 in [G W]).

Since \(\alpha_\gamma \) is of weight \(\delta' \), \(\alpha_\gamma \otimes \alpha_\gamma \) is of weight \(2\delta' \), and so belongs to \(\bigoplus V_\omega \) summed on \(\omega \) in the next small fragment: \(2N(\lambda - \epsilon) \preceq 2\delta' \preceq \omega \preceq 2N(\lambda + \epsilon') \), where \(\epsilon, \epsilon' \) are arbitrarily small positive vector, as \(N \) tends to infinity. The central inequality just expressed the fact that the weights of vectors in a highest weight modules are smaller than its highest weight.

Given Lemma 1, Theorem 1 is now proved since the integral in (22) is just a projection onto the space spanned by the unique zonal polynomial in each \(V_{(f)} \).
Numerical Experiments:

We test the 3×3 case for the diagonal matrix $\text{diag}(0,1,2)$, conjugated by (a) $SO(3)$, and (b) $SU(3)$ (Figure 1). In each case we sample 30,000 conjugations, and compute the resulting diagonal. In both cases we have a two-dimensional distribution, based on the $(1,1)$ and $(2,2)$ positions of the diagonal. The $(3,3)$ entry is determined from the first two by the trace condition.

We have also test conjugations of rank 1 matrices

We sample the diagonals of a 3×3 matrix of rank 1 conjugated by $SO(3)$ random matrices (See Fig 2 (a)). On the other hand we sample the zonal sphere polynomial’s coefficients corresponding to one row (using example 1 of [Mac]Page 410) (See Fig 2 (b)).

In Figure 3 the coefficients of the zonal sphere polynomial of two variables corresponding to one row (the red points), have been compared with the function: $xy^{-\frac{1}{2}}, x + y = \text{constant}$, which is computed in [FG] explicitly for two by two symmetric matrices for that case. In the figures, we use the notation J_r^s as employed in [Mac, p. 385] for the Jack-polynomials. Note that the $r = 2$ case corresponds to the zonal polynomials.

(a) Conjugation by $SO(3)$
(b) Conjugation by $SU(3)$

Figure 1:
(a) Rank 1: Conjugation by $SO(3)$

(b) Zonal Polynomial’s coefficients J_{250}^2

Figure 2:

Figure 3: Zonal coefficients of J_{250}^2 (dotted) against theoretical prediction

References

[J 1] Alan.T. James. Zonal polynomials of the real positive definite symmetric matrices Annals of math vol 74 no 3 November 1961

[J 2] Alan.T.James. The distribution of the latent roots of the covariant matrix. Annals of math statist vol 31 number 1 (1960)
[Mac] I.G.Macdonald. Symmetric functions and Hall polynomials. Second edition Oxford mathematical monographs

[G W] Roe Goodman and Nolan.R.Wallach. Representations and invariants of the classical groups Cambridge U.press 1998

[Ch] M. Christandl, A. Harrow, G. Mitchison. Non-zero Kronecker coefficients and consequences for spectra. Communication in Math Physics, 270(3) (2007), 575-585.

[Lo] G.G. Lorentz. Bernstein polynomials. Oxford clarendon press(1979)

[FG] A.Frumkin, A.Goldberger. On the distribution of the spectrum of the sum of two Hermitian or real symmetric matrices. Advances in Appl. Math. 37 (2006), 268-286.