A 55-year-old man presented to the outpatient clinic of our institute complaining of gait disturbance. He had been diagnosed with advanced adenocarcinoma of the lung two and half years prior. At that time, brain magnetic resonance imaging (MRI) scan disclosed a single brain metastasis of synchronous onset. Even though it has been well known that expected survival of this patient would be longer with combined radiosurgery and whole brain radiotherapy (WBRT) than WBRT alone, radiation-oncologist recommended WBRT alone according to predominant manner of practice in his society without consulting about radiosurgery. The patient had received palliative chemotherapy of various regimens after WBRT. Ten months after WBRT, gamma knife radiosurgery was done for the re-growing lesion with marginal dose of 15 Gy. Seven months after radiosurgery, the intracranial tumor size had increased again, and surgical resection was performed. The intracranial lesions continued to recur, and gamma knife radiosurgery was repeated twice after the initial surgery of the brain lesion.

Immediately before presenting recently to our department, the patient experienced aggravating gait disturbance, ataxia, and confusion. Brain computed tomography scan and brain MRI scan indicated subdural fluid collection with mass effect (Fig. 1). Burr-hole trephination, drainage of subdural fluid and insertion of an external drainage catheter were performed. The patient's neurological symptoms were improved immediately after surgery, but removal of the external drainage catheter was followed by recurrence of symptoms. Repeated drainage of subdural fluid did not eliminate recurrence of symptoms, and cytological examination of the subdural fluid revealed

INTRODUCTION

Leptomeningeal metastasis is a devastating complication of advanced stage cancer. It is frequently accompanied by hydrocephalus and intracranial hypertension that must be treated by ventriculoperitoneal shunts. However, there are actual risks of peritoneal seeding or accumulation of malignant ascites after the cerebrospinal fluid diversion procedure, though it has not been reported. Here, we present the case of a patient with non-small cell lung cancer with leptomeningeal metastasis in whom malignant ascites developed after a subduroperitoneal shunt.

Key Words : Leptomeningeal metastasis · Malignant ascites · Ventriculoperitoneal shunt.

CASE REPORT

A 55-year-old man presented to the outpatient clinic of our institute complaining of gait disturbance. He had been diagnosed with advanced adenocarcinoma of the lung two and half years prior. At that time, brain magnetic resonance imaging (MRI) scan disclosed a single brain metastasis of synchronous onset. Even though it has been well known that expected survival of this patient would be longer with combined radiosurgery and whole brain radiotherapy (WBRT) than WBRT alone, radiation-oncologist recommended WBRT alone according to predominant manner of practice in his society without consulting about radiosurgery. The patient had received palliative chemotherapy of various regimens after WBRT. Ten months after WBRT, gamma knife radiosurgery was done for the re-growing lesion with marginal dose of 15 Gy. Seven months after radiosurgery, the intracranial tumor size had increased again, and surgical resection was performed. The intracranial lesions continued to recur, and gamma knife radiosurgery was repeated twice after the initial surgery of the brain lesion.

Immediately before presenting recently to our department, the patient experienced aggravating gait disturbance, ataxia, and confusion. Brain computed tomography scan and brain MRI scan indicated subdural fluid collection with mass effect (Fig. 1). Burr-hole trephination, drainage of subdural fluid and insertion of an external drainage catheter were performed. The patient's neurological symptoms were improved immediately after surgery, but removal of the external drainage catheter was followed by recurrence of symptoms. Repeated drainage of subdural fluid did not eliminate recurrence of symptoms, and cytological examination of the subdural fluid revealed
malignant cells, consistent with metastatic adenocarcinoma. An Ommaya reservoir and intraventricular catheter were inserted for intrathecal chemotherapy with methotrexate. However, increased intracranial pressure resulted in CSF leakage through the burr-hole site, intractable headache, and deterioration of consciousness that mandated regular CSF drainage through the Ommaya reservoir at intervals of a several hours. It was not possible to continue intrathecal chemotherapy, and we decided to do CSF diversion procedure though CSF profile did not show cytological conversion. A subduroperitoneal shunt operation was performed using a shunt device with a programmable valve (proGAV®, Aesculap-Miethke, Germany) (Fig. 2). After the surgery, the patient’s headache and mental status were improved and regular external drainage of CSF was no longer necessary. About 4 weeks after surgery, gradual abdominal distension was observed with accompanying dyspnea. Findings on physical examination and simple abdominal X-ray suggested ascites, and ultrasonography revealed ascites in the peritoneal and pelvic cavities (Fig. 3). At initial paracentesis, 2,100 mL of exudates were drained, and malignant cells consistent with metastatic adenocarcinoma were detected through cytological examination of ascitic fluids. There was no growth of infectious pathogen from CSF culture. The patient’s liver function test showed normal findings except mildly raised levels of liver enzymes (AST=59 U/L ; ALT=123 U/L), and therefore we concluded that the ascites was not the result of infectious peritonitis or chronic liver disease. Paracentesis was necessary every three or four days to drain recurrent ascites until 3 weeks later, when the patient died due to respiratory failure resulting from intrapulmonary cancer spread and septic shock.

DISCUSSION

Hydrocephalus is a common disorder that results from a disturbance of formation, flow, or absorption of CSF, leading to an accumulation of fluid in the central nervous system. Dissemination of malignant cells through the CSF space is a well known phenomenon in patients with primary malignant brain tumors as well as extracranial malignancy spreading to the central nervous system (CNS). Leptomeningeal metastasis frequently causes hydrocephalus, and VPS can rapidly relieve symptoms and signs of intracranial hypertension. However, VPS placement requires invasive surgery and complications include hemorrhage, infection and shunt malfunction. Besides these common problems related to VPS for the treatment of hydrocephalus of various etiologies, additional risks in cases of leptomeningeal metastasis include dissemination of malignant cells into the peritoneal cavity. Peritoneal seeding through a shunt system has been reported mostly in pediatric patients with primary malignant brain tumors such as medulloblastoma. Theoretically, hydrocephalus due to leptomeningeal metastasis from extracranial tumors involves the same risks, although there are no relevant data available. This case demonstrates that the risk of peritoneal carcinomatosis by shunt device is not only theoretical but actually existing in clinical situation. Reasons why the incidence of peritoneal dissemination is apparently low can be explained in two ways. First of all, the prognoses of cancer patients undergoing VPS for hydrocephalus and leptomeningeal metastasis are usually very poor, and median survival after VPS is only 2 to 3 months. Many patients probably die before overt clinical mani-
Malignant Ascites after Subduralperitoneal Shunt in a Patient with Leptomeningeal Metastasis

MH Lee and JI Lee

The procedure. Early diagnosis and treatment of leptomeningeal metastasis before widespread dissemination and hydrocephalus is important to avoid CSF diversion procedure and its complications including malignant ascites.

References
1. Chamberlain MC : Leptomeningeal metastases : a review of evaluation and treatment. J Neurooncol 37 : 271-284, 1998
2. Coelho Neto M, Ramina R, de Menezes MS, Arruda WO, Milano JB : Peritoneal dissemination from central neurocytoma : case report. Arq Neuropsiquiatr 61 : 1030-1034, 2003
3. Eralp Y, Saip P, Aydin Z, Berkman S, Topuz E : Leptomeningeal dissemination of ovarian carcinoma through a ventriculoperitoneal shunt. Gynecol Oncol 108 : 248-250, 2008
4. Glantz MJ, Jaeckle KA, Chamberlain MC, Phuphanich S, Recht L, Swinnen LJ, et al. : A randomized controlled trial comparing intrathecal sustained-release cytarabine (DepoCyt) to intrathecal methotrexate in patients with neoplastic meningitis from solid tumors. Clin Cancer Res 5 : 3394-3402, 1999
5. Herrlinger U, Förschler H, Küker W, Meyermann R, Bamberg M, Dichgans J, et al. : Leptomeningeal metastasis : survival and prognostic factors in 155 patients. J Neurol Sci 223 : 167-178, 2004
6. Loiacono F, Morra A, Venturini S, Balestreri L : Abdominal metastases of medulloblastoma related to a ventriculoperitoneal shunt. AJR Am J Roentgenol 186 : 1548-1550, 2006
7. Omuro AM, Lallana EC, Bilsky MH, DeAngelis LM : Ventriculoperitoneal shunt in patients with leptomeningeal metastasis. Neurology 64 : 1625-1627, 2005
8. Reddy GK, Bollam P, Caldi G, Willis B, Guthikonda B, Nanda A : Ventriculoperitoneal shunt complications in hydrocephalus patients with intracranial tumors : an analysis of relevant risk factors. J Neurooncol 103 : 333-342, 2011
9. Rickert CH : Extraneural metastases of paediatric brain tumours. Acta Neuropathol 105 : 309-327, 2003
10. Sandberg DI, Bilsky MH, Souweidane MM, Bzdil J, Gutin PH : Omnya reservoirs for the treatment of leptomeningeal metastases. Neurosurgery 47 : 49-54; discussion 54-55, 2000
11. Zada G, Chen TC : A novel method for administering intrathecal chemotherapy in patients with leptomeningeal metastases and shunted hydrocephalus : case report. Neurosurgery 67 : onsE306-onsE307; discussion onsE307, 2010