THE CENTRAL ENGINES OF TWO UNUSUAL RADIO-INTERMEDIATE/QUIET ACTIVE GALACTIC NUCLEI: III Zw 2 AND PG 1407+265

LIANG CHEN1, XINWU CAO1, AND J. M. BAI2,3

1 Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030, China; chenliang@shao.ac.cn, cxw@shao.ac.cn
2 National Astronomical Observatories/Yunnan Observatory, Chinese Academy of Sciences, Kunming 650011, China; baijinming@ynao.ac.cn
3 Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650011, China

Received 2011 September 1; accepted 2012 January 18; published 2012 March 14

ABSTRACT

We use the accretion disk/corona + jet model to fit the multi-band spectral energy distributions (SEDs) of two unusual radio-intermediate/quiet quasars. It is found that the optical/UV emission of III Zw 2 is probably dominated by the emission from the accretion disk. The X-ray emission should be dominated by the radiation from the jet, while the contribution of the disk corona is negligible. The optical/UV component in the SED of PG 1407+265 can be well modeled as the emission from the accretion disk, while the IR component is attributed to the thermal radiation from the dust torus with an opening angle of ~50°. If the X-ray continuum emission is dominated by the synchrotron emission of the jet, the source should be a “high peak frequency blazar,” which obviously deviates from the normal blazar sequence. The observed SED can also be fitted quite well by the accretion disk/corona model with the viscosity parameter $α = 0.5$. The spectrum of the accretion disk/corona in PG 1407+265 satisfies the weak-line quasar criterion suggested in Laor & Davis.

Key words: galaxies: active – galaxies: jets – quasars: individual (III Zw 2 and PG 1407+265) – radiation mechanisms: non-thermal – radiation mechanisms: thermal

Online-only material: color figures

1. INTRODUCTION

In optically selected quasar samples, quasars with similar optical properties exhibit very different properties in radio bands. The radio-loudness parameter R, the ratio of the radio flux at 5 GHz to the optical flux at B band ($R ≡ f_{5\text{GHz}}/f_B$), is used as an indicator of the radio properties of quasars (Kellermann et al. 1989). Kellermann et al. (1989) found a dichotomy in the radio-loudness distribution for an optically selected quasar sample. The quasars with radio-loudness $R > 10$ are called radio-loud (RL) quasars, while those with $R ≤ 10$ are called radio-quiet (RQ) quasars. It was found that RL active galactic nuclei (AGNs) have powerful relativistic jets, while most RQ AGNs have no or very weak jets. The distribution of radio loudness may provide useful clues on the jet formation mechanism of AGNs and the disk–jet connection, which was previously explored by many other authors (e.g., White et al. 2000; Ivezić et al. 2002; Ho & Peng 2001; Cirasuolo et al. 2003; Merloni et al. 2003; Falcke et al. 2004; Liu et al. 2006; Sikora et al. 2007; Broderick & Fender 2011). The Faint Images of the Radio Sky at Twenty Centimeters detected quasars showed that the radio-loudness distribution is not bimodal but rather continuous (White et al. 2000). It is still debatable whether the radio-loudness distribution is bimodal or continuous (see Ivezić et al. 2002; Cirasuolo et al. 2003).

The radio-loudness parameter can be a good indicator of the jet properties of AGNs in a statistical sense. Miller et al. (1993) and Falcke et al. (1996) identified a number of quasars with “radio-intermediate loudness.” They suggested that these sources might be relativistically boosted radio-weak quasars (“radio-weak blazars”). In fact, the very long baseline interferometry observations have revealed that many RQ/radio-intermediate AGNs exhibit jet structure and high-brightness temperature radio cores (e.g., Kukula et al. 1998; Blundell & Beasley 1998; Blundell et al. 2003; Ulvestad et al. 2005; Wang et al. 2006; Leipski et al. 2006). In this work, we choose two unusual RQ/radio-intermediate sources with relativistic jets, III Zw 2 and PG 1407+265, to explore the physics of the disk–jet connection in these kinds of sources. As these two sources have both RL and RQ characteristics, the present investigation may reveal the relation of the disk–jet connection with the radio-loudness parameter, which may provide clues on the origin of the radio-loudness distribution.

Arp (1968) classified III Zw 2 (PG 0007+106, Mrk 1501, $z = 0.089$) as a Seyfert I galaxy, which is also included in the PG quasar sample (Schmidt & Green 1983). It is hosted in a spiral galaxy (Hutchings & Campbell 1983), which is a typical characteristic of RQ AGNs. The extended radio emission is very weak compared with its core emission (~50–100 mJy at 1.4 GHz; Unger et al. 1987; Brunthaler et al. 2005), and superluminal motions of the jet components in this source have been detected in the Very Long Baseline Array (VLBA) images (Brunthaler et al. 2000). The apparent velocity of the moving jet components is $v_{app} = 1.25 ± 0.09$ in units of light speed and is derived from the VLBA images at 43 GHz. III Zw 2 exhibits violent variability throughout all wavebands (for example, more than an order of magnitude of variability in radio bands; see Salvi et al. 2002). Chen et al. (2010) modeled the multi-waveband spectral energy distribution (SED) of this source and suggested that III Zw 2 is a possible $γ$-ray source and could be detected by the Fermi/Large Area Telescope (LAT) in the future. This source possesses typical blazar-like properties; however, it is included in the radio-intermediate sample (Falcke et al. 1996).

PG 1407+265 is an RQ AGN ($z = 0.94$; Kellermann et al. 1989; McDowell et al. 1995) with some unusual properties. Its flux ratios in the radio, X-ray, and optical wavebands are typical of normal RQ quasars (Plotkin et al. 2010). McDowell et al. (1995) found that the emission lines of PG 1407+265...
have very small equivalent widths (except for Hα), but the full width at half-maximum reaches \(v \approx 7000–12,000 \text{ km s}^{-1} \). This is a weak-line quasar (WLQ). The nature of WLQs is still unclear so far, though they have been extensively studied (see Laor & Davis 2011 and references therein). The optical-to-X-ray spectral index, \(\alpha_{\text{ox}} \), of typical RQ AGNs ranges from 1.2 to 1.8, and the slope steepens with increasing UV luminosity (Strateva et al. 2005). During the high state of PG 1407+265, the optical-to-X-ray spectrum is flat (\(\alpha_{\text{ox}} = 1.09 \)), and the fluctuations in the X-ray bands are larger than in the UV bands (i.e., the slope flattens with increasing luminosity; Gallo 2006), which seem to be different from that in typical RQ AGNs. It is found that the UV variability correlates with that of the soft X-rays may be the jet’s non-thermal emission in the high state. This implies that both the emission in the optical and X-rays may be the jet’s non-thermal emission in the high state. Thus, they suggested that the radiation of the accretion disk may not be negligible in the optical/UV bands of the SED for this source. In this paper, we adopt the homogeneous sphere jet model, and they found that the jet is required to be in very extreme conditions. Thus, they suggested that the viewing angle \(\theta \) of the jet may not be negligible in the optical/UV bands of the SED for this source.

2. THE MODEL

The homogeneous sphere jet model was widely used to explain the observed SEDs of blazars, with which the main features of the blazars’ spectra can be well reproduced (e.g., Tavecchio et al. 1998, 2001; Celotti & Ghisellini 2008). For RQ AGNs, the accretion disk/corona model was developed to explain the optical/UV and X-ray spectra (e.g., Haardt & Maraschi 1991, 1993). In this work, we adopt the homogeneous sphere jet+accretion disk/corona model to fit the observed SEDs of these two AGNs, and their physical properties can be derived. We briefly describe the jet and the accretion disk/corona models employed in this work as follows.

2.1. Jet Model

In this paper, we use one zone synchrotron+inverse Comptonization models to calculate the jet emission of III Zw 2 and PG 1407+265. The model was widely used in blazar SED modeling (e.g., Ghisellini et al. 2010 and references therein). The emission region is assumed to be a homogeneous sphere with radius \(R \) embedded in a magnetic field \(B \) (see Tavecchio et al. 1998, 2001; Celotti & Ghisellini 2008; Ghisellini et al. 2010 for details). A broken power-law electron energy distribution,

\[
N(\gamma) = \begin{cases}
N_0 \gamma^{-p_1} & \gamma_{\min} \leq \gamma \leq \gamma_0 \\
N_0 \gamma^{-p_2} & \gamma_0 < \gamma \leq \gamma_{\max},
\end{cases}
\]

(1)

is assumed in our calculations. Such a broken power-law distribution could be the result of the balance between the particle cooling and escape rates in the blob (see Kardashev 1962; Sikora et al. 1994; Inoue & Takahara 1996; Kirk et al. 1998; Ghisellini et al. 1998 for the detailed discussion). The parameters of this model include the radius \(R \) of the blob, the magnetic field strength \(B \), electron break energy \(\gamma_0 \), the minimum and maximum energy \(\gamma_{\min}, \gamma_{\max} \) of the electrons, the normalization of the particle number density \(N_0 \), and the indexes \(p_{1,2} \) of the broken power-law particle distribution. The observed spectrum of the jet can be calculated when the Lorentz factor \(\Gamma = 1/\sqrt{1-\beta^2} \), the viewing angle \(\theta \) of the jet with respect to the line of sight, and the spectrum of the external seed photons are supplied. The frequency and luminosity can be transformed from the jet frame to the observational frame by \(\nu = \delta \nu/(1+z) \) and \(\nu L'_{\nu} = \delta^4 \nu' L'_{\nu'} \), where the Doppler factor \(\delta = 1/[\Gamma (1-\beta \cos \theta)] \), and the prime represents the value measured in the jet frame. The synchrotron self-absorption and the Klein–Nishina effect in the inverse Compton scattering are properly considered in our calculations (see Rybicki & Lightman 1979; Blumenthal & Gould 1970). Both the self-synchrotron Compton (SSC) scattering and external Compton (EC) scattering are included in the calculation of the Compton scattering in the blob.

In this homogeneous sphere model, the jet power can be calculated if all the physical quantities of the sphere are specified,

\[
L_{\text{jet}} \approx \pi R^2 \beta \Gamma^2 c U'_{\text{tot}},
\]

(2)

where the total energy density measured in the rest frame of the blob is

\[
U'_{\text{tot}} = U'_e + U'_B + U'_p.
\]

The energy density for electrons \(U'_e = m_e c^2 \int N(\gamma) \gamma d\gamma \), while the proton energy density \(U'_p = U'/(m_p/m_e)\langle \gamma \rangle \) if charge neutrality for pure hydrogen plasma is assumed (Celotti & Fabian 1993; Celotti & Ghisellini 2008). The broad waveband SED from high frequency radio emission to \(\gamma \)-ray bands can be modeled with this homogeneous sphere model (e.g., Celotti & Ghisellini 2008; Ghisellini et al. 2010). The emission from blazars in the low frequency radio band may be dominantly radiated from the inner conical jet near the black hole (e.g., Blandford & Konigl 1979; Konigl 1981; Ghisellini et al. 1985; Jiang et al. 1998), which is beyond the scope of this work. In this work, we use the conventional homogeneous sphere model to fit the observed SEDs from high frequency radio emission to \(\gamma \)-ray bands, which is similar to most of the previous works (e.g., Celotti & Ghisellini 2008; Ghisellini et al. 2010).

2.2. Accretion Disk/Corona Model

The observed UV/optical continuum emission of AGNs is thought to be the thermal emission from the standard geometrically thin, optically thick accretion disks (e.g., Shields 1978; Malkan & Sargent 1982; Sun & Malkan 1989), while the observed power-law hard X-ray spectra of RQ AGNs are most likely due to the inverse Compton scattering of soft photons on a population of hot electrons in the corona above the disk (Galeev et al. 1979; Haardt & Maraschi 1991, 1993). In the accretion disk–corona model, such soft photons are from the cold disk, a fraction of which are Compton scattered by the hot electrons in the corona above the cold disk to the hard X-ray energy band. The disk–corona model was extensively explored in many previous works (e.g., Haardt & Maraschi 1991, 1993; Svensson & Zdziarski 1994; Kawaguchi et al. 2001; Liu et al. 2002; Cao 2009). In this disk–corona scenario, most of the gravitational
energy of the accreting matter is released in the cold disk and a fraction of it is transported into the corona probably by magnetic fields. The magnetic fields generated in the cold disk are strongly buoyant, and a substantial fraction of magnetic energy is transported vertically to heat the corona above the disk with the reconnection of the fields (e.g., Di Matteo 1998; Di Matteo et al. 1999; Merloni & Fabian 2001, 2002; Cao 2009). In this work, we adopt the model given in Cao (2009) to calculate the spectrum of the accretion disk/corona system. We summarize the accretion disk–corona model in this subsection.

The gravitational power dissipated in a unit surface area of the accretion disk is given by

$$Q_{\text{dissi}}^* = \frac{3}{8\pi} M \Omega_R (R)^2 \left[1 - \left(\frac{R_m}{R} \right)^{1/2} \right]$$

(3)

where M is the mass accretion rate of the disk, $\Omega_R(R)$ is the Keplerian velocity at radius R, and $R_m = 3R_S$ (Shakura & Sunyaev 1973). The Schwarzchild radius $R_S = 2GM_*/c^2$, where M_* is the black hole mass. The accretion disk luminosity is

$$L_{\text{disk}} = 4\pi \int Q_{\text{dissi}}^* R dR = \frac{GM_* \dot{M}}{2R_m}$$

(4)

In the absence of the corona, the surface temperature T_s of the disk as a function of radius R can be calculated with $\sigma T_s^4 = Q_{\text{dissi}}^*$, and the spectrum of the disk is available by integrating the blackbody emissivity $B_s(R)$ over a radius R (Shakura & Sunyaev 1973). In this case, the spectrum of the accretion disk can be derived when the black hole mass and the accretion rate are specified.

In the accretion disk/corona system, the corona is assumed to be heated by the reconnection of the magnetic fields generated by the buoyancy instability in the disk. The power dissipated in the corona is estimated with

$$Q_{\text{cor}}^* = p_m v_p = \frac{B^2}{8\pi} v_p$$

(5)

where p_m is the magnetic pressure in the disk and v_p is the velocity of the magnetic flux transported vertically in the disk (Di Matteo 1998). The rising speed v_p is assumed to be proportional to the internal Alfvén velocity, i.e., $v_p = b\eta_A$, in which b is of the order of unity for extremely evacuated magnetic tubes. We adopt $b = 1$ in all our calculations of this work.

The soft photons from the disk are Compton scattered by the hot electrons in the corona to X-ray bands, and about half of the scattered photons are intercepted by the disk. The reflection albedo a is relatively low, $a \sim 0.1–0.2$, and most of the incident photons from the corona are re-radiated as blackbody radiation (e.g., Zdziarski et al. 1999). Thus, the energy equation for the cold disk is

$$Q_{\text{dissi}}^* - Q_{\text{cor}}^* + \frac{1}{2}(1-a)Q_{\text{cor}}^* = \frac{4\sigma T_{\text{disk}}^4}{3\tau}$$

(6)

where T_{disk} is the effective temperature in the mid-plane of the disk and $\tau = \tau_s + \tau_f$ is the optical depth in vertical direction of the disk. In this work, we adopt $a = 0.15$ in all our calculations.

The detailed physics for generating magnetic fields in the accretion disk is still quite unclear, and there are three different magnetic stress tensors that are usually adopted,

$$\tau_{\text{fp}} = p_m = \begin{cases} \frac{\alpha p_{\text{tot}}}{\sqrt{\alpha}} & b > 1 \\ \alpha p_{\text{tot}} & b = 1 \\ \alpha \sqrt{p_{\text{gas}} p_{\text{tot}}} & b < 1 \end{cases}$$

(7)

where α is the viscosity parameter (see Shakura & Sunyaev 1972; Sakimoto & Coroniti 1981; Taam & Lin 1984).

The parameters of the disk–corona model include the black hole mass M_*, the dimensionless mass accretion rate $\dot{m} = \dot{M}/M_{\text{Edd}}$, $M_{\text{Edd}} \equiv L_{\text{Edd}}/\eta_{\text{rad}}c^2$, the conventional radiative efficiency $\eta_{\text{rad}} = 0.1$ (is adopted), and the viscosity parameter α (see Cao 2009 for the details).

3. RESULTS

We search the literature for the observational data of the multi-waveband SEDs of these two sources from radio to X-ray bands (Salvi et al. 2002; Kaasra & de Kort 1988, and NED). Obviously, simultaneous broadband SEDs are desired to be used to model the disk–jet systems in these sources. For III Zw 2, we search the literature and collect a broadband SED, which is quasi-simultaneous within half a year (see Table 1). This source shows long-term variability on a timescale of a few years, which is longer than the temporal span of the quasi-simultaneous data. Therefore, we mainly adopt this SED for our model fitting. For the source PG 1407+265, we collect and list all X-ray observations in Table 2. We note that the GINGA observation (1987 June) is roughly simultaneous with IR and optical observations (see Tables 2 and 3). Unfortunately,
Table 2
X-Ray Spectra of PG 1407+265

Observation Date	Flux\(^b\)	Photon Index	\(f_{2–10\text{keV}}\)	Telescope	References
1981 Jan 17	\(f_{1\text{keV}} = 0.44 \pm 0.17 \mu\text{Jy}\)	\(\Gamma = 2.2^{+1.7}_{-0.4}\)	1.27	\(Einstein\)	W87
1987 Jun 19–20	\(f_{2–10\text{keV}} = 0.12 \times 10^{-11} \text{ erg cm}^{-2} \text{ s}^{-1}\)
1992 Jan 19	\(f_{1\text{keV}} = 1.0^{+0.04}_{-0.04} \mu\text{Jy}\)	\(\Gamma = 2.61^{+0.05}_{-0.05}\)	1.62	\(IGINA\)	L97
1993 Jul 2	\(f_{2–10\text{keV}} = 1.38^{+0.04+0.04}_{-0.04}\)	\(\Gamma = 2.05^{+0.05}_{-0.05}\)	1.38	\(ASCA\)	G00
2001 Jan 23	\(L_{2–10\text{keV}} = 8.85 \times 10^{45} \text{ erg s}^{-1}\)
2001 Dec 22	\(f_{2–10\text{keV}} = 0.8 \times 10^{-12} \text{ erg cm}^{-2} \text{ s}^{-1}\)	\(\Gamma = 2.24^{+0.01}_{-0.02}\)	0.8	\(XMM-Newton\)	F05

Notes. X-ray spectra of PG 1407+265.
\(^a\) Flux is presented in the references.
\(^b\) 2–10 keV integral flux (in unit of \(10^{-12} \text{ erg cm}^{-2} \text{ s}^{-1}\)) is calculated from the flux\(^a\) and the \(\Gamma\). References—W87: Wilkes & Elvis (1987); L97: Lawson & Turner (1997); M95: McDowell et al. (1995); G00: George et al. (2000); G06: Gallo (2006); F05: Fang et al. (2005).

Table 3
SED Data of PG 1407+265

\(\log v\)	\(\log f_v\)	Observation Date	References
9.17	-2.06 ± 0.03	1993 Sep	B96
9.69	-2.24 ± 0.02	1993 Sep	B96
9.93	-2.23 ± 0.02	1993 Sep	B96
10.17	-2.23 ± 0.06	1993 Sep	B96
12.69	-0.77 ± 0.13	1996 Jun	H03
13.10	-1.11 ± 0.13	1996 Jun	H03
13.61	-1.77 ± 0.13	1996 Jun	H03
13.90	-2.29 ± 0.02	1988 Apr	E94, NED
13.95	-2.37 ± 0.06	1988 Apr	E94, NED
14.13	-2.70 ± 0.03	1988 Apr	E94, NED
14.13	-2.72 ± 0.02	1988 Apr	E94, NED
14.13	-2.70 ± 0.03	1988 Apr	E94, NED
14.83	-2.80 ± 0.02	1986 May	E94, NED
14.73	-2.73 ± 0.01	1986 May	E94, NED
14.64	-2.76 ± 0.02	1986 May	E94, NED
14.53	-2.78 ± 0.02	1986 May	E94, NED
14.38	-2.75 ± 0.02	1986 May	E94, NED
14.38	-2.74 ± 0.02	1986 May	E94, NED
14.26	-2.79 ± 0.02	1988 Apr	E94, NED
14.26	-2.75 ± 0.02	1988 Apr	E94, NED
17.38	-6.36 ± 0.17	...	NED
17.48	-6.51	...	NED
17.50	-5.47 ± 0.01	...	NED
17.66	-6.25 ± 0.05	...	NED
17.99	-7.00	...	NED
18.08	-6.67	...	NED
18.10	-6.80	...	NED
18.10	-6.40	...	NED
18.16	-7.26	...	NED

Figure 1. Quasi-simultaneous SED of III Zw 2 (see Table 1 for references of the data). The method of least squares is used to fit SED. The green solid line represents the emission from the jet, while the red solid line is for the disk/corona emission. The red dashed line represents the spectra from the bare accretion disk, while the green dashed line is for the emission from the jet in this case. The black line is the sum of the emission from the jet and the accretion disk/corona. The purple line represents the sensitivity of \(γ\)-ray detector Fermi/LAT (McEnery et al. 2004). For the model parameters calculations, see Table 4.

Notes. SED data of PG 1407+265 as plotted in Figures 2 and 3. References—B96: Barvainis et al. (1996); H03: Haas et al. (2003); E94: Elvis et al. (1994); NED: http://ned.ipac.caltech.edu/.

only the 2–10 keV flux is available without a spectral index. It can be seen that the 2–10 keV flux of observation on 1981 January 17 by \(Einstein\) is similar to that of \(IGINA\) observation. We therefore use \(Einstein\) observation data in the quasi-simultaneous spectrum of this source (see Table 2).

3.1. III Zw 2

We search the literature and collect the quasi-simultaneous SED of III Zw 2 from radio to X-ray bands, which is plotted in Figure 1 (the data are listed in Table 1). Salvi et al. (2002) estimated the central black hole mass \(M_\bullet = 10^8 M_\odot\) from the width of the broad-line \(H\beta\) of this source. Superluminal motion of the jet component with apparent velocity \(v_{\text{app}} = 1.25 \pm 0.09\) in III Zw 2 has been detected with VLBA observations (Brunthaler et al. 2000). Popović et al. (2003) derived the inclination angle of the emission-line disk \(\theta = 12° \pm 5°\) for III Zw 2 from its broad emission-line profile. Assuming the jet to be perpendicular to the emission-line disk, the Lorentz factor of the jet, \(\gamma \simeq 2.06\), and the Doppler factor, \(\delta \simeq 3.35\), are derived.

In the calculations of the spectra from the jets, we have considered both the SSC and EC mechanisms. The external soft seed photons from the broad-line region (BLR) are considered in our calculations. The VLBA observations and the variability in radio bands imply that the location of the blob is within the BLR (see Brunthaler et al. 2000). The radius of the emission region is estimated with the minimum variability
timescale $R \approx c \tau_{\text{acc}} \delta(1 + z) \approx 1.5 \times 10^{16}$ cm (Jang & Miller 1997). Kastra & de Korte (1988) estimated the size of the BLR to be 10^{18} cm, and the photon energy density within the BLR to be $U_{\text{BLR}} \approx 3.8 \times 10^{-4}$ erg cm$^{-3}$. Thus, the multi-waveband spectrum of the jet can be calculated if the values of the parameters, N_0, B, γ_0, γ_{min}, p_1, and p_2, are provided. Besides the spectrum of the jet, we need to calculate the spectra from the accretion disk/corona system in this source. First, we consider the simplest case, i.e., a bare accretion disk without a corona. In this case, the spectrum of the accretion disk is only dependent on the mass accretion rate (see Section 2).

From Figure 1, it can be seen that the quasi-simultaneous SED seems to show two bumps at the IR and UV bands, respectively. The UV bump is a typical characteristic of RQ AGNs, which can be explained as the thermal emission from an accretion disk. We model the UV bump as disk emission, and the contribution of the corona to the X-ray spectrum is always negligible (see Figure 2). Hryniewicz et al. (2010) estimated the black hole mass of this source to be $6 \times 10^9 M_\odot$. There are no (quasi-)simultaneous optical/IR spectra corresponding to the high state in the X-ray band. Thus, we have to limit our model fittings to the quasi-simultaneous SED in the low state. Blundell et al. (2003) suggested that there is a relativistic jet in PG 1407+265, and the Doppler factor of the jet is estimated as $\delta \gtrsim 10$. We adopt $\delta = 10$ in our calculations for this source. The procedure of fitting its SED is the same as that for III Zw 2. We find that the optical/UV component in the SED may probably be from the accretion disk, while the origin of the IR component is still uncertain. There are two possibilities: the synchrotron emission from the jet or the thermal radiation from the dust torus irradiated by the radiation of the central engine. In the case of the synchrotron emission, the minimum electron energy can be constrained, $\gamma_{\text{min}} \approx 13.5$, if equipartition between magnetic field and electron + proton energy is assumed. The jet power is $L_{\text{jet}} \approx 1.1 \times 10^{46}$ erg s$^{-1}$, while the disk luminosity is $L_{\text{disk}} \approx 6.8 \times 10^{46}$ erg s$^{-1}$. If the IR component is from the dust torus, our calculations require the minimum electron energy to be $\gamma_{\text{min}} \approx 4.6$, and the jet power to be $L_{\text{jet}} \approx 3.3 \times 10^{44}$ erg s$^{-1}$, which is significantly lower than the disk luminosity. All the model parameters adopted for different cases are listed in Table 5.

In order to explore the origin of the X-ray emission in PG 1407+265, we also model the SED of this source by including the contribution of the corona above the disk. In our calculations, we adopt different magnetic stresses and find that the contribution of the corona to the X-ray spectrum is always

Table 4

Model	N_0	p_1	p_2	γ_0	γ_{min}	\dot{m}	α	τ_{e}	L_{jet}	L_{disk}
1	2.08	7.02×10^5	2.3	7.0	1963	20.0	5.1	10^{-3}
2	2.08	7.02×10^5	2.3	7.0	1963	58.1	1.0×10^{-2}	0.2	$\alpha \sqrt{\beta_{\text{gas}}} \rho_{\odot}$	0.40

Note. L_{jet} and L_{disk} are in units of 10^{45} erg s$^{-1}$. B is the magnetic field, N_0 is the normalized number density, $p_{1,2}$ is the indexes of the broken power-law electron energy distribution, γ_0 is the peak electron energy, γ_{min} is the minimum electron energy, \dot{m} is the dimensionless accretion rate, and α is the viscosity parameter. Model 1 indicates the dashed line in Figure 1. Model 2 is for the solid line in Figure 1.

Figure 2. Same as Figure 1, but for the source of PG 1407+265. The method of least squares is used in fitting.

(A color version of this figure is available in the online journal.)
Figure 3. Same as Figure 2, but the SED is fitted with the accretion disk/corona model. The magnetic stress $\tau_{\psi} = \alpha p_{\text{tot}}$ is used, and the best-fitted model parameters are $m = 0.3$ and $\alpha = 0.5$. The solid line represents the spectra from the accretion disk/corona system. The dashed line represents the disk spectra, while the dotted line is for the spectra from the corona.

3.3. Blazar Sequence

We compare these two sources with the well-studied blazar sample (Celotti & Ghisellini 2008). In Figure 4, the blazar sequence is plotted, and we find that these two sources roughly follow the correlation defined by the blazar sample, except for the source PG 1407+265 if the IR component is from the dust torus and the X-ray emission is the synchrotron emission from the jet. We also compare the relation of jet power and disk luminosity with that of the blazar sample in Figure 5, in which the blazar sample is taken from Ghisellini et al. (2010).

4. DISCUSSION

The simultaneous SEDs either in the high or low states are not available for III Zw 2, and only a quasi-simultaneous SED is obtained by searching the data in literature. This quasi-simultaneous SED shows a big blue bump, which is a typical characteristic of RQ quasar and can be modeled quite well by the accretion disk model (see Figure 1). Compared with RQ AGNs, it is known that relatively high polarization in the optical waveband is observed in blazars, because the emission in this waveband is dominated by the synchrotron emission from the relativistic jets. We note that almost no polarization has been observed in the optical waveband for III Zw 2 ($\sim 0.28\% \pm 0.19\%$; Berriman et al. 1990), and the amplitude of its optical variability is smaller than the radio and X-ray emission (Salvi et al. 2002), which implies that the optical/UV emission in this source may not be dominantly from the jet. We estimate the thermal timescale of the accretion disk (assuming black hole spin $a = 0$ and using the same method as that in Liu et al. 2008), $\tau_{\text{thermal}} \approx 2–5$ yr for this source in the low or the high states. This is roughly consistent with the observed optical/UV variability timescales (Salvi et al. 2002). Chen et al. (2010) showed that the predicted γ-ray emission can be detected by Fermi/LAT, if the jet emission is responsible for the optical/UV continuum emission. However, the model fittings to the simultaneous SED of this source in this work show that the UV/optical emission originates from the accretion disk (see Figure 1), and the γ-ray emission from the jet is below the sensitivity of Fermi/LAT. We note that III Zw 2 is not included in either the first LAT AGN Catalog (Abdo et al. 2010) or the second LAT AGN Catalog (Ackermann et al. 2011). We suggest that the optical/UV continuum spectra of this source may probably be dominantly emitted from the accretion disk. This issue can be sorted out if the simultaneous multi-waveband observations on this source both in low and high states are performed in the future.

We also calculate the X-ray spectrum of the corona above the disk and find that the contribution of the corona to the X-ray

Model	B (Gs)	N_0	R^a	p_1	p_2	y_0	y_{min}	m	α	τ_{ψ}	L_{jet}^b	L_{disk}^b
1	29.4	1.7×10^5	4.2	1.8	4.2	95	13.5	0.08	1.0	$\alpha \sqrt{p_{\text{gas}} / p_{\text{tot}}}$	11.3	68.1
2	5.0	1.8×10^3	4.2	1.8	4.2	23148	4.6	0.08	1.0	$\alpha \sqrt{p_{\text{gas}} / p_{\text{tot}}}$	0.33	68.1
3	0.3	αp_{tot}	...	144

Notes.

a R is the radius of emission region in unit of 10^{15} cm.

b L_{jet} and L_{disk} are in unit of 10^{45} erg s$^{-1}$. The model parameters have the same meanings as those in Table 4. Model 1 corresponds to the upper panel of Figure 2. Model 2 is for the lower panel of Figure 2. Model 3 corresponds to the result in Figure 3.
emission is always negligible, i.e., the X-ray continuum spectra are mainly emitted from the relativistic jet in this source. Sikora et al. (2007) investigated the radio loudness of a sample with 199 sources consisting of broad-line radio galaxies, radio-loud quasars, Seyfert galaxies, low-ionization nuclear emission-line region galaxies, and Fanaroff–Riley type I radio galaxies. They found that there are two distinct, approximately parallel tracks in the plot of $\log R - \log \lambda$ (the Eddington ratio $\lambda \equiv L_{\text{bol}}/L_{\text{Edd}}$, where L_{bol} is the bolometric luminosity and L_{Edd} is the Eddington luminosity). We compare III Zw 2 with the results in Sikora et al. (2007) and find that this source locates between the RL and RQ tracks (Eddington radio: $\lambda_{\text{low}} \approx 0.019$, $\lambda_{\text{high}} \approx 0.072$, $\lambda_{\text{sim}} \approx 0.039$; radio-loudness $R \sim 100–200$; Falcke et al. 1996; Brunthaler et al. 2000).

Strong Fe Kα line emission with equivalent width $\text{EW} \simeq 220\,\text{Å}$ has been detected in III Zw 2 (Jiménez-Bailón...
et al. 2005). It roughly follows the relation between the equivalent width and luminosity for RQ quasars, of which the X-ray continuum emission is supposed to be from the accretion disk/corona system (Nandra et al. 1997). Our results suggest that only a small fraction of the observed X-ray continuum is from the corona of the accretion disk, which implies that this source in fact deviates significantly from the relation between the equivalent width and luminosity defined by the RQ quasar sample if the X-ray continuum emission from the jet is properly subtracted in this source. The X-ray emission from the corona is obviously not enough to power such a strong Fe Kα in this source, and therefore the detailed studies on X-ray reflection geometry in III Zw 2 may be necessary for resolving this issue, which is beyond the scope of this work.

The SED of PG 1407+265 exhibits a clear component in optical/UV bands, which can be well fitted by the accretion disk model (see Figure 2). Chen & Bai (2011b) fitted the multi-band SED of this source using the one-zone jet model and found that extreme values of some model parameters are required. Similar to III Zw 2, almost no polarization in optical emission has been detected in this source (∼0.24% ± 0.16%; Bertram et al. 1990), which may also suggest that most of the optical–UV emission may not come from the jet.

The origin of the X-ray emission in this source is somewhat uncertain, which could be dominantly either from the jet or the corona above the disk. We first adopt the jet + accretion disk/corona model to fit its SEDs. In this case, our results show that the X-ray emission is dominantly from the jet. Unlike III Zw 2, a component in IR wave bands has been observed in PG 1407+265, which may originate from the synchrotron emission from the jet, or the thermal radiation from the dust torus irradiated by the radiation of the central engine. In the case of the synchrotron emission, the derived jet power is $L_{\text{jet}} \approx 1.1 \times 10^{46}$ erg s$^{-1}$, which is lower than the disk luminosity ($L_{\text{disk}} \approx 6.8 \times 10^{46}$ erg s$^{-1}$). If the IR component is alternatively assumed to be emitted from the dust torus, our calculations indicate that the jet power $L_{\text{jet}} \approx 3.3 \times 10^{44}$ erg s$^{-1}$, which is also significantly lower than the disk luminosity. Blundell et al. (2003) estimated the lower limit on the jet power in this source, $\sim 7 \times 10^{43}$ erg s$^{-1}$, by assuming the minimum of the total energy density, in which the minimum magnetic field strength B_{min} is adopted. Considering that the realistic field strength could be significantly higher than B_{min}, their estimate of the lower limit on jet power is consistent with our results in the case where the IR emission is from the torus. The opening angle of the dust torus can be estimated from the ratio of the IR to optical/UV fluxes by assuming that the radiation of the disk is absorbed by the dust torus and re-radiates in IR wavebands (see Cao 2005 for a detailed discussion). The ratio of IR to optical/UV emission ~ 0.6 for PG 1407+265, and the torus opening angle $\sim 50^\circ$ is inferred, which is typical for RQ AGNs (Elvis et al. 1994; Cao 2005; Shang et al. 2011). We find that the X-ray emission is dominated by the synchrotron emissions from the jet (see the lower panel of Figure 2), and this source should be a “high peak frequency blazar.” This source is luminous, and it is quite different compared to normal blazars because the blazar sequence expects a high peak frequency blazar when its luminosity is low (Fossati et al. 1998; Ghisellini et al. 1998; Chen & Bai 2011a).

In order to investigate the origin of the X-ray emission in this source, we alternatively adopt the accretion disk/corona model to fit the SED for this source. We find that the spectra in the optical/UV and X-ray bands can be fairly well fit-ted with the magnetic stress $\tau_{\text{mag}} = a p_{\text{mag}}$, provided $m = 0.3$ and $\alpha = 0.5$ are adopted (see Figure 3). However, we note that the variability of the X-ray emission in this source can be around an order of magnitude between its low and high states (see Figure 3), which is more violent than normal RQ quasars. Future simultaneous multi-band (UV/optical + X-ray) observations on this source will help resolve this issue. In the accretion disk/corona model, the variability in the X-ray band may lead to variable optical–UV emission and vice versa. The observational data show strong variability in the X-ray band of this source, while no evidence of similar variability is found in the optical/UV band. Further simultaneous multi-waveband observations are expected to attack the nature of the X-ray emission in this source. We compare PG 1407+265 with the results in Sikora et al. (2007) and find that this source locates in the RQ track (Eddington radio $\lambda \approx 0.33$; radio-loudness $R \approx 0.44$, 3.43; Wilkes & Elvis 1987; Kellermann et al. 1989). Therefore, PG 1407+265 could be a typical RQ quasar, but contains relativistic weak jets.

The nature of WLQs is still unclear. Laor & Davis (2011) proposed that the accretion disk temperature decreases with increasing black hole mass, and the fraction of the photons with the energy that can ionize the BLR decreases. This may account for the weak-line emission in some AGNs. They suggested that the quasar will be quasilinear if the fraction of the accretion disk emission above the frequency $\nu = 3.29 \times 10^{15}$ Hz is less than 0.01 ($L_{\nu > 3.29 \times 10^{15} \text{ Hz}} / L \lesssim 0.01$), while a WLQ appears if $L_{\nu > 3.29 \times 10^{15} \text{ Hz}} / L \lesssim 0.1$. PG 1407+265 is the first WLQ studied in detail (McDowell et al. 1995). We calculate the fraction of disk–corona emission above the frequency, $L_{\nu > 3.29 \times 10^{15} \text{ Hz}} / L \approx 0.08–0.1$, which satisfies the WLQ criterion suggested by Laor & Davis (2011).

We compare these two sources with the well-studied blazar sample (Celotti & Ghisellini 2008). We find that these two sources roughly follow the blazar sequence defined by the blazar sample and also compare the relation of jet power and disk luminosity with that of blazars. We find that these two sources do not deviate much from the blazars, except the source PG 1407+265, if its IR component is assumed to be from the dust torus and the X-ray emission is the synchrotron emission from the jet.

5. SUMMARY

We summarize the main conclusions of this paper as follows.

1. The optical/UV emission of III Zw 2 is dominated by the accretion disk. The X-ray emission should be dominated by the radiation from the jet, while the contribution of the disk corona is negligible.

2. The predicted γ-ray emission is below the sensitivity of Fermi/LAT, provided the UV is emission originated from the accretion disk.

3. The optical/UV component in the SED of PG 1407+265 can be well modeled as the emission from the accretion disk, while the IR component is attributed to the thermal radiation from the dust torus with an opening angle of $\sim 50^\circ$. If the X-ray continuum emission is dominantly from the jet, the source should be a “high peak frequency blazar,” which obviously deviates from the normal blazar sequence.

4. The observed SED can also be fitted quite well by the accretion disk/corona model with the viscosity parameter $\alpha = 0.5$. The spectrum of the accretion disk/corona in the
WLQ PG 1407+265 satisfies the WLQ criterion suggested by Laor & Davis (2011).

We thank the anonymous referee for insightful comments and constructive suggestions. This work is supported by the NSFC (grants 10821302, 10833002, 11173043, 11133006, 10973034, 10903025, 10720808, and 11030306), the National Basic Research Program of China (grant 2009CB824800), the Science and Technology Commission of Shanghai Municipality (10XD1405000), and the CAS/SAFEA International Partnership Program for Creative Research Teams (KJCX2-YW-T23).

REFERENCES

Abdo, A. A., Ackermann, M., Ajello, M., et al. 2010, ApJ, 715, 429
Ackermann, M., Ajello, M., Allafort, A., et al. 2011, ApJ, 743, 171
Arp, H. 1968, ApJ, 152, 1101
Barvainis, R., Lonsdale, C., & Antonucci, R. 1996, AJ, 111, 1431
Berriman, G., Schmidt, G. D., West, S. C., & Stockman, H. S. 1990, ApJS, 74, 469
Blandford, R. D., & Konigl, A. 1979, ApJ, 232, 34
Blumenthal, G. R., & Gould, R. J. 1970, Rev. Mod. Phys., 42, 237
Blundell, K. M., & Beasley, A. J. 1998, MNRAS, 299, 165
Brunthaler, A., Falcke, H., Bower, G. C., et al. 2000, A&A, 357, L45
Brunthaler, A., Falcke, H., Bower, G. C., et al. 2000, A&A, 357, L45
Brunthaler, A., Falcke, H., Bower, G. C., et al. 2005, A&A, 435, 497
Cao, X. 2005, ApJ, 619, 86
Cao, X. 2009, MNRAS, 394, 207
Celotti, A., & Fabian, A. C. 1993, MNRAS, 264, 228
Celotti, A., & Ghisellini, G. 2008, MNRAS, 385, 283
Chen, L., & Bai, J. M. 2011a, ApJ, 735, 108
Chen, L., & Bai, J. M. 2011b, Sci. China G, 54, 183
Chen, L., Bai, J.-M., Zhang, J., & Liu, H.-T. 2010, Res. Astron. Astrophys, 10, 707
Cirasuolo, M., Celotti, A., Magliocchetti, M., & Danese, L. 2003, MNRAS, 346, 447
Di Matteo, T. 1998, MNRAS, 299, L15
Di Matteo, T., Celotti, A., & Fabian, A. C. 1999, MNRAS, 304, 809
Elvis, M., Wilkes, B. J., McDowell, J. C., et al. 1994, ApJS, 95, 1
Falcke, H., Körding, E., & Markoff, S. 2004, A&A, 414, 895
Falcke, H., Sherwood, W., & Patnaik, A. R. 1996, ApJ, 471, 106
Fang, T., Canizares, C. R., & Marshall, H. L. 2005, ApJ, 633, 61
Fossati, G., Maraschi, L., Celotti, A., Comastri, A., & Ghisellini, G. 1998, MNRAS, 299, 433
Galeev, A. A., Rosner, R., & Vaiana, G. S. 1979, ApJ, 229, 318
Gallo, L. C. 2006, MNRAS, 365, 960
George, I. M., Turner, M. J. L., Hughes, D. H., & Rawlings, S. 1998, MNRAS, 297, 366
Ho, L. C., & Peng, C. Y. 1999, MNRAS, 308, 1056
Hutchings, J. B., & Campbell, B. 1983, Nature, 303, 584
Inoue, S., & Takahara, F. 1996, ApJ, 463, 555
Ivezić, Ž., Menou, K., Knapp, G. R., et al. 2002, AJ, 124, 2364
Jiang, M., & Miller, H. R. 1997, AJ, 114, 565
Kardashev, N. S. 1962, Sov. Astron., 6, 317
Kirk, J. G., Rieger, F. M., & Mastichiadis, A. 1998, A&A, 333, 452
Kongl, A. 1981, ApJ, 243, 700
Kukula, M. J., Dunlop, J. S., Hughes, D. H., & Rawlings, S. 1998, MNRAS, 304, 447
Laor, A., & Davis, S. W. 2011, MNRAS, 417, 681
Lawson, A. J., & Turner, M. J. L. 1997, MNRAS, 288, 920
Leipski, C., Falcke, H., Bennert, N., & Hüttelmeier, S. 2006, A&A, 455, 161
Liu, B. F., Minesshige, S., & Shibata, K. 2002, ApJ, 572, L173
Liu, H. T., Bai, J. M., Zhao, X. H., & Ma, L. 2008, ApJ, 677, 884
Liu, Y., Jiang, D. R., & Gu, M. F. 2006, ApJ, 657, 669
Miller, P., Rawlings, S., & Sanders, R. 1993, MNRAS, 263, 425
Nandra, K., George, I. M., Mushotzky, R. F., Turner, T. J., & Yaqoob, T. 1997, ApJ, 488, L91
Neugebauer, G., Oke, J. B., Becklin, E. E., & Matthews, K. 1979, ApJ, 230, 79
Plotkin, R. M., Anderson, S. F., Brandt, W. N., et al. 2010, ApJ, 721, 562
Popović, L.Č., Mediavilla, E. G., Bon, E., Stanić, N., & Kubiček, A. 2003, ApJ, 599, 185
Rybicki, G. B., & Lightman, A. P. 1979, Radiative Processes in Astrophysics (New York: Wiley-Interscience), 393
Sakimoto, P. J., & Coroniti, F. V. 1981, ApJ, 247, 19
Salvi, N. J., Page, M. J., Stevens, J. A., et al. 2002, MNRAS, 335, 177
Schmidt, M., & Green, R. F. 1983, ApJ, 269, 352
Schnopper, H. W., Delvaile, J. P., Epstein, A., et al. 1978, ApJ, 222, L91
Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 24, 337
Shields, G. A. 1978, Nature, 272, 706
Shimizu, S., & Takahara, F. 1996, ApJ, 463, 556
Sikora, M., Begelman, M. C., & Rees, M. J. 1994, ApJ, 421, 153
Sikora, M., Stawarz, Ł., & Lasota, J.-P. 2007, ApJ, 658, 815
Strateva, I. V., Schneider, D. P., Vanden Berk, D. G., & Vignali, C. 2005, AJ, 130, 387
Sun, W.-H., & Malkan, M. A. 1989, ApJ, 346, 68
Svensson, R., & Zdziarski, A. A. 1994, ApJ, 436, 599
Tao, R. E., & Lin, D. N. C. 1984, ApJ, 287, 761
Tavecchio, F., Maraschi, L., & Ghisellini, G. 1998, ApJ, 509, 608
Tavecchio, F., Maraschi, L., Pian, E., et al. 2001, ApJ, 554, 725
Ulvestad, J. S., Antonucci, R. R. J., & Barvainis, R. 2005, ApJ, 621, 123
Unger, S. W., Lawrence, A., Wilson, A. S., Elvis, M., & Wright, A. E. 1987, MNRAS, 228, 521
White, R. L., Becker, R. H., Gregg, M. D., et al. 2000, ApJS, 126, 133
Wilkes, B. J., & Elvis, M. 1987, ApJ, 323, 243
Zdziarski, A. A., Luboński, P., & Smith, D. A. 1999, MNRAS, 303, L11