New insights into hydroxyectoine synthesis and its transcriptional regulation in the broad-salt growing halophilic bacterium *Chromohalobacter salexigens*

Montserrat Argandoña, Francine Piubeli, Mercedes Reina-Bueno, Joaquin J. Nieto and Carmen Vargas

Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, C/ Profesor García González, 2, Sevilla, 41012, Spain.

Summary

Elucidating the mechanisms controlling the synthesis of hydroxyectoine is important to design novel genetic engineering strategies for optimizing the production of this biotechnologically relevant compatible solute. The genome of the halophilic bacterium *Chromohalobacter salexigens* carries two ectoine hydroxylase genes, namely *ectD* and *ectE*, whose encoded proteins share the characteristic consensus motif of ectoine hydroxylases but showed only a 51.9% identity between them. In this work, we have shown that *ectE* encodes a secondary functional ectoine hydroxylase and that the hydroxyectoine synthesis mediated by this enzyme contributes to *C. salexigens* thermoprotection. The evolutionary pattern of EctD and EctE and related proteins suggests that they may have arisen from duplication of an ancestral gene preceding the directional divergence that gave origin to the orders Oceanospirillales and Alteromonadales. Osmoregulated expression of *ectD* at exponential phase, as well as the thermoregulated expression of *ectD* at the stationary phase, seemed to be dependent on the general stress factor RpoS. In contrast, expression of *ectE* was always RpoS-dependent regardless of the growth phase and osmotic or heat stress conditions tested. The data presented here suggest that the AraC-GixA-like EctZ transcriptional regulator, whose encoding gene lies upstream of *ectD*, plays a dual function under exponential growth as both a transcriptional activator of osmoregulated *ectD* expression and a repressor of *ectE* transcription, privileging the synthesis of the main ectoine hydroxylase EctD. Inactivation of *ectZ* resulted in a higher amount of the total ectoines pool at the expenses of a higher accumulation of ectoine, with maintenance of the hydroxyectoine levels. In addition to the transcriptional control, our results suggest a strong post-transcriptional regulation of hydroxyectoine synthesis. Data on the accumulation of ectoine and hydroxyectoine in *rpoS* and *ectZ* strains pave the way for using these genetic backgrounds for metabolic engineering for hydroxyectoine production.

Introduction

Ectoine and its derivative 5-hydroxyectoine (named hereafter hydroxyectoine) are members of a selected group of organic osmolytes, called compatible solutes, which are the most widely used in halophilic and halotolerant microorganisms to cope with environmental high osmotic stress (Galinski, 1995). Because these molecules are small soluble organic compounds, they can prevent water loss and promote water re-entry into the cells (da Costa et al., 1998). Ectoine was first discovered in the extremely halophilic phototrophic sulfobacterium *Ectothiorhodospira halochloris* (Galinski et al., 1985), whereas hydroxyectoine was originally discovered in the actinomycin D producer *Streptomyces parvulus* (Inbar and Lapidot, 1988). Currently, it is known that the genes for the synthesis of ectoine and hydroxyectoine are widespread in members of *Bacteria* and *Archaea* (Widderich et al., 2014).

The biosynthetic pathway of ectoine has been thoroughly studied, and three genes, *ectABC*, are found to be involved in the process (Louis and Galinski, 1997; Czech et al., 2018a). Specifically, l-aspartate-1-semialdehyde is catalysed into ectoine through a three-step enzymatic reaction, employing l-2,4-diaminobutyric acid transaminase (codified by *ectB*), N-γ-acetyltransferase (codified by *ectA* and ectoine synthase (codified by *ectC*). Some bacteria harbour the *ectD* gene encoding the ectoine hydroxylase, the enzyme that synthesizes 5-hydroxyectoine from ectoine. Genome sequence analysis of hydroxyectoine producers has demonstrate that the *ectD* gene is not always included in the *ectABC*
gene cluster, but it can be located somewhere else in the genome. In addition, some bacteria could harbour two or more copies of the ectoine hydroxylase gene within their genome (Czech et al., 2018a).

Osmotic stress triggers bacterial accumulation of both ectoine and hydroxyectoine. In addition, heat or cold stress can affect ectoines accumulation, and besides osmolytes ectoines are also considered as thermolytes. Thus, whereas an elevated temperature generally induces accumulation of hydroxyectoine (Malin and Lapidot, 1996; Garcia-Estepa et al., 2006; Bursy et al., 2008), the accumulation of ectoine could be induced by a decrease of temperature (Kuhlmann et al., 2008). On the other hand, hydroxyectoine accumulation normally occurs when cells enter stationary phase, indicating that this solute possesses stress-relieving properties that allow the cell to better cope with the multitude of challenges imposed by this growth phase (Czech et al., 2018a). Besides this role in alleviating different stresses in vivo, ectoines also serve as stabilizers of macromolecules and even whole cells (Pastor et al., 2010; Bissoy et al., 2014; Schroter et al., 2017). This preserving function, together with the anti-aggregating and anti-inflammatory effects, promoted substantial interest to explore for a variety of biotechnological applications and potential medical uses of ectoines (Pastor et al., 2010; Marini et al., 2014; Srinivasan et al., 2014; Unfried et al., 2016; Nayak et al., 2020). Despite their closely related chemical structures, hydroxyectoine often possesses additional protecting effect and function-preserving properties than its precursor ectoine, especially against thermal stress, desiccation, or heavy metal- or low pH-induced stress conditions (Tanne et al., 2014; Moritz et al., 2015).

Hydroxyectoine is currently produced biotechnologically on an industrial scale using the natural producer Halomonas elongata and the ‘bacterial milking’ process, followed by chromatographic separation from ectoine, which is generally co-accumulated in the cell. In this process, high-level synthesis of ectoines is triggered by growing the cells in high-salinity media, followed by a strong osmotic downshock, producing the release of ectoines to the medium through mechanosensitive channels (Kunte et al., 2014). Despite of the biotechnological importance of hydroxyectoine, there have been few attempts of optimizing its production using bacterial systems (natural producers or heterologous production), mostly trying to avoid or minimize ectoine co-production (Seip et al., 2011; Czech et al., 2016). Alternative strategies to strain genetic engineering have focussed in optimizing the fermentation strategies, by adding factors to the medium (i.e. iron and α-ketoglutarate) that could specifically influence the enzymatic reaction towards hydroxyectoine production (Chen et al., 2019).

Chromohalobacter salexigens is a moderately halophilic bacterium which displays a remarkable salinity growth range (Arahal et al., 2001). This extremophilic microorganism has been extensively used in recent years to study the bacterial osmoadaptation process (Vargas et al., 2008; Pastor et al., 2010). In addition, C. salexigens has been proposed as an alternative natural producer of ectoine and hydroxyectoine (Fallet et al., 2010; Rodríguez-Moya et al., 2013). In this bacterium, accumulation of hydroxyectoine is upregulated by salinity and temperature and is maximal at 45°C and 2.5 M NaCl. Nevertheless, accumulation of ectoine is upregulated by salinity and downregulated by temperature, and it reaches its maximum at 37°C and 2.5 M NaCl. In addition, the levels of ectoine and hydroxyectoine in C. salexigens are maximal during the stationary phase of growth (Garcia-Estepa et al., 2006). In a first attempt to optimize hydroxyectoine production in this bacterium, genetically engineered strains were constructed that overproduce hydroxyectoine at low salinity, in a temperature-independent manner. Hydroxyectoine production was further improved by increasing the copies of ectD in a plasmid-based system and using a C. salexigens genetic background unable to synthesize ectoine (Rodríguez-Moya et al., 2013). Nonetheless, more knowledge regarding the synthesis and regulation of this compatible solute is needed to improve hydroxyectoine production.

As in other microorganisms, the genes ectABC are responsible for ectoine synthesis in C. salexigens (Cánovas et al., 1998), and ectoine hydroxylation is the main route for hydroxyectoine synthesis (Garcia-Estepa et al., 2006). Inspection of the C. salexigens genome allowed the identification of two genes encoding putative ectoine hydroxylases: Csal_0542 and Csal_3003. In a previous work, we showed that the Csal_0542-encoded protein (EctD) was the principal enzyme responsible for ectoine hydroxylation (Garcia-Estepa et al., 2006). In this work, we demonstrate that the Csal_3003-encoded product (EctE) is a secondary ectoine hydroxylation that also contributes to C. salexigens hydroxyectoine accumulation and is therefore involved in thermoprotection. A phylogenetic and evolutionary origin analysis of EctD-like and EctE-like proteins was also performed. In addition, we have investigated the expression of the two ectoine hydroxylase genes under salinity and temperature stress, as a function of the growth phase. We also found that both the general stress sigma factor RpoS (σS) and the specific regulator EctZ contribute to the transcriptional control of ectoine hydroxylation but in a different manner, depending on the ectoine hydroxylase gene (ectD or ectE), the stress imposed, and the growth phase.
Results

EctE is a secondary ectoine hydroxylase that contributes to C. salexigens thermoprotection

The ectoine hydroxylase (EctD) belongs to the superfamily of Fe(II)- and 2-oxoglutarate-dependent dioxygenases, a group of versatile biocatalysts involved in various oxygenation/hydroxylation reactions (Reuter et al., 2010; Höppner et al., 2014). In a previous work (Garcia-Estepa et al., 2006), we constructed a C. salexigens ectD mutant (CHR136) and demonstrated that EctD is the main ectoine hydroxylase, responsible for hydroxyectoine synthesis from ectoine, in this halophile. In addition to ectD (Csal_0542), the C. salexigens genome carries the homologous gene Csal_3003, predicted to have an ectoine hydroxylase function. The product of Csal_3003 was named EctE.

The genes ectD and ectE were very distant from each other within the C. salexigens genome and showed a very different genomic context (Fig. 1). None of them laid adjacent to the ectoine-encoding ectABC genes. Within the same strand, the ectD gene was preceded by Csal_0541, encoding a putative transcriptional regulator of the AraC-GlxA family (latter characterized in this paper as a regulator of hydroxyectoine synthesis, EctZ), and followed by Csal_0543, encoding a putative 2-keto-4-pentenoate hydratase (MhpD) that showed well-conserved domains of enzymes involved in the degradation of aromatic compounds. Upstream of ectZ in the complementary strand, the gene csa1_0540, encoding a putative butyrobetaine hydroxylase-like, was found (Fig. 1A). The in silico analysis of the large intergenic region between ectZ and ectD (205 bp) revealed a putative Rho-independent transcriptional terminator downstream of ectZ, together with two putative promoters upstream of ectD (ectDp) showing −10 and −35 sequences resembling those recognized by RpoS/RpoD (σS/σ70) and RpoH (σ32) promoters (Fig. S1).

On the other hand, the putative ectoine hydroxylase ectE gene (Csal_3003) was the last of five genes in the same strand encoding solute binding (Csal_2999, Csal_3000, Csal_3001) and ABC transporter (Csal_3002) proteins (Fig. 1B). Downstream of ectE, in the opposite direction, the gene Csal_3004, encoding a putative membrane protein involved in aromatic hydrocarbon degradation, was found. Two putative RpoD

![Fig. 1. Genetic organization of the C. salexigens hydroxyectoine synthesis genes and strategies of gene disruption.](image-url)

© 2021 The Authors. Microbial Biotechnology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
(σ7C) and RpoH (σ38) promoters were predicted in the relatively large intergenic region (178 bp) between ectE and the preceding gene upstream of ectE, suggesting that ectE might constitute and independent transcriptional unit (Fig. 1B; Fig. S1).

EctE only showed a 51.9% identity to EctD at the amino acid level, and the predicted pl value for EctE (4.85) differed from that of EctD (5.93). Additionally, the predicted Tm index, a parameter that indicates the thermostatability of proteins, was lower from EctE (0.566) than for EctD (0.932). Despite these differences, an alignment of EctE with EctD and other ectoine hydroxylases already characterized revealed that EctE presented the conserved residues involved in the binding of the iron catalyst and 2-oxoglutarate, as well as those interacting with the hydroxyectoine molecule, and the string of 17 amino acids that is considered as the consensus sequence of ectoine hydroxylases (Höppner et al., 2014) (Fig. S2). These findings suggested that ectE could encode a second C. salexigens ectoine hydroxylase.

To check the contribution of the EctE-derived hydroxyectoine to C. salexigens total hydroxyectoine pool under osmotic and temperature stress, we inserted a kanamycin resistance cassette within the ectE gene to construct single ectE (CHR174) and double ectDectE (CHR175) mutants (Fig. 1B). The ectoine/hydroxyectoine intracellular accumulation pattern of the ectE strains grown at late exponential phase was compared to those of the wild-type and the single ectD mutant (CHR136) (Fig. 2A). The ectoine content of single ectE or ectD mutants was similar to that of the wild type at any condition tested, whereas that of the double ectDectE strain was slightly lower at high salinity. At high salinity, the hydroxyectoine level of the ectD mutant was reduced to 56.1 ± 20.11% of the wild-type level, whereas that of the ectE strain was not significantly lower. However, the double ectDectE mutant did not accumulate hydroxyectoine, suggesting that at high salinity the combined action of the two ectoine hydroxylases is responsible for the total hydroxyectoine pool. On the other hand, at high salinity plus high temperature, the hydroxyectoine content of the ectE strain was reduced to 37.6 ± 0.89% of the wild-type level, showing the involvement of EctE in hydroxyectoine synthesis under these conditions. Growth of the ectD and ectDectE strains was severely impaired at high temperature, and cultures did not reach enough biomass to measure their intracellular solute pool (see below).

To investigate the contribution of the EctE-derived hydroxyectoine to osmo- and/or thermoprotection of C. salexigens, the growth of the ectE-deficient strains was compared to that of the wild-type and the single ectD mutant under osmotic and heat stress. At high salinity, all mutant strains followed a growth pattern similar to that of the wild type (Fig. 2B). As previously reported (Garcia-Estepa et al., 2006), growth of the single ectD mutant was severely impaired at high salinity plus high temperature. When compared to the wild-type strain, the single ectE mutant also showed a thermosensitive phenotype, but its growth was not as affected as that of the ectD-deficient strain (Fig. 2C). When compared to the single ectD strain, the growth of the double ectDectE mutant was even more impaired.

All together, these findings indicated that EctE is a functional ectoine hydroxylase in C. salexigens. The differences observed in growth at high temperature also suggest that the ectE gene product contributes to C. salexigens thermoprotection, through to a lower extend than EctD.

Phylogenetic analysis of EctD-like and EctE-like ectoine hydroxylases

First, the distribution of EctE-like or EctD-like proteins within proteobacteria was investigated. For this purpose, two independent BLAST searches were carried out using C. salexigens EctD or EctE protein sequences as queries. Hits ranging between 99 and 47% identity (around 2000 sequences from both analysis) were further analysed and those from unknown species were discarded. This analysis identified more that 500 species harbouring at least one ectoine hydroxylase (EctD-like or EctE-like) in C. salexigens genome. Approximately 5% of the Gammaproteobacteria, most of them belonging to the Halomonas genus, harboured more than one ectoine hydroxylase-codifying gene. Second, due to the low similarity between C. salexigens EctD and EctE protein sequences, we investigated their phylogenetic relationships and evolutionary origin, especially within gammaproteobacteria, focussing on those that harbour more than one enzyme. To this end, a phylogenetic analysis was conducted with 152 proteins from the previous analysis, including C. salexigens EctD and EctE, the majority of the gammaproteobacteria species harbouring more than one ortholog to C. salexigens EctD or EctE, and most of the sequences of ectoine hydroxylases previously characterized (bona fide ectoine hydroxylases).

As shown in Fig. 3, the resulting phylogenetic tree showed five main branches. The C. salexigens EctD and EctE proteins were distributed in two separate branches including ectoine hydroxylases from Gammaproteobacteria belonging to the halophilic and halotolerant representatives of the Oceanospirillales (Halomonadaceae and Alcanivoracaceae families; genera Chromohalobacter, Halomonas, Cobetia, Salinicola and Alcanilvorax) and the Alteromonadales (Alteromonadaceae family; genus Marinobacter). C. salexigens EctD was tightly...
associated with its orthologs in C. israelensis and Salinitoca socius and closely clustered with the characterized H. elongata EctD protein, as well as putative ectoine hydroxylases from other species of Halomonas, Cobetia and Alcalinivorax. In turn, C. salexigens EctE clustered with EctE-like enzymes from C. israelensis and Halomonas, as well as ectoine hydroxylases from Marinobacter (some of them with 2 or more copies present in this second branch), and other related genera. Interestingly, Marinobacter only contained EctE-like, but not EctD-like, proteins. Remarkably, among those Gammaproteobacteria harbouring two or more ectoine

© 2021 The Authors. Microbial Biotechnology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
hydroxylases (mostly from the genus \textit{Halomonas}), most of them possess at least one EctD-like enzyme and one EctE-like enzyme, as each protein was clearly grouped into separate branches (Fig. 3).

The third phylogenetic branch grouped ectoine hydroxylases from Alpha-, Beta- and Gammaproteobacteria, including the characterized proteins from \textit{P. stutzeri} and \textit{S. alaskensis}, whereas the fourth and fifth branches
clustered ectoine hydroxylases from Actinobacteria and Firmicutes (i.e. characterized proteins from Virgibacillus salexigens, Paenibacillus lautus). Within the same cluster, some species contained additional copy(es) of an ectoine hydroxylase, a situation compatible with more recent gene duplication events that occurred during the speciation process (Fig. 3).

Influence of salinity and temperature on the expression of the C. salexigens ectoine hydroxylase genes ectD and ectE at different growth phases

In *C. salexigens*, accumulation of hydroxyectoine is maximal during stationary phase and triggered by osmotic and temperature stress (Garcia-Estepa et al., 2006). To determine whether this accumulation pattern is controlled (at least in part) at the transcriptional level, we used real-time PCR to measure the relative expression levels of the *ectD* and *ectE* genes in the wild type in response to osmotic and/or temperature stress, as a function of the growth phase (Fig. 4).

The relative expression of the *ectD* gene was higher than that of *ectE* at most of the studied conditions. This finding agrees with the role of EctD as the main ectoine hydroxylase in *C. salexigens*. At the exponential phase of growth, and compared to cells grown at low salinity, the expression of *ectE* and *ectD* was induced by 2.3-fold and 27.9-fold, respectively, by osmotic stress. In contrast, the expression levels of *ectD* and *ectE* at high salinity were not affected by temperature (Fig. 4A). The pattern of *ectD* expression in response to salinity and temperature in exponentially grown cells agrees with our previous transcriptomic studies on *C. salexigens* adaptive mechanisms (Salvador et al., 2018). At the stationary phase, expression of *ectD* and *ectE* was not induced by salinity. In contrast, expression of *ectD*, but not of *ectE*, was strongly induced (30.6-fold) by temperature at high salinity (Fig. 4B).

The above results suggest that the transcriptional response of hydroxyectoine synthesis to osmotic and temperature stress is different depending on growth phase. Thus, at the exponential phase, both *ectD* and *ectE* genes were osmoregulated, but not thermoregulated. In contrast, at the stationary phase, none of the genes appeared to be osmoregulated, whereas *ectD* (but not *ectE*) was strongly thermoregulated at high salinity.

The general stress response regulator RpoS contributes to the growth-phase-dependent expression of ectD and ectE under osmotic and heat stress

In Gammaproteobacteria, the sigma factor RpoS (σ^52) regulates the general stress response, coordinating an immediate response to stress as well as long-term adaptation to many different stresses, such as starvation,

![Fig. 4](image-url)
osmotic stress, high or low temperature, acidic pH or oxidative agents, among others (Battesti et al., 2011). In a previous work, we suggested that during exponential growth, RpoS does not trigger the early transcriptional response of \(\text{ectD} \) to an osmotic or heat upshock. However, it contributed to \(\text{ectD} \) expression during the responses to these upshocks (Salvador et al., 2015).

To determine whether RpoS is involved in the expression of the ectoine hydroxylase genes \(\text{ectD} \) and \(\text{ectE} \) during \(C. \text{salexigens} \) long-term osmo- and thermoadaptation, we measured the relative expression of \(\text{ectD} \) and \(\text{ectE} \) in the wild-type and the \(\text{rpoS} \) mutant strain CHR196 previously characterized in our laboratory (Salvador et al., 2015). As induction of the \(\text{ectD} \) and \(\text{ectE} \) gene expression by salinity and temperature is different depending on growth phase (see Fig. 4), samples were taken in the mid-late exponential and late stationary phases of growth (Fig. 5).

At the exponential phase, the expression of the \(\text{ectD} \) gene in the \(\text{rpoS} \) background decreased 5.1-fold at high salinity, compared to the wild type (Fig. 5A), whereas no differences were found in the rest of the conditions tested. At stationary phase, \(\text{ectD} \) expression in the \(\text{rpoS} \) background was twofold and 11.25-fold lower than that of the wild type at low salinity and at high temperature, respectively, whereas no differences were found at high...
salinity with 37°C (Fig. 5C). Interestingly, in both exponential and stationary phases, the ectE gene expression was remarkably lower in the rpoS mutant, compared to the wild type, at any condition tested (at exponential phase: 5.17-fold, 4.67-fold and threefold, at low salinity, high salinity and high salinity plus high temperature respectively; at the stationary phase: 5.95-fold, 24-fold and 24.1-fold at low salinity, high salinity and high salinity plus high temperature respectively) (Fig. 5B and D).

All together, the above findings suggest that the osmoregulated expression of ectD at exponential phase, as well as the thermoregulated expression of ectD at the stationary phase, seemed to be RpoS-dependent. In contrast, expression of ectE was RpoS-dependent regardless of the growth phase and osmotic or heat stress conditions tested.

We also investigated the differences in the ectoine and hydroxyectoine accumulation pattern of wild-type and the rpoS mutant in response to osmotic and heat stress, in the exponential and stationary phases of growth. At the exponential phase, the only significative difference was observed at low salinity, where the lack of rpoS gave rise to an increment of ectoine accumulation of 15.9% ± 6 (Fig. 6A). At the stationary phase, a 21.73% ± 12.32 increment of hydroxyectoine was observed in the rpoS mutant under osmotic stress, which seemed to occur at the expenses of the ectoine pool. Remarkably, a 54% ± 7.1 increment of ectoine accumulation was observed in the rpoS mutant grown under osmotic and heat stress (Fig. 6B).

The transcriptional regulator EctZ contributes to the osmoregulated expression of ectD at the exponential growth phase

The gene Csal_0541, encoding a putative transcriptional regulator of the AraC-GlxA family, lays upstream of ectD within the C. salexigens genome (Fig. 1A). To determine whether its encoded protein was involved in the transcriptional regulation of hydroxyectoine synthesis, we constructed a Csal_541 mutant (CHR146) by insertional mutagenesis (Fig. 1C). The relative expression of ectD and ectE at the exponential and stationary growth phases was measured in the Csal_541 mutant and wild-type strains under osmotic and heat stress (Fig. 7).

Compared to the wild type, expression of the ectD gene in the Csal_0541 background at the exponential phase was 7.15-fold lower under osmotic stress (Fig. 7A), whereas at stationary growth phase, ectD expression was 2.3-fold lower at low salinity (Fig. 7C). No substantial differences were found in the rest of the conditions tested. Regarding ectE, mutation of Csal_0541 led to increased expression at the exponential growth phase (4.3-fold) in cells grown at low salinity or high salinity plus high temperature (2.2-fold), but ectE expression was not affected under osmotic stress (Fig. 7B). No significative differences were observed in the ectE transcriptional expression pattern of wild-type and Csal_0541 strains at the stationary growth phase (Fig. 7D).

Fig. 6. Ectoine(s) content of C. salexigens Wt and rpoS mutant strains in response to osmotic and heat stress at different growth phases. Strains were grown at low salinity (0.75 M NaCl at 37°C), high salinity (2.5 M NaCl at 37°C) and high salinity and temperature (2.5 M NaCl at 45°C). Cytoplasmic accumulation of ectoine and hydroxyectoine was determined by LC-MS at exponential (A) and stationary phase (B). The values are the averages and standard deviations of three replicates for each condition in two independent experiments. According to Student’s t-test and % solute content variation, significant differences (P-value ≤0.05 and ≥ ± 15%) compared with the wild type were shown by two asterisks (ectoine) or spots (hydroxyectoine).

© 2021 The Authors. Microbial Biotechnology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
The above findings suggest that, at the exponential growth phase, the product of *Csal_0541* gene (named hereafter as EctZ) is involved in the osmoregulated expression of *ectD*. Additionally, it might function as a repressor of *ectE*, mainly at low salinity and high temperature. They also suggest that during the stationary phase of growth, EctZ is not involved in the expression of either *ectD* or *EctE*.

Inactivation of EctZ leads to a higher ectoines accumulation at the expenses of the ectoine pool

Next, we investigated the effect of the *ectZ* inactivation on *C. salexigens* growth in response to osmotic and heat stress, as well as on the accumulation pattern of ectoine and hydroxyectoine. As shown in Fig. 8A, no differences in growth of the wild-type and *ectZ* strains were observed at any of the studied conditions.

In general, the amount of hydroxyectoine accumulated by the *ectZ* mutant did not change at any condition tested, with respect to the wild type (Fig. 8B and C). Remarkably, inactivation of *ectZ* led to a higher accumulation of ectoine, the precursor of hydroxyectoine, in the mutant (from 18 to 57.6%), with respect to the wild type, at most of the conditions tested (Fig. 8B and C). The highest differences were observed under heat stress, in both exponential (57.6 ± 10.8%) and stationary (52 ± 8.3%) phases.

© 2021 The Authors. *Microbial Biotechnology* published by Society for Applied Microbiology and John Wiley & Sons Ltd.
In summary, inactivation of *ectZ* mainly resulted in a higher amount of the total ectoine pool at the expenses of a higher accumulation of ectoine, with maintenance of the hydroxyectoine levels.

EctZ, a transcriptional regulator of the AraC-GlxA-family specific of moderately halophilic bacteria

Blast searches showed that the EctZ protein was present in a limited number of bacteria, with an identity ranging from 55.4 to 99.4% to the *C. salexigens* EctZ protein. Interestingly, all of them were moderately halophilic Gammaproteobacteria and most species (29) belonged to *Halomonas* (70.0%) (Fig. 9A). The rest of species corresponded to other genera of the Halomonadaceae family such as *Cobetia* (2), *Chromohalobacter* (3), *Kushneria* (1), *Pistricoccus* (1) and *Salinicola* (4) and of the Saccharospirillaceae family such as *Saccharospirillum* (1). The only exception was the EctZ-like protein from the Firmicute *Virgibacillus halodentificans*, which showed 90.80% of identity to the *C. salexigens* EctZ.

© 2021 The Authors. *Microbial Biotechnology* published by Society for Applied Microbiology and John Wiley & Sons Ltd.
species revealed that the organization of the upstream region of *ectZ* was highly conserved among all of them, with the exception of *Cobetia* (Fig. S3). However, the genetic organization of the region downstream of *ectZ* was not conserved. As a matter of fact, *C. salexigens* genome was the unique, among all the analysed genomes, where *ectD* gene was located downstream of *ectZ*.

Analysis of conserved domains revealed that the *C. salexigens* EctZ protein is an AraC-type transcriptional regulator presenting a GlxA domain, which consists of an N-terminal Type 1 glutamine amidotransferase (GATase1)-like motif and the AraC-type DNA-binding HTH motif. This domain is conserved in a subgroup of AraC-family proteins including, for instance, the *Pseudomonas aeruginosa* ArgR regulator, which controls the expression of certain genes involved in arginine biosynthesis and catabolism (Chou et al., 2010).

To check the evolutionary relationship between EctZ-like proteins and other AraC-like proteins, a phylogenetic tree was constructed including all EctZ-like proteins found so far, other GlxA-like proteins present in the *C. salexigens* genome, and other GlxA or AraC-type characterized proteins such as GbdR, CdhR and ArgR from *P. aeruginosa* (Wargo et al., 2008; Chou et al., 2010; Meadows and Wargo, 2018), XylS from *P. putida* (Gallegos et al., 1997b, 1997a), DarR from *P. chlororaphis* (Calderón et al., 2014), RegA from *Citrobacter rodentium* (Hart et al., 2008) or AraC from *E. coli* (Sheppard and Englesberg, 1967). The MarR-type regulator EctR from the halotolerant obligate methanotroph *Methylocricibium alcaliphilum*, which negatively regulates the transcription of ectoine synthesis genes (Mustakhimov et al., 2010), was also included for comparative purposes.

As shown in Fig. 9B, two clearly separated branches, including all orthologs to *C. salexigens* EctZ and the rest of GlxA-like proteins, respectively, were observed. They were evolutionarily distant from other AraC regulators not containing the amidase motif, and the MarR repressor EctR. In the EctZ-like branch, *C. salexigens* EctZ clustered with ortholog proteins from *C. marismortui*, *C. japonicus*, *V. halodenitrificans* and *Halomonas*. This arrangement suggested that the protein from *V. halodenitrificans* might have been acquired by a horizontal transfer genetic (HTG) event. The rest of the GlxA-type proteins from *C. salexigens* were included in the second branch. Csal_3170, Csal_0987 and Csal_2821 were close to the characterized CdhR, GbdR and ArgR proteins from *P. aeruginosa*, respectively, whereas Csal_2462 was evolutionary distant from the former ones. However, they did not show a clear phylogenetic relationship that indicate that they were orthologous proteins (Fig. 9B). The above findings suggest that the EctZ-type proteins, although phylogenetically related to GlxA-type proteins, might constitute a different subtype of AraC-like regulators, probably with a specific function related to osmoadaptation.

Discussion

The genome of the halophilic Gammaproteobacterium *C. salexigens* carries two ectoine hydroxylase genes, namely *ectD* and *ectE*, whose encoded proteins share the characteristic consensus motif of ectoine hydroxylases. Although the *ectD*-encoded ectoine hydroxylase is the main enzyme responsible for hydroxyectoine synthesis in *C. salexigens*, an *ectD* mutation did not totally suppress hydroxyectoine accumulation in this microorganism (Garcia-Estepa et al., 2006), suggesting that (at least in part) the *ectD* homolog could contribute to hydroxyectoine synthesis. In this work, we have shown that *ectE* encodes a secondary functional ectoine hydroxylase and that the hydroxyectoine synthesis mediated by this enzyme also contributes to thermoprotection in *C. salexigens*.

Interestingly, the two *C. salexigens* ectoine hydroxylases, and their corresponding orthologs in *Halomonas* and other Chromohalobacter species, among other Gammaproteobacteria, were phylogenetically distant, separated in two clusters of related representatives. This evolutionary pattern suggests that they may have arisen from duplication of an ancestral gene preceding the directional divergence that gave origin to the orders Oceanospirillales and Alteromonadales. In this sense, *ectD* and *ectE* may be considered as ‘out-paralogs’, according to the definition by Koonin (2005). Our phylogenetic analysis also suggests that the *ectD* or *ectE* copies were lost in some of the lineages and that additional duplication events occurred during the speciation process. Some interesting examples are the type strain...
of *H. elongata*, which only carries the EctD-like protein, or some *Marinobacter* species carrying two or three copies of EctE-like.

Differences in their pl values suggest that *C. salexigens* EctD and EctE could differ in their ability to function at different ionic strengths, an interpretation that needs experimental support. In addition, predictions based on their Tm index suggest that EctD might be more thermostable than EctE, a hypothesis compatible with the predominant role of EctD in *C. salexigens* thermoprotection, and the strong thermoregulation of *ectD* found at stationary phase of growth. In addition, the different regulation patterns in response to growth phase, salinity and temperature, as well as the differences found in their transcriptional control by general (RpoS) and specific (EctZ) regulators, suggest that *C. salexigens* *ectD* and *ectE* might be also considered as ‘eco-paralogs’. This was an evolutionary term proposed by Sánchez-Perez *et al.* (2008) for genes that perform the same cellular function under different ecological conditions. This genetic redundancy of ectoine hydroxylases could confer a certain degree of robustness to *C. salexigens* and other related microorganisms that live in fluctuating temperature and salinity environments, to better adapt to these environmental changes.

In *C. salexigens*, accumulation of hydroxyectoine is maximal during stationary growth phase and upregulated by osmotic and temperature stress, regardless of the growth phase (Garcia-Estepa *et al.*, 2006; this work). The balance between ectoine and hydroxyectoine shifts towards the latter in the stationary phase (Fallet *et al.*, 2010). This could be explained for the better protective properties of hydroxyectoine to cope with stationary-phase-related stresses such as alterations of pH or oxidative damage (Andersson *et al.*, 2000; Moritz *et al.*, 2015). Stationary-phase-dependent hydroxyectoine production was also reported in other microorganisms such as *Salibacillus salexigens* (Bursy *et al.*, 2007), *Virgibacillus halodenitrificans* (Tao *et al.*, 2016) and *Streptomyces coelicolor* (Bursy *et al.*, 2008).

Accumulation of hydroxyectoine in response to temperature in exponentially grown *C. salexigens* wild-type cells seemed to be primarily regulated at the post-transcriptional level, as osmoregulated, but not thermoregulated, expression of *C. salexigens* *ectD* and *ectE* was found at exponential growth phase (Salvador *et al.*, 2018; this work). Post-transcriptional control at high salinity plus temperature in exponential growth phase has also been suggested for the synthesis of trehalose, a secondary solute involved in thermoprotection of *C. salexigens* (Reina-Bueno *et al.*, 2012). Interestingly, at stationary growth phase, the transcriptional vs post-transcriptional control of hydroxyectoine synthesis pattern in response to osmotic and heat stress was the opposite to that of the exponential phase. In these conditions, *C. salexigens* *ectD* and *ectE* were not osmoregulated, suggesting that accumulation of hydroxyectoine in response to salinity in the stationary phase is primarily regulated at the post-transcriptional level. On the other hand, the strong thermoregulation of *ectD* may account (at least in part) for the accumulation of hydroxyectoine in response to heat stress found in this phase of growth. Despite the EctE-derived hydroxyectoine contributed to *C. salexigens* thermoprotection at stationary growth phase, *ectE* expression was not thermoregulated.

Even though there is a considerable number of studies related to structural and biochemical aspects of the bacterial ectoine hydroxylases (Reuter *et al.*, 2010; Widerich *et al.*, 2014; Czech *et al.*, 2018a), little is known about the transcriptional control of hydroxyectoine synthesis. In fact, studies on transcriptional regulation of ectoines synthesis have been primarily focussed on the *ectABC* gene cluster encoding the synthesis of ectoine.

Regarding the RNA polymerase sigma factor subunit required for transcription initiation, it was proposed that the osmotic induction of ectoine synthesis is dependent of *ectABC* expression mediated by the general stress factors RpoS (σ^5)^5/SigB. This induction could be in addition, or alternatively, dependent on the housekeeping sigma factors RpoD (σ^70)/SigA and the sigma factor RpoN (σ^54) (reviewed in Czech *et al.*, 2018a). In *C. salexigens*, we reported that the *ectABC* genes are controlled through a complex osmoregulated promoter region located upstream of *ectA* and that RpoS is involved in the long-term control of *ectABC* transcription (Calderón *et al.*, 2004). Subsequent experiments with a *rpoS* mutant showed that RpoS also contributed to the expression of *ectA* and *ectD* after osmotic or thermal upshocks. However, RpoS did not seem to be the main regulator triggering the immediate transcriptional response of ectoines synthesis to osmotic or heat stress (Salvador *et al.*, 2015).

Both the *ectD* and *etcE* promoter regions contain consensus sequences that might be recognized by RpoS/RpoD and RpoH. In this work, we found that, during long-term adaptation, the transcriptional activation of the primary ectoine hydroxylase gene *ectD* in response to osmotic and heat stress (observed at exponential and stationary phases of growth respectively) was mainly RpoS-dependent. Furthermore, expression of the secondary ectoine hydroxylase gene *ectE* was always RpoS-dependent, regardless of growth phase or stress conditions. From these results, we conclude that the general stress factor RpoS is the main sigma factor controlling the long-term transcriptional induction of *C. salexigens* ectoine hydroxylase genes *ectD* (in a growth-phase-dependent way) and *ectE*, to osmotic and heat stress. However, as *ectD* and *ectE* expression was not
completely abolished in the rpoS background, there might be additional sigma factors contributing to their transcriptional initiation under these conditions. Putative candidates are the vegetative sigma factor RpoD, or the heat stress factor RpoH. Repeated attempts to construct a C. salexigens rpoH mutant were unsuccessful, hampering the measurement of ectD and ectE expression in a rpoH background.

Altogether, our findings suggest a growth-phase- and stress-dependent complex level of transcriptional and post-transcriptional control of hydroxyectoine synthesis in C. salexigens. This multi-level control should not be seen as unusual, as in its natural habitat C. salexigens cells need to rapidly and reversibly react to changing osmotic and temperature conditions.

Concerning other transcription factors involved in the control of ectoines synthesis, none of the so far reported transcriptional regulators present in other microorganisms are found in C. salexigens genome. These include GlnR, a major regulator for nitrogen metabolism in many actinomycetes, which functions as a repressor of the ectABCD operon in Streptomyces coelicolor (Shao et al., 2015), and the MarR-type regulator EctR, from halophilic and halotolerant methylotrophic bacteria (Mustakhimov et al., 2010; Mustakhimov et al., 2012), and CosR from Vibionaceae (Shikuma et al., 2013; Gregory et al., 2020), which function as negative regulators of the ectABC-ask operon. Whereas the above regulators function as repressors, in a previous work we showed that the ferric iron uptake regulator Fur mediated the osmoregulated expression of the C. salexigens ectABC genes, linking the salt stress response with iron homeostasis. Fur boxes were found in the ectABC promoter, suggesting that Fur directly interacts with DNA in this region (Argandona et al., 2010).

The data presented here suggest that EctZ is involved in the transcriptional control of hydroxyectoine synthesis in C. salexigens. EctZ belonged to a subtype of the AraC transcription regulators phylogenetically related to GlxA-type proteins. Most characterized GlxA-type regulators are involved in the control of amino acid catabolic pathways or related quaternary compounds, as arginine, L-lysine, carmitine or glycine-betaine catabolism. However, EctZ-like proteins were phylogenetically distant from other GlxA-type regulators, suggesting that they might constitute a different subtype of AraC-like regulators, with a specific function related to osmo- and thermodaptation.

Whereas the majority of AraC regulators are transcriptional activators, the AraC subfamily members concerned with stress response, such as MarA, SoxS and Rob, may also act as repressors (Martin and Rosner, 2001). Performing this dual regulatory role seems to be the case for EctZ, which at exponential growth phase functioned both as an activator of the ectD expression at high salinity and a repressor of the ectE expression at low salinity and high temperature, favouring the expression of the main ectoine hydroxylase under osmotic stress. Many AraC-like activators directly contact the sigma factor at the −35 promoter element (Davis et al., 2017). Determining the interaction of EctZ with the sigma factor(s) and/or the ectD and ectE promoter regions deserves further experimental work. In addition, ectD and ectE promoter engineering could lead to improved hydroxyectoine production. This strategy has been successfully used to promoter driving the osmotically induced transcription of the Pseudomonas stutzeri ectABCD-ask_ect operon in E. coli, which resulted in the production and efficient secretion of ectoines into the growth medium (Czech et al., 2018b).

Interestingly, lack of RpoS did not influence the C. salexigens ectoines content at the exponential growth phase, apart from a higher ectoine content at low salinity conditions. This agrees with that previously observed by Salvador et al. (2015). In addition, at the stationary growth phase, the rpoS strain accumulated more hydroxyectoine and more ectoine under osmotic- and heat stress, respectively, than the wild-type strain. On the other hand, the loss of the EctZ regulator provoked an increased accumulation of total pool of ectoines, at the expenses of an increment of the ectoine pool, whereas the hydroxyectoine’s one remained unchanged.

In general, the above accumulation pattern did not always correlate with the ectD or ectE expression patterns in the rpoS and ectZ strains. There are several (non-exclusive) explanations for this. First, it might be that these regulators are influencing the expression of other genes involved directly or indirectly in the metabolism of ectoines in C. salexigens (i.e. catabolism or synthesis of ectoines). Second, low levels of mRNA could be highly translated and consequently high levels of protein could be produced. Third, even if both low levels of mRNA and protein would be produced, a later activation of the enzyme could occur by post-translational modifications or allosteric regulation. In addition to the importance of elucidating the contribution of these transcriptional and post-transcriptional mechanisms in the control of hydroxyectoine synthesis in C. salexigens, the rpoS and ectZ genetic backgrounds offer interesting possibilities to further engineering strains improved in the synthesis of ectoine and hydroxyectoine. For instance, as ectoine synthesis burdens central metabolism pathways (Pastor et al., 2013), the high-quality genome-scale metabolic model of C. salexigens (Piubeli et al., 2018) can provide a very useful tool for metabolic engineering, guiding the model-driven design of rpoS and ectZ strains for ectoines overproduction.
Experimental procedures

Bacterial strains, plasmids and growth conditions

The bacterial strains and plasmids used in this study are described in Table 1. Strain CHR61, a spontaneous Rfr mutant of *C. salexigens* DSM 3043\(^1\), was used as the wild-type strain. CHR61 displays wild-type growth at all conditions tested. *C. salexigens* strains were routinely grown in complex SWYE-2 medium, containing 2% (w/v) total salts (Nieto et al., 1987). Medium M63 (Csonka, 1982), which contains 20 mM glucose as the sole carbon source, was used as minimal medium for *C. salexigens*. The osmotic strength of M63 was increased by the addition of a 0.75 to 2.5 M final concentration of NaCl. *Escherichia coli* was grown aerobically in complex Luria-Bertani (LB) or SWYE-2 media. The pH of all media was adjusted to 7.2 with KOH. Solid media contained 20 g of Bacto agar per litre (Difco). Otherwise stated, cultures were incubated at 37 or 45°C in an orbital shaker at 220 rpm. Growth was monitored as the optical density of the culture at 600 nm (O.D.\(_{600}\)) with a Perkin-Elmer Lambda 25 UV/Vis spectrophotometer.

DNA techniques

Plasmid DNA was isolated from *E. coli* with Wizard® Plus SV Miniprep kit (Promega, Madison, WI, USA), and genomic DNA was isolated with Quantum Prep Aquapure Genomic DNA kit (Bio-Rad, Hercules, CA, USA) and ISOLATE II genomic DNA kit (Bioline, Memphis, TN, USA). Restriction enzymes and T4DNA ligase were provided by Promega. Digestion with restriction enzymes, analysis by agarose gel electrophoresis, isolation of fragments, ligation, transformation and PCR were done according to standard procedures (Sambrook and Russell, 2001) or to the manufacturer’s recommendations. High fidelity PCR (for cloning from genomic DNA and site-directed mutagenesis) was performed with Pfu Turbo DNA Polymerase (Stratagene).

Table 1. Strains and plasmids used in this study.

Strain or plasmid	Relevant genotype and/or description	Source of reference
C. salexigens		
CHR61	Spontaneous Rf mutant of *C. salexigens* DSM 3043\(^1\)	Cánovas et al. (1997)
CHR136	CHR61 ctd:\(\Omega\) Rf Sm\(^{1}\)	Garcia-Estepa et al. (2006)
CHR174	CHR61 ctd::Km, Rf Km\(^{1}\)	This study
CHR175	CHR61 ctd:: \(\Omega\) ctd::Km, deficient in hydroxyectoine synthesis; Rf Km\(^{1}\) Sm\(^{1}\)	This study
CHR146	CHR61 ctd:: \(\Omega\) Rf Sm\(^{1}\)	This study
CHR196	CHR61 rpoS:: \(\Omega\) Rf Sm\(^{1}\)	Salvador et al. (2015)
E. coli		
DH5\(\ast\)	supE44, D(lac)U169, ϕ80lacZDM15, hsdR17, recA1, endA1, gyrA96, thi-1, relA1; host for DNA manipulation	Invitrogen
GM242	dam-3, recAisin-2, thr-1, leuB, 6proA2, his4, metB1, lacY1, galK1, ara-14, tsK-33, phiI, deoB6, supE44, rplL260	McGraw and Marinus (1980)
Plasmids		
pKs(+) BlueScript	cloning vector; Ap\(^{1}\); Km\(^{1}\) Neo\(^{1}\)	Stratagene
pUC4K	pUC4 and Tn903 derivative plasmid carrying Kanamycin resistance cassette; Ap\(^{1}\); Km\(^{1}\) Neo\(^{1}\)	Pharmacia, Healthcare
pRK600	Helper plasmid; Cm\(^{1}\) tra	Kessler et al. (1992)
pJC2000-SK	Suicide vector; Gm\(^{1}\) mcb sac	Quandt and Hynes (1993)
pMectE1	3 kb HindIII fragment amplified by PCR (containing Csal\(_{3002}\), ectE; Csal\(_{3004}\)) cloned into pKS in HindIII; Ap\(^{1}\)	This study
pMectE3	pMectR1 derivative with a BglII restriction site 548 bp downstream of ectE gene start codon originated by PCR-directed mutagenesis	This study
pMectE4	pMectE1 derivative with a BclI restriction site 950 bp downstream of ectE stop codon originated by PCR-directed mutagenesis	This study
pMectE5	pMectE4 derivative isolated from the *E. coli* dam strain GM242	This study
pMectE6	pMectE5 derivative with Kanamycin cassette inserted within ectE gene; Ap\(^{1}\)	This study
pMectE7	pMectE6 derivative isolated from the *E. coli* dam strain GM242	This study
pMectE8	pJC2000-SK derivative with a 4.3 kb XbaI-BclI fragment from pMectE7 cloned into XbaI-BamHI sites; Km\(^{1}\) Gm\(^{1}\)	This study
pRecZ1	3.3 kb fragment amplified by PCR (containing ectZ, ectD, Csal\(_{0543}\)) cloned into pKS in SfiI; Ap\(^{1}\)	This study
pRecZ2	pRecZ1 derivative with a Hpal restriction site 44 bp downstream of ectE start codon originated by PCR-directed mutagenesis	This study
pRecZ4	pRecZ2 derivative with Streptomycin cassette inserted within ectZ gene; Ap\(^{1}\) Sm\(^{1}\)	This study
pRecZ5	pJC2000-SK derivative with a 4.7 kb PstI-NolI fragment from pRecZ4 cloned into PstI-NolI sites; Sm\(^{1}\) Gm\(^{1}\)	This study

© 2021 The Authors. *Microbial Biotechnology* published by Society for Applied Microbiology and John Wiley & Sons Ltd.
DNA polymerase (Stratagene, La Jolla, CA, USA). Introduction of new restriction sites into cloned fragments was performed by site-directed mutagenesis using the QuickChange® II XL kit (Stratagene). All primers used for cloning, site-directed mutagenesis and real-time PCR were purchased from MWG (Germany) and are listed in Table S1 of supplemental material. DNA sequencing was performed by NewBioTechniques (Seville, Spain).

Construction of C. salexigens ectE, ectDE and ectZ mutant strains

To construct the ectE mutant strains, a 3040 bp DNA fragment, which contained the ectE gene (Csal_3003) and part of the sequence of Csal_3002 and Csal_3004 genes, was amplified with PfuTurbo (Stratagene) using C. salexigens genomic DNA as template and the primer pair ectE-fw/ectE-rv. The sequences of both primers included a HindIII site in 5’.

The 3-kb product was digested with HindIII and inserted into HindIII-digested pKS(-) Bluescript plasmid, resulting in plasmid pMectE1. To generate ectE mutants, a BgIII site was generated at 548 bp downstream of the ectE start codon by site-directed mutagenesis using pMectE1 as a template and the primer pair ectE-Bgl-fw/ectE-Bgl-rv. The resulting plasmid, pMectE3, was subjected to a new site-directed mutagenesis using the primer pair ectE-Bcl-fw/ectE-Bcl-rv to generate a BclI site 950 bp downstream of ectE stop codon to give the pMectE4 plasmid. As BclI is sensitive to Dam methylation, pMectE4 was transformed in E. coli and inserted into HindIII-digested pMectE1 to generate a BclI site 950 bp downstream of ectE stop codon to give the pMectE4 plasmid. As BclI is sen-

sitive to Dam methylation, pMectE4 was transformed in the E. coli dam strain GM242. The transformed plasmid was isolated (pMectE5) and digested with BclI to check the generation of the BclI restriction site. A 1.3-kb BamHI fragment from pUC4K, containing a KmR cassette, was inserted into BgIII-digested pMectE4 plasmid to yield plasmid pMectE6. This plasmid was transformed in E. coli GM242 and isolated as pMectE7. Finally, a 4.3-kb XbaI-BclI fragment from pMectE7 was ligated to pJQ200SK digested with XbaI and BamHI resulting in plasmid pMectE8, which was transformed into C. salexigens wild-type strain and to the ectD-deficient strain CHR136. The resulting double cross-over mutants CHR174 (ectE) and CHR175 (ectDectE), respectively, were selected as KmR,GmR colonies on SWYE-2 plates containing 10% sucrose and confirmed by amplification of the mutated DNA with the primer pair ectE-kan-fw/ectE-kan-rv and subsequent sequencing (Fig. 1B).

The ectE gene was amplified from C. salexigens genomic DNA by PCR using the primer pair ectZ-fw/ectZ-rv. The resulting 3.3-kb blunt-end fragment (containing ectZ, ectD and Csal_0543) was ligated to SfiI-digested pKS(-) Bluescript plasmid to give plasmid pRectZ1. To inactivate the ectZ gene, an Hpal site was generated at 44 bp downstream of the ectZ start codon by site-directed mutagenesis using pRectZ1 as a template and the primer pair ectZ-Hpa-fw/ectZ-Hpa-rv. The resulting plasmid (pRectZ2) was digested with Hpal and ligated to a 2-kb SmaI fragment from pH45-Ω (Prentki and Krisch, 1984), containing the Ω interposon for insertional mutagenesis (Sm³/Stp³), to give plasmid pRectZ4. To recombine the ectZ mutation into the C. salexigens chromosome, a 4.7-kb PstI-NotI fragment from pRectZ4 was cloned into the suicide vector pJQ200SK digested with PstI and NotI to give plasmid pRectZ5, which was mobilized into C. salexigens wild-type strain by triparental mating. Mutant CHR146 (ectZ::Ω), resulting from a double homologous recombination event, was identified as a Sm³,Gm³ colony on SWYE-2 plates containing 10% sucrose and confirmed by amplification of the mutated DNA with the pair primer ectZ-Ω-fw/ectZ-Ω-rv and subsequent sequencing (Fig. 1C).

Quantification of intracellular ectoine and hydroxyectoine by LC-MS

C. salexigens wild-type strain CHR61 and mutant strains CHR136 (ectD), CHR174 (ectE), CHR175 (ectDectE), CHR146 (ectZ) and CHR196 (rpoS) (Salvador et al., 2015) were grown in M63 with 0.75 M NaCl at 37°C and with 2.5 M NaCl at 37 and 45°C. Cells cultured until mid-late exponential phase and late stationary phase were collected by centrifugation and washed with the same medium without any carbon source. Solutes were extracted from 1 ml of culture using a modified Bligh and Dyer (1959) technique as described by Kraegeloh and Kunte (2002). Cell pellets from 200 ml cultures were resuspended in 10 ml of extraction mixture (methanol:chloroform:water; 10:5:4), and intracellular solutes were extracted by gently shaking for 30 min at 37°C. The cell debris was removed by centrifugation, and supernatants were extracted once with chloroform:water (1:1) and freeze-dried. The solids were dissolved in D2O (0.6 ml). Ectoine and hydroxyectoine were quantified by high-performance liquid chromatography as described by Argandoña et al. (2010).

RNA isolation and real-time PCR

Total RNA of cells from cultures of C. salexigens was extracted using High Pure RNA Isolation Kit (Roche) according to the manufacturer’s instructions. The absence of DNA contamination was checked by PCR using the 16S rRNA primers 16S-RT-fw and 16S-RT-rv (Argandoña et al., 2010). After isolation, purity and concentration were assessed in a NanoDrop ND-1000 spectrophotometer (Thermo Scientific Waltham, MA, USA). RNA quality was evaluated by microfluidic capillary electrophoresis on an Agilent 2100 Bioanalyser (Agilent,
were calculated by the GenScanning Software v1.5 (Roche). Transcript levels were analysed with the LightCycler 480 Real-Time PCR System (Roche) and a FastStart SYBR Green Master (Rox) (Roche). Primers used were RT-ectD-fw (Salvador et al., 2018) and RT-ectE-fw/RT-ectE-rv for ectE. Amplification data were analysed with the LightCycler® 480 Gene Scanning Software v1.5 (Roche). Transcript levels were calculated by the 2^{- \Delta \Delta CT} method using the mRNA levels of 16S rRNA gene as an endogenous control to normalize the data obtained within each sample.

Bioinformatic analysis

Predictions of α^70- dependent promoter sequences were done with the program ‘Neural Network Promoter Prediction’ (http://www.fruitfly.org/seq_tools/promoter.html) (Reese, 2001). Transcriptional terminators were predicted by running MFOLD at http://www.bioinfo.rpi.edu/applications/mfold/old/ma形成1.cgi (Zuker et al., 1999). Prediction of Tm index were carried out by Tmpredictor (http://tm.life.nthu.edu.tw/) (Ku et al., 2009). Theoretical isoelectric point of proteins was predicted on ExPASy server (https://web.expasy.org/compute_pi/) (Gasteiger et al., 2005). Searches for identities were performed at the National Center for Biotechnology Information (NCBI, http://www.ncbi.nlm.nih.gov/) by using BLASTP program. Conserved domains within proteins were identified at NCBI’s Conserved Domain Database (http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml). Absynte and Syntax web servers were used for genomic context comparisons (Despalins et al., 2011; Oberto, 2013).

Phylogenetic and molecular evolutionary analyses were conducted using MEGA version 6 (Tamura et al., 2013) Sequences were aligned with ClustalW (1.6) using a BLOSUM62 matrix and manually edited. The phylogenetic tree was inferred using the Neighbour-Joining method (Saitou and Nei, 1987). The evolutionary distances were computed using the p-distance method (Nei and Kumar, 2000) and were in the units of the number of amino acid differences per site. The robustness of the tree branches was assessed by performing bootstrap analysis of the Neighbour-Joining data based on 1000 resamplings (Felsenstein, 1985).

Nucleotide sequence accession numbers

The C. salexigens genome accession sequence is available at GenBank under the accession NC_007963. NCBI Reference sequences for EctE (Csal_3003) and for EctZ (Csal_0542) proteins are WP_043558653.1 and WP_011505849.1 respectively.

Acknowledgements

This work has been partly funded by Agencia Estatal de Investigación P12019-111273RB-I00/AEI/10.13039/501100011033, BIO2015-63949-R (MINECO/FEDER, UE) and Spanish National Network on Extremophilic Microorganisms (RED2018-102734-T).

Funding information

This work has been partly funded by Agencia Estatal de Investigación P12019-111273RB-I00/AEI/10.13039/501100011033, BIO2015-63949-R (MINECO/FEDER, UE) and Spanish National Network on Extremophilic Microorganisms (RED2018-102734-T).

Conflict of interest

None declared.

Author contributions

MA and CV conceived and supervised the study. MA and MRB developed the mutant strains. MA, FP and MRB performed experimental phenotypic and expression analysis. MA performed the bioinformatics and phylogenetic analysis. MA, FP, MRB, JNJ and CV were involved in the analysis and discussion of results. MA, FP and CV drafted the manuscript. All authors revised and approved the final manuscript.

References

Andersson, M.M., Breccia, J.D., and Hatti-Kaul, R. (2000) Stabilizing effect of chemical additives against oxidation of lactate dehydrogenase. Biotechnol Appl Biochem 32:145–153.
Arahal, D.R., Garcia, M.T., Vargas, C., Cánovas, D., Nieto, J.J., and Ventosa, A. (2001) *Chromohalobacter salexigenes* sp. nov., a moderately halophilic species that includes *Halomonas elongata* DSM 3043 and ATCC 33174. *Int J Syst Evol Microbiol* 51: 1457–1462.

Argandona, M., Nieto, J.J., Iglesias-Guerra, F., Calderón, M.I., García-Estepa, R., and Vargas, C. (2010) Interplay between iron homeostasis and the osmotic stress response in the halophilic bacterium *Chromohalobacter salexigenes*. *Appl Environ Microbiol* 76: 3575–3589.

Battesti, A., Majdalani, N., and Gottesman, S. (2011) The RpoS-mediated general stress response in *Escherichia coli*. *Annu Rev Microbiol* 65: 189–213.

Bissoyi, A., Pramanik, K., Panda, N.N., and Sarangi, S.K. (2014) Cryopreservation of hMSCs seeded silk nanofibers-based tissue engineered constructs. *Cryobiology* 68: 332–340.

Bligh, E.G., and Dyer, W.J. (1959) A rapid method of lipid extraction and purification. *Can J Biochem Physiol* 37: 911–1017.

Bursy, J., Kuhlmann, A.U., Pittelkow, M., Hartmann, H., Jebbar, M., Pierik, A.J., and Bremer, E. (2008) Synthesis and uptake of the compatible solutes ectoine and 5-hydroxyectoine by *Streptomyces coelicolor* A3(2) in response to salt and heat stresses. *Appl Environ Microbiol* 74: 7286–7296.

Bursy, J., Pierik, A.J., Pica, N., and Bremer, E. (2007) Osmotically induced synthesis of the compatible solute hydroxyectoine is mediated by an evolutionarily conserved ectoine hydroxylase. *J Biol Chem* 282: 31147–31155.

Calderón, C.E., Carrión, V.J., de Vicente, A., and Cazorfa, F.M. (2014) *darR* and *darS* are regulatory genes that modulate 2-hexyl, 5-propyl resorcinol transcription in *Pseudomonas chlororaphis* PCL1606. *Microbiology* 160: 2670–2680.

Calderón, M.I., Vargas, C., Rojo, F., Iglesias-Guerra, F., Csonka, L.N., Ventosa, A., and Nieto, J.J. (2004) Complex regulation of the synthesis of the compatible solute ectoine in the halophilic bacterium *Chromohalobacter salexigenes* DSM 3043T. *Microbiology* 150: 3051–3063.

Cánovas, D., Vargas, C., Iglesias-Guerra, F., Csonka, L.N., Rhodes, D., Ventosa, A., and Nieto, J.J. (1997) Isolation and characterization of salt-sensitive mutants of the moderate halophile *Halomonas elongata* and cloning of the ectoine synthesis genes. *J Biol Chem* 272: 25794–25800.

Cánovas, D., Vargas, C., Calderón, M.I., Ventosa, A., and Nieto, J.J. (1998) Characterization of the genes for the biosynthesis of the compatible solute ectoine in the moderately halophilic bacterium *Halomonas elongata* DSM3043. Syst Appl Microbiol 21: 487–497.

Chen, W.C., Hsu, C.C., Wang, L.F., Lan, J.C.W., Chang, Y.K., and Wei, Y.H. (2019) Exploring useful fermentation strategies for the production of hydroxyectoine with a halophilic strain, *Halomonas salina* BCRC 17875. *J Biosci Bioeng* 128: 332–336.

Chou, H.T., Hegazy, M., and Lu, C.D. (2010) L-lysine catabolism is controlled by L-arginine and ArgR in *Pseudomonas aeruginosa* PA01. *J Bacteriol* 192: 5874–5880.

da Costa, M. S., Santos, H., and Galinski, E. A. (1998) An overview of the role and diversity of compatible solutes in Bacteria and Archaea. In *Biotechnology of Extremophiles. Advances in Biochemical Engineering/Biotechnology*, vol. 61. Antranikian, G. (ed). Berlin, Heidelberg: Springer, pp. 117–153.

Csonka, L.N. (1982) A third L-proline permease in *Salmonella typhimurium* which functions in media of elevated osmotic strength. *J Bacteriol* 151: 1433–1443.

Czech, L., Hermann, L., Stöveken, N., Richter, A.A., Hoppner, A., Smits, S.H.J., et al. (2018a) Role of the extremolytes ectoine and hydroxyectoine as stress protectants and nutrients: Genetics, phylogenomics, biochemistry, and structural analysis. *Genes (Basel)* 9: 177–235.

Czech, L., Poehl, S., Hub, P., Stöveken, N., and Bremer, E. (2018b) Tinkering with osmotically controlled transcription allows enhanced production and excretion of ectoine and hydroxyectoine from a microbial cell factory. *Appl Environ Microbiol* 84: e01772–e1817.

Czech, L., Stöveken, N., and Bremer, E. (2016) EctD-mediated biotransformation of the chemical chaperone ectoine into hydroxyectoine and its mecanosoensitives channel-independent excretion. *Microb Cell Fact* 15: 126–141.

Davis, M.C., Keethley, C.A., Franklin, E.A., and MacLellan, S.R. (2017) The essential activities of the bacterial sigma factor. *Can J Microbiol* 63: 89–99.

Despalins, A., Marsit, S., and Oberto, J. (2011) Absynte: a web tool to analyze the evolution of orthologous archaeal and bacterial gene clusters. *Bioinformatics* 27: 2905–2906.

Fallet, C., Rohe, P., and Franco-Lara, E. (2010) Process optimization of the integrated synthesis and secretion of ectoine and hydroxyectoine under hyper/hypo-osmotic stress. *Biotechnol Bioeng* 107: 124–133.

Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. *Evolution* 39: 783–791.

Galinski, E.A. (1995) Osmoadaptation in bacteria. *Adv Microb Physiol* 37: 273–328.

Galinski, E.A., Pfeiffer, H.P., and Trüper, H.G. (1985) 1,4,5,6-Tetrahydro-2-methyl-4-pyrimidinecarboxylic acid. A novel cyclic amino acid from halophilic phototrophic bacteria of the genus *Ectothiorhodospira*. *Eur J Biochem* 149: 135–139.

Gallegos, M.T., Schleif, R., Bairoach, A., Hofmann, K., and Ramos, J.L. (1997b) Arac/XylS family of transcriptional regulators. *Microbiol Mol Biol Rev* 61: 393–410.

Gallegos, M.T., Williams, P.A., and Ramos, J.L. (1997a) Transcriptional control of the multiple catabolic pathways encoded on the TOL plasmid pWW53 of *Pseudomonas putida* MT53. *J Bacteriol* 179: 5024–5029.

Garcia-Estepa, R., Argandona, M., Reina-Bueno, M., Capote, N., Iglesias-Guerra, F., Nieto, J.J., and Vargas, C. (2006) The ectD gene, which is involved in the synthesis of the compatible solute hydroxyectoine, is essential for thermoprotection of the halophilic bacterium *Chromohalobacter salexigenes*. *J Bacteriol* 188: 3774–3784.

Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D., and Bairoch, A. (2005) Protein intervals and analysis tools on the ExPASy server. In *The Proteomics Protocols Handbook*. Walker, J. M. (ed.). Springer Protocols Handbooks. Totowa, NJ: Humana Press, pp. 571–607.

© 2021 The Authors. *Microbial Biotechnology* published by Society for Applied Microbiology and John Wiley & Sons Ltd.
Gregory, G.J., Morreale, D.P., and Boyd, E.F. (2020) CosR is a global regulator of the osmotic stress response with widespread distribution among bacteria. *Appl Environ Microbiol* **86**: e00120–e220.

Hart, E., Yang, J.i., Tauschek, M., Kelly, M., Wakefield, M.J., Frankel, G., et al. (2008) RegA, an AraC-like protein, is a global transcriptional regulator that controls virulence gene expression in *Citrobacter rodentium*. *Infect Immun* **76**: 5247–5256.

Höppner, A., Widderich, N., Lenders, M., Bremer, E., and Smits, S.H. (2014) Crystal structure of the ectoine hydrolase, a snapshot of the active site. *J Biol Chem* **289**: 29570–29583.

Inbar, L., and Lapidot, A. (1988) The structure and biosynthesis of new tetrahydropyrimidine derivatives in actinomycin D producer *Streptomyces parvulus*. Use of 13C- and 15N-labeled L-glutamate and 13C and 15N NMR spectroscopy. *J Biol Chem* **263**: 16014–16022.

Kessler, B., de Lorenzo, V., and Timmis, K.N. (1992) A general system to integrate lacZ fusion into the chromosome of Gram negative bacteria: regulation of the Prm promoter of the TOL plasmid studied with all controlling elements in monocopy. *Mol Gen Genet* **233**: 293–301.

Koonin, E.V. (2005) Orthologs, paralogs and evolutionary genomics. *Annu Rev Genet* **39**: 309–338.

Kraegeloh, A., and Kunte, H.J. (2002) Novel insights into the role of potassium for osmoregulation in *Halomonas elongata*. *Extremophiles* **6**: 453–462.

Ku, T., Lu, P., Chan, C., Wang, T., Lai, S., Lyu, P., and Hsiao, N. (2009) Predicting melting temperature directly from protein sequences. *Comput Biol Chem* **33**: 445–450.

Kühlmann, A.U., Bursy, J., Gimpel, S., Hoffmann, T., and Bremer, E. (2008) Synthesis of the compatible solute ectoine in *Virgibacillus pantothenticus* triggered by high salinity and low growth temperature. *Appl Environ Microbiol* **74**: 4560–4563.

Kunte, H.J., Lentzen, G., and Galinski, E.A. (2014) Industrial production of the cell protectant ectoine: Protection, mechanisms, processes, and products. *Curr Biotechnol* **3**: 10–25.

Louis, P., and Galinski, E.A. (1997) Characterization of genes for the biosynthesis of the compatible solute ectoine from *Marinococcus halophilus* and osmoregulated expression in *Escherichia coli*. *Microbiology* **143**: 1141–1149.

Malin, G., and Lapidot, A. (1996) Induction of synthesis of tetrahydropyrimidine derivatives in *Streptomyces* strains and their effect on *Escherichia coli* in response to osmotic and heat stress. *J Bacteriol* **178**: 385–395.

Marini, A., Reinitz, K., Kruftmann, J., and Bilstein, A. (2014) Ectoine-containing cream in the treatment of mild to moderate atopic dermatitis: a randomised, comparator-controlled, intra-individual double-blind, multi-center trial. *Skin Pharmacol Physiol* **27**: 57–65.

Martin, R.G., and Rosner, J.L. (2001) The AraC transcriptional activators. *Curr Opin Microbiol* **4**: 132–137.

McGraw, B.R., and Marinus, M.G. (1980) Isolation and characterization of Dam revertants and suppressor mutations that modify secondary phenotypes of dam-3 strains of *Escherichia coli* K-12. *Mol Gen Genet* **178**: 309–315.

Meadows, J.A., and Wargo, M.J. (2018) Transcriptional regulation of carnitine catabolism in *Pseudomonas aeruginosa* by CdhR. *mSphere* **3**: e00480–e517.

Moritz, K.D., Amendt, B., Witt, E.M.H.J., and Galinski, E.A. (2015) The hydroxyectoine gene cluster of the non-halophilic acidophile *Acidiphilium cryptum*. *Extremophiles* **19**: 87–99.

Mustakhimov, I.I., Reshetnikov, A.S., Glukhov, A.S., Khmelenina, V.N., Kalyuzhnaya, M.G., and Trotsenko, Y.A. (2010) Identification and characterization of EctR1, a new transcriptional regulator of the ectoine biosynthesis genes in the halotolerant methanotroph *Methylomicrobium alcaliphilum* 20Z. *J Bacteriol* **192**: 410–417.

Mustakhimov, I.I., Reshetnikov, A.S., Fedorov, D.N., Khmelenina, V.N., and Trotsenko, Y.A. (2012) Role of EctR as transcriptional regulator of ectoine biosynthesis genes in *Methylphaga thalassica*. *Biochemistry (Moscow)* **77**: 857–863.

Nayak, P.K., Goode, M., Chang, D.P., and Rajagopa, K. (2020) Ectoine and hydroxyectoine stabilize antibodies in spray-dried formulations at elevated temperature and during a freeze/thaw process. *Mol Pharm* **17**: 3291–3297.

Nei, M., and Kumar, S. (2000) *Molecular Evolution and Phylogenetics.* New York: Oxford University Press.

Nieto, J.J., Ventosa, A., and Ruiz-Berreraquero, F. (1987) Susceptibility of halobacteria to heavy metals. *Appl Environ Microbiol* **53**: 1199–1202.

Oberto, J. (2013) SyntTax: a web server linking synteny to prokaryotic taxonomy. *BMC Bioinformatics* **14**: 4–13.

Pastor, J.M., Bernal, V., Salvador, M., Argandoña, M., Vargas, C., Csonka, L., et al. (2013) Role of central metabolism in the osmoadaptation of the halophilic bacterium *Chromohalobacter salexigenes*. *J Biol Chem* **288**: 17769–17781.

Pastor, J.M., Salvador, M., Argandoña, M., Bernal, V., Reina-Bueno, M., Csonka, L.N., et al. (2010) Ectoines in cell stress protection: uses and biotechnological production. *Biotechnol Adv* **28**: 782–801.

Piubeli, F., Salvador, M., Argandoña, M., Nieto, J.J., Bernal, V., Pastor, J.M., et al. (2018) Insights into metabolic osmoadaptation of the ectoines-producer bacterium *Chromohalobacter salexigenes* through a high-quality genome scale metabolic model. *Microb Cell Fact* **17**: 2.

Prenkli, P., and Krisch, H.M. (1984) *In vitro* insertional mutagenesis with a selectable DNA fragment. *Gene* **29**: 303–313.

Quandt, J., and Hynes, M.F. (1993) Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria. *Gene* **127**: 15–21.

Reese, M.G. (2001) Application of a time-delay neural network to promoter annotation in the *Drosophila melanogaster* genome. *Comput Chem* **26**: 51–56.

Reina-Bueno, M., Argandoña, M., Salvador, M., Rodríguez-Moya, J., Iglesias-Guerra, F., Csonka, L.N., et al. (2012) Role of trehalose in salinity and temperature tolerance in the model halophilic bacterium *Chromohalobacter salexigenes*. *PLoS One* **7**: e33587.

Reuter, K., Pittelkov, M., Bursy, J., Heine, A., Craan, T., and Bremer, E. (2010) Synthesis of 5-hydroxyectoine from ectoine: crystal structure of the non-heme iron(II)
and 2-oxoglutarate-dependent dioxygenase EctD. *PLoS One* **5**: e10647.

Rodriguez-Moya, J., Argandoña, M., Iglesias-Guerra, F., Nieto, J.J., and Vargas, C. (2013) Temperature- and salinity-decoupled overproduction of hydroxyectoine by *Chromohalobacter salexigens*. *Appl Environ Microbiol* **79**: 1018–1023.

Saitou, N., and Nei, M. (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. *Mol Biol Evol* **4**: 406–425.

Salvador, M., Argandoña, M., Pastor, J.M., Bernal, V., Cánovas, M., Csonka, L.N., et al. (2015) Contribution of RpoS to metabolic efficiency and ectoines synthesis during the osmo- and heat-stress response in the halophilic bacterium *Chromohalobacter salexigens*. *Environ Microbiol Rep* **7**: 301–311.

Salvador, M., Argandoña, M., Naranjo, E., Piubeli, F., Nieto, J.J., Csonka, L.N., and Vargas, C. (2018) Quantitative RNA-seq analysis unveils osmotic and thermal adaptation mechanisms relevant for ectoine production in *Chromohalobacter salexigens*. *Front Microbiol* **9**: 1845–1864.

Sambrook, J., and Russell, D.W. (2001) *Molecular cloning: a laboratory manual*. New York: Cold Spring Harbor Laboratory Press.

Sánchez-Perez, G., Mira, A., Nyiro, G., Pasić, L., and Rodríguez-Valera, F. (2008) Adapting to environmental changes using specialized paralogs. *Trends Genet* **24**: 154–158.

Schröter, M.A., Meyer, S., Hahn, M.B., Soloman, T., Sturm, H., and Kunte, H.J. (2017) Ectoine protects DNA from damage by ionizing radiation. *Sci Rep* **7**: 15272–15279.

Seip, B., Galinski, E.A., and Kurz, M. (2011) Natural and engineered hydroxyectoine production based on the *Pseudomonas stutzeri* ectABCD-ask gene cluster. *Appl Environ Microbiol* **77**: 1368–1374.

Shao, Z., Deng, W., Li, S., He, J., Ren, S., Huang, W., et al. (2015) GlnR-Mediated regulation of *ectABCD* transcription expands the role of the GlnR regulon to osmotic stress management. *J Bacteriol* **197**: 3041–3047.

Sheppard, E., and Englesberg, E. (1967) Further evidence for positive control of the l-arabinose system by gene araC. *J Mol Biol* **24**: 443–454.

Shikuma, N.J., Davis, K.R., Fong, J.N.C., and Yildiz, F.H. (2013) The transcriptional regulator, CosR, controls compatible solute biosynthesis and transport, motility and biofilm formation in *Vibrio cholerae*. *Environ Microbiol* **15**: 1387–1399.

Srinivasan, P.K., Fet, N., Bleievens, C., Alify, M., Doorschot, B., Yagi, S., et al. (2014) Hydroxyectoine ameliorates preservation injury in deceased after cardiac death donors in experimental liver grafts. *Ann Transplant* **19**: 165–173.

Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. *Mol Biol Evol* **30**: 2725–2729.

Tanne, C., Golovina, E.A., Hoekstra, F.A., Meffert, A., and Galinski, E.A. (2014) Glass-forming property of hydroxyectoine is the cause of its superior function as a desiccation protector. *Front Microbiol* **5**: 150–162.

Tao, P., Li, H., Yu, Y., Gu, J., and Liu, Y. (2016) Ectoine and 5-hydroxyectoine accumulation in the halophile

Virgibacillus halodenitrificans PDB-F2 in response to salt stress. *Appl Microbiol Biotechnol* **100**: 6779–6789.

Unfried, K., Krämer, U., Sydlik, U., Autengruber, A., Bilstein, A., Stolz, S., et al. (2016) Reduction of neutrophilic lung inflammation by inhalation of the compatible solute ectoine: a randomized trial with elderly individuals. *Int J Chron Obstruct Pulmon Dis* **11**: 2573–2583.

Vargas, C., Argandoña, M., Reina-Bueno, M., Rodríguez-Moya, J., Fernández-Aunión, C., and Nieto, J.J. (2008) Unravelling the adaptation responses to osmotic and temperature stress in *Chromohalobacter salexigens*, a bacterium with broad salinity tolerance. *Saline Syst* **4**: 14–23.

Wargo, M.J., Szewgold, B.S., and Hogan, D.A. (2008) Identification of two gene clusters and a transcriptional regulator required for *Pseudomonas aeruginosa* glycine betaine catabolism. *J Bacteriol* **190**: 2690–2699.

Widderich, N., Höppner, A., Pittelkow, M., Heider, J., Smits, S.H., and Bremer, E. (2014) Biochemical properties of ectoine hydroxylases from extremophiles and their wider taxonomic distribution among microorganisms. *PLoS One* **9**: e93809.

Zuker, M., Mathews, D.H., and Turner, D.H. (1999) Algorithms and thermodynamics for RNA secondary structure prediction: A practical guide. In *RNA Biochemistry and Biotechnology*. NATO Science Series. Barciszewski, J., and Clark, B. F. C. (eds). Dordrecht: Kluwer Academic Publishers, pp.11–43.

Supporting information

Additional supporting information may be found online in the Supporting Information section at the end of the article. *Fig. S1*. Nucleotide sequence of the *ectD* and *ectE* putative promoter regions. Coding sequences are in red. The stop codons of the genes upstream of *ectD* and *ectE* are denoted by an asterisk. The inverted repeated sequence (IR1) upstream of *ectZ* most probably corresponds to a rho-independent transcriptional terminator. –10 and –35 regions for each putative promoter are boxed and the nucleotides matching sigma factor consensus sequences are shown in bold an underlined. The transcription start sites (+1) are indicated by an arrow, and the ribosome-binding sites are indicated as RBS. The *ectD* and *ectE* start codons are indicated, and the partial amino acid sequences of *ectD* and *ectE* are shown in red one-letter code.

Fig S2. Alignment of the amino acid sequences of characterized ectoine hydroxylase proteins, and EctD and EctE from *Chromohalobacter salexigens*. The ectoine hydroxylases included in the alignment were from: *Acidiphilium cryptum* (AER00258), *Alkalilimnicola ehrlichii* (AER00257), *Halomonas elongata* (WP_013333764.1), *Paenibacillus lautus* (WP_113059475.1), *Pseudomonas stutzeri* (CBM40642.1), *Virgibacillus salexigens* (AYA29689), *Sphingopixis alaskanica* (WP_011543221.1), *Sphingobium japonicum* (WP_006964700), *Chromohalobacter salexigens* (EctD: CAJ77770; EctE: ABE60347). Residues involved in the binding of the iron catalyst are marked in red; those that mediate the binding of the 2-oxoglutarate co-substrate are labeled in green, and residues contacting the 5-hydroxyectoine
molecule are marked in blue. His and Asp residues, both involved in the binding of the iron catalyst and also of the 5-hydroxyectoine molecule, are marked with black dots. The string of the 17 amino acids that serves as the consensus sequence of ectoine hydroxylases (F-XWHSDFETWH-X-EDG-M/L-P) is labeled with a red line.

Fig S3. Comparison of the genomic context of *ectZ* in *C. salexigens* and in other gamma-proteobacteria genomes. Given scores are referred to normalized genomic context BLAST results, and they were obtained by SYNTTaux (Oberto, 2013) and Absynte (Despalins *et al.*, 2011) web-servers. Open reading frames are indicated by arrows. A consistent color code is assigned to matched proteins across genomes. Colored and white arrows represent conserved and non-conserved genes, respectively. *C. salexigens* ectZ and its orthologs genes are red framed. *ectD*: ectoine hydroxylase gene; γ_BBH: Gamma-butyrobetaine gene,2-oxoglutarate dioxygenase gene; *ilvG*: thiamine pyrophosphate enzyme-like gene with aTPP binding region.

Table S1. Primers used in this study.

© 2021 The Authors. *Microbial Biotechnology* published by Society for Applied Microbiology and John Wiley & Sons Ltd.