INTRODUCTION

Frontotemporal dementia (FTD) is a heterogeneous group of neurodegenerative diseases with an onset usually before the age of 65 years even if it can appear also in older ages.1

On cognitive tests, patients with FTD show deficits in executive functions, social cognition and language, whereas the initial performances in memory and visuoconstruction tasks usually are preserved.1 The general approach to detect cognitive decline in dementia is to repeat cognitive testing and observe changes over time. However, exposure to similar tasks could improve performance as the individual gets familiar with both the tasks themselves and the test setting (ie, practice effect or learning effect).2,3

Different attempts to adjust for practice effects in repeated testing have been proposed.4 However, recent research suggests that the phenomenon of practice effects can provide useful information. Patients with neurological and psychiatric conditions show lower practice effects than healthy controls, and individuals with mild cognitive impairment (MCI) that do not show practice effects are more likely to develop Alzheimer disease (AD) within a year than individuals with MCI that have preserved practice effects.5 In addition to the findings of lower practice effects in patients with dementia, Hassenstab et al6 found that preclinical individuals, who later progressed to AD had substantially reduced practice effects in episodic memory compared with cognitively stable individuals. Thus, absence of practice effects might serve as an early marker for cognitive decline.

To our knowledge, practice effects have never been investigated in FTD before. The aim of this study was to examine practice effects in the GENetlic Frontotemporal dementia Initiative (GENFI) cohort. More specifically, we investigated whether there is a difference in practice effects between presymptomatic mutation carriers (PMC) and mutation non-carriers (NC).

MATERIALS AND METHODS

Participants

All participants (317 NC, 327 PMC and 159 affected mutation carriers (AMC)) were recruited through GENFI from January 2012 to March 2018 (online supplemental table 1). Of the 803 participants, 471 had two visits; 249 had three visits; and 108 had four visits. After the fourth visit, the number of participants rapidly decreased and only 12 had six test occasions (online supplemental figure 1).

Statistics

A global cognitive score was calculated including the mean z-scores of all tests in the standardised GENFI neuropsychological battery. Additionally, practice effects for different cognitive domains were explored. A linear mixed-effects model was applied to examine potential practice effects. Further details including neuropsychological tests, composite score calculation and model selection criteria are described in the online supplemental materials.

RESULTS

Practice effects

An increase in mean global cognitive test scores was seen in NC over the first five visits (online supplemental figure 2). When investigating different cognitive domains, practice effects were found across visits 1–3 in all domains except for visuoconstruction (online supplemental table 2). The largest practice effect was observed in memory and social cognition. After the third visit, there was a plateau, and the practice effects between visits 3 and 4 as well as visits 4 and 5 were not statistically significant. In contrast, a progressive decline in the mean global score was identified longitudinally in AMC, as could be expected (online supplemental figure 2). PMC carrying a C9orf72 expansion and with less than 5 years to expected symptom onset (PMC-C9 in proximity to onset) showed no practice effect on their global test score and had the same mean performance at all three visits (figure 1A and online supplemental table 3). Furthermore, PMC-C9 with more than 5 years to expected onset had a lower practice effect between visits 1 and 2 than NC; however, the total practice effect (visits 1–3) was not significantly different from NC.

Similar to PMC-C9, there was a lower practice effect across visits 1–3 in PMC with a progranulin (GRN) mutation in proximity to onset compared with NC. However, PMC-GRN in proximity to onset appear to initially have a practice effect but subsequently do not improve their performance at the third visit (figure 1B).

PMC with a MAPT mutation (PMC-MAPT) had a similar trajectory in mean cognitive test score across visits 1–3 as NC (figure 1C).

DISCUSSION

In this study, we explored practice effects due to repeated cognitive assessments in...
a large cohort of individuals with genetic presumptomatic or symptomatic FTD as well as non-mutation carrier family members. Practice effects have been suggested to provide useful information of the progression of cognitive decline but have never been studied in the context of FTD before. Compared with their baseline test scores, NC improved in global cognition at each visit (visits 2 and 3). Presymptomatic individuals carrying the C9orf72 expansion or a GRN mutation had significantly lower practice effects than NC, and this difference was most apparent in PMC-C9 within 5 years of expected symptom onset. However, it is not possible to know if the stable performance over time in PMC in proximity to onset is due to lower practice effects per se or an actual cognitive decline that is masked by practice effects. The question of genuine practice effects applies also to AMC, who showed a progressive decline in global cognitive test scores at each visit. The scores measured after repeated testing in AMC might include a ‘hidden’ practice effect, and therefore the true cognitive dysfunction would in fact be greater than what was captured in the test scores. Cognitive functions in FTD are expected to decline over the test interval used in this study (mean 1.3 years). Consequently, a potential absence of practice effects in clinical FTD, as reported in AD, cannot be evaluated with the current setup but could be addressed if the retest is performed within days or weeks of the first assessment. Besides the PMC in proximity to onset, also PMC-C9 with more than 5 years to expected symptom onset had lower practice effects than NC which could not be explained by early conversion into a symptomatic stage. Progression of brain atrophy in C9orf72 expansion carriers can be slow, and some patients have been described with a remarkably long disease duration.1 Pathological changes in the brain of C9orf72 expansion carriers are present already in early adulthood, and the potential neurodevelopmental effects could lead to a long prodromal phase in PMC-C9. Previous findings show that cognitive performance in PMC is not different from NC until very close to the disease onset,1 which is in line with the results of the current study. Nevertheless, an inability to use acquired skills from previous tests might be a marker for very early disease development in PMC-C9. However, the diagnostic potential of practice effects and whether they can be used for differentiating PMC-C9 from NC are yet to be explored. As the field of FTD research is greatly evolving and treatment opportunities are emerging, knowledge about different stages of the disease is highly required. As we are preparing for clinical trials, several initiatives have been searching for both fluid biomarkers as surrogate endpoints as well as clinical and neuropsychological tests used to evaluate a future treatment response. Practice effects can have implications for the interpretation of longitudinal changes in cognitive performance as it could impact estimations of treatment effects after an intervention, particularly early in the disease course. Furthermore, one could speculate that identifying individuals with lower-than-expected practice effects would be a cost-effective approach for inclusion into clinical trials.12 The presence of practice effects should thus be considered in future clinical trials especially if neuropsychological measures are included as end points.

Linn Oijerstedt,1,12 Christine Andersson,1,14 Vesna Jelic,1 John Cornelis van Swieten5,9 Lize C Jiskoot3,13 Harro Seelaar7, 1 Barbara Borroni3,6 Raquel Sanchez-Valle,3 Fermin Moreo,5,9 Roberta Ghioldi15,16 Maria Carmela Tartaglia,1,17 Elizabeth Finger18,5 Rik Vandenberghe,15,20 Alexandre de Mendonca,21 Fabrizio Tagliavini22,23 Isabel Santana,23,24 Simon Ducharme19,25,26 Christopher Rutledge27,28 Alexander Gerhard29,30,31 Katherine Jenkins,29,32 Adam Danek33,34 Markus Otto35 Giovanni Frisoni36,37 Roberta Ghioldi15,38 Sandro Sorbi15,38,39 Jonathan Daniel Rohrer15,38,39 Caroline Graff1,12 Genetic Frontotemporal Dementia Initiative (GENFI)1 Department of Neurobiology, Care Sciences and Society, Neurogeriatrics, Karolinska Institute, Stockholm, Sweden2 Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Stockholm, Sweden3 Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden4 Department of Medical Psychology, Karolinska University Hospital, Stockholm, Sweden5 Neurology, Erasmus MC, Rotterdam, Netherlands6 Centre for Ageing Brain and Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy7 Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic de Barcelona, Barcelona, Spain8 Cognitive Disorders Unit, Department of Neurology, Donostia, Donostia San Sebastian, Spain9 Neuroscience Area, Biodonostia Health Research Institute, Donostia San Sebastian, Spain10 Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, Faculté de Médecine, CHU de Québec-Université Laval, Montreal, Quebec, Canada11 Department of Neurodegenerative Diseases, University of Tübingen, Eberhard Karls University Tübingen Hertie Institute for Clinical Brain Research, Tübingen, Germany
12 German Centre for Neurodegenerative Diseases, Tübingen, Germany13 Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milano, Italy14 Centro Dino Ferrari, University of Milan, Milano, Italy15 Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK16 Sunnybrook Research Institute, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada17 Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario, Canada18 Clinical Neurological Sciences, University of Western Ontario, London, Ontario, Canada19 Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium20 Neurology Service, KU Leuven University Hospitals Leuven, Leuven, Belgium21 Faculty of Medicine, University of Lisbon, Lisboa, Portugal22 Fondazione IRCCS, Istituto Nazionale Neurologico Carlo Besta, Milano, Italy23 Neurology Service, Faculty of Medicine, Hospital and University Centre of Coimbra, Coimbra, Portugal24 Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal25 Department of Psychiatry, McGill University Health Centre, Montreal, Quebec, Canada26 McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada27 Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, UK28 Brain Sciences, Imperial College London, London, UK29 Division of Neuroscience and Experimental Psychology, The University of Manchester, Manchester, UK30 Geiatric Medicine and Nuclear Medicine, University of Duisburg-Essen, Duisburg, Germany31 Neurologische Klinik, Ludwig Maximilians University Munich, Munich, Germany32 German Centre for Neurodegenerative Diseases, Munich, Germany33 Neurology, University of Ulm, Ulm, Germany34 IRCCS Centro San Giovanni di Dio Fornelli, Brescia, Italy35 Molecular Markers Lab, IRCCS Centro San Giovanni di Dio Fornelli, Brescia, Italy36 Neurofarba, University of Florence, Firenze, Italy37 IRCCS Firenze, Fondazione Don Carlo Gnocchi Onlus, Firenze, Italy38 Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK39 Correspondence to Dr Linn Oijerstedt, Department of Neurobiology, Care Sciences and Society, Neurogeriatrics, Karolinska Institute, Stockholm, Sweden; linn.oijerstedt@ki.se40 Correction notice: This article has been corrected since it was first published online. The ‘Results’ heading has been added in the text.41 Twitter Harro Seelaar @HarroSeelaar and Simon Ducharme @Sdsucharme6642 Acknowledgements: We thank all the participants and their families for contributing to the study, and also the Genetic Frontotemporal Dementia Initiative research coordinators, especially Catharina Roman and Nathalie Asperén, at the Stockholm site, who helped with arranging the visits.43 Collaborators: Genetic Frontotemporal Dementia Initiative (GENFI): Sónia Afonso (Instituto Ciências Nucleares Aplicadas a Saúde, Universidade de Coimbra, Coimbra, Portugal), Maria Rosario Almeida (Faculty of Medicine, University of Coimbra, Coimbra, Portugal), Sarah Andel-Straub (Department of Neurology, University of Ulm, Ulm, Germany), Anna Antonelli (Alzheimer’s disease and other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, Barcelona, Spain), Silvana Archetti (Biotechnology Laboratory,
open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

© Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

Additional supplemental material is published online only. To view, please visit the journal online (http://dx.doi.org/10.1136/jnnp-2021-327005).

To cite Öijerstedt I, Andersson C, Jelic V, et al. J Neurol Neurosurg Psychiatry 2022;93:336–339.

Received 1 May 2021
Accepted 25 July 2021
Published Online First 18 August 2021
J Neurol Neurosurg Psychiatry 2022;93:336–339.
doi:10.1136/jnnp-2021-327005

ORCID iDs
Linn Öijerstedt http://orcid.org/0000-0003-0635-6377
John Cornelis van Swieten http://orcid.org/0000-0001-6278-6844
Lize C Jiskoot http://orcid.org/0000-0002-1120-1858
Harro Seelaar http://orcid.org/0000-0003-1989-7527
Barbara Borroni http://orcid.org/0000-0001-9340-9814
Daniela Galimberti http://orcid.org/0000-0002-9284-5953
James Benedict Rowe http://orcid.org/0000-0001-7216-8679
Elizabeth Finger http://orcid.org/0000-0003-4461-7427
Simon Ducharme http://orcid.org/0000-0002-7309-1113
Alexander Gerhard http://orcid.org/0000-0002-8071-6062
Adam Danek http://orcid.org/0000-0001-8857-5383
Markus Otto http://orcid.org/0000-0002-6647-5944
Sandro Sorbi http://orcid.org/0000-0002-0380-6670
Jonathan Daniel Rohrer http://orcid.org/0000-0002-6155-8417

REFERENCES
1. Ghetti B, Buratti E, Boeve B. Frontotemporal dementias. 1st ed. Springer International Publishing, 2021: 320.
2. Calamia M, Markon K, Tranell D. Scoring higher the second time around: meta-analyses of practice effects in preclinical Alzheimer’s disease. Neurology 2012;79:1257–60.
3. Jutten RJ, Grandiot O, Foldí NS, et al. Lower practice effects as a marker of cognitive performance and dementia risk: a literature review. Alzheimers Dement 2020;12:e12055.
4. Dufk K. Current topics in science and practice evidence-based indicators of neuropsychological change in the individual patient: relevant concepts and methods. Arch Clin Neuropsychol 2012.