RANKS OF TENSORS AND A GENERALIZATION OF SECANT VARIETIES

JAROSŁAW BUCZYŃSKI AND J.M. LANDSBERG

Abstract. We investigate differences between X-rank and X-border rank, focusing on the cases of tensors and partially symmetric tensors. As an aid to our study, and as an object of interest in its own right, we define notions of X-rank and border rank for a linear subspace. Results include determining and bounding the maximum X-rank of points in several cases of interest.

1. Introduction

A central problem in many areas (signal processing, algebraic statistics, complexity theory etc., see e.g., [4, 8, 23, 18]) is to understand the ranks and border ranks of 3-way tensors. Let A, B, C be complex vector spaces of dimensions a, b, c, and let $p \in A \otimes B \otimes C$. One would like to express p as a sum of decomposable tensors, just as one diagonalizes matrices in order to study them better. A first question is to determine how many decomposable tensors one needs. This question has been answered for generic p and most (a, b, c), see [1] for the state of the art. The next question is what is the maximum number of decomposable tensors needed for an arbitrary p, and this question is wide open. One would also like to have normal forms when possible, and to have tests to see if p can be written as a sum of say r decomposable elements, just as a matrix is the sum of r rank one matrices if all its $(r+1) \times (r+1)$ minors vanish. Strassen [24] had the idea to reduce this problem to the study of linear subspaces of spaces of endomorphisms, by considering $p \in A \otimes B \otimes C$ as a linear map $A^* \to B \otimes C$ and studying the image. Strassen’s famous equations for $\sigma_3(\text{Seg}(P^2 \times P^n \times P^n))$ are exactly the expression that, after fixing an identification $C \simeq B^*$ so the image may be thought of as a space of endomorphisms, is that the endomorphisms commute (see [4, 21] for discussions).

In this paper we exploit Strassen’s perspective further and generalize it. We determine the possible ranks of 3-way tensors having a given border rank in several cases. In a different direction, we generalize the perspective by studying X-ranks and border ranks of points on varieties of the form $X = \text{Seg}(P^A \times Y) \subset P(A \otimes W)$, where $Y \subset P^W$ is a projective variety, via a generalized notion of rank and border rank for linear subspaces of W. The special cases where Y is a Veronese variety or Grassmannian arise in applications (see e.g., [25, 7]).

Comparing rank and border rank has been a topic of recent interest, see for example [8, 7, 6, 22, 13, 12].

1.1. Definitions. Let A_1, \ldots, A_k be complex vector spaces and let $\text{Seg}(P A_1 \times \cdots \times P A_k) \subset P(A_1 \otimes \cdots \otimes A_k)$ denote the Segre variety of decomposable tensors in $A_1 \otimes \cdots \otimes A_k$. Given a tensor $p \in A_1 \otimes \cdots \otimes A_k$, define the rank (resp. border rank) $R_{\text{Seg}(P A_1 \times \cdots \times P A_k)}(p)$ (resp. $R_{\text{Seg}(P A_1 \times \cdots \times P A_k)}(\{p\})$) of p to be the smallest r such that there exist

$$[a_1^1 \otimes \cdots \otimes a_k^1], \ldots, [a_1^r \otimes \cdots \otimes a_k^r] \in \text{Seg}(P A_1 \times \cdots \times P A_k)$$
with \(a_j^r \in A_j \) such that \(p = a_1^1 \otimes \cdots \otimes a_k^1 + \cdots + a_1^n \otimes \cdots \otimes a_k^n \) (resp. that there exist curves \(a_j^r(t) \subseteq A_j \) such that \([p] = \lim_{t \to 0} [a_1^r(t) \otimes \cdots \otimes a_k^r(t)] \)). Sometimes this is called the tensor (border) rank. These definitions agree with the definitions in the tensor literature.

More generally, for a projective variety \(X \subseteq \mathbb{P}V \), the \(X \)-rank of \([p] \in \mathbb{P}V \), \(R_X([p]) \), is defined to be the smallest \(r \) such that there exist \(x_1, \ldots, x_r \in X \) such that \(p \) is in the span of \(x_1, \ldots, x_r \) and the \(X \)-border rank \(\overline{R}_X([p]) \) is defined similarly.

We generalize the notion of the \(X \)-rank and border rank of a point to a linear subspace:

Let \(V = \mathbb{C}^n \), let \(\mathbb{P}V \) denote the associated projective space and let \(G(k, V) \) denote the Grassmannian of \(k \)-planes through the origin in \(V \) (equivalently, the set of \(\mathbb{P}^{k-1} \)'s in \(\mathbb{P}V \)). For a subset \(Z \subseteq \mathbb{P}V \), let \(\langle Z \rangle \subseteq V \) denote its linear span.

Definition 1.1. For a variety \(X \subseteq \mathbb{P}V \), and \(E \in G(k, V) \), define \(R_X(E) \), the \(X \)-rank of \(E \) to be the smallest \(r \) such that there exists \(x_1, \ldots, x_r \in X \) and \(E \subseteq \langle x_1, \ldots, x_r \rangle \). Define \(\sigma_{r,k}^0(X) \subseteq G(k, W) \) to be the set of \(k \)-planes of \(X \)-rank at most \(r \), and let \(\sigma_{r,k}(X) \subseteq G(k, W) \) denote its Zariski closure. When \(k = 1 \) we write \(\sigma_{r,1}(X) = \sigma_r(X) \subseteq \mathbb{P}V \) for the \(r \)-th secant variety of \(X \). Our notation is such that \(\sigma_1(X) = X \).

1.2. Overview. In §2 we revisit two standard results on ranks of tensors to generalize and strengthen them (Theorems 2.1 and 2.4). In §3 we establish basic properties about the varieties \(\sigma_{r,k}(X) \) and \(X \)-ranks of linear spaces. We briefly mention in §4 a few cases where ranks and border ranks of tensors agree. In §5 we revisit work of Ja’Ja’ [12] on ranks of tensors in \(\mathbb{C}^2 \otimes \mathbb{C}^b \otimes \mathbb{C}^c \). When \(b \leq 3 \) we describe normal forms for such tensors, explicitly determine their ranks, and give geometric interpretations for the points of a given normal form. In §6 we apply earlier results to the case of partially symmetric tensors, illustrating the utility of the definition of the \(X \)-rank of a linear space. We conclude, in §7 by describing normal forms for points in the third secant variety of a Segre variety, and determining or bounding the ranks of such points.

1.3. Acknowledgement. We thank J. Weyman and M. Mohlenkamp for pointing out errors in an earlier version of this article, specifically they respectively pointed out there were orbits missing in the list in §5 and that the rank of \(y + y' + y'' \) in Proposition 7.1 is 5. This paper grew out of questions raised at the 2008 AIM workshop *Geometry and representation theory of tensors for computer science, statistics and other areas*, and the authors thank AIM and the conference participants for inspiration.

2. Generalizations of standard results on ranks of Segre products

Let \(Y \subseteq \mathbb{P}W \) be a variety and let \(X = \text{Seg}(\mathbb{P}A \times Y) \subseteq \mathbb{P}(A \otimes W) \) be the Segre product of \(Y \) with the projective space \(\mathbb{P}A \).

Theorem 2.1. Let \(A' \subseteq A \) be a linear subspace and let \(p \in \mathbb{P}(A' \otimes W) \). Then any expression \(p = [v_1 + \cdots + v_s] \) such that some \([v_j] \notin X \cap \mathbb{P}(A' \otimes W) \) has \(s > R_X(p) \).

For any expression \(p = \lim_{t \to 0} [v_1(t) + \cdots + v_s(t)] \), with \(v_j(t) \in X \) there exist \(w_1(t), \ldots, w_s(t) \), such that \(p = \lim_{t \to 0} [w_1(t) + \cdots + w_s(t)] \).

In particular \(R_{X \cap \mathbb{P}(A' \otimes W)} = R_X(\mathbb{P}(A' \otimes W) \cap \mathbb{P}(A \otimes W)) \).

Theorem 2.1 recovers and strengthens the (the “moreover” statement below) the following standard fact (e.g., [4, Prop. 14.35], [9, Prop. 3.1]):

Corollary 2.2. Let \(n > 2 \). Let \(T \in A_1 \otimes \cdots \otimes A_n \) have rank \(r \). Say \(T \in A'_1 \otimes \cdots \otimes A'_n \), where \(A'_j \subseteq A_j \), with at least one inclusion proper. Then any expression \(T = \sum_{i=1}^n u_1^i \otimes \cdots \otimes u_n^i \) with some \(u_j^i \notin A'_j \) has \(r > r \). In particular \(R_{\text{Seg}(\mathbb{P}A_1 \times \cdots \times \mathbb{P}A_n)}(T) = R_{\text{Seg}(\mathbb{P}A'_1 \times \cdots \times \mathbb{P}A'_n)}(T) \) and \(\overline{R}_{\text{Seg}(\mathbb{P}A_1 \times \cdots \times \mathbb{P}A_n)}(T) = \overline{R}_{\text{Seg}(\mathbb{P}A'_1 \times \cdots \times \mathbb{P}A'_n)}(T) \).
Proof of Theorem 2.1. Choose a complement \(A'' \subset A \) to \(A' \) so that \(A = A' \oplus A'' \).

To prove the assertion regarding rank, write \(p = v_1 + \cdots + v_s \), where \(v_j = a_j \otimes y_j \) with \(y_j \in \hat{Y} \). Write \(a_j = b_j + c_j \) with \(b_j \in A' \) and \(c_j \in A'' \). Since \(p \in A' \otimes W \), we have \(\sum c_j \otimes y_j = 0 \). Let \(\{e_t\} \) be a basis of \(A'' \). We have \(c_j = \xi^t_j e_t \) so \(\sum_j \xi^t_j y_j = 0 \) for all \(t \). Say e.g., \(\xi^1_i \neq 0 \), then we can write \(y_s \) as a linear combination of \(y_1, \ldots, y_{s-1} \) and obtain an expression of rank \(s-1 \).

To prove the border rank assertion, for each \(v_j(t) = a_j(t) \otimes y_j(t) \) write \(a_j(t) = b_j(t) + c_j(t) \) with \(b_j(t) \subset A' \) and \(c_j(t) \subset A'' \). Also write \(p(t) := \sum v_j(t) \), so that \([p] = \lim_{t \to 0} [p(t)] \). Since \([p] \in \mathbb{P}(A' \otimes W) \),

\[
[p] = \lim_{t \to 0} \left(\sum b_j(t) \otimes y_j(t) \right),
\]

hence the claim holds.

The following bound on rank (in the three factor case) appears in [4, Prop. 14.45] as an inequality, where it is said to be classical, and as an equality in [10, Thm 2.4]. It is also used e.g., in [12]:

Proposition 2.3. Let \(\phi \in A_1 \otimes \cdots \otimes A_n \), then \(R(\phi) \) equals the number of points of \(\text{Seg}(\mathbb{P} A_2 \times \cdots \times \mathbb{P} A_n) \) needed to span \(\phi(A_1^*) \subset A_2 \otimes \cdots \otimes A_n \) (and similarly for the permuted statements).

Here is a generalization and strengthening (the border rank assertion) of Proposition 2.3:

Theorem 2.4. Let \(Y \subset \mathbb{P} W \) and let \(X := \text{Seg}(\mathbb{P} A \times Y) \). Given \(p \in A \otimes W \), \(R_X([p]) = R_Y(p(A^*)) \) and \(\underline{R}_X([p]) = \underline{R}_Y(p(A^*)) \), where on the right hand sides of the equations we have interpreted \(p \) as a linear map: \(p : A^* \to W \).

Proof. We prove the border rank statement, the rank statement is the special case where each curve is constant.

To see \(\underline{R}_X([p]) \leq \underline{R}_Y(p(A^*)) \), assume \(\underline{R}_X([p]) = r \) and write

\[
p(t) = a_1(t) \otimes y_1(t) + \cdots + a_r(t) \otimes y_r(t)
\]

where \(a_i(t) \in A \) and \(y_i(t) \in \hat{Y} \) and

\[
[p] = \lim_{t \to 0} [p(t)].
\]

If \(A' \subset A \) is such that \([p] \in \mathbb{P}(A' \otimes W)\), then by Theorem 2.1 we may assume

\[
p(t) \in A' \otimes W \text{ and } a_i(t) \in A'.
\]

Replacing \(A \) by a smaller vector space if necessary, we may assume \(p(t) : A^* \to W \) is injective for all values of \(t \) sufficiently close to 0. Thus the image of \(p(t) : A^* \to W \) determines a curve in in the appropriate Grassmannian and the limiting point is \(p(A^*) \). Since \([p] = \lim_{t \to 0} [p(t)]\) as a linear map defined up to scale, \(p(A^*) \subset \lim_{t \to 0} (y_1(t), \ldots, y_r(t)) \), where the limit is taken in \(G(\dim A, W) \). Thus \(R_Y(p(t)(A^*)) \leq r \) and \(\underline{R}_X([p]) \leq r \).

To see \(\underline{R}_X([p]) \geq \underline{R}_Y(p(A^*)) \), assume \(\underline{R}_Y(p(A^*)) = r \) and that there exist curves \(y_j(t) \subset \hat{Y} \), such that \(p(A^*) \subset \lim_{t \to 0} (y_1(t), \ldots, y_r(t)) \), where again we may assume the dimension of the span of the \(y_s(t) \) is constant for \(t \neq 0 \) and we are taking the limit in the appropriate Grassmannian. Let \(a^1, \ldots, a^n \) be a basis of \(A^* \). Write \(p(a^j) = \lim_{t \to 0} \sum_s c^j_s(t)y_s(t) \) for some functions \(c^j_s(t) \), so \(p = \sum_j a_j \otimes \lim_{t \to 0} \sum_s c^j_s(t)y_s(t) \). Consider the curve

\[
p(t) = \sum_{j,s} a_j \otimes c^j_s(t)y_s(t)
\]

\[
= \sum_s \left[\sum_j c^j_s(t)a_j \right] \otimes y_s(t).
\]

Thus \(R_X([p(t)]) \leq r \) for \(t \neq 0 \) and since \(\lim_{t \to 0} [p(t)] = [p] \), the claim \(\underline{R}_X([p]) \leq r \) follows.
Example 2.5. Let $Y = v_3(\mathbb{P}^1)$ and $X = \text{Seg}(\mathbb{P}A \times v_3(\mathbb{P}^1))$. Let $p = a_1 \otimes x^3 + a_2 \otimes x^2y$. Then $R_X(p) = R_Y(p(A^*)) = 3$ and $R_X(p) = R_Y(p(A^*)) = 2$. To see $R_Y(p(A^*)) = 2$, note that
\[
p(A^*) = \lim_{t \to 0} (x^3, (x + ty)^3)).
\]
To see $R_X(p) = 2$, consider the curve
\[
p(t) = \frac{1}{t}[(a_2 + ta_1) \otimes (x + ty)^3 - a_2 \otimes x^3].
\]

Corollary 2.6. The maximum rank of an element of $A_1 \otimes \cdots \otimes A_n$, where
\[
dim A_1 \leq \cdots \leq \dim A_n,
\]
is at most $\dim A_1 \cdots \dim A_{n-1}$. In particular, the maximum rank of an element of $(\mathbb{C}^n)^\otimes$ is at most m^{n-1}, compared with the maximum border rank, which is usually $\frac{m^n}{(m-1)n+1} \sim \frac{m^{n-1}}{n}$.

Note that this upper bound is much smaller than the bound in [22, Prop. 5.1].

3. **General facts about rank and border rank of linear spaces**

The following facts are immediate consequences of the definitions of $R_X(E), R_X(E)$:

Proposition 3.1. Let $X \subset \mathbb{P}V = \mathbb{P}^N$ be a variety of dimension n not contained in a hyperplane, let $E \in G(k, V)$. Then
\[
(i) \quad R_X(E) \geq R_X(E) \geq k \text{ and } \sigma_{r_1,k}(X) \subset \sigma_{r_2,k}(X) \text{ whenever } r_1 \leq r_2.
\]
\[
(ii) \quad \text{If } X \text{ is irreducible and } E \in \sigma_{r,k}(X) \text{ is a general point, then } R_X(E) = R_X(E).
\]
\[
(iii) \quad R_X(E) = k \text{ iff } (X \cap \mathbb{P}E) = \mathbb{P}E. \text{ In particular, if codim } X \leq k \text{ and } E \text{ intersects } X \text{ transversally, then } R_X(E) = k \text{ and thus } \sigma_{r,k}(X) = G(k, N+1).
\]
\[
(iv) \quad \sigma_{r,N-n}(X) = G(r, N + 1).
\]
\[
(v) \quad \text{For } r \leq N + 1, R_X(E) \leq r \text{ if and only if } \exists F \in \sigma_{r,p}(X) \text{ such that } E \subset F \text{ and similarly } R_X(E) \leq r \text{ if and only if } \exists F \in \sigma_{r,p}(X) \text{ such that } E \subset F.
\]

Proposition 3.2. Let $X \subset \mathbb{P}V$ be a variety of dimension n. If X is not contained in a hyperplane, then $\dim \sigma_{r,r}(X) = \min\{rn, \dim G(r, V)\}$. The expected dimension of $\sigma_{r,s}(X)$ is $\min\{rn + s(r - s), \dim G(s, V)\}$.

Proof. If $n + r > \dim V$, then a general $E \in G(r, V)$ is spanned by points of X and thus
\[
\sigma_{r,r}(X) = G(r, V).
\]
Otherwise, if $n + r \leq \dim V$, then a general collection of $r + n$ points $x_1, \ldots, x_r, y_1, \ldots, y_n$ on X are linearly independent. Let $y_i(t)$ now be curves in \hat{X} such that all the y_i to converge to x_1 in such a way that, the limit of the span of x_1, y_1, \ldots, y_n is the affine tangent space of X at $[x_1]$. We see that if our points are chosen generally $\hat{T}[x_1]X$ will intersect $\langle x_2, \ldots, x_r \rangle$ only at the origin.

Thus we can choose r points $x_1, \ldots, x_r \in X$ such that the points are in general linear position and also
\[
\langle x_1, \ldots, x_i-1, x_{i+1}, \ldots, x_r \rangle \cap \hat{T}[x_1]X = 0
\]
for any i.

Consider $[x_1 \wedge \cdots \wedge x_r] \in \sigma_{r,r}(X)$. Take a curve $x_1(t) \wedge \cdots \wedge x_r(t)$ with $x_j(0) = x_j$, so $x_j(0)^t \in \hat{T}[x_1]X$. Differentiate at $t = 0$ to obtain:
\[
\hat{T}[x_1 \wedge \cdots \wedge x_j] \sigma_{r,r}(X) =
\]
\[
(\hat{T}[x_j]X) \wedge x_2 \wedge \cdots \wedge x_r + x_1 \wedge (\hat{T}[x_2]X) \wedge x_3 \wedge \cdots \wedge x_r + \cdots + x_1 \wedge \cdots \wedge x_{r-1} \wedge (\hat{T}[x_1]X).
\]
Mod-ing out by $x_1 \wedge \cdots \wedge x_r$ we obtain a direct sum:
\[
(\tilde{T}_{[x]}X) \wedge x_2 \wedge \cdots \wedge x_r \oplus x_1 \wedge (\tilde{T}_{[x]}X) \wedge x_3 \wedge \cdots \wedge x_r \oplus \cdots \oplus x_1 \wedge \cdots \wedge x_r \wedge (\tilde{T}_{[x]}X) \mod x_1 \wedge \cdots \wedge x_r.
\]

This holds because say e.g., $v \in x_1 \wedge \cdots \wedge x_r \wedge (\tilde{T}_{[x]}X)$ were in the span of the other summands. Each of the other summands is of the form $(\text{stuf} f) \wedge x_r$, so v must be of this form as well, but $x_r \notin (x_1, \ldots, x_{r-1})$. Thus, if X is not contained in a linear space, $\dim \sigma_{\tau, r}(X) = r n$.

We may realize $\sigma_{\tau, r}(X)$ as the collapsing of a Grassmann bundle over $\sigma_{\tau, r}(X)$ in the sense of [26]. Namely let $S \to G(r, V)$ denote the tautological rank r subspace bundle and let $G(s, S) \to G(r, V)$ the corresponding Grassmann bundle. There is a natural map from the total space of $G(s, S)$ onto $G(s, V)$ and by Proposition 3.1(v), $\sigma_{\tau, r}(X)$ is the image of $G(s, S)|_{\sigma_{\tau, r}(X)}$. Thus if this map is generically finite to one, $\dim \sigma_{\tau, r}(X) = \dim \sigma_{\tau, r}(X) + s(r - s)$.

Corollary 3.3. Let A, W be two vector spaces with $\dim A \leq \dim W$. Consider the rational map $\pi : \mathbb{P}(A \otimes W) \dasharrow G(\dim A, W)$, with $\pi(p) := p(A^*)$ whenever $p(A^*)$ has maximal dimension. Then:

(i) π is the quotient of $\mathbb{P}(A \otimes W)$ by $\text{PGL}(A)$.

(ii) π is $\text{PGL}(W)$ equivariant.

(iii) for $r \geq \dim A$ and any subvariety $Y \subset \mathbb{P}W$,

$$\sigma_r(\mathbb{P}A \times Y) = \pi^{-1}(\sigma_{\tau, \dim A(Y)}).$$

Corollary 3.4. If $r \leq \dim A \leq \dim W$ and $Y \subset \mathbb{P}W$ is not contained in any hyperplane, then $\sigma_r(\text{Seg}(\mathbb{P}A \times Y))$ is of the expected dimension $r(\dim A + \dim Y) - 1$.

Proof. If $r = \dim A$, then by Corollary 3.3(i) and (iii),

$$\dim (\sigma_r(\mathbb{P}A \times Y)) = \dim (\sigma_{\tau, r}(Y)) + \dim \text{PGL}(A).$$

By Proposition 3.2:

$$\dim (\sigma_r(\mathbb{P}A \times Y)) = r \dim Y + r^2 - 1 = r(r + \dim Y) - 1$$

as claimed.

If $r < \dim A$, then $\sigma_r(\mathbb{P}A \times Y)$ is swept out by smaller secant varieties:

$$\sigma_r(\text{Seg}(\mathbb{P}A \times Y)) = \bigcup_{A' \subset A, \dim A' = r} \sigma_r(\text{Seg}(\mathbb{P}A' \times Y)).$$

Since Y is nondegenerate and $\dim W > r$, it follows, that for a general point $[p] \in \sigma_r(\text{Seg}(\mathbb{P}A \times Y))$ there is a unique linear subspace $A' \subset A$ of dimension r such that $[p] \in \mathbb{P}(A' \otimes V)$. Thus:

$$\dim (\sigma_r(\text{Seg}(\mathbb{P}A \times Y))) = \dim G(r, A) + \dim (\sigma_r(\mathbb{P}A' \times Y))$$

$$= r(\dim A - r) + r(r + \dim Y) - 1$$

$$= r(\dim A + \dim Y) - 1.$$

\[\] In [2], scheme-theoretic methods are used for studying rank. For some varieties X, every point on $\sigma_r(X)$ is contained in the linear span of a degree r subscheme of X (see [2, Prop. 2.8]). For $X \subset \mathbb{P}V$ consider the irreducible component H_r of the Hilbert scheme $\text{Hilb}(X)$ containing schemes, which are r distinct points with reduced structure. Consider the rational map

$$\varphi : H_r \dasharrow G(r, V),$$

which sends a subscheme $Z \subset X$ to its scheme-theoretic linear span.
Corollary 5.1. Assume the maximal possible rank of a tensor in F where F is an n-dimensional field. The normal form is (see, e.g., [11, Chap. XII]):

$$J. Ja’Ja’s classification of rank, but we only present the results over r such that E is contained in the scheme-theoretic span of Z.

Thus the methods used in [2] may be used to study $Seg(\mathbb{P}A \times v_d(\mathbb{P}^n))$ and its secant varieties.

4. Situations where ranks and border ranks of points coincide

Proposition 4.1. Let $X \subset \mathbb{P}V$ be one of $v_2(\mathbb{P}^n)$ (the rank one symmetric $(n + 1) \times (n + 1)$ matrices), $G(2,n)$ (the rank two skew-symmetric $n \times n$ matrices), $Seg(\mathbb{P}a \times \mathbb{P}b)$, the Cayley plane $\mathbb{O}\mathbb{P}^d$, or the 10-dimensional spinor variety S_5 (i.e., X is a sub-cominuscule variety, see [19]). Then for all $p \in \mathbb{P}V$, $R_X(p) = \underline{R}_X(p)$.

Proof. In all these cases the only orbits are the successive secant varieties, see, e.g., [20].

A consequence of [5, Thm 2.4.2], which states that for r in the range of the hypotheses in Proposition 4.2, $\sigma_r(Seg(\mathbb{P}A_1 \times \cdots \times \mathbb{P}A_n)) = \sigma_r(Seg(\mathbb{P}(A_1 \otimes \cdots \otimes \mathbb{P}A_{n-1}) \times \mathbb{P}A_n))$, and Proposition 4.1 is:

Proposition 4.2. Consider $Seg(\mathbb{P}A_1 \times \cdots \times \mathbb{P}A_n)$ where $\dim A_s = a_s$, $1 \leq s \leq n$. If $a_n > r \geq \prod_{i=1}^{n-1} a_i - \sum_{i=1}^{n-1} a_i - n + 1$, then $\underline{R}_X(p) = r$ implies $R_X(p) = r$.

5. Ranks of points in $\mathbb{C}^2 \otimes b \otimes \mathbb{C}^c$

5.1. Kronecker’s normal form. Kronecker determined a normal form for pencils of matrices, i.e., two dimensional linear subspaces of $B \otimes C$ up to the action of $GL(B) \times GL(C)$. It is convenient to use matrix notation so choose bases of B, C and write the family as $sX + tY$, where $X, Y \in B \otimes C$ and $s, t \in \mathbb{C}$. (Kronecker’s classification works over arbitrary fields, as does J. Ja’Ja’s classification of rank, but we only present the results over \mathbb{C}.) The result is as follows (see, e.g., [11, Chap. XII]):

Define the $\epsilon \times (\epsilon + 1)$ matrix

$$L_\epsilon = L_\epsilon(s,t) = \begin{pmatrix} s & t \\ \vdots & \ddots & \ddots \\ & & & \ddots & \ddots \\ & & & & s & t \end{pmatrix}.$$

The normal form is

$$sX + tY = \begin{pmatrix} \begin{pmatrix} L_{\epsilon_1} \\ \vdots \end{pmatrix} & L_{\epsilon_2} & \cdots & L_{\epsilon_q} \\ L_{\eta_1}^T \end{pmatrix} \begin{pmatrix} \vdots \\ \vdots \end{pmatrix} \begin{pmatrix} \cdots \\ L_{\eta_p}^T \end{pmatrix} \begin{pmatrix} \vdots \\ s \text{Id}_f + tF \end{pmatrix}$$

where F is an $f \times f$ matrix in Jordan normal form (one can also use rational canonical form) and T denotes the transpose.

Corollary 5.1. Assume the maximal possible rank of a tensor in $\mathbb{C}^2 \otimes b \otimes \mathbb{C}^c$ is r. Then the maximal possible rank of a tensor in $\mathbb{C}^2 \otimes b \otimes \mathbb{C}^{c+1}$ is

- either r or $r + 1$ if $c + 1 \geq b$;
- either r or $r + 1$ or $r + 2$ if $c + 1 < b$.

Proof. Let \(sX + tY \) be a tensor in \(\mathbb{C}^2 \otimes \mathbb{C}^b \otimes \mathbb{C}^{c+1} \) in its Kronecker normal form. If the \(f \times f \) Jordan block \(F \) is nontrivial, then we can extract a column of rank 1 (the first column of \(F \)) and thus write \(sX + tY \) as a sum of this column and a tensor in \(\mathbb{C}^2 \otimes \mathbb{C}^b \otimes \mathbb{C}^c \). Similarly, if \(sX + tY \) has a nontrivial block of the form \(L_{i_j} \), then the first (or the last) column of \(L_{i_j} \) has rank 1 as well and we can extract it. But assuming \(c + 1 \geq b \), one cannot have only blocks of the form \(L^T_{i_j} \). Thus one of the situations above must occur.

In general, we can extract any column, which has rank at most 2.

Say \(F \) has Jordan blocks, \(F_{i,j} \) where \(\lambda_i \) is the \(i \)-th eigenvalue. If there is no block of the form \(L_{i_j} \) or \(L^T_{i_j} \), then we may assume at least one of the \(\lambda_i \) is zero by changing basis in \(\mathbb{C}^2 \). If the blocks \(F_{i,j} \) are such that there are no 1’s above the diagonal, then we can normalize one of the \(\lambda_i = 1 \) by rescaling \(t \).

For example, say \(f = 3 \), the possible normal forms are

\[
\begin{pmatrix}
\lambda & \mu \\
\mu & \nu
\end{pmatrix}, \quad \begin{pmatrix}
\lambda & 1 \\
\mu & \lambda
\end{pmatrix}, \quad \begin{pmatrix}
\lambda & 1 & 0 \\
0 & \lambda & \mu
\end{pmatrix}, \quad \begin{pmatrix}
\lambda & 1 & 1 \\
0 & \lambda & \lambda
\end{pmatrix}, \quad \begin{pmatrix}
\lambda & 1 & 1 \\
0 & \lambda & \lambda
\end{pmatrix}
\]

which (again provided there is no block of the form \(L_{i_j} \) or \(L^T_{i_j} \)) can respectively be normalized to

\[
\begin{pmatrix}
0 & 1 & 0 \\
1 & 0 & 0
\end{pmatrix}, \quad \begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 0
\end{pmatrix}, \quad \begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 0
\end{pmatrix}, \quad \begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 0
\end{pmatrix}
\]

Note that when \(X \) is \(f \times f \), the fourth case is not a pencil. The first case requires explanation — we claim that all pencils of the form:

\[
s \begin{pmatrix}
1 & 1 \\
1 & 1
\end{pmatrix} + t \begin{pmatrix}
\lambda & \mu \\
\mu & \nu
\end{pmatrix}
\]

where \(\lambda, \mu, \nu \) are distinct, are equivalent. In particular, any such is equivalent to one where \(\lambda = 0, \mu = 1, \nu = -1 \). To prove the claim, first get rid of \(\lambda \) by replacing \(s \) with \(s_1 := s + \lambda t \):

\[
s_1 \begin{pmatrix}
1 & 1 \\
1 & 1
\end{pmatrix} + t \begin{pmatrix}
0 & \mu_1 \\
\mu_1 & \nu_1
\end{pmatrix}.
\]

Note that 0, \(\mu_1 \) and \(\nu_1 \) are still distinct. Next we replace \(t \) with \(t_2 := s_1 + t \mu_1 \):

\[
s_1 \begin{pmatrix}
1 & 0 \\
0 & \mu_2
\end{pmatrix} + t_2 \begin{pmatrix}
0 & 1 \\
\nu_2 & \nu_2
\end{pmatrix}.
\]

where \(\mu_2 = 1 - \frac{\nu_1}{\mu_1} \) and \(\nu_2 = -\frac{\nu_1}{\mu_1} \) and 0, \(\mu_2 \) and \(\nu_2 \) are distinct. Then we transport the constants to the first 2 entries by setting \(s_3 := \frac{1}{\mu_2} s_1 \) and \(t_3 := \frac{1}{\nu_2} t_2 \):

\[
s_3 \begin{pmatrix}
\frac{1}{\mu_2} & 0 \\
0 & 1
\end{pmatrix} + t_3 \begin{pmatrix}
0 & \frac{1}{\nu_2} \\
\frac{1}{\nu_2} & 1
\end{pmatrix}.
\]

It only remains to change basis in \(B \) by sending \(b_1 \) to \(\frac{1}{\mu_2} b_1 \) and \(b_2 \) to \(\frac{1}{\nu_2} b_2 \) to show the pencil is equivalent to:

\[
s_3 \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix} + t_3 \begin{pmatrix}
0 & 1 \\
1 & 1
\end{pmatrix}.
\]
Thus every two such pencils are equivalent.

If F is 4×4 it is no longer possible to normalize away all constants in the case

$$\begin{pmatrix}
\lambda & 1 \\
\lambda & \mu \\
\mu & 1 \\
\mu & \mu
\end{pmatrix}.$$

Essentially because of this, the only spaces of tensors $C^a \otimes C^b \otimes C^c$, $2 \leq a \leq b \leq c$, that admit normal forms, i.e., have a finite number of $GL_a \times GL_b \times GL_c$-orbits, are $C^2 \otimes C^2 \otimes C^c$ and $C^2 \otimes C^3 \otimes C^c$ (see [14, 16]). Moreover, in these cases, any tensor lies in a $C^2 \otimes C^2 \otimes C^4$ in the first case and a $C^2 \otimes C^3 \otimes C^6$ in the second.

Theorem 5.2 (Ja’Ja’). [12] A pencil of the form (5.1) has rank $\sum \epsilon_i + \sum \mu_j + f + q + p + M$ where $0 \leq M \leq \mu$, where μ is the maximum number of nontrivial Jordan chains associated with a given eigenvalue of F. If $\mu > 0$, then $M \geq 1$.

The idea of the proof is as follows: the normalized blocks are treatable by a direct calculation, the only subtle part is to show that one can not have a lower rank for the sum of two blocks than the sum of the ranks of each block. The $f \times f$ pencil $sId + tF$ has rank f iff F can be diagonalized. Most matrices are diagonalizable, so if F is not, a small perturbation of it will be diagonalizable. Ja’Ja’ shows that each Jordan block can be perturbed to be diagonalizable by a rank one matrix. In fact if one selects a rank one matrix at random, with probability one, the perturbed Jordan block will be diagonalizable. Ja’Ja’ gives a convenient such matrix using rational canonical form instead of Jordan canonical form. The inconclusiveness of the result on ranks is because he did not determine if one could perturb by using a higher rank matrix that made more than one chain associated to given eigenvalue diagonalizable at once. This actually can occur, for example, Theorem 5.4 implies the rank of

$$\begin{pmatrix}
s & t \\
0 & s \\
t & 0
\end{pmatrix}$$

is five, but each block has rank three.

Taking into account the various cases Theorem 5.2 implies:

Corollary 5.3.

- The maximum possible rank of a tensor in $C^2 \otimes C^2 \otimes C^c$ is 3 if $c = 2, 3$ and 4 otherwise.
- The maximum possible rank of a tensor in $C^2 \otimes C^3 \otimes C^c$ is 4 if $c = 3$, is c if $c = 4, 5$ and is 6 if $c \geq 6$.
- The maximum possible rank of a tensor in $C^2 \otimes C^5 \otimes C^c$, $C^2 \otimes C^5 \otimes C^5$ or $C^2 \otimes C^4 \otimes C^6$ is 7.

Theorem 5.4. The maximum possible rank of a tensor in $C^2 \otimes C^4 \otimes C^4$ is 5, and in $C^2 \otimes C^6 \otimes C^6$ is 8.

Proof. By Corollary 5.3 the maximal possible rank for a tensor in $C^2 \otimes C^4 \otimes C^3$ (respectively, $C^2 \otimes C^6 \otimes C^5$) is 4 (respectively, 7).

Thus by Corollary 5.1, the maximal possible rank for a tensor in $C^2 \otimes C^4 \otimes C^4$ (respectively, $C^2 \otimes C^6 \otimes C^6$) is at most 5 (respectively, at most 8).
On the other hand, by Theorem 5.2 there are tensors for which the maximum is obtained, for example, respectively for $\mathbb{C}^2 \otimes \mathbb{C}^4 \otimes \mathbb{C}^4$ and $\mathbb{C}^2 \otimes \mathbb{C}^6 \otimes \mathbb{C}^6$ one has:

\[
\begin{pmatrix}
 s & t & 0 & 0 \\
 0 & s & t & 0 \\
 0 & 0 & s & t \\
 0 & 0 & 0 & s
\end{pmatrix}
\quad \text{and} \quad
\begin{pmatrix}
 s & t & 0 & 0 & 0 & 0 \\
 0 & 0 & s & t & 0 & 0 \\
 0 & 0 & 0 & s & 0 & 0 \\
 0 & 0 & 0 & 0 & t & 0 \\
 0 & 0 & 0 & 0 & 0 & s \\
 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}.
\]

In general, Theorem 5.2 says there is no tensor in $\mathbb{C}^2 \otimes \mathbb{C}^b \otimes \mathbb{C}^b$ of rank $\left\lfloor \frac{3b}{2} \right\rfloor + 1$, but guarantees the existence of tensors of rank $\left\lfloor \frac{4b+1}{3} \right\rfloor$.

5.2. Orbits in $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^c$. Here and in what follows $X = \text{Seg}(\mathbb{P}A \times \mathbb{P}B \times \mathbb{P}C)$. If $c = 3$ then $\sigma_3(X) = \mathbb{P}(A \otimes B \otimes C)$. In the table below we list the representatives of all the orbits of action of $GL(A) \times GL(B) \times GL(C)$ on $\mathbb{P}(A \otimes B \otimes C)$.

orbit closure	dimension	Kronecker normal form	R	R'
X	$c + 1$	$a_1 \otimes b_1 \otimes c_1$	1	1
Sub_{221}	$c + 3$	$a_2 \otimes b_1 \otimes c_1 + a_1 \otimes b_2 \otimes c_1$	2	2
Sub_{122}	$2c + 1$	$a_1 \otimes b_1 \otimes c_2 + a_1 \otimes b_2 \otimes c_1$	2	2
Sub_{212}	$2c + 1$	$a_1 \otimes b_1 \otimes c_2 + a_2 \otimes b_1 \otimes c_1$	2	2
$\tau(X)$	$2c + 2$	$a_1 \otimes (b_1 \otimes c_1 + b_2 \otimes c_2) + a_2 \otimes b_1 \otimes c_2$	2	3
$\sigma_2(X) = \text{Sub}_{222}$	$2c + 3$	$a_1 \otimes b_1 \otimes c_1 + a_2 \otimes b_2 \otimes c_2$	2	2
X_s^\vee	$3c + 1$	$a_1 \otimes (b_1 \otimes c_1 + b_2 \otimes c_2) + a_2 \otimes b_2 \otimes c_1$	3	3
$\sigma_3(X)$	$3c + 2$	$a_1 \otimes (b_1 \otimes c_1 + b_2 \otimes c_2) + a_2 \otimes (b_1 \otimes c_2 + b_2 \otimes c_3)$	3	3
$\mathbb{P}(A \otimes B \otimes C)$	$4c - 1$	$a_1 \otimes (b_1 \otimes c_1 + b_2 \otimes c_3) + a_2 \otimes (b_1 \otimes c_2 + b_2 \otimes c_4)$	4	4

The first and third are not pencils of matrices. In terms of matrices, the other cases are:

\[
\begin{pmatrix}
 s & t \\
 t & s
\end{pmatrix}, \quad
\begin{pmatrix}
 s & t \\
 s & t
\end{pmatrix}, \quad
\begin{pmatrix}
 s & t \\
 s & t
\end{pmatrix}, \quad
\begin{pmatrix}
 s & t \\
 s & t
\end{pmatrix}, \quad
\begin{pmatrix}
 s & t \\
 s & t
\end{pmatrix}.
\]

Geometric explanations: $\text{Sub}_{ijk} \subset \mathbb{P}(A \otimes B \otimes C)$ is the set of tensors $[p] \in \mathbb{P}A \otimes B \otimes C$ such that there exists $A' \subset A$, $B' \subset B$, $C' \subset C$ respectively of dimensions i,j,k such that $p \in A' \otimes B' \otimes C'$. In other words, Sub_{ijk} is the projectivization of the image of the vector bundle $\mathcal{S}_{G(i,A)} \otimes \mathcal{S}_{G(j,B)} \otimes \mathcal{S}_{G(k,C)} \to G(i,A) \times G(j,B) \times G(k,C)$ in $A \otimes B \otimes C$, where $\mathcal{S}_{G(k,V)} \to G(k,V)$ is the tautological vector bundle fiber over the point E is the linear space E. $\tau(X)$ is the tangential variety to the Segre variety, $X_s \subset \mathbb{P}(A^* \otimes B^* \otimes C^*)$ is the Segre variety in the dual projective space and $X_s^\vee \subset \mathbb{P}(A \otimes B \otimes C)$ is its dual variety. The point of $\tau(X)$ is tangent to the point $a_1 \otimes b_2 \otimes c_1$, the point of X_s^\vee contains the tangent plane to the $(c - 3)$-parameter family of points $a_2^* \otimes b_1^* (s_2 c_2^* + s_2 c_1^* + s_2 c_3^* + s_2 c_4^* + \cdots + s_c c_e^*)$, where (a_j^*) is the dual basis to (a_j) of A etc.. The dual variety $(X_s)^\vee$ is degenerate (i.e., not a hypersurface) except when $c \leq 3$.

Note $\sigma_3(X) = \sigma_3(\text{Seg}(\mathbb{P}(A \otimes B) \times \mathbb{P}C))$ which causes it to be degenerate with defect three.

All these orbits but the last are inherited from the $c = 3$ case. The last is inherited from the $c = 4$ case.

5.3. $\mathbb{C}^2 \otimes \mathbb{C}^3 \otimes \mathbb{C}^3$. For future use, let $c = 3$. First, we inherit all the orbits from the $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^3$ case, i.e., all the orbit closures above except for the last one. They become subvarieties of Sub_{223}.
with the same normal forms, ranks and border ranks - the new dimensions are as follows:

orbit	dimension	Kronecker normal form
$X = \text{Seg}(\mathbb{P}A \times \mathbb{P}B \times \mathbb{P}C)$	c + 2	$a_1 \otimes (b_1 \otimes c_1 + b_2 \otimes c_2 + b_3 \otimes c_3)$
Sub_{221}	c + 4	$a_1 \otimes (b_1 \otimes c_1 + b_2 \otimes c_2) + a_2 \otimes b_2 \otimes c_1$
Sub_{212}	c + 4	$a_1 \otimes (b_1 \otimes c_1 + b_2 \otimes c_2) + a_2 \otimes b_2 \otimes c_1$
Sub_{122}	2c	$a_1 \otimes (b_1 \otimes c_1 + b_2 \otimes c_2) + a_2 \otimes b_2 \otimes c_1$
$\tau(X)$	2c + 4	$a_1 \otimes (b_1 \otimes c_1 + b_2 \otimes c_2) + a_2 \otimes b_2 \otimes c_1$
$\text{Sub}_{222} = \sigma_2(X)$	2c + 5	$a_1 \otimes (b_1 \otimes c_1 + b_2 \otimes c_2) + a_2 \otimes b_2 \otimes c_1$
$\text{Seg}_* \subset \text{Sub}_{223}$	3c + 4	$a_1 \otimes (b_1 \otimes c_1 + b_2 \otimes c_2) + a_2 \otimes b_2 \otimes c_1$
Sub_{223}	4c + 1	$a_1 \otimes (b_1 \otimes c_1 + b_2 \otimes c_2) + a_2 \otimes b_2 \otimes c_1$

The new orbit closures are as follows:

orbit	dimension	Kronecker normal form
Sub_{133}	3c − 1	$a_1 \otimes (b_1 \otimes c_1 + b_2 \otimes c_2 + b_3 \otimes c_3)$
$\text{Seg}_* \subset \text{Sub}_{232}$	2c + 6	$a_1 \otimes (b_1 \otimes c_1 + b_2 \otimes c_2) + a_2 \otimes b_2 \otimes c_1$
Sub_{232}	2c + 7	$a_1 \otimes (b_1 \otimes c_1 + b_2 \otimes c_2) + a_2 \otimes b_2 \otimes c_1$
$X_* \lor$	3c + 7	$a_1 \otimes (b_1 \otimes c_1 + b_2 \otimes c_2 + b_3 \otimes c_3)$
$\mathbb{P}(A \otimes B \otimes C)$	3c + 8	$a_1 \otimes (b_1 \otimes c_1 + b_2 \otimes c_2 + b_3 \otimes c_3) + a_2 \otimes (b_2 \otimes c_2 + b_3 \otimes c_3)$

The associated $f \times f$ matrices, when 3×3, are given by (5.2). Note that the second and third cases are not really new. The unnamed orbits are various components of the singular locus of $X_* \lor$, see [16] for descriptions.

$\text{Seg}_* \subset \text{Sub}_{223}$ is the subvariety of Sub_{223}, obtained from the sub-fiber bundle of $\mathcal{S}_{G(2,A)} \otimes \mathcal{S}_{G(2,B)} \otimes \mathcal{S}_{G(3,C)}$, whose fiber in $A' \otimes B' \otimes C'$ (where $\dim A' = \dim B' = 2, \dim C' = 3$) is $\mathcal{S}_{\mathbb{P}(A'^* \times H B'^* \times \mathbb{P}C'^*)} \subset A' \otimes B' \otimes C'$.

5.4. $\mathbb{C}^2 \otimes \mathbb{C}^3 \otimes \mathbb{C}^4$. We have all the orbits in $\mathbb{C}^2 \otimes \mathbb{C}^3 \otimes \mathbb{C}^3$, which are all contained in Sub_{233} and thus should be re-labeled as such, the last one becomes Sub_{233}, their dimensions are given in the above charts by setting $c = 4$. The new orbit closures are:

orbit	dimension	normal form
Sub_{221}	4c + 1	$a_1 \otimes (b_1 \otimes c_1 + b_2 \otimes c_2 + b_3 \otimes c_3) + a_2 \otimes (b_1 \otimes c_2 + b_2 \otimes c_4)$
$X_* \lor$	10c − 18	$a_1 \otimes (b_1 \otimes c_1 + b_2 \otimes c_2 + b_3 \otimes c_3) + a_2 \otimes (b_1 \otimes c_2 + b_2 \otimes c_3)$
$\mathbb{P}(A \otimes B \otimes C)$	6c − 1	$a_1 \otimes (b_1 \otimes c_1 + b_2 \otimes c_2 + b_3 \otimes c_3) + a_2 \otimes (b_1 \otimes c_2 + b_2 \otimes c_3 + b_3 \otimes c_4)$

The unlabeled orbit closures are various components of $(X_* \lor)_{\text{sing}}$.

5.5. $\mathbb{C}^2 \otimes \mathbb{C}^3 \otimes \mathbb{C}^4$. We have all the orbits in $\mathbb{C}^2 \otimes \mathbb{C}^3 \otimes \mathbb{C}^4$, which are all contained in Sub_{234} and thus should be re-labeled as such, the last one becomes Sub_{234}, plus:
When $c = 5$, $Sub_{235} = \mathbb{P}(A \otimes B \otimes C)$ and the last normal form does not occur.

6. Application to $X = Seg(\mathbb{P}A \times v_2(\mathbb{P}W)) \subset \mathbb{P}(A \otimes S^2W)$

This case is closely related to the determination of ranks of tensors with symmetric matrix slices, an often-studied case in applications, see, e.g., [25] and the references therein. (If the generalized Comon conjecture (see, e.g., [3]) is true here, this case is the same as the case of tensor rank of partially symmetric tensors.)

This case is easier than that of $Seg(\mathbb{P}A \times \mathbb{P}W \times \mathbb{P}W)$ because a symmetric matrix is always diagonalizable.

Case $a = 2$. Assume without loss of generality that $p(A^*) \not\subset S^2W'$ for some linear space $W' \subset W$, and that the image is two-dimensional. If there is an element of maximal rank in $p(A^*)$, then $R_X(p) = \dim W$, because the second matrix must be diagonalizable.

On the other hand, pencils of symmetric matrices of bounded rank can be classified by the Kronecker normal form: just take something of the normal form (5.1) where $p = q$ and $\epsilon_j = \eta_j$, and permute the rows and columns so that it becomes a symmetric matrix. We conclude:

Theorem 6.1. Let $X = Seg(\mathbb{P}^1 \times v_2(\mathbb{P}^{n-1})) \subset \mathbb{P}(A \otimes S^2W)$. Let $p \in A \otimes S^2W$, and let $p(A^*)$ have Kronecker normal form with indices q, f, and ϵ_j, so $n = \dim W = \sum 2\epsilon_j + f$. Then $R_X(p) = n + 2q$. In particular, the maximum X-rank of an element of $\mathbb{C}^2 \otimes S^2\mathbb{C}^n$ is $\left\lfloor \frac{3n}{2} \right\rfloor$.

7. Ranks and normal forms in $\sigma_3(Seg(\mathbb{P}A_1 \otimes \cdots \otimes \mathbb{P}A_n))$

We assume throughout this section that $n \geq 3$.

Recall that for any smooth variety X, if $x \in \sigma_2(X)$, then either $x \in X$, $x \in \sigma_0^2(X)$ or x lies on an embedded tangent line to X.

7.1. $\sigma_2(Seg(\mathbb{P}A_1 \otimes \cdots \otimes \mathbb{P}A_n))$ case.

Theorem 7.1. Let $X = Seg(\mathbb{P}A_1 \otimes \cdots \otimes \mathbb{P}A_n) \subset \mathbb{P}(A_1 \otimes \cdots \otimes A_n)$ be a Segre variety. There is a normal form for points $x \in \sigma_2(X): x = a_0^1 \otimes \cdots \otimes a_0^n$ for a point of X, $x = a_0^1 \otimes \cdots \otimes a_0^n + a_1^1 \otimes \cdots \otimes a_1^n$ for a point on a secant line to X (where for this normal form, we don’t require all the a_0^1 to be independent of the a_0^n), and have ranks 1, 2, and for each $J \subseteq [n]$, $|J| > 2$, the normal form

$$(7.1) \quad x = a_0^1 \otimes \cdots \otimes a_0^n + \sum_{j \in J} a_0^1 \otimes \cdots \otimes a_0^{j-1} \otimes a_1^j \otimes a_0^{j+1} \otimes \cdots \otimes a_0^n$$

which has rank $|J|$. In particular, all ranks from 1 to n occur for elements of $\sigma_2(X)$.

Proof. All the assertions except for the rank of x in (7.1) are immediate. The rank of x is at most $|J|$ because there are $|J| + 1$ terms in the summation but the first can be absorbed into any of the others (e.g. using $a_0^1 + a_1^j$ instead of a_0^1).

Assume WLOG $|J| = n$ and work by induction. First say $n = 3$, then Corollary 5.3 establishes this base case.
Now assume we have established the result up to \(n - 1 \), and consider the \(x(A_1^*) \). It is spanned by
\[
a_0^2 \otimes \cdots \otimes a_0^n, \sum_{j} a_0^2 \otimes \cdots \otimes a_0^{j-1} \otimes a_0^j a_0^{j+1} \otimes \cdots \otimes a_0^n.
\]
By induction, the second vector has rank \(n - 1 \). It remains to show that there is no expression of the second vector as a sum of \(n - 1 \) decomposable tensors where one of terms is a multiple of \(a_0^2 \otimes \cdots \otimes a_0^n \). Say there were, where \(a_0^2 \otimes \cdots \otimes a_0^n \) appeared with coefficient \(\lambda \), then the tensor
\[
\sum_{j} a_0^2 \otimes \cdots \otimes a_0^{j-1} \otimes a_0^j a_0^{j+1} \otimes \cdots \otimes a_0^n - \lambda a_0^2 \otimes \cdots \otimes a_0^n
\]would have rank \(n - 2 \), but setting \(\bar{a}_1^2 = a_1^2 - \lambda_0^2 \) and \(\bar{a}_1^j = a_1^j \) for \(j \in \{3, \ldots, n\} \), this would imply that
\[
\sum_{j} a_0^2 \otimes \cdots \otimes a_0^{j-1} \otimes \bar{a}_1^j a_0^{j+1} \otimes \cdots \otimes a_0^n
\]had rank \(n - 2 \), a contradiction. \(\square \)

7.2. Case of \(\sigma_3(Seg(PA_1 \otimes \cdots \otimes PA_n)) \)

Let
\[
x \in \sigma_3(Seg(PA_1 \otimes \cdots \otimes PA_n) \setminus \sigma_2(Seg(PA_1 \otimes \cdots \otimes PA_n)).
\]
The standard types of points are: a point on an honest secant \(\mathbb{P}^2 \) (which has rank 3), a point on the plane spanned by a point of the Segre and a tangent \(\mathbb{P}^1 \) to the Segre, which has rank at most \(n + 1 \), and a point of the form \(y + y' + y'' \) where \(y(t) \) is a curve on \(\hat{Seg}(PA_1 \otimes \cdots \otimes PA_n) \).

The latter type of point has rank at most \(\binom{n+1}{2} \) because a generic such point is of the form
\[
a_0^1 \otimes \cdots \otimes a_0^n + \sum_{j} a_0^1 \otimes \cdots \otimes a_0^{j-1} \otimes a_0^j a_0^{j+1} \otimes \cdots \otimes a_0^n
\]
\[
+ \sum_{j<k} a_0^1 \otimes \cdots \otimes a_0^{j-1} \otimes a_0^j a_0^{j+1} \otimes \cdots \otimes a_0^{k-1} \otimes a_0^k a_0^{k+1} \otimes \cdots \otimes a_0^n
\]
\[
+ \sum_{j} a_0^1 \otimes \cdots \otimes a_0^{j-1} \otimes a_0^j a_0^{j+1} \otimes \cdots \otimes a_0^n
\]
The first term and second set can be folded into the last term, giving the estimate. One can show that the above types of points exhaust the possibilities for \(\sigma_3(Seg(PA_1 \otimes \cdots \otimes PA_n)) \).

Proposition 7.1. The rank of the 3 plane given by
\[
\begin{pmatrix}
c_2 & c_1 & c_0 \\
c_1 & c_0 & 0 \\
c_0 & 0 & 0
\end{pmatrix}
\]
is 5.

Proof. We first show the rank is at most 5, by noting that the rank of
\[
\begin{pmatrix}
0 & c_1 & c_0 \\
c_1 & c_0 & 0 \\
c_0 & 0 & 0
\end{pmatrix}
\]
is at most 4 by Corollary 5.3 and the rank of
\[
\begin{pmatrix}
c_2 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\]
is one.
To see the rank is at least five, were it four, we would be able to find constants $\alpha, \beta, s_1, s_2, s_3, t_1, t_2, t_3,$ such that the rank of
\[
\begin{pmatrix}
1 & 0 & 0 \\
\alpha & 1 & 0 \\
\beta & \alpha & 1
\end{pmatrix}
+ \begin{pmatrix}
s_1 t_1 & s_1 t_2 & s_1 t_3 \\
s_2 t_1 & s_2 t_2 & s_2 t_3 \\
s_3 t_1 & s_3 t_2 & s_3 t_3
\end{pmatrix}
\]
is one. There are two cases: if $s_1 \neq 0$, then we can subtract $-\frac{s_2}{s_1}$ times the first row from the second, and $-\frac{s_3}{s_1}$ times the first row from the third to obtain
\[
\begin{pmatrix}
1 + s_1 t_1 & s_1 t_2 & s_1 t_3 \\
* & 1 & 0 \\
* & * & 1
\end{pmatrix}
\]
which has rank at least two. If $s_1 = 0$ the matrix already visibly has rank at least two.

\[\square\]

Corollary 7.2. The rank of a point of $\sigma_3(\text{Seg}(\mathbb{P}A \times \mathbb{P}B \times \mathbb{P}C))$ of the form $y + y' + y''$ is 5. Moreover, the maximum rank of any point of $\sigma_3(\text{Seg}(\mathbb{P}A \times \mathbb{P}B \times \mathbb{P}C))$ is 5.

Remark 7.3. Corollary 7.2 seems to have been a “folklore” theorem in the tensor literature. For example, in [15], Table 3.2 the result is stated and refers to [17], but in that paper the result is stated and a paper that never appeared is referred to. Also, there appear to have been privately circulating proofs, one due to R. Rocci from 1993 has been shown to us. We thank M. Mohelkamp for these historical remarks.

Starting with $\sigma_4(\text{Seg}(\mathbb{P}A_1 \otimes \cdots \otimes \mathbb{P}A_n))$ there are exceptional limit points and these points turn out to be important - they are used in Schonhage’s approximate algorithm to multiply 3×3 matrices using 21 multiplications, see [3].

References

1. Hirotachi Abo, Giorgio Ottaviani, and Chris Peterson, *Induction for secant varieties of Segre varieties*, Trans. Amer. Math. Soc. 361 (2009), no. 2, 767–792. MR MR2452824 (2010a:14088)
2. A. Bernardi, A. Gimigliano and M. Id, *On the stratification of secant varieties of veronese varieties via symmetric rank*, preprint, arXiv:0908.1651 (2009).
3. J. Buczyński and J.M. Landsberg, *Ranks of tensors and conjectures of Comon, Eisenbud and Strassen*, in preparation.
4. Peter Bürgisser, Michael Clausen, and M. Amin Shokrollahi, *Algebraic complexity theory*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 315, Springer-Verlag, Berlin, 1997, With the collaboration of Thomas Lickteig. MR 99c:68002
5. M. V. Catalisano, A. V. Geramita, and A. Gimigliano, *On the ideals of secant varieties to certain rational varieties*, J. Algebra 319 (2008), no. 5, 1913–1931. MR 2392585
6. Gonzalo Comas and Malena Seiguer, *On the rank of a binary form*, arXiv:math.AG/0112311 (2001).
7. P. Comon, J. M. F. ten Berge, L. De Lathauwer, and J. Castaing, *Generic and typical ranks of multi-way arrays*, Linear Algebra Appl. 430 (2009), no. 11-12, 2997–3007. MR 2517853
8. Pierre Comon, Gene Golub, Lek-Heng Lim, and Bernard Mourrain, *Symmetric tensors and symmetric tensor rank*, SIAM J. Matrix Anal. Appl. 30 (2008), no. 3, 1254–1279. MR 2447451 (2009i:15039)
9. Vin de Silva and Lek-Heng Lim, *Tensor rank and the ill-posedness of the best low-rank approximation problem*, SIAM J. Matrix Anal. Appl. 30 (2008), no. 3, 1084–1127. MR 2447444 (2009h:15013)
10. Shmuel Friedland, *On the generic rank of 3-tensors*, preprint (2008).
11. F. R. Gantmacher, *The theory of matrices. Vols. 1, 2*, Translated by K. A. Hirsch, Chelsea Publishing Co., New York, 1959. MR 0107649 (21 #6372c)
12. Joseph Ja’Ja’, *Optimal evaluation of pairs of bilinear forms*, Conference Record of the Tenth Annual ACM Symposium on Theory of Computing (San Diego, Calif., 1978), ACM, New York, 1978, pp. 173–183. MR 521052 (80j:68032)
13. Joseph Ja’Ja’ and Jean Takche, *On the validity of the direct sum conjecture*, SIAM J. Comput. 15 (1986), no. 4, 1004–1020. MR 861366 (88b:68084)
14. V. G. Kac, *Some remarks on nilpotent orbits*, J. Algebra 64 (1980), no. 1, 190–213. MR 81i:17005
15. Tamara G. Kolda and Brett W. Bader, *Tensor decompositions and applications*, SIAM Rev. **51** (2009), no. 3, 455–500. MR MR2535056
16. Witold Kraśkiewicz and Jerzy Weyman, *Modules with a finite number of orbits*, preprint (2009).
17. J. B. Kruskal, *Rank, decomposition, and uniqueness for 3-way and N-way arrays*, Multiway data analysis (Rome, 1988), North-Holland, Amsterdam, 1989, pp. 7–18. MR MR1088949
18. J. M. Landsberg, *Geometry and the complexity of matrix multiplication*, Bull. Amer. Math. Soc. (N.S.) **45** (2008), no. 2, 247–284. MR MR2383305 (2009b:68055)
19. J. M. Landsberg and L. Manivel, *Series of Lie groups*, Michigan Math. J. **52** (2004), no. 2, 453–479. MR MR2069810 (2005f:17009)
20. J. M. Landsberg and Laurent Manivel, *Construction and classification of complex simple Lie algebras via projective geometry*, Selecta Math. (N.S.) **8** (2002), no. 1, 137–159. MR MR1890196 (2002m:17006)
21. J.M. Landsberg and Z. Teitler, *On the ranks of tensors and symmetric tensors*, to appear in FOCM, arXiv:0901.0487.
22. Lior Pachter and Bernd Sturmfels (eds.), *Algebraic statistics for computational biology*, Cambridge University Press, New York, 2005. MR MR2205865 (2006i:92002)
23. V. Strassen, *Rank and optimal computation of generic tensors*, Linear Algebra Appl. **52/53** (1983), 645–685. MR 85b:15039
24. Jos M. F. Ten Berge, Alwin Stegeman, and Mohammed Bennani Dosse, *The Carroll and Chang conjecture of equal Indscal components when Candecomp/Parafac gives perfect fit*, Linear Algebra Appl. **430** (2009), no. 2-3, 818–829. MR MR2473189
25. Jerzy Weyman, *Cohomology of vector bundles and syzygies*, Cambridge Tracts in Mathematics, vol. 149, Cambridge University Press, Cambridge, 2003. MR MR1988690 (2004d:13020)

E-mail address: jabu@math.tamu.edu, jml@math.tamu.edu