Genetic and epigenetic changes in the common 1p36 deletion in neuroblastoma tumours

H Carén1, S Fransson1, K Ejeskär1, P Kogner2 and T Martinsson*,1
1Department of Clinical Genetics, Institute of Biomedicine, Göteborg University, Sahlgrenska University Hospital, Göteborg SE-41345, Sweden; 2Childhood Cancer Research Unit, Department of Woman and Child Health, Karolinska Institutet, Karolinska Hospital, Stockholm SE-17176, Sweden

Chromosome 1p is frequently deleted in neuroblastoma (NB) tumours. The commonly deleted region has been narrowed down by loss of heterozygosity studies undertaken by different groups. Based on earlier mapping data, we have focused on a region on 1p36 (chr1: 7 765 595–11 019 814) and performed an analysis of 30 genes by exploring features such as epigenetic regulation, that is DNA methylation and histone deacetylation, mutations at the DNA level and mRNA expression. Treatment of NB cell lines with the histone deacetylase inhibitor trichostatin A led to increased gene transcription of four of the 30 genes, ERRFI1 (MIG-6), PIK3CD, RBP7 (CRBPIV) and CASZ1, indicating that these genes could be affected by epigenetic downregulation in NBs. Two patients with nonsynonymous mutations in the PIK3CD gene were detected. One patient harboured three variations in the same exon, and p.R188W. The other patient had the variation p.M655L. In addition, synonymous variations and one variation in an intronic sequence were also found. The mRNA expression of this gene is downregulated in unfavourable, compared to favourable, NBs. One nonsynonymous mutation was also identified in the ERRFI1 gene, p.N343S, and one synonymous. None of the variations above were found in healthy control individuals. In conclusion, of the 30 genes analysed, the PIK3CD gene stands out as one of the most interesting for further studies of NB development and progression.

British Journal of Cancer (2007) 97, 1416–1424. doi:10.1038/sj.bjc.6604032 www.bjcancer.com
Published online 16 October 2007 © 2007 Cancer Research UK

Keywords: neuroblastoma; 1p; mutation; epigenetics; PIK3CD

Neuroblastoma (NB) is the most common extracranial tumour of childhood (Gale et al, 1982). One of the hallmarks of NB tumours is their clinical heterogeneity, ranging from spontaneous regression to malignant disease. Deletion of the short arm of chromosome 1 (1p-deletion), additional genetic material from the long arm of chromosome 17 (17q gain) and amplification of the proto-oncogene MYCN are examples of chromosomal abnormalities that have been found in NB. The 1p region has been subjected to intense study in this tumour type; it shows loss of heterozygosity (LOH) in 20–40% of NB tumours. 1p-deletion is also highly correlated with MYCN amplification and predicts unfavourable outcome (Caron et al, 1996). It has therefore been proposed that the region contains a tumour suppressor gene that is inactivated in aggressive NB tumours.

The deletion of chromosome 1 often involves a large proportion of 1p but some tumours display smaller deletions. Our group, as well as others, has tried to identify the critical region/regions by comparing the deletions found in the tumours. We have defined the shortest region of overlap (SRO) of deletions in our tumour material to about 25 cM located between the markers D1S80 and D1S244 (Martinsson et al, 1995, 1997). By the addition of germ cell tumours, an approximately 5 cM combined SRO of deletions was defined by markers D1S508 and D1S244 (Ejeskär et al, 2001). As an overlapping homozygous 500 kb deletion of 1p36.2–3 was found in an NB cell line (Ohira et al, 2000), the region has been analysed in further detail. In our study of the genes within this region, all seven were screened for mutations and a few were indeed discovered (Ejeskär et al, 2000; Abel et al, 2002, 2004; Krona et al, 2003, 2004). We have also explored the expression and methylation status of these genes. The transcripts have been shown to be downregulated in unfavourable NB, compared to favourable NB, a feature that cannot be explained by methylation of their respective CpG islands (Carén et al, 2005). In the current study, we wanted to expand our investigation of the 1p region, more specifically to our combined NB/germ cell SRO of deletions, and to explore epigenetic mechanisms in the regulation of possible tumour suppressor genes. The effect of DNA methylation and histone deacetylation events of 30 genes in the 1p36 chromosomal region extending from markers D1S508 and D1S244, bp 7 765 595–11 019 814 (UCSC version, May 2004; URL: http://genome.ucsc.edu) were explored. This SRO of deletions is in agreement with SRO studies presented by other groups (Caron et al, 2001; Chen et al, 2002). Yet, other groups have presented SRO located more distal on 1p (Bauer et al, 2001; White et al, 2005).

Genes identified as possibly regulated by epigenetic means were studied further with expression analysis and mutation screening of primary tumours. A small number of the 1p genes studied showed indication of epigenetic inactivation and two of these also contained mutations in NB tumours.
MATERIALS AND METHODS

Cell lines and patients

A panel of 66 primary NB tumours of different stages was used in the study, 35 tumours were used for expression analysis; 17 tumours with favourable biology from patients with no evidence of disease and 18 tumours with unfavourable biology from patients who have died from the disease and 46 for DNA sequencing (Table 1). Fifteen of the samples were used for both expression and sequencing analysis. Also, 120 healthy control individuals were used for DNA sequencing. For cell treatments, three NB cell lines with 1p-deletion (IMR-32, SK-N-AS, SK-N-BE(2)) and one with intact 1p (SH-SYSY) were used. These and five other NB cell lines (SK-N-DZ, SK-N-FI, SK-N-SH, Kelly and NB69) were used for bisulphite sequencing.

Analysis of methylation and acetylation status

Cells were seeded at low density and treated with the demethylating agent 5-Aza-2'-deoxycytidine (5-Aza-dC) (Sigma-Aldrich Co, St Louis, MO, USA) or with the histone deacetylase inhibitor trichostatin A (TSA; Sigma-Aldrich) on the day after seeding. Different concentrations and exposure durations were investigated and a concentration of 2 or 4 μM of 5-Aza-dC for 72 h and 0.5 μM of TSA for 16 h were chosen. The experiments were repeated twice and medium was changed every second day to fresh medium containing the respective agents. As controls, the respective cell lines were mock treated with the same amount of carrier (EtOH for the TSA treatments and DPBS; Dulbecco’s buffered saline, PAA Laboratories, Linz, Austria, for 5-Aza-dC).

Expression analysis

cDNA preparation Total RNA was extracted from the cell lines using the RNeasy RNA extraction kit (Qiagen, Hilden, Germany). Total RNA from NB tumour samples was extracted using the RNA extraction kit or Totally RNA (Ambion, Austin, TX, USA). Total RNA, 1 μg, was reverse transcribed to cDNA using Transcriptor II (Amersham, Buckinghamshire, UK) and random hexamer primers, all according to the protocol of the supplier. The cDNA samples were quality-tested by amplification of the GUSB (β-glucuronidase) gene.

Real-time RT–PCR – endogenous control The GUSB gene was used as an endogenous control for normalisation of expression in the tumour samples. This gene has previously been shown to be expressed at constant levels in tumour samples, regardless of NB stage (Abel et al., 2005). In order to select the most appropriate endogenous control for the NB cell lines, untreated and treated cell lines were tested for their expression levels of seven commonly used housekeeping genes using TaqMan® Assays-on-Demand™ Gene Expression Products (Applied Biosystems, Foster City, CA, USA). Analysis was performed with geNorm 3.4 software (Vandesompele et al., 2002) which determines the most stable housekeeping genes in a set of genes in the cDNA panel. GUSB, UBC (β-2-microglobulin) and SDHA (succinate dehydrogenase) showed the smallest variations in ΔCt levels and were expressed at constant levels in samples regardless of treatment; these genes were therefore used as internal references for normalisation in the real-time RT–PCR quantification analysis for the NB cell lines.

Real-time RT–PCR – TaqMan TaqMan primers and probes were derived from Applied Biosystems. Real-time RT–PCR was performed in 384-well plates using the ABI PRISM® 7900HT Sequence Detection System (Applied Biosystems). Amplification reactions (10 μl) were carried out in duplicate with 0.1 μl template cDNA, according to the protocol of the manufacturer (Applied Biosystems). A standard curve with six cDNA dilutions was recorded and two nontemplate controls were included in each assay.

Quantification was performed by the standard curve method, as described previously (Abel et al., 2005). Briefly, the mean Ct-value for duplicates was calculated, and the gene concentration (or gene copy numbers) of test samples was interpolated based on standard curves. All samples were normalised by dividing the concentration of the test gene with the concentration of the housekeeping gene/genes in the same cDNA sample.

The logarithms of the expression levels in favourable and unfavourable NB tumours were compared using Student’s two-sided t-test. Box plots were constructed using SPSS 12.0.1 for Windows.

Confirmation of methylation status

Bisulphite modification DNA was phenol-extracted using phase lock gel (Eppendorf AG, Hamburg, Germany) according to standard procedure and was, with some minor changes, modified with bisulphite according to previously published papers (Clark et al., 1994; Paulin et al., 1998). Briefly, 1 μg of genomic DNA was treated with restriction endonucleases that digested the DNA close to, but outside, the region of interest. The DNA was then denatured in 0.3 M freshly prepared NaOH at 40°C for 15 min. Sodium metabisulphite (Sigma-Aldrich) and urea, at final concentrations of 1.73 M and 5.36 M, respectively, were added in order to sulphonate the unmethylated cytosines, together with hydroquinone (0.5 mM). Conversion was carried out at 55°C for 16 h, with a temperature increase to 95°C for 30 s every 3 h. DNA was purified with the Wizard DNA cleanup system (Promega Corporation, Madison, WI, USA), according to the instructions of the manufacturer, and desulphonated in 0.3 M NaOH at 37°C for 15 min and finally precipitated in ethanol, resuspended in distilled H2O and stored at −20°C. Universally Methylated DNA (Chemicon International, Temecula, CA, USA) was included as a positive control for methylation.

Promoter analysis and DNA amplification Prediction of promoters associated with Cpg islands were done with CpGProD (Ponger and Mouchiroud, 2002) and Cpg islands were also searched with CpG island searcher (URL: http://cpgislands.usc.edu). Criteria for Cpg island selection were chosen according to Takai and Jones (2002), that is an expected GC content of >55%, an observed/expected Cpg ratio of >0.65 and >500 bp. The regions were also searched with relaxed criteria’s. The regions, or parts of them, were amplified with one primer pair or, if required, with nested primers (primer sequences available on request). The methylation status was analysed using bisulphite sequencing. Touchdown PCR was performed with 1 × Reaction Buffer, 0.5 mM dNTPs, 2.0–3.0 mM MgCl2, 0.4 μM of forward and reverse primers, respectively, and 1 U of HotStar Taq (Qiagen, Hilden, Germany), in a total volume of 20 μl. Reactions were denatured at 95°C for 15 min, followed by five cycles of 95°C for 1 min, 5°C above annealing temperature with a decrease of 1°C per cycle for 1 min, 72°C for 1 min and 30 cycles of 95°C for 1 min, annealing temperature for 1 min, 72°C for 1 min and ending with 7 min extension at 72°C. PCR products were purified with ExoSAP-IT™ (USB Corporation, Cleveland, OH, USA) and sequencing was carried out using forward or reverse primer with the ABI Prism BigDye™ cycle sequencing Ready Reaction Kit (Applied Biosystems). The samples were analysed in an ABI 3100 Genetic Analyzer or an ABI 3730 Genetic Analyzer (Applied Biosystems). Sequence analysis was conducted with SeqScape version 2.1.1 (Applied Biosystems).
Table 1 Clinical data of primary neuroblastoma used in the study

Patient	Stage	Outcome	1p-del	MYCN amplification	Group in expression analysis
35R8	1	NED	Neg	Neg	F
14E6	1	NED	Neg	Neg	F
16E1	1	NED	Neg	Neg	F
18E5	1	NED	Pos	Pos	F
10R7	1	NED	Neg	Neg	F
26R9	1	NED	Neg	Neg	F
9R2	1	NED	Pos	Pos	F
30R9	1	NED	Neg	Neg	F
25R7	1	NED	Neg	Neg	F
19R6	1	DOD	Pos	Pos	F
25R9	1	DOD	Pos	Pos	F
20R9	1	DOD	Neg	Neg	F
23R4	1	DOD	Neg	Neg	F
25R8	1	DOD	Neg	Neg	F
35R2	1	DOD	Neg	Neg	F
35R3	1	DOD	Neg	Neg	F
13R3	2	DOD	Neg	Neg	F
27R1	2	DOD	Neg	Neg	F
24R3	2	DOD	Neg	Neg	F
14R9	2	DOD	Neg	Neg	F
33R7	2	DOD	Neg	Neg	F
15R8	3	DOD	Neg	Neg	F
16R4	3	DOD	Pos	Pos	F
20R8	3	DOD	Pos	Pos	F
23R2	3	DOD	Pos	Pos	F
30R7	3	DOD	?	Pos	F
13E5	3	DOD	Neg	Pos	F
13E6	3	DOD	Pos	Pos	F
6E9	3	DOD	Pos	Pos	F
10R8	3	DOD	Pos	Pos	F
13R1	3	DOD	Pos	Pos	UF
9R9	3	DOD	Pos	Neg	UF
10E6	4	NED	Pos	Pos	UF
23R5	4	NED	Neg	Neg	UF
23R8	4	NED	Neg	Neg	UF
24R3	4	NED	Pos	Pos	UF
33R9	4	NED	Neg	Neg	UF
11R6	4	NED	Pos	Pos	UF
12R9	4	NED	Pos	Pos	UF
29R2	4	NED	Pos	Pos	UF
32R2	4	NED	Pos	Neg	UF
27R4	4	DOD	Neg	Neg	UF
18E4	4	DOD	Pos	Pos	UF
10R2	4	DOD	Pos	Pos	UF
13R0	4	DOD	Pos	Pos	UF
15R3	4	DOD	Pos	Pos	UF
26R8	4	DOD	Pos	Pos	UF
28R8	4	DOD	Neg	Neg	UF
10E7	4	DOD	Neg	Neg	UF
12E6	4	DOD	Neg	Pos	UF
15E3	4	DOD	Pos	Pos	UF
16E3	4	DOD	Pos	Pos	UF
17E4	4	DOD	Pos	Pos	UF
4E1	4	DOD	Neg	Pos	UF
17R2	4	DOD	Neg	Neg	UF
11E2	4	DOD	Neg	Neg	UF
9E5	4	DOD	Pos	Pos	UF
18E9	4	DOD	Pos	Pos	UF
11R9	4	DOD	Pos	Neg	UF
12R6	4	DOD	Pos	Pos	UF
17R4	4	DOD	Pos	Pos	UF
19R0	4	DOD	Pos	Pos	UF
21R0	4	DOD	Pos	Pos	UF
23R7	4	DOD	Pos	Pos	UF
34R0	4	DOD	Neg	Neg	UF
12E3	4	DOD	Pos	Pos	UF
11E5	4	DOD	Pos	Pos	UF
14R2	4	DOD	Pos	Pos	UF

NED = no evidence of disease; DOD = dead of disease; 1p-del = 1p-deletion; Pos = positive; Neg = negative; F = favourable; UF = unfavourable.

DNA mutation screening

DNA amplification Primers were designed for the exons and flanking intronic sequences using the Exonprimer feature of the UCSC genome browser (URL: http://genome.ucsc.edu) and were ordered from Life Technologies, Inc., Gaitherburg, MD, USA (primer sequences available on request). Standard reactions of 20 μl were used, containing 25 – 100 ng DNA, 1.5 mM MgCl₂, 2 mM dNTP, 0.6 – 0.75 μM primer and 1 U Taq polymerase (Amersham Pharmacia Biotech, Freiburg, Germany). Reactions were denatured at 95°C for 2 min, followed by 35 cycles of 95°C for 30 s, annealing for 30 s, 72°C for 1 min, and ending with a 7 min extension step. Purification of PCR reactions and sequencing were performed as described above.

RESULTS

Expression analysis of cells treated with TSA and 5-Aza-dC

GUSB, UBC and SDHA were selected as endogenous controls for real-time RT–PCR quantification and used as internal references for normalisation. Four of the genes in the study, ERRFI1 (MIG-6), PIK3CD, RB7 (CRBPIV) and CASZ1, were upregulated more than two-fold after treatment with TSA (Table 2) in both experiments. Expression of gene transcripts of these four genes was analysed in primary NB tumours and the DNA sequences were analysed for mutations. Three genes, PIK3CD, RB7 and CASZ1, were upregulated in at least two of the cell lines after treatment with 5-Aza-dC. These genes were analysed further with bisulphite sequencing.

Bisulphite sequencing

CASZ1, PIK3CD and RB7 were studied with bisulphite sequencing. Three CpG islands were studied in CASZ1 and PIK3CD. One or two fragments in each island were PCR amplified and sequenced following bisulphite modification. For location of CpG islands relative to the respective gene, see Figure 1. In our material, NB cell lines generally were found to have more methylated CpG sites than primary NB tumours (Figure 2). No consistent CpG methylation sites distinguishing DNA from primary tumours from that of healthy blood control DNA could be identified. The fragment analysed in the CpG island of RB7 was unmethylated in all cell lines.

Expression analysis of NB tumours

Expression analysis of ERRFI1, PIK3CD, RB7 and CASZ1 was performed comparing 17 tumours with favourable biology from patients with no evidence of disease and 18 tumours with unfavourable biology (dead of disease). The expression of PIK3CD was significantly lower (P = 0.001 after Bonferroni correction), in unfavourable tumours as compared to favourable NB (PIK3CD: P = 0.03). No significant difference in expression of ERRFI1 (P = 0.2) or RB7 (P = 0.7) between favourable and unfavourable tumours could be shown (Figure 3).

DNA sequencing

Several sequence variations were identified in ERRFI1 and PIK3CD (see Table 3 for a summary). Three patients harboured mutations with amino-acid changes in the ERRFI1 and PIK3CD genes. In exon 5 in PIK3CD, three changes were found in the same tumour, 24R3 (see Figure 4). The change, 448G > A, give rise to an amino-acid substitution from the nonpolar amino-acid alanine to the polar threonine, the 469C > T substitution from the polar arginine to the nonpolar tryptophan.
Table 2 Analysis of expression of 30 genes after treatment of NB cell lines with 5-Aza-dC or TSA

Genes	5-Aza-dC treatment	TSA treatment						
	SK-N-AS	SK-N-BE(2)	IMR-32	SH-SY5Y	SK-N-AS	SK-N-BE(2)	IMR-32	SH-SY5Y
VAMP3	+	+		+	+	+	+	+
PER3	UD	UD		UD	UD	UD	UD	UD
LUT2	UD	UD		UD	UD	UD	UD	UD
TNFRSF9	UD	UD		UD	UD	UD	UD	UD
PARK7	+	+		+	+	+	+	+
ERRF1	UD	UD		UD	UD	UD	UD	UD
RERE	UD	UD		UD	UD	UD	UD	UD
DKFZ566	UD	UD		UD	UD	UD	UD	UD
ENO1	UD	UD		UD	UD	UD	UD	UD
CASZ1	+	+		+	+	+	+	+
RBP7	+	+		+	+	+	+	+
PIK3CD	+	+		+	+	+	+	+
CLSTN1	+	+		+	+	+	+	+
ICAT	+	+		+	+	+	+	+
LZIC	+	+		+	+	+	+	+
NMNAT1	+	+		+	+	+	+	+
SLC2A5	+	+		+	+	+	+	+
GPR157	UD	UD		UD	UD	UD	UD	UD
H6PD	UD	UD		UD	UD	UD	UD	UD
SSB1	UD	UD		UD	UD	UD	UD	UD
MGC4399	UD	UD		UD	UD	UD	UD	UD
PIK3CD	+	+		+	+	+	+	+
GPR157	+	+		+	+	+	+	+
H6PD	+	+		+	+	+	+	+
SSB1	+	+		+	+	+	+	+
MGC4399	+	+		+	+	+	+	+
ENO1	+	+		+	+	+	+	+
CASZ1	+	+		+	+	+	+	+
RBP7	+	+		+	+	+	+	+

UD = undetermined, gene transcripts not detected in the real-time PCR amplification. ND = not determined. Genes showing consistent upregulation after treatment are highlighted in yellow.

Figure 1 The CASZ1, RBP7 and PIK3CD genes. Black boxes indicate coding exons and grey boxes untranslated exons. Positions with the A in the initiator Met codon denoted nucleotide +1. CpG islands number 3 in CASZ1 and PIK3CD were identified with relaxed searching criteria (an expected GC content of >50%, an observed/expected CpG ratio of >0.6 and >200 bp).
The changes are de novo mutations, not present in constitutional DNA from the tumour. In exon 16 in PIK3CD, methionine (codon ATG) is changed to isoleucine (codon ATA) in tumour 19R6. The tumour is hemizygous for the variation as the other allele is deleted in the tumour; normal tissue from the patient is heterozygous for the variation. In ERFII1, an amino-acid change from aspartic acid to serine, p.N343S, was found in exon 4, 1028A > G (see Figure 5). This variation was also found in the constitutional DNA from the same patient (25R9). Also, synonymous base changes were identified in PIK3CD and ERFII1, see Table 3. None of the

Table 3

Gene	Codon	Change	Position
PIK3CD	ATG	ATA	1028
ERFII1	ATC	ACT	343

Figure 2

Methylation status of (A) CASZ1 CpG island 2 fragment 1 and (B) PIK3CD CpG island 1 fragment 2. Black boxes indicate methylation, grey boxes partial methylation and white boxes no methylation.

Figure 3

Relative expression of tumours with favourable biology compared to tumours of unfavourable biology. Box plot explanation; upper and lower hinge of the box represent 75th percentile and 25th percentile, respectively; whiskers indicates range; thick horizontal line within box, median. Open circles represent outliers and asterisks represent extremes. The P-value at gene-by-gene level is indicated in lower left corner in each graph.
Table 3 DNA variations detected in the study

Gene	Gene position	Patient	NB Stage	Ip-del	Outcome	Base change	Affected cases	Protein	Normal tissue from the patient	Healthy controls
PIK3CD	Exon 5	24R3	4	Pos	NED	448G>A	Heterozygous	G/A	A150T G/G	0/119
	Exon 5	24R3	4	Pos	NED	469C>A	Heterozygous	C/A	L157M C/C	0/119
	Exon 5	24R3	4	Pos	NED	562C>T	Heterozygous	C/T	R188W C/C	0/119
	Exon 16	19R6	1	Pos	DOD	1965G>A	Hemizygous	A/—	M655I G/A	0/113
	Intron 19	24R3	4	Pos	NED	IVS19+1B>C	Hemizygous	T/—	Y887T T/C	0/114
ERRFI	Exon 4	25R9	2	Neg	NED	1028A>G	Heterozygous	A/V	N343S A/G	0/111
	Exon 4	24R3	4	Pos	NED	1186C>T	Heterozygous	C/A	L396L C/C	0/111
PIK3CD	Exon 8	18E4	4	Pos	DOD	935G>C	Homozygous	G/G	S312S	6/112
	18E9	4	Pos	DOD	935G>C	Homozygous	G/G	2/112		
	Intron 7	23R7	4	Pos	DOD	IVS7-9G>C	Homozygous	G/C	S773C G/C	1/112
	13E6	3	Pos	DOD	IVS7-9G>C	Homozygous	G/C	4/102		
	15R3	4	Pos	DOD	IVS7-9G>C	Homozygous	G/C	4/117		
	Exon 18	19R6	1	Pos	DOD	2191C>T	Heterozygous	C/T	G/C	1/89
ERRFI	Exon 4, 3’UTR	11R6	4	Neg	DOD	1718A>G	Heterozygous	A/G	1718A>G	4/102
	Exon 4, 3’UTR	13R9	4	Pos	DOD	1924A>G	Heterozygous	A/G	4/117	
CASZ1	Exon 2	14R9	2B	Pos	DOD	1309G>A	Heterozygous	G/A	K509K	2/112
	Exon 8	17R4	4	Pos	DOD	1527G>A	Heterozygous	G/A	K509K	2/112

1p-del = 1p-deletion; Pos = positive; Neg = negative; NED = no evidence of disease; DOD = dead of disease.

Figure 4 PIK3CD mutations in NB primary tumours. Bars under each chromatogram indicate the mutation position. (A) Variations in exon 5. Upper panel: Mutations 448G>A, 469C>A and 562C>T in patient 24R3 gave rise to amino-acid changes from Ala to Thr, Leu to Met and Arg to Trp, respectively. Middle panel: Normal tissue from patient 24R3. Lower panel: Healthy control individual. (B) Variation in exon 16. Upper panel: 1965G>A mutation results in amino-acid change from Met to Ile in patient 19R6. Middle panel: Normal tissue from patient 19R6, heterozygous for G/A. Lower panel: Healthy control individual. (C) Variation in exon 21. Upper panel: 2661T>C mutation in patient 19R6. Middle panel: Normal tissue from patient 19R6, heterozygous for T/C. Lower panel: Healthy control individual. (D) Alignment of amino-acid sequences. The putative mutations, marked with red, are located in conserved regions.
altered described above could be detected in any of 100 healthy control individuals (>200 alleles). In addition to these tumour-specific variations, some novel polymorphisms were identified (Table 3).

DISCUSSION

1p-deletion is common both in NB and in other tumour types. Since methylation and other epigenetic features have been shown to be important mechanisms in the downregulation and repression of genes, we decided to study DNA methylation and histone deacetylation of genes in the NB/germ cell SRO we had previously defined in order to pinpoint specific genes with a possible involvement in NB. A number of NB cell lines were thus treated with the demethylating agent 5-Aza-dC or the deacetylase inhibitor TSA and the expression of a number of chromosome 1p36.1 – 2 genes were studied with and without treatment. The genes found to be upregulated after treatment of the NB cell lines were consequently considered to be tentative targets of epigenetic events in NB tumour initiation/progression. The genes thus identified were subjected to (i) bisulphite sequencing of the CpG islands, (ii) analysis of expression in a large number of primary tumours and (iii) mutation screening in the coding regions.

Expression of the **ERRFI1**, **PIK3CD**, **RBP7** and **CASZ1** genes increased after treatment with the demethylase inhibitor TSA, suggesting that these genes are regulated by histone modifications in NB. **PIK3CD**, **RBP7** and **CASZ1** also exhibited changes in expression in some of the cell lines tested after treatment with the demethylating agent 5-Aza-dC, indicating that these genes could also be silenced by DNA methylation.

The genes we identified as potential targets of epigenetic modification were sequenced using tumour DNA modified with the bisulphite method in order to explore methylation status. The gene sequences were studied with the CpG island searcher and CpGPROD (Figure 1). **ERRFI1** (MIG-6) was not subject to this analysis since its expression was not upregulated after treatment with 5-Aza-dC; furthermore, it displayed a higher level of expression in patients with unfavourable outcome than in patients with favourable outcome.

In our data, there were generally more methylated CpG sites in NB cell lines than in primary NB tumours. This pattern has also been seen in other studies, for example of **CASP8** and **RASSF1A** (Lazcoz et al., 2006). No consistent CpG methylation sites in both NB cell lines and primary tumours differing from those of control blood DNA could be identified. Since NB is derived from neural crest progenitor cells, blood DNA might not be a good control. One could speculate that the normal progenitor cells should be completely unmethylated while the cells that develop into NB are methylated, but this is only a speculation. However, since only portions of one of the CpG islands in **CASZ1** and **PIK3CD** (Figure 1) were methylated, it is not likely that this account for the low expression of the genes in unfavourable tumours. The increase in expression after treatment with 5-Aza-dC could be due to the demethylation seen in these fragments in the cell lines or alternatively be explained by other normally methylated genes being activated as a result of the treatment which could have an enhancing effect on the transcription of **PIK3CD** and **CASZ1**. Enhancers or other regulatory sequences located outside the analysed region could also be affected by methylation. Other means of silencing could also be involved, as histone modifications, since treatment with TSA increases expression in the NB cell lines.

The RNA expression analysis showed a decrease in **PIK3CD** and **CASZ1** in aggressive NB, compared to more favourable NB tumours, for **PIK3CD** this decrease was significant also after Bonferroni correction (P = 0.001). These data are concordant with a previous study of expression in NB of 30 genes in the 1p36.2 region from our group (Fransson et al., 2007). The NB tumour material used in that study is overlapping with this previous study; however in this study, we have used clinical outcome criteria for grouping the tumours. One could speculate that the difference in expression could be due to a dosage effect since a major proportion of the unfavourable NB tumours harbours a deletion of 1p.

The RNA expression analysis of **ERRFI1** showed a two-fold increase in unfavourable tumour compared to favourable, seemingly contradicting the results of another study that found **ERRFI1** downregulation in breast tumours in patients with poor prognosis (Amatschek et al., 2004). This may reflect different functions, depending on tumour type, but it could also indicate that more advanced stage tumours grow more rapidly since **ERRFI1** expression can be induced by a variety of stimuli such as...
growth factors, hypoxia and stress factors (Saarikoski et al, 2002; Pante et al, 2005).

We also performed mutation screening of all coding regions of the four genes, ERRFI1, PIK3CD, RBP7 and CASZ1, by DNA sequencing. Three tumours with amino-acid changes were identified. Tumour 24R3 has three nonsynonymous mutations in the gene PIK3CD. The tumour harbours 1p-deletion, but has two alleles at the site of the mutations according to DNA sequencing (see Figure 4), hence the deletion does not cover this region or more probably, the wild-type allele comes from contaminating normal cells in the DNA sample, indicated by single-nucleotide polymorphisms (SNP) array analysis carried out on the tumour (data not shown). The mutations are de novo mutations since they are not found in the constitutional DNA. Tumour 19R6 also harbours a nonsynonymous DNA mutation, M655L. The tumour is 1p-deleted and the normal tissue from the patient is heterozygous for the base variation. A nonsynonymous DNA mutation was also identified in tumour 25R9 (intact 1p) in the ERRFI1 gene. The variation is also found in constitutional DNA from the patient. Also, one synonymous base change was found in ERRFI1 and two in PIK3CD (one located in intronic sequence). None of the variations mentioned above were detected in any of more than 100 healthy control individuals (more than 200 alleles), indicating that these changes are indeed mutations. Although, it should be noted that samples with mutations are limited. The tumour from patient 25R9 have intact chromosome 1p, hence the deletion does not cover this region or more probably, the sequencing. Three tumours with amino-acid changes were identified.

We have undertaken a broad analysis of the region located in our NB/germ cell SRO of deletions. Epigenetic regulation, mRNA expression and mutation screening at the DNA level were explored. A group of genes have been identified as epigenetically affected in NB cell lines; the PIK3CD gene stands out as the most intriguing, since it also carries mutations in primary tumours, two patients with nonsynonymous mutations were identified. The mRNA expression of this gene is downregulated in unfavourable, compared to favourable, NB tumours. Treatment of NB cell lines with the histone deacetylase inhibitor TSA led to increased gene transcription, indicating that the gene could be epigenetically regulated. DNA mutations were also identified in the ERRFI1 gene. The current study further strengthens the concept of chromosome region 1p36 being important in the development of NB tumours and supports the hypothesis that there could be several genes in the region required for the initiation and/or progression of this tumour.

ACKNOWLEDGEMENTS

This work was supported by the Swedish Knowledge Foundation through the Industrial PhD programme in Medical Bioinformatics at the Strategy and Development Office (SDO) at Karolinska Institutet and with grants from the Swedish Cancer Society, the Children's Cancer Foundation, the King Gustav V Jubilee Clinic Cancer Research Foundation, the Assar Gabrielsson Foundation, the Wilhelm and Martina Lundgren Research Foundation and the Sahlgrenska University Hospital Foundation. We thank the Swegene Gothenburg Genomics resource unit for access to the ABI 7900HT Sequence Detection System and the ABI 3730 Sequencer.

REFERENCES

Abel F, Sjöberg R-M, Ejeskär K, Krona C, Martinsson T (2002) Analyses of apoptotic regulators CASP9 and DFFA at 1P36.2, reveal rare allele variants in human neuroblastoma tumours. Br J Cancer 86: 596–604

Abel F, Sjöberg R-M, Krona C, Nilsson S, Martinsson T (2004) Mutations in the N-terminal domain of DFF45 in a primary germ cell tumor and in neuroblastoma tumors. Int J Oncol 25: 1297–1302

subunit is common in human cancers by overexpression or mutations (Samuels and Velculescu, 2004; Samuels et al, 2004). In our NB tumour material, we could not identify any mutations in the PIK3CA gene (data not shown) and Dam et al (2006) have reported only infrequent mutations in their NB material. The PI3 kinases are generally considered to function as oncogenes. Although, our data could not find any indications of PIK3CD acting as an oncogene in NB based on the following aspects: (a) PIK3CD is located in a chromosomal region where LOH is common in NB as well as in other paediatric tumours (Grundy et al, 1994; Benn et al, 2000; Bridge et al, 2000), (b) gene expression studies show a downregulation of transcripts in high-stage NB compared to low-stage (consistent with findings of an expression profiling of selected genes of chromosome region 1p35–36 reported by Janoueix-Lerosey et al, 2004), (c) 5-Aza-dC and TSA studies indicate that PIK3CD could be influenced by epigenetic regulation in NB, (d) putative mutations have been identified. One could speculate that the mutations identified are gain-of-function mutations that would support the concept that the PIK3CD gene could act as an oncogene in NB. The downregulation in gene transcripts seen in high-stage compared to low-stage tumours could be an upregulation in both high- and low-stage NB compared to the transcription in the cells from which the NB tumour cells arise. Although, expression analysis of the tumours that harbour the mutations show that the gene is low expressed (data not shown). This contradicts the concept of the mutations being gain-of-function mutations. Further studies to evaluate the function of the PIK3CD gene in NB are ongoing.

In summary, we have undertaken a broad analysis of the region located in our NB/germ cell SRO of deletions. Epigenetic regulation, mRNA expression and mutation screening at the DNA level were explored. A group of genes have been identified as epigenetically affected in NB cell lines; the PIK3CD gene stands out as the most intriguing, since it also carries mutations in primary tumours, two patients with nonsynonymous mutations were identified. The mRNA expression of this gene is downregulated in unfavourable, compared to favourable, NB tumours. Treatment of NB cell lines with the histone deacetylase inhibitor TSA led to increased gene transcription, indicating that the gene could be epigenetically regulated. DNA mutations were also identified in the ERRFI1 gene. The current study further strengthens the concept of chromosome region 1p36 being important in the development of NB tumours and supports the hypothesis that there could be several genes in the region required for the initiation and/or progression of this tumour.
Ejeskär K, Sjögberg R-M, Kogner P, Martinsson T (2005) Imbalance of the mitochondrial pro- and anti-apoptotic mediators in neuroblastoma tumours with unfavourable biology. *Eur J Cancer* 41: 635 – 646

Amatschek S, Koenig U, Auer H, Steinlein P, Pacher M, Gruenfelder A, Dekan G, Vogl S, Kubista E, Heider KH, Stratowa C, Schreiber M, Sommergruber W (2004) Tissue-wide expression profiling using cDNA subtraction and microarrays to identify tumor-specific genes. *Cancer Res* 64: 844 – 856

Bauer A, Savelyeva L, Claas A, Praml C, Berthold F, Schwab M (2001) Smallest region of overlapping deletion in 1p36 in human neuroblastoma: a 1 Mbp cosmid and PAC contig. *Genes Chromosomes Cancer* 31: 228 – 239

Benn DE, Dwight T, Richardson AL, Delbridge L, Bambach CP, Stowasser B, Savelyeva L, Claas A, Praml C, Berthold F, Schwab M (2001) Estimation of the size and location of deletions by differential PCR and CGH subtraction and microarrays to identify tumor-specific genes. *Genes Chromosomes Cancer* 31: 228 – 239

Chang HW, Aoki M, Fruman D, Auger KR, Bellacosa A, Tsichlis PN, Caron H, Spieker N, Godfried M, Veenstra M, van Sluis P, de Kraker J, Chen YZ, Soeda E, Yang HW, Takita J, Chai L, Horii A, Inazawa J, Ohki M, Edenfeld G, Pielage J, Klambt C (2002) Cell lineage specification in the nervous system. *Neuron* 35: 641 – 653

Canton MC, Harrison J, Paul CL, Frommer M (1994) High sensitivity mapping of mutations in primary tumors. *Cancer Res* 54: 5121 – 5125

Cantley LC, Roberts TM, Vogt PK (1997) Transformation of chicken cells by a viral oncoprotein. Nowa E, Kogner P (1997) Delimitation of a critical tumour suppressor region at distal 1p36 in neuroblastoma tumours. *Eur J Cancer* 33: 1997 – 2001

Fijneman RJ, Maris JM, Brodeur GM (2005) Definition and characterization of a 500-kb homozygously deleted region at 1p36.2 – p36.3 in a neuroblastoma cell line. *Oncogene* 19: 4302 – 4307

Fukami A, Thompson J, Lamballe F, Iwata T, Ferby I, Barr FA, Davies AM, Maina F, Klein R (2005) Mitogen-inducible gene 6 is an endogenous inhibitor of HGF/Met-induced cell migration and neurite growth. *J Cell Biol* 171: 337 – 348

Paulin R, Grigg GW, Davey MW, Piper AA (1998) Urea improves efficiency of bisulphite-mediated sequencing of 5’-methylcytosine in genomic DNA. *Nucleic Acids Res* 26: 5009 – 5010

Ponger L, Mougin-Rousset D (2002) CpGProD: identifying CpG islands sequences. *Nucleic Acids Res* 30: 2288 – 2292

Saarikoski ST, Rivera SP, Hannon O (2002) Mitogen-inducible gene 6 (MIG-6), adipophilin and tuftelin are inducible by hypoxia. *Cancer Res* 62: 6237 – 6242

Saarikoski ST, Rivera SP, Hannon O (2002) Mitogen-inducible gene 6 (MIG-6), adipophilin and tuftelin are inducible by hypoxia. *Cancer Res* 62: 6237 – 6242

Vogelstein B, Velculescu VE (2004) High frequency of mutations of the PIK3CA gene in human cancers. *New England J Med* 350: 2541 – 2544

Vogelstein B, Velculescu VE (2004) High frequency of mutations of the PIK3CA gene in human cancers. *New England J Med* 350: 2541 – 2544

Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, Yan H, Gazdar AF, Yang J, Riggins GJ, Willson JK, Markowitz S, Kinzler KW, Vogelstein B, Velculescu VE (2004) High frequency of mutations of the PIK3CA gene in human cancers. *Science* 304: 554

Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, Yang H, Gazdar A, Powell SM, Riggins GJ, Willson JK, Markowitz S, Kinzler KW, Vogelstein B, Velculescu VE (2004) High frequency of mutations of the PIK3CA gene in human cancers. *Science* 304: 554

Yan H, Gazdar AF, Yang J, Riggins GJ, Willson JK, Markowitz S, Kinzler KW, Vogelstein B, Velculescu VE (2004) High frequency of mutations of the PIK3CA gene in human cancers. *Science* 304: 554

Zhang YW, Staal B, Su Y, Swiatek P, Zhao P, Cao B, Resau J, Sigler R, Bronson R, Vande Woude GF (2007) Evidence that MIG-6 is a tumor suppressor gene. *Oncogene* 26: 269 – 276

Kundra, J, M.,(Action 1971) Mutation and cancer: statistical study of retinoblastoma. *Proc Natl Acad Sci USA* 68: 820 – 823

Krona C, Ejeskär K, Abel F, Kogner P, Björk J, Björk E, Sjögberg R-M, Martinsson T (2003) Screening for gene mutations in a 500 kb neuroblastoma tumor suppressor candidate region in chromosome 1p; mutation and stage-specific expression in UBE4B/UFD2. *Oncogene* 22: 2343 – 2351

Lazarz P, Munoz J, Nistal M, Pestana A, Enciso I, Castresana JS (2006) Frequent promoter hypermethylation of RASSF1A and CASP8 in neuroblastoma. *BMC Cancer* 6: 254

Liu Z, Yang X, Tan F, Cullion K, Thiele CJ (2006) Molecular cloning and characterization of human Castor, a novel human gene upregulated during cell differentiation. *Biochem Biophys Res Commun* 344: 834 – 844

Martinsson T, Sjögberg R-M, Hallstenstern K, Nordling M, Hedborg F, Kogner P (1997) Delimitation of a critical tumor suppressor region at distal 1p in neuroblastoma tumours. *Eur J Cancer* 33: 1997 – 2001

Martinsson T, Sjögberg R-M, Hedborg F, Kogner P (1995) Deletion of chromosome 1p loci and microsatellite instability in neuroblastomas analyzed with short-tandem repeat polymorphisms. *Cancer Res* 55: 5681 – 5686

Mellerrick DM, Kassis IA, Zhang SD, Ondewald WF (1992) Castor encodes a novel zinc finger protein required for the development of a subset of CNS neurons in dorsophila. *Neuron* 9: 789 – 803

Ohira M, Kageyama Y, Miura M, Furuta S, Machida T, Shishikura T, Takayasu H, Islam A, Nakamura Y, Takahashi M, Tomioka N, Sakiyama S, Kaneko Y, Toyoda A, Hattori M, Sakaki Y, Ohki M, Horii A, Soeda E, Inazawa J, Seki N, Kuma H, Nozawa I, Nakagawa A (2000) Identification and characterization of a 5000-kb homozygously deleted region at 1p36.2 – p36.3 in a neuroblastoma cell line. *Oncogene* 19: 4302 – 4307

Pante G, Thompson J, Lamballe F, Iwata T, Ferby I, Barr FA, Davies AM, Maina F, Klein R (2005) Mitogen-inducible gene 6 is an endogenous inhibitor of HGF/Met-mediated cell migration and neurite growth. *J Cell Biol* 171: 337 – 348

Paulin R, Grigg GW, Davey MW, Piper AA (1998) Urea improves efficiency of bisulphite-mediated sequencing of 5’-methylcytosine in genomic DNA. *Nucleic Acids Res* 26: 5009 – 5010

Ponger L, Mougin-Rousset D (2002) CpGProD: identifying CpG islands associated with transcription start sites in large genomic mammalian sequences. *Bioinformatics* 18: 631 – 633

Saarikoski ST, Rivera SP, Hannon O (2002) Mitogen-inducible gene 6 (MIG-6), adipophilin and tuftelin are inducible by hypoxia. *FEBS Lett* 530: 186 – 190

Samuels Y, Velculescu VE (2004) Oncogenic mutations of PIK3CA gene in human cancers. *Cell Cycle* 3: 1221 – 1224

Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, Yan H, Gazdar A, Powell SM, Riggins GJ, Willson JK, Markowitz S, Kinzler KW, Vogelstein B, Velculescu VE (2004) High frequency of mutations of the PIK3CA gene in human cancers. *Science* 304: 554

Takai D, Jones PA (2002) Comprehensive analysis of CpG islands in human chromosomes 21 and 22. *Proc Natl Acad Sci USA* 99: 3740 – 3745

Vandsemoeple J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT–PCR data by geometric averaging of multiple internal control genes. *Genome Biol* 3, RESEARCH0034.1-0034.11

White PS, Thompson PM, Gotto T, Okawa EK, Igarashi J, Kok M, Wint J, Gregory SG, Hogarty MD, Maris JM, Brodeur GM (2005) Definition and characterization of a region of 1p36.3 consistently deleted in neuroblastoma. *Oncogene* 24: 2684 – 2694

Zhang YW, Staal B, Su Y, Swiatek P, Zhao P, Cao B, Resau J, Sigler R, Bronson R, Vande Woude GF (2007) Evidence that MIG-6 is a tumor suppressor gene. *Oncogene* 26: 269 – 276