Supplementary Materials: Alkanediamide-Linked Bisbenzamidines Are Promising Antiparasitic Agents

Jean J. Vanden Eynde, Annie Mayence, Madhusoodanan Mottamal, Cyrus J. Bacchi, Nigel Yarlett, Marcel Kaiser, Reto Brun and Tien L. Huang

1. Thermal Melting Data, pIC\textsubscript{50} Data and Docking Scores

Table S1. Docking of alkanediamide-linked bisbenzamidines and analogs to various DNA duplexes with specific central sequences, \textit{in vitro} antiparasitic properties (pIC\textsubscript{50}) and thermal melting data (\(\Delta Tm\)) of tested analogs with Poly(dA-dT) and CT-DNA.

Compd.	Central DNA Sequences of the Duplex and the Docking Scores	pIC\textsubscript{50} Values for 3 Cell Lines	Thermal Melting						
	AAA AAG GGG	AAA AAG GGG	AAG AAG GGG	GGC GGC	T.b. brucei	T.b. rhod \(c\)	P. falcip K1 b	\(\Delta Tm, ^\circ C\) Poly(dA-dT)	\(\Delta Tm, ^\circ C\) CT-DNA
1	4.71 4.79 5.74 6.29	ND	ND	8.523	ND	ND			
2	6.26 6.01 7.16 5.23	5.046	5.660	6.338	ND	11.5			
3	5.88 5.95 5.03 6.32	5.187	5.102	4.349	ND	0.15			
4	6.82 5.37 7.16 7.22	5.137	5.000	5.500	ND	-0.2			
5	6.48 6.62 6.94 6.31	8.046	7.018	8.699	ND	0.7			
6	7.28 7.79 7.92 7.04	8.523	8.699	7.745	ND	11.4			
7	7.01 8.46 6.98 6.61	7.387	7.678	6.420	ND	14.4			
8	1.99 5.09 5.01 5.39	5.553	5.959	4.000	ND	13.8			
9	6.45 6.12 6.08 5.96	ND	5.706	4.000	ND	0.0			
10	7.12 7.59 8.07 7.03	7.921	8.155	8.398	ND	0.0			
11	6.85 8.91 8.54 4.63	8.699	8.699	8.699	ND	0.0			
12	6.49 8.42 8.35 7.15	8.523	9.000	8.222	ND	10.7			
13	9.19 9.3 8.79 8.35	6.398	6.620	8.097	ND	13.2			
14	8.68 10.53 11.1 9.01	8.699	8.398	7.921	ND	7.5			
15	9.57 10.06 8.99 6.42	8.097	8.155	7.824	ND	13.6			
16 d	6.99 8.83 8.64 6.26	8.699	8.699	8.699	21.6	11.6			

\(a\) T.b. rhodesiense, \(b\) P. falciparum K1; \(c\) Calf Thymus DNA; \(d\) Pentamidine; ND denotes not done.

2. Correlation Plot

Correlation between the experimental pIC\textsubscript{50} for \textit{T.b. brucei}, \textit{T.b. rhodesiense} and \textit{P. falciparum} K1 cell lines and the \(\Delta Tm\) with poly(dA-dT) are shown in Figure S1.

![Figure S1. Cont.](image_url)
Figure S1. Correlation between the experimental pIC₅₀ in different cell lines and the ΔTₘ with poly(dA·dT). (A) T.b. brucei, (B) T.b. rhodesiense and (C) P. falciparum K1 cell lines. The p values for the correlations are 0.005, 0.001 and 0.009 for T.b. brucei, T.b. rhodesiense and P. falciparum K1 respectively.

3. Molecular Modeling Studies

3.1. Methodology

We used Surflex-Dock to study the DNA binding affinities of 16 bisbenzamidine compounds to the minor groove of AT-rich sites. The AAATTT sequence was the primary target of interest, but we also considered to target AAAGTTT and AAAGCTTT, because a single G or GC inserted short AT base pairs are common in eukaryotic parasite genomes. One DNA sequence rich in G-C base pairs (5′-d(GCGCGCGCGC)-3′) was also considered. For the AAATTT sequence we used 5′-d(CTGGGTTTGC)-3′ as used in a recent study [2]. The AAAGTTT and AAAGCTTT sequences were constructed by inserting G and GC to the center of the 5′-d(CTGGGTTTGC)-3′ sequence. The initial regular B-DNA duplexes were constructed using the Biopolymer/Build module in SYBYL-X1.3 and energy minimized using the Powell method and Tripos force filed. Initial 3D structures of all the 16 compounds were built using the sketch molecule function in SYBYL-X and energy minimized using the Powell method with Tripos force field and Gasteiger-Huckel charges.

To help position the bound bisbenzamidine compounds to the minor groove constituting AT rich base pairs, the model d(CTGGGTTTGC) structure was aligned to the crystal structure of d(CGCGAATTCGCG)-pentamidine complex (ID64.pdb) [1] such that the central AATT sites were overlaid and the DNA sequence from 1D64 was removed. All the other model DNA duplexes were then aligned to this model such that crystal ligand is in the minor groove of the target sequences AAATTT, AAAGTTT, AAAGCTTT and GCGCGC. All the docking calculations were carried out using the standard protocols with Surflex-Dock, and 20 poses were retained for each compound based on the docking scores. Within the top 10 poses at least 4 to 9 poses were found to have identical or very similar poses. The standard deviations of the energies of these poses for most compounds were less than 0.5. A consensus score that combines multiple popular scoring functions, such as G_Score, PMF_Score, D_Score and ChemScore, was also calculated for each hit, and it is supposed to be more robust than any single function for evaluating ligand-receptor interaction and it has been validated in virtual high throughput screening [3]. Thus the total score with the best consensus score was used for ranking the binding affinities of benzamidine compounds to the double helix DNA with specific AT rich and GC sites.

3.2. Surflex-Dock Data

Docking scores of alkanediamide-linked bisbenzamidines and analogs to various DNA duplexes with specific central sequences are tabulated in Table S1.
3.3. Correlation Data

Correlation between the experiment pIC₅₀ values in different cell lines and the docking score have determined. The Pearson <i>r</i> values and the <i>p</i> values for statistical significance are tabulated in Table S2.

Table S2. Pearson’s correlation (<i>r</i>) between the experimental pIC₅₀ values of three cell lines or ΔTm of poly(dA-dT) and the docking scores for different central minor groove sequences. The values in brackets are the <i>p</i> values.

Cell Lines or Polymer	Correlation Coefficient <i>r</i> and the <i>p</i> Values between the Docking Scores and the pIC₅₀ or ΔTm.			
	AAATTT	AAAGTTT	AAAGCTTT	GGCGGC
T.b. brucei	0.43 (0.127)	0.75 (0.002)	0.68 (0.008)	0.19 (0.526)
T. b. rhod	0.39 (0.150)	0.78 (0.001)	0.70 (0.004)	0.18 (0.519)
P. falcip K1	0.48 (0.060)	0.51 (0.042)	0.62 (0.010)	0.26 (0.321)
Poly(dA-dT)	0.35 (0.218)	0.58 (0.028)	0.56 (0.038)	0.06 (0.832)

3.4. DNA-Ligand Binding Interactions

Two active compounds, 11 and 15, bound to the central –AAAGTTT- sites of 5′-d(CCAAAGTTTGC)-3′ duplex are depicted in Figure S2. In compound 11 one terminal amidine displayed a H-bond with O3′ of A5 and the other terminal amidine displayed a H-bond with O3′ of C17. In compound 15 one terminal amidine displayed two H-bonds with O4′ of A5 and N3 of A4, and the other terminal amidine displayed a H-bond with O3′ of A16. In addition, the alkanediamide nitrogens of the linkers in 11 formed two H-bonds with O2 of T7 and N3 of A5 and in 15 formed one H-bond with O2 of T8.

![Figure S2](image-url)

Figure S2. Detailed views from the minor groove of the hydrogen bond interactions between compounds 11 (A) and 15 (B) and the central –AAAGTTT- sites of 5′-d(CCAAAGTTTGC)-3′ duplex. The far end AT base pairs, the center GC base pair and the nucleotides that make hydrogen bonds with the ligands are shown in stick model. H-bond making nucleotides are shown with yellow carbons and other nucleotides are shown in pink carbons. The DNA is represented as blue ribbon. All the oxygen and nitrogen atoms are colored in red and blue respectively, and the carbon atoms of the compounds are shown in green.

References

1. Edwards, K.J.; Jenkins, T.C.; Neidle, S. Crystal structure of a pentamidine-oligonucleotide complex: Implications for DNA-binding properties. *Biochemistry* **1992**, *31*, 7104–7109.
2. Chai, Y.; Paul, A.; Rettig, M.; Wilson, W.D.; Boykin, D.W. Design and synthesis of heterocyclic cations for specific DNA recognition: From at-rich to mixed-base-pair DNA sequences. *J. Org. Chem.* **2014**, *79*, 852–866.

3. Clark, R.D.; Strizhev, A.; Leonard, J.M.; Blake, J.F.; Matthew, J.B. Consensus scoring for ligand/protein interactions. *J. Mol. Graph. Model.* **2002**, *20*, 281–295.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).