Serial lung ultrasounds in pediatric pneumonia in Mozambique and Pakistan

Amy Sarah Ginsburg1,9, Imran Nisar2, Lola Madrid3, Jennifer L. Lenahan4, Benazir Balouch7, Pio Vitorino5, Jun Hwang1, Alessandro Lamorte6, Neel Kanth7, Rubao Bila5, Marta Valente3, Rosauro Varo3, Susanne May1, Quique Bassat3, Fyezah Jehan2 & Giovanni Volpicelli8

Lung ultrasound (LUS) is a promising point-of-care imaging technology for diagnosing and managing pneumonia. We sought to explore serial LUS examinations in children with chest-indrawing pneumonia in resource-constrained settings and compare their clinical and LUS imaging courses longitudinally. We conducted a prospective, observational study among children aged 2 through 23 months with World Health Organization Integrated Management of Childhood Illness chest-indrawing pneumonia and among children without fast breathing, chest indrawing or fever (no pneumonia cohort) at 2 district hospitals in Mozambique and Pakistan. We assessed serial LUS at enrollment, 2, 6, and 14 days, and performed a secondary analysis of enrolled children's longitudinal clinical and imaging courses. By Day 14, the majority of children with chest-indrawing pneumonia and consolidation on enrollment LUS showed improvement on follow-up LUS (100% in Mozambique, 85.4% in Pakistan) and were clinically cured (100% in Mozambique, 78.0% in Pakistan). In our cohort of children with chest-indrawing pneumonia, LUS imaging often reflected the clinical course; however, it is unclear how serial LUS would inform the routine management of non-severe chest-indrawing pneumonia.

Pneumonia remains the leading infectious killer of children, particularly in resource-constrained settings1. Effective and timely diagnosis and management are critical to saving lives. Given the frequent lack of imaging capacity in resource-constrained settings and restrictions on use of imaging modalities with ionizing radiation in pediatric populations, much remains unknown about what takes place in the lungs of children with chest-indrawing pneumonia undergoing antibiotic treatment in resource-constrained settings. Lung ultrasound (LUS) is a portable, point-of-care tool that can dynamically visualize lungs at the bedside with promising diagnostic accuracy for pneumonia and greater sensitivity or specificity when compared with chest radiography (CXR)2–5. LUS can be used to visualize the lungs multiple times over the course of a child's illness without risk of exposing the child to ionizing radiation. We conducted a pilot study in Mozambique and Pakistan to investigate the use of LUS for diagnosis among children with World Health Organization (WHO) Integrated Management of Childhood Illness (IMCI) chest-indrawing pneumonia and found that expert LUS interpreters may achieve substantially higher interrater reliability (IRR) for LUS compared to CXR6. In this secondary analysis, we explore serial LUS examinations in children with chest-indrawing pneumonia and compare their clinical and imaging courses longitudinally.

Methods

Study design, setting and participants. Methods and primary results of this prospective, observational, facility-based cohort study have been described previously6,7. Secondary and exploratory objectives included tracking and comparing LUS and clinical presentations longitudinally at enrollment, and on Days 2, 6, and 14 among children with and without chest-indrawing pneumonia.

1University of Washington, Seattle, WA, USA. 2Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan. 3ISGlobal, Hospital Clinic - Universitat de Barcelona, Barcelona, Spain. 4Save the Children Federation, Inc, Seattle, WA, USA. 5Centro de Investigação Em Saúde de Manhiça (CISM), Maputo, Mozambique. 6Department of Emergency Medicine, Parini Hospital, Aosta, Italy. 7Sindh Government Children's Hospital-Poverty Eradication Initiative, Karachi, Pakistan. 8Department of Emergency Medicine, San Luigi Gonzaga University Hospital, Orbassano, Italy. 9University of Washington Clinical Trial Center, Building 29, Suite 250, 6200 NE 74th Street, Seattle, WA 98115, USA. *email: messageforamy@gmail.com
Analyses were performed using R (version 3.6.3; R Foundation for Statistical Computing)9. The level of significance was 0.05. No adjustments for multiple comparisons were made, given the exploratory nature of the analyses. All comparisons between groups while t-tests were used to compare continuous variables. Tests were 2-sided using an alpha-level of 0.05. No adjustments for multiple comparisons were made, given the exploratory nature of the analyses. All comparisons between groups were performed using R (version 3.6.3; R Foundation for Statistical Computing)9.

Lung ultrasound progressions

Study definitions	Lung ultrasound progressions
Chest-indrawing pneumonia	Improved: Between enrollment and Day 2: decreased number or size(s) ≥ 0.5 cm of consolidation(s), without any increase(s)
Fast breathing for age	Stable: Between enrollment and Day 2: no observed changes to number or size(s) ≥ 0.5 cm of consolidation(s)
Very fast breathing for age	Worsened: Between enrollment and Day 2: increased number or size(s) ≥ 0.5 cm of consolidation(s)
Hypoxemia	
Danger signs	
Respiratory distress: grunting; nasal flaring; head nodding; severe chest indrawing	

Clinical outcomes

Study definitions	Clinical outcomes
Clinically cured	Absence of danger signs, hypoxemia, fever, chest indrawing, and very fast breathing
Not clinically cured	Presence of any danger sign, hypoxemia, fever, chest indrawing, or very fast breathing

Study definitions and clinical outcomes

Children aged 2 through 23 months meeting WHO IMCI chest-indrawing pneumonia case definition (chest-indrawing pneumonia cohort) in outpatient and/or emergency departments of Manhiça District Hospital in Manhiça, Mozambique and Sindh Government Children’s Hospital–Poverty Eradication Initiative in Karachi, Pakistan were screened by study staff to determine eligibility (Table 1, Fig. 1). We chose to exclude children with more severe pneumonia and disease since we did not believe LUS would change initial management given that the standard of care for these children is to be admitted to hospital and receive empirical intravenous antibiotics. A separate group of 40 children presenting with complaints of cough or difficulty breathing but without fast breathing, chest indrawing or fever (no pneumonia cohort) was also screened. Conducted in accordance with International Conference on Harmonisation, Good Clinical Practice and Declaration of Helsinki 2008, the study was approved by Western Institutional Review Board, Comité Nacional de Bioética para a Saúde (246/CNBS/17), Comitè de Ética del Hospital Clinic de Barcelona (HCB/2017/0074), and Aga Khan University Ethics Review Committee, and registered with ClinicalTrials.gov (Registration: NCT03187067; 14/06/2017).

Study procedures

After obtaining informed consent from parents and/or legal guardians for study participation and upon enrollment on Day 1, eligible children underwent history, physical and LUS examinations. Enrolled children received local standard of care without the results of LUS examinations informing clinical care.

On enrollment and Days 2, 6, and 14, LUS examinations (longitudinal and oblique videos obtained of the anterior, lateral and posterior sides of the chest) were performed by 4 trained non-physician healthcare personnel (nurse and medical agent in Mozambique, and 2 radiology technicians in Pakistan) who received 1-day standardized training course and 3-day supervised practice. LUS interpretation using a standardized scoresheet targeted detection of typical lung consolidations, pleural effusions, interstitial patterns and obstructive atelectasis7,8. At least 2 independent physicians expertly trained in LUS interpretation and blinded to clinical presentation interpreted each LUS examination. If discordant, a designated expert LUS interpreter acted as arbiter. LUS operators at each site also interpreted LUS examinations, independently from one another. All interpretations were performed in batches at a later time using the same standardized scoresheet.

Blood samples were tested for hemoglobin and C-reactive protein in Mozambique and Pakistan, and for procalcitonin, malaria and HIV in Mozambique.

Statistical analysis

LUS progression (improved vs stable vs worsened) is defined on Days 2, 6, and 14 by comparing the number and size(s) of consolidations in each respective follow-up LUS to either the enrollment or last available LUS (Table 1). Chi-squared and Fisher’s exact tests were used to compare categorical variables between groups while t-tests were used to compare continuous variables. Tests were 2-sided using an alpha-level of 0.05. No adjustments for multiple comparisons were made, given the exploratory nature of the analyses. All analyses were performed using R (version 3.6.3; R Foundation for Statistical Computing)9.
Results

The chest-indrawing pneumonia cohort enrolled 100 and 130 children from Mozambique and Pakistan, respectively. Of the LUS and clinical data for these children, 90 and 110 were available at Day 2, 84 and 100 at Day 6, and 82 and 103 at Day 14, from Mozambique and Pakistan, respectively (Fig. 1). Children in the chest-indrawing pneumonia cohort with enrollment and at least 1 follow-up LUS enrolled in Pakistan were generally younger than those in Mozambique, with a lower proportion of female children (39.8% in Mozambique, 26.1% in Pakistan; Table 2). Higher C-reactive protein levels and lower average oxyhemoglobin saturation suggest that severity of disease may be greater in Pakistan, though average hemoglobin level was slightly lower in Mozambique. More children from Pakistan had consolidations on LUS at enrollment than those from Mozambique (42.9% vs 14.0%, p < 0.01).

The no pneumonia cohort enrolled 20 children from Mozambique and 20 children from Pakistan. Of note, only 2 children in the no pneumonia cohort, both from Pakistan, had consolidations on any LUS: 1 child on enrollment but not follow-up LUS and 1 child on Day 2 LUS (data not shown). Additionally, 1 child's data was not available because no visits were recorded beyond enrollment. The remaining 37 available LUS and clinical data for children in the no pneumonia cohort in Mozambique and Pakistan had normal enrollment and follow-up LUS examinations. We restrict our attention to the chest-indrawing pneumonia cohort for the remainder of the results.

When comparing each follow-up LUS directly to the enrollment LUS, many general progression categories appeared with similar frequency between countries (Tables 3 and 4). Among children with consolidations on enrollment LUS, more than half of the follow-up LUS improved on Day 2 (58.3% in Mozambique, 60.9% in Pakistan), while roughly a third worsened (33.3% in Mozambique, 34.8% in Pakistan), and a smaller number remained stable (8.3% in Mozambique, 4.3% in Pakistan, p = 0.76). By Day 6, only a quarter of follow-up LUS worsened or remained stable rather than improved (76.9% improved and 23.1% worsened in Mozambique, 75.0% improved, 13.6% worsened, and 11.4% stable in Pakistan, p = 0.42). By Day 14, the majority of follow-up LUS had improved (100% improved in Mozambique, 85.4% improved, 9.8% worsened, 9.4% stable in Pakistan, p = 0.73). Among children without consolidations on enrollment LUS, the vast majority of children's follow-up LUS remained stable rather than worsened (Day 2: 92.3% in Mozambique, 90.6% in Pakistan, p = 0.77; Day 6: 93.0% in Mozambique, 94.6% in Pakistan, p > 0.99; Day 14: 97.2% in Mozambique, 98.4% in Pakistan, p > 0.99).

Another way to categorize the LUS trajectories is to compare each follow-up LUS to the last, previously available LUS, and to judge the trajectory as improved or worsened by Day 14 based on the last such change, or as stable if no changes were observed. Among the LUS trajectories categorized this way for children with consolidations on enrollment LUS, by Day 14 100% of children's LUS improved in Mozambique, while 78.0% improved, 2.4% remained stable, and 19.5% worsened in Pakistan (Appendix 1). Among the LUS trajectories categorized this way for children without consolidations on enrollment LUS from Mozambique and Pakistan, respectively,
Table 2. Baseline characteristics of enrolled and analyzed\(^1\) children in the chest-indrawing pneumonia cohort by country. SD standard deviation. \(^1\)Baseline characteristics of enrolled children with at least 1 follow-up visit on Day 2, 6, or 14. \(^2\)HIV testing only conducted in Mozambique; missing or indeterminate for 54 children. \(^3\)Malaria testing only conducted in Mozambique; missing for 2 children. \(^4\)C-reactive protein missing for 5 children in Mozambique. \(^5\)Procalcitonin only measured in Mozambique; missing for 5 children.

	Mozambique (n = 93)	Pakistan (n = 119)	Between-country comparison p-value
Age (months)			
Mean (SD)	10.7 (6.0)	6.8 (4.7)	<0.01
<12, n (%)	53 (57.0%)	104 (87.4%)	<0.01
Female, n (%)	37 (39.8%)	31 (26.1%)	0.06
Temperature (°C)			
Mean (SD)	37.1 (1.1)	36.7 (0.8)	<0.01
Fever (≥ 38 °C), n (%)	20 (21.5%)	10 (8.4%)	0.01
Respiratory rate (breaths per minute)			
<12 months, mean (SD)	52.9 (11.4)	53.4 (7.9)	0.74
≥12 months, mean (SD)	44.4 (10.2)	47.9 (10.2)	0.26
Fast breathing, n (%)	50 (53.8%)	75 (63.6%)	0.18
Oxyhemoglobin saturation (%), mean (SD)	97.8 (10.2)	95.3 (2.2)	<0.01
<90%, n (%)	1 (1.1%)	0 (0.0%)	0.44
Hemoglobin (g/dL), mean (SD)	10.0 (1.3)	10.7 (1.3)	<0.01
Positive HIV rapid diagnostic test, n (%)\(^2\)	0 (0.0%)	0 (0.0%)	
Positive malaria rapid diagnostic test, n (%)\(^3\)	1 (1.1%)	1 (1.1%)	
C-reactive protein (ug/mL), mean (SD)\(^4\)	38.9 (51.0)	103.3 (192.1)	<0.01
Procalcitonin (ng/mL), mean (SD)\(^5\)	1.7 (7.4)	1.7 (7.4)	
Consolidation on lung ultrasound, n (%)	13 (14.0%)	51 (42.9%)	<0.01

Table 3. Progression of consolidation on lung ultrasound (LUS) by Days 2, 6 and 14 clinical status in Mozambique. \(^1\)Percentage of children with known progression category. \(^2\)Comparison of enrollment and Day 2 LUS showing decreased number or size(s) ≥ 0.5 cm of consolidation(s), without any increase(s). \(^3\)Comparison of enrollment and Day 2 LUS showing observed changes to number or size(s) ≥ 0.5 cm of consolidation(s). \(^4\)Comparison of enrollment and Day 2 LUS showing increased number or size(s) ≥ 0.5 cm of consolidation(s). \(^5\)Comparison of enrollment and Day 6 or Day 14 (as applicable) LUS showing decreased number or size(s) ≥ 1 cm of consolidation(s), without any increase(s). \(^6\)Comparison of enrollment and Day 6 or Day 14 (as applicable) LUS showing observed changes to number or size(s) ≥ 1 cm of consolidation(s). \(^7\)Comparison of enrollment and Day 6 or Day 14 (as applicable) LUS showing increased number or size(s) ≥ 1 cm of consolidation(s).
Scientific Reports | (2022) 11:6262 | https://doi.org/10.1038/s41598-021-85485-y

In children, serial LUS follow-up has been used in high-resource settings for the diagnosis and management of pneumonia, avian influenza A (H7N9) respiratory failure, and most recently, COVID-19 infection10–14. In the first study of its kind to longitudinally follow children with chest-indrawing pneumonia in resource-constrained settings with serial LUS examinations, we sought to characterize and track the trajectory of the children's pneumonias through LUS imaging. Other published reports describe using serial LUS in adults in high-resource settings to monitor lung involvement, disease progression, and treatment response during management of pneumonia, avian influenza A (H7N9) respiratory failure, and most recently, COVID-19 infection10–14.

Discussion

In the first study of its kind to longitudinally follow children with chest-indrawing pneumonia in resource-constrained settings with serial LUS examinations, we sought to characterize and track the trajectory of the children's pneumonias through LUS imaging. Other published reports describe using serial LUS in adults in high-resource settings to monitor lung involvement, disease progression, and treatment response during management of pneumonia, avian influenza A (H7N9) respiratory failure, and most recently, COVID-19 infection10–14.

In children, serial LUS follow-up has been used in high-resource settings for the diagnosis and management of bronchiolitis, pneumonia, and COVID-19 infection10–14. In children, serial LUS follow-up has been used in high-resource settings for the diagnosis and management of bronchiolitis, pneumonia, and COVID-19 infection10–14. In children, serial LUS follow-up has been used in high-resource settings for the diagnosis and management of bronchiolitis, pneumonia, and COVID-19 infection10–14.

In our study following a chest-indrawing pneumonia cohort in both Mozambique and Pakistan with serial LUS, the majority of the children did not show consolidations on their enrollment LUS. For those who did show consolidation on their enrollment LUS, 88.5% showed improvement on follow-up LUS by Day 14 and 82.7% were clinically cured by Day 14. By Day 14, most children in the chest-indrawing pneumonia cohort were clinically cured (87.8% in Mozambique, 83.5% in Pakistan) regardless of whether their imaging worsened on follow-up LUS from enrollment LUS. Of note, 1 out of 2 (50.0%) children in Mozambique who appeared to worsen on follow-up LUS appeared to have worsened on follow-up LUS regardless of whether they appeared clinically cured (p = 0.01) (Tables 3 and 4). Among children with consolidations on enrollment LUS, associations between clinically cured status (yes vs no) and LUS progression categories (improved, stable, and worsened) were not statistically significant, except for in Pakistan on Day 2 (31.1% in Mozambique, 6.4% in Pakistan), a majority of children appeared clinically cured by Day 6 (69.0% in Mozambique, 62.0% in Pakistan) and by Day 14 (87.8% in Mozambique, 83.5% in Pakistan) (Appendix 2).

Among children with consolidations on enrollment LUS, associations between clinically cured status (yes vs no) and LUS progression categories (improved, stable, and worsened) were not statistically significant, except for in Pakistan on Day 2 (31.1% in Mozambique, 6.4% in Pakistan), a majority of children appeared clinically cured by Day 6 (69.0% in Mozambique, 62.0% in Pakistan) and by Day 14 (87.8% in Mozambique, 83.5% in Pakistan) (Appendix 2). Among children with consolidations on enrollment LUS, associations between clinically cured status (yes vs no) and LUS progression categories (improved, stable, and worsened) were not statistically significant, except for in Pakistan on Day 2 (31.1% in Mozambique, 6.4% in Pakistan), a majority of children appeared clinically cured by Day 6 (69.0% in Mozambique, 62.0% in Pakistan) and by Day 14 (87.8% in Mozambique, 83.5% in Pakistan) (Appendix 2). Among children with consolidations on enrollment LUS, associations between clinically cured status (yes vs no) and LUS progression categories (improved, stable, and worsened) were not statistically significant, except for in Pakistan on Day 2 (31.1% in Mozambique, 6.4% in Pakistan), a majority of children appeared clinically cured by Day 6 (69.0% in Mozambique, 62.0% in Pakistan) and by Day 14 (87.8% in Mozambique, 83.5% in Pakistan) (Appendix 2).

Table 4. Progression of consolidation on lung ultrasound (LUS) by Days 2, 6 and 14 clinical status in Pakistan.

General LUS progression category from enrollment to:	Consolidation on enrollment LUS	No consolidation on enrollment LUS				
	Clinically cured	Not clinically cured	Overall	Clinically cured	Not clinically cured	Overall
Day 2 (n = 5)	(n = 41)	(n = 46)	(n = 2)	(n = 62)	(n = 64)	
Improved1,5	2 (40.0%)	26 (63.4%)	28 (60.9%)	–	–	
Stable1,6	0 (0.0%)	2 (4.9%)	2 (4.3%)	2 (100.0%)	56 (90.3%)	58 (90.6%)
Worsened1,7	3 (60.0%)	13 (31.7%)	16 (34.8%)	0 (0.0%)	6 (9.7%)	6 (9.4%)
Day 6 (n = 26)	(n = 26)	(n = 44)	(n = 36)	(n = 20)	(n = 36)	
Improved1,5	21 (80.8%)	12 (66.7%)	33 (75.0%)	–	–	
Stable1,6	4 (15.4%)	1 (5.6%)	5 (11.4%)	34 (94.4%)	19 (95.0%)	53 (94.6%)
Worsened1,7	1 (3.8%)	5 (27.8%)	6 (13.6%)	2 (5.6%)	1 (5.0%)	3 (5.4%)
Day 14 (n = 32)	(n = 32)	(n = 41)	(n = 54)	(n = 8)	(n = 62)	
Improved1,5	30 (93.8%)	5 (55.6%)	35 (85.4%)	–	–	
Stable1,6	1 (3.1%)	1 (11.1%)	2 (4.9%)	54 (100.0%)	7 (87.5%)	61 (98.4%)
Worsened1,7	1 (3.1%)	3 (33.3%)	4 (9.8%)	0 (0.0%)	1 (12.5%)	1 (1.6%)

1Percentage of children with known progression category. 2Comparison of enrollment and Day 2 LUS showing decreased number or size(s) ≥ 0.5 cm of consolidation(s), without any increase(s). 3Comparison of enrollment and Day 2 LUS showing no observed changes to number or size(s) ≥ 0.5 cm of consolidation(s). 4Comparison of enrollment and Day 2 LUS showing increased number or size(s) ≥ 0.5 cm of consolidation(s). 5Comparison of enrollment and Day 6 or Day 14 (as applicable) LUS showing decreased number or size(s) ≥ 1 cm of consolidation(s), without any increase(s). 6Comparison of enrollment and Day 2 LUS showing no observed changes to number or size(s) ≥ 1 cm of consolidation(s). 7Comparison of enrollment and Day 6 or Day 14 (as applicable) LUS showing increased number or size(s) ≥ 1 cm of consolidation(s). 8Comparison of enrollment and Day 6 or Day 14 (as applicable) LUS showing increased number or size(s) ≥ 1 cm of consolidation(s).
LUS were clinically cured; 1 out of 5 (20.0%) children in Pakistan who appeared to worsen on follow-up LUS were clinically cured. Based on these results, it is unclear how serial LUS would impact the routine management of non-severe chest-indrawing pneumonia.

In our cohort of children with chest-indrawing pneumonia, the LUS imaging often reflected the clinical course; however, there were some differences. On Day 2, LUS appeared to lag behind the clinical presentation with children appearing worse on follow-up LUS despite appearing clinically cured ((2 + 2)/(4 + 24) = 14.3% in Mozambique; (3 + 0)/(5 + 2) = 42.9% in Pakistan), but by Day 6 when the 5-day antibiotic treatment course is typically completed, LUS still appeared to lag behind in a smaller minority ((1 + 2)/(8 + 50) = 5.2% in Mozambique; (1 + 2)/(26 + 36) = 4.8% in Pakistan). Yet, by Day 14, with few exceptions ((0 + 1)/(11 + 61) = 1.4% in Mozambique and (1 + 0)/(32 + 54) = 1.2% in Pakistan), LUS corresponded with the clinical presentation. Conventionally, imaging is thought to lag behind clinical presentation and is not necessarily concordant with clinical cure. Despite this lag, we may have anticipated that a higher percentage of children who were clinically cured would show improvement on follow-up LUS compared to those who were not clinically cured, or conversely, that a higher proportion of children not clinically cured would remain stable or worsen on follow-up LUS. Most of the data in Mozambique and Pakistan were consistent with this expectation but did not reach statistical significance because of small numbers. The only exception was Day 14 in Pakistan among those with consolidation on enrollment LUS; the vast majority (93.8%) of those clinically cured showed LUS improvement whereas only about half (55.6%) among those not clinically cured showed LUS improvement. Because changes in LUS were judged in a relative manner, an improvement on LUS did not necessarily equal to cure.

While obtaining serial LUS does not appear to add significant value to the routine management of non-severe chest-indrawing pneumonia, our study was constrained by the relatively small sample sizes of enrolled children. Furthermore, limited comparisons could be made between sites and between pneumonia and no pneumonia cohorts due to the differing study populations between Mozambique and Pakistan. Worth noting, 81.8% in Pakistan vs 27.3% in Mozambique of children screened were not eligible for study enrollment because they did not exhibit chest indrawing. While care was taken to make certain that all eligibility criteria were confirmed at both study sites, this difference in screening numbers could be due to differences in care-seeking behavior at the study sites and/or differences in screening procedures. Also likely contributing to the larger differences in those screened vs enrolled in Pakistan, was that far more children presented to the study site in Pakistan than in Mozambique, prompting faster enrollment in the pneumonia cohort in Pakistan. Lower average oxyhemoglobin saturations, higher C-reactive protein measurements, more LUS consolidation and interstitial patterns, and somewhat poorer LUS trajectories by Day 14 in Pakistan suggest that sicker children may have been enrolled in Pakistan compared to Mozambique. These differences may be reflected in the results for Day 14, by which time all children in Mozambique who had LUS consolidations at enrollment had no evidence of disease on follow-up LUS or clinically.

Other study limitations include our analysis of disease progression on LUS for which we evaluated each follow-up LUS in comparison to a previous LUS, rather than the absolute presence or absence of disease at each timepoint. Additionally, our study was limited by the small proportion of children who clinically did not do well despite antibiotic treatment. Because so few children in the chest-indrawing pneumonia cohort were not clinically cured by Day 14, it is difficult to determine whether LUS imaging can help inform management of uncomplicated chest-indrawing pneumonia in children.

In our pilot study in Mozambique and Pakistan, following children with chest-indrawing pneumonia longitudinally with serial LUS did not appear to suggest a significant added value to management. It is important to remember that imaging is a part of the clinical assessment of pneumonia and should not be taken out of context of the child's clinical presentation. Use of serial LUS may be more helpful in the management of those with more severe disease or those with comorbidities.

Data availability
All data generated or analyzed for this study are included in this published article.

Received: 16 December 2020; Accepted: 1 March 2021
Published online: 18 March 2021

References
1. Liu, L. et al. Global, regional, and national causes of child mortality in 2000–13, with projections to inform post-2015 priorities: An updated systematic analysis. *Lancet* **385**, 430–440. https://doi.org/10.1016/S0140-6736(14)61698-6 (2015).
2. Pereda, M. A. et al. Lung ultrasound for the diagnosis of pneumonia in children: a meta-analysis. *Pediatrics* **135**, 714–722. https://doi.org/10.1542/peds.2014-2833 (2015).
3. Stadler, J. A. M., Andronikou, S. & Zar, H. J. Lung ultrasound for the diagnosis of community-acquired pneumonia in children. *Pediatr. Radiol.* **47**, 1412–1419. https://doi.org/10.1007/s00247-017-3910-1 (2017).
4. Xin, H., Li, J. & Hu, H. Y. Is lung ultrasound useful for diagnosing pneumonia in children? A meta-analysis and systematic review. *Ultrasound Q.* **34**, 3–10. https://doi.org/10.1009/RULQ.0000000000000330 (2018).
5. Iaworska, J. et al. Consensus on the application of lung ultrasound in pneumonia and bronchiolitis in children. *Diagnostics* (Basel) https://doi.org/10.3390/diagnostics10110935 (2020).
6. Ginsburg, A. S. et al. Performance of lung ultrasound in the diagnosis of pediatric pneumonia in Mozambique and Pakistan. *Pediatr. Pulmonol.* https://doi.org/10.1002/ppul.25176 (2020).
7. Lenahan, J. L. et al. Multicentre pilot study evaluation of lung ultrasound for the management of paediatric pneumonia in low-resource settings: a study protocol. *BMJ Open Respir. Res.* **5**, e000340. https://doi.org/10.1136/bmjresp-2018-000340 (2018).
8. Volpicelli, G. et al. International evidence-based recommendations for point-of-care lung ultrasound. *Intensive Care Med.* **38**, 577–591. https://doi.org/10.1007/s00134-012-2513-4 (2012).
9. R Core Team. *R: A Language and Environment for Statistical Computing* (R Foundation for Statistical Computing, Vienna, 2020).
10. D’Amato, M. et al. Assessment of thoracic ultrasound in complementary diagnosis and in follow up of community-acquired pneumonia (cap). BMC Med. Imaging 17, 52. https://doi.org/10.1186/s12880-017-0225-5 (2017).

11. Tsai, N. W., Ngai, C. W., Mok, K. L. & Tsung, J. W. Lung ultrasound imaging in avian influenza A (H7N9) respiratory failure. Crit. Ultrasound J. 6, 6. https://doi.org/10.1186/2036-7902-6-6 (2014).

12. Buonsenso, D. et al. Clinical role of lung ultrasound for diagnosis and monitoring of COVID-19 pneumonia in pregnant women. Ultrasound Obstet. Gynecol. 56, 106–109. https://doi.org/10.1002/uog.22055 (2020).

13. Convissar, D., Gibson, L. E., Berra, L., Bittner, E. A. & Chang, M. G. Application of lung ultrasound during the COVID-19 pandemic: A narrative review. Anesth. Analg. https://doi.org/10.1213/ANE.00000000000004929 (2020).

14. Vetrugno, L. et al. Our Italian experience using lung ultrasound for identification, grading and serial follow-up of severity of lung involvement for management of patients with COVID-19. Echocardiography 37, 625–627. https://doi.org/10.1111/echo.14664 (2020).

15. Caiulo, V. A. et al. Lung ultrasound in bronchiolitis: comparison with chest X-ray. Eur. J. Pediatr. 170, 1427–1433. https://doi.org/10.1007/s00431-011-1461-2 (2011).

16. Caiulo, V. A. et al. Lung ultrasound characteristics of community-acquired pneumonia in hospitalized children. Pediatr. Pulmonol. 48, 280–287. https://doi.org/10.1002/ppul.22585 (2013).

17. Urbanowska, E. et al. Lung ultrasound in the diagnosis and monitoring of community acquired pneumonia in children. Respir. Med. 109, 1207–1212. https://doi.org/10.1016/j.rmed.2015.06.011 (2015).

18. Berce, V., Tomazin, M., Gorenjak, M., Berce, T. & Lovrenčič, B. The usefulness of lung ultrasound for the aetiological diagnosis of community-acquired pneumonia in children. Sci. Rep. 9, 17957. https://doi.org/10.1038/s41598-019-54499-y (2019).

19. Musolino, A. M. et al. Lung ultrasound features of children with complicated and noncomplicated community acquired pneumonia: A prospective study. Pediatr. Pulmonol. 54, 1479–1486. https://doi.org/10.1002/ppul.24426 (2019).

20. Gregorio-Hernández, R., Escobar-Izquierdo, A. B., Cobas-Pazos, J. & Martínez-Gimeno, A. Point-of-care lung ultrasound in three neonates with COVID-19. Eur. J. Pediatr. https://doi.org/10.1007/s00431-020-03706-4 (2020).

21. Bruns, A. H. et al. Pneumonia recovery: Discrepancies in perspectives of the radiologist, physician and patient. J. Gen. Intern. Med. 25, 203–206. https://doi.org/10.1007/s11606-009-1182-7 (2010).

Acknowledgements
We thank the dedicated study staff at Manhiça District Hospital in Manhiça, Mozambique and Sindh Government Children’s Hospital–Poverty Eradication Initiative in Karachi, Pakistan for implementing the study and providing patient care. We thank Adelina Malembe and Zumilda Arão Boca in Mozambique and Fariha Sohail and S.M. performed the statistical analyses and interpreted the data, and drafted sections of the manuscript. All authors worked collaboratively to review and revise the manuscript and agree to be accountable for the work.

Author contributions
A.S.G. conceptualized the study, obtained research funding, designed the study and data collection instruments, coordinated and supervised data collection from the sites, interpreted the data, and drafted the manuscript. J.L.L. coordinated and supervised data collection from the sites, interpreted the data, and drafted the manuscript. J.H. and S.M. performed the statistical analyses and interpreted the data, and drafted sections of the manuscript. All authors worked collaboratively to review and revise the manuscript and agree to be accountable for the work.

Funding
This work was supported by grants from the Bill and Melinda Gates Foundation (OPP1105080) and Save the Children.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-85485-y.

Correspondence and requests for materials should be addressed to A.S.G.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021