Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Comparative study of SARS-CoV-2 antibody titers between male and female COVID-19 patients living in Kurdistan region of Iraq

Sonia Elia Ishaq, Shang Ziyad Abdulqadir, Zhikal Omar khudhur, Shwan Ali Omar, Mahdi Khaled Qadir, Harem khdir Awla, Mohammed Fatih Rasul, Ahmed Abdulrazzaq Bapir, Anna Zanichelli, Muhammad Khalid Mansoor, Muhammad Kaleem, Muhammad Arif Rizwan, Shukur Wasman Smail, Esmaeil Babaei

ARTICLE INFO

Keywords:
IgM
IgG
SARS-CoV-2
Sex differences

ABSTRACT

Recently, there is increasing evidence that coronavirus disease 2019 (COVID-19) causes men to experience more serious symptoms and have a higher mortality rate than women, but the association between sex and immune response stays unknown till now, and weather patient’s prognosis associated with sex or not is another vague in COVID-19. In this study, the SARS-CoV-2-specific antibody titer test was performed for 727 patients who were a positive RT-PCR result for COVID-19 and we determined the difference in immune response in both genders. Patients were divided into two groups based on their genders, which were 383 males and 344 females. Plasma was collected from the patients after 17 days of diagnosis with COVID-19, and the concentrations of specific antibodies (IgG and IgM) was measured by multiparametric immunoassay system (VIDAS). Results demonstrated that there was no significant difference in both IgM and IgG production in male participants compared to women. Moreover, despite there was a weak significant positive association between age and IgM in male patients, while there was no significant correlation between IgG and age for the same gender. On the other hand, a slight positive correlation between IgM and IgG with age was observed in female participants. Finally, it concluded that there was no sex biases in patients with COVID-19 in Erbil, Iraq. So, these findings are crucial to treat and care male and female’s patients infected with COVID-19 at hospitals.

1. Introduction

SARS-CoV-2, a type of novel coronavirus, was initially identified in November 2019 in several cases in China-Wuhan city (Khailany et al., 2020). Later that, the World Health Organization (WHO) introduced outbreak of SARS-CoV-2 as a pandemic on March 11th, 2020. It has become increasingly evident that gender has relationship with disease severity in which Covid-19 develops in males with severe symptoms and
The higher incidence and higher mortality rate of COVID-19 in men compared to women is due to differences in biological factors (including differences in DNA, reproductive organs, and steroid hormones), and gender-related issues such as practicing the traditional and social aspects (Gebhard et al., 2020).

Gender-related issues such as practicing the traditional and social aspects are more in men as compared to women such as smoking, drug and alcohol abuse (Grissold et al., 2018). Men have higher age adjusted rates of coexistence of such diseases such as chronic obstructive pulmonary disease (COPD) which is obstruction of airflow from lungs and cardiovascular disease (CVD), both of them linking to a weak COVID-19 outcomes in comparison with female patients is still unclear.

A greater immune response (Fink et al., 2018). These results give a common idea that females could be more resistance and have high immunity against infectious agents. Nevertheless, the exact mechanism of development of COVID-19 by SARS-CoV-2 in male patients with serious respiratory disease was found to be non-significant difference (P-value = 0.410) than the female group (0.570 (0.020-7.610)). The median of age was also showed non-significant change between two groups (43.00 (33.00-57.00) in male vs 42.00 (30.75-55.25) in the female). The titer of SARS-CoV-2 IgG antibodies were also comparable (Table 2, Fig. 2a). We found that the median of IgG antibodies of male group (0.570 (0.020-7.610)) was also non-significantly different than the IgG of female group (1.170 (0.020-7.720)) (Table 2, Fig. 2b).

The SARS-CoV-2 antibodies were also correlated with the age in both male and female group. The relation revealed that in male patients, levels of IgM antibody were weakly positively correlated with age (r = 0.104, P = 0.046) (Fig. 3a, Table 3), whereas there was no association between levels of IgG antibody and age (r = 0.103, P = 0.056) (Fig. 3b, Table 3). By contrast, in female patients, levels of IgM and IgG antibodies were weakly positively associated with higher age (r = 0.137, P = 0.011) (r = 0.218, P < 0.0001) (Fig. 3c,d, Table 3).

Table 1: Demographic and clinical data

COVID-19 (N=727)	Mean (SEM)	Median (IQR)
Age (years)	44.40 ± 0.633	42.50 (32.00-56.00)
Gender		
Male	383	
Female	344	
IgM (IU/mL)	2.253 ± 0.170	0.365 (0.150-1.665)
IgG (IU/mL)	6.319 ± 0.411	0.865 (0.020-7.715)

IQR, interquartile range; IgG, immunoglobin G; IgM, immunoglobin; SEM, standard error of mean

Fig. 1. Comparison of ages in male and female COVID-19 patients.
Gene Reports 25 (2021) 101409

3

faster clearance of virus loads in female (Chakravarty et al., 2020). Also, our finding was different from Robbiani et al. (2020) results, which showed men have a higher antibody titers concentration than women. Our data was quite different from Kutsuna et al. (2021) results that were no significant differences in IgG level in both genders in our study. However, there are higher in females (Zeng et al., 2020; Xiang et al., 2020). However, there could be affected by genetic bases and also non-genetics factors, explaining the antibody outcome stays unknown and require further investigation.

More importantly, IgG level in infected women is higher than in men, pretending why the survival rate and better patient’s prognosis are higher in females (Zeng et al., 2020; Xiang et al., 2020). However, there were no significant differences in IgG level in both genders in our study. Our data was quite different from Kutsuna et al. (2021) results that showed men have a higher antibody titers concentration than women. Also, our finding was different from Robbiani et al. (2020) results, which found that antibody titers in men are lower than in women. Although this discrepancy could be affected by genetic bases and also non-genetics factors, finding the possible cellular and molecular mechanisms explaining the antibody outcome stays unknown and require further investigation.

Furthermore, according to one of the studies performed by Sarhan et al. (2020) in Iraq, in which its antibody level production was close to our participant, the survival rate in men is lower than in females. However, antibody production level may not be the only reason for having a higher death rate in men compared to women in our study but, it might be due to men having a worse lifestyle than women such as smoking and alcohol consumption (Griswold et al., 2018). The presence of androgens and androgen receptors, higher expression of TMPRSS2 may be responsible for having a higher death rate in a male. TMPRSS2 are participating in SARS-CoV-2 infection combined with immunosuppressive effects of Androgens and comorbidities might have a role in the severity of the disease. On the other hand, a higher survival rate in women may be due to estrogens’ protective function, which has a role in having more robust innate immune response necessary for having a faster clearance of virus loads in female (Chakravarty et al., 2020).

Even though the physiologic mechanisms explaining the relationship between antibody production and age in the Iraqi population stay un-identified, evidences provide that SARS-CoV-2-specific antibody responses can be different in numerous age categories such as children and adults compared to those who possibly tried various clinical manifestations (Weisberg et al., 2021).

Although finding a similar immune response in infected male and female with COVID-19 in our population is a crucial results and demands further investigation to figure out the mechanism, limitations exist in analyses of this article should be considered. Firstly, samples from healthy individuals have been taken and used as a control. Secondly, viral RNA, cytokine and chemokine concentrations for our participants have not been measured.

4. Discussion

Results obtained from patients infected with SARS-CoV-2 revealed that there are no significant differences in immune responses between men and females. Firstly, the level of essential anti-S1-antibody such as IgG and IgM in both infected genders with SARS-CoV-2 were not significant statistically in our study. Secondly, the direct correlations between antibody production and age in female participants have been observed. There was also no correlation found between IgG and patients age in our population.

Comparison between parameters were done by the Mann–Whitney U test. IQR, interquartile range; IgG, immunoglobin G; IgM, immunoglobin. **Table 2**

Parameters	Male (Median ± IQR)	Female (Median ± IQR)	p-Value
IgM (IU/mL)	0.290 (0.120–1.483)	0.570 (0.020–7.610)	0.410
IgG (IU/mL)	0.570 (0.020–7.610)	1.170 (0.020–7.720)	0.332
Age (Years)	43.00 (33.00–57.00)	42.00 (30.75–55.25)	0.225

In conclusion, our results demonstrated that there was no significant differences between men and females infected with COVID-19 in Erbil, Iraq, and this vital outcome clarified that a different therapeutic approach for male and female is not necessary. Furthermore, SARS-CoV-2 IgG and IgM antibody concentrations in our population are pretty similar in both males and females.

5. Conclusions

In conclusion, our results demonstrated that there was no significant differences between men and females infected with COVID-19 in Erbil, Iraq, and this vital outcome clarified that a different therapeutic approach for male and female is not necessary. Furthermore, SARS-CoV-2 IgG and IgM antibody concentrations in our population are pretty similar in both males and females.

Ethical approval

We have followed all ethical approvals for this study.

Informed consent

All authors have read and approved the contents and manuscript.

Contributions

Clinical samples were gathered and detected with the aid of SEI, SZA, and ZOS. The data was studied by SWS and MKQ. The manuscript was written by HKA, MFR. The project was designed and supervised by AS.

CRediT authorship contribution statement

Sonia Elia Ishaq: Conceptualization. **Shang Ziyad Abdulqadir:** Conceptualization. **Zhikal Omar Khudhur:** Methodology. **Shwan Ali Omar:** Methodology. **Harem Khdir Awla:** Visualization. **Mohammed Fatih Rasul:** Visualization. **Ahmed Abdulrazzaq Bapir:** Visualization. **Anna Zanichelli:** Writing – review & editing. **Muhammad Khalid Mansoor:** Validation, Writing – review & editing. **Muhammad Kaleem:** Writing – original draft. **Muhammad Arif Rizwan:** Writing – original draft.

Fig. 2. Comparison of SARS-CoV-2 Antibodies in male and female: a) comparison of IgM between groups, b) comparison of IgG between groups. IgG, immunoglobin G; IgM, immunoglobin M; NS, non-significant.
draft. Shukur Wasman Smail: Conceptualization, Methodology, Supervision, Validation, Visualization, Writing – original draft, Writing – review & editing. Esmaeil Babaei: Supervision, Writing – review & editing.

Declaration of competing interest

There are no conflicting interests declared by the authors.

Acknowledgment

We thank Biolab laboratory in Erbil city-Iraq for permitting us to work there.

References

Chakravarty, D., Nair, S.S., Hammonds, N., Ratanani, P., Gharib, Y., Wagaskar, V., Mohamed, N., Lundon, D., Dovey, Z., Kyprianou, N., Tewari, A.K., 2020. Sex differences in SARS-COV-2 infection rates and the potential link to prostate cancer. Communications Biology 3, 374.

Collazos, J., Asensi, V., Carton, J.A., Adherencia, G.E.P.E.E.M.D.L., 2007. Sex Differences in the Clinical, Immunological and Virological Parameters of HIV-infected Patients Treated with HAART, 21, pp. 835–843.

Fink, A.L., Engle, K., Ursin, R.L., W.-Y, Tang, Klein, S.J.P.O.T.N.A.O.S., 2018. Biological Sex Affects Vaccine Efficacy and Protection Against Influenza in Mice, 115, pp. 12477–12482.

Fig. 3. The relationship between anti-SARS-CoV-2 neutralizing activity and age. a) correlation between IgM and age of male patients; b) correlation between IgG and age of male patients; c) correlation between IgM and age of female patients; d) correlation between IgG and age of female patients. IgG, immunoglobin G; IgM, immunoglobin M; NS, non-significant.

Table 3

X variable	Y variable	r	P-value
Age (M)	IgM	0.104	0.046
Age (M)	IgG	0.103	0.056
Age (F)	IgM	0.137	0.011
Age (F)	IgG	0.218	<0.0001

Correlation between parameters were done by the Spearman correlation coefficient, M, male; F, female, r, correlation coefficient, IgG, immunoglobin G; IgM, immunoglobin.
S. E. Ishaq et al.

Moore, A.L., Kirk, O., Johnson, A.M., Katlama, C., Blaxhult, A., Dietrich, M., Mehra, M.R., Desai, S.S., Kuy, S., Henry, T.D., Patel, A., Agudelo, M., Barnes, C.O., Gazumyan, A., Finkin, S.J.N., 2020. Convergent Antibody Responses to SARS-CoV-2 in Convalescent Individuals, 584, pp. 437–442.

Safdar, M., Khan, M.S., Karim, A.Y., Omar, S.A., Small, S.W., Saeed, M., Zabeer, S., Ali, M., Ahmad, B., Tasleem, M., Junejo, Y., 2021. SNPs at 3’UTR of APOL1 and miR-6741-3p target sites associated with kidney diseases more susceptible to SARS-COV-2 infection in silico and in vitro studies. Mamm. Genome 32 (5), 389–400.

Sarhan, A.R., Flath, M.H., Harsein, T.A., Harsein, K.R.I.M., 2020. Novel coronavirus (COVID-19) Outbreak in Iraq: The First Wave and Future Scenario.

Shen, C., Wang, Z., Zhao, F., Yang, Y., Li, J., Yuan, J., Wang, F., Li, D., Yang, M., Xing, L., 2020. Treatment of 5 Critically Ill Patients with COVID-19 With Convalescent Plasma. 323, pp. 1582–1589.

Tazerji, S.S., Duarte, P.M., Rahimi, P., Shababinejad, F., Dhakal, S., Malik, Y.S., Shetha, A.A., Lama, J., Klein, J., Safdar, M., Rahman, M.T., 2020. Transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to animals: an updated review. Journal of Translational Medicine 18 (1), 1–1. Vancouver.

Weisberg, S.P., Comors, T.J., Zhu, Y., Baldwin, M.R., Lin, W.H., Wontakal, S., Szabo, P.A., Wells, S.B., Dogra, P., GRAY, J., Idzikowski, E., Stanislao, D., Bovier, F.T., Davis-Porada, J., Matsumoto, R., Poon, M.M.E., Chait, M., Mathieu, C., Horvat, B., Decimo, D., Hudson, K.E., Zotti, F.D., Bitan, Z.C., La Carpia, F., Ferrara, S.A., Mace, E., Milner, J., Moscona, A., Hod, E., Porotto, M., Faber, D.L., 2021. Distinct antibody responses to SARS-CoV-2 in children and adults across the COVID-19 clinical spectrum. Nat. Immunol. 22, 25–31.

Williamson, E.J., Walker, A.J., Bacon, S., Bates, C., Morton, C.E., Curtis, H.J., Mehrkar, A., Evans, D., Inglesby, P.I.N., 2020. Factors associated with COVID-19-related death using OPENSAFELY. 584, 430–436.

Xiang, F., Wang, X., He, X., Peng, Z., Yang, B., Zhang, J., Zhou, Q., Ye, H., Ma, Y., Li, H.J., 2020. Antibody Detection and Dynamic Characteristics in Patients with Coronavirus Disease 2019, 71, pp. 1930–1934.

Zeng, H., Xu, C., Fan, J., Tang, Y., Deng, Q., Zhang, W., Long, X.J.J., 2020. Antibodies in Infants Born to Mothers with COVID-19 Pneumonia. 323, pp. 1848–1849.

Zhejiang, D.A.X., Yuan, Yi Xue, Di, Fu Shu, Yi, Y., Jack, M.A.F., Alibaba, F., 2020. Handbook of COVID-19 Prevention and Treatment: The First Affiliated Hospital, Zhejiang University School of Medicine compiled according to clinical experience.

Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Li, Z., Xiang, J., Wang, Y., Song, B., Gu, X.J.T.L., 2020. Clinical Course and Risk Factors for Mortality of Adult Inpatients with COVID-19 in Wuhan, China: a Retrospective Cohort Study, 395, pp. 1054–1062.