dopamine transmission. The results suggest that, in healthy humans, compulsively abused drugs across a range of pharmacological classes increase extracellular dopamine levels in the striatum. Following repeated drug use, the dopamine responses can become progressively larger (sensitized) and conditioned to environmental cues. Both of these effects are seen first within the ventral limbic striatum and then, as drug exposure increases, in the dorsolateral striatum. In individuals at high risk for addictions, these dopamine responses are altered. Both increases and decreases have been observed, potentially related to low serotonergic tone [1] and the presence vs. absence of drug related cues [2]. Both effects are likely to be clinically relevant. Low vs. high dopamine states disrupt vs. enhance functional connectivity, both globally and locally [3], influencing impulse-control and the ability to sustain focused, goal-directed behaviors. Once people have developed a substance use disorder, regionally specific alterations to drug cue-induced dopamine release and metabotropic glutamate receptors (mGluR5) are evident in multiple regions, including the amygdala, sensorimotor striatum, and limbic cortex [4]. Together, these studies suggest that one pathway to addiction is the development of excessive limbic and sensorimotor responses to drug-related cues, fostering a transition from situation-appropriate reward seeking to aberrant incentive salience and stimulus-response habits.

References
1. Cox SML, Benkelfat C, Dagher A, Delaney JS, Durand F, Koliva-kis T, Casey KF, Leyton M. Effects of lowered serotonin transmission on cocaine-induced striatal dopamine response: a PET [11C]raclopride study in humans. British Journal of Psychiatry 2011;199(Nov):391–397
2. Leyton M, Vezina P. Dopamine ups and downs in vulnerability to addictions: a neurodevelopmental model. TIPS 2014;35(6):268–276
3. Carbonell F, Nagano-Saito A, Leyton M, Cisek P, Benkelfat C, He Y, Dagher A. Dopamine precursor depletion impairs structure and efficiency of resting state brain functional networks. Neuropharmacology 2014;84:90–100
4. Milella MS, Marengo L, Dagher A, Rosa-Neto P, Benkelfat C, Leyton M. Limbic system mGluR5 availability in cocaine dependent subjects: a high-resolution PET [11C]A85688 study. Neurulmage 2014;98:195–202

S14: Breaking the ground – Evidence for novel classes of anti-depression agents beyond Ketamine

Chair: Maura Furey, USA
Co-Chair: Hsien-Yuan Lane, Taiwan

Speaker 1: Hsien-Yuan Lane, Taiwan
Title: NMDAR - glycine modulatory site as pharmacological target in depression: inhibition of glycine transporter I

Abstract
Background: Recently, modulation of glutamatergic neurotransmission has become an attractive approach for discovering novel antidepressants. Antagonists of the NMDA subtype glutamate receptor (NMDAR), such as ketamine, exhibit antidepressant-like effects in animal models and in patients with major depression and bipolar depression. On the other hand, decades ago, D-cycloserine, a partial agonist of the NMDAR, was incidentally found to have antidepressant activity. Lately, NMDA-enhancing treatments, such as sodium benzoate, also decreased depressive symptoms in patients with schizophrenia in clinical trials. Likewise, a reversible glycine transporter inhibitor, SSR504734, showed antidepressant effects in rodent models. In postmortem study, expression of NMDAR 1 and 2A subunit was decreased in brains of depressive patients. Therefore, hypofunction at the NMDAR may also play a role in major depression. However, it remains unclear whether enhancement of the NMDAR can be a treatment for depression.

Methods: We investigated the effects of sarcosine in various rodent models and conducted a 6-week randomized, double-blinded, citalopram-controlled trial in patients with major depressive disorder. Clinical efficacy and safety were assessed biweekly.

Results: Sarcosine decreased immobility in the forced swim test and tail suspension test, and other depression-like behaviors in rats. For depression patients, sarcosine significantly ameliorated severity of depression and improved general function than citalopram treatment. Sarcosine-receivers were more likely to remit and stay at the study. Sarcosine had excellent safety profile.

Discussion: Our findings suggest that sarcosine can improve depression-like behaviors in rodent models and treat depression in humans. A recent study found that sarcosine, as ketamine, may exert its anti-depressive property by activating the mammalian target of rapamycin (mTOR) signaling pathway through stimulation of the AMPA receptor.

References
Lane HY, et al. Add-on treatment of benzoate for schizophrenia: a randomized, double-blind, placebo-controlled trial of D-amino acid oxidase inhibitor. JAMA Psychiatry. 2013 Dec;70(12):1267–75
Huang CC, et al. Inhibition of glycine transporter-I as a novel mechanism for the treatment of depression. Biol Psychiatry. 2013 Nov 15;74(10):734–41.

Speaker 2: Lin Lu, China
Title: New targets for rapid antidepressant action: NMDA receptor NR2B subunit and the underlying mechanisms

Abstract
Depression is one of the most prevalent and debilitating disorders worldwide that causes high social and economic burden. Available antidepressants require weeks or months to produce a therapeutic response, further highlighting the pressing need to develop rapidly acting antidepressant medications with limited side effects. The glutamate mechanisms in major depressive disorder have attracted much attention in recent years as a promising target for developing novel antidepressants. Our previous study showed that glycine site NMDA receptor antagonist 7-CTKA produces rapid antidepressant-like effects mediated by GSK3β and mTOR signaling. We also found high glutamate abundance accompanied by high expression of DAPK1 and phosphorylation of NR2B in the medial prefrontal cortex (mPFC) of rats that were subjected to chronic unpredictable mild stress (CUS), which could be mimicked by blockade of astrocytic glutamate transporter-1. Administration of DAPK1 inhibitor and selective NR2B antagonist but not NR2A antagonist produced a rapid antidepressant effect. Uncoupling DAPK1 from NR2B subunit by application of cell membrane permeable Tat-NR2Bα peptide also produced a rapid antidepressant effect by reducing the immobility in the forced swim test (FST) and reversing CUS-induced...
decrease in sucrose preference. Moreover, selective NR2B antagonist did not produce rewarding effect. These findings suggest that DAPK1 interaction with NMDA receptor NR2B subunit acts as a critical component in the rapid antidepressant actions.

Inflammation can impact the glutamatergic system enhancing excitotoxicity and decreasing neuroplasticity. Using altered peptide ligand (APL) of myelin basic protein (MBP) to immunize rats, we found that myelin-derived altered peptides produced a prolonged antidepressant-like effect by reducing the immobility in the FST and preventing CUS-induced anhedonia. The behavioral outcome was accompanied by increased c-fos expression and restoration of p11 and BDNF levels in the mPFC and dentate gyrus (DG). Moreover, intra-mPFC infusion of lentiviral vectors containing short-hairpin RNA targeting p11 blunted the antidepressant-like effects. Our findings introduce a novel immune-based therapy for treatment of depression.

NMDA receptor trafficking and function are regulated by the receptor tyrosine kinase EphB2 through dynamic interacting NMDA receptors and Src-mediated tyrosine phosphorylation. We observed decrease in EphB2 level in the mPFC of mice that were susceptible to chronic social defeat stress. Activation of EphB2 receptors in the mPFC produced stress-resistant and antidepressant-like behavioral effects in susceptible mice, while EphB2 receptor knockdown increased the susceptibility to stress and induced depressive-like behaviors in a subthreshold chronic social defeat stress paradigm. These behavioral effects were associated with changes in the phosphorylation of cofilin and expression of some synaptic proteins and stress-induced spine remodeling in the mPFC. These results indicate that EphB2 is a critical regulator of stress vulnerability and might be a potential target for the treatment of depression.

Speaker 3: Maura Furey, USA
Title: Antidepressant Effects of Antimuscarinic Action: Clinical Efficacy and Biomarkers of Response
Abstract
Background: Conventional antidepressant therapy has remained virtually unchanged for the past 50 years. The discovery of the rapid and potent antidepressant effects of the NMDA receptor antagonist ketamine has kindled interest in pursuing new and novel mechanisms for the treatment of depression. The cholinergic neurotransmitter system is implicated in affective illness, whereby a cholinergic agonist rapidly produces depressive symptoms in currently manic bipolar patients and worsens depressive symptoms in unipolar patients. Here studies evaluating the antidepressant effects of the anticholinergic, scopolamine, and potential biomarkers of response will be discussed.
Methods: Currently unmedicated unipolar and bipolar patients participated in double-blind, placebo-controlled, crossover infusion studies using scopolamine (4mg/kg). Prior to each infusion patients completed the Profile of Mood State (POMS) and Visual Analog Scales (VAS) self-rating scales, and were assessed clinically using the Montgomery-Asberg Depression Rating Scale (MADRS). Following a single-blind placebo lead-in session, patients participated in a functional magnetic resonance imaging (fMRI) study while they performed a face-identity and face-emotion working memory task. Clinical efficacy was assessed by measuring change in MADRS over sessions. Biomarker analyses included: 1) baseline self-ratings were used in a discriminant function analysis to identify linear combinations of individual items that predict clinical response, and 2) whole brain task specific blood oxygen level-dependent (BOLD) signal at baseline was correlated with the magnitude of treatment response to scopolamine.

Results: Clinically, patients showed a rapid and robust antidepressant response following the first administration of scopolamine that exceeded the placebo response. The discriminant analysis based on baseline self-ratings separated responders from non-responders in both the unipolar and bipolar diagnostic subgroups. Baseline BOLD response in the bilateral middle occipital cortex, selectively during the emotion working memory task, correlated with the magnitude of treatment response.
Conclusion: These results indicate that antimuscarinic action by scopolamine produces rapid antidepressant effects, and that both clinical ratings and BOLD signal measured prior to treatment may predict clinical outcome. These findings implicate cholinergic and visual processing dysfunction in the pathophysiology of MDD, and suggest that both patient self-ratings and neural activity in the visual cortex may provide useful biomarkers for the identification of patients who will respond favorably to scopolamine.

References
Furey, M.L., and Drevets, W.C. The antimuscarinic drug scopolamine offers promise as a potent antidepressant agent: A randomized, placebo-controlled clinical trial. Archives of General Psychiatry, 63: 1121–1129, 2006.
Drevets, W.C., Furey, M.L. Antidepressant effects of scopolamine: a replication study. Biological Psychiatry, 67:432–8, 2010.
Furey, M.L., Nugent, A.C., Speer, A., Luckenbaugh, D.A., Hoffman, E.M., Frankel, E., Drevets, W.C., Zarate C. Jr. Baseline mood-state measures as predictors of antidepressant response to scopolamine. Psychiatric Research, 196(1); 62–7, 2012.
Furey, M.L., Drevets, W.C., Hoffman, E.M., Frankel, E., Speer, A.M., Zarate, C.A. Jr. Pre-treatment neural activity in visual cortex during emotional processing predicts treatment response to scopolamine in major depressive disorder. JAMA Psychiatry, 70(3); 1156–63, 2013.

Speaker 4: Shigeyuki Chaki, Japan
Title: Synaptic and neural mechanisms of agents with rapid acting antidepressant effects: Evidences for mGlu2/3 antagonists and ketamine
Abstract
Ketamine has been demonstrated to exert rapid and sustained antidepressant effects for patients with depression including treatment-resistant depression (TRD). However, a number of adverse effects preclude routine use of ketamine, thus, alternatives to ketamine are needed. Metabotropic glutamate (mGlu) 2/3 receptor antagonists have been demonstrated antidepressant effects in animal models, and some of the mechanisms underlying antidepressant effects are shared by ketamine, which raise the possibility that mGlu2/3 receptor antagonists could be an alternative to ketamine. Therefore, synaptic and neural mechanisms of mGlu2/3 receptor antagonists were investigated and compared with those of ketamine.

Systemic administration of mGlu2/3 receptor antagonists and ketamine exhibited rapid and sustained antidepressant effects in animal models, including those refractory to current medications. Antidepressant effects of mGlu2/3 receptor antagonists and ketamine were attenuated by NBQX (an AMPA receptor antagonist), K252a (a TrkB inhibitor) and rapamycin (an mTOR signaling inhibitor), suggesting that mGlu2/3 receptor antagonists and ketamine share synaptic mechanisms that both compounds may increase synaptic formation, which is underpinned by the reports that both compounds increase synaptic protein synthesis. Interestingly, local injection of LY341495 or ketamine into the mPFC exerted antidepressant effects in the