Evidence-Based Approach to Timing of Nerve Surgery

A Review

Brendan J. MacKay, MD,a,b Cameron T. Cox, BBA,a Jan L. Valerio, MD,c Jeffrey A. Greenberg, MD,d Gregory M. Buncke, MD,e Peter J. Evans, MD, PhD,f Deana M. Mercer, MD,g Desirae M. McKee, MD,a,b and Ivica Ducic, MD, PhDh

Abstract: Events causing acute stress to the health care system, such as the COVID-19 pandemic, place clinical decisions under increased scrutiny. The priority and timing of surgical procedures are critically evaluated under these conditions, yet the optimal timing of procedures is a key consideration in any clinical setting. There is currently no single article consolidating a large body of current evidence on timing of nerve surgery. MEDLINE and EMBASE databases were systematically reviewed for clinical data on nerve repair and reconstruction to define the current understanding of timing and other factors affecting outcomes. Special attention was given to sensory, mixed/motor, nerve compression syndromes, and nerve pain. The data presented in this review may assist surgeons in making sound, evidence-based clinical decisions regarding timing of nerve surgery.

Key Words: nerve surgery, timing, nerve repair, timing nerve surgery, timing nerve repair, delayed nerve repair, immediate nerve repair, nerve timing, nerve timing outcomes, delayed surgery nerve outcomes, acute versus delayed nerve repair, timing nerve decompression, acute nerve surgery, acute nerve repair, coronavirus, COVID-19

(Ann Plast Surg 2021;87: e1–e21)

The circumstances created by the COVID-19 pandemic have shed light on a number of unanswered questions, particularly with regard to the acuity of conditions and urgency of surgical procedures. In the context of nerve surgery, the need for expedited decisions has revealed a lack of consolidated evidence, as there is currently no published article presenting clinical data on timing considerations of nerve surgery across a wide variety of injury patterns. Surgery remains necessary for many patients, even amid resource diversion, and all procedures exist within a timing hierarchy. An evidence-based approach is needed to adequately distinguish the relative acuity of different conditions, particularly within broad (and often misunderstood) categories such as “elective” surgery, which is frequently conflated with “optional.”

Published recommendations not created or endorsed by expert subspecialty groups are often vague and fail to address the nuances of clinical decision making (Tables 1, 2; Fig. 1). Overly simplified

TABLE 1. Orthopaedic surgery case triage

Emergent—within 6 h
• Compartment syndrome
• Open fracture
• Joint dislocations
• Fracture-dislocations
• Dysvascular limb/ex fix
• Traumatic amp/replant
• Septic joint
• Abscess
• Cauda Equina syndrome

Urgent—within 24–48 h
• Hip and femur fractures
• Pelvis and acetabulum fractures
• Long bone (femur, tibia, humerus) fractures
• Multiple fractures
• Unstable spine fractures or progressive neurologic deficits

Acute—within 7 d
• Fractures in general
• Hand/UE
• Ankle/tibial plateau, etc
• Spine fractures without gross
• Instability/cord compromise or neurologic symptoms
• Multiligamentous knee dislocation (s/p initial stabilization [ex fix] if necessary)

Semi-elective
• Incarcerated meniscus
• Biceps tear/tendon repairs
• Nerve transection

Elective
• Total joint replacement (hip/knee/shoulder/ankle)
• Degenerative spine without cord/neurologic compromise
• Nonunion without hardware compromise/unstable extremity
• Degenerative hand/foot/ankle
• Isolated knee ligament/ meniscus etc
• Hardware removal

Dr Ficke, AAOS Board of Directors, Johns Hopkins Hospital.

ex fix, external fixation; s/p, status post; UE, upper extremity.
algorithms will do little to assist surgeons and may even give a false sense of security when further deliberation is warranted. Physicians should always operate by best practices aligned with current evidence. A misstep in clinical judgment can leave patients and surgeons vulnerable to poor outcomes. A condensed view of the relevant data could as- sist physicians advocating for patients’ timely treatment. The following review may ultimately serve as a resource to positively impact outcomes involving both neurons and nonneuronal cells is initiated2,3 (Fig. 2). In- fluential changes increase blood-nerve barrier permeability, activating Schwann cells and macrophages.4 Nerve injuries present with varying degrees of involvement, which often dictate treatment and expected outcomes (Table 4). In less severe injuries, natural processes are often successful in regenerating the injured portion of a nerve, and full functional recovery may be achieved without interven- tion.5 However, with more severe injury, prolonged neuronal input defi- ciency distal to the site of injury can significantly reduce the regenerative success of nerves.4,5,8

DELAYED TREATMENT OF INJURED NERVES

When peripheral nerves are injured, a coordinated response involving both neurons and nonneuronal cells is initiated2,3 (Fig. 2). Inflammatory changes increase blood-nerve barrier permeability, activating Schwann cells and macrophages.4 Nerve injuries present with varying degrees of involvement, which often dictate treatment and expected outcomes (Table 4). In less severe injuries, natural processes are often successful in regenerating the injured portion of a nerve, and full functional recovery may be achieved without intervention.5 However, with more severe injury, prolonged neuronal input deficiency distal to the site of injury can significantly reduce the regenerative success of nerves.4,5,8

METHODS

The authors performed a systematic review of the MEDLINE and EMBASE databases using a comprehensive combination of keywords and search algorithm according to PRISMA guidelines. The literature search focused on clinical evidence-based data on nerve repair and reconstruction and was undertaken to define the current understanding of nerve repair timing and outcomes. Particular emphasis was made evaluating sensory, mixed/motor, nerve compression syndromes, and nerve pain. Search terms are listed in Table 3.
In large nerve defects with greater regeneration times, denervated distal targets may not be successfully regenerated. In the distal stump of a severed nerve, endoneurial tubes progressively and permanently shrink in diameter, and Schwann cells lose their capacity to support axonal growth when left transected (Figs. 2, 3). Target sensory and motor end-organs deteriorate irreversibly over time. Another cause for suboptimal recovery in peripheral nerve injury is upstream degeneration. When nerve injuries are incurred, neuronal cell death commences in the dorsal root ganglia (distal sensory nerve injuries) and/or the spinal motor neurons (proximal nerve injuries, eg, brachial plexus). Cortical changes are known to develop in cases of prolonged neuronal deficiency, and neural plasticity should be considered when making decisions related to timing of intervention.

Peripheral nerve injuries are known to result in poor sensory and/or motor function if left untreated. Significant declines in postoperative function and chronic pain may lead to long-term disabilities for patients who do not receive timely operative treatment. This could impact more than patient outcomes, as both proximal and distal nerve injuries may contribute to high costs, lost work or medical disabilities, increased pharmacologic dependencies and expenses, and substantial lost function. In a study of 66 median and/or ulnar nerve lesions, Dumont and Alnot found that the time from injury to repair was the most significant prognostic factor in functional nerve recovery. Multiple reports in the literature describe the negative implications of delayed repair on sensory and motor outcomes in a variety of injury patterns, with one study indicating the critical window lies within 3 months. Considering the implications of prolonged nervous deficiency, timing is critical for treatment algorithms involving the peripheral nerves.

SENSORY VERSUS MOTOR NERVES
Clinical data indicate that sensory nerves may be less affected by prolonged denervation than motor nerves (Table 6). However, the histologic response to prolonged denervation seems to be amplified for sensory when compared with motor nerves. The recovery of mixed motor nerves degrades dramatically over time, as repairs delayed more than 1 month exhibit significant functional declines. This is especially pronounced in motor outcomes, as the functional loss is even more amplified the longer the muscle is denervated because the end-target organ (eg, muscle supplied by an injured nerve) may not regenerate.

In a systematic review of 270 mixed nerve injuries (150 ulnar, 75 median, 45 radial), good to excellent sensory recovery (scoring scales in

FIGURE 1. Treatment algorithm for elective cases currently in use by some centers. Piedmont Healthcare System, Georgia.
Delayed treatment of injured nerves

Table 7) occurred in 90.9% of immediate repairs (<24 hours from time of injury), 58.3% with a delay of <1 month, 73.3% with a delay of 1 to 3 months, and 46.2% with a delay of ≥3 months (Table 8). Although aggregate data show declines at monthly intervals, individual studies have reported increments as small as 14 days for progressive functional decline.4,54,58-65

In the same group, good to excellent motor recovery was achieved in 85.7% of immediate repairs, 80.0% with a delay of <1 month, 71.9% with a delay of 1 to 3 months, 52.9% with a delay of 3 to 6 months, and 25.0% with a delay of ≥6 months (Table 8). For each month of delay to repair, there was a significant decrease in the odds of good-excellent motor recovery (odds ratio, 0.93; 95% confidence interval [CI], 0.90–0.97; P < 0.01).22 In one study of 260 radial and posterior interosseous nerves, 49% of nerves repaired within 14 days achieved good-excellent results, whereas only 28% of late repairs (mean, 190 days; range, 15–440 days) produced good-excellent outcomes.58 One study involving 82 musculocutaneous nerve injuries reported 78% (21/27) good-excellent results when repaired within 14 days and 62% (34/55) when performed >14 days after injury.54

When making decisions for timing of nerve procedures, it is critical to use a multifactorial approach. The trends described previously are broad and do not account for variables such as gap length, mechanism of injury, proximal versus distal location, and other considerations to be discussed in later sections, which may have a compound negative effect on delayed repairs (Tables 6, 8).

Take-Home Messages

Sensory-Only

Sensory-only nerve injuries should be considered acutely (within 14 days of injury) when possible to prevent painful neuroma formation. Once a neuroma occurs, it becomes an additional task to overcome the psychological impairment and, in some instances, narcotic dependency in order to return patients to a healthy return to functional activities. In cases where the initial presentation is delayed, it is suggested to repair within 14 days of clinical presentation if the injury occurred <6 months prior. After 6 months, reconstruction may still be undertaken but with consideration for possible adjunctive techniques to optimize outcomes based on individual prognostic factors.

Functional sensory return is not as time sensitive as muscle reinnervation. Although sooner is better, evidence points to functional sensory return being achievable for several years after complete transaction, yet the quality of such delayed recovery might remain less predictable. Additional preoperative factors that should be considered in sensory-only timing decisions include age, the mechanism of injury, gap length, and reinnervation potential.
Mixed/Motor

For mixed/motor nerve injuries, immediate repair (within 24 hours of injury) is suggested when possible. In cases where the initial presentation is delayed, it is suggested to repair within 14 days of clinical presentation if the injury occurred <6 months prior. After 6 months, a multifactorial approach including but not limited to nerve grafting, nerve transfer, and/or tendon transfer may be necessary to restore function.

Motor endplate degradation may limit the amount of time available for any functional motor return. Typically, efforts should be taken to provide axons to the muscle endplate no later than 1 year after complete transections.95,96 Because of the slow rate (~1 mm/d) and unidirectional nature (neuronal outgrowth only occurs distally from proximal end), irreversible motor endplate degradation has been observed as early as 12 months after injury.3,95,96 Additional preoperative factors that

TABLE 4. Classifications of Nerve Injuries

Degree of Nerve Injury	Definition of Nerve Injury	Prognosis	Tinel Sign	Surgical Intervention
First (neurapraxia)	Segmental demyelination; Axonal continuity maintained; endoneurium, perineurium and epineurium, intact	Favorable	None	None, distal decompression
Second (axonotmesis)	Discontinuity of axon and myelin; endoneurium, perineurium, and epineurium intact	Favorable	Present, progressive	None, distal decompression, supercharge procedure
Third	Discontinuity of axon, myelin and endoneurium; perineurium and epineurium intact	Favorable	Present, progressive	None, distal decompression, supercharge procedure
Fourth	Only the epineurium remains intact	Unfavorable	Present; no progression	Nerve repair, graft, transfer
Fifth (neurotmesis)	Complete nerve transection	Unfavorable	Present; no progression	Nerve repair, graft, transfer
Sixth	Mixed injury pattern	Variable	Variable	All options may be appropriate

Table adapted from Moore et al.5
should be considered in mixed nerves include the following: age, nerve injured, level of injury, concomitant vessel or tendon injuries, and gap length (Table 8).

DIGITAL NERVES

Digital nerve injuries are a unique subset of sensory nerve injuries and should be considered independently with respect to timing of operative intervention. Although digital nerves primarily supply sensation to the hand, abnormal sensory outcomes have been shown to have an effect on motor function. Patients with good active range of motion may not use the affected digit because of the lack of sensation or pain with movement, resulting in lasting stiffness and/or weakness. Pain secondary to symptomatic neuroma formation has been shown to interfere with rehabilitation and functional outcomes, especially in the thumb and index finger, as both are critical for normal pinch and grip function. A time to repair of <15 days has been associated with significantly improved sensory outcomes (Table 9). Another study including 254 digital nerve repairs reported significantly improved outcomes in repairs performed within 3 months of injury.

Take-Home Messages

For digital nerves, acute repair (within 14 days of injury) is suggested when possible. In cases where the initial presentation is delayed, repair is suggested within 3 months after injury to prevent painful neuroma formation. Once a neuroma occurs, it becomes an additional task to overcome the psychological impairment and, in some instances, narcotic dependency in order to return patients to a healthy return to functional activities. After 3 months, reconstruction may still be undertaken but with consideration for possible adjunctive techniques to optimize outcomes based on individual prognostic factors.

TABLE 5. Comparison of Patient-Reported Outcomes in Untreated Peripheral Nerve Injuries (Novak et al27) Versus Those Having Undergone Operative Interventions

	SF-36 Scores	DASH/QuickDASH Scores					
	Physical Function	Role Limit to Physical Health	Role Limit to Emotional Problems	Energy/Fatigue	Emotional Well-Being	Social Function	
	Mean ± SD	60.0 ± 23.0	23.0 ± 33.0	45.0 ± 43.0	49.0 ± 24.0	58.0 ± 23.0	57.0 ± 30.0
Novak et al27 >6 mo after injury without operative intervention (n = 57)							
Lequint et al23 (n = 30): ulnar nerve transposition							
Domeshek et al23 (n = 19): upper extremity nerve decompression and/or transposition							
Ido et al24 (n = 52): ulnar nerve transposition							
Guse and Moran25 (n = 54): upper extremity neuroma excision, transposition, or nerve repair (43 traumatic injuries)							

FIGURE 3. Effect of Schwann cell insufficiency on distal nerve segments after prolonged discontinuity.

TABLE 6. Effect of nerve function and injury characteristics on functional outcomes after nerve repair.
TABLE 6. Outcomes of Sensory-Only Peripheral Nerve Repairs

Predictor	Group	Satisfactory Recovery (Good-Excellent) Sensory Recovery
Age	≤16 y	100% (7/7)
	16–25 y	75.0% (24/32)
	26–40 y	88.5% (23/26)
	>40 y	75.0% (18/24)
Total (n)	n = 89	
Univariate odds ratio (95% CI):	per year	P = 0.31
Sex	Male	67.4% (29/43)
	Female	95.5% (21/22)
Total (n)	n = 65	
Univariate odds ratio (95% CI):	female vs male	P = 0.03
Nerve	Digital	80.7% (71/88)
	Total (n)	n = 88
Graft length	No graft	100% (2/2)
	≤30 mm	76.2% (45/54)
	30–50 mm	33.3% (2/6)
	>50 mm	33.3% (1/3)
Total (n)	n = 65	
Univariate odds ratio (95% CI):	per month	P < 0.01
Delay	No delay (<24 h)	78.6% (33/42)
	1–30 d	75.0% (3/4)
	1–3 mo	100% (5/5)
	3–6 mo	84.6% (1/13)
	6–12 mo	75.0% (3/4)
	>12 mo	100% (2/2)
Total (n)	n = 70	
Univariate odds ratio (95% CI):	per month	P = 0.64

Table adapted from He et al.32

sensory-only nerves include gap length, ability to identify proximal and distal stumps, and concomitant vessel or tendon injuries (Table 6).32

ACUTE NERVE COMPRESSION/DYSFUNCTION

In cases of acute compressive neuropathy, prompt diagnosis is particularly important because symptoms and functional outcomes deteriorate more quickly due to severe ischemic conditions and/or intraneural scarring.125 Acute compressive neuropathy in the ulnar nerve is rare, with the majority of cases occurring in Guyon’s canal secondary to ganglion cyst.125–128 Although early decompression has been recommended, the literature lacks algorithms for timing of intervention.126–129

Treatment algorithms have been described in the literature for acute median nerve compression, which is frequently associated with distal radius fractures.130–134 In healthy patients, carpal tunnel pressure has been reported from 5 to 14 mm Hg. Although carpal tunnel pressure has been reported from 12 to 43 mm Hg in patients with chronic carpal tunnel syndrome, acute cases may be elevated between 40 and 60 mm Hg.129,135 Although the exact threshold for irreversible damage is unknown, the literature has indicated that irreversible damage may be incurred at pressures as low as 30 mm Hg.129

Given the amplified sequelae of acute compression, pressure measurements may be taken after 2 hours of nonsurgical intervention (eg, elevation or dressing release) using a wick catheter or STIC device.131 The current literature on compartment syndrome indicates delayed intervention may lead to additional operations and/or permanent ischemic nerve damage.136 Although it is difficult to pinpoint the delay time because the exact time of onset is often not known, earlier intervention has been associated with significantly improved functional recovery.123,137–141

In a study of 22 patients, 68% of those treated within 12 hours recovered normal function, compared with only 8% in patients treated >12 hours from time of onset.136,138 Nerve conduction velocity returned to normal if compartment release was performed within 4 hours.138,142 Of note, patient age seems to play a role in functional outcomes of compartment release. In a review of 39 pediatric cases with a mean time to diagnosis of 48 hours, 54% returned to normal function.142 Another review reported that 85% of pediatric patients achieved full functional recovery when treated within a mean of 24.5 hours after the onset of symptoms.131,143

Frequently, patients present with postsurgical nerve dysfunction such as radial nerve palsy after open reduction and internal fixation of humeral fractures,144,145 peroneal and/or saphenous nerve palsy after knee ligament reconstruction and/or dislocation,146–149 or ulnar nerve complications after medial or collateral ligament reconstruction of the elbow.150–153 The literature addressing timing in these contexts is highly variable.144,145,147,150,151 Generally, symptom severity and duration are thought to be indicators of potential for spontaneous recovery or need for operative intervention. Although the literature lacks consensus recommendations, close monitoring of nerve symptoms is recommended in the early postoperative period (up to 12 weeks).144,145,147,150,151

Take-Home Messages

In the case of posttraumatic compressive neuropathy, if symptoms persist and/or elevated pressure remains in the affected tunnel/canal at 2 hours after injury, exploration with possible release should be considered.32

TABLE 7. Sensory and Range of Motion Recovery Scoring Scales

Mackinnon-Dellon Scale (modified from British Medical Research Council Score of Sensory Recovery)
S0 (failure): absence of sensibility in the autonomous area of the nerve
S1 (poor): recovery of deep cutaneous pain and tactile sensibility
S1+ (poor): recovery of superficial pain sensibility
S2 (poor): recovery of some degree of superficial cutaneous pain and tactile sensibility
S2+ (poor): as in s2, but with overresponse
S3 (poor): return of pain and tactile sensibility with disappearance of over response, s2PD >15 mm, m2PD >7 mm
S3+ (good): return of sensibility as in s3 with some recovery of 2-point discrimination: s2PD, 7–15 mm; m2PD, 4–7 mm
S4 (excellent): complete recovery: s2PD, 2–6 mm; m2PD, 2–3 mm

ASH classification of total active motion (TAM) recovery
Excellent: TAM equal to normal side
Good: TAM >75% of normal side
Fair: TAM >50% of normal side
Poor: TAM <50% of normal side
be considered within 8 hours of symptom onset. Although the literature indicates that long-term changes may develop within this time window, clinical symptoms must be evaluated on a case-by-case basis. Given the lack of consensus and high-quality data, published timing recommendations should be included as one part of the clinical decision-making process rather than a sole determining factor.

In cases of compressive neuropathy secondary to cyst formation, decompression should be considered within 3 months of symptom onset if the patient's symptoms are minimal and nonprogressive. If symptoms progress rapidly and/or the patient has already incurred significant functional deficits, decompression may be performed acutely.

When treating injuries frequently associated with posttraumatic compressive neuropathy, the potential for compression should be considered when planning initial treatment. For example, in distal radius fractures, different fixation methods have been linked to varying rates of posttraumatic carpal tunnel syndrome.

Given the high variability of postsurgical neuropaxia, even in similar injury/repair patterns, patients with neuropathic symptoms should be closely monitored in the first several weeks postoperatively. At approximately 6 weeks, nerve conduction study (NCS) and electromyography (EMG) may further clarify etiology and serve as a baseline for future comparison if symptoms persist. At this time, surgeons may decide to schedule surgery or continue observation with a possible second NCS/EMG at 12 weeks. Although some have questioned the sensitivity of electrophysiologic testing in chronic carpal tunnel syndrome, the same studies show that symptom severity is significantly associated with positive NCS findings. In cases of acute, traumatic, or postsurgical compression, compartment pressure is often elevated above typical chronic compression values, indicating that NCS/EMG may have greater utility for monitoring suspected neuropathy in acute compression.

Ultimately, multiple modalities must be considered (eg, patient complaints, physical examination, NCS/EMG, radiological studies, and

Table 8. Outcomes of Mixed Motor Peripheral Nerve Repairs

Predictor	Group	Satisfactory (Good-Excellent) Sensory Recovery	Satisfactory (Good-Excellent) Motor Recovery
Age	<16 y	60.9% (56/92)	66.7% (54/81)
	16–25 y	64.7% (44/68)	63.6% (35/55)
	26–40 y	57.8% (38/66)	60.4% (32/53)
	>40 y	40.9% (18/44)	47.6% (20/42)
Total (n)		n = 270	n = 231
Univariate odds ratio per year (95% CI)	0.98 (0.96–0.99), P = 0.02	0.97 (0.96–0.99), P = 0.02	
Sex	Male	51.0% (77/151)	55.8% (72/129)
	Female	61.4% (35/57)	73.5% (36/49)
Total (n)		n = 208	n = 178
Univariate odds ratio (95% CI), female vs male	1.53 (0.82–2.85), P = 0.18	2.19 (1.06–4.52), P = 0.03	
Nerve	Ulnar	52.7% (79/150)	47.5% (56/118)
	Median	57.3% (43/75)	75.0% (39/52)
	Radial	75.6% (34/45)	75.4% (46/61)
Total (n)		n = 270	n = 231
Univariate odds ratio (95% CI), median vs radial, ulnar vs radial	0.44 (0.19–0.99), P < 0.05	0.98 (0.42–2.30), P > 0.05	
	0.36 (0.17–0.76), P < 0.05	0.30 (0.15–0.59), P < 0.05	
Graft length	No graft	59.4% (63/106)	73.8% (59/80)
	≤30 mm	53.8% (14/26)	48.0% (12/25)
	30–50 mm	39.3% (11/28)	28.9% (11/38)
	>50 mm	18.2% (4/22)	64.9% (37/57)
Total (n)		n = 182	n = 200
Univariate odds ratio (95% CI), graft used vs none	0.48 (0.28–0.82), P = 0.01	0.40 (0.22–0.73), P < 0.01	
	0.91 (0.83–0.99), P = 0.04	0.93 (0.84–1.03), P = 0.15	
Delay	No delay (<24 h)	10/11 (90.9%)	6/7 (85.7%)
	1–30 d	21/36 (58.3%)	56/70 (80.0%)
	1–3 mo	22/30 (73.3%)	23/32 (71.9%)
	3–6 mo	17/39 (43.6%)	18/34 (52.9%)
	6–12 mo	11/24 (45.8%)	5/21 (23.8%)
	>12 mo	25/52 (48.1%)	10/39 (25.6%)
Total (n)		n = 192	n = 203
Odds ratio per month (95% CI)	1.00 (0.99–1.01), P = 0.73	0.93 (0.90–0.97), P < 0.01	

Table adapted from He et al.32
nerve blocks) with serial measures to determine the appropriate course of treatment and/or assess recovery.

CHRONIC NERVE COMPRESSION

Compressive neuropathies vary in severity beginning with deterioration of the blood-nerve barrier, followed by subperineurial edema and demyelination, and ending in axonal loss.\(^{154}\) Although mild cases involving dynamic ischemia may be improved with nonoperative treatment such as therapy, activity modifications, or bracing, patients with a long history of compression may progress to axonal loss.\(^{154}\) Severity can be confirmed by serial EMG and NCS.\(^{157}\) Given the progressive nature of severe compression neuropathy,\(^{157}\) operative intervention is indicated, and early intervention is preferred to avoid further changes in sensation and/or motor weakness and atrophy.

Both duration and severity of symptoms have been shown to impact pain, sensation, and functional outcomes in carpal and cubital tunnel decompression procedures\(^{158,159}\). Masud et al\(^{157}\) reported that normal grip strength was not achieved in carpal tunnel procedures performed on patients with symptom duration >6 months. At preoperative symptom duration >12 months, patients in this cohort were more likely to have persisting night pain and a lower rate of return to activities. These findings are consistent with the findings by Eisenhardt et al\(^{163}\) in a similar patient population. In a 12-year study of 14,722 patients with carpal tunnel release, Hawksins et al\(^{166}\) suggested that these effects are likely due to the progressive nature of long-term compressive neuropathy.

Although published reports are variable, revision decompression has shown to provide comparable benefits in many outcome dimensions (Tables 13, 14).\(^{158} – 175,177,178,181–183,186,188–192\) Differences in revision decompression outcomes have not been associated with duration of symptoms in the literature.\(^{200}\) However, severity of symptoms has been identified as a correlating factor and should be taken into account if recurrent symptoms are rapidly progressing.\(^{201,202}\)

Take-Home Messages

In cases of chronic compressive neuropathy, the role of nerve surgery is to address the cause of ongoing symptoms (eg, a peripheral injury that has led to central sensitization). Multiple assessment methods are recommended to evaluate the status of a symptomatic nerve and determine the potential benefit of surgical intervention.

If operative intervention is indicated, it is suggested that nerve decompression procedures be optimally performed within 3 to 6 months of onset of symptoms. If functional deficits, pain, or atrophy are rapidly progressing, acute intervention should be considered. Revision decompression procedures may be planned with considerations for symptom severity speed of symptom progression. Additional preoperative factors that should be considered include the following: age, muscle atrophy, grip strength, electrophysiological severity, tobacco use, body mass index, anemia, depression, chronic lung disease, and inflammatory arthritis (Tables 10–12).\(^{158,160,161}\)

BLUNT TRAUMA AND GUNSHOT WOUNDS

In cases of blunt trauma or gunshot wounds, a wait time of 2 to 3 weeks for zone of injury demarcation may be recommended for peripheral nerve repair.\(^{5}\) During the time between injury and potential operative intervention, serial physical examinations may be accompanied by EMG and NCS.\(^{203}\) Once the extent of injury has been determined, treatment should be initiated as early as possible to avoid long-term nervous insufficiency.

TABLE 9. Outcomes of Digital Nerve Repair With Varying Delay Times

Author(s)	Mean Time to Repair in Days	Primary Repair	Nerve Graft	Synthetic Conduit	Vein Conduit	Muscle/Muscle-in-Vein s2PD Mean, mm	m2PD Mean, mm	SWMT Mean		
McFarlane and Mayer\(^{100}\)	170.8	13								
Hirasawa et al\(^{101}\)	186.1	10	4							
Sullivan\(^{102}\)	41.02	42								
Walton et al\(^{103}\)	61	115								
Rose et al\(^{104}\)	256.2									
Pereira et al\(^{105}\)	42.7	24								
Tang et al\(^{106}\)		16	12	9.4						
Segalman et al\(^{107}\)	19									
Battiston et al\(^{108}\)	112.85	18	13	9.1						
Vipond et al\(^{108}\)	1									
Lohmeyer et al\(^{109}\)	115.9	12								
Marcocci and Vigasio\(^{110}\)										
Taras et al\(^{111}\)	6	22	18	10.7	9.2					
Rinker and Lain\(^{112}\)	3	36	32	8.4	6.8					
Laveaux et al\(^{113}\)	1		11	11						
Chen et al\(^{114}\)	24	26								
Taras et al\(^{115}\)	29	18								
Stang et al\(^{116}\)	28									
Pilanci et al\(^{117}\)	55.8	12								
He et al\(^{118}\)	23.7	100								
Kim et al\(^{119}\)										
Rinker et al\(^{120}\)	13	37								
Wong et al\(^{121}\)		93								
Fakin et al\(^{122}\)	5	81								
Klein et al\(^{123}\)										

Table adapted from Kim et al.\(^{97}\)
Variables	Change Score in SSS	Change Score in FSS	Satisfaction
Age	$r = -0.196$	$r = 0.226$	$r = -0.193$
	$P = 0.016$	$P = 0.005$	$P = 0.017$
Grip strength	$r = 0.020$	$r = 0.063$	$r = 0.655$
	$P = 0.805$	$P = 0.284$	$P < 0.001$
Thenar muscle atrophy	$z = -3.084$	$z = -1.072$	$z = -1.561$
	$P = 0.002$	$P = 0.284$	$P = 0.119$
Duration of symptom	$\chi^2 = 8.093$	$\chi^2 = 2.638$	$\chi^2 = 0.725$
	$P = 0.017$	$P = 0.267$	$P = 0.696$
Electrophysiological severity	$\chi^2 = 99.786$	$\chi^2 = 2.927$	$\chi^2 = 2.69$
	$P < 0.001$	$P = 0.231$	$P = 0.260$
Involved side	$z = -0.359$	$z = -0.594$	$z = -0.178$
Phalen test	$z = -1.066$	$z = -1.766$	$z = -0.371$
	$P = 0.719$	$P = 0.552$	$P = 0.859$
Previous carpal injection	$z = 3.881$	$z = 7.50$	$z = 3.861$
	$P = 0.275$	$P = 0.067$	$P = 0.277$
Sex	$z = -0.458$	$z = -1.243$	$z = -0.638$
	$P = 0.647$	$P = 0.214$	$P = 0.524$
BMI	$r = 0.037$	$r = 0.044$	$r = -0.006$
	$P = 0.186$	$P = 0.31$	$P = 0.937$
Smoking	$z = -0.497$	$z = -0.067$	$z = -0.497$
	$P = 0.619$	$P = 0.947$	$P = 0.619$
Hypothyroidism	$z = -1.306$	$z = -0.145$	$z = -0.057$
	$P = 0.192$	$P = 0.885$	$P = 0.955$
Tinel test	$z = -0.859$	$z = -0.531$	$z = -0.423$
Durkan test	$z = -1.385$	$z = -0.790$	$z = -0.130$
EMG abnormality	$z = -0.381$	$z = -0.627$	$z = -0.415$
Monofilament test	$\chi^2 = 0.604$	$\chi^2 = 4.705$	$\chi^2 = 4.780$

BMI, body mass index; FSS, Functional Status Scale; SSS, Symptom Severity Scale.

Table adapted from Alimohammadi et al.159
If the zone of injury is clearly established, immediate exploration may be warranted. In these cases, the decision to explore immediately or wait is ultimately subject to clinical judgment and individual patient/injury characteristics. When the zone of injury is unclear, a wait time of 2 to 3 weeks is recommended.

Although penetrating wounds have historically been treated via delayed exploration, there is no clear consensus for optimal timing of exploration and repair.34,204 Advocates of early exploration point to improved outcomes, especially if suicidal ideation is present.209,212 Although a variety of treatment options are currently used for pain secondary to neuroma formation, most are focused on treatment of symptoms. Nonsurgical or symptomatic treatments are often unsuccessful, as they fail to address the root cause of pain.210,211 When pain persists despite reasonable treatment via symptomatic modalities, surgical intervention targeting the source of the pain is indicated.209,214

Take-Home Messages

If chronic pain persists 3 to 6 months after nerve injury, it is recommended that surgical exploration/treatment be electively scheduled, with patient goals and rate of symptom progression taken into consideration. Although the literature is unclear regarding exact timing,

Variable	Odds Ratio	95% CI	P
Age <65 y	2.08	1.52–2.85	<0.001
Tobacco use	1.65	1.31–2.07	<0.001
Body mass index, kg/m²	1.52	1.18–1.94	<0.001
≥40 (obesity)	1.53	1.16–2.01	0.002
Male sex	1.32	1.07–1.63	0.008

Take-Home Messages

If chronic pain persists 3 to 6 months after nerve injury, it is recommended that surgical exploration/treatment be electively scheduled, with patient goals and rate of symptom progression taken into consideration. Although the literature is unclear regarding exact timing,
increased duration of symptoms has been associated with unfavorable outcomes.

If a patient presents with uncontrolled pain that is severe, progressing, or incapacitating despite nonoperative management, acute exploration/intervention should be considered. Ultimately, intervention must be determined using clinical judgment for each patient regardless of whether pain has persisted for 3 months.

ADDITIONAL REPAIR CONSIDERATIONS

In addition to timing of repair, factors may play a role in both planning the operative case and the repair methodology used. Availability of personal protective equipment, sterile surgical supplies, anesthesia supplies, and staffing will influence the ability to achieve appropriate timing in nerve repair. Exposure risks for the both the clinical team and patient should also be taken into consideration. Ultimately, intervention must be determined using clinical judgment for each patient regardless of whether pain has persisted for 3 months.

Injuries include direct suture, autograft, allograft, conduit, or nerve transfer (Fig. 4). In addition to clinical outcomes data, additional factors should be considered for each approach, including:
1. Ability to achieve a tension-free repair
2. Operative time required for each repair approach
3. Ability to reduce anesthesia acuity and duration
 a. For example, although local regional anesthesia and monitored anesthesia care carry less risk of airway irritation, they may increase aerosol production (and viral spread in the present scenario) compared with tracheal intubation or laryngeal mask airway. Patient risk and the risk of viral spread should be discussed with an anesthesiologist.
4. Management of nerve gap (Fig. 4)
5. Ability to reduce resource utilization by performing a single surgery versus staged reconstruction
 a. For example, although local regional anesthesia and monitored anesthesia care carry less risk of airway irritation, they may increase aerosol production (and viral spread in the present scenario) compared with tracheal intubation or laryngeal mask airway. Patient risk and the risk of viral spread should be discussed with an anesthesiologist.
6. Management plan for concomitant injuries/procedures
7. Extent and timing of rehabilitative plan
8. Proximity to a tertiary referral center and/or available transportation

Each of these factors plays a role in resource utilization, ability to schedule the procedure, and exposure risk to the patient and clinical teams. Patient desires may not always align with scientific evidence.
Study	No. of Hands	Method/Follow-Up	Resolved or Improved, n (%)	Complications and Patient-Reported Outcomes	
Recurrent or persistent CTS					
Endoscopic revision CTR					
Tech and Tan165	9	Endoscopic revision	9 (100)	0 complications	
Retrospective		24-mo avg follow-up		PRO: NR	
Luria et al166	41	Endoscopic revision	37 (90)	0 complications	
IV Prospective		12-mo follow-up (all)		PRO: NR	
Open revision CTR and neurolysis					
Total	50		46 (92)	Complications: NR	
Wadstroem and Nigst168	33	External neurolysis	28 (85)	PRO: NR	
IV Retrospective		24-mo avg follow-up			
Langloh and Linscheid167	33	External and internal	12 (60)	1 superficial wound infection	
Retrospective		neurolysis		PRO: NR	
		31-mo avg follow-up			
O'Malley et al169	20	External neurolysis	29 (83)	Complications: NR	
Retrospective		23.5-mo avg follow-up		PRO: NR	
Chang and Dellon170	35	External and internal	87 (66)	9 delayed wound healing	
Retrospective		neurolysis		4 postoperative infections	
		11-y avg follow-up		3 RSD	
Cobb et al171	131	External and internal	87 (66)	Mean DASH 29 at follow-up	
Retrospective		neurolysis		20 (6%) complications	
		23.5-mo avg follow-up			
Duclos and Sokolow172	13	External neurolysis	12 (92)	NA	
IV Retrospective		27.5-mo avg follow-up			
Hulsizer et al173	30	External neurolysis	18 (60)	Complications: NR	
Retrospective		30-mo avg follow-up		PRO: NR	
Forman et al174	22	External neurolysis	21 (95)	2 scar tenderness and stiffness	
Retrospective		19-mo avg follow-up		PRO: NR	
Beck et al178	28	External neurolysis	23 (82)	Complications: NR	
III Retrospective		12-mo avg follow-up		Mean DASH 29 at follow-up	
				20 (6%) complications	
Total	339		252 (74)		
Vein wrap				1 transient venous insufficiency	
Sotereanos et al6	6	Saphenous vein wrap	6 (100)	PRO: NR	
Retrospective		18-mo avg follow-up			
Sotereanos and Xu77					
Varitimidis et al178	15	Saphenous vein wrap	15 (100)	1 transient local swelling at leg	
Retrospective		43-mo avg follow-up		PRO: NR	
Synthetic wrap				2 (10%) complications, transient	
Total	21				
Soltani et al179	9	Collagen synthetic wrap	8 (89)	Complications: NR	
Retrospective		13.7-mo avg follow-up		PRO: NR	
Kokkalis et al180	2	Collagen synthetic wrap	2 (100)	0 complications	
Retrospective		19-mo avg follow-up		PRO: NR	
Kokkalis et al181	10	Collagen synthetic wrap	10 (100)	0 complications	
Retrospective		24-mo avg follow-up		PRO: NR	
Total	21		21 (95)	0 (0%) complications	
Study	Level of Evidence	No. of Hands	Method/Follow-Up	Resolved or Improved, n (%)	Complications and Patient-Reported Outcomes
-----------------------------	-------------------	--------------	------------------	-----------------------------	--
Recurrent or persistent CTS					
Hypothenar fat flap					
Strickland et al¹⁸²	IV Retrospective	62	Hypothenar fat flap (62) + internal neurolysis (7) 33-mo avg follow-up	55 (89)	1 ulnar digital nerve paresthesias 1 hypothenar numbness 1 superficial cellulitis Mean RTW 37 wk (work comp) Mean RTW 12 wk (nonwork comp)
Giampa et al¹⁸³	IV Retrospective	9	Hypothenar fat flap	8 (89)	2 scar pain and edema, transient 2D DASH 100% RTW
Mathoulin et al¹⁸⁴	IV Retrospective	45	Hypothenar fat flap 45-mo median follow-up	43 (96)	2D DASH Complications: NR PRO: NR
Craft et al¹⁸⁵	IV Retrospective	28	Hypothenar fat flap 10.5-mo avg follow-up	26 (93)	2D DASH Complications: NR PRO: NR
Stutz et al¹⁸⁶	III Retrospective comparative	11	Hypothenar fat flap 11-mo avg follow-up	8 (73)	2 hypertrophic scar DASH 31 at follow-up
Fusetti et al¹⁸⁷	IV Retrospective	20	Hypothenar fat flap 6-mo minimum follow-up	18 (90)	16 two-point discrimination resolved to normal DASH improved significantly in all patients
Karthik et al¹⁸⁸	IV Retrospective	27	Hypothenar fat flap 22-mo avg follow-up	24 (89)	2D DASH Complications: NR PRO: NR
Wichelhaus et al¹⁸⁹	IV Retrospective	18	Hypothenar fat flap 22-mo avg follow-up	16 (89)	2 hypertrophic scar DASH 42.2 to 17.6 (P < 0.01)
Athlani and Haloua¹⁹⁰	IV Prospective	34	Hypothenar fat flap 24-mo minimum follow-up in 13 patients	34 (100)	2D DASH VAS decreased from 6.4 to 1.4 (P < 0.05) Grip strength improved from 72% to 86% of the contralateral side (P < 0.05) QuickDASH 60.7 to 19.8 (P < 0.05)
Total		254		232 (91)	9 (4%) complications
Synovial flap					
Wulle¹⁹¹	IV Retrospective	27	Synovial flap Follow-up range 1 mo to 14 y	25 (93)	NA
Stutz et al¹⁸⁶	III Retrospective comparative	16	Synovial flap 11-mo avg follow-up	9 (56)	1 delayed wound healing DASH 37 at follow-up
Murthy et al¹⁹²	IV Retrospective	45	Synovial flap 11-mo avg follow-up	43 (96)	1 scar pain PRO: NR
Total		88		77 (88)	2 (2%) complications
Study	Methodology	N	Procedures		
-------	-------------	---	------------		
Strasberg et al	IV	45	External and internal neurolysis, Median nerve release forearm, Ulnar nerve submuscular transposition, Median nerve repair, Common dig nerve graft, Abductor muscle flap, 31-mo avg follow-up		
Varitimidis et al	IV	24	External neurolysis alone, Hypothenar flap, Saphenous vein wrap, Neurotomy and hypothenar flap, 19-mo avg follow-up		
Jones et al	IV	55	External neurolysis, Epineurectomy, Synovial or hypothenar flap, Reverse radial forearm flap, Minimum 1 year follow-up, Avg follow-up NR		
Zieske et al	III	97	Persistent (42), Recurrent (19), New (36)		
Djerbi et al	IV	38	Neurolysis, Hypothenar fat flap, Pronator quadratus flap, Synovial flap, Vein wrap, Silicone sheet, 51-mo avg follow-up		
Total		162	119 (73)		

*P < 0.01.

Avg, average; CTR, carpal tunnel release; CTS, carpal tunnel syndrome; CTSFSS, Carpal Tunnel Syndrome Functional Status Score; CTSSS, Carpal Tunnel Syndrome Symptom Severity Score; DASH, Disabilities of the Arm, Shoulder, and Hand Score; NA, not available; NR, not reported; PRO, patient self-reported outcomes, validated outcomes include DASH, PRWE; RSD, reflex sympathetic dystrophy (ie, chronic regional pain syndrome); RTA, return to recreational activities; RTW, return to work; UWSS, University of Washington patient satisfaction score; VAS, visual analog scale.

Table adapted from Lauder et al.
FIGURE 4. Management of peripheral nerve transection.

TABLE 15. Medically Necessary, Time-Sensitive Procedures

Procedure Factors	1	2	3	4	5	Score (1–5)
OR time, min	<30	30–60	60–120	120–180	≥180	
Estimated length of stay	Outpatient	23 h	24–48 h	≤3 d	>4 d	
Postoperative ICU need, %	Very unlikely	<5	5–10	10–25	≥25	
Anticipated blood loss, cc	<100	100–250	250–500	500–750	≥75	
Surgical team size	1	2	3	4	>4	
Intubation probability	51%	1%–5%	5%–10%	10%–25%	≥25%	
Surgical site	None of the following	Abdominopelvic MIS surgery	Abdominopelvic open surgery, infraumbilical	Abdominopelvic open surgery, supraumbilical	OHNS/upper GI/thoracic	
Disease factors	1	2	3	4	>4	Score (1–5)
Nonoperative treatment option effectiveness	None available	Available, <40% as effective as surgery	Available, 40%–60% as effective as surgery	Available, 60%–95% as effective as surgery	Available, equally effective	
Nonoperative treatment option resource/exposure risk	Significantly worse/ not applicable	Somewhat worse	Equivalent	Somewhat better	Significantly better	
Impact of 2-wk delay in disease outcome	Significantly worse	Worse	Moderately worse	Slightly worse	No worse	
Impact of 2-wk Delay in surgical difficulty/risk	Significantly worse	Worse	Moderately worse	Slightly worse	No worse	
Impact of 6-wk delay in disease outcome	Significantly worse	Worse	Moderately worse	Slightly worse	No worse	
Impact of 6-wk delay in surgical difficulty/risk	Significantly worse	Worse	Moderately worse	Slightly worse	No worse	
Patient factors	1	2	3	4	5	Score (1–5)
Age, y	<20	20–40	40–50	50–65	>65	
Lung disease (asthma, COPD, CF1)	None	None	Minimal (rare inhaler)	Mild/Moderate (no CPAP)	>Minimal	
Obstructive sleep apnea	Not present	Not present	Mild (≤51 med)	Moderate (2 meds)	On CPAP	
CV disease (HTN, CHF, CAD)	None	None	Mild (≤51 med)	Moderate (PO meds only)	>Moderate (insulin)	
Diabetes	None	None	Mild (≥51 med)	Moderate	Severe	
Immunosuppression	None, asymptomatic	None, asymptomatic	Yes	Yes	Yes	
ILI3 Sx's (fever, cough, sore throat, body aches, diarrhea)	None	None	Yes	Yes	Yes	
Exposure to known COVID-19–positive person in the past 14 d	No	Possibly	Possibly	Possibly	Yes	

Each row is scored, and all scores are added to produce a cumulative score (range, 21–105). A higher total score is associated with poorer perioperative outcomes, increased COVID-19 transmission, and/or increased hospital resource requirements.

CAD, coronary artery disease; CHF, congestive heart failure; CV, cardiovascular; COPD, chronic obstructive pulmonary disease; HTN, hypertension; ICU, intensive care unit.

Table adapted from Prachand et al.1
for optimal timing. In practice, decisions are made by engaging patients in an informed discussion of near- and long-term goals of recovery, as well as how these may be affected by different treatment options. Developing a shared understanding of the factors listed previously is crucial when creating a management plan and determining appropriate repair methods.

DISCUSSION

Appropriate timing of repair is a key consideration for the management of patients with nerve injuries. Injuries to peripheral nerves initiate a series of regenerative and degenerative processes. When these processes fail to proceed in a synchronous, organized manner, neuroma formation and/or nervous deficiency may occur, both of which are progressive in nature. Untreated nerve injuries can result in serial remodeling in the sensorimotor, frontoparietal, and executive control networks. Postinjury neuropathic pain has been linked to adverse cortical changes and psychosocial factors such as pain catastrophizing. Successful nerve procedures can improve or eliminate neuropathic pain symptoms as well as restore connectivity in the brain's sensorimotor and salience networks. Timely intervention may reduce the risk of patients progressing to dependence on narcotics or neuromodulators.

As a critical component of the nerve treatment algorithm, the issue of timing must be addressed to optimize outcomes. A concise view of relevant clinical data may assist physicians making decisions and advocating for the appropriate timing of intervention for patients. Although most of the existing recommendations are too broad to be useful in a clinical setting with high variability between cases, Prachand et al. recently proposed a scoring system that integrates procedure, disease, and patient factors to justify the scheduling of MeNTS Possible Score Ranges for Common Nerve Procedures

Procedure Factors	Sharp Laceration of Digital Nerve	Ulnar Elbow (MM)	Carpal Tunnel	Neura	
OR time	1–2	2–3	1	2	
Estimated length of stay	1	1	1	1	
Postoperative ICU need	1	1	1	1	
Anticipated blood loss	1	1	1	1	
Surgical team size	4	4	4	4	
Intubation probability	1	1	1	1	
Surgical site	1	1	1	1	
Disease factors					
Nonoperative treatment, pain medication	2	1	2	2	
Nonoperative treatment, pain medication	5	1	5	5	
Impact of 2-wk delay	3	3	5	3	
Impact of 2-wk delay	2	2	5	5	
Impact of 6-wk delay	2	1	4	3	
Impact of 6-wk delay	2	2	5	5	
Score (+ possible scores from factors below)	27 (+8 → 40)	22 (+8 → 40)	36 (+8 → 40)	34 (+8 → 40)	
Patient factors					
OR time					
Estimated length of stay					
Postoperative ICU need					
Anticipated blood loss					
Surgical team size					
Intubation probability					
Surgical site					
Disease factors					
Nonoperative treatment, pain medication	2	1	2	2	
Nonoperative treatment, pain medication	5	1	5	5	
Impact of 2-wk delay	3	3	5	3	
Impact of 2-wk delay	2	2	5	5	
Impact of 6-wk delay	2	1	4	3	
Impact of 6-wk delay	2	2	5	5	
Score (+ possible scores from factors below)	27 (+8 → 40)	22 (+8 → 40)	36 (+8 → 40)	34 (+8 → 40)	
Patient factors					
OR time					
Estimated length of stay					
Postoperative ICU need					
Anticipated blood loss					
Surgical team size					
Intubation probability					
Surgical site					
Disease factors					
Nonoperative treatment, pain medication	2	1	2	2	
Nonoperative treatment, pain medication	5	1	5	5	
Impact of 2-wk delay	3	3	5	3	
Impact of 2-wk delay	2	2	5	5	
Impact of 6-wk delay	2	1	4	3	
Impact of 6-wk delay	2	2	5	5	
Score (+ possible scores from factors below)	27 (+8 → 40)	22 (+8 → 40)	36 (+8 → 40)	34 (+8 → 40)	
Patient factors					
OR time					
Estimated length of stay					
Postoperative ICU need					
Anticipated blood loss					
Surgical team size					
Intubation probability					
Surgical site					
Disease factors					
Nonoperative treatment, pain medication	2	1	2	2	
Nonoperative treatment, pain medication	5	1	5	5	
Impact of 2-wk delay	3	3	5	3	
Impact of 2-wk delay	2	2	5	5	
Impact of 6-wk delay	2	1	4	3	
Impact of 6-wk delay	2	2	5	5	
Score (+ possible scores from factors below)	27 (+8 → 40)	22 (+8 → 40)	36 (+8 → 40)	34 (+8 → 40)	
Patient factors					
OR time					
Estimated length of stay					
Postoperative ICU need					
Anticipated blood loss					
Surgical team size					
Intubation probability					
Surgical site					
Disease factors					
Nonoperative treatment, pain medication	2	1	2	2	
Nonoperative treatment, pain medication	5	1	5	5	
Impact of 2-wk delay	3	3	5	3	
Impact of 2-wk delay	2	2	5	5	
Impact of 6-wk delay	2	1	4	3	
Impact of 6-wk delay	2	2	5	5	
Score (+ possible scores from factors below)	27 (+8 → 40)	22 (+8 → 40)	36 (+8 → 40)	34 (+8 → 40)	
Patient factors					
OR time					
Estimated length of stay					
Postoperative ICU need					
Anticipated blood loss					
Surgical team size					
Intubation probability					
Surgical site					
Disease factors					
Nonoperative treatment, pain medication	2	1	2	2	
Nonoperative treatment, pain medication	5	1	5	5	
Impact of 2-wk delay	3	3	5	3	
Impact of 2-wk delay	2	2	5	5	
Impact of 6-wk delay	2	1	4	3	
Impact of 6-wk delay	2	2	5	5	
Score (+ possible scores from factors below)	27 (+8 → 40)	22 (+8 → 40)	36 (+8 → 40)	34 (+8 → 40)	
Patient factors					
OR time					
Estimated length of stay					
Postoperative ICU need					
Anticipated blood loss					
Surgical team size					
Intubation probability					
Surgical site					
Disease factors					
Nonoperative treatment, pain medication	2	1	2	2	
Nonoperative treatment, pain medication	5	1	5	5	
Impact of 2-wk delay	3	3	5	3	
Impact of 2-wk delay	2	2	5	5	
Impact of 6-wk delay	2	1	4	3	
Impact of 6-wk delay	2	2	5	5	
Score (+ possible scores from factors below)	27 (+8 → 40)	22 (+8 → 40)	36 (+8 → 40)	34 (+8 → 40)	
Patient factors					
OR time					
Estimated length of stay					
Postoperative ICU need					
Anticipated blood loss					
Surgical team size					
Intubation probability					
Surgical site					
Disease factors					
Nonoperative treatment, pain medication	2	1	2	2	
Nonoperative treatment, pain medication	5	1	5	5	
Impact of 2-wk delay	3	3	5	3	
Impact of 2-wk delay	2	2	5	5	
Impact of 6-wk delay	2	1	4	3	
Impact of 6-wk delay	2	2	5	5	
Score (+ possible scores from factors below)	27 (+8 → 40)	22 (+8 → 40)	36 (+8 → 40)	34 (+8 → 40)	
Patient factors					
OR time					
Estimated length of stay					
Postoperative ICU need					
Anticipated blood loss					
Surgical team size					
Intubation probability					
Surgical site					
Disease factors					
Nonoperative treatment, pain medication	2	1	2	2	
Nonoperative treatment, pain medication	5	1	5	5	
Impact of 2-wk delay	3	3	5	3	
Impact of 2-wk delay	2	2	5	5	
Impact of 6-wk delay	2	1	4	3	
Impact of 6-wk delay	2	2	5	5	
Score (+ possible scores from factors below)	27 (+8 → 40)	22 (+8 → 40)	36 (+8 → 40)	34 (+8 → 40)	
In the case of the COVID-19 pandemic, the initial response of many institutions was to cancel or reschedule all "elective" surgeries. Unfortunately, many nerve surgeries must be performed within a critical time window to avoid permanent sensory and/or functional deficits. Postponing these serious but nonemergency cases can result in rescheduled procedures performed in a more unfavorable environment if ideal conditions do not materialize within the time frame for effective operative intervention. In routine practice conditions, procedures are often delayed because of inopportune surrounding circumstances such as patients' work or social commitments. When planning surgery with patients, the appropriate data must be used to weigh potential risks of delaying treatment.

Crisis scenarios can be a catalyst but are not the focus of discussions surrounding optimal treatment algorithms. Timing decisions are always critical to patient outcomes and are made by surgeons daily, regardless of external circumstances. Although the current literature remains limited in many situations, the authors believe this review serves as a suitably condensed resource to allow surgeons to make educated assessments for individual patients with any type of nerve pathology. Although further investigation will be necessary to parse out nuances in clinical decision making, the authors believe that these data will allow physicians to better advocate for patients regarding the timing of nerve procedures and may ultimately lead to more optimal outcomes.

REFERENCES

1. Prachand VN, Milner R, Angelos P, et al. Medically necessary, time-sensitive procedures: scoring system to ethically and efficiently manage resource scarcity and provider risk during the COVID-19 pandemic. J Am Coll Surg. 2020;231:281–288.

2. Giorgadze T, Rukhadze R, Giorgadze S, et al. Quantitative changes of schwann and mast cells in the process of peripheral nerve regeneration. Georgian Med News. 2010;188:84–88.

3. Dahlin LB. The role of timing in nerve reconstruction. Int Rev Neurobiol. 2013;109:151–164.

4. Müller-Vahl H. Traumatic nerve damage: causes, approaches and prognosis. Nervenarzt. 2015;86:142–150.

5. Moore AM, Wagner LJ, Fox IK. Principles of nerve repair in complex wounds of the upper extremity. Semin Plast Surg. 2015;29:40–47.

6. Höké A. Mechanisms of disease: what factors limit the success of peripheral nerve regeneration in humans? Nat Clin Pract Neurol. 2006;2:448–454.

7. Gordon T. The physiology of neural injury and regeneration: the role of neurotrophic factors. J Commun Disord. 2010;43:265–273.

8. Gordon T, Tyerman N, Raji MA. The basis for diminished functional recovery after delayed peripheral nerve repair. J Neurosci. 2011;31:5325–5334.

9. Fu SY, Gordon T. Contributing factors to poor functional recovery after delayed nerve repair: prolonged denervation. J Neurosci. 1995;15:65 pt 2:3886–3895.

10. Jonsson S, Wiberg R, McGrath AM, et al. Effect of delayed peripheral nerve repair on nerve regeneration, Schwann cell function and target muscle recovery. PLoS One. 2013;8:e56484.

11. Palisip WA, Gupta R. Surgical repair in humans after traumatic nerve injury provides limited functional neural regeneration in adults. Exp Neurol. 2017;290:106–114.

12. Sulaiman OA, Gordon T. Effects of short- and long-term Schwann cell deinnervation on peripheral nerve regeneration, myelination, and size. Glia. 2000;32:234–246.

13. Ronchi G, Cillino M, Gambarruta G, et al. Irreversible changes occurring in long-term denervated Schwann cells affect delayed nerve repair. J Neurosurg. 2017;127:843–856.

14. Tereghi G, Hart A, Wiberg M. The nerve injury and the dying neurons: diagnosis and prevention. J Hand Surg Eur Vol. 2011;36:730–734.

15. Navarro X. Chapter 27: neural plasticity after nerve injury and regeneration. Int Rev Neurobiol. 2009;87:483–505.

16. Navarro X, Vivó M, Valero-Cabré A. Neural plasticity after peripheral nerve injury and regeneration. Prog Neurobiol. 2007;82:163–201.
Aleksej A., Krogue J.D., Caffe M.P. Outcomes of revision surgery for cubital tunnel syndrome. J Hand Surg Am. 2014;39:2141–2149.

Teoh C.C., Tan P.L. Extended carpal tunnel release for recurrent carpal tunnel syndrome after previous open release. Hand Surg 2004;9:235–239.

Sara L., Waitowsksky T., Trumble T.E. Endoscopic revision of carpal tunnel release. Plast Reconstr Surg. 2008;121:2029–2034; discussion 2035-2026.

Langlois ND, Linscheid RL. Recurrent and unresolved carpal-tunnel syndrome. Clin Orthop Relat Res. 1972;83:41–47.

Widström J, Nistg H. Reoperation for carpal tunnel syndrome. A retrospective analysis of forty cases. Ann Chir Main. 1986;5:44–58.

O'Malley MJ, Evanoff M, Terrono AL, et al. Factors that determine reexploration treatment of carpal tunnel syndrome. J Hand Surg Am. 1992;17:638–641.

Chang B, Dellen AL. Surgical management of recurrent carpal tunnel syndrome. J Hand Surg Br. 1993;18:467–470.

Cobb TK, Amadio PC, Leatherwood DF, et al. Outcome of reoperation for carpal tunnel syndrome. J Hand Surg Am. 1996;21:347–356.

Ducks R., Sokolow C. Management of true recurrent carpal tunnel syndrome: is it worthwhile to bring vascularized tissue? Chir Main. 1998;17:113–117; discussion 118.

Hulseritz DL, Staebler MP, Weiss AP, et al. The results of revision carpal tunnel release following open previous versus endoscopic surgery. J Hand Surg Am. 1998;23:865–869.

Forman DL, Watson HK, Caulfield KA, et al. Persistent or recurrent carpal tunnel syndrome following prior endoscopic carpal tunnel release. J Hand Surg Am. 1998;23:1010–1014.

Beck JD, Brothers JG, Maloney PJ, et al. Predicting the outcome of revision carpal tunnel release. J Hand Surg Am. 2012;37:282–287.

Sotereanos DG, Giannakopoulos PN, Mitsionis GI, et al. Vein-graft wrapping for the treatment of recurrent compression of the median nerve. Microsurgery. 1995;16:752–756.

Sotereanos DG, Xu J. Vein wrapping for the treatment of recurrent carpal tunnel syndrome. Tech Hand Up Extrem Surg. 1997;1:35–40.

Varitimitis SE, Riano F, Sotereanos DG. Recalcitrant post-surgical neuropathy of the ulnar nerve at the elbow: treatment with autogenous saphenous vein wrapping. J Reconstr Microsurg. 2000;16:273–277.

Soltani AM, Allan BJ, Best MJ, et al. Revision decompression and collagen nerve wrap for recurrent and persistent compression neuropathies of the upper extremity. Ann Plast Surg. 2014;72:572–578.

Kokalis ZT, Mavrogenis AF, Blassa EG, et al. Collagen nerve wrap for median nerve at the wrist joint. Orthopade. 2015;38:117–121.

Kokalis ZT, Mavrogenis AF, Vottis C, et al. Median nerve biodegradable wrapping: clinical outcome of 10 patients. Acta Orthop Belga. 2016;82:351–357.

Strickland JW, Idler RS, Lourie GM, et al. The hypothenar fat pad flap for management of recalcitrant carpal tunnel syndrome. J Hand Surg Am. 1996;21:840–848.

Giunta R, Frank U, Lanz U. The hypothenar fat-pad flap for reconstructive repair in recalcitrant carpal tunnel syndrome. J H and Surg Br. 2008;62(3 suppl 1):194–199; discussion 199-200.

Fessetti C, Garavaglia M, Chalmon C, et al. A reliable and simple solution for recalcitrant carpal tunnel syndrome: the hypothenar fat pad flap. Am J Orthop (Belle Mead NJ). 2009;38:181–186.

Karlik H., Nanda R, Stothard J. Recurrent carpal tunnel syndrome—analysis of the impact of patient personality in altering functional outcome following a vasculocutaneous hypothenar fat pad flap surgery. Hand Microsurg. 2012;4:1–6.

Wichellhaus A, Mittmeier T, Gierer P, et al. Vasculocutaneous hypothenar fat pad flap in revision surgery for carpal tunnel syndrome. J Neurol Surg A Cent Eur Neurosurg. 2015;76:438–442.

Athlani L, Haloua JP. Strickland's hypothenar fat pad flap for revision surgery in carpal tunnel syndrome: prospective study of 34 cases. Hand Surg Rehabil. 2017;36:202–207.

Wull C. The synovial flap as treatment of the recurrent carpal tunnel syndrome. Hand Clin. 1996;12:379–388.

Murphy PG, Abzug JM, Jacoby SM, et al. The tenosynovial flap for recalcitrant carpal tunnel syndrome. Tech Hand Up Extrem Surg. 2013;17:84–86.

Strassberg SR, Novak CB, Mackinnon SE, et al. Subjective and employment outcome following secondary carpal tunnel surgery. Ann Plast Surg. 1994;32:485–489.

Varitimitis SE, Herndon JH, Sotereanos DG. Failed endoscopic carpal tunnel release. Operative findings and results of open revision surgery. J Hand Surg Br. 1999;24:465–467.

Jones NE, Ahn HC, Eo S. Revision surgery for persistent and recurrent carpal tunnel syndrome and for failed carpal tunnel release. Plast Reconstr Surg. 2012;129:683–692.

Zieske L, Ebersole GC, Dawidge K, et al. Revision carpal tunnel surgery: a 10-year review of intraoperative findings and outcomes. J Hand Surg Am. 2013;38(8):1530–1539.

Djerbi I, Cesar M, Lenoir H, et al. Revision surgery for recurrent and persistent carpal tunnel syndrome: clinical results and factors affecting outcomes. Chir Main. 2015;34:312–317.

Lauder A, Mithani S, Levedge SJ. Management of recalcitrant carpal tunnel syndrome. J Am Acad Orthop Surg. 2019;27:551–562.

Bassilios Habre S, Bond G, Jing XL, et al. The surgical management of nerve palsy: present and future. Ann Plast Surg. 2018;80:252–261.

Barths RH, Grotenhuis JA. Anterior submuscular transposition of the ulnar nerve at the elbow: treatment with autogenous saphenous vein wrap. J Reconstr Microsurg. 2007;23:85–89. doi:10.1055/s-2007-978496.