Symbolic Computing with Incremental Mind-maps to Manage and Mine Data Streams - Some Applications

Claudine Brucks and Michael Hilker and Christoph Schommer and Cynthia Wagner and Ralph Weires

Abstract. In our understanding, a mind-map is an adaptive engine that basically works incrementally on the fundament of existing transactional streams. Generally, mind-maps consist of symbolic cells that are connected with each other and that become either stronger or weaker depending on the transactional stream. Based on the underlying biologic principle, these symbolic cells and their connections as well may adaptively survive or die, forming different cell agglomerates of arbitrary size. In this work, we intend to prove mind-maps’ eligibility following diverse application scenarios, for example being an underlying management system to represent normal and abnormal traffic behaviour in computer networks, supporting the detection of the user behaviour within search engines, or being a hidden communication layer for natural language interaction.

1 ABOUT MIND-MAPS

Transactional streams are to be understood as an endless flow of data that is lost once it is read. Furthermore, the data can be classified into categories, for example sentences or paragraphs inside a text document. These categories form the transaction, having items inside, for example words or paraphrases. An example for a transactional stream may be the reading of a book, where the text is read exactly once but lost if it is pronounced. The management, and moreover, the analysis of transactional streams is often problematic for several reasons. One of them is that data streams are potentially infinite or at least their end is not known until it is actually reached. Storing the whole data stream is therefore not an option, and the analysis cannot rely on traditional mining techniques that require the whole dataset to be available or that need random access or multiple passes over the data. Currently a lot of research focuses on the processing of such streams of different kind. Some of the typical techniques used with data streams are sliding windows, incremental approaches, or synopses of the data. Surveys of current methods and issues can be found in [4], [7], [9], [18].

With the discussion around mind-maps, we argue for its eligibility by demonstrating its applicability on a couple of algorithmic ideas. In our understanding, mind-maps are to be seen as adaptive and incremental knowledge structures, which live from dependability by demonstrating its applicability on a couple of algorithmic ideas. In our understanding, mind-maps are to be seen as adaptive and incremental knowledge structures, which live from dependability by demonstrating its applicability on a couple of algorithmic ideas. In our understanding, mind-maps are to be seen as adaptive and incremental knowledge structures, which live from dependability by demonstrating its applicability on a couple of algorithmic ideas.

2 APPLICATIONS

2.1 TARGETING NETWORK PROTECTION

Network-based anomaly detection [11, 21] refers to a system-based understanding of what the structure and the behaviour of network traffic is, and in this respect to identify abnormal situations. Here, the mind-map model ANIMA-AR is implemented to represent network traffic events while having network packets including header and content as one transaction, is one promising application. It fragments such packet transactions into meaningful symbolic cells within the mind-map and connects the packet cells. Additionally, connection values are established relating to the corresponding frequencies, respectively. Due to the architecture, we may rate the usual network traffic by a lower connection weight - although the frequency is high - but may rate an abnormal/unusual network behaviour by a higher...
value - although it appears more seldom. We identify the abnormal traffic as it is rated significantly and therefore tolerant against temporal connection updates between the symbolic cells. The following sequence of pictures gives an example on how the mind-map is used; it refers to the management of bad signatures as described in [11], taking several insertion rules into account. First, the incoming signature ABC is considered and assigned to symbolic cells, being equal-weighted.

Then, if a new signature CDEF is added to the mini-network, and the weights are adapted. At each step, substrings are considered and evaluated as follows: given a sub-string, then if the sum of all activation states ...

- ... is exactly 1, then a virus alert takes place.
- ... is exactly 0, then no virus alert takes place.
- ... is between 0 and 1, an alert takes place with a probability value.
- ... increases 1, then it is not considered.

For example, ABC forces a virus alert as it is infected for 100%, whereas only H is unlikely to be infected. To continue the example, as C is already known, this value stays constantly.

\[A \rightarrow B \rightarrow C \rightarrow D \rightarrow E \rightarrow F \]

The following photographs of the mind-map refers to the situation when the signatures CDE

\[A \rightarrow B \rightarrow C \rightarrow D \rightarrow E \rightarrow F \]

and CDGH are being inserted. With this, the probability values for each signatures is clearly available through the whole life-time of the mind-map. More information can be found in [11].

\[A \rightarrow B \rightarrow C \rightarrow D \rightarrow E \rightarrow F \]

The mind-map model ANIMA-AR is implemented to detect well-known viruses. The signature of viruses is stored in a graph-like structure; virus signatures are managed and stored, incoming packets - to identify intrusions - evaluated. The scanning speed and the required storage space outperforms current approaches and emerges out of the compression of the signature database. ANIMA-AR is theoretically analysed showing that viruses and similarities are detected. Simulations substantiate the theoretical analysis and show the low false-positive rate tolerating the normal system. In addition, ANIMA-AR is able to automatically detect similar viruses as small mutations or new variants.

2.2 MANAGING IMPLICIT FEEDBACK

The consideration of implicit feedback in the field of information retrieval and the automatic collection of information about the user’s behaviour [15] [24] is an application of interest. Without an explicitly request of information, we intend to gain some information about what really interesting is. The aim is to use the mind-map as an adaptive storage for such kind of information and consequently, for the enhancement of user-based research requests. We therefore monitor the user’s behaviour in interaction with a search engine, keeping an eye on queries and their results, links that the user follows, and diverse time-related information, for example how long he or she stays on web sites. Search sessions like this are considered as single transactions for the mind-map. And, building up such a network provides information about typical queries, results, and measures, especially regarding the relevance of search results, namely towards an enhancement of further queries.

An example might be a giving of additional hints or altering the results themselves. One concrete step is a re-ranking of search results, which may help to place those results further on the top of the list that are probably of greater importance according to the given query. Following this, the strengthens of the mind-map are mainly due to the ability to cope with transactional streaming data. We concern with information about search sessions of users, which can easily be broken down into transactions. Moreover, the mind-map is able to store only the most important aspects of the information without the need of storing all feedback data. This helps to keep the network at a reasonable size. Furthermore, the dynamic nature of this mind-map fits quite well to the purpose of this approach: if there is a change of the user’s feedback over time, then this trend will be reflected in the mind-map as well. Figure 1 shows an architectural snapshot of the mind-map, where we use three different types of cells:

- The query terms are single terms that are observed in user queries.
- Queries that form the transactional input to the mind-map.
- The resulting list of documents that have been provided by the underlying search engine for one or more queries.

![Architecture of the mind-map](image)

There may exist different connections between these nodes, which might be weighted indicating the strength of the relationship. These are for example connections that indicate relationships between different query terms, connections between queries and query terms, and connections between queries and documents. More information can be found in [24] [25].

2.3 TARGETING DBLP

Bibliographical databases such as Citeseer, Google Scholar, and DBLP serve as a bibliographic source with lots of information concerning a publication. This compounds the names of the authors, the publication title, the conference, and many other attributes. A bibliography database is accessible online, where all
With this, we reference to a graph structure representing the association of the three authors Han, Kang and Gelbukh. This is similar to [12] who introduces mini-networks. The double edges signal a double connection as the single (and parallel) edge between Han to Gelbukh and Kang to Gelbukh refers to a one-way association. Whereas the meaning of a double connection is unique while having two publications, the double entries to Gelbukh seem to be ambiguous: on the one side, it refers to one common publication with both individually, on the other to two single publications with one of the other authors. However, the graph is node-oriented in a way that it simply represents the situation as it is: Gelbukh has one common publication with both of them, and here, it plays no role if this is a common one or not.

For static databases, the discovery of associative patterns has been an area of extensive research, and multiple approaches and solutions to the static problem have been presented in the past. A major problem in these approaches is the combinatorial explosion of the search space and the research has therefore mainly focused on reducing this space. Since mind-maps are targeted to data streams, it can not possibly make use of the methods developed for static databases, since these algorithms require multiple passes over the data to calculate frequencies of associated items. This is indeed not acceptable when dealing with data streams, because data streams are potentially infinite, or at the very least their end cannot be foreseen. In this respect, the idea of searching for temporal patterns in a bibliographic database as a digital collection that is intelligently managed and that contains citations and abstracts. Understanding the bibliographic database as a digital collection that is intelligently managed and that supports a search for and the retrieval of bibliographic information to defined queries is a convenient procedure in demanding information right in time. Regularly, the retrieve bases on a collection of queries that consists of keywords in the publication title or the keyword list. For example with DBLP, the querying using a keyword plagiarism leads to an answer set of almost 70 articles, and a search refinement with detection and pattern to 34 and 2 bibliographic entries, respectively. Accordingly, the two referenced publications pledge close; and the names of the authors overlap:

1 NamOh Kang, Sang-Yong Han: Document Copy Detection System Based on Plagiarism Patterns. CICLing 2006: 571-574.
2 NamOh Kang, Alexander F. Gelbukh, Sang-Yong Han: PPChecker: Plagiarism Pattern Checker in Document Copy Detection. TSD 2006: 661-667.

With this, we may discover scientific communities? While observing the visualisation of associative relationships between authors, we might ask if such dependencies generally form a community, and secondly, how strong these communities may be. Furthermore, if dependencies of of communities exist, are these temporal or visiting, recurring, or constant as it has been mentioned in section [10].

- In general, may we discover scientific communities? While observing the visualisation of associative relationships between authors, we might ask if such dependencies generally form a community, and secondly, how strong these communities may be. Furthermore, if dependencies of of communities exist, are these temporal or visiting, recurring, or constant as it has been mentioned in section [10].
- Do there exist diverse trends in publishing? For example, the occurrence of a common publication may be the initiator for a fruitful collaboration (which is proven by following publications on the same or a different research topic).

With this, we may perform mind-mapping over a period of time, for example moving a corresponding window temporarily over time.

![Figure 2. Temporary mind-map (DBLP, year of 1993), consisting of associated author nodes.](image)

2.4 SEMANTIC NET-LEARNING

The mind-map model WYWI stands for a simple communication paradigm that focus on natural language communication. The model uses a mind-map to manage words and their relationship to others associatively. A sentence is read incrementally and threatened as a transaction with concepts and roles. Currently, only adjectives, nouns, and verbs are considered as worth, they are extracted and put into the mind-map as a semantic structure. Adjectives are considered as sub-concepts of nouns. For example,

\[
\#S(\text{CONCEPT :NAME MAN :CAT N :FATHER (ROOT)})
\]

Here, the word READ acts as relationship (role) connects both MAN and BOOK, sharing a connection and activation value of 0.9577, respectively. Other roles exist, but are unrelated. Each time-step, the activation values are decreased unless the role or the associated concepts remain inactive. As for the ANIMA mind-map model, the underlying net structure is refreshed after each transaction; it adapts to the given stimulation. However, WYWI does not use any extern source (for example thesaurus) but actively interacts with the user in case a word is unknown. This is to understand the morphologic basis or the lexical category. WYWI also establishes a semantic representation through micro-features: here, the user must rate a word semantically against given (predefined) entities. This produces a k-dimensional space, having k as the number of independent micro-features, for example

```
... MAN is ((1.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 ...))
LION is ((0.0 0.0 0.0 0.0 0.7 0.0 0.4 ...))
... 
```

The communication in WYWI is performed as a conversation. For a sentence like The yellow lion sees Peter, the word
YELLOW becomes a sub-concept of a word LION, whereas LION and PETER are connected by SEE. Additionally, SEE is becomes higher activated. Additionally, all concepts are represented in the k-space. As a consequence, transactional (dialogue) stream can be processed and queries be sent at each time.

... WYWI: {ENTER THE NEXT WORD OR CLOSE BY ‘-’})
USER: Peter
WYWI: COULD YOU PLEASE GIVE SOME EXPLANATION, LIKE THE MORPHOLOGIC BASIS?
USER: Peter
WYWI: AND WHAT IS THE LEXICAL BASIS OF peter?
USER: person
WYWI: I NEED SOME SEMANTIC INFORMATION ABOUT peter. HAVE A LOOK AND RATE peter FROM 0 to 1:
TALL?
USER: 0.9
WYWI: And with HEAVY?
...

An extended version of the semantic net-learning from text streams is to define a temporal mind-map for a certain actor of a text: where the text stream is consolidated over time by a semantic graph structure. In this work, an important issue for building an author-related mind-map is the resolution of linguistic anaphors.

So far, the major idea is to process each sentence incrementally so that a general and pre-defined scheme structure of subject - verb - object is instantiated every time ([14]). At the moment, we only concern with nouns, verbs, and adjectives, where other linguistic categories are disregarded. In this respect, verbs act as a role between the concepts (noun, object). Each concept may have sub-concepts that correspond to attributes, for example the sentence the old man likes the green juicy grassland is translated into

![Figure 3. A semantic graph having man as the centric concept. Attributes are adjunct by dashed lines, whereas roles are connected as a circle.](image)

where man and grassland represent main concepts and green, juicy, and old sub-concepts. The process of relating identical concepts together is accomplished by a matching of identical words and a resolution of linguistic anaphors ([13], [17]). The following Figure 4 shows the semantic structure after having read the sentence He walks into the forest.

So far, the incremental processing of texts can be stopped at any moment. The semantic structure is a mind-map with concepts and relationships of consistent states. Beside focusing on the elaboration of methods to realize pronominal anaphora and co-reference in text streams, we will assign weight values to concepts and roles in order to prove their importance for an actor.

The idea of content zoning is to refer to a segmentation of a text document into semantic zones. As indicated in [22] and moreover as firstly discussed in [22] with Argumentative Zoning, the basic idea here is to structure texts on the basis on pre-defined categories. An example might be the following text, having the actors Harry, Hedwig, and owl:

“Harry got up off the floor, stretched, and moved across to his desk. Hedwig made no movement as she began to flock through newspapers, throwing them into the rubbish pile one by one. The owl was asleep or else faking; she was angry with Harry about the limited amount of time she was allowed off her cage at the moment. As her neared the bottom of the pile of newspapers. Harry slowed down, searching for one particular issue that he knew had arrived shortly after he had returned to Privet Drive for the summer, he remembered that there had been a small mention on the front about the resignation of Charity Burbage, the Muggle Studies teacher at Hogwarts.”

and then be zoned to

- Harry <ACTOR=HARRY> got up off the floor, stretched, and moved across to his (→his ⇒ HARRY) desk. </ACTOR=HARRY>
- Hedwig <ACTOR=HEDWIG> made no movement as she (→she = HEDWIG) began to flock through newspapers, throwing them (→them = newspapers) into the rubbish pile one by one.
- The owl <ACTOR=OWL> was asleep or else faking; she (→she = OWL) was angry with Harry (→Harry = HARRY) about the limited amount of time she (→she ⇒ OWL) was allowed out her (→her ⇒ OWL) cage at the moment. As her (→her ⇒ OWL) neared the bottom of the pile of newspapers. </ACTOR=OWL>
- Harry <ACTOR=HARRY> slowed down, searching for one particular issue that he (→he = HARRY) knew had arrived shortly after he (→he ⇒ HARRY) had returned to Privet Drive for the summer, he (→he = HARRY) remembered that there had been a small mention on the front about the resignation of Charity Burbage, the Muggle Studies teacher at Hogwarts. At last he (→he = HARRY) found it. </ACTOR=HARRY>

where linguistic anaphors are solved depending on the current actor, the gender, and/or between different candidates that have already occurred in the text. Knowing that the owl has the name Hedwig, and moreover, having a hierarchy on site, the zoning can be updated even more. An additional analysis can be performed to gain further information about the separate zones. Rather simple to extract information could be statistics about the size and layout of zones, but a more sophisticated analysis of their text content is possible. The latter can lead to an extraction of the semantic content and purpose of a zone. Such kind of information can be used for various purposes, such as comparing documents to each other (regarding their analysed zone structure and content) by simply referring to information about the zones as zone variables ([3]).

We apply content zoning to text streams in order to establish a semantic mind-map, while using a sliding window of user-specified length; text is buffered in, immediately zoned and analysed. Intermediate statistical results are managed to produce a user specific
summary on a given subject. The definition of zones is insufficient to an effective zoning as zones only indicate a position of an information in the text, but do less give information about the content. A solution might be the introduction of zone variables, which describe the content of the input stream and are the core parameters for the summary generation. In this respect, we concern with two categories of zones, namely document independent and document dependent zones, for example the position of the zone in the text stream, its length or the most occurring word (without stopwords). During the zoning process, nearly all sentences are attributed to zones. Useless sentences and sentences which cannot be attributed to a zone are skipped or can be regrouped a user-defined zone. After different steps as anaphor resolution for example, the values of the variables are used for statistical evaluations to generate a summary on a user specific subject. During the process of buffering and processing the text streams, there is an option of real-time evaluation, so that changing values are immediately visible to the user. At each instant, the user has the possibility to call a summary on a previously defined subject, as for example an actor of a fairy tale. But, also less sophisticated results as the top most occurring words or collocations can be called at each moment.

3 CONCLUSIONS

A mind-map is an adaptive engine that basically works incrementally on the fundament of transactional streams. Following our model, mind-maps consist of symbolic neural cells that are connected with each other and that become either stronger or weaker depending on the transactional stream: based on the underlying biologic principle, these symbolic cells and their connections as well may adaptively survive or die, forming different cell agglomerates of arbitrary size.

With that, mind-maps may be applicable for the management of trust as well: every human shares an own attitude about others, for example Person R has an attitude to Person S and vice versa. Both are probably different from each other and different to Person T’s view to Person R or Person S. Furthermore, one might get the conclusion if Person R trusts Person S but not vice versa. With this approach, we may follow a proposition by [16] who suggests a model on human conversations. The attitude of someone’s mind is modelled as a self-organising mind-map. Every person has a model of his/her view of the world and models for other people whom he/she has interacted with. All views including a self view and views to other persons (others) will be modified through conversations between people. We therefore intend to introduce an engine to find regularities between human’s objects and to model trust based on this. The creation of an artificial mind-map, where a textual data stream is read and represented in an associative dynamic network. Each incoming stream is decomposed to its items, for example a text stream may be decomposed to words.

ACKNOWLEDGEMENTS

This work has been done at the MINE research group at the Laboratory for Intelligent and Adaptive Systems across several research projects funded by the University of Luxembourg and the Ministry of Higher Education.

REFERENCES

[1] D. J. Abadi, D. Carney, U. Conti, M. Cherniack, C. Convey, S. Lee, M. Stonebraker, N. Taibul, and S. Zdonik: Aurora: a new model and architecture for data stream management. The VLDB Journal. 2003.
[2] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito, R. Motwani, U. Srivastava, and J. Widom: STREAM - The Stanford Data Stream Management System, Stanford University. 2004.
[3] C. Brucks, M. Hiiker, C. Schommer, C. Wagner, and R. Weires: Semi-automated Content Zoning of Spam Emails. Lecture Notes on Business Information Processing (Springer). 2008. (to appear)
[4] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom: Models and issues in data stream systems. In Proceedings of PODS, 2002.
[5] K. Chen-Chuan Chang, H. Garcia-Molina: Mind Your Vocabulary: Query Mapping Across Heterogeneous Information Sources. SIGMOD Conference 1999: 335-346.
[6] Digital Bibliography & Library Project, Computer Science Bibliography, University of Trier, [http://dlib.uni-trier.de/]
[7] P. Domingos, and G. Hulten: Catching up with the data. Research issues in mining data streams. In Workshop on Research Issues in Data Mining and Knowledge Discovery, Santa Barbara, CA, USA, May 2001.
[8] M. J. Eppler: A comparison between concept maps, mind maps, conceptual diagrams, and visual metaphors as complementary tools for knowledge construction and sharing. Information Visualization 5(3): 202-210 (2006).
[9] L. Golab, and M. T. Ozsu: Issues in data stream management. SIGMOD Record, 32(2):514, June 2003.
[10] L. M. Haas: Review - Mind Your Vocabulary: Query Mapping Across Heterogeneous Information Sources. ACM SIGMOD Digital Review.
[11] M. Hiiker, and C. Schommer: Description of bad-signatures for network intrusion detection. In AISW-NetSec 2006 during ACSW 2006, CRPIT, volume 54, Hobart, Australia, 2006.
[12] C. Kemke, Connectionist Parsing with Dynamic Neural Networks: Technical Report, Computing Research Laboratory, New Mexico State University, 2001.
[13] S. Lappin and H. J. Leass: An algorithm for pronominal anaphora resolution. Computational Linguistics, 20(4):535 561, 1994.
[14] J. Leskovec, N. Milne-Frayling, and M. Grobelna: Impact of linguistic analysis on the semantic graph coverage and learning of document extracts. In M. M. Veloso and S. Kambhampati, editors, AAAI, pages 10691074. AAAI Press / The MIT Press, 2005.
[15] L. Liu, C. Pu, and W. Tang: Categorical Queries for Internet Scale Event-Driven Information Delivery. IEEE Knowledge and Data Engineering, 1999.
[16] C. Miller: Modeling Trust in Human Conversation. 2005. Master Thesis, Massachusetts Institute of Technology, Dept. of Computer Science and Engineering.
[17] R. Mitkov: Robust pronoun resolution with limited knowledge. In COLING-ACL, pages 869875, 1998.
[18] S. Muthukrishnan: Data streams - Algorithms and applications. In Proceedings of the 14th annual ACM-SIAM symposium on discrete algorithms, 2003.
[19] C. Schommer: Incremental Discovery of Association Rules with Dynamic Neural Cells. Proceedings of the Workshop on Symbolic Networks. ECAI 2004, Valencia, Spain, 2004.
[20] C. Schommer, and B. Schroeder: ANIMA - Associate Memories for Categorical data Streams. Proceedings of the 3rd International Conference on Computer Science and its Applications (ICCSA-2005). San Diego, USA.
[21] M. Sullivan: A Stream Database Manager for Network Traffic Analysis, Bell Communications Research, Morristown, NJ 07960, 22nd VLDB Conference, Mumbai, India, 1996.
[22] S. Tufte: Argumentative Zoning: Information Extraction from Scientific Text. 1999. Phd Thesis, University of Edinburgh, England.
[23] O. Uzuner, R. Davis, B. Katz: Using Empirical Methods for Evaluating Expression and Content Similarity. MIT, Computer Science and Artificial Intelligence Laboratory, 200 Technology Sq,NE43-825
[24] R. Weires. B. Schroeder, and M. Hiiker. Dynamic association networks in information management. In Proceedings of the 4th International Conference on Machine Learning and Data Analysis (MLDA). 2007.
[25] R. Weires, C. Schommer, and S. Kaufmann: SERE BIF - Search Engine Result Enhancement by Implicit Feedback. 4th Intl Conference on Web Information Systems and Technologies (Webist 2008). Poster Presenta. Funchal, Madeira. 2008.