A DEEP LEARNING APPROACH TO OBJECT AFFORDANCE SEGMENTATION

Spyridon Thermos 1,2 Petros Daras 2 Gerasimos Potamianos 1

1 Department of Electrical and Computer Engineering, University of Thessaly, Volos, Greece
2 Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki, Greece

spthermo@e-ce.uth.gr daras@iti.gr gpotam@ieee.org

ABSTRACT

Learning to understand and infer object functionalities is an important step towards robust visual intelligence. Significant research efforts have recently focused on segmenting the object parts that enable specific types of human-object interaction, the so-called “object affordances”. However, most works treat it as a static semantic segmentation problem, focusing solely on object appearance and relying on strong supervision and object detection. In this paper, we propose a novel approach that exploits the spatio-temporal nature of human-object interaction for affordance segmentation. In particular, we design an autoencoder that is trained using ground-truth labels of only the last frame of the sequence, and is able to infer pixel-wise affordance labels in both videos and static images. Our model surpasses the need for object labels and bounding boxes by using a soft-attention mechanism that enables the implicit localization of the interaction hotspot. For evaluation purposes, we introduce the SOR3D-AFF corpus, which consists of human-object interaction sequences and supports 9 types of affordances in terms of pixel-wise annotation, covering typical manipulations of tool-like objects. We show that our model achieves competitive results compared to strongly supervised methods on SOR3D-AFF, while being able to predict affordances for similar unseen objects in two affordance image-only datasets.

Index Terms— affordance, segmentation, human-object interaction, soft attention, deep neural networks

1. INTRODUCTION

Recent visual understanding systems are capable of detecting and recognizing objects in 2D/3D scenes [1,5]. However, a truly intelligent system should not only recognize an object, but also understand its functionality. Gibson [6] provides a way to reason about object functionalities and defines them as affordances, namely the types of actions that humans typically perform when interacting with them. Understanding object affordances and being able to localize and segment them is an important step towards robust scene understanding and active embodiment [7,8].

Object affordance segmentation, i.e. the pixel-wise identification of the object part that enables a specific interaction, is a challenging task that has been mostly treated as a static semantic segmentation problem, usually coupled with object detection. For example, Myers et al. [9] use hierarchical matching pursuit, as well as normal and curvature features derived from RGB-D data, to learn pixel-wise labeling of affordances for common household objects, while Nguyen et al. [10] propose an encoder-decoder architecture to predict pixel-wise affordances based on depth maps. Do et al. [11] expand the architecture of [10] by adding a region proposal network (RPN) [12] to predict the bounding box of the target object and also investigate the joint learning of detecting and segmenting the object affordance part. All aforementioned works rely on strong supervision, as each object affordance part must be fully annotated at pixel-level. On the other hand, Sawatzky et al. [13] propose a weakly-supervised setting using CNNs and keypoints annotation to predict reasonable but not precise pixel-level labels, which are then refined using the GrabCut algorithm [14]. Although these methods report satisfactory results, they are dependent on successful object detection and the absence of occlusions by the interacting hand.

In addition to the above, there are affordance recognition approaches that utilize information related to the interaction such as the estimated human and hand poses, yet in a static manner [15,16]. In the affordance reasoning domain though, this interaction-related information is used in a “learning from observation” perspective, exploiting the spatio-temporal nature of the interaction. In particular, Fang et al. [17] present “Demo2Vec” that learns spatio-temporal embeddings from product demonstrations and predicts keypoints on the object affordance part. Similarly, Nagarajan et al. [18] propose a model that infers spatial hotspot maps on static images using gradient-weighted attention maps for pre-defined actions. However, these methods focus on predicting heatmaps on target object images and not on the frames of the processed sequences.

In this paper, we surpass the aforementioned limitations, while adopting the “learning from observation” scheme for the object affordance segmentation task. For this purpose, we propose a deep spatio-temporal autoencoder that learns from human-object interaction videos, combining appearance and motion information at the encoder and predicting pixel-level affordance labels at the decoder.
Inspired by previous work [19, 20] we design a soft-attention module, placed at the bottleneck, which is responsible for the implicit localization of the hand-object interaction. This mechanism fuses the frame-level spatial information with the video-level temporal one, forcing the network to focus on the object part that participates in the interaction. The spatio-temporal feature of the latent space is also used for action prediction, which is highly correlated with the object affordance. The proposed model exploits both RGB and depth representations, which are further used to compute the 3D optical flow of the interactions. Note that during inference, our model is able to infer pixel-wise affordance labels both on videos and static images. Additionally, we introduce the SOR3D-AFF\(^1\) dataset that consists of 1201 human-object interaction sequences and supports 9 affordance types of common household objects. We utilize SOR3D-AFF to evaluate our model performance over the state-of-the-art, while using the UMD [9] and IIT-AFF [21] datasets for qualitative evaluation. An overview of our approach is depicted in Fig. 1.

The remainder of the paper is organized as follows: Section 2 details the available input representations, the architecture of the proposed deep autoencoder, and the soft-attention mechanism, Section 3 provides a description of SOR3D-AFF, while Section 4 presents our experiments. Finally, Section 5 summarizes the paper.

2. APPROACH

Our approach aims to exploit the spatio-temporal nature of human-object interaction. An end-to-end autoencoder, trained using sequences of RGB-D data, learns to predict pixel-wise affordance labels, while an attention mechanism placed at the latent space of the model is responsible for implicitly localizing the interaction hotspot. Note, that the proposed autoencoder is able to infer affordance predictions on both video and static image data.

2.1. Input Streams

As depicted in Fig. 2 and detailed in Section 2.2, the model encoder consists of two streams, one for RGB-D and the second for motion information processing. Intuitively, we use the former to force the model to learn appearance representations, while the later encodes the hand movement during the interaction.

We choose to combine RGB and depth information by stacking the color image and the depthmap along the channel dimension forming a \(4 \times H \times W\) input, where \(H\) and \(W\) represent the height and the width of the input image/depthmap. Further, we use the 3D optical flow of the sequence to represent the motion information. In particular, we utilize the algorithm proposed in [22], which computes the 3D motion vectors between two pairs of RGB-D images, and colorize them by normalizing each axis values within \([0, 255]\), thus transforming them into a three-channel image of size \(3 \times H \times W\). This colorization enables the exploitation of transfer learning by using deep learning models pre-trained on large-scale image datasets.

2.2. Deep Autoencoder Architecture

Our data-driven approach is realized as the deep autoencoder depicted in Fig. 2. Its structure is inspired by the U-Net architecture [23] and consists of an encoder, a latent part, and a decoder.

The encoder follows the typical structure of a VGG CNN [24] and consists of 11 convolutional (CONV) layers each followed by a Rectified Linear Unit (ReLU) activation function. The input is downsampled 3 times prior to the latent space using max pooling layers with \(2 \times 2\) kernels and stride 2. Since we use RGB-D and 3D optical flow information, we utilize two identical streams for the encoder, which are fused prior to the latent part of the model. Let \(X^{d}_{RGBD}\) be the feature of the RGB-D encoder stream, and \(X^{d}_{Flow}\) be the corresponding 3D optical flow one, where \(d = 512\) is the number of channels, and \(h = H/8, w = W/8\) are the height and width of both features after the 3 downsampling layers. Then, the two features are stacked along the channel dimension and are convolved with \(d\) kernels of \(1 \times 1\) size. This step produces the final encoder activation map, \(X^{enc}_{enc}\).

The latent part consists of a residual block and of 2 convolutional LSTM (convLSTM) layers. The residual block follows the ReLU-CONV-ReLU-CONV structure, adopting the pre-activation method and the identity mapping proposed in [25] for performance improvement. The latent part is followed by a soft-attention mechanism, detailed in the next section, which fuses the activations after the residual block with the second convLSTM output. The decoder shares similar structure with the encoder, consisting of 14 CONV-ReLU layers. Prior to segmentation prediction, the spatio-temporal feature of the latent part is upsampled 3 times using nearest neighbor interpolation coupled with a CONV layer. Note that each max pooling layer is connected with the respective upsampling layer using a skip connection. Subsequently, the activations after upsampling are concatenated with the ones from the corresponding skip connection. After concatenation, a CONV layer with \(1 \times 1\) kernel size follows, forcing intra-channel correlation learning. The output feature of the decoder is a \(C \times H \times W\), where \(C\) denotes the number of affordance classes.

All aforementioned parts of the model are fully convolutional. However, we utilize a simple multi-layer perceptron (MLP) to classify the performed action in parallel with the segmentation process. The MLP receives the output of the second convLSTM and consists of 3 fully connected layers.

The proposed model is trained using a spatio-temporal loss computed at the last frame of the sequence, denoted as \(\mathcal{L}_{\text{total}} = \lambda_1 \mathcal{L}_{\text{seg}} + \lambda_2 \mathcal{L}_{\text{action}}\), where \(\lambda_1, \lambda_2 \in [0, 1]\) are hyperparameters that add to 1. \(\mathcal{L}_{\text{seg}}\) is the per pixel cross entropy of the predicted and ground truth affordance labels, and \(\mathcal{L}_{\text{action}}\) is the cross entropy of the predicted and ground truth action labels. Note that we normalize \(\mathcal{L}_{\text{seg}}\) over the number of pixels, and use \(\mathcal{L}_{\text{action}}\) to force the model to understand the perceived interaction, thus helping the soft-attention mechanism to localize the interaction hotspot.

\(^1\)Available at http://sor3d.vcl.iti.gr/

![Fig. 2. Detailed model architecture of the proposed deep autoencoder. From left to right: a) the model receives RGB-D and 3D flow information using two convolutional encoders and fuses the encoded features, b) the latent space comprises one residual block and two convolutional LSTMs, followed by a soft-attention mechanism (dashed line), c) a decoder receives the output of the attention module to predict a segmentation map, and d) a fully connected network receives the convolutional LSTM output to predict the action class. The skip connections enable direct activations propagation from the encoder to the decoder.](image-url)
hold objects, such as “pitcher” and “knife”.

The dataset consists of 1201 RGB-D interaction sequences, each pixel-wise annotated only at the last frame. It supports 9 affordance types, namely “grasp”, “cut”, “lift”, “push”, “rotate”, “hammer”, “squeeze”, “paint”, and “type”, of 10 common household objects, such as “pitcher” and “knife”. We split the dataset into a training and a validation set, consisting of 962 and 239 interaction sequences, respectively. Some indicative annotated samples are depicted in Fig. 3.

4. EXPERIMENTS

In this section, we present the quantitative and qualitative evaluations of the proposed model, as well as an ablation study to demonstrate each individual model component contribution.

4.1. Implementation Details

All images and video frames utilized as inputs to the model are resized to 300 × 300 pixel resolution, while each video is subsampled to 10 FPS. We pre-train both encoders on separate datasets; the RGB-D encoder coupled with an LSTM is trained for 50 epochs on the UTKinect action recognition dataset [28], while for the colorized 3D flow encoder the weights of a VGG16 trained on ImageNet are used. The rest of the model weights are initialized using Xavier initialization [29]. The model is fine-tuned for 200 epochs, using batch size equal to 2, Adam optimization [30], and learning rate set to 2×10^{-5}. Further, we set $\lambda_1 = 0.2$ and $\lambda_2 = 0.8$ for the first 150 epochs, as action recognition is a critical step towards affordance segmentation and should converge faster that the total loss. For the last 50 epochs, both hyperparameters are tuned to 0.5. During inference our model is able to predict a segmentation mask in 22ms.

We choose to quantitatively compare our model with AffordanceNet [11], a convolutional autoencoder that utilizes an RPN in order to restrict affordance segmentation to a detected bounding box. We re-implement AffordanceNet to receive 300 × 300 inputs and train it for 50 epochs with the batch size set to 8 and learning rate equal to 2×10^{-5}. All models are implemented in PyTorch [31] and trained on an Nvidia Titan X GPU.

4.2. Quantitative Evaluation

We use 2 different metrics to assess model performance: a) the Intersection over Union (IoU), and b) the F_β-score measure for $\beta = 1$. IoU quantifies the overlap between the predicted and target affordance mask, while F-score provides helpful insight about the model robustness based on false positive and negative predictions. Since some affordances are associated with more objects, we choose to evaluate the performance of the model using a variation of F-score, namely the weighted F-score denoted as F_β^w. Since “grasp” and “lift” are the most dominant affordance labels, we set their weight to 0.2, while for the next dominant label “push” we set it to 0.1. The remaining weights are set to 0.083 so that they all sum to 1.
In this paper we proposed a novel approach for the task of object affordance segmentation. A deep autoencoder was presented, able to process RGB-D interaction sequences and implicitly localize the interaction hotspot through a soft-attention mechanism placed at the latent part of the model. Additionally, a corpus with RGB-D information leads to better overall performance in terms of F-score, which is expected given the very confident predictions for the dominant affordances.

Table 1. Overall object affordance segmentation results on the SOR3D-AFF test set based on video (top) and static image inference (bottom).

Model	IoU	F_β	F_w
Ours (RGB-D, attention, 3Dflow)	0.72	0.80	0.81
Ours (RGB-D, attention)	0.54	0.58	0.59
AffordanceNet [11]	0.56	0.62	0.62

Table 2. Category-specific object affordance segmentation results of our model on the SOR3D-AFF test set based on video (top) and static image inference (bottom).

Metric	cut	grasp	hammer	lift	paint	push	rotate	squeeze	type
IoU	0.45	0.87	0.74	0.91	0.69	0.78	0.73	0.67	0.62
F_β	0.57	0.92	0.85	0.94	0.77	0.87	0.84	0.74	0.71
F_w	0.57	0.94	0.85	0.95	0.76	0.91	0.84	0.73	0.71
IoU	0.54	0.65	0.58	0.69	0.51	0.61	0.56	0.51	0.39
F_β	0.41	0.68	0.62	0.73	0.54	0.65	0.61	0.55	0.45
F_w	0.41	0.72	0.63	0.74	0.54	0.67	0.61	0.54	0.44

We also present results per affordance category in Table 2 based on both video (top) and static image (bottom) inference. From the reported results, we can observe the superiority of the dominant affordances, i.e., those associated with most of the objects, such as "grasp" and "lift", as well as the adequate performance of complex affordances that change the visual representation of the object, such as "rotate". Note that affordance label weighting leads to a slightly better overall performance in terms of F-score, which is expected given the very confident predictions for the dominant affordances.

In order to demonstrate the contribution of each individual component to the proposed model architecture, we perform an ablation study using the following variations: a) single-stream RGB-only encoder, b) single-stream RGB-only encoder and soft-attention mechanism, and c) two-stream encoder for RGB-only and 2D optical flow, and soft-attention mechanism. Note, that the same model variations are investigated for the RGB-D and 3D optical flow information.

Table 3 (top) presents the results of the aforementioned variations using the full sequences of the SOR3D-AFF test set to infer the affordance part of the object. The performance of the best RGB and RGB-D models when inferring affordances on static images can be visualized at the bottom part of the same table. Evidently, RGB-D information leads to better overall performance, while the integration of the soft-attention mechanism leads to the greatest relative improvement for both RGB and RGB-D based models, i.e. 5.48% (F_β) and 9.38% (IoU) respectively. Finally, we observe that the use of a second stream that processes optical flow information leads to further improvement of the overall model performance, mostly due to its contribution to the action classification part of the network.

Table 3. Comparative evaluation of a number of variations in the autoencoder architecture on the SOR3D-AFF test set based on video (top) and static image inference (bottom).

Model Parameters	IoU	F_β
RGB	0.62	0.73
RGB + attention	0.65	0.77
RGB + attention + 2D flow	0.66	0.78
RGB-D	0.64	0.77
RGB-D + attention	0.70	0.79
RGB-D + attention + 3D flow	0.72	0.80
RGB + attention + 2D flow	0.47	0.53
RGB-D + attention + 3D flow	0.54	0.58

4.3. Qualitative Evaluation

Besides the quantitative evaluation on SOR3D-AFF, we choose to evaluate our model’s ability to infer pixel-wise affordance labels on static unseen objects captured with different experimental settings. For this purpose, we use samples from the image-only UMD and IIT-AFF datasets. As depicted in Fig. 4, our model is able to confidently predict learned affordances on similar objects of UMD, while also inferring reasonable labels of the dominant affordances on samples from the challenging, due to the cluttered scenes, IIT-AFF. Note that we center-crop a 300 × 300 portion of each image and visualize the affordance label predictions with confidence greater than 0.75.

5. CONCLUSION

In this paper we proposed a novel approach for the task of object affordance segmentation. A deep autoencoder was presented, able to process RGB-D interaction sequences and implicitly localize the interaction hotspot through a soft-attention mechanism placed at the latent part of the model. Additionally, a corpus with RGB-D interaction videos coupled with pixel-wise annotation was introduced, as a subset of the SOR3D sensorimotor dataset. The presented experiments showed our model’s competitive performance in comparison with the state-of-the-art, without the need of additional object-related information such as bounding boxes and class labels. From the presented qualitative examples the model’s ability to predict affordance labels on unseen objects was also demonstrated. Future work will investigate spatio-temporal affordance reasoning exploiting the capabilities of the presented attention mechanism.
6. REFERENCES

[1] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, “SSD: Single shot multibox detector,” in Proc. ECCV, 2016, pp. 21–37.

[2] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” in Proc. CVPR, 2016, pp. 779–788.

[3] R. Yin, E. Monson, E. Honig, I. Daubechies, and M. Maggioni, “Object recognition in art drawings: Transfer of a neural network,” in Proc. ICASSP, 2016, pp. 2299–2303.

[4] K. He, G. Gkioxari, P. Dollr, and R. Girshick, “Mask R-CNN,” in Proc. ICRA, 2017, pp. 2980–2988.

[5] T. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 42, no. 2, pp. 318–327, 2020.

[6] J. J. Gibson, “The theory of affordances,” in R. Shaw and J. Bransford (eds.), Perceiving, Acting, and Knowing: Toward an Ecological Psychology, pp. 67–82, Lawrence Erlbaum, Hillsdale NJ, 1977.

[7] N. Lyubova, S. Ivaldi, and D. Filliat, “From passive to interactive object learning and recognition through self-identification on a humanoid robot,” Autonomous Robots, vol. 40, no. 1, pp. 3357, 2016.

[8] D. Jayaraman and K. Grauman, “End-to-end policy learning for active visual categorization,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 41, no. 7, pp. 1601–1614, 2019.

[9] A. Myers, C. L. Teo, C. Fermüller, and Y. Aloimonos, “Affordance detection of tool parts from geometric features,” in Proc. ICRA, 2015, pp. 1374–1381.

[10] A. Nguyen, D. Kanoulas, D. G. Caldwell, and N. G. Tsagarakis, “Detecting object affordances with convolutional neural networks,” in Proc. IROS, 2016, pp. 2765–2770.

[11] T. Do, A. Nguyen, and I. Reid, “AffordanceNet: An end-to-end deep learning approach for object affordance detection,” in Proc. ICRA, 2018, pp. 1–5.

[12] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time object detection with region proposal networks,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137–1149, 2017.

[13] J. Sawatzky, A. Srikantha, and J. Gall, “Weakly supervised affordance detection,” in Proc. CVPR, 2017, pp. 5197–5206.

[14] C. Rother, V. Kolmogorov, and A. Blake, “GrabCut: Interactive foreground extraction using iterated graph cuts,” ACM Transactions on Graphics, vol. 23, no. 3, pp. 309–314, 2004.

[15] H. Kjellström, J. Romero, and D. Kragic, “Visual object-action recognition: Inferring object affordances from human demonstration,” Computer Vision and Image Understanding, vol. 115, no. 1, pp. 81–90, 2011.

[16] B. Yao, J. Ma, and L. Fei-Fei, “Discovering object functionality,” in Proc. ICCV, 2013, pp. 2512–2519.

[17] K. Fang, T.-L. Wu, D. Yang, S. Savarese, and J. J. Lim, “Demo2Vec: Reasoning object affordances from online videos,” in Proc. CVPR, 2018, pp. 2139–2147.

[18] T. Nagarajan, C. Feichtenhofer, and K. Grauman, “Grounded human-object interaction hotspots from video,” in Proc. ICCV, 2019.

[19] H. Zhang, K. Dana, J. Shi, Z. Zhang, X. Wang, A. Tyagi, and A. Agrawal, “Context encoding for semantic segmentation,” in Proc. CVPR, 2018, pp. 7151–7160.

[20] X. Liu, M. Zhang, W. Liu, J. Song, and T. Mei, “BraidNet: Braiding semantics and details for accurate human parsing,” in Proc. ACM MM, 2019, pp. 338–346.

[21] A. Nguyen, D. Kanoulas, D. G. Caldwell, and N. G. Tsagarakis, “Object-based affordances detection with convolutional neural networks and dense conditional random fields,” in Proc. IROS, 2017, pp. 5908–5915.

[22] M. Jaimez, M. Souiaj, J. Gonzalez-Jimenez, and D. Cremers, “A primal-dual framework for real-time dense RGB-D scene flow,” in Proc. ICRA, 2015, pp. 98–104.

[23] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for biomedical image segmentation,” in Proc. MICCAI, 2015, pp. 234–241.

[24] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in Proc. ICLR, 2015.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual networks,” in Proc. ECCV, 2016, pp. 630–645.

[26] S. Thermos, G. T. Papadopoulos, P. Daras, and G. Potamianos, “Deep affordance-grounded sensorimotor object recognition,” in Proc. CVPR, 2017, pp. 49–57.

[27] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei, “ImageNet: A large-scale hierarchical image database,” in Proc. ICLR, 2009, pp. 248–255.

[28] L. Xia, C. C. Chen, and J. K. Aggarwal, “View invariant human action recognition using histograms of 3D joints,” in CVPRW, 2012, pp. 20–27.

[29] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural networks,” in Proc. ICAI, 2010, pp. 249–256.

[30] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Proc. ICLR, 2015.

[31] A. Paszke, S. Gross, S. Chintalal, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in PyTorch,” in NeurIPS Autodiff Workshop, 2017.