ABSTRACT

Motivation: There is a lack of tools to design guide RNA for CRISPR genome editing of gene families and usually good candidate sgRNAs are tagged with low scores precisely because they match several locations in the genome, thus time-consuming manual evaluation of targets is required. Moreover, online tools are limited to a restricted list of reference genome and lack the flexibility to incorporate unpublished genomes or contemplate genomes of populations with allelic variants.

Results: To address these issues, I have developed the ARES-GT, a local command line tool in Python software. ARES-GT allows the selection of candidate sgRNAs that match multiple input query sequences, in addition of candidate sgRNAs that specifically match each query sequence. It also contemplates the use of unmapped contigs apart from complete genomes thus allowing the use of any genome provided by user and being able to handle intraspecies allelic variability and individual polymorphisms.

Availability: ARES-GT is available at GitHub (https://github.com/eugomin/ARES-GT.git).
The design of optimal single guide RNAs (sgRNAs) is a critical step in CRISPR/Cas genome editing, and it must ensure specificity and minimize the possibility of off-target mutations. Although good online tools are available for identification of CRISPR DNA targets, which have popularized genome editing, their use is limited to a restricted list of genomes (Bae et al., 2014; Heigwer et al., 2014; Lei et al., 2014; Haeussler et al., 2016; Liu et al., 2017; Labun et al., 2019), sometimes corresponding to less than ten species (Pliatsika and Rigoutsos, 2015; Doench et al., 2016). Even Breaking-Cas (Oliveros et al., 2016), a free online tool which currently offers more than 1600 genomes, lacks the flexibility to easily incorporate unpublished genomes or contemplate genomes of populations with allelic variants - an issue partially addressed by AlleleAnalyzer for the human genome (Keough et al., 2019). An additional problem posed by the design of sgRNAs targeting gene families is that good candidate sgRNAs can be tagged with low scores precisely because they match several locations in the genome, thus time-consuming manual evaluation of targets is required. To address these issues, I have developed the ARES-GT, a local command line tool in Python programming language (https://www.python.org/).

ARES-GT can identify targets of the two most widely used CRISPR enzymes (Cas9 and Cas12a/Cpf1) and evaluates possible off-targets in a user-provided reference genome, including non-assembled contigs and unpublished genomes from any species. A list is generated with the best candidates (those with no off-targets based on parameters selected by user) and, if multiple query genes from the same family are targeted, the list includes sgRNAs that match more than one of them. Detailed information for each possible target is also provided, including an alignment with the possible off-targets. ARES-GT have been already used successfully in Arabidopsis, tomato and rice while under development (Aliaga-Franco et al., 2019; Bernabé-Orts et al., 2019).

It has been reported that the specificity of both Cas9 and Cas12a is particularly sensitive to mismatches in the PAM proximal sequence (on an 11- and 8-nucleotide stretch for Cas9 and Cas12a, respectively), named “seed” (Cong et al., 2013; Hsu et al., 2013; Zetsche et al., 2015; Swarts et al., 2017). Mismatches in the seed sequence has a critical impact into cleavage efficiency on DNA target, and it is unlikely that seed sequences with 2 or more mismatches cause real off-targets in vivo. Sequence composition and the number and distribution of mismatches also affects cleavage efficiency (Hsu et al., 2013). Therefore the ARES-GT algorithm discards possible off-targets using as criterium the presence of 2 or more mismatches in the seed sequence, while the user defines the second threshold criterium: the number of total mismatches when there are none or one mismatches in the seed sequence. In addition, the user must also indicate whether a “NAG” PAM, which Cas9 can recognise though with lower efficiency (Hsu et al., 2013), must be taken into account when evaluating possible off-targets.
Design of guide RNA matching multiple CBF genes

As a proof of concept, I have chosen the C-repeat/DRE-Binding Factor (CBF) gene family of plant transcription factors to test the various novelties implemented in ARES-GT. Among the four members identified in *Arabidopsis thaliana*, three of them—AtCBF1, AtCBF2 and AtCBF3—have been implicated in the response to cold temperatures, while *AtCBF4* has been implicated in the response to drought (Haake et al., 2002; Yamaguchi-Shinozaki and Shinozaki, 2006). The first three members of this family are closely located in less than 8 Kb in chromosome 4 (Figure 1A), making extremely difficult to obtain a triple mutant by classical crossing strategy. This has been recently achieved by CRISPR/Cas9-induced mutagenesis (Cho et al., 2017) using two sgRNAs that the authors selected by manual evaluation of sequence alignments, manual selection of candidates, and specificity verification with CRISPR-P (Lei et al., 2014). I used the *A. thaliana* genomic coding sequences (TAIR v10) of the four CBF genes as a multiple query in ARES-GT, to search for candidate sgRNAs using both Cas9 and Cas12a. A total of 96 and 34 unique specific targets matching only one location in the genome and with no predicted off-targets were found for each of the four genes, using Cas9 and Cas12a, respectively. More interestingly, the program also listed 13 candidates for Cas9 and 10 candidates for Cas12a that match multiple CBF genes (Tables 1 and 2). In total, 10 Cas9 and 5 Cas12a candidates were identified that match more than one CBF gene and did not present any off-target outside CBF genes (Figure 1B, 1C). Among them were included the two sequences previously reported (Cho et al., 2017), corresponding to Cas9CBF1_015 and Cas9CBF2_124 in this work.

To test that AREST-GT can work with any user-provided genome, including unmapped contigs, I selected the first version of the genome of Cardamine hirsuta (Gan et al., 2016). The available genome sequence spans over its 8 chromosomes, but also contains 622 unmapped contigs in addition to chloroplast and mitochondria genomes. The sequence information was downloaded (http://chi.mpipz.mpg.de/index.html) and used locally with ARES-GT for searching CRISPR targets in the four *C. hirsuta* CBF homologous genes (Supplementary Figure 1). In addition to unique specific targets (86 for Cas9 and 28 for Cas12a), 10 candidate sgRNAs for Cas9 and 3 for Cas12a were identified that perfectly match *ChCBF1* and *ChCBF2* (Table 3). Taking into account possible off-targets, only 5 and 3 sequences for Cas9 and Cas12a, respectively, are reliable candidate sgRNAs targeting only *ChCBF* family genes. For instance, *Cas9ChCBF1_044* perfectly matches *ChCBF1* and *ChCBF2*, and it also matches *ChCBF3* with one mismatch.

Finally, to contemplate intraspecific allelic variability in the design of sgRNAs for genome editing, I used ARES-GT in combination with the genome sequences available through the Arabidopsis 1001 genomes project (https://1001genomes.org/). Contrary to available online tools, which only work with the standard *A. thaliana* Col-0 accession, ARES-GT can be used to design ecotype-specific editing tools taking advantage of polymorphic sequences in the different accessions. Good quality genome assemblies of seven *A. thaliana* accessions (An-1, C24, Cvi, Eri, Kyo, Ler and Sha) (Jiao and Schneeberger, 2019) were downloaded, and ARES-GT was used to design sgRNAs targeting CBF genes in each accession. As reflected in Table 4, the SNPs in CBF genes between the different accessions are responsible of the identification of different number of candidate sgRNAs that match several genes of the family, from 18 Cas9 candidates with *CBF* genes...
from Kyo genome to 11 Cas9 candidates with CBF genes from Cvi genome. The selection of CRISPR candidates with specific unique target (without offtargets) also varied between accessions (Table 4). I used each accession CBF genes as query for ARES-GT but using either the standar Col-0 reference or the corresponding accession genome. Candidates only listed when Col-0 is used as reference (Col-0 exclusive) are false positives, as they have offtargets in the corresponding accession genome. The accession`s exclusive candidates would be false negatives, as they are discarded if Col-0 is used but do not have offtargets in the corresponding accession genome (Table 4). Differences in the identification of offtargets also affects the selection of efficient candidates matching several CBF genes. For instance, candidate C24_CBF1_019 perfectly match C24_CBF1, C24_CBF2 and C24_CBF3 but has a possible offtarget (4 mismatches in distal sequence) in the chromosome 3 of C24 genome, which is above offtarget thresholds in Col-0 genome because of an extra mismatch in the proximal sequence (Table 5). In the other sense, Eri_Cas12aCBF1_017 is a candidate that perfectly match Eri_CBF1, Eri_CBF2 and Eri_CBF3 without offtargets in Eri genome, however it would be discarded because two offtargets are detected if Col-0 genome is used (Table 5).

Conclusion

In summary, I have shown how the architecture of the ARES-GT tool (i) allows the selection of candidate sgRNAs that match multiple input query sequences for simultaneous editing of several members of gene families; (ii) contemplates the use of unmapped contigs apart from complete genomes; and (iii) can be used for the design of ecotype-specific CRISPR mutants. ARES-GT is available at GitHub (https://github.com/eugomin/ARES-GT.git).

References

Aliaga-Franco, N., Zhang, C., Presa, S., Srivastava, A.K., Granell, A., Alabadí, D., Sadanandom, A., Blázquez, M.A., and Minguet, E.G. (2019). Identification of Transgene-Free CRISPR-Edited Plants of Rice, Tomato, and Arabidopsis by Monitoring DsRED Fluorescence in Dry Seeds. Frontiers in Plant Science 10. doi: 10.3389/fpls.2019.01150.

Bae, S., Park, J., and Kim, J.-S. (2014). Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30, 1473-1475. doi: 10.1093/bioinformatics/btu048.

Bernabé-Orts, J.M., Casas-Rodrigo, I., Minguet, E.G., Landolfi, V., Garcia-Carpintero, V., Gianoglio, S., Vázquez-Vilar, M., Granell, A., and Orzaez, D. (2019). Assessment of Cas12a-mediated gene editing efficiency in plants. Plant Biotechnology Journal 17, 1971-1984. doi: 10.1111/pbi.13113.

Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., and Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823. doi: 10.1126/science.1231143.

Cho, S., Yu, S.-I., Park, J., Mao, Y., Zhu, J.-K., Yun, D.-J., and Lee, B.-H. (2017). Accession-Dependent CBF Gene Deletion by CRISPR/Cas System in Arabidopsis. Frontiers in Plant Science 8. doi: 10.3389/fpls.2017.01910.

Doench, J.G., Fusi, N., Sullender, M., Hegde, M., Vaimberg, E.W., Donovan, K.F., Smith, I., Tothova, Z., Wilen, C., Orchard, R., Virgin, H.W., Listgarten, J., and Root, D.E. (2016). Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nature Biotechnology 34, 184-191. doi: 10.1038/nbt.3437.
Gan, X., Hay, A., Kwantes, M., Haberer, G., Hallab, A., Ioio, R.D., Hofhuis, H., Pieper, B., Cartolano, M., Neumann, U., Nikolov, L.A., Song, B., Hajheidari, M., Briskine, R., Kougiumoutzi, E., Vlad, D., Broholm, S., Hein, J., Meksem, K., Lightfoot, D., Shimizu, K.K., Shimizu-Insatsu, R., Imrialou, M., Kudrny, D., Wing, R., Sato, S., Huijser, P., Filatov, D., Mayer, K.F., Mott, R., and Tsiantis, M. (2016). The Cardamine hirsuta genome offers insight into the evolution of morphological diversity. *Nat Plants* 2, 16167. doi: 10.1038/nplants.2016.167.

Haake, V., Cook, D., Riechmann, J.L., Pineda, O., Thomashow, M.F., and Zhang, J.Z. (2002). Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. *Plant Physiol* 130, 639-648. doi: 10.1104/pp.006478.

Haeussler, M., Schönig, K., Eckert, H., Eschstruth, A., Mianné, J., Renaud, J.-B., Schneider-Maunoury, S., Shkumatava, A., Teboul, L., Kent, J.-S., and Concordet, J.-P. (2016). Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. *Genome Biology* 17, 148. doi: 10.1186/s13059-016-1012-2.

Heigwer, F., Kerr, G., and Boutros, M. (2014). E-CRISP: fast CRISPR target site identification. *Nature Methods* 11, 122-123. doi: 10.1038/nmeth.2812.

Hsu, P.D., Scott, D.A., Weinstein, J.A., Ran, F.A., Konermann, S., Agarwala, V., Li, Y., Fine, E.J., Wu, X., Shalem, O., Cradick, T.J., Marraffini, L.A., Bao, G., and Zhang, F. (2013). DNA targeting specificity of RNA-guided Cas9 nucleases. *Nat Biotechnol* 31, 827-832. doi: 10.1038/nbt.2647.

Jiao, W.-B., and Schneeberger, K. (2019). Chromosome-level assemblies of multiple Arabidopsis genomes reveal hotspots of rearrangements with altered evolutionary dynamics. *bioRxiv*, 738880. doi: 10.1101/738880.

Keough, K.C., Lyalina, S., Olvera, M.P., Whalen, S., Conklin, B.R., and Pollard, K.S. (2019). AlleleAnalyzer: a tool for personalized and allele-specific sgRNA design. *Genome Biology* 20, 167. doi: 10.1186/s13059-019-1783-3.

Labun, K., Montague, T.G., Krause, M., Torres cleuren, Y.N., Tjeldnes, H., and Valen, E. (2019). CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. *Nucleic Acids Research* 47, W171-W174. doi: 10.1093/nar/gkz365.

Lei, Y., Lu, L., Liu, H.Y., Li, S., Xing, F., and Chen, L.L. (2014). CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants. *Mol Plant* 7, 1494-1496. doi: 10.1093/mp/ssu044.

Liu, H., Ding, Y., Zhou, Y., Jin, W., Xie, K., and Chen, L.-L. (2017). CRISPR-P 2.0: An Improved CRISPR-Cas9 Tool for Genome Editing in Plants. *Molecular Plant* 10, 530-532. doi: 10.1016/j.molp.2017.01.003.

Oliveros, J.C., Franch, M., Tabas-Madrid, D., San-Leon, D., Montoliu, L., Cubas, P., and Pazos, F. (2016). Breaking-Cas-interactive design of guide RNAs for CRISPR-Cas experiments for ENSEMBL genomes. *Nucleic Acids Res* 44, W267-271. doi: 10.1093/nar/gkw407.

Pliatsika, V., and Rigoutsos, I. (2015). “Off-Spotter”: very fast and exhaustive enumeration of genomic lookalikes for designing CRISPR/Cas guide RNAs. *Biology Direct* 10, 4. doi: 10.1186/s13062-015-0035-z.

Swarts, D.C., Van Der Oost, J., and Jinek, M. (2017). Structural Basis for Guide RNA Processing and Seed-Dependent DNA Targeting by CRISPR-Cas12a. *Mol Cell* 66, 221-233 e224. doi: 10.1016/j.molcel.2017.03.016.

Yamaguchi-Shinozaki, K., and Shinozaki, K. (2006). Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. *Annu Rev Plant Biol* 57, 781-803. doi: 10.1146/annurev.arplant.57.032905.105444.

Zetsche, B., Gootenberg, J.S., Abudayeh, O.O., Slaymaker, I.M., Makarova, K.S., Essletzbichler, P., Volz, S.E., Joung, J., Van Der Oost, J., Regev, A., Koonin, E.V., and Zhang, F. (2015). Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. *Cell* 163, 759-771. doi: 10.1016/j.cell.2015.09.038.
Figure 1: A) Genomic distribution of CBF genes in *Arabidopsis thaliana* chromosomes 4 and 5. Location of Cas9 (B) and Cas12a (C) candidates with multiple CBF gene targets. (*) Asterik marks candidates corresponding with previously reported sgRNAs (Cho et al., 2017).
Table 1. Multiple targets Cas9 candidates for *AtCBF* genes. All possible genome targets and offtargets (with ARES-GT thresholds: \(L_0 = 4\) and \(L_1 = 3\)) of each candidate are listed with indication of genome coordinates (TAIR v10) and whether it corresponds to a *CBF* gene. In alignments, black boxes mark mismatches and a space separates PAM (NGG or NAG) from sequence. Differences in the “N” position in the PAM are not marked.

Candidate ID	Gene	chrom	start	end	sense	sequence
Cas9AtCBF1_014	AtCBF2	4	13015820	13015842	+	AGCCAGAGTCGCACTCTCAG
	AtCBF1	4	13022305	13022327	+	AGCCAGAGTCGCACTCTCAG
	AtCBF3	4	13018737	13018759	+	AGCCAGAGTCGCACTCTCAG
	AtCBF2	4	13015825	13015847	+	GACCTCCATCTCAGCCTGT
	AtCBF1	4	13022310	13022332	+	GACCTCCATCTCAGCCTGT
Cas9AtCBF1_015	AtCBF2	4	13015920	13015942	+	TGGACGAACTCTCTTGAAAT
	AtCBF1	4	13022405	13022427	+	TGGACGAACTCTCTTGAAAT
	AtCBF4	5	21117612	21117634	+	TGGACGAACTCTCTTGAAAT
	AtCBF3	4	13018837	13018859	+	TGGACGAACTCTCTTGAAAT
Cas9AtCBF1_018	AtCBF2	4	13015921	13015943	+	GACGAACTCTCTCTTGAAAT
	AtCBF1	4	13022406	13022428	+	GACGAACTCTCTCTTGAAAT
	AtCBF3	4	13018838	13018860	+	GACGAACTCTCTCTTGAAAT
Cas9AtCBF1_019	AtCBF2	4	13015738	13015760	-	CCGGATCTCTCGCCGCAAGC
	AtCBF1	4	13022223	13022245	-	CCGGATCTCTCGCCGCAAGC
	AtCBF3	4	13018748	13018770	-	CCGGATCTCTCGCCGCAAGC
Cas9AtCBF1_051	AtCBF2	4	13015900	13015922	-	CCGGATCTCTCGCCGCAAGC
	AtCBF1	4	13022385	13022407	-	CCGGATCTCTCGCCGCAAGC
	AtCBF3	4	13018817	13018839	-	CCGGATCTCTCGCCGCAAGC
Cas9AtCBF1_056	AtCBF2	4	13015831	13015853	-	CCGGATCTCTCGCCGCAAGC
	AtCBF1	4	13022316	13022338	-	CCGGATCTCTCGCCGCAAGC
	AtCBF3	4	13018748	13018770	-	CCGGATCTCTCGCCGCAAGC
Cas9AtCBF1_061	AtCBF2	4	13015900	13015922	-	CCGGATCTCTCGCCGCAAGC
	AtCBF1	4	13022385	13022407	-	CCGGATCTCTCGCCGCAAGC
	AtCBF3	4	13018817	13018839	-	CCGGATCTCTCGCCGCAAGC
Cas9AtCBF1_062	AtCBF2	4	13015901	13015923	-	CCGGATCTCTCGCCGCAAGC
	AtCBF1	4	13022386	13022408	-	CCGGATCTCTCGCCGCAAGC
	AtCBF3	4	13018818	13018840	-	CCGGATCTCTCGCCGCAAGC
Cas9AtCBF1_063	AtCBF2	4	13015908	13015930	-	CCGGATCTCTCGCCGCAAGC
	AtCBF1	4	13022393	13022415	-	CCGGATCTCTCGCCGCAAGC
	AtCBF3	4	13018817	13018839	-	CCGGATCTCTCGCCGCAAGC
Cas9AtCBF1_064	AtCBF2	4	13015929	13015951	-	CCGGATCTCTCGCCGCAAGC
	AtCBF1	4	13022414	13022436	-	CCGGATCTCTCGCCGCAAGC
	AtCBF3	4	13018846	13018868	-	CCGGATCTCTCGCCGCAAGC
	AtCBF4	4	13018818	13018840	-	CCGGATCTCTCGCCGCAAGC
	AtCBF5	4	13018818	13018840	-	CCGGATCTCTCGCCGCAAGC
	AtCBF6	4	13018818	13018840	-	CCGGATCTCTCGCCGCAAGC
Cas9AtCBF2_081	AtCBF2	4	13015760	13015782	+	CGAGCTCGAGAAATTGAGAC
	AtCBF3	4	13018677	13018699	+	CGAGCTCGAGAAATTGAGAC
	AtCBF4	5	21117452	21117474	+	CGAGCTCGAGAAATTGAGAC
Cas9AtCBF2_123	AtCBF2	4	13015754	13015776	-	CGAGCTCGAGAAATTGAGAC
	AtCBF3	4	13018671	13018693	-	CGAGCTCGAGAAATTGAGAC
	AtCBF4	5	21117452	21117474	+	CGAGCTCGAGAAATTGAGAC
Cas9AtCBF2_124	AtCBF2	4	13015759	13015781	-	CGAGCTCGAGAAATTGAGAC
	AtCBF3	4	13018676	13018698	-	CGAGCTCGAGAAATTGAGAC
	AtCBF4	5	21117452	21117474	+	CGAGCTCGAGAAATTGAGAC
Table 2. Multiple targets Cas12a candidates for AtCBF genes. All possible genome targets and offtargets (with ARES-GT thresholds: L0 = 4 and L1 = 3) of each candidate are listed with indication of genome coordinates (TAIR v10) and whether it corresponds to a CBF gene. In alignments, black boxes mark mismatches and a space separates PAM (TTTN) from sequence. Differences in the "N" position in the PAM are not marked.

Candidate ID A. thaliana	Targets + Offtargets (L0 = 4, L1 = 3)	Gene	chrom	start	end	sense	sequence
Cas12aAtCBF1_011		AtCBF2	4	13015814	13015837	-	GCTGGGAGTACGCGAGTGGAAATGG AAA
		AtCBF1	4	13022299	13022322	-	GCTGGGAGTACGCGAGTGGAAATGG AAA
Cas12aAtCBF1_012		AtCBF2	4	13015827	13015850	-	CGGTTGGAAAGTCCCGAGG AAA
		AtCBF1	4	13022312	13022335	-	CGGTTGGAAAGTCCCGAGG AAA
		-----	1	27242286	27242310	+	TTTG GCTCGGAGTACGCGAGTGGAAATGGAAA
		-----	3	8296023	8296047	+	TTTG GCTCGGAGTACGCGAGTGGAAATGGAAA
		-----	5	17806910	17806934	+	TTTG GCTCGGAGTACGCGAGTGGAAATGGAAA
		-----	5	21618544	21618567	-	GGCTTTGGAAAGTCCCGAGG AAA
		-----	4	7932903	7932927	+	TTTG GCTCGGAGTACGCGAGTGGAAATGGAAA
		-----	4	10190722	10190745	-	GCTTTGGAAAGTCCCGAGG AAA
		AtCBF1	4	13018744	13018767	-	CCGTTGGAAAGTCCCGAGG AAA
Cas12aAtCBF1_014		AtCBF2	4	13015902	13015925	-	TTCCTTGAGCAGTCTCCATG TAAA
		AtCBF1	4	13022387	13022410	-	TTCCTTGAGCAGTCTCCATG TAAA
		AtCBF4	5	21117594	21117617	-	TTTTGAGCAGTCTCCATG TAAA
Cas12aAtCBF1_015		AtCBF2	4	13015924	13015947	-	AATTGGGAGTACGCGAGTCCAC GAAA
		AtCBF1	4	13022409	13022432	-	AATTGGGAGTACGCGAGTCCAC GAAA
		AtCBF3	4	13018841	13018864	-	AATTGGGAGTACGCGAGTCCAC GAAA
		AtCBF4	5	21117616	21117639	-	AATTGGGAGTACGCGAGTCCAC GAAA
Cas12aAtCBF1_017		AtCBF2	4	13016031	13016054	-	AATTCGAGCCAAACATTTGCA AAA
		AtCBF3	4	13018948	13018971	-	AATTCGAGCCAAACATTTGCA AAA
		AtCBF1	4	13022507	13022530	-	AATTCGAGCCAAACATTTGCA AAA
		-----	1	8279033	8279056	-	AATTCGAGCCAAACATTTGCA AAA
		-----	3	9399496	9399496	+	TTTA TGACCAGCAGTCTCCATG TAAA
Cas12aAtCBF1_018		AtCBF2	4	13016032	13016055	-	AATTCGAGCCAAACATTTGCA AAA
		AtCBF3	4	13018949	13018972	-	AATTCGAGCCAAACATTTGCA AAA
		AtCBF1	4	13022508	13022531	-	AATTCGAGCCAAACATTTGCA AAA
		-----	1	9505057	9505081	+	TTTA CTTGACTGGCAGGCTCGCCA TAAA
Cas12aAtCBF1_019		AtCBF3	4	13018950	13018973	-	TGAGCGCCAACATTTCAGA AAA
		AtCBF1	4	13022509	13022532	-	TGAGCGCCAACATTTCAGA AAA
		-----	3	8296020	8296043	+	TTTA GCTTTGGGAGTACGCGAGTGGAAATGGAAA
Cas12aAtCBF1_024		AtCBF2	4	13015913	13015936	+	TTTC TTTCAGCAGTCTCCATG TAAA
		AtCBF1	4	13022398	13022421	+	TTTC TTTCAGCAGTCTCCATG TAAA
		-----	5	16311356	16311379	+	TTTC TTTCAGCAGTCTCCATG TAAA
Cas12aAtCBF1_028		AtCBF2	4	13015917	13015940	+	TTTC AGCAACTGCTCTGTAATG AAA
		AtCBF1	4	13022402	13022425	+	TTTC AGCAACTGCTCTGTAATG AAA
Table 3. Multiple targets Cas9 and Cas12a candidates for ChCBF genes. All possible genome targets and offtargets (with ARES-GT thresholds: L0 = 4 and L1 = 3) of each candidate are listed with indication of genome coordinates (Cardamine hirsuta v1.0) and whether it corresponds to a CBF gene. In alignments, black boxes mark mismatches and a space separates PAM (NGG/NAG or TTTN) from sequence. Differences in the “N” position in the PAM are not marked.

Candidate ID	Gene	chrom	start	end	sense	sequence
Cas9ChCBF1_004	ChCBF2	4	6514798	6514820	+	AGCTGTTGCCAACAGAACAGCG TGG
	ChCBF1	7	1790883	17908905	-	CCGTGTGTGTCTCGGAGACGT
Cas9ChCBF1_010	ChCBF2	4	6514878	6514900	+	CTGCCTAGTGGTGGTGTGTG TGG
	ChCBF1	7	17908803	17908825	-	CCTACACCCACTCCAGGCAG
Cas9ChCBF1_018	ChCBF2	4	6514910	6514932	+	CAAAGAAACTTTGAGATT TGG
	ChCBF1	7	17908776	17908793	-	CCAAAGGACTTTGCTTTT
	ChCBF3	8	13812274	13812296	-	CAAAGGACTTTGCTTTT
			18638271	18638293	-	CTTACACCCACTCCAGGCAG
			21152837	21152859	-	CTTACACCCACTCCAGGCAG
Cas9ChCBF1_013	ChCBF2	4	6514915	6514937	+	AAAGAACTTTGAGATT TGG
	ChCBF1	7	17908766	17908788	-	CCAAGGACTTTGCTTTT
			18333140	18333162	-	CCAAGGACTTTGCTTTT
			5556241	5556263	+	CAAAGGACTTTGCTTTT
			370416	370438	+	CAAAGGACTTTGCTTTT
	ChCBF3	8	13812269	13812291	-	CTTACACCCACTCCAGGCAG
Cas9ChCBF1_033	ChCBF2	4	6515264	6515286	+	TGCCGCTCTCGTCTGTCAAC AAGC
	ChCBF1	7	17908390	17908412	-	TCACTGCTGACCGGAGGAGGAG
	NSCFA, A444	2316	2338	+	CCAAGGACTTTGCTTTT	
Cas9ChCBF1_036	ChCBF2	4	6514793	6514815	-	TGGCTGTCTCCAAACAGACAC
	ChCBF1	7	17908888	17908910	+	TGCTGTCTGAGTGGAGAT
Cas9ChCBF1_043	ChCBF2	4	6514880	6514902	-	CTACGCTCTGATCAGT
	ChCBF1	7	17908801	17908823	-	TAAGCTCAGGAGGAGGAGGAG
Cas9ChCBF1_044	ChCBF2	4	6514909	6514931	-	CCAAGGACTTTGCTTTT
	ChCBF1	7	17908772	17908794	-	CAAAGGACTTTGCTTTT
	ChCBF3	8	13812275	13812297	-	CAACGGACTTTGCTTTT
Cas9ChCBF1_056	ChCBF2	4	6515266	6515288	-	CCACTGCTCTGACCGGAGGAG
	ChCBF1	7	17908388	17908410	+	TCCCTGCTGACCGGAGGAG
			834758	834760	+	CCACTGCTGACCGGAGGAG
Cas9ChCBF1_057	ChCBF2	4	6515269	6515291	-	CCAACTGCTCTGACCGGAGGAG
	ChCBF1	7	17908385	17908407	+	TGGATCTGCTGACCGGAGGAG
			17089187	17089209	+	TGGATCTGCTGACCGGAGGAG
			5225681	5225703	-	CCACTGCTCTGACCGGAGGAG
Cas21aChCBF1_018	ChCBF2	4	6514830	6514853	+	TTTC TGAGACTGCTGACCCAAATT
	ChCBF1	7	1790848	1790871	-	AATTGAGTCTGAGGATCTCAC GAAA
	ChCBF3	8	13812351	13812374	-	AATTGAGTCTGAGGATCTCAC GAAA
Cas21aChCBF1_029	ChCBF2	4	6515260	6515283	+	TTGT CGCCTGCTGCTGACAAG
	ChCBF1	7	17908391	17908414	-	AATTGAGTCTGAGGATCTCAC GAAA
Cas21aChCBF1_030	ChCBF2	4	6515261	6515284	+	TTGT CGCCTGCTGCTGACAAG
	ChCBF1	7	17908390	17908413	-	AATTGAGTCTGAGGATCTCAC GAAA
Table 4. Intraspecies variability effect in the number of Cas9 and Cas12a candidates targeting multiple or unique AtCBF genes. Sequence variability in the CBF genes from different Arabidopsis thaliana accessions change the number of candidates that can match multiple targets due to SNPs in the 20 nucleotides of the guide but also SNPs affecting PAM sequence. The use of the standard Col-0 genome reference (TAIR v10) or the corresponding accession genome affects the identification of offtargets thus the correct identification of specific (unique) candidates matching only one CBF gene. The column “exclusive” indicates the number of specific candidates that are only listed when the corresponding reference genome is used.

CBF genes accession	Multiple Targets Candidates	Reference Genome	Unique Cas9 Candidates	Unique Cas12a Candidates				
	Cas9	Cas12a	Cas9	Cas12a	Cas9	Cas12a	Cas9	Cas12a
Col	13	10	Col	96	-	34	-	
An-1	13	9	Col	100	3	37	2	
			An-1	105	8	41	6	
C24	13	10	Col	100	4	33	2	
			C24	101	5	31	0	
Cvi	11	9	Col	102	6	34	3	
			Cvi	107	11	37	6	
Eri	13	10	Col	101	2	32	1	
			Eri	101	2	31	0	
Kyo	18	6	Col	99	8	32	2	
			Kyo	103	12	33	3	
Ler	13	10	Col	102	3	32	0	
			Ler	106	6	34	2	
Sha	13	10	Col	101	6	31	2	
			Sha	102	7	31	2	
Table 5. Intraspecies variability effect in the identification of targets and possible off-targets. For each example, upper file shows the targets and possible off-targets listed by ARES-GT (with thresholds L0 = 4 and L1 = 3) for each reference genome. SNPs differences between genomes that explain why some targets or off-targets are not detected are shown in lower file (separated by discontinuous line) as red boxes. Black boxes mark mismatches with candidates sequence.

Candidate ID	Gene	chrom	start	end	sense	sequence
A. thaliana						
C24_Cas21aCBF1_019	C24_CBF2	C24_4	13745457	13745480	-	TCGGAGCAAACATTTTCAGA AAA
	C24_CBF3	C24_4	13748381	13748404	-	TCGGAGCAAACATTTTCAGA AAA
	C24_CBF1	C24_4	13751940	13751963	-	TCGGAGCAAACATTTTCAGA AAA
	C24_3		4670219	4670243	+	TTTGCTTGAAACAGTTCA AAA
	ColCBF3	Col_4	13018950	13018973	-	TCGGAGCAAACATTTTCAGA AAA
	ColCBF1	Col_4	13022509	13022532	-	TCGGAGCAAACATTTTCAGA AAA
	ColCBF2	Col_4	13016046	13016068	-	TCGGAGCAAACATTTTCAGA AAA
	Col_3		4673610	4673633	+	TTTGCTTGAAACAGTTCA AAA
Eri_Cast12aCBF1_017	Eri_CBF2	Eri_4	12981374	12981397	-	AATCGGAGCAAACATTTTCAGA AAA
	Eri_CBF3	Eri_4	12984307	12984330	-	AATCGGAGCAAACATTTTCAGA AAA
	Eri_CBF1	Eri_4	12987866	12987889	-	AATCGGAGCAAACATTTTCAGA AAA
	ColCBF2	Col_4	13016031	13016054	-	AATCGGAGCAAACATTTTCAGA AAA
	ColCBF3	Col_4	13018948	13018971	-	AATCGGAGCAAACATTTTCAGA AAA
	ColCBF1	Col_4	13022507	13022530	-	AATCGGAGCAAACATTTTCAGA AAA
	Col_4		13016046	13016068	-	TCGGAGCAAACATTTTCAGA AAA
	Col_3		4673610	4673633	+	TTTGCTTGAAACAGTTCA AAA
	Eri_1		8194484	8194507	-	AATCGGAGCAAACATTTTCAGA AAA
	Eri_3		9400735	9400758	+	TTTGCTTGAAACAGTTCA AAA
Supplemental Figure 1. Alignment of CBF protein sequences from Arabidopsis thaliana and Cardamine hirsuta. Blast tool from Cardamine hirsuta genetic and genomic resource page (http://chi.mpipz.mpg.de/index.html) was used to find AtCBF homologs. Clustal Omega (Sievers et al., 2011) from EMBL-EBI tools (Madeira et al., 2019) was used for protein alignment.

Madeira, F., Park, Y.M., Lee, J., Buso, N., Gur, T., Madhusoodanan, N., Basutkar, P., Tivey, A.R.N., Potter, S.C., Finn, R.D., and Lopez, R. (2019). The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Research 47, W636-W641. doi: 10.1093/nar/gkz268.

Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., Lopez, R., Mcwilliam, H., Remmert, M., Söding, J., Thompson, J.D., and Higgins, D.G. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology 7, 539. doi: 10.1038/msb.2011.75.