High-Pressure ESR Spectroscopy: On the Rotational Motion of Spin Probes in Pressurized Ionic Liquids

Boryana Y. Mladenova Kattnig,* Daniel R. Kattnig,§ and Guenter Grampp

ABSTRACT: We report high-pressure (up to 50 MPa) ESR-spectroscopic investigations on the rotational correlation times of the nitroxide radicals 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO), 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO), and 4-amino-2,2,6,6-tetramethylpiperidine 1-oxyl (ATEMPO) in the ionic liquids 1-ethyl-3-methylimidazolium tetrafluoroborate (emimBF4), 1-butyl-3-methylimidazolium hexafluorophosphate (bmimPF6), 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF4), 1-methyl-3-octylimidazolium tetrafluoroborate (omimBF4), and 1-methyl-3-octylimidazolium hexafluorophosphate (omimPF6). The activation volumes (38.5−56.6 Å³) determined from pressure dependent rotational diffusion coefficients agree well with the pressure dependent viscosities of the ionic liquids. Experimentally, the fractional exponent of the generalized Stokes−Einstein−Debye relation is found to be close to one.

INTRODUCTION

Room temperature ionic liquids (RTILs) exhibit a larger number of unusual physical properties, making them attractive as solvent media for academic and industrial applications.1−13 Beside their well-known physical properties such as an extremely low vapor pressure, wide electrochemical windows, and high thermal stability, recently astonishing nanostructured effects have been reported, like the formation of nanoscale polar and unpolar domains. Peric et al. reported in a detailed study about the nanostructured organization of RTILs using perdeuterated TEMPONE radical as a spin probe.14 Only two papers deal with time-resolved (TR) ESR-spectroscopy. Kawai et al. and recently Fedin et al. report on the spin dynamics of triplet and doublet states in RTILs.15,16 High-field ESR-spectroscopic studies support the assumption that polar domains are formed by anions and cations whereas the unpolar domains are formed by the alkyl chains of the RTILs. Using charged and uncharged nitroxide radicals, several authors reported different correlation times based on different anions in the RTILs.17−19

Interactions between imidazolium-based ionic liquids and some nitroxy radicals carrying different substituents, such as hydrogen bonding −OH or ionic −N(CH3)3 and −OSO3− substituents have been systematically investigated by Zhang et al.20 Their studies based on density functional theory calculations predict significant reduction of the mobility of the organic radicals in ionic liquids compared to systems containing neutral radicals.

The study of diffusion influenced reactions is of great interest not only because of the generally high viscosity of the RTILs but also from the viewpoint of solute−solvent cage and microenvironmental effects.21−23

The rotational mobility of organic radicals in conventional solvents and in room temperature ionic liquids sensed by ESR-spectroscopy has been subject of several articles published by Feed, Strehmel, Evans, and Kawai.24−33 The first study on rotational motion in RTILs was published by Allendoerfer et al. in 1992.34

Rotational motion of spin probes in imidazolium-based ionic liquids has been reported by Sengupta and Miyake as well.35−37

Studies on pressure-dependent ESR-line width and rotational correlation times of vandyl acetylacetonate in variety of nonhydrogen-bonded solvents have been reported by Hwang et al.38 Recently Hubbel et al. reintroduced the application of high-pressure ESR spectroscopy to biochemical reactions in water. They report on protein-folding, conformational equilibria of spin-labeled proteins.39−41

Received: October 25, 2021
Revised: January 9, 2022
Published: January 24, 2022
For the study of the 3-carboxypropyl radical, disagreeing rates of rotational diffusion and the corresponding activation energies with those calculated from the Stokes–Einstein–Debye (SED) relation have been found. Often a fractional dependence on $(\eta/T)^x$ is suggested with $x < 1$ where η and T denote the dynamic viscosity and the temperature, respectively. Such corrections could indicate a slippage of the solute in the solvent cage. The microviscosity model introduced by Gierer and Wertz is mainly used for such deviations.25

In contrast to these findings, Evans et al. have reported on the activation energy of rotational diffusion of TEMPO, which correlates well with the activation energies of the viscous flow of the RTILs as predicted by the classical SED-relation.26

Strehmel et al. reported on the influence of the alkyl chain length of the RTILs on the rotation of 4-hydroxy-2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPOL) radical. A linear correlation of the rotational correlation times with the viscosity is also reported by these authors. For charged spin probes, deviations from the SED-behavior are found.42

We recently studied the temperature dependence of several spin probes in RTILs and found good correlation with the SED-equation, albeit too small hydrodynamic radii, even if deviations from the spherical shape of the spin probes and microviscosity corrections are taken into account.21,23,43 All these studies reported in the literature focused on viscosity and/or temperature dependent measurements. To get insights into the free-volume effect, the formation and coalescence of specific domains in RTILs, additional pressure dependent investigations appear worthwhile. Here, we report for the first time on pressure dependent measurements of rotational correlation times undertaken with the aim of revealing detailed information on the corresponding activation volumes, ΔV^\ddagger.

METHODS

CW-ESR spectra were recorded using a JEOL PE-3X spectrometer equipped with an improved microwave bridge system and an AEG magnet. A cylindrical TEM011-cavity was used. The spectrometer operated at a microwave frequency of around 9.5 GHz and employed a 100 kHz field modulation. A home build flow-through sample cell system, allowing measurements at elevated pressures of up to 100 MPa is described elsewhere.46,47

The ionic liquids 1-ethyl-3-methylimidazolium tetrafluoroborate (emimBF$_4$ > 98%), 1-butyl-3-methylimidazolium hexafluorophosphate (bmimPF$_6$ > 99%), and 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF$_4$ > 99%) were purchased from Ionic Liquids Technologies (Iolitec, Germany). 1-methyl-3-octylimidazolium tetrafluoroborate (omimBF$_4$ > 98%) and 1-methyl-3-octylimidazolium hexafluorophosphate (omimPF$_6$ > 98%) were obtained from Solchemar, Portugal. Structures of the studied RTILs are shown in Scheme 1.

On account of the fact that small traces of water can change significantly the rotational correlation times of the spin labels, all RTILs were dried for at least 24 h under high vacuum ($<5 \times 10^{-3}$ Torr) and at elevated temperatures (327–337 K). The dried ionic liquids were stored in Schlenk tubes under an argon atmosphere. The tubes were furthermore placed in an desiccator over P$_2$O$_5$ and kept in dark.

Used spin labels (see Figure 1) 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO, > 99%) and 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (ATEMPO, > 97%) were obtained from Sigma-Aldrich. Before use, TEMPO was purified by sublimation. 4-Hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl, (TEMPOL, \geq 97%), was purchased from Fluka and used as received.

The volume of the RTILs was determined gravimetrically from the density of the corresponding solvent. In order to avoid line broadening effects, due to spin–spin interactions, the radical concentrations were kept low at 3×10^{-4} M to 5×10^{-4} M. Standard Schlenk techniques were employed to transfer the sample solutions under argon atmosphere into the ESR-spectrometer. All samples were measured at 295 ± 1 K. Prior each measurement at least 15 min were allowed for thermostatting. The pressure was increased from 0.1 to 50 MPa following reduction to 0.1 MPa in steps of 2.5 MPa. No hysteresis was found for all measurements. EPR spectra were simulated using EasySpin toolbox for Matlab.47,48 The g- and A-tensors were determined from measurements of the corresponding sample at 80 K using a Bruker E580-FF/CW spectrometer by courtesy of the Rudjer Bošković Institute (Zagreb, Croatia), equipped with a liquid helium/nitrogen cryostat (Oxford Instruments).13,44 The spin-Hamiltonian parameters of the investigated spin probes in the studied ILs used for the simulation of the experimental EPR spectra are listed in Table 1.

RESULTS AND DISCUSSION

In this study we focus on fast tumbling spin probes (see Figure 1). Typical ESR-spectra recorded at atmospheric and elevated pressure, together with their computer simulations, are shown on Figure 2.

At constant temperature, pressure dependent rate constants k_B result in the corresponding experimental activation volumes $\Delta V^\ddagger_{\text{obs}}$.

$$k_B T \left(\frac{\partial (\ln k_B)}{\partial p} \right)_T = -\Delta V^\ddagger_{\text{obs}}$$ \hspace{1cm} (1)

The Stokes–Einstein–Debye (SED) law is routinely used in the literature, to relate rotational diffusion coefficients to solvent viscosities, eq 2.

$$r = \frac{1}{6D} = \frac{4\pi \eta(T)}{3k_B T} = \frac{1}{k_B}$$ \hspace{1cm} (2)
In this expression, τ_r is the rotational correlation time, D_r the rotational diffusion coefficient, and η the dynamic viscosity of the solvent. r is an effective hydrodynamic radius that is expected to correspond or exceed the van der Waals radius of the spin probe. Often the experimental r deviates from the van der Waals one and is then denoted as hydrodynamic radius. k_B and T denote the Boltzmann constant and the absolute temperature. Deviations from SED-relation are normally expressed by a fractional SED-expression with exponent x:

$$\tau_r = \frac{1}{6D_r} \sim \left(\frac{\eta(T)}{T}\right)^x \quad (3)$$

The viscosities of the studied ionic liquids at room temperature and atmospheric pressure are listed in Table 2.

Table 1. Spin-Hamiltonian Parameters of the Investigated Spin Probes in the Studied ILs

solvent	substance	g_{xx}	g_{yy}	g_{zz}	A_{xx}/MHz	A_{yy}/MHz	A_{zz}/MHz
emimBF$_4$	TEMPO	2.0111	2.0089	2.0044	44.8	27.5	-5.9
bmimBF$_4$	TEMPO	2.0087	2.0065	2.002	44.8	27.5	-5.9
bmimPF$_6$	TEMPO	2.0087	2.0065	2.002	44.8	27.5	-5.9
bmimBF$_4$	TEMPO	2.019	2.0089	2.0043	43.8	27.6	-7.0
bmimPF$_6$	TEMPO	2.0111	2.0099	2.0045	44.9	27.3	-7.8
omimBF$_4$	TEMPO	2.0087	2.0065	2.002	44.0	27.5	-5.9
omimPF$_6$	TEMPO	2.0087	2.0065	2.002	44.4	27.5	-5.9

Table 2. Viscosities of the Studied Ionic Liquids at 295 K and $P = 0.1$ MPa

solvent	η/(mPa s)
emimBF$_4$	43
bmimBF$_4$	122
bmimPF$_6$	327
omimBF$_4$	417
omimPF$_6$	919

Viscosities at elevated pressures are obtained from published data $^{2,11-13}$ and were fitted to an Arrhenius type equation, eq 4.

$$\eta(p) = \eta_0 \exp \left(\frac{V_n(p - p_0)}{k_BT}\right) \quad (4)$$

The fitted parameters η_0 and V_n/k_BT are given in Table 3. The corresponding volumes V_n given in Table 3 have been extracted from plots like that given in Figure 3.

Table 3. Coefficients of Best Fits Using eq 4

Solvent	η_0	V_n/k_BT
emimBF$_4$	43.34	0.010
bmimBF$_4$	112.23	0.001
bmimPF$_6$	284.36	0.013
omimBF$_4$	353.12	0.012
omimPF$_6$	733.14	0.014

See refs 2, 11−13, 49, and 50.

Figure 3. Pressure dependence on the viscosity of the studied room temperature ionic liquids.

From the pressure dependence of the rotational diffusion coefficients, listed in Table 4 and presented on Figure 4, the experimental activation volumes, ΔV_{obs} given in Table 5 were extracted.

Table 4. Rotational Diffusion Coefficients of Various Spin Probes in the Studied Room Temperature Ionic Liquids at Atmospheric and Elevated Pressures, $T = 295$ K

substance	solvent	$D_r \times 10^8$/s	
TEMPO	emimBF$_4$	17.3	12.7
TEMPO	bmimBF$_4$	7.61	6.96
TEMPO	bmimPF$_6$	3.88	1.93
TEMPO	omimBF$_4$	4.91	2.83
TEMPO	omimPF$_6$	3.04	1.71
TEMPO	bmimBF$_4$	3.09	1.53
ATEMPO	bmimPF$_6$	1.41	0.77

For all samples, the rotational diffusion coefficients agreed upon increasing and decreasing the pressure. No hysteresis was apparent.

Combining eqs 1, 2, and 3 and differentiating with respect to pressure leads to the following expression for the activation volumes:

$$\Delta V_{obs} = \frac{1}{6D_r} \left(\frac{\eta(T)}{T}\right)^x \quad \text{with} \quad x = 2$$
A fractional dependence would result in $\Delta V^e_{\text{obs}} < V_\eta$ and $x < 1$. Investigations on temperature-dependent phase transitions, which may be also pressure dependent, are reported.51–53

The quantity $\Delta \Delta V$ presented in Table 4 gives the relative deviation of ΔV^e_{obs} from V_η. For TEMPO $\Delta \Delta V$ does not correlate with viscosity η (see Table 4). For various probe molecules in bmimPF$_6$, $\Delta \Delta V$ decreases with increasing acceptor strength of the 4-substituent. For ATEMPO, a beginning decoupling of η and τ can be realized, which leads to a pronounced fractional SED-behavior. This is a likely consequence of the of the acceptor properties of the amino-group in the 4-position.

The agreement between experimental rotational correlation time predictions based on the Stokes–Einstein–Debye relation appears surprising in view of the combined scientific literature so far. Many publications have documented deviations from Stokes–Einstein and Stokes–Einstein–Debye (SED) relations in pure ionic liquids and ionic liquid/solvent mixtures. Often these deviations are ascribed to strong solvent–solute interactions and/or differences in size and shape of the RTIL constituents and the molecules investigated.54–59 On the other hand, the SED is based on continuum hydrodynamics and applies to large solutes immersed in a homogeneous environment. In fact, already Einstein pointed out that there is little reason to apply SED-equations on the molecular scale.60 In view of these observations, our findings of SED-behavior in pressurized room temperature ionic liquids are unforeseen, both generally and in the present RTIL context, for which RTIL constituents and spin probes are clearly of comparable size and strongly interacting.

CONCLUSIONS

In this study, we have shown for the first time that the rotational correlation times for the spin labels TEMPO, TEMPOL, and ATEMPO in several imidazolium-based ionic liquids depend linearly on the pressure. The Stokes–Einstein–Debye relation is fulfilled, which means the correlation times τ are directly proportional to the viscosity η of the RTILs and no fractional correction of the SED-relation is necessitated. From experimental plots of V_{obs} versus V_η, x is found to be equal to 1. For the TEMPO radical, the quantity $\Delta \Delta V$ (%) is not related to the RTIL viscosity η. In bmimPF$_6$, $\Delta \Delta V$ decreases with increasing acceptor properties of the substituent in the 4-position. For ATEMPO, the viscosity η increases more strongly with pressure than the correlation time τ, leading to a fractional SED-behavior.

AUTHOR INFORMATION

Corresponding Author

Boryana Y. Mladenova Kattnig – Living Systems Institute, University of Exeter, Exeter EX4 4QD, U.K.; orcid.org/0000-0002-2834-1216; Email: b.y.mladenova-kattnig2@exeter.ac.uk

Authors

Daniel R. Kattnig – Living Systems Institute, University of Exeter, Exeter EX4 4QD, U.K.; orcid.org/0000-0003-4236-2627
Acknowledgments

This research was funded by the Austrian Science Fund (FWF): P 22677-N19.

Abbreviations

SED, Stokes–Einstein–Debye; ESR, electron spin resonance; RTIL, room temperature ionic liquid; TEMPO, 2,2,6,6-tetramethylpiperidine-1-oxyl; TEMPOL, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl; ATEMPO, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl

References

1. Grampp, G.; Kattnig, D. R.; Mladenova, B.; Rasmussen, K. Chapter 4. 3 EPR Spectroscopy in Room Temperature Ionic Liquids. In Electron Paramagnetic Resonance; Chechikh, V., Murphy, D. M., Gilbert, B., Eds.; Royal Society of Chemistry: Cambridge, 2014; Vol. 51, 1787–1800.
2. Samanta, A. Fluorescence Probing of the Physicochemical Characteristics of the Room Temperature Ionic Liquids. In Advanced Fluorescence Reporters in Chemistry and Biology III; Demchenko, A. P., Ed.; Springer Series on Fluorescence; Springer Berlin Heidelberg: Berlin, Heidelberg, 2011; Vol. 113, pp 65–89.
3. Ionic Liquids Uncoupled: Critical Expert Overviews; Plechkova, N. V., Seddon, K. R., Eds.; Wiley: Hoboken, NJ, 2013.
4. Wasserscheid, P.; Keim, W. Ionic Liquids-New “Solutions” for Transition Metal Catalysis. Angew. Chem., Int. Ed. Engl. 2000, 39 (21), 3772–3789.
5. Kokorin, A. Kinetics and Mechanism of Reactions of Aliphatic Stable Nitroxide Radicals in Chemical and Biological Chain Processes; INTECH Open Access Publisher: 2012.
6. Bankmann, D.; Gierroth, R. Magnetic Resonance Spectroscopy in Ionic Liquids. Prog. Nucl. Magn. Reson. Spectrosc. 2007, 51 (1), 63–90.
7. Turro, N. J.; Chen, J. Y.-C. Nitroxides. Applications in Chemistry, Biomedicine, and Materials Science. By Gertz L. Likhimstein, Jun Yamauchi, Shin’ichi Nakatsuji, Alex I. Smirnov, and Rui Tamura. Angew. Chem., Int. Ed. 2008, 47 (50), 9596–9597.
(30) Polimeno, A.; Moro, G. J.; Freed, J. H. Rotational Dynamics of Axially Symmetric Solutes in Isotropic Solvents. II. The Stochastic Model. J. Chem. Phys. 1996, 104 (3), 1090–1104.

(31) Pilár, J.; Labšký, J.; Marek, A.; Budík, D. E.; Earle, K. A.; Freed, J. H. Segmental Rotational Diffusion of Spin-Labeled Poly styrene in Dilute Toluene Solution by 9 and 250 GHz ESR. Macromolecules 2000, 33 (12), 4438–4444.

(32) Stoesser, R.; Herrmann, W.; Zehl, A.; Strehmel, V.; Laschewsky, A. ESR Spin Probes in Ionic Liquids. ChemPhysChem 2006, 7 (5), 1106–1111.

(33) Strehmel, V.; Rexhausen, H.; Strauch, P. Influence of Imidazolium Bis(Trifluoromethylsulfonylimide)s on the Rotation of Spin Probes Comprising Ionic and Hydrogen Bonding Groups. Phys. Chem. Chem. Phys. 2010, 12 (8), 1933.

(34) Noel, M. A. M.; Alldendoerfer, R. D.; Osteryoung, R. A. Solvation in Ionic Liquids: An EPR Study. J. Phys. Chem. 1992, 96 (5), 2391–2394.

(35) Sengupta, A.; Rm. K. Electron Paramagnetic Resonance Spectroscopic Investigation of the Dynamics of Spin Probe in Room Temperature Ionic Liquid. Mod. Chem. Appl. 2016, 04 (04), 1000189.

(36) Miyake, Y.; Kawai, A. Solvation and Rotational Diffusion of Solutes in Room Temperature Ionic Liquids as studied by EPR Spectroscopy with Nitroxide Spin Probing Method. Appl. Magn. Reson. 2018, 49 (8), 825–835.

(37) Miyake, Y.; Akai, N.; Kawai, A.; Shibuya, K. Hydrodynamic Interpretation on the Rotational Diffusion of Peroxyalamine Disulfolate Solute Dissolved in Room Temperature Ionic Liquids As studied by Electron Paramagnetic Resonance Spectroscopy. J. Phys. Chem. A 2011, 115 (24), 6347–6356.

(38) Hwang, J.; Kivelson, D.; Plachy, W. ESR Linewidths in Solution. VI. Variation with Pressure and Study of Functional Dependence of Anisotropic Interaction Parameter, κ. J. Chem. Phys. 1973, 58 (4), 1753–1765.

(39) Davydov, D. R.; Yang, Z.; Davydova, N.; Halpert, J. R.; Hubbell, W. L. Conformational Mobility in Cytochrome P450 3A4 Explored by Pressure-Perturbation EPR Spectroscopy. Biophys. J. 2016, 110 (7), 1485–1498.

(40) Lerch, M. T.; López, C. J.; Yang, Z.; Kreitman, M. J.; Horwitz, J.; Hubbell, W. L. Structure-Relaxation Mechanism for the Response of T4 Lysozyme Cavity Mutants to Hydrostatic Pressure. Proc. Natl. Acad. Sci. U. S. A. 2015, 112 (19), E2437–E2446.

(41) McCoy, J.; Hubbell, W. L. High-Pressure EPR Reveals Conformational Equilibria and Volumetric Properties of Spin-Labeled Proteins. Proc. Natl. Acad. Sci. U. S. A. 2011, 108 (4), 1331–1336.

(42) Gierer, A.; Wirtz, K. Molekular Theorie Der Mikroreibung - Molecular Theory of Microfriction. Z. Für Naturforschung Sect. A 1953, 8, 532–538.

(43) Mladenova, B. Y.; Kattiring, D. R.; Gramppp, G. Room-Temperature Ionic Liquids Discerned Via Nitroxyl Spin Probe Dynamics. J. Phys. Chem. B 2011, 115 (25), 8183–8198.

(44) Mladenova, B. Y.; Chumakova, N. A.; Pergushov, V. I.; Kokorin, A. I.; Gramppp, G.; Kattiring, D. R. Rotational and Translational Diffusion of Spin Probes in Room-Temperature Ionic Liquids. J. Phys. Chem. B 2012, 116 (40), 12295–12305.

(45) Kundu, K.; Kattiring, D. R.; Mladenova, B. Y.; Gramppp, G.; Das, R. Electron Spin–Lattice Relaxation Mechanisms of Nitroxyl Radicals in Ionic Liquids and Conventional Organic Liquids: Temperature Dependence of a Thermally Activated Process. J. Phys. Chem. B 2015, 119 (12), 4501–4511.

(46) Rasmussen, K.; Hussain, T.; Landgraf, S.; Gramppp, G. High Pressure ESR Studies of Electron Self-Exchange Reactions of Organic Radicals in Solution. J. Phys. Chem. A 2012, 116 (1), 193–198.

(47) Stoll, S.; Schweiger, A. EasySpin, a Comprehensive Software Package for Spectral Simulation and Analysis in EPR. J. Magn. Reson. 2006, 178 (1), 42–55.

(48) Lehner, J.; Stoll, S. Modeling of Motional EPR Spectra Using Hindered Rotational Diffusion and the Stochastic Liouville Equation. J. Chem. Phys. 2020, 152 (9), 094103.

(49) Ahosseini, A.; Scurto, A. M. Viscosity of Imidazolium-Based Ionic Liquids at Elevated Pressures: Cation and Anion Effects. Int. J. Thermophys. 2008, 29 (4), 1222–1243.

(50) Carda-Broch, S.; Berthod, A.; Armstrong, D. W. Solvent Properties of the 1-Butyl-3-Methylimidazolium Hexafluorophosphate Ionic Liquid. Anal. Bioanal. Chem. 2003, 375 (2), 191–199.

(51) Huang, J.-F.; Chen, P.-Y.; Sun, I.-W.; Wang, S. P. NMR Evidence of Hydrogen Bonding in 1-Ethyl-3-Methylimidazolium-Tetrafluoroborate Room Temperature Ionic Liquid. Inorg. Chem. Acta 2001, 320 (1), 7–11.

(52) Huang, J.-F.; Chen, P.-Y.; Sun, I.-W.; Wang, S. P. NMR Evidence of Hydrogen Bond in 1-Ethyl-3-Methylimidazolium-Tetrafluoroborate Room Temperature Ionic Liquid. Spectrosc. Lett. 2001, 34 (5), 591–603.

(53) Holbrey, J. D.; Seddon, K. R. The Phase Behaviour of 1-Alkyl-3-Methylimidazolium Tetrafluoroborates; Ionic Liquids and Ionic Liquid Crystals. J. Chem. Soc., Dalton Trans. 1999, No. 13, 2133–2140.

(54) Miyake, Y.; Hidemori, T.; Akai, N.; Kawai, A.; Shibuya, K.; Koguchi, S.; Kitzazume, T. EPR Study of Rotational Diffusion in Viscous Ionic Liquids: Analysis by a Fractional Stokes–Einstein–Debye Law. Chem. Lett. 2009, 38 (2), 124–125.

(55) Köddermann, T.; Ludwig, R.; Paschek, D. On the Validity of Stokes-Einstein and Stokes-Einstein–Debye Relations in Ionic Liquids and Ionic-Liquid Mixtures. ChemPhysChem 2008, 9 (13), 1851–1858.

(56) Kattning, B. Y. M.; Chumakova, N. A.; Kattning, D. R.; Grigor’ev, I. A.; Gramppp, G.; Kokorin, A. I. Influence of the Electric Charge of Spin Probes on Their Diffusion in Room-Temperature Ionic Liquids. J. Phys. Chem. B 2011, 125 (32), 9235–9243.

(57) Taylor, A. W.; Licence, P.; Abbott, A. P. Non-Classical Diffusion in Ionic Liquids. Phys. Chem. Chem. Phys. 2011, 13 (21), 10147.

(58) Vorontyshev, M. A.; Zinoyeva, V. A.; Picquet, M. Diffusional Transport in Ionic Liquids: Stokes–Einstein Relation or “Sliding Sphere” Model? Ferrocene (Fc) in Imidazolium Liquids. Electrochim. Acta 2010, 55 (18), 5063–5070.

(59) Świergiel, J.; Jadziń, J. Fractional Stokes–Einstein–Debye Relation and Orientational Entropy Effects in Strongly Hydrogen-Bonded Liquid Amides. Phys. Chem. Chem. Phys. 2011, 13 (9), 3911–3912.

(60) Einstein, A. Zur Theorie der Brownschen Bewegung. Ann. Phys. 1906, 324 (2), 371–381.