DeepRare : Generic Unsupervised Visual Attention Models

Phutphalla Konga,b, Matei Mancasb,*, Bernard Gosselinb, Kimtho Poa

aInstitute of Technology of Cambodia
bUniversity of Mons, ISIA Lab

Abstract

Human visual system is modeled in engineering field providing feature-engineered methods which detect contrasted/surprising/unusual data into images. This data is “interesting” for humans and leads to numerous applications. Deep learning (DNNs) drastically improved the algorithms efficiency on the main benchmark datasets. However, DNN-based models are counter-intuitive: surprising or unusual data is by definition difficult to learn because of its low occurrence probability. In reality, DNN-based models mainly learn top-down features such as faces, text, people, or animals which usually attract human attention, but they have low efficiency in extracting surprising or unusual data in the images.

In this paper, we propose a new visual attention model called DeepRare2021 (DR\textsubscript{21}) which uses the power of DNNs feature extraction and the genericity of feature-engineered algorithms. This algorithm is an evolution of a previous version called DeepRare2019 (DR\textsubscript{19}) based on a common framework. DR\textsubscript{21} 1) does not need any training and uses the default ImageNet training, 2) is fast even on CPU, 3) is tested on four very different eye-tracking datasets showing that the DR\textsubscript{21} is generic and is always in the within the top models on all datasets and metrics while no other model exhibits such a regularity and genericity. Finally DR\textsubscript{21} 4) is tested with several network architectures such as VGG16 (V16), VGG19 (V19) and MobileNetV2 (MN2) and 5) it provides explanation

*Corresponding author

Email address: matei.mancas@umons.ac.be (Matei Mancas)
and transparency on which parts of the image are the most surprising at different levels despite the use of a DNN-based feature extractor. DeepRare2021 code can be found at https://github.com/numediart/VisualAttention-RareFamily.

Keywords: Eye Tracking, Deep Features, Odd One Out, Rarity, Saliency, Visual Attention Prediction, Visibility.

1. Visual attention: deep learning trouble

Human visual system handles a huge quantity of incoming visual information and it cannot carry out multiple complex tasks in the same time on the whole visual field. This bottleneck [1] implies that it has an exceptional ability of sampling the surrounding world and pay attention to objects of interest. In computer vision, visual attention is mainly modeled through the so-called saliency maps. The modeling of visual attention has numerous applications such as object detection, image segmentation, image/video compression, robotics, image re-targeting, visual marketing and so on [2]. Visual attention is considered to be a mix of bottom-up and top-down information. Bottom-up information is based on low-level features such as luminance, chrominance, or texture. Top-down information is more related to knowledge people already have about their tasks or objects they see such as faces, text, persons, or animals.

Since the early 2000, numerous models of visual attention based on image features were provided. In this paper, they will be referred as “classical models”. While they can be very different in their implementation, most of them have the same main philosophy: search for contrasted, rare, abnormal or surprising features within a given context. Among those models one may find seminal work of [3] or [4], but also more recent work based on information processing such as AIM [5]. Finally, some models became a reference for classical models such as GBVS [6], RARE [7], BMS [8] or AWS [9].

With the arrival of the deep learning wave, most researchers have focused on Deep Neural Networks saliency which will be referred as “DNN-based” in this paper. DNN-based models triggered a revolution in terms of results on the main
benchmark datasets such as MIT benchmark [10] where DNN-based saliency models definitely outperformed classical models. The DNN-based models have been already used in several applications such as image and video processing, medical signal processing or big data analysis [11], [12], [13], [14], [15]. Some of the DNN-based models became new references such as SALICON [16], MLNet [17] or SAM-ResNet [18].

However, recently DNN-based models have been criticized for some drawbacks. First, they underestimate the importance of bottom-up attention [19] which indicates that they were mostly trained to detect the attractive top-down objects rather than detect saliency itself. In [20] the authors found that if saliency models very precisely detect top-down features, they neglect a lot of bottom-up information which is surprising and rare, thus by definition difficult to learn. This shows that saliency cannot be learnt but instead objects [21] which are often attended by human gaze (such as faces, text, bodies, etc.) are learnt and by the way, they are enough to provide good results on the main benchmarks.

A second drawback of the DNN-based models is that in addition to not take into account low-level features surprise level, DNN-based models are not generic enough to adapt to new images which are different enough from the training dataset. Indeed, recently [22] introduced two novel datasets, one based on psycho-physical patterns (P3) and one based on natural odd-one-out (O3) stimuli. They showed that while DNN-based models are good in MIT dataset on natural images, their results drastically drop on P3 and O3.

A third drawback of the DNN-based models is linked to DNNs themselves which are black boxes. When a model fails to predict saliency, there is no way to understand why this prediction failed.

In parallel to DNN-based models, DeepFeat [23] or SCAF [24] deal with models where pre-trained deep features are used. Those models will be called “deep-features models” in this paper. However, they are not yet comparable to DNN-based models for general images datasets such as the MIT benchmark. Based on the new datasets in [22], DeepRare2019 [25] provides a new deep-
feature saliency model by mixing deep features and the philosophy of an existing classical model [7]. This model is efficient on all the datasets, with no need for any training and efficient in terms of computation even on CPU.

In this paper we build on DeepRare2019 to improve it in several ways: 1) different DNN architectures are used and compared (VGG16, VGG19 and MobileNetV2) on more datasets, 2) a threshold on the feature rarity is introduced which let us understand which parts of the image are the most surprising at different levels providing transparency to the model, 3) the best combination of thresholds and an improved post-processing which lead to results which are much better than for DeepRare2019. This new model is called DeepRare2021 (DR21) and shows that the DeepRare framework is modular and can easily evolve.

In a section 2DR21 is described and the threshold on feature rarity is used to show how the DNN features rarity can become explainable. In section 3 this model is tested on the datasets proposed in [22] but also on an additional dataset. We finally discuss and conclude on the pertinence of the come back of the feature engineering models.

2. DeepRare2021 model: digging into rare deep features

In this paper we extend the approach in [25] where a framework called DeepRare is proposed which mixes the simplicity of the idea of rarity computation to find the most salient features with the advantages of deep features extraction. Indeed, rare features attract human attention as they are surprising compared to the other features within the image. This combination has the advantage to be fast (less than 1 second per image on CPU with a VGG16 feature extractor) and easy to adapt to any default DNN architectures (VGG19, ResNet, etc.). Here, we extend DR19 adding the possibility to have thresholds on the rarity maps and also the possibility to use several DNN architectures. This additional work leads to the DeepRare2021 (DR21) representation of the image where the features are selected based on their rarity before combining them. In the
following sections we describe DR21 and its feature visualisation.

2.1. DeepRare framework

Figure 1 summarizes the DeepRare architecture. From an input image, features are extracted based on a CNN encoder (such as a VGG16). This network will extract features needed to solve its training task. Here, we use the image classification task on the ImageNet dataset [26] which is a dataset made of very diverse images and more than 1000 classes of objects. These weights are available by default in Keras [27] or other development frameworks. Once features for some selected layers are extracted, their rarity is computed. The next step let us select the most rare features and to represent them easily. At the end the selected features are fused and post-processed in a final saliency map. All those steps are described in the following sections.

![Diagram of DeepRare framework](image)

Figure 1: Processing for Layer 1. This processing is iterated for all interesting layers from a CNN encoder network. In this example 13 layers are in total chosen for a VGG16 encoder.

2.2. CNN architectures and layers taken into account

While in DR19, the algorithm is applied only to a VGG16 architecture, DR21 can be applied to various convolutional architectures. In this paper we
apply it to a VGG16, VGG19, and MobileNetV2 architectures. While VGG19 is a variant of the VGG16 architecture, MobileNetV2 is very different and it has the advantage to be light in terms of weight and computation which makes it usable on embedded devices such as smartphones, etc.

The rarity is not computed on all the layers to avoid adding unnecessary information. For VGG16, we do not use (1) the pooling layers (as they are redundant with the previous convolutional layer) and (2) the final fully connected classification layers. In a VGG16, the convolutional layers are gathered within 5 groups separated by the pooling layers: 1) the first low-level features in layers 1 and 2, then 2) second set of low-level features from layers 4 and 5, after that 3) the first middle-level layers 7, 8 and 9 and 4) the second middle-level layers 11, 12, and 13 and finally 5) the high-level features from layers 15, 16, and 17. For VGG19, the same approach was taken into account. We take layer 1 and 2 for the first low-level features; layer 4 and 5 for the second low-level features; layer 7, 8, 9, and 10 for the first middle-level features; layer 12, 13, 14, and 15 for the second middle-level features; and layer 17, 18, 19, and 20 for the high-level features. For MobileNetV2, we use the same approach as VGG16 and VGG19. However, the architecture is much more complex. We take layer 16 and 18 for the first low-level features; layer 24 and 32 for the second low-level features; layer 41, 50, 59, and 67 for the first middle-level features; layer 76, 85, 94, and 102 for the second middle-level features; and layer 111, 120, 137, and 146 for the high-level features.

2.3. Rarity of deep features and top-down information

Once, the layers taken into account in the algorithm are selected for the given CNN architecture, it is necessary to compute the feature maps rarity within those layers. Figure 1 shows that, on each feature map within a selected layer we compute the data rarity. For that, as in DR19, we use the main idea from 7 without the multi-resolution part which is naturally achieved by the convolutional network architecture. A very simple rarity function R based on the histogram of each feature map sampled on a few bins (11 in the current
implementation) is used as in equation (1).

\[R(i) = -\log(p(i)) \] (1)

where \(p(i) \) is the occurrence probability for the pixels of bin \(i \). Once the rarity histogram \(R \) is computed, the resulting rarity image is reconstructed by back-projection. This operation uses the histogram of a feature (here the rarity of a feature) to find this feature in an image projecting each histogram value on the corresponding pixel in an image. This image will highlight pixels in the feature map which are rare compared to the other pixels in the feature map. Based on [7], rare pixels are the ones which might attract human attention.

The advantage of this approach is that it is very fast to compute and this is important as it needs to be applied to numerous feature maps.

2.4. Digging into Rare Deep Features

Once we decided the layers which will be taken into account into the model and we computed their rarity, we can go further and select the most rare features in the feature maps. In that aim we decided to apply a threshold on the computed rarity maps. This threshold is applied directly on the rarity of each feature map and varies from 0 (no threshold) to 0.9 (only keeping the 10% most rare features) by steps of 0.1. A binary threshold is first obtained and used as a mask on the feature map to keep only the values within this mask while the rest are set to 0.

In this section we inspect the rare deep features at different scales to understand what this rarity thresholds physically mean. One advantage of DR21 is that it is possible to investigate at which scale and where the feature rarity is important and thus let us understand how the attention mechanism works and how the image structures are taken into account. In this section, figures 2, 3, 4 are computed with a VGG16 architecture and the 5 groups discussed in section 2.2.

In Fig. 2 we inspect a simple image with an obvious low-level focus of attention. The initial image (on the left) represents several horizontal blue bars
while only one is in red. This red bar is an obvious point of attention based on a low-level feature: the color.

Figure 2: Detailed maps of different levels (from Low Level 1 to High Level) and different thresholds on feature rarity (from 0.9 to no threshold) within the VGG16 architecture.

From this image, there are 10 columns with different thresholds from $T = 0.9$ which only keep the 10% rarest features to $T = 0$ where no threshold was applied to the rarity feature maps. Lines 2 to 6 represent the features for different levels (5 levels when using a VGG16 architecture) which are already a fusion of the selected layers rarity maps (for the fusion, see next section). The final fusion of the 5 levels can be found on the first line. The post-processing saliency map (see section 2.6) can be found on top-right of the image.

For the higher threshold ($T=0.9$) the abnormal region is detected on all levels except the higher level where the edge effects are too important (and can be seen in the corners even when the edges of the image are set to 0). For the low levels (such as level 1 to level 3) only the red pattern appears and the model is very precise and selective on the rare object. When going towards the right with lower thresholds, little by little, the other blue patterns also appear while the red one is still the most highlighted but the distractors around are visible.

In Fig. 3 one can see the result for a situation where mid-level (big letters)
and high-level features (such as text and people) are the rare features (see initial image on the left). This image has a less obvious attention focus as the one in Fig. 2.

For the higher threshold (T=0.9) the abnormal regions are split between mid levels and the higher level. While at the low-levels very few information passes the threshold, for the higher levels text and the person are well highlighted. For the last level the bigger text and the person are more highlighted than small text. At smaller thresholds the low levels highlight mostly the posters on the wall based on their colors but not enough the person and the large letters on top-right.

Figure 3: Detailed maps of different levels (from Low Level 1 to High Level) and different thresholds on feature rarity (from 0.9 to no threshold) within the VGG16 architecture.

In Fig. 4 one can see the result for a situation where high-level features (big cake shape and color) are the rare features. For the higher threshold (T=0.9) the abnormal regions are only detected in the higher level (mid level 2 and especially high level). On all the other levels no interesting feature is highlighted. For small thresholds, for low level 1 and 2 and mid level 1 only edges and object areas are highlighted but the model fails in detecting the different cake. We see that here, the low level feature never detect the abnormal cake whatever the threshold is.
Overall in figures 2, 3 and 4 mid level 2 and high level provide always better results with a high threshold such as $T = 0.9$, while lower level feature work better on this high threshold only in specific kind of images with obvious abnormal patterns due to low-level features. We already understand from here that several thresholds need to be combined to provide better final results.

In [20] the authors showed that top-down information for high-level features such as text, people, animals or transportation had a huge impact on visual attention through the mix of those features with a simple rarity bottom-up approach. But those rarity-based features were only low-level features. In the current paper we use both mid-level and high-level features however we do not add top-down information (except for a weak face detector only added when the VGG16 architecture is used). In the following section we show how the thresholded rarity feature maps from the chosen layers are fused together.

2.5. Data fusion

Once the rarity of all feature maps is computed, the results need to be fused together. We use a classical map fusion from [28] where the fusion weights
Table 1: The OSIE dataset. It applies both face and without face features on VGG16.

VGG16	With face	Without face
Thresholds	CC	CC
0	0.55	0.53
0.9	0.56	0.55
(0+0.9)/2	0.57	0.56
(0.4+0.9)/2	0.57	0.56

depend on the squared difference between the max and the mean of each map. This is applied to all feature maps within each layer leading to the deep layer conspicuity maps (DLCM), one for each convolutional layer (see Figure 1 for first layer). This approach is efficient and simple which is good as it needs to be applied an important amount of time.

In a second stage, the same fusion method is applied for each of the layer groups arriving to 5 deep groups conspicuity maps (DGCM). This fusion is made in a way to give more importance to higher level layers.

Finally, the 5 DGCM are summed up. In the case a VGG16 architecture is used, a top-down face map can be added based on feature map #105 from layer 15 which is known to detect faces which are large enough [24].

We show here different configurations of thresholds on the layers and check the results for the VGG16 architecture (tables 1 and 2). The accuracy is here computed by using the correlation metric (CC) between the final saliency map and the real people gaze obtained by using eye-tracking.

We observe that on two different validation datasets with natural images (OSIE and MIT1003) the use of the face improves the results. On OSIE dataset, the use of the higher threshold (0.9) or no threshold (0) has different effects producing better results on the thresholded rarity layers on OSIE (table 1) and less good results on MIT1003 (table 2). However, the combination of the thresholds 0 and 0.9 is better in both cases while the combination between 0 and 0.4 is a little less good on images from MIT1003. These tests show that it
Table 2: The MIT1003 dataset. It applies both face and without face features on VGG16.

VGG16	With face	Without face
Thresholds	CC	CC
0	0.47	0.46
0.9	0.45	0.43
(0+0.9)/2	0.48	0.47
(0.4+0.9)/2	0.47	0.45

always works better to mix the 0 threshold which shows all the data classified by order of rarity and the 0.9 which is the higher threshold which only lets the most rare regions pass. At the end we have the best mix which is to take into account all the rare data (threshold 0) and reinforce the areas with very rare data (threshold 0.9).

2.6. Saliency map post processing

Once maps were fused, it is well known [20] that a post-processing of the saliency maps can improve the final results depending on the validation metrics. Indeed, the eye-tracking data which is used for validation leads to rather fuzzy eye-tracking saliency maps, thus the correlation with fuzzy predicted saliency maps will be better. Here we used a gaussian low-pass smoothing filtering approach to optimize the final saliency map with the same parameters as in [20].

In addition of smoothing the data we tested the fact of squaring the data after the smoothing. Tables 3 and 4 show the results for the chosen configuration in section 2.5 which is the mix of threshold 0 and 0.9 1) not filtered, 2) using the filtering technique from [25], and 3) squared after the filtering technique. We can see that in all cases the filter followed by the square provides the best results. When trying to put the image at power 3 or more, results are less good so we decided to keep as the final post processing scheme the filtering from [25] followed by the squared map.
Table 3: The OSIE dataset. It tests on threshold 0 and 0.9 by considering on without filtering, filtering, and filtering in power 2.

VGG16	With face	Without face
(0+0.9)/2	CC	CC
No filtered	0.54	0.53
Filtered	0.57	0.56
Filtered + squared	0.59	0.58

Table 4: The MIT1003 dataset. It tests on threshold 0 and 0.9 by considering on without filtering, filtering, and filtering in power 2.

VGG16	With face	Without face
(0+0.9)/2	CC	CC
No filtered	0.43	0.42
Filtered	0.48	0.47
Filtered + squared	0.51	0.50

3. Experiments and results

We use 4 datasets namely OSIE [30], MIT1003 [31], P^3, and O^3 datasets [22] to validate our results. The OSIE dataset contains information at three levels: pixel-level image attributes, object-level attributes, and semantic-level attributes. The MIT1003 dataset contains general-purpose real-life images but has no specific categories or attributes. The P^3 dataset evaluates the ability of saliency algorithms to find singleton targets which focuses on color, orientation, and size (without center bias). The O^3 dataset depicts a scene with multiple objects similar to each other in appearance (distractors) and a singleton (target) which focuses on color, shape, and size (with center bias). We decided to use these 4 very different datasets to check how saliency models behave when facing images in different contexts.

Concerning metrics, we use measures from [22]. The “number of fixations”
(# fix.) is defined as the path formed by the saliency maximum followed by the other maxima of the saliency map before reaching the target. The global saliency index (GSI) measures how well the target mean saliency is distinguished from the distractors. The maximum saliency ratio (MSR) focuses on maximum saliency of the target versus the distractors [32] and the same for the background versus target (MSR_b and MSR_t). We also use standard eye-tracking evaluation metrics from MIT benchmark [10] such as Correlation Coefficient (CC), Kullback–Leibler divergence (KL), Area Under the ROC Curve from Judd (AUC_J), Area Under the ROC Curve from Borji (AUC_B), Normalized Scan-path Saliency (NSS), and Similarity (SIM).

3.1. Qualitative validation on the different datasets

We compare our model to other models on P_3 and O_3 datasets. According to [22], they observe that most classical models perform better on P_3 than DNN-based models. In contrast, DNN-based models perform better on O_3.

Figure 5 shows six samples from P_3 dataset which exhibit color, orientation, and size differences of the target. While distractors are still visible on DR19 saliency map, the targets are always correctly highlighted compared to RARE2012 which works well mainly for colors and two DNN-based models (ML-Net and SALICON) which only work on one sample. DR21 also spots all the targets but in addition, it highly decreases the distractors influence making the results very close to the ones in line 2 (ground truth).

Figure 6 shows images from O_3 dataset for different target categories (easy or difficult). Again, DR19 highlights the target better than the DNN-based models. DR19 seems equivalent in average with RARE. DR21 shows again a much more precise detection eliminating distractors and background information. From a qualitative point of view, on the image in figure 6, DR21 is the closest to the second line images (ground truth).

Figure 7 shows images from MIT1003 dataset. DR19 always finds the ground truth (GT) focus regions (except for the right image where one GT focus is just in the middle probably due to the centered bias) but it also has
Figure 5: Selected samples P^3 dataset. From left to right: target difference in color, orientation, and size. From top to down: initial, ground truth, RARE2012, MLNET, SALICON, DR2019, DR2021.

details around those focus areas which might decrease its scores on MIT1003. **DR21** is more precise but still keeping the same focus areas. Compared to ground truth (line 2) the focus areas are the same but probably less focused as other DNN-based models which might affect its scores even if those scores should be higher than **DR19**.

Figure 8 shows the images from OSIE dataset. **DR19** again spots the main correct salient regions but exhibits a lot of noise or distractors around them.
with a saliency map less focused as the one of the ground truth (line two). This issue is partially solved by DR21 which is much more selective but still less than some DNN-based models.

Overall, the qualitative study reveals that DR21 spots most of the time the most important regions in all datasets. On MIT1003 and OSIE dataset the results of DR21 are in most cases correct. If some DNN-based models are probably better on MIT1003 or OSIE datasets, one reason is that they are more focused on the top-down areas only as the ground-truth is. Indeed, DNN-based
models were trained on images close the the ones in those two datasets. On O^3 and P^3 datasets, DR21 clearly show their superiority on DNN-based models which are sometimes completely lost with very bad results. DR19 and especially DR21 exhibits the most stable behaviour performing well on all datasets while other models might be good on some images but much less good on others.

3.2. Quantitative validation on the different datasets

We make a quantitative validation of different models based on the DeepRare framework on the four datasets shown in the previous section.

First on MIT1003 and OSIE datasets which show general-purpose images where learning objects is very important. Those datasets should definitely provide an advantage to DNN-based models which focus on top-down information such as objects (faces, text, etc.) instead of bottom-up salient information. We previously showed in [20] that the DNN-based models mainly learn which objects are most of the time attended which leads to good results on images

Figure 7: Selected samples MIT1003 dataset. From top to down: initial, ground truth, RARE2012, SALICON, DR2019, DR2021.
implying a high amount of top-down information while they are very bad in purely bottom-up information.

On the other side, we use P^3 dataset from [22] which shows synthetic psycho-physical images with pop-out bottom-up objects which should work better for classical saliency models and even more with DR19 and DR21 models.

Finally, we use O^3 dataset from [22] which also provides real life images but with odd-out-one regions. The dataset is somewhere in the middle between P^3 on one side and MIT1003 and OSIE datasets on the other side. O^3 dataset should provide similar difficulty to classical and DNN-based saliency models.

3.2.1. MIT1003 dataset evaluation

We summarize in Table 5 the results of DR19 and DR21 and also results coming from [22] for MLNet and SALICON models where MLNet was trained
with SALICON, P3 and O3 datasets and SALICON was trained with OSIE, P3 and O3 datasets. The idea is to avoid trainings of MLNet or SALICON models on the MIT1003 dataset where it is evaluated to be fair towards unsupervised models and of course this gives lower results than the same models trained with the MIT1003 dataset. For other models (DeepFeat, eDN, GBVS, RARE2012, BMS, AWS), the figures come from [23].

For DeepRare the following variants are used: DR19-V16-WF (DR19 with a VGG16 backbone and without using the faces layer), DR19-V16 (DR19 with a VGG16 backbone and by using the faces layer), DR21-MN2 (DR21 with a MobileNetV2 backbone and without using faces information), DR21-V16-WF (DR21 with a VGG16 backbone and without using the faces layer), DR21-V16 (DR21 with a VGG16 backbone and by using the faces layer), DR21-V19 (DR21 with a VGG19 backbone and without using faces information).

The best model is definitely DR21-V19 on all the metrics which is better than classical models but also than deep-features models (DeepFeat) and also all the DNN-based models in the Table 5. However, SALICON and MLNet were trained on datasets which are different from the MIT1003 training set which makes their performances lower than if they were trained on images from MIT1003.

3.2.2. OSIE dataset evaluation

We summarize in Table 6 the results on the OSIE dataset. Here we added SAM-ResNet and FAPTTX models with the results reported in [20]. SALICON and MLNet models are trained as in section 3.2.1. SAM-Resnet is used with its default training parameters showing that when trained on general images without introducing datasets such as P3 which can disturb the learning in general images cases, modern DNN-based models are better than DeepRare models in any version. FAPTTX also exhibits slightly better results showing the importance of top-down features in general images datasets. Our hypothesis here is that DeepRare models achieve better bottom-up scores than RARE2012 (veri-
Table 5: MIT1003 dataset. DeepRare2021 (VGG19: DR21-V19, VGG16 without faces: DR21-V16-WF, VGG16 with faces: DR21-V16, MobileNetV2: DR21-MN2), DeepRare2019 (VGG16: DR19-V16), DeepRare2019 (VGG16 without faces: DR19-V16-WF, VGG16 with faces: DR19-V16), DFeat, eDN, GBVS, RARE2012, BMS, AWS results come from [23] and SALICON and MLNet come from [22].

Models	AUCJ ↑	AUCB ↑	CC ↑	KL ↓	NSS ↑	SIM ↑
DR21-V19	0.86	0.85	0.56	0.88	1.93	0.50
DR21-V16	0.84	0.83	0.50	1.19	1.81	0.43
DR21-V16-WF	0.84	0.83	0.49	1.16	1.75	0.42
DR21-MN2	0.84	0.83	0.50	1.14	1.71	0.42
DR19-V16	0.86	0.85	0.48	1.25	1.58	0.36
DR19-V16-WF	0.84	0.83	0.46	1.32	1.54	0.34
SALICON	0.83	-	0.51	1.12	1.84	0.41
MLNet	0.82	-	0.46	1.36	1.64	0.35
DFeat	0.86	0.83	0.44	1.41	-	-
eDN	0.86	0.84	0.41	1.54	-	-
GBVS	0.83	0.81	0.42	1.3	-	-
RARE2012	0.75	0.77	0.38	1.41	-	-
BMS	0.75	0.77	0.36	1.45	-	-
AWS	0.71	0.74	0.32	1.54	-	-

fied on all datasets) but that the top-down information added to RARE2012 in FAPTTTX makes it better. To verify this, we also added to DeepRare2021 using VGG16 the same top-down information (TD) than the one which was added to RARE2012 in [20] and called this model DR21-V16+TD. This model is indeed better than FAPTTTX proving that the top-down information is still missing from the DeepRare models.

The same idea is once again illustrated by the fact that **DR19-V16** is better (on both MIT1003 and OSIE) than **DR19-V16-WF** even if the faces layer in VGG16 is much less efficient than a face detector as those used for FAPTTTX.
Table 6: OSIE dataset. DeepRare2021 (VGG19 : DR21-V19, VGG16 without faces : DR21-V16-WF, VGG16 with faces : DR21-V16, MobileNetV2 : DR21-MN2), DeepRare2019 (VGG16 : DR19-V16), DeepRare2019 (VGG16 without faces : DR19-V16-WF, VGG16 with faces : DR19-V16), and SAM-ResNet, FAPPTX, RARE2012, AWS, GBVS, and AIM come from [20]. We added DeepRare2021 with VGG16 and top-down from [20] called DR21-V16+TD.

Models	AUCJ ↑	AUCB ↑	CC ↑	KL ↓	NSS ↑	SIM ↑
SAM-ResNet	0.90	-	0.77	1.37	3.1	0.65
DR21-V16+TD	0.88	0.83	0.66	0.83	2.32	0.56
FAPPTX	0.87	-	0.62	0.81	2.08	0.51
DR21-V16	0.87	0.86	0.59	0.91	2.06	0.52
DR21-V16-WF	0.87	0.86	0.58	0.84	2.01	0.51
DR19-V16	0.87	0.86	0.55	0.98	1.75	0.44
DR19-V16-WF	0.86	0.86	0.53	1.01	1.66	0.43
DR21-MN2	0.85	0.84	0.51	1.06	1.55	0.42
DR21-V19	0.83	0.82	0.45	1.32	1.54	0.34
RARE2012	0.83	-	0.46	1.05	1.53	0.43
AWS	0.82	-	0.45	1.11	2.02	0.42
GBVS	0.81	-	0.43	1.08	1.34	0.42
AIM	0.77	-	0.32	1.52	1.07	0.34

This again shows that DeepRare models do not capture top-down information which let room for future improvements.

Another interesting point is that VGG16 backbone is slightly better for the OSIE dataset while VGG19 was better for MIT1003 showing that in MIT1003 maybe higher-level features are more important than in OSIE. A second point is about the fact that FAPPTX shows good results on this kind of images. FAPPTX is built upon RARE2012 with additional top-down features showing that adding top-down features to DR21 would probably lead to results close to SAM-ResNet as DR21 is better than RARE2012 in all configurations.
3.2.3. O3 dataset evaluation

The O3 dataset uses the MSR metric defined in [22]. When the MSR\textsubscript{t} is higher, it is better as the target is well highlighted compared to the distractors. When MSR\textsubscript{b} is lower, it is better, it means that the maximum of the saliency of the target is higher than the one of the background. The first measure will ensure that the target is visible compared to the distractors and the second that it is visible compared to the background.

Table 7 shows the MSR measures from the paper of [22] where we added the results from the DeepRare models (DR\textsubscript{19} and DR\textsubscript{21} in the versions using VGG16, VGG19 and MobileNetV2 architectures) splitting the dataset between the images where color is a good discriminator (Color) and the others (Non-color). All models work better for targets where color is an important feature and less well for non-color.

Table 7: Comparing result between several models (SAM-Resnet, CVS, DeepGaze II, FES, ICF and BMS) and DR family (DR\textsubscript{19} and DR\textsubscript{21} in the version VGG16, VGG19 and MobileNetV2). For MSR\textsubscript{t} higher is better, For MSR\textsubscript{b} lower is better.

Models	Color	Non-color	All targets			
	MSR\textsubscript{t} ↑	MSR\textsubscript{b} ↓	MSR\textsubscript{t} ↑	MSR\textsubscript{b} ↓	MSR\textsubscript{t} ↑	MSR\textsubscript{b} ↓
DR\textsubscript{21}-V16	1.66	0.74	1.31	1.31	1.45	1.01
DR\textsubscript{21}-V19	1.63	0.78	1.29	1.39	1.43	1.13
DR\textsubscript{21}-MN2	1.19	1.02	1.06	1.54	1.12	1.32
DR\textsubscript{19}	1.14	0.75	1.00	1.00	1.06	0.89
SAM-ResNet	1.47	1.46	1.04	1.84	1.40	1.52
CVS	1.43	2.43	0.91	4.26	1.34	2.72
DGII	1.32	1.55	0.94	1.95	1.26	1.62
FES	1.34	2.53	0.81	5.93	1.26	3.08
ICF	1.30	2.00	0.84	2.03	1.23	2.01
BMS	1.29	0.97	0.87	1.59	1.22	1.07

For MSR\textsubscript{t} (higher is better) for Color DR\textsubscript{19} is less good especially compared to DNN-based models. However we can see that for Non-color images where the
models fail much more DR19 has a remarkable stability being second and very close the the best one (SAM-ResNet). DR21 especially using the VGG19 and VGG16 architectures are definitely the best models being much better even than efficient DNN-based modes such as SAM-ResNet on all the kinds of images.

If we take into account the MSR\textsubscript{b} (lower is better), the DeepRare models clearly outperforms all the others providing the best discrimination between the target and the background. DeepRare models are the only ones with a MSR\textsubscript{b} smaller than 1 which means that in average the maximum of the target saliency is higher than the maximum of the background saliency. DR21 with VGG16 architecture is still better than all classical and DNN-based models and even better than DR19 for Color images.

In conclusion, for MSR\textsubscript{t} and MSR\textsubscript{b} metrics, the models from the DeepRare family and especially DR21 with VGG16 architecture outperform all the other models including efficient DNN-based models on both Color or Non-color images on O3 dataset.

Table 8: SALICON, MLNet and DeepRare family (DR19 and DR21 with MobileNetV2, VGG19 and VGG16 architectures) results on O3 dataset.

Models	MSR\textsubscript{t}	MSR\textsubscript{b}
DR21-V16	1.45	1.01
DR21-V19	1.43	1.13
DR21-MN2	1.12	1.32
DR19	1.06	0.89
MLNet	0.96	0.91
SALICON	0.90	1.26

Table 8 shows the results of the DeepRare family compared to two other DNN-based models tested on the whole O3 dataset (both Color and Non-color images). Our models outperform both SALICON and MLNet models on both MSR\textsubscript{t} (all the DeepRare models are better) and MSR\textsubscript{b} (DR19 is better) metrics. According to [22], the results we show here for SALICON are the ones
where it was trained on the OSIE by adding with P³ and O³ datasets. The MLNet was trained on SALICON by adding with P³ and O³ datasets.

3.2.4. P³ dataset evaluation

The P³ dataset is the one which exhibits the less top-down information and it even does not have any centered bias. Naturally, for this dataset, the DNN-based models perform the worst. We will check here how the DeepRare models deal with the data.

First we use the average # of fixations and found percentage metrics. The average # of fixations is better if lower as it means that the target is found more rapidly and the found percentage metric is better if higher as it means that a higher percentage of the target is found after 100 fixations. Table 9 shows first the results on P³ for DeepRare models compared with SALICON and MLNet models. For the SALICON and MLNet models they were trained the same way than in section 3.2.3. Our models all definitely outperform the two DNN-based models and need much less fixations to discover more of the targets showing here very good results.

Table 9: Comparing result on P³ dataset.

Model	Avg. # fix. ↓	% found ↑
DR21-V16	13.53	89
DR21-V19	13.86	89
DR21-MN2	33.82	72
DR19	16.34	87
MLNet	42.00	44
SALICON	49.37	65

Table 10 provides more details about the found percentage metric after different numbers of fixations (15, 25, 50 and 100) and for specific images where the target is due to color, orientation or size features with 100 fixations. The results here are compared with classical models which are better in this dataset.
Table 10: Comparing results on P₃ dataset. Details on the percentage found after the number of fixation of 15 (%fd15), 25 (%fd25), 50 (%fd50), and 100 (%fd100). Percentage found of the color (%fd-C), orientation (%fd-O), and size (%fd-S) features taken separately.

Model	%fd15	%fd25	%fd50	%fd100	%fd-C	%fd-O	%fd-S
DR21-V16	84.82	86.71	88.60	89.76	92.20	92.93	83.92
DR21-V19	84.27	86.32	88.10	89.14	92.65	92.36	82.14
DR21-MN2	61.37	64.81	69.37	72.46	77.17	71.75	68.21
DR19	80.61	83.27	86.63	87.87	91.29	89.58	82.50
RARE2012	59.87	63.52	79.75	93.48	99.54	90.26	88.53
BMS	58.94	66.37	83.56	95.14	100	100	82.76
ICF	32.63	41.38	68.47	70.18	69.41	100	42.45
oSALICON	30.25	39.75	55.45	78.53	76.35	81.58	70.42

than DNN-based models. On this table DeepRare models are the best again and especially DR21 with the VGG16 architecture. While BMS can exhibit 100% for color or orientation target percentage found, it is more efficient in terms of detection to find the target (even if not its entire surface) very quickly (15 fixations) than to find all of the target surface but after 100 fixations. So if we look at the results after 15 fixations only the DeepRare methods are all much better than the others.

Figure 9 shows the DeepRare family models compared to the best classical model (IMSIG) and the best DNN-based model (oSALICON). If we look at the percentage of targets found after only 15 fixations, than DR21 with the VGG16 and VGG19 architectures are the best followed by DR19, IMSIG and oSALICON which is definitely worse. oSALICON (OpenSALICON), refers to [22] the saliency maps are obtained using the pre-trained OpenSALICON weights on the SALICON dataset. In that way oSALICON is not trained on the P₃ dataset again to remain fair.

Finally, the GSI metric (Global Saliency Index) is computed on this dataset. This score is better when higher as it measures how target average saliency is
Figure 9: Number of fixations (horizontal axis) vs. % of targets detected (vertical axis). It is chosen on 15, 25, 50, and 100 fixations.

distinguished from the distractors. For GSI, table 11 shows the average figures for the whole dataset (GSI-Avg) and for each of the dataset classes: images where the feature of the target is based on color (GSI-Color), on the orientation (GSI-Orientation) and on size (GSI-Size). The average scores for the GSI metric are much higher for the DeepRare models and especially for DR21 with the VGG16 architecture. While the results of classical models such as BMS or RARE2012 can be comparable on GSI-Color, for GSI-Orientation or GSI-Size they are much less good than those of the DeepRare models. If we take into account the DNN-based models, than the GSI scores begin to be even negative, showing that distractors are in average more visible than the salient areas indicating that DNN-based models do not work at all here.

Figures 10, 11 and 12 let us compare the dynamics of the GSI scores on the
Table 11: Comparing result on P3 dataset. Global Saliency Index score on color, orientation, and size features, and average score from these 3 features.

Model	GSI-Color	GSI-Orientation	GSI-Size	GSI-Avg.
DR21-V16	0.77	0.50	0.49	0.59
DR21-V19	0.75	0.49	0.51	0.58
DR21-MN2	0.66	0.42	0.51	0.53
DR19	0.42	0.17	0.15	0.25
RARE2012	0.74	0.01	0.18	0.31
BMS	0.72	0.01	-0.02	0.24
ICF	0.18	-0.02	-0.51	-0.12
oSALICON	-0.01	0.04	-0.11	-0.03

three classes of models (GSI-Color, GSI-Orientation and GSI-Size). For each figure, we show the three best classical models with the three best DNN-based models (name in bold) on the left and DeepRare models results with the best classical and the best DNN-based model on the right.

Figure 10: The GSI score for color target/distractor difference. Left plot: generated by [22]. Right plot: several classical and deep learning models including our DR2021 model.

For color targets (figure 10 right graph) we see that the maximum of GSI score for DR21 with a VGG16 architecture where GSI is at more than 0.9. If RARE2012 model is better on small target/distractor color difference, DR21
is better for larger differences. The ICF model is less good than all the other models from the DeepRare family on any target/distractor color difference. We also see that DR21 model is better than DR19 for all used architectures.

In addition, the shape of the GSI curve exhibited by the DeepRare family of models is coherent from a biological point of view: if the difference between the target color and the distractor color is small, then the model detects less well the target (left-side of the curve) than when the color of the target and background is very different (right-side of the curve). The models from the DeepRare family are the only ones to provide a biologically plausible GSI curve.

For orientation targets (figure 11, right graph) we see that the maximum of GSI score for DR21 with a VGG16 architecture is at more than 0.6 (right graph). This score is drastically higher than the best DNN-based model and the best classical model on all target/distractor orientation difference. We also remark again that DR21 model is better than DR19 for all used architectures.

Figure 11: The GSI score for orientation target/distractor difference. Left plot: generated by [22]. Right plot: several classical and deep learning models including our DR2021 model.

Also, the shape of the GSI curve exhibited by DeepRare family models is again coherent from a biological point of view: if the difference between the target orientation and the distractor orientation is small (left-side of the curve), then the model detects the target less well than when target orientation is very different from the distractors (right-side of the curve). Here also only the DeepRare family models have a dynamic which is close to the one expected from
a human.

For size targets (figure 12, right graph) we see that the maximum of GSI score for the best model (DR21 with a MobileNetV2 architecture) is about 0.7 which makes it close to RARE2012 in terms of maximum GSI. The best classical model (SSR) is less good when the target/distractor size ratio is smaller or bigger (left-side or right-side of the curve) but better when this ratio is close to 1 where there is a small difference between the target and the distractors (center of the graph). The best (here eDN) is much worse than the DeepRare family models on any target/distractor ratio. DR21 with any architecture is again much better here than DR19.

The shape of the GSI curve exhibited by our model is finally again coherent from a biological point of view: if the difference between the target size and the distractor size is small (center of the curve), then the model detects the target less well than when its size is very different (left and right sides of the curve). We can also see an asymmetry in the curve showing that it is easier for DR19 to detect target twice bigger than distractors than targets twice smaller than the distractors which is again biologically coherent. This is also true for DR21 even if for very big target size (2 times bigger than the distractors) we can see a decrease in the performance.

Figure 12: The GSI score for size target/distractor size ratio. Left plot: generated by [22]. Right plot: several classical and deep learning models including our DR2021 model.
4. Discussion and Conclusion

We proposed a novel saliency framework called DeepRare using the simplified rarity idea of [7] applied on the deep features extracted by a deep neural network pre-trained on ImageNet dataset. After a first instantiation of this framework called DeepRare2019 we propose here DeepRare2021 which exhibits several interesting features:

- It needs no training, and the default ImageNet training is enough. ImageNet is a generic image dataset which let DNN encoders extract most of the useful image-related features needed to understand images (ImageNet is trained for objects classification).

- DeepRare2021 introduces several novelties compared to DeepRare2019 among which the use of thresholded rarity maps which drastically improve the results in terms of performance compared to DeepRare2019. The use of the thresholded maps makes DeepRare2021 much less sensitive to distractors allowing it to focus more on the main surprising areas.

- The model is computationally efficient and is easy to run even on CPU only.

- In comparison with DeepRare2019 where only a VGG16 architecture could fit to the model, the DeepRare2021 approach is very modular, and it is easy to adapt to any neural network architecture such as VGG16, VGG19, or even more complex architectures such as MobileNetV2 for adaptation on mobile devices as smartphones or for edge computing.

- It is possible to check each layer contribution to the final saliency map and thus better understand the result. It is also possible to check several thresholds to see which areas of the images are considered as the most rare compared to the others and at which levels. This opportunity is a key feature of DeepRare2021 contrary to DeepRare2019 and even more contrary to black-box DNN-based models. Indeed, if DeepRare2021 does
not work well, it is easy to segment the different layer maps and understand
from which layer the issue comes from, or if the issue comes from the
fusion step. In a specific case, for example, the model was not able to find
a surprising object which was very big into the image. While looking to
the decomposition of the different layers such the ones that can be seen
in Figure 4 only one level (the higher) detected the surprising object, but
the final saliency map was not highlighting it because all the other levels
were not detecting this object, so the fusion step was the issue in this
specific case.

- DeepRare models are very generic and stable through all kinds of dif-
erent datasets where other models are sometimes better but only for one
dataset and/or a specific metric but much worse for the others. The Deep-
Rare2021 version is specifically better than DeepRare2019 on all datasets
when compared with the same VGG16 architecture. DeepRare2021 is
thus the most generic model and when applying it to a new and unknown
dataset it will surely provide results which make sense while with DNN-
based models, there is no certitude that on a new image dataset it will
provide meaningful results (especially if the dataset is not close to the ones
used for training). If this is not a crucial issue on natural images which
are more or less close to the training datasets, for specific datasets such
as images with defects for industrial quality control DNN-based models
will perform very poorly. In addition, if the defects do not have a specific
shape, even by re-training the DNN-based models, they will not be able
to learn defects with various shapes as rare features are very hard to learn
by definition. If defects attract human gaze, it is specifically because they
are unknown and surprising and humans are not able to learn them if they
do not repeat in the same way.

We show that this framework, especially DeepRare2021, is the most stable
and generic when testing it on 4 very different datasets. It was first tested on
MIT1003 and OSIE where it outperforms all the classical models and most of
the DNN-based models. However some DNN-based models, especially the latest ones, still provide better results.

We then tested DeepRare models on the O3 dataset, where DeepRare2021 outperforms all the models on target/background discrimination and on target/distractor discrimination. Finally, on P3 dataset, our model is first for the target discrimination based on the number of fixations. When computing the average GSI metric our model is also the best for all the features (color, orientation, size) and the only one to exhibit a GSI plot which is biologically plausible.

While one cannot expect from an unsupervised model such as DeepRare models to be better on MIT1003 or OSIE dataset than DNN-based models which are trained and tuned on similar data, those DNN-based models are bad or even completely lost on O3 and P3 datasets and on any dataset containing surprising areas which have various shapes and thus cannot be learnt by DNN architectures.

Our tests show that DeepRare models and especially DeepRare2021 models are optimized models overcoming any classical model and being only beaten by recent DNN-based models on MIT1003 or OSIE datasets. They are generic, unsupervised and stable in results on all kind of datasets. Even if they take into account low- and high-level features, they still remain bottom-up approaches as FAPTTX results show [20]. Indeed by adding top-down information to RARE2012, the results of FAPTTX are still comparable or a little better than for the DeepRare models. However if we add the same top-down information as in [20] to DeepRare21 instead of Rare2012, DeepRare with top-down outperforms Rare2012 with top-down information. The fact that top-down information is important can also be seen with the fact that DR21-V16 is most of the time better than DR21-V16-WF because it uses information about faces.

This remark leads to future works for future implementations of the DeepRare models. Adding top-down information on top of DeepRare2021 would probably drastically improve its performance on MIT1003 and OSIE datasets while keeping similar results on O3 and on P3 datasets.
The DeepRare family framework shows that deep-features-engineered models might become a good choice in visual attention field especially when the 1) images they are applied on are special and specific and 2) eye-tracking datasets are not available on this kind of images or when 3) explaining the result is of high importance for example the case of industrial standardization.

Acknowledgments

Supported by ARES-CCD (program AI 2014-2019) under the funding of Belgian university cooperation.

References

[1] D. E. Broadbent, Perception and communication, Pergamon Press.

[2] M. Mancas, O. Le Meur, Applications of saliency models, in: From Human Attention to Computational Attention, Springer, 2016, pp. 331–377.

[3] L. Itti, C. Koch, A saliency-based search mechanism for overt and covert shifts of visual attention, Vision Research 40.

[4] R. Rosenholtz, A simple saliency model predicts a number of motion popout phenomena, Vision research 39 (1999) 3157–63. doi:10.1016/S0042-6989(99)00077-2

[5] N. Bruce, J. Tsotsos, Attention based on information maximization, Journal of Vision - J VISION 7 (2010) 950–950. doi:10.1167/7.9.950

[6] J. Harel, C. Koch, P. Perona, Graph-based visual saliency, in: Advances in neural information processing systems, 2007, pp. 545–552.

[7] N. Riche, M. Mancas, M. Duvinage, M. Mibulumukini, B. Gosselin, T. Dutoit, Rare2012: A multi-scale rarity-based saliency detection with its comparative statistical analysis, Signal Processing Image Communication 28. doi:10.1016/j.image.2013.03.009.
[8] J. Zhang, S. Sclaroff, Saliency detection: A boolean map approach, in: 2013 IEEE International Conference on Computer Vision, 2013, pp. 153–160.

[9] A. Garcia-Diaz, V. Leboran, X. Fdez-Vidal, X. Pardo, On the relationship between optical variability, visual saliency, and eye fixations: A computational approach, Journal of vision 12 (2012) 17. doi:10.1167/12.6.17

[10] MIT saliency benchmark, http://saliency.mit.edu/results_mit300.html, accessed: 2019-11-30.

[11] P. Sun, J. Qin, Neural networks based eeg-speech models (2017). arXiv:1612.05369

[12] R. Zhao, W. Ouyang, H. Li, X. Wang, Saliency detection by multi-context deep learning, in: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1265–1274. doi:10.1109/CVPR.2015.7298731

[13] J. Qin, L. Xu, Data acquisition and digital instrumentation engineering modelling for intelligent learning and recognition, Biosensors Journal 4 (2015) 1–4. doi:10.4172/2090-4967.1000e103

[14] J. Han, D. Zhang, X. Hu, K. Li, J. Ren, F. Wu, Background prior based salient object detection via deep reconstruction residual, IEEE Transactions on Circuits and Systems for Video Technology 25 (2014) 1–1. doi:10.1109/TCSVT.2014.2381471

[15] P. Sun, J. Qin, Enhanced factored three-way restricted boltzmann machines for speech detection, arXiv preprint arXiv:1611.00326.

[16] M. Jiang, S. Huang, J. Duan, Q. Zhao, Salicon: Saliency in context, in: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1072–1080. doi:10.1109/CVPR.2015.7298710

[17] M. Cornia, L. Baraldi, G. Serra, R. Cucchiara, A deep multi-level network for saliency prediction (2017). arXiv:1609.01064
[18] M. Cornia, L. Baraldi, G. Serra, R. Cucchiara, Predicting Human Eye Fixations via an LSTM-based Saliency Attentive Model, IEEE Transactions on Image Processing 27 (10) (2018) 5142–5154.

[19] M. Kümmerer, T. S. Wallis, L. A. Gatys, M. Bethge, Understanding low- and high-level contributions to fixation prediction, in: 2017 IEEE International Conference on Computer Vision (ICCV), 2017, pp. 4799–4808. doi:10.1109/ICCV.2017.513

[20] P. Kong, M. Mancas, N. Thuon, S. Kheang, B. Gosselin, Do deep-learning saliency models really model saliency?, in: 2018 25th IEEE International Conference on Image Processing (ICIP), 2018, pp. 2331–2335. doi:10.1109/ICIP.2018.8451809

[21] P. Kong, M. Mancas, S. Kheang, B. Gosselin, Saliency and object detection, in: 2018 1th International Conference on Pattern Recognition and Artificial Intelligence (ICPRAI), 2018, pp. 523–528.

[22] I. Kotseruba, C. Wloka, A. Rasouli, J. Tsotsos, Do saliency models detect odd-one-out targets? new datasets and evaluations, arXiv preprint arXiv:2005.06583.

[23] A. Mahdi, J. Qin, Deepfeat: A bottom up and top down saliency model based on deep features of convolutional neural nets, IEEE Transactions on Cognitive and Developmental Systems PP. doi:10.1109/TCDS.2019.2894561

[24] X. Sun, Semantic and contrast-aware saliency, arXiv preprint arXiv:1811.03736.

[25] M. Mancas, P. Kong, B. Gosselin, Visual attention: Deep rare features, in: 2020 Joint 9th International Conference on Informatics, Electronics Vision (ICIEV) and 2020 4th International Conference on Imaging, Vision Pattern Recognition (icIVPR), 2020, pp. 1–6. doi:10.1109/ICIEVicIVPR48672.2020.9306639
[26] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, Imagenet: A large-scale hierarchical image database, in: 2009 IEEE conference on computer vision and pattern recognition, Ieee, 2009, pp. 248–255.

[27] F. Chollet, et al., Keras (2015).
URL https://github.com/fchollet/keras

[28] L. Itti, Automatic foveation for video compression using a neurobiological model of visual attention, IEEE Transactions on Image Processing 13 (10) (2004) 1304–1318.

[29] T. Judd, F. Durand, A. Torralba, A benchmark of computational models of saliency to predict human fixations, in: MIT Technical Report, 2012, pp. 1–22.

[30] J. Xu, M. Jiang, S. Wang, M. S. Kankanhalli, Q. Zhao, Predicting human gaze beyond pixels, Journal of Vision 14 (1) (2014) 28–28.
arXiv:https://arvojournals.org/arvo/content_public/journal/jov/933546/i1534-7362-14-1-28.pdf doi:10.1167/14.1.28
URL https://doi.org/10.1167/14.1.28

[31] T. Judd, K. Ehinger, F. Durand, A. Torralba, Learning to predict where humans look, in: 2009 IEEE 12th international conference on computer vision, IEEE, 2009, pp. 2106–2113.

[32] C. W. S. Y. R. Sengupta, J. Tsotsos, Psychophysical evaluation of saliency algorithms, Journal of Vision 16(12) (2016) 1291–1291.