A structure and representations of
diffeomorphism groups of non-Archimedean
manifolds. *

Sergey V. Ludkovsky

31 March 2000

permanent address: Theoretical Department, Institute of General Physics,
Russian Academy of Sciences,
Str. Vavilov 38, Moscow, 117942, Russia.

Abstract

In this article diffeomorphism groups G of manifolds M on locally
\mathbf{F}-convex spaces over non-Archimedean fields \mathbf{F} are investigated. It is
shown that their structure has many differences with the diffeomorphism groups
of real and complex manifolds. It is proved that G is not
a Banach-Lie group, but it has a neighbourhood W of the unit element e
such that each element g in W belongs to at least one corresponding
one-parameter subgroup.

It is proved that G is simple and perfect. Its compact subgroups
G_c are studied such that a dimension over \mathbf{F} of its tangent space
$\dim_{\mathbf{F}} T_e G_c$ in e may be infinite. This is used for decompositions of
continuous representations into irreducible and investigations of in-
duced representations.

1 Introduction.

This article is devoted to the investigation of a structure and representa-
tions of diffeomorphism groups of non-Archimedean manifolds. In previous

*Mathematics subject classification (1991 Revision): 43A65, 46S10, 57S05.
works [18, 22] quasi-invariant measures on diffeomorphism groups relative
to dense subgroups were constructed. Irreducible representations associated
with the quasi-invariant measures on groups and the corresponding configu-
ration spaces were constructed in [18, 20]. Classical diffeomorphism groups
(that is, for real or complex manifolds) play very important role in hydrody-
namics, quantum mechanics and superstring theory [2, 4, 14]. On the other
hand, non-Archimedean quantum mechanics develops rapidly [15, 16, 35]. It
is helpful in special situations, when series or integrals divergent in quantum
mechanics over the complex field \(\mathbb{C} \) are convergent in the non-Archimedean
case. In particular, non-Archimedean diffeomorphism groups can be used in
non-Archimedean quantum mechanics and quantum gravity [18, 35].

There are many principal differences between classical and non-Archimedean
functional analysis [4, 29, 31]. This is the source why non-Archimedean dif-
feomorphism groups differ in many respects from that of classical one.

In [23] it was shown that classical diffeomorphism groups are simple and
perfect, but proofs there are based on local connectedness, homotopies, the
existence and the uniqueness of solutions of differential equations in spaces of
functions of the class of smoothness \(\mathcal{C}(t) \) for \(t < \infty \). In the non-Archimedean
case even for the class of smoothness \(\mathcal{C}(\infty) \) there is not any uniqueness,
because of locally constant additional terms. In the classical case the small
inductive dimension \(\text{ind}(G) > 0 \) (for real manifolds \(\text{ind}(G) = \infty \)), but in
the non-Archimedean case \(\text{ind}(G) = 0 \). Therefore, the proof of simplicity
and perfectness in this paper differ principally from the classical case. For
compact complex manifolds the diffeomorphism groups are Lie groups [17],
but in the non-Archimedean case, as it is proved below, it is untrue.

This article is devoted to more general diffeomorphism groups than in
[18, 20]. Here are considered manifolds not only on Banach spaces over
local fields, but also on locally \(\mathbb{F} \)-convex spaces, where \(\mathbb{F} \) is an infinite field
of characteristic \(\text{char}(\mathbb{F}) = 0 \) with non-trivial non-Archimedean valuation.
Classes of smoothness \(\mathcal{C}(t) \) of manifolds \(M \) considered below are \(1 \leq t \leq \infty \)
and also analytic \(t = an \) such that they are certainly not less than that of
\(G \). In particular this encompasses the class of manifolds treated by rigid
analytic geometry (see about it in [4, 12]). This geometry is helpful in non-
Archimedean superstring theory and theory of homologies and cohomologies,
but it is related with very narrow class of analytic functions [1]. It is also
extremely restrictive for non-Archimedean functional analysis and quantum
theory. Therefore, differentiable manifolds of classes \(\mathcal{C}(t) \) for \(1 \leq t \leq \infty \)
also are considered below. Historically spaces of classes \(C(t) \) with \(t \in \mathbb{N} \) had appeared in \([31, 32]\) several years later after the use of analytic spaces and manifolds in \([7, 34]\). Schikhof had used difference quotients of functions, Tate had used a topology stronger than the Zariski topology.

For locally compact groups there is a theory of induced representations from subgroups \([3, 11]\), but its development for non-locally compact groups meets serious problems, because the case of non-locally compact groups is more complicated \([19]\). In this article with the help of structural theorems of diffeomorphism groups induced representations are investigated.

In \(\S 2 \) definitions, notations and preliminary results are given. In \(\S 3 \) the structure of diffeomorphism groups \(Diff(t, M) \) is studied, where \(Diff(t, M) := Hom(M) \cap C(t, M \to M), C(t, M \to N) \) is a manifold of \(C(t) \)-mappings from a manifold \(M \) into a manifold \(N \) over the same field \(F \). Besides classes \(C(t) \) also classes \(C_0(t) \) are considered over local fields \(K \). If \(dim_F M \geq \aleph_0 \), then \(C(t, M \to M) \) is of non-separable type over \(F \), but \(C_0(t, M \to M) \) is of separable type, when \(F = K \) and \(dim_K M \leq \aleph_0 \). Such groups \(G(t, M) := Hom(M) \cap C_0(t, M \to M) \) are helpful for the construction of quasi-invariant \(\sigma \)-finite measures. The diffeomorphism group is investigated below as the topological group and as the manifold. It is proved that \(Diff(t, M) \) are simple and perfect. Then its structure as a manifold is studied. Apart from manifolds \(M \) on locally convex spaces \(X \) over \(\mathbb{R} \) \([27]\) in the case of \(X \) over \(\mathbb{F} \) the existence of clopen (closed and open) subgroup \(W \) in \(Diff(t, M) \) is proved below such that for each \(g \in W \) there exists a one-parameter subgroup \(< g^z : z \in \mathbb{F} > \) to which \(g \) belongs. Nevertheless, it is proved that \(Diff(t, M) \) are not Banach-Lie groups. In \(\S 3 \) also families of compact subgroups \(\{ G_{u,K} \} \) of the group \(G(t, M) \) are constructed such that \(\bigcup_{n,u,K} G_{u,K} ^n \) is dense in \(G(t, M) \). In the particular case of the local field \(F = K \) such subgroups have the following property: the \(K \)-linear span \(sp_K(T_e G_{u,K} ^n) \) of \(T_e G_{u,K} ^n \) is dense in \(T_e G(t, M) \). This is the important difference from the case of \(M \) on \(X \) over \(\mathbb{R} \) or \(\mathbb{C} \), because the maximal compact subgroup in \(G(t, M) \) in the classical case may be only finite-dimensional for finite-dimensional \(X \) over \(\mathbb{R} \) or \(\mathbb{C} \) \([33]\). This also is impossible in the classical case, when \(M \) is not a compact complex manifold. Embeddings of classical groups into the diffeomorphism groups also are discussed, because, for example, \(Sp(2n, F) \) is very important for symplectic structures associated with Hamiltonians in quantum mechanics.

In \(\S 4 \) continuous unitary representations and also representations in non-
Archimedean Banach spaces are decomposed into irreducible. Then induced representations are considered. Moreover, two theorems (inductive-reductive and for internal tensor product representations) about decompositions of induced representations are proved. This opens new classes of unitary representations.

2 Topologies of non-Archimedean diffeomorphism groups.

To avoid misunderstandings we first present our definitions and notations in §§2.1-2.4.

2.1. Remarks. Let \(K \) be a local field, that is, a finite algebraic extension of the field \(\mathbb{Q}_p \) of \(p \)-adic numbers and either \(0 \leq t < \infty \) or \(t = \infty \). Then \(C_t(M \rightarrow N) \), \(Diff_t(M) \), \(G_t(M) \) and \(GC_t(M) \) be the same spaces as in [18, 20], where \(M \) and \(N \) are the corresponding Banach manifolds over \(K \), where either \(* = \emptyset \) (\(\emptyset \) is omitted as the index) or \(* = 0 \) or \(* = c \).

It is necessary to mention, that in in the case of \(M \) with an infinite atlas spaces in [18] are proper subspaces of the corresponding spaces in [20]. Then analogously we get these spaces for the class of locally analytic functions with \(t = la \). Evidently, these spaces are isomorphic for different choices of atlases \(At(M) \) and \(At(N) \) for \(M \) and \(N \) of classes not less, than either \(C_t(M) \) or \(C_0(t) \) respectively, since the valuation group \(\Gamma_K := \{ |x| : 0 \neq x \in K \} \) is discrete in \((0, \infty) \) and due to [21] and Lemma 7.3.6 [11] each atlas of \(M \) or \(N \) has a disjoint covering \(At'(M) \) or \(At'(N) \), which is a refinement of the initial covering. Indeed, if \(\phi : M \rightarrow M' \) and \(\psi : N \rightarrow N' \) are \(C_t(M) \)-diffeomorphisms (that is, \(\phi \) is bijective and surjective and \(\phi \in C_t(t, M \rightarrow M') \), \(\phi^{-1} \in C_t(t, M' \rightarrow M) \), analogously for \(\psi \)), then \(g \mapsto \psi \circ g \circ \phi^{-1} \) is a diffeomorphism of \(C_t(t, M \rightarrow N) \) with \(C_t(t, M' \rightarrow N') \), where \(g \in C_t(t, M \rightarrow N) \).

2.2. Notation. Let \(F \) be an infinite field of characteristic \(char(F) = 0 \) with a non-trivial non-Archimedean valuation. For \(b \in \mathbb{R}, \ 0 < b \leq 1 \), we consider the following mapping:

\[
(1) \ j_b(\zeta) := \zeta^b \in \Lambda_p \ \text{for} \ \zeta \neq 0, \ j_b(0) := 0,
\]

such that \(j_b(*) : F \rightarrow \Lambda_p \), where \(\Lambda_p \) is a spherically complete field with a valuation group \(\{ |x| : 0 \neq x \in \Lambda_p \} = (0, \infty) \subset \mathbb{R} \) such that \(C_p \cup F \subset \Lambda_p \).
\(\mathbb{C}_p \) denotes the field of complex numbers with the valuation extending that of \(\mathbb{Q}_p \). For a space \(X \) with a metric \(d \) in it let \(B(X, y, r) := \{x \in X : d(x, y) \leq r \} \) and \(B(X, y, r^-) := \{x \in X : d(x, y) < r \} \) denote balls in \(X \), where \(0 < r \).

2.3. Definitions and Notes.

Let us consider locally convex spaces \(X \) and \(Y \) over \(F \). Suppose \(F : U \to Y \) is a mapping, where \(U \subset X \) is an open bounded subset. The mapping \(F \) is called differentiable if for each \(\zeta \in F \), \(x \in U \) and \(h \in X \) with \(x + \zeta h \in U \) there exists a differential such that

\[
(1) \ DF(x, h) := dF(x + \zeta h)/d\zeta \big|_{\zeta=0} = \lim_{\zeta \to 0} \{F(x + \zeta h) - F(x)\}/\zeta
\]

and \(DF(x, h) \) is linear by \(h \), that is, \(DF(x, h) =: F'(x)h \), where \(F'(x) \) is a bounded linear operator (a derivative). Let

\[
(2) \ \Phi^b F(x; h; \zeta) := (F(x + \zeta h) - F(x))/j_b(\zeta) \in Y_{\Lambda_p}
\]

be partial difference quotients of order \(b \) for \(0 < b \leq 1 \), \(x + \zeta h \in U \), \(\zeta h \neq 0 \), \(\Phi^0 F := F \), where \(Y_{\Lambda_p} \) is a locally convex space obtained from \(Y \) by extension of a scalar field from \(F \) to \(\Lambda_p \). By induction using Formulas (1–2) we define partial difference quotients of order \(n + b \) for each \(0 < b \leq 1 \):

\[
(3) \ \Phi^{n+b} F(x; h_1, ..., h_{n+1}; \zeta_1, ..., \zeta_{n+1}) := \{\Phi^n F(x + \zeta_{n+1} h_{n+1}; h_1, ..., h_n; \zeta_1, ..., \zeta_n)\}/j_b(\zeta_{n+1})
\]

and derivatives \(F^{(n)} = (F^{(n-1)})' \). Then \(C(t, U \to Y) \) is a space of functions \(F : U \to Y \) for which there exist bounded continuous extensions \(\Phi^v F \) for each \(x \) and \(x + \zeta h_i \in U \) and each \(0 \leq v \leq t \), such that each derivative \(F^{(k)}(x) : X^k \to Y \) is a continuous \(k \)-linear operator for each \(x \in U \) and \(0 < k \leq \lfloor t \rfloor \), where \(0 \leq t < \infty \), \(h_i \in V \) and \(\zeta_i \in S := B(\mathbb{K}, 0, 1) \), \(\lfloor t \rfloor = n \leq t \) and \(\{t\} = b \) are the integral and the fractional parts of \(t = n + b \) respectively, \(U \) and \(V \) are open neighbourhoods of \(x \) and 0 in \(X \), \(U + V \subset U \). In the locally \(F \)-convex space \(C(t, U \to Y) \) its uniformity is given by the following family of pseudoultranorms:

\[
(4) \ ||F||_{C(t, U \to Y), u, w} := sup_{x, x + \zeta h_i \in U; h_i \in V; u(h_i) \neq 0; \zeta_i \in S; i = 1,...,s = [v] + sign\{v\}; 0 \leq v \leq t} \]
\[w\{(\Phi^v F)(x; h_1, \ldots, h_s; \zeta_1, \ldots, \zeta_s)\} / \left[\prod_{i=1}^{s} u(h_i) \right]^v \]

where \(0 \leq t \in \mathbb{R}, \text{sign}(y) = -1\) for \(y < 0, \text{sign}(y) = 0\) for \(y = 0\) and \(\text{sign}(y) = 1\) for \(y > 0\), \(\{u\}\) and \(\{w\}\) are families of pseudoultranorms in \(X\) and \(Y\) giving their ultrauniformities \([25]\).

Then the locally \(F\)-convex space

\[(5) C(\infty, U \rightarrow Y) := \bigcap_{n=1}^{\infty} C(n, U \rightarrow Y)\]

is supplied with the ultrauniformity given by the family of pseudoultranorms \(\| * \|_{C(n, U \rightarrow Y), u, w}\).

2.4. Remarks. Spaces of analytic functions \(C(anR, B(X, x, R) \rightarrow Y)\) of radius of convergence not less than \(0 < R\) are defined with the help of convergent series of polylinear polyhomogeneous functions \([6]\) for normed spaces \(X\) and \(Y\) over \(F\). Spaces of locally analytic functions \(C(la, M \rightarrow Y)\) are defined as inductive limits of spaces \(C(la_r, M \rightarrow Y)\) of locally analytic functions \(f\) such that for each \(x \in M\) there exists its neighbourhood \(U_x\) in \(M\) for which \(f|_{U_x}\) has an analytic extension on \(B(X, x, r)\), where \(M \subset X\). Then using projective limits of normed spaces we can construct \(C(la, M \rightarrow Y)\) for locally \(F\)-convex spaces \(X\) and \(Y\).

For \(C(m)\)-manifolds \(M\) and \(N\) on locally \(F\)-convex spaces \(X\) and \(Y\) with atlases \(At(M) = \{(U_i, \phi_i) : i \in \Lambda_M\}\) and \(At(N) = \{(V_i, \psi_i) : i \in \Lambda_N\}\) a mapping \(F : M \rightarrow N\) is called of class \(C(t)\) if \(F_{i,j}\) are of class \(C(t)\) for each \(i\) and \(j\), where \(F_{i,j} = \psi_i \circ F \circ \phi_j^{-1}\), \(\infty \geq m \geq t \geq 0\), \(\phi_i : U_i \rightarrow \phi_i(U_i) \subset X\) and \(\psi_i : V_i \rightarrow \psi_i(V_i) \subset Y\) are diffeomorphisms, \(U_i, V_i, \phi_i(U_i)\) and \(\psi_i(V_i)\) are open in \(M, N, X\) and \(Y\) respectively, \(\phi_i \circ \phi_i^{-1} \in C(m, \phi_i(U_i \cap U_i) \rightarrow X)\) for each \(U_i \cap U_i \neq \emptyset\), analogously for \(\psi_i\).

Let \(\pi_{z_1, \ldots, z_n} : X \rightarrow \text{sp}_F\{z_1, \ldots, z_n\}\) be a projection, where \(z_1, \ldots, z_n\) are linearly independent vectors in \(X\), then we set \(C_0(t, M \rightarrow N)\) to be a completion of a subspace of cylindrical functions \(f\) of class \(C(t)\), that is, for each such \(f\) there are \(n \in N\) and \(z_1, \ldots, z_n\) linearly independent in \(X\) and \(h \in C(t, (M \cap \text{sp}_F\{z_1, \ldots, z_n\}) \rightarrow N)\) such that \(f(x) = h(\pi_{z_1, \ldots, z_n}(x))\). If \(\theta : M \rightarrow N\) is a fixed mapping, then \(C^\theta(M, Y)\) is a space of functions \(f : M \rightarrow Y\) such that \((f - \theta) \in C_*(t, M \rightarrow Y)\), that induces a space \(C^\theta_*(t, M \rightarrow N)\), where \(* = \emptyset\) or \(\theta = 0\).
Certainly we suppose throughout the paper, that \(M \) and \(N \) are of class \(C(\tau) \) for spaces \(C_\ast(t, M \to N) \) such that \(\tau = \infty \) for \(0 \leq t \leq 1 \), \(\tau = an_\nu \) for \(t = an_\nu \), \(\tau = la \) for \(t = la \).

Then \(Diff(t, M) := \text{Hom}(M) \cap C_0^d(t, M \to M) \) and \(G(t, M) := \text{Hom}(M) \cap C_0^d(t, M \to M) \) denote diffeomorphism groups for \(t \geq 1 \) or \(t = an_\nu \) or \(t = la \) and a homeomorphism group for \(0 \leq t < 1 \) analogously to [20], where \(\text{Hom}(M) \) is the standard homeomorphism group of \(C(0) \) bijective surjective mappings of \(M \) onto itself, where the manifold \(M \) is on the locally \(F \)-convex space \(X \) for \(t \neq an_\nu \) and \(X \) is the normed space for \(t = an_\nu \).

2.5. Let \(H \) be a locally \(F \)-convex space, where \(F \) is a non-Archimedean field. Let \(M \) be a topological manifold modelled on \(H \) and \(At(M) = \{(U_j, f_j) : j \in A\} \) be an atlas of \(M \) such that \(\text{card}(A) \leq w(H) \), where \(f_j : U_j \to V_j \) are homeomorphisms, \(U_j \) are open in \(M \), \(V_j \) are open in \(H \), \(\cup_{j \in A} U_j = M \), \(f_i \circ f_j^{-1} \) are continuous on \(f_j(U_i \cap U_j) \) for each \(U_i \cap U_j \neq \emptyset \). Let \(\tilde{F}, \tilde{M} \) and \(M \) denote completions of \(F, H \) and \(M \) relative to their uniformities.

Theorem. If either \(H \) is infinite-dimensional over \(F \), or \(\tilde{F} \) is not locally compact, then \(\tilde{M} \) is homeomorphic to the clopen subset of \(H \).

Proof. Since \(\tilde{H} \) is the complete locally \(\tilde{F} \)-convex space, then \(\tilde{H} = pr - \lim \{\tilde{H}_q, \pi^q_v, \Upsilon\} \) is a projective limit of Banach spaces \(\tilde{H}_q \) over \(\tilde{F} \), where \(q \in \Upsilon, \Upsilon \) is an ordered set, \(\pi^q_v : \tilde{H}_q \to \tilde{H}_v \) are linear continuous epimorphisms. Therefore, each clopen subset \(W \) in \(\tilde{H} \) has a decomposition \(W = \lim \{W_q, \pi^q_v, \Upsilon\} \), where \(W_q = \pi^q_v(W) \) are clopen in \(\tilde{H}_q \). The base of topology of \(\tilde{M} \) consists of clopen subsets. If \(W \subset V_j \), then \(f_j^{-1}(W) \) has an analogous decomposition. From this and Proposition 2.5.6 [10] it follows, that \(\tilde{M} = \lim \{\tilde{M}_q, \tilde{\pi}^q_v, \Upsilon\} \), where \(\tilde{M}_q \) are manifolds on \(\tilde{H}_q \) with continuous bonding mappings between charts of their atlases. If \(H \) is infinite-dimensional over \(F \), then each \(\tilde{H}_q \) is infinite-dimensional over \(\tilde{F} \) [23]. From \(\text{card}(A) \leq w(H) \) it follows, that each \(\tilde{M}_q \) has an atlas \(At'(\tilde{M}_q) = \{U'_{j,q}, f_{j,q}, A'_{q}\} \) equivalent to \(At(\tilde{M}_q) \) such that \(\text{card}(A'_{q}) \leq w(H_q) = w(\tilde{H}_q) \), since \(w(\tilde{H}) = w(H) \), where \(At(\tilde{M}_q) \) is induced by \(At(M) \) by the quotient mapping \(\tilde{\pi}_q : \tilde{M} \to \tilde{M}_q \). In view of Theorem 2 [21] each \(\tilde{M}_q \) is homeomorphic to a clopen subset \(\tilde{S}_q \) of \(\tilde{H}_q \), where \(h_q : \tilde{M}_q \to \tilde{S}_q \) are homeomorphisms. To each clopen ball \(\tilde{B} \) in \(\tilde{H}_q \) there corresponds a clopen ball \(B = \tilde{B} \cap H_q \) in \(H_q \), hence \(S_q = \tilde{S}_q \cap H_q \) is clopen in \(H_q \) and \(h_q : \tilde{M}_q \to S_q \) is a homeomorphism. Therefore, \(\tilde{M} \) is homeomorphic to a closed subset \(V \) of \(H \), where \(h : M \to V \) is a homeomorphism, \(V \subset H, h = \lim \{id, h_q, \Upsilon\}, id : \Upsilon \to \Upsilon \) is the identity mapping. Since
each \(h_q \) is surjective, then \(h \) is surjective by Lemma 2.5.9. If \(x \in M \), then \(\tilde{\pi}_q(x) = x_q \in M_q \), where \(\pi : H \to H_q \) are linear quotient mappings and \(\tilde{\pi}_q : M \to M_q \) are induced quotient mappings. Therefore, each \(x \in M \) has a neighbourhood \(\tilde{\pi}_q^{-1}(Y_q) \), where \(Y_q \) is an open neighbourhood of \(x_q \) in \(M_q \). Therefore, \(h(M) = \tilde{V} \) is open in \(H \).

2.6. Theorems.

1. The spaces \(Diff(t, M) \), \(G(t, M) \) and \(GC(t, M) \) are the topological groups.

2. They have embeddings as clopen subsets into the spaces \(C_*(t, M \to X) \), where \(\text{either} * = \emptyset \text{ or } * = 0 \text{ or } * = c \) respectively.

3. If \(F \) and \(X \) are complete, then \(Diff(t, M) \), \(G(t, M) \) and \(GC(t, M) \) are complete.

4. \(G(t, M) \) and \(GC(t, M) \) are separable for separable \(M \).

5. \(Diff(t, M) \), \(G(t, M) \) and \(GC(t, M) \) are ultrametrizable for a manifold \(M \) with a finite atlas \(At(M) \) on a normed space \(X \) and either \(0 \leq t < \infty \) or \(t = an_r \).

Proof. (A). Using the projective limits of normed spaces we can reduce the proof to the case of \(M \) on a normed space \(X \), since for each continuous either linear mapping \(A : X \to X \) or polylinear and polyhomogeneous mapping on \(X \) there are a pseudoultranorm \(u \) in \(X \) and a continuous mapping either linear \(uA(x + ker(u)) = A(x) \) or polylinear and polyhomogeneous \(uA(x_1 + ker(u), ..., x_n + ker(u)) = A(x_1, ..., x_n) \) from \(X_u \) into \(X_u \), where \(X_u := X/ker(u) \), \(x, x_1, ..., x_n \in X \), \(x + ker(u) \in X_u \) (see Theorem (5.6.3)). The second statement is the consequence of Theorem 2.5. If \(f, g \in Diff(t, M) \) such that \(0 < t \), then for each \(0 < b \leq \min(1, t) \) we have \((\Phi^b f o g)(x; \xi; h) = (\Phi^b f)(g(x); \xi; z) \), where either \(\zeta = \xi \) and \(z = (\Phi^1 g)(x; \xi; h) \) for \(b = 1 \), or \(\zeta \in F \) and \(z \in X \) such that \(\zeta = g(x + \xi h) - g(x) \) and \(|\xi|^b/p \leq |\zeta| \leq |\xi| \), \(p \) is a prime number such that \(Q_p \subset F \). In view of recurrence Relations 2.3.(3) we get that \(Diff(t, M) \) is the topological group for each \(0 \leq t \leq \infty \). In view of definitions \(Diff(an, M) \) and \(Diff la, M \) are also topological groups.

(B). Let at first \(At(M) \) be finite. If \((f_n : n) \) is a Cauchy net in \(C_*(t, M \to Y) \), then \((\Phi^s f_n : n) \) are uniformly convergent sequences for each \(0 \leq v \leq t \) and \(0 \leq t \leq \infty \), also for each \(v \) while \(t = an_r \). Consequently, \(\lim_{n \to \infty} (\Phi^v f_n) =: F^v \in C_*(\pi, M^{s+1} \to Y) \), where \(\tau = 0 \) for \(0 \leq t \leq \infty \) or \(\tau = an_r \) for \(t = an_r \), \(s := [v] + \text{sign} \{v\} \).

The statement about ultrametrizability follows from §2.4 and §2.2.
If \(X \) is the Banach space, then from the completeness of \(C_∗(t, M \to Y) \), in which either \(Diff(t, M) \) or \(G(t, M) \) or \(GC(t, M) \) respectively are closed, it follows that the latter spaces are also complete (see Theorems 8.3.6 and 8.3.20).

\((C)\). In the case \(G(t, M) \ni f, g \) for \(0 \leq t \leq \infty \) due to §§2.1-2.4 [20] there is the equality

\[
f_{i,j} \circ g_{j,l}(x) = \sum_{i \in I, n \in I, m \in \mathbb{N}^n} a(m, f_{i,j}^k)Q_m((g_{j,l})_n(x))q_i,
\]

where \((g)_n = (g^{i(1)},... ,g^{i(s)})\), \(g_{j,l} = (g^{j,l}_k(x) : U_l \to K | k \in I) \), \(M \) is modelled on \(X = c_0(I, K) \), the set \(\{i \in I : m(i) \neq 0\} = \{i(1),...,i(s)\} \) is finite, \(f_{i,j} = \phi_i \circ f \circ \phi_j^{-1} \) with the corresponding domains, \(s \in \mathbb{N}, n = \text{Ord}(m) \),

\[
\hat{Q}_m((g)_n) = \prod_{j=1}^s Q_m(i(j))(g^{i(j)}) \text{ and } Q_m(i)(g^i) := P_m(i)(g^i)/P_m(i)(u(m(i))),
\]

where \(P_m(i) \) are polynomials.

Coefficients \(a(m, f_{i,j}^k) = \hat{\Delta}^m(f_{i,j}^k(x))|_{x=0} \) are given by Corollary 2 from Proposition 7 [4]. The polynomials \(\{Q_m(x) : \text{ord}f \leq n, m(j) \neq 0 \text{ for } j \in (i(1),...,i(s))\} \) may be expressed throughout \([x^m : \text{ord}f \leq n, m(j) \neq 0, \text{ for } j \in (i(1),...,i(s))\] and vice versa, where \(x^m = \prod_{m(i)\neq 0} x^j, x(j) \in K, x \in B(X,0,1) \). Therefore, \(\hat{\Delta}^m S_l(x)|_{x=0} = 0 \) for each polynomial \(S_l(x) \) with \(l = (l(i) : i \in I, N_0 \ni l(i) \leq m(i)) \). Whence the coefficients \(a(m, f_{i,j}^k \circ g_{j,l}) \) may be expressed throughout \(a(l, f_{i,j}^k) a(q_{i(1)}^{i(1)}, g^{i(j)}_{j,l}) \cdots a(q_{i(s)}^{i(s)}, g^{i(j)}_{j,l}) R_{l,i,q}/P_l(\tilde{u}(l)), \)

\[
(ii) \; k + |l| + \text{Ord}(l) + \sum_{j=1}^s (|q_{i(j)}| + \text{Ord}(q_{i(j)})) - s \geq k + |m| + \text{Ord}(m),
\]

\(q = (q_{i(j)}) \in N_{\text{Ord}(q_{i(j)})} : j = 1, ..., s, \), \(0 \leq s \leq |l| \), \(R_{l,i,q} \) are polynomials by \(u(i',j') \), that appear from the decomposition of \(\hat{Q}_m((g_{j,l})_n) \) in the form of sums of products of \((g_{j,l})^k \) and \(u(i',j') \) divided by \(\hat{P}_m(\tilde{u}(m)) \). In view of \((i, ii)\) we get that \(f \circ g \in G(t, M) \) and continuity of the composition, since in \((ii)\) for \(|m| + \text{Ord}(m) \to \infty \) or \(|l| + \text{Ord}(l) \to \infty \) or there is \(q_{i(j)} \) with \(|q_{i(j)}| + \text{Ord}(q_{i(j)}) \geq |m| + \text{Ord}(m) + 1) / s \). At the same time \(s > 0 \) for large \(|m| + \text{Ord}(m) \). For \(f = g^{-1} \) we get recurrence relations for \(a(m, (f_{i,j}^{-1})^k) \) throughout \(a(m, f_{i,j}^l) \). From them follows that \(\rho_0(f^{-1}, id) \) are
polynomials of the Bell type by \(\rho_0^*(f, id) \) in \(1/p \) neighbourhood of \(id \), where \(\kappa = 0, 1, \ldots, [t], t < \infty \), \(\rho_0^* \) is an ultrametric in \(G(t, M) \) (see also [20] and Chapter 5 [28]). This gives \(f^{-1} \in G(t, M) \) and continuity of the inversion \(f \to f^{-1} \). The case \(t = \infty \) follows from Formula 2.3.(5).

(D). Now let \(t = an_r \) and using the transformation \(x \to x \xi \) with \(|\xi| = 1/r \) we restrict the consideration to \(r = 1 \). If \(g \in Diff(an_1, M) \) (or \(G(an_1, M) \)), then \(\|g\| \leq 1 \). Indeed, there are the natural embeddings \(\theta : B(K^n, 0, 1) \to B(X, 0, 1) \), consequently, there are the restrictions \(g|_{M_n} := g(\theta(x_n)) \), where \(\theta(x_n) = (x \in B(X, 0, 1) : \theta(x_n)(i) = x(j) \) for \(i = i(j) \in (i(1), \ldots, i(n)), \theta(x_n)(i) = 0 \) in others cases \), \(M_n = M \cap \theta(B(K^n, 0, 1)) \). In view of §54.4 in [21] with the help of [1] we get that if

\[
f(x) = \sum_{m \in \text{No}^n} a(m, f)Q_m(x) \in C(0, B(K^n, 0, 1) \to K),
\]

then \(f \) is analytic if and only if there exists

\[
(iii) \lim_{|m| \to \infty} a(m, f)/P_m(\bar{u}(m)) = 0.
\]

Moreover, in \(C(an_1, B(K^n, 0, 1) \to K) \) the following norms

\[
(iv) \|f\| := \sup\{ |a(m, f)| : J(an, m) : m \in \text{No}^n \}
\]

\[
(v) \|f\|^\alpha := \sup\{ |b(m, f)| : m \in \text{No}^n \}
\]

are equivalent, where \(J(an, m) := 1/P_m(\bar{u}(m)) \), \(b(m, f) \) are expansion coefficients by \(x^n \). Each function \(g^k(\theta(x_n)) \) is analytic and depends from a finite number of variables. If \(\|g\| > 1 \), so there is \(M_n \) with \(\|g(\theta(x_n))\| > 1 \).

The basis \(Q_m(x) \) is orthogonal in the non-Archimedean sense on \(B(K^n, 0, 1) \) with \(\|Q_m\|_{C(0, B \to K)} = 1 \). Hence \(|g^k(\theta(x_n))| > 1 \) contradicts \(g \in Hom(M) \) and \(M \subset B(X, 0, 1) \). Therefore, \(|a(m, g^k(\theta(x_n)))|J(an, m) \leq 1 \) for each \(k, n \) and such \(m, \theta \). Hence \(\|g\|_{C_* (an_1, M \to M)} \leq 1 \), since \(\theta \) has the natural extension \(\theta : K^n \rightarrow X \) such that \(\theta \) is linear on \(K^n \) and it is the embedding. Therefore, the composition and the inversion operations are correctly defined and they are continuous in \(Diff(an_1, M) \) and \(G(an_1, M) \) due to Formulas (i, ii).

(E). Now let \(M(t) \) be infinite. If \(F, X \) and \(Y \) are complete, then \(C_*(t, M \to Y) \) is complete (due to theorem about strict inductive limits in Chapter 12 [25]) for \(t \neq la \). If \((f_\gamma : \gamma \in \alpha) \) is a Cauchy net in \(C_*(la, M \to Y) \), consequently, there exist \(\delta \in \alpha, E \in \Sigma \) and \(r_0 > 0 \) such that \(\text{supp}(f_\gamma) \subset U^E \)
and \(f_\gamma \in C_*(an_{r_0}, M \to Y) \) for each \(\gamma > \delta \), since \(\Pi_R : C_*(an_R, U^E \to K) \leftarrow C_*(an_r, U^E \to K) \) are compact operators for each \(0 < r < R \), where \(\alpha \) is a limit ordinal, \(\Sigma \) is a family of all finite subsets of \(\Lambda_M \). From the completeness of \(C_*(an_{r_0}, M \to Y) \) it follows that \((f_\gamma)\) converges in \(C_*(la, M \to Y) \), hence \(C_*(la, M \to Y) \) is complete. From definitions it follows that \(G(t, M) \), \(\text{Diff}(t, M) \) and \(GC(t, M) \) are closed in \(C_*(t, M \to M) \) for \(* = 0, * = \emptyset \) and \(* = c\) respectively, whence they are also complete.

(F). For separable \(M \) and \(N \) the spaces \(C_*(t, U^E \to N) \) are separable for each \(E \in \Sigma \). The space \(C_*(t, M \to Y) \) is isomorphic with the quotient space \(Z/P \), where \(Z = \bigoplus_{j \in \Lambda} C_*(t, U_j \to Y) \). \(P \) is closed and \(K \)-linear in \(Z \). From the separability of \(Z \) and \(\Lambda \subset N \) it follows that \(C_*(t, M \to Y) \) is separable.

(G). From formulas (i,ii) it follows that \(GC(t, M) \) is the topological group for \(M \) with the finite atlas. For \(f \) and \(g \in C_*(t, M \to M) \cap \text{Hom}(M) \) for \(0 \leq t \leq \infty \) or \(t = an_r \) there are \(E(f) \) and \(E(g) \in \Sigma \) for which \(\text{supp}(f) := cl \{ x \in M : f(x) \neq x \} \subset U^E(f) \) and \(\text{supp}(g) \subset U^E(g) \). Considering \(f(\text{supp}(f)) \) and \(g(\text{supp}(g)) \subset M \) homeomorphic with \(\text{supp}(f) \) and \(\text{supp}(g) \) correspondingly we get \(g^{-1} \circ f \in C_*(t, M \to M) \cap \text{Hom}(M) \). If \((f_\gamma : \gamma \in \alpha)\) and \((g_\gamma : \gamma \in \alpha)\) are two convergent nets in either \(G(t, M) \) or \(\text{Diff}(t, M) \) or \(GC(t, M) \) to \(f \) and \(g \) respectively, so for each neighbourhood \(W \ni id \) there exist \(E \in \Sigma \) and \(\beta \in \alpha \) such that \(g^{-1}_\beta \circ f_\gamma \in W \cap C_*(t, U^E \to M) \cap \text{Hom}(M) \) for \(0 \leq t \leq \infty \) or \(t = an_r \), where \(\alpha \) is a limit ordinal. Therefore, for such \(t \) the mapping \((f,g) \to g^{-1} \circ f \) is continuous in \(G(t, M) \) or \(\text{Diff}(t, M) \) or \(GC(t, M) \) respectively.

For \(t = la \) let \(r = \min(r(f), r(g)) \), where \(f \) and \(g \in C_*(la, M \to M) \cap \text{Hom}(M) \), that is, there exist \(r(f) \) and \(r(g) \in \Gamma_F \) such that \(f \in C_*(an_{r(f)}, M \to M) \cap \text{Hom}(M) \) and analogously for \(g \). Then \(r \in \Gamma_F \) and \(g^{-1} \circ f \in C_*(an_r, M \to M) \cap \text{Hom}(M) \). If \((f_\gamma : \gamma \in \alpha)\) converges to \(f \) and \((g_\gamma)\) to \(g \), then for each neighbourhood \(W \ni id \) in \(C_*(la, M \to M) \cap \text{Hom}(M) \) there exist \(\beta \in \alpha \) and \(E \in \Sigma \) such that \((\text{supp}(g_\gamma^{-1} \circ f_\gamma)) \cup (\text{supp}(g_\gamma)) \cup (\text{supp}(f_\gamma)) \subset U^E \) for each \(\gamma > \beta \) and \(r(g_\gamma) \geq r \), \(r(f_\gamma) \geq r \). Therefore, \((g_\gamma \circ f_\gamma : \gamma \in \alpha)\) converges to \(g^{-1} \circ f \) in \(C_*(la, M \to M) \cap \text{Hom}(M) \), consequently, the last space is the topological group.

3 A structure of diffeomorphism groups.

3.1. Theorem. Let the groups \(G = \text{Diff}(t, M) \) and \(G = G(t, M) \) be the
same as in §2.4, where either $1 \leq t \leq \infty$ or $t = an_r$ or $t = la$.

(1). If M is on a complete space X, then there exists a clopen subgroup W in G such that, each element $g \in W$ belongs to the corresponding one-parameter subgroup.

(2). $Diff(t, M)$, $G(t, M)$ and $GC(t, M)$ are not Banach-Lie groups.

Proof. As in the proof of Theorem 2.6 we can use the projective limit $X = pr - \lim X_n$ of normed spaces X_n that reduce the proof to the case of the manifold M on the normed space X.

(1). Let at first $G = G(t, M)$ and M be with a finite atlas on X over a local field K. We put $W := \{f \in G : \rho_0^t(f, id) \leq p^{-2}\}$, then each $f \in W$ is an isometry of M, where $\tau = t$ for either $1 \leq t \neq \infty$ or $t = an_r$, $\tau \in \mathbb{N}$ for $t = \infty$.

If $f, g \in W$, then $\rho_0^t(f \circ g, id) = \rho_0^t(g, f^{-1}) \leq \max(\rho_0^t(g, id), \rho_0^t(id, f^{-1})) = \max(\rho_0^t(g, id), \rho_0^t(f, id))$. Therefore, W is the subgroup in G.

Let at first M_n be finite-dimensional over K. There exists a restriction $f|_{M_n}$ for each $f \in G$, where M_n is an analytic submanifold, $\theta : M_n \hookrightarrow M$ is an embedding, $dim_K M_n = n \in \mathbb{N}$ is a dimension of M_n over K. Since, locally polynomial functions $f(x) = id(x) + P(x)$ are dense in W, it is sufficient to prove that each such $f(x)$ belongs to a one-parameter subgroup. Here $degP = m \in \mathbb{N}$ is a degree of a polynomial, $x \in M$ are local coordinates. Denote $f_{i,j} = \phi_i \circ f \circ \phi_j^{-1}$ simply by f and U_j by M. Let

$$g(j; x) = \sum_{s=0}^{\infty} A(j; x)^s x^s s!,$$

where $A(j; x) := \sum_{i=1}^{n} T(j, i; x) \partial_i$,

$T(j, i; x)$ are polynomials on the j-th iteration, $A(j; x)^s x := A(j; x)(A(j; x)^s x)$ for $s > 1$, $A(j; x)^0 := x$, $\partial_i := \partial/\partial x_i$. Suppose $T(0; i; x) = P^i(x)$ for $i = 1, ..., n$, and $A(0; x)A(1; x) + A(1; x) = \tilde{P}(x)$, where

$$P(x) = \sum_{i=1}^{n} P^i(x) e_i$$

and $\tilde{P}(x) = \sum_{i=1}^{n} P^i(x) \partial_i$.

For the coefficients $T(1, i; x)$ there is the system of linear algebraic equations, that gives the unique solution $A(1; x)$ with

$$\|A(0; x)T(1, i; x)\|_\tau \leq \|T(1, i; x)\|_\tau \times \|A(0; x)\|_\tau,$$

12
since \(\|A(0;x)\| \leq \|P(x)\|_\tau \), where
\[
\|A(j;x)\|_\tau := \sup_{g \neq 0, g \in C_0(\tau,M \to X)} \|A(j;x)g\|_{\tau'} / \|g\|_{\tau},
\]
\(\tau' = \tau - 1\) for \(1 \leq \tau < \infty\), \(\tau' = \tau\) for \(\tau = an\),
\[
\|g\|_\tau := \|g\|_{C_0(\tau,M \to X)}.
\]
Therefore,
\[
\|P(x)\|_\tau = \max_{i=1,\ldots,n} \|T(1,i;x)\|_\tau,
\]
since \(\|A(0;x)\|_\tau \leq p^{-2}\). Moreover,
\[
\max_{i=1,\ldots,n} \|T(0,i;x) - T(1,i;x)\|_\tau \leq \|P\|_\tau / p^2,
\]
since \(\|A(0;x)T(1,i;x)\|_\tau \leq \|T(1,i;x)\|_\tau / p^2\) for each \(i\).

Further by induction let for \(j > 0\) are satisfied the following conditions:

(i) \(\bar{P}(x) = A(j;x) + \sum_{s=1}^{j} A(j-1;x)^s A(j;x) / s! \),

(ii) \(\max_{i=1,\ldots,n} \|T(j,i;x) - T(j-1,i;x)\|_\tau \leq p^{-j} \|P\|_\tau \) and

(iii) \(\max_{i=1,\ldots,n} \|T(j,i;x)\|_\tau = \|P\|_\tau \).

For \(j + 1\) instead of \(j\) there exists the unique solution \(A(j + 1;x)\) of the equation \(i\), since \(\bar{P}(x) = (I + S_{j+1})A(j + 1;x) \) with \(\|S_{j+1}\| \leq 1/p\), \(I\) is the identity operator. To Equation \((i)\) there corresponds the linear algebraic equation \((I_z + F)Z = Y, Z \in K^z, z \in N, I_z\) is the unit matrix and \(F\) is a matrix of size \(z \times z\), \(F = (F_{i,j})_{i,j=1,\ldots,z}, F_{i,j} \in K, \max_{i,j} |F_{i,j}| \leq 1/p, |det(I_z + F)| = 1\). Then
\[
\|A(j;x)^s T(j + 1,i;x) / s!\| \leq \|T(j + 1,i;x)\| p^{-s(2-1/(p-1))}
\]
and
\[
t' := \max_{i=1,\ldots,n} \|T(j + 1,i;x)\| = \|P\|,\]
since \(\|A(j;x)\| \leq p^{-2}\). Consequently,
\[
\| [A(j+1;x)^s - A(j;x)^s] / s! \| \leq \|A(j+1;x) - A(j;x)\| p^s,
\]
13
where \(z = -(s - 1)(2 - 1/(p - 1)) \), since \([A^i, B, B] = \sum_{i=0}^{i=1} A^i [A, B] A^{i-1} \),
\[\| [A, B] \| \leq \max\{\| AB \|, \| BA \| \}, [A, B] := AB - BA, \]
\[A^i - B^j = A^{i-1} + A^{i-2}B + \ldots + B^{i-1} - (A^{i-1} + A^{i-2}B + \ldots + B^{i-1})B, \]
\[\| AB \| \leq \| A \| \times \| B \|. \]
Taking \(A = A(j+1; x), B = A(j; x) \) and using Formulas (ii, iii) we get \(\| AB - BA \| \leq \max\{\| AB - B^2 \|, \| B^2 - BA \| \} \leq \| A - B \|/p^2. \)

From this it follows that
\[
\max_{i=1, \ldots, n} \| T(j + 1, i; x) - T(j, i; x) \| \leq \\
\max\{\| A(j; x) - A(j - 1; x) \| t', \| A(j; x)^{j+1} A(j + 1; x)/(j + 1)! \| \} \leq \| P \| p^z, \\
\text{where } z = -(j + 1), \ t' = \| P \|, \text{since the second term in }, \{, \} \text{ is less than the first} \\
\| T(j + 1, i; x) - T(j, i; x) \| = \| P(i; x) - P(i; x) + (\sum_{s=1}^{j-1} A(j-1; x)^s (T(j+1, i; x) - T(j, i; x))/s! \} \\
+ (\sum_{s=1}^{j-1} A(j; x)^s - A(j-1; x)^s) T(j + 1, i; x)/s! \} \\
+ A(j; x)^{j+1} T(j + 1, i; x)/(j + 1)! \|.
\]

Therefore, there exists a sequence satisfying Formulas (i - iii) for each \(j \).

Hence there exists
\[
\lim_{j \to \infty} A(j; x) = A(x)
\]
such that \(A : C_0(\tau, M \to X) \to C_0(\tau', M \to X) \). This mapping may be considered as a vector field on \(M \) of class \(C_0(\tau) \), \(A(x) \in Vect_0(\tau, M) \), consequently, there exists
\[
\lim_{j \to \infty} g(j; x) = g(x) \in C_0(t, M \to X).
\]

In view of \(\| A(j; x)^{s+j}/(s+j)! \|_\tau \leq p^z \), where \(z = -2(j + s) + (j + s)/(p - 1) \) for each \(s \in \mathbb{N} \) there is
\[
\exp\{qA(j; x)\} x = g^q(j; x) \text{ with } \lim_{j \to \infty} g^q(j; x) = g^q(x) \in W
\]
(that is convergent relative to \(\rho_0^q \)) for each \(g(x) \in W \) and \(q \in \mathcal{B}(\mathbb{K}, 0, 1) \) such that \(g^1(x) = g(x) \). Moreover, to \(\{g^q(x) : q \in \mathcal{B}(\mathbb{K}, 0, 1) \} \) there corresponds
a one-parameter subgroup in W, where $q \in \mathbb{Z}_p$, since $\|qA(j; x)\|_\tau \leq p^{-2}$ for each $q, y \in B(K, 0, 1)$.

Indeed, $g^q = g_{i,j}^q$ are given as mappings from $\phi_j(U_j)$ into $\phi_i(U_i)$ for a given i, j, $\|g_{i,j}^q - id_{i,j}\|_\tau \leq 1/p$, so $g_{i,j}^q$ generate $g^q \in W$, $g^q : M \to M$, since g^q is an isometry, consequently, $g^q \in G(\tau, M)$. For $t = \infty$ we consider all $\tau \in \mathbb{N}$.

In general, for each $f \in G(t, M)$ there is a sequence $\{f_l(x) : l \in \mathbb{N}\} \subset G(t, M)$ such that in local coordinates $x = \{x(i) : i \in I\} \in B(c_0(I, K), 0, r)$ for each $i > l$ the following condition is satisfied $(f_l(x)) = x(i)$ and there exists $A_l(x) \in \text{Vect}_0(\tau, M)$ with the corresponding $g_l^q(x) \in W$ and $g_l^q(x) = f_l(x)$ for each $x \in M$, where $\lim_{l \to \infty} \|f_l - f\|_\tau = 0$. Then

$$
\lim_{l \to \infty} g_l^q(x) = \lim_{l \to \infty} g^q(x) \in W
$$

converges relative to ρ_0^q and $A(x) = \lim_{l \to \infty} A_l(x)$ with $\|A\|_\tau \leq p^{-2}$, where

$$
A = \sum_{m,i} a(m, A^i)Q_m(x)\partial_i \in \text{Vect}_0(\tau, M),
$$

$a(*, *) \in K$, that is, for each $c > 0$ the set $\{(i, \text{Ord}(m), |m|) : |a(m, A^i)|J(\tau, m) > c\}$ is finite.

The field K is equal to the disjoint union $\bigcup_{j \in \mathbb{N}} B(K, k_j, 1)$, where $k_j \in K, k_1 = 0$. Defining $g^{q+k_j} = g^q$ for $j > 1$ and $q \in B(K, 0, 1)$, we get the extension of class $C_0(\tau)$ by q for g^q from $B(K, 0, 1)$ onto K by q, for $1 \leq t \leq \infty$. For $t = an$, we use the additive group $B(K, 0, 1)$. Then $\partial g^q(x)/\partial q = A(x)g^q(x)$ for each $q \in B(K, 0, 1)$ and $x \in M$, $A = \sum_i A^i\partial_i, A^i \in C_0(\tau, M \to K)$.

In the cases of the non-local filed F or $G = \text{Diff}(t, M)$ consider the family $\mathcal{Y} = \{\eta_{z_1, \ldots, z_n, K}\}$ of all embeddings $\eta_{z_1, \ldots, z_n, K} : \text{sp}_K\{z_1, \ldots, z_n\} \hookrightarrow X$, where K are all possible local subfields of F and z_1, \ldots, z_n are linearly independent vectors in X, $n \in \mathbb{N}$. If $f \in G$, then $f : M_{z_1, \ldots, z_n, K} \to f(M_{z_1, \ldots, z_n, K})$ is the diffeomorphism of class $C_0(t)$, where $M_{z_1, \ldots, z_n, K} := M \cap \eta_{z_1, \ldots, z_n, K}(\text{sp}_K\{z_1, \ldots, z_n\})$. Let ρ^τ be a left-invariant ultrametric in G induced by the norm in $C(\tau, M \to X)$ for M with the finite atlas. There are embeddings of spaces $G(t, M_{z_1, \ldots, z_n, K})$ into G such that ρ^τ induces the equivalent ultrametric ρ_0^τ in $G(t, M_{z_1, \ldots, z_n, K})$. Therefore, there exists a clopen subgroup W in G such that for each $f \in W$ and its restriction $f|_{M_{z_1, \ldots, z_n, K}}$ there exists a one-parameter family $\{g_{z_1, \ldots, z_n, K}^q : q \in K\}$ which has an embedding into $W|_{M_{z_1, \ldots, z_n, K}}$. These families can be chosen consistent on $M_{z_1, \ldots, z_n, K} \cap M_{y_1, \ldots, y_n, L}$, since $K \cap L$ is a local field for two local fields K and
L such that \(Q_p \subset K \cap L \subset K \cup L \subset F \), moreover, there exists a local field \(J \) such that \(K \cup L \subset J \). This means, that \(g^{\alpha}_{y_1,...,y_m,L}(x) = g^{\alpha}_{y_1,...,y_m,L}(x) \) for each \(x \in M_{y_1,...,y_m,L} \cap M_{y_1,...,y_m,L} \) and for each \(q \in K \cap L \). Hence there exists \(g^{\alpha}(x) \) for each \(x \in cl_M(\bigcup_{y_1,...,y_m,L} M_{y_1,...,y_m,L}) \) and each \(q \in cl_F(\bigcup_{K \subset F} F) \), where \(cl_M(A) \) denotes a closure of a subset \(A \) in \(M \). In \(C_p \) the union of all local subfields is dense. If \(F \) is not contained in \(C_p \), then it can be constructed from \(C_p \) with the help of operations of spherical completion \(C_p^U \) or of quotients of definite algebras over \(C_p \) or \(C_p^U \) and so on by induction \([8]\). Therefore, these consistent families generate a one-parameter subgroup \(\{ g^{q} : q \in B(F, 0, 1) \} \) in \(W \) such that \(g^1 = f \).

Let now \(M \) be with a countable infinite atlas and at first \(1 \leq t \leq \infty \) then from the definition of topology in \(G \) the following set

\[
W := \{ f \in G : \text{supp}(f) \subset U^{E(f)}, E(f) \subset N, \text{card}(E(f)) < \aleph_0, \rho^{e,U}_{0,U_E(f)}(f, id) \leq p^{-2} \}
\]

is the clopen subgroup, where \(\rho^{e,U}_{0,U_E(f)}(f, g) \) are ultrametrics in \(G(t, U^E) \) inducing pseudoultrametrics in \(G \), \(\tau = \tau \) for \(t \neq \infty \) and \(1 \leq \tau < \infty \) for \(t = \infty \), \(U^E := \bigcup_{i \in E} U_i \), \((U_i, \phi_i) \) are charts of \(M \).

For \(t = la \) let

\[
W := \{ f \in G : \text{supp}(f) \subset U^{E(f)}, E(f) \subset N, \text{card}(E(f)) < \aleph_0, \rho^{e,U}_{0,U_E(f)}(f, id) \leq p^{-2}, f \in C_0(an_r, M \rightarrow M), r \in \Gamma_F \},
\]

where \(\rho^{e,U}_{0,U_E(f)}(f, g) := \sup_{i \in E} \| g^{-1} \circ f - id \|_{an,r,E} \).

(2) Let at first \(t = an_1 \). Let us prove that the function \(\text{exp} : \text{Vect}(t, M) \rightarrow Diff(t, M) \) is not locally bijective. Let \(M = B(F, 0, 1) \) be a manifold over \(F \). We suppose, that there exists \(q \in F \) such that \(q^l \neq 1 \) for each \(l = 1, ..., n-1 \), \(q^n = 1 \), where \(n \) is not divisible by \(p \) and \(1 < n \in N \), \(q^s \in F \) and \(| q^s |_p = 1 \) for each \(s \in Z_p \cap F \). Further \(q^n M = M \) (acts as the multiplication \(x \rightarrow q^n x \) for each \(x \in M \)) and \(q^n \in Diff(t, M) \), particularly, for \(s = 1 \), \((q^1)^n = id \). Let \(H := \{ g : g \in Diff(t, M), g^n = id \} \), consequently, \(g^n g^{-1} = q^1 = q \) for each \(g \in H \). Whence \(q^1 \) belongs to each one-parameter subgroup \(g Tg^{-1} \) in \(Diff(t, M) \), where \(T := \{ q^s : s \in B(F, 0, 1) \} \).

Now we consider the case, when the field \(F \) has not sufficient roots of unity. If \(G \) would be a Banach-Lie group, then there will exists a clopen subgroup \(W \) in \(G \) such that the Campbell-Hausdorff formula \([8]\) will be valid. Let \(g^q_m = \text{exp}(q x^m \partial)x = \sum_{i=0}^{\infty}(q x^m \partial)^n x/n! \), where \(x \in M = B(F, 0, 1), 0 \leq m \in Z, q \in \)
where \(u \) formula. Then calculating several lower terms of the series we get that
\[
0! = 1.
\]
Then \(g \) does not coincide with \(\text{dicts our supposition, consequently, } G \) is not the Banach-Lie group. For \(\dim F X > 1 \) it is sufficient to consider embeddings of \(\operatorname{Diff}(an_1, B(F, 0, 1))^k \) into \(\operatorname{Diff}(an_r, M) \), where \(1 < k \leq \dim F X \).

In the case of \(0 \leq t < \infty \) for each \(f \in W \) there exists an infinite family \(g_i^q \) of one-parameter subgroups such that \(g_i^q = f \) and \(\partial g_i^q / \partial q = g_i^q / \partial q \) for each \(i, l \in \mathbb{N}, q \in B(F, 0, 1) \), since we can consider locally-constant additional terms for a given \(g^q \).

Each subgroup \(G(t, U^E) \) for \(1 \leq t < \infty \) or \(G(an_r, U_j) \) for \(\phi_j(U_j) \subset B(X, \phi_j(x), r) \) are closed in \(G \) and are not the Banach-Lie groups, consequently, \(G \) is not the Banach-Lie group.

3.2. Theorem. Let groups \(G := \operatorname{Diff}(t, M) \) and \(G := G(t, M) \) be given by Definition 2.4. Then \(G \) is simple and perfect.

Proof. It is sufficient to consider the case of a manifold \(M \) on a complete locally \(F \)-convex space \(X \), since the perfectness and simplicity of \(G \) and its completion \(\bar{G} \) are equivalent. Consider at first \(G \) with \(t \geq 1 \) or \(t = an_r \). If \(f, g \in W \subset G(t, M) \) (see Theorem 3.1), then there are vector fields \(A_f \) and \(A_g \) of class \(C_0(t) \) on \(M \) and one-parameter subgroups \(f^q, g^q \subset W, q \in B(F, 0, 1) \) such that
\[
\partial f^q / \partial q = A_f f^q \quad \text{and} \quad \partial g^q / \partial q = A_g g^q,
\]
the summation is accomplished by \(i \in I, I \) is an ordinal. Let \(A_i \) be of class \(C_0(t) \) with \(\tau = \infty \) for \(1 \leq t < \infty \) or \(\tau = t \) for \(t = an_r \), then elements \(\exp(qA(x))x \) are dense in \(W \) for such \(t \), where \(A = A_i \partial_i, q \in B(K, 0, 1) \). For \(B = A_i \partial_i \), with \(A_i = (\delta_{i,j}, \partial_{i,j}) \), where \(j \in I \) is fixed, \(\delta_{i,j} = 1 \) for \(i = j \) and \(\delta_{i,j} = 0 \) for \(i \neq j \in I, W \ni \exp(qB)x \neq id \). If \(C \in \operatorname{ Vect}_0(\tau, M) \) with \(\tau = \infty \) or \(\tau = an_r \), also \(\|C\|_{\tau'} \leq p^{-2} \) \((\tau' \in N \) or \(\tau' = an_r \) respectively), then there exists \(A \in \operatorname{ Vect}_0(\tau, M) \) with \(\|A\|_{\tau'} \leq p^{-2} \) such that their commutator \([A, B] = C \). Indeed, \([A, B] = A^i(\partial_i B^i j \delta_{i,j}) \partial_j - (\partial_j A^i) \partial_i = -(\partial_j A^i) \partial_i \). In view of §79.1 and §80.3 there is the antidifferentiation \(P(x^j) \) by the variable \(x^j \) (in the
local coordinates of $At(M)$ such that $A^t(x) = -(P(x^t)C^t)(x)$. From this it follows that $[W,W] = W$, where $[W,W]$ is the minimal subgroup in W generated by the following subset $\{ [g,f] := g \circ f \circ g^{-1} \circ f^{-1} \mid g,f \in W \}$. Therefore, W is perfect.

Suppose there is a normal subgroup V in W, $V \neq \{e\}$ and $V \neq W$, then $gVg^{-1} = V$ for each $g \in W$. Let $v \subseteq w$ be corresponding to V and W subsets in the algebra $Vec_0(\tau, M)$, hence $[v,v] \subseteq v$, where $[A,B]$ is the commutator in the algebra $Vec_0(\tau, M)$. Therefore, there are $A \subseteq w \setminus v$ and $0 \neq B \subseteq v$.

Since $\forall [v,w] \subseteq v$, then $[p^2x_i, B] \subseteq v$ for each i, so it may be assumed that there is $i \in I$ with $a(0, B^i) \neq 0$.

For $Vec_0(an_e, M)$ we get the equations $\sum_{i,m+n=k+e_i} (b(n, C^i)b(m-e_i, B^j) - b(m, B^i)b(n-e_i, C^j)) = b(k, A^i)$, consequently, solving them recurrently we find $B \subseteq v$ and $C \subseteq w$ for which $[C,B] = A$. This is possible, since for each $c = p^{-1}, l \in \mathbb{N}$, the family $\{ (i, |n|, Ord(n)) : |b(n, A^i)|r^{|n|} \leq c \}$ is finite for $A \subseteq Vec_0(an_e, M)$, where $b(m, B^i) \subseteq F$ are expansion coefficients by $x^m := x_1^m \ldots x_n^m$, $x = (x_1, \ldots, x_n)$, $x_i \subseteq F$, $m = (m_1, \ldots, m_n)$, $0 \leq m_i \subseteq \mathbb{Z}$, $n \subseteq \mathbb{N}$.

Locally analytic functions $[31]$ are dense in $C_0(t, M \rightarrow X)$ for $1 \leq t \leq \infty$, hence, $[v,w] = w$ contradicting our assumption. Therefore, W is simple; that is, it does not contain any normal subgroup V with $V \neq \{e\}$ and $V \neq W$ at the same time.

The group G is the disjoint union of g_iW, $G = \cup_{j \in \mathbb{N}} g_jW$, such that $\rho_0(g_j, g_k) > p^{-2}$ for $j \neq k$, hence for chosen $\{g_j : j \in \mathbb{N}\}$ with $g_1 = e = id$ and each $f \subseteq G$ there is the unique $j \setminus f_2 \subseteq W$ with $f = g_j f_2$. From $Q_m(x+c) = Q_m(x)$ for $|m| > 0$ and each $x \subseteq B(K,0,1)$ it follows that $c = 0$, where $n = Ord(m)$, Q_m are basic Amice polynomials $[1][2]$. Then considering all $g \subseteq W$ having the form $(id + \xi Q_m(x) e_i)$ in local coordinates with $\xi \subseteq B(K,0,p^{-2})$ we get $[G \setminus W, W] \supset G \setminus W$ and $\{ gfg^{-1} : g \subseteq W \} \neq \{f\}$ for each $f \subseteq G \setminus W$, hence $[G,G] = G$.

Suppose there is a normal subgroup $V \subseteq G$, $V \neq e$, $V \neq G$. Then for each f and $g \subseteq V$ with $fg^{-1} \subseteq W$ we get that $fg^{-1} = e$, since $V \cap W$ is the normal subgroup in W, consequently, V is discrete and $\rho_0(f,g) > p^{-2}$ for each $f \neq g \subseteq V$. Therefore, $hfh^{-1} = f$ for each $h \subseteq W$, but this contradicts the statements given above. Therefore, G is simple and perfect.

For $0 \leq t < 1$ the group $G(1, M)$ is dense in $G(t, M)$, for $t = \lambda a$ we use the inductive limit topology, consequently, $G(t, M)$ also is simple and perfect. The case of $Diff(t, M)$ follows from the case of $G(t, M)$ analogously to the
proof of Theorem 3.1.

3.3. Notes. For each chart \((U_i, \phi_i)\) there exists a tangent vector bundle \(TU_i = U_i \times X\), consequently, \(TM\) has the following atlas \(At(TM) = \{(U_i \times X, \phi_i \times I) : i \in A\}\), where \(I : X \to X\) is the unit mapping, \(A \subset N\), \(TM\) is the tangent vector bundle over \(M\).

Suppose \(V\) is a vector field on \(M\). Then by analogy with the classical case we can define the following mapping \(\bar{\exp}_z(zV) = x + zV(x)\), where for the corresponding pseudoultranorm \(u\) in \(X\) and sufficiently small \(\epsilon > 0\) from \(u(V(x))|z| \leq \epsilon\) it follows \(x + zV(x) \in U_i\) for each \(x \in U_i\) such that \(\phi_i(x)\) is also denoted by \(x\), \(z \in K\). Moreover, there exists a refinement \(At'(M) = \{(U'_i, \phi'_i) : i \in \Omega\}\) of \(At(M)\) such that \(\phi'_i(U_i)\) are \(F\)-convex in \(X\). The latter means that \(x + (1 - \lambda)y \in \phi'_i(U'_i)\) for each \(x, y \in \phi'_i(U'_i)\) and each \(\lambda \in B(F, 0, 1)\). The atlas \(At'(M)\) can be chosen such that \((\bar{\exp}_z|_{U'_i}) : x \times \{\phi_i(U'_i) - \phi_i(x)\} \to U'_i\) to be the analytic isomorphism for each \(i \in \Omega\), where \(x \in U'_i\).

Then \(T_fC_*(t, M \to N) = \{g \in C(t, M \to TN) | \pi \circ g = f\}\), consequently, \(C_*(t, M \to TN) = \bigcup_{f \in C_*(t, M \to N)} T_fC_*(t, M \to N)\), where \(\pi : TN \to N\) is the natural projection. Therefore, the following mapping \(\omega_{\exp} : T_fC_*(t, M \to N) \to C_*(t, M \to N)\) such that \(\omega_{\exp}(g) = \bar{\exp} \circ g\) is defined. This gives charts on \(C_*(t, M \to N)\) induced by charts in \(C_*(t, M \to TN)\).

3.4. Theorems. Let \(G = Diff(t, M)\) and \(G = G(t, M)\) be the same as in §2.4, where \(1 \leq t \leq \infty\) or \(t = 1\), \(F\) and \(X\) are complete. Then

(1) if \(V\) is a \(C(t)\)-vector field on \(M\), then its flow \(\eta_z\) is a one-parameter subgroup by \(z \in B(F, 0, 1)\) in \(G\);

(2) the mapping \(z \mapsto \eta_z\) is continuously differentiable by \(z \in B(F, 0, 1)\);

(3) the mapping \(\hat{\exp} : T_{id}G \to G, V \mapsto \eta_z\), is continuous and defined in a neighbourhood of \(0\) in \(T_{id}G\) for each \(z \in B(F, 0, 1)\), the mapping \((z, V) \mapsto \eta_z^V\) is of class \(C(t)\);

(4) \(G\) is an analytic manifold and for it the mapping \(\hat{E} : TG \to G\) is defined such that \(\hat{E}_\eta(V) = \exp_{\eta(x)} \circ V_\eta\) from some neighbourhood \(V_\eta\) of the zero section in \(T_0G \subset TG\) onto some neighbourhood \(W_\eta \supset id \in G\), such that \(V_\eta = \hat{V}_{id} \circ \eta, W_\eta = W_{id} \circ \eta, \eta \in G\) and \(\hat{E}\) belongs to the class \(C(\infty)\) by \(V\), \(\hat{E}\) is the uniform isomorphism of uniform spaces \(V\) and \(W\).

Proof. As in the proof of Theorem 3.1 we reduce the consideration to the case of \(M\) with a finite atlas on the Banach space \(X\) over \(F\) and \(G = G(t, M)\) and then generalize results for infinite atlases on the locally \(F\)-convex space \(X\) and \(G = Diff(t, M)\) using inductive limits of spaces \(C(t, U^E \to Y)\) and
the projective limit $X = pr - \lim X_n$.

For each submanifold M_n in M with the embedding $\theta : M_n \to M$ and $\text{dim}_F M_n = n$ let us consider $V|_{M_n} : M_n \to TM$, $\pi \circ V(x) = x$. Therefore, in view of Theorem 6.1 [16] (and analogously we get existence of solutions in classes $C(t)$) there is the solution η_2 for some $c > 0$ and all $z \in B(\mathbf{F}, 0, c)$, that is, $\partial \eta_2(x)/\partial z = V(x)\eta_2(x), \eta_0(x) = x$ are dependent upon $x \in M$, $\eta_0 = id$, $\eta_2^V(x) = \eta_2(x)$ are dependent upon V. This local solution is unique in the analytic case, but it is not unique in $C(ta)$ and $C(t)$ classes. Here a constant $\infty > c > 0$ depends only upon $0 < R < \infty$, M and t, where V is in the neighbourhood of the zero section $B(T_{\text{id}}C_*(\tau, M \to M), 0, R)$ and the ultranorm on the Banach space $T_{\text{id}}C_*(t, M \to M)$ is inherited from the Banach space $C_*(t, M \to TM)$.

The clopen ball $B(\mathbf{K}, 0, c)$ is the additive subgroup in \mathbf{K}, consequently, $z \mapsto \eta_2$ is the homomorphism such that $z_1 + z_2 \mapsto \eta_{z_1 + z_2} = \eta_{z_1} \circ \eta_{z_2}, \eta_0 = id$. Moreover, $z \mapsto \eta_2$ and $V \mapsto \eta_2^V$ are C^∞-mappings by V and z in some neighbourhoods of 0. On the other hand, $B(\mathbf{F}, 0, 1)$ is a disjoint union of balls of radius $0 < c < 1$. Hence there exists a solution for each $z \in B(\mathbf{F}, 0, 1)$ (see also §4 in [31]).

Then there are R and c such that $\rho^t_\zeta(\eta_2^V, id) \leq 1/p$ for each $z \in B(\mathbf{F}, 0, c)$ and $V \in T_{\text{id}}G \rightarrow G$, hence for $Rc = R'c'$, $c' = 1$, we get the following mapping $V \mapsto \eta_2^V$ for each $V \in B(T_{\text{id}}C_*(\tau, M \to M), 0, R')$, where $z \in B(\mathbf{F}, 0, 1)$. Then $V \mapsto \eta_1$ generates the mapping $\tilde{\text{Exp}}(V) = \eta_1$. Hence, $\tilde{\text{Exp}}$ is defined in the neighbourhood of 0 in $T_{\text{id}}G$ and $\tilde{\text{Exp}} \in C^\theta(\infty, B(T_{\text{id}}G, 0, R')) \rightarrow G$, where the last space is given relative to the mapping $\theta = \tilde{\pi}_{\text{id}} : T_{\text{id}}G \rightarrow G$ being the natural projection.

Let $V(\eta) \in T_{\text{id}}G$ for each $\eta \in G$ and $V \in C_*(t, G \rightarrow TG)$, where $\tilde{\pi} \circ V(\eta) = \eta, \tilde{\pi} : TG \rightarrow G, V$ is a vector field on G of class $C_*(t)$. If $\tilde{V} := \{g \in C_*(t, M \to M) : \rho^t_\zeta(g, id) \leq 1/p\}$ and $g \in \tilde{V}$, where $\kappa = t$ for $t \neq \infty$ and $N \ni \kappa \geq 1$ for $t = \infty$, then $g : M \rightarrow M$ is the isometry, consequently, $g \in \text{Hom}(M)$, that is, $\tilde{V} \subset G$ and G is a neighbourhood of id in $C_*(t, M \to M)$. Since $M = \cup_{i \in \Lambda} U_i, TM = \cup_i (U_i \times X)$, then $C_*(t, M \to M)$ and $C_*(t, M \rightarrow TM)$ have atlases with clopen charts. The C^∞-atlases $\text{At}(C_*(t, M \rightarrow M))$ and $\text{At}(C_*(t, M \rightarrow TM))$ induce clopen atlases in G and TG, since M and exp are of class not less than C^∞ (see §2.4 and §3.3).

The right multiplication $R_f : G \rightarrow G, g \mapsto g \circ f = R_f(g)$ and $\alpha_h : C_*(t, M' \rightarrow N) \rightarrow C_*(t, M \rightarrow N)$, $\alpha_h(\zeta) = \zeta \circ h$ for $f \in G$ and $h \in C_*(t, M \rightarrow M')$ belong to the class $C(\infty)$ for $1 \leq t \leq \infty$, also to $C(an_r)$ for $t = an_r$ (see

20
Theorems 2.6). Let $g \in \hat{V}$, then $g = id + Y$ with $\|\phi_j(Y|_{U_j})\|_{C_r(t,U_j \to X)} \leq 1/p$ for each j (see §2.4), hence, $\hat{g}_z = id + zY \in \hat{V}$ for each $z \in B(F,0,1)$ and $(\partial R_f \hat{g}_z/\partial z)|_{z=0} = R_f Y$. From this it follows that each vector field V of class $C_r(t)$ on G is right-invariant, that is, $R_f V_\eta = V_{\eta \circ f}$ for each f and $\eta \in G$, since G acts on the right on G freely and transitively (that is, $g \circ f = f$ is equivalent to $f = id$, $Gf = fG = G$).

Therefore, the vector field V on G of class $C_r(t)$ has the form $V_\eta(x) = v \circ \eta(x) = v(\eta(x))$, where v is a vector field on M of the class $C_r(t)$, $\eta \in G$, $v(x) = V(id(x))$. Since $\exp : TM \to M$ is locally analytic on corresponding charts, then $\tilde{E}(V) = \exp \circ V$ has the necessary properties (see for comparison also the classical case in [4] and in §3, §9 [4]).

3.5. Notation. Let the group $G = G(t,M)$ be given by §2.4, where $Q_p \subset F \subset C_p$, an atlas of M is countable. A complete locally F-convex space X has a structure of a locally K-convex space X_K over a local subfield K in F, then $\widehat{X}_K = X_K/ker(u)$ is isomorphic with the Banach space $\widehat{X}_K = c_0(J_u, K)$ over a local field K, where J_u is an ordinal, u is a pseudoultranorm in X (see [25], Ch. 5 in [27]). There exists M_K which is a manifold M on \widehat{X}_K instead of X. The projection $\pi_u : X_K \to \widehat{X}_K$ induces a projection $\pi_u : M_K \to M_K$, where M_K is a manifold on \widehat{X}_K. Let each $X_u := X/ker(u)$ be of separable type over F for a family of pseudoultranorms $\{u\}$ defining topology of X. Let us consider the following space

$$C_{0,a}(t,M_u,K \to \widehat{X}_K) := \{f \in C_{0,a}(t,M_u,K \to \widehat{X}_K) : \|f\|_{t,a} := \sup_{k,i,j,m} |a(m,\phi_k \circ f^i|_{U_j})|J_j(t,m) \max(p^i, p^{ord(m)+|m|})| < \infty, \lim_{j+i+|m|+ord(m) \to \infty} |a(m, f^i_{U_j})|J_j(t,m) \max(p^i, p^{|m|+ord(m)}) = 0\}$$

for $t \neq \infty$, $C_{0,a}(\infty,M_u,K \to \widehat{X}_K) := \bigcap_{t \in \mathbb{N}} C_{0,a}(l,M_u,K \to \widehat{X}_K)$, where (U_j, ϕ_j) are charts of $At(M_u,K)$ with omitted index (u,K), $J_j(t,m) := \|Q_m|s||c_{0,\infty}(t,s \to \widehat{X}_K)$, $S := (U_j)_{u,K} \cap sp_K\{e_1, ..., e_{ord(m)}\}$, $\{e_j : j\}$ is the standard orthonormal base of $c_0(J_u,K).

For the manifolds M and N with a given mapping $\theta : M \to N$ (see §2.4) we define an ultranorm form space

$$C_{0,a}(t,M_u,K \to N_v,K) := \{f \in C_{0,a}(t,M_u,K \to N_v,K) \|(f,\theta)^i_{j,i} \in C_{0,a}(t,\phi_j(U_j) \to \widehat{X}_K)| < \infty\}$$

for each i and j, where $\rho^a_i(f,\theta) := \sum_{i,j} |(f - \theta)^i_{j,i}|C_{0,a}(t,\phi_j(U_j) \to \widehat{X}_K)$.
for each $0 \leq t < \infty$. There exists a subgroup

$$G_a(t, M_u, K) := G(t, M_u, K) \cap C_{0,a}^d(t, M_u, K \to M_u, K)$$

with an ultrametric $\rho_a(t, f, id)$ for $\theta = id$ and $0 \leq t < \infty$.

3.6. Theorems. Let $X, F, G := G(t, M)$ and $G_a(t, M_u, K)$ be given by §2.4 and §3.5. Then

(1). For each $0 \leq t \leq \infty$ spaces $G_a(t, M_u, K)$ and $\mathcal{C}_{0,a}(t, M_u, K \to X_u, K)$ are separable and complete.

(2). Each $G_a(t, M_u, K)$ is σ-compact and $G_a^r(t, M_u, K) := B(G_a(t, M_u, K), id, r) := \{g \in G_a(t, M_u, K) | \rho_a^r(g, id) \leq r\}$ has an embedding as a compact separable subgroup in $G(t, M)$ in the topology inherited from it for $0 \leq t < \infty$ and $0 < r < \infty$.

(3). $T_tG(t, M) \subset Vect_0(t, M)$ (see §3.2), moreover, $spK \cup_u T_tG_a(t, M_u, K)$ and $spK \cup_u T_tB(G_a(t, M_u, K), id, r)$ are contained in $T_tG(t, M)$ and dense in it for $1 \leq t \leq \infty$.

(4). In G for $0 \leq t < \infty$ there is a family \$\{G_{u,K}^n : n \in \mathbb{N}, u, Q_p \subset K \subset F\}$ of compact subspaces such that $G_{u,K}^n \subset G_{u,K}^{n+1}$ for each n and each local subfield K in F, moreover, $\bigcup_{n \in \mathbb{N}, u, K} G_{u,K}^n := G_a(t, M)$ is dense in G.

Proof. From Formulas 2.6(i, ii) it follows that $G_a(t, M_u, K)$ are the complete topological groups and $\mathcal{C}_{0,a}(t, M_u, K \to X_u, K)$ is the complete locally K-convex space (and it is the Banach space for $0 \leq t < \infty$). They are separable and Lindelöf, since M_u, K and X_u, K are separable.

The uniformity in $G_a(t, M_u, K)$ is given by the right-invariant ultrametric

$$\rho_a^\ell(f, g) = \rho_a^\ell(g^{-1}f, id)$$

for $t \neq \infty$ and by their family \$\{\rho_a^\ell : l \in \mathbb{N}\}$ for $t = \infty$, where f and $g \in G_a(t, M_u, K)$. Therefore, $B(G_a(t, M_u, K), id, r) := G_a^r(t, M_u, K)$ is also the topological group, which is clopen in $G_a(t, M_u, K)$. The Banach space $\mathcal{C}_{0}(t, M_u, K \to X_u, K)$ is linearly topologically isomorphic with $c_0(\omega_0, K)$ and subsets $S := \{x \in c_0(\omega_0, K) : \|x(i)\|_K \leq p^{-\alpha(i)}$ for each $i \in \mathbb{N}\}$ are sequentially compact in $c_0(\omega_0, K)$ for $\alpha \in \mathbb{N}$, consequently, S are compact \$\Box\$. In addition, $spK S$ is dense in $c_0(\omega_0, K)$.

Analogously to the proof of Theorems 3.4 we get neighbourhoods $\tilde{U} \supseteq 0$ in $T_dG_a(t, M_u, K)$ and $\tilde{W} \supseteq id$ in $G_a(t, M_u, K)$, such that $\tilde{E}|_\tilde{U} : \tilde{U} \to \tilde{W}$ is the uniform isomorphism. There exists an embedding of $G_a^r(t, M_u, K)$ into $G(t, M)$, since each function f on M_u, K has an extension \tilde{f} on M_K such that $\tilde{f}|_{M_K \otimes M_u, K} = id$, where the decomposition $M_K = (M_K \otimes M_u, K) \oplus M_u, K$ is induced by the projection π_u, since K is spherically complete. Due to $\tilde{W} \supseteq G_a^r(t, M_u, K)$ for
0 < r ≤ p^{−2} the subgroup \(G_{u,K} \) is compact in the weaker topology inherited from \(G(t,M) \). For \(p^{−2} < r < \infty \) considering in local coordinates basic functions \(\tilde{Q}_m e_i \) and using the ultrametric \(\rho_0 \) we get for \(f \in G_{u,K} \) that only a finite number of \((m,k,i,j) \) are such that \(|a(m,\phi_k \circ f)| > p^{−2} \). Therefore, \(G_{u,K} \) is compact. From \(G_a(t,M,u,K) = \bigcup_{i \in N} g_i G_{u,K} \) for some family \(\{g_i : i \in N\} \subset G_a(t,M,u,K) \) (or \(G_a(t,M,u,K) = \bigcup_{i \in N} G'_{u,K} \)) it follows, that \(G_a(t,M,u,K) \) is \(\sigma \)-compact in \(G(t,M) \).

In view of §3.2 and §3.4 we get \(T_e G(t,M) \subset Vect_0(t,M) \) and \(T_e G_{u,K} \subset T_e G_a(t,M,u,K) \subset T_e G(t,M) \), where \(e = id \). In addition \(G_{u,K} \) contains all mappings \(f \) such that \(\phi \circ f(x)|_{U_j} = (id(x) + c'\tilde{Q}_m(x)e_i) \) with \(n = Ord(m) \in N \), \(m \in N_0^n \), \(i \in N \), \(c' \in K \) and \(\rho_0(f,\phi) \leq r \) (that is, for sufficiently small \(|c'|_K \) there is satisfied the following inequality \(|c'\tilde{Q}_m||c_0(a,t,U_j \rightarrow X_{u,K}) | \leq p^{−2} \)). Therefore, the closure in \(Vect_0(t,M) \) of the \(K \)-linear span of \(\bigcup_{u,K} T_e G_{u,K} \) coincides with \(T_e G(t,M) \), which follows from Kaplansky Theorem A.4 [31]. Evidently, \(T_e G_{u,K} \) is infinite-dimensional over \(K \).

Let us take \(G_{u,K} := \{f \in G : supp(f) \subset U_{E_n}, f|_{U_{E_n}} \in C_{0,a}(t, U_{E_n} \rightarrow M_{u,K}), \rho_0(f|_{U_{E_n}}, id) \leq n\} \), where \(U^E := \bigcup_{j \in E} U_j \), \(E_n = (1, \ldots, n) \), \(n \in N \), since \(M_{u,K} \) is separable. Each subgroup \(G_{u,K} \) is compact in \(G \). Since \(\bigcup_{n \in N} \{f \in G : supp(f) \subset U_{E_n}\} \) is dense in \(G \), then \(G_a(t,M) := \bigcup_{n,a,K} G_{u,K} \) is dense in \(G \). If \(f, g \in G_a(t,M) \), then there exists \(n \) with \(supp(f) \cup supp(g) \subset U_{E_n} \) and \(g^{-1} \circ f \in G_a(t,M) \), hence \(G_a(t,M) \) is the subgroup in \(G \).

3.7. Remarks. If \(M = B(X,0,1) \) for a normed space \(X \), then \(G_a(t, M_{u,K}) \) is a projective limit of discrete groups \(G_a(t, M_{u,K})/B(G_{a}(t,M_{u,K}), e, p^{−1}) \) of polynomial bijective surjective mappings \(\tilde{f} : k^n \rightarrow k^n \) of finite rings \(k = B(K,0,1)/B(K,0, p^{−1}) \), since a series \(f(x) = \sum_{m,i} a(m,f^i)\tilde{Q}_m(x)e_i \) in the Amice base \(\tilde{Q}_m e_i \) for each \(f \in C^{ud}_{0,a}(t, M_{u,K} \rightarrow M_{u,K}) \) produces a finite sum \(\tilde{f}(\tilde{x}) = \sum_{m,i} \tilde{a}(m,f^i)\tilde{Q}_m(\tilde{x})e_i \), where \(\pi_l : K \rightarrow K/B(K,0, p^{−1}) \) is the quotient mapping, \(x \in B(K,0, p^{−1}) \), \(\tilde{x} = \pi_l(x), a(m,*) \in K, \tilde{a}(m,*) = \pi_l(a(m,*)) \), \(\tilde{Q}_m(\tilde{x}) = \pi_l(\tilde{Q}_m(x)) \), \(l \in N \) and \(n \in N \) depends on \(l \), balls in \(G_a(t,M,u,K) \) are given relative to the ultrametric \(\rho_0 \) in \(G(t,M) \). If \(X_{u,K} \) is finite-dimensional over \(K \), then \(n \) are bounded by \(dim_K X_{u,K} \).

Besides profinite subgroups given in §3.6 there are classical subgroups over the non-Archimedean field \(F \) contained in the diffeomorphism groups. In particular subgroups preserving vector fields are important for quantum mechanics. Let \(M \) be an analytic manifold, which is is a clopen subset in \(B(X,0,r) \), where \(r > 0 \), and \(X = F^n \). For a covector field \(\tilde{A} := \{A_a(x) : ...
where $GL_W := \mathbb{F}$ formulas (15,16) for the field ξ and only if $SM - a$ analogs of formulas (10-13) [26] with L denoted by group respectively. Corresponding to them Lie algebras of vector fields are reduced to A joint coverings of B the additive group $G[26]$, since c non-degenerate, if should be rather lengthy.

$\{ \alpha, \nu \} = 1, ..., n \}$ on M a differential 1-form

(i) $A = A_\alpha(x)dx^\alpha$ is called a potential structure, where summation is by $\alpha = 1, ..., n$. It is called analytic if $\dot{A} \in C(an_r, M \to \mathbb{F}^n)$. It is called non-degenerate, if

(ii) $\det(F_{\alpha,\beta}) \neq 0$ for each x, where

(iii) $F = dA = F_{\alpha,\beta}dx^\alpha Lx^\beta/2$. We consider $g \in Diff(an_r, M)$ and $y^\alpha = g^\alpha(x), x = (x^1, ..., x^n) \in M, x^i \in \mathbb{F}$. If

(iv) $A_{\alpha} = A_{\mu}\partial g^\mu/\partial x^\alpha$ or

(v) $F_{\alpha,\beta} = F_{\mu,\nu}(\partial g^\mu/\partial x^\alpha)(\partial g^\nu/\partial x^\beta)$. The groups of such g are denoted by G_A or GF respectively and are called a potential group or a symplectic group respectively. Corresponding to them Lie algebras of vector fields are denoted by l_A and l_F. There are accomplished analogs of proposals 1 and 2 [26], since $G_A \subset GF$ and $l_A \subset l_F$. Let $n = 2m, m \in \mathbb{N}$ and

(vi) $A = c_{\alpha,\nu}x^\nu dx^\alpha$, where $c_{\alpha,\nu} = -c_{\nu,\alpha} = const$ and $\det(c_{\alpha,\nu}) \neq 0$; or

(vii) $A = A_\alpha dx^\alpha, A_\alpha = \sum_{k=1}^{n} c_{\alpha,\nu_1,...,\nu_k} x^{\nu_1}...x^{\nu_k},$ where $c_{\alpha,\nu_1,...,\nu_k} \in \mathbb{F}$, $c_{\alpha,\nu} = -c_{\nu,\alpha}$ for each $\alpha, \nu = 1, ..., N, \ det(c_{\alpha,\nu}) \neq 0$. Then

$(viii)$ $dim_{\mathbb{F}}l_A = n(n+1)/2, G_A = Sp(2m, \mathbb{F}) := \{g \in GL(2m, \mathbb{F}) | g^t\epsilon g = \epsilon \}$ is the symplectic group, where g^t denotes the transposed matrix;

(ix) $dim_{\mathbb{F}}l_A \leq n(n+1)/2$.

To verify this let us consider at first $c_{\alpha,\mu} = \epsilon_{\alpha,\mu},$ where $\epsilon_{\alpha,\alpha+1} = 1, \epsilon_{\alpha+1,\alpha} = -1$ for $\alpha = 1, ..., n - 1, \epsilon_{\alpha,\beta} = 0$ for others (α, β). Therefore, there are true analogs of Formulas (10-13) [26] with $a_{\nu_1,...,\nu_k} \in \mathbb{F}$. The matrices $B_{\alpha,\nu,\mu}$ in Lemma 1 §2 have integer elements, consequently, there are true analogs of Formulas (15,16) for the field \mathbb{F}, since an analytic vector field ξ is in l_A if and only if $\xi^\mu \partial_\mu A_\alpha + A_\mu \partial_\alpha \xi^\mu =: L_\xi A_\alpha = 0$. In general the form A can be reduced to $A = -\lambda \epsilon_{\alpha,\nu}x^\nu dx^\alpha/2$ by some operator $j \in GL(n, \mathbb{F})$, where $\lambda \in \mathbb{F}$ and $j(B(\mathbb{F}^n, 0, 1)) = B(\mathbb{F}^n, 0, 1)$. Theorem 2 [26] can also be modified, but should be rather lengthy.

In $G(t, M)$ for $0 \leq t \leq \infty$ there are also subgroups isomorphic with the additive group $B(X_u, 0, r)$, elements f of which act as translations of a subset V of M diffeomorphic with $B(X_u, 0, r)$ and $f|_{M \setminus V} = id$. Using disjoint coverings of $M_{u,K}$ by balls we get, that $Diff(t, M)$ contains subgroups isomorphic with symmetric groups S_n, where either $n \in \mathbb{N}$ or $n = \infty$ for non compact M. Also $Diff(t, M)$ contains a subgroup diffeomorphic with $W := \{f : f|_V$ has an extension $\hat{f} \in GL(X_u) \|\hat{f} - I\|_{X_u} < 1, f|_{M \setminus V} = id\},$ where $GL(X_u)$ is the general linear group.
4 Decompositions of representations and induced representations.

4.1. Let $G = G(t, M)$ be defined as in §2.4 and §3.5 with $0 \leq t < \infty$ and $T : G \to U(H)$ be a strongly continuous unitary representation, where $Q_p \subset F \subset C_p$, $U(H)$ is a unitary group of a Hilbert space H over C. The unitary group is in the standard topology inherited from the space $L(H)$ of continuous linear operators $A : H \to H$ in the operator norm topology.

Theorem. The representation T up to the unitary equivalence $T \mapsto A^{-1}TA$ is decomposable into the direct integral $T_g = \int_T T_g(y)dv(y)$ of irreducible representations $G \ni g \mapsto T_g(y) \in U(H_g)$, where H_g are Hilbert subspaces of H, $y \in J$, v is a σ-additive measure on a compact Hausdorff space J, A is a fixed unitary operator.

Proof. In view of Theorems 3.6 there exists a family of compact subgroups G^n_u in $(G, V(G))$ for which $G^n_u \subset G^{n+1}_u$ for each n and $N := G_a(t, M)$ is dense in $(G, V(G))$, where $V(G)$ denotes the topology of G. Then

$$T_g|_{G^n_u} = \int_{J(n, u, K)} T_g(n, u, K; y)v_{n, u, K}(dy)$$

for each $n \in N_1$, a pseudoultranorm u in X and a local subfield $K \subset F$, where $v_{n, u, K}$ are measures on compact spaces $J(n, u, K)$, $T_g(n, u, K; y)$ are finite-dimensional irreducible representations, $y \in J(n, u, K)$, $g \in G^n_u$.

There is the consistent family $T_g(n, u, K; y)$ such that $v_{n, u, K}$-almost everywhere in $J(n + 1, u', K')$ the restriction $T_g(n + 1, u', K'; y)|_{G^n_u}$ is a finite direct sum of $T_g(n, u, K; y)$ with the corresponding y, where $u(a) \leq u'(a)$ for each $a \in X$, $K \subset K'$. Therefore, there are continuous mappings $z(-n, u, K; -n', u', K')$ from $J(n, u, K)$ into $J(n', u', K')$ for each $n < n'$, $u \leq u'$ and $K \subset K'$ such that $v_{n', u', K'}(Y) = v_{n, u, K}(z^{-1}(-n, u, K; -n', u', K')(Y))$ for each Y in the Borel σ-filed $Bf(J(n', u', K'))$, where $v_{n, u, K}$ are non-negative measures. For each $\xi, \eta \in H$ with $\|\xi\| = \|\eta\| = 1$ we have $|\langle \xi, T_g y \rangle| \leq 1$ and

$$|\int_{J(n, u, K)} \langle \xi, T_g(n, u, K; y)\eta \rangle v_{n, u, K}(dy)| \leq 1.$$

Consequently, $T_g|_N = \int T_g(y)v(dy)$, where the projective limit of compact spaces $J = pr - \lim\{J(n, u, K); z(-n, u, K; -n', u'K'); \{(n, u, K)\}\}$ is compact (see also §2.5 [10]) and the projective limit of measures $v = pr -
\[
\lim \{v_{n,u,K}\} \text{ is the measure on } (J, Bf(J)), \text{ and } T_g(y) : N \to U(H_y) \text{ are irreducible for } v\text{-almost every } y \in J. \text{ Therefore,}
\]
\[
T_g = \int_J T_g(y)v(dy) \text{ and } H = \int_J H_yv(dy),
\]
where \(T_g(y) : G \to U(H_y)\) is an irreducible unitary representation for \(v\)-almost each \(y \in J\), \(H_y\) are complex Hilbert subspaces of \(H\) (see [24] and §22.8 [13]).

4.2. Let \(G := G(t, M)\) be given by §§2.4 and 3.5, where \(Q_p \subset F \subset C_p\). Suppose \(W : G \to IS(H)\) is the regular representation (for \(H\) over a local field \(L \supset Q_s, s \neq p\)) given by the formula \(U_gf(x) := f(g^{-1}x)\), where \(H\) is a Banach space of uniformly continuous bounded functions \(f : G \to L\) with a norm \(\|f\| := \sup_{x \in G} |f(x)|_L\), \(IS(H)\) is a group of isometries of \(H\) with a metric induced by an operator norm of continuous \(L\)-linear operators \(V, V : H \to H\).

Theorem. There exists \(A \in IS(H)\) such that \(AWA^{-1}\) is decomposable into a direct sum of irreducible representations \(W_j\). Moreover, each irreducible representation \(T : G \to IS(E)\) for a Banach space \(E\) over \(L\) is equivalent to some \(W_j\).

Proof. It may be directly verified that \(W\) is strongly continuous. This means that for each \(c > 0\) and \(f \in H\) there is a neighbourhood \(V \ni id\) such that \(\|W_gf - f\| \leq c\) for each \(g \in V\). Let the compact subgroups \(G_{u,K}^n\) be the same as in the proof of Theorem 4.1. They \(s\)-free, that is, for each clopen subgroup \(E'\) its index \([G_{u,K}^n : E']\) is not divisible by \(s\) (§23, [30]). It follows from the consideration of local decompositions of elements in \(G_{u,K}^n\) by \(\bar{Q}_m e_i\) and from the fact that \(B(K,0,r)\) are the \(s\)-free additive groups for each \(0 < r < \infty, n \in N\). In addition \(E'\) contains an open compact subgroup which is normal in \(G_{u,K}^n\) due to Pontryagin lemma (see §8.1 [23]). Therefore, on \(G_{u,K}^n\) the Haar measure exists with values in \(Q_s\) due to Monna-Springer theorem 8.4[23]. In view of Theorem 2.6 and Corollary 2.7 [30] each strongly continuous representation \(\tilde{T} : G_{u,K}^n \to IS(H)\) is decomposable into the direct sum of irreducible representations. On the other hand, \(\tilde{G}_a(t,M)\) is dense in \(G\). The last statement of this theorem follows from the fact that for compact groups each \(T : G_{u,K}^n \to IS(H_T)\) is equivalent to some irreducible component of the regular representation, where \(H_T\) is a Banach space over \(L\).

4.3. **Remark.** Let \(\mu\) be a Borel regular Radon non-negative quasi-invariant measure on a diffeomorphism group \(G\) relative to a dense subgroup
G' with a continuous quasi-invariance factor $\rho_\mu(x,y)$ on $G' \times G$ and $0 < \mu(G) < \infty$. Suppose that $V : S \to U(H_V)$ is a strongly continuous unitary representation of a closed subgroup S in G'. There exists a Hilbert space $L^2(G, \mu, H_V)$ of equivalence classes of measurable functions $f : G \to H_V$ with a finite norm

$$(1) \|f\| := \left(\int_G \|f(g)\|^2_{H_V, \mu}(dg) \right)^{1/2} < \infty.$$

Then there exists a subspace Ψ_0 of functions $f \in L^2(G, \mu, H_V)$ such that

$$f(\nu y) = V_{\nu^{-1}} f(y)$$

for each $y \in G$ and $\nu \in S$, the closure of Ψ_0 in $L^2(G, \mu, H_V)$ is denoted by $\Psi^{V,\mu}$. For each $f \in \Psi^{V,\mu}$ there is defined a function

$$(2) (T^{V,\mu}_x f)(y) := \rho^{1/2}_\mu(x, y)f(x^{-1}y),$$

where $\rho_\mu(x, y) := \mu_x(dy)/\mu(dy)$ is a quasi-invariance factor for each $x \in G'$ and $y \in G$, $\mu_x(A) := \mu(x^{-1}A)$ for each Borel subset A in G. Since

$$(T^{V,\mu}_x f)(\nu y) = V_{\nu^{-1}}((T^{V,\mu}_x f)(y)),$$

then $\Psi^{V,\mu}$ is a $T^{V,\mu}$-stable subspace. Therefore, $T^{V,\mu} : G' \to U(\Psi^{V,\mu})$ is a strongly continuous unitary representation, which is called induced and denoted by $Ind_{S \leftrightarrow G'}(V)$.

If $S = \lim\{S_\alpha, \pi^n_\beta, \Omega\}$ is a profinite subgroup of G, for example, $G^n_{u,K}$ (see §3.6, 3.7) and V is irreducible, then H_V is finite-dimensional and $V^{-1}(I) =: W$ is a clopen normal subgroup in S, where $\pi^n_\alpha : S_\alpha \to S_\beta$ are homomorphisms of finite groups S_α and S_β for each $\alpha \leq \beta$ in an ordered set Ω. Therefore, there exists $\alpha \in \Omega$ such that $\pi^{-1}_\alpha(e_\alpha) \subset W$, where e_α is the unit element in S_α and $\pi_\alpha : S \to S_\alpha$ is a quotient homomorphism. In view of Theorems 7.5-7.8 [13] there exists a representation $V^\alpha : S_\alpha \to U(H_V)$ such that $V^\alpha \circ \pi_\alpha = \nu$.

4.4. Let G' be a diffeomorphism group with a non-negative quasi-invariant measure μ relative to a dense subgroup G'. We can choose G' such that each $G^n_{u,K}$ is a compact subgroup of G'. Suppose that there are two closed subgroups K and N in G such that $K' := K \cap G'$ and $N' = N \cap G'$ are dense subgroups in K and N respectively. We say that K and N act regularly in G, if there exists a sequence $\{Z_i : i = 0, 1, \ldots\}$ of Borel subsets Z_i satisfying two conditions:

(i) $\mu(Z_0) = 0$, $Z_i(k, n) = Z_i$ for each pair $(k, n) \in K \times N$ and each i;

(ii) if an orbit O relative to the action of $K \times N$ is not a subset of Z_0, then $O = \bigcap_{i \geq \gamma} Z_i$, where $g(k, n) := k^{-1}gn$. Let $T^{V,\mu}$ be a representation of G' induced by a unitary representation V of K' and a quasi-invariant measure
We denote by $T_{V,\mu}^{N'}$ a restriction of $T_{V,\mu}^N$ on N' and by D a space $K \setminus G/N$ of double coset classes KgN.

Theorem. There are a unitary operator A on $\Psi_{V,\mu}$ and a measure ν on a space D such that

\[(1)\quad A^{-1}T_{n}^{V,\mu}A = \int_{D}T_{n}(\xi)d\nu(\xi)\]

for each $n \in N'$. (2) Each representation $N' \ni n \mapsto T_{n}(\xi)$ in the direct integral decomposition (1) is defined relative to the equivalence of a double coset class ξ. For a subgroup $N' \cap g^{-1}K'g$ its representations $\gamma \mapsto V_{g\gamma g^{-1}}$ are equivalent for each $g \in G'$ and representations $T_{N'}(\xi)$ can be taken up to their equivalence as induced by $\gamma \mapsto V_{g\gamma g^{-1}}$.

Proof. A quotient mapping $\pi_{X} : G \rightarrow G/K =: X$ induces a measure $\hat{\mu}$ on X such that $\hat{\mu}(E) = \mu(\pi_{X}^{-1}(E)) =: (\pi_{X}^{*}\mu)(E)$ for each Borel subset E in X. In view of Radon-Nikodym theorem II.7.8 ([11]) for each $\xi \in D$ there exists a measure μ_{ξ} on X such that

\[(3)\quad d\hat{\mu}(x) = d\nu(\xi)d\mu_{\xi}(x),\]

where $x \in X$, $\nu(E) := (s^{*}\mu)(E)$ for each Borel subset E in D, $s : G \rightarrow D$ is a quotient mapping.

For each $m \in N$, a pseudoultranorm u in X and a local subfield K in F a subgroup $G_{u,K}^{m}$ is compact in G, hence there exists a topological retraction $r_{m,u,K} : G \rightarrow G_{u,K}^{m}$ (that is, $r_{m,u,K} \circ r_{m,u,K} = r_{m,u,K}$ and $r_{m,u,K}$ is continuous and $r_{m,u,K}(G_{u,K}^{m}) = id$). This retraction induces a measure $\mu_{m,u,K} = r_{m,u,K}^{*}\mu$ on $G_{u,K}^{m}$. It is equivalent to a Haar measure on $G_{u,K}^{m}$, since it is quasi-invariant relative to $G_{u,K}^{m}$ (see §VII.1.9 in [3]). In view of §32.2 from Chapter VI ([24]) each irreducible representation of a compact group Y can be realized as a representation in some minimal left
ideal of a ring $L^2(Y, \lambda, \mathcal{C})$, where λ is a Haar measure on Y. From Formulas (4) and 4.3.(1, 2) we get the first statement of this theorem for a subspace $\Psi^{V, \mu}$ of H^V.

If $f \in L^2(X, \hat{\mu}, H_V)$, then $\pi^*_X f := f \circ \pi_X \in L^2(G, \mu, H_V)$. This induces an embedding π^*_X of H^V into $\Psi^{V, \mu}$. Let \mathcal{F} be a filterbase of neighbourhoods A of K in G such that $A = \pi_X^*(S)$, where S is open in X, hence $0 < \mu(A) \leq \mu(G)$ due to quasi-invariance of μ on G relative to G'. Let $\psi \in \xi \in \mathcal{D}$, then $\psi = K g\xi$, where $g\xi \in G$, hence $\psi = \psi(N \cap g^{-1} K g\xi)$. In view of Formula (3) for each $x \in N'$ and $\eta = K x$ we get $\rho^{1/2}(\eta, \xi) = \lim [\int_A \rho^{1/2}(x, z g\xi) d\mu(z) / \mu(A)]$ (see also §1.6 [30]). Therefore, $\lim [\int_G \rho^{1/2}(x, z g\xi) d\mu(z) / \mu(A)]$ for each $x \in N'$ and $a, b \in H^V$, where $j_\xi^G(\eta) = f(z^{-1} h\varsigma)$ for a function f on G and $h, z, \xi \in G$. In view of the cocycle condition $\rho(\eta, z) = \rho(\eta, y^{-1} z) \rho(\eta, y, z)$ for each $x, y \in G'$ and $z \in G$ we get $T_x(\eta) = T_y(\eta) T_x(\eta)$ for each $x, y \in N'$ and T_η are unitary representations of N'. Then $\lim [\int_{A, T_x(\eta) b H^V} \rho^{1/2}(x, z g\xi) d\mu(z) / \mu(A)]$ for each $x \in N' \cap g^{-1} K' g\xi$. Hence the representation $T_x(\eta)$ in the Hilbert space $H(\xi)$ is induced by a representation $(N' \cap g^{-1} K' g\xi) \ni y \mapsto V_{g^{-1} y g\xi}^V$.

4.5. Let V and W be two unitary representations of K' and N' (see §4.4). In addition let K and N be regularly related in G and $V \otimes W$ denotes an external tensor product of representations for a direct product group $K \times N$. In view of §4.3 a representation $T_{V, \mu} \otimes T_{W, \mu}$ of an external product group $G := G \times G$ is equivalent with an induced representation $T_{V, \mu} \otimes W_{\mu} \otimes \mu$, where $\mu \otimes \mu$ is a product measure on G. A restriction of $T_{V, \mu} \otimes W_{\mu}$ on $G' := \{(g, g) : g \in G\}$ is equivalent with an internal tensor product $T_{V, \mu} \otimes W_{\mu}$.

Theorem. There exists a unitary operator A on $\Psi^{V, \mu} \otimes T_{W, \mu}$ such that

$$A^{-1} T_{V, \mu} \otimes T_{W, \mu} A = \int_D T(\xi) d\nu(\xi),$$

where ν is an admissible measure on a space $D := N \setminus G/K \otimes \mu$ of double cosets.

(2). Each representation $G' \ni g \mapsto \nu(\xi)$ in Formula (1) is defined up to the equivalence of ξ in D. Moreover, $T(\xi)$ is unitarily equivalent with $T_{V, \mu} \otimes W_{\mu}$, where V and W are restrictions of the corresponding representations $y \mapsto V_{g\gamma y^{-1}}$ and $y \mapsto W_{g^{-1} \gamma y^{-1}}$ on $g^{-1} K' g \cap \gamma^{-1} N' g, g, \gamma \in G'$, $g^{-1} \gamma^{-1} \xi \in \xi$.

Proof. In view of §18.2 [30] $P \setminus G/G$ and $K \setminus G/N$ are isomorphic Borel spaces, where $P = K \times N$. In view of Theorem 4.4 there exists a unitary...
operator A on a subspace $\Psi^{V \hat{\otimes} W, \mu \otimes \mu}$ of the Hilbert space $L^2(G, \mu \otimes \mu, H_V \otimes H_W)$ such that

$$A^{-1} T^{V \hat{\otimes} W, \mu \otimes \mu} |_{\tilde{G}} A = \int_D T_G(\xi) d\nu(\xi),$$

where each $T_G(\xi)$ is induced by a representation $(y, g) \mapsto (V \hat{\otimes} W)(g, \gamma)(y, g, \gamma)^{-1}$ of a subgroup $G' \cap (g, \gamma)^{-1}(K \times N)(g, \gamma)$, the latter group is isomorphic with $S := g^{-1}K'g \cap \gamma^{-1}N'g$, that gives a representation $V \hat{\otimes} W$ of a subgroup $S \times S$ in G. Therefore, we get a representation $T^{V \hat{\otimes} W, \mu \otimes \mu}$ equivalent with $\text{Ind}_{(S \times S) \cap G'}(V \hat{\otimes} W)|_{\tilde{G}'}$.

References

[1] Y. Amice. "Interpolation p-adique"//Bull. Soc. Math. France. 92 (1964), 117-180.

[2] D. Bao, J. Lafontaine, T. Ratiu. "On a non-linear equation related to the geometry of the diffeomorphism group"// Pacific.J.Mathem. 158 (1993), 223-242.

[3] A.O. Barut, R. Raczka. "Theory of groups representations and applications" (Warszawa: Polish Scient. Publ., 1977).

[4] S. Bosch, U. Guntzer, R. Remmert. "Non-Archimedean analysis" (Berlin: Springer, 1984).

[5] N. Bourbaki. "Groupes et algèbres de Lie". Fasc. XXVI, XXXVII. Chap. I-III (Paris: Hermann, 1971, 1972).

[6] N. Bourbaki. "Intégration". Livre VI. Fasc. XIII, XXI, XXIX, XXXV. Ch. 1-9 (Paris: Hermann, 1965, 1967, 1963, 1969).

[7] N. Bourbaki. "Variétés différentielles et analytiques". Fasc. XXXIII (Paris: Hermann, 1967).

[8] B. Diarra. "Ultraproduits ultrametriques de corps values"// Ann. Sci. Univ. Clermont II, Sér. Math., 22 (1984), 1-37.

[9] D.G. Ebin, J. Marsden. "Groups of diffeomorphisms and the motion of incompressible fluid"// Annals of Math. 92 (1970), 102-163.
[10] R. Engelking. "General topology". Second edit., Sigma Ser. in Pure Math. V. 6 (Berlin: Heldermann, 1989).

[11] J.M.G. Fell, R.S. Doran. "Representations of ∗-algebras, locally compact groups and Banach algebraic ∗-bundles" (Boston: Acad. Press, 1988).

[12] J. Fresnel, M. van der Put. "Géométrie analytique rigide et applications" (Boston: Birkhäuser, 1981).

[13] E. Hewitt, K.A. Ross. "Abstract harmonic analysis". Second edit. (Berlin: Springer, 1979).

[14] C.J. Isham. "Topological and global aspects of quantum theory". In: "Relativité, groupes et topologie. II". Editors B.S. de Witt, R. Stora (Amsterdam: North-Holland, 1984).

[15] Y. Jang. "Non-Archimedean quantum mechanics". Tohoku Math. Publications N°10 (Tohoku: Math. Inst. and Univ., 1998).

[16] A.Yu. Khrennikov. "Mathematical methods of non-Archimedean physics"// Usp. Mat. Nauk. 45(1990), N 4, 79-110.

[17] S. Kobayashi. "Transformation groups in differential geometry" (Berlin: Springer, 1972).

[18] S.V. Ludkovsky. "Measures on diffeomorphism groups for non-Archimedean manifolds: groups representations and their applications"// Theoret. and Mathem. Phys. 119 (1999), 698-711.

[19] S.V. Ludkovsky. "Properties of quasi-invariant measures on topological groups and associated algebras"// Ann. Mathem. Blaise Pascal. 6 (1999), 33-45.

[20] S.V. Ludkovsky. "Irreducible unitary representations of non-Archimedean groups of diffeomorphisms"// Southeast Asian Bull. of Math. 22 (1998), 419-436.

[21] S.V. Lyudkovskii. "Embeddings of non-Archimedean Banach manifolds in non-Archimedean Banach spaces"// Russ. Math. Surv. 53 (1998), 1097-1098.
[22] S.V. Lyudkovskii. "Measures on groups of diffeomorphisms of non-Archimedean Banach manifolds" // Russ. Math. Surv. 51 (1996), 338-340.

[23] J. Mather. "Commutators of diffeomorphisms. I, II" // Comment. Math. Helvetici. 49 (1974), 512-528; 50 (1975), 33-40.

[24] M.A. Naimark. "Normed algebras" (Groningen: Wolters Noordhoff Publ., 1972).

[25] L. Narici, E. Beckenstein. "Topological vector spaces" (Marcel Dekker, New York, 1985).

[26] M.A. Parinov. "About groups of diffeomorphisms preserving non-degenerate analytic vector fields" // Mat. Sb. 186 (1995), №5, 115-126.

[27] E. Pressley, G. Sigal. "Loop groups" (Oxford: Clarendon Press, 1986).

[28] J. Riordan. "Combinatorial identities" (New York: John Wiley, 1968).

[29] A.C.M. van Rooij. "Non-Archimedean functional analysis" (New York: Marcel Dekker Inc., 1978).

[30] A.C.M. van Rooij, W.H. Schikhof. "Groups representations in non-Archimedean Banach spaces" // Bull. Soc. Math. France. Memoire. 39-40 (1974), 329-340.

[31] W.H. Schikhof. "Ultrametric calculus" (Cambridge: Camb. Univ. Press, 1984).

[32] W.H. Schikhof. "Non-Archimedean calculus". Report 7812 (Math. Inst., Kath. Univ., Nijmegen, The Netherlands, 1978).

[33] E. Straume. "Compact differentiable transformation groups on exotic spheres" // Math. Ann. 299 (1994), 355-389.

[34] J. Tate. "Rigid analytic spaces" // Invent. Math. 12 (1971), 257-289.

[35] V.S. Vladimirov, I.V. Volovich, E.I. Zelenov. "p-Adic analysis and mathematical physics" (Moscow: Fiz.-Mat. Lit., 1994).

[36] A. Weil. "Basic number theory" (Berlin: Springer-Verlag, 1973).