The correlation between CYP4F2 variants and chronic obstructive pulmonary disease risk in Hainan Han population

Yipeng Ding1,2*†, Yixiu Yang1,3†, Quanni Li1,2, Qiong Feng3, Dongchuan Xu1,2, Cibing Wu3, Jie Zhao3, Xiaoli Zhou1,2, Huan Niu1,2, Ping He1,2, Jianfang Liu3 and Hongxia Yao1,2*

Abstract

Background: Chronic obstructive pulmonary disease (COPD) is a complex pulmonary disease. Cytochrome P450 family 4 subfamily F member 2 (CYP4F2) belongs to cytochrome P450 superfamily of enzymes responsible for metabolism, its single nucleotide polymorphisms (SNPs) were reported to be involved in metabolism in the development of many diseases. The study aimed to assess the relation between CYP4F2 SNPs and COPD risk in the Hainan Han population.

Method: We genotyped five SNPs in CYP4F2 in 313 cases and 508 controls by Agena MassARRAY assay. The association between CYP4F2 SNPs and COPD risk were assessed by \(\chi^2 \) test and genetic models. Besides, logistic regression analysis was introduced into the calculation for odds ratio (OR) and 95% confidence intervals (CIs).

Results: Allele model analysis indicated that rs3093203 A was significantly correlated with an increased risk of COPD. Also, rs3093193 G and rs3093110 G were associated with a reduced COPD risk. In the genetic models, we found that rs3093203 was related to an increased COPD risk, while rs3093193 and rs3093110 were related to a reduced risk of COPD. After gender stratification, rs3093203, rs3093193 and rs3093110 showed the association with COPD risk in males. With smoking stratification, rs3093144 was significantly associated with an increased risk of COPD in smokers. CYP4F2 SNPs were significantly associated with COPD risk.

Conclusions: Our findings illustrated potential associations between CYP4F2 polymorphisms and COPD risk. However, large-scale and well-designed studies are needed to determine conclusively the association between the CYP4F2 SNPs and COPD risk.

Keywords: Chronic obstructive pulmonary disease, Susceptibility, Agena MassARRAY technology, Case-control study, CYP4F2, Single nucleotide polymorphism

Background

Chronic obstructive pulmonary disease (COPD) is a commonly heterogeneous diseases caused by distinct pathophysiological processes, with a high morbidity and mortality [1, 2]. It is defined as an incomplete reversible airflow obstruction with persistent symptoms including dyspnea, cough, and excessive sputum production. As report went, it is the fourth leading cause of death (126,000 deaths per year) [3], and accounts for 6.4% of the United States population self-reporting a diagnosis annually [4]. Despite the gradual improvement of people’s health awareness and detection technology of COPD, most patients with COPD...
have never been diagnosed up to 29 million people [5], In the United States, 75% of COPD cases are diagnosed as smoking-related, but, other occupational or environmental factors such as diesel exhaust and smoke from indoor cooking contributing to the development of COPD [6]. In China, COPD was considered as the third leading cause of death and accounted for over 0·9 million deaths reported in 2013 [7]. And the latest Chinese national survey of COPD from 2002 to 2004 was conducted among 20, 245 adults. The overall prevalence rate was reported up to 8.2%, thereinto, 12.4% in men and 5.1% in women [8], which was likely to associated with cigarette smoking in men [9]. Cigarette smoking is considered as the major environmental risk factor for the development of COPD. But individuals varied greatly in their susceptibility to response to tobacco smoking, illustrating that genetic factors played vital role in the incidence and development of COPD. Recent Genome-wide association studies have provided strong evidence for common susceptibility loci for COPD [10–13].

And Cytochrome P450 family 4 subfamily F member 2 (CYP4F2) encodes a member of the cytochrome P450 superfamily of enzymes involved in many metabolic pathways [14, 15]. It is responsible for metabolizing arachidonic acid to 20-hydroxyicosatetraenoic acid (20-HETE) and involved in many reactions, such as drug metabolism [16], long-chain fatty acids metabolism [17], and synthesis of cholesterol, steroids and other lipids. Recently, Wang et al. elucidated that the upregulated differentially expressed genes were significantly enriched in the arachidonic acid metabolism pathway, including CYP4F2, PTGDS and PLA2G16 by pathway enrichment analysis and pathway interactive network construction [18]. Again, it’s involved in metabolic pathways.

Beyond that, CYP4F2 variants were involved in the development of some diseases. Polymorphisms of CYP4F2 was reported to be linked with the susceptibility to cardiovascular and cerebrovascular diseases [17]. And variants related-Ischemic stroke (IS) studies indicated that genetic variants in CYP4F2 gene may increase the risk of IS [19–21]. CYP4F2 rs2074900 was recently reported to be related to therapeutic responses to erlotinib in sixty Han Chinese advanced non-small cell lung cancer patients received erlotinib monotherapy [14], illustrating that it may take part in the pathological process of pulmonary disease.

In the present study, we aimed to investigate the association between CYP4F2 SNPs and COPD risk in the Hainan Han population. We hope that our study may provide evidence for the role of CYP4F2 in the pathogenesis of COPD and the prevention and diagnosis of COPD in the future.

Materials and methods

Ethical statement

All participants were informed of the research process of the study including the procedures, results, etc., by telephone or by visit. Every participant is randomly recruited and treated fairly, and there is no priority. In this study, we only extracted the participants’ blood samples. The other data was obtained during the physical examination and did not cause too much harm to the participants, and we analyzed the related information. At present, they have signed informed consent documents. The protocols were approved by the Institutional Review Boards of the Hainan General Hospital (Med-Eth-Re [2019]42). All procedures performed in studies involving human participants were in compliance with Department of Health and Human Services (DHHS) regulations for human research subject protection.

Study population

We collected 313 blood samples of patients who had COPD were being diagnosed at the Hainan General Hospital. The case population consisted of 238 men and 75 women, with an average age of 60.05 ± 6.478 years. All the COPD patients underwent rigorous examination, including immunohistochemical analysis and pulmonary function examination in line accordance with the criteria of the National Heart, Lung, and Blood Institute and the World Health Organization to form the Global Initiative for Chronic Obstructive Lung Disease (GOLD) [22]. The inclusion criteria: after inhalation of bronchodilator, COPD patients were forced expiratory volume (FEV1)/forced vital capacity (FVC) < 70% for the first time indicated that airflow was obstructed and could not be completely reversed. Some other causes of respiratory diseases, such as lung cancer, bronchiectasis, pulmonary fibrosis, pulmonary cystic fibrosis, diffuse bronchiolitis and bronchiolitis obliterans, were excluded. Totally, the control group of 508 healthy people from the physical examination center of Hainan General Hospital had no history of cancer or other diseases. The control population consisted of 337 men and 171 women, with an average age of 71.80 ± 10.089 years. Moreover, the number of non-smokers was more than smokers, and there was no significant difference in the distribution of smoking status in the non-smokers and smokers ($p = 0.082$).

SNP selection and genotyping

We randomly selected some SNPs in the CYP4F2 gene based on the dbSNP database. Each SNP had a minor allele frequency (MAF) > 5% listed in the global population of the 1000 Genome Projects (http://www.internationalgenome.org/). And then, we used the Regulome DB (http://www.regulomedb.org/) and HaploReg
v4.1 (https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php) to predict the function of the selected variants. We extracted genomic DNA from whole blood in accordance with the instructions of the GoldMag whole blood genomic DNA purification kit (GoldMag Co. Ltd., Xi’an, China) and genomic DNA concentration was measured using the NanoDrop 2000 (Thermo Scientific, Waltham, Massachusetts, USA). Agena MassARRAY Assay Design 3.0 software was utilized to design the multiplexed SNP MassEXTEND assay and Agena MassARRAY RS1000 was used to perform SNP genotyping. Finally, we designed primers for five SNPs (rs3093203, rs3093193, rs12459936, rs3093144 and rs3093110) (Table S1) to genotype in Hainan Han populations. And we performed data sorting and analyses by Agena Bioscience TYPER 4.0 software [23].

Statistical analysis
Student’s t-test and Pearson’s chi-square were used to assess differences in age and gender between cases and controls, respectively. And the genotype frequency of the control group was assessed as deviating from the Hardy Weinberg Equilibrium (HWE).

In addition, we used logistic regression analysis provided by the PLINK software (version 1.07) to calculate the association between SNPs and COPD risk. Haploview software (version 4.2) was applied to observe the degree of linkage between these SNPs based on a linkage disequilibrium (LD) map [15]. All p-values were two-tailed and p-values less than 0.01 were considered statistically significant.

Results
Basic information of cases and controls
The basic information of cases and controls were listed in Table S2, including age, smoking status and so on. Statistically significant difference in the distributions of gender and age between the case group and the control group were found. And the basic information of five CYP4F2 polymorphisms was displayed in Table 1. The genotype distribution of SNPs among controls were in accordance with HWE (p > 0.05). The frequency distribution of allele A of rs3093203 was significantly different between cases and controls (p = 0.005), from which we found it to be associated with an increased risk of COPD (OR = 1.40, 95% CI: 1.11–1.77) in the Hainan Han population. Also, rs3093193 G and rs3093110 G can reduce COPD risk (p = 0.003, p < 0.000) in the Hainan Han population. The Regulome DB and HaploReg v4.1 were used to predict the SNPs function shown in Table S6.

Genetic model analysis between CYP4F2 variants and COPD risk
We further explored the relationship between CYP4F2 variants and COPD risk using four genetic models listed in Table 2. Individuals with rs3093203 AG-GG genotype had a much risk of COPD (OR = 1.49, 95% CI: 1.11–1.99, p = 0.008) compared to individuals with AA genotype in the dominant model. In the log-additive model, the results showed rs3093203 was correlated with the risk of COPD (OR = 1.41, 95% CI: 1.11–1.79, p = 0.004) without adjustment.

Additionally, patients with genotype CC of rs3093193 had a reduced risk of COPD in the codominant model (OR = 0.39, 95% CI: 0.19–0.77, p = 0.007) without adjustment. In the additive model, the SNP was associated with a reduced risk of COPD (OR = 0.69, 95% CI: 0.54–0.88, p = 0.002) c without adjustment for gender and age.

When compared to the GG genotype of rs3093110, heterozygous genotype GA was associated a decreased risk of COPD in the codominant model without adjustement for gender and age (OR = 0.48, 95% CI: 0.32–0.72, p < 0.000). Also, in the dominant model, genotype GA-AA were linked with a reduced the risk of COPD than genotype GG without adjustment (OR = 0.45, 95% CI: 0.30–0.67, p < 0.000). The log-additive model showed there was significantly decreased association between rs3093110 and COPD risk without adjustment for gender and age (OR = 0.44, 95% CI: 0.30–0.65, p < 0.000). After adjustment for gender and age, the variant was still related to the risk of COPD.

SNP	Chr	Gene	Alleles	Role	MAF(A)	HWE	OR(95%CI)	p-value
rs3093203	19	CYP4F2	A/G	3’UTR	0.292	0.704	1.40 (1.11–1.77)	0.005
rs3093193	19	CYP4F2	G/C	Intron	0.219	0.664	0.70 (0.55–0.88)	0.003
rs12459936	19	CYP4F2	T/C	Intron	0.484	0.721	1.09 (0.89–1.33)	0.398
rs3093144	19	CYP4F2	T/C	Intron	0.139	0.517	0.82 (0.62–1.09)	0.167
rs3093110	19	CYP4F2	G/A	Intron	0.059	0.838	0.45 (0.31–0.66)	p < 0.000

95% CI: 95% confidence interval, HWE Hardy-Weinberg equilibrium, MAF minor allele frequency, OR odds ratio, SNP single-nucleotide polymorphism. p-value: Calculated by Pearson χ² test.
Stratification analysis by gender
We also used gender stratification to investigate the association between CYP4F2 SNPs and the risk of COPD (Table 3). Pearson’s Chi-square test showed that the frequency distribution of minor allele of rs3093110 was significantly different between the male controls and the male patients ($p = 0.000$). There was a significant association between rs3093110 and COPD risk in the codominant (OR = 0.45, 95% CI: 0.27–0.73, $p = 0.002$), dominant (OR = 0.42, 95% CI: 0.26–0.69, $p = 0.001$) and log-additive (OR = 0.42, 95% CI: 0.26–0.68, $p < 0.000$) models. After adjusted for gender and age, the significant association still existed ($p = 0.005$, 0.004 and 0.004). However, there was no significant relationship between CYP4F2 variants and COPD risk in females (Table S3).

Stratification analysis by smoking status
We also used smoking status stratification to investigate the correlation between candidate SNP and COPD risk listed in Table 4. We found that rs3093110 was significantly associated with an increased risk of COPD in the non-smoker group in the codominant (OR = 0.42, 95% CI: 0.23–0.78, $p = 0.006$), dominant (OR = 0.40, 95% CI: 0.22–0.74, $p = 0.004$) and log-additive (OR = 0.40, 95% CI: 0.22–0.73, $p = 0.003$) models. But, the significant association between rs3093110 and COPD risk was not found in the smokers.

LD and haplotype analysis
We also applied the Haploview software to do LD analysis in CYP4F2 variants (rs3093203, rs3093193, rs12459936, rs3093144 and rs3093110). A strong linkage mapped to a 18 kb LD block between rs3093203 and rs3093110 (Fig. 1). In addition, haplotypes GGCCG and GCCCA were associated with an increased risk of COPD (OR = 2.15, 95%CI: 1.46–3.16, $p < 0.000$; OR = 16.22, 95%CI: 2.19–120.30, $p = 0.006$). Whereas, haplotypes GGCCA and ACCCA decreased the risk of COPD (OR =

Table 2 Significant CYP4F2 variants associated with COPD susceptibility

SNP	Model	Genotype	Control	Case	Unadjusted OR(95%CI)	p-value	Adjusted for Gender and Age OR(95%CI)	p-value
rs3093203	Codominant	AA	24	22	1.43 (1.05–1.93)	0.023	1.15 (0.78–1.69)	0.482
		AG	182	121			0.99 (0.44–2.24)	0.985
		GG	300	140	1.97 (1.07–3.62)	0.031	0.99 (0.44–2.24)	0.985
	Dominant	AA	206	143	1.49 (1.11–1.99)	0.008	1.13 (0.78–1.63)	0.526
		AG-GG	300	140			0.94 (0.42–2.07)	0.869
	Recessive	AA-AAG	24	22	1.69 (0.93–3.08)	0.084	1.07 (0.80–1.46)	0.646
	Log-additive	–	–	–	1.41 (1.11–1.79)	0.004		
rs3093193	Codominant	GG	39	11	0.74 (0.55–1.00)	0.048	0.93 (0.65–1.34)	0.704
		GC	212	115			0.39 (0.19–0.77)	0.007
		CC	256	187	0.69 (0.52–0.91)	0.010	0.86 (0.61–1.23)	0.421
	Dominant	GG	251	126	0.44 (0.22–0.87)	0.018	0.51 (0.22–1.16)	0.108
		GC-CC	256	187			0.44 (0.22–0.87)	0.018
	Recessive	GG-GC	39	11	0.44 (0.30–0.67)	0.002	0.82 (0.61–1.11)	0.197
	Log-additive	–	–	–	0.44 (0.30–0.65)	0.001		
rs3093110	Codominant	GA	109	37	0.48 (0.32–0.72)	$p < 0.000$	0.46 (0.28–0.76)	0.002
		AA	390	275			0.48 (0.32–0.72)	$p < 0.000$
	Dominant	GG	117	37	0.45 (0.30–0.67)	$p < 0.000$	0.44 (0.27–0.72)	0.001
		GA-AA	390	275			0.45 (0.30–0.67)	$p < 0.000$
	Recessive	GG-GA	8	0	0.44 (0.30–0.65)	$p < 0.000$	0.44 (0.27–0.72)	0.001
	Log-additive	–	–	–	0.44 (0.30–0.65)	$p < 0.000$	0.44 (0.27–0.72)	0.001

95%CI: 95% confidence interval, OR odds ratio, SNP single-nucleotide polymorphism
p^a: Calculated by logistic regression analysis
p^b: Calculated by logistic regression analysis adjusted for gender and age
Bold type indicates statistical significance ($p < 0.01$)
The relationship between haplotypes GGCTA, GCTCA and the risk of COPD were still not found (Table 5). After gender stratification, significant association between haplotypes GGCCG, ACCCA and the risk of COPD in males shown in Table S4. And when stratified analysis by smoking status (Table S5), haplotype GGCT showed the association with an increased risk of COPD (adjusted OR = 1.95, 95%CI: 1.02–3.73, \(p = 0.042 \)) in the smokers, while haplotype ACCC significantly associated with the risk of COPD in non-smokers (OR = 1.59, 95%CI: 1.06–2.31, \(p = 0.006 \)).

Discussion

In this study, we explored the connections of five variants of CYP4F2 and COPD risk in a Chinese Han population. Our results showed that rs3093203, rs3093193 and rs3093110 were significantly associated with the risk of COPD. After gender stratification, males with CYP4F2 variants (rs3093203, rs3093193 and rs3093110) showed the association with COPD risk. And the results of smoking status stratification showed that rs3093144 was associated with an increased risk of COPD in the smoker group. So, we speculated that CYP4F2 variants may be involved in the pathogenesis of COPD.

CYP4F2, located in the chromosome 19p13.12, contains 12 introns and 13 exons, which is a part of CYP4F gene cluster. Transgenic mice experiment by Lai et al. demonstrated that CYP4F2 was only expressed in the liver [24]. In the investigation of the effect of genetic variability in the CYP4F gene cluster on expression of the individual CYP4F genes in the liver, the results showed that CYP4F2 rs2108622 was correlated with an increased CYP4F2 mRNA expression level [25]. In addition, rs2108622 G was associated with IS in the Japanese men [21]. Another article reported by Liao et al. illustrated that CYP4F2 genetic variants were significantly correlated with IS risk and 20-

Table 3	Significant CYP4F2 variants associated with COPD susceptibility in males							
SNP	Model	Genotype	Control	Case	Unadjusted OR(95%CI)	\(p^a \)-value	Adjusted for Gender and Age OR(95%CI)	\(p^b \)-value
---------	---------------	----------	---------	------	----------------------	----------------	--------------------------------------	----------------
rs3093203	AA	17	18	1			1	
	Codominant	AG	124	93	1.43 (1.00–2.04)	0.052	1.04 (0.64–1.68)	0.881
		GG	196	103	2.02 (1.00–4.08)	0.051	1.13 (0.42–3.03)	0.804
	Dominant	AA	141	111	1.50 (1.06–2.11)	0.022	1.05 (0.66–1.66)	0.838
	Recessive	AA-GG	196	103			1	
	Log-additive	--	--	--	1.42 (1.08–1.88)	0.013	1.05 (0.72–1.53)	0.799
rs3093193	AA	18	6	1			1	
	Codominant	GC	141	88	0.77 (0.54–1.08)	0.133	1.08 (0.68–1.70)	0.756
		CC	177	144	0.41 (0.16–1.06)	0.066	0.61 (0.18–2.09)	0.435
	Dominant	GG	159	94	1.73 (0.87–3.43)	0.118	1.12 (0.43–2.92)	0.825
	Recessive	GG-GC	177	144	1.42 (1.08–1.88)	0.013	1.05 (0.72–1.53)	0.799
	Log-additive	--	--	--	1.42 (1.08–1.88)	0.013	1.05 (0.72–1.53)	0.799
rs3093110	GG	18	6	1			1	
	Codominant	GA	67	24	0.45 (0.27–0.73)	0.002	0.39 (0.20–0.76)	0.005
		AA	265	213	--	--	--	--
	Dominant	GG	71	24	0.45 (0.27–0.73)	0.002	0.39 (0.20–0.76)	0.005
	Recessive	GG-AA	265	213	0.42 (0.26–0.69)	0.001	0.38 (0.19–0.73)	0.004
	Log-additive	--	--	--	0.42 (0.26–0.68)	\(p < 0.000 \)	0.38 (0.20–0.73)	0.004

95%CI: 95% confidence interval, OR odds ratio, SNP single-nucleotide polymorphism
\(p^a \): Calculated by logistic regression analysis
\(p^b \): Calculated by logistic regression analysis adjusted for gender and age
Bold type indicates statistical significance (\(p < 0.01 \))
Hydroxyeicosatetraenoic Acid Level (20-HETE) [20]. IS patients with the genotype combination of rs9333025 GG and rs2108622 GG had higher 20-HETE levels compared to IS patients with other combinations of the two variants, which demonstrated that the interaction between rs9333025 GG and rs2108622 GG can increase capability to metabolize arachidonic acid to produce 20-HETE. The evaluated 20-HETE levels were related to vascular oxidative stress, endothelial dysfunction and high peripheral vascular resistance [26, 27]. And Parker found that pharmacological inhibition of 20-HETE can abolish the myogenic response during NOS antagonism in the ovine fetal pulmonary circulation [28]. Overall, 20-HETE, a biologically active 20-carbohydrate and therapeutic intervention target, involved in a variety of vascular events, such as regulating blood pressure, renal function, cerebral blood flow and pulmonary circulation [26, 27]. So, we speculated that the polymorphisms of CYP4F2 gene affected the pathogenesis of disease by altering arachidonic acid metabolism to produce 20-HETE.

In the year of 2011, the expression of CYP4F2 was found by Falus et al. to be a rapid elevation when children with respiratory disease to polarized light therapy [29]. In 2018, rs2074900 in CYP4F2 was found to be significantly related to therapeutic responses to erlotinib in sixty Han Chinese advanced non-small cell lung cancer patients received erlotinib monotherapy [16]. The above results indicated that CYP4F2 was involved in the pathogenesis of pulmonary disease and CYP4F2 variants played a vital role in the lung disease. In our results, we did not find a link between this site and the risk of COPD, but we firstly revealed that CYP4F2 variants (rs3093203, rs3093193 and rs3093110) were associated with the risk of COPD. In future, we will increase the sample size and continue to study the results, and

Table 4	Relationship of CYP4F2 gene polymorphisms and risk of COPD stratified by Smoking status									
SNP	Model	Genotype	Smoking	OR(95%CI)	p-value	Smoking	OR(95%CI)	p-value		
			Control	Case		Control	Case			
rs3093203	Codominant	AA	14	12	1	10	9	1		
	Dominant	AG	80	54	1.01 (0.52–1.96)	0.977	102	66	1.32 (0.80–2.16)	0.277
		GG	121	67	0.81 (0.22–3.02)	0.758	179	73	1.08 (0.34–3.38)	0.899
	Recessive	AA	14	12	1	10	9	1		
		AG-GG	201	121	0.98 (0.52–1.85)	0.949	281	139	1.29 (0.80–2.08)	0.301
	Log-additive	–	–	–	0.95 (0.57–1.59)	0.855	–	–	1.19 (0.8–1.79)	0.396
rs3093193	Codominant	GG	16	4	1	1	23	7	1	
	Dominant	GC	89	56	1.41 (0.74–2.72)	0.298	123	58	0.78 (0.49–1.25)	0.306
		CC	110	87	2.07 (0.44–9.59)	0.355	146	99	0.36 (0.13–1.02)	0.054
	Recessive	GG-GC	199	143	1.46 (0.77–2.76)	0.241	269	157	0.71 (0.45–1.11)	0.134
	Log-additive	–	–	–	1.42 (0.83–2.45)	0.204	–	–	0.69 (0.48–1.01)	0.054
rs3093110	Codominant	GA	41	16	0.61 (0.24–1.51)	0.282	68	21	0.42 (0.23–0.78)	0.006
	Dominant	AA	171	131	–	219	142	–	–	
		GG	4	0	1	4	0	1		
		GA-AA	212	147	0.58 (0.24–1.43)	0.237	287	163	0.40 (0.22–0.74)	0.004
	Recessive	GG-GA	45	16	1	72	21	1		
		AA	171	131	–	219	142	–	–	
	Log-additive	–	–	–	0.57 (0.24–1.37)	0.211	–	–	0.40 (0.22–0.73)	0.003

95%CI: 95% confidence interval, OR odds ratio, SNP single-nucleotide polymorphism
p-value: Calculated by logistic regression analysis adjusted for gender and age
Bold type indicates statistical significance (p < 0.01)
Fig. 1 Linkage disequilibrium (LD) analysis of five SNPs in CYP4F2. The LD value is determined by $r^2 > 0.8$ analyzed by Haplovew software 4.2. The number in the diamonds is the LOD score of r^2. Standard color schemes indicate the different levels of LD. Bright red: LOD > 2, $D^\prime = 1$

Table 5 CYP4F2 haplotypes frequencies associated with COPD risk

Gene	SNP	Haplotype	Frequency	Unadjusted	Adjusted for Gender and Age							
			Case	OR (95%CI)	p^a-value							
			Control									
				OR (95%CI)	p^b-value							
CYP4F2	rs3093203	rs3093193	rs12459936	rs3093144	rs3093110	GGCCG	0.941	0.881	2.15 (1.46–3.16)	$p < 0.000$	2.21 (1.36–3.60)	0.001
CYP4F2	rs3093203	rs3093193	rs12459936	rs3093144	rs3093110	GGCTA	0.139	0.162	0.83 (0.62–1.11)	0.201	1.02 (0.72–1.46)	0.896
CYP4F2	rs3093203	rs3093193	rs12459936	rs3093144	rs3093110	GCTCA	0.486	0.461	1.11 (0.91–1.36)	0.317	1.21 (0.94–1.55)	0.150
CYP4F2	rs3093203	rs3093193	rs12459936	rs3093144	rs3093110	GGCCA	0.979	0.997	0.14 (0.04–0.49)	0.002	0.09 (0.02–0.41)	0.002
CYP4F2	rs3093203	rs3093193	rs12459936	rs3093144	rs3093110	ACCCA	0.706	0.776	0.68 (0.54–0.86)	0.001	0.91 (0.68–1.23)	0.536
CYP4F2	rs3093203	rs3093193	rs12459936	rs3093144	rs3093110	GCCCA	0.998	0.975	16.22 (2.19–120.30)	0.006	15.18 (1.65–139.60)	0.016

95%CI: 95%Confidence interval, OR Odds ratio, SNP Single nucleotide polymorphism

p^a values were calculated by logistic regression analysis without adjusted

p^b values were calculated by logistic regression analysis after adjusted for gender and age
continue to explore the polymorphisms of CYP4F2 gene to affect the pathogenesis of COPD by changing the yield of 20-HETE.

Conclusions
In conclusion, we revealed that rs3093203, rs3093193 and rs3093110 were significantly associated with the risk of COPD, especially in the Hainan male population. Rs3093144 may be a risk factor shown from the smoking status. The overall results may provide more evidences for COPD risk diagnosis.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s12931-020-01348-6.

Acknowledgments
We are very grateful to those who participated in this manuscript. Meanwhile, we also thank a professional person for the valuable suggestions to the work.

Authors’ contributions
Yipeng Ding, Yixiu Yang, Quanli Li, Qiong Feng and Jianfang Liu completed genotyping and performed the manuscript. Dongchuan Xu, Cibing Wu, Jie Zhao, Xiaoli Zhou, Huan Niu and Ping He participated in the data management, statistical analysis and modified the manuscript. Yipeng Ding and Hongxia Yao designed the study, co-supervised the work and modified the manuscript. All authors have approved the final manuscript.

Funding
This work was supported by the National Natural Science Foundation of China (No. 81660013 and No.81860015) and Key Research and Development Plan of Hainan province (No. ZDYF2018116).

Availability of data and materials
Not applicable.

Ethics approval and consent to participate
The study was approved by the Ethics Committee of Hainan General Hospital (Med-Eth-Re [2019]42) and we obtained written informed consent from all individual participants.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of General Practice, Hainan General Hospital, Haikou 570102, Hainan, China. 2Hainan Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan, China. 3Hainan General Hospital, University of South China, Haikou 570102, Hainan, China.

Received: 6 November 2019 Accepted: 1 April 2020

References
1. Vos T, Allen C, Arora M, Barber RM, Bhutta ZA, Brown A, Carter A, Casey D, Chen H, Chisholm D, et al. The global burden of disease and injury from 1990 to 2010: results of the GBD 2010 study. Lancet. 2012;380(9859):2163–76.
2. Murray JL, Akhtar Z, Abi Samra B, Aggarwal S, Alwan A, et al. Global, regional, and national age-sex-specific all-cause and cause-specific mortality for 240 causes of death, 1990–2016: a systematic analysis for the global burden of disease study 2016. Lancet. 2017;390(10103):1779–808.
3. Adedoyin DO, Chua S, Lee C, Basquill C, Papana A, Theodoratou E, Nair H, Gasevic D, Sridhar D, Campbell H. Global and regional estimates of COPD prevalence: systematic review and meta-analysis. J Glob Health. 2015;5(2):020415.
4. Zhang Z, Wang H, Zhu J, Chen W, Wang L, Liu S, Li Y, Wang L, Liu Y, Yin P. Cause-specific mortality for 250 causes in China during 1990–2016: a systematic subnational analysis for the global burden of disease study 2013. Lancet. 2017;389(10075):1028–46.
5. Zhu M, Wang H, Zhu J, Chen W, Wang L, Liu S, Li Y, Wang L, Liu Y, Yin P. Cause-specific mortality for 250 causes in China during 1990–2016: a systematic subnational analysis for the global burden of disease study 2013. Lancet. 2017;389(10075):1028–46.
6. Wang B, Zhou H, Yang J, Xiao J, Liang B, Xiao J, Li D, Zhou H, Zeng Q, Fang C, Rao Z, et al. Association of HCP polymorphisms with COPD and COPD-related phenotypes in a Chinese Han population. Genes. 2013;5:101–9.
7. Kim WJ, Lee MK, Shin C, Cho NH, Lee SD, Oh YM, Sung J. Genome-wide association studies identify loci on 6p21 influencing lung function in the Korean population. Respir Res. 2014;15:360–7.
8. Uslu A, Ogus C, Ozdemir T, Bilgen T, Tosan O, Kesar I. The effect of CYP1A2 gene polymorphisms on theophylline metabolism and chronic obstructive pulmonary disease in Turkish patients. J Biochem Mol Biol. 2010;43:530–4.
9. Akkumalar F, Yilmaz O, Karakas B, et al. Genetic characterization of chronic obstructive pulmonary disease is heterogeneous cell-type and phenotype associations. Nat Genet. 2019;51:494–505.
10. Liu H, Li Y, Niu F, Fan M, Yuan J, Duan T, et al. Polymorphisms of drug-metabolising enzyme CYP2E1 in Chinese Uygur population. Medicine (Baltimore). 2018;97:e12697.
11. Mao Y, Zhou J, Wang Y, et al. Genetic polymorphism of the drug-metabolizing enzyme CYP2E1 in a Chinese Han population. Acta Pharmacol Sin. 2018;39:1257–64.
12. Wang C, Chen F, Liu Y, Xu Q, Guo L, Zhang X, Ruan Y, Shi Y, Shen H, et al. Genetic Association of Drug Response to Erlotinib in a Tibetan Population. Front Pharmacol. 2018;9:360.
13. Van Engen CE, Olman K, Defrnoy J, van Goethem TJ, Verheij E, Jan I, Vidaud M, et al. Gene expression profiling analysis contributes to understanding the association between non-syndromic cleft lip and palate, and cancer. Mol Med Rep. 2016;13:2110–6.
14. Meng C, Wang J, Gao W, Tang S, Xu G. Correlation between CYP4F2 gene rs2108622 polymorphism and susceptibility to ischemic stroke. Int J Clin Exp Med. 2015;8:16122–6.
20. Liao D, Yi X, Zhang B, Zhou Q, Lin J. Interaction between CYP4F2 rs2108622 and CPY4A11 rs9333025 variants is significantly correlated with susceptibility to ischemic stroke and 20-Hydroxyeicosatetraenoic acid level. Genet Test Mol Biomarkers. 2016;20:223–8.

21. Fu Z, Nakayama T, Sato N, Izumi Y, Kasamaki Y, Shindo A, Ohta M, Soma M, Aoi N, Sato M. A haplotype of the CYP4F2 gene is associated with cerebral infarction in Japanese men. Am J Hypertens. 2008;21:1216–23.

22. Vogelmeier C, Criner GJ, Martinez FJ, Anzueto A, Barnes PJ, Bourbeau J, Celli BR, Chen R, Decramer M, Fabbri L. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017 Report. GOLD Executive Summary. Am J Respir Crit Care Med. 2017;195:557–82.

23. Ding Y, Yang D, Zhou L, Xu J, Chen Y, He P, Yao J, Chen J, Niu H, Sun P. Variants in multiple genes polymorphism association analysis of COPD in the Chinese Li population. Int J Chron Obstruct Pulmon Dis. 2015;10:1455–63.

24. Lai G, Liu X, Wu J, Liu H, Zhao Y. Evaluation of CMV and KAP promoters for driving the expression of human CYP4F2 in transgenic mice. Int J Mol Med. 2011;29:107–12.

25. Zhang J, Klein K, Jorgensen AL, Francis B, Alfrevic A, Bourgeois S, Deloukas P, Zanger UM, Pirmohamed M. Effect of genetic variability in the CYP4F2, CYP4F11, and CYP4F12 genes on liver mRNA levels and warfarin response. Front Pharmacol. 2017;8:323.

26. Waldman M, Peterson SJ, Arad M, Hochhauser E. The role of 20-HETE in cardiovascular diseases and its risk factors. Prostaglandins Other Lipid Mediat. 2016;125:108–17.

27. Hoopes SL, Garcia V, Edin ML, Schwartzman ML, Zeldin DC. Vascular actions of 20-HETE. Prostaglandins Other Lipid Mediat. 2015;120:9–16.

28. Parker TA, Grover TR, Kinsella JP, Falck JR, Abman SH. Inhibition of 20-HETE abolishes the myogenic response during NOS antagonism in the ovine fetal pulmonary circulation. Am J Physiol Lung Cell Mol Physiol. 2005;289:L261–7.

29. Falus A, Fenyo M, Eder K, Madarasi A. Genome-wide gene expression study indicates the anti-inflammatory effect of polarized light in recurrent childhood respiratory disease. Inflamm Res. 2011;60:965–72.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.