Markov dilations of semigroups of Fourier multipliers

Cédric Arhancet

Received: 16 August 2022 / Accepted: 8 October 2022 / Published online: 18 October 2022
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

Abstract
We describe a Markov dilation for any weak* continuous semigroup \((T_t)_{t \geq 0}\) of selfadjoint unital completely positive Fourier multipliers acting on the group von Neumann algebra \(VN(G)\) of a locally compact group \(G\).

Keywords Semigroups · Dilations · Fourier multipliers · Completely positive maps · Crossed products

Mathematics Subject Classification Primary 47A20 · 47D03 · 46L51

Contents

1 Introduction ... 1
2 Preliminaries ... 2
3 Markov dilations of semigroups of Fourier multipliers 8
References .. 12

1 Introduction

Fourier multipliers are the most used operators in (noncommutative) harmonic analysis. In particular, the study of semigroups of these operators is a central issue. In the noncommutative setting, these are connected to a large number of topics, as approximation properties [15, 20] or noncommutative geometry [10].

In this paper, we will focus on weak* continuous semigroup \((T_t)_{t \geq 0}\) of selfadjoint unital completely positive Fourier multipliers acting on the group von Neumann algebra \(VN(G)\) of an arbitrary locally compact group \(G\). We construct a Markov dilation
in the sense of [28, p. 637] for these semigroups, which allows us to state our main result Theorem 3.1.

This construction makes it possible to use martingale theory and obtain results in analysis with probability tools. Indeed, Junge and Mei studied in [29] several BMO-spaces associated to a Markov semigroup on a semifinite von Neumann algebra (i.e. a noncommutative L^∞-space). In particular, the authors obtained interpolation results. Their approach relies on Markov dilations of semigroups. Note that some extensions of these results were generalized to the σ-finite von Neumann algebras in the paper [17]. Other applications of these dilations include some estimates related to Riesz transforms [29] and connected to the curvature assumption $\Gamma^2 \geq 0$, boundedness of the H^∞ functional calculus of the (negative) generator of the semigroup [27] [19] with applications to maximal inequalities and to ergodic theory.

Observe that Markov dilations are really different from the kind of dilation constructed in the papers [3–5] in the spirit of classical Fendler’s isometric dilation theorem [18] (see also [7, 8] for related works). Furthermore, it is remarkable that the algebra associated to the dilation of this paper is the same that the algebra associated to the dilation constructed in [5]. However, we were unable to find a direct connection between the construction of this paper and the dilation described in [3].

Note that Markov dilations of weak* continuous semigroups of selfadjoint unital completely positive measurable Schur multipliers on σ-finite measure spaces were explicitly constructed in [6]. In [17], it is described how to obtain Markov dilations of radial semigroups on free Araki-Woods factors. The paper [16] contains a construction of Markov dilations of semigroups of double operator integrals. Finally, an unpublished paper [30] of Junge, Ricard and Shlyakhtenko describes a construction of a Markov dilation for any weak* continuous semigroup of selfadjoint unital completely positive maps on a finite von Neumann algebra (see also the recent [42] for a related construction in the type III case). In the three preceding papers, the construction relies on the use of ultraproduct methods with sharp contrast with the ones of [6] and of this paper. The construction of concrete dilations and Markov dilations remains very important, especially for Ricci curvature bounds, see e.g. [13].

In the discrete setting of a semigroup $(T^n)_{n \in \mathbb{N}}$ associated to an operator T acting on a von Neumann algebra, a notion of Markov dilation was introduced in [2] and thoroughly investigating in [23]. Examples of such dilations are also provided in [38].

Structure of the paper The paper is organized as follows. The next Sect. 2 gives background on probabilities, Fourier multipliers and crossed products. In Sect. 3, we state and prove our dilation result and we describe a reversed result.

2 Preliminaries

Isonormal processes Let H be a real Hilbert space. An H-isonormal process on a probability space (Ω, μ) [35, Definition 1.1.1] [33, Definition 6.5] is a linear mapping $W : H \to L^0(\Omega)$ from H into the space $L^0(\Omega)$ of measurable functions on Ω with the following properties:
for any $h \in H$ the random variable $W(h)$ is a centered real Gaussian, \hspace{1cm} (2.1)
for any $h_1, h_2 \in H$ we have $\mathbb{E}(W(h_1)W(h_2)) = \langle h_1, h_2 \rangle_H$, \hspace{1cm} (2.2)
the linear span of the products $W(h_1)W(h_2)\cdots W(h_m)$, with $m \geq 0$ and h_1, \ldots, h_m in H, is dense in the real Hilbert space $L^2_{\mathbb{R}}(\Omega)$. \hspace{1cm} (2.3)

Here we make the convention that the empty product, corresponding to $m = 0$ in (2.3), is the constant function 1. Moreover, \mathbb{E} is used to denote expected value.

If $(e_i)_{i \in I}$ is an orthonormal basis of H and if $(\gamma_i)_{i \in I}$ is a family of independent standard Gaussian random variables on a probability space Ω then for any $h \in H$, the family $(\gamma_i(h, e_i)_H)_{i \in I}$ is summable in $L^2(\Omega)$ and

$$W(h) \overset{\text{def}}{=} \sum_{i \in I} \gamma_i(h, e_i)_H, \quad h \in H \hspace{1cm} (2.4)$$
defines an H-isonymous process.

Recall that the span of elements $e^{iW(h)}$ where $h \in H$ is weak* dense in $L^\infty(\Omega)$ by [26, Remark 2.15 p. 22]. It is easy to prove that we can replace H by a dense subset of H with Lemma 2.1 below. Using [25, Proposition E.2.2] with t instead of ξ and by observing by (2.2) that the variance $\mathbb{E}(W(h)^2)$ of the Gaussian variable $W(h)$ is equal to $\|h\|_H^2$, we see that

$$\mathbb{E}(e^{itW(h)}) = e^{-\frac{t^2}{2}\|h\|_H^2}, \quad t \in \mathbb{R}, \ h \in H. \hspace{1cm} (2.5)$$

If $u : H \rightarrow H$ is a contraction, we denote by $\Gamma^\infty(u) : L^\infty(\Omega) \rightarrow L^\infty(\Omega)$ the (symmetric) second quantization of u acting on the complex Banach space $L^\infty(\Omega)$. Recall that the map $\Gamma^\infty(u) : L^\infty(\Omega) \rightarrow L^\infty(\Omega)$ preserves the integral.\footnote{That means that for any $f \in L^\infty(\Omega)$ we have $\int_{\Omega} \Gamma^\infty(u)f \, d\mu = \int_{\Omega} f \, d\mu$.} If u is a surjective isometry we have

$$\Gamma^\infty(u)(e^{iW(h)}) = e^{iW(u(h))}, \quad h \in H \hspace{1cm} (2.6)$$

and $\Gamma^\infty(u) : L^\infty(\Omega) \rightarrow L^\infty(\Omega)$ is a *-automorphism of the von Neumann algebra $L^\infty(\Omega)$. If $P : H \rightarrow H$ is an orthogonal projection on a closed subspace K, the operator $\Gamma^\infty(u) : L^\infty(\Omega) \rightarrow L^\infty(\Omega)$ is a faithful normal conditional expectation with range $L^\infty(\Omega, \mathcal{F})$ where \mathcal{F} is the σ-algebra generated by the random variables $W(h)$ for $h \in K$, see [26, Theorem 4.9 p. 46].

Furthermore, the second quantization functor Γ satisfies the following elementary result [5, Lemma 2.1]. In the first part, we suppose that the construction\footnote{The existence of a proof of Lemma 2.1 without (2.4) is unclear.} is given by the concrete representation (2.4).

Lemma 2.1 \hspace{0.5cm} 1. If $L^\infty(\Omega)$ is equipped with the weak* topology then the map $H \rightarrow L^\infty(\Omega), h \mapsto e^{iW(h)}$ is continuous.
2. If \(\pi : G \to B(H) \) is a strongly continuous orthogonal representation of a locally compact group, then \(G \to B(L^\infty(\Omega)) \), \(s \mapsto \Gamma^\infty(\pi_s) \) is a weak* continuous \(^3\) representation on the Banach space \(L^\infty(\Omega) \).

Let \(H \) be a real Hilbert space. Following [34, Definition 2.2] and [33, Definition 6.11], we say that an \(L^2(\mathbb{R}^+, H) \)-isonormal process \(W \) is an \(H \)-cylindrical Brownian motion. In this case, for any \(t \geq 0 \) and any \(h \in H \), we let

\[
W_t(h) \overset{\text{def}}{=} W(1_{[0,t]} \otimes h).
\] (2.7)

We introduce the filtration \((\mathcal{F}_t)_{t \geq 0} \) defined by

\[
\mathcal{F}_t \overset{\text{def}}{=} \sigma(W_r(h) : r \in [0,t], h \in H),
\] (2.8)

that is the \(\sigma \)-algebra generated by the random variables \(W_r(h) \) for \(r \in [0,t] \) and \(h \in H \).

By [33, p. 77], for any fixed \(h \in H \), the family \((W_t(h))_{t \geq 0} \) is a Brownian motion. This means by essentially [33, Definition 6.2] that

\[
W_0(h) = 0 \text{ almost surely,}
\] (2.9)

\[
W_t(h) - W_u(h) \text{ is Gaussian with variance } (t-u)\|h\|_H^2 \text{ for any } 0 \leq u \leq t,
\] (2.10)

\[
W_t(h) - W_u(h) \text{ is independent of } \{W_r(h) : r \in [0,u]\} \text{ for any } 0 \leq u \leq t.
\] (2.11)

Indeed by [33, p. 163],

the increment \(W_t(h) - W_u(h) \) is independent of the \(\sigma \)-algebra \(\mathcal{F}_u \). \hspace{1cm} (2.12)

Moreover, by [33, p. 163] the family \((W_t(h))_{t \geq 0} \) is a martingale with respect to \((\mathcal{F}_t)_{t \geq 0} \). In particular, the random variable \(W_t(h) \) is \(\mathcal{F}_t \)-measurable. If \(0 \leq u \leq t \), note that

\[
\|1_{[u,t]} \otimes h\|_{L^2(\mathbb{R}_+)}^2 = \|1_{[u,t]}\|_{L^2(\mathbb{R}_+)}^2 \|h\|_H^2 = (t-u)\|h\|_H^2.
\]

Using (2.5) together with the previous computation, we obtain

\[
\mathbb{E}(e^{iW(1_{[u,t]} \otimes h)}) = e^{-\frac{(t-u)}{2}\|h\|_H^2}, \quad 0 \leq u \leq t, \quad h \in H.
\] (2.13)

Probabilities Let \(\Omega \) be a probability space. If \(f \in L^1(\Omega) \) is independent of the sub-\(\sigma \)-algebra \(\mathcal{F} \), then by [24, Proposition 2.6.35] its conditional expectation \(\mathbb{E}_{\mathcal{F}}(f) \) with respect to \(\mathcal{F} \) is given by the constant function:

\[
\mathbb{E}_{\mathcal{F}}(f) = \mathbb{E}(f).
\] (2.14)

\(^3\) That means that \(B(L^\infty(\Omega)) \) is equipped with the point weak* topology.
If \(g \in L^\infty(\Omega) \) is \(\mathcal{F} \)-measurable and \(f \in L^1(\Omega) \), we have by [24, Proposition 2.6.31]

\[
\mathbb{E}_\mathcal{F}(gf) = g \mathbb{E}_\mathcal{F}(f).
\]

Group von Neumann algebras Let \(G \) be a locally compact group equipped with a fixed left Haar measure \(\mu_G \). The group von Neumann algebra of \(G \) is the von Neumann algebra generated by the set \(\{ \lambda_s : s \in G \} \) where \(\lambda_s : L^2(G) \to L^2(G), \; f \mapsto (t \mapsto f(s^{-1}t)) \) is the left translation by \(s \).

Crossed products We refer to [39] and [40] for more information on crossed products. Let \(M \) be a von Neumann algebra acting on a Hilbert space \(H \). Let \(G \) be a locally compact group equipped with some left Haar measure \(\mu_G \). Let \(\alpha : G \to M \) be a representation of \(G \) on \(M \) which is weak* continuous, i.e., for any \(x \in M \) and any \(y \in M_s \), the map \(G \to M, \; s \mapsto \langle \alpha_s(x), y \rangle_{M,M_s} \) is continuous. For any \(x \in M \), we define the operators \(\pi(x) : L^2(G, H) \to L^2(G, H) \) [39, (2) p. 263] by

\[
(\pi(x)\xi)(s) \overset{\text{def}}{=} \alpha_s^{-1}(x)\xi(s), \quad \xi \in L^2(G, H), \; s \in G. \tag{2.16}
\]

These operators satisfy the following commutation relation [39, (2) p. 292]:

\[
(\lambda_s \otimes \text{Id}_H)\pi(x)(\lambda_t \otimes \text{Id}_H)^* = \pi(\alpha_s(x)), \quad x \in M, \; s \in G. \tag{2.17}
\]

Recall that the crossed product of \(M \) and \(G \) with respect to \(\alpha \) is the von Neumann algebra

\[
M \rtimes_\alpha G \overset{\text{def}}{=} (\pi(M) \cup \{ \lambda_s \otimes \text{Id}_H : s \in G \})''
\]

on the Hilbert space \(L^2(G, H) \) generated by the operators \(\pi(x) \) and \(\lambda_s \otimes \text{Id}_H \) where \(x \in M \) and \(s \in G \). By [39, p. 263], \(\pi \) is a normal injective *-homomorphism from \(M \) into \(M \rtimes_\alpha G \) (hence \(\sigma \)-strong* continuous).

We denote by \(\mathcal{K}(G, M) \) the space of \(\sigma \)-strong* continuous functions \(f : G \to M, \; s \mapsto f_s \) with compact support. If \(f \in \mathcal{K}(G, M) \) then \(f(G) \) is a \(\sigma \)-strong* compact subset of \(M \), hence by [36, Proposition 2.7 d)] a \(\sigma \)-strong* bounded subset of \(M \). Hence it is a strong bounded subset and finally a norm-bounded subset of \(M \) by the principle of uniform boundedness [31, Theorem 1.8.9]. Note that by [39, Proposition p. 186] and [39, p. 41], the bounded function \(G \to M, \; s \mapsto \lambda_s \otimes \text{Id}_H \) is \(\sigma \)-strong* continuous and the norm-bounded function \(s \mapsto \pi(f_s) \) is also \(\sigma \)-strong* continuous. Recall that the product of \(M \) is \(\sigma \)-strong* continuous on bounded subsets by [14, Proposition 2.4.5]. We infer\(^4\) that the function \(G \to M \rtimes_\alpha G, \; s \mapsto \pi(f_s)(\lambda_s \otimes \text{Id}_H) \) is \(\sigma \)-strong* continuous with compact support.

\(^4\) In the book [39], the author considers weak* continuous functions, it is problematic since the product of \(M \) is not weak* continuous even on bounded sets by [31, Exercise 5.7.9] (indeed this latter fact is equivalent to the weak continuity of the product on bounded sets).
So, by [5, Lemma 2.2] and [12, Corollary 2, III p. 38] we can define the element
\[
\int_G f_s \rtimes \lambda_s \, d\mu_G(s)
\]
of the crossed product \(M \rtimes \alpha \) by
\[
\int_G f_s \rtimes \lambda_s \, d\mu_G(s) \overset{\text{def}}{=} \int_G \pi(f_s)(\lambda_s \otimes \text{Id}_H) \, d\mu_G(s).
\] (2.18)

The following is a particular case\(^5\) of [41, Proposition 3.5] and its proof, see also [40, Theorem 1.7 (ii) p. 241]. Note that the von Neumann algebra \(M \) is abelian in the statement. With [12, Proposition 2, III p. 35], the last part is an easy computation left to the reader.

Proposition 2.2 Let \(M \) be an abelian von Neumann algebra acting on a Hilbert space \(H \) equipped with a weak* continuous action \(\alpha \) of a locally compact group \(G \). Suppose that there exists a strongly continuous function \(u : G \to \mathcal{U}(M) \) such that
\[
u(sr) = u(s)\alpha_s(u(r)), \quad s, r \in G.
\] (2.19)

Then \(V : L^2(G, H) \to L^2(G, H), \xi \mapsto (s \mapsto u(s^{-1})\xi(s)) \) is a unitary and we have a *-isomorphism \(U : M \rtimes \alpha \to M \rtimes \alpha \), \(x \mapsto VxV^* \) such that
\[
U(\lambda_s \otimes \text{Id}_H) = \pi(u(s)^*)(\lambda_s \otimes \text{Id}_H) \quad \text{and} \quad U(\pi(x)) = \pi(x), \quad s \in G, x \in M.
\]
Moreover, for any \(f \in \mathcal{K}(G, M) \), we have
\[
U\left(\int_G f_s \rtimes \lambda_s \, d\mu_G(s)\right) = \int_G u(s)^* f_s \rtimes \lambda_s \, d\mu_G(s).
\] (2.20)

Now, we suppose that the von Neumann algebra \(M \) is finite and equipped with a normal finite faithful trace \(\tau \). By [21, Lemma 3.3] [39, Theorem p. 301] [40, Theorem 1.17 p. 249], there exists a unique normal semifinite faithful weight \(\varphi_{\ltimes} \) on the crossed product \(M \rtimes \alpha \) which satisfies for any \(f, g \in \mathcal{K}(G, M) \) the fundamental “noncommutative Plancherel formula”
\[
\varphi_{\ltimes} \left(\left(\int_G f_s \rtimes \lambda_s \, d\mu_G(s) \right)^* \left(\int_G g_s \rtimes \lambda_s \, d\mu_G(s) \right) \right) = \int_G \tau(f_s^* g_s) \, d\mu_G(s)
\] (2.21)
and the relations
\[
\sigma_t^{\varphi_{\ltimes}}(\pi(x)) = \pi(x) \quad \text{where} \quad x \in M \quad \text{and} \quad t \in \mathbb{R}
\]
and
\[
\sigma_t^{\varphi_{\ltimes}}(\lambda_s \otimes \text{Id}_H) = \Delta^\mu_G(s)(\lambda_s \otimes \text{Id}_H) \pi([D(\tau \circ \alpha_s) : \text{D}]) \quad \text{for} \quad s \in G, x \in M.
\]

If \(M = \mathbb{C} \), we recover the Plancherel weight \(\varphi_G \) on the group von Neumann algebra \(\text{VN}(G) \) [40, p. 67]. If each \(\alpha_s : M \to M \) is trace preserving, we obtain in particular
\[
\sigma_t^{\varphi_{\ltimes}}(\lambda_s \otimes \text{Id}_H) = \Delta^\mu_G(s)(\lambda_s \otimes \text{Id}_H), \quad s \in G, t \in \mathbb{R}.
\]

\(^5\) The function \(u : G \to \mathcal{U}(M) \) is a \(\alpha \)-1-cocycle.
Using [12, Proposition 2, III p. 35], we deduce that

\[
\sigma_t^\phi (\int_G f_s \rtimes \lambda_s \, d\mu_G(s)) = \int_G \Delta_t^\phi G(s) f_s \rtimes \lambda_s \, d\mu_G(s), \quad f \in \mathcal{K}(G, M), \quad t \in \mathbb{R}.
\]

(2.22)

By [22, Theorem 4.1], we have the following result. Note that the proof of [22, Theorem 4.1] does not use the fact that \(G \) is abelian. The second part is an obvious observation left to the reader.

Lemma 2.3 Let \(G \) be a locally compact group and \(\alpha : G \to \text{Aut}(M) \) be a weak* continuous action on a von Neumann algebra \(M \) equipped with a normal semifinite faithful weight. Let \(\mathbb{E} : M \to M \) be a weight preserving faithful normal conditional expectation such that \(\mathbb{E}\alpha_s = \alpha_s \mathbb{E} \) for any \(s \in G \).

1. There exists a weight preserving faithful normal conditional expectation \(\mathbb{E} \rtimes \text{Id}_{\mathcal{VN}(G)} : M \rtimes_\alpha G \to M \rtimes_\alpha G \) such that for any \(s \in G \) and any \(x \in M \)

\[
(\mathbb{E} \rtimes \text{Id}_{\mathcal{VN}(G)})(\pi(x)) = \pi(\mathbb{E}(x)), \quad (\mathbb{E} \rtimes \text{Id}_{\mathcal{VN}(G)})(\lambda_s \otimes \text{Id}_H) = \lambda_s \otimes \text{Id}_H.
\]

2. For any function \(f \in \mathcal{K}(G, M) \), we have

\[
(\mathbb{E} \rtimes \text{Id}_{\mathcal{VN}(G)})(\int_G f_s \rtimes \lambda_s \, d\mu_G(s)) = \int_G \mathbb{E}(f_s) \rtimes \lambda_s \, d\mu_G(s).
\]

(2.23)

Weights We will use the following result which is a particular case of [39, Theorem 6.2 p. 83]. Recall that a normal semifinite weight \(\psi \) commutes with a normal semifinite faithful weight \(\varphi \) if \(\psi \circ \sigma_t^\varphi = \psi \) for any \(t \in \mathbb{R} \), see [39, p. 68] and that \(n_\varphi \) is a weak* dense *-subalgebra of \(M \) such that \(A \subseteq n_\varphi \) which is \(\sigma^\psi \)-invariant such that

\[
\psi(x^*x) = \varphi(x^*x), \quad x \in A.
\]

Then \(\varphi = \psi \).

Fourier multipliers Let \(G \) be a locally compact group. We say that a weak* continuous operator \(T : \mathcal{VN}(G) \to \mathcal{VN}(G) \) is a Fourier multiplier if there exists a continuous function \(\phi : G \to \mathbb{C} \) such that for any \(s \in G \) we have \(T(\lambda_s) = \phi(s) \lambda_s \). In this case, \(\phi \) is bounded and for any function \(f \in C_c(G) \) the element \(\int_G \phi(s) f(s) \lambda_s \, d\mu_G(s) \) belongs to the von Neumann algebra \(\mathcal{VN}(G) \) and

\[
T\left(\int_G f(s) \lambda_s \, d\mu_G(s) \right) = \int_G \phi(s) f(s) \lambda_s \, d\mu_G(s).
\]

(2.24)
In this case, we let \(M_{\phi} \overset{\text{def}}{=} T \) and we say that \(\phi \) is the symbol of \(T \). We refer to the books [32] and [9] and references therein for more information.

Semigroups of Fourier multipliers Consider a locally compact group \(G \) with identity element \(e \). Let \((T_t)_{t \geq 0}\) be a weak* continuous semigroup of selfadjoint unital completely positive Fourier multipliers. There exists a (unique) continuous real-valued conditionally negative definite function \(\psi : G \to \mathbb{R} \) satisfying \(\psi(e) = 0 \) such that
\[
T_t(\lambda_s) = e^{-t\psi(s)}\lambda_s, \quad t \geq 0, \ s \in G.
\]

In this case, there exists a real Hilbert space \(H \) together with a mapping \(b_{\psi} : G \to H \) and a homomorphism \(\pi : G \to O(H) \) such that the 1-cocycle law holds
\[
\pi_s(b_{\psi}(r)) = b_{\psi}(sr) - b_{\psi}(s), \quad \text{i.e.} \quad b_{\psi}(sr) = b_{\psi}(s) + \pi_s(b_{\psi}(r)) \tag{2.25}
\]
for any \(s, r \in G \) and such that
\[
\psi(s) = \|b_{\psi}(s)\|_H^2, \quad s \in G. \tag{2.26}
\]

We refer to the book [11] for more information on affine isometric actions of groups and 1-cocycles.

3 Markov dilations of semigroups of Fourier multipliers

Our main result is the following theorem which gives a standard Markov dilation. Here, we equip the von Neumann algebra \(\text{VN}(G) \) with the Plancherel weight.

Theorem 3.1 Let \(G \) be a locally compact group. Consider a weak* continuous semigroup \((T_t)_{t \geq 0}\) of selfadjoint unital completely positive Fourier multipliers on \(\text{VN}(G) \) defined by (2.26). Then there exists a von Neumann algebra \(M \) equipped with a normal semifinite faithful weight \(\phi_M \), an increasing filtration \((M_t)_{t \geq 0}\) of the algebra \(M \) with associated weight preserving normal faithful conditional expectations \(\mathbb{E}_t : M \to M_t \) and weight preserving unital normal injective \(*\)-homomorphisms \(\pi_t : \text{VN}(G) \to M_t \) such that
\[
\mathbb{E}_u \pi_t = \pi_{uT_{t-u}}, \quad 0 \leq u \leq t. \tag{3.1}
\]

Moreover, we have the following properties.

1. If \(G \) is discrete then the weight \(\phi_M \) is a normal finite faithful trace.
2. If \(G \) is unimodular then the weight \(\phi_M \) is a normal semifinite faithful trace.
3. If \(G \) is amenable then the von Neumann algebra \(M \) is injective.

Proof Here, we suppose that \(H, \pi \) and \(b_{\psi} \) are defined as in (2.25). Let \(W : L^2_{\mathbb{R}^+}(\mathbb{R}^+, H) \to L^0(\Omega) \) be an \(H \)-cylindrical Brownian motion on a probability space \((\Omega, \mu)\), see Sect. 2. For any \(s \in G \), we will use the second quantization \(\alpha_s \overset{\text{def}}{=} \Gamma_\infty(\text{Id}_{L^2_{\mathbb{R}^+}(\mathbb{R}^+)}) \otimes \mathbb{E}_s \).
$\pi_s) : L^\infty(\Omega) \to L^\infty(\Omega)$ which is integral preserving. In particular, if $r, s \in G$ and if $t \geq 0$, we have

$$
\alpha_s(e^{-\sqrt{2iW_t(b_\psi(r))}}) = \Gamma^\infty(Id_{L^2(\mathbb{R}^+)} \otimes \pi_s)(e^{-\sqrt{2iW_t(b_\psi(r))}}) \overset{\text{(2.6)}}{=} e^{-\sqrt{2iW_t}(\pi_s(b_\psi(r)))}.
$$

(3.2)

Since the orthogonal representation π is strongly continuous, we obtain by Lemma 2.1 a continuous action $\alpha : G \to \text{Aut}(L^\infty(\Omega))$. So we can consider the crossed product $M \overset{\text{def}}{=} L^\infty(\Omega) \rtimes_\alpha G$ equipped with its canonical normal semifinite faithful weight $\varphi_M \overset{\text{def}}{=} \varphi_\pi$. We denote by $J : \text{VN}(G) \to L^\infty(\Omega) \rtimes_\alpha G$ the canonical unital normal injective $*$-homomorphism. Using [12, Proposition 2, III p. 35], for any $f \in C_c(G)$, we see that

$$
J\left(\int_G f(s)\lambda_s \ d\mu_G(s)\right) = \int_G f(s) 1 \rtimes \lambda_s \ d\mu_G(s).
$$

(3.3)

The same proof as the one of [6, Lemma 3.2], shows that the map J is weight preserving. For any $t \in \mathbb{R}$, we consider the function $u_t : G \to U(L^\infty(\Omega)), s \mapsto e^{-\sqrt{2iW_t}(b_\psi(s))}$. The map $b_\psi : G \to H$ is continuous. By the first point of Lemma 2.1, the map $L^2_\mathbb{R}(\mathbb{R}^+, H) \to L^\infty(\Omega), g \mapsto e^{iW(g)}$ is continuous if $L^\infty(\Omega)$ is equipped with the weak* topology, hence with the weak operator topology when we consider that the von Neumann algebra $L^\infty(\Omega)$ acts on $L^2(\Omega)$. Recall that by [31, Exercice 5.7.5] or [39, p. 41] the weak operator topology and the strong operator topology coincide on the unitary group $U(L^\infty(\Omega))$. So by composition, the function u_t is continuous if $U(L^\infty(\Omega))$ is equipped with the strong operator topology. For any $t \geq 0$ and any $r, s \in G$, note that

$$
u_t(sr) = e^{-\sqrt{2iW_t}(b_\psi(sr))} \overset{\text{(2.25)}}{=} e^{-\sqrt{2iW_t}(b_\psi(s))} e^{-\sqrt{2iW_t}(\pi_s(b_\psi(r)))} \overset{\text{(3.2)}}{=} u_t(s)\alpha_s(e^{-\sqrt{2iW_t}(b_\psi(r))}) = u_t(s)\alpha_s(u_r(r)).
$$

Hence (2.19) is satisfied. By Proposition 2.2, for any $t \geq 0$, we have a unitary $V_t : L^2(G, L^2(\Omega)) \to L^2(G, L^2(\Omega)), \xi \mapsto (s \mapsto u_t(s^{-1})(\xi(s)))$ and a $*$-isomorphism

$$
U_t : L^\infty(\Omega) \rtimes_\alpha G \to L^\infty(\Omega) \rtimes_\alpha G
$$

such that for any function $f \in \mathcal{K}(G, L^\infty(\Omega))$

$$
U_t\left(\int_G f_s \rtimes \lambda_s \ d\mu_G(s)\right) = \int_G e^{\sqrt{2iW_t}(b_\psi(s))} f_s \rtimes \lambda_s \ d\mu_G(s), \ t \geq 0.
$$

(3.4)

\[\square\]
Lemma 3.2 For any $t \geq 0$, the map U_t is weight preserving.

Proof We will use Lemma 2.4 with the weights φ_∞ and $\varphi_\times U_t$ on $L^\infty(\Omega) \rtimes_\alpha G$. Note that the space of elements $\int_G f_s \rtimes \lambda_s d\mu_G(s)$ for $f \in K(G, L^\infty(\Omega))$ is a *-subalgebra which is σ^{φ_\times}-invariant by (2.22), weak* dense in $L^\infty(\Omega) \rtimes_\alpha G$ and included in n_{φ_∞}. The formulas (2.22) and (3.4) show that each U_t and $\sigma_t^{\varphi_\times}$ commute. So, we have

$$\varphi_\times \circ U_t \circ \sigma_t^{\varphi_\times} = \varphi_\times \circ \sigma_t^{\varphi_\times} \circ U_t = \varphi_\times \circ U_t.$$

So the weights $\varphi_\times \circ U_t$ and φ_\times commutes by [39, pp. 67-68]. It is easy to check that the weight $\varphi_\times \circ U_t$ is normal and semifinite. If $f \in K(G, L^\infty(\Omega))$, we have

$$\varphi_\times \circ U_t \left(\left(\int_G f_s \rtimes \lambda_s d\mu_G(s) \right) \right)^* \left(\int_G f_s \rtimes \lambda_s d\mu_G(s) \right) = \varphi_\times \left(\left(U_t \left(\int_G f_s \rtimes \lambda_s d\mu_G(s) \right) \right)^* \left(U_t \left(\int_G f_s \rtimes \lambda_s d\mu_G(s) \right) \right) \right) \tag{3.4}$$

$$= \varphi_\times \left(\left(\int_G e^{\sqrt{2i}W_t(b_\psi(s))} f_s \rtimes \lambda_s d\mu_G(s) \right) \right)^* \left(\int_G e^{\sqrt{2i}W_t(b_\psi(s))} f_s \rtimes \lambda_s d\mu_G(s) \right) \tag{2.21}
\int_G \int_{\Omega} e^{-\sqrt{2i}W_t(b_\psi(s))} f_s^* e^{\sqrt{2i}W_t(b_\psi(s))} f_s d\mu_G(s) = \int_G \int_{\Omega} f_s^* f_s d\mu_G(s) \tag{2.21}
= \varphi_\times \left(\left(\int_G f_s \rtimes \lambda_s d\mu_G(s) \right) \right)^* \left(\int_G f_s \rtimes \lambda_s d\mu_G(s) \right).$$

We conclude with Lemma 2.4 that $\varphi_\times \circ U_t = \varphi_\times$ for any $t \geq 0$. \hfill \Box

For any $t \geq 0$, we define the unital normal injective *-homomorphism

$$\pi_t \overset{\text{def}}{=} U_t J : VN(G) \to L^\infty(\Omega) \rtimes_\alpha G. \tag{3.5}$$

Each π_t is weight preserving by composition. For any $t \geq 0$, we also define the canonical normal conditional expectations $E_{\mathcal{F}_t} : L^\infty(\Omega) \to L^\infty(\Omega)$ on $L^\infty(\Omega, \mathcal{F}_t)$ where the σ-algebra \mathcal{F}_t is defined in (2.8). Recall that $(W_t(h))_{t \geq 0}$ is a Brownian motion for any fixed $h \in H$. Hence for any $0 \leq u \leq t$ and any $s \in G$ the random variable

$$W(1_{[u,t]} \otimes b_\psi(s))
= W(1_{[0,t]} \otimes b_\psi(s)) - W(1_{[0,u]} \otimes b_\psi(s)) \overset{(2.7)}{=} W_t(b_\psi(s)) - W_u(b_\psi(s)) \tag{3.6}$$

is independent by (2.12) from the σ-algebra $\mathcal{F}_u \overset{(2.8)}{=} \sigma(W_r(h) : r \in [0, u], h \in H)$. Consequently, the random variable $e^{\sqrt{2i}W(1_{[u,t]} \otimes b_\psi(s))}$ is also independent from the σ-algebra \mathcal{F}_u.

Lemma 3.3 The σ-algebra \mathcal{F}_u is equal to the σ-algebra \mathcal{G} generated by the random variables $W(g)$ where $g \in L^2_{\mathcal{F}}([0, u], H)$. \hfill \qed
Proof} It suffices to show that the space $L^\infty(\Omega, \mathcal{F}_u)$ is weak* dense in $L^\infty(\Omega, \mathcal{G})$. Note that by [24, Remark 1.2.20 p. 24] the subspace E of elements $\sum_{k=1}^{m} 1_{(c_k, d_k]} \otimes h_k$, where $0 \leq c_1 < d_1 < c_2 < d_2 < \cdots < c_m < d_m \leq u$ and $h_1, \ldots, h_m \in H$, is dense in the real Hilbert space $L^2_{\mathbb{R}}([0, u], H)$. Hence by the discussion after (2.4) the span of elements $e^{iW(f)}$ where $f \in E$ is weak* dense in the space $\Gamma_1(L^2_{\mathbb{R}}([0, u], H))$, which identifies to $L^\infty(\Omega, \mathcal{G})$. We can conclude since $L^\infty(\Omega, \mathcal{F}_u)$ contains these elements.

Consider the projection $P_u : L^2_{\mathbb{R}}(\mathbb{R}^+, H) \to L^2_{\mathbb{R}}(\mathbb{R}^+, H)$ on the closed subspace $L^2_{\mathbb{R}}([0, u], H)$. By the previous lemma and by an observation following (2.6), we see that $\mathbb{E}_{\mathcal{F}_u} = \Gamma^\infty(P_u \otimes \text{Id}_H)$ for any $u \geq 0$. Consequently, for any $s \in G$ and any $u \geq 0$, we obtain that

$$\alpha_s \mathbb{E}_{\mathcal{F}_u} = \Gamma^\infty(\text{Id}_{L^2_{\mathbb{R}}(\mathbb{R}^+)} \otimes \pi_s) \Gamma^\infty(P_u \otimes \text{Id}_H) = \Gamma^\infty(P_u \otimes \pi_s) = \mathbb{E}_{\mathcal{F}_u} \alpha_s.$$

So by Lemma 2.3, we can consider the map $\mathbb{E}_t \overset{\text{def}}{=} \mathbb{E}_{\mathcal{F}_t} \times \text{Id}_{\mathcal{VN}(G)} : L^\infty(\Omega) \times_{\alpha} G \to L^\infty(\Omega, \mathcal{F}_t) \times_{\alpha} G$. We introduce the von Neumann algebra $N_t \overset{\text{def}}{=} L^\infty(\Omega, \mathcal{F}_t) \times_{\alpha} G$. Moreover, we have

\begin{equation}
\mathbb{E}_{\mathcal{F}_u}(e^{\sqrt{2iW_i(b_\psi(s))}}) \overset{(2.15)}{=} e^{\sqrt{2iW_u(b_\psi(s))}} \mathbb{E}_{\mathcal{F}_u}(e^{\sqrt{2iW(1_{[u,t]} \otimes b_\psi(s))}}) \\
\overset{(2.14)}{=} e^{\sqrt{2iW_u(b_\psi(s))}} \mathbb{E}(e^{\sqrt{2iW(1_{[u,t]} \otimes b_\psi(s))}}) \overset{(2.13)}{=} e^{-(t-u)\|b_\psi(s)\|^2} e^{\sqrt{2iW_u(b_\psi(s))}}.
\end{equation}

(3.7)

For any function $f \in C_c(G)$ and any $t \geq 0$, we have

$$\pi_t \left(\int_G f(s) \lambda_s \, d\mu_G(s) \right) \overset{(3.5)}{=} \pi_t J \left(\int_G f(s) \lambda_s \, d\mu_G(s) \right) = \pi_t \left(\int_G f(s) \lambda_s \, d\mu_G(s) \right) \overset{(3.4)}{=} \int_G f(s) e^{\sqrt{2iW_i(b_\psi(s))}} \times \lambda_s \, d\mu_G(s).$$

(3.8)

Similarly, for any $0 \leq u \leq t$, we have

$$\pi_u T_{t-u} \left(\int_G f(s) \lambda_s \, d\mu_G(s) \right) \overset{(2.24)}{=} \pi_u \left(\int_G e^{-(t-u)\|b_\psi(s)\|^2} f(s) \lambda_s \, d\mu_G(s) \right) \overset{(3.8)}{=} \int_G f(s) e^{-(t-u)\|b_\psi(s)\|^2} e^{\sqrt{2iW_u(b_\psi(s))}} \times \lambda_s \, d\mu_G(s).$$

(3.9)

\square Springer
We finally obtain for any $0 \leq u \leq t$ and any function $f \in C_c(G)$

$$
\mathbb{E}_u \pi_t \left(\int_G f(s) \lambda_s \, d\mu_G(s) \right) \overset{(3.8)}{=} \mathbb{E}_u \left(\int_G f(s)e^{\sqrt{2}iW_t(b_{\psi}(s))} \lambda_s \, d\mu_G(s) \right)
$$

$$
\overset{(2.23)}{=} \int_G f(s)\mathbb{E}_s \left(e^{\sqrt{2}iW_t(b_{\psi}(s))} \right) \lambda_s \, d\mu_G(s)
$$

$$
\overset{(3.7)}{=} \int_G f(s)e^{-(t-u)\|b_{\psi}(s)\|^2}e^{\sqrt{2}iW_u(b_{\psi}(s))} \lambda_s \, d\mu_G(s)
$$

$$
\overset{(3.9)}{=} \pi_u T_{t-u} \left(\int_G f(s) \lambda_s \, d\mu_G(s) \right).
$$

By weak* density, the proof is complete.

Now, we prove the last assertions. Note each $\alpha_s: L^\infty(\Omega) \to L^\infty(\Omega)$ preserves the integral. The first is well-known, e. g. [37, Corollary 7.11.8]. The second is folklore. The third is [1, Proposition p. 301].

Similarly, we can prove the following reversed Markov dilation.

Theorem 3.4 Let G be a locally compact group. Consider a weak* continuous semigroup $(T_t)_t \geq 0$ of selfadjoint unital completely positive Fourier multipliers on $\text{VN}(G)$ defined by (2.26). There exists a von Neumann algebra M equipped with a normal semifinite faithful weight, a decreasing filtration $(M_t)_t \geq 0$ of M with associated weight preserving normal faithful conditional expectations $\mathbb{E}_t: M \to M_t$ and weight preserving unital normal injective *-homomorphisms $\pi_t: \text{VN}(G) \to M_t$ such that

$$
\mathbb{E}_u \pi_t = \pi_u T_{t-u}, \quad 0 \leq t \leq u.
$$

Acknowledgements The author acknowledges support by the grant ANR-18-CE40-0021 (project HASCON) of the French National Research Agency ANR. The author is grateful to the referee for some corrections and a simplification of the proof.

References

1. Anantharaman-Delaroche, C.: Action moyennable d’un groupe localement compact sur une algèbre de von Neumann. (French). Math. Scand. 45(2), 289–304 (1979)

2. Anantharaman-Delaroche, C.: On ergodic theorems for free group actions on noncommutative spaces. Probab. Theory Related Fields 135(4), 520–546 (2006)

3. Arhancet, C.: On Matsaev’s conjecture for contractions on noncommutative L^p-spaces. J. Oper. Theory 69(2), 387–421 (2013)

4. Arhancet, C.: Dilations of semigroups on von Neumann algebras and noncommutative L^p-spaces. J. Funct. Anal. 276(7), 2279–2314 (2019)

5. Arhancet, C.: Dilations of Markovian semigroups of Fourier multipliers on locally compact groups. Proc. Am. Math. Soc. 148(6), 2551–2563 (2020)

6. Arhancet, C.: Dilations of markovian semigroups of measurable Schur multipliers. Preprint, arXiv:1910.14434

7. Arhancet, C., Fackler, S., Le Merdy, C.: Isometric dilations and H^∞ calculus for bounded analytic semigroups and Ritt operators. Trans. Am. Math. Soc. 369, 6899–6933 (2017)

8. Arhancet, C., Le Merdy, C.: Dilation of Ritt operators on L^p-spaces. Israel J. Math. 201(1), 373–414 (2014)
9. Arhancet, C., Kriegler, C.: Projections, multipliers and decomposable maps on noncommutative L^p-spaces. Preprint, arXiv:1707.05591. To appear in Mémoires de la Société Mathématique de France

10. Arhancet, C., Kriegler, C.: Riesz Transforms, Hodge-Dirac Operators and Functional Calculus for Multipliers. Lecture Notes in Mathematics, vol. 2304. Springer, Cham (2022)

11. Bekka, B., de la Harpe, P., Valette, A.: Kazhdan’s Property (T). New Mathematical Monographs, 11. Cambridge University Press, Cambridge (2008)

12. Bourbaki, N.: Integration. I. Chapters 1–6. Translated from the 1959, 1965 and 1967 French originals by Sterling K. Berberian. Elements of Mathematics. Springer, Berlin (2004)

13. Brannan, M., Gao, L., Junge, M.: Complete Logarithmic Sobolev Inequalities via Ricci Curvature Bounded Below II. Preprint, arXiv:2008.12038

14. Bratelli, O., Robinson, D. W.: Operator Algebras and Quantum Statistical Mechanics. 1. C*- and W*-Algebras, Symmetry Groups, Decomposition of States. Second edition. Texts and Monographs in Physics. Springer, New York (1987)

15. Brown, N.P., Ozawa, N.: C*-Algebras and Finite-dimensional Approximations. Graduate Studies in Mathematics, 88. American Mathematical Society, Providence, RI (2008)

16. Caspers, M., Junge, M., Sukochev, F., Zanin, D.: BMO-estimates for non-commutative vector valued lipschitz functions. J. Funct. Anal. 278(3), 108317, 39 pp (2020)

17. Caspers, M.: Harmonic analysis and BMO-spaces of free Araki-Woods factors. Studia Math. 246(1), 71–107 (2019)

18. Fendler, G.: Dilations of one parameter semigroups of positive contractions on L^p spaces. Canad. J. Math. 49(4), 736–748 (1997)

19. Ferguson, T., Mei, T., Simonek, B.: H^∞-calculus for semigroup generators on BMO. Adv. Math. 347, 408–441 (2019)

20. Haagerup, U.: An example of a nonnuclear C*-Algebra, which has the metric approximation property. Invent. Math. 50(3), 279–293 (1978/79)

21. Haagerup, U.: On the dual weights for crossed products of von Neumann algebras. I. Removing separability conditions. Math. Scand. 43(1), 99–118 (1978/79)

22. Haagerup, U., Junge, M., Xu, Q.: A reduction method for noncommutative L_p-spaces and applications. Trans. Am. Math. Soc. 362(4), 2125–2165 (2010)

23. Haagerup, U., Mussat, M.: Factorization and dilation problems for completely positive maps on von Neumann algebras. Commun. Math. Phys. 303(2), 555–594 (2011)

24. Hytönen, T., van Neerven, J., Veraar, M., Weis, L.: Analysis in Banach Spaces, Volume I: Martingales and Littlewood-Paley theory. Springer, Berlin (2016)

25. Hytönen, T., van Neerven, J., Veraar, M., Weis, L.: Analysis in Banach Spaces, Volume II: Probabilistic Methods and Operator Theory. Springer, Berlin (2018)

26. Janson, S.: Gaussian Hilbert Spaces. Cambridge Tracts in Mathematics, 129. Cambridge University Press, Cambridge (1997)

27. Jiao, Y., Wang, M.: Noncommutative harmonic analysis on semigroups. Indiana Univ. Math. J. 66(2), 401–417 (2017)

28. Junge, M., Mei, T.: Noncommutative Riesz transforms-a probabilistic approach. Am. J. Math. 132(3), 611–680 (2010)

29. Junge, M., Mei, T.: BMO spaces associated with semigroups of operators. Math. Ann. 352(3), 691–743 (2012)

30. Junge, M., Ricard, E., Shlyakhtenko, D.: In preparation

31. Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras. Vol. I. Elementary theory. Reprint of the 1983 original. Graduate Studies in Mathematics, 15. American Mathematical Society, Providence, RI (1997)

32. Kaniuth, E., Lau, A. T.-M.: Fourier and Fourier-Stieltjes Algebras on Locally Compact Groups. Mathematical Surveys and Monographs, 231. American Mathematical Society, Providence, RI (2018)

33. Neerven, J.V.: Stochastic Evolution Equations. ISEM Lecture Notes 2007/08

34. Neerven, J.V., Veraar, M., Weis, L.: Stochastic Integration in Banach Spaces: A Survey. Stochastic Analysis: A Series of Lectures, pp. 297–332 (2015)

35. Nualart, D.: The Malliavin Calculus and Related Topics, 2nd edn. Springer, Berlin (2006)

36. Osborne, M.S.: Locally Convex Spaces. Graduate Texts in Mathematics, 269. Springer, Cham (2014)

37. Pedersen, G.K.: C*-algebras and their Automorphism Groups. London Mathematical Society Monographs, 14. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York (1979)
38. Ricard, É.: A Markov dilation for self-adjoint Schur multipliers. Proc. Am. Math. Soc. \textbf{136}(12), 4365–4372 (2008)
39. Stratila, S.: Modular Theory in Operator Algebras. Translated from the Romanian by the author. Editura Academiei Republicii Socialiste România, Bucharest; Abacus Press, Tunbridge Wells (1981)
40. Takesaki, M.: Theory of Operator Algebras. II. Encyclopaedia of Mathematical Sciences, 125. Operator Algebras and Non-commutative Geometry, 6. Springer, Berlin (2003)
41. Takesaki, M.: Duality for crossed products and the structure of von Neumann algebras of type III. Acta Math. \textbf{131}, 249–310 (1973)
42. Wirth, M.: The Differential Structure of Generators of GNS-symmetric Quantum Markov Semigroups. Preprint, arXiv:2207.09247

\textbf{Publisher's Note} Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.