The cationic cluster of group IVA phospholipase A₂ (Lys⁴⁸⁸/Lys⁵⁴¹/Lys⁵⁴³/Lys⁵⁴⁴) is involved in translocation of the enzyme to phagosomes in human macrophages

Javier Casas,* Martin Valdearcos,*† José Pindado,* Jesús Balsinde,†,‡,‡ and María A. Balboa*†,‡

Instituto de Bioloxía y Genética Molecular,* Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain; and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), † 08036 Barcelona, Spain

Abstract Group IVA cytosolic phospholipase A₂ (cPLA₂) plays a role in the microbical machinery of immune cells by translocating to phagosomes to initiate the production of antimicrobial eicosanoids. In this work, we have studied the involvement of the cationic cluster of cPLA₂ (Lys⁴⁸⁸/Lys⁵⁴¹/Lys⁵⁴³/Lys⁵⁴⁴) in the translocation of the enzyme to the phagosomal cup in human macrophages responding to opsonized zymosan. Phagocytosis was accompanied by an increased mobilization of free arachidonic acid, which was strongly inhibited by pyrophenone. In transfected cells, a catalytically active enhanced green fluorescent protein-cPLA₂ translocated to the phagocytic cup, which was corroborated by frustrated phagocytosis experiments using immunoglobulin G-coated plates. However, a cPLA₂ mutant in the polybasic cluster that cannot bind the anionic phospholipid phosphatidylinositol 4, 5-bisphosphate (PIP₂) did not translocate to the phagocytic cup. Moreover, an enhanced yellow fluorescent protein (EYFP)-cPLA₂ and an enhanced cyan fluorescent protein-pleckstrin homology domain of PLCδ1 (PLCδ₁) construct that specifically recognizes endogenous PIP₂ in the cells both localized at the same sites on the phagosome. High cellular expression of the PH domain inhibited EYFP-cPLA₂ translocation. On the other hand, group V secreted phospholipase A₂ and group VIA calcium-independent phospholipase A₂ were also studied, but the results indicated that neither of these translocated to the phagosome. Collectively, these data indicate that the polybasic cluster of cPLA₂ (Lys⁴⁸⁸/Lys⁵⁴¹/Lys⁵⁴³/Lys⁵⁴⁴) regulates the subcellular localization of the enzyme in intact cells under physiologically relevant conditions.—Casas, J., M. Valdearcos, J. Pindado, J. Balsinde, and M. A. Balboa.

Phospholipase A₂ (PLA₂) enzymes cleave membrane phospholipids at the sn-2 position of the glycerol backbone, releasing a free fatty acid and a lysophospholipid (1). One of the better studied roles of PLA₂ enzymes is their involvement in inflammatory processes due to their ability to liberate free arachidonic acid (AA) from membrane phospholipids (2-5). Free AA will in turn be oxygenated by specific enzymes to generate a wide variety of compounds with potent pro- and anti-inflammatory actions, collectively called the eicosanoids (6, 7). Some of these compounds have also been described as important bactericidal agents (8).

Of the many existing PLA₂ enzymes, only one, the group IVA PLA₂ [also known as cytosolic phospholipase A₂ (cPLA₂)], manifests specificity for AA-containing phospholipids (9). Today, it is widely accepted that cPLA₂ is the key enzyme in AA release leading to physiological and/or pathophysiological eicosanoid production (9-11). Structurally, cPLA₂ possesses a C₂ domain containing the binding site for Ca²⁺ [and a binding site for ceramide-1-phosphate as well (12)] and a catalytic domain where the residues involved in enzymatic activity are located (9). The catalytic domain also contains a cluster of cationic amino acids (Lys⁴⁸⁸, Lys⁵⁴¹, Lys⁵⁴³, and Lys⁵⁴⁴) that may mediate...

Supplementary key words lipid mediators • monocytes/macrophages • phagocytosis • phospholipase A₂ • inflammation

Abbreviations: AA, arachidonic acid; BEL, bromoeno lactone; bis-BODIPY FL C11-PC, 1,2-bis(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-sIndecanoyl)-sn-glycero-3-phosphocholine; cPLA₂, group IVA cytosolic phospholipase A₂; ECFP, enhanced cyan fluorescent protein; EGFP, enhanced green fluorescent protein; EYFP, enhanced yellow fluorescent protein; iPLA₂, calcium-independent phospholipase A₂; PIP₂, phosphatidylinositol 4,5-bisphosphate; PLA₂, phospholipase A₂; PLCδ₁, phospholipase Cdelta1; PLCδ₂-PH, pleckstrin homology domain of PLCδ₂; sPLA₂, secreted phospholipase A₂; sPLA₂-V, group V secreted phospholipase A₂

To whom correspondence should be addressed.

e-mail: jhalsinde@ibgm.uva.es; mbalboa@ibgm.uva.es

Copyright © 2010 by the American Society for Biochemistry and Molecular Biology, Inc.

This work was supported by the Spanish Ministry of Science and Innovation (Grants SAF2007-60055 and BFU2007-67154) and the Regional Government of Castile and León (Grant CSI09-A08). CIBERDEM is an initiative of Instituto de Salud Carlos III.
enzyme binding to anionic phospholipids in membranes (13). In fact, in vitro, anionic phospholipids such as phosphatidylinositol 4,5-bisphosphate (PIP$_2$), PI(3,4,5)P$_3$, and PI(3,4)P$_2$ strongly increase the cPLA$_2\alpha$ specific activity when incorporated into the vesicle substrate (14, 15). Mutation of the aforementioned polybasic 4-Lys cluster eliminates the activating effect of PIP$_2$ on cPLA$_2\alpha$ activity (13). Also, by plasmon resonance experiments, it has been demonstrated that PIP$_2$ activates cPLA$_2\alpha$ by increasing the catalytic efficiency of the enzyme as a result of increasing membrane penetration (16). In live cells, exogenous PIP$_2$ and PI(3,4)P$_2$ induce the translocation of cPLA$_2\alpha$ to the intracellular membranes (17). More recently, it has been described that mutation of the Lys148, Lys543, and Lys544, decreases AA release in cells activated by serum, pointing to an important role for that cluster in cPLA$_2$ activation under physiological stimulation (18).

Phagocytosis is a specialized process of cells of the innate immune system to engulf invading microorganisms, foreign particles, and apoptotic cells and debris. Phagocytosis is initiated at the site of particle attachment, producing a polarized region within the membrane that enlarges as a pseudopod to engulf the particle and drive it into the cytoplasm where it will be degraded (19). It has been previously shown that cPLA$_2\alpha$ translocates to the phagosomal cup during the ingestion of particles, and such a translocation appears to be important for in situ eicosanoid generation and efficient elimination of microbes (20–23).

Fig. 1. Translocation of cPLA$_2\alpha$ to the phagosome in zymosan-treated human macrophages. Human macrophages were transfected with the construct EGFP-cPLA2α, treated with 1 mg/ml opsonized zymosan for 5 min (A), 10 min (B), 20 min (C), 40 min (D), and 60 min (E), and analyzed by confocal microscopy. In (A) and (E), Alexa Fluor 594-labeled zymosan was used to better visualize the particles. Fluorescence arising from the EGFP-cPLA$_2\alpha$ (green) or zymosan (red) is shown on the left column. Middle-column panels show a pseudocolored fluorescence intensity from the EGFP-cPLA$_2\alpha$. Panels on the right column show a detailed amplification of the phagosomes framed in the middle panels. Scale bar = 10 μm.
However, the mechanism regulating this translocation remains largely unknown. Using human macrophages responding to opsonized zymosan, we demonstrate in this work that translocation of cPLA$_2$ to the phagocytic cup depends on an intact cationic cluster Lys488/Lys541/Lys543/Lys544 in the catalytic domain of the enzyme. These results reveal a novel role for the cluster and provide new insights into the complex cellular regulation of the cPLA$_2$.

MATERIALS AND METHODS

Materials

[5,6,8,9,11,12,14,15-3H]AA 200 Ci/mmol was purchased from Amersham Ibérica (Madrid, Spain). Zymosan labeled with Alexa Fluor 594 and 1,2-bis-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-sindecane-3-undecanoyl)-octadecyl-3-phosphocholine (bis-BODIPY FL C11-PC) were from Molecular Probes (Carlsbad, CA). Ficoll-PaqueTM Plus was from GE Healthcare (Uppsala, Sweden). Gentamicin was purchased from Biowhittaker (Walkersville, MD). Human macrophage Nucleofection solution was from Amaxa (Gaithersburg, MD). Macrophage serum free medium and RPMI 1640 were purchased from GIBCO (Carlsbad, CA). The enhanced green fluorescent protein (EGFP)-PLC$_{5\beta}$-PH construct with the pleckstrin domain from the PLC$_{5\beta_1}$ was kindly provided by Dr. Tobias Meyer (Stanford University Medical Center, Stanford, CA) (24). The EGFP-cPLA$_2$ plasmid, the mutant for the PIP$_2$ binding site EGFP-4KE/A-cPLA$_2$, the iPLA$_2$-VIA- enhanced yellow fluorescent protein (EYFP) plasmid, and the sPLA$_2$-V-EGFP plasmid have been described elsewhere (17, 25, 26). pDsRed-Monomer-C1 was obtained from Clontech (Mountain View, CA). All other reagents were from Sigma.

Fig. 2. Analysis of the translocation of cPLA$_2$ and the monomeric DsRed to phagosomal membranes. Human macrophages were cotransfected with the construct EGFP-cPLA$_2$ or the soluble fluorescent protein DsRed (monomeric form). Cells were stimulated with opsonized zymosan, fixed, and fluorescence was analyzed by confocal microscopy at different times. A: The figure represents the fluorescence ratio EGFP-cPLA$_2$ / DsRed in phagosomes versus cytosol at each time point. At least four phagosomes per cell were analyzed from many cells. B: Pictures of the cellular fluorescence of the EGFP-cPLA$_2$ and the DsRed at different times of phagocytosis are shown. Pseudocolor analysis of the fluorescence is shown in the lower panels at each time point.
Cells

Human macrophages were obtained from Buffy coats of healthy volunteer donors obtained from the Centro de Hemonterapia y Hemodonación de Castilla y León (Valladolid, Spain). Briefly, blood cells were diluted 1:1 with PBS, layered over a cushion of Ficoll-Paque and centrifuged at 750 g for 30 min. The mononuclear cellular layer was then recovered and washed three times with PBS, resuspended in RPMI supplemented with 2 mM L-glutamine, 40 μg/ml of gentamicin, and allowed to adhere to plastic in sterile dishes for 2 h. Nonadherent cells were then removed by extensively washing with PBS. Macrophage differentiation was achieved by incubating the adhered monocytes in RPMI supplemented with 2 mM L-glutamine, 40 μg/ml of gentamicin, and 5% human serum for 2 weeks in the absence of exogenous cytokine mixtures.

Plasmid transfection

Human macrophages were transfected by the Nucleofection technique (Amaxa), following the kit specifications for human macrophages. Briefly, cells were harvested by treatment with trypsin for 90 min and then by gentle scraping. After washing, the cells were resuspended in 100 μl Human Macrophage Nucleofector solution plus 5 μg of plasmid. Nucleofection was carried out using the program Y410 and the cells were resuspended in 400 μl of macrophage serum free medium (GIBCO) plus 5% heat inactivated human serum.

Synchronized phagocytosis

These experiments were carried out as described elsewhere with minor modifications (27). Macrophages were seeded over glass coverslips, allowed to adhere, and then washed with RPMI and resuspended in this medium. Cells were then kept at 4°C for 5 min and opsonized zymosan was then added. After 15 min incubation, coverslips were transferred to plates with RPMI at 37°C and the phagocytosis was allowed to proceed for different periods of time. Reactions were stopped by fixation with 3% paraformaldehyde and 3% sacarose for 15 min if they were to be analyzed by microscopy. After three washes with PBS, the coverslips were mounted in glass slides with antifade medium. Samples were then analyzed by epifluorescent or confocal microscopy.

Confocal microscopy

Transfected cells were seeded in MatTek dishes and allowed to adhere for 24 h in RPMI supplemented with 2 mM L-glutamine, 40 μg/ml of gentamicin, and 5% human serum. Medium was then changed by HBSS with 10 mM HEPES and 1.3 mM CaCl₂ and fluorescence was monitored by confocal microscopy using 488 argon excitation and the combination of a HQ500 long band pass filter and HQ560 short pass filter.

AA release

Cells were labeled with 0.5 μCi/ml of [3H]AA overnight. Afterward, the cells were washed three times with PBS supplemented with 0.5 mg/ml fatty acid free-BSA and incubated with RPMI supplemented with 0.5 mg/ml fatty acid-free BSA and 1% ITS. Cells were then stimulated and supernatants were removed at different time periods. Cells monolayers were overlaid with ice-cold phosphate buffer containing 0.05% Triton X-100 and scraped. Radioactivity was quantified by liquid scintillation counting and AA release in the supernatants was referred to total radioactivity for each condition.

Frustrated phagocytosis

This was carried out as described by Marshall et al. (28). Briefly, human macrophages were dislodged from the culture plates by trypsin treatment, and were resuspended in RPMI containing 10 mM HEPES and 2 mM EDTA. Cells were gently stirred for 2–3 h to allow for the reexpression of membrane receptors. Cells were then washed, resuspended in RPMI containing 10 mM HEPES and 2 mM MgCl₂ and plated over MatTek dishes treated or not with 10 mg/ml pure IgG. After 30 min at 37°C, the cells were monitored by confocal microscopy. Some pictures were obtained in the XZ axis to have a better view of the cell membranes attached to the glass. In some experiments, the cells were labeled with 5 μM bis-BODIPY FL C11-PC for 30 min, washed twice, and processed for frustrated phagocytosis. Fluorescence was monitored by confocal microscopy using 488 argon excitation and the combination of a HQ500 long band pass filter and HQ560 short band pass filter.

Fig. 3. AA release in human macrophages challenged with opsonized zymosan. A: Human macrophages labeled with [3H]AA were treated with 1 mg/ml opsonized zymosan (black triangles) or vehicle (black circles). AA release was assessed at different times as described under Materials and Methods. B: Cells labeled with [3H] AA were pretreated with 1 μM pyrophenone (pyrr) or vehicle (control) for 30 min and then treated with 1 mg/ml opsonized zymosan (black bars) or vehicle (gray bars) for 1 h.
Translocation of cPLA\(_2\) to the phagosome in zymosan-stimulated human macrophages

Human macrophages are capable of recognizing yeast-derived zymosan particles and engulf them. By using transfected cells, we detected the translocation of a chimeric construct EGFP-cPLA\(_2\) from the cytosol to the phagocytic cups (Fig. 1). Translocation of the enzyme was particularly prominent in nonsealed phagocytic cups (Fig. 1, 10–15 min). Once the phagosome was sealed and internalized, the EGFP-cPLA\(_2\) separated from it (Fig. 1, 60 min). Experiments were performed next to rule out the possibility that the increased fluorescence arising from EGFP-cPLA\(_2\) in the forming phagosome was due to an increased volume of cytoplasm imaged in the plane. This was addressed by imaging in the same cell the construct EGFP-cPLA\(_2\) and a monomeric form of DsRed (to correct for local variations in cytoplasmic volume). Figure 2 shows a clear increase in EGFP-cPLA\(_2\) fluorescence in the phagosomes that does not correspond with an increase in cytoplasmic volume (ratio EGFP-cPLA\(_2\)/DsRed) at any time, thus indicating that enzyme translocation actually occurs.

Phagocytosis of opsonized zymosan activates cPLA\(_2\) in human macrophages

Zymosan induced a significant release of AA (and metabolites) to the extracellular medium, suggesting the activation of a PLA\(_2\) (Fig. 3A). This PLA\(_2\) was identified as cPLA\(_2\) on the basis of complete inhibition of the response by a low concentration of pyrrophenone, a cPLA\(_2\) inhibitor (29) (Fig. 3B).

To confirm that the cPLA\(_2\) that translocates to the phagocytic cup is functionally active, an experiment of frustrated phagocytosis was performed, using glass plates coated with IgG (28). Macrophages exposed to IgG-coated glass surfaces responded by translocating the EGFP-cPLA\(_2\) to the membranes more proximal to the glass surface but not to other cellular membranes (Fig. 4A, B, E). In this experiment, the IgG-coated glass would represent the phagocytosable particle (28). Next, we loaded the cells with the fluorogenic phospholipase substrate bis-BODIPY FL C11-PC (30), and subjected them to the frustrated phagocytosis assay. A dramatic increase in fluorescence was observed, especially in the proximity of the IgG-coated glass (Fig. 4C, D and F), indicating that an A-type phospholipase is acting at that place (where the “phagosome” is being initiated). To confirm that such a phospholipase is actually cPLA\(_2\), we conducted experiments in the presence of pyrrophenone (Fig. 4D and F). As expected, pyrrophenone at doses as low as 1 \(\mu\)M strongly blocked the fluorescence increase in the fluorescence intensities (mean fluorescence intensity in membranes closer to the glass/mean fluorescence intensity in the cytosol). At least 15 different cells were analyzed.

Fig. 4. cPLA\(_2\) is functionally active in the phagosomal cup in human macrophages. A: Cells transfected with EGFP-cPLA\(_2\) were subjected to a frustrated phagocytosis assay on noncoated glass (Ctrl) or IgG-coated glass (IgG), as indicated, and analyzed by confocal microscopy. Pictures of the XZ axis of the cells were taken. B: The intensity of the fluorescence obtained in (A) was analyzed in pseudocolor. C: Cells, labeled with bis-BODIPY FL C11-PC, were plated on noncoated glass (Ctrl) or on IgG-coated glass (IgG) for 30 min, and fluorescence was analyzed by confocal microscopy. The mean of fluorescence intensity in Ctrl was 66 and in IgG was 128. D: The cells were labeled with bis-BODIPY FL C11-PC and subjected to a frustrated phagocytosis assay. Pictures of the XZ axis of the cells were taken and the intensity of the fluorescence was analyzed in pseudocolor. In the picture on the bottom, the cells were treated with 1 \(\mu\)M pyrrophenone (Pyrr). White bar = 10 \(\mu\)m. E: Statistical analysis of the fluorescence intensity in cells assayed for frustrated phagocytosis as in D. Data are represented as relative

392 Journal of Lipid Research Volume 51, 2010
cells exposed to IgG-coated glass, indicating that such a fluorescence increase is mainly due to cPLA₂ activation.

Mutation of a four-lysine cluster in cPLA₂α that is involved in binding of anionic phospholipids suppresses EGFP-cPLA₂ translocation to the phagocytic cup

We have previously described that mutations on Lys488, Lys541, Lys543, and Lys544 of cPLA₂ result in a defective translocation of cPLA₂α to intracellular membranes in response to exogenous PIP₃ (17). Because it is well described that PIP₂ increases in the phagosome (31), we next studied the behavior of the 4-Lys mutant (EGFP-4KE/A-cPLA₂) in macrophages exposed to opsonized zymosan. The results, as shown in **Fig. 5A**, clearly indicated that this mutant does not translocate to the phagocytic cup in activated cells at any time tested, suggesting that a functional binding site in cPLA₂ for anionic phospholipids is necessary for such a translocation to be observed. To further substantiate this observation, we performed experiments of frustrated phagocytosis, similar to those shown in **Fig. 4**, using cells transfected with the EGFP-4KE/A-cPLA₂α mutant. **Fig. 5B** shows that, unlike the wild-type enzyme, the mutant did not translocate to the membranes that are closer to the IgG-coated plate. These data highlight the importance of the 4-Lys cluster for proper binding of cPLA₂α to the phagosomal membranes.

Experiments were next conducted to study a possible role for anionic phospholipids in cPLA₂α translocation to the phagocytic cup. To this end, we took advantage of the PIP₂-binding properties of a fluorescent chimeric protein of EGFP with the pleckstrin homology domain of the PLCδ₁ (EGF-PLCδ₁-PH) (28). **Figure 6A** shows that, when transfected into human macrophages, the chimera labels the main cellular reservoir of PIP₂, i.e., the plasma membrane (24). Immediately after promoting PIP₂ hydrolysis by activating the cells with a calcium ionophore, the fluorescence disappears from the plasma membrane and accumulates in the cytoplasm as would be expected from a functional PH domain (**Fig. 6A**). By using this chimera, we confirmed in human macrophages previous observations by Botelho et al. (31), indicating that PIP₂ levels increase at the phagocytic cup while the phagosome is being formed and decrease when it seals (**Fig. 6B**).

Subsequently, the cells were cotransfected with both constructs, namely ECFP-PLCδ₁-PH and EYFP-cPLA₂α. In resting cells, ECFP-PLCδ₁-PH was present only in the plasma membrane whereas EYFP-cPLA₂α was found primarily in the cytoplasm (**Fig. 7**). However, after exposure of the cells to opsonized zymosan, both chimeric proteins localized at the forming phagocytic cups (**Fig. 7B**). There was no colocalization in the cytoplasm of resting or stimulated cells. We noticed also that in those cells where ECFP-PLCδ₁-PH construct was expressed at higher levels the translocation of the cPLA₂α to the phagosomes was inhibited (**Fig. 7C**).

The behavior of ECFP-PLCδ₁-PH and EGFP-cPLA₂α were analyzed in more detail by confocal analysis of z-stack series from cells that were engulfing particles at similar stages of phagocytosis (**Figs. 8, 9**). We observed that both constructs were enriched in the same sites of the phagosomes, especially along the particles and in the base. It is worth noting that translocation of the ECFP-cPLA₂α to the base of some of the phagosome was more prominent than that of ECFP-PLCδ₁-PH. It is possible that in the base of the phagosome other factors, in addition to or independently of PIP₂, contribute to the translocation of cPLA₂α.

Fig. 5. The mutant EGFP-4KE/A-cPLA₂α does not translocate to the phagosome in human macrophages. A: Human macrophages transfected with the mutant EGFP-4KE/A-cPLA₂α were subjected to synchronized phagocytosis with Alexa Fluor 594-labeled opsonized zymosan for the indicated times, fixed and analyzed by confocal microscopy. Framed phagosomes have been enlarged and the intensity of the fluorescence analyzed by pseudocolor (left upper inserts at 15 and 30 min). B: Cells transfected with the construct EGFP-cPLA₂α or EGFP-4KE/A-cPLA₂α were subjected to a frustrated phagocytosis assay and plated over noncoated glasses (Ctrl) or IgG-coated glasses (IgG) as indicated, and analyzed by confocal microscopy. Pictures of the XZ axis of the cells were taken and the intensity of the fluorescence obtained was analyzed in pseudocolor. The figure is representative of more than 40 cells that were analyzed per experiment and the experiment was repeated four times. White bar = 10 μm.
Secreted group V and cytosolic calcium-independent group VIA PLA$_2$s do not translocate to the phagocytic cup

To address whether other PLA$_2$s in addition to cPLA$_2$ could also translocate to the phagocytic cup during phagocytosis of opsonized zymosan, we used human macrophages transfected with either sPLA$_2$-V-EGFP or iPLA$_2$-VIA-EYFP. In agreement with our previous studies in murine macrophages (25, 32), sPLA$_2$-V-EGFP was found in resting cells associated with secretory granules and Golgi-like structures (Fig. 10A). iPLA$_2$-VIA-EYFP had a mitochondrial localization in unstimulated cells (Fig. 10B), which is in accordance with previous estimates (33). After the cells where challenged with opsonized zymosan, localization was studied between the chimeric proteins and the fluorescent particles. We failed to detect association of the fluorescence arising from either sPLA$_2$-V-EGFP or iPLA$_2$-VIA-EYFP to the phagocytic cups under any condition (Fig. 10). Thus, of the three major PLA$_2$ classes potentially capable of generating lipid mediators during inflammation (2–5, 34), only the cPLA$_2$ translocates to the phagocytic cup in human macrophages.

DISCUSSION

A major regulatory mechanism of cPLA$_2$ activity in cells is the Ca$^{2+}$-dependent control of the physical state of the enzyme. In resting cells, the enzyme resides in the cytosol and hence, having no access to its substrate in the membrane, has no activity. In stimulated cells, cPLA$_2$ translocates to the membrane in a Ca$^{2+}$-dependent process resulting in phospholipid hydrolysis and free AA release (9). Most of the research carried out to date has thoroughly documented the translocation of cPLA$_2$ to intracellular membranes such as those of the nuclear envelope, Golgi complex, or endoplasmic reticulum (9). A few instances have been reported of translocation of cPLA$_2$ to cellular membranes different to those indicated above (20, 35, 36). This study adds to these studies by showing that the phagosomal membrane of human macrophages is also a site for cPLA$_2$ translocation during activation conditions. Particularly relevant to our report is the work by Girotti et. al. (20) showing translocation of cPLA$_2$ to forming phagosomes in murine macrophages. Although the molecular mechanism was not investigated, the authors noted that chelation of extracellular calcium decreased the total number of phagocytic events, but cPLA$_2$ still remained associated to the lasting phagosomes at intracellular calcium levels equaling those of resting cells (20). In previous work from our laboratory, we showed that introducing exogenous short-chain PIP$_2$ into cells promotes the translocation of cPLA$_2$ from cytosol to perinuclear membranes at basal levels of intracellular Ca$^{2+}$ (17). Moreover, other studies have demonstrated that PIP$_2$ transiently increases in the forming phagosome and disappears after phagosome sealing, being undetectable in the sealed phagosome (31). Intrigued by these observations, we speculated that translocation of cPLA$_2$ to the forming phagosome could require the cationic cluster of four Lys (Lys488/Lys541/Lys543/Lys544) that is present in cPLA$_2$ and has been shown to bind anionic phospholipids such as PIP$_2$ (13). Using confocal microscopy techniques, we document the localization of cPLA$_2$ and a PIP$_2$-binding construct,
ECFP-PLCδ1-PH, in forming phagosomes. Also, high level expression of the ECFP-PLCδ1-PH inhibits the translocation of the cPLA2α to phagosomes. Moreover, mutation of the cationic cluster of Lys488, Lys541, Lys543, and Lys544 that serves as a PIP2-binding site eliminates the ability of the enzyme to translocate to the phagosomal membrane. Collectively, these results provide the first example of a physiologically-relevant condition where the cationic cluster of cPLA2α participates in regulating enzyme association to membranes and hence, its activity in intact cells.

The presence of cPLA2α at the membrane of the nascent phagosome may serve important pathophysiological roles because during phagocytosis large quantities of eicosanoids are produced, which could be involved in the killing of the ingested microorganism at the phagosome (8, 21–23). In the mouse model, other PLA2s in addition of cPLA2α have been suggested to be related to phagocytic events. Particularly relevant to this work, it has been shown that group V secreted PLA2 also translocates to the phagosome in zymosan-stimulated murine peritoneal macrophages (23). Intrigued by this report, we also studied the possible movement of sPLA2-V to phagosomes in our human macrophage cell system. We failed to detect translocation of a chimeric sPLA2-V-EGFP protein to phagosomes in our systems. We had previously demonstrated that this chimeric sPLA2-V behaves the same as the native sPLA2-V protein in terms of biochemical properties, enzymatic activity, and subcellular localization (25, 32). There are many differences between the murine and human

Fig. 7. Localization of ECFP-PLCδ1-PH and EYFP-cPLA2α during phagocytosis in human macrophages. Human macrophages, cotransfected with the ECFP-PLCδ1-PH and the EYFP-cPLA2α constructs, were subjected to synchronized phagocytosis using Alexa Fluor 594-labeled opsonized zymosan, fixed at 0 (Control) and 15 min, and analyzed by confocal microscopy (A). B: A cell with high expression of the construct ECFP-PLCδ1-PH is shown. In A and B, middle panels, fluorescence intensities are shown in pseudocolor, and detailed fluorescence in forming phagosomes is shown in panels to the right.
Fig. 8. Analysis of human macrophages transfected with EGFP-cPLA₂ during phagocytosis of zymosan. Human macrophages transfected with the construction EGFP-cPLA₂ were treated with opsonized zymosan for 20 min, fixed, and fluorescence analyzed by confocal microscopy. A: Ten different z-stacks of the same cell are shown (from top to bottom). B: Pseudocolor analysis of the intensity of fluorescence of the cell in A is shown. C and D: Detailed phagosomes from B.
Fig. 9. Analysis of a human macrophage transfected with EGFP-PLC\(_5\)-PH during phagocytosis of zymosan. Human macrophages transfected with the construction EGFP-PLC\(_5\)-PH were treated with zymosan for 20 min, fixed, and fluorescence analyzed by confocal microscopy. A: Ten different z-stacks of the same cell are shown (from top to bottom). B: Pseudocolor analysis of the intensity of fluorescence from some phagosomes is shown (white square in A).

Fig. 10. sPLA\(_2\)-V and iPLA\(_2\)-VIA do not translocate to the phagocytic cup in human macrophages. Cells transfected with the fluorescent constructs sPLA\(_2\)-V-EGFP (A) or iPLA\(_2\)-VIA-EYFP (B) were subjected to synchronized phagocytosis using Alexa Fluor 594-labeled opsonized zymosan (op-zym) or vehicle (control) for 15 min, fixed, and analyzed by confocal microscopy. Images are the projection to the Z axis of more than 13 stacks (0.25 \(\mu\)m each). Transmission images are shown in the right panel. White bar = 10 \(\mu\)m.
macrophage models of zymosan phagocytosis that may explain these different results. For instance, in murine macrophages, zymosan induces abundant AA release (37–43) and may be internalized primarily via dectin-1 receptors (44). However, human macrophages do not respond readily to zymosan by releasing AA, and opsonization of the particle appears to be required for full responses, which may occur primarily via Fc receptors. Thus, it appears likely that the different mechanisms of internalization of phagocytosable particles in mouse versus human macrophages may account, at least in part, for the remarkable differences in the translocation ability of sPLA₂-V to the phagosomes.

The one other PLA₂ that we investigated is iPLA₂-VIA, a calcium-independent enzyme. Unlike cPLA₂α and sPLA₂ enzymes, the involvement of iPLA₂-VIA in receptor-mediated AA mobilization appears not to be a general one but to depend on cell type and stimulation conditions (2, 45–48). Using a chimeric construct, iPLA₂-VIA-EYFP, we detected no appreciable change in the subcellular localization of this enzyme during opsonized zymosan challenge; the enzyme always remained associated to mitochondria, which is consistent with previous data (33). Thus, from the three major PLA₂ families potentially capable of effecting AA release for eicosanoid production, only one, cPLA₂α, translocates to the phagosome in human cells.

The authors thank Montse Duque and Yolanda Sáez for expert technical assistance, and the personnel from Centro de Hemoterapia y Hemodinamización de Castilla y León for supplying Buffy coats from healthy volunteers.

REFERENCES

1. Scholase, R. H., and E. A. Dennis. 2006. The phospholipase A₂ superfamily and its group numbering system. Biochim. Biophys. Acta. 1761:1246–1259.
2. Balsinde, J., M. A. Balboa, P. A. Insel, and E. A. Dennis. 1999. Regulation and inhibition of phospholipase A₂. Annu. Rev. Pharmacol. Toxicol. 39:175–189.
3. Balsinde, J., M. V. Winstead, and E. A. Dennis. 2002. Phospholipase A₂ regulation of arachidonic acid mobilization. FEBS Lett. 531:2–6.
4. Balsinde, J., and M. A. Balboa. 2006. Cellular regulation and proposed biological functions of group VIA calcium-independent phospholipase A₂ in activated cells. Cell. Signal. 17:1052–1062.
5. Balboa, M. A., and J. Balsinde. 2006. Oxidative stress and arachidonic acid mobilization. Biochim. Biophys. Acta. 1761:385–391.
6. Funk, C. D. 2001. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science. 294:1871–1875.
7. Serhan, C. N., N. Chiang, and T. E. Van Dyke. 2008. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat. Rev. Immunol. 8:349–361.
8. Bailie, M. B., T. J. Standiford, L. L. Laichalk, M. J. Coffery, R. Strieter, and M. Peters-Golden. 1996. Leukotriene-deficient mice manifest enhanced lethality from Klebsiella pneumonia in association with decreased alveolar macrophage phagocytic and bacterial activities. J. Immunol. 157:5221–5224.
9. Ghosh, M. D., E. Tucker, S. A. Burchett, and C. C. Leslie. 2006. Properties of the Group IV phospholipase A₂ family. Prog. Lipid Res. 45:487–510.
10. Bonventre, J. V., Z. Huang, M. R. Taheri, E. O’Leary, E. Li, M. A. Moskowitz, and A. Sapisirstein. 1997. Reduced fertility and post-ischemic brain injury in mice deficient in cytosolic phospholipase A₂. Nature. 390:622–625.
11. Uozumi, N., K. Kume, T. Nagase, N. Nakatani, S. Ishi, F. Tashiro, Y. Komagata, K. Maki, K. Ikuu, Y. Ouchi, et al. 1997. Role of cytosolic phospholipase A₂ in allergic response and parturition. Nature. 390:618–622.
12. Subramanian, P., R. V. Stahelin, Z. Szulc, A. Bielawska, W. Cho, and C. E. Chaffant. 2005. Ceramide 1-phosphate acts as a positive allosteric activator of group IVA cytosolic phospholipase A₂ and enhances the interaction of the enzyme with phosphatidylincholine. J. Biol. Chem. 280:17601–17607.
13. Das, S., and W. Cho. 2002. Roles of catalytic domain residues in interfacial binding and activation of group IV cytosolic phospholipase A₂. J. Biol. Chem. 277:23938–23946.
14. Mosior, M., D. A. Six, and E. A. Dennis. 1998. Group IV cytosolic phospholipase A₂ binds with high affinity and specificity to phosphatidylinositol 4,5-bisphosphate resulting in dramatic increases in activity. J. Biol. Chem. 273:2184–2191.
15. Six, D. A., and E. A. Dennis. 2005. Essential Ca²⁺-independent role of the group IVA cytosolic phospholipase A₂ C2 domain for interfacial activity. J. Biol. Chem. 278:23842–23850.
16. Subramanian, P., M. Vora, L. B. Gentile, R. V. Stahelin, and C. E. Chaffant. 2007. Anionic lipids activate group IVA cytosolic phospholipase A₂ via distinct and separate mechanisms. J. Lipid Res. 48:2701–2708.
17. Casa, J. M. A. Gigón, A. G. Vigo, M. S. Crespo, J. Balsinde, and M. A. Balboa. 2006. Phosphatidylinositol 4,5-bisphosphate anchors cytosolic group IVA phospholipase A₂ to perinuclear membranes and decreases its calcium requirement for translocation in live cells. Mol. Biol. Cell. 17:155–162.
18. Tucker, D. E., M. Ghosh, F. Ghomashchi, R. Loper, S. Suram, B. S. John, M. Girotti, J. G. Bollinger, M. H. Gelb, and C. C. Leslie. 2009. Role of phosphorylation and basic residues in the catalytic domain of cytosolic phospholipase A₂ in regulating interfacial kinetics and binding and cellular function. J. Biol. Chem. 284:9596–9611.
19. Stuart, L. M., and A. B. Ezekowitz. 2005. Phagocytosis: elegant complexity. Immunity. 22:539–550.
20. Girotti, M., J. H. Evans, D. Burke, and C. C. Leslie. 2004. Cytosolic phospholipase A₂ translocates to forming phagosomes during phagocytosis of zymosan in macrophages. J. Biol. Chem. 279:19113–19121.
21. Tomioka, H., C. Sano, K. Sato, K. Ogasawara, T. Akaki, K. Sano, S. S. Cai, and T. Shimizu. 2005. Combined effects of ATP on the therapeutic efficacy of antimicrobial drug regimens against Mycobacterium avium complex infection in mice and roles of cytosolic phospholipase A₂-dependent mechanisms in the ATP-mediated potentiation of antitubercular host resistance. J. Immunol. 175:6741–6749.
22. Rubin, B. B., G. P. Downey, A. Koh, N. Degousee, F. Ghomashchi, L. Nallan, E. Stefanski, D. W. Harkin, C. Sun, B. P. Smart, et al. 2005. Cytosolic phospholipase A₂ is necessary for platelet-activating factor biosynthesis, efficient neutrophil mediated bacterial killing, and the innate immune response to pulmonary infection; cPLA₂ does not regulate neutrophil NADPH oxidase activity. J. Biol. Chem. 280:7519–7529.
23. Balestrieri, B., V. W. Hsu, H. Gilbert, C. C. Leslie, W. K. Han, J. V. Bonventre, and J. P. Arm. 2006. Group V secretory phospholipase A₂ translocates to the phagosome after zymosan stimulation of mouse peritoneal macrophages and regulates phagocytosis. J. Biol. Chem. 281:6691–6698.
24. Stauffer, T. P., S. Ahn, and T. Meyer. 1998. Receptor-induced transient reduction in plasma membrane PtdIns(4,5)P₂ concentration monitored in living cells. Curr. Biol. 8:343–346.
25. Shirai, Y., J. Balsinde, and E. A. Dennis. 2005. Localization and functional interrelationships among cytosolic group IV, secreted group V, and Ca²⁺-independent group VI phospholipase A₂s in P88SΔD macrophages using GFP/RFP constructs. Biochim. Biophys. Acta. 1735:119–129.
26. Casa, J. M. A. Gigón, A. G. Vigo, M. S. Crespo, J. Balsinde, and M. A. Balboa. 2006. Overexpression of cytosolic group IV phospholipase A₂ protects cells from calcium-dependent death. J. Biol. Chem. 281:6106–6116.
27. Larsen, E. C., J. A. DiGennaro, N. Saito, S. Mehta, D. J. Loegering, J. E. Mazurkiewicz, and M. R. Lennartz. 2000. Differential requirement for classic and novel PKC isoforms in respiratory burst and phagocytosis in RAW 264.7 cells. J. Immunol. 165:2809–2817.
28. Marshall, J. G., J. W. Booth, V. Stambolic, T. Mak, T. Balla, A. D. Schroeder, T. Meyer, and S. Grinstein. 2001. Restricted accumulation of phosphatidylinositol 3-kinase products in a plasmalemmal...
subdomain during Fc gamma receptor-mediated phagocytosis. J. Cell Biol. 153:1369–1380.

29. Ono, T., K. Yamada, Y. Chikazawa, M. Ueno, S. Nakamoto, T. Okuno, and K. Seno. 2002. Characterization of a novel inhibitor of cytosolic phospholipase A₂a, pyrrophenone. Biochim. J. 363:727–735.

30. Manna, D., and W. Cho. 2007. Real-time cell assays of phospholipase A₂s using fluorogenic phospholipids. Methods Enzymol. 434:15–27.

31. Botelho, R. J., M. Teruel, R. Dierckman, R. Anderson, A. Wells, J. D. York, Y. Meyer, and S. Grinstein. 2000. Localized biphasic changes in phosphatidylinositol-4,5-bisphosphate at sites of phagocytosis. J. Cell Biol. 151:1353–1367.

32. Balboa, M. A., Y. Shirai, G. Gaietta, M. E. Ellisman, J. Balsinde, and E. A. Dennis. 2003. Localization of group V phospholipase A₂ in caveolin-enriched granules in activated P388D₁ macrophage-like cells. J. Biol. Chem. 278:48059–48065.

33. Seleznev, K., C. Zhao, X. H. Zhang, K. Song, and Z. A. Ma. 2006. Calcium-independent phospholipase A₂ localizes in and protects mitochondria during apoptotic induction by staurosporine. J. Biol. Chem. 281:22275–22288.

34. Fitzpatrick, F. A., and R. Soberman. 2001. Regulated formation of eicosanoids. J. Clin. Invest. 107:1347–1351.

35. Shmelzer, Z., N. Haddad, E. Admon, I. Pessach, T. L. Leto, Z. Eitan-Hazan, M. Hershfinkel, and R. Levy. 2003. Unique targeting of cytosolic phospholipase A₂ to plasma membranes mediated by the NADPH oxidase in phagocytes. J. Cell Biol. 162:683–692.

36. Wooten, R. E., M. C. Willingham, L. W. Daniel, C. C. Leslie, L. C. Rogers, S. Sergeant, and J. T. O’Flaherty. 2008. Novel translocation responses of cytosolic phospholipase A₂alpha fluorescent proteins. Biochim. Biophys. Acta. 1783:1544–1550.

37. Balsinde, J., B. Fernandez, and E. Diez. 1990. Regulation of arachidonic acid release in mouse peritoneal macrophages. The role of extracellular calcium and protein kinase C. J. Immunol. 144:4298–4304.

38. Balsinde, J., B. Fernández, J. A. Solís-Herruzo, and E. Diez. 1992. Pathways for arachidonic acid mobilization in zymosan-stimulated mouse peritoneal macrophages. Biochim. Biophys. Acta. 1136:75–82.

39. Qiu Z. H., M. S. de Carvalho, and C. C. Leslie. 1993. Regulation of phospholipase A₂ activation by phosphorylation in mouse peritoneal macrophages. J. Biol. Chem. 268:24506–24513.

40. Balsinde, J., M. A. Balboa, P. A. Insel, and E. A. Dennis. 1997. Differential regulation of phospholipase D and phospholipase A₂ by protein kinase C in P388D₁ macrophages. Biochim. J. 321:805–809.

41. Balsinde, J., M. A. Balboa, S. Yedgar, and E. A. Dennis. 2000. Group V phospholipase A₂-mediated oleic acid mobilization in lipopolysaccharide-stimulated P388D₁ macrophages. J. Biol. Chem. 275:4783–4786.

42. Gijón, M. A., D. M. Spencer, A. R. Siddiqui, J. V. Bonventre, and C. C. Leslie. 2000. Cytosolic phospholipase A₂ is required for macrophage arachidonic acid release by agonists that do and do not mobilize calcium. Novel role of mitogen-activated protein kinase pathways in cytosolic phospholipase A₂ regulation. J. Biol. Chem. 275:20146–20156.

43. Balsinde, J., M. A. Balboa, and E. A. Dennis. 2000. Identification of a third pathway for arachidonic acid mobilization and prostaglandin production in activated P388D₁ macrophage-like cells. J. Biol. Chem. 275:22544–22549.

44. Suram, S., G. D. Brown, M. Ghosh, S. Gordon, P. R. Taylor, S. Akira, S. Uematsu, D. L. Williams, and C. C. Leslie. 2006. Regulation of cytosolic phospholipase A₂ activation and cyclooxygenase 2 expression in macrophages by the beta-glucan receptor. J. Biol. Chem. 281:5506–5514.

45. Balsinde, J. 2002. Roles of various phospholipases A₂ in providing lysophospholipid acceptors for fatty acid phospholipid incorporation and remodelling. Biochem. J. 364:695–702.

46. Balboa, M. A., Y. Sáez, and J. Balsinde. 2003. Calcium-independent phospholipase A₂ is required for lysozyme secretion in U937 promonocytes. J. Immunol. 170:5276–5280.

47. Balboa, M. A., and J. Balsinde. 2002. Involvement of calcium-independent phospholipase A₂ in hydrogen peroxide-induced accumulation of free fatty acids in human U937 cells. J. Biol. Chem. 277:40384–40389.

48. Pérez, R., R. Melero, M. A. Balboa, and J. Balsinde. 2004. Role of group VIA calcium-independent phospholipase A₂ in arachidonic acid release, phospholipid fatty acid incorporation, and apoptosis in U937 cells responding to hydrogen peroxide. J. Biol. Chem. 279:40385–40391.