Freshwater prawn aquaculture: Prospects in U.P

Mahima Sharma, Samiksha Lodhi and Aman Ahmed

DOIs: https://doi.org/10.22271/fish.2022.v10.i4b.2704

Abstract
Uttar Pradesh is rich in freshwater fish biodiversity and shares about 14.68% of the total fish biodiversity in India. The main fisheries resources comprise of rivers, ponds, canals, irrigation, all fields, reservoirs etc. Rivers and canals encompass a total length of about 3945km. There are 251 hectares in the state for quality fish seed production. In freshwater aquaculture, prawns are potential candidates. Of the 200 species of freshwater prawns, M. rosenbergii is most favourable cultured species due to its rapid growth and high demand in markets. Uttar Pradesh has ideal conditions for freshwater prawn aquaculture but it is not being utilized for sustainable culture. Smaller freshwater prawns “a untapped resource” may also be used for freshwater aquaculture. In the present study, an attempt has been made to review the current status of freshwater prawn aquaculture in Uttar Pradesh and and locally available freshwater prawns, M. lamarrei and M. dayanum as potential candidate for land locked state like U.P.

Keywords: Freshwater aquaculture, freshwater prawn, Uttar Pradesh, Macrobrachium lamarrei and Macrobrachium dayanum

Introduction
Aquaculture is one of the most significant fisheries sectors in India having growth rate of over 7% per year. Today, India holds fourth position in culture fisheries production (FAO, 2018) [17]. Aquaculture provides dietary supplements for human food as well as creates enormous opportunities for employment, particularly in rural areas. Freshwater aquaculture in India has shown a rapid growth over the last 2 decades and contributes over 95% of the total aquaculture production. The inland fisheries have demonstrated rapid growth over the last few decades and has been increased to about 80% over the last few year (FAO, 2018) [17].

Crustaceans are important members of food chain and relished as food since antiquity. Prawns, shrimps, crabs, lobsters etc are included in human diet. It has free amino acids, vitamins, proteins lesser in fat and carbohydrate therefore advised to diabetic people (Proudfit and Robinson 1955, Martin 1966, Singh, 1977, Khan et al.,1994) [33, 28, 51, 13]. It supports the livelihood of 10-12% of world population (FAO, 2016) [10]. Currently, aquaculture is responsible for nearly half of the global food fish consumption (Subhasinghe et al., 2009). Freshwater aquaculture is an important sector of fisheries research. Jayasankar (2018) [11] has documented a review on the status of freshwater aquaculture in India. However, no comprehensive review has been documented on the status of freshwater aquaculture in U.P. Crustaceans culture comprises mainly marine prawn, shrimps, crabs, lobsters. Nowadays demand has increased towards freshwater prawns in local and global markets which shifted attend towards freshwater prawn aquaculture. Therefore, in the present paper an attempt has been made to review the current status of freshwater aquaculture in Uttar Pradesh.

Global and local Scenario of Prawn Production:
The secondary data for the present study was collected from several sources which mainly include FAO (2018) [7] and Handbook of fisheries statistics, 2020, published by Department of Fisheries, Government of India.

Freshwater aquaculture production at global level:
The fish production at global level has been reached about 179 million tones as of 2018 and of which 156 million tones were used for human consumption.
In 2018, total capture global fisheries have witnessed an increase of 5.4% and reached at 94.5 million tones. Global aquaculture production has been reached to 114.5 million tons in 2018. Total production of shrimps has seen an increase of 5% and reached to 5 million tons in 2021 (FAO, 2019) [6]. The area available for shrimp farming in India is around 160,000 hectares. In 2018, India has reached the highest level ever recorded at 700,000 MT but estimated production to fall 600,000 MT by 2021.

Freshwater aquaculture in Uttar Pradesh, India

Uttar Pradesh shares about 14.68% of the total fish biodiversity in India (Lakra, 2010) [10]. It is the most populated state of India having rich freshwater fish diversity (Pathak et al., 2019) [11]. The demand of fish production in U.P. is nearly 15 lakh matric tones whereas the total production is quite lesser that is 4.9 lakh matric tones (NFDB Newsletter, 2016). Rivers, ponds, irrigation canals, reservoirs etc. are the main fisheries resources. Despite having sufficient resources for freshwater aquaculture, they are not utilized enough and have enormous scope to improve food security of U.P. Rivers and canals are one of the major resources for fisheries having total length of 39,542 km (Department of Fisheries U.P., 2020) [12]. The livelihood of fisherman in the vicinity of rivers are dependent on fisheries resources of the rivers. Apart from riverine system, reservoirs are one of the most important fisheries resources in India. There are total 94 reservoirs in Uttar Pradesh encompassing total are of 64,889.87 hectares (Department of Fisheries, U.P., 2020) [13]. Balrampur, Chitrakot and Behraich have maximum number of small reservoirs (40-200 hectares) (Department of Fisheries, U.P., 2020) [14]. Ponds are also considered as one of the most important sites for aquaculture. In Uttar Pradesh, revenue ponds encompass an area of 1, 50, 482.50 hectares (Department of Fisheries, U.P., 2020) [15]. The ponds may be used as a potential source for freshwater aquaculture. Uttar Pradesh has capacity of developing 60,000 hectares of additional ponds for aquaculture. Pungusius farming includes an area of 835 ha in Uttar Pradesh (Department of Fisheries, U.P., 2020) [16].

In order to fulfill the requirement of quality fish seeds in U.P, there are 251 hatcheries in the state (Department of Fisheries U.P., 2020) [17]. Apart from this, there are 77 feed mills in the state (Department of Fisheries U.P., 2020) [18].

(B) Freshwater Prawn Culture

Freshwater prawns are potential candidate for aquaculture and they are good source for vitamin A & D, free amino acids and proteins. Owing to their high nutritional value, their demand is high in national and International market (Sankar et al., 2011, Ahmed et al., 2021) [19]. India holds second position in export of freshwater prawn in the world market (Balamurgan et al., 2004) [20]. The total production of freshwater prawn in India amounts 30,450mt and encompasses an area about 34,630 ha (Sakthivel 2003; Balamurgan et al., 2004) [21]. India contributes about 42% of the total aquaculture production of prawn worth 579 US $ million (Sakthivel 2003; Nair et al., 2007) [22]. India has rich resources for the aquaculture of freshwater prawns that may be utilized for commercial farming of marine and freshwater prawns both (Pandey et al., 2009) [23]. Freshwater prawn M. rosenbergii farming breakthrough was discovered by Shao. Wen Ling in 1962. The unique thing about this discovery was that its larvae needed brackish conditions for their survival and development. It was observed that the larvae of freshwater prawn required brackish water in order to survive more than 5 days (Ling, 1977) [24]. This discovery led to culture of juvenile prawns to commence grow out culture in pond (Ling and Costello, 1979) [25]. Takui Fujiwara was the pioneer researcher to introduce freshwater prawn culture at commercial level.

There are almost 200 species of freshwater prawns, out of which M. rosenbergii is widely cultured species commonly called as “Scampy”. It is a giant prawn, suitable for aquaculture owing to its resistance to diseases, rapid growth rate and high demand in national and international markets (Pandey et al., 2009) [26]. Poeculcy with fishes like grass carp, silver carp, rohu etc may help in aquaculture in pond resources (Radheshyam, 2009) [27]. Being a commercially important species, giant freshwater prawn, M. rosenbergii are being cultured in several states such as Kerala, West Bengal, Andhra Pradesh, Orissa, Haryana, Punjab, Maharashtra (Sakthivel, 2003; Singh, 2003) [28].

There is high demand for larger freshwater prawns such as M. rosenbergii in national and international markets (Kanoujia, 2006, Upadhayay et al, 2006) [29]. Yet the culture of these prawns is difficult in non-coastal areas such as Uttar Pradesh, M.P., Punjab, Bihar and Haryana despite having rich resources for freshwater aquaculture (Shukla and Sharma, 2010) [30]. The larger species of prawns require brackish water for their larval development hence it is costly to transport them. Apart from this, these prawns have long larval period. Therefore, the environmental stress may lead to less success rate upto post larval period (Shukla and Sharma, 2010) [31]. Despite high demand of M. rosenbergii “scampy” there are certain disadvantages in culture of larger prawn species like, they need brackish water for larval development, hatcheries are set at sea coast therefore seed transport make it expensive, long larval period makes them more vulnerable to environmental stress and success rate upto post larva is very less; prawns processing unit are not set throughout India; Culture cannot successfully performed in natural water reservoirs therefore productive land is used which is not ecofriendly; Due to high price they do not cope up nutritional demands of common and poor people of India.

Despite having suitable conditions for prawn aquaculture in Uttar Pradesh, it is not being utilized for commercial purposes (Janaki Ram & Pandey, 2003; Sultam, 2003) [32]. Besides giant freshwater prawn smaller prawns may also serve as a potential animal for freshwater aquaculture. Smaller freshwater prawn, M. nipponense is being cultured in China for commercial purpose (Kutty, 2003) [33], M. amazonicum, M. acanthurus & M. carinus are being used for freshwater aquaculture in African countries (Pandey et al., 2009) [34]. Smaller prawns like M. lamarrei & M. dayanum being a good source of nutrient rich food may be used for freshwater aquaculture in Uttar Pradesh (Shukla & Sharma, 2010) [35].

(C) Possibilities of Culture of smaller freshwater prawns:

Other alternatives must be utilized in order to provide better nutrition and economic growth. Smaller freshwater prawns may be used as a better candidate which are readily consumed by the local population and still not promoted the way they should be (Shukla and Sharma, 2010) [36].

(D) Attempts of smaller freshwater prawn culture outside in India:
M. nipponense was first smaller freshwater prawn to be cultured in China, which paved the way for new avenues for freshwater aquaculture (Kutty, 2003) [15]. The culture of smaller freshwater prawns such as M. jelskii, M. borelli, M. quelahi, M. potunus, M. brasilience, M. iherigi was recommended by Dobkin (1967). In Africa, species of smaller freshwater such as M. amazonicum, M. vollenhovenii, M. acaranthus and M. carinus are being cultured (Nakata et al., 2004). M. lamarrei, a smaller and translucent prawn have been cultured in Bangladesh, Phillipines and Malaysia. Another smaller prawns M. lanchesteri have been successfully cultured in Thailand, Vietnam and Malaysia (New & Valenti, 2000).

Plate 1

![Plate 1 Image](image)

Fig 1 & Fig 2 Explanation of Figure: Freshwater parwns reported in Gomti river, Lucknow (UT), India

(F) M. lamarrei and M. dayanum as test model for lab and environmental monitoring

- These smaller prawns may be used as a good laboratory model for toxicological studies and environmental monitoring (Shukla et al., 2010) [44]. They are used as a model animal for following reasons: -
 - Their smaller size enables them too easily in laboratory conditions.
 - They are easily available throughout the year.
 - The omnivorous nature leads to easy and less costly maintenance.
 - They are highly sensitive to environmental pollution. Therefore, they may be used as a better bio-indicators.
 - The translucent colour facilitates studies of parameters like scaphognathite oscillations, heartbeat etc via non-invasive method.

- Despite low fecundity, they have short larval period and high survival rate which makes them better suited for culture.
- Resistant to disease than larger prawn species.
- Culture can be performed in natural water reservoirs therefore ecofriendly.
- Due to smaller size they can be sun dried and stored for longer period.
- Polyculture of these prawns with common fishes is possible.

Freshwater prawn M. lamarrei and M. dayanum (Fig 1 & 2) have been thoroughly studied in Prawn Research Centre Department of Zoology, University of Lucknow (U.P.), India and Department of Zoology, BSNV PG College, Lucknow (U.P), India. Sharma et al., (1997) [42], firstly reported M. dayanum (Henderson) from Gomti river, Lucknow. M. lamarrei (H. Milne Edwards) is a smaller, freshwater prawn which is translucent in appearance. Its size ranges from 30-55mm in length (Mean= 48.6+_ 5.5mm) and 1.107+_0.26 gm in weight. The exoskeleton is covered with light green and some brown chromatophores. Fecundity ranges from 55-250 (Shukla, 1988) [46]. M. dayanum is another species of smaller prawns found in river Gomti. Its size ranges from 35-65mm in length (Mean= 56.4+_4.2mm) and average weight 3.26+_ 0.68gm. They are dark in colour due to blue and brown chromatophores over their exoskeleton. Fecundity ranges from 38-142 (Tripathi et al., 2021) [60].
The outcome of the studies may be useful in improving commercial aquaculture of freshwater prawns.

(G) Laboratory studies on biology of Prawns

The biology of both the prawns have been thoroughly studied in this lab. Some of the important studies are-
- Digestive physiology and Ultrastructure (Shukla & Sharma, 1990, Sharma & Shukla, 1992) [43]
- Heart and hemocytes (Lodhi et al., 2004, Lodhi et al., 2008, 2009, Lodhi & Shukla, 2021) [21, 20, 26, 24, 21, 24]
- Reproductive biology (Tripathi, 2007, Tripathi et al., 2019; Tripathi et al., 2021) [59, 62, 61, 60]
- Neuroendocrine system (Tewari et al., 2008) [55]
- Receptor biology (Sharma and Shukla, 1990) [43].

Some of the important toxicological studies are-
Effects of heavy metals Cd, Cu, Cr, Ni, Pb and detergents linear alkyl Benzene sulphonate (LAS) on several parameters such as:
- Histopathology of hepatopancreas, gills, green gland, heartbeat, haemocyte morphology, sperm morphology and neurosecretory cells (Shukla, 1993, Shukla & Sharma, 1993, Shukla & Sharma, 2002, Lodhi et al., 2002, 2007 a& b, 2008, Sen et al., 2008, Lodhi, 2009, Shukla et al., 2013; Shukla et al., 2019, Shukla et al., 2021) [68, 49, 37, 38, 24, 50, 47, 65].
- General behaviour patterns (Shukla & Sharma 1990, Verma et al., 2005, Sharma & Shukla, 2006, Lodhi et al., 2006, Tewari et al., 2007, Tripathi et al.,2007, Sharma et al., 2008, Tewari et al., 2009; Ahmed et al., 2021) [83, 66, 40, 41, 55, 59, 62, 39, 1].
- Scaphognathite oscillations (Tewari et al., 2008, Sen et al., 2008a & b, Verma et al., 2007; Verma et al., 2010) [64].

If these parameters are properly standardized then various parameters can serve as better bio-marker and these prawns can serve as better bioindicators.

Conclusion

Freshwater aquaculture of fishes is increasing rapidly and the current production is about 632 thousand metric tons. Based on the data collected in the present study, it may be concluded that the ponds are mostly used resources for freshwater aquaculture in Uttar Pradesh. Uttar Pradesh is rich in resources such as reservoirs, rivers, ponds etc, which are majorly unutilized and need to be used for enhancing fish production in the state (Kumar et al., 2020). Loss of natural habitats, exotic species over fishing has caused decline in fish production from rivers. This need to be curb down via enactment of strict rules and regulation for sustainable utilization of rivers (Maurya et al., 2018) [29].

Prawn aquaculture is a recent and profit-making industry (Pandey et al.,2009) [33]. Freshwater prawn culture in India is prevalent in about 34,630 ha with a total production of 30,450 mt (Balamurgan et al., 2004) [3]. Though, Uttar Pradesh is rich in freshwater resources and have ideal conditions for prawn aquaculture it is yet to be explored and utilized in the state (Sultan, 2003) [54]. Smaller prawns, M. lamarrei & M. dayanum “an untapped resource” can be future prospective along with the culture of larger prawn species.

Acknowledgement-

Authors are thankful to Prof. U.D. Sharma, Retd. Prof. Department of Zoology, University of Lucknow, Dr. Sanjive Shukla, Associate Professor, Department of Zoology, BSNV PG College, Lucknow for their support, encouragement and supervision and Head, Deppt of Zoology, BSNV PG College for providing facilities.

References

1. Ahmed A, Lodhi S, Shukla S. Observations on feeding behaviour of freshwater prawn Macrobrachium lamarrei (Crustacea: Decapoda). International journal of Fisheries and Aquatic Studies. 2021;9(6):109-112.
2. Anderson JL, Valderrama D, Jory DE. GOAL 2019: Global shrimp production review, 2019. https://www.aquaculturealliance.org.
3. Balamurgan P, Marriappan P, Balasundaram C. Impacts of mono- sex Macrobrachium culture on the future of seed availability in India. Aquacult. Asia. 2004;9:15-16.
4. Department of Fisheries, Government of Uttar Pradesh, 2020.
5. Ayyappan S, Moza U, Gopalakrishnan A, Meenakumari B, Jena JK, Pandey AK. Handbook of Fisheries and Aquaculture. Second Edition. New Delhi, Indian Council of Agricultural Research, 2011.
6. FAO. Data needs for blue growth. In FAO. The State of World Fisheries and Aquaculture 2016. Contributing to food security and nutrition for all, 2016, 108-113. Rome. 200 pp. (also available at www.fao.org/3/a-i5555e.pdf).
7. FAO. The State of World Fisheries and Aquaculture 2018 Meeting the Sustainable Development Goals. Rome. 224 pp. Licence: CC BY-NC-SA 3.0 IGO (also available at www.fao.org/3/i9540en/i9540en.pdf).
8. FAO. The State of the World’s Aquatic Genetic Resources for Food and Agriculture. FAO Commission on Genetic Resources for Food and Agriculture assessments. Rome, 2019, 290. (also available at www.fao.org/3/CA5256EN/CA5256EN.pdf).
9. Handbook on Fisheries Statistics. Department of Fisheries, Ministry of Fisheries, Animal Husbandry and Dairying, Government of India, New Delhi, 2020.
10. Janaki Ram K, Pandey AK. Status and prospects of aquaculture development with special reference to Uttar Pradesh. In: Brain Storming Session on Production Status and Potential of Fisheries in U.P.: Constraints and Opportunities (January 22, 2003). 24-38. Uttar Pradesh Council of Agricultural Research. Lucknow, 2003.
11. Jayasankar P. Present status of freshwater aquaculture in India- A review. Indian Journal of Fisheries. 2018;65(4):157-165.
12. Kanoujia DR. Freshwater prawn breeding and culture in: Handbook of Fisheries and Aquaculture (S. Ayyappan Ed.), 2006, 293-306: Directorate of Information and Publication in Agriculture (ICAR), New Delhi.
13. Khan AU, Sharma VP, Azami HK. The Medicinal use of entomological drugs used by tribal communities of Eastern Uttar Pradesh, Uttar Pradesh J. Zool. 1994;14(1):55-59.
14. Kumar D, Maurya AK, Mishra V, Singh VP, Prasad L. Present Status of Freshwater Fishery Resources in Uttar Pradesh, India. Int. J. Curr. Microbiol. App. Sci. 2020;11:2389-2394.
15. Kutty MN. Sustainable aquaculture: a comparative view of freshwater prawn and marine shrimp. In: Souvenir-International Symposium on freshwater prawns 2003 (August 20-23, 2003), 14-20. College of Fisheries, Kerala Agricultural University, Cochin, 2003.
16. Lakra WS. Fish biodiversity of Uttar Pradesh: issues of livelihood security, threats and conservation. In: National Conference on Biodiversity, Development and Poverty
Alleviation (May 22, 2010). Uttar Pradesh State Biodiversity Board, Lucknow, 2010, 40-45.
17. Ling SW. Aquaculture in South East Asia: A Historical Overview. Washington Sea Grant Publication, University of Washington Press, Seattle, 1977, 108.
18. Ling SW, Costello TJ. The Culture of freshwater prawns: a review. Advances in aquaculture, 1979, 299-305.
19. Lodhi HS, Shukla Sanjive. Morphological and Histochemical characterization of haemocytes of freshwater prawn, Macrobrachium dayanum (Crustacea-Decapoda). Uttar Pradesh J. Zoology. 2020;41(10):109-120.
20. Lodhi HS, Ali H, Verma DR, Tiwari KJ, Shukla S, Sharma UD. Physiological and histological alterations in heart of freshwater prawn, Macrobrachium lamarrei (Crustacea-Decapoda) exposed to Copper Sulphate. 28th session Academy of Environmental biology held at Jamia Hamdard University, New Delhi. Nov 20-22, 2008, 49-50.
21. Lodhi HS, Khan MA, Verma RS, Sharma UD. Seasonal fluctuations in the total haemocyte counts (THC’s) of freshwater prawn, Him. J Environ. Zool. 2004;18(1):1-5.
22. Lodhi HS, Khan MA, Verma RS, Sharma UD. Acute toxicity of Copper Sulphonate to freshwater prawns. J. Environ. Biol. 2006;27(3):585-588.
23. Lodhi HS, Shukla R, Shukla S. Copper Sulphate induced haematological stress in freshwater prawns of Lucknow (U.P.) India. Environmental challenges in Biodiversity (Impact, Peril and Conservation). Lodhi H.S, Mishra A, Shukla R. and Shukla S (Eds.), Abhirm Prakashan, Lucknow (U.P.) India, 2021, 34-58.
24. Lodhi HS, Shukla S, Sharma UD. Studies on structure of heart of two freshwater prawns under light microscope. Uttar Pradesh J. Zool. 2009;29(1):1-10.
25. Lodhi HS, Tiwari KJ, Shukla S, Sharma UD. (b). Effect of copper sulphate on haemocyte morphology of freshwater prawn, Macrobrachium dayanum (Crustacea-Decapoda) – 27 Annual session of Academy of Environmental biology – Deptt. Of Zoology C.C.S, University of Meerut, 2007, oc-26.10.2007
26. Lodhi HS, Tiwari KJ, Shukla S, Sharma UD. Copper induced fluctuations in total haemocyte counts (THCs) of freshwater prawn, Macrobrachium lamarrei (Crustacea-Decapoda). J. Environ. Sci. 2008;22(2):135-142.
27. Lodhi, Harman Singh, Verma RS, Shukla Sanjive, Sharm UD. (a). Effects of Copper on haemocyte morphology and behaviour of freshwater prawn, Macrobrachium lamarrei (Crustacea-Decapoda). National Seminar on medical plants: Conservation, Cultivation and Utilization II. 9-11 March 2007. Gurukul Kangri Vishwa Vidyalaya Haridwar, 2007, 130.
28. Martin EA. “Nutrition in Action” II Edition. Holt Rinchort and Winston, New York, 1966.
29. Maurya AK, Upadhayay AD, Prasad L, Khan S. Trend analysis of fish production in Uttar Pradesh, India. J. Entomol. Zool. Stud. 2018;6(4):180-184.
30. Nair CM, Nambudiri DD, Jose S, Sankaran TM, Jayachandran KV, Salin KR. Freshwater prawns: Advances in Biology, Aquaculture and Marketing. Allied Publishers, New Delhi & Mumbai. Newsletter of the National Fisheries Development Board. 2016;7(5):1-64.
31. Pandey AK, Upadhayay AS, Lakra WS. Diversity of Commercially Important Freshwater Prawns and their Aquaculture Potential in India. J. Exp. Zool. India. 2009;13:121-128.
32. Pathak AK, Sarkar UK, Dayal R, Singh SP. UPF Base— A freshwater fish diversity database of Uttar Pradesh, India. Indian J. Anim. Sci. 2019;89(3):347-354.
33. Proudft FT, Robinson CH. Nutrition and Diet therapy. 11th edn. McMillan Company, New York, 1955.
34. Radheshyam. Farming the Freshwater prawn, Macrobrachium malcolmsonii. Aquacult. Asia. 2009;13:29-32.
35. Sakhivel M. Utilization of untapped resources for scampy culture for a rapid in production and export in India. In: Souvenir- International symposium of freshwater prawn 2003 (August 20-23, 2003) 21-24. College of Fisheries, Kerala Agricultural University, Cochin, 2003.
36. Sankar G, Elavarasi A, Sakkaravarthi K, Ramamoorthy K. Biochemical changes and growth performance of Black tiger Shrimp larvae after using Ricinus communis extracts as feed additive. Intl. J Pharm. Tech. Res. 2011;3:201-208.
37. Sen P, Tiwari KJ, Shukla R, Shukla S, Sharma UD. (b) Effects of Cadmium chloride on oxygen consumption of freshwater prawn, Macrobrachium dayanum (Crustacea-Decapoda). 18th All India Congress of Zoology (SCIAZE). University of Lucknow, Lucknow (Dec. 7-9, 2007), 2008, 103.
38. Sen P, Tiwari KJ, Shukla S, Sharma UD. (a) Pathomorphological changes in gills of fresh water prawn, Macrobrachium dayanum (Crustacea-Decapoda) exposed to Cadmium. National Conference on Recent Advances in Life Sciences held at Meerut College, Meerut (Feb-28-29, 2008), 2008, 95.
39. Sharma UD, Khan MA, Lodhi HS, Tewari KJ, Shukla S. Acute toxicity and behavioural anomalies in freshwater prawn Macrobrachium dayanum (Crustacea-Decapoda) exposed to Chromium. Aquacult. 2008;9(1):1-6.
40. Sharma UD, Shukla S. Acute toxicity of Heavy metals and detergent to freshwater prawn Macrobrachium lamarrei (Crustacea-Decapoda). J. H. Envi. Zool. 2006;20(1):1-6.
41. Sharma UD, Shukla S. Acute toxicity of heavy metals and detergent to freshwater prawn, Macrobrachium lamarrei (Crustacea-Decapoda). J. H. Envi. Zool. 2006;20(1):1-6.
42. Sharma UD, Shukla S, Lodhi HS. A Report on Macrobrachium dayanum (Henderson) (Decapoda-Palaemonidae) from river Gomti, Lucknow (U.P.) India. J. H. Envi. Zool. 1997;11:21-24.
43. Sharma UD, Shukla S. Behavioural dysfunctions of fresh water prawn M. lamarrei (Crustacea-Decapoda) following exposure to a synthetic detergent, Linear Alkyl Benzene Sulphonate. Biological Memoirs. 1990;16(1&2):58-61.
44. Shukla S, Sharma UD. Smaller fresh water prawns: Their aquaculture potential and suitability as good laboratory model. In: Bioresources for food security and rural livelihood. Kulkarni G.K.and Pandey P.N.(Eds) PP.189-204, Narendra Publications, Delhi, 2010.
45. Shukla S, Shukla R, Sharma UD. Histopathological effects of detergent, Linear Alkyl benzene sulphonate on hepatopancreas of freshwater prawn, Macrobrachium lamarrei (Crustacea-Decapoda). International Journal of Fisheries and Aquatic Studies. 2021;9(6):230-233.
46. Shukla Sanjive. Studies on Histopathology and behaviour
of freshwater prawn *Macrobrachium lamarrei* (Crustacea-Decapoda) infected with a helminth parasite *Phylodistomum lucknowensis* Pandey 1970. Biological Memoirs. 1988;14(1):53-6

47. Shukla Sanjive, Tewari KJ, Lodhi HS, Shukla Sandeep, Mishra A, Sharma UD. Histopathological alterations in gills of fresh water prawn, *Macrobrachium dayanum* (Crustacea-Decapoda) after acute and sub-acute exposure of lead nitrate. J. Appl. & Natural Sci. 2019;11(2):568-574.

48. Shukla S. Histopathological effects of Linear Alkyl Benzene Sulphonate (LAS) on Gill, Gren gland and hepatopancreas of fresh water prawn, *Macrobrachium lamarrei* (Decapoda - Palaemonidae). (Presented Paper). Abstract of National Conference on Environment & Applied Biology, 1993, 43.

49. Shukla S, Sharma UD. Mercuric Chloride induced nephropathy in fresh water prawn, *Macrobrachium lamarrei* (Decapoda - Palaemonidae). (Presented Paper). Abstract of National Conference on Environment & Applied Biology, 1993, 44.

50. Shukla S, Shukla R, Sharma UD. Effect of detergent, linear alkyl benzene sulphonate on gills of freshwater prawn, *Macrobrachium lamarrei*. Anusandhaan. 2013;1(1):31-34.

51. Singh D. In. Unani Dravyaguna Par-III, Ayurvedic & Tibbi Academy, Lucknow, India, 1977.

52. Singh H. Record growth and production of giant freshwater prawn, *Macrobrachium rosenbergii* in Haryana-new possibilities. In: International Symposium on Freshwater Prawns 2003 (August 20-23, 2003), 96. College of Fisheries, Kerala Agricultural University, Cochin, 2003.

53. Subasinghe R, Soto D, Jia J. Global aquaculture and its role in sustainable development. Rev. Aquac. 2009;1:2-9. doi.org/10.1111/j.1753-5131.2008.01002.x.

54. Sultan S. Freshwater prawn culture in Uttar Pradesh. In: International Symposium on Freshwater Prawns 2003 (August 20-23, 2003), 18. College of Fisheries, Kerala Agricultural University, Cochin, 2003.

55. Tewari KJ, Verma RS, Kasherwani D, Lodhi HS, Shukla Sanjive, Sharma UD. Lead induced behavioural anomalies in freshwater prawn, *Macrobrachium dayanum* (Crustacea-Decapoda). Environment & Ecology. 2007;25S(3A):802-804.

56. Tiwari KJ, Lodhi HS, Shukla S, Sharma UD. Effects of Lead nitrate on Oxygen consumption of fresh water prawn, *Macrobrachium dayanum* (Crustacea-Decapoda), 2009.

57. Tiwari KJ, Tripathi R, Shukla Sanjive, Sharma UD. Lead induced alterations in heart beat rate of freshwater prawn, *Macrobrachium dayanum* (Crustacea-Decapoda). Proc. – 95th Indian Science Congress Part II, Animal, Veterinary & Fisheries Sciences, 2008, 55.

58. Tiwari KJ, Tripathi R, Shukla Sanjive, Sharma UD. Lead induced alterations in heart beat rate of freshwater prawn, *Macrobrachium dayanum* (Crustacea-Decapoda). Proc. – 95th Indian Science Congress Part II, Animal, Veterinary & Fisheries Sciences, 2008, 55.

59. Tripathi R. Effects of Cadmium on reproduction of freshwater prawn, *Macrobrachium dayanum* (Crustacea-Decapoda). Ph.D. Thesis University of Lucknow, Lucknow- India, 2007.

60. Tripathi R, Shukla S, Sharma UD. Reproductive Biology & Toxicology in Freshwater prawn, *Macrobrachium dayanum*. Scaffold Press LLP, Chandigarh, India, 2021. ISBN: 978-81-952885-3-3

61. Tripathi R, Shukla Sanjive, Sharma UD. Seasonal changes in reproductive cycle of female fresh water prawn, *Macrobrachium dayanum* (Henderson) from river, Gomti, Lucknow (India). J. Appl.& Natural Sci. 2019;11(1):149-154.

62. Tripathi R, Tewari Kunverji, Shukla Sanjive, Sharma UD. Sex related acute toxicity and behavioral attentions in freshwater prawn, *Macrobrachium dayanum* (Crustacea-Decapoda) exposed to Cadmium chloride. Aquacult. 2007;8(2):251-256.

63. Upadhyay AS, Kulkarni BG, Pandey AK. Recent advances in Giant freshwater prawn culture in India In: Proceeding of recent advances in Applied Zoology (Singh H.S., Choubey A.K. and Bharadwaj S.K. Eds). Deptt. of Zoology Ch. Charan Singh University, Meerut, 2006, 116-132.

64. Verma DR, Lodhi HS, Tiwari KJ, Shukla S, Sharma UD. Copper sulphate induced changes in scaphognathite oscillations and oxygen consumption of fresh water prawn, *Macrobrachium lamarrei* (Crustacea-Decapoda). Journal of Applied and Natural Science. 2010;2(1):34-37.

65. Verma RS, Lodhi HS, Shukla S, Sharma UD. Effect of mercuric chloride on total haemocyte counts (THC’s) and haemocyte morphology of freshwater prawn, *Macrobrachium lamarrei* (Crustacea-Decapoda). 18th All India Congress of Zoology (SCIAZE) University of Lucknow, Lucknow Dec. 2007;7-9:55.

66. Verma RS, Khan MA, Tripathi Rashmi, Shukla Sanjive, Sharma UD. Heavy metal toxicity to fresh water prawn, *Macrobrachium dayanum* (Crustacea - Decapoda). Aquacult. 2005;6(1):57-62.