HISTONE F1 OF TETRAHYMENA MACRONUCLEI

Unique Electrophoretic Properties and Phosphorylation of F1 in an Amitotic Nucleus

MARTIN A. GOROVSKY, JOSEPHINE BOWEN KEEVERT, and GLORIA LORICK PLEGER

From the Department of Biology, University of Rochester, Rochester, New York 14627

ABSTRACT

Histone fraction F1 has been isolated and purified from macronuclei of the ciliated protozoan, Tetrahymena pyriformis. In many respects, Tetrahymena F1 is similar to that of other organisms. It is the only Tetrahymena histone soluble in 5% perchloric acid or 5% trichloroacetic acid, has a higher molecular weight than any other Tetrahymena histone, is the histone most easily dissociated from Tetrahymena chromatin, and is susceptible to specific proteolytic cleavage. However, unlike F1 in all other organisms, Tetrahymena F1 is not the slowest-migrating histone fraction when analyzed by polyacrylamide gel electrophoresis at low pH. Tetrahymena F1 also exhibits unusual behavior in sodium dodecyl sulfate-containing polyacrylamide gels, migrating faster than calf thymus F1 at pH 10, and slower than calf thymus F1 at pH 7.6. Tetrahymena F1 was found to be highly phosphorylated in rapidly growing cells, suggesting that the relationship between cell replication and F1 phosphorylation previously observed in mammalian cells may extend to all eukaryotes. The observation that extensive F1 phosphorylation occurs in macronuclei, which divide amitotically, argues against a unique role for F1 phosphorylation in the process of chromosome condensation at mitosis.

INTRODUCTION

In many ways, F1 is the most interesting of the five major histone fractions found in eukaryotes. When the histones of different organisms are compared, F1 shows much greater variability in electrophoretic mobility than other histone fractions (Nelson and Yunis, 1969; Fambrough and Bonner, 1969; Mohberg and Rusch, 1969; Cohen and Gotchel, 1971; Panyim et al., 1971; Phelan et al., 1972; Oliver and Chalkley, 1972). It has also been suggested that F1 isolated from a single mammalian tissue shows a greater degree of sequence diversity than the other histones (Bustin and Cole, 1968; Kinkade and Cole 1966a, b; Rall and Cole, 1971), and both qualitative and quantitative differences have been reported when F1 histone fractions isolated from different tissues of the same organism have been compared (Sheriden and Stern, 1967; Bustin and Cole, 1968; Kinkade, 1969; Panyim and Chalkley, 1969a; Bustin and Stollar, 1972). Recently, considerable interest has centered around the fact that histone F1 can be phosphorylated in vivo, and it has been suggested that phosphorylation of F1 may play an important role either in chromo-
some replication (Oliver et al., 1972 a) in the con-
trol of genetic activity (Kleinsmith et al., 1966;
Gutierrez-Cernosek and Hnilica, 1971; Meisler
and Langan, 1969), or in mitosis (Lake et al.,
1972; Bradbury et al., 1973).
We have been studying the histones of the
ciliated protozoan, *Tetrahymena pyriformis*, in an
effort to understand the underlying molecular
basis for the differences in structure and function
of the ciliate macro- and micronucleus (see Gorov-
sky, 1973), and to compare the histones of this
lower eukaryote to those of mammalian cells.
In particular, we wished to determine whether
the correlation between cell replication and phos-
phorylation of histone F1 which had been ob-
served in mammalian cells (Balhorn et al.,
1972 b; Stevely and Stocken, 1968) could be
extended to lower eukaryotes as well. Moreover,
since macronuclei divide amitotically, with no
signs of chromosome condensation (Flickinger,
1965; Nilsson, 1970), analysis of macronuclei
should provide insight into whether phosphoryla-
tion of histone F1 plays a unique role in the con-
densation of chromosomes during mitosis (Brad-
bury et al., 1973).

MATERIALS AND METHODS

Culture Methods

T. pyriformis (syngen I, mating-type I, strain
WH-6) were cultured in enriched proteose-peptone
as described previously (Gorovsky et al., 1973). Cell
counts were performed by measuring the optical
density (OD) at 550 nm on a Bausch and Lomb 340
spectrophotometer, (Bausch and Lomb Inc., Scien-
tific Instrument Div., Rochester, N. Y.). Under the
conditions used, 1.00D = approximately 1 X 10^6
cells/ml.

Isolation of Macronuclei

Macronuclei were isolated as previously described
(Gorovsky, 1970) except that 0.1% spermidine
trihydrochloride was added to all media to preserve
nuclei and to inhibit proteolysis.

Extraction of Total Histone

Isolated macronuclei were washed with 0.1% spermidine
trihydrochloride, adjusted to pH 3.6 with
1.0 N acetic acid. Histones were extracted from the
washed nuclei by repeated extraction with either
2.4 M urea-0.4 N H_2SO_4, or with 0.4 N H_2SO_4
alone. Histones were precipitated from the pooled ex-
tracts by treatment overnight at −20°C with 4 vol
of 95% or 100% ethanol, washed in 95% ethanol,
and dried under vacuum at room temperature. Whole
calf thymus histone was isolated from calf thymus
chromatin as described by Panyim et al. (1971).

Isolation of F1

FROM ISOLATED NUCLEI: Histone fraction F1
was removed from isolated nuclei by repeated extrac-
tion with 0.5 M or 0.74 M perchloric acid (PCA)
(Johns, 1964), precipitated by addition of 50%
trichloroacetic acid (TCA) to a final concentration of
20%, washed with acetone, and air-dried under
vacuum.

FROM WHOLE HISTONES: F1 was isolated from
whole histone either by repeated resuspension of the
dried histone in 0.001 N HCl followed by addition of
PCA to a concentration of 0.50 M (Oliver et al.,
1972 b); or by direct extraction of the histone powder
with 0.50 M or 0.74 M PCA. F1 was obtained from
the PCA supernate either by addition of H_2SO_4 to a
final concentration of 0.4 N followed by precipitation
in 6 vol of acetone (Oliver et al., 1972 b), or by
addition of 50% TCA to a final concentration of 20%
followed by centrifugation and washing of the TCA
precipitate in acetone.

FROM WHOLE CELLS: F1 was extracted directly
from whole cells with 5% TCA by the method of
DeNooij and Westenbrink (1962).

Polyacrylamide Gel Electrophoresis

Electrophoresis at low pH in 2.5 M urea-15%
polyacrylamide gels was performed by the method of
Panyim and Chalkley (1969 b). Gel lengths were
either 25 cm (long) or 8.5 cm (short). Gels were
stained in fast green as described previously (Gorovsky
et al., 1970).

Electrophoresis in sodium dodecyl sulfate (SDS)-
containing polyacrylamide gels at both pH 7.6 and
pH 10.0 was performed according to the method of
Panyim and Chalkley (1971). Whole calf thymus
histones or isolated fractions of calf thymus histone
were used as standards. SDS-containing gels were
stained overnight in 0.1% fast green, 20% acetic acid,
and 50% methanol and were destained by repeated
changes of 7.5% acetic acid-5.0% methanol.

Fast green-stained gels were scanned at 630 nm
using a Gilford 2400 spectrophotometer (Gilford
Instrument Laboratories, Inc., Oberlin, Ohio),
equipped with a 2410 linear transport. Electropho-
retic mobilities of the various histone fractions were
calculated either from measurements made on the
densitometer tracings or from measurements made
directly on the gels. Mobilities are expressed relative
to the fastest-migrating subspecies of fraction F2A1
of either calf thymus or *Tetrahymena*, which have been
Figure 1 Densitometer tracings of short polyacrylamide gels containing (A) whole histone, (B) PCA-insoluble histones, and (C) PCA-soluble histones extracted from macronuclei of T. pyriformis. Electrophoretically separable components have been identified as previously described (Gorovsky et al., 1973). The fraction(s) labeled X have not yet been identified. The peaks to the left of fraction(s) X represent nonhistone contamination (probably nucleolar or ribosomal contaminants) which can be largely removed by isolating histones from chromatin instead of directly from macronuclei. It should be noted that while a considerable number of acid-soluble slow-migrating proteins can be extracted from isolated macronuclei, none of them is soluble in PCA. Electrophoresis at 180 V for 240 min.

shown to have identical mobilities in both types of gel (Gorovsky et al., 1973).

Phosphatase Treatment
Histone fraction F1 isolated from Tetrahymena macronuclei was treated with Escherichia coli alkaline phosphatase as described by Sherod et al. (1970).

RESULTS

Low pH-Acrylamide Gel Electrophoresis

Extraction with 5% PCA routinely solubilized 20-25% of the total fast green staining-material from whole histones or from isolated nuclei (Fig. 1).
The bulk of the extracted material had a relative electrophoretic mobility (on low pH acylamide gels) greater than that of any other *Tetrahymena* histone fraction except three of the four fastest-migrating subspecies of fraction F2A1 (Fig. 1), and migrated approximately 30% faster than purified calf thymus F1 (Fig. 2). Since PCA solubility is a diagnostic characteristic of fraction F1, and since this PCA-soluble fraction from *Tetrahymena* showed an amino acid composition not unlike that of calf thymus F1 (Table I), we tentatively concluded that, in spite of its unusual electrophoretic mobility, this fraction corresponded to F1 from other organisms.

However, while it is clear that the precise relative electrophoretic mobilities of Fls isolated from different organisms vary considerably (Panyim et al., 1971), F1 is the slowest-migrating histone fraction in all organisms examined to date. Since histone F1 is particularly susceptible to specific proteolytic degradation which can result in the appearance of new molecular species on polacrylamide gels (Bartley and Chalkley, 1970), we examined the possibility that the unusual

![Densitometer tracings of short polyacrylamide gels containing (A) calf thymus F1, (B) *Tetrahymena* F1, and (C) *Tetrahymena* F1 plus calf thymus F1. The fastest-migrating peak in each tracing is calf thymus F2A1 which was added to each gel as a mobility marker. Electrophoresis at 140 V for 265 min.](image)

Figure 2 Densitometer tracings of short polyacrylamide gels containing (A) calf thymus F1, (B) *Tetrahymena* F1, and (C) *Tetrahymena* F1 plus calf thymus F1. The fastest-migrating peak in each tracing is calf thymus F2A1 which was added to each gel as a mobility marker. Electrophoresis at 140 V for 265 min.

GOROVSKY ET AL. *Electrophoretic Properties and Phosphorylation of Histone F1* 137
TABLE I
Amino Acid Composition of Histone Fraction F1 Isolated from *T. pyriformis* and from Calf Thymus

Amino acid	Molecules/100 molecules of amino acids	Tetrahymena*	Calf thymus †
	strain WH-6	Calf thymus	strain GL
Lysine	29.9	27.3	33.4
Histidine	2.3	0.0	2.1
Arginine	2.4	2.1	2.9
Aspartic acid	9.9	2.6	7.6
Threonine	8.6	6.0	10.6
Serine	7.5	6.9	7.8
Glutamic acid	7.3	4.7	4.8
Proline	6.1	8.4	6.1
Glycine	3.5	6.7	2.2
Alanine	14.0	28.6	12.7
Cysteine	0.0	0.0	0.0
Valine	3.9	6.0	6.9
Methionine	Trace	Trace	0.5
Isoleucine	2.3	0.8	2.3
Leucine	1.7	3.9	1.1
Tyrosine	0.5	0.5	0.2
Phenylalanine	0.4	0.4	0.0
Lysine/arginine	12.5	13.0	11.5
Basic/acidic	2.0	4.0	3.1

* We are grateful to Dr. Roger Chalkley, Department of Biochemistry, School of Medicine, University of Iowa, for providing the amino acid analysis of *Tetrahymena* F1.

† Average values for fractions III and C7 computed from data in Hamana and Iwai, 1971.

§ From Panyim et al., 1971.

Mobility of *Tetrahymena* F1 was observed under some conditions, particularly when isolations were done slowly or in the absence of inhibitors. Such proteolysis involved a loss of material migrating as in Fig. 2 and the appearance of material with a relative electrophoretic mobility somewhat greater than F2A1. This material, like the slower-migrating species from which it is probably derived, is soluble in 5% PCA. We conclude, therefore, that the unusual electrophoretic mobility of *Tetrahymena* F1 is probably not due to proteolysis (see also results on SDS acrylamide gel electrophoresis below).

In the course of these studies on F1 proteolysis we also observed that spermidine trihydrochloride at a concentration of 0.1% was an effective inhibitor of F1 degradation in *Tetrahymena* (Grovy and Keevert, unpublished observations). Since spermidine also stabilized nuclear structure during isolation of nuclei, it was routinely added to all isolation media.

SDS Acrylamide Gel Electrophoresis

In a further attempt to determine if limited proteolysis might be responsible for the unusual electrophoretic mobility of *Tetrahymena* F1, we have examined the properties of isolated F1 by electrophoresis in SDS-containing polyacrylamide gels. We reasoned that if *Tetrahymena* F1 migrated more rapidly than calf thymus F1 because it was partially degraded, it should have a significantly lower molecular weight than calf thymus F1. Fig. 3 shows that *Tetrahymena* F1 migrates slightly faster than calf thymus F1, the reason for this discrepancy is unclear (see Discussion). It is clear, however, that in SDS-containing gels at pH 7.6, suggesting that *Tetrahymena* F1 has a greater molecular weight. However, when the two F1s are compared by electrophoresis on SDS-containing gels at pH 10, (Fig. 4), *Tetrahymena* F1 migrates slightly faster than calf thymus F1. The reason for this discrepancy is unclear (see Discussion). It is clear, however, that in SDS-containing gels at either pH, *Tetrahymena* F1 migrates more slowly than calf thymus F1 on SDS-containing gels at pH 7.6, suggesting that *Tetrahymena* F1 has a greater molecular weight. However, when the two F1s are compared by electrophoresis on SDS-containing gels at pH 10, (Fig. 4), *Tetrahymena* F1 migrates slightly faster than calf thymus F1. The reason for this discrepancy is unclear (see Discussion). It is clear, however, that in SDS-containing gels at either pH, *Tetrahymena* F1 migrates more slowly (has a higher molecular weight) than any other *Tetrahymena* histone fraction. These results suggest that the unusually high mobility of *Tetrahymena* F1 in low pH acrylamide gels is due, at least in part, to its having a higher positive charge (at low pH) than either calf thymus F1 or than any of the other *Tetrahymena* histones (see Discussion).
Phosphorylation of Tetrahymena F1

When histones isolated from rapidly growing cells (log phase; cell density = 250,000 cells/ml) were compared to those isolated from slowly growing cells (deceleratory growth phase; 850,000 cells/ml), a striking difference was observed in the electrophoretic mobility of histone fraction F1. In short gels, F1 from slowly growing cells migrated as a sharper band with a significantly greater mobility than that of F1 from log phase cells (Fig. 5). Since a correlation has recently been demonstrated between phosphorylation of histone fraction F1 and the rate of cell division in a number of mammalian cell types (Svedley and Stocken, 1968; Balhorn et al., 1971; 1972 a; 1972 b), we tested the possibility that phosphorylation might explain the differences in mobility of F1 isolated from the different stages of culture growth. When F1 isolated from log phase cells is analyzed on long polyacrylamide gels, the broad, slow-migrating peak is better resolved into multiple components (Fig. 6). After treatment with alkaline phosphatase, these
components are converted into a sharp, rapidly migrating species (Fig. 6), with an electrophoretic mobility indistinguishable from that of the major component of F1 isolated from slowly growing cells (Fig. 7). When F1 isolated from slowly growing cells is treated with alkaline phosphatase, the small amounts of the slower-migrating components are rapidly converted to a faster-migrating form (Fig. 7). These studies suggest that the difference in electrophoretic mobility between F1 of rapidly growing and of slowly growing cells is due to the presence of large amounts of covalently bound phosphate groups on F1 of log phase cells. In addition, fully dephosphorylated F1 from both rapidly and slowly growing cells seems to consist almost
entirely of a single electrophoretic species having an electrophoretic mobility identical to that of the major F1 subspecies isolated from slowly growing cells (Fig. 6).

DISCUSSION

Electrophoretic Properties of Tetrahymena

We have observed that Tetrahymena F1 has a higher apparent molecular weight than any other Tetrahymena histone when examined on SDS-containing acrylamide gels either at pH 7.6 or at pH 10.0 and that F1 is eluted before the other Tetrahymena histone fractions when examined by molecular exclusion chromatography (unpublished observations). Clearly then, on the basis of molecular weight alone, F1 should migrate more slowly than any other Tetrahymena histone.

One possible explanation of the unusual electrophoretic mobility in urea-containing acrylamide gels at low pH is that Tetrahymena F1 has a significantly higher number of basic amino acids than calf thymus F1 and than the other Tetrahymena histones. This is borne out by an examination of the amino acid composition of Tetrahymena F1 which indicates that it contains approximately 18% (34.6% basic residues in Tetrahymena F1, compared to 29.4% in calf thymus; see Table I) more basic residues than does calf thymus F1. Nonetheless, it is unlikely that the difference in the number of basic groups between Tetrahymena and calf thymus F1 is sufficient to account for the large (30%) difference in relative electrophoretic mobilities of these two proteins in low pH gels. Our studies on SDS-containing gels (see below) at pH 10.0 indicate that the molecular weight of Tetrahymena F1 is somewhat lower than that of calf thymus F1. It is likely, therefore, that these two properties of Tetrahymena F1, an increase in total basic residues coupled with a lower molecular weight (compared to calf thymus F1), together account for its unique electrophoretic mobility on low pH, urea-containing polyacrylamide gels.

It should be noted that Smith et al. (1970) have suggested that the histone of slowest mobility in a low pH urea-acrylamide gel of Tetrahymena histones is fraction I (=F1). However,
they have presented no evidence (other than the low electrophoretic mobility) for identifying this fraction as F1 and, on the basis of our results, it is likely that this fraction is not F1, but is rather a fraction which is as yet uncharacterized (fraction X, Fig. 1).

It is tempting to suggest that the unusual behavior of Tetrahymena F1 on SDS-containing polyacrylamide gels is also due to its unusually large number of positively charged groups. It is known, for example, that histones fall on a different standard curve than do other proteins when their relative electrophoretic mobilities are plotted against the logarithms of their molecular weights (Panyim and Chalkley, 1971). Therefore it is likely that the net positive charge on a histone molecule affects its mobility in SDS-containing

Figure 6 Densitometer tracings of long polyacrylamide gel containing F1 isolated from rapidly growing cells before and after treatment with alkaline phosphatase. (A) Control, (B) treatment for 1 h, (C) treatment for 23 h. Tracings were lined up by including calf thymus F2A1 (not shown) as a marker in each gel. Electrophoresis at 250 V for 24 h.

Figure 7 Densitometer tracings of long polyacrylamide gel containing F1 isolated from slowly growing cells (A-C) before and after treatment with alkaline phosphatase. (D) shows a sample of F1 from rapidly growing cells which has been extensively (24 h) treated with phosphatase. Tracings were lined up by including calf thymus F2A1 (not shown) as a marker in each gel. Electrophoresis at 250 V for 24 h.
gels, and the marked pH dependence of the mobility of *Tetrahymena* F1 in SDS-containing gels may be related, in part, to the large number of basic groups which it contains. Unfortunately, the correlations between molecular weights and relative electrophoretic mobilities in SDS gels, even for the calf thymus histones which are used as standards, are not precise. For example, calf thymus fractions F2B and F3 have identical electrophoretic mobilities on SDS gels, although their molecular weights determined by primary sequence analysis differ considerably (Iwai et al., 1972; DeLange et al., 1972). Moreover, the amino acid analyses (Table I) indicate that while *Tetrahymena* F1 contains a greater number of basic amino acids than does calf thymus F1, it also contains a significantly greater number of acidic amino acids, so that the net positive charge of *Tetrahymena* F1 is probably smaller than that of calf thymus at both pH 7.6 and at pH 10.0. At the present time, therefore, we cannot determine whether it is the large number of basic residues or other unknown factors (such as peculiarities of amino acid composition or charge distribution which affect SDS binding, a pH-dependent conformational change, etc.) which account for the behavior of *Tetrahymena* F1 in SDS-containing gels.

We had also hoped to determine the apparent molecular weight of *Tetrahymena* F1 at a pH which is sufficiently high so that the positive charges of both the ε-amino groups of lysine and the guanido groups of arginine are neutralized. However, technical difficulties have prevented us from performing analyses on SDS gels above pH 10 (Panyim and Chalkley, 1971; S. Mancuso, unpublished observations).

Heterogeneity of *Tetrahymena* F1

Hamana and Iwai (1971) have reported that the amino acid compositions of a number of histone fractions (their fractions I, I-C6, C6-1, C6, C6-I, III, and C7) extracted from *Tetrahymena* macronuclei (strain GL) and purified by column chromatography had amino acid compositions similar to that of calf thymus F1. However, five of these fractions had lower molecular weights and were less basic than either fraction III (purified by chromatography on amberlite CG-50) or fraction C7 (purified by chromatography on CM-cellulose). Thus, they may have been products of proteolytic degradation of fraction III or C7 whose electrophoretic properties and amino acid compositions were indistinguishable. We have found that when care is taken to avoid proteolytic degradation and to completely dephosphorylate F1 with alkaline phosphatase, F1 isolated from strain GL (unpublished observations) as well as from the strain (WH-6) studied here migrates as a single, homogeneous band during electrophoresis on both urea-acrylamide gels at low pH, and on SDS-containing acrylamide gels at either pH 7.6 or pH 10.0.

It should also be noted that a comparison of the amino acid composition of either fraction III or C7 of strain GL (Hamana and Iwai, 1971), and that reported here for F1 from strain WH-6 indicates that they are remarkably similar. Both the GL and WH-6 fractions contain more basic residues than calf thymus F1, but also contain considerably more acidic amino acids and less alanine than calf thymus F1 (Table I). *Tetrahymena* F1 also appears to contain histidine which is absent in calf thymus F1.

Evolution of F1

Histone fraction F1 is unusual in that the electrophoretic mobilities of F1s isolated from different organisms vary considerably, while the mobilities of the other fractions remain relatively constant. In low pH polyacrylamide gels, mobilities ranging from approximately 20% slower (Drosophila F1, Cohen and Gotchel, 1971; Oliver and Chalkley, 1972) to approximately 30% faster (this report) than calf thymus F1 have been reported. In both of these extreme cases, a major change in the number of basic residues of the molecule has probably played a role in the altered electrophoretic mobility (arbitrarily assuming calf thymus F1 is "normal"). It should be noted, however, that while the variability of histone fraction F1 from species to species is often emphasized, a surprising number of the physical, chemical, and physiological properties of this fraction appear to be common to all eukaryotic organisms. Most, if not all, eukaryotic organisms examined to date contain a histone fraction (F1) which: (a) is uniquely soluble in PCA; (b) is the most lysine-rich fraction, and (c) is the histone fraction of greatest molecular weight. In organisms as diverse as mammals and ciliates, this fraction is the histone most easily dissociated from chromatin by salts and acid, is susceptible to specific proteolysis, and is highly phosphorylated in...
Phosphorylation of Histone F1

With the exception of recent studies on the histones of sea urchin testes (Subirana and Unzeta, 1972) and of Physarum (Bradbury et al., 1973), phosphorylation has been extensively studied only in higher organisms, and considerable controversy exists regarding its function. It has been variously suggested that phosphorylation plays a role in gene activation (Kleinsmith et al., 1966; Guttierrez-Cernosek and Hnilica, 1971), in chromosome replication (Oliver et al., 1972 a), and in mitosis (Lake et al., 1972; Bradbury et al., 1973). As is the case in mammalian cells (Balhorn, et al., 1971; 1972 a; 1972 b), we have observed that phosphorylation of histone F1 in Tetrahymena is correlated with the stage of growth of the cells. While these observations seem to suggest a relationship between F1 phosphorylation and cell replication, it is still possible that the level of genetic activity in slowly growing cells is lower than that in rapidly growing cells. Our finding of extensive phosphorylation of F1 in macronuclei of rapidly dividing cells does, however, rule out a unique function of F1 phosphorylation in chromosome condensation (Bradbury et al., 1973) or in the process of mitosis itself (Lake et al., 1972), since macronuclei divide amitotically without any marked changes in chromatin structure (Flickinger, 1965; Nilsson, 1970).

Finally, Tetrahymena offers some particular advantages for the study of F1 phosphorylation in greater detail. Since unphosphorylated Tetrahymena F1 exists as a single electrophoretic species, it is particularly easy to distinguish between phosphorylated and unphosphorylated forms by electrophoretic criteria (Balhorn et al., 1971). Finally, the micronucleus of Tetrahymena undergoes DNA replication, but is genetically inactive (see Gorovsky, 1973 for review) so that a demonstration that phosphorylation of F1 occurs in micronuclei might implicate phosphorylation in the process of chromosome replication, while the absence of F1 phosphorylation in micronuclei may suggest that it played a role in gene activation. These studies are now in progress.

We would like to thank Ms. Sue Mancuso for assistance in the early stages of this work. We are extremely grateful to Dr. Roger Chalkley for performing the amino acid analysis of Tetrahymena F1.

The work was supported by National Science Foundation grants GB-27517 and GB-40649.

Received for publication 2 August 1973, and in revised form 9 November 1973.

REFERENCES

Balhorn, R., M. Balhorn, and R. Chalkley. 1972 a. Lysine-rich histone phosphorylation and hyperplasia in the developing rat. Dev. Biol. 29:199.

Balhorn, R., R. Chalkley, and D. Granner. 1972 b. Lysine-rich histone phosphorylation. A positive correlation with cell replication. Biochemistry. 11:1994.

Balhorn, R., W. O. Rieke, and R. Chalkley. 1971. Rapid electrophoretic analysis for histone phosphorylation. A re-investigation of phosphorylation of lysine-rich histone during rat liver regeneration. Biochemistry. 10:3952.

Bartley, J., and R. Chalkley. 1970. Further studies of a thymus nucleohistone-associated protease. J. Biol. Chem. 245:4286.

Bradbury, E. M., R. J. Inglis, H. R. Matthews, and N. Sarner. 1973. Phosphorylation of very-lysine-rich histone in Physarum polycephalum. Correlation with chromosome condensation. Eur. J. Biochem. 33:131.

Bustin, M., and R. D. Cole. 1968. Species and organ specificity in very lysine-rich histones. J. Biol. Chem. 243:4500.

Bustin, M., and B. D. Stollar. 1972. Immunoch- emical specificity in lysine-rich histone subfractions. J. Biol. Chem. 247:5716.

Cohen, L. H., and B. V. Gottschel. 1971. Histones of polytene and nonpolytene nuclei of Drosophila melanogaster. J. Biol. Chem. 246:1841.

DeLange R., J., J. A. Hooper, and E. L. Smith. 1972. Complete amino-acid sequence of calf-thymus histone III. Proc. Natl. Acad. Sci. U.S.A. 69:882.
DeNooij, E. H., and H. G. Westemraim. 1962. Isolation of a homogeneous lysine-rich histone from calf thymus. Biochim. Biophys. Acta. 62:508.

Fambrough, D. M., and J. Bonner. 1969. Limited molecular heterogeneity of plant histones. Biochim. Biophys. Acta. 175:113.

Flickinger, C. J. 1965. The fine structure of the nuclei of Tetrahymena pyriformis throughout the cell cycle. J. Cell Biol. 27:519.

Gorovsk% M. A. 1970. Studies on nuclear structure and function in Tetrahymena pyriformis. II. Isolation of macro- and micronuclei. J. Cell Biol. 47:619.

Gorovsk%, M. A. 1973. Macro- and micronuclei of Tetrahymena pyriformis: a model system for studying the structure and function of eukaryotic nuclei. J. Protozool. 20:19.

Gorovsk%, M. A., K. Carlson, and J. L. Rosenberg. 1970. Simple method for quantitative densitometry of polyacrylamide gels using fast green. Anal. Biochem. 35:339.

Gorovsk%, M. A., G. L. Pleger, J. B. Keever, and C. A. Johann. 1973. Studies on histone fraction F2A1 in macro- and micronuclei of Tetrahymena pyriformis. J. Cell Biol. 57:773.

Gutierrez-Cernosek, R. M., and L. S. Hinlca. 1971. Histone synthesis and phosphorylation in regenerating rat liver. Biochim. Biophys. Acta. 247:348.

Hamana, K., and K. Iwai. 1971. Fractionation and characterization of Tetrahymena histone in comparison with mammalian histones. J. Biochim. 69:1997.

Iwai, K., H. Hayashi, and K. Ishikawa. 1972. Calf thymus lysine- and serine-rich histone III. Complete amino acid sequence and its implication for interaction of histones with DNA. J. Biochem. 72:357.

Johms, E. W. 1964. Studies on histones. 7. Preparative methods for histone fractions from calf thymus. Biochim. J. 92:55.

Kinkade, J. M., Jr. 1969. Qualitative species differences and quantitative tissue differences in the distribution of lysine-rich histones. J. Biol. Chem. 244:3375.

Kinkade, J. M., Jr., and R. D. Cole. 1966 a. The resolution of four lysine-rich histones derived from calf thymus. J. Biol. Chem. 241:5790.

Kinkade, J. M., Jr., and R. D. Cole. 1966 b. A structural comparison of different lysine-rich histones of calf thymus. J. Biol. Chem. 241:5798.

Kleinsmith, L. J., V. G. Allfrey, and A. E. Mirsky. 1966. Phosphoprotein metabolism in isolated lymphocyte nuclei. Proc. Natl. Acad. Sci. U.S.A. 53:1182.

Lake, R. S., J. A. Goide, and N. P. Salzman. 1972. F1-histone modification at metaphase in Chinese hamster cells. Exp. Cell Res. 73:113.

Meisler, M. H., and T. A. Langan. 1969. Characterization of a phosphatase specific for phosphorylated histones and protamine. J. Biol. Chem. 244:4961.

Mohr, J., and H. P. Rusch. 1969. Isolation of the nuclear histones from the myxomycete, Physarum polycephalum. Arch. Biochem. Biophys. 134:577.

Nelson, R. D., and J. J. Yunis. 1969. Species and tissue specificity of very lysine-rich and serine-rich histones. Exp. Cell Res. 57:331.

Nilsson, J. R. 1970 Suggestive structural evidence for macronuclear “subnuclci” in Tetrahymena pyriformis. J. Protozool. 17:539.

Oliver, D., R. Balhorn, D. Graner, and R. Chalkley. 1972 a. Molecular nature of F1 histone phosphorylation in cultured hepatoma cells. Biochemistry. 11:3921.

Oliver, D., and R. Chalkley. 1972. An electrophoretic analysis of Drosophila histones. I. Isolation and identification. Exp. Cell Res. 73:295.

Oliver, D., K. R. Sommer, S. Panyim, S. Spiker, and R. Chalkley. 1972 b. A modified procedure for fractionating histones. Biochim. J. 129:349.

Panyim, S., D. Bulek, and R. Chalkley. 1971. An electrophoretic comparison of vertebrate histones. J. Biol. Chem. 246:4206.

Panyim, S., and R. Chalkley. 1969 a. A new histone found only in mammalian tissues with little cell division. Biochem. Biophys. Res. Commun. 37:1042.

Panyim, S., and R. Chalkley. 1969 b. High resolution acrylamide gel electrophoresis of histones. Arch. Biochim. Biophys. 130:337.

Panyim, S., and R. Chalkley. 1971. The molecular weights of vertebrate histones exploiting a modified sodium dodecyl sulfate electrophoretic method. J. Biol. Chem. 246:7357.

Phelan, J. J., J. A. Subhanna, and R. D. Cole. 1972. An unusual group of lysine-rich histones from gonads of a sea cucumber, Holothuria tubulosa. Eur. J. Biochem. 3:163.

Rall, S. C., and R. D. Cole. 1971. Amino acid sequence and sequence variability of the amino terminal regions of lysine-rich histones. J. Biol. Chem. 246:7175.

Sheridan, W. F., and H. Stern. 1967. Histones of meiosis. Exp. Cell Res. 45:323.

SheridG, D., G. Johnson, and R. Chalkley. 1970. Phosphorylation of mouse ascites tumor cell lysine-rich histones. Biochemistry. 9:4611.

Smith, E. L., R. J. DeLange, and J. Bonner. 1970. Chemistry and biology of histones. Physiol. Rev. 50:159.

Steeley, W. S., and L. A. Stocken. 1968. Variations in the phosphate content of histone F1 in normal and irradiated tissues. Biochem. J. 110:167.

Subhanna, J. A., and M. Unzeta. 1972. Phosphorylation of histone-like components during spermiogenesis in the sea urchin. FEBS (Fed. Eur. Biochem. Soc.) Lett. 28:112.