Benefits of nucleos(t)ide analog treatments for hepatitis B virus-related cirrhosis

Koichi Honda, Masataka Seike, Kazunari Murakami

Abstract
Chronic hepatitis B infection induces progressive liver disease. Before nucleos(t)ide analogs (NUCs) became established as a safe and effective treatment for hepatitis B, it was difficult to suppress the activity of the hepatitis B virus (HBV). Currently, many patients with hepatitis or cirrhosis associated with HBV are treated with NUCs for an extended period of time, and the effects, benefits, and limitations of these treatments have been apparent. This article reviews HBV-related cirrhosis, its natural course and survival, histological improvement after NUC treatments, treatment effects for decompensated cirrhosis, the incidence of hepatocellular carcinoma (HCC) after NUC treatments, and the efficacy of NUC treatments before and after the treatment of patients for HBV-related HCC. Of particular interest are the histological improvements, including regression of fibrosis, that have been achieved with NUC treatments. Liver function of patients with decompensated cirrhosis has significantly improved regardless of the type of NUC applied, and treatment with NUCs has reduced the incidence of HCC in cirrhotic patients. However, cirrhosis remains the strongest risk factor for HCC occurrence following NUC treatments, and the long-term cumulative incidence of HCC after NUC treatments remains high. When recurrence does occur, it is important to reconsider the treatment modality according to the degree of improved liver function that was achieved.

Key words: Hepatitis B; Nucleos(t)ide analogue; Liver cirrhosis; Lamivudine; Entecavir

© The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: We presented the benefits of nucleos(t)ide analog (NUCs) treatments for HBV-related cirrhosis in this article. NUC treatments have been found to improve inflammation and fibrosis in the liver of cirrhotic patients. Moreover, even in patients with decompensated cirrhosis, liver function has improved in many cases. Furthermore, although NUC treatments can reduce the incidence of hepatocellular carcinoma (HCC), rates of HCC remain high in patients with cirrhosis. NUC treatments have been found to improve liver function and the survival of patients with HCC. Improved liver function was also achieved by providing NUC treatments for hepatitis B virus-related HCC when recurrent tumors.
developed. Therefore, it is important to select the most appropriate treatment method considering the alterations in liver function that may occur following NUC treatments.

Honda K, Seike M, Murakami K. Benefits of nucleos(t)ide analog treatments for hepatitis B virus-related cirrhosis. World J Hepatol 2015; 7(22): 2404-2410. Available from: URL: http://www.wjgnet.com/1948-5182/full/v7/i22/2404.htm DOI: http://dx.doi.org/10.4254/wjh.v7.i22.2404

INTRODUCTION

An estimated 400 million people worldwide are chronically infected with hepatitis B virus (HBV)\(^{[1]}\). Chronic hepatitis B infection induces a progressive liver disease that can lead to cirrhosis and hepatocellular carcinoma (HCC)\(^{[2]}\). Prior to establishing the antiviral drug, lamivudine, as an effective treatment for hepatitis B\(^{[3]}\), it was difficult to prevent disease progression. Lamivudine was the first nucleos(t)ide analog (NUC) to be extensively characterized and it inhibits DNA synthesis. Subsequently, it has been found to rapidly reduce serum levels of HBV and to reduce inflammation in the liver\(^{[3]}\). Moreover, several NUCs, including adefovir dipivoxil, telbivudine, entecavir, and tenofovir disoproxil fumarate, have been developed. Initially, the indication of these drugs was limited to patients with chronic hepatitis or compensated cirrhosis, although they have gradually been applied to the treatment of decompensated cirrhosis. In this review article, we describe the effects, benefits, and limitations of using NUCs to treat cirrhotic patients.

NATURAL COURSE OF HBV INFECTION AND CIRRHOSIS IN PATIENTS

Several studies have documented the natural history of chronic hepatitis B prior to the availability of NUCs (Table 1). For example, Weissberg et al\(^{[4]}\) studied 379 histologically confirmed chronic hepatitis B patients and reported the following estimated 5-year survival rates: 97% for chronic persistent patients, 86% for chronic active hepatitis patients, and 55% for chronic active hepatitis patients with cirrhosis. Liaw et al\(^{[5]}\) also reported the natural history of chronic HBV infection following the recent development of histologically confirmed cirrhosis in a cohort of 76 patients. The annual incidences of hepatic decompensation and HCC development were calculated to be 2.3% and 2.8%, respectively. Furthermore, Liaw et al\(^{[5]}\) estimated the 5-year survival rate to be 80%. de Jongh et al\(^{[6]}\) conducted a follow-up study of 98 hepatitis B surface antigen- positive cirrhosis patients with histopathologically confirmed cirrhosis. The reported survival probability was 71% after 5 years. For the 21 patients with decompensated cirrhosis, the survival probability was only 14%. Consistent with these previous studies, Realdi et al\(^{[7]}\) found that the 5-year survival rate for 366 patients with histologically confirmed cirrhosis was 84%. With the exception of the study by Liaw et al\(^{[5]}\), these studies analyzed the factors affect their prognosis using multivariate analysis: Patient age, total bilirubin levels, albumin levels, platelet counts, hepatitis B e antigen (HBeAg) positivity, ascites, spider nevi, and splenomegaly were reported as significant prognostic factors. Patient age and total bilirubin were the factors that were included in each of the studies. Overall, the 5-year survival rates for HBV-related cirrhosis reported in these studies ranged from 55% to 84%, which may be due to differences in lead time bias, study design, country, ethnicity, HBV genotype, and/or HBeAg positivity.

HISTOLOGICAL IMPROVEMENT IN PATIENTS WITH CIRRHOSIS

Histologically, fibrosis has improved with long-term treatment with NUCs\(^{[8-17]}\). In early studies, lamivudine was administered for a short period of time (e.g., 6-12 mo)\(^{[3,8,9]}\). In 52%-95% of patients that received lamivudine treatment for at least one year, an improvement in necroinflammatory activity was observed (which was defined as at least a 2-point decrease in the histologic activity index (HAI) score)\(^{[3,8,11]}\). In contrast, the rate of hepatic fibrosis improvement (defined as at least a 1-point decrease in the HAI fibrosis score) associated with short-term lamivudine treatments were not as high\(^{[8,9]}\) and ranged from < 10% to 35%. Since then, long-term use of NUCs has led to improvements in liver fibrosis, even in cases of advanced fibrosis or cirrhosis\(^{[11,13,14]}\). For example, Chang et al\(^{[12]}\) followed 57 hepatitis B patients that were treated with entecavir for 3-7 years (median, 6 years) and underwent repeated histological examinations. Improved Ishak fibrosis scores (≥ a 1-point decrease) were reported for 88% of these patients. In addition, four patients with cirrhosis also demonstrated an improvement in their Ishak fibrosis scores (median decrease: 3 points, range: 1-4). Table 2 summarizes the primary studies that have described histological changes after an initial NUC treatment. Dienstag et al\(^{[11]}\) reported that fibrosis improved (defined as a decrease in the HAI fibrosis score of at least 1-point) in 45.5% of patients treated with lamivudine (n = 11) after 1 year, and this rate increased to 72.7% after an additional 2 years of treatment. Marcellin et al\(^{[14]}\) reported that 51% of patients with hepatitis B that were treated with tenofovir (n = 348) showed improvement in fibrosis (defined as a decreased in the Ishak fibrosis score of at least 1-point). In addition, fibrosis improved in 74% of patients with cirrhosis (n = 97) at 5 years. Taken together, these results demonstrate that long-term treatment with NUCs can potentially lead to histological improvements in patients with cirrhosis.
NUC TREATMENT FOR DECOMPENSATED CIRRHOSIS

Once lamivudine treatment was established as an effective and safe drug for the treatment of chronic hepatitis B or compensated cirrhosis[^10], it was gradually applied to the treatment of decompensated cirrhosis[^18-30]. The 1-year, 3-year, and 5-year survival probabilities for patients with decompensated cirrhosis without NUC treatment were: 70%-71%[^6,31], 35%-40%[^6,31] and 14%-35%[^6,31,32], respectively. These survival rates increased dramatically following the use of NUC treatments to: 70%-94%, 63%-87%, and 55%-86%, respectively[^18,23,26,29]. (Table 3). The liver function of the latter patients also significantly improved regardless of the type of NUC administered[^18-30]. In addition, NUC treatment led to a reduction in the Child-Pugh class or a decrease in the Child-Pugh score (≥ 2-points or ≥ 3-points decrease), in a substantial number of cases[^18-30]. However, there were a small number of patients that were treated with NUCs who progressed to death or required a liver transplant[^18-30]. Studies that analyzed the determinants of early mortality in patients with decompensated cirrhosis B treated with NUCs found that poor baseline liver function was associated with poor prognosis[^23,26,30]. Furthermore, most of the deaths occurred within 1 year after NUC treatment, and the most common causes of death were liver failure or complications from liver failure[^23,26,30]. In work by Hyun et al[^26], Child-Turcotte-Pugh scores at baseline and the

[^1]: Fibrosis improvement was defined as an HAI fibrosis score decrease of at least 1-point;
[^2]: Bridging fibrosis improvement was defined as achieving an HAI fibrosis score of 0 or 1.
[^3]: Cirrhosis improvement was defined as an HAI fibrosis score decrease of at least 1-point;
[^4]: Cirrhosis improvement was defined as achieving an HAI fibrosis score of 0, 1, or 2;
[^5]: Fibrosis improvement was defined as a decrease in the Ishak fibrosis score of at least 1-point;
[^6]: Approximate value estimated from the published graph;
[^7]: All patients had advanced fibrosis or cirrhosis (Ishak fibrosis scores of 4-6). LAM: Lamivudine; ETV: Entecavir; TDF: Tenofovir; HBeAg: Hepatitis B e antigen; HAI: Histologic activity index.
Table 3 Effects of treatment with nucleos(t)ide analogs in patients with decompensated cirrhosis

Ref.	Nucleos(t)ide	Patient number	Treatment duration	Improvement ratio of Child-Pugh score	Cumulative survival rate *
Villeneuve et al [31]	LAM (100 mg or 150 mg)	35 (CPB: 10, CPC: 25)	Mean: 19 mo	62.9% (22/35)	1 yr: 78% * 2 yr: 63% * No deaths attributed to liver disease
Kapoor et al [34]	LAM (150 mg)	18 (CPB: 14, CPC: 4)	Mean: 17.9 mo (range: 9.3-31 mo)	CPB to CPC: 50% (4/14)	1 yr: 70% *
Yao et al [36]	LAM (150 mg)	13 (CPB: 0, CPC: 13)	Mean: 17.5 mo (range: 3.3-39 mo)	CBC to CPC: 50% (2/4)	2 yr: 66% *
Hann et al [32]	LAM (100 mg)	75 (CPA: 4, CPB: 28, CPB: 43)	Mean: 12.7 mo (range: 0.5-33 mo)	CPB to CPC: 62.5% (10/16)	1 yr 70% *
Tseng et al [35]	LAM (100 mg)	30 (CPB: 16, CPC: 14)	Mean: 39.7 mo (range: 3-128 mo)	CBC to CPC: 35.7% (5/14)	2 yr 66% *
Bae et al [36]	LAM (100 mg)	17 (CPB: 12, CPC: 5)	Mean: 28 mo (range: 14-42 mo)	CPB to CPC: 83% (10/12)	Not described
Shim et al [24]	ETV (0.5 mg)	55 (mean CP score 8.1 ± 1.7)	12 mo	49% (27/55)	1 yr: 92% 24 mo: 83.0%
Hyun et al [34]	ETV (0.5 mg)	86 (CPB: 45, CPC: 41)	Mean: 2 yr	Mean Child-Pugh score Baseline LAM: 9.5, ETV: 9.6	1 yr 12 mo 3 yr LAM: 92.4% ETV: 90.7% LAM: 86.8% ETV: 76.4%
Liaw et al [27]	TDF (300 mg)/FTC (200 mg) + TIV (300 mg)/ETV (0.5 mg or 1 mg)	112 (median CP score: 7, range: 6-9)	48 wk	TDF: 25.9% (7/27) (2/25)	Not described
Chan et al [34]	LAM (100 mg), TDF (600 mg)	228 (CPS ≤ 7: 18, CPS 7-9: 155, CPS 9 ≤ 15: 53)	52-104 wk	LAM: 38.6% (44/114), TDF: 31.6% (36/114)	52 wk LAM: 88%, TDF: 94% LAM: 88%, TDF: 94% LAM: 79%, TDF: 87%

1Improvement of Child-Pugh score was defined as a decrease in the CPS greater than or equal to 2-points; 2Improvement of Child-Pugh score was defined as a decrease in the CPS greater than or equal to 3-points; 3Cumulative survival rates calculated by Kaplan-Meier method; *Approximate value from the published graph. LAM: Lamivudine; ETV: Entecavir; TDF: Tenofovir; FTC: Emtricitabine; TdT: Telbivudine; CPB: Child-Pugh class B; CBC: Child-Pugh class C; CPS: Child-Pugh score; CPA: Child-Pugh class A.

Model for End-stage Liver Disease score at 3 mo after beginning a NUC treatment were found to be significant predictors of early mortality.

INCIDENCE OF HCC IN PATIENTS WITH CIRRHOSIS THAT RECEIVED NUC TREATMENT

Worldwide, HBV infection has been identified as an important risk factor for the development of HCC [31]. Longitudinal studies of patients with chronic hepatitis B infection have described the cumulative incidence of HCC [5,21-35]. Incidence of HCC has been found to vary by region and is influenced by the underlying stage or condition of the liver disease present. For patients with compensated cirrhosis that were not treated with NUCs, the annual incidence of HCC has been reported to range from 2.2%-2.8% [5,31,36,37]. In a comparison of cumulative HCC incidence for patients with and without lamivudine treatment, the former had a significantly lower incidence than the latter in a randomized study [38]. Non-randomized studies have also demonstrated that NUCs reduce the incidence of HCC [39-41]. Furthermore, in three meta-analyses [42-44] and a systematic review [45], NUC treatments were found to consistently reduce the risk of HCC compared with an absence of NUC treatment. In addition, two Asian studies reported that entecavir-treated patients had a reduced risk of HCC compared with treatment-naïve patients with cirrhosis [40,46], and Wong et al [46] reported that the 5-year cumulative probability of HCC development among cirrhotic patients was 13.8% in an entecavir cohort vs 26.4% in a control treatment-naïve cohort (P = 0.036). Hosaka et al [40] conducted a propensity score-matched control study and found that the cumulative 5-year incidence of HCC among cirrhotic patients treated with entecavir (7.0%) was lower than that of a control non-treated group (38.9%) (P < 0.001). Furthermore, the entecavir-treated group had a significantly lower incidence of HCC than a lamivudine-treated group of cirrhotic patients (P = 0.043) [40]. Liver cirrhosis has been found to be the strongest risk factor for the occurrence of HCC after NUC treatment [40,47,48], and the long-term cumulative incidence of HCC after NUC treatment remains high in cirrhotic patients [40,45,46].
EFFICACY OF NUC TREATMENTS FOR PATIENTS WITH HBV-RELATED HCC

Several studies have documented that antiviral therapy with NUCs is beneficial after the treatment of HBV-related HCC (49–52). For example, improved liver function has been observed following curative liver resection and following radiofrequency ablation for the treatment of HCC (49–52). Moreover, in a longitudinal randomized clinical trial conducted by Yin et al. (50) to evaluate the effects of NUC treatments following radical hepatectomy, patients who received NUCs exhibited significantly improved liver function and decreased HCC recurrence. NUC treatment following curative therapy for HCC has also improved overall survival (49–52). In a study by Kuzuya et al. (50), NUC treatment improved liver function in patients with recurrent HCC, and allowed all of the treated patients to be eligible for curative treatment for recurrent HCC. In contrast, two-thirds of the untreated group were not eligible for curative therapy for recurrent HCC due to deterioration of remnant liver function (50). Furthermore, an increasing number of treatment options have become available for recurrent tumors (53–54). We previously reported that a patient with decompensated cirrhosis was able to undergo a right hepatectomy four years after starting a lamivudine treatment regimen (54).

CONCLUSION

Here, the benefits of NUC treatments for patients with HBV-related cirrhosis have been presented. NUC treatments have been found to improve inflammation and fibrosis in the liver of cirrhotic patients. Moreover, even in patients with decompensated cirrhosis, liver function has improved in many cases. Given that hepatitis B can occasionally lead to death, or the need for a liver transplant, in patients with highly deteriorated liver function even after NUC treatment, it is recommended that a NUC treatment be started as early as possible. Furthermore, although NUC treatments can reduce the incidence of HCC, rates of HCC remain high in patients with cirrhosis. However, NUC treatments have been found to improve liver function and the survival of patients with HCC. Improved liver function was also achieved by providing NUC treatments for HBV-related HCC when recurrent tumors developed. Therefore, it is important to select the most appropriate treatment method considering the alterations in liver function that may occur following NUC treatments.

REFERENCES

1. Lai CL, Ratziu V, Yuen MF, Poybard T. Viral hepatitis B. Lancet 2003; 362: 2089-2094 [PMID: 14697813 DOI: 10.1016/S0140-6736(03)15108-2]
2. Park BK, Park YN, Ahn SH, Lee KS, Chon CY, Moon YM, Park C, Han KH. Long-term outcome of chronic hepatitis B based on histological grade and stage. J Gastroenterol Hepatol 2007; 22: 383-388 [PMID: 17295771 DOI: 10.1111/j.1440-1746.2007.04857.x]
3. Lai CL, Chien RN, Leung NW, Chang TT, Guan R, Tai DI, Ng KY, Wu PC, Dent JC, Barber J, Stephenson SL, Gray DF. A one-year trial of lamivudine for chronic hepatitis B. Asia Hepatitis Lamivudine Study Group. N Engl J Med 1998; 339: 61-68 [PMID: 9654535 DOI: 10.1056/NEJM199801083390106]
4. Weissberg JL, Andres LL, Smith CM, Weick S, Nichols JE, Garcia G, Robinson WS, Merigan TC, Gregory PB. Survival in chronic hepatitis B. An analysis of 379 patients. Ann Intern Med 1984; 101: 613-616 [PMID: 6486592 DOI: 10.7326/0003-4819-101-5-613]
5. Liaw YF, Lin DY, Chen TJ, Chu CM. Natural course after the development of cirrhosis in patients with chronic type B hepatitis: a prospective study. Liver 1989; 9: 235-241 [PMID: 2770436]
6. de Jongh FE, Janssen HL, de Man RA, Hop WC, Schalm SW, van Blankenstein M. Survival and prognostic indicators in hepatitis B surface antigen-positive cirrhosis of the liver. Gastroenterology 1992; 103: 1630-1635 [PMID: 1426884]
7. Realdi G, Fattovich G, Hadziyannis S, Schalm SW, Almaso P, Sanchez-Tapias J, Christensen E, Giustina G, Noventa F. Survival and prognostic factors in 366 patients with compensated cirrhosis type B: a multicenter study. The Investigators of the European Concerted Action on Viral Hepatitis (EUROHEP). J Hepatol 1994; 21: 656-666 [PMID: 7814813 DOI: 10.1016/S0168-8278(94)80115-0]
8. Honkoop P, de Man RA, Zondervan PE, Schalm SW. Histological improvement in patients with chronic hepatitis B virus infection treated with lamivudine. Liver 1997; 17: 103-106 [PMID: 9138281 DOI: 10.1111/j.1600-0676.1997.tb00789.x]
9. Suzuki Y, Kumada H, Ikeda K, Chayama K, Arase Y, Saitoh S, Taubota A, Kobayashi M, Koike M, Ogawa N, Tanikawa K. Histological changes in liver biopsies after one year of lamivudine treatment in patients with chronic hepatitis B infection. J Hepatol 1999; 30: 743-748 [PMID: 10365796 DOI: 10.1016/S0168-8278(99)80123-8]
10. Dienstag JL, Schiff ER, Wright TL, Perrillo RP, Hanf HW, Goodman Z, Crowther L, Condrea LD, Woessner M, Rubin M, Brown NA. Lamivudine as initial treatment for chronic hepatitis B in the United States. N Engl J Med 1999; 341: 1256-1263 [PMID: 10528035 DOI: 10.1056/NEJM1999021334111102]
11. Dienstag JL, Goldin RD, Heathcote EJ, Hann HW, Woessner M, Stephenson SL, Gardner S, Gray DF, Schiff ER. Histological outcome during long-term lamivudine therapy. Gastroenterology 2003; 124: 105-117 [PMID: 12512035 DOI: 10.1053/gast.2003.50013]
12. Schiff E, Simsek H, Lee WM, Chao YC, Sette H, Janssen HL, Han SH, Goodman Z, Yang J, Brett-Smith H, Tamez R. Efficacy and safety of entecavir in patients with chronic hepatitis B and advanced hepatic fibrosis or cirrhosis. Am J Gastroenterol 2008; 103: 2776-2783 [PMID: 18721244 DOI: 10.1111/j.1572-0241.2008.02086.x]
13. Chang TT, Liaw YF, Wu SS, Schiff E, Han KH, Lai CL, Safadi R, Lee SS, Halota W, Goodman Z, Chi YC, Zhang H, Hindes R, Iloeje U, Beebe S, Kneter B. Long-term entecavir therapy results in the reversal of fibrosis/cirrhosis and continued histological improvement in patients with chronic hepatitis B. Hepatology 2010; 52: 866-893 [PMID: 20683932 DOI: 10.1002/hep.23785]
14. Marcellin P, Gane E, Buti M, Adhval N, Siesert W, Jacobson IM, Washington MK, Germain N, Flaherty JF, Schall RA, Bornstein JD, Kitis KT, Christensen E, Giustina G, Noventa F. Survival and prognostic factors in 366 patients with compensated cirrhosis type B: a multicenter study. The Investigators of the European Concerted Action on Viral Hepatitis (EUROHEP). J Hepatol 1994; 21: 656-666 [PMID: 7814813 DOI: 10.1016/S0168-8278(94)80115-0]
15. Hadziyannis SJ, Tassopoulos NC, Heathcote EJ, Chang TT, Kitis G, Rizzetto M, Marcellin P, Lim SG, Goodman Z, Ma J, Brosgart CL, Borroto-Esoda K, Arterburn S, Chuck SL. Long-term therapy with adefovir dipivoxil for HBeAg-negative chronic hepatitis B for up to 5 years. Gastroenterology 2006; 131: 1743-1751 [PMID: 17087951 DOI: 10.1053/j.gastro.2006.09.020]
16. Marcellin P, Chang TT, Lim SG, Sievert W, Tong M, Arterburn S, Borroto-Esoda K, Friedrich D, Rousseau F. Long-term efficacy and safety of adefovir dipivoxil for the treatment of hepatitis B antigen-positive chronic hepatitis B. Hepatology 2008; 48: 750-758
Suet­Hing Wong F, Chang TT, Horban A, Wang C, Kwan P, Buti J, Cresswell A, et al. Efficacy of emtricitabine/TDF, and entecavir in patients with decompensated hepatitis B virus­related cirrhosis. *J Hepatol* 2009; 51: 2209­9071 DOI: 10.1016/j.jhep.2010.02.026.

Zhang QQ, An X, Liu YH, Li SY, Zhong Q, Wang J, Hu HD, Zhang DZ, Ren H, Hu P. Long­term nucleos(t)ide analogues therapy for adults with chronic hepatitis B reduces the risk of long­term complications: a meta­analysis. *Virology* 2011; 408: 116­125 DOI: 10.1016/j.virol.2011.02.006.

41 Fonstein ER, Bass NM. Lamivudine treatment in patients with severely decompensated cirrhosis due to hepatitis B infection. *J Hepatol* 2006; 45: 301­307 DOI: 10.1016/j.jhep.2006.01.040.

42 Tapias J, Almasio P, Christensen E, Krogsgaard K, Degos F, Villeneuve JP, Condreay LD, Willems B, Pomier­Layrargues G, El­Serag HB. Epidemiology of viral hepatitis and hepatocellular carcinoma. *Gastroenterology* 2012; 142: 1264­1273.e1 DOI: 10.1053/j.gastro.2011.12.061.

43 Ikeda K, Saitoh S, Suzuki Y, Kobayashi M, Tsubota A, Koida I, Arase Y, Fukuda M, Chayama K, Murashima N, Kumada H. Disease progression and hepatocellular carcinogenesis in patients with chronic viral hepatitis: a prospective observation of 2215 patients. *J Hepatol* 1998; 29: 930­938 DOI: 10.1016/S0168­8278(98)00339­5.

44 Yu MW, Hsu FC, Sheen IS, Chu CM, Lin DY, Chen CJ, Liaw YF. Prospective study of hepatocellular carcinoma and liver cirrhosis in asymptomatic chronic hepatitis B virus carriers. *Am J Epidemiol* 1997; 145: 1039­1047 DOI: 10.1093/aje/145.10.1039.

45 Fattovich G, Bortolotti F, Donato F. Natural history of chronic hepatitis B: special emphasis on disease progression and prognostic factors. *J Hepatol* 2008; 49: 335­352 DOI: 10.1016/j.jhep.2007.11.011.

46 Chen YC, Chu CM, Yeh CH, Liaw YF. Natural course following the onset of cirrhosis in patients with chronic hepatitis B: a long­term follow­up study. *J Hepatol* 2007; 47: 267­273 DOI: 10.1016/j.jhep.2007.07.001­A.

47 Liaw YF, Sung JJ, Chow CW, Farrell G, Lee CZ, Yuen H, Tanwandeve T, Tao QM, Shue K, Keene ON, Dixon JS, Gray DF, Sabbat J. Lamivudine for patients with chronic hepatitis B and advanced liver disease. *N Engl J Med* 2004; 351: 1521­1531 DOI: 10.1056/NEJMoa033364.

48 Matsumoto A, Tanaka E, Rokuhara A, Kiyosawa K, Kumada H, Omata M, Okita K, Kamata N, Okanoue T, Iino S, Tanikawa K. Efficacy of lamivudine for preventing hepatocellular carcinoma in patients with chronic hepatitis B: a multicenter retrospective study of 2795 patients. *Hepatol Res* 2005; 32: 173­184 DOI: 10.1016/j.hepres.2005.02.006.

49 Hosaoka T, Suzuki F, Kobayashi M, Seko Y, Kawanura Y, Szechai H, Akuta N, Suzuki Y, Saitoh S, Arase Y, Ikeda K, Kobayashi M, Kumada H. Long­term entecavir treatment reduces hepatocellular carcinoma incidence in patients with hepatitis B virus infection. *Hepatology* 2013; 58: 98­107 DOI: 10.1001/hep.2013.00064.

50 Eun JR, Lee HJ, Kim TN, Lee KS. Risk assessment for the development of hepatocellular carcinoma: according to on­treatment viral response during long­term lamivudine therapy in hepatitis B virus­related liver disease. *J Hepatol* 2010; 53: 118­125 DOI: 10.1016/j.jhep.2010.02.026.

51 Zhang QQ, An X, Liu YH, Li SY, Zhong Q, Wang J, Hu HD, Zhang DZ, Ren H, Hu P. Long­term nucleos(t)ide analogues therapy for adults with chronic hepatitis B reduces the risk of long­term complications: a meta­analysis. *Virology* 2011; 408: 116­125 DOI: 10.1016/j.virol.2011.02.006.
Singal AK, Salameh H, Kuo YF, Fontana RJ. Meta-analysis: the impact of oral anti-viral agents on the incidence of hepatocellular carcinoma in chronic hepatitis B. *Aliment Pharmacol Ther* 2013; 38: 96-106 [PMID: 23713520 DOI: 10.1111//apt.12344]

Papatheodoridis GV, Lamportico P, Manolakopoulos S, Lok A. Incidence of hepatocellular carcinoma in chronic hepatitis B patients receiving nucleos(t)ide therapy: a systematic review. *J Hepatol* 2010; 53: 348-356 [PMID: 20483498 DOI: 10.1016/j.jhep.2010.02.035]

Wong GL, Chan HL, Mak CW, Lee SK, Ip ZM, Lam AT, Iu HW, Leung JM, Lai JW, Lo AO, Chan HY, Wong VW. Entecavir treatment reduces hepatic events and deaths in chronic hepatitis B patients with liver cirrhosis. *Hepatology* 2013; 58: 1537-1547 [PMID: 23389810 DOI: 10.1002/hep.26301]

Papatheodoridis GV, Chan HL, Hansen BE, Janssen HL, Lampertico P. Risk of hepatocellular carcinoma in chronic hepatitis B: assessment and modification with current antiviral therapy. *J Hepatol* 2015; 62: 956-967 [PMID: 25595883 DOI: 10.1016/j.jhep.2015.01.002]

Lim YS, Han S, Heo NY, Shim JH, Lee HC, Suh DJ. Mortality, liver transplantation, and hepatocellular carcinoma among patients with chronic hepatitis B treated with entecavir vs lamivudine. *Gastroenterology* 2014; 147: 152-161 [PMID: 24583062 DOI: 10.1053/j.gastro.2014.02.033]

Yin J, Li N, Han Y, Xue J, Deng Y, Shi J, Guo W, Zhang H, Wang H, Cheng S, Cao G. Effect of antiviral treatment with nucleotide/nucleoside analogs on postoperative prognosis of hepatitis B virus-related hepatocellular carcinoma: a two-stage longitudinal clinical study. *J Clin Oncol* 2013; 31: 3647-3655 [PMID: 24002499 DOI: 10.1200/JCO.2012.48.5896]

Kuzuya T, Katano Y, Kumada T, Toyoda H, Nakano I, Hirooka Y, Itoh A, Ishigami M, Hayashi K, Honda T, Goto H. Efficacy of antiviral therapy with lamivudine after initial treatment for hepatitis B virus-related hepatocellular carcinoma. *J Gastroenterol Hepatol* 2007; 22: 1929-1935 [PMID: 17914972]

Jin YJ, Shim JH, Lee HC, Yoo DJ, Kim KM, Lim YS, Suh DJ. Suppressive effects of entecavir on hepatitis B virus and hepatocellular carcinoma. *J Gastroenterol Hepatol* 2011; 26: 1380-1388 [PMID: 21884247 DOI: 10.1111/j.1440-1746.2011.06776.x]

Chan AC, Chok KS, Yuen WK, Chan SC, Poon RF, Lo CM, Fan ST. Impact of antiviral therapy on the survival of patients after major hepatectomy for hepatitis B virus-related hepatocellular carcinoma. *Arch Surg* 2011; 146: 675-681 [PMID: 21690443 DOI: 10.1001/archsurg.2011.125]

Nakanishi S, Michtaka K, Miyake T, Hidaka S, Yoshino I, Konishi I, Iuchi H, Horiike N, Onji M. Decompensated hepatitis B virus-related cirrhosis successfully treated with lamivudine allowing surgery for hepatocellular carcinoma. *Intern Med* 2003; 42: 416-420 [PMID: 12793712 DOI: 10.2169/internalmedicine.42.416]

Honda K, Seike M, Maehara S, Tahara K, Anai H, Moriiuchi A, Muro T. Lamivudine treatment enabling right hepatectomy for hepatocellular carcinoma in decompensated cirrhosis. *World J Gastroenterol* 2012; 18: 2586-2590 [PMID: 22654459 DOI: 10.3748/wjg.v18.i20.2586]
