Renewal of Elements and Construction Units of Gas Turbine Engines by Means EBW

V M Nesterenkova*, Yu V Orsaa*, K S Khripkoa
E.O. Paton Electric Welding Institute of the National Academy of Sciences of Ukraine, 11 Kazymyr Malevych St., Kyiv, 03150, Ukraine
E-mail: *office@paton.kiev.ua

Abstract. Renewal of gas turbine engines (GTE) is very urgent and at the same time highly complicated technical task. A cost effective alternative to new replacement parts is the restoration of the damaged or worn construction units and elements of GTE, including compressor and fan blades, as well as guide cases and hydraulic cylinders of nozzle block. The work contains the results of the development of reliable and efficient methods of gas turbine parts renewal by means electron beam welding. The technology of repair of three types of blade airfoil defects, replacement of damaged guide vanes and restoration of worn hydraulic cylinders was mastered. It is confirmed that electron beam welding is ideal for the solution of aircraft GTE construction units repair problems.

1. Introduction
Electron beam welding is one of the leading technological processes used in the production and repair of structures for aerospace industry. Application of computer numerical control (CNC) tools for EBW brought this technology into the category of leading processes, owing to the capabilities of precision control of both electron beam movement trajectory while welding and its energy, including regulation of the total value of power and shape of this power distribution in space [1, 2]. For many years Paton Electric Welding Institute (PWI) has taken leading positions in development of the advanced technologies and specialized equipment for EBW [3].

Appropriateness of restoration repair of expensive parts of the gas turbine engines (GTE) does not raise doubts [4]. A cost effective alternative to new replacement parts is the repair of the damaged or worn blades – the damaged section is removed and a repair «patch» is electron beam welded in place. In the final step the patch is machined and contoured to the original shape.

The main reason of early replacement of the aircraft GTE in their operation is damage of titanium blades of the fan and compressor as a result of foreign objects coming in the engine [5]. Usually engine operation is allowed at insignificant defects of leading and trailing edges of the blade airfoil without tears. Part of similar (i.e. without tears), but somewhat larger defects can be repaired directly on the engine. Thus, for example, material rising near the nicks is dressed and bends of the blades are eliminated by flattening. Then, the repaired places are polished. Sometimes, removal of the nicks due to smooth rounding of the edge of up to 10–12 mm radius is allowed. In contrast, correction of local damages of the blades, exceeding allowable norms, requires dismantling of the damaged blade and repair under production conditions. Usually such a repair lies in mechanical removal of the defective zone till the boundaries of knowingly undamaged blade metal with further connection (welding, brazing) of a welded-in piece of corresponding size instead of it and with technological tolerance on thickness for acquiring a necessary profile of blade repair section using further mechanical treatment [6–8].
2. **EBW as a tool for Renewal and repair of gas turbine engines**

Generally, the solution on repair permissibility for each specific defect of the blade is made by the certified repair organization, following the next aspects, i.e. belonging of the blade to low pressure compressor (LPC) or high pressure compressor (HPC), blade type (namely, blade or vane), number of compressor stage, whether it is leading or trailing edge of the airfoil, and at last, evaluating directly the defects sizes, their quantity and location relatively to the places of maximum service stresses (including resonance ones).

Our task lied only in development of an efficient and reliable method, which fundamentally will allow such a repair using electron beam welding (EBW) under domestic production conditions. The technological methods were mastered on the spot and extended defects of airfoil leading edge of different size titanium blades, namely fan blades and blades of GTE LPC.

The following scheme of repair «welded-in piece» and blade airfoil welded joints was developed. It in principle does not depend on the fact whether it is spot or extended defects (Figure 1).

In all cases the joint is carried out by a single-pass EBW, and smooth (without undercuts) transfer from «welded-in piece» surface to base metal is provided by moderate concentration of the electron beam as well as sufficient quantity of additional metal due to applied structure of welded joint with «overhanging shoulder». Moreover, such a smooth transfer can be reached in the areas with sufficiently larger airfoil thickness as well as in the thinnest places adjacent to the edge (Figure 2).

The repair technology was mastered for three types of airfoil blade defects, i.e. spot damage of the blade angle, spot damage of the edge of blade airfoil main part as well as extended local defects of the edge starting from blade angle.
Figure 3. Repair of spot defects of angle of blade airfoil using cylinder repair «welded-in pieces»: a − damaged angle of blade before repair; b − repaired angle (ends of «welded-in piece» after EBW); c − assembly-welding fixture for EBW of cylinder «welded-in pieces» (blade simulator).

Figure 4. Repair of spot defects of main part of blade airfoil edge using cylinder repair «welded-in pieces»: a − cylinder repair «welded-in piece» at airfoil edge (its edge was cut out at initial mechanical treatment after EBW); b − pilot batch of GTE LPC blades with cylinder «welded-in pieces» on airfoil blade (before final mechanical treatment).

Repair of both types of spot defects is carried out using cylinder «welded-in pieces» (Figures 3 and 4). There are several dimension types of diameters depending on size of airfoil edge defect.

Such a structure is efficient by the fact that matching of diameters of «window» cut out in the blade and «welded-in piece» itself provides fixing and tight contact of butted parts in radial direction. Therefore, sufficiently simple assembly-welding device (Figure 3, c) should only provide pressing of the edge of the cut out «window» to mentioned above «overhanging shoulder» as well as holding the whole assembly in space during performance of electron beam pass along the arc of corresponding circumference.

At the beginning the works were carried on the samples simulating real parts. Then the results were successfully tested on the pilot batches of defective blades, provided by SE «Ivchenko-Progress» (Figure 4, b).

The corresponding extended «welded-in pieces» are used for the extended defects of different areas of the blade airfoil edge. Their form can be changed depending on width and shape of the damaged zone of blade airfoil edge. In particular, it can be a narrow band replacing only damaged part of the airfoil edge (Figure 5, a) as well as «welded-in piece», width of which is very widened to the corner for the case of significant damage of not only the edge, but the angle as well (Figure 5, b).
Figure 5. Repair of extended defects of blade airfoil edge: reconstruction of narrow zone adjacent to airfoil edge (a); reconstruction of wider zone with very damaged airfoil angle (b)

Respectively, uniform pressing of such «welded-in pieces» along the whole length of curved joint with the airfoil requires other more complex assembly-welding fixture (Figure 6).

3. Repair technology
The developed repair technology was tested on the edges of blade airfoil of different sections and, respectively, dimension types in repair of the defects of various size and shape (Figure 7).

In addition to repair of the blade local damages, it is also important task to replace separate elements of permanently assembled units of the gas-turbine engine. Guide cases of 3–8 stator stages of high-pressure compressor in gas-turbine engine consist of semi-rings with a set of brazed in them cantilever blades.

In operation of such engines there are also the cases of appearance of nicks and cracks on the blades as well as their tear out due to local lack of their brazing with the semi-ring wall.
Figure 6. EBW joint of blade airfoil with extended repair «welded-in piece» in assembly-welding fixture

Figure 7. Examples of realization of developed repair technology for different dimension types of the blades (large – fan sections, small – LPC) as well as shapes and extension of airfoil edge defects

Replacement of the defective blades is allowed following «Engine Overhaul Manual». At that the defective blade is removed by milling from semi-ring till its wall, including the brazing filler material holding the blade, and this place is filled with an undamaged donor-blade (Figure 8).
In other words a completely cleaned section is prepared in the semi-ring for installation of the donor-blade. It is obviously impossible to repeat initial brazing process without effecting adjacent still suitable blades. Therefore, a fixing method is necessary having local and concentrated temperature effect on the whole assembly unit. Previous technology for donor-blade fixing assumed application of argon-arc welding with the next dressing of weld reinforcement in order to reconstruct the geometry of end of the guide case semi-ring. The disadvantages of such a technology were significant distortion of product shape, as well as small penetration depth and, as a result, insufficient area of joint zone, remaining after weld reinforcement treatment and, thus, high probability of tear of the replaced blade during engine operation.

EBW method is ideal in this case allowing receiving the reliable welded joint of sufficient depth in comparison with small heat input in the product being welded.
Figure 10. Macrosection of cross section of EB-joint of blade with guide case semi-ring received at up to 0.1 mm gap in joint (a) and section area containing the weld itself (b).

The next scheme of welded joint of donor-blade and wall of semi-ring guide case was developed (Figure 9). Joining of the blade with wall is carried out using double-side EBW with intermediate turning of the product by 180°. Structural strength of two similar welds is enough for reliable fixing of the blade, which is not inferior to brazed ones.

The main process problem, related, in particular, with the peculiarities of EBW method, was possible gaps in the joint between the semi-ring wall and donor-blade base. It is a result of difficulty of local mechanical removal of the damaged blade and formation of the area for the donor-blade. Such gaps are very critical, since thickness of the wall, to which the blade is welded, makes only 0.5 mm in some places.

The results of the experiments, carried out on the sample-simulators, provided the optimum compromise between the power parameters of the electron beam and possibility to form sufficiently deep weld in a thin-wall joint at gap presence in the butt. At that, pulsed EBW mode was used for improvement of weld formation and reduction of total heat input. This allowed getting quality joining of the parts at local gaps in the joint up to 0.1 mm. Then, selected EBW modes were corrected on real joints of the blades with semi-ring of the guide case (Figures 10 and 11).

Figure 11. View of repair joint from end of guide case semi-ring.

Electron-beam welding also is applied at the renewal of the hydraulic cylinders of the aircraft GTE nozzle block. The repair of welded titanium hydraulic cylinder is caused by the necessity of replacement of the wear groups of seals, that is, the piston seals and the seals of the plunger. To carry out the repair procedure three technological cuts in the places of the previous welded joints are to be done.
This allows taking out the detached parts of the piston-rod from the body of the hydraulic cylinder. After replacing the seals, the hydraulic cylinder requires reassembly. In this case the estimated travel of plunger and the total length of the whole assembly unit are to be ensured. To guarantee the design strength and accuracy of the linear dimensions of the restored hydraulic cylinder its assembly is carried out using electron beam welding. The design setup of welded joints by means electron beam beam was developed, where the role of the element centering the edges of the connectable parts, as well as an additional filler material is performed by special rings with a T-shaped cross-section (Figure 12).

The thickness of the wall of such a ring "E" is determined taking into account the width of the technological cut and the correction for a small transverse shrinkage of the EB welded seam, and should provide the estimated travel of plunger and, most importantly, the linear dimension of the entire unit. To ensure the reliable contact between the edges of the cylinder parts joined with the T-shaped ring wall, grooves are provided on the front side of the joints. Thus, the necessary "C" and "D" clearances are guaranteed.

The parameters of the welding modes were determined on the basis of the requirements of obtaining the relatively narrow seam with guaranteed full penetration and stable formation of the front and root beads, the absence of undercuts and concaves on the front and back surfaces of the joint [9]. In this case it was necessary to take into account the presence in the repair joint of the design protective elements - the jar sleeve of the plunger and the inner shoulder of the cylinder head, through penetration of which is unacceptable due to the loss of the unit serviceability (Figure 12). The appearance of the GTE nozzle block hydraulic cylinder repair EBW joints is shown on Figure 13.

4. Conclusions

The developed technology has passed successful test in repair of a batch of real GTE nozzle block hydraulic cylinders under industrial conditions.

References

[1] Paton B E, Nazarenko O K, Nesterenkov V M et al. 2004 Computer control of electron beam welding with multi-coordinate displacements of the gun and workpiece The PatonWelding J. #5 2–5
[2] Akopiants K S, Nesterenkov V M, Nazarenko O K 2002 Electron beam welding of 60 mm thick steels using longitudinal oscillations of beam. The PatonWelding J. #9 2–4.
[3] Nazarenko O K 2008 Up-to-date equipment of the E.O. Paton Electric Welding Institute for electron beam welding. The PatonWelding J. #10 31–35.
[4] Beziyazhchyn V F, Strizhov A N 2010 Increase in efficiency of repair of gas turbine engines on the basis of its localization. Refer. Book. Ingenery J. s Prilozeniem vol 8 p 52–56 [in Russian].
[5] Karpinos B S, Korovin A V, Lobunko A P, Vedischeva M Yu 2014 Operational damages of the gas turbine two-circuit aircraft engines with afterburner. Vestnik Dvigatel'stroyeniya #1 18-25 [in Russian].
[6] Eliseev Yu S, Krymov V V, Malinovsky K A et al. 2002 Technology of service, diagnostics and repair of gas turbine engines (Moscow: Vysshaya Shkola) [in Russian].
[7] Krymov V V, Eliseev Yu S, Zudin K I 2002 Production of blades of gas turbine engines. (Moscow: Mashinostroenie) [in Russian].
[8] Moshkin Yu B, Eliseev Yu S, Poklad VA et al 2002 Method of restoration of blades of turbomachines. Pat. 2185945 RU, Int. Cl. 8 B 23P6/00 [in Russian].
[9] Zamkov V N, Shevelev A D, Khrapko K S 1993 The selection of the mode parameters of EBW of titanium of middle and large thickness. Avtomaticheskaya Svarka #1 27-32.