THE FFRT PROPERTY OF TWO-DIMENSIONAL NORMAL GRADED RINGS AND ORBIFOLD CURVES

NOBUO HARA AND RYO OHKAWA

Abstract. This study examines the finite F-representation type (abbr. FFRT) property of a two-dimensional normal graded ring R in characteristic \(p > 0 \), using notions from the theory of algebraic stacks. Given a graded ring \(R \), we consider an orbifold curve \(\mathcal{C} \), which is a root stack over the smooth curve \(C = \text{Proj} R \), such that \(R \) is the section ring associated with a line bundle \(L \) on \(\mathcal{C} \). The FFRT property of \(R \) is then rephrased with respect to the Frobenius push-forwards \(F^e(L') \) on the orbifold curve \(\mathcal{C} \). As a result, we see that if the singularity of \(R \) is not log terminal, then \(R \) has FFRT only in exceptional cases where the characteristic \(p \) divides a weight of \(\mathcal{C} \).

The notion of finite F-representation type for a ring \(R \) of characteristic \(p > 0 \) was introduced in [SVdB]. Its definition requires some technical assumption that \(R \) is \(F \)-finite and either a complete local domain or an Noetherian \(\mathbb{N} \)-graded domain. For each \(e \in \mathbb{N} \) we identify the ring \(R^{1/p^e} \) of \(p^e \)-th roots of \(R \) with the \(e \)-times iterated Frobenius push-forward of the structure sheaf of \(\text{Spec} R \). We say that \(R \) has finite F-representation type (FFRT for short), if the set of isomorphism classes of indecomposable modules appearing as a direct summand of \(R^{1/p^e} \) as an \(R \)-module for some \(e \), is finite.

If \(R \) is a regular local ring or a polynomial ring, then it has FFRT, since \(R^{1/p^e} \) is a free \(R \)-module. It is shown in [SVdB] that a finite direct summand of a ring of FFRT also has FFRT. In particular, \(R \) has FFRT, if \(R \) has a tame quotient singularity such as the invariant subring of a finite group of order not divisible by \(p \) acting on a regular local ring. Also, it is known that a Frobenius sandwich singularity such as \(R = k[x,y,z]/(z^p - f(x,y)) \) has FFRT (cf. [Sh]). On the other hand, simple elliptic singularities, and more generally, cone singularities over a smooth curve of genus \(g \geq 1 \), are known not to have FFRT [SVdB].

In this paper, we will explore the FFRT property for normal surface singularities with \(k^* \)-action; in other words, two-dimensional normal graded ring \(R \) over a field \(k = k_0 \). In this case, \(C = \text{Proj} R \) is a smooth curve and there is an ample \(\mathbb{Q} \)-divisor on \(C \) such that \(R \cong R(C,D) = \bigoplus_{m \geq 0} H^0(C,O_C([mD])) \). The result for cone singularities implies that we cannot expect for the FFRT property unless \(C \cong \mathbb{P}^1 \). Thus the critical case is when \(R = R(\mathbb{P}^1,D) \) and the singularity is not log terminal. As far as the authors are aware, the FFRT property of such an \(R \) is wide open. Specifically we aim to answer the following:

Question 0.1 (Holger Brenner, 2007). Does the ring \(R = k[x,y,z]/(x^2 + y^3 + z^7) \) have FFRT?

We note that the ring \(R \) in Brenner’s question is given by a \(\mathbb{Q} \)-divisor \(D = \frac{1}{2}(\infty) - \frac{1}{3}(0) - \frac{1}{7}(1) \) on \(\mathbb{P}^1 \). If \(p = 2, 3, 7 \), it is a Frobenius sandwich and so has FFRT [Sh]. Our main result in this paper is the following, which implies that \(R = k[x,y,z]/(x^2 + y^3 + z^7) \) does not have FFRT unless \(p = 2, 3, 7 \).

Theorem 0.2. Let \(R = R(\mathbb{P}^1,D) \) for an ample \(\mathbb{Q} \)-divisor \(D \) on \(\mathbb{P}^1 \). If \(R \) is not a log terminal singularity and if the characteristic \(p \) does not divide any denominator appearing in the rational coefficients of \(D \), then \(R \) does not have FFRT.

In the study of the structure of \(R^{1/p^e} \) we have a difficulty with the non-integral rational coefficient of \(D \). To overcome this difficulty we will introduce an orbifold curve (called a weighted

The first author is partially supported by Grant-in-Aid for Scientific Research 16K05092, JSPS.
projective line when $C \cong \mathbb{P}^1$), which is a sort of Deligne-Mumford stack \mathcal{C} with coarse moduli map $\pi : \mathcal{C} \to C$. This is the “minimal covering” of $C = \text{Proj} \, R$ on which D becomes integral. Thus it serves as a very useful tool to deal with rational coefficient divisors (cf. [MO]). The FFRT property of R is then rephrased in terms of a global analogue of FFRT property for a pair (\mathcal{C}, L) associated with the line bundle $L = \mathcal{O}_C(\pi^*D)$. In particular, by studying the structure of the Frobenius push-forwards $F^*_e \mathcal{O}_\mathcal{C}$ on the orbifold curve \mathcal{C}, we prove our results.

Let us give an overview of the proof of our main theorem a bit more in detail. The assumption that R is not log terminal is equivalent to the condition $\delta_\mathcal{C} \geq 0$, where $\delta_\mathcal{C}$ is the degree of the canonical bundle on \mathcal{C}. When $\delta_\mathcal{C} = 0$, we have an étale covering $\varphi : E \to \mathcal{C}$ from an elliptic curve E, via which the Frobenius push-forward $F^*_e \mathcal{O}_\mathcal{C}$ is related to that on E. Since the structure of $F^*_e \mathcal{O}_E$ on an elliptic curve E is well-understood [A, Od], we can deduce the result for $F^*_e \mathcal{O}_\mathcal{C}$, whose structure differs according to whether E is ordinary or supersingular. When $\delta_\mathcal{C} > 0$, we prove the stability of $F^*_e \mathcal{O}_\mathcal{C}$ by the method of [KS, Su] for non-orbifold curves of genus >1, from which follows that $F^*_e \mathcal{O}_\mathcal{C}$ is indecomposable.

This paper is organized as follows. In Section 1 we review some fundamental facts on normal graded rings and root stacks. In Section 2 we rephrase the FFRT property of $R = R(C, D)$ in terms of a global FFRT property on the orbifold curve \mathcal{C} constructed from (C, D). Sections 3 and 4 are devoted to the study of weighted projective lines with $\delta_\mathcal{C} \leq 0$. In Section 3, we apply Crawley-Boevey’s result [CB] to deduce the FFRT property of $R = R(\mathbb{P}^1, D)$ when $\delta_\mathcal{C} < 0$. In Section 4, we study the case $\delta_\mathcal{C} = 0$, using a covering φ mentioned above, to prove that \mathcal{C} does not have global FFRT property. In Section 5, we slightly generalize Sun’s result [Su] on the stability of Frobenius push-forwards to orbifold curves with $\delta_\mathcal{C} > 0$. In Section 6, we synthesize the result obtained in the previous sections with the main theorem (Theorem 6.2) and discuss the exceptional cases where p divides denominators of the \mathbb{Q}-divisor D.

Acknowledgement. The first author thanks Holger Brenner for many useful comments to the manuscript. The second author thanks Masao Aoki for calling his attention to the book [Ol] which was helpful in writing this paper. He also thanks Shunsuke Takagi for informing of an example in [TT].

1. Preliminaries

The definition of the FFRT property requires the ring R under consideration to be complete local or graded. In this paper we focus on the graded case, as follows. Let $R = \bigoplus_{m \geq 0} R_m$ be a Noetherian normal \mathbb{N}-graded ring over an algebraically closed field $R_0 = k$ with $\dim R \geq 2$. We denote by X the normal projective variety $X = \text{Proj} \, R$.

1.1. Pinkham-Demazure construction of a normal graded ring. By [D, P] the graded ring R is described as follows: There exists an ample \mathbb{Q}-Cartier divisor D on X such that

$$R \cong R(X, D) = \bigoplus_{m \geq 0} H^0(X, \mathcal{O}_X([mD])) t^m,$$

where t is a homogeneous element of degree 1. We write the \mathbb{Q}-divisor D as

$$D = \sum_{i=1}^{n} \frac{s_i}{r_i} D_i,$$

where D_1, \ldots, D_n are distinct prime divisors on X, and $r_i > 0$ and s_i are coprime integers.

In the notation above, let

$$Y = \text{Spec}_X \left(\bigoplus_{m \geq 0} \mathcal{O}_X([mD]) t^m \right) \quad \text{and} \quad U = \text{Spec}_X \left(\bigoplus_{m \in \mathbb{Z}} \mathcal{O}_X([mD]) t^m \right).$$
Then U is an open subset of Y and we have the following commutative diagram.

\[
\begin{array}{ccc}
U & \xrightarrow{\cong} & Z \setminus V(R_{+}) \\
\cap & & \cap \\
\text{Ex}(\varphi) & \leftrightarrow & Y \\
\cong & \sigma & Z = \text{Spec } R \\
& \varphi & X
\end{array}
\]

(1.1)

Here $\text{Ex}(\varphi) = Y \setminus U$ is endowed with reduced closed subscheme structure. Then $\text{Ex}(\varphi)$ is a section of the structure morphism $\sigma: Y \to X$ and also the exceptional divisor of the graded blowup $\varphi: Y \cong \text{Proj} (\bigoplus_{m \geq 0} R_{m}) \to \text{Spec } R$, where $R_{m} = \bigoplus_{m' \geq m} R_{m'}$. Also, $\sigma: Y \to X$ has an \mathbb{A}^{1}-bundle structure apart from the divisors D_{i} on X. On the other hand, if we denote by F_{i} the reduced fiber of σ over the prime divisor D_{i}, then $\sigma^{*}D_{i} = r_{i}F_{i}$; see [D].

1.2. Finite F-representation type. We assume that the characteristic of k is $p > 0$. Then any scheme S over k admits the Frobenius morphism $F: S \to S$ associated with the p-th power ring homomorphism $O_{S} \to F_{*}O_{S}$. By our assumption, the graded ring R is F-finite, i.e., the Frobenius on $Z = \text{Spec } R$ is a finite morphism. For each $e = 0, 1, 2, \ldots$, the e-times Frobenius push-forward $F^{e}_{*}R$ of the graded ring R is identified with the ring $R^{1/p^{e}}$, which has a natural $\frac{1}{p^{e}}\mathbb{Z}$-grading. Hence we can consider $R^{1/p^{e}}$ as an object of the category of finitely generated \mathbb{Q}-graded R-modules. In this category, we define an equivalence \sim of objects to be a graded isomorphism which admits a degree shift: Namely, for \mathbb{Q}-graded modules M, N, we define $M \sim N$ if $N \cong M(\alpha)$ via a degree-preserving isomorphism for some $\alpha \in \mathbb{Q}$. Now by the Krull-Schmidt theorem, we have a unique decomposition

\[
R^{1/p^{e}} = M^{(e)}_{1} \oplus \cdots \oplus M^{(e)}_{m_{e}}
\]

in the category of finitely generated \mathbb{Q}-graded R-modules for $e = 0, 1, 2, \ldots$, with $M^{(e)}_{i}$ indecomposable.

Definition 1.1 ([SVdB]). We say that R has finite F-representation type (FFRT) if the set of equivalence classes $\{M^{(e)}_{i} | e = 0, 1, 2, \ldots; i = 1, \ldots, m_{e}\}/\sim$ is finite.

For $q = p^{e}$ we want to know the decomposition of the R-module $R^{1/q}$. The graded ring structure of $R = R(X, D)$ allows us to decompose $R^{1/q} = \bigoplus_{t \geq 0} H^{0}(X, F^{e}_{*}\mathcal{O}_{X}([tD]))^{t!/q}$ as $R^{1/q} = \bigoplus_{t = 0}^{q-1} (R^{1/q})_{i/q \mod \mathbb{Z}}$, where

\[
(R^{1/q})_{i/q \mod \mathbb{Z}} = \bigoplus_{0 \leq t \equiv i \mod q} H^{0}(X, F^{e}_{*}\mathcal{O}_{X}([tD]))^{t!/q} \cong \bigoplus_{m \geq 0} H^{0}(X, F^{e}_{*}\mathcal{O}_{X}(([qm + i]D))
\]

is an R-summand of $R^{1/q}$ for $i = 0, 1, \ldots, q - 1$. If D is an integral Cartier divisor, then $F^{e}_{*}\mathcal{O}_{X}(([qm + i]D)) \cong \mathcal{O}_{X}(D)^{\otimes m} \otimes F^{e}_{*}\mathcal{O}_{X}(iD)$ by the projection formula. Thus in this case, the decomposition of the R-module $(R^{1/q})_{i/q \mod \mathbb{Z}}$ depends on the decomposition of the vector bundle $F^{e}_{*}\mathcal{O}_{X}(iD)$ on X. However, this observation fails when D is not integral. To overcome this difficulty, we will introduce a root stack associated with the pair (X, D), which allows us to treat D as if it is an integral divisor.

1.3. Root stacks. The exposition and notation in this subsection is based on generalities on stacks; see Olsson [Ol] and references therein for more details. For a scheme T with a group scheme G acting on T, we denote by $[T/G]$ the quotient stack of T by G as in [Ol] Example 8.1.12. For a stack \mathcal{Y} and a scheme S, we write by $\mathcal{Y}(S)$ the groupoid of S-valued points of \mathcal{Y} as is standard.

Here we briefly review the notion of root stacks (cf. [Ol] 10.3]). Let X be a k-scheme and D_{1}, \ldots, D_{n} Cartier divisors on X. We consider the associated section $\xi_{i}: \mathcal{O}_{X}(-D_{i}) \to \mathcal{O}_{X}$ and
the induced morphism $\xi: X \to [\mathbb{A}^1/k^n]$, where $\mathbb{A}^1 = \mathbb{A}^1_k$ is the affine line on which k^* acts naturally.

For $r = (r_1, \ldots, r_n) \in \mathbb{Z}_{\geq 0}^n$, an r-th root stack $\pi: \mathcal{X} \to X$ of (D_1, \ldots, D_n) is defined by the pull-back of r by ξ

$$
\begin{array}{ccc}
\mathcal{X} & \xrightarrow{\xi} & [\mathbb{A}^1/k^n] \\
\pi & & \downarrow r \\
X & \xrightarrow{\xi} & [\mathbb{A}^1/k^n],
\end{array}
$$

where $r: [\mathbb{A}^1/k^n] \to [\mathbb{A}^1/k^n]$ is induced by r_i-th power $\mathbb{A}^1 \to \mathbb{A}^1; z \mapsto z^{r_i}$ for $i = 1, \ldots, n$. We also write $\mathcal{X} = X[\sqrt[d_1]{D_1}, \ldots, \sqrt[d_n]{D_n}]$, and call r_1, \ldots, r_n the weights. Let E_i be the integral Cartier divisor on X defined by $\xi_x x_i$, where ξ_x is in the diagram (1.2), and x_i is the coordinate of the i-th component in $[\mathbb{A}^1/k^n]$. Then we have $r_i E_i = \pi^* D_i$.

By definition, for a k-scheme S, the groupoid $\mathcal{X}(S)$ consists of data

$$
\xi = (f: S \to X, (\mathcal{L}_1, s_1), \ldots, (\mathcal{L}_m, s_n), \alpha_1, \ldots, \alpha_n),
$$

where \mathcal{L}_i are line bundles on S, and $s_i \in \Gamma(S, \mathcal{L}_i)$, and $\alpha_i: \mathcal{L}_i^{\otimes r_i} \cong f^* \mathcal{O}_X(D_i)$ such that $\alpha_i(s_i^{\otimes r_i}) = \xi_i$.

For another object $\xi' = (f': S \to \mathbb{P}^1, (\mathcal{L}'_1, s'_1), \ldots, (\mathcal{L}'_n, s'_n), \alpha'_1, \ldots, \alpha'_n) \in \mathcal{X}(S)$, an isomorphism $\eta: \xi \cong \xi'$ in $\mathcal{X}(S)$ consists of isomorphisms of line bundles $\eta_i: \mathcal{L}_i \to \mathcal{L}'_i$ for $i = 1, \ldots, n$ such that $\eta_i(s_i) = s'_i$, and the following diagrams commute:

$$
\begin{array}{ccc}
\mathcal{L}_i^{\otimes r_i} & \xrightarrow{\alpha_i} & f^* \mathcal{O}_X(D_i) \\
\eta_i^{\otimes r_i} & \xrightarrow{\eta_i} & f'^* \mathcal{O}_X(D_i)
\end{array}
$$

Locally, we take an affine open subset $W = \text{Spec } A$ of X such that $D_i|_W = \{f_i = 0\}$ for $f_i \in A$ and $i = 1, \ldots, n$. Hence it is isomorphic to $[\text{Spec } B/\mu_{r_1} \times \cdots \times \mu_{r_n}]$, where

$$
B = A[w_1, \ldots, w_n]/(w_1^{r_1} - f_1, \ldots, w_n^{r_n} - f_n),
$$

and $\mu_{r_1} \times \cdots \times \mu_{r_n}$ acts on Spec B by $(w_1, \ldots, w_n) \mapsto (\eta_1 w_1, \ldots, \eta_n w_n)$ for $(\eta_1, \ldots, \eta_n) \in \mu_{r_1} \times \cdots \times \mu_{r_n}$ (cf. [01 Theorem 10.3.10]).

For later use, we summarize a few fundamental properties of root stacks $\pi: \mathcal{X} \to X$ in the following:

Lemma 1.2. Under the notation as above we have the following.

1. $\pi: \mathcal{X} \to X$ is an isomorphism apart from E_i and D_i ($i = 1, \ldots, n$).
2. E_i is an integral Cartier divisor on X with $\pi^* D_i = r_i E_i$ for $i = 1, \ldots, n$.
3. If $\pi': \mathcal{X}' \to X$ is a morphism such that there exists a Cartier divisor E'_i on X' with $r_i E'_i = (\pi')^* D_i$ for $i = 1, \ldots, n$, then there is a morphism $\varphi: \mathcal{X}' \to \mathcal{X}$ such that $\pi' = \pi \circ \varphi$ and $E'_i = \varphi^* E_i$. This is unique up to 2-isomorphisms.
4. For a Cartier divisor $\sum_{i=1}^n l_i E_i$ on \mathcal{X}, one has

$$
\pi_* \mathcal{O}_{\mathcal{X}}(\sum_{i=1}^n l_i E_i) = \mathcal{O}_X(\sum_{i=1}^n \frac{l_i}{r_i} D_i) \quad \text{and} \quad R^i \pi_* \mathcal{O}_{\mathcal{X}}(\sum_{i=1}^n l_i E_i) = 0 \quad \text{for} \; i > 0.
$$

Proof. (1) and (2) follow from the definition of the root stack \mathcal{X} and Cartier divisors E_i on \mathcal{X}.

(3) follows from descriptions of $\mathcal{X}(S)$ for schemes S.

As for (4), by the local description as above, coherent sheaves are considered as $\prod_{i=1}^n \mu_{r_i}$-equivariant coherent sheaves on Spec B, where B is in (1.3), and the push-forward π_* corresponds
to taking $\prod_{i=1}^{n} \mu_{e_i}$-invariant parts. This is exact, hence $R^i\pi_*F = 0$ for any coherent sheaf F on X and $i > 0$.

We write $l_i = r_i k_i + m_i$ for $0 \leq m_i < r_i$, that is, $k_i = \lfloor \frac{l_i}{r_i} \rfloor$. For a line bundle $O_X(E)|_{\pi^{-1}W}$, the corresponding B-module is

$$Bu_1^{-l_1} \cdots u_n^{-l_n} = \bigoplus_{j_1=1}^{r_1-1} \cdots \bigoplus_{j_n=0}^{r_n-1} A \frac{u_1^{j_1} \cdots u_n^{j_n}}{f_1^{k_1} u_1^{m_1} \cdots f_n^{k_n} u_n^{m_n}}.$$

Hence, as desired, the push-forward $\pi_*O_X(\pi^*D)|_W$ is $O_W(\sum_{i=1}^{n} \lfloor \frac{l_i}{r_i} \rfloor D_i)$ which correspond to the degree 0 part $A^{-1}_{\Pi_{i=1}^{R_1} \cdots f_n^{R_n}}$. \qed

We also have another equivalent description of X as follows. Let L_1, \ldots, L_n be the total spaces of line bundles $O_X(-D_1), \ldots, O_X(-D_n)$. We consider the complement L_i^\times of the zero section. We consider $(k^*)^n$-action on $U = L_1^\times \times \cdots \times L_n^\times \times \mathbb{A}^n$ by $((t_i, s_i), (x_i, x_i))$ for $(t_i, s_i) \in (k^*)^n$, and $(k^*)^n$-equivariant vector bundle $E = U \times \prod_{i=1}^{n} k t_i$ over U. We define an equivariant section $s: U \to E$ defined by

$$((s_1, (x_i)), (\xi(s_i) - x_i^r))$$

and a closed subscheme $V = s^{-1}(0)$ of U. We put $X' = [V/(k^*)^n]$, and consider the natural projection $\pi': X' \to X$.

We consider Cartier divisors $E_i = \{ x_i = 0 \}$ on X'. If we write $E_i = O_X(E'_i)$, then we have an isomorphism $L_i^{\otimes r_i} \cong (\pi')^*O_X(D_i)$ from the construction of X'. This gives an homomorphism $X' \to X$ by Lemma [2.3] (3). By the above local description of X, this gives an isomorphism $X' \cong X$.

By [Mo, Proposition 2.3.3], we see that the cotangent complex L_X/k is the following complex of $(k^*)^n$-equivariant vector bundles on V:

$$0 \to E^\vee|_V \to \Omega_U|_V \to O_V^\oplus_1 \to 0,$$

where we consider $O_V^\oplus_1$ as a trivial bundle with the fibers equivalent to the cotangent space of $(k^*)^n$ at the unit. Since $E^\vee|_V = \bigoplus_{i=1}^{n} O_V t_i^{-r_i}$ and $\Omega_U = \bigoplus_{i=1}^{n} (O_U \oplus O_U t_i^{-1}) \oplus \Omega_X|_U$, we have

$$\det \Omega_X = \pi^* \det \Omega_X \otimes O_X(\sum_{i=1}^{n} (r_i - 1)E_i).$$

2. FFRT PROPERTY OF R(C, D) VIA ORBIFOLD CURVES

2.1. Orbifold curves. By an “orbifold curve,” we mean a one-dimensional smooth separated Deligne-Mumford stack \mathcal{C} whose coarse moduli map $\pi: \mathcal{C} \to C$ to a smooth projective curve C is generically isomorphism. As in [B 1.3.6], an orbifold curve is a root stack over C.

We fix the notation to be used throughout this section. Given integers $r_1, \ldots, r_n \geq 2$ and closed points P_1, \ldots, P_n on a smooth projective curve C, let $\mathcal{C} = C[\sqrt{P_1}, \ldots, \sqrt{P_n}]$ be the root stack of weight (r_1, \ldots, r_n) and let $\pi: \mathcal{C} \to C$ be the coarse moduli map. For $i = 1, \ldots, n$, we denote by Q_i the stacky point over P_i, that is, the integral Cartier divisor on C with $\pi^*P_i = r_i Q_i$. The next lemma follows from ([1.4]) and [N, Theorem 2.22].

Lemma 2.1. \mathcal{C} has a dualizing sheaf $\omega_\mathcal{C} \cong \pi^*\omega_C \otimes O_\mathcal{C}(\sum_{i=1}^{n} (r_i - 1)Q_i)$, which is isomorphic to the canonical bundle $\Omega_\mathcal{C}$.

We use the notation $\omega_\mathcal{C}$ for the dualizing sheaf, $\Omega_\mathcal{C}$ for the differential or canonical sheaf, and $K_\mathcal{C}$ for the canonical divisor interchangeably according to the context. We consider the Chow ring $A(\mathcal{C})$ with \mathbb{Q}-coefficient, and the map $\deg: A(\mathcal{C}) \to A(\text{Spec } k) \cong \mathbb{Q}$ induced by the push-forward by the structure morphism $\mathcal{C} \to \text{Spec } k$. We put $\delta_\mathcal{C} := \deg \omega_\mathcal{C} \in \mathbb{Q}$. This is equal to $n + 2g - 2 - \sum_{i=1}^{n} \frac{1}{r_i}$ by Lemma [2.1] where g is the genus of C.

Now let $R = R(C, D)$ for an ample \mathbb{Q}-Cartier divisor $D = \sum_{i=1}^{n} (s_i/r_i) P_i$ on C as in subsection 1.1. Then Lemma 1.2 (4) allows us to think of $R = R(C, D)$ as the section ring associated with an integral Cartier divisor π^*D or equivalently a line bundle $L = \mathcal{O}_C(\pi^*D)$ on \mathcal{C}:

$$R = R(C, D) \cong R(\mathcal{C}, L) = \bigoplus_{m \geq 0} H^0(\mathcal{C}, L^m)t^m.$$

We will extend the fundamental diagram (1.1) to the stacky situation.

$$\tilde{Y} = \text{Spec}_\mathcal{C} \left(\bigoplus_{m \geq 0} L^m t^m \right) \quad \text{and} \quad \tilde{U} = \text{Spec}_\mathcal{C} \left(\bigoplus_{m \in \mathbb{Z}} L^m t^m \right).$$

Then \tilde{Y} is an \mathbb{A}^1-bundle over \mathcal{C} and we have the following extended fundamental diagram.

$$\begin{array}{ccc}
\tilde{Y} & \xrightarrow{\bar{\psi}} & Y \\
\cap_{n} & \cap_{n} & \cap_{n} \\
\bar{\psi} & \xrightarrow{\psi} & \tilde{Y} \\
\bar{\pi} & \xrightarrow{\pi} & \mathcal{C} \\
\end{array}$$

Here $\psi: \tilde{Y} \to Y$ and $\tilde{U} \to U$ are induced by isomorphisms $\pi_*L^m \cong \mathcal{O}_C([mD])$ for $m \in \mathbb{Z}$ (cf. [Ol] Theorem 10.2.4). In the local description (1.3), we see that $(π \circ \tilde{σ})^{-1}W$ is a quotient stack $[V/\prod_{i=1}^{n} \mu_{r_i}]$ of a $\prod_{i=1}^{n} \mu_{r_i}$-equivariant line bundle V over $\text{Spec} \, B$, and

$$\sigma^{-1}(W) = \text{Spec} \, Γ(\mathcal{V}, \mathcal{O}_\mathcal{V})\prod_{i=1}^{n} \mu_{r_i}$$

by Lemma 1.2 (4). Furthermore $\psi|_{(π \circ \tilde{σ})^{-1}W}$ is given by the inclusion $Γ(\mathcal{V}, \mathcal{O}_\mathcal{V})\prod_{i=1}^{n} \mu_{r_i} \to Γ(\mathcal{V}, \mathcal{O}_\mathcal{V})$. Hence $ψ$ is a coarse moduli map (cf. [Ol] Chapter 6).

Lemma 2.2. In the situation as above we have the following.

1. $ψ$ induces an isomorphism $\tilde{U} \cong U$ preserving the \mathbb{Z}-grading.
2. We have an isomorphism

$$\mathcal{C} \cong \left[\tilde{U}/k^* \right],$$

where $k^* = \text{Spec} \, k[t, t^{-1}]$ is the multiplicative group, and k^*-action on \tilde{U} is induced by the fiberwise multiplication on the line bundle \tilde{Y} over \mathcal{C}.

Consequently, we have an equivalence between the category of vector bundles on \mathcal{C} and the category of reflexive \mathbb{Z}-graded R-modules given by

$$\mathcal{E} \mapsto Γ_*(\mathcal{E}) = \bigoplus_{m \in \mathbb{Z}} H^0(\mathcal{C}, \mathcal{E} \otimes L^m)t^m.$$

Proof. (1) Since r_i and s_i are co-prime to each other, the automorphism functors of all closed points of \tilde{U} are trivial. Hence by [C] Theorem 2.2.5], \tilde{U} is an algebraic space, and the coarse moduli map $ψ|_{\tilde{U}}: \tilde{U} \to U$ is an isomorphism. (2) is obvious.

It follows from (2) that there is a one-to-one correspondence between vector bundles on \mathcal{C} and \mathbb{Z}-graded vector bundles on \tilde{U} given by $\mathcal{E} \to \bigoplus_{m \in \mathbb{Z}} \mathcal{E} \otimes L^m$. On the other hand, since $\tilde{U} \cong Z \setminus V(R_+)$ by (1) and $\text{codim}(V(R_+), Z) = 2$, we have a one-to-one correspondence between \mathbb{Z}-graded vector bundles on \tilde{U} and reflexive graded R-modules, from which the required correspondence follows.

Definition 2.3. For a line bundle L on \mathcal{C}, we define an equivalence \sim_L in $\text{Coh}(\mathcal{C})$ as follows. For $\mathcal{E}, \mathcal{F} \in \text{Coh}(\mathcal{C})$, we write $\mathcal{E} \sim_L \mathcal{F}$ if $\mathcal{E} \cong \mathcal{F} \otimes L^m$ for some $m \in \mathbb{Z}$.
Corollary 2.4. For a vector bundle \mathcal{E} on \mathcal{C}, $$\mathcal{E} \mapsto \Gamma_\ast(\mathcal{E}) = \bigoplus_{m \in \mathbb{Z}} H^0(\mathcal{E}, \mathcal{E} \otimes L^m)t^m$$
gives a one-to-one correspondence between the set of equivalence classes of vector bundles on \mathcal{C} with respect to \sim_L and the set of equivalence classes of reflexive \mathbb{Z}-graded R-modules with respect to the equivalence \sim admitting degree shift as in subsection 1.2.

2.2. FFRT property of $R(C, D)$ via orbifold curves. Let us now work over a field k of characteristic $p > 0$. Then for a k-scheme S we have the Frobenius morphism $F: S \to S$. We define a Frobenius morphism $F: \mathcal{C} \to \mathcal{C}$ on the stack \mathcal{C} by the pull-back functor $F^\ast: \mathcal{C}(S) \to \mathcal{C}(S)$ by the Frobenius morphism $F: S \to S$. Since $F: S \to S$ is an affine morphism, the Frobenius push-forward $F_\ast: \text{Coh}(\mathcal{C}) \to \text{Coh}(\mathcal{C})$ is exact, where Coh \mathcal{C} is the category of coherent sheaves on \mathcal{C}.

Recall that $R = R(C, D)$ is the section ring $R = R(\mathcal{C}, L) = \bigoplus_{l \geq 0} H^0(\mathcal{C}, L^l)t^l$ associated with the line bundle $L = \mathcal{O}_\mathcal{C}(\pi^*D)$. Then for $0 \leq i < q = p^e$, the R-summand $(R^{1/q})_{i \mod q}$ of $R^{1/q}$, which is described as $$(R^{1/q})_{i \mod q} = \bigoplus_{0 \leq l \leq i \mod q} H^0(\mathcal{C}, F_*^e(L^l))t^{l/q} \cong \bigoplus_{m \geq 0} H^0(\mathcal{C}, F_*^e(L^l) \otimes L^m)t^{i/q + m},$$
is equivalent to the \mathbb{Z}-graded R-module $\Gamma_\ast(F_*^e(L^l))$ with respect to \sim. In view of Corollary 2.4, it is important for our purpose to know the decomposition of the Frobenius push-forwards $F_*^e(L^l)$ with $0 \leq i < q - 1$ on the orbifold curve \mathcal{C}.

Given any line bundle L on \mathcal{C} and integers e, $i \geq 0$, we have a unique decomposition $$F_*^e(L^l) = F_1^{(e,i)} \oplus \cdots \oplus F_{m_{e,i}}^{(e,i)}$$
in $\text{Coh}(\mathcal{C})$ with $F_j^{(e,i)}$ indecomposable.

Definition 2.5. Let L be a line bundle on \mathcal{C}. We say that the pair (\mathcal{C}, L) has globally finite F-representation type (FFRT for short), if the set of isomorphism classes $\{F_j^{(e,i)} | e = 0, 1, 2, \ldots; i = 0, 1, \ldots, p^e - 1; j = 1, \ldots, m_{e,i}\}/\cong$ is finite. We say that \mathcal{C} has FFRT if the pair $(\mathcal{C}, \mathcal{O}_\mathcal{C})$ does.

Corollary 2.6. Let $R = R(C, D) = R(\mathcal{C}, L)$, where $L = \mathcal{O}_\mathcal{C}(\pi^*D)$ as above. Then R has FFRT if and only if (\mathcal{C}, L) has FFRT.

Proof. By Corollary 2.4, R has FFRT if and only if the set of equivalence classes $\{F_j^{(e,i)} | e = 0, 1, 2, \ldots; i = 0, 1, \ldots, p^e - 1; j = 1, \ldots, m_{e,i}\}/\sim_L$ is finite. Hence the sufficiency follows immediately. For the necessity, it is sufficient to prove the following claim.

Claim 2.6.1. For any vector bundle \mathcal{F} on \mathcal{C}, the set $$\left\{ m \in \mathbb{Z} \left| \begin{array}{c} \mathcal{F} \otimes L^m \text{ is isomorphic to a direct summand of} \\ F_*^e(L^l) \text{ for some } e \geq 0 \text{ and } 0 \leq i \leq p^e - 1 \end{array} \right. \right\}$$
is finite.

To prove the claim we first note that there exists an integer m_0 such that $H^0(\mathcal{C}, F_*^e(L^l) \otimes L^{m_0}) \cong H^0(\mathcal{C}, L^{i + p^e m_0}) = H^0(C, \mathcal{O}_C(\lfloor (i + p^e m_0)D \rfloor)) = 0$ for all $e \geq 0$ and $0 \leq i \leq p^e - 1$. This follows if we choose m_0 small enough, e.g., $m_0 = -1$. Hence, if $\mathcal{F} \otimes L^l$ is a direct summand of $F_*^e(L^l)$, then we must have $H^0(\mathcal{C}, \mathcal{F} \otimes L^{i + m_0}) = 0$. On the other hand, there exists an integer l_0 such that $H^0(\mathcal{C}, \mathcal{F} \otimes L^l) \neq 0$ for all $l \geq l_0$. Indeed, if
we choose an integer \(r > 0 \) such that \(rD \) is integral and write \(l = rs + i \) with \(0 \leq i < r \), then we see that
\[
H^0(\mathcal{C}, F \otimes L^i) = H^0(C, \pi_*(\mathcal{F} \otimes L^{i+r})) = H^0(C, \pi_*(\mathcal{F} \otimes L^i) \otimes \mathcal{O}_C(rD)^{\otimes s})
\]
is non-zero for \(s \gg 0 \), since \(rD \) is ample. Thus we conclude that if \(l \geq l_0 - m_0 \), then \(\mathcal{F} \otimes L^i \) cannot be a direct summand of \(F^e_s(L^i) \) for any \(e \geq 0 \) and \(1 \leq i \leq p^e - 1 \). This implies that the set in Claim 2.6.1 is bounded above. Similarly, a dual argument with the first cohomology \(H^1 \) gives a lower bound of the set. \(\square \)

Finally we rephrase the \(F \)-purity of \(R \) in terms of the \(F \)-splitting of an orbifold curve. We say that \(\mathcal{C} \) is \(F \)-split if the Frobenius ring homomorphism \(F: \mathcal{O}_\mathcal{C} \to F \cdot \mathcal{O}_\mathcal{C} \) splits as an \(\mathcal{O}_\mathcal{C} \)-module homomorphism, and that a ring \(R \) is \(F \)-pure if Spec \(R \) is \(F \)-split. Note that the Frobenius morphism on \(\mathcal{C} \) induces \(F: \omega_{\mathcal{C}} \to \omega_{\mathcal{C}} \otimes F \cdot \mathcal{O}_\mathcal{C} \cong F_*(\omega_{\mathcal{C}}^p) \), and that on the first cohomology \(F: H^1(\mathcal{C}, \omega_{\mathcal{C}}) \to H^1(\mathcal{C}, F_*(\omega_{\mathcal{C}}^p)) \cong H^1(\mathcal{C}, \omega_{\mathcal{C}}^p) \).

Proposition 2.7. In the notation as above, the following three conditions are equivalent.
1. \(R(C, D) \cong R(\mathcal{C}, L) \) is \(F \)-pure.
2. \(\mathcal{C} \) is \(F \)-split.
3. The induced Frobenius map \(F: H^1(\mathcal{C}, \omega_{\mathcal{C}}) \to H^1(\mathcal{C}, \omega_{\mathcal{C}}^p) \) is injective.

Proof. First note that \(\text{Hom}(F_* \mathcal{O}_\mathcal{C}, \omega_{\mathcal{C}}) \cong F_* \omega_{\mathcal{C}} \) by the adjunction formula [HM, Ex. III.7.2], so that \(\text{Hom}(F_* \mathcal{O}_\mathcal{C}, \mathcal{O}_\mathcal{C}) \cong F_*(\omega_{\mathcal{C}}) \otimes \omega_{\mathcal{C}}^{-1} \cong F_*(\omega_{\mathcal{C}}^{1-p}) \). Now \(\mathcal{C} \) is \(F \)-split if and only if the dual Frobenius map \(F^v: \text{Hom}(F_* \mathcal{O}_\mathcal{C}, \mathcal{O}_\mathcal{C}) \to \text{Hom}(\mathcal{O}_\mathcal{C}, F_* \mathcal{O}_\mathcal{C}) \) is surjective. Since this map is identified with \(F^v: H^0(\mathcal{C}, F_*(\omega_{\mathcal{C}}^{1-p})) \to H^0(\mathcal{C}, \mathcal{O}_\mathcal{C}) \), which is dual to the induced Frobenius \(F: H^1(\mathcal{C}, \omega_{\mathcal{C}}) \to H^1(\mathcal{C}, F_*(\omega_{\mathcal{C}}^p)) \) by the Serre duality, the equivalence of (2) and (3) follows. On the other hand, the equivalence of (1) and (3) follows from [W], since Lemma 1.2 allows us to identify the induced Frobenius map in (3) with \(F: H^1(C, \mathcal{O}_C(K_C)) \to H^1(C, \mathcal{O}_C([p(K_C + D']))) \), where \(D' \) is the “fractional part” of \(D \) so that \(\pi^i(K_C + D') = K_C \). \(\square \)

3. Weighted projective lines

In this section, we consider an orbifold curve \(\mathcal{C} = C[\sqrt[n]{P_1}, \ldots, \sqrt[n]{P_n}] \) with \(C = \mathbb{P}^1 \), that is, we have a coarse moduli map \(\pi: \mathcal{C} \to \mathbb{P}^1 \). In this case, \(\mathcal{C} \) is called a weighted projective line.

3.1. Homogeneous coordinate ring

Here we construct \(\mathcal{C} \) as a quotient stacks \([U/G]\) following [CL]. We take the homogeneous coordinate ring \(T = k[z_1, z_2] \) of the projective line \(\mathbb{P}^1 \) such that \(P_1 = \{ z_1 = 0 \} \), \(P_2 = \{ z_2 = 0 \} \), and \(P_i = \{ z_2 - \lambda_i z_1 = 0 \} \) for \(\lambda_i \in k \) and \(i = 1, \ldots, n \). We consider a \(T \)-algebra
\[
S = T[x_1, \ldots, x_n]/(x_1^{r_1} - z_1, x_2^{r_2} - z_2, \ldots, x_n^{r_n} - (z_2 - \lambda_3 z_1)),
\]
and take an open subset \(U = \text{Spec } S \setminus \{(x_1, x_2) = (0, 0)\} \). We define a group \(G \) acting on \(U \) by \(G = \text{Hom}_{\text{group}}(\Gamma, k^*) \) for
\[
\Gamma = \bigoplus_{i=1}^n \mathbb{Z}a_i \oplus \mathbb{Z}c/(r_i a_i - c \mid i = 1, \ldots, n).
\]
This means
\[
G = \text{Spec } k[a_1^{\pm 1}, \ldots, a_n^{\pm 1}, c^{\pm 1}]/(a_i^{r_i} - c \mid i = 1, \ldots, n).
\]
Here \(G \) acts on \(U \) diagonally
\[
(x_1, \ldots, x_n) \mapsto (a_1 x_1, \ldots, a_n x_n).
\]
In other words, the \(G \)-action is given by \(\Gamma \)-grading of \(S \) defined by \(\deg \Gamma x_i = a_i \) for \(i = 1, \ldots, n \).

This action is compatible with the natural morphism \(U \to \mathbb{P}^1 \) induced by the \(T \)-algebra structure of \(S \), and gives \(\pi: [U/G] \to \mathbb{P}^1 \). Furthermore, by \(G \)-weight spaces \(ka_i \) with \(G \)-action given by the multiplication of \(a_i \), we have line bundles \(L_i = [U \times ka_i/G] \) on the quotient
The FFRT property of graded rings and orbifold curves

9

stack $[U/G]$, and sections $s_i \in \Gamma([U/G], L_i)$ defined by x_i. Since we have natural isomorphisms $\alpha: L^{\oplus r_i} \cong (\pi')^*\mathcal{O}_G(P_i)$ sending x^{α}_{i1} to $\lambda_i z_i - z_2$, these data defines a morphism $\varphi: [U/G] \to \mathcal{C}$ such that $\pi' = \pi \circ \varphi$ by Lemma 1.2 (3). By the local description (1.3), we see that φ is an isomorphism $[U/G] \cong \mathcal{C}$. In the following, we identify \mathcal{C} with the quotient stack $[U/G]$ via this isomorphism, and we call the Γ-graded algebra S a homogeneous coordinate ring of \mathcal{C}. We have $Q_i = \{x_i = 0\}$ on $\mathcal{C} = [U/G]$, and $\mathcal{O}_\mathcal{C}(Q_i) \cong L_i$.

By this construction, we have an identification $\text{Pic} \mathcal{C} \cong \Gamma$ sending $\mathcal{O}_\mathcal{C}(Q_i)$ to \tilde{a}_i. We write by deg: $\text{Pic} \mathcal{C} \to \mathbb{Q}$ the map taking degrees of Chern classes of line bundles on \mathcal{C}. We have $\text{deg} \tilde{a}_i = \frac{1}{r_i}$ for $i = 1, \ldots, n$, and $\text{deg} \tilde{c} = 1$, and in particular, $\delta_\mathcal{C} = \text{deg} \omega_\mathcal{C} = n - 2 - \sum_{i=1}^n \frac{1}{r_i}$ by Lemma 2.1.

3.2. Indecomposable vector bundles on a weighted projective line. We introduce a classification of indecomposable vector bundles on \mathcal{C} by [CB]. We consider a lattice

$$\mathcal{L} = \mathbb{Z}\alpha_s \oplus \bigoplus_{i=1}^n \bigoplus_{j=1}^{r_i-1} \mathbb{Z}\alpha_{ij},$$

and put $\hat{\mathcal{L}} = \mathcal{L} \oplus \mathbb{Z}\delta$. Here α_s, α_{ij} corresponds to the following graph consisting of vertices \ast, ij for $i = 1, \ldots, n$ and $j = 1, \ldots, r_i - 1$, and edges joining \ast and $i1$, and ij and $ij + 1$, for $i = 1, \ldots, n$, $j = 1, \ldots, r_i - 2$. The Cartan matrix is defined by $C = 2E - A$, where E is the identity matrix and A is the adjacency matrix of the above graph. This defines an inner product $(\cdot, \cdot): \mathcal{L} \times \mathcal{L} \to \mathbb{L}$.

We define the set $\Pi = \{\alpha_s\} \cup \{\alpha_{ij} | i = 1, \ldots, n, j = 1, \ldots, r_i - 1\}$ of simple roots as follows. An element $\alpha \in \Pi$ defines a reflection $\mathcal{L} \to \mathcal{L} \; \lambda \mapsto \lambda - (\alpha, \lambda)\alpha$. We define the Weyl group W by the subgroup of $\text{Aut} \mathcal{L}$ generated by these reflections, and put $\Delta^\text{re} = W\Pi$. We define the fundamental set

$$M = \{v \in \mathcal{L}^+ | v \neq 0, (\alpha, v) \leq 0 \text{ for } \alpha \in \Pi, \text{ support of } v \text{ is connected}\}$$

where $\mathcal{L}^+ = \{v = l_s \alpha_s + \sum l_{ij} \alpha_{ij} \in \mathcal{L} \mid l_s, l_{ij} \geq 0\}$. We put $\Delta = \Delta^\text{re} \cup WM \cup W(-M)$, and $\hat{\Delta} = \{\alpha + m\delta \in \hat{\mathcal{L}} \mid \alpha \in \Delta, m \in \mathbb{Z}\} \cup \{m\delta \in \hat{\mathcal{L}} \mid m \in \mathbb{Z}, m \neq 0\}$. An element v of $\hat{\Delta}$ is called a root. It is called a real root, if $v = \alpha + m\delta$ for $\alpha \in \Delta^\text{re}$, otherwise it is called imaginary root.

For a vector bundle \mathcal{E} on \mathcal{C}, we associate a vector bundle $\mathcal{F} = \pi_* \mathcal{E}$ on \mathbb{P}^1 and flags

$$\{0 = \mathcal{F}_{i'r_i} \subset \cdots \subset \mathcal{F}_{ij} \subset \cdots \subset \mathcal{F}_{0} = \mathcal{F}|_{P_i}\}_{i=1}^n$$

defined by $\mathcal{F}_{ij} = \pi_* \mathcal{E}(-jQ_i)|_{P_i}$ for $i = 1, \ldots, n, j = 1, \ldots, r_i - 1$. We define a type $t(\mathcal{E})$ in $\hat{\mathcal{L}}$ of \mathcal{E} by

$$t(\mathcal{E}) = (\text{rk} \mathcal{F}) \alpha_s + \sum_{i=1}^n \sum_{j=1}^{r_i-1} (\dim \mathcal{F}_{ij}) \alpha_{ij} + (\text{deg} \mathcal{F}) \delta.$$

This defines a map $t: K(\mathcal{C}) \to \hat{\mathcal{L}}$ from the Grothendieck group $K(\mathcal{C})$ of \mathcal{C}. We consider the subset $\hat{\mathcal{L}}^+ \subset \hat{\mathcal{L}}$ of positive linear combinations of $\alpha_s + m\delta$, δ, α_{ij} and $-\sum_{j=1}^{r_i-1} \alpha_{ij} + \delta$ for $m \in \mathbb{Z}$ and $i = 1, \ldots, n$. We call elements in $\hat{\Delta} \cap \hat{\mathcal{L}}^+$ positive roots.

The following are due to [CB] Theorem 1.

Theorem 3.1. For an element $t \in \hat{\mathcal{L}}$, there exists an indecomposable sheaf on \mathcal{C} with the type t if and only if t is a positive root. There is a unique isomorphism class of indecomposable sheaf for a real root, infinitely many for an imaginary root.

We take an ample Cartier divisor $D = \sum_{i=1}^n s_i P_i$ on \mathbb{P}^1, and put $L = \pi^* \mathcal{O}_{\mathbb{P}^1}(D)$. Combining Theorem 3.1 with Corollary 2.6 we have the following:

Theorem 3.2. For a weighted projective line \mathcal{C}, the set of equivalence classes of indecomposable vector bundles with respect to \sim_L is finite, if and only if $\delta_\mathcal{C} = \text{deg} \omega_\mathcal{C} < 0$. In this case, the graded ring R has FFRT.
Proof. By direct computations, we see that \(\deg \omega_\mathcal{C} < 0 \) if and only if the corresponding graphs are of finite type. As in [K] Chapter I, it is equivalent to \(\Delta = \Delta^w \). It is also known that in this case \(\Delta = \Delta^w \) is finite.

Hence if \(\deg \omega_\mathcal{C} < 0 \), then ranks of indecomposable vector bundles are bounded. We put

\[
\rho_{\text{max}} = \max \{ \text{rk } \mathcal{E} \mid \mathcal{E} \text{ indecomposable vector bundle on } \mathcal{C} \}.
\]

Since \(D \) is ample, we have a positive integer \(d \) such that \(\mathcal{O}_\mathcal{C}(r_1 \cdots r_n \pi^* D) \cong \pi^* \mathcal{O}_\mathbb{P}_1(d) \). Then after tensoring \(L \) suitably many times, the coefficient of \(\delta \) in the type of any indecomposable vector bundle lies between 0 and \(dr_{\text{max}} \). Hence the set of equivalence classes is finite by Theorem 4.1.

On the other hand, if \(\deg \omega_\mathcal{C} \geq 0 \), then we have infinitely many isomorphism classes of indecomposable vector bundles whose type is a fixed imaginary root. Since tensoring \(L \) changes types, these vector bundles are not equivalent to each other with respect to \(\sim_L \).

Finally from the description of grading structure of \(R^1_{\mathcal{F}} \) below Definition 1.1, we see that the last statement follows from Corollary 2.3. \(\square \)

Remark 3.3. As a special case of \(\delta_\mathcal{C} = \deg \omega_\mathcal{C} < 0 \), we have the toric case, in which the weighted projective line \(\mathcal{C} \) has at most two stacky points. In this case, for every line bundle \(L \) on \(\mathcal{C} \), the Frobenius push-forward \(F_\mathcal{F}^* L \) is decomposed into direct sum bundles (cf. [OU, Theorem 4.5]).

4. Frobenius summands on weighted projective lines with \(\delta_\mathcal{C} = 0 \)

In this section we study the structure of the Frobenius push-forward \(F_\mathcal{F}^* \mathcal{O}_\mathcal{C} \) on the weighted projective line \(\mathcal{C} \) when \(\delta_\mathcal{C} \) is equal to 0. In this case \(\mathcal{C} \) has three or four stacky points and the weight \((r_1, \ldots, r_n) \) with \(r_1 \leq \cdots \leq r_n \) is either one of the following: \((2, 3, 6) \), \((2, 4, 4) \), \((3, 3, 3) \), \((2, 2, 2, 2) \). Also the canonical bundle \(\omega_\mathcal{C} \) is torsion of order \(m := \text{lcm}(r_1, \ldots, r_n) = r_n \). In what follows, we assume that the stacky points \(Q_1, \ldots, Q_n \) on \(\mathcal{C} \) are lying over \(\lambda_1, \ldots, \lambda_n \in \mathbb{P}^1 \), respectively.

Lemma 4.1. Let \(\mathcal{C} \) be a weighted projective line with \(\delta_\mathcal{C} = 0 \) as above, and suppose \(\text{char } k = p \) does not divide \(m = r_n \). Then there exists an elliptic curve \(E \) with \(\mu_m \cong \mathbb{Z}/m\mathbb{Z} \)-action and an \(m \)-fold covering \(f: E \to \mathbb{P}^1 \) which factors through \(\mathcal{C} \) as

\[
f = \pi \circ \varphi: E \xrightarrow{\varphi} \mathcal{C} \xrightarrow{\pi} \mathbb{P}^1,
\]

satisfying the following conditions.

1. \(\mathcal{C} = [E/\mu_m] \) and \(\mathbb{P}^1 = E/\mu_m \) via \(\varphi \) and \(f \), respectively.
2. \(\varphi \) is unramified and \(\varphi_* \mathcal{O}_E \cong \bigoplus_{\ell=0}^{m-1} \omega^{\otimes(-\ell)}_\mathcal{C} \).
3. There exist exactly \(m/r_i \) points of \(E \) lying over the stacky point \(Q_i \) whose ramification index with respect to \(f \) is equal to \(r_i \).
4. Choose the point \(P_n \in E \) lying over \(Q_n \) as the zero element of \(E \) as a group. If \(P \in E \) is a ramification point of \(f \) lying over one of the stacky points \(Q_i \), then \(P \) is an \(m \)-torsion point with respect to the group law of \((E, P_n) \).
5. \(\mathcal{C} \) is \(F \)-split if and only if \(E \) is ordinary (or equivalently, \(F \)-split), and in this case, \(p \equiv 1 \) (mod \(m \)).

Proof. Let \(\mathcal{A} = \bigoplus_{\ell \in \mathbb{Z}/m} \omega^{\otimes(-\ell)}_\mathcal{C} \) with an \(\mathcal{O}_\mathcal{C} \)-algebra structure defined by \(\omega^{\otimes(-m)}_\mathcal{C} \cong \mathcal{O}_\mathcal{C} \) and let \(\varphi: E = \text{Spec } \mathcal{A} \to \mathcal{C} \) be the induced morphism. We recall the description of \(\mathcal{C} = [U/G] \) in subsection 3.1. Then the \(\mathcal{O}_\mathcal{C} \)-algebra \(\mathcal{A} \) corresponds to the \(\Gamma \)-graded \(S \)-algebra \(S[\xi]/(\xi^{m} - 1) \).

Here \(\deg_\Gamma \xi = - \deg_\Gamma \omega_\mathcal{C} = -(n-2)e + \sum_{i=1}^{n} d_i \in \Gamma \).

By local computations, we see that every closed point in \(E \) has a trivial automorphism functor. Hence by [OI, Theorem 2.2.5], \(E \) is an algebraic space, and the coarse moduli map
Let $E \to \text{Spec}_{\mathbb{P}^1}(\pi_*, \mathcal{A})$ be an isomorphism. Thus $f = \pi \circ \varphi$ is identified with the structure morphism $\text{Spec}_{\mathbb{P}^1}(\pi_*, \mathcal{A}) \to \mathbb{P}^1$.

We have a μ_m-action on $E = \text{Spec}_k \mathcal{A}$ by deg $\xi = 1 \in \mathbb{Z}/m\mathbb{Z} = (\mu_m)\vee$. This gives a proof of (1) and (2).

We prove (3) and (4) examining the m-fold covering $f: E \cong \text{Spec}_{\mathbb{P}^1}(\pi_*, \mathcal{A}) \to \mathbb{P}^1$ case by case for each weight. Then it follows that E is an elliptic curve from Hurwitz’ formula.

The cases for weight $(3, 3, 3)$, $(2, 2, 2, 2)$ are easy: Indeed, f is totally ramified at all the ramification points P_1, \ldots, P_n in these cases, so that $mP_i = f^*(\lambda_i) = f^*(\lambda_j) = mP_j$ for $1 \leq i, j \leq n$. Hence $\mathcal{O}_E(P_i - P_n)^\otimes m \cong \mathcal{O}_E$ for all i, which means that P_i is m-torsion.

As for weight $(2, 4, 4)$, we choose $\lambda_1 = 0$, $\lambda_2 = 1$, $\lambda_3 = -1 \in \mathbb{P}^1$ in an affine coordinate u of \mathbb{P}^1 and a \mathbb{Q}-divisor $B = -\frac{1}{2}(0) + \frac{1}{4}(1) + \frac{1}{2}(-1)$ on \mathbb{P}^1 so that $\pi^*B \sim -K_E$. We give an $\mathcal{O}_{\mathbb{P}^1}$-algebra structure of $\pi_* \mathcal{A} \cong \bigoplus_{\ell=0}^{r} \mathcal{O}_{\mathbb{P}^1}([\ell B])z^\ell$ by the isomorphism $\mathcal{O}_{\mathbb{P}^1}(4B)z^4 \cong \mathcal{O}_{\mathbb{P}^1}$, via which $\frac{u^2}{u^2 - 1}z^4$ corresponds to 1. Then for an affine open subset $U = \text{Spec} k[u]$ of \mathbb{P}^1, $H^0(U, \pi_* \mathcal{A}) \cong k[u, uz, uz^2]/(u^2z^4 - u^2 + 1)$, and the 4-fold covering f locally looks like

$$f: f^{-1}U \cong \text{Spec} k[u, v, w]/(u^2 - u^2 + 1, uv - v^2) \to U = \text{Spec} k[u].$$

It follows that f has four ramification points P_1, P_2, P_3, P_4 with ramification indices 2, 2, 4, 4 whose affine coordinates with respect to u, v, w are $(0, 0, -\sqrt{-1})$, $(0, 0, -\sqrt{-1})$, $(1, 0, 0)$, $(-1, 0, 0)$, respectively. Clearly $4P_3 \sim 4P_1$ and P_2, P_4 are 4-torsion points with respect to the group law of (E, P). On the other hand, choosing $\varphi = (w - \sqrt{-1})/(u + 1) \in k(E)$, we see that $\text{div}_E(\varphi) = 4P_1 - 4P_4$, so that $4P_1 \sim 4P_4$. Similarly, $4P_2 \sim 4P_4$ and we see that P_1, P_2 are also 4-torsion. Thus (3) and (4) are proved for weight $(2, 4, 4)$.

The case for weight $(2, 3, 6)$ is proved similarly, but we omit detailed computations.

To prove (5) recall that the elliptic curve E is ordinary if and only if the Frobenius

$$F: H^1(E, \mathcal{O}_E) \to H^1(E, F_* \mathcal{O}_E) \cong H^1(E, \mathcal{O}_E)$$

is injective (cf. Proposition 2.7). Since $\varphi_* \mathcal{O}_E \cong \bigoplus_{\ell \in \mathbb{Z}_m} \omega_E^{\otimes (-\ell)}$, this is equivalent to the injectivity of $F: H^1(\mathcal{E}, \omega_E^{\otimes (-\ell)}) \to H^1(\mathcal{E}, \omega_E^{\otimes (-\ell)})$ for all $\ell \in \mathbb{Z}_m$. Thus \mathcal{E} is F-split if so is E, by Proposition 2.7

Conversely, if \mathcal{E} is F-split, then we must have $H^1(\mathcal{E}, \omega_E^p) \neq 0$. Since ω_E is an m-torsion line bundle, this implies that $p \equiv 1 \pmod{m}$ and the Frobenius on $H^1(E, \mathcal{O}_E) \cong k$ is identified with $F: H^1(\mathcal{E}, \omega_E) \to H^1(\mathcal{E}, \omega_E^p)$. Therefore the F-splitting of \mathcal{E} implies that E is ordinary. \hfill \square

Remark 4.2. Lemma 4.1 (5) is also verified with explicit computations of the induced Frobenius map $F: H^1(\mathcal{E}, \omega_E) \to H^1(\mathcal{E}, \omega_E^p)$ and Fedder’s criterion \cite{F} applied to the defining equation of E.

Now we state the main result of this section.

Theorem 4.3. Let \mathcal{E} be a weighted projective line with $\delta_\mathcal{E} = 0$, and assume that the characteristic p does not divide any weight r_i. Then \mathcal{E} does not have GFFRT.

Proof. Let $f: E \to \mathbb{P}^1$ be the m-fold covering from an elliptic curve constructed in Lemma 4.1 and let $\varphi: E \to \mathcal{E}$ be the induced morphism. We divide the proof into two cases, according to whether E is ordinary or supersingular. First we recall the following:

Lemma 4.4 (\cite{A}, \cite{HSY} Lemma 4.12). Let E be an elliptic curve in characteristic p and let $q = p^e$ for $e \geq 0$.

1. If E is ordinary, then $F^e_* \mathcal{O}_E$ splits into q distinct q-torsion line bundles.
(2) If E is supersingular, then $F^k E^\ast \mathcal{O}_E$ is isomorphic to Atiyah’s vector bundle \mathcal{F}_q of rank q; see subsection 4.1 below.

4.1. Supersingular case. On the elliptic curve E (which we do not yet assume to be supersingular), we have indecomposable vector bundles \mathcal{F}_r of rank r and degree 0 such that $H^0(E, \mathcal{F}_r) \cong k$ for all integer $r > 0$. This bundle is determined inductively by $\mathcal{F}_1 = \mathcal{O}_E$ and a unique non-trivial extension

$$0 \to \mathcal{O}_E \to \mathcal{F}_r \to \mathcal{F}_{r-1} \to 0$$

as in [A, Theorem 5]. In what follows, we construct inductively vector bundles \mathcal{G}_r on \mathcal{C} of rank $r = 1, 2, \ldots$ such that

$$\text{Ext}_1^k(\mathcal{G}_r, \omega^i_\mathcal{C}) \cong \begin{cases} k & \text{if } i \equiv 1 \pmod{m} \\ 0 & \text{otherwise.} \end{cases}$$

We put $\mathcal{G}_1 = \mathcal{O}_E$. Then we can easily verify condition (4.2) for $r = 1$ by computing $\text{Ext}_1^k(\mathcal{G}_1, \omega^i_\mathcal{C}) \cong H^1(\mathcal{C}, \omega^i_\mathcal{C})$ with Lemma 4.2 (4) and Lemma 2.1.

Now let $r \geq 2$ and assume condition (4.2) for $r - 1$. Since $\text{Ext}_1^k(\mathcal{G}_{r-1}, \omega_\mathcal{C}) \cong k$, we have a vector bundle \mathcal{G}_r sitting in a unique non-trivial extension

$$0 \to \mathcal{O}_\mathcal{C} \to \mathcal{G}_r \to \mathcal{G}_{r-1} \otimes \omega^{-1}_\mathcal{C} \to 0.$$

We apply the functor $\text{Ext}(\cdot, \omega^i_\mathcal{C})$ to this exact sequence to verify condition (4.2). For $i = 0$ we have an exact sequence

$$\text{Hom}(\mathcal{O}_\mathcal{C}, \mathcal{O}_\mathcal{C}) \xrightarrow{\delta} \text{Ext}_1^k(\mathcal{G}_{r-1}, \omega_\mathcal{C}) \to \text{Ext}_1^k(\mathcal{G}_r, \mathcal{O}_\mathcal{C}) \to \text{Ext}_1^k(\mathcal{O}_\mathcal{C}, \mathcal{O}_\mathcal{C}) = 0,$$

where the connecting homomorphism δ is an isomorphism by the non-triviality of the extension (4.3). Thus we have $\text{Ext}_1^k(\mathcal{G}_r, \mathcal{O}_\mathcal{C}) = 0$. For $i \not\equiv 0 \pmod{m}$, we have

$$0 = \text{Ext}_1^k(\mathcal{G}_{r-1}, \omega^{i+1}_\mathcal{C}) \to \text{Ext}_1^k(\mathcal{G}_r, \omega^i_\mathcal{C}) \to \text{Ext}_1^k(\mathcal{O}_\mathcal{C}, \omega^i_\mathcal{C}) \to 0$$

by induction, so that $\text{Ext}_1^k(\mathcal{G}_r, \omega^i_\mathcal{C}) \cong \text{Ext}_1^k(\mathcal{O}_\mathcal{C}, \omega^i_\mathcal{C})$. Thus condition (4.2) holds for r.

Proposition 4.5. Suppose that m is not divisible by p. Then $\varphi^* \mathcal{G}_r \cong \mathcal{F}_r$. In particular, \mathcal{G}_r is indecomposable.

Proof. The assertion is clear if $r = 1$. Let $r \geq 2$ and let the exact sequence (4.3) be given by a non-zero extension class $\varepsilon \in \text{Ext}_1^k(\mathcal{G}_{r-1}, \omega_\mathcal{C}) \cong H^1(\mathcal{C}, \mathcal{G}^\vee_{r-1}(K_\mathcal{C}))$. Since $\varphi^* \omega_\mathcal{C} \cong \mathcal{O}_E$ (note that φ is étale) and $\varphi^* \mathcal{G}_{r-1} \cong \mathcal{F}_{r-1}$ by induction, the pull-back of sequence (4.3) under φ turns out to be

$$0 \to \mathcal{O}_E \to \varphi^* \mathcal{G}_r \to \mathcal{F}_{r-1} \to 0.$$

This extension is given by the image $\varphi^* \varepsilon$ of ε under the natural map

$$\varphi^* : \text{Ext}_1^k(\mathcal{G}_{r-1}, \omega_\mathcal{C}) \to \text{Ext}_1^k(\varphi^* \mathcal{G}_{r-1}, \varphi^* \omega_\mathcal{C}) \cong \text{Ext}_1^k(\mathcal{F}_{r-1}, \mathcal{O}_E).$$

This map is injective, since it is identified with the map

$$H^1(\mathcal{C}, \mathcal{G}^\vee_{r-1}(K_\mathcal{C})) \to H^1(\mathcal{C}, \mathcal{G}^\vee_{r-1}(K_\mathcal{C}) \otimes \varphi_* \mathcal{O}_E) \cong H^1(\mathcal{F}_{r-1}, \mathcal{O}_E)$$

induced by the splitting map $\mathcal{O}_E \to \varphi_* \mathcal{O}_E (= \bigoplus_{l=0}^{m-1} \omega^{-l}_\mathcal{C})$. Thus $\varphi^* \varepsilon \neq 0$ and it sits in $\text{Ext}_1^k(\mathcal{F}_{r-1}, \mathcal{O}_E) \cong k$. Comparing extensions (4.1) and (4.3) we see that $\mathcal{F}_r \cong \varphi^* \mathcal{G}_r$, as required. \qed

We now consider the case where \mathcal{C} is not F-split, or equivalently, E is supersingular.

Proposition 4.6. Under the hypothesis of Proposition 4.5, assume further that E is supersingular. Then we have $F^k \mathcal{O}_\mathcal{C} \cong \mathcal{G}_q$, where $q = p^k$.
4.2. Ordinary case. We now consider the case where the weighted projective line \mathcal{C} with $\delta_{\mathcal{C}} = 0$ is F-split. In this case, $p \equiv 1 \pmod{m}$ and we have an m-fold covering $f: E \rightarrow \mathbb{P}^1$ from an ordinary elliptic curve E. Recall that f factors as

$$f: E \xrightarrow{\varphi} \mathcal{C} \xrightarrow{\pi} \mathbb{P}^1,$$

where $\varphi: E \rightarrow \mathcal{C}$ is unramified and $\pi: \mathcal{C} \rightarrow \mathbb{P}^1$ is the coarse moduli map. There is a ramification point $P_0 \in E$ of f with ramification index m. We choose P_0 as the identity point for the group structure of E. Since E is an ordinary elliptic curve, for any $q = p^i$ there exists exactly q distinct q-torsion points $P_0, P_1, \ldots, P_{q-1} \in E$, among which P_1, \ldots, P_{q-1} are not ramification points of f by Lemma 4.1 (3). By Lemma 4.4 the e-th Frobenius push-forward $F^e_\varphi \mathcal{O}_E$ on E splits into q non-isomorphic q-torsion line bundles $L_i = \mathcal{O}_E(P_i - P_0)$ with $i = 0, 1, \ldots, q - 1$. Thus we have the following decomposition

$$\varphi_* F^e_\varphi \mathcal{O}_E \cong \varphi_* \mathcal{O}_E \oplus \varphi_* L_1 \oplus \cdots \oplus \varphi_* L_{q-1}$$

into rank m bundles $\varphi_* L_i$. On the other hand, we have $\varphi_* \mathcal{O}_E \cong \mathcal{O}_E \oplus \omega_{\mathcal{C}}^{-1} \oplus \cdots \oplus \omega_{\mathcal{C}}^{1-m}$ by Lemma 4.4 so that

$$\varphi_* F^e_\varphi \mathcal{O}_E \cong F^e_\varphi \mathcal{O}_E \oplus F^e_\varphi (\omega_{\mathcal{C}}^{-1}) \oplus \cdots \oplus F^e_\varphi (\omega_{\mathcal{C}}^{1-m}).$$

The group $G = \mu_m$ is the Galois group of the m-fold Galois covering $f: E \rightarrow \mathbb{P}^1$. If we define the equivalence \sim by $L_i \sim L_j$ if and only if $L_i \cong \sigma^i L_j$ for some $\sigma \in \mu_m$, then the line bundles $\mathcal{O}_E = L_0, L_1, \ldots, L_{q-1}$ are divided into $r + 1$ equivalence classes, where $r = \frac{q-1}{m}$. Re-numbering the line bundles, we may and will assume that the complete representatives are $\mathcal{O}_E = L_0, L_1, \ldots, L_r$. Under this notation we have the following:

Proposition 4.7. Let the notation be as above. Then $\varphi_* L_i$ is an indecomposable bundle for $1 \leq i \leq q - 1$, and $\varphi_* L_i \cong \varphi_* L_j$ if and only if $L_i \cong \sigma^i L_j$ for some $\sigma \in \mu_m$. We then have a decomposition

$$F^e_\varphi (\omega_{\mathcal{C}}^{\sigma^i}) \cong \omega_{\mathcal{C}}^{\sigma^i} \oplus \varphi_* L_1 \oplus \cdots \oplus \varphi_* L_r$$

into $r + 1$ non-isomorphic indecomposable bundles for $i \in \mathbb{Z}/m\mathbb{Z}$.

Proof. First note that $F^e_\varphi \omega_{\mathcal{C}}^{\sigma^i} \cong \omega_{\mathcal{C}}^{\sigma^i} \otimes F^e_\varphi \mathcal{O}_E$ and $\varphi_* L \cong \omega_{\mathcal{C}}^{\sigma^i} \otimes \varphi_* L$ for any $i \in \mathbb{Z}/m\mathbb{Z}$ and line bundle L on E.

Let L, M be q-torsion line bundles on E with L non-trivial. By the preceding argument it is enough to show that

$$\text{Hom}_{\mathcal{O}_E}(\varphi_* L, \varphi_* M) \cong \begin{cases} k & \text{if } \sigma^* L \cong M \text{ for some } \sigma \in \mu_m \\ 0 & \text{otherwise}. \end{cases}$$

The proof goes along the same line as Oda’s [Od]. First, we have the Cartesian diagram

$$\begin{array}{ccc}
E \times \mu_m & \xrightarrow{\mu} & E \\
p_1 \downarrow & & \downarrow \varphi \\
E & \xrightarrow{\varphi} & \mathcal{C}
\end{array}$$

where $\mu: E \times \mu_m \rightarrow E$ is the map induced by the action of $\mu_m = \text{Spec } k[\xi]/(\xi^m - 1)$ on E, and p_1 is the projection. This follows from the fact that $[E/\mu_m] \cong \mathcal{C}$ via φ (see Lemma 4.4 (1))
and \[\nu\] (7.21). Since \(G = \mu_m\) is finite, \(\varphi\) is affine, so that \(\varphi^* \varphi_* L \cong p_1 \mu^* L\). Hence by the adjointness of \(\varphi^*\) and \(\varphi_*\) we obtain

\[
\text{Hom}_{\mathcal{O}_E}(\varphi_* L, \varphi_* M) \cong \text{Hom}_{\mathcal{O}_E}(\varphi^* \varphi_* L, M)
\]

\[
\cong \text{Hom}_{\mathcal{O}_E}(p_1 \mu^* L, M) \cong H^0(E, (p_1 \mu^* (L \otimes M^{-1}))^\vee).
\]

By the Serre duality this is dual to

\[
H^1(E, p_1 \mu^* L) \cong H^1(E, p_1 \mu^* (L \otimes p_1^* M^{-1})) \cong \text{Hom}_{\mathcal{O}_E}(p_1 \mu^* L, M) \cong H^0(E, (p_1 \mu^* (L \otimes M^{-1}))^\vee).
\]

Now let \(\lambda: G \to \hat{E} = \text{Pic}^0(E)\) be the morphism sending \(\sigma \in G\) to \(\sigma^* (L) \otimes L^{-1}\), which is injective by our assumption that \(L\) is a non-trivial \(q\)-torsion line bundle (cf. Lemma \[\text{[Mum]}\] III.13, p. 125, Theorem), where \(P\) is the normalized Poincaré line bundle on \(E \times \hat{E}\).

Thus \(\text{Hom}_{\mathcal{O}_E}(\varphi_* L, \varphi_* M)\) is dual to

\[
H^1(E \times G, (1 \times \lambda)^* P \otimes_{\mathcal{O}_{E \times G}} p_1^* (L \otimes M^{-1})) \cong H^1(E \times G, (1 \times \lambda)^* (P \otimes_{\mathcal{O}_{E \times \hat{E}}} p_1^* (L \otimes M^{-1}))),
\]

where we abuse the notation \(p_1\) to denote the first projection from both \(E \times G\) and \(E \times \hat{E}\). It follows from the Leray spectral sequence \(H^i(G, R^j p_{2*}(1 \times \lambda)^* (P \otimes p_1^* (L \otimes M^{-1}))) \Rightarrow H^{i+j}(E \times G, (1 \times \lambda)^* (P \otimes p_1^* (L \otimes M^{-1})))\) that this is isomorphic to

\[
H^0(G, R^1 p_{2*}(1 \times \lambda)^* (P \otimes p_1^* (L \otimes M^{-1}))).
\]

Furthermore, we have \(R^1 p_{2*}(1 \times \lambda)^* (P \otimes p_1^* (L \otimes M^{-1})) \cong \lambda^* R^1 p_{2*}(P \otimes p_1^* (L \otimes M^{-1})).\) To see this let \(\mathcal{F} = P \otimes p_1^* (L \otimes M^{-1}).\) Since the problem is local on \(\hat{E}\), we may replace \(\lambda: G \to \hat{E}\) by \(\lambda: \text{Spec} B \to \text{Spec} A\) to show that \(H^1(E_B, \mathcal{F} \otimes_{A} B) \cong H^1(E_A, \mathcal{F}) \otimes_{A} B\), where \(E_A = E \times \text{Spec} A\) and \(E_B = E \times \text{Spec} B\). Since \(\text{dim} E = 1\) we have an open covering of \(E\) consisting of two affine open subsets \(V_1, V_2\). Then \(E_A\) is covered by \(U_i = V_i \times \text{Spec} A\) with \(i = 1, 2\) and \(H^1(E_A, \mathcal{F})\) is computed with the Čech complex \(\mathcal{E}^* = [0 \to \mathcal{E}^0 \to \mathcal{E}^1 \to 0]\) associated with \([U_1, U_2]\) and \(\mathcal{F}\), i.e., there is an exact sequence

\[
\mathcal{E}^0 \to \mathcal{E}^1 \to H^1(E_A, \mathcal{F}) \to 0.
\]

Similarly, \(H^1(E_B, \mathcal{F} \otimes_{A} B)\) is computed with the Čech complex \(\mathcal{E}^* \otimes_{A} B\), i.e.,

\[
\mathcal{E}^0 \otimes_{A} B \to \mathcal{E}^1 \otimes_{A} B \to H^1(E_B, \mathcal{F} \otimes_{A} B) \to 0
\]

is exact. Thus the right exactness of the functor \(- \otimes_{A} B\) leads us to the conclusion.

Thus we see that \(\text{Hom}_{\mathcal{O}_E}(\varphi_* L, \varphi_* M)\) is dual, as a \(k\)-vector space, to

\[
H^0(G, \lambda^* R^1 p_{2*}(P \otimes p_1^* (L \otimes M^{-1}))).
\]

Let \(b \in \hat{E}\) be the point representing the class of \(L \otimes M^{-1}\) and let \(T_b: \hat{E} \to \hat{E}\) be the translation by \(b\). Then we have \(P \otimes p_1^* (L \times M^{-1}) \cong (1 \times T_b)^* P\) again by [Mum, ibid]. Therefore \(\text{Hom}_{\mathcal{O}_E}(\varphi_* L, \varphi_* M)\) is dual to

\[
H^0(G, \lambda^* R^1 p_{2*}(1 \times T_b)^* P) \cong H^0(G, (T_b \circ \lambda)^* R^1 p_{2*} P).
\]

Since \(R^1 p_{2*} P\) is supported at the origin \(0 \in \hat{E}\) with \(R^1 p_{2*}(P)_0 = k\) (Mum, Ogd, Lemma 1.1) and since \(T_b \circ \lambda\) is injective, \(\text{Hom}_{\mathcal{O}_E}(\varphi_* L, \varphi_* M)\) is one-dimensional if \(T_b \circ \lambda(G)\) contains the origin 0 of \(\hat{E}\), and otherwise it is zero. Finally it is easy to see that \(0 \in T_b \circ \lambda(G)\) if and only if \(\sigma^* L \cong M\) for some \(\sigma \in G\).

\[\square\]

Remark 4.8. Theorem 4.3 fails without the assumption that the weights are not divisible by \(p\); see Section 6.
5. Stability of Frobenius push-forwards: The case where $\delta_\mathcal{E} > 0$

In this section, we assume that $\mathcal{E} = C[\sqrt[r]{T_1}, \ldots, \sqrt[r]{T_n}]$ for a smooth curve C, and that p does not divide any weight r_i. Our goal is to show the slope stability of Frobenius push-forward of line bundles on \mathcal{E} with $\delta_\mathcal{E} > 0$.

As a corollary, we show that orbifold curves \mathcal{E} with $\delta_\mathcal{E} > 0$ do not have GFFRT. This gives a negative answer to Brenner’s question [Sh, Question 2] in characteristic $p \neq 2, 3, 7$; see Introduction and Section 6.

5.1. First Chern class of $F_\ast \mathcal{E}$. To study slope stability of $F_\ast \mathcal{E}$, we compute the degree of $c_1(F_\ast \mathcal{E})$. To this end, recall that we have

$$\text{Hom}_\mathcal{E}(F_\ast \mathcal{E}, \omega_\mathcal{E}) \cong F_\ast \omega_\mathcal{E}$$

by [Ha, Ex III 7.2]. We also consider the Frobenius push-forward of the differential map $F_\ast(d): F_\ast \mathcal{E} \to F_\ast \omega_\mathcal{E}$, which is \mathcal{E}-linear. We write by \mathcal{B} its image in $F_\ast \omega_\mathcal{E}$. We have a homomorphism $C^{-1}: \omega_\mathcal{E} \to F_\ast \omega_\mathcal{E}/\mathcal{B}$ from the similar arguments as in [EV, 9.14]. When p does not divide any weight r_i, then this is an isomorphism, and the inverse $C: F_\ast \omega_\mathcal{E}/\mathcal{B} \cong \omega_\mathcal{E}$ is called the Cartier operator.

In the following, we assume that the characteristic p does not divide any weight r_i. Then we have exact sequences

$$0 \to \mathcal{E} \xrightarrow{F_\ast} F_\ast \mathcal{E} \to \mathcal{B} \to 0$$

$$0 \to \mathcal{B} \to F_\ast \omega_\mathcal{E} \xrightarrow{C} \omega_\mathcal{E} \to 0.$$

By these facts, we have

$$\text{det } F_\ast \mathcal{E} \cong \text{det } \mathcal{B} \cong \text{det } F_\ast (\omega_\mathcal{E}) \otimes \omega_\mathcal{E}^{-1} \cong \omega_\mathcal{E}^p \otimes (\text{det } F_\ast \mathcal{E})^{-1} \otimes \omega_\mathcal{E}^{-1}.$$

Hence we have

$$c_1(F_\ast \mathcal{E}) = \frac{p-1}{2} K_\mathcal{E}$$

in $A(\mathcal{E})$.

Proposition 5.1. For any vector bundle \mathcal{E} on \mathcal{E}, we have

$$c_1(F_\ast \mathcal{E}) = \frac{p-1}{2} r K_\mathcal{E} + c_1(\mathcal{E})$$

in $A(\mathcal{E})$.

Proof. We have a full flag of sub-bundles

$$0 \subset \mathcal{E}_1 \subset \mathcal{E}_2 \subset \cdots \subset \mathcal{E}_r = \mathcal{E}$$

corresponding to a section of the full flag bundle of \mathcal{E} over an orbifold curve \mathcal{E}. Hence it is enough to prove for a line bundle.

We take a line bundle $\mathcal{O}_\mathcal{E}(\sum s_i Q_i^+ - \sum t_j Q_j^-)$, where $s_i, t_j > 0$, and Q_i^+, Q_j^- are closed points on \mathcal{E}. We show the assertion by induction on $\sum s_i + \sum t_j$. The first step for the induction follows from (5.1). For the next step, it is enough to show that for any line bundle \mathcal{L} and any closed point Q on \mathcal{E}, the assertions for \mathcal{L} and $\mathcal{L}(-Q)$ are equivalent. This follows from $c_1(F_\ast \mathcal{L}) = c_1(F_\ast \mathcal{L}(-Q)) + c_1(\mathcal{O}_\mathcal{E}(Q))$, since we have the following exact sequence

$$0 \to \text{det } F_\ast \mathcal{L}(-Q) \to \text{det } F_\ast \mathcal{L} \to k(Q) \otimes \rho \to 0.$$

Here ρ is a one-dimensional representation of the automorphisms group of a closed point $Q \in \mathcal{E}(\text{Spec } k)$. \qed
5.2. **Slope stability.** For a vector bundle E on C, we define the slope $\mu(E)$ of E by

$$
\mu(E) = \frac{\deg c_1(E)}{\text{rk} E}.
$$

As in the previous subsection, we assume that p does not divide any weight r_i.

Proposition 5.2. We have

$$
\mu(F^*F_\ast E) = \mu(E) + \frac{p-1}{2} \delta_E.
$$

Proof. By Proposition 5.1, we have $\mu(F_\ast E) = p^{-1}(\mu(E) + \frac{p-1}{2} \delta_E)$. Since $\mu(F^*F) = p\mu(F)$ for any vector bundle F on C, the assertion follows. \hfill \square

Definition 5.3. We say that a vector bundle E on C is *semi-stable* if for any non-trivial proper sub-bundle E' of E, we have an inequality

$$
\mu(E') \leq \mu(E).
$$

If the inequality is always strict, we say that E is *stable*.

It is equivalent to that the same inequality holds for any non-trivial subsheaf of E as in [OSS, 1.2.2]. We also remark that it is different from the stability defined in [N]. But it is enough for our purpose to show the indecomposability of Frobenius push-forwards $F_\ast^i \mathcal{O}_C$ for $e > 0$. For this purpose, we follow the arguments in [KS, Su]. It is straightforward to modify their arguments to our situation. Only difference is that we must consider grading even in local situation.

For a vector bundle E on C, there exists a connection

$$
\nabla = \text{id} \otimes d: F^*E = F^{-1}E \otimes_{F^{-1}O_C} O_C \to F^*E \otimes \Omega_C = F^{-1}E \otimes_{F^{-1}O_C} \Omega_C
$$

called *canonical connection* similarly for a variety over k as in [KS, Su]. Here $d: O_C \to \Omega_C$ is the differential, which is $F^{-1}O_C$-linear. This is locally written as

$$
M \otimes_B B \to M \otimes_B B \otimes_{B/k} \Omega_{B/k} \cong M \otimes_B B \otimes_{B/k} \Omega_{B/k}; \; m \otimes f \mapsto m \otimes df,
$$

where B has a grading from the local description (1.3), and ∇ preserves the grading.

When $E = F_\ast W$ for a vector bundle W on C, we introduce the canonical filtration of $F = F^*F_\ast W$ due to [KS, Su]. We put $F_0 = F, F_1 = \ker(F^*F_\ast W \to W)$, and $F_\ell = \ker(F_{\ell-1} \nabla, F \otimes \Omega_C \to (F/F_{\ell-1}) \otimes \Omega_C)$. We have the filtration:

$$
\cdots \subset F_3 \subset F_2 \subset F_1 := F \subset F_0 := F^*F_\ast W.
$$

Definition 5.4. We call this filtration F_\ast the *canonical filtration* on $F = F^*F_\ast W$.

Since local computations in [KS, Su] holds equivariantly, we have the following lemma.

Lemma 5.5.

1. $F_0/F_1 \cong E, \nabla(F_{t+1}) \subset F_t \otimes \mathcal{O}_C(K_e)$ for $\ell \geq 1$.
2. $\nabla: F_{t}/F_{t+1} \cong F_{t-1}/F_t \otimes \mathcal{O}_C(K_e)$.
3. If E is stable (resp. semi-stable), then F_t/F_{t+1} is stable (resp. semi-stable) for any t.

Proof. (1) follows from the Definition. (2) follows from [Su, Lemma 2.1 (ii)] and the fact that this is a graded isomorphism. (3) follows from (1) and (2). \hfill \square

By this lemma, we have $F_p = 0$ and $F_{p-1} \neq 0$.

Theorem 5.6. Let W be a vector bundle on an orbifold curve C, and suppose that p does not divide any weight r_i. If $\delta_E > 0$ and W is stable (resp. $\delta_E \geq 0$ and W is semi-stable), then $F^\ast W$ is stable (resp. semi-stable).
Proof. It follows from the similar argument as in the proof of Theorem 2.2. But we give a proof for the convenience of readers.

We take a non-trivial sub-bundle \(\mathcal{E}' \subset W \), and show \(\mu(\mathcal{E}') < \mu(W) \) \((\text{resp.} \mu(\mathcal{E}') \leq \mu(W))\). By Proposition 5.2, we have

\[
\mu(F^*F_*W) = \mu(W) + \frac{p-1}{2}\delta_{\mathcal{E}}.
\]

We consider the induced filtration

\[
0 \subset \mathcal{F}^m \cap F^*\mathcal{E}' \subset \cdots \subset \mathcal{F}^1 \cap F^*\mathcal{E}' \subset F^*\mathcal{E}',
\]

where we assume \(\mathcal{F}^{m+1} \cap F^*\mathcal{E}' = 0 \) and \(\mathcal{F}^m \cap F^*\mathcal{E}' \neq 0 \) for \(m < p \). If we put \(r_\ell = \text{rk} \left(\frac{\mathcal{F}^\ell \cap F^*\mathcal{E}'}{\mathcal{F}^{\ell+1} \cap F^*\mathcal{E}'} \right) \),

then we have

\[
\mu(\mathcal{E}') = \frac{1}{\text{rk}(\mathcal{E}')} \sum_{\ell=0}^{m} \mu \left(\frac{\mathcal{F}^\ell \cap F^*\mathcal{E}'}{\mathcal{F}^{\ell+1} \cap F^*\mathcal{E}'} \right) r_\ell \leq \frac{1}{\text{rk}(\mathcal{E}')} \sum_{\ell=0}^{m} (\mu(W) + \ell\delta_{\mathcal{E}}) r_\ell,
\]

where the last inequality follows from Lemma 5.5 (2), (3).

Putting (5.2) and (5.3) together, we have

\[
\mu(F_*W) - \mu(\mathcal{E}') = \frac{1}{p}(\mu(F^*F_*W) - \mu(\mathcal{E}')) \geq \frac{\delta_{\mathcal{E}}}{\text{rk}(\mathcal{E}')}p \sum_{\ell=0}^{m} \left(\frac{p-1}{2} - \ell \right) r_\ell.
\]

If \(m \leq \frac{p-1}{2} \), then the last sum is greater than 0, and we get the desired inequality. Hence we may assume \(m > \frac{p-1}{2} \).

Then the last sum is equal to

\[
\sum_{\ell=m+1}^{p-1} \left(\ell - \frac{p-1}{2} \right) r_{p-1-\ell} + \sum_{\ell=\frac{p-1}{2}}^{m} \left(\ell - \frac{p-1}{2} \right) (r_{p-1-\ell} - r_\ell).
\]

Since the isomorphism in 5.5 (2) induces an inclusion \(\frac{\mathcal{F}^\ell \cap F^*\mathcal{E}'}{\mathcal{F}^{\ell+1} \cap F^*\mathcal{E}'} \subset \frac{\mathcal{F}^{\ell-1} \cap F^*\mathcal{E}'}{\mathcal{F}^{\ell} \cap F^*\mathcal{E}'} \), we have

\[
\frac{r_0}{r_1} \geq \cdots \geq \frac{r_0}{r_m}.
\]

Hence (5.5) is greater than, or equal to 0. This implies the semi-stability of \(F_*W \).

Finally we assume that \(\delta_{\mathcal{E}} > 0 \) and \(W \) is stable. If \(\mu(F_*W) - \mu(\mathcal{E}') = 0 \), then we have an equality in (5.3). This implies \(\frac{\mathcal{F}^\ell \cap F^*\mathcal{E}'}{\mathcal{F}^{\ell+1} \cap F^*\mathcal{E}'} = \mathcal{F}^\ell/\mathcal{F}^{\ell-1} \) for all \(\ell = 0, 1, \ldots, m \), and we have \(r_0 = r_1 = \cdots = r_m = \text{rk}(W) \). Furthermore since (5.5) must be equal to 0, we have \(m = p - 1 \).

This implies \(\text{rk}(\mathcal{E}') = \text{rk} F_*W \), and a contradiction. \(\square \)

As a direct corollary, we have the following theorem.

Theorem 5.7. We assume that \(\delta_{\mathcal{E}} \) is greater than 0. Then for any \(e \), the Frobenius push-forward \(F^e_*\mathcal{O}_{\mathcal{E}} \) is indecomposable.

Proof. For a contradiction, we assume that \(F^e_*\mathcal{O}_{\mathcal{E}} \) is decomposed into non-trivial vector bundles \(\mathcal{E}_1 \) and \(\mathcal{E}_2 \). Then both \(\mathcal{E}_1 \) and \(\mathcal{E}_2 \) are sub-bundles of \(F^e_*\mathcal{O}_{\mathcal{E}} \). Hence we get inequalities \(\mu(\mathcal{E}_1) < \mu(F^e_*\mathcal{O}_{\mathcal{E}}) < \mu(\mathcal{E}_2) \) and \(\mu(\mathcal{E}_2) < \mu(F^e_*\mathcal{O}_{\mathcal{E}}) < \mu(\mathcal{E}_1) \), and a contradiction. \(\square \)
6. The FFRT Property of $R(\mathbb{P}^1, D)$ and Concluding Remarks

In this section we prove our results on the FFRT property of $R(C, D)$.

Proposition 6.1. Let C be a smooth projective curve of genus $g \geq 1$ over an algebraically closed field of characteristic $p > 0$ and D an ample \mathbb{Q}-Cartier divisor on C. Then the graded ring $R(C, D)$ does not have FFRT.

Proof. First note that C does not have GFFRT. This follows from Lemma 4.5 when $g = 1$ and [**Su**] when $g > 1$. Now let $\pi: C \to C$ be the orbifold curve constructed with respect to the fractional part of D and let $L = \mathcal{O}_C(\pi^*D)$. Since $\pi_*\mathcal{O}_C \cong \mathcal{O}_C$, it follows that C does not have FFRT as well. Then (C, L) does not have GFFRT, and the result follows from Corollary 2.6. \qed

It follows from the proposition above that $R(C, D)$ has FFRT only if $C \cong \mathbb{P}^1$. To state our main theorem let us fix the notation used through the remainder of this paper. Let $R = R(\mathbb{P}^1, D)$ be a two-dimensional normal graded ring with $R_0 = k$ an algebraically closed field of characteristic $p > 0$. Here

$$D = \sum_{i=1}^n \frac{s_i}{r_i}P_i$$

is an ample \mathbb{Q}-divisor on \mathbb{P}^1, where P_1, \ldots, P_n are distinct closed points on \mathbb{P}^1, and $r_i > 0$ and s_i are coprime integers.

Let $\mathcal{C} = \mathbb{P}^1[\sqrt[n]{P_1}, \ldots, \sqrt[n]{P_n}]$ be the weighted projective line with weight (r_1, \ldots, r_n). The following are well-known.

1. R has log terminal singularity if and only if $\delta_{\mathcal{C}} = \deg \omega_{\mathcal{C}} = -2 + \sum_{i=1}^n \frac{r_i-1}{r_i} < 0$.
2. R has log canonical singularity if and only if $\delta_{\mathcal{C}} \leq 0$.

In the case of (1) above, it is known that R has finite representation type, and so it has FFRT (see Theorem 3.2). On the other hand, we have the following

Theorem 6.2. In the notation as above, suppose that $\delta_{\mathcal{C}} \geq 0$ and that p does not divide any r_i. Then $R = R(\mathbb{P}^1, D)$ does not have FFRT.

Proof. It follows from Theorems 4.3 and 5.7 that \mathcal{C} does not have GFFRT. Then for $L = \mathcal{O}_C(\pi^*D)$, the pair (\mathcal{C}, L) does not have GFFRT, and the result follows from Corollary 2.6. \qed

In Theorem 6.2 the assumption that p does not divide any r_i is really necessary as we will see in the following examples.

Example 6.3. Let $R = k[x, y, z]/(x^2 + y^3 + z^7)$. This is not a rational singularity but $\text{Proj} \ R \cong \mathbb{P}^1$ and $R \cong R(\mathbb{P}^1, D)$ for a \mathbb{Q}-divisor $D = \frac{1}{2}(\infty) - \frac{1}{2}(0) - \frac{1}{3}(1)$ on \mathbb{P}^1. By Theorem 6.2, R does not have FFRT if $p \neq 2, 3, 7$. On the other hand, R has FFRT if $p = 2, 3, 7$ ([**Su**]).

Example 6.4. Let $R = R(\mathbb{P}^1, D)$ for a \mathbb{Q}-divisor $D = \frac{1}{3}(\infty) + \frac{1}{3}(0) - \frac{1}{3}(1)$ on \mathbb{P}^1. This is a rational log canonical singularity but not log terminal. By Theorem 6.2, R does not have FFRT if $p \neq 3$. On the other hand, R has FFRT if $p = 3$, by the following proposition.

Proposition 6.5. Let $\mathcal{C} = \mathbb{P}^1[\sqrt[n]{T_1}, \sqrt[n]{T_2}, \sqrt[n]{T_3}]$ be the weighted projective line of weight $(3, 3, 3)$. Then for any line bundle L on \mathcal{C}, (\mathcal{C}, L) has FFRT if and only if $p = 3$.

Proof. Let $C = \text{Proj} \ k[x, y, z]/(z^3 - xy(x - y))$, on which $\mu_3 = \text{Spec} \ k[m]/(m^3 - 1)$ acts by $z \mapsto \alpha z$ for $\alpha \in \mu_3$. Here μ_3 is the group of cube roots of unity in k if $p \neq 3$. When $p = 3$, we regard μ_3 as a group scheme and the above μ_3-action also makes sense. Then $[C/\mu_3] \cong \mathcal{C}$ and we have a triple covering $f: C \to \mathbb{P}^1 = \text{Proj} \ k[x, y]$, which factors through \mathcal{C}.

If $p \neq 3$, then C is an elliptic curve as constructed in Lemma 4.1 and (\mathcal{C}, L) does not have GFFRT by Theorem 6.2.
In characteristic $p = 3$, C is a singular rational curve and $f : C \to \mathbb{P}^1$ is a purely inseparable triple covering. Composing with the normalization $\mathbb{P}^1 \to C$, we see that \mathcal{C} is a “Frobenius sandwich,” that is, the Frobenius morphism of \mathbb{P}^1 is factorized as

$$F_{\mathbb{P}^1} : \mathbb{P}^1 \xrightarrow{\varphi} \mathcal{C} \xrightarrow{\pi} \mathbb{P}^1$$

and the Frobenius $F = F_\varphi$ of \mathcal{C} is factorized as $F = \varphi \circ \pi$. Then for $e \geq 1$, the e-th Frobenius on \mathcal{C} is factorized as $F^e = \varphi \circ (F_{\mathbb{P}^1})^{e-1} \circ \pi$. Thus for a line bundle L on \mathcal{C} of deg $L > 0$ and $0 \leq i \leq p^e - 1$, we have

$$F^e_*(L) = \varphi_*(F_{\mathbb{P}^1})^{e-1}_* \pi_*(L) = \varphi_*(F_{\mathbb{P}^1})^{e-1}_* \mathcal{O}_{\mathbb{P}^1}(a_i),$$

where $-1 \leq a_i \leq (p^e - 1) \deg L < p^e - 1 \cdot 3 \deg L$. Hence $(F_{\mathbb{P}^1})^{e-1}_* \mathcal{O}_{\mathbb{P}^1}(a_i)$ splits into line bundles $\mathcal{O}_{\mathbb{P}^1}(-1), \ldots, \mathcal{O}_{\mathbb{P}^1}(3 \deg L - 1)$, so that $F^e_*(L)$, with $0 \leq i \leq p^e - 1$, splits into finitely many vector bundles $\varphi_* \mathcal{O}_{\mathbb{P}^1}(-1), \ldots, \varphi_* \mathcal{O}_{\mathbb{P}^1}(3 \deg L - 1)$. We therefore conclude that (\mathcal{C}, L) has GFFRT. □

Remark 6.6. In Examples 6.3 and 6.4 the ring $R = R(\mathbb{P}^1, D)$ does not have finite representation type in any characteristic $p > 0$, since $\delta C \geq 0$. However, R has FFRT in exceptional characteristics, that is, $p = 2, 3, 7$ in Example 6.3 and $p = 3$ in Example 6.4. In these exceptional cases \mathcal{C} turns out to be a Frobenius sandwich, as we have seen in the proof of Proposition 6.5.

In the two dimensional case, it is known that F-regular rings have log terminal singularities. Hence F-regular implies FFRT property as we saw in Section 4. However, this statement cannot hold in the higher dimensional case. For there exists an example which is F-regular and does not have FFRT property [SS, ITI, Remark 3.4. (2)].

Question 6.7. Let X be a root stack in arbitrary dimensions, and L a line bundle on X. Is there any difference between the GFRT properties of X and the pair (X, L)? Here the latter property is equivalent to the FFRT property of the section ring $R = R(X, L)$ (cf. Corollary 2.6).

References

[A] M. F. Atiyah, *Vector bundles over an elliptic curve*, Proc. London Math. Soc. 7(3), 414–452 (1957)

[B] K. Behrend, *Introduction to algebraic stacks*, 1–131, in *Moduli Spaces*, edited by L. Brambila-Paz et al., London Math. Soc. Lecture Note series 411, Cambridge University Press, Cambridge (2014)

[C] B. Conrad, *Arithmetic moduli of generalized elliptic curves*. (English summary) J. Inst. Math. Jussieu 6(2), 209–278 (2007)

[CB] W. Crawley-Boevey, *Kac’s theorem for weighted projective lines*, J. Eur. Math. Soc. 12, 1331–1345 (2010)

[D] M. Demazure, *Anneaux gradués normaux*, 35–68, in *Introduction à la théorie des singularités II*, edited by L. D. Tráng, Hermann, Paris (1979)

[EV] H. Esnault and E. Viehweg, *Lectures on vanishing theorems*, DMV Seminar, 20. Birkhäuser Verlag, Basel, (1992)

[F] R. Fedder, *F-purity and rational singularity*, Trans, Amer. Math. Soc. 278, 461–480(1983)

[GL] W. Geigle and H. Lenzing, *A class of weighted projective curves arising in representation theory of finite dimensional algebras*, 265–297, in *Singularities, Representations of Algebras, and Vector Bundles*, edited by G.-M. Greuel and G. Trautmann, Lecture Notes in Math. 1273, Springer, Berlin, 1987.

[HSY] N. Hara, T. Sawada and T. Yasuda, *F-blowups of normal surface singularities*, Algebra Number Theory 7, 733–763(2013)

[Ha] R. Hartshorne, *Algebraic Geometry*, Graduate Texts in Mathematics 52, Springer-Verlag, New York-Heidelberg (1977)

[K] V. G. Kac, *Root systems, representations of quivers and invariant theory*, Invariant theory (Montecatini, 1982), F. Gherardelli (ed.), Lect. Notes Math. 996, Springer, Berlin, 74–108 (1983)

[KS] Y. Kitadai and H. Sumihiro, *Canonical filtrations and stability of direct images by Frobenius morphisms*, Tohoku Math. J. 60 , 287–301(2008)

[Mo] T. Mochizuki, *Donaldson Type Invariants for Algebraic Surfaces: Transition of Moduli Stacks*, Lecture Notes in Math. 1972, Springer, Berlin (2009)

[MO] K. Matsuki and M. Ohsaka, *Kawamata-Viehweg vanishing as Kodaira vanishing for stacks*, Math. Res. Lett. 12, 207–217 (2005)

[Muk] S. Mukai, *An introduction to Invariants and Moduli*, Cambridge Studies in Advanced Mathematics 81, Cambridge University Press, Cambridge (2003)
[Mum] D. Mumford, *Abelian varieties*, Tata Institute Studies in Mathematics 5, Oxford Univ. Press, London (1970)

[N] F. Nironi, *Moduli spaces of semistable sheaves on projective Deligne-Mumford stacks*, arXiv:0811.1949.

[Od] T. Oda, *Vector bundles on an elliptic curve*, Nagoya Math. J. **43**, 41–72 (1971)

[Ol] M. Olsson, *Algebraic spaces and stacks*, American Mathematical Society, Colloquium Publications **62**, American Mathematical Society, Providence (2016)

[OU] R. Ohkawa and H. Uehara, *Frobenius morphisms and derived categories on two dimensional toric Deligne-Mumford stacks*, Adv. Math. **244**, 241–267 (2013)

[OSS] C. Okonek, M. Schneider and H. Spindler, *Vector bundles on complex projective spaces*, Progress in Mathematics **3**, Birkhäuser, Boston, Mass (1980)

[P] H. Pinkham, *Normal surface singularities with \(C^*\) action*, Math. Ann. **227**, 183–193 (1977)

[Sh] T. Shibuta, *One-dimensional rings of finite F-representation type*, J. Algebra **332**, 434–441 (2011)

[SVdB] K. E. Smith and M. Van den Bergh, *Simplicity of rings of differential operators in prime characteristic*, Proc. London Math. Soc. **75**(1), 32–62 (1997)

[Su] X. Sun, *Direct images of bundles under Frobenius morphism*, Invent. Math. **173**, 427–447 (2008)

[SS] A. Singh and I. Swanson, *Associated primes of local cohomology modules and of Frobenius powers*, Int. Math. Res. Not. **33**, 1703–1733 (2004)

[TT] S. Takagi and R. Takahashi, *D-modules over rings with finite F-representation type*, Math. Res. Lett. **15**(3), 563–581 (2008)

[V] A. Vistoli, *Intersection theory on algebraic stacks and on their moduli spaces*, Invent. Math. **97**(3), 613–670 (1989)

[W] K.-i. Watanabe, *F-regular and F-pure normal graded rings*, J. Pure Appl. Algebra **71**, 341–350 (1991)

Tokyo University of Agriculture and Technology, 2–24–16 Nakacho, Koganei, Tokyo 184–8588, Japan

E-mail address: nhara@cc.tuat.ac.jp

Department of Mathematics, School of Fundamental Science and Engineering, Waseda University, 3–4–1 Okubo, Shinjuku-ku, Tokyo 169–8555, Japan

E-mail address: ohkawa.ryo@aoni.waseda.jp