Title
Click chemistry as a route to the synthesis of structurally new and magnetically interesting coordination clusters: a {Ni} complex with a trapezoidal prismatic topology.

Permalink
https://escholarship.org/uc/item/4qx9x802

Journal
Dalton transactions (Cambridge, England : 2003), 48(31)

ISSN
1477-9226

Authors
Abbasi, Parisa
Athanasopoulou, Angeliki A
Mazarakioti, Eleni C
et al.

Publication Date
2019-08-01

DOI
10.1039/c9dt01998g

Peer reviewed
Click chemistry as a route to the synthesis of structurally new and magnetically interesting coordination clusters: a {Ni} complex with a trapezoidal prismatic topology.

Parisa Abbasi, Angeliki A. Athanasopoulou, Eleni C. Mazarakioti, Kevin J. Gagnon, Simon J. Teat, Albert Escuer, Melanie Pilkington* and Theocharis C. Stamatatos*

The synthesis of a new {Ni₈} cluster bearing tetrazolate- and azido-bridging ligands, and supported by chelating α-methyl-2-pyridine-methanol (mpmH) groups, is herein described. The reported compound has a unique trapezoidal prismatic topology, resulting from an unexpected in-situ click reaction between the MeCN reaction solvent and the N₃⁻ ions under mild, room-temperature conditions. Such a click chemistry approach to the preparation of 0-D compounds is relatively unexplored and represents a fruitful strategy for the synthesis of new coordination clusters and molecule-based magnetic materials.

The search for new structural types of molecular magnetic materials is currently driven by a number of considerations, including the selection of the metal ion, its oxidation state(s), the coordination environment, the electronic, structural and geometrical properties, and the cooperative ability of the employed organic and/or inorganic ligands to facilitate the formation and crystallization of the targeted species.¹ Undoubtedly, one of the most challenging synthetic aspects in the quest for structurally novel and magnetically interesting polynuclear 3d-metal compounds (or coordination clusters) is the in-situ generation of new and unpredictable ligand types which would be able to bridge many metal ions and propagate appreciable magnetic interactions between the spin carriers.²

Although click chemistry has been used in almost all key areas of synthetic organic chemistry,³ there are only few polynuclear metal complexes resulting from ligands that were in-situ derived by click reactions.⁴ In fact, a convenient synthetic route based on a metal-ion assisted [2+3] cycloaddition of nitriles with azides was explored by Sharpless and coworkers,⁵ and developed by Xiong⁶ and others⁷ to prepare coordination polymers via in-situ generated 5-substituted 1H-tetrazolate bridging ligands. End-on (EO) bridging azides have a special position in polynuclear 3d-metal cluster chemistry and molecular magnetism due to their binding versatility and flexibility, and their known capability to promote ferromagnetic exchange interactions between the metal ions they bridge, respectively.⁸ In addition, tetrazoles have been found to adopt at least nine distinct types of coordination modes with metal ions in the construction of metal-organic frameworks.⁶ Therefore, tetrazoles have attracted increasing attention in molecular chemistry and crystal engineering due to the excellent coordination ability of the four nitrogen atoms of the functional group, acting as either a multidentate or a bridging building block in various supramolecular assemblies.⁶,⁹ Interestingly, all previously reported coordination compounds (clusters and polymers) resulting from click reactions and bearing in-situ generated tetrazolate ligands have been prepared from hydro/solvothermal methods.⁶,⁷,⁹,¹⁰ The only exception, to our knowledge, is a {Co₁₀} cluster reported by Zhang and Sato,¹¹ which has been prepared and crystallized under conventional synthetic techniques.

To facilitate the formation and crystallization of 0-D cluster compounds, the employment of chelating and/or bridging organic ligand(s) appears as a necessary synthetic parameter which would prevent the extensive aggregation/polymerization of metal ions that would otherwise lead
Racemic mpmH \((rac\text{-}mpmH)\) was prepared via the NaBH\(_4\) reduction of 2-acetylpypyridine according to literature reports (see ESI†).\(^{11}\) The reaction of NiCl\(_2\)\(\cdot\)6H\(_2\)O, \(rac\text{-}mpmH\) and NaN\(_3\) in a 1:1:2 ratio in MeCN gave a green solution which, upon evaporation at room temperature for two months, afforded turquoise plate-like crystals of \([\text{Ni}_{\text{II}}(\text{N}_{\text{III}})\text{mtz}_{\text{mtz}}(\text{rac}-\text{mpm})_{\text{pm}}(\text{rac}-\text{mpmH})_{\text{pm}}]\)\(\cdot\)2.2H\(_2\)O (\(1\text{-}2.2\text{H}_2\text{O}\)) in 30 % yield.\(^{11}\) Similar reaction schemes, albeit in the presence of commercially available 5-methyl-1H-tetrazole, failed to give any crystalline product. Complex \(1\) (Fig. 1, top) has a virtual \(D_{2h}\) symmetry and can be described as a trapezoidal prismatic metal cluster of eight Ni\(_{\text{II}}\) ions arranged into four, symmetry-related, dinuclear \{Ni\(_3\)} units (Fig. 1, bottom). An alternative way to describe the \{Ni\(_8\)} metal topology is that of a saddle-like conformation.

Each Ni\(_{\text{II}}\) ion in \(1\) is bridged to its neighboring metal ions through a \(\mu\)-1,1 end-on N\(_3\) and a diazine-part of the mtz\(^{\prime}\) ligands; the latter groups adopt an overall \(\eta^1\text{-}\eta^1\text{-}\eta^1\text{-}\mu_4\) mode, each of them linking four Ni\(_{\text{II}}\) atoms in a nearly planar conformation (mean deviation of Ni atoms from the Ni\(_3\) plane is 0.016 Å). The \(\mu_4\)-bridging mode of the mtz\(^{\prime}\) ligands in \(1\) accommodates the maximum number of metal ions that this group can potentially bind to, thus representing the second example of a 0-D molecular compound (the first in Ni\(_{\text{II}}\) chemistry) bearing \(\mu_4\)-mtz\(^{\prime}\) ligands.\(^{11}\) The intramolecular Ni\(\cdots\)Ni separations and Ni-(\(\mu\)-N\(_3\))-Ni angles span the range 3.417-6.784 Å and 108.0-114.3°, respectively, whereas the Ni-N-Ni-Ni torsion angles are within the range 1.0-15.2°. Peripheral ligation about the \([\text{Ni}_{\text{III}}(\mu\text{-}N_{\text{III}})\text{mtz}_{\text{mtz}}]^{4+}\) core (Fig. 2, top) is provided by a total of eight N,O-bidentate chelating mpm\(^-\)/mpmH groups, each of them capping a different Ni\(_{\text{II}}\) ion. The charge neutrality of the \{Ni\(_8\)} cluster requires four of the bidentate chelating mpm\(^-\) ligands to be protonated, i.e. in the mpmH form. Indeed, this agrees with the short O1\(\cdots\)O2 contact (2.509 Å) between two adjacent mpm\(^-\)/mpm(H) ligands, thus implying a relatively strong H-bonding interaction (dashed lines in Fig. 1, bottom) and consequently the presence of a H-atom between the pair of these alkoxido groups (an O1\(\cdots\)H\cdots\)O2 homo-synthone). All Ni\(_{\text{II}}\) ions in \(1\) are six-coordinate with near-octahedral geometries. The crystal packing of \(1\text{-}2\text{H}_2\text{O}\) revealed that the lattice H\(_2\)O molecules occupy the voids between adjacent \{Ni\(_8\)} clusters (Fig. S1). The shortest Ni\(\cdots\)Ni distance between neighboring \{Ni\(_8\)} clusters in the crystal is 8.422(1) Å.
Although there are many \{\text{Ni}_8\} complexes reported in the literature with an open-shell structure, such as cubes14 and rings15, the trapezoidal prismatic topology of complex 1 appears to be a new addition in \text{Ni}^{II} cluster chemistry. Given the structural novelty of 1, there are some geometrical features that deserve further discussion. A trapezoidal prism is a three-dimensional figure that consists of two trapezoids on opposite faces connected by four rectangles. A trapezoidal prism has 6 faces, 8 vertices and 12 edges. The two trapezoids within complex 1 (Fig. 2, bottom) are composed of Ni1-Ni2-Ni1b-Ni2c and Ni1a-Ni2a-Ni2b-Ni1c. The pair of parallel edges (i.e., the base) within each trapezoid consist of Ni1⋯Ni2 (3.591 Å) / Ni1b⋯Ni2c (6.255 Å) and Ni1a⋯Ni2a (3.591 Å) / Ni2b⋯Ni1c (6.255 Å), respectively. The non-parallel edges (i.e., the legs) of each trapezoid comprise the pairs Ni1⋯Ni1b (3.417 Å) / Ni2⋯Ni2c (3.419 Å) and Ni1a⋯Ni1c (3.417 Å) / Ni2a⋯Ni2b (3.419 Å), respectively. The four remaining faces serve to connect the opposite trapezoids resulting in an overall trapezoidal prismatic topology for 1.

![Fig. 1](image-url)

Fig. 1 The molecular structure of 1 (top) and its partially labeled asymmetric unit (bottom). The dashed line represents one of the four symmetry-related H-bonding interactions between adjacent mpm/\text{mpm(H)} pairs of ligands. Color scheme: NiII green, N blue, O red, C gray, H light gray. H atoms are omitted for clarity.
Based on detailed DFT calculations, Noodleman, Sharpless and coworkers have proposed several different mechanisms of tetrazole formation, including concerted cycloaddition and stepwise addition of neutral or anionic azide species to various nitriles at elevated temperatures. Given the reaction conditions employed for the synthesis of \(1\), it is very likely that an anionic, metal-assisted cycloaddition would be the predominant mechanism of the mtz\(^-\) formation. This involves either a direct [2+3] cycloaddition or a two-step sequence wherein the azide first nucleophilically attacks the relatively electron-rich MeCN, followed by ring closure.

Variable-temperature (2.0–300 K range), direct-current (dc) magnetic susceptibility measurements were performed on a freshly-prepared microcrystalline sample of \(1\cdot2\text{H}_2\text{O}\); a dc field of 0.3 T was applied from 30 to 300 K and a weak dc field of 0.03 T was used from 2 to 30 K to avoid saturation effects. The data are shown as \(\chi_M T\) vs. \(T\) plot in Fig. 3. The \(\chi_M T\) product slightly increases from a value of 9.93 cm\(^3\)mol\(^{-1}\)K at 300 K to 10.43 cm\(^3\)mol\(^{-1}\)K at 80 K, followed by a rapid decrease to a value of 1.49 cm\(^3\)mol\(^{-1}\)K at 2.0 K. The value of the \(\chi_M T\) product at 300 K is slightly higher than the value of 9.68 cm\(^3\)mol\(^{-1}\)K (calculated with \(g\approx2.2\), as usual in Ni\(^{II}\) cluster compounds\(^{14,15}\)) expected for eight non-interacting Ni\(^{II}\) (\(S=1\)) ions. The observed magnetic behavior is consistent with the presence of both ferro- and antiferromagnetic exchange interactions between the eight Ni\(^{II}\) ions at the corresponding high- and low-\(T\) regions. The small \(\chi_M T\) value at 2.0 K and its tendency for heading to zero suggests that the antiferromagnetic component eventually dominates, thus fostering the stabilization of an \(S=0\) ground state for the octanuclear complex \(1\). Magnetization (\(M\)) vs. field (\(H\)) measurements were also performed for \(1\) at 2 K and the corresponding plot (Fig. 3, inset) shows a nearly linear increase up to a non-saturated value of \(\sim 6\) \(N\mu_B\) at 5 T. This is consistent with an \(S=0\) ground state and a progressive population of close in energy low-lying spin states with \(S>0\) even at low \(T\).

![Fig. 3 \(\chi_M T\) vs. \(T\) and \(M\) vs. \(H\) plots for \(1\cdot2\text{H}_2\text{O}\). The red solid lines correspond to the fit of the experimental data using a complete 4-\(J\) spin Hamiltonian; see the text for the obtained fit parameters.](image-url)
There are four different types of superexchange interactions between the NiII ions in complex 1, which comprise the following magnetic pathways (Fig. 4): a) Ni-(NEO-azide)(NNN_mtz)-Ni (J_1), b) Ni-(NEO-azide)(NNN_mtz)_2-Ni (J_2), c) Ni-(NNNN_mtz)-Ni (J_3), and d) Ni-(NNNN_mtz)-Ni (J_4). These bridges result in 20 superexchange pathways as illustrated in the complete 4-J spin Hamiltonian of eqn (1). An excellent simultaneous fit of the magnetic susceptibility and magnetization data was obtained, and the resulting best-fit parameters were: $J_1 = +11.9$ cm$^{-1}$, $J_2 = +0.7$ cm$^{-1}$, $J_3 = -1.2$ cm$^{-1}$, $J_4 = -1.9$ cm$^{-1}$ and $g = 2.18$ [$R(\chi T) = 3.8 \cdot 10^{-5}$ and $R(M) = 2.0 \cdot 10^{-3}$]. The obtained J constants agreed with magnetostructural correlations previously reported for end-on azido- and diazine-bridged NiII complexes (vide infra), and they are consistent with the expected ferromagnetic interactions promoted by the N$_3$/2,3-tetrazolate combination (J_1 and J_2) and the weak antiferromagnetic interactions mediated solely by the long 1,4- or 1,3-tetrazolate pathways (J_3 and J_4), thus leading to an overall $S = 0$ ground state. The small J_2 value, compared to J_1, could be attributed to the co-presence of one EO-N$_3$-$^\bullet$ (ferromagnetic coupler) and two diazine NN-bridges (antiferromagnetic couplers) from the mtz$^-$ groups.

$$H = -2J_1(S_1 \cdot S_4 + S_2 \cdot S_3 + S_5 \cdot S_6 + S_7 \cdot S_8) - 2J_2(S_1 \cdot S_5 + S_2 \cdot S_6 + S_3 \cdot S_7 + S_4 \cdot S_8) - 2J_3(S_1 \cdot S_2 + S_3 \cdot S_4 + S_5 \cdot S_6 + S_7 \cdot S_8) - 2J_4(S_1 \cdot S_6 + S_5 \cdot S_8 + S_2 \cdot S_7 + S_3 \cdot S_6 + S_4 \cdot S_5 + S_7 \cdot S_8)$$

(1)

Good fits of the experimental data can be also obtained with several sets of J values (see the corresponding discussion in ESI†), and therefore it is poorly reliable to assign absolute values for each one of them. In light of the results derived from the different fits, the maximum ferromagnetic interaction should be attributed to the EO-azide/2,3-tetrazolate bridge, with a J value close to +11-12 cm$^{-1}$, and weak interactions promoted by the remaining bridges. For most divalent 3d-metal complexes with EO bridging N$_3$-$^\bullet$ ligands, the angle for switching from ferro- to antiferromagnetic coupling is typically $> 104^\circ$. Despite the fairly large average Ni-N-Ni angle of 110.6$^\circ$ in 1, and the copresence of planar N,N-bridging mtz$^-$ ligand(s) with small torsion angles, which are known antiferromagnetic couplers, the ferromagnetic component induced by EO-N$_3$-$^\bullet$ is still significant. This is not surprising as it has been previously observed in several examples of {Ni$_2$} complexes bridged by μ-1,1 end-on N$_3$-$^\bullet$ and pyrazolate-type bridging ligands with very large Ni-N$_3$-azide-Ni angles ($>115^\circ$). This is also in line with DFT calculations, which predicted that the coupling in NiII chemistry should be always ferromagnetic for all ranges of Ni-N-Ni angles, and experimentally evidenced by the ferromagnetically coupled polyoxometallate-based dinickel-azide compound with a very large Ni-(μ-N$_3$)-Ni angle of 129.3$^\circ$. In summary, we have herein shown that click chemistry is a useful synthetic route not only in organic chemistry and related fields but also for the preparation of new coordination clusters with unprecedented structural motifs and magnetic properties related to the combination of bridging azides and in-situ generated tetrazoles. The reported octanuclear NiII cluster was
obtained under mild, room-temperature synthetic conditions and exhibits a fascinating trapezoidal prismatic topology, resulting from the copresence of end-on N₃⁻ and μ₉-bridging mtz⁻ groups; the latter serve to hold the vertices of the two [Ni₄] trapezoids together and additionally link the two opposite trapezoids to the resulting prismatic conformation. We are currently trying to isolate the chiral forms of the reported [Ni₈] compound by utilizing the R- and S-mpmH derivative, and subsequently study the magnetic and electric properties of the resulting chiral species. Work in progress also includes the in-depth investigation of click chemistry as a means of preparing magnetic coordination clusters with unique structural motifs, and the use of racemic and potentially chiral pyridine alkoxide ligands with other 3d-metal ions, as well as 4f-metals and 3d/4f-metal combinations. These results will be reported in the full paper of this work and other upcoming publications.

This work was supported by the NSERC-DG (to Th.C.S and M.P), ERA (Th.C.S) and CFI (M.P). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. A.E acknowledges financial support from the Ministerio de Economía y Competitividad, Project PGC2018-094031-B-100.

Conflicts of interest
There are no conflicts to declare.

Notes and references

1 (a) C. Papapantialfyllopoulos, E. E. Moushi, G. Christou and A. J. Tasiopoulos, Chem. Soc. Rev., 2016, 45, 1597-1628; (b) A. J. Tasiopoulos and S. P. Perlepes, Dalton Trans., 2008, 5537-5555; (c) C. J. Milios, S. Pilgkos and E. K. Brechin, Dalton Trans., 2008, 1809-1817; (d) E. K. Brechin, Chem. Commun., 2005, 5141-5153; (e) M. Murrie, Polyhedron, 2018, 150, 1-9.

2 (a) Th. C. Stamatatos, C. G. Efthymiou, C. C. Stoupoulos and S. P. Perlepes, Eur. J. Inorg. Chem., 2009, 3361–3391; (b) S. Schmidt, D. Prodius, V. Mereacree, G. E. Kotakas and A. K. Powell, Chem. Commun., 2013, 49, 1696-1698; (c) G. Brunet, F. Habib, C. Cook, T. Pathmalingam, F. Loiseau, I. Korobkov, T. J. Burchell, A. M. Beauchemin and M. Murugesu, Chem. Commun., 2012, 48, 1287-1289; (d) A. G. Blackman, Eur. J. Inorg. Chem., 2008, 2633-2647; (e) A. S. R. Chesman, D. R. Turner, B. Moubaraki, K. S. Murray, G. B. Deacon and S. R. Batten, Eur. J. Inorg. Chem., 2010, 59-73.

3 (a) H. C. Kolb, M. G. Finn and K. B. Sharpless, Angew. Chem. Int. Ed., 2001, 40, 2004–2021; (b) J. E. Moses and A. D. Moorhouse, Chem. Soc. Rev., 2007, 36, 1249–1262; (c) M. Meldal and C. W. Tornoe, Chem. Rev., 2008, 108, 2952–3015.

4 (a) C. Plenk, J. Krause, M. Beck and E. Rentschler, Chem. Commun., 2015, 51, 6524-6527; (b) W. P. Forrest, Z. Cao, W.-Z. Chen, K. M. Hassell, A. Kharlamova, G. Jakstonyte and T. Ren, Inorg. Chem., 2011, 50, 9345–9353; (c) K. Xiong, F. Jiang, Y. Gai, Z. He, D. Yuan, L. Chen, K. Su and M. Hong, Cryst. Growth Des., 2012, 12, 3335-3341.

5 Z. P. Demko and K. B. Sharpless, J. Org. Chem., 2001, 66, 7945-7950.

6 H. Zhao, Z.-R. Qu, H.-Y. Ye and R.-G. Xiong, Chem. Soc. Rev., 2008, 37, 84-100, and references therein.

7 (a) T. Wu, B. H. Yi and D. Li, Inorg. Chem., 2005, 44, 4130-4132; (b) M. Li, Z. Li and D. Li, Chem. Commun., 2008, 3390-3392.

8 For some representative recent reviews, see: (a) A. Escuer, J. Esteban, S. P. Perlepes and Th. C. Stamatatos, Coord. Chem. Rev., 2014, 275, 87-129; (b) Th. C. Stamatatos and E. Rentschler, Chem. Commun., 2019, 55, 11-26; (c) S. Mukherjee and P. S. Mukherjee, Acc. Chem. Res., 2013, 46, 2556-2566.

9 Y. Feng, X. Liu, L. Duan, Q. Yang, Q. Wei, G. Xie, S. Chen, X. Yang and S. Gao, Dalton Trans., 2015, 44, 2333-2339.

10 H. Deng, Y.-C. Qiu, Y.-H. Li, Z.-H. Liu, R.-H. Zeng, M. Zeller and S. R. Batten, Chem. Commun., 2008, 2239-2241.

11 Y.-Z. Zhang, S. Gao and O. Sato, Dalton Trans., 2015, 44, 480-483.

12 P. Abbasi, K. Quinn, D. I. Alexandropoulos, M. Damjano, W. Wernsdorfer, A. Escuer, J. Mayans, M. Pilkington and Th. C. Stamatatos, J. Am. Chem. Soc., 2017, 139, 15644–15647.

13 M. Kamitani, M. Ito, M. Itazaki and H. Nakazawa, Chem. Commun., 2014, 50, 7941-7944.

14 (a) E. G. Percástegei, J. Mosquera, T. K. Ronson, A. J. Plajer, M. Kieffer and J. R. Nitschke, Chem. Sci., 2019, 10, 2006-2018; (b) X.-P. Zhou, Y. Wu and D. Li, J. Am. Chem. Soc., 2013, 135, 16062–16065; (c) Y. Liu, V. Kravtsov, R. D. Walsh, P. Poddar, H. Srikanth and M. Eddaoudi, Chem. Commun., 2004, 2806-2807; (d) Z. Wang, Z. Jagličič, L.-L. Han, G.-L. Zhuang, G.-L. Luo, S.-Y. Zeng, C.-H. Tung and D. Sun, CrystEngComm, 2016, 18, 3462-3471.

15 Z. Xu, L. K. Thompson, V. A. Milway, L. Zhao, T. Kelly and D. O. Miller, Inorg. Chem., 2003, 42, 2950-2959.

16 F. Himo, Z. P. Demko, L. Noodlemen and K. B. Sharpless, J. Am. Chem. Soc., 2002, 124, 12210-12216.

17 W. G. Finnegan, R. A. Henry and R. Lolquist, J. Am. Chem. Soc., 1958, 80, 3908-3911.

18 S. Demeshko, G. Leibeling, S. Dechert and F. Meyer, Dalton Trans., 2006, 3458-3465.
19 (a) A. C. Fabretti, W. Malavasi, D. Gatteschi and R. Sessoli, *J. Chem. Soc., Dalton Trans.*, 1991, 2331-2334; (b) G. A. van Albada, R. A. G. de Graaff, J. G. Haasnoot and J. Reedijk, *Inorg. Chem.*, 1984, 23, 1404-1408.

20 (a) P. Mialane, A. Dolbecq, E. Rivière, J. Marrot and F. Sécheresse, *Angew. Chem. Int. Ed.*, 2004, 43, 2274-2277; (b) E. Ruiz, J. Cano, S. Alvarez and P. Alemany, *J. Am. Chem. Soc.*, 1998, 120, 11122–11129.