Original Research Article

Economics of Paddy Cultivation under Different Sowing Techniques in Raipur District of Chhattisgarh

Jwala Parte*, Deepak Rathi, Mamta Patel and Sneha Pandey

Department of Agricultural Economics and Farm Management, College of Agriculture, JNKVV, (M.P), India

*Corresponding author

ABSTRACT

The present study was conducted during 2017-18 in Raipur district of Chhattisgarh, with the objective to compare the cost & return and identifying constraints in paddy cultivation under different sowing techniques (SRI, Transplanting, Broadcasting and Line sowing). The study was conducted with the help of questionnaire, interviewed over 100 farmers. The cost of preparatory tillage was 7, 35 & 45 per cent more than line sowing. The material cost was found to be 9, 31 & 34 per cent more than broadcasting. However the yield was found to be 39, 46 & 83 per cent more in case of line sowing, transplanting and SRI over broadcasting. Total cost occurred in cultivation of paddy in SRI is Rs. 60809, in transplanting Rs. 49587, line sowing it is Rs. 43346 and broadcasting Rs. 42574. Per hectare return of SRI was Rs. 122000, transplanting Rs. 96111, line sowing Rs. 91600 and broadcasting Rs. 66140. The return per rupees was around Rs. 2.11 in line sowing, Rs. 2 in SRI, Rs 1.94 in transplanting and Rs. 1.55 in broadcasting. Major constraints in paddy cultivation were found to be unawareness of technologies and more labour requirement in SRI and transplanting and costly input cost.

Introduction

Rice acknowledges as a supreme commodity to mankind, in light of the fact that rice is really an existence, culture, custom and method for business to millions. In India, there is a growing demand for rice due to ever burgeoning population. India’s having highest area under rice and stand in second place for production. Rice cultivation takes place in all States of India, but West Bengal, Uttar Pradesh, Punjab, Tamil Nadu, Andhra Pradesh and Bihar are the major rice producing states. Nowadays, rice is being cultivated by different methods of sowing in the world the most important methods are SRI (System of Rice Intensification), transplanting and direct seeded (broadcasting and line sowing).
Presently, direct seeded rice is followed in America, Western Europe such as Italy and France, Russia, Japan, Cuba, India, Korea, Philippines and also in some parts of Iran, due to high technology, high labour cost and shortage of skilled labour thereby shifting trend from transplanting method of cultivation (Akhgari, 2004). SRI is environment friendly. Reduced demand for water frees up water for other uses and soil that is not kept saturated has greater biodiversity. Un-flooded paddy fields do not produce methane, one of the major “greenhouse gases” that are contributing towards global warming. The method uniqueness includes use of less seed, less water, less chemicals etc. (Reddy et al., 2005).

Materials and Methods

The present study was undertaken in Raipur district of Chhattisgarh. Raipur district consist of four blocks Dharsiwa, Abhanpur, Tilda, Arang out of which Dharsiwa block was selected purposively as in this block all the four sowing techniques of paddy cultivation i.e. SRI, Transplanting, Broadcasting and line sowing were found to be practiced.

From Dharsiwa block three villages were selected namely Saragaon, Nilja and Pauni based on the area under each type of sowing techniques i.e. SRI, transplanting, broadcasting and line sowing.

The selection of farmers was done according to the per cent proportionate method, the total number of farmers in the three villages was found to be 554, out of which 38, 230, 201 and 85 was found to be practiced SRI, transplanting, broadcasting and line sowing. From all four sowing techniques approx. 18 per cent farmers were selected i.e. 7 from SRI, 42 from transplanting, 36 from broadcasting and 15 from line sowing constituting the total sample size of 100 respondents.

Cost concept

The cost concepts i.e., Cost A1, Cost A2, Cost B and Cost C, which are generally followed in farm management studies and CACP (Commission for Agriculture Cost and Prices), were adopted for the present study.

Farm business analysis

Besides the cost concepts, farm business analysis has been undertaken to test the efficiency of the farm. It includes the items like net income, family labour income, farm business income and farm investment income.

Garrett ranking

To find out the most significant factor which influences the respondent, Garrett’s ranking technique will be used.

Results and Discussion

The results obtained from the present study as well as discussions have been summarized under following heads:

Socio economic characteristics of respondents

The average age of respondents using SRI, transplanting, broadcasting and line sowing was found to be 51, 50, 54 and 49 with average family size of 4, 4, 4 and 3. The male and female population was found to be 2:2, in SRI, transplanting, broadcasting and 2:1 in line sowing.

Maximum farmers was found to be literate up to high school (40%) followed by higher secondary (39%) across all respondents. Male members are involved in farming activities while female was found to be house wife, children’s were found to be student or in service across all respondents. The average
size of land holding was found to be 1.14, 2.09, 1.68 and 2.04 ha in SRI, transplanting, broadcasting and in line sowing (Table 1).

Cost and return of paddy cultivation under different sowing techniques

Cost of cultivation

The total cost of cultivation of paddy under different sowing techniques was shown in the Table 2, total cost occurred in cultivation of paddy in SRI is Rs. 60809, in transplanting Rs. 49587, line sowing it is Rs. 43346 and broadcasting Rs. 42574. The similar findings were reported by Makaida et al., (2014), Shelke et al., (2017) (Table 3).

Yield

The main yield quintal per hectare was found to be more in SRI i.e. 70 as compare to transplanting (55.62), line sowing (53) and broadcasting (38.2).

SRI was found to be best sowing techniques because the planting design of SRI is such that every plant gets sufficient light, water and air which leads to profuse tillering which helps in getting higher productivity per unit area. Makaida et al., (2014), Bhatt (2015), Kirar et al., (2017), Agrawal et al., (2018) (Table 5).

Net return

The net return obtained in SRI was found to be maximum in case of SRI (Rs 61190.61), line sowing (Rs. 48253.7), transplanting (Rs. 46523.2) and broadcasting (Rs. 23565.14). which indicated that SRI is not only superior over the other sowing technique techniques in physical terms as it giver higher productivity but at the same time but at the same time it is giving better monitoring returns than other sowing techniques. Makaida et al., (2014), Agrawal et al., (2018), Mithra and Bhaskaran (2018) reported similar findings in their study (Table 6).

Parameters	SRI (7)	Transplanting (42)	Broadcasting (36)	Line sowing (15)
Age (years)	51	50	54	49
Family size (no)	4	4	4	3
Male	1	1	1	1
Female	1	1	1	1
Children	2	2	2	1
Education status				
Illiterate	0	1	0	1
Primary	2 (28.57)	8 (19.04)	9 (25)	3 (20)
High school	3 (42.85)	17 (40.47)	15 (41.66)	10 (66.66)
Higher sec.	2 (28.57)	13 (30.95)	10 (27.77)	1 (6.66)
Graduate	0	3	2	0
Total	7 (100)	42 (100)	36 (100)	15 (100)
Land holding(ha)	1.14	2.09	1.68	2.04

Note – figures in parenthesis shows the percentage to total respondents
Table 2: Cost of cultivation of different sowing techniques (Rs/ha)

Particular	SRI	Transplanting	Broadcasting	Line Sowing
VARIABLES COST				
human labour	14580	10056	7256	5396
bullock labour	257	173	180	66
machine labour	2456	2365	2538	3851
Seed	932	1350	1607	1373
Manure	800	809	305	248
Fertilizer	5626	4562	4096	5013
Irrigation	838	939	247	107
Plant protection chemicals	254	565	41	117
Total variable cost	25745	20822	16273	16175
Interest on working capital	1287	1041	813	808
SUBTOTAL	27033	21863	17087	16984
FIXED COST				
Land revenue	69	69	58	63
Depreciation	6500	6023	11506	6023
Rental value	20333	16018	9023	15266
Total fixed cost	26902	22110	20588	21353
Interest on fixed capital	1345	1105	1029	1067
SUBTOTAL	28248	23216	21617	22421
TOTAL COST	55281	45079	38704	39405
10% as managerial cost	5528	4507	3870	3940
TOTAL COST OF CULTIVATION	60809	49587	42574	43346

Table 3: Cost of cultivation under different cost concepts (Rs/ha)

Particulars	SRI	Transplanting	Broadcasting	Line sowing
COST A1	33352	27690	28453	22860
COST A2	33352	27690	28453	22860
COST A2 + FL	33602	27955	28651	23071
COST B1	34697	28796	29483	23928
COST B2	55031	44814	38506	39194
COST C1	34947	29061	29681	24139
COST C2	55281	45079	38704	39405
COST C3	60809	49587	42574	43346
Table 4 Cost of production under different cost concepts (Rs/qt)

Particulars	SRI	Transplanting	Broadcasting	Line sowing
COST A1	474	495	742	429
COST A2	474	495	742	429
COST A2 +FL	477	500	748	433
COST B1	493	515	769	449
COST B2	784	803	1006	737
COST C1	497	520	774	453
COST C2	787	808	1011	741
COST C3	866	889	1112	815

Table 5 Yield and gross income of different sowing techniques

Particulars	SRI	Transplanting	Broadcasting	Line sowing
MAIN YIELD (qt/ha)	70	55.62	38.2	53
PRICE (Rs/qt)	1550	1550	1550	1550
BY PRODUCT (qt/ha)	150	110	77	105
PRICE (Rs/qt)	90	90	90	90
Gross income	122000	96111	66140	91600

Table 6 Return obtained across various sowing techniques (Rs/ha)

Particulars	SRI	Transplanting	Broadcasting	Line sowing
COST C3	60809	49587	42574	43346
GI	122000	96111	66140	91600
NET RETURN	61190	46523	23565	48253
Net return over cost A2 + FL	88397	68155	37488	68528
B:C RATIO	2	1.94	1.55	2.11

Table 7 Constraints in paddy cultivation

Particulars	Rank
Unavailability of good quality seed	8
Financial constraints	2
Constraints in availability of fertilizer on time and inadequate quantity	5
Costly pesticide, ineffective weedicide	4
Lack of mechanization	7
Unawareness of technologies	1
Non availability of labour for transplanting	3
High rent charges of agricultural machinery	6
Benefit cost ratio

The return per rupees was found to be more (Rs 2.11) in line sowing, (Rs 2) in SRI, (Rs. 1.93) in transplanting and (Rs. 1.53) in broadcasting. Anon. (2015), Nirmala and Waris (2016), Mahala et al., (2016), Manohar et al., (2017) reported similar finding in their study (Table 4).

Constraints in paddy cultivation

Constraints in paddy cultivation includes labour problem, unawareness of technologies timely available of fertilizer, costly input cost.

The finding is in line with the findings of Churpal et al., (2015), Dhruw et al., (2017), Lakra et al., (2017) (Table 7).

The paddy yield is high in SRI method as compared to the yields in transplanting, broadcasting and line sowing method of paddy cultivation. Although the B: C ratio was found to be high in line sowing but yield, production and income can be increased using SRI method as it gave highest productivity and net return across various sowing techniques in the area under study, farmer can adopt method according to its requirement (resource restrictions/financial constraints).

Acknowledgement

The authors are thankful to department of Agricultural Economics and FM, JNKVV, Jabalpur, MP.

References

Agrawal PK, Yadav P and Mondal S. 2018 Economic Analysis of Cost and Return Structure of Paddy Cultivation Under Traditional and Sri Method: A Comparative Study. International Journal of Agriculture Sciences 10(8): 5890-5893.

Akhgari H. 2004. Rice Agronomy, Fertilization, and Nutrition. Islamic Azad University Press Rasht Iran. 376.

Anonymous. 2015. Study on yield advantage under line sowing v/s broadcasting in direct seeded rice in Chhattisgarh in http://dpd.dacnet.nic.in/Final%20Study %20on%20(Rice).pdf

Bhatt KN. 2015. System of Rice Intensification for Increased Productivity and Ecological Security: A Report 3: 147. doi: 10.4172/2375-4338.1000147.

Churpal D, Koshta AK and Choudhary VK "An economic analysis of rice cultivation and constraint in Dhamtari district of Chhattisgarh, India." Plant Archives 15(2): 651-656.

Dhruw YS, Suryawanshi DK and Prasad G. 2017. Constraints Perceived and Suggestions Offered in Adoption of Summer Rice Production Technology. International Journal of Agriculture Sciences 9(1): 3619-3621.

Kirar SS, Bain RP, and Soni JK. 2017. A comparative study on Input utilization pattern in traditional and SRI methods of paddy cultivation in district Katni (MP). Int. J. Adv. Res. Biol. Sci. 4(1): 53-57

Lakra N, Gauraha AK and Banafar KNS (2017) Economic Analysis of Production, Marketing and Constraints of Paddy in Dantewada District of Chhattisgarh, India. Int.J.Curr. Microbiol.App.Sci 4: 108-115

Mahala V, Sharma KU, Ved PL, and Kumari S. 2016. Impact of direct seeded rice on economics of paddy crop in Haryana. International Journal of Agriculture Sciences. 8(62): 3525-3528

Makadia JJ, Patel KS and Ahir NJ. (2014). Economics and resource use efficiency of SRI and traditional method of paddy
cultivation in Gujarat. Internat. Res. J. Agric. Eco. Stat., 5(2) : 211-215.
Manohar Y, Nirmala B and Suhasini K. 2017. Economic comparison of direct seeded rice (DSR) and transplanted rice cultivation in TBP command area of Karnataka. Agric. Update. 12(6): 1705-1709
Mithra J and Bhaskaran R. 2018. Comparative Study of System of Rice Intensification and Traditional Method of Rice Cultivation in Thiruvarur District of Tamil Nadu – India. International Journal of Engineering Science Invention 7(07): 71-78
Nirmala B and Waris A. (2016). Direct Seeded Rice: An Impact Analysis in Tungabhadra Command Area of Karnataka. Indian Research Journal of Extension Education, 16(2), 51-54.
Reddy RV, Reddy P, Reddy MS and Ramaraju DS. 2005. Water use efficiency: A study of system of rice intensification (SRI) adoption in Andhra Pradesh. Indian Journal of Agricultural Economics 60:458-471.
Shelke RD, Meshram DU, and Sable SN. 2017. Comparison Between Traditional And Improved Method of Paddy Cultivation for Doubling Farmers Income. Bull. Env. Pharmacol. Life Sci., 6(1): 512-516

How to cite this article:
Jwala Parte, Deepak Rathi, Mamta Patel and Sneha Pandey. 2019. Economics of Paddy Cultivation under Different Sowing Techniques in Raipur District of Chhattisgarh. Int.J.Curr.Microbiol.App.Sci. 8(12): 693-699. doi: https://doi.org/10.20546/ijcmas.2019.812.091