A new genus *Vittaliana* belonging to the tribe Opsiini (Hemiptera: Cicadellidae) from India and its molecular phylogeny

Sunil, Naresh M. Meshram, Tahseen Raza Hashmi and Pathour R. Shashank

National Pusa Collection, Division of Entomology, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi, Delhi, India

ABSTRACT

The new leafhopper genus *Vittaliana reticulata* gen. nov., sp. nov., is described from India, and placed in the tribe Opsiini based on ocelli close to eyes, without carina on anterior margin of the face and bifurcate aedeagus with two gonopores. Phylogenetic analysis with maximum likelihood (ML) using IQtree v1.4.1 of combined data (Histone H3 and 28S rDNA) reveals that the new genus *Vittaliana* belongs to a clade consisting of *Opsius versicolor* (Distant, 1908), *Opsini* gen. sp., *Libengaia* sp., *Hishimonus phycitis* (Distant, 1908) and *Yinfomibus menglaensis* Du, Liang & Dai (2019) with good branch support, and that the tribe Opsiini is paraphyletic. This resolves the placement of a new genus in the tribe Opsiini under Deltocephalinae.

Subjects Biodiversity, Entomology, Taxonomy

Keywords Leafhoppers, Morphology, Vittaliana, Reticulata, Opsiina, Opsiini, Phylogeny, Deltocephalinae, Hemiptera

INTRODUCTION

The Cicadellide is the largest family of the suborder Auchenorrhyncha, and the Deltocephalinae is the largest and most economically important subfamily of leafhoppers, including at least 6700 described species grouped into 39 tribes (Zahniser & Dietrich, 2013; Dai et al., 2017). The tribe Opsiini is distinguished from other tribes by the face oblique, not strongly depressed, not concave in profile; anterior margin of the head without carinae; antennal bases near middle or posteroventral (lower) corner of eyes; gena not extended onto dorsum behind eyes; the stem of connective longer and bifurcated aedeagus with two gonopores (Emeljanov, 1962; Zahniser & Dietrich, 2013). This tribe is economically important as vectors of viral, bacterial, phytoplasma, and spiroplasma phytopathogens (Nielson, 2002). Zahniser & Dietrich (2013) revised the classification of Deltocephalinae based on molecular and morphological data, and provided a revised interpretation of Opsiini with four subtribes Achaeticina, Circuliferina, Eremophlepsiina, and Opsiina. These subtribes comprises of 40 genera, out of which 29 genera belong to Opsiina with more than 230 species worldwide. The subtribe Opsiina can be differentiated from the others by ovipositor not protruding far beyond pygofer apex and subgenital plates with a lateral row of macrosetae; aedeagal shafts divided near to base (Zahniser & Dietrich, 2013).

Work on this group since Viraktamath, Murthy & Viraktamath (1987); Mitjaev (2000); Dai, Viraktamath & Zhang (2010a); Dai, Dietrich & Zhang (2011); Stiller (2012);
El-Sonbati, Wilson & Dhafer (2016), El-Sonbati, Wilson & Al Dhafer (2017), El-Sonbati, Wilson & Dhafer (2020); Fletcher & Dai (2018); Du, Liang & Dai (2019) has led to description of many new taxa. The Old World fauna is known only from regional works (Mitjaev, 2000; Viraktamath & Murthy, 2014; Meshram & Chaubey, 2016). Opsiina contains 29 known genera worldwide, including 10 genera from India so far. In the present work, we describe the *Vittaliana reticulata* gen. nov., sp. nov., and we discuss its phylogenetic position within Deltocephalinae, based on analysis of histone (H3) and large ribosomal unit (28S) sequences.

MATERIAL AND METHODS

For morphological studies

Data was collected as previously described in Meshram, Shashank & Sinha (2017) specifically, in and around ICAR research institutes, Vittal, Kasargod (Kerala: India), with a mercury vapor lamp. Hence, no specific permissions were required for any of the collection localities/activities. Specimens were processed by a series of steps like sorting, cleaning, and mounting. Male genitalia dissections were carried out as described by Oman (1949) and Knight (1965) as follows, the abdomen was removed by inserting a sharp pin between the abdomen and thorax with gentle piercing. The abdomen was treated in 10% KOH for 2~4 h to remove unsclerotized material by gently prodding the abdomen with the head of a pin. Afterward, the abdomen was rinsed thoroughly in water. The internal structures were then removed by a hooked pin, before being stored in glycerol vials for study.

Photographs were taken with a Leica DFC 425C digital camera on the Leica M205FA stereo zoom automontage microscope.

Repository of the Material: The holotype and paratypes are deposited in National Pusa Collection (NPC), Indian Council of Agricultural Research-Indian Agricultural Research Institute (IARI)-New Delhi, India (with repository number: Holotype: RRS2; Paratypes: RRS3, RRS4, RRS5)

New Taxon LSID. *Vittaliana*: urn:lsid:zoobank.org:act:51DA3683-0359-444F-8C11-F630518D8506, *Vittaliana reticulata*: urn:lsid:zoobank.org:act:E690A7AF-7FCD-4460-93BC-1274D932C5F4.

The electronic version of this article in Portable Document Format (PDF) will represent a published work according to the International Commission on Zoological Nomenclature (ICZN), and hence the new names contained in the electronic version are effectively published under that Code from the electronic edition alone. This published work and the nomenclatural acts it contains have been registered in ZooBank, the online registration system for the ICZN. The ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated information viewed through any standard web browser by appending the LSID to the prefix http://zoobank.org/. The LSID for this publication is: urn:lsid:zoobank.org:pub:228D17FC-590C-41C7-9434-60554F753DBA. The online version of this work is archived and available from the following digital repositories: PeerJ, PubMed Central, and CLOCKSS.
Molecular studies

DNA extraction and PCR amplification

The DNA was extracted from the head and thorax of specimens according to manufacturer protocols using DNASure® Tissue Mini Kit. The isolated DNA was stored at −20 °C until required. The amplification of the desired product was done with the help of diagnostic PCR reactions, using universal histone H3 primers: HEXAF (forward) 5′-ATGGCTCGTACCAAGCAGACGGC-3′ and HEX-AR (reverse) 5′-ATATCCTTGGGCATGATGGTGAC-3′ ([Ogden & Whiting, 2003](#)) and 28S rDNA primers (for D2 region 5′-AGTCGKTTTGCTTGAKAGTGCAG-3′ & 5′-TTCGGTCCCAAACGTGTACG-3′ and for D9–D10 region 5′-GTAGCCAAATGCCTCGTCA-3′ & 5′-CACAATGATAGGAAGAGCC-3′ ([Dietrich et al., 2001](#)). The PCR protocol for Histone H3 was followed from [Zhaniser & Dietrich (2010)](#) under the following cycling protocol: 4 min at 94 °C, 35 cycles of denaturation for 30 s at 94 °C, annealing for 60 s at 47 °C, elongation for 50 s at 72 °C and a final extension 72 °C for 8 min in a C1000™ Thermal cycler.

The PCR reactions consist of 12.5 µl hot start PCR master mix (Thermo Scientific), 8.5 µl of molecular grade water, 1 µl each forward and reverse primer and 2 µl of genomic DNA ([Hashmi et al., 2018](#)). The products were checked on 1% agarose gel and visualized under UV using a gel documentation system (DNr, Bio-Imaging, MiniLumi). The amplified products were sequenced at AgriGenome Pvt. Ltd. (Cochin, India). The quality sequences were assembled with BioEdit version 7.0.0 and deposited in NCBI GenBank.

Alignment and phylogenetic analyses

For phylogenetic analysis, the majority of species sequences were taken from [Zahniser & Dietrich (2013)](#) and [Zhaniser & Dietrich (2010)](#) and [Du, Liang & Dai (2019)](#). A dataset consisting of the newly sequenced taxa and 76 sequences of Deltocephalinae species. The outgroups consist of two species from Aphrodinae and one species from Euacanthellinae (Table 1).

The histone H3 and 28S rDNA sequences aligned separately with the MUSCLE application in MEGA 6 ([Tamura et al., 2013a](#); [Tamura et al., 2013b](#)) and obtained NEXUS data block for combined data set as follows: #NEXUS begin data; dimensions ntax = 80 nchar = 6974; format datatype = dna; gap = −; missing = ?; matrix; end;

The NEXUS file used in the phylogenetic analysis deposited in public repository TreeBASE (Study ID S26664; https://treebase.org).

Maximum likelihood (ML) analysis of combined gene region (H3, 28S rDNA) were constructed in IQtree v1.4.1 ([Nguyen et al., 2015](#)) using the best-fit substitution model automatically selected by the software according to the Bayesian information criterion scores and weights (BIC) with partitions. An ultrafast bootstrap (UFB) ([Minh, Nguyen & von Haeseler, 2013](#)) with 1,000 replicates and the SH-like approximate likelihood ratio test (SH-aLRT) ([Guindon et al., 2010](#)) and Bayesian-like transformation of aLRT (aBayes)
Sl. No.	Tribe	Species	28S	Accession number	Histone H3
1	Acinopterini	Acinopterus acuminatus	JX845484	GU123790	
2	Acostemmini	Acostemma stilleri	GU123696	GU123791	
3	Acostemmini	Ikelifeloaha cristata	JF835026	IN177306	
4	Aphrodiinae/Aphrodini	Aphrodex bicineta	AF304579	GU123794	
5	Aphrodiinae/Xestocephalini	Xestocephalus desertorum	AF304619	GU123892	
6	Arrugadini	Arrugada affris	GU123699	GU123795	
7	Athysanini	Caranavia separata	GU123710	GU123807	
8	Athysanini	Anoterostemma ivancoff	JX845487	JX845528	
9	Athysanini	Athysanum argentarius	GU123701	GU123797	
10	Bahitini	Kinfentius sp.	JX845523	JX845549	
11	Bahitini	Bahita sp.	GU123702	GU123798	
12	Bonaspeini	Cerus gaudanus	GU123712	GU123809	
13	Bonaspeini	Renosteria waverena	GU123772	GU123878	
14	Bonaspeini	Bonaspeia eriocephala	JX845521	GU123804	
15	Chiasmini	Nephottetix modulatus	GU123754	GU123859	
16	Chiasmini	Listrophora styx	JX845500	JX845539	
17	Chiasmini	Gurawa minorcephala	JX845495	JX856131	
18	Cicadulini	Cicadula quadrimotata	GU123717	GU123813	
19	Cicadulini	Proceps accularis	JX845511	JX845550	
20	Cochlorhinini	Cochlorhinus plat	AF304586	GU123814	
21	Delfocephalini	Delfocephalus sp.	GU123721	GU123819	
22	Delfocephalini	Parmesodes sp.	GU123764	GU123868	
23	Dorycephalini	Dorycephalus baeri	JX845491	JX845532	
24	Drabescini	Bhatia satsumensis	GU123706	GU123803	
25	Drabescini	Drabescus sp.	GU123724	GU123824	
26	Drakensbergenini	Drakensbergena retrospina	GU123725	GU123825	
27	Euacanthellinae	Euacanthella palustris	GU123728	GU123827	
28	Eupelicitini	Eupelix cuspidata	AF304644	GU123828	
29	Eupelicitini	Paradoxium paradoxum	AF304637	GU123877	
30	Faltalini	Tenuephalina sp.	GU123781	GU123886	
31	Faltalini	Helicus bracteatus	GU123737	GU123841	
32	Fieberillini	Fieberella florii	AF304594	GU123834	
33	Goniagnathini	Goniagnathus guttulineri	GU123736	GU123838	
34	Hecalini	Glossocrates afzelii	GU123735	GU123837	
35	Hecalini	Attenuipyga vanduzei	AF304653	GU123822	
36	Hecalini	Hecalus viridis	AF304596	GU123840	
37	Hypacostemmini	Hypacostemma viridissima	GU123739	GU123843	
38	Koebeliini	Koebelia grossa	AF304599	GU123846	
39	Koebeliini	Pinapona sinae	MN822010	MN816385	
40	Koebeliini	Shivapona shiva	MN822007	MN822009	(continued on next page)
Sl. No.	Tribe	Species	28S Accession number	Histone H3	
--------	---------------	-----------------------------	----------------------	-------------------	
41	Koebeliini	Sohipona sohii^a	MN824248 (D2)	MN816387	
			MN824250 (D9-D10)		
42	Limottettigini	Limottettix striola	GU123745	GU123850	
43	Macrostelini	Balcutha neglecta	GU123704	GU123800	
44	Macrostelini	Dalbulus gelbus	AF304587	GU123818	
45	Macrostelini	Evinus peri	GU123731	GU123832	
46	Magnentiini	Magnentius cladatus	JX845503	JX845541	
47	Mukariini	Mukaria maculata	GU123750	GU123855	
48	Mukariini	Agrica arisana	GU123779	GU123884	
49	Occinirvanini	Occinirvana eborea	JX845507	JX845545	
50	Opsiini	Neoaltitrus carbonarius	GU123752	GU123857	
51	Opsiini	Pseudophelesius binotatus	JX845512	JX845551	
52	Opsiini	Hishimonus phycitis	GU123738	GU123842	
53	Opsiini	Japanaanus hyalinus	JX845499	JX845538	
54	Opsiini	Libengaia sp. ^a	(a) MN820445 (D2)	MN816383	
			(b) MN820441 (D9-D10)		
55	Opsiini	Nesophrosyne maritima	JX845506	JX845544	
56	Opsiini	Opisius versicolor	GU123756	GU123861	
57	Opsiini	Orosius orientalis	JX845509	JX845547	
58	Opsiini	Opsiini gen. sp.	JX845520	JX845560	
59	Opsiini	Yinformibus menglaensis	MH260368	MH260369	
60	Opsiini	Vittaliana reticulata^a	(a) MN512542 (D2)	MK359639	
			(b) MN512544 (D9-D10)		
61	Paralimnini	Laevicephalus monticola	GU123744	GU123849	
62	Paralimnini	Aflexia rubranura	GU123698	GU123793	
63	Pendarini	Bandarominus parvicauda	GU123705	GU123802	
64	Pendarini	Tropicanus chiapasus	GU123784	GU123889	
65	Penthiminiini	Penthimidia eximia	JX845510	JX845548	
66	Penthiminiini	Penthimiola bella	GU123766	GU123871	
67	Penthiminiini	Jafar javeti	JX845498	JX845537	
68	Phlepsiini	Excultanus conus	GU123732	GU123833	
69	Phlepsiini	Phlepsius intricatus	GU123768	GU123873	
70	Scaphoideini	Anoplotettix fuscovenusus	JX845486	JX845527	
71	Scaphoideini	Scaphoidea omani	JX845513	JX845553	
72	Scaphoideini	Phlogotettix cyclops	GU123769	GU123874	
73	Scaphytopiini	Scaphytopius frontalis	JX845514	JX845555	
74	Selenocephalin	Selenocephalus deserticola	GU123777	GU123881	
75	Selenocephalin	Adama elongata	GU123694	GU123788	
76	Stegelytrini	Pachymetopus decoratus	GU123760	GU123864	
77	Stenometopiini	Kinonia elongata	GU123741	GU123845	
78	Stenometopiini	Stirellus catalinus	AF304614	GU123882	
79	Tetartostylini	Tetartostylus parabolatus	GU123782	GU123887	
80	Vartini	Stymphalus rubrilineatus	GU123778	GU123883	

Notes.

^a Obtained sequences from current study.

Sunil et al. (2020), PeerJ, DOI 10.7717/peerj.9515
were used in the analysis to assess branch support and obtained tree was visualized in FigTree v1.4.2.

RESULTS

Key to the genera of subtribe Opsiina from India (Keys modified from El-Sonbati, Wilson & Al Dhafer, 2017).

1. Subgenital plates and valve fused to form a plate; head, thorax and forewing with bright red, or orange markings.. Lampridius Distant
 - Subgenital plates and valve not fused but free; coloration not as above 2
2. Forewings ivory or silvery white, yellow, and brown marks on body, wings at rest with large brown semicircular spot against midlength of commissural margin of forming and conspicuous circular spot along with that of opposite side... 3
 - Not like above character .. 5
3. Aedeagus with 2 or 3 pairs of ventral processes .. Hishimonoides Ishihara
 - Aedeagus with a pair of ventral processes ... 4
4. Aedeagus with atrium not extending ventrad of shafts... Hishimonus Ishihara
 - Aedeagus with atrium extending ventrad of shafts .. Litura Knight
5. Aedeagus with unpaired ventral process bifurcate in apical half.............................. Libengaia Linnavuori
 - Aedeagus without unpaired ventral process ... 6
6. Aedeagus with basal processes .. 7
 - Aedeagus without basal processes.. 8
7. Anterior margin of head rounded or slightly produced, not concave; aedeagus with one or two pairs of processes, arising from socle or from mid-length of shaft................... Opsius Fieber
 - Anterior margin of head slightly produced, slightly concave; aedeagus with one pair of processes, arising only from mid-length of shaft ... Vittaliana gen. nov.
8. Fore wing, vertex, pronotum and scutellum with dark brown vermiculate line................ 9
 - Not like above characters ... 10
9. Vertex narrow basally, diamond shaped; compound eyes very close to each other posteriorly (fig40; Viraktamath & Anantha Murthy, 1999); aedeagal shafts with apical an elongated recurved process.. Pugla Distant
 - Vertex not narrow basally, not diamond shaped; compound eye are not close to each other posteriorly; aedeagal shafts without apical process .. Orosius Distant
10. Crown, pronotum and scutellum with irregular red markings; pronotum without lateral carina; aedeagus with shafts fused at basal 0.33x (fig36; Viraktamath & Anantha Murthy, 1999) ... Masiripius Dlabola
 - Crown, pronotum and scutellum without irregular red markings; pronotum with lateral carina; aedeagus with shafts seperated from base (fig26; Viraktamath & Anantha Murthy, 1999) ... Japananus Ball
Taxonomy

Family Cicadellidae
Subfamily Deltocephalinae
Tribe Opsiini

Vittaliana gen. nov. Sunil and Meshram (Figs. 1–3)
urn:lsid:zoobank.org:act:51DA3683-0359-444F-8C11-F630518D8506

Type species: Vittaliana reticulata sp. nov. Sunil and Meshram [Figs. 1A–1J, 2A–2G, 3A–3H]

Diagnosis
This genus is placed in the subtribe Opsiina of Opsiini based on all these characters macropterous; ovipositor not protruding far beyond pygofer apex and subgenital plates with a lateral row of macrosetae; aedeagal shafts divided near to base. The new genus can be differentiated from all related genera in this subtribe by a combination of the following characters: Body and face whitish with yellow, and brown mottling; anterior margin of crown with five white patches, slightly produced, slightly concave; pronotum with concave posterior margin; aedeagal shafts arising from near to base, aedeagus distinctive outward curved apically, without processes arising from base, with a pair of medial processes arising from mid-length of shafts, apex without processes.

Description

Colour. Body and face whitish with yellow and brown mottling. Crown anterior margin with five white patches (Fig. 1D). Pronotum brown mottled with white patches. Scutellum yellow with an orange basal triangle (Fig. 1D). Eyes red; forewing white speckled with brown patches (Fig. 1B).

Body length. Male 3.6 mm long; 1.4 mm wide across eyes. Female 3.8 mm long; 1.46 mm wide across eyes.

Head. Anterior margin of head slightly produced, head in dorsal view as wide as pronotum; crown length 2/3rd as long as median length of the pronotum, anterior margin produced with concave posterior margin; face with brown and white irregular mottling; ocelli small, close to eyes on anterior margin of crown; clypellus 2.8x as long as wide; gena obtusely incised laterally (Fig. 1C).

Thorax. Pronotum anterior margin convex, 2x as broad as long, hind margin slightly concave; scutellum 1.5x as broad as long, and 0.6x as long as width of pronotum, with distinct scutoscutellar suture (Fig. 1D). Forewing elongate, veins raised, three subapical and four apical cell, claval vein raised with 2 crossoveins, appendix extended around the apex (Fig. 1I). Hind wing veination complete, appendix broad (Fig. 1J).

Legs. Prothoracic femur with AM1 seta only; intercalary row with one row of more than 5 fine setae; AV row with 2–3 macrosetae, AV1 seta long; AD setae small and sparsely arranged. Prothoracic tibia on dorsal surface rounded, AD row with 4–5 setae long, distributed widely; AV setae moderately dense and long (Fig. 1F). Mesothoracic femur
Figure 1 *Vittaliana reticulata* Sunil and Meshram gen. nov., sp. nov. Male. (A) Habitus dorsal; (B) Habitus lateral; (C) Face; (D) Pronotum; (E) Metathoracic femur; (F) Foreleg; (G) Midleg; (H) Hindleg; (I) Forewing; (J) Hindwing.

with AD setae small; AV row with basal half short setae and rest with macrosetae; AM seta present; intercalary row with one row of more than 5 fine setae (Fig. 1G). Metathoracic femur with setal formula 2+2+1; lateral surface area broadened distally; metathoracic tibia flattened, tibial row AD setae long and densely arranged, PD with long macrosetae placed equidistantly, AV setae small and densely arranged, PV with macrosetae moderately
arranged, Metatarsomere I length equals to tarsomere II and tarsomere III combined (Fig. 1H).

Male genitalia. Pygofer longer than wide with macrosetae in midlateral region, with anal tube long, 3/4th membranous from the base (Fig. 2A). Valve triangular with broad base (Fig. 2B). Subgenital plate triangular, basally broad, posterior half gradually narrowed towards apex, with 7–8 submarginal macrosetae, 7 microsetae medially on distal 2/3rd (Fig. 2F). Style broadly bilobed basally, subapical angle not prominent with few setae (Fig. 2C). Connective Y-shaped, stem 1.3x as long as arms (Fig. 2G). Aedeagus with well-developed dorsal apodeme, with a pair of medial processes arising from mid-length of shafts, gonopores subapical (Fig. 2D).

Female genitalia. Female seventh sternite trapezoid in shape, sternite 2x as wide as median length, hind margin with sinuate with shallow notch medially (Fig. 3I); first pair of valvulae wider beyond the base and narrowed at apex, with irregular sculpture on apical 1/2th, dorsal hyaline area restricted to basal half (Fig. 3F); second pair of valvulae, with small teeth and sculpting on apical half (Fig. 3H).
Figure 3 Vittaliana reticulata Sunil and Meshram gen. nov., sp. nov. Female. (A) Habitus dorsal; (B) Habitus lateral; (C) Pronotum; (D) Face; (E) Ist Valvulae; (F) Ist Valvulae apical view; (G) IInd Valvulae; (H) IInd valvulae apical view; (I) VIIth sternite.

Full-size DOI: 10.7717/peerj.9515/fig-3
Etymology
This genus was named after the place of collection, Vittal in Kerala, India.

Distribution
Kerala, Karnataka, India

Vittaliana reticulata sp. nov. Sunil and Meshram
urn:lsid:zoobank.org:act:E690A7AF-7FCD-4460-93BC-1274D932C5F4

Diagnosis. In addition to generic character, the specific characters for this species are: anterior margin of crown slightly produced with five white patches (Fig. 1D), face with brown and white irregular marking (Fig. 1C). Pygofer with a group of macrosetae confined to the mid-lateral region (Fig. 2A). Style with beak-like apophysis, directed posteriorly (Fig. 2C). Connective Y- shaped, stem longer than arms (Fig. 2G). Aedeagal gonopore opens subapically on ventral margin with constriction (Fig. 2D). Seventh sternite 2x as wide as median length, hind margin with shallow notch medially (Fig. 3I).

Description.

Colour. Body and face whitish with yellow and brown mottling; anterior margin of crown with five white patches (Fig. 1D). Pronotum brown mottled with white patches. Scutellum yellow with an orange basal triangle. (Fig. 1D); fore wing white speckled with brown patches (Fig. 1B).

Anterior margin of head slightly produced, head in dorsal view as wide as pronotum (Fig. 1D). Ocelli small, close to eyes on anterior margin of crown; clypellus 2.8x as long as wide. Gena obtusely incised laterally (Fig. 1C). Pronotum anterior margin convex, 2x as broad as long; scutellum 1.5x as broad as long with distinct scutoscutellar suture (Fig. 1D). Fore wing macropterous, veins raised, appendix expanded around the apex (Fig. 1I).

Male genitalia. Pygofer longer than wide with a group of macrosetae confined to mid-lateral region (Fig. 2A). Valve 2x as wide at base as long medially (Fig. 2B). Subgenital plate triangular, broad at base slightly tapering towards the apex with 7–8 submarginal macrosetae (Fig. 2F). Style bilobed basally, subapical angle not prominent with beak-like apophysis, directed posteriorly (Fig. 2C). Connective Y- shaped, stem longer than arms (Fig. 2G). Aedeagus with a pair of medial processes arising from mid-length of shafts, gonopore opens subapically on ventral margin with constriction (Fig. 2D).

Female genitalia. Seventh sternite 2x as wide as median length, hind margin with shallow notch medially (Fig. 3I). First pair of valvulae with an irregular sculpture on apical 1/2th (Fig. 3F). Second pair of valvulae with small teeth and sculpting on apical half (Fig. 3F).

Type material

Holotype
INDIA ♂; Kerala: Kasargod: Vittal CPCRI, 12°46′11.87″N, 75°06′47.91″E; 80m MSL; 24.I.2016; Anooj and Twinkle; mercury vapour lamp; RRS2 (NPC).
Paratypes

INDIA

• 1♂, 1♀; Kerala: Nilambur, 11.2794° N, 76.2398° E; 20.XI.2008; 200m MSL; Murthy S; mercury vapour lamp; RRS3 (♂), RRS4 (♀) (NPC); INDIA

• 1♀; Karnataka: Mudigere, 13.1365° N, 75.6403° E; 970m; 25.V.1976; mercury vapour lamp; RRS5 (NPC).

Etymology

The species name, “*reticulata*” is based on the reticulated forewing venation.

Molecular analysis

Maximum likelihood (ML) analysis using IQtree v1.4.1 of the 80 taxa and 6074bp aligned nucleotide position of combined Histone H3 and 28S rDNA (D2 & D9-D10 region) yielded maximum likelihood phylogenetic tree (Fig. 4) with good SH-like approximate likelihood ratio test (SH-aLRT), ultrafast bootstrap (UFB) and Bayesian-like transformation of aLRT (aBayes). Our new species *Vittaliana reticulata* is sister to clade *Opisius versicolor* (Distant), *Opsiini gen. sp.*, *Libengaia sp.*, *Hishimonus phycitis* (Distant) and *Yinfomibus menglaensis* Du, Liang & Dai. Among them *V. reticulata* closely associated with *Opisius versicolor* with good SH-aLRT score (77.7), UFB (89) and moderate aBayes (0.689), indicates that the new genus belongs to the tribe Opsiini under subfamily Deltoccephalinae. All included 11 species of Opsiini including new genus, form two clades in the phylogenetic tree resolve as paraphyletic with respect to clade Pendarini + Athysanini + Scaphytopiini in one clade and with Hecalini in another clade with SH-aLRT (>90), low UFB (>50) and aBayes (1).

DISCUSSION

The most important diagnostic character to the tribe Opsiini is the presence of bifurcate aedeagus with paired shafts and gonopores, although this character is also found in *Alococelidia* of the tribe Acostemini (*Zahniser & Nielsen, 2012*) and some genera of the tribe Scaphytopiini and Mukariini (*Zahniser & Dietrich, 2013*). *Vittaliana* gen. nov. the best fits into the tribe Opsiini because it lacks the diagnostic morphological characters that define the above tribes, i.e., Mukariini have a depressed body form, with the face nearly the horizontal and the anterior margin usually transversely carinate, and Scaphytopiini has the head strongly produced with gena extended onto dorsum behind eyes (*Du, Liang & Dai, 2019*). *Vittaliana* gen. nov. has the face oblique, not strongly depressed in profile, the stem of the connective is long, as in many other Opsiini and its aedeagal shafts arising from near to base, aedeagus distinctive outward curved apically, without processes arising from the base with a pair of medial processes arising from mid-length of shafts, apex without processes, and gonopore open subapically. Maximum likelihood (ML) analysis using combined data of Histone H3 and 28S rDNA (D2 & D9-D10 region) yielded a maximum likelihood phylogenetic tree. The new genus *Vittaliana* is sister to clade *Opisius versicolor*, *Opsiini gen. sp.*, *Libengaia sp.*, *Hishimonus phycitis*, and *Yinfomibus menglaensis* with good support branch, this resolve the placement of new genus in the tribe Opsiini. In the phylogenetic tree, 11 species of Opsiini including new genus form two clades, and connecting with species of Pendarini, Athysanini, Scaphytopiini and Hecalini with SH-aLRT (>90), low UFB (>50) and aBayes (1), this confirms the species of Opsiini resolve as paraphyletic. Our
Figure 4 Maximum-likelihood (ML) tree estimated from the combined dataset (Histone H3, 28S rDNA). At each node, values indicate ML support and Bayesian-like transformation of aLRT (aBayes); SH-like appropriate likelihood ratio test (SH-aLRT)/Ultrafast bootstrap (UFB)/ Bayesian-like transformation of aLRT (aBayes) values.

study is not consistent with the previous phylogenetic study of new genus *Yiniformibus Du, Liang & Dai (2019)* based on combined Histone H3 and 28S rDNA resolve tribe Opsiini as monophyletic with moderate bootstrap support (85%). In contrast, our study combined dataset of histone H3 and 28S rDNA resolve the tribe opsiini as paraphyletic with low UFB (>50) and aBayes (1) which may be due to the addition of more members of Opsiini in the phylogenetic analysis may diverge as paraphyletic. However, our study consistent with the previous phylogenetic analysis of Deltocephalinae including combined data
from the 28S rDNA, Histone H3 and morphological data (Zahniser & Dietrich, 2013) with approximately similar (<50% ML) bootstrap but the more detailed phylogenetic analysis is needed. Inclusion of more species of Opsiini and more gene addition may resolve the relationship of Opsiini in highly diverse Deltocephalinae.

CONCLUSION

The present study reveals that new genus Vittaliana reticulata gen. nov., sp. nov. belongs in the tribe Opsiini and subtribe Opsiina by morphological characters and molecular phylogenetic analysis. This genus differs from closely related genera by morphological characters and based on available molecular data analysis establish that this genus and species was closely related to the type genus of Opsiini and also indicated that the tribe Opsiini is paraphyletic. However further study is needed by adding more genes to see its evolutionary significance.

ACKNOWLEDGEMENTS

The author gratefully acknowledges Prof. C. A. Viraktamath for guidance on leafhoppers and Head, Division of Entomology, Indian Council of Agriculture Research-IARI, PG-School, New Delhi for providing necessary permission. We also acknowledge the input of four anonymous reviewers, and the associate editor, who greatly improved the manuscript.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the Department of Science and Technology grant (EMR/2016/006582). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Department of Science and Technology grant: EMR/2016/006582.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Sunil conceived and designed the experiments, performed the experiments, analyzed the data, prepared figures and/or tables, and approved the final draft.
• Naresh M. Meshram conceived and designed the experiments, analyzed the data, authored or reviewed drafts of the paper, and approved the final draft.
• Tahseen Raza Hashmi performed the experiments, prepared figures and/or tables, and approved the final draft.
• Pathour R. Shashank performed the experiments, authored or reviewed drafts of the paper, and approved the final draft.
Data Availability
The following information was supplied regarding data availability:

Vittaliana reticulata sequences are available at GenBank: MN512542 (28S Gene D2 region), MN512544 (28S Gene D9-D10 region) and MK359639 (Histone).

Type materials are deposited in National Pusa Collection, IARI, New Delhi, with repository number RRS2, RRS3, RRS4 and RRS5.

Data is also available at TreeBASE (Study ID S26664; https://treebase.org).

New Species Registration
The following information was supplied regarding the registration of a newly described species:

Publication LSID: urn:lsid:zoobank.org:pub:228D17FC-590C-41C7-9434-60554F753DBA.

Vittaliana LSID: urn:lsid:zoobank.org:act:51DA3683-0359-444F-8C11-F630518D8506

Vittaliana reticulata LSID: urn: lsid:zoobank.org:act:E690A7AF-7FCD-4460-93BC-1274D932C5F4.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/peerj.9515#supplemental-information.

REFERENCES

Anisimova M, Dufayard T, Dessimoz C, Gascuel O. 2011. Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation scheme. *Systematic Biology* 60(5):685–699 DOI 10.1093/sysbio/syr041.

Dai W, Dietrich CH, Zhang Y. 2011. Review of the Oriental leafhopper genus *Lampridius* (Hemiptera: Cicadellidae: Deltocephalinae), with description of a related new genus. *Zoological Science* 28:380–387 DOI 10.2108/zsj.28.380.

Dai W, Viraktamath CA, Zhang Y. 2010a. A review of the leafhopper genus *Hishi-monoides* (Hemiptera: Cicadellidae: Deltocephalinae), with description of a related new genus. *Zoological Science* 27(9):771–781 DOI 10.2108/zsj.27.771.

Dai W, Zahniser JN, Viraktamath CA, Webb MD. 2017. Punctulini (Hemiptera: Cicadellidae: Deltocephalinae), a new leafhopper tribe from the oriental region and Pacific Islands. *Zootaxa* 4226:229–248 DOI 10.11646/zootaxa.4226.2.4.

Dietrich CH, Rakitov RA, Holmes JL, Black WC. 2001. Phylogeny of the major lineages of membracoidea (Insecta: Hemiptera: Cicadomorpha) based on 28S rDNA sequences. *Molecular Phylogenetics and Evolution* 18(2):293–305 DOI 10.1006/mpev.2000.0873.

Du Y, Liang Z, Dai W. 2019. A remarkable new opsiine leafhopper genus (Hemiptera: Cicadellidae: Deltocephalinae) from Southern China, with notes on its phylogenetic position. *Systematics and Biodiversity* 17(1):51–59 DOI 10.1080/14772000.2018.1546239.
El-Sonbati SA, Wilson MR, Al Dhafer HM. 2017. A new leafhopper genus with two new species related to Masiripius Dlabola, 1981 (Hemiptera: Deltocephalinae, Cicadellidae: Opsiini). European Journal of Taxonomy 308:1–24 DOI 10.5852/ejt.2017.308.

El-Sonbati SA, Wilson MR, Al Dhafer HM. 2016. Paraorosius, a new genus of leafhopper (Hemiptera: Cicadellidae: Deltocephalinae: Opsiini), with description of a new species from the Middle East. Zootaxa 4150:581–590 DOI 10.11646/zootaxa.4150.5.5.

El-Sonbati SA, Wilson MR, Dhafer HM. 2020. The Tamarix feeding Leafhopper genus Opsius Fieber, 1866 (Hemiptera, Cicadellidae, Deltocephalinae, Opsiini) in the Kingdom of Saudi Arabia, with description of a new species. Deutsche Entomologische Zeitschrift 67(1):1–12 DOI 10.3897/dez.67.46662.

Emeljanov AF. 1962. Materials on taxonomy of Palaearctic leafhoppers (Auchenorrhyncha, Euscelinae). Trudy Zoologicheskogo Instituta Akademii Nauk SSR, Leningrad 30:156–184.

Fletcher MJ, Dai W. 2018. A new genus Austrimonus for Eutettix melaleucae Kirkaldy (Hemiptera: Cicadellidae: Deltocephalinae: Opsiini) and nine new species. Zootaxa 4387:310–330 DOI 10.11646/zootaxa.4387.2.4.

Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59:307–321 DOI 10.1093/sysbio/syq010.

Hashmi TR, Devi SR, Ahmad A, Meshram MM, Prasad R. 2018. Genetic status and endosymbionts diversity of Bemisia tabaci (Gennadius) on hosts belonging to family malvaceae in India. Neotropical Entomology 48:207–218 DOI 10.1007/s13744-018-0639-y.

Knight WJ. 1965. Techniques for use in the identification of leafhoppers (Homoptera: Cicadellidae). Entomology Gazette 16:129–136.

Meshram NM, Chaubey R. 2016. Two new species of the genus Hishimonus (Hemiptera: Cicadellidae) with a new record from India. Zootaxa 4103(3):259–266 DOI 10.11646/zootaxa.4103.3.4.

Meshram NM, Shashank PR, Sinha T. 2017. A new genus of leafhopper subtribe Paraboloponina (Hemiptera: Cicadellidae) with molecular phylogeny of related genera. PLOS ONE 12(5):e0177644 DOI 10.1371/journal.pone.0177644.

Minh BQ, Nguyen MAT, von Haeseler A. 2013. Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution 30:1188–1195 DOI 10.1093/molbev/mst024.

Mitjaev ID. 2000. New species of leafhoppers (Cicadinea: Cicadellidae) from the tugay and mountain landscapes of southeastern Kazakhstan. Tethys Entomological Research 2:61–64.

Nguyen LT, Schmidt HA, Haeseler Avon, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32:268–274 DOI 10.1093/molbev/msu300.

Nielsen MW. 2002. The leafhopper vectors of phytopathogenic viruses (Homoptera, Cicadellidae): taxonomy, biology, and virus transmission. In: Fletcher J, Wayadande
A, eds. Technical bulletin 1382. U.S. Department of Agriculture, Washington D.C. Fastidious vascular-colonizing bacteria. The Plant Health Instructor APS, U.S.A DOI 10.1094/PHI-I-2002-1218-02.

Ogden TH, Whiting M. 2003. The problem with the Paleoptera problem: sense and sensitivity. Cladistics 19:432–442 DOI 10.1111/j.1096-0031.2003.tb00313.x.

Oman PW. 1949. The Nearctic leafhoppers (Homoptera: Cicadellidae) A generic classification and check list. Memoirs of the Entomological Society of Washington 3:1–253.

Stiller M. 2012. New leafhopper genera and species (Hemiptera: Cicadellidae) which feed on Velloziaceae from Southern Africa, with a discussion of their trophobiosis. Zootaxa 3509:35–54 DOI 10.11646/zootaxa.3509.1.2.

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013a. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30(12):2725–2729 DOI 10.1093/molbev/mst197.

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013b. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30:2725–2729 DOI 10.1093/molbev/mst197.

Vaidya G, Lohman DJ, Meier R. 2011. SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27:171–180 DOI 10.1111/j.1096-0031.2010.00329.x.

Viraktamath CA, Anantha Murthy HV. 1999. A revision of the leafhopper tribe Scaphytopiini from India and Nepal (Insecta, Hemiptera, Cicadellidae, Deltocephalinae). Senckenbergiana Biologica 76(1):39–55.

Viraktamath CA, Murthy HA. 2014. Review of the genera Hishimonus Ishihara and Litura Knight (Hemiptera: Cicadellidae) from Indian subcontinent with description of new species. Zootaxa 3785(2):101–138 DOI 10.11646/zootaxa.3785.2.1.

Viraktamath CA, Murthy HA, Viraktamath S. 1987. The deltocephaline leafhopper genus Hishimonoides in the Indian subcontinent (Homoptera). Journal of Natural History 21:1225–1236 DOI 10.1080/00222938700770741.

Zahniser JN, Dietrich CH. 2013. A review of the tribes of Deltocephalinae (Hemiptera: Auchenorrhyncha: Cicadellidae). European Journal of Taxonomy 45:1–211 DOI 10.5852/ejt.2013.45.

Zahniser JN, Nielson MW. 2012. An extraordinary new genus and three new species of Acostemmini (Hemiptera: Cicadellidae: Deltocephalinae) from Madagascar with comments on the morphology and classification of the tribe. Zootaxa 3209:28–52 DOI 10.11646/zootaxa.3209.1.2.

Zahniser JN, Dietrich CH. 2010. Phylogeny of the leafhopper subfamily Deltocephalinae (Hemiptera: Cicadellidae) based on molecular and morphological data with a revised family-group classification. Systematic Entomology 35(3):489–511 DOI 10.1111/j.1365-3113.2010.00.