The moment of inertia of V-shaped internal combustion engines

A V Egorov¹, O G Egorova¹, Yu E Smikulis¹, A V Ignatiev¹, K S Stepanova¹, A V Lysyannikov², Yu F Kaizer²,₄ and T I Matkerimov³

¹Volga State University of Technology, 3, Lenin Square, Yoshkar–Ola, 424000, Russia
²Siberian Federal University, 82/6, Svobodny Avenu, Krasnoyarsk, 660041, Russia
³Kyrgyz State Technical University named after I. Razzakov, 66, Chingiz Aitmatov Avenue, Bishkek, 720044, Kyrgyzstan

₄E–mail: kaiser171074@mail.ru

Abstract. This work contains a solution to the problem of developing a mathematical model and the results of numerical simulation of the change in the inertia of the moving mass V-shaped piston internal combustion engines (ICE) reduced to the axis of rotation of the crankshaft depending on the angle of rotation of the crankshaft during one revolution. The solution of this problem is an important step in the mathematical description of the dependence of the torque developed by the V-shaped piston ICE, depending on the angle of rotation of the crankshaft. Knowing the dependence of the torque developed by the V-shaped piston ICE, depending on the angle of rotation of the crankshaft, is a prerequisite for designing and optimizing the design of non-linearly loaded processing equipment using V-shaped piston ICEs as the drive. The results of mathematical modeling show that the moment of inertia of the moving masses of the V-shaped piston ICE reduced to the axis of rotation of the crankshaft is constantly changing during one revolution of the crankshaft. The greatest change in the moment of inertia of the moving masses reduced to the axis of rotation of the crankshaft takes place in 2- and 4-cylinder V-shaped piston internal combustion engines.

1. Introduction

As an analysis of open sources of information shows, currently work in the field of modeling V-shaped piston ICEs does not stand out as a separate unit, but is carried out as a whole for piston ICEs in the field of:

- modeling of fuel combustion processes [1-3];
- simulation of gas-dynamic processes both inside the cylinder and in the intake and exhaust systems [4-14];
- modeling of heat transfer processes inside the cylinder [15-18];
- modeling of friction processes in the details of a cylinder-piston group [19];
- modeling in order to optimize the design [20-23];
- simulation of the impact interaction of the piston [24];
- simulation of engine cycles [25];
- simulation of an engine control system [26].
To solve the problems of optimal aggregation of non-linearly loaded technological equipment using V-shaped piston ICEs as a drive, it is necessary to know the law of change of the moment of inertia of the moving masses of the engine brought to the axis of rotation of the crankshaft. Knowledge of this law is also required to solve the problems of developing methods and means of dynamic control of the mechanical parameters of rotary motors and drives based on them [27-28].

2. Materials and methods
The most common to date schemes of crank mechanisms (CM) are V-shaped axial (two, four, six, eight and twelve cylinder).

According to [29], the accuracy of determining power and torque should be at least 99%. Therefore, it is important to evaluate the nature of the change in the moment of inertia of the crankshaft during one revolution of the crankshaft in order to achieve the required accuracy indicator.

To do this, we will carry out a qualitative analysis of the nature of the change in the moment of inertia of the V-shaped axial CShM.

Figure 1 shows a diagram of an axial crankshaft V-shaped ICE with one pair of cylinders. In figure 1, the following designations are adopted: \(r \) - radius of the crank; \(l \) - is the length of the connecting rod; \(l_0 \) - is the distance from the axis of the connecting rod journal to the center of gravity of the connecting rod; \(b_{10} \) - is the distance from the center of gravity of the left connecting rod to the axis of rotation of the crankshaft; \(b_{11} \) - is the distance from the center of gravity of the left piston pin to the axis of rotation of the crankshaft; \(b_{20} \) - is the distance from the center of gravity of the right connecting rod to the axis of rotation of the crankshaft; \(b_{21} \) - is the distance from the center of gravity of the right piston pin to the axis of rotation of the crankshaft; \(c_0 \) - is the distance from the center of gravity of the piston pin to the center of gravity of the piston; \(\alpha \) - is the angle of deviation of the axis of the left connecting rod from the axis of the cylinder; \(\alpha_1 \) - is the angle of deviation of the axis of the right connecting rod from the axis of the cylinder; \(\beta \) - is the angle between the crank and the left connecting rod; \(\beta_1 \) - is the angle between the right crank and the left connecting rod; \(\varphi \) - is the angle of rotation of the crank, counted in the direction of rotation of the crank from its position at which the piston is at top dead center; \(\gamma \) - is the angle between the axes of the left and right cylinders.

![Figure 1](image.png)

Figure 1. Scheme of axial CShM V-shaped ICE of a V-shaped internal combustion engine with one pair of cylinders.

The angle \(\alpha \) is found from the relation \(r \sin \varphi = l \sin \alpha \)
\[\alpha = \arcsin \left(\frac{r}{l} \sin \varphi \right). \]

(1)

Angle

\[\beta = 180 - \alpha - \varphi. \]

(2)

The distances \(b_{10} \) and \(b_{11} \) are determined by the cosine theorem:

\[b_{10} = \sqrt{r^2 + l_0^2 - 2rl_0 \cos \beta}; \]

(3)

\[b_{11} = \sqrt{r^2 + l^2 - 2rl \cos \beta}. \]

(4)

The angle \(\alpha_i \) is found from the relation \(r \sin(\gamma - \varphi) = l \sin \alpha_i \)

\[\alpha_i = \arcsin \left(\frac{r}{l} \sin(\gamma - \varphi) \right). \]

(5)

Angle

\[\beta_i = 180 - \alpha_i - (\gamma - \varphi). \]

(6)

The distances \(b_{20} \) and \(b_{21} \) are determined by the cosine theorem:

\[b_{20} = \sqrt{r^2 + l_0^2 - 2rl_0 \cos \beta_1}; \]

(7)

\[b_{21} = \sqrt{r^2 + l^2 - 2rl \cos \beta_1}. \]

(8)

The moment of inertia of the left piston of mass \(m_p \) relative to the axis of rotation of the crankshaft is

\[J_{lp} = m_p \left(b_{11} + c_0 \right)^2 + J_{lp0}, \]

(9)

where \(J_{lp0} \) - is the moment of inertia of the left piston relative to its central axis.

The moment of inertia of the left piston pin \(m_{pp} \) relative to the axis of rotation of the crankshaft has the expression

\[J_{lpp} = m_{pp} b_{11}^2 + J_{lpp0}, \]

(10)

where \(J_{lpp0} \) - is the moment of inertia of the left piston pin relative to its central axis.

For the moment of inertia of the left connecting rod \(m_{cr} \) relative to the axis of rotation of the crankshaft, we find

\[J_{lcr} = m_{cr} b_{10}^2 + J_{lcr0}, \]

(11)

where \(J_{lcr0} \) - is the moment of inertia of the left connecting rod with respect to its central axis.

The moment of inertia of the right piston of mass \(m_p \) relative to the axis of rotation of the crankshaft will be
\[J_{pp} = m_p (b_{21} + c_0)^2 + J_{pp0}, \]

(12)

where \(J_{pp0} \) - is the moment of inertia of the right piston relative to its central axis.

The moment of inertia of the right piston pin \(m_{pp} \) relative to the axis of rotation of the crankshaft will be

\[J_{ppp} = m_{pp} b_{21}^2 + J_{pp0}, \]

(13)

where \(J_{ppp} \) - is the moment of inertia of the right piston pin relative to its central axis.

The moment of inertia of the right connecting rod \(m_{cr} \) relative to the axis of rotation of the crankshaft is expressed as

\[J_{cr} = m_{cr} b_{20}^2 + J_{cr0}, \]

(14)

where \(J_{cr} \) - is the moment of inertia of the right connecting rod with respect to its central axis.

Assuming the moment of inertia of the crankshaft \(J_c \) to be constant and independent of the position of the crankshaft, we determine the moment of inertia of the axial crankshaft in-line piston ICE:

\[J_{CShM} = J_{lp} + J_{pp} + J_{lcr} + J_{pp} + J_{ppp} + J_{cr} + J_{c}. \]

(15)

To determine the dependence \(J_{CShM} \) of four, six, eight, ten and twelve cylinder V-shaped ICEs on the angle of rotation of the crank \(\varphi \), we perform mathematical modeling at \(r/l = 0.3 \), \(m_p / m_{cr} = 0.5 \) [30]. The simulation results are summarized in table 1.

Table 1. The simulation results.

№	Number of cylinders	The angle between the rows of cylinders, °	The angle between the cranks, °	The dependence of \(J_{CShM} \) on the angle of rotation of the crank \(\varphi \)
1	Two	90	180	![Graph](image.png) Angle of rotation of the crankshaft, degrees
2	Four	90	180	![Graph](image.png) Angle of rotation of the crankshaft, degrees
6

90

120

3 Six 120

120

90

90

4 Eight 180

120 90
The nature of the change in the crankshaft moment of inertia of the crankshaft reduced to the axis of rotation of the crankshaft during one revolution of the crankshaft does not exceed 2% for a 6-cylinder internal combustion engine (angle between cylinder axes - 90°, angle between cranks - 120°) and 1% for all other cases.

The use of flywheels on V-shaped ICEs is connected, first of all, with the need to accumulate kinetic energy to ensure the beginning of the operation of technological equipment, and only then - to ensure uniform operation of the ICE itself.

This distinguishes V-engines, for example, from in-line piston ICEs, in which the crankshaft inertia moment for the crankshaft rotation axis during one revolution of the crankshaft can vary significantly.

3. Conclusion
In the programming language Borland Delphi 7.0, an autonomous program has been developed for calculating the crank shaft inertia moment of the crankshaft V-shaped internal combustion engine. The program allows you to determine the moment of inertia of the CABG V-shaped piston machines with the number of cylinders from 4 to 12.

References
[1] Lapointe S, Zhang K and McNenly M J 2019 Reduced chemical model for low and high-temperature oxidation of fuel blends relevant to internal combustion engines Proceedings of the Combustion Institute 37(1) 789-96
[2] Zhen X, Wang Y and Liu D 20216 A new improvement on a chemical kinetic model of primary reference fuel for multi-dimensional CFD simulation Energy Conversion and Management 109 113-21
[3] Monteiro E, Sotton J, Bellenoue M, Moreira N A and Malheiro S 2011 Experimental study of syngas combustion at engine-like conditions in a rapid compression machine Experimental Thermal and Fluid Science 35(7) 1473-9
[4] Gubba S R, Jupudi R S, Pasunurthi S S, Wijeyakulasuriya S D, Primus R J, Klingbeil A and Finney C E A 2018 Capturing Pressure Oscillations in Numerical Simulations of Internal Combustion Engines Journal of Solar Energy Engineering, Transactions of the ASME 140(8) 082205
[5] Buhl S, Dietzsch F, Buhl C and Hasse C 2017 Comparative study of turbulence models for scale-resolving simulations of internal combustion engine flows Computers and Fluids 156 66-80
[6] Berton A, D’Orrico F and Sideri M 2017 Overset grids for fluid dynamics analysis of internal combustion engines Energy Procedia 126 979-86
[7] Krastev V K, Silvestri L and Falcucci G 2017 A modified version of the RNG k-ε turbulence model for the scale-resolving simulation of internal combustion engines Energies 10(12) 2116
[8] Gubba S R, Jupudi R S, Pasunurthi S S, Wijeyakulasuriya S D, Primus R J, Klingbeil A and Finney C E A 2017 Capturing Pressure Oscillations in Numerical Simulations of Internal Combustion Engines ASME 2017 Internal Combustion Engine Division Fall Technical Conference (ICEF) 2
[9] Yang X, Keum S and Kuo T-W 2016 Effect of valve opening/closing setup on computational fluid dynamics prediction of engine flows Journal of Engineering for Gas Turbines and Power 138(8) 081503
[10] Wentsch M, Perrone A, Chiodi M, Bargende M and Wichelhaus D 2015 Enhanced Investigations of High-Performance SI-Engines by Means of 3D-CFD Simulations SAE Technical Papers
[11] Yang X, Keum S and Kuo T-W 2015 Effect of valve opening/closing setup on cfd prediction of engine flows ASME Internal Combustion Engine Division Fall Technical Conference (ICEF) 2
[12] Yang X, Gupta S, Kuo T-W and Gopalakrishnan V 2014 RANS and large Eddy simulation of internal combustion engine flows-A comparative study Journal of Engineering for Gas Turbines and Power 136(5) 051507
[13] Montorfano A, Piscaglia F and Onorati A 2014 Wall-adapting subgrid-scale models to apply to large eddy simulation of internal combustion engines International Journal of Computer Mathematics 91(1) 62-70
[14] Casoli P, Gambarotta A, Pomppini N, Caiazza U, Lanfranco E and Palmisano A 2014 Development and validation of a "crank-angle" model of an automotive turbocharged engine for HiL applications Energy Procedia 45 839-48
[15] Agrira A, Buttsworth D R and Said M A 2014 Instantaneous heat flux simulation of a motored reciprocating engine: Unsteady thermal boundary layer with variable turbulent thermal conductivity Journal of Heat Transfer 136(3) 031703
[16] Dong Z, Chen G, Jiang Y and Wang C 2012 Modeling of heat transfer for coupling components systems of internal combustion engine using FEM and KIVA Journal of Huazhong University of Science and Technology (Natural Science Edition) 40(9) 122-7
[17] Buttsworth D R, Agrira A, Malpress R and Yusaf T 2011 Simulation of instantaneous heat transfer in spark ignition internal combustion engines: Unsteady thermal boundary layer modeling Journal of Engineering for Gas Turbines and Power 133(2) 022802
[18] Buttsworth D R, Agrira A, Malpress R and Yusaf T 2009 Simulation of instantaneous heat transfer in spark ignition internal combustion engines - Unsteady thermal boundary layer modelling Proceedings of the ASME Internal Combustion Engine Division Fall Technical Conference 413-9
[19] Offner G 2013 Friction power loss simulation of internal combustion engines considering mixed lubricated radial slider, axial slider and piston to liner contacts Tribology Transactions 56(3) 503-15
[20] López E J, Toth E J, Nigro N M and Storti M A 2010 In search of improvements for the computational simulation of internal combustion engines Computational Mechanics Research Trends 365-452
[21] López E J and Nigro N M 2010 Validation of a 0D/1D computational code for the design of several kind of internal combustion engines Latin American Applied Research 40(2) 175-84
[22] Buttsworth D 2009 Multizone internal combustion engine modelling: Initial assessment of a simulation tool developed in matlab ICEE - Proceeding 3rd International Conference on Energy and Environment: Advancement Towards Global Sustainability 5398624 343-7
[23] Ju D-M, Meng H and Han K 2009 Study of co-simulation of engine and cool system Journal of System Simulation 21(7) 1841-4
[24] Wang P, Deng Z-X, Pan F-S, Zhao B and Zhang J-L 2008 Modeling and simulation of internal combustion engine piston slap Journal of System Simulation 20(20) 5476-9
[25] Wen M, Lu L and Jiang G 2007 One-dimensional numerical simulation of CNG engine cycle Journal of Wuhan University of Technology (Transportation Science and Engineering) 31(3) 476-9
[26] Rabbath C A, Desira H and Butts K 2001 Effective modeling and simulation of internal combustion engine control systems Proceedings of the American Control Conference 2 1321-6
[27] Kozlov K E, Belogusev V N and Egorov A V 2019 Development of method and instruments to identify efficiency of tracked vehicles Lecture Notes in Mechanical Engineering 9783319956299 1107-15

[28] Egorov A, Kozlov K and Belogusev V 2018 A method and instruments to identify the torque, the power and the efficiency of an internal combustion engine of a wheeled vehicle International Conference on Modern Technologies for Non-Destructive Testing. IOP Conf. Series: Materials Science and Engineering 289 012038

[29] ISO 15550-2016 Internal combustion engines - Determination and method for the measurement of engine power - General requirements

[30] Virubov D N 1984 Internal combustion engine: Designing and calculation on durability of the piston and combined internal combustion engines. The textbook for the highest technical educational institutions in "Internal combustion engines" Under edition A S Orlin, M G Kruglov - 4 prod processed and added - M: (Mashinostroenie) p 384