Bound-state dark matter and Dirac neutrino mass

M. Reig 1,∗ D. Restrepo 2 † J. W. F. Valle 1, ‡ and O. Zapata 2 §

1 AHEP Group, Institut de Física Corpuscular – C.S.I.C./Universitat de València, Parc Científic de Paterna, C/Catedrático José Beltrán, 2 E-46980 Paterna (València) - SPAIN
2 Instituto de Física, Universidad de Antioquia, Calle 70 No. 52-21, Apartado Aéreo 1226, Medellín, Colombia.

We propose a simple theory for the idea that cosmological dark matter (DM) may be present today mainly in the form of stable neutral hadronic thermal relics. In our model neutrino masses arise radiatively from the exchange of colored DM constituents, giving a common origin for both dark matter and neutrino mass. The exact conservation of $B - L$ symmetry ensures dark matter stability and the Dirac nature of neutrinos. The theory can be falsified by dark matter nuclear recoil direct detection experiments, leading also to possible signals at a next generation hadron collider.

PACS numbers: 13.15.+g, 14.60.Pq, 14.60.St, 95.35.+d

I. INTRODUCTION

The common lore concerning particle dark matter candidates has long been that they must be electrically neutral and carry no color. This view has been challenged by the authors in Ref. [1], who suggested that dark matter (DM) may be the lightest hadron made of two stable color octet Dirac fermions Q with mass below 10 TeV. The interest of this idea may go well beyond QCD, since analogous bound-state DM candidates emerge in models with a new confining hypercolor interaction [2].

We argue that neutrino mass and cosmological dark matter may have a common origin, with the underlying DM physics acting as messenger of neutrino mass generation [3–6]. We propose a simple implementation of the bound-state dark matter scenario in which DM constituents induce calculable neutrino mass at the radiative level. Dark matter is a QCD bound state QQ stabilized by the same conserved $B - L$ symmetry associated to the Dirac nature of neutrinos [7].

In addition to the heavy Dirac fermion, our model introduces extra scalars, in order to ensure that at least two neutrino masses are nonzero, required by the neutrino oscillation data in order to account both for solar and atmospheric mass scales [8]. This simple picture can account for current neutrino oscillation and dark matter phenomena, and can be falsified relatively soon, in nuclear recoil studies at XENON1T [9]. Moreover, the extra colored states, including scalar bosons, may lead to new phenomena at a next generation hadron collider.

II. THE MODEL

As a theory preliminary, we recall that, within the type-I seesaw mechanism with a single right-handed neutrino, two neutrinos remain massless after the seesaw [10]. This degeneracy is lifted by calculable loop corrections 1. Here we propose a variant radiative seesaw scheme, in which a single colored fermion Dirac messenger Q is introduced, charged under the $U(1)_{B-L}$ symmetry, plus two sets of colored scalars, labeled by $a = 1, 2$, see table I.

Apart from the right-handed neutrinos, all of the new particles are colored. For definiteness, we assign them to the octet SU(3)$_c$ representation 2. We also impose that the $B - L$ symmetry holds, together with a Z_2 symmetry. The former ensures that Q has only a Dirac-type mass term, while the latter forbids the tree-level Dirac neutrino mass terms from $\nu_R^T H^0 L_J$. The Lagrangian contains the following new terms (summation is implied over repeated indices,

* mario.reig@ific.uv.es
† restrepo@udea.edu.co
‡ valle@ific.uv.es, URL: de http://astroparticles.es/
§ oalberto.zapata@udea.edu.co

1 An analogous situation happens in supersymmetry with bilinear breaking of R parity [11–13], which induces the solar scale at one-loop, once atmospheric scale is taken as tree level input.
2 Notice, however, that our neutrino mass discussion also holds if they had different SU(3)$_c$ transformation properties.
The condition \(r \neq 1 \) forbids Higgs-like Yukawa couplings of \(\eta^a \) to the Standard Model fermions (for \(r = 1 \) one would need an additional \(Z_2 \) symmetry, as in [14]). The new part of the scalar potential can be cast as

\[
\mathcal{V}(H, \eta_a, \sigma_a) = \mathcal{V}(\eta_a) + \mathcal{V}(\sigma_a) + \mathcal{V}(\eta_a, \sigma_a) + \mathcal{V}(H, \eta_a) + \mathcal{V}(H, \sigma_a),
\]

where the various terms in the Higgs potential are

\[
\mathcal{V}(\eta_a, \sigma_a) = \kappa_{ab} \mathrm{Tr} \left(\sigma_a \eta_b \right) H + \lambda_{\eta_H} H^\dagger H \mathrm{Tr} \left(\eta^2 \eta \right) + \lambda_{\sigma_H} H^\dagger H \mathrm{Tr} \left(\sigma^2 \sigma \right) + \text{h.c.,}
\]

\[
\mathcal{V}(H, \eta_a) = \lambda_{\eta_H} H \mathrm{Tr} \left(\eta^2 \eta \right) + \lambda_{\eta_H} H \mathrm{Tr} \left(\eta^2 \eta \right) + \text{h.c.,}
\]

\[
\mathcal{V}(H, \sigma_a) = \lambda_{\sigma_H} H \mathrm{Tr} \left(\sigma^2 \sigma \right) H + \text{h.c..}
\]

Since CP conservation is assumed, the CP-even and CP-odd scalars do not mix. Moreover, terms like \((\eta^i H)^2 \) are also forbidden and, as a consequence, the real and imaginary parts of the scalars with nonzero \(B - L \) charges are degenerate. Note, however, that the cubic scalar coupling terms \(\kappa_{ab} \) breaking the \(Z_2 \) symmetry softly allow for the mixing between the \(\sigma_a \) and \(\eta_a \). At the end the \(4 \times 4 \) mass matrices for the CP-odd and CP-even scalars are equal, since the \(\kappa_{ab} \) terms do not break such a degeneracy.

In order to illustrate the neutrino mass generation mechanism we consider the following block-diagonal mass matrix for the the CP-even scalars (in the basis \(S_R = (\eta^0_R, \eta^0_{1R}, \eta^0_{2R}, \sigma^0_{2R})^T \)):

\[
M^2_R = \begin{pmatrix}
0 & \frac{\kappa_{11}}{\sqrt{2}} & 0 & 0 \\
\frac{\kappa_{11}^*}{\sqrt{2}} & 0 & 0 & 0 \\
0 & 0 & \frac{\kappa_{22}}{\sqrt{2}} & 0 \\
0 & 0 & 0 & \frac{\kappa_{22}^*}{\sqrt{2}}
\end{pmatrix}.
\]

Here we have used the parametrization \(\eta_a = (\eta_a^+, \eta_{aR}^0 + i \eta_{aI}^0)/\sqrt{2} \), \(\sigma_a = (\sigma_{aR}^0 + i \sigma_{aI}^0)/\sqrt{2} \), and \(H = (0, (h + v)/\sqrt{2})^T \), with \(h \) denoting the standard model Higgs boson, and \(v = 246 \text{ GeV} \). The parameters \(\mu_{\eta(\sigma)} \) are the quadratic mass terms after electroweak symmetry breaking in \(\mathcal{V}(\eta_a) \) and \(\mathcal{V}(\sigma_a) \).
Since the tree-level Dirac mass term is forbidden by symmetry, calculable neutrino masses are generated at one-loop order, by the Feynman diagram displayed in Fig. 1. One finds the following effective mass matrix

\[
(M_{\nu})_{ij} = \frac{N_c M_Q}{64\pi^2} \sum_{a=1}^{2} h_i^a y_j^a \frac{\sqrt{2} \kappa_{aa} v}{m_{S_{2R}}^2 - m_{S_{1R}}^2} \\
\left[F \left(\frac{m_{S_{2R}}^2}{M_Q^2} \right) - F \left(\frac{m_{S_{1R}}^2}{M_Q^2} \right) \right] + (R \to I) \tag{7}
\]

where \(F(m_{S_{aR}}^2/M_Q^2) = m_{S_{aR}}^2 \log(m_{S_{aR}}^2/M_Q^2)/(m_{S_{aR}}^2 - M_Q^2) \) and the SU(3)_c color factor \(N_c \) is assumed to be 8, since the new particles running in the loop transform as octets. The four CP-even mass eigenstates are denoted as \(S_i \). So that if \((\mu_{aa}^a)^2 \gg M_Q^2 \) one has

\[
(M_{\nu})_{ij} = \frac{N_c M_Q}{32\pi^2} \sqrt{2} \kappa_{aa}^a v \sum_{a=1}^{2} \frac{h_i^a y_j^a}{(\mu_{aa}^a)^2 - M_Q^2} \left[1 - \frac{M_Q^2}{(\mu_{aa}^a)^2 - M_Q^2} \log \left(\frac{(\mu_{aa}^a)^2}{M_Q^2} \right) \right],
\]

so that if \((\mu_{aa}^a)^2 \gg M_Q^2 \) one has

\[
(M_{\nu})_{ij} = \frac{N_c M_Q}{32\pi^2} \sqrt{2} v \sum_{a=1}^{2} \kappa_{aa}^a h_i^a y_j^a \left(\frac{h_i^a y_j^a}{(\mu_{aa}^a)^2} \right) \sim 0.03 \text{eV} \left(\frac{M_Q}{9.5 \text{ TeV}} \right) \left(\frac{\kappa_{aa}^a}{1 \text{ GeV}} \right) \left(\frac{50 \text{ TeV}}{\mu_{aa}^a} \right)^2 \left(\frac{h_i^a y_j^a}{10^{-6}} \right). \tag{8}
\]

One sees that, indeed, small neutrino masses arise naturally by taking reasonable values for the Yukawa couplings, small value for the soft breaking parameter \(\kappa_{ab} \), as well as sufficiently large values for the scalar masses. Notice that the smallness of \(\kappa_{ab} \) is natural, as the theory attains a larger symmetry when \(\kappa_{ab} \to 0 \), i.e. the smallness of neutrino mass is symmetry-protected.

In short, concerning neutrino mass generation, our model provides a colored variant of the one suggested in [14]. However, although the neutrino mass generation is similar in both models, the details of the associated physics differ substantially.

\[\text{\footnotesize Here one would recover the rank-one situation characterizing the type-I seesaw in the limit where one set of scalars decouples.}\]
III. BOUND-STATE DARK MATTER STABILITY FROM DIRAC NEUTRINOS

The Dirac nature of neutrinos may ensure dark matter stability, as suggested in [7]. Here we clone this idea with the proposal that dark matter may be present today mainly in the form of stable neutral hadronic thermal relics. For definiteness we assume DM is a neutral bound-state of colored constituents, such as QQ, where Q is a vector-like color octet isosinglet fermion. It was claimed that a necessary and sufficient condition for dark matter stability in this case is the presence of a global $U(1)_D$ dark baryon number, under which the Q is charged [1]. In our present model construction the role of such apparently ad-hoc symmetry is played by the usual $B - L$ symmetry present in the Standard Model. In fact, in our model dark matter stability, and the Dirac nature of the exotic fermion Q and of the neutrinos are all equivalent, and result from $B - L$ conservation.

An adequate thermal relic density of bound-state dark matter requires the lightest constituent vector-like color octet Dirac fermion, Q, to have a mass ≈ 9.5 TeV, so that the QQ hadron weighs approximately 19 TeV [1].

The set of scalars η^a, σ^a in Fig. 1 can be either neutral or charged under $B - L$, depending on the baryon number assignment. If $B - L$ neutral, both η^a and σ^a are expected to be unstable, decaying to quarks [16] and two gluons respectively [17, 18]. In contrast, in the second case, if the lightest octet particle were a scalar, then it would be strictly stable.

Bound-state dark matter will impart nuclear recoil in underground dark matter search experiments. The spin-independent direct detection cross-section is given as

$$\sigma_{SI} \approx 2 \times 10^{-45} \text{ cm}^2 \left(\frac{20 \text{ TeV}}{M_{QQ}} \right)^6 \frac{\Omega_{QQ}}{\Omega_{\text{Planck}}} ,$$

where $M_{QQ} = 2M_Q$, as shown in the red line in Fig. 2.

FIG. 2. The red line gives the spin independent cross section as a function of $M_{QQ} = 2M_Q$. The star denotes the mass required for a thermal bound state DM (19 TeV). Smaller values can be probed by direct searches, the blue line gives the current bound, while the black (dashed, dotted and dot-dashed) lines represent future sensitivities.

In this figure the star corresponds to the case where our bound-state DM makes up 100% of the cosmological dark matter. In the presence of an additional dark matter particle, such as the axion, bound-state dark matter masses below 19 TeV can be envisaged, as indicated by the red line. In this case their contribution to the relic density will be correspondingly smaller, while the spin-independent cross section would be correspondingly larger. The blue line represents the current limit of PandaX [19]. The black (dashed, and dot-dashed) lines represent the future sensitivities expected at XENON1T [9] and LZ [20]. On the other hand we note that, within the standard thermal cosmological scenario, DM masses above 19 TeV are ruled out by current observations by the Planck collaboration [21] (gray band).

Notice that the current LHC limit of 2 TeV (next section) implies that the cross section is always small enough so as to have the bound-state dark matter candidate reaching underground detectors. For more detailed discussion and general aspects of the cosmology of a stable colored relic see [22].
IV. COLOR OCTETS AT HADRON COLLIDERS

In our model the messengers of neutrino mass generation are the colored constituents of bound-state dark matter. Given enough energy, the Q’s are copiously pair produced at hadron colliders, through the processes $q_i \bar{q}_i \rightarrow Q \bar{Q}$ and $gg \rightarrow Q \bar{Q}$, and are expected to hadronize. In contrast to WIMP dark matter scenarios, which engender only missing-energy signals, the bound-state dark matter scenario gives rise to very visible signals at hadron colliders, as they can form either neutral or charged bound states [1], e.g. neutral hybrid states Qg (detected as neutral hadrons, presumably stable) or charged $Qgq\bar{q}$ states, or more exotic Qqq states, expected to be long-lived on collider time-scales.

Current LHC data place a limit to the fermion color octet mass, $M_Q > 2$ TeV [23]. Since the cosmological relic abundance requires $M_Q \approx 9.5$ TeV, this scenario offers an attractive benchmark for future collider experiments beyond the energies attainable at the LHC. In fact, from the estimate in Ref. [24] one finds that a hadron collider of at least 65 TeV center-of-mass energy would be required to probe the full cosmologically allowed range of masses of our bound-state DM model. This will allow a cross-check of the DM search results of XENON1T, expected quite soon, in just one year or so. Concerning the scalar messengers, we have two pairs of these, the $\sigma_a \sim (8, 1, 0)$, which are singlets under $SU(2)_L$, and the η_a, which transform as weak doublets, $\eta_a \sim (8, 2, 1/2)$. As color octets, these would also be copiously produced at a hadron collider of sufficient energy [25]. However, their masses are expected to lie well above the reach of the LHC. Moreover, in our model these scalars carry non-trivial $B-L$ charges, see Table I. This makes them relatively inert with respect to the standard model fermions. This, in addition to their heavy masses, makes them very difficult to probe directly.

V. LEPTON FLAVOR VIOLATION

Our model may also lead to indirect virtual effects, such as charged lepton flavor violation. For example, the Yukawa interactions in Eq. (1) lead to radiative lepton flavour violation processes, as seen in Fig. 3, mediated by the charged scalar η^+_a.

The corresponding decay rate is given as [26],

$$\Gamma(l_i \rightarrow l_j \gamma) = \frac{e^2 m_i^2}{16\pi} \left[\sum_a N_e h^a_i h^{a*}_j \frac{i}{16\pi^2 M_{\eta^+_a}^2} \left[-t^2 \log t + \frac{2t^2 + 5t - 1}{12(t - 1)^3} \right] \right]^2 ,$$

with $t = M_Q^2 / M_{\eta^+_a}^2$ and $N_c = 8$. In the limit of heavy scalars, $t \rightarrow 0$, the decay width reads

$$\Gamma(l_i \rightarrow l_j \gamma) = \frac{e^2 m_i^2}{16\pi} \left[\sum_a N_e h^a_i h^{a*}_j \frac{i}{16\pi^2 M_{\eta^+_a}^2} \left[-\frac{1}{12} \right] \right]^2 .$$

One sees that the current experimental constraint $BR(\mu \rightarrow e\gamma) = \frac{\Gamma(\mu \rightarrow e\gamma)}{\Gamma_{\text{total}}} < 5.7 \times 10^{-13}$, can be fulfilled provided

$$\left(\sum_a \frac{h^a_i h^{a*}_j}{M_{\eta^+_a}^2} \right)^2 \leq 5.7 \times 10^{-13} \frac{G_F^2}{\alpha_{\text{EM}} N_c^2} \frac{768\pi}{N_e} ,$$

FIG. 3. Feynman diagram for the process $l_i \rightarrow l_j \gamma$
which leads to a relatively mild requirement,
\[\left| \sum_{a} h_{\mu}^a h_{e}^{a*} \left(\frac{50 \text{ TeV}}{M_{\eta}^a} \right)^2 \right| \lesssim 1.5. \] (12)

VI. SUMMARY AND OUTLOOK

We have proposed a consistent viable theory for the recently proposed idea that the cosmological dark matter may be made up of stable colored relics forming neutral hadronic bound states of QCD. In our model we have taken up at face value the suggestion in Ref. [1], employing an exotic vector-like Dirac color octet fermion Q with mass below 10 TeV as the dark matter constituent. In our construction dark matter and neutrino mass generation both have a common origin. Our minimum particle content leads to two non-zero neutrino masses, that can be associated to the solar and atmospheric scale. Bound-state dark matter stability is directly associated with the Dirac nature of neutrinos, and reflects the presence of an underlying exact $B - L$ symmetry. The scheme can account for both neutrino physics and dark matter phenomena, within a consistent ultraviolet complete setup, free of Landau poles up to the Planck scale, provided the scalars are heavy enough. Our model can be falsified relatively soon by dark matter searches, and could also be cross-checked later by a next generation hadron collider. Variants of our construction may be envisaged, in which the dark matter is bound by a new hypercolor interaction [27], instead of QCD, as suggested in Ref. [2].

ACKNOWLEDGMENTS

We thank Martin Hirsch for very useful discussions. Work supported by the Spanish grants FPA2017-85216-P and SEV-2014-0398 (MINECO), Sostenibilidad-UdeA, and by COLCIENCIAS through the Grants 11156584269 and 111577657253.

[1] V. De Luca, A. Mitridate, M. Redi, J. Smirnov, and A. Strumia, “Colored Dark Matter,” arXiv:1801.01135 [hep-ph].
[2] M. Reig, J. W. F. Valle, C. A. Vaquera-Araujo, and F. Wilczek, “A Model of Comprehensive Unification,” Phys. Lett. B774 (2017) 667–670, arXiv:1706.03116 [hep-ph].
[3] E. Ma, “Verifiable radiative seesaw mechanism of neutrino mass and dark matter,” Phys.Rev. D73 077301, arXiv:hep-ph/0601225 [hep-ph].
[4] M. Hirsch et al., “WIMP dark matter as radiative neutrino mass messenger,” JHEP 1310 149, arXiv:1307.8134 [hep-ph].
[5] A. Merle et al., “Consistency of WIMP Dark Matter as radiative neutrino mass messenger,” JHEP 07 (2016) 013, arXiv:1603.05685 [hep-ph].
[6] C. Bonilla, E. Ma, E. Peinado, and J. W. F. Valle, “Two-loop Dirac neutrino mass and WIMP dark matter,” Phys. Lett. B762 (2016) 214–218, arXiv:1607.03931 [hep-ph].
[7] S. Centelles Chuliá et al., “Dirac Neutrinos and Dark Matter Stability from Lepton Quarticity,” Phys. Lett. B767 209–213, arXiv:1606.04543 [hep-ph].
[8] P. F. de Salas et al., “Status of neutrino oscillations 2017,” arXiv:1708.01186 [hep-ph].
[9] XENON Collaboration, E. Aprile et al., “Physics reach of the XENON1T dark matter experiment,” JCAP 1604 no. 04, (2016) 027, arXiv:1512.07501 [physics.ins-det].
[10] J. Schechter and J. W. F. Valle, “Neutrino Masses in SU(2) x U(1) Theories,” Phys. Rev. D22 (1980) 2227.
[11] M. Hirsch et al., “Neutrino masses and mixings from supersymmetry with bilinear R parity violation: A Theory for solar and atmospheric neutrino oscillations,” Phys. Rev. D62 (2000) 113008, arXiv:hep-ph/0004115 [hep-ph]. [Erratum: Phys. Rev.D65,119901(2002)].
[12] M. A. Diaz et al., “Solar neutrino masses and mixing from bilinear R-parity broken supersymmetry: Analytical versus numerical results,” Phys. Rev. D68 013009, hep-ph/0302021.
[13] M. Hirsch and J. W. F. Valle, “Supersymmetric origin of neutrino mass,” New J. Phys. 6 76, hep-ph/0405015.
[14] Y. Farzan and E. Ma, “Dirac neutrino mass generation from dark matter,” Phys. Rev. D86 (2012) 033007, arXiv:1204.4890 [hep-ph].
[15] D. Hehn and A. Ibarra, “A radiative model with a naturally mild neutrino mass hierarchy,” Phys. Lett. B718 (2013) 988–991, arXiv:1208.3162 [hep-ph].

[16] A. V. Manohar and M. B. Wise, “Flavor changing neutral currents, an extended scalar sector, and the Higgs production rate at the CERN LHC,” Phys. Rev. D74 (2006) 035009, arXiv:hep-ph/0606172 [hep-ph].

[17] S. I. Bityukov and N. V. Krasnikov, “The Search for new physics by the measurement of the four jet cross-section at LHC and FNAL,” Mod. Phys. Lett. A12 (1997) 2011–2028, arXiv:hep-ph/9705338 [hep-ph].

[18] Y. Bai and B. A. Dobrescu, “Collider Tests of the Renormalizable Coloron Model,” arXiv:1502.03005 [hep-ph].

[19] PandaX-II Collaboration, X. Cui et al., “Dark Matter Results From 54-Ton-Day Exposure of PandaX-II Experiment,” Phys. Rev. Lett. 119 no. 18, (2017) 181302, arXiv:1708.06917 [astro-ph.CO].

[20] LUX-ZEPLIN Collaboration, D. S. Akerib et al., “Projected WIMP sensitivity of the LUX-ZEPLIN (LZ) dark matter experiment,” arXiv:1802.06039 [astro-ph.IM].

[21] Planck Collaboration, P. A. R. Ade et al., “Planck 2015 results. XIII. Cosmological parameters,” Astron. Astrophys. 594 (2016) A13, arXiv:1502.01589 [astro-ph.CO].

[22] M. Geller, S. Iwamoto, G. Lee, Y. Shadmi, and O. Telem, “Dark quarkonium formation in the early universe,” arXiv:1802.07720 [hep-ph].

[23] CMS Collaboration, C. Collaboration, “Search for heavy stable charged particles with 12.9 fb−1 of 2016 data.”.

[24] G. Grilli di Cortona, E. Hardy, and A. J. Powell, “Dirac vs Majorana gauginos at a 100 TeV collider,” JHEP 08 (2016) 014, arXiv:1606.07090 [hep-ph].

[25] A. Hayreter and G. Valencia, “LHC constraints on color octet scalars,” Phys. Rev. D96 no. 3, (2017) 035004, arXiv:1703.04164 [hep-ph].

[26] L. Lavoura, “General formulae for $f(1) \to f(2)\gamma$,” Eur. Phys. J. C29 (2003) 191–195, arXiv:hep-ph/0302221 [hep-ph].

[27] A. Mitridate, M. Redi, J. Smirnov, and A. Strumia, “Dark Matter as a weakly coupled Dark Baryon,” arXiv:1707.05380 [hep-ph].