Minute liver metastases from a rectal carcinoid: A case report and review

Hirofumi Yamamoto, Hideyuki Hemmi, Jin-Yu Gu, Mitsugu Sekimoto, Yuichiro Doki, Masaki Mori

INTRODUCTION

It is reported that the incidence of liver metastasis from gastrointestinal carcinoids is 16.7% (155 of 928) and the mean life span is approximately 2 years once liver metastasis is diagnosed\(^1\). With progress in treatments such as hepatic-artery embolization, radio-frequency thermal ablation, liver transplantation and others, the life span has been improved recently\(^2\). We report here a case of rectal carcinoid in a 43-year-old male with minute liver metastases that were diagnosed during surgery although preoperative computed tomography (CT) and ultrasonography (US) examination did not detect them. We employed hepatic arterial infusion chemotherapy (HAIC) using 5-fluorouracil (5-FU) plus oral administration of HCFU and survived for 5 years. We also review world-wide current treatments and their efficacy for hepatic metastases of carcinoid tumors.

© 2010 Baishideng. All rights reserved.

Key words: Hepatic arterial infusion chemotherapy; Rectal carcinoid; Liver metastasis; 5-Fluorouracil

Peer reviewer: Francis Seow-Choen, MBBS, FRCS, FAMS, Seow-Choen Colorectal Centre Pte Ltd, 3 Mt Elizabeth #09-10, Mt Elizabeth Medical Centre, Singapore

Yamamoto H, Hemmi H, Gu JY, Sekimoto M, Doki Y, Mori M. Minute liver metastases from a rectal carcinoid: A case report and review. World J Gastrointest Surg 2010; 2(3): 89-94 Available from: URL: http://www.wjgnet.com/1948-9366/full/v2/i3/89.htm DOI: http://dx.doi.org/10.4240/wjgs.v2.i3.89

Abstract

We here report a 43-year-old male patient with minute liver metastases from a rectal carcinoid. Hepatic nodules were diagnosed during surgery, although they were not diagnosed by preoperative computed tomography or ultrasound examination. The rectal carcinoid was resected together with liver metastases and the patient has had no disease recurrence for 5 years following postoperative treatment of hepatic arterial infusion chemotherapy (HAIC) using 5-fluorouracil (5-FU) and oral administration of 1-hexylcarbamoyl-5-fluorouracil (HCFU). In 2003, a health check examination indicated presence of occult blood in his stool. Barium enema study revealed a rectal tumor in the lower rectum and colonoscopy showed a yellowish lesion with a size of 30 mm in diameter. Pathological examination of the biopsy specimen indicated that the rectal tumor was carcinoid. Although preoperative imaging examinations failed to detect liver metastases,
Liver metastases from a rectal carcinoid

arterial infusion chemotherapy (HAIC) using 5-fluorouracil (5-FU) and systemic administration of the oral 5-FU derivative 1-hexylcarbamoyl-5-fluorouracil (HCFU) as post-operative adjuvant therapy. The patient eventually survived 5 years after surgery without disease recurrence. Although the standard therapy for liver metastasis from carcinoid tumors has not been established in the world, several attractive strategies are currently provided, being reviewed together in this report.

CASE REPORT

A 43-year-old male patient entered our hospital in March 2003 because of a positive occult blood test on his stool samples. Through a barium enema study, a rectal tumor was suspected. He presented no carcinoid syndrome symptoms such as flushing, diarrhea, pellagra, cyanosis, and others. The results of blood test and level of 5-hydroxy indole acetic acid in the urine was within the normal range (Table 1).

Table 1 Blood test and urine 5-HIAA

| Test   | Value  |
|--------|--------|
| WBC    | 6830/µL |
| RBC    | 500x10^6/µL |
| Hb     | 15.4 g/dL |
| Ht     | 44.4% |
| Plt    | 20.2x10^4/µL |
| Na     | 140 mEq/L |
| K      | 4.2 mEq/L |
| Cl     | 107 mEq/L |
| BUN    | 14 mg/dL |
| Cr     | 0.8 mg/dL |
| AST    | 21 IU/L |
| ALT    | 21 IU/L |
| T.Bil  | 0.4 mg/dL |
| T.P.   | 6.7 g/dL |
| Alb    | 3.9 g/dL |
| CA19-9 | < 5.0 U/mL |
| CEA    | 1.0 ng/mL |
| Urine 5-HIAA | 1.3 mg/L |

5-HIAA: 5-Hydroxy indole acetic acid.

Colonoscopy showed an elevated yellowish lesion with a slight central depression of which size was 30 mm in diameter, in the lower rectum. Pathological examination of biopsy samples revealed that this was a carcinoid tumor (data not shown).

Image examinations

CT scanning showed a tumor on the right wall of the lower rectum (Figure 1B). Abdominal CT failed to show any obvious abnormalities in the liver (Figure 1C). No obvious lesions were detected in the liver by abdominal US (Figure 1D).

Operation

During surgery, we perceived 2 min nodules through hand palpation of the surface of left liver lobe (S2 and S3). The nodules were hard and white, and were both 2 mm in diameter. A rapid pathological examination revealed that the tumors were metastatic carcinoid (Figure 2A and 2B). Other hepatic abnormalities were not detected by intraoperative US. Low anterior resection of the rectum and partial resection of the liver (S2 and S3) were performed. The metastatic tumors were very small, indicating early phase metastases, and it was therefore likely that other latent metastases might be present in the liver. During surgery, we made preparation to carry our HAIC as a post-operative adjuvant chemotherapy, i.e., ligation of the right gastric artery and cholecystectomy to prevent the side effects such as gastric ulcer and cholecystitis, associated with HAIC.

Histopathological examination

Following staining of the primary rectal tumor with

Figure 1 Preoperative colonoscopy and image examinations.

A: Colonoscopy showed an elevated yellowish lesion with a slight central depression of which size was 30 mm in diameter, in the lower rectum; B: A tumor was present on the right wall of the lower rectum by computed tomography (CT) scan; C: Abdominal CT failed to show any obvious abnormalities in the liver; D: No obvious lesions were detected in the liver by ultrasonography.
hematoxiline and eosin, histopathological examination showed homogeneous spherical cells, forming ribbon-like structures, compatible with the carcinoid tumor (Figure 2C and D). The tumor penetrated into the muscular propria without evidence of venous invasion or lymph duct invasion. There were 4 lymph node metastases within the rectal mesentery.

**Post-operative adjuvant therapy**

On the 35th day after surgery, a catheter was inserted from the left subclavian artery and the tip was set along common hepatic artery by the radiologists. HAIC using 5-FU started via the subcutaneous port. A dose of 1250 mg 5-FU was administered every week, and a total of 21 HAICs were performed. In addition, oral 5-FU, HCFU (Carmofur: 300 mg/d) was administered for one and half years as the lymph node metastases were positive. The patient was alive after 5 years without disease recurrence.

**DISCUSSION**

The 5-year survival rate of colorectal carcinoid is 72%-98%. However, once distant metastasis occurs the prognosis becomes poor[3-6]. In cases with liver metastasis, the 5-year survival rate is reported to be 19%-38%[7]. In Japan, most colorectal carcinoids are located in the rectum, mainly within 10 cm from the dentate line (80% of rectal carcinoids)[8]. Carcinoid tumors originate from the endocrine cells that produce certain amines and peptides. These cells are originally located in the deep mucosa. Once neoplastic changes occur, the tumor looks like a submucosal one following expansive growth.
With deeper invasion, the metastatic rate becomes correspondingly higher. The most frequent metastatic sites are lymph nodes and liver, followed by bone and lung. It is reported that the frequency of lymph node metastasis was 0% when the tumor is localized in mucosa, 5.3% in T1, 53% in T2 and 85.7% in T3[9]. Saito et al[10] also reported a relationship between tumor size and incidence of lymph node metastasis. When the tumor diameter is 6 to 10 mm, the metastasis rate is 0.7%, 11-15 mm: 23%, 16-20 mm: 55.6%, and > 21 mm: 66.7%.

There is a report that even 5mm-sized primary carcinoid tumor cause liver metastasis suggesting that a detailed examination of liver is essential before surgery[11]. US and CT scans are both standard modalities for detection of liver metastasis. Chiti et al[12] reported that the diagnostic sensitivity and specificity was 82% and 92%, respectively for US, and 73% and 93% for CT scans. In the case of the current patient with 2mm-sized liver metastatic lesions, preoperative abdominal US and CT failed to detect them, although such minute nodules could be easily perceived by hand palpation owing to their solidity. Therefore, intraoperative palpation of the liver surface is particularly important and should be done very carefully.

If the liver metastases are completely resected, surgery is the most effective therapy. The surgical indications include uni-lobar hepatic metastases, and multiple tumors expanding to both hepatic lobes with assurance of complete respectability based on good liver function. However, as approximately 90% of hepatic metastases are found to be multiple lesions in both hepatic lobes, complete resection is a rare event in practice[13]. The efficacy of hepatic resection for the gastrointestinal carcinoid tumors is summarized in Table 2[14-17].

Liver transplantation is an alternative treatment and widely adopted in patients with liver metastases from carcinoid tumors. The 5-year overall survival rate ranges from 50%-70% (Table 3)[18-20]. Lehnert[18] reported that the 5-year survival rate was 50% in 36 patients undergoing liver transplantation. He pointed out that the patients with extra-hepatic disease worsened the whole prognosis. Coppa et al[20] proposed that selection of patients with non-resectable metastatic neuroendocrine tumors for liver transplantation should be performed based on the Milan criteria: young patients < 50 years with confirmed by histology, with < 50% of the liver replaced by metastases, with a primary tumor (originating from the gastrointestinal tract) drained by the portal venous system, an absence of extrahepatic disease and stable disease during the pretransplantation period. They reported that the selected 9 cases who satisfied the criteria had a 70% 5-year overall survival rate and a 53% 5-year disease free survival rate.

Treatments by somatostatin analogues, such as interferon and octreotide have been reported. According to the findings, tumor shrinkage was a rare event although the systemic symptoms due to the carcinoid tumor were lessened[21-22].

Since liver metastases from carcinoids display an abundant tumor vascularity, hepatic arterial chemoembolization (HACE) or hepatic arterial embolization (HAE) are employed in western countries. The efficacy of HACE, in which doxorubicin is often used as a principal drug, is 25%-50% (Table 4, upper column)[23-27]. Partial response or complete response cases were reported with HACE treatment. On the other hand, HAE was able to achieve the higher efficacy of 70%-80%, and appears to confer better therapeutic effects than HACE as a whole (Table 4, the lower column)[28-33].

In Japan, HAIC is often used[40]. As shown in Table 5[34-45], continuous 5-FU infusion accompanied by other chemotherapeutic drugs is the basic treatment scheme and conferred favorable effects. Based on these reports, we employed HAIC using 5-FU infusion for the current case. Recently, degradable starch microspheres (DSM) have also been used in combination with HAIC[40,42,44]. The anti-tumor efficacy when using DSM is attributed to transient obstruction of hepatic artery and subsequent blood reperfusion, which causes high local concentration of chemo-agents during the early phase and induces free radical oxygen as a late effect[46].

As well for primary hepatocellular carcinoma, radio-frequency ablation (RFA) therapy is also applicable to

---

**Table 5** Reports of HAIC for hepatic metastasis of carcinoid tumor in Japan (1993 – 2006)

| Gender | Age (yr) | SFLU | MMC | ADM | CDDP | MTX | VP16 | FAR | Combined therapy | Effects | Ref. |
|--------|----------|------|-----|-----|------|-----|------|-----|------------------|---------|------|
| 69/F   |          | o    | o   |    | 5-FU |     |      |     |                  |         | [40] |
| 70/F   |          | o    |     |    |      |     |      |     |                  |         | [40] |
| 42/M   |          | o    |     |    |      |     |      |     |                  |         | [40] |
| 65/F   |          | o    |     |    |      |     |      |     |                  |         | [40] |
| 56/M   |          | o    |     |    |      |     |      |     |                  |         | [40] |
| 52/M   |          | o    |     |    |      |     |      |     |                  |         | [40] |
| 42/F   |          | o    |     |    |      |     |      |     |                  |         | [40] |
| 3 cases |         |      |     |    |      |     |      |     |                  |         | [40] |
| 68/M   |          |      |     |    |      |     |      |     |                  |         | [40] |
| 57/M   |          |      |     |    |      |     |      |     |                  |         | [40] |
| 49/F   |          |      |     |    |      |     |      |     |                  |         | [40] |

5-FU: 5-Fluorouracil; MMC: Mitomycin; ADM: Adriamycin; CDDP: Cisplatin; MTX: Methotrexate; VP16: Etoposide; FAR: Farmorubicin; DSM: Degradable starch microspheres; CR: Complete response; PR: Partial response; IR: Incomplete response.
liver metastatic lesions from carcinoid tumors. The most appropriate application is in cases where tumor size is less than 3 cm in diameter. Hellman et al. reported that RFA treatment was performed in a group of 21 patients with a total of 43 carcinoid metastatic liver nodules. Therapeutic efficacy was observed in 15 patients, including 4 cases who attained complete ablation.

REFERENCES

1. Soga J. Carcinoid tumors—an analysis of 1342 cases. Geka 1989; 12: 1397-1409
2. Soga J. T Suzuki. Carcinoids and the carcinoid syndrome. Nipponmishika 1993; 51: 207-221
3. Modlin IM, Sandler A. An analysis of 8305 cases of carcinoid tumors. Cancer 1979; 97: 813-829
4. Thompson GB, van Heerden JA, Martin JK Jr, Schutt AJ, Ilstrup DM, Carney JA. Carcinoid tumors of the gastrointestinal tract: presentation, management, and prognosis. Surgery 1985; 98: 1054-1063
5. Modlin IM, Lye KD, Kidd M. A 5-decade analysis of 13,715 carcinoid tumors. Cancer 2000; 97: 934-959
6. Crocetti E, Paci E. Malignant carcinoids in the USA, SEER 1998; 2000; 1998;
7. Hasegawa S, Haraoka S. Carcinoid tumors of the lung. Jap J Cancer Res 1999; 80: 1726-1730
8. Atti P, Pulvirenti A, Schiavo M, Romito R, Collini P, Di Bartolomeo M, Fabbri A, Regalia E, Mazzaferro V. Resection versus transplantation for liver metastases from neuroendocrine tumors. Transpl Proc 2001; 33: 1357-1359
9. di Bartolomeo M, Bajetta E, Buzzoni R, Mariani L, Carnaghi C, Somma L, Zilembo N, di Leo A. Clinical efficacy of octreotide in the treatment of metastatic carcinoid neuroendocrine tumors. A study by the Italian Trials in Medical Oncology Group. Cancer 1999; 77: 402-408
10. Bajetta E, Zilembo N, Di Bartolomeo M, Di Leo A, Pilotti S, Bochicchio AM, Castellani R, Buzzoni R, Celio L, Dogliotti L. Treatment of metastatic carcinoid tumors with recombinant interferon-alpha-2a. A study by the Italian Trials in Medical Oncology Group. Cancer 1993; 72: 3099-3105
11. Hajarizadeh H, Ivanov-K, Mueller CR, Fletcher WS, Woltering EA. Effective palliative treatment of metastatic carcinoid tumors with intra-arterial chemotherapy/chemoembolization combined with octreotide acetate. Ann J Surg 1992; 163: 479-483
12. Ruszniewski P, Rougier P, Roche A, Legmann P, Sibert A, Hochaf S, Ychou M, Mignon M. Hepatic arterial chemoembolization in patients with liver metastases of endocrine tumors. A prospective phase II study in 24 patients. Cancer 1993; 71: 2624-2630
13. Therasse E, Breittmayer F, Roche A, De Baere T, Indushekar S, Ducreux M, Lasser P, Elias D, Rougier P. Transcatheter chemoembolization of progressive carcinoid liver metastasis. Radiology 1993; 199: 541-547
14. Kim YH, A jani JA, Cara r sco CH, Dumas P, Richi W, Lawrence D, Chuang V, Wallace S. Selective hepatic arterial chemoembolization for liver metastases in patients with carcinoid tumor or islet cell carcinoma. Cancer Invest 1999; 17: 474-478
15. Roche A, Girish BV, de Baere T, Baudin E, Boige V, Elias D, Lasser P, Schlumberger M, Ducreux M. Trans-catheter arterial chemoembolization as first-line treatment for hepatic metastases from endocrine tumors. Eur Radiol 2003; 13: 136-140
16. Carasco CH, Chuang VP, Wallace S. Apudomas metastatic to the liver: treatment by hepatic artery embolization. Radiology 1983; 149: 79-83
17. Hanssen LE, Schrumpf E, Kolbenstedt AN, Tausjo J, Dolva LO. Recombinant alpha-2 interferon with or without hepatic artery embolization in the treatment of midgut carcinoid tumours. A preliminary report. Acta Oncol 1989; 28: 439-443
18. Moertel CG, Johnson CM, McKusick MA, Martin JK Jr, Nagorney DM, Kvol's LE, Rubin J, Kunselman S. The management of patients with advanced carcinoid tumors and islet cell carcinomas. Ann Intern Med 1994; 120: 302-309
19. Wangberg B, Westberg G, Tylen U, Tisell L, Janesson S, Nilsson O, Johansson V, Schorsten T, Ahlman H. Survival of patients with disseminated midgut carcinoid tumors after aggressive tumor reduction. World J Surg 1996; 20: 892-899; discussion 899
20. Eriksson BK, Larsson EG, Skogseid BM, Löfgård AM, Lörelius LE, Oberg KE. Liver embolizations of patients with malignant neuroendocrine gastrointestinal tumors. Cancer 1998; 83: 2293-2301
21. Loewe C, Schindl M, Céna M, Niederle B, Lammmer J, Thurnher S. Permanent transarterial embolization of neuroendocrine metastases of the liver using cyanoacrylate and lipiodol: assessment of mid- and long-term results. AJR Am J Roentgenol 2003; 180: 1379-1384
22. Hoshino H, Ichikawa M, Onizuka A. Case of rectal carcinoid with multiple hepatic metastases. Daiichakuonmogeka Gakkai Zasshi 1991; 44: 73-80
23. Asai A, Ando M, Kushida T. A case of metastatic liver tumors of the rectal carcinoid treated with hepatic artery ligature and catheterization. Rinshokogeka Gakkai Zasshi 1993; 54: 1862-1866
Yamamoto H et al. Liver metastases from a rectal carcinoid

36 Kirisu Y, Kurayoshi K, Hoshino K. A case of carcinoid tumor of the rectum metastasizing to the liver and pancreas. Shokakibyo Gakkai Zasshi 1994; 27: 1127-1131
37 Hisamithu K, Makino M, Kimura O. A case of carcinoid of rectum in which intrahepatic chemotherapy was effective for multiple liver metastases. Rinshogeka Gakkai Zasshi 1996; 57: 918-921
38 Takeuchi I, Ishida H, Suzuki T. A case of liver metastases of rectal carcinoid successfully treated with hepatic arterial infusion of methotrexate and 5-fluorouracil. Jpn J Cancer Chemother 1999; 26: 1929-1932
39 Nakagawa K, Abe H, Momono S. A case of cecal carcinoid in which intrahepatic chemotherapy was effective for multiple liver metastases. Daichoukoumongeka Gakkai Zasshi 1999; 52: 342-346
40 Doi T, Homma H, Mezawa S. A case of multiple liver metastases from rectal carcinoid tumor successfully treated with arterial infusion chemotherapy using degradable starch microspheres (DSM). Shokakibyo Gakkai Zasshi 2001; 98: 410-415
41 Sumi K, Ataka M, Oka A. A case of rectal carcinoid tumor with hepatic and peritoneal metastases in which systemic CDDP+5FU and intrahepatic arterial infusion therapy with 5FU was successful. Rinshogeka Gakkai Zasshi 2001; 62: 2489-2493
42 Takahashi K, Homma H, Mezawa S, Doi T, Akiyama T, Machida T, Murakami K, Hirata K, Iyama S. [Three cases of multiple liver metastases of carcinoid tumor responding to hepatic arterial infusion chemotherapy using degradable starch microspheres] Gan To Kagaku Ryoho 2002; 29: 2358-2361
43 Murase K, Shimamoto T, Kondo T, Sugimoto T, Ozeki Y. [A long-term survival case of hepatic metastasis of rectal carcinoid in which etoposide was effective] Nippon Shokakibyo Gakkai Zasshi 2004; 101: 47-51
44 Shibutani Y, Tani S, Uchikaga O. A case of multiple liver metastasis of rectal carcinoid tumor which occurred 10 years after, responding to hepatic arterial infusion chemotherapy using Degradable Starch Microspheres. Kouanboushouin Igaku Zasshi 2005; 22: 1-4
45 Nishimura A, Flashizume T, Shibasaki I. Rectal carcinoid tumor with multiple liver metastases in which multidisciplinary therapy was successful-A case report-. Rinshogeka Gakkai Zasshi 2006; 67: 679-682
46 Yoshikawa T, Kokura S, Oyama H, Linuma S, Nishimura S, Kaneko T, Naito Y, Kondo M. Anti tumor effect of ischemia-reperfusion injury induced by transient embolization. Cancer Res 1994; 54: 5033-5035
47 Hellman P, Ladjevardi S, Skogseid B, Akerström G, Elvin A. Radiofrequency tissue ablation using cooled tip for liver metastases of endocrine tumors. World J Surg 2002; 26: 1052-1056

S-Editor Li LF  L-Editor Hughes D  E-Editor Yang C