Incorporating Neuroscience Data into Agent-Based Simulation Models of Buyer Behavior

Submitted 30/08/20, 1st revision 17/09/20, 2nd revision 23/10/20, accepted 07/11/20

Anna Borawska¹, Małgorzata Łatuszyńska²

Abstract:

Purpose: The article aims to analyze the possibility of using various cognitive neuroscience techniques when building the agent model of buyer behavior and propose an experimental procedure for obtaining qualitative data based on the triangulation of methods.

Design/Methodology/Approach: The proposed approach combines agent-based simulation with cognitive neuroscience techniques at the stage of designing the characteristics and behavior rules of agents-consumers.

Findings: The consumer’s purchasing behavior is determined by the compilation of the influence of environmental factors and marketing stimuli as well as by his personality traits. Due to the necessity to consider all these elements when mapping the consumer-agent characteristics and decision rules, traditional methods of data collection may not be sufficient. In such a situation, cognitive neuroscience techniques can become a source of additional information, allowing to take into account the influence of emotions or cognitive abilities on one’s decisions. To make it possible, it is necessary to conduct experiments with the use of neuroscience research tools (e.g., EEG, GSR, HR etc.) aimed at detecting emotional and cognitive states during exposure to an advertisement of a specific product. The neurophysiological data collected during the experiments allow for a more accurate estimation of the qualitative parameters describing consumer behavior rules.

Practical Implications: The proposed concept allows for a more accurate representation of agents-consumers’ features and decision rules. Consequently, the agent-based model more reliably reflects reality, and thus the results obtained during model simulation are more valuable and can be the basis for formulating marketing plans.

Originality/Value: The proposed approach enriches the methodology of data collection and estimation of qualitative parameters in building agent models of buyer behavior.

Keywords: agent-based simulation, cognitive neuroscience, buying behavior

JEL codes: C63, C80, C90, D87, M37.

Paper type: Research article.

¹Corresponding author, University of Szczecin, Szczecin, Poland, anna.borawska@usz.edu.pl
²University of Szczecin, Szczecin, Poland, malgorzata.latuszynska@usz.edu.pl
1. Introduction

An agent-based simulation is a relatively new approach to modeling complex systems, consisting of many interacting independent units, the so-called agents. The macro-scale image of the system under investigation is created by combining agents’ actions and their interactions with each other and with the environment in which they function. In the last 20 years, this approach has gained considerable popularity in marketing research, with particular emphasis on consumer behavior research, as evidenced by the growing number of scientific publications in this field every year. A review of the Science-Direct database articles shows a considerable increase in this number over the last 15 years, from 3 in 2000 to 224 in 2020 (as of November 8, 2020).

Building an agent-based simulation model is not a simple task. The most common approach is a “bottom-up” that considers relevant actors and decisions at the micro-level that can produce a visible result at the system level (Grimm et al., 2005). Therefore, the use of agent-based simulation requires that the created model reliably reflects interactions between agents and their behavior rules. This requirement raises an essential question regarding available empirical approaches to capturing information about agent behavior and their relative reliability (Robinson et al., 2007).

In the case of agent-based models used to study the effects of purchasing decisions, a significant role is played by information resulting from the consumer’s behavior, which is determined by the compilation of the impact on his awareness of environmental factors and marketing stimuli. Certain personality traits of the consumer are also influenced by four basic mental processes: motivation, perception, learning and remembering (Kotler and Keller, 2012). The need to consider all these factors when mapping the consumer-agent characteristics and decision rules means that traditional methods of gathering information may not be enough. As a consequence, the built agent model may not reflect reality with the required accuracy. Therefore, the question arises, is it possible to use additional methods in the data collection process that would complement and/or authenticate information collected traditionally?

In this article, the authors hypothesize that cognitive neuroscience can provide the appropriate techniques that allow obtaining additional information in the process of defining the rules of behavior of the consumer-agent and its interaction with the environment. Therefore, the article aims to analyze the possibilities of using various cognitive neuroscience techniques when building an agent-based model and propose
an experimental procedure for obtaining qualitative data in this context, based on the triangulation of methods.

The article presents the essence of agent-based simulation and its application directions in marketing research. It discusses the basic techniques of cognitive neuroscience in the context of the possibility of their application to collect data required to map agents-consumers’ behavior. Moreover, the concept of the procedure for obtaining data from various sources was presented to estimate the qualitative parameters of a specific agent-based simulation model of buyer behavior.

2. Agent-Based Simulation in Marketing Research

The origins of the agent-based simulation are derived from the theory of cellular automata, which, in a form that could be understood by computers, was developed independently by S. Ulam and J. von Neumann in the 1940s. However, it was not until the early 1970s that the agent-based simulation began to take shape as it is known today, thanks to J. Conway, who developed the game of life (Gardner, 1970).

The present understanding of the term “agent” appeared in 1991 (Holland and Miller, 1991), although various disciplines developed their definitions of this concept. It is commonly accepted that agents (which may be people, objects, ideas, institutions, or organisms) are placed in a specific environment and can act autonomously. Hierarchical structures are also possible in which a single agent belonging to a particular class may consist of multiple agents belonging to another class (Bonabeau, 2002; Epstein, 2006; Nava Guerrero et al., 2016).

From a practical point of view, it can be assumed that the agent has the following properties (Macal and North, 2014, p. 15): (1) it is an identifiable entity with a certain set of features and rules governing its behavior and decision-making abilities; (2) it is located in an environment where it interacts with other agents; (3) its operation can be aimed at achieving a specific goal; (4) it is autonomous, it can function independently in its environment and in contacts with other agents, at least in certain defined situations; (5) is flexible, has the ability to learn and adapt.

The agent-based model does not have a fixed structure because the agents’ decisions shape and change its state and structure. Decision-making processes are described on a micro scale for each agent individually. Through collective interaction between multiple agents and the environment in which they function, a macro-scale phenomenon emerges (Siebers and Aickelin, 2008). In other words, the agent-based
approach essentially focuses on interactions at the micro-level that can explain emerging patterns at the system level (Martin and Schlüter, 2015).

These assumptions predestine the agent-based simulation to be used in marketing research, as it may show how aggregated marketing phenomena arise from the actions of many agents identifying individual and/or organizational consumers.

In the last 20 years, many scientific studies have been published presenting cases of using agent-based simulation in this area. They very often refer to consumer behavior in the context of diffusion of innovation, for example, Shaikh et al. (2005), Watts and Dodds (2007), Rahmandad and Sterman (2008), Goldenberg et al. (2009), Delre et al. (2010) and Stummer et al. (2015). Another application direction relates to market acceptance research (Goldenberg et al., 2007; 2010). Many publications present the use of the agent-based approach in the analysis of the impact of company positioning on consumer behavior (Wilkinson and Young, 2002; Tay and Lusch, 2004; 2005; Meng et al., 2017), while some focus on the problem of moral behavior in relational marketing (Midgley et al., 2006; Hill and Watkins, 2007; 2009).

Another important area of application of the agent-based approach concerns the study of purchasing trends in specific markets by simulating many individual consumers’ choices to determine how and why consumers choose a given product or service. Applications of this type are discussed in Twomey and Cadman (2002), Robertson (2003), Schenk et al. (2007), Ulbinaitė and Moullec (2010), Kuhn et al. (2010) and Fikar et al. (2019).

Some studies present more general considerations on the agent approach in the study of consumer behavior, for example, Janssen and Jager (2003), Jager (2006) and Roozmand et al. (2011). They describe agent-based models of consumer behavior derived from the theory of marketing and behavioral sciences and then show the results of several simulation experiments conducted based on real data from a specific market.

3. Premises and Possibilities of Using the Cognitive Neuroscience Techniques

Most of the agent-based models aim to simulate some real-life phenomena and are therefore designed and verified based on data collected from the socio-economic world. However, the basic requirement is that the models show structural and behavioral similarity to the original system. When designing agents, this means that they must be constructed in a manner similar to their real counterparts in terms of structure and behavior. For example, when an agent is to map a human-consumer
and his decisions, it must be equipped with all the properties and behavior patterns of a real human important in the scenarios studied. (Kennedy, 2011; Crooks et al., 2018).

In this case, when constructing the model, traditional methods of collecting qualitative data may not be enough, such as, for example, focus groups, in-depth interviews, participant observations, desk research, or ethnographic research (Janssen and Ostrom, 2006; Robinson et al., 2007; Ghorbani et al., 2015) because they have significant limitations - they are subjective, difficult to reproduce and not representative for a larger population (Daymon and Holloway, 2011). Quantitative data collection methods can help address these problems, such as the commonly used self-report questionnaires (Gordon and Ciocia, 2017), measuring and evaluating opinions, feelings, attitudes and behaviors (French and Ross, 2019). They can facilitate understanding of the study population (Basil, 2017) and be the basis for defining agent behavior rules. Still, people often do not tell us precisely what they really think or do (Neeley and Cronley, 2004). This means that this type of research will never give us a complete picture of their minds.

Modeling human behavior in agent-based simulation, especially in terms of decision-making in various conditions and determining the probability of making a specific choice, is challenging because it is difficult to capture all human personality and behavior nuances. To simplify this task, one uses an approach that focuses only on the features relevant to the correctness of a given model (Crooks et al., 2018). Typically, two types of behavioral frameworks are used for this purpose – mathematical or cognitive (Kennedy, 2011; Balke and Gilbert, 2014). In mathematical models, however, it is assumed that decisions are made in an entirely rational manner, which is not in line with current knowledge on the subject (Schmitz et al., 2015). Therefore, the cognitive framework that also considers the non-rational factors of human behavior seems more interesting. In this group, the PECS (Physical conditions, Emotional states, Cognitive capabilities, and Social status) model is very popular (Urban and Schmidt, 2001). As its name implies, this model takes into account all factors that create its acronym.

When the agent-based simulation model considers the human factor, and the PECS behavioral framework is taken into account, some quality parameters, depending on the human’s emotions or cognitive abilities, can be estimated from the neurophysiological data recorded using cognitive neuroscience techniques. They allow you to monitor both central and peripheral nervous systems (Kable, 2011). Changes in this activity, observed while performing specific tasks and activities, may become the basis for inferring about the examined individual’s emotional or
Incorporating Neuroscience Data into Agent-Based Simulation Models of Buyer Behavior

cognitive state (Vecchiato et al., 2014). Thanks to this approach, the estimation of the qualitative parameters or variables can be significantly improved, as it relies not only on declarations on which conventional methods are based. The most used cognitive neuroscience techniques are presented in Table 1, broken down by methods used to study the central and peripheral nervous system’s reactions, respectively.

Table 1. Techniques of cognitive neuroscience for studying the reactions of the central and peripheral nervous system

Central nervous system	Peripheral nervous system
− electroencephalography (EEG),	− galvanic skin response measurement (GSR),
− magnetoencephalography (MEG),	− heart rate measurement (HR),
− functional magnetic resonance imaging (fMRI),	− breath measurement,
− functional near-infrared spectroscopy (fNIRS)	− electromyography (EMG),
	− eye-tracking (ET),
	− face coding,
	− infrared thermography (IRT),
	− pupillometry.

Source: Own elaboration.

Research in many different science fields conducted using cognitive neuroscience techniques allowed to determine the occurrence of numerous emotional and cognitive states based on the analysis of collected neuro-physiological data. The relevant examples are summarized in Table 2.

Various types of emotions (especially those considered basic (Ekman, 1992)) are now effectively detected using EEG, EMG, eye-tracking and facial expression encoding, MEG, fMRI, as well as using GSR and HR and respiration. In terms of cognitive states, the most numerous works focus on researching:

− memorization - by means of, among others, EEG and MEG,
− interest - research with the use of EEG,
− experiencing stress and relaxation - mainly using GSR and HR measurements,
− mental effort – using: EEG, fNIRS, GSR and thermography, HR measurements, eye-tracking and pupillometry.

Research to detect other emotional and cognitive states is still ongoing. Thanks to new discoveries in this field, many agent-based simulation models, considering the human factor, may significantly improve accuracy. One of such models is presented later in the article in terms of its applicability in an experiment allowing the estimation of a qualitative parameter’s value using cognitive neuroscience techniques.
Method	EEG	MEG	fMRI	fNIRS	GSR	HR	Breath	EMG	ET	Face coding	IRT	Pupilometry
Emotional valence (emotions)	(Cipresso et al., 2015)	(Yang and Lin, 2013)	(Greene, Flannery and Soto, 2014)	(Heger et al., 2014)	(Greco et al., 2016)	(Rainville et al., 2006)	(Rainville et al., 2006)	(Cipresso et al., 2015)	(Znamenskaya et al., 2018)			
Engagement	(Mauri et al., 2010)										(Whitehill et al., 2014)	
Memorization	(Fabiani et al., 2000)	(Osipova et al., 2006)	(Talamonti et al., 2020)							(Hamnula et al., 2010)	(Papesh et al., 2012)	
Interest	(Vecchiato et al., 2014)											
Stress			(van Marle et al., 2009)	(Mauri et al., 2010)	(Mauri et al., 2010)	(Mauri et al., 2010)	(Pourmo-hammadi and Maleki, 2020)	(Dinges et al., 2005)	(Kajiwara, 2014)			
Relax										(Mauri et al., 2010)		
Cognitive load	(Borghini et al., 2014)	(Jaeggi et al., 2007)	(Asgher et al., 2020)	(Kajiwara, 2014)	(Borghini et al., 2014)	(Oschlies-Strobel et al., 2017)	(Matthews et al., 2018)	(Kajiwara, 2014)	(Čegovnik et al., 2018)			
Attention	(Fabiani et al., 2000)	(Daliri, 2014)	(Parhizi et al., 2018)		(Hasenkamp et al., 2012)	(Shi et al., 2017)	(Tag et al., 2017)	(Zennifa and Iramina, 2019)				
Hidden intentions	(Kang et al., 2015)	(Haynes et al., 2007)										
Esthetic preferences	(Chew et al., 2016)											
Empathy										(Schnell et al., 2011)		
Motivation										(Locke and Braver, 2008)		
Moral decision making											(Balconi and Fronda, 2020)	

Source: Own elaboration.
4. Description of the Exemplary Model

A proposal for estimating a qualitative parameter based on data recorded using cognitive neuroscience techniques will be presented based on a product life cycle model, which can be used to forecast new products’ sales. It is a model based on the classic Bass diffusion model, the characteristic feature of which is, confirmed by many applications, universality in forecasting the sales of newly introduced products belonging to various market segments. (Bass, 1969). The model maps the process of purchasing new products as an interaction between its current and potential users. Advertising encourages potential users to buy. The effectiveness of the ad in the model is determined by the value of the parameter named AdAffectiveness. It is the percentage of potential users who are ready to buy the product on a given day. The agents in the model are people - current and future users of the product. The state diagram for each of the agents in the model is presented in Figure 1.

Figure 1. The agent state diagram in the diffusion model

Source: Own elaboration based on Grigoryev (2018).

Each agent can be in one of two states - either he is a potential buyer of a given product or has already purchased it. The decision to buy depends on the AdAffectiveness parameter, which determines the agent’s probability of moving from the PotentialBuyer state to the Buyer state.

In the classic version of the diffusion model, it is assumed that the probability that a person becomes interested in a product under the influence of advertising has a constant value. However, this is a significant simplification. In fact, the transition between states can be influenced by many different factors - most notably those related to the individual characteristics of the audience of an advertising message. Therefore, to improve the model, one should take these factors into account. The previously mentioned qualitative and quantitative methods of estimating model parameters can be used to make it possible. To obtain the complete picture of the situation, it is also worth considering the possibilities of cognitive neuroscience techniques. A proposal for an experiment that allows us to estimate the AdAffectiveness parameter through triangulation of diagnostic survey methods and cognitive neuroscience is presented later in the article.
5. Experiment Design

The described project of the experiment aims to estimate the value of the AdEffectiveness parameter using the techniques of cognitive neuroscience. The choice of this element is dictated by the fact that in numerous studies published in the literature on the subject, the effectiveness of various types of advertising has already been repeatedly assessed based on neurophysiological data (Langleben et al., 2009; Vecchiato et al., 2010; Vecchiato et al., 2014; Deitz et al., 2016; Barnett and Cerf, 2017; Ciceri et al., 2020). Among the cognitive and emotional states that can be detected with neuroscience research tools, the presented stimuli’ interest is determined based on the so-called frontal asymmetry. It is expressed using the so-called approach-withdrawal index (AW) described by the formula (Davidson, 2004; Vecchiato et al., 2014):

\[
AW = \frac{1}{N_P} \sum_{i \in P} x_{\alpha_i}^2(t) - \frac{1}{N_Q} \sum_{i \in Q} y_{\alpha_i}^2(t) = \text{Average Power}_{\text{right.frontal}} - \text{Average Power}_{\text{left.frontal}}
\]

where:
\(x_{\alpha_i}\) and \(y_{\alpha_i}\) – \(i\)-th EEG channel in the alpha band (right and left frontal lobes, respectively),
\(P\) and \(Q\) – sets of right and left channels,
\(N_P\) and \(N_Q\) – cardinality of \(P\) and \(Q\)

The proposed experiment will be prepared and carried out in accordance with the procedure presented in Figure 2.

Figure 2. The procedure for preparing and carrying out the experiment

- Choice of stimulus (advertising)
- Experiment design to check the advertising effectiveness
- Conducting the experiment and data collection
- Data pre-processing and calculations
 - Questionnaires
 - Approach-Withdrawal Index
- Calculations of AdEffectiveness parameter
- Incorporating the results into the simulation model

Source: Own elaboration.
Incorporating Neuroscience Data into Agent-Based Simulation Models of Buyer Behavior

In the basic version, the presented diffusion model is very general—it can apply to any product sold on the market. However, applying the proposed approach to estimate the AdEffectiveness parameter requires, first of all, to decide which product or possibly a group of products will be the subject of the model. This decision is necessary to select the appropriate ads for the experiment. Next, you should define how the chosen ads will be presented to participants (whether it will be a static image or a video) and how many stimuli will be taken into account (how many ads will be displayed during one experimental session). Due to the selected measure (approach-withdrawal index), the registration of neurophysiological data in the experiment will be performed only using EEG. To make the obtained results more reliable, parallel to the signals of neural activity, data will also be collected from questionnaires on the evaluation of advertisements and their effectiveness in the opinion of participants of the experiment. This approach is recommended in the literature (Glimcher and Rustichini, 2004; Vecchiato et al., 2013).

The questionnaire and EEG registration results should be finally aggregated to get the final parameter value that could be included in the diffusion model. The proposed method of aggregating the obtained data to estimate the model’s AdEffectiveness parameter is presented in Table 2.

| Table 2. The method of aggregation to estimate the AdEffectiveness parameter value |
|-----------------------------------|-----------------------------------|
| EEG data | Questionnaire data |
| Results for individual participant| Normalized numerical value calculated according to the formula for each second of the stimulus presentation and then averaged for the entire duration of the advertisement | A numerical value representing the subjective ad effectiveness on the Likert scale |
| Results for a group of participants| The arithmetic mean of the results recorded for individuals | The arithmetic mean of assessments from individual persons |
| Value of the parameter AdEffectiveness | The arithmetic mean of the values obtained for the EEG data and questionnaires |

Source: Own elaboration.

6. Conclusions

Estimating agent-based simulation models’ parameters considering the human factor is a complex and time-consuming task. For the model to accurately reflect reality, numerous methods are used to collect information on the examined microprocesses. The most frequently used methods include those representing a quantitative approach, mainly in the form of questionnaires. They are easy to apply but have significant drawbacks. The imperfection of such an approach manifests itself, especially when the model tries to take into account also behavioral factors, such as in the case of modeling consumer behavior, according to the PECS model. It considers, among other things, such elements as the emotional and cognitive states...
of agents. This prompts us to take steps to supplement the questionnaire data with neurophysiological data.

Research in the field of cognitive neuroscience already allows for reasonably accurate recognition of various types of conditions that may directly affect the behavior of the model’s agents. Examples of such states are presented in the articles. One of them - interest - was used to present the concept of estimating the value of an exemplary diffusion model parameter using the triangulation of cognitive neuroscience methods and a diagnostic survey. The project of the experiment was also presented, which will allow for the implementation of the entire procedure of estimating the value of the qualitative variable AdEffectiveness. The next step in the research will be to carry out the proposed experiment and verify the proposed approach with regard to determining the value of parameters and validating the model.

References:

Asgher, U., Khalil, K., Khan, M.J., Ahmad, R., Butt, S.I., Ayaz, Y., ... & Nazir, S. 2020. Enhanced Accuracy for Multiclass Mental Workload Detection Using Long Short-Term Memory for Brain–Computer Interface. Frontiers in neuroscience, 14, 584.

Balconi, M., Fronda, G. 2020. Morality and management: an oxymoron? fNIRS and neromanagement perspective explain us why things are not like this. Cognitive, Affective, & Behavioral Neuroscience, 2020, 1-13.

Balke, T., Gilbert, N. 2014. How do agents make decisions? A survey. Journal of Artificial Societies and Social Simulation, 17(4).

Barnett, B., Cerf, M. 2017. A ticket for your thoughts: Method for predicting content recall and sales using neural similarity of moviegoer. Journal of Consumer Research, 44(1), 160-181.

Basil, M.D. 2017. Survey in Formative Research. In: K. Kubacki, Rundle-Thiele (eds.) Formative Research in Social Marketing: Innovative methods to gain consumer insights. Springer, Singapore, 251-263.

Bass, F.M. 1969. A new product growth for model consumer durable. Management Science, 15, 215-227.

Bonabeau, E. 2002. Agent-based modeling: Methods and techniques for simulating human system. Proceedings of the National Academy of Sciences of the United States of America, 7280-7287.

Borghini, G., Astolfi, L., Vecchiato, G., Mattia, D., Babiloni, F. 2014. Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness. Neuroscience & Biobehavioral Reviews, 44, 58-75.

Čegovnik, T., Stojmenova, K., Jakus, G., Sodnik, J. 2018. An analysis of the suitability of a low-cost eye tracker for assessing the cognitive load of driver. Applied ergonomics, 68, 1-11.

Chew, L.H., Teo, J., Mountstephens, J. 2016. Aesthetic preference recognition of 3D shapes using EEG. Cognitive neurodynamics, 10(2), 165-173.

Ciceri, A., Russo, V., Songa, G., Gabrielli, G., Clement, J. 2020. A Neuroscientific Method for Assessing Effectiveness of Digital v Print Ads: Using Biometric Techniques to Measure Cross-Media Ad Experience and Recall. Journal of Advertising Research, 60(1), 71-86.
Cipresso, P., Villani, D., Repetto, C., Bosone, L., Balgera, A., Mauri, M., Villamira, M., Antonietti, A., Riva, G. 2015. Computational psychometrics in communication and implications in decision making. Computational and mathematical methods in medicine, Article ID 985032.

Crooks, A., Heppenstall, A., Malleson, N. 2018. Agent-based modeling. In B. Huang (ed.), Comprehensive Geographic Information Systems. Elsevier, Oxford, 218-243.

Daliri, M.R. 2014. A hybrid method for the decoding of spatial attention using the MEG brain signal Biomedical Signal Processing and Control, 10, 308-312.

Davidson, R.J. 2004. What does the prefrontal cortex do in affect: perspectives on frontal EEG asymmetry research. Biological Psychology, 67(1-2), 219-233.

Daymon, C., Holloway, I. 2011. Qualitative research methods in public relations and marketing communications. Routledge, New York.

Deitz, G.D., Royne, M.B., Peasley, M.C., Coleman, J.T. 2016. EEG-based measures versus panel ratings: Predicting social media-based behavioral response to Super Bowl ad. Journal of Advertising Research, 56(2), 217-227.

Delre, A., Jager, W., Bijmolt, T.H.A., Janssen, M.A. 2010. Will It Spread or Not? The Effects of Social Influences and Network Topology on Innovation Diffusion. Journal of Product Innovation Management, 27(2), 267-282.

Dinges, D.F., Rider, R.L., Dorrian, J., McGlinchey, E.L., Rogers, N.L., Cizman, Z., ... & Metaxas, D.N. 2005. Optical computer recognition of facial expressions associated with stress-induced by performance demands. Aviation, space, and environmental medicine, 76(6), B172-B182.

Ekman, P. 1992. An argument for basic emotion. Cognition and Emotion, 6(3-4), 169-200.

Epstein, J.M. 2006. Generative Social Science: Studies in Agent-Based Computational Modeling. Princeton University Press, Princeton.

Fabiani, M., Gratton G., Coles M. 2000. Event-related brain potentials: methods, theory, and applications. In Cacioppo J., Tassinary L., Bernston G., (eds), Handbook of Psychophysiology. Cambridge University Press, Cambridge UK, 53-84.

Fikar, Ch., Mild, A., Waitz, M. 2019. Facilitating consumer preferences and product shelf life data in the design of e-grocery deliveries. European Journal of Operational Research. DOI: 10.1016/j.ejor.2019.09.039.

French, J., Gordon, R. 2019. Strategic social marketing: for behaviour and social change. Sage, Thousand Oaks.

Gardner, M. 1970. The Fantastic Combinations of John Conways New Solitaire Games. Mathematical Games, 223(4), 120-123.

Ghorbani, A., Dijkema, G., Schrauwen, N. 2015. Structuring Qualitative Data for Agent-Based Modelling. Journal of Artificial Societies and Social Simulation, 18(1), Article ID 2.

Glimcher, P.W., Rustichini, A. 2004. Neuroeconomics: The Consilience of Brain and Decision. Science, 306(5695), 447-452.

Goldenberg, J., Han, S., Lehmann, D.R., Hong, J.W. 2009. The Role of Hubs in the Adoption Process. Journal of Marketing, 73(2), 1-13.

Goldenberg J., Libai, B., Moldovan, S., Muller, E. 2007. The NPV of Bad New. International Journal of Research in Marketing, 24(3), 186-200.

Goldenberg J., Libai, B., Muller, E. 2010. The Chilling Effect of Network Externalities. International Journal of Research in Marketing, 27(1), 4-15.

Gordon, R., Ciorciari, J. 2017. Social Marketing Research and Cognitive Neuroscience. In K. Kubacki and Runde-Thiele (eds.), Formative Research in Social Marketing: Innovative methods to gain consumer insights. Springer, Singapore, 145-163.
Greco, A., Valenza, G., Citi, L., Scilingo, E.P. 2016. Arousal and valence recognition of affective sounds based on electrodermal activity. IEEE Sensors Journal, 17(3), 716-725.
Greene, C.M., Flannery, O., Soto, D. 2014. Distinct parietal sites mediate the influences of mood, arousal, and their interaction on human recognition memory. Cognitive, Affective, & Behavioral Neuroscience, 14(4), 1327-1339.
Grigoryev, I. 2018. AnyLogic in Three Days. doi:978 92 4 150215 3.
Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooy, W.M., Railsback, F., Thulke, H.H., Weiner, J., Wiegand, T., Deangelis, D.L. 2005. Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science, 310(5750), 987-991.
Hannula, D.E., Althoff, R.R., Warren, D.E., Riggs, L., Cohen, N.J., Ryan, J.D. 2010. Worth a glance: using eye movements to investigate the cognitive neuroscience of memory. Frontiers in human neuroscience, 4, 166.
Hasenkamp, W., Wilson-Mendenhall, C.D., Duncan, E., Barsalou, L.W. 2012. Mind-wandering and attention during focused meditation: a fine-grained temporal analysis of fluctuating cognitive states. Neuroimage, 59(1), 750-760.
Haynes, J.D., Sakai, K., Rees, G., Gilbert, S., Frith, C., Passingham, R.E. 2007. Reading hidden intentions in the human brain. Current Biology, 17(4), 323-328.
Heger, D., Herff, C., Putze, F., Mutter, R., Schultz, T. 2014. Continuous affective states recognition using functional near-infrared spectroscopy. Brain–Computer Interfaces, 1(2), 113-125.
Hill, R., Watkins, A. 2009. Simulation of Business-to-Business Decision Making in a Relationship Marketing Context. Industrial Marketing Management, 28(8), 994-1005.
Hill, R., Watkins, A. 2007. A Simulation of Moral Behavior within Marketing Exchange Relationship. Journal of the Academy of Marketing Science, 35, 417-429.
Holland, J.H., Miller, J.H. 1991. Artificial adaptive agents in economic theory. The American Economic Review, 81(2), 365-370.
Jaeggi, M., Buschkuehl, M., Etienne, A., Ozdoba, C., Perrig, W.J., Nirkko, A.C. 2007. On how high performers keep cool brains in situations of cognitive overload. Cognitive, Affective, & Behavioral Neuroscience, 7(2), 75-89.
Jager, W. 2006. Simulating consumer behaviour: A perspective. In A. Faber, K. Frenken and A.M. Idenburg (eds.), Environmental Policy and Modeling in Evolutionary Economics. Netherlands Environmental Assessment Agency, Groningen, 111-136.
Janssen, M., Ostrom, E. 2006. Empirically based agent-based model. Ecology and Society, 11(2), Article ID 37.
Janssen, M.A., Jager, W. 2003. Simulating market dynamics: The interactions of consumer psychology and structure of social network. Artificial Life, 9, 343-356.
Kable, J.W. 2011. The cognitive neuroscience toolkit for the neuroeconomist: A functional overview. Journal of Neuroscience, Psychology, and Economics, 4(2), Article ID 63.
Kajiwara, S. 2014. Evaluation of driver’s mental workload by facial temperature and electrodermal activity under simulated driving condition. International Journal of Automotive Technology, 15(1), 65-70.
Kang, J.S., Park, U., Gonuguntla, V., Veluvolu, K.C., Lee, M. 2015. Human implicit intent recognition based on the phase synchrony of EEG signal Pattern. Recognition Letters, 66, 144-152.
Kennedy, W.G. 2011. Modelling Human Behavior in Agent-Based Models. In M. Batty, A. Heppenstall and A. Crooks (eds), Agent-Based Models of Geographical Systems, Part 2. Springer, 167-179.
Kotler, Ph.T., Keller, K.L. 2011. Marketing Management. Pearson.
Kuhn, JR., Courtney, J.F., Morris, B., Tatara, E.R. 2010. Agent-based analysis and simulation of the consumer airline market share for Frontier Airlines. Knowledge-Based Systems, 23(8), 875-882.

Langleben, D.D., Loughead, J.W., Ruparel, K., Hakun, J.G., Busch-Winokur, S., Holloway, M.B., Strasser, A., Cappella, J.N., Lerman, C. 2009. Reduced prefrontal and temporal processing and recall of high sensation value ad. Neuroimage, 46(1), 219-225.

Locke, H.S., Braver, T. 2008. Motivational influences on cognitive control: behavior, brain activation, and individual difference. Cognitive, Affective, & Behavioral Neuroscience, 8(1), 99-112.

Macal, C.M., North, M.J. 2014. Tutorial on agent-based modelling and simulation. In J.E. Taylor (ed), Agent-Based modeling and simulation. Palgrave Macmillan, 11-31.

Martin, R., Schlüter, M. 2015. Combining system dynamics and agent-based modeling to analyze social-ecological interactions—an example from modeling restoration of a shallow lake. Frontiers in Environmental Science, 3, Article ID 66.

Matthews, G., Wohleber R., Lin J., Funke G., Neubauer C. 2018. Monitoring task fatigue in contemporary and future vehicles: a review. In Cassenti D. (ed), Advances in Human Factors in Simulation and Modeling. AHFE 2018. Advances in Intelligent Systems and Computing, 780. Springer, Cham, 101-112.

Mauri, M., Magagnin, V., Cipresso, P., Mainardi, L., Brown, E.N., Cerutti, S., Villamira, M., Barbieri, R. 2010. Psychophysiological signals associated with affective states. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference 2010, 3563-3566.

Meng, Q., Li, Z., Liu, H., Chen, J. 2017. Agent-based simulation of competitive performance for supply chains based on combined contracts. International Journal of Production Economics, 193, 663-676.

Nava Guerrero, G.D.C., Schwarz, P., Slinger, J.H. 2016. A recent overview of the integration of System Dynamics and Agent-based Modelling and Simulation. In Proceedings of the 34th International Conference of the System Dynamics Society. Delft, Netherlands.

Neeley, S.M., Cronley, M.L. 2004. When research participants don’t tell it like it is: Pinpointing the effects of social desirability bias using self v indirect questioning. Advances in Consumer Research, 31, 432-433.

Oschlies-Strobel, A., Gruss, S., Jerg-Bretzke, L., Walter, S., Hazer-Rau, D. 2017. Preliminary classification of cognitive load states in a human-machine interaction scenario. In 2017 International Conference on Companion Technology (ICCT). IEEE, 1-5.

Osipova, D., Takashima, A., Oostenveld, R., Fernández, G., Maris, E., Jensen, O. 2006. Theta and gamma oscillations predict encoding and retrieval of declarative memory. Journal of Neuroscience, 26(28), 7523-7531.

Papesh, M.H., Goldinger, S.D., Hout, M.C. 2012. Memory strength and specificity revealed by pupillometry. International Journal of Psychophysiology, 83(1), 56-64.

Parhizi, B., Daliri, M.R., Behroozi, M. 2018. Decoding the different states of visual attention using functional and effective connectivity features in fMRI data. Cognitive neurodynamics, 12(2), 157-170.

Pourmohammadi, S., Maleki, A. 2020. Stress detection using ECG and EMG signals: A comprehensive study. Computer Methods and Programs in Biomedicine, 105482.

Rahmandad, H., Sterman, J. 2008. Heterogeneity and Network Structure in the Dynamics of Diffusion: Comparing Agent-Based and Differential Equation Model. Management Science, 54(5), 998-1014.
Rainville, P., Bechara, A., Naqvi, N., Damasio, A.R. 2006. Basic emotions are associated with distinct patterns of cardiorespiratory activity. International Journal of Psychophysiology, 61(1), 5-18.

Robertson, D.A. 2003. Agent-Based Models of a Banking Network as an Example of a Turbulent Environment: the Deliberate v Emergent Strategy Debate Revisited. Emergence, 5(2), 56-71.

Robinson, D.T., Brown, D.G., Parker, D.C., Schreinemachers, P., Janssen, M.A., Huigen, M., Wittmer, H., Gotts, N., Promburom, P., Irwin, E., Berger, T., Gatzweiler, F., Barnaud, C. 2007. Comparison of empirical methods for building agent-based models in land use science. Journal of Land Use Science, 2(1), 31-55.

Roozmanda, O., Ghasem-Aghaea, N., Hofstede, G.J., Nematbakhsha, M.A., Baraania, A., Verwaart, T. 2011. Agent-based modeling of consumer decision-making process based on power distance and personality. Knowledge-Based Systems, 24(7), 1075-1095.

Schenk, T.A., Löffler, G., Rauh, J. 2007. Agent-based simulation of consumer behavior in grocery shopping on a regional level. Journal of Business Research, 60, 894-903.

Schmitz, S., Koeszegi, T., Enzenhofer, B., Harrer, C. 2015. Quo Vadis Homo Economicus? References to Rationality/Emotionality in Neuroeconomic Discourses. Recent Notes on Labor Science and Organization. University of Vienna, Vienna.

Schnell, K., Bluschke, S., Konradt, B., Walter, H. 2011. Functional relations of empathy and mentalizing: an fMRI study on the neural basis of cognitive empathy. Neuroimage, 54(2), 1743-1754.

Shaikh, N.I., Ragaswamy, A., Balakrishnan, A. 2005. Modelling the Diffusion of Innovations Using Small World Networks. Working Paper, Penn State University, Philadelphia.

Shi, Z.F., Zhou, C., Zheng, W.L., Lu, B.L. 2017. Attention evaluation with eye-tracking glasses for EEG-based emotion recognition. In 8th International IEEE/EMBS Conference on Neural Engineering (NER), IEEE, 86-89.

Siebers, P.O., Aickelin, U. 2008. Introduction to Multi-Agent Simulation. In Adam F., Humphreys P. (ed.), Encyclopaedia of Decision Making and Decision Support Technologies. Idea Group Publishing, Pennsylvania, 554-564.

Stummer, Ch., Kiesling, E., Günther, M., Vetschera, R. 2015. Innovation diffusion of repeat purchase products in a competitive market: An agent-based simulation approach. European Journal of Operational Research, 245(1), 157-167.

Tag, B., Mannschreck, R., Sugiu, K., Chernyshov, G., Ohta, N., Kunze, K. 2017. Facial thermography for attention tracking on smart eyewear: An initial study. In Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems, 2959-2966.

Talamonti, D., Montgomery, C.A., Clark, D.P., Bruno, D. 2020. Age-related prefrontal cortex activation in associative memory: An fNIRS pilot study. NeuroImage, 222, 117223.

Tay, N., Lusch, R.F. 2004. Agent-based modeling: Gaining insight into firm and industry performance. In Ch. Moorman and D.R. Lehman (eds), Assessing marketing strategy performance. Marketing Science Institute, Cambridge, 213-227.

Tay, N., Lusch, R.F. 2005. A preliminary test of Hunt’s General Theory of Competition: Using artificial adaptive agents to study complex and ill-defined environment. Journal of Business Research, 58(9), 1155-1168.

Twomey, P., Cadman, R. 2002 Agent-based modelling of customer behaviour in the telecoms and media market. Information, 4(1), 56-63.

Ulbinaitė, A., Le Moullec, Y. 2010. Towards an ABM-based Framework for Investigating Consumer Behaviour in the Insurance Industry. Ekonomika, 89(2), 97-101.
Incorporating Neuroscience Data into Agent-Based Simulation Models of Buyer Behavior

Urban, C., Schmidt, B. 2001. PECS–agent-based modelling of human behaviour. In Emotional and Intelligent–The Tangled Knot of Social Cognition. AAAI Fall Symposium Series, North Falmouth, MA.

van Marle, H.J., Herman, E.J., Qi, S., Fernández, G. 2009. From specificity to sensitivity: how acute stress affects amygdala processing of biologically salient stimuli. Biological psychiatry, 66(7), 649-655.

Vecchiato, G., Astolfi, L., Fallani, F.D.V., Cincotti F., Mattia, D., Salinari, S., Soranzo, R., Babiloni, F. 2010. Changes in brain activity during the observation of TV commercials by using EEG, GSR and HR measurement. Brain topography, 23(2), 165-179.

Vecchiato, G., Cherubino, P., Trettel, A., Babiloni, F. 2013. Neuroelectrical Brain Imaging Tools for the Study of the Efficacy of TV Advertising Stimuli and their Application to Neuromarketing. Springer, Berlin Heidelberg.

Vecchiato, G., Maglione, A.G., Cherubino, P., Wasikowska, B., Wawrzyñak, A., Latuszynska, A., Latuszynska, M., Nermend, K., Graziani, I., Leucci, M.R., Trettel, A., Babiloni, F. 2014. Neurophysiological tools to investigate consumer’s gender differences during the observation of TV commercial. Computational and mathematical methods in medicine, Article ID 912981.

Vecchiato, G., Toppi, J., Astolfi, L., De Vico Fallani, F., Cincotti, F., Mattia, D. et al. 2011. Spectral EEG frontal asymmetries correlate with the experienced pleasantness of TV commercial advertisement. Medical & Biological Engineering, 49(5), 579-583.

Watts, D.J., Dodds, P. 2007. Influentials, Networks and Public Opinion Formation. Journal of Consumer Research, 34(4), 441-458.

Whitehill, J., Serpell, Z., Lin, Y.C., Foster, A., Movellan, J.R. 2014. The faces of engagement: Automatic recognition of student engagement from facial expressions. IEEE Transactions on Affective Computing, 5(1), 86-98.

Wilkinson, I., Young, L. 2002. On cooperating: Firms, relations, network. Journal of Business Research, 55, 123-132.

Yang, C.Y., Lin, C.P. 2013. Coherent activity between auditory and visual modalities during the induction of peacefulness. Cognitive neurodynamics, 7(4), 301-309.

Zennifa, F., Iramina, K. 2019. Quantitative formula of blink rates-pupilometry for attention level detection in supervised machine learning. IEEE Access, 7, 96263-96271.

Znamenskaya, I., Koroteeva, E., Isaychev, A., Chernorizov, A. 2018. Thermography-based remote detection of psycho-emotional states. In 14th Quantitative InfraRed Thermography Conference, 25-29.