Embeddings of Müntz Spaces: Composition Operators

S. Waleed Noor

Abstract. Given a strictly increasing sequence $\Lambda = (\lambda_n)$ of nonegative real numbers, with $\sum_{n=1}^{\infty} \frac{1}{\lambda_n} < \infty$, the Müntz spaces M^p_Λ are defined as the closure in $L^p([0,1])$ of the monomials x^{λ_n}. We discuss how properties of the embedding $M^2_\Lambda \subset L^2(\mu)$, where μ is a finite positive Borel measure on the interval $[0,1]$, have immediate consequences for composition operators on M^2_Λ. We give criteria for composition operators to be bounded, compact, or to belong to the Schatten–von Neumann ideals.

Mathematics Subject Classification (2010). 46E15, 46E20, 46E35.

Keywords. Müntz space, embedding measure, lacunary sequence, Schatten–von Neumann classes, composition operators.

Introduction

The Müntz–Szasz Theorem states that, if $0 = \lambda_0 < \lambda_1 < \cdots < \lambda_n < \cdots$ is an increasing sequence of nonnegative real numbers, then the linear span of x^{λ_n} is dense in $C([0,1])$ if and only if $\sum_{n=1}^{\infty} \frac{1}{\lambda_n} = \infty$. When $\sum_{n=1}^{\infty} \frac{1}{\lambda_n} < \infty$, the closed linear span of the monomials $(x^{\lambda_n})_{n=0}^{\infty}$ in $L^p([0,1])$ for $1 \leq p < +\infty$ is a proper subspace of $L^p([0,1])$. These spaces, called Müntz spaces and denoted M^p_Λ, exhibit interesting properties that have not been very much investigated. We refer principally to the monographies [3, 5]; recent results appear in [1, 2, 8, 4].

In the paper [6], of which this work is a sequel, we investigated various properties and necessary conditions that allowed us to embed the Hilbert Müntz space M^2_Λ into the Lebesgue space $L^2(\mu)$ for some positive measure μ on $[0,1]$. The boundedness, compactness and Schatten ideal properties of this embedding were studied.

The purpose of this paper is to provide applications of the theory introduced in [6] to composition operators on M^2_Λ. The plan of the paper is the following. After a section of preliminaries, we show in Section 2 that M^p_Λ...
is not an invariant subspace of composition operators in general. It is then natural to study composition operators as mapping M^p_Λ into $L^p([0,1])$. This is done in the sequel: sufficient conditions for composition operators to be bounded, compact or belong to Schatten ideals are obtained in Section 3, and necessary conditions in Section 4.

1. Preliminaries

We denote by m the Lebesgue measure on $[0,1]$. $L^p(\mu)$ shall be used to denote the space of Lebesgue integrable functions of order $p \in [1, \infty]$ with respect to the measure μ on $[0,1]$. We will frequently use L^p to mean $L^p(m)$, and denote by $\| \cdot \|_p$ and $\| \cdot \|_{L^p(\mu)}$ the norms in $L^p(m)$ and $L^p(\mu)$ respectively.

Let us denote, for a set S of nonnegative real numbers, the subspace $L^p_S = \text{closed span}\{x^t : t \in S\} \subset L^p$. When clear from the context, we shall denote by L_S the space L^p_S.

Definition 1.1. Let Λ be an increasing sequence of nonnegative real numbers with $\sum_{\lambda \in \Lambda} \frac{1}{\lambda} < \infty$. The Müntz space M^p_Λ is defined to be the space L^p_Λ.

In this paper, Λ shall always denote an increasing sequence of nonnegative real numbers with $\sum_{\lambda \in \Lambda} \frac{1}{\lambda} < \infty$. The functions in M^p_Λ are continuous on $[0,1)$ and real analytic in $(0,1)$. A feature of the Müntz monomials $(x^\lambda)_{\lambda \in \Lambda}$ is that they form a minimal system in M^p_Λ, which means that for any $\lambda' \in \Lambda$

$$\text{dist}(x^{\lambda'}, L_{\Lambda\setminus\{\lambda'\}}) = \inf_{g \in L_{\Lambda\setminus\{\lambda'\}}} \|x^{\lambda'} - g\|_{L^p} > 0.$$

This can easily be extended to show that if $\Lambda' \subset \Lambda$ is a finite subset, then

$$L_{\Lambda'} \cap L_{\Lambda\setminus\Lambda'} = \{0\}. \quad (1.1)$$

The monograph [5] may be consulted for a discussion on the minimality of Müntz monomials.

We shall need the Clarkson-Erdős Theorem from [5]:

Theorem 1.2. Assume that $\sum_k \frac{1}{\lambda_k} < \infty$ and $\inf_k (\lambda_{k+1} - \lambda_k) > 0$. If $f \in M^p_\Lambda$ then there exist $b_k \in \mathbb{R}$ such that

$$f(x) = \sum_{k=1}^{\infty} b_k x^{\lambda_k} \quad \text{for } x \in [0,1),$$

where the series converges uniformly on compact subsets of $[0,1]$. Also, for any $\varepsilon > 0$, there is a constant $M > 0$ such that

$$|b_k| \|x^{\lambda_k}\|_{L^p} \leq (1 + \varepsilon)^{\lambda_k} \|f\|_{L^p} \quad \text{if } k \geq M. \quad (1.2)$$

A sequence Λ is called lacunary if for some $\gamma > 1$ we have $\lambda_{n+1}/\lambda_n \geq \gamma$ for $n \geq 1$. More generally, Λ is called quasilacunary if for some increasing sequence $\{n_k\}$ of integers with $N := \sup_k (n_{k+1} - n_k) < \infty$ and some $\gamma > 1$ we have $\lambda_{n_{k+1}}/\lambda_{n_k} \geq \gamma$. The main feature of lacunarity is that the monomials
\[\lambda_{n}^{1/p} x^{\lambda_{n}} \] form a basis in each of the spaces \(M_{\Lambda}^{p} \). In particular, the sequence \((\lambda_{n}^{1/2} x^{\lambda_{n}})_{n \geq 1}\) forms a Riesz basis in \(M_{\Lambda}^{2} \).

If \(T : \mathcal{E} \to \mathcal{F} \) is a bounded operator between Banach spaces, we define by \(\| T \| \leq \inf_{K} \| T + K \| \) the essential norm of an operator, where the infimum is taken over all compact operators \(K : \mathcal{E} \to \mathcal{F} \). This norm measures how far an operator is from being compact. In particular, \(T \) is compact if and only if \(\| T \|_e = 0 \).

The Schatten–Von Neumann class \(S_{q}(\mathcal{H}_{1}, \mathcal{H}_{2}) \) is formed by the compact Hilbert space operators \(T : \mathcal{H}_{1} \to \mathcal{H}_{2} \) such that \(\| T \| = \sqrt{T^{*}T} : \mathcal{H}_{1} \to \mathcal{H}_{1} \) has a family of eigenvalues \(\{ s_{n}(T) \}_{n=1}^{\infty} \in \ell_{q} \). If we define

\[
\| T \|_{q} = \left(\sum_{n=1}^{\infty} s_{n}(T)^{q} \right)^{1/q},
\]

then we obtain a quasinorm for \(0 < q < 1 \) and a norm for \(q \geq 1 \), with respect to which \(S_{q}(\mathcal{H}_{1}, \mathcal{H}_{2}) \) is complete. It is immediate that \(\| T \|_{q} \geq \| T \|_{q'} \) for \(q \leq q' \), hence \(S_{q} \subset S_{q'} \).

We now define \(\Lambda \)-embedding measures which were previously studied in [4] and [6]:

Definition 1.3. A positive measure \(\mu \) on \([0, 1]\) is called \(\Lambda_{p} \)-embedding, if there is a constant \(C > 0 \) such that

\[
\| g \|_{L^{p}(\mu)} \leq C \| g \|_{p}
\]

for all polynomials \(g \in M_{\Lambda}^{p} \). Whenever \(p \) is clear from the context, we will remove subscript \(p \) and use the notation \(\Lambda \)-embedding.

It follows easily from the definition (see [4]) that a \(\Lambda_{p} \)-embedding measure \(\mu \) has to satisfy \(\mu(1) = 0 \). Therefore, as in Remark 2.5 of [4], we may extend the embedding to all \(f \in M_{\Lambda}^{p} \): if \(\mu \) is \(\Lambda_{p} \)-embedding, then \(M_{\Lambda}^{p} \subset L^{p}(\mu) \)

\[
\| f \|_{L^{p}(\mu)} \leq C \| f \|_{p}
\]

for all \(f \in M_{\Lambda}^{p} \). For a \(\Lambda_{p} \)-embedding \(\mu \) we denote by \(i_{\mu}^{p} \) the embedding operator \(i_{\mu_{\mu}}^{p} : M_{\Lambda}^{p} \hookrightarrow L^{p}(\mu) \), which is bounded. If \(0 < \varepsilon < 1 \), then the interval \([1 - \varepsilon, 1]\) will be denoted by \(J_{\varepsilon} \).

The next result is proved in [4] for \(p = 1 \), but the extension to all \(p \geq 1 \) is straightforward.

Proposition 1.4. Let \(M_{\Lambda}^{p} \) be a Müntz space, and suppose there exists \(\delta > 0 \) such that \(d\mu|_{J_{\delta}} = h dm|_{J_{\delta}} \) for some bounded measurable function \(h \) with \(\lim_{t \to 0} h(t) = a \). Then \(i_{\mu}^{p} \) is bounded and \(\| i_{\mu}^{p} \|_{e} = a^{1/p} \).

A new class of measures called sublinear measures was introduced in [4]. There they were used to characterize embedding operators \(i_{\mu}^{p} : M_{\Lambda}^{1} \hookrightarrow L^{1}(\mu) \) for the class of quasilacunary sequences \(\Lambda \).

Definition 1.5. A measure \(\mu \) is called sublinear if there is a constant \(C > 0 \) such that for any \(0 < \varepsilon < 1 \) we have \(\mu(J_{\varepsilon}) \leq C\varepsilon \). The smallest such \(C \) will be denoted by \(\| \mu \|_{S} \). The measure \(\mu \) is called vanishing sublinear if \(\lim_{\varepsilon \to 0} \frac{\mu(J_{\varepsilon})}{\varepsilon} = 0 \). Furthermore, a measure \(\mu \) is called \(\alpha \)-sublinear if \(\mu(J_{\varepsilon}) \leq C\varepsilon^{\alpha} \) for some \(\alpha > 1 \).
The main embedding results in [6] are contained in the next two theorems:

Theorem 1.6. Let Λ be lacunary and μ a positive measure on $[0,1]$. Then
(i) i_μ^2 is bounded if μ is sublinear.
(ii) i_μ^2 is compact if μ is vanishing sublinear.

The above results are shown in [6] to be true, after an interpolation argument, for all embeddings i_μ^p for $1 \leq p \leq 2$.

In [6], we also investigated conditions for measures that enabled the embedding i_μ^2 to belong to S_q. We shall need the main results therein:

Theorem 1.7. Let μ be a positive measure on $[0,1]$. Then $i_\mu^2 \in S_q(M_\Lambda^2, L^2(\mu))$ for all $q > 0$ if either of the following is true
(i) μ has compact support in $[0,1)$,
(ii) Λ is quasilacunary and μ is α-sublinear.

Our goal is to apply these embedding results to composition operators. Recall that the pullback of a measure ν by ϕ is the measure $\phi^*\nu$ on $[0,1]$ defined by
$$\phi^*\nu(E) = \nu(\phi^{-1}(E))$$
for any Borel set E. If g is a positive measurable function, then the formula
$$\int_0^1 g(\phi(x))dx = \int_{[0,1]} g d(\phi^*\mu)$$
is easily checked on characteristic functions, hence the usual argument extends it to all positive Borel functions on $[0,1]$. In particular, if we define $\mu = \phi^*\mu$ and choose $g = |f|^p$ for some $f \in L^p(\mu)$, then the map $J : L^p(\mu) \rightarrow L^p$ defined by $J(f) = f \circ \phi$ is an isometry.

Let ϕ be a Borel function on $[0,1]$ such that $\phi([0,1]) \subset [0,1]$. The composition operator C_ϕ is defined as
$$C_\phi(g) = g \circ \phi$$
for all polynomials $g \in M_\Lambda^p$. Just as we did for i_μ^p, we can extend $C_\phi = J \circ i_\mu^p$ to all $f \in M_\Lambda^p$. Since J is an isometry, we obtain the following results for composition operators.

Lemma 1.8. Define the measure $\mu = \phi^*\mu$. Then
(i) C_ϕ is bounded from M_Λ^p to L^p if and only if μ is a Λ_ρ-embedding measure.
(ii) C_ϕ is compact from M_Λ^p to L^p if and only if i_μ^p is compact.
(iii) $C_\phi \in S_q(M_\Lambda^2, L^2)$ if and only if $i_\mu^2 \in S_q(M_\Lambda^2, L^2(\mu))$.
2. M"untz Spaces are not Invariant to Most Composition Operators

It has already appeared above that we study composition operators defined on M^Λ_p, but whose range space is L^p. The reason is that M"untz spaces are usually not invariant with respect to composition. This has already been noticed by Al Alam [2], in the case of M"untz space M^∞_Λ, i.e. the closure of the span of monomials x^{λ_n} in L^∞, and operators C_ϕ with continuous ϕ. The following result was proved therein.

Proposition 2.1. Let $\Lambda = (\lambda_k)_k \subset \mathbb{N}$ and $\sum_k \frac{1}{\lambda_k} < \infty$. Then
(i) $C_\phi M^\infty_\Lambda \not\subset M^\infty_\Lambda$ if $\phi = \alpha x^m + \beta x^n$ with $\alpha, \beta \neq 0$ and $m, n \in \mathbb{N}$.
(ii) $C_\phi M^\infty_\Lambda \not\subset M^\infty_\Lambda$ if ϕ is a polynomial with positive coefficients and more than one term.

In this section we will significantly extend these results to other values of $p \geq 1$ and functions ϕ. We prove in Theorem 2.5 that $C_\phi M^p_\Lambda \not\subset M^p_\Lambda$ whenever ϕ is a function of the form $c_1 x^{s_1} + \ldots + c_l x^{s_l}$ with $c_i \in \mathbb{R}$ and $s_i \in \mathbb{R}^+$. These functions will be called real-exponent polynomials. This generalizes Proposition 2.1 and Λ may not even satisfy the gap condition $\inf_k (\lambda_{k+1} - \lambda_k) > 0$. If we assume the gap condition, then Theorem 2.8 generalizes Proposition 2.1(i) for arbitrary $\Lambda \subset \mathbb{R}^+$.

We start with a result of A. Schinzel [7]:

Lemma 2.2. If ϕ is a polynomial with at least two terms and $\lambda \in \mathbb{N}$, then ϕ^λ has at least $\lambda + 1$ terms.

The next result is an analog of Lemma 2.2 for real-exponent polynomials.

Lemma 2.3. If ϕ is a real-exponent polynomial with at least two terms and $\lambda \in \mathbb{N}$, then ϕ^λ has at least $\lambda + 1$ terms.

Proof. Let $\phi(x) = c_1 x^{s_1} + \ldots + c_l x^{s_l}$ with $c_i \in \mathbb{R}\{0\}$ and $s_i \in \mathbb{R}^+$. Considering \mathbb{R} as a vector space over the rationals \mathbb{Q}, choose a basis $r_1, \ldots, r_\tau > 0$ for the space spanned by s_1, \ldots, s_l where $\tau \leq l$. Therefore

$$s_i = \sum_{j=1}^\tau a_{ij} r_j \quad \text{for} \quad i = 1, \ldots, l$$

where $a_{ij} \in \mathbb{Q}$. We may assume that $a_{ij} \in \mathbb{Z}$ by adjusting the r_j suitably. We note that for any positive real number N, ϕ^λ has the same number of terms as $(x^N \phi)^\lambda$. So by choosing $N = b_1 r_1 + \ldots + b_\tau r_\tau$ with integers $b_j > |a_{ij}|$ for $i = 1, \ldots, l$ and $j = 1, \ldots, \tau$, we may also assume that each $a_{ij} r_j > 0$ hence $a_{ij} \in \mathbb{N}$. We then obtain

$$\phi(x) = \sum_{i=1}^l c_i x^{s_i} = \sum_{i=1}^l c_i (x^{r_1})^{a_{i1}} \ldots (x^{r_\tau})^{a_{i\tau}}.$$
We define a polynomial ψ in τ variables by

$$\psi(Y_1, \ldots, Y_\tau) = \sum_{i=1}^l c_i Y_1^{a_{i1}} \ldots Y_\tau^{a_{i\tau}}.$$

Define Φ to be the collection of monomial terms in ϕ^λ after reduction and cancellation, and Ψ similarly for ψ^λ. Hence our goal is to prove that card$\Phi \geq \lambda + 1$. Since both ϕ and ψ each have l distinct monomial terms, the total number of possible products while computing ϕ^λ or ψ^λ is l^λ.

We claim that whenever two such products $p(x) = k.(x^{r_1})^{m_1} \ldots (x^{r_\tau})^{m_\tau}$ and $q(x) = k'.(x^{r_1})^{m'_1} \ldots (x^{r_\tau})^{m'_\tau}$ reduce (respectively cancel) in ϕ^λ, the corresponding products $p_\psi(Y_1, \ldots, Y_\tau) = k.Y_1^{m_1} \ldots Y_\tau^{m_\tau}$ and $q_\psi(Y_1, \ldots, Y_\tau) = k'.Y_1^{m'_1} \ldots Y_\tau^{m'_\tau}$ also reduce (resp. cancel) in ψ^λ, where $m_j, m'_j \in \mathbb{N}$. Indeed, it is obvious that p and q combine (resp. cancel) if and only if $m_1 r_1 + \ldots + m_\tau r_\tau = m'_1 r_1 + \ldots + m'_\tau r_\tau$. Since r_1, \ldots, r_τ are linearly independent over \mathbb{Q}, this is possible if and only if $m_j = m'_j$ for $j = 1, \ldots, \tau$. And this is equivalent to the reducing (resp. cancelling) of p_ψ and q_ψ. This proves that card$\Phi = $ cardΨ.

Note that ψ has at least two terms because ϕ has at least two terms. This implies that for some $1 \leq j' \leq \tau$, ψ as a polynomial in $Y_{j'}$ has at least two terms. Applying Lemma 2.2 to $\psi'(Y_{j'}) := \psi(1, \ldots, Y_{j'}, \ldots, 1) = \sum_{i=1}^l c_i Y_1^{a_{ij'}}$, we see that $(\psi')^\lambda$ has at least $\lambda + 1$ terms. Therefore ψ^λ has at least $\lambda + 1$ terms and card$\Psi \geq \lambda + 1$. Therefore card$\Phi \geq \lambda + 1$.

The next lemma is a consequence of formula (1.1).

Lemma 2.4. Let $\Lambda = (\lambda_k)_k$ and $\sum_k \frac{1}{\lambda_k} < \infty$. If a real-exponent polynomial $c_1 x^{s_1} + \ldots + c_l x^{s_l}$ belongs to M^p_Λ, then $s_1, \ldots, s_l \in \Lambda$.

Proof. Given $c_1 x^{s_1} + \ldots + c_l x^{s_l} \in M^p_\Lambda = L_\Lambda$, suppose on the contrary that some subset $\Lambda' = \{s_{k_1}, \ldots, s_{k_m}\} \subset \{s_1, \ldots, s_l\}$ does not belong to Λ and $\{s_1, \ldots, s_l\} \setminus \Lambda' \subset \Lambda$. Then

$$p(x) = (c_1 x^{s_1} + \ldots + c_l x^{s_l}) - (c_{k_1} x^{s_{k_1}} + \ldots + c_{k_m} x^{s_{k_m}}) \in L_\Lambda.$$

This implies that $c_{k_1} x^{s_{k_1}} + \ldots + c_{k_m} x^{s_{k_m}} = c_1 x^{s_1} + \ldots + c_l x^{s_l} - p(x) \in L_\Lambda \cap L_{\Lambda'}$. But $L_{\Lambda'} \cap L_\Lambda = \{0\}$ by (1.1), a contradiction.

Theorem 2.5. Suppose $\Lambda = (\lambda_k)_k \subset \mathbb{N}$ with $\sum_k \frac{1}{\lambda_k} < \infty$. If ϕ is a real-exponent polynomial with more than one term, then $C_{\phi} M^p_\Lambda \not\subset M^p_\Lambda$.

Proof. Let $\phi(x) = c_1 x^{s_1} + \ldots + c_l x^{s_l}$ with $c_i \in \mathbb{R} \setminus \{0\}$ and $s_i \in \mathbb{R}^+$. Then for any $\lambda \in \Lambda$, we get $\phi(x^{\lambda}) = \lambda^\lambda$ which has at least $\lambda + 1$ terms by Lemma 2.3. We may assume that these $\lambda + 1$ terms are nonzero multiples of $x^{s_1 \lambda}, x^{s_1}, \ldots, x^{s_\lambda - 1}, x^{s_1 \lambda}$ where $s_1 \lambda < t_1 < \ldots < t_{\lambda - 1} < s_l \lambda$. Suppose that $C_{\phi} M^p_\Lambda \subset M^p_\Lambda$, then Theorem 2.4 gives us $s_1 \lambda, t_1, \ldots, t_{\lambda - 1}, s_l \lambda \in \Lambda$. We construct a subsequence $(\lambda_{k_j})_j$ of Λ as follows: Let $\lambda_{k_1} = \lambda_1$ and
inductively choose λ_{k_j} such that $s_1\lambda_{k_j} > s_l\lambda_{k_{j-1}}$ for $j \geq 2$. Then the sequence

$$\Lambda^* := \bigcup_{j=1}^{\infty} \{s_1\lambda_{k_j}, t_1, \ldots, t_{\lambda_{k_j}-1}, s_l\lambda_{k_j}\}$$

is increasing and has distinct elements; moreover, $\Lambda^* \subset \Lambda$. So

$$\sum_{k=1}^{\infty} \frac{1}{\lambda_k} \geq \sum_{s \in \Lambda^*} \frac{1}{s} \geq \sum_{j=1}^{\infty} \sum_{i=1}^{\lambda_{k_j}+1} \frac{1}{s_l\lambda_{k_j}} \geq \sum_{j=1}^{\infty} \frac{1}{s_l} = \infty$$

and hence the contradiction implies $C_\phi M^p_\Lambda \not\subset M^p_\Lambda$. \hfill \Box

Corollary 2.6. Let $\Lambda \subset \mathbb{N}$ and ϕ be a real-exponent polynomial. Then the following are equivalent:

1. $C_\phi M^p_\Lambda \subset M^p_\Lambda$
2. $\phi(x) = \alpha x^\eta$ and $\Lambda = \{1, \eta, \eta^2, \ldots\}$ for some $0 \leq \alpha \leq 1$ and $\eta \in \mathbb{R}^+$
3. $C_\phi : M^p_\Lambda \to M^p_\Lambda$ is a bounded operator.

Proof.

(i) \Rightarrow (ii). Theorem 2.5 implies that $\phi(x) = \alpha x^\eta$ for $\eta \in \mathbb{R}^+$ and $0 \leq \alpha \leq 1$ because $\phi([0, 1]) \subset [0, 1]$. Then $C^m_\phi(x^\lambda) = C^{m-1}_\phi(\alpha^\lambda x^{\lambda \eta}) = \ldots = K x^{\lambda \eta^m} \in M^p_\Lambda$ for any $\lambda \in \Lambda$, $m \in \mathbb{N}$ and some constant K. Hence $\lambda \eta^m \in \Lambda$ for all $\lambda \in \Lambda$ and $m \in \mathbb{N}$ by Lemma 2.4. Therefore $\Lambda = \cup_{\lambda \in \Lambda} \lambda \{1, \eta, \eta^2, \ldots\} = \Lambda \{1, \eta, \eta^2, \ldots\}$.

(ii) \Rightarrow (iii). Suppose $\phi(x) = \alpha x^\eta$ with $0 \leq \alpha \leq 1$ and $\eta \in \mathbb{R}^+$. If $\alpha < 1$, then $\mu = \phi^* m$ is supported on $[0, \alpha]$ and $d\mu|_{J_{1-\alpha}} = 0$. Hence $||\phi^*||_e = 0$ by Proposition 1.4 and $C_\phi = J \circ \phi^*_\mu$ is compact. For $\alpha = 1$, the measure $\mu = \phi^* m$ satisfies

$$\int_{J_\delta} f d\mu = \int_{\phi^{-1}(J_\delta)} f \circ \phi dm = \int_{J_\delta} f \cdot (\phi^{-1})' dm = \int_{1-\delta}^1 f(x) \eta^{-1} x^{\frac{1}{\eta} - 1} dx$$

for any continuous f and $0 < \delta < 1$. Therefore $d\mu|_{J_\delta} = h dm|_{J_\delta}$ where $h(x) = \eta^{-1} x^{\frac{1}{\eta} - 1}$ is bounded on J_δ, and hence C_ϕ is bounded by Proposition 1.4. Moreover, for any $\lambda \in \Lambda$ we see that $C_\phi x^\lambda = \alpha^\lambda x^{\lambda \eta} \in M^p_\Lambda$. Hence by the density of linear span of monomials x^λ in M^p_Λ and continuity of C_ϕ, we get $C_\phi M^p_\Lambda \subset M^p_\Lambda$. The last part $(iii) \Rightarrow (i)$ is trivial. \hfill \Box

It is easy to see that Theorem 2.5 and Corollary 2.6 can be extended to the case when $\Lambda \not\subset \mathbb{N}$, but contains a subsequence of integers. To go beyond this case, we need some preparation about real-exponent power series.

Lemma 2.7. Suppose $f(x) = \sum_k a_k x^{s_k}$ is a series such that $(s_k)_k \subset \mathbb{R}^+$ is the finite union of sequences that satisfy the gap condition. Then f is uniformly convergent on some interval $[0, \rho]$ if $L := \lim \sup_k |a_k|^{1/s_k} < \infty$. Furthermore, if $f \equiv 0$ on $[0, \rho_0]$ for $\rho_0 \leq \rho$ then $a_k = 0$ for all k.

Proof. It is sufficient to prove the first part for the case when $(s_k)_k$ itself satisfies the gap condition; in the general case, we can write f as a finite sum of uniformly convergent series.
Since $|a_kx^{sk}|^{1/sk} = |a_k|^{1/sk}|x|$, we get $\limsup_k |a_kx^{sk}|^{1/sk} < 1$ if and only if $|x| < L^{-1}$ (taking $L^{-1} = \infty$ if $L = 0$). So, for $L|x| < 1$, we get $\limsup_k |a_kx^{sk}|^{1/sk} < r < 1$ for some r and hence there exists a positive integer N such that $|a_kx^{sk}|^{1/sk} < r$ for $k \geq N$. Therefore

$$\sum_{k \geq N} |a_kx^{sk}| \leq \sum_{k \geq N} r^k < \infty$$

where the convergence follows from the ratio test and the gap condition because

$$\lim_{k \to \infty} \frac{r^{k+1}}{r^k} = \lim_{k \to \infty} r^{s_k+1} \leq r^\inf(s_k+1) \leq 1.$$

So $f(x)$ converges absolutely for $L|x| < 1$, and in particular converges uniformly on $[0, \rho]$ for some $\rho > 0$.

For the second part, suppose on the contrary that a_1 is the first non-zero coefficient. We see that

$$f(x) = \sum_{k \geq 1} a_kx^{sk} = a_1x^{s_1}(1 + \sum_{k > 1} \frac{a_k}{a_1} x^{sk-s_1})$$

where $(s_k - s_1)_k$ is again a union of finitely many series satisfying the gap condition and

$$\limsup_k \left| \frac{a_k}{a_1} \right|^{s_1}_{s_k} \leq \limsup_k \left(\left| \frac{1}{a_1} \right|^{s_1}_{s_k} \right) = L < \infty$$

hence $g(x) = 1 + \sum_{k > 1} \frac{a_k}{a_1} x^{sk-s_1}$ converges uniformly on some interval $[0, \rho_1]$. So $f(x) = a_1x^{s_1} g(x) = 0$ on $[0, r]$, where $r = \min\{\rho_0, \rho_1\}$. Therefore $g = 0$ on $(0, r]$ and hence on $[0, r]$ by continuity. A contradiction, since $g(0) = 1$. \qed

Theorem 2.8. Suppose $\Lambda \subset \mathbb{R}^+$ with $\sum_k \frac{1}{\lambda_k} < \infty$ satisfies the gap condition $\inf_k (\lambda_{k+1} - \lambda_k) > 0$. If $\phi = \alpha x^{\xi_1} + \beta x^{\xi_2}$ with $\alpha, \beta \neq 0$ and $\xi_1 < \xi_2 \in \mathbb{R}^+$, then $C_\phi M^p_\Lambda \not\subseteq M_\Lambda^p$.

Proof. If $\Lambda \subset \mathbb{N}$, then Theorem 2.5 proves the result. So we assume $\Lambda \not\subseteq \mathbb{N}$, hence there exists $\lambda \in \Lambda$ that is not an integer. Suppose that $C_\phi M^p_\Lambda \subset M^p_\Lambda$; then

$$C_\phi(x^\lambda) = (\alpha x^{\xi_1} + \beta x^{\xi_2})^\lambda = \alpha^\lambda x^{\lambda\xi_1} (1 + \frac{\beta}{\alpha} x^{\xi_2-\xi_1})^\lambda \in M_\Lambda^p.$$

Hence by the binomial series we can represent $C_\phi(x^\lambda)$ as

$$C_\phi(x^\lambda)(t) = \alpha^\lambda t^{\lambda\xi_1} \sum_{k=0}^\infty a_k t^{k(\xi_2-\xi_1)} = \alpha^\lambda \sum_{k=0}^\infty a_k t^{\lambda\xi_1+k(\xi_2-\xi_1)}$$

where the series converges for $|t| < \frac{\alpha^\lambda}{\beta} |t|^{\frac{1}{\lambda\xi_1}}$, in particular on $[0, \eta]$ for some $\eta < 1$. The sequence of exponents $(\lambda\xi_1 + k(\xi_2 - \xi_1))_k$ clearly satisfies the gap condition, while the coefficients

$$a_k = \frac{\left(\frac{\beta}{\alpha} \right)^k \lambda(\lambda-1)(\lambda-2)\ldots(\lambda-k+1)}{k!}.$$
satisfy
\[L_1 := \limsup_{k \to \infty} |a_k|^{1/\lambda_1 + k(\zeta_2 - \zeta_1)} < \infty. \]
Similarly, by Theorem 1.2 there exists a sequence of scalars \(b_k \in \mathbb{R} \) such that
\[C_\phi(x^\lambda)(t) = \sum_{k=1}^\infty b_k t^{\lambda_k} \]
and the series converges uniformly on compact subsets of \([0, 1]\). By (1.2), the coefficients \((b_k)_k\) satisfy
\[L_2 := \limsup_{k \to \infty} |b_k|^{1/\lambda_k} \leq \limsup_{k \to \infty} [(1 + \varepsilon)(2\lambda_k + 1)^{1/\lambda_k} |f|^{1/\lambda_k}] < \infty. \]
Since both series representations coincide on \([0, \eta]\), the series defined by
\[f(t) = \sum_{k=1}^\infty b_k t^{\lambda_k} - \alpha^\lambda \sum_{k=0}^\infty a_k t^{\lambda_k + k(\zeta_2 - \zeta_1)} = \sum_{k} \gamma_k t^{s_k} \]
vanishes on \([0, \eta]\). Since \((s_k)_k\) is the union of two series satisfying the gap condition and \(\limsup_k |\gamma_k|^1/s_k \leq L_1 + L_2 < \infty\), by Lemma 2.7 we get \(\gamma_k = 0\) for all \(k\). Since \(\lambda\) is not an integer, all the \(a_k\) are non-zero; this implies that \(\lambda \zeta_1 + k(\zeta_2 - \zeta_1)\) \(\in \Lambda\) for all \(k\). This contradicts the fact that \(\sum_k 1/\lambda_k < \infty\) and hence \(C_\phi M^R_\Lambda \notin M^R_\Lambda\). \(\square\)

3. Composition Operators on \(M^2_\Lambda\): direct results

The next result is essentially contained in the work of Chalendar, Fricain and Timotin [4]:

Proposition 3.1. Suppose the Borel function \(\phi : [0, 1] \to [0, 1]\) satisfies the following:

(a) \(\phi^{-1}(1) = \{x_1, \ldots, x_k\}\) is finite.

(b) There exists \(\varepsilon > 0\) such that, for each \(i = 1, \ldots, k\), \(\phi\) is continuous on \((x_i - \varepsilon, x_i + \varepsilon)\), \(\phi \in C^1((x_i - \varepsilon, x_i))\) and \(\phi \in C^1((x_i, x_i + \varepsilon))\).

(c) \(\phi'_-(x_i) > 0\) and \(\phi'_+(x_i) < 0\) for all \(i = 1, \ldots, k\).

(\(\phi'_-(x)\) and \(\phi'_+(x)\) denote the left and right derivatives at \(x\) respectively, which may be infinite).

(d) There exists \(\alpha < 1\) such that, if \(x \notin \cup_{i=1}^k (x_i - \varepsilon, x_i + \varepsilon)\), then \(\phi(x) < \alpha\).

Then \(C_\phi : M^2_\Lambda \to L^2\) is bounded and \(\|C_\phi\|_e = \sum_{i=1}^k L(x_i)\), where
\[L(x_i) = \begin{cases} \frac{1}{\phi'_-(x_i)} + \frac{1}{|\phi'_+(x_i)|} & \text{if } x_i \in (0, 1), \\ \frac{1}{\phi'_-(x_i)} & \text{if } x_i = 1, \\ \frac{1}{|\phi'_+(x_i)|} & \text{if } x_i = 0. \end{cases} \]
In particular, if \(\phi'_-(x_i) = \infty\) and \(\phi'_+(x_i) = -\infty\) for all \(i = 1, \ldots, k\), then \(C_\phi\) is compact.

We intend to go beyond the regularity assumptions in Proposition 3.1.
Definition 3.2. If \(\phi : [0, 1] \rightarrow [0, 1] \) is a Borel function and \(\alpha = \text{ess sup}_{[0,1]} \phi \), then a point \(x \in [0, 1] \) is an essential point of maximum for \(\phi \) if \(\text{ess sup}_E \phi = \alpha \) for every neighborhood \(E \) of \(x \). Denote by \(M_\phi \) the set of all essential points of maxima of \(\phi \), and by \(V_\varepsilon \) the neighborhood of \(M_\phi \) defined for each \(\varepsilon > 0 \) by

\[
V_\varepsilon = \{ x \in [0, 1] : \text{dist}(x, M_\phi) < \varepsilon \}.
\]

Lemma 3.3. The following statements are true:

(i) \(M_\phi \) is non-empty and closed,

(ii) \(\text{ess sup}_\varepsilon \phi |_{[0,1] \setminus V_\varepsilon} < \alpha \) for all \(\varepsilon > 0 \),

(iii) for every \(\varepsilon > 0 \) there exists a \(\delta_0 > 0 \) such that \(\phi^{-1}([\alpha - \delta, \alpha]) \subset V_\varepsilon \) almost everywhere whenever \(0 < \delta < \delta_0 \).

Proof. (i). If \(M_\phi \) were empty, then every point \(x \in [0, 1] \) would have a neighborhood \(N_x \) such that \(\text{ess sup}_{N_x} \phi < \alpha \) and all such \(N_x \) would cover \([0, 1]\). Choosing a finite subcover so that \(\bigcup_{k=1}^m N_{x_k} = [0, 1] \), we see that

\[
\text{ess sup}_{[0,1]} \phi = \max_k \{ \text{ess sup}_{N_{x_k}} \phi \} < \alpha.
\]

The contradiction yields \(M_\phi \neq \emptyset \). To prove that \(M_\phi \) is closed, consider the set \(S := \bigcup_{x \in [0,1] \setminus M_\phi} N_x \), where \(N_x \) again represents a neighborhood of \(x \) on which \(\text{ess sup}_{N_x} \phi < \alpha \). So clearly \(S \) is open, and \(S \cap M_\phi = \emptyset \) since otherwise some \(N_{x'} \) for \(x' \in [0,1] \setminus M_\phi \) would contain an essential point of maximum. Hence \(S = [0,1] \setminus M_\phi \) and \(M_\phi \) is closed.

For (ii), suppose that \(\text{ess sup}_{[0,1] \setminus V_{\varepsilon'}} \phi = \alpha \) for some \(\varepsilon' > 0 \). Then the argument in the proof of (i) applied to the compact set \([0,1] \setminus V_{\varepsilon'}\), shows that it contains an essential point of maximum.

Finally for (iii), it follows from (ii) that for every \(\varepsilon > 0 \) there exists a \(\delta_0 > 0 \) such that \(\text{ess sup}_{[0,1] \setminus V_\varepsilon} \phi < \alpha - \delta_0 < \alpha \) and hence

\[
\phi^{-1}([\alpha - \delta, \alpha]) = \{ x \in [0, 1] : \alpha - \delta \leq \phi(x) \leq \alpha \} \subset V_\varepsilon
\]

except possibly for a subset of measure 0, whenever \(0 < \delta < \delta_0 \). \(\square \)

We recall that the left and right derivatives of \(\phi \) at the point \(y \) are defined as

\[
D^-_i(y) = \liminf_{t \to y^-} \frac{\phi(y) - \phi(t)}{y - t}
\]

\[
D^+_i(y) = \liminf_{t \to y^+} \frac{\phi(y) - \phi(t)}{y - t}
\]

\[
D^-_s(y) = \limsup_{t \to y^-} \frac{\phi(y) - \phi(t)}{y - t}
\]

\[
D^+_s(y) = \limsup_{t \to y^+} \frac{\phi(y) - \phi(t)}{y - t}
\]

respectively.
Suppose \(\phi : [0, 1] \to [0, 1] \) is a Borel function such that \(\alpha = \text{ess sup}_{[0, 1]} \phi < 1 \). Then it is easy to show that the measure defined by \(\mu = \phi^* m \) has support in \([0, \alpha] \). In fact
\[
\mu((\alpha, 1]) = \int_{(\alpha, 1]} d(\phi^* m) = \int_{\phi^{-1}((\alpha, 1])} dm = m(\phi^{-1}(\alpha, 1]) = 0.
\]

Hence in this case \(i^2 \mu \in S_q \) by Theorem 1.7(i). Therefore \(C_\phi \in S_q \) by Lemma 1.8 so from here onwards we assume that \(\alpha = \text{ess sup}_{[0, 1]} \phi = 1 \).

Since changing the values of \(\phi \) on a set of measure zero does not effect \(\mu = \phi^* m \), whenever \(m(\mathcal{M}_\phi) = 0 \), one may take \(\phi \equiv 1 \) on \(\mathcal{M}_\phi \). This will be assumed in the rest of the paper.

Lemma 3.4. Suppose \(\phi \) is a Borel function with \(\mathcal{M}_\phi = \{x_1, \ldots, x_k\} \) and \(\mu = \phi^* m \). If for some \(s \geq 1 \) there exists an \(\varepsilon > 0 \) and a constant \(c > 0 \) such that
\[
|x - x_i| \leq c|\phi(x) - 1|^s \quad \text{whenever} \quad |x - x_i| < \varepsilon
\]
for all \(i = 1, \ldots, k \), then there exists a \(\delta_0 > 0 \) such that \(\mu(J_\delta) \leq 2kc\delta^s \) whenever \(0 < \delta < \delta_0 \).

Proof. By Lemma 3.3(iii), there exists a \(\delta_0 > 0 \) such that \(\phi^{-1}(J_\delta) \subseteq V_\varepsilon \) almost everywhere whenever \(0 < \delta < \delta_0 \). Since \(\sup_{\phi^{-1}(J_\delta)}|\phi(x) - 1| \leq \delta \), we get
\[
m(\phi^{-1}(J_\delta)) \leq \sum_{i=1}^{k} m(\phi^{-1}(J_\delta) \cap \{\text{dist}(x, x_i) < \varepsilon\}) \leq 2 \sum_{i=1}^{k} \sup_{\phi^{-1}(J_\delta) \cap \{|x - x_i| < \varepsilon\}} |x - x_i| |\phi(x) - 1|^s \leq 2kc\delta^s.
\]
Therefore we get
\[
\mu(J_\delta) = \int_{J_\delta} d\mu = \int_{J_\delta} d(\phi^* m) = \int_{\phi^{-1}(J_\delta)} dm = m(\phi^{-1}(J_\delta)) \leq 2kc\delta^s \quad \text{whenever} \quad 0 < \delta < \delta_0.
\]

We arrive at the main theorem that gives necessary conditions for composition operators on \(M^2_A \) to be bounded, compact or in \(S_q \).

Theorem 3.5. Let \(\Lambda \) be lacunary and \(\mathcal{M}_\phi = \{x_1, \ldots, x_k\} \).

(i) If \(D_- > 0 \) and \(D_+ < 0 \) on \(\mathcal{M}_\phi \), then \(C_\phi : M^2_A \to L^2 \) is bounded.

(ii) If \(D_- = +\infty \) and \(D_+ = -\infty \) on \(\mathcal{M}_\phi \), then \(C_\phi : M^2_A \to L^2 \) is compact.

(iii) If for some \(\varepsilon > 0 \), \(\beta > 1 \) and constant \(c \) we have
\[
|x - x_i| \leq c|\phi(x) - 1|^\beta \quad \forall \quad |x - x_i| < \varepsilon \tag{3.1}
\]
for \(i = 1, \ldots, k \), then \(C_\phi \in S_q(M^2_A, L^2) \forall \ q > 0 \).
We conclude by presenting some results that serve as converses to the boundedness and compactness theorems given above for composition operators on \(M^2 \). Whenever \(|x - x_i| < \varepsilon \) for all \(i = 1, \ldots, k \). Hence by Lemma 3.4 we get \(\mu(J_\delta) \leq 2kM^{-1}\delta \) for \(0 < \delta < \delta_0 \). Therefore \(\mu \) is sublinear and \(\imath_\mu^2 \) is bounded by Theorem 1.6(i). So Lemma 1.8 implies that \(C_\phi : M^2_\Lambda \to L^2 \) is bounded.

By our hypothesis, for any \(M > 0 \) there exists an \(\varepsilon > 0 \) such that

\[
\frac{|\phi(x) - 1|}{|x - x_i|} \geq M \quad \iff \quad |x - x_i| \leq M^{-1}|\phi(x) - 1|
\]

whenever \(|x - x_i| < \varepsilon \) for all \(i = 1, \ldots, k \). Hence by Lemma 3.4 we get \(\mu(J_\delta) \leq 2kM^{-1}\delta \) for \(0 < \delta < \delta_0 \). Therefore \(\mu \) is sublinear and \(\imath_\mu^2 \) is bounded by Theorem 1.6(ii), and so is \(C_\phi = J \circ \imath_\mu^2 \).

Applying Lemma 3.4 directly to condition (3.1), we get \(\mu(J_\delta) \leq 2k\delta^\beta \) whenever \(0 < \delta < \delta_0 \). Hence by Theorem 1.7(ii), \(\imath_\mu \in S_q(M^2_\Lambda, L^2(\mu)) \) for all \(q > 0 \). So \(C_\phi \in S_q(M^2_\Lambda, L^2) \) for all \(q > 0 \).

Remark 3.6. If \(\psi \in L^\infty \) then these results still hold true for the weighted composition operator \(M_\psi \circ C_\phi \) where \(M_\psi \) is the multiplication operator with symbol \(\psi \), which is a bounded operator on \(L^2 \).

4. Composition Operators on \(M^2_\Lambda \): Inverse results

We conclude by presenting some results that serve as converses to the boundedness and compactness theorems given above for composition operators on \(M^2_\Lambda \). We shall need the following two lemmas.

Lemma 4.1. Let \(\mu \) be a positive measure on \([0, 1]\). Then the following hold:

(i) If \(\imath_\mu^2 \) is bounded, then \(\lim \inf_{\delta \to 0} \mu(J_\delta) < \infty \)

(ii) If \(\imath_\mu^2 \) is compact, then \(\lim \inf_{\delta \to 0} \frac{\mu(J_\delta)}{\delta} = 0 \).

Proof. (i) Suppose \(\mu \) is \(\Lambda_2 \)-embedding. Since \(\lim_{n \to \infty}(1 - \frac{1}{\lambda_n})^{\lambda_n} = \frac{1}{e} \), there exists an integer \(N \) such that, for all \(n \geq N \) and for all \(x \in [1 - \frac{1}{\lambda_n}, 1] \), we have \(x^{\lambda_n} \geq \frac{1}{3} \). It follows that for all \(n \geq N \)

\[
\frac{1}{3^2} \mu(J_{1/\lambda_n}) \leq \int_{J_{1/\lambda_n}} x^{2\lambda_n} d\mu \leq ||\imath_\mu^2||^2 \int_0^1 x^{2\lambda_n} dx = \frac{||\imath_\mu^2||^2}{2\lambda_n + 1}.
\]

Therefore for all \(n \geq N \), we have

\[
\mu(J_{1/\lambda_n}) \leq \frac{3^2||\imath_\mu^2||^2}{\lambda_n} \quad \iff \quad \mu(J_{1/\lambda_n}) \leq 9||\imath_\mu^2||^2.
\]

This implies that \(\lim \inf_{\delta \to 0} \frac{\mu(J_\delta)}{\delta} < \infty \).
(ii) Choosing \(f_n(x) = \lambda_n^{1/2} x^{\lambda_n} \), we see that
\[
\langle f_n, x^{\lambda_k} \rangle = \int_{[0,1]} \lambda_n^{1/2} x^{\lambda_n + \lambda_k} \, dx = \frac{\lambda_n^{1/2}}{\lambda_n + \lambda_k + 1} \to 0
\]
as \(n \to \infty \) for all \(k \in \mathbb{N} \). Noting that \(\| f_n \|_{L^2} \) is bounded and the linear span of the sequence \((x^{\lambda_k})_k \) is dense in \(M^2_{\Lambda} \), it follows that \(f_n \to 0 \) weakly in \(M^2_{\Lambda} \), as \(n \to \infty \). If \(i_\mu^2 \) is compact, this implies that \((i_\mu^2 f_n)_n \) converges strongly to 0 in \(L^2(\mu) \) and hence \(\| f_n \|_{L^2(\mu)} \to 0 \) as \(n \to 0 \). Therefore
\[
\| f_n \|_{L^2(\mu)}^2 = \int_{[0,1]} \lambda_n x^{2\lambda_n} \, d\mu \geq \int_{J_{1/\lambda_n}} \lambda_n x^{2\lambda_n} \, d\mu \geq (1 - \frac{1}{\lambda_n})^{2\lambda_n} \frac{\mu(J_{1/\lambda_n})}{1/\lambda_n}.
\]
Since \((1 - \frac{1}{\lambda_n})^{2\lambda_n} \to e^{-2} \) as \(n \to \infty \), we get
\[
\frac{\mu(J_{1/\lambda_n})}{1/\lambda_n} \to 0 \text{ as } n \to \infty
\]
and the result follows.

The next lemma might be compared to Lemma 3.4.

Lemma 4.2. Suppose \(\phi : [0,1] \to [0,1] \) is a Borel function and \(\mu = \phi^* m \). If for some \(x_0 \in [0,1] \) with \(\phi(x_0) = 1 \) and \(\eta > 0 \), there exists an \(\varepsilon > 0 \) such that
\[
x_0 - x > \frac{1}{\eta} (1 - \phi(x)) \text{ whenever } 0 < x_0 - x < \varepsilon,
\]
then \(\mu(J_\delta) \geq \frac{\delta}{\eta} \) for \(0 < \delta < \eta \varepsilon \).

Proof. Since there exists an \(\varepsilon > 0 \) such that for \(0 < x_0 - x < \varepsilon \), we have
\[
\frac{1 - \phi(x)}{x_0 - x} < \eta \iff 1 - \phi(x) < \eta(x_0 - x).
\]
Then suppose \(0 < \delta < \delta_0 = \eta \varepsilon \). If \(0 < x_0 - x < \frac{\delta}{\delta_0} \varepsilon = \frac{\delta}{\eta} \) then \(1 - \phi(x) < \eta \frac{\delta}{\eta} = \delta \) which implies \(\phi(x) > 1 - \delta \). So \(\phi^{-1}(J_\delta) \) contains the interval \((x_0 - \frac{\delta}{\eta}, x_0) \) of Lebesgue measure \(\frac{\delta}{\eta} \). Therefore
\[
m(\phi^{-1}(J_\delta)) \geq \frac{\delta}{\eta} \Rightarrow \mu(J_\delta) \geq \frac{\delta}{\eta} \Rightarrow \frac{\mu(J_\delta)}{\delta} \geq \frac{1}{\eta}.
\]

For the partial converses to parts (i) and (ii) of Theorem 3.6 we need neither lacunarity nor any assumption on \(\mathcal{M}_\phi \):

Theorem 4.3. Suppose \(\phi : [0,1] \to [0,1] \) is a Borel function, and \(\phi(x_0) = 1 \) for some \(x_0 \in [0,1] \).

(i) If \(C_\phi \) is bounded, then \(D^+(x_0) > 0 \) and \(D^i_+(x_0) < 0 \).

(ii) If \(C_\phi \) is compact, then \(D^+(x_0) = +\infty \) and \(D^i_+(x_0) = -\infty \).
Proof. (i) Suppose on the contrary that either $D_s^- (x_0) = 0$ or $D_i^+ (x_0) = 0$. We shall deduce a contradiction for one of these cases since both are analogous. So suppose $D_s^- (x_0) = 0$, that is
\[
\lim_{x \to x_0^-} \frac{1 - \phi(x)}{x_0 - x} = 0.
\]
For each $\eta > 0$ there exists an $\varepsilon > 0$ such that for $0 < x_0 - x < \varepsilon$, we have
\[
\frac{1 - \phi(x)}{x_0 - x} < \eta.
\]
Therefore by Lemma 4.2 we get $\frac{\mu(J_\delta)}{\delta} \geq \frac{1}{\eta}$ whenever $\delta < \eta \varepsilon$. So $\frac{\mu(J_\delta)}{\delta} \to +\infty$ as $\delta \to 0$. Since C_ϕ is bounded we get that μ is Λ_2-embedding by Lemma 1.8. This leads to a contradiction since Lemma 4.1 gives $\lim_{\delta \to 0} \frac{\mu(J_\delta)}{\delta} < \infty$.

For (ii), suppose to the contrary that either $D_s^- (x_0) < +\infty$ or $D_i^+ (x_0) > -\infty$ for some $x_0 \in \mathcal{M}_\phi$. Again due to similarities we shall deal with one case. So suppose $D_s^- (x_0) < \infty$, that is
\[
\lim_{x \to x_0^-} \frac{1 - \phi(x)}{x_0 - x} < \infty.
\]
So there exists a $\zeta > 0$ and an $\varepsilon > 0$ such that for $0 < x_0 - x < \varepsilon$, we have
\[
\frac{1 - \phi(x)}{x_0 - x} < \zeta.
\]
Therefore by Lemma 4.2 we get $\frac{\mu(J_\delta)}{\delta} \geq \frac{1}{\zeta}$ for $\delta < \zeta \varepsilon$. This contradicts Lemma 4.1 because i^2_μ is compact by Lemma 1.8.

Corollary 4.4. Suppose ϕ is a polynomial with $\phi^{-1}(1)$ non-empty. Then C_ϕ is not compact, and if it is bounded then $\phi^{-1}(1) \subset \{0, 1\}$.

Proof. If C_ϕ is bounded and some $x_0 \in \phi^{-1}(1)$ is an interior point of $[0, 1]$, then clearly x_0 must be a local maximum and hence $\phi'(x_0) = 0$. This contradicts Theorem 4.3 (i) and hence $\phi^{-1}(1) \subset \{0, 1\}$. Similarly, by part (ii) of the theorem we get the conclusion that C_ϕ can never be compact because ϕ is differentiable everywhere.

Acknowledgments: The author wishes to thank his supervisor Professor Dan Timotin for the many interesting ideas he shared and discussions we had.

References

1. I.A. Alam. Géométrie des espaces de Müntz et opérateurs de composition à poids. PhD thesis. Université Lille 1, 2008.
2. I.A. Alam. Essential norms of weighted composition operators on Müntz spaces. J. Math. Anal. Appl., 358(2), 2009.
3. P.Borwein and T.Erdelyi. Polynomials and polynomial inequalities, volume 161 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995.
4. I. Chalendar, E. Fricain, and Dan Timotin. *Embedding Theorems for M"untz Spaces*, Annales de l'Institut Fourier, To Appear.
http://math.univ-lyon1.fr/~fricain/arxiv-muntz.pdf

5. V. I. Gurariy and W. Lusky. *Geometry of M"untz spaces and related questions*, volume 1870 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2005

6. S. W. Noor and D. Timotin. *Embeddings of M"untz Spaces: The Hilbertian Case*, Proc. Amer. Math. Soc., To appear 2012. http://arxiv.org/abs/1110.5422

7. A. Schinzel. *On the number of terms of a power of a polynomial*, Acta Arith. 49 (1987), no. 1, 5570.

8. A. Spalsbury. Perturbations in M"untz’s theorem. *J. Approx. Theory*, 150(1):48–68, 2008.

S. Waleed Noor
Abdus Salam School of Mathematical Sciences
New Muslim Town, Lahore, Pakistan
e-mail: waleed.math@hotmail.com