Heavy quark spectroscopy and prediction of bottom baryon masses

Marek Karliner
BEACH’08, Columbia SC, June 23, 2008

in collaboration with B. Keren-Zur, H.J. Lipkin and J. Rosner
Constituent Quark Models (CQM)

- QCD describes hadrons as valence quarks in a sea of gluons and q-qbar pairs.
- at low E, χ_{SB}
- \[\rightarrow \text{quark constituent mass} \]
- hadron can be considered as a bound state of constituent quarks.
- Sakharov-Zeldovich formula:

\[
M = \sum_i m_i
\]

- the binding & kinetic energies “swallowed” by the constituent quarks masses.
Color Hyperfine (HF) interaction

- 1st correction – color hyperfine (chromo-magnetic) interaction

\[M = \sum_i m_i + \sum_{i<j} V_{ij}^{HF} \]

\[V_{ij}^{HF(QCD)} = v_0 \left(\vec{\lambda}_i \cdot \vec{\lambda}_j \right) \frac{\vec{\sigma}_i \cdot \vec{\sigma}_j}{m_i m_j} \langle \psi \left| \delta (r_i - r_j) \right| \psi \rangle \]

- A contact interaction
- Analogous to the EM hyperfine interaction – a product of the magnetic moments.

\[V_{ij}^{HF(em)} \propto \vec{\mu}_i \cdot \vec{\mu}_j = e^2 \frac{\vec{\sigma}_i \cdot \vec{\sigma}_j}{m_i m_j} \]

- In QCD, SU(3) generators take the place of the electric charge.
Constituent Quark Model: *caveat emptor*

- a low energy limit, phenomenological model
- still awaiting derivation from QCD
- far from providing a full explanation of the hadronic spectrum, but it provides excellent predictions for mass splittings and magnetic moments

assumptions:
- HF interaction considered as a perturbation
 - does not change the wave function
- same masses for quarks inside mesons and baryons.
- no 3-body effects.
constituent quark masses

example I:
quark mass differences from baryon mass differences:

\[M_\Lambda_c - M_\Lambda = \]
\[= (m_u + m_d + m_c + V_{ud}^{HF} + V_{uc}^{HF} + V_{dc}^{HF}) - \]
\[- (m_u + m_d + m_s + V_{ud}^{HF} + V_{us}^{HF} + V_{ds}^{HF}) = \]
\[= m_c - m_s = 0 \]
constituent quark masses

• example II:

\[M_{K^*} - M_K = v_0 \left(\frac{\vec{\lambda}_u \cdot \vec{\lambda}_s}{m_u m_s} \right) \left[(\vec{\sigma}_u \cdot \vec{\sigma}_s)_{K^*} - (\vec{\sigma}_u \cdot \vec{\sigma}_s)_K \right] \langle \psi | \delta(r) | \psi \rangle \]

\[= 4v_0 \left(\frac{\vec{\lambda}_u \cdot \vec{\lambda}_s}{m_u m_s} \right) \langle \psi | \delta(r) | \psi \rangle \]

• extracting quark masses ratio:

\[\frac{M_{K^*} - M_K}{M_{D^*} - M_D} = \frac{4v_0 \left(\frac{\vec{\lambda}_u \cdot \vec{\lambda}_s}{m_u m_s} \right) \langle \psi | \delta(r) | \psi \rangle}{4v_0 \left(\frac{\vec{\lambda}_u \cdot \vec{\lambda}_c}{m_u m_c} \right) \langle \psi | \delta(r) | \psi \rangle} \approx \frac{m_c}{m_s} \]
quark mass difference is the same in mesons and baryons

\[\langle m_i - m_j \rangle_{dBar} \approx \langle m_i - m_j \rangle_{dMes} \]

but depends on the spectator quark

→ challenge to npQCD

MK & Lipkin, hep-ph/0307243

observable	baryons	mesons	\(\Delta m_{Bar}\)	\(\Delta m_{Mes}\)					
\(\langle m_s - m_u \rangle_d\)	\(\Lambda\)	\(N\)	\(K^*\)	\(\rho\)	\(K\)	\(\pi\)	177	179	
\(\langle m_s - m_u \rangle_c\)	\(c\bar{s}\)	\(c\bar{u}\)	\(c\bar{s}\)	\(c\bar{u}\)	\(D_s^*\)	\(D_s^*\)	\(D_s\)	\(D_s\)	103
\(\langle m_s - m_u \rangle_b\)	\(b\bar{s}\)	\(b\bar{u}\)	\(b\bar{s}\)	\(b\bar{u}\)	\(B_s^*\)	\(B_s^*\)	\(B_s\)	\(B_s\)	91
\(\langle m_c - m_u \rangle_d\)	\(\Lambda_c\)	\(N\)	\(D^*\)	\(\rho\)	\(D\)	\(\pi\)	1346	1360	
\(\langle m_c - m_u \rangle_c\)	\(c\bar{c}\)	\(u\bar{c}\)	\(c\bar{c}\)	\(u\bar{c}\)	\(\psi\)	\(D_s^*\)	\(\eta_c\)	\(D\)	1095
\(\langle m_c - m_s \rangle_d\)	\(\Lambda_c\)	\(\Lambda\)	\(D^*\)	\(K^*\)	\(D\)	\(K\)	1169	1180	
\(\langle m_c - m_s \rangle_c\)	\(c\bar{c}\)	\(s\bar{c}\)	\(c\bar{c}\)	\(s\bar{c}\)	\(\psi\)	\(D_s^*\)	\(\eta_c\)	\(D_s\)	991
\(\langle m_b - m_u \rangle_d\)	\(\Lambda_b\)	\(N\)	\(b\bar{d}\)	\(u\bar{d}\)	\(b\bar{d}\)	\(u\bar{d}\)	4685	4700	
\(\langle m_b - m_u \rangle_s\)	\(b\bar{s}\)	\(u\bar{s}\)	\(b\bar{s}\)	\(u\bar{s}\)	\(B_s^*\)	\(K^*\)	\(B_s\)	\(K\)	4613
\(\langle m_b - m_s \rangle_d\)	\(\Lambda_b\)	\(\Lambda\)	\(b\bar{d}\)	\(s\bar{d}\)	\(b\bar{d}\)	\(s\bar{d}\)	4508	4521	
\(\langle m_b - m_c \rangle_d\)	\(\Lambda_b\)	\(\Lambda_c\)	\(b\bar{d}\)	\(c\bar{d}\)	\(b\bar{d}\)	\(c\bar{d}\)	3339	3341	
\(\langle m_b - m_c \rangle_s\)	\(b\bar{s}\)	\(c\bar{s}\)	\(b\bar{s}\)	\(c\bar{s}\)	\(B_s^*\)	\(D_s^*\)	\(B_s\)	\(D_s\)	3328
color hyperfine splitting in baryons

• The Σ (uds) baryon HF splitting:
 – Σ^*: total spin 3/2
 - u and d at relative spin – 1
 – Σ: isospin – 1
 • Symmetric under exchange of u and d
 • u and d at relative spin – 1

\[
(\vec{\sigma}_u \cdot \vec{\sigma}_d)_{\Sigma^*} = (\vec{\sigma}_u \cdot \vec{\sigma}_d)_{\Sigma}
\]

• the ‘ud’ pair does not contribute to the HF splitting

\[
M_{\Sigma^*} - M_\Sigma = 6v_0 \frac{(\vec{\lambda}_u \cdot \vec{\lambda}_d)}{m_u m_s} \langle \psi | \delta(r_{ij}) | \psi \rangle
\]
Quark mass ratio from HF splittings in mesons and baryons

\[
\left(\frac{m_c}{m_s} \right)_{\text{Bar}} = \frac{M_{\Sigma^*} - M_{\Sigma}}{M_{\Sigma^*_c} - M_{\Sigma_c}} = 2.84 = \left(\frac{m_c}{m_s} \right)_{\text{Mes}} = \frac{M_{K^*} - M_K}{M_{D^*} - M_D} = 2.81
\]

\[
\left(\frac{m_c}{m_u} \right)_{\text{Bar}} = \frac{M_{\Delta} - M_p}{M_{\Sigma^*_c} - M_{\Sigma_c}} = 4.36 = \left(\frac{m_c}{m_u} \right)_{\text{Mes}} = \frac{M_{\rho} - M_{\pi}}{M_{D^*} - M_D} = 4.46
\]

New type of mass relations with more heavy flavors

\[
\left(\frac{1}{m_u^2} - \frac{1}{m_u m_c} \right)_{\text{Bar}} = \frac{M_{\Sigma_c} - M_{\Lambda_c}}{M_{\Sigma} - M_{\Lambda}} = 2.16 \approx \left(\frac{1}{m_u^2} - \frac{1}{m_u m_c} \right)_{\text{Mes}} = \frac{(M_{\rho} - M_{\pi}) - (M_{D^*} - M_D)}{(M_{\rho} - M_{\pi}) - (M_{K^*} - M_K)} = 2.10
\]
Similar relation for bottom baryons → prediction for Σ_b mass

$$\frac{M_{\Sigma_b} - M_{\Lambda_b}}{M_{\Sigma} - M_{\Lambda}} = \frac{(M_\rho - M_\pi)}{(M_\rho - M_\pi) - (M_{B^*} - M_B)} = 2.51$$

$$M_{\Sigma_b} - M_{\Lambda_b} = 194\,\text{MeV}$$

(MK & Lipkin, hep-ph/0307243)
Observation of New Heavy Baryon $\Sigma_{b}^{(*)}$ and $\Sigma_{b}^{(*)}$

This web page summarizes the results of the search for new heavy baryons $\Sigma_{b}^{(*)}$ and $\Sigma_{b}^{(*)}$ based upon 1fb$^{-1}$ of data. The results have been approved as of September 21, 2006. The ratio of likelihoods of the null-hypothesis (no $\Sigma_{b}^{(*)}$ signal) and the hypothesis of four $\Sigma_{b}^{(*)}$ states is 2.6×10^{-19}. Using the fully reconstructed decay mode

$$\Sigma_{b}^{(*)} \rightarrow \Lambda_{b}^{0} \pi^{\pm} ; \quad \Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \pi^{-} ; \quad \Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}$$

we measure:

- $m(\Sigma_{b}^{+}) = 5808^{+2.0}_{-2.3}$ (stat.) ± 1.7 (syst.) MeV/c2
- $m(\Sigma_{b}^{-}) = 5816^{+1.0}_{-1.0}$ (stat.) ± 1.7 (syst.) MeV/c2
- $m(\Sigma_{b}^{*-}) = 5829^{+1.6}_{-1.8}$ (stat.) ± 1.7 (syst.) MeV/c2
- $m(\Sigma_{b}^{*-}) = 5837^{+2.1}_{-1.9}$ (stat.) ± 1.7 (syst.) MeV/c2
CDF II Preliminary, $L = 1.1$ fb$^{-1}$ Fit Prob. = 76%

Candidates per 5 MeV/c2

$$Q = m(\Lambda_b^0\pi) - m(\Lambda_b^0) - m_\pi \quad \text{(GeV/c}^2\text{)}$$
CDF obtained the masses of the Σ_b^{-} and Σ_b^{+} from the decay $\Sigma_b \rightarrow \Lambda_b + \pi$ by measuring the corresponding mass differences

$$M(\Sigma_b^{-}) - M(\Lambda_b) = 195.5^{+1.0}_{-1.0}\text{ (stat.)} \pm 0.1\text{ (syst.) MeV}$$

$$M(\Sigma_b^{+}) - M(\Lambda_b) = 188.0^{+2.0}_{-2.3}\text{ (stat.)} \pm 0.1\text{ (syst.) MeV}$$

with isospin-averaged mass difference $M(\Sigma_b) - M(\Lambda_b) = \boxed{192\text{ MeV}}$.
can rederive without assuming $HF \sim 1/m_q$

a weaker assumption of same flavor dependence suffices

\[
\frac{V_{hyp}(q_i q_j)}{V_{hyp}(q_i \bar{q}_k)} = \frac{V_{hyp}(q_i \bar{q}_j)}{V_{hyp}(q_i q_k)}
\]

\[
\frac{M_{\Sigma_b} - M_{\Lambda_b}}{(M_\rho - M_\pi) - (M_{B^*} - M_B)} \approx \frac{M_{\Sigma_c} - M_{\Lambda_c}}{(M_\rho - M_\pi) - (M_{D^*} - M_D)} \approx \frac{M_\Sigma - M_\Lambda}{(M_\rho - M_\pi) - (M_{K^*} - M_K)} = 0.32 \approx 0.33 \approx 0.325
\]

heavy Q spectroscopy M. Karliner, BEACH 2008
also prediction for spin splitting between Σ_b^* and Σ_b

\[
M(\Sigma_b^*) - M(\Sigma_b) = \frac{M(B^*) - M(B)}{M(K^*) - M(K)} \cdot [M(\Sigma^*) - M(\Sigma)] = 22 \text{ MeV}
\]

to be compared with 21 MeV from the isospin-average of CDF measurements

\[
M(\Sigma_b^{*-}) = 5837^{+2.1}_{-1.9} \text{ (stat.)} \pm 1.7 \text{ (syst.) MeV}
\]

\[
M(\Sigma_b^{*+}) = 5829^{+1.6}_{-1.8} \text{ (stat.)} \pm 1.7 \text{ (syst.) MeV}
\]
Effective meson-baryon supersymmetry

- meson: $Q \bar{q}$ baryon: Qqq
- in both cases: valence quark coupled to light quark “brown muck” color antitriplet, either a light antiquark ($S=1/2$) or a light diquark ($S=0, S=1$)

Effective supersymmetry:

$$T^S_{LS} |\mathcal{M}(\bar{q}Q_i)\rangle \equiv |\mathcal{B}([qq]_S Q_i)\rangle$$

- $m(\mathcal{B}) - m(\mathcal{M})$ independent of quark flavor (u,s,c,b)!
• need to first cancel the HF interaction contribution to meson masses:

$$\tilde{M}(V_i) \equiv \frac{3M_{V_i} + M_{P_i}}{4}$$

• for spin-zero diquarks:

$$M(N) - \tilde{M}(\rho) = M(\Lambda) - \tilde{M}(K^*) = M(\Lambda_c) - \tilde{M}(D^*) = M(\Lambda_b) - \tilde{M}(B^*)$$

$$323 \text{ MeV} \approx 321 \text{ MeV} \approx 312 \text{ MeV} \approx 310 \text{ MeV}$$

• for spin-one diquarks need to also cancel HF contribution to baryon masses:

$$\tilde{M}(\Sigma_i) \equiv \frac{2M_{\Sigma_i^*} + M_{\Sigma_i}}{3}; \quad \tilde{M}(\Delta) \equiv \frac{2M_\Delta + M_N}{3}$$

$$\tilde{M}(\Delta) - \tilde{M}(\rho) = \tilde{M}(\Sigma) - \tilde{M}(K^*) = \tilde{M}(\Sigma_c) - \tilde{M}(D^*) = \tilde{M}(\Sigma_b) - \tilde{M}(B^*)$$

$$517.56 \text{ MeV} \approx 526.43 \text{ MeV} \approx 523.95 \text{ MeV} \approx 512.45 \text{ MeV}$$
Magnetic moments of heavy baryons

• In Λ, Λ_c and Λ_b light q coupled to spin zero
• \rightarrow mag. moments determined by s,c,b moments
• quark mag. moments proportional to their chromomagnetic moments

DGG: \[\mu_\Lambda = -\frac{\mu_p}{3} \cdot \frac{M_{\Sigma^*} - M_\Sigma}{M_\Delta - M_N} = -0.61 \text{ n.m.} \ (=\text{EXP}) \]

\[\mu_{\Lambda_c} = -2\mu_\Lambda \cdot \frac{M_{\Sigma^*_c} - M_{\Sigma_c}}{M_{\Sigma^*} - M_\Sigma} = 0.43 \text{ n.m.} \]

\[\mu_{\Lambda_b} = \mu_\Lambda \cdot \frac{M_{\Sigma^*_b} - M_{\Sigma_b}}{M_{\Sigma^*} - M_\Sigma} = -0.067 \text{ n.m.} \]
Testing confining potentials through meson/baryon HF splitting ratio

B. Keren-Zur, hep-ph/0703011 & Ann. Phys

• from constituent quarks model can derive:

\[
\frac{M_{K^*} - M_K}{M_{\Sigma^*} - M_\Sigma} = \frac{4}{3} \frac{\langle \psi | \delta(\vec{r}_u - \vec{r}_s) | \psi \rangle_{\text{meson}}}{\langle \psi | \delta(\vec{r}_u - \vec{r}_s) | \psi \rangle_{\text{baryon}}}
\]

• depends only on the confinement potential and quark mass ratio
• can be used to test different confinement potentials
Testing confining potentials through meson/baryon HF splitting ratio

- 3 measurements ($Q = s, c, b$)
- 5 potentials:
 - Harmonic oscillator
 - Coulomb interaction
 - Linear potential
 - Linear + Coulomb
 - Logarithmic
baryon/meson
HF splitting ratio

- K meson HF splitting
 \[M_{K^*} - M_K = 4v_0 \left(\frac{\vec{\lambda}_u \cdot \vec{\lambda}_s}{m_u m_s} \right) \langle \psi | \delta(r_{us}) | \psi \rangle \]

- The \(\Sigma \) (uds) baryon HF splitting:
 \[M_{\Sigma^*} - M_\Sigma = 6v_0 \left(\frac{\vec{\lambda}_u \cdot \vec{\lambda}_s}{m_u m_s} \right) \langle \psi | \delta(r_{us}) | \psi \rangle \]

- Using the relation:
 \((\vec{\lambda}_u \cdot \vec{\lambda}_s)_{\text{meson}} = 2(\vec{\lambda}_u \cdot \vec{\lambda}_s)_{\text{baryon}} \)

\[
\frac{M_{K^*} - M_K}{M_{\Sigma^*} - M_\Sigma} = \frac{4}{3} \frac{\langle \psi | \delta(r_{us}) | \psi \rangle_{\text{meson}}}{\langle \psi | \delta(r_{us}) | \psi \rangle_{\text{baryon}}}
\]
baryon/meson HF splitting ratio

\[\frac{M_{K^*} - M_K}{M_{\Sigma^*} - M_{\Sigma}} = \frac{4 \langle \psi | \delta(r_{us}) | \psi \rangle_{\text{meson}}}{3 \langle \psi | \delta(r_{us}) | \psi \rangle_{\text{baryon}}} \]

- similar quark content, so can cancel out the HF coupling constant \((v_0)\).
- confinement potential coupling constant and quark mass scale also cancel out
- depends only on the shape of the potential and the ratio of the quark masses.
Hyperfine splitting ratio from potential models vs experiment

heavy Q spectroscopy

M. Karliner, BEACH 2008
hyperfine splitting ratio from potential models vs experiment

	Δ_K / Δ_Σ	$\Delta_D / \Delta_{\Sigma_c}$	$\Delta_B / \Delta_{\Sigma_b}$
M_3/M_1	1.33	4.75	14
EXP	2.08 ± 0.01	2.18 ± 0.08	2.15 ± 0.20
Harmonic	1.65	1.62	1.59
Coulomb	5.07 ± 0.08	5.62 ± 0.02	5.75 ± 0.01
Linear	1.88 ± 0.06	1.88 ± 0.08	1.86 ± 0.09
Cornell (K=0.28)	2.10 ± 0.05	2.16 ± 0.07	2.17 ± 0.08
Log	2.38 ± 0.02	2.43 ± 0.02	2.43 ± 0.01
Predicting the mass of Ξ_Q baryons

Ξ_Q: Qsd or Qsu. (sd), (sd) in spin-0

Ξ_Q mass given by

$$\Xi_Q = m_q + m_s + m_u - \frac{3v \langle \delta(r_{us}) \rangle}{m_u m_s}$$

Can obtain (bsd) mass from (csd) + shift in HF:

$$\Xi_b = \Xi_c + (m_b - m_c) - \frac{3v}{m_u m_s} \left(\langle \delta(r_{us}) \rangle_{\Xi_b} - \langle \delta(r_{us}) \rangle_{\Xi_c} \right)$$
several options for obtaining $m_b - m_c$ from data:

$$m_b - m_c = \Lambda_b - \Lambda_c = 3333.2 \pm 1.2 \text{ MeV}$$

$$m_b - m_c = \left(\frac{2\Sigma_b^* + \Sigma_b + \Lambda_b}{4} - \frac{2\Sigma_c^* + \Sigma_c + \Lambda_c}{4} \right) = 3330.4 \pm 1.8 \text{ MeV}$$

- The $\Xi_Q^{(Qsq)}$ baryons contain an s quark
- Q mass differences depend on the spectator
- optimal estimate from mesons which contain both s and Q:

$$m_b - m_c = \left(\frac{3B_s^* + B_s}{4} - \frac{3D_s^* + D_s}{4} \right) = 3324.6 \pm 1.4 \text{ MeV}$$
Summary of Ξ_b mass predictions

	$\Lambda_b - \Lambda_c$	$\Sigma_b - \Sigma_c$	$B_s - D_s$
No HF correction	5803 ± 2	5800 ± 2	5794 ± 2
Linear	5801 ± 11	5798 ± 11	5792 ± 11
Coulomb	5778 ± 2	5776 ± 2	5770 ± 2
Cornell	5799 ± 7	5796 ± 7	5790 ± 7
Predictions for masses of Ξ_b baryons

Marek Karlinera, Boaz Keren-Zura, Harry J. Lipkina,b,c, and Jonathan L. Rosnerd

a School of Physics and Astronomy
Raymond and Beverly Sackler Faculty of Exact Sciences
Tel Aviv University, Tel Aviv 69978, Israel

b Department of Particle Physics
Weizmann Institute of Science, Rehovoth 76100, Israel

c High Energy Physics Division, Argonne National Laboratory
Argonne, IL 60439-4815, USA

d Enrico Fermi Institute and Department of Physics
University of Chicago, 5640 S. Ellis Avenue, Chicago, IL 60637, USA

ABSTRACT

The recent observation by CDF of Σ_b^\pm (uud and ddb) baryons within 2 MeV of the predicted $\Sigma_b - \Lambda_b$ splitting has provided strong confirmation for the theoretical approach based on modeling the color hyperfine interaction. We now apply this approach to predict the masses of the Ξ_b family of baryons with quark content usb and dsb – the ground state Ξ_b at 5790 to 5800 MeV, and the excited states Ξ_b' and Ξ_b^{*}. The main source of uncertainty is the method used to estimate the mass difference $m_b - m_c$ from known hadrons. We verify that corrections due to the details of the interquark potential and to $\Xi_b - \Xi_b'$ mixing are small.
Ξ_b Mass Comparison

- **D0**
- **CDF**

Theoretical prediction:
- Jenkins
 - PRD54,4515
- Karliner et al
 - hep-ph/0706.2163
\[\Xi_b^*, \Xi'_b \text{ mass prediction} \]

\[\Xi'_b : \text{bsd with (sd) in } S=1; \text{ total spin } = 1/2 \]

\[\Xi^*_b : \text{bsd with (sd) in } S=1; \text{ total spin } = 3/2 \]

spin-averaged mass of these two states

\[\frac{2\Xi^*_q + \Xi'_q}{3} = m_q + m_s + m_u + \frac{v \langle \delta(r_{us}) \rangle}{m_um_s} \]

so that

\[\frac{2\Xi^*_b + \Xi'_b}{3} = \frac{2\Xi^*_c + \Xi'_c}{3} + (m_b - m_c) + \frac{2\Xi^*_c + \Xi'_c - 3\Xi_c}{12} \left(\frac{\langle \delta(r_{us}) \rangle_{\Xi_b}}{\langle \delta(r_{us}) \rangle_{\Xi_c}} - 1 \right) \]
Ξ^*_b, Ξ'_b mass prediction

\[
\frac{(2\Xi^*_b + \Xi'_b)}{3}
\]

$m_b - m_c$	$\Lambda_b - \Lambda_c$	$\Sigma_b - \Sigma_c$	$B_s - D_s$
No HF correction	5956 ± 3	5954 ± 3	5948 ± 3
Linear	5957 ± 4	5954 ± 4	5948 ± 4
Coulomb	5965 ± 3	5962 ± 3	5956 ± 3
Cornell	5958 ± 3	5955 ± 3	5949 ± 3

The difference between the spin averaged mass $\frac{(2\Xi^*_b + \Xi'_b)}{3}$ and Ξ_b is roughly $150 - 160$ MeV.

heavy Q spectroscopy

M. Karliner, BEACH 2008
\[\Xi_b^*, \Xi_b' \text{ mass prediction} \]

- \(\Xi_b^* - \Xi_b' \): mass difference more difficult to predict

- small due to the large \(m_b \):
\[
\Xi_q^* - \Xi_q' = 3\nu \left(\frac{\langle \delta(r_{qs}) \rangle}{m_q m_s} + \frac{\langle \delta(r_{qu}) \rangle}{m_q m_u} \right)
\]

Method	Result
No HF correction	24 ± 2
Linear	28 ± 6
Coulomb	36 ± 7
Cornell	29 ± 6

\[
\frac{m_s}{m_u} = 1.5 \pm 0.1, \quad \frac{m_b}{m_c} = 2.95 \pm 0.2.
\]
Predictions for other bottom baryons

with B.Keren-Zur, H.J. Lipkin and J.L. Rosner

Ω_b mass prediction

$$\frac{2\Omega_b^* + \Omega_b}{3} = \frac{2\Omega_c^* + \Omega_c}{3} + (m_b - m_c)$$

$$= \frac{2\Omega_c^* + \Omega_c}{3} + \frac{3B_s^* + B_s}{4} - \frac{3D_s^* + D_s}{4}$$

$$= 6068.6 \pm 2.6 \text{ MeV}$$

wavefunction correction $\approx +2$ MeV.

HF splitting: m_b/m_c taken to be 3.0 ± 0.5.

$$\Omega_b^* - \Omega_b = (\Omega_c^* - \Omega_c) \frac{m_c}{m_b} = 23.6 \pm 4.0 \text{ MeV}$$
Ω_b mass prediction

This gives the following mass predictions:

$$\Omega_b^* = 6076.5 \pm 2.9 \text{ MeV}; \quad \Omega_b = 6052.9 \pm 3.7 \text{ MeV}$$

Wavefunction corrections give a factor of 1.28, and a splitting of $30 \pm 6 \text{ MeV}$.

Work in progress:

- Ξ_b isospin splitting
- Λ_b and Ξ_b orbital excitations
- Ξ_{bc} (bcu)
- Ξ_{cc} (ccu)

heavy Q spectroscopy

M. Karliner, BEACH 2008
Table 10: Comparison of predictions for b baryons with those of some other recent approaches [6, 10, 11] and with experiment. Masses quoted are isospin averages unless otherwise noted. Our predictions are those based on the Cornell potential.

Quantity	Refs. [6]	Ref. [10]	Ref. [11]	This work	Experiment
$M(\Lambda_b)$	5622	5612	Input	Input	5619.7±1.7
$M(\Sigma_b)$	5805	5833	Input	–	5811.5±2
$M(\Sigma_b^*)$	5834	5858	Input	–	5832.7±2
$M(\Sigma_b^*) - M(\Sigma_b)$	29	25	Input	20.0±0.3	$21.2^{+2.2}_{-2.1}$
$M(\Xi_b)$	5812	5806a	Input	5790–5800	5792.9±3.0b
$M(\Xi_b^*)$	5937	5970a	5929.7±4.4	5930±5	–
$\Delta M(\Xi_b^*)^c$	–	–	–	6.4±1.6	–
$M(\Xi_b^*)$	5963	5980a	5950.3±4.2	5959±4	–
$M(\Xi_b^*) - M(\Xi_b)$	26	10a	20.6±1.9	29±6	–
$M(\Omega_b)$	6065	6081	6039.1±8.3	6052.1±5.6	–
$M(\Omega_b^*)$	6088	6102	6058.9±8.1	6082.8±5.6	–
$M(\Omega_b^*) - M(\Omega_b)$	23	21	19.8±3.1	30.7±1.3	–
$M(\Lambda_{b[1/2]}^*)$	5930	5939	–	5929 ± 2	–
$M(\Lambda_{b[3/2]}^*)$	5947	5941	–	5940 ± 2	–
$M(\Xi_{b[1/2]}^*)$	6119	6090	–	6106 ± 4	–
$M(\Xi_{b[3/2]}^*)$	6130	6093	–	6115 ± 4	–

aValue with configuration mixing taken into account; slightly higher without mixing.

bCDF [13] value of $M(\Xi_b^-)$.

cM(state with d quark) – M(state with u quark).
Recent data from Belle: anomalously large (2 orders of mag.)

\[\Upsilon(5S) \to \Upsilon(1S) \pi^+ \pi^- \]

\[\Upsilon(5S) \to \Upsilon(2S) \pi^+ \pi^- \]

0802.0649 [hep-ph], Lipkin & M.K.: might be mediated by \(\bar{b}b u \bar{d}d \) tetraquark below \(B \bar{B} \) threshold:

\[\Upsilon(mS) \to T_{bb}^{\pm} \pi^\mp \to \Upsilon(nS) \pi^+ \pi^- \]

analogous to \(Z(4430) \)? Seen in \(\psi' \pi^\pm \) but not in \(J/\psi \pi^\pm \)

heavy Q spectroscopy M. Karliner, BEACH 2008
heavy Q spectroscopy

M. Karliner, BEACH 2008

“Υ(5S)” → Υ(1S) π⁺π⁻, Υ(2S) π⁺π⁻

Expect to vanish

“Υ(5S)” : single E_CM at 10.87 GeV
Not clear whether Υ(5S) itself.

Striking!

Expect O(1) events

Hot Belle

George W.S. Hou (NTU)

FPCP08, 5/5/08 20
• E and p conservation in $Y(5S) \rightarrow Y(mS)\pi\pi$: plot of $M_{inv}[Y(mS)\pi]^2$ vs. E_{π} linear modulo $Y(5S)$, $Y(mS)$ width

• Look for peaks in M_{inv} of $Y(mS)\pi$

• Isospin: $Y(mS)\pi^+ \text{ vs. } \pi^- = Y(mS)\pi^- \text{ vs. } \pi^+$ modulo statistics
Dalitz Plot: $Z^\pm(4430)$ Echoes?\

Karliner & Lipkin, arXiv:0802.0649 [hep-ph]\

S.-K. Choi, S.L. Olsen et al., PRL ’08

Lighter than $2m_B$?\
fundamental force\n
$\Upsilon(1S)\pi^+\pi^-$\

$\Upsilon(2S)\pi^+\pi^-$\

Nondescript\

Too Early to Tell!\

Need more Data.

Hot Belle George W.S. Hou (NTU) FPCP08, 5/5/08 24

heavy Q spectroscopy M. Karliner, BEACH 2008
Open questions

- need to understand the XYZ states in the charm sector and their counterparts in the bottom sector
- replacing charmed quark by bottom quark makes the binding stronger
- excellent challenge for EXP and TH
- general question of exotics in QCD
- ccu, ccd and bbu, bbd: SELEX ccq data - isospin breaking much too large?
Summary

• Constituent quark model with color HF interaction gives highly accurate predictions for heavy baryon masses

• A challenge for theory: derivation from QCD

• Constituent quark masses depend on the spectator quarks

\[M_{\Sigma_b} - M_{\Lambda_b} = 194 \text{ MeV} \text{ vs } 192 \text{ in EXP (CDF)} \]

\[M(\Sigma_b^*) - M(\Sigma_b) = 22 \text{ MeV} \text{ vs } 21 \text{ MeV in EXP (CDF)} \]

\[\mu_{\Lambda_c} = 0.43 \text{ n.m.} \quad \mu_{\Lambda_b} = -0.067 \text{ n.m.} \]

• Meson-baryon effective supersymmetry

• Meson/baryon HF splitting confirms Cornell potential

\[\Xi_b \text{ mass prediction: } 5795 \pm 5 \text{ MeV vs } 5793 \pm 2.4 \pm 1.7 \text{ MeV} \]

• Puzzle in \(Y(5S) \) decays: \(\bar{b}budd \) candidates?