Green light powered molecular state motor enabling eight-shaped unidirectional rotation

Aaron Gerwien¹, Peter Mayer¹ & Henry Dube¹*

Molecular motors convert external energy into directional motions at the nano-scales. To date unidirectional circular rotations and linear motions have been realized but more complex directional trajectories remain unexplored on the molecular level. In this work we present a molecular motor powered by green light allowing to produce an eight-shaped geometry change during its unidirectional rotation around the central molecular axis. Motor motion proceeds in four different steps, which alternate between light powered double bond isomerizations and thermal hula-twist isomerizations. The result is a fixed sequence of populating four different isomers in a fully unidirectional trajectory possessing one crossing point. This motor system opens up unexplored avenues for the construction and mechanisms of molecular machines and will therefore not only significantly expand the toolbox of responsive molecular devices but also enable very different applications in the field of miniaturized technology than currently possible.
SYNTHETIC MOLECULAR MOTORS ARE MINIATURIZED VERSIONS OF MACROSCOPIC MOTORS AND CONVERT EXTERNAL ENERGY INPUT INTO DIRECTIONAL MOTIONS AT THE MOLECULAR LEVEL. SINCE THE FIRST EXAMPLES HAVE BEEN DEVELOPED BY THE GROUPS OF FERINGA AND LEIGH IN THE LATE 1990S AND EARLY 2000S, A GROWING NUMBER OF DIFFERENT SYSTEMS HAVE BEEN ESTABLISHED. THESE INCLUDE CHEMICALLY DRIVEN MOTORS AS WELL AS LIGHT-DRIVEN ONES. WE HAVE CONTRIBUTED TO THE FIELD WITH VISIBLE LIGHT-DRIVEN MOLECULAR MOTORS, WHICH ARE BASED ON THE HEMITHIOINDIGO (HTI) CHROMOPHORE. MOST RECENTLY WE HAVE INTRODUCED A LIGHT-ONLY POWERED MOLECULAR MOTOR ENABLING STEPWISE DIRECTIONAL MOTIONS WITHOUT THERMAL RATCHETING IN THE GROUND STATE. TO THIS END, THE HULA-TWIST (HT) PHOTOREACTION, AS RECENTLY EXPERIMENTALLY EVIDENCED BY OUR GROUP, WAS EMPLOYED IN COMBINATION WITH SIMPLE DOUBLE-BOND ISOMERIZATION (DBI) AND SINGLE BOND ROTATION (SBR) PHOTOREACTIONS. THE HT MOTION WAS ORIGINALLY PROPOSED AS A VOLUME CONSERVING PHOTOREACTION FOR THE ISOMERIZATION OF RETINAL WITHIN THE OPSIN PROTEIN FRAMEWORK AND PROCEEDING AS A FULLY CONCERTED PROCESS WITHIN A DOUBLE BOND AND ADJACENT SINGLE BOND ROTATING AT THE SAME TIME AFTER PHOTOCHEMISTRY.

RESULTS

GROUND-STATE PROPERTIES OF MOTOR 1. MOTOR 1 IS DERIVED FROM THE PARENT HTI CHROMOPHORE, AND IS EQUIPPED WITH A PERMANENT SULFOXIDE STEREOCENTER. IN ADDITION, A CHIRAL AXIS IS ESTABLISHED VIA INTRODUCTION OF A NONSUSYMMETRIC JUOLIDINE UNIT, THE ATROPISOMERIZATION OF WHICH IS SLOWED DOWN BY INCREASED STERICAL HINDERANCE IN THE MOLECULE. THEREFORE, ALL FOUR DIFFERENT DIASTEREOMERIC STATES OF 1 — DENOTED A TO D AS SHOWN IN FIG. 1A — CAN BE ISOLATED, CHARACTERIZED, AND THEIR PHOTOREACTIONS AS WELL AS THERMAL REACTIONS CAN BE SCRUTINIZED INDIVIDUALLY. SYNTHESIS OF 1 FOLLOWS AN ESTABLISHED PROTOCOL FOR THE GENERATION OF STERICALLY HINDERED, FOURFOLD DOUBLE-BOND SUBSTITUTED HTI PHOTOSWITCHES. ISOLATION OF ALL INDIVIDUAL RACEMIC ISOMERS A TO D WAS ACHIEVED USING HPLC SEPARATION, AND THEIR STRUCTURES IN THE CRISTALLINE STATE WERE DETERMINED (FIG. 1B) TO ENABLE ASSIGNMENT OF THE CORRESPONDING SOLUTION SPECTRA (SUPPLEMENTARY FIGS. 1–4).

WHEN HEATING SOLUTIONS OF PURE ISOMERS A, B, C, AND D IN DIFFERENT SOLVENTS, THEIR THERMAL INTERCONVERSIONS COULD BE MONITORED DIRECTLY. INTERESTINGLY, THESE ISOMERS DO NOT RANDOMLY INTERCONVERGE AT ELEVATED TEMPERATURES BUT UNDERGO A HT-LIKE COMBINED 180° ROTATION OF BOTH THE CENTRAL DOUBLE BOND AND THE ADJACENT SINGLE BOND, WHICH ESTABLISHES THE CHIRAL AXIS. THIS BEHAVIOR IS UNKNOWN TO THE BEST OF OUR KNOWLEDGE, AND ALSO DISTINCTIVELY DIFFERENT TO RELATED HTI MOLECULES REPORTED EARLIER, SHOWING FIRST ONLY SBR AT ELEVATED TEMPERATURES AND AFTER FURTHER TEMPERATURE INCREASE INTERCONVERSION BETWEEN ALL ISOMERS. IN THIS CASE, ISOMER D THERMALLY INTERCONVERTS PREDOMINANTLY TO A (E.G., IN 93% AT 27 °C IN ACETONITRILE-D3/D2O (8/2) SOLUTION IN THE THERMAL EQUILIBRIUM. LIKewise, C PREDOMINANTLY CONVERTS TO B (E.G., IN 87% AT 60 °C IN ACETONITRILE-D3/D2O (8/2) SOLUTION IN THE THERMAL EQUILIBRIUM. AGAIN, THIS BEHAVIOR IS DIFFERENT TO RELATED OXIDIZED HTI SYSTEMS, WHERE THERMAL EQUILIBRIA WITH SUBSTANTIAL FRACTIONS OF DIFFERENT ISOMERS BEING PRESENT ARE ESTABLISHED. FROM FIRST-ORDER KINETIC ANALYSES OF THERMAL ISOMER INTERCONVERSIONS AND OBSERVED THERMAL EQUILIBRIUM, THE GROUND-STATE ENERGY PROFILES OF 1 COULD EXPERIMENTALLY BE QUANTIFIED IN ACETONITRILE-D3/D2O (8/2), 1,2-DICHLOROBENZENE-4 (12DCB-D4), AND DMSO-D6 SOLUTIONS (FIG. 1C, D). IN 12DCB-D4, IT COULD BE ESTABLISHED THAT ISOMER A IS THE GLOBAL MINIMUM STRUCTURE. IN MORE POLAR SOLVENTS SUCH AS CYCLOHEXANE OR 12DCB-D4 ENERGY BARRIERS FOR THERMAL HT-BOND ROTATIONS ARE CONSIDERABLY INCREASED (BY ABOUT 6 KCAL/MOL IN 12DCB-D4) AND MORE SIMILAR TO THE ENERGY BARRIERS FOR THE SIMpler ONE-BOND ROTATIONS. AS A RESULT HIGHER TEMPERATURES ARE REQUIRED FOR ISOMER INTERCONVERSION AND A MIXTURE OF MAINLY A AND B ISOMERS ARE OBTAINED IN THERMAL EQUILIBRIUM (SUPPLEMENTARY FIGS. 5–14 AND SUPPLEMENTARY TABLES 1–3).

THEORETICAL DESCRIPTION OF ISOMER INTERCONVERSIONS. THE W-B97XD/D-311G(dp) LEVEL OF THEORY (FIG. 1D; SUPPLEMENTARY FIG. 26, SUPPLEMENTARY TABLES 5–9) WAS FOUND TO BE IN GOOD AGREEMENT WITH THESE EXPERIMENTS. HOWEVER, THE CALCULATED ENERGY BARRIERS ARE IN GENERAL HIGHER THAN IN THE EXPERIMENTS. THE CALCULATIONS PREDICT FOUR POSSIBLE TRANSITION STATES FOR THE THERMAL HT REACTION, SHOWING ONLY ONE IMAGINARY VIBRATIONAL MODE. IN ALL OF THEM, THE DOUBLE BOND IS TWISTED BY 90° AND IS NOW ORTHOGONAL TO THE TERTIARY BUTYL GROUP. AT THE SAME TIME, THE ADJACENT SINGLE BOND IS ALSO TWISTED BY 90° AND RECEIVES A LARGE DOUBLE-BOND CHARACTER. GIVEN THE SIMILAR DEGREE OF ROTATION OF BOTH ADJACENT BONDS IN THE TRANSITION STATES, A FULLY CONCERTED THERMAL HT-LIKE ROTATION IS PREDICTED FROM THE THEORETICAL DESCRIPTION. FROM THE FOUR POSSIBILITIES, TWO TRANSITION STATES WITH THE METHYL GROUP FACING AWAY FROM THE TERTIARY BUTYL GROUP ARE ENERGETICALLY SIGNIFICANTLY FAVORED. AS THE EXPERIMENTS ESTABLISHED TWO DISTINCT AND NON-CROSSING THERMAL HT ISOMERIZATIONS (C TO B WITH THE LARGER ENERGY BARRIER AND D TO A WITH THE LOWER ENERGY BARRIER), THE TWO THEORETICALLY FOUND TRANSITION STATES COULD BE ASSIGNED TO A PARTICULAR PROCESS (SUPPLEMENTARY FIG. 26). IN THE TRANSITION STATE REACHED FROM ISOMER C, THE JUOLIDINE ROTATED WITH ITS METHYL GROUP BELOW THE TERTIARY BUTYL FRAGMENT RESIDING ON THE OPPOSITE FACE OF THE SULFOXIDE OXYGEN. THIS MOTION IS THEN CONTINUED BY A FURTHER 90° ROTATION AROUND THE SINGLE AND DOUBLE BOND LEADING TO ISOMER B. THE THERMAL HT REACTION OF ISOMER D LEADS TO A TRANSITION STATE WITH THE JUOLIDINE ROTATED WITH ITS METHYL GROUP ABOVE THE TERTIARY BUTYL PART RESIDING ON THE SAME FACE OF THE SULFOXIDE OXYGEN. AGAIN, THIS MOTION IS COMPLETED BY A FURTHER 90° ROTATION AROUND THE FORMER SINGLE AND DOUBLE BONDS LEADING TO ISOMER A (SEE ALSO SUPPLEMENTARY MOVIES 1–4).

PHOTOREACTIONS OF MOTOR 1. AFTER ESTABLISHING THE THERMAL REACTIONS OF 1, ITS PHOTOREACTIONS WERE ANALYZED SEPARATELY FOR EACH ISOMER A, B, C, AND D AT 25 °C IN CYCLOHEXANE-D12 (FIG. 2A–D) AND 12DCB SOLUTIONS. IN MORE POLAR SOLVENTS, THE PHOTOREACTIONS ARE STRONGLY REDUCED RENDERING THEM IMPractical. THREE DIFFERENT PHOTOREACTIONS ARE POSSIBLE FOR EACH ISOMER: A SIMPLE DBI, A SBR AROUND THE CHIRAL AXIS, AND A COMBINED HT PHOTOREACTION WHERE BOTH ADJACENT BONDS ARE ROTATED. SINCE...
thermal isomer interconversion is halted completely at 25 °C, the primary photoproducts are directly observed in the irradiation experiments and are not obscured by fast thermal follow-up isomerizations. Quantum yields for individual transformations during 520 nm irradiation were measured in cyclohexane-d_{12} and 12DCB (see Fig. 2b; Supplementary Figs. 18–21, Supplementary Table 4). Again, stark differences to previously reported related HTIs, which do in fact undergo all three photoreactions for each isomer, are observed. In this case, DBI is performed with very high selectivity leading to efficient photoconversion of A to C as
after heating to 60 °C.

520 nm, (7) after solvent change to acetonitrile-

After solvent change to acetonitrile-

thioindigo fragment during one full cycle of directional motion

130 °C, (5) pure

account, a repetitive unidirectional motion of HTI

isomer to determine its completeness (see Fig. 3c and Supple-

mental Fig. 23). Afterward, the whole sequence was conducted

and irradiation with 520 nm results in DBI of

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12463-4 | www.nature.com/naturecommunications

well as of B to D while all other photoreactions are at least one

order of magnitude less efficient. The corresponding backward

photoreactions of C and D are even less efficient as neither A or B

photoproducts were observed when irradiating pure C or D and

can thus be regarded as non-interfering. Consequently, strong

photoenrichment of C and D is possible in the photostationary

state (pss, see Fig. 3; Supplementary Figs. 18–21, Supplementary

Table 4).

Discussion

Taking both thermal interconversions and photoreactions into

account, a repetitive unidirectional motion of HTI 1 can be

established in four distinct steps (Fig. 3a, b). Every individual step

was first conducted separately starting from the respective pure

isomer to determine its completeness (see Fig. 3c and Supplementary

Fig. 23). Afterward, the whole sequence was conducted in a row starting from pure isomer B (see Fig. 3d and Supplementary

Fig. 22). The first step consists of irradiation of isomer B in cyclohexane-d12 with 520 nm light resulting in DBI and enrichment of isomer D to 86% in the pss. Second a solvent change to acetonitrile-d3/D2O (8/2) solution and subsequent heating to 60 °C for 3 min leads to population of isomer A in 94% via thermal HT. Another solvent change back to cyclohexane-d12 and irradiation with 520 nm results in DBI of A to yield 86% of C. A final solvent change to acetonitrile-d3/D2O (8/2) solution and subsequent heating to 60 °C for 120 min results again in thermal

HT to populate the starting isomer B in 88%. The overall process

therefore interconverts all four isomers of 1 into each other in a

fixed sequence that does not contain “backwards motions”. When

this sequence is done within one experiment in a row enrichment

of individual isomers in each step is slightly less complete as the

minor isomers produced add up (see Supplementary Fig. 22).

In this case, 63% of the molecules performed a full rotation while

the other molecules did not complete the cycle as every step proceeds

only with conversions of about 90% on average. Repetitive solvent

changes were employed to maximize the efficiencies of each

individual step in the sequence. However, using 12DCB as solvent

allows to continuously power the directional motion at high

temperatures of 130 °C without the need of solvent changes

(Fig. 3e). 12DCB represents a good compromise between solvent

polarity and high boiling point rendering photosomerizations as

well as thermal HT reactions selective and efficient enough to

warrant full motor operation (Supplementary Figs. 24, 25).

To quantify unidirectionality, the selectivity of each thermal

and photoreaction has to be determined. The selectivity for the

thermal steps in acetonitrile-d3/D2O (8/2) solution can be

considered as 100%, as the barriers for the other rotations are much

higher and only one product isomer is formed. The photoreaction

of B in cyclohexane-d12 occurs with 92% selectivity to the D

isomer, while also 8% C is formed in the pss. The photoreaction

of A proceeds with 89% selectivity leading to the C isomer, while

also 11% D is formed. The total degree of unidirectionality is

therefore 82% when changing solvents. In 12DCB, thermal steps
become less selective and the degree of unidirectionality is lowered to 47%.

Next, we visualize the geometry changes occurring during this four-step process of the directional motion. HTI motor 1 establishes the fixed isomer sequence ACBD as shown in Fig. 3b. The clearest picture emerges when regarding the thioindigo fragment as static while the julolidine moiety represents the revolving unit. The most obvious changes are then seen for the ortho-methyl group of the julolidine moiety, which follows an eight-shaped spatial change during the full directional motion with respect to the static fragment (Fig. 3f). At present, it is not possible to elucidate the exact full trajectory of the directional motion as the DBI steps can either occur clockwise or counterclockwise in the photosensorization steps. It seems, however, likely that one trajectory will be favored given the asymmetry of the molecule. For the thermal HT motions, our quantum chemical calculations clearly show that these combined rotations occur on opposite faces of the thioindigo fragment when starting from either C or D (see Supplementary Fig. 26). Only four possible trajectories remain in total, which are presented in Supplementary Movies 1–4. It is clear that all of them are in no case simple circular rotations but follow more complex directional pathways that unequivocally include one crossing point and therefore form a directional eight-shaped path. Furthermore, the remaining possibilities do not cancel each other out ensuring overall directionality if the motor is driven continuously and one-directional cycle ACBD is followed by another and so on. Currently, it is not possible to make a clear assertion whether one eight shape is preferred over the others.

An additional benefit of HTI motor 1 is the possibility of photonic readout for its operational state. Only isomers A and B show yellow fluorescence, while isomers C and D remain non-emissive in cyclohexane (Fig. 3b). Therefore, the stepwise motion can be followed via appearing and disappearing fluorescence offering interesting possibilities for i.a. online-monitoring of molecular motor operation (e.g., determination of the endpoint of the irradiation step) or photonic device building41–47.

In summary, we present herein a molecular motor allowing the realization of a well-defined repetitive eight-shaped geometry change during its directional motion. Motor 1 is based on the HTI chromophore endowed with a sulfoxide stereocenter and a sterically hindered chiral axis. The unidirectional motion is powered by green light and proceeds in four distinct steps alternating two DBI photochemistry with two thermal HT reactions. Isomer interconversion can be followed visually by isomer interconversion during the thermal isomerization reactions to occur, and the kinetics were followed by integration of the corresponding signals in the 1H NMR measurements in defined time intervals. The observed values did not change anymore. The obtained experimental data, required equations, and the resulting energy barriers are shown in Supplementary Methods, Supplementary Figs. 5–14, and Supplementary Tables 1–3.

Quantum yield measurements. A stock solution of the respective isomer A-1 and B-1 in 12DCB or cyclohexane (10 mL, 0.87 mM–1 mol) was prepared. One milliliter of the stock solutions was transferred into a quartz cuvette (1 cm) and irradiated with a focused light beam of a 520 nm LED within the published instrumental setup from the group of E. Riedle48. The number of absorbed photons over time \(n(hv) \) was measured directly at the thermal photometer of the instrument. After defined time intervals, the solutions were transferred form the quartz cuvette into an amberized NMR tube, the solvent was removed in vacuo and replaced with CD2Cl2 or benzene–d6. The concentrations of photoproducts were obtained by integrations of the corresponding signals in the 1H NMR spectra. This procedure was repeated up to ten times with different irradiation times allowing to average over all measurements. The obtained experimental data, required equations, and the resulting quantum yields are shown in Supplementary Methods, Supplementary Figs. 18–21, and Supplementary Table 4.

Motor operation followed by NMR spectroscopy. With changing solvents: Isomer B-1 (1 mg) was dissolved in cyclohexane–d6, and a 1H NMR spectrum was recorded (starting point, B isomer). Afterward, the NMR tube was irradiated with a 520 nm LED until the fluorescence vanished and again a 1H NMR spectrum was recorded (motor step 1, mainly D isomer was obtained). Cyclohexane–d6 was removed in vacuo, and replaced with acetone–d6/D2O (8/2) and immediately a 1H NMR spectrum was recorded (motor step 1, mainly D isomer present). The NMR tube was irradiated with a 520 nm LED until the fluorescence vanished and a 1H NMR spectrum was recorded (motor step 2, mainly A isomer obtained). The NMR tube was irradiated with a 520 nm LED, and again a 1H NMR spectrum was recorded (motor step 3, mainly C isomer obtained). Cyclohexane–d6 was removed in vacuo and replaced with acetone–d6/D2O (8/2) and immediately a 1H NMR spectrum was recorded (motor step 3, mainly C isomer present). After heating to 60 °C for a few minutes, another 1H NMR spectrum was recorded (motor step 2, mainly A isomer obtained). Acetone–d6/D2O (8/2) was removed in vacuo and replaced with cyclohexane–d6, and a 1H NMR spectrum was recorded (motor step 2, mainly A isomer obtained). The NMR tube was irradiated with a 520 nm LED until the fluorescence vanished and a 1H NMR spectrum was recorded (motor step 3, mainly C isomer obtained). Cyclohexane–d6 was removed in vacuo and replaced with acetone–d6/D2O (8/2) and immediately a 1H NMR spectrum was recorded (motor step 3, mainly C isomer present). After heating to 60 °C for a few minutes, another 1H NMR spectrum was recorded (motor step 4, mainly B isomer was obtained, starting point was reached again). Without changing solvent for autonomous operation: Isomer B-1 (1 mg) was dissolved in 12DCB and one drop of benzene–d6 for easier locking and shining was added and a 1H NMR spectrum was recorded (starting point, B isomer). Afterward, the NMR tube was irradiated with a 520 nm LED, and again a 1H NMR spectrum was recorded (motor step 1, mainly D isomer was obtained). After heating to 150 °C, another 1H NMR spectrum was recorded (motor step 2, mainly A isomer was obtained). The NMR tube was irradiated again with a 520 nm LED and a 1H NMR spectrum was recorded (motor step 3, mainly C isomer was obtained). After heating to 150 °C, another 1H NMR spectrum was recorded (motor step 4, mainly B isomer was obtained, starting point was reached again). The obtained 1H NMR spectra after all steps and the corresponding ratios of the isomers are shown in Supplementary Figs. 22–25.

Fluorescence, while isomers A and B are sterically hindered chiral axis. The unidirectional motion is endowed with a sulfoxide stereocenter and a sterically hindered chiral axis. The unidirectional motion is powered by green light and proceeds in four distinct steps alternating two DBI photoreactions with two thermal HT reactions. Isomer interconversion can be followed via appearing and disappearing fluorescence offering interesting possibilities for i.a. online-monitoring of molecular motor operation (e.g., determination of the endpoint of the irradiation step) or photonic device building41–47.

In summary, we present herein a molecular motor allowing the realization of a well-defined repetitive eight-shaped geometry change during its directional motion. Motor 1 is based on the HTI chromophore endowed with a sulfoxide stereocenter and a sterically hindered chiral axis. The unidirectional motion is powered by green light and proceeds in four distinct steps alternating two DBI photoreactions with two thermal HT reactions. Isomer interconversion can be followed via appearing and disappearing fluorescence offering interesting possibilities for i.a. online-monitoring of molecular motor operation (e.g., determination of the endpoint of the irradiation step) or photonic device building41–47.

In summary, we present herein a molecular motor allowing the realization of a well-defined repetitive eight-shaped geometry change during its directional motion. Motor 1 is based on the HTI chromophore endowed with a sulfoxide stereocenter and a sterically hindered chiral axis. The unidirectional motion is powered by green light and proceeds in four distinct steps alternating two DBI photoreactions with two thermal HT reactions. Isomer interconversion can be followed via appearing and disappearing fluorescence offering interesting possibilities for i.a. online-monitoring of molecular motor operation (e.g., determination of the endpoint of the irradiation step) or photonic device building41–47.

In summary, we present herein a molecular motor allowing the realization of a well-defined repetitive eight-shaped geometry change during its directional motion. Motor 1 is based on the HTI chromophore endowed with a sulfoxide stereocenter and a sterically hindered chiral axis. The unidirectional motion is powered by green light and proceeds in four distinct steps alternating two DBI photoreactions with two thermal HT reactions. Isomer interconversion can be followed via appearing and disappearing fluorescence offering interesting possibilities for i.a. online-monitoring of molecular motor operation (e.g., determination of the endpoint of the irradiation step) or photonic device building41–47.

In summary, we present herein a molecular motor allowing the realization of a well-defined repetitive eight-shaped geometry change during its directional motion. Motor 1 is based on the HTI chromophore endowed with a sulfoxide stereocenter and a sterically hindered chiral axis. The unidirectional motion is powered by green light and proceeds in four distinct steps alternating two DBI photoreactions with two thermal HT reactions. Isomer interconversion can be followed via appearing and disappearing fluorescence offering interesting possibilities for i.a. online-monitoring of molecular motor operation (e.g., determination of the endpoint of the irradiation step) or photonic device building41–47.

In summary, we present herein a molecular motor allowing the realization of a well-defined repetitive eight-shaped geometry change during its directional motion. Motor 1 is based on the HTI chromophore endowed with a sulfoxide stereocenter and a sterically hindered chiral axis. The unidirectional motion is powered by green light and proceeds in four distinct steps alternating two DBI photoreactions with two thermal HT reactions. Isomer interconversion can be followed via appearing and disappearing fluorescence offering interesting possibilities for i.a. online-monitoring of molecular motor operation (e.g., determination of the endpoint of the irradiation step) or photonic device building41–47.

In summary, we present herein a molecular motor allowing the realization of a well-defined repetitive eight-shaped geometry change during its directional motion. Motor 1 is based on the HTI chromophore endowed with a sulfoxide stereocenter and a sterically hindered chiral axis. The unidirectional motion is powered by green light and proceeds in four distinct steps alternating two DBI photoreactions with two thermal HT reactions. Isomer interconversion can be followed via appearing and disappearing fluorescence offering interesting possibilities for i.a. online-monitoring of molecular motor operation (e.g., determination of the endpoint of the irradiation step) or photonic device building41–47.

In summary, we present herein a molecular motor allowing the realization of a well-defined repetitive eight-shaped geometry change during its directional motion. Motor 1 is based on the HTI chromophore endowed with a sulfoxide stereocenter and a sterically hindered chiral axis. The unidirectional motion is powered by green light and proceeds in four distinct steps alternating two DBI photoreactions with two thermal HT reactions. Isomer interconversion can be followed via appearing and disappearing fluorescence offering interesting possibilities for i.a. online-monitoring of molecular motor operation (e.g., determination of the endpoint of the irradiation step) or photonic device building41–47.

In summary, we present herein a molecular motor allowing the realization of a well-defined repetitive eight-shaped geometry change during its directional motion. Motor 1 is based on the HTI chromophore endowed with a sulfoxide stereocenter and a sterically hindered chiral axis. The unidirectional motion is powered by green light and proceeds in four distinct steps alternating two DBI photoreactions with two thermal HT reactions. Isomer interconversion can be followed via appearing and disappearing fluorescence offering interesting possibilities for i.a. online-monitoring of molecular motor operation (e.g., determination of the endpoint of the irradiation step) or photonic device building41–47.
