Strategies for clinical development of monoclonal antibodies beyond first-in-human trials: tested doses and rationale for dose selection

Marie Viala1, Marie Vinches1, Marie Alexandre1, Caroline Mollevi1, Anna Durigova2, Nadia Hayaoui1, Krisztian Homicsko3, Alice Cuenant1, Céline Gongora4, Luca Gianni5 and Diego Tosi*,1,4

1Institut du Cancer de Montpellier, Montpellier, France; 2Geneva University Hospitals, Geneva, Switzerland; 3Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; 4Institut de Recherche en Cancérologie de Montpellier, Inserm U1194, Montpellier, France and 5San Raffaele – Scientific Institute, Milan, Italy

Background: Our previous survey on first-in-human trials (FIHT) of monoclonal antibodies (mAbs) showed that, due to their limited toxicity, the recommended phase II dose (RP2D) was only tentatively defined.

Methods: We identified, by MEDLINE search, articles on single-agent trials of mAbs with an FIHT included in our previous survey. For each mAb, we examined tested dose(s) and dose selection rationale in non-FIHTs (NFIHTs). We also assessed the correlation between doses tested in the registration trials (RTs) of all FDA-approved mAbs and the corresponding FIHT results.

Results: In the 37 dose-escalation NFIHTs, the RP2D indication was still poorly defined. In phase II–III NFIHTs (n = 103 on 37 mAbs), the FIHT RP2D was the only dose tested for five mAbs. For 16 mAbs, only doses different from the FIHT RP2D or the maximum administered dose (MAD) were tested and the dose selection rationale infrequently indicated. In the 60 RTs on 27 FDA-approved mAbs with available FIHT, the FIHT RP2D was tested only for two mAbs, and RT doses were much lower than the FIHT MAD.

Conclusions: The rationale beyond dose selection in phase II and III trials of mAbs is often unclear in published articles and not based on FIHT data.

The main aim of first-in-human trials (FIHTs) is to explore the safety of multiple escalating doses of a drug in order to identify the highest dose associated with a tolerable toxicity. This is usually defined as the maximum-tolerated dose (MTD) (Eisenhauer et al, 2000; Le Tourneau et al, 2009) and is frequently selected for the subsequent drug development, on the basis of the assumption that a positive correlation exists between the drug dose and its effect. It is then indicated as the recommended phase II dose (RP2D) (Le Tourneau et al, 2009). Available data convincingly showed that FIHTs are the most important step in determining the dose of FDA-approved anticancer drugs, because for most molecules the RP2D is determined on the basis of the MTD, and the dose tested in registration trials (RTs) is within 20% on either side of the RP2D (Jardim et al, 2014). More uncertainty exists about dose selection for targeted agents, because in this case, the RP2D coincides less frequently with the MTD and predicts poorly the dose used in RTs (Jardim et al, 2014). Indeed, designing and interpreting FIHTs for targeted agents is difficult because of their limited acute toxicity...
(the first-cycle toxicity is usually the endpoint for MTD selection), and because of the scarce correlation between pharmacokinetic (PK) or pharmacodynamic (PD) parameters and drug efficacy in this setting (Parulekar and Eisenhauer, 2004; Jardim et al, 2014; Janne et al, 2016; Sweis et al, 2016). The challenge is even greater in FIHTs of monoclonal antibodies (mAbs) due to the low risk of acute toxicity associated with these molecules as a consequence of their lack of off-target effects (Sachs et al, 2016), and also because conventional FIHTs cannot capture the medium- and long-term toxicity of tested drugs. We recently conducted a comprehensive analysis of the design, implementation and outcome of FIHTs on mAbs published between 2000 and 2013 (Tosi et al, 2015). We found that, for most of the tested molecules, early-occurring adverse events were rare and dose escalation could be continued up to the highest planned dose level in all trials. Consequently, the MTD could be identified only in a minority of trials. Conversely, the RP2D was indicated in an important proportion of FIHTs, mainly in the absence or independently of the MTD and on the basis of PK or PD considerations. The PK data used to justify the RP2D choice mostly relied on comparisons between the drug concentrations found to be effective in preclinical studies and the clinical PK findings. PD data often focused on receptor occupancy assessment. However, the correlation between PK or PD parameters in preclinical models and in patient samples is far from being clearly established, which makes RP2D recommendations based on these observations at least doubtful. Despite these uncertainties in RP2D selection, mAb clinical development achieved several important successes for the treatment of malignancies and immunologic disorders (Nelson et al, 2010); however, comprehensive reviews are not available on the strategies of mAb clinical testing following FIHTs.

The aim of this study was to evaluate the strategies of mAb clinical development by analysing single-agent non-FIHTs (NFIHTs) of mAbs the FIHT of which was included in our previous analysis (Tosi et al, 2015), as well as the RTs of all FDA-approved mAbs. After retrieving from MEDLINE all publications on these NFIHTs and RTs, we examined the trial design and results, with a particular focus on the relationship between FIHT data and doses tested in these trials.

MATERIALS AND METHODS

Article search. In June 2016 we performed a MEDLINE search to identify articles on single-agent trials of mAbs the FIHT of which was included in our previous analysis (Tosi et al, 2015). Separately, we identified mAbs approved as single agents by FDA up to 31 June 2016, and for each molecule we performed a MEDLINE search (using all the known names of each drug) to identify the FIHT and RTs. We excluded trials reporting on immunoconjugates, radioimmunoconjugates and non-systemic routes of administration (topical administration or ex-vivo treatment), trials on Asian patients performed to confirm previous results obtained in Western patients, phase III trials where the evaluated mAb was used as standard treatment, as well as articles not written in English language. The phase I and phase II parts of phase I/II studies were analysed separately when possible.

Data collection and analysis. From articles on the NFIHTs of mAbs with an FIHT included in our previous review (Tosi et al, 2015), we extracted treated disease, trial phase, rationale for dose(s) selection, administration route, dose calculation unit, schedule, presence of loading dose, tested dose(s), number of included patients, and availability of PK or PD data. From dose escalation trials, we also extracted the starting dose (SD), the maximum planned dose, the maximum administered dose (MAD), the MTD, the RP2D and the rationale for RP2D selection. For these trials, we calculated the ratios between FIHT MAD and NFIHT MAD, the ratio between NFIHT RP2D and FIHT MAD and the ratio between NFIHT RP2D and FIHT RP2D. For phase II and III trials, we calculated the ratio between the tested dose and FIHT MAD or FIHT RP2D. For the analysis of the RTs concerning mAbs approved by the FDA, we extracted treated disease, administration route, dose calculation unit, schedule, presence of loading dose, tested dose(s), number of included patients, and the three most frequent grade 3/4 toxicities. From the relevant FIHT, we recorded MAD, MTD, RP2D and the three most frequent grade 3/4 toxicities. We calculated the ratios between RT dose and FIHT MAD and MTD, respectively. When more than one trial was available for a given mAb in a data set, we used the mean of the ratios from all the trials of this mAb to calculate summary statistics on the dose ratios for the entire data set. We used descriptive statistics to report whether the top-three grade 3/4 toxicities in the RTs of each mAb were detected in the corresponding FIHT, and their grade in the FIHT. Statistical analyses were performed with the R software (version 3.3.2).

RESULTS

General results on NFIHTs. After reviewing the 139 articles retrieved with the MEDLINE search, we selected for analysis 144 NFIHTs of 42 mAbs (1–15 NFIHTs for each molecule). The study design and drug administration data of the selected NFIHTs are shown in Table 1. Specifically, 39 studies (27%) were phase I and 103 (72%) phase II or III trials. Most trials concerned patients with solid cancers or haematological malignancies (n = 111, 77%), while the others focused mainly on immunologic disorders. In 131 trials (91%), the mAb was administered only by intravenous route and a loading dose was used in 20 (14%). For most mAbs, the same dose calculation method was used in NFIHTs and the corresponding FIHT. However, in 16 NFIHTs, a flat dose was administered instead of the dose tested in the FIHT and calculated according to weight (mg kg⁻¹) or body surface (mg m²⁻²).

Analysis of dose escalation NFIHTs. In 37 of the 39 of phase I trials, a dose escalation procedure was implemented (for 21 mAbs). We found that the highest planned dose corresponded to the FIHT MAD for nine of the 19 (47%) mAbs tested in the NFIHTs that used the FIHT dose calculation method. Indeed, the range of ratios

| Table 1. Characteristics of the 144 NFIHTs included in the study |
|-------------------------------|-----------------|-----------------|
| **Characteristic** | **Number of trials (%)** | **Number of mAbs** |
| **Trial phase** | | |
| I | 39 (27) | 24 |
| II | 82 (57) | 39 |
| III | 21 (15) | 9 |
| Not applicable | 2 (1) | 2 |
| **Disease type** | | |
| Solid cancers | 75 (52) | 25 |
| Haematological malignancies | 36 (25) | 13 |
| Immunological/rheumatic diseases | 32 (22) | 13 |
| Other diseases | 1 (1) | 1 |
| **Trials including a pharmacokinetic study** | | |
| | 74 (51) | 34 |
| **Trials including a pharmacodynamic study** | | |
| | 81 (56) | 36 |
| **Dose calculation** | | |
| mg kg⁻¹ | 87 (60) | 28 |
| mg m²⁻² | 11 (8) | 5 |
| Flat dose | 46 (32) | 12 |

Abbreviations: NFIHT = non-first-in-human trial; mAb = monoclonal antibody.
between the highest NFIHT planned dose and FIHT MAD was quite wide (0.1 to 6); however, for 15 mAbs (71%) in 21 trials (65%) the highest planned dose level was lower or equal to the FIHT MAD, and for 15 mAb (71%) in 19 trials (59%) it was within 33% on either side of the FIHT MAD (Figure 1). Like in the FIHT, in all NFIHTs the mAb favourable safety profiles allowed dose escalation up to the highest planned dose level that, therefore, coincided with the MAD. An MTD was found for only seven of 21 mAbs (33%) tested in eighth (22%) dose escalation trials. An RP2D was indicated for 11 of the 21 mAbs (52%) tested in 15 of the 37 NFIHTs (40%), but it matched the FIHT RP2D for only three mAbs in four trials (Figure 1). The rationale for RP2D selection was described for only 11 mAbs (Table 2) and was based on considerations about safety \((n=6) \), PK \((n=4) \), and PD \((n=1) \). The medians of the NFIHT RP2D/FIHT RP2D and NFIHT RP2D/ FIHT MAD ratios were 2.2 (range: 1 to 6) and 0.65 (range: 0.3 to 1), respectively.

Analysis of phase II and III NFIHTs. We then analysed the doses tested in the 103 phase II and III trials (on 37 mAbs) with regard to the FIHT results to assess FIHT data relevance for the subsequent mAb development. First, we evaluated how the tested dose(s) was selected (Table 3). A rationale was indicated for 26 mAbs (70%) in 57 of the 103 trials (55%) and was based on the FIHT RP2D (19 trials), PK data (7 trials), efficacy (7 trials), FIHT MAD (4 trials), PD (2 trials), FIHT MTD (1 trial) or other considerations.

![Figure 1](http://www.bjcancer.com/)

Figure 1. Relationship between NFIHT MAD, NFIHT RP2D and FIHT MAD for dose-escalating NFIHTs. (A) Ratio between the NFIHT MAD and the FIHT MAD for each NFIHT with dose escalation. Each bar represents the ratio between the highest planned dose of each NFIHT and the relevant FIHT. The names of tested mAb are indicated on the left. (B) Ratio between the NFIHT RP2D and the FIHT MAD for NFIHTs with dose escalation. Filled circles represent the ratio between NFIHT RP2D and FIHT MAD. Each circle refers to a dose tested in one or more NFIHTs. The names of tested mAb are indicated on the left. For comparison, hollow circles represent the ratio between RP2D and MAD in the corresponding FIHT. FIHT=first-in-human trial; MAD=maximum administered dose; NFIHT=non-first-in-human trial; RP2D=recommended phase II dose.
References	mAb name	Dose calculation	FIHT	MAD	MAD	MTD	RP2D	Rationale for RP2D selection
Baselga et al, 2000	Cetuximab	mg m$^{-2}$					100 qw 700 qq2w 500 q2w	These data indicate that the closest PK match to the weekly standard regimen will be provided by every-second-week administration of 500 or 600 mg m$^{-2}$, with 500 mg m$^{-2}$ being the dose of choice on this schedule in terms of convenience and feasibility.
De Bono et al, 2004	ING-1	mg m$^{-2}$	0.1 qw	1 q3w	2 qw	0.6 qw	0.6 qw	MTD
Mullamitha et al, 2007	Intetumumab	mg kg$^{-1}$	10 d1, 29, 36, 43	20 q3w	10 q3w	10 q3w	The clinical activity of the two dose levels was very similar in this study with the exception of the duration of grade 1 uveitic reaction after the first dose (7–8 days in patients treated with 10 mg kg$^{-1}$ and 6–14 days in patients treated with 20 mg kg$^{-1}$). There was no sequela in any patient. Based on these results, it is recommended that future studies with intetumumab continue to include the 10 mg kg$^{-1}$ dose level.	
Plummer et al, 2007	Lexatumumab	mg kg$^{-1}$	10 q3w	20 q3w	10 q2w	10 q2w	Based on the previously determined MTD of lexatumumab (10 mg kg$^{-1}$ every 21 days), escalation beyond 10 mg kg$^{-1}$ was not attempted.	
Bensinger et al, 2012	Lucatumumab	mg kg$^{-1}$	6 qw	6 qw	3 qw	3 qw	There was essentially 100% saturation of CD40 molecules at the end of each infusion for all dose groups, but this saturation was lost prior to the beginning of the next infusion in the 0.3 mg kg$^{-1}$ and 1.0 mg kg$^{-1}$ dose cohorts. In the remaining three dose cohorts (>3.0 mg kg$^{-1}$), bound lucatumumab remained on circulating chronic lymphocytic leukaemia cells between infusions.	
Yamamoto et al, 2010	Mogamulizumab	mg kg$^{-1}$	1 qw	1 qw	1 qw × 8 then q1m	1 qw × 8 then q1m	Although we did not find any dose-limiting toxicity and did not detect Treg depletion at the tumour site, we did not perform dose escalation with concentrations >1 mg kg$^{-1}$ because we observed serious skin toxicities in patients with adult T-cell leukaemia during prolonged treatment for more than 1 year with 1 mg kg$^{-1}$, and because complete elimination of Tregs in PBMCs was easily obtained with 0.1 mg kg$^{-1}$.	
Yamamoto et al, 2010	Mogamulizumab	mg kg$^{-1}$	1 qw	1 qw	1 qw × 4	1 qw × 4	MAD	
Brahmer et al, 2010	Nivolumab	mg kg$^{-1}$	10 q2w	3 d1, 28 then q2w	3 d1, 28 then q2w	3 d1, 28 then q2w	MAD	
Salles et al, 2012	Obinutuzumab	mg	1600/800 and 400/400 d1, 8, 21 then q3w	1200/2000 d1, 8, 21 then q3w	1200/2000 qw	1000/1000 qw	The observed plasma concentration data across the cohorts indicated substantially higher concentrations 14 days after completion of the induction phase at doses of 1000 mg and 1200/2000 mg, indicating target saturation. Consequently, a dose of 1000 mg was chosen for further clinical studies.	
(17 trials). We then examined the relationship between FIHT RP2D and doses tested in NFIHTs (Figure 2). FIHT RP2Ds (one or more for each mAb) were available for 12 of the 37 mAbs and were tested for 11 mAbs, alone (n = 5 mAbs) or in association with other doses (n = 6 mAbs). The FIHT MAD was tested for eight mAbs (73%) in 17 trials (45%) of mAbs with available FIHT RP2D. The ratio between the doses tested in NFIHTs and the corresponding FIHT RP2Ds ranged from 0.1 to 5, and in 84% of cases the tested dose/FIHT RP2D ratio was not within 33% on either side of the FIHT RP2D (Figure 2). The FIHT MAD of 17 mAbs (46%) was tested alone or with other doses in 36 trials (35%). Only doses different from the FIHT RP2D or MAD were tested for 16 mAbs (43%) in 37 trials (36%). Finally, we verified that the tested doses were included in the range established as safe in the FIHT and compared them with the FIHT MAD (Figure 2). Only in nine trials on two mAbs, the tested dose was higher than the FIHT MAD. The median tested dose/FIHT MAD ratio was 0.71 (range: 0.25 to 2.5) in trials with comparable dose calculation methods.

Analysis of the correlation of doses and toxicities in RTs and the corresponding FIHT: We retrieved 27 FDA-approved mAbs with a FIHT and 60 RTs on these molecules (Supplementary Table S1). The mAb indication was cancer (solid tumours for eight mAbs, haematological cancers for three mAbs), immune system diseases (13 mAbs) and other diseases (four mAbs). The FIHT MTD was available for only one molecule, whereas the FIHT RP2D was indicated for seven mAbs (26%; five cancer trials and two other trials). We then evaluated the relevance of the FIHT results for the 17 mAbs with the same dose calculation method in FIHT and RTs. The RP2D was tested in RTs of five mAbs (but only in two with the same schedule), and the MAD in RTs of four mAbs (Figure 3). The median RT dose/FIHT MAD ratio was 0.78 (range: 0.1 to 2.5). When considering the nine mAbs for which an RP2D was not available, at least one RT dose was lower than 75% of the MAD for six of them (specifically, lower than 50% for four mAbs and lower than 25% for one). We determined whether the top-three grade 3/4 toxicities in the RTs of each mAb were reported in the corresponding FIHT, and their grade in the FIHT. For only seven
References	mAb name	FIHT	NFIHT	MAD	RP2Ds	Dose	Rationale for dose selection, details
Oberneder et al, 2006	Adecatumumab	262 mg m⁻² q2w	164 mg m⁻² q2w, 262 mg m⁻² q2w	2, 6 mg kg⁻¹ q2w	See details	The dosage regimen and treatment duration selected for this study were based on PK modelling of the phase I clinical study results in patients with prostate cancer.	
Marschner et al, 2010	Adecatumumab	262 mg m⁻² q2w	164 mg m⁻² q2w, 262 mg m⁻² q2w	2, 6 mg kg⁻¹ qw × 3 then q2w × 7	See details	A phase I trial in patients with hormone-refractory prostate cancer showed that adecatumumab is well tolerated with low immunogenicity at doses up to 262 mg m⁻² (approximately 6.6 mg kg⁻¹) every other week.	
Bishton et al, 2013	Belimumab	20 mg kg⁻¹ q3w			10 mg kg⁻¹ d1, 15 q28 then q28	See details	These belimumab levels are sufficient to neutralise the cytokine BLYS and are similar to those achieved in studies conducted in systemic lupus erythematosus, in which an average peak concentration of 192.4 mg ml⁻¹ was achieved at a 10 mg kg⁻¹ dose level.
Wallace et al, 2009, De Vita et al, 2015	Bevacizumab	10 mg kg⁻¹ d1, d28, d35, d42			10 mg kg⁻¹ q2w	See details	The chosen dose was higher than the doses used in bevacizumab therapies for normalisation of tumour vasculature (5 mg kg⁻¹ q14d) and in line with the dosing of bevacizumab monotherapy used in advanced renal cancer where a survival benefit was indicated (10 mg kg⁻¹ q14d).
Cunningham et al, 2004, Pessino et al, 2007, Neal et al, 2010, Tabemoro et al, 2010, Maubec et al, 2011, Wierzbicki et al, 2011, Segelov et al, 2016	Cetuximab	250 mg m⁻² qw				NA	
Reidy-Lagunes et al, 2012	Dalotuzumab	20 mg kg⁻¹ qw	10 mg kg⁻¹ qw, 20 mg kg⁻¹ q2w, 30 mg kg⁻¹ q3w	10 mg kg⁻¹ qw	RP2D in FIHT		
Stevenson et al, 2013	Fresolimumab	4 mg kg⁻¹ single dose			3 mg kg⁻¹ q3w	See details	This dose was chosen based on non-human primate studies and data from the previous phase I trial in cancer, where an MTD up to 15 mg kg⁻¹ was established, but clinical responses were observed in patients at doses of 1 mg kg⁻¹ or lower.
FIHT	NFIHT	mAb name	MAD	RP2Ds	Dose	Rationale for dose selection	Rationale for dose selection, details
------	-------	----------	-----	-------	------	-----------------------------	--------------------------------------
Tolcher et al, 2009	Tap et al, 2012	Ganitumab	20 mg kg\(^{-1}\) q2w	12 mg kg\(^{-1}\) q2w	See details	In the FIHT, this regimen was tolerated, with a mean serum trough concentration (42 μg ml\(^{-1}\)) that exceeded the 90% inhibitory concentration (28 μg ml\(^{-1}\)) in a human MiaPaCa-2 cell xenograft model and provided 90% IGF1R receptor occupancy in a surrogate tissue assay.	
Tolcher et al, 2009	Strosberg et al, 2013	Ganitumab	20 mg kg\(^{-1}\) q2w	18 mg kg\(^{-1}\) q3w	NA		
Scott et al, 2007	Krug et al, 2007	hu3S193	40 mg m\(^{-2}\) qw	10, 20 mg m\(^{-2}\) qw	NA		
Vey et al, 2012	Korde et al, 2014	IPH2101	3 mg kg\(^{-1}\) q4w	1 mg kg\(^{-1}\) q2m	NA		
Genovese et al, 2010	Leonardi et al, 2012	Ixekizumab	2 mg kg\(^{-1}\) q2w	10, 25, 75, 150 mg q2w × 3 then q4w × 3	NA		
Genovese et al, 2010	Gordon et al, 2014	Ixekizumab	2 mg kg\(^{-1}\) q2w	120 mg q1m	NA		
Genovese et al, 2010	Genovese et al, 2014	Ixekizumab	2 mg kg\(^{-1}\) q2w	80 mg q2w (12w) then q4w	NA		
Tolcher et al, 2009	Greco et al, 2008, Trarbach et al, 2010	Mapatumumab	10 mg kg\(^{-1}\) q14	10 mg kg\(^{-1}\) q3w	See details	The MTD was not identified at doses up to 20 mg kg\(^{-1}\) administered every 28 days. Stable disease was observed in a number of heavily pretreated patients at several dose levels. Therefore, 10 mg kg\(^{-1}\) was considered a safe and potentially effective dose for the treatment of non-small cell lung cancer.	
Vehoefer, 2003	Seiden et al, 2007	Matuzumab	2000 mg qw	800 mg qw	NA		
Yamamoto et al, 2012	Ishida et al, 2012	mogamulizumab	1 mg kg\(^{-1}\) qw	1 mg kg\(^{-1}\) qw	1 mg kg\(^{-1}\) qw	RP2D in FIHT	
Brahmer et al, 2010	Gardiner et al, 2013, Borghaei et al, 2015, Brahmer et al, 2015, Hamanishi et al, 2015, Motzer et al, 2015, Motzer et al, 2015a, 2015b, Rizvi et al, 2015, Robert et al, 2015, Roberts et al, 2015, Weber et al, 2015	Nivolumab	10 mg kg\(^{-1}\) q2w	3 mg kg\(^{-1}\) q2w	NA		
Salles et al, 2012	Morschhauser et al, 2013, Salles et al, 2013	Obinutuzumab	1200/2000 mg d1, 8, 21, then q3w	400/400, 1600/800 mg d1, 8, 21, then q3w	400/400, 1600/800 mg d1, 8, 21, then q3w	RP2D in FIHT	We based the dose and schedule of nivolumab on safety and activity data from a phase 1 study that showed a similar proportion of objective responses in patients treated with 3 mg kg\(^{-1}\) or with 10 mg kg\(^{-1}\); both doses achieved better responses than the 1 mg kg\(^{-1}\) dose. The safety profile was similar with each dose and for different tumour types in the phase 1 trial.
References	mAb name	FIHT	NFIHT	Rationale for dose selection, details			
-----------------------------------	-------------------	---------	-------	-------------------------------------			
Salles et al., 2012	Obinutuzumab	1200/2000 mg d1, 8, 21, then q3w	400/400, 1600/800 mg d1, 8, 21, then q3w	1000 mg d1, 8, 15 then q3w	NA		
Cartron et al., 2014, Byrd et al., 2016							
Forero-Torres et al., 2012	Ocaratuzumab	375 mg m⁻² qw	375 mg m⁻² qw	300/600, 1000 mg d1, 15 then q2w	See details		
Genovese et al., 2008	Ocrelizumab	750 mg m⁻² q3w	300/2000 mg qw × 8 then q4w	300/1000 mg qw × 4	NA		
Kappos et al., 2011							
Hagenbeek et al., 2008	Ofatumumab	1000 mg qw	500 mg qw, 1000 mg qw	300/1000 mg qw	RP2D in FIHT		
Wierda et al., 2010							
Hagenbeek et al., 2008	Ofatumumab	1000 mg qw	500 mg qw, 1000 mg qw	500, 1000 mg qw	RP2D in FIHT		
Coiffier et al., 2013							
Czuczman et al., 2012	Ofatumumab	1000 mg qw	500 mg qw, 1000 mg qw	1000 mg qw	RP2D in FIHT		
Furtado et al., 2014							
van Oers et al., 2015	Ofatumumab	1000 mg qw	500 mg qw, 1000 mg qw	1000 mg qw × 1 then q8w	NA		
Hagenbeek et al., 2008							
Taylor et al., 2011	Ofatumumab	1000 mg qw	500 mg qw, 1000 mg qw	700 mg qw × 2	NA		
Österborg et al., 2016	Ofatumumab	1000 mg qw	500 mg qw, 1000 mg qw	2000 mg qw × 8 then qm	NA		
Emu et al., 2012	Pateclizumab	3 mg q2w	360 mg q2w	See details			
Kennedy et al., 2014							
Agus, 2005	Pertuzumab	15 mg kg⁻¹ q3w	420 mg q3w	840/420, 1050 mg q3w	MAD and RP2D in FIHT		
Gordon et al., 2006, De Bono et al., 2007, Gianni et al., 2010							

Rationale for dose selection
- Phase 2 dose selection was based on safety and preliminary efficacy data and on modelling and simulation of PK data. The latter showed faster elimination of obinutuzumab in the first cycle than in later cycles, indicating the need for a more dose-dense regimen in the first cycle.
- The maximum ocaratuzumab dose of 375 mg m⁻² was tested to support subsequent testing against rituximab at an equivalent dose.
- A phase I/II study of ofatumumab, administered as two intravenous infusions of 300, 700 or 1000 mg per 2 weeks apart, in patients with active rheumatoid arthritis and inadequate response to disease-modifying anti-rheumatic drugs demonstrated significant clinical benefit and reasonable tolerability at all doses investigated compared with placebo. The 700 mg dose was considered optimal.
- Based on safety and efficacy data from a phase I/II study in patients with chronic lymphocytic leukaemia.
| References | mAb name | FIHT | NFIHT | MAD | RP2Ds | Dose | Rationale for dose selection, details |
|------------|----------|------|-------|-----|-------|------|-------------------------------------|
| Agus, 2005 | Agus et al, 2007 | Pertuzumab | 15 mg kg\(^{-1}\) q3w | 420 mg q3w | 840/420 mg q3w | RP2D in FIHT | Pertuzumab infusions every 3 weeks at doses \(\geq 5.0 \text{ mg kg}^{-1}\) maintained serum concentrations in excess of 20 \(\mu\text{g ml}^{-1}\). Dose-response studies of pertuzumab in non-clinical models showed that more than 80% suppression of tumour growth is achieved at steady-state trough concentrations of 5–25 \(\mu\text{g ml}^{-1}\). The recommended regimen for phase II testing was therefore a fixed dose of 420 mg (equivalent to 6 mg kg\(^{-1}\) for a 70-kg patient) every 3 weeks. However, using this regimen, steady-state concentrations are only attained after about 90 days. A loading dose of 840 mg was therefore recommended. Simulated trough concentrations for pertuzumab predicted that with a fixed dose of 1050 mg (equivalent to a dose of 15 mg kg\(^{-1}\) for a 70-kg patient, the highest dose studied in phase I trials), 90% of patients would achieve steady-state trough concentrations \(\geq 28.8 \mu\text{g ml}^{-1}\). This dose was used because preclinical studies suggested a dose-dependent increase in efficacy. |
| Agus, 2005 | Herbst et al, 2007 | Pertuzumab | 15 mg kg\(^{-1}\) q3w | 420 mg q3w | 840/420 mg q3w | RP2D in FIHT | |
| Berger et al, 2008 | Armand et al, 2013 | Pidilizumab | 6 mg kg\(^{-1}\) single dose | 1 mg kg\(^{-1}\) single dose | 1.5 mg kg\(^{-1}\) q42 | NA | |
| Diaz et al, 2003 | Alfonso et al, 2007 | Racotumumab | 2 mg q2w | 1 mg q2w \(\times 5\) then q4w | NA | |
| Diaz et al, 2003 | Alfonso et al, 2014 | Racotumumab | 2 mg q2w | 1 mg q2w \(\times 5\) then q4w \(\times 10\) | NA | |
| Diaz et al, 2003 | Neninger et al, 2007 | Racotumumab | 2 mg q2w | 2 mg q2w \(\times 5\) then q4w \(6 \times\) | NA | |
| Spratlin et al, 2010 | Zhu et al, 2013, Fuchs et al, 2014, Garcia et al, 2014, Penson et al, 2014 | Ramucirumab | 16 mg kg\(^{-1}\) d1, 15 then q2w | 8 mg kg\(^{-1}\) d1, 15 then q2w | 8 mg kg\(^{-1}\) q2w | RP2D in FIHT | A phase II dose of 8 mg kg\(^{-1}\) every 2 weeks was selected because it was associated with the minimum drug |
| References | mAb name | FIHT | NFIHT | MAD | RP2Ds | Dose | Rationale for dose selection, details |
|------------|----------|------|-------|-----|-------|------|--------------------------------------|
| Paz-Ares, Delord et al, 2011 | RGT160 | FIHT | NFIHT | MAD | RP2Ds | Dose | Rationale for dose selection, details |
| Gordon, Schöffski et al, 2011, Wen et al, 2011 | Rilotumumab | FIHT | NFIHT | MAD | RP2Ds | Dose | Rationale for dose selection, details |
| Bartlett et al, Forero-Torres et al, 2010 | SGN-30 | FIHT | NFIHT | MAD | RP2Ds | Dose | Rationale for dose selection, details |
| Bartlett et al, Duvic et al, 2009 | SGN-30 | FIHT | NFIHT | MAD | RP2Ds | Dose | Rationale for dose selection, details |
| Scott et al, Hofheinz et al, 2003 | Sibrotuzumab | FIHT | NFIHT | MAD | RP2Ds | Dose | Rationale for dose selection, details |
| Rosen et al, Duffy et al, 2015 | TRC105 | FIHT | NFIHT | MAD | RP2Ds | Dose | Rationale for dose selection, details |
| Herbst et al, D’Angelo et al, 2015 | Trebananib | FIHT | NFIHT | MAD | RP2Ds | Dose | Rationale for dose selection, details |
| Herbst et al, Moore et al, 2015 | Trebananib | FIHT | NFIHT | MAD | RP2Ds | Dose | Rationale for dose selection, details |
| Ribas, 2005 | Tremelimumab | FIHT | NFIHT | MAD | RP2Ds | Dose | Rationale for dose selection, details |
| Norman et al, Carpenter et al, 2005 | Visilizumab | FIHT | NFIHT | MAD | RP2Ds | Dose | Rationale for dose selection, details |
mAbs (25%) at least two of the top-three RT grade 3/4 toxicities were reported as grade 3/4 in FIHT. Conversely, for 16 (57%) none of the top-three grade 3/4 toxicities described in the RTs was reported as grade 3/4 in FIHT. In addition, for seven (25%) of mAbs none of the top-three grade 3/4 toxicities was reported in FIHT.

DISCUSSION

In our previous analysis concerning the FIHTs of mAbs published between 2000 and 2013, we showed that, for most of the tested molecules, acute toxicity events were rarely observed and did not allow the identification of an MTD. This frequently led to doubtful recommendations about the RP2D that was selected for further development based on the incidence of grade 3/4 adverse events (13% with 15 mg kg\(^{-1}\) every 90 days vs 27% with 10 mg kg\(^{-1}\) every month, respectively) and serious adverse events (9% and 25%).

In the examined dose escalation NFIHTs, the dose level scheme was conservative relative to the FIHT, severe toxicities were infrequent, the MTD was rarely determined and the RP2D was used to inform decisions about the dose to be tested under the choice were appropriate. When the FIHT MAD was frequently tested in trials of mAb with available RP2D, suggesting a lack of confidence in the RP2D selection criteria. On the other hand, the FIHT MAD constituted a widely accepted upper limit for dose selection in phase II–III NFIHTs. Frequently, we could not retrieve a convincing justification for dose selection in NFIHTs of mAbs. In a significant percentage of trials, the dose tested in NFIHTs without dose escalation did not correspond to the RP2D or MAD and no rationale for dose selection was available, which did not allow evaluating whether the assumptions underlying the choice were appropriate. When the FIHT RP2D or MAD was not used to inform decisions about the dose to be tested in NFIHTs, preclinical data on the drug effective concentration and clinical PK data were frequently the parameters of choice, notably the serum concentrations attained in clinical trials. However, due to their size, mAb penetration in tissues occurs mainly by convective transport and is characterised by slow diffusion rates to their size, mAb penetration in tissues occurs mainly by convective transport and is characterised by slow diffusion rates to their size, mAb penetration in tissues occurs mainly by convective transport and is characterised by slow diffusion rates to their size, mAb penetration in tissues occurs mainly by convective transport and is characterised by slow diffusion rates to their size, mAb penetration in tissues occurs mainly by convective transport and is characterised by slow diffusion rates to their size, mAb penetration in tissues occurs mainly by convective transport and is characterised by slow diffusion rates to their size, mAb penetration in tissues occurs mainly by convective transport and is characterised by slow diffusion rates to their size, mAb penetration in tissues occurs mainly by convective transport and is characterised by slow diffusion rates to their size.

The lack of association between the most frequent severe toxicities in FIHT and RTs suggests that the FIHT results are not useful to predict the actual mAb toxicity and that, consequently, an approach based on a toxicity-guided dose selection during the early clinical development of mAbs could be misleading. Moreover, the

References	mAb name	FIHT	NFIHT	MAD	RP2Ds	Dose	Rationale for dose selection, details
Norman et al, 2000	Sandborn et al, 2010	Visilizumab	0.015 mg kg\(^{-1}\) (once)	0.015 mg kg\(^{-1}\)	d1, d2	5 μg kg\(^{-1}\)	A phase II trial was conducted to evaluate the safety and efficacy of multi-dose tremelimumab regimens. In the phase II portion of the study, patients (n = 89) received 15 mg kg\(^{-1}\) administered every 90 days or 10 mg kg\(^{-1}\) every month. The 15 mg kg\(^{-1}\) every 90 days regimen was selected for further development.
Ricart et al, 2008	Bell-McGuinn et al, 2011	Volociximab	15 mg kg\(^{-1}\) d1, 15, 22, 29, 36 then qw	15 mg kg\(^{-1}\)	qw	MAD in FIHT	In a phase I study, visilizumab was well tolerated in patients with steroid-resistant acute graft vs host disease, and improvement was documented in 10 of 11 patients who received a single dose (3 mg m\(^{-2}\)) of visilizumab.

Abbreviations: FIHT = first-in-human trial; mAb = monoclonal antibody; MAD = maximum administered dose; MTD = maximum tolerated dose; NFIHT = non-first-in-human trial; PK = pharmacokinetics; RP2D = recommended phase II dose; qw = one a week; q2w = every 2 weeks; q3w = every 3 weeks; q4w = every 4 weeks; qm = every month.
absence of significant toxicity in FIHTs could complicate the choice of the doses to be tested in later trials. Selecting an unnecessarily high mAb dose can be unsafe because rare dose-dependent toxicities could appear later during the drug development process. Inappropriately low doses also can affect efficacy and tolerability because, in the presence of an abundant target mass, the mAb PK could be altered due to target-mediated drug disposition (Cartron et al., 2016; Meulendijks et al., 2016), especially when the mAb target is also expressed in healthy tissues (Azzopardi et al., 2011).

Other approaches for optimal mAb dose selection could be suggested, such as correlating the mAb serum concentration with PD marker variations, or implementing PK/PD models. The choice and accessibility to the measured PD markers are crucial in this setting. Quantitative data on serum (soluble) mAb targets, receptor occupancy on circulating tumour cells, serum markers that indirectly reflect the mAb effect (Mayer et al., 2015), or clinical parameters directly linked to disease activity (Azzopardi et al., 2015) represent useful PD endpoints for clinical trials. However, for mAbs that alter intracellular signalling, PD marker assessment in tumour cells is an elusive endpoint due to the limited availability of repeated biopsies. Integrative evaluations, including gene expression and phosphokinome profiling in tumour samples and liquid biopsies, could represent suitable tools for dose-finding clinical trials when preclinical studies have established clear correlations between a molecular signature and drug efficacy.

In addition, we previously showed that in mAb FIHTs the safety data relevant for dose selection are collected during a short observation window, which frequently corresponds to the first cycle of treatment (Tosi et al., 2015). Indeed, mAb PK could be far from the steady state throughout this time, because of the long drug half-life and dosing schedules that are frequently at least weekly (Tosi et al., 2015). In addition, the effect of target-mediated drug disposition (Azzopardi et al., 2011), and the rare administration of loading doses (Tosi et al., 2015) could contribute to delay reaching the maximal serum concentrations. Consequently,
safety data or PK or PD evaluations obtained in this setting have limited value, suggesting that trial designs including a longer time frame for endpoint assessment at selected doses could be more appropriate.

CONCLUSIONS

We show that the results of FIHTs, particularly standard FIHT endpoints such as MAD, MTD and RP2D, are frequently not taken into account for the design of later clinical studies on mAbs. Moreover, while safety is the main endpoint of mAb FIHTs, other pharmacological aspects are often considered for dose choice in later clinical trials, although the relevance of these surrogate endpoints relative to the mAb clinical activity is questionable. New clinical development strategies are urgently needed for this class of molecules characterised by scarce toxicity, specific PK and high therapeutic potential. Particularly, these data strongly support shorter and more PD-focused phase I studies, as well as randomised phase II studies to compare different mAb doses.

ACKNOWLEDGEMENTS

The authors thank Elisabetta Andermarcher, MD, PhD, for editorial assistance. Supported by the French Health Ministry Program ‘Investissements d’avenir’ (grant LabEx MAbImprove’).

CONFLICT OF INTEREST

The authors declare no conflict of interest.
Agus DB (2005) Phase I clinical study of pertuzumab, a novel HER dimerization inhibitor, in patients with advanced cancer. J Clin Oncol 23: 2534–2543.

Agus DB, Sweeney CJ, Morris MJ, Mendelson DS, McNeel DG, Ahmann FR, Wang DJ, Derenk MK, Ng K, Lyons B, Allison DE, Kattan MW, Scher HI (2007) Efficacy and safety of single-agent pertuzumab (ruhuMab 2C4), a human epidermal growth factor receptor dimerization inhibitor, in castration-resistant prostate cancer after progression from taxane-based therapy. J Clin Oncol 25: 675–681.

Alfonso S, Díaz RM, de la Torre A, Santiesteban E, Aguirre F, Pérez K, Rodríguez JL, Barroso MC, Hernández AM, Toledo D, Gabir MI, Alonso DF, Viada C, Gómez RE, Pestana E, Suárez E, Vázquez AM, Perez R, Macías A (2007) E10 anti-idiotypic vaccine in non-small cell lung cancer: experience in stage IIIb/IV patients. Cancer Biol Ther 6: 1847–1852.

Alfonso S, Valdez-Zayas A, Santiesteban ER, Flores YI, Areces F, Hernandez M, Viada CÉ, Mendoza IC, Guerra PP, Garcia E, Ortiz RA, de la Torre AV, Cepeda M, Perez K, Chong E, Hernandez AM, Toledo D, Gonzalez Z, Mazorra Z, Crotmbert T, Perez R, Vazquez AM, Macias AE (2014) A randomized, multicenter, placebo-controlled clinical trial of racotumomab-alum vaccine as switch maintenance therapy in advanced non-small cell lung cancer patients. Clin Cancer Res 20: 3660–3671.

Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, Azzopardi N, Dupuis-Girod S, Ternant D, Fargeton A-E, Ginon I, Faure F, Agus DB, Sweeney CJ, Morris MJ, Mendelson DS, McNeel DG, Ahmann FR, Bartlett NL, Younes A, Carabasi MH, Forero A, Rosenblatt JD, Leonard JP, Dhodir M, de la Torre A, Santiesteban E, Aguirre F, Pérez K, Rodríguez JL, Barroso MC, Hernández AM, Toledo D, Gabir MI, Alonso DF, Viada C, Gómez RE, Pestana E, Suárez E, Vázquez AM, Perez R, Macías A (2007) E10 anti-idiotypic vaccine in non-small cell lung cancer: experience in stage IIIb/IV patients. Cancer Biol Ther 6: 1847–1852.

REFERENCES

Perez R, Macías A (2007) 1E10 anti-idiotype vaccine in non-small cell lung cancer. J Clin Oncol 25: 675–681.

Bartlett NL, Younes A, Carabasi MH, Forero A, Rosenblatt JD, Leonard JP, Dhodir M, de la Torre A, Santiesteban E, Aguirre F, Pérez K, Rodríguez JL, Barroso MC, Hernández AM, Toledo D, Gabir MI, Alonso DF, Viada C, Gómez RE, Pestana E, Suárez E, Vázquez AM, Perez R, Macías A (2007) E10 anti-idiotypic vaccine in non-small cell lung cancer: experience in stage IIIb/IV patients. Cancer Biol Ther 6: 1847–1852.

Agus DB, Sweeney CJ, Morris MJ, Mendelson DS, McNeel DG, Ahmann FR, Wang DJ, Derenk MK, Ng K, Lyons B, Allison DE, Kattan MW, Scher HI (2007) Efficacy and safety of single-agent pertuzumab (ruhuMab 2C4), a human epidermal growth factor receptor dimerization inhibitor, in castration-resistant prostate cancer after progression from taxane-based therapy. J Clin Oncol 25: 675–681.

Alfonso S, Díaz RM, de la Torre A, Santiesteban E, Aguirre F, Pérez K, Rodríguez JL, Barroso MC, Hernández AM, Toledo D, Gabir MI, Alonso DF, Viada C, Gómez RE, Pestana E, Suárez E, Vázquez AM, Perez R, Macías A (2007) E10 anti-idiotypic vaccine in non-small cell lung cancer: experience in stage IIIb/IV patients. Cancer Biol Ther 6: 1847–1852.
randomised study of ramucirumab (IMC-1121B) with or without dacefizumab in patients with metastatic melanoma. Eur J Cancer 50: 2099–2107.

Chioarean EG, Hurwitz HI, Cohen RB, Schwartz JD, Dalal RP, Fox FE, Gao L, Sweeney CJ (2015) Phase I study of every 2- or 3-week dosing of ramucirumab, a human immunoglobulin G1 monoclonal antibody targeting the vascular endothelial growth factor receptor-2 in patients with advanced solid tumors. Ann Oncol 26: 1230–1237.

Chung KT, Gore I, Fong L, Venook A, Beck SB, Dorazio P, Cristietti PJ, Healey DJ, Huang B, Gomez-Navarro J, Salzt LB (2010) Phase II study of the anti-cytotoxic T-lymphocyte-associated antigen 4 monoclonal antibody, tremelimumab, in patients with refractory metastatic colorectal cancer. J Clin Oncol 28: 3485–3490.

Cofflier B, Radford J, Bosly A, Martinelli G, Barca G, Davies A, Decaudin D, Duvic M, Reddy SA, Pinter-Brown L, Korman NJ, Zic J, Kennedy DA, Diaz A, Alfonso M, Alonso R, Suarez G, Troche M, Catala M, Diaz RM, Duvic M, Pinter-Brown LC, Foss FM, Sokol L, Jorgensen JL, Challagundla P, Czuczman MS, Fayad L, Delwail V, Cartron G, Jacobsen E, Kuliczkowski K, De Vita S, Quartuccio L, Seror R, Salvin S, Ravaud P, Fabris M, Nocturne G, Delord J-P, Tabernero J, Garcia-Carbonero R, Cervantes A, Gomez-Roca C, www.bjcancer.com | Strategies for clinical development of mAbs

BRITISH JOURNAL OF CANCER

Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 351: 337–345.

Cuzcuzman MS, Fayad I, Delwail V, Cartgon G, Jacobsen E, Kuliczkowski K, Link BK, Pinter-Brown L, Radford J, Hellmann A, Gallop-Evans E, DiRienzo CG, Goldstein N, Gupta I, Jewell RC, Lin TS, Lisby S, Schultz M, Russell CA, Hagenbeek A. 405 Study Investigators (2012) Ofatumumab monotherapy in rituximab-refractory follicular lymphoma: results from a phase II study of follicular lymphoma patients with advanced adenocarcinomas. Cancer. Clin Cancer Res Off J Am Assoc Cancer Res 18: 7555–7565.

De Vita S, Quartuccio L, Seror R, Salvins L, Ravaud P, Fabris M, Nocturne G, Delord J-P, Tabernero J, Garcia-Carbonero R, Cervantes A, Gomez-Roca C.

De Bono JS, Bellmunt J, Attard G, Droz JP, Miller K, Flechon A, Sternberg C, Parker C, Zugmaier G, Hersberger-Gimenez V, Cockey L, Mason M, Graham J (2007) Open-label phase II study evaluating the efficacy and safety of two doses of pertuzumab in castrate chemotherapy-naive patients with hormone-refractory prostate cancer. J Clin Oncol 25: 257–262.

De Bono JS, Tolcher AW, Forero A, Vanhoove GFA, Takimoto C, Bauer RJ, Hammond LA, Patnaik A, White ML, Shen S, Khazaee MB, Rowinsky EK, Los Angeles AF-000 (2011) ENG-1, a monoclonal antibody targeting Ep-CAM in patients with advanced adenocarcinomas. Cancer. Clin Cancer Res Off J Am Assoc Cancer Res 17: 496–505.

Dostalek M, Gardner I, Gurbaxani BM, Rose RH, Chetty M (2013) Pharmacokinetics, pharmacodynamics and physiologically-based pharmacokinetic modelling of monoclonal antibodies. Clin Pharmacokinet 52: 83–124.

Duffy A, Ulahannan S, Gao L, Rahma O, Makarova-Rusher O, Kleiner D, Fioravanti S, Walker M, Carey S, Yu Y, Venkatesan A, Turkbey B, Choyke P, Trepel I, Bollen K, Steinberg S, Fudman E, Kohen M, Gujrathi S, Trapp RG, Sweiss NJ, Stahl WM, Wood LS, Grogan JL, Rojkovich B, Williams MB, Fang Y, Li J, Chen G, Zhang N, Chen Y, Cai W, Teillet M, Study Group B (2008) Biologic activity and safety of belimumab, a neutralizing anti-B-lymphocyte stimulator (BLYS) monoclonal antibody: a phase I trial in patients with systemic lupus erythematosus. Arthritis Res Ther 10: R109.

Furtado M, Dyer MJ, Johnson R, Berrow M, Rule S (2014) Ofatumumab monotherapy in relapsed/refractory mantle cell lymphoma – a phase II trial. Br J Haematol 165: 575–578.

Ganjoon KN, de Vos S, Pohlin BL, Pashkevich M, Cronier DM, Dan NH, Carpenter SP, Allan BW, Nelson JG, Slapak CA, Smith MR, Link BK, Wooldrige JE, Ganjoon KN (2012) Results of a phase 1 trial of AME-133v (LY2469298), an Fc-engineered humanized monoclonal anti-CD20 antibody, in FcRRIIA-gotyped patients with previously treated follicular lymphoma. Clin Cancer Res 18: 1395–1403.

Forero-Torres A, de Vos S, Pohlin BL, Pashkevich M, Cronier DM, Dan NH, Carpenter SP, Allan BW, Nelson JG, Slapak CA, Smith MR, Link BK, Wooldrige JE, Ganjoon KN (2012) Results of a phase 1 trial of AME-133v (LY2469298), an Fc-engineered humanized monoclonal anti-CD20 antibody, in FcRRIIA-gotyped patients with previously treated follicular lymphoma. Clin Cancer Res 18: 1395–1403.

Forero-Torres A, Shah J, Wood T, Posey J, Carlisle R, Copigneaux C, Luo FR, Wojtowicz-Praca S, Percent I, Saleh M (2010) Phase 1 trial of weekly tigatuzumab, an agonistic human monoclonal antibody targeting death receptor 5 (DR5). Cancer Biother Radiopharm 25: 13–19.

Fuchs CS, Tomasek J, Yong CJ, Dumitru F, Passalacqua R, Goswami C, Shaffrey H, dos Santos LW, Bautista A, Loo YH, Avinash DR, Melo J, Ploj J, Koushi M, Hsu Y, Liepa AM, Gao L, Schwartz JD, Tabernero J. REGARD Trial Investigators (2014) Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. The Lancet 383: 31–39.

Furie R, Stohl W, Ginzler EM, Becker M, Mishra N, Chatham WW, Morrill JJ, Weinstein A, Givant A, Zhong J, Cai W, Tehfe M, Study Group B (2008) Biologic activity and safety of belimumab, a neutralizing anti-B-lymphocyte stimulator (BLYS) monoclonal antibody: a phase I trial in patients with systemic lupus erythematosus. Arthritis Res Ther 10: R109.

Garcia JA, Hudes GR, Choueiri TK, Stadler WM, Wood LS, Grogan JL, Rojkovich B, Williams MB, Fang Y, Li J, Chen G, Zhang N, Chen Y, Cai W, Teillet M, Study Group B (2008) Biologic activity and safety of belimumab, a neutralizing anti-B-lymphocyte stimulator (BLYS) monoclonal antibody: a phase I trial in patients with systemic lupus erythematosus. Arthritis Res Ther 10: R109.

Genovese MC, Greenwald M, Cho C-S, Berman A, Jin L, Cameron GS, Benichou O, Xie L, Braun D, Berczaj P-Y, Banic M, Passalacqua R, Goswami C, Shaffrey H.

Gajdos P, Ando E, Nakao K, Baudin E, Nakada Y, Arai Y, Ishigaki H, Gajdos P, Ando E, Nakao K, Baudin E, Nakada Y, Arai Y, Ishigaki H, www.bjcancer.com | Strategies for clinical development of mAbs

BRITISH JOURNAL OF CANCER

Genovese MC, Kaine JL, Lowenstein MB, Del Giudice J, Baladassare A, Schechtman J, Fudman E, Kohen M, Gujriath S, Trapp RG, Sveiss NJ, Spaniol G, Dummer W. ACTION Study Group (2008) Ocrelizumab, a humanized anti-CD20 monoclonal antibody, in the treatment of patients
with rheumatoid arthritis: a phase I/II randomized, blinded, placebo-controlled, dose-ranging study. *Arthritis Rheum* **58**: 2625–2661.

Genovese MC, Van den Bosch F, Roberson SA, Bojin S, Biagini IM, Ryan P, Sloan-Lancaster J (2010) LY2439821, a humanized anti-interleukin-17 monoclonal antibody, in the treatment of patients with rheumatoid arthritis: a phase I randomized, double-blind, placebo-controlled, proof-of-concept study. *Arthritis Rheum* **62**: 929–939.

Gianni L, Ildado A, Bianchi G, Cortes J, Kellokumpu-Lehtinen P-L, Cameron DA, Miles D, Salvagni S, Wardley A, Goeminne J-C, Hersberger V, Baserga J (2010) Open-label, phase II, multicenter, randomized study of the efficacy and safety of two dose levels of pertuzumab, a human epidermal growth factor receptor 2 dimerization inhibitor, in patients with human epidermal growth factor receptor 2-negative metastatic breast cancer. *J Clin Oncol* **28**: 1131–1137.

Goel S, Bauer RJ, Desai K, Bulgaru A, Iqbal T, Strachan B-K, Kim G, Gordon KB, Leonardi CL, Lebwohl M, Blauvelt A, Cameron GS, Braun D, Genovese MC, Van den Bosch F, Roberson SA, Bojin S, Biagini IM, Ryan P, Sloan-Lancaster J (2010) LY2439821, a humanized anti-interleukin-17 monoclonal antibody, in patients with chronic plaque psoriasis. *J Am Acad Dermatol* **71**: 1176–1182.

Gordon MS, Margolin K, Talpaz M, Sledge Jr GW, Holmgren E, Benjamin R, Stalter S, Shak S, Adelmann D (2001) Phase I safety and pharmacokinetic study of recombinant human anti-vascular endothelial growth factor in patients with advanced cancer. *J Clin Oncol Off J Am Soc Clin Oncol* **19**: 843–850.

Gordon MS, Matei D, Aghajanian C, Matulonis UA, Brewer M, Fleming GF, Hainsworth JD, Garcia AA, Pagram MD, Schilder RJ, Cohn DE, Roman L, Derynk MK, Ng K, Lyons A, Allison DE, Eberhard DA, Pham TQ, Dere RC, Karlan BY (2006) Clinical activity of pertuzumab (rubzMab 2C4), a HER dimerization inhibitor, in advanced ovarian cancer: potential predictive relationship with tumor HER2 activation status. *J Clin Oncol* **24**: 4324–4332.

Gong Y, Geng P, Sweeney CJ, Mendelson DS, Eckhardt SG, Anderson A, Beaufre DM, Branstetter D, Burgess TL, Coxon A, Deng H, Kaplan-Lefko P, Leith IM, Olinger KS, Yan L, Zhu M, Gore L (2010) Safety, pharmacokinetics, and pharmacodynamics of AMG 102, a fully human hepatocyte growth factor-neutralizing monoclonal antibody, in a first-in-human study of patients with advanced solid tumors. *Clin Cancer Res* **16**: 699–710.

Greco FA, Bonomi P, Crawford J, Kelly K, Oh Y, Halpern W, Lo L, Gallant G, Klein J (2008) Phase 2 study of mapatumumab, a fully human agonistic monoclonal antibody which targets and activates the TRAIL receptor-1 in patients with advanced non-small cell lung cancer. *Lung Cancer* **61**: 82–90.

Hagenbeek A, Gadeberg O, Johnson P, Moller Pedersen L, Walewski J, Herbst RS, Hong D, Chap L, Kurzrock R, Jackson E, Silverman JM, Rasmussen E, Sun Y-N, Zhong D, Hwang YC, Evelhoch JL, Oliner JD, Le N, Rosen LS (2009) Safety, pharmacokinetics, and antitumor activity of AMG 386, a selective angiopoietin inhibitor, in adult patients with advanced solid tumors. *J Clin Oncol* **27**: 3557–3565.

Hofheinz R-D, Al-Batran S-E, Hartmann F, Hartung G, Jäger D, Renner C, Tanoue P, Kunz U, Ansellberg A, Kuthan H, Stelte G (2003) Stromal antigen targeting by a humanized monoclonal antibody: an early phase II trial of sibrotuzumab in patients with metastatic colorectal cancer. *Oncol Res Treat* **26**: 44–48.

Ishida T, Joh T, Uike N, Yamamoto K, Utsunomiya A, Yoshida S, Saburi Y, Miyamoto T, Takemoto S, Suzukiha H, Tsukasaki K, Nosaka K, Fujiwara H, Ishitsuka K, Inagaki H, Ogura M, Akinaga S, Tomonaga M, Tobinai K, Ueda R (2012) Durvalumab against anti-CTLA4 monoclonal antibody (KW-0761) for relapsed adult T-cell leukemia-lymphoma: a multicenter phase II study. *J Clin Oncol* **30**: 837–842.

Janne PA, Kim G, Shaw AT, Sridhar R, Pazdur R, McKeel AE (2016) Dose finding of small-molecule oncology drugs: optimization throughout the development life cycle. *Clin Cancer Res* **22**: 2613–2617.

Jardim DL, Hess KR, LoRusso P, Kurzrock R, Hong DS (2014) Predictive value of Phase I trials for safety in later trials and final approved dose: analysis of 61 approved cancer drugs. *Clin Cancer Res* **20**: 281–288.

Kappos L, Di L, Calabresi PA, O’Connor P, Bar-Or A, Barkhof F, Yin M, Leppert D, Glanzman R, Timbergen J, Hauer SL (2011) Ocrelizumab in relapsing-remitting multiple sclerosis: a phase 2, randomized, placebo-controlled, multicentre trial. *Lancet* **378**: 1779–1787.

Kennedy WP, Simon JA, Offutt C, Horn P, Herman A, Townsend MJ, Tang MT, Grogan JL, Hsieh F, Davis JC (2014) Efficacy and safety of pateclizumab (anti-lymphotoxin-α) compared to adalimumab in rheumatoid arthritis: a head-to-head phase 2 randomized controlled study (The ALTARA Study). *Arthritis Res Ther* **16**: 467.

Kirkwood JM, Lorigan P, Hersey P, Hauschild A, Robert C, McDermott D, Marshall MA, Gomez-Navarro J, Liang JQ, Balahugau CA (2010) Phase II trial of tremelimumab (657,206) in patients with advanced refractory or relapsed melanoma. *Clin Cancer Res* **16**: 1042–1048.

Korde N, Carlsten M, Lee M-J, Minter A, Tan E, Kwock M, Manasanch E, Bhutani M, Tatejega N, Roschewski M, Zingone A, Costello R, Mulquin M, Zuchlinski D, Maric I, Calvo KR, Braylan R, Tembhare P, Yuan C, Stetler-Stevenson M, Trepel J, Childs R, Landgren O (2014) A phase II trial of pan-KIR2D blockade with 1P8H2101 in smoldering multiple myeloma. *Haematologica* **99**: 881–883.

Krug LH, Milton DT, Junghe MS, Shen GH, Chen LI-C, Quaia E, Pandit-Taskar N, Nagel A, Jones J, Kisig MG, Finn R, Smith-Jones P, Scott AM, Old L, Divgi C (2007) Targeting Lewis Y (Le y) in small cell lung cancer with a humanized monoclonal antibody, hu3S193: a pilot trial testing two dose levels. *J Thorac Oncol* **2**: 947–952.

Kurose K, Ohuye Y, Wada H, Iida S, Ishida T, Kojima TT, Suzuki S, Isobe M, Funakoshi T, Kakimi K, Nishikawa H, Udono H, Oka M, Ueda R, Nakayama E (2015) Phase Ia study of FoxP3+ CD4 Treg depletion by infusion of a humanized anti-CCR4 antibody, KW-0761, in cancer patients. *J Clin Cancer Res* **21**: 8427–8432.

Le Tourneau C, Lee JI, Siu LL (2009) Dose escalation methods in phase I cancer clinical trials. *J Natl Cancer Inst* **101**: 708–720.

Leonardi C, Matheson R, Zachariae C, Cameron G, Li L, Edson-Heredia E, Braun D, Banerjee S (2012) Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis. *N Engl J Med* **366**: 1190–1199.

Marschner N, Rüttinger D, Zügmaier G, Nemere G, Lehmann J, Obrist P, Heidenreich K (2010) Phase II study of the human anti-epithelial cell adhesion molecule antibody aducumabumab in prostate cancer patients with increasing serum levels of prostate-specific antigen after radical prostatectomy. *Urol Int* **85**: 386–395.

Maubec E, Petrow P, Scheer-Senyarich I, Duvillard P, Lacroix L, Gelly J, Tanswell P, Kuthan H, Stehle G (2003) Stromal adhesion molecule antibody adecatumab in prostate cancer patients with increasing serum levels of prostate-specific antigen after radical prostatectomy. *Haematologica* **88**: 5486–5495.
antibody, in patients with metastatic or advanced HER2-positive solid tumors. Clin Cancer Res 20: 3787–3795.

Mohr SN, Auer RN, Merkle JJ, Grabow BM, Barcheck BA, Meister PJ, Linn T, Povolo T, Pineda C, Schlenger A, et al. (2012) Cetuximab in combination with carboplatin plus paclitaxel as first-line therapy for advanced nonsmall-cell lung cancer: results of a phase II study. J Clin Oncol 30: 3730–3737.

Ognita S, Tejwani S, Heilbrun L, Fontana J, Heath E, Freeman S, Smith D, Baranowski K, Vaishampayan U (2012) Pilot phase II trial of bevacizumab monotherapy in nonmetastatic castrate-resistant prostate cancer. JCO 30: 2530–2538.

Paz-Ares LG, Gomez-Roca C, Delord JP, Gervantes A, Markman B, Corral J, Stojan J-C, Berge Y, Roda D, Russell-Yarder F, Hollingworth S, Baselga J, Umana P, Manenti L, Tabernero J (2011) Phase I Pharmacokinetic and Pharmacodynamic Dose-Escalation Study of RG7160 (GA201), the first glycoengineered monoclonal antibody against the epidermal growth factor receptor, in patients with advanced solid tumors. J Clin Oncol 29: 3783–3790.

Penson RT, Moore KM, Fleming GF, Braly P, Schimp V, Nguyen H, Matulonis UA, Banerjee S, Haluska F, Gne M, Bodurka DC, Hozak RR, Joshi A, Xu Y, Schwartz JD, McGuire WP (2014) A Phase II study of ramucirumab (IMC-1121B) in the treatment of persistent or recurrent epithelial ovarian, fallopian tube or primary peritoneal carcinoma. Gynecol Oncol 134: 478–485.

Pessino A, Artale S, Sciallero S, Guglielmi A, Forcellini G, Andreotti J, Mammoliti S, Comandini D, Caprioni D, Bennicelli E, Andretta V, Siena S, Sobrero A (2007) First-line single-agent cetuximab in patients with advanced colorectal cancer. Ann Oncol 19: 711–716.

Pley S, Salzberg B, Van Assche G, Regueiro M, Hommes D, Sandborn W, Hanauer S, Targan S, Mayer L, Mahadevan U, Frankel M, Lowder J (2007) A phase I study of visilizumab, a humanized anti-CD3 monoclonal antibody, in severe steroid-refractory ulcerative colitis. Gastroenterology 133: 1414–1422.

Plummer R, Attard G, Pacey S, Li L, Razak A, Perrett R, Barrett M, Judson I, Kaye S, Fox NL, Halpern W, Corey A, Calvert H, de Bono J (2007) Phase 1 and pharmacokinetic study of lexatumumab in patients with advanced solid tumors. J Clin Oncol 35: 1430–1437.

Pallua N, Soncini M, Brighetti A, Bencardino J, Zaninotto G, Tagliafico S, Larizza L, Lamberti B, Aimaretti G, Dejana E (2012) A randomized trial of the anti-angiogenic monoclonal antibody REGN727 in patients with advanced solid tumors. J Clin Oncol 30: 3730–3737.

Pallua N, Soncini M, Brighetti A, Bencardino J, Zaninotto G, Tagliafico S, Larizza L, Lamberti B, Aimaretti G, Dejana E (2012) A randomized trial of the anti-angiogenic monoclonal antibody REGN727 in patients with advanced solid tumors. J Clin Oncol 30: 3730–3737.
Obinutuzumab (GA101) in patients with relapsed/refractory indolent non-Hodgkin lymphoma: results from the phase II GAUGUIN study. J Clin Oncol 31: 2920–2926.

Sandborn WJ, Colombel JF, Franks M, Hommes D, Lowder JN, Mayer L, Plevy S, Stokkers P, Travis S, Van Assche G, Baumgart DC, Targan SR (2010) Anti-CD3 antibody visilizumab is not effective in patients with intravenous corticosteroid-refractory ulcerative colitis. Gut 59: 1485–1492.

Sangro B, Gomez-Martin C, de la Mata M, Inarraírregui M, Garralda E, Barrera P, Riezu-Boj JJ, Larrea E, Alfaro C, Sarobe P, Lasarte JJ, Pérez-Gracia JL, Melero I, Prieto J (2013) A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J Hepatol 59: 81–88.

Schmidt M, Scheulen ME, Dittrich C, Oberst P, Marschner N, Dirix L, Schmidt M, Ruttiger D, Schuler M, Reinhardt C, Awada A (2010) An open-label, randomized phase II study of adecatumab, a fully human anti-EP-CAM antibody, as monotherapy in patients with metastatic breast cancer. Ann Oncol 21: 275–282.

Schuster C, Eikesdal HP, Puntavert H, Geisler J, Geisler S, Heinrich D, Molven A, Lanning PE, Akslen LA, Straume O (2012) Clinical efficacy and safety of bevacizumab monotherapy in patients with metastatic melanoma: predictive importance of induced early hypertension. PLoS One 7: e38364.

Schöffski P, Garcia JA, Stadler WM, MacGregor D, Cher LM, Junghaupt AA, Ritter G, Brechbiel MW, Murphy R, Burgess AW, Hoffman EW, Johns TG, Old LJ (2007) A phase I clinical trial with monoclonal antibody ch806 targeting transitional state and mutational epidermal growth factor receptors. Proc Natl Acad Sci USA 104: 4071–4076.

Scott AM, Lee F-T, Tebbutt N, Herbertson R, Gill SS, Liu Z, Skrinos E, Schoeffski P, Garcia JA, Stadler WM, Gil T, Jonasch E, Tagawa ST, Smitt M, Stevenson JP, Kindler HL, Papasavvas E, Sun J, Jacobs-Small M, Hull J, Seiden MV, Burris HA, Matulonis U, Hall JB, Armstrong DK, Speyer J, Spratlin JL, Cohen RB, Eadens M, Gore L, Camidge DR, Diab S, Leong S, 696 www.bjcancer.com | BRITISH JOURNAL OF CANCER

Yang X, Oliner KS, Anderson A, Zhu M, Kabbinavar F (2011) A phase II and chronic hepatitis C. blockage with tremelimumab in patients with hepatocellular carcinoma. Barrera P, Riezu-Boj JI, Larrea E, Alfaro C, Sarobe P, Lasarte JJ, predictive importance of induced early hypertension. J Clin Oncol 29: 3467–3474.

Schmidt M, Ruttinger D, Schuler M, Reinhardt C, Awada A, a fully human anti-type-1 insulin-like growth factor receptor antibody, in patients with metastatic Ewing family tumors or desmoplastic small round cell tumors. J Clin Oncol 30: 1849–1856.

Taylor PC, Quattrocchi E, Mallett S, Kurrsach R, Petersen J, Chang DJ (2011) Ofatumumab, a fully human anti-CD20 monoclonal antibody, in biological-naive, rheumatoid arthritis patients with an inadequate response to methotrexate: a randomised, double-blind, placebo-controlled clinical trial. Ann Rheum Dis 70: 2119–2125.

Tibbitts J, Canter D, Graff R, Smith K, Athwal K (2016) Key factors influencing ADME properties of therapeutic proteins: A need for ADME characterization in drug discovery and development. mAbs 8: 229–243.

Tolcher AW, Charantopoulos J, Pataiak A, Papadopoulos K, Lin C-C, Bodon J, Murphy B, Roth B, McCaffrey I, Gorski KS, Kaiser B, Zhu M, Deng H, Friberg G, Puzanov I (2009) Phase I dose escalation, pharmacokinetic, and pharmacodynamic study of AMG 479, a fully human monoclonal antibody to insulin-like growth factor receptor 1. J Clin Oncol 27: 5800–5807.

Tosi D, Laghzali Y, Vinches M, Alexandre M, Homicckos K, Fritsch E, Del Conte G, Durigova N, Hugouvieux C, Gremellini M (2009) Clinical development strategies and outcomes in first-in-human trials of monoclonal antibodies. J Clin Oncol Off J Am Soc Clin Oncol 27: 2119–2125.

Trachtman H, Fervenza FC, Gipson DS, Heering P, Jayne DRW, Peters H, Rota S, Remuzzi G, Rump LC, Sellin LK, Heaton JPW, Streisand JB, Hard ML, Ledbetter SR, Vincenti F (2011) A phase I, single-dose study of frolisolomab, an anti-TGF-β antibody, in treatment-resistant primary focal segmental glomerulosclerosis. Kidney Int 79: 1236–1243.

Trarbach T, Moehler M, Heinemann M, Kuhne C-H, Przyborek M, Schulz C, Swetschkin V, Gallant G, Kanzler S (2010) Phase II trial of matuzumab, a fully human agonistic monoclonal antibody that targets and activates the tumour necrosis factor apoptosis-inducing receptor-1 (TRAIL-R1), in patients with refractory colorectal cancer. Br J Cancer 102: 506–512.

Van Oers MH, Kulikoczkowski K, Smolj M, Pernetti M, Groisicki S, Levin M-D, Gupta I, Phillips J, Williams V, Midey S, Leish S, Geisler C (2009) Phase II study of the humabized antipdendrimer antibodies. J Clin Oncol Off J Am Soc Clin Oncol 23: 3467–3474.

Seiden MV, Berris HA, Matulonis U, Hall JB, Armstrong DK, Speyer J, Weiner J, Huggins F (2007) A phase II trial of EMD72000 (matuzumab), an anti-CD3 antibody to insulin-like growth factor receptor 1. J Clin Oncol Off J Am Soc Clin Oncol 25: 1537–1545.

Taberner J, Ciardiello F, Rivera F, Rodriguez-Braun E, Ramos FJ, Martinelli E, Vega-Villegas ME, Rosello S, Liebscher S, Kisker O, Macarulla T, Baselga J, Cervantes A (2010) Cetuximab administered once every second week to patients with metastatic colorectal cancer: a two-part pharmacokinetic/pharmacodynamic phase I dose-escalation study. Ann Oncol 21: 1236–1243.

Tibbitts J, Canter D, Graff R, Smith K, Athwal K (2016) Key factors influencing ADME properties of therapeutic proteins: A need for ADME characterization in drug discovery and development. mAbs 8: 229–243.

Tolcher AW, Charantopoulos J, Pataiak A, Papadopoulos K, Lin C-C, Bodon J, Murphy B, Roth B, McCaffrey I, Gorski KS, Kaiser B, Zhu M, Deng H, Friberg G, Puzanov I (2009) Phase I dose escalation, pharmacokinetic, and pharmacodynamic study of AMG 479, a fully human monoclonal antibody to insulin-like growth factor receptor 1. J Clin Oncol 27: 5800–5807.

Tosi D, Laghzali Y, Vinches M, Alexandre M, Homicckos K, Fritsch E, Del Conte G, Durigova N, Hugouvieux C, Gremellini M (2009) Clinical development strategies and outcomes in first-in-human trials of monoclonal antibodies. J Clin Oncol Off J Am Soc Clin Oncol 27: 2119–2125.

Trachtman H, Fervenza FC, Gipson DS, Heering P, Jayne DRW, Peters H, Rota S, Remuzzi G, Rump LC, Sellin LK, Heaton JPW, Streisand JB, Hard ML, Ledbetter SR, Vincenti F (2011) A phase I, single-dose study of frolisolomab, an anti-TGF-β antibody, in treatment-resistant primary focal segmental glomerulosclerosis. Kidney Int 79: 1236–1243.

Trarbach T, Moehler M, Heinemann M, Kuhne C-H, Przyborek M, Schulz C, Swetschkin V, Gallant G, Kanzler S (2010) Phase II trial of matuzumab, a fully human agonistic monoclonal antibody that targets and activates the tumour necrosis factor apoptosis-inducing receptor-1 (TRAIL-R1), in patients with refractory colorectal cancer. Br J Cancer 102: 506–512.

Van Oers MH, Kulikoczkowski K, Smolj M, Pernetti M, Groisicki S, Levin M-D, Gupta I, Phillips J, Williams V, Midey S, Leish S, Geisler C (2009) Phase II study of the humabized antipdendrimer antibodies. J Clin Oncol Off J Am Soc Clin Oncol 23: 3467–3474.
Grossmann KF, Hassel JC, Maio M, Szol M, Ascierto PA, Mohr P, Chmielowski B, Bryce A, Svane IM, Grob JJ, Krackhardt AM, Horak C, Lambert A, Yang AS, Larkin J (2015) Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol 16: 375–384.

Wen PY, Schiff D, Cloughesy TF, Raizer JJ, Laterra J, Smitt M, Wolf M, Oliner KS, Anderson A, Zhu M, Loh E, Reardon DA (2011) A phase II study evaluating the efficacy and safety of AMG 102 (rilotumumab) in patients with recurrent glioblastoma. Neuro-Oncol 13: 437–446.

Wierda WG, Kipps TJ, Mayer J, Stilgenbauer S, Williams CD, Hellmann A, Robak T, Furman RR, Hillmen P, Trneny M, Dyer MJS, Padmanabhan S, Piotrowska M, Kozak T, Chan G, Davis R, Losic N, Wilms J, Russell CA, Osterborg A (2010) Ofatumumab as single-agent CD20 immunotherapy in fludarabine-refractory chronic lymphocytic leukemia. J Clin Oncol 28: 1749–1755.

Wierzbicki R, Jonker DJ, Moore MJ, Berry SR, Loehrer PJ, Youssoufian H, Rowinsky EK (2011) A phase II, multicenter study of cetuximab monotherapy in patients with refractory, metastatic colorectal carcinoma with absent epidermal growth factor receptor immunostaining. Invest New Drugs 29: 167–174.

Yamamoto K, Utsunomiya A, Tobinai K, Tsukasaki K, Uike N, Uozumi K, Yamaguchi K, Yamada Y, Hanada S, Tamura K, Nakamura S, Inagaki H, Ohshima K, Kiyoi H, Ishida T, Matsushima K, Akinaga S, Ogura M, Tomonaga M, Ueda R (2010) Phase I study of KW-0761, a defucosylated humanized anti-CCR4 antibody, in relapsed patients with adult T-cell leukemia-lymphoma and peripheral T-cell lymphoma. J Clin Oncol 28: 1591–1598.

Zhu AX, Finn RS, Mulcahy M, Gurtler J, Sun W, Schwartz JD, Dalal RP, Joshi A, Hozak RR, Xu Y, Ancukiewicz M, Jain RK, Nugent FW, Duda DG, Stuart K (2013) A phase II and biomarker study of ramucirumab, a human monoclonal antibody targeting the VEGF receptor-2, as first-line monotherapy in patients with advanced hepatocellular cancer. Clin Cancer Res 19: 6614–6623.

This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution-NonCommercial-Share Alike 4.0 Unported License.

Supplementary Information accompanies this paper on British Journal of Cancer website (http://www.nature.com/bjc)