Diquark Representations for Singly Heavy Baryons with Light Staggered Quarks

Steven Gottlieb, Heechang Na, and Kazuhiro Nagata

Department of Physics, Indiana University
Bloomington IN 47405 USA

(Dated: February 1, 2008)

In the staggered fermion formulation of lattice QCD, we construct and classify the diquark operators to be embedded in the singly heavy baryons, qqQ. Along the same manner as in the staggered meson classifications given in [10], we establish the group theoretical connections between continuum and lattice staggered diquark representations.

PACS numbers: 11.15.Ha

I. INTRODUCTION

There have been a number of works addressing the heavy baryons from the experimental as well as the theoretical point of view. In lattice QCD, several calculations have been performed in the quenched regime [1, 2, 3, 4, 5, 6, 7, 8]. As for the inclusion of dynamical quarks, two of the authors have been studying the charmed and bottomed baryon mass spectrum using the data of $2+1$ flavors dynamical improved staggered quarks [8]. Since the staggered fermion provides very fast simulations and much less statistical errors compared to the other available frameworks, (see, for example, Ref [9]), these studies should more extensively be performed in terms of finer lattices. Accordingly, from the theoretical point of view, it is desired to establish the group theoretical classification of pairs of light staggered quarks (staggered diquarks) in order to extract the desired spin and parity state in the singly heavy baryon analyses. In this short report we construct all the possible time-local staggered diquarks embedded in singly heavy baryons. Along the similar manner as in the meson classification [10], we establish the group theoretical connection between lattice and continuum representations w.r.t. spin, taste and $2+1$ flavor symmetries.

II. STAGGERED DIQUARK REPRESENTATIONS IN THE CONTINUUM

A singly heavy baryon consists of two light quarks (up, down or strange) and one heavy quark (charm or bottom (or top)). The quantum numbers of singly heavy baryons are listed in Table I. In this section, we classify the irreps of the staggered diquarks w.r.t. spin, flavor and taste symmetry group in the continuum spacetime. We especially take $2+1$ as the flavor symmetry group under which the recent dynamical simulations of staggered lattice QCD are performed.

Let us begin with reviewing the diquark irreps for mass degenerate light quarks of single taste, namely physical valence quarks. According to the non-relativistic SU(6) quark model, the diquarks should belong to the irreps 21Λ, the symmetric part of $6 \otimes 6$. It has the following decomposition into $SU(2)_S \times SU(3)_F$, the direct product of the spin and flavor,

$$SU(6) \supset SU(2)_S \times SU(3)_F$$

$$21\Lambda \rightarrow (3s, 6s) \oplus (1\Lambda, 3\Lambda).$$

(1)

The labeling indicates the dimension of each irrep while the subscripts s and Λ indicate the symmetric and antisymmetric part, respectively. In the case of $2+1$ flavors, $SU(3)_F$ is decomposed into $SU(2)_I$ isospin group. We then have

$$SU(2)_S \times SU(3)_F \supset SU(2)_S \times SU(2)_I$$

$$(3s, 6s) \rightarrow (3s, 3s)_0 \oplus (3s, 2)_{-1} \oplus (3s, 1)_{-2},$$

(2)

$$(1\Lambda, 3\Lambda) \rightarrow (1\Lambda, 1\Lambda)_0 \oplus (1\Lambda, 2)_{-1},$$

(3)

where subscripts $0, -1, -2$ denote the strangeness associated with each irrep. Each of these irreps has one-to-one correspondence to the physical diquark state in singly heavy baryons, as listed in the fourth column of Table I.

As for the light staggered quarks having four tastes with degenerate mass, the above $SU(3)_F$ flavor symmetry is extended to $SU(12)_f$ flavor-taste symmetry [11]. Correspondingly, the staggered diquarks belong to the

Baryon P'	Cont. $(SU(2)_S \times SU(2)_I)_Z$	$(SU(2)_S \times SU(3)_F)_Z$	
Λ_Q	$\frac{1}{2}^+$ $(0)Q$	$(1\Lambda, 1\Lambda)_0$	$(1\Lambda, 28\Lambda, 1)_0$
Σ_Q^+	$\frac{1}{2}^+$ $(\frac{3}{2})^+ Q$	$(1\Lambda, 2)$	$(1\Lambda, 8, 4)_{-1}$
Ξ_Q^0	$\frac{1}{2}^+$ $(\frac{3}{2})^0 Q$	$(3s, 3s)_0$	$(3s, 36s, 1)_0$
Ξ_Q^-	$\frac{1}{2}^-$ $(\frac{3}{2})^- Q$	$(3s, 2)_{-1}$	$(3s, 8, 4)_{-1}$
Ω_Q^+	$\frac{1}{2}^+$ $(\frac{3}{2})^+ (s)Q$	$(3s, 1)_{-2}$	$(3s, 1, 10s)_{-2}$

TABLE I: Quantum numbers for singly heavy baryons for $2+1$ flavor symmetry: Z denotes strangeness. The states with asterisks represent the spin $\frac{3}{2}$ states. The fourth and fifth column represent the light diquark irreps for single taste and four tastes, respectively.

[1] Electronic address: sg@denali.physics.indiana.edu
[2] Electronic address: heena@indiana.edu
[3] Electronic address: knagata@indiana.edu
For $2 + 1$ flavor staggered quarks, the $SU(24)$ which has the following decomposition,

$$SU(24) \supset SU(2)_S \times SU(12)_T$$

$$300_S \rightarrow (3s, 78_S) \oplus (1A, 66_A).$$ (4)

For $2 + 1$ flavor staggered quarks, the $SU(12)_f$ flavor-taste symmetry group is broken to $SU(8)_{xy} \times SU(4)_z$, where we follow the notation given in (11). The $SU(8)_{xy}$ denotes the symmetry group for two light valence quarks while $SU(4)_z$ the one for a strange valence quark. The decomposition of $SU(12)_f$ into $SU(8)_{xy} \times SU(4)_z$ gives,

$$SU(2)_S \times SU(12)_f \supset SU(2)_S \times SU(8)_{xy} \times SU(4)_z$$

$$(3s, 78_S) \rightarrow (3s, 36S, 1)_0 \oplus (3s, 8.4)_1 \oplus (3s, 1.10S)_{-2},$$ (5)

$$(1A, 66_A) \rightarrow (1A, 28A, 1)_0 \oplus (1A, 8.4)_{-1} \oplus (1A, 1.6A)_{-2}.$$ (6)

We assume the taste symmetry restores in the continuum limit and all the four tastes become equivalent. We then see that all the irreps except $(1A, 1, 6A)_{-2}$ are to be degenerate with physical diquarks under this assumption. We list the staggered irreps for the physical diquarks in the last column of Table II. The strangeness -2 spin singlet diquark state $(1A, 1, 6A)_{-2}$ in (6) is obviously peculiar to the staggered representation and it does not correspond to any physical state in the continuum limit.

In order to make contact with the lattice symmetry group, we further need to categorize the physical states w.r.t. $SU(2)_S \times SU(4)_T$, the spin and taste symmetries, since the lattice rotation group for the staggered fermion is embedded in the diagonal subgroup of spacetime and taste rotation (12, 13). We first decompose the entire flavor-taste symmetry group $SU(12)_f$ into the direct product of $SU(3)_F$ and $SU(4)_T$,

$$SU(12)_f \supset SU(3)_F \times SU(4)_T$$

$$78_S \rightarrow (6S, 10S) \oplus (3A, 6A),$$ (7)

$$66_A \rightarrow (6S, 6A) \oplus (3A, 10S).$$ (8)

and successively into the $2 + 1$ flavors. We then have

$$SU(2)_S \times SU(8)_{xy} \times SU(4)_z \supset SU(2)_S \times SU(8)_{xy} \times SU(4)_z$$

$$\Sigma_{\sigma}^+(\sigma): (3S, 36S, 1)_0 \rightarrow (3S, 3S, 10S)_0 \oplus (3S, 1A, 6A)_0,$$ (9)

$$\Xi^\sigma_1 (\sigma): (3S, 8.4)_{-1} \rightarrow (3S, 2.10S)_{-1} \oplus (3S, 2.6A)_{-1},$$ (10)

$$\Omega^\sigma_1 (\sigma): (3S, 1.10S)_{-2} \rightarrow (3S, 2.10S)_{-2},$$ (11)

$$\Delta_{\sigma} (\sigma): (1A, 28A, 1)_{0} \rightarrow (1A, 1A, 10S)_0 \oplus (1A, 3S, 6A)_0,$$ (12)

$$\Xi_{\sigma}^1 (\sigma): (1A, 8.4)_{-1} \rightarrow (1A, 2.10S)_{-1} \oplus (1A, 2.6A)_{-1}.$$ (13)

The main goal of this report is to construct the lattice staggered diquark operators categorized into the physical irreps given in the right hand sides of (9)-(13).

III. STAGGERED DIQUARK REPRESENTATIONS ON THE LATTICE

The symmetry group of staggered fermion action on the Euclidean lattice was first elaborated in (12, 13, 14) and successively applied to classifying staggered baryons as well as mesons (10, 14, 15). The important symmetries of staggered fermions we need to look at in our study are the 90° rotations $R^{(\rho)}$, the shift transformations S_{ρ}, and the space inversion I_s. Since the shift operations S_{ρ} contain taste matrices, pure translations T_{μ} may be represented by the square of S_{μ}, $T_{\mu} = S_{\mu}^2$. Discrete taste transformations in Hilbert space are readily defined by $\Xi_{\mu} \equiv S_{\mu} T_{\mu}^T$. The Ξ_{μ} generate 32 element Clifford group which is isomorphic to the discrete subgroup of $SU(4)_T$ in the continuum spacetime. The representations of Ξ_{μ}, $D_{\mu}(\Xi_{\mu})$, for a given quark number q, obey

$$D_{\mu}(\Xi_{\mu})D_{\mu}(\Xi_{\nu}) = e^{i\sigma q}D_{\mu}(\Xi_{\nu})D_{\mu}(\Xi_{\mu}).$$ (14)

Since the space inversion contains a taste transformation Ξ_3, the parity should be defined by

$$P = \Xi_3 I_s.$$ (15)

Note that the parity is non-locally defined in time direction since Ξ_3 is non-local in time. For the purpose of spectroscopy, we are particularly interested in a symmetry group generated by the transformations which are local in time and commuting with T_4. Such a group is called geometrical time slice group (GTS) which is given by

$$GTS = G(R^{(kl)}; \Xi_3, I_s)$$ (16)

where $k, l, m = 1 \sim 3$ (10, 14, 15). The defining representation of GTS is given by the staggered quark fields projected on zero spatial momentum. It is an eight dimensional representation denoted as 8. The anti-staggered quark fields also belong to the representation 8. The GTS representation of staggered diquark is accordingly expressed by 8×8. The decomposition of 8×8 into the bosonic irreps is given in (10),

$$8 \times 8 = \sum_{\sigma, \sigma'} \{ 1^{\sigma, \sigma} + 3^{\sigma, \sigma} + 3^{\sigma', \sigma} + 3^{\sigma', \sigma'} + 6^{\sigma, \sigma} \}$$ (17)

where 1, 3, 3′, 3″ and 6 are representing the bosonic representations of GTS. The σ_s and σ are denoting the eigenvalue of I_s and $D(\Xi_3 \Xi_2 \Xi_1)$, respectively. In Eq. (17), the σ_s and σ are summed over $\sigma_s = \pm 1$ and $\sigma = \pm 1$ respectively.

The irreducibly transforming diquark operators are listed in Table II and III. As in the meson case, all the irreps are categorized into four classes from 0 to 3, depending on how far the two staggered quarks are displaced each other. The third column of the tables gives the operator form of the diquarks. The fourth column gives the corresponding GTS irreps. The η_{μ} and ζ_{μ} denote the sign factors defined by $\eta_{\mu}(x) = (-1)^{q_x + \cdot + q_{x_{\mu}-1}}$ and $\zeta_{\mu}(x) = (-1)^{q_x + \cdot + q_{x_{\mu}-1}}$, respectively, while ϵ is defined as $\epsilon(x) = (-1)^{q_x + q_{x_{\mu}} + q_{x_{\mu}} + q_{x_{\mu}+1}}$. The D_k represents the symmetric shift operators defined by $D_k \phi(x) = \frac{1}{2} [\phi(x + a_k) + \phi(x - a_k)]$. For notational simplicity, the sum over $x,$
the color and flavor indices are suppressed. For example, \(\chi \eta \eta D_k \chi \) stands for \(\sum_x \chi^T_i(x,t) \eta \eta_k(x) D_k \chi^b_i(x,t) \). As far as the lattice symmetry group GTS is concerned, each diquark operator is formally corresponding to the meson operator given in (10) through replacing the leftmost \(\chi \) by \(\chi \). This is because the staggered quark and antiquark belong to the same GTS irrep for each color and flavor. The \(\sigma_4 \) in the fifth column denotes the eigenvalue of \(X_4 \) with which the parity is given by \(P = \sigma_4 \sigma_4 \). The sixth column gives the spin and taste matrices \(\Gamma_S \otimes \Gamma_T \) which come into the diquark operators in the spin-taste basis, \(\psi^T (\Gamma_S \otimes (\Gamma_T C^{-1})^T) \psi \), where the superscript \(T \) denotes transpose and \(C \) denotes the charge conjugation matrix. The presence of \(C \) and \(C^{-1} \) ensures the covariant properties under the spin and taste rotations in the continuum limit. Notice that the assignment of \(\Gamma_S \otimes \Gamma_T \) for each GTS irrep is systematically different from the meson case, where the operators are given by \(\bar{\psi} (\Gamma_S \otimes (\Gamma_T)^T) \psi \) in the spin-taste basis.

IV. CONNECTION BETWEEN LATTICE AND CONTINUUM IRREPS

Consulting the relations between lattice RF irreps and continuum spin irreps given in (10) and assuming that the ground states of lattice irreps correspond to the lowest possible spin in the continuum limit, one could make an assignment of spin and parity \(J^P \) for each GTS irrep. See the seventh column of Tables II and III. One also see that the combinations, \(\Gamma_S' = C \gamma_8, C \gamma_8 \gamma_4, C \gamma_4 \gamma_5, C \gamma_5 \), generate upper \(\times \) upper products of the Dirac spinors in Dirac representation for each taste and then give rise to \(O(1) \) contributions, while the combinations, \(\Gamma_S = \)

class	No.	operator	\(\text{GTS} (\mathcal{F}^{(c)} \otimes \mathcal{R}^{(f)}) \)	\(\sigma_4 \)	\(\Gamma_S \otimes \Gamma_T \)	\(J^P \)	order	\((SU(2)_S, SU(4)_T) \)
0	1	\(\chi \chi \)	\(1^{++} \)	+	\(\gamma_6 \otimes \gamma_5 \)	0	1	\((1_A, 6_A) \)
1	5	\(\chi \eta \eta \)	\(3^{++} \)	+	\(\gamma_6 \otimes \gamma_5 \)	1	p/E	\((3_{S}, 10_{S}) \)
2	11	\(\chi \eta \eta D_k \chi \)	\(3^{++} \)	+	\(\gamma_6 \otimes \gamma_5 \)	1	p/E	\((3_{S}, 10_{S}) \)
12	\(\chi \eta \eta \)	\(\chi \eta \eta D_k \chi \)	\(3^{++} \)	+	\(\gamma_6 \otimes \gamma_5 \)	1	p/E	\((3_{S}, 10_{S}) \)
13	\(\chi \eta \eta \)	\(\chi \eta \eta D_k \chi \)	\(3^{++} \)	+	\(\gamma_6 \otimes \gamma_5 \)	1	p/E	\((3_{S}, 10_{S}) \)
14	\(\chi \eta \eta \)	\(\chi \eta \eta D_k \chi \)	\(3^{++} \)	+	\(\gamma_6 \otimes \gamma_5 \)	1	p/E	\((3_{S}, 10_{S}) \)
15	\(\chi \eta \eta \)	\(\chi \eta \eta D_k \chi \)	\(3^{++} \)	+	\(\gamma_6 \otimes \gamma_5 \)	1	p/E	\((3_{S}, 10_{S}) \)
16	\(\chi \eta \eta \)	\(\chi \eta \eta D_k \chi \)	\(3^{++} \)	+	\(\gamma_6 \otimes \gamma_5 \)	1	p/E	\((3_{S}, 10_{S}) \)
17	\(\chi \eta \eta \)	\(\chi \eta \eta D_k \chi \)	\(3^{++} \)	+	\(\gamma_6 \otimes \gamma_5 \)	1	p/E	\((3_{S}, 10_{S}) \)
18	\(\chi \eta \eta \)	\(\chi \eta \eta D_k \chi \)	\(3^{++} \)	+	\(\gamma_6 \otimes \gamma_5 \)	1	p/E	\((3_{S}, 10_{S}) \)
19	\(\chi \eta \eta \)	\(\chi \eta \eta D_k \chi \)	\(3^{++} \)	+	\(\gamma_6 \otimes \gamma_5 \)	1	p/E	\((3_{S}, 10_{S}) \)
20	\(\chi \eta \eta \)	\(\chi \eta \eta D_k \chi \)	\(3^{++} \)	+	\(\gamma_6 \otimes \gamma_5 \)	1	p/E	\((3_{S}, 10_{S}) \)

TABLE II: GTS irreps, \(\sigma_4 \), \(\Gamma_S \otimes \Gamma_T \) and continuum states for staggered diquark operators up to class 1. (\(k, l, m = 1 \sim 3 \), \(k \neq l \neq m \neq k \)). The summation over \(x \), flavor and color indices are omitted.

TABLE III: GTS irreps, \(\sigma_4 \), \(\Gamma_S \otimes \Gamma_T \) and continuum states for staggered diquark operators class 2 and 3. (\(k, l, m = 1 \sim 3 \), \(k \neq l \neq m \neq k \)). The summation over \(x \), flavor and color indices are omitted.
C, C'γ4, C'γ5, induce upper × lower products, so that they are suppressed by O(p/E) in the non-relativistic limit. See the second last column of Table II and III. It is important to notice that only the positive parity states survive in the non-relativistic limit, although every GTS irrep contains both parities. This is in accordance with the nature of physical diquarks. As for the SU(4)_T irreps, one sees that the combinations, \(\Gamma_T^{-1} = \gamma_k C^{-1}, \gamma_4 C^{-1}, \gamma_5 C^{-1}, \gamma_k' \gamma_5 C^{-1} \), are symmetric so that they altogether correspond to 10s of SU(4)_T, while the anti-symmetric six combinations \(\Gamma_T C^{-1} = C^{-1}, \gamma_k' \gamma_5 C^{-1}, \gamma_4 \gamma_5 C^{-1}, \gamma_4 C^{-1}, \gamma_k' \gamma_5 C^{-1} \), belong to 6A of SU(4)_T. The assignments of non-relativistic SU(2)_S × SU(4)_T for the lattice irreps are readily given for the O(1) operators. They are listed in the last column of Table II and III. The final step is to take into account the 2 + 1 flavor symmetry, which could be done in a straightforward manner. The decomposition of continuum spin, 2 + 1 flavor and taste symmetry group into the lattice symmetry group is given by:

\[
SU(2)_S \times SU(2)_I \times SU(4)_T \supset SU(2)_I \times GTS.
\]

Table IV summarizes all the local-time lattice diquark operators categorized into each continuum irrep \((SU(2)_S, SU(2)_I, SU(4)_T)_Z\) given in [9]-[13].

Acknowledgments

We would like to thank S. Basak, C. Bernard and C. DeTar for useful discussions and comments. We thank J. Bailey for important comments on the physical states. This work has been supported by U.S. Department of Energy, Grant No. FG02-91ER40661.

[1] K.C. Bowler et al. (UKQCD Collaboration), Phys. Rev. D54 (1996) 3619.
[2] J. M. Flynn, F. Mescia and A. S. B. Tariq (UKQCD Collaboration), JHEP 0307, 066 (2003)
[3] N. Mathur, R. Lewis and R. M. Woloshyn, Phys. Rev. D66 (2002) 014502.
[4] R.M. Woloshyn, Phys. Lett. B476 (2000) 309.
[5] S. Gottlieb and S. Taminhakar, Nucl. Phys. Proc. Suppl. 119 (2003) 644.
[6] A. Ali Khan et al., Phys. Rev. D62 (2000) 054505.
[7] T.W. Chiu and T.H. Hsieh, Nucl. Phys. A755 (2005) 471c.
[8] S. Gottlieb and H. Na, PoS LAT2006 191 (2006), PoS(LATTICE 2007)124.
[9] C. Aubin et al.(MILC Collaboration), Phys. Rev. D70 (2004) 114501.
[10] M.F.L. Golterman, Nucl. Phys. B273 (1986) 663.
[11] J. A. Bailey, Phys. Rev. D75, 114505 (2007).
[12] C.P. van den Doel and J. Smit, Nucl. Phys. B228 (1983) 122.
[13] M.F.L. Golterman and J. Smit, Nucl. Phys. B245 (1984) 61.
[14] M.F.L. Golterman and J. Smit, Nucl. Phys. B255 (1985) 328.
[15] J. Smit, “Hadron Operators for Staggered Fermions”, at Conf. Advances in Lattice Gauge Theory, Tallahassee, Fla., Apr 10-13, 1985.
[16] S. Gupta, Phys. Rev. D60 (1999) 094505.