What to Hide from Your Students: Attention-Guided Masked Image Modeling
Representation Learning

Input Image → Encoder → Features
Representation Learning

Input Image → Encoder → Features → Global Representation
Representation Learning

Input Image

Encoder

Features

Global Representation

“fish”

Image Classification

Image Retrieval
Representation Learning

Input Image → Encoder → Features → Local Representations
Representation Learning

Input Image

Encoder

Features

Local Representations

Object Detection

Semantic Segmentation
How to learn the Encoder?

Input Image

Encoder

Features

Global Representation

Local Representations

“fish”
- Image Classification
- Image Retrieval
- Object Detection
- Semantic Segmentation
How to learn the Encoder: from scratch

Input Image

• Supervised, from scratch, for each task separately

Encoder

Global Representation

"fish"
Image Classification

Image Retrieval

Object Detection

Semantic Segmentation

Local Representations
How to learn the Encoder: from scratch

- **Supervised, from scratch, for each task separately**
 - Labor-intensive...

- “fish”
 - Image Classification
 - Image Retrieval
 - Object Detection
 - Semantic Segmentation
How to learn the Encoder: Transfer Learning

- Supervised, two stage: firstly learn on classification (cheap)
How to learn the Encoder: Transfer Learning

- Supervised, two stage: firstly learn on classification (cheap) and then downstream to other tasks
 ✗ Better, but still labor-intensive...

Local Representations

Global Representation

“holoacanthus” Image Classification
Image Retrieval
Object Detection
Semantic Segmentation
How to learn the Encoder: Self-supervised Learning

- Self-supervised, two stage: firstly, learn on a pretext task (free)

Input Image → Encoder → Features → Global Representation → “90°”

Pretext Task: Image Rotation
How to learn the Encoder: Self-supervised Learning

- Self-supervised, two stage: firstly, learn on a pretext task (free) and then downstream to other tasks

✓ Best, pre-training labels are automatically generated!
Self-supervised pretext tasks

1. Solving the pretext tasks allow the model to learn **good features**
2. We can **automatically** generate **labels** for the pretext tasks
Self-supervised pretext tasks

rotation prediction “jigsaw puzzle” colorization

✗ Learned representations may be tied to a specific pretext task!

Can we come up with a more general pretext task?
A more general pretext task?

same subject
A more general pretext task?

same subject

different subject

Stanford University CS231n: Deep Learning for Computer Vision
Self-supervised Contrastive Learning

attract

repel
Leveraging Attention in Masked Image Modeling
Masked Image Modeling (MIM)

- Divide an input image into patch tokens
Masked Image Modeling (MIM)

- Divide an input image into patch tokens
- Mask a portion of the input patch tokens
Masked Image Modeling (MIM)

- Divide an input image into patch tokens
- Mask a portion of the input patch tokens
- Train a Vision Transformer to reconstruct them
Focus: Which patch tokens to mask?

- Not well explored; prior works use *(block-wise)* random token masking
Focus: Which patch tokens to mask?

- Not well explored; prior works use (block-wise) random token masking
 - Less likely to hide “interesting” parts → easy reconstruction

Zhou et al., iBOT: Image BERT Pre-training with Online Tokenizer ICLR, 2022
Bao et al., BEiT: BERT Pre-Training of Image Transformers ICLR, 2022
Focus: Which patch tokens to mask?

- Not well explored; prior works use (block-wise) random token masking
 - Less likely to hide “interesting” parts → easy reconstruction
 - Compensating with extreme masking (e.g. 75% of tokens) → overly aggressive
Approach: Attention-guided token masking (AttMask)

- Leverage ViT’s self-attention to mask tokens
Approach: Attention-guided token masking (AttMask)

- Leverage ViT’s self-attention to mask tokens
 - **AttMask-Low**: masks low-attended tokens (essentially background)
 → very easy reconstruction task → degrades performance
Leverage ViT’s self-attention to mask tokens

✓ **AttMask-High**: masks highly-attended tokens (essentially foreground)

→ very challenging reconstruction task → boosts performance
Approach: Attention-guided token masking (AttMask)

- Leverage ViT’s self-attention to mask tokens
 ✓ **AttMask-High**: masks highly-attended tokens (essentially foreground)
 \(\rightarrow\) very challenging reconstruction task \(\rightarrow\) boosts performance

Perhaps overly aggressive for high mask ratios!
Approach: Attention-guided token masking (AttMask)

- Leverage ViT’s self-attention to mask tokens
 ✓ **AttMask-High**: masks highly-attended tokens (essentially foreground)
 \[\rightarrow\text{very challenging reconstruction task} \rightarrow \text{boosts performance}\]
 ✓ **AttMask-Hint**: masks highly-attended tokens, but leaves some hints
 \[\rightarrow\text{provides hints for the identity of the masked object} \rightarrow \text{boosts performance}\]

Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022
Incorporating AttMask into distillation-based methods

We exhibit AttMask in the context of distillation-based MIM, such as iBOT.
Incorporating AttMask into distillation-based methods

- We exhibit AttMask in the context of distillation-based MIM, such as iBOT
- The teacher transformer encoder sees the entire image and generates the attention map

Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022
Incorporating AttMask into distillation-based methods

- We exhibit AttMask in the context of distillation-based MIM, such as iBOT
- The teacher transformer encoder sees the entire image and generates the attention map

Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022
Incorporating AttMask into distillation-based methods

- We exhibit AttMask in the context of distillation-based MIM, such as iBOT
- The teacher transformer encoder sees the entire image and generates the attention map

Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022
Incorporating AttMask into distillation-based methods

- We exhibit AttMask in the context of distillation-based MIM, such as iBOT
- The teacher transformer encoder sees the entire image and generates the attention map
- The student sees only the masked image and solves the reconstruction task

Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022
Incorporating AttMask into distillation-based methods

- We exhibit AttMask in the context of **distillation-based MIM**, such as iBOT
- The **teacher** transformer encoder sees the entire image and generates the attention map
- The **student** sees only the masked image and solves the reconstruction task

Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022
Incorporating AttMask into distillation-based methods

- We exhibit AttMask in the context of distillation-based MIM, such as iBOT
- The teacher transformer encoder sees the entire image and generates the attention map
- The student sees only the masked image and solves the reconstruction task
- AttMask thus incurs zero additional cost

Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022
Qualitative examination of masking strategies

- Input image
- Attention map

block-wise
- Random
- AttMask High
- AttMask Hint

10% 30% 50%

Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022
Evaluating token masking strategies (20% of ImageNet-1k)

iBOT MASKING	RATIO (%)	IMAGE NET-1K	CIFAR10	CIFAR100	
		k-NN	LINEAR	FINE-TUNING	
Random Block-Wise†	10-50	46.7	56.4	98.0	86.0
Random†	75	47.3	55.5	97.7	85.5
Random	10-50	47.8	56.7	98.0	86.1
AttMask-Low (ours)	10-50	44.0	53.4	97.6	84.6
AttMask-Hint (ours)	10-50	49.5	57.5	98.1	86.6
AttMask-High (ours)	10-50	49.7	57.9	98.2	86.6

Top-1 accuracy for k-NN and linear probing

- AttMask-High improves iBOT by +3% on k-NN and +1.5% on linear probing

Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022
Evaluating token masking strategies (20% of ImageNet-1k)

iBOT MASKING	RATIO (%)	IMAGENET-1K	CIFAR10	CIFAR100	
		k-NN	LINEAR	FINE-TUNING	
Random Block-Wise†	10-50	46.7	56.4	98.0	86.0
Random‡	75	47.3	55.5	97.7	85.5
Random	10-50	47.8	56.7	98.0	86.1
AttMask-Low (ours)	10-50	44.0	53.4	97.6	84.6
AttMask-Hint (ours)	10-50	49.5	57.5	98.1	86.6
AttMask-High (ours)	10-50	**49.7**	**57.9**	**98.2**	**86.6**

Top-1 accuracy for k-NN and linear probing

✓ **AttMask-High improves iBOT** by +3% on k-NN and +1.5% on linear probing

Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022
Evaluating token masking strategies (20% of ImageNet-1k)

iBOT MASKING	RATIO (%)	IMAGENET-1K	CIFAR10	CIFAR100	
		k-NN	LINEAR	FINE-TUNING	
Random Block-Wise†	10-50	46.7	56.4	98.0	86.0
Random‡	75	47.3	55.5	97.7	85.5
Random	10-50	47.8	56.7	98.0	86.1
AttMask-Low (ours)	10-50	44.0	53.4	97.6	84.6
AttMask-Hint (ours)	10-50	49.5	57.5	98.1	**86.6**
AttMask-High (ours)	10-50	**49.7**	**57.9**	**98.2**	**86.6**

Top-1 accuracy for k-NN and linear probing

- AttMask-High **improves iBOT** by +3% on k-NN and +1.5% on linear probing
Evaluating token masking strategies (20% of ImageNet-1k)

IBOT MASKING	RATIO (%)	IMAGE NET-1K	CIFAR10	CIFAR100	
		k-NN	LINEAR	FINE-TUNING	
Random Block-Wise†	10-50	46.7	56.4	98.0	86.0
Random ‡	75	47.3	55.5	97.7	85.5
Random	10-50	47.8	56.7	98.0	86.1
AttMask-Low (ours)	10-50	44.0	53.4	97.6	84.6
AttMask-Hint (ours)	10-50	49.5	57.5	98.1	86.6
AttMask-High (ours)	10-50	49.7	57.9	98.2	86.6

Top-1 accuracy for k-NN and linear probing

- **AttMask-High** improves IBOT by +3% on k-NN and +1.5% on linear probing
- **AttMask-High** accelerates the learning process

Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022
Evaluating token masking strategies (different % of ImageNet-1k)

% ImageNet-1K	5	10	20	100
Random Block-Wise†	15.7	31.9	46.7	71.5
AttMask-High (ours)	**17.5**	**33.8**	**49.7**	**72.5**

†: default iBOT masking strategy from BEiT

Top-1 k-NN accuracy for pre-training on different percentages of ImageNet-1k

Improved performance when:
- Pre-training with fewer data

Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022
Evaluating token masking strategies (different % of ImageNet-1k)

†: default iBOT masking strategy from BEiT

% IMAGENET-1K	5	10	20	100
Random Block-Wise †	15.7	31.9	46.7	71.5
AttMask-High (ours)	**17.5**	**33.8**	**49.7**	**72.5**

Top-1 k-NN accuracy for pre-training on different percentages of ImageNet-1k

METHOD	FULL	FEW EXAMPLES	
	k-NN	ν = 1 5 10 20	
DINO	70.9	74.6	
MST	72.1	75.0	
iBOT	**71.5**	**74.4**	32.9 47.6 52.5 56.4
iBOT+AttMask-High	72.5	75.7	37.1 51.3 55.7 59.1
iBOT+AttMask-Hint	**72.8**	**76.1**	37.6 **52.2 56.4 59.6**

Top-1 accuracy for pre-training on 100% of ImageNet-1k
(a) k-NN and linear probing
(b) k-NN using only few examples per class

Improved performance when:
✓ Pre-training with fewer data
✓ Pre-training on the full ImageNet-1k (+1.3% on k-NN and +1.5% on linear probing)

Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022
Property: Low-shot performance

\[\text{\dag}: \text{default iBOT masking strategy from BEiT}\]

\[
\begin{array}{l|cccc}
\% \ \text{IMAGENET-1K} & 5 & 10 & 20 & 100 \\
\hline
\text{Random Block-Wise}^{\text{\dag}} & 15.7 & 31.9 & 46.7 & 71.5 \\
\text{AttMask-High (ours)} & \textbf{17.5} & \textbf{33.8} & \textbf{49.7} & \textbf{72.5} \\
\end{array}
\]

Top-1 k-NN accuracy for pre-training on different percentages of ImageNet-1k

Improved performance when:

- Pre-training with fewer data
- Pre-training on the full ImageNet-1k (+1.3\% on k-NN and +1.5\% on linear probing)
- Evaluating using only 1, 5, 10 or 20 samples per class for the k-NN classifier (more than +3\% on low shot k-NN)

Method	Full k-NN	Linear $\nu = 1$	Few Examples
DINO	70.9	74.6	
MST	72.1	75.0	
iBOT	71.5	74.4	32.9
iBOT+AttMask-High	72.5	75.7	37.1
iBOT+AttMask-Hint	\textbf{72.8}	\textbf{76.1}	\textbf{37.6}

(a) k-NN and linear probing
(b) k-NN using only few examples per class

Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022
Property: Background robustness

IBOT MASKING	RATIO (%)	OF	MS	MR	MN	NF	OBB	OBT	IN-9
Random Block-wise †	10-50	72.4	74.3	59.4	56.8	36.3	14.4	15.0	89.1
Random ‡	75	73.1	73.8	58.8	55.9	35.6	13.7	14.5	87.9
Random	10-50	72.8	75.3	60.4	57.5	34.9	10.3	14.4	89.3
AttMask-Low (ours)	10-50	66.0	71.1	55.2	52.2	32.4	12.5	14.0	86.6
AttMask-Hint (ours)	10-50	74.4	75.9	61.7	58.3	39.6	**16.7**	**15.7**	89.6
AttMask-High (ours)	10-50	**75.2**	**76.2**	**62.3**	**59.4**	**40.6**	15.2	15.3	**89.8**

Classification **robustness** against **background changes**

Classification accuracy of linear probe on IN-9 and its variations

Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022
Downstream tasks

Object detection (COCO) and semantic segmentation (ADE20K) with fine-tuning
Image Retrieval (ROXFORD and RPARIS) and video object segmentation (DAVIS) without fine-tuning

- Improved performance on downstream tasks with or without fine-tuning
Property: High-quality features

METHOD	COCO	ADE20K	ROXFORD	RPARIS	DAVIS 2017					
	AP^b	AP^m	mIoU	MEDIUM	HARD	MEDIUM	HARD	(J & F)_m	J_m	F_m
iBOT	48.2	41.8	44.9	31.0	11.7	56.2	28.9	60.5	59.5	61.4
iBOT+AttMask	48.8	42.0	45.3	33.5	12.1	59.0	31.5	62.1	60.6	63.5

Object detection (COCO) and semantic segmentation (ADE20K) with fine-tuning
Image Retrieval (ROXFORD and RPARIS) and video object segmentation (DAVIS) without fine-tuning

✓ Improved performance on downstream tasks with or without fine-tuning

Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022
Conclusion

AttMask:

✓ Zero additional cost
✓ Faster convergence
✓ Benefits over random masking
✓ Outperforms the other self-supervised distillation-based MIM methods
✓ Major improvements in challenging tasks; i.e., using features without any fine-tuning, or working with limited data.

Kakogeorgiou et al., What to Hide from Your Students: Attention-Guided Masked Image Modeling, ECCV 2022
Collaborators

Ioannis Kakogeorgiou
Spyros Gidaris
Andrei Bursuc
Konstantinos Karantzalos
Yannis Avrithis
Nikos Komodakis