Size reduction of boron particles by high-power ultrasound for optimization of bulk MgB$_2$

Sai Srikanth Arvapalli1,, Muralidhar Miryala1,, Milos Jirsa2, and Masato Murakami1

1 Superconducting Materials Laboratory, Graduate School of Science and Engineering, Shibaura Institute of Technology 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan
2 Institute of Physics ASCR, Na Slovance 2, Praha 8 CZ-18221, Czech Republic

E-mail: miryala1@shibaura-it.ac.jp

Received 29 January 2020, revised 18 August 2020
Accepted for publication 8 September 2020
Published 30 September 2020

Abstract

Critical current density, J_c, in superconductors is strongly connected with size of defects in the material. Frequently, the smaller defects, the higher J_c. In this work, we tried to reduce the size of cheap commercial boron precursor powder using high energy ultra-sonication in ethanol media. The resulting powder was then utilized in synthesizing bulk MgB$_2$ via sintering at 775 °C. Effect of boron powder ultra-sonication on superconducting properties of the bulk MgB$_2$ was studied and discussed. SEM of ultra-sonicated boron showed fine particles with sharp edges (high-energy surfaces), irregular shapes and clustering of fine particles occurred for longer ultra-sonication durations. XRD proved a high quality of MgB$_2$ with only small traces of MgO. Around 36% improvement in J_c at 20 K and T_c close to 39 K were observed in MgB$_2$ bulk prepared with boron ultra-sonicated for 15 min. Microstructure studies showed numerous nanometre sized MgB$_2$ grains in the bulk. Other bulks (made of boron ultra-sonicated longer, for 30, 45, and 60 min) have larger grains. It resulted in slightly lower J_c, anyway, still by 22% higher than in reference bulk. The present results demonstrate that the high performance bulk MgB$_2$ can be achieved without reduction in T_c via employing a cheap boron, reduced in size by high-energy ultra-sonication.

Keywords: high energy ultra-sonication, sintering, bulk MgB$_2$, cheap commercial boron

(Some figures may appear in colour only in the online journal)

1. Introduction

MgB$_2$ is a trendy material suitable for several superconductor applications such as bulk magnets for compact MRI & NMR, electric motors etc. Although T_c is slightly lower (39 K) [1] compared to superconducting cuprates (~90 K), the processing time, easy fabrication and cost parameters make it attractive. With liquid helium cooling would be usage of MgB$_2$ difficult and expensive in practical applications. However, cryogen-free cryo-coolers [2–4], liquid hydrogen [5] and neon are capable of reaching the required cooling temperature without expensive and technically complicated use of liquid helium. This promotes a rapid research on MgB$_2$ superconducting material. The light weight is another factor improving efficiency of the devices and increasing the range of applications [6–11], especially in space. Several research groups have been trying to improve trapped field and critical current density in MgB$_2$ bulks. Most of the trials were related to optimization of synthesis parameters [12, 13], novel synthesis...
techniques [14–16], refining the raw precursors, doping, additions [17, 18], and fabrication of films [19]. The commonly used synthesis method for bulk MgB$_2$ is sintering. This process is highly scalable and by maintaining uniformity in synthesis parameters, one can obtain uniformity in product’s properties, such as elemental distribution, density, J_c etc. In addition, this sintering method also ensures a uniform trapped field, which is crucial for levitation and super-magnet device fabrication. Some researchers have tried manipulating the sintering temperature, sintering duration, multi-step heating [20–23] etc. In our previous research we have optimized the sintering process such 775 °C–800 °C for 3 h for best performance bulk MgB$_2$ [12]. One small disadvantage is the need of an inert atmosphere during the sintering, as Mg is highly reactive with oxygen. Anyway, it does not hinder massive production of bulk MgB$_2$ material. Different techniques and synthesis methods were also practiced such as spark plasma sintering [24–26], diffusion method [16], infiltration growth [27] and chemical routes (combustion, pyrolysis, precipitation etc.). All these methods have their advantages and disadvantages. One way that can improve superconducting performance is to introduce pinning centers to pin vortex lattice motion and thereby reach a high performance up to high magnetic fields. The coherence length of MgB$_2$ materials is quite high when compared to other high temperature superconductors. Hence, defects with bigger sizes can thus act as pinning centers. Some of the effective pinning centers used are non-superconducting inclusions, defects, grain boundaries, voids etc. Such pinning centers can be MgB$_4$ [28, 29], MgO [30, 31], metals [32, 33], metal oxides [34, 35], grain refiners, rare-earth elements [36], dislocations, defects created by irradiation [37], carbon doping [38–45] etc.

It has been proven that increase of grain boundary density results in increase of J_c, in particular at low magnetic fields. In one our previous work dealing with MgB$_2$ we used a commercial nano-amorphous boron [46] to enhance vortex pinning. The results were outstanding, but the powder was

Figure 1. XRD of the ultra-sonicated boron based samples (B-0, B-15, B-30, B-45, B-60). All diffraction patterns showed no sign of B$_2$O$_3$ formation.
Figure 2. SEM micrographs of (a) B-0, (b) B-15, (c) B-30, (d) B-45, and (e) B-60 samples. Fine particles around a few nanometers size can be seen after ultra-sonication. In samples based on longer ultra-sonicated powders, clustering can be observed.

Figure 3. XRD of the samples B-0, B-15, B-30, B-45, and B-60. All diffraction patterns are similar to conventionally sintered MgB$_2$, with scarce MgO impurities.
and frequency at 20 kHz. The power was switched ON and OFF alternatively every 30 s. This ensured that the metal tip generating pulses got enough time to cool off the entire heat produced by the particles bombardment. Thus the real ultra-sonication times were 15, 30, 45, and 60 min. Immediately after the ultra-sonication, the powder was heated at 100 °C for one hour in a muffle furnace to remove ethanol. Later, the powders were characterized by SEM.

2.2. Synthesis of MgB₂

The precursors were commercial powders (Furuuchi Chemical Corporation) of amorphous Mg powder (99.9% purity, 200 meshes) and an ultra-sonicated boron powder. One gram of MgB₂ was synthesized using 0.529 g of Mg and 0.471 g of B (ultra-sonicated) in the molar ratio of 1:2. The powders were rigorously mixed and ground in a glove box to avoid oxidation. The mixture was then pressed into 20 mm diameter, 7 mm thick pellets using a uniaxial hydraulic press with a force of approximately 20 kN. These pellets were immediately wrapped in Titanium (Ti) foils and heat treated via sintering at 775 °C for 3 h in a tube furnace in Ar atmosphere. The pellets we then removed and outer surface is polished to avoid any surficial MgO formed. From here on we address the various MgB₂ bulks as B-0 (non-ultra-sonicated/pristine boron powder), B-15, B-30, B-45, and B-60, in correspondence with the used boron precursor, ultra-sonicated for 0, 15, 30, 45, and 60 min, respectively. Here B-0 means that boron was neither ultra-sonicated, nor soaked in ethanol.

2.3. Characterization of MgB₂

The constituent phases of the samples were identified with a high-resolution automated Rigaku smart-lab x-ray powder diffractometer (RINT2200-) with a step size of 0.01° from 10° to 90°, using Cu-Kα radiation generated at 40 kV and 30 mA. The microstructure of these samples was later studied by field emission scanning electron microscope (FE-SEM).

Superconducting critical temperature (Tc) and magnetization hysteresis loops (M-H) were measured using SQUID Magnetometer (Quantum Design, model MPMS5). Specimens for SQUID measurements, with approximate dimensions of 1 x 1 x 0.75 mm³, were cut from bulk MgB₂ samples. Jc was calculated from the M-H loops using the extended Bean critical state model formula for finite rectangular samples,

\[J_c = 20\Delta m / \left[a^2 c (b - a/3) \right] \]

and frequency at 20 kHz. The power was switched ON and OFF alternatively every 30 s. This ensured that the metal tip generating pulses got enough time to cool off the entire heat produced by the particles bombardment. Thus the real ultra-sonication times were 15, 30, 45, and 60 min. Immediately after the ultra-sonication, the powder was heated at 100 °C for one hour in a muffle furnace to remove ethanol. Later, the powders were characterized by SEM.

2.2. Synthesis of MgB₂

The precursors were commercial powders (Furuuchi Chemical Corporation) of amorphous Mg powder (99.9% purity, 200 meshes) and an ultra-sonicated boron powder. One gram of MgB₂ was synthesized using 0.529 g of Mg and 0.471 g of B (ultra-sonicated) in the molar ratio of 1:2. The powders were rigorously mixed and ground in a glove box to avoid oxidation. The mixture was then pressed into 20 mm diameter, 7 mm thick pellets using a uniaxial hydraulic press with a force of approximately 20 kN. These pellets were immediately wrapped in Titanium (Ti) foils and heat treated via sintering at 775 °C for 3 h in a tube furnace in Ar atmosphere. The pellets we then removed and outer surface is polished to avoid any surficial MgO formed. From here on we address the various MgB₂ bulks as B-0 (non-ultra-sonicated/pristine boron powder), B-15, B-30, B-45, and B-60, in correspondence with the used boron precursor, ultra-sonicated for 0, 15, 30, 45, and 60 min, respectively. Here B-0 means that boron was neither ultra-sonicated, nor soaked in ethanol.

2.3. Characterization of MgB₂

The constituent phases of the samples were identified with a high-resolution automated Rigaku smart-lab x-ray powder diffractometer (RINT2200-) with a step size of 0.01° from 10° to 90°, using Cu-Kα radiation generated at 40 kV and 30 mA. The microstructure of these samples was later studied by field emission scanning electron microscope (FE-SEM).

Superconducting critical temperature (Tc) and magnetization hysteresis loops (M-H) were measured using SQUID Magnetometer (Quantum Design, model MPMS5). Specimens for SQUID measurements, with approximate dimensions of 1 x 1 x 0.75 mm³, were cut from bulk MgB₂ samples. Jc was calculated from the M-H loops using the extended Bean critical state model formula for finite rectangular samples,

\[J_c = 20\Delta m / \left[a^2 c (b - a/3) \right] \]

where

- \(\Delta m \) is the magnetization jump at the critical field
- \(a \) and \(b \) are the dimensions of the rectangular sample
- \(c \) is the thickness of the sample

and frequency at 20 kHz. The power was switched ON and OFF alternatively every 30 s. This ensured that the metal tip generating pulses got enough time to cool off the entire heat produced by the particles bombardment. Thus the real ultra-sonication times were 15, 30, 45, and 60 min. Immediately after the ultra-sonication, the powder was heated at 100 °C for one hour in a muffle furnace to remove ethanol. Later, the powders were characterized by SEM.

2.2. Synthesis of MgB₂

The precursors were commercial powders (Furuuchi Chemical Corporation) of amorphous Mg powder (99.9% purity, 200 meshes) and an ultra-sonicated boron powder. One gram of MgB₂ was synthesized using 0.529 g of Mg and 0.471 g of B (ultra-sonicated) in the molar ratio of 1:2. The powders were rigorously mixed and ground in a glove box to avoid oxidation. The mixture was then pressed into 20 mm diameter, 7 mm thick pellets using a uniaxial hydraulic press with a force of approximately 20 kN. These pellets were immediately wrapped in Titanium (Ti) foils and heat treated via sintering at 775 °C for 3 h in a tube furnace in Ar atmosphere. The pellets we then removed and outer surface is polished to avoid any surficial MgO formed. From here on we address the various MgB₂ bulks as B-0 (non-ultra-sonicated/pristine boron powder), B-15, B-30, B-45, and B-60, in correspondence with the used boron precursor, ultra-sonicated for 0, 15, 30, 45, and 60 min, respectively. Here B-0 means that boron was neither ultra-sonicated, nor soaked in ethanol.

2.3. Characterization of MgB₂

The constituent phases of the samples were identified with a high-resolution automated Rigaku smart-lab x-ray powder diffractometer (RINT2200-) with a step size of 0.01° from 10° to 90°, using Cu-Kα radiation generated at 40 kV and 30 mA. The microstructure of these samples was later studied by field emission scanning electron microscope (FE-SEM).

Superconducting critical temperature (Tc) and magnetization hysteresis loops (M-H) were measured using SQUID Magnetometer (Quantum Design, model MPMS5). Specimens for SQUID measurements, with approximate dimensions of 1 x 1 x 0.75 mm³, were cut from bulk MgB₂ samples. Jc was calculated from the M-H loops using the extended Bean critical state model formula for finite rectangular samples,

\[J_c = 20\Delta m / \left[a^2 c (b - a/3) \right] \]

where

- \(\Delta m \) is the magnetization jump at the critical field
- \(a \) and \(b \) are the dimensions of the rectangular sample
- \(c \) is the thickness of the sample

and frequency at 20 kHz. The power was switched ON and OFF alternatively every 30 s. This ensured that the metal tip generating pulses got enough time to cool off the entire heat produced by the particles bombardment. Thus the real ultra-sonication times were 15, 30, 45, and 60 min. Immediately after the ultra-sonication, the powder was heated at 100 °C for one hour in a muffle furnace to remove ethanol. Later, the powders were characterized by SEM.

2.2. Synthesis of MgB₂

The precursors were commercial powders (Furuuchi Chemical Corporation) of amorphous Mg powder (99.9% purity, 200 meshes) and an ultra-sonicated boron powder. One gram of MgB₂ was synthesized using 0.529 g of Mg and 0.471 g of B (ultra-sonicated) in the molar ratio of 1:2. The powders were rigorously mixed and ground in a glove box to avoid oxidation. The mixture was then pressed into 20 mm diameter, 7 mm thick pellets using a uniaxial hydraulic press with a force of approximately 20 kN. These pellets were immediately wrapped in Titanium (Ti) foils and heat treated via sintering at 775 °C for 3 h in a tube furnace in Ar atmosphere. The pellets we then removed and outer surface is polished to avoid any surficial MgO formed. From here on we address the various MgB₂ bulks as B-0 (non-ultra-sonicated/pristine boron powder), B-15, B-30, B-45, and B-60, in correspondence with the used boron precursor, ultra-sonicated for 0, 15, 30, 45, and 60 min, respectively. Here B-0 means that boron was neither ultra-sonicated, nor soaked in ethanol.

2.3. Characterization of MgB₂

The constituent phases of the samples were identified with a high-resolution automated Rigaku smart-lab x-ray powder diffractometer (RINT2200-) with a step size of 0.01° from 10° to 90°, using Cu-Kα radiation generated at 40 kV and 30 mA. The microstructure of these samples was later studied by field emission scanning electron microscope (FE-SEM).

Superconducting critical temperature (Tc) and magnetization hysteresis loops (M-H) were measured using SQUID Magnetometer (Quantum Design, model MPMS5). Specimens for SQUID measurements, with approximate dimensions of 1 x 1 x 0.75 mm³, were cut from bulk MgB₂ samples. Jc was calculated from the M-H loops using the extended Bean critical state model formula for finite rectangular samples,

\[J_c = 20\Delta m / \left[a^2 c (b - a/3) \right] \]
Figure 5. Superconducting critical current density as a function of magnetic field of the samples B-0, B-15, B-30, B-45, and B-60, measured at 20 K. All samples with ultra-sonicated boron, especially B-15, show improvement in J_c.

where a, b are cross-sectional dimensions, $b > a$, and c is thickness of the specimen (a, b, c in mm). Δm (in emu units, 1 emu = 10^{-3} Am2) is the difference of magnetic moments during increasing and decreasing field in the M-H loop.

3. Results and discussion

Ball milling as a standard technique for boron powder refinement is not suitable for industrial use because of the impurities, mainly B$_2$O$_3$ created during this process. XRD analysis revealed that the amount of B$_2$O$_3$ raised with increasing milling time, which resulted in a decrease of T_c of the MgB$_2$ bulk [48]. The ultra-sonication process does not show such a drawback. XRD results proved absence of B$_2$O$_3$ diffraction peaks even after 1 h of ultra-sonication (100% intensity peak-usually at approx. $2\theta = 27.8^\circ$), as shown in figure 1. Note that any oxides in the precursor promote formation of MgO, which is detrimental to the superconducting properties. The particles size was studied by means of SEM. Figures 2(a–e) show the SEM micrographs of pure and 15, 30, 45, and 60 min ultra-sonicated boron. The particles size was significantly reduced with ultra-sonication. In addition, clustering or agglomeration can be observed in boron powder ultra-sonicated for longer time than 15 min, especially in B-30, B-45, and B-60 as pointed in the figures 2(c–e), respectively. Refinement up to few tens of nanometers was observed. This implies that although there is size refinement with increasing ultra-sonication time, longer intervals than 15 min result in a particles clustering, due to intensive particle collisions during the processing. We propose that the particles after 15 min of bombardment end up with irregular surfaces and smaller sizes, and further collisions can lead to interlocking of particles. Another possible explanation can be agglomeration, which is mainly due to the tendency of the system to minimize surface energy [51]. Similar phenomenon was reported recently, when boron was subjected to ball milling for size reduction [48]. The authors concluded that after 2 h of ball milling, the performance goes down because of volume reduction in MgB$_2$ phase. They also observed formation of unreacted Mg and B$_2$O$_3$. In the case of ultra-sonication, very minute amount of MgO was observed and $TModel
Figure 6. FE-SEM images of (a) B-15, (b) B-30, (c) B-45, and (d) B-60 samples. Note the agglomerated tiny B particles grown into large grains in longer ultra-sonicated boron based bulk MgB$_2$.

reference MgB$_2$. Ultra-sonication occurs to be better than ball milling in terms of balanced quality, performance, and processing time.

From the XRD shown in figure 3 it is evident that there are no contaminants present in the matrix apart a scare quantity of MgO, which is formed during the transfer from glove box to furnace and the pressing step. The intensity of MgO [220] peak (2θ ~ 62.3°) can be seen in the inset figure. Compared to other peaks, it is very small. In addition, we compared the [110] MgB$_2$ peak (2θ ~ 60°), to check if there was any influence of ethanol such as carbon contamination during ultra-sonication. In general, carbon substitutes boron ions at boron atomic places, which are parallel to c-axis. Hence, we chose [110] plane to determine any carbon substitution. As can be seen from the inset of figure 3, there was no shift in the [110] peak, which confirms that there was no carbon substitution.

In accordance with XRD, M-T or superconducting critical temperature studies also show a sharp transition, which depicts the high quality bulk MgB$_2$ synthesis. All the samples show high T_{conset} such as 38.5 K and ΔT_c around 0.7 K, more details can be found in table 1 and figure 4. These results also point to a high purity, as most of the secondary phases present in a superconducting material result in degradation of critical temperature. Additives and dopants such as carbon in various forms, Ti, Cu, Fe, SiC and others resulted in great decrease in T_c [45, 52–56]. In figure 5, the critical current density as a function of magnetic field was plotted in semi-log plots, along with regular curves in the inset. One can see that B-15 is the best, both in J_c and H_{irr}. Self-field J_c at 20 K raised up to 300 kA cm$^{-2}$ in B-15 bulk, while all other samples based on boron ultra-sonicated for longer times exhibited nearly same self-field J_c, close to 270 kA cm$^{-2}$. Thus, there is about 36% improvement in B-15 and 22% improvement for B-30, B-45, and B-60 when compared to B-0 (220 kA cm$^{-2}$). In order to understand this improvement, we carried out several microstructural studies using FE-SEM. From figures 6(a–d), we can observe that the particles in B-15 bulk microstructure are slightly finer than in other bulks. This is because the clustered boron particles during ultra-sonication resulted in formation of larger MgB$_2$ grains in B-30, B-45, and B-60 bulks, which in turn reduced the grain boundary density. Figure 7 reveals the average particle sizes of these bulks’ microstructures. B-15 bulk has an average particle size of 260 nm, while B-30, B-45 and B-60 have 320, 350, and 370 nm, respectively. As we know, grain boundaries are primary pinning centres in bulk MgB$_2$ superconducting systems. Hence, the J_c reduction with the longer durations of ultra-sonication is a result of agglomeration or clustering of nanoscopic B particles. During liquid-solid reaction of Mg with B fine MgB$_2$ particles dissolve in the Mg melt and contribute to growth of bigger crystallites [57]. From these results, we can comprehend that the system reaches optimum at 15 min of B ultra-sonication. Similar technique can be applied to fabrication of wires and tapes. The prior research on wires (Ag sheathed MgB$_2$–750 °C/5 h) showed a critical current densities of around 2×10^4 A cm$^{-2}$, which is much less compared to our present bulk J_c values [58]. It shows that ultra-sonication of B powder can find its prospects also in wire fabrication.
To observe the effect of ultra-sonication on pinning mechanism, we calculated flux pinning diagrams. The results were evaluated in terms of Dew-Hughes general expression [59],

\[f_p = A(h)^p (1 - h)^q \] (2)

where \(f_p \) is normalized flux pinning force, \(f_p = F_p/F_{p,max} \), and \(h \) is reduced magnetic field, \(h = H/H_{irr} \), where the irreversibility field, \(H_{irr} \), was determined as the field, where \(J_c \) in the \(J_c(H) \) dependence fell down to 100 A cm\(^{-2} \), a standard practice in our works. The \(f_p(h) \) dependence was analysed at 20 K. The dependence of equation (2) exhibits one peak at the field \(H_{max} \). Dew-Hughes correlated the peak positions with different types of pinning in the material. In our case, the peak position of most samples was located at 0.21 (see figure 8), close to the position 0.2 predicted by Dew Hughes for grain boundary pinning (\(\delta \) pinning). This result was expected because we only reduced size of raw material (boron), increasing the grain boundary density. In fact, grain boundary pinning is a standard pinning mechanism observed in sintered bulk MgB\(_2\) superconductor systems to which our samples belong. While all ultrasonicated samples exhibited the peak at \(h \approx 0.21 \), the conventionally prepared MgB\(_2\) bulk had the peak at \(h \approx 0.19 \). This difference is marginal and is comparable to experimental error in determining \(B_{irr} \). It can be also affected by other factors discussed further. The most significant difference was obviously in the curve width. We tried to model the experimental data by Dew Hughes expression, equation (2), with free parameters \(p, q \), and \(A \). From the fit, we obtained \(p \approx 0.7, q \approx 2.6 \), and \(A \approx 5.503 \pm 0.01 \). The fit curve in figure 8 is displayed in green colour and labelled as Fit equation (2). The fit curve perfectly imitates flux pinning diagrams of all the bulk samples. Both the fit curve and the experimental ones are rather slender compared to the original theoretical curve of grain boundary pinning [59], with \(p = 0.5 \) and \(q = 2 \) (the dark cyan curve labelled as Ref in figure 8). This procedure has the only drawback that it lacks any theoretical background. In the polycrystalline bulk MgB\(_2\), factors such as anisotropy and current percolation play important roles that can significantly slenderize the curve [60]. In addition, there might be effect of magnetic relaxation resulting in a difference between \(H_{c2} \), to which magnetic fields in the original model were reduced, and irreversibility field, \(H_{irr} \), determined by equilibrium between flux pinning and magnetic induction.

SEM images of the ultra-sonication based bulks revealed tiny nano-sized particles at pore surfaces, which might act
Figure 8. Flux pinning diagram of ultra-sonicated samples (B-0, B-15, B-30, B-45, and B-60) with curve fitting by theoretical expression for grain boundary pinning (Ref) compared to the fit by the same formula but with p and q left free for fitting (equation (2)). Peak positions around $h \sim 0.2$ of all samples confirm dominance of grain boundary pinning.

as point pinning centres (see figure 9). A similar effect was observed in MgB$_2$ bulk system also by some other authors [61, 62]. We tried to incorporate point pinning into the pinning diagram analysis but its role appeared to be marginal in the pinning diagram, therefore we do not show the results here.

In order to check the potential use in applications, we measured J_c of the best sample (B-15) at temperatures ranging from 10 K–35 K. High self-field J_c such as 434 and 382 kA cm$^{-2}$ was observed at 10 K and 15 K, respectively (see figure 10).

4. Conclusion

A novel high energy ultra-sonication technique was applied on cheap commercial boron precursor to improve superconducting performance of sintered bulk MgB$_2$. We successfully refined boron up to nanometer size without formation of B$_2$O$_3$. Longer ultra-sonication resulted in clustering of boron particles and deterioration of electromagnetic properties. XRD and magnetic studies of bulk MgB$_2$ fabricated with this powder showed no impurities and high quality ($T_c \sim 38.5$ K; $\Delta T_c \sim 0.7$ K). J_c improvement by about 36% was observed for an optimized regime of MgB$_2$ preparation. According to our study, 15 min of boron ultra-sonication in ethanol is optimal for the best MgB$_2$ performance and reaches saturation thereafter because of formation of larger grains in the matrix. J_c as high as 434, 382, and 280 kA cm$^{-2}$ was achieved in MgB$_2$ bulk prepared of for 15 min ultra-sonicated boron (B-15) at 10 K, 15 K, and 20 K, respectively. Flux pinning studies indicated that dominant pinning was grain boundary pinning, typical for MgB$_2$ systems. Small nanosized particles were formed on pore surfaces, presumably
MgO or Mg-B-O, that might act as point pinning centres. Anyway, the effect of point defects on the total pinning force density is negligible. The ultra-sonication technique is highly cost effective, impurity free, and scalable and thus suitable for transfer of bulk MgB$_2$ material to practice.

Acknowledgments

This work was partly supported by Shibaura Institute of Technology (SIT) Research Center for Green Innovation and Grant-in-Aid FD research budget code: 112282. One of the authors (SSA) acknowledges support from SIT for his doctoral program. Milos Jirsa acknowledges support from the program Strategy AV 21-VP3 ‘Energy storage in flywheels’.

ORCID iDs

Sai Srikanth Arvapalli https://orcid.org/0000-0001-5063-4683
Muralidhar Miryala https://orcid.org/0000-0003-2205-0378
Milos Jirsa https://orcid.org/0000-0001-8685-5998

References

[1] Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y and Akimitsu J 2001 Superconductivity at 39K in magnesium diboride Nature 410 63–64
[2] Duband L and Collaudin B 1999 Sorption coolers development at CEA-SBT Cryogenics 39 659–63
[3] Kim Y, Park I and Jeong S 2013 Experimental investigation of two-stage active magnetic regenerative refrigerator operating between 77 K and 20 K Cryogenics 57 113–21
[4] Pan C, Zhang T, Zhou Y and Wang J 2016 A novel coupled VM-PT cryocooler operating at liquid helium temperature Cryogenics 77 20–24
[5] Kajikawa K and Nakamura T 2009 Proposal of a fully superconducting motor for liquid hydrogen pump with MgB$_2$ wire IEEE Trans. Appl. Supercond. 19 2–6
[6] Rafieazad M, Balci O, Acar S and Somer M 2017 Review on magnesium diboride (MgB$_2$) as excellent superconductor: effects of the production techniques on the superconducting properties Bor Derg. 2 87–96
[7] Baig T et al 2017 Conceptual designs of conduction cooled MgB$_2$ magnets for 1.5 and 3.0 T full body MRI systems Supercond. Sci. Technol. 30 043002
[8] Yao W, Bascuñán J, Hahn S and Iwasa Y 2010 MgB$_2$ coils for MRI applications IEEE Trans. Appl. Supercond. 20 756–9
[9] Eisterer M 2007 Magnetic properties and critical currents of MgB$_2$ Supercond. Sci. Technol. 20 R47–73
[10] Tomsic M, Rindlisbacher M, Yue J, Mcdadden K, Phillips J, Sumption M D, Bhatia M, Bohnenstiehl S and Collings E W 2007 Overview of MgB$_2$ superconductor applications Int. J. Appl. Ceram. Technol. 4 250–9
[11] Larbalestier D, Gurevich A, Feldmann D M and Polyanskii A 2001 High-Tc superconducting materials for electric power applications Nature 414 368–77

[12] Muralidhar M, Inoue K, Koblishka M R, Tomita M and Murakami M 2014 Optimization of processing conditions towards high trapped fields in MgB2 bulks J. Alloys Compd. 608 102–9

[13] Muralidhar M, Nozaki K, Kobayashi H, Zeng X L, Koblishka-Veneva A, Koblishka M R, Inoue K and Murakami M 2015 Optimization of sintering conditions in bulk MgB2 material for improvement of critical current density J. Alloys Compd. 649 833–42

[14] Mackinnon I D R, Shahbazi M, Alarco J A and Talbot P C 2017 Low temperature decomposition of metal borohydride drives autogenous synthesis of MgB2 Supercond. Sci. Technol. 30 14

[15] Bhagurkar A G, Yamamoto A, Dennis A R, Durrell J H, Noudem J G, Aburras M, Bernstein P, Chaud X, Muralidhar M, Herbirowo S, Sofyan N, Saragih R, Imaduddin A, Sebleku P, Bhagurkar A G, Yamamoto A, Dennis A R, Durrell J H, 471

[16] Arvapalli S S, Miryala M and Murakami M 2014 Development in processing of superconducting MgB2 Supercond. Sci. Technol. 25 1–4

[17] Rosal M, Kulich M, Kovář P, Brunner B, Scheiter J and Häßler W 2017 The effect of boron powder on the microstructure of MgB2: filaments prepared by the modified internal magnesium diffusion technique Supercond. Sci. Technol. 30 055001

[18] Arvapalli S S, Miryala M and Murakami M 2019 Optimization of Mg precursor concentration to obtain high Jc in MgB2 synthesized with Ag addition and carbon encapsulated boron IEEE Trans. Appl. Supercond. 29 1–4

[19] Arvapalli S S, Miryala M and Murakami M 2019 Beneficial impact of excess Mg on flux pinning in bulk MgB2 synthesized with Ag addition and carbon encapsulated boron Adv. Eng. Mater. 21 7

[20] Kauffmann-Weiss S et al 2017 Superconducting properties of thick films on hastelloy prepared by the aerosol deposition method with ex situ MgB2 powder IEEE Trans. Appl. Supercond. 27 2–5

[21] Cai Q, Liu Y, Guo Q, Ma Z and Li H 2016 Variation of MgB2 growth mode and enhancement of critical current density by instantaneously 800 °C-triggered low-temperature sintering Scr. Mater. 124 184–8

[22] Zou X, Zhang W, Wang Q, Zheng L, Yu X, Yu Z, Zhang H, Zhao Y and Zhang Y 2019 Preparation of MgB2 superconducting wires by the rapid heating and quenching method Mater. Lett. 244 111–4

[23] Ma Z, Liu Y, Cai Q, Jiang H and Yu L 2017 Excellent Jc in the low-temperature sintered MgB2 superconductors consisted of uncompleted MgB2 phase and residual Mg Mater. Chem. Phys. 141 378–82

[24] Ma Q, Peng J, Ma Z, Cheng F, Lan F, Li C, Yang Z, Liu C and Liu Y 2018 Improved grain connectivity and critical current density in ex-situ MgB2 superconductors prepared by two-step sintering Mater. Chem. Phys. 204 62–66

[25] Aldica G, Burduel M and Badica P 2014 Trapped magnetic field in a (NdFeB)-(MgB2) pair-type bulk magnet Phys. C 505 19–23

[26] Noudem J G, Aburria M, Bernstein P, Chaud X, Muralidhar M and Murakami M 2014 Development in processing of MgB2 cryo-magnet superconductors J. Appl. Phys. 116 4

[27] Murakami A, Iwamoto A and Noudem J G 2018 Mechanical properties of bulk MgB2 superconductors processed by spark plasma sintering at various temperatures IEEE Trans. Appl. Supercond. 28 1–4

[28] Giunchi G, Ripamonti G, Cavallin T and Bassani E 2006 The reactive liquid Mg infiltration process to produce large superconducting bulk MgB2 manufats Cryogenics 46 237–42

[29] Ishiwata J, Muralidhar M, Inoue K and Murakami M 2015 Effect of MgB2 addition on the superconducting properties of polycrystalline MgB2 Phys. Procedia 65 69–72

[30] Peng J, Cai Q, Cheng F, Ma Z, Li C, Xin Y and Liu Y 2017 Enhancement of critical current density by a “MgB2-MgB1+x” reversible reaction in self-sintered ex-situ MgB2 bulks J. Alloys Compd. 694 24–29

[31] Prikhna T et al 2015 Effect of nanostructural inhomogeneities on the superconducting characteristics of MgB2 with enhanced grain connectivity IEEE Trans. Appl. Supercond. 25 1–4

[32] Prikhna T A, Eisterer M, Weber H W, Gawalek W, Kovyalev V, Vartepets M V, Basyuk T V and Moischil V E 2014 Nanostructural inhomogeneities acting as pinning centers in bulk MgB2 with low and enhanced grain connectivity Supercond. Sci. Technol. 27 044013

[33] Zeng R, Lu L, Wang J L, Horvat J, Li W X, Shi D Q, Dou S X, Tomsic M and Rindfleisch M 2007 Significant improvement in the critical current density of in situ MgB2 by excess Mg addition Supercond. Sci. Technol. 20 1–6

[34] Ansari I A 2019 Study of dynamic behaviors for nano Fe-doped MgB2 superconductor via ac-susceptibility measurements Ceram. Int. 45 1523–7

[35] Sudeesh, Kumar N, Das S, Bernhard C and Varma G D 2013 Effect of graphene oxide doping on superconducting properties of bulk MgB2 Supercond. Sci. Technol. 26 095008

[36] Ansari I A, Shahabuddin M, Ziq K A, Salem A F, Awana V P S, Husain M and Kishan H 2007 The effect of nano-alumina on structural and magnetic properties of MgB2 superconductors Supercond. Sci. Technol. 20 827–31

[37] Pan X F, Cheng C H and Zhao Y 2011 Effect of rare-earth oxides doping on the superconductivity and flux pinning of MgB2 superconductor J. Supercond. Novel Magn. 24 1611–6

[38] Bugoslavsky Y, Cohen L F, Perkins G K and Poliachetti M 2001 Enhancement of the high-magnetic–field critical current density of superconducting MgB2 by proton irradiation Nature 411 561–3

[39] Konduru P, Singh A V P, Kandasami A, Dinakar K and Sreehari Sastry S 2019 Enhancement of superconducting parameters of MgB2 by low energy carbon ion implantation Nucl. Instrum. Methods Phys. Res. B 438 42–47

[40] Zhou S, Pan A V, Wexler D and Dou S X 2007 Sugar coating of boron powder for efficient carbon doping of MgB2 with enhanced current-carrying performance Adv. Mater. 19 1373–6

[41] Bohnenstiel S D, Susner M A, Yu G, Collins E W, Samperton M D, Rindfleisch M A and Boone R 2011 Carbon doping of MgB2 by tolune and malic-acid-in-toluene Phys. C 471 108–11

[42] Wilke R H T, Bud’ko S L, Canfield P C, Finnemore D K, Suplinskas R J and Hannahs S T 2004 Systematic effects of carbon doping on the superconducting properties of MgBi1-xC1+x Phys. Rev. Lett. 92 2–5

[43] Ye S J, Matsumoto A, Zhang Y C and Kumakura H 2014 Strong enhancement of high-field critical current properties and irreversibility field of MgB2 superconducting wires by coronene active carbon source addition via the new B powder-carbon-coating method Supercond. Sci. Technol. 27 085001

[44] Jun B H, Park S D and Kim C J 2012 Refinement and carbon incorporation effects on the superconducting properties of MgB2 through wet milling process of low purity boron powder J. Alloys Compd. 535 27–32

[45] Herbirolo S, Sofyan N, Saragih R, Imaduddin A, Sebleku P, Herbirolo S, Sofyan N, Saragih R and Imaduddin A 2017 Properties of carbon nanotubes-doped Fe-sheathed MgB2 for superconducting wires Am. Inst. Phys. 1826 6
[45] Muralidhar M, Higuchi M, Jirsa M, Diko P, Kokal I and Murakami M 2017 Improved critical current densities of bulk MgB₂ using carbon-coated amorphous boron IEEE Trans. Appl. Supercond. 27 18–21

[46] Arvapalli S S, Muralidhar M and Murakami M 2018 High-performance bulk MgB₂ superconductor using amorphous nano-boron J. Supercond. Novel Magn. 32 1891–5

[47] Xu X, Kim J H, Yeoh W K, Zhang Y and Dou S X 2006 Improved J_c of MgB₂ superconductor by ball milling Supercond. Sci. Technol. 19 L47–50

[48] Kang M O, Joo J, Jun B H, Park S, Kim C S and Kim C 2019 Effect of boron milling on phase formation and critical current density of MgB₂ bulk superconductors Prog. Supercond. Cryog. 21 18–24

[49] Palomino R L, Miró A M B, Tenorio P N, De Jesús F S, Escobedo C A C and Ammar S 2016 Ultrasound Sonochemistry Sonochemical assisted synthesis of SrFe₁₂O₁₉ nanoparticles Ultrason. Sonochem. 29 470–5

[50] Sreekumar V M, Babu N H, Eskin D G and Fan Z 2015 Materials science & engineering a structure – property analysis of in-situ Al – MgAl₂O₃ metal matrix composites synthesized using ultrasonic cavitation Mater. Sci. Eng. A 628 30–40

[51] Nakaso K, Shimada M, Okuyama K and Deppert K 2002 Evaluation of the change in the morphology of gold nanoparticles during sintering J. Aerosol Sci. 33 1061–74

[52] Vives Diaz N E, Hosmani S S, Schacherl R E and Mittemeijer E J 2008 Nitride precipitation and coarsening in Fe-2.23 at.% V alloys: XRD and (HR)TEM study of coherent and incoherent diffraction effects caused by misfitting nitride precipitates in a ferrite matrix Acta Mater. 56 4137–49

[53] Yang F et al 2015 The effect of high-energy ball milling on the microstructure and properties of Ti-doped MgB₂ bulks and wires Phys. Procedia 65 157–60

[54] Rui X F, Sun X F, Xu X L, Zhang L and Zhang H 2005 Doping effect of nano- YBCO additive on MgB₂ Int. J. Mod. Phys. B 19 375–7

[55] Aldica G, Plapiancu C, Badica P and Groza I R 2008 Superconducting layered composites of Fe-MgB₂ obtained by field assisted sintering A Global Road Map for Ceramic Materials and Technologies: Forecasting the Future of Ceramics, Int. Ceramic Federation - 2nd Int. Congress on Ceramics, ICC 2008, Final Programme

[56] Pan X F, Shen T M, Li G, Cheng C H and Zhao Y 2007 Doping effect of Pr₂O₃ on superconductivity and flux pinning of MgB₂ bulk Phys. Status Solidi a 204 1555–60

[57] Ma Z and Liu Y 2012 Sintering process and its mechanism of MgB₂ superconductors Sintering of Ceramics - New Emerging Techniques pp 469–98 (Rijeka: InTechOpen) 10.5772/1882 Lakshamanan, A

[58] Glowacki B A, Majoros M, Vickers M, Evetts J E and Shi Y 2001 Superconductivity of powder-in-tube MgB₂ wires Supercond. Sci. Technol. 14 193–9

[59] Dew-Hughes D 1974 Flux pinning mechanisms in type II superconductors Philos. Mag. 30 293–305

[60] Jirsa M, Rames M, Koblischka M R, Koblischka-Veneva A, Berger K and Douine B 2016 Relaxation and pinning in spark-plasma sintered MgB₂ superconductor Supercond. Sci. Technol. 29 025006

[61] Prikhina T et al 2014 Influence of nanostructural inhomogeneities on superconducting characteristics of MgB₂ J. Supercond. Novel Magn. 28 525–30

[62] Naito T, Endo Y and Fujishiro H 2017 Optimization of vortex pinning at grain boundaries on ex-situ MgB₂ bulks synthesized by spark plasma sintering Supercond. Sci. Technol. 30 8