ON THE GORENSTEIN AND \mathfrak{F}-COHOMOLOGICAL DIMENSIONS

SIMON ST. JOHN-GREEN

Abstract. We prove that for any discrete group G with finite \mathfrak{F}-cohomological dimension, the Gorenstein cohomological dimension equals the \mathfrak{F}-cohomological dimension. This is achieved by constructing a long exact sequence of cohomological functors, analogous to that constructed by Avramov and Martsinkovsky in [3], containing the \mathfrak{F}-cohomology and complete \mathfrak{F}-cohomology. As a corollary we improve upon a theorem of Degrijse concerning subadditivity of the \mathfrak{F}-cohomological dimension under group extensions [13, Theorem B].

1. Introduction

Throughout, G denotes a discrete group and R a commutative ring.

Let n_G denote the minimal dimension of a contractible proper G-CW-complex and gd_G the minimal dimension of a model for EG, the classifying space for proper actions of G. Clearly $n_G \leq gd_G$ and Kropholler and Mislin have conjectured that if $n_G < \infty$ then $gd_G < \infty$ [11, Conjecture 43.1], they verified the conjecture for groups of type FP_∞ [25] and later Lück proved it for groups with a bound on the lengths of chains of finite subgroups [28].

The algebraic invariant best suited to the study of gd_G is the Bredon cohomological dimension. Bredon cohomology was introduced in [8], and extended to infinite groups in [27]. We denote by cd_G the Bredon cohomological dimension over R.

The \mathfrak{F}-cohomology was suggested by Nucinkis as an algebraic analog of n_G [32], it is a special case of the relative homology of Mac Lane [29] and Eilenberg–Moore [15]. Let \mathfrak{F} denote the family of finite subgroups of G and let Δ denote the \mathfrak{G}-set $\bigsqcup_{H \in \mathfrak{F}} G/H$, we say that a module is \mathfrak{F}-projective if it is a direct summand of a module of the form $N \otimes_R R\Delta$ where N is any RG-module. Short exact sequences are replaced with \mathfrak{F}-split short exact sequences—short exact sequences which split when restricted to any finite subgroup of G, or equivalently which split when tensored with $R\Delta$. The class of \mathfrak{F}-split short exact sequences is allowable in the sense of Mac Lane, and the projective modules with respect to these sequences are exactly the \mathfrak{F}-projectives. There are enough \mathfrak{F}-projectives and one can define a cohomology theory, denoted $\mathfrak{F}Ext^{\ast}_{RG}$:

$$\mathfrak{F}Ext^{\ast}_{RG}(M, N) = H^{\ast}\text{Hom}_{RG}(P_\ast, N)$$

Where P_\ast is a \mathfrak{F}-split resolution of M by \mathfrak{F}-projective modules. We define

$$\mathfrak{F}H^{\ast}(G, M) = \mathfrak{F}Ext^{\ast}_{RG}(R, M)$$

The \mathfrak{F}-cohomological dimension, denoted $\mathfrak{F}cd_G$, is the shortest length of a \mathfrak{F}-split \mathfrak{F}-projective resolution of R.

By a result of Bouc and Kropholler–Wall $\mathfrak{F}cd_G \leq n_G$ [7, 23] but it is unknown if $\mathfrak{F}cd_G < \infty$ implies $n_G < \infty$ or if there exist examples where the invariants differ.

Date: November 26, 2013.
1991 Mathematics Subject Classification. 20J05, 18G.

Key words and phrases. \mathfrak{F}-Cohomological Dimension, Gorenstein Cohomological Dimension.
Nucinkis posed an algebraic version of the Kropholler–Mislin conjecture, asking if the finiteness of $\mathfrak{F} \text{cd} G$ and $\text{cd} G$ are equivalent \[33\].

A module is \textit{Gorenstein projective} if it is a cokernel in a strong complete resolution of RG-modules, these were first defined over an arbitrary ring by Enochs and Jenda \[17\]. We will give a full explanation of complete resolutions in Section 2.1. The Gorenstein projective dimension $\text{Gpd} M$ is the minimal length of a resolution of M by Gorenstein projective modules. Equivalently, $\text{Gpd} M \leq n$ if and only if M admits a complete resolution of coincidence index n \[4\] p.864.

The \textit{Gorenstein cohomological dimension} of a group G, denoted $\mathfrak{G} \text{cd} G$, is the Gorenstein projective dimension of R. If G is virtually torsion-free then $\text{Gcd} G = \text{vcd} G$ \[4\] Remark 2.9(1)]. Indeed the Gorenstein cohomology can be seen of as a generalisation of the virtual cohomological dimension. Bahlekeh, De mbegioti and Talelli have conjectured that $\mathfrak{G} \text{cd} G < \infty$ implies that $\text{cd} G < \infty$ \[4\] Conjecture 3.5.

By \[2\] Lemma 2.21], every permutation RG-module with finite stabilisers is Gorenstein projective, so combining with \[19\] Lemma 3.4] gives that $\text{Gcd} G \leq \mathfrak{G} \text{cd} G$.

In general we have the following chain of inequalities.

$$\mathfrak{G} \text{cd} G \leq \mathfrak{F} \text{cd} G \leq \text{cd} G$$

We prove the following:

\textbf{Theorem 3.11.} If $\mathfrak{F} \text{cd} G < \infty$ then $\mathfrak{G} \text{cd} G = \text{Gcd} G$.

We don’t know if $\mathfrak{F} \text{cd} G < \infty$ implies $\mathfrak{G} \text{cd} G < \infty$, although if $\text{Gcd} G = 0$ or 1 then $\text{Gcd} G = \mathfrak{F} \text{cd} G = \text{cd} G$ \[2\] Proposition 2.19 \[4\] Theorem 3.6]. Additionally if G is in Kropholler’s class H $\mathfrak{F} \text{cd} G$ and has a bound on the orders of its finite subgroups then $\mathfrak{F} \text{cd} G = \text{Gcd} G$ (see Example 5.12).

Generalising a construction of Avramov–Martsinkovsky, Asadollahi–Bahlekeh–Salarian showed that if $\text{Gcd} G < \infty$ then there is a long exact sequence of cohomology functors relating the group cohomology, the complete cohomology and the Gorenstein cohomology \[3\] \[2\]. Our result follows from constructing a similar long exact sequence relating the \mathfrak{F}-cohomology, the complete \mathfrak{F}-cohomology (defined in Section 2.3) and a new cohomology theory we call the $\mathfrak{F}G$-cohomology defined in Section 3. These two long exact sequences fit into a commutative diagram, see Proposition 3.9. It appears that the requirement in Theorem 3.11 that $\mathfrak{F} \text{cd} G < \infty$ will be difficult to circumvent since this new long exact sequence cannot be constructed for all groups.

In Section 4 we use that the Gorenstein cohomological dimension is subadditive to improve upon a result of Degrijse on the behaviour of $\mathfrak{F} \text{cd}$ under group extensions \[13\] Theorem B]. Degrijse phrased his result in terms of Bredon cohomological dimension of G with coefficients restricted to cohomological Mackey functors, but this invariant is equal to $\mathfrak{F} \text{cd} G$ \[34\] Theorem 6.2].

\textbf{Corollary 4.2.} Given a short exact sequence of groups

$$1 \longrightarrow N \longrightarrow G \longrightarrow Q \longrightarrow 1$$

if $\mathfrak{F} \text{cd} G < \infty$ then $\mathfrak{F} \text{cd} G \leq \mathfrak{F} \text{cd} N + \mathfrak{F} \text{cd} Q$.

In Section 5 we use the Avramov–Martsinkovsky long exact sequence to prove the following.

\textbf{Proposition 5.4.} If $\text{Gcd} G < \infty$ and $\text{cd} Q G < \infty$ then $\text{cd} Q G \leq \text{Gcd} G$.

\textbf{Acknowledgements.} The author would like to thank his supervisor Brita Nucinkis for all her advice and support.
2. Preliminaries

2.1. Complete Resolutions and Complete Cohomology. A weak complete resolution of a module M is an acyclic resolution T_* of projective modules which coincides with an ordinary projective resolution P_* of M in sufficiently high degree. The degree in which the two coincide is called the coincidence index. A weak complete resolution is called a strong complete resolution if $\text{Hom}_{RG}(T_*, Q)$ is acyclic for every projective module Q. We avoid the term “complete resolution” since some authors use it to refer to a weak complete resolution and others to a strong complete resolution.

Proposition 2.1. [2] Proposition 2.8] A group G admits a strong complete resolution if and only if $\text{Gcd} G < \infty$

The advantage of strong complete resolutions is that given strong complete resolutions T_* and S_* of module M and N, any module homomorphism $M \to N$ lifts to a morphism of strong complete resolutions $T_* \to S_*$. [10 Lemma 2.4]. Thus they can be used to define a cohomology theory: given a strong complete resolution T_* of M we define

$$\hat{\text{Ext}}_{RG}^*(M, -) \cong H^* \text{Hom}_{RG}(T_*, -)$$

We also set $\hat{H}^*(G, -) = \hat{\text{Ext}}^*_{RG}(R, -)$. This coincides with the complete cohomology of Mislin [30], Vogel [21], and Benson–Carlson [5] (see [10 Theorem 1.2] for a proof). Recall that the complete cohomology is itself a generalisation of the Farrell–Tate Cohomology, defined only for groups with finite virtual cohomological dimension [3, §X].

Even weak complete resolutions do not always exist, for example a free Abelian group of infinite rank cannot admit a weak complete resolution [31, Corollary 2.10]. It is conjectured by Dembegioti and Talelli that a ZG-module admits a weak complete resolution if and only if it admits a strong complete resolution [14, Conjecture B].

2.2. \mathfrak{F}-Cohomology. This section contains two technical lemmas we will need later.

If M is any RG-module and $F_i = R\Delta^i$ is the standard \mathfrak{F}-split resolution of R [33, p.342], then $F_* \otimes_R M$ is an \mathfrak{F}-split \mathfrak{F}-projective resolution of M. Thus we’ve shown:

Lemma 2.2. \mathfrak{F}-split \mathfrak{F}-projective resolutions exist for all RG-modules M.

There is also a version of the Horseshoe Lemma, proved as in [18, Lemma 8.2.1].

Lemma 2.3 (Horseshoe Lemma). If

$$0 \to A \to B \to C \to 0$$

is an \mathfrak{F}-split short exact sequence and P_* and Q_* are \mathfrak{F}-split \mathfrak{F}-projective resolutions of A and C respectively then there is an \mathfrak{F}-split \mathfrak{F}-projective resolution S_* of B such that $S_i = P_i \oplus Q_i$ and there is an \mathfrak{F}-split short exact sequence of augmented complexes

$$0 \to \hat{P}_* \to \hat{S}_* \to \hat{Q}_* \to 0$$

2.3. Complete \mathfrak{F}-cohomology. Nucinkis constructs a complete \mathfrak{F}-cohomology in [32], we give a brief outline here. An \mathfrak{F}-complete resolution T_* of M is an acyclic \mathfrak{F}-split complex of \mathfrak{F}-projectives which coincides with an \mathfrak{F}-split \mathfrak{F}-projective resolution of M in high enough dimensions. An \mathfrak{F}-strong \mathfrak{F}-complete resolution T_* has $\text{Hom}_{RG}(T_*, Q)$ exact for all \mathfrak{F}-projectives Q. Given such a T_* we define

$$\hat{\text{Ext}}_{RG}^*(M, -) = H^* \text{Hom}_{RG}(T_*, -)$$
\[\hat{\mathfrak{H}}^*(G, -) = \hat{\mathfrak{E}}\text{xt}_{RG}^*(R, -) \]

Nucinkis also describes a Mislin style construction and a Benson–Carlson construction of complete \mathfrak{H}-cohomology defined for all groups, proves they are equivalent, and proves that whenever there exists an \mathfrak{H}-complete resolution they agree with the definition above.

2.4. Gorenstein Cohomology. The Gorenstein cohomology is, like the \mathfrak{H}-cohomology, a special case of the relative homology of Mac Lane \[29\] and Eilenberg–Moore \[15\].

Recall that a module is Gorenstein projective if it is a cokernel in a strong complete resolution. An acyclic complex C_* of Gorenstein projective modules is G-proper if $\text{Hom}_{RG}(Q, C_*)$ is exact for every Gorenstein projective Q. The class of G-proper short exact sequences is allowable in the sense of Mac Lane \[29, \S IX.4\]. The projectives objects with respect to G-proper short exact sequences are exactly the Gorenstein projectives. For M and N any RG-modules, we define

\[\text{GExt}_{RG}^*(M, N) = H^* \text{Hom}_{RG}(P_*, N) \]
\[\text{G}\mathfrak{H}^*(G, N) = \text{GExt}_{RG}^*(R, N) \]

Where P_* is a G-proper resolution of M by Gorenstein projectives.

The usual method of producing a “Gorenstein projective dimension” of a module M in this setting would be to look at the shortest length of a G-proper resolution of M by Gorenstein projectives. A priori this could be larger than the Gorenstein projective dimension defined in the introduction, where the G-proper condition is not required. Fortunately there is the following theorem of Holm:

Theorem 2.4. \[22, Theorem 2.10\] If M has finite Gorenstein projective dimension then M admits a G-proper Gorenstein projective resolution of length $\text{Gpd} M$.

Generalising an argument of Avramov and Martsinkovsky in \[3\], Asadollahi Bahlekeh and Salarian construct a long exact sequence:

Theorem 2.5 (Avramov–Martsinkovsky long exact sequence). \[2, Theorem 3.11\] For a group G with $\text{Gcd} G < \infty$, there is a long exact sequence of cohomology functors

\[0 \to \text{G}H^1(G, -) \to H^1(G, -) \to \cdots \]
\[\cdots \to \text{G}H^n(G, -) \to H^n(G, -) \to \hat{H}^n(G, -) \to G\text{H}^{n+1}(G, -) \to \cdots \]

The construction relies on the complete cohomology being calculable via a complete resolution, hence the requirement that $\text{Gcd} G < \infty$.

We will need the following lemma later:

Lemma 2.6. Any G-proper resolution of R is \mathfrak{H}-split.

Proof. If P_* is a G-proper resolution of R then since $R[G/H]$ is a Gorenstein projective \[2, Lemma 2.21\],

\[\text{Hom}_{RG}(R[G/H], P_*) \cong \text{Hom}_{RG}(R, P_*) \cong P^H_* \]

is exact, thus P_* is \mathfrak{H}-split \[54, Remark 5.5, Lemma 5.11\]. \qed

3. \mathfrak{H}_G-COHOMOLOGY

3.1. Construction. We define another special case of relative homology, which we call the \mathfrak{H}_G-cohomology. It enables us to build an Avramov–Martsinkovsky long exact sequence of homological functors containing $\hat{\mathfrak{H}}^*$ and $\hat{\mathfrak{H}}^*$.

We define an \mathfrak{H}_G-projective to be the cokernel in a \mathfrak{H}-complete \mathfrak{H}-strong resolution and say a complex C_* of RG-modules is \mathfrak{H}_G-proper if $\text{Hom}_{RG}(Q, C_*)$ is exact for any \mathfrak{H}_G-projective Q. The \mathfrak{H}_G-proper short exact sequences form an allowable class in the sense of Mac Lane, whose projective objects are the \mathfrak{H}_G-projectives — to
check the class of \mathcal{G}_G-proper short exact sequences is allowable we need only check that given a \mathcal{G}_G-proper short exact sequence, any isomorphic short exact sequence is \mathcal{G}_G-proper and that for any RG-module A the short exact sequences

$$0 \to A \xrightarrow{id} A \to 0 \to 0$$

and

$$0 \to 0 \to A \xrightarrow{id} A \to 0$$

are \mathcal{G}_G-proper.

We don’t know if the class of \mathcal{G}_G-projectives is precovering (see [18, §8]), so we don’t know if there always exists an \mathcal{G}_G-proper \mathcal{G}_G-projective resolution. However if A and B admit \mathcal{G}_G-proper \mathcal{G}_G-resolutions P_* and Q_* respectively then any map $A \to B$ induces a map of resolutions $P_* \to Q_*$ which is unique up to chain homotopy equivalence [29, IX.4.3] and we have a slightly weaker form of the Horseshoe Lemma, the proof of which is as in [18, 8.2.1]:

Lemma 3.1 (Horseshoe Lemma). Suppose

$$0 \to A \to B \to C \to 0$$

is a \mathcal{G}_G-proper short exact sequence of RG-modules and both A and C admit \mathcal{G}_G-proper \mathcal{G}_G-projective resolutions P_* and Q_* then there is an \mathcal{G}_G-proper resolution S_* of B such that $S_1 = P_1 \oplus Q_1$ and there is an \mathcal{G}_G-proper short exact sequence of augmented complexes

$$0 \to \tilde{P}_* \to \tilde{S}_* \to \tilde{Q}_* \to 0$$

For any module M which admits an \mathcal{G}_G-proper resolution P_* by \mathcal{G}_G-projectives we define

$$\mathcal{G}_G Ext^*_R (M, N) = H^* \text{Hom}_{RG} (P_*, N)$$

We define also

$$\mathcal{G}_G H^* (G, -) = \mathcal{G}_G Ext^*_R (R, -)$$

The next lemma follows from Lemma [18] see [18, 8.2.3].

Lemma 3.2. Suppose

$$0 \to A \to B \to C \to 0$$

is a \mathcal{G}_G-proper short exact sequence of RG-modules and both A and C admit \mathcal{G}_G-proper \mathcal{G}_G-projective resolutions, then there is an $\mathcal{G}_G Ext^*_R (-, M)$ long exact sequence for any RG-module M.

For any RG-module M the \mathcal{G}_G projective dimension of G denoted $\mathcal{G}_G pd M$ is the minimal length of an \mathcal{G}_G-proper resolution of M by \mathcal{G}_G-projectives. We set $\mathcal{G}_G cd G = \mathcal{G}_G pd R$. Note that these finiteness conditions will not be defined unless R admits an \mathcal{G}_G-proper resolution by \mathcal{G}_G-projectives.

One could think of \mathcal{G}_G-cohomology as the “Gorenstein cohomology relative \mathcal{G}”.

3.2. Technical Results. We need a couple of results for the \mathcal{G}_G-cohomology whose analogs are well known for Gorenstein cohomology [22].

We say an RG-module M admits a right resolution by \mathcal{G}-projectives if there exists an exact chain complex

$$0 \to M \to T_{-1} \to T_{-2} \to \cdots$$

where the T_i are \mathcal{G}-projectives, \mathcal{G}-strong right resolutions and \mathcal{G}-split right resolutions are defined as for any chain complex.

Lemma 3.3. An RG-module M is \mathcal{G}_G-projective if and only if M satisfies

\begin{itemize}
 \item[(\ast)] $\mathcal{G} Ext^1_{RG}(M, Q) \cong 0$ for all \mathcal{G}-projective Q
\end{itemize}

for all $i \geq 1$ and M admits a right \mathcal{G}-strong \mathcal{G}-split resolution by \mathcal{G}-projectives.
Proof. If M is the cokernel of a \mathcal{F}-strong \mathcal{F}-complete resolution T_* then for all $i \geq 1$ and any \mathcal{F}-projective Q,
\[
\mathfrak{F}\text{Ext}^i_{\mathcal{R}G}(M, Q) \cong H^i \text{Hom}_{\mathcal{R}G}(T^+_i, Q)
\]
Where T^+_i denotes the resolution $T^+_i = T_i$ if $i \geq 0$ and $T^+_i = 0$ for $i < 0$. Then \mathfrak{F} follows because T_i is \mathcal{F}-strong.

Conversely given \mathfrak{F} and an \mathcal{F}-strong right resolution T^-_* then let T^+_i be the standard \mathcal{F}-split resolution for M (Lemma [2,2], \mathfrak{F}) ensures that T^+_i is \mathfrak{F}-strong and splicing together T^+_i and T^-_i gives the required resolution. \hfill \Box

Lemma 3.4. If $\mathfrak{F}pd N < \infty$ and M is $\mathfrak{F}G$-projective then $\mathfrak{F}\text{Ext}^i_{\mathcal{R}G}(M, N) = 0$ for all $i \geq 1$.

Proof. Let $P_* \rightarrow \rightarrow N$ be a \mathfrak{F}-split \mathfrak{F}-projective resolution then by a standard dimension shifting argument
\[
\mathfrak{F}\text{Ext}^i(M, N) \cong \mathfrak{F}\text{Ext}^{i+j}(M, K_j)
\]
where K_j is the jth syzygy of P_*. Since K_j is projective for $j \geq n$ the result follows from Lemma [3,3]. \hfill \Box

Proposition 3.5. Let A be any $\mathcal{R}G$-module and $P_* \rightarrow \rightarrow A$ a length n \mathfrak{F}-split resolution of A with P_i \mathfrak{F}-projective for $i \geq 1$, then P_* is $\mathfrak{F}G$-proper.

Proof. The case $n = 0$ is obvious. If $n = 1$ then for any $\mathfrak{F}G$-projective Q, there is a long exact sequence
\[
0 \rightarrow \text{Hom}_{\mathcal{R}G}(Q, P_1) \rightarrow \text{Hom}_{\mathcal{R}G}(Q, P_0) \rightarrow \text{Hom}_{\mathcal{R}G}(Q, A) \rightarrow \mathfrak{F}\text{Ext}^1_{\mathcal{R}G}(Q, P_1) \rightarrow \cdots
\]
But $\mathfrak{F}\text{Ext}^1_{\mathcal{R}G}(Q, P_1) = 0$ by Lemma [3,3]

Assume $n \geq 2$ and let $K_*\rightarrow$ be the syzygies of P_*, then there is an \mathfrak{F}-split resolution
\[
0 \rightarrow P_n \rightarrow \cdots \rightarrow P_{i+1} \rightarrow K_i \rightarrow 0
\]
so $\mathfrak{F}pd K_i < \infty$ for all $i \geq 0$. Thus every short exact sequence
\[
0 \rightarrow K_i \rightarrow P_i \rightarrow K_{i-1}
\]
is $\mathfrak{F}G$-proper by Lemma [3,4] so P_* is $\mathfrak{F}G$-proper. \hfill \Box

Lemma 3.6 (Comparison Lemma). Let A and B be two $\mathcal{R}G$-modules with \mathfrak{F}-strong \mathfrak{F}-split right resolutions by \mathfrak{F}-projectives called S^* and T^* respectively, then any map $f : A \rightarrow B$ lifts to a map f_* of complexes as shown below:
\[
\begin{array}{cccccc}
0 & \rightarrow & A & \rightarrow & S^1 & \rightarrow & S^2 & \rightarrow & \cdots \\
& & f & \downarrow & f_1 & \downarrow & f_2 & \\
0 & \rightarrow & B & \rightarrow & T^1 & \rightarrow & T^2 & \rightarrow & \cdots
\end{array}
\]
The map of complexes is unique up to chain homotopy and if f is \mathfrak{F}-split then so is f_*. \hfill \Box

Proof. The Lemma without the \mathfrak{F}-splitting comes from dualising [18, p.169], see also [22, Proposition 1.8].

Assume f is \mathfrak{F}-split and consider the map of complexes restricted to $R\mathcal{H}$ for some finite subgroup H of G. Let i^T_* and i^S_* denote the splittings of the top and
We may choose θ coinciding with an F generality we may also assume that F is \mathcal{F}-split.

\cdots ... S_{i-1} S_i ... \cdots

\cdots ... T_{i-1} T_i ... \cdots

Let $s_i = \partial_{i-1}^S \circ s_{i-1} \circ \iota_{T_{i-1}}^T$. Then

$$f_i \circ s_i = f_i \circ \partial_{i-1}^S \circ s_{i-1} \circ \iota_{T_{i-1}}^T = \partial_{i-1}^T \circ f_{i-1} \circ s_{i-1} \circ \iota_{T_{i-1}}^T = \partial_{i-1}^T \circ \iota_{T_{i-1}}^T = \text{id}_{T_i}$$

Where the second equality is the commutativity condition coming from the fact that f_* is a chain map.

3.3. An Avramov–Martsinkovsky Long Exact Sequence in \mathcal{F}-cohomology.

Theorem 3.7. Given an \mathcal{F}-strong \mathcal{F}-complete resolution of R there is a long exact sequence

$$0 \longrightarrow \mathcal{F}H^1(G, -) \longrightarrow \cdots$$

$$\cdots \longrightarrow \mathcal{F}H^{n-1}(G, -) \longrightarrow \mathcal{F}G H^n(G, -) \longrightarrow \mathcal{F}H^n(G, -) \longrightarrow \cdots$$

Proof. We follow the proof in [2, §3]. Consider an \mathcal{F}-strong \mathcal{F}-complete resolution T_* coinciding with an \mathcal{F}-projective \mathcal{F}-split resolution P_* in sufficiently high dimension. We may choose $\theta_* : T_* \longrightarrow P_*$ to be \mathcal{F}-split by Lemma 3.6 and without loss of generality we may also assume that θ_i is surjective for all i.

Truncating at position 0 and adding cokernels gives the bottom two rows of the diagram below, the row above is the row of kernels. Note that the map $A \rightarrow R$ is necessarily surjective since the maps $T_0 \rightarrow P_0$ and $P_0 \rightarrow R$ are surjective.

$$\cdots \longrightarrow 0 \longrightarrow K_{n-1} \longrightarrow \cdots \longrightarrow K_0 \longrightarrow K \longrightarrow 0$$

$$\cdots \longrightarrow T_n \longrightarrow T_{n-1} \longrightarrow \cdots \longrightarrow T_0 \longrightarrow A \longrightarrow 0$$

$$\cdots \longrightarrow P_n \longrightarrow P_{n-1} \longrightarrow \cdots \longrightarrow P_0 \longrightarrow R \longrightarrow 0$$

We make some observations about the diagram: Firstly since the module A is the cokernel of a \mathcal{F}-strong \mathcal{F}-complete resolution, A is $\mathcal{F}G$ projective. Secondly in degree $i \geq 0$ the columns are \mathcal{F}-split and the P_i are \mathcal{F}-projective, thus the K_i are \mathcal{F}-projective for all $i \geq 0$. Thirdly the far right vertical short exact sequence is \mathcal{F}-split since the degree 0 column and the rows are \mathcal{F}-split. Finally the top row is exact and \mathcal{F}-split since the other two rows are.
Apply the functor $\text{Hom}_{RG}(-, M)$ for an arbitrary RG-module M and take homology. This gives a long exact sequence

$$\cdots \longrightarrow \mathfrak{H} H^i(G, M) \longrightarrow \mathfrak{H} H^i(G, M) \longrightarrow H^i\text{Hom}_{RG}(K, M) \longrightarrow \cdots$$

We can simplify the right hand term:

$$H^i\text{Hom}_{RG}(K, M) \cong \mathfrak{H} G\text{Ext}_G^i(K, M)$$

$$\cong \mathfrak{H} H^{i+1}(G, M)$$

Where the first isomorphism is because, by Proposition 3.5, the top row is $\mathfrak{H}G$-proper. For the second isomorphism note that the short exact sequence

$$0 \longrightarrow K \longrightarrow A \longrightarrow R \longrightarrow 0$$

is $\mathfrak{H}G$-proper by Proposition 3.5 so

$$0 \longrightarrow K_{n-1} \longrightarrow \cdots \longrightarrow K_0 \longrightarrow A \longrightarrow R \longrightarrow 0$$

is an $\mathfrak{H}G$-proper $\mathfrak{H}G$-projective resolution of R. Thus the second isomorphism follows from the short exact sequence and Lemma 3.2

Corollary 3.8. If R admits an \mathfrak{H}-strong \mathfrak{H}-complete resolution then $\mathfrak{H}G\text{cd}G < \infty$.

Proof. In the proof of the theorem we assumed an \mathfrak{H}-strong \mathfrak{H}-complete resolution of R and built a finite length $\mathfrak{H}G$-proper resolution of R by $\mathfrak{H}G$-projectives. □

Proposition 3.9. If the Avramov–Martsinkovsky long exact sequence and the long exact sequence of Theorem 3.7 both exist, there is a commutative diagram:

$$\begin{array}{ccccccccc}
\cdots & \longrightarrow & \mathfrak{H} H^{n-1} & \longrightarrow & \mathfrak{H} \text{G} H^n & \longrightarrow & \mathfrak{H} H^n & \longrightarrow & \mathfrak{H} \text{G} H^{n+1} & \longrightarrow & \cdots \\
\bigg\downarrow & & \\
\cdots & \longrightarrow & \mathfrak{H} H \mathfrak{H} C^n & \longrightarrow & \mathfrak{H} \text{G} H^n & \longrightarrow & \mathfrak{H} H^n & \longrightarrow & \mathfrak{H} \text{G} H^{n+1} & \longrightarrow & \cdots \\
\end{array}$$

Where for conciseness we have written H^n for $H^n(G, -)$ etc.

Proof. The construction of the Avramov–Martsinkovsky long exact sequence is analogous to the proof of Theorem 2.5, we give a quick sketch below as we will need the notation. Take a strong complete resolution $T'_* \rightarrow K'_*$ of R coinciding with a projective resolution P'_* in high dimensions and let A' be the zeroth cokernel of T'_*. Thus A' is Gorenstein projective. Again, the map $T'_* \rightarrow P'_*$ is assumed surjective and the kernel K'_* is a projective resolution of K', the kernel of the map $A' \longrightarrow R$. Applying $\text{Hom}_{RG}(-, M)$, for some RG-module M, to the short exact sequence of complexes

$$0 \longrightarrow K_* \longrightarrow T_* \longrightarrow P_* \longrightarrow 0$$

gives the Avramov–Martsinkovsky long exact sequence.

Let T_*, P_*, K_*, K and A be as defined in the proof of Theorem 2.5. There is a commutative diagram of chain complexes

$$\begin{array}{cccc}
0 & \longrightarrow & K_* & \longrightarrow & T_* & \longrightarrow & P_* & \longrightarrow & 0 \\
\bigg\uparrow & & \bigg\uparrow & & \bigg\uparrow & & \bigg\uparrow & & \\
0 & \longrightarrow & K'_* & \longrightarrow & T'_* & \longrightarrow & P'_* & \longrightarrow & 0 \\
\end{array}$$

Where the maps β exists by the comparison theorem for projective resolutions and γ exists by the comparison theorem for strong complete resolutions [10] Lemma 2.4. The map α is the induced map on the kernels. Applying $\text{Hom}_{RG}(-, M)$ for some RG-module M, and taking homology, the maps α, β and γ induce the maps α_*, β_* and γ_*.
Finally we construct the map $\eta_{\ast} : \mathcal{G}H^n(G, -) \to \mathfrak{f}H^n(G, -)$. Let B_{\ast} be a G-proper Gorenstein projective resolution and recall P_{\ast} is an \mathfrak{f}-split resolution by \mathfrak{f}-projectives. Then B_{\ast} is \mathfrak{f}-split (Lemma 2.3) so there is a chain map $P_{\ast} \to B_{\ast}$ inducing η_{\ast} on cohomology.

Commutativity is obvious for the diagram with the maps η_{\ast} removed, leaving us with two relations to prove. Let $\varepsilon_n^G : \mathcal{G}H^n(G, -) \to H^n(G, -)$ denote the map from the commutative diagram. This is the map induced by comparison of a resolution of Gorenstein projectives and ordinary projectives $[2, 3.2, 3.11]$. We get $\beta_{\ast} \circ \eta_{\ast} = \varepsilon_n^G$, since all the maps are induced by comparison of resolutions, and such maps are unique up to chain homotopy equivalence.

The final commutativity relation, that $\eta_{\ast} \circ \alpha_{\ast} = \varepsilon_n^G$, is the most difficult to show. Here $\varepsilon_n^G : \mathfrak{f}G\mathcal{G}H^n(G, -) \to \mathfrak{f}H^n(G, -)$ denotes the map from the commutative diagram, it is induced by comparison of resolutions.

Here is a commutative diagram showing the resolutions involved:

$$
\begin{array}{cccccc}
0 & \to & K & \to & A & \to & R & \to & 0 \\
0 & \to & K' & \to & A' & \to & R & \to & 0 \\
0 & \to & K' & \to & A' & \to & R & \to & 0
\end{array}
$$

Let L_{\ast} be the chain complex defined by $L_i = K_{i-1}$ for all $i \geq 1$ and $L_0 = A$, with boundary map at $i = 1$ the composition of the maps $K_0 \to K$ and $K \to A$. Thus L_{\ast} is acyclic except at degree zero where $H_0L_{\ast} = R$. Similarly let L'_{\ast} denote chain complex with $L'_i = K'_{i-1}$ for all $i \geq 1$ and $L'_0 = A'$ augmented by A', so L'_{\ast} is acyclic except at degree zero where $H_0L'_{\ast} = R$. Note that L_{\ast} is an $\mathfrak{f}G$-proper resolution of R by Proposition [2.3] and L'_{\ast} is a G-proper resolution of R by the Gorenstein cohomology version of the same proposition.

Recall that the maps ε_n^G and η_{\ast} are induced by comparison of resolutions: ε_n^G is induced by a map $P_{\ast} \to L_{\ast}$ and η_{\ast} is induced by a map $P_{\ast} \to L'_{\ast}$. The map $\mathfrak{f}G\text{Ext}_{RG}^i(K, -) \to \text{GExt}_{RG}^i(K', -)$ is induced by $\alpha : K'_i \to K_i$. Thus the map $\alpha_{\ast} : \mathfrak{f}G\mathcal{G}H^n(G, -) \to \mathcal{G}H^n(G, -)$ is induced by $L'_{\ast} \to L_{\ast}$. The diagram below is the one we must show commutes.

$$
\begin{array}{ccc}
\mathfrak{f}G\mathcal{G}H^n(G, -) & \cong & \mathcal{G}H^n(G, -) \\
\downarrow^{\alpha_{\ast}} & & \downarrow^{\eta_{\ast}} \\
\mathfrak{f}H^n(G, -) & \simeq & \mathcal{G}H^n(G, -) \\
\mathfrak{f}G\mathcal{G}H^n(G, -) & \cong & \mathcal{G}H^n(G, -)
\end{array}
$$

Since the composition P_{\ast} to L'_i to L_{\ast} is a map of resolutions from P_{\ast} to L_{\ast}, and such maps are unique up to chain homotopy equivalence, this completes the proof. □

Corollary 3.10. Given an \mathfrak{f}-strong \mathfrak{f}-complete resolution of R, $\text{Gcd } G = n < \infty$ implies $\mathfrak{f}H^i(G, -)$ injects into $\mathfrak{f}H^i(G, -)$ for all $i \geq n + 1$.

Proof. \(\text{Gcd} \ G < \infty \) implies the Avramov–Martinskovsky long exact sequence exists (Theorem 2.5). Consider the the commutative diagram of Proposition 3.9. The map
\[\phi : \mathfrak{F}H^i(G, -) \rightarrow \mathfrak{F}H^i(G, -) \]
factors as \(\eta_i \circ \alpha_i = 0 \), so since \(\mathfrak{G}H^i(G, -) = 0 \) for all \(i \geq n + 1 \), \(\mathfrak{F}H^i(G, -) \) injects into \(\hat{\mathfrak{F}}H^i(G, -) \) for all \(i \geq n + 1 \).

\[\square \]

Theorem 3.11. If \(\mathfrak{cd} G < \infty \) then \(\mathfrak{cd} G = \text{Gcd} \ G \).

Proof. We know already that \(\text{Gcd} \ G \leq \mathfrak{cd} G \) (see Section 1). If \(\mathfrak{cd} G < \infty \) then it is trivially true that \(\mathfrak{F} \) admits an \(\mathfrak{F} \)-strong \(\mathfrak{F} \)-complete resolution, thus \(\mathfrak{F}H^i(G, -) \) injects into \(\hat{\mathfrak{F}}H^i(G, -) \) for all \(i \geq \text{Gcd} \ G + 1 \), but \(\hat{\mathfrak{F}}H^i(G, -) \) is always zero since \(\mathfrak{cd} G < \infty \) \[24, 4.1(i)\].

\[\square \]

Example 3.12. Let \(R = \mathbb{Z} \) for this example. Kropholler introduced the class \(H_\mathfrak{F} \) of hierarchically decomposable groups in \[24\] as the smallest class of groups such that if there exists a finite dimensional contractible \(G \)-CW complex with stabilisers in \(H_\mathfrak{F} \) then \(G \in H_\mathfrak{F} \). Let \(H_\mathfrak{F}_b \) denote the subclass of \(H_\mathfrak{F} \) containing groups with a bound on the orders of their finite subgroups.

The \(\mathbb{Z} \mathbb{G} \)-module \(B(G, \mathbb{Z}) \) of bounded functions from \(G \) to \(\mathbb{Z} \) was first studied in \[23\]. Kropholler and Mislin proved that if \(G \in H_\mathfrak{F}_b \) then \(\mathfrak{F}G \leq \mathfrak{cd} G \) \[25\].

Since Gorenstein cohomological dimension is subadditive under extensions \[4, \text{Remark 2.9(2)}\], an application of Theorem 3.11 removes the condition on the orders of finite subgroups:

Corollary 4.2. Given a short exact sequence of groups

\[1 \rightarrow N \rightarrow G \rightarrow Q \rightarrow 1 \]

such that every finite index overgroup of \(N \) in \(G \) has a bound on the orders of the finite subgroups not contained in \(N \). If \(\mathfrak{cd} G < \infty \) then \(\mathfrak{cd} G \leq \mathfrak{cd} N + \mathfrak{cd} Q \).

Remark 4.3. Even in the case that \(\mathfrak{cd} Q < \infty \) and \(N \) is finite it is unknown if \(\mathfrak{cd} G < \infty \). However, if it fails in such a case then it necessarily fails when \(N \) is a cyclic group of order \(p \) \[34, \text{Lemma 6.10}\].
5. Rational Cohomological Dimension

For this section, let $R = \mathbb{Z}$. Gandini has shown that for groups in \mathbf{H}_3, $\text{cd}_Q G \leq \text{Gcd } G$ [14, Remark 4.14] and this is the only result we are aware of relating $\text{cd}_Q G$ and $\text{Gcd } G$. In Proposition 5.3 we show that $\text{cd}_Q G \leq \text{Gcd } G$ for all groups with $\text{cd}_Q G < \infty$. Recall there are examples of torsion-free groups with $\text{cd}_Q G < \text{cd}_Z G$ [12, Example 8.5.8] and $\text{Gcd } G = \text{cd}_Z G$ whenever $\text{cd}_Z G < \infty$ [2, Corollary 2.9], so we cannot hope for equality of $\text{cd}_Q G$ and $\text{Gcd } G$ in general.

Question 5.1. Are there groups G with $\text{Gcd } G < \infty$ but $\text{cd}_Q G = \infty$?

Lemma 5.2. For any group G, $\text{silp } Q G \leq \text{silp } Z G$.

Proof. By [16, Theorem 4.4], $\text{silp } Q G = \text{silp } Q G$ and $\text{silp } Z G = \text{silp } Z G$. Combining with [20, Lemma 6.4] that $\text{silp } Q G \leq \text{silp } Z G$ gives the result. \hfill \Box

Lemma 5.3. If $\text{Gcd } G < \infty$ then for any \mathbb{Q}-G-module M there is a natural isomorphism

$$\hat{H}^*(G, M) \otimes \mathbb{Q} \cong \hat{\text{Ext}}^*_Q (\mathbb{Q}, M)$$

Proof. Let T_\ast be a strong complete resolution of \mathbb{Z} by \mathbb{Z}-G-modules, then $T_\ast \otimes \mathbb{Q}$ is a strong complete resolution of \mathbb{Q} by \mathbb{Q}-G-modules. By an obvious generalisation of [31, Lemma 2.2], if $\text{silp } Q G \leq \infty$ then any complete \mathbb{Q}-G-module resolution is a strong complete \mathbb{Q}-G-module resolution, so since $\text{silp } Q G < \text{silp } Z G < \infty$, $T_\ast \otimes \mathbb{Q}$ is a strong complete resolution. This gives a chain of isomorphisms for any \mathbb{Q}-G-module M:

$$\hat{H}^*(G, M) \otimes \mathbb{Q} \cong H^* \text{Hom}_{\mathbb{Z}G}(T_\ast, M) \otimes \mathbb{Q}$$

$$\cong H^* \text{Hom}_{\mathbb{Q}G}(T_\ast \otimes \mathbb{Q}, M)$$

$$\cong \hat{\text{Ext}}^*_Q (\mathbb{Q}, M)$$

\hfill \Box

Proposition 5.4. If $\text{cd}_Q G < \infty$ then $\text{cd}_Q G \leq \text{Gcd } G$.

Proof. There is nothing to show if $\text{Gcd } G = \infty$ so assume that $\text{Gcd } G < \infty$. Since \mathbb{Q} is flat over \mathbb{Z}, tensoring the Avramov–Martsinkovsky long exact sequence with \mathbb{Q} preserves exactness. Combining this with Lemma 5.3 and the well known fact that for any \mathbb{Q}-G-module M there is a natural isomorphism [6, p.2]

$$H^*(G, M) \otimes \mathbb{Q} \cong \text{Ext}^*_Q (\mathbb{Q}, M)$$

gives the long exact sequence

$$\cdots \longrightarrow GH^i(G, M) \otimes \mathbb{Q} \longrightarrow \text{Ext}^i_Q (\mathbb{Q}, M) \longrightarrow \hat{\text{Ext}}^i_{\mathbb{Q}G} (\mathbb{Q}, M) \longrightarrow \cdots$$

Since $\text{cd}_Q G < \infty$, we have that $\hat{\text{Ext}}^i_{\mathbb{Q}G} (\mathbb{Q}, M) = 0$ [24, 4.1(i)]. Thus there is an isomorphism for all i,

$$G H^i(G, M) \otimes \mathbb{Q} \cong \text{Ext}^i_Q (\mathbb{Q}, M)$$

and the result follows. \hfill \Box

References

[1] Guido’s book of conjectures. volume 40 of Monographies de L’Enseignement Mathématique [Monographs of L’Enseignement Mathématique]. L’Enseignement Mathématique, Geneva, 2008. A gift to Guido Mislin on the occasion of his retirement from ETHZ June 2006, Collected by Indira Chatterji.

[2] Javad Asadollahi, Abdolnaser Bahlekeh, and Shokrollah Salarian. On the hierarchy of cohomological dimensions of groups. J. Pure Appl. Algebra, 213(9):1795–1803, 2009.
[3] Luchezar L. Avramov and Alex Martenskovsky. Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension. Proc. London Math. Soc. (3), 85(2):393–440, 2002.

[4] Abdolnaser Bahlekeh, Fotini Dembegioti, and Olympia Talelli. Gorenstein dimension and proper actions. Bull. Lond. Math. Soc., 41(5):859–871, 2009.

[5] D. J. Benson and Jon F. Carlson. Products in negative cohomology. J. Pure Appl. Algebra, 82(2):107–129, 1992.

[6] Robert Bieri. Homological dimension of discrete groups. Queen Mary College Department of Pure Mathematics, London, second edition, 1981.

[7] Serge Bouc. Le complexe de chaînes d’un G-complexe simpliciel acyclique. J. Algebra, 220(2):415–436, 1999.

[8] Glen E. Bredon. Equivariant cohomology theories. Lecture Notes in Mathematics, No. 34. Springer-Verlag, Berlin, 1967.

[9] Kenneth S. Brown. Cohomology of groups, volume 87 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1994. Corrected reprint of the 1982 original.

[10] Jonathan Cornick and Peter H. Kropholler. On complete resolutions. Topology Appl., 78(3):235–250, 1997.

[11] Jonathan Cornick and Peter H. Kropholler. Homological finiteness conditions for modules over group algebras. J. London Math. Soc. (2), 58(1):49–62, 1998.

[12] Michael W. Davis. The geometry and topology of Coxeter groups. Princeton University Press, Princeton and Oxford, 2008.

[13] Dieter Degrijse. Bredon cohomological dimensions for proper actions and Mackey functors. ArXiv e-prints, 2013.

[14] Fotini Dembegioti and Olympia Talelli. A note on complete resolutions. Proc. Amer. Math. Soc., 138(11):3815–3820, 2010.

[15] Samuel Eilenberg and J. C. Moore. Foundations of relative homological algebra. Mem. Amer. Math. Soc. No., 55:39, 1965.

[16] Ioannis Emmanouil. On certain cohomological invariants of groups. Adv. Math., 225(6):3446–3462, 2010.

[17] Edgar E. Enochs and Overtoun M. G. Jenda. Gorenstein injective and projective modules. Math. Z., 220(4):611–633, 1995.

[18] Edgar E. Enochs and Overtoun M. G. Jenda. Relative homological algebra. Volume 1, volume 30 of de Gruyter Expositions in Mathematics. Walter de Gruyter GmbH & Co. KG, Berlin, extended edition, 2011.

[19] Giovanni Gandini. Cohomological invariants and the classifying space for proper actions. Groups Geom. Dyn., 6(4):659–675, 2012.

[20] T.V. Gedrich and K.W. Gruenberg. Complete cohomological functors on groups. Topology and its Applications, 25(2):203–223, 1987.

[21] Françcois Goichot. Homologie de Tate-Vogel équivariante. J. Pure Appl. Algebra, 82(1):39–64, 1992.

[22] Henrik Holm. Gorenstein homological dimensions. J. Pure Appl. Algebra, 189(1-3):167–193, 2004.

[23] P. H. Kropholler and Olympia Talelli. On a property of fundamental groups of graphs of finite groups. J. Pure Appl. Algebra, 74(1):57–59, 1991.

[24] Peter H. Kropholler. On groups of type (FP). Journal of Pure and Applied Algebra, 90(1):55–67, 1993.

[25] Peter H. Kropholler and Guido Mislin. Groups acting on finite dimensional spaces with finite stabilizers. Commentarii Mathematici Helvetici, 73:122–136, 1998. 10.1007/s000140050048.

[26] Peter H. Kropholler and Charles T. C. Wall. Group actions on algebraic cell complexes. Publ. Mat., 55(1):3–18, 2011.

[27] Wolfgang Lück. Transformation groups and algebraic K-theory, volume 1408 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1989. Mathematische Gottingensis.

[28] Wolfgang Lück. The type of the classifying space for a family of subgroups. Journal of Pure and Applied Algebra, 149(2):177–203, 2000.

[29] Saunders Mac Lane. Homology. Classics in Mathematics. Springer-Verlag, Berlin, 1995. Reprint of the 1975 edition.

[30] Guido Mislin. Tate cohomology for arbitrary groups via satellites. Topology and its Applications, 56(3):293–300, 1994.

[31] Guido Mislin and Olympia Talelli. On groups which act freely and properly on finite dimensional homotopy spheres. In Computational and geometric aspects of modern algebra (Edinburgh, 1998), volume 275 of London Math. Soc. Lecture Note Ser., pages 208–228. Cambridge Univ. Press, Cambridge, 2000.

[32] Brita E. A. Nucinkis. Cohomology relative to a G-set and finiteness conditions. Topology and its Applications, 92(2):153–171, 1999.
[33] Brita E. A. Nucinkis. Is there an easy algebraic characterisation of universal proper G-spaces? *manuscripta mathematica*, 102:335–345, 2000. 10.1007/s002291020335.

[34] Simon St. John-Green. Cohomological finiteness conditions for Mackey and cohomological Mackey functors. *ArXiv e-prints*, 2013.

E-mail address: Simon.StJG@gmail.com

Department of Mathematics, University of Southampton, SO17 1BJ, UK