Community Based Water Resource Conservation in the Southern Rangelands of Kenya

SO Jawuoro*, JS Mbau¹, OK Koech¹ and GN Karuku¹

Department of Land Resource Management and Agricultural Technology (LARMAT), University of Nairobi, Kenya

Submission: June 16, 2017; Published: July 14, 2017

*Corresponding author: SO Jawuoro, Department of Land Resource Management and Agricultural Technology, University of Nairobi, P.O Box 29053-00625, Nairobi, Kenya, Email: stanleyjawuoro@gmail.com

Abstract

Water insecurity is a threat to pastoral livelihoods and sustainability. The Water Act of 2002 created the Water Resource Users’ Associations (WRUAs) to enhance water resource conservation and enhance water access at the local level. Yet, environmental degradation has increased in recent times, further exacerbating water crisis and threatening livelihoods. This study sought to assess the status of community based water resource conservation in the Southern rangelands of Kajiado, Kenya. Kiserian WRUA members were purposively sampled for this survey. Focus group discussions and key informant interviews were also conducted to validate the data. Chi-square and descriptive statistics were used to analyze the data using SPSS version 20.

Results indicated that access to information on water resource management was significantly associated ($\chi^2=0.56$, $p<0.05$) with membership to the WRUA. Majority (79.5%) of the Kiserian WRUA members had participated in tree planting within the catchment. Half (50%) of the WRUA members were mainly motivated to join the association because of perceived benefits like improved access to water at lower prices and participation in catchment protection. The main challenge facing the WRUA was lack of funds (93.2%). This study recommends awareness to increase WRUA membership and allocation of sufficient funding from the government and other related stakeholders to WRUA conservation activities, if catchment conservation for improved water access in the area is to be realized.

Keywords: Kiserian; Community Based Water Resource Conservation; Water Resource Users Association

Abbreviations: WRUA: Water Resource Users Associations; WRMA: Water Resource Management Authority; WSP: Water Service Providers

Introduction

Water insecurity has been linked to poverty and disease in most parts of the world, as impeded access and affordability of water hampers human well-being and development [1-3]. In order to address the water crisis, there have been concerted efforts by several stakeholders especially in rangelands of Africa, where both statutory and customary set-ups play major roles in water management [4]. These efforts have been triggered by the realization that natural resource dependent economies such as pastoralism are vulnerable to climate change and variability, and as such, possess low adaptive capacity [5-7].

Kenya instituted key reforms in her water sector, culminating in the enactment of the Water Act (2002), and subsequent establishment of various Water Resource Users Associations (WRUAs) by the Water Resource Management Authority [8,9]. Some of the responsibilities on water management were decentralized to lower government institutions; non-governmental organizations were mandated to provide water and manage water resources, provision of water resources was alienated from Water Resource Management Authority and policy making disintegrated from daily operations of institutions dealing in water [10,11]. The Act vested the power to manage water resources on the Water Resource Management Authority (WRMA), with the Ministry of Water and Irrigation playing the policy and oversight role. The WRUAs were formed and exempt from supplying water, yet mandated to conserve water resources at the local level [12].

Community based water resource management through the WRUAs has gained popularity in most parts of Kenya [10,12]. WRUAs have been identified as key instruments in improving water access and availability especially in the rangelands where land degradation and low rainfall have limited the capacity of ecosystems to provide adequate water resources [13,14]. This can be achieved by formulation of conservation strategies unique to particular regions’ climatic conditions and livelihood options. Currently, there is a spill of population from urban centers into the rangelands of Kenya and as such, water demand in these areas has been further stretched beyond the supply [15].
Insights on community water resource conservation and management are vital if the government and other stakeholders are to realize improved water access and reduced land degradation in the rangelands. Previous studies have shown that the rangelands of Kenya experience acute water shortages that adversely impact on livelihoods of the people [16-20]. However, there is insufficient information on community based water resource conservation in these areas. Water interventions have therefore been haphazard and without empirical scientific evidence on how local communities can improve availability of water from natural sources such as rivers and springs. This study therefore sought to establish the status of community based water resource management in the southern rangelands of Kenya to inform future interventions.

Materials and methods

Study area

The study was done in Kiserian, Kajiado County (Longitudes 36° 5' and 37° 5' East and Latitudes 1° and 30° 0'). The altitude ranges from 1580 to 2460 metres above sea level. Kiserian is found in agro-ecological zone IV and is therefore a semi-arid region. Rainfall is bimodal in its distribution. The first rains, locally referred to as long rains are received from March to May while the short rains (second rains) fall between October and December [18]. The seasonal rainfall received within the County is between 300-1250mm [21]. The minimum and maximum mean diurnal temperatures are 10°C and 24°C respectively [22]. The r/ET0 is < 0.65 [23]. The main soil type in Kiserian is vertisols which are sticky when wet and form large cracks when dry [24,25]. Acacia mellifera, Acaciatorntilis, Acacia nubica, Acacia anistrotroclada, Acacia nilotica, Commiphora africana, Commiphora africana and Balanites aegyptiaca are the most common species [26].

Figure 1: Map of Kajiado County, Kenya showing Kiserian (in red).
Research design

A survey was used for this study. Descriptions were given for the various subjects including motivation, benefits and challenges of WRUA membership discussed under this research.

Population Sampling

Primary data obtained by interviewing Kiserian water users was used for this study. Purposive sampling was used to select Kiserian WRUA members for interviews. According to Mugenda & Mugenda (2003), 10-50% of the population can be taken as a representative sample. Out of the 60 members of the Kiserian WRUA, 44 were selected using the formula:

\[n = \frac{z^2pqN}{e^2(N-1)+z^2pq} \]

Where \(n \) = sample size,
\(N \) = entire population,
\(z \) = level of significance (0.05),
\(e \) = expected error (0.03),
\(p \) = probability that an individual has desirable characteristics and
\(q \) = probability that an individual does not have the desired characteristics.

Random sampling was used to select 38 non-WRUA members for interviews according to the recommendations of Freund & Williams [28]:

\[n = \frac{z^2pq}{d^2} \]

Where \(n \) = sample size, \(z \) = level of significance (0.05), \(d \) = expected error (0.03), \(p \) = probability that an individual has desirable characteristics and \(q \) = probability that an individual does not have the desired characteristics.

Questionnaire Administration

A pre-test was done on 10 participating water users to validate the questionnaire before presentation to the selected interviewees. The questionnaire collected information on socio-economic and demographic characteristics of the water users, water sources, motivation and benefits of WRUA membership, capacity building on water resource conservation, WRUA conservation projects and challenges facing the WRUA. Respondents were interviewed to fill the questionnaire under the guidance of trained enumerators for enhanced quality.

Focus group discussion and Key informant interviews

Five focus group discussions were also conducted to verify and reinforce the information obtained from the questionnaire and to gather information on proposals to guide policy review. Two Olooluaier company officials, one WRMA extension officer, a local chief and the chairperson of the Kiserian WRUA were used as key informants for the study.

Data analysis

Data analysis was done using SPSS version 20. Qualitative data was presented as tables and discussed. Quantitative data was organized and descriptions given in frequencies, means and percentages. Chi-square tests were done to determine the association between categorical variables. Significance was obtained at \(p \leq 0.05 \).

Results and Discussion

Social and demographic characteristics of Kiserian water users

A majority of WRUA members (70.4%) and non-members (65.8%) interviewed were male, whereas 29.6% and 34.2% of WRUA members and non-members interviewed, respectively, were females. The mean age of the respondents was 41.85 years. These findings could be attributed to the fact that men are the main decision makers in most households in the Kenyan rangelands [5] and could therefore decide on their membership status without any consultation with other household members. The findings concur with Lugusa [29] who observed that pastoral community based organizations in the Baringo, Kenya were male dominated based on the fact that most households were male-headed. Agevi et al. [30] also found out that men in Malava, Kenya were more likely to join community groups than women because of the benefits they expect. As reported by Coülibaly-Lingani et al. [31], household chores and reproductive roles deterred women from joining community conservation groups.

Most of the respondents (37.8%) had attained primary education while 20.1% had no formal education at all. Secondary and tertiary education had been attained by 24.4% and 18.3% of the respondents, respectively, a status greater than the county’s documented education levels where only 7.8% of the population had attained secondary education [32]. Pastoralism was found to be the main land use and was the predominant source of livelihood (30.4%). Cultivation of crops was the main livelihood source for 19.5% of the respondents while 23.2%, 10.9% and 15.8% of the respondents earned their livelihood mainly from business, formal employment and casual labour, respectively. Kajiado County Integrated Development Plan 2013-2017 [32] stated that a majority of the population within the County are livestock keepers, which concurs with our findings. Homewood [33], Okello et al. [19] and Omondi et al. [34] also reported that livestock rearing was the main means to livelihood in Kajiado County, Kenya. Species reared included cattle, sheep, goats and donkeys although most respondents revealed from the focus group discussions that cattle had declined within their herds, concurring with the findings of Western & Nightingale [35] and Lugusa [29] that preference for shoats had increased among Kenyan pastoralists.

Businesses, formal employment, crop cultivation and casual labour emerged as alternative livelihood sources. The
diversification in livelihoods could have been triggered by changing climate, a shift in lifestyle and food preferences and a need to gain from emergent socio-economic opportunities. These results are consistent with those of Okello et al. [36] that outbreak of zoonotic diseases, shrinking land and diminishing livestock numbers had led to livelihood diversification in Kajiado County. The observations of this study further corroborate with those of Lamprey & Reid [37], and Homewood [33] that lifestyle and food preference change were key drivers of livelihood diversification among the Maasai community of Kenya.

Categories of water users in Kiserian

Table 1: Categories of water users in Kiserian.

Variable	Frequency (N=70)	Per Cent (%)
Crop cultivation	8	9.8
Livestock keeping	23	42.7
Domestic users	33	40.1
Business	3	3.7
Forestry	3	3.7

Table 1 shows water use in Kiserian, Kajiado County. Water was mainly used for livestock rearing (42.7%) and domestic purposes (40.1%). Other main water uses included crop cultivation (9.8%), business (3.7%) and forestry (3.7%). Increased urbanization of Kiserian could justify the high proportion of domestic water users where populations working in Nairobi and its environs living in the study area have increased in the area in recent years [38]. Reed et al. [39] reported that livestock keeping was the main water use in the rangelands of Kenya. Opiyo et al. [17] and Omondi et al. [34] also showed that livestock production was the predominant water use in Mwingi and Amboseli, Kenya, respectively.

Type of water sources in Kajiado

Surface and underground water sources were used by residents in the study area (Figure 2). The most prevalent water resources used was borehole (54.8%). Other water sources included piped water (13.4%), wells (3.7%), rivers (9.8%), surface dams (4.9%) and springs (13.4%). The widespread use of borehole water in Kajiado County emanates from the fact that the County suffers from water scarcity which necessitated water intervention measures [16,19]. These measures include drilling of boreholes and supply of tank water by the Ministry of water and the County government, respectively [32]. A dam was also built in 2011 to boost water supply in the region [38]. Wahome et al. [40] and Kiringe et al. [20] also observed that boreholes were the major source of water in Kajiado and Samburu respectively. Underground water was also reported to be more accessed compared to surface water in Yemen [41] due to prolonged use and reliable supply during droughts.

Motivation and Benefits of Joining WRUA Membership

Table 2a: Motivation and benefits of WRUA membership.

Variable for joining WRUA	Frequency (N)	Per cent (%)
Water shortage experience	19	43.2
Catchment protection	30	68.2
Pressure from neighbours	4	9.1
To access training	17	38.6
Passion for community service	11	25

Benefits of WRUA membership

Variable	Frequency (N)	Per cent (%)
Improved water access	18	40.9
Access to water management information	17	38.6
Enhanced community awareness	12	27.2
Participation in catchment protection	22	50
Access to market for trees	1	2.3
New farming methods	7	15.9

The motivating factors and benefits of WRUA membership are presented in (Table 2a). A majority (68.2%) of the members were motivated by desire to protect the catchment while water shortage experience and desire to access training were motivating factors for 43.2% and 38.6% of the members, respectively. Peer pressure and passion for community service motivated 9.1% and 25% of the members to join the WRUA, respectively. Experience of drought and perceived benefits have been observed to be the main factor motivating rangeland community members to join climate change adaptation and conservation groups [5,29]. Acute water shortages especially during droughts might have created awareness among members on the need to conserve the catchment and consequently influenced them to join the WRUA. Similar observations were reported by Kyeyamwa et al. [42] where farmers formed groups to boost their chances of accessing credit and fertilizers. While conducting a study on factors
motivating household participation in fodder groups in Baringo, Lugusa (2015) observed that drought experience was the main motivating factor in joining the fodder groups. Half (50%) of the members had benefited by participation in catchment protection while 40.9% of the members had benefited through access to water resources.

Table 2b: Capacity building on water resource conservation.

	WRUA Members	Non-WRUA Members	Chi square value	p-value			
Access to training	Frequency 35	Per Cent 79.54	Frequency 5	Per Cent 13.16	(x²) 0.71	0.71	<0.001
Access to information	Frequency 41	Per Cent 93.18	Frequency 12	Per Cent 31.58	(x²) 0.56	0.56	<0.001

Table 2c: Daily water demand, supply and cost (per 20L gallon) in Kiserian.

Variable	WRUA members		Non-WRUA members	
Daily household water demand (m³)	Mean 0.17	Std. deviation 0.1	Mean 0.23	Std. deviation 0.1
Daily household water supply (m³)	Mean 0.15	Std. deviation 0.1	Mean 0.2	Std. deviation 0.1
Price per 20L gallon of water (Kshs)	Mean 11.3	Std. deviation 4.6	Mean 12.60	Std. deviation 5.4

Challenges facing the Kiserian WRUA

The challenges faced by the Kiserian WRUA are shown in (Figure 3). The main challenge facing the WRUA (93.2%) was lack of funding. Other challenges included community hostility towards conservation initiatives (29.5%), low literacy among members (40.9%), incompetent leadership (13.6%) and duplication of roles with water service providers (50%). Inadequate funds available to WRUA could be because of the limited funding sources. WRMA was the main financier of the Kiserian WRUA. Community hostility towards conservation initiatives might have been due to inadequate understanding from the general public on the need to
Conserve the catchment. Incompetent leadership could have been caused by the low literacy levels among the members. Most members stated during the focus group discussions that they lacked training in leadership and management.

2. There is need for stakeholders to empower the local communities in adopting sustainable livelihood diversification strategies by supporting WRUA activities through funding and technical guidance.

3. Water legislation should be reviewed to avoid overlapping and conflicting functions of water service providers (WSPs) and WRUAs.

Acknowledgement

This study was funded by the International Canopy for Conservation (I-CAN) in collaboration with the African Conservation Centre (ACC) and the African Dry land Institute of Sustainability (ADIS), University of Nairobi. We sincerely appreciate Kiserian WRUA officials and the Kajiado County Government for their support.

References

1. Shivoga WA, Muchiri M, Kibichi S, Odanga J, Miller SN, et al. (2007) Influences of land use/cover on water quality in the upper and middle reaches of River Nyero, Kenya. Lakes and Reservoirs: Research and Management 12(2): 97-105.

2. Luwesi CN, Obando JA, Shisanya C (2012) Hydro-economic inventory for sustainable livelihood in Kenyan ASALs: The case of Muooni Dam. CICD Series 9: 105-125.

3. Luwesi CN, Bader E (2013) Essentials of Implementation of Improved Green Water Management In Muooni Catchment, Machakos District of Kenya. Journal of Agri-Food and Applied Sciences 1(2): 63-70.

4. Wasonga VO (2009) Linkages between land-use, land degradation and poverty in semi-arid rangelands of Kenya: the case of Baringo district, Doctoral dissertation, Department of agriculture, University of Nairobi, Kenya.

5. Van Koppen B, Van der Zaag P, Manzungu E, Tapela B (2014) Roman water law in rural Africa: the unfinished business of colonial dispossession. Water International 39(1): 49-62.

6. Opiyo FE, Wasonga OV, Nyangito MM (2014) Measuring household vulnerability to climate-induced stresses in pastoral rangelands of Kenya: Implications for resilience programming. Pastoralism 4(1): 10.

7. Reid RS, Fernández-Giménez ME, Galvin KA (2014) Dynamics and resilience of rangelands and pastoral peoples around the globe. Annual Review of Environment and Resources 39: 217-242.

8. Yerian S, Hemmink M, Greene LE, Kiptugen D, Buri J, et al. (2014) The Role of Women in Water Management and Conflict Resolution in Marsabit, Kenya. Environmental management 54(6): 1320-1330.

9. Baldwin E, Washington-Ottombre C, Dell'Angelo J, Cole D, Evans T (2015) Polycentric governance and irrigation reform in Kenya. Governance, Kenya.

10. K’akumu OA, Olima WH, Opiyo RO (2016) Local Experiences in Irrigation Management Transfer (Imt): The Case of the West Kano Scheme in Kenya.

11. McCord P, Dell’Angelo J, Baldwin E, Evans T (2016) Polycentric Transformation in Kenyan Water Governance: A Dynamic Analysis of Institutional and Social- Ecological Change. Policy Studies Journal.

12. Mathenge JM, Luwesi CN, Shisanya CA, Mahiri I, Akombo RA, et al. (2014) Water security where governmental policies conflict with local practices: the roles of community water management systems in Ngaciuma-Kinyaritha, Kenya. International Journal of Innovative Research and Development 3(5).

13. Colmenares R, Mira JC, Correa HD (2007) Paradojas del aguaen
14. Huho JM, Ngaiera K, Ogindo HO (2011). Living with drought: the case of the Maasai pastoralists of northern Kenya. Educational Research 2(1): 779-789.

15. Ndikiyaye D, de Leeuw J, Ogutu JO, Said MY, Saidum TL, et al. (2011) Mobility and livestock mortality in communally used pastoral areas: the impact of the 2005-2006 drought on livestock mortality in Maasailand. Pastoralism: Research Policy and Practice 1(1): 17.

16. Kikojo J, Okello MM (2010) Land use cover and environmental changes in a semi-arid rangeland, Southern Kenya. Journal of Geography and Regional Planning 3(11): 322-326.

17. Opio FE, Ekaya WN, Nyariki DM, Mureithi SM (2011) Seedbed preparation influence on morphometric characteristics of perennial grasses of a semi-arid rangeland in Kenya. African Journal of Plant Science 5(8): 460-468.

18. Ogutu JO, Piepho HP, Said MY, Kifugo SC (2014) Herbivore dynamics and range contraction in Kajiado County: climate and land use changes, population pressures, governance, policy and human-wildlife conflicts. The Open Ecology Journal 7(1): 9-31.

19. Okello MM, Kiringe JW, Salton T (2014) Water Quantity and Quality Dimensions in Public and Environmental Health Among the Maasai of Amboseli Area, Kenya. Environment and Natural Resources Research 4(3): 227.

20. Kiringe JW, Mwaura F, Warinwa F (2016) Characterization of Water Source Types and Uses in Kirisia Forest Watershed, Samburu County, Kenya. Environment and Natural Resources Research 6(3): 77.

21. Kareri R (2013) Some aspects of the geography of Kenya. In Proceedings of the 2010 Indiana University-Purdue University Indianapolis (IUPUI) Fulbright Hays Group Projects Symposium, Eldore, Kenya, 9.

22. Khoda G (2002) Nairobi river basin phase II: The monitoring and sampling strategy for Ngong/Motoini River, Nairobi, Kenya p. 55.

23. Middleton N, Thomas D (1997) World atlas of desertification (edn 2.), Arnold, Hodder Headline, PLC.

24. De Leeuw PN, Grandin BE, Bekure S (1991) Introduction to the Kenyan rangelands and Kajiado district. Maasai herding: An analysis of the livestock production system of Maasai pastoralists in eastern Kajiado District, Kenya, pp. 92-9053.

25. Ombogo MO (2013) The impact of climate variability on pastoralism: fomge dynamics and trends in cattle population in Kajiado County, Doctoral dissertation, University of Nairobi, Kenya.

26. Bekure S (1991) Maasai herding: an analysis of the livestock production system of Maasai pastoralists in eastern Kajiado District, Kenya.

27. RoK (2010) National Policy for the Sustainable Development of Arid and Semi-Arid Lands of Kenya, draft, Government Printers, Nairobi.

28. Freund JE, Williams FJ (1983) Modern Business Statistics. Pitman, London, UK.

29. Lugusa KO (2015) Fodder Production as an Adaptation Strategy in the Drylands: A Case Study of Producer Groups in Baringo County, Kenya. Doctoral dissertation, Department of Land Resource Management and Agricultural Technology, Faculty of Agriculture, University of Nairobi, Kenya.

30. Ageri V, Wabuysa M, Tsinjalia H M (2014) Community Forest Associations and Community-Based Organizations: Redesigning their Roles in Forest Management and Conservation in Kenya. International Journal of Science and Research 3(9): 1916-1922.

31. Coulibaly-Lingani P, Savadogo P, Tigabu M, Oden PC (2011) Factors influencing people’s participation in the forest management program in Burkina Faso, West Africa. Forest Policy and Economics 13(4): 292-302.

32. GOK (2013) Kajiado County Integrated Development Plan 2013-2017.

33. Homewood K (2009) Policy and practice in Kenya rangelands: Impacts on livelihoods and wildlife. In Staying Maasai? pp. 335-367.

34. Omordi SP, Kidali JA, Ogaliil, Mugambi JM, Letoire I (2014) The status of livestock technologies and services in the Southern Maasai rangelands of Kenya. African Journal of Agricultural Research 9(15): 1166-1171.

35. Western D, Manzolillo Nightingale DL (2003) Environmental change and the vulnerability of pastoralists to drought: a case study of the Maasai in Amboseli, Kenya.

36. Okello MM (2005) Land use changes and human-wildlife conflicts in the Amboseli Area, Kenya. Human Dimensions of Wildlife 10(1): 19-28.

37. Lamprey RH, Reid RS (2004) Expansion of human settlement in Kenya’s Maasai Mara: what future for pastoralism and wildlife? Journal of Biogeography 31(6): 997-1032.

38. Mukunga FM (2012) Influence of community participation on the performance of Kiserian Dam water project, Kajiado County, Doctoral dissertation, University of Nairobi, Kenya.

39. Reed MS, Stringer LC, Dougill AJ, Perkins JS, Atlhophoer J, et al. (2015) Reorienting land degradation towards sustainable land management: Linking sustainable livelihoods with ecosystem services in rangeland systems. J Environ manage 151: 472-485.

40. Wahome CN, Olomo PO, Nyamache AK (2014) Microbial quality and antibiotic resistant bacterial pathogens isolated from groundwater used by residents of Ongata Rongai, Kajiado North County, Kenya. International Journal of Biological and Chemical Sciences 8(1): 134-143.

41. Van Steenbergens F, Haile AM, Alemeheyu T, Alamirew T, Geleta Y (2011) Status and potential of spate irrigation in Ethiopia. Water resources management 25(7): 1899-1913.

42. Kyewamya H, Verbeke W, Speelman S, Opuda-Asibo J, Huylenbroeck GV (2008) Structure and dynamics of livestock marketing in rural Uganda: constraints and prospects for research and development. Journal of International Food and Agribusiness Marketing 20(4): 59-89.

43. Franzel S, Coe R, Cooper P, Place F, Scherr SJ (2001) Assessing the adoption potential of agro forestry practices in sub-Saharan Africa. Agricultural systems 69(1): 37-62.

44. Noordin Q, Niang A, Jama B, Nyasimi M (2001) Scaling up adoption and impact of agroforestry technologies: experiences from western Kenya. Development in practice 11(4): 509-523.

45. Munyana HM, Stiwell C (2013) Three ways of knowing: Agricultural knowledge systems of small-scale farmers in Africa with reference to Kenya. Library and Information Science Research 35(4): 326-337.

46. Davies K, Franzel S, Hildebrand P, Irani T, Place N (2004) Extending technologies among small-scale farmers in Meru, Kenya: ingredients for success in farmer groups. The Journal of agricultural education and extension 10(2): 53-62.

47. Rampa F (2011) Analysing governance in the water sector in Kenya. Discussion Paper 124, Maastricht: European Centre for Development Policy Management (ECDPM).

48. Alufah S, Shisanya C, Obando J (2012) Analysis of factors influencing adoption of soil and water conservation technologies in Ngiamia sub-catchment, Kenya. African Journal of Basic and Applied Sciences, 4(5): 172-185.

49. Murtinho F, Tague C, de Bievre B, Eakin H, Lopez-Carr D (2013) Water scarcity in the Andes: a comparison of local perceptions and observed changes, population pressures, governance, policy and human-wildlife conflicts. The Open Ecology Journal 7(1): 9-31.
50. Lelo FK, Chiuri W, Jenkins MW (2005) Managing the River Njoro Watershed, Kenya: Conflicting laws, policies, and community priorities. In International Workshop on African Water Laws: Plural Legislative Frameworks for Rural Water Management in Africa, Johannesburg, South Africa.

51. Gomes N (2006) Access to water, pastoral resource management and pastoralists’ livelihoods: Lessons learned from water development in selected areas of Eastern Africa (Kenya, Ethiopia, Somalia). FAO LSP WP, p. 26.

52. Norton-Griffiths M, Said MY (2010) The future for wildlife on Kenya’s rangelands: an economic perspective. Semi-Arid Ecosyst pp. 367-392.

53. Nyariki DM (2009) Household data collection for socio-economic research in agriculture: Approaches and challenges in developing countries. J Soc Sci 19(2): 91-99.

54. Okello M.M, Kioko JM (2010) Contraction of Wildlife Dispersal Area in Olgulului–Ololorashi Group Ranch Around Amboseli National Park, Kenya. Open Conservation Biology Journal 4: 34-45.

55. Olive MM, Abel MG (2003) Research methods: Quantitative and Qualitative approaches.

56. Simiyu NL, Dulo SO (2015) Spatiotemporal Analysis of Borehole Locations in Nairobi County 1930-2013.

This work is licensed under Creative Commons Attribution 4.0 License DOI: 10.19080/IJESNR.2017.03.555615

Your next submission with Juniper Publishers will reach you the below assets

- Quality Editorial service
- Swift Peer Review
- Reprints availability
- E-prints Service
- Manuscript Podcast for convenient understanding
- Global attainment for your research
- Manuscript accessibility in different formats (Pdf, E-pub, Full Text, Audio)
- Unceasing customer service

Track the below URL for one-step submission

https://juniperpublishers.com/online-submission.php