Synthesis and Antifungal Evaluation of 1-Aryl-2-dimethylaminomethyl-2-propen-1-one Hydrochlorides

Ebru Metea, Sinan Bilginerb, Mehmet Emin Topalogluc, Medine Gulluce, Cavit Kazaza, Halise Inci Gulb

a) Department of Chemistry, Faculty of Sciences, Ataturk University, 25240, Erzurum, Turkey
b) Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, 25240, Erzurum, Turkey
c) Department of Biology, Faculty of Sciences, Ataturk University, 25240, Erzurum, Turkey
ebru25@atauni.edu.tr

The development of resistance to current antifungal therapeutics drives search for new effective agents. The fact that acetophenone derived several Mannich bases had shown remarkable antifungal activities in our previous studies led us to design and synthesize some acetophenone derived Mannich bases, 1-8 and 2-acetylthiophene derived Mannich base 9, 1-aryl-2-dimethylaminomethyl-2-propen-1-one hydrochlorides, to evaluate their antifungal activity. Aryl part was C6H5 (1); 4-CH3C6H4 (2); 4-CH3OC6H4 (3); 4-ClC6H4 (4); 4-FC6H4 (5); 4-BrC6H4 (6); 4-HOC6H4 (7); 4-NO2C6H4 (8); C4H3S(2-yl) (9). The compounds were synthesized by conventional heating method [1]. Antifungal activities of all compounds were tested as described [2] and reported for the first time by this study using Amphotericin B as reference compound.

Compounds 1-6, and 9, which had more potent (2-16 times) antifungal activity than the reference compound Amphotericin B against some microorganism can be model compounds for further studies to develop new antifungal agents.

REFERENCES

[1] Mete, E., Ozelgul, C., Kazaz, C., Yurdakul, D., Sahin, F. and Gul, H. I. Archiv der Pharmazie-Chemistry in Life Sciences, 343, 291-300, 2010.
[2] Gulluce, M., Sokmen, M., Daferera, D., Agar, G., Ozkan, H., Kartal, N., Polissiou, M., Sokmen, A. and Sahin, F. Journal of Agricultural and Food Chemistry, 51, 3958-3965, 2003.