Supplementary Information

1. Reagent formulation

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Stub1 (WB 1:1000)	CST	Cat# 2080
Mdm2 (WB 1:1000)	CST	Cat# 27883-1-AP
Yy1 (1:1000)	CST	Cat# #46395
β-Actin (WB 1:1000)	CST	Cat# 3700
Reagents		
Puromycin	Sigma	Cat# P8833
BsmBI	NEB	Cat# R0580
Gibco™ DMEM, high glucose	Gibco	Cat#11584486
GlutaMAX™ Supplement	Gibco	Cat# 35050061
Trypsin-EDTA (0.25%)	Gibco	Cat# 25200056
ESGRO® Recombinant Mouse LIF Protein	Sigma	Cat# ESG1107
KnockOut™ Serum Replacement	Gibco	Cat# 10828028
Embryonic stem-cell FBS	Gibco	Cat# 16141079
D-PBS	Gibco	Cat# 14040141
2-Mercaptoethanol	Sigma	Cat# M7522
MEM Non-Essential Amino Acids Solution (100X)	Gibco	Cat# 11140050
Sodium Pyruvate (100 mM)	Gibco	Cat# 11360070
Penicillin-Streptomycin (10,000 U/mL)	Gibco	Cat# 15140122
EmbryoMax™ 0.1% Gelatin Solution	Millipore	Cat# ES-006
T4 DNA Ligase	Thermo	Cat# EL0011
RIPA buffer	Millipore	Cat# 20188
SDS-PAGE gel	Epizyme	Cat# PG112
Ampicillin	Beyotime Biotechnology	Cat# ST007
Tris-HCl	Sinopharm Chemical Reagent	Cat# 73509461
SDS	Amresco	Cat# 0227-1KG
Glycerol	Sinopharm Chemical Reagent	Cat# 10010618
Bromophenol blue	Sangon Biotech	Cat# A500922-0025
Agarose	Biowest	Cat# BY-R0100
Yeast extract	OXOID	Cat# LP0021
Tryptone	OXOID	Cat# LP0042
NaCl	Sangon Biotech	Cat# 7647-14-5
Agar powder	Solarbio	Cat# A8190
2 × Taq Plus Master Mix	Vazyme	Cat# P211-01
Calcium chloride dihydrate	Sigma	Cat# C7902
Lipofectamine™ 2000 Transfection Reagent	Thermo	Cat# 11668019
Opti-MEM™	Gibco	Cat# 31-985-062

Experimental Model: Cell line

R1 embryonic stem cells (Mouse) | ATCC | SCRC-1011™ |

Bacterial and virus strains

Trans5α Chemically Competent Cells | TransGen | Cat# 431675 |

Critical commercial assays

GeneJet Gel Extraction Kit | Thermo | Cat# K0692 |

TIANamp Genomic DNA Kit | Tiangen | Cat# DP304-03 |

GeneJet Plasmid Miniprep Kit | Thermo | Cat# K0503 |

Recombinant DNA

lentiCRISPRv2 | Addgene | Cat# 52961 |

pGL3-U6-sgRNA-PGK-Puromycin | Addgene | Cat# 51133 |

pST1374-NLS-Flag-Linker-Cas9 | Addgene | Cat# 44758 |

Oligonucleotides | Table 4-6 |
1.1. Formulation of LB medium and agar plate:

i. Prepare LB buffer and autoclave at 121°C for 15 min (Table 2). The LB buffer can be stored at 4°C.

Note: Add ampicillin to the LB buffer before use (100 μg/mL).

ii. To prepare agar plate, add 15g agar powder to 1LB and autoclave at 121°C (Table 2). Cool adequately, add ampicillin (100 μg/mL) and keep it at room temperature to solidify. The LB buffer can be stored at 4°C for around 2 months.

Table 2. Formulation of LB medium and agar plate.

Reagent	Amount
Yeast extract	5g
Tryptone	10g
NaCl	10g
ddH2O	to 1L
Total	**1L**

Table 3. Formulation of 2X Laemmli sample buffer.

Reagent	Amount to add	Final concentration (2X)
10% (w/v) SDS	4 mL	4%
Glycerol	2 mL	20%
1 M Tris-Cl (pH 6.8)	1.2 mL	120 mM
H2O	2.8 mL	
		Add bromophenol blue to a final concentration of 0.02% (w/v).

Note: Store the 2X Laemmli sample buffer at room temperature.

2. Single Guider RNA (sgRNA) design and synthesis

Timing: 5 minutes

2.1. sgRNA design

Input target gene symbol/gene ID/transcript ID/genomic DNA sequence depending on the different CRISPR/Cas9 gRNA designing tools. For instances, CRISPick (Sanson et al., 2018;
i. Use valid gene symbol (here, we proceed to knock out three genes, namely Mdm2, Stub1 and Yy1, and to simplify our description, we used Mdm2 as an example). Alternatively, use transcript ID or exon sequences of genomic DNA from Ensembl (https://ensembl.org/index.html).

CRITICAL: Selection of sgRNAs with higher specificity is recommended to minimize off-target effects. The specificity of a gRNA can be assessed by the BLAT tool in the UCSC genome browser (http://genome.ucsc.edu) or Blast tool (https://blast.ncbi.nlm.nih.gov).

ii. Check the specificity of a sgRNA using 20nt gRNA sequence plus PAM motif NGG (protospacer adjacent motif) by BLAT tool in the UCSC genome browser or Blast tool in NCBI. For example, Mdm2 sgRNA 1: 5′-TCGGAACAAGACTCTGGT (20nt) + 5′-TGG (PAM).

Note. Typically, design at least 2 sgRNAs that target two different gene coding regions of the desired gene.

2.2. sgRNA synthesis

2.2.1. One vector system (Lentiviral backbone): The following sgRNA oligonucleotide primers were designed for pLentiCRISPR V2 (Sanjana et al., 2014; Shalem et al., 2014) (Figure 1):

i. sgRNA oligonucleotide

sgRNA Forward: 5′-CACC[NT]NNNNNNNNNNNNNNNNNNN-3′
sgRNA Reverse: 5′-AAAC[NT]NNNNNNNNNNNNNNNNNNN-3′

Note: The highlighted region (green) in the sgRNA oligonucleotide represents the 20nt sgRNA sequence of the forward primer and reverse-complementary sequence of this sgRNA in the
reverse primer. The sgRNA oligonucleotide must not contain NGG PAM. The overhangs: CACC and AAAC (black) following BsmBI digestion of pLentiCRISPR V2 are added to the 5′ end of each sgRNA primer respectively. G (red) after the overhang CACC is added to the 5′ region of forward sgRNA, and its complementary C (red) is added to the 3′ end of the reverse sgRNA primer because U6 promoter requires G to express the sgRNA. Copy and paste the sgRNAs of the desired gene (Mdm2, Stub1 and Yy1) separately into the highlighted region (Table 4).

Table 4. Lists of sgRNA oligonucleotides.

Oligonucleotides	Forward (Sequence 5′-3′)	Reverse (Sequence 5′-3′)
Mdm2-sgRNA 1	CACCG TCAGCAAGAGACTCTGGT	AAAC ACCAGAGTCCTTGTTCCGA C
Mdm2-sgRNA 2	CACCG CAGGCTCGGATCAAAGGACA	AAAC TGTCCTTTGATCCGAGCCTG C
Stub1-sgRNA 1	CACCG GAAGCGCTGGAACAGTATCG	AAAC GATACCTGCTCCAGCGCTTC C
Stub1-sgRNA 2	CACCG GGAGATGGAGAGTTATGATG	AAAC CATCATAACTCTCCATCTCC C
Yy1-sgRNA 1	CACCG AGATATGACCATGAAACAG	AAAC CTGTTTCATGGTCAATATCT C
Yy1-sgRNA 2	CACCG CGACCCGGGAAATAGAAAGT	AAAC ACTCTTATTCCCGGCTCG C

2.2.2. Two-vector system (non-lentiviral backbone): The sgRNA oligonucleotide primers are designed for pGL3-U6-sgRNA-PGK-puromycin in a two-vector system as follows (Figure 1):

i. sgRNA oligonucleotide (Two vector system)

sgRNA Forward: 5′-CCGGGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN-3′
sgRNA Reverse: 5′-AAACNNNNNNNNNNNNNNNNNNNNNNNNNNNC-3′

Note: The highlighted region (green) in the sgRNA oligonucleotide represents the 20nt sgRNA sequence of the forward primer, and the reverse-complementary sequence of this sgRNA in the reverse primer. The sgRNA oligonucleotide should not contain NGG PAM. The overhangs: CCGG and AAAC (black) following Bsa I digestion of pGL3-U6-sgRNA-PGK-puromycin were added to the 5′ end of each sgRNA primer respectively. G (red) after the overhang CACC is added to the 5′ region of forward sgRNA, and its complementary C (red) is added to the 3′ end of the reverse sgRNA primer because U6 promoter requires G to express the sgRNA. Copy and paste the sgRNAs of the desired gene separately into the highlighted region (Table 5).
Table 5. Lists of sgRNA oligonucleotides.

Oligonucleotides	Forward (Sequence 5’-3’)	Reverse (Sequence 5’-3’)
Mdm2-sgRNA 1	CCGG TGCGAACAAAGAGACTCTG	AAAC ACCAGAGTCCTCTTGTCCTCGA C
Mdm2-sgRNA 2	CCGG CAGGCTCGGATCAAGAGCA AC	AAAC TGTCCTTTGATACCGGAGCTG C
Stub1-sgRNA 1	CCGG GAAGCGCTGGAACAGTATCG	AAAC CGATACTGTTCACGCGCTTC C
Stub1-sgRNA 2	CCGG GGAGATGGAGATGCTATGAG	AAAC CATCATAACTCTCATCTCC C
Yy1-sgRNA 1	CCGG AGATATGGACCAGAAGACG	AAAC CTGTTCATGGTCAATATCTC C
Yy1-sgRNA 2	CCGG GCACCCGGGGAATAAGAAGT	AAAC ACTTCATTCCCGGOGTCG C

2.3. Order the designed sgRNA oligonucleotides.

Note. In fact, de-salted standard oligos are sufficient for efficient cloning.

2.4. Preparation of single and two-vector constructs

Timing: 2 days

2.4.1. Annealing oligo pair:

a. Forward and reverse oligonucleotides of sgRNA were dissolved in ddH₂O and diluted to a final concentration of 10μM. The oligos were mixed as follow:

Component	Amount
Forward oligo (10μM)	1μl
Reverse oligo (10μM)	1μl
T4 ligation buffer (NEB) (10X)	1μl
ddH₂O	7μl
Total	10μl

Note: T4 ligation buffer (NEB) or any high salt appropriate buffer can be used.

b. The oligo mix can be annealed by heating at 95°C for 5 minutes and cooling at room temperature (~25°C).
2.4.2. Digestion of plentiCRISPRv2 or pGL3-U6-sgRNA-PGK-puromycin

a. Preparation of lentiCRISPRv2-BsmBI digestion mix:

Component	Amount
plentiCRISPRv2	1μg
BsmBI	0.5μl
NEbuffer3.1 (10X)	2μl
ddH2O	16.5μl
Total	**20μl**

b. Preparation of pGL3-U6-sgRNA-PGK-puromycin-BsaI digestion mix:

Component	Amount
pGL3-U6-sgRNA-PGK-puromycin	1μg
BsaI	0.5μl
10X Buffer G	2μl
ddH2O	16.5μl
Total	**20μl**

c. Keep the plentiCRISPRv2-BsmBI digestion mix at 55°C for 1 hour or pGL3-U6-sgRNA-PGK-puromycin-BsaI digestion at 37°C for 30 minutes.

d. Run the digestion mix on 1% (wt/vol) agarose gel (gel electrophoresis).

Note: Successful digestion will appear in two bands/fragments for plentiCRISPRv2 on the gel: 1. larger band (~13kb) and 2. shorter band (~2kb, filler piece).

e. Cut the gel containing larger fragments for plentiCRISPRv2 or a single fragment of pGL3-U6-sgRNA-PGK-puromycin and purify the digested plasmid using GeneJET gel extraction kit. Dissolve the extracted plasmid into 10μl ddH2O.
2.4.3. Ligation of sgRNA oligonucleotides

a. Prepare the ligation reaction for each sgRNA as follows:

Component	Amount (μl)
BsmBI-digested plentiCRISPRv2 (from step 2.2)	2
BsmBI-digested pGL3-U6-sgRNA-PGK-puromycin (from step 2.2)	
sgRNA (from step 1)	8
10X T4 DNA ligase buffer	2
T4 DNA ligase	1
ddH2O	7
Total	20

b. Incubate the sgRNA-lentiCRISPRv2/ pGL3-U6-sgRNA-PGK-puromycin ligation reaction mix at 22°C for 1 h.

c. Add the sgRNA- lentiCRISPRv2 ligation reaction mix/ pGL3-U6-sgRNA-PGK-puromycin ligation into an Eppendorf tube containing Trans5α chemically competent cells, incubate the mixture on ice for 30 min, followed by heat shock at 42°C water bath for the 90s, and immediate re-incubation on ice for 5 min.

Note: To reduce the chances of potential homologous recombination, the transformation of lentiviral plasmids into recombination-deficient bacteria (e.g., Stbl3) is recommended.

d. Add 50-100μl LB to the ligation-bacteria mix from step 2.3.c and incubate the mixture at 37°C for 45 minutes in a shaker.

e. Spread the mixture from step 2.3.d onto an agar LB dish (ampicillin) and incubate at 37°C for 1 day.

f. Pick up ~3-5 bacterial colonies from step 2.3.e, grow single colony into liquid LB (100μg/mL ampicillin) and incubate bacterial suspension at 37°C for 12-16 hours.

g. Extract plasmid DNA from the bacteria using GeneJET plasmid miniprep kit as per manufacturer’s instruction.
h. Confirm the gRNA sequence of plentiCRISPR-sgRNA plasmid/ pGL3-U6-sgRNA-PGK-puromycin-sgRNA plasmid by Sanger sequencing. Using U6 primer sequence each bacterial colony.

Note: The 20bp gRNA sequence should be placed between the U6 promoter and the remainder of the gRNA scaffold in the plentiCRISPR v2 construct.

2.5. Functional validation of knockout cells

2.5.1. Determination of indel frequency of a sgRNA

Oligonucleotides	Forward (Sequence 5'-3')	Reverse (Sequence 5'-3')	Amplicon size
Amplicon-Mdm2-gRNA1	ATGTGCAATACCAACATGTCTG	GTCTCACTAATGGATCTCTCTCTCTAG	550bp
Amplicon-Mdm2-gRNA2	GAAAGAAACCTTACATTTCTCTG	GTTCACGAAAGGGTCCAG	553bp
Amplicon-Stub1-gRNA1	ATCTCCAGTTCTCTATATCCAG	TGAGATATGGAATGAGCTCAC	550bp
Amplicon-Stub1-gRNA2	TGTACTACACTAACCAGGGGC	TGACCCAGAAATCACAGAGC	550bp
Amplicon-Yy1-gRNA1	GCTGGTCTCTGCTAGAGCTAAAC	GCTCCCTTCACACATCAAC	554bp
Amplicon-Yy1-gRNA2	ATCTCGTGCAGCGCGCGAG	GCTTCGGCTCGCACAAACTA	560bp
Amplicon-Cas9	ACAAGTTCATCAAGGCCCATC	GAATCTGGCTGTTCCTCGTC	269bp
2.6. Verifying the ‘Off-target Effects’ of a sgRNA

Table 7. Genome-wide *in-silico* analysis of sgRNA plus PAM sequence.

sgRNA Name	Overlapping with PAM sequence (Entire mouse genome)	Full coverage (Entire mouse genome)
Mdm2-sgRNA 1	No	Mdm2 (only sgRNA target site)
Mdm2-sgRNA 2	No	Mdm2 (only sgRNA target site)
Stub1-sgRNA 1	No	Stub1 (only sgRNA target site)
Stub1-sgRNA 2	No	Stub1 (only sgRNA target site)
Yy1-sgRNA 1	No	Yy1 (only sgRNA target site)
Yy1-sgRNA 2	No	Yy1 (only sgRNA target site)

I. Mdm2 (Partial coverage of sgRNA sequence +No coverage of PAM sequence) (partial coverage)

Range 2: 93600689 to 93600704

Score	Expect	Identities	Gaps	Strand
32.2 bits(16)	3.3	16/16(100%)	0/16(0%)	Plus/Minus

Features: 18974 bp at 5' side: netrin-4 precursor80848 bp at 3' side: ubiquitin carboxyl-terminal hydrolase 44 isoform x1

Query 6 ACAAGAGACTCTGGTT 21
Sbjct 93600704 ACAAGAGACTCTGGTT 93600689

II. Mdm2 (Partial coverage of sgRNA sequence +No coverage of PAM sequence) (partial coverage)

Range 3: 19728780 to 19728794

Score	Expect	Identities	Gaps	Strand
30.2 bits(15)	13	15/15(100%)	0/15(0%)	Plus/Plus

Features: 2012 bp at 5' side: solute carrier family 35 member d3 isoform x17878 bp at 3' side: peroxisomal biogenesis factor 7 isoform 2

Query 8 AAGAGACTCTGGTTG 22
Sbjct 19728780 AAGAGACTCTGGTTG 19728794
III. Mdm2 (Partial coverage of sgRNA sequence + No coverage of PAM sequence) (partial coverage)

Range 4: 54329247 to 54329261

Score	Expect	Identities	Gaps	Strand
30.2 bits(15)	13	15/15(100%)	0/15(0%)	Plus/Plus

Features:
378127 bp at 5' side: mannosyl-oligosaccharide 1,2-alpha-mannosidase ia1564420 bp at 3' side: protein broad-minded

Query 9 AGAGACTCTGGTTGG 23
Sbjct 54329247 AGAGACTCTGGTTGG 54329261

2.6.1. Design primers of Mdm2:

Table 8. List of PCR primers.
Oligonucleotides

I. Mdm2 partial sequence homology gRNA1_ubiquitin carboxyl-terminal hydrolase 44 isoform x1
II. Mdm2 partial sequence homology gRNA1_ubiquitin carboxyl peroxisomal biogenesis factor 7 isoform 2
III. Mdm2 partial sequence homology gRNA1_protein broad-minded biogenesis factor 7 isoform 2
2.6.2. Analysis of sequencing results by Blast

I. Mdm2 partial sequence homology gRNA1_ ubiquitin carboxyl-terminal hydrolase 44 isoform x1

Score	Expect	Identities	Gaps	Strand
712 bits(385)	0.0	385/385(100%)	0/385(0%)	Plus/Minus
Query 32	GGGCACAAAAGAATTAGTGGGCCAGAAGGCTTTCAGCTCAGCACAGGCATTGGCTGAGAG	91	19304	
Sbjct 19363	GGGCACAAAAGAATTAGTGGGCCAGAAGGCTTTCAGCTCAGCACAGGCATTGGCTGAGAG			
Query 92	GACAGTGTGACAGTGGCAGACACAGACGCTGAGTCGCTGCGCAGGGCAACAGGATACGCT	515	19244	
Sbjct 19303	GACAGTGTGACAGTGGCAGACACAGACGCTGAGTCGCTGCGCAGGGCAACAGGATACGCT			
Query 152	GGCTATGCACCTCCAAATAACTCTATATATGGATGGTGAGGGGAAGAGGCGAGGCTA	211	19184	
Sbjct 19243	GGCTATGCACCTCCAAATAACTCTATATATGGATGGTGAGGGGAAGAGGCGAGGCTA			
Query 212	ACCGACATTCCTGGAGATGCGCGTGTGGCCCAAAGATAAAGAGCAGAGTAGAGACCTGAT	271	19124	
Sbjct 19183	ACCGACATTCCTGGAGATGCGCGTGTGGCCCAAAGATAAAGAGCAGAGTAGAGACCTGAT			
Query 272	AAAAGGGGACATATTTCTGGTAGATGAGAGATCGTGGGGAAGACTCCAGCCAC	331	19084	
Sbjct 19123	AAAAGGGGACATATTTCTGGTAGATGAGAGATCGTGGGGAAGACTCCAGCCAC			
Query 332	AGCCTTGGAAAAAGAGACCTGTGGTGCCAGGAGACAAATATTACGGAGGCGAGCT	391	19004	
Sbjct 19063	AGCCTTGGAAAAAGAGACCTGTGGTGCCAGGAGACAAATATTACGGAGGCGAGCT			
Query 392	GAGACGCGAGAATGAGACGGTTCCC	416		
Sbjct 19003	GAGACGCGAGAATGAGACGGTTCCC	18979		
II. Mdm2 partial sequence homology gRNA1 - ubiquitin carboxyl peroxisomal biogenesis factor 7 isoform 2

Score	Expect	0.0	Identities	Gaps	Strand Plus/Minus
856 bits(463)	0.0	463/463(100%)	0/463(0%)		
Query 1	CCGCTGCGCTTCTTCTGACACCCACAGTGGTGCTGTGACCAATGACAGGCAAGACG	60			
Sbjct 22670	CCGCTGCGCTTCTTCTGACACCCACAGTGGTGCTGTGACCAATGACAGGCAAGACG	226161			
Query 61	CGTTCAGTCCACGAGCTGCGGTGGTGCTGACACCCACAGTGGTGCTGTGACCAATGACAGGCAAGACG	120			
Sbjct 22610	CGTTCAGTCCACGAGCTGCGGTGGTGCTGACACCCACAGTGGTGCTGTGACCAATGACAGGCAAGACG	22551			
Query 121	AGACCCACCCACAGTGGTGCTGTGACCAATGACAGGCAAGACG	180			
Sbjct 22550	AGACCCACCCACAGTGGTGCTGTGACCAATGACAGGCAAGACG	223691			
Query 181	TGTCGCTTGGGCTGACACCCACAGTGGTGCTGTGACCAATGACAGGCAAGACG	240			
Sbjct 22490	TGTCGCTTGGGCTGACACCCACAGTGGTGCTGTGACCAATGACAGGCAAGACG	22431			
Query 241	CAACAGAACCCCTCCTCCTCTCTTCTGACACCCACAGTGGTGCTGTGACCAATGACAGGCAAGACG	300			
Sbjct 22430	CAACAGAACCCCTCCTCCTCTCTTCTGACACCCACAGTGGTGCTGTGACCAATGACAGGCAAGACG	22371			
Query 301	TGTCGCTTGGGCTGACACCCACAGTGGTGCTGTGACCAATGACAGGCAAGACG	360			
Sbjct 22370	TGTCGCTTGGGCTGACACCCACAGTGGTGCTGTGACCAATGACAGGCAAGACG	22231			
Query 361	AGACCCACCCACAGTGGTGCTGTGACCAATGACAGGCAAGACG	420			
Sbjct 22310	AGACCCACCCACAGTGGTGCTGTGACCAATGACAGGCAAGACG	22251			
Query 421	GTGGGCGGAGGACGAGGGACAGGACCCACAGTGGTGCTGTGACCAATGACAGGCAAGACG	463			
Sbjct 22250	GTGGGCGGAGGACGAGGGACAGGACCCACAGTGGTGCTGTGACCAATGACAGGCAAGACG	22288			

III. Mdm2 (Partial coverage of sgRNA sequence + No coverage of PAM sequence) (partial coverage)

Score	Expect	0.0	Identities	Gaps	Strand Plus/Minus
963 bits(521)	0.0	521/521(100%)	0/521(0%)		
Query 1	AAGACGCTGACGAGAAGGAGGACACGTCGCAGCAGGACACCCACAGTGGTGCTGTGACCAATGACAGGCAAGACG	60			
Sbjct 157940	AAGACGCTGACGAGAAGGAGGACACGTCGCAGCAGGACACCCACAGTGGTGCTGTGACCAATGACAGGCAAGACG	157881			
Query 61	AAACGTTCCACGAGCTGACGAGAAGGAGGACACGTCGCAGCAGGACACCCACAGTGGTGCTGTGACCAATGACAGGCAAGACG	120			
Sbjct 157800	AAACGTTCCACGAGCTGACGAGAAGGAGGACACGTCGCAGCAGGACACCCACAGTGGTGCTGTGACCAATGACAGGCAAGACG	157821			
Query 121	ACTTTAGTCGACGAGAAGGAGGACACGTCGCAGCAGGACACCCACAGTGGTGCTGTGACCAATGACAGGCAAGACG	180			
Sbjct 157820	ACTTTAGTCGACGAGAAGGAGGACACGTCGCAGCAGGACACCCACAGTGGTGCTGTGACCAATGACAGGCAAGACG	157761			
Query 181	GTGGCATTGACGAGAAGGAGGACACGTCGCAGCAGGACACCCACAGTGGTGCTGTGACCAATGACAGGCAAGACG	240			
Sbjct 157760	GTGGCATTGACGAGAAGGAGGACACGTCGCAGCAGGACACCCACAGTGGTGCTGTGACCAATGACAGGCAAGACG	157701			
Query 241	AAGACGCTGACGAGAAGGAGGACACGTCGCAGCAGGACACCCACAGTGGTGCTGTGACCAATGACAGGCAAGACG	300			
Sbjct 157790	AAGACGCTGACGAGAAGGAGGACACGTCGCAGCAGGACACCCACAGTGGTGCTGTGACCAATGACAGGCAAGACG	157641			
Query 301	TTCCATCATATTCTGATGACGAGAAGGAGGACACGTCGCAGCAGGACACCCACAGTGGTGCTGTGACCAATGACAGGCAAGACG	360			
Sbjct 157640	TTCCATCATATTCTGATGACGAGAAGGAGGACACGTCGCAGCAGGACACCCACAGTGGTGCTGTGACCAATGACAGGCAAGACG	157581			
Query 361	CAGAGGCTGACGAGAAGGAGGACACGTCGCAGCAGGACACCCACAGTGGTGCTGTGACCAATGACAGGCAAGACG	420			
Sbjct 157580	CAGAGGCTGACGAGAAGGAGGACACGTCGCAGCAGGACACCCACAGTGGTGCTGTGACCAATGACAGGCAAGACG	157521			
Query 421	CAGAGGCTGACGAGAAGGAGGACACGTCGCAGCAGGACACCCACAGTGGTGCTGTGACCAATGACAGGCAAGACG	480			
Sbjct 157520	CAGAGGCTGACGAGAAGGAGGACACGTCGCAGCAGGACACCCACAGTGGTGCTGTGACCAATGACAGGCAAGACG	157461			
Query 481	TCATCATATTCTGATGACGAGAAGGAGGACACGTCGCAGCAGGACACCCACAGTGGTGCTGTGACCAATGACAGGCAAGACG	521			
Sbjct 157460	TCATCATATTCTGATGACGAGAAGGAGGACACGTCGCAGCAGGACACCCACAGTGGTGCTGTGACCAATGACAGGCAAGACG	157420			
References

Bae S., Park J., & Kim J.-S. Cas-OFFinder: A fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30, 1473-1475 (2014).

Concordet JP, Haeussler M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 2018 Jul 2;46(W1):W242-W245. doi: 10.1093/nar/gky354. PMID: 29762716; PMCID: PMC6030908.

Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, Smith I, Tothova Z, Wilen C, Orchard R, Virgin HW, Listgarten J, Root DE. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol. 2016 Feb;34(2):184-191. doi: 10.1038/nbt.3437. Epub 2016 Jan 18. PMID: 26780180; PMCID: PMC4744125.

Labun K, Montague TG, Krause M, Torres Cleuren YN, Tjeldnes H, Valen E. CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Res. 2019 Jul 2;47(W1):W171-W174. doi: 10.1093/nar/gkz365. PMID: 31106371; PMCID: PMC6602426.

Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods. 2014;11(8):783-784. doi:10.1038/nmeth.3047

Sanson KR, Hanna RE, Hegde M, Donovan KF, Strand C, Sullender ME, Vaimberg EW, Goodale A, Root DE, Piccioni F, Doench JG. Optimized libraries for CRISPR-Cas9 genetic screens with multiple modalities. Nat Commun. 2018 Dec 21;9(1):5416. doi: 10.1038/s41467-018-07901-8. PMID: 30575746; PMCID: PMC6303322.

Shalem O, Sanjana NE, Hartenstein E, Shi X, Scott DA, Mikkelson T, Heckl D, Ebert BL, Root DE, Doench JG, Zhang F. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014 Jan 3;343(6166):84-87. doi: 10.1126/science.1247005. Epub 2013 Dec 12. PMID: 24336571; PMCID: PMC4089965.