Uniform approximations by Fourier sums on classes of generalized Poisson integrals

A. S. Serdyuk¹, T. A. Stepanyuk²

¹Institute of Mathematics NAS of Ukraine, Kyiv
²Lesya Ukrainka Eastern European National University, Lutsk

Abstract

We find asymptotic equalities for exact upper bounds of approximations by Fourier sums in uniform metric on classes of 2π–periodic functions, representable in the form of convolutions of functions φ, which belong to unit balls of spaces L_p, with generalized Poisson kernels. For obtained asymptotic equalities we introduce the estimates of remainder, which are expressed in the explicit form via the parameters of the problem.

Key words: Fourier sums, generalized Poisson integrals, asymptotic equality.

Math Subject Classifications 42A05, 42A10, 42A16.

1. Introduction. Let L_p, $1 \leq p < \infty$, be the space of 2π–periodic functions f summable to the power p on $[0, 2\pi)$, in which the norm is given by the formula
$$
\|f\|_p = \left(\frac{2\pi}{\int_0^{2\pi} |f(t)|^p dt} \right)^{\frac{1}{p}};
$$
L_∞ be the space of measurable and essentially bounded 2π–periodic functions f with the norm $\|f\|_\infty = \text{ess sup}_t |f(t)|$; C be the space of continuous 2π–periodic functions f, in which the norm is specified by the equality $\|f\|_C = \max_t |f(t)|$.

Denote by $C^{\alpha,r,\beta}_{\beta,p}$, $\alpha > 0$, $r > 0$, $1 \leq p \leq \infty$, the set of all 2π–periodic functions f representable for all $x \in \mathbb{R}$ as convolutions of the form (see, e.g., [1, p. 133])

$$
f(x) = \frac{a_0}{2} + \frac{1}{\pi} \int_{-\pi}^{\pi} P_{\alpha,r,\beta}(x-t)\varphi(t)dt, \quad a_0 \in \mathbb{R}, \quad \varphi \in B^0_p, \quad (1)
$$

with fixed generated kernels

$$
P_{\alpha,r,\beta}(t) = \sum_{k=1}^{\infty} e^{-\alpha k^r} \cos(kt - \frac{\beta \pi}{2}), \quad \beta \in \mathbb{R}.
$$

The kernels $P_{\alpha,r,\beta}(t)$ are called generalized Poisson kernels. For $r = 1$ and $\beta = 0$ the kernels $P_{\alpha,r,0}(t)$ are usual Poisson kernels of harmonic functions.

For any $r > 0$ the classes $C^{\alpha,r}_{\beta,p}$ belong to set of infinitely differentiable 2π–periodic functions D^∞, i.e., $C^{\alpha,r}_{\beta,p} \subset D^\infty$ (see, e.g., [1, p. 128], [2]). For $r \geq 1$ the classes $C^{\alpha,r}_{\beta,p}$ consist of functions f, admitting a regular extension into the strip $|\text{Im } z| \leq c$, $c > 0$ in the complex plane (see, e.g., [1, p. 141]), i.e., are the classes of analytic functions. For
Begin with the classes $C^{\alpha,r}_{\beta,p}$ consisting of functions regular on the whole complex plane, i.e., of entire functions (see, e.g., [1, p. 131]). Besides, it follows from the theorem 1 in [3] that for any $r > 0$ the embedding holds $C^{\alpha,r}_{\beta,p} \subset J_1/r$, where $J_a, a > 0$, are known Gevrey classes

$$J_a = \left\{ f \in D_{\infty} : \sup_{k \in \mathbb{N}} \left\| f^{(k)} \right\|_{C, k!^a}^{1/k} < \infty \right\}.$$

Approximation properties of classes of generalized Poisson integrals $C^{\alpha,r}_{\beta,p}$ in metrics of spaces $L_s, 1 \leq s \leq \infty$, were considered in [4]–[12] from the viewpoint of order or asymptotic estimates for approximations by Fourier sums, best approximations and widths.

In the present paper we obtain asymptotic equalities as $n \to \infty$ for the quantities

$$E_n(C^{\alpha,r}_{\beta,p})_C = \sup_{f \in C^{\alpha,r}_{\beta,p}} \left\| f(\cdot) - S_{n-1}(f; \cdot) \right\|_{C, r > 0, \alpha > 0, 1 \leq p \leq \infty},$$

where $S_{n-1}(f; \cdot)$ are the partial Fourier sums of order $n - 1$ for a function f.

Approximation by Fourier sums on other classes of differentiable functions in uniform metric were investigated in works [1], [13]–[17].

Nikol’skii [14, p. 221] considered the case $r = 1, p = \infty$ and established that following asymptotic equality is true

$$E_n(C^{\alpha,1}_{\beta,\infty})_C = e^{-\alpha n} \left(\frac{8}{\pi^2} K(e^{-\alpha}) + O(1)n^{-1} \right),$$

where

$$K(q) := \int_0^q \frac{dt}{\sqrt{1 - q^2 \sin^2 t}}, q \in (0, 1),$$

is a complete elliptic integral of the first kind, and $O(1)$ is a quantity uniformly bounded in parameters n and β.

Later, the equality (3) was clarified by Stechkin [18, p. 139], who established the asymptotic formula

$$E_n(C^{\alpha,1}_{\beta,\infty})_C = e^{-\alpha n} \left(\frac{8}{\pi^2} K(e^{-\alpha}) + O(1) \frac{e^{-\alpha}}{(1 - e^{-\alpha})n} \right), \quad \alpha > 0, \beta \in \mathbb{R},$$

where $O(1)$ is a quantity uniformly bounded in all analyzed parameters.

In work [10] for $r = 1$ and arbitrary values of $1 \leq p \leq \infty$ for quantities $E_n(C^{\alpha,r}_{\beta,p})_C, \alpha > 0, \beta \in \mathbb{R}$, the following equality was established

$$E_n(C^{\alpha,1}_{\beta,p})_C = e^{-\alpha n} \left(\frac{2}{\pi^{1 + 1/p}} \| \cos t \|_{p'} K(p', e^{-\alpha}) + O(1) \frac{e^{-\alpha}}{n(1 - e^{-\alpha})s(p)} \right), \quad \alpha > 0, \beta \in \mathbb{R},$$

where $p' = \frac{p}{p-1},$

$$s(p) := \begin{cases} 1, & p = \infty, \\ 2, & p \in [1, 2) \cup (2, \infty), \\ -\infty, & p = 2, \end{cases}$$
\[
K(p', q) := \frac{1}{2^{1-p'}} \left\| (1 - 2q \cos t + q^2)^{-\frac{1}{2}} \right\|_{2^{p'}}, \quad q \in (0, 1),
\]
and \(O(1)\) is a quantity uniformly bounded in \(n, p, \alpha\) and \(\beta\). For \(p = \infty\), by virtue of the known equality \(K(1, q) = K(q)\), the estimate (5) coincides with the estimate (4).

Note that for \(p = 2\) and \(r = 1\) formula (5) becomes the equality

\[
E_n(C_{\beta, 2}^{\alpha, 1}C) = \frac{1}{\sqrt{\pi(1-e^{-2\alpha})}} e^{-\alpha n}, \quad \alpha > 0, \quad \beta \in \mathbb{R}, \quad n \in \mathbb{N},
\]
(see [10]). Moreover, it follows from [19] that for \(p = 2\) and \(r > 0\) for the quantities \(E_n(C_{\beta, 2}^{\alpha, r})\) the equalities take place

\[
E_n(C_{\beta, 2}^{\alpha, r}) = \frac{1}{\sqrt{\pi}} \left(\sum_{k=n}^{\infty} e^{-2\alpha k^r} \right)^{\frac{1}{2}}, \quad \alpha > 0, \quad \beta \in \mathbb{R}, \quad n \in \mathbb{N}. \tag{6}
\]

In the case of \(r > 1\) and \(p = \infty\) the asymptotic equalities for the quantities \(E_n(C_{\beta, p}^{\alpha, r})\), \(\alpha > 0, \quad \beta \in \mathbb{R}\), were obtained by Stepanets [20, Chapter 3, Section 9], who showed that for any \(n \in \mathbb{N}\)

\[
E_n(C_{\beta, \infty}^{\alpha, r}) = \left(\frac{4}{\pi} + \gamma_n \right) e^{-\alpha n^r}, \tag{7}
\]
where

\[
|\gamma_n| < 2 \left(1 + \frac{1}{\alpha r n^{r-1}} \right) e^{-\alpha n^{r-1}}.
\]

Later Telyakovskii [6] established the asymptotic equality

\[
E_n(C_{\beta, \infty}^{\alpha, r}) = \frac{4}{\pi} e^{-\alpha n^r} + O(1) \left(e^{-\alpha(2n+1)\rho} + \left(1 + \frac{1}{\alpha r(n+2)^r} \right) e^{-\alpha(n+2)^r} \right), \tag{8}
\]
where \(O(1)\) is a quantity uniformly bounded in all analyzed parameters. Formula (8) contains more exact estimate of remainder in asymptotic decomposition of the quantity \(E_n(C_{\beta, p}^{\alpha, r})\) comparing with the estimate (7).

For \(r > 1\) and for arbitrary values of \(1 \leq p \leq \infty\) the asymptotic equalities for the quantities \(E_n(C_{\beta, p}^{\alpha, r})\), \(\alpha > 0, \quad \beta \in \mathbb{R}\), are found in [10] and have the form

\[
E_n(C_{\beta, p}^{\alpha, r}) = e^{-\alpha n^r} \left(\frac{\|\cos t\|_{2^{p'}}}{\pi} + O(1) \left(1 + \frac{1}{\alpha r n^{r-1}} \right) e^{-\alpha n^{r-1}} \right), \tag{9}
\]
where \(O(1)\) is a quantity uniformly bounded in all analyzed parameters. For \(p = \infty\) the formula (9) follows from (7) and (8).

Concerning the case \(0 < r < 1\), except the presented above case \(p = 2\), asymptotic equalities for quantities \(E_n(C_{\beta, p}^{\alpha, r})\), \(\alpha > 0, \quad \beta \in \mathbb{R}\), were known only for \(p = \infty\) due to the work of Stepanets [21], who showed that

\[
E_n(C_{\beta, \infty}^{\alpha, r}) = \frac{4}{\pi^2} e^{-\alpha n^r} \ln n^{1-r} + O(1) e^{-\alpha n^r}, \tag{10}
\]
where \(O(1)\) is a quantity uniformly bounded in \(n\) and \(\beta\).
In case of $0 < r < 1$ and $1 \leq p < \infty$ the following order estimates for quantities $E_n(C^{\alpha,r}_{\beta,p})$, $\alpha > 0$, $\beta \in \mathbb{R}$, hold (see, e.g., [8], [11])

$$E_n(C^{\alpha,r}_{\beta,p}) \lesssim e^{-\alpha n^r} \frac{1-r}{n^p}. \quad (11)$$

We remark that for $0 < r < 1$ and $1 \leq p < \infty$ Fourier sums provide the order of best approximations of classes $C^{\alpha,r}_{\beta,p}$, $\alpha > 0$, $\beta \in \mathbb{R}$, in uniform metric, i.e. (see, e.g., [11], [12])

$$E_n(C^{\alpha,r}_{\beta,p}) \lesssim E_n(C^{\alpha,r}_{\beta,p}) \lesssim e^{-\alpha n^r} \frac{1-r}{n^p},$$

where

$$E_n(C^{\alpha,r}_{\beta,p}) = \sup_{f \in C^{\alpha,r}_{\beta,p}} \inf_{t_{n-1} \in \mathcal{T}_{2n-1}} \|f - t_{n-1}\|_C,$$

and \mathcal{T}_{2n-1} is the subspace of all trigonometric polynomials t_{n-1} of degree not higher than $n - 1$.

Besides, as follows from Temlyakov’s work [8] for $2 \leq p < \infty$ quantities of approximations by Fourier sums realize order of the linear widths λ_{2n} (definition of λ_m see, e.g., [22, Chapter 1, Section 1.2]) of the classes $C^{\alpha,r}_{0,p}$, i.e.

$$\lambda_{2n}(C^{\alpha,r}_{0,p}, C) \asymp E_n(C^{\alpha,r}_{\beta,p}).$$

In this paper we establish asymptotically sharp estimates of the quantities $E_n(C^{\alpha,r}_{\beta,p})$, $\alpha > 0$, $\beta \in \mathbb{R}$, for any $0 < r < 1$ and $1 \leq p \leq \infty$. In particular, it is proved, that for $r \in (0,1)$, $\alpha > 0$, $\beta \in \mathbb{R}$ and $1 < p \leq \infty$ as $n \to \infty$ the following asymptotic equality takes place

$$E_n(C^{\alpha,r}_{\beta,p}) = e^{-\alpha n^r} \frac{1-r}{n^p} \left(\frac{\| \cos t \|_{L^p}^p}{\pi^{1+\frac{1}{p}}(\alpha r)^\frac{1}{p}} \left(\int_0^\infty \frac{dt}{(t^2 + 1)^{\frac{1}{p}}} \right)^\frac{1}{p} + O(1) \left(\frac{1}{n^{1-r(p'-1)}} + \frac{1}{n^r} + \frac{1}{n^{\frac{1}{p}}} \right) \right), \quad (12)$$

where $\frac{1}{p} + \frac{1}{p'} = 1$, and $O(1)$ is a quantity uniformly bounded with respect to n and β. Herewith, in this paper we found the estimates for remainder in (12), which are expressed via the parameters of the problem α, r, p in the explicit form and that can be used for practical application.

2. Formulation of main results. For arbitrary $\nu > 0$ and $1 \leq s \leq \infty$ assume

$$J_s(\nu) := \left\| \frac{1}{\sqrt{t^2 + 1}} \right\|_{L_s[0,\nu]}, \quad (13)$$

where

$$\|f\|_{L_s[a,b]} = \begin{cases} \left(\int_a^b |f(t)|^s \, dt \right)^\frac{1}{s}, & 1 \leq s < \infty, \\ \text{ess sup}_{t \in [a,b]} |f(t)|, & s = \infty. \end{cases}$$
Also for $\alpha > 0$, $r \in (0, 1)$ and $1 \leq p \leq \infty$ we denote by $n_0 = n_0(\alpha, r, p)$ the smallest integer n such that

$$\frac{1}{\alpha r} \frac{1}{n^r} + \frac{\alpha r \chi(p)}{n^{1-r}} \leq \left\{ \begin{array}{ll} \frac{1}{\pi^r}, & p = 1, \\ \frac{1}{(3\alpha)^r}, & 1 < p < \infty, \\ \frac{1}{(3\alpha)^r}, & p = \infty, \end{array} \right. \quad (14)$$

where $\chi(p) = p$ for $1 \leq p < \infty$ and $\chi(p) = 1$ for $p = \infty$.

With the notations introduced above, the main result of this paper is formulated in the following statement:

Theorem 1. Let $0 < r < 1$, $1 \leq p \leq \infty$, $\alpha > 0$ and $\beta \in \mathbb{R}$. Then for $n \geq n_0(\alpha, r, p)$ the following estimate is true

$$E_n(C^\alpha_{\beta,p}) = e^{-\alpha n^r} n^{\frac{1-r}{r}} \left(\frac{\| \cos t \|^p_{r'}}{\pi^{(1+r)^{-1}} (\alpha r)^{\frac{1}{r'}}} \right)^{\frac{1}{p'}} \int_0^\infty \frac{dt}{(t^2 + 1)^{\frac{p'}{2}}} +
\gamma(1)_{n,p} \left(\frac{1}{\pi \alpha r} \right)^{\frac{1}{p'}} \left(\frac{\chi(p)}{n^{1-r}} \right)^{\frac{1}{p'}} \left(\frac{1}{n^{1-r}} \right), \quad (15)$$

where $\frac{1}{p'} + \frac{1}{p'} = 1$, and the quantity $\gamma(1)_{n,p} = \gamma(1)_{n,p}(\alpha, r, \beta)$ is such that $|\gamma(1)_{n,p}| \leq (14\pi)^2$.

Now we present some corollaries of theorem 1.

For $1 < p < \infty$ theorem 1 yields the following statement:

Theorem 2. Let $0 < r < 1$, $1 \leq p < \infty$, $\alpha > 0$ and $\beta \in \mathbb{R}$. Then for $1 < p < \infty$ and $n \geq n_0(\alpha, r, p)$ the following estimate is true

$$E_n(C^\alpha_{\beta,1}) = e^{-\alpha n^r} n^{1-r} \left(\frac{1}{\pi \alpha r} \right)^{\frac{1}{p'}} \left(\frac{\chi(p)}{n^{1-r}} \right)^{\frac{1}{p'}} \left(\frac{1}{n^{1-r}} \right), \quad (17)$$

where $\frac{1}{p'} + \frac{1}{p'} = 1$, and the quantity $\gamma(2)_{n,p} = \gamma(2)_{n,p}(\alpha, r, \beta)$ is such that $|\gamma(2)_{n,p}| \leq (14\pi)^2$.

Proof of the theorem 2. According to theorem 1 the following estimate is true for all $1 < p < \infty$, $0 < r < 1$, $\alpha > 0$, $\beta \in \mathbb{R}$ and $n \geq n_0(\alpha, r, p)$

$$E_n(C^\alpha_{\beta,p}) = e^{-\alpha n^r} n^{\frac{1-r}{r}} \left(\frac{\| \cos t \|^p_{r'}}{\pi^{(1+r)^{-1}} (\alpha r)^{\frac{1}{r'}}} \right)^{\frac{1}{p'}} \int_0^\infty \frac{dt}{(t^2 + 1)^{\frac{p'}{2}}} +
\gamma(1)_{n,p} \left(\frac{1}{\pi \alpha r} \right)^{\frac{1}{p'}} \left(\frac{\chi(p)}{n^{1-r}} \right)^{\frac{1}{p'}} \left(\frac{1}{n^{1-r}} \right), \quad (18)$$
where \(\frac{1}{p} + \frac{1}{p'} = 1 \), and the quantity \(\gamma_n^{(1)}_{\alpha,p} = \gamma_n^{(1)}(\alpha,p) \) is such that \(|\gamma_n^{(1)}| \leq (14\pi)^2 \).

By applying the Lagrange theorem, for \(n \geq n_0(\alpha,r,p) \) we obtain

\[
\left(\int_0^{\infty} \frac{dt}{(t^2 + 1)^{\frac{1}{2}}} \right)^{\frac{1}{p'}} - \left(\int_0^{\infty} \frac{dt}{(t^2 + 1)^{\frac{1}{2}}} \right)^{\frac{1}{p'} - 1} \int_0^{\infty} \frac{dt}{(t^2 + 1)^{\frac{1}{2}}} \leq \frac{1}{p'} \int_0^{\infty} \frac{dt}{(t + 1)^{\frac{1}{p'}}} \int_0^{\infty} \frac{dt}{(t + 1)^{\frac{1}{p'}}} = \frac{1}{p'} (p' - 1) \left(1 - \left(\frac{\pi n^{1-r}}{\alpha r} + 1 \right)^{1-p'} \right) \left(\frac{\alpha r}{\pi n^{1-r}} \right)^{p'-1} \leq \frac{1}{p'} (p' - 1) \left(1 - \left(\frac{27\pi^4 p^2}{p - 1} + 1 \right)^{1-p'} \right) \left(\frac{\alpha r}{\pi n^{1-r}} \right)^{p'-1} = \frac{1}{p' - 1} \left(\frac{\alpha r}{\pi n^{1-r}} \right)^{p'-1} \left(p - 1 \right) \left(\frac{p^2}{p - 1} + 1 \right)^{1-p'} \left(\frac{1}{\pi n^{1-r}} \right)^{p'-1} < 2.
\]

It can be shown that

\[
\frac{p - 1}{p} \left(1 - \left(\frac{27\pi^4 p^2}{p - 1} + 1 \right)^{1-p} \right)^{-\frac{1}{p}} < 2.
\]

As follows from (19)

\[
\left(\int_0^{\infty} \frac{dt}{(t^2 + 1)^{\frac{1}{2}}} \right)^{\frac{1}{p'}} = \left(\int_0^{\infty} \frac{dt}{(t^2 + 1)^{\frac{1}{2}}} \right)^{\frac{1}{p'}} + \Theta_{\alpha,r,p,n}^{(1)}(\frac{\alpha r}{\pi n^{1-r}})^{p'-1} \left(\frac{\alpha r}{\pi n^{1-r}} \right)^{p'-1} < 2.
\]

From relations

\[
\left(\int_0^{\infty} \frac{dt}{(t^2 + 1)^{\frac{1}{2}}} \right)^{\frac{1}{p'}} \left(\int_0^{\infty} \frac{dt}{(t^2 + 1)^{\frac{1}{2}}} \right)^{\frac{1}{p'}} < \left(1 + \int_1^{\infty} \frac{dt}{t^{p'}} \right)^{\frac{1}{p'}} < p^{\frac{1}{p'}}
\]

and formulas (18) and (20) we obtain (16).

Formula (17) can be obtained from the equality (15) as consequence of substitution \(p = 1 \) and elementary transformations. Theorem 2 is proved.

The following statement follows from the theorem 2 in the case \(p = 2 \).

Corollary 1. Let \(0 < r < 1, \alpha > 0 \) and \(\beta \in \mathbb{R} \). Then for \(n \geq n_0(\alpha,r,2) \) the following estimate is true

\[
\mathcal{E}_n(C_{\beta,2}^{\alpha,r}) C = \frac{e^{-\alpha n^r}}{\sqrt{2\pi\alpha r}} n^{\frac{1}{p'}} \left(1 + \gamma_n^{(1)}(\frac{1}{\alpha r} n^r + \sqrt{\alpha r}) \right),
\]

(22)
where the quantity $\gamma_n^{(1)} = \gamma_n^{(1)}(\alpha, r, \beta)$ is such that $|\gamma_n^{(1)}| \leq 392\pi^{\frac{5}{2}}$.

Proof of the corollary 1. Indeed, setting $p = p' = 2$ in the equality (16), we obtain for $n \geq n_0(\alpha, r, 2)$

$$
\mathcal{E}_n(C_{\beta, 2}^\alpha) = e^{-\alpha n} n^{\frac{1-r}{2}} \left(\frac{\| \cos t \|_2}{\pi \frac{3}{2} (\frac{1}{3})^{\frac{1}{2}}} \left(\int_0^\infty \frac{dt}{t^2 + 1} \right)^{\frac{1}{2}} +
\right.

\left. + \gamma_n^{(2)}(\frac{\sqrt{\alpha r}}{n^{1-r}} + \sqrt{\frac{2}{\alpha r} \frac{1}{n^{1-r}}} + \sqrt{\frac{\alpha r}{n^{1-r}}}) \right) =

\frac{e^{-\alpha n}}{\sqrt{2\pi \alpha r} n^{\frac{1-r}{2}}} \left(1 + \gamma_n^{(2)}(\frac{\sqrt{2 \alpha r}}{n^{1-r}} + \frac{1}{\alpha r} \frac{1}{n^{1-r}} + \frac{\alpha r}{n^{1-r}}) \right).
$$

(23)

According to (14) for $n \geq n_0(\alpha, r, 2)$

$$\frac{\sqrt{\alpha r}}{n^{1-r}} \leq \frac{1}{2(3\pi)^{\frac{1}{2}}},$$

therefore

$$\left(\frac{\alpha r}{n^{1-r}} + \sqrt{\frac{2}{\alpha r} \frac{1}{n^{1-r}}} + \sqrt{\frac{\alpha r}{n^{1-r}}} \right) \leq \sqrt{2} \left(\frac{1}{\alpha r} \frac{1}{n^{1-r}} + \sqrt{\frac{\alpha r}{n^{1-r}}} \right).$$

(24)

From (23) and (24) we have (22). Corollary 1 is proved.

However, it is possible to obtain more exact estimate than (22) on the basis of equality (6). Namely, for $\alpha > 0$, $r \in (0, 1)$, $\beta \in \mathbb{R}$ and $n \geq n_0(\alpha, r, 2)$ the following estimate is true

$$
\mathcal{E}_n(C_{\beta, 2}^\alpha) = e^{-\alpha n} n^{\frac{1-r}{2}} \left(1 + \gamma_n^{(2)}(\frac{1}{2\alpha r} \frac{1}{n^{1-r}} + \frac{\alpha r}{n^{1-r}}) \right),
$$

(25)

where the quantity $\gamma_n^{(2)} = \gamma_n^{(2)}(\alpha, r)$ is such that $|\gamma_n^{(2)}| \leq \sqrt{\frac{54\pi^3}{54\pi^3 - 1}}$. In order to prove (25) we use the following estimate, which will be useful in what follows.

Let $\gamma > 0$, $r > 0$, $m \geq 1$ and $\delta \in \mathbb{R}$. Then for $m \geq \left(\frac{14|\delta + 1 - r|}{\gamma r} \right)^{\frac{1}{2}},$ the estimate takes place

$$
\int_m^\infty e^{-\gamma t^r} t^\delta dt = \frac{e^{-\gamma m^r}}{\gamma r} m^{\delta + 1 - r} \left(1 + \Theta_{\gamma, m} \left(\frac{\Delta + 1 - r}{\gamma r} \frac{1}{m^r} \right) \right), \quad |\Theta_{\gamma, m}| \leq \frac{14}{13}.
$$

(26)

Indeed, integrating by parts, we obtain

$$
\int_m^\infty e^{-\gamma t^r} t^\delta dt = \frac{e^{-\gamma m^r}}{\gamma r} m^{\delta + 1 - r} + \frac{\Delta + 1 - r}{\gamma r} \int_m^\infty e^{-\gamma t^r} t^{-r+\delta} dt.
$$

(27)

Since

$$
\int_m^\infty e^{-\gamma t^r} t^{-r+\delta} dt = \frac{\Theta_{\gamma, m}}{m^r} \int_m^\infty e^{-\gamma t^r} t^\delta dt, \quad 0 < \Theta_{\gamma, m} < 1,
$$

(28)
by virtue of (27) for $m \geq \left(\frac{14|\delta+1-r|}{\gamma r}\right)^{\frac{1}{2}}$ we have

$$\int_{m}^{\infty} e^{-\gamma t^r} t^\delta dt \leq \frac{e^{-\gamma m^r}}{\gamma r} m^{\delta+1-r} + \frac{1}{14} \int_{m}^{\infty} e^{-\gamma t^r} t^\delta dt,$$

whence

$$\int_{m}^{\infty} e^{-\gamma t^r} t^\delta dt \leq \frac{14e^{-\gamma m^r}}{13\gamma r} m^{\delta+1-r}. \quad (29)$$

The estimate (26) follows from (27)–(29).

From the equality (6) and relation

$$\int_{n}^{\infty} \xi(u) du < \sum_{j=n}^{\infty} \xi(j) < \int_{n}^{\infty} \xi(u) du + \xi(n), \quad (30)$$

which takes place for any positive and decreasing function $\xi(u), u \geq 1$, such that $\int_{n}^{\infty} \xi(u) du < \infty$, we get

$$\mathcal{E}_n(C_{\beta,2}^{\alpha,r}) = \frac{1}{\sqrt{\pi}} \left(\int_{n}^{\infty} e^{-2\alpha t^r} dt + \Theta_{\alpha,r,n}^{(1)} e^{-2\alpha n^r} \right)^{\frac{1}{2}} < 1. \quad (31)$$

In order to estimate the integral $\int_{n}^{\infty} e^{-2\alpha t^r} dt$ it suffices to use the equality (26) for $\gamma = 2\alpha, \delta = 0, m = n$ and $r \in (0,1)$. Then, taking into account that $n_0(\alpha, r, 2) > \left(\frac{7(1-r)}{\alpha r}\right)^{\frac{1}{2}}$, for $n \geq n_0(\alpha, r, 2)$ from (26) and (31) we get

$$\mathcal{E}_n(C_{\beta,2}^{\alpha,r}) = \frac{1}{\sqrt{\pi}} \left(\frac{e^{-2\alpha n^r}}{2\alpha r} n^{1-r} \left(1 + \Theta_{\alpha,r,n}^{(1)} \right) \right)^{\frac{1}{2}} =$$

$$= \frac{e^{-\alpha n^r}}{\sqrt{2\pi \alpha r}} n^{\frac{1-r}{2}} \left(1 + \Theta_{\alpha,r,n}^{(2)} \right)^{\frac{1}{2}}, \quad |\Theta_{\alpha,r,n}^{(2)}| \leq 2. \quad (32)$$

Since for $n > n_0(\alpha, r, 2)$

$$\left| \left(1 + \Theta_{\alpha,r,n}^{(2)} \right)^{\frac{1}{2}} - 1^{\frac{1}{2}} \right| \leq$$

$$\leq \frac{1}{\sqrt{1 - \left(\frac{1}{\alpha n^r} + \frac{2\alpha r}{n^{1-r}} \right)}} \left(\frac{1}{2\alpha r} \frac{1}{n^{1-r}} + \frac{\alpha r}{n^{1-r}} \right) \leq \sqrt{\frac{54\pi^3}{54\pi^3 - 1}} \left(\frac{1}{2\alpha r} \frac{1}{n^{1-r}} + \frac{\alpha r}{n^{1-r}} \right),$$

then (25) follows from (32).

In the case of $p = \infty$ theorem 1 allows to clarify the asymptotic equality (10).
We set \(n_1 = n_1(\alpha, r) \) be the smallest number \(n \) such that
\[
\frac{1}{\alpha r n^r} \left(1 + \ln \left(\frac{\pi n^{1-r}}{\alpha r} \right) \right) + \frac{\alpha r}{n^{1-r}} \leq \frac{1}{(3\pi)^3}. \tag{33}
\]

The following assertion takes place.

Theorem 3. Let \(0 < r < 1, \alpha > 0 \) and \(\beta \in \mathbb{R} \). Then for \(n \geq n_1(\alpha, r) \) the following estimate is true
\[
\mathcal{E}_n(C_{\alpha, r, \beta}^l)_{C} = \frac{4}{\pi^2} e^{-\alpha n^r} \ln \left(\frac{\pi n^{1-r}}{\alpha r} \right) + \gamma_{n, \infty}^{(2)} e^{-\alpha n^r}, \tag{34}
\]
where the quantity \(\gamma_{n, \infty}^{(2)} = \gamma_{n, \infty}^{(2)}(\alpha, r, \beta) \) is such that \(|\gamma_{n, \infty}^{(2)}| \leq 20\pi^4 \).

Proof of the theorem 3. From definitions \((33)\) and \((14)\) it follows that
\[
n_1(\alpha, r) > n_0(\alpha, r, \infty). \tag{35}
\]
So, applying the equality \((15)\) for \(p = \infty \left(p' = 1 \right) \), we get for \(n \geq n_1(\alpha, r) \)
\[
\mathcal{E}_n(C_{\alpha, r}^{\alpha, r, \beta})_{C} = e^{-\alpha n^r} \left(\frac{4}{\pi^2} \int_{0}^{\pi} \frac{dt}{\sqrt{t^2 + 1}} + \gamma_{n, \infty}^{(1)} \left(\frac{1}{\alpha r n^r} \int_{0}^{\pi} \frac{dt}{\sqrt{t^2 + 1}} + 1 \right) \right). \tag{36}
\]
Since
\[
\int_{0}^{\pi} \frac{dt}{\sqrt{t^2 + 1}} = \int_{1}^{\pi} \frac{dt}{t} + \left(\int_{0}^{1} \frac{dt}{\sqrt{t^2 + 1}} - \int_{1}^{\pi} \frac{dt}{t} \right) = \ln \left(\frac{\pi n^{1-r}}{\alpha r} \right) + \Theta_{\alpha, r, n}^{(3)}, \quad 0 < \Theta_{\alpha, r, n}^{(3)} < 1,
\]
by virtue of \((35)\) and \((36)\) for \(n \geq n_1(\alpha, r) \)
\[
\mathcal{E}_n(C_{\alpha, r}^{\alpha, r, \beta})_{C} = e^{-\alpha n^r} \left(\frac{4}{\pi^2} \ln \left(\frac{\pi n^{1-r}}{\alpha r} \right) + \frac{4}{\pi^2} \Theta_{\alpha, r, n}^{(3)} + \gamma_{n, \infty}^{(1)} \left(\frac{1}{\alpha r n^r} \ln \left(\frac{\pi n^{1-r}}{\alpha r} \right) + \Theta_{\alpha, r, n}^{(3)} + 1 \right) \right). \tag{37}
\]
The results of our calculations show that for \(n \geq n_1(\alpha, r) \)
\[
\frac{4}{\pi^2} \Theta_{\alpha, r, n}^{(3)} + |\gamma_{n, \infty}^{(1)}| \left(\frac{1}{\alpha r n^r} \ln \left(\frac{\pi n^{1-r}}{\alpha r} \right) + \Theta_{\alpha, r, n}^{(3)} + 1 \right) \leq 20\pi^4, \quad \tag{38}
\]
and therefore, in view of \((37)\) and \((38)\) we obtain \((34)\). Theorem 3 is proved.

3. Proof of the theorem 1. According to \((1)\) and \((2)\) we have
\[
\mathcal{E}_n(C_{\alpha, r, \beta}^{\alpha, r, \beta})_{C} = \frac{1}{\pi} \sup_{\varphi \in B_p} \left\| \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} P_{\alpha, r, \beta}^{(n)}(x-t)\varphi(t)dt \right\|_{C}, \quad 1 \leq p \leq \infty, \tag{39}
\]
where

$$P_{\alpha,r,\beta}^{(n)}(t) := \sum_{k=n}^{\infty} e^{-\alpha k r} \cos \left(kt - \frac{\beta \pi}{2} \right), \quad 0 < r < 1, \quad \alpha > 0, \quad \beta \in \mathbb{R}. \quad (40)$$

Taking into account the invariance of the sets B_{p}^{0}, $1 \leq p \leq \infty$, under shifts of the argument, from (39) we conclude that

$$\mathcal{E}_{n}(C_{\beta,p}^{0}) = \frac{1}{\pi} \sup_{\varphi \in B_{p}^{0}} \int_{-\pi}^{\pi} P_{\alpha,r,\beta}^{(n)}(t) \varphi(t) dt. \quad (41)$$

On the basis of the duality relation (see, e.g., [22, Chapter 1, Section 1.4])

$$\sup_{\varphi \in B_{p}^{0}} \int_{-\pi}^{\pi} P_{\alpha,r,\beta}^{(n)}(t) \varphi(t) dt = \inf_{\lambda \in \mathbb{R}} \| P_{\alpha,r,\beta}^{(n)}(t) - \lambda \|_{p'}, \quad \frac{1}{p} + \frac{1}{p'} = 1. \quad (42)$$

In order to find the estimate for the quantity $\inf_{\lambda \in \mathbb{R}} \| P_{\alpha,r,\beta}^{(n)}(t) - \lambda \|_{p'}$ we use the following assertion, proof of which will be presented later.

Lemma 1. Let $1 \leq s \leq \infty$, 2π–periodic functions $g(t)$ and $h(t)$ have finite derivatives and satisfy the conditions:

$$r(t) := \sqrt{g^2(t) + h^2(t)} \neq 0, \quad (43)$$

$$M := \sup_{t \in \mathbb{R}} \frac{\sqrt{(g'(t))^2 + (h'(t))^2}}{\sqrt{g^2(t) + h^2(t)}} < \infty. \quad (44)$$

Then for the function

$$\phi(t) = g(t) \cos(nt + \gamma) + h(t) \sin(nt + \gamma), \quad \gamma \in \mathbb{R}, \quad n \in \mathbb{N}, \quad (45)$$

for all numbers $n \geq \begin{cases} 4\pi s M, & 1 \leq s < \infty, \\ 1, & s = \infty, \end{cases}$ the following estimates take place

$$\| \phi \|_{s} = \| r \|_{s} \left(\frac{\| \cos t \|_{s}}{(2\pi)^{\frac{s}{2}}} + \delta_{s,n}^{(1)} \frac{M}{n} \right), \quad (46)$$

$$\inf_{\lambda \in \mathbb{R}} \| \phi(t) - \lambda \|_{s} = \| r \|_{s} \left(\frac{\| \cos t \|_{s}}{(2\pi)^{\frac{s}{2}}} + \delta_{s,n}^{(2)} \frac{M}{n} \right), \quad (47)$$

$$\sup_{h \in \mathbb{R}} \frac{1}{2} \| \phi(t + h) - \phi(t) \|_{s} = \| r \|_{s} \left(\frac{\| \cos t \|_{s}}{(2\pi)^{\frac{s}{2}}} + \delta_{s,n}^{(3)} \frac{M}{n} \right), \quad (48)$$

where

$$|\delta_{s,n}^{(i)}| < 14\pi, \quad i = 1,3. \quad (49)$$

We represent the function $P_{\alpha,r,\beta}^{(n)}(t)$, which is defined by formula (40), in the form

$$P_{\alpha,r,\beta}^{(n)}(t) = g_{\alpha,r,n}(t) \cos \left(nt - \frac{\beta \pi}{2} \right) + h_{\alpha,r,n}(t) \sin \left(nt - \frac{\beta \pi}{2} \right), \quad (50)$$
where
\[g_{\alpha,r,n}(t) := \sum_{k=0}^{\infty} e^{-\alpha(k+n)r} \cos kt, \] (51)
\[h_{\alpha,r,n}(t) := -\sum_{k=0}^{\infty} e^{-\alpha(k+n)r} \sin kt. \] (52)

Let us show, that for functions \(g_{\alpha,r,n} \) and \(h_{\alpha,r,n} \) the following conditions are satisfied
\[\sqrt{g_{\alpha,r,n}(t)}^2 + h_{\alpha,r,n}(t)^2 \neq 0 \] (53)
and
\[M_n = M_n(\alpha; r) := \sup_{t \in \mathbb{R}} \sqrt{\left(g'_{\alpha,r,n}(t)\right)^2 + \left(h'_{\alpha,r,n}(t)\right)^2} < \infty. \] (54)

Since, for arbitrary \(\alpha > 0, \ 0 < r < 1 \) the sequence \(\{e^{-\alpha(k+n)r}\}_{k=0}^{\infty} \) is convex downwards, then (see, e.g., [23, Chapter 10, Section 2])
\[\frac{1}{2}e^{-\alpha n^r} + \sum_{k=1}^{\infty} e^{-\alpha(k+n)^r} \cos kt \geq 0, \] and
\[\sqrt{g_{\alpha,r,n}(t)}^2 + h_{\alpha,r,n}(t)^2 \geq \frac{1}{2}e^{-\alpha n^r} > 0. \] (55)

Further, since
\[g'_{\alpha,r,n}(t) = -\sum_{k=1}^{\infty} ke^{-\alpha(k+n)^r} \sin kt, \] (56)
\[h'_{\alpha,r,n}(t) = -\sum_{k=1}^{\infty} ke^{-\alpha(k+n)^r} \cos kt, \] (57)
it is clear that
\[\sqrt{(g'_{\alpha,r,n}(t))^2 + (h'_{\alpha,r,n}(t))^2} < \sum_{k=1}^{\infty} ke^{-\alpha(k+n)^r} < \infty. \] (58)

On the basis of (55) and (58), the functions \(g_{\alpha,r,n}(t) \) and \(h_{\alpha,r,n}(t) \) satisfy the conditions (53) and (54). Therefore, setting in lemma 1 \(g(t) = g_{\alpha,r,n}(t) \), \(h(t) = h_{\alpha,r,n}(t) \), \(s = p' \) and \(\gamma = -\frac{\beta\pi}{2} \), we get that for
\[n \geq \begin{cases} 4\pi p'M_n, & 1 \leq p' < \infty, \\ 1, & p' = \infty, \end{cases} \] (59)
the estimate takes place
\[\inf_{\lambda \in \mathbb{R}} \| P_{\alpha,r,\beta}^{(n)}(t) - \lambda \|_{p'} = \left\| \sqrt{(g_{\alpha,r,n}(t))^2 + (h_{\alpha,r,n}(t))^2} \right\|_{p'} \left(\frac{\| \cos t \|_{p'}}{(2\pi)^{\frac{1}{p'}}} + \delta_n \frac{M_n}{n} \right), \] (60)
where $\frac{1}{p'} + \frac{1}{p'} = 1$, quantity M_n is defined by equality (54), and the quantity $\delta_n^{(1)}(\alpha, r, \beta, p)$ is such that $|\delta_n^{(1)}| < 14 \pi$.

Setting

$$P_{\alpha, r, n}(t) := g_{\alpha, r, n}(t) - ih_{\alpha, r, n}(t) = \sum_{k=0}^{\infty} e^{-\alpha(k+n)r} e^{ikt},$$

we have

$$\sqrt{(g'_{\alpha, r, n}(t))^2 + (h'_{\alpha, r, n}(t))^2} = |P'_{\alpha, r, n}(t)|$$

and therefore

$$M_n = \sup_{t \in \mathbb{R}} \frac{|P'_{\alpha, r, n}(t)|}{|P_{\alpha, r, n}(t)|}.$$ \hfill (62)

Then, by virtue of the formulas (41), (42), (60) and (61), for all numbers n, which satisfy the condition (59), the estimate holds

$$\mathcal{E}_n(C_{\alpha, r, \beta, p}) = \|P_{\alpha, r, n}(t)\|_{p'} \left(\frac{\|\cos t\|_{p'}}{2^{1/p_1} \pi^{1/p_1}} \right) + \frac{\delta_n^{(2)}}{n}, 1 \leq p \leq \infty,$$

where M_n is defined by equality (62), and for the quantity $\delta_n^{(2)} = \delta_n^{(2)}(\alpha, r, \beta, p)$ is such that $|\delta_n^{(2)}| < 14$.

Since

$$|P_{\alpha, r, n}(t)|^2 = P_{\alpha, r, n}(t) \widetilde{P}_{\alpha, r, n}(t),$$

where

$$\widetilde{P}_{\alpha, r, n}(t) = g_{\alpha, r, n}(t) + ih_{\alpha, r, n}(t) = \sum_{k=0}^{\infty} e^{-\alpha(k+n)r} e^{-ikt},$$

by expanding the product $P_{\alpha, r, n} \widetilde{P}_{\alpha, r, n}$ in the Fourier series (see, e.g., [23, Chapter 1, Section 23]), we get

$$P_{\alpha, r, n}(t) \widetilde{P}_{\alpha, r, n}(t) = \left(\sum_{k=0}^{\infty} e^{-\alpha(k+n)r} e^{ikt}\right) \left(\sum_{k=-\infty}^{0} e^{-\alpha(-k+n)r} e^{ikt}\right) =$$

$$= \sum_{k=-\infty}^{\infty} \sum_{j=0}^{\infty} e^{-\alpha(j+n)r} e^{-\alpha(j+|k|+n)r} e^{ikt} =$$

$$= \sum_{j=n}^{\infty} e^{-2\alpha j'} + 2 \sum_{k=1}^{\infty} \sum_{j=n}^{\infty} e^{-\alpha j'} e^{-\alpha(j+k)r} \cos kt. \hfill (65)$$

Let convert the sum $\sum_{j=n}^{\infty} e^{-2\alpha j'} + 2 \sum_{k=1}^{\infty} \sum_{j=n}^{\infty} e^{-\alpha j'} e^{-\alpha(j+k)r} \cos kt$ with a help of Poisson summation formula.
Assertion 1 [24, Chapter 2, Section 2.8]. Let continuous function \(\phi(x) \) be a function of bounded variation in the interval \((0, \infty)\), \(\lim_{x \to \infty} \phi(x) = 0 \) and

\[
\int_0^\infty \phi(t) dt < \infty.
\]

Then the following equality takes place

\[
\sqrt{a} \left(\frac{\phi(0)}{2} + \sum_{k=1}^{\infty} \phi(ka) \right) = \sqrt{\frac{2\pi}{a}} \left(\frac{\Phi_c(0)}{2} + \sum_{k=1}^{\infty} \Phi_c\left(\frac{2\pi k}{a}\right) \right), \quad a > 0,
\]

where \(\Phi_c(x) \) is the Fourier cosine transform of the function \(\phi(x) \) of the form

\[
\Phi_c(x) = \sqrt{\frac{2}{\pi}} \int_0^\infty \phi(u) \cos xu \, du.
\]

Let fix \(t \in [-\pi, \pi] \), \(\alpha > 0 \), \(r \in (0, 1) \) and set

\[
\phi(x) = 2 \sum_{j=n}^{\infty} e^{-\alpha j^r} e^{-\alpha (j+x)^r} \cos xt, \quad x \geq 0
\]

and \(a = 1 \). One can easily check that all conditions of the assertion 1 are satisfied, and therefore, according to (66) we obtain

\[
\sum_{j=n}^{\infty} e^{-2\alpha j^r} + 2 \sum_{k=1}^{\infty} \sum_{j=n}^{\infty} e^{-\alpha j^r} e^{-\alpha (j+k)^r} \cos kt =
\]

\[
= 2 \int_0^\infty \sum_{j=n}^{\infty} e^{-\alpha j^r} e^{-\alpha (j+u)^r} \cos ut \, du +
\]

\[
+ 4 \sum_{k=1}^{\infty} \int_0^\infty \sum_{j=n}^{\infty} e^{-\alpha j^r} e^{-\alpha (j+u)^r} \cos ut \cos 2\pi k \, du =
\]

\[
= Q_n(t) + R_n(t),
\]

where

\[
Q_n(t) = Q_n(\alpha; r; t) := 2 \sum_{j=n}^{\infty} e^{-\alpha j^r} \int_0^\infty e^{-\alpha (j+u)^r} \cos ut \, du,
\]

\[
R_n(t) = R_n(\alpha; r; t) :=
\]

\[
= 2 \sum_{k=1}^{\infty} \sum_{j=n}^{\infty} e^{-\alpha j^r} \int_0^\infty e^{-\alpha (j+u)^r} \left(\cos((t - 2\pi k)u) + \cos((t + 2\pi k)u) \right) \, du.
\]
Hence, as a consequence of (64), (65) and (67)
\[|\mathcal{P}_{\alpha,r,n}(t)|^2 = Q_n(t) + R_n(t). \] (70)

Denote by \(n_2 = n_2(\alpha, r, p) \) the smallest number \(n \) such that
\[\frac{1}{\alpha r} \frac{1}{n^r} + \frac{\alpha r \chi(p)}{n^{1-r}} \leq \frac{1}{14}, \] (71)
where
\[\chi(p) = \begin{cases} p, & 1 \leq p < \infty, \\ 1, & p = \infty, \end{cases} \]
and let us show that for the quantity \(Q_n(t) \) for \(n \geq n_2(\alpha, r, p) \) and arbitrary \(t \in [-\pi, \pi] \) the following estimate takes place
\[Q_n(t) = \frac{e^{-2\alpha r}}{t^2 + (\alpha rn^{r-1})^2} \left(1 + \Theta_{\alpha,r,n}^{(4)}(t) \left(\frac{1 - r}{\alpha r} \frac{1}{n^r} + \frac{\alpha r}{n^{1-r}} \right) \right), \quad |\Theta_{\alpha,r,n}^{(4)}(t)| < 5. \] (72)

Integrating by parts, we find
\[\int e^{-\alpha(j+u)^r} \cos utdu = \]
\[= e^{-\alpha(j+u)^r} \frac{-\alpha(j+u)^{r-1} \cos ut + t \sin ut}{t^2 + (\alpha(j+u)^{r-1})^2} + \alpha(1 - r) \times \]
\[\times \int e^{-\alpha(j+u)^r} (j + u)^{r-2} \frac{(\alpha(j+u)^{r-1})^2 - t^2}{(t^2 + (\alpha(j+u)^{r-1})^2)^2} \cos ut - 2t\alpha(j+u)^{r-1} \sin ut \] du.

Hence, we obtain the equality
\[\int_0^\infty e^{-\alpha(j+u)^r} \cos utdu = \frac{\alpha r^{r-1}}{t^2 + (\alpha r^{r-1})^2} e^{-\alpha j^r} + \alpha(1 - r) \times \]
\[\times \int_0^\infty e^{-\alpha(j+u)^r} (j + u)^{r-2} \frac{(\alpha(j+u)^{r-1})^2 - t^2}{(t^2 + (\alpha(j+u)^{r-1})^2)^2} \cos ut - 2t\alpha(j+u)^{r-1} \sin ut \] du. \] (73)

It is easy to verify that
\[\left| \int_0^\infty e^{-\alpha(j+u)^r} (j + u)^{r-2} \frac{(\alpha(j+u)^{r-1})^2 - t^2}{(\alpha(j+u)^{r-1})^2 + t^2)^2} \cos ut - 2t\alpha(j+u)^{r-1} \sin ut \right| \]
\[\leq \int_0^\infty e^{-\alpha(j+u)^r} (j + u)^{r-2} \left(\frac{1}{t^2 + (\alpha(j+u)^{r-1})^2} + \frac{2t\alpha(j+u)^{r-1}}{(t^2 + (\alpha(j+u)^{r-1})^2)^2} \right) \] du \leq \]
\[\leq 2 \int_0^\infty e^{-\alpha(j+u)^r} \frac{(j + u)^{r-2}}{t^2 + (\alpha(j+u)^{r-1})^2} \] du. \] (74)
For fixed $\alpha > 0$, $r \in (0, 1)$ and $t \in [-\pi, \pi]$ the function $\frac{e^{-\alpha r}}{t^2 + (\alpha \cos^2 t)}$, $v \geq 1$ decreases. Besides, according to (29), for $\delta = 0$, $\gamma = \alpha$, $m = j$, $f \geq n_2(\alpha, r, p)$ the estimate takes place

$$
\int_0^\infty e^{-\alpha(j+u)^r} \frac{(j + u)^{r-2}}{t^2 + (\alpha(j + u)^{r-1})^2} du \leq \frac{j^{r-2}}{t^2 + (\alpha j^{r-1})^2} \int_0^\infty e^{-\alpha(j+u)^r} du = \frac{j^{r-2}}{t^2 + (\alpha j^{r-1})^2} \int_j^\infty e^{-\alpha u^r} du \leq \frac{14}{13} \frac{e^{-\alpha j^r}}{\alpha j(t^2 + (\alpha j^{r-1})^2)}. \tag{75}
$$

It follows from relations (73)–(75) that for $j \geq n_2(\alpha, r, p)$

$$
\int_0^\infty e^{-\alpha(j+u)^r} \cos^2(tu) du = \frac{\alpha j^{r-1}}{t^2 + (\alpha j^{r-1})^2} e^{-\alpha j^r} (1 + \Theta^{(5)}_{\alpha, r, j}(t) \frac{1 - r}{\alpha r} j^{r}), \quad |\Theta^{(5)}_{\alpha, r, j}(t)| \leq \frac{28}{13}. \tag{76}
$$

Therefore, taking into account (68), for $n \geq n_2(\alpha, r, p)$ we have

$$
Q_n(t) = 2\alpha r \sum_{j=n}^\infty \frac{e^{-2\alpha j^r} j^{r-1}}{t^2 + (\alpha j^{r-1})^2} \left(1 + \Theta^{(6)}_{\alpha, r, j}(t) \frac{1 - r}{\alpha r} \frac{1}{n^r}\right), \quad |\Theta^{(6)}_{\alpha, r, j}(t)| \leq \frac{28}{13}. \tag{77}
$$

Further, let us find bilateral estimates for the quantities $\sum_{j=n}^\infty \frac{e^{-2\alpha j^r} j^{r-1}}{t^2 + (\alpha j^{r-1})^2}$ for $n \geq n_2(\alpha, r, p)$. It can be shown that for fixed $\alpha > 0$, $r \in (0, 1)$ and $t \in [-\pi, \pi]$ the function $\xi(u) = \frac{e^{-2\alpha u^r} u^{r-1}}{t^2 + (\alpha u^r)^2}$ decreases for $u \geq n_2(\alpha, r, p)$. Therefore, on basis of (30)

$$
2\alpha r \sum_{j=n}^\infty \frac{e^{-2\alpha j^r} j^{r-1}}{t^2 + (\alpha j^{r-1})^2} = 2\alpha \int_n^\infty \frac{e^{-2\alpha u^r} u^{r-1}}{t^2 + (\alpha u^r)^2} du + \Theta^{(7)}_{\alpha, r, n}(t) \frac{\alpha r}{t^2 + (\alpha n^{r-1})^2} e^{-2\alpha n^r} n^{r-1}, \quad 0 \leq \Theta^{(7)}_{\alpha, r, n}(t) \leq 2. \tag{78}
$$

Integrating by parts, we have

$$
2\alpha \int_n^\infty \frac{e^{-2\alpha u^r} u^{r-1}}{t^2 + (\alpha u^r)^2} du = \frac{e^{-2\alpha n^r} n^{r-1}}{t^2 + (\alpha n^{r-1})^2} + 2(\alpha r)^2(1 - r) \int_n^\infty \frac{e^{-2\alpha u^r} u^{2r-3}}{(t^2 + (\alpha u^r)^2)^2} du. \tag{79}
$$

Since

$$
(\alpha r)^2 \int_n^\infty \frac{e^{-2\alpha u^r} u^{2r-3}}{(t^2 + (\alpha u^r)^2)^2} du \leq \int_n^\infty \frac{e^{-2\alpha u^r} u^{-1}}{t^2 + (\alpha u^r)^2} du \leq \int_n^\infty \frac{e^{-2\alpha u^r} u^{r-1}}{t^2 + (\alpha u^r)^2} du
$$
\[
\leq \frac{1}{n^r} \int_0^\infty \frac{e^{-2\alpha u} u^{r-1}}{t^2 + (\alpha u^{r-1})^2} du,
\]

(80)

it follows from (79) that for \(n \geq n_2(\alpha, r, p) \) the following inequalities are true

\[
\int_0^\infty \frac{e^{-2\alpha u} u^{r-1}}{t^2 + (\alpha u^{r-1})^2} du \leq \frac{1}{2\alpha r} \frac{e^{-2\alpha u r}}{t^2 + (\alpha u^{r-1})^2} + \frac{1 - r}{\alpha r} \int_0^\infty \frac{e^{-2\alpha u} u^{r-1}}{t^2 + (\alpha u^{r-1})^2} du \leq \frac{1}{2\alpha r} \frac{e^{-2\alpha u r}}{t^2 + (\alpha u^{r-1})^2} + \frac{1}{14} \int_0^\infty \frac{e^{-2\alpha u} u^{r-1}}{t^2 + (\alpha u^{r-1})^2} du.
\]

Hence, for \(n \geq n_2(\alpha, r, p) \)

\[
\int_0^\infty \frac{e^{-2\alpha u} u^{r-1}}{t^2 + (\alpha u^{r-1})^2} du \leq \frac{7}{13\alpha r} \frac{e^{-2\alpha u r}}{t^2 + (\alpha u^{r-1})^2}.
\]

(81)

From (79)–(81) for \(n \geq n_2(\alpha, r, p) \) we arrive at the following estimate

\[
2\alpha r \int_0^\infty \frac{e^{-2\alpha u} u^{r-1}}{t^2 + (\alpha u^{r-1})^2} du =
\]

\[
= \frac{e^{-2\alpha u r}}{t^2 + (\alpha u^{r-1})^2} \left(1 + \Theta_{a,r,n}^{(9)}(t) \frac{1 - r}{\alpha r} \frac{1}{n^r} \right), \quad 0 < \Theta_{a,r,n}^{(9)}(t) \leq \frac{14}{13}.
\]

It follows from formulas (78) and (82) that

\[
2\alpha r \sum_{j=n}^\infty \frac{e^{-2\alpha j r} j^{r-1}}{t^2 + (\alpha j^{r-1})^2} =
\]

\[
= \frac{e^{-2\alpha u r}}{t^2 + (\alpha u^{r-1})^2} \left(1 + \Theta_{a,r,n}^{(9)}(t) \left(\frac{1 - r}{\alpha r} \frac{1}{n^r} + \frac{\alpha r}{n^{1-r}}\right) \right),
\]

(83)

where \(n \geq n_2(\alpha, r, p) \) and \(0 < \Theta_{a,r,n}^{(9)}(t) \leq 2. \)

In view of (77) and (83) for all \(n \geq n_2(\alpha, r, p) \) we obtain (72). In particular, it follows from formulas (71) and (72) that

\[
Q_n(t) > 0, \quad t \in [-\pi, \pi], \quad n \geq n_2(\alpha, r, p).
\]

(84)

Let us find upper estimate for the quantity \(R_n(t) \) of the form (69). Denote by \(\mathfrak{M} \) the set of all convex downwards, continuous functions \(\psi(t) > 0, \quad t \geq 1, \) such that \(\lim_{t \to \infty} \psi(t) = 0. \) The following assertion takes place.
Lemma 2. Let $\psi \in M$. Then

$$0 < \int_0^\infty \psi(\tau + u) \cos vudu \leq \frac{\pi}{v^2}|\psi'(\tau)|, \quad \forall v \in \mathbb{R} \setminus \{0\}, \quad \tau \geq 1. \quad (85)$$

Proof of lemma 2. We use the scheme of the proof of the estimate (2.4.31) from the work [25, p. 93]. Let, e.g., consider the case $v > 0$. Using the method of integration by parts, we have

$$\int_0^\infty \psi(\tau + u) \cos vudu = -\frac{1}{v} \int_0^\infty \psi'(\tau + u) \sin vudu. \quad (86)$$

We set

$$I(x) = I(\psi; \tau; v; x) := -\int_x^\infty \psi'(j + u) \sin vudu, \quad x \geq 0, \quad v > 0, \quad \tau \in \mathbb{N}.$$

The function $I(x)$, obviously, is continuous for every fixed v, and on every interval between the consecutive zeros $u_m = \frac{\pi m}{v}$ and $u_{m+1} = \frac{\pi (m+1)}{v}$ of the function $\sin vu$ has one simple zero x_m. Existence of zeros x_m of the function $I(x)$ is a consequence of the Leibniz theorem on alternating series, and uniqueness of zero x_m on the interval (u_m, u_{m+1}) follows from the equality

$$\text{sign } I'(x) = -\text{sign } \sin xv, \quad x \in (u_m, u_{m+1}) \quad m \in \mathbb{Z}_+.$$

Let x_0 be the zero closest from the right to the point $x = 0$. It is obvious that

$$0 \leq x_0 \leq \frac{\pi}{v}.$$

Taking into account this fact and also monotone decreasing of the function $-\psi'(t)$ on the interval $[1, \infty)$, we have

$$-\frac{1}{v} \int_0^\infty \psi'(\tau + u) \sin vudu = \frac{1}{v} \int_0^{x_0} |\psi'(\tau + u)| \sin vudu \leq$$

$$\leq \frac{x_0}{v} \int_0^{\frac{\pi}{v}} |\psi'(\tau + u)| du \leq \frac{\pi}{v^2} |\psi'(\tau)|. \quad (87)$$

For $v > 0$ inequality (85) follows from the formulas (86) and (87). For $v < 0$ the proof of inequality (85) is analogous. Lemma 2 is proved.

Setting in inequality (85) $v = t \pm 2\pi k, \quad k \in \mathbb{N}, \quad \tau = j$, we obtain that for arbitrary $\psi \in M$ and $t \in [-\pi, \pi]$

$$0 < \sum_{k=1}^\infty \sum_{j=n}^\infty \int_0^\infty \psi(j + u) \left(\cos((t - 2\pi k)u) + \cos((t + 2\pi k)u)\right) du \leq$$

17
\[
\leq \pi \sum_{k=1}^{\infty} \left(\frac{1}{(t - 2k\pi)^2} + \frac{1}{(t + 2k\pi)^2} \right) \sum_{j=n}^{\infty} \psi(j)|\psi'(j)| \leq \\
\leq \pi \sum_{k=1}^{\infty} \left(\frac{1}{(\pi - 2k\pi)^2} + \frac{1}{(\pi + 2k\pi)^2} \right) \psi(n) \left(|\psi'(n)| + \int_{n}^{\infty} |\psi'(u)| du \right) = \\
= \frac{1}{\pi} \sum_{k=1}^{\infty} \left(\frac{1}{(2k - 1)^2} + \frac{1}{(2k + 1)^2} \right) \psi(n) \left(|\psi'(n)| + \psi(n) \right) = \\
= \left(\frac{\pi}{4} - \frac{1}{\pi} \right) \psi(n) \left(|\psi'(n)| + \psi(n) \right), \quad n \in \mathbb{N}.
\]

Setting in (88) \(\psi(t) = e^{-ar^r}, \ 0 < r < 1, \ \alpha > 0, \) we get that for the function \(R_n(t) \) of the form (69) the following estimate takes place
\[
0 < R_n(t) \leq \left(\frac{\pi}{2} - \frac{2}{\pi} \right) e^{-2an^r} (\frac{\alpha r}{n^{1-r}} + 1) \leq \left(\frac{\pi}{2} - \frac{2}{\pi} \right) \frac{15}{14} e^{-2an^r} < \frac{\pi}{3} e^{-2an^r},
\]
where \(n \geq n_2(\alpha, r, p). \)

By virtue of (70)
\[
|P_{a, r, n}(t)| = \sqrt{Q_n(t) + R_n(t)},
\]
and therefore, taking into account (84) and (89), we have
\[
\|P_{a, r, n}\|_{p'} = \|\sqrt{Q_n}\|_{L_{p'}[-\pi, \pi]} + \Theta_{a, r, n, p}^{(2)} e^{-an^r}, \quad 1 \leq p' \leq \infty,
\]
where \(\Theta_{a, r, n, p}^{(2)} < \frac{2\pi^2}{3} \) and \(n \geq n_3(\alpha, r, p). \)

Let us show, that for \(1 \leq p' \leq \infty, \ \frac{1}{p'} + \frac{1}{p'} = 1, \) and \(n \geq n_2(\alpha, r, p) \) the estimate is true
\[
\|P_{a, r, n}\|_{p'} = e^{-an^r} n^{-\frac{1}{p'}} \left(\frac{2\pi}{\alpha r} \right)^{\frac{1}{p'}} J_{p'} \left(\frac{\pi n^{1-r}}{\alpha r} \right) + \\
+ \Theta_{a, r, p, n}^{(3)} \left(\frac{1 - r}{(\alpha r)^{1+\frac{1}{p'}}} J_{p'} \left(\frac{\pi n^{1-r}}{\alpha r} \right) \frac{1}{n^r} + \frac{1}{n^{1-r}} \right),
\]
where
\[
|\Theta_{a, r, p, n}^{(3)}| \leq \left\{ \begin{array}{ll}
\frac{\pi^2}{14}, & 1 \leq p' < \infty, \\
\frac{13}{14}, & p' = \infty.
\end{array} \right.
\]

Since, on the basis of estimate (72) for \(n \geq n_2(\alpha, r, p) \) and \(1 \leq p' \leq \infty \)
\[
\left| \left(1 + \Theta_{a, r, n}^{(10)}(t) \left(\frac{1 - r}{\alpha r} \frac{1}{n^r} + \frac{\alpha r}{n^{1-r}} \right)^{\frac{1}{p'}} - 1 \right) \right| \leq \\
\leq \frac{5}{2} \sqrt{1 - 5 \left(\frac{1 - r}{\alpha r} \frac{1}{n^r} + \frac{\alpha r}{n^{1-r}} \right)} \leq \frac{5\sqrt{7}}{3\sqrt{2}} \left(\frac{1 - r}{\alpha r} \frac{1}{n^r} + \frac{\alpha r}{n^{1-r}} \right)
\]
we get
\[\sqrt{Q_n(t)} = \frac{e^{-\alpha r}}{\sqrt{t^2 + (\alpha r n^{r-1})^2}}(1 + \Theta^{(10)}_{\alpha r n}(t)\left(\frac{1 - r}{\alpha r} n^{1-r} + \frac{\alpha r}{n^{1-r}}\right)), \quad |\Theta^{(10)}_{\alpha r n}(t)| \leq \frac{5\sqrt{7}}{3\sqrt{2}} \] (94)

For \(1 \leq p' < \infty\) from (94) we have
\[\left\| \sqrt{Q_n} \right\|_{L^{p'}[-\pi,\pi]} = e^{-\alpha r} \left(\int_{-\pi}^{\pi} \frac{dt}{(t^2 + (\alpha r n^{r-1})^2)^{\frac{1}{p'}}}\right)^{\frac{1}{p'}} (1 + \Theta^{(4)}_{\alpha r p n}(1 - r \frac{1}{\alpha r} n^{1-r} + \frac{\alpha r}{n^{1-r}})) = \]
\[= 2^{\frac{1}{p'}} e^{-\alpha r} \left(\frac{n^{1-r}}{\alpha r}\right)^{\frac{1}{p'}} J'_{\nu'}(\pi n^{1-r}) (1 + \Theta^{(4)}_{\alpha r p n}(1 - r \frac{1}{\alpha r} n^{1-r} + \frac{\alpha r}{n^{1-r}})), \]
\[\text{where } |\Theta^{(4)}_{\alpha r p n}| \leq \frac{5\sqrt{7}}{3\sqrt{2}}, \quad \text{and } J'_{\nu'}(\pi n^{1-r}) \text{ is defined by equality } (13). \]

Combining (91) and (95), we obtain that for \(1 \leq p' < \infty\) the following relation takes place
\[\left\| P_{\alpha r n} \right\|_{p'} = e^{-\alpha r} n^{\frac{1-r}{p'}} \left(\frac{2^{\frac{1}{p'}}}{(\alpha r)^{\frac{1}{p'}}} J'_{\nu'}(\pi n^{1-r}) \right) + \]
\[+ \Theta^{(4)}_{\alpha r p n} \frac{2^{\frac{1}{p'}}}{(\alpha r)^{\frac{1}{p'}}} J'_{\nu'}(\pi n^{1-r}) \left(1 - r \frac{1}{\alpha r} n^{1-r} + \frac{\alpha r}{n^{1-r}}\right) + \Theta^{(2)}_{\alpha r p n}(\pi n^{1-r}) \] (96)

However, for all \(n > n_2(\alpha, r, p)\)
\[\frac{2^{\frac{1}{p'}}}{(\alpha r)^{\frac{1}{p'}}} J'_{\nu'}(\pi n^{1-r}) \frac{\alpha r}{n^{1-r}} < \frac{1}{n^{1-r}}, \quad 1 \leq p' < \infty. \] (97)

Indeed, taking into account (13) and (71), for all \(1 < p' < \infty\) and \(n \geq n_2(\alpha, r, p)\) we find
\[\frac{2^{\frac{1}{p'}}}{(\alpha r)^{\frac{1}{p'}}} J'_{\nu'}(\pi n^{1-r}) \frac{\alpha r}{n^{1-r}} \frac{n^{1-r}}{p'} = \left(\frac{2\alpha r}{n^{1-r}}\right)^{\frac{1}{p'}} J'_{\nu'}(\pi n^{1-r}) < \]
\[< \left(\frac{2\alpha r}{n^{1-r}}\right)^{\frac{1}{p'}} \left(\int_{0}^{\infty} \frac{dt}{(t^2 + 1)^{\frac{p'}{2}}}\right)^{\frac{1}{p'}} < \left(\frac{2\alpha r}{n^{1-r}}\right)^{\frac{1}{p'}} \left(1 + \int_{1}^{\infty} \frac{dt}{t^{\nu'}}\right)^{\frac{1}{p'}} = \]
\[= \left(\frac{2\alpha r}{n^{1-r}}\right)^{\frac{1}{p'}} < \left(\frac{1}{7}\right)^{\frac{1}{p'}} < 1, \] (98)

and for \(p' = 1\) and \(n \geq n_2(\alpha, r, p)\), taking into account decreasing on the interval \([e, \infty)\) of the function \(\frac{\ln u}{u^2}\), we have
\[\frac{2\alpha r}{n^{1-r}} J_1(\pi n^{1-r}) = \frac{2\alpha r}{n^{1-r}} \left(\int_{0}^{\pi} \frac{dt}{\sqrt{t^2 + 1}}\right) < \frac{2\alpha r}{n^{1-r}} \left(1 + \int_{1}^{\pi} \frac{dt}{\sqrt{t^2 + 1}}\right) < \]
\[< \frac{2\alpha r}{n^{1-r}} + \frac{2\alpha r}{n^{1-r}} \ln(\pi n^{1-r}) \leq \frac{2}{14} + \frac{2\pi \ln 14}{14\pi} < 1. \] (99)
Formulas (98) and (99) prove (97). For $1 \leq p' < \infty$ estimate (92) follows from (96) and (97).

Let us verify validity of the estimate (92) for $p' = \infty$. It follows from (61) and (30) that

$$\|P_{\alpha,r,n}\|_{\infty} = \sum_{k=0}^{\infty} e^{-\alpha(k+n)r} = \int_{n}^{\infty} e^{-\alpha r t} dt + \Theta^{(11)}_{\alpha,r,n} e^{-\alpha n r}, \ |\Theta^{(11)}_{\alpha,r,n}| \leq 1. \quad (100)$$

Setting in formula (26) $\gamma = \alpha$, $\delta = 0$ and $m = n$, from (100) we obtain that for arbitrary $n \geq n_{2}(\alpha, r, p)$

$$\|P_{\alpha,r,n}\|_{\infty} = \frac{e^{-\alpha n r}}{\alpha r} n^{1-r} \left(1 + \Theta^{(12)}_{\alpha,r,n} \left(\frac{1 - r}{\alpha r} - \frac{\alpha r}{n^{1-r}}\right)\right), \quad (101)$$

where $|\Theta^{(12)}_{\alpha,r,n}| \leq \frac{14}{13}$. For $p' = \infty$ the validity of (92) follows from (101) and the equality $J_{\infty}(\frac{\pi n^{1-r}}{\alpha r}) = 1$.

To complete the proof of theorem 1 it suffices to find the upper estimate of the quantity M_{n} in formula (63). It is clear that

$$M_{n} = \sup_{t \in \mathbb{R}} \left|\frac{P'_{\alpha,r,n}(t)}{P_{\alpha,r,n}(t)}\right|^{2} = \max \left\{ \sup_{|t| \leq \frac{\alpha r}{\alpha r - n^{1-r}}} \left|\frac{P'_{\alpha,r,n}(t)}{P_{\alpha,r,n}(t)}\right|, \sup_{\frac{\alpha r}{\alpha r - n^{1-r}} \leq |t| \leq \pi} \left|\frac{P'_{\alpha,r,n}(t)}{P_{\alpha,r,n}(t)}\right| \right\}. \quad (102)$$

In view of formulas (71) and (72) and the fact that $R_{n}(t) > 0$ for $n \geq n_{2}(\alpha, r, p)$ we obtain

$$\left|P_{\alpha,r,n}(t)\right|^{2} > Q_{n}(t) > \frac{9}{14 t^{2}} \frac{e^{-2\alpha n r}}{(\alpha r)^{r-1}}. \quad (103)$$

It directly follows from (61) that

$$\left|P_{\alpha,r,n}(t)\right| \leq \sum_{k=0}^{\infty} e^{-\alpha(k+n)r}, \quad \left|P'_{\alpha,r,n}(t)\right| \leq \sum_{k=1}^{\infty} k e^{-\alpha(k+n)r}. \quad (104)$$

By virtue of (101) for $n \geq n_{2}(\alpha, r, p)$ we have

$$\left|P_{\alpha,r,n}(t)\right| \leq \sum_{k=0}^{\infty} e^{-\alpha(k+n)r} < \frac{14}{13} \frac{e^{-\alpha n r} n^{1-r}}{\alpha r}. \quad (105)$$

The function $t e^{-\alpha r t}$ is monotone decreasing for $t > (\alpha r)^{-\frac{1}{r}}$. Therefore, according to (30), for $n \geq n_{2}(\alpha, r, p)$ the following estimate takes place

$$\sum_{k=1}^{\infty} e^{-\alpha(k+n)r} k = \sum_{k=n}^{\infty} e^{-\alpha k r} k - n \sum_{k=n}^{\infty} e^{-\alpha k r} \leq$$

$$\leq e^{-\alpha n r} n + \int_{n}^{\infty} e^{-\alpha r t} dt - n \int_{n}^{\infty} e^{-\alpha r t} dt. \quad (106)$$
According to (26) \(\gamma = \alpha, \delta = 1, \) \(m = n, \) and also \(\gamma = \alpha, \delta = 0, m = n, \) from (104) and (106) we have

\[
|P'_{\alpha,r,n}(t)| \leq e^{-\alpha r} \left(\frac{42}{13} \left(\frac{1}{\alpha r} \right)^2 + n \right), \quad n \geq n_2(\alpha, r, p). \tag{107}
\]

In view of (103), (105) and (107) for \(n \geq n_2(\alpha, r, p) \) we arrive at the estimate

\[
\sup_{|t| \leq \frac{\pi}{\alpha r}} \frac{|P'_{\alpha,r,n}(t)| |P_{\alpha,r,n}(t)|}{|P_{\alpha,r,n}(t)|^2} \leq \frac{14}{9} e^{2\alpha r} \sup_{|t| < \frac{\pi}{\alpha r}} |P'_{\alpha,r,n}(t)| |P_{\alpha,r,n}(t)| (t^2 + \left(\frac{\alpha r}{n^{1-r}} \right)^2) \leq \frac{5488}{507} \left(\frac{n^{1-r}}{\alpha r} + \alpha r n^r \right).	ag{108}
\]

Applying the Abel transformation to the function \(P_{\alpha,r,n}(t) \) for \(0 < |t| \leq \pi, \) and taking into account the inequality

\[
\left| \sum_{j=0}^{\infty} e^{ijt} \right| \leq \frac{\pi}{|t|}, \quad 0 < |t| \leq \pi,
\]

we get

\[
|P_{\alpha,r,n}(t)| = \left| \sum_{k=0}^{\infty} (e^{-\alpha (k+n)^r} - e^{-\alpha (k+n+1)^r}) \sum_{j=0}^{k} e^{ijt} \right| \leq \frac{\pi}{|t|} e^{-\alpha r}.	ag{109}
\]

By analogy, for \(0 < |t| \leq \pi \)

\[
|P'_{\alpha,r,n}(t)| = \left| \sum_{k=0}^{\infty} (e^{-\alpha (k+n)^r} k - e^{-\alpha (k+n+1)^r} (k+1)) \sum_{j=0}^{k} e^{ijt} \right| \leq \frac{\pi}{|t|} \sum_{k=0}^{\infty} |e^{-\alpha (k+n)^r} k - e^{-\alpha (k+n+1)^r} (k+1)| \leq \frac{\pi}{|t|} \left(\sum_{k=0}^{\infty} k (e^{-\alpha (k+n)^r} - e^{-\alpha (k+n+1)^r}) + \sum_{k=0}^{\infty} e^{-\alpha (k+n+1)^r} \right) = \tag{110}
\]

According to (105) and (110)

\[
|P'_{\alpha,r,n}(t)| \leq \frac{2\pi}{|t|} \sum_{k=0}^{\infty} e^{-\alpha (k+n+1)^r} \leq \frac{28\pi}{13|t|} e^{-\alpha r} n^{1-r} \tag{111}
\]

In view of (103), (109) and (111) we obtain the estimate

\[
\sup_{\frac{\alpha r}{n^{1-r}} \leq |t| \leq \pi} \frac{|P'_{\alpha,r,n}(t)| |P_{\alpha,r,n}(t)|}{|P_{\alpha,r,n}(t)|^2} \leq
\]

21
\[
\leq \frac{14}{9} e^{2\alpha r} \sup_{n \leq |t| \leq \pi} |P'_{\alpha,r,n}(t)||P_{\alpha,r,n}(t)| \left(t^2 + \left(\frac{\alpha r}{n^{1-r}} \right)^2 \right) \leq
\]
\[
\leq \frac{392\pi^2 n^{1-r}}{117} \sup_{n \leq |t| \leq \pi} \frac{t^2 + \left(\frac{\alpha r}{n^{1-r}} \right)^2}{t^2} \leq \frac{784 \pi^2 n^{1-r}}{117}. \tag{112}
\]

Combining (102), (108) and (112), we arrive at the estimate
\[
M_n \leq \frac{784 \pi^2}{117} \left(\frac{n^{1-r}}{\alpha r} + \alpha n^r \right), \quad n \geq n_2(\alpha, r, p). \tag{113}
\]

It follows from conditions (14) and (71) that \(n_0(\alpha, r, p) \geq n_2(\alpha, r, p) \) for arbitrary \(1 \leq p \leq \infty \). It means that estimates (92) and (113) are true also for \(n \geq n_0(\alpha, r, p) \). Let us show that for \(n \geq n_0(\alpha, r, p) \) the condition (59) is satisfied. This is obvious for \(p' = \infty \). For \(1 \leq p' < \infty \) by virtue of (113), we have
\[
4\pi M_n p' \leq \frac{3136 \pi^3}{117} \left(\frac{n^{1-r}}{\alpha r} + \alpha n^r \right) p' < 27 \pi^3 \left(\frac{n^{1-r}}{\alpha r} + \alpha \chi(p)n^r \right) p'. \tag{114}
\]

According to (14) and (114) for any \(n \geq n_0(\alpha, r, p) \) the following inequality is true
\[
4\pi p'M_n \leq n,
\]
which is equivalent to (59) for \(1 \leq p' < \infty \).

By using formulas (63), (92) and (113) for \(n \geq n_0(\alpha, r, p) \) we arrive at the estimate
\[
\mathcal{E}_n(C_{\beta,n})_C =
\]
\[
= e^{-\alpha r} n^{\frac{1-r}{p}} \left(\frac{2^\frac{1}{p}}{(\alpha r)^\frac{1}{p}} J_{\alpha r} \left(\frac{\pi n^{1-r}}{\alpha r} \right) + \Theta^{(3)}_{\alpha,r,p,n} \left(\frac{1-r}{(\alpha r)^{1+\frac{1}{p}}} J_{\alpha r} \left(\frac{\pi n^{1-r}}{\alpha r} \right) \frac{1}{n^r} + \frac{1}{n^{1-r}} \right) \right) \times
\]
\[
\times \left(\frac{\| \cos t \|_{p'}}{2 \pi^{\frac{1}{p}+\frac{1}{p'}}} + \delta^{(3)}_{n} \left(\frac{1}{\alpha r} \frac{1}{n^r} + \frac{\alpha r}{n^{1-r}} \right) \right), \quad 1 \leq p \leq \infty, \tag{115}
\]
where for \(\Theta_{\alpha,r,p,n}^{(3)} \) the estimate (93) takes place, and \(|\delta^{(3)}_{n}| < \frac{10076 \pi^2}{117} \).

For \(n \geq n_0(\alpha, r, p) \) the following inequality holds
\[
|\delta^{(3)}_{n}| \frac{2^\frac{1}{p}}{(\alpha r)^\frac{1}{p}} J_{\alpha r} \left(\frac{\pi n^{1-r}}{\alpha r} \right) \left(\frac{1}{n^r} + \frac{\alpha r}{n^{1-r}} \right) <
\]
\[
< \frac{21952 \pi^2}{117} \left(\frac{1}{(\alpha r)^{1+\frac{1}{p}}} \frac{\pi n^{1-r}}{\alpha r} \frac{1}{n^r} + \frac{1}{n^{1-r}} \right), \tag{116}
\]
which follows from (97) for \(1 \leq p' < \infty \), and it is obvious for \(p' = \infty \). Besides, according to (93) and (14) for \(n \geq n_0(\alpha, r, p) \)
\[
|\Theta_{\alpha,r,p,n}^{(3)}| \left(\frac{1-r}{(\alpha r)^{1+\frac{1}{p}}} J_{\alpha r} \left(\frac{\pi n^{1-r}}{\alpha r} \right) \frac{1}{n^r} + \frac{1}{n^{1-r}} \right) \left(\| \cos t \|_{p'} + |\delta^{(3)}_{n}| \left(\frac{1}{\alpha r} \frac{1}{n^r} + \frac{\alpha r}{n^{1-r}} \right) \right) <
\]

22
In view of formulas (115)–(117) we arrive at (15). Theorem 1 is proved.

4. Proof of lemma 1. It is obvious that for \(1 \leq s \leq \infty\)

\[
\inf_{\lambda \in \mathbb{R}} \| \phi(t) - \lambda \|_s \leq \| \phi \|_s,
\]

\[
\frac{1}{2} \| \phi(t + \frac{\pi}{n}) - \phi(t) \|_s \leq \sup_{h \in \mathbb{R}} \frac{1}{2} \| \phi(t + h) - \phi(t) \|_s
\]

and

\[
\sup_{h \in \mathbb{R}} \frac{1}{2} \| \phi(t + h) - \phi(t) \|_s \leq \inf_{\lambda \in \mathbb{R}} \| \phi(t) - \lambda \|_s.
\]

Hence, in order to proof lemma it suffices to verify the validity of formula (46) and relation

\[
\frac{1}{2} \| \phi(t + \frac{\pi}{n}) - \phi(t) \|_s \geq \| r \|_s \left(\frac{\| \cos t \|_s}{(2\pi)^{\frac{1}{2}}} - 14\pi \frac{M}{n} \right).
\]

(118)

First, we consider the case \(1 \leq s < \infty\). Let verify the validity of equality (46). Setting

\[
\phi_k(t) = g\left(\frac{k\pi}{n}\right) \cos(nt + \gamma) + h\left(\frac{k\pi}{n}\right) \sin(nt + \gamma), \quad k = -n + 1, n,
\]

we get

\[
\| \phi \|_s = \left(\sum_{k = -n + 1}^{n} \int_{\frac{k\pi}{n}}^{\frac{(k-1)\pi}{n}} |\phi_k(t)|^s dt \right)^{\frac{1}{s}} = \left(\sum_{k = -n + 1}^{n} \int_{\frac{k\pi}{n}}^{\frac{(k-1)\pi}{n}} |\phi_k(t)|^s dt \right)^{\frac{1}{s}} + \Theta^{(1)}(\frac{n}{\pi}) \left(\sum_{k = -n + 1}^{n} \int_{\frac{k\pi}{n}}^{\frac{(k-1)\pi}{n}} |\phi(t) - \phi_k(t)|^s dt \right)^{\frac{1}{s}}, \quad |\Theta^{(1)}| \leq 1.
\]

(120)

Let us find the estimate of first term in (120). It is obvious, that according to (119)

\[
\left(\sum_{k = -n + 1}^{n} \int_{\frac{k\pi}{n}}^{\frac{(k-1)\pi}{n}} |\phi_k(t)|^s dt \right)^{\frac{1}{s}} = \left(\sum_{k = -n + 1}^{n} \int_{\frac{k\pi}{n}}^{\frac{(k-1)\pi}{n}} |\phi_k(t)|^s dt \right)^{\frac{1}{s}} = \left(\sum_{k = -n + 1}^{n} r^s \left(\frac{k\pi}{n}\right) \int_{\frac{(k-1)\pi}{n}}^{\frac{k\pi}{n}} \left| \cos \left(nt + \gamma - \text{arg} \left(g\left(\frac{k\pi}{n}\right) + ih\left(\frac{k\pi}{n}\right) \right) \right) \right|^s dt \right)^{\frac{1}{s}} = \]
\[
(r(t))^s = \left(\sum_{k=-n+1}^{n} r^s \left(\frac{k \pi}{n} \right) \left[\frac{1}{n} \pi \cos t | \right] dt \right)^{\frac{1}{s}} = \left[\sum_{k=-n+1}^{n} r^s \left(\frac{k \pi}{n} \right) \right]^{\frac{1}{s}},
\]
(121)

where \(r(t) \) is defined by formula (43), and \(i \) is imaginary unit.

Let us show that for any collection of points \(\xi_k, k = -n+1, n \), such that \(\frac{(k-1) \pi}{n} \leq \xi_k \leq \frac{k \pi}{n} \), for \(n \geq 4 \pi sM \) the following estimate is true

\[
\left(\sum_{k=-n+1}^{n} r^s(\xi_k) \frac{\pi}{n} \right)^{\frac{1}{s}} = \|r\|_s \left(1 + \Theta_n^{(2)} \frac{M}{n} \right), \quad |\Theta_n^{(2)}| \leq 4.
\]
(122)

Indeed, since

\[
\sum_{k=-n+1}^{n} r^s(\xi_k) \frac{\pi}{n} = \pi \int_{-\pi}^{\pi} r^s(t) dt + \Theta_n^{(3)} \frac{\pi \sqrt{r^s}}{n}, \quad |\Theta_n^{(3)}| \leq \pi,
\]
and under the condition

\[
n \geq \frac{2 \pi \sqrt{r^s}}{\pi} \left(\int_{-\pi}^{\pi} r^s(t) dt + \Theta_n^{(3)} \frac{\pi \sqrt{r^s}}{n} \right)^{\frac{1}{s}} = \|r\|_s \left(1 + \Theta_n^{(4)} \frac{\pi \sqrt{r^s}}{n s \|r\|_s^s} \right), \quad |\Theta_n^{(4)}| \leq 2,
\]
(124)

hence

\[
\left(\sum_{k=-n+1}^{n} r^s(\xi_k) \frac{\pi}{n} \right)^{\frac{1}{s}} = \|r\|_s \left(1 + \Theta_n^{(4)} \frac{\pi \sqrt{r^s}}{n s \|r\|_s^s} \right), \quad |\Theta_n^{(4)}| \leq 2.
\]
(125)

It is easy to verify that

\[
\sqrt{r^s} = s \int_{-\pi}^{\pi} r^{s-1}(t)|r'(t)| dt \leq s \|r\|_s \|r'(t)\|_\infty,
\]
(126)

\[
\left| \frac{r'(t)}{r(t)} \right| = \left| \frac{g(t)g'(t) + h(t)h'(t)}{r^2(t)} \right| \leq \frac{|g'(t)| + |h'(t)|}{r(t)} \leq 2M, \quad t \in \mathbb{R},
\]
(127)

therefore

\[
\frac{\sqrt{r^s}}{\|r\|_s^s} \leq s \left\| \frac{r'(t)}{r(t)} \right\|_\infty \leq 2 s M.
\]
(128)

By virtue of (128), for \(n \geq 4 \pi sM \) the condition (123) is satisfied. Therefore, according to (125), the estimate (122) takes place. Setting in (122) \(\xi_k = \frac{k \pi}{n}, k = -n+1, n, \) in view of
(121) we obtain
\[
\left(\sum_{k=-n+1}^{n} \int_{\frac{k\pi}{n}}^{\frac{(k+1)\pi}{n}} |\phi_k(t)|^s dt \right)^{\frac{1}{s}} = \|r\|_s \left(\left\| \frac{\cos t}{(2\pi)^{\frac{1}{s}}} \right\|_s + \Theta_n^{(5)} M_n \right), \quad |\Theta_n^{(5)}| \leq 4. \tag{129}
\]

Let us find upper estimate of the second term in (120). On the basis of (45) and (119)
\[
\phi(t) - \phi_k(t) =
\]
\[
= \left(r(t) - r\left(\frac{k\pi}{n}\right) \right) \left(g\left(\frac{k\pi}{n}\right) \cos(nt + \gamma) + \frac{h\left(\frac{k\pi}{n}\right)}{r\left(\frac{k\pi}{n}\right)} \sin(nt + \gamma) \right) +
\]
\[
+ r(t) \left(g\left(\frac{t}{r(t)}\right) - g\left(\frac{k\pi}{n}\right) \right) \cos(nt + \gamma) + \left(h\left(\frac{t}{r(t)}\right) - h\left(\frac{k\pi}{n}\right) \right) \sin(nt + \gamma) \right), \tag{130}
\]
therefore
\[
\left(\sum_{k=-n+1}^{n} \int_{\frac{k\pi}{n}}^{\frac{(k+1)\pi}{n}} |\phi(t) - \phi_k(t)|^s dt \right)^{\frac{1}{s}} \leq I_n^{(1)} + I_n^{(2)}, \tag{131}
\]
where
\[
I_n^{(1)} := \left(\sum_{k=-n+1}^{n} \int_{\frac{k\pi}{n}}^{\frac{(k+1)\pi}{n}} \left| r(t) - r\left(\frac{k\pi}{n}\right) \right|^s \left(|\cos(nt + \gamma)| + |\sin(nt + \gamma)| \right)^s dt \right)^{\frac{1}{s}},
\]
\[
I_n^{(2)} := \left(\sum_{k=-n+1}^{n} \int_{\frac{k\pi}{n}}^{\frac{(k+1)\pi}{n}} r^s(t) \left(\left| g\left(\frac{t}{r(t)}\right) - g\left(\frac{k\pi}{n}\right) \right| \cos(nt + \gamma) +
\right.
\]
\[
\left. + \left| h\left(\frac{t}{r(t)}\right) - h\left(\frac{k\pi}{n}\right) \right| \sin(nt + \gamma) \right)^s dt \right)^{\frac{1}{s}}.
\]
Using obvious inequality
\[
|\cos t| + |\sin t| \leq \sqrt{2}, \tag{132}
\]
Lagrange theorem and relation (127), we have
\[
I_n^{(1)} \leq \sqrt{2} \left(\sum_{k=-n+1}^{n} \max_{\frac{k\pi}{n} \leq t \leq \frac{(k+1)\pi}{n}} \left| r(t) - r\left(\frac{k\pi}{n}\right) \right|^s \right)^{\frac{1}{s}} \leq
\]
\[
\leq \frac{\sqrt{2}\pi}{n} \sup_{t \in \mathbb{R}} \left| r'(t) \right| \left(\sum_{k=-n+1}^{n} \max_{\frac{(k-1)\pi}{n} \leq t \leq \frac{k\pi}{n}} r^s(t) \right)^{\frac{1}{s}}. \tag{133}
\]
It is follows from (122), (127) and (133), that for \(n \geq 4\pi sM \)

\[
I_n^{(1)} \leq 2\sqrt{2\pi} \frac{M}{n} (1 + \frac{4M}{n}) \|r\|_s \leq 2\sqrt{2\pi} \frac{M}{n} \left(1 + \frac{1}{n}\right) \|r\|_s = \frac{2\sqrt{2M(1 + \pi)}}{n} \|r\|_s. \tag{134}
\]

It is easy to see that

\[
I_n^{(2)} \leq \left(\sum_{k=-n+1}^{n} \left(\max_{\frac{k\pi}{n} \leq t \leq \frac{k\pi}{n} + \frac{\pi}{n}} \left\{ \left| \frac{g(t)}{r(t)} - \frac{g\left(\frac{k\pi}{n}\right)}{r\left(\frac{k\pi}{n}\right)} \right| \cos(nt + \gamma) \right\} + \left| \frac{h(t)}{r(t)} - \frac{h\left(\frac{k\pi}{n}\right)}{r\left(\frac{k\pi}{n}\right)} \right| \sin(nt + \gamma) \right) \right)^{\frac{1}{s}} \tag{135}
\]

For any \(t_1, t_2 \in \mathbb{R} \) such that \(|t_1 - t_2| \leq \frac{\pi}{n} \) the following inequalities take place

\[
\left| \frac{g(t_1)}{r(t_1)} - \frac{g(t_2)}{r(t_2)} \right| \leq \frac{3\pi M}{n}, \tag{136}
\]

\[
\left| \frac{h(t_1)}{r(t_1)} - \frac{h(t_2)}{r(t_2)} \right| \leq \frac{3\pi M}{n}. \tag{137}
\]

Indeed, by virtue of Lagrange theorem, taking into account (44) and (127), we have

\[
\left| \frac{g(t_1)}{r(t_1)} - \frac{g(t_2)}{r(t_2)} \right| \leq \frac{\pi}{n} \sup_{t \in \mathbb{R}} \left| \frac{g'(t)r(t) - g(t)r'(t)}{r^2(t)} \right| \leq \frac{\pi}{n} \sup_{t \in \mathbb{R}} \left| \frac{g'(t)}{r(t)} \right| + \frac{\pi}{n} \sup_{t \in \mathbb{R}} \left| \frac{r'(t)}{r(t)} \right| \leq \frac{3\pi M}{n}. \tag{138}
\]

By analogy, we prove the inequality (137). In view of (132), (136), (137) and (135) we obtain

\[
I_n^{(2)} \leq \frac{3\sqrt{2\pi} M}{n} \|r\|_s, \quad n \in \mathbb{N}. \tag{139}
\]

Combining (131), (134) and (139), we arrive at the estimate

\[
\left(\sum_{k=-n+1}^{n} \frac{\pi}{n} \int_{\frac{k\pi}{n}}^{\frac{k\pi}{n} + \frac{\pi}{n}} |\phi(t) - \phi_k(t)|^s dt \right)^{\frac{1}{s}} \leq \sqrt{2(5\pi + 2)} \|r\|_s \frac{M}{n}, \quad n \geq 4\pi sM. \tag{140}
\]

By comparing estimates (120), (129) and (140) we conclude that for \(n \geq 4\pi sM \)

\[
\|\phi\|_s = \|r\|_s \left(\frac{\|\cos t\|_s + \delta(1)}{(2\pi)^{\frac{1}{s}} s,n} \right), \quad |\delta(1)| \leq \sqrt{2(5\pi + 2)} + 4, \quad 1 \leq s < \infty. \tag{141}
\]

Further, we prove the relation (118) for \(1 \leq s < \infty \). In view of definition (45)

\[
|\phi(t + \frac{\pi}{n}) - \phi(t)| =
\]

26
Thus, the validity of formula (118) is established for $1 \leq s < \infty$. Let us prove the relation (46) for $s = \infty$. Consider a function $\phi^*(t)$ such that

$$\phi^*(t) = \phi_k^*(t), \quad \frac{(k - 1)\pi}{n} \leq t \leq \frac{k\pi}{n}, \quad k = -n + 1, n,$$
where
\[\phi_k^*(t) = g(t_k^*) \cos(nt + \gamma) + h(t_k^*) \sin(nt + \gamma), \] (146)
and points \(t_k^*, \ t_k^* \in \left[\frac{(k-1)\pi}{n}, \frac{k\pi}{n}\right] \) are chosen from the condition
\[r(t_k^*) = \max_{\frac{(k-1)\pi}{n} \leq t \leq \frac{k\pi}{n}} r(t). \]
For the function \(\phi^*(t) \) the following equality takes place
\[\|\phi^*\|_\infty = \|r\|_C. \] (147)
Indeed,
\[
\|\phi^*\|_\infty = \max_{-n+1 \leq k \leq n} \quad \text{ess sup}_{\frac{(k-1)\pi}{n} \leq t \leq \frac{k\pi}{n}} |\phi^*(t)| = \\
= \max_{-n+1 \leq k \leq n} r(t_k^*) \max_{\frac{(k-1)\pi}{n} \leq t \leq \frac{k\pi}{n}} \left| \frac{g(t_k^*)}{r(t_k^*)} \cos(nt + \gamma) + \frac{h(t_k^*)}{r(t_k^*)} \sin(nt + \gamma) \right| = \\
= \max_{-n+1 \leq k \leq n} r(t_k^*) \max_{\frac{(k-1)\pi}{n} \leq t \leq \frac{k\pi}{n}} \left| \cos \left(nt + \gamma - \arctan\left(\frac{g(t_k^*) + ih(t_k^*)}{r(t_k^*)} \right) \right) \right| = \\
= \max_{-n+1 \leq k \leq n} r(t_k^*) \|\cos t\|_C = \|r\|_C.
\]
It is obvious that in view of (147) we obtain
\[\|\phi\|_\infty = \|\phi^*\|_\infty + \Theta_n^{(6)} \|\phi - \phi^*\|_\infty = \|r\|_C + \Theta_n^{(6)} \|\phi - \phi^*\|_\infty, \quad |\Theta_n^{(6)}| \leq 1. \] (148)
Let us find upper estimate for the quantity \(\|\phi - \phi^*\|_\infty \). By virtue of (45) and (146), for any \(t \in \left[\frac{(k-1)\pi}{n}, \frac{k\pi}{n}\right] \) the following equality takes place
\[
|\phi(t) - \phi_k^*(t)| = \left| (r(t) - r(t_k^*)) \left(\frac{g(t_k^*)}{r(t_k^*)} \cos(nt + \gamma) + \frac{h(t_k^*)}{r(t_k^*)} \sin(nt + \gamma) \right) + \\
r(t) \left(\left(\frac{g(t)}{r(t)} - \frac{g(t_k^*)}{r(t_k^*)} \right) \cos(nt + \gamma) + \left(\frac{h(t)}{r(t)} - \frac{h(t_k^*)}{r(t_k^*)} \right) \sin(nt + \gamma) \right) \right|.
\] (149)
By using (132), the Lagrange theorem and inequality (127), we get
\[
\text{ess sup}_{\frac{(k-1)\pi}{n} \leq t \leq \frac{k\pi}{n}} \left| (r(t) - r(t_k^*)) \left(\frac{g(t_k^*)}{r(t_k^*)} \cos(nt + \gamma) + \frac{h(t_k^*)}{r(t_k^*)} \sin(nt + \gamma) \right) \right| \leq \\
\leq \sqrt{2} \text{ess sup}_{\frac{(k-1)\pi}{n} \leq t \leq \frac{k\pi}{n}} \left| r(t) - r(t_k^*) \right| \leq \frac{\sqrt{2}\pi}{n} \text{sup}_{t \in \mathbb{R}} \left| \frac{r'(t)}{r(t)} \right| \|r\|_C \leq \frac{2\sqrt{2}\pi M}{n} \|r\|_C. \] (150)
Further, it follows from (132), (136) and (137) that
\[
\text{ess sup}_{\frac{(k-1)\pi}{n} \leq t \leq \frac{k\pi}{n}} r(t) \left(\left| \frac{g(t)}{r(t)} - \frac{g(t_k^*)}{r(t_k^*)} \right| \cos(nt + \gamma) + \left| \frac{h(t)}{r(t)} - \frac{h(t_k^*)}{r(t_k^*)} \right| \sin(nt + \gamma) \right) \leq
\]
\[\|\phi - \phi^*\|_\infty = \max_{-n+1 \leq k \leq n} \text{ess sup}_{\frac{k}{n} \leq t \leq \frac{k+1}{n}} |\phi(t) - \phi_k^*(t)| \leq 5\sqrt{2\pi} \frac{M}{n}\|r\|_C, \quad n \in \mathbb{N}. \] (152)

It follows from (148), (147) and (152) that

\[\|\phi\|_\infty = \|r\|_C \left(1 + \delta^{(1)}_{\infty,n} \frac{M}{n}\right), \quad |\delta^{(1)}_{\infty,n}| \leq 5\sqrt{2\pi}. \] (153)

Let us prove inequality (118) for \(s = \infty \). By using the inequality (143) for \(s = \infty \), by applying Lagrange theorem, formulas (127) and (153), we obtain

\[
\frac{1}{2}\|\phi(t + \frac{\pi}{n}) - \phi(t)\|_\infty \geq \|\phi\|_\infty - \frac{1}{2\sqrt{2}} \left(\|r(t + \frac{\pi}{n}) - r(t)\|_\infty + 3\pi\|r\|_C \frac{M}{n}\right) \geq \|\phi\|_\infty - \frac{1}{2\sqrt{2}} \left(\frac{n}{\pi} \sup_{t \in \mathbb{R}} |r'(t)| \|r\|_C + 3\pi\|r\|_C \frac{M}{n}\right) > \|r\|_C \left(1 - \frac{15\pi M}{\sqrt{2} n}\right).
\]

Lemma 1 is proved.

Remark 1. In proving of lemma 1 we established more exact, than (49) estimates of quantities \(\delta^{(i)}_{s,n}, i = 1, 3 \). Namely, we showed that for \(n \geq \left\{ \begin{array}{ll}
4\pi s M, & 1 \leq s < \infty, \\
1, & s = \infty,
\end{array} \right. \) the following estimates hold

\[
|\delta^{(1)}_{s,n}| \leq \left\{ \begin{array}{ll}
\sqrt{2}(5\pi + 2) + 4, & 1 \leq s < \infty, \\
5\sqrt{2\pi}, & s = \infty,
\end{array} \right.
\]

\[-\frac{15\pi + 6}{\sqrt{2}} - 4 \leq \delta^{(2)}_{s,n} \leq \sqrt{2}(5\pi + 2) + 4, \quad i = 2, 3, 1 \leq s < \infty,
\]

\[-\frac{15\pi}{\sqrt{2}} \leq \delta^{(3)}_{s,n} \leq 5\sqrt{2\pi}, \quad i = 2, 3, s = \infty.
\]
References

[1] Stepanets, A.I.: Methods of Approximation Theory. VSP: Leiden, Boston (2005).

[2] Stepanets’, A.I., Serdyuk, A.S., Shidlich, A.L.: On some new criteria for infinite differentiability of periodic functions. (Ukrainian, English) Ukr. Mat. Zh. 59(10), 1399-1409 (2007); translation in Ukr. Math. J. 59(10), 1569-1580 (2007).

[3] Stepanets, A.I., Serdyuk, A.S., Shidlich, A.L.: On relationship between classes of (ψ, β)–differentiable functions and Gevrey classes. (Russian, English) Ukr. Mat. Zh. 61(1), 140-144 (2009); translation in Ukr. Math. J. 61(1), 171-177 (2009).

[4] Stepanets, A.I., Kushpel’, A.K.: Convergence rate of Fourier series and best approximations in the space L_p. (English. Russian original) Ukr. Math. J. 39(4), 389-398 (1987); translation from Ukr. Mat. Zh. 39(4), 483-492 (1987).

[5] Kushpel’, A.K.: Estimates of the widths of classes of analytic functions. (English. Russian original) Ukr. Math. J. 41(4), 493–496 (1989); translation from Ukr. Mat. Zh. 41(4), 567–570 (1989).

[6] Tel’ yakovskii, S.A.: Approximation of functions of high smoothness by Fourier sums. (English. Russian original) Ukr. Math. J. 41(4), 444-451 (1989); translation from Ukr. Mat. Zh. 41(4), 510-518 (1989).

[7] Temlyakov, V.N.: To the question on estimates of the diameters of classes of infinite–differentiable functions. (Russian) Mat. Zametki 47(5), 155-157 (1990).

[8] Temlyakov, V.N.: On estimates of the diameters of classes of infinite–differentiable functions. (Russian) Dokl. razsh. zased. semin. Inst. Prykl. Mat. im. I.N.Vekua 5(2), 111-114 (1990).

[9] Serdyuk, A.S.: On one linear method of approximation of periodic functions. (Ukrainian) Zb. Pr. Inst. Mat. NAN Ukr. 1(1), 294–336 (2004).

[10] Serdyuk, A.S.: Approximation of classes of analytic functions by Fourier sums in uniform metric. (Ukrainian, English) Ukr. Mat. Zh. 57(8), 1079-1096 (2005); translation in Ukr. Math. J. 57(8), 1275-1296 (2005).

[11] Serdyuk, A.S., Stepanyuk, T.A.: Order estimates for the best approximation and approximation by Fourier sums of classes of infinitely differentiable functions. (Ukrainian. English summary) Zb. Pr. Inst. Mat. NAN Ukr. 10(1), 255-282 (2013).

[12] Serdyuk, A.S., Stepanyuk, T.A.: Estimates for the best approximations of the classes of infinitely differentiable functions in uniform and integral metrics. (Ukrainian, English) Ukr. Mat. Zh., 66(9), 1244–1256 (2014); English translation in Ukr. Math. J., 66(9), 1393–1407 (2015).

[13] Kolmogoroff, A.: Zur Grössennordnung des Restgliedes Fourierschen Reihen differenzierbarer Funktionen. (German) Ann. Math.(2), 36(2), 521–526 (1935).
[14] Nikol’skii, S.M.: Approximation of functions in the mean by trigonometrical polynomials. (Russian. English summary) Izv. Akad. Nauk SSSR, Ser. Mat. 10, 207-256 (1946).

[15] Telyakovskii, S.A.: Approximation of differentiable functions by partial sums of their Fourier series. (Russian, English) Mat. Zametki, 4(3), 291–300 (1968); English translation: Mathematical Notes, 4(3), 668–673 (1968).

[16] Hrabova, U.Z., Serdyuk, A.S.: Order estimates for the best approximations and approximations by Fourier sums of the classes of (ψ, β)-differential functions. (Ukrainian, English) Ukr. Mat. Zh., 65(9), 1186–1197 (2013); English translation: Ukr. Math. J., 65(9), 1319–1331 (2014).

[17] Serdyuk, A.S., Stepanyuk, T.A.: Order estimates for the best approximations and approximations by Fourier sums of the classes of convolutions of periodic functions of low smoothness in the integral metric. Ukr. Mat. Zh., 66(12), 1658–1675 (2014); English translation: Ukr. Math. J., 65(12), 1862–1882 (2015).

[18] Stechkin, S.B.: An estimate of the remainder term of Fourier series for differentiable functions. (Russian) Tr. Mat. Inst. Steklova 145, 126-151 (1980).

[19] Serdyuk, A.S., Sokolenko, I.V.: Uniform approximation of the classes of (ψ, β)-differentiable functions by linear methods. (Ukrainian. English summary) Zb. Pr. Inst. Mat. NAN Ukr. 8(1), 181-189 (2011).

[20] Stepanets, A.I.: Classification and approximation of periodic functions. Rev., updated and transl. by P. V. Malyshev and D. V. Malyshev. (English) Mathematics and its Applications (Dordrecht). 333. Dordrecht: Kluwer Academic Publishers (1995).

[21] Stepanets, A.I.: Deviation of Fourier sums on classes of infinitely differentiable functions. (English) Ukr. Mat. J., 36(6), 567–573 (1984).

[22] Korneichuk N.P.: Exact Constants in Approximation Theory. Encyclopedia of Mathematics and Its Applications, Vol. 38, Cambridge Univ. Press, Cambridge, New York (1990).

[23] Bari, N.K.: A treatise on trigonometric series. Vol. I, II. Authorized translation by M. F. Mullins. (English) Oxford-London-New York-Paris-Frankfurt: Pergamon Press. XXIII, 553 p.; XIX, 508 p. (1964).

[24] Titchmarsh, E.C.: Introduction to the Theory of Fourier Integrals (2nd.ed.) Oxford University Press (1948).

[25] Stepanets, A.I., Rukasov, V.I., Chaichenko, S.O.: Approximations by the de la Vallee-Poussin sums. (Russian) Pratsi Instytutu Matematyky Natsional’noi Akademii Nauk Ukrainy. Matematyka ta ii Zastosuvannya 68. Kyiv: Instytut Matematyky NAN Ukrainy (2007).

E-mail: serdyuk@imath.kiev.ua, tania_stepaniuk@ukr.net