Efficacy of Guhong injection versus Butylphthalide and Sodium Chloride Injection for mild ischemic stroke: A multicenter controlled study

Wei-Wei Zhang, Jiang Xin, Guang-Yu Zhang, Qi-Jin Zhai, Hua-Min Zhang, Cheng-Si Wu

BACKGROUND
Most studies on Guhong injection have involved a single center with a small sample size, and the level of clinical evidence is low.

AIM
To assess the safety and efficacy of Guhong injection for mild ischemic stroke (IS).
were assessed. Other medications taken by the patients were confounding factors for efficacy assessment. These factors were controlled by propensity score matching, and the results were further analyzed based on the matching.

RESULTS
The marked response rates at three follow-up visits were 64.64%, 74.7%, and 66.7% in the experimental group, and 48.26%, 45.4%, and 22.2% in the control group. The marked response rates increased significantly in the experimental group compared with the control group ($P < 0.05$). The overall response rate at the first visit (days 7 ± 2) did not differ significantly between the two groups, but differed significantly at the second (days 14 ± 2) and third visits (days 21 ± 3) ($P < 0.05$). The proportion of patients without any symptoms in the experimental group was significant different at the first visit ($P < 0.05$), but not significantly different at the second visit. The two groups showed no significant difference in the baseline distribution of mRS scores. At the first and second visits, the change in mRS scores was -2 and -1 in the experimental and control groups, respectively, which were significantly different ($P < 0.05$). After propensity score matching, the overall response rate and marked response rate were 97.29% and 100% in the experimental group ($P > 0.05$) and 64.0% and 47.7% in the control group ($P < 0.05$) at the first visit, respectively. The decreased NIHSS scores in the two groups were significant different ($P < 0.05$). The overall response rate and marked response rate differed significantly between the two groups at the second visit ($P < 0.05$). There was no significant difference in the incidence of adverse events between the two groups. No severe adverse events occurred in either group.

CONCLUSION
Guhong injection is safe and more effective than Butylphthalide and Sodium Chloride Injection for treatment of IS.

Key Words: Guhong injection; Ischemic stroke; Propensity score matching; National Institutes of Health Stroke Scale

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Guhong injection, composed of aceglutamide and safflower aqueous extract, is widely used for the treatment of ischemic stroke (IS). For treatment of IS, Guhong injection has greater clinical efficacy and similar safety as Butylphthalide and Sodium Chloride Injection.

Citation: Zhang WW, Xin J, Zhang GY, Zhai QJ, Zhang HM, Wu CS. Efficacy of Guhong injection versus Butylphthalide and Sodium Chloride Injection for mild ischemic stroke: A multicenter controlled study. World J Clin Cases 2022; 10(21): 7265-7274
URL: https://www.wjgnet.com/2307-8960/full/v10/i21/7265.htm
DOI: https://dx.doi.org/10.12998/wjcc.v10.i21.7265

INTRODUCTION
Ischemic stroke (IS) is the second leading cause of death worldwide and the leading cause of death in China[1], and accounts for 60%–70% of all strokes. According to the Chinese Guidelines for Diagnosis and Treatment of Acute Ischemic Stroke 2018[2], the primary treatments for acute IS are as follows: First, to improve cerebral blood circulation, initiate revascularization, and restore blood flow as quickly as possible to salvage the ischemic semidark zone; and second, to protect the nerves, reduce ischemia/reperfusion injury, and inhibit the ischemic cascade to alleviate neurological deficits. In practice, few IS patients can receive timely treatment and achieve a good prognosis as most patients tend to miss the best time window for treatment[3]. In addition to anticoagulant, thrombolytic, antiplatelet, and vasodilator treatments, efforts should be made to restore microcirculation in the ischemic regions as quickly as possible to protect the brain nerves maximally.

Guhong injection, composed of aceglutamide and safflower aqueous extract, is a common drug for the treatment of cerebral ischemia/reperfusion injury[4]. Butylphthalide is a class I new drug for cerebral ischemia and has been widely used clinically[5]. Most studies that have compared the efficacy and safety of Guhong and Butylphthalide only involved a single center with a small sample size, and the level of evidence was low. Here, we conducted a multicenter retrospective cohort study to compare the safety and efficacy of Guhong injection and Butylphthalide and Sodium Chloride Injection for
treatment of IS.

MATERIALS AND METHODS

Patients
We recruited patients who were treated at six hospitals for IS between August 2018 and August 2019: Seventh Medical Center of PLA General Hospital, First Affiliated Hospital of Nanchang University, People’s Hospital of Liaoning Province, Cangzhou People’s Hospital, Second People’s Hospital of Huai’an, and Ganyu District People’s Hospital of Lianyungang. The clinical data were analyzed retrospectively. The number of patients included in each center is listed in Table 1. Baseline information of the patients in the two groups is shown in Table 2. All 399 patients conformed to the diagnostic criteria of the Chinese Guidelines for Diagnosis and Treatment of Acute Ischemic Stroke 2018. Patients in the experimental group (n = 198) received Guhong injection, and those in the control group (n = 201) received Butylphthalide and Sodium Chloride Injection. There was no significant difference in age, height, weight, body mass index, heart rate, body temperature, or systolic and diastolic pressure between the two groups (P > 0.05). The present study was approved by the Ethics Committee of the Seventh Medical Center of General PLA hospital (2020-001).

The inclusion criteria were: IS patients receiving treatment at the six centers from August 2018 to August 2019; aged 18–80 years; meeting the diagnostic criteria for IS; receiving treatment within 72 h after onset; suspect lesions confirmed by brain computed tomography/magnetic resonance imaging, which agreed with clinical manifestations, with the exclusion of cerebral hemorrhage; and complete medical records. The exclusion criteria were: Hemorrhagic stroke, transient ischemic attack, or other nervous system diseases; intravenous thrombolytic therapy or arterial embolectomy upon admission; any difficulty in efficacy assessment or incomplete medical records that interfered with efficacy assessment; incomplete medical records, including general information, diagnosis, and medical instructions; treated by other drugs containing safflower aqueous extract besides Guhong injection (Danhydro injection and Safflor injection); and history of allergy to major components of the study drug (safflower and celery).

Methods
Patients in the Guhong injection group (experimental group) received basic treatments plus Guhong injection, and 250 mL of normal saline was added to every 20 mL of Guhong injection. It was given once daily intravenously for 7–13 d consecutively. The Butylphthalide and Sodium Chloride Injection group (control group) received basic treatments plus Butylphthalide and Sodium Chloride Injection (SFDA Approval No.: H20100041; 100 mL: Butylphthalide 25 mg and sodium chloride 0.9 g) twice daily at 25 mg/mL. Each infusion lasted no less than 50 min, and the interval between two adjacent doses was no less than 6 h. Butylphthalide and Sodium Chloride Injection was given for 7–13 d consecutively. The basic treatments were the conventional systematic treatments, including: Intracranial pressure-reducing treatment, antiplatelet treatment, hypolipidemic treatment, hypoglycemic treatment, electrolyte disorder-correcting treatment, and nutritional support treatment. Neurological deficits were assessed using the National Institute of Health Stroke Scale (NIHSS). The NIHSS scores were compared between the two groups after treatment. The patients were followed after treatment at 7 ± 2 d (first visit), 14 ± 2 d (second visit), and 21 ± 3 d (third visit). The efficacy assessment criteria were as follows[2,6]: Marked response: Symptoms and signs disappeared, and NIHSS score was reduced by > 46% after treatment; mild response: Symptoms and signs improved significantly, and NIHSS score was reduced by ≤ 45% and ≥ 18%; and no response: Symptoms were aggravated with the appearance of cerebral hernia, and the reduction in NIHSS scores did not meet the standard or improve considerably. Overall response rate was calculated as marked response rate + mild response rate. The calculation formula for the percentage change in NIHSS scores was: [(total NIHSS scores before treatment − total NIHSS scores after treatment)/total NIHSS scores before treatment] × 100%. The modified Rankin Scale (mRS) scores and their distribution at baseline and follow-up were compared. Safety analysis was conducted based on the patients’ vital signs, routine blood tests, routine stool tests, liver and kidney function tests, electrocardiography (ECG), and adverse events. Efficacy assessment was analyzed using the basic, combined, and concomitant medications as confounding factors.

Statistical analysis
Statistical analyses were conducted using SAS version 9.2 software. Count data and measurement data are expressed as percentages (%) and the mean ± SD and were analyzed using the χ² test and t test, respectively. Comparison of measurement data among groups was conducted using the F test. The categorical data not obeying a normal distribution were analyzed by the Wilcoxon rank-sum test. P < 0.05 indicated a significant difference. R was used to process the confounding factors of interest in efficacy assessment (basic, combined, and concomitant medications). Potential covariates were screened and entered into the propensity score matching analysis. Conditional logistic regression was used to calculate the propensity scores of the two groups. After performing the 1:1 nearest-neighbor matching,
we compared the efficacy between the two groups.

RESULTS

Comparison of NIHSS scores before and after treatment
Changes in the baseline total NIHSS scores at each follow-up visit are shown in Table 3. There were no significant differences in the NIHSS scores between the two groups at baseline ($P > 0.05$). Compared with the baseline, the NIHSS scores of the experimental group at the first, second, and third visits were changed by -1.67 ± 2.11, -2.33 ± 2.33, and -2.50 ± 2.32, respectively. The NIHSS scores of the control group at these visits were changed by -1.25 ± 2.62, -1.45 ± 2.36, and -1.67 ± 4.12, respectively. The reduction in baseline NIHSS scores was greater at the three visits in the experimental group compared with the control group.

Efficacy
The efficacy of the medications in the two groups is shown in Table 4. The marked response rates at the three follow-up visits were 64.64%, 74.7%, and 66.7% in the experimental group, and 48.26%, 45.4%, and 22.2% in the control group, respectively. The marked response rates were increased significantly in the experimental group compared with the control group ($P < 0.05$). The overall response rates at the three follow-up visits were 98.48%, 100%, and 100% in the experimental group, and 99.01%, 98.59%, and 88.89% in the control group, respectively. The overall response rate at the first visit was higher in the control group than in the experimental group, but the difference was not significant. The overall response rates at the second and third visits were significantly higher in the experimental group than in the control group ($P < 0.05$).

Distribution of mRS scores before and after treatment
There were no significant differences in the distribution of varying degrees of disability at the baseline between the two groups ($P = 0.3903$). At the first follow-up visit, the patients without any symptoms accounted for 60.1% in the experimental group compared to 44.8% in the control group ($P > 0.05$). At the second visit, the patients without any symptoms accounted for 55.4% in the experimental group compared to 41.8% in the control group ($P > 0.05$). At the first visit, the change in the mRS score was -2 in three patients (1.5%) in the experimental group, -1 in 140 patients (70.7%), and 0 in 55 patients (27.8%). In the control group, the change in the mRS score was -2, -1, and 0 in 0, 90 (44.3%), and 111 (55.7%) patients, respectively. The percentages of patients with a change of -2 and -1 were significantly different between the two groups ($P < 0.05$). At the second visit, the change in the mRS score was -2 in three patients (3.6%), -1 in 78 patients (94.0%), and 0 in two patients (2.4%) in the experimental group. In
Table 3 Changes in baseline total National Institutes of Health stroke scale scores at each follow-up visit

	Experimental group (n = 198)	Control group (n = 201)	Rank-sum test	P value
Baseline (day 0)	3.40 ± 2.08	3.63 ± 2.72	0.495	0.621
Visit 1 (days 7 ± 2)	1.75 ± 2.03	2.34 ± 2.37	1.988	0.056
Relative to baseline	-1.67 ± 2.11	-1.25 ± 2.62	300.727	<0.0001
Visit 2 (days 14 ± 2)	1.65 ± 1.90	2.45 ± 2.26	8.138	<0.0001
Relative to baseline	-2.33 ± 2.33	-1.45 ± 2.36	222.404	<0.0001
Visit 3 (days 21 ± 3)	2.33 ± 1.63	5.0 ± 3.54	2.207	0.016
Relative to baseline	-2.50 ± 2.32	-1.67 ± 4.12	16.19	<0.0001

Table 4 Efficacy of medications in the two groups, n (%)

	Experimental group (n = 198)	Control group (n = 201)	χ²	P value
Visit 1 (days 7 ± 2)				
Marked response	128 (64.64)	97 (48.26)	11.60	0.003
Mild response	67 (33.84)	102 (50.75)		
No response	3 (1.51)	2 (0.99)		
Visit 2 (days 14 ± 2)				
Marked response	62 (74.7)	64 (45.4)	835.36	<0.0001
Mild response	21 (25.30)	75 (53.2)		
No response	0	2 (1.41)		
Visit 3 (days 21 ± 3)				
Marked response	4 (66.7)	2 (22.2)	887.40	<0.0001
Mild response	2 (33.3)	6 (66.7)		
No response	0 (0)	1 (11.1)		
Visit 1 (days 7 ± 2)				
Overall response	195 (98.46)	199 (99.01)	0.121	0.728
No response	3 (1.52)	2 (0.99)		
Visit 2 (days 14 ± 2)				
Overall response	83 (100)	139 (98.59)	403.127	<0.0001
No response	0	2 (1.41)		
Visit 3 (days 21 ± 3)				
Overall response	6 (100)	8 (88.89)	9.63	0.0019
No response	0	1 (11.11)		

the control group, the percentages of patients with a change of -2, -1, and 0 were 0, 69 (48.9%), and 74 (33.0%), respectively. The percentages of patients with a change of -2 and -1 were significantly different between the two groups at either visit (P < 0.05) (Table 5).

Adverse events

Adverse events were divided into three categories based on their causal relationship with the investigational drug: Definitely related, possibly related, and uncertain. Twelve patients (6.06%) in the experimental group and 13 (6.47%) in the control group experienced adverse events, but none of the adverse events were related to the study drug. There was no significant difference in the incidence of adverse events between the two groups (P > 0.05). No severe adverse events occurred in either group during treatment.

Analysis of confounding factors

The concomitant and combined medications used were divided into 11 major types: Concomitant medication for respiratory diseases; concomitant medication for digestive diseases; concomitant medication for genitourinary diseases; concomitant medication for coronary heart disease; concomitant medication for other diseases; combined medication based on vitamins; combined medication based on free-radical scavengers; combined medication based on calcium ion antagonists; combined medication based on cerebrovascular dilators; combined medication based on neurotrophic agents; and combined medication based on Chinese patent medicine. The above covariates were put into the logistic regression model. The 1:1 nearest-neighbor matching was performed, with the matching tolerance set to 0.2.
Table 5 Distribution of modified Rankin scale scores in the two groups

	Experimental group (n = 198)	Control group (n = 201)	Rank-sum test	P value
Baseline			1.88	0.3903
No symptom	15 (7.6)	48 (23.6)		
No significant disability	132 (66.7)	95 (47.8)		
Mild disability	38 (19.2)	41 (20.2)		
Moderate disability	7 (3.5)	9 (4.4)		
Moderately severe disability	6 (3.0)	8 (3.9)		
Severe disability	0	0		
Visit 1 (days 7 ± 2)			11.66154	0.020
No symptom	119 (60.1)	89 (44.8)		
No significant disability	57 (28.8)	86 (42.4)		
Mild disability	16 (8.1)	17 (8.4)		
Moderate disability	6 (3.0)	7 (3.4)		
Moderately severe disability	0	2 (1.0)		
Severe disability	0	0		
Visit 2 (days 14 ± 2)			6.098	0.192
No symptom	46 (55.4%)	59 (41.8%)		
No significant disability	29 (34.9%)	62 (44.0%)		
Mild disability	8 (9.6%)	15 (10.6%)		
Moderate disability	0	4 (2.8%)		
Moderately severe disability	0	1 (0.7%)		
Severe disability	0	0		

Analysis after propensity score matching
Before propensity score matching, the two groups did not differ significantly in the use of the following medications: Concomitant medication for respiratory diseases; combined medication based on free-radical scavengers; combined medication based on neurotrophic agents; and combined medication based on Chinese patent medicine. After the matching, 111 matched patients in terms of medication were obtained in the two groups. After propensity score matching, the overall response rate and marked response rate were 97.29% and 100% in the experimental group (P > 0.05) and 64.0% and 47.7% in the control group (P < 0.05) at the first visit, and 100% and 100% and 75.51% and 45% at the second visit, respectively (P < 0.05). At the first visit, compared with the baseline, the NIHSS score decreased by -1.61 ± 0.620 in the experimental group compared to -1.26 ± 0.481 in the control group (P < 0.05). At the second visit, the NIHSS score decreased by -2.27 ± 0.569 in the experimental group compared to -1.32 ± 0.652 in the control group (P < 0.05). After propensity score matching, the good prognosis rate assessed by mRS at the first visit was 99.1% in the experimental group and 98.2% in the control group (P > 0.05). At the second visit, the good prognosis rate was 100% in both groups (P > 0.05). The distribution of six degrees of disability assessed by mRS was not significantly different between the two groups, namely, no symptoms, no significant disability, mild disability, moderate disability, moderately severe disability, and severe disability (Table 6).

DISCUSSION
The pathological process of IS is related to several factors. Therefore, intervention is possible for any process in the ischemic cascade. Guhong injection, composed of aceglutamide and safflower aqueous extract, is a common drug for the treatment of cerebral ischemia/reperfusion injury[7,8]. Aceglutamide and safflower aqueous extract can work synergistically and have antiplatelet and antithrombotic actions. Aceglutamide is decomposed into glutamic acid after passing through the blood–brain barrier. Glutamic acid can improve nerve cell metabolism, maintain normal stress response of nerve cells, and lower blood ammonia level, thereby improving brain function[9]. Glutamic acid is also involved in
signal transmission in the central nervous system. Glutamic acid can be converted into glutathione in astrocytes. Glutathione is shown to have antioxidative effects and has neuroprotective activity against cerebral ischemia and nervous system diseases. Guhong injection is a vasodilator, which improves blood perfusion in cerebral ischemia/reperfusion injury. Guhong injection can clear oxygen free radicals, thereby reducing the calcium ion level in the brain tissues of rats with ischemia/reperfusion injury. Guhong injection improved the neurological deficit scores in a rat model of cerebral ischemia and reduced the ischemic infarct volume. Further investigation showed that Guhong injection protected the rat brain tissues or brain microvascular endothelial cells (BMECs) against ischemic/reperfusion injury or oxygen glucose deprivation (OGD)-induced injury by repairing the brain microvascular system and mitochondria. Guhong injection inhibited cell apoptosis by activating the PI3K/Akt pathway in cerebral ischemia. Guhong injection may be an effective drug against cerebral ischemia as it maintains the antiapoptotic effect and integrity of the brain microvascular system and mitochondria. Wang et al. found that Guhong injection plus Naoxingtong decoction were protective against cerebral ischemia/reperfusion injury in rats. The number of rat BMECs and superoxide dismutase level were higher in the combined treatment group than in the monotherapy group. These two indicators were significantly higher in the medication groups than in the nonmedication group. The apoptosis rate of rat BMECs and malondialdehyde level were significantly lower in the combined treatment than in the monotherapy group. They were both significantly higher in the medication groups than in the nonmedication group. Based on the pharmacological features of Guhong injection, several clinical studies of Guhong injection for other diseases are being carried out.

Table 6 Propensity score matching between the experimental group and control group

Factors	Before propensity score; Experimental group (n = 198)	Control group (n = 201)	P value	After propensity score; Experimental group (n = 111)	Control group (n = 111)	P value
Combined medication based on vitamins	-0.331	0.288	0.25	0.375	0.91	0.34
Combined medication based on Chinese patent medicine	0.539	0.31	0.082	0.147	0.17	0.68
Combined medication based on neurotrophic agents	0.575	0.225	0.11	-0.193	0.467	0.494
Combined medication based on free-radical scavengers	-1.823	0.245	0	-0.017	0.003	0.955
Concomitant medication for respiratory diseases	-1.182	0.44	0.007	-0.032	0.003	0.953
Concomitant medication for genitourinary diseases	-0.638	0.557	0.252	0.279	0.197	0.657
Concomitant medication for coronary heart disease	0.414	0.423	0.328	0.512	1.085	0.298

Many clinical trials have investigated the efficacy and safety of Guhong injection and Butylphthalide and Sodium Chloride Injection for cerebral IS. One meta-analysis including 1498 patients with acute cerebral infarction from nine RCTs indicated a significant difference in overall response rate between the Guhong injection and control groups. The neurological deficit scores were also significantly
different between the Guhong injection group and the control group. Adverse events were rare or mild. These results confirmed the safety of Guhong injection[23]. Another meta-analysis focused on the efficacy and safety of butylphthalide, which included seven RCTs with 796 patients. Among them, 396 patients received Butylphthalide and Sodium Chloride Injection and 400 received conventional treatment. A systematic review showed that compared with the conventional treatment group, NIHSS scores decreased significantly in the Butylphthalide and Sodium Chloride Injection group at days 11 and 21, and the Barthel index increased markedly. The results showed that Butylphthalide and Sodium Chloride Injection alleviated neurological deficits at days 11 and 21 after the onset of acute IS. The patients’ physical function was also improved. Butylphthalide and Sodium Chloride Injection was proved to be effective and worthy of clinical application[24]. We recruited 399 patients from six hospitals. Apart from a shorter length of hospital stay, Guhong injection outperformed Butylphthalide and Sodium Chloride Injection in improving NIHSS and mRS scores. This finding remained unchanged after propensity score matching. Based on the vital signs, routine blood tests, and liver and kidney function tests, we found no significant differences between the two groups in safety and incidence of adverse events. A few adverse events observed were not related to the study drug, and no severe adverse events occurred. Thus, Guhong injection displayed good safety in our study.

For efficacy assessment, other medications used in the two groups were considered confounding factors, which were handled by propensity score matching. After confirming that the medication use was balanced between the two groups, we further assessed the efficacy. Finally, 11 medication regimens involving drugs other than Guhong injection and Butylphthalide and Sodium Chloride Injection were put into the model as covariates, and propensity score matching was carried out. After the matching, the marked response rate of the experimental group was significantly higher than that of the control group. However, the overall response rate was only slightly reduced. The decrease in the NIHSS score was greater relative to the baseline in the experimental group than in the control group.

There were some limitations to the present study. First, the patients were only recruited from six hospitals, and selection bias was inevitable. Second, the follow-up with mRS assessment was short. In the future, the follow-up may be prolonged to 3 mo or longer to assess the long-term efficacy of Guhong injection. In addition, it is necessary to conduct large-scale RCTs or real-world studies of Guhong injection for cerebral IS to guide safe and reasonable drug use in the clinic.

CONCLUSION

Guhong injection compared with Butylphthalide and Sodium Chloride Injection increases the response rate and shortens the length of hospital stay in patients with IS. Guhong injection has greater clinical efficacy for IS.

ARTICLE HIGHLIGHTS

Research background
Efforts should be made to restore microcirculation in ischemic regions as quickly as possible to protect the brain nerves maximally, and there are many neuroprotective drugs in clinical application.

Research motivation
Most studies on Guhong injection have involved a single center with a small sample size, with a low level of clinical evidence.

Research objectives
To assess the safety and efficacy of Guhong injection for mild ischemic stroke (IS).

Research methods
IS patients who met the inclusion and exclusion criteria were enrolled from six hospital in China and divided into two groups treated with Guhong injection or Butylphthalide and Sodium Chloride Injection. The National Institute of Health Stroke Scale (NIHSS) scores and modified Rankin scale (mRS) were compared between the two groups after treatment. Conditional logistic regression was used to calculate the propensity scores of the two groups. After performing the 1:1 nearest-neighbor matching, we compared the efficacy between the two groups.

Research results
The marked response rates were increased significantly in the experimental group compared with the control group. The overall response rate was significantly different at the second (days 14 ± 2) and third visit (days 21 ± 3). At the first and second visits, the change in mRS scores was -2 and -1 in the two
groups, which were significantly different. There was no significant difference in the incidence of adverse events between the two groups. No severe adverse events occurred in either group. The results showed that Guhong injection had greater clinical efficacy than Butylphthalide and Sodium Chloride Injection for IS in a large sample.

Research conclusions
The research suggested that Guhong injection compared with Butylphthalide and Sodium Chloride Injection increases the response rate and shortened the length of hospital stay in patients with IS. Guhong injection has greater clinical efficacy for IS.

Research perspectives
Further study on the mechanism of Guhong injection for treatment of IS is required.

FOOTNOTES

Author contributions: Zhang WW wrote the paper; Wu CS, Xin J, and Zhang GY supervised the report; Zhao LD contributed to the analysis; Zhang HM provided clinical advice; all authors designed and performed the research, and gave final approval for the version to be submitted.

Institutional review board statement: The present study was approved by the Ethics Committee of the Seventh Medical Center of General PLA hospital (2020-001).

Informed consent statement: Patients were not required to give informed consent to the study because the analysis used anonymous clinical data that were obtained after each patient agreed to treatment by written consent.

Conflict-of-interest statement: There are no conflicts of interest to declare.

Data sharing statement: Technical appendix, statistical code, and dataset available from the corresponding author at amy_1119@163.com.

STROBE statement: The authors have read the STROBE Statement-checklist of items, and the manuscript was prepared and revised according to the STROBE Statement-checklist of items.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: China

ORCID number: Wei-Wei Zhang 0000-0003-1752-8373; Jiang Xin 0000-0002-5593-9571; Guang-Yu Zhang 0000-0001-2345-6789; Qi-Jin Zhai 0000-0002-1872-3800; Hua-Min Zhang 0000-0002-0284-7366; Cheng-Si Wu 0000-0002-7169-6872.

S-Editor: Liu JH
L-Editor: Wang TQ
P-Editor: Liu JH

REFERENCES

1. **Powers WJ**, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, Biller J, Brown M, Demaerschalk BM, Hoh B, Jauch EC, Kidwell CS, Leslie-Mazwi TM, Ovbiagele B, Scott PA, Sheth KN, Southerland AM, Summers DV, Tirschwell DL; American Heart Association Stroke Council. 2018 Guidelines for the Early Management of Patients With Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2018; 49: e46-e110 [PMID: 29367334 DOI: 10.1161/STR.0000000000000158]

2. **Chinese Society of Neurology**, Chinese Stroke Society. [Chinese Guidelines for Diagnosis and Treatment of Acute Ischemic Stroke 2018]. Chin J Neurol 2018; 51: 666-682

3. **National Health and Family Planning Commission**. 2016 National Healthcare Service and Quality Safety Report: Neurology Volume. Beijing: People's Medical Publishing House, 2017

4. **Chinese Medical Doctor Association Integrative Medicine Physician Branch**, Compilation group of "Chinese Expert Consensus on Clinical Application of Guhong Injection. [Chinese Expert Consensus on the Clinical Application of Guhong Injection]. Chin J Geriatr Heart Brain Vessel Dis 2020; 18: 1665-1670 [DOI: 10.12102/ji.ssn.1672-1349.2020.11.001]"

5. **Du SS**. [A study on the short-term efficacy and working mechanism of different doses of butylphthalide in cerebral infarction]. J Med Forum 2017, 38: 162-164
Zhang WW et al. Guhong injection for mild ischemic stroke

6. Zhang ZY, Li YQ, Dong ZY, Song CY, Zhao H. [Effects of comprehensive rehabilitation therapy of traditional Chinese medicine on the quality of daily life of patients with cerebral infarction]. World Latest Med Inf 2015; 15: 219+172 [DOI: 10.3969/j.issn.1671-3141.2015.62.192]

7. Zhu M, Ding Q, Lin Z, Chen X, Chen S, Zhu Y. New insights of epigenetics in vascular and cellular senescence. J Transl Med 2021; 9: 239-248 [PMID: 35136723 DOI: 10.2478/jtm-2021-0049]

8. Wang YJ, Cai ZW, Xia JW, Jiang ZQ. [Scores on propensity Conception and measures]. Chin J Epidemiol 2010; 31: 347-348 [DOI: 10.3760/cma.j.issn.0254-4850.2010.03.026]

9. Zhang R, Zhe SY, Liang Z, Ji C, Yang N, Liu YY, Cui LY, Zuo P. [Effects of Guhong Injection on motor dysfunction in cerebral ischemia-reperfusion rats]. Chin J Rehabil Theor Pract 2015; 21: 12-16 DOI: 10.3969/j.issn.1006-9771.2015.01.004

10. Zhang R. A study on the working mechanism of acetylacetamide and Guhong Injection against cerebral ischemia/reperfusion injury. Beijing: Peking Union Medical College, 2015

11. Zhang F, Ning Y. [Efficacy and safety of Guhong Injection in acute cerebral infarction]. Pract Pharm Clin Remedies 2018; 1129-1132 [DOI: 10.14053/j.cnki.pprc.201509033]

12. Shi XH, Tang YH, Chen JZ, Shi SL, He Y. [A pharmacokinetic study of hydroxysafflor yellow A in Guhong Injection in rats]. Chin Trad Pat Med 2015; 37: 2387-2391 [DOI: 10.3969/j.issn.1001-1528.2015.11.011]

13. Shi MC, Wang HT, Zhou HF, Yang JH, Zhao T, Fu W, He Y. [Effect and mechanism of Guhong injection against cerebral ischemia/reperfusion injury]. Chin J Chin Mater Med 2014; 39: 4829-4833 [DOI: 10.4268/cjcm20142425]

14. Zhou H, He Y, Zhe J, Lin X, Chen J, Shao C, Wan H, Yang J. Guhong Injection Protects Against Apoptosis in Cerebral Ischemia by Maintaining Cerebral Microvasculature and Mitochondrial Integrity Through the PI3K/AKT Pathway. Front Pharmacol 2021; 12: 650983 [PMID: 34054531 DOI: 10.3389/fphar.2021.650983]

15. Wang HY, Zhou HF, He Y, Yu L, Li C, Yang JH, Wang HT. Protective Effect of Naoxiontong Capsule () Combined with Guhong Injection () on Rat Brain Microvascular Endothelial Cells during Cerebral Ischemia-Reperfusion Injury. Chin J Integr Med 2021; 27: 744-751 [PMID: 32248514 DOI: 10.1007/s11655-020-3215-3]

16. Jieqin Z, Shuling L, Hairong C, Xingzhen D, Yanhong C, Zilin J, Bojun C. Efficacy and safety of Guhong injection for treating coronary microvascular disease: study protocol for a randomized controlled trial. Trials 2020; 21: 75 [PMID: 31913853 DOI: 10.1186/s1363-019-3990-3]

17. Tian Z, Wang J, Wang Y, Zhang M, Zhou Y. Effects of butylphthalide on cognitive decline in diabetic rats. Mol Med Rep 2017; 16: 9131-9136 [PMID: 28990110 DOI: 10.3892/mmr.2017.7700]

18. Liu Z, Wang H, Shi X, Li L, Zhou M, Ding H, Yang Y, Li X, Ding K. DL-3-n-Butylphthalide (NBP) Provides Neuroprotection in the Mice Models After Traumatic Brain Injury via Nrf2-ARE Signaling Pathway. Neurochem Res 2017; 42: 1375-1386 [PMID: 28214984 DOI: 10.1101/11655-020-2186-z]

19. Yan RY, Wang SJ, Yao GT, Liu ZG, Xiao N. The protective effect and its mechanism of 3-n-butylphthalide pretreatment on cerebral ischemia reperfusion injury in rats. Eur Rev Med Pharmacol Sci 2017; 21: 5275-5282 [PMID: 29228445 DOI: 10.26355/eurrev_201711_13852]

20. Bi MJ, Sun XN, Shi J, Li Q, Lin HY, Qu Y, Kang H. Regulatory effect of butylphthalide on the Nogo/NGr expression in the brain tissues of rats with acute carbon monoxide poisoning. Chin J Neuromed 2015; 14: 1106-1112 [DOI: 10.3760/cma.j.issn.1671-8925.2015.11.005]

21. Qin C, Zhou P, Wang L, Mamtihalun M, Li W, Zhang Z, Yang GY, Wang Y. DL-3-N-butylphthalide attenuates ischemic reperfusion injury by improving the function of cerebral artery and circulation. J Cereb Blood Flow Metab 2019; 39: 2011-2021 [PMID: 30966072 DOI: 10.1177/0271678X18776533]

22. Zhang P, Xu R, Guo Y, Qin J, Dai Y, Liu N, Wu C. DL-3-n-butylphthalide promotes dendrite development in cortical neurons subjected to oxygen-glucose deprivation/reperfusion. Cell Biol Int 2018; 42: 1041-1049 [PMID: 29696738 DOI: 10.1007/s12071.10980]

23. Chen HL, He CM, Pang MW, Lin K, Wang J, Sun JH. [Effect of butylphthalide on cytokines and neurological function in elderly patients with acute ischemic stroke]. Chin J Geriatr Heart Brain Vessel Dis 2016; 18: 1173-1177 [DOI: 10.3969/j.issn.1009-0126.2016.01.015]

24. He XW, Fan XP, Zhong T. [Meta-analysis of Guhong Injection on acute cerebral infarction]. Chinese Arch Trad Chin Med 2014; 32: 2602-2605 DOI: 10.13193/j.issn.1673-7717.2014.01.012

25. Shu ZG, Xu JF. [Systemic evaluation of the clinical efficacy of butylphthalide in acute ischemic stroke]. J Clin Neurol 2016; 29: 1-7

26. Yu YT, Li YT, Zhang ZC, Guo P, Cui XH, Chen HB. [Efficacy of Guhong Injection combined with alprostadil in the treatment of acute massive cerebral infarction combined with cerebral-cardiac syndrome and its effect on plasma ET-1, NO and 8-iso-PGF2a]. Mod J Integrat Trad Chin Med 2017; 26: 2440-2443 [PMID: 10.3969/j.issn.1008-8849.2017.22.015]

27. Li YP, Zhang QS. [Clinical study on Guhong Injection combined with butylphthalide in treatment of acute cerebral infarction]. Drugs Clinic 2018; 33: 41-45 [DOI: 10.7501/j.1674-5515.2018.01.010]

28. Jiang C, Fang X, Feng JL, Hao ML. [Clinical study on Guhong Injection combined with salvianolic acid salt in treatment of acute cerebral infarction]. Drugs Clinic 2020; 35: 1322-1326 [DOI: 10.7501/j.1674-5515.2020.07.007]

29. Cui LY, Li YW, Zhang WW, Peng GG, He Li, Fan DS, Shen Y, Wang YJ, Gao XG, Jia JP, Zeng JS, Xu E, Li CY, Jia H. [Effects of dl-3-butylphthalide soft capsules on treatment of acute ischemic stroke: multi-center, randomized, double-blind, double-dummy and aspirin-control study]. Chin J Neurol 2008; 41: 727-730 [DOI: 10.7331/j.issn:1006-7876.2008.11.003]

30. Gao XL, Chen LY, Sun LQ, Li X, Zhang GQ. [Evaluation of the clinical efficacy and safety of edaravone combined with butylphthalide in acute ischemic stroke]. Chin J Clin Pharmacol 2015; 1569-1571 DOI: 10.13699/j.cnki.1001-6821.2015.16.003]
