Junglerice (Echinochloa colona) control with sequential applications of glyphosate and clethodim to dicamba

Authors: Perkins, Clay M., Mueller, Thomas C., and Steckel, Lawrence E.

Source: Weed Technology, 35(4) : 651-655
Published By: Weed Science Society of America
URL: https://doi.org/10.1017/wet.2021.31
Junglerice (Echinochloa colona) control with sequential applications of glyphosate and clethodim to dicamba

Clay M. Perkins¹, Thomas C. Mueller² and Lawrence E. Steckel³

¹Graduate Research Assistant, University of Tennessee, Knoxville, TN, USA; ²Professor, Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA and ³Professor, Department of Plant Sciences, University of Tennessee, Jackson, TN, USA

Abstract

Junglerice is becoming more prevalent in Tennessee, Arkansas, and Mississippi row crop fields. The evolution of glyphosate-resistant (GR) junglerice populations is one reason for the increase. Another possible explanation is that glyphosate and clethodim grass activity is being antagonized by dicamba. This question has led to research to examine whether sequential applications alleviate antagonism observed with dicamba plus glyphosate and/or clethodim mixtures and determine whether sequential treatments with those herbicides at 24 h, 72 h, or 168 h can improve junglerice control. Glyphosate + clethodim applications provided >90% junglerice control. The observed levels of antagonism varied by whether the location of the test was in the greenhouse or the field, and the timing of applications. In the greenhouse, clethodim + dicamba provided excellent control, whereas in the field, the same treatment showed a greater than 30% reduction in junglerice control compared with clethodim alone. However, control was restored by using a mixture of glyphosate + clethodim without dicamba. The environment at the time of application and relative GR level of the junglerice influenced the overall control of these sequential applications. When clethodim applied first followed by dicamba at 72 h or 168 h, better control was observed compared with applying dicamba followed by clethodim. Overall, mixing glyphosate + clethodim provided the most complete junglerice control regardless of timing. These data confirm that leaving dicamba out of the spray tank will mitigate herbicide antagonism on junglerice control. These data would also indicate that avoiding dicamba and glyphosate mixtures will also improve the consistency of control with glyphosate-susceptible junglerice.

Introduction

Junglerice is one of the predominant weeds in soybean [Glycine max (L.) Merr.] and cotton (Gossypium hirsutum L.) across the mid-South and in particular Tennessee (Perkins et al. 2020; Tahir 2007). Junglerice and barnyardgrass [Echinochloa crus-galli (L.) P. Beauv.] are the two most common Echinochloa species found in Tennessee (Perkins et al. 2020). Junglerice is a warm-season annual grass that grows rapidly, has prolific seed production, and an extended emergence period. Testing for herbicide resistance of junglerice in Tennessee indicated that 15% of junglerice populations have a 2-fold to 8-fold resistance level to glyphosate, which is consistent to what Nandula et al. (2018) found on selected Mississippi and Tennessee populations (Perkins et al. 2020).

The increase in junglerice prevalence across the mid-South is believed to be due to the evolution of glyphosate-resistant (GR) and dicamba antagonism of glyphosate (Perkins et al. 2021). Poor junglerice control could be compounded by using the ultra-course nozzles and drift reduction agents that are mandated for dicamba applications (Perkins et al. 2020). The majority of the hectares across the mid-South, including Tennessee, are receiving at least one glyphosate + dicamba application. The U.S. Department of Agriculture reports that in 2018, 71% of the hectares were planted in dicamba-tolerant soybean and more than 2.2 million kg of dicamba were applied in-crop in the United States (Wechsler et al. 2019). Dicamba use increased in 2019 with 16 million soybean hectares planted to Xtend® varieties (Bayer Crop Protection, St. Louis, MO). A recent memorandum issued by the U.S. Environmental Protection Agency on benefits of dicamba in dicamba-tolerant soybean production suggested that 97% of dicamba applications were applied with glyphosate in 2018 and 2019 (Orlowski and Kells 2020). The frequent co-application of dicamba with glyphosate and/or clethodim could result in reduced grass control recently observed in the mid-South. In addition, growers have reported Palmer amaranth (Amaranthus palmeri S. Wats.) control failures with glyphosate + dicamba applications, which resulted in some producers using higher dicamba rates (Steckel 2019). Although
using higher dicamba rates may improve Palmer amaranth control. It has been reported to decrease glyphosate effectiveness on junglerice (Perkins et al. 2021).

Colby (1967) describes herbicide antagonism as a result of applying two herbicides in combination, which will result in less control than what is expected based on how the individual herbicide performs alone. A decrease in glyphosate activity on junglerice plus other grass species has been documented from mixtures of glyphosate + dicamba compared with glyphosate applied alone (O’Sullivan and O’Donovan 1980; Perkins et al. 2021). In addition, antagonism of graminicides have been observed in other studies when they are applied with auxin herbicides (Blackshaw et al. 2006; Fletcher and Drexler 1980; Mueller et al. 1989; Olson and Nalewaja 1981; Todd and Stobbe 1980). Minton et al. (1989b) reported that antagonism and synergism responses may vary with the herbicides used in mixtures or sequential applications, and responses may also differ depending on the grass species to be controlled. Minton et al. (1989a) also reported decreased control of barnyardgrass when sethoxydim or quinclorac was mixed with the broadleaf herbicides imazaquin, chlorimuron, or lactofen. Those researchers also reported antagonism when either grass product was applied 24 h after imazaquin or lactofen but not with chlorimuron. Mixtures of broadleaf and grass herbicides have been reported to provide less grass control than expected (Byrd and York 1987; Croon and Merkle 1988; Grickar and Boswell 1987; Minton et al. 1989a, 1989b; Vidrine 1989). Myers and Coble (1992) reported that sequential applications of broadleaf and grass herbicides have been used to overcome antagonism.

Antagonism plus herbicide resistance can lead to weed control failure after only a few years. Avoiding antagonism from herbicide applications will assist in resistance management as well. Therefore, the objective of this research was to 1) examine whether sequential applications alleviate antagonism observed with dicamba plus glyphosate and/or clethodim mixtures on junglerice control, and 2) determine whether sequential treatments with those herbicides at 24 h, 72 h, or 168 h can improve the consistency of junglerice control.

Materials and Methods
Greenhouse Research
A greenhouse experiment was replicated to determine how applications of glyphosate or clethodim made either 24 h or 72 h before or after an application of dicamba would impact weed control. This study was conducted on six nonrepeating collected populations from Tennessee and was similar to that reported by Perkins et al. (2020). The study design is a randomized complete block from Tennessee and was similar to that reported by Perkins et al. (2021). In addition, antagonism of graminicides have been observed in other studies when they are applied with auxin herbicides (Blackshaw et al. 2006; Fletcher and Drexler 1980; Mueller et al. 1989; Olson and Nalewaja 1981; Todd and Stobbe 1980). Minton et al. (1989b) reported that antagonism and synergism responses may vary with the herbicides used in mixtures or sequential applications, and responses may also differ depending on the grass species to be controlled. Minton et al. (1989a) also reported decreased control of barnyardgrass when sethoxydim or quinclorac was mixed with the broadleaf herbicides imazaquin, chlorimuron, or lactofen. Those researchers also reported antagonism when either grass product was applied 24 h after imazaquin or lactofen but not with chlorimuron. Mixtures of broadleaf and grass herbicides have been reported to provide less grass control than expected (Byrd and York 1987; Croon and Merkle 1988; Grickar and Boswell 1987; Minton et al. 1989a, 1989b; Vidrine 1989). Myers and Coble (1992) reported that sequential applications of broadleaf and grass herbicides have been used to overcome antagonism.

Antagonism plus herbicide resistance can lead to weed control failure after only a few years. Avoiding antagonism from herbicide applications will assist in resistance management as well. Therefore, the objective of this research was to 1) examine whether sequential applications alleviate antagonism observed with dicamba plus glyphosate and/or clethodim mixtures on junglerice control, and 2) determine whether sequential treatments with those herbicides at 24 h, 72 h, or 168 h can improve the consistency of junglerice control.

Data Analysis
Populations were blocked on site due to differences in junglerice population density and GR. Fixed effects were herbicide treatments. Environment, replication, and any interactions of fixed by random effects were considered random in the model. Each year-location combination was considered an environment sampled at random from a population as described by Carmer et al. (1989). Designating the environments random will broaden the possible inference space applicable to the experimental results (Carmer et al. 1989). Mean separation for individual treatment differences was performed using Fisher’s protected LSD test at P ≤ 0.05. Post-ANOVA single degree of freedom contrasts were then used (SAS v9.4; SAS Institute; Cary, NC) to compare herbicide applications with and without dicamba.

Results and Discussion
Greenhouse Study
There was an overall herbicide effect (P < 0.001) among treatments with glyphosate and clethodim. Glyphosate alone provided 83% junglerice control (Table 1). Glyphosate + dicamba mixture...
Table 1. Junglerice control (21 DAT) comparing 24-h and 72-h sequential applications of glyphosate applications preceding and following dicamba application across six environments (populations) in the greenhouse.\(^a,b\)

Sequential timing	Herbicide treatment	Control, %	Biomass, g
Alone	Glyphosate	83 abc	0.67 b
Mixture	Glyphosate + Dicamba	68 cd	1.92 b
24-h Sequential	Glyphosate fb Dicamba	59 d	1.08 b
	Dicamba fb Glyphosate	68 cd	0.5 b
72-h Sequential	Glyphosate fb Dicamba	76 bcd	0.25 b
	Dicamba fb Glyphosate	87 ab	0.42 b
	F-value	4.01	2.81
	Df	11,191	11,132
	P-value	< 0.001	0.003

\(^a\)Means not followed by a common letter are significantly different (P < 0.05).
\(^b\)Abbreviations: DAT, days after treatment; Df, degrees of freedom; fb, followed by.
\(^c\)Biomass is recorded in grams per pot.

Table 2. Junglerice control (21 DAT) comparing 24-h and 72-h sequential applications of clethodim applications preceding and following dicamba application across six environments (populations) in the greenhouse.\(^a,b\)

Sequential timing	Herbicide treatment	Control, %	Biomass, g
Alone	Clethodim	92 ab	2.00 b
Mixture	Clethodim + Dicamba	86 a	1.75 b
24-h Sequential	Clethodim fb Dicamba	87 ab	2.33 b
	Dicamba fb Clethodim	65 d	1.25 b
72-h Sequential	Clethodim fb Dicamba	66 cd	5.25 a
	Dicamba fb Clethodim	93 a	0.01 b
	F-value	4.01	2.81
	Df	11,191	11,132
	P-value	< 0.001	0.003

\(^a\)Means not followed by a common letter are significantly different (P < 0.05).
\(^b\)Abbreviations: DAT, days after treatment; Df, degrees of freedom; fb, followed by.
\(^c\)Biomass is recorded in grams per pot.

Field Studies

An effect of herbicide treatments on junglerice control was observed in the field studies (P < 0.001). Glyphosate alone provided 59% control (Table 3). The poor junglerice control by glyphosate would suggest that at least one of the locations contained both a segregating glyphosate-resistant and glyphosate-susceptible population. The glyphosate + dicamba application provided similar junglerice control (48%). These results are similar to those reported by Perkins et al. (2020) that 57% junglerice control was achieved with a glyphosate + dicamba mixture, but glyphosate alone provided 82% control. This was also similar to observations by Flint and Barrett (1989) who reported antagonism with dicamba mixtures on johnsongrass. The glyphosate + clethodim treatment provided the greatest junglerice control at 91%. These results are consistent with those reported by Perkins et al. (2020) that 15% of Tennessee junglerice populations could no longer be controlled with glyphosate, but clethodim was still effective. Similarly, a glyphosate + clethodim + dicamba application provided 81% control of junglerice. Glyphosate control was reduced when dicamba was sprayed 72 h before or after glyphosate (55% and 53%, respectively). Similar control was found with a 168-h sequential. From these data, however, a glyphosate + clethodim application preceding or following a dicamba application at both 72 h and 168 h provided the best control of junglerice. Biomass results supported visual control data with no differences detected among the glyphosate or clethodim treatments.

Table 3. Junglerice control (21 DAT) comparing 72-h and 168-h sequential applications of glyphosate and glyphosate + clethodim applications preceding and following dicamba application across three environments in Tennessee in 2020.\(^a,b\)

Sequential timing	Herbicide treatment	Control, %	Biomass, g
Alone	Glyphosate	59 de	120.0 abc
Mixture	Glyphosate + Clethodim	91 a	53.0 c
72-h Sequential	Glyphosate + Dicamba	48 e	133.8 ab
	Glyphosate + Clethodim + Dicamba	81 ab	93.9 ab
168-h Sequential	Glyphosate fb Dicamba	55 de	133.6 ab
	Dicamba fb Glyphosate	53 de	131.8 ab
	Glyphosate + Clethodim fb Dicamba	81 ab	95.1 ab
	Dicamba fb Glyphosate + Clethodim	87 a	73.5 ab
7-d Sequential	Glyphosate fb Dicamba	68 bcd	92.0 abc
	Dicamba fb Glyphosate	60 de	100.0 abc
	Glyphosate + Clethodim fb Dicamba	87 a	135.0 a
	Dicamba fb Glyphosate + Clethodim	86 a	79.3 abc
	F-value	5.27	1.16
	Df	17,34	17,17
	P-value	< 0.001	0.381

\(^a\)Means not followed by a common letter are significantly different (P < 0.05).
\(^b\)Abbreviations: DAT, days after treatment; Df, degrees of freedom; fb, followed by.
\(^c\)Biomass is recorded in grams per square meter.

with those reported by Minton et al. (1989a, 1989b) that fluazifop-P was antagonized by mixing with 2,4-DB.
control of barnyardgrass by clethodim. We observed that adding glyphosate to the clethodim + dicamba mixture improved control (81%), but mixing glyphosate with clethodim did not improve junglerice control (91%) over clethodim alone. When dicamba followed clethodim at 72 h or 168 h later junglerice control was similar to clethodim applied alone. Similarly, dicamba applied first followed 72 h later with clethodim did not reduce junglerice control over clethodim applied alone. However, if clethodim was applied 168 h after dicamba, then junglerice control was greatly reduced (61%). Biomass results were similar and supported these data with no differences detected.

The addition of dicamba decreased junglerice control by glyphosate and clethodim in some but not all of our studies. As would be anticipated, where GR junglerice existed in the population, control with glyphosate was poor regardless of whether or not dicamba was added. In some of these environments, dicamba hindered clethodim control of junglerice. The level of antagonism observed varied by timing of sequential applications. In the greenhouse, dicamba + clethodim provided excellent control, whereas in the field the same treatment showed a greater than 30% reduction in junglerice control compared with clethodim alone. However, resistance or antagonism was overcome by using a mixture of glyphosate + clethodim. Ultimately, the question of whether junglerice control could be improved by applying glyphosate and waiting 24, 72, or 168 h to apply dicamba or vice versa was not clearly answered. We suggest that the relative GR level of the junglerice influenced the overall control of these sequential applications. However, clethodim applied first followed at either 72 h or 168 h by dicamba provided consistently better control than applying dicamba followed by clethodim.

Mixing glyphosate + clethodim provided the most consistent junglerice control regardless of different application intervals. These data confirm that leaving dicamba out of the spray tank will avoid the possibility of it antagonizing control of junglerice with clethodim. These data along with those reported by Perkins et al. (2020) indicate that avoiding dicamba and glyphosate mixtures will also improve the consistency of control with glyphosate-susceptible junglerice. A survey by Perkins et al. (2020) reported that on average, 40% of the fields in Tennessee have both Palmer amaranth plus *Echinochloa* species present at harvest. Thus, the control of both junglerice and Palmer amaranth in the same field can be improved by not co-applying dicamba with glyphosate.

Acknowledgments. We thank Syngenta for providing us the access to conduct research at their facilities in Vero Beach, Florida. We especially thank Ethan Parker, Marshall Hay, Gracee Hendrix, and all the employees at the Vero Beach research station for their assistance and guidance throughout this process. We also thank the support staff and technicians at The University of Tennessee West Tennessee Research and Education Center for their assistance. This research was funded in part by the Tennessee Soybean Promotion Board and Cotton Incorporated. No other conflicts of interest are noted.

References

Blackshaw RE, Harker N, Clayton GW, O’Donovan JT (2006) Broadleaf herbicide effects on clethodim and quizalofop-p-efacacy on volunteer wheat (*Triticum aestivum*). Weed Technol 20:221–226

Brod JD, York AC (1987) Interaction of fluometuron and MSMA with sethoxydim and fluazifop. Weed Sci 35:270–276

Carmer SG, Nyquist WE, Walker WM (1989) Least significant differences for combined analysis of experiments with two or three-factor treatment designs. Agron J 81:665–672

Colby SR (1967) Calculating synergistic and antagonistic responses of herbicide combinations. Weeds 15:20–22

Combellack JH (1982) Loss of herbicides from ground sprayers. Weed Res 22:193–204

Croon KA, Merkle MG (1988) Effects of bentazon, imazaquin or chlorimuron on haloxyfop or fluazifop-P efficacy. Weed Technol 2:36–40

Fletcher RA, Dreixel DM (1980) Interactions of diclofop-methyl and 2,4-D in cultivated oats (*Avena sativa*). Weed Sci 28:363–366

Flint JL, Barrett M (1989) Antagonism of glyphosate toxicity to johnsongrass (*Sorghum halepense*) by 2,4-D and dicamba. Weed Sci 37:700–705

Grickar WJ, Boswell TE (1987) Herbicide combinations in peanut (*Arachis hypogaea*). Weed Technol 1:290–293

Minton BW, Kurtz ME, Shaw DR (1989a) Barnyardgrass (*Echinochloa crus-galli*) control with grass and broadleaf weed herbicide combinations. Weed Sci 37:223–227

Minton BW, Shaw DR, Kurtz MB (1989b) Postemergence grass and broadleaf herbicide interactions for red rice (*Oryza sativa*) control in soybeans (*Glycine max*). Weed Technol 3:329–334

Mueller TC, Witt WW, Barrett M (1989) Antagonism of johnsongrass (*Sorghum halepense*) control with fenoxaprop, haloxyfop, and sethoxydim by 2,4-D. Weed Technol 3:86–89

Myers PF, Coble HD (1992) Antagonism of graminicide activity on annual grass species by imazethapyr. Weed Technol 6:333–338

Nandula VK, Montgomery GB, Venmapusa AR, Jugalam M, Giacomini DA, Ray JD, Bond JA, Steckel LE, Tranel PJ (2018) Glyphosate-resistant junglerice (*Echinochloa colona*) from Mississippi and Tennessee: magnitude and resistance mechanisms. Weed Sci 66:603–610

Olson WA, Nalewaja JD (1981) Antagonistic effects of MCPC on wild oat (*Avena fatua*) control with diclofop. Weed Sci 29:566–571

O’Sullivan PA, O’Donovan JT (1990) Interaction between glyphosate and various herbicides for broadleaved weed control. Weed Res 20:255–260

Otrulski J, Kells B (2020) Memorandum: assessments of the benefits of dicamba use in genetically modified, dicamba-tolerant soybean production (PC# 100094, 128931). https://www.regulations.gov/docket/EPA-HQ-OPP-2020-0492/document. Accessed: February 3, 2021

Perkins CM, Mueller TC, Steckel LE (2020) Survey of glyphosate-resistant junglerice accessions in dicamba-resistant crops in Tennessee. Weed Technol. DOI: 10.1017/wet.2020.131

Table 4. Junglerice control (21 DAT) comparing 72-h and 168-h sequential applications of clethodim and glyphosate + clethodim applications preceding and following dicamba application across three environments in Tennessee in 2020.abc

Timing	Herbicide treatment	Control, %	Biomassa,b, g m⁻²
Alone	Clethodim	86 ab	59.8 abc
	Glyphosate + Clethodim	91 a	53.0 c
Mixture	Clethodim + Dicamba	63 cde	72.3 abc
	Glyphosate + Clethodim + Dicamba	81 ab	93.9 abc
3-d Sequential	Clethodim fb Dicamba	78 abc	70.6 ab
	Dicamba fb Clethodim	82 ab	72.9 abc
	Glyphosate + Clethodim fb Dicamba	81 ab	95.1 abc
	Dicamba fb Glyphosate + Clethodim	87 a	73.5 abc
7-d Sequential	Clethodim fb Dicamba	84 ab	84.8 abc
	Dicamba fb Clethodim	61 cde	57.3 bc
	Glyphosate + Clethodim fb Dicamba	87 a	135.0 a
	Dicamba fb Glyphosate + Clethodim	86 a	79.3 abc

F-value	5.27	1.16
	17, 34	17, 17
P-value	< 0.001	0.381

abcMeans not followed by a common letter are significantly different (P < 0.05).
bAbbreviations: DAT, days after treatment; DF, degrees of freedom; fb, followed by.
cBiomass is recorded in grams per square meter.
Perkins CM, Mueller TC, Steckel LE (2021) Junglerice control with glyphosate and clethodim as influenced by dicamba and 2,4-D mixtures. Weed Technol. DOI: 10.1017/wet.2021.5

Steckel LE (2019) Control options for Palmer amaranth that has escaped Engenia or XtendiMax. UTcrops News Blog. The University of Tennessee. https://news.utcrops.com/2019/07/control-options-for-palmer-amaranth-that-has-escaped-engenia-or-xtendimax/#more-18079 Accessed: February 3, 2021

Tahir J (2007) Characterization of *Echinochloa* spp. in Arkansas. https://scholarworks.uark.edu/cgi/viewcontent.cgi?article=3272&context=etd Accessed: February 3, 2021

Todd BG, Stobbe EH (1980) The basis of the antagonistic effect of 2,4-D on diclofop-methyl toxicity to wild oat (*Avena fatua*). Weed Sci 28:371–377

Vidrine PR (1989) Johnsongrass (*Sorghum halepense*) control in soybeans (*Glycine max*) with postemergence herbicides. Weed Technol 3:455–458

Wechsler SJ, Smith D, McFadden J, Dodson L, Williamson S (2019) The use of genetically engineered dicamba-tolerant soybean seeds has increased quickly, benefitting adopters but damaging crops in some fields. Washington, DC: U.S. Department of Agriculture–Economic Research Service. https://www.ers.usda.gov/amber-waves/2019/october/the-use-of-genetically-engineered-dicamba-tolerant-soybean-seeds-has-increased-quickly-benefiting-adopters-but-damaging-crops-in-some-fields/ Accessed: February 3, 2021