Note to readers with disabilities: *EHP* strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in *EHP* articles may not conform to 508 standards due to the complexity of the information being presented. If you need assistance accessing journal content, please contact ehp508@niehs.nih.gov. Our staff will work with you to assess and meet your accessibility needs within 3 working days.

Supplemental Material

Prenatal and Childhood Traffic-Related Air Pollution Exposure and Telomere Length in European Children: The HELIX Project

Diana B.P. Clemente, Martine Vrijheid, Dries S. Martens, Mariona Bustamante, Leda Chatzi, Asta Danileviciute,Montserrat de Castro, Regina Grazuleviciene, Kristine B. Gutzkow, Johanna Lepeule, Lea Maitre, Rosie R.C. McEachan, Oliver Robinson, Per E. Schwarze, Ibon Tamayo, Marina Vafeiadi, John Wright, Rémy Slama, Mark Nieuwenhuijsen, and Tim S. Nawrot

Table of Contents

Table S1. General characteristics of the complete case study population stratified by cohort.

Table S2. Exposure characteristics of the complete case study population stratified by cohort.

Table S3. Association between leukocyte telomere length and traffic-related air pollution exposure and distance to nearest road.

Table S4. Sensitivity analyses.

Table S5. Leukocyte telomere length in association with categorized pre- and postnatal ambient air pollution.

Figure S1. Distribution of the prenatal and 1-year childhood NO₂ exposure levels across the different HELIX cohorts.

Figure S2. Distribution of the prenatal and 1-year childhood PM₂₅ exposure levels across the different HELIX cohorts.
Figure S3. GAM models show the linear relation between (A) Prenatal NO$_2$ exposure (μg/m3) during the entire pregnancy and child leukocyte telomere length, (B) 1-year childhood NO$_2$ exposure (μg/m3) and child leukocyte telomere length, and (C) PM$_{2.5}$ exposure (μg/m3) during the entire pregnancy and child leukocyte telomere length (D) 1-year childhood PM$_{2.5}$ exposure (μg/m3) during the entire pregnancy and child leukocyte telomere. Models were adjusted for child’s age, sex, qPCR batch, maternal age, maternal education, maternal smoking status during pregnancy, child ethnicity, child BMI, and parental smoking at 8 year.
Supplemental Table S1. General characteristics of the complete case study population stratified by cohort

	INMA (n = 428)	MOBA (n = 213)	BIB (n = 205)	RHEA (n = 199)	KANC (n = 202)	EDEN (n = 149)
Children						
Sex						
Girls	206 (48.13)	98 (46.0)	93 (45.37)	89 (44.72)	92 (45.54)	65 (43.6)
Boys	222 (51.87)	115 (54.0)	112 (54.63)	110 (55.28)	110 (54.46)	84 (56.4)
Ethnicity						
African	5 (1.17)	0 (0.0)	7 (3.41)	0 (0.0)	0 (0.0)	0 (0.0)
Asian	2 (0.47)	6 (2.9)	13 (6.34)	0 (0.0)	0 (0.0)	0 (0.0)
White European	380 (88.32)	204 (95.7)	89 (43.41)	199 (100.0)	202 (100.0)	149 (0.0)
Mixed native American	11 (2.57)	2 (1.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
Other	4 (0.93)	1 (0.4)	17 (8.82)	0 (0.0)	0 (0.0)	0 (0.0)
South-Asian	0 (0.0)	0 (0.0)	79 (38.54)	0 (0.0)	0 (0.0)	0 (0.0)
White not European	26 (6.07)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
Gestational age	39.9 ± 1.4	40.1 ± 1.7	39.7 ± 1.8	38.4 ± 1.4	39.4 ± 1.3	39.8 ± 1.7
Age at mtDNA content and telomere length assessment, years	9.02 ± 0.65	8.5 ± 0.5	6.6 ± 0.2	6.5 ± 0.3	6.5 ± 0.5	10.8 ± 0.6
Mothers						
Age at delivery	31.5 ± 4.2	32.8 ± 3.7	28.6 ± 5.8	30.9 ± 4.8	28.57 ± 5.0	30.7 ± 5.0
Missings	1 (0.2)	6 (2.8)	1 (0.5)	2 (1.0)	2 (1.0)	0 (0.0)
Education						
Low	99 (23.1)	0 (0.0)	88 (42.9)	9 (4.5)	12 (5.9)	11 (7.4)
Middle	174 (40.7)	41 (19.2)	31 (15.1)	111 (55.8)	69 (34.2)	55 (36.9)
High	141 (32.9)	164 (77.0)	64 (31.2)	79 (39.7)	116 (57.4)	83 (55.7)
Missings	14 (3.3)	8 (3.8)	22 (10.7)	2 (1.0)	5 (2.5)	3 (2.0)
------------	----------	---------	-----------	---------	---------	---------
Active smoking during pregnancy						
Yes	109 (225.46)	9 (4.4)	25 (12.2)	43 (21.6)	13 (6.44)	31 (20.8)
No	311 (72.66)	198 (91.6)	157 (76.6)	156 (78.4)	184 (91.09)	118 (79.2)
Missings	8 (1.87)	9 (4.4)	23 (11.2)	1 (0.5)	5 (2.5)	0 (0.0)
Parity						
1	230 (53.7)	93 (43.7)	83 (40.5)	74 (37.2)	84 (41.6)	71 (47.7)
2	165 (38.6)	86 (40.4)	52 (25.4)	85 (42.7)	59 (29.2)	51 (34.2)
≥3	28 (6.5)	28 (13.1)	56 (27.3)	35 (17.6)	54 (26.7)	27 (18.1)
Missings	5 (1.2)	6 (2.8)	14 (6.8)	5 (2.5)	5 (2.5)	0 (0.0)

Continuous covariates expressed by mean and standard deviation ± SD; categorical covariates described by number and frequencies (%); Data are complete for all observations unless otherwise indicated.
Supplemental Table S2. Exposure characteristics of the complete case study population stratified by cohort

	n	Mean	SD	5th Percentile	25th Percentile	50th Percentile	75th Percentile	95th Percentile
INMA								
NO₂ Prenatal	351	43.23	11.17	24.55	36.08	43.24	49.07	60.83
NO₂ Postnatal	401	33.04	11.81	11.74	26.83	35.4	40.69	50.18
PM₁₂.₅ Prenatal	351	15.08	1.72	12.3	14.1	14.97	15.98	17.86
PM₁₂.₅ Postnatal	401	13.31	1.72	10.47	12.66	13.3	13.88	15.7
MOBA								
NO₂ Prenatal	206	20.51	7.67	11.17	14.49	18.52	25.24	36.31
NO₂ Postnatal	207	26.2	5.41	19.35	22.72	25.44	29.59	33.6
PM₁₂.₅ Prenatal	207	12.06	2.22	8.13	10.47	12.66	13.53	15.94
PM₁₂.₅ Postnatal	207	8.12	1.61	5.95	7.06	7.77	9.06	11.13
BIB								
NO₂ Prenatal	205	20.79	3.43	15.66	18.43	20.61	23.12	26.71
NO₂ Postnatal	205	31.6	3.93	26.68	28.61	31.29	33.67	38.11
PM₁₂.₅ Prenatal	205	14.37	1.78	11.49	13.28	14.18	15.48	17.5
PM₁₂.₅ Postnatal	205	14.39	1.2	12.66	13.58	14.23	15.12	16.44
RHEA								
NO₂ Prenatal	199	12.14	4.21	8.34	9.28	11.19	12.8	21.83
NO₂ Postnatal	199	10.99	3.47	7.66	6.87	10.09	12.05	18.72
PM₁₂.₅ Prenatal	199	14.49	1.24	12.95	12.95	14.39	15.26	16.99
PM₁₂.₅ Postnatal	199	14.09	1.86	11.71	12.83	13.63	15.12	17.47
KANC								
NO₂ Prenatal	195	18.53	3.74	13.42	15.94	17.83	20.67	24.79
NO₂ Postnatal	194	13.99	2.51	10.05	12.51	13.99	15.21	17.8
PM₁₂.₅ Prenatal	195	17.61	2.44	13.49	15.78	17.98	19.09	20.93
PM₁₂.₅ Postnatal	194	18.29	1.6	15.28	17.58	18.28	19.34	20.68

Continuous variables expressed by mean and standard deviation (SD)
Table S3. Association between leukocyte telomere length and traffic-related air pollution exposure and distance to nearest road

Exposure	Pregnancy	1-year childhood	p-value
NO₂			
Pregnancy	-0.0066 (0.013 to 0.001)	0.02	
1-year childhood	-0.0071 (0.013 to 0.002)	0.01	
PM₂.₅			
Pregnancy	-0.0022 (0.0078 to 0.003)	0.3	
1-year childhood	-0.0061 (0.0129 to 0.001)	0.08	
Distance to nearest road			
Pregnancy	0.00068 (0.0058 to 0.0072)	0.8	
1-year childhood	0.0068 (0.0001 to 0.014)	0.04	

Effect size was estimated for each SD increment in ambient air pollution exposure.

Models were adjusted for child’s age, sex, qPCR batch, maternal age, maternal education, maternal smoking status during pregnancy, child ethnicity, child BMI, and parental smoking at 8 year.
Supplemental S4. Sensitivity analyses

Prenatal NO₂	% difference	95% CI	P-value
Overall	-1.5	-2.8 to -0.2	0.02
Excluding cohort\(^a\)			
INMA	-3.2	-5.9 to -0.4	0.02
MOBA	-1.7	-3.1 to -0.3	0.02
BIB	-1.6	-2.9 to -0.2	0.02
RHEA	-1.1	-2.3 to 0.1	0.08
KANC	-1.6	-2.7 to -0.4	0.01
EDEN	-1.6	-3.1 to -0.03	0.048
Adjusted for white blood cell type\(^b\)	-1.3	-2.5 to -0.1	0.04
Stratified by moved or not moved\(^c\)			
Not moved	-1.5	-2.8 to -0.2	0.15
Moved	-1.9	-9.2 to 6.1	0.6

1-year childhood NO₂	% difference	95% CI	P-value
Overall	-1.6	-2.9 to -0.4	0.01
Excluding cohort\(^a\)			
INMA	-2.4	-4.8 to 0.2	0.07
MOBA	-1.7	-3.1 to -0.3	0.02
BIB	-1.4	-2.9 to 0.1	0.07
RHEA	-1.1	-2.3 to 0.3	0.12
KANC	-2.0	-3.3 to -0.7	0.002
EDEN	-1.6	-3.2 to -0.01	0.048
Adjusted for white blood cell type\(^b\)	-1.3	-2.4 to -0.2	0.02
Stratified by moved or not moved\(^c\)			
Not moved	-1.2	-2.7 to 0.4	0.15
Moved	-10.0	-17.9 to -1.3	0.03

Effect size was estimated as a % difference in LTL for each SD increment in ambient air pollution exposure.

Models were adjusted for child’s age, sex, qPCR batch, maternal age, maternal education, maternal smoking status during pregnancy, child ethnicity, child BMI, and parental smoking at 8 year.

\(^a\) Removing one cohort at the time from the analysis

\(^b\) Model additionally adjusted for white blood cell proportions (CD4+ and CD8+ T-cells, natural killer (NK) cells, monocytes, eosinophiles, neutrophils, and B-cells)

\(^c\) Analysis was stratified by group of children who lived at the same address at both time points versus those who moved between those time points
Supplemental Table S5. Leukocyte telomere length in association with categorized pre- and postnatal ambient air pollution.

	% Change (95% CI)	p-value
Prenatal		
NO$_2$ < 20.5 µg/m3	Ref	
≥ 20.5 µg/m3	-3.0 (-5.2 to -0.8)	0.008
PM$_{2.5}$ < 15.0 µg/m3	Ref	
≥ 15.0 µg/m3	-0.9 (-3.1 to 1.4)	0.43
Distance to nearest road > 150 m	Ref	
≤ 150 m	-1.7 (-4.6 to 1.3)	0.26
Postnatal		
NO$_2$ < 23.5 µg/m3	Ref	
≥ 23.5 µg/m3	-1.8 (-4.2 to 0.67)	0.15
PM$_{2.5}$ < 13.3 µg/m3	Ref	
≥ 13.3 µg/m3	-3.0 (-5.3 to -0.62)	0.01
Distance to nearest road > 150 m	Ref	
≤ 150 m	-1.9 (-4.0 to 0.31)	0.09

Effect size was estimated as a % change in LTL for each SD increment in ambient air pollution exposure; SD prenatal NO$_2$ = 13.9 µg/m3, SD postnatal NO$_2$ = 12.2 µg/m3, SD prenatal PM$_{2.5}$ = 2.6 µg/m3, SD postnatal PM$_{2.5}$ = 3.3 µg/m3

Models were adjusted for child’s age, sex, qPCR batch, maternal age, maternal education, maternal smoking status during pregnancy, child ethnicity, child BMI, and parental smoking at 8 year.
Figure S1. Distribution of the prenatal and 1-year childhood NO₂ exposure levels across the different HELIX cohorts.
Figure S2. Distribution of the prenatal and 1-year childhood PM$_{2.5}$ exposure levels across the different HELIX cohorts.
Figure S3. GAM models show the linear relation between (A) Prenatal NO₂ exposure (μg/m³) during the entire pregnancy and child leukocyte telomere length, (B) 1-year childhood NO₂ exposure (μg/m³) and child leukocyte telomere length, and (C) PM₂.₅ exposure (μg/m³) during the entire pregnancy and child leukocyte telomere length (D) 1-year childhood PM₂.₅ exposure (μg/m³) during the entire pregnancy and child leukocyte telomere. Models were adjusted for child’s age, sex, qPCR batch, maternal age, maternal education, maternal smoking status during pregnancy, child ethnicity, child BMI, and parental smoking at 8 year.