Scaling behavior of domain walls at the $T = 0$ ferromagnet to spin-glass transition

O. Melchert, A.K. Hartmann

Institut für Physik
Universität Oldenburg
Introduction
Techniques
Results
Summary
Model

- $N = L \times L$ Ising spins $\sigma_i = \pm 1$ on square lattice
- Periodic boundary conditions in one direction
- Edwards-Anderson Hamiltonian: $\mathcal{H}(\sigma) = -\sum_{\langle ij \rangle} J_{ij} \sigma_i \sigma_j$

Interaction strength:

- $J_{ij} > 0$
- $J_{ij} < 0$

Quenched disorder

Frustration:

- Here: “Gaussian-like” distributed bonds

$$P(J) = (1 - \rho) e^{-J^2/2}/\sqrt{2\pi} + \rho \delta(J - 1)$$

- $\rho < \rho_c$: Spin-glass (SG)
- $\rho > \rho_c$: Ferromagnet (FM)
Domain Walls (DWs)

- Exact ground states (GSs) using sophisticated matching algorithms (up to \(L = 512 \)).
- DWs defined relative to 2 spin configurations \(\sigma^{(1)}/(2) \)
 - \(\sigma^{(1)}: \)
 - \(\sigma^{(2)}: \)
- Separates regions of agreeing/disagreeing spin config.

[A.K. Hartmann and H. Rieger, *Optimization Algorithms in Physics*]

DW energy:

\[
\delta E = 2 \sum_{\langle ij \rangle \in \mathcal{D}} J_{ij} \sigma_i^{(1)} \sigma_j^{(1)}
\]

\(\mathcal{D} \equiv \) bonds satisfied by only 1 config.
Domain Walls (DWs)

- Exact ground states (GSs) using sophisticated matching algorithms (up to $L = 512$).
- DWs defined relative to 2 spin configurations $\sigma^{(1)}/(2)$
- $\sigma^{(1)}$: GS for periodic boundary conditions (BCs)
- $\sigma^{(2)}$: Separates regions of agreeing/disagreeing spin config.

[A.K. Hartmann and H. Rieger, Optimization Algorithms in Physics]

DW energy:

$$\delta E = 2 \sum_{\langle ij \rangle \in \mathcal{D}} J_{ij} \sigma_i^{(1)} \sigma_j^{(1)}$$

$\mathcal{D} \equiv \text{bonds satisfied by only 1 config.}$
Domain Walls (DWs)

- Exact ground states (GSs) using sophisticated matching algorithms (up to $L = 512$).
- DWs defined relative to 2 spin configurations $\sigma^{(1)}/(2)$
 - $\sigma^{(1)}$: GS for periodic boundary conditions (BCs)
 - $\sigma^{(2)}$: GS for antiperiodic BCs
- Separates regions of agreeing/disagreeing spin config.

[A.K. Hartmann and H. Rieger, Optimization Algorithms in Physics]

DW energy:

$$\delta E = 2 \sum_{\langle ij \rangle \in \mathcal{D}} J_{ij} \sigma^{(1)}_i \sigma^{(1)}_j$$

$\mathcal{D} \equiv$ bonds satisfied by only 1 config.
Domain Walls (DWs)

- Exact ground states (GSs) using sophisticated matching algorithms (up to $L = 512$).
- DWs defined relative to 2 spin configurations $\sigma^{(1)}/(2)$
- $\sigma^{(1)}$: GS for periodic boundary conditions (BCs)
- $\sigma^{(2)}$: GS for antiperiodic BCs
- Separates regions of agreeing/disagreeing spin config.

[A.K. Hartmann and H. Rieger, *Optimization Algorithms in Physics*]

DW energy:

$$\delta E = 2 \sum_{\langle ij \rangle \in \mathcal{D}} J_{ij} \sigma^{(1)}_i \sigma^{(1)}_j$$

$\mathcal{D} \equiv$ bonds satisfied by only 1 config.
Domain Walls (DWs)

- Exact ground states (GSs) using sophisticated matching algorithms (up to $L = 512$).

- DWs defined relative to 2 spin configurations $\sigma^{(1)}/(2)$

 - $\sigma^{(1)}$: GS for periodic boundary conditions (BCs)
 - $\sigma^{(2)}$: GS for antiperiodic BCs

- Separates regions of agreeing/disagreeing spin config.

[A.K. Hartmann and H. Rieger, *Optimization Algorithms in Physics*]

DW energy:

$$
\delta E = 2 \sum_{\langle ij \rangle \in \mathcal{D}} J_{ij} \sigma_i^{(1)} \sigma_j^{(1)}
$$

$\mathcal{D} \equiv$ bonds satisfied by only 1 config.
Domain Walls (DWs)

- Exact ground states (GSs) using sophisticated matching algorithms (up to $L = 512$).
- DWs defined relative to 2 spin configurations $\sigma^{(1)}/(2)$
 - $\sigma^{(1)}$: GS for periodic boundary conditions (BCs)
 - $\sigma^{(2)}$: GS for antiperiodic BCs
- Separates regions of agreeing/disagreeing spin config.

[A.K. Hartmann and H. Rieger, *Optimization Algorithms in Physics*]

DW energy:

$$\delta E = 2 \sum_{\langle ij \rangle \in D} J_{ij} \sigma_i^{(1)} \sigma_j^{(1)}$$

$D \equiv$ bonds satisfied by only 1 config.
Construct weighted graph $G = (V, E, \omega)$

- $V(G)$: elementary plaquettes (EP)
- $E(G)$: connect EP with common side
- ω: energy contribution to DW

Consider GS σ for periodic BCs:

(i) Bond satisfied for σ, e.g.
\[\uparrow \quad \uparrow : \omega \geq 0 \]

(ii) Bond not satisfied for σ, e.g.
\[\uparrow \quad \uparrow : \omega \leq 0 \]
Construct weighted graph $G = (V, E, \omega)$

- $V(G)$: elementary plaquettes (EP)
- $E(G)$: connect EP with common side
- ω: energy contribution to DW

Consider GS σ for periodic BCs:

(i) Bond satisfied for σ, e.g.

\[\uparrow \quad \uparrow : \omega \geq 0 \]

(ii) Bond not satisfied for σ, e.g.

\[\uparrow \quad \downarrow : \omega \leq 0 \]
Construct weighted graph $G = (V, E, \omega)$

- $V(G)$: elementary plaquettes (EP)
- $E(G)$: connect EP with common side
- ω: energy contribution to DW

no loops with negative weight:

$$
\omega(C) = \sum_{\langle ij \rangle \in C} J_{ij} \sigma_i \sigma_j \geq 0
$$

DW: minimum-weight (top, bottom) path
Minimum-Weight Paths

- G: undirected graph, allowing for negative edge weights
- Here: standard minimum-weight path algorithms, e.g. Bellman-Ford, Floyd-Warshall, *don’t work*
- Minimum-weight path problem on dual requires matching techniques
 - i) Dual graph \rightarrow auxiliary graph
 - ii) Find *minimum-weighted perfect matching* (MWPM)
 - iii) Interpret MWPM as min.-weight path

[R.K. Ahuja, T.L. Magnanti and J.B. Orlin, *Network flows*]
Excitation energy of DWs:
\[\langle |\delta E| \rangle \sim L^\theta, \quad \theta = -0.287(4) \]
[AKH and A.P. Young, PRB 2001]

Scaling behavior of DWs:
\[\langle \ell \rangle \sim L^{d_f}, \quad d_f = 1.274(2) \]
\[\langle r \rangle \sim L^{d_r}, \quad d_r = 1.008(11) \]
[OM and AKH, PRB 2007]

DWs can be described by Schramm-Loewner evolutions (SLEs)
[Amoruso et. al., PRL 2006], possibility to relate exponents via
\[d_f = 1 + 3/[4(3 + \theta)] \]

Universality: SLE scaling relation also valid for \(\rho > 0 \)?
Magnetization: \(m_L = \sum_i \sigma_i / L^2 \)

Binder ratio: \(b_L = (3 - \frac{\langle m^4 \rangle}{\langle m^2 \rangle^2})/2 \)

finite size scaling:
\[b_L \sim f[(\rho - \rho_c)L^{1/\nu}] \]
\[\rho_c = 0.660(1) \]
\[\nu = 1.49(7) \]
\[S = 1.3 \]

\(S \) = “quality” of the scaling assumption
Scaling behavior of DWs

Scaling analysis up to $L = 512$

ρ	d_f	d_r	θ_2
0.00	1.274(2)	1.008(11)	-0.287(4)
0.60	1.275(1)	1.003(3)	-0.28(2)
0.64	1.275(2)	1.012(4)	-0.28(4)
0.66	1.222(1)	1.002(2)	0.16(1)
0.68	1.05(2)	0.74(3)	0.35(3)
0.72	1.022(1)	0.698(6)	0.27(2)

where

$$\sigma(\delta E) = \sqrt{\langle \delta E^2 \rangle - \langle \delta E \rangle^2} \sim L^{\theta_2}$$

Spin glass phase up to ρ close to ρ_c: Scaling behavior of DW energy and DW length consistent with scaling relation

$$d_f = 1 + 3/[4(3 + \theta)]$$

derived from SLE processes.
Summary

- Groundstate study on 2D Ising spin glasses with short ranged interactions
- DWs obtained via minimum-weight path approach
- Scaling behavior of DWs near SG-FM transition at $T = 0$
- $\rho < \rho_c$: SLE scaling relation consistent with exponents found from numerical simulations