Pyndri: a Python Interface to the Indri Search Engine

Van Gysel, C.; Kanoulas, E.; de Rijke, M.

DOI
10.1007/978-3-319-56608-5_74

Publication date
2017

Document Version
Final published version

Published in
Advances in Information Retrieval

License
Article 25fa Dutch Copyright Act (https://www.openaccess.nl/en/in-the-netherlands/you-share-we-take-care)

Citation for published version (APA):
Van Gysel, C., Kanoulas, E., & de Rijke, M. (2017). Pyndri: a Python Interface to the Indri Search Engine. In J. M. Jose, C. Hauff, I. S. Altıngovde, D. Song, D. Albakour, S. Watt, & J. Tait (Eds.), Advances in Information Retrieval: 39th European Conference on IR Research, ECIR 2017, Aberdeen, UK, April 8–13, 2017 : proceedings (pp. 744-748). (Lecture Notes in Computer Science; Vol. 10193). Springer. https://doi.org/10.1007/978-3-319-56608-5_74

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
Pyndri: A Python Interface to the Indri Search Engine

Christophe Van Gysel, Evangelos Kanoulas, and Maarten de Rijke

University of Amsterdam, Amsterdam, The Netherlands
{cvangysel,e.kanoulas,derijke}@uva.nl

Abstract. We introduce pyndri, a Python interface to the Indri search engine. Pyndri allows to access Indri indexes from Python at two levels: (1) dictionary and tokenized document collection, (2) evaluating queries on the index. We hope that with the release of pyndri, we will stimulate reproducible, open and fast-paced IR research.

1 Introduction

Research in Artificial Intelligence progresses at a rate proportional to the time it takes to implement an idea. Therefore, it is natural for researchers to prefer scripting languages (e.g., Python) over conventional programming languages (e.g., C++) as programs implemented using the latter are often up to three factors longer (in lines of code) and require twice as much time to implement [9]. Python, an interactive scripting language that emphasizes readability, has risen in popularity due to its wide range of scientific libraries (e.g., NumPy), built-in data structures and holistic language design [6].

There is still, however, a lack of an integrated Python library dedicated to Information Retrieval (IR) research. Researchers often implement their own procedures to parse common file formats, perform tokenization, token normalization that encompass the overall task of corpus indexing. Uysal and Gunal [11] show that text classification algorithms can perform significantly differently, depending on the level of preprocessing performed. Existing frameworks, such as NLTK [7], are primarily targeted at processing natural language as opposed to retrieving information and do not scale well. At the algorithm level, small implementation differences can have significant differences in retrieval performance due to floating point errors [4]. While this is unavoidable due to the fast-paced nature of research, at least for seminal algorithms and models, standardized implementations are needed.

2 Introducing Pyndri

Fortunately, the IR community has developed a series of indexing frameworks (e.g., Galago, Lucene, Terrier) that correctly implement a wide range of retrieval
Pyndri: A Python Interface to the Indri Search Engine

models. The Indri search engine [10] supports complex queries involving evidence combination and the ability to specify a wide variety of constraints involving proximity, syntax, extracted entities and document structure. Furthermore, the framework has been efficiently implemented using C++ and was designed from the ground up to support very large databases, optimized query execution and fast and concurrent indexing. A large subset of the retrieval models [1,2,5,12,13] introduced over the course of history can be succinctly formulated as an Indri query. However, to do so in an automated manner, up until now researchers were required to resort to C++, Java or shell scripting. C++ and Java, while excellent for production-style systems, are slow and inflexible for the fast prototyping paradigm used in research. Shell scripting fits better in the research paradigm, but offers poor string processing functionality and can be error-prone. Besides, shell scripting is unsuited if one wants to evaluate a large number of complex queries or wishes to extract documents from the repository as this incurs overhead, causing avoidable slow execution. Existing Python libraries for indexing and searching, such as PyLucene, Whoosh or ElasticSearch, do not support the rich Indri language and functionality required for rapid prototyping.

We fill this gap by introducing pyndri, a lightweight interface to the Indri search engine. Pyndri offers read-only access at two levels in a given Indri index.

2.1 Low-Level Access to Document Repository

First of all, pyndri allows the retrieval of tokenized documents stored in the index repository. This allows researchers to avoid implementing their own format parsing as Indri supports all major formats used in IR, such as the trectext, trecweb, XML documents and Web ARChive (WARC) formats. Furthermore, standardized tokenization and normalization of texts is performed by Indri and

```python
index = pyndri.Index('/opt/local/clueweb09')

for int_doc_id in range(index.document_base(), index.maximum_document()):
    ext_doc_id, doc_tokens = index.document(int_doc_id)

Code snippet 1: Tokenized documents in the index can be iterated over. The `ext_doc_id` variable in the inner loop will equal the document identifier (e.g., clueweb09-en0039-05-00000), while the `doc_tokens` points to a tuple of integers that correspond to the document term identifiers.

```
is no longer a burden to the researcher. Code snippet 1 shows how a researcher can easily access documents in the index. Lookup of internal document identifiers given their external name is provided by the `Index.document_ids` function.

The dictionary of the index (Code snippet 2) can be accessed from Python as well. Beyond bi-directional token-to-identifier translation, the dictionary contains corpus statistics such as term and document frequencies as well. The combination of index iteration and dictionary interfacing integrates conveniently with the Gensim\(^1\) package, a collection of topic and latent semantic models such as LSI [3] and word2vec [8]. In particular for word2vec, this allows for the training of word embeddings on a corpus while avoiding the tokenization mismatch between the index and word2vec. In addition to tokenized documents, pyndri also supports retrieving various corpus statistics such as document length and corpus term frequency.

2.2 Querying Indri from Python

Secondly, pyndri allows the execution of Indri queries using the index. Code snippet 3 shows how one would query an index using a topic from the TREC

\(^1\)https://radimrehurek.com/gensim.
2009 Web Track using the Indri default retrieval model. Beyond simple terms, the `query()` function fully supports the Indri Query Language.\(^2\)

In addition, we can specify a subset of documents to query, the number of requested results and whether or not snippets should be returned. In Code snippet 4 we create a `QueryEnvironment`, with a set of custom smoothing rules. This allows the user to apply fine-grained smoothing settings (i.e., per-field granularity).

3 Conclusions

In this paper we introduced pyndri, a Python interface to the Indri search engine. Pyndri allows researchers to access tokenized documents from Indri using a convenient Python interface. By relying on Indri for tokenization and normalization, IR researchers are no longer burdened by this task. In addition, complex retrieval models can easily be implemented by constructing them in the Indri Query Language in Python and querying the index. This will make it easier for researchers to release their code, as Python is designed to be readable and cross-platform. We hope that with the release of pyndri, we will stimulate reproducible, open and fast-paced IR research. More information regarding the available API and installation instructions can be found on Github.\(^3\)

Acknowledgements. This research was supported by the Google Faculty Research Award program and the Bloomberg Research Grant program. All content represents the opinion of the authors, which is not necessarily shared or endorsed by their respective employers and/or sponsors.

References

1. Balog, K., Azzopardi, L., de Rijke, M.: Formal models for expert finding in enterprise corpora. In: SIGIR, pp. 43–50. ACM (2006)
2. Bendersky, M., Metzler, D., Croft, W.B.: Learning concept importance using a weighted dependence model. In: WSDM, pp. 31–40. ACM (2010)
3. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent semantic analysis. J. Am. Soc. Inf. Sci. 41(6), 391–407 (1990)
4. Goldberg, D.: What every computer scientist should know about floating-point arithmetic. ACM Comput. Surv. 23(1), 5–48 (1991)
5. Guan, D., Zhang, S., Yang, H.: Utilizing query change for session search. In: SIGIR, pp. 453–462. ACM (2013)
6. Koepke, H.: Why python rocks for research (2010). https://www.stat.washington.edu/hoytak/static/papers/why-python.pdf. Accessed 13 Oct 2016
7. Loper, E., Bird, S.: NLTK: the natural language toolkit. In: ACL Workshop on Effective Tools and Methodologies for Teaching NLP and CL, pp. 63–70. Association for Computational Linguistics (2002)

\(^2\) http://lemurproject.org/lemur/IndriQueryLanguage.php.

\(^3\) https://github.com/cvangysel/pyndri.
8. Mikolov, T., Corrado, G., Chen, K., Dean, J.: Efficient estimation of word representations in vector space. *arXiv:1301.3781* (2013)

9. Prechelt, L.: An empirical comparison of seven programming languages. Computer *33*(10), 23–29 (2000)

10. Strohman, T., Metzler, D., Turtle, H., Croft, W.B.: Indri: a language model-based search engine for complex queries. In: ICIA (2005)

11. Uysal, A.K., Gunal, S.: The impact of preprocessing on text classification. Inf. Process. Manag. *50*(1), 104–112 (2014)

12. Van Gysel, C., Kanoulas, E., de Rijke, M.: Lexical query modeling in session search. In: ICTIR, pp. 69–72. ACM (2016)

13. Zhai, C., Lafferty, J.: A study of smoothing methods for language models applied to ad hoc information retrieval. In: SIGIR, pp. 334–342. ACM (2001)