SLC genes and pseudogenes	Positive controls								
SLC1A1	SLC6A1	SLC9A7	SLC16A10	SLC22A12	SLC25A26	SLC27A6	SLC35F2	SLC41A1	CEP85
SLC1A2	SLC6A2	SLC9A8	SLC16A11	SLC22A13	SLC25A27	SLC28A1	SLC35F3	SLC41A2	CTCF
SLC1A3	SLC6A3	SLC9A9	SLC16A12	SLC22A14	SLC25A28	SLC28A2	SLC35F4	SLC41A3	CTNNB1
SLC1A4	SLC6A4	SLC9B1	SLC16A13	SLC22A15	SLC25A29	SLC28A3	SLC35F5	SLC41A4	DYSK1A
SLC1A5	SLC6A5	SLC9B2	SLC16A14	SLC22A16	SLC25A30	SLC29A1	SLC35F6	SLC41A5	KANSL1
SLC1A6	SLC6A6	SLC9C1	SLC17A1	SLC22A17	SLC25A31	SLC29A2	SLC35G1	SLC43A1	MED26
SLC1A7	SLC6A7	SLC9C2	SLC17A2	SLC22A18	SLC25A32	SLC29A3	SLC35G2	SLC43A2	NBAS
SLC1A8	SLC6A8	SLC10A1	SLC17A3	SLC22A20	SLC25A33	SLC29A4	SLC35G3	SLC43A3	NFYC
SLC1A9	SLC6A9	SLC10A2	SLC17A4	SLC22A23	SLC25A34	SLC30A1	SLC35G4	SLC43A4	NIPBL
SLC1A10	SLC6A11	SLC10A3	SLC17A5	SLC22A24	SLC25A35	SLC30A2	SLC35G5	SLC44A1	NUP153
SLC1A31	SLC6A12	SLC10A4	SLC17A6	SLC22A25	SLC25A36	SLC30A3	SLC35G6	SLC44A2	PFAH1B1
SLC1A12	SLC6A13	SLC10A5	SLC17A7	SLC22A31	SLC25A37	SLC30A4	SLC36A1	SLC44A3	RCC1
SLC1A13	SLC6A14	SLC10A6	SLC17A8	SLC23A1	SLC25A38	SLC30A5	SLC36A2	SLC44A4	RPL13A
SLC1A14	SLC6A15	SLC10A7	SLC17A9	SLC23A2	SLC25A39	SLC30A6	SLC36A3	SLC44A5	RPTOR
SLC1A15	SLC6A16	SLC11A1	SLC18A1	SLC23A3	SLC25A40	SLC30A7	SLC36A4	SLC45A1	SAEB1
SLC1A16	SLC6A17	SLC11A2	SLC18A2	SLC24A1	SLC25A41	SLC30A8	SLC37A1	SLC45A2	SRBD1
SLC1A17	SLC6A18	SLC12A1	SLC18A3	SLC24A2	SLC25A42	SLC30A9	SLC37A2	SLC45A3	U2AF2
SLC1A18	SLC6A19	SLC12A2	SLC18B1	SLC24A3	SLC25A43	SLC30A10	SLC37A3	SLC45A4	URI1
SLC1A19	SLC6A20	SLC12A3	SLC19A1	SLC24A4	SLC25A44	SLC31A1	SLC37A4	SLC46A1	VMP1
SLC1A20	SLC6A21	SLC12A4	SLC19A2	SLC24A5	SLC25A45	SLC31A2	SLC38A1	SLC46A2	VPS13D
SLC1A21	SLC7A1	SLC12A5	SLC19A3	SLC25A46	SLC32A1	SLC38A2	SLC46A3	SLC47A1	
SLC1A22	SLC7A2	SLC12A5	SLC19A4	SLC25A47	SLC33A1	SLC38A3	SLC47A2	SLC47A3	
SLC1A23	SLC7A3	SLC12A6	SLC20A1	SLC47A4	SLC34A1	SLC38A4	SLC47A4	SLC48A1	
SLC1A24	SLC7A4	SLC12A7	SLC20A2	SLC25A5	SLC34A2	SLC38A5	SLC48A2	SLC48A3	
SLC1A25	SLC7A5	SLC12A8	SLC20A3	SLC25A6	SLC34A3	SLC38A6	SLC48A4	SLC48A5	
SLC1A26	SLC7A6P1	SLC12A9	SLC20A4	SLC25A7	SLC35A1	SLC38A7	SLC48A6	SLC50A1	
SLC1A27	SLC7A7	SLC12A10	SLC20A5	SLC25A8	SLC35A2	SLC38A8	SLC48A7	SLC50A2	
SLC1A28	SLC7A8	SLC12A11	SLC20A6	SLC25A9	SLC35A3	SLC38A9	SLC48A8	SLC50A3	
SLC1A29	SLC7A9	SLC12A12	SLC20A7	SLC25A10	SLC38A10	SLC50A4	SLC48A9	SLC50A5	
SLC1A30	SLC7A10	SLC14A1	SLC20A8	SLC25A11	SLC38A11	SLC50A6	SLC48A10	SLC50A7	
SLC1A31	SLC7A11	SLC14A2	SLC20A11	SLC25A12	SLC38A12	SLC50A8	SLC48A11	SLC50A9	
SLC1A32	SLC7A12	SLC14A3	SLC20A12	SLC25A13	SLC38A13	SLC50A10	SLC50A10		
SLC1A33	SLC7A13	SLC14A4	SLC20A13	SLC25A14	SLC38A14	SLC50A11	SLC50A11		
SLC1A34	SLC7A14	SLC14A5	SLC20A14	SLC25A15	SLC38A12	SLC50A12	SLC50A12		
SLC1A35	SLC7A15	SLC14A6	SLC20A15	SLC25A16	SLC38A13	SLC50A13	SLC50A13		
SLC1A36	SLC7A16	SLC14A7	SLC20A16	SLC25A17	SLC38A14	SLC50A14	SLC50A14		
SLC1A37	SLC7A17	SLC14A8	SLC20A17	SLC25A18	SLC38A15	SLC50A15	SLC50A15		
Supplementary Table 2. Screened compounds.

Class	Subclass	Name	Status*	IC50 in HAP1 cells (µM)
antineoplastic	purine analogs	6-mercaptopurine	A	3,176
	nucleoside analogs	5-azacitidine	A	11,07
		clofarabine	A	0,1129
		cytarabine	A	0,3032
		decitabine	A	0,7
		gemcitabine	A	0,0075
	antifolates	methotrexate	A	0,1
		pralatrexate	A	8,3
		raltitrexed	A	0,03902
	HDAC inhibitors	belinostat	A	0,3215
		chidamide (tucidinostat)	I	3,39
		entinostat	I	1,95
		panobinostat	A	0,01022
		pracinostat	I	0,3094
		resminostat	I	2,478
		romidepsin	A	10,5
		vorinostat	A	2,894
	microtubule inhibitors	vinblastine	A	9,8
	(destabilizing)	vincristine	A	28
		vindesine	A	0,00543
		vinorelbine	A	0,1012
	microtubule inhibitors	docetaxel	A	0,02
	(stabilizing)	paclitaxel	A	6,3
	proteasome inhibitors	bortezomib	A	0,00649
		carfilzomib	A	3,6
	RTK inhibitors	crizotinib	A	3,6
		ponatinib	A	0,46
		sunitinib	A	2,891
	topoisomerase I inhibitors	topotecan	A	0,006
		irinotecan	A	0,7631

*based on DrugBank: A (approved), A, W (approved, withdrawn), I (investigational), E (experimental)
Supplementary Table 2 (cont). Screened compounds.

Class	Subclass	Name	Status*	IC50 in HAP1 cells (µM)
antineoplastic	topoisomerase II inhibitors	doxorubicin	A	0,007
		epirubicin	A	0,017
		etoposide	A	0,238
		idarubicin	A	0,022
		mitoxantrone	A	0,007
	protein translation inhibitors	homoharringtonine (omacetaxine mepesuccinate)	A	0,025
	transcription inhibitors	dactinomycin	A	0,039
	alkylation	cisplatin	A	1
		methyl methanesulfonate	A	24
		mitomycin C	A	15
		temozolomide	A	5
	other	triptolide	I	0,005
antiparasitic	antimalarial	artesunate	A	1,786
		dihydroartemisinin (artemimol)	I	6,3
		mefloquine	A	7,914
	antihelmintic	albendazole	A	0,452
	antiprotozoal	pentamidine	A	6,206
antiarrhythmic	type III: K-channel blocker	amiodarone	A	~10
		dronedarone	A	6,3
	type V	digitoxin	A	0,001
antihypertensive	Ca-channel blocker	nisoldipine	A	9,8
anti-inflammatory	NSAID	oxyphenbutazone	A, W	~10
immunosuppressant	HMG-CoA reductase inhibitor	cerivastatin	A, W	0,15
hypolipidemic		chlorzoxazone	A	~10
		metaxalone	A	~10
antipasmodic	prokinetic	serotonin agonist	A, W	5,856
mineralocorticoid		desoxycorticosterone pivalate	E	~10
uricosuric		sulfipyrazone	A	10
alcohol deterrent		disulfiram	A	28

*based on DrugBank: A (approved), A, W (approved, withdrawn), I (investigational), E (experimental)
Gene	Drug	Concentration (IC50)
SLC1A5	Mitoxantrone	3
	Vinorelbine	3
	Homoharringtonine	1
	Panobinostat	3
	Entinostat	3
SLC1A2	Artesunate	3
	Dihydroartemisinin	3
SLC1A1	Artesunate	3
	Dihydroartemisinin	3
	Nisoldipine	3
SLC1A2	Pralatraxate	3
	Raltitrexed	3
	Pentamidine	3
	Methotrexate	3
SLC2A1	Pentamidine	3
	Methotrexate	3
SLC2A3	Decitabine	3
	Cytarabine	1
MTCH2	Decitabine	3
	Cytarabine	3
	Nisoldipine	3
	Belinostat	3
SLC2A5	Gemcitabine	1
	Topotecan	1
	Decitabine	3
	Cytarabine	3
	5-azacytidine	3
SLC3A1	Sulfinpyrazone	3
	Digitoxin	1
SLC3A2	Cisplatin	1
	5-azacytidine	1
SLC3A5	Cisplatin	1
SLC4A1	Mitoxantrone	3
SLC4A2	Mitoxantrone	3
Supplementary Table 4. sgRNAs used to generate MCA cell lines and corresponding editing efficiencies as assessed by Tide-seq.

Gene	KO	%editing	sgRNA
SLC1A5	1	83,8	GCCGCTGATGATGAAGTGCG
	2	67,8	CAGCGCCACACCAAGACGAG
SLC11A2	1	39,1	ATCAGCCACAGTGACTCG
	2	52,1	ATGAGAAGGCCACCCACAG
SLC16A1	1	54	ACAGAGTATAGTGTGCTGA
	2	42,8	TATCCATGACACTCGTGG
SLC19A1	1	40,3	GGCACGACAAGACTTCACG
	2	42,8	CGACTACCTGGCCTACGACG
SLC20A1	1	51,1	TTGGCAGGAAATGACTCCAG
	2	42,4	CAGGCCGAATCTTATGCA
SLC25A3	1	NA	TCAAACAGTGCTCAGTAAAGC
	2	57	TCTGACCTGACCTCCAGG
MTCH2	1	35,5	ACATTGCAATATCTATCGG
	2	10,7	AGCAGTTTCAGTACGAG
SLC29A1	1	49,2	GCTCAAGCTGAGGACCACG
	2	40,7	GCTCAAGCTGAGGACCACG
SLC35A1	1	32,6	TGAACGCTACATAACCGA
	2	19,2	ACACGGATCTTCAAACGGT
SLC35A2	1	29,6	TAGAGATGGCCACATACCCTGA
	2	13,5	CTACGCCCAGCTGGCCCA
SLC38A5	1	44,5	CTATGCCATGGCCACACG
	2	32,4	TATCGCCACC TTCCCTGACA
SLC47A1	1	17,7	AGCCAGACCTGAAGCAGT
	2	42,9	GCAACTCCAGTTACGATCTG
SLC47A2	1	36,5	GGCATCGGTAGCCCTCGG
	2	33,4	GCTGGCATCG GTGACCCTCG
Supplementary Table 5. Descriptors used in the chemical space analysis

Descriptor name	Description
SlogP	Smarts LogP, Octanol Water Partition Coefficient
LabuteASA	Labute’s Approximate Surface Area, approximated surface area of a molecule (J. Mol. Graph. Mod. 18, 464-77 (2000))
TPSA	Total Polar surface area
ExactMW	Molecular weight
NumRotatableBonds	Number of rotatable bonds
NumHBD	Number of hydrogen bond donors
NumHBA	Number of hydrogen bond acceptors
NumAmideBonds	Number of amide bonds
NumHeteroAtoms	Number of hetero atoms
NumHeavyAtoms	Number of heavy atoms
NumAtoms	Number of atoms
NumRings	Number of rings
NumAromaticRings	Number of aromatic rings
NumSaturatedRings	Number of saturated rings
NumAliphaticRings	Number of aliphatic rings
NumAromaticHeterocycles	Number of aromatic heterocycles
NumSaturatedHeterocycles	Number of saturated heterocycles
NumAliphaticHeterocycles	Number of aliphatic heterocycles
NumAromaticCarbocycles	Number of aromatic carbocycles
NumSaturatedCarbocycles	Number of saturated carbocycles
NumAliphaticCarbocycles	Number of aliphatic carbocycles
FractionCSP3	Fraction of sp3 hybridized Carbons
Supplementary Figure 1: a. Violin plots of sgRNA count distributions in the SLC library plasmid samples (left-hand two plots) and in the 9 days post-infection (p.i., two right-hand plots) samples (n=2). b. Volcano plot (FDR vs. log2 fold change) for the differential representation of sgRNAs in samples collected 9 days p.i. vs. the plasmid library. FDRs correspond to a two-tailed Wald test (DESeq2). sgRNA corresponding to the set of 20 essential control genes are shown in green (n=2). c. Same as b., but in this case sgRNAs corresponding to the set of 120 non-target negative control sequences are shown in red (n=2). d. Gene-level enrichment in 9 days p.i. vs. plasmid library (n=2) determined by DESeq2 and GSEA analysis. e. YM155 benchmarking screen. Read counts for the samples at day0, DMSO-treated and YM155-treated samples are shown (n=1). f. Circular plot showing SLCs expressed in HAP1 cells according to RNAseq data from Brockmann et al.60 SLC families are indicated in the inner circle while transcript expression level (log2 counts per 10^7 reads) is shown as blue bars. SLCs with an expression level above 9 are labeled.
Supplementary Figure 2 - continued

C

aLFC distribution for all (black), FDR=<10 (red), FDR=<1 (green)

\[\text{aLFC} \]

\[\text{density} \]

\[\text{aLFC} \]

\[\text{expression level} \]

\[\text{HAP1 wt lines} \]

D

\[\text{aLFC} \rightarrow 0.5 \]

\[\text{All} \]

\[\text{HAP1 wt lines} \]

E

\[\text{HAP1 wt lines} \]

\[\text{expression level} \]

\[\text{HAP1 wt lines} \]

F

Localizations:
- ER
- Golgi
- Lysosome
- Mitochondria
- Peroxisome
- PM
- PM, Endosome, Mitochondria
- PM, Golgi
- PM, Lysosome
- Unknown
Supplementary Figure 2: a. Overview of significantly enriched SLCs (FDR≤1%) identified for drug treatments at different concentrations. SLC genes are ordered by name, and treatments are ordered by hierarchical clustering based on the gene-level results (n=2). b. Overview of significantly enriched SLCs (FDR≤1%) identified upon treatment with different compounds. Significant enrichments for all different doses of the same compound are merged together in order to ease interpretation (union), always selecting the most significant value for repeats. x- and y-axis dendrograms display the hierarchical clustering of SLCs and treatments, respectively, calculated using the complete-linkage method with Euclidean distances based on gene-level adjusted p-values. c. Distribution of average log2(fold change) values for all SLC-drug associations (black line), associations with FDR≤10% (red line) and FDR≤1% (green line). d. Plot showing the number of SLCs associated to the tested drugs at average log2(fold change) above 0.5 (left panel) and for all associations at FDR≤1%. e. Expression levels (log2 counts per 10^7 reads) in HAP1 cells for SLCs significantly enriched in our screen. f. Localization of the SLCs significantly enriched in our screen. Data was assembled from the UniProt and Compartments databases followed by manual curation and annotation.
Supplementary Figure 3

(a)

(b)

Gene	Day 3	Day 10
SLC1A5		
MTCH2		
SLC47A2		
Supplementary Figure 3: a. Example of the gating scheme used for the MCA assay. For this experiment, Hap1-Cas9 cells infected with lentiviral particles carrying sgRNAs targeting Renilla luciferase and either eGFP or mCherry fluorescent markers were mixed at 1:1 ratio and the relative abundance of the two populations assessed by FACS. b. Validation of selected SLC/drug associations by MCA. Results are shown by gene tested, pooling data of 2-5 independent experiments (biological replicates) each performed in technical triplicates on two separate KO cell lines. Ratios of GFP+/mCherry+ populations normalized to day0 ratios are shown for the indicated SLC/drug combinations at the given timepoints, with different point shapes corresponding to separate biological replicates. Bars correspond to mean of all samples shown for a specific KO cell line. Statistical significance was calculated by ANOVA using biological replicates followed by Dunnett’s test. n.a. denotes cases where no live cells were measured. Compounds tested: NIS: Nisoldipine, PEN: Pentamidine, DAC: Decitabine, ARA-C: Cytarabine, BEL: Belinostat, MIT: Mitoxantrone, NVB: Vinorelbine, HHT: Homoharringtonine, ENT: Entinostat, PAN: Panobinostat, DGT: Digitoxin, SPZ: Sulfinpyrazone.
Supplementary Figure 4

(a) Log2 Fold Change

(b) Log2 Fold Change
Supplementary Figure 4: a-b. Heatmaps showing the effect of 24h drug treatment on SLC expression in WT and SLC KO cells. Differentially expressed SLC genes are shown for each of the contrasts indicated on the x-axis. \(\triangle \)SLC16A1 refers to clone \(\triangle \)SLC16A1_2; CDDP cisplatin (n=1). **c-h.** Enrichment analysis for transcription factor target genes within the contrasts indicated above each panel. Transcription factor targets enrichment analysis was performed using Fisher’s exact test and p-values were corrected for multiple testing using the Benjamini-Hochberg procedure (FDR).
Supplementary Figure 5

(a) Plot of the first two dimensions of the PCA

(b) Plot of the first two dimensions of the PCA

(c) Plot of the first two dimensions of the PCA
Supplementary Figure 5: a. Principal component analysis of compounds in the DrugBank set of reference as well as in the sets tested in this study based on 22 annotated 2D chemical descriptors. Compounds with a molecular weight below 900 Da (defined as “small molecule” by DrugBank) are shown as circles, the remaining compounds as crosses. The total data set size was n=9597 compounds, Drugbank n=8774, Toxic n=257, Screen n=58, 2k library n=1562. b. Principal component analysis of compounds in the DrugBank set of reference compared the SLC-associated (active) and non-SLC-associated (inactive) compounds based on 22 annotated 2D chemical descriptors. Drugbank and 2k library: n= 9539, active n=47, inactive n=11. c. Principal component analysis of compounds in the SLC-associated (active) and non-SLC-associated (inactive) sets. Active n=47, inactive n=11.
Supplementary Figure 6: Plots of individual descriptor values across the four compound sets. The total data set size was n=9597 compounds, Drugbank n=8774, Toxic n=257, Screen n=58, 2k library n=1562. Boxplots show median as bold line, mean as a triangle. The upper hinge represents the 75th percentile and the lower hinge represents the 25th percentile. The whiskers represent the 1.5 inter quartile range or the highest or lowest value within the inter quartile range. Outliers (compounds higher or lower than IQR) are represented by dots.

Supplementary Dataset 1: Table with p and FDR values used to generate Figure 2c.

Supplementary Dataset 2: Table with ratios and p values used to generate Figure 3b and Supplemental Figure 3b.