Motor Fluctuations Development Is Associated with Non-Motor Symptoms Burden Progression in Parkinson’s Disease Patients: A 2-Year Follow-Up Study

Diego Santos-García 1,*, Teresa de Deus Fonticoba 2, Carlos Cores Bartolomé 1, María J. Feal Painceiras 1, Ester Suárez Castro 2, Héctor Canfield 2, Cristina Martínez Miró 1, Silvia Jesús 3,4, Miquel Aguilar 5, Pau Pastor 5, Lluís Planellàs 6, Marina Cosgaya 7, Juan García Caldentey 8, Nuria Caballoi 9, Ines Legarda 10, Jorge Hernández-Vara 4,11, Iría Cabo 12, Lydia López Manzanares 13, Isabel González Aramburu 4,14, María A. Ávila Rivera 15, Víctor Gómez Mayordomo 16, Víctor Nogueira 17, Víctor Puente 18, Julio Dotor García-Soto 19, Carmen Borrué 20, Berta Solano Vila 21, María Álvaro Crespo 22, Lydia Vela 23, Sonia Escalante 24, Esther Cubo 25, Francisco Carrillo Padilla 26, Juan C. Martínez Castrillo 27, Pilar Sánchez Alonso 28, María G. Alonso Losada 29, Nuria López Ariztegui 30, Itziar Gastón 31, Jaime Kulisevsky 4,32, Marta Blázquez Estrada 33, Manuel Seijo 12, Javier Ruiz Martínez 34, Caridad Valero 35, Mónica Kuri 36, Oriol de Fábregues 37, Jessica González Ardua 37, Ruben Alonso Redondo 38, Carlos Ordás 39, Luis M. López Díaz 40, Darrian McAfee 41, Pablo Martínez-Martin 4, Pablo Mir 3,4 and COPPADIS Study Group 4

Department of Neurology, Hospital Universitario de A Coruña (HUAC), Complejo Hospitalario Universitario de A Coruña (CHUAC), C/As Xubias 84, 15006 A Coruña, Spain
2 CHUF, Complejo Hospitalario Universitario de Ferrol, 15006 A Coruña, Spain
3 Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla. Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
4 CIBERNED (Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas), 28031 Madrid, Spain
5 Hospital Universitari Mutua de Terrassa, 08221 Terrassa, Barcelona, Spain
6 Clínica del Pilar, 08006 Barcelona, Spain
7 Hospital Clinic de Barcelona, 08036 Barcelona, Spain
8 Centro Neurologico Oms 42, 07003 Palma de Mallorca, Spain
9 Consorci Sanitari Integral, Hospital Moisés Broggi, 08970 Sant Joan Despí, Barcelona, Spain
10 Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
11 Hospital Universitario Vall d’Hebron, 08035 Barcelona, Spain
12 Complejo Hospitalario Universitario de Pontevedra (CHOP), 36071 Pontevedra, Spain
13 Hospital Universitario La Princesa, 28006 Madrid, Spain
14 Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain
15 Consorci Sanitari Integral, Hospital General de L’Hospitalet, L’Hospitalet de Llobregat, 08906 Barcelona, Spain
16 Hospital Universitario Clínico San Carlos, 28040 Madrid, Spain
17 Hospital Da Costa, 27880 Burela, Lugo, Spain
18 Hospital del Mar, 08003 Barcelona, Spain
19 Hospital Universitario Virgen Macarena, 41009 Sevilla, Spain
20 Hospital Infantia Sofia, 28703 Madrid, Spain
21 Institut d’Assistència Sanitària (IAS)—Institut Català de la Salut, 17190 Girona, Spain
22 Hospital General Universitario de Elche, 03203 Elche, Spain
23 Fundación Hospital de Alcorcón, 28922 Madrid, Spain
24 Hospital de Tortosa Verge de la Cinta (HTVC), 43500 Tortosa, Tarragona, Spain
25 Complejo Asistencial Universitario de Burgos, 09006 Burgos, Spain
26 Hospital Universitario de Canarias, 38320 San Cristóbal de la Laguna, Santa Cruz de Tenerife, Spain
27 Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
28 Hospital Universitario Puerta de Hierro, 28222 Madrid, Spain
29 Hospital Universitario de Navarra, 31008 Pamplona, Spain
30 Hospital de Sant Pau, 08014 Barcelona, Spain
31 Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
32 Hospital Universitario Donostia, 20014 San Sebastián, Spain
33 Hospital Arnau de Vilanova, 46015 Valencia, Spain
34 Hospital Ruber Internacional, 28034 Madrid, Spain

Citation: Santos-García, D.; de Deus Fonticoba, T.; Bartolomé, C.C.; Painceiras, M.J.F.; Castro, E.S.; Canfield, H.; Miró, C.M.; Jesús, S.; Aguilar, M.; Pastor, P.; et al. Motor Fluctuations Development Is Associated with Non-Motor Symptoms Burden Progression in Parkinson’s Disease Patients: A 2-Year Follow-Up Study. Diagnostics 2022, 12, 1147. https://doi.org/10.3390/diagnostics12051147

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Abstract: Objective: The aim of the present study was to analyze the progression of non-motor symptoms (NMS) burden in Parkinson’s disease (PD) patients regarding the development of motor fluctuations (MF).

Methods: PD patients without MF at baseline, who were recruited from January 2016 to November 2017 (V0) and evaluated again at a 2-year follow-up (V2) from 35 centers of Spain from the COPPADIS cohort, were included in this analysis. MF development at V2 was defined as a score \(\geq 1 \) in the item-39 of the UPDRS-Part IV, whereas NMS burden was defined according to the Non-motor Symptoms Scale (NMSS) total score.

Results: Three hundred and thirty PD patients (62.67 ± 8.7 years old; 58.8% males) were included. From V0 to V2, 27.6% of the patients developed MF. The mean NMSS total score at baseline was higher in those patients who developed MF after the 2-year follow-up (46.34 ± 36.48 vs. 34.3 ± 29.07; \(p = 0.001 \)). A greater increase in the NMSS total score from V0 to V2 was observed in patients who developed MF (+16.07 ± 37.37) compared to those who did not develop MF (+6.2 ± 25.8) (\(p = 0.021 \)). Development of MF after a 2-year follow-up was associated with an increase in the NMSS total score (\(\beta = 0.128; p = 0.046 \)) after adjustment to age, gender, years from symptoms onset, levodopa equivalent daily dose (LEDD) and the NMSS total score at baseline, and the change in LEDD from V0 to V2. Conclusions: In PD patients, the development of MF is associated with a greater increase in the NMS burden after a 2-year follow-up.

Keywords: burden; follow-up; non-motor symptoms; motor fluctuations; Parkinson’s disease

1. Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative disorder causing motor and non-motor symptoms (NMS) that result in disability, loss of patient autonomy, and diminished quality of life (QoL) [1]. From a pathophysiological point of view, motor symptoms in PD are attributed to the degeneration of the dopaminergic nigrostriatal system [2]. Nevertheless, increasing evidence has shown that PD is a multisystem disorder characterized also by the degeneration of the mesocortical dopaminergic system, the noradrenergic system of the locus coeruleus, the serotonergic system of the dorsal raphe nuclei, and the cholinergic system of the nucleus basalis of Meynert, as well as the histaminergic, peptidergic, and olfactory-related systems [3]. This explains the complexity in management of NMS in PD and why many therapeutic strategies are based on correcting the deficit of neurotransmitters other than dopamine [4]. However, NMS can be related to dopamine as well. Increasing dopamine activity not only in the striatum but also in other areas of the brain could improve some NMS such as attention, executive functions, apathy, depression, anxiety, restless legs and periodic limb movements, urinary urgency, nocturia, dribbling of saliva, constipation, pain, or fatigue [5–9]. Moreover, NMS can be related to dopamine changes in brain and blood [10]. Thus, some patients can suffer from non-motor fluctuations (NMF) (i.e., NMS that fluctuate during the day) [11] or can experience motor fluctuations (MF) with the development of NMS during the OFF episodes (e.g., pain associated with dystonia) [12]. The close connection of NMF and MF strongly suggests that the strategies used to treat motor complications—namely, continuous dopaminergic stimulation—also apply for the therapy of NMF. Thus, a dopaminergic treatment reducing the daily OFF time can improve some NMS [9,13,14] or even the global NMS burden [15,16]. In line with this, we demonstrated recently in a cross-sectional study conducted in Spain that MF are frequent and associated with a greater NMS burden even during the first 5 years of disease duration [17]. This is of great importance because NMS burden is associated with a
worse QoL and is also an independent predictor of clinically significant QoL impairment in PD [18,19].

In this context, we hypothesized that PD patients who develop MF in the short-term will increase their NMS burden compared with those patients who do not. Understanding this potential association is of interest because, in clinical practice, to detect MF is an essential point for the application of management strategies in PD [20]. The aim of the present study was to analyze the progression of NMS burden in PD patients from a Spanish cohort regarding the development of MF after a 2-year follow-up. Moreover, the change in health-related quality of life (HR-QoL) and global QoL (GQoL) was analyzed as well.

2. Material and Methods

PD patients without MF at baseline, who were recruited from 35 centers of Spain from the COPPADIS cohort [21] from January 2016 to November 2017 and evaluated again at 2-year follow-up, were included in the study. Methodology about COPPADIS-2015 study can be consulted in https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-016-0548-9 accessed on 25 February 2016 [22]. This is a multicenter, observational, longitudinal-prospective, 5-year follow-up study designed to analyze disease progression in a Spanish population of PD patients. All patients included were diagnosed according to UK PD Brain Bank criteria [22].

In PD subjects, information on sociodemographic aspects, factors related to PD, comorbidity, and treatment was collected at baseline (visit V0) and at 2 years ± 1 month (visit V2). V0 and V2 evaluations included motor assessment (Hoehn & Yahr [H&Y], Unified Parkinson’s Disease Rating Scale [UPDRS] part III and part IV, Freezing of Gait Questionnaire [FOGQ]), NMS (Non-Motor Symptoms Scale [NMSS], Parkinson’s Disease Sleep Scale [PDSS], Visual Analog Scale-Pain [VAS-Pain], Visual Analog Fatigue Scale [VAFS]), cognition (PD-CRS), mood and neuropsychiatric symptoms (Beck Depression Inventory-II [BDI-II], Neuropsychiatric Inventory [NPI], Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s Disease-Rating Scale [QUIP-RS]), disability (Schwab & England Activities of Daily Living Scale [ADLS]), and QoL (the 39-item Parkinson’s disease Questionnaire [PDQ-39], the EUROHIS-QOL 8-item index [EUROHIS-QOL8]) [22]. In all the scales/questionnaires, a higher score indicates a more severe affection except for PD-CRS, PDSS, ADLS, and EUROHIS-QOL8, where it is opposite.

MF were defined according to the Unified Parkinson’s Disease Rating Scale–Part IV (UPDRS-IV) [23]. Patients with a score = 0 on item-39 of the UPDRS-IV (UPDRS-IV-39) were considered as without MF whereas those with a UPDRS-IV-39 score ≥ 1 were defined as with MF. For this study, patients from the COPPADIS cohort who presented with MF (i.e., UPDRS-IV-39 ≥ 1) at baseline were excluded. In patients with MF, the motor assessment was made during the OFF state (without medication in the last 12 h) and during the ON state. On the other hand, the assessment was only performed without medication in patients without MF. Other data about motor complications were obtained from the UPDRS-IV.

The NMS burden was defined according to the NMSS total score [24]. The NMSS includes 30 items, each with a different non-motor symptom. The symptoms refer to the 4 weeks prior to assessment. The total score for each item is the result of multiplying the frequency (0, never; 1, rarely; 2, often; 3, frequent; 4, very often) × severity (1, mild; 2, moderate; 3, severe) and will vary from 0 to 12 points. The scale score ranges from 0 to 360 points. The items are grouped into 9 different domains: (1) Cardiovascular (items 1 and 2; score, 0 to 24); (2) Sleep/ fatigue (items 3, 4, 5, and 6; score, 0 to 48); (3) Mood/apathy (items 7, 8, 9, 10, 11, and 12; score, 0 to 72); (4) Perceptual problems/hallucinations (items 13, 14, and 15; score, 0 to 36); (5) Attention/memory (items 16, 17, and 18; score, 0 to 36); (6) Gastrointestinal symptoms (items 19, 20, and 21; score 0 to 36); (7) Urinary symptoms (items 22, 23, and 24; score, 0 to 36); (8) Sexual dysfunction (items 25 and 26; score 0 to 24); (9) Miscellaneous (items 27, 28, 29, and 30; score, 0 to 48). Regarding the NMS burden, different groups were defined: mild (NMSS 1–20); moderate (NMSS 21–40); severe (NMSS 41–70); very severe (NMSS > 70) [25].
The PDQ-39 [26] and EUROHIS-QOL8 [27] were used to assess the HRQoL and GQoL, respectively. The PDQ-39 includes 39 items grouped into 8 domains: (1) Mobility (items 1 to 10); (2) Activities of daily living (ADL) (items 11 to 16); (3) Emotional well-being (items 17 to 22); (4) Stigma (items 23 to 26); (5) Social support (items 27 to 29); (6) Cognition (items 30 to 33); (7) Communication (items 34 to 36); (8) Pain and discomfort (items 37 to 39). For each item, the score may range from 0 (never) to 4 (always). The symptoms refer to the 4 weeks prior to assessment. Domain total scores are expressed as a percentage of the corresponding maximum possible score and a Summary Index is obtained as average of the domain scores. The EUROHIS-QOL8 is an 8-item GQoL questionnaire (quality of life, health status, energy, autonomy for ADL, self-esteem, social relationships, economic capacity, and habitat) derived from the WHOQOL-BREF. For each item, the score ranges from 0 (not at all) to 5 (completely). The total score is expressed as the mean of the individual scores. A higher score indicates a better QoL.

3. Data Analysis

Data were processed using SPSS 20.0 for Windows. Only PD patients from the COPPADIS cohort with data of the UPDRS-IV and NMSS total score collected at both visits, V0 and V2, were included in the analysis. For comparisons between patients with vs. without MF at V2, the Student’s t-test, Mann–Whitney U test, Chi-square test, or Fisher test were used as appropriate (distribution for variables was verified by one-sample Kolmogorov–Smirnov test). Spearman’s or Pearson’s correlation coefficient, as appropriate, were used for analyzing the relationship between the change from V0 to V2 in continuous variables (NMSS, PDQ-39SI, EUROHIS-QOL8). Correlations were considered weak for coefficient values ≤ 0.29, moderate for values between 0.30 and 0.59, and strong for values ≥ 0.60. Marginal homogeneity tests were applied for comparing the frequency distribution of groups (NMS burden; from mild to very severe) between V0 and V2.

General linear model (GLM) repeated measure was used to test whether the mean differences of the total score and each domain of the NMSS, PDQ-39SI, and EUROHIS-QOL8 between the two visits (V0 and V2) were significant. The Bonferroni method was used as a post-hoc test after ANOVA. Cohen’s d formula was applied for measuring the effect size; it was considered as follows: <0.2—Negligible; 0.2–0.49—Small; 0.50–0.79—Moderate; ≥0.80—Large. Age, gender, years from symptoms onset, H&Y stage, levodopa equivalent daily dose (LEDD) and the NMSS total score at baseline, and the change in LEDD from V0 to V2 were included as covariates in the model. The total score of each scale at V0 (NMSS, PDQ-39SI, and EUROHIS-QOL8) was included as covariate for the analysis of their domains.

With the aim to investigate if the development of MF from V0 to V2 was an independent factor associated with an increase in the NMS burden and impairment in the QoL, linear regression models with the change from V0 to V2 in the total score of the NMSS, PDQ-39SI, and EUROHIS-QOL8 (these variables as dependent variable in each model) were conducted. In all cases, the analysis was adjusted to age, gender, years from symptoms onset, H&Y stage, LEDD and the NMSS total score at baseline, and the change in LEDD from V0 to V2. The p-value was considered significant when it was <0.05.

4. Standard Protocol Approvals, Registrations, and Patient Consents

For this study, we received approval from the Comité de Ética de la Investigación Clínica de Galicia in Spain (2014/534; 02/DEC/2014). Written informed consent was obtained from all participants in this study. COPPADIS-2015 was classified by the AEMPS (Agencia Española del Medicamento y Productos Sanitarios) as a Postauthorization Prospective Follow-up study with the code COH-PAK-2014-01.

5. Data Availability

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.
6. Results

Three hundred and thirty PD patients (62.67 ± 8.7 years old; 58.8% males) without MF at baseline were included. From V0 to V2, 27.6% of the patients (91/330) developed MF. In the group of patients with MF at V2, OFF episodes were predictable in 89% of the cases and unpredictable in 15.4%; early morning dystonia was reported by 25.3% of the patients; and the proportion of the waking day during the OFF state was 82.4% from 1 to 25%, 16.5% from 26 to 50%, and only 1 patient with >50%. Thirty-six out of 91 patients who developed MF (39.6%) presented dyskinesia as well, being disabling in 15 patients (15/36; 41.7%).

Compared with those patients who did not develop MF from V0 to V2, at V0, patients who presented with MF at V2 were younger (60.75 ± 9.06 vs. 63.41 ± 8.46 years old; \(p = 0.012 \)), had a longer disease duration (5.36 ± 3.51 vs. 3.65 ± 3.09 years from symptoms onset; \(p < 0.0001 \)); were receiving more dopaminergic medication; and had a worse status in terms of motor symptoms, NMS, QoL, and autonomy for ADL (Table 1). The mean NMSS total score at baseline was higher in those patients who developed MF after the 2-year follow-up than in those who did not develop MF (46.34 ± 36.48 vs. 34.3 ± 29.07; \(p = 0.001 \)) (Table 1 and Figure 1). At V0, the frequency of severe and very severe NMS burden was higher in those patients who developed MF at V2 compared with those who did not (27.5% vs. 18% and 18.7% vs. 12.1%, respectively; \(p = 0.011 \)) (Figure 2).

Table 1. Different PD-related variables in PD patients who developed MF at V2 (MF at V2; N = 91) compared with those patients who did not develop MF at V2 (nonMF at V2; N = 239).

Variable	All Sample (N = 330)	nonMF at V2 (N = 239)	MF at V2 (N = 91)	\(p \)
Males (%)	58.8	59.8	56	0.308
At V0				
Age	62.67 ± 8.7	63.41 ± 8.46	60.75 ± 9.06	0.012
Years from symptoms onset	4.13 ± 3.3	3.65 ± 3.09	5.36 ± 3.51	<0.0001
Time on levodopa therapy (months)	18.99 ± 27.99	14.71 ± 24.37	29.65 ± 33.25	<0.0001
Daily dose of levodopa (mg/day)	231.85 ± 257.89	175.74 ± 216.46	379.62 ± 298.07	<0.0001
DA equivalent daily dose (mg/day)	152.77 ± 149.36	143.21 ± 148.24	177.96 ± 150.18	0.047
LEDD (mg/day)	437.71 ± 325.85	372.62 ± 283.4	609.1 ± 367.38	<0.0001
H&Y stage (OFF)				0.277
Stage from 1 to 3	99.7	100	98.8	
Stage from 4 to 5	0.3	0	1.2	
UPDRS-III (OFF)	18.9 ± 9.54	17.57 ± 8.81	22.4 ± 10.51	<0.0001
UPDRS-IV	0.71 ± 0.87	0.66 ± 0.79	0.86 ± 1.05	0.241
FOGQ	1.97 ± 3.13	1.56 ± 2.51	3.06 ± 4.19	<0.0001
Tremor motor phenotype (%)	55.5	59	46.2	0.024
PD-CRS	92.93 ± 15.17	92.32 ± 15.39	94.51 ± 14.55	0.205
NMSS	37.62 ± 31.69	34.3 ± 29.07	46.34 ± 36.48	0.001
BDI-II	7.49 ± 6.63	6.98 ± 6.33	8.82 ± 7.22	0.037
PDSS	119.82 ± 23.36	122.41 ± 22.02	113.01 ± 25.45	<0.0001
QUP-SS	3.68 ± 7.44	2.72 ± 5.94	6.42 ± 10.15	<0.0001
NPI	4.43 ± 6.62	4.22 ± 6.41	4.95 ± 7.13	0.381
VAS–PAIN	2.31 ± 2.8	2.22 ± 2.76	2.54 ± 2.91	0.363
VASF–physical	2.43 ± 2.57	2.27 ± 2.54	2.86 ± 2.61	0.050
VASF–mental	1.86 ± 2.45	1.75 ± 2.42	2.17 ± 2.51	0.084
PDQ-39SI	13.08 ± 10.59	11.44 ± 9.16	17.39 ± 12.74	<0.0001
EUROHIS-QOL8	3.87 ± 0.51	3.92 ± 0.5	3.74 ± 0.49	0.006
S&E-ADLS	91.12 ± 8.04	92.05 ± 7.24	88.68 ± 9.45	0.001
Change at V2 (V2 vs. V0)				
Daily dose of levodopa (mg/day)	+126.73 ± 190.01	+113.37 ± 186.82	+161.89 ± 208.83	0.021
DA equivalent daily dose (mg/day)	+13.35 ± 188.95	+6.32 ± 117.41	+31.85 ± 306.18	0.288
LEDD (mg/day)	+190.55 ± 278.38	+158.22 ± 222.42	+275.65 ± 377.62	0.008
Table 1. Cont.

	All Sample (N = 330)	nonMF at V2 (N = 239)	MF at V2 (N = 91)	P
UPDRS-III (OFF)	+3.5 ± 9.73	+2.11 ± 8.61	+7.01 ± 11.46	<0.0001
UPDRS-IV	+1.02 ± 2.09	+0.09 ± 1.03	+3.5 ± 2.18	<0.0001
FOGQ	+1.37 ± 3.63	+0.94 ± 3.18	+2.52 ± 4.44	0.001
PD-CRS	−0.9 ± 10.87	−0.79 ± 11.49	−1.19 ± 9.11	0.873
NMSS	+8.91 ± 29.77	+6.2 ± 25.8	+16.03 ± 37.37	0.021
BDI-II	+0.46 ± 7.16	+0.33 ± 7.2	+0.8 ± 7.07	0.463
PDSS	+0.61 ± 23.46	+1.05 ± 22.26	−0.55 ± 26.42	0.654
QUIP-RS	+0.79 ± 8.74	+0.93 ± 7.45	+0.42 ± 11.56	0.564
NPI	+0.4 ± 8.45	−0.23 ± 8.51	+1.89 ± 8.15	0.270
VAS–PAIN	+0.47 ± 3.15	+0.33 ± 3.13	+0.86 ± 3.17	0.109
VASF-physical	+0.57 ± 2.84	+0.42 ± 2.85	+0.94 ± 2.79	0.216
VASF-mental	+0.12 ± 2.75	−0.07 ± 2.61	+0.65 ± 3.04	0.062
PDQ-39SI	+3.85 ± 10.18	+3.01 ± 9.15	+6.09 ± 12.28	0.005
EUROHIS-QOL8	−0.05 ± 0.56	−0.03 ± 0.55	−0.12 ± 0.58	0.249
S&E-ADLS	−3.87 ± 9.73	−3.4 ± 9.35	−5.11 ± 10.62	0.177

Chi-square and Mann–Whitney–Wilcoxon tests were used. The results represent mean ± SD or %. ADLS, Schwab and England Activities of Daily Living Scale; BDI-II, Beck Depression Inventory-II; DA, dopamine agonist; FOGQ, Freezing Of Gait Questionnaire; LEDD, levodopa equivalent daily dose; N, number; NMSS, Non-motor Symptoms Scale; NPI, Neuropsychiatric Inventory; PD-CRS, Parkinson’s Disease Cognitive Rating Scale; PDSS, Parkinson’s Disease Sleep Scale; QUIP-RS, Questionnaire for Impulsive–Compulsive Disorders in Parkinson’s Disease–Rating Scale; TS, total score; UPDRS, Unified Parkinson’s Disease Rating Scale; VAFS, Visual Analog Fatigue Scale; VAS–Pain, Visual Analog Scale–Pain.

Figure 1. (A) NMSS total score (y-axis) at baseline (V0) and after a 2-year follow-up (V2) in PD patients who developed MF at V2 (MF at V2 (PD-MFV2); N = 91) and those patients who did not develop MF at V2 (nonMF at V2 (PD-nonMFV2); N = 239). NMSS total score at V0, PD-MFV2 vs. PD-nonMFV2, p = 0.001; NMSS total score at V2, PD-MFV2 vs. PD-nonMFV2, p < 0.0001; change in the NMSS total score from V0 to V2 in PD-MFV2, p < 0.0001; change in the NMSS total score from V0 to V2 in PD-nonMFV2, p < 0.0001; comparison between the change in the NMSS total score from V0 to V2 in PD-MFV2 vs. PD-nonMFV2, p = 0.021. Data are presented as box plots, with the box representing the median and the two middle quartiles (25–75%). (B) Mean score on each domain of the NMSS at V0 and at V2 in both groups, PD-MFV2 and PD-nonMFV2. At V0, the difference was significant between...
both groups in NMSS-1 (Cardiovascular) \((p = 0.001) \), NMSS-2 (Sleep/fatigue) \((p = 0.001) \), NMSS-4 (Perceptual symptoms) \((p < 0.0001) \), and NMSS-9 (Miscellaneous) \((p = 0.005) \). At V2, the difference was significant between both groups in all domains \((p \text{ values from } 0.024 \text{ to } <0.0001) \) except in NMSS-5 (Attention/memory) \((p = 0.364) \). \(p \) values were computed using the Kolmogorov–Smirnov, Mann–Whitney, and Wilcoxon tests. Mild outliers (O) are data points that are more extreme than Q1 \(- 1.5 \times \text{IQR}\) or Q3 \(+ 1.5 \times \text{IQR}\).

A greater increase in the NMSS total score from V0 to V2 was observed in those patients who developed MF at V2 \((+16.07 \pm 37.37) \) compared with those who did not develop MF \((+6.2 \pm 25.8) \) \((p = 0.021) \) (Table 1 and Figure 1). Two-hundred and two out of 330 patients \((64.2\%) \) presented at V2 a NMSS total score higher than at V0, but no differences between patients who developed MF vs. those who did not develop MF after the 2-year follow-up were observed \((68.1\% \text{ vs. } 62.1\%; \ p = 0.218) \). However, after the 2-year follow-up, the frequency of severe and very severe NMS burden was significantly higher in the group who developed MF \((p < 0.0001) \) (Figure 2). Applying GLM repeated measure and after adjustment to covariates (age, gender, years from symptoms onset, H&Y stage, LEDD and the NMSS total score at baseline, and the change in LEDD from V0 to V2), a significantly greater increase \((34.6\% \text{ vs. } 17.9\%; \ p = 0.005) \) in the NMSS total score was observed in patients who developed MF at V2 \((from 46.34 \pm 36.48 \text{ to } 62.37 \pm 44.15) \), Cohen’s effect size = 0.57; \(p = 0.003 \) compared with those who did not develop MF \((from 34.3 \pm 29.07 \text{ to } 40.5 \pm 35.4; \text{ Cohen’s effect size } = 0.33; \ p < 0.0001) \) (Table 2). An increase in the score of different domains from V0 to V2 was significant in both groups, with and without MF at V2, but there were no significant differences between them (Table 2 and Figure 1). Regarding QoL, the increase in the PDQ-39SI and decrease in EUROHIS-QOL8 total score indicating a QoL impairment between both visits, V0 and V2, was significantly
greater in the group of patients who developed MF (PDQ-39SI, +35% vs. +26.5% (p = 0.002); EUROHIS-QOL8, −29.9% vs. −0.7% (p = 0.030)) (Table 2). By domain and after adjustment to covariates including the PSQ-39SI score at V0, the increase on the score of “pain and discomfort” domain in the group who developed MF at V2 (from 28.55 ± 20.01 to 32.87 ± 24.33; Cohen’s effect size = 0.30; p = 0.015) was significantly higher (p = 0.039) compared with patients who did not develop MF (from 20.65 ± 18.82 to 23.97 ± 22.12; Cohen’s d effect size = 0.16; p = 0.071) (Table 2). The mean score on all domains of the PDQ-39SI was the highest in patients who developed MF after the 2-year follow-up at V2 and the lowest in patients who did not develop MF, at V0 (Figure 3). A moderate correlation was observed between the change from V0 to V2 in the NMSS total score and the change in the PDQ-39SI in the whole cohort (N = 320; r = 0.402; p < 0.0001) and in both groups, patients with (N = 91; r = 0.328; p = 0.002) and without MF (N = 239; r = 0.433; <0.0001) at V2. However, the correlation between the change in the total score of the NMSS and the EUROHIS-QOL8 was only significant in patients who developed MF at V2 (N = 91; r = −0.277; p = 0.009) but not in patients who did not develop MF (N = 239; r = −0.111; p = 0.088).

Table 2. Changes in non-motor symptoms and quality of life in PD patients who developed MF at V2 (MF at V2; N = 91) compared with those patients who did not develop MF at V2 (non-MF at V2; N = 239).

Non-MF at V2	MF at V2	Cohen’s Test	p a	Non-MF at V2	MF at V2	Cohen’s Test	p b			
NMSS	34.3 ± 29.07	40.5 ± 35.4	0.33	<0.0001	46.34 ± 36.48	62.37 ± 44.15	0.57	0.003	0.387	0.005
Cardiovascular	3.63 ± 7.55	8.64 ± 12.36	0.61	<0.0001	6.63 ± 10.22	12.36 ± 12.78	0.54	0.002	0.973	0.240
Sleep/fatigue	11.52 ± 13.03	13.91 ± 15.09	0.24	0.024	18.09 ± 16.18	23.53 ± 18.47	0.39	0.072	0.069	0.104
Mood/aphasia	8.86 ± 13.56	9.66 ± 15.31	0.09	0.101	10.51 ± 18.16	15.82 ± 18.13	0.46	0.072	0.093	0.261
Perceptual symptoms	0.87 ± 3.48	2.41 ± 8.19	0.31	0.012	4.17 ± 8.84	7.11 ± 16.31	0.31	0.080	0.672	0.105
Attention/memory	8.05 ± 12.6	10.75 ± 16.24	0.27	0.002	8.93 ± 11.51	12.36 ± 15.78	0.32	0.062	0.762	0.175
Gastrointestinal symptoms	7.41 ± 10.07	9.62 ± 11.95	0.32	<0.0001	10.42 ± 14.81	16.24 ± 15.52	0.31	0.168	0.852	0.560
Urinary symptoms	17.45 ± 19.77	20.09 ± 21.92	0.21	0.035	19.63 ± 20.42	26 ± 23.95	0.43	0.042	0.923	0.532
Sexual dysfunction	16.58 ± 25.16	19.4 ± 26.65	0.14	0.119	21.55 ± 28.26	27.1 ± 27.55	0.24	0.128	0.980	0.082
Miscellaneous	10.96 ± 13.06	11.68 ± 12.83	0.07	0.945	15.84 ± 16.16	19.84 ± 16.34	0.34	<0.001	0.058	0.060
PDQ-39SI	114 ± 9.36	141 ± 12.63	0.46	<0.0001	172.9 ± 12.74	23.48 ± 16.62	0.45	<0.001	0.397	0.002
Mobility	8.84 ± 12.67	12.76 ± 15.86	0.42	<0.0001	16.2 ± 18.23	25.11 ± 22.48	0.69	<0.001	0.034	0.010

p values were computed using general linear models (GLM) repeated measures. The results represent mean ± SD; p a, change over time (V2 vs. V0) in non-MF at V2; p b, change over time (V2 vs. V0) in MF at V2; p c, group visit interaction; p d, MF at V2 vs. non-MF at V2. Age, gender, disease duration, Hoehn&Yahr stage and LEDD at V0, and the change in LEDD from V0 to V2 were included as covariates in the model; the total score of each scale at V0 (NMSS, PDQ-39SI, and EUROHIS-QOL8) was included as covariate for the analysis of the domains. MF at V2 vs. non-MF at V2 is not applicable if test of interaction is significant (a significant test of interaction means the rates of changes over time are different between the two groups). ADL, activities of daily living; EUROHIS-QOL8, EUROHIS-QOL 8-item index; LEDD, levodopa equivalent daily dose; PDQ-39SI, Parkinson’s Disease Quality of Life Questionnaire Summary Index.

To develop MF after a 2-year follow-up was associated with an increase in the NMSS total score without controlling for other factors (β = 0.148; 95% CI, 2.69–16.98; p = 0.007) but also after adjustment to age, gender, years from symptoms onset, LEDD and the NMSS total score at baseline, and the change in LEDD from V0 to V2 as well (β = 0.128; 95% CI, 0.17–16.86; p = 0.046). However, when time on levodopa and the H&Y stage were included in the model as covariates, it was not significant (with time on levodopa therapy, p = 0.062; with H&Y, p = 0.167; both variables, p = 0.212). Development of MF was associated with an increase in the PDQ39SI from V0 to V2 (β = 0.135; 95% CI, 0.61–5.55; p = 0.015) but not with the change in the EUROHIS-QOL8 total score (p = 0.207). However, it was not significant
after controlling for other covariates (age, gender, years from symptoms onset, LEDD and the PDQ-39SI at baseline, and the change in LEDD from V0 to V2) \((p = 0.094) \).

![Figure 3](image_url)

Figure 3. (A) QoL (PDQ-39SI) \((y\)-axis) at baseline \((V0)\) and after a 2-year follow-up \((V2)\) \((x\)-axis) in PD patients who developed MF at V2 \((MF\) at V2 \((PD-MFV2); N = 91)\) and those patients who did not develop MF at V2 \((nonMF\) at V2 \((PD-nonMFV2); N = 239)\). PDQ-39SI at V0, PD-MFV2 vs. PD-nonMFV2, \(p < 0.0001\); PDQ-39SI at V2, PD-MFV2 vs. PD-nonMFV2, \(p < 0.0001\); change in the PDQ-39SI from V0 to V2 in PD-MFV2, \(p < 0.0001\); change in the PDQ-39SI from V0 to V2 in PD-nonMFV2, \(p < 0.0001\); comparison between the change in the PDQ-39SI from V0 to V2 in PD-MFV2 vs. PD-nonMFV2, \(p = 0.005\). (B) Mean score on each domain of the PDQ-39SI at V0 and at V2 in both groups, PD-MFV2 and PD-nonMFV2. At V0, the difference was significant between both groups in all domains (\(p \) values from 0.023 to <0.0001) except in PDQ-39SI-4 (Stigmatization) \((p = 0.169) \) and PDQ-39SI-6 (Cognition) \((p = 0.097) \). At V2, the difference was significant between both groups in all domains (\(p \) values from 0.005 to <0.0001) except in PDQ-39SI-6 (Cognition) \((p = 0.319) \). PDQ-39 is expressed as a Summary Index (PDQ-39SI). Data are presented as box plots, with the box representing the median and the two middle quartiles (25–75%). \(p \) values were computed using the Kolmogorov–Smirnov, Mann–Whitney, and Wilcoxon tests. Mild outliers \((O)\) are data points that are more extreme than Q1 − 1.5 * IQR or Q3 + 1.5 * IQR.

7. Discussion

The present study observes that MF are frequent in PD, appearing in a cohort of 330 patients with a mean of 4 years from symptoms onset in one of every 4 subjects after a 2-year follow-up, and also that they are related to NMS. Specifically, NMS burden was greater at baseline in PD patients who 2 years later developed MF, and the increase in the NMS burden after the 2-year follow-up was double in this group as well. Moreover, similar results were obtained in terms of QoL. Importantly, all patients at baseline were without MF and this is the first time that NMS burden progression is specifically analyzed regarding the development of MF in a PD cohort.

MF are frequent in PD [28–31]. In the COPPADIS cohort, of 690 patients with a mean disease duration of 5.5 years \((DS 4.37)\), 33.9% had MF \([17]\). This percentage was 18.1% in the subgroup of patients with \(\leq 5 \) years of disease duration \((N = 396)\), with a mean disease duration of 2.7 years \((DS 1.5)\) from symptoms onset \([17]\). The frequency will depend in part on the methods used—from an interview to wearable tools—and how sensitive we can be.
to detect them [32]. Stocchi et al. analyzed wearing-off (WO) in 617 PD patients with a mean disease duration of 6.6 years (DS ± 4.6) and observed that neurologists identified the presence of WO in an interview in 56.9% of the patients, whereas the percentage was 67.3% when the self-rated 19-question Wearing-Off Questionnaire (WOQ-19) was administered [33]. Identifying fluctuations is important in PD patients for two reasons. Firstly, their presence is associated with a worse status in terms of motor, NMS, QoL, and autonomy for ADL [17]. Secondly, the therapeutic strategy is conditioned by their presence to the point that there are several drugs marketed with indication to be only for patients with MF [34].

MF (either early or advanced) can significantly add to the NMS burden in PD [35,36]. However, few studies specifically focused on the NMS prevalence in motor-fluctuating PD patients [17,37,38]. Recent data published of 1589 PD patients from the SYNAPSIS study support the high prevalence of NMS in PD patients with MF in real-life condition, thus reinforcing the need for assessing them for diagnostic accuracy and for delivering holistic care [37]. Using the NMSS, we previously observed a greater NMS burden in the group with MF in a cross-sectional study conducted in PD patients from the COPPADIS cohort. In particular, 28 out of the 30 NMS included in the NMSS were significantly more frequent in patients with MF compared with those who did not have MF, and the mean score of all domains of the NMSS except urinary symptoms and sexual dysfunction was significantly higher in the group with MF [17]. Watanabe et al. recently explored the changes in NMS and QoL during 52 weeks in 996 Japanese PD patients exhibiting MF using the Movement Disorder Society Unified PD Rating Scale (MDS-UPDRS) Part I and the 8-item PD Questionnaire (PDQ-8), respectively [38]. They detected that changes in MDS-UPDRS Part I scores were variable and related to changes in HRQoL and identified 3 separate groups: unchanged (63.8%); deteriorated (20.1%); improved (16.2%). However, very importantly, all patients included in this study had MF. To our knowledge, our study is the first one to prospectively analyze the change in the NMS burden in relation to the development of MF in PD patients who initially did not have MF. As we previously reported in this cohort [39], about 6 out of 10 patients increased the NMSS total score after a 2-year follow-up. Although there were no differences in the percentage between the two groups—patients who developed MF and patients who did not develop MF—a greater NMS burden increase was observed in the first group. We did not analyze specifically if NMS fluctuated (e.g., NMS-MDS [40]), but this finding would support the relationship between NMS and the presence of OFF episodes with an increase in NMS perception during the OFF episodes. Importantly, the effect of MF on NMS burden persisted after adjustment to some variables related to NMS in PD such as age, gender, disease duration, or even dopaminergic medication [35,41,42]. However, NMS in PD are related to motor stage as well [17,18,25,42], and after the inclusion of the H&Y stage in the model, the effects disappeared. The same happened when time on levodopa therapy was included as covariate in the model. It is well-known that both aspects are related to the development of MF [30,31]. A more advanced H&Y stage is related to a greater degree of denervation of the striatal nucleus with more sensitivity to the development of MF [43]. On the other hand, a longer time on levodopa could imply a longer disease duration but also more time exposed to certain causative mechanisms (presynaptic and postsynaptic changes and pharmacokinetic and pharmacodynamic factors) [30,31]. The data as a whole indicate that PD patients who will develop MF in the short-term are patients with a more advanced disease with a greater NMS burden and patients with an increased risk of developing more severe NMS burden. To detect NMS burden progression is relevant because it is associated with a worse QoL [18,28]; importantly, in this context, MF development was associated with a greater worsening of both HRQoL and GQoL in the present analysis. To reduce NMS burden in PD patients has been demonstrated to be associated with an improvement in QoL [14,15]. In summary, our findings reinforce the idea that there is a close relationship between motor and NMS and that dopaminergic treatment can be helpful in some cases [5,10].
The present study has some limitations. The sample size of the group of patients with MF at V2 was smaller (N = 91) compared with the group without MF (N = 231), and the information about NMS burden follow-up was recorded in 330 patients of 462 (71.4%) without MF at baseline from the COPPADIS cohort. This is a limitation observed in other prospective studies, with percentages ranging from 61.9% to 89.8% [39,42,44]. We used the NMSS to assess the NMS burden progression, but some studies suggest that a battery of separate NMS scales is more sensitive to change than the NMSS [45]. Our sample was not fully representative of the PD population due to inclusion and exclusion criteria (i.e., age limit, no dementia, no severe comorbidities, no second line therapies, etc.). For some variables, the information was not collected in all cases (the smallest sample size was for the change in NPI (N = 255) since it was covered by the caregiver and not all had a primary caregiver). On the contrary, the strengths of our study include a very thorough assessment, a prospective longitudinal follow-up design, and the extensive clinical and demographic information recorded.

In conclusion, we demonstrated for the first time in a prospective study that, in PD, the development of MF is associated with a greater NMS burden increase in the short-term. In practice, it is essential to detect MF early and ask about NMS, especially in patients with a greater disease severity and a longer time on levodopa.

Author Contributions: D.S.-G.: conception, organization, and execution of the project; statistical analysis; writing of the first draft of the manuscript; recruitment and/or evaluation of participants; C.C.B. and M.J.F.P.: Collaboration in the preparation of the manuscript. Review and critique; C.M.M.: review and critique; T.d.D.F., E.S.C., H.C., S.J., M.A., P.P., L.P., M.C., J.G.C., N.C., I.L., J.H.-V., I.C., L.L.M., I.G.A., M.A.A.R., V.G.M., V.N., V.P., J.D.G.-S., C.B., B.S.V., M.A.S., L.V., S.E., E.C., F.C.P., J.C.M.C., P.S.A., M.G.A.L., N.L.A., I.G., J.K., M.B.E., M.S., J.R.M., C.V., M.K., O.d.F., J.G.A., R.A.R., C.O., L.M.L.D., P.M.: review and critique; recruitment and/or evaluation of participants; D.M.: review and critique; review of English style; P.M.-M.: review and critique; supervision. All authors have read and agreed to the published version of the manuscript.

Funding: Santos García D. has received honoraria for educational presentations and advice service by Abbvie, UCB Pharma, Lundbeck, KRKA, Zambon, Bial, Italfarmaco, and Teva. De Deus Fonticoba T.: None. Cores Bartolomé C. has received honoraria for educational presentations and advice service by Lundbeck and UCB Pharma. Feal Paineiras M. J.: None. Martínez Miró C.: None. Suárez Castro E.: None. Canfield H.: None. Jesús S. has received honoraria from AbbVie, Bial, Merz, UCB, and Zambon and holds the competitive contract “Juan Rodés” supported by the Instituto de Salud Carlos III. She has received grants from the Spanish Ministry of Economy and Competitiveness (PI18/01898) and the Consejería de Salud de la Junta de Andalucía (PI-0459-2018). Aguilar M.: UCB and Schwabe with assistance to a Congress; Nutricia with assistance to a Congress and payment of lecture. Pastor P.: None. Planellas LL.: None. Cosgaya M.: None. García Caldentey J. has received honoraria for educational presentations and advice service by Qualigen, Nutricia, Abbvie, Italfarmaco, UCB Pharma, Lundbeck, Zambon, Bial, and Teva. Caballol N. has received honoraria from Bial, Italfarmaco, Qualigen, Zambon, UCB, Teva, and KRKA and sponsorship from Zambon, TEVA, and Abbvie for attending medical conferences. Legarda I. has received honoraria for educational presentations and advice service by Abbvie, UCB Pharma, Zambon, Bial, and Teva. Hernández Vara J. has received travel bursaries and educational grants from Abbvie and has received honoraria for educational presentations from Abbvie, Teva, Bial, Zambon, Italfarmaco, and Sanofi-Genzyme. Cabo I. has received honoraria for educational presentations and advice service by Abbvie, Zambon, and Bial. López Manzanares L.: Compensated advisory services, consulting, research grant support, or speaker honoraria: AbbVie, Acorda, Bial, Intec Pharma, Italfarmaco, Pfizer, Roche, Teva, UCB, and Zambon. González Aramburu I.: None. Ávila Rivera MA. has received honoraria from Zambon, UCB Pharma, Qualigen, Bial, and Teva, and sponsorship from Zambon and Teva for attending conferences. Gómez Mayordomo V.: None. Nogueira V.: None. Puente V. has served as consultant for Abbvie and Zambon; has received grant/research from Abbvie. Dotor García-Soto J.: Compensated advisory services, consulting, research grant support, or speaker honoraria: Merck, Sanofi-Genzyme, Allergan, Biogen, Roche, UCB, and Novartis. Borrué C.: None. Solano Vila B. has received honoraria for educational presentations and advice service by UCB, Zambon, Teva, Abbvie, Bial. Álvarez Sauco M. has received honoraria for educational presentations and advice service by Abbvie, UCB Pharma,
Zambon, Bial, and Teva. Vela L. has received honoraria for educational presentations and advice service by Abbvie, UCB Pharma, Lundbeck, KRKA, Zambon, Bial, and Teva. Escalante S. has received honoraria for educational presentations and advice service by Abbvie, Zambon, and Bial. Cubo E.; travel grants from Abbvie, Allergan, and Boston; and lecturing honoraria from Abbvie, International Parkinson’s disease Movement Disorder Society. Carrillo Padilla F. has received honoraria from Zambon (SEN Congress assistance). Martínez Castrillo J.C. has received research support from Lundbeck, Italfarmaco, Allergan, Zambon, Merz, and Abbvie; he has also received speaking honoraria from AbbBie, Bial, Italfarmaco, Lundbeck, Krka, TEVA, UCB, Zambon, Allergan, Ipsen, and Merz. Sánchez Alonso P. has received honoraria for educational presentations and advice service by Abbvie, UCB Pharma, Lundbeck, KRKA, Zambon, Bial, and Teva. Alonso Losada M. G. has received honoraria for educational presentations and advice service by Abbvie and Bial. López Ariztegui N. has received honoraria for educational presentations and advice service by Abbvie, Italfarmaco, Zambon, and Bial. Gastón I. has received research support from Abbvie and Zambon and has served as a consultant for Abbvie, Exelts, and Zambon. Kulisevsky J.: (1) Consulting fees: Roche, Zambon; (2) Stock/allotment: No; (3) Patent royalties/licensing fees: No; (4) Honoraria (e.g., lecture fees): Zambon, Teva, Bial, UCB; (5) Fees for promotional materials: No; (6) Research funding: Roche, Zambon, Cibermed; Instituto de SaludCarlos III; FundacióLa Maratótv3; (7) Scholarship from corporation: No; (8) Corporate laboratory funding: No; (9) Others (e.g., trips, travel, or gifts): No. Blázquez Estrada M. has received honoraria for educational presentations and advice service by Abbvie, Abbott, UCB Pharma, Allergan, Zambon, Bial, and Qualigen. Seijo M. has received honoraria for educational services from KRKA, UCB, Zambon, and Bial and travel grants from Daichi and Roche. Ruiz Martínez J. has received honoraria for educational presentations, attending medical conferences, and advice service by Abbvie, UCB Pharma, Zambon, Italfarmaco, Bial, and Teva. Valero C. has received honoraria for educational services from Zambon, Abbvie and UCB. Kurtis M. has received honoraria from Bial, the Spanish Neurology Society, and the International and Movement Disorders Society. de Fábregues O. has received honoraria for educational presentations and advice service by Bial, Zambon, Abbvie, KRKA, and Teva. González Ardura J. has received honoraria for speaking from Italfarmaco, Krka, Genzyme, UCB, Esteve, Psyma iberica marketing research SL, and Ferrer; a course grant from Teva; and travel grant from Merck. Alonso Redondo R.: None. Ordas C.: None. López Díaz L. M. has received honoraria from UCB, Lundbeck, and KRKA. McAfee D.: None. Martínez-Martin P. has received honoraria from National School of Public Health (ISCIII), Editorial Viguer and Takeda Pharmaceuticals for lecturing in courses, and from the International Parkinson and Movement Disorder Society (MDS) for management of the Program on Rating Scales. Mir P. has received honoraria from AbbVie, Abbott, Allergan, Bial, Merz, UCB, and Zambon and has received grants from the Spanish Ministry of Economy and Competitiveness [PI16/01573] cofunded by ISCIII (Subdirección General de Evaluación y Fomento de la Investigación) and by Fondo Europeo de Desarrollo Regional (FEDER), the Consejería de Economía, Innovación, Ciencia y Empleo de la Junta de Andalucía [CVI-02526, CTS-7685], the Consejería de Salud y Bienestar Social de la Junta de Andalucía [PI-0437-2012, PI-0471-2013], the Sociedad Andaluza de Neurología, the Jacques and Gloria Gosweiler Foundation, the Fundación Alicia Koplowitz, and the Fundación Mutua Madrileña.

Institutional Review Board Statement: The study was conducted according to the guidelines of the Declaration of Helsinki, and ap-proved by Comité de Ética de la Investigación Clínica de Galicia from Spain (2014/534; 2/DEC/2014).

Informed Consent Statement: Written informed consent from all participants in this study were obtained before the start of the study.

Data Availability Statement: The data that support the findings of this study are available from the corresponding author upon reasonable request. No computer coding was used in the completion of the current manuscript.

Acknowledgments: We would like to thank all patients and their caregivers who collaborated in this study. Many thanks also to Fundación DEGEN (https://fundaciondegen.org/ accessed on 15 April 2022), Alpha Bioresearc (www.alphabioresearch.com accessed on 15 April 2022), and other institutions helping us.

Conflicts of Interest: The authors have no conflict of interest to report.
Abbreviations

ADLS, Schwab and England Activities of Daily Living Scale; BDI-II, Beck Depression Inventory-II; EUROHIS-QOL8, EUROHIS-QOL 8-item index; FOG-Q, Freezing Of Gait Questionnaire; LEDD, levodopa equivalent daily dose; MF; motor fluctuations; NMF; non-motor fluctuations; NMSS, non-motor symptoms; NMSS, Non-motor Symptoms Scale; NPI, Neuropsychiatric Inventory; PD, Parkinson’s disease; PD-CRS, Parkinson’s Disease Cognitive Rating Scale; PDQ-39SI, 39-item Parkinson’s Disease Quality of Life Questionnaire Summary Index; PDSS, Parkinson’s Disease Sleep Scale; QoL, quality of life; QUP-9S, Questionnaire for Impulsive–Compulsive Disorders in Parkinson’s Disease-Rating Scale; UPDRS, Unified Parkinson’s Disease Rating Scale; VAFS, Visual Analog Fatigue Scale; VAS–Pain, Visual Analog Scale–Pain.

Appendix A

Coppadis Study Group: Adarmes AD, Almeria M, Alonso Losada MG, Alonso Cánovas A, Alonso Frec E, Alonso Redondo R, Álvarez I, Álvarez-Sauco M, Aneiros Díaz A, Arnáiz S, Arribas S, Ascunce Vidondo A, Aguilar M, Ávila MA, Bernardo Lambrich N, Bejr-Kasem H, Blázquez Estrada M, Boti M, Borrue C, Buongiorno MT, Cabello González C, Cabo López I, Caballol N, Cámaro Lorenzo A, Canfield Medina H, Carrillo F, Carrillo Padilla FJ, Casas E, Catalán MJ, Clavero P, Cortina Fernández A, Cosgaya M, Cots Foraster A, Crespo Cuevas A, Cubo E, de Deus Ffonticoba T, de Fábregues-Boixar O, Diez-Fairen M, Dotor García-Soto J, Erro E, Escalanle S, Estelrich Peyret E, Fernández Guíllán N, Gámez P, Gallego M, García Caldentey J, García Campos C, Garcia Campos C, Garcia Moreno JM, Gastón I, Gómez Garre MP, Gómez Mayordomo V, González Aloy J, González-Aramburu I, González-Ardura J, González Garcia B, González-Palmás MJ, González-Toledo GR, Golpe Díaz A, Grau Solá M, Guardia G, Hernández Vara J, Horta-Barba A, Idoate Calderón D, Infante J, Jesús S, Kulisvsky J, Kurtis M, Labandeira C, Labrador MA, Lacruz F, Lage Castro M, Lastres Gómez S, Legarda J, López Ariztigué N, López Díaz LM, López Domínguez D, López Manzanares L, López Seoane B, Lucas del Pozo S, Macías Y, Mata M, Martí Andres G, Martí MJ, Martínez Castrillo JC, Martínez-Martín P, McAfee D, Meitin MT, Mendoza Plasencia Z, Menéndez González M, Méndez del Barrio C, Mir P, Miranda Santiago J, Morales Casado MI, Moreno Díéguez A, Nogueira V, Novo Amado A, Novo Ponte S, Ordás C, Pagónabarraga J, Pareés I, Pascual-Sedano B, Pastor P, Pérez Fuertes A, Pérez Noguera R, Planas-Ballvé A, Planellas L, Prats MA, Prieto Jucyzynska C, Puente V, Pueyo Morlans M, Puig Davó A, Redondo Rafales N, Rodríguez Méndez L, Rodríguez Pérez AB, Roldán F, Ruiz De Arcos M, Ruiz Martínez J, Sánchez Alonso P, Sánchez-Carpintero M, Sánchez Diez G, Sánchez Rodríguez A, Santacruz P, Santos García D, Segundo Rodríguez JC, Seijo M, Sierra Peña M, Solano Vila B, Suárez Castro E, Tartari JP, Valero C, Vargas L, Vela L, Villanueva C, Vives B.

Name (Last Name, First Name)	Location	Role	Contribution
Astrid Adarmes, Daniela	Hospital Universitari Virgen del Rocio, Sevilla, Spain	Site investigator	Evaluation of participants and/or data management
Almeria, Marta	Hospital Universitari Mutua de Terrassa, Terrassa, Barcelona, Spain	Site investigator	Neuropsychologist; evaluation of participants
Alonso Losada, Maria Gema	Hospital Álvaro Cunqueiro, Complejo Hospitalario Universitario de Vigo (CHUVI), Vigo, Spain	Site investigator/PI	Coordination at the center Evaluation of participants and/or data management
Alonso Cánovas, Araceli	Hospital Universitari Ramón y Cajal, Madrid, Spain	Site investigator	Evaluation of participants and/or data management
Alonso Frec, Fernando	Hospital Universitari Clínico San Carlos, Madrid, Spain	Site investigator	Evaluation of participants and/or data management
Alonso Redondo, Ruben	Hospital Universitario Lucus Augustus (HULA), Lugo, Spain	Site investigator/PI	Coordination at the center Evaluation of participants and/or data management
Aneiros Díaz, Ángel	Complejo Hospitalario Universitario de Ferrol (CHUF), Ferrol, A Coruña, Spain	Site investigator/PI	Coordination at the center Evaluation of participants and/or data management
Álvarez, Ignacio	Hospital Universitari Mutúa de Terrassa, Terrassa, Barcelona, Spain	Site investigator	Evaluation of participants and/or data management
Álvarez Sauco, María	Hospital General Universitario de Elche, Elche, Spain	Site investigator/PI	Coordination at the center Evaluation of participants and/or data management
Arnáiz, Sandra	Complejo Asistencial Universitario de Burgos, Burgos, Spain	Site investigator	Evaluation of participants and/or data management
Arribas, Sonia	Hospital Universitari Mutua de Terrassa, Terrassa, Barcelona, Spain	Site investigator	Neuropsychologist; evaluation of participants
Name (Last Name, First Name)	Location	Role	Contribution
-----------------------------	----------	------	--------------
Ascunce Vidoardo, Arancha	Complejo Hospitalario de Navarra, Pamplona, Spain	Site investigator	Evaluation of participants and/or data management
Aguilar, Miquel	Hospital Universitari Mutua de Terrassa, Terrassa, Barcelona, Spain	Site investigator	Evaluation of participants and/or data management
Ávila Rivera, Maria Asunción	Consorcio Sanitari Integral, Hospital General de L'Hospitalet, L'Hospitalet de Llobregat, Barcelona, Spain	Site investigator/PI	Coordination at the center Evaluation of participants and/or data management
Bernardo Lambrich, Noemi	Hospital de Tortosa Verge de la Cinta (HTVC), Tortosa, Tarragona, Spain	Site investigator	Evaluation of participants and/or data management
Bog-Kasem, Helena	Hospital de Sant Pau, Barcelona, Spain	Site investigator	Evaluation of participants and/or data management
Blázquez Estrada, Marta	Hospital Universitario Central de Asturias, Oviedo, Spain	Site investigator	Evaluation of participants and/or data management
Boti González, María Ángeles	Hospital Universitari Mutua de Terrassa, Barcelona, Spain	Site investigator	Neuropsychologist; evaluation of participants
Borrué, Carmen	Hospital Infanta Sofia, Madrid, Spain	Site investigator/PI	Coordination at the center Evaluation of participants and/or data management
Buñógiomo, María Teresa	Hospital Universitari Mutua de Terrassa, Terrassa, Barcelona, Spain	Site investigator	Nurse study coordinator
Cabello González, Carolina	Complejo Hospitalario de Navarra, Pamplona, Spain	Site investigator	Scheduling of evaluations
Cabo López, Inés	Complejo Hospitalario Universitario de Pontevedra (CHOP), Pontevedra, Spain	Site investigator/PI	Coordination at the center Evaluation of participants and/or data management
Caballol, Nuria	Consorcio Sanitari Integral, Hospital Moises Broggi, Sant Joan Despi, Barcelona, Spain	Site investigator/PI	Coordination at the center Evaluation of participants and/or data management
Cámara Lorenzo, Ana	Hospital Clinic de Barcelona, Barcelona, Spain	Site investigator	Nurse study coordinator
Canfield Medina, Héctor	Complejo Hospitalario Universitario de Ferrol (CHUF), Ferrol, A Coruña, Spain	Site investigator	Evaluation of participants and/or data management
Carrillo, Fátima	Hospital Universitario Virgen del Rocío, Sevilla, Spain	Site investigator	Evaluation of participants and/or data management
Carrillo Padilla, Francisco José	Hospital Universitario de Canarias, San Cristóbal de la Laguna, Santa Cruz de Tenerife, Spain	Site investigator/PI	Coordination at the center Evaluation of participants and/or data management
Casas, Elena	Complejo Asistencial Universitario de Burgos, Burgos, Spain	Site investigator	Evaluation of participants and/or data management
Catalán, María José	Hospital Universitario Clínico San Carlos, Madrid, Spain	Site investigator/PI	Coordination at the center Evaluation of participants and/or data management
Clavero, Pedro	Complejo Hospitalario de Navarra, Pamplona, Spain	Site investigator	Evaluation of participants and/or data management
Cortina Fernández, Ana	Complejo Hospitalario Universitario de Ferrol (CHUF), Ferrol, A Coruña, Spain	Site investigator	Coordination of blood extractions
Congaya, Marina	Hospital Clinic de Barcelona, Barcelona, Spain	Site investigator	Evaluation of participants and/or data management
Cots Foraster, Anna	Institut d'Assistencia Sanitària (IAS)-Institut Catala de la Salut. Girona, Spain	Site investigator	Evaluation of participants and/or data management
Crespo Cuervas, Ane	Hospital del Mar, Barcelona, Spain	Site investigator	Evaluation of participants and/or data management
Cubo, Esther	Complejo Asistencial Universitario de Burgos, Burgos, Spain	Site investigator/PI	Coordination at the center Evaluation of participants and/or data management
De Deus Fontcoba, Teresa	Complejo Hospitalario Universitario de Ferrol (CHUF), Ferrol, A Coruña, Spain	Site investigator	Nurse study coordinator Evaluation of participants and/or data management
De Fabregues-Beixar, Oriol	Hospital Universitario Vall d’Hebron, Barcelona, Spain	Site investigator/PI	Coordination at the center Evaluation of participants and/or data management
Diez Fain, M	Hospital Universitari Mutua de Terrassa, Terrassa, Barcelona, Spain	Site investigator	Evaluation of participants and/or data management
Dotet García-Soto, Julio	Hospital Universitario Virgen Macarena, Sevilla, Spain	Site investigator/PI	Evaluation of participants and/or data management
Erro, Elena	Complejo Hospitalario de Navarra, Pamplona, Spain	Site investigator	Evaluation of participants and/or data management
Escalante, Sonia	Hospital de Tortosa Verge de la Cinta (HTVC), Tortosa, Tarragona, Spain	Site investigator/PI	Coordination at the center Evaluation of participants and/or data management
Estelrich Peyret, Elena	Institut d'Assistencia Sanitària (IAS)-Institut Catala de la Salut. Girona, Spain	Site investigator	Evaluation of participants and/or data management
Fernández Guillán, Noelia	Complejo Hospitalario Universitario de Ferrol (CHUF), Ferrol, A Coruña, Spain	Site investigator	Neuroimaging studies
Gámez, Pedro	Complejo Asistencial Universitario de Burgos, Burgos, Spain	Site investigator	Evaluation of participants and/or data management
Gallego, Mercedes	Hospital La Princesa, Madrid, Spain	Site investigator	Evaluation of participants and/or data management
García Caldentey, Juan	Centro Neurològico Orns 42, Palma de Mallorca, Spain	Site investigator/PI	Coordination at the center Evaluation of participants and/or data management
García Campos, Cristina	Hospital Universitario Virgen Macarena, Sevilla, Spain	Site investigator	Evaluation of participants and/or data management
Garcia Moreno, Jose Manuel	Hospital Universitario Virgen Macarena, Sevilla, Spain	Site investigator/PI (until MAR/21)	Coordination at the center Evaluation of participants and/or data management
Gaston, Izaia	Complejo Hospitalario de Navarra, Pamplona, Spain	Site investigator/PI	Coordination at the center Evaluation of participants and/or data management
Gómez Garre, Maria del Pilar	Hospital Universitario Virgen del Rocío, Sevilla, Spain	Site investigator	Genetic studies coordination
Gómez Mayordomo, Victor	Hospital Clínico San Carlos, Madrid, Spain	Site investigator	Evaluation of participants and/or data management
González Aloy, Javier	Institut d’Assistencia Sanitària (IAS)-Institut Catala de la Salut. Girona, Spain	Site investigator	Evaluation of participants and/or data management
Name (Last Name, First Name)	Location	Role	Contribution
--	--	-----------------------------	--
Gonzalez Aramburu, Isabel	Hospital Universitario Marqués de Valdecilla, Santander, Spain	Site investigator	Evaluation of participants and/or data management
Gonzalez Ardura, Jessica	Hospital Universitario Lucus Augusti (HULA), Lugo, Spain	Site investigator/PI (until FEB/21)	Evaluation of participants and/or data management
Gonzalez García, Beatriz	Hospital La Princesa, Madrid, Spain	Site investigator	Nurse study coordinator
Gonzalez Palmas, María Josefa	Complejo Hospitalario Universitario de Pontevedra (CHOP), Pontevedra, Spain	Site investigator	Evaluation of participants and/or data management
Gonzalez Toledo, Gabriel Ricardo	Hospital Universitario de Canarias, San Cristóbal de la Laguna, Santa Cruz de Tenerife, Spain	Site investigator	Evaluation of participants and/or data management
Golpe Díaz, Ana	Complejo Hospitalario Universitario de Ferrol (CHUF), Ferrol, A Coruña, Spain	Site investigator	Laboratory analysis coordination
Grau Selá, Mireia	Consorcio Sanitari Integral, Hospital Moses Broggi, Sant Joan Despi, Barcelona, Spain	Site investigator	Evaluation of participants and/or data management
Guardia, Gemma	Hospital Universitari Mutua de Terrassa, Terrassa, Barcelona, Spain	Site investigator	Evaluation of participants and/or data management
Hernández Vara, Jorge	Hospital Universitario Vall d’Hebron, Barcelona, Spain	Site investigator/PI	Coordination at the center Evaluation of participants and/or data management
Horta Barba, Andrea	Hospital de Sant Pau, Barcelona, Spain	Site investigator	Neuropsychologist; evaluation of participants
Idoate Calderón, Daniel	Complejo Hospitalario Universitario de Pontevedra (CHOP), Pontevedra, Spain	Site investigator	Neuropsychologist; evaluation of participants
Infante, Jon	Hospital Universitario Marqués de Valdecilla, Santander, Spain	Site investigator/PI	Coordination at the center Evaluation of participants and/or data management
Jesús, Silvia	Hospital Universitario Virgen del Rocío, Sevilla, Spain	Site investigator	Evaluation of participants and/or data management
Kulisevskyky, Jaime	Hospital de Sant Pau, Barcelona, Spain	Site investigator/PI	Coordination at the center Evaluation of participants and/or data management
Kurtie, Mónica	Hospital Ruber Internacional, Madrid, Spain	Site investigator/PI	Coordination at the center Evaluation of participants and/or data management
Labandeira, Carmen	Hospital Álvaro Cunqueiro, Complejo Hospitalario Universitario de Vigo (CHUVI), Vigo, Spain	Site investigator	Evaluation of participants and/or data management
Labrador Espinosa, Miguel Ángel	Hospital Universitario Virgen del Rocío, Sevilla, Spain	Site investigator	Neuroimaging data analysis
Lacruz, Francisco	Complejo Hospitalario de Navarra, Pamplona, Spain	Site investigator	Evaluation of participants and/or data management
Lage Castro, Melva	Complejo Hospitalario Universitario de Pontevedra (CHOP), Pontevedra, Spain	Site investigator	Evaluation of participants and/or data management
Lastres Gómez, Sonia	Complejo Hospitalario Universitario de Pontevedra (CHOP), Pontevedra, Spain	Site investigator	Neuropsychologist; evaluation of participants
Legarda, Inés	Hospital Universitario Son Eapases, Palma de Mallorca, Spain	Site investigator/PI	Coordination at the center Evaluation of participants and/or data management
López Ariztegui, Nuria	Complejo Hospitalario de Toledo, Toledo, Spain	Site investigator/PI	Coordination at the center Evaluation of participants and/or data management
López Díaz, Luis Manuel	Hospital Da Costa de Burela, Lugo, Spain	Site investigator	Evaluation of participants and/or data management
López Dominguez, Daniel	Institut d’Assistencia Sanitaria (IAS)-Institut Catala de la Salud, Girona, Spain	Site investigator	Evaluation of participants and/or data management
López Manzanares, Lydia	Hospital La Princesa, Madrid, Spain	Site investigator/PI	Coordination at the center Evaluation of participants and/or data management
López Seoane, Balbino	Complejo Hospitalario de Ferrol (CHUF), Ferrol, A Coruña, Spain	Site investigator	Neuroimaging studies
Lucas del Pozo, Sara	Hospital Universitario Vall d’Hebron, Barcelona, Spain	Site investigator	Evaluation of participants and/or data management
Macias, Yolanda	Fundación Hospital de Alcorcón, Madrid, Spain	Site investigator	Evaluation of participants and/or data management
Mata, Marina	Hospital Infanta Sofia, Madrid, Spain	Site investigator	Evaluation of participants and/or data management
Martí Andres, Gloria	Hospital Universitario Vall d’Hebron, Barcelona, Spain	Site investigator	Evaluation of participants and/or data management
Martí, María José	Hospital Clinic de Barcelona, Barcelona, Spain	Site investigator/PI	Coordination at the center Evaluation of participants and/or data management
Martínez Castrillo, Juan Carlos	Hospital Universitario Ramon y Cajal, Madrid, Spain	Site investigator/PI	Coordination at the center Evaluation of participants and/or data management
Martínez-Martin, Pablo	Centro Nacional de Epidemiología y CIBERNEC, Instituto de Salud Carlos III, Madrid	Collaborator in statistical and methods analysis	Methods and statistical reviewer
McAfee, Darrían	University of Pennsylvania, Philadelphia	Collaborator in English style	English style reviewer
Metín, María Teresa	Hospital Da Costa de Burela, Lugo, Spain	Site investigator	Evaluation of participants and/or data management
Menéndez González, Manuel	Hospital Universitario Central de Asturias, Oviedo, Spain	Site investigator/PI	Coordination at the center Evaluation of participants and/or data management
Méndez del Barrio, Carlota	Hospital Universitario Virgen del Rocío, Sevilla, Spain	Site investigator	Evaluation of participants and/or data management
Méndezola Plasencia, Zeberzui	Hospital Universitario de Canarias, San Cristóbal de la Laguna, Santa Cruz de Tenerife, Spain	Site investigator	Evaluation of participants and/or data management
Mir, Pablo	Hospital Universitario Virgen del Rocío, Sevilla, Spain	Site investigator/PI	Coordination at the center Evaluation of participants and/or data management
Name (Last Name, First Name)	Location	Role	Contribution
-----------------------------	----------	------	--------------
Miranda Santiago, Javier	Complejo Asistencial Universitario de Burgos, Burgos, Spain	Site investigator	Evaluation of participants and/or data management
Morales Casado, Maria Isabel	Complejo Hospitalario de Toledo, Toledo, Spain.	Site investigator	Evaluation of participants and/or data management
Moreno Dieguez, Antonio	Complejo Hospitalario Universitario de Ferrol (CHUF), Ferrol, A Coruña, Spain	Site investigator	Neuroimaging studies
Nogueira, Victor	Hospital Da Costa de Burlea, Lugo, Spain	Site investigator/PI	Coordination at the center Evaluation of participants and/or data management
Novo Amado, Alba	Complejo Hospitalario Universitario de Ferrol (CHUF), Ferrol, A Coruña, Spain	Site investigator	Neuroimaging studies
Novo Ponte, Sabela	Hospital Universitario Puerta de Hierro, Madrid, Spain.	Site investigator	Evaluation of participants and/or data management
Ordás, Carlos	Hospital Rey Juan Carlos, Madrid, Spain, Madrid, Spain.	Site investigator	Evaluation of participants and/or data management
Pagobarraga, Javier	Hospital de Sant Pau, Barcelona, Spain	Site investigator	Evaluation of participants and/or data management
Pareás, Isabel	Hospital Ruber Internacional, Madrid, Spain	Site investigator	Evaluation of participants and/or data management
Pascual-Sedano, Berta	Hospital de Sant Pau, Barcelona, Spain	Site investigator	Evaluation of participants and/or data management
Pastor, Pau	Hospital Universitari Mutua de Terrassa, Terrassa, Barcelona, Spain	Site investigator	Evaluation of participants and/or data management
Pérez Fuertes, Aida	Complejo Hospitalario Universitario de Ferrol (CHUF), Ferrol, A Coruña, Spain	Site investigator	Blood analysis
Pérez Noguera, Rafael	Hospital Universitario Virgen Macarena, Sevilla, Spain	Site investigator	Evaluation of participants and/or data management
Planas-Balvié, Ana	Consorcio Sanitari Integral, Hospital Moses Breggen, Sant Joan Despi, Barcelona, Spain	Site investigator	Evaluation of participants and/or data management
Planellas, Lluis	Hospital Clinic de Barcelona, Barcelona, Spain	Site investigator	Evaluation of participants and/or data management
Prats, Marian Ángeles	Institut d’Assistència Sanitària (IAS)-Institut Catala de la Salut. Girona, Spain	Site investigator	Evaluation of participants and/or data management
Prieto Jurczynska, Cristina	Hospital Rey Juan Carlos, Madrid, Spain, Madrid, Spain	Site investigator/PI	Coordination at the center Evaluation of participants and/or data management
Puente, Victor	Hospital del Mar, Barcelona, Spain	Site investigator/PI	Coordination at the center Evaluation of participants and/or data management
Pueyo Morlano, Mercedes	Hospital Universitario de Canarias, San Cristobal de la Laguna, Santa Cruz de Tenerife, Spain	Site investigator	Evaluation of participants and/or data management
Puig Daví, Arnau	Hospital de Sant Pau, Barcelona, Spain	Site investigator	Evaluation of participants and/or data management
Redondo, Nuria	Hospital La Princesa, Madrid, Spain	Site investigator	Evaluation of participants and/or data management
Rodríguez Méndez, Luisa	Complejo Hospitalario Universitario de Ferrol (CHUF), Ferrol, A Coruña, Spain	Site investigator	Blood analysis
Rodríguez Pérez, Amparo Belén	Hospital General Universitario de Elche, Elche, Spain	Site investigator	Evaluation of participants and/or data management
Roldán, Florinda	Hospital Universitario Virgen del Rocío, Sevilla, Spain	Site investigator	Neuroimaging studies
Ruiz de Arcos, Maria	Hospital Universitario Virgen Macarena, Sevilla, Spain.	Site investigator	Evaluation of participants and/or data management
Ruiz Martínez, Javier	Hospital Universitario Donostia, San Sebastián, Spain	Site investigator	Evaluation of participants and/or data management
Sánchez Alonso, Pilar	Hospital Universitario Puerta de Hierro, Madrid, Spain	Site investigator	Evaluation of participants and/or data management
Sánchez-Carpiñero, Macarena	Complejo Hospitalario Universitario de Ferrol (CHUF), Ferrol, A Coruña, Spain	Site investigator	Neuroimaging studies
Sánchez Diez, Gema	Hospital Universitario Ramón y Cajal, Madrid, Spain	Site investigator	Evaluation of participants and/or data management
Sánchez Rodríguez, Antonio	Hospital Universitario Marqués de Valdecilla, Santander, Spain	Site investigator	Evaluation of participants and/or data management
Santacruz, Pilar	Hospital Clinic de Barcelona, Barcelona, Spain	Site investigator	Evaluation of participants and/or data management
Santos García, Diego	CHUAC, Complejo Hospitalario Universitario de A Coruña (CHOP), Pontevedra, Spain	Coordinator of the Project	Coordination of the COPPADIS-2015
Segundo Rodríguez, José	Complejo Hospitalario de Toledo, Toledo, Spain	Site investigator	Evaluation of participants and/or data management
Seijo, Manuel	Complejo Hospitalario Universitario de Pontevedra (CHOP), Pontevedra, Spain	Site investigator/PI	Coordination at the center Evaluation of participants and/or data management
Sierra, Maria	Hospital Universitario Marqués de Valdecilla, Santander, Spain	Site investigator	Evaluation of participants and/or data management
Solano, Berta	Institut d’Assistència Sanitària (IAS)-Institut Catala de la Salut. Girona, Spain	Site investigator/PI	Coordination at the center Evaluation of participants and/or data management
Suárez Castro, Ester	Complejo Hospitalario Universitario de Ferrol (CHUF), Ferrol, A Coruña, Spain	Site investigator	Evaluation of participants and/or data management
Tartari, Juan Pablo	Hospital Universitario Mutua de Terrassa, Terrassa, Barcelona, Spain	Site investigator	Evaluation of participants and/or data management
Valero, Caridad	Hospital Arnau de Vilanova, Valencia, Spain	Site investigator	Evaluation of participants and/or data management
Vargas, Laura	Hospital Universitario Virgen del Rocio, Sevilla, Spain	Site investigator	Evaluation of participants and/or data management
Vela, Lydia	Fundación Hospital de Alcorcón, Madrid, Spain	Site investigator/PI	Coordination at the center Evaluation of participants and/or data management
Villanueva, Clara	Hospital Universitario Clinico San Carlos, Madrid, Spain	Site investigator	Evaluation of participants and/or data management
Vives, Bárbara	Hospital Universitario Son Espases, Palma de Mallorca, Spain	Site investigator	Evaluation of participants and/or data management
References

1. Bloem, B.R.; Okun, M.S.; Klein, C. Parkinson’s disease. *Lancet* 2021, *397*, 2284–2303. [CrossRef]

2. Armstrong, M.J.; Okun, M.S. Diagnosis and Treatment of Parkinson Disease: A Review. *JAMA* 2020, *323*, 548–560. [CrossRef]

3. Schapira, A.; Chaudhuri, K.; Jenner, P. Non-motor features of Parkinson disease. *Nat. Rev. Neurosci.* 2017, *18*, 435–450. [CrossRef]

4. Seppi, K.; Ray Chaudhuri, K.; Coelho, M.; Fox, S.H.; Katschschlager, R.; Lloret, S.P.; Weintraub, D.; Sampaio, C.; the Collaborators of the Parkinson’s Disease Update on Non-Motor Symptoms Study Group on behalf of the Movement Disorders Society Evidence-Based Medicine Committee. Update on treatments for non-motor symptoms of Parkinson’s disease—An evidence-based medicine review. *Mov. Disord.* 2019, *34*, 180–198. [CrossRef]

5. Chaudhuri, K.R.; Schapira, A.H. Non-motor symptoms of Parkinson’s disease: Dopaminergic pathophysiology and treatment. *Lancet Neurol.* 2009, *8*, 464–474. [CrossRef]

6. Mattay, V.; Tessitore, A.; Callicott, J.; Bertolino, A.; Goldberg, T.E.; Chase, T.N.; Hyde, T.M.; Weinberger, D.R. Dopaminergic modulation of cortical function in patients with Parkinson’s disease. *Ann. Neurol.* 2002, *51*, 156–164. [CrossRef]

7. Barone, P.; Scarzella, L.; Marconi, R.; Antonini, A.; Morgante, L.; Bracco, F.; Zappia, M.; Musch, B.; the Depression/Parkinson Italian Study Group. Pramipexole versus sertraline in the treatment of depression in Parkinson’s disease. A national multicenter parallel group randomized study. *J. Neurol.* 2006, *253*, 601–607. [CrossRef]

8. Fernández-Pajarín, G.; Sesar, Á.; Jiménez Martín, I.; Ares, B.; Castro, A. Continuous subcutaneous apomorphine infusion in the early phase of advanced Parkinson’s disease: A prospective study of 22 patients. *Clin. Park. Relat. Disord.* 2021, *6*, 100129. [CrossRef]

9. Trenkwalter, C.; Kies, B.; Rudzinska, M.; Fine, J.; Nikl, J.; Honczarenko, K.; Dioszeghy, P.; Hill, D.; Anderson, T.; Myllyla, V.; et al. Recover Study Group. Rotigotine effects on early morning motor function and sleep in Parkinson’s disease: A double-blind, randomized, placebo-controlled study (RECOVER). *Mov. Disord.* 2011, *26*, 90–99. [CrossRef]

10. Martínez-Castrillo, J.C.; Vela, L.; del Val, J.; Alonso-Canovas, A. Non-motor disorders and their correlation with dopamine: Can they be treated by currently available methods? *Neurologist* 2011, *17* (Suppl. 1), S9–S17. [CrossRef]

11. Martínez-Fernández, R.; Schmitt, E.; Martínez-Martín, P.; Krack, P. The hidden sister of motor fluctuations in Parkinson’s disease: A review on non-motor fluctuations. *Mov. Disord.* 2016, *31*, 1080–1094. [CrossRef]

12. Witjas, T.; Kaphan, E.; Azulay, J.P.; Blin, O.; Ceccaldi, M.; Pouget, J.; Poncet, M.; Chérief, A.A. Non-motor fluctuations in Parkinson’s disease: Frequent and disabling. *Neurology* 2002, *59*, 408–413. [CrossRef]

13. Honig, H.; Antonini, A.; Martínez-Martín, P.; Forgacs, I.; Faye, G.C.; Fox, T.; Fox, K.; Mancini, F.; Canesi, M.; Odin, P.; et al. Intrajejunal levodopa infusion in Parkinson’s disease: A pilot multicenter study of effects on non-motor symptoms and quality of life. *Mov. Disord.* 2009, *24*, 1468–1474. [CrossRef]

14. Martínez-Martín, P.; Reddy, P.; Katschschlager, R.; Antonini, A.; Todorova, A.; Odin, P.; Henriksen, T.; Martin, A.; Calandrelli, D.; Rizos, A.; et al. EuroInf: A multicenter comparative observational study of apomorphine and levodopa infusion in Parkinson’s disease. *Mov. Disord.* 2015, *30*, 510–516. [CrossRef]

15. Santos García, D.; Labandeira Guerra, C.; Yáñez Baña, R.; Cimas Hernando, M.I.; Cabo López, I.; Paz González, J.M.; Alonso Losada, M.G.; González Palmás, M.J.; Martínez Miró, C. Safinamide Improves Non-Motor Symptoms Burden in Parkinson’s Disease: An Open-Label Prospective Study. *Brain Sci.* 2021, *11*, 316. [CrossRef]

16. Santos García, D.; Fernández-Pajarín, G.; Oropesa Ruiz, J.M.; Escamilla Sevilla, E.; Rahim López, R.R.A.; Muñoz Enriquez, J.G. Opicapone Improves Global Non-Motor Symptoms Burden in Parkinson’s Disease: An Open-label Prospective Study. *Brain Sci.* 2022, *12*, 383. [CrossRef]

17. Santos-García, D.; de Deus Fonticoba, T.; Suárez Castro, E.; Díaz, A.A.; McAfee, D.; Catalán, M.J.; Alonso-Frech, F.; Villanueva, C.; Jesús, S.; Mir, P.; et al. Non-motor symptom burden is strongly correlated to motor complications in patients with Parkinson’s disease. *Eur. J. Neurosci.* 2020, *27*, 1210–1223. [CrossRef]

18. Santos García, D.; De Deus Fonticoba, T.; Paz González, J.M.; Bartolomé, C.C.; Aymerich, L.V.; Enriquez, J.G.M.; Suárez, E.; Jesús, S.; Aguilar, M.; Pastor, P.; et al. Staging Parkinson’s Disease Combining Motor and Non-motor Symptoms Correlates with Disability and Quality of Life. *Parkinsons Dis.* 2021, *2021*, 8871549. [CrossRef]

19. Santos García, D.; de Deus Fonticoba, T.; Cores, C.; Muñoz, G.; Paz González, J.M.; Martínez Miró, C.; Suárez, E.; Jesús, S.; Aguilar, M.; Pastor, P.; et al. Predictors of clinically significant quality of life impairment in Parkinson’s disease. *NPJ Parkinsons Dis.* 2021, *7*, 118. [CrossRef]

20. Malaty, I.A.; Martinez-Martin, P.; Chaudhuri, K.R.; Odin, P.; Skorvanek, M.; Jimenez-Shahed, J.; Soileau, M.J.; Lindvall, S.; Domingos, J.; Jones, S.; et al. Does the 5-2-1 criteria identify patients with advanced Parkinson’s disease? Real-world screening accuracy and burden of 5-2-1-positive patients in 7 countries. *BMC Neurol.* 2022, *22*, 35. [CrossRef]

21. Santos García, D.; Jesús, S.; Aguilar, M.; Planellas, L.L.; Caldentey, J.G.; Caballol, N.; Gestoso, L.; Hernández Vara, J.; Cabo, I.; Manzanares, L.L.; et al. COPPADIS-2015 (COhort of Patients with Parkinson’s Disease in Spain, 2015): An ongoing global Parkinson’s disease project about disease progression with more than 1000 subjects included. Results from the baseline evaluation. *Eur. J. Neurol.* 2019, *26*, 1399–1407. [CrossRef]

22. Santos-García, D.; Mir, P.; Cubo, E.; Vela, L.; Rodríguez-Oroz, M.C.; Martí, M.J.; Arbelo, J.M.; Infante, J.; Kulisevsky, J.; Martínez-Martin, P.; et al. COPPADIS-2015 (COhort of Patients with Parkinson’s Disease in Spain, 2015), a global-clinical evaluations, serum biomarkers, genetic studies and neuroimaging—prospective, multicenter, non-interventional, long-term study on Parkinson’s disease progression. *BMC Neurol.* 2016, *16*, 26.
23. Fahn, S.; Elton, R.L.; Members of the UPDRS Development Committee. Unified Parkinson’s Disease Rating Scale. In *Recent Developments in Parkinson’s Disease*; Fahn, S., Marsden, C.D., Calne, D.B., Goldstein, M., Eds.; Macmillan Health Care Information: Florham Park, NJ, USA, 1987; Volume 2, pp. 153–164.

24. Chaudhuri, K.R.; Martinez-Martín, P.; Brown, R.G.; Sethi, K.; Stocchi, F.; Odin, P.; Ondo, W.; Abe, K.; MacPhee, G.; MacMahon, D.; et al. The metric properties of a novel non-motor symptoms scale for Parkinson’s disease: Results from an international pilot study. *Mov. Disord.* 2007, 22, 1901–1911. [CrossRef]

25. Martinez-Martín, P.; Rodriguez-Blazquez, C.; Kurtis, M.M.; Chaudhuri, K.R.; NMSS Validation Group. The impact of non-motor symptoms on health-related quality of life of patients with Parkinson’s disease. *Mov. Disord.* 2011, 26, 399–406. [CrossRef]

26. Jenkins, C.; Fitzpatrick, R.; Peto, V.; Greenhall, R.; Hyman, N. The Parkinson’s Disease Questionnaire (PDQ-39): Development and validation of a Parkinson’s disease summary index score. *Age Ageing* 1997, 26, 353–357. [CrossRef]

27. Da Rocha, N.S.; Power, M.J.; Bushnell, D.M.; Fleck, M.P. The EUROHIS-QOL 8-item index: Comparative psychometric properties to its parent WHOQOL-BREF. *Value Health* 2012, 15, 449–457. [CrossRef]

28. Barone, P.; Antonini, A.; Colosimo, C.; Marconi, R.; Morgante, L.; Aavarelo, T.P.; Bottacchi, E.; Cannas, A.; Cervello, G.; Ceravolo, R.; et al. The PRIAMO study: A multicenter assessment of non-motor symptoms and their impact on quality of life in Parkinson’s disease. *Mov. Disord.* 2009, 24, 1641–1649. [CrossRef]

29. Martinez-Martín, P.; Rodriguez-Blazquez, C.; Abe, K.; Bhattacharyya, K.B.; Bloem, B.R.; Carod-Artal, F.J.; Prakash, R.; Esselink, R.A.J.; Falup-Pecurariu, C.; Gallardo, M.; et al. International study on the psychometric attributes of the non-motor symptoms scale in Parkinson disease. *Neurology* 2009, 73, 1584–1591. [CrossRef]

30. Hauser, R.A.; McDermott, M.P.; Messing, S. Factors associated with the development of motor fluctuations and dyskinesias in Parkinson disease. *Arch. Neurol.* 2006, 63, 1756–1760. [CrossRef]

31. Ahlskog, J.E.; Muenter, M.D. Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. *Mov. Disord.* 2001, 16, 448–458. [CrossRef]

32. Barrachina-Fernández, M.; Maitin, A.M.; Sánchez-Ávila, C.; Romero, J.P. Wearable Technology to Detect Motor Fluctuations in Parkinson’s Disease Patients: Current State and Challenges. *Sensors* 2021, 21, 4188. [CrossRef]

33. Stocchi, F.; Antonini, A.; Barone, P.; Tinazzi, M.; Zappia, M.; Onofrj, M.; Ruggieri, S.; Morgante, L.; Bonuccelli, U.; Lopiano, L.; et al. Early DETection of wearing off in Parkinson disease: The DEEP study. *Parkinsonism Relat. Disord.* 2014, 20, 204–211. [CrossRef]

34. Fox, S.H.; Katzenschlager, R.; Lim, S.Y.; Barton, B.; De Bie, R.M.A.; Seppi, K.; Coelho, M.; Sampaio, C.; Movement Disorder Society Evidence-Based Medicine Committee. International Parkinson and movement disorder society evidence-based medicine review: Update on treatments for the motor symptoms of Parkinson’s disease. *Mov. Disord.* 2018, 33, 1248–1266. [CrossRef]

35. Antonini, A.; Barone, P.; Marconi, R.; Morgante, L.; Zappulla, S.; Pontieri, F.E.; Ramat, S.; Cervello, M.G.; Meco, G.; Cicarelli, G.; et al. The progression of non-motor symptoms in Parkinson’s disease and their contribution to motor disability and quality of life. *J. Neurol.* 2012, 259, 2621–2631. [CrossRef]

36. Todorova, A.; Jenner, P.; Ray Chaudhuri, K. Non-motor parkinson’s: Integral to motor parkinson’s, yet often neglected. *Pract. Neurol.* 2014, 14, 310–322. [CrossRef]

37. Fernandes, M.; Pierantozzi, M.; Stefani, A.; Cattaneo, C.; Bonizzoni, E.A.; Cerroni, R.; Mercuri, N.B.; Liguori, C. Frequency of Non-motor Symptoms in Parkinson’s Patients With Motor Fluctuations. *Front. Neurol.* 2021, 12, 678373. [CrossRef]

38. Watanabe, H.; Saiki, H.; Chiu, S.W.; Yamaguchi, T.; Kashihara, K.; Tsuboi, Y.; Nomoto, M.; Hattori, N.; Maeda, T.; Shimo, Y.; et al. The progression of non-motor symptoms in Parkinson’s disease among different age populations: A two-year follow-up study. *J. Pers. Med.* 2021, 11, 626. [CrossRef]

39. Santos-García, D.; de Deus, T.; Cores, C.; Canfield, H.; Paz González, J.M.; Martínez Miro, C.; Valdés Aymerich, L.; Suárez, E.; Jesús, S.; Aguilar, M.; et al. Predictors of Global Non-Motor Symptoms Burden Progression in Parkinson’s Disease. Results from the COPPADIS Cohort at 2-Year Follow-Up. *J. Pers. Med.* 2021, 11, 626. [CrossRef]

40. Chaudhuri, K.R.; Schrag, A.; Weintraub, D.; Rizos, A.; Rodriguez-Blazquez, C.; Mamikonyan, E.; Martínez-Martín, P. The movement disorder society non-motor rating scale: Initial validation study. *Mov. Disord.* 2020, 35, 116–133. [CrossRef]

41. Chen, Y.C.; Chen, R.S.; Weng, Y.H.; Huang, Y.Z.; Chen, C.C.; Hung, J.; Lin, Y.Y. The severity progression of non-motor symptoms in Parkinson’s disease: A 6-year longitudinal study in Taiwanese patients. *Sci. Rep.* 2021, 11, 14781. [CrossRef]

42. Ou, R.; Yang, J.; Cao, B.; Wei, Q.; Chen, K.; Chen, X.; Zhao, B.; Wu, Y.; Song, W.; Shang, H. Progression of non-motor symptoms in Parkinson’s disease among different age populations: A two-year follow-up study. *J. Neurol. Sci.* 2016, 360, 72–77. [CrossRef]

43. Cilia, R.; Akpala, A.; Sarfo, F.S.; Cham, M.; Amboni, M.; Cereda, F.; Fabbri, M.; Adjei, P.; Akassi, J.; Bonetti, A.; et al. The modern pre-levodopa era of Parkinson’s disease: Insights into motor complications from sub-Saharan Africa. *Brain* 2014, 137 Pt 10, 2731–2742. [CrossRef]

44. Simuni, T.; Caspell-Garcia, C.; Coffey, C.S.; Weintraub, D.; Mollenhauer, B.; Lasch, S.; Tanner, C.M.; Jennings, D.; Kieburtz, K.; Chahine, L.M.; et al. Baseline prevalence and longitudinal evolution of non-motor symptoms in early Parkinson’s disease: The PPMI cohort. *J. Neurol. Neurosurg. Psychiatry* 2018, 89, 78–88. [CrossRef]

45. Bugalho, P.; Ladeira, F.; Barbosa, R.; Marto, J.P.; Borbínia, C.; Da Conceição, L.; Salavisa, M.; Sraíva, M.; Meira, B.; Fernandez, M. Progression in Parkinson’s Disease: Variation in Motor and Non-motor Symptoms Severity and Predictors of Decline in Cognition, Motor Function, Disability, and Health-Related Quality of Life as Assessed by Two Different Methods. *Mov. Disord. Clin. Pract.* 2021, 8, 885–895. [CrossRef]