Significance of micronuclei in buccal smears of mobile phone users: A comparative study

M Vanishree¹, Vardendra Manvikar¹, Amrutha Rudraraju¹, K M Parveen Reddy², N H Praveen Kumar², Syed Jaffar M Quadri³

Departments of ¹Oral and Maxillofacial Pathology and ³Pedodontics, Navodaya Dental College and Hospital, ²Department of Oral Pathology, BDS, General Dentist, Raichur, Karnataka, India

Abstract

Aims and Objectives: The present study was designed to evaluate the frequency of micronuclei (MN) in the buccal exfoliated cells of mobile phone users. In addition, comparison of MN frequency between high and low mobile phone users was also done.

Materials and Methods: A total of 30 male and 30 female participants between the age group of 20–28 years were selected from the Outpatient Department of Navodaya Dental College and Hospital, Raichur, Karnataka. The participants were divided into two groups: Group A – low mobile phone users and Group B – high mobile phone users. Cell sampling and preparation was done on the slide. All the slides were observed for a total of 1000 cells for the presence and number of MN in each cell.

Results: There was a significant increase in the mean MN count in Group B in comparison to the Group A. There was highly significant difference in the mean MN count of participants using (code division multiple access) CDMA than (global system for mobiles) GSM mobile phones. The MN mean count was found to be significantly increased in nonheadphone users in comparison to headphone users. In Group B, the MN count on the side of mobile phone use was found to be statistically significantly elevated in comparison to the opposite side.

Conclusion: Mobile phone radiation even in the permissible range when used for longer duration can cause significant genotoxicity. The genotoxicity accentuates when mobile phones are frequently used on the same side which may be due to more amount of radiation and increase in the temperature. Headphone usage reduces the genotoxicity of mobile phone radiation to some extent.

Keywords: Cell, micronuclei, mobile phone, Papanicolaou, radiation

INTRODUCTION

The mobile phone radiates an average power of 0.2–0.6 W, 40% of which is absorbed in the hand and the head. It may be regarded as a quite “powerful radio transmitter.” Its emission is 10,000 times stronger than that reaching the head of a user standing within 30 m range of relay transponder.[1]

The natural terrestrial electromagnetic environment does not significantly comprise radiofrequency (RF)
Vanishree, et al.: Micronuclei in buccal smears of mobile phone users

(30 kHz–300 MHz) or microwave fields (300–3000 MHz). However, the artificial RF/microwave fields emanate from wireless communication technology with average intensities around 1 iW/cm² (4 V/m).[2]

Radiation has a specific frequency and wavelength, which decide the identity of the waveform. The electromagnetic energy absorbed by a unit of tissue is known as the specific absorption rate (SAR, W/Kg or mW/g). The identified whole-body threshold level of exposure in terms of SAR is 4 W/Kg. The WHO has classified mobile phone radiation on the International Agency for Research on Cancer scale as Group 2B – “possibly carcinogenic by increased risk of glioma formation.”[1]

Schüz et al. found an association with gliomas with 10-year exposure criteria. Hepworth et al. found that glioma occurrence was associated with ipsilateral mobile phone usage. Gandhi and Singh and Yadav and Sharma confirmed the genotoxicity of mobile radiation on oral mucosa. However, others have apparently denied the genotoxic effect. Considering all these disagreements, re-evaluation of the effect of mobile radiation on oral epithelium is needed.[3–6]

Thomas et al., in 2009, conducted a study to evaluate the mobile phone radiation effect using the micronuclei (MN) index in the buccal exfoliated cells.[7] Thus, the present study was designed to evaluate the frequency of MN in the buccal exfoliated cells of mobile phone users. In addition, comparison of MN frequency between high and low mobile phone users was also done.

MATERIALS AND METHODS

The study protocol was approved by the Institutional Ethical Committee. A total of 30 male and 30 female participants between the age group of 20 and 28 years were selected from the Outpatient Department of Navodaya Dental College and Hospital, Raichur, Karnataka.

The participants were divided into two groups:
• Group A – Low mobile phone users, used since or <5 years and <4–5 h a week
• Group B – High mobile phone users, used more than 5 years and more than 10 h a week.

Inclusion criteria
The inclusion criteria of this study were as follows:
• Healthy individuals in the age limit of 20–28 years
• Receiving and making calls were considered
• Minimum range of 4 h or above was considered.

Exclusion criteria
The exclusion criteria of this study were as follows:
• Participants having any deleterious habits
• Participants having any oral lesions.

Cell sampling and preparation
Exfoliated oral mucosa cells were collected from all participants. Before cell collection, the mouth was rinsed with 1% glacial acetic acid to remove saliva, food particles and any other debris. A moistened wooden spatula was used to collect the exfoliated cells from the buccal mucosa and was fixed using cytofixative, and the slides were stained with Papanicolaou nuclear staining solution. Two cytological smears were collected from each participant (right and left cheek, respectively).

Scoring method
All the slides were observed under light microscope using low magnification (×10) for screening and high magnification for counting the MN. The most commonly used method was zig-zag method for screening of the slide. Cells with intact nuclei and cell boundaries were counted. A total of 1000 cells were counted in the smear from the right and left mucosa of each participant for the presence and number of MN in each cell.

The following criteria for designating an extranuclear body as micronucleus were given by Tolbert et al.:
• Rounded smooth perimeter suggestive of a membrane
• Less than a third the diameter of the associated nucleus but large enough to discern shape and color
• Staining intensity similar to that of the nucleus
• Texture similar to that of nucleus
• Same focal plane as nucleus
• Absence of overlap with, or bridge to, the nucleus.[8]

Statistical analysis
The percentage frequency of MN was recorded. The comparative evaluations were done using unpaired t-test. The values were represented in mean ± standard deviation. P < 0.05 was considered to be statistically significant.

RESULTS

There was a significant increase in the mean MN count in Group B (1.58 ± 0.57) in comparison to the Group A (1.26 ± 0.28) [Table 1 and Figure 1]. There was highly significant difference in the mean MN count of participants using CDMA (1.84 ± 0.32) than GSM (1.25 ± 0.41) mobile phones [Table 2 and Figure 2].

The MN mean count was found to be significantly increased in nonheadphone users (1.78 ± 0.18) in comparison to
headphone users (1.22 ± 0.61) [Table 3 and Figure 3]. In Group B, the MN count on the side of mobile phone use was found to be statistically significantly elevated (1.69 ± 0.23) in comparison to the opposite side (1.14 ± 0.54) [Table 4 and Figure 4].

DISCUSSION

Mobile phones, sometimes called cellular phone, are now an integral part of modern life. The mobile phone handsets are low-powered RF transmitters. Mobile phones are being used extensively throughout the world. For the year 2018, the number of mobile phone users is 4.93 billion and will reach 5 billion mark by 2019.[9]

The reported adverse effects include physiological, behavioral and cognitive changes as well as tumor formation and genetic damage. MN count in the exfoliated cells can be used as a marker for an abnormal cell cycle as results of aberrant mitosis when the whole chromosome or chromatid fragment fail to reach the spindle pole.[8]

It is one of the best indicators of mitotic interference and chromosomal mutations or breakage. The MN index is preferable for mass screening as it is rapid, simple, sensitive and cost-effective.[9] Thus, in the present study, MN index was used to analyze the genotoxicity caused by mobile phone usage.

Table 1: Comparison of mean micronucleus count between low and high mobile phone users

Group	n	Mean MN±SD	df	t	P	Result
Group B	30	1.58±0.57	58	2.28	0.0258	S
(high mobile users)						
Group A	30	1.26±0.28				
(low mobile users)						

MN: Micronucleus count, SD: Standard deviation, S: Significant

Table 2: Comparison of mean micronucleus count between headphone and nonheadphone users

Group	n	Mean MN±SD	df	t	P	Result
Nonheadphone users	23	1.78±0.18	28	3.981	0.0004	HS
Headphone users	7	1.22±0.61				

MN: Micronucleus count, SD: Standard deviation, HS: High significant

Table 3: Comparison of mean micronucleus count between same side and opposite side of mobile phone use

Group	n	Mean MN±SD	df	t	P	Result
Frequently used side	30	1.69±0.23	58	5.197	<0.0001	HS
Other side	30	1.14±0.54				

MN: Micronucleus count, SD: Standard deviation, HS: High significant

Figure 1: Frequency of mean micronucleus count in low and high mobile phone users

Figure 2: Frequency of mean micronucleus count in CDMA and GSM mobile phone users

Figure 3: Frequency of mean micronucleus count in headphone and nonheadphone users

Figure 4: Frequency of mean micronucleus count between the same side and opposite side of mobile phone use
MN count was found to be significantly higher in Group B (high mobile users) in comparison to Group A (low mobile phone users). Our findings were similar to the study conducted by Banerjee et al. conducted in the year 2016.[9] In this study, the higher mobile phone users were also evaluated by the type of mobile phone used, i.e., CDMA or GSM. CDMA phones work under higher electromagnetic frequency (1800 MHz) in comparison to GSM mobiles (900 MHz). Thus, in our study, there was a significant increase in MN count of CDMA phone users when compared to GSM users.

All the mobile phone users were questioned for usage of wired headphones. There was a significant decrease in MN count in headphone users when compared to nonheadphone users. When headphones were used with mobile phones, it helps to keep the mobile phone away from the body, and there is no direct contact of the RF receiver with the body. This also reduces the local temperature which arises around the ear.

In the present study, higher frequency of MN was observed in habitually used side of mobile phone users when compared to other side of mobile phone used. Long-term use of mobile phone on one side leads to excess heat production due to battery of the phone or as a result of the long press of the mobile phone against the cheek. This heat provides a synergistic effect on genotoxic damage.[10]

Precautions
- Keeping the mobile phone away from the body while connecting
- Use a Bluetooth/headset
- Turn your phone off at night
- Use an electromotive force (EMF) shielding device.

This may help us to reduce the deleterious effects of mobile phone radiation.[10]

CONCLUSION

Mobile phone radiation even in the permissible range when used for longer duration can cause significant genotoxicity. The genotoxicity accentuates when mobile phones are frequently used on the same side which may be due to more amount of radiation and increase in the temperature. Headphone usage reduces the genotoxicity of mobile phone radiation to some extent.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES

1. Adey WR. Brain interactions with RF/microwave fields generated by mobile phones. In: Smith B, Adelman G, editors. International Encyclopaedia of Neuroscience. 3rd ed. New York: Elsevier; 2003.
2. Kuster N, Balzano Q, Lin J, editors. Mobile Communication Safety. New York: Chapman and Hall; 1997
3. Schüz J, Böhler E, Berg G, Schlehofer B, Hettinger I, Schlaefer K, *et al.* Cellular phones, cordless phones, and the risks of glioma and meningioma (Interphone study Group, Germany). Am J Epidemiol 2006;163:512-20.
4. Hepworth SJ, Schoemaker MJ, Muir KR, Swerdlow AJ, van Tongeren MJ, McKinney PA, *et al.* Mobile phone use and risk of glioma in adults: Case-control study. BMJ 2006;332:883-7.
5. Gandhi G, Singh P. Cryptogenic damage of mobile phone users: Preliminary data. Int J Hum Genet 2005;5:259-65.
6. Yadav AS, Sharma MK. Increased frequency of micronucleated exfoliated cells among humans exposed in vivo to mobile telephone radiations. Mutat Res 2008;650:175-80.
7. Thomas P, Holland N, Bolognesi C, Kirsch-Volders M, Bonassi S, Zeiger E, *et al.* Buccal micronucleus cytome assay. Nat Protoc 2009;4:825-37.
8. Tolbert PE, Shy CM, Allen JW. Micronuclei and other nuclear anomalies in buccal smears: Methods development. Mutat Res 1992;271:69-77.
9. Banerjee S, Singh NN, Sreedhar G, Mukherjee S. Analysis of the genotoxic effects of mobile phone radiation using buccal micronucleus assay: A Comparative evaluation. J Clin Diagn Res 2016;10:ZC82-5.
10. Matthes R; International Commission on Non-Ionizing Radiation Protection. General approach to protection against non-ionizing radiation. Health Phys 2002;82:540-8.