The mouse genome displays highly dynamic populations of KRAB-zinc finger protein genes and related genetic units

Annamaria Kauzlaric, Gabriela Ecco, Marco Cassano, Julien Duc, Michael Imbeault, Didier Trono *
School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

* didier.trono@epfl.ch

Abstract

KRAB-containing poly-zinc finger proteins (KZFPs) constitute the largest family of transcription factors encoded by mammalian genomes, and growing evidence indicates that they fulfill functions critical to both embryonic development and maintenance of adult homeostasis. KZFP genes underwent broad and independent waves of expansion in many higher vertebrates lineages, yet comprehensive studies of members harbored by a given species are scarce. Here we present a thorough analysis of KZFP genes and related units in the murine genome. We first identified about twice as many elements than previously annotated as either KZFP genes or pseudogenes, notably by assigning to this family an entity formerly considered as a large group of Satellite repeats. We then could delineate an organization in clusters distributed throughout the genome, with signs of recombination, translocation, duplication and seeding of new sites by retrotransposition of KZFP genes and related genetic units (KZFP/rGUs). Moreover, we harvested evidence indicating that closely related paralogs had evolved through both drifting and shifting of sequences encoding for zinc finger arrays. Finally, we could demonstrate that the KAP1-SETDB1 repressor complex tames the expression of KZFP/rGUs within clusters, yet that the primary targets of this regulation are not the KZFP/rGUs themselves but enhancers contained in neighboring endogenous retroelements and that, underneath, KZFPs conserve highly individualized patterns of expression.

Introduction

Dynamic changes in gene super-families are potent drivers of evolution and diversity across species [1, 2]. KRAB-containing zinc finger proteins (KZFPs) constitute the single largest group of transcription factors (TFs) encoded by higher vertebrates, and emerged in a close ancestor of tetrapods some 420 million years ago (mya) [3, 4]. KZFP genes were subsequently amplified as the apparent result of adaptive expansion and contraction events [5±7], while being subjected to intense positive selection, so as to constitute today a large repertoire of species-specific TFs [8±12]. This pattern of evolution likely reflects the involvement of KZFPs in the early embryonic repression of endogenous retroelements (EREs), many of which are themselves lineage- or species-restricted [13±15]. Consistent with this hypothesis, the total number
of KZFPs encoded by various species somewhat correlates their burden in endogenous retroviruses (ERVs), a class of EREs, and recent waves of ERV invasions have coincided with episodes of KZFP genes amplification [16, 17]. As well, the genomes of both humans and mice encode for several hundred KZFPs, yet the pace of expansion of these genes has been higher in the rodent lineage, correlating the persistence in mice, but not in humans, of transposition-competent ERVs. Finally, an arms race model, whereby the host produces a dynamic pool of KZFPs in order to control active EREs that in turn mutate to escape restriction, is supported by evidence retracing the evolutionary history of two human KZFPs and their cognate ERE targets [15].

Canonical KZFPs harbor a highly conserved N-terminal KRAB (KruÈppel-associated box) domain [18, 19], responsible for recruiting KAP1/TRIM28 (KRAB-associated protein 1, tripartite motif protein 28) and its associated epigenetic effectors [20±22], and a C-terminal array of zinc fingers (ZNFs), which confers sequence-specific DNA binding potential and is the region where positive selection is observed [5, 23±26]. It seems likely that, after a KZFP gene is duplicated through unequal crossing over, gene conversion, or yet other mechanisms, changes in its zinc-finger coding portion can become fixed if they provide the product of this duplication with novel target specificity that benefits the host [27±29].

Here, to investigate the evolutionary path of KZFP genes in a species where this family is still subjected to dynamic selective pressures, we explored the mouse genome. This led us to uncover an abundance of yet unreported KZFP-related genetic entities in this species [30, 31], to obtain evidence supporting a variety of mechanisms for their expansion, to examine the sequence diversification of closely related paralogs and to unveil a mode of regulation where EREs seem to occupy a prominent place in the transcriptional control of their repressors.

Results

The MMSAT4 satellite repeat corresponds to KZFP genes and KZFP-like entities

The repository of murine repetitive elements lists as a member of the Satellite family a simple repeat named ‘MMSAT4’, the consensus sequence of which was derived from arrays of triplets of C2H2 ZNFs located on chromosome 4 (Fig 1A, http://www.girinst.org/repbase/ [32]). However, unlike other Satellite repeats, MMSAT4s are not restricted to specific chromosomal positions, as we found 715 of these units spread all over the genome, often concentrated in regions also containing high densities of bona fide C2H2 ZNF-coding sequences (Fig 1B). Of the annotated C2H2-protein coding units containing an MMSAT4, the large majority (82%) are canonical KZFP genes while a small fraction spans other types of poly-zinc finger protein genes. Conversely, of the currently annotated KZFP genes, 87% overlap with MMSAT4 sequences. Additional MMSAT4 elements, making up slightly more than half of the group, fall into previously unannotated sequences (Fig 1B), yet we found them to harbor an upstream KRAB-coding sequence and to coincide with the 3’ end of the cognate transcripts, comparably to canonical KZFP-overlapping MMSAT4s (Fig 1C and S1A Fig). Therefore, MMSAT4s correspond to almost the totality of KZFP genes and to additional KZFP-like entities. For convenience, we coined the sum of these elements KZFP/rGUs, for KZFP-related genetic units.

Evolutionary relationships between KZFP/rGUs clusters

Through sequence and synteny analysis of murine KZFP/rGUs and their flanking sequences [4], we could assign a putative age to about three quarters of these elements (518/715). We found the vast majority to be mouse-restricted, whether KZFP genes or pseudogenes and non-
Fig 1. Genomic features and evolutionary origins of murine KZFP/rGUs clusters. (A) (Top) Schematic representation of a canonical C2H2 zinc finger (ZF) structure, coupled to its 7-amino acids linker, 6 of which (TGEKPY) are highly conserved. The
21±24 amino acid-long ZNF (CX_{3-4}CX_{3-6}HX_{3-4}H) is depicted, with zinc-coordinating cysteines and histidines in blue and putative DNA-contacting residues located at positions -1, 3 and 6 of the alpha helix in red. (Bottom) Consensus sequence of MMSAT4 Satellite Repeat as reported in Repbase, spanning three consecutive but incomplete C2H2 ZNF motifs, each reported on a single line. Highlighted are the canonical cysteine and histidine residues (in blue) and the conserved part of the linker (in grey). (B) Circular genomic map displaying the distribution of MMSAT4 elements. Inside the circular plot, stacked bar plot of MMSAT4 elements belonging to C2H2 ZNF protein genes not encoding a KRAB domain, to KRAB C2H2 ZNF protein genes, or to genomic locations not annotated as any type of C2H2 encoding protein genes. (C) Positional correlation between MMSAT4 consensus sequences and KRAB-encoding sequences, distinguishing MMSAT4 elements belonging to C2H2 ZNF protein genes not encoding a KRAB domain, to KRAB C2H2 ZNF protein genes, or to genomic locations not annotated as any type of C2H2 encoding protein genes. Genes' coordinates were extended by 1kb at the 3' end, and the correlation was calculated over a symmetrical window of 15 kb. (D) Raw counts of 518 murine KZFP/rGUs shared between phylogenetic branches, belonging to annotated KZFP genes or other genetic entities ("other"), with the x-axis representing the evolutionary distances separating the branches. 517/518 of these KZFP/rGUs bear a KRAB-encoding sequence within 30 kb upstream of the element itself. (E) Age-distribution of KZFP/rGUs within clusters. The estimated time of emergence during evolution is color-coded as indicated by the legend. (F) Phylogenetic tree of consensus sequences derived per KZFP/rGUs cluster, with indication of the chromosome where the relative cluster is located.

https://doi.org/10.1371/journal.pone.0173746.g001

annotated entities, and very few to have human orthologs, corresponding to an evolutionary distance of 90.9 million years ago (mya) (Fig 1D). By setting a cutoff of at least 8 MMSAT4 elements less than 500 kilobases (kb) apart, we could further define 18 clusters distributed amongst 11 chromosomes (S1 Table). Some clusters contained both mouse-specific and evolutionarily older KZFP/rGUs (e.g. clusters 14 and 16 on chromosome 7), yet none was entirely constituted of highly conserved members, and 5 of the 18 predefined clusters contained exclusively mouse-restricted KZFP/rGUs (Fig 1E).

Consistent with previously proposed mechanisms of KZFP genes amplification [7], we observed that murine KZFP/rGUs shared higher sequence homology within a cluster than amongst spatially unrelated elements (S1B Fig). We thus derived a consensus sequence for each cluster and built a tree based on their degree of similarity. This confirmed that clusters located on a same chromosome were usually more closely related. However, there were exceptions to this trend. For instance, clusters 1 and 12, respectively on chromosomes 1 and 6, were highly homologous, as were clusters 2 and 17, on chromosomes 10 and 7. This strongly suggests that large segment duplications, followed by chromosomal rearrangements, have contributed to the expansion of KZFP/rGUs, as previously postulated for canonical KZFP genes [5]. Interestingly, clusters partially composed of conserved KZFP/rGUs, such as number 14, 16 and 18, segregated away from the others (Fig 1F). Careful examination revealed age-independent clustering of KZFP/rGUs within these clusters (S1C Fig).

When further studying KZFP/rGUs clusters, we very rarely found genes other than KZFPs. The murine genome harbors several million loci derived from transposable elements (TEs), and when examining the density of these units within clusters of KZFP/rGUs we found it to be no different than elsewhere in the genome (S1D Fig). However, in KZFP/rGUs clusters, we found a marked enrichment in members of two subgroups of ERVs, ERVK and ERV1 (S1E Fig). Similar to KZFPs, olfactory and vomeronasal receptor genes (OLFR and VMNR genes, respectively) have been amplified through rounds of segmental duplications while undergoing positive selection [33, 34]. However, we found neither 14 clusters of OLFR genes nor a cluster of VMNR genes, each defined as a group of at least 10 such genes situated less than 500 kb apart, to display similarly biased TE distribution (S2 Table, S1F Fig). KZFP/rGUs clusters thus exhibit a particular TE content when compared to the rest of the genome or to other gene super-families amplified by related mechanisms.

When examining KZFP/rGUs not situated in clusters, we identified several instances where they most likely resulted from retrotransposition, as indicated by the absence of introns, the presence of a poly-A-coding sequence at their 3’ end and their homology with intron-
containing cluster-located elements (Fig 2A, left panel). Although they were situated on other chromosomes than their source element, such retrotransposed KZFPs displayed signs of positive selection. This was exemplified by the newly annotated pseudogene Gm8935b, where a sharp increase in mutations density was found 3’ of a premature STOP codon gained in the processed pseudogene, compared to its apparent donor gene. Moreover, we detected a distinctive enrichment in RNA-polymerase II over Gm8935b (Fig 2A, right panel). These observations led us to conclude that KZFP/rGUs resulting from retrotransposition events can be transcriptionally active and that, when positively selected, these elements could contribute to seeding new KZFP/rGU clusters.

Sequence evolution of KZFP/rGU paralogs

The analysis of KZFP/rGUs revealed that individual units accumulated various degrees of mutations, some of which compromised their coding potential. However, of 1306 C2H2-encoding transcripts that could be assigned to KZFP/rGUs in murine embryonic stem cells (mESC), 734 mapped to entries of the Ensembl listings of genes, accounting for multiple isoforms of a totality of 252 genes. Of those, more than three quarters (196/252) corresponded to bona fide KZFP genes, 13% (34/252) to non-KRAB ZFP genes and 9% (22/252) to other genes. Of 572 novel transcripts, 490 coded for a stretch of C2H2 zinc fingers preceded by a KRAB domain in the same reading frame and without intervening STOP codon (S1 File, S3 Table). This suggests that positive selection is acting to preserve the functional core of most of these elements.

Retracing the full evolutionary history of KZFP/rGU clusters remains a complicated task, due to both persistent retrotransposition activity of many mouse TE and confounding effects of partially overlapping genomic rearrangements (S2B Fig). We thus designed an additional approach to date the emergence of mouse-specific and closely related KZFP/rGUs. For this, we focused on the regions directly bordering KZFP/rGUs and studied their sequence conservation after splitting them in segments, which we considered as separate units. Coupling our analysis to newly annotated KZFP/rGUs-containing transcripts helped us circumscribe the region of interest to the one enclosed by gene borders, although segments numbers and limits were arbitrarily fixed. As an example, cluster 11 contains three KZFP/rGUs: Zfp932, Gm15446 and a putative gene not annotated in the RefSeq nor in other genes repositories, which we named GmX. Zfp932 and Gm15466 are known paralogs, recently characterized through genomic and functional studies as responsible for recognizing partly overlapping sets of TEs [35]. By defining discrete segments of DNA within the regions spanning Zfp932 and Gm15466, we could determine by BLAT [36] that the next most conserved sequence was spanning GmX. Taking Zfp932 (Fig 2B, segments 1±5) as main viewpoint allowed us to single out a series of new segments (Fig 2B, segments 6±9) that disrupted homology between the three genes. Segments 6±7 were present in Gm15446 and GmX, while segment 8 was restricted to Gm15446 and segment 9 to GmX. Furthermore, several nucleotide differences were found within the studied segments of paralogs Zfp932 and Gm15446, and even more when comparing them to GmX. Taking into account the sum of these observations, we could draw a tree representing the likely sequential emergence of these genes, with Zfp932 followed by Gm15446 and then GmX. Interestingly, the ZNF signature of GmX strongly differs from those of Zfp932 and Gm15446, which are highly similar. Accordingly, segment 5, which spans the KZFP/rGU of each of these three genes, was the least conserved within the whole cluster. A broader examination of the specificity residues, that is, of the amino acids at positions -1, 3 and 6 of the DNA-contacting alpha helix, encoded by KZFP/rGUs of cluster 10 similarly revealed complex mechanisms of diversification of neighboring poly-zinc fingers, with evidence for duplications, deletions, inversions and mutations of ZNF-coding sequences. Triplets of the DNA-contacting
Fig 2. Evolutionary relationships within the KZFP-rGU superfamily. (A) (Left) Schematic representation of how retrotransposition of the KZFP-rGU Gm13051 (located on chromosome 4) may have yielded the Gm8935b retrogene (on chromosome 3, to which we gave a different annotation than the one deposited in Ensembl as Gm8935, based on similarities with its putative donor gene). ChIP-seq density signal of RNA polymerase II (PolII) at the corresponding loci and genomic structures of Gm13051 and Gm8935b are shown, with
Evolution of KZFP genes in the mouse genome

We next assessed by RNA-Seq the transcription of KZFP/rGUs in three distinct murine cell types: mESC, hepatocytes and MEFs. Each displayed a specific pattern of KZFP/rGU expression, with mESC transcribing the highest number of elements (Fig 3A, S4 Table). The ZNF-coding region of KZFP genes was previously demonstrated to recruit KAP1, and to be secondarily subjected to trimethylation of histone 3 on lysine 9 (H3K9me3) [37, 38]. ChiP-seq analyses confirmed the extensive binding of KAP1 at KZFP/rGUs in mESC, MEF and Hepa-1.6, a murine hepatoma cell line that we used as a surrogate for hepatocytes (Fig 3B). The density of KAP1 peaks correlated with that of KZFP/rGUs over many clusters in all three tissues, including clusters completely devoid of annotated protein-coding genes (S3A±S3CFig). We explored more in depth the apparently collective behavior of KZFP/rGUs located within a same cluster upon KAP1-depletion. For this, we scrutinized cluster 10, which contained the highest fraction of upregulated elements in these regions, where they were largely outnumbered by TEs (Fig 3C).

Upon Kap1 knockout (KO), many KZFP/rGUs were upregulated in all three tissues, albeit with some differences: in mESC, 145 out of 150 dysregulated elements increased in expression, while for liver and MEF the ratios were 66/67 and 77/124, respectively (Fig 3D). Noteworthy, KZFP/rGUs upregulation upon KAP1 depletion was significant in mESC and liver only for elements situated within clusters, but not for their more isolated counterparts, while in MEF it was significant in neither setting (S3D Fig). We explored more in depth the apparently collective behavior of KZFP/rGUs located within a same cluster upon KAP1-depletion. For this, we scrutinized cluster 10, which contained the highest fraction of upregulated elements in these systems (23/25 in mESC, 15/25 in liver and MEF). We first found that, in spite of a high degree of homology between these KZFP/rGUs, their promoter regions were markedly divergent (S3E Fig). Second, only a third of these units (8/25) were deregulated in all three tissues, all the others behaving in a cell-specific manner. KZFP/rGUs transcription, as its perturbation, was not
Fig 3. KAP1 binds to KZFP/rGUs and neighboring TEs. (A) Heatmap of RNA-Seq depicting expression levels of KZFP-rGUs-derived transcripts in WT mES cells, liver cells and MEFs. Exact values were reported in S4 Table. (B) Positional correlation between KZFP/rGUs and KAP1 peaks in mES cells, Hepa 1.6 cells and MEFs, over a window of 10 kb. In the legend, indication of the p-values obtained by Fisher's exact test. (C) Distribution analysis of KAP1 peaks located within KZFP/rGUs clusters per tissue. Selected TEs ("Sel. TEs") comprise repeats annotated in RepeatMasker excluding Satellite, Simple, Low Complexity, Unknown
restricted to elements that were part of previously annotated protein-coding genes, and it always occurred in the sense orientation, indicating that transcriptional read-through from other units, which would have contributed both sense and antisense transcripts, was not significantly affecting our analysis (S3F Fig).

Noteworthy, along with the higher density of KAP1 peaks measured within KZFPrGU clusters compared to OLFR and VMNR genes clusters, we found an important frequency of upregulated TEs in Kap1 KO tissues (S3G Fig). TEs are subjected to KAP1-mediated repression via sequence-specific tethering by KZFPs [15, 35, 39±41]. Elements of the ERVK and ERV1 subgroups were found to be preferential sites of KAP1 recruitment within KZFPrGUs clusters, but other TEs and KZFPrGUs were equally upregulated upon KAP1 removal (Fig 3E and S3H and S3I Fig), indicating that de-repression then extended to the whole cluster when KAP1-targeted TEs lost the regulator.

Mechanisms of KZFPrGUs clusters control

The histone lysine methyltransferase (KMT) SETDB1, a mediator of KAP1-induced repression, was also enriched at KZFPrGUs, where its recruitment markedly dropped upon Kap1 knockdown, in agreement with previous findings for canonical KZFPr genes [38] (S4A Fig). Furthermore, the same range of KZFPrGUs was upregulated in Kap1 and Setdb1 KO mESC (Fig 4A), indicating that the transcriptional dysregulation recorded at these loci was likely mediated by the canonical KAP1-SETDB1 complex, known to lead to H3K9me3 deposition and silencing of underlying elements [21, 37, 42±44].

Although KAP1-dependent deposition of H3K9me3 could be so extensive as to appear as covering entire KZFPrGUs clusters both in MEF and liver, the underlying elements were actively transcribed (Fig 4B). Remarkably, neighboring elements within a cluster could display from rather homogeneous to very dissimilar expression levels in a given tissue, and the same element could be highly expressed in one cell type and barely detectable or completely silenced in another (Fig 4C). A closer examination revealed that H3K9me3 was not homogeneously distributed over clusters, being very high over the 3’ end of KZFPr genes and KZFPrGUs but practically absent from their promoters (Fig 4D, left). Loss of H3K9me3 upon Kap1 removal was observed over the entire cluster, including every 3’ end of KZFPrGUs (Fig 4D, top right). Nevertheless, there was no correlation between its loss and the upregulation of the underlying element in Kap1 KO cells, and this mark was particularly abundant over highly transcribed KZFPrGUs (Fig 4D, bottom right, S4C Fig).

We thus examined the impact of KAP1 depletion on the prevalence of H3K27ac, a histone mark associated with active promoters and enhancers, within KZFPrGUs clusters. In clusters where a high fraction of KZFPrGUs were dysregulated upon Kap1 KO in MEF cells, many new sites became enriched for this mark, most of which were just upstream of previously unidentified transcriptional start site (TSS, Fig 5A, left). ChIP-qPCR for H3K4me1, another histone modification marking actively transcribed promoters, confirmed the activation of numerous KZFPrGUs genes in these clusters upon Kap1 deletion (Fig 5A, bottom right panel). Other regions within KZFPrGUs clusters, not corresponding to any TSS, gained
Fig 4. KAP1 and SETDB1-mediated transcriptional regulation of KZFP/rGU clusters. (A) Normalized RNA-Seq average coverage over KZFP/rGUs, considering a flanking region of 1.5 kb upstream and 3.5 kb downstream of each element. Shaded curves represent the 95% confidence interval around the mean. RNA-Seq data is plotted for KZFP/rGUs upregulated (main panels) or unaffected (smaller top right inserts) in either Kap1 (left) or Setdb1 (right) KO ES cells. (B) UCSC Genome Browser view of H3K9me3 ChIP-Seq profiles over KZFP/rGUs in cluster 10.
in WT and Kap1 KO cells (light and dark color shades, respectively) for MEFs (top track), and liver cells (bottom track). Underneath, tracks for single KZFP/rGUs and for clusters are shown. (C) Heatmap illustration of RNA-Seq signal over KZFP/rGUs in cluster 10, reported linearly in their genomic order, for MEFs, liver and ES cells. (D) (Left) UCSC Genome Browser view of two KZFP genes with RNA-Seq profiles of WT MEFs (blue) and H3K9me3 of WT and Kap1 KO MEFs (red and pink, respectively). Below the RNA-Seq profile, genes annotated in RefSeq and the KZFP/rGUs tracks are displayed. The 3' end of KZFP genes is highlighted by red-shaded vertical bars. (Right) Normalized H3K9me3 ChIP-Seq enrichment over (upper panel) KZFP/rGUs in WT and Kap1 KO MEFs, and (lower panel) KZFP/rGUs highly and lowly expressed in WT MEFs, including 5.5 kb on each side of KZFP/rGUs.

H3K27ac (Fig 5B and S5A Fig). These did not overlap with KZFP/rGUs themselves, but with TEs from all subclasses (S5B Fig). Upon KAP1 depletion, H3K27Ac was notably, but not exclusively, enriched at ERV1 and ERVK integrants normally situated in the vicinity of a KAP1 binding site (Fig 5C). Removal of KAP1 thus appeared to unleash enhancers, many located within TEs, with secondary transcriptional activation of KZFP/rGUs and other TEs situated nearby (Fig 6). Of note, proximity to a KAP1 binding site was not critical for the dysregulation of KZFP/rGUs, indicating that the regulatory mechanisms acting on these units are long-range (S6A Fig). Moreover, the transcriptional dysregulation of KZFP/rGUs was fully reversible upon re-expressing Kap1 in Kap1 KO MEF, but their upregulation was comparable or more pronounced immediately after deletion than at later times, suggesting that after long-term culture some compensatory mechanisms could dampen the transcriptional phenotype of Kap1 KO cells (S6B and S6C Fig). Upregulation of KZFP/rGUs upon Kap1 removal was confirmed on cDNAs generated by priming with random hexamers, suggesting that Poly(A)- transcripts, known to generate from ZFP genes [45], are not following a different transcriptional regulation compared to their Poly(A)+ counterparts (S6C Fig).

Discussion

The majority of present members of the murine KZFP/rGUs family emerged after the mouse-rat split and is organized in clusters of sequence-related elements. The genomes of mice and close ancestors appear to have constituted a particularly favorable ground for the expansion of KZFP/rGUs, as their number in this species far exceeds what is found in most other higher vertebrates [4]. Most murine KZFP/rGUs clusters include mainly such recent elements. Moreover, more evolutionarily conserved clusters also contain young KZFP/rGUs, indicating that they too have been subjected to recent expansion. We presume that the sequence relatedness of clusters located on distinct chromosomes results from new genetic rearrangements, some of which may have been initiated by retrotransposition events. The majority of mouse KZFP/rGUs being specific of this species, comparative genomics could not be used to explore further the evolutionary relationships between these elements. Examining sequence conservation solely at the level of these units also proved rather uninformative, as were neighboring coding sequences because most KZFP/rGUs clusters are devoid of genes other than KZFPs. Therefore, we decided to study the local sequence divergence, limiting the region of interest to the transcript borders and dividing it into smaller segments which were examined individually and as a bloc. This approach consolidated the model of an expansion of KZFP/rGUs clusters, after initial seeding of a chromosomal locus, via gene and segment duplication [5, 7, 11, 46]. The mechanisms driving these waves of expansion remains to be formally established, although we observed an enrichment of discrete families of EREs, ERV1 and ERVK, within KZFP/rGUs clusters. Whether this is causally linked or purely coincidental cannot be determined, yet it is remarkable that the ancestral mouse genome was massively targeted by these ERVs between 80 and 50 mya (for ERV1) and 50 and 30 mya (for ERVK) [47], that is at the same time as KZFP/rGUs expanded.

Comparing neighboring KZFP/rGUs within a cluster revealed signs of both genetic drift and genetic shift concentrated on their ZNF-coding sequences. On the one hand, paralogs
Fig 5. KAP1 influence at KZFP/rGU clusters. (A) (Top) UCSC Genome Browser view of a region containing a high density of KZFP/rGUs (black bars), many of which are dysregulated in MEF Kap1 KO cells (pink bars). From the top, tracks for KZFP/rGUs, H3K27ac peaks in MEF WT and Kap1 KO cells (light and dark green bars, respectively), and genes annotated in Ensembl and RefSeq are displayed. (Bottom, left) zoom-in of H3K27ac ChIP-Seq profiles and peaks upstream of two distinct KZFP/rGUs upregulated upon Kap1 deletion. Transcripts annotated in the frame of this study are reported below the track of
dysregulated KZFP/rGUs. (Bottom, right) ChIP-PCR of H3K4me1 over several newly revealed TSSs within this region in MEF WT and Kap1 KO cells. Enrichments are normalized to those over Gapdh promoter, Beta-Tubulin being an additional promoter whose transcription is not affected by Kap1 removal (control). (B) UCSC Genome browser views of H3K27ac profiles in MEF (superimposing WT in red and Kap1 KO in green) over part of KZFP/rGUs cluster 3. From top, tracks for genes annotated in Ensembl and RefSeq, de-novo KZFP/rGUs transcripts annotation, H3K27ac ChIP-Seq profiles, KZFP/rGUs and repeats as reported by RepeatMasker. Genomic stretches gaining H3K27ac signal upon Kap1 KO do not overlap with any TSS. (C) H3K27ac ChIP-Seq normalized average coverage in WT (red) and Kap1 KO (green) MEFs over: left, ERV1 and ERVK elements located within KZFP/rGUs clusters and less than 3 kb away from a KAP1 peak in the same tissue; center, H3K27ac peaks within KZFP/rGUs clusters, not matching any KZFP/rGU transcript nor annotated promoter, less than 3 kb away from a Kap1 peak; right, without any restriction for Kap1 peak proximity. Shaded curved represent the 95% confidence interval around the mean.

https://doi.org/10.1371/journal.pone.0173746.g005

Fig 6. Model for transcriptional regulation of KZFP/rGUs clusters. (Top) Schematic representation of KZFP/rGUs clusters main features in WT and Kap1 KO cells. From top: KZFP/rGUs cluster limits, profiles of H3K9me3 and H3K27ac enrichment (full and hollow curves, respectively); KZFP/rGUs, showing the characteristic local high density of elements; KAP1 peaks, correlating with the KZFP/rGUs-dense region; track of TEs. (Bottom, left) an example illustrating the precise distribution in WT and Kap1 KO cells of H3K27ac and H3K9me3 profiles, and their correspondence with to KZFP/rGU-derived transcripts, where thicker lines represent coding sequences and thin lines non-coding sequences, with arrows indicating directionality of the transcripts. KRAB-encoding sequences and KZFP/rGUs are outlined separately, below the annotated transcripts. (Bottom, right) Molecular model of KAP1-mediated regulation of KZFP/rGUs clusters. In WT cells, the complex KAP1-SETDB1, possibly coupled to other HMTs, binds KZFP/rGUs and discrete sets of TEs. KZFP/rGUs accumulate H3K9me3 at their 3'end, but their promoter is devoid of this mark and can be bound by transcription factors and the RNA-polymerase II machinery, generating transcripts (higher panel). Upon Kap1 deletion, SETDB1 is no longer recruited, H3K9me3 levels drop, and H3K27ac becomes enriched over TEs and promoters allowing for a general increase in transcription, albeit still under the differential influence of specific transcription factors (lower panel).

https://doi.org/10.1371/journal.pone.0173746.g006
drifted by progressively accumulating non-synonymous mutations in these regions, on the other hand their putative DNA binding specificity could altogether shift by insertion of new ZNF-coding segments. KZFPs and EREs appear to be engaged in an evolutionary arms race, and the burden of EREs correlates with the number of KZFPs in 16 mammalian genomes [16]. It could be that clusters counting more elements target a particularly conspicuous group of EREs, or possibly closely related groups of EREs, as recently observed [35]. Alternatively, mutations within a cluster could confer to its components specificity to very diverse classes of EREs and other genetic elements, and over-amplification of one cluster compared to others could be partially due to a higher degree of plasticity of its genomic locus. Co-option in the transcriptional control of genes and other cellular functions also likely explain the fixation of a significant fraction of KZFPs [4, 15].

Expression of KZFP genes, like that of other transcription factors, is selective and generally low, whether in undifferentiated cells or in somatic tissues [11]. It is thought that this allows controlling the number of sites bound genome-wide by a KZFP at any given time, and to limit its recruitment at imperfect target sequences [17]. Here, we observed that, within KZFP/rGUs clusters, transcriptional control of KZFP genes was partly achieved through KAP1-mediated taming of enhancers contained in neighboring EREs. Of note, KAP1 also binds to the 3’, ZNF-coding end of KZFP genes, but from this location we found it to exert no repressive effect on their expression, as previously noted [48]. It suggests that at these locations the master regulator, associated effectors and resulting histone marks play different roles. Preventing recombination within these highly repetitive sequences has been suggested [37, 49], but it is unclear how this alone would explain that KAP1 be particularly abundant on highly expressed KZFP/rGUs within a cluster. It could thus be that KAP1 recruitment at the 3’ end of these units contributes to three-dimensional topology of KZFP clusters, which display a peculiar chromatin organization with accumulation of both repressive and active histone marks [49±51].

ERV-contained enhancer sequences serve as tissue-specific transcription modulators [52±55] and KAP1 control over such cis-acting elements was documented in undifferentiated and somatic cells [56, 57]. KAP1-mediated repression of ERV enhancers seems to impact on all KZFP/rGUs, at least based on the global upregulation of these units when it is knocked out. However, even closely located elements within a cluster exhibit exquisitely individualized regulation, as illustrated by their often highly tissue-specific patterns of expression [58]. On the one hand, this could reflect the recognition of their promoters by equally tissue-specific activators. On the other, it could result from the loss of KAP1 at selected ERV enhancers, following the low expression in a given tissue of particular KAP1-tethering KZFPs responsible for the sequence-specific recognition of these ERVs. Irrespective of the underlying mechanism, this rapid divergence in the transcriptional control of closely related paralogs is yet another evidence for the multifaceted roles accomplished this remarkably plastic family of gene regulators.

Material and methods

Cell culture and mouse work

mESCs and MEFs wild-type (WT) and KO for Kap1 were cultured and generated as previously described [57, 59] (strain C57BL/6J). Hepatocyte-specific Kap1 KO mice were generated and genotyped according to [60] (strain C57BL/6J). Murine hepatoma cell line Hepa 1.6 cells were cultured using standard methods.

Plasmids and lentiviral vectors

For KAP1 knockdown experiments, pLKO vector encoding shKAP1 and the empty vector as control were used. For KAP1 overexpression, pSicoR-KAP1-HA vector was used. 48 h after
transduction, infected cells were selected with 1 µg mL\(^{-1}\) puromycin in growth medium for an additional 72 h. For de novo Kap1 excision, a non-integrating pHAGE2 Cre-IRESPuroR lentiviral vector was used. Lentiviral vectors production protocols are available at http://tronolab.epfl.ch and backbones at Addgene (http://www.addgene.org).

RT-PCR and RNA-Seq

Total RNA was extracted and DNase-I treated using a spin column-based RNA purification kit (Macherey-Nagel). cDNA was prepared with SuperScript II reverse transcriptase (Invitrogen). Primers were used for SYBR green qPCR (Applied Biosystems) and the sequences are provided in S2 File. For sequencing of mRNA (poly(A)+), 100-bp single-end RNA-seq libraries were prepared using the Illumina TruSeq Stranded or Unstranded mRNA reagents (Illumina). Cluster generation was performed with the resulting libraries using the Illumina TruSeq SR Cluster Kit v4 reagents. Sequencing was performed in 100-bp reads runs by Illumina HiSeq 2500. Further information about the mapping and analysis procedures is provided in S2 File.

ChIP-qPCR and ChIP-Seq

ChIP and library preparation were done according to (Ecco, Cassano et al. 2016), with modifications as described in S2 File. Sequencing was performed in 100-bp reads run on Illumina HiSeq 2500. Primers sequences used for ChIP-qPCR are provided in S2 File.

Bioinformatics analyses and statistics

R version 3.1.2 (http://www.R-project.org) or GraphPad Prism version 6.0 and 7.0 (http://www.graphpad.com) were used for statistical analyses and graphical representations of the data. Detailed bioinformatics analyses are provided in S2 File.

Ethics statement

Experimental protocols were performed according to European Council Guidelines and the Swiss Federal Veterinary Office. Acceptable standards of human animal care and the experimental design of this study were approved by the Ethics Committee for Animal Care of the Vaud Region in Switzerland (licenses 25350 and 22919).

Data access

All next-generation sequencing data have been submitted to the NCBI Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/) database under the accession number GEO: GSE87734.

Supporting information

S1 Fig. (A) Positional correlation between the 3' end of MMSAT4-related transcripts and MMSAT4 elements, whether overlapping annotated genes or not. (B) (Top) Sequence alignment of KZFP/rGUs coming from three circumscribed stretches of DNA, located on chromosome 13 (cluster 5, 6_1 and 6_2 on the plot). The clusters are color-coded as follows: cluster 5 in yellow, cluster 6_1 in purple and cluster 6_2 in green. (Center) Separate alignments of KZFP/rGUs per region are depicted. (Bottom) Alignment of all KZFP/rGUs elements, keeping the initial color code. The sequence alignment, summarized by vertical bars on the left side of the plot, reconstitutes almost perfectly the initial boundaries between regions. (C) Sequence alignment of the KZFP-rGUs in clusters (top) 7, (middle) 14 and (bottom) 16. Color-coding of
KZFP–rGUs reflects their imputed age, indicated on the vertical left axis. The conservation score is represented on top of each alignment. (D) Number of TEs located within KZFP/rGUs clusters compared to the expected one, estimated by counting the TEs falling within comparable borders after shuffling the clusters within the same chromosome 100 times. The same was performed for OLFR and VMNR clusters. P-values were obtained by Fisher’s exact test. (E) TE-enrichment analysis by subfamily in KZFP/rGUs clusters. For each cluster, the x-axis represents the proportion in the genome, while the proportion in the region is plotted on the y-axis. Larger dots depict subfamilies significantly over-represented in the region (p-value < 0.01).

(F) Same as S1E Fig, for OLFR and VMNR clusters.

EPS

S2 Fig. (A) Divergence analysis of recent duplication events within KZFP/rGUs clusters: three nearly identical genomic stretches of approximately 40 kb were delineated within cluster 2 (core segments 1, 2 and 3, delineated by blue boxes, > 98% using UCSC BLAT alignment tool). The homology score for nucleotides flanking the core segments dramatically dropped (sequences enclosed by purple and red boxes), while a conserved pattern of EREs spanning the core segments and their neighboring regions could still be identified, notably two ERVs (IAPEZ and RLTR19) found upstream and a LINE (L1Md F2) immediately downstream. Sequences between RLTR19 and L1Md F2 were highly homologous, each containing two units composed of a KRAB domain and a KZFP/rGU in close proximity and same orientation. Conservation was higher between core segments 1 and 2, including downstream of L1Md F2, suggesting that they emerged through a more recent duplication event than the one responsible for core segment 3.

EPS

S3 Fig. (A) KAP1 peaks enrichment in KZFP/rGUs compared to OLFR and VMNR genes clusters in ES cells, MEF and liver cells. Peak counts were normalized by the total number of nucleotides contained in the clusters. (B) Enrichment analysis of KAP1 peaks per KZFP/rGUs cluster in ES cells, MEFs and Hepa 1.6 cells. The actual number of peaks within each cluster is compared to the expected one, estimated by counting the peaks falling within the cluster borders after shuffling the peaks within the same chromosome 10'000 times. (C) UCSC Genome Browser view of KZFP/rGUs clusters 3 and 4. From the top, tracks for genes annotated in RefSeq and Ensembl, KZFP/rGUs, KZFP/rGUs clusters and KAP1 peaks in ES cells, MEFs and Hepa 1.6 cells are displayed. Both KZFP/rGUs clusters 3 and 4 correlate an increased KAP1 binding sites density, although changes in terms of targeted loci and density of targets are visible across tissues. (D) Evaluation of expression differences upon Kap1 removal between KZFP/rGUs in clusters and the isolated counterparts for each tissue. (E) Sequence alignment of (left) KZFP/rGUs and (right) promoters of KZFP/rGUs-containing transcripts of cluster 10. The conservation score is represented on top. (F) Normalized RNA-Seq coverage over KZFP/rGUs in ES cells, considering a flanking region of 1.5 kb upstream and 3.5 kb downstream of each element. Signal from WT cells is depicted in green, while that of Kap1 KO cells in grey. All elements expressed are plotted, separating sense and antisense transcription, and KZFP/rGUs in and out of APC genes (left, top and bottom, respectively). (Right) UCSC Genome Browser view of strand-specific RNA-Seq signals in ES Kap1 KO and WT cells (grey and green tracks, respectively). Below the RNA-Seq profiles, the following tracks were added: RefSeq genes, our de-novo transcripts annotation, KZFP/rGUs, KRAB-encoding sequences, KAP1 peaks in the same tissue and repeats as reported in RepeatMasker. Green vertical bars highlight two ERVs (RLTR4 and IAPEZ) and a KZFP/rGU targeted by KAP1 and upregulated upon Kap1 removal. Despite their proximity, deregulation of these ERVs and the KZFP/rGU resulted from individual, oriented transcription. (G) Fraction of TEs upregulated upon Kap1 KO in KZFP/rGUs
compared to OLFR and VMNR genes clusters in ES cells, MEF and liver cells. (H) TEs targeted by KAP1 within KZFP-rGU clusters in mES cells, MEFs and Hepa 1.6 cells. For each cluster, numbers of TE-targeting KAP1 peaks were normalized for total numbers of TEs from corresponding subclass. (I) Mean log2 of the expression fold change upon Kap1 removal in MEF (left) and liver (right) cells of elements present in KZFP/rGU clusters: KZFP/rGUs, ERVKs, ERV1s and the rest of TEs (‘others’) (dots), as well as their total average (dashed line). The analysis was performed per cluster, with the number of elements in each category reported on the right (categories with fewer than 5 elements were not considered).

S4 Fig. (A) Positional correlation between KZFP/rGUs and KAP1 and SETDB1 peaks, determined by ChIP-Seq enrichments, in Hepa 1.6 cells. A window of 5 kb on each side of the KZFP/rGUs was considered. (B) ChIP-PCR analysis of SETDB1 binding over KZFP/rGUs in WT and KAP1 KD Hepa 1.6 cells. KAP1 KD cells stably express a short hairpin targeting Kap1 transcripts (shKAP1), while the WT counterpart were similarly selected for expressing the corresponding control vector (shEmpty). (C) Normalized H3K9me3 ChIP-Seq enrichment in MEF WT and Kap1 KO cells over KZFP/rGUs upregulated or unaffected upon Kap1 inactivation.

S5 Fig. (A) Nucleotide fraction found beneath H3K27ac KO but not WT MEFs in OLFR or VMNR and KZFP/rGUs clusters. In each case we computed the same calculation excluding peaks matching APC gene promoters or newly annotated KZFP/rGUs promoters. The same analysis limited to clusters 3±6 and 10, being the most deregulated ones in Kap1 KO cells, was performed. (B) Ratio of H3K27Ac-enriched KZFP-rGU clusters-contained TEs in Kap1 KO and in WT MEF cells, listed by subfamilies (with an inclusion threshold of at least 3 elements for a given subfamily).

S6 Fig. (A) Expression of KZFP/rGUs in ES cells WT and Kap1 KO based on their distance to a KAP1 binding site. We isolated KZFP/rGUs overlapping a KAP1 peak, those less than 5 kb, less than 20 kb and more than 20 kb away from a KAP1 targeted locus. Each element belongs exclusively to one category. (B) Normalized RNA-Seq coverage over KZFP/rGUs, considering a flanking region of 1.5 kb upstream and 3.5 kb downstream of each element. Elements dysregulated upon KAP1 depletion in MEFs are selected, and their coverage is plotted for WT cells, Kap1 KO cells and Kap1 KO cells complemented with a sh-resistant copy of Kap1. (C) KZFP-rGUs transcriptional changes detected by RT-qPCR upon de-novo KAP1 excision in MEF WT cells (top), and upon KAP1 complementation of Kap1 KO cells (bottom), compared to their WT and stable Kap1 KO counterparts.

S1 Table. Table containing genomic coordinates of KZFP/rGUs clusters.

S2 Table. Table containing genomic coordinates of OLFR and VMNR genes clusters.

S3 Table. KZFP/rGUs database, listing: genomic sequences of KZFP/rGUs, orientation, cluster, coordinates of the cluster, coordinates of the relative transcript, orientation and ID of the transcript, whether it corresponds to an existing entry of the Ensembl version 67 annotated genes (with the Ensembl ID and the associated gene name), number of C2H2 ZNFs, whether a KRAB-encoding sequence is present in the same transcript, the ZNFs
specificity residues and the amino acid sequence encoded by the transcript (until a STOP codon in the same reading frame). For detailed information on the analysis procedures followed to build this table, refer to S2 File.

(S4 Table. Table containing normalized counts over KZFP/rGUs derived from RNA-Seq analyses performed in mESC, MEF and liver cells.

S1 File. Gene transfer format (GTF) file of putative KZFP/rGUs-related ORFs. Their identifiers (‘gene_id’ and ‘transcript_id’) were attributed arbitrarily. For detailed information over the sequences, see S3 Table.

(S2 File. Supplemental Procedures. File containing detailed information about the experimental and data analysis procedures.

Acknowledgments

We thank E. Planet for help with data analysis; P. Turelli for advice; S. Offner, C. Raclot and S. Verp for technical assistance; the University of Lausanne Genomics Core Facility for sequencing; Vital-IT staff and server for computational support; and the members of the Trono lab for discussions. This work was financed through grants from the Swiss National Foundation, the European Union (FP7/2007-2013/REA no. 290123) and the European Research Council (ERC 268721 and ERC 694658) to D.T and the CARIGEST SA Student Fellowship Program in Stem Cells Research to A.K.

Author Contributions

Conceptualization: AK DT.

Data curation: AK JD MI.

Formal analysis: AK JD.

Funding acquisition: AK DT.

Investigation: AK GE MC.

Methodology: AK GE MC.

Project administration: AK DT.

Software: AK JD.

Supervision: AK DT.

Visualization: AK JD.

Writing ± original draft: AK DT.

Writing ± review & editing: AK DT.

References

1. Ohta T. Role of gene duplication in evolution. Genome. 1989; 31(1):304±10. PMID: 2687099
2. Ohta T. Multigene families and the evolution of complexity. J Mol Evol. 1991 Jul; 33(1):34±41. PMID: 1909373

3. Urrutia R. KRAB-containing zinc-finger repressor proteins. Genome biology. 2003; 4(10):231. Pubmed Central PMID: 328446. https://doi.org/10.1186/gb-2003-4-10-231 PMID: 14519192

4. Imbeault M, Helleboid P-Y, Trono D. KRAB-ZFPs contribute to the evolution of gene regulatory networks. Nature. 2017.

5. Emerson RO, Thomas JH. Adaptive evolution in zinc finger transcription factors. PLoS genetics. 2009 Jan; 5(1):e1000325. Pubmed Central PMID: 2604467. https://doi.org/10.1371/journal.pgen.1000325 PMID: 19119423

6. Tadepally HD, Burger G, Aubry M. Evolution of C2H2-zinc-finger genes and subfamilies in mammals: species-specific duplication and loss of clusters, genes and effector domains. BMC evolutionary biology. 2008; 8:176. Pubmed Central PMID: 2443715. https://doi.org/10.1186/1471-2148-8-176 PMID: 18559114

7. Shannon M, Kim J, Ashworth L, Branscomb E, Stubbs L. Tandem zinc-finger gene families in mammals: insights and unanswered questions. DNA sequence the journal of DNA sequencing and mapping. 1998; 8(5):303±15. PMID: 10993601

8. Hamilton AT, Huntley S, Kim J, Branscomb E, Stubbs L. Lineage-specific expansion of KRAB zinc-finger transcription factor genes: implications for the evolution of vertebrate regulatory networks. Cold Spring Harbor symposia on quantitative biology. 2003; 68:131±40. PMID: 15338611

9. Nowick K, Stubbs L. Lineage-specific transcription factors and the evolution of gene regulatory networks. Briefings in functional genomics. 2010 Jan; 9(1):65±78. Pubmed Central PMID: 3096533. https://doi.org/10.1093/bfgp/elp056 PMID: 20081217

10. Shannon M, Hamilton AT, Gordon L, Branscomb E, Stubbs L. Differential expansion of zinc-finger transcription factor loci in homologous human and mouse gene clusters. Genome research. 2003 Jun; 13 (6A):109±110. Pubmed Central PMID: 403638. https://doi.org/10.1101/gr.963903 PMID: 12743021

11. Huntley S, Baggett DM, Hamilton AT, Tran-Gyamfi M, Yang S, Kim J, et al. A comprehensive catalog of human KRAB-associated zinc finger genes: insights into the evolutionary history of a large family of transcriptional repressors. Genome research. 2006 May; 16(5):669±77. Pubmed Central PMID: 1457042. https://doi.org/10.1101/gr.4842106 PMID: 16606702

12. Balasubramanian R, Laframboise T, Scholtens D, Gentleman R. A graph-theoretic approach to testing associations between disparate sources of functional genomics data. Bioinformatics. 2004 Dec 12; 20 (18):3353±62. https://doi.org/10.1093/bioinformatics/bth405 PMID: 15256415

13. Rowe HM, Jakobsson J, Mesnard D, Rougemont J, Reynard S, Aktas T, et al. KAP1 controls endogenous retroviruses in embryonic stem cells. Nature. 2010 Jan 14; 463(7278):237±40. https://doi.org/10.1038/nature08674 PMID: 20075919

14. Castro-Diaz N, Ecco G, Coluccio A, Kapopoulou A, Yazdanpanah B, Friedli M, et al. Evolutionally dynamic L1 regulation in embryonic stem cells. Genes & development. 2014 Jul 1; 28(13):1397±409. Pubmed Central PMID: 4083085.

15. Jacobs FM, Greenberg D, Nguyen N, Haeussler M, Ewing AD, Katzman S, et al. An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons. Nature. 2014 Dec 11; 516(7530):242±5. Pubmed Central PMID: 4268317. https://doi.org/10.1038/nature13760 PMID: 25274305

16. Thomas JH, Schneider S. Coevolution of retroelements and tandem zinc finger genes. Genome research. 2011 Nov; 21(11):1800±12. Pubmed Central PMID: 3205665. https://doi.org/10.1101/gr.121749.111 PMID: 21784874

17. Wolf G, Greenberg D, Macfarlan TS. Spotting the enemy within: Targeted silencing of foreign DNA in mammalian genomes by the Kruppel-associated box zinc finger protein family. Mobile DNA. 2015; 6:17. Pubmed Central PMID: 4592553. https://doi.org/10.1186/s13100-015-0050-8 PMID: 26435754

18. Bellefroid EJ, Poncelet DA, Lecocq PJ, Revelant O, Martial JA. The evolutionarily conserved Kruppel-associated box domain defines a subfamily of eukaryotic multifingered proteins. Proceedings of the National Academy of Sciences of the United States of America. 1991 May 01; 88(9):3608±12. Pubmed Central PMID: 5150453. https://doi.org/10.1038/nature13760 PMID: 25274305

19. Thiesen HJ. Multiple genes encoding zinc finger domains are expressed in human T cells. The New biologist. 1990 Apr; 2(4):363±74. PMID: 2288909

20. Schultz DC, Friedman JR, Rauscher FJ 3rd. Targeting histone deacetylase complexes via KRAB-zinc finger proteins: the PHD and bromodomains of KAP-1 form a cooperative unit that recruits a novel isoform of the Mi-Zip/alpha subunit of NuRD. Genes & development. 2001 Feb 15; 15(4):428±43. Pubmed Central PMID: 312636.
21. Schultz DC, Ayyanathan K, Negorev D, Maul GG, Rauscher FJ, 3rd. SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes & development. 2002 Apr 15; 16(8):919±32. Pubmed Central PMCID: 1523599.

22. Friedman JR, Fredericks WJ, Jensen DE, Speicher DW, Huang XP, Neilson EG, et al. KAP-1, a novel corepressor for the highly conserved KRAB repression domain. Genes & development. 1996 Aug 15; 10(16):2067±78.

23. Wolfe SA, Nekludova L, Pabo CO. DNA recognition by Cys2His2 zinc finger proteins. Annual review of biophysics and biomolecular structure. 2000; 29:183±212. https://doi.org/10.1146/annurev.biophys.29.1.183 PMID: 10940427

24. Iuchi S. KRAB Zinc Finger Proteins: A Family of Repressors Mediating Heterochromatin-Associated Gene Silencing. Molecular Biology Intelligence Unit; Zinc Finger Proteins; From Atomic Contact to Cellular Function. 2005:151±5.

25. Choo Y, Klug A. Toward a code for the interactions of zinc fingers with DNA: selection of randomized fingers displayed on phage. Proceedings of the National Academy of Sciences of the United States of America. 1994 Nov 8; 91(23):1163±7. Pubmed Central PMCID: 45187. PMID: 7972027

26. Kim CA, Berg JM. A 2.2 A resolution crystal structure of a designed zinc finger protein bound to DNA. Nature structural biology. 1996 Nov; 3(11):940±z5. PMID: 8901872

27. Looman C, Abrink M, Mark C, Hellman L. KRAB zinc finger proteins: an analysis of the molecular mechanisms governing their increase in numbers and complexity during evolution. Molecular biology and evolution. 2002 Dec; 19(12):2118±30. PMID: 12446804

28. Tengs T, LaFramboise T, Den RB, Hayes DN, Zhang J, DebRoy S, et al. Genomic representations using concatenates of Type IIB restriction endonuclease digestion fragments. Nucleic acids research. 2004; 32(15):e121. Pubmed Central PMCID: 516078. https://doi.org/10.1093/nar/gnh120 PMID: 15329383

29. Carey VJ, Gentry J, Whalen E, Gentleman R. Network structures and algorithms in Bioconductor. Bioinformatics. 2005 Jan 1; 21(1):135±6. https://doi.org/10.1093/bioinformatics/bth458 PMID: 15297301

30. Ravasi T, Huber T, Zavolan M, Forrest A, Gaasterland T, Grimmond S, et al. Systematic characterization of the zinc-finger-containing proteins in the mouse transcriptome. Genome research. 2003 Jun; 13(6B):1430±42. Pubmed Central PMCID: 403861. https://doi.org/10.1101/gr.119903 PMID: 12819142

31. Yates A, Akanni W, Amode MR, Barrell D, Bills K, Carvalho-Silva D, et al. Ensembl 2016. Nucleic acids research. 2016 Jan 04; 44(D1):D710±6. Pubmed Central PMCID: 4702834. https://doi.org/10.1093/nar/gkv1157 PMID: 26687719

32. Bao W, Kojima KK, Kohany O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mobile DNA. 2015; 6:11. Pubmed Central PMCID: 4455052. https://doi.org/10.1186/s13100-015-0041-9 PMID: 26045719

33. Niimura Y. Olfactory receptor multigene family in vertebrates: from the viewpoint of evolutionary genomics. Current genomics. 2012 Apr; 13(2):103±14. Pubmed Central PMCID: 3308321. https://doi.org/10.2174/138920212799860706 PMID: 23024602

34. Yang H, Shi P, Zhang YP, Zhang J. Composition and evolution of the V2r vomeronasal receptor gene repertoire in mice and rats. Genomics. 2005 Sep; 86(3):306±15. https://doi.org/10.1016/j.ygeno.2005.05.012 PMID: 16024217

35. EccO G, Cassano M, KauzlarcI A, Duc J, Coluccio A, OfIer S, et al. Transposable Elements and Their KRAB-ZFP Controllers Regulate Gene Expression in Adult Tissues. Developmental cell. 2016 Mar 21; 36(6):61±z3. https://doi.org/10.1016/j.devcel.2016.02.024 PMID: 27003935

36. Kent WJ. BLATThe BLAST-like alignment tool. Genome research. 2002 Apr; 12(4):656±64. Pubmed Central PMCID: 187518. https://doi.org/10.1101/gr.229202 PMID: 11932250

37. Iyengar S, Ivanov AV, Jin VX, Rauscher FJ 3rd, Farnham PJ. Functional analysis of KAP1 genomic recruitment. Molecular and cellular biology. 2011 May; 31(9):1833±47. Pubmed Central PMCID: 3133220. https://doi.org/10.1128/MCB.01331-10 PMID: 21343339

38. Frietze S, O’Geen H, Blahnik KR, Jin VX, Farnham PJ. ZNF274 recruits the histone methyltransferase SETDB1 to the 3’ ends of ZNF genes. PloS one. 2010; 5(12):e15082. Pubmed Central PMCID: 2999557. https://doi.org/10.1371/journal.pone.0015082 PMID: 21170338

39. Wolf G, Yang P, Fuchtbauer AC, Fuchtbauer EM, Silva AM, Park C, et al. The KRAB zinc finger protein ZFP809 is required to initiate epigenetic silencing of endogenous retroviruses. Genes & development. 2015 Mar 1; 29(5):53±z4. Pubmed Central PMCID: 4358406.

40. Wolf D, Goff SP. TRIM28 mediates primer binding site-targeted silencing of murine leukemia virus in embryonic cells. Cell. 2007 Oct 5; 131(1):46±z7. https://doi.org/10.1016/j.cell.2007.07.026 PMID: 17923087
41. Wolf D, Goff SP. Embryonic stem cells use ZFP809 to silence retroviral DNAs. Nature. 2009 Apr 30;458(7242):1201±4. PubMed Central PMCID: 2676211. https://doi.org/10.1038/nature07844 PMID: 19270682

42. Margolin JF, Friedman JR, Meyer WK, Vissing H, Thiesen HJ, Rauscher FJ 3rd. Kruppel-associated boxes are potent transcriptional repression domains. Proceedings of the National Academy of Sciences of the United States of America. 1994 May 10; 91(10):4509±13. PubMed Central PMCID: 43815. PMID: 8183939

43. Sripathy SP, Stevens J, Schultz DC. The KAP1 corepressor functions to coordinate the assembly of de novo HP1-demarcated microenvironments of heterochromatin required for KRAB zinc finger protein-mediated transcriptional repression. Molecular and cellular biology. 2006 Nov; 26(22):8623±38. PubMed Central PMCID: 1636786. https://doi.org/10.1128/MCB.00487-06 PMID: 16954381

44. Matsui T, Leung D, Miyashita H, Maksakova IA, Miyachi H, Kimura H, et al. Provirals silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature. 2010 Apr 8; 464(7290):927±31. https://doi.org/10.1038/nature08858 PMID: 20164836

45. Yang L, Duff MO, Graveley BR, Carmichael GG, Chen LL. Genomewide characterization of non-polyadenylated RNAs. Genome biology. 2011; 12(2):R16. PubMed Central PMCID: 3188798. https://doi.org/10.1186/gb-2011-12-2-r16 PMID: 21324177

46. PloS one. 2011; 6(2):e17121. PubMed Central PMCID: 3039671. https://doi.org/10.1371/journal.pone.0017121 PMID: 21347206

50. Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell. 2014 Dec 18; 159(7):1665±80. https://doi.org/10.1016/j.cell.2014.11.021 PMID: 25497547

51. Vogel MJ, Guelen L, de Wit E, Percic-Hupkes D, Loden M, Talhout W, et al. Human heterochromatin proteins form large domains containing KRAB-ZNF genes. Genome research. 2006 Dec; 16(12):1493±504. PubMed Central PMCID: 1665633. https://doi.org/10.1101/gr.5391806 PMID: 17038565

52. Chiaretti S, Li X, Gentelman R, Vitale A, Vignetti M, Mandelli F, et al. Gene expression profile of adult T-cell acute lymphocytic leukemia identifies distinct subsets of patients with different response to therapy and survival. Blood. 2004 Apr 1; 103(7):2771±8. https://doi.org/10.1182/blood-2003-09-3243 PMID: 14684422

53. Macfarlan TS, Gifford WD, Agarwal S, Driscoll S, Lettieri K, Wang J, et al. Endogenous retroviruses and neighboring genes are coordinately repressed by LSD1/KDM1A. Genes & development. 2011 Mar 15; 25(6):594±607. PubMed Central PMCID: 3059833.

54. Law CW, Chen Y, Shi W, Smyth GK. voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome biology. 2014; 15(2):R29. PubMed Central PMCID: 4053721. https://doi.org/10.1186/gb-2014-15-2-r29 PMID: 24485249

55. Kim D, Langmead B, Salzberg SL. HISAT: a fast splice aligned with low memory requirements. Nature methods. 2015 Apr; 12(4):357±60. PubMed Central PMCID: 4655817. https://doi.org/10.1038/nmeth.3317 PMID: 25751142

56. Fasching L, Kapopoulou A, Sachdeva R, Petri R, Jonsson ME, Manne C, et al. TRIM28 represses transcription of endogenous retroviruses in neural progenitor cells. Cell reports. 2015 Jan 6; 10(1):20±8. PubMed Central PMCID: 4434221. https://doi.org/10.1016/j.celrep.2014.12.004 PMID: 25543143

57. Rowe HM, Kapopoulou A, Corsinotti A, Fasching L, Macfarlan TS, Tarabay Y, et al. TRIM28 repression of retrotransponson-based enhancers is necessary to preserve transcriptional dynamics in embryonic stem cells. Genome research. 2013 Mar; 23(3):452±61. PubMed Central PMCID: 3589534. https://doi.org/10.1101/gr.147678.112 PMID: 23233547

58. Lorenz P, Dietmann S, Wilhelm T, Koczan D, Autran S, Gad S, et al. The ancient mammalian KRAB zinc finger gene cluster on human chromosome 8q24.3 illustrates principles of C2H2 zinc finger evolution associated with unique expression profiles in human tissues. BMC genomics. 2010; 11:206. PubMed Central PMCID: 2865497. https://doi.org/10.1186/1471-2164-11-206 PMID: 20346131
59. Rowe HM, Friedli M, Offner S, Verp S, Mesnard D, Marquis J, et al. De novo DNA methylation of endogenous retroviruses is shaped by KRAB-ZFPs/KAP1 and ESET. Development. 2013 Feb 1; 140(3):519±29. Pubmed Central PMCID: 4892343. https://doi.org/10.1242/dev.087585 PMID: 23293284

60. Bojkowska K, Aloisio F, Cassano M, Kapopoulou A, Santoni de Sio F, Zangger N, et al. Liver-specific ablation of Kruppel-associated box-associated protein 1 in mice leads to male-predominant hepatosteatosis and development of liver adenoma. Hepatology. 2012 Oct; 56(4):1279±90. Pubmed Central PMCID: 4894457. https://doi.org/10.1002/hep.25767 PMID: 22684873