Constrained energy problems with external fields for infinite dimensional vector measures

Natalia Zorii

Abstract. We consider a constrained minimal energy problem with an external field over noncompact classes of infinite dimensional vector measures \((\mu_i)_{i \in I}\) on a locally compact space. The components \(\mu_i\) are positive measures with the properties \(\int g_i \, d\mu_i = a_i\) and \(\sigma^j - \mu^i \geq 0\) (where \(a_i, g_i,\) and \(\sigma^j\) are given) and supported by closed sets \(A_i\) with the sign +1 or −1 prescribed such that \(A_i \cap A_j = \emptyset\) whenever \(\text{sign} A_i \neq \text{sign} A_j\), and the law of interaction of \(\mu^i, i \in I\), is determined by the matrix \((\text{sign} A_i \, \text{sign} A_j)_{i,j \in I}\). For all positive definite kernels satisfying Fuglede’s condition of consistency between the vague (= weak∗) and strong topologies, sufficient conditions for the existence of minimizers are established and their uniqueness and vague compactness are studied. Examples illustrating the sharpness of the sufficient conditions are provided. We also analyze continuity properties of minimizers in the vague and strong topologies when \(A_i\) and \(\sigma^j\) are varied simultaneously. The results are new even for classical kernels in \(\mathbb{R}^n\), which is important in applications.

1. Introduction

In all that follows, \(X\) denotes a locally compact Hausdorff space and \(\mathcal{M} = \mathcal{M}(X)\) the linear space of all real-valued scalar Radon measures \(\nu\) on \(X\) equipped with the vague (= weak∗) topology, i.e., the topology of pointwise convergence on the class \(\mathcal{C}_0(X)\) of all real-valued continuous functions \(\varphi\) on \(X\) with compact support.

A kernel \(\kappa\) on \(X\) is meant to be an element from \(\Phi(X \times X)\), where \(\Phi(Y)\) consists of all lower semicontinuous functions \(\psi : Y \to (-\infty, \infty]\) such that \(\psi \geq 0\) unless \(Y\) is compact. Given \(\nu, \nu_1 \in \mathcal{M}\), the mutual energy and the potential relative to the kernel \(\kappa\) are defined by

\[
\kappa(\nu, \nu_1) := \int \kappa(x, y) \, d(\nu \otimes \nu_1)(x, y) \quad \text{and} \quad \kappa(\cdot, \nu) := \int \kappa(\cdot, y) \, d\nu(y),
\]

respectively. (When introducing notation, we always tacitly assume the corresponding object on the right to be well defined — as a finite number or ±∞.)
For $\nu = \nu_1$ the mutual energy $\kappa(\nu, \nu_1)$ defines the energy $\kappa(\nu, \nu)$ of ν. We denote by $\mathcal{E} = \mathcal{E}_\kappa(X)$ the set of all $\nu \in \mathcal{M}$ with $-\infty < \kappa(\nu, \nu) < \infty$.

We shall mainly be concerned with a positive definite kernel κ, which means that it is symmetric (i.e., $\kappa(x, y) = \kappa(y, x)$ for all $x, y \in X$) and the energy $\kappa(\nu, \nu)$, $\nu \in \mathcal{M}$, is nonnegative whenever defined. Then \mathcal{E} forms a pre-Hilbert space with the scalar product $\kappa(\nu, \nu_1)$ and the seminorm $\|\nu\|_\kappa := \sqrt{\kappa(\nu, \nu)}$ (see [12]); the topology on \mathcal{E}, determined by this seminorm, is called strong. A positive definite kernel κ is strictly positive definite if the seminorm $\| \cdot \|_\kappa$ is a norm.

Given a closed set $F \subset X$, we denote by $\mathcal{M}^+(F)$ the convex cone of all nonnegative $\nu \in \mathcal{M}$ supported by F, and let $\mathcal{E}^+(F) := \mathcal{M}^+(F) \cap \mathcal{E}$. Also write $\mathcal{M}^+ := \mathcal{M}^+(X)$ and $\mathcal{E}^+ := \mathcal{E}^+(X)$.

We consider a countable, locally finite collection $A = (A_i)_{i \in I}$ of fixed closed sets $A_i \subset X$ with the sign $+1$ or -1 prescribed such that the oppositely signed sets are mutually disjoint. Let $\mathcal{M}^+(A)$ stand for the Cartesian product $\prod_{i \in I} \mathcal{M}^+(A_i)$; then an element μ of $\mathcal{M}^+(A)$ is a (nonnegative) vector measure $(\mu^i)_{i \in I}$ with the components $\mu^i \in \mathcal{M}^+(A_i)$. The topology of the product space $\prod_{i \in I} \mathcal{M}^+(A_i)$, where every $\mathcal{M}^+(A_i)$ is endowed with the vague topology, is likewise called vague.

If a vector measure $\mu \in \mathcal{M}^+(A)$ and a vector-valued function $u = (u_i)_{i \in I}$ with μ^i-measurable components $u_i : A_i \to [-\infty, \infty]$ are given, then for brevity we write

$$\langle u, \mu \rangle := \sum_{i \in I} \int_{A_i} u_i \, d\mu^i.$$

Let a kernel κ be fixed. In accordance with an electrostatic interpretation of a condenser, we assume that the interaction between the charges lying on the conductors A_i, $i \in I$, is characterized by the matrix $(\alpha_{ij})_{i,j \in I}$, where $\alpha_i := \text{sign } A_i$. Then the energy of $\mu \in \mathcal{M}^+(A)$ is defined by the formula

$$\kappa(\mu, \mu) := \sum_{i,j \in I} \alpha_{ij} \kappa(\mu^i, \mu^j).$$

We denote by $\mathcal{E}^+(A)$ the set of all $\mu \in \mathcal{M}^+(A)$ with $-\infty < \kappa(\mu, \mu) < \infty$.

Also fix a vector-valued function $f = (f_i)_{i \in I}$, treated as an external field, and assume it to satisfy one of the following two cases:

Case I. $f_i \in \Phi(X)$ for all $i \in I$;
Case II. $f_i = \alpha_i \kappa(\cdot, \zeta)$ for all $i \in I$, where $\zeta \in \mathcal{E}$ is a signed measure.

Furthermore, suppose each f_i to affect the charges on A_i only; then the f-weighted energy of $\mu \in \mathcal{M}^+(A)$ is given by the expression

$$G_f(\mu) := \kappa(\mu, \mu) + 2\langle f, \mu \rangle.$$

(1.1)

Let $\mathcal{E}^+_f(A)$ consist of all $\mu \in \mathcal{E}^+(A)$ with $-\infty < G_f(\mu) < \infty$.

1 Here and in the sequel, an expression $\sum_{i \in I} c_i$ is meant to be well defined provided so is every summand c_i and the sum does not depend on the order of summation — though might be $\pm \infty$. Then, by Riemann series theorem, the sum is finite if and only if the series converges absolutely.

N. Zorii
Also fix a vector measure $\sigma \in \mathcal{M}^+(A)$, serving as a constraint, a numerical vector $a = (a_i)_{i \in I}$ with $a_i > 0$ for all $i \in I$, and a vector-valued function $g = (g_i)_{i \in I}$, where all the $g_i : A_i \to (0, \infty)$ are continuous. In the study, we are interested in the problem of minimizing $G_f(\mu)$ over the class of all $\mu \in E^+_f(A)$ with the properties that $\langle g_i, \mu \rangle = a_i$ and $\sigma^i - \mu^i \geq 0$ for all $i \in I$.

Along with its electrostatic interpretation, such a problem has found various important applications in approximation theory (see, e.g., [8, 9, 21]).

The main question is whether minimizers λ^+_A in the constrained minimal f-weighted energy problem exist. If A is finite, all the A_i are compact, $\kappa(x, y)$ is continuous on $A_\ell \times A_j$ whenever $\alpha_\ell \neq \alpha_j$, and Case I takes place, then the existence of those λ^+_A can easily be established by exploiting the vague topology only, since then the class of admissible vector measures is vaguely compact, while $G_f(\mu)$ is vaguely lower semicontinuous (cf. [14, 19, 20, 22]).

However, these arguments break down if any of the above-mentioned four assumptions is dropped, and then the problem on the existence of minimizers becomes rather nontrivial. In particular, the class of admissible vector measures is no longer vaguely compact if any of the A_i is noncompact. Another difficulty is that $G_f(\mu)$ might not be vaguely lower semicontinuous when Case II holds.

To solve the problem on the existence of minimizers λ^+_A in the general case, we restrict ourselves to a positive definite kernel κ and develop an approach based on the following crucial arguments.

The set $E^+_f(A)$ is shown to be a semimetric space with the semimetric

$$\|\mu_1 - \mu_2\|_{E^+_f(A)} := \left[\sum_{i,j \in I} \alpha_i \alpha_j \kappa(\mu^i_1 - \mu^i_2, \mu^j_1 - \mu^j_2) \right]^{1/2},$$

and one can define an inclusion R of $E^+_f(A)$ into the pre-Hilbert space E such that $E^+_f(A)$ becomes isometric to its R-image, the latter being regarded as a semimetric subspace of E (see Theorem 3.11). Similar to the terminology in E, we therefore call the topology of the semimetric space $E^+_f(A)$ strong.

Another crucial fact is that, for rather general κ, g, and a, the topological subspace of $E^+_f(A)$ consisting of all μ such that $\langle g_i, \mu \rangle \leq a_i$ and $\sigma^i - \mu^i \geq 0$ for all $i \in I$ turns out to be strongly complete (see Theorem 7.4).

Using these arguments, we obtain sufficient conditions for the existence of minimizers λ^+_A and establish statements on their uniqueness and vague compactness (see Lemma 4.1 and Theorem 6.2). Examples illustrating the sharpness of the sufficient conditions are provided (see Sec. 12). We also analyze continuity properties of λ^+_A relative to the vague and strong topologies when both σ and A are varied (see Theorems 6.7, 6.9, and Corollaries 6.8, 6.10).

The results obtained hold true, e.g., for the Newtonian, Green or Riesz kernels in \mathbb{R}^n, $n \geq 2$, as well as for the restriction of the logarithmic kernel in \mathbb{R}^2 to the open unit disk, which is important in applications.
2. Preliminaries: topologies, consistent and perfect kernels

In all that follows, we suppose the kernel κ to be positive definite. In addition to the strong topology on \mathcal{E}, determined by the seminorm $\|\nu\| := \|\nu\|_{\mathcal{E}} := \|\nu\|_{\kappa} := \sqrt{\kappa(\nu,\nu)}$, it is often useful to consider the weak topology on \mathcal{E}, defined by means of the seminorms $\nu \mapsto |\kappa(\nu,\mu)|$, $\mu \in \mathcal{E}$ (see [12]). The Cauchy–Schwarz inequality

$$|\kappa(\nu,\mu)| \leq \|\nu\| \|\mu\|,$$

where $\nu, \mu \in \mathcal{E}$, implies immediately that the strong topology on \mathcal{E} is finer than the weak one.

In [12, 13], B. Fuglede introduced the following two equivalent properties of consistency between the induced strong, weak, and vague topologies on \mathcal{E}^+:

(C_1) Every strong Cauchy net in \mathcal{E}^+ converges strongly to any of its vague cluster points;
(C_2) Every strongly bounded and vaguely convergent net in \mathcal{E}^+ converges weakly to the vague limit.

Definition 2.1. Following Fuglede [12], we call a kernel κ consistent if it satisfies either of the properties (C_1) and (C_2), and perfect if, in addition, it is strictly positive definite.

Remark 2.2. One has to consider nets or filters in \mathfrak{M}^+ instead of sequences, since the vague topology in general does not satisfy the first axiom of countability. We follow Moore’s and Smith’s theory of convergence, based on the concept of nets (see [18]; cf. also [11] Chap. 0 and [16] Chap. 2). However, if X is metrizable and countable at infinity, then \mathfrak{M}^+ satisfies the first axiom of countability (see [12] Lemma 1.2.1) and the use of nets may be avoided.

Theorem 2.3 (Fuglede [12]). A kernel κ is perfect if and only if \mathcal{E}^+ is strongly complete and the strong topology on \mathcal{E}^+ is finer than the vague one.

Remark 2.4. In \mathbb{R}^n, $n \geq 3$, the Newtonian kernel $|x-y|^{2-n}$ is perfect [5]. So are the Riesz kernels $|x-y|^\alpha-n$, $0 < \alpha < n$, in \mathbb{R}^n, $n \geq 2$ [6, 7], and the restriction of the logarithmic kernel $-\log |x-y|$ in \mathbb{R}^2 to the open unit disk [17]. Furthermore, if D is an open set in \mathbb{R}^n, $n \geq 2$, and its generalized Green function g_D exists (see, e.g., [15] Th. 5.24), then the kernel g_D is perfect as well [10].

Remark 2.5. As is seen from the above definitions and Theorem 2.3, the concept of consistent or perfect kernels is an efficient tool in minimal energy problems over classes of nonnegative scalar Radon measures with finite energy. Indeed, the theory of capacities of sets has been developed in [12] for exactly those kernels. We shall show below that this concept is efficient, as well, in minimal energy problems over classes of vector measures of finite or infinite dimensions. This is guaranteed by a theorem on the strong completeness of proper subspaces of the semimetric space $\mathcal{E}^+(A)$, to be stated in Sec. 7.2.
3. Condensers. Vector measures and their energies

3.1. Condensers of countably many plates. Associated vector measures

Throughout the article, let I^+ and I^- be fixed countable, disjoint sets of indices, where the latter is allowed to be empty, and let I denote their union. Assume that to every $i \in I$ there corresponds a (unique) nonempty, closed set $A_i \subset X$.

Definition 3.1. A collection $A = (A_i)_{i \in I}$ is called an (I^+, I^-)-condenser (or simply a condenser) in X if every compact subset of X intersects with at most finitely many A_i and

$$A_i \cap A_j = \emptyset \quad \text{for all } i \in I^+, j \in I^-.$$ (3.1)

A condenser A is called compact if so are all A_i, $i \in I$, and finite if I is finite.

The sets A_i, $i \in I^+$, and A_j, $j \in I^-$, are called the positive and, respectively, the negative plates of A. (Note that any two equally signed plates can intersect each other or even coincide.) In the sequel, also the following notation will be used:

$$A^+ := \bigcup_{i \in I^+} A_i, \quad A^- := \bigcup_{i \in I^-} A_i.$$

Observe that A^+ and A^- might both be noncompact even for a compact A.

Given a condenser A, let $\mathcal{M}^+(A)$ consist of all nonnegative vector measures $\mu = (\mu_i)_{i \in I}$, where $\mu_i \in \mathcal{M}^+(A_i)$ for all $i \in I$; that is, $\mathcal{M}^+(A) := \prod_{i \in I} \mathcal{M}^+(A_i)$. The product topology on $\mathcal{M}^+(A)$, where every $\mathcal{M}^+(A_i)$ is equipped with the vague topology, is likewise called vague. Since the space $\mathcal{M}(X)$ is Hausdorff, so is $\mathcal{M}^+(A)$ (cf. [16, Chap. 3, Th. 5]).

A set $\mathcal{F} \subset \mathcal{M}^+(A)$ is vaguely bounded if, for every $\varphi \in C_0(X)$ and every $i \in I$,

$$\sup_{\mu \in \mathcal{F}} |\mu^i(\varphi)| < \infty.$$

Lemma 3.2. If $\mathcal{F} \subset \mathcal{M}^+(A)$ is vaguely bounded, then it is vaguely relatively compact.

Proof. Since by [21, Chap. III, § 2, Prop. 9] any vaguely bounded part of \mathcal{M} is vaguely relatively compact, the lemma follows from Tychonoff’s theorem on the product of compact spaces (see, e.g., [16, Chap. 5, Th. 13]). \square

3.2. Mapping $R : \mathcal{M}^+(A) \to \mathcal{M}$. Relation of R-equivalency on $\mathcal{M}^+(A)$

Since each compact subset of X intersects with at most finitely many A_i, for every $\varphi \in C_0(X)$ only a finite number of $\mu^i(\varphi)$ (where $\mu \in \mathcal{M}^+(A)$ is given) are nonzero. This yields that to every vector measure $\mu \in \mathcal{M}^+(A)$ there corresponds a unique scalar Radon measure $R\mu \in \mathcal{M}$ such that

$$R\mu(\varphi) = \sum_{i \in I} \alpha_i \mu^i(\varphi) \quad \text{for all } \varphi \in C_0(X),$$

where

$$\alpha_i := \begin{cases} +1 & \text{if } i \in I^+, \\ -1 & \text{if } i \in I^- \end{cases}.$$
Then, because of (3.1), the positive and negative parts in the Hahn–Jordan decomposition of $R\mu$ can respectively be written in the form
\[R\mu^+ = \sum_{i \in I^+} \mu^i, \quad R\mu^- = \sum_{i \in I^-} \mu^i. \]

Of course, the inclusion R of $\mathcal{M}^+(\mathbb{A})$ into \mathcal{M}, thus defined, is in general non-injective, i.e., one may choose $\mu_1, \mu_2 \in \mathcal{M}^+(\mathbb{A})$ so that $\mu_1 \neq \mu_2$, though $R\mu_1 = R\mu_2$. We call $\mu_1, \mu_2 \in \mathcal{M}^+(\mathbb{A})$ R-equivalent if $R\mu_1 = R\mu_2$ or, which is equivalent, whenever $\sum_{i \in I} \mu^i_1 = \sum_{i \in I} \mu^i_2$.

Observe that the relation of R-equivalency implies that of identity (and, hence, these two relations on $\mathcal{M}^+(\mathbb{A})$ are actually equivalent) if and only if all $A_i, i \in I$, are mutually disjoint.

Lemma 3.3. The vague convergence of $(\mu_s)_{s \in S} \subset \mathcal{M}^+(\mathbb{A})$ to $\mu_0 \in \mathcal{M}^+(\mathbb{A})$ implies the vague convergence of $(R\mu_s)_{s \in S}$ to $R\mu_0$.

Proof. This is obvious in view of the fact that the support of any $\varphi \in C_0(\mathbb{X})$ can have points in common with only finitely many A_i. \square

Remark 3.4. Lemma 3.3 in general can not be inverted. However, if all the A_i are mutually disjoint, then the vague convergence of $(R\mu_s)_{s \in S}$ to $R\mu_0$ implies the vague convergence of $(\mu_s)_{s \in S}$ to μ_0, which is seen by using the Tietze–Urysohn extension theorem [11, Th. 0.2.13].

3.3. How the energies $\kappa(\mu, \mu)$ and $\kappa(R\mu, R\mu)$ are related to each other?

In accordance with an electrostatic interpretation of a condenser \mathbb{A}, we assume that the law of interaction between the charges lying on the plates $A_i, i \in I$, is determined by the matrix $(\alpha_i \alpha_j)_{i,j \in I}$. Then the mutual energy of $\mu, \mu_1 \in \mathcal{M}^+(\mathbb{A})$ is given by the expression
\[\kappa(\mu, \mu_1) := \sum_{i,j \in I} \alpha_i \alpha_j \kappa(\mu^i, \mu^j_1). \]

(3.2)

For $\mu = \mu_1$, the mutual energy defines the energy $\kappa(\mu, \mu)$ of μ. Let $\mathcal{E}^+(\mathbb{A})$ consist of all $\mu \in \mathcal{M}^+(\mathbb{A})$ with $-\infty < \kappa(\mu, \mu) < \infty$.

Lemma 3.5. For $\mu \in \mathcal{M}^+(\mathbb{A})$ to have finite energy, it is necessary and sufficient that $\mu^i \in \mathcal{E}$ for all $i \in I$ and $\sum_{i \in I} \|\mu^i\|^2 < \infty$.

Proof. This follows immediately from the above definitions due to the inequality $2\kappa(\nu_1, \nu_2) \leq \|\nu_1\|^2 + \|\nu_2\|^2$ for $\nu_1, \nu_2 \in \mathcal{E}$. \square

In view of the convexity of $\mathcal{M}^+(\mathbb{A})$, Lemma 3.5 yields that also $\mathcal{E}^+(\mathbb{A})$ forms a convex cone.

In order to establish relations between the mutual energies of vector measures and those of their (scalar) R-images, we need the following two lemmas, the former being well known (see, e.g., [12]). In both, Y is a locally compact Hausdorff space.

2It will be shown below (see Corollary 3.10) that the mutual energy is well defined and finite (hence, the series in (3.2) converges absolutely) at least for all measures from $\mathcal{E}^+(\mathbb{A})$.
Lemma 3.6. If \(\psi \in \Phi(Y) \) is given, then the map \(\nu \mapsto \langle \psi, \nu \rangle \) is vaguely lower semicontinuous on \(\mathcal{M}^+(Y) \).

In particular, this implies that the potential \(\kappa(\cdot, \nu) \) of any \(\nu \in \mathcal{M}^+(X) \) belongs to \(\Phi(X) \).

Lemma 3.7. Consider an \((L^+, L^-)\)-condenser \(B = (B_\ell)_{\ell \in L} \) in \(Y \), a vector measure \(\omega = (\omega^\ell)_{\ell \in L} \in \mathcal{M}^+(B) \), and a function \(\psi \in \Phi(Y) \). For \(\langle \psi, R\omega \rangle \) to be finite, it is necessary and sufficient that \(\sum_{\ell \in L} \alpha_\ell \langle \psi, \omega^\ell \rangle \) converge absolutely, and then

\[
\langle \psi, R\omega \rangle = \sum_{\ell \in L} \alpha_\ell \langle \psi, \mu^\ell \rangle.
\]

Proof. We can assume \(\psi \) to be nonnegative, for if not, we replace \(\psi \) by a function \(\psi' \geq 0 \) obtained by adding to \(\psi \) a suitable constant \(c > 0 \), which is always possible since a lower semicontinuous function is bounded from below on a compact space. Hence,

\[
\langle \psi, R\omega^+ \rangle \geq \sum_{\ell \in L^+, \ell \leq N} \langle \psi, \omega^\ell \rangle \quad \text{for all } N \in L^+.
\]

On the other hand, the sum of \(\omega^\ell \) over all \(\ell \in L^+ \) that do not exceed \(N \) approaches \(R\omega^+ \) vaguely as \(N \to \infty \); consequently, by Lemma 3.6,

\[
\langle \psi, R\omega^+ \rangle \leq \lim_{N \to \infty} \sum_{\ell \in L^+, \ell \leq N} \langle \psi, \omega^\ell \rangle.
\]

Combining the last two inequalities and then letting \(N \to \infty \), we get

\[
\langle \psi, R\omega^+ \rangle = \sum_{\ell \in L^+} \langle \psi, \omega^\ell \rangle.
\]

Since the same holds true for \(R\omega^- \) and \(L^- \) instead of \(R\omega^+ \) and \(L^+ \), the lemma follows. \(\square \)

To apply Lemma 3.7 to the condenser \(A \times A := (A_i \times A_j)_{(i,j) \in I \times I} \) in \(X \times X \) with \(\alpha_{(i,j)} := \alpha_i \alpha_j \), we observe that any \(\omega \in \mathcal{M}^+(A \times A) \) can be written as \(\mu \otimes \mu_1 = (\mu^i \otimes \mu_1^i)_{(i,j) \in I \times I} \), where \(\mu, \mu_1 \in \mathcal{M}^+(A) \). Therefore,

\[
R(\mu \otimes \mu_1) = \sum_{i,j \in I} \alpha_i \alpha_j \mu^i \otimes \mu_1^j = R\mu \otimes R\mu_1.
\]

If, moreover, \(\psi = \kappa \in \Phi(X \times X) \), then we arrive at the following assertion.

Corollary 3.8. Given \(\mu, \mu_1 \in \mathcal{M}^+(A) \), we \(\kappa(\mu, \mu_1) = \kappa(R\mu, R\mu_1) \), the identity being understood in the sense that each of its sides is finite whenever so is the other and then they coincide.

Hence, \(\mu \in \mathcal{M}^+(A) \) belongs to \(\mathcal{E}^+(A) \) if and only if \(R\mu \in \mathcal{E} \) and, furthermore,

\[
\kappa(\mu, \mu) = \kappa(R\mu, R\mu) \quad \text{for all } \mu \in \mathcal{E}^+(A).
\]

In view of the positive definiteness of the kernel, this yields the following property of positivity of the energy \(\kappa(\mu, \mu) \), which was not obvious a priori.
Corollary 3.9. For all \(\mu \in \mathcal{E}^+(A) \), it is true that \(\kappa(\mu, \mu) \geq 0 \).

Corollary 3.10. For any \(\mu, \mu_1 \in \mathcal{E}^+(A) \), we have
\[
\kappa(\mu, \mu_1) = \kappa(R\mu, R\mu_1) = \sum_{i,j \in I} \alpha_i \alpha_j \kappa(\mu_i^1, \mu_j^1),
\]
and the series here converges absolutely.

Proof. For any \(\mu, \mu_1 \in \mathcal{E}^+(A) \), we get \(R\mu, R\mu_1 \in \mathcal{E} \); hence, \(\kappa(R\mu, R\mu_1) \) is finite. Therefore, repeated application of Corollary 3.8 gives the desired conclusion.

3.4. Semimetric space of vector measures of finite energy

Theorem 3.11. \(\mathcal{E}^+(A) \) forms a semimetric space with the semimetric \(\| \cdot \|_{\mathcal{E}^+(A)} \), defined by (1.2), and this space is isometric to its \(R \)-image. The semimetric \(\| \cdot \|_{\mathcal{E}^+(A)} \) is a metric if and only if the kernel \(\kappa \) is strictly positive definite while all \(A_i, i \in I \), are mutually disjoint.

Proof. Fix \(\mu_1, \mu_2 \in \mathcal{E}^+(A) \). Applying Corollary 3.10 to \(\kappa(R\mu_k, R\mu_t) \), \(k, t = 1, 2 \), we get
\[
\| R\mu_1 - R\mu_2 \|_2^2 = \sum_{i,j \in I} \alpha_i \alpha_j \kappa(\mu_i^1 - \mu_2^2, \mu_j^1 - \mu_2^1),
\]
where the series converges absolutely. Compared with (1.2), this relation yields
\[
\| \mu_1 - \mu_2 \|_{\mathcal{E}^+(A)} = \| R\mu_1 - R\mu_2 \|_{\mathcal{E}^+(A)}.
\]
Since \(\| \cdot \|_{\mathcal{E}} \) is a seminorm on \(\mathcal{E} \), the theorem follows.

From now on, \(\mathcal{E}^+(A) \) will always be treated as a semimetric space with the semimetric \(\| \cdot \| := \| \cdot \|_{\mathcal{E}^+(A)} \). Since \(\mathcal{E}^+(A) \) and its \(R \)-image are isometric, similar to the terminology in \(\mathcal{E} \) we shall call the topology on \(\mathcal{E}^+(A) \) strong.

Two elements of \(\mathcal{E}^+(A) \), \(\mu_1 \) and \(\mu_2 \), are said to be equivalent in \(\mathcal{E}^+(A) \) if \(\| \mu_1 - \mu_2 \| = 0 \). Observe that the equivalence in \(\mathcal{E}^+(A) \) implies \(R \)-equivalence (i.e., then \(R\mu_1 = R\mu_2 \)) provided the kernel \(\kappa \) is strictly positive definite, and it implies the identity (i.e., then \(\mu_1 = \mu_2 \)) if, moreover, all \(A_i, i \in I \), are mutually disjoint.

4. Constrained minimal f-weighted energy problem

4.1. Statement of the problem

Consider an external field \(f = (f_i)_{i \in I} \) satisfying Case I or Case II (see the Introduction), and assume each \(f_i \) to affect the charges on \(A_i \) only. The \(f \)-weighted energy \(G^f(\mu) \) of \(\mu \in \mathfrak{m}^+(A) \) is defined by (1.1), and let \(\mathcal{E}^+_f(A) \) consist of all \(\mu \in \mathcal{E}^+(A) \) with \(-\infty < G^f(\mu) < \infty \).

Also fix a nonnegative vector measure \(\sigma \in \mathfrak{m}^+(A) \), called a constraint associated with \(A \), a numerical vector \(a = (a_i)_{i \in I} \) with \(a_i > 0 \), and a vector-valued function \(g = (g_i)_{i \in I} \), where all the \(g_i : X \to (0, \infty) \) are continuous. We define
\[
\mathfrak{m}^+_\sigma(A) := \{ \mu \in \mathfrak{m}^+(A) : \mu \leq \sigma \},
\]
where \(\mu \leq \sigma \) means that \(\sigma^i - \mu^i \geq 0 \) for all \(i \in I \), and

\[
\mathcal{M}_\sigma^+(A, a, g) := \{ \mu \in \mathcal{M}_\sigma^+(A) : \langle g_i, \mu^i \rangle = a_i \quad \text{for all} \quad i \in I \}.
\]

\[
\mathcal{E}_\sigma^+(A, a, g) := \mathcal{M}_\sigma^+(A, a, g) \cap \mathcal{E}^+(A),
\]

\[
\mathcal{E}_{\sigma, f}^+(A, a, g) := \mathcal{M}_\sigma^+(A, a, g) \cap \mathcal{E}^+_{f}(A)
\]

and then we introduce the extremal value

\[
G_f^\sigma(A, a, g) := \inf_{\mu \in \mathcal{E}_{\sigma, f}^+(A, a, g)} G_f(\mu).
\] (4.1)

In (4.1), as usual, the infimum over the empty set is taken to be \(+\infty \).

Problem. Does there exist \(\lambda_A^\sigma \in \mathcal{E}_{\sigma, f}^+(A, a, g) \) with \(G_f(\lambda_A^\sigma) = G_f^\sigma(A, a, g) \)?

Along with its electrostatic interpretation, such a problem has found various important applications in approximation theory (see, e.g., [8, 9, 21]). The problem is called solvable if the class \(\mathcal{E}_{\sigma, f}^+(A, a, g) \) of all the minimizers \(\lambda = \lambda_A^\sigma \) is nonempty.

4.2. On the uniqueness of minimizers

Lemma 4.1. If \(\lambda \) and \(\hat{\lambda} \) belong to \(\mathcal{E}_{\sigma, f}^+(A, a, g) \), then

\[
\| \lambda - \hat{\lambda} \|_{\mathcal{E}^+(A)} = 0.
\] (4.3)

Proof. It follows from the convexity of \(\mathcal{E}^+(A) \) (see Sec. 3.3) that so is \(\mathcal{E}_{\sigma, f}^+(A, a, g) \), which makes it possible to conclude from (4.1), (3.3), and (4.1) that

\[
4G_f^\sigma(A, a, g) \leq 4G_f(\frac{\lambda + \hat{\lambda}}{2}) = \| R\lambda + R\hat{\lambda} \|^2 + 4(f, \lambda + \hat{\lambda}).
\]

On the other hand, applying the parallelogram identity in the pre-Hilbert space \(\mathcal{E} \) to \(R\lambda \) and \(R\hat{\lambda} \) and then adding and subtracting \(4(f, \lambda + \hat{\lambda}) \), we get

\[
\| R\lambda - R\hat{\lambda} \|^2 = \| R\lambda + R\hat{\lambda} \|^2 - 4(f, \lambda + \hat{\lambda}) + 2G_f(\lambda) + 2G_f(\hat{\lambda}).
\]

When combined with the preceding relation, this yields

\[
0 \leq \| R\lambda - R\hat{\lambda} \|^2 \leq -4G_f^\sigma(A, a, g) + 2G_f(\lambda) + 2G_f(\hat{\lambda}) = 0,
\]

which establishes (4.3) because of (4.3).

Thus, any two minimizers (if exist) are equivalent in \(\mathcal{E}^+(A) \). Consequently, they are \(R \)-equivalent if the kernel \(\kappa \) is strictly positive definite, and they are equal if, moreover, all \(A_i \), \(i \in I \), are mutually disjoint.

3See Lemma 5.3 below for necessary and (or) sufficient conditions for (4.2) to hold. Then, actually, \(G_f^\sigma(A, a, g) \) has to be finite (see Corollary 5.3).
5. Elementary properties of \(G_\sigma^T(A, a, g) \)

Before analyzing the existence of minimizers and their continuity, we provide some auxiliary results, to be needed in the sequel. Write

\[
g_{i, \text{inf}} := \inf_{x \in A_i} g_i(x), \quad g_{i, \text{sup}} := \sup_{x \in A_i} g_i(x).
\]

5.1. Monotonicity of \(G_\sigma^T(A, a, g) \)

On the collection of all \((I^+, I^-)\)-condensers in \(X \), it is natural to introduce an ordering relation \(\preceq \) by declaring \(A' \preceq A \) to mean that \(A'_i \subset A_i \) for all \(i \in I \). Here, \(A' = (A'_i)_{i \in I} \). If now \(\sigma \) is a constraint associated with \(A \) and \(\sigma' \) is that associated with \(A' \), then we write \((A', \sigma') \preceq (A, \sigma) \) provided \(A' \preceq A \) and \(\sigma' \preceq \sigma \). Then \(G_\sigma^T(A, a, g) \) is a nonincreasing function of \((A, \sigma)\), namely

\[
G_\sigma^T(A, a, g) \leq G_{\sigma'}^T(A', a, g) \quad \text{whenever} \quad (A', \sigma') \preceq (A, \sigma).
\] (5.1)

We shall employ the technique of exhaustion of \(A \) by compact \(K \). In doing so, we shall need the following notation and elementary lemma.

Given \(A \), let \(\{K\}_A \) stand for the increasing family of all compact condensers \(K = (K_i)_{i \in I} \) such that \(K \preceq A \). For any \(\mu \in \mathfrak{M}^+(A) \) and \(K \in \{K\}_A \), let \(\mu^i_K \) denote the trace of \(\mu^i \) upon \(K_i \), i.e. \(\mu^i_K := \mu^i|_{K_i} \), and let \(\mu_K := (\mu^i_K)_{i \in I} \). Observe that, if \(\sigma \) is a constraint associated with \(A \), then \(\sigma_K := (\sigma^i_K)_{i \in I} \) is that associated with \(K \). We further write \(\bar{\mu}_K := (\bar{\mu}_i)_i \), where

\[
\bar{\mu}_i := \frac{a_i}{\langle g_i, \mu^i_K \rangle} \mu^i_K.
\] (5.2)

Lemma 5.1. Fix \(\mu \in \mathcal{E}^T_\sigma(A, a, g) \). For every \(\varepsilon > 0 \), there exists \(K_0 \in \{K\}_A \) such that, for all \(K \in \{K\}_A \) that follow \(K_0 \),

\[
\bar{\mu}_K \in \mathcal{E}^T_{(1+\varepsilon)\sigma_K}(K, a, g).
\] (5.3)

Proof. Application of [12] Lemma 1.2.2] yields

\[
\langle g_i, \mu^i \rangle = \lim_{K_i \uparrow A} \langle g_i, \mu^i_K \rangle, \quad i \in I, \quad (5.4)
\]

\[
\langle f_i, \mu^i \rangle = \lim_{K_i \uparrow A} \langle f_i, \mu^i_K \rangle, \quad i \in I, \quad (5.5)
\]

\[
\kappa(\mu^i, \mu^j) = \lim_{K_i \uparrow A} \kappa(\mu^i_K, \mu^j_K), \quad i, j \in I. \quad (5.6)
\]

Fix \(\varepsilon > 0 \). By (5.1)–(5.6), for every \(i \in I \) one can choose a compact set \(K^0_i \subset A_i \) so that, for all compact sets \(K_i \) with the property \(K^0_i \subset K_i \subset A_i \),

\[
\frac{a_i}{\langle g_i, \mu^i_K \rangle} < 1 + \varepsilon i^{-2}, \quad (5.7)
\]

\[
\langle f_i, \mu^i \rangle = \langle f_i, \mu^i_K \rangle \quad (5.8)
\]

\[
\|\mu^i\|^2 - \|\mu^i_K\|^2 < \varepsilon^2 i^{-4}. \quad (5.9)
\]
Having denoted $K_0 := (K_0^i)_{i \in I}$, for every $K \in \{K\}_A$ that follows K_0 we get
\[\hat{\mu}_K \in E^+_{(1+\varepsilon)\sigma}(K, a, g), \]
the finiteness of the energy being obtained from (5.2), (5.7), and (5.9) with help of Lemma 3.5. Furthermore, since $\sum_{i \in I} \langle f_i, \mu^i \rangle$ converges absolutely, we conclude from (5.7) and (5.8) that so does $\sum_{i \in I} \langle f_i, \hat{\mu}_K^i \rangle$. This means (5.3) as claimed. □

5.2. It is true that $G_\sigma^a(A, a, g) > -\infty$.

To prove the estimate, announced in the title, we need the following two lemmas.

Lemma 5.2. Let Case II take place, i.e., let $f_i = \alpha_i \kappa(\cdot, \zeta)$ for all $i \in I$, where $\zeta \in E$ is given. Then the classes $E^+(A)$ and $E^+_f(A)$ coincide and, furthermore,
\[G_\sigma^a(f) = \| R \mu + \zeta \| - \| \zeta \|, \]
for all $\mu \in E^+(A)$. (5.10)

Proof. Applying Lemma 3.7 to $\mu \in E^+(A)$ and each of $\kappa(\cdot, \zeta + \lambda)$ and $\kappa(\cdot, \zeta - \lambda)$, we get
\[\langle f, \mu \rangle = \sum_{i \in I} \alpha_i \int \kappa(x, \zeta) \, d\mu_i(x) = \kappa(\zeta, R \mu), \]
where the series converges absolutely. Hence, $\mu \in E^+_f(A)$. Now, substituting (3.3) and (5.11) into (1.1) gives (5.10) as required. □

Lemma 5.3. Consider a condenser $B = (B_\ell)_{\ell \in L}$ in a locally compact space Y, $u = (u_\ell)_{\ell \in L}$ with $u_\ell \in \Phi(Y)$, and $\mathcal{F} \subset M^+(B)$ with the property that
\[\sup_{\omega \in \mathcal{F}} \omega^\ell(Y) < \infty \quad \text{for all} \quad \ell \in L, \]
unless Y is noncompact. Then (u, ω) is well defined for all $\omega \in \mathcal{F}$, and
\[-\infty < \inf_{\omega \in \mathcal{F}} \langle u, \omega \rangle \leq \infty. \]

Proof. We can assume Y to be compact, for if not, then $u_\ell \geq 0$ for all $\ell \in L$ and the lemma is obvious. But then B is to be finite while every u_ℓ, being lower semi-continuous, is bounded from below by $-c_\ell$, where $0 < c_\ell < \infty$. Hence, by (5.12),
\[-\infty < -c_\ell \sup_{\omega \in \mathcal{F}} \omega^\ell(Y) \leq \langle u, \omega \rangle \leq \infty, \]
which in view of the finiteness of L yields the lemma. □

Corollary 5.4. $G_\sigma^a(A, a, g) > -\infty$.

Proof. We can consider Case I, since otherwise the corollary follows from (5.10). Then $f_i \in \Phi(X)$ for all $i \in I$. Furthermore, if X is compact, then $g_{i, \text{inf}} > 0$ and
\[\sup_{\mu \in M^+_\sigma(A, a, g)} \mu_i(X) \leq a_i g_{i, \text{inf}}^{-1} < \infty. \]
By Lemma 5.3
\[-\infty < M_0 \leq \langle f, \mu \rangle \leq \infty \quad \text{for all} \quad \mu \in M^+_\sigma(A, a, g), \]
which together with Corollary 3.9 completes the proof. □
5.3. When does $C^*_f(A, a, g) < \infty$ hold?

Let $C(E) = C_\kappa(E)$ denote the interior capacity of a set $E \subset X$ relative to the kernel κ (see [12]).

The following assertion provides necessary and (or) sufficient conditions for relation (4.2) to hold (or, which is equivalent, for $E^+_{\sigma, f}(A, a, g)$ to be nonempty).

Lemma 5.5. If (4.2) is true, then necessarily

$$C(\{x \in A_i : |f_i(x)| < \infty\}) > 0 \quad \text{for all } i \in I.$$ \hspace{1cm} (5.14)

In the case where

$$\sum_{i \in I} a_i g_{i, \inf}^{-1} < \infty,$$ \hspace{1cm} (5.15)

for (4.2) to hold, it is sufficient that the following conditions be both satisfied:

(a) for every $K \in \{K\}_A$, σ_K has finite energy;

(b) there exists $M \in (0, \infty)$ not depending on i and such that $\langle g_i, \sigma_{A_i} \rangle > a_i$, where $A_i^M := \{x \in A_i : |f_i(x)| \leq M\}, i \in I$.

Proof. To prove the necessity part of the lemma, fix $\mu \in E^+_{\sigma, f}(A, a, g)$; then, by Lemma [5.1] $\hat{\mu}_K$ has finite f-weighted energy provided $K \in \{K\}_A$ is sufficiently large. Suppose, contrary to our claim, that $C(\{x \in A_i : |f_i(x)| < \infty\}) = 0$ for some $i_0 \in I$. Since $\hat{\mu}_K$ has finite energy and is compactly supported in A_{i_0}, [12, Lemma 2.3.1] shows that $|f_{i_0}(x)| = \infty$ holds $\hat{\mu}_K$-almost everywhere ($\hat{\mu}_K$-a.e.) in X. This is impossible, for $\hat{\mu}_K$ is nonzero while $(f, \hat{\mu}_K)$ is finite.

To establish the sufficient part, suppose (5.14), (a), and (b) to be satisfied. Then for every $i \in I$ one can choose a compact set $K_i \subset A_i^M$ so that

$$\langle g_i, \sigma_{K_i} \rangle > a_i,$$ \hspace{1cm} (5.15)

which is seen from (b) due to [12, Lemma 1.2.2]. Having denoted $K := (K_i)_{i \in I}$, we consider the vector measure $\hat{\sigma}_K$ with the components $\hat{\sigma}_K$, defined by (5.2) with σ_K in place of μ_K. It follows from (5.15) that $\hat{\sigma}_K \in E^+_{\sigma, f}(K, a, g)$, the finiteness of the energy being obtained from (a) in view of Lemma [3.5]. Furthermore, since

$$\sum_{i \in I} \langle |f_i|, \hat{\sigma}_K \rangle \leq M \sum_{i \in I} a_i \sigma_{K_i}^0(X) \lesssim M \sum_{i \in I} a_i g_{i, \inf}^{-1},$$

we actually have $\hat{\sigma}_K \in E^+_{\sigma, f}(K, a, g)$ by (5.14), and so $G^*_{f, K}(K, a, g) < \infty$. Since $(K, \sigma_K) \subseteq (A, \sigma)$, this together with (5.1) yields (4.2) as was to be proved. \hfill \square

Remark 5.6. If A is finite, then Lemma [5.5] remains true with (b) replaced by the following assumption: for every $i \in I$, $\langle g_i, \sigma^i \rangle > a_i$ while $|f_i| \neq \infty$ locally σ^i-a.e. (see [25, Lemma 4]).
6. Main results

From now on, (4.2) is always assumed to hold. Observe that, according to Corollary 5.4, \(G_{\sigma} f (A, a, g) \) is then actually finite.

Suppose for a moment that the condenser \(A \) is compact. Then the class \(M_{\sigma}^+ (A, a, g) \) is vaguely bounded and closed and hence, by Lemma 3.2, it is vaguely compact. If, moreover, \(A \) is finite, \(\kappa \) is continuous on \(A^+ \times A^- \), and Case I holds, then \(G_{f} (\mu) \) is vaguely lower semicontinuous on \(E_f^+ (A) \) and, therefore, the existence of minimizers \(\lambda_{\sigma}^A \) immediately follows (cf. [14, 19, 20, 22]).

However, these arguments break down if any of the above-mentioned four assumptions is dropped, and then the problem on the existence of minimizers \(\lambda_{\sigma}^A \) becomes rather nontrivial. In particular, \(M_{\sigma}^+ (A, a, g) \) is no longer vaguely compact if any of the \(A_i \) is noncompact. Another difficulty is that \(G_{f} (\mu) \) might not be vaguely lower semicontinuous on \(E_f^+ (A) \) when Case II takes place.

To solve the problem on the existence of minimizers \(\lambda_{\sigma}^A \) in the general case, we develop an approach based on both the vague and strong topologies in the semimetric space \(E_f^+ (A) \), introduced for vector measures of finite dimensions in [25, 26, 28]. For \(I = \{1\} \), see also [27] (compare with [8, 9, 21]).

6.1. Standing assumptions

In addition to (4.2), in all that follows it is always required that the kernel \(\kappa \) is consistent and either \(I^- = \emptyset \), or there hold (5.14) and the following condition:

\[
\sup_{x \in A^+, y \in A^-} \kappa (x, y) < \infty.
\] (6.1)

Remark 6.1. Note that these assumptions on a kernel are not too restrictive. In particular, they all are satisfied by the Newtonian, Riesz, or Green kernels in \(\mathbb{R}^n \), \(n \geq 2 \), provided the Euclidean distance between \(A^+ \) and \(A^- \) is nonzero, as well as by the restriction of the logarithmic kernel in \(\mathbb{R}^2 \) to the open unit disk.

6.2. Minimizers: existence and vague compactness

A proposition \(u(x) \) involving a variable point \(x \in X \) is said to subsist nearly everywhere (n.e.) in \(E \), where \(E \subset X \), if the set of all \(x \in E \) for which \(u \) fails to hold is of interior capacity zero.

Theorem 6.2. Under the standing assumptions, suppose, moreover, for every \(i \in I \) the following (a)–(c) to hold:

(a) Either \(g_{i, \text{inf}} > 0 \) or \(A_i \) can be written as a countable union of compact sets;
(b) Either \(g_{i, \text{sup}} < \infty \) or there exist \(r_i \in (1, \infty) \) and \(\tau_i \in \mathcal{E} \) with the property

\[
g_{i, r_i} (x) \leq \kappa (x, \tau_i) \quad \text{n.e. in } A_i;
\] (6.2)
(c) \(A_i \) either is compact or has finite interior capacity.

Then, for any \(\sigma, f, \) and \(a, G_f^\sigma (A, a, g) \) is nonempty and vaguely compact.
Remark 6.3. If I^- is nonempty, then condition (a) follows immediately from (5.14) and, hence, it can be omitted. It also holds automatically if the space X is countable at infinity (e.g., for $X = \mathbb{R}^n$).

Remark 6.4. Regarding condition (c), note that a compact set $K \subset X$ might be of infinite capacity; $C(K)$ is necessarily finite provided the kernel is strictly positive definite [12]. On the other hand, even for the Newtonian kernel, sets of finite capacity might be noncompact [17].

Remark 6.5. Condition (c) is essential for the validity of Theorem 6.2. See Sec. 12 for some examples, illustrating its sharpness.

Corollary 6.6. If $A = K$ is compact, then, for any σ, f, g, and a, $\mathcal{G}_f^\sigma(A, a, g)$ is nonempty and vaguely compact.

Proof. This is an immediate consequence of Theorem 6.2 since g_i is bounded on K_i. \qed

6.3. On continuity of $G_f^\sigma(A, a, g)$ and λ_A^σ with respect to (A, σ)

We write $A_s \downarrow A$, where $A_s = (A_i^s)_{i \in I}$, $s \in S$, is a net of condensers, if $A_{s_2} \leq A_{s_1}$ whenever $s_1 \leq s_2$ and

$$\bigcap_{s \in S} A_i^s = A_i \quad \text{for all } i \in I.$$

Theorem 6.7. Let $A_s \downarrow A$, and let for some $s_0 \in S$ all the assumptions of Theorem 6.2 with A_{s_0} instead of A be satisfied. Let σ_s be a constraint associated with A_s, and let $(\sigma_s)_{s \in S}$ decrease and converge vaguely to σ. Then

$$G_f^\sigma(A, a, g) = \lim_{s \in S} G_f^{\sigma_s}(A_s, a, g).$$

Fix arbitrary $\lambda_A^{\sigma_s} \in \mathcal{G}_f^{\sigma_s}(A_s, a, g)$, where $s \geq s_0$, and $\lambda_A^\sigma \in \mathcal{G}_f^\sigma(A, a, g)$ — such minimizers exist. Then every vague cluster point of the net $(\lambda_A^{\sigma_s})_{s \in S}$ is an element of $\mathcal{G}_f^\sigma(A, a, g)$. Furthermore, $\lambda_A^{\sigma_s} \to \lambda_A^\sigma$ strongly, i.e.

$$\lim_{s \in S} \|\lambda_A^{\sigma_s} - \lambda_A^\sigma\|_{\mathcal{E}^+(A_{s_0})} = 0.$$

Corollary 6.8. Under the assumptions of Theorem 6.7, if, moreover, the kernel κ is strictly positive definite (hence, perfect) and all $A_i^{s_0}$, $i \in I$, are mutually disjoint, then the (unique) minimizer $\lambda_A^{\sigma_s} \in \mathcal{G}_f^{\sigma_s}(A_s, a, g)$, where $s \geq s_0$, approaches the (unique) minimizer $\lambda_A^\sigma \in \mathcal{G}_f^\sigma(A, a, g)$ both vaguely and strongly.

In the rest of Sec. 6.3 let A and g satisfy all the conditions of Theorem 6.2. We proceed by analyzing continuity properties of $G_f^\sigma(A, a, g)$ and λ_A^σ under exhaustion of A by compact K.

4 Including the standing ones.
Theorem 6.9. There exists a net $(\beta_K)_{K \in \{K\}_A} \subset (1, \infty)$ decreasing to 1 and such that, for any $\beta_K \in [1, \beta_K^*]$,
\[
G_f^\sigma(A, a, g) = \lim_{K \uparrow A} G_f^{\beta_K \sigma_K}(K, a, g),
\]
(6.3)
where $\sigma_K : = (\sigma_K^i)_{i \in I}$. Fix arbitrary $\lambda_K^{\beta_K \sigma_K} \in \mathcal{S}_f^{\beta_K \sigma_K}(K, a, g)$, where $K \in \{K\}_A$ is sufficiently large, and $\lambda_A^\sigma \in \mathcal{S}_f^\sigma(A, a, g)$ — such minimizers exist. Then every vague cluster point of the net $(\lambda_K^{\beta_K \sigma_K})_{K \in \{K\}_A}$ is an element of $\mathcal{S}_f^\sigma(A, a, g)$. Furthermore, $\lambda_K^{\beta_K \sigma_K} \to \lambda_A^\sigma$ strongly, i.e.
\[
\lim_{K \uparrow A} \|\lambda_K^{\beta_K \sigma_K} - \lambda_A^\sigma\|_{\mathcal{E}_+^\sigma(A)} = 0.
\]

Corollary 6.10. With the notation of Theorem 6.9, if the kernel κ is strictly positive definite (hence, perfect) and all A_i, $i \in I$, are mutually disjoint, then the (unique) minimizer $\lambda_K^{\beta_K \sigma_K} \in \mathcal{S}_f^{\beta_K \sigma_K}(K, a, g)$, where $K \in \{K\}_A$, approaches the (unique) minimizer $\lambda_A^\sigma \in \mathcal{S}_f^\sigma(A, a, g)$ both vaguely and strongly.

Remark 6.11. The value $G_f^\sigma(A, a, g)$ remains unchanged if $\mathcal{E}_+^\sigma(A, a, g)$ in its definition is replaced by the class of all $\mu \in \mathcal{E}_+^\sigma(A, a, g)$ such that supp μ^i, $i \in I$, are compact. Indeed, this is concluded from (6.3) with $\beta_K = 1$ for all $K \in \{K\}_A$.

The proofs of Theorems 6.2, 6.7 and 6.9 to be given in Sections 9, 10 and 11 below (see also Sec. 8 for some crucial auxiliary notions and results), are based on a theorem on the strong completeness of proper subspaces of the semimetric space $\mathcal{E}_+^\sigma(A)$, which is a subject of Sec. 7.

7. Strong completeness of classes of vector measures

Recall that we are working under the standing assumptions, stated in Sec. 6.1

Write
\[
\mathcal{M}^+(A, \leq a, g) := \{ \mu \in \mathcal{M}^+(A) : \langle g_i, \mu^i \rangle \leq a \text{ for all } i \in I \},
\]
\[
\mathcal{M}^+_{\sigma}(A, \leq a, g) := \mathcal{M}^+(A, \leq a, g) \cap \mathcal{M}^+_{\sigma}(A),
\]
\[
\mathcal{E}^+(A, \leq a, g) := \mathcal{M}^+(A, \leq a, g) \cap \mathcal{E}^+(A),
\]
and
\[
\mathcal{E}^+_{\sigma}(A, \leq a, g) := \mathcal{E}^+(A, \leq a, g) \cap \mathcal{M}^+_{\sigma}(A).
\]

Our next purpose is to show that $\mathcal{E}^+(A, \leq a, g)$ and $\mathcal{E}^+_{\sigma}(A, \leq a, g)$, treated as topological subspaces of the semimetric space $\mathcal{E}^+(A)$, are strongly complete.
7.1. Auxiliary assertions

Lemma 7.1. \(\mathcal{M}^+(A, \leq a, g) \) and \(\mathcal{M}^σ(A, \leq a, g) \) are vaguely bounded and, hence, they are vaguely compact.

Proof. Fix \(i \in I \), and let a compact set \(K_i \subset A_i \) be given. Since \(g_i \) is positive and continuous, the relation

\[
a_i \geq \langle g_i, \mu^i \rangle \geq \mu^i(K_i) \min_{x \in K_i} g_i(x), \quad \text{where } \mu \in \mathcal{M}^+(A, \leq a, g),
\]

yields

\[
\sup_{\mu \in \mathcal{M}^+(A, \leq a, g)} \mu^i(K_i) < \infty.
\]

This implies that \(\mathcal{M}^+(A, \leq a, g) \) is vaguely bounded; hence, by Lemma 3.2, it is vaguely relatively compact. In fact, it is vaguely compact, since it is vaguely closed as well. We proceed by showing that so are \(\langle g_i, \mu^i \rangle \) vaguely relatively compact. In fact, it is vaguely compact, since it is vaguely closed as well, which completes the proof. \(\square \)

Lemma 7.2. If a net \((\mu_s)_{s \in S} \subset \mathcal{E}^+(A, \leq a, g) \) is strongly bounded, then every its vague cluster point \(\mu \) has finite energy.

Proof. Note that, by (3.3), the net of scalar measures \((\mu_v) \) is vaguely bounded as well. We proceed by showing that so are \((R\mu^+_{s})_{s \in S} \) and \((R\mu^-_{s})_{s \in S} \), i.e.,

\[
\sup_{s \in S} \|R\mu^+_{s}\| < \infty. \tag{7.1}
\]

Of course, this needs to be verified only when \(I^- \neq \emptyset \); then, according to the standing assumptions, (6.14) and (6.1) hold. Since \(\langle g_i, \mu^i \rangle \leq a_i \), we conclude that \(\mu^i_s(X) \leq a_i g_i^{-1} \) for all \(i \in I \) and \(s \in S \). Therefore, by (5.14),

\[
\sup_{s \in S} R\mu^+_{s}(X) \leq \sum_{i \in I} a_i g_i^{-1} < \infty.
\]

Because of (6.1), this implies that \(\kappa(R\mu^+_{s}, R\mu^-_{s}) \) remains bounded from above on \(S \); hence, so do \(\|R\mu^+_{s}\|^2 \) and \(\|R\mu^-_{s}\|^2 \).

If \((\mu_d)_{d \in D} \) is a subnet of \((\mu_s)_{s \in S} \) that converges vaguely to \(\mu \), then \((R\mu^+_{d})_{d \in D} \) and \((R\mu^-_{d})_{d \in D} \) converge vaguely to \(R\mu^+ \) and \(R\mu^- \), respectively. Using the fact that the map \(\nu \in X \) → \(\nu_{1} \otimes \nu_{2} \) from \(\mathcal{M}^+(X) \times \mathcal{M}^+(X) \) into \(\mathcal{M}^+(X \times X) \) is vaguely continuous (see [2], Chap. 3, §5, exerc. 5)] and applying Lemma 3.2 to \(Y = X \times X \) and \(\psi = \kappa \), we conclude from (7.1) that \(R\mu^+ \) and \(R\mu^- \) are both of finite energy. By Corollary 3.3, this means \(\mu \in \mathcal{E}^+(A) \), as was to be proved. \(\square \)

Corollary 7.3. If a net \((\mu_s)_{s \in S} \subset \mathcal{E}^+(A, \leq a, g) \) is strongly bounded, then

\[
\sup_{s \in S} \|\mu^i_{s}\|^2 < \infty, \quad i \in I. \tag{7.2}
\]
Proof. As an application of Lemma 5.3 we obtain
\[\inf_{s \in S} \sum_{i \neq j, i, j \in I^\pm} \langle \kappa, \mu_s^i \otimes \mu_s^j \rangle > -\infty. \]
When combined with (5.4) and (7.1), this yields the corollary. \(\square \)

7.2. Strong completeness of \(\mathcal{E}^+(A, \leq a, g) \) and \(\mathcal{E}_R^+(A, \leq a, g) \)

Theorem 7.4. The following assertions hold:

(i) The semimetric space \(\mathcal{E}^+(A, \leq a, g) \) is complete. In more detail, if \((\mu_s)_{s \in S} \) is a strong Cauchy net in \(\mathcal{E}^+(A, \leq a, g) \) and \(\mu \) is one of its vague cluster points (such a \(\mu \) exists), then \(\mu \in \mathcal{E}^+(A, \leq a, g) \) and \(\mu_s \to \mu \) strongly, i.e.
\[\lim_{s \in S} \| \mu_s - \mu \|_{\mathcal{E}^+(A)} = 0. \] (7.3)

(ii) If the kernel \(\kappa \) is strictly positive definite while all \(A_i, i \in I, \) are mutually disjoint, then the strong topology on \(\mathcal{E}^+(A, \leq a, g) \) is finer than the vague one. In more detail, if \((\mu_s)_{s \in S} \subset \mathcal{E}^+(A, \leq a, g) \) converges strongly to \(\mu_0 \in \mathcal{E}^+(A) \), then actually \(\mu_0 \in \mathcal{E}^+(A, \leq a, g) \) and \(\mu_s \to \mu_0 \) vaguely.

(iii) Both the assertions (i) and (ii) remain valid if \(\mathcal{E}^+(A, \leq a, g) \) is replaced everywhere by \(\mathcal{E}_R^+(A, \leq a, g) \).

Proof. To verify (i), fix a strong Cauchy net \((\mu_s)_{s \in S} \subset \mathcal{E}^+(A, \leq a, g) \). Since such a net converges strongly to any of its strong cluster points, \((\mu_s)_{s \in S} \) can be assumed to be strongly bounded. Then, by Lemmas 7.1 and 7.2 a vague cluster point \(\mu \) of \((\mu_s)_{s \in S} \) exists and, moreover,
\[\mu \in \mathcal{E}^+(A, \leq a, g). \] (7.4)

We next proceed by proving (7.4). Of course, there is no loss of generality in assuming \((\mu_s)_{s \in S} \) to converge vaguely to \(\mu \). Then, by Lemma 3.3 \((R\mu_s^+)_{s \in S} \) and \((R\mu_s^-)_{s \in S} \) converge vaguely to \(R\mu^+ \) and \(R\mu^- \), respectively. Since, by (7.1), these nets are strongly bounded in \(\mathcal{E}^+ \), the property (C2) (see Sec. 2) shows that they approach \(R\mu^+ \) and \(R\mu^- \), respectively, in the weak topology as well, and so \(R\mu_s \to R\mu \) weakly. This gives, by (7.3),
\[\| \mu_s - \mu \|^2 = \| R\mu_s - R\mu \|^2 = \lim_{t \in S} \kappa(\mu_s - \mu, R\mu_s - R\mu_t) \]
and hence, by the Cauchy–Schwarz inequality,
\[\| \mu_s - \mu \|^2 \leq \| \mu_s - \mu \| \lim \inf_{t \in S} \| \mu_s - \mu_t \|, \]
which proves (7.3) as required, because \(\| \mu_s - \mu_t \| \) becomes arbitrarily small when \(s, t \in S \) are sufficiently large. The proof of (i) is complete.

To establish (ii), suppose now that the kernel \(\kappa \) is strictly positive definite, while all \(A_i, i \in I, \) are mutually disjoint, and let the net \((\mu_s)_{s \in S} \) converge strongly to some \(\mu_0 \in \mathcal{E}^+(A) \). Given a vague limit point \(\mu \) of \((\mu_s)_{s \in S} \), we conclude from (7.3) that \(\| \mu_s - \mu \| \to 0 \), hence \(R\mu_0 = R\mu \) since \(\kappa \) is strictly positive definite, and finally \(\mu_0 = \mu \) because \(A_i, i \in I, \) are mutually disjoint. In view of (7.4), this
means that $\mu_0 \in \mathcal{E}^+(A, \leq a, g)$, which is a part of the desired conclusion. Moreover, μ_0 has thus been shown to be identical to any vague cluster point of $(\mu_s)_{s \in S}$. Since the vague topology is Hausdorff, this implies that μ_0 is actually the vague limit of $(\mu_s)_{s \in S}$ (cf. [1] Chap. I, § 9, n° 1, cor.), as claimed.

Finally, we observe that all the arguments applied above remain valid if $\mathcal{E}^+(A, \leq a, g)$ is replaced everywhere by $\mathcal{E}_+^+(A, \leq a, g)$. This yields (iii).

Remark 7.5. Since the semimetric spaces $\mathcal{E}^+(A, \leq a, g)$ and $\mathcal{E}_+^+(A, \leq a, g)$ are isometric to their R-images, Theorem 7.4 has thus singled out strongly complete topological subspaces of the pre-Hilbert space \mathcal{E}, whose elements are signed measures. This is of independent interest because, according to a well-known counterexample by H. Cartan [5], the whole space \mathcal{E} is strongly incomplete even for the Newtonian kernel $|x - y|^2 - n$ in \mathbb{R}^n, $n \geq 3$.

8. Extremal measures in the constrained energy problem

To apply Theorem 7.4 to the constrained energy problem, we next proceed by introducing the concept of extremal measure defined as a strong and, simultaneously, a vague limit point of a minimizing net. See below for strict definitions and related auxiliary results.

8.1. Extremal measures: existence, uniqueness, and vague compactness

Definition 8.1. We call a net $(\mu_s)_{s \in S}$ minimizing if $(\mu_s)_{s \in S} \subset \mathcal{E}_+^+(A, a, g)$ and

$$\lim_{s \in S} G_f(\mu_s) = G_f^+ (A, a, g).$$

(8.1)

Let $\mathcal{M}_f^+(A, a, g)$ consist of all minimizing nets, and let $\mathcal{M}_f^+(A, a, g)$ be the union of the vague cluster sets of $(\mu_s)_{s \in S}$, where $(\mu_s)_{s \in S}$ ranges over $\mathcal{M}_f^+(A, a, g)$.

Definition 8.2. We call $\gamma \in \mathcal{E}^+(A)$ extremal if there exists $(\mu_s)_{s \in S} \in \mathcal{M}_f^+(A, a, g)$ that converges to γ both strongly and vaguely; such a net $(\mu_s)_{s \in S}$ is said to generate γ. The class of all extremal measures will be denoted by $\mathcal{E}_f^+(A, a, g)$.

Lemma 8.3. The following assertions hold true:

(i) From every minimizing net one can select a subnet generating an extremal measure; hence, $\mathcal{E}_f^+(A, a, g)$ is nonempty. Furthermore,

$$\mathcal{E}_f^+(A, a, g) \subset \mathcal{E}_+^+(A, \leq a, g)$$

and

$$\mathcal{E}_f^+(A, a, g) = \mathcal{M}_f^+(A, a, g).$$

(8.2)

(ii) Every minimizing net converges strongly to every extremal measure; hence, $\mathcal{E}_f^+(A, a, g)$ is contained in an equivalence class in $\mathcal{E}^+(A)$.

(iii) The class $\mathcal{E}_f^+(A, a, g)$ is vaguely compact.
Proof. Fix \((\mu_s)_{s \in S}\) and \((\nu_t)_{t \in T}\) in \(M^*_T(A, a, g)\). Then
\[
\lim_{(s,t) \in S \times T} \|\mu_s - \nu_t\|^2 = 0, \quad (8.4)
\]
where \(S \times T\) is the directed product (see, e.g., [16, Chap. 2, § 3]) of the directed sets \(S\) and \(T\). Indeed, in the same manner as in the proof of Lemma [4], we get
\[
0 \leq \| R \mu_s - R \nu_t \|^2 \leq -4G^*_T(A, a, g) + 2G_T(\mu_s) + 2G_T(\nu_t),
\]
which yields (8.4) when combined with (8.1).

Relation (8.4) implies that \((\mu_s)_{s \in S}\) is strongly fundamental. Therefore, by Theorem [7.4] (iii), for every vague cluster point \(\mu\) of \((\mu_s)_{s \in S}\) (such a \(\mu\) exists) we have \(\mu \in E^*_\sigma(A, \leq a, g)\) and \(\mu_s \to \mu\) strongly. Thus, \(\mu\) is an extremal measure; actually,
\[
M^*_T(A, a, g) \subset E^*_T(A, a, g).
\]
Since the inverse inclusion is obvious, relations (8.2) and (8.3) follow.

Having thus proved (i), we proceed by verifying (ii). Fix arbitrary \((\mu_s)_{s \in S} \in M^*_T(A, a, g)\) and \(\gamma \in E^*_T(A, a, g)\). Then, according to Definition (8.2), there exists a net in \(M^*_T(A, a, g)\), say \((\nu_t)_{t \in T}\), that converges to \(\gamma\) strongly. Repeated application of (8.1) shows that also \((\mu_s)_{s \in S}\) converges to \(\gamma\) strongly, as claimed.

To establish (iii), it is enough to prove that \(M^*_T(A, a, g)\) is vaguely compact. Fix \((\gamma_s)_{s \in S} \subset M^*_T(A, a, g)\). It follows from (8.2) and Lemma 7.1 that there exists a vague cluster point \(\gamma_0\) of \((\gamma_s)_{s \in S}\); let \((\gamma_t)_{t \in T}\) be a subnet of \((\gamma_s)_{s \in S}\) that converges vaguely to \(\gamma_0\). Then for every \(t \in T\), one can choose \((\mu_{s_t})_{s_t \in S_t} \in M^*_T(A, a, g)\) converging vaguely to \(\gamma_t\). Consider the Cartesian product \(\prod \{S_t : t \in T\}\) — that is, the collection of all functions \(\beta\) on \(T\) with \(\beta(t) \in S_t\), and let \(D\) denote the directed product \(T \times \prod \{S_t : t \in T\}\). Given \((t, \beta) \in D\), write \(\mu_{(t,\beta)} := \mu_{\beta(t)}\). Then the theorem on iterated limits from [16] Chap. 2, § 4] yields that the net \((\mu_{(t,\beta)})_{(t,\beta) \in D}\) belongs to \(M^*_T(A, a, g)\) and converges vaguely to \(\gamma_0\). Thus, \(\gamma_0 \in M^*_T(A, a, g)\). □

Corollary 8.4. If Case II takes place, then
\[
G_T(\gamma) = G^*_T(A, a, g) \quad \text{for all } \gamma \in E^*_T(A, a, g). \quad (8.5)
\]

Proof. Applying (5.10) to \(\mu_s, s \in S\), and \(\gamma\), where \((\mu_s)_{s \in S} \in M^*_T(A, a, g)\) and \(\gamma \in E^*_T(A, a, g)\) are arbitrarily given, and using the fact that, in accordance with Lemma 8.3, \(\mu_s \to \gamma\) strongly, we get
\[
G_T(\gamma) = \| R \gamma + \zeta \|^2 - \| \zeta \|^2 = \lim_{s \in S} \| R \mu_s + \zeta \|^2 = \lim_{s \in S} G_T(\mu_s).
\]
Substituting (8.1) into the last relation gives (8.5), as desired. □

8.2. Extremal measures: \(g_i\)-masses of the \(i\)-components

Lemma 8.5. Let \(\kappa, A, a\), and \(g\) satisfy all the assumptions (a)–(c) of Theorem 6.2 and let a net \((\mu_s)_{s \in S} \subset E^+(A)\) be strongly bounded and converge vaguely to \(\mu_0\). If, moreover, \((g_i, \mu_s^i) = a_i\) for all \(s \in S\) and \(i \in I\), then
\[
(g, \mu_s) = a_i \quad \text{for all } i \in I. \quad (8.6)
\]
Proof. Fix $i \in I$. By Corollary 7.3, the net $(\mu^i_s)_{s \in S}$ is strongly bounded as well.

Also note that A_i can be written as a countable union of μ^i_s-integrable sets, where $s \in S$ is given. Indeed, this is obvious if A_i is a countable union of compact sets; otherwise, due to condition (a) of Theorem 6.2, we have $g_{i,\inf} > 0$ and hence $\mu^i_s(A_i) \leq a_i g_{i,\inf} < \infty$. Therefore, the concept of local μ^i_s-negligibility and that of μ^i_s-negligibility coincide. Together with [12, Lemma 2.3.1], this yields that any proposition holds μ^i_s-a.e. in X provided it holds n.e. in A_i.

We proceed by establishing (8.3). Of course, this needs to be done only if the set A_i is noncompact; then, by condition (c), its capacity has to be finite. Hence, by [12, Th. 4.1], for every $E \subset A_i$ there exists a measure $\theta_E \in \mathcal{E}^{+}(B)$, called an interior equilibrium measure associated with E, which admits the properties

$$\theta_E(X) = \|\theta_E\|^{2} = C(E),$$

(8.7)

$$\kappa(x, \theta_E) \geq 1 \text{ n.e. in } E.$$

(8.8)

Also observe that there is no loss of generality in assuming g_i to satisfy (6.2) with some $r_i \in (1, \infty)$ and $\tau_i \in \mathcal{G}$. Indeed, otherwise, due to condition (b) of Theorem 6.2, g_i has to be bounded from above (say by M), which combined with (8.3) again gives (6.2) for $\tau_i := M^{\tau_i} \theta_{A_i}$, $r_i \in (1, \infty)$ being arbitrary.

We treat A_i as a locally compact space with the topology induced from X. Given $E \subset A_i$, let χ_{E} denote its characteristic function and let $E^{\complement} := A_i \setminus E$. Further, let $\{K_i\}$ be the increasing family of all compact subsets K_i of A_i. Since $g_i \chi_{K_i}$ is upper semicontinuous on A_i, while $(\mu^i_s)_{s \in S}$ converges to μ_0^i vaguely, from Lemma 3.6 we get

$$\langle g_i \chi_{K_i}, \mu^i_0 \rangle \geq \limsup_{s \in S} \langle g_i \chi_{K_i}, \mu^i_s \rangle \quad \text{for every } K_i \in \{K_i\}.$$

On the other hand, application of Lemma 1.2.2 from [12] yields

$$\langle g_i, \mu^i_0 \rangle = \lim_{K_i \in \{K_i\}} \langle g_i \chi_{K_i}, \mu^i_0 \rangle.$$

Combining the last two relations, we obtain

$$a_i \geq \langle g_i, \mu^i_0 \rangle \geq \limsup_{(s, K_i) \in S \times \{K_i\}} \langle g_i \chi_{K_i}, \mu^i_s \rangle = a_i - \liminf_{(s, K_i) \in S \times \{K_i\}} \langle g_i \chi_{K_i}, \mu^i_s \rangle,$$

$S \times \{K_i\}$ being the directed product of the directed sets S and $\{K_i\}$. Hence, if we prove

$$\liminf_{(s, K_i) \in S \times \{K_i\}} \langle g_i \chi_{K_i}, \mu^i_s \rangle = 0,$$

(8.9)

the desired relation (8.3) follows.

Consider an interior equilibrium measure θ_{K_i}, where $K_i \in \{K_i\}$ is given. Then application of Lemma 4.1.1 and Theorem 4.1 from [12] shows that

$$\|\theta_{K_i} - \theta_{K_i}^{\tau_i}\|^{2} \leq \|\theta_{K_i}^{\tau_i}\|^{2} - \|\theta_{K_i}^{\tau_i}\|^{2} \quad \text{provided } K_i \subset \bar{K}_i.$$

Furthermore, it is clear from (8.7) that the net $\|\theta_{K_i}^{\tau_i}\|$, $K_i \in \{K_i\}$, is bounded and nonincreasing, and hence fundamental in \mathbb{R}. The preceding inequality thus yields that the net $(\theta_{K_i}^{\tau_i})_{K_i \in \{K_i\}}$ is strongly fundamental in \mathcal{E}. Since, clearly, it converges
vaguely to zero, the property (C1) (see Sec. 2) implies that zero is also one of its strong limits and, hence,
\[\lim_{K_i \in \mathcal{K}} \| \theta_{K_i} \| = 0. \] (8.10)

Write \(q_i := r_i (r_i - 1)^{-1} \), where \(r_i \in (1, \infty) \) is the number involved in condition (6.2). Combining (6.2) with (8.8) shows that the inequality
\[g_i (x) \chi_{K_i^c} (x) \leq \kappa (x, \tau_i)^{1/r_i} \kappa (x, \theta_{K_i})^{1/q_i} \]
subsists n.e. in \(A_i \) and, hence, \(\mu_i^s \)-a.e. in \(X \). Having integrated this relation with respect to \(\mu_i^s \), we then apply the Hölder and, subsequently, the Cauchy–Schwarz inequalities to the integrals on the right. This gives
\[\langle g_i \chi_{K_i^c}, \mu_i^s \rangle \leq \left[\int \kappa (x, \tau_i) d\mu_i^s (x) \right]^{1/r_i} \left[\int \kappa (x, \theta_{K_i}) d\mu_i^s (x) \right]^{1/q_i} \]
Taking limits here along \(S \times \{ K \} \) and using (7.2) and (8.10), we obtain (8.9) as desired. \(\Box \)

Corollary 8.6. Under the assumptions of Theorem 6.2, we have
\[E_{\sigma f} (A, a, g) \subset E_{\sigma}^+ (A, a, g). \] (8.11)

Proof. Fix \(\gamma \in E_{\sigma f} (A, a, g) \); then there exists a net \((\mu_s)_{s \in S} \subset M_{\sigma f} (A, a, g) \) converging to \(\gamma \) both strongly and vaguely. Taking a subnet if necessary, we assume \((\mu_s)_{s \in S} \) to be strongly bounded. Then, by Lemma 8.5, \(\langle g_i, \gamma_i \rangle = a_i \) for all \(i \in I \), which together with (8.2) gives (8.11). \(\Box \)

9. Proof of Theorem 6.2

Fix an extremal measure \(\gamma \in E_{\sigma f} (A, a, g) \) — it exists by Lemma 8.3 (i), and choose a net \((\mu_s)_{s \in S} \subset M_{\sigma f} (A, a, g) \) that converges to \(\gamma \) both strongly and vaguely. We are going to show that \(\gamma \) is a minimizer, i.e.
\[\gamma \in E_{\sigma f} (A, a, g). \] (9.1)

According to Corollary 8.4, we have \(\gamma \in E_{\sigma f}^+ (A, a, g) \). Hence, (9.1) will be established once we prove that \(\sum_{i \in I} \langle f_i, \gamma_i \rangle \) converges absolutely, so that
\[\gamma \in E_{\sigma f}^+ (A, a, g), \] (9.2)
and
\[G_f (\gamma) \leq G_f^+ (A, a, g). \] (9.3)

To this end, assume Case I to hold, since otherwise (9.2) and (9.3) have already been established by Lemma 5.2 and Corollary 8.4 respectively. Then, in consequence of Lemma 5.3 (see (5.13) with \(\mu = \gamma \)), \(\langle f, \gamma \rangle \) is well defined and
\[\langle f, \gamma \rangle > -\infty. \] (9.4)
Besides, from the strong and vague convergence of \((\mu_s)_{s \in S}\) to \(\gamma\) we obtain

\[G^\mathbb{F}_t(A, a, g) = \lim_{s \to \infty} \left[\|\mu_s\|^2 + 2\langle f, \mu_s \rangle \right] = \|\gamma\|^2 + 2 \lim_{s \to \infty} \langle f, \mu_s \rangle \quad (9.5) \]

(Consequently, \(\lim_{s \to \infty} \langle f, \mu_s \rangle\) exists and is finite) and

\[\langle f, \gamma \rangle = \sum_{i \in I} \langle f_i, \gamma_i \rangle \leq \sum_{i \in I} \liminf_{s \to \infty} \langle f_i, \mu_s^i \rangle \leq \lim_{s \to \infty} \sum_{i \in I} \langle f_i, \mu_s^i \rangle = \lim_{s \to \infty} \langle f, \mu_s \rangle < \infty. \quad (9.6) \]

Combining (9.4) and (9.6) proves (9.2), while substituting (9.6) into (9.5) gives (9.3), and the required inclusion (9.1) follows.

It has thus been proved that \(\mathcal{E}_F^\mathbb{F}(A, a, g) \subset \mathcal{E}_F^\mathbb{F}(A, a, g)\). This inclusion can certainly be inverted, since any minimizer \(\lambda^{\mathbb{F}}_A\) can be thought as an extremal measure generated by the constant net \((\lambda^{\mathbb{F}}_A)\). On account of (8.3), we get

\[\mathcal{E}_F^\mathbb{F}(A, a, g) = \mathcal{E}_F^\mathbb{F}(A, a, g) = \mathcal{M}_F(A, a, g). \]

Therefore Lemma 8.3 shows that \(\mathcal{E}_F^\mathbb{F}(A, a, g)\) is vaguely compact. The proof is complete. \(\square\)

10. Proof of Theorem 6.7

It is seen from (4.2), (5.1) and Corollary 5.4 that, under the assumptions of the theorem, \(G^\mathbb{F}_t(A, a, g)\) increases as \(s\) ranges through \(S\) and

\[-\infty < \lim_{s \to \infty} G^\mathbb{F}_t(A, a, g) \leq G^\mathbb{F}_t(A, a, g) < \infty. \]

Besides, in accordance with Theorem 6.2 for every \(s \geq s_0\) there is a minimizer \(\lambda_s := \lambda^{\mathbb{F}}_A(s, a, g)\). Therefore, \(\lim_{s \to \infty} G^\mathbb{F}_t(\lambda_s)\) exists and

\[-\infty < \lim_{s \to \infty} G^\mathbb{F}_t(\lambda_s) \leq G^\mathbb{F}_t(A, a, g) < \infty. \quad (10.1) \]

Also observe that, since \(A_s\) and \(\sigma_s\) decrease along \(S\), it is true that

\[\lambda_s \in \mathcal{E}^\mathbb{F}_{a, t}(A, a, g) \quad \text{for all} \quad s \geq \ell \geq s_0. \]

We proceed by showing that

\[\|\lambda_{s_2} - \lambda_{s_1}\|^2 \leq G^\mathbb{F}_t(\lambda_{s_2}) - G^\mathbb{F}_t(\lambda_{s_1}) \quad (10.2) \]

whenever \(s_0 \leq s_1 \leq s_2\). For every \(t \in (0, 1)\), \(\mu := (1 - t)\lambda_{s_1} + t\lambda_{s_2}\) belongs to the class \(\mathcal{E}^\mathbb{F}_{a, t}(A, a, g)\), and therefore \(G^\mathbb{F}_t(\mu) \geq G^\mathbb{F}_t(\lambda_{s_1})\). Evaluating the left-hand side of this inequality and then letting \(t \to 0\), we get

\[-\|\lambda_{s_1}\|^2 + \kappa(\lambda_{s_1}, \lambda_{s_2}) - \langle f, \lambda_{s_1} \rangle + \langle f, \lambda_{s_2} \rangle \geq 0, \]

and (10.2) follows.

Due to (10.1), the net \(G^\mathbb{F}_t(\lambda_s)\), \(s \in S\), is fundamental in \(\mathbb{R}\). When combined with (10.2), this implies that \(\lambda_s\), \(s \geq \ell \geq s_0\), form a fundamental net.
in $\mathcal{E}^+_\sigma(A, a, g)$. Hence, by Theorem 7.4 there exists a vague cluster point λ of $(\lambda_s)_{s \in S}$ and the following two assertions hold:

(i) $\lambda \in \mathcal{E}^+_\sigma(A_s, \leq a, g)$ for all $s \geq s_0$; (ii) $\lambda_s \to \lambda$ strongly.

However, Lemma 8.5 with A_s instead of A shows that assertion (i) can be strengthened as follows: $\lambda \in \mathcal{E}^+_\sigma(A_s, \leq a, g)$ for all $s \geq s_0$. In turn, this implies that, actually, $\lambda \in \mathcal{E}^+_\sigma(A, a, g)$, since $\sigma_s \to \sigma$ vaguely while $A_s \downarrow A$.

What has already been established yields that the proof of the theorem will be complete once we show that

$$\lambda \in \mathcal{E}^+_\sigma(A, a, g), \quad (10.3)$$

and

$$\langle f, \lambda \rangle \leq \lim_{s \in S} \langle f, \lambda_s \rangle. \quad (10.4)$$

Note that $\lim_{s \in S} \langle f, \lambda_s \rangle$ exists and is finite, which is clear from (10.1) and (ii).

We can suppose Case I to hold, since otherwise (10.3) is already known from Lemma 5.2 while (10.4) can be obtained directly from (5.11) and assertion (ii). Therefore, by (5.13) with $\mu = \lambda$, $\langle f, \lambda \rangle$ is well defined and $\langle f, \lambda \rangle \geq -\infty$. Taking a subnet if necessary, we can also assume that $\lambda_s \to \lambda$ vaguely. Then,

$$-\infty < \langle f, \lambda \rangle = \sum_{i \in I} \langle f_i, \lambda^i \rangle \leq \sum_{i \in I} \liminf_{s \in S} \langle f_i, \lambda^i_s \rangle \leq \lim_{s \in S} \sum_{i \in I} \langle f_i, \lambda^i_s \rangle < \infty,$$

and the required relations (10.3) and (10.4) follow. \hfill \Box

11. Proof of Theorem 6.9

We begin by establishing the relation

$$G^\tau_f(A, a, g) = \lim_{K \uparrow A} G^\sigma_{\tau f}(K, a, g). \quad (11.1)$$

For every $\mu \in \mathcal{E}^+_\tau(A, a, g)$, consider $\hat{\mu}_K = (\hat{\mu}_K^i)_{i \in I}$ defined by (5.2). Fix an arbitrary $\varepsilon > 0$ and choose K_0 so that for all K that follow K_0 inclusion (5.3) holds. This yields

$$G^\tau_f(\hat{\mu}_K) \geq G^{(1+\varepsilon)\sigma \tau}_{\tau f}(K, a, g). \quad (11.2)$$

We next proceed by showing that

$$G^\tau_f(\mu) = \lim_{K \uparrow A} G^\tau_f(\hat{\mu}_K). \quad (11.3)$$

To this end, it can be assumed that $\kappa \geq 0$; for if not, then A must be finite since X is compact, and (11.3) follows from (5.4)–(5.6). Therefore, for all $K \geq K_0$ and $i \in I$ we get

$$\|\mu^i_K\| \leq \|\mu^i\| \leq \|R\mu^+ + R\mu^-\|,$$

$$\|\mu^i - \mu^i_K\| < \varepsilon i^{-2}, \quad (11.4)$$

$$\|\mu^i - \mu^i_K\| < \varepsilon i^{-2}, \quad (11.5)$$
the latter being clear from (5.9) because of $\kappa(\mu^1_K, \mu^1 - \mu^1_K) \geq 0$. Also observe that
\[
||\mu||^2 - ||\hat{\mu}_K||^2 \leq \sum_{i,j \in I} \left[\kappa(\mu^i, \mu^j) - \frac{a_i}{\langle g_i, \mu^i_K \rangle} \frac{a_j}{\langle g_j, \mu^j_K \rangle} \kappa(\mu^i_K, \mu^j_K) \right]
\leq \sum_{i,j \in I} \left[\kappa(\mu^i - \mu^1_K, \mu^j) + \kappa(\mu^i_K, \mu^j - \mu^1_K) + \left(\frac{a_i}{\langle g_i, \mu^i_K \rangle} \frac{a_j}{\langle g_j, \mu^j_K \rangle} - 1 \right) \kappa(\mu^i_K, \mu^j_K) \right].
\]

When combined with (5.7), (5.8), (11.4), and (11.5), this yields
\[
|G_f(\mu) - G_f(\hat{\mu}_K)| \leq M \varepsilon \quad \text{for all} \quad K \geq K_0,
\]
where M is finite and independent of K, and the required relation (11.3) follows.

Substituting (11.2) into (11.3), in view of (5.1) and the arbitrary choice of μ we get
\[
G_f^\sigma(A, a, g) \geq \lim_{K \uparrow A} G_f^{1+\varepsilon}\sigma_K(K, a, g) \geq G_f^{1+\varepsilon}(A, a, g).
\]

Letting $\varepsilon \to 0$ and applying Theorem 6.7 to both A and K, we obtain
\[
G_f^\sigma(A, a, g) = \lim_{\varepsilon \to 0} \left[\lim_{K \uparrow A} G_f^{1+\varepsilon}\sigma_K(K, a, g) \right] = \lim_{K \uparrow A} G_f^\sigma_K(K, a, g),
\]
which proves (11.1) as desired.

Fix $\lambda^\sigma_K \in \mathcal{E}^{\sigma}_f(K, a, g)$, where $K \in \{K\}_A$. As follows from (11.1), the net $(\lambda^\sigma_K)_{K \in \{K\}_A}$ belongs to $\mathcal{M}^\sigma_0(A, a, g)$ and, hence, it is strongly fundamental.

Further, for every $K \in \{K\}_A$ choose $\beta_K^* \in (1, \infty)$ such that $(\beta_K^*)_{K \in \{K\}_A}$ decreases to 1 and, for all $\beta_K \in [1, \beta_K^*]$ and $\lambda^\beta_K \sigma_K \in \mathcal{E}^{\beta_K \sigma}_f(K, a, g)$,
\[
\lim_{K \in \{K\}_A} \| \lambda^\beta_K \sigma_K - \lambda^\sigma_K \| = 0,
\]
(11.6)
\[
\lim_{K \in \{K\}_A} \left[G_f(\lambda^\beta_K \sigma_K) - G_f(\lambda^\sigma_K) \right] = 0.
\]
(11.7)
The existence of those β_K^* follows from Theorem 6.7.

Then, combining (11.1) and (11.7) gives (6.3) as required, while (11.6) together with the property of strong fundamentality of $(\lambda^\beta_K \sigma_K)_{K \in \{K\}_A}$ shows that $(\lambda^\beta_K \sigma_K)_{K \in \{K\}_A}$ is strongly fundamental as well. Hence, by Theorem 7.3 and Lemma 5.1, the vague cluster set of $(\lambda^\beta_K \sigma_K)_{K \in \{K\}_A}$ is nonempty and for every its element λ the following assertions both hold: $\lambda \in \mathcal{E}_f(A, a, g)$ and $\lambda^\beta_K \sigma_K \rightarrow \lambda$ strongly. To complete the proof, it is enough to show that $\lambda \in \mathcal{E}_f(A, a, g)$, but this can be done in the same way as at the end of the proof of Theorem 6.7. □

12. On the sharpness of condition (c) in Theorem 6.2

Given a closed set $F \subset \mathbb{R}^n$, for brevity let $\mathcal{M}^1(F)$ denote the collection of all probability measures supported by F. The examples below illustrate the sharpness of condition (c) in Theorem 6.2.
12.1. Examples

Example 1. In \mathbb{R}^n, $n \geq 2$, consider the Riesz kernel $\kappa_\alpha(x, y) := |x - y|^{\alpha-n}$ of order α, $\alpha \in (0, 2)$, $\alpha < n$, and a condenser $A = (A_1, A_2)$, where $I^+ = \{1\}$, $I^- = \{2\}$, A_1 is compact, and $C_{\kappa_\alpha}(A_i) > 0$ for $i = 1, 2$. Also consider the α-Green kernel $g_{A_2}^\alpha(x)$ of $A_2 := \mathbb{R}^n \setminus A_2$, defined by (see, e.g., [17, Chap. 4, § 5])

$$g_{A_2}^\alpha(x, y) := \kappa_\alpha(x, y) - \kappa_\alpha(x, \beta_{-1}A_2 y),$$

where δ_y (the unit) Dirac measure at y and $\beta_{-1}A_2$ is the operator of Riesz balayage onto A_2. Further, let $K \subset (A_1 \cup A_2)^c$ be a compact set with $C_{\kappa_\alpha}(K) > 0$, and let θ denote the (unique) minimizer in the minimal α-Green energy problem

$$\inf_{\nu \in \mathcal{M}^1(A_1 \cup K)} g_{A_2}^\alpha(\nu, \nu);$$

then it holds true that

$$\|\theta\|^2_{g_{A_2}^\alpha} = \|\theta - \beta_{A_2}^\alpha \theta\|_k^2 = \left[C_{g_{A_2}^\alpha}(A_1 \cup K) \right]^{-1}.$$

Assume, moreover, that f satisfies Case II with $\zeta = \theta_K$, where θ_K is the trace of θ upon K, and let $a_1 = \theta(A_1)$, $a_2 = 1$, $g_1 = g_2 = 1$. Also assume, for simplicity, A_2 to be connected.

Proposition 12.1. Under the above notation and requirements, the following two assertions are equivalent:

(i) One can choose a strictly increasing sequence of positive numbers R_k, $k \in \mathbb{N}$, and measures $\omega_k \in \mathcal{M}^1(A_2 \cap \{R_k \leq |x| \leq R_{k+1}\})$ so that

$$\mathcal{E}_f^\sigma(A, a, g) = \mathcal{E}, \quad \text{(12.1)}$$

where $\sigma = (\sigma^1, \sigma^2)$ is a constraint with the components

$$\sigma^1 := \theta_{A_1} \quad \text{and} \quad \sigma^2 := \beta_{A_2}^\alpha \theta + \left[1 - \beta_{A_2}^\alpha \theta(A_2) \right] \sum_{k \in \mathbb{N}} \omega_k. \quad \text{(12.2)}$$

(ii) $C_{\kappa_\alpha}(A_2) = \infty$, though A_2 is α-thin at $\infty_{\mathbb{R}^n}$.\n
Recall that a closed set $F \subset \mathbb{R}^n$ is α-thin at $\infty_{\mathbb{R}^n}$ if the origin $x = 0$ is an α-irregular point for the inverse of F relative to the unit sphere (see [4]; cf. also [3, 17]). See, e.g., [17, Chap. V] for the notion of α-regularity in case $\alpha \in (0, 2)$.

Example 2. With the notation and the requirements of Example 1, let $\kappa_2(x, y)$ be the Newtonian kernel $|x - y|^{-3}$ in \mathbb{R}^3, and let A_2 be a rotational body consisting of all $x = (x_1, x_2, x_3) \in \mathbb{R}^3$ such that $q \leq x_1 < \infty$ and $0 \leq x_1^2 + x_2^2 \leq \rho(x_1)$, where $q \in \mathbb{R}$ and $\rho(x_1)$ approaches 0 as $x_1 \to \infty$. Consider the following three cases:

$$\rho(r) = r^{-s}, \quad \text{where} \quad s \in [0, \infty), \quad \text{(12.3)}$$

$$\rho(r) = \exp(-r^s), \quad \text{where} \quad s \in (0, 1], \quad \text{(12.4)}$$

$$\rho(r) = \exp(-s^r), \quad \text{where} \quad s > 1. \quad \text{(12.5)}$$
As has been shown in [23], A_2 is not 2-thin at $\infty_{\mathbb{R}^3}$ in case (12.3), has finite (Newtonian) capacity in case (12.4), and it is 2-thin at $\infty_{\mathbb{R}^3}$ though has infinite (Newtonian) capacity in case (12.4). Consequently, assertion (i) from Proposition 12.1 on the unsolvability of the corresponding constrained problem holds in case (12.4), and it fails to hold in both cases (12.3) and (12.5).

12.2. Proof of Proposition 12.1

Our arguments are based on Theorem 4 from [24], which asserts that, if $F \subset \mathbb{R}^n$ is closed, $\nu \geq 0$ is concentrated in F^c and if, for simplicity, F^c is connected, then

$$\beta_k^2 \nu(\mathbb{R}^n) = \nu(\mathbb{R}^n) \iff F \text{ is not } \alpha \text{-thin at } \infty_{\mathbb{R}^n}. \quad (12.6)$$

Fix an arbitrary $\mu = (\mu^1, \mu^2) \in \mathcal{E}^+(A)$. Then, by (5.10),

$$G_{\ell}(\mu) = \| R_\mu + \theta_K \|_{k_\mu}^2 - \| \theta_K \|^2_{\kappa_\mu} = \| \mu^1 + \theta_K - \mu^2 \|_{\kappa_\mu}^2 - \| \theta_K \|^2_{\kappa_\mu}.$$

Since, by known facts from the Riesz and α-Green potential theory [17],

$$\| \mu^1 + \theta_K - \mu^2 \|^2_{\kappa_\mu} = \| \mu^1 + \theta_K - \beta_{A_2}^2 (\mu^1 + \theta_K) \|^2_{\kappa_\mu} = \| \mu^1 + \theta_K \|^2_{\kappa_{A_2}^2} \geq \| \theta \|^2_{\kappa_{A_2}^2},$$

we get

$$G_{\ell}(\mu) \geq \| \theta \|^2_{\kappa_{A_2}^2} - \| \theta_K \|^2_{\kappa_\mu}, \quad (12.7)$$

where the inequality is actually an equality if and only if

$$\mu^1 + \theta_K = \theta \quad (\text{hence, } \mu^1 = \theta_{A_1}) \quad \text{and} \quad \mu^2 = \beta_{A_2} \theta.$$

Assume (i) to hold; then necessarily $C_{\kappa_\mu}(A_2) = \infty$, for if not, we would arrive at a contradiction with Theorem 6.2. To establish (ii), assume, on the contrary, that A_2 is not α-thin at $\infty_{\mathbb{R}^n}$. Then, by (12.6),

$$\beta_{A_2}^2 \theta(A_2) = 1 \quad (12.8)$$

and consequently, by (12.2),

$$\sigma^1 = \theta_{A_1} \quad \text{and} \quad \sigma^2 = \beta_{A_2} \theta. \quad (12.9)$$

It follows from (12.8) and (12.9) that $\sigma \in \mathcal{E}^+_\alpha(A, a, g)$ and inequality (12.7) for $\mu = \sigma$ is actually an equality. Thus, $\sigma \in \mathcal{E}^+_\alpha(A, a, g)$, which is impossible by (12.1).

Now, assume (ii) to hold. Since A_2 is α-thin at $\infty_{\mathbb{R}^n}$, from (12.1) we get

$$c := 1 - \beta_{A_2}^2 \theta(A_2) > 0. \quad (12.10)$$

Choose a strictly increasing sequence $(R_k)_{k \in \mathbb{N}}$ with the property $C_{\kappa_\mu}(A_2^{(k)}) > k$, where $A_2^{(k)} := A_2 \cap \{ R_k \leq |x| < R_{k+1} \}$, which is possible because of the assumption $C(A_2) = \infty$, and let ω_k minimize $\kappa_\mu(\nu, \nu)$ among all $\nu \in \mathcal{M}_1(A_2^{(k)})$. Then

$$\lim_{k \to \infty} \| \omega_k \|^2_{\kappa_\mu} = 0 = \inf_{\nu \in \mathcal{M}_1(A_2)} \kappa_\mu(\nu, \nu),$$

which yields by standard arguments that $(\omega_k)_{k \in \mathbb{N}}$ is a strong Cauchy sequence in $\mathcal{E}_{\kappa_\mu}(\mathbb{R}^n)$. Since $\omega_k \to 0$ vaguely, in view of the perfectness of κ_μ we thus get

$$\omega_k \to 0 \quad \text{strongly.}$$
Consider $\mathbf{\mu}_k = (\mu^1_k, \mu^2_k)$, $k \in \mathbb{N}$, with $\mu^1_k = \theta A_1$ and $\mu^2_k = \beta A_2 \theta + c \omega_k$, where c is given by (12.10). Then $\mathbf{\mu}_k \in \mathcal{E}_\sigma^+(A, a, g)$, where σ is defined by (12.2), and
\[
\|\mu^1_k + \theta K - \mu^2_k\|_{\kappa_a}^2 = \|\theta - \beta A_2 \theta - c \omega_k\|_{\kappa_a}^2
\]
\[
= \|\theta\|_{\gamma A_2}^2 + c^2 \|\omega_k\|_{\kappa_a}^2 - 2 c \kappa_a (\omega_k, \theta - \beta A_2 \theta).
\]
Letting here $k \to \infty$, we then obtain
\[
\lim_{k \to \infty} G(\mathbf{\mu}_k) = \|\theta\|_{\gamma A_2}^2 - \|\theta K\|_{\kappa_a}^2
\]
and so, by (12.7), $(\mu_k)_{k \in \mathbb{N}} \in \mathcal{M}^\sigma_f(A, a, g)$. Since $\mathbf{\mu}_k \to \gamma := (\theta A_1, \beta A_2 \theta)$ strongly and vaguely, we get $\gamma \in \mathcal{E}_f^\sigma(A, a, g)$. Moreover, in view of the strict positive definiteness of the Riesz kernel, γ is the only element of the class $\mathcal{E}_f^\sigma(A, a, g)$ (see assertion (ii) of Lemma 8.3). However, because of (12.10), $\gamma \notin \mathcal{S}_f^\sigma(A, a, g)$. This proves (12.1) and, hence, (i).

\[\Box\]

Acknowledgments

The research was supported, in part, by the "Scholar-in-Residence" program at IPFW, and the author acknowledges this institution for the support and the excellent working conditions. The author also thanks Professors P. D. Dragnev, E. B. Saff, and W. L. Wendland for many valuable discussions about the content of the paper.

References

[1] N. Bourbaki, Topologie générale, Chap. I–II, Actualités Sci. Ind., 1142, Paris (1951).
[2] N. Bourbaki, Intégration, Chap. I–IV, Actualités Sci. Ind., 1175, Paris (1952).
[3] M. Brelot, Éléments de la théorie classique du potentiel, Les cours Sorbonne, Paris (1961).
[4] M. Brelot, On topologies and boundaries in potential theory, Lectures Notes in Math. 175, Springer, Berlin (1971).
[5] H. Cartan, Théorie du potentiel Newtonien: énergie, capacité, suites de potentiels, Bull. Soc. Math. France 73 (1945), 74–106.
[6] J. Deny, Les potentiels d’énergie finite, Acta Math. 82 (1950), 107–183.
[7] J. Deny, Sur la définition de l’énergie en théorie du potentiel, Ann. Inst. Fourier Grenoble 2 (1950), 83–99.
[8] P. D. Dragnev, Constrained energy problems for logarithmic potentials, Ph. D. Thesis, University of South Florida, Tampa (1997).
[9] P. D. Dragnev, E. B. Saff, Constrained energy problems with applications to orthogonal polynomials of a discrete variable, Journal d’Analyse Mathématique 72 (1997), 223-259.
[10] R. Edwards, Cartan’s balayage theory for hyperbolic Riemann surfaces, Ann. Inst. Fourier 8 (1958), 263–272.
[11] R. Edwards, *Functional analysis. Theory and applications*, Holt, Rinehart and Winston, New York (1965).

[12] B. Fuglede, *On the theory of potentials in locally compact spaces*, Acta Math. **103** (1960), 139–215.

[13] B. Fuglede, *Caractérisation des noyaux consistants en théorie du potentiel*, Comptes Rendus **255** (1962), 241–243.

[14] A. A. Gonchar, E. A. Rakhmanov, *On the equilibrium problem for vector potentials*, Russian Math. Surveys **40**:4 (1985), 183-184.

[15] W. K. Hayman, P. B. Kennedy, *Subharmonic functions*, Academic Press, London (1976).

[16] J. L. Kelley, *General topology*, Princeton, New York (1957).

[17] N. S. Landkof, *Foundations of modern potential theory*, Springer, Berlin (1972).

[18] E. H. Moore, H. L. Smith, *A general theory of limits*, Amer. J. Math. **44** (1922), 102–121.

[19] E. M. Nikishin, V. N. Sorokin, *Rational approximations and orthogonality*, Translations of Mathematical Monographs **44**, Amer. Math. Soc., Providence, RI (1991).

[20] M. Ohtsuka, *On potentials in locally compact spaces*, J. Sci. Hiroshima Univ. Ser. A-1 **25** (1961), 135–352.

[21] E. A. Rakhmanov, *Equilibrium measure and the distribution of zeros of extremal polynomials of a discrete variable*, Sbornik:Mathematics **187** (1996), 1213–1228.

[22] E. B. Saff, V. Totik, *Logarithmic potentials with external fields*, Springer, Berlin (1997).

[23] N. Zorii, *An extremal problem of the minimum of energy for space condensers*, Ukrain. Math. J. **38** (1986), 365–370.

[24] N. Zorii, *A problem of minimum energy for space condensers and Riesz kernels*, Ukrain. Math. J. **41** (1989), 29–36.

[25] N. Zorii, *Equilibrium problems for potentials with external fields*, Ukrain. Math. J. **55** (2003), 1588–1618.

[26] N. Zorii, *Necessary and sufficient conditions for the solvability of the Gauss variational problem*, Ukrain. Math. J. **57** (2005), 70–99.

[27] N. Zorii, *Constrained energy problem with external fields*, Complex Anal. Oper. Theory, doi:10.1007/s11785-010-0070-9 (2010), 1–11.

[28] N. Zorii, *Interior capacities of condensers in locally compact spaces*, Potential Anal., doi:10.1007/s11118-010-9204-y (2010), 1–41.

Natalia Zorii
Institute of Mathematics
National Academy of Sciences of Ukraine
3 Tereshchenkivska Str.
01601, Kyiv-4
Ukraine
e-mail: natalia.zorii@gmail.com