ABSTRACT

Objective: This study was undertaken to carry out a comparative pharmacognostical evaluation of three botanical source plants used in the name of classical Ayurvedic drug Jivanti.

Methods: Leaves of three source plants of jivanti belonging to Asclepiadaceae family i.e. Leptadenia reticulata (Retz.), Holostemma ada-kodien Schult. and Wattakaka volubilis (Linn. f.) Stapf were evaluated for morphological and microscopical characters including quantitative microscopy, surface study, powder microscopy and histochemical studies.

Results: Morphologically all the three species showed some similar characters like simple, opposite leaves with reticulate venation. The shape of the leaves were ovate to oblong in L reticulata and H ada-kodien whereas W volubilis was having broadly ovate or suborbicular leaves. Multicellular glandular warty trichomes, rosette crystals of calcium oxalate, lactiferous cells were observed in all the three species whereas prismatic crystals were also present in W volubilis. Palisade ratio and stomatal index were higher in H ada-kodien followed by L reticulata. Characteristic differences in the organoleptic characters like colour, taste, touch were observed in individual powder samples. Test for lignin, calcium oxalate crystal, starch grain and tannin showed a positive result in all the three species.

Conclusion: The present study reports specific pharmacognostical characters for the identification and differentiation of each botanical source plant. The observed results can also serve as a reference for any further investigations.

Keywords: Holostemma ada-kodien Schult., Jivanti, Leptadenia reticulata (Retz.), Pharmacognosy, Wattakaka volubilis (Linn. f.) Stapf.
and Hydrochloric acid to notice the lignified elements like fibers, vessels etc [8, 9]. Photographs of the section were taken with the help of Canon digital camera attached to Zeiss microscope.

Quantitative microscopy

Quantitative microscopy was carried out to determine epidermal cell number, stomatal number, stomatal index and size of the stomata [10].

Powder microscopy

Dried leaf powder of all the three species was studied following standard procedures [11]. The microphotographs were taken by using Carl zeiss trinocular microscope.

Histochemical test

To confirm the presence and absence of the chemical constituents the material were subjected to various tests. The histo-chemical tests were carried out according to the standard guidelines of practical pharmacognosy [12].

RESULTS AND DISCUSSION

Morphology

Morphologically all the three plants are distinct in their appearance and can be easily identified. Leaves of all the three species belonging to Asclepiadaceae family, are simple and opposite. Stipules are very small or absent in L reticulata whereas H ada-kodien and W volubilis were ex-stipulated. Comparatively, the petiole is larger in W volubilis and H ada-kodien. The shape of the leaves was ovate to oblong in L reticulata and H ada-kodien whereas W volubilis is having broadly ovate or suborbicular leaves. Leaves of all the three species belonging to Asclepiadaceae family showed reticulate venation with 4-6 pairs of nerves. The texture of leaves was hirtellous in L reticulata whereas in H ada-kodien and W volubilis, leaves were glabrous above and pubescent beneath. The shape of the apex was acuminate in W volubilis, cuspidate in both L reticulata and H ada-kodien. Leaves of L reticulata were having obtuse or sub cordate base whereas the shape of the base was deeply cordate and rounded in H ada-kodien and W volubilis respectively (table 1).

Table 1: Comparative morphology of leaves of three source plants of jivanti

S. No	Parameter	Results	L. reticulata	H. ada-kodien	W. volubilis
1	Type	Simple	Simple	Simple	Simple
2	Phyloaxy	Opposite	Opposite	Opposite	Opposite
3	Stipules	Very small or absent	Exstipulate	Exstipulate	Exstipulate
4	Petiole	1.1-2.1 cm	2.8-4.5 cm	3.2-5.8 cm	Broadly ovate or suborbicular, 6.5-14/4.5-11 cm
5	Shape and size	Ovate to oblong, 5-4.7 cm	Oblong-ovate, 8.2-11×3-5.6 cm, upper leaves somewhat triangular	Broadly ovate or suborbicular, 6.5-14/4.5-11 cm	
6	Venation	6 pairs of nerves with reticulate venation	4-Spairs of nerves with reticulate venation	Reticulate venation	
7	Texture	Hirtellous above	Glabrous above, thinly pubescent beneath	Glabrous above, less softly pubescent beneath	
8	Apex	Cuspidate	Cuspidate	Acuminate	
9	Base	Obtuse or subcordate	Deeply cordate, 5-7 glands at the base of midrib	Rounded, few small glands just above the petiole	

Table 2: Comparative microscopical characters of three source plants of jivanti

Parameter	Results	L. reticulata	H. ada-kodien	W. volubilis
Petiole				
Epidermis	Circular	Deeply concave in upper side	Circular	
Epidermal cells	Single layered	Single layered	Single layered	
Cuticle	Thin	Thin walled and small	Thin walled and small	Thin
Trichomes	Multilayered glandular	Multilayered	Multilayered	Multilayered
Hypodermis	3-4 layers of circular to oval collenchyma cells with angular thickenings	2-3 layers of collenchyma cells	3-4 layers of collenchyma cells	
Cortex	Thin-walled circular to oval parenchymatous cells with distinct intercellular spaces	5-6 layers of parenchymatous cells	Thin-walled circular to oval parenchymatous cells with large intercellular spaces	
Crystals	Several prismatic crystals are present	Rosette and prismatic crystals of calcium oxalate	Several prismatic, rosette crystals are present	
Vascular bundle	Crescentic bicollateral vascular bundle, xylem is located in the centre followed by phloem on both sides	Arranged in crescentic shape in the middle, separated by wide areas of ground tissue.	Bicollateral vascular bundle, protoxylem facing towards center and metaxylem towards the epidermis.	
Midrib				
Upper epidermis	Barrell-shaped	Oval to rectangular	Barrell-shaped	
Epidermal cell	Multilayered glandular trichomes	Multilayered	Multilayered	Multilayered
Trichomes	Thick	Moderate	Single layered, elongated barrel shaped palisade parenchyma cells with numerous chloroplasts	Thick
Cuticle	1-2 layers of compactly arranged palisade parenchyma with oil globules and rich in chloroplast	Prismatic crystals	1-2 layers of palisade parenchyma cells with chlorophyll pigments and oil globules	
Hypodermis	Rosette crystals of calcium oxalate	Open and bicollateral vascular bundle	Open and bicollateral vascular bundle	
Crystals				
Vascular bundle				
Microscopy

Among the three source plants of jivanti, studied for their microscopic characters, the common characters of Asclepiadaceae family and some individual microscopic characters were observed. All these microscopical characters can be used for identification of the species and to differentiate each other. T S of H ada-kodien was deeply concave in upper side whereas in W volubilis and L reticulata T S was circular in shape. Epidermis was single layered in all the three species. Cuticle layers are thick in H ada-kodien, L reticulata and W volubilis composed of thin cuticle. Cuticular characters of Asclepiadaceae family like crescenteric bicollateral vascular bundles, multicellular glandular warty trichomes, prismatic and rosette crystals of calcium oxalate were seen in all the three species.

Transverse section of midrib of L reticulata, H ada-kodien and W volubilis was studied and compared for their identical and differential characters. T S of mid rib was strongly convex in L reticulata and W volubilis, broadly semicircular in H ada-kodien. Epidermis was single layered and covered with cuticle in all the three species. Epidermal cells were barrel-shaped in L reticulata and W volubilis, oval to rectangular shaped in H ada-kodien. Multicellular glandular warty trichomes, rosette crystals of calcium oxide, laticiferous cells were observed in all the three species whereas prismatic crystals were also present in W volubilis. All the three species showed centrally located, open, bicollateral vascular bundle.

Surface study

Surface study plays an important role in drug identification. The importance of epidermal characters, in general, is widely recognized in taxonomic considerations and in many cases, these are successfully used in the identification of taxa at genus as well as species levels [13]. Similarly, studies in stomata have a great taxonomic as well as pharmacognostic value in the proper identification of medicinal plants [11]. In the present study, stomata were rarely distributed in the upper epidermis in W volubilis whereas stomata were absent in L reticulata and H ada-kodien. Some of the trichomes and cicatrix were also observed in W volubilis. The lower epidermis composed of paracytic stomata, trichomes and cicatrix in L reticulata and H ada-kodien, paracytic and anisocytic stomata and in W volubilis.

Quantitative microscopy

All the three source plants composed of a paracytic type of stomata. Size of laticiferous cells, warty trichomes and epidermal cells were larger in H ada-kodien compared to other species. Size of the palisade cells was almost similar in L reticulata and W volubilis whereas it was much smaller in H ada-kodien. Cuticle layer was thicker in L reticulata. Length and the surface measurement of xylem fibres were more in L reticulata. Palisade ratio and stomatal index were higher in H ada-kodien followed by L reticulata (table 3).

Powder microscopy

Characteristic differences in the organoleptic characters like colour, taste, touch were observed in individual powder samples. Different organoleptic characters observed during the study are presented in table 4.

Histochemical study

Test for lignin, calcium oxalate crystal, starch grain and tannin showed a positive result in all the three samples. (Table 5).

Table 3: Comparative quantitative microscopy of leaves of three source drugs of jivanti

S. No.	Parameter	Results
1.	Type of stomata	Paracytic
2.	Size of stomata (Length X width)	0.60X0.30 μm
3.	Laticiferous cavity (surface)	336.63 μm²
4.	Xylem measurement from proto to metaxytem	119.08 μm²
5.	Xylem surface measurement	846.25 μm²
6.	Rosette crystals	329.31 μm²
7.	Warty trichome	3735.54 μm²
8.	Palisade cell measurement	1040.41 μm
9.	Epidermal cell measurement	217.11 μm²
10.	Cuticle layer measures	32.42 μm²
11.	Stomatal index	25
12.	Palisade ratio	3

Table 4: Organoleptic characters of the three source drug of jivanti

Organoleptic characters	Leptadenia reticulata W and A	Holostemma ada-kodien schult.	Wattakaka volubilis L. f
Colour	Light green	Dark green	Light green
Taste	Slightly bitter	Sweet and bitter	Slightly sweet and bitter
Touch	Smooth	Smooth	Smooth
Odour	Characteristic	Characteristic	Characteristic

Diagnostic character like paracytic stomata, rosette crystals of calcium oxalate, and laticiferous cells were observed in all the three species. L reticulata and H ada-kodien showed multicellular warty trichomes whereas multicellular and glandular trichomes were observed in Wattakaka volubilis.

Table 5: Histochemical study of three botanical source drug of jivanti

Reagents	Test for	Observation	L. reticulata	H. ada-kodien	W. volubilis
Phloroglucino+Conc HCL	Lignin	Red colouration	++	++	++
Phloroglucino+Conc HCL	Calcium oxalate crystal	Dissolved	++	++	++
Iodine	Starch	Blue	++	++	++
Ferric chloride solution	Tannin	Blue–black colouration	++	++	++

++ Present
Fig. 1: Morphological characters of three source plants of jivanti

Fig. 2: Measurement of leaves

Fig. 3: T S of petiole

Fig. 4: T S of mid rib
A. *L. reticulata*

B. *H. ada-kodein*

C. *W. volubilis*

Fig. 5: T S of petiole showing vascular bundle

A. *L. reticulata*

B. *H. ada-kodein*

C. *W. volubilis*

Fig. 6: T S of petiole showing epidermis and hypodermis

A. *L. reticulata*

B. *H. ada-kodein*

C. *W. volubilis*

Fig. 7: T S of petiole showing trichomes

A. *L. reticulata*

B. *H. ada-kodein*

C. *W. volubilis*

Fig. 8: T S of petiole showing xylem fibres
CONCLUSION
The observed macroscopical and microscopical characters are useful for the identification and differentiation of closely related species used in the name of jivanti. The results of comparative quantitative microscopy are reported for the first time. These observations are specific to the species and can be considered as the diagnostic characters of the individual sample.

AUTHORS CONTRIBUTIONS
Dr Raghavendra Naik conceptualized, designed, carried out the work and drafted the article. Dr Rabinarayan Acharya, conceptualized, designed, monitored the work and edited the article. Dr Harisha C R supervised the experimental study and edited the manuscript.

CONFLICT OF INTERESTS
The authors do not have any conflict of interest to declare.

REFERENCES
1. Bhavamishra: Chunekar KC, Pandey GS. Bhavaprakasha Nighantu, Guduchyadi Varga. 1st ed. Varanasi: Chaukhambha Bharati Academy; 2004.
2. Sharma PC, Yelne MB, Dennis TJ. Database on medicinal plants used in ayurveda. 1st ed. New Delhi: Department of ISM and H, the ministry of health and family welfare, Government of India; 2001.
3. Kumar BK. Comparative phytochemical analysis of Leptadenia reticulata W. and A. and Dregia volubilis Linn. (Source of jivanti). Jamnagar: M. Sc. Med. Plants, Institute for Ayurvedic Medicinal Plant Science, Gujarat Ayurved University; 2006.
4. Kumar S, Kumar V, Prakash O. Microscopic evaluation and physiochemical analysis of Dillenia indica leaf. Asian Pac J Trop Biomed 2011;1:1:337-40.
5. Nasreen S, Radha R. Assessment of quality of withania somnifera dunal (Solanaceae)-pharmacognostical and physicochemical profile. Int J Pharm Pharm Sci 2011;3:1:52-5.
6. Saxena H. O: The Flora of Orissa. 1st ed. Bhabaneswar: Regional Research Laboratory; 1995.
7. Gopalakrishna BK. Flora of Udupi. 1st ed. Manipal: Manipal Press Limited; 2003.
8. Khandelwal KR. Practical pharmacognosy-techniques and experiments. 19th ed. Pune: Nirali Prakashan; 2008.
9. Anonymous. The Ayurvedic Pharmacopoeia of India. 1st ed. New Delhi: Ministry of Health and Family welfare, Department of I. S. M. and H. Govt. of India; 1999.
10. Wallis TE. Textbook of pharmacognosy. 5th ed. London: Churchill Publication; 1985.
11. Trease GE, Evans WC. Trease and evans pharmacognosy. California: Harcourt brace and Co; 2002.
12. Krishnamurty KV. Methods in the plant histochemistry. Madras: Vishwanadhan Pvt Limited; 1988.
13. Rao RS, Ramayya N. Trichome types and their taxonomic importance in the tiliaceae. Indian J Bot 1987;10:65-73.