Jahn-Teller Distortion and Ferromagnetism in the Dilute Magnetic Semiconductors GaN:Mn

Xuan Luo and Richard M. Martin

Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green street, Urbana, IL 61801

(Dated: February 23, 2022)

Using first-principles total-energy methods, we investigate Jahn-Teller distortions in III-V dilute magnetic semiconductors, GaAs:Mn and GaN:Mn in the cubic zinc blende structure. The results for an isolated Mn impurity on a Ga site show that there is no appreciable effect in GaAs, whereas, in GaN there is a Jahn-Teller effect in which the symmetry around the impurity changes from T_d to D_{2d} or to C_{2v}. The large effect in GaN occurs because of the localized d^3 character, which is further enhanced by the distortion. The lower symmetry should be detectable experimentally in cubic GaN with low Mn concentration, and should be affected by charge compensation (reductions of holes and conversion of Mn ions to d^4 with no Jahn-Teller effect). Jahn-Teller effect is greatly reduced because the symmetry at each Mn site is lowered due to the Mn-Mn interaction. The tendency toward ferromagnetism is found to be stronger in GaN:Mn than in GaAs:Mn and to be only slightly reduced by charge compensation.

PACS numbers: PACS numbers: 75.50.Pp, 76.50.+g, 72.25.Dc

I. Introduction

Electronics based upon the spin of the electron (spintronics) seeks to exploit the spin of charge carriers in semiconductors\footnote{G. G. Luther and M. R. Beasley, Phys. Rev. B 34, 5704 (1986).}. It is widely expected that new functionalities for electronics and photonics can be derived if the injection, transfer and detection of carrier spin can be controlled above room temperature in these dilute magnetic semiconductors (DMS)\footnote{T. Dietl, J. Cibert, and L. W. Molenkamp, Adv. Phys. 51, 1 (2002).}. Most of the work in the past has focused on InAs:Mn\footnote{R. S. Williams, D. B. Geohegan, S. Dutta, S. Ghosh, M. B. Panish, and S. Mahajan, Phys. Rev. B 27, 7586 (1983).}, GaAs:Mn\footnote{R. S. Williams, D. B. Geohegan, S. Dutta, S. Ghosh, M. B. Panish, and S. Mahajan, Phys. Rev. B 27, 7586 (1983).}, GaAs:Mn\footnote{R. S. Williams, D. B. Geohegan, S. Dutta, S. Ghosh, M. B. Panish, and S. Mahajan, Phys. Rev. B 27, 7586 (1983).}, and Ge:Mn\footnote{R. S. Williams, D. B. Geohegan, S. Dutta, S. Ghosh, M. B. Panish, and S. Mahajan, Phys. Rev. B 27, 7586 (1983).}. Novel control of magnetism has already been achieved in these host materials. However, the reported Curie temperatures\footnote{R. S. Williams, D. B. Geohegan, S. Dutta, S. Ghosh, M. B. Panish, and S. Mahajan, Phys. Rev. B 27, 7586 (1983).} are too low to have significant practical impact. Recently, there has been interest in wide bandgap semiconductors, such as GaN\footnote{J. C. Bean, J. E. Greene, and L. W. Tisler, Phys. Rev. B 7, 166 (1973).}, which may exhibit higher Curie temperatures\footnote{R. S. Williams, D. B. Geohegan, S. Dutta, S. Ghosh, M. B. Panish, and S. Mahajan, Phys. Rev. B 27, 7586 (1983).}. Since there has been tremendous progress on the growth of high-quality (Ga, Mn)N epitaxial layers\footnote{J. C. Bean, J. E. Greene, and L. W. Tisler, Phys. Rev. B 7, 166 (1973).}, GaN:Mn is a promising high T_c ferromagnetic semiconductor. Using the Zener model of ferromagnetism\footnote{J. M. Zener, Phys. Rev. 54, 559 (1938).}, Dietl et al.\footnote{J. Cibert, V. Dkhil, T. Dietl, and L. W. Molenkamp, Phys. Rev. Lett. 105, 136602 (2010).} predicted that cubic GaN doped with 5 at.% of Mn and containing a high concentration of holes ($3.5 \times 10^{20} \text{ cm}^{-3}$) should exhibit a Curie temperature exceeding room temperature. However, the mechanisms of ferromagnetism in DMS materials is still an open question.

Theoretically, there are many proposals for the electronic configuration which have focused the ferromagnetic mechanism upon the coupling between the host p and Mn 3d states\footnote{J. K. Jain, S. Datta, and G. D. Mahan, Phys. Rev. B 51, 14174 (1995).}.\footnote{J. K. Jain, S. Datta, and G. D. Mahan, Phys. Rev. B 51, 14174 (1995).}\footnote{J. K. Jain, S. Datta, and G. D. Mahan, Phys. Rev. B 51, 14174 (1995).} suggestions include Mn 3d4+hole induced ferromagnetism in GaAs:Mn\footnote{J. K. Jain, S. Datta, and G. D. Mahan, Phys. Rev. B 51, 14174 (1995).}, whereas in GaN:Mn the spin-spin interaction has been proposed to be driven by a double exchange mechanism involving of d-electrons in Mn 3d4 states\footnote{J. M. Zener, Phys. Rev. 54, 559 (1938).}. It has been suggested that 3d5, 3d4+hole, and 3d4 coexist in GaAs:Mn based upon evidence in the dilute regime that there is a Jahn-Teller\footnote{R. S. Williams, D. B. Geohegan, S. Dutta, S. Ghosh, M. B. Panish, and S. Mahajan, Phys. Rev. B 27, 7586 (1983).} distortion associated with the 3d4 state\footnote{R. S. Williams, D. B. Geohegan, S. Dutta, S. Ghosh, M. B. Panish, and S. Mahajan, Phys. Rev. B 27, 7586 (1983).}. However, to our knowledge only one work has proposed that there should be a strong Jahn-Teller effect in the GaN:Mn system\footnote{J. Cibert, V. Dkhil, T. Dietl, and L. W. Molenkamp, Phys. Rev. Lett. 105, 136602 (2010).}, and there have been no quantitative theoretical studies of the Jahn-Teller effect in either GaAs:Mn or GaN:Mn. In this paper, we report first principles calculations of the magnitude of the Jahn-Teller effect and the consequences for ferromagnetism in GaAs:Mn and GaN:Mn.

The Jahn-Teller effect was first proposed to occur in open-shell molecules\footnote{G. A. Viggiano, Inorganic Photochemistry, Plenum Press, New York, 2000.}, and there are many examples in impurity states in II-VI\footnote{J. S. Zou, S. T. Pantelides, and G. B. Fahrenbruch, Phys. Rev. B 61, 12014 (2000).} and III-V\footnote{T. Dietl, J. Cibert, and L. W. Molenkamp, Adv. Phys. 51, 1 (2002).} semiconductors. The effect is caused by a distortion that lowers the symmetry and leads to a splitting of a degenerate state that is linear in the magnitude of the distortion (Fig.1 (a)). If the state is partially occupied, the total energy is always lowered by some distortion since all other contributions to the energy are quadratic in the distortion (Fig.1(b)), and the total energy is minimum in a distorted configuration (Fig.1 (c)). It may also happen that a large distortion occurs leading to a new bonding configuration separated by an energy barrier, such as the DX center\footnote{J. F. Heremans, A. D. Broido, J. W. Ager III, and J. Z. Liu, Phys. Rev. B 57, 6730 (1998).} and AX center\footnote{J. F. Heremans, A. D. Broido, J. W. Ager III, and J. Z. Liu, Phys. Rev. B 57, 6730 (1998).}. Although the existence of a Jahn-Teller effect is determined only by symmetry, we have to do a quantitative calculation of the magnitude. If the splitting is less ≈ 0.01 eV, we estimate that the effect is smaller than the effect of quantum fluctuation or temperature and therefore can be ignored.

Our calculations were performed using the density-functional theory within the generalized gradient approximation (GGA) of the Perdew-Wang 91 form\footnote{W. P. Lannoo, A. K. Riggs, and A. J. Freeman, J. Phys.: Condens. Matter 10, 253 (1998).}. We used the Vanderbilt ultrasoft pseudopotentials\footnote{P. A. Lee, J. C. Wan, J. C. L. Yip, J. C. Budai, and J. D. Joannopoulos, Phys. Rev. Lett. 58, 1399 (1987).} and the Vosko-Wilk-Nusair interpolation for the correlation functional in the spin-polarized calculations, as implemented by the plane-wave total energy VASP code\footnote{K. N. Vasseur, L. Vilhelms, and J. P. Perdew, J. Chem. Phys. 108, 9545 (1998).}. The calculated lattice constants are $a = 5.751$ Å for GaAs and $a = 4.542$ Å for GaN, and all calculations with supercells are done keeping the supercell lattice vectors fixed as multiples of the primitive lattice vectors. All cell-internal structural parameters are fully relaxed until the
forces are converged to within 0.05 eV/Å. The cutoff energy for the planewave expansion is 170 eV for calculations involving Mn in GaAs and 270 eV for Mn in GaN, with check using 400 eV. For self-consistent total energy calculations, we used a 64-atom supercell and a 4x4x4 Monkhorst-Pack k-point mesh (which has been verified to be sufficient), and selected cases were checked with a 6x6x6 k-point mesh. Density of states plots were made using a finer 8x8x8 k-point mesh.

I. ISOLATED MN IMPURITES

In order to study isolated Mn impurities, we have carried out calculations on 64 atom cells with one Mn substituted for a Ga atom in GaAs and in GaN. We have calculated the total energy and the eigenvalues of the Kohn-Sham Hamiltonian for various cases. First we have considered the ideal geometry with all atoms at the ideal positions of the GaAs or GaN tetrahedral lattices, and breathing distortions in which the bond lengths change but the symmetry is constrained to remain Td. Comparing to ideal tetrahedral symmetry as described above. In the distortion shown in Fig. 2 (a), the four nearest neighbors of Mn move to lower the symmetry from Td to D2d with displacements (|Δx1| = |Δy1| ≠ |Δz1|). The distortion results in a 0.10 eV lower energy in GaN:Mn (see Table I the D2d column). (This energy difference changes by only 6 meV if the energy cutoff is increased from 270 eV to 400 eV). In the Fig.2 (b), two neighbors of Mn atom move along [110] and another two neighbors of Mn atom move along [111] direction. This atomic configuration with 0.08 eV total energy lowering in GaN:Mn (Table I, C2v column). However, there is not an obvious effect for Fig. 2 (c) distortion, in which Mn atom move along [111] direction, as shown in the column for C3v in Table I.

From these calculations, we conclude that a strong Jahn-Teller effect should be observed for low concentrations in GaN (for D2d and C2v) but not in GaAs:Mn. Furthermore in GaN:Mn the distortion is slightly favored for D2d symmetry; however, the energies are close enough that either distortion may occur in actual systems. We note that the lowering of energy from breathing relaxation alone (0.05 eV) is smaller than the lowering of the energy (0.10 eV and 0.08 eV relative to breathing relaxation) for the Jahn-Teller distortion (both D2d and C2v). This shows clearly the importance of the Jahn-Teller effect. In addition we have analyzed the magnitudes of the components of the D2d displacement for the lowest energy. The magnitude of the breathing component |ΔRt| is 0.020 Å and the magnitude of the Jahn-Teller displacement is |ΔRJT| = 0.068 Å for each of the four neighbors. Thus the magnitude of the components of the displacement, also show that the Jahn-Teller effect, is larger than the breathing for Mn in GaN.

We interpret as a Jahn-Teller distortion caused by the partial occupation of the t2g state which is split due to the lower D2d symmetry. The Mn triplet t2g of 3d energy level splits into singlet and doublet states at Γ point. The splitting increases approximately linearly with the magnitude of the atomic displacements, as expected. At the minimum energy position, the splitting energy ΔEt2g is 0.23 eV. We have studied the stability of the distorted state by varying the magnitude of the distortion in various ways.

We also considered large distortions in Fig.2 (b) and (c) that might lead to qualitative rebonding of the atoms, e.g, two N (or As) atoms forming nearest neighbors as in an AX center (like Fig.2 (b)) or large displacements of...
the Mn atom along the [111] direction as in a DX center (like Fig. 2 (c)). However, no configuration was found to be stable or even metastable state in either GaAs:Mn and GaN:Mn.

Figure 3 shows the partial density of states (DOS) of the Mn 3d states in GaAs:Mn (Fig. 3 (a)) and cubic GaN:Mn in T_d symmetry (Fig. 3 (b)) and the Jahn-Teller distortion of D_{2d} symmetry (Fig. 3 (c)). The results for the undistorted cases (Fig. 3 (a) and 3 (b)) are very similar to those found by other groups. In GaAs:Mn, we find that Mn 3d states is 2 eV below host valence band minimum (VBM) and the t_{2g} level is lower than the e_d level (see Fig. 3 (a)). On the other hand, in GaN:Mn, the Mn 3d state is above host VBM and the t_{2g} level is higher than e_d level (see Fig. 3 (b)). Because of this difference between GaAs:Mn and GaN:Mn, there are different consequences for the Mn 3d states when the symmetry changed from T_d to D_{2d}: the t_{2g} energy level has no splitting (≤ 0.01 eV) in GaAs:Mn, but a large splitting (0.23 eV maximum at Γ point) in GaN:Mn, with the Fermi level in the gap as shown in Fig. 3 (c).

For the case of an isolated Mn substituted for a Ga atom in GaN, we also considered the charged state with an added electron. This charge state is expected when the system is compensated, reducing the number of holes and leading to Mn atoms in the $3d^5$ state. Since this is a symmetric closed-shell state, the Jahn-Teller distortion should disappear. Indeed, our calculations bear this out. We carried out calculations in which the atoms are constrained to have T_d symmetry (pure breathing relaxation) and other calculations in which the atom positions are relaxed starting with distorted initial positions having D_{2d} symmetry. In all cases the total energy is the same to within 0.02 eV, the splitting of t_{2g} is very small (about 0.01 eV), and the atoms relax to positions near T_d symmetry. In principle, all calculation should have the same total energy. We consider the differences to be negligible and these results can be considered as numerical tests showing the accuracy of our calculations. Clearly, this supports our conclusion that an isolated neutral Mn substituted for a Ga has a Jahn-Teller distorted ground state in GaN, and that compensation can decrease the effect causing some Mn to in the $3d^5$ state with no Jahn-Teller distortion.

II. INTERACTIONS OF MN-MN PAIRS

Although we have shown that isolated Mn impurities undergo a large Jahn-Teller distortion in GaN, further studies are required to establish the effects, if any, upon the properties of GaN:Mn alloys in interesting concentration ranges for magnetic semiconductors. Since ferromagnetism is due to interactions between the Mn atoms, we must consider the effect upon Mn-Mn interactions for Mn atoms separated by typical distances found in the alloys. The Jahn-Teller effect would be expected to cause a reduction in the tendency toward ferromagnetism since it leads to a splitting of the states. The splitting will reduce the interactions between Mn pairs since hoping requires an extra energy cost. On the other hand, the interaction between the Mn atoms may be so large that it dominates over the Jahn-Teller effect.

In order to study Mn-Mn interactions, we have carried out calculations on 64 atom cells with two substitutional Mn atoms at various distances and in different spin states. We selected 2 Mn atoms separated by distances $\sqrt{2}a$ and $\sqrt{2a}/2$, where a is the cubic GaAs or GaN lattice constant. For GaAs case, for separation $\sqrt{2}a$, the total energy difference between ferro- and antiferro-magnetic spin states $\Delta E_{AF}=0.22$ eV/Mn-pair, which is comparable with 0.2 eV/Mn-pair in Ref. 55 and 114 meV/Mn (0.228 eV/Mn-pair) in Ref. 56. For the GaN case, we have considered different starting configurations of the atoms, in one set of calculations starting with all atoms in the ideal zinc blende positions and in a second set starting with Jahn-Teller distorted states (the atoms around the Mn-Mn pairs are placed in distorted configurations). The final positions of the atoms after relaxation are the same for the two cases, showing that checked that final configuration was independent of the starting point. For separation $\sqrt{2}a/2$, the energy difference is $\Delta E_{AF}=0.36$ eV/Mn-pair, this value is good in comparing to similar work57−59, which is 188 meV/Mn and 156 meV/Mn. For separation $\sqrt{2a}$, the $\Delta E_{AF}=0.30$ eV/Mn-pair55, while a similar work55 gave 161 meV/Mn.

The energy levels for the Mn 3d states in the gap show that the interactions between the two Mn atoms in a pair is indeed larger than the splitting caused by the Jahn-Teller effect on the individual Mn atoms. In the ferromagnetic state the d energy levels are split by the Mn-Mn interactions by amounts that are much larger than the splitting due to the Jahn-Teller effect. The maximum width of the d-bands in our supercell calculation is 0.4 eV for the Jahn-Teller splitting as shown in Fig. 3 (c). In contrast, the maximum width of the d-bands is 1.4 eV for a ferromagnetic Mn-Mn pair separated by $\sqrt{2a}/2$ with all atoms relaxed. Furthermore, the Mn-Mn interactions are present even if all atoms are in ideal positions, in which case the maximum width is only slightly changed to 1.3 eV. Similar results are found for Mn-Mn pairs separated by $\sqrt{2}a$. These results show that Jahn-Teller distortions do not have a large affect upon the magnetic interactions between Mn atoms at distances expected in actual ferromagnetic semiconductors.

It is interesting also to consider the realistic case with charge compensation, in which some of the t_{2g} levels are filled. If the states are localized near the Mn atom as in GaN:Mn, each added electron can be interpreted as a conversion of a d^4 into a d^5 state. Since a d^5 state is a spatial singlet with no degeneracy except spin, no Jahn-Teller effect will occur. We also calculated -1 charged states for Mn pair separated with $\sqrt{2}a$ and $\sqrt{2a}/2$ GaN lattice constant. All the results as well as neutral Mn-Mn pair case are listed in Table II. We found that the total energy difference between ferro and anti-ferro magnetic
states are decreased in charged states, such as for $\sqrt{2}a/2$, ΔE_{AF} changes from 0.36 eV/Mn-pair to 0.30 eV/Mn-pair, and for $\sqrt{2}a$ case, ΔE_{AF} changes from 0.30 eV/Mn-pair to 0.22 eV/Mn-pair (see Table II). This result show that charge compensation will decrease the tendency for ferromagnetism, as expected.

III. CONCLUSIONS

In summary, we have studied the Jahn-Teller distortion in GaAs:Mn and GaN:Mn. Our results show that a strong Jahn-Teller distortion should happen in uncompensated GaN:Mn at low concentrations where the Mn impurities are isolated. The lowering of the energy is due to the splitting of the t_{2g} states of the localized d-electrons on the Mn 3d4 ion, leading to an energy gap. There are two possible symmetries C_2, and D_{2d}, with the latter having the lowest energy. In the presence of charge compensation, the Mn d states are filled leading to filled shell spherically-symmetric 3d5 ions and the Jahn-Teller effect disappears. These effects should be observable experimentally.

In contrast, in GaAs:Mn the Mn 3d states are primarily 3d5 with a hole in the GaAs valence band. This state is only weakly coupled to the distortions and the tendency for a Jahn-Teller distortion is a negligible effect.

In order to study the effects upon magnetism, we carried out calculations on Mn pairs. In agreement with other work, we find Mn-Mn interactions to lead to ferromagnetism in both GaAs and GaN, with larger interaction in GaN. The interaction between Mn-Mn pairs at realistic distances is sufficiently large that it dominates over the Jahn-Teller effect. The interactions between Mn atoms is not greatly affected by lattice relaxations and there is always a clear tendency for ferromagnetic alignment of Mn pairs. In realistic cases with charge compensation, ferromagnetism is still favored: even with 100% compensation the ferromagnetic interactions are reduced by only 20%. Finally, even though our calculations are for the cubic structure, the conclusions on magnetic interactions should carry over to the wurtzite structure since they do not depend upon detailed positions of the atoms and the ferromagnetic state persists whether or not there are distortions. Thus our results support the conclusion that GaN:Mn holds promise as a ferromagnetic semiconductor.

This work was supported by the DARPA under contract No.N0014-01-1-1062 and by the U.S. Department of Energy through the Computational Materials Science Network (CMSN) and through Grant No. DEFG02-91ER45439 to the Frederick Seitz Materials Research Laboratory at the University of Illinois at Urbana-Champaign. Computer time was provided by NCSA and the Materials Computation Center at the University of Illinois at Urbana-Champaign. We are appreciative for helpful conversation with S. B. Zhang, S. Chiesa, S. H. Wei.

1. H. Ohno, Science 281, 951 (1998).
2. I. Malajovich, J. J. Berry, N. Samarth and D. D. Awschalom, Nature 411, 770 (2001).
3. S. A. Wolf, et al., Science 294, 1488 (2001).
4. T. Dietl, Semicond. Sci. Technol. 17 (4), 377-392 (2002).
5. H. Akai, Phys. Rev. Lett. 81, 3002 (1998).
6. I. Malajovich, J. M. Kikkawa, D. D. Awschalom, J. J. Berry, and N. Samarth, Phys. Rev. Lett. 84, 1015 (2000).
7. H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, K. Ohtani, Nature 408, 944 (2000).
8. A. Oiwa, Y. Mitsumori, R. Moriya, T. Slupinski, H. Munekata, Phys. Rev. Lett. 88, 137202 (2002).
9. P. Mahadevan and A. Zunger, Phys. Rev. B 68, 075202 (2003).
10. P. A. Korzhavyi, et al, Phys. Rev. Lett. 88, 187202 (2002).
11. Steven C. Erwin and A. G. Petukhov, Phys. Rev. Lett. 89, 227201 (2002).
12. S. Sanvito, P. Ordejon, and N. A. Hill, Phys. Rev. B 67, 165206 (2003).
13. G. Theurich and N. A. Hill, Phys. Rev. B 66, 115208 (2003).
14. L. Bergqvist, P. A. Korzhavyi, B. Sanyal, S. Mirbt, I. A. Abrikosov, L. Nordstrm, E. A. Smirnova, P. Mohn, P. Svedlindh, and O. Eriksson, Phys. Rev. B 67, 205201 (2003).
15. Gregory A. Fiete, Gergely Zarnd, and Kedar Damle, Phys. Rev. Lett. 91, 097202 (2003).
16. P. A. Korzhavyi, I. A. Abrikosov, E. A. Smirnova, L. Bergqvist, P. Mohn, R. Mathieu, P. Svedlindh, J. Sadowski, E. I. Iseev, Yu. Kh. Vekilov, and O. Eriksson, Phys. Rev. Lett. 88, 187202 (2002).
17. C. Timm, F. Schifer, and F. von Oppen, Phys. Rev. Lett. 89, 137201 (2002).
18. Mona Berciu and R. N. Bhatt, Phys. Rev. Lett. 91, 187203 (2003).
19. J. Schneider, U. Kaufmann, W. Wilkening, M. Baemmler, and F. Kuhl, Phys. Rev. Lett. 59, 047204 (1987).
20. D. J. Keaveny, D. Wu, J. W. Freeland, E. Johnston-Halperin, D. D. Awschalom, J. Shi, Phys. Rev. Lett. 91, 187203 (2003).
21. J. Okabayashi, A. Kimura, O. Rader, T. Mizokawa, A. Fujimori, T. Hayashi, and M. Tanaka, Phys. Rev. B 64, 125304 (2001).
22. H. sklund, L. Ilver, J. Kanski, J. Sadowski, and R. Mathieu, Phys. Rev. B 66, 115319 (2002).
23. H. Ohno, and F. Matsukura, Solid State Communication 117, 179 (2001).
24. J. G. Braden, J. S. Parker, P. Xiong, S. H. Chun and N. Samarth, Phys. Rev. Lett. 91, 056602 (2003).
25. E. J. Singley, K. S. Burch, R. Kawakami, J. Stephens, D. D. Awschalom, D. N. Basov, Phys. Rev. B 68, 165204 (2003).
26. S. J. Pearton, C. R. Abernathy, G. T. Thaler, R. M. Frazier, D. P. Norton, F. Ren, Y. D. Park, J. M. Zavada,
I. A. Buyanova, W. M. Chen and A. F. Hebard, J. Phys.:Condens. Matter 16, R209-R245 (2004).
27 Y. D. Park, A. T. Hanbicki, S. C. Erwin, C. S. Hellberg, J. M. Sullivan, J. E. Mattson, A. Wilson, G. Spanos, B. T. Jonker, Science 295, 651 (2002).
28 Y. J. Zhao, T. Shishidou, and A. J. Freeman, Phys. Rev. Lett. 90, 047204 (2003).
29 T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000); T. Dietl, PHYS STATUS SOLIDI B 240 (2): 433 (2003).
30 L. Kronik, M. Jain, and J. R. Chelikowsky, Phys. Rev. B 66, 041203 (2003).
31 T. Graf, S. T. B. Goennenwein, M. S. Brandt, Phys. Stat. Sol. B, 239 (2), 277 (2003).
32 G. R. Das, B. K. Rao, and P. Jena, Phys. Rev. B 68, 035207 (2003).
33 H. Katayama-Yoshida and K. Sato, J. Phys. Chem. Solid. 64 (9-10), 1447 (2003).
34 N. V. Joshi, H. Medina, A. Cantarero, O. Ambacher, J. Phys. Chem. Solid. 64 (9-10), 1685 (2003).
35 K. Ando, Appl. Phys. Lett., 82, 100 (2003).
36 Y. Cui, V. K. Lazorov, M. M. Goetz, H. Liu, D. P. Robertson, M. Gajdardziska-Josifovska M, L. Li, Appl. Phys. Lett., 82, 4666 (2003).
37 T. Graf, M. Gjukic, M. Hermann, M. S. Brandt, M. Stutzmann, L. Gergens, J. B. Philipp, O. Ambacher, J. Appl. Phys., 93, 9697 (2003).
38 C. Zener, Phys. Rev. 81, 440 (1951); ibid 82, 403 (1951).
39 J. Schneider, U. Kaufmann, W. Wilkening, M. Baemumer, and F. Keidl, Phys. Rev. Lett. 59, 240 (1987).
40 T. Graf, M. Gjukic, L. Goergens, O. Ambacher, M. S. Brandt, and M. Stutzmann, Journal of Superconductivity: Incorporating Novel Magnetism, 16, 83 (2003).
41 T. Dietl, Semicond. Sci. and Tech. 17, 377 (2001).
42 V. F. Sapega, M. Moreno, M. Ramsteiner, L. Daeweritz, and K. Ploog, Phys. Rev. B 66, 075217 (2002).
43 T. Dietl, F. Matsukura, and H. Ohno, Phys. Rev. B 66, 035203 (2002).
44 H. A. Jahn, and E. Teller, Proc. Roy. Soc. A161, 220 (1937); H. A. Jahn, Proc. Roy. Soc. A164, 117 (1938).
45 J. T. Vallin, G. A. Slack, S. Roberts, and A. E. Hughes, 2, 4313 (2007); J. T. Vallin, and G. D. Watkins, Phys. Rev. B, 9, 2051 (1974).
46 J. J. Krebs, and G. H. StauSS, Phys. Rev. B, 16, 971 (1977); J. Kreissl, W. Ulrici, M. El-Metoui, A. M. Vasson, A. Vasson, and A. Gavaix, Phys. Rev. B, 54, 10508 (1996).
47 D. J. Chadi, Phys. Rev. B, 46, 6777 (1992); D. J. Chadi, and K. J. Chang, Phys. Rev. B, 61, 873 (1988); S. H. Wei, S. B. Zhang, and A. Zunger, Phys. Rev. B, 70, 1639 (1993).
48 C. H. Park, and D. J. Chadi, Phys. Rev. Lett., 75, 1134 (1995); C. H. Park, and D. J. Chadi, Phys. Rev. B, 55, 12995 (1997); C. H. Park, S. B. Zhang, and S. H. Wei, Phys. Rev. B, 66, 073202 (2002).
49 J. P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992).
50 D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).
51 G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
52 Y. J. Zhao, P. Mahadevan and A. Zunger, Appl. Phys. Lett., 84, 3753 (2004).
53 X. G. Guo, X. S. Chen, Y. L. Sun, X. H. Zhou, L. Z. Sun, J. C. Cao and W. Lu, Phys. Rev. B 69, 085206 (2004).
54 B. Sanyal, O. Bengone, and S. Mirbt, Phys. Rev. B 68, 205210 (2003).
55 P. Mahadevan and A. Zunger, Phys. Rev. B 69, 115211 (2004).

FIG. 1: A schematic drawing of the Jahn-Teller distortion.
(a) Degenerate energy level splitting, which leads to a linear decrease in the energy. (b) Strain contribution, which increases the total energy quadratically. (c) Formation of a stable configuration with an total energy minimum.

FIG. 2: A schematic drawing of three different atomic configurations, which lower symmetries in Jahn-Teller distortion (a) T_d to $D_{2d}, (b)$ T_d to $C_{2v}, (c)$ T_d to C_{3e}.

56 H. Katayama-Yoshida and K. Sato, Physica B, 327, 337 (2003).
57 E. Kulatov, H. Nakayama, H. Mariette, H. Ohta and Y. A. Uspenskii, Phys. Rev. B 66, 045203 (2002).
58 In our calculations, we found that care must be taken in the calculation, to ensure that one with correct spin-zero antiferro-magnetic states instead of a high-energy non-magnetic states.

FIG. 3: Partial density of states and schematic energy level diagrams of Mn 3d states in (a) GaAs:Mn, (b) GaN:Mn in T_d symmetry without a Jahn-Teller distortion (no energy level splitting), (c) With Jahn-Teller distortion of D_{2d} symmetry, which shows the splitting of the t_{2g} d-states.
TABLE I: Comparison of total energy among four different symmetries in GaN:Mn. Here the total energy E_{tot} of T_d symmetry (with breathing relaxation) is set to zero.

Symmetry	T_d	D_{2d}	C_{2v}	C_{3v}
E_{tot} (eV)	0.00	-0.10	-0.08	-0.02

TABLE II: Total energy difference ΔE^{AF} between ferro- (FM) and antiferro- (AFM) magnetic spin states for a Mn-Mn pair in neutral and -1 charged GaN:Mn. Here $\Delta E^{AF} = E^{AFM}_{tot} - E^{FM}_{tot}$, $\sqrt{2}a/2$ and $\sqrt{2}a$ are two separations of the Mn-Mn pair, and a is lattice constant of cubic GaN.

System	Neutral GaN:Mn (-1) charged GaN:Mn	
$\Delta E^{AF}_{\sqrt{2}a/2}$ (eV/Mn-pair)	0.36	0.30
$\Delta E^{AF}_{\sqrt{2}a}$ (eV/Mn-pair)	0.30	0.22
(b) $T_d \rightarrow C_{2v}$
(c) $T_d \rightarrow C_{3v}$
Partial DOS projected on Mn-3d states
Partial DOS projected on Mn-3d states
Partial DOS projected on Mn-3d states