Failure Modes and Effects Analysis for Domestic Electric Energy Meter Using In-Service Data

Ning Li¹, Jincheng Yang¹, Yongquan Sun², Gang Wang¹, Jiahai Zhang³ and Chun Liu³

¹Xinjiang Institute of State Grid Electric Power Research, Wulumuqi, 830000, China.
²Institute of Sensor and Reliability Engineering, Harbin University of Science and Technology, Harbin 150080, Heilongjiang, China.
³Yantai Dongfang Wisdom Electric Co., Ltd, Yantai 264000, Shandong, China.

Corresponding author e-mail: handongjun@dongfang-china.com

Abstract. Field operation data for domestic electric energy meters are valuable for both manufactures and users, from this point of view, the main failure modes, failure numbers, installed time, and lifetime were analysed based on in-service data. The result could provide a reference for maintenance and reliability improvements.

1. Introduction
State Grid Corporation of China proposed a large program to establish a strong intelligent grid. the quality and reliability of intelligent electrical meter is not only related to electrical safety of tens of thousands homes, but also have severe impacts on the reliable operation of national intelligent grid. Because field environment of the electric energy meter is complex, considering the effects of temperature and humidity changes, thunder and lightning, power system fluctuation, and electromagnetic interference, the risk of the electric energy meter failure is increased accompany with the long-term operation [1]. When State Grid bought electric energy meters through open tender, they identified that the average lifetime of electric energy meter should be not below 10 years under specified working conditions, and also pointed out that the relevant lower limits value of “m1” is 2.19×10⁴h[2].

Reliability test is an important method to investigate product reliability, and relevant reliability standards, such as JB/T50070-2002 Reliability Requirements and Reliability Compliance Test for electric energy meter, were published. The limitation is that long testing time, at least 1360h, is needed when 43 electric energy meters were put in a test. Testing time could be shorten by improving testing stress [3]. Luo Ranran (2013) investigated reliability of electric energy meters, combining accelerated life test, and accelerated degradation testing and reliability prediction based on component stress [4]. Bao Jin (2014) pointed out that high accelerated life test was a quick and efficient method to test the potential failure of electric energy meter at the research stage. Physical analysis of failure must be conducted before conducting high accelerated stress test to make sure the consistent of failure mechanism [5]. Accelerated life test generally is carried out on basic components, and we need to ensure the failure mechanism is not to be changed. Statistical analysis on the reliability of electric energy meter based on field failure/lifetime data could reflect reliability level of product. However, little relevant search results could be found, except Li yuxuan (2012) analyzed the failure model and
impact of single-phase intelligent electrical meter. Comprehensive analysis of failure records generated in the operation process could help to improve product reliability, but scarce data can be collected and applied to support reliability study for new developed electric energy meters [6]. This is the motivation of our research to conduct failure statistical analysis based on in-service data.

2. Description and Identification for In-Service Data of Domestic Electric Energy Meter

In-Service data were collected from two provinces in China, one is located in the south of China and denoted as F province, which is characteristic as high temperature, high humidity, and salt mist. The other is in the north of China and denoted as H province, which is famous for its low temperature in winter.

The intelligent electric energy meters were inspected at a certain time-point during its operation, the failure records for fault meters were collected from Jan. 2015 to Dec. and generated from 461 places for F province and from 24 places for H province. 2015. The numbers of the meters were shown in Table 1.

Table 1. The number of meters
Single phase
Three phases
total

All the failures were classified into four modes according to failure reasons, which were equipment quality, performance quality, outer factors, and natural hazard. In terms of the intrinsic quality, the equipment quality further divided into several elements for meters from F and H provinces listed in Table 2 and Table 3 separately.

Table 2. Failure modes of equipment quality for meters from F province
No.

1
2
3
4
5
6
7
8

2
Table 3. Failure modes of equipment quality for meters from H province

No.	failure modes	No.	failure modes	No.	failure modes
1	485 interface damage	4	Physical abuse	7	Display unit fault
2	Solder joint short circuit	5	Wireless module corruption	8	Carrier module damage
3	Metering chip damage	6	Error excess	9	other

Three types of users were identified in the record, which were Industrial users, commercial users, and residential users. The number of each type were shown in Table 4. It’s clear to see that a large number of users was not identified.

Table 4. Types and number of users

User types	single-phase meters users	single-phase meters users		
	F Province	H Province	F Province	H Province
Industrial users	——	12	44	178
commercial users	21254	2687	66	19
residential users	1604	589	136	439
blank	208366	1903	22473	591

3. **Statistic Analysis of In-Service Data**

Inspect data were recorded from Jan.2015 to Dec.2015, and the failure numbers during one month were simply computed and were presented in Fig.1.
In terms of the Entry-into-service time, the inspected meter’s installed date were collected and shown in Table 5.

Table 5. installed time of inspected meters

Time	Installed date for three-phase meters	Installed date for single-phase meters		
	F Province	H Province	F Province	H Province
Before 2000	———	10	———	2
2000	———	3	0	20
2001	———	10	0	6
2002	———	10	1	8
2003	———	16	0	3
2004	1	13	6	17
2005	1	7	4	14
2006	1	13	0	4
2007	3	9	5	6
2008	15	31	11	39
2009	35	182	4	2290
2010	82	273	775	367
2011	809	167	26692	488
2012	1280	161	124425	906
2013	17252	97	50273	376
2014	2642	164	23983	436
2015	598	105	5043	190
blank	———	10	———	12

After indentification of failure modes in the catalogy of equipment quality, the failure number in each failure mode were further given, as listed in Table 6 and Table 7 seperately considering two different provinces.
Table 6. Failure number for each failure modes from F province

No.	failure modes	Failure number	No.	failure modes	Failure number
	three-phase meters	single-phase meters		three-phase meters	single-phase meters
1	232 interface damage	3	17	Failure of Leapyear switch	2
2	485 interface damage	116	18	Time conversion damage	3
3	data Automatic Clear	3	19	Clock failure	541
4	foreign matter in the meter	8	20	Clock chip damage	85
5	unstart	46	21	System halted	94
6	Memory loss	7	22	Stop go	137
7	Out of battery	1597	23	Communication protocol conformance	6
8	Power data mutation	29	24	Physical abuse	1406
9	Capacitor damage	8	25	Wireless module corruption	106
10	Solder joint short circuit	174	26	Error excess	27
11	Infrared interface damage	181	27	Display unit fault	1319
12	Metering chip damage	57	28	Rosin joint	50
13	Relay damage	33	29	Instrument transformer damage	16
14	Crystall damage	6	30	Carrier module damage	584
15	Pulse interface damage	6	31	Combined error tolerance	16
16	Shunt running	40	126		

Table 7. Failure number for each failure modes from H province

No.	failure modes	Failure number	No.	failure modes	Failure number
	three-phase meters	single-phase meters		three-phase meters	single-phase meters
1	485 interface damage	30	6	Error excess	6
2	Solder joint short circuit	2	7	Display unit fault	2
3	Metering chip damage	12	8	Carrier module damage	14
4	Physical abuse	43	9	Other	1106
5	Wireless module corruption	1	10		
The lifetime of all the inspected meters are shown in Fig.2. It is clear to see that the operation time of most of Single-phase and Three-phase meters are shorter than 2500 days from H province, meanwhile, the operation time for most of meters are no more than 2000 days for F province.

4. Conclusion
This paper conduct failure modes analysis and statistical analysis based on in-service data. Domestic Electric Energy Meter in-service data are described and identified, some basic information including failure modes and main users were provide. For further, certain statistic analysis on failure numbers, installed time, and lifetime were conducted. The main contribution of this paper was to provide basic statistic reference in terms of domestic electric energy meters field operation data, which could be useful for further analysis on maintenance and reliability improvements.

Acknowledgments
This research was supported by National Grid Science and Technology project (5442JL160013) and Natural Science Foundation of Heilongjiang Province (QC2016068).

References
[1] Xue Yang, Zhang Penghe, Wang Yatao. Study and exploration on reliability assessment method for smart meters [J]. Electrical measurement and instrumentation, 2016, 53(13):90-95.
[2] Yang Hongqi, Liu Shaoqing, Huang Jinyong. Reliability Prediction method of smart meter [J]. Electronic product reliability and environmental testing, 2016, 34(3):65-71.
[3] Bao Jin, Zhou Chao, Tian Zhenqi. The application of highly accelerated life test in smart electricity meter reliability study[J]. Electrical measurement and instrumentation, 2014, 51(19):17-24.
[4] Luo Ranran, Zuo Jia, Tian Chengming. Reliability Assessment Method Research of Electronic electric energy meter [J]. Electrical Measurement & Instrumentation, 2013, 50(11A):1-5.
[5] Bao Jin, Zhou Chao, Tian Zhenqi. The application of highly accelerated life test in smart electricity meter reliability study [J]. Electrical measurement and instrumentation, 2014, 51(19):17-24.
[6] Li yuxuan. Failure modes and effects analysis in single-phase smart electricity meters [D].North China Electric Power University, 2012.