UNIFORM BOUNDS FOR RUIN PROBABILITY IN MULTIDIMENSIONAL RISK MODEL

NIKOLAI KRIUKOV

Abstract: In this paper we consider some generalizations of the classical d-dimensional Brownian risk model. This contribution derives some non-asymptotic bounds for simultaneous ruin probabilities of interest. In addition, we obtain non-asymptotic bounds also for the case of general trend functions and convolutions of our original risk model.

Key Words: Brownian risk model; Brownian motion; simultaneous ruin probability; uniform bounds.

AMS Classification: 60G15

1. Introduction and first Result

Let $B(t), t \geq 0$ be a d-dimensional Brownian motion with independent standard Brownian motion components and set $Z(t) = AB(t), t \geq 0$ with A a $d \times d$ real non-singular matrix. The recent contribution [1] derived the following remarkable inequality

\[1 \leq \frac{\mathbb{P}\{\exists t \in [0, T] : Z(t) \geq b\}}{\mathbb{P}\{Z(T) \geq b\} } \leq K(T), \quad K(T) = \frac{1}{\mathbb{P}\{Z(T) \geq 0\} } \tag{1} \]

valid for all $b \in \mathbb{R}^d, T > 0$. In our notation bold symbols are column vectors with d rows and all operations are meant component-wise, for instance $x \geq 0$ means $x_i \geq 0$ for all $i \leq d$ with $0 = (0, \ldots, 0) \in \mathbb{R}^d$.

The special and crucial feature of (1) is that the bounds are uniform with respect to b. Moreover, if at least one component of b tends to infinity, then $\mathbb{P}\{\exists t \in [0, T] : Z(t) \geq b\}$ can be accurately approximated (up to some constant) by the survival probability $\mathbb{P}\{Z(T) \geq b\}$.

Inequality (1) has been crucial in the context of Shepp-statistics investigated in [1]. It is also of great importance in the investigation of simultaneous ruin probabilities in vector-valued risk models (see [2–4]).

Specifically, consider the multidimensional risk model

\[R(t, u) = au - X(t), \quad X(t) = Z(t) - ct \]

for some vectors $a, c \in \mathbb{R}^d$ and $Z(t), t \geq 0$ defined above. Typically, R models the surplus of all d-portfolios of an insurance company, where $a_i u > 0$ plays the role of the initial capital. Here the component Z_i models the accumulated claim amount up to time t and $c_i t$ is the premium income for the ith portfolio.

Given a positive integer $k \leq d$, of interest is the calculation of the k-th simultaneous ruin probability, i.e., at least k out of d portfolios are ruined on a given time interval $[0, T]$ with T possibly also infinite. That ruin probability can be written as

\[\mathbb{P}\{\exists t \in [0, T] : Z(t) - ct \in uS\}, \quad u > 0, \]
where
\[S := \bigcup_{I \subseteq \{1, \ldots, d\} \atop |I| = k} S_I, \quad S_I = \{ x \in \mathbb{R}^d : \forall i \in I, x_i > a_i \}. \]

The particular case \(Z(t) = AB(t), t \geq 0 \) with \(A \) a \(d \times d \) non-singular matrix is of special importance for insurance risk models, see e.g., [5]. Clearly, this instance is also of great importance in statistics and probability given the central role of the \(\mathbb{R}^d \)-valued Brownian motion as a natural limiting process in [6] it has been shown that (1) can be extended for this risk model, i.e., for all \(u, T > 0 \)
\[1 \leq \frac{\mathbb{P} \{ \exists t \in [0, T] : X(t) \in uS \}}{\mathbb{P} \{ X(T) \in uS \}} \leq K_S(T), \quad X(t) = Z(t) - c(t), \]
with \(c(t) = ct, t \geq 0 \) and some known constant \(K_S(T) > 0 \). Again the bounds are uniform with respect to \(u \).

It is clear that the inequality (2) does not hold for an arbitrary set \(S \subset \mathbb{R}^d \). Since Brownian motion has almost surely continuous sample paths, , if it hits some closed set \(S \), it definitely hits its boundary. Hence in the following special case, for all \(u \) positive we have
\[\{ \exists t \in [0, T] : Z(t) \geq u \} = \{ \exists t \in [0, T] : Z(t) = u \}. \]
Hence, taking \(S = \{ x \in \mathbb{R}^d : x_1 = 1 \} \) and \(c(t) = 0 \) we have that
\[\mathbb{P} \{ \exists t \in [0, T] : X(t) \in uS \} = \mathbb{P} \{ \exists t \in [0, T] : X_1(t) > u \} \geq \mathbb{P} \{ X_1(T) > u \} > 0, \]
\[\mathbb{P} \{ X(T) \in uS \} = 0, \]
and (2) does not hold.

Therefore hereafter we shall consider only closed sets \(S \) described as follows:

Definition 1.1. Let \(X \) and \(Z \) are as defined above. The closed Borel set \(S \subset \mathbb{R}^d \) satisfies the cone condition with respect to the the vector-valued process \(X \) if there exists a strictly positive function \(\varepsilon_S(t), t > 0 \) such that for any point \(x \in S \) and any \(t > 0 \) there exists a Borel set \(V_x \subset S \) that contains \(x \) and not depending on \(t \), satisfying \(V_x - x \subset C(V_x - x) \) for all \(C > 1 \) and \(\mathbb{P} \{ Z(t) \in V_x - x \} \geq \varepsilon_S(t) \).

It is of interest to consider a general trend function in (2). We consider below a large class of trend functions which is tractable if \(Z \) has self-similar coordinates with index \(\alpha > 0 \). This is in particular the case when \(Z = AB \).

Definition 1.2. A continuous measurable vector-valued function \(c : [0, +\infty) \to \mathbb{R}^d \) belongs to \(RV_{t_0}(\alpha) \) for some \(\alpha > 0 \), \(t_0 \in [0, T] \) if for some \(M > 0 \), all \(i \in \{1 \ldots d\} \), \(t \in [0, T] \)
\[|c_i(t) - c_i(t_0)| \leq M|t - t_0|^\alpha. \]

We state next our first result. Below \(F : \mathbb{R}^d \to \mathbb{R}^d \) growing means that for any \(x, y \in \mathbb{R}^d \) such that for all \(i \in \{1, \ldots, d\} \) \(x_i \geq y_i \) we have that \(F_i(x) \geq F_i(y) \) holds for all \(i \in \{1, \ldots, d\} \).

Theorem 1.3. If \(S \subset \mathbb{R}^d \) satisfies the cone condition with respect to the process \(Z = AB \) such that \(0 \not\in S \) and \(c \in RV_T(1/2) \), then for all constants \(T > 0, u > 1 \) the inequality (2) holds with
\[K(T) = \frac{2^{d/2}}{c(T)\varepsilon_S(T)}, \quad c(T) = \inf_{t \in [0, T]} e^{-T \left(\frac{c(T) - c(t)}{\sqrt{T}} \right)^T \Sigma^{-1} \left(\frac{c(T) - c(t)}{\sqrt{T}} \right)} > 0, \]
where Σ is the covariance matrix of $Z(T)$. In particular, for any growing function $F : \mathbb{R}^d \to \mathbb{R}$
\[
P\{ \exists t \in [0, T] : F(Z(t) - c(t)) > ua \} \leq C_T P \{ F(Z(T) - c(T)) > ua \}
\]
we have $a \in \mathbb{R}^d \setminus (-\infty, 0]^d$, $u > 1$ and some constant C_T which does not depend on u.

If Z is a given separable random field, it is of interest to determine conditions such that (2) can be extended to
\[
1 \leq \frac{P \{ \exists t \in T : Z(t) - c(t) \in uS \}}{P \{ Z(T) - c(T) \in uS \}} \leq K_S(T),
\]
where $T = [0, T_1] \times \ldots \times [0, T_n]$ and $T = (T_1, \ldots, T_n)$ has positive components. For the case $Z(t) = \sum_{i=1}^n Z_i(t_i)$ where Z_i's are independent copies of Z, and $c(t) = 0$ the result (3) was shown in [1][Thm 1.1] for some special set S. For more general set S we have the following result:

Theorem 1.4. If $S \subset \mathbb{R}^d$ satisfies the cone condition with respect to Z, $0 \notin S$ and all $c_i \in RV_T(1/2)$, then for all constants $T_1, \ldots, T_n > 0, u > 1$ the inequality (3) holds with $Z(t) = \sum_{k=1}^n Z_k(t_k)$ and $c(t) = \sum_{k=1}^n c_k(t_k)$ with
\[
K_S(T) = \prod_{k=1}^n \frac{2^{d/2}}{c_k(T_k) \varepsilon_S(T_k)}, \quad c_k(T_k) = \inf_{t \in [0, T_k]} e^{-T_k \left(\frac{c_k(t_k) - c_k(t_0)}{\sqrt{T_k}} \right) ^T \Sigma^{-1} T_k \left(\frac{c_k(t_k) - c_k(t_0)}{\sqrt{T_k}} \right)} > 0,
\]
where ε_S is any function satisfies the claims of Definition 1.1.

2. Discussion

In this section as in Introduction we consider first
\[
Z(t) = AB(t), \quad t \geq 0
\]
with A non-singular and B a d-dimensional Brownian motion with independent components. We shall discuss next the generalisation of the upper bound (2) for various special cases.

2.1. Order statistics. The classical multidimensional Brownian motion risk model (see [5]) is formulated in terms of some risk process R specified by
\[
R(t, u) = au - Z(t) + ct
\]
for some vectors $a, c \in \mathbb{R}^d$. We are interested in the finite-time simultaneous ruin probability for k out of d portfolios, i.e. the probability that at least k portfolios are ruined. In other words, we are investigating the probability
\[
P \{ \exists t \in [0, T] : Z(t) - c(t) \in uS \}, \quad u > 0,
\]
where
\[
S_u := \bigcup_{\mathcal{I} \subset \{1, \ldots, d\} \atop |\mathcal{I}| = k} S_{I, u}, \quad S_{I, u} = \{ x \in \mathbb{R}^d : \forall i \in I \ x_i \geq a_i u \}.
\]
Asymptotic approximations of such probability was already obtained in [6]. Now we want to derive a uniform non-asymptotic bound based on our previous findings. It is clear that all sets $S_{I, u}$ satisfy the
cone condition with respect to the process Z. Thus, S_u also satisfies the cone condition with respect to the process Z, hence we can use Theorem 1.3 and write for some positive constant C
\[\mathbb{P} \{ Z(T) - cT \in S_u \} \leq \mathbb{P} \{ \exists t\in[0,T] : Z(t) - ct \in S_u \} \leq C \mathbb{P} \{ Z(T) - cT \in S_u \} . \]

2.2. Fractional Brownian motion. Consider next the 1-dimensional risk model
\[R(u, t) = u - B_H(t) + ct, \quad t > 0, \]
where $B_H(t)$ is a standard fractional Brownian motion with zero mean and variance function $|t|^{2H}$, $H \in (0, 1]$. We are interested in the calculation of the finite-time ruin probability for given $T > 0$. The inequalities below have already been shown in [2]. We retrieve them using our findings. Namely, by the Slepian inequality, we can write for $H > \frac{1}{2}$ and W a standard Brownian motion
\[\mathbb{P} \{ \exists \in [0,T] R(u, t) \leq 0 \} \leq \mathbb{P} \{ \exists \in [0,T] W (t^{2H}) - ct \geq u \} = \mathbb{P} \{ \exists \in [0,2u] W (t) - ct^{1/2H} \geq u \} = \mathbb{P} \{ \exists \in [0,1] W (t) - ct^{1-H}t^{1/2H} \geq u/T^H \} . \]

Since $ct^{1-H}t^{1/2H} \in RV_1(1/2)$, using Theorem 1.3, for some positive constant C we can write
\[\mathbb{P} \{ \exists \in [0,1] W (t) - ct^{1-H}t^{1/2H} \geq u/T^H \} \leq CP \{ W (1) - ct^{1-H} \geq u/T^H \} = CP \{ W (t^{2H}) - ct \geq u \} = CP \{ R(u, T) \leq 0 \} . \]

The above can be extended considering the convolution of n independent one-dimensional fractional Brownian motions $B_{H_i}(t), t > 0, i \leq n$. Let $H_i > 1/2$ and define the risk processes
\[R_i(u, t) = u/n - B_{H_i}(t) + c_i t, \quad i \leq n. \]

Consider the convolution of processes $R_i(u, t)$. Using Slepian inequality, for all $H_i > \frac{1}{2}$ we can write
\[\mathbb{P} \left\{ \exists \in \prod_{i=1}^{n} [0,T_i] \sum_{i=1}^{n} R_i(u, t_i) \leq 0 \right\} \leq \mathbb{P} \left\{ \exists \in \prod_{i=1}^{n} [0,T_i] \sum_{i=1}^{n} W_i (t^{2H_i}) - c_i t_i \geq u \right\} = \mathbb{P} \left\{ \exists \in \prod_{i=1}^{n} [0,T_i^{2H_i}] \sum_{i=1}^{n} W_i (t) - c_i t_i^{1/2H_i} \geq u \right\} . \]

Here W_i stands for an independent copy of Brownian motion. As $c_i t_i^{1/2H_i} \in RV_{T_i}(1/2, 1)$, using Theorem 1.4, for some positive constant C we can write
\[\mathbb{P} \left\{ \exists \in \prod_{i=1}^{n} [0,T_i^{2H_i}] \sum_{i=1}^{n} W_i (t) - c_i t_i^{1/2H_i} \geq u \right\} \leq CP \left\{ \sum_{i=1}^{n} W_i (T_i^{2H_i}) - c_i T_i \geq u \right\} = CP \left\{ \sum_{i=1}^{n} B_{H_i} (T_i) - c_i T_i \geq u \right\} . \]
3. Vector-valued time-transformation

Finally, we discuss some extensions of (2) under different time transformations. We use the notation from Section 2 and define the following time transform. Let \(f(t) : [0, +\infty) \in \mathbb{R}^d \) be a growing vector-valued function and define

\[
Z(f(t)) = (Z_1(f_1(t)), \ldots, Z_d(f_d(t)))^\top.
\]

Hence \(f(t) \) can be considered as a generalised transformation of time.

Theorem 3.1. Let \(c(t), f(t) : [0, T] \rightarrow \mathbb{R}^d \) be given. Suppose that all \(f_i(t) \)'s are continuous, strictly growing and for all \(i \in \{1, \ldots, d\} \) we have \(f_i(0) = 0 \) and function \(\delta_i(t) = \frac{f_i(t) - f_i(T)}{f_1(T) - f_1(t)} \) has a positive finite limit as \(t \rightarrow T \). Let also \(|c_i(T) - c_i(t)| < M \sqrt{f_1(T) - f_1(t)} \) for all \(t \in [0, T] \), all \(i \in \{1, \ldots, d\} \), some \(M > 0 \), and \(S \) satisfies the cone condition with respect to the process \(Z \). If \(0 \notin S \), then for all constants \(T > 0, u > 1 \) the inequality (2) holds with \(X(t) = Z(f(t)) \) and

\[
K^*(T) = \frac{(2f_1(T))^{d/2}}{\mathcal{C}(T)\bar{\epsilon} S}, \quad \mathcal{C}(T) = \inf_{t \in [0, T]} e^{-\left(\frac{c(T) - c(t)}{\sqrt{f_1(T) - f_1(t)}}\right)^\top \Sigma^{-1}(\delta(t))\left(\frac{c(T) - c(t)}{\sqrt{f_1(T) - f_1(t)}}\right)} > 0,
\]

where

\[
\bar{\epsilon} S = \left(\inf_{i \in \{1, \ldots, d\}} \sup_{t \in [0, T]} \delta_i(t)\right)^{d/2} \epsilon S \left(\inf_{i \in \{1, \ldots, d\}} \delta_i(t)\right) > 0.
\]

Remark 3.2. The function \(f \) in Theorem 3.1 may also be an almost surely growing stochastic process, independent of \(Z \), satisfying

\[
\max_{i \in \{1, \ldots, d\}} f_i(T) < F, \quad \max_{i \in \{1, \ldots, d\}} \sup_{t \in [0, T]} \left| c_i(T_k) - c_i(t) \right| < M,
\]

\[
\delta < \inf_{i \in \{1, \ldots, d\}} \sup_{t \in [0, T]} \delta_i(t) < \Delta,
\]

almost surely with some positive constants \(F, M, \delta, \Delta \). In this case the inequality (2) holds with

\[
K^*(T) = \frac{(2F)^{d/2}}{\mathcal{C}(T)\bar{\epsilon} S}, \quad \mathcal{C}(T) = \min_{x \in [-M, M]^d} \epsilon S (x) > 0,
\]

and

\[
\bar{\epsilon} S = \left(\frac{\delta}{\Delta}\right)^{d/2} \epsilon S (\delta) > 0.
\]

We illustrate the above findings considering again \(d \) independent one-dimensional fractional Brownian motions \(B_{H_i}(t), t > 0 \) with Hurst parameters \(H_i > \frac{1}{2}, i \leq d \). Define \(d \) ruin portfolios

\[
R_i(u, t) = u - B_{H_i}(t) + c_i t,
\]
and we are interested in probability that all of them will be simultaneously ruined in \([0, T]\).

Using Gordon inequality (see [7, page 55]), we obtain

\[
\mathbb{P}\left\{ \exists t \in [0,T] \forall i \in \{1,\ldots,d\} R_i(u, t) < 0 \right\} \leq \mathbb{P}\left\{ \exists t \in [0,T] \forall i \in \{1,\ldots,d\} W_i \left(t^{2H_i} \right) - c_i t > u \right\}.
\]

Where \(B_i(t)\) are independent Brownian motions. Since

\[
\lim_{t \to T} \frac{T^{2H_i} - t^{2H_i}}{T^{2H_i - 1}} = \frac{2H_i}{2H_i - 1} > 0,
\]

using Theorem 3.1, for some positive constant \(C\), which does not depend on \(u\) we can write

\[
\mathbb{P}\left\{ \exists t \in [0,T] \forall i \in \{1,\ldots,d\} W_i \left(t^{2H_i} \right) - c_i t > u \right\} \leq C \mathbb{P}\left\{ \forall i \in \{1,\ldots,d\} W_i \left(T^{2H_i} \right) - c_i T > u \right\}
= C \mathbb{P}\left\{ \forall i \in \{1,\ldots,d\} B_{H_i} (T) - c T > u \right\}
= C \mathbb{P}\left\{ \forall i \in \{1,\ldots,d\} R_i(u, T) < 0 \right\}.
\]

4. Proofs

Let us note the following property of the function \(\varepsilon_S(t)\).

Lemma 4.1. If set \(S\) satisfies the cone condition with respect to the process \(Z(t)\) with some function \(\varepsilon_S(t)\), then for any constant \(u > 1\) set \(uS\) also satisfies the cone condition with respect to the process \(Z(t)\), and for any function \(\varepsilon_S(t)\) exists a function \(\varepsilon_uS(t)\) such that

\[
\varepsilon_uS(t) \geq \varepsilon_S(t).
\]

Proof of Lemma 4.1: Fix some \(x \in uS\). Then we know that \(y = x/u \in S\). As \(S\) satisfies the cone condition with respect to the process \(Z(t)\), there exists some cone \(V_y \subset S\) with vertex \(y\) such that

\[
\mathbb{P}\{Z(t) \in V_y - y\} \geq \varepsilon_S(t).
\]

Hence, \(uV_y \subset uS\) for all \(u > 1\). Note that using the properties of cone

\[
uV_y = u(y + (V_y - y)) = x + u(V_y - y) \supset x + (V_y - y).
\]

Hence, \(x + (V_y - y) \subset uS\) is some cone with vertex \(x\), and

\[
\mathbb{P}\{Z(t) \in uV_y - x\} \geq \mathbb{P}\{Z(t) \in V_y - y\} \geq \varepsilon_S(t).
\]

\qed

Proof of Theorem 1.3: Consider the first inequality. Define the following stopping moment

\[
\tau = \inf\{t \in [0, T] : Z(t) - c(t) \in uS\}.
\]

According to the strong Markov property

\[
\mathbb{P}\{Z(T) - c(T) \in uS\} = \int_0^T \int_{u\partial S} \mathbb{P}\{Z(\tau) - c(\tau) \in dx, \tau \in dt\} \mathbb{P}\{Z(T) - c(T) \in uS|Z(t) - c(t) = x\}.
\]

Using Lemma 4.1, \(uS\) satisfies the cone condition with respect to the process \(Z(t)\). Hence for all \(x \in uS, t \in [0, T]\)

\[
\mathbb{P}\{Z(T) - c(T) \in uS|Z(t) - c(t) = x\} \geq \mathbb{P}\{Z(T) - c(T) \in V_x|Z(t) - c(t) = x\}
= \mathbb{P}\{Z(T - t) - (c(T) - c(t)) \in V_x - x\}.
\]
Proof of Theorem 1.1. Consequently,

\[\{ \mathbb{P} \{ \mathbf{Z}(T) \in uS \} \geq \mathbb{E}(T) \mathbb{E}(S(T)) - \varepsilon(T) \mathbb{E}(S(T)) \mathbb{P} \{ \mathbf{Z}(T) \in uS \} \}
\]

where \(\mathbf{V}_x \) is the cone from Definition 1.1. As the right part does not depend on \(x \) and \(t \), we can write

\[\mathbb{P} \{ \mathbf{Z}(T) - c(T) \in uS \} \geq \mathbb{E}(T) \mathbb{E}(S(T)) - \varepsilon(T) \mathbb{E}(S(T)) \mathbb{P} \{ \mathbf{Z}(T) > uS \} \]

Hence, the first inequality holds. Consider the second one. Define a set

\[a^+ = \{ x \in \mathbb{R}^d : x \geq a \} \]

and

\[S_u = \{ x \in \mathbb{R}^d : F(x) \in ua^+ \}. \]

Set \(S_u \) satisfies the cone condition with respect to the process \(\mathbf{Z}(t) \) for \(\mathbf{Z}_x = x^+ \), as for any \(y \geq x \in S_u \)

\[F(uy) \geq F(ux) \geq ua^+. \]

Consequently, \(y \in S_u \), and

\[\varepsilon_s(t) = \mathbb{P} \{ \mathbf{X}(t) \in a^+ - x \} = \mathbb{P} \{ \mathbf{X}(t) \in [0, +\infty)^d \} \]

does not depend on \(u \). Applying the result above for the set \(S_u \) we obtain

\[\mathbb{P} \{ \exists t \in [0, T] : \mathbf{X}(t) \in uS_u \} \leq \frac{2^{d/2} \mathbb{P} \{ \mathbf{X}(T) \in uS \} \mathbb{E}(T) \mathbb{E}(S(T))}{2^{d/2} \mathbb{P} \{ \mathbf{X}(T) \in uS \} \mathbb{E}(T) \mathbb{E}(S(T))}. \]

As the event \(\{ \mathbf{X}(t) \in uS_u \} \) is equal to the event \(\{ \mathbf{F}(\mathbf{X}(t) - c(t)) > ua \} \), this completes the proof. \(\square \)

Proof of Theorem 1.4: Define

\[\psi_k(S) := \mathbb{P} \{ \exists t \in T_k : \sum_{i=1}^k (Z_i(t_i) - c_i(t_i)) + \sum_{i=k+1}^n (Z_i(T_i) - c_i(T_i)) \in S \} \]

where \(T_k = [0, T_1] \times \ldots \times [0, T_k] \). As in the previous section we are going to prove that the inequality

\[\psi_k(uS) \leq \frac{2^{d/2} \psi_{k-1}(uS)}{\varepsilon_s(T_k) \mathbb{E}(S(T_k))} \]

takes place for any \(k \in \{1, \ldots, n\} \). We can fix the trajectories of processes \(Z_i(t) \) called \(x_i(t) \), fix random vectors \(Z_i(T_i) \) called \(x_i \), and define the process

\[
Z^{sk}(t, t^k) = Z_k(t) - c_k(t) + \sum_{i=1}^{k-1} (x_i(t_i) - c_i(t_i)) + \sum_{i=k+1}^{n} (x_i - c_i(T_i))
\]

where \(t^k = (t_1, \ldots, t_{k-1}) \in T_{k-1} \).

Since \(Z_i \) are independent, it is enough to show that for every set of trajectories \(x_i(t) \) and points \(x_j \), the inequality

\[
\psi^*(uS) \leq \frac{2^{d/2} \nu(uS)}{\varepsilon S(T_k) \mathcal{C}_k(T_k)}
\]

takes place, where

\[
\psi^*(S) = \mathbb{P} \left\{ \exists t \in [0, T_k] : Z^sk(t, t^k) \in S \text{ for some } t^k \in T_{k-1} \right\},
\]

\[
\nu(S) = \mathbb{P} \left\{ Z^sk(T_k, t^k) \in S \text{ for some } t^k \in T_{k-1} \right\}.
\]

Define the following stopping time:

\[
\tau_k = \inf \left\{ t : Z^sk(t, t^k) \in uS \text{ for some } t^k \in T^k \right\},
\]

and the random vector

\[
\tilde{x}_k = \begin{cases} x^*, & \tau_k \leq T_k, \\ 0, & \text{otherwise,} \end{cases}
\]

where \(x^* \) is any point from the following set:

\[
\bigcup_{t^k \in T^k} \left\{ Z^sk(\tau_k, t^k) \right\} \bigcap uS.
\]

Using the total probability formula we obtain

\[
\nu(uS) = \int_0^{T_k} \int_{u \partial S} \mathbb{P} \{ \tilde{x}_k \in dx_0, \tau_k \in dt \} \mathbb{P} \left\{ Z^sk(T_k, t^k) \in uS \text{ for some } t^k \in T_{k-1} | \tau_k = t, \tilde{x}_k = x_0 \right\}.
\]

For any \(t^k \in T_{k-1} \) we have

\[
Z^sk(T_k, t^k) - Z^sk(t, t^k) = Z_k(T_k) - Z_k(t) - (c_k(T_k) - c_k(t)).
\]

Thus, using the same chain of inequalities as in Theorem 1.3 we obtain

\[
\mathbb{P} \left\{ Z^sk(T_k, t^k) \in uS \text{ for some } t^k \in T^k | \tau_k = t, \tilde{x}_k = x_0 \right\} \geq \mathbb{P} \left\{ Z_k(T_k) - Z_k(t) - (c_k(T_k) - c_k(t)) \in uS - x_0 \right\} \geq \frac{\mathcal{C}_k(T_k) \varepsilon S(T_k)}{2^{d/2}}
\]

which completes the proof.

\(\square \)

Remark 4.2. The random variable \(\tau_k \) is measurable, because it can be represented as

\[
\tau_k = \inf \left\{ t : Z_k(t) - c_k(t) \in S_k^\circ \right\},
\]
Proof of Theorem 3.1: Define a stopping time
\[\tau = \inf \{ t \in [0, T] : Z(f(t)) - c(t) \in uS \} \]
According to the strong Markov property
\[
\mathbb{P}\{Z(f(T)) - c(T) \in uS\} = \int_0^T \int_{u\partial S} \mathbb{P}\{Z(f(\tau)) - c(\tau) \in dx, \tau \in dt\}
\times \mathbb{P}\{Z(f(T)) - c(T) \in uS|Z(f(t)) - c(t) = x, \tau = t\}.
\]
In view of Lemma 4.1, \(uS \) satisfies the cone condition with respect to the process \(Z(t) \). Consequently, we have

\[
\mathbb{P}\{Z(f(T)) - c(T) \in uS|Z(f(t)) - c(t) = x, \tau = t\}
= \mathbb{P}\{Z(f(T)) - c(T) \in uS|Z(f(t)) - c(t) = x\}
\geq \mathbb{P}\{Z(f(T)) - Z(f(t)) - c(T) + c(t) \in V_x - x\}
= \mathbb{P}\{Z(f(T) - f(t)) - (c(T) - c(t)) \in V_x - x\}
\geq \mathbb{P}\left\{Z(\delta(t)) - \frac{c(T) - c(t)}{\sqrt{f_1(T) - f_1(t)}} \in \frac{V_x - x}{\sqrt{f_1(T) - f_1(t)}}\right\}
\geq \int_{y \in \frac{V_x - x}{\sqrt{f_1(T)}}} \varphi_{\delta(t)} \left(\frac{y + \frac{c(T) - c(t)}{\sqrt{f_1(T) - f_1(t)}}}{\sqrt{f_1(T) - f_1(t)}} \right) dy
\geq \int_{y \in \frac{V_x - x}{\sqrt{f_1(T)}}} \mathcal{C}(T) \varphi_{\delta(t)} (\sqrt{2y}) dy
\geq \frac{\mathcal{C}(T)}{2^{d/2}} \mathbb{P}\left\{Z(\delta(t)) \in \frac{V_x - x}{\sqrt{f_1(T)}}\right\}
= \frac{\mathcal{C}(T)}{(2f_1(T))^{d/2}} \mathbb{P}\left\{Z(\delta(t)) \in V_x - x\right\}
= \frac{\mathcal{C}(T)}{(2f_1(T))^{d/2}} \mathbb{P}\left\{B(\delta(t)) \in A^{-1}(V_x - x)\right\}
= \frac{\mathcal{C}(T)}{(2f_1(T))^{d/2}} \frac{1}{\sqrt{2\pi} \prod_{i=1}^d \delta_i(t)} \int_{y \in A^{-1}(V_x - x)} e^{-\frac{1}{2} \sum_{i=1}^d \delta_i(t)^2} dy,
\]
where \(\varphi_{\delta(t)} \) is the pdf of \(Z(\delta(t)) \). Using that all the functions \(\delta_i(t) \) are bounded and separated from zero for \(t \in [0, T] \), there exists some constants \(\delta, \Delta > 0 \), such that for all \(i \in \{1, \ldots, d\} \) and all \(t \in [0, T] \)
\[\delta \leq \delta_i(t) \leq \Delta. \]
Hence we obtain
\[
\frac{1}{\sqrt{2\pi \prod_{i=1}^d \delta_i(t)}} \geq \frac{1}{\sqrt{2\pi \prod_{i=1}^d \Delta}}, \quad e^{-\frac{1}{2} \sum_{i=1}^d \frac{x_i^2}{\Delta}} \geq e^{-\frac{1}{2} \sum_{i=1}^d \frac{x_i^2}{\delta_i(t)}},
\]
and finally
\[
\mathbb{P}\{Z(f(T)) - c(T) \in uS|Z(f(t)) - c(t) = x, \tau = t\} \geq \frac{c(T)}{(2f_1(T))^{d/2}} \frac{1}{\sqrt{2\pi \prod_{i=1}^d \Delta}} \int_{y \in A^{-1}(V_x - x)} e^{-\frac{1}{2} \sum_{i=1}^d \frac{y_i^2}{\delta_i(t)}} \, dy \\
= \frac{c(T)}{(2f_1(T))^{d/2}} \frac{\sqrt{\prod_{i=1}^d \delta_i(t)}}{\sqrt{\prod_{i=1}^d \Delta}} \mathbb{P}\{B(\delta) \in A^{-1}(V_x - x)\} \\
\geq \frac{c(T)}{(2f_1(T))^{d/2}} \frac{\sqrt{\prod_{i=1}^d \delta_i(t)}}{\sqrt{\prod_{i=1}^d \Delta}} S(\delta).
\]
Hence the claim follows. \qed

Acknowledgements

I am grateful to four reviewers for numerous comments and suggestions that lead to a significant improvement of the manuscript. Partial financial support from the SNSF Grant 200021-191984 is kindly acknowledged.

References

[1] D. Korshunov and L. Wang, “Tail asymptotics for Shepp-statistics of Brownian motion in \(\mathbb{R}^d \),” Extremes, vol. 23, no. 1, pp. 35–54, 2020.
[2] K. Dębicki, E. Hashorva, and Z. Michna, “On continuity of Pickands constants,” arXiv:2105.10435, J. Appl. Probab, in press, 2021.
[3] N. Kriukov, “Parisian & cumulative Parisian ruin probability for two-dimensional Brownian risk model,” Stochastics, pp. 1–17, 2021.
[4] K. Dębicki, E. Hashorva, and K. Krystecki, “Finite-time ruin probability for correlated Brownian motions,” Scandinavian Actuarial Journal, pp. 1–26, 2021.
[5] G. A. Delsing, M. R. H. Mandjes, P. J. C. Spreij, and E. M. M. Winands, “Asymptotics and approximations of ruin probabilities for multivariate risk processes in a Markovian environment,” arXiv preprint arXiv:1812.09069, 2018.
[6] K. Dębicki, E. Hashorva, and N. Kriukov, “Pandemic-type failures in multivariate Brownian risk models,” Extremes, Accepted.
[7] R. J. Adler, An introduction to continuity, extrema, and related topics for general Gaussian processes, vol. 12 of Institute of Mathematical Statistics Lecture Notes—Monograph Series. Institute of Mathematical Statistics, Hayward, CA, 1990.
Nikolai Kriukov, Department of Actuarial Science, University of Lausanne, UNIL-Dorigny, 1015 Lausanne, Switzerland

Email address: Nikolai.Kriukov@unil.ch