The vortex gas scaling regime of baroclinic turbulence

Citation	Gallet, Basile and Raffaele Ferrari. "The vortex gas scaling regime of baroclinic turbulence." Proceedings of the National Academy of Sciences (February 2020): 4491-4497 © 2020 National Academy of Sciences
As Published	http://dx.doi.org/10.1073/pnas.1916272117
Publisher	National Academy of Sciences
Version	Final published version
Citable link	https://hdl.handle.net/1721.1/128476
Terms of Use	Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.
The vortex gas scaling regime of baroclinic turbulence

Basile Gallet1,2 and Raffaele Ferrari3,4

1Service de Physique de l’Etat Condensé, Commissariat à l’Energie Atomique Saclay, CNRS UMR 3680, Université Paris-Saclay, 91191 Gif-sur-Yvette, France;
2Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139

Edited by William R. Young, University of California San Diego, La Jolla, CA, and approved January 15, 2020 (received for review September 20, 2019)

The mean state of the atmosphere and ocean is set through a balance between external forcing (radiation, winds, heat and freshwater fluxes) and the emergent turbulence, which transfers energy to dissipative structures. The forcing gives rise to jets in the atmosphere and currents in the ocean, which spontaneously develop turbulent eddies through the baroclinic instability. A critical step in the development of a theory of climate is to properly include the eddy-induced turbulent transport of properties like heat, moisture, and carbon. In the linear stages, baroclinic instability generates flow structures at the Rossby deformation radius, a length scale of order 1,000 km in the atmosphere and 100 km in the ocean, smaller than the planetary scale and the typical extent of ocean basins, respectively. There is, therefore, a separation of scales between the large-scale gradient of properties like temperature and the smaller eddies that advect it randomly, inducing effective diffusion. Numerical solutions show that such scale separation remains in the strongly nonlinear turbulent regime, provided there is sufficient drag at the bottom of the atmosphere and ocean. We compute the scaling laws governing the eddy-driven transport associated with baroclinic turbulence. First, we provide a theoretical underpinning for empirical scaling laws reported in previous studies, for different formulations of the bottom drag law. Second, these scaling laws are shown to provide an important first step toward an accurate local closure to predict the impact of baroclinic turbulence in setting the large-scale temperature profiles in the atmosphere and ocean.

Significance

Developing a theory of climate requires an accurate parameterization of the transport induced by turbulent eddies. A major source of turbulence in the midlatitude planetary atmospheres and oceans is the baroclinic instability of the large-scale flows. We present a scaling theory that quantitatively predicts the local heat flux, eddy kinetic energy, and mixing length of baroclinic turbulence as a function of the large-scale flow characteristics and bottom friction. The theory is then used as a quantitative parameterization in the case of meridionally dependent forcing in the fully turbulent regime. Beyond its relevance for climate theories, our work is an intriguing example of a successful closure for a fully turbulent flow.

Significance

Oceanic and atmospheric flows are subject to the combined effects of strong density stratification and rapid planetary rotation. On the one hand, these two ingredients add complexity to the dynamics, making the flow strongly anisotropic and inducing waves that modify the characteristics of the turbulent eddies. On the other hand, they permit the derivation of reduced sets of equations that capture the large-scale behavior of the flow: this is the realm of quasigeostrophy (QG). The outcome of this approach is a model that couples two-dimensional (2D) layers of fluid of different density. QG filters out fast-wave dynamics, relaxing the necessity to resolve the fastest timescales of the original system. A QG model with only two fluid layers is simple enough for fast and extensive numerical studies, and yet, it retains the key phenomenon arising from the combination of stable stratification and rapid rotation (1): baroclinic instability, with its ability to induce small-scale turbulent eddies from a large-scale vertically sheared flow. The two-layer quasi-geostrophic (2LQG) model offers a testbed to derive and validate closure models for the “baroclinic turbulence” that results from this instability.

In the simplest picture of 2LQG, a layer of light fluid sits on top of a layer of heavy fluid, as sketched in Fig. 1A, in a frame rotating at a spatially uniform rate \(\Omega = f/2 \) around the vertical axis. Such a uniform Coriolis parameter \(f \) is a strong simplification compared with real atmospheres and oceans, where the \(f \)-effect associated with latitudinal variations in \(f \) can trigger the emergence of zonal jets. Nevertheless, \(f \) vanishes at the poles of a planet, and it seems that any global parameterization of baroclinic turbulence needs to correctly handle the limiting case \(f = 0 \), which we address in the present study. The 2LQG model applies to motions evolving on timescales long compared with the planetary rotation—the small Rossby number limit—and on horizontal scales larger than the equal depths of the two layers; refs. 2 and 3 provide more details on the derivation of QG. At leading order in Rossby number, the vertical momentum equation reduces to hydrostatic balance,8 while the horizontal flow is in geostrophic balance.7 These two balances imply that both the flow field and the local thickness of each layer can be expressed in terms of the corresponding stream functions, \(\psi_1(x, y, t) \) in the upper layer and \(\psi_2(x, y, t) \) in the lower layer. At the next order in Rossby number, the vertical vorticity equation yields the evolution equations for \(\psi_1(x, y, t) \) and \(\psi_2(x, y, t) \):

\[
\partial_t \psi_1 + f \frac{\partial \psi_1}{\partial x} = -\nu \Delta \psi_1, \tag{1}
\]

\[
\partial_t \psi_2 + \frac{f}{H} \frac{\partial \psi_2}{\partial x} = -\nu \Delta \psi_2 + \text{drag}, \tag{2}
\]

where the subscripts 1 and 2 refer again to the upper and lower layers, respectively, and the Jacobian is \(J(f, g) = \partial_x f \partial_y g - \partial_x g \partial_y f \). The potential vorticities \(\psi_1(x, y, t) \) and \(\psi_2(x, y, t) \) are related to the stream functions through

\[
\psi_1 = \nabla^2 \psi_1 + \frac{1}{2\lambda^2} (\psi_2 - \psi_1), \tag{3}
\]

\[
\psi_2 = \nabla^2 \psi_2 + \frac{1}{2\lambda^2} (\psi_1 - \psi_2), \tag{4}
\]

Author contributions: B.G. and R.F. designed research, performed research, analyzed data, and wrote the paper. The authors declare no competing interest.

This article is a PNAS Direct Submission. Published under the PNAS license.

1B.G. and R.F. contributed equally to this work.

To whom correspondence may be addressed. Email: basile.gallet@cea.fr.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1916272117/-/DCSupplemental.

First published February 18, 2020.

Hydrostatic balance is the balance between the upward-directed pressure gradient force and the downward-directed force of gravity.

Geostrophic balance is the balance between the Coriolis force and lateral pressure gradient forces.
where λ denotes the Rossby deformation radius. In our model, the drag term is confined to the lower-layer Eq. 2. In the case of linear drag, $\text{drag} = -2 \eta \nabla^2 \psi_2$, and in the case of quadratic drag, $\text{drag} = -\mu \left(\partial_x (\nabla \psi_2 \partial_y \psi_2) + \partial_y (\nabla \psi_2 \partial_x \psi_2) \right)$. Finally, Eqs. 1 and 2 include hyperviscosity to dissipate filaments of potential vorticity (enstrophy) generated by eddy stirring at small scales.

A more insightful representation arises from the sum and difference of Eqs. 1 and 2: one obtains an evolution equation for the barotropic stream function—half the sum of the stream functions of both layers—which characterizes the vertically invariant part of the flow, and an evolution equation for the baroclinic stream function—half the difference between the two stream functions—which characterizes the vertically dependent flow. Because in OG the stream function is directly proportional to the thickness of the fluid layer, the baroclinic stream function is also a measure of the height of the interface between the two layers. A region with large baroclinic stream function corresponds to a locally deeper upper layer: there is more light fluid at this location, and we may thus say that on vertical average the fluid is warmer. Similarly, a region of low baroclinic stream function corresponds to a locally shallower upper layer, with more heavy fluid: this is a cold region. Thus, the baroclinic stream function is often denoted as τ and referred to as the local “temperature” of the fluid.

The 2LQG model can be used to study the equilibration of baroclinic instability arising from a prescribed horizontally uniform vertical shear, which represents the large-scale flows maintained by external forcing in the ocean and atmosphere. Denoting the vertical axis as z and the zonal and meridional directions as x and y, the prescribed flow in the upper and lower layers consists of zonal motion $+ U e_x$ and $- U e_x$, respectively. This flow is in thermal wind balance and with a prescribed uniform meridional temperature gradient $- U$, i.e., there is a sloping interface between the heavy and light fluid layers (Fig. L4). This tilt provides an energy reservoir, the available potential energy (APE) (4), that is released by baroclinic instability, acting to flatten the density interface. We denote, respectively, as $\psi(x, y, t)$ and $\tau(x, y, t)$ the perturbations of barotropic and baroclinic stream functions around this base state, and consider their evolution equations inside a large (horizontal) domain with periodic boundary conditions in both x and y:
situations where the system is subject to inhomogeneous forcing at large scale.

The QG Vortex Gas

Denoting as $\langle \cdot \rangle$ a spatial and time average and as $\psi_v = \partial_\lambda \psi$ the meridional barotropic velocity, our goal is to determine the meridional heat flux $\langle \psi_v \tau \rangle$, or equivalently, the diffusivity $D = \langle \psi_v \tau \rangle / U$ that connects this heat flux to minus the background temperature gradient $\partial_x T$. A related quantity of interest is the mixing length $\ell = \sqrt{\langle \tau^2 \rangle / U}$. This is the typical distance traveled by a fluid element carrying its background temperature before it is mixed with the environment and relaxes to the local background temperature. It follows that the typical temperature fluctuations around the background gradient are of the order of $\langle \tau \rangle$. We seek the dependence of D and ℓ on the various external parameters of the system. It was established by Thompson and Young (7) that, for a sufficiently large domain, the mixing length saturates at a value much smaller than the domain size and independent of it. The consequence is that the size of the domain is irrelevant for large-enough domains. The small-scale dissipation coefficient—a hyperviscosity in most studies—is also irrelevant for large-enough domains. The small-scale dissipation coefficient is thus a hypothesis in most studies—also shown by Thompson and Young (7) to be irrelevant when low dissipation coefficient—a hyperviscosity in most studies—is also irrelevant for large-enough domains. The small-scale dissipative terms are thus a hypothesis in most studies.

The quantities shown by Thompson and Young (7) to be irrelevant when low dissipation coefficient—a hyperviscosity in most studies—is also irrelevant for large-enough domains. The small-scale dissipative terms are thus a hypothesis in most studies.
express the diffusion coefficient D as the product of the mixing length and a typical velocity scale. In the vortex gas regime, one can anticipate that the mixing length ℓ scales as the typical intervortex distance ℓ_{iv}, an intuition that will be confirmed by Eq. 11 below. However, a final relationship for the relevant velocity scale is more difficult to anticipate as we have seen that the various barotropic velocity moments scale differently. The goal is thus to determine this velocity scale through a precise description of the transport properties of the assembly of vortices.

Stirring of a tracer like temperature takes place at scales larger than the stirring rods: in our problem, the vortices of size λ. At scales much larger than λ, the τ-equation [6] reduces to

$$\partial_t \tau + J(\psi, \tau) = U\psi_x - \nu \Delta \tau. \quad [10]$$

$U\psi_x$ represents the generation of τ-fluctuations through stirring of the large-scale temperature gradient $-U$, and the Jacobian term represents the advection of τ-fluctuations by the barotropic flow. Eq. 10 is thus that of a passive scalar with an externally imposed uniform gradient $-U$ stirred by the barotropic flow. To check the validity of this analogy, we have implemented such passive tracer dynamics into our numerical simulations: in addition to solving Eqs. 5 and 6, we solve Eq. 10 with τ replaced by the concentration c of a passive scalar and $-U$ replaced by an imposed meridional gradient $-G$, of scalar concentration. In the low-drag simulations, the resulting passive scalar diffusivity $D_c = \frac{\langle \psi_x \psi_y \rangle}{G}$, equals the temperature diffusivity D within a few percent, whereas D is significantly lower than D_c for larger drag, when the intervortex distance becomes comparable with λ. This validates our assumption that the diffusivity is mostly due to flow structures larger than λ in the low-drag regime, the impact of which on the temperature field is accurately captured by the approximate Eq. 10. We can thus safely build intuition into the behavior of the temperature field by studying Eq. 10.

A natural first step would be to compute the heat flux associated with a single steady vortex. However, this situation turns out to be rather trivial: the vortex stirs the temperature field along closed circles until it settles in a steady state that has a vanishing projection onto the source term $U\psi_x$, and the resulting heat flux $\langle \psi_x \tau \rangle$ vanishes up to hyperviscous corrections. Instead of a single steady vortex, the simplest heat-carrying configuration is a vortex dipole, such as the one sketched in Fig. 2A: two vortices of opposite circulations $\pm \Gamma$ are separated by a distance ℓ_{iv} much larger than their core radius $r_{core} \sim \lambda$. This dipole mimics the two nearest vortices of any given fluid element, which we argue is a sufficient model to capture the qualitative transport properties of the entire vortex gas. Without loss of generality, the vortices are initially aligned along the zonal axis, and as a result of their mutual interaction, they travel in the y direction at constant velocity $\Gamma/2\pi \ell_{iv}$. For the configuration sketched in Fig. 2A, the meridional velocity is positive between the two vortices and becomes negative at both ends of the dipole. For positive U, this corresponds to a heat source between the vortices and two heat sinks away from the dipole. These heat sources and sinks are positively correlated with the local meridional barotropic velocity so that there is a net meridional heat flux $\langle \psi_x \tau \rangle$ associated with this configuration. We have integrated numerically Eq. 10 for this moving dipole over a time ℓ_{iv}/V, which corresponds to the time needed for the dipole to travel a distance ℓ_{iv}. This is the typical distance traveled by these two vortices before pairing up with other vortices inside the gas. Fig. 2C and D shows the resulting temperature field and local flux $\psi_x \tau$ at the end of the numerical integration (SI Appendix has details). A suite of numerical simulations for such dipole configurations indicates that, at the end time of the numerical integration, the local mixing length and diffusivity obey the scaling relations:

$$\ell \sim \ell_{iv}, \quad [11]$$

$$D \sim \ell_{iv} V, \quad [12]$$

while the variance and third-order moment of the vortex dipole flow field satisfy [8] and [9] at every time. It is interesting that the velocity scale arising in the diffusivity [12] is V and not the rms velocity $\langle u^2 \rangle^{1/2}$. This is because the fluid elements that are trapped in the immediate vicinity of the vortex cores do not carry heat, in a similar fashion that a single vortex is unable to transport heat. Only the fluid elements located at a fraction of ℓ_{iv} away from the vortex centers carry heat, and these fluid elements have a typical velocity V.

The relations [11] and [12] hold for any passive tracer. However, temperature is an active tracer so that the velocity scale in turn depends on the temperature fluctuations, providing the fourth scaling relation. This relation can be derived through a simple heuristic argument: consider a fluid particle, initially at rest, that accelerates in the meridional direction by transforming potential energy into barotropic kinetic energy by flattening the density interface as a result of baroclinic instability. In line with the standard assumptions of a mixing-length model, we assume that the fluid particle travels in the meridional direction over a distance ℓ before interacting with the other fluid particles. Balancing the kinetic energy gained over the distance ℓ with the difference in potential energy between two fluid columns a distance ℓ apart, we obtain the final barotropic velocity of the fluid element: $\psi_x \sim U \ell/\lambda$. This velocity estimate does not hold for the particles that rapidly loop around a vortex center, with little changes in APE; it holds only for the fluid elements that travel in the meridional direction, following a somewhat straight
trajectory (these fluid elements happen to be the ones that carry heat according to the dipole model described above). Such fluid elements have a typical velocity V, which we identify with v_f to obtain
\[V \sim U \frac{\ell}{\lambda}. \]

A similar relation was derived by Green (22), who computes the kinetic energy gained by flattening the density interface over the whole domain. In the present periodic setup, the mean slope of the interface is imposed, and the estimate (13) holds locally for the heat-carrying fluid elements traveling a distance ℓ instead. The estimate (13) is also reminiscent of the “free-fall” velocity estimate of standard upright convection, where the velocity scale is estimated as the velocity acquired during a free fall over one mixing length ($23\text{–}25$). The conclusion is that the typical velocity is directly proportional to the mixing length. The baroclinic instability is sometimes referred to as slantwise free-fall” velocity estimate of standard upright convection, where the velocity scale is estimated as the velocity acquired during a free fall over one mixing length ($23\text{–}25$). A similar relation was derived by Green (22), who computes the kinetic energy gained by flattening the density interface over the whole domain. In the present periodic setup, the mean slope of the interface is imposed, and the estimate (13) holds locally for the heat-carrying fluid elements traveling a distance ℓ instead. The estimate (13) is also reminiscent of the “free-fall” velocity estimate of standard upright convection, where the velocity scale is estimated as the velocity acquired during a free fall over one mixing length ($23\text{–}25$). The conclusion is that the typical velocity is directly proportional to the mixing length. The baroclinic instability is sometimes referred to as slantwise free-fall” velocity estimate of standard upright convection, where the velocity scale is estimated as the velocity acquired during a free fall over one mixing length ($23\text{–}25$). A similar relation was derived by Green (22), who computes the kinetic energy gained by flattening the density interface over the whole domain. In the present periodic setup, the mean slope of the interface is imposed, and the estimate (13) holds locally for the heat-carrying fluid elements traveling a distance ℓ instead. The estimate (13) is also reminiscent of the “free-fall” velocity estimate of standard upright convection, where the velocity scale is estimated as the velocity acquired during a free fall over one mixing length ($23\text{–}25$). The conclusion is that the typical velocity is directly proportional to the mixing length. The baroclinic instability is sometimes referred to as slantwise free-fall” velocity estimate of standard upright convection, where the velocity scale is estimated as the velocity acquired during a free fall over one mixing length ($23\text{–}25$). A similar relation was derived by Green (22), who computes the kinetic energy gained by flattening the density interface over the whole domain. In the present periodic setup, the mean slope of the interface is imposed, and the estimate (13) holds locally for the heat-carrying fluid elements traveling a distance ℓ instead. The estimate (13) is also reminiscent of the “free-fall” velocity estimate of standard upright convection, where the velocity scale is estimated as the velocity acquired during a free fall over one mixing length ($23\text{–}25$). The conclusion is that the typical velocity is directly proportional to the mixing length. The baroclinic instability is sometimes referred to as slantwise free-fall” velocity estimate of standard upright convection, where the velocity scale is estimated as the velocity acquired during a free fall over one mixing length ($23\text{–}25$). A similar relation was derived by Green (22), who computes the kinetic energy gained by flattening the density interface over the whole domain. In the present periodic setup, the mean slope of the interface is imposed, and the estimate (13) holds locally for the heat-carrying fluid elements traveling a distance ℓ instead. The estimate (13) is also reminiscent of the “free-fall” velocity estimate of standard upright convection, where the velocity scale is estimated as the velocity acquired during a free fall over one mixing length ($23\text{–}25$). The conclusion is that the typical velocity is directly proportional to the mixing length. The baroclinic instability is sometimes referred to as slantwise free-fall” velocity estimate of standard upright convection, where the velocity scale is estimated as the velocity acquired during a free fall over one mixing length ($23\text{–}25$).

Fig. 3. Dimensionless mixing length ℓ_* and diffusivity D_* as functions of dimensionless drag for both linear and quadratic drag. Symbols correspond to numerical simulations, while the solid lines are the predictions (15–18) from the vortex gas scaling theory.

that, when combined with (11) and (12), it leads to the simple relation
\[D_* \sim \ell_*. \]

Anticipating the numerical results presented in Fig. 3, this relation is well satisfied in the dilute low-drag regime, $\ell \gtrsim 10\lambda$, with the solid lines in Fig. 3 being precisely related by (14) above. A relation very close to (14) was reported by Larichev and Held (21) using turbulent cascade arguments. Their relation is written in terms of an “energy-containing wavenumber” instead of a mixing length. If this energy-containing wavenumber is interpreted to be the inverse intervortex distance of the vortex gas model, then their relation becomes identical to (14).

The four relations needed to establish the scaling theory are (7) and (11)–(13). In the case of linear drag, their combination leads to $\log(\ell_*) \sim 1/\kappa_*$ or simply,
\[\ell_* = c_1 \exp \left(\frac{c_2}{\kappa_*} \right), \]

where c_1 and c_2 are dimensionless constants. The vortex gas approach thus provides a clear theoretical explanation to the exponential dependence of ℓ on inverse drag reported by Thompson and Young (7), which is shown to stem from the logarithmic factor in (8) for the dissipation of kinetic energy. It is remarkable that these authors could extract the correct functional dependence of ℓ_* with κ_* from their numerical simulations. We have performed similar numerical simulations in large-enough domains to avoid finite-size effects and at low-enough hyperviscosity to neglect hyperdissipation in the kinetic energy budget. The numerical implementation of the equations as well as the parameter values of the various numerical runs are provided in SI Appendix. In Fig. 3, we plot ℓ_* as a function of κ_*. We obtain an excellent agreement between the asymptotic prediction (15) and our numerical data using $c_1 = 3.2$ and $c_2 = 0.36$. The dimensionless diffusivity is deduced from ℓ_* using the relation (14), which leads to
\[D_* = c_3 \exp \left(\frac{2c_2}{\kappa_*} \right). \]

Once again, on choosing $c_3 = 1.85$, this expression is in excellent agreement with the numerical data (Fig. 3).

When linear friction is replaced by quadratic drag, only the energy budget (7) is modified. As can be seen in Eq. 9, the main difference is that quadratic drag operates predominantly in the vicinity of the vortex cores, which has a direct impact on the scaling behaviors of ℓ_* and D_*. Indeed, combining (7) and (11)–(13) yields
\[\ell_* = \frac{c_4}{\sqrt{\mu_*}}, \]

which, using (14), leads to the diffusivity
\[D_* = \frac{c_5}{\mu_*}. \]

Using the values $c_4 = 2.62$ and $c_5 = 2.0$, the predictions are again in very good agreement with the numerical data, although the convergence to the asymptotic prediction for D_* seems somewhat slower for this configuration (Fig. 3).

Using These Scaling Laws as a Local Closure

We now wish to demonstrate the skill of these scaling laws as local diffusive closures in situations where the heat flux and the temperature gradient have some meridional variations. For simplicity, we consider an imposed heat flux with a sinusoidal dependence in the meridional direction y. The modified governing equations for the potential vorticities q_1, q_2 of each layer are
\[\partial_t q_1 + J(q_1, q_2) = Q \sin(y/L) - \nu \Delta q_1, \]
\[\partial_t q_2 + J(\psi_2, q_2) = -Q \sin(y/L) - \nu \Delta^4 q_2 + \text{drag}. \quad [20] \]

It becomes apparent that the \(Q \) terms represent a heat flux when the governing equations are written for the (total) baroclinic and barotropic stream functions \(\tau \) and \(\psi \): the \(\tau \)-equation, obtained by subtracting [20] from [19] and dividing by two, has a source term \(Q \sin(y/L) \) that forces some meridional temperature structure. By contrast, the \(\psi \)-equation obtained by adding [19] and [20] has no source terms. The goal is to determine the temperature profile associated with the imposed meridionally dependent heat flux. This slantwise convection forced by sources and sinks is somewhat similar to standard upright convection forced by heat flux. This slantwise convection forced by sources and sinks of heat (26, 27). We focus on the statistically steady state by considering a zonal and time average denoted as \(\bar{\cdot} \). Neglecting the dissipative terms, the average of both Eqs. 19 and 20 leads to:

\[Q \sin(y/L) = -\frac{1}{\lambda^2} \partial_y \bar{\psi}_2 \bar{\tau}. \quad [21] \]

Provided that the imposed heat flux varies on a scale \(L \) much larger than the local mixing length \(\ell \), we can relate the local flux \(\bar{\psi}_2 \bar{\tau}(y) \) to the local temperature gradient \(U(y) = -\partial_y \bar{\tau} \) by the diffusive relation \(\bar{\psi}_2 \bar{\tau}(y) = DU(y) = D_\tau \lambda |U(y)| U(y) \). In the case of quadratic drag, inserting this relation into [21] and substituting the scaling law [18] for \(D_\tau (\mu_*) \) yields:

\[-\frac{c_\tau}{\mu_*} \partial_y [\partial_y \bar{\psi}_2 \bar{\tau}] = Q \sin(y/L). \quad [22] \]

In terms of the dimensionless temperature \(\tau_* = \tau/\lambda^2 \sqrt{Q} \), the solution to this equation is:

\[\tau_*(y/L) = 2 \left(\frac{L}{\lambda} \right)^{3/2} \sqrt{\frac{\mu_*}{c_\tau}} \mathcal{E} \left(\frac{y}{2L} \right)^2, \quad [23] \]

where \(\mathcal{E} \) denotes the incomplete elliptic integral of the second kind. Expression [23] holds for \(y/L \in [-\pi/2; \pi/2] \); the entire graph being easily deduced from the fact that \(\tau_*(y/L) \) is symmetric to a translation by \(\pi \) accompanied by a sign change.

In the case of linear drag, we substitute the scaling law [16] for \(D_\tau (\kappa_\tau) = D_\tau (\lambda \kappa/\partial_y \bar{\tau}) \) instead. The integration of the resulting ordinary differential equation yields the dimensionless temperature profile:

\[\tau_*(y/L) = \frac{\kappa L}{c_\tau \lambda \sqrt{Q}} \int_0^{y/L} \mathcal{W} \left(\frac{c_\tau}{\kappa} \sqrt{\frac{LQ}{c_\lambda ^2 \lambda^2 s}} \cos s \right) \mathrm{d}s, \quad [24] \]

where \(\mathcal{W} \) denotes the Lambert function. Once again, [24] holds for \(y/L \in [-\pi/2; \pi/2] \); the entire graph being easily deduced from the fact that \(\tau_*(y/L) \) is symmetric to a translation by \(\pi \) accompanied by a sign change.

To test these theoretical predictions, we solved numerically Eqs. 19 and 20 inside a domain \((x, y) \in [0, 2\pi L]^2 \) with periodic boundary conditions for both linear and quadratic drag. We compute the time and zonally averaged temperature profiles and compare them with the theoretical predictions using the values of the parameters \(c_1, c_2, c_3, c_4, c_5 \) deduced above. In Fig. 4, we show snapshots of the temperature field in statistically steady state together with meridional temperature profiles. The predictions [23] and [24] are in excellent agreement with the numerical results for both linear and quadratic drag, and this good agreement holds provided the various length scales of the problem are ordered in the following fashion: \(\lambda \ll \ell \ll L \).

The first inequality corresponds to the dilute vortex gas regime for which the scaling theory is established, while the second inequality is the scale separation required for any diffusive closure to hold. For fixed \(L/\lambda \), the first inequality breaks down at large friction, \(\kappa_* \sim 1 \) or \(\mu_* \sim 1 \), where the system becomes a closely packed “vortex liquid” (10, 28). The second inequality breaks down at low friction when \(\ell \sim L \). From the scaling laws [15] and [17], this loss of scale separation occurs for \(\kappa_* \lesssim 1/\log(L/\lambda) \) and \(\mu_* \lesssim (\lambda/L)^2 \) for linear and quadratic drag, respectively.

Discussion

The vortex gas description of baroclinic turbulence allowed us to derive predictive scaling laws for the dependence of the mixing length and diffusivity on bottom friction and to capture the key differences between linear and quadratic drag. The scaling behavior of the diffusivity of baroclinic turbulence seems more “universal” than that of its purely barotropic counterpart. For instance, the power input by a steady sinuosoidal forcing (29, 30) strongly differs from that input by forcing with a finite (31) or vanishing (32) correlation time, with important consequences for the large-scale properties and diffusivity of the resulting flow. By contrast, baroclinic turbulence comes with its own injection mechanism—baroclinic instability—and the resulting scaling laws depend only on the form of the drag. We demonstrated the skills of these scaling laws when used as local parameterizations of the turbulent heat transport in situations where the large-scale forcing is inhomogeneous. While this theory provides some qualitative understanding of turbulent heat transport in planetary
atmospheres, it should be recognized that the scale separation is at best moderate in Earth atmosphere, where meridional changes in the Coriolis parameter also drive intense jets. However, our firmly footed scaling theory could be the starting point to a complete parameterization of baroclinic turbulence in the ocean, a much-needed ingredient of global ocean models. Along the path, one would need to adapt the present approach to models with multiple layers, possibly going all of the way to a geostrophic model with continuous density stratification or even back to the primitive equations. The question would then be whether the vortex gas provides a good description of the equilibrated state in these more general settings. Even more challenging would be the need to include additional physical ingredients in the scaling theory: the meridional changes in f mentioned above, but also variations in bottom topography and surface wind stress. Whether the vortex gas approach holds in those cases will be the topic of future studies.

Data Availability. The data associated with this study are available within the paper and SI Appendix.

ACKNOWLEDGMENTS. Our work is supported by Eric and Wendy Schmidt by recommendation of the Schmidt Futures Program and by NSF Grant AGS-6939393. This research is also supported by European Research Council Grant FLAVE 757239.