Herbal medicine containing aristolochic acid and the risk of hepatocellular carcinoma in patients with hepatitis B virus infection

Chi-Jen Chen1,2, Yao-Hsu Yang1,3,4,5, Meng-Hung Lin1, Chuan-Pin Lee1, Yu-Tse Tsan6,7, Ming-Nan Lai8, Hsiao-Yu Yang4,9, Wen-Chao Ho10, Pau-Chung Chen4,9,11 and The Health Data Analysis in Taiwan (hDATa) Research Group

1 Health Information and Epidemiology Laboratory, Chang Gung Memorial Hospital, Chiayi County, Taiwan
2 Graduate Institute of Data Science, Taipei Medical University, Taipei, Taiwan
3 Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Chiayi County, Taiwan
4 Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei, Taiwan
5 School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
6 Division of Occupational Medicine, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
7 School of Medicine, Chung Shan Medical University, Taichung, Taiwan
8 Department of Statistics, Feng Chia University, Taichung, Taiwan
9 Department of Public Health, National Taiwan University College of Public Health, Taipei, Taiwan
10 Department of Public Health, China Medical University, Taichung, Taiwan
11 Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan

It was suspected that aristolochic acid-induced mutations may be associated with hepatitis B virus (HBV), playing an important role in liver carcinogenesis. The purpose of this study was to investigate the association between the use of Chinese herbs containing aristolochic acid and the risk of hepatocellular carcinoma (HCC) among HBV-infected patients. We conducted a retrospective, population-based, cohort study on patients older than 18 years who had a diagnosis of HBV infection between January 1, 1997 and December 31, 2010 and had visited traditional Chinese medicine clinics before one year before the diagnosis of HCC or the censor dates. A total of 802,642 HBV-infected patients were identified by using the National Health Insurance Research Database in Taiwan. The use of Chinese herbal products containing aristolochic acid was identified between 1997 and 2003. Each patient was individually tracked from 1997 to 2013 to identify incident cases of HCC since 1999. There were 33,982 HCCs during the follow-up period of 11,643,790 person-years and the overall incidence rate was 291.8 HCCs per 100,000 person-years. The adjusted hazard ratios (HRs) were 1.13 (95% confidence interval [CI], 1.11–1.16), 1.21 (95% CI, 1.13–1.29), 1.37 (95% CI, 1.24–1.50) and 1.61 (95% CI, 1.40–1.84) for estimated aristolochic acid of 1–250, 251–500, 501–1,000 and more than 1,000 mg, respectively, relative to no aristolochic acid exposure. Our study found a significant dose-response relationship between the consumption of aristolochic acid and HCC in patients with HBV infection, suggesting that aristolochic acid which may be associated with HBV plays an important role in the pathogenesis of HCC.

The consumption of Chinese herbs containing aristolochic acid has been associated with an increased risk of urothelial carcinoma.1,2 The International Agency for Research on Cancer listed that plants containing aristolochic acid are carcinogenic to humans (Group 1) in 20023 and that aristolochic acid is carcinogenic to humans (Group 1) in 2012.4

Key words: herbal medicine, aristolochic acid, hepatocellular carcinoma, hepatitis B virus infection

Abbreviations: ACE: angiotensin-converting enzyme; CI: confidence interval; HBV: hepatitis B virus; HCC: hepatocellular carcinoma; HR: hazard ratio; ICD-9: International Classification of Diseases, 9th Edition; NHI: National Health Insurance; NSAIDs: nonsteroidal anti-inflammatory drugs

Chi-Jen Chen and Yao-Hsu Yang share co-first authorship.

Additional Supporting Information may be found in the online version of this article.

Grant sponsor: Chang Gung Memorial Hospital, Chiayi; Grant number: CLRPG6G0041; Grant sponsor: Ministry of Science and Technology, Taiwan; Grant number: MOST-106-2918-I-002-016

DOI: 10.1002/ijc.31544

History: Received 11 Oct 2017; Accepted 3 Apr 2018; Online 18 Apr 2018

Correspondence to: Wen-Chao Ho, Department of Public Health, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan, E-mail: wcho@mail.cmu.edu.tw; or Pau-Chung Chen, Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, 17 Xuzhou Road, Taipei 10055, Taiwan, E-mail: pchen@ntu.edu.tw
There were a series of studies of Chinese herbs containing aristolochic acid that reported increased risks of chronic kidney disease, kidney failure and urinary tract cancers in Taiwan.\(^5\)\(^–\)\(^7\) In addition, increased risk of kidney failure and urinary tract cancers were also found among Chinese herbalists.\(^8\)\(^–\)\(^11\) Further, Chen et al. investigated 152 patients with upper urinary tract urothelial carcinoma and found the 93 had been exposed to aristolochic acid based on the presence of aristolactam-DNA adducts and AA-mutational signature in the renal cortex.\(^12\)\(^,\)\(^13\) Finally, aristolactam-DNA adducts were also detected in 76% of clear cell renal cell carcinoma (ccRCC) and AA-mutational signature was evident in 6 of 10 sequenced ccRCC exomes from Taiwanese patients.\(^14\)

Aristolochic acid treatment in rat resulted in DNA adduct formation, and increased mutant frequency in the liver as well as kidneys.\(^15\) It was suspected that aristolochic acid-induced mutations in concert with hepatitis B virus (HBV) play an important role in liver carcinogenesis.\(^16\)\(^,\)\(^17\) Hepatitis B virus (HBV) infection is prevalent in Taiwan, especially before the implementation of the nationwide hepatitis B vaccination program in July 1984.\(^18\)\(^–\)\(^20\) Although plants containing aristolochic acid were prohibited in several countries and in Taiwan in November 2003\(^21\) approximately one-third of people in Taiwan had been prescribed Chinese herbs containing aristolochic acid between 1997 and 2003.\(^22\) The purpose of this study was to investigate the association between the use of herbal medicine containing aristolochic acid and the risk of hepatocellular carcinoma (HCC) among HBV-infected patients.

Methods

Data source

We used the National Health Insurance (NHI) Research Database. The NHI program provides compulsory universal health insurance, implemented on March 1, 1995, that covers health care services from western medicine to traditional Chinese medicine, from dental care to parturition, and from preventive services to elderly home care in around 99% of the island’s population. We used databases for admissions and outpatient visits, both of which included information on patient characteristics, including sex, date of birth, date of admission, date of discharge, dates of visits and up to five discharge diagnoses or three outpatient visit diagnoses by International Classification of Diseases, Ninth Revision (ICD-9) classification. The data files also contained information on patient prescriptions, including the names of prescribed drugs, dosage, duration and total expenditure. We conducted a population-based cohort study on patients older than 18 years who had a diagnosis of HBV infection (ICD-9 codes 070.2, 070.3 and V02.61) without hepatitis C virus (HCV) coinfection (ICD-9 codes 070.7, 070.41, 070.44, 070.51, 070.54 and V02.62) between January 1, 1997 and December 31, 2010 (Fig. 1).\(^23\)\(^,\)\(^24\) To increase exposure frequency and ensure comparability, we included only patients who had visited traditional Chinese medicine clinics between January 1, 1997 and one year before the diagnosis of HCC or the censor dates in the HBV-infected cohort. Strict confidentiality guidelines were closely followed in accordance with personal electronic data protection regulations; the National Health Research Institutes of Taiwan anonymizes and maintains the NHI reimbursement data as files suitable for research. This study was also approved by the Institutional Review Board of the National Taiwan University Hospital.

Exposure to herbal medicine containing aristolochic acid

According to standard prescriptions recommended by the Committee on Chinese Medicine and Pharmacy in Taiwan, herbal medicine produced before new regulations were promulgated in November 2003 might include the following herbs containing aristolochic acid: Guan Mu Tong (\textit{Aristolochia manshurienisis}), Guang Fang Ji (\textit{Aristolochia fangjii}), Ma Dou Ling (fruits of \textit{Aristolochia debils} or \textit{Aristolochia contorta}), Qing Mu Xiang (roots of \textit{A. debils}), Tian Xian Teng (stems and leaves of \textit{A. debils} or \textit{A. contorta}), and Xi Xin (\textit{Asarum heterotropoides} or \textit{Asarum sieboldii}).\(^25\) These herbs were taken as single products or were components of mixed herbal formulas that are recommended by ancient Chinese medicine books. We determined the original amount of herbs, in grams, for each mixture of herbal medicine and the total dose of each aristolochic acid-containing herb during the exposure period from January 1, 1997 to October 31, 2003. To allow a minimal induction time for an exposed subject to develop HCC, we calculated the cumulative dose for each herb prescribed to an individual up to one year before the diagnosis of HCC or the censor dates. We also calculated the estimated cumulative dose of aristolochic acid for each subject using an estimated average dose of aristolochic acid per 1 g. For Guan Mu Tong, Guang Fang Ji, Ma Dou Ling, Qing Mu Xiang, Tian Xian Teng and Xi Xin this was 2.59,
2.04, 0.63, 0.009, 0.026 and 0.042 mg, respectively.26–30 The weight of patients was not available through the database; therefore, the AA intakes are presented as the total AA intake in mg, instead of showing it as milligrams per kilogram of body weight.

Diagnosis of hepatocellular carcinoma
Patients with HCC (ICD-9 code 155.0) were identified in the admission files with the first-time diagnosis date as the index date. For the diagnosis of HCC, the American Association for the Study of Liver Diseases Practice Guidelines were recommended by the Bureau of NHI.31 Only patients admitted for HCC were included to increase the validity of the diagnosis. Newly diagnosed patients between January 1, 1999 and December 31, 2013 were further analyzed to allow at least 2 years for subjects to accumulate doses of herbal medicine sufficient to induce HCC.

Potential confounders
Comorbidities, identified in a systematic way, were treated as potential confounders defined by the following diagnoses recorded between January 1, 1997 and one year before the diagnosis of HCC or the censor dates: liver cirrhosis (ICD-9 codes 571.2, 571.5, 571.6, 572.2, 572.3, 572.4, 572.8 and 573.0), alcohol-related disease (291, 303.0, 303.9, 305.0, 571.0, 571.1, 571.2 and 571.3), nonalcoholic steatohepatitis (571.8 and 571.9), cholelithiasis (574), hypertension (401), diabetes (250), hyperlipidemia (272) and chronic obstructive pulmonary disease (491 and 492). The prescriptions of medications that could confound the association between taking herbal medicine containing aristolochic acid and cancer risk were further identified, including anti-HBV treatments (i.e., interferon, lamivudine, entecavir, adefovir dipivoxil and telbivudine), aspirin, nonsteroidal anti-inflammatory drugs (NSAIDs), angiotensin-converting enzyme (ACE) inhibitors (i.e., captopril, enalapril, lisinopril, perindopril, ramipril, quinapril, benazepril, cilazapril and fosinopril), metformin and statins (i.e., simvastatin, lovastatin, atorvastatin, fluvastatin, pravastatin and rosuvastatin). Sociodemographic characteristics (age, sex, income and level of urbanization) were also considered in the model. Urbanization levels in Taiwan are divided into four strata according to the Taiwan National Health Research Institute publications, with level I referring to the most urbanized communities and level IV referring to the least urbanized communities.

Statistical analyses
We used the Kaplan–Meier method to estimate HCC cumulative incidences. The log-rank test was performed to examine differences in the risk of HCC in the cohort. We also used the direct method to adjust the incidence rates according to the age and sex distribution of the general population of Taiwan during the period 1999–2013. Finally, Cox proportional hazards models were used to compute the hazard ratios (HRs) and accompanying 95% CIs before and after adjustment for the variables including sex, age, monthly income, urbanization, liver cirrhosis and diabetes.32,33 Deceased patients (with a death date in the admission file) and those from the beneficiaries who were lost to follow-up were censored.

We conducted sensitivity analyses to evaluate the difference and consistency between taking herbal medicine containing aristolochic acid and the risk of HCC and to test for interaction in the subgroup effects. Cox proportional hazards regression models with two-year induction time, competing mortality, propensity score matching and time-dependent covariates were also used to estimate the relationship between estimated aristolochic acid and HCC to avoid potential confounding or time-related biases. A two-tailed \textit{p} value of 0.05 was considered significant. All these analyses were conducted using SAS statistical software (version 9.4; SAS Institute, Cary, NC).

Results
A total of 802,642 HBV-infected patients were included in the study cohort, of whom 59.4% had taken herbal medicine containing aristolochic acid, respectively. Table 1 lists the
Table 1. Demographics and clinical characteristics of the patients with HBV infection

Demographics and clinical characteristics	Patients who took HM containing AA % (n=477,115)	Patients who did not take HM containing AA % (n=325,527)
Sex		
Female	47.5	39.2
Male	52.5	60.8
Age, year		
18–29	32.4	36.0
30–39	30.0	28.1
40–49	21.8	20.4
50–59	9.7	9.5
≥60	6.1	6.0
Mean	37.3	36.6
Standard deviation	12.6	12.9
Monthly income, NT$		
0	16.9	19.6
1–15,840	16.9	17.2
15,841–25,000	40.8	36.6
>25,000	25.3	26.7
Urbanization level		
I	31.1	31.6
II	47.7	47.0
III	14.8	14.4
IV (rural area)	6.4	6.9
Guan Mu Tong, g		
0	51.4	100.0
1–30	33.0	0.0
31–60	7.7	0.0
61–100	3.8	0.0
101–200	2.8	0.0
>200	1.4	0.0
Guang Fang Ji, g		
0	49.7	100.0
1–30	44.8	0.0
31–60	3.4	0.0
61–100	1.2	0.0
101–200	0.7	0.0
>200	0.3	0.0
Ma Dou Ling, g		
0	99.1	100.0
1–30	0.6	0.0
31–60	0.2	0.0
61–100	0.1	0.0
>100	0.1	0.0
Qing Mu Xiang, g		
0	54.2	100.0
Estimated aristolochic acid, mg		
0	0.0	100.0
1–250	94.2	0.0
251–500	3.9	0.0
501–1,000	1.5	0.0
>1,000	0.5	0.0
Disease		
Liver cirrhosis	6.6	7.0
Alcohol-related disease	4.0	4.5
Nonalcoholic steatohepatitis	10.3	9.9
Cholelithiasis	8.1	7.7
Hypertension	30.6	30.0
Diabetes	20.0	19.9
Hyperlipidemia	32.1	30.8
Chronic obstructive pulmonary disease	11.1	8.8
Medication		
Anti-HBV treatment	5.0	5.8
Aspirin	16.4	15.2
NSAIDs	92.9	88.2
ACE inhibitors	15.8	15.2
Metformin	10.2	10.9
Statins	15.5	15.5

Abbreviations: AA, aristolochic acid; ACE, angiotensin-converting enzyme; HBV, hepatitis B virus; HM, herbal medicine; NSAIDs, nonsteroidal anti-inflammatory drugs; NT$, New Taiwan Dollar.
demographic characteristics, medical conditions and medication use of patients.

There were 33,982 HCCs during the follow-up period of 11,643,790 person-years and the overall incidence rate was 291.8 HCCs per 100,000 person-years. There was a higher risk (adjusted HR, 1.14; 95% CI, 1.12–1.17) of HCC in patients with HBV infection who took herbal medicine containing aristolochic acid (Table 2). Elevated HRs were also found for using >60 g of Guan Mu Tong and 200 g of Guang Fang Ji (Supporting Information, Table S1).

Regarding the cumulative dose of aristolochic acid, there were increasing trends in the age-sex standardized incidences associated with dose from none to >1,000 mg in the HBV-infected cohorts (Fig. 2). The adjusted HRs were 1.13 (95% CI, 1.11–1.16), 1.21 (95% CI, 1.13–1.29), 1.37 (95% CI, 1.24–1.50), and 1.61 (95% CI, 1.40–1.84) for estimated aristolochic acid of 1–250, 251–500, 501–1,000 and >1,000 mg, respectively, relative to no aristolochic acid exposure. There was also a significant dose–response trend \(\left(p < 0.0001 \right) \) when we applied the exposure variable as a continuous variable for 100-mg increase of estimated aristolochic acid (Table 2). The log-rank tests revealed significant observed differences \(\left(p < 0.001 \right) \) over the entire Kaplan–Meier curves (Fig. 3).

We still observed significantly higher risks of HCC in patients with HBV when using Cox proportional hazards regression with 2-year induction time, competing mortality,

Table 2. Crude and adjusted HRs of HCC associated with herbal medicine containing aristolochic acid during the follow-up period in the patients with HBV infection

Herbal medicine containing aristolochic acid	No. of patients	No. of person-years	No. of patients with HCC	Incidence (per 10^5)	95% CI	Crude HR	95% CI	Adjusted HR^1	95% CI
All patients	802,642	11,643,790.2	33,982	291.8	288.7–294.9	1.00	1.00		
No	325,527	4,732,298.0	13,223	279.4	274.7–284.2	1.00	1.00		
Yes	477,115	6,911,492.2	20,759	300.4	296.3–304.4	1.08	1.05–1.10	1.14	1.12–1.17
Estimated aristolochic acid, mg									
0	325,527	4,732,298.0	13,223	279.4	274.7–284.2	1.00	1.00		
1–250	449,261	6,509,392.1	19,235	295.5	291.3–299.7	1.06	1.04–1.08	1.13	1.11–1.16
251–500	18,378	266,104.8	892	335.2	313.2–357.2	1.20	1.12–1.29	1.21	1.13–1.29
501–1,000	6,940	99,870.9	422	422.5	382.2–462.9	1.52	1.38–1.67	1.37	1.24–1.50
>1,000	2,536	36,124.4	210	581.3	502.7–659.9	2.09	1.82–2.40	1.61	1.40–1.84
Each 100 mg increase	–	–	–	–	–	1.03	1.03–1.04	1.02^2	1.02–1.03

Abbreviations: CI, confidence interval; HBV, hepatitis B virus; HCC, hepatocellular carcinoma; HR, hazard ratio.

^1Adjusted for sex, age, monthly income, urbanization, liver cirrhosis, and diabetes.

^2\(p < 0.0001 \).
propensity score matching and time-varying changes. Additional covariates in the sensitivity analysis had only a little change in the estimates of the association between estimated aristolochic acid and the risk of HCC by different models. When the data were stratified according to sex, age, liver cirrhosis, alcohol-related disease, nonalcoholic steatohepatitis, diabetes, anti-HBV treatment, aspirin, metformin or statin use, the estimates of the association almost remained significant in the subgroup analysis (Table 3).

Discussion

We found higher risks of HCC in patients with HBV infection who took herbal medicine containing aristolochic acid. In addition, there were increasing trends in the adjusted HRs associated with estimated aristolochic acid dose from none to >1,000 mg.

This study has a number of strengths. First, the study population was taken from a large size population-based computerized database in Taiwan. Because the patients were recruited from an insured general population, we can rule out the possibility of selection bias and losses to follow up. Second, because the NHI reimbursement database collects all prescription information prospectively, we can rule out the possibility of recall bias for the intake doses of various herbal medicine and aristolochic acid. Third, we included a well-defined clinical endpoint, HCC, to examine the clinical significance of the research question in the longitudinal analyses. Fourth, we allowed a minimum induction time of one year and calculated the cumulative dose up to one year before diagnosis or the censor dates. Finally, we conducted sensitivity analyses by analytical designs, potential confounders and stratification, and the results revealed no significant changes in the HRs of the different models and subgroups.

In the HBV-infected cohorts, 59.4% of patients had taken herbal medicine containing aristolochic acid before their prohibition in November 2003 (Table 1). Among the top ten Chinese herbal formula prescribed for chronic hepatitis in Taiwan during 2002, three types of herbal medicine—Long Dan Xie Gan Tang and Gan Lou Xiao Du Dan—contained 40.8% and 6% Mu Tong, respectively. More than 84% of Mu Tong herbal formulas contained Guan Mu Tong (Aristolochia manshuriensis), and the estimated average dose of aristolochic acid per 1 g of Guan Mu Tong was 2.59 mg. Therefore, patients with HBV virus infection were more likely to...
Table 3. Sensitivity analysis of adjusted HRs of aristolochic acid consumption in risk estimation for hepatocellular carcinoma during the follow-up period in the HBV-infected cohort

Model	Estimated aristolochic acid	1–250 mg	251–500 mg	>500 mg	p for interaction
	HR 95% CI	HR 95% CI	HR 95% CI		
Main model	1.13 (1.11–1.16)	1.21 (1.13–1.29)	1.44 (1.33–1.56)	1.44 (1.33–1.56)	-
Analytical designs					
Model with 2-year induction time	1.14 (1.12–1.17)	1.22 (1.14–1.31)	1.40 (1.29–1.52)	1.22 (1.14–1.31)	-
Model with competing mortality	1.12 (1.10–1.15)	1.21 (1.13–1.29)	1.43 (1.32–1.55)	1.21 (1.13–1.29)	-
Model with propensity score matching	1.14 (1.11–1.16)	1.18 (1.05–1.33)	1.46 (1.25–1.71)	1.18 (1.05–1.33)	-
Model with time-varying changes	1.32 (1.25–1.39)	2.15 (1.72–2.69)	-	-	
Additional covariates					
Main model + alcohol-related disease	1.15 (1.12–1.17)	1.25 (1.17–1.34)	1.49 (1.38–1.62)	1.25 (1.17–1.34)	-
Main model + nonalcoholic steatohepatitis	1.13 (1.11–1.16)	1.21 (1.13–1.29)	1.44 (1.33–1.56)	1.21 (1.13–1.29)	-
Main model + hypertension	1.13 (1.10–1.15)	1.19 (1.11–1.27)	1.41 (1.30–1.52)	1.19 (1.11–1.27)	-
Main model + hyperlipidemia	1.14 (1.12–1.17)	1.21 (1.13–1.30)	1.44 (1.33–1.56)	1.21 (1.13–1.30)	-
Main model + chronic obstructive pulmonary disease	1.15 (1.13–1.18)	1.24 (1.16–1.33)	1.48 (1.37–1.61)	1.24 (1.16–1.33)	-
Main model + anti-HBV treatment	1.13 (1.10–1.15)	1.21 (1.13–1.29)	1.42 (1.31–1.54)	1.21 (1.13–1.29)	-
Main model + aspirin	1.14 (1.12–1.17)	1.22 (1.14–1.30)	1.44 (1.33–1.56)	1.22 (1.14–1.30)	-
Main model + NSAIDs	1.23 (1.20–1.26)	1.28 (1.20–1.37)	1.48 (1.37–1.61)	1.28 (1.20–1.37)	-
Main model + ACE inhibitors	1.14 (1.11–1.16)	1.21 (1.13–1.29)	1.43 (1.32–1.55)	1.21 (1.13–1.29)	-
Main model + metformin	1.14 (1.11–1.16)	1.21 (1.13–1.30)	1.45 (1.34–1.57)	1.21 (1.13–1.30)	-
Main model + statins	1.13 (1.10–1.15)	1.20 (1.12–1.29)	1.41 (1.31–1.53)	1.20 (1.12–1.29)	-
Subgroup effects					
Sex					
Female	1.09 (1.04–1.15)	1.14 (0.98–1.33)	1.63 (1.36–1.95)	1.14 (0.98–1.33)	<.0001
Male	1.14 (1.12–1.17)	1.23 (1.14–1.33)	1.40 (1.28–1.53)	1.23 (1.14–1.33)	
Age, years					
18–39	1.15 (1.10–1.20)	1.32 (1.16–1.50)	1.75 (1.51–2.04)	1.32 (1.16–1.50)	-
≥40	1.14 (1.11–1.17)	1.17 (1.08–1.27)	1.35 (1.23–1.49)	1.17 (1.08–1.27)	-
Liver cirrhosis					
No	1.13 (1.10–1.16)	1.15 (1.06–1.25)	1.40 (1.27–1.55)	1.15 (1.06–1.25)	-
Yes	1.15 (1.11–1.20)	1.32 (1.17–1.49)	1.48 (1.30–1.69)	1.32 (1.17–1.49)	-
Alcohol-related disease					
No	1.11 (1.08–1.15)	0.98 (0.88–1.11)	1.06 (0.92–1.24)	0.98 (0.88–1.11)	<.0001
Yes	1.19 (1.15–1.23)	1.48 (1.36–1.60)	1.80 (1.64–1.98)	1.48 (1.36–1.60)	
Nonalcoholic steatohepatitis					
No	1.13 (1.10–1.15)	1.18 (1.09–1.26)	1.44 (1.32–1.57)	1.18 (1.09–1.26)	0.0192
Yes	1.21 (1.12–1.29)	1.50 (1.24–1.83)	1.53 (1.22–1.92)	1.50 (1.24–1.83)	
Diabetes					
No	1.14 (1.11–1.17)	1.20 (1.11–1.30)	1.47 (1.34–1.61)	1.20 (1.11–1.30)	0.2652
Yes	1.10 (1.05–1.15)	1.21 (1.06–1.38)	1.33 (1.14–1.56)	1.21 (1.06–1.38)	
Anti-HBV treatment					
No	1.13 (1.10–1.16)	1.19 (1.11–1.28)	1.40 (1.29–1.52)	1.19 (1.11–1.28)	0.1660
Yes	1.10 (0.99–1.22)	1.48 (1.11–1.98)	1.80 (1.28–2.52)	1.48 (1.11–1.98)	
take herbal medicine containing aristolochic acid than general population.19

In our study, aristolochic acid may increase the risks for HCC in HBV-infected patients in a dose-dependent manner (Table 2). Mutational signature of AA exposure in humans, cell culture models and animals, suggests that AA mutagenesis and carcinogenesis are mediated by the formation and persistence of aristolactam(AL)-DNA.35 Although aristolochic acid treatment resulted in significant increases in DNA adduct formation, mutation frequency, and tumors in rat kidneys, the same treatment did not produce tumors in rat liver, while it did induce DNA adducts and mutations in this tissue at lower levels than in the kidney.15 However, Poon \textit{et al.} screened 93 HBV-positive HCC genomes/exomes and identified aristolochic acid-like mutational signatures and about twice as many A \textgreater{} T mutations on the nontranscribed strand in 11 probable AA-exposed patients.17 Rossiello \textit{et al.} reported that a single non-necrogenic dose of AA initiated liver cell carcinogenesis which was then promotable to form hepatic foci and nodules.36 Ng \textit{et al.}37 sequenced the whole exomes of 98 hepatocellular carcinomas (HCCs) from two hospitals in Taiwan and found that 78\% showed the distinctive mutational signature of aristolochic acid (AA) exposure. Asia, especially Taiwan, appears to be much more extensively affected by AA exposure in the world. Thus, it became clear that AA carcinogenesis is not limited to the upper urinary tract.

Consumption of \textgreater{}60 g of Guan Mu Tong or \textgreater{}200 g of Guang Fang Ji was suggested to be associated with an increased risk of HCC in patients with HBV infection (Supporting Information, Table S1). Similarly, \textgreater{}60 g of Mu Tong was also associated with an increased risk of developing urinary tract cancer7 and \textgreater{}60 g of Mu Tong or Fang Ji was associated with an increased risk of developing kidney failure.7 Moreover, Mu Tong and Fang Ji contain much higher aristolochic acid than the other medicinal herbs such as Ma Dou Ling, Qing Mu Xiang, Tian Xian Teng and Xi Xin.24–28

We also found higher incidences of chronic kidney disease and upper tract urothelial and bladder cancers in patients with HBV infection who took herbal medicine containing aristolochic acid as well as in patients without HBV infection (Supporting Information, Table S2). This evidence is in agreement with current knowledge1–4 and confirm our previous studies.5–11 Other than hepatorenal syndrome in individuals with cirrhosis or fulminant liver failure, aristolochic acid related nephropathy explains in part that HBV infection was associated with the increased risk of chronic kidney disease among patients in Taiwan16,39 and there were high incidences of urinary tract cancers in HCC patients subsequently.40 In addition, exposure to aristolochic acid can also partially explain that high incidence of HCC in dialysis patients with HBV infection in the opposite direction.41

However, the increased risk shown in the analysis could be due to confounding by disease severity, as patients with more severe forms of hepatitis and thus a higher risk of liver cancer would be more likely to receive these herbs. First, although laboratory data were not available in the claim database, there were similar in the baseline laboratory data of the patients with HBV infection in the subcohort study between January 2001 and October 2003 (Supporting Information, Table S3). Second, the dose-dependent manner of aristolochic acid remained either in noncirrhotic or in cirrhotic subgroups (Table 3). Third, aristolochic acid consumption was assessed between 1997 and 2003, the year of market withdrawal, cases of HCC were identified from 1999 until 2013, that is, 10 years after market withdrawal. Therefore, the

Table 3. Sensitivity analysis of adjusted HRs of aristolochic acid consumption in risk estimation for hepatocellular carcinoma during the follow-up period in the HBV-infected cohort (Continued)

Model	Estimated aristolochic acid	HR (95\% CI)		
	1–250 mg	251–500 mg	>500 mg	p for interaction
	HR (95\% CI)	HR (95\% CI)	HR (95\% CI)	
Aspirin				0.3658
No	1.15 (1.12–1.17)	1.25 (1.16–1.35)	1.44 (1.32–1.57)	
Yes	1.11 (1.05–1.17)	1.05 (0.89–1.25)	1.41 (1.17–1.70)	
Metformin				0.1176
No	1.15 (1.12–1.18)	1.21 (1.12–1.30)	1.48 (1.36–1.61)	
Yes	1.07 (1.01–1.13)	1.25 (1.06–1.48)	1.29 (1.03–1.60)	
Statins				0.3637
No	1.13 (1.11–1.16)	1.21 (1.12–1.29)	1.41 (1.30–1.53)	
Yes	1.07 (0.99–1.15)	1.17 (0.93–1.48)	1.52 (1.16–2.00)	

Abbreviations: ACE, angiotensin-converting enzyme; CI, confidence interval; HBV, hepatitis B virus; HR, hazard ratio; NSAIDs, nonsteroidal anti-inflammatory drugs.

1Adjusted for sex, age, monthly income, urbanization, liver cirrhosis and diabetes.

2Subject number = 651,054.

3The estimated aristolochic acid was divided into only two categories of use (1–250 and \textgreater{}250 mg) in the model with time-varying changes.

4The models were adjusted for covariates in the main model and each additional listed covariate.

confounding by disease severity, if existed, would tend to be trivial.

Other potential limitations of this study should be considered. Because the data on drug prescriptions were not complete in 1996, we included herbal medicine containing aristolochic acid after 1997 so that the use of these drugs before 1997 would not be captured in our analysis. This could have underestimated the actual ingested dosage. In addition, we presumed that all prescribed medications were actually taken by patients as prescribed, which may overestimate the actual ingested dosage because some degree of noncompliance is always expected. Furthermore, there were additional sources of uncertainty in estimating aristolochic acid exposure, for example, varying concentration of aristolochic acid in a given herbal medicine, possible exposure through mistakenly identified herbs, and possible exposure though herbs obtained through channels other than licensed clinics. These could result in bias to the null hypothesis. Finally, several unmeasured confounders, including body mass index, smoking, alcohol intake and exposure to aflatoxin B1 which are associated with HCC, were not included in our database. We used alcohol-related disease, nonalcoholic steatohepatitis, hypertension, hyperlipidemia and chronic obstructive pulmonary disease as additional covariates in the sensitivity analyses. The estimates did not change significantly, that is, no apparent confounding effects were found (Table 3).

Our study first found significant dose–response relationships between the consumption of aristolochic acid and HCC in patients with HBV infection, suggesting that aristolochic acid which may be associated with HBV plays an important role in the pathogenesis of HCC. Further mechanistic research is needed. Although herbal medicine containing aristolochic acid has largely been banned in Taiwan and many other countries, patients with HBV infection, who have taken those herbs, should be closely followed up.

Acknowledgements
This study was based on a portion of data from the National Health Insurance Research Database provided by the National Health Insurance Administration, Ministry of Health and Welfare and was managed by the National Health Insurance Research Institutes, Taiwan. The statistical results and conclusions presented in this article do not represent those of the National Health Insurance Research Institutes, Taiwan. The authors thank the Health Information and Epidemiology Laboratory, Chang Gung Memorial Hospital, Chia-yi and for the comments and assistance with the data analysis. The funding bodies played no role in the study design, analysis or interpretation of the data in this article.

References
1. Cosyns JP, Jadoul M, Squifflet JP, et al. Urothelial lesions in Chinese-herb nephropathy. Am J Kidney Dis 1998;33:1011–7.
2. Nortier JL, Martinez M-CM, Schmeiser HH, et al. Urothelial carcinoma associated with the use of a Chinese herb (Aristolochia fangchi). N Engl J Med 2000;342:1686–92.
3. International Agency for Research on Cancer (IARC). Some traditional herbal medicines, some mycotoxins, naphthalene and styrene. IARC Monogr Eval Carcinog Risks Hum 2002;82:69–128.
4. International Agency for Research on Cancer (IARC). A review of human carcinogens: pharmaceuticals. IARC Monogr Eval Carcinog Risks Hum 2012;100A:347–61.
5. Lai MN, Lai JN, Chen PC, et al. Increased risks of chronic kidney disease associated with prescribed Chinese herbal products suspected to contain aristolochic acid. Nephrology 2009;14:227–34.
6. Lai MN, Lai JN, Chen PC, et al. Risks of kidney failure associated with consumption of herbal products containing Mu Tong or Fangchi: a population-based case-control study. Am J Kidney Dis 2010;55:507–18.
7. Lai MN, Wang SM, Chen PC, et al. Population-based case-control study of Chinese herbal products containing aristolochic acid and urinary tract cancer risk. J Natl Cancer Inst 2010;102:179–86.
8. Yang HY, Wang JD, Lo TC, et al. Increased mortality risk for cancers of the kidney and other urinary organs among Chinese herbalists. J Epidemiol 2009;19:17–23.
9. Yang HY, Wang JD, Lo TC, et al. Increased risks of upper tract urothelial carcinoma in male and female Chinese herbalists. J Formos Med Assoc 2011;110:161–8.
10. Yang HY, Wang JD, Lo TC, et al. Occupational kidney disease among Chinese herbalists exposed to herbs containing aristolochic acids. Occup Environ Med 2011;68:286–90.
11. Yang HY, Wang JD, Lo TC, et al. Occupational exposure to herbs containing aristolochic acids increases the risk of urothelial carcinoma in Chinese herbalists. J Urol 2013;189:48–52.
12. Chen CH, Dickman KG, Moriya M, et al. Aristolchic acid-associated urothelial cancer in Taiwan. Proc Natl Acad Sci USA 2012;109:8241–6.
13. Chen CH, Dickman KG, Huang CY, et al. Aristolochic acid-induced upper tract urothelial carcinoma in Taiwan: clinical characteristics and outcomes. Int J Cancer 2013;133:14–20.
14. Hoang ML, Chen CH, Chen PC, et al. Aristolochic acid in the etiology of renal cell carcinoma. Cancer Epidemiol Biomarkers Prev 2016;25:1600–8.
15. Mei N, Arlt VM, Phillips DH, et al. DNA adduct formation and mutation induction by aristolochic acid in rat kidney and liver. Mutat Res 2006;602:83–91.
16. Huang J, Deng Q, Wang Q, et al. Exome sequencing of hepatitis B virus-associated hepatocellular carcinoma. Nat Genet 2012;44:1117–21.
17. Poon SL, Pang ST, McPherson JR, et al. Genome-wide mutational signatures of aristolochic acid and its application as a screening tool. Sci Transl Med 2013;5:197ra101
18. Beasley RP, Hwang LY, Lin CC, et al. Hepatocellular carcinoma and hepatitis B virus. A prospective study of 22 707 men in Taiwan. Lancet 1981;318:2:1129–1133.
19. Yang HI, Lu SN, Liaw YF, et al. Hepatitis B e antigen and the risk of hepatocellular carcinoma. N Engl J Med 2002;347:168–74.
20. Chen CJ, Yang HI, Su J, et al. Risk of hepatocellular carcinoma across a biological gradient of serum hepatitis B virus DNA level. JAMA 2006;295:65–73.
21. Gökmen MR, Cosyns JP, Arlt VM, et al. The epidemiology, diagnosis, and management of aristolochic acid nephropathy. Ann Intern Med 2013;158:469–77.
22. Hsieh SC, Lin IH, Tseng WL, et al. Prescription profile of potentially aristolochic acid containing Chinese herbal products: an analysis of National Health Insurance data in Taiwan between 1997 and 2003. Chin Med 2008;3:13
23. Tsan YT, Lee CH, Wang JD, et al. Statins and the risk of hepatocellular carcinoma in patients with hepatitis B virus infection. JCO 2012;30:623–30.
24. Tsan YT, Lee CH, Ho WC, et al. Statins and the risk of hepatocellular carcinoma in patients with hepatitis C virus infection. J Clin Oncol 2013;31:1514–21.
25. Regulations regarding Chinese herbal products containing aristolochic acid. Available at https://dep.mohw.gov.tw/docus/dep-fp-883-5362-108.html [Accessed 2 March 2018]
26. Hsu YH, Tseng HH, Wen KC. Determination of aristolochic acid in Fangchi radix. Ann Rept NLFD Taiwan ROC 1997;15:136–42.
27. Deng JS. Quality evaluation of Fang-Ji and analysis of marker constituents. Taichung, Taiwan: Institute of Chinese Pharmaceutical Sciences, China Medical University, 2002. 75–7.
28. Chuang MS, Hsu YH, Chang HC, et al. Studies on adulteration and misusage of marketed

Int. J. Cancer: 143, 1578–1587 (2018) © 2018 UICC
Akebiae cauliss. Ann Rept NLFD Taiwan ROC 2002;20:104–19.
29. Jong TT, Lee MR, Hsiao SS, et al. Analysis of aristolochic acid in nine sources of Xixin, a traditional Chinese medicine, by liquid chromatography/atmospheric pressure chemical ionization/tandem mass spectrometry. J Pharm Biomed Anal 2003;33:831–7.
30. Hsu YH, Lo CF, Chang HC, et al. Studies on adulteration and misuse of Asari radi in the market. Ann Rept NLFD Taiwan ROC 2003;21:153–67.
31. Bruix J, Sherman M. Management of hepatocellular carcinoma. Hepatology 2005;42:1208–36.
32. El-Serag HB, Hampel H, Javadi F. The association between diabetes and hepatocellular carcinoma: a systematic review of epidemiologic evidence. Clin Gastroenterol Hepatol 2006;4:369–80.
33. Giovannucci E, Harlan DM, Archer MC, et al. Diabetes and cancer: a consensus report. CA Cancer J Clin 2010;60:207–21.
34. Chen FP, Kung YY, Chen YC, et al. Frequency and pattern of Chinese herbal medicine prescriptions for chronic hepatitis in Taiwan. J Ethnopharmacol 2008;117:84–91.
35. Sidorenko VS, Yeo JE, Bonala RR, et al. Lack of recognition by global-genome nucleotide excision repair accounts for the high mutagenicity and persistence of aristolactam-DNA adducts. Nucleic Acids Res 2012; 40:2494–505.
36. Rossiello MR, Laconi E, Rao PM, et al. Induction of hepatic nodules in the rat by aristolochic acid. Cancer Lett 1993;71:83–7.
37. Ng AWT, Poon SL, Huang MN, et al. Aristolochic acids and their derivatives are widely implicated in liver cancers in Taiwan and throughout Asia. Sci Transl Med 2017;9:eaan6446
38. Chen YC, Su YC, Li CY, et al. A nationwide cohort study suggests chronic hepatitis B virus infection increases the risk of end-stage renal disease among patients in Taiwan. Kidney Int 2015;87:1030–8.
39. Chen YC, Su YC, Li CY, et al. 13-year nationwide cohort study of chronic kidney disease risk among treatment-naive patients with chronic hepatitis B in Taiwan. BMC Nephrol 2015;16:110
40. Wu WC, Chen YT, Hwang CY, et al. Second primary cancers in patients with hepatocellular carcinoma: a nationwide cohort study in Taiwan. Liver Int 2013;33:616–23.
41. Hwang JC, Weng SF, Weng RH. High incidence of hepatocellular carcinoma in ESRD patients: caused by high hepatitis rate or ‘uremia’? a population-based study. Jpn J Clin Oncol 2012;42:780–6.
42. Loomba R, Yang HI, Su J, et al. Synergism between obesity and alcohol in increasing the risk of hepatocellular carcinoma: a prospective cohort study. Am J Epidemiol 2013;177:333–42.
43. Wu HC, Wang Q, Yang HI, et al. Aflatoxin B1 exposure, hepatitis B virus infection, and hepatocellular carcinoma in Taiwan. Cancer Epidemiol Biomarkers Prev 2009;18:846–53.