Nonlinear response of single-molecule nanomagnets: equilibrium and dynamical

R. López-Ruiz, F. Luis, V. González, A. Millán, and J. L. García-Palacios
Instituto de Ciencia de Materiales de Aragón y Dep. de Física de la Materia Condensada,
C.S.I.C. – Universidad de Zaragoza, E-50009 Zaragoza, Spain
(Dated: March 23, 2022)

We present an experimental study of the nonlinear susceptibility of Mn$_{12}$ single-molecule magnets. We investigate both their thermal-equilibrium and dynamical nonlinear responses. The equilibrium results show the sensitivity of the nonlinear susceptibility to the magnetic anisotropy, which is nearly absent in the linear response for axes distributed at random. The nonlinear dynamic response of Mn$_{12}$ was recently found to be very large and displaying peaks reversed with respect to classical superparamagnets [F. Luis et al., Phys. Rev. Lett. 92, 107201 (2004)]. Here we corroborate the proposed explanation — strong field dependence of the relaxation rate due to the detuning of tunnel energy levels. This is done by studying the orientational dependence of the nonlinear susceptibility, which permits to isolate the quantum detuning contribution. Besides, from the analysis of the longitudinal and transverse contributions we estimate a bound for the decoherence time due to the coupling to the phonon bath.

PACS numbers: 75.50.Xx, 75.50.Tt, 75.45.+j, 75.40.Gb

I. INTRODUCTION

Superparamagnets are nanoscale solids or clusters with a large net spin ($S \sim 10^3$–10^4). This spin is coupled to the environmental degrees of freedom of the host material, e.g., phonons, nuclear spins, or conducting electrons. Due to the dynamical disturbances of the surroundings the spin may, among other things, undergo a Brownian-type “reversal”, overcoming the potential barriers created by the magnetic anisotropy.

Depending on the relation between the reversal time τ and the observation time t_{obs}, different phenomenologies can be found. For $\tau \ll t_{\text{obs}}$, the spin exhibits the thermal-equilibrium distribution of orientations as in a paramagnet; the large values of S are the reason for the name superparamagnetism. When $\tau \gg t_{\text{obs}}$, in contrast, the reversal mechanisms appear blocked and the spin stays close to an energy minimum (stable magnetization conditions appropriate for magnetic storage). Finally, under intermediate conditions ($\tau \sim t_{\text{obs}}$) one finds non-equilibrium phenomena (i.e., magnetic “relaxation”).

For large S, for instance in magnetic nanoparticles [1], a classical description is adequate [2]. The essential physical ingredients are the thermo-activation over the magnetic anisotropy barriers and the (damped) spin precession [3]. As the spin value is reduced, quantum effects can start to play a role. For moderate spins ($S \sim 10$), as in single-molecule magnets [4], the quantum nature of the system comes significantly to the fore. For instance, the spin reversal may also occur by tunneling whenever the magnetic field brings into resonance quantum states located at the sides of the barrier (Fig. 1).

Several fundamental problems can be studied on these systems [1, 3–7]. First, the quantum-to-classical transition, with the emergence of classical properties. Single-molecule magnets constitute a model system to study quantum mechanics at a mesoscopic level, while magnetic nanoparticles provide a natural classical limit. Second, one can address the effects of environmental degrees of freedom on a given system. Classically, one faces the rich phenomenology of rotational Brownian motion of the nanoparticle magnetization. In the quantum case the bath coupling not only produces fluctuations and dissipation (allowing the system to relax to thermal equilibrium), but it is also responsible for the decoherence of its quantum dynamics. Thus, single-molecule magnets constitute an important experimental benchmark to test the predictions of the theory of quantum dissipative systems [7] (much as Josephson junctions in superconductivity).

The best studied magnetic molecular clusters are those named Mn$_{12}$ and Fe$_8$, both with $S = 10$ in the ground multiplet (for other examples see Ref. [8]). To understand, one can address the effects of environmental degrees of freedom on a given system. Classically, one faces the rich phenomenology of rotational Brownian motion of the nanoparticle magnetization. In the quantum case the bath coupling not only produces fluctuations and dissipation (allowing the system to relax to thermal equilibrium), but it is also responsible for the decoherence of its quantum dynamics. Thus, single-molecule magnets constitute an important experimental benchmark to test the predictions of the theory of quantum dissipative systems [7] (much as Josephson junctions in superconductivity).

![FIG. 1: Energy levels for Mn$_{12}$](image)

The levels are plotted vs. the quantum number m at $H = 0$ and show the bistable potential for the spin due to the magnetic anisotropy. The horizontal line marks the border between “classical” or localized energy levels, $\Delta_m < \xi_m$, and the tunneling levels $\Delta_m > \xi_m$ (Δ is the tunnel splitting and ξ the width of the environmental bias-field distribution).
stand their behavior a plethora of theoretical calculations and every conceivable experimental technique have been used. However, the nonlinear susceptibility χ_3, fruitfully exploited in studies of spin glasses [8 10 11], random anisotropy systems [12], but also in magnetic nanoparticles [13 14 15], had been overlooked. For classical superparamagnets χ_3 provides information on parameters to which the linear susceptibility is less sensitive, like the anisotropy constant D [16] or the spin-bath coupling parameter λ [17] (which enters the scene due to the strong dependence of the relaxation rate $\Gamma = 1/\tau$ on transverse magnetic fields [18]). Besides, the dynamical nonlinear susceptibility has a genuinely quantum contribution due to the detuning of the energy levels by a longitudinal field [19]. It has a sign opposite to the classical (presessional) contribution, thus allowing to ascertain whether quantum effects, such as resonant tunneling, are relevant in a given nanomagnet (an issue sometimes controversial [20]).

In this article we present experimental results for the thermal-equilibrium and dynamical nonlinear susceptibility of Mn$_{12}$ acetate. Compared to the linear susceptibility, the equilibrium χ_3 shows an enhanced sensitivity to the magnetic anisotropy, even for axes distributed at random (allowing to estimate D from measurements in powdered samples). As for the frequency-dependent χ_3, we study its dependence on the angle of the applied field. This gives direct access to the relaxation-rate field-expansion coefficients, $\Gamma - \Gamma_{|_{H=0}} \propto g_1 H_\parallel^2 + g_\perp H_\perp^2$, which contain valuable information on the spin reversal mechanisms, thus allowing to separate the “classical-transverse” and “quantum-longitudinal” contributions to χ_3.

In the discussion simple approximate formulas and numerical results from the solution of a Pauli quantum master equation are used. Our investigation confirms the interpretation of Ref. [13] of the large quantum contribution to $\chi_3(\omega)$ as arising from the detuning of the tunnel channels by a longitudinal magnetic field. Thus, the experimental nonlinear response is consistent with the established scenario [21 22 23 24 25 26] of thermally-activated tunnel via excited states in Mn$_{12}$. The analysis also gives a bound for the decoherence time τ_ϕ (timescale for the attainment of a diagonal density matrix due to the coupling to the phonon bath). The obtained τ_ϕ turns out to be much shorter than the lifetime of the spin levels τ_0, and is responsible for a fast loss of coherent dynamics (like tunnel oscillations or precession).

II. SAMPLES AND MEASUREMENTS

A. Samples and set up

Single crystals of Mn$_{12}$ acetate were grown following a procedure similar to that described by List [27]. The concentrations of the reactants, however, were higher than those of [27] in order to increase the supersaturation and the growth rate, yielding larger crystals. These were regrown several times by renewing the mother solution. X-ray diffraction patterns of powdered crystals agreed with simulated patterns from the known crystal structure.

The measurements were performed on a single crystal with dimensions $3 \times 0.5 \times 0.5$ mm3 at different orientations with respect to the applied magnetic field. To this end, we constructed a rotating sample holder that enables the c crystallographic axis (which defines the anisotropy axes of the Mn$_{12}$ molecules) to be rotated a given angle ψ with respect to the magnet axis. This angle is measured with a precision better than 0.5 degrees. To calibrate the position of the zero we used the measured linear equilibrium susceptibility, which should be maximum when the field is parallel to the anisotropy axis ($\psi = 0$).

B. Magnetic measurements

Dynamical susceptibility measurements were performed using the ac option of a commercial SQUID magnetometer, by applying an alternating field $\sim \Delta h \exp(\omega t)$. The ac susceptibility was measured under a weak superimposed dc field H, parallel to the oscillating one. The first harmonic of the response can then be expanded as

$$\chi(\omega, H) = \chi_1(\omega) + 3\chi_3(\omega)H^2 + 5\chi_5(\omega)H^4 + \cdots$$ \hspace{1cm} (1)

The $(H$-independent) expansion coefficients give the ordinary linear susceptibility χ_1 and the nonlinear ones χ_3, χ_5, \ldots As it is customary, we focus on χ_3 and refer to it as the nonlinear susceptibility.
To determine the nonlinear susceptibility we performed polynomial fits of the H-dependent ac data whose quadratic coefficient gives χ_3. An illustrative example of the fitting procedure is shown in Fig. 2. For sufficiently low H, a good description is provided by a simple parabolic dependence $\chi_1 + 3\chi_3H^2$. For increasingly larger fields, we increased the order of the polynomials whenever the fitting error became greater than 5%. The experimental χ_3 was taken as the mean value of all quadratic coefficients obtained from the different order polynomials, thus minimizing the error of the determination.

The measurements were performed at temperatures in the range $2\,\text{K} < T < 45\,\text{K}$ and frequencies $0.08\,\text{Hz} < \omega/2\pi < 1.5\,\text{kHz}$. The amplitude of the ac field ($\Delta h = 3\,\text{Oe}$) was sufficiently small not to induce nonlinearity in Δh (associated to the generation of harmonics). Actually, the $\chi_3(\omega)$ obtained here from the field-dependent susceptibility differs from the χ_3 extracted from the third harmonic of the response to an ac field (at $H = 0$). However, as we show in Appendix A, the dependence of both quantities on the parameters under study is analogue.

C. Equilibrium vs. dynamical measurements

In the next sections we are going to study the equilibrium and dynamical susceptibilities. Let us define here a practical criterion to decide when the experimentally measured $\chi_1(\omega)$ and $\chi_3(\omega)$ correspond to equilibrium or off-equilibrium conditions. In the temperature range covered by our experiments, $T > 2\,\text{K}$, the molecular spins of Mn$_{12}$ relax via a thermally-activated tunneling mechanism $[21, 22, 23]$. This process gives rise to a well-defined relaxation time τ and the ac response can be described by a simple Debye formula:

$$\chi = \chi_S + \frac{\chi_T - \chi_S}{1 + i\omega\tau}. \quad (2)$$

Here χ_T and χ_S are the isothermal (thermal equilibrium) and adiabatic limits of χ. In Fig. 3 we show how the response of the Mn$_{12}$ crystals follows Eq. (2) at temperatures and magnetic fields typical of our experiments [22]. The equilibrium regime corresponds to frequencies fulfilling $\omega\tau \ll 1$ (left part of the plot), relaxation effects becoming important when the range $\omega\tau \sim 1$ is approached.

On the other hand, the relaxation time of this system increases exponentially as T decreases, following an Arrhenius law (see for instance Fig. 2 in Ref. [12])

$$\tau = \tau_0 \exp\left(\frac{U}{k_BT}\right). \quad (3)$$

![FIG. 3: Magnetic susceptibility vs. frequency measured along the anisotropy axis ($\psi = 0$) at $T = 5\,\text{K}$. Results are shown at zero bias field (circles) and at $H = 300\,\text{Oe}$ (squares). Solid symbols are for the real part (in-phase component) and open symbols for the imaginary part (out-of-phase). The lines are fits to the Debye law with $\tau/H = 1.3(3) \times 10^{-2}\,\text{s}$ and $\tau/H = 2.8(1) \times 10^{-2}\,\text{s}$.](image)

![FIG. 4: Linear (top panel) and nonlinear susceptibilities (bottom) vs. temperature for several frequencies (only 9 Hz for χ_3) measured along the anisotropy axis. Solid symbols are for the real parts and open symbols for the imaginary parts. Dashed lines are the equilibrium susceptibilities in the Ising (large anisotropy) limit [Eqs. (9) and (10)]. The vertical line marks the boundary above which thermal equilibrium results are safely obtained using $\omega/2\pi = 9\,\text{Hz}$. Inset: temperature dependence of the reciprocal equilibrium linear susceptibility and its fit to a Curie-Weiss law for $T < 10\,\text{K}$.](image)
Here U is an activation energy and τ_0 an attempt time, which set the magnitude and temperature dependence of τ. At zero field we obtained $U_0 \approx 65$ K and $\tau_0 \approx 3 \times 10^{-8}$ s. In a χ vs. T experiment (Fig. 4) the condition $\omega \tau = 1$ defines a superparamagnetic “blocking” temperature $k_B T_b = -U_0 \ln(\omega \tau_0)$. Below T_b, the real part χ drops from χ_T towards χ_s whereas χ'' departs from zero and shows a maximum. As for the nonlinear susceptibility, the non-equilibrium response near T_b leads also to a non-zero imaginary part χ'', and to a strong deviation of χ' from the equilibrium χ_{3T}. In contrast with the linear response (which decreases from χ_T), χ' becomes larger than χ_{3T} near T_b; this dynamical nonlinear phenomenon will be discussed in detail in the following sections.

As can be seen in Figs. 5 and 6 the transition from isothermal to adiabatic conditions extends over a certain frequency or temperature range, determined by the width of the $\chi''(\omega, T)$ curve. As a practical rule, we take $\chi_T = \chi_1$ and $\chi_{3T} = \chi_3$ when the imaginary parts are reasonably small $\chi''/\chi' < 10^{-2}$. This value is, as a matter of fact, close to the experimental error of the present measurements. Using this criterion we have extracted, from the dynamical susceptibility data vs. T, the equilibrium χ_T and χ_{3T} discussed in the next section.

III. EQUILIBRIUM LINEAR AND NONLINEAR SUSCEPTIBILITIES

The equilibrium χ_T obtained as described in the previous section is shown in the inset of Fig. 4. In the temperature range 4 K $\lesssim T \leq 10$ K it approximately follows a Curie-Weiss law

$$\chi_T = \frac{C}{T - \theta}, \quad (4)$$

with a Curie temperature $\theta \approx 1.2(2)$ K. Measurements performed on a powdered sample (not shown), which are less affected by anisotropy effects, also follow Eq. 4 albeit with a smaller $\theta = 0.5(1)$ K [for the interplay of interactions and anisotropy, see Eqs. (3.2)–(3.6) in Ref. 20]. These finite θ point actually to the presence of dipolar interactions between the molecular spins in the crystal, which would give rise to long-range order at sufficiently low temperatures. In the (super)paramagnetic regime of interest here, interactions merely produce a susceptibility somewhat larger than that of non-interacting clusters.

In addition to interactions, a most important influence on the temperature-dependent susceptibilities is exerted by the magnetic anisotropy. To illustrate these effects, it is helpful to normalize the experimental χ_T and χ_{3T} by their isotropic limits, χ_{iso} and χ_{3iso}. These can be obtained from the field expansion coefficients of the Brillouin magnetization (Appendix A1), and read

$$\chi_{iso} = N_A \frac{(g \mu_B)^2 S(S + 1)}{3k_B T}, \quad (5)$$

$$\chi_{3iso} = -N_A \frac{(g \mu_B)^4}{45(k_B T)^3} S(S + 1)[S(S + 1) + 1/2], \quad (6)$$

where N_A is the number of molecules per mol. The first of these is merely Curie’s law and the second its nonlinear counterpart. Normalized by χ_{iso} and χ_{3iso}, the experimental susceptibility lose their bare $1/T$ and $1/T^3$ contributions, so that their remaining temperature dependence is mostly due to the effects of the anisotropy.

The so normalized equilibrium susceptibility data are shown in Fig. 5. Clearly, the isotropic limit is only attained for sufficiently high temperatures ($T \gtrsim 30$ K). Note that the high-T limits of χ_T and χ_{3T} are slightly smaller than χ_{iso} and χ_{3iso}. This is caused by the thermal population of higher-energy spin multiplets of the cluster, the lowest of which has $S = 9$ in Mn$_{12}$. Therefore, in that temperature range the Mn$_{12}$ molecule can no longer be seen as a superparamagnetic spin $S = 10$ and the thermal mixture of spin states reduces its susceptibilities (the analogue to the decrease of the spontaneous magnetization in a solid by excitation of spin-waves).

As the temperature decreases, both χ_T/χ_{iso} and χ_{3T}/χ_{3iso} increase, departing from ≈ 1. This is natural since Eqs. 5–6 are only valid when the thermal energy $k_B T$ is larger than all zero-field splittings (produced by the magnetic anisotropy). The simplest Hamiltonian that describes the magnetic behavior of an isolated Mn$_{12}$ molecule contains the Zeeman plus uniaxial anisotropy terms (see also Fig. 11)

$$\mathcal{H} = -DS_z^2 - A_4 S_z^4 - g \mu_B (H_x S_x + H_y S_y + H_z S_z). \quad (7)$$

Here $D \approx 0.6$ K and $A_4 \approx 10^{-3}$ K are the second and fourth-order anisotropy constants for Mn$_{12}$, and $H_{x,y,z}$ the components of the field along the (a, b, c) crystallographic axes. The largest zero-field splitting produced by the anisotropy occurs between the states $m = \pm(S - 1)$ and the ground state $m = \pm S$:

$$\Omega_0 = (2S - 1)D + [S^4 - (S - 1)^4] A_4 \approx 14.8$ K. \quad (8)$$

When $k_B T$ becomes comparable to Ω_0 several related effects occur: (i) the magnetization is no longer given by the Brillouin law and T does not appear in the combination H/T; (ii) χ_T and χ_{3T} deviate from the simple Eqs. 5–6 and depend on ψ, and (iii) the normalised susceptibilities acquire a dependence on T. For classical spins, these effects were studied in Ref. 32.

Eventually, in the low temperature limit $k_B T/D \rightarrow 0$, only the states $m = \pm S$ are appreciably populated and each molecular spin becomes effectively a two-level system (“spin-up” and “spin-down” states). In this “Ising”
limit, χ_T and χ_{3T} can also be calculated explicitly

$$\chi_{3\text{Ising}} = -N_A \frac{(g\mu_B)^4 S^4}{3(k_B T)^3} \cos^4 \psi$$ \hspace{1cm} (9)

$$\chi_{3\text{Ising}} = -N_A \frac{(g\mu_B)^4 S^4}{3(k_B T)^3} \cos^4 \psi.$$ \hspace{1cm} (10)

Here we see that the bare $1/T$ and $1/T^3$ dependences are recovered, so that the normalised susceptibilities become again temperature independent. Comparison of these expressions with Eqs. (6)–(8) reveals that, for a single crystal at $\psi = 0$, $\chi_T/\chi_{3\text{iso}}$ and $\chi_{3T}/\chi_{3\text{iso}}$ should increase, respectively, by an overall factor of $2.7 \left[= 3 \times S^2/S(S+1) \right]$ and $12.3 \left[= 15 \times S^4/S(S+1)[S(S+1)+\frac{1}{2}] \right]$, when decreasing temperature. The experimental curves approach indeed these values at low temperatures ($T < 10$ K in Fig. [5]) although they become even larger. This is probably due to the interactions which, as we have seen, enhance the magnetic response at low temperatures.

Anyhow, these results suggest the measurement of the temperature-dependent reduced susceptibilities as a suitable tool to estimate the anisotropy parameters of superparamagnets. In this respect, the advantage of the nonlinear susceptibility becomes evident when dealing with systems with randomly oriented axes. Then the ratios between the “Ising” and isotropic limits decrease significantly [cf. Eqs. (5)–(6) with Eqs. (9)–(10)]. Indeed, $\chi_T/\chi_{3\text{iso}}$ becomes nearly T-independent, whereas the reduced nonlinear susceptibility still retains a sizable variation with T (by a factor ~ 2.5). This is experimentally confirmed by measurements on a polycrystalline sample (Fig. 5) [33]. Thus we see that, contrary to the linear response, χ_{3T} keeps information on the anisotropy even for superparamagnets with axes distributed at random. This is the case most often encountered in nanoparticle systems [1] but also for single-molecule magnets when deposited on surfaces [34] or inside porous materials [35].

The considerations above can be supported by direct diagonalization of the Hamiltonian [4]. The results (solid lines in Fig. 4) exhibit the same trends as the experiments, both for parallel axes and after averaging over random orientations. Full agreement is precluded by the effect of interactions, on the low-T side, and by the population of excited multiplets with $S \neq 10$ at high T, as discussed above.

Before concluding this section, there is an additional feature that deserves to be commented upon. Consider the theoretical behavior of χ_{3T} in classical spins, also plotted in Fig. 4 [32]. We see that, although classical and quantum calculations predict the crossover from the isotropic to the Ising limits, the classical susceptibilities are shifted towards lower temperatures. This shift can be seen as a manifestation of the quantum, discrete nature of the energy spectrum of Mn$_{12}$. The finite energy gap between the two lowest quantum levels, Ω_0, leads to a faster (exponential in D/T) convergence to the Ising limit, whereas classically this limit is only approached with a slow power law in D/T (see Appendix A).

IV. DYNAMICAL SUSCEPTIBILITIES

In this section we turn our attention from the equilibrium to the dynamical response. We begin reviewing briefly the behavior of the nonlinear susceptibility χ_3 in the classical case. This allows to introduce some basic expressions valid also for quantum superparamagnets; then we present the experimental results for Mn$_{12}$.

A. Classical superparamagnets and modelization

The dynamical nonlinear susceptibility of classical spins was theoretically found to be very large and, in contrast to the linear susceptibility, non-trivially sensitive to...
the spin-bath coupling strength λ. The “damping” λ measures the relative importance of the relaxation and Hamiltonian (precessional) terms in the dynamical equations. Thus $1/\lambda$ is of the order of the number of precessional turns that the spin executes in the deterministic spiraling down to the energy minima.

The contributions to the nonlinear response of the longitudinal and transverse components of the field are captured by a simple formula involving the low-H expansion coefficients g_{\parallel} and g_{\perp} of the relaxation rate.

$$\Gamma \simeq \Gamma_0 \left[1 + \frac{1}{2} (g_{\parallel} \xi^2 + g_{\perp} \xi^2) \right], \quad (11)$$

where $\Gamma_0 = \Gamma|_H=0$ and $\xi = g_{\mu_B}SH/k_B T$. The expression for the nonlinear susceptibility oscillating with the third harmonic of the field can be found in Appendix A.3. It is easy to find the counterpart for the χ_3 oscillating with $e^{\pm i\omega t}$, as used in this work, which reads

$$\chi_3 = -N_A \frac{(g_{\mu_B}T)^3}{3(k_B T)^3} \left[\frac{\cos^4 \psi}{1 + i \omega \tau} \right.$$

$\left. - \frac{i \omega \tau}{2(1 + i \omega \tau)^2} (g_{\parallel} \cos^4 \psi + g_{\perp} \cos^2 \psi \sin^2 \psi) \right], \quad (12)$$

Here the Ising approximation for the equilibrium parts has been used (this works fine at temperatures around the blocking temperature $T_b \sim 5K$; see Sec. III). The longitudinal part, proportional to $\cos^4 \psi$, is maximum at $\psi = 0$ (in absolute value); the “transverse” contribution associated to g_{\perp} becomes zero both at $\psi = 0$ and $\pi/2$, being maximum at $\psi = \pi/4$. Equation (12) shows that the magnitude, signs, and the ω and angular dependences of χ_3 are determined by the competition between the rate expansion coefficients g_{\parallel} and g_{\perp}. Therefore, measurements of those dependences can provide valuable information on the different contributions to the spin reversal.

For classical superparamagnets, where only the thermal activation operates, the rate expansion coefficients are given in the considered low-temperature range by 57, 38

$$g_{\parallel} = 1, \quad g_{\perp} = F(\lambda)/2, \quad (13)$$

where $F > 0$ is a function of λ (and T). For strong damping, $F \to 1$, so that g_{\parallel} and g_{\perp} are of the same order. In contrast, in the weak damping regime (governed by the precession), one has $F \propto 1/\lambda$. g_{\perp} becomes very large, dominating the nonlinear response. Then one can find that the real part $|\chi_3'| \gg |\chi_3''|$ but with $\chi_3'/\chi_3'' < 0$ (i.e., the sign is reversed with respect to the equilibrium value). This phenomenon is equivalent to that of the third harmonic nonlinear susceptibility 17, 57, since both quantities exhibit similar dependences on λ and ω.

It is worth mentioning that in the derivation of Eq. (12) rather general assumptions are invoked (Appendix A.3). Therefore, the functional form obtained is quite generic and valid for classical as well as quantum superparamagnets. Then, the relevant information on the quantum reversal mechanisms will be incorporated by the rate expansion coefficients g_{\parallel} and g_{\perp}. Naturally, they could be very different from their classical counterparts.

B. Nonlinear dynamical susceptibility of Mn$_{12}$

After these theoretical considerations let us turn to the experiments on quantum nanomagnets. Figure 6 displays frequency-dependent measurements of the nonlinear susceptibility of Mn$_{12}$ performed at constant T for different angles ψ. They demonstrate that the result already shown in Fig. 4, namely, that χ_3' becomes much larger than its equilibrium value χ_3'' near the blocking temperature, is a dynamical effect not caused by magnetic ordering or some kind of “freezing” (interactions also enhance the susceptibilities, but by a much smaller factor). We know that classically one can also have $|\chi_3'| \gg |\chi_3''|$.
but here $\chi'_3/\chi_3T > 0$, that is, the peak of the measured nonlinear dynamic susceptibility is reversed with respect to the classical prediction.

From Eq. (12) we see that at $\psi = 0$ there is no contribution of g_1 to χ_3. In addition, the first term in that equation, which has a Debye-type profile, cannot provide $|\chi'_3| > |\chi_3T|$ because $\text{Re}[\chi/(1 + i\nu)] \leq \chi$. Therefore, the maximum observed in Fig. 6 should be due to the g_\parallel contribution. There is a result relating the height of the susceptibility peak $\chi'_3|_{\max,0}$ with the combination $Q(\psi) \equiv g_\parallel \cos^2 \psi + g_1 \sin^2 \psi$ of the relaxation rate coefficients (Appendix A).

$$\chi'_3|_{\max,0}/\chi_3T \approx -\cos^2 \psi Q(\psi)/4.$$ (14)

Therefore, the positive sign of the maximum of $\chi'_3(\omega)/\chi_3T$ at $\psi = 0$ entails $Q < 0$. But $Q|_{\psi=0} = g_\parallel$, entailing that the relaxation time $\tau = 1/\Gamma$ becomes longer as H_\parallel increases. No classical mechanism can account for this; actually, $g_\parallel = 1$ in the classical model, which gives a $\chi'_3/\chi_3T|_{\psi=0}$ smaller than 1 and decreasing with ω (inset of Fig. 6), in sharp contrast to the measured χ_3. On the other hand, it is well-established that in Mn$_{12}$ the suppression of tunneling by a longitudinal field strongly reduces the relaxation rate (as it breaks the degeneracy between initial “spin-up” and final “spin-down” states, inhibiting the tunnel channels). As suggested in Ref. [19], this effect provides the g_\parallel required, both negative and large, to account for the experimental χ_3 of Mn$_{12}$. Thus, we see that the known field-suppression of tunneling shows up in the nonlinear response as a distinctly quantum contribution, with its sign reversed with respect to the classical case.

When $\psi > 0$, the detuning quantum contribution coexists with the transverse g_\perp contribution. Still, the data of Fig. 6 suggest that $\chi_3 \propto \cos^4 \psi$ holds approximately. We can check this by accounting again for Eq. (13) and plotting the maximum of χ'_3 vs. $\cos^4 \psi$ (Fig. 7). This yields an almost straight line indicating that in Mn$_{12}$ the coefficient g_\parallel overwhelmingly dominates g_\perp, which in the classical case embodied the precessional contribution and could be sizable (we return to this issue in Sec. V).

Thus $\chi_3(\omega, \psi)$ provides direct experimental access to the relaxation-rate expansion coefficients g_\parallel and g_\perp, which contain information on the spin relaxation mechanisms. Besides, from the sign of the $\chi_3(\omega)$ peaks we can infer whether the spin reversal is dominated by a classical mechanism or by quantum processes. The consistency of our analysis can be ascertained by comparing the experimentally determined rate Γ (obtained from Debye fits of χ_3), with the rate reconstructed from the expansion $\Gamma = \Gamma_0(1 + \xi^2/2 + \ldots)$, using the $Q|_{\psi=0}$ extracted from the χ'_3 maxima via Eq. (14) ($Q_{\text{Mn}_12}|_{\psi=0} \approx -260$). Figure 8 shows the good agreement between both results in the weak field regime, supporting our interpretation.

![Figure 7](image7.png)

FIG. 7: Evolution of the maximum of $\chi'_3(\omega)$ with the angle ψ of the applied field at $T = 5$ K. The symbols are the experimental results. The dashed lines are obtained from Eq. (12) using the experimentally determined $g_\parallel = -260$ and the classical transverse contribution $g_\perp = F(\lambda)/2$ computed for different values of the phenomenological damping constant λ. The solid line corresponds to theoretical calculations with a Pauli quantum master equation (see the text).

![Figure 8](image8.png)

FIG. 8: Relaxation rate of Mn$_{12}$ at $T = 5$ K as a function of the field applied along the anisotropy axis ($\psi = 0$). The symbols are the Γ’s obtained from Debye fits of $\chi(\omega, H)$. The lines are calculated as $\Gamma = \Gamma_0(1 + \xi^2/2)$, where $\xi = g\mu_B SH_\parallel/k_B T$ and Q comes from the maximum of $\chi'_3(\omega)$ via Eq. (14). The classical prediction ($Q = 1$) is shown for comparison.

V. DISSIPATION VS. DECOHERENCE IN SINGLE-MOLECULE MAGNETS

We have seen in the previous section that the transverse contribution to the nonlinear susceptibility is nearly absent in Mn$_{12}$ (indeed the experiments are consistent with $g_\perp = 0$). Classically, g_\perp incorporates the preces-
sional contribution, which can be large for weak damping λ ≪ 1 [14, 37]. Still, as its long τ0 indicates, Mn12 is expected to be quite “underdamped” (in the sense of energy dissipation). Thus, it seems that some other process makes the spin to lose its intrinsic, or coherent, precessional dynamics and appear, when seen through χ3(ω), as “overdamped”. In this last section we will try to reconcile these results (g1⊥ ≃ 0 and long τ0) invoking an effect of the coupling to the bath absent in classical physics — decoherence.

A. Experimental bound for the effective damping

Before starting let us quantify a lower bound for an effective λ of Mn12. To this end we generate χ3(ω) curves using Eq. (12) with the g1 experimentally determined from χ3(ω)|ω=0, while assuming g1⊥ = F(λ)/2 as in classical superparamagnets. In this way we compute χ'3|max vs. cos⁴ψ for several λ and compare with the experimental results (Fig. 7). The best agreement is obtained for large λ, which in fact yields small g1⊥ and hence almost no cos²ψ/sin²ψ contribution. However, taking into account experimental uncertainties as well as the smaller sensitivity of g1⊥ to large λ, gives a lower bound of λ ≈ 0.01.

In the classical equations of motion the damping parameter λ is a measure of the relative weights of their relaxation and precessional terms. It can then be expressed as the Larmor precession period τL = 2π/γH⊥ (in the anisotropy field H⊥; γ = gµB/ℏ) divided by some timescale of relaxation. For the latter we can use the classical prefactor in the Arrhenius law [2, 32]

$$\tau_0 = \frac{1}{\lambda^2 H_a} \sqrt{\frac{\pi}{4\sigma}} \left(1 + \frac{1}{\sigma} + \cdots\right),$$ \hspace{1cm} (15)

where the reduced anisotropy barrier is σ = U0/kBT. In our experiments at T = 5 K we have σ ≃ 14, whence

$$\lambda \approx 0.04 \times \tau_L/\tau_0.$$ \hspace{1cm} (16)

Experimentally τ0 ≃ 3 \times 10⁻⁸ s in Mn12. Its anisotropy field can be obtained from magnetization measurements (along the hard plane) or from the ground-state transition frequency Ω0/h [Eq. (6)], getting τL ≃ 3-4 \times 10⁻¹² s. This gives τL/τ0 ≃ 10⁻⁴ and hence an effective λ many orders of magnitude smaller than the lower bound λ > 0.01 extracted from χ3.

The estimation of τL/τ0 is in agreement with the mentioned underdamped character of Mn12 (in the sense of long-lived levels). However, in case of g1⊥ having some precession-type contribution akin to F(λ), the above λ ∝ τL/τ0 would not be the parameter entering there. Otherwise a giant g1⊥ ∝ 1/λ would dominate χ3 (leading to χ3/λτ < 0 and χ3|max not proportional to cos⁴ψ), which is clearly not seen in the experiments. Still, it might be that, instead of the damping, some other timescale limits the precession; as this is a type of coherent dynamics, we can call such time a decoherence time τdec. This should replace τ0 in the effective λ ∝ τL/τdec.

To get a λ consistent with the lower bound λ ≥ 0.01 obtained from χ3, the time τdec should be far shorter than τ0 ≃ 10⁻⁸ s, actually τdec ≃ 1-1.5 \times 10⁻¹¹ s.

B. Approximate quantum treatment

A critical assessment of the considerations above is in order before proceeding. They have been based on stretching the classical idea that g1⊥ should include some precessional-type contribution. Further, they assume that this contribution is controlled by a parameter relating the Larmor period with some scale limiting the time allowed to the spin to precess (either by damping or by some loss of coherence). By definition, however, g1⊥ accounts for the effects of H⊥ on the relaxation rate [Eq. (14)]; besides, χ3(ω) gives direct access to g|| and g1⊥. Then, one would expect that a pure quantum approach for Γ, including the bath coupling and coherent dynamics (tunnel and precession) could account for the experimental χ3 without recourse to classically preconceived notions.

An exact quantum treatment, unfortunately, is difficult because one must deal with the full density-matrix equation including the intrinsic (Hamiltonian) dynamics plus the effects of the bath (damping and decoherence). However, as this can be handled in various limit cases, we shall attempt a discussion based on the corresponding partial solutions for the quantum Γ, with the hope of shedding some light on the physical origin of the results.

The dominant terms that enter the relaxation rate describing quantum tunneling via a pair of nearly degenerate states |±⟩ has a Lorentzian shape as a function of the longitudinal bias ξm = 2mgµBH|| [40]

$$\Gamma \approx 2 \Gamma_m \frac{\Delta_n^2}{\xi_m + \Delta_n^2 + \hbar^2 \Gamma_m^2} \exp(-U_m/k_BT).$$ \hspace{1cm} (17)

Here Γm is the probability of decaying to other levels via the absorption or emission of phonons (i.e., it is approximately 1/τ0), Δm is the tunnel splitting of the pair |±⟩ induced by terms not commuting with Sz in the Hamiltonian, and U_m is the energy of the levels. The width of the Lorentzian introduced [41], w_m = Δ_m + ℏ^2Γ_m^2, interpolates between the results that can be obtained in the two limit cases of (i) large coupling ℏ/τ0 ≫ Δ_m [22], where w_m ≃ ℏ/τ0, and (ii) weak coupling ℏ/τ0 ≪ Δ_m [22], in which w_m ≃ Δ_m.

Performing the second H⊥-derivative of Eq. (17) gives the corresponding g⊥. For the parameters of Mn12 it results that the main contribution at zero longitudinal bias comes from the derivative of the quotient Δ_m^2/w_m^2

$$g_\perp = \frac{1}{\Gamma_0} \frac{\partial^2 \Gamma}{\partial H_\perp^2} \bigg|_{H_\perp=0} \approx \frac{2}{(\Delta_m/w_m)} \frac{\partial^2}{\partial H_\perp^2} (\Delta_m/w_m).$$ \hspace{1cm} (18)
Now, for large coupling $\hbar/\tau_0 \gg \Delta_m$, we have $w_m = \hbar/\tau_0$. Then the relaxation rate depends on the ratio between τ_0 and the tunneling time \hbar/Δ_m. A transverse field eases the tunneling and significantly increases Δ_m, and hence Γ. As Γ is then quite sensitive to H_\perp, we can have large g_\perp, in analogy with the classical situation. On the contrary, when $\hbar/\tau_0 \ll \Delta_m$, we have $w_m \simeq \Delta_m$ and hence $\Delta_m^2/w_m^2 \simeq 1$. Then the rate becomes quite insensitive to Δ_m (and hence to H_\perp), leading to a small g_\perp.

In Mn$_{12}$, where $\hbar/\tau_0 \sim 0.2$ mK, both situations are possible. The reason is the exponential increase of the tunnel splitting Δ_m with decreasing $|m|$, going from the sub-nanoKelvin regime for the ground levels $m = \pm S$ to some tenths of K for $|m| \lesssim 2$. Therefore, the relation between \hbar/τ_0 and Δ_m depends on which pair $\pm m$ gives the dominant contribution to Γ. If tunneling proceeds via the deep levels, where $\hbar/\tau_0 \gg \Delta_m$, we would find a large g_\perp. In contrast, when tunneling occurs through the excited levels, one has $\hbar/\tau_0 \ll \Delta_m$ and hence small g_\perp.

At this point it is important to bring into the discussion the effect of environmental bias fields (due to intermolecular dipolar interactions or the hyperfine interaction with the nuclear spins of the Mn ions). They produce a distribution of bias ξ whose typical width is of a few tenths of K (of the order of the Curie-Weiss Θ). These bias fields enter as $\Delta_m^2/(\xi_m w_m^2)$ in the rate expression (17), replacing the bare Δ_m^2/w_m^2 and suppressing tunneling when $w_m \ll \xi_m$ (Fig. 1). Taking into account the order of magnitude of ξ_m, the bias effectively blocks tunneling via the large $|m|$ (deep) channels, those that would provide large g_\perp. Tunneling becomes possible only for $\Delta_m > \xi_m$, but for those upper levels $\hbar/\tau_0 \ll \Delta_m$, leading to small g_\perp, in agreement with the experiments.

We can support this picture with direct numerical calculations. An approximate (Pauli) quantum master equation, which works well when tunneling occurs under weak damping conditions and that incorporates the effects of environmental bias fields, was used to study several problems in Mn$_{12}$ [23, 24, 12]. We have implemented it to address the nonlinear response problem, mimicking the experimental protocol and calculating $\chi' \propto \chi''$ vs. H. Results are shown in Fig. 4 (solid line; see also Fig. 3 of Ref. [12]). They account well for the measured nonlinear susceptibility; in particular, for the nearly $\cos^4 \psi$ dependence of χ_3 associated to small g_\perp.

We would like to also provide a physical picture in the limit cases discussed (\hbar/τ_0 much larger or smaller than Δ_m). To this end, let us discuss the total energy of the spin plus the bath, treating their interaction perturbatively. Then, time-dependent perturbation theory leads to the celebrated time-energy “uncertainty” relation. In particular, for $t \geq \hbar/\Delta E$ the dominant transitions are those conserving the total energy. On the other hand, for a spin in a $|m|$ state, which is not an exact eigenstate of the Hamiltonian, the energy uncertainty is of the order of the tunnel splitting Δ_m. Well, consider now a transition to such an $|m|$ state; although the spin could at short times remain there, for times longer than $\tau_\Phi \equiv \hbar/\Delta_m$ it will have to become an energy eigenstate. Then the wavefunction consists of a superposition of spin-up and spin-down states $|\pm m\rangle$, delocalized between both sides of the barrier.

We can now revisit the limit cases discussed above. Consider first the strong-coupling case $\hbar/\tau_0 \gg \Delta_m$. For times shorter than the decay τ_0, the time-energy uncertainty allows the existence of superpositions of energy eigenstates, which can be localized on either side of the barrier ($\sim |\pm m\rangle$). These wavepackets may exhibit Hamiltonian dynamics including tunnel oscillations and precession. Under these conditions the rate Γ is quite sensitive to Δ_m, as it controls the probability for the spin to have tunnelled before a time τ_0. It is this sensitivity to Δ_m, and in turn to H_\perp, which can lead to large g_\perp.

When, by constrast, $\hbar/\tau_0 \ll \Delta_m$ the “semiclassical” wavepacket around $|m\rangle$ delocalizes in the tunneling time $\tau_0 = \hbar/\Delta_m$, evolving towards an energy eigenstate due to the uncertainty principle. Then, there is no coherent oscillation between $|m\rangle$ and $|\mp m\rangle$, neither precession of the (averaged) transverse components, since this is a stationary state. The dependence on Δ_m (and hence on H_\perp) is then minimized, as the wavefunction is already delocalized between the spin-up and spin-down states, leading to small g_\perp values. Note that under these conditions the coherent (precessional) dynamics is not limited by the level lifetime τ_0 but by the much shorter “decoherence” time to attain a diagonal density matrix. Therefore, the τ_{Φ} introduced heuristically above can be identified with this $\tau_{\Phi} = \hbar/\Delta_m$. For $|m| = 2, 4$, we have $\Delta_m \sim 0.7–0.02$ K, which give $\tau_\Phi \sim 10^{-11}–4 \times 10^{-10}$ s. These values are consistent with the estimation, based on $\chi_3(\omega)$, of the τ_{Φ}, required to get $\lambda \sim 0.01$ (which yielded $\tau_{\Phi} \sim 10^{-11} s$) [14].

VI. SUMMARY AND CONCLUSIONS

The single-molecule magnet Mn$_{12}$ is a model system for the study of thermal-equilibrium properties of spins with magnetic anisotropy, as well as the dynamics of a quantum mesoscopic system subjected to the effects of a dissipative environment. In this system, to the rich physics of classical superparamagnets, quantum effects are incorporated. In this article we have investigated experimentally the equilibrium and dynamical nonlinear responses of Mn$_{12}$. The nonlinear susceptibility χ_3 was underexplored in this field in spite of having, when compared to the linear susceptibility, an enhanced sensitivity to several important characteristics of the system.

We have shown the sensitivity of the equilibrium χ_3 to the magnetic anisotropy parameters of the spin Hamiltonian. As in the classical case, the anisotropy leads to an extra temperature dependence of χ_3 that, in contrast to the linear susceptibility, persists for randomly distributed anisotropy axes. Therefore, the measurement
of $\chi_3(T)$ can be exploited to estimate the anisotropy constants even in powdered samples or in systems deposited on surfaces or in porous materials.

The analysis of the dynamical χ_3, with help from a generic but simple formula [Eq. (12)], provides valuable information on the intrinsic dynamics of the system. Specifically, $\chi_3(\omega, \psi)$ gives access to the relaxation-rate field-expansion coefficients g_1 and g_2 [Eq. (14)], which contain information on the mechanisms of spin reversal. The experimental nonlinear response of Mn$_{12}$ is found to be consistent with the established scenario of thermally activated tunnel via excited states. Thus, the strong decrease of the relaxation rate due to the (longitudinal) field-detuning of tunnel levels manifests itself in χ_3 as a distinct quantum contribution, with a sign opposite to the classical case. Then, from the signs of the χ_3 vs. ω peaks one can estimate if quantum effects play a role in the dynamics of the studied nanomagnet. Finally, from the analysis of the angular dependence of $\chi_3(\omega)$ we have estimated a bound for the decoherence time required to attain a diagonal density matrix due to the phonon-bath coupling. The so obtained τ_ϕ is much shorter than the level lifetime τ_0 and is the responsible for a fast loss of coherent dynamics like tunnel oscillations or precession.

Acknowledgments

This work has been funded by projects MAT02 – 0166 and BFM2002 – 00113 from Ministerio de Ciencia y Tecnología and PRONOMAG from Diputación General de Aragón (Spain). RLR acknowledges a grant from Consejo Superior de Investigaciones Científicas.

APPENDIX A: ANALYTICAL EXPRESSIONS FOR VARIOUS QUANTITIES

In this appendix we derive a number of analytical formulas used in the discussions of the main text. First, the equilibrium nonlinear susceptibility of a spin S in the isotropic limit (from the Brillouin magnetization). Then, corrections due to finite magnetic anisotropy to the equilibrium linear and nonlinear susceptibilities in the opposite Ising limit. Finally, we derive the frequency dependent nonlinear susceptibility [22], we also analyze the zeroes, extrema, and signs of the formula for $\chi_3(\omega)$. For simplicity, we omit throughout the appendix unessential constants like N_A, $g\mu_B$, k_B, etc.

1. Equilibrium isotropic susceptibilities from the Brillouin magnetization

For isotropic spins, we can get the equilibrium linear and nonlinear susceptibilities by expanding the Brillouin function around zero field. The isotropic magnetization can be written as $(y = H/T)$

$$M_z = a\cosh (a y) - b\cosh (b y), \quad a = S + \frac{1}{2}, \quad b = \frac{1}{2}.$$

Then, from the first terms of the small x expansion of the hyperbolic cotangent, namely $\cosh(x) \approx 1/x + x/3 - x^3/45$, we get

$$M_z \approx \frac{1}{2} \left(a^2 - b^2 \right) y - \frac{1}{36} \left(a^4 - b^4 \right) y^3 \equiv \chi_T H + \chi_{3T} H^3.$$

Using now $a^2 - b^2 = S(S+1)$ and $a^2 + b^2 = S(S+1) + \frac{1}{2}$, we finally obtain

$$\chi_T = \frac{S(S+1)}{3T}, \quad \chi_{3T} = -\frac{S(S+1)[S(S+1) + \frac{1}{2}]}{45 T^3}.$$ \hspace{1cm} (A1)

The first is the celebrated Curie Law and the latter its sought generalization for the nonlinear response. Note that there is not second order χ_2 since M_z is odd in H.

2. Finite-anisotropy corrections to the equilibrium Ising susceptibilities

Now we go into the corrections due to finite anisotropy to the susceptibilities in the opposite Ising limit. In this regime, for uniaxial anisotropy, only the states $m = \pm S$ are populated at zero field, and each cluster becomes effectively a two-level system. We will consider the effects of finite population of the first excited levels $m = \pm (S-1)$. For simplicity, and to compare with known results in the classical case [32], we assume the simplest form for the magnetic anisotropy $\mathcal{H} = -DS^2$ [cf. Eq. (7)].

We start from the statistical-mechanical expressions for the susceptibilities at zero field [14]:

$$\chi_T = \frac{\langle S_z^2 \rangle}{T}, \quad \chi_{3T} = \frac{\langle S_z^4 \rangle - 3 \langle S_z^2 \rangle^2}{6 T^3}.$$ \hspace{1cm} (A2)

To get the equilibrium averages $\langle S_{\pm}^k \rangle$, we need first the partition function. Including the contributions of the ground states, $m = \pm S$, and first excited states, $m = \pm (S-1)$, we simply have

$$Z = \sum_{m=-S}^S e^{-\epsilon_m/T} \approx 2 \left(e^{-\epsilon_S/T} + e^{-\epsilon_{S-1}/T} \right), \hspace{1cm} (A3)$$

where we have taken into account the zero-field degeneracy $\epsilon_{-m} = \epsilon_m$ (yielding the factor 2). For $\epsilon_m = -Dm^2$ the separation between adjacent levels is $\epsilon_m - \epsilon_{m-1} = -D(2m-1)$. Thus, for the ground-state splitting one has $\epsilon_S - \epsilon_{S-1} = -D(2S-1) = -T_0$, which corresponds to Eq. (5). Then, extracting a factor $e^{-\epsilon_S/T}$ in Z, we find the approximate partition function for our problem

$$Z \approx 2e^{-\sigma(1 + e^{-T_0/T})}, \hspace{1cm} (A4)$$

where we have also introduced the reduced anisotropy barrier $\sigma = DS^2/T$.

Next, we compute the moments \(\langle S_z^k \rangle \propto \sum_m m^k e^{-\varepsilon_m / T} \) required in Eqs. (A2) within the same approximation:

\[
\langle S_z^k \rangle = \frac{1}{2} S^k e^{-\sigma} \left[1 + \left(\frac{S - 1}{S} \right)^k e^{-\Omega_0 / T} \right]. \tag{A5}
\]

We have considered even \(k \), yielding the factor 2; otherwise the moments vanish (as they are computed at \(H = 0 \)). Then, dividing by \(Z \) as given by Eq. (A4), we have

\[
\langle S_z^k \rangle = S^k \frac{1 + (S - 1)^k e^{-\Omega_0 / T}}{1 + e^{-\Omega_0 / T}}. \tag{A6}
\]

Inserting these moments for \(k = 2, 4 \) in Eqs. (A2), we get

\[
\chi_T = S^2 \left(\frac{2}{T} + \frac{(S - 1)}{S} \right) e^{-\Omega_0 / T} T \left(\frac{2}{S} - 1 \right)
\]

\[
\chi_{3T} = \frac{S^4}{6T^3} \left(\frac{1 + (S - 1)}{S} \right) e^{-\Omega_0 / T} - 3 \left(\frac{1 + (S - 1)}{1 + e^{-\Omega_0 / T}} \right)^2 \tag{A7}
\]

which are the desired susceptibilities incorporating the effects of finite population of the first excited levels.

The above results show that the corrections to the Ising limits \(\chi_T = S^2 / T \) and \(\chi_{3T} = -S^4 / 3T^3 \) are functionally exponential. This can be seen more explicitly as follows. Note first that \(\beta \equiv e^{-\Omega_0 / T} \) is a small parameter in the considered approximation (for \(\Omega_0 \approx 15 K \) and \(T \approx 5 K \), we have \(\beta \approx 5 \times 10^{-2} \)). Then, introducing \(f_k \equiv (1 - 1/S) \), the moments can be approximated binomially, \((1 + x)^n = 1 + nx \cdots \), giving \(\langle S_z^k \rangle = (1 + \beta f_k) / (1 + \beta) \approx 1 - \beta (1 - f_k) \). To illustrate \(1 - f_2 = (2S - 1) / 2S \) gives explicitly

\[
\chi_T = \frac{S^2}{T} \left[1 - \frac{(2S - 1)}{S} e^{-\Omega_0 / T} \right], \tag{A7}
\]

and a result structurally similar for \(\chi_{3T} \). These exponential corrections are to be compared with the power law corrections in the classical asymptotic results.

\[
\chi_T \approx \frac{S^2}{T} \left(1 - \frac{1}{\sigma} \right), \quad \chi_{3T} \approx -\frac{S^4}{3T^3} \left(1 - \frac{2}{\sigma} \right). \tag{A8}
\]

Thus, while in the classical case the corrections enter as inverse powers of \(\sigma = DS^2 / T \), for quantum spins they are exponential in \(D / T \), leading to a much faster approach into the Ising regime as the temperature is lowered.

\section{Dynamical nonlinear susceptibilities}

Finally, we proceed to derive Eq. (12) for the frequency dependent nonlinear susceptibility \(\chi_3^{(\omega)} \) used in this work. The ordinary nonlinear susceptibility, denoted here \(\chi_3^{(3\omega)} \), is defined in terms of the third harmonic of the response to an alternating field. For classical spins with uniaxial anisotropy a formula for \(\chi_3^{(3\omega)} \) was derived from a system of low \(T \) balance equations, obtained from Brown Fokker–Planck equation, which reads

\[
\chi_3^{(3\omega)} = -\frac{S^4}{3T^3} \left[\frac{b_1^4}{1 + 3i\omega \tau} - \frac{3i\omega (g_1 b_1^4 + g_2 b_1^2 b_2^2)}{(1 + 1i\omega \tau)(1 + 3i\omega \tau)} \right]. \tag{A8}
\]

Here \(b_1 = H / H = \cos \psi \) and \(b_2 = H / H = \sin \psi \) are the direction cosines of the probing field, while \(g_1 \) and \(g_2 \) are the expansion coefficients of the relaxation rate as given by Eq. (11). \(\Gamma \simeq \Gamma_0 / [1 + (g_1 b_1^2 + g_2 b_1^2) \xi^2] \), with \(\Gamma_0 = \Gamma_{H=0} \) and \(\xi = SH / T \) (these \(g \)'s differ from those of Ref. (37) by a factor 1/2). Accepting the validity of the balance equations for the number of spins pointing up or down, the derivation of Ref. (37) leading to Eq. (A8) is also valid for quantum spins (with uniaxial anisotropy).

An alternative nonlinear susceptibility [10, 11, 14], the one we use in the main text, can be obtained from the first harmonic of the response in the presence of a weak static field \(H \) as \(\chi(\omega, H) = \chi_1(\omega) + 3\chi_3^{(\omega)} H^2 + \ldots \) [cf. Eq. (11)].

Then, \(\chi_3^{(\omega)} \) can be obtained from the first harmonic as

\[
\partial^2 H \chi_3^{(\omega)} = 3! \chi_3^{(3\omega)}. \tag{A9}
\]

Experimentally, as discussed in Sec. 11 one can measure \(\chi \) for several \(H \) and get \(\chi_3^{(\omega)} \) by polynomial fitting. Both \(\chi_3^{(3\omega)} \) and \(\chi_3^{(\omega)} \) coincide in the limit \(\omega \to 0 \) with the thermal equilibrium \(\chi_3^{(T)} \). In addition, as we will see here, they have qualitatively similar dependences on the damping, \(\omega, T, \) angle, etc. However, \(\chi_3^{(\omega)} \) presents the experimental advantage of not requiring high-harmonic detection and processing.

To derive a formula for \(\chi_3^{(\omega)} \) one can proceed as in Ref. (37) using a system of low \(T \) balance equations. Here, however, we shall present a more direct derivation starting from the Debye form for the first harmonic response. Let us write this as \(\chi(\omega, H) = \chi_1 + \Delta \chi / 1 + i \omega \tau \), where \(\Delta \chi = \chi_T - \chi_S \). This one-mode relaxation form is valid in weak enough fields [12, 46, 47], just accounting for the \(H \) dependences of the \(\chi \)'s and \(\tau \). We can take advantage of this to get \(\chi_3^{(\omega)} \) by simple differentiation \(\chi_3^{(\omega)} = \partial^2 H \chi_3^{(\omega)} / 3! \). In addition, in the low temperature regime we approximate the susceptibilities by their Ising limits (this is supported by the experiments of Sec. 11). Consistently, the magnetization is given by \(M_S / S = b_1 \th \xi, \) with \(\xi = \xi \th \xi \). Then, we write the Debye law as

\[
\chi(\omega, H) \simeq \frac{\Delta \chi}{1 + i \omega \tau}, \quad \Delta \chi \simeq \partial H M_z. \tag{A10}
\]

This low \(T \) approximation entails to disregard \(\chi_S \ll \chi_T - \chi_S \) and \(\partial H \chi_S \ll \chi_3^{(T)} \) [32], and corresponds to the 2-state approximation in the balance equations approach [37].

Based on the above considerations we simply write

\[
\chi = \partial H M_z \cdot D, \quad D = \frac{\Gamma}{\Gamma + i \omega} \tag{A11}
\]

in place of Eq. (11).
and proceed to differentiate to get $\chi_3^{(ω)} = \partial^2_H \chi |o/3|$, using eventually $Γ = Γ_0(1 + Q \xi ^2/2)$. To work out the second derivative we use the "binomial" formula $(fg)^n = f^n g + 2f^{n+1}g + f^{n+2}$, which results in

$$\partial^2_H \chi = \partial^2_H M_z \cdot D + 2 \partial^2_H M_z ∂_H D + \partial_H M_z ∂_H D . \ (A12)$$

Now, using the evenness of the rate on H, we have $∂_H Γ|o = 0$, which has two important consequences

$$\partial_0 H D|o = 0 , \quad \partial^2_0 H D|o = \frac{iω \partial^2_H Γ}{(1 + iω)^2} . \ (A13)$$

Then, from $Γ = Γ_0(1 + Q \xi ^2/2)$ and $∂_H = (S/T)∂_ξ$, along with $∂_0 H M_z|o = χ_T$ and $∂^2_0 H M_z|o = 3! γ_3 T r$, we finally obtain

$$χ_3 = \frac{χ_3 T}{1 + iωτ} + \frac{χ_3 T S^2}{T^2} \frac{iωτ Q}{6(1 + iωτ)} . \ (A13)$$

where now $τ = 1/Γ_0$ is the zero-field relaxation time.

To compare with Eq. [15] for $χ_3^{(ω)}$, we recall that $M_z(S/T) = b_∥ th(ξ)|∥$ and use the expansion $θ ξ \sim ξ - 1/2 ξ^3$, whence $∂_H M_z = (S^2/T)(b_∥ - b_⊥ ξ^2)$ and $∂^2_0 H M_z|o = 6(-S^4 b_∥/3T)$. Then, introducing the explicit expression for $Q = g∥ b_∥^2 + g_⊥ b_⊥^2$, we arrive at [cf. Eq. (12)]

$$χ_3^{(ω)} = -\frac{S^4}{3T^3} \left[\frac{b_∥^4}{1 + iωτ} - \frac{iωτ}{2(1 + iωτ)} \left(g∥ b_∥^4 + g_⊥ b_⊥^2 b_∥^2 \right) \right] . \ (A14)$$

This result is generic and valid for classical and quantum spins, inasmuch as the starting Debye $χ$ provides an adequate description. In general, $g∥$ and $g_⊥$ will not be given by the classical result [13], but they incorporate quantum contributions to the relaxation rate.

The expression derived for $χ_3^{(ω)}$ shows a close structural analogy with that for the third harmonic nonlinear susceptibility [cf. Eq. (A14) with (A3)]. Indeed, we have kept the factor $(1 + iωτ)^2$ without squaring in Eq. (A14) to enhance the analogy; replacing $ωτ \rightarrow 3ωτ$ both quantities exhibit almost the same frequency dependence. Comparison of Eq. (A14) with (A3) also reveals similar dependences on T, $g∥$ and $g_⊥$, as well as on the angle $ψ$.

This supports our repeated claim about the analogous qualitative dependences of $χ_3^{(ω)}$ and $χ_3^{(ω)}$, and, in turn, our choice of the first harmonic response on the basis of its experimental convenience.

We conclude this appendix finding extrema and zeroes of $χ_3(ω)$. This will help to explore having an analytical expression for the nonlinear susceptibility when analyzing experiments. First we normalize Eq. (A14) by the equilibrium value $\tilde{χ}_3 = \chi_3^{(ω)}/\chi_3 T$:

$$\tilde{χ}_3 = \frac{1}{1 + iω} - \frac{Q}{2(1 + iω)^2} , \quad x = ωτ , \quad (A15)$$

where $Q = Q/b_∥^2 = g∥ + g_⊥ (b_⊥/b_∥)^2$. Multiplying now by the conjugate denominators we readily separate the real and imaginary parts

$$χ_3′ = \frac{1}{1 + x^2} - \frac{Q x^2}{(1 + x^2)^2} , \quad -χ_3'' = \frac{x}{1 + x^2} + \frac{Q x(1 - x^2)}{(1 + x^2)^2} . \ (A16)$$

Let us first compute where the imaginary part crosses the $ωτ$ axis (see Fig. 4 bottom panel). To find this requires to solve $x(1 + x^2) + (Q/2)x(1 - x^2) = 0$. Apart from $x = 0$, one finds the following zero:

$$x_2 = \frac{Q + 2}{Q - 2} , \quad |Q| ≫ 1 \quad x_2 ∼ 1 + \frac{2}{Q} . \ (A16)$$

To get the large Q approximation we have used the binomial formula $(1 + x)^n = 1 + α x · · ·$ (twice to work the denominator and then to take the square root). Well, note that for $|Q| < 2$ one has $x_2 < 0$ and hence the imaginary part does not cross the x axis. However, when one finds the crossing, the following criterion holds: if $x_2 > 0$, then $Q > 0$, whereas for $x_2 < 1$, one has $Q < 0$. Thus, inspection of the crossing of the $ωτ$ axis (below or above $ωτ = 1$), could provide information on the classical or quantum character of the spin-reversal dynamics.

Let us now find the extrema x_m of the real part $\tilde{χ}_3′$. Writing $\tilde{χ}_3′ = [1 + (1 - Q) x^2]/[1 + x^2]^2$, one sees that $d\tilde{χ}_3′/dx = 0$ implies $-(1 + Q) + (1 - Q) x^2 = 0$, whence

$$x_m = \frac{Q + 1}{Q - 1} , \quad |Q| ≫ 1 \quad x_m ∼ 1 + \frac{1}{Q} . \ (A17)$$

There is a maximum, or minimum, when $|Q| > 1$: in such case, $x_m > 1$ entails $Q > 0$, whereas $x_m < 1$ yields $Q < 0$. We conclude giving the value of $\tilde{χ}_3′$ at its extremum

$$\tilde{χ}_3′(x_m) = -\frac{(Q - 1)^2}{4Q} , \quad |Q| ≫ 1 \quad \tilde{χ}_3′(x_m) ∼ -\frac{Q}{4} . \ (A18)$$

which is the result used in Sec. [15] to get $g∥$ from the maximum of $\tilde{χ}_3′$ at $ψ = 0$ (then $Q = g∥$). Note finally that the signs of the $\tilde{χ}_3′$ peak and of Q are always opposite, which can help ascertaining the quantum contribution to the nonlinear dynamics.

[1] Q. A. Pankhurst and R. J. Pollard, J. Phys.: Condens. Matter 5, 3847 (1993).
[2] W. F. Brown, Jr., Phys. Rev. 360, 1677 (1963).
[3] These are described by the stochastic Landau-Lifshitz equation or its Fokker-Planck counterpart for the probability distribution of spin orientations [3].
[4] F. Hartmann-Boutron, P. Politi, and J. Villain, Int. J. Mod. Phys. B 10, 2577 (1996).
[5] W. H. Zurek, Phys. Today 44, No. 10, 36 (1991).
[6] A. J. Leggett, J. Phys.: Condens. Matter 14, R415 (2002).
[7] U. Weiss, Quantum Dissipative Systems (World Scientific, Singapore, 1993).
[8] S. J. Blundell and F. L. Pratt, J. Phys.: Condens. Matter 16, R771 (2004).
[9] N. Hegman, L. F. Kiss, and T. Kemény, J. Phys.: Condens. Matter 6, L427 (1994).
[10] A. Würger, J. Phys.: Condens. Matter 10, 3665 (1998).
[11] P. Schiffer, A. P. Ramirez, D. A. Huse, P. L. Gammel, U. Yaron, D. J. Bishop, and A. J. Valentino, Phys. Rev. Lett. 74, 2379 (1995).
[12] J. L. García-Palacios and P. Svedlindh, Phys. Rev. Lett. 92, 067202 (2004), and ref. [40] and W. Wernsdorfer, R. Sessoli, and D. Gatteschi, Europhys. Lett. 47, 254 (1999). Therefore, the decoherence mechanism considered here is probably giving the dominant contribution.
[13] J. R. Friedman, M. P. Sarachik, and R. Ziolo, Phys. Rev. B 58, R14729 (1998).
[14] For the classical calculations, we use the simplest uniaxial anisotropy $H = -D S_z^2$ but with a barrier $U = 70 K$, equal to that provided by Hamiltonian \mathcal{H}.
[15] J. L. García-Palacios and D. A. Garanin, Phys. Rev. B 70, 064415 (2004).
[16] D. A. Garanin, E. C. Kennedy, D. S. F. Crothers, and W. T. Coffey, Phys. Rev. E 60, 6499 (1999).
[17] J. F. Fernández, M. P. Sarachik, and R. Ziolo, Phys. Rev. Lett. 92, 107201 (2004).
[18] See, for instance, H. Mamiya, I. Nakatani, and T. Furubayashi, Phys. Rev. Lett. 88, 067202 (2002), and references therein.
[19] J. F. Fernández, F. Luis, and J. Bartolomé, Adv. Chem. Phys. 112, 1527 (2003).
[20] For the relaxation rate Γ should be invariant upon field inversion, leading to the absence of odd powers in the field expansion (11); the invariance of Γ upon field reflection through the barrier plane yields the vanishing of a mixed term $\propto S_x S_z$, but with a barrier $U = 70 K$, equal to that provided by Hamiltonian \mathcal{H}.
[21] J. R. Friedman, M. P. Sarachik, and R. Ziolo, Phys. Rev. Lett. 80, 5659 (1998).
[22] J. J. Hubbard, Phys. Rev. 176, 112 (1968).
[23] A. Würger, J. Phys.: Condens. Matter 10, 5077 (1998).
[24] T. Lis, Acta Crystallogr. Sect. B 36, 2042 (1980).
[25] The large constant χ' at high ω does not reveal a large χ_S but it corresponds to the χ_T of a minority fraction of clusters with different magnetic parameters (lower D) due to thermodynamic defects. For a discussion on the nature of these defects see, for instance, Z. Sun, D. Ruiz, N. R. Dilley, M. Soler, J. Ribas, K. Folting, B. Maple, G. Christou, and D. N. Hendrickson, Chem. Commun. (Cambridge) 19, 1973 (1999).
[26] D. Zueco and J. L. García-Palacios (unpublished). Submitted to Phys. Rev. B, cond-mat/0509627.