Effects of functional correction training on injury risk of athletes: A systematic review and meta-analysis

Junxia Chen Corresp. 1, Chunhe Zhang 1, Sheng Chen 1, Yuhua Zhao 1

1 Physical Education College of Hubei University, Hubei University, Wuhan, Hubei Province, China

Corresponding Author: Junxia Chen
Email address: 775100275@qq.com

Background We explored functional correction training using the Functional Movement Screen (FMS™) tool. We also analyzed the effects of training on the injuries of athletes in a systematic review and meta-analysis of non-randomized clinical trials.

Methodology We collected twenty-four articles from PubMed, CENTRAL, Scopus, ProQuest, Web of Science, EBSCOhost, SPORTDiscus, Embase, WanFang, and CNKI that were published between January 1997 to September 2020. Articles were selected based on the following inclusion criteria: randomized and non-randomized controlled trials, studies with functional correction training screened by FMS™ as the independent variable, and studies with injury risk to the athlete as the dependent variable. Data conditions included the sample size, mean, standard deviation, total FMS™ scores, number of injuries, and asymmetry movement patterns after interventions in the experimental and control groups. Exclusion criteria included: conference abstracts, cross-sectional studies, articles with retrospective study design.

Results Twelve non-randomized trials were included in the meta-analysis. The injury risk ratio of athletes after functional correction training was 0.39 RR (95% confidence interval [CI], 0.24–0.65; Z=-3.57; P=0.0003; I²=0.0%). Functional correction training was found to reduce injury risk by 60% in the experimental groups when compared with the control groups. Functional correction training improved the total FMS™ scores of athletes by 1.72 MD (95% CI, 1.50–1.93; Z=15.53; P<0.0001; I² =2.6%), indicating an improvement of athletes’ functional patterns.

Conclusion Grade B evidence indicates that functional correction training based on FMS™ may improve the functional patterns of athletes and Grade D evidence indicates that it may reduce the risk of sports injury. However, the true effect is likely to be different from the estimate of the effect. Therefore, further studies are needed to explore the influence of functional correction training on the injury risks of athletes. Protocol registration: CRD42019145287.
Effects of Functional Correction Training on Injury Risk of Athletes: A Systematic Review and Meta-analysis

Junxia Chen¹, Chunhe Zhang², Sheng Chen³, Yuhua Zhao⁴

¹,²,³,⁴ Physical Education College of Hubei University.

Corresponding Author:

Junxia Chen¹

Physical Education College of Hubei University.

Email address: 775100275@qq.com
Abstract

Background

We explored functional correction training using the Functional Movement Screen (FMS™) tool. We also analyzed the effects of training on the injuries of athletes in a systematic review and meta-analysis of non-randomized clinical trials.

Methodology

We collected twenty-four articles from PubMed, CENTRAL, Scopus, ProQuest, Web of Science, EBSCOhost, SPORTDiscus, Embase, WanFang, and CNKI that were published between January 1997 to September 2020. Articles were selected based on the following inclusion criteria: randomized and non-randomized controlled trials, studies with functional correction training screened by FMS™ as the independent variable, and studies with injury risk to the athlete as the dependent variable. Data conditions included the sample size, mean, standard deviation, total FMS™ scores, number of injuries, and asymmetry movement patterns after interventions in the experimental and control groups. Exclusion criteria included: conference abstracts, cross-sectional studies, articles with retrospective study design.

Results

Twelve non-randomized trials were included in the meta-analysis. The injury risk ratio of athletes after functional correction training was 0.39 RR (95% confidence interval [CI], 0.24–0.65; Z=-3.57; P=0.0003; I²=0.0%). Functional correction training was found to reduce injury risk by 60% in the experimental groups when compared with the control groups. Functional correction training improved the total FMS™ scores of athletes by 1.72 MD (95% CI, 1.50–1.93);
Z=15.53; P<0.0001; I² =2.6%), indicating an improvement of athletes’ functional patterns.

Conclusion

Grade B evidence indicates that functional correction training based on FMS™ may improve the functional patterns of athletes and Grade D evidence indicates that it may reduce the risk of sports injury. However, the true effect is likely to be different from the estimate of the effect. Therefore, further studies are needed to explore the influence of functional correction training on the injury risks of athletes.

Protocol registration: CRD42019145287.
Introduction

The mechanisms of sports injuries in athletes are complex and multifactorial with many potential risk factors for increasing the risk of injury. FMS™ is used to evaluate the basic sports patterns of athletes and to screen potential risk factors for injury. It comprises seven basic movements: active straight leg raise, shoulder mobility, trunk stability push-up, trunk rotary stability, in-line lunge, hurdle step and deep squat. Each movement is scored on a scale of 1–3 for a total score of 21 points (Cook, Burton & Hoogenboom, 2006a; Cook, Burton, & Hoogenboom, 2006b). FMS™ assists in program design by systematically using corrective exercises to normalize or improve fundamental movement patterns (Cook, et al., 2011; Cook, et al., 2014a,b). An earlier study reported that injury prevention and performance enhancement programs should consider including FMS™ or a similar movement screening tool and their associated exercises to normalize dysfunctional movement with the goal of injury reduction and performance improvement (Kiesel, et al., 2011). Therefore, it is important to evaluate the relationship between functional correction training after FMS™ of athletes and sports injuries.

Functional correction training after FMS™ has shown inconsistent results when reported in other populations, including a randomized controlled trial of patients undergoing anterior cruciate ligament reconstruction in whom a set of gradually progressive functional corrective training exercises may significantly improve the function and movement of the knee joint (Chao et al., 2018). Several non-randomized controlled trials of firefighters have shown that personalized corrective exercises can improve FMS™ scores (Basar, 2017; Jafari, Zolaktaf & Ghasemi, 2019). A series of studies by Frost et al. (2012, 2015a, 2015b, 2015c) reported that the
effectiveness of FMS™ training requires the consideration of various factors, such as the number and type of participants, the scoring method (paper or video), the feedback provided during the test, and supervision by a coach. FMS™ may not be a viable tool to assess movement behaviors regardless of whether it is graded qualitatively using composite or task scores or quantitatively via kinematic analyses (Frost et al. 2017; David J. Cornell, 2016) and the effect of functional correction training on firefighters after FMS™ was unclear.

Several non-randomized controlled studies of the functional correction training of athletes (Kiesel et al., 2011, 2014; Bayati et al., 2019; Campa et al., 2018; Reila et al., 2019; Kovac et al., 2018) have reported that it may improve their FMS™ scores as well as reduce asymmetry in functional patterns. Additional studies (Xuhua et al., 2015; Dinc et al., 2017; Hui et al., 2019) have reported that athletes had significantly improved FMS™ scores and reduced sports injuries. The training of athletes' functional correction after FMS™ may have been effective. However, these findings must be verified since the studies included small sample sizes, some had no control group, and they lacked a strict randomized control design.

The summarized results of systematic reviews and meta-analyses of the total FMS™ score of a mixed population to predict the sports injury risk are contradictory and they do not support the predictive validity of FMS™ (Dorrel et al., 2015; Moran et al., 2017). However, other studies have reported that participants with composite scores equal to or less than 14 had a significantly higher likelihood of an injury compared to those with higher scores (Bonazza et al., 2016). Individuals classified as high risk by FMS™ are 51% more likely to be injured than those classified as having a low risk (Bunn, Rodrigues & Bezerra da Silva, 2019). Two studies
pertaining to FMS™ and sports injuries of athletes considered the total scores and asymmetry of
the FMS™ to be more useful for evaluating the injury risk of older athletes (Moore et al., 2019).
Another review reported that the relationship between the FMS™ score and injury is unclear as
the heterogeneity of the study populations (type of athletes, age, and sport exposure) and the
definition of injury used in the studies made it difficult to draw definitive conclusions (Manuel et
al., 2019). Therefore, there is no clear conclusion about the relationship between FMS™ and
sports injuries.
Some reviews that analyzed the effects of functional correction training reported that the
plan was effective and improved the limitations of exercise patterns (Lindsay et al., 2015, Kraus
et al., 2014). There is currently no meta-analysis or systematic review of this topic, and
establishing the impact of functional correction training on sports injuries of athletes is a
challenging and important task. We sought to explore the impact of functional correction training
after FMS™ screening on the injury risk of athletes and to determine whether functional
correction training after FMS™ screening could increase total FMS™ scores and reduce the
incidence of asymmetry in movement patterns of athletes. We hypothesize that functional
correction training after FMS™ may reduce the sports injury risk in athletes.

Materials and Methods

Agreement and registration
The systematic review and meta-analysis were performed in accordance with the preferred
reporting items for systematic reviews and meta-analyses. We followed the Cochrane
Collaboration Handbook while conducting our research (DerSimonian & Kacker, 2007; Moher, Liberati, Tetzlaff, & Altman, 2009). This systematic review does not include individual patient data; therefore, ethical approval was not required. The research was registered in PROSPERO (Registration no. CRD42019145287).

130 Inclusion and exclusion criteria

131 Participants: Adolescent and adult athletes; males and females.

132 Interventions: After initial FMS scores were obtained, athletes were prescribed an individualized FMS-score-based training program designed to correct the identified movement deficits. The training program included self-administered trigger point treatments, self and partner stretching of major muscle groups, and strength and stability exercises. The intervention plans were conventional training and functional correction training.

134 Comparator: Studies were required to have a comparator group that performed conventional training only.

136 Outcomes: Data indicators were sample size, mean, standard deviation, total FMS™ scores, number of athletes with sports injuries, and functional pattern asymmetry after intervention of the experimental and control groups.

138 Types of studies to be included: Randomized and non-randomized controlled trials were included.

140 Exclusion criteria: Conference abstracts, cross-sectional studies, and retrospective studies were excluded.

142 Article sources, retrieval, and selection
Two authors (S Chen) and (Y Zhao) independently searched the literature. Disagreements over the validity of the findings were solved through consensus and by discussion with a reference author (C Zhang). Ten electronic databases including PubMed, CENTRAL, Scopus, ProQuest, Web of Science, EBSCOhost, SPORTDiscus, Embase, Wanfang, and CNKI were searched for full texts published between January 1997 and September 2020. The following search terms and MeSH terms were used: functional movement screen OR fms* OR functional movement screen* AND injury* OR injury prediction OR injury risk OR injury prevention screening OR athletic injuries [MeSH] AND functional training OR functional correction training OR corrective exercise training AND sport* OR athlete*OR player. Articles written in Chinese were limited to full text. The Chinese version of key words “FMS™, functional training and athletes” were also used. Additionally, the references of the selected articles were searched manually to obtain other potentially related studies. Table 1 shows the systematic search strategy.

Data extraction and collection procedure

All duplicates were removed before our two investigators (S Chen, Y Zhao) independently screened the titles and abstracts for eligibility. Two investigators independently assessed the full text of the remaining articles for eligibility. The resulting differences were resolved by a reference author (C Zhang). Results provided by each investigator were compared after each stage, and any discrepancies were resolved by discussion. The following data were extracted from the original reports: authors, year, and publication; country; sample characteristics (sample...
size, age, and sex); functional correction training program; conventional training program; and main results (average values and standard deviations), including total FMS™ scores, number of athletes with sports injuries, and functional movement asymmetry after intervention in the experimental group and the control group.

We defined musculoskeletal injuries as sports injuries and they were considered the main outcome as to whether our intervention test reduced the risk of sports injuries. Other additional outcomes were total FMS™ score and functional movement asymmetry. Of these, bilateral muscle function asymmetries through FMS™ were defined as functional movement asymmetry of the six basic movements: active straight leg raise, shoulder mobility, trunk rotary stability, in-line lunge, hurdle step and deep squat.

Quality evaluation

The risk of bias in non-randomized studies was assessed in a manner similar to that used for randomized trials as recommended by the Cochrane Collaboration Handbook for bias assessment of non-randomized studies (Higgins & Green, 2011). Two researchers were asked to independently evaluate the quality of articles according to 11 factors of the PEDro quality score scales (PEDro, https://www.pedro.org.au). The Spearman rank correlation coefficient was calculated to determine inter-rater reliability of the two researchers (Spearman’s rho = 0.779), and a strong level of agreement was found.

The systematic error of 15 articles was assessed using Cochrane’s risk of bias tool (RevMan; Review Manager, 2020). The same researchers independently scored each trial for the risk of
bias. In the case of disagreement, a third researcher assessed the questionable item, and agreement was sought by consensus. Each study was graded for the following domains: random sequence generation, allocation concealment, blinding of participants and personnel, blinding of outcome assessment, incomplete outcome data, selective reporting, and other bias. Each domain was rated as having a low or high risk of bias. In the case of insufficient reported information or information with a questionable interpretation that was unclear, the risk of bias for this item was rated as unclear.

Effect index and data aggregation method

Meta-analyses were performed with R 3.3.2. The random effects method or the fixed-effects method was used depending on the heterogeneity (DerSimonian & Kacker, 2007). The risk ratio (RR) was used to combine the athletes’ sports injuries and asymmetry of functional patterns after intervention. The mean difference (MD) was used to combine the athletes’ total FMS™ scores. A 95% confidence interval (CI) was also used. The effect sizes of the results were evaluated as follows: large effect size, >0.8; medium effect size, 0.5–0.79; and small effect size, 0.00–0.49 (Higgins and Green, 2011). The heterogeneity of results across studies was evaluated using the I² statistic as follows: may not be important, 0–40%; moderate heterogeneity, 30–60%; substantial heterogeneity, 50–90%; and considerable heterogeneity, 75–100% (Higgins & Thompson, 2002). Additionally, the adopted significance level was P ≤ 0.05. The publication bias was tested using Egger’s linear regression (Sterne, Egger & Smith, 2001). Finally, a sensitivity analysis was performed by eliminating the research literature item-by-item and calculating the combined
value of the remaining literature to determine if the results changed.

Level of evidence

The quality of the evidence associated with the meta-analysis results was assessed using the Grading of Recommendations Assessment, Development and Evaluation approach (GRADE) (Guyatt et al., 2011a; Guyatt et al., 2011b; Guyatt et al., 2011c; Guyatt, Oxman & Montori et al., 2011d; GRADEpro GDT, 2020).

Results

Study selection

We excluded 594 of the 696 articles identified in the initial literature search. Further screening was conducted according to the aforementioned inclusion criteria and quality assessments. Discrepancies were resolved through third-party mediation. Twenty-four articles met the inclusion criteria and included in the systematic review and 12 were selected for this meta-analysis. None of the included studies were a randomized controlled trial. Figure 1 shows the systematic search strategy and selection process.

Study characteristics

The study included a total of 538 participants; 258 were included in the experimental group and 280 in the control group. Detailed information regarding the training status is shown in Table 2, 3 and 4. The age of the participants ranged from 9.6 to 26.5 years; the average ages of the
The experimental group and control group were 18.56 ± 4.17 years and 19.04 ± 4.92 years, respectively. The shortest experiment time was 6 weeks and the longest was 20 weeks. The average experiment time was 9.33 ± 4.32 weeks. The shortest intervention frequency was twice per week, and the maximum was six times per week. The average intervention frequency was 3.42 ± 1.39 times per week. Finally, the shortest duration of each session was 15 minutes, the longest was 60 minutes, and the average was 36.36 ± 16.75 minutes.

The included studies were published between January 1997 and September 2020. The sports included for research were baseball (Song et al., 2014), table tennis (Kangkang et al., 2016), volleyball (Xuhua et al., 2015), free kicking (Bodden, Needham & Chockalingam, 2015), basketball (Klusemann et al., 2012; Hui and Baoai, 2019), soccer (Dinc et al., 2017; Campa, Spiga & Toselli, 2018; Riela & Bertollo, 2019; Schneider et al., 2019), tennis (Yildiz, Pinar & Gelen, 2019), netball (Kovac, 2018), and wrestling (Bayati et al., 2019). Three studies were not included in the meta-analysis for the following reasons: one was missing data regarding the total FMS™ scores and sports injury but included data regarding the strength and flexibility of the athletes (Song et al., 2014), and two studies had single-group sample sizes fewer than 10 people and very low quality assessment scores (the PEDro quality scale score for physical therapy was only 4 points) (Kim et al., 2014; Armstrong et al., 2019). Furthermore, some studies used a single-group pre-test design method to perform functional correction training for athletes and found that they had a positive impact on the FMS™ scores, asymmetric events, and sports injuries (Kiesel, et al., 2011; Jim et al., 2015; Toma et al., 2017; Ali et al., 2019; Brende et al.,
These studies did not meet the inclusion criteria and were excluded from this report.

The standard function correction program, first classified according to the screening results, and then from basic flexibility to basic stability, and finally retraining the action mode. This procedure includes self-managed trigger point therapy; self-based and partner-based stretching exercises for the major muscle groups; and strength, stability, and flexibility exercises. It uses elastic bands, medicine balls, and foam rollers. In 12 studies, after FMS™ screening, the researchers developed a functional correction training program (including personalized correction training) as an intervention. Some of these studies used mixed interventions, including strength, stability, and jumping (including functional training) of the upper and lower limbs with bare hands or instruments and the Wrestling+ warm-up program (similar functional correction training) (Klusemann et al., 2012; Bayati et al., 2019). One study did not report whether the intervention plan was supervised by coaches or researchers (Dinc et al., 2017). Two studies (Dinc et al., 2017 and Bayati et al., 2019) did not provide any FMS™ assessor qualification information or reliability tests. All experimental groups performed functional correction and conventional training or warm-up activities, and the control groups performed either conventional training or warm-up activities. Two non-randomized trials (Xuhua et al., 2015; Hui et al., 2019) used scoring thresholds to divide the subjects into a high-risk group (total FMS™ score ≤14) and low-risk group (total FMS™ score ≥14) prior to the test and interventions (Kiesel, Plisky & Voight, 2007). Our report includes four trials.

The numbers of athletes in the experimental and control groups with sports injuries and pattern
270 asymmetry during the intervention period were reported after FMS™ (Xuhua et al., 2015; Hui &
271 Baoai, 2019; Dinc et al., 2017; Bodden et al., 2015; Campa et al., 2018; Kangkang et al., 2016).
272 Dinc et al. (2017) did not report the number of athletes with sports injuries; instead, a selection
273 of injuries causing an inability to perform athletic activities for more than three weeks was
274 reported.
275
276 Research bias
277 The risk of bias was analyzed and a high risk of bias was associated with blinding
278 procedures (Figures 2 and 3). Participant blinding was only described in one study (Campa et al.,
279 2018). Four studies included random grouping; however, they did not provide any specific
280 methods. Blinding of the outcome assessors was performed in two studies (Campa et al., 2018;
281 Riela & Bertollo, 2019). The outcome evaluators of the other four studies were not blinded, as
282 repeated measurement reliability, inter-rater reliability, and high-precision professional
283 electronic instruments were used to record data (Song et al., 2014; Kim et al., 2014; Klusemann
284 et al., 2012; Yildiz, Pinar & Gelen, 2019). The selection bias ratings remained unclear due to
285 either insufficient or unclear information. A low risk of bias attributable to the blinding of
286 outcome assessment, reporting, and other bias was observed throughout the studies.
287 We used the PEDro physical therapy quality scale to evaluate article quality and the primary
288 difference between randomized and non-randomized trials (Table 5). Some studies included
289 athletes who were randomly divided into groups in a blinded manner (Bobben et al., 2015;
290 Kovac et al., 2018; Campa et al., 2018; Riela & Bertollo, 2019). Some studies did not conduct
random grouping of athletes, therefore, there was no score for this item. In some studies, the coaches, raters, and participants were not blinded, therefore, scores were not obtained for questions related to those items. Among the 15 studies, the average score was 5.5 with an overall quality of the literature of average.

Result integration

We verified the effects of functional correction training on sports injuries of athletes based on the sports injury RR, total FMS™ score, and functional pattern asymmetry. There was no heterogeneity in the hazard ratio of the influence of functional correction training on athletes’ sports injuries (RR, 0.39; 95% CI, 0.24–0.65; Z=-3.57; P=0.0003; I²=0.0%) (Figure 4); therefore, the fixed-effects model was used to combine the effect sizes. The incidence of sports injuries in the experimental group was lower than that of the control group, and the injury risk in the experimental group decreased by 60%.

The effect sizes were combined to measure the influence of functional correction training on the total FMS™ scores (MD, 1.72; 95% CI, 1.50–1.93; Z=15.53; P<0.0001; I²=2.6%) (Figure 5). As there was low heterogeneity, the fixed-effects model was used to combine the effect sizes. All results had large effect sizes with significant differences as compared with those of the control group and the functional patterns of athletes were optimized according to Cohen’s interpretation standard.

The hazard ratio of the influence of functional correction training on the pattern of asymmetry of athletes showed large heterogeneity (RR, 0.45; 95% CI, 0.13–1.50; Z=-1.3;
Therefore, the random effects model was used to combine the effects and no significant difference was observed when compared with the control group. One study considered that the age of the athlete may explain heterogeneity in the prospective prediction of injury risk by FMS™ (Moore et al., 2019) and reported that asymmetry determined by FMS™ is more useful for evaluating the injury risk of senior athletes. Another study included soccer players aged 15.89 ± 0.53 years (Campa et al. 2018), and two studies included adult-free combat athletes (Bodden et al., 2015) and a national table tennis team (Kangkang et al., 2016). The incidence rates of model asymmetry for adults were lower than that of the younger soccer players. Therefore, our research results are in line with their results. However, a subgroup analysis to determine the source of heterogeneity was impossible as only three cases were included in the sample. Additionally, the total FMS™ score was not necessarily improved, and a score of 21 was not the goal. Instead, the focus was the identification of asymmetries (Cook et al., 2014b). Further studies are needed to explore the influence of functional correction training on the model asymmetry of athletes.

Publication bias and sensitivity analysis

The publication bias associated with the influence of functional correction training on athletes’ total FMS™ scores was not significant (Egger’s linear regression, t=-0.096; df=11; P=0.92>0.05) (Figure S1). The sensitivity analysis indicated that the hazard ratios for athletic injuries and total FMS™ scores after functional correction training were consistent with those without stratification, with very robust results (Figures S2, S3, and S4).
analysis of athletes’ asymmetry were slightly different than those before stratification and were not sufficiently stable.

Level of evidence

The included studies were non-randomized controlled trials, and the level of evidence using GRADE instruments was low (Tables 6 and 7). Altogether, these studies provided a very low level of evidence of the injury risk ratio and asymmetry model of the athlete. The other prevalent outcome showed a moderate level of evidence of athletes’ total FMS™ scores.

Discussion

Our review explored the influence of functional correction training based on FMS™ on the sports injury risk of athletes. The results showed that the injury risk of the experimental group was reduced by 60% after functional correction training, the effect on the total scores of FMS™ was large, and significantly different from that of the control group. Results of the sensitivity analysis were very robust, and the possibility of publication bias influencing the athletes’ total FMS™ scores was very low.

A previous review had no consistent conclusion regarding the total FMS™ score and the risk of subsequent injuries for athletes and mixed populations (Dorrel et al., 2015; Moran et al., 2017; Bonazza et al., 2016; Bunn et al., 2019; Moore et al., 2019). This review summarized the functional correction training after FMS™ with the RR for athletes’ injuries, total FMS™ scores, and asymmetry. We provided standardized evidence and clarified that functional correction
training after FMS™ can effectively enhance the functional patterns of athletes.

The positive effects of functional correction training after FMS™ on sports injuries may be due to several factors. First, using FMS™, athletes may discover weaknesses and perform corrections by focusing on their trunk pillar strength, joint flexibility, and joint stability to ensure effectiveness. Second, intervention training includes myofascial therapy, dynamic stretching, core stability training, resistance strength training, and combined neuromuscular training. This may improve the imbalance of the muscle groups and the energy transmission effect of the body’s kinetic chain (Cook et al., 2011; Cook et al., 2014a; Cook et al., 2014b). Third, functional correction training includes core stability exercises. Enhancing core stability through exercise is common to musculoskeletal injury prevention programs. Core stabilization relies on instantaneous integration among passive, active, and neural control subsystems. Neuromuscular control is critical in coordinating this complex system for dynamic stabilization (Huxel Bliven KC et al., 2013). Fourth, these interventions aim to stimulate the activation of the muscles of the natural nucleus to improve the relationship between the main muscular function and the fundamental movement (Cook & Fields, 1997; Kiesel et al., 2011). Additionally, an 8-week program with the foam roll has been reported as effective in increasing range of motion in the stand and reach test (Junker D et al., 2011). The theory that functional correction training programs should consist of functional movements related with core stability and shoulder and hamstring flexibility improvement is supported by a study that reported improved strength and flexibility in 62 elite male high school baseball players after participating in a correction training program (Song et al., 2014). Therefore, functional correction training may effectively reduce the
risk of sports injury.

This was the first study to evaluate the impact of functional correction training after FMS™ on athletes’ sports injury risk by including non-randomized controlled trials. Grade B evidence indicates that functional correction training based on FMS™ could improve athletes’ functional patterns and Grade D evidence indicates that functional correction training may reduce the risk of sports injuries in athletes. The evidence found in this review is reliable and significant for evidence-based clinical practice.

Strengths and limitations

Our review had some limitations. First, some relevant literature may have been overlooked despite a search of ten online databases. Second, the methodological limitations of this review include the small sample sizes evaluated within the retained studies, no differentiation among sports, allocation concealment, and evaluator blindness, which may have resulted in an overestimation of the effects of the intervention. Third, because the sample sizes used to determine the sports injury risk and model asymmetry were fewer than 10, the publication bias test was not completed. Fourth, some studies did not define whether the coaches supervised or corrected the training quality or whether joint intervention was used. Fifth, FMS™ was limited by its inability to test a single construct from a composite set of scores. The total FMS™ score of our study was only used to show whether the functional model could be improved. Thus, our findings should be carefully interpreted.
Conclusions

Grade B evidence indicates that functional correction training based on FMS™ could improve the functional patterns of athletes, and Grade D evidence indicates that it may reduce the risk of sports injury. The true effect is likely to be different from the estimate of effect. Therefore, further studies are needed to explore the influence of functional correction training on the injury risks of athletes.

Acknowledgements

We would like to thank Professors Li Shuping, Huang Zhijian, and Yu Lianghua for their guidance and suggestions in the process of writing the paper. We would also like to thank Editage for their editing work for this article.

References

Akan Bayrakdar, Hilal Kılin, Boz. 2020. The effect of functional movement screen and lower extremity training on hamstring/quadriceps ratio in football players. *Physical education of students*. 2: 80-85. DOI:10.15561/20755279.2020.0202

Armstrong K, McDevitt B, Baumann K, O’Reilly L, Ramos Y, Reyes C. 2019. Movement capability changes in collegiate basketball players following a corrective exercise programme. https://digitalcommons.linfield.edu/cgi/viewcontent.cgi?article=1431&context=symposium

Baron J, Bieniec A, Swinarew AS, Gabryś T, Stanula A. 2019. Effect of 12-week functional training intervention on the speed of young footballers. *International Journal of*
Bayati R, Shamsi Majelan A, Mirzaei B, Barbas I. 2019. The effect of 12 weeks of wrestling+ warm-up program on functional movement screen scores in cadet wrestlers. *Annals of Applied Sport Science* 7: 39-47. DOI: 10.29252/aassjournal.7.1.39

Bodden JG, Needham RA, Chockalingam N. 2015. The effect of an intervention program on functional movement screen test scores in mixed martial arts athletes. *The Journal of Strength & Conditioning Research* 29:219-225. DOI: 10.1519/JSC.0b013e3182a480bf

Bonazza NA, Smuin D, Onks CA, Silvis ML, Dhawan A. 2017. Reliability, validity, and injury predictive value of the functional movement screen: a systematic review and meta-analysis. *The American Journal of Sports Medicine* 45:725-732. DOI: 10.1177/0363546516641937

Boucher BK, Rich AJ, Gobert D, Gardner B, Metzner P, King C, Buse M. 2018. The effectiveness of a functional movement assessment and 4-week exercise training program for female high school athletes. *Journal of Strength and Conditioning Research*. DOI: 10.1519/JSC.0000000000002549

Basar MJ. 2017. The influence of corrective exercises on functional movement screen and physical fitness performance in Army ROTC Cadets. *Theses and Dissertations*. 652. https://ir.library.illinoisstate.edu/etd/652

Campa F, Spiga F, Toselli S. 2019. The effect of a 20-week corrective exercise program on functional movement patterns in youth elite male soccer players. *Journal of Sport Rehabilitation* 28:746-751. DOI: 10.1123/jsr.2018-0039

Chao WC, Shih JC, Chen KC, Wu CL, Wu NY, Lo CS. 2018. The effect of functional movement
training after anterior cruciate ligament reconstruction: a randomized controlled trial. *Journal of Sports Rehabilitation* 27:541-545. DOI: 10.1123/jsr.2017-0022.

Cook G, Burton L, Hoogenboom B. 2006a. Pre-participation screening: the use of fundamental movements as an assessment of function - part 1. *North American Journal of Sports Physical Therapy* 1:62-72.

Cook G, Burton L, Hoogenboom B. 2006b. Pre-participation screening: the use of fundamental movements as an assessment of function - part 2. *North American Journal of Sports Physical Therapy*, 1:132-139.

Cook G, Burton L, Hoogenboom BJ, Voight M. 2014. Functional movement screening: the use of fundamental movements as an assessment of function-part 1. *International Journal of Sports Physical Therapy* 9:396-409.

Cook G, Burton L, Hoogenboom BJ, Voight M. 2014. Functional movement screening: the use of fundamental movements as an assessment of function-part 2. *International Journal of Sports Physical Therapy* 9:549-563.

Cook G. Movement: Functional Movement Systems. Screening-Assessment-Corrective Strategies. Bucuresti, Romania: Lotus Publishing; 2011.

Chapman RF, Laymon AS, Arnold T. 2014. Functional movement scores and longitudinal performance outcomes in elite track and field athletes. *International Journal of Sports Physiology Performance* 9:203-211. DOI: 10.1123/ijspp.2012-0329

DerSimonian R, Kacker R. 2007. Random-effects model for meta-analysis of clinical trials: an update. *Contemporary Clinical Trials* 28:105-114. DOI: 10.1016/j.cct.2006.04.004
Dinc E, Kilinc BE, Bulat M, Erten YT, Bayraktar B. 2017. Effects of special exercise programs on functional movement screen scores and injury prevention in preprofessional young football players. *Journal of Exercise Rehabilitation* 13:535-540. DOI: 10.12965/jer.1735068.534

Dorrel BS, Long T, Shaffer S, Myer GD. 2015. Evaluation of the functional movement screen as an injury prediction tool among active adult populations: a systematic review and meta-analysis. *Sports Health* 7:532-537. DOI: 10.1177/1941738115607445

Frost DM, Beach TAC, Callaghan JP, McGill SM. 2012. Using the functional movement screen to evaluate the effectiveness of training. *Journal of Strength and Conditioning Research* 26:1620e1630. DOI: 10.1519/JSC.0b013e318234ec59

Frost DM, Beach TAC, Callaghan JP, McGill SM. 2015a. Exercise-based performance enhancement and injury prevention for firefighters: Contrasting the fitness- and movement-related adaptations to two training methodologies. *Journal of Strength and Conditioning Research* 29:2441e2459. DOI: 10.1519/JSC.0000000000000923

Frost DM, Beach TAC, Callaghan JP, McGill SM. 2015b. FMSTM scores change with performers’ knowledge of the grading criteria- are whole-body movement screens capturing “dysfunction”? *Journal of Strength and Conditioning Research* 29:3037-3044. DOI: 10.1097/JSC.0000000000000211

Frost DM, Beach TAC, Campbell TL, Callaghan JP, McGill SM. 2015c. An appraisal of the Functional Movement Screen grading criteria -Is the composite score sensitive to risky movement behavior? *Physical Therapy in Sport* 16:324-330. DOI: 0.1016/j.ptsp.2015.02.001.
Frost DM, Beach TA, McGill SM, Callaghan JP. 2015d. A proposed method to detect kinematic differences between and within individuals. *Journal of Electromyography and Kinesiology* 25:479-487. DOI: 10.1016/j.jelekin.2015.02.012

Frost DM, Beach TAC, McGill SM, Callaghan JP. 2015. The predictive value of general movement tasks in assessing occupational task performance. *Work* 52:11-18. DOI: 10.3233/WOR-141902

Frost DM, Beach TA, Campbell TL, Callaghan JP, McGill SM. 2017. Can the Functional Movement Screen™ be used to capture changes in spine and knee motion control following 12 weeks of training? *Physical Therapy in Sports* 23:50-57. DOI: 10.1016/j.ptsp.2016.06.003

Garbenytė-Apolinskienė T, Šiupšinskas L, Salatkaitė S, Gudas R, Radvila R. 2018. The effect of integrated training program on functional movements patterns, dynamic stability, biomechanics, and muscle strength of lower limbs in elite young basketball players. *Sport Sciences for Health* 14:245-250. DOI: 10.1007/s11332-017-0409-y

Guyatt GH, Oxman AD, Kunz R, Brozek J, Alonso-Coello P, Rind D, Devereaux PJ, Montori VM, Freyschuss B, Vist G, Jaeschke R, Williams Jr JW, Murad MH, Sinclair D, Falck-Ytter Y, Meerpohl J, Whittington C, Thorlund K, Andrews J, Schünemann HJ. 2011. GRADE guidelines 6. Rating the quality of evidence--imprecision. *Journal of Clinical Epidemiology* 64:1283–1293. DOI: 10.1016/j.jclinepi.2011.01.012

Guyatt GH, Oxman AD, Kunz R, Woodcock J, Brozek J, Helfand M, Alonso-Coello P, Glasziou P, Jaeschke R, Akl EA, Norris S, Vist G, Dahm P, Shukla VK, Higgins J, Falck-Ytter Y, Schünemann HJ; GRADE Working Group. 2011. GRADE guidelines: 7. Rating the quality
of evidence--inconsistency. *Journal of Clinical Epidemiology* 64:1294-1302. DOI: 10.1016/j.jclinepi.2011.03.017

Guyatt GH, Oxman AD, Kunz R, Woodcock J, Brozek J, Helfand M, Alonso-Coello P, Falck-Ytter Y, Jaeschke R, Vist G, Akl EA, Post PN, Norris S, Meerpohl J, Shukla VK, Nasser M, Schünemann HJ, GRADE Working Group. 2011. GRADE guidelines: 8. Rating the quality of evidence--indirectness. *Journal of Clinical Epidemiology* 64:1303-1310. DOI: 10.1016/j.jclinepi.2011.04.014

Guyatt GH, Oxman AD, Montori V, Vist G, Kunz R, Brozek J, Alonso-Coello P, Djulbegovic B, Atkins D, Falck-Ytter Y, Williams JW Jr, Meerpohl J, Norris SL, Akl EA, Schünemann HJ. 2011. GRADE guidelines: 5. Rating the quality of evidence--publication bias. *Journal of Clinical Epidemiology* 64:1277–1282. DOI: 10.1016/j.jclinepi.2011.01.011

GRADEpro GDT. Online computer program. Available at: https://gradepro.org/. 2020.8.30.

Higgins JP, Green S. 2011. *Cochrane Handbook for Systematic Reviews of Interventions*, version 5.1.0. 2011 [updated March 2011]. The Cochrane Collaboration. Available at: https://handbook.cochrane.org.

Higgins JP, Thompson SG. 2002. Quantifying heterogeneity in a meta-analysis. *Statistics in Medicine* 21:1539-1558. DOI: 10.1002/sim.1186

Huebner BJ, Plisky PJ, Kiesel KB, Schwartzkopf-Phifer K. 2019. Can injury risk category be changed in athletes? An analysis of an injury prevention system. *International Journal of Sports Physical Therapy* 14:127.

Hui L, Baoai W. 2019. Functional movement screen and rehabilitation training of basketb
all player. *Sport Science Research* 40:81-85.

Huxel Bliven KC, Anderson BE. Core stability training for injury prevention. *Sports Health*. 2013 Nov;5(6):514-22. DOI: 10.1177/1941738113481200.

Jafari M, Zolaktaf V, Ghasemi G. 2019. Functional movement screen composite scores in firefighters: effects of corrective exercise training. *Journal of Sports Rehabilitation* 1-5. DOI: 10.1123/jsr.2018-0080

Kangkang Z, Zhuhang H. 2016. The application research of the top level table tennis athlete in the functional movement screen test. *Theses and Dissertations*. Beijing Sport University.

Kiesel K, Plisky PJ, Voight ML. 2007. Can serious injury in professional football be predicted by a preseason functional movement screen? *North American Journal of Sports Physical Therapy* 2:147-158.

Kiesel K, Plisky P, Butler R. 2011. Functional movement test scores improve following a standardized off-season intervention program in professional football players. *Scandinavian Journal of Medicine & Science in Sports* 21:287-292. DOI: 10.1111/j.1600-0838.2009.01038.x

Kiesel KB, Butler RJ, Plisky PJ. 2014. Prediction of injury by limited and asymmetrical fundamental movement patterns in American football players. *Journal of Sports Rehabilitation* 23:88-94. DOI: 10.1123/jsr.2012-0130

Kim H, Lee Y, Shin I, Kim K, Moon J. 2014. Effects of 8 weeks’ specific physical training on the rotator cuff muscle strength and technique of javelin throwers. *Journal of Physical
Therapy Science 26:1553-1556. DOI: 10.1589/jpts.26.1553

Klusemann MJ, Pyne DB, Fay TS, Drinkwater EJ. 2012. Online video-based resistance training improves the physical capacity of junior basketball athletes. The Journal of Strength & Conditioning Research 26:2677-2684. DOI: 10.1519/JSC.0b013e318241b021

Kovac D. 2018. The effect of a six-week functional movement intervention on dynamic knee stability and physical performance in female netball players. Theses and Dissertations...

Stellenbosch University https://scholar.sun.ac.za

Kraus K, Schütz E, Taylor WR, Doyscher R. 2014. Efficacy of the functional movement screen: a review. Journal of Strength & Conditioning Research 28:3571-3584. DOI: 10.1519/JSC.0000000000000556

Jin-Wook Lee, Seok-Am Zhang1, Jang-Kyu Lee. 2015. Effects of combined training on the FMS score in woman rugby national players. Journal of the Korean Society of Industry-Academia Technology 11:7439-7446. DOI: 10.5762/KAIS.2015.16.11.7439

Junker D, Stöggl T. The Training Effects of Foam Rolling on Core Strength Endurance, Balance, Muscle Performance and Range of Motion: A Randomized Controlled Trial. J Sports Sci Med. 2019 Jun 1;18(2):229-238.

Moher D, Liberati A, Tetzlaff J, Altman D. 2009. Preferred reporting items for systematic reviews and Meta-analyses: the PRISMA statement. PLoS Medicine 6:e1000097. DOI: 10.1371/journal.pmed.1000097

Moore E, Chalmers S, Milanese S, Fuller JT. 2019. Factors influencing the relationship between the functional movement screen and injury risk in sporting populations: a systematic review.
Moran RW, Schneiders AG, Mason J, Sullivan SJ. 2017. Do Functional Movement Screen (FMS™) composite scores predict subsequent injury? A systematic review with meta-analysis. *British Journal of Sports Medicine* 51:1661-1669. DOI: 10.1136/bjsports-2016-096938

Minthorn LM, Fayson SD, Stobierski LM, Welch CE, Anderson BE. 2015. The Functional Movement Screen's ability to detect changes in movement patterns after a training intervention. *Journal of Sports Rehabilitation* 24:322-326. DOI:10.1123/jsr.2013-0146

PEDro. Available at: https://www.pedro.org.au/english/downloads/pedro-scale/

Riela LA, Bertollo M. 2019. The effectiveness of eight weeks of a movement-based program on functional movement patterns in male professional soccer players. *Journal of Physical Education and Sport* 19:1976-1983. DOI:10.7752/jpes.2019.s5294

Rippetoe M, Kilgore L, Bradford SE. 2013. *Practical Programming for Strength Training*, 3rd edition. Wichita Falls, TX: Aasgaard Company.

Review Manager. 2020. RevMan computer program, version 5.4. The Cochrane Collaboration. Available at: https://www.cochrane.org/zh-hans/join-cochrane.

Schneider J, Wiegand Y, Braumann KM, Wollesen B. 2019. Functional and motor deficits in youth soccer athletes—an explorative, quasi-experimental study. *Deutsche Zeitschrift für Sportmedizin* 70:14-20. DOI: 10.5960/dzsm.2018.358

Song HS, Woo SS, So WY, Kim KJ, Lee J, Kim JY. 2014. Effects of 16-week functional movement screen training program on strength and flexibility of elite high school baseball...
Sorenson EA. 2009. Functional movement screen as a predictor of injury in high school basketball athletes. Theses and Dissertations., University of Oregon.

http://www.pqdtcn.com/thesisDetails/9E31FD6C3931C71F679A0E44658A9A58

Santos Bunn P, Rodrigues AI, da Silva EB. 2019. The association between the functional movement screen outcome and the incidence of musculoskeletal injuries: a systematic review with meta-analysis. Physical Therapy in Sport 35:146-158. DOI: 10.1016/j.ptsp.2018.11.011

Sterne JA, Egger M, Smith GD. 2001. Investigating and dealing with publication and other biases in meta-analysis. BMJ 323:101-105. DOI: 10.1136/bmj.323.7304.101

Tejani AS, Middleton EF, Huang M, Dimeff RJ. 2019. Implementing a standardized interventional exercise regimen to improve functional movements in female collegiate athletes. International Journal of Sports Physical Therapy 14:117.

Trinidad-Fernandez M, Gonzalez-Sanchez M, Cuesta-Vargas AI. 2019. Is a low Functional Movement Screen score (≤14/21) associated with injuries in sport? A systematic review and meta-analysis. BMJ Open Sport & Exercise Medicine 5:e000501. DOI: 10.1136/bmjsem-2018-000501

Tejani AS, Middleton EF, Huang M, Dimeff RJ. 2019. Implementing a standardized interventional exercise regimen to improve functional movements in female collegiate athletes. International Journal of Sports Physical Therapy 14:117-126.

Xuhua Z, Ye T. 2015. The Experimental Study of Intervention on the Prevention and Treatment of Sports Injury and Improvement of Athletic Performance by Functional Movement Screen
(FMS™) and Rehabilitation Training Volleyball Players. *Theses and Dissertations*, Shanghai Institute of Physical Education. http://lib.sus.edu.cn/

Yildiz S, Pinar S, Gelen, E. 2019. Effects of 8-week functional vs. traditional training on athletic performance and functional movement on prepubertal tennis players. *The Journal of Strength & Conditioning Research* 33:651-661. DOI: 10.1519/JSC.0000000000002956
Figure 1

Flow diagram of the study selection process
Figure 2

Assessment of bias risk for included studies (risk of bias graph)
Figure 3

Assessment of bias risk for included studies (risk of bias summary)
Study	Random sequence generation (selection bias)	Allocation concealment (selection bias)	Blinding of participants and personnel (performance bias)	Blinding of outcome assessment (detection bias)	Incomplete outcome data (attrition bias)	Selective reporting (reporting bias)	Other bias
Armstrong, et al., 2019	?	-	?	+	?	-	-
Bayati et al., 2019	-	-	?	+	?	?	?
Bodden et al., 2015	-	?	?	+	?	?	?
Campa et al., 2018	+	?	?	+	?	?	?
Dinc et al., 2017	-	-	?	+	?	?	?
Feng xuhua et al., 2015	-	?	?	+	?	?	?
Hong-sun song et al., 2014	-	-	?	+	?	?	?
Kim H et al., 2014	-	-	?	+	?	?	?
Klusemann et al., 2012	?	-	?	+	?	?	?
Kovac et al., 2018	?	?	?	+	?	?	?
Li hui et al., 2019	-	-	?	?	?	?	?
Rielia et al., 2019	?	?	?	+	?	?	?
Schneider et al., 2019	-	-	?	?	?	?	?
Yildiz et al., 2018	-	?	?	+	?	?	?
Zhou kangkang et al., 2016	-	?	?	?	?	?	?
Figure 4

Forest plot of athletes’ sports injuries

Study	Experimental Events	Control Events	Risk Ratio	RR	95%–CI	Weight (fixed)	Weight (random)
Fengxuhua,2015	1 13	2 12	0.46	[0.05; 4.46]	5.3%	4.8%	
Fengxuhua,2015	3 15	8 14	0.35	[0.12; 1.06]	20.9%	19.9%	
Dinc,2017	6 24	31 43	0.35	[0.17; 0.71]	56.1%	47.7%	
Lihui,2019	3 8	5 8	0.60	[0.21; 1.70]	12.6%	22.5%	
Lihui,2019	1 8	2 8	0.50	[0.06; 4.47]	5.1%	5.1%	
Fixed effect model	68	85	0.39	[0.24; 0.65]	100.0%	--	
Random effects model	69	85	0.41	[0.25; 0.67]	--	100.0%	

Heterogeneity: $I^2 = 0\%$, $t^2 = 0$, $p = 0.93$
Figure 5

Forest plot of the effect size of the athletes’ total FMS™ score

Study	Experimental Total	Experimental Mean	Experimental SD	Control Total	Control Mean	Control SD	Mean difference	MD	95%–CI	Weight (fixed)	Weight (random)
Bodden,2015	13 15 336.1 43	12 13 236.0 80									
Dinc,2017	24 16 790.1 61	43 15 330.1 19									
Klusemann,2012	13 16 000.2 00	12 14 000.1 00									
Fenxuhua,2015	15 14 800.1 21	14 12 210.1 05									
Fenxuhua,2015	13 17 230.2 05	12 15 330.1 30									
zhoukangkang,2016	20 15 150.1 27	20 13 150.1 35									
Bayati,2019	12 17 080.0 42	12 15 470.5 58									
Campa,2018	32 14 590.0 87	30 13 130.1 30									
Rieola,2019	15 16 330.0 79	15 14 210.1 10									
Schneider,2019	23 14 300.1 43	23 13 160.2 44									
Lihui,2019	8 14 000.1 31	8 12 440.1 01									
Lihui,2019	8 16 250.1 75	8 15 420.0 78									
Kovac,2018	10 14 550.1 60	19 13 550.2 40									
Fixed effect model	205	228									
Random effects model	1.72 [1.50; 1.94]	100.0%	--	1.72 [1.50; 1.93]	100.0%	--	100.0%	100.0%			

Heterogeneity: $I^2 = 3\%$, $Q = 0.0045$, $p = 0.42$
Figure 6

Forest plot of the athletes’ asymmetry functional patterns

Study	Experimental Events	Control Events	Risk Ratio	RR	95%–CI	Weight (fixed)	Weight (random)
Campa,2018	19	32		0.81	[0.57; 1.16]	63.3%	49.3%
Bodden,2015	2	13		0.46	[0.10; 2.08]	11.6%	28.3%
zhoukangkang,2016	1	20		0.11	[0.02; 0.80]	25.1%	21.9%
Fixed effect model	65	62	0.59	0.59	[0.41; 0.86]	100.0%	--
Random effects model			0.45	0.45	[0.13; 1.50]	--	100.0%

Heterogeneity: $I^2 = 65\%$, $t^2 = 0.7457$, $p = 0.06$
Table 1 (on next page)

Search history
Database	Up to September 2020
PubMed	Search: (((((((functional movement screen) OR (fms*)) OR (functional movement screen*)) AND (((injury*) OR (injury prediction)) OR (injury risk)) OR (injury prevention screening)) OR (Athletic injuries[MeSH]))) AND ((functional training) OR (corrective exercise training) OR(funcional correction training))) AND ((sport*) OR (athlet*)OR(player)) Filters: Free full text, Full text, from 1997 – 2020
Scopus	TITLE-ABS-KEY ("functional movement screen") OR ("fms* ") OR ("functional movement screen* ") AND ("injury*") OR ("injury prediction") OR ("injury risk") OR ("injury prevention screening") OR ("Athletic injuries exp") AND ("functional training") OR ("corrective exercise training") OR("functional correction training") AND ("sport*") OR ("athlet*") OR ("player")
EMbase	1 "functional movement screen" or "fms* af" or "functional movement screen* ".af.
2 "injury*" or "injury prediction" or "injury risk" or "injury prevention screening" or "Athletic injuries exp".af.	
3 "functional training" or "corrective exercise training" or "functional correction training".af.	
4 "sport*" or "athlet*" or "player".af.	
5 "functional movement screen" or "fms* af" or "functional movement screen* af "and "injury*" or "injury prediction" or "injury risk" or "injury prevention screening" or "Athletic injuries exp" and "functional training" or "corrective exercise training" or "functional correction training" and "sport*" or "athlet*" or "player". af.	
Web-sicence	# 5 #4 AND #3 AND #2 AND #1
4 TS=(sport*) OR TS= (athlet*) OR TS=(player)
3 TS=(functional training) OR TS=(corrective exercise training) OR TS=(functional correction training)
2 TS=(injury*) OR TS= (injury prediction) OR TS=(injury risk) OR TS= (injury prevention screening) OR TS= (Athletic injuries[MeSH]) |
1 TS=(functional movement screen) OR TS= (fms*) OR TS= (functional movement screen*)
##
EBSOhost **up to September 2020**
|
S1	((functional movement screen) OR (fms*)) OR (functional movement screen*)
S2	((((injury*) OR (injury prediction)) OR (injury risk)) OR (injury prevention screening)) OR (Athletic injuries[MeSH])
S3	(functional training) OR (corrective exercise training) OR (functional corrective training)
S4	(sport*) OR (athlet*) OR (player)
S5	((((functional movement screen) OR (fms*)) OR (functional movement screen*)) AND ((((injury*) OR (injury prediction)) OR (injury risk)) OR (injury prevention screening)) OR (Athletic injuries[MeSH])) AND ((functional training) OR (corrective exercise training) OR (functional corrective training))) AND ((sport*) OR (athlet*) OR (player))
##
CENTRAL **up to September 2020**
| ProQuest- Dissertations & Theses |
| Proquest-Health & Medical Collection |
1	"functional movement screen" OR "fms*"OR "functional movement screen"
2	"injury*" OR "injury prediction" OR "injury risk" OR "injury prevention screening" OR "Athletic injuries[MeSH]"
3	"functional training" OR "corrective exercise training" OR "functional corrective training"
4	"sport*" OR "athlet*" OR "player"
5	"functional movement screen"OR"fms*" OR"functional movement screen* "AND"injury*" OR"injury prediction" OR "injury risk" OR "injury prevention screening" OR "Athletic injuries[MeSH] " AND "functional training" OR "corrective exercise training" OR "functional correction training"
##
SPORTDiscus **up to September 2020**
S1	((functional movement screen) OR (fms*)) OR (functional movement screen*)
S2	((((injury*) OR (injury prediction)) OR (injury risk)) OR (injury prevention screening)) OR (Athletic injuries[MeSH])
S3	(functional training) OR (corrective exercise training) OR (functional corrective training)
S4	(sport*) OR (athlet*) OR (player)
S5	(((functional movement screen) OR (fms*)) OR (functional movement screen*)) AND (((injury*) OR (injury prediction)) OR (injury risk)) OR (injury prevention screening)) OR (Athletic injuries[MeSH])) AND (((functional training) OR (corrective exercise training) OR (functional correction training)))) AND (((sport*) OR (athlet*) OR (player))

CNKI	up to September 2020
	FMS, functional training, athletes

WANFANG	up to September 2020
	FMS, functional training, athletes
Table 2 (on next page)

Base line characteristics of included studies

(A) EG = experimental group, CG = next step. (B) Amstrong's research results only provide histograms and lack data.
References	Sports	n, gender	Age mean (SD)	Experimental group Intervention	Dose	n, gender	Age mean (SD)	Control group Intervention	Dose	Measurement item	Outcomes	Results between groups
Bodden et al., 2015	Martial arts	12, Male	24.31±4.46	Corrective exercise program	4 weeks, Males	12	24.13±4.46	Routine training	8 weeks	FMS™ scores :	Asymmetry Number of patients	Total number
				Certified coach implementation	4 times/week					EG	CG	13:4±1.43
Klusemann et al., 2012	Basketball	13, Male	14.6±1.5	Strength, stability and jumping	Daily training without resistance	6 weeks	14.6±1.5	Daily training without resistance	6 weeks	FMS™ scores :	Asymmetry Number of patients	Total number
		and females		(including functional training)	EG: 2					EG	CG	16:2
				of upper and lower limbs with bare hands or instruments	CG: 4					20-m sprint	EG: 16±2	
				Coach supervision						20-m sprint	CG: 14±1	
Campa et al., 2018	Soccer	32, Male	15.93±0.4	Corrective exercise program	20 weeks, Males	15	15.31±0.63	Routine training	20 weeks	FMS™ scores :	Asymmetry Number of patients	Total number
				Professional trainer guidance	2 times/week					EG	CG	13:1±1.3
										10-m sprint	EG: 19±0.8	
										10-m sprint	CG: 10±3.60	
										Vertical jump:	EG: 4:6±4.6	
										20-m sprint	CG: 44±9	
Yildiz et al., 2018	Tennis	10, Male	9.6±0.7	Functional training	Routine training	8 weeks	9.6±0.7	Routine training	8 weeks	FMS™ scores :	Asymmetry Number of patients	Total number
				(for problems such as muscle imbalance)	EG: 19					EG	CG	14:5±0.87
				Coach supervision						Counted movement:	EG: 22.4±3.6	
										jump:	CG	28.9±1.90
Riele et al., 2019	Soccer	15, Male	23.8±4.6	Warm up (functional correction training)	Regular warm up	8 weeks	23.8±4.6	Regular warm up	8 weeks	FMS™ scores :	EG: 16±3	
				Professional trainer guidance						CG	14.2±1	
										10-m acceleration:	EG: 3.6±0.3	
										Counted movement:	CG: 4.4±0.20	
										jump:	EG: 28±1.90	
										20-m sprint	CG: 22±7.68	
Bayati et al., 2019	Wrestling	12, Male	16.16±0.7	Wrestling injury prevention program	Regular warm up	12 weeks	16.16±0.7	Regular warm up	12 weeks	FMS™ scores :	EG: 17±0.7	
				Coach supervision						CG	15.47±0.58	
Table 3 (on next page)

Base line characteristics of included studies

(A) EG = experimental group, CG = next step. (B) Armstrong's research results only provide histograms and lack data.
References	Sports	Gender	Age (SD)	Experimental group	Dose	Gender	Age (SD)	Control group	Dose	Outcomes	Measurement item	Results between groups
Dinc et al., 2017 Turkey	Soccer	Male	16.13±0.38	Corrective exercise program	2 times/w 12 weeks	Male	16.42±0.2	Routine training	12 weeks	Sports injury (injury stop ≥ 3 weeks)	Number of patients	Total number
											EG	6
										CG	31	
Hong-sun song et al., 2014 Korea	Baseball	Male	17±1.06	FMS training program	3 times/w 16 weeks	Male	16.62±0.9	Routine training	16 weeks	Strength (Back Muscle Strength)	Number of patients	Total number
										EG	144.93±20.67	
										CG	137.74±20.5	
										Strength squat (1RM)	Number of patients	Total number
										EG	161.08±35.06	
										CG	129.68±26.82	
Schneider et al. 2019 Germany	Soccer	Male	11.87±0.87	Individualized multimodal training intervention on warm up Coach supervision	2 times/w 12 weeks	Male	10.84±1.1	Regular soccer practice	12 weeks	FMS™ scores	Number of patients	Total number
										EG	15.15±1.27	
										CG	13.15±1.35	
Zhou kangkang et al., 2016 China	Table tennis	Male and females	?	Pre-class function plan × 4 + personalized correction training × 1 (supervised by author and fitness coach)	5 times/w 6 weeks	Male and females	?	Routine training	6 weeks	Asymmetry	Number of patients	Total number
										EG	1	
										CG	9	
										High-risk Number of patients	Total number	
										EG	3	
										CG	8	
										Low-risk Number of patients	Total number	
										EG	1	
										CG	2	
Li hui et al., 2019 China	Basketball	Male	21.75±1.28	Dynamic stretching and personalized correction training	6 times/w 8 weeks	High-risk 8 males, Low risk 8 males	21.78±1.4	Routine training	8 weeks	FMS™ scores	Number of patients	Total number
										EG	14.00±1.31	
										CG	12.44±1.01	
										High-risk Number of patients	Total number	
										EG	16.25±1.75	
										CG	15.42±0.78	
Kovac et al., 2018 South Africa	Netball	Female	20±1.5	Corrective exercise program instructed and supervised by the researcher.	3 times/w 6 weeks	Female	19.8±1.5	Routine training	6 weeks	Drop vertical jump	Number of patients	Total number
										EG	14.55±1.6	
										CG	13.55±2.4	
										Drop vertical jump	Number of patients	Total number
										EG	2.15±0.95	
										CG	1.9±0.86	
Table 4 (on next page)

Base line characteristics of included studies

(A) EG = experimental group, CG = next step. (B) Armstrong's research results only provide histograms and lack data.
References	Sports	n, gender	Age mean (SD)	Experimental group Intervention	Dose n, gender	Age mean (SD)	Control group Intervention	Dose	Outcomes	Measurement item	Results between groups
Armstrong et al., 2019 USA	Basketball	6, Males	20.04±1.4	Corrective exercise program	4 times/w 4 weeks	7, Males	20.04±1.4	Pre-practice dynamic warm-up	4 times/w 4 weeks	Incomplete data	FMS™ scores (High-risk group): EG 14.80±1.21 CG 12.21±1.05 (Low risk group): EG 17.23±2.05 CG 15.33±1.30 High-risk Number of patients Total number: EG 3 15 CG 8 14 Low-risk Squat (High-risk): EG 115±12.11 CG 112±18.78 (low-risk): EG 118±6.15 CG 115±18.7
Feng et al., 2015 China Volleyball	High-risk 15, females Low risk 13, females	20.92±3.26 21.47±3.16	Rehabilitation physical training (correction training)	6 times/6 weeks	High-risk 14, females Low risk 12, females	21.56±3.5 21.20±3.3	Routine training 6 weeks	Difference CG-EG FMS score (points): EG 0.30±1.07 CG-1.03±1.37 throwing performances: EG 9.6±1.10 CG 5.8±2.64			
Kim H et al., 2014 Korea Javelin	Males 22±1.15 Females 22±1.41	2, Males	Weight, Javelin specific, core, FMS training Performed by researchers	7/8weeks	Males 26±4.24 Females 26.5±1.41	Routine training 8 weeks	Difference CG-EG FMS score (points): EG 0.30±1.07 CG-1.03±1.37 throwing performances: EG 9.6±1.10 CG 5.8±2.64				
Quality assessment results of included studies using the PEDro quality scales

The purpose of the PEDro scale is to help the users of the PEDro database rapidly identify which of the known or suspected randomized clinical trials (i.e., RCTs or CCTs) archived in the database are likely to be internally valid (criteria 2-9), and could have sufficient statistical information to make their results interpretable (criteria 10-11). An additional criterion (criterion 1) that relates to the external validity (or “generalizability” or “applicability” of the trial) has been retained so that the Delphi list is complete, but this criterion will not be used to calculate the PEDro score reported on the PEDro web site.
Author	1	2	3	4	5	6	7	8	9	10	11	PEDro Scoring item
Dinc, 2017	Y	N	N	Y	N	N	N	Y	Y	Y	Y	1. eligibility criteria were specified
Bodden, 2015	Y	N	N	Y	N	N	?	Y	Y	Y	Y	2. subjects were randomly allocated to groups
Campa, 2018	Y	Y	N	Y	N	N	Y	Y	Y	Y	Y	3. allocation was concealed
Kovac, 2018	Y	Y	N	Y	N	N	N	Y	Y	Y	Y	4. the groups were similar at baseline regarding the most important prognostic indicators
Ripa, 2019	Y	Y	?	Y	N	N	Y	Y	Y	Y	Y	5. there was blinding of all subjects
Hong-Sun, 2014	Y	N	N	Y	N	N	N	Y	Y	Y	Y	6. there was blinding of all therapists who administered the therapy
Schneider, 2019	Y	N	N	Y	N	N	?	Y	Y	Y	Y	7. there was blinding of all assessors who measured at least one key outcome
Feng xuhua, 2015	Y	N	N	Y	N	N	?	Y	Y	Y	Y	8. measures of at least one key outcome were obtained from more than 85% of the subjects initially allocated to groups
Kang, 2016	Y	N	N	Y	N	N	N	Y	Y	Y	Y	9. all subjects for whom outcome measures were available received the treatment or control condition as allocated or, where this was not the case, data for at least one key outcome was a analyses by “intention to treat
Klusemann, 2012	Y	Y	N	Y	N	N	?	N	Y	Y	Y	10. the results of between-group statistical comparisons are reported for at least one key outcome
Bayati, 2019	Y	N	N	Y	N	N	?	Y	Y	Y	Y	11. the study provides both point measures and measures of variability for at least one key outcome
Yildiz, 2018	Y	N	?	Y	N	N	?	Y	Y	Y	Y	
Li hui, 2019	Y	N	N	Y	N	N	N	Y	Y	Y	Y	
Kim H, 2014	Y	N	N	?	N	N	N	Y	Y	Y	Y	
Armstrong, 2019	Y	Y	N	?	N	N	N	Y	Y	N	Y	
Table 6 (on next page)

Summary of findings
Effect of Functional Correction Training on Injury Risk of Athletes: A Systematic Review and Meta-analysis

Patient or population: athletes
Setting: sports injury
Intervention: functional correction training
Comparison: conventional training

Outcomes	Anticipated absolute effects \(^*(95\% \text{ CI})*	Risk with conventional training	Risk with functional correction training	Relative effect (95% CI)	Nr of participants (studies)	Certainty of the evidence (GRADE)	Comments	
Study population								
Sports injury risk of athletes (injury risk) follow up: mean 6-12 weeks								
565 per 1,000	222 per 1,000 (135 to 366)	222 per 1,000 (135 to 366)	RR 0.3932 (0.2386 to 0.6482)	153 (5 observational studies)	🌶ษาสาขาด้านขวาสาขาด้านซ้าย	VERY LOW a,b,c,d	The injury risk ratio of athletes after functional correction training was 0.3932 RR (95% CI, 0.2386–0.6482; Z=−3.57; P=0.0003; I²=0.0%). It was found that functional correction training could reduce the injury risk by 60% in the experimental groups as compared with the control groups.	
0 per 1,000	0 per 1,000 (0 to 0)	0 per 1,000 (0 to 0)						
New outcome (model asymmetry of athletes) assessed with: Functional movement screen follow up: mean 6-20 weeks								
565 per 1,000	252 per 1,000 (75 to 849)	252 per 1,000 (75 to 849)	RR 0.4460 (0.1323 to 1.5033)	127 (3 observational studies)	🌶ษาสาขาด้านขวาสาขาด้านซ้าย	VERY LOW c,d,e,f	The hazard ratio of the influence of functional correction training on the pattern of asymmetry of athletes showed large heterogeneity (RR, 0.446; 95% CI, 0.1323–1.5033; Z=−1.3; P=0.1928; I²=65.2%). and no significant difference was observed when compared with the control group.	
0 per 1,000	0 per 1,000 (0 to 0)	0 per 1,000 (0 to 0)						
Total FMS score of The mean total	MD 1.7165 MD				434	🌶🌶🌶	The influence of functional correction training on	
Explanations

a. All included studies were not randomized.
b. Researchers may have different definition of sports injury/injuries.
c. Sample size was small. According to the graph in the GRADE guidelines: 6. Rating the quality of evidence—imprecision, set RRR=30%, both injury risk ratio and asymmetry movement patterns of athletes that event rate of the control group was 0.56, at least 500-1,000 samples were required.
d. The publication bias test was not completed because the sample sizes used to determine the sports injury risk and model asymmetry were fewer than 10.
e. Only one study implemented randomization.
f. The hazard ratio of the influence of functional correction training on patterns of athletes’ asymmetry had large heterogeneity (RR, 0.446; 95% CI, 0.1323-1.5033; z = -1.3; P = 0.1928; I² = 65.2%).

The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the *relative effect* of the intervention (and its 95% CI).

CI: Confidence interval; RR: Risk ratio; MD: Mean difference

GRADE Working Group grades of evidence

High certainty: We are very confident that the true effect lies close to that of the estimate of the effect

Moderate certainty: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different

Low certainty: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect

Very low certainty: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect

athlete assessed with: Functional Movement Screen	FMS score of athlete	higher (1.4999 higher to 1.9333 higher)	(13 observational studies) MODERATE g,h the athletes’ total FMS™ scores was 1.7165 MD (95% CI, 1.4999–1.9330; Z=15.53; P<0.0001; I² =2.6%), indicating effective improvement of athletes’ functional patterns.

g. 66% of subjects were not randomly allocated to a group.

h. The influence of functional correction training on the athletes’ total FMS™ scores was 1.7165 (95% CI, 1.4999-1.9330; Z=15.53; P<0.0001; I² =2.6%), Confidence interval exceeded 1.
Table 7 (on next page)

GRADE evidence profile
Author(s): Chen Junxia; Chen Sheng; Zhang Chunhe; Zhao Yuhua

Question: Explore functional correction training after the use of Functional Movement Screen (FMS™) and the effects of training on the injuries of athletes.

Setting: sports injury

Bibliography:

№ of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	№ of patients	Effect (95% CI)	Relativе (95% CI)	Absolute (95% CI)	Certainty	Importance
5	observational studies	serious^a	not serious	not serious	serious^c	publication bias strongly suspected	14/68 (20.6%)	48/85	RR 0.3932 (0.2386 to 0.6482)	343 fewer per 1,000 (from 430 fewer to 199 fewer)	VERY LOW	CRITICAL
						residual confounding would reduce the demonstrated effect^d		0.0%		0 fewer per 1,000 (from 0 fewer to 0 fewer)		

Sports injury risk of athletes (follow up: mean 6-12 weeks)

New outcome (follow up: mean 6-20 weeks; assessed with: Functional movement screen)

№ of studies	Study design	Risk of bias	Indirectness	Imprecision	Other considerations	№ of patients	Effect (95% CI)	Relativе (95% CI)	Absolute (95% CI)	Certainty	Importance
3	observational studies	very serious^e	not serious	serious^c	publication bias strongly suspected	22/65 (33.8%)	35/62	RR 0.4460 (0.1323)	313 fewer per 1,000 (from 490 fewer)	VERY LOW	CRITICAL

^a Strongly suspected publication bias.
^b Not serious publication bias.
^c Indirectness.
^d Residual confounding would reduce the demonstrated effect.
^e Very serious publication bias.
№ of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	№ of patients	Effect	Certainty	Importance
						function training				
						convention training				
						Relative (95% CI)	Absolute (95% CI)			
						0.0%	fewer to 1.5033			
						0 fewer	to 284 more			
						0 fewer	from 0 fewer to 0 fewer			

Total FMS score of athlete (follow up: range 6 weeks to 20 weeks; assessed with: Functional Movement Screen; Scale from: 0 to 21)

| 13 | observational studies | serious # | not serious | not serious | serious b | very strong association all plausible residual confounding would reduce the demonstrated effect | 206 | 228 | - | MD 1.7165 MD higher (1.4999 higher to 1.9333 higher) | MODERATE | IMPORTANT |

4 CI: Confidence interval; RR: Risk ratio; MD: Mean difference

5 Explanations
a. All included studies were not randomized.
b. Researchers may have different definition of sports injury/injuries.
c. Sample size was small. According to the graph in the GRADE guidelines: 6. Rating the quality of evidence---imprecision, set RRR=30%, both injury risk ratio and asymmetry movement patterns of athletes that event rate of the control group was 0.56, at least 500-1,000 samples were required.
d. The publication bias test was not completed because the sample sizes used to determine the sports injury risk and model asymmetry were fewer than 10.
e. Only one study implemented randomization.
f. The hazard ratio of the influence of functional correction training on patterns of athletes’ asymmetry had large heterogeneity (RR, 0.446; 95% CI, 0.1323-1.5033; z = -1.3; P = 0.1928; I^2 = 65.2%)
g. 66% of subjects were not randomly allocated to a group.
h. The influence of functional correction training on the athletes’ total FMS™ scores was 1.7165 (95% CI, 1.4999-1.9330; Z=15.53; P<0.0001; I^2 =2.6%), Confidence interval exceeded 1.