Ionic liquid multistate resistive switching characteristics in two terminal soft and flexible discrete channels for neuromorphic computing

Muhammad Umair Khan\(^1,2,3\), Jungmin Kim\(^1\), Mahesh Y. Chougale\(^1\), Chaudhry Muhammad Furqan\(^4,5\), Qazi Muhammad Saqib\(^1\), Rayyan Ali Shaukat\(^1\), Nobuhiko P. Kobayashi\(^6\), Baker Mohammad\(^2,3\), Jinho Bae\(^1\)\(^*\) and Hoi-Sing Kwok\(^4,5\)

Abstract

By exploiting ion transport phenomena in a soft and flexible discrete channel, liquid material conductance can be controlled by using an electrical input signal, which results in analog neuromorphic behavior. This paper proposes an ionic liquid (IL) multistate resistive switching device capable of mimicking synapse analog behavior by using IL BMIM FeCl\(_4\) and H\(_2\)O into the two ends of a discrete polydimethylsiloxane (PDMS) channel. The spike rate-dependent plasticity (SRDP) and spike-timing-dependent plasticity (STDP) behavior are highly stable by modulating the input signal. Furthermore, the discrete channel device presents highly durable performance under mechanical bending and stretching. Using the obtained parameters from the proposed ionic liquid-based synaptic device, convolutional neural network simulation runs to an image recognition task, reaching an accuracy of 84%. The bending test of a device opens a new gateway for the future of soft and flexible brain-inspired neuromorphic computing systems for various shaped artificial intelligence applications.

Introduction

Synapses are the most elegant memory network, in which each neuron is polarized with ions (Ca\(^{2+}\) or K\(^{+}\)), which communicates and results in a release of neurotransmitters\(^1,2\), as shown in Fig. 1a. Similarly, to realize neuromorphic devices, researchers are trying to develop next-generation computing technology by using the nonvolatile conductance property of memristive materials\(^3\) to emulate synapses\(^4,5\), as shown in Fig. 1a, which include metal oxides\(^6–9\), 2D materials\(^10\), organic materials\(^11–14\), inorganic materials\(^15\), hybrid materials\(^16,17\), and ionic liquids (IL)\(^18–20\). Hence, liquid materials are receiving more attention due to their high flexibility, high ion conductivity, and easy device fabrication\(^21\). Ionic liquids and hydrogels are widely used for the fabrication of electronic devices\(^22–24\). Hydrogels are biocompatible, soft, and have high ion mobility, and their properties can be further improved by adding polyelectrolytes\(^25–27\). Ionic liquids can be used to fabricate ionic transistors and nonlinear ionic resistors, which can help to control the current–voltage characterizations\(^28,29\). In such devices, ionic mobility can be represented by the movements of cations and anions\(^30\). Many researchers are focusing on introducing soft and flexible resistive memory devices using aqueous electrolytes (ionic liquids, hydrogels) as an active material and soft and conductive materials as electrodes\(^30,31\). Such devices are easy to fabricate with simple fabrication technology, low cost, high flexibility, and good ion mobility with stable performance\(^32,33\). Liquid materials are beneficial for understanding the device mechanism due to free ion movement (cation and anions), which results in electrode metallization at the...
To understand the conduction mechanism using ionic liquids, researchers have explored resistive memory devices using different device structures, materials, and aqueous electrodes, such as Ag/AgNO₃/Probe_Tip (inert electrode) [31], Ag/H₂O/Au [30], and Au/Trypsin/FTO [33]. Liquid devices can further be used for the biological nervous system to adopt a parallel structure for an energy-efficient computing system [18].

Signal transmission in biological neurons is defined between presynaptic and postsynaptic neurons [34], as shown in Fig. 1a. Similarly, multistate resistive switching neuromorphic devices can be used to mimic synaptic function by using the discrete channel, in which the IL will play an important role in the movement of cations and anions [18, 21, 32], as shown in Fig. 1a. Specifically, the ability to emulate SRDP and STDP of the soft and flexible discrete channel IL needs to be addressed to perform the electronic synapses [5, 18]. However, several critical aspects of liquid-based soft and flexible artificial synapses with memorable conductance tuning under bending and stretching states are required to successfully produce a functioning hardware neural network, which has rarely been reported in discrete channel systems. Many new ionic liquid materials must be introduced to fabricate neuromorphic resistive memory devices to perform electronic synapses. This proposed work introduces a new ionic liquid (IL) BMIM FeCl₄ and H₂O into a discrete channel system and thus realizes multistate resistive switching behavior. We then emulate the analog weight change behavior SRDP and STDP of a synapse with our discrete channel memristor and evaluate its performance in a convolutional neural network pattern recognition task based on a system-level simulation. The device presents a highly stable multistate resistive switching behavior in a bending and stretching state. We are confident that soft and flexible devices are excellent candidates for neuromorphic computing in the field of artificial intelligence and brain shape-mimicking robotics, as shown in Fig. 1a.

Results and discussion

Physical and electrical characterization

The fabricated cylindrical channel is shown in Fig. 1b, and the cross-sectional S.E.M. image at a magnification level of 500 µm is shown in Fig. 1c. The channel filled with ionic liquid (BMIM FeCl₄ and H₂O) and electrodes are connected on both ends, as shown in Fig. 1d, and the distance between both electrodes is ~0.5 mm, as shown in Fig. 1e. The chemical characterization was performed by using Raman spectroscopy, FTIR, and XPS. In Raman spectroscopy, vibrational analysis of materials is analyzed at the atomic scale. Every free-standing crystal holds its natural vibration frequency on the lattice and foundation of the material. The Raman spectrum of BMIM FeCl₄ shows a strong peak at 330.2 cm⁻¹, corresponding to the symmetric Fe–Cl stretching vibration of [FeCl₄]⁻, as...
shown in Fig. 2a. We performed FT-IR to investigate the functional groups of BMIM FeCl₄ as shown in Fig. 2b. The hydroxyl group is observed at 3590 cm⁻¹ in the FTIR spectra. The stretching vibrations of the imidazolium cation are observed in the peak range of 3105–3200 cm⁻¹. In addition, 3000–2800 cm⁻¹ peaks showing the stretching behavior of −C–H, −CH₂, and −CH₃ of the alkyl groups attached to the nitrogen atom in the imidazolium ring of BMIM FeCl₄ ionic liquid. The vibrational peaks of the imidazole ring are observed at 1650–1500 cm⁻¹ and 1450 cm⁻¹. The metal chloride is observed in the transmission bands around 3200–3100, 3000–2800, 1650–1500, 1450, and 1200–1100 cm⁻¹. The XPS BMIM FeCl₄ was measured for the identification of elements and their chemical bonding. The C-1s peak was adjusted at 285.00 eV for the calibration of absolute binding energy and represents the deconvoluted spectra of BMIM FeCl₄, with core levels of Fe-2p, N-1s, Cl-2p, and C-1s from the surface of the sample, as shown in Fig. 2c. The dominant peaks at 284.72 eV and Lorentzian fitted peak at 286.21 eV in the high-resolution spectra of C1s are attributed to the bonding of C–C and C–N, respectively, as shown in Fig. 2c. Analysis of the N-1s core-level line signifies that the Lorentzian fitted peak at 401.23 eV relates to graphitic nitrogen, and other peaks at 401.83 eV show N–C bonding, as shown in Fig. 2d. The high-resolution Cl-2p XPS spectrum demonstrated doublets at 201.8 eV and 200.3 eV associated with the 2p¹/₂ and 2p³/₂ levels due to spin–orbit coupling, which is a typical indication of the organic C–Cl covalent bond structure. A further subpeak at 198.43 eV demonstrates the coupling of the 2p³/₂ Cl orbitals, as shown in Fig. 2e. The Fe-2p core-level line has an FWHM of 4.12 eV, and its high-resolution spectra reveal two subpeaks. The dominant peak at 711.3 eV confirms the bonding of Fe-cat, and other peaks at 709.86 eV correspond to the transition of Fe-2p³/₂ spin orbitals, as shown in Fig. 2f.

Conduction mechanism

The human brain is composed of interconnected neurons, where the presynaptic neuron passes information to the postsynaptic neuron and results in the transmission of neurotransmitters that control synaptic plasticity. Similarly, the multistate resistive switching characteristics in a two-terminal discrete PDMS cylindrical channel can also mimic biological synaptic plasticity by gradual variation in the resistance state by a repeated pulse sequence to modulate the conduction between the interface of the IL BMIM FeCl₄ and H₂O. The composition of the mixture used in the discrete channel in a volume ratio of 1:1 was BMIM FeCl₄:H₂O. The ion selectivity (BMIM⁺, FeCl₄⁻, H⁺, OH⁻) provides the basic mechanism for discrete channel devices, in which the surface charges on the channel walls will repel ions with the same charges and attract oppositely charged ions. The electroosmotic flow equation, as shown in Fig. 3a, where the counterions attracted to the wall surface charges in H₂O play the predominant role in the transport rather than the ions in the bulk region of IL BMIM FeCl₄. The electric body force \(f \) creates an imbalance between co-ion densities and counterions \((n_+−n_-) \), which causes a net charge in the presence of the applied electric field \(E \) on an interface.
between the IL BMIM FeCl₄ and H₂O, as shown in Fig. 3a. The electroosmotic flow will cause conductance tuning in our discrete channel device to perform neuromorphic computing. The conductance decrease can be observed during electrical body force due to electrode metallization on the cathode and anode, which results in oxidation and reduction. Cu ion movement plays an important role during electroosmotic flow, resulting in ion concentration polarization and electrode metallization. The anode electrode biased with a positive voltage releases Cu²⁺ ions in the ionic liquid, and OH⁻ ions move toward the anode and form CuOH₂. In addition, the cathode was biased with a negative voltage, where Cu²⁺ ions in the aqueous electrolyte were reduced to Cu. In this process, ion flow increases in the beginning and saturates beyond the critical voltage point. Due to diffusion of the concentration gradient flux, ionic flow decreases, creating a high resistance state (metallization process). After changing the
voltage polarity, \(Cu^{++}\) ions will move in the opposite direction, and the conduction filament will break. This process will repeat during each voltage sweep and results in a conductance decrease due to electrode metallization.

Electrical characterization

The measured multistate resistive switching shown in Fig. 3b, c shows that conductance tuning can be observed with each voltage sweep. Hydration reactions hardly occur between the interface of PDMS and IL BMIM FeCl_4; for this reason, the surface charges of IL BMIM FeCl_4 on the channel wall are negligible, and ionic movement is directed in the presence of electrical body force, as shown in Fig. 3a. Hence, we infer that a positive voltage will result in an electrical body force that exists only within the liquid medium and points from the H_2O side of the device to the IL BMIM FeCl_4 side, as illustrated in Fig. 3a. This force pushes the H_2O against the IL BMIM FeCl_4, as shown in Fig. 3a, and conductance is tuned under continuous voltage sweeps due to the smaller resistivity of the H_2O compared to IL_18, as shown in Fig. 3b, c. The above discussion indicates that the discrete channel is equivalent to an interfacial memristor_18, in which under negative and positive voltage region current decreases with voltage sweeps and conductance of the device decreases Fig. 3b, c. Thus, the electrical characteristics of the soft and flexible discrete channel device can be related to synapses in which the conductance decrease can be related to ion metallization_18. The measured current under a ten triangular voltage sweep with a period of 1.2 seconds and conducting current decreases with time, as shown in Fig. 3d, e.

Spike rate-dependent plasticity

The spike rate-dependent plasticity (SRDP) of the multistate resistive switching device in the discrete channel was examined by varying the pulse width, pulse amplitude, and frequencies_39,41. The synaptic weight can be modulated by the successive stimuli of externally applied pulses of different widths of 400 \(\mu\)s, 600 \(\mu\)s, 800 \(\mu\)s, and 1 ms by keeping a constant pulse amplitude of 1.5 V, as shown in Fig. 3f. The pulse width of 400 \(\mu\)s shows no obvious decrease in the current (93–87 \(\mu\)A). The increase in pulse width up to 1 ms results in a significant change in current from 93 to 19 \(\mu\)A as compared to pulse widths of 400, 600, and 800 \(\mu\)s. Different voltage amplitudes of 1.5, 1.2, 0.9, 0.7, and 0.3 V with a pulse width of 1 ms, the current decreases from 94 to 12 \(\mu\)A, as illustrated in Fig. 3g, which corresponds to a lower electrical body force between the interface of IL BMIM FeCl_4 and H_2O at a lower voltage compared to a higher voltage. The frequency test is performed using a continuous pulse train on the optimized pulse width of 1 ms and amplitude of 1.5 V, as shown in Fig. 3h. The frequency range of 1.1 Hz shows a very small current variation under a continuous pulse train. On the other hand, by increasing the frequency range up to 7.8 Hz, the current decreasing rate is larger (93 to 18 \(\mu\)A) compared to the previous conditions with lower frequencies (1.1, 2.4, and 4.6 Hz), as shown in Fig. 3h. The performance of neuromorphic resistive memory devices is discussed in Supplementary Table S1.

Memory retention

This experiment demonstrates the process of memory retention of the multistate resistive switching device. Initially, by applying the input pulses to set the device in high resistance state (HRS), as shown in Fig. 3i. Then, every 500 s, the conductivity was measured by applying 1.5 V with a pulse width of 1 ms. The current increases or recovers by applying the pulses after every 500 s. The neuromorphic device recovers to its initial state of low resistance state (LRS) after 2000 s. The device recovers its state from HRS to LRS, and this phenomenon can be related to the forgetting of human memory_42. Short-term memory (STM) is an important feature of the human brain, which provides information loss at a particular time_43. Similarly, it is an important feature to mimic forgetting behavior for electronic synapse devices_44, as shown in Fig. 3i. The switching transaction by applying input pulses to change the device state from LRS to HRS is similar to the short-term depression (STD)_45,46.

Bending and stretching

The more sophisticated pulse scheme was implemented to mimic the SRDP, in which the current was obtained by applying 30 consecutive pulses with an amplitude of \(\pm 1.5\) V and pulse width of 1 ms with a duty cycle of 50\%, as shown in Fig. 4a. The gradual variation in the current with pulses is similar to a variable synaptic weight in bio synapses. In the IL BMIM, FeCl_4 and H_2O discrete channel synaptic devices behave like brain neuronal activation, in which a similar phenomenon also exists after inverting the polarity of voltage, as shown in Fig. 4a. The scaling possibility of the device depends on the PDMS and ionic liquid (EMIM FeCl_4), which helps to form the device in any shape by controlling the length, width, thickness, and flexibility. This work provides a demonstration of the adoption of flexible discrete channel resistive memory architectures for neuromorphic computing. This experiment is based on the demonstration of the device’s flexibility to intergrade the discrete channel device in brain shape-mimicking robotics_31. The bending and stretchability nature of the device was due to the IL BMIM FeCl_4 and PDMS substrate. In the bending state, the device can be bent from flat down to a 1-m bending curvature, and in the stretching state, the device can be stretched up to a 10% strain limit (further stretching will affect the device performance and stability). The device
shows stable analog resistive switching behavior and can be used for neuromorphic computing in soft robotics in bending and stretching states, as shown in Fig. 4b, c. The detailed demonstration of the proposed device flexibility can be found in supplementary Movie S1.

Convolutional neural network simulation

The proposed device was operated with neuromorphic functionality, and the working data were obtained. To evaluate the proposed device, the simulation parameters for a convolutional neural network (CNN) can be easily obtained from these data. Using these parameters for CNN simulation, CIFAR-10 recognition data were used, in which the input consists of 32 × 32 × 3. The first and second convolutional layers consist of 128 convolutional kernels of size 3 × 3 and subsampling data with size 2 × 2 after using two convolutional layers. The third and fourth convolutional layers consist of 256 convolutional kernels of size 3 × 3. Again, we subsample data with size 2 × 2 after using two convolutional layers. The fifth and sixth convolutional layers consist of 512 convolutional kernels of size 3 × 3. The feature map was connected to 2 fully connected layers for classification. The output layer is composed of 10 neurons for classification. In summary, 6 convolutional layers are used to extract features, and the last 2 fully connected layers are used to classify features, as shown in Fig. 4d. The maximum conductance and minimum conductance of the device are 1.1400e−6 and 4.08 × 10−5, respectively, with an on/off ratio of ~5.4474, and nonlinearity for positive and negative pulse data is 2.23 and 2.81, respectively. As shown in Fig. 4e, the accuracy of the neural network is 84% and converges to 83% in epoch 20. A CNN is designed as shown in Fig. 4d, using 6 convolutional layers and 2 fully connected layers.
The input image is CIFAR-10 data that have 10 classes. For using CNN, our pursuit device array method is a parallel-read-out analog eNVM-based pseudo-crossbar, and details are discussed in Supplementary Figs. S1 and S2. The batch size is 200, and the epoch is 100. Based on these data, we trained kernels and synapses in all layers to minimize the error between the real output and predicted output. For comparison of a real case, we also simulated the ideal device using a linear function. As shown in Fig. 4e, the ideal device presents a maximum accuracy of ~84.23% and converges to 84% in epoch 20. The hardware implementation of the CNN is given in Supplementary Figs. S1 and S2. The device shows stable cycle-to-cycle endurance repeatability, which is one of the most important parameters for on-chip training, as shown in Fig. 4f.

Spike time-dependent plasticity

The spike time-dependent plasticity (STDP) rule helps to illustrate the practicability of the neuromorphic device for biological synapses. We designed the pulse train, which consists of different amplitudes (+1.2, −1.2, −1, −0.8, −0.6, −0.3, and −0.1), to perform antisymmetric Hebbian as given in Fig. 4g, and a pulse scheme (−1.2, 1.2, 1, 0.8, 0.6, 0.3, and 0.1) was used to perform antisymmetric anti-Hebbian as given in Fig. 4h, where the pulse width is 600 µs and pulse off internal is 1 ms. The pre- and postsynaptic pulses combined to form a resulting signal more than the threshold voltage, which results in device conductance weakening or strengthening with the respective relative time interval Δt, where the device conductance (ΔW) modulation is a function of the time interval (Δt) between pre- and postsynaptic spiking. During $\Delta t > 0$, prespike proceeds postspike, which results in potentiation, and conversely, for $\Delta t < 0$, synaptic weight decreases (depression) due to postspike proceeds pre-spike. The asymmetric Hebbian rule and the anti-symmetric anti-Hebbian rule were performed using a flexible discrete channel resistive memory device, showing conductance change as a function of time interval Δt between the pre- and postspiking pulse. The STDP behavior of discrete channel resistive memory devices using different time intervals shows similar behavior as biological synapses.

Conclusion

In summary, we have addressed the key challenges in the use of soft and flexible multistate resistive switching in discrete channel device as a synapse by introducing a viscous IL BMIM FeCl$_3$ and H$_2$O for mimicking various shapes for the artificial intelligent neuromorphic system. The working mechanism was based on the ion 11 concentration polarization within the channel, which can be modulated through the electrical input signal. In this way, memorable conductance could be tuned by changing pulse width, frequency, and pulse amplitude. The SRDP and STDP behavior shows high stability to perform electronic synapses. The analog weight change behavior demonstrated a stable endurance performance with our discrete channel memristor. In the flexibility test, highly stable performance was archived under mechanical deformation. The proposed discrete channel synapse operating performance was evaluated using CIFAR-10 image recognition for system-level CNN simulation with an accuracy of 84%. We are sure that the paper gives insight for highly stable neuromorphic device for wearable electronic systems.

Materials and methods

Device fabrication

FeCl$_3$ and BMIM Cl were purchased from Sigma-Aldrich. Two grams of BMIM Cl was dried under vacuum in a round bottom flask placed in an oil bath at 120 °C. FeCl$_3$ (1.86 g) was dried at 120 °C, and added to a flask containing BMIM Cl. The solution was placed again in an oil bath containing BMIM Cl and FeCl$_3$ with a molar ratio of 1:1 and stirred under vacuum for 24 h. PDMS was purchased from Dow Corning. The curing agent and PDMS were mixed in 1:1, and the mold was prepared by placing a thin wire with a thickness of 1.5 mm and cured at 80 °C for 4 h, as shown in Fig. 1b. The length and width of the PDMS mold are 15 and 5 mm, respectively, as shown in Fig. 1b. A PDMS channel with a hole size of 1.5 mm was used to hold the IL, as shown in Fig. 1c. In the final step, IL BMIM FeCl$_3$ and H$_2$O were filled in a PDMS mold using a syringe with a volume ratio of 1:1 and two electrodes as anode and cathode used as contacts, and the liquid stopper was used on both sides to prevent the leakage of IL, as shown in Fig. 1d. The distance between both electrodes was kept at 0.5 mm to perform device characterization, as shown in Fig. 1e.

Device characterization

The neuromorphic device was analyzed with the KEY-SIGHT B2902A source measuring unit. The XPS spectrum was measured by a PHI 5600 (Physical Electronics) with an Al X-ray monochromator, which uses photoelectrons excited by X-ray emission for surface characterization up to a depth of 2–5 nm. FTIR was performed using a Bruker I.F.S. The Raman spectrum was measured using a HORIBA LabRAM HR confocal spectrometer equipped with an 800-nm-long monochromator. The He-Cd laser was shined on the surface of the sample with an excitation wavelength of 325 nm.

Acknowledgements

This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2019R1A6A1A10072987) and the Korean government (MSIP) (2020R1A2C1011433). The authors appreciate the
support by the State Key Laboratory on Advanced Displays and Optoelectronics Technologies HKUST for material processing and characterization.

Author details
1 Department of Ocean System Engineering, Jeju National University, 102 Jejudaehakro, Jeju 63243, Republic of Korea. 2 Department of Electrical and Computer Engineering, Khalifa University, Abu Dhabi 127788, UAE.
3 System on Chip Center, Khalifa University, Abu Dhabi 127788, UAE.
4 Department of Electronics and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
5 State Key Laboratory on Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong. 6 Basik School of Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA.

Author contributions
M.U.K. fabricated the sensor and performed the characterization, developed the experimental setups, executed the tests, and recorded the results. M.Y.C. and C.M. F. performed the material synthesis and characterization. J.K. and J.B. performed the neuromorphic simulation. M.U.K., J.X., M.Y.C., C.M.F., O.M.S., R.A.S., N.P.K., B.M., J. B., and H.S.K. prepared the manuscript draft. J.B. supervised the research.

Conflict of interest
The authors declare no competing interests.

Supplementary information
The online version contains supplementary material available at https://doi.org/10.1038/s41178-022-00390-2.

Received: 29 December 2021 Revised: 28 February 2022 Accepted: 18 April 2022 Published online: 26 May 2022

References
1. Choi, Y., Oh, S., Qian, C., Park, J.-H. & Cho, J. H. Vertical organic synapse expandable to 3D crossbar array. Nat. Commun. 11, 4595 (2020).
2. Wang, Z. et al. Toward a generalized Bienenstock-Cooper-Munro rule for spatiotemporal learning via triplet-STDP in memristive devices. Nat. Commun. 11, 1510 (2020).
3. Khan, M. U. All Printed Resistive Switching Memory Devices Based on Solution Processed Materials for Wearable Electronics. Master’s thesis, Graduate School of Jeju National University (2019).
4. Yao, P. et al. Face classification using electronic synapses. Nat. Commun. 8, 15199 (2017).
5. Wu, C., Kim, T. W., Choi, H. Y., Strukov, D. B. & Yang, J. J. Flexible three-dimensional artificial synapse networks with correlated learning and trainable memory capability. Nat. Commun. 8, 752 (2017).
6. Ryu, J. et al. Zinc-tin oxide synaptic device for neuromorphic engineering. IEEE Access 8, 130678–130686 (2020).
7. Khan, M. U., Hassan, G., Raza, M. A., Bae, J. & Kobayashi, N. P. Schottky diode based resistive switching device based on ZnO/PEDOT: PSS heterojunction to reduce sneak current problem. J. Mater. Sci.: Mater. Electron. 30, 4607–4617 (2019).
8. Khan, M. U., Hassan, G. & Bae, J. Flexible resistive switching memory with a Schottky diode function based on a zinc oxide/methylene blue heterojunction. J. Electron Mater. 49, 4754–4772 (2020).
9. Khan, M. U., Hassan, G. & Bae, J. Highly bendable asymmetric resistive switching memory based on zinc oxide and magnetic iron oxide heterojunction. J. Mater. Sci.: Mater. Electron. 31, 1105–1115 (2020).
10. Hussain, M. M. & El-Atab, N. J. 3D materials show brain-like learning. Nat. Electron. 1, 436–437 (2018).
11. Saqib, Q. M., Khan, M. U. & Bae, J. In Polymer Nanocomposite Materials 211–246 (2021).
12. Minniakhunov, A. A. et al. Parylene-based memristive devices with multi-level resistive switching for neuromorphic applications. Sci. Rep. 9, 10800 (2019).
13. Hassan, G., Khan, M. U. & Bae, J. Solution-processed flexible non-volatile resistive switching device based on poly(3,9-di-n-octyfluorenyl)-2,7-diyl-alt-(benzo[2,1,3]thiadiazol-4-8-diyldi)polyvinylpyrrolidone composite and its constructive mechanism. Appl. Phys. A 125, 18 (2018).
14. Khan, M. U., Hassan, G., Raza, M. A. & Bae, J. Bipolar resistive switching device based on N,N′-bis(3-methylphenyl)-N,N′-diphenylbenzidine and poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)/poly(vinyl alcohol) bilayer stacked structure. Appl. Phys. A 124, 725 (2018).
15. Zhu, L. Q., Wan, C. J., Guo, L. O., Shi, Y. Y. & Wan, Q. Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat. Commun. 5, 3158 (2014).
16. Seo, S. et al. Artificial van der Waals hybrid synapse and its application to acoustic pattern recognition. Nat. Commun. 11, 9396 (2020).
17. Khan, M. U., Hassan, G. & Bae, J. Nonvolatile resistive switching based on zinc oxide dioxide poly(4-vinylphenol) nano-composite. Appl. Phys. A 125, 378 (2019).
18. Zhang, P. et al. Nanochannel-based transport in an infiltrable memristor can emulate the analog weight modulation of synapses. Nano Lett. 19, 4279–4286 (2019).
19. Khan, M. U., Hassan, G. & Bae, J. Resistive switching memory utilizing water and titanium dioxide thin film Schottky diode. J. Mater. Sci. Mater. Electron. 30, 18744–18752 (2019).
20. Hassan, G., Bae, J., Khan, M. U. & Ali, S. Resistive switching device based on water and zinc oxide heterojunction for soft memory applications. Mater. Sci. Eng. B 246, 1–6 (2019).
21. Khan, M. U., Hassan, G. & Bae, J. Soft ionic liquid based resistive memory characteristics in a two terminal discrete polydimethylsiloxane cylindrical microchannel. J. Mater. Chem. C 8, 13368–13374 (2020).
22. Chen, Y. et al. A tough nitric oxide-eluting hydrogel coating suppresses neointimal hyperplasia on vascular stent. Nat. Commun. 12, 7079 (2021).
23. Ikeda, M. et al. Installing logic-gate responses to a variety of biological substances in supramolecular hydrogel–enzyme hybrids. Nat. Chem. 6, 511–518 (2014).
24. Deyab, M. A. & Mohsen, Q. Corrosion mitigation in desalination plants by ammonium-based ionic liquid. Sci. Rep. 11, 21435 (2021).
25. Kaczmarek, B., Nadkina, K. & Owczarek, A. in Hydrogels Based on Natural Polymers (ed. Chen, Y.) 151–172 (Elsevier, 2022).
26. Li, W. et al. Polyelectrolyte-based physical adhesive hydrogels with excellent mechanical properties for biomedical applications. J. Mater. Chem. B 6, 4799–4807 (2018).
27. Ying, B. & Liu, X. Skin-like hydrogel devices for wearable sensing, soft robotics and beyond. Science 24, 103174 (2021).
28. Wang, D. et al. Recent advanced applications of ion-gel in ionic-gated transistors. npj Flex. Electron. 5, 13 (2021).
29. Koo, H.-J., Sc, J.-H., Dickey, M. D. & Velev, O. D. Towards all-soft-matter circuits: prototypes of quasi-liquid devices with memristor characteristics. Adv. Mater. 23, 3559–3564 (2011).
30. Ananthakrishnan, A., Du, X. & Allen, M. G. Water-based resistive switches for neuromorphic long-range connections. J. Phys. D: Appl. Phys. 54, 225104 (2021).
31. Kim, D. & Lee, J. S. Liquid-based memory and artificial synapse. Nanoscale 11, 9726–9732 (2019).
32. Khan, M. U. et al. Soft and flexible: core-shell ionic liquid resistive memory for electronic synapses. Microsyst. Nanoengineering 7, 78 (2021).
33. Desai, T. R. et al. Synthetic learning functionalities of inverse biomemristive device based on typress for artificial intelligence application. J. Mater. Res. Technol. 11, 1100–1110 (2021).
34. Fu, T. et al. Self-sustained green neuromorphic interfaces. Nat. Commun. 12, 3351 (2021).
35. Allah, S. et al. Experimental investigations on the regeneration of desulfurized 1-butyl-3-methylimidazolium tetrachloroferrate [Bmim][FeCl4] and 1-butyl-3-methylimidazolium thiocyanate [Bmim][S.C.N] ionic liquids: a raman spectroscopic study. J. Raman Spectrosc. 51, 546–554 (2020).
36. Yassin, F. A. et al. Highly effective ionic liquids for biodiesel production from waste vegetable oils. Egypt. J. Pet. 24, 103–111 (2015).
37. Calisi, N. et al. Temperature and angle resolved XPS study of BMIm Cl and BMIm FeCl4. J. Mater. Chem. C 8, 1105–1115 (2020).
38. Yassin, F. A. et al. Highly effective ionic liquids for biodiesel production from waste vegetable oils. Egypt. J. Pet. 24, 103–111 (2015).
39. Calisi, N. et al. Temperature and angle resolved XPS study of BMIm Cl and BMIm FeCl4. J. Electron Spectrosc. Relat. Phenom. 247, 147054 (2021).
40. Wang, G. et al. Magnetic mesoporous carbon nanospheres from renewable plant phenol for efficient hexavalent chromium removal. Microporous Mesoporous Mater. 310, 110623 (2021).
41. Adam, G. C., Khiat, A. & Prodromakis, T. Challenges hindering memristive neuromorphic hardware from going mainstream. Nat. Commun. 9, 5267 (2018).
40. Yang, Y. et al. Observation of conducting filament growth in nanoscale resistive memories. *Nat. Commun.* **3**, 732 (2012).

41. Shaban, A., Bezugam, S. S. & Suri, M. An adaptive threshold neuron for recurrent spiking neural networks with nanodevice hardware implementation. *Nat. Commun.* **12**, 4234 (2021).

42. Moon, J. et al. Temporal data classification and forecasting using a memristor-based reservoir computing system. *Nat. Electron.* **2**, 480–487 (2019).

43. Li, C. et al. Long short-term memory networks in memristor crossbar arrays. *Nat. Mach. Intell.* **1**, 49–57 (2019).

44. Abbas, Y. et al. Compliance-free, digital S.E.T. and analog RESET synaptic characteristics of sub-tantalum oxide based neuromorphic device. *Sci. Rep.* **8**, 1228 (2018).

45. Xu, Z. et al. Ultrathin electronic synapse having high temporal/spatial uniformity and an Al2O3/graphene quantum dots/Al2O3 sandwich structure for neuromorphic computing. *NPG Asia Mater.* **11**, 18 (2019).

46. Ohno, T. et al. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. *Nat. Mater.* **10**, 591–595 (2011).

47. Peng, X., Huang, S., Jiang, H., Lu, A. & Yu, S. DNN+ NeuroSim V2.0: an end-to-end benchmarking framework for compute-in-memory accelerators for on-chip training. *IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.* **40**, 2306–2319 (2020).

48. Kim, S. et al. Analog synaptic behavior of a silicon nitride memristor. *ACS Appl. Mater. Interfaces* **9**, 40420–40427 (2017).

49. Preziosa, M. et al. Spike-timing-dependent plasticity learning of coincidence detection with passively integrated memristive circuits. *Nat. Commun.* **9**, 5311 (2018).

50. Ma, C. et al. Sub-nanosecond memristor based on ferroelectric tunnel junction. *Nat. Commun.* **11**, 1439 (2020).

51. Yan, X. et al. Memristor with Ag-cluster-doped TiO2 films as artificial synapse for neuroinspired computing. *Adv. Funct. Mater.* **28**, 1705320 (2018).