Geosphere Protection on the Base of Foam Building Systems

L Svatovskaya1, M Sychov2, I Drobyshev2

1Emperor Alexander I St.-Petersburg State Transport University (PGUPS), Moskovsky pr. 9. St.-Petersburg, 190031, Russia
2St.-Petersburg State Institute of Technology (Technical University), Moskovsky pr. 26. St.-Petersburg, 190031, Russia

E-mail: lbsvatovskaya@yandex.ru

Abstract. Geosphere purification from pollutions demands new solutions. The new technology application is one of them. It is based on new geoecoprotective properties of soils in building systems. The main aim of the study is to present a new technology of geosphere protection both for strengthening and detoxication of soils. This technology is to use building foam on the protein base. Experimental methods were carried out during the research. Taking into account the results of the experiments, two different techniques of foam application in building systems have been developed. The first one is to use foam concrete on the cement base. Due to its high flowability foam cement can be injected into a soil and after hardening the system is like the load bearing joint which has absorption properties. The second technique is to produce the foam soil cement material which results in detoxication during its hardening. Technical and geoecoprotection properties of both the foam soil cement material and the load bearing joint are described in the paper.

1. Introduction

There are different problems of soil strengthening as geosphere protection technology during construction but the most important of them is ignoring lithosphere pollution. Moreover, some strengthening agents are dangerous to lithosphere. Inorganic material like cement is considered to be good one for strengthening. What is more, it is safe to lithosphere. Detoxicating properties of cement systems have been already known [1-6]. Now foam cement systems can be used for soil strengthening and detoxication due to their good technical properties, e.g. high flowability.

The main aim of the paper is to present two techniques of foam cement use both for strengthening and detoxication of soils as a protector of geosphere. The foam cement mixture forms the load-bearing joint without mixing with a soil after cement hardening while the foam soil cement material is produced and hardened by mixing with a soil. The first technique is soil strengthening with the use of load bearing joints and it is equivalent to reinforcement and detoxication of soils by means of foam concrete. The second technique is to mix a soil with foam cement. The material obtained is like foam concrete but it is the foam soil concrete (material). When applying this technique pollution detoxication occurs because of the material hardening. So, detoxication must take place when applying the first and the second technologies, with heavy metal ions being detoxicated through geoecochemical reactions. In the case of the use of the load-bearing joint which has an absorption ability during its operation heavy metal ions can be absorbed by an artificial stone like foam concrete.
When applying the foam soil cement material heavy metal ion detoxication takes place during hardening process. It should be noticed that in both cases the detoxicated products are inside of an artificial stone. Such technologies are named geosphere preservation technologies on the base of building systems. That is why foam cement use technology both for strengthening and detoxication is progressive in the terms of geoecoprotective properties of building systems. The Table 1 presents two techniques of foam system use for geosphere protection.

Table 1. Foam systems for geosphere protection.

Foam systems	Object of an impact	Results of an impact	Impliable mechanism of an impact	Technique of a foam system use
1) foam cement or foam concrete	sandy soil as the load bearing joint in a soil	1. protection from heavy metal ion pollution	1. formation of substances with very low solubility product	injection of foam cement into a soil due to high flowability
		2. strengthening of sandy soils	2. formation of heavy metal ion complex with protein foam	
			3. strengthening thanks to formation of the load bearing joint and foam concrete hardening	
2) foam soil cement material	soil, void cement material	both strengthening and detoxication of soil systems	1. cement hardening	mixing with a soil
			2. formation of substances with very low solubility product	
			3. formation of heavy metal ion complex with protein foam	

However, foam concrete and foam cement are known to have brittleness and it is possible to raise durability of the material by means of crack resistance increase. On the other hand, detoxication can be increased using a special additive. The Table 2 presents the ideas of improvement of foam concrete properties such as bending strength and detoxication ability.

Table 2. Substances used to improve the properties of foam systems.

Property to be improved	Substances used for improvement	Mechanism of the action
bending strength	substances containing Mg(II), Al(III)	electron nature of cations Mg(II) – sp² and Al(III) – sp³ – structural motives possibilities to obtain bonds and contacts with solid phases Possible reactions: 1)3Cu²⁺+2PO⁴³⁻=Cu₃(PO₄)₂↓ 2)3Pb²⁺+2PO⁴³⁻=Pb₃(PO₄)₂↓
detoxication	substances containing amylose (natural product such as starch) Na₃PO₄	

It is important to say that Na₂CO₃, Na₃PO₄ can increase detoxicating properties of foam systems due to sediment formation. The base of such an increase is very low solubility product for Cu₃(PO₄)₂ – 1.26·10⁻³⁷; for Pb₃(PO₄)₂ – 7.9·10⁻⁴²; for Cd₃(PO₄)₂ – 2.5·10⁻³³.
2. Methods
The experimental methods were used. Protein foam, cement and sand were mixed according to the standards of the Russian Federation. Then for strengthening and detoxication the model soil system was saturated in two different techniques:

1. Foam concrete on the cement base was injected into the sandy soil in any way. The model soil was polluted by heavy metal ions such as Cd(II), Cu(II), Pb(II) with nearly 1000 TC (tolerable concentration, mg/kg): for Cu(II) – 3, for Pb(II) – 20 (32), for Cd(II) – 0.5. After foam concrete hardening the systems were watered. After 28 days the aqueous extract was taken and examined for heavy metal ion presence by means of selected electrodes. Foam concrete was used without any additives to improve bending strength (samples 40x40x160 mm), while the other samples contained additives up to 5% of the cement mass to increase crack resistance and up to 5% of substances to raise detoxication. 28 days later the samples were tested.

2. Foam and cement were mixed with the soil polluted by heavy metal ions such as Cu(II), Cd(II) with nearly 1000 TC. Then the foam soil cement material hardened and after 28 days the aqueous extract was taken and tested using selected electrodes for heavy metal ion presence. Substances which increase crack resistance and detoxication were added. 28 days later all the samples were examined. The Table 3 demonstrates the techniques of foam building system use in soils.

Technique of a foam system production	Technique of the interaction with the soil
1. foam concrete with cement	injection into the sandy soil due to high flowability
2. foam soil concrete material	mixing foam cement concrete with any soil

3. Results and discussion
The Tables 4, 5 and 6 illustrate the results of the research.

Examples of the foam concrete mixture per 1 m³ of the material	Compressive strength of the samples, MPa	Heavy metal ion pollution in the soil	Tolerable concentration (TC), g/t	Polluted soil, nearly 1000 TC
1. average density – 0,500 t/m³	1.5-1.7	Cu(II)	3	heavy metal ions were not found in the aqueous extract
Cement – 320 kg		Cd(II)	0.5	heavy metal ions were not found in the aqueous extract
Sand – 130 kg		Pb(II)	32	heavy metal ions were not found in the aqueous extract
Protein foam additive – 1.8 litre Water for high flowability				
2. average density – ≈ 0,800 t/m³	≈2-3.5	Cu(II)	3	heavy metal ions were not found in the aqueous extract
Cement – 460		Cd(II)	0.5	heavy metal ions were not found in the aqueous extract
Sand – 280		Pb(II)	32	heavy metal ions were not found in the aqueous extract
Protein foam additive – 1.6 litre Water for high flowability				
Table 5. Properties of the protein foam concrete having an average density 0,600 t/m³ with the complex additive.

Additive	Density of the foam soil mixture kg/m³	w/c	Flowability, cm	Bending strength, MPa 28 days	Heavy metal ions in the aqueous extract
Complex: MgSO₄·7H₂O industrial starch – 3%	740	0,42	24	1,3/100	not found
	787	0,55	24	2,79/214,4	not found

Table 6. Properties of the protein foam soil cement material having an average density 0,800 t/m³ with Al₂O₃.

Additive	ΔH°₂⁹⁸, kJ/mol	Density of the foam concrete mixture, g/m³	w/c	Flowability, cm	Bending strength, MPa/%	Heavy metal ions in the aqueous extract
-	-	970	0,38	20	1,36/100	not found
Al₂O₃ – 3%	-1676,8	970	0,38	20	1,78/130	not found

Table 7. Improvement of the foam soil cement material having detoxication properties.

Foam soil system, average density, kg/m³	Heavy metal ions in lithosphere	Additive in the foam soil cement mixture, 1-3%	Detoxication properties of the foam soil cement material, g/kg/%
400-600	Cu(II);Cd(II);Pb(II)	-	≈0,3/100
400-600	Cu(II);Cd(II);Pb(II)	Na₂CO₃; Na₃PO₄	≈0,45/150

According to the Tables 4, 5, 6, 7 it was possible both to strengthen and detoxicate the soil as well as to improve the results. The Table 8 shows that the reactions between cement substances and foam resulted in formation of the substances with very low solubility product, less than 10⁻¹⁵. These substances were heavy metal ion hydrates and hydroxides. What is more, protein took heavy metal ions in the complex. That is why detoxication effects were better. In real railway conditions there are nearly 20-200 TC pollutions and the obtained result is quite good for detoxication.

Table 8. Foam soil cement systems and heavy metal ion reactions.

Reactions	ΔG of the reaction	Solubility product (SP), hydroxides
2(CaO·SiO₂·H₂O)(s)+2Cd²⁺(l)+H₂O(l)=	ΔG°₂⁹⁸<0	Cd(OH)₂=3.4·10⁻¹⁵
CdO·SiO₂·H₂O(s)+Cd(OH)₂(s)+SiO₂·H₂O(s)+2Ca²⁺(l)		
2(CaO·SiO₂·H₂O)(s)+2Cu²⁺(l)+2H₂O(l)=	ΔG°₂⁹⁸<0	Cu(OH)₂=5.6·10⁻²⁰
CuO·SiO₂·2H₂O(s)+Cu(OH)₂(s)+SiO₂·H₂O(s)+2Cu²⁺(l)		
2(CaO·SiO₂·H₂O)(s)+2Pb²⁺(l)=PbO·SiO₂+Pb(OH)₂	ΔG°₂⁹⁸<0	Pb(OH)₂=1.2·10⁻²⁰
SiO₂·H₂O+2Ca²⁺		
As a model solution contained up to 1000 TC of Cd(II) or Cu(II) the soil was mixed with foam cement. Then the soil sample (1m of the surface depth) was taken and tested by selected electrodes. Cd(II), Cu(II) ions were not found. The papers [6-10] examine different problems of the solid body surface and according to the papers [11-20] technologies which are capable to affect a surface should be recognized progressive and useful.

4. Conclusions
1. Foam building systems on the protein base are suggested both for detoxication and strengthening of a soil.
2. To detoxicate heavy metal ions such as Cu(II), Cd(II), Pb(II) properties of the foam soil cement systems can be increased using some additives, namely: Na₂CO₃, Na₃PO₄.
3. Bending strength of the foam soil systems can be improved using Al(III) and Mg(II)-based additives.

5. References
[1] Svatovskaya L B, Kabanov A A, Sychov M M 2017 The Improvement of Foam Concrete Geocoprotective Properties in Transport Construction IOP Conference Series: Earth and Environmental Science 90 1755-1315 90 012010 (Larisa Svatovskaya et al 2017 IOP Conf. Ser.: Earth Environ. Sci. 90 012010) DOI: 10.1088/1755-1315/90/1/012010
[2] Svatovskaya L B, Kabanov A A, Sychov M M 2017 Lithosynthesis of the properties in the transport construction on the cement base IOP Conference Series: Earth and Environmental Science 90 1755-1315 90 012009 (Larisa Svatovskaya et al 2017 IOP Conf. Ser.: Earth Environ. Sci. 90 012009) DOI: 10.1088/1755-1315/90/1/012009
[3] Svatovskaya L B, Kabanov A A, Sychov M M 2017 Soling, Aerating and Phosphating for Soil Strengthening and Detoxication Procedia Engineering 189 398-403 DOI:10.1016/j.proeng.2017.05.063
[4] Svatovskaya, L B, Urov O V, Kabanov A A 2017 Geocoprotective Technology of Transport Construction using Silica Sol Absorption Method Procedia Engineering 189 454-458 DOI: 10.1016/j.proeng.2017.05.073
[5] Svatovskaya L B, Shershneva M V, Baidarashvili M M, Yakimova N I, Khitrov A V 2004 Foam concrete construction demolished waste Proceedings of the International Conference on Sustainable Waste Management and Recycling: Construction Demolition Waste, London pp 199-203
[6] Svatovskaya L B, Sakharova A S, Baidarashvilly M M, Petriaev A V 2014 Building wastes and cement clinker using in the geocoprotective technologies in transport construction Proceedings of the 14th International Conference of International Association for Computer Methods and Recent Advances in Geomechanics, Kyoto pp 152
[7] Sychova A M, Svatovskaya L B, Mjakin S V, Vasiljeva I V 2009 Modification of fillers for cements (Book Chapter) Electron Beam Modification of Solids: Mechanisms, Common Features and Promising Applications pp 35-37
[8] Sychova A M, Svatovskaya L B, Mjakin S V, Vasiljeva I V 2009 Activation of aqueous phase at cement and concrete solidification (Book Chapter) Electron Beam Modification of Solids: Mechanisms, Common Features and Promising Applications pp 39-47
[9] Maslennikova L L, Svatovskaya L B, Mjakin S V, Vasiljeva I V 2009 Activation of reactions at solid-solid interfaces. Improvement of ceramics materials (Book Chapter) Electron Beam Modification of Solids: Mechanisms, Common Features and Promising Applications pp 57-61
[10] Svatovskaya L B, Yakimova N I, Trunkskaya O Y, Rusanova E V, Krylova N B 2004 New complex ecotechnology for oil demolished waste Proceedings of the International Conference on Sustainable Waste Management and Recycling: Construction Demolition Waste, London
[11] Sychova A M, Solomahin A, Kotovich V, Svatovskaya L B, Kamenev Y 2018 Improving of the monolithic foamconcrete quality for used in the high-rise constructions E3S Web of Conferences 33, 02058 DOI: https://doi.org/10.1051/e3sconf/20183302058

[12] Gusev N, Svatovskaya L B, Kucherenko A 2018 Effect of changing of the parametrs of the cable network of monitoring systems of high-rise buildings on the basis of string converters on their operability E3S Web of Conferences 33 02069 DOI: https://doi.org/10.1051/e3sconf/20183302069

[13] Sychova A, Sychov M, Rusanova E 2017 A Method of Obtaining Geonoiseprotective Foam Concrete for Use on Railway Transport Procedia Engineering 189 pp 681-687 DOI: 10.1016/j.proeng.2017.05.108

[14] Sychova A, Solomahin A, Hitrov A 2017 The Increase of the Durability and Geoprotective Properties of the Railway Subgrade Procedia Engineering 189 pp 688-694 DOI: 10.1016/j.proeng.2017.05.109

[15] Kavetsky A, Yakubova G, Sychov M, Lin Q, Walter G, Chan D, Yousaf S, Socarras H, Abrefah J, Bower K 2008 Tritium Charged Capacitor Nuclear Science and Engineering 159 pp 321–329

[16] Kavetsky A G, Meleshkov S P, Sychov M M 2002 Conversion of radioactive decay energy to electricity Polymers, Phosphors and Voltaics for Radioisotope Microbatteries CRC Press 1 1-38

[17] Sychov M M 2006 Modification of Zinc Sulfide Phosphors by Irradiation with Gamma-ray Photons and Electrons Semiconductors 40 9 pp 1016–1020

[18] Bakhmetyev V V, Mjakin S V, Korsakov V G, Abyzov A M and Sychov M M A 2011 Study of the Surface and Luminescence Properties of ZnS:Mn2+ Nanosized Phosphors Glass Physics and Chemistry 37 5 549–554

[19] Sychov M M, Ogurtsov K A, Lebedev V T, Kulvelis Yu V, Török Gy, Sokolov A E, Trunov V A, Bakhmetyev V V, Kotomin A A, Dushenok S A, Kozlov A S 2012 Effect of the Cu Content and ZnS Treatment on the Characteristics of Synthesized ZnS:(Cu, Cl) Electroluminescent Phosphors Semiconductors 46 5 pp 696–700

[20] Gravit M V, Gumenjuk V I, Sychov M M, Nedychkin O 2015 Estimation of the pores dimensions of intumescent coatings for improvement of the fire resistance of building constructions Procedia Engineering 117 119 – 125

[21] Mjakin S V, Minakova T S, Bakhmetyev V V, Sychov M M 2016 Effect of the surfaces of Zn3(PO4)2:Mn2+phosphors on their luminescent properties // Russian Journal of Physical Chemistry A 90 1 pp 240-245

[22] Myakin S V, Sychov M M, Vasina E S, Ivanova A G, Zagrebel’nyi O A, Tsvetkova I N, Shilova O A 2014 Relationship between the composition of functional groups on the surface of hybrid silicophosphate membranes and their proton conductivity Glass Physics and Chemistry, 40 1 pp 97–98