Identification of a novel SDHB c.563 T > C mutation responsible for Paraganglioma syndrome and genetic analysis of the SDHB gene in China: a case report

Heye Chen 1, Wei Yao 2, Qing He 1, Xuefang Yu 2 and Bo Bian 2*

Abstract

Background: Pheochromocytoma/paraganglioma (PPGL) is a rare neuroendocrine tumor. Succinate dehydrogenase (SDH) deficiency has been confirmed to be associated with PPGL in various studies. SDHB mutations play an important role in PPGL. However, genetic screening of PPGL patients has not been widely carried out in clinics in China, and only a few related studies have been reported.

Case presentation: We report a case of a 23-year-old woman with paraganglioma (PGL) caused by a novel missense SDHB mutation, c.563 T > C (p.Leu188Pro), who presented with paroxysmal hypertension. Computed tomography (CT) and magnetic resonance imaging (MRI) revealed a PGL in the right retroperitoneum and no metastasis. The patient was treated with surgical excision and did not have postsurgerical paroxysmal hypertension. In addition, we searched the literature related to variations in SDHB genes in Chinese patients with PPGL using multiple online databases, including PubMed, China Hospital Knowledge Database and Wanfang Data. Ultimately, 14 studies (published between 2006 and 2019) comprising 34 cases of SDHB-related PGL or pheochromocytoma (PCC) were found. In total, 35 patients were enrolled in this study, and 25 mutations were identified. The common genetic alterations of SDHB in China were c.136C > T (11.4%), c.18C > A (11.4%) and c.725G > A (8.5%). Some carriers of SDHB mutations (28.1%) developed metastatic PPGL, and a high frequency of head and neck PGLs (HNPGLs) (59.4%) was reported.

Conclusions: We describe a classic case with a novel SDHB c.563 T > C mutation. Based on our literature review, common SDHB gene mutations in Chinese PPGL patients are c.136C > T, c.18C > A and c.725G > A.

Keywords: Pheochromocytoma, Paraganglioma, Succinate dehydrogenase, Mutation, Metastasis, Case report
contains two highly conserved L(I)YR motifs, is the Fe-S subunit of complex II [4]. The two L(I)YR motifs are necessary for Fe-S clusters via recruitment of the Fe-S transfer machinery [4].

In many cases, SDHB-related disease is characterized by a single tumor [5], and carriers of gene variants commonly develop extra-adrenal PGLs, PCCs and metastatic disease than do carriers of mutations in the other SDH subunits [6–8]. In addition, SDHB-related PPGLs are reported to be associated with malignancy rates as high as 7.7–97% [6–12].

At present, genetic screening of PPGL patients has not been widely carried out in Chinese clinics, and only a few related studies have been conducted. Therefore, to analyze SDHB variations in Chinese PPGL patients, we collected all literature related to SDHB variations in PPGL in Chinese people.

Case presentation
A 23-year-old female presented with complaints of paroxysmal hypertension (the highest BP was 230/180 mmHg) with palpitations, headache, diaphoresis and vomiting for 11 months. All of her sudden hypertension attacks were treated with anti hypertensive drugs. Three days prior, the patient presented to the emergency department again with paroxysmal hypertension (BP 173/139 mmHg) and the above symptoms, but obvious abnormalities were not found on physical examination. One year prior, she had undergone laparoscopic cholecystectomy for gallstones. In addition, she had no history of other systemic diseases.

After an extensive workup, the patient was found to have elevations of plasma methoxynorepinephrine and urine vanillylmandelic acid, but her plasma metanephrine level was normal (Table 1).

Subsequent CT and MRI showed a 4.6 × 3.1 cm retroperitoneal mass on the right retroperitoneum, and the boundary between the mass and the inferior vena cava (IVC) was not clear (Fig. 1). Enhanced CT scanning of the thorax, abdomen and pelvic cavities showed no metastasis. Before admission, the patient had undergone cervical CT because of the symptoms mentioned above, and the results were normal. However, considering the clinical history and inapparent bilateral adrenal glands, we favored the clinical diagnosis of retroperitoneal PGL.

The patient was given doxazosin and metoprolol for 2 weeks as preoperative preparation. Then, the patient was medically managed with surgical excision. Immunohistochemical staining: Syn and CgA were positive, Melan A, HMB45 and α-inhibin were negative, S-100 cells were positive, and the CD31 vascular endothelium marker was positive. Conclusion: right retroperitoneal PGL (Fig. 1).

To further determine the cause of the disease, we performed genetic testing with consent from the patient. Genetic testing demonstrated that the patient carried a missense mutation in exon 6 of the SDHB gene [c.563 T > C] (Fig. 2). The identified mutation was classified as likely pathogenic (class 1). This variation is novel, and there are no relevant research reports at present. Since the patient is an orphan, we could not obtain her pedigree for the SDHB-linked family.

Clinical follow-up examinations were carried out three times through telephone interviews or outpatient visits. One year after surgery, the patient did not exhibit paroxysmal hypertension (BP 90–110/60–70 mmHg) or the symptoms described above. Meanwhile, an abdominal CT scan did not indicate any masses. However, it will be necessary to perform long-term follow-up and screening of this patient over her lifetime.

Discussion and conclusion
With widespread PPGL genetic testing, the clinical manifestations of many PPGL-related genes have become well understood. Our study reports a novel SDHB c.563 T > C mutation. To date, Human Gene Mutation Database (HGDM, http://www.hgmd.cf.ac.uk/) includes 254 SDHB gene mutations, but the c.563 T > C variant has not been reported. This specific case adds to our knowledge of PCCs and PGLs and may help with genetic counseling of patients.

However, genetic screening of PPGL patients has not been widely carried out in Chinese clinics, and few related studies have been conducted. Therefore, to analyze and evaluate the variations of SDHB genes in Chinese patients with PPGL, we carried out a systematic literature review using multiple online databases, including China Hospital Knowledge Database (CNKI) (http://www.chkd.cnki.net), Wanfang Data (http://www.wanfangdata.com.cn/), and PubMed (https://www.ncbi.nlm.nih.gov/pubmed), by using the key words “SDHB,” and “China”. The references listed in the relevant studies were carefully screened to identify additional studies. In total, 15 studies (published between 2006 and 2019) were identified (Table 2), comprising 35 cases (including the current case) of SDHB-related PGL or PCC.

The patients included 35.4% (11/31) males and 64.5% (20/31) females, and the mean age at first evaluation was 31.9 ± 11.9 years (range: 12–58 years). Of the 35 patients...
diagnosed with PPGL, 54.5% (18/33) of primary tumors were in the head and neck, 9.1% (3/33) were in the adrenal gland, and 33.4% (11/33) were in an extra-adrenal gland. In addition, 9/32 (28.1%) carriers of SDHB mutations developed metastatic PPGL, including 5 cases of head and neck paragangliomas (HNPGLs), 1 case of PCC and 3 cases of extra-adrenal sympathetic paraganglioma (sPGL). Although previous studies have shown much higher rates for the development of sPGLs (approximately 60%) [7, 12, 27], the frequency of HNPGLs among SDHB mutation carriers was high in our study, at approximately 59.4%. Recently, French [28] and Dutch [11] groups published mutation studies of SDHB with proportions similar to those reported in our study, and the prevalence rates of PCC and sPGLs in their studies were 1.6 and 6.5% or 2.1 and 13.4%, respectively. There was a high proportion of index patients in previous studies, which could lead to ascertainment bias and underestimation of the proportion of HNPGLs. In addition, our review includes three HNPGL studies, which may increase the proportion of HNPGLs among SDHB mutation carriers.

In our study, 9/32 (28.1%) SDHB mutation carriers developed metastatic PGL/PCC, which included 5 cases of HNPGLs, 1 case of PCC and 3 cases of sPGLs. The rate of metastatic disease was lower than that reported in previous studies [6, 8, 9, 12]. Some have proposed that selection bias in referral-based studies is a major reason for a very high rate of malignant PGL in SDHB mutation carriers. In addition, we suggest that recurrent and malignant tumors might occur years after primary PPGL surgery; thus, the prevalence of recurrence and malignancy may be underestimated. In other words, the
discrepancy in malignancy rates may be linked to the
different follow-up times.

In addition, for HNPGL patients, the rate of metastatic
diseases was 15.6% (5/32), which was higher than the
rates observed for sPGL and PCC patients. Therefore,
patients with HNPGL have a high malignancy risk.
Moreover, a recent study reported that patients with
SDH mutation have a higher risk of later development
of metachronous tumors and recurrence than do pa-
tients without mutation in this gene [29]. In summary,
radiological screening is very important among carriers
of SDHB mutations, and follow-up of those patients, es-
specially the head and neck region, should be undertaken.

Of the 35 SDHB gene variants, we found 25 different
mutations, and SDHB pathogenic mutations included
missense mutations (n = 10), nonsense mutations (n = 6),

Reference	Year	Age	Sex	Exon	cDNA	Protein	Type	PGL/PCC	Location	Malignant disease	
[13]	2006	32	F	7	c.689G > A	p.R230H	Missense	PGL	Para-aortic abdominal	No	
	17	M	7	c.757delT	p.C253fs257X	Frameshift	PGL	Middle mediastinum	Yes		
[14]	2007	22	F	7	c.640C > T	p.Q214X	Nonsense	PCC^a	Left adrenal gland	No	
[15]	2009	15	F	2	c.136C > T	p.R46X	Nonsense	PGL^a	Postcaval abdominal	No	
	39	F	3	c.268C > T	p.R90X	Nonsense	PGL	Para-aortic abdominal	Yes		
	22	F	7	c.725G > A	p.R242H	Missense	PCC	Right adrenal gland	No		
[16]	2010	53	F	3	c.269G > A	p.R90E	Missense	PGL	HN/RCBT	No	
	36	F	6	c.597C > G	p.Y199X	Nonsense	PGL	HN/RCBT	No		
	43	F	7	c.709C > T	p.P237S	Missense	PGL	HN/RCBT	No		
	31	F	2	c.200 + 1G > C	p.?	Splice site	PGL	HN/RGT	No		
	29	F	1	c.20-22delinsC	p.L7PfsX55	Frameshift	PGL	HN/RGT	Yes		
	31	F	7	c.725G > A	p.R242H	Missense	PGL	HN/RGT	No		
	37	F	7	c.725G > A	p.R242H	Missense	PGL	HN/RGT	No		
	33	M	2	c.79C > A	p.R27X	Nonsense	PGL	HN/LCBT	No		
	38	F	6	c.597C > G	p.Y199X	Nonsense	PGL	HN/RCBT	No		
	30	F	2	c.137G > A	p.R46Q	Missense	PGL	HN/LCBT	No		
	36	F	6	c.591del C	p.S198Afs219X	Frameshift	NA	NA	NA		
	17	M	1	c.18C > A	p.A6A	Synonymous	PGL	NA	NA	NA	
[18]	2011	58	M	6	c.595C > A	p.S195R	Missense	PGL	HN	No	
	30	F	1	c.18C > A	p.A6A	Synonymous	PGL	HN	Yes		
	17	M	1	c.18C > A	p.A6A	Synonymous	PGL	HN	Yes		
	47	F	6	c.595C > A	p.S195R	Missense	PGL	HN	No		
	29	F	1	c.18C > A	p.A6A	Synonymous	PGL	HN	Yes		
	37	M	1	c.18C > A	p.A6A	Synonymous	PGL	HN	No		
[20]	2014	30	M	4	c.380T > G	p.I127S	Missense	PGL^b	Abdominal→HN	No	
	21	2015	30	NA	2	c.112delC	p.R38fs77X	Frameshift	PGL	Bladder	Yes
[22]	2015	54	M	7	c.647A > G	p.Y216C	Missense	PGL	HN	No	
	38	M	3	Del exon 1,2,3,7,8	–	Large deletion	PGL	HN	Yes		
[23]	2018	14	M	4	c.343C > T	p.R115X	Nonsense	PGL	Postcaval abdominal	No	
	32	M	5	c.541-542A > G	IVS5-2A > G	Splice site	PGL	Para-aortic abdominal	No		
[24]	2018	46	M	2	c.136C > T	p.R46X	Nonsense	PCC	Right adrenal gland	Yes	
[25]	2018	12	F	2	c.136C > T	p.R46X	Nonsense	PGL	Upper left mediastinum	No	
[26]	2019	16	F	4	c.423 + 1G > T	p.?	Splice site	PGL Retroperitoneal	No		
Current case	2019	23	F	6	c.563T > C	p.L188P	Missense	PGL Retroperitoneal	No		

^a palindromic tumors

^b multiple tumors

^{CBT} Carotid body tumor, ^{GJT} Glomus jugulare tumor, ^{GTT} Glomus tympanicum tumor, NA Not applicable.
framedshift mutations \((n = 4)\), splice site mutations \((n = 3)\), synonymous mutations \((n = 1)\), and deletions of one or more exons \((n = 1)\). Common genetic alterations of SDHB in Chinese patients included \(c.136C > T\) (11.4%), \(c.18C > A\) (11.4%) and \(c.725G > A\) (8.5%). The \(c.136C > T\) (p.R46X) mutation and the \(c.725G > A\) (p.R242H) mutation occur in the first highly conserved (I44Y45R46) motif of SDHB and the second (L240Y241R240) motif, which are essential for incorporation of the Fe-S cluster into SDHB [4, 30]. Fe-S clusters are vitally important to electron transport and function, and this mutation completely abrogates SDH activity. However, the \(c.18C > A\) (p.A6A) mutation is a synonymous mutation, and 3/4 of carriers of this variation have metastatic disease. Thus, we suggest that \(c.18C > A\) may be one of the phenotypic causes of HNPGLs.

Interestingly, in our results, three frameshift mutations \((c.757delT, c.20-22delinsC\) and \(c.112delC)\) were associated with metastatic disease. The term frameshift mutation refers to a change of the reading frame, resulting in the original gene encoding one peptide chain and the variant gene encoding a completely different peptide chain sequence. This change may render PPGL caused by frameshift mutations prone to metastasis, which highlights the necessity of follow-up for those patients.

Finally, our results have some limitations. On the one hand, few related studies have been performed in China, and some studies that lacked complete data were excluded. This inevitably led to limited case collection, which could lead to unreliable results. On the other hand, we did not perform genomic analysis of family members, which limits our ability to assess the association of PPGL morbidity with SDHB mutations. Moreover, without functional studies, we cannot determine the true pathogenicity of SDHB mutations.

In conclusion, we report a novel SDHB \(c.563\) \(T > C\) mutation and investigate SDHB mutations among PPGL patients in China in this literature review. Thus, it is necessary to develop genetic screening for PPGL patients to guide diagnosis, treatment and follow-up. Large studies of SDHB mutations are needed to analyze the characteristics of these patients in China.

Abbreviations
- PPGL: Pheochromocytoma/paraganglioma
- PGL: Paraganglioma
- PCC: Pheochromocytoma; SDH: Succinate dehydrogenase; IVC: Inferior vena cava; CT: Computed tomography; MRI: Magnetic resonance imaging; HGMD: Human Gene Mutation Database; CNKI: China Hospital Knowledge Database; HNPGLs: Head and neck paragangliomas; sPGLs: Extra-adrenal sympathetic paragangliomas

Acknowledgments
We are deeply grateful to the patient’s family for providing medical records and medical images for our research and to the clinicians for their contributions to this study.

Authors’ contributions
HC drafted the manuscript; BB and QH revised the manuscript; WY and XY performed the clinical literature review; and the authors read and approved the manuscript.

Funding
This study was funded by the Fund of Tianjin Health Planning Commission (2015KZ117). The funding bodies played no role in the design of the study, the collection, analysis, and interpretation of the data or the writing of the manuscript.

Availability of data and materials
The sequence datasets generated during the current study are not publicly available because it is possible that individual privacy could be compromised.

Ethics approval and consent to participate
All procedures involving human subjects were approved by the ethics committee of Tianjin Medical University General Hospital.

Consent for publication
The patient provided written informed consent for the publication of clinical details, and clinical images were obtained.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300070, China.
2Department of Cardiology, Tianjin Medical University General Hospital, Tianjin 300070, China.

Received: 2 March 2020 Accepted: 11 May 2020
Published online: 27 May 2020

References
1. Fishbein L, Nathanson KL. Pheochromocytoma and paraganglioma: understanding the complexities of the genetic background. Cancer Genet. 2012;205(1–2):1–11.
2. Gill AJ, Benn DE, Chou A, Clarkson A, Muljono A, Meyer-Rochow GV, et al. Immunohistochemistry for SDHB triages genetic testing of SDHB, SDHC, and SDHD in paraganglioma-pheochromocytoma syndromes. Hum Pathol. 2010;41(6):805–14.
3. Gill AJ. Succinate dehydrogenase (SDH) and mitochondrial driven neoplasia. Pathology. 2012;44(4):285–92.
4. Wall N, Singh K, Uhrigshardt H, Saxena N, Tong WH, Rouault TA. Cochaperone binding to LYR motifs confers specificity of iron sulfur cluster delivery. Cell Metab. 2014;19(3):445–57.
5. Gimenez-Roqueplo AP, Dahia PL, Robledo M. An update on the genetics of paraganglioma, pheochromocytoma, and associated hereditary syndromes. Horm Metab Res. 2012;44(5):328–33.
6. Neumann HP, Pawlu C, Peczewska M, Bausch B, McWhinnie SR, Muresan M, et al. Distinct clinical features of paraganglioma syndromes associated with SDHB and SDHD gene mutations. JAMA. 2004;292(8):943–51.
7. Benn DE, Gimenez-Roqueplo AP, Reilly JR, Bertherat J, Burgess J, Byth K, et al. Clinical presentation and penetrance of pheochromocytoma/paraganglioma syndromes. J Clin Endocrinol Metab. 2006;91(3):827–36.
8. Timmers HI, Kozupa A, Eisenhofer G, Ragyada M, Adams KT, Solli D, et al. Clinical presentations, biochemical phenotypes, and genotype-phenotype correlations in patients with succinate dehydrogenase subunit B-associated pheochromocytomas and paragangliomas. J Clin Endocrinol Metab. 2007;92(3):779–86.
9. Amar L, Bertherat J, Baudin E, Ajzenberg C, Bressac-de Paillerets B, Chabre O, et al. Genetic testing in pheochromocytoma or functional paraganglioma. J Clin Oncol. 2005;23(34):8812–8.
10. Sirrangalingam U, Walker L, Kho B, MacDonald F, Gardner D, Wilkin TJ, et al. Clinical manifestations of familial paraganglioma and pheochromocytomas in succinate dehydrogenase B (SDH-B) gene mutation carriers. Clin Endocrinol (Oxf). 2008;69(4):587–96.
11. Niemeijer ND, Rijken JA, Eijkelenkamp K, van der Horst-Schrivers ANA, Kerstens MN, Tops CMJ, et al. The phenotype of SDHB germline mutation carriers: a nationwide study. Eur J Endocrinol. 2017;177(2):115–25.

12. Jochmanova I, Wolf KI, King KS, Nambuba J, Wesley R, Martucci V, et al. SDHB-related pheochromocytoma and paraganglioma penetrance and genotype-phenotype correlations. J Cancer Res Clin Oncol. 2017;143(8):1421–35.

13. Zhou YR. Study on the gene of pheochromocytoma and the related factors of hypoxia. Doctor's thesis. Beijing: China Union Medical University; 2006.

14. Reusch J, Haag C, Raue F, Badenhoop K. Relapsing pheochromocytoma in a Chinese woman caused by a novel mutation in exon 6 of the SDHB gene: a case report. Exp Clin Endocrinol Diabetes. 2007;115(9):616–8.

15. Zheng XL, Wang WQ, Su TW, Zhou WW, Jiang L, Ning G. Mutation of SDHB gene in sporadic patients with pheochromocytoma. Chin J Endocrinol Metab. 2009;25:423–5.

16. Cha Y. Study on the pathogenicity of succinate dehydrogenase gene in the Paraganglioma of head and neck. Doctor's thesis. Beijing: Peking Union Medical College; 2010.

17. Wu DJ, Zhou XD, Gao PJ, Zhu DL. The development and verification of Gene Chip in the detection of genetic mutations of Pheochromocytoma. Chin J Clin Med. 2010;17:1–3.

18. Zu TJ, Ji MY, Yuan RT, Bu LX, Yao RY. The mutations of germline succinate dehydrogenase subunit B (SDHB) in sporadic paragangliomas. Shanghai Kou Qiang Yi Xue. 2011;20(4):413–6.

19. Wei SF. Study of clinical-pathological characteristics and related gene mutation in Head & Neck paragangliomas. Doctor's thesis. Tianjin: Tianjin Medical University, 2013.

20. Wu YQ, Que XG, He SL, Zhao LF. Metastatic paraganglioma of skull: a case report and literature review. Chin J Minim Invasive Neurosurg. 2014;19:136–7.

21. Lee CH, Cheung CY, Chow WS, Woo YC, Yeung CY, Lang BH, et al. Genetics of apparently sporadic Pheochromocytoma and Paraganglioma in a Chinese population. Horm Metab Res. 2015;47(11):833–8.

22. Zhu WD, Wang ZY, Chai YC, Wang WX, Chen DY, Wu H. Germline mutations and genotype-phenotype associations in head and neck paraganglioma patients with negative family history in China. Eur J Med Genet. 2015;58(9):433–8.

23. Huang Y, Wang LA, Xie Q, Pang J, Wang L, Yi Y, et al. Germline SDHB and SDHD mutations in pheochromocytoma and paraganglioma patients. Endocr Connect. 2018;7(12):217–25.

24. Wu K, Zhang Y, Zhang H, Tan ZH, Guo XH, Yang JM. Germline gene testing of the RET, VHL, SDHB and SDHD genes in patients with pheochromocytoma/paraganglioma. Beijing Da Xue Xue Bao. 2018;50(4):634–9.

25. Qian JH, Xu T, Cheng XY, Qin YM, Yang SW. Left superior mediastinal pheochromocytoma in children associated with SDHB gene mutation: a case report and literature review. Jiangsu Med J. 2018;44:463–5.

26. Gao Y. Clinical analysis of a novel splicing mutation of SDHB gene inducing paraganglioma near inferior vena cava. Master's thesis. Zhengzhou University, 2010.

27. Tufton N, Shapiro L, Srirangalingam U, Richards P, Sahdev A, Kumar AV, et al. Outcomes of annual surveillance imaging in an adult and paediatric cohort of succinate dehydrogenase B mutation carriers. Clin Endocrinol (Oxf). 2017;86(2):286–96.

28. Gimenez-Roqueplo AP, Caumont-Prim A, Houzard C, Hignette C, Hernigou A, Halimi P, et al. Imaging work-up for screening of paraganglioma and pheochromocytoma in SDHx mutation carriers: a multicenter prospective study from the PGL.EVA investigators. J Clin Endocrinol Metab. 2013;98(1):162–73.

29. Sen I, Young WF Jr, Kasperbauer JL, Polonis K, Harmsen WS, Colglazier JJ, et al. Tumor-specific prognosis of mutation-positive patients with head and neck paragangliomas. J Vasc Surg. 2020;71(3):1602–12.

30. Savina N, Mao N, Crooks DR, Bicketts CJ, Yang Y, Wei MH, et al. SDHB-deficient cancers: the role of mutations that impair iron sulfur cluster delivery. J Natl Cancer Inst. 2016;108(1):dvj287. https://doi.org/10.1093/jnci/dvj287.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.