The social network: Neural control of sex differences in reproductive behaviors, motivation, and response to social isolation

Noga Zilkha, Yizhak Sofer, Yael Kashash and Tali Kimchi

Abstract
Social animal species present a vast repertoire of social interactions when encountering conspecifics. Reproductive-related behaviors, such as mating, parental care, and aggression, are some of the most rewarding types of social interactions and are also the most sexually dimorphic ones. This review focuses on rodent species and summarizes recent advances in neuroscience research that link sexually dimorphic reproductive behaviors to sexual dimorphism in their underlying neuronal circuits. Specifically, we present a few possible mechanisms governing sexually-dimorphic behaviors, by hypothalamic and reward-related brain regions. Sex differences in the neural response to social isolation in adulthood are also discussed, as well as future directions for comparative studies with naturally solitary species.

Addresses
Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel

Corresponding author: Kimchi, Tali (tali.kimchi@weizmann.ac.il)

Current Opinion in Neurobiology 2021, 68:137–151
This review comes from a themed issue on The Social Brain
Edited by Hailan Hu and Michael Brecht
For a complete overview see the Issue and the Editorial
Available online 25 April 2021
https://doi.org/10.1016/j.conb.2021.03.005
0959-4388/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction
Rodent species form various social organizations, ranging from solitary to dyads and families, to groups of tens or even hundreds of individuals. Living in a group bears many advantages that increase evolutionary fitness, such as mutual protection, assistance in resource acquisition, and more mating opportunities [1,2]. However, it also carries some costs, such as having to share valuable resources and the need to fight for one’s social ranking [3]. Above all costs, social species endure life-threatening stress in the case of forced social isolation [4,5]. Despite the heavy costs, all social individuals show strong motivation to seek for, approach, and physically interact with social stimuli [6], yet substantial sex-based differences in these behaviors have been reported [2,7–11].

Despite major efforts and recent advances in pinpointing the key neural mechanisms underlying social behaviors in rodent models, many open fundamental questions still remain. Particularly, we have limited understanding regarding the extent of sex differences in the mechanisms governing social behaviors: Are sexually dimorphic social behaviors controlled by dimorphic brain structures, circuits, or molecularly defined neuronal populations? Do specific social signals have a different incentive value for males and females, governing sex-specific behavioral responses?

In this review, we discuss the recent literature regarding behavioral sex differences in social displays and social reward in reproductive behaviors, specifically parental care mating, and aggression, focusing on rodents. We then present an emerging neural and molecular circuit logic underlying these sexually dimorphic social behaviors, which includes several hypothalamic and reward-related brain regions that are anatomically and functionally interconnected. This is followed by a discussion of the sexually dimorphic effects of social isolation in adulthood on social behaviors and their governing circuitries. Finally, we survey the fascinating diversity of social organizations in wild rodent species, which are barely used in neuroscience research but can provide unique and novel insights.

Sex differences in social motivation and social displays
In social species, individuals prefer a social stimulus over a nonsocial one, indicating that an interaction with a conspecific is more rewarding; thus, it is termed social reward [12,13]. The most rewarding social behaviors are sexually dimorphic reproductive behaviors, such as mating, parental care, and aggression, which are presented in a sex-typical manner and are essential for species survival [14].

Sexual reward is considered highly salient, motivating all vertebrate species, including solitary ones, to seek sexual partners and pursue mating [8,15,16]. However,
evolutionary forces drive clear distinctions between males and females in their sexual motivation [8]. In most mammals, males are driven to inseminate as many females as possible, which is why their sexual motivation remains constantly high, while females must choose the best mate available, due to their enormous investment in breeding [8]. Indeed, studies that employed operant or classical conditioning paradigms have repeatedly shown that male rodents are highly rewarded by various sexual stimuli [17–21], while females usually require specific contexts and timing for sexual interactions to be rewarding [8,22–24].

As to parental care, in most mammalian species, it is considered a female-typical behavior, although it can also be executed by males [25,26]. Substantial sex differences, in terms of both quantity and quality, are found in all components of parental behavior (e.g. nest building, pup retrieval, licking, and grooming) [25,27,28]. In laboratory mice, for example, sexually naïve males often attack and kill unfamiliar pups [25,29], but cease attacking and become paternal for a short period after mating with a female [30–32]. In contrast, sexually naïve laboratory female mice show spontaneous parental care toward unfamiliar pups [33,34].

Mother–pup interactions are highly rewarding. For example, postpartum mice will exert efforts to cross a barrier in order to reach their pups [35]. Mother rats will compulsively lever press for pups [36], and such pup rewards were even more salient for postpartum females than an artificial drug reward [37,38] or natural rewards, such as food [39,40].

Aggression is usually considered a male-typical behavior in common laboratory mice, as males present robust aggression when competing over territory or potential breeding partners [8]. Laboratory females are usually aggressive toward unfamiliar individuals only during lactation, defending their offspring (i.e. maternal aggression) [41]. However, sexually naïve females of either wild or some outbred lab mouse strains can also present robust aggression while establishing their own territory and their social ranking in the group [42–44]. Nevertheless, females are less likely to engage in physical assault, and their attack patterns are less robust compared to males [45]. Also, the aggression of wild female rodents is claimed to be more influenced by environmental conditions, such as the sex composition of the group [46,47], and by their estrus phase [48,49].

For males, aggressive behavior can be as rewarding as sexual behavior [50–52] and may even show similarities to addictive behaviors [53]. Male mice will lever press for a subordinate intruder introduced into their cage to be attacked [53] and will prefer an aggression-associated chamber in a conditioned place preference paradigm [54,55]. Male mice will also cross an electrified grid [56] and exhort efforts [57,58] to reach and attack a subordinate. Whether aggression is also rewarding for females remains unresolved, since most domesticated female rodents typically do not present aggression outside the postpartum period [27,33,59–61]. Some insights might come from the Syrian hamster, where females showed a conditioned place preference for a chamber associated with aggressive encounters with males [62]. Interestingly, same-sex aggressive interactions were found to be rewarding in both sexes of the Syrian hamster [9,63,64] and prairie vole [65], though the rewarding value seems more robust in females than in males (see Figure 1).

These remarkable sex differences in reward and motivated social behaviors suggest an underlying sexual dimorphism in the neural circuits or neuromodulatory systems regulating them. Notably, it is known that both sexes might retain the capacity to express the behavioral repertoire typical of the opposite sex. For example, it was shown that female mice can present male-typical mounting and courtship [66,67] and that sexually naïve males can perform female-typical pup retrieval [32]. Thus, some of the neural circuits governing sexual dimorphism are shared between the sexes [67]. In the following sections, we will present the growing amount of data regarding cell-specific neuronal populations and their connecting neuronal network that govern sexually dimorphic reproductive behavior, and their cross-talk with the brain’s reward system, focusing on mice and rats. Of important note, despite the abundant literature demonstrating quantitative and qualitative sex differences in behavior, our understandings of the neurobiology of many fundamental neuronal processes are interpreted from male-exclusive studies [59,68]. Moreover, as shown in Figure 1, nature provides a wide diversity of social and reproductive strategies even within the Rodentia order. Yet, modern neuroscientists have only recently accepted the importance of using ecologically relevant species in order to better understand the mechanisms underlying social behavior, in males and females.

Are dimorphic behaviors driven by dimorphic circuits? Neuronal circuits underlying sex differences in social reward and behaviors

A few brain regions, most of them located within the hypothalamus, have been identified as critical nodes in the rodent social network and have also been shown to be sexually dimorphic. Within each dimorphic brain region, only specific, molecularly distinct subsets of neurons have been found to be sexually dimorphic and required for one or a few specific displays of social behavior [27]. These brain regions, including the anteroventral periventricular nucleus (AVPV), medial preoptic nucleus (MPOA), ventromedial hypothalamus...
Diversity of social strategies within the Rodentia order: the uncharted territories of social neuroscience.

Within the Rodentia order, the social scale ranges from eusocial and social to solitary, even within the same subfamilies and between closely related species [42,219]. Interestingly, within these diverse social lifestyles, an additional layer of diversity exists with respect to sexual dimorphism in parental care and aggression [220]. Presented from top to bottom—eusocial rodents: naked mole-rat [219,221,222], Damaraland mole-rat (picture courtesy of Dr. Markus Zöttl) [223–225]; social group/monogamous living: house mouse [33,59,219], prairie vole (picture courtesy of Prof. Larry Young) [219,226,227]; facultatively solitary: Syrian hamster [228,229], meadow vole [219,226]; and solitary: blind mole-rat [197,199,203,230], Patagonian tuco-tuco (picture courtesy of Prof. Annaliese Beery) [231,232]. The symbols (female) and (male) denote sexual dimorphism or sex similarities for each behavior within a given species. (*) In the eusocial naked mole-rat and Damaraland mole-rat, only the breeding indare aggressive.(#) In the Damaraland mole-rat, the level of aggression depends on the sex of the attacked individual. Toward other females, the breeding female is more aggressive compared to breeding males. In contrast, toward other males from outside the colony, the breeding males are more aggressive compared to the breeding females [225].

The anteroventral periventricular nucleus

Sexually dimorphic brain regions are usually larger in males than in females [71,72]. For example, the sexually dimorphic nucleus of the preoptic area [73], the posteromedial MeA [74], and the lateral septum [75], are all larger in males. A notable exception is the AVPV of the hypothalamus, which is larger in volume, contains more cells, and sends more projections to reproduction-related brain regions in females compared to males [25,34,71,72,76–79]. Importantly, it also expresses several sexually dimorphic molecularly defined neuronal populations, including the tyrosine hydroxylase (TH)-expressing population, which contains 3–4 times more neurons in females than in males [34,72]. Examining the role of sexually dimorphic TH⁺ AVPV neurons in mice reveals a sex-specific function: in females, these neurons regulate maternal behavior, and in males, they repress inter-male aggression [34]. Specifically, ablation of TH⁺ AVPV neurons in females reduces maternal behavior and activation increases maternal

(VMH), bed nucleus of the stria terminalis (BNST), and medial amygdala (MeA), send and receive multiple projections from one another to form robust ‘social networks.’ These social networks communicate with brain reward regions and play an essential role in the regulation of most, if not all, sexually dimorphic reproductive behaviors [69,70].

To what extent are these anatomically interconnected dimorphic brain regions involved in the regulation of distinct sex-specific social behaviors? And, in case the functions of the social brains of adult males and females are partially bivalent, to what extent can we experimentally disrupt the circuit to drive behavior that is typically presented by the opposite sex? Recent technological advances in neuroscience now allow anatomical and functional mapping of these circuits, providing new insights into these fundamental questions, described below for each of the key regions involved in sexually dimorphic behavior.
behavior, while in males, their ablation increases aggression, whereas optogenetic activation reduces aggression [34]. The activation of \(\text{TH}^+ \) AVPV neurons also leads to increased oxytocin (OT) release from the paraventricular hypothalamic nucleus (PVN) in females but not in males, suggesting that this circuit governs maternal behavior through the regulation of neuropeptides [25,34]. Notably, although manipulation of \(\text{TH}^+ \) AVPV neurons markedly altered sex-specific behaviors in both males and females, the behaviors displayed by manipulated animals of both sexes remained within the boundaries of their sex-typical behaviors (i.e. manipulations of \(\text{TH}^+ \) AVPV could not induce parental care in sexually naı¨ve males or aggression in sexually naı¨ve females) (see Figure 2a).

The medial preoptic nucleus

A large hypothalamic structure, the MPOA sends projections to multiple downstream brain regions and is both larger and contains more neurons in males than in females [35]. Notably, the MPOA is home to various heterogeneous, molecularly defined, neuronal clusters, including many sexually dimorphic populations, such as androgen receptor (AR)-expressing population and estrogen receptor alpha (ESR1)-expressing population [80]. The MPOA has been shown to be strongly activated by sex-typical social behaviors, functioning as one of the main brain regions that control parental care [35,81,82] and sexual behavior [81], in both sexes. Studies have found that MPOA lesions disrupt the onset of maternal behavior in both sexually naïve and postpartum females and alter sexual behavior in both sexes [83]. Most recently, in-vivo calcium imaging of the MPOA has revealed sharp increases in neuronal activity during sexual interactions as well as during social investigation of pups, in both sexes [84].

At least two different subpopulations within the MPOA were shown to be required for the regulation of pup-directed behavior. The first is the ESR1\(^+\) population, which is highly sexually dimorphic in its distribution and projection patterns [85]. Suppression of ESR1 expression in the MPOA significantly reduced maternal behavior, but not maternal aggression, in female mice [86], whereas optogenetic activation of this population increased pup retrieval in females and in castrated males [84]. The second subpopulation is the galanin-expressing (Gal\(^+\)) neurons, which showed increased activity during parental behavior in both female and male mice. Ablation of these cells reduced parental behavior in parenting females and males, whereas optogenetic activation suppressed pup-directed aggression in sexually naïve males and increased pup grooming in sexually naïve males and in fathers [32]. Notably, it was reported that both of these neuronal subpopulations are also involved in the regulation of sexual behavior in both sexes [83]. Taken together, it appears that multiple molecularly defined subpopulations within the MPOA, and their segregated neuronal circuits, control the same sex-typical social behaviors.

The ventromedial hypothalamus

Over the past decade, the central role of the VMH, and specifically its ventrolateral part (VMHvl), in the initiation and execution of aggression has been well established in laboratory male mice [76,87–92]. In addition, it was shown that the activation of this region is necessary for promoting aggression seeking (i.e. reward) in male mice [89]. The role of VMHvl in female

Figure 2

Alternative models for neural mechanisms underlying sexually dimorphic behaviors.
Sexually dimorphic reproductive behaviors might be governed by at least three principal sexually dimorphic mechanisms: (a) a sexually dimorphic neuronal circuit that controls different sex-typical social behaviors in males and females [34]. (b) The same social behavior in both sexes is controlled by different neural circuits in males and females [27,95]. (c) The neural circuit that drives a behavior typically displayed by the opposite sex is present in both sexes, but is tonically repressed by external and/or internal stimuli [66,67].
aggression has been scarcely studied, albeit it was recently shown that similar to males, female’s VMHvl neurons are activated during aggressive behavior and that activation of ESR1+ VMHvl neurons is sufficient to induce fighting behavior in sexually naive females [93].

Another molecularly defined sexually dimorphic VMHvl subpopulation that controls sex-typical behaviors in both sexes is the progesterone receptor (PR)-expressing neurons. This subpopulation is required for the normal display of mating in both sexes and for fighting in males [76]. Ablation of PR+ VMHvl neurons led to a profound decrease in female sexual receptivity and in male sexual behavior and aggression. Moreover, it was recently shown that projections of PR+ VMHvl neurons into the AVPV nucleus change across the female mouse estrous cycle, with connectivity and function profoundly increasing during the estrus phase. This fluctuation in connectivity was found in adult females, but not in adult males, and was regulated by estrogen signaling in PR+ VMHvl neurons [94]. These findings highlight, once more, the critical role of intrinsic sex differences in the brain in setting the distinct behavioral repertoire displayed by each sex, as detailed above for the AVPV. Furthermore, transcriptome analysis of VMHvl subpopulations provides evidence that different molecularly defined dimorphic populations in males and females may drive similar social behavior displays (i.e. fighting behaviors) [95] (Figure 2b).

The bed nucleus of the stria terminalis

The BNST is a critical component in the social behavioral network, interfacing with brain regions that are essential for social decision-making and reproductive behaviors [96–98]. The BNST is anatomically and functionally connected to many brain regions shown to regulate sexually dimorphic behaviors [69,96,99].

Recently, it was shown that ablation of the sexually dimorphic male-biased AVP+ BNST neuronal population reduces male—male social investigation and increases scent marking, but does not affect aggression or other sexual behaviors of male mice. In females, the same ablation altered sexual behavior alone [100] (Figure 2a).

Several experiments on California mice (Peromyscus californicus) have demonstrated the key role of the BNST in the control of sex-specific behavioral responses to social defeat stress (for a review, see Ref. [99]). For example, it was shown that social defeat decreases the number of social approaches and increases OT+ BNST neuronal activity following social interaction, but only in females [101], while knockdown of OT in the BNST of females prevented the social-defeat-induced reduction in social approaches [102]. The role of OT+ BNST neurons in males remains to be elucidated.

The medial amygdala

The MeA is a nucleus within the amygdalar complex, which receives essential social information from the vomeronasal system and relays these pheromonal signals to the rest of the brain [70,103,104], thus playing a critical role in social behavior [105]. Electrophysiological recordings in anesthetized [106] and in awake behaving [107] mice have shown that MeA subpopulations respond differently to conspecific cues in males and females. Specifically, it was shown that the sex-specific response to social cues in the MeA of both males and females undergoes experience-dependent changes. Moreover, in sexually naive mice, the number of neurons activated by female stimuli was higher in females compared to males [107].

Recently, a single-cell RNA sequencing analysis in mice identified a number of distinct neuronal subpopulations of GABAergic and glutamatergic MeA neurons, some of which displayed high levels of sexually dimorphic expression patterns [108]. Moreover, optogenetic activation of GABA+ MeA neurons induced parental care in both males and females; however, high-intensity stimulation in males promoted pup-attack behavior [108] (Figure 2a). A separate important neuronal population identified in the MeA was found to express the androgen-catalyzing enzyme aromatase and to regulate aggression, but not other reproductive behaviors, in both sexes [60].

The ventral tegmental area and the nucleus accumbens

Social reward is known to play a critical role in social interactions [13], by triggering the activation of the well-described dopaminergic reward pathway leading from the ventral tegmental area (VTA) to the nucleus accumbens (NAc), in both males and females [109–111]. This classic reward pathway sends and receives multiple innervations from the brain’s ‘social network’ [70,96,97,112–115].

In female mice, a prominent increase in the activity of the dopamine (DA) projections from the VTA to the NAc occurs during the initiation of approach/investigation of a novel female [110]. Moreover, optogenetic activation of this DA circuit promotes social interaction with a novel female but not with a novel object [110]. In males, these neuronal projections were shown to play a key role in precopulatory behaviors and in sexual motivation [116–118].

Recently, in-vivo microdialysis detected a robust transient increase in DA levels in the NAc of male mice as they conducted an olfactory investigation of a female and initiated sexual behavior, but not when they socially interacted with an unfamiliar male [109]. This DA surge was dependent on proper pheromone signaling via the
vomeronasal system and was essential for olfactory sexual preference toward female stimuli and for sexual motivation [19,109]. Specifically, the administration of a D1R antagonist into the NAc blocked the development of place preference to a chamber previously associated with female pheromones and altered the olfactory preference to female chemosignals [109]. Similarly, optogenetic activation of NAc D1R cells in females sufficed to drive same-sex social interactions [110]. On the other hand, a sexual encounter with a male has been shown to increase DA in the NAc of female rats only in cases of paced mating [119].

Finally, a Gal$^+$ MPOA neuronal population was shown to send multiple inputs to several regions of the brain's reward system in mice [35]. These projections were shown in parental mice of both sexes, with specific activation of Gal$^+$ MPOA neuronal projections to the VTA increasing parental care in both mothers and fathers [35]. Similarly, activation of the adjacent ESR1$^+$ MPOA projections to the VTA increased maternal behavior in females [120].

Sex differences in the response to social isolation

Social isolation induces severe stress in social species and might even be life-threatening [4,5,121–124]. In rodents, social isolation, during either adolescence or adulthood, was shown to dramatically disrupt behavior and brain function, in a sex-specific manner [125]. The effects of postweaning social isolation (i.e. adolescence), which are distinct from those of social isolation at adulthood [126,127], have been extensively reviewed [121,123,128] and will not be discussed here.

In adult mice and rats of both sexes, even a brief period of social isolation can cause an aversive, ‘loneliness-like’ brain state [129], prompting animals to seek social interactions [129–133] and elevating the salience of social reward [121,131]. Social isolation in rodents also leads to many negative behavioral effects in both sexes, including increased territoriality and aggression [123,133–140], elevated anxiety-related behaviors [141], and depression-like symptoms [141–144]. In socially monogamous adult prairie voles, for example, both sexes display depressive-like and anxiety-related behaviors when separated from their bonded partner of the opposite sex [142,145–149] (Figure 1).

Nevertheless, these effects seem to inflict females more than males [123,143,150–152]. For example, in female mice, individual housing appears to increase plasma corticosterone and anxiety levels in the elevated plus maze assay [153] and in a modified open-field test [150], compared to females living in group housing. In contrast, individually housed males were not affected, and their levels of anxiety and plasma corticosterone did not differ from group-housed controls [150,154–156]. Socially isolated adult female mice also displayed increased immobility in the forced-swim and tail-suspension tests, indicating depression-like symptoms [157], while similar effects in males were induced only when isolation occurred throughout adolescence [158] or after prolonged isolation [127,144,159,160]. In prairie voles, a 4-week isolation period reduces sucrose preference and increases corticosterone secretion in females, but not in males [143,145].

Social isolation also produces sexually dimorphic responses when it comes to sexually dimorphic reproductive behaviors. The social isolation of lactating female mice and rats reduced the duration of maternal care [161,162], while the isolation of male mice actually induced paternal behaviors toward unfamiliar pups and, in line, reduced their typical infanticide response [163,164].

Despite these profound sex differences in the behavioral output of social isolation in adulthood, we know very little about the neural mechanism underlying this dimorphism. In adult rats, prolonged isolation reduced spine density and the expression of synaptic proteins in the prefrontal cortex (PFC) of both males and females; in females, however, these parameters were also robustly influenced by the estrus state, with elevations during proestrus [144]. Similarly, social isolation reduced the expression of myelin transcripts in the PFC of both male and female mice [165]. Conversely, prolonged isolation increased the total expression of brain-derived neurotrophic factor (BDNF) and cAMP response element-binding protein (CREB) in the cerebral cortex of female mice [166]. In the hippocampus, the social isolation of adult mice and rats led to reduced BDNF expression in both males [141,167–169] and females [167,170], and to increased neurogenesis in males [171] as well as females [172].

Notably, sex differences in the neural responses to social isolation were identified in the neuromodulator systems of OT and arginine vasopressin (AVP). In socially isolated male mice, OT plasma levels were elevated [153], with IP administration of OT abolishing isolation-induced aggression [134], while in isolated female rats, the baseline OT levels measured in the CSF were similar to those of group-housed controls [155]. In socially monogamous prairie voles, prolonged isolation reduced oxytocin receptor (OTR) expression in the hypothalamus of both sexes [173], but elevated plasma OT levels [143,173] and the number of activated OT$^+$ PVN cells [143], only in females. Moreover, chronic systemic administration of OT to isolated female prairie voles blocked some of the behavioral [174,175] and physiological [174–176] effects of isolation. An IP administration of AVP abolished isolation-induced aggression of male mice [134] and isolation-induced
cognitive impairments of male rats [130]. In female rats, isolation-induced aggression was associated with reduced levels of AVP receptor V1Ra in the lateral septum [135]. Notably, in the facultatively solitary Syrian hamster (see Figure 1), isolation reduced OTR levels in the dorsal raphe nucleus (DRN) and increased OTR levels in the anterior hypothalamus, but both effects were seen only in females [133]. The isolation also reduced the levels of the vasopressin V1a receptor in the BNST of both sexes, but in the DRN, V1Ra levels were reduced only in males [133].

Finally, a recent study on mice revealed a brain-wide signaling mechanism that mediates the effects of adult isolation on aggressive and anxiety-related behaviors [136]. The researchers noted a massive increase in the expression levels of the neuropeptide Tachykinin 2 (Tac2) throughout the brain of socially isolated mice of both sexes [136]. Further viral and pharmacological manipulations in males revealed that blocking Tac2’s increase in the dorsomedial hypothalamus abolished social isolation-induced aggression, while blocking Tac2’s increase in the central amygdala (CeA) abolished both acute and persistent stress responses [136]. Interestingly, manipulating Tac2 in the CeA produced sex-opposite effects on fear learning in mice. While the administration of a Tac2 antagonist, or chemogenetic inhibition, impaired fear memory in males, it enhanced fear memory consolidation in females, and both effects were mediated by sex hormones [177].

All in all, most of the studies involving the social isolation of adult rodents showed similarities in the effects on neural plasticity in both sexes. Thus, the robust sex differences in the behavioral responses to isolation might be attributed to sex differences in various neuropeptide systems, such as OT [125,178,179] and AVP [125,180], or perhaps to fluctuations in the stress response throughout the estrus cycle [181]. Further studies are needed to unveil the underlying molecularly defined populations within the above-described brain regions that contribute to sex-differences in the behavioral effects of social isolation in adulthood.

A special insight can be gained from observing the effects of social isolation on animal species maintaining a eusocial lifestyle. These species live in large communities, where typically only a few individuals bear offspring, while all the others share the burden of foraging food and caring for the young [42] (see Figure 1). In the eusocial naked mole-rat (Heterocephalus glaber) individuals removed from the colony displayed robust and stable increases of corticosterone levels for days and weeks [182,183] and increases in same-sex aggression among females [183]. Only two mammalian species are known to maintain a eusocial lifestyle, the naked mole-rat and its evolutionary relative, the Damaraland mole-rat (Fukomys damarensis) [42,184], and in male and female breeders of both species the PVN is significantly larger [185,186]. Notably, in naked mole-rats, this effect is triggered by social isolation (i.e. removal from the colony) and not by breeding itself [187]. Also, in both species breeders of both sexes display lower levels of hippocampal neurogenesis compared to subordinates [188,189]. Although further research is needed in males and females of eusocial species, the available literature suggests an intriguing hypothesis: that their level of sexual dimorphism is substantially reduced compared to other social species, both for processing of social stimuli, as well as in the response to social isolation (see Figure 1).

Conclusions and future research suggestions

The evidence that males and females are able to present most of the social behavioral repertoires typically presented by the opposite sex indicates that components in the underlying circuits driving sex-typical behaviors are shared between the sexes. The accumulating recent studies in the field indicate that within these shared neuronal components (social network), there are distinct molecularly defined neuronal populations that are anatomically and functionally dimorphic. These neuronal populations are those orchestrating the degree of and the manner by which specific sex-typical behaviors are displayed in each sex and each social condition.

Sexually dimorphic behaviors can be governed by at least three possible neural mechanisms (see Figure 2) [13,27,67]:

1. A sexually dimorphic neuronal circuit, which promotes a distinct sex-specific behavior in each sex (Figure 2a) [34].
2. The same social behavior expressed in both sexes could be controlled by different neural circuits in males and females (Figure 2b) [27,95].
3. A network that is present in both sexes, but either sex differences in the circuit or external stimuli allow the conveyance of synaptic inputs in a sex-specific manner (Figure 2c) [66,67].

Despite the accumulating recent studies laying out the mechanisms underlying sex-typical social behavior, it seems that most of them were performed exclusively in males. Thus, in many cases, it is impossible to draw a clear conclusion whether the same network underlies same or sex-specific social behavior, or whether a sexually dimorphic brain region contributes to sex differences in social behavior.

Moreover, classical neuroscience tools were built for and applied almost exclusively on laboratory (i.e. inbred and domesticated) mice, which present an altered, artificially selected social behavior repertoire, compared to
The solitary lifestyle is highly common in subterranean taxa [193,194]. Interestingly, even within some families of subterranean rodents, social strategies range from solitary to eusocial [42,193,195], providing a unique opportunity to perform comparative studies and investigate the neural and evolutionary substrates driving the transitions across the ‘social scale’ (see Figure 1).

Among these subterranean rodents, the blind mole-rat (BMR, Spalax ehrenbergi) exhibits one of the most solitary and aggressive life strategies, with relatively low levels of behavioral sex differences [196–201] (see Figure 1). Each individual excavates its own tunnel system to fit its body width and never leaves it unless forced to do so [196,201]. In the lab, introducing two adults of any sex (same sex or opposite sex) into the same cage will immediately lead to severe aggression, which will likely end in critical injuries and death [202]. Even prolonged exposure to non-direct social stimuli (pheromones or seismic signals) will induce severe chronic stress, leading to illness and, eventually, death [203].

During the rainy breeding season, it appears that the males socially communicate with potential females from a long distance and orient themselves to the female territory [204,206]. The males resume their solitary lifestyle immediately after successful copulation, while the females care for the pups alone [197,199,201,204]. Therefore, in order to ensure survival and reproductive success, BMRs must constantly be aware of the location and social status (e.g. sex, reproductive stage, and dominance) of their neighboring BMRs. Consequently, BMRs have developed a set of unique light-independent sensory modalities, perfectly adapted for social communication in their underground niche [206,207]. For example, for long-distance communication between conspecifics, BMRs use vibratory (seismic) signals produced by tapping their head against the roof of the tunnel [208,209].

Unfortunately, virtually nothing is known about the brain regions, neuronal circuits, and neuromodulators driving social reward and behaviors in solitary species. Many basic questions remain open, such as what are the neuronal and molecular processes that ‘guard’ solitary species from the harmful physiological damages of social isolation? What changes occur in their brain during the breeding period, when solitary individuals need to physically interact with conspecifics?

We believe that the BMR, as well as other a-social, solitary rodents, can provide a natural powerful model with which to study the adaptive neural principles governing social brain plasticity and social isolation stress. Moreover, solitary models can assist in studying sex differences in behavior and in the brain functions underlying social withdrawal and antisocial symptoms in psychiatric disorders (see Figure 1).
This comprehensive review of mammalian pheromones emphasizes the distinction between the hard-wired intrinsic rewarding value of pheromones and the value of social interaction as a function of the ‘dose’ (i.e. duration of social interaction). They assert that, at first, increasing the dose heightens the value of the social reward. However, after reaching a certain peak, the value of the reward decreases as the dose increases. Thus, the value of social reward as a function of dose produces an “inverted U” curve, similar to drug rewards. Notably, the authors claim that this “inverted U” curve is different for males and females.

The review also discusses neural processing of different olfactory cues and the role of oxytocin in social behavior. It highlights the critical role of intrinsic sex differences in the brain in setting the boundaries of the behavioral repertoire displayed by each sex. This comprehensive review of studies concerning the neurobiological regulation of social reward by oxytocin: an inverted U hypothesis. Neuropsychopharmacology 2019, 44:97–110.

The sexual preference of female rats is mediated by pheromonal inputs. Nature 2014, 522:519–522. The authors identify a galanin-expressing neuronal population in the MPOA that controls both maternal and paternal behavior in male and female mice. They further show that, in male mice, this neuronal population also modulates sexual behavior.

This review covers the diverse molecular and cellular changes that occur in the male and female brains during the transition to adulthood, focusing on rodents. It also examines the neural circuits shown to govern parental behavior in both sexes, distinguishing between uniparental and biparental species.

The sexual preference of female rats is mediated by pheromonal inputs. Nature 2014, 522:519–522. The authors identify a galanin-expressing neuronal population in the MPOA that controls both maternal and paternal behavior in male and female mice. They further show that, in male mice, this neuronal population also modulates sexual behavior.

This review covers the diverse molecular and cellular changes that occur in the male and female brains during the transition to adulthood, focusing on rodents. It also examines the neural circuits shown to govern parental behavior in both sexes, distinguishing between uniparental and biparental species.

The sexual preference of female rats is mediated by pheromonal inputs. Nature 2014, 522:519–522. The authors identify a galanin-expressing neuronal population in the MPOA that controls both maternal and paternal behavior in male and female mice. They further show that, in male mice, this neuronal population also modulates sexual behavior.

This comprehensive review of studies concerning the neurobiological basis of various sexually dimorphic reproductive behaviors in rodents provides several lines of evidence that there are differences between the sexes in the neural circuits and mechanisms underlying these behaviors.

This review covers the diverse molecular and cellular changes that occur in the male and female brains during the transition to adulthood, focusing on rodents. It also examines the neural circuits shown to govern parental behavior in both sexes, distinguishing between uniparental and biparental species.

The sexual preference of female rats is mediated by pheromonal inputs. Nature 2014, 522:519–522. The authors identify a galanin-expressing neuronal population in the MPOA that controls both maternal and paternal behavior in male and female mice. They further show that, in male mice, this neuronal population also modulates sexual behavior.

This comprehensive review of studies concerning the neurobiological basis of various sexually dimorphic reproductive behaviors in rodents provides several lines of evidence that there are differences between the sexes in the neural circuits and mechanisms underlying these behaviors.

This review covers the diverse molecular and cellular changes that occur in the male and female brains during the transition to adulthood, focusing on rodents. It also examines the neural circuits shown to govern parental behavior in both sexes, distinguishing between uniparental and biparental species.

The sexual preference of female rats is mediated by pheromonal inputs. Nature 2014, 522:519–522. The authors identify a galanin-expressing neuronal population in the MPOA that controls both maternal and paternal behavior in male and female mice. They further show that, in male mice, this neuronal population also modulates sexual behavior.

This comprehensive review of studies concerning the neurobiological basis of various sexually dimorphic reproductive behaviors in rodents provides several lines of evidence that there are differences between the sexes in the neural circuits and mechanisms underlying these behaviors.

This review covers the diverse molecular and cellular changes that occur in the male and female brains during the transition to adulthood, focusing on rodents. It also examines the neural circuits shown to govern parental behavior in both sexes, distinguishing between uniparental and biparental species.

The sexual preference of female rats is mediated by pheromonal inputs. Nature 2014, 522:519–522. The authors identify a galanin-expressing neuronal population in the MPOA that controls both maternal and paternal behavior in male and female mice. They further show that, in male mice, this neuronal population also modulates sexual behavior.

This comprehensive review of studies concerning the neurobiological basis of various sexually dimorphic reproductive behaviors in rodents provides several lines of evidence that there are differences between the sexes in the neural circuits and mechanisms underlying these behaviors.

This review covers the diverse molecular and cellular changes that occur in the male and female brains during the transition to adulthood, focusing on rodents. It also examines the neural circuits shown to govern parental behavior in both sexes, distinguishing between uniparental and biparental species.
The Social Brain

The authors characterize a molecularly defined neuronal population in the mouse MeA, which specifically regulates aggression, but not mating or parental care, in both males and females.

1. Jager A, Maas DA, Fricke K, de Vries RB, Poelmans G, Glennon JC: Aggressive behavior in transgenic animal models: a systematic review. Neurosci Biobehav Rev 2018, 91: 198–217.

2. Meisel RL, Joppa MA: Conditioned place preference in female hamsters following aggressive or sexual encounters. Physiol Behav 1994, 56:1115–1118.

3. Borland JM, Aiani LM, Norvelle A, Grantham KN, O’Laughlin K, Terranova JI, Frantz KJ, Albers HE: Sex-dependent regulation of social reward by oxytocin receptors in the ventral tegmental area. Neuropsychopharmacology 2019, 44: 785–792.

4. Borland JM, Grantham KN, Aiani LM, Frantz KJ, Albers HE: Role of oxytocin in the ventral tegmental area in social reinforcement. Psychoneuroendocrinology 2018, 95:128–137.

5. Goodwin NL, Lopez SA, Lee NS, Beery AK: Comparative role of reward in long-term peer and mate relationships in voles. Horm Behav 2019, 111:70–77.

6. Kimchi T, Xu J, Dulac C: A functional circuit underlying male sexual behaviour in the female mouse brain. Nature 2007, 448:1009–1014.

This study characterizes the behavioral phenotype of mutant female mice that fail to detect pheromone inputs through the vomeronasal organ, showing that these females display male-typical courtship and mounting behaviors toward an intruder, be it male or female. These findings suggest that male and female mating circuits exist in both sexes, but are activated or repressed by chemosensory-directed circuitry.

7. Dulac C, Kimchi T: Neural mechanisms underlying sex-specific behaviors in vertebrates. Curr Opin Neurobiol 2007, 17:675–683.

8. Shansky RM, Murphy AZ: Considering sex as a biological variable will require a global shift in science culture. Nat Neurosci 2021, 24:457–464.

9. Tan S, Stowers L: Bespoke behavior: mechanisms that modulate pheromone-triggered behavior. Curr Opin Neurobiol 2020, 64:143–150.
70. Li Y, Dulac C: Neural coding of sex-specific social information in the mouse brain. Curr Opin Neurobiol 2018, 53:120–130.

71. Morris JA, Jordan CL, Breedlove SM: Sexual differentiation of the vertebrate nervous system. Nat Neurosci 2004, 7: 1034–1039.

72. Simler RB: Wired for reproduction: organization and development of sexually dimorphic circuits in the mammalian forebrain. Annu Rev Neurosci 2002, 25:507–536.

73. Bleier R, Byne W, Siggelkow I: Cytoarchitectonic sexual dimorphisms of the medial preoptic and anterior hypothalamic areas in Guinea pig, rat, hamster, and mouse. J Comp Neurol 1982, 212:118–130.

74. Cooke BM, Tabbinia G, Breedlove SM: A brain sexual dimorphism controlled by adult circulating androgens. Proc Natl Acad Sci U S A 1999, 96:7538–7540.

75. de Vries GJ, Buds RM, Swaab DF: Ontogeny of the vasopressinergic neurons of the suprachiasmatic nucleus and their extrahypothalamic projections in the rat brain—presence of a sex difference in the lateral septum. Brain Res 1981, 218:87–78.

76. Yang CF, Chiang MC, Gray DC, Prabhakaran M, Alvarado M, Juntti SA, Unger EK, Wells JA, Shah NM: Sexually dimorphic neurons in the ventromedial hypothalamus govern mating in both sexes and aggression in males. Cell 2013, 153: 896–909.

The authors identify a sexually dimorphic hypothalamic neuronal population (PR+ VMHvl) that regulates sexually dimorphic reproductive behavior in male and female mice. This PR+ VMHvl population is sexually dimorphic in gene expression and in its projections to other regions in the brain's social network, some of which are also dimorphic.

77. Gu G, Simler R: Projections of the sexually dimorphic anteroventral periventricular nucleus in the female rat. J Comp Neurol 1997, 384:142–164.

78. Gu G, Comea A, Simler RB: Sexual differentiation of projections from the principal nucleus of the bed nucleus of the stria terminalis. J Comp Neurol 2003, 460:542–562.

79. Cao J, Patiásiu HB: Sexually dimorphic expression of hypothalamic estrogen receptors α and β and kiss1 in neonatal male and female rats. J Comp Neurol 2011, 519:2954–2977.

80. Abel JL, Rissman EF: Location, location, location: genetic regulation of neural sex differences. Rev Endocr Metab Disord 2012, 13:121–161.

81. Numan M: Chapter 4 – sexual behaviors and sexual differentiation. Neurobiology of social behavior. Academic Press, 2015: 109–164.

82. Kohl J, Autry AE, Dulac C: The neurobiology of parenting: a neural circuit perspective. Biosessays 2016, 39:1–11.

83. Kohl J: Parenting — a paradigm for investigating the neural circuit basis of behavior. Curr Opin Neurobiol 2020, 60:84–91.

84. Wei Y-C, Wang S-R, Jiao Z-L, Zhang W, Lin J-K, Li X-Y, Li S-S, Zhang X, Xu X-H: Medial preoptic area in mice is capable of mediating sexually dimorphic behaviors regardless of gender. Nat Commun 2016, 9:279.

This study shows that the ESR1+ MPOA neuronal population controls both mating and parental care in both sexes, suggesting a sex-shared neural mechanism.

85. Orkasa C, Sakuma Y: Estrogen configurations sex-specific dimorphism in the preoptic area of C57BL/6J and ddN strains of mice. J Comp Neurol 2010, 518:3618–3629.

86. Ribeiro AC, Musatov S, Shetleyer A, Simanduyev S, Anrieta-Cruz I, Ogawa S, Pfaff DW: siRNA silencing of estrogen receptor-α expression specifically in mediod preoptic area neurons abolishes maternal care in female mice. Proc Natl Acad Sci U S A 2012, 109:16324–16329.

87. Todd WD, Fenselau H, Wang JL, Zhang R, Machado NL, Venner A, Broadhurst RY, Kaur S, Lynagh T, Olson DP, et al.: A hypothalamic circuit for the circadian control of aggression. Nat Neurosci 2018, 21:717–724.

88. Lee H, Kim D-W, Remedios R, Anthony TE, Chang A, Madisen L, * Zeng H, Anderson DJ: Scalable control of mounting and attack by ESR1(+) neurons in the ventromedial hypothalamus. Nature 2014, 509:627–632.

This study provides an important demonstration of the specific role of ESR1+ VMHvl neurons in modulating sex-specific reproductive behaviors in both male and female mice.

89. Falkner AL, Grosenick L, Davidson TJ, Deisseroth K, Lin D: Hypothalamic control of male aggression-seeking behavior. Nat Neurosci 2016, 19:596–604.

This study demonstrates that ESR1+ VMHvl neurons are activated during an operant aggression-seeking task in male mice. The authors show that optogenetic stimulation of these neurons accelerates aggression seeking and that their chemogenetic inhibition suppresses this behavior, establishing the role of the ESR1+ VMHvl neuronal population in aggression reward.

90. Yang T, Yang CF, Chizari MD, Maheswaranathan N, Burke Jr KJ, Borius M, Inoue S, Chiang MC, Bender KJ, Ganguli S, et al.: Social control of hypothalamic-mediated male aggression. Neuron 2017, 95: 955–970.e654.

91. Lin D, Doyle MP, Dollar P, Lee H, Lein ES, Perona P, Anderson DJ: Functional identification of an aggression locus in the mouse hypothalamus. Nature 2011, 470:221–226.

92. Wong Li C, Wang L, D’Amour James A, Yumita T, Chen G, Yamaguchi T, Chang Brian C, Bernstein H, You X, Feng James E, et al.: Effective modulation of male aggression through lateral septum to medial hypothalamic projection. Curr Biol 2016, 26:593–604.

93. Hashikawa K, Hashikawa Y, Tremblay R, Zhang J, Feng JE, Sabol A, Piper WT, Lee H, Rudy B, Lin D: ESR1+ cells in the ventromedial hypothalamus control female aggression. Nat Neurosci 2017, 20:1580–1590.

This study shows that ESR1+ VMHvl neurons are critical for controlling aggression in females, after an abundance of prior studies have demonstrated their role in regulating male aggression. This is the first evidence suggesting that at least part of the neural circuitry controlling aggressive behavior is shared between the sexes.

94. Inoue S, Yang R, Tantry A, Davis C-h, Yang T, Knoedler JR, Wei Y, Adams EL, Thomarese S, Golf SR, et al.: Periodic remodeling in a neural circuit governs timing of female sexual behavior. Cell 2019, 179. 1393–1408.e1316.

95. Kim D-W, Yao Z, Grayubck LT, Kim TK, Nguyen TN, Smith KA, Fong G, Yi L, Koulena N, Pienson N, et al.: Multimodal analysis of cell types in a hypothalamic node controlling social behavior. Cell 2019, 179. 713–728.e717.

96. O’Connell LA, Hofmann HA: The vertebrate mesolimbic reward system and social behavior network: a comparative synthesis. J Comp Neurol 2011, 519:3599–3639.

97. Prounis GS, Ophir AG: One cranium, two brains not yet introduced: distinct but complementary views of the social brain. Neurosci Biobehav Rev 2020, 108:231–245.

98. Lebow MA, Chen A: Overshadowed by the amygdala: the bed nucleus of the stria terminalis emerges as key to psychiatric disorders. Mol Psychiatry 2016, 21:450–463.

99. Greenberg GD, Trainor BC: Chapter 4 – sex differences in the social behavior network and mesolimbic dopamine system. In Sex differences in the central nervous system. Edited by Shansky RM, Academic Press; 2016:77–106.

100. Rigney N, Whyling J, Mieda M, de Vries GJ, Petrusis A. Sexually dimorphic vasopressin cells modulate social investigation and communication in sex-specific ways, vol. 6; 2019. ENEURO.0415–0418.2019.

This study demonstrates that sexually dimorphic AVP+ BNST neurons drive sex-specific social and reproductive behaviors in mice. Deletion of these neurons reduces same-sex social interactions in males, but not in females. Also, it impairs sexual behavior in females, but not in males.

101. Steinman MQ, Duque-Wickens N, Greenberg GD, Hao R, Campi KL, Laredo SA, Laman-Maharg A, Manning CE, Doig IE, Lopez EM, et al.: Sex-specific effects of stress on oxytocin neurons correspond with responses to intranasal oxytocin. Biol Psychiatry 2016, 80:406–414.
102. Duque-Wilckens N, Torres LY, Yokoyama S, Minie VA, Tran AM, Petkova SP, Hao R, Ramos-Maciel S, Rios RA, Jackson K, et al.: Extrahypothalamic oxytocin neurons drive stress-induced social vigilance and avoidance. *Proc Natl Acad Sci U S A* 2020, 117:26406–26413.

103. Keshavarzi S, Sullivan RKP, Janno DJ, Sah P.: Functional properties and projections of neurons in the medial amygdala. *J Neurosci* 2014, 34:9990–9997.

104. Pro-Sistiaga P, Molledano-Moriano A, Ubeda-Bañón I, del mar Arroyo-Jiménez M, Marcos P, Artacho-Pérula E, Crespo C, Insauti R, Martinez-Marcos A: Convergence of olfactory and vomeronasal projections in the rat basolateral telencephalon. *J Comp Neurol* 2007, 504:346–362.

105. Petrilis A: Chapter 2 — structure and function of the medial amygdala. In Urban JH, Rosenkranz JA. Handbook of behavioral neuroscience, vol. 26. Elsevier; 2020:39–61.

106. Bergan JF, Ben-Shaul Y, Dulac C: Sex-specific processing of social cues in the medial amygdala. *Elife* 2014, 3, e02743.

107. Li Y, Mathis A, Grewe BF, Osterhout JA, Ahanou B, Schnitzer MJ, Murthy VN, Dulac C: Neuronal representation of social information in the medial amygdala of awake behaving mice. *Cell 2017*, 504:346–362.

108. Chen PB, Hu RK, Wu YE, Pan L, Huang S, Micevych PE, *Hong W*: Sexually dimorphic control of parenting behavior by the medial amygdala. *Cell 2019*, 176, 1206–1221.e1218.

In this study, the authors use single-cell RNA sequencing to identify sexually dimorphic subpopulations of neurons in the MeA. They further reveal a sexually dimorphic role for GABAergic neurons in pup-directed behaviors.

109. Beny-Shifer Y, Zilka N, Lavi-Avnon Y, Bezalel N, Rogachev I, Brandis A, Dayan M, Kimchi T: Nuclear accumbens dopamine signaling regulates sexual preference for females in male mice. *Cell Rep 2017*, 21:3079–3088.

This study demonstrates the essential role of the VTA-NAc DA pathway in mediating pheromonal-evoked sexual reward in male mice. It also shows that NAc core D1R signaling is crucial for establishing conditioned place preference for female pheromones.

110. Gunaydin Lisa A, Grosenick L, Finkelson Joel C, Kauvar *Isaac V*, Fenno Lief E, Adhikari A, Lammel S, Mirzabekov Julie J, Airan Raag D, Zalocusky Kelly A, et al.: Natural neural projection dynamics underlying social behavior. *Cell 2014*, 157, 1535–1551.

The authors employ fiber photometry to demonstrate that DA+ VTA neurons are highly active during the initial phases of a female–male–female social interaction. They show that optogenetic activation of these neurons, as well as their projection to the NAc core, but not to the prefrontal cortex, modulates the duration of a social interaction.

111. Dölen G, Dairvishzadeh A, Huang KW, Malenka RC: Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. *Nature 2013*, 501:179.

112. Watabe-Uchida M, Zhu L, Ogawa Sachie K, Vamanarao A, Uchida N: Whole-brain mapping of direct inputs to midbrain dopamine neurons. *Neuron 2012*, 74:858–873.

113. Lo L, Yao S, Kim D-W, Cetin A, Harris J, Zeng H, Anderson DJ, Weinboud B: Connectional architecture of a mouse hypothalamic circuit node controlling social behavior. *Proc Natl Acad Sci U S A* 2019, 116:7503–7512.

114. Soden ME, Chung AS, Cuevas B, Resnick JM, Awatramani R, Zweifel LS: Anatomical resolution of neurotransmitter-specific projections to the VTA reveals diversity of GABAergic inputs. *Nat Neurosci* 2020, 23:958–969.

115. Miller SM, Marcotulli D, Shen A, Zweifel LS: Divergent medial amygdala projections regulate approach–avoidance conflict behavior. *Nat Neurosci* 2019, 22:565–575.

116. Brom M, Both S, Laan E, Everaerd W, Spinhoven P: The role of conditioning, learning and dopamine in sexual behavior: a narrative review of animal and human studies. *Neurosci Bio-behav Rev* 2014, 38:38–59.

117. Fiorino DF, Coury A, Phillips AG: Dynamic changes in nucleus accumbens dopamine efflux during the cooldown effect in male rats. *J Neurosci* 1997, 17:4849–4855.

118. Pfaus JG, Phillips AG: Role of dopamine in anticipatory and consummatory aspects of sexual behavior in the male rat. *Behav Neurosci* 1991, 105:727–743.

119. Jenkins WJ, Becker JB: Dynamic increases in dopamine during paced copulation in the female rat. *Eur J Neurosci* 2003, 18:1997–2001.

120. Fang Y-Y, Yamaguchi T, Song SC, Triitsch NX, Lin D: A hypothalamic Midbrain pathway essential for driving maternal behaviors. *Neuron* 2018, 98, 192–207.e110.

121. Walker DM, Cunningham AM, Gregory JK, Nestler EJ: Long-term behavioral effects of post-weaning social isolation in males and females. *Front Behav Neurosci* 2019, 13:56.

122. Mumtaz F, Khan MI, Zubair M, Dehpour AR: Neurobiology and consequences of social isolation stress in animal model—a comprehensive review. *Biomed Pharmacother* 2018, 105:1205–1222.

This review details the vast effects of social isolation, in adult and juvenile rodents, on behavior and neuropathology, as well as on brain plasticity and neuromodulatory systems.

123. Arakawa H: Ethological approach to social isolation effects in behavioral studies of laboratory rodents. *Behav Brain Res* 2018, 341:98–108.

124. Love J, Zelikowsky M: Stress varies along the social density continuum. *Front Syst Neurosci* 2020, 14, 582985.

125. Oliveira VEdM, Neumann ID, de Jong TR: Post-weaning social isolation exacerbates aggression in both sexes and affects the vasopressin and oxytocin system in a sex-specific manner. *Neuropharmacology 2019*, 156:107504.

126. Hall FS: Social deprivation of neonatal, adolescent, and adult rats has distinct neurochemical and behavioral consequences 1998, 12:129–162.

127. Wallace DL, Han M-H, Graham DL, Green TA, Vialou V, Iñiguez SD, Cao J-L, Kooch K, Schakraborty S, Kumar A, et al.: CREB regulation of nucleus accumbens excitability mediates social isolation–induced behavioral deficits. *Nat Neurosci* 2009, 12:200–209.

128. Arakawa H: Ontogeny of sex differences in defensive burying behavior in rats: effect of social isolation, vol. 30; 2007:38–47.

129. Matthews GA, Tye KM: Rapid and reversible impairments of short- and long-term social recognition memory are caused by acute isolation of adult rats via distinct mechanisms. *PLoS One* 2013, 8, e65085.

130. Douglas LA, Varlinskaya EI, Spear LP: Rewarding properties of social interactions in adolescent and adult male and female rats: impact of social versus isolate housing of subjects and partners, vol. 45; 2004:153–162.

131. Leser N, Wagner S: The effects of acute social isolation on long-term social recognition memory. *Neurobiol Learn Mem* 2015, 124:97–103.

132. Ross AP, McCann KE, Larkin TE, Song Z, Grieb ZA, Huhman KL, Albers HE: Sex-dependent effects of social isolation on the regulation of arginine-vasopressin (AVP) V1a, oxytocin (OT) and serotonin (5HT) 1a receptor binding and aggression. *Horm Behav* 2019, 116:104576.

133. Tan O, Musullulu H, Raymond JS, Wilson B, Langguth M, Bowen MT: Oxytocin and vasopressin inhibit hyper-aggressive behaviour in socially isolated mice. *Neuropharmacology 2019*, 156:107573.

134. Oliveira VEdM, Lukas M, Wolf MN: Rapid and reversible impairments of short- and long-term social recognition memory are caused by acute isolation of adult rats via distinct mechanisms. *PLoS One* 2013, 8, e65085.
This important review demonstrates how males and females use different social strategies and respond differently to social challenges. The authors assert that often it is not possible to infer from male-exclusive studies on female behavior and that female animal modeling is essential.

152. Westenbroek C, Snijders TAB, den Boor JA, Gerrits M, Fokkema DS, Ter Horst GJ: Pair-housing of male and female rats during chronic stress exposure results in gender-specific behavioral responses. Horm Behav 2005, 47: 620–628.

153. Takahashi A, Chung J-R, Zhang S, Zhang H, Grossman Y, Aleyasin H, Flangan ME, Pfau ML, Manard C, Dumitriu D, et al.: Establishment of a repeated social defeat stress model in female mice. Sci Rep 2017, 7:12638.

154. Lander SS, Linder-Shacham D, Gaisler-Salomon I: Differential effects of social isolation in adolescent and adult mice on behavior and cortical gene expression. Behav Brain Res 2017, 316:245–254.

155. Heck AL, Sheng JA, Miller AM, Stover SA, Bales NJ, Tan SML, Daniels RM, Fleury TK, Handa RJ: Social isolation alters hypothalamic pituitary adrenal axis activity after chronic variable stress in male C57BL/6 mice. Stress 2020, 23:457–465.

156. Mudra Rakhasa A, Tong MT: Making “good” choices: social isolation in mice exacerbates the effects of chronic stress on decision making. Front Behav Neurosci 2020, 14.

157. Martin AL, Brown RE: The lonely mouse: verification of a separation-induced model of depression in female mice. Behav Brain Res 2010, 207:196–207.

158. Breines JC, Fornaguera J: The effect of chronic fluoxetine on social isolation-induced changes on sucrose consumption, immobility behavior, and on serotonin and dopamine function in plasticity in the bed nucleus of the stria terminalis. Physiol Behav 2009, 98:199–205.

159. Gusmão ID, Monteiro BMM, Comélio QOS, Fonseca CS, Moraes MFD, Pereira GS: Odor-enriched environment rescues long-term social memory, but does not improve olfaction in social isolated adult mice. Behav Brain Res 2012, 228: 440–446.

160. Conrad KL, Louderback KM, Gessner CP, Winder DG: Stress-induced alterations in anxiety-like behavior and adaptations in plasticity in the bed nucleus of the stria terminalis. Physiol Behav 2011, 104:248–256.

161. Curley J, Davidson S, Bateson P, Champagne F: Social enrichment during postnatal development induces trans-generational effects on emotional and reproductive behavior in mice. Front Behav Neurosci 2009, 3.

162. Flittet P, Van Caenegem N, Hicks-Nelson AR, Santos Jr HP, Bradburn S, Murgatroyd C, Nephew BC: Maternal social environment affects offspring cognition through behavioural and immune pathways in rats. J Neuroendocrinol 2019, 31, e12711.

163. Orikasa C, Nagaoka K, Katsumata H, Sato M, Kondo Y, Minami S, Sakuma Y: Social isolation prompts maternal behavior in sexually naïve male ddN mice. Physiol Behav 2015, 151:9–15.

164. Giraldo LL, Sivar B: Postpubertal isolation decreases infanticide and elevates parental care in C57BL/6J male mice. Physiol Behav 1986, 36:59–62.

165. Liu J, Dietz K, DeLoeyt JM, Pedre X, Kelkar D, Kaur J, Vialou V, Lobo MK, Dietz DM, Nestler EJ, et al.: Impaired adult myelination in the prefrontal cortex of socially isolated mice. Nat Neurosci 2012, 15:1621–1623.

166. Kumari A, Singh P, Baghel MS, Thakur MK: Social isolation mediated anxiety like behavior is associated with enhanced expression and regulation of BDNF in the female mouse brain. Physiol Behav 2016, 158:34–42.

167. Mitic M, Simic I, Djordjevic J, Radojic MB, Adzic M: Gender-specific effects of fluoxetine on hippocampal glucocorticoid receptor phosphorylation and behavior in chronically stressed rats. Neuropharmacology 2013, 70:100–111.
168. Scaccianese S, Del Bianco P, Paolone G, Caprioli D, Modafferi AME, Nencini P, Badiani A: Social isolation selectively reduces hippocampal brain-derived neurotrophic factor without altering plasma corticosterone. Behav Brain Res 2006, 168:323–325.

169. Ieraci A, Mallei A, Popoli M: Social isolation stress induces anxious-depressive-like behavior and alterations of neuroplasticity-related genes in adult male mice. Neuroplast 2016, 2016:621983.

170. Bjarnebekk A, Mathé AA, Gruber SHM, Brené S: Social isolation increases number of newly proliferated cells in hippocampus in female flinders sensitive line rats. Hippocampus 2007, 17: 1193–1200.

171. Chan JN-M, Lee JC-D, Lee SSP, Hui KKY, Chan AHL, Fung TKH, Sanchez-Vidriera D, Lau BW-M, Ngai SP-C: Interaction effect of social isolation and high dose corticosterone on neurogenesis and emotional behavior. Front Behav Neurosci 2017, 11:18.

172. Westenbroek C, Den Boer JA, Veenhuis M, Ter Horst GJ: Chronic stress and social housing differentially affect neurogenesis in male and female rats. Brain Res Bull 2004, 64:303–308.

173. Pourmajaﬁ-Nazarlou H, Kenkel W, Mohsenpour SR, Sanzenbacher L, Saadat H, Parbo L, Yee J, Azizi F, Carter CS: Exposure to chronic isolation modulates receptors mRNA for oxytocin and vasopressin in the hypothalamus and heart. Peptides 2013, 43:20–26.

174. Stevenson JR, McMahon EK, Boner W, Haussmann MF: Oxytocin administration prevents cellular aging caused by social isolation. Psychoneuroendocrinology 2019, 103:52–60.

175. Grippo AJ, Trahanas DM, Zimmerman RR, Porges SW, Carter CS: Oxytocin protects against negative behavioral and autonomic consequences of long-term social isolation. Psychoneuroendocrinology 2009, 34:1542–1553.

176. Grippo AJ, Pourmajaﬁ-Nazarlou H, Sanzenbacher L, Trahanas DM, McNeal N, Clarke DA, Porges SW, Sue Carter C: Peripheral oxytocin administration buffers autonomic but not behavioral responses to environmental stressors in isolated prairie voles. Stress 2012, 15:149–161.

177. Antonio F, Eric V, Carlos S, Alex G, Roser N, Oscar P, Carlos S, Raúl A: Opposite-sex effects of the Tac2 pathway blockade in fear memory consolidation: implications for fear-related disorders. Res Sq 2020.

178. Lu Q, Lai J, Du Y, Huang T, Prukpitikul P, Xu Y, Hu S: Sexual dimorphism of oxytocin and vasopressin in social cognition and behavior. Psychol Res Behav Manag 2019, 12: 337–349.

179. Liao P-Y, Chiu Y-M, Yu J-H, Chen S-K: Mapping central projection of oxytocin neurons in unmated mice using Cre and alkaline phosphatase reporter. Front Neuroanat 2020:14.

180. Rigney N, Whyling J, de Vries GJ, Petrusis A: Sex differences in the control of social investigation and anxiety by vasopressin cells of the paraventricular nucleus of the hypothalamus. Neuroendocrinology 2020.

181. Blume SR, Padival M, Urban JH, Rosenkrantz JA: Disruptive effects of repeated stress on basolateral amygdala neurons and fear behavior across the estrous cycle in rats. Sci Rep 2019, 9:12292.

182. Edwards PD, Mooney SJ, Bosson CO, Toor I, Palme R, Holmes MM, Boonstra R: The stress of being alone: removal from the colony, but not social subordination, increases fecal cortisol metabolite levels in eusocial naked mole-rats. Horm Behav 2020, 121:104720.

183. Peragine DE, Yousuf Y, Fu Y, Swift-Gallant A, Ginzburg K, Holmes MM: Contrasting effects of opposite-versus same-sex housing on hormones, behavior and neurogenesis in a eusocial mammal. Horm Behav 2016, 81:28–37.

184. Schmidt CM, Jarvis JUM, Bennett NC: The long-lived queen: reproduction and longevity in female eusocial Damaraland mole-rats (Fukomys damarensis). Afr Zool 2013, 48:193–196.

185. Anany JJ, Seney ML, Holley A, Bengston L, Goldman BD, Forger NG, Holmes MM: Social status and sex effects on neural morphology in Damaraland mole-rats, Fukomys damarensis. Brain Behav Evol 2011, 77:291–298.

186. Holmes MM, Rosen GJ, Jordan CL, de Vries GJ, Goldman BD, Forger NG: Social control of brain morphology in a eusocial mammal 2007, 104:10548–10552.

187. Holmes MM, Seney ML, Goldman BD, Forger NG: Social and hormonal triggers of neural plasticity in naked mole-rats. Behav Brain Res 2011, 218:234–239.

188. Oosthuizen MK, Amrein I: Trading new neurons for status: adult hippocampal neurogenesis in eusocial Damaraland mole-rats. Neuroscience 2016, 324:227–237.

189. Peragine DE, Simpson JA, Mooney SJ, Lovern MB, Holmes MM: Social regulation of adult neurogenesis in a eusocial mammal. Neuroscience 2014, 268:10–20.

190. Charles-Dominique P: Ecology and behaviour of nocturnal primates: prosimians of equatorial West Africa. Columbia University Press; 1977.

191. Dammhahn M, Kappeler PM: Females go where the food is: does the socio-ecological model explain variation in social organisation of solitary foragers? Behav Ecol Sociobiol 2009, 63:939.

192. Kappeler PM: A framework for studying social complexity. Behav Ecol Sociobiol 2019, 73:13.

193. This important review emphasizes the need to study social behavior in diverse model systems, including solitary and eusocial species.

194. Nevo E: Adaptive convergence and divergence of subterranean mammals. Annu Rev Ecol Syst 1979, 10:269–308.

195. Lacey EA, Sherman PW: Cooperative breeding in naked mole-rats: implications for vertebrate and invertebrate sociality. In Cooperative breeding in mammals. Edited by French JA, Solomon NG: Cambridge University Press; 1997:267–301.

196. Kverková K, Bělíková T, Ołkowski S, Pavelková Z, O’Riain MJ, Sumbera R, Burda H, Bennett NC, Némec P: Sociality does not drive the evolution of large brains in eusocial African mole-rats. Sci Rep 2018, 8:9203.

197. Zuri I, Terkel J: Locomotor patterns, territory, and tunnel utilization in the mole-rat Spalax ehrenbergi. J Zool 1996, 240: 123–140.

198. Zuri I, Terkel J: Ontogeny of agonistic behavior in dispersing blind mole rats (Spalax ehrenbergi). Aggress Behav 1998, 24: 456–470.

199. Shanas URI, Terkel J: Mole-rat hardierian gland secretions inhibit aggression. Anim Behav 1997, 54:1256–1263.

200. Rado R, Wollberg Z, Terkel J: Dispersal of young mole rats (Spalax ehrenbergi) from the natal burrow. J Mammal 1992, 73:885–890.

201. Nevo E, Naftali G, Guttmann R: Aggression patterns and speciation. Proc Natl Acad Sci U S A 1975, 72:3250–3254.

202. Nevo E: Observations on Israeli populations of the mole rat Spalax E. Ehrenbergi Nehring 1898. In Mammals, vol. 25; 1961:127.

203. Guttmann R, Naftali G, Nevo E: Aggression patterns in three chromosome forms of the mole rat, Spalax ehrenbergi. Anim Behav 1975, 23:485–493.

204. Zuri I, Gottreich A, Terkel J: Social stress in neighboring and encountering blind mole-rats (Spalax ehrenbergi). Physiol Behav 1998, 64:611–620.

205. Gazit I, Terkel J: Reproductive behavior of the blind mole-rat (Spalax ehrenbergi) in a seminatural burrow system. Can J Zool 2000, 78:570–577.

206. Nevo E: Mole rat Spalax ehrenbergi: mating behavior and its evolutionary significance. Science 1969, 163:484–486.

207. Nevo E: Evolution of a visual system for life without light: optimization via tinkering in blind mole rats. Principles of animal design: the optimization and symmorphosis debate. 1998:288.
207. Kimchi T, Terkel J: Seeing and not seeing. Curr Opin Neurobiol 2002, 12:728–734.

208. Rado R, Himelfarb M, Aransburg B, Terkel J, Wollberg Z: Are seismic communication signals transmitted by bone conduction in the blind mole rat? Hear Res 1989, 41:23–29.

209. Rado R, Terkel J, Wollberg Z: Seismic communication signals in the blind mole-rat (Spalax ehrenbergi): electrophysiological and behavioral evidence for their processing by the auditory system. J Comp Physiol A 1998, 183:503–511.

210. Lambert K, Kent M, Vavra D: The emperor of animal models in neuroscience research. Current Opinion in Neurobiology 2019, 68:3–4.

211. Brenowitz EA, Zakon HH: Emerging from the bottleneck: benefits of the comparative approach to modern neuroscience. Trends Neurosci 2015, 38:273–278.

212. Yartsev MM: The emperor’s new wardrobe: rebalancing diversity of animal models in neuroscience research. Science 2017, 358:466–469.

213. Olazábal DE, Sandberg NY: Variation in the density of oxytocin receptors in the brain as mechanism of adaptation to specific social and reproductive strategies. Gen Comp Endocrinol 2020, 286:113337.

214. Mathur US, Libersat F, Vyas A, Teseo S: Why behavioral neuroscience still needs diversity?: a curious case of a persistent need. Neurosci Biobehav Rev 2020, 116:130–141.

215. Mooney SJ, Holmes MM: Social condition and oxytocin neuron number in the hypothalamus of naked mole-rats (Heterocephalus glaber). Neuroscience 2013, 230:56–61.

216. Hathaway GA, Faykoo-Martinez M, Peragine DE, Mooney SJ, Holmes MM: Subcaste differences in neural activation suggest a prosocial role for oxytocin in eusocial naked mole-rats. Horm Behav 2016, 79:1–7.

217. Young LJ, Lim MM, Gingerich B, Insel TR: Cellular mechanisms of social attachment. Horm Behav 2001, 40:133–138.

218. Bendesky A, Kwon Y-M, Lassance J-M, Lewarch CL, Yao S, Peterson BK, He MX, Dulac C, Hoekstra HE: The genetic basis of parental care evolution in monogamous mice. Nature 2017, 544:434.

219. Lee NS, Beery AK: Neural circuits underlying rodent sociality: a comparative approach. In Neuroendocrine regulation of behavior. Edited by Cooiren LM, Grattan DR, Springer International Publishing; 2019:211–238.

220. Anacker AMJ, Beery AK: Life in groups: the roles of oxytocin in mammalian sociality. Front Behav Neurosci 2013, 7:185.

221. Toor I, Edwards PD, Kaka N, Whitney R, Ziołkowski J, Monks DA, Holmes MM: Aggression and motivation to cooperate in eusocial naked mole-rats, Heterocephalus glaber. Anim Behav 2020, 168:45–58.

222. Jarvis J: Reproduction of naked mole-rats. The biology of the naked mole-rat. 1991:384.

223. Jacobs DS, Reid S, Kuiper S: Out-breeding behaviour and xenophobia in the Damaraland mole-rat, Cryptomys damaensis. Afr Zool 1998, 33:189–194.

224. Zöttl M, Vullioud P, Goddard K, Torrents-Ticó M, Gaynor D, Bennett NC, Clutton-Brock T: Allo-parental care in Damaraland mole-rats is female biased and age dependent, though independent of testosterone levels. Physiol Behav 2018, 193:149–153.

225. Cooney R: Colony defense in Damaraland mole-rats, Cryptomys damaensis. Behav Ecol 2002, 13:160–162.

226. Lee NS, Goodwin NL, Freitas KE, Beery AK: Affiliation, aggression, and selectivity of peer relationships in meadow and prairie voles. Front Behav Neurosci 2019, 13.

227. Walum H, Young LJ: The neural mechanisms and circuitry of the pair bond. Nat Rev Neurosci 2018, 19:643–654.

228. Siegel HI, Rosenblatt JS: Hormonal and behavioral aspects of sexual differentiation in the hamster: a review. Neurosci Biobehav Rev 1980, 4:17–26.

229. Tenanove JI, Song Z, Larkin TE, Hardcastle N, Norvelle A, Riaz A, Albers HE: Serotonin and arginine–vasopressin mediate sex differences in the regulation of dominance and aggression by the social brain 2016, 113:13233–13238.

230. Shanasi U, Heth G, Nevo E, Shalgi R, Terkel J: Reproductive behaviour in the female blind mole rat (Spalax ehrenbergi). J Zool 1995, 237:195–210.

231. Lacey EA, Braude SH, Wieczorek JR: Solitary burrow use by adult patagonian tuco-tucos (Ctenomys haigi). J Mammal 1998, 79:386–391.

232. Beery AK, Lacey EA, Francis DD: Oxytocin and vasopressin receptor distributions in a solitary and a social species of tuco-tuco (Ctenomys haigi and Ctenomys sociabilis). J Comp Neurol 2008, 507:1847–1859.