Introduction

Ebola, earlier termed as Ebola hemorrhagic fever (EHF), is a critically lethal ailment which primarily affects the humans and nonhuman primates. Ebola virus disease (EVD) occurs due to a virus infection which belongs to the family Filoviridae and genus Ebolavirus. EVDs has posed diagnostic challenges and has been a universal public health threat since its discovery. While investigating an alleged yellow fever case, Dr. Peter Piot in the year 1976 first detected the disease in Zaire, Africa (presently the Democratic Republic of Congo). The name “Ebola” was termed as the disease was noticed near the Ebola river in Congo.

Fruit bats of Pteropodidae family, such as Hypsignathus monstrous, Epomops franqueti, and Myonycteris torquata serve as the natural hosts of the EBOV in Africa. Nonhuman primates may develop the infection by eating the partly eaten fruits and may also transmit the infection to humans.

Ebola virus disease (EVD), a fatal viral hemorrhagic illness, is due to infection with the Ebola virus of the Filoviridae family. The disease has evolved as a global public health menace due to a large immigrant population. Initially, the patients present with nonspecific influenza-like symptoms and eventually terminate into shock and multiorgan failure. There exists no specific treatment protocol for EVD and only supportive and symptomatic therapy is the line of treatment. This review article provides a detailed overview of the Ebola virus; it’s clinical and oral manifestations, diagnostic aids, differential diagnosis, preventive aspects, and management protocol.

Keywords: Ebola virus, oral manifestations, public health menace, symptomatic therapy

Abstract

Ebola virus disease (EVD), a fatal viral hemorrhagic illness, is due to infection with the Ebola virus of the Filoviridae family. The disease has evolved as a global public health menace due to a large immigrant population. Initially, the patients present with nonspecific influenza-like symptoms and eventually terminate into shock and multiorgan failure. There exists no specific treatment protocol for EVD and only supportive and symptomatic therapy is the line of treatment. This review article provides a detailed overview of the Ebola virus; it’s clinical and oral manifestations, diagnostic aids, differential diagnosis, preventive aspects, and management protocol.

Keywords: Ebola virus, oral manifestations, public health menace, symptomatic therapy

Introduction

Ebola, earlier termed as Ebola hemorrhagic fever (EHF), is a critically lethal ailment which primarily affects the humans and nonhuman primates. Ebola virus disease (EVD) occurs due to a virus infection which belongs to the family Filoviridae and genus Ebolavirus. EVDs has posed diagnostic challenges and has been a universal public health threat since its discovery. While investigating an alleged yellow fever case, Dr. Peter Piot in the year 1976 first detected the disease in Zaire, Africa (presently the Democratic Republic of Congo). The name “Ebola” was termed as the disease was noticed near the Ebola river in Congo.

Fruit bats of Pteropodidae family, such as Hypsignathus monstrous, Epomops franqueti, and Myonycteris torquata serve as the natural hosts of the EBOV in Africa. Nonhuman primates may develop the infection by eating the partly eaten fruits and may also transmit the infection to humans.

Address for correspondence: Dr. Shazina Saeed, Department of Amity Institute of Public Health, Amity University, Noida, Uttar Pradesh - 201 303, India. E-mail: shs1091@gmail.com

Received: 10-04-2019 Revised: 12-04-2019 Accepted: 24-04-2019

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

How to cite this article: Hasan S, Ahmad SA, Masood R, Saeed S. Ebola virus: A global public health menace: A narrative review. J Family Med Prim Care 2019;8:2189-201.
and symptomatic therapy, along with monitoring coagulopathies and multiorgan dysfunction.[2]

The World Health Organization (WHO) affirmed the EVD outbreak as a “Public Health Emergency of International Concern” on August 8th, 2014.[3]

With the enormous immigrant population, India is estimating the likelihood of a probable EVD outbreak. The Ministry of Health and Family Welfare, Government of India, in collaboration with other agencies has appraised the situation and recommended travel instructions by air, land, and sea and health care professionals.[11]

Taxonomy

The virus belongs to the *Ebola virus* genus, *Filoviridae* family, and *Mononegavirales* order.[12] The genus *Ebolavirus* includes the following species—Zaire ebolavirus (EBOV), Reston ebolavirus (RESTV), Bundibugyo ebolavirus (BDBV), Tai Forest ebolavirus (TAFV), Sudan ebolavirus (SUDV), and the newly identified Bombali ebolavirus (BOMV).[13] Except for exclusive identification of RESTV in the Philippines, all the other species causes endemic West African EVD.[14]

EBOV responsible for the EHF causes the highest human mortality (57%–90%), followed by SUDV (41%–65%) and Bundibugyo virus (40%). TAFV has caused only two nonlethal human infections to date, whereas RESTV causes asymptomatic human infections.[15]

Figure 1 shows the taxonomy of Ebola virus.

Transmission

Based on the Centers for Disease Control and Prevention (CDC) classification, Ebola virus is considered as a biosafety level 4 and category A bioterrorism pathogen with an immense likelihood for massive nationwide transmission.[16]

Source of Infection

Intimate physical contact with the patients in the acute disease stages and contact with the blood/fluids from the dead individuals constitutes the most important modes of transmission.[17]

The long-established funeral ceremonies in the African countries entail direct handling of the dead bodies, thus significantly contributing to the disease dissemination. Unsafe conventional burial procedures accounted for 68% infected cases in 2014 EVD outburst of Guinea.[18]

EBOV RNA may be identified for up to a month in rectal, conjunctival, and vaginal discharges and semen specimens may demonstrate the virus presence up to 3 months, thus signifying the presence of EBOV in recuperating patients.[19] The sexually transmitted case of EVD has been reported between a convalescent patient and close family member. Another study demonstrated a case in a recuperating male patient. The patient’s semen specimen tested positive with Ebola viral antigen almost 3 months after the disease onset.[20]

Asymptomatic EBOV carriers are not infectious and do not have a major role play in the EVD outburst, and the field practice in Western Africa supported this assumption.[21] However, this presumption was refuted after the documentation of a pioneer asymptomatic carrier case in North Gabon epidemic (1996).[22]

EBOV has been detected from blood, saliva, semen, and breast milk, while RNA has been isolated from sweat, tears, stool, and on the skin, vaginal, and rectal swabs, thus highlighting that exposure to infected blood and bodily secretions constitute the major means of dissemination.[23]

Eating uncooked infected animal meat such as bats or chimpanzees account significantly to oral EVD transmission, especially in the African countries.[24] The demonstration of the Ebola virus in the Filipino pigs in 2008 triggered the likelihood of an extensive range of possible animal hosts.[25]

EVD dissemination has also been reported with hospital-acquired infections, particularly in areas with poor hygiene conditions. The infected needles usage was responsible for the 1976 EVD outbreak in Sudan and Zaire.[26,27] Improper hygiene and sterilization were the crucial factors for the 1967 Yambuku EVD outburst.[27]

EVD dissemination may also occur through the inanimate materials with infected body secretions (fomites).[28] However, disease transmission through the airborne and droplet infection is ambiguous.[10]

Figure 2 shows the primary and secondary transmission of disease.

Table 1 depicts the possible routes of transmission.

Epidemiology

The vast majority of EVD cases and outbursts have been endemic to African continent ever since the disease detection.
Hasan, et al.: Ebola virus

Table 1: Possible routes of transmission

Mode of transmission	Consensus likelihood of occurring	Known facts	Unknown facts
Airborne/aerosol (small droplet/droplet nuclei)	Unlikely from epidemiology of disease	EBOV can be aerosolized mechanically and cause lethal disease in nonhuman primates at low concentrations. Outbreaks contained without airborne precautions in the affected population. EBOV detected after 90 min in experimental small aerosols.	Ability of the virus to become airborne through respiratory tract in humans and animals. Airborne stability of EBOV in tropical climates. Whether aerosol generating procedures (AGPs) produce EBOV aerosols that cause transmission
Fomites	Less likely from environmental sampling	Virus found in dried blood Persists on glass and in the dark for 5.9 days	EBOV stability in tropical climates and on surfaces Whether infectious fluids are formed into droplets by humans Range of droplets containing EBOV
Droplet (large droplet)	Likely from epidemiology and experiments	EBOV found in stool, semen, saliva, breast milk Accidental infections in nonhuman primates, possibly from power washing EBOV infections without direct contact	
Bodily fluids contact	Very likely from epidemiology and experimental data	Sharing needles and handling the deceased or sick are high risk factors How much virus is shed in different fluids	

Figure 2: Primary and secondary transmission

in 1976 and 36 such outbreaks have occurred in six African countries.

Table 2 shows Ebola epidemiological outbreaks between 1976 and 2014.

The 2014–2016 EVD started in South East Guinea rural surroundings and eventually became a global public health menace by rapidly disseminating to urban localities and other countries.

Figure 3 depicts the geographical distribution of Ebola virus disease.

The conducive environmental surroundings of the African continent facilitate EVD endemicity. However, intermittent imported Ebola cases have also been noticed in United States, United Kingdom, Canada, Spain, and Thailand.

Figure 4 depicts the distribution of Ebola virus disease in West African Countries.

Out of the unparalleled globally reported 28,616 cases and 11,310 casualties, Liberia accounted for almost 11,000 cases and over 4,800 deaths.

Table 3 shows the statistics of the 2014–16 West African outbreak.

Pathogenesis

Ebola viruses penetrate the human body through mucous membranes, skin lacerations/tear, close contact with infected patients/corpse, or by direct parental dissemination. EBOV has a predilection to infect various cells of immune system (dendritic cells, monocytes, and macrophages), endothelial and epithelial cells, hepatocytes, and fibroblasts where it actively replicates by gene modulation and apoptosis and demonstrate significantly high viremia. The virus reaches the regional lymph nodes causing lymphadenopathy and hematogenous spread to the liver and spleen promote an active inflammatory response. Release of chemical mediators of inflammation (cytokines and chemokines) causes a dysregulated immune response by disrupting the vasculature system harmony, eventually causing disseminated intravascular coagulation and multiple organ dysfunction.

Figure 5 demonstrates the pathogenesis of Ebola virus disease.

Clinical Features

Due to the bizarre and atypical manifestations in the initial phase, mimicking dengue fever, typhoid fever, malaria,
Table 2: Ebola outbreaks between 1976 and 2014 (Adapted from WHO 2014)

Year	Country/village	Ebola virus subtype	Number of human cases	Number of deaths	Mortality	Source and spread infection
1976	Sudan, Nzara and Marida	Sudan virus	284	151	53%	Close contact within hospitals, infecting many hospital staff
1976	Zaire, Yambuku	Ebola virus	318	280	88%	Contaminated needles and syringes in hospitals
1976	England	Sudan virus	1	0		Laboratory infection; accidental stick of contaminated needles
1977	Zaire, Tandala	Sudan virus	1	1	100%	Noted retrospectively
1979	Sudan, Nzara and Marida	Sudan virus	34	22	65%	Recurrent outbreak at the same site as 1976
1989	USA, Virginia, Pennsylvania	Reston virus	0	0		Ebola virus was introduced in to quarantine facility by monkeys from the Philippines
1989-1990	Philippines	Reston virus	3	0		Source: Macaques from USA. Three workers (animal facility) developed antibodies, did not get sick.
1990	USA, Virginia	Ebola virus	4	0		The same to 1989
1994	Gabon	Ebola virus	52	31	60%	Initially thought to be yellow fever; identified as Ebola in 1995
1994	Cote d’Ivoire	Tai forest virus	1	0		Scientist became ill after autopsy on a wild chimpanzee (Tai Forest)
1995	Democratic Republic of Congo (Zaire)	Ebola virus	315	250	81%	Case-patient worked in the forest; spread through families and hospitals
1996	Gabon	Ebola virus	37	21	57%	Chimpanzee found dead in the forest was eaten by hunters; spread in families
1996-1997	Gabon	Ebola virus				Case-patient was a hunter from forest camp; spread by cloth contact
1996	South Africa	Ebola virus	2	1	50%	Infected medical professional travelled
1996	Russia	Ebola virus	1	1	100%	Laboratory contamination
2000-2001	Uganda	Sudan virus	425	223	53%	Providing medical care to Ebola case-patient without using adequate personal protection measures
2001-2002	Gabon	Ebola virus	65	53	82%	Outbreak occurred over border of Gabon and Republic of Congo
2001-2002	Republic of the Congo	Ebola virus	57	43	75%	Outbreak occurred over border of Gabon and Republic of Congo
2002-2003	Republic of the Congo	Ebola virus	143	128	89%	Outbreaks in the district of Mboma and Kelle in Cuvette Quest Department
2003	Republic of the Congo	Ebola virus	35	29	83%	Outbreaks in the villages of Mboma district, Cuvette Quest Department
2004	Sudan, Yambia	Sudan virus	17	7	41%	Outbreak concurrent with an outbreak of measles, and several cases were later reclassified as measles
2004	Russia	Ebola virus	1	1	100%	Laboratory infection
2007	Democratic Republic of the Congo	Ebola virus	264	187	71%	The outbreak was declared on November 20. Last death on October 10
2007-2008	Uganda	Bundibugyo virus	149	37	25%	First reported occurrence of a new strain
2008	Philippines	Reston virus	6	0		Six pig farm workers developed antibodies; did not become ill
2008-2009	Democratic Republic of the Congo	Ebola virus	32	15	47%	Not well identified
2011	Uganda	Sudan virus	1	1	100%	The Uganda Ministry of Health informed the public that a patient with suspected Ebola died on May 6th 2011
2012	Uganda, Kibuale	Sudan virus	11	4	36%	Laboratory tests of blood samples were conducted by UVRI and CDC
2012	Democratic Republic of the Congo	Bundibugyo virus	36	13	36%	This outbreak has no link to the contemporaneous Ebola outbreak in kibaale, Uganda
2012-2013	Uganda	Sudan virus	6	3	50%	CDC assisted the ministry of Health in the epidemiology and diagnosis of the outbreak
2014	Democratic Republic of the Congo	Zaire virus	66	49	74%	The outbreak was unrelated to the outbreak of West Africa

UVRI: Uganda Virus Research Institute; CDC: Centers for Disease Control and Prevention
Hasan, et al.: Ebola virus

meningococcemia, and other bacterial infections, EVD poses diagnostic dilemmas.\[37\]

The incubation period ranges from 2 to 21 days. However, symptoms usually develop 8–11 days following infection.\[38,39\]

The initial disease phase is represented by constitutional symptoms.\[38\] High-grade fever of >38°C is the most frequently reported symptom (85–95%), followed by other vague symptoms such as general malaise (85–95%), headaches (52–74%), dysphagia, sore throat (56–58%), and dry cough.\[41,42\] The progressively advanced disease is accompanied by abdominal pain (62–68%), myalgia (50–79%), nausea, vomiting, and diarrhea (84–86%).\[41\]

Variety of hemorrhagic manifestations forms an integral component of the late disease phase.\[38\] Gastrointestinal tract bleeding manifests as petechiae, hematuria, melena, conjunctival bleeding, contusion, or intraperitoneal bleeding. Mucous membrane and venipuncture site bleeding, along with excess clot formation may also occur. As the features advances with time, the patients experience dehydration, confusion, stupor, hypotension, and multiorgan dysfunction, resulting in fulminant shock and ultimately death.\[43,44\]

Maculopapular exanthema constitutes a characteristic manifestation of all Filovirus infection, including EVD.\[45\] The rash usually appears during the 5th to 7th day of disease and occur in 25–52% of patients in the past EVD outbreaks.\[46\]

Table 4 shows the clinical manifestations of Ebola virus disease.

Although EVD has a number of similar features with other viral hemorrhagic fevers (e.g. dengue), there are differences that set them apart.

Table 5 depicts the differentiating features of the Ebola virus and dengue virus infection.

Orofacial features

Gum bleeding, atypical mucosal lesions, and odynophagia comprise the distinctive oral manifestations. Epistaxis

Figure 3: Geographic distribution of Ebola virus disease outbreaks

WHO report date	Guinea total cases	Guinea total deaths	Liberia total cases	Liberia total deaths	Sierra Leone total cases	Sierra Leone total deaths	Total cases	Total deaths
13th APRIL 2016	3814	2544	10678	4810	14124	3956	28616	11310

Table 4: Clinical manifestations of Ebola virus disease

Days	Phase	Main features	Other features
O-3	Early febrile	Fever	Malaise, fatigue, body ache
3-10	Gastrointestinal	Epigastric pain, nausea, vomiting, diarrhoea	Persistent fever, headache, conjunctival injection, abdominal and chest pain, arthralgia, myalgia, hiccupus, delirium
7-12	Shock or recovery	Shock: diminished consciousness or coma, Rapid thread pulse, oligaemia, anuria, tachypnea	Recovery
≥ 10	Late complications	Gastrointestinal hemorrhage	Resolution of gastrointestinal symptoms, increased appetite, increased energy.
			Secondary infections: oral/esophageal candidiasis, persistent neurocognitive abnormalities
(nasal bleed), bleeding from venipuncture sites, conjunctivitis, and cutaneous exanthema are the other manifestations. Bleeding tendencies and gum bleeding is not seen in asymptomatic or initial EBOV patients reporting to the dental hospital.

EVD dissemination in the field of oral and dental health may appear nonsignificant; although, probable situations which may pose a risk to dental health professional have been appraised by Samaranayake et al. and Galvin et al.

Table 6 depicts the various orofacial manifestations of Ebola virus disease

Diagnosis

EVD patients usually demonstrate altered laboratory parameters based on the stage of the disease.

Table 7 shows the laboratory findings in Ebola virus disease.

The WHO (2014) recommended the sample collection of whole blood or oral swab at suitable centres called Ebola treatment centers. Reverse transcriptase polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) are the most frequently utilized tests for laboratory affirmation of the EVD. RT-PCR is capable of detecting viral RNA in the blood samples of infected patients immediately after the commencement of signs and symptoms, has a high sensitivity (up to 100%), and gives results within 1–2 days in cases of epidemics. ELISA detects the immunoglobulins G and M in samples of infected patients, has a low sensitivity (91%) and is not suitable for initial affirmation during an outbreak.

Prevention

The most imperative strategy in EVD is to avert the vulnerable population from getting infected and limit the transmission. These preventive strategies entail intensive and rigorous endeavors from the Government, public health amenities, medical units, and personals.

The most essential aspect to curb EVD transmission is to avert direct bodily contact with infected individuals and their body fluids.

Health caregivers are extremely vulnerable and experience an augmented professional threat for EVD. Thus, scrupulous adherence to the universal infection control measures is fundamental in all the hospitals, laboratories, and other health care services. The U.S. CDC has advocated the appropriate use of various personal protective equipment as a mandate for health care professionals.

The risk of rapid importation of Ebola virus into human beings can be prevented by averting the direct bush meat and bats contact.

Unsafe traditional burial procedures, especially in the African continent significantly contributed to the EVD transmission. Hence, it is essential to practice safe and guarded funeral rituals to prevent the disease spread.

WHO recommends the implementation of safe sex practices to combat the sexual transmission of EVD. Strict abstinence or proper and regular condom use in male EVD survivors at least for a period of 12 months of the symptom onset or until their semen has twice tested negative should be followed.

Dental health care personals are extremely susceptible to EVD as they are in regular contact with blood and saliva during the routine diagnostic procedures. There is no documented case of EVD through saliva till date. A study on the identification of EBOV in oral fluids affirmed that patients presenting with demonstrable serum levels of EBOV RNA also exhibit identifiable salivary levels. The incubation period for all body
fluids including saliva is 21 days; hence, oral health personals are vulnerable to develop the disease if universal infection control protocol is not followed.[58]

Table 8 demonstrates the various infection control measures to prevent the Ebola virus spread.

Box 1 shows the travel guidelines to EBOV affected regions.

Differentiating features	Dengue	Ebola	
Incubation period	3-14 days	2-21 days	
Etiology	RNA virus belongs to the genus \textit{Flavivirus} of family \textit{Flaviviridae}	RNA virus belongs to the genus \textit{Ebola} virus of family \textit{Filoviridae}	
Mode of transmission	Arthropod borne	Direct contact with infected blood/body fluids and environment contaminated with these secretions	
Human-human transmission	No	Yes	
Mortality	0.04%-0.05%	50%-90%	
Typical signs and symptoms	Common		
Fever	Common	Common	
Headache	Common and high intensity (usually retrobulbar)	Common and high intensity	
Muscle ache and pain	Common and severely intense (known as break bone fever)	Common	
Nausea and vomiting	Common		
Ocular involvement	Nonpurulent conjunctivitis	Conjunctival injection; subconjunctival hemorrhage	
Diarrhea	Uncommon		
Bleeding	Unusual		
Rash (maculopapular exanthema)	Moderately elevated; initial rash occurs before or during 1-2 days of fever; 2nd rash is seen 3-5 days later	Elevated; occurs during the 5th-7th day	
Neurologic complications	Encephalitis	Persistent neurocognitive abnormalities	
Course of disease	Dengue can be divided into undifferentiated fever, dengue fever, and dengue hemorrhagic fever.	Features can be divided into 4 main phases: Early febrile phase, gastrointestinal phase, shock or recovery phase and late complications	
Oral manifestations	Erythema, crusting of lips, and tongue and soft palatal vesicles are the prominent oral features. Hemorrhagic bullae, petechiae, purpura, ecchymoses, and bleeding gums may also be seen	Gingival bleeding, mucosal lesions, and pain during deglutination (odynophagia) are the most characteristic oral signs and symptoms.	
Typical blood abnormalities	Platelets	Low	Low
Hematocrit	High	Low	
Hemoglobin	High	Low	
Aspartate transferase	Elevated	Elevated	
INTERVENTIONS TO CONTROL THE SPREAD AND DISSEMINATION	Control of the vectors and their breeding sites	Avoid direct contact with the infected blood/body fluids and adopting universal infection control measures	
TREATMENT	Supportive	Supportive	
VACCINE DEVELOPMENT	In progress	In progress	

Box 1: Shows the UK Travel guidelines to EBV infested regions.

- Do not handle dead animals or their raw meat
- Avoid contact with patients who have symptoms
- Avoid unprotected sex with people in risk areas
- Wash fruit and vegetables before eating them
- Wash hands frequently using soap and water

Till date, there is no precise antiviral management or vaccination for EVD.[51] The management protocol mainly relies on supportive and symptomatic therapy. Public health strategies emphasizing on epidemiological surveillance, contact tracing, and quarantine of the patient have been recommended to combat the dissemination of EVD.[59]

Rehydration, adequate nourishment, analgesics, and blood transfusion form a keystone supportive treatment of EVD.
Table 6: Orofacial manifestations of Ebola virus disease

Authors, Year	Oral bleeding	Oral mucosal lesions	Odynophagia	Other bleeding sites	Other features
Anonymous, 1978a	Gingival bleeding (48%)	Dry oral cavity	Painful throat (sensation of dry rope in the throat) (63%)	Epistaxis	Conjunctivae slightly injected but nonicteric
Anonymous, 1978b		Small aphthous like ulcers			
Piot, 1978					
		Posterior pharynx slightly injected			
		Fissures and open sores of the lips and tongue			
		Oral throat lesions (73%)			
		Fissures on the lips			
		Herpetic oral lesions			
		Grayish exudative patches on soft palate and oropharynx			
Sureau PH 1989	Gingival and oral bleeding	Oropharyngeal bleeding ulcerations in the mouth and in the lips	Sore throat (32%)	Epistaxis	Hemorrhagic conjunctivitis
Bonnet, 1998	Diffuse bleeding in the oral cavity (gums & tongue)	Oral thrush like lesions	Not reported	Bruses and bleeding at the injection sites (late stages)	Exanathematous rash on trunk
Bwaka, 1999	Not reported	Not reported	Odynophagia	Injection sites (5%)	Conjunctival injection (47%)
Ndanbi, 1999	Gingival bleeding (30%)	Oral/mucosal redness (30%)	Dysphagia (48%)	Epistaxis (4%)	Conjunctivitis (78%)
				Injection site (30%)	
Mupere, 2011	Not reported	Sore throat (10%)	Epistaxis (10%)	Conjunctival injection (40%)	
Korepeter, 2011	Not reported	Pharyngeal Aрыthema	Sore throat	Bleeding from injection/venepuncture site	
Roddy, 2012	Gingival bleeding (4%)	Not reported	Dysphagia (58%)	Epistaxis (8%)	Conjunctivitis (50%)
Chertow, 2014	Not reported	Oral ulcers and Thrush	Throat pain	Not reported	Rash (12%)
WHO Ebola response team, 2014	Bleeding gums (2.3%)	Not reported	Dysphagia (32.9%)	Unexplained bleeding (18%)	
			Sore Throat (21.8%)	Epistaxis (1.9%)	
				Injection site (2.4%)	

Table 7: Laboratory findings in Ebola virus disease

Timing	Common laboratory findings
Early illness	Leukopenia, lymphphenopenia, and thrombocytopenia
	Elevated hemoglobin and hematocrit
	Elevated aspartate aminotransferase and alanine aminotransferase (ratio≥3:1)
	Elevated prothrombin time, activated partial thromboplastin time, and D-dimer
Peak illness	Leukocytosis, neutrophilia, and anemia
	Hyponatremia, hypo- or hyperkalemia, hypomagnesemia, hypocalcemia, hyperalbuminemia, hypoglycaemia
	Elevated creatine phosphokinase and amylase
	Elevated blood urea nitrogen and creatinine
	Elevated serum lactate and low serum bicarbonate
Recovery	Thrombocytosis
Intravenous fluids and oral rehydration solution endow with proper electrolytes substitute and maintain the intravascular volume. Unrelenting vomiting and diarrhea are taken care of by the use of antiemetics and antidiarrheal drugs. Suspected cases of secondary bacterial infections and septicemia are best managed by the use of prophylactic antibiotic regimen (third generation I.V. cephalosporins). Concurrent parasitic coinfections may also be seen and require prompt investigations and management.

Table 9 shows experimental treatment for Ebola virus disease.

A number of investigative clinical trials emphasizing on the development of vaccine, antibody therapies, and antiviral drugs have been conducted for EVD. Various clinical trials in Africa, Europe, and the United States suggest that Ebola vaccines are in various development stages (Phase I–III). A number of candidate vaccines employ diverse platforms, including recombinant viral vectors (most evolved vaccine candidate), DNA vaccines, inactivated viral particles, subunit proteins, recombinant proteins, and virus-like particles. Example of viral vectors expressing ebolavirus glycoproteins include recombinant simian adenovirus (cAd3), recombinant vaccinia virus, recombinant human adenovirus (Ad26), and a live vesicular stomatitis virus used alone or in prime-booster regimens.

However, Ebola virus having the glycosylated surface proteins and preferentially infecting the immune cells impedes the development of an effective vaccine.

Dental Management

Dental health care professionals in Europe have not encountered a case of EVD so far. However, health care personals (including dental surgeons) are more prone to EVD while treating patients in West or sub-Saharan Africa. Dental professionals are more likely to encounter asymptomatic EVD patients or those with early-stage vague symptoms.
Table 9: Experimental treatment for Ebola virus disease

Drug	Drug type	Mechanism of action	Ebola virus clinical trial phase	Result/status	Other clinical trials
FAVIPIRA VIR (T-705) (Fujifilm Holding Corp)	Nucleotide analogue and viral RNA polymerase inhibitor	Prevents viral replication by RNA chain termination and/or lethal mutagenesis	Phase II (NCT02329054); JIKI; NCT02662855; Sierra Leone)	Efficacy in patients with low to moderate levels of virus	Administered with ZMapp to a patient who recovered; administered to a patient with convalescent plasma who recovered; retrospective study indicated increased survival and lower viral loads.
BCX4430 (BioCryst Pharmaceuticals Inc., Durham, NC)	Synthetic adenosine analogue	Inhibits viral RNA polymerase and results in RNA chain termination	Phase I (NCT02319772)	Phase I complete; results not available yet	Not Applicable
TKM-Ebola (Tekmira Pharmaceutical Corp.)	Small Interfering (si) RNA agents with si RNA-Ebola virus specific compound	Gene silencing	TKM-100802	Terminated	Terminated early; did not demonstrate efficacy [77]; development has been suspended
Brincidofovir CMX001 (Chimerix Durham, NC)	Nucleotide analogue	Inhibits viral replication by inhibiting DNA polymerase	Phase II (NCT02271347)	Terminated due to low enrollment; not currently under further development as EBOV therapeutic agent	Administered to 5 patients during the outbreak, often in combination with other therapies
AVI-6002	Small Interfering (si) RNA agents Phosphoro-diamidate morpholino oligomer Ebola virus specific compound	Gene silencing	Phase I (NCT01353027; NCT01593072)	Viable safety and tolerability	Not Applicable
AVI-7537	Small Interfering (si) RNA agents Phosphoro-diamidate morpholino oligomer Ebola virus specific compound	Gene silencing	Phase I (NCT01353027; NCT01593072)	Viable safety and tolerability	Not Applicable
Z-Mapp (Mapp Pharmaceuticals)	Combination of 3 different monoclonal antibodies-Ebola specific compound	Virus neutralisation	Phase II (NCT02636322)	Inconclusive efficacy due to insufficient statistical power	Administered to patients during the outbreak, often in combination with other therapies
JK-05 (Sihuan Pharmaceutical Holdings Group Ltd and Academy of Military Medical Sciences (Beijing, China))	Broad spectrum antiviral drug	Inhibits viral RNA polymerase	Not Applicable	Not Applicable	Not Applicable
Convalescent plasma or blood	Derived from surviving or cured Ebola patients contains anti Ebola antibodies	Phase I/II; NCT02333578 Phase II/III (NCT02342171; ISRCTN13990511)	Completed; results from one study found no improvement in efficacy in treated group	Whole blood: 1995 Kikwit outbreak—7 out of 8 survivors; administered to patients during the outbreak, often in combination with other therapies	Administered to a newborn in combination with ZMapp and buffy coat transfusion; patient survived
GS-5732	Small molecule monophosphoramidate prodrug of an adenosine analogue	Inhibition of RNA-dependent RNA polymerase	Phase I	Phase I complete; Phase II for efficacy in survivors with viral persistence in semen (NCT02818582)	Results not yet released
IFN-β	Cytokine family member	Inhibits the viral infection by activating the innate and adaptive immune response	Phase I/II (ISRCTN17414946)	Not Applicable	Not Applicable

Contd...
Hasan, et al.: Ebola virus

Journal of Family Medicine and Primary Care 2199

Volume 8 : Issue 7 : July 2019

Individuals with a travel history to Ebola endemic regions, but with no direct intimate contact with the disease fall in the low-risk category and may undergo any medical/dental health care procedures without restrictions. However, all the nonessential procedures should be postponed for 21 days in individuals with direct exposure to the virus. The regional Health Service Executive Department of Public Health needs to be notified when the exposed patient's treatment cannot be deferred or controlled with pharmacotherapy.\footnote{10}

Conclusion

EVD has emerged as a significant global public health menace due to multiple disease outbreaks in the last 25 years. Recent advancements are being carried out in the form of effective Ebola virus vaccine and anti-Ebola virus drugs. However, rapid geographic dissemination, nonspecific clinical presentation, lack of vaccine, and specific diagnostic test are the possible challenges to combat this dreaded public health menace.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. Arinola AA, Joel SA, Tubosun OE, Folagbade OA. Ebola virus disease (EVD) information awareness among the people of Ogbomoso Environs. Int J Library Information Sci 2015;4:55-69.
2. Rajak H, Jain DK, Singh A, Sharma AK, Dixit A. Ebola virus disease: Past, present and future. Asian Pac J Trop Biomed 2015;5:337-43.
3. Rabiah M, Khan A, Fatima M, Ashfaq M, Chaudhry HW, Zafar M. Knowledge and awareness of ebola virus disease among medical students. Pak J Med Health Sci 2015;9:852-5.
4. Yobsan D, Walkite F, Nesradin Y. Ebola virus and it's public health significance: A review. J Vet Sci Res 2018;3:1-10.
5. Daral S, Singh SK, Khokhar A. Ebola virus: Awareness about the disease and personal protective measures among junior doctors of a tertiary hospital in Delhi, India. Int J Med Public Health 2015;5:217-21.
6. Luo D, Zheng R, Wang D, Zhang X, Yin Y, Wang K, et al. Effect of sexual transmission on the West Africa Ebola outbreak in 2014: A mathematical modeling study. Sci Rep 2019;9:1653.
7. Petti S, Messano GA, Vingolo EM, Marsella LT, Scully C. The face of Ebola: Changing frequency of hemorrhage in the West African compared with Eastern-Central African outbreaks. BMC Infect Dis 2015;15:564.
8. Naieni KH, Ahmad A, Raza O, Assan A, Elduma AH, Jammeh A, et al. Assessing the knowledge, attitudes, and practices of students regarding ebola virus disease outbreak. Iran J Public Health 2015;44:1670-6.
9. Samaranayake L, Scully C, Nair RG, Petti S. Viral hemorrhagic fevers with emphasis on Ebola virus disease and oro-dental healthcare. Oral Dis 2015;21:1-6.
10. Galvin S, Flint SR, Healy CM. Ebola virus disease: Review and implications for dentistry in Ireland. J Ir Dent Assoc 2015;61:141-3.
11. Vailaya CGR, Kumar S, Moideon S. Ebola virus disease: Knowledge, attitude, and practices of health care professionals in a tertiary care hospital. J Pub Health Med Res 2014;2:13-18.
12. Gebretadik FA, Seifu MF, Gelaw BK. Review on Ebola virus disease: Its outbreak and current status. Epidemiology (Sunnyvale) 2015;5:1-8.
13. Schindell BG, Webb AL, Kindrachuk J. Persistence and sexual transmission of filoviruses. Viruses 2018;10:1-22.
14. Liu WB, Li ZX, Du Y, Cao GW. Ebola virus disease: From epidemiology to prophylaxis. Mil Med Res 2015;2:7.
15. Moghadam SRJ, Omidi N, Bayrami S, Moghadam SJ, Alinaghi SAS. Asian Pac J Trop Biomed 2015;5:260-7.
16. Lai KY, Ng WY, Cheng FF. Human Ebola virus infection in West Africa: A review of available therapeutic agents that target different steps of the life cycle of the Ebola virus.
Hasan, et al.: Ebola virus

Infect Dis Poverty 2014;3:43.

17. Rodriguez LL, Roo AD, Guimard Y, Trappier SG, Sanchez A, Bressler D, et al. Persistence and genetic stability of Ebola virus during the outbreak in Kikwit, the Democratic Republic of the Congo 1995. J Infect Dis 1999;179:170-6.

18. Chan M. Ebola virus disease in West Africa—no early end to the outbreak. N Engl J Med 2014;371:1183-5.

19. Rewar S. Transmission of Ebola virus disease: An overview. Ann Glob Health 2014;80:444-51.

20. Dazen JM, Kanapathipillai R, Campion EW, Rubin EJ, Hammer SM, Morrissey S, et al. Ebola and quarantine. N Engl J Med 2014;371:2029-30.

21. Samarayakone LP, Peiris JS, Scully C. Ebola virus infection: An overview. Br Dent J 1996;180:264-6.

22. Judson S, Prescott J, Munster V. Understanding ebola virus transmission. Viruses 2015;7:51-21.

23. Leroy EM, Kumulungui B, Pourrut X, Rouquet P, Hassanin A, Yaba P, et al. Fruit bats as reservoirs of Ebola virus. Nature 2005;438:575-6.

24. Barrette RW, Metwally SA, Rowland JM, Xu L, Zaki SR, Nichol ST, et al. Discovery of swine as a host for the Reston ebolavirus. Science 2009;325:204-6.

25. Ebola hemorrhagic fever in Sudan, 1976. Report of a WHO/International Study Team. Bull World Health Organ 1978;56:247-70.

26. Ebola hemorrhagic fever in Zaire, 1976. Bull World Health Organ 1978;56:271-93.

27. Reichart PA, Gelderblom HR, Khongkhunthian P, Westhausen AS. Ebola virus disease: Any risk for oral and maxillofacial surgery? An overview. Oral Maxillofac Surg 2016;20:111-4.

28. Amundsen, S. Historical analysis of the Ebola virus: Advances in Ebola control. InTech Open 2017;2:1‑27.

29. Aurelie KK, Guy MM, Bona NF, Charles KM, Mawupemor AP, Amundsen, S. Historical analysis of the Ebola virus: Novel players, new insights. Viruses 2017;9:161.

30. Balami LG, Ismail S, Saliluddin SM, Garba SH. Ebola virus disease: Epidemiology, clinical feature and the way forward. Int J Community Med Public Health 2017;4:1372-8.

31. Park SW, Lee YJ, Lee WJ, Je C, Choi W. One-step reverse transcription-polymerase chain reaction for Ebola and Marburg viruses. Ongol Public Heal Res Perspect 2016;7:205-9.

32. To KK, Chan JF, Tsang AK, Cheng VC, Yuen KY. Ebola virus disease: A highly fatal infectious disease reemerging in West Africa. Microbes Infect 2015;17:84-97.

33. Omonzejele PF. Ethical challenges posed by the Ebola virus epidemic in West Africa. J Bioeth Inq 2014;11:417-20.

34. Meyers L, Frawley T, Goss S, Kang C. Ebola virus outbreak 2014: Clinical review for emergency physicians. Ann Emerg Med 2015;65:101-8.

35. Sarwar UN, Sitap S, Ledgerwood JE. Filovirus emergence and vaccine development: A perspective for health in travel medicine. Travel Med Infect Dis 2011;9:126-34.

36. Boon SD, Marston BJ, Nyenswah TG, Jambai A, Barry M, Keita S, et al. Ebola virus infection associated with transmission from survivors. Emerg Infect Dis 2019;25:240-6.

37. Veldhuis J, Pepler L, Thomson N. Ebola virus infection: Still a threat 30 years after the Kikwit outbreak. J Infect Dis 2016;214:909-11.

38. WHO Ebola Response Team. Ebola virus disease in West Africa—the first 9 months of the epidemic and forward projections. N Engl J Med 2014;371:1481-93.

39. Hallattasamina S, Crestani R, Squire JS, Declerk H, Calio GM, Wolz A, et al. Ebola outbreak in rural West Africa: Epidemiology, clinical features, and outcomes. Trop Med Int Health 2015;10:448-54.

40. Gostin LO, Friedman EA. A retrospective and prospective analysis of the West African Ebola virus disease epidemic: Robust national health systems at the foundation and an empowered WHO at the apex. Lancet 2015;385:1902-9.

41. Wang SS-Y, Wong SC-Y. Ebola virus disease in nonendemic countries. J Formos Med Assoc 2015;114:384-98.

42. Meyers L, Frawley T, Goss S, Kang C. Ebola virus outbreak 2014: Clinical review for emergency physicians. Ann Emerg Med 2015;65:101-8.

43. Sarwar UN, Sitap S, Ledgerwood JE. Filovirus emergence and vaccine development: A perspective for health in travel medicine. Travel Med Infect Dis 2011;9:126-34.

44. Wiwanitkit V. Ebola virus infection: Be known? N Am J Med Sci 2014;6:549-52.

45. Bwaka MA, Bonnet MJ, Calain P, Colebunders R, Roo AD, Guimard Y, et al. Ebola hemorrhagic fever in the Kikwit Democratic Republic of the Congo: Clinical observations in 103 patients. J Infect Dis 1999;179:1-7.

46. Kortepeter MG, Bausch DG, Bray M. Basic clinical and laboratory features of filoviral hemorrhagic fever. J Infect Dis 2011;204:810-6.

47. Balami LG, Ismail S, Saliluddin SM, Garba SH. Ebola virus disease: Epidemiology, clinical feature and the way forward. Int J Community Med Public Health 2017;4:1372-8.

48. Scully C. Ebola: A very dangerous viral hemorrhagic fever. J Infect Dis 1999;179:1-7.

49. Mahanty S, Bray M. Pathogenesis of filoviral hemorrhagic fevers. Lancet Infect Dis 2004;4:487-98.

50. Raftery P, Condell O, Wasunna C, Kpaka J, Zwizwai R, Nuhu M, et al. Establishing Ebola Virus Disease (EVD). A historical review of Ebola outbreaks. Trop Med Int Health 2015;10:448-54.

51. Raftery P, Condell O, Wasunna C, Kpaka J, Zwizwai R, Nuhu M, et al. Establishing Ebola Virus Disease (EVD). A historical review of Ebola outbreaks. Trop Med Int Health 2015;10:448-54.

52. Kortepeter MG, Bausch DG, Bray M. Basic clinical and laboratory features of filoviral hemorrhagic fever. J Infect Dis 2011;204:810-6.

53. Samaranayake LP, Peiris JS, Scully C. Ebola virus infection: An overview. Br Dent J 1996;180:264-6.

54. Maganda GD, Kapetschi J, Berthet N, Kebela Ilunga B, Kabange F, et al. Ebola virus disease in the Democratic Republic of Congo. N Engl J Med 2014;371:2083-91.

55. Raftery P, Condell O, Wasunna C, Kpaka J, Zwizwai R, Nuhu M, et al. Establishing Ebola Virus Disease (EVD) diagnostics using GeneXpert technology at a mobile diagnostic laboratory in Liberia: Impact on outbreak response, case management, and laboratory systems strengthening. PLoS Negl Trop Dis 2018;12:1-20.

56. Hoffmann-Winkler H, Kaup F, Pohlmann S. Host cell factors in filovirus entry: Novel players, new insights. Viruses 2012;4:3366-62.

57. Mahanty S, Bray M. Pathogenesis of filoviral hemorrhagic fevers. Lancet Infect Dis 2004;4:487-98.
specimens during outbreaks of Ebola virus hemorrhagic fever in the Republic of Congo. Clin Infect Dis 2006;42:1521-6.

58. Samaranayake LP, Scully C, Nair RG, Petti S. The Ebola virus epidemic: A concern for dentistry? Dent Trib News Asia Pac 2014;15:8-10.

59. Pandey A, Atkins KE, Medlock J, Wenzel N, Townsend JP, Childs JE, et al. Strategies for containing Ebola in West Africa. Science 2014;346:991-5.

60. Schieffelin JS, Shaffer JG, Goba A, Gbakie M, Gire SK, Colubri A, et al. Clinical illness and outcomes in patients with Ebola in Sierra Leone. N Engl J Med 2014;371:2092-2100.

61. Chertow DS, Kleine C, Edwards JK, Scaini R, Giuliani R, Sprecher A, et al. Ebola virus disease in West Africa—Clinical manifestations and management. N Engl J Med 2014;371:2054-7.

62. Plachouras D, Monnet DL, Catchpole M. Severe Ebola virus infection complicated by gram-negative septicemia. N Engl J Med 2015;372:1376-7.

63. O’Shea MK, Clay KA, Craig DG, Matthews SW, Kao RL, Fletcher TE, et al. Diagnosis of febrile illnesses other than Ebola virus disease at an Ebola treatment unit in Sierra Leone. Clin Infect Dis 2015;61:795-8.

64. Bishop BM. Potential and emerging treatment options for Ebola virus disease. Ann Pharmacother 2015;49:196-206.

65. Espeland EM, Tsai CW, Larsen J, Disbrow GL. Safeguarding against Ebola: Vaccines and therapeutics to be stockpiled for future outbreaks. PLoS Negl Trop Dis 2018;12:1-4.

66. Hwang ES. Preparedness for the prevention of Ebola virus disease. J Korean Med Sci 2014;29:1185.