Is ADC(3) as Accurate as CC3 for Valence and Rydberg Transition Energies?

Pierre-Francois Loos, Denis Jacquemin

Submitted date: 10/12/2019 • Posted date: 20/12/2019
Licence: CC BY-NC-ND 4.0

Citation information: Loos, Pierre-Francois; Jacquemin, Denis (2019): Is ADC(3) as Accurate as CC3 for Valence and Rydberg Transition Energies?. ChemRxiv. Preprint.
https://doi.org/10.26434/chemrxiv.11347994.v1

The search for new ab initio models rapidly delivering accurate excited state energies and properties is one of the most active research lines of theoretical chemistry. Along with these methodological developments, the performances of known methods are constantly reassessed thanks to the emergence of new benchmark values. In this Letter, we show that, in contrast to previous claims, the third-order algebraic diagrammatic construction, ADC(3), does not yield transition energies of the same quality as the third-order coupled cluster method, CC3. There is indeed a significant difference in terms of accuracy between the two approaches, as we clearly and unambiguously demonstrate here thanks to extensive comparisons with several hundreds high-quality vertical transition energies obtained with FCI, CCSDTQ, and CCSDT. Direct comparisons with experimental 0-0 energies of small- and medium-size organic molecules support the same conclusion, which holds for both valence and Rydberg transitions, as well as singlet and triplet states. In regards of these results, we introduce a composite method that we named ADC(2.5) which consists in averaging the ADC(2) and ADC(3) excitation energies. Although ADC(2.5) does not match the CC3 accuracy, it significantly improves the ADC(3) results, especially for vertical energies. We hope that the present contribution will stimulate further developments and, in particular, improvements of the ADC-type methods which have the indisputable advantage of being computationally lighter than their equivalent-order CC variants.

File list (2)

File name	Size	Options
ADC.pdf	2.02 MiB	view on ChemRxiv download file
ADC-SI.pdf	0.98 MiB	view on ChemRxiv download file
Is ADC(3) as Accurate as CC3 for Valence and Rydberg Transition Energies?

Pierre-François Loos*† and Denis Jacquemin*‡

*Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, UPS, France
†Laboratoire CEISAM - UMR CNR 6230, Université de Nantes, 2 Rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
‡E-mail: loos@irsamc.ups-tlse.fr; Denis.Jacquemin@univ-nantes.fr

Abstract

The search for new ab initio models rapidly delivering accurate excited state energies and properties is one of the most active research lines of theoretical chemistry. Along with these methodological developments, the performances of known methods are constantly reassessed thanks to the emergence of new benchmark values. In this Letter, we show that, in contrast to previous claims, the third-order algebraic diagrammatic construction, ADC(3), does not yield transition energies of the same quality as the third-order coupled cluster method, CC3. There is indeed a significant difference in terms of accuracy between the two approaches, as we clearly and unambiguously demonstrate here thanks to extensive comparisons with several hundreds high-quality vertical transition energies obtained with FCI, CCSDTQ, and CCSDT. Direct comparisons with experimental 0-0 energies of small- and medium-size organic molecules support the same conclusion, which holds for both valence and Rydberg transitions, as well as singlet and triplet states. In regards of these results, we introduce a composite method that we named ADC(2.5) which consists in averaging the ADC(2) and ADC(3) excitation energies. Although ADC(2.5) does not match the CC3 accuracy, it significantly improves the ADC(3) results, especially for vertical energies. We hope that the present contribution will stimulate further developments and, in particular, improvements of the ADC-type methods which have the indisputable advantage of being computationally lighter than their equivalent-order CC variants.

Electronic excited states (ES) play an important role in many technological applications (photovoltaics, photocatalysis, light-emitting diodes, ...), but their characterization from purely experimental data remains often tedious. This has stimulated the developments of various density- and wavefunction-based methods allowing to model accurately ES. Amongst all these wavefunction approaches, the algebraic diagrammatic construction (ADC), which relies on perturbation theory to access excitation energies and properties, has now become one of the most popular.† The ADC scheme,
originally developed by Schirmer and Trofimov, has several advantages over the well-known coupled cluster (CC) family of methods, e.g., hermiticity and higher compactness for odd expansion orders. These assets have greatly contributed to the ever growing applications of ADC. In particular, its second-order variant, ADC(2), generally provides valence transition energies as accurate as the one obtained with the second-order CC model, CC2, for a smaller computational cost [yet similar $O(N^5)$ scaling].

One of the originality of ADC(n) lies in its alternative representation, known as intermediate-state representation, of the polarization propagator which poles are located at the vertical excitation energies. These intermediate states are generated by applying a set of creation and annihilation operators to the nth-order Møller-Plesset (MPn) ground-state wave function, and are then orthogonalized block-wise according to their excitation class. This explains why ADC(n) is usually presented as “MPn for excited states” in the literature. One can show that the intermediate states and genuine ES are related by a unitary transformation X, which satisfies the Hermitian eigenvalue problem $MX = \Omega X$ (with $X^T X = 1$), where M is the so-called ADC matrix and Ω is a diagonal matrix gathering the corresponding excitation energies. We refer the interested reader to Ref. 1 for a non-technical discussion of the general form of the ADC(n) matrices.

Hättig pointed out several interesting theoretical connections between ADC(2), CIS(D$_\infty$) and CC2. In particular, he showed that ADC(2) is a symmetrized version of CIS(D$_\infty$), and that the only modification required to obtain CIS(D$_\infty$) excitation energies from CC2 is to replace the ground-state CC2 amplitudes by those from MP2. This idea has been exploited by Dreuw’s group to develop the so-called CCD-ADC(2) method where the ADC(2) amplitudes are replaced by those obtained from a coupled cluster doubles (CCD) calculation. In addition to improve excitation energies, because CCD-ADC(2) does not rely on perturbation theory anymore, it has been shown to be more robust for molecular dissociation energy curves. One of the disadvantages of CC2 compared to ADC(2) is that, due to its non-Hermitian nature, CC2 does not provide a physically correct description of conical intersections between states of the same symmetry, a difficulty absent in ADC(2).

Similarities between the third-order variants, ADC(3) and CC3, are likely to exist but, to the best of our knowledge, these potential formal connections have never investigated in the literature. Nonetheless, it is worth mentioning that CC3, which scales as $O(N^7)$, treats the ground state at fourth order of perturbation theory and the 2h-2p block at second order, whereas ADC(3) describes the ground state and 2h-2p block at third and first order of perturbation theory, respectively. This difference becomes particularly apparent in the calculation of double excitations, for which ADC(3) typically yields inaccurate values. However, ADC(3), with its $O(N^9)$ computational scaling, has the indisputable advantage of being computationally lighter than CC3, and has a more compact configuration space.

In 2014, Harbach et al. reported an efficient implementation of ADC(3) and benchmarked its accuracy for transition energies using the theoretical best estimates (TBE) of the famous Thiel set as reference. They concluded that “based on the quality of the existing benchmark set it is practically not possible to judge whether ADC(3) or CC3 is more accurate.” As ADC(3) enjoys a lower formal computational scaling [$O(N^6)$] than CC3 [$O(N^7)$], and is generally regarded as the logical path for improvement over ADC(2), this finding contributed to enhance the popularity of ADC(3) in the electronic structure community. ADC(3) was subsequently employed to perform theory vs experiment comparisons, and to define benchmark values for assessing lower-order methods.

Given, on the one hand, that ADC(3) was advocated as a benchmark method and, on the other hand, the recent availability of high-accuracy reference energies for a large panel of ES,15,28,29 we believe that the time has come to perform a new performance assessment of this method. To this end, we have first considered our most recent set of TBE/aug-cc-pVTZ obtained for vertical transition energies in organic compounds encompassing from one to six non-hydrogen atoms. These TBE have been computed at very high levels of theory, i.e., mostly FCI (full configuration interaction) for molecules with up to three non-hydrogen atoms,15 CCSD(T) for four non-hydrogen atom derivatives, and CCSDT for compounds containing 5 or 6 non-hydrogen atoms. Note that, for the smallest compounds where the following comparison is actually possible, the mean absolute errors (MAE) obtained with CCSDT and CCSDT compared to FCI are trifling (0.01 eV and 0.03 eV, respectively). Table 1 provides a statistical analysis of the performances of the second- and third-order ADC and CC methods, using these TBE as reference. Figure 1 gives histograms of the errors for both singlet and triplet states. The full list of data can be found in the Supporting Information. We consider here a set of 328 ES, that has been divided into three relatively equivalent subsets of 1–3 non-hydrogen atoms (106 ES), 4 non-hydrogen atoms (89 ES) and 5–6 non-hydrogen atoms (134 ES). From these data, it is quite clear that CC3 delivers astonishingly accurate transition energies with MAE below or equal to 0.03 eV for each subset, and no deviation exceeding ±0.20 eV. This is inline with several previous benchmarks.12,15,22,29–32 Again, consistently with previous analyses and theoretical considerations (see above), the ADC(2) and CC2 performances are very similar and these second-order methods deliver a global MAE smaller than 0.2 eV, together with negligible MSE for all subsets. This confirms that ADC(2) is indeed a very interesting computational tool thanks to its attractive accuracy/cost ratio. Nevertheless, in par with the above-described conclusions, we found that the performance of ADC(3) is rather average with a significant underestimation (MSE of ±0.11 eV for the full set) and a MAE around 0.20 eV for each subset. Overall, ADC(3) underestimates transition energies and provides an average deviation of the same order of magnitude as ADC(2) and CC2. Strikingly, the MAE of ADC(3) is basically one order of magnitude larger than the MAE of CC3.
Table 1: Mean signed error (MSE), mean absolute error (MAE), maximal positive error [Max(+)], and maximal negative error [Max(−)] with respect to the highly-accurate TBE/aug-cc-pVTZ of Refs. 15 and 29 (see text for details) for various sets of vertical transition energies. All values are in eV. The raw data, which can be found in Table S1 of the Supporting Information, have been obtained with the aug-cc-pVTZ basis set and within the frozen-core approximation.

Set	Method (n)	MSE	MAE	Max(−)	Max(+)
All	ADC(2)	−0.00	0.16	−0.76	0.64
	ADC(2.5)	−0.05	0.08	−0.33	0.24
	ADC(3)	−0.11	0.21	−0.79	0.55
	CC2	0.02	0.17	−0.71	0.63
	CC3	0.00	0.02	−0.09	0.19
1–3 non-H	ADC(2)	−0.01	0.21	−0.76	0.57
atoms 15	ADC(2.5)	−0.08	0.10	−0.33	0.24
	ADC(3)	−0.15	0.23	−0.79	0.39
	CC2	0.03	0.22	−0.71	0.63
	CC3	−0.01	0.03	−0.09	0.19
4 non-H	ADC(2)	−0.03	0.18	−0.73	0.64
atoms 29	ADC(2.5)	−0.07	0.08	−0.29	0.15
	ADC(3)	−0.10	0.24	−0.76	0.49
	CC2	0.03	0.20	−0.68	0.59
	CC3	0.00	0.02	−0.05	0.17
5–6 non-H	ADC(2)	−0.03	0.11	−0.48	0.45
atoms 29	ADC(2.5)	−0.02	0.06	−0.26	0.24
	ADC(3)	−0.08	0.18	−0.46	0.55
	CC2	0.01	0.12	−0.58	0.31
	CC3	0.00	0.01	−0.03	0.04

Valence

Method (n)	MSE	MAE	Max(−)	Max(+)
ADC(2)	0.07	0.13	−0.76	0.54
ADC(2.5)	−0.05	0.07	−0.24	0.24
ADC(3)	−0.16	0.23	−0.46	0.50
CC2	0.12	0.15	−0.71	0.50
CC3	0.00	0.02	−0.09	0.19

Ryderberg

Method (n)	MSE	MAE	Max(−)	Max(+)
ADC(2)	−0.14	0.22	−0.38	0.64
ADC(2.5)	−0.07	0.09	−0.33	0.24
ADC(3)	−0.01	0.18	−0.79	0.55
CC2	−0.17	0.21	−0.41	0.63
CC3	−0.01	0.02	−0.09	0.17

Singlet

Method (n)	MSE	MAE	Max(−)	Max(+)
ADC(2)	−0.03	0.17	−0.76	0.64
ADC(2.5)	−0.05	0.09	−0.33	0.24
ADC(3)	−0.07	0.21	−0.79	0.55
CC2	−0.02	0.18	−0.71	0.59
CC3	0.00	0.02	−0.09	0.19

Triplet

Method (n)	MSE	MAE	Max(−)	Max(+)
ADC(2)	0.05	0.15	−0.70	0.57
ADC(2.5)	−0.06	0.07	−0.23	0.19
ADC(3)	−0.17	0.22	−0.56	0.38
CC2	0.09	0.16	−0.66	0.63
CC3	0.00	0.01	−0.09	0.04

$n \rightarrow n^\ast$

Method (n)	MSE	MAE	Max(−)	Max(+)
ADC(2)	−0.04	0.09	−0.38	0.23
ADC(2.5)	−0.02	0.06	−0.23	0.24
ADC(3)	0.00	0.14	−0.32	0.40
CC2	0.02	0.08	−0.25	0.21
CC3	0.00	0.01	−0.05	0.04

$\pi \rightarrow \pi^\ast$

Method (n)	MSE	MAE	Max(−)	Max(+)
ADC(2)	0.14	0.17	−0.31	0.64
ADC(2.5)	−0.07	0.08	−0.33	0.19
ADC(3)	−0.27	0.29	−0.79	0.55
CC2	0.19	0.21	−0.41	0.63
CC3	0.01	0.02	−0.09	0.17

Figure 1: Histograms of the errors (in eV) obtained with ADC(2), ADC(3), CC2, and CC3 taking the TBE/aug-cc-pVTZ values of Refs. 15 and 29 as reference. “Count” refers to the number of transitions in each group. The full list of data can be found in the Supporting Information. Note the difference of scaling in the vertical axes.

Notwithstanding the high accuracy of the vertical excitation energies presented above, CCSDT and CCSDTQ are not error-free. In addition, the previous analysis is limited to compact compounds with a maximum of 6 non-hydrogen atoms. Therefore, it is worth investigating the correlation
between experiment and theoretical observables. Meaningful theory-experiment comparisons for ES are always challenging but the simplest and safest strategy is very likely to be comparing 0-0 energies, an approach that has been used many times before, e.g., see our recent review on the topic. Following this strategy, we then consider here the (slightly extended) set of compounds defined in Ref. 32: it encompasses gas-phase measurements for 71 singlet and 30 triplet low-lying transitions. Note that the typical uncertainty of such experimental gas-phase measurements is of the order of 10^{-4} eV (or 1 cm$^{-1}$) only. We select here (EOM-)CCSD/def2-TZVPP geometries and (TD-)B3LYP/6-31+G(d) vibrational corrections, as it is known that the errors in the 0-0 energies are mostly driven by the inaccuracy in the adiabatic energies, rather than the approximate nature of the structures and/or vibrations. Our calculations are again performed with the aug-cc-pVTZ basis set, and within the frozen-core approximation. The full list of raw data are given in the Supporting Information. Statistical data can be found in Table 2 and Figure 2.

First, considering all 101 cases, we notice that the CC3 adiabatic energies produce chemically accurate 0-0 energies in 59% of the cases, with errors almost systematically smaller than 0.15 eV. None of the other approaches can match such a feat. In particular, both ADC(2) and ADC(3) deliver MAE above 0.15 eV and a chemical accuracy rate smaller than 20%. As in the set of vertical transitions discussed above, ADC(2.5) outperforms ADC(2) and ADC(3), and yields rather small deviations of the same order of magnitude than CC2 (MAE of 0.10 eV). The fact that CC2 provides more consistent 0-0 energies than ADC(2) while their performances were found similar for vertical energies might be related to the relatively poorer description of potential energy surfaces with the latter approach.

Turning our attention to the impact of spin symmetry, we note that, although CC3 remains very accurate, we observe a slight decline of its accuracy for triplet ES, a conclusion fitting with our recent study. It is also quite clear that ADC(3) has the edge over ADC(2) for triplet ES, whereas the opposite trend is observed for the singlets. Surprisingly, opposite conclusions were drawn for vertical transitions (see above). Despite its tendency to overestimate (underestimate) singlet (triplet) transition energies (see Figure 2), CC2 is found to be globally more robust than ADC(2) and ADC(3) for both ES families. Probably more enlightening is the comparison between the results obtained on small (71 molecules with 1–5 non-hydrogen atoms) and medium (30 molecules with 6–10 non-hydrogen atoms) compounds (see Table 2), the latter set being mostly composed of (substituted) six-membered rings. One sees a clear improvement of the ADC(3) performance going from the smaller to the larger molecules, with a MAE of 0.12 eV and a chemical accuracy rate of 43% for the latter group. These values are definitively promising. Indeed, although such a MAE value remains three times larger than its CC3 analogue, this hints that ADC(3) might become significantly more accurate for larger compounds. Finally, we wish to recall that these conclusions are made using (EOM-)CCSD geometries and (TD-)DFT harmonic vibrational corrections for all methods. Thus, the overall error is not exclusively (though probably predominantly) related to the method selected to compute adiabatic energies. It would be definitely interesting to have access to ground- and excited-state ADC(3) geometries in order to investigate if whether or nor it yields an improvement of the ADC(3) performance.

At this stage, it seems natural to wonder why the conclusions of the 2014 ADC(3) assessment based on Thiel’s set differ significantly from ours although the nature of the molecules belonging to the two sets are relatively similar. To understand this discrepancy, let us reexamine the data of Ref. In this work, Thiel’s original TBE (denoted as TBE-1), mostly based on CASPT2/TZVP but also incorporating some CC3/TZVP (as well as other values), were used as reference rather than Thiel’s most recent set of TBE (denoted as TBE-2), which are mostly basis set corrected CC3/aug-cc-pVTZ values. In addition, given the knowledge at that time, the authors of Ref. logically decided that “for a fair comparison of the accuracy of ADC(3) and CC3, the CC3 excitation energies have been analyzed only with respect to TBE values that are not CC3 values”, which is a very reasonable point. Considering the subset of TBE-1 based on CASTP2 (i.e., excluding the CC3 values from TBE-1), Ref.
10 reports, for the singlet states, a MSE (MAE) of +0.23 (0.24) eV for CC3. This value has to be compared with a MSE (MAE) of +0.12 (0.24) eV for ADC(3) where the reference was taken as the entire TBE-1 set. Similarly, for the 19 triplet excitation energies of the TBE-1 set not based on CC3, the MSE is +0.12 eV with CC3 and −0.10 eV with ADC(3). The direct comparison of ADC(3) and CC3 is also instructive. By considering now CC3 as reference, the MSE (MAE) of ADC(3) reported in Ref. 10 are −0.20 (0.29) eV for the singlets and −0.22 (0.25) eV for the triplets. These numbers are consistent with the findings of the present Letter, and show that ADC(3) significantly underestimates both families of transitions. We can then conclude that the bias in this earlier ADC(3) assessment was likely due to the CASPT2 reference values. Indeed, as clearly demonstrated in a recent series of papers, CC3 is a very robust method which generally delivers chemically accurate excitation energies, while CASPT2 has a clear tendency of underestimating transition energies.

In this context, we also wish to point out that an early ADC(3) vs FCI benchmark performed for a series of small molecules (H₂O, HF, N₂, Ne, CH₂, and BH₃), concluded that “the mean absolute error, as calibrated versus the FCI results for 41 singlet and triplet transitions, has been found to be smaller than 0.2 eV” (more precisely the MAE is equal to 0.18 eV for the first four compounds) and that “the quality of the results [...] does not match the impressive accuracy of the CC3 computations”. The present results confirm these two earlier assertions.

An additional aspect to take into account is that previous comparisons between ADC(3) transition energies and experimental λ_{max} values were often performed in the vertical approximation, which means that the geometry relaxation and vibronic effects were neglected. As shown in several works, this approximation implies a significant bias, because the blueshift between the experimental 0-0 energy and the λ_{max} value is typically smaller than the blueshift between the computed 0-0 and vertical energies. As a consequence, applying the vertical approximation favors methods delivering smaller transition energies.

As an example, the Q-band of Mg-porphyrin was studied at various levels of theory including ADC(3) in 2018. The first experimental maxima appears at 2.07 eV, a value smaller than the ADC(2), CCSD, and TD-DFT vertical transitions (which are found in the 2.27–2.43 eV range) as it should. In contrast, the ADC(3) vertical value of 2.00 eV, that “shows the best agreement”, presents the incorrect error sign and would likely be significantly too redshifted if vibronic corrections were accounted for. Indeed, according to Durbeij, the CC2 difference between vertical and 0-0 energies is −0.05 eV in the (free-base) porphyrin. This brings the ADC(3) estimate to −0.12 eV compared to experiment and improves the agreement for the other approaches. Again, both the error sign and its magnitude are quite coherent with the present estimates. Using the same procedure, ADC(2.5) would give a 0-0 energy of 2.11 eV, in superb agreement with experiment.

In the same work, an ADC(3) value of 4.65 eV is reported for the lowest B₀ state of trans-octatetraene, a bright ES with a dominant single-excitation character. This value is significantly lower than Thiel’s CC3 value of 4.84 eV, although the latter was obtained on a MP2 geometry that slightly underestimates the bond length alternation, whereas the ADC(3) estimate relies on a more accurate CCSD(T) structure. The measured gas-phase 0-0 energy for this transition is 4.41 eV, and the estimated difference between vertical and 0-0 energies is −0.45 eV at the TD-BHHLYP level, and −0.36 eV at the CC2 level, again hinting that the ADC(3) value is in fact slightly too low by a magnitude of −0.12 eV if one naively applies the CC2 correction (determined on a CC2 geometry). In this case, ADC(2.5) would only slightly reduced the error to −0.10 eV.

Of course, these two comparisons remain very qualitative and one would greatly benefit from ADC(3) 0-0 energies which, to the best of our knowledge, are not available to date for these compounds.

In this Letter, we have provided what we believe are compelling evidences that the transition energies computed with ADC(3) in organic compounds are significantly less accurate than their CC3 counterparts. This statement is based on i) extensive comparisons with both vertical energies determined with higher levels of theory (CCSDT, CCSDTQ, and FCI), and ii) accurate 0-0 energies measured in gas phase for small- and medium-size compounds. This conclusion apparently holds almost irrespectively of the nature of the transition, provided that the ES does not exhibit a dominant double excitation character. Of course, given that the ADC(3) error for 0-0 energies has a clear tendency to significantly drop for the largest compounds considered here (i.e., substituted six-membered rings), one could rightfully speculate that ADC(3) would become more accurate for even larger compounds, a claim that we cannot honestly verify at this stage. Besides, ADC(3) might also deliver accurate ES properties (such as geometries, transition and total dipoles, oscillator strengths, two-photon cross-sections, etc). Indeed, these properties are
treated at third order of perturbation theory by both ADC(3) and CC3. We believe that comparisons between CC3 and ADC(3) properties is a particular point that needs to be further investigated in the future.

COMPUTATIONAL DETAILS

For the set of vertical transition energies, the CC3/aug-cc-pVTZ geometries of Refs. 15 and 29 have been selected because the TBE have been obtained on the very same structures. The GS and ES structures used in the 0-0 calculations have been obtained at the (EOM-)CCSD/def2-TZVPP level and are provided in the Supporting Information of Ref. 32. The zero-point vibrational energies used to compute the 0-0 energies have been (mostly) obtained at the (TD-)B3LYP/6-31+G(d) level and are all listed in the Supporting Information of Ref. 32. The CC and ADC calculations have been performed with DALTON \(^8\) and Q-CHEM, \(^9\) respectively, with the aug-cc-pVTZ basis set. The ADC calculations have been performed within the RI approximation. We refer the readers to our previous works \(^{15,32}\) for additional details.

ACKNOWLEDGEMENTS

PFL thanks the Centre National de la Recherche Scientifique for funding. This research used resources of i) the GENCI-CINES/IDRIS; ii) CCIPL (Centre de Calcul Intensif des Pays de Loire); iii) a local Troy cluster and iv) HPC resources from ArronaxPlus (grant ANR-11-EQPX-0004 funded by the French National Agency for Research).

SUPPORTING INFORMATION AVAILABLE

Full list of transition energies for vertical and 0-0 energies.

REFERENCES

1. Dreuw, A.; Wormit, M. The Algebraic Diagrammatic Construction Scheme for the Polarization Propagator for the Calculation of Excited States. WIREs Comput. Mol. Sci. 2015, 5, 82–95.
2. Schirmer, J. Beyond the Random-Phase Approximation: a new Approximation Scheme for the Polarization Propagator. Phys. Rev. A 1982, 26, 2395–2416.
3. Schirmer, J. Closed-Form Intermediate Representations of Many-Body Propagators and Resolvent Matrices. Phys. Rev. A. 1991, 43, 4647–4659.
4. Barth, A.; Schirmer, J. Theoretical Core-level Excitation Spectra of N\(_2\) and CO by a new Polarisation Propagator Method. J. Phys. B: At. Mol. Phys. 1995, 18, 867–885.
5. Trofimov, A.; Schirmer, J. Polarization Propagator Study of Electronic Excitation in key Heterocyclic Molecules I. Pyrrole. Chem. Phys. 1997, 214, 153–170.
6. Trofimov, A.; Schirmer, J. Polarization Propagator Study of Electronic Excitation in key Heterocyclic Molecules II. Furan. Chem. Phys. 1997, 224, 175–190.
7. Schirmer, J.; Trofimov, A. B. Intermediate State Representation Approach to Physical Properties of Electronically Excited Molecules. J. Chem. Phys. 2004, 120, 11449–11464.
8. Schirmer, J. Many-Body Methods for Atoms, Molecules and Clusters; Springer, 2018.
9. Winter, N. O. C.; Graf, N. K.; Leutwyler, S.; Hä richtig, C. Benchmarks for 0–0 Transitions of Aromatic Organic Molecules: DFT/B3LYP, ADC(2), CC2, SOS-CC2 and SCS-CC2 Compared to High-resolution Gas-Phase Data. Phys. Chem. Chem. Phys. 2013, 15, 6623–6630.
10. Harbach, P. H. P.; Wormit, M.; Dreuw, A. The Third-Order Algebraic Diagrammatic Construction Method (ADC(3)) for the Polarization Propagator for Closed-Shell Molecules: Efficient Implementation and Benchmarking. J. Chem. Phys. 2014, 141, 064113.
11. Jacquemin, D.; Duchemin, I.; Blase, X. 0–0 Energies Using Hybrid Schemes: Benchmarks of TD-DFT, CIS(D), ADC(2), CC2, and BSE/GW formalisms for 80 Real-Life Compounds. J. Chem. Theory Comput. 2015, 11, 5340–5359.
12. Hä richtig, C. In Response Theory and Molecular Properties (A Tribute to Jan Linderberg and Poul Jørgensen); Jensen, H. A., Ed.; Advances in Quantum Chemistry; Academic Press, 2005; Vol. 50; pp 37–60.
13. Hodecker, M.; Dempwolf, A. L.; Rehn, D. R.; Dreuw, A. Algebraic-diagrammatic construction scheme for the polarization propagator including ground-state coupled-cluster amplitudes. I. Excitation energies. J. Chem. Phys. 2019, 150, 174104.
14. Hodecker, M.; Rehn, D. R.; Norman, P.; Dreuw, A. Algebraic-diagrammatic construction scheme for the polarization propagator including ground-state coupled-cluster amplitudes. II. Static Polarizabilities. J. Chem. Phys. 2019, 150, 174105.
15. Loos, P.-F.; Scemama, A.; Blondel, A.; Garniron, Y.; Caffarel, M.; Jacquemin, D. A Mountaineering Strategy to Excited States: Highly-Accurate Reference Energies and Benchmarks. J. Chem. Theory Comput. 2018, 14, 4360–4379.
16. Schreiber, M.; Silva-Junior, M. R.; Sauer, S. P. A.; Thiel, W. Benchmarks for Electronically Excited States: CASPT2, CC2, CCSD and CC3. J. Chem. Phys. 2008, 128, 134110.
17. Holland, D.; Seddon, E.; Trofimov, A.; Gromov, E.; Wormit, M.; Dreuw, A.; Korona, T.; de Oliveira, N.; Archer, L.; Joyeux, D. A Study of the Excited Electronic States of Normal and Fully Deuterated Furan by Photoabsorption Spectroscopy and High-Level ab initio Calculations. J. Mol. Spectrosc. 2015, 315, 184–195.
18. Bohnwagner, M. V.; Burghardt, I.; Dreuw, A. Solvent Polarity Tunes the Barrier Height for Twisted Intramolecular Charge Transfer in N-Pyrorolenobenzonitrile (PBN). J. Phys. Chem. A 2016, 120, 14–27.
19. Knippenberg, S.; Gieseking, R. L.; Rehn, D. R.; Mukhopadhyay, S.; Dreuw, A.; Brédas, J.-L. Benchmarking Post-Hartree–Fock Methods To Describe the Nonlinear Optical Properties of Polymethines: An Investigation of the Accuracy of Algebraic Diagrammatic Construction (ADC) Approaches. J. Chem. Theory Comput. 2016, 12, 5465–5476.
20. Holland, D. M. P.; Powis, I.; Trofimov, A. B.; Ménzies, R. C.; Potts, A. W.; Karlsson, L.; Badsuky, I. L.; Moskovskaya, T. E.; Gromov, E. V.; Schirmer, J. An Experimental and Theoretical Study of the Valence
Shell Photoelectron Spectra of 2-Chloropyridine and 3-Chloropyridine. *J. Chem. Phys.* **2017**, *147*, 164307.

(21) Tikhonov, S. A.; Fedorenko, E. V.; Mirochnik, A. G.; Osmushko, I. S.; Kvitnevskaya, A. D.; Trofimov, A. B.; Vovna, V. I. Spectroscopic and Quantum Chemical Study of Difluoroboron β-Diketone Luminophores: Isomeric Acetylnaptholate Chelates. *SpectroChim. Acta A* **2019**, *214*, 67–78.

(22) Suellen, C.; García Freitas, R.; Loos, P.-F.; Jacquemin, D. Cross Comparisons Between Experiment, TD-DFT, CC, and ADC for Transition Energies. *J. Chem. Theory Comput.* **2019**, *15*, 4581–4590.

(23) Avila-Ferrer, F. J.; Angeli, C.; Cerezo, J.; Coriani, S.; Ferretti, A.; Santoro, F. The Intriguing Case of the One-Photon and Two-Photon Absorption of a Prototypical Symmetric Squaraine: Comparison of TDDFT and Wave-Function Methods. *ChemPhotoChem* **2019**, *3*, 778–793.

(24) Plasser, F.; Dreuw, A. High-Level Ab Initio Computations of the Absorption Spectra of Organic Iridium Complexes. *J. Phys. Chem. A* **2015**, *119*, 1023–1036.

(25) Pflüg, A.; Sandoval-Salinas, M. E.; Casanova, D.; Jacquemin, D.; Corminboeuf, C. Low-Lying ππ* States of Heteroaromatic Molecules: A Challenge for Excited State Methods. *J. Chem. Theory Comput.* **2016**, *12*, 2652–2660.

(26) Mewes, S. A.; Mewes, J.-M.; Dreuw, A.; Plasser, F. Excitons in Poly(para phenylene vinylene): a Quantum-Chemical Perspective Based on High-Level ab initio Calculations. *Phys. Chem. Chem. Phys.* **2016**, *18*, 2548–2563.

(27) Azarias, C.; Habert, C.; Budzák, Š.; Blase, X.; Duchemin, I.; Jacquemin, D. Calculations of n → π* Transition Energies: Comparisons Between TD-DFT, ADC, CC, CASPT2, and BSE/GW Descriptions. *J. Phys. Chem. A* **2017**, *121*, 6122–6134.

(28) Loos, P.-F.; Boggio-Pasqua, M.; Scemama, A.; Caffarel, M.; Jacquemin, D. Reference Energies for Double Excitations. *J. Chem. Theory Comput.* **2019**, *15*, 1939–1956.

(29) Loos, P.-F.; Lipparini, F.; Boggio-Pasqua, M.; Scemama, A.; Jacquemin, D. A Mountaineering Strategy to Excited States: Highly-Accurate Energies and Benchmarks for Medium Molecules. *J. Chem. Theory Comput.* submitted, available at http://arxiv.org/abs/1912.04173.

(30) Trofimov, A. B.; Stelter, G.; Schirmer, J. Electron Excitation Energies Using a Consistent Third-Order Propagator Approach: Comparison with Full Configuration Interaction and Coupled Cluster Results. *J. Chem. Phys.* **2002**, *117*, 6402–6410.

(31) Leopold, D. G.; Vaidya, V.; Granville, M. F. Direct Absorption Spectroscopy of Jet-Cooled Polyenes. I. The 1^1B^u ← 1^1A^u Transition of trans,trans-1,3,5,7-Octatetraene. *J. Chem. Phys.* **1984**, *81*, 4210–4217.

(32) Loos, P.-F.; Jacquemin, D. Chemically Accurate 0-0 Energies with not-so-Accurate Excited State Geometries. *J. Chem. Theory Comput.* **2019**, *15*, 2481–2491.

(33) Pitoňák, M.; Neogrády, P.; Černý, J.; Grimmé, S.; Hobza, P. Scaled MP3 Non-Covalent Interaction En-
ani, S.; Dahle, P. et al. The Dalton Quantum Chemistry Program System. *WIREs Comput. Mol. Sci.* 2014, 4, 269–284.

(49) Shao, Y.; Gan, Z.; Epifanovsky, E.; Gilbert, A. T.; Wormit, M.; Kussmann, J.; Lange, A. W.; Behn, A.; Deng, J.; Feng, X. et al. Advances in Molecular Quantum Chemistry Contained in the Q-Chem 4 Program Package. *Mol. Phys.* 2015, 113, 184–215.
Is ADC(3) as accurate as CC3 for valence and Rydberg transition energies?

Supporting Information

Pierre-François Loos*† and Denis Jacquemin*‡

†Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, UPS, France
‡Laboratoire CEISAM - UMR CNRS 6230, Université de Nantes, 2 Rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France

E-mail: loos@irsamc.ups-tlse.fr | Denis.Jacquemin@univ-nantes.fr
Vertical energies

Below is a list of vertical transition energies obtained for a set of compounds described elsewhere. These transition energies, obtained on CC3/aug-cc-pVTZ geometries, have been computed with the aug-cc-pVTZ basis set and within the frozen-core approximation. Note that the CC2, ADC(2) and CC3 data are already available in these previous works, and are reproduced below for the sake of completeness. To identify the ES with the different approaches considered here, we used the usual strategies, i.e., relative energies, spatial and spin symmetries, symmetries and weights of the underlying molecular orbitals, and oscillator strengths. This allows unambiguous assignments for the vast majority of the states. There are however some state/method combinations for which strong mixing between ES of the same symmetry makes such assignments difficult. These challenging cases are nonetheless statistically irrelevant.

Table S1: Comparisons between the TBE (see Refs. [1] and [2] for details and geometries) and the vertical excitation energies obtained with CC2, CC3, ADC(2), and ADC(3). All the values have been obtained with the aug-cc-pVTZ basis set and within the frozen-core approximation. We have removed from this training set all excited states with a dominant double excitation character. F, R and V stand for fluorescence, Rydberg and valence states, respectively.

Compound	State	TBE	CC2	CC3	ADC(2)	ADC(3)
Acetaldehyde	$1A''(V; n \to \pi^*)$	4.31	4.41	4.31	4.24	4.29
	$3A''(V; n \to \pi^*)$	3.97	3.98	3.95	3.83	3.89
Acetone	$1A_2(V; n \to \pi^*)$	4.47	4.55	4.48	4.37	4.50
	$1B_2(R; n \to 3s)$	6.46	5.91	6.43	5.87	6.91
	$1A_2(R; n \to 3p)$	7.47	6.84	7.45	6.81	7.90
	$1A_1(R; n \to 3p)$	7.51	6.89	7.48	6.85	7.92
	$1B_2(R; n \to 3p)$	7.62	7.02	7.59	6.99	8.01
	$3A_2(V; n \to \pi^*)$	4.13	4.16	4.15	4.00	4.12
	$3A_1(V; \pi \to \pi^*)$	6.25	6.50	6.28	6.37	6.01
Acetylene	$1\Sigma_u^-(V; \pi \to \pi^*)$	7.10	7.26	7.09	7.24	6.72
	$1\Delta_u(V; \pi \to \pi^*)$	7.44	7.59	7.42	7.56	7.06
	$3\Sigma_u^+(V; \pi \to \pi^*)$	5.53	5.76	5.50	5.75	5.24
	$3\Delta_u(V; \pi \to \pi^*)$	6.40	6.60	6.40	6.57	6.06
	$3\Sigma_u^-(V; \pi \to \pi^*)$	7.08	7.29	7.07	7.22	6.72
	$1A_u[F](V; \pi \to \pi^*)$	3.64	3.94	3.64	3.78	2.85
Acrolein	$1A''(V; n \to \pi^*)$	3.78	3.85	3.74	3.68	3.76
	$1A'(V; \pi \to \pi^*)$	6.69	6.80	6.65	6.74	6.51

Continued on next page
Compound	State	TBE	CC2	CC3	ADC(2)	ADC(3)
	$^{1}A'(R; n \rightarrow 3s)$	7.08	6.40	7.07	6.33	7.57
	$^{3}A''(V; n \rightarrow \pi^*)$	3.51	3.49	3.46	3.33	3.45
	$^{3}A'(V; \pi \rightarrow \pi^*)$	3.94	4.06	3.94	4.05	3.66
	$^{3}A'(V; \pi \rightarrow \pi^*)$	6.18	6.37	6.19	6.31	5.86
Ammonia	$^{1}A_2(R; n \rightarrow 3s)$	6.59	6.39	6.57	6.40	6.63
	$^{1}E(R; n \rightarrow 3p)$	8.16	7.85	8.15	7.87	8.21
	$^{1}A_1(R; n \rightarrow 3p)$	9.33	9.05	9.32	9.05	9.38
	$^{1}A_2(R; n \rightarrow 4s)$	9.96	9.65	9.95	9.67	10.00
	$^{3}A_2(R; n \rightarrow 3s)$	6.31	6.14	6.29	6.16	6.31
Carbon monoxide	$^{1}\Pi(V; n \rightarrow \pi^*)$	8.49	8.64	8.49	8.69	8.24
	$^{1}\Sigma^-(V; \pi \rightarrow \pi^*)$	9.92	10.30	9.99	10.03	9.73
	$^{1}\Delta(V; \pi \rightarrow \pi^*)$	10.06	10.60	10.12	10.30	9.82
	$^{1}\Sigma^+(R)$	10.95	11.11	10.94	11.32	10.79
	$^{1}\Sigma^+(R)$	11.52	11.63	11.49	11.83	11.33
	$^{1}\Pi(R)$	11.72	11.83	11.69	12.03	11.56
Benzene	$^{3}\Pi(V; n \rightarrow \pi^*)$	6.28	6.42	6.30	6.45	5.97
	$^{3}\Sigma^-(V; \pi \rightarrow \pi^*)$	8.45	8.72	8.45	8.54	8.21
	$^{3}\Delta(V; \pi \rightarrow \pi^*)$	9.27	9.56	9.30	9.33	9.03
	$^{3}\Sigma^-(V; \pi \rightarrow \pi^*)$	9.80	10.27	9.82	10.01	9.53
	$^{3}\Sigma^+(R)$	10.47	10.60	10.45	10.83	10.29
Butadiene	$^{1}B_{2u}(V; \pi \rightarrow \pi^*)$	5.06	5.26	5.09	5.27	5.01
	$^{1}B_{1u}(V; \pi \rightarrow \pi^*)$	6.45	6.48	6.44	6.45	6.24
	$^{1}E_{1g}(R; \pi \rightarrow 3s)$	6.52	6.47	6.52	6.52	6.38
	$^{1}A_{2u}(R; \pi \rightarrow 3p)$	7.08	7.00	7.08	7.06	6.92
	$^{1}E_{2a}(R; \pi \rightarrow 3p)$	7.15	7.06	7.15	7.12	7.00
	$^{3}B_{1u}(V; \pi \rightarrow \pi^*)$	4.16	4.37	4.18	4.37	3.94
	$^{3}E_{1u}(V; \pi \rightarrow \pi^*)$	4.85	5.08	4.86	5.07	4.60
	$^{3}B_{2u}(V; \pi \rightarrow \pi^*)$	5.81	5.89	5.81	5.87	5.51
Cyanoacetylene	$^{1}\Sigma^-(V; \pi \rightarrow \pi^*)$	5.80	6.03	5.80	5.99	5.37
	$^{1}\Delta(V; \pi \rightarrow \pi^*)$	6.07	6.30	6.08	6.25	5.64
	$^{3}\Sigma^+(V; \pi \rightarrow \pi^*)$	4.44	4.80	4.45	4.77	4.11
	$^{3}\Delta(V; \pi \rightarrow \pi^*)$	5.21	5.50	5.22	5.46	4.80
	$^{1}A''[(V; \pi \rightarrow \pi^*)$	3.54	3.79	3.54	3.73	2.78
Cyanoformaldehyde	$^{1}A''(V; n \rightarrow \pi^*)$	3.81	3.97	3.83	3.83	3.77
	$^{1}A'(V; \pi \rightarrow \pi^*)$	6.46	6.74	6.42	6.73	6.07
	$^{3}A''(V; n \rightarrow \pi^*)$	3.44	3.51	3.46	3.37	3.38
	$^{3}A'(V; \pi \rightarrow \pi^*)$	5.01	5.34	5.01	5.27	4.63
Cyanogen	$^{1}\Sigma^-(V; \pi \rightarrow \pi^*)$	6.39	6.72	6.39	6.67	5.88
	$^{1}\Delta_u(V; \pi \rightarrow \pi^*)$	6.66	7.02	6.66	6.95	6.16

Continued on next page
Compound	State	TBE	CC2	CC3	ADC(2)	ADC(3)
Cyclopentadiene						
1B_2(V; \pi \rightarrow \pi^*)	5.56	5.52	5.54	5.49	5.35	
1A_2(R; \pi \rightarrow 3s)	5.78	5.66	5.77	5.71	5.63	
1B_1(R; \pi \rightarrow 3p)	6.41	6.26	6.40	6.31	6.25	
1A_2(R; \pi \rightarrow 3p)	6.46	6.30	6.45	6.35	6.30	
1B_2(R; \pi \rightarrow 3p)	6.56	6.42	6.56	6.48	6.41	
3B_2(V; \pi \rightarrow \pi^*)	3.31	3.42	3.32	3.42	3.05	
3A_1(V; \pi \rightarrow \pi^*)	5.11	5.36	5.12	5.23	4.86	
3A_2(R; \pi \rightarrow 3s)	5.73	5.62	5.73	5.67	5.57	
3B_1(R; \pi \rightarrow 3p)	6.36	6.22	6.36	6.27	6.20	
Cyclopropene						
1B_1(V; \sigma \rightarrow \pi^*)	6.68	6.73	6.68	6.75	6.56	
1B_2(V; \pi \rightarrow \pi^*)	6.79	6.78	6.73	6.86	6.56	
3B_2(V; \pi \rightarrow \pi^*)	4.38	4.46	4.34	4.45	4.09	
3B_1(V; \sigma \rightarrow \pi^*)	6.45	6.44	6.40	6.45	6.26	
Cyclopropenone						
1B_1(V; n \rightarrow \pi^*)	4.26	4.01	4.21	3.88	4.66	
1A_2(V; n \rightarrow \pi^*)	5.55	5.65	5.57	5.47	5.61	
1B_2(R; n \rightarrow 3s)	6.34	5.84	6.32	5.79	6.64	
1B_2(V; \pi \rightarrow \pi^*)	6.54	6.46	6.54	6.33	6.83	
1B_2(R; n \rightarrow 3p)	6.98	6.56	6.96	6.43	7.33	
1A_1(R; n \rightarrow 3p)	7.02	6.47	7.00	6.41	7.36	
1A_1(V; \pi \rightarrow \pi^*)	8.28	8.28	8.28	8.10	8.17	
3B_1(V; n \rightarrow \pi^*)	3.93	3.73	3.91	3.62	4.28	
3B_2(V; \pi \rightarrow \pi^*)	4.88	4.99	4.89	4.90	4.80	
3A_2(V; n \rightarrow \pi^*)	5.35	5.45	5.37	5.28	5.36	
3A_1(V; \pi \rightarrow \pi^*)	6.79	6.42	6.83	6.84	6.63	
Cyclopropenione						
1A_2(V; n \rightarrow \pi^*)	3.41	3.53	3.43	3.38	3.46	
1B_1(V; n \rightarrow \pi^*)	3.45	3.50	3.43	3.37	3.82	
1B_2(V; \pi \rightarrow \pi^*)	4.60	4.91	4.64	4.72	4.72	
1B_2(R; n \rightarrow 3s)	5.34	5.22	5.34	5.17	5.41	
1A_1(V; \pi \rightarrow \pi^*)	5.46	5.59	5.49	5.36	5.36	
1B_2(R; n \rightarrow 3p)	5.92	5.82	5.93	5.77	6.02	
3A_2(V; n \rightarrow \pi^*)	3.28	3.37	3.30	3.23	3.30	
3B_1(V; n \rightarrow \pi^*)	3.32	3.38	3.31	3.26	3.65	
3B_2(V; \pi \rightarrow \pi^*)	4.01	4.24	4.02	4.12	3.96	
3A_1(V; \pi \rightarrow \pi^*)	4.01	4.16	4.03	4.04	3.83	
Diacetylene						
1\Sigma_u^+(V; \pi \rightarrow \pi^*)	5.33	5.51	5.34	5.49	4.95	
1\Delta_u(V; \pi \rightarrow \pi^*)	5.61	5.76	5.61	5.72	5.22	
3\Sigma_u^+(V; \pi \rightarrow \pi^*)	4.10	4.39	4.08	4.37	3.79	
3\Delta_u(V; \pi \rightarrow \pi^*)	4.78	5.03	4.80	5.01	4.43	
Diazomethane						
1A_2(V; \pi \rightarrow \pi^*)	3.14	3.37	3.07	3.34	2.74	
1B_1(R; \pi \rightarrow 3s)	5.54	5.53	5.45	5.63	5.23	
1A_1(V; \pi \rightarrow \pi^*)	5.90	6.00	5.84	5.97	5.48	
3A_2(V; \pi \rightarrow \pi^*)	2.79	3.08	2.83	3.01	2.44	
3A_1(V; \pi \rightarrow \pi^*)	4.05	4.25	4.03	4.20	3.64	
3B_1(R; \pi \rightarrow 3s)	5.35	5.53	5.31	5.50	5.08	
3A_1(R; \pi \rightarrow 3p)	6.82	7.04	6.80	7.09	6.36	
1A''''[F](V; \pi \rightarrow \pi^*)	0.71	0.90	0.68	0.81	0.24	

Continued on next page
Compound	State	TBE	CC2	CC3	ADC(2)	ADC(3)
Dinitrogen	$^1\Pi_u(V; n \rightarrow \pi^*)$	9.34	9.44	9.34	9.48	9.16
	$^1\Sigma_u^+(V; \pi \rightarrow \pi^*)$	9.88	10.32	9.88	10.26	9.33
	$^1\Delta_u(V; \pi \rightarrow \pi^*)$	10.29	10.86	10.29	10.79	9.74
	$^1\Pi_u(R)$	12.98	12.83	13.01	12.99	13.01
	$^1\Pi_v(R)$	13.03	13.15	13.22	13.32	12.98
	$^1\Sigma_u^+(R)$	13.09	12.89	13.12	13.07	13.09
	$^3\Pi_u(R)$	13.46	13.96	13.49	14.00	13.40
	$^3\Sigma_u^+(V; \pi \rightarrow \pi^*)$	7.70	8.19	7.68	8.15	7.25
	$^3\Pi_u(V; n \rightarrow \pi^*)$	8.01	8.19	8.04	8.20	7.77
	$^3\Delta_u(V; \pi \rightarrow \pi^*)$	8.87	9.30	8.87	9.25	8.36
	$^3\Sigma_u^-(V; \pi \rightarrow \pi^*)$	9.66	10.29	9.68	10.23	9.14
Ethylene	$^1B_{1u}(R; \pi \rightarrow 3s)$	7.39	7.29	7.35	7.34	7.17
	$^1B_{1u}(V; \pi \rightarrow \pi^*)$	7.93	7.92	7.91	7.91	7.69
	$^1B_{1g}(R; \pi \rightarrow 3p)$	8.08	7.95	8.03	7.99	7.84
	$^3B_{1u}(V; \pi \rightarrow \pi^*)$	4.54	4.59	4.53	4.59	4.28
	$^3B_{3u}(R; \pi \rightarrow 3s)$	7.23	7.19	7.24	7.23	7.05
	$^3B_{1g}(R; \pi \rightarrow 3p)$	7.98	7.91	7.98	7.95	7.80
Formaldehyde	$^1A_2(V; n \rightarrow \pi^*)$	3.98	4.07	3.97	3.92	3.90
	$^1B_2(R; n \rightarrow 3s)$	7.23	6.56	7.18	6.50	7.02
	$^1B_2(R; n \rightarrow 3p)$	8.13	7.57	8.07	7.53	8.45
	$^1A_1(R; n \rightarrow 3p)$	8.23	7.52	8.18	7.47	8.61
	$^1A_2(R; n \rightarrow 3p)$	8.67	8.04	8.64	7.99	9.02
	$^1B_1(V; \sigma \rightarrow \pi^*)$	9.22	9.32	9.19	9.17	9.17
	$^1A_1(V; \pi \rightarrow \pi^*)$	9.43	9.54	9.48	9.46	9.05
	$^3A_2(V; n \rightarrow \pi^*)$	3.58	3.59	3.57	3.46	3.48
	$^3A_1(V; \pi \rightarrow \pi^*)$	6.06	6.30	6.05	6.20	5.71
	$^3B_2(R; n \rightarrow 3s)$	7.06	6.44	7.03	6.39	7.44
	$^3B_2(R; n \rightarrow 3p)$	7.94	7.45	7.92	7.41	8.23
	$^3A_1(R; n \rightarrow 3p)$	8.10	7.44	8.08	7.40	8.46
	$^3B_1(R; n \rightarrow 3d)$	8.42	8.52	8.41	8.39	8.32
Formamide	$^1A'[F](V; n \rightarrow \pi^*)$	2.80	2.97	2.84	2.71	2.77
	$^1A''(V; n \rightarrow \pi^*)$	5.65	5.69	5.66	5.45	5.75
	$^3A''(V; n \rightarrow \pi^*)$	5.38	5.36	5.38	5.15	5.42
	$^3A'(V; \pi \rightarrow \pi^*)$	5.81	5.99	5.82	5.88	5.63
Furan	$^1A_2(R; \pi \rightarrow 3s)$	6.09	6.06	6.08	6.12	5.95
	$^1B_2(V; \pi \rightarrow \pi^*)$	6.37	6.45	6.34	6.47	6.15
	$^1A_1(V; \pi \rightarrow \pi^*)$	6.56	6.77	6.58	6.76	6.48
	$^1B_1(R; \pi \rightarrow 3p)$	6.64	6.59	6.63	6.64	6.49
	$^1A_2(R; \pi \rightarrow 3p)$	6.81	6.75	6.80	6.68	6.67
	$^1B_2(R; \pi \rightarrow 3p)$	7.24	7.25	7.23	7.29	7.09
	$^3B_2(V; \pi \rightarrow \pi^*)$	4.20	4.43	4.22	4.41	3.91
	$^3A_1(V; \pi \rightarrow \pi^*)$	5.46	5.66	5.48	5.59	5.23
	$^3A_2(R; \pi \rightarrow 3s)$	6.02	6.01	6.02	6.08	5.89
	$^3B_1(R; \pi \rightarrow 3p)$	6.59	6.55	6.59	6.61	6.45
Glyoxal	$^1A_u(V; n \rightarrow \pi^*)$	2.88	2.91	2.88	2.83	2.83
	$^1B_2(V; n \rightarrow \pi^*)$	4.24	4.44	4.27	4.27	4.23
	$^1B_1(V; n \rightarrow \pi^*)$	6.57	6.51	6.58	6.50	6.80
	$^1B_2(R; n \rightarrow 3p)$	7.71	7.16	7.67	7.18	7.86

Continued on next page
Compound	State	TBE	CC2	CC3	ADC(2)	ADC(3)
Pyrazine	$^3A_u(V; n \rightarrow \pi^*)$	2.49	2.47	2.49	2.39	2.40
	$^3B_u(V; n \rightarrow \pi^*)$	3.89	3.96	3.90	3.82	3.85
	$^3B_u(V; \pi \rightarrow \pi^*)$	5.15	5.42	5.17	5.33	4.83
	$^3A_g(V; \pi \rightarrow \pi^*)$	6.30	6.56	6.30	6.45	5.93
Hydrogen chloride	$^1\Pi(CT)$	7.84	7.96	7.84	7.97	7.79
Hydrogen sulfide	$^1A_2(R; n \rightarrow 4p)$	6.18	6.35	6.19	6.37	6.05
	$^1B_3(R; n \rightarrow 4s)$	6.24	6.30	6.24	6.34	6.18
	$^3A_2(R; n \rightarrow 4p)$	5.81	5.91	5.82	5.91	5.67
	$^3B_3(R; n \rightarrow 4s)$	5.88	5.94	5.88	5.96	5.81
Imidazole	$^1A''(R; \pi \rightarrow 3s)$	5.71	5.69	5.71	5.75	5.61
	$^1A'(V; \pi \rightarrow \pi^*)$	6.41	6.51	6.41	6.50	6.31
	$^3A'(V; n \rightarrow \pi^*)$	6.50	6.47	6.50	6.51	6.39
	$^3A'(V; \pi \rightarrow \pi^*)$	4.73	4.94	4.75	4.92	4.47
	$^3A''(R; \pi \rightarrow 3s)$	5.66	5.66	5.67	5.72	5.57
	$^3A'(V; \pi \rightarrow \pi^*)$	5.74	5.94	5.74	5.93	5.49
	$^3A''(V; n \rightarrow \pi^*)$	6.31	6.36	6.33	6.31	6.26
Isobutene	$^1B_3(R; \pi \rightarrow 3s)$	6.46	6.37	6.45	6.43	6.33
	$^1A_1(R; \pi \rightarrow 3p)$	7.01	6.95	7.00	6.97	6.82
	$^3A_1(V; \pi \rightarrow \pi^*)$	4.53	4.62	4.53	4.62	4.30
Ketene	$^1A_2(V; \pi \rightarrow \pi^*)$	3.86	4.17	3.88	4.11	3.67
	$^1B_3(R; n \rightarrow 3s)$	6.01	5.94	5.96	6.03	5.87
	$^1A_2(V; \pi \rightarrow 3p)$	7.18	7.09	7.16	7.18	7.07
	$^3A_2(V; n \rightarrow \pi^*)$	3.77	3.98	3.78	3.92	3.56
	$^3A_1(V; \pi \rightarrow \pi^*)$	5.61	5.72	5.61	5.67	5.39
	$^3B_3(R; n \rightarrow 3s)$	5.79	5.77	5.76	5.85	5.67
	$^3A_2(R; \pi \rightarrow 3p)$	7.12	7.06	7.12	7.15	7.03
Methanimine	$^1A''(V; n \rightarrow \pi^*)$	1.00	1.26	1.00	1.19	0.67
	$^3A'(V; n \rightarrow \pi^*)$	5.23	5.32	5.20	5.29	5.05
Methylene cyclopropene	$^1B_2(V; \pi \rightarrow \pi^*)$	4.28	4.51	4.31	4.46	4.18
	$^1B_3(R; \pi \rightarrow 3s)$	5.44	5.35	5.44	5.38	5.26
	$^1A_2(V; \pi \rightarrow 3p)$	5.96	5.85	5.95	5.87	5.78
	$^3B_2(V; \pi \rightarrow \pi^*)$	3.49	3.64	3.50	3.61	3.30
	$^3A_1(V; \pi \rightarrow \pi^*)$	4.74	4.81	4.74	4.80	4.51
Nitrosomethane	$^1A''(V; \pi \rightarrow \pi^*)$	1.96	1.98	1.96	1.88	1.72
	$^1A'(R; n \rightarrow 3s/3p)$	6.40	5.84	6.31	5.86	6.48
	$^3A'(V; n \rightarrow \pi^*)$	1.16	1.12	1.14	1.03	0.84
	$^3A'(V; \pi \rightarrow \pi^*)$	5.60	5.74	5.51	5.75	5.04
Propynal	$^1A''(V; n \rightarrow \pi^*)$	3.80	3.96	3.82	3.78	3.81
	$^1A'(V; \pi \rightarrow \pi^*)$	5.54	5.71	5.51	5.73	5.20
	$^3A'(V; n \rightarrow \pi^*)$	3.47	3.53	3.49	3.38	3.45
	$^3A'(V; \pi \rightarrow \pi^*)$	4.47	4.71	4.43	4.67	4.10
Pyrazine	$^1B_{3u}(V; n \rightarrow \pi^*)$	4.15	4.14	4.14	4.17	4.13
	$^1A_u(V; n \rightarrow \pi^*)$	4.98	4.86	4.97	4.88	5.21
	$^1B_{2u}(V; \pi \rightarrow \pi^*)$	5.02	5.14	5.03	5.47	4.88
	$^1B_{2g}(V; n \rightarrow \pi^*)$	5.71	5.86	5.71	5.87	5.67
	$^1A_g(R; n \rightarrow 3s)$	6.65	6.20	6.66	6.30	6.96

Continued on next page
Compound	State	TBE	CC2	CC3	ADC(2)	ADC(3)
	$^1B_{1g}(V; n \rightarrow \pi^*)$	6.74	6.67	6.73	6.67	7.00
	$^1B_{1u}(V; \pi \rightarrow \pi^*)$	6.88	6.89	6.86	6.88	6.66
	$^1B_{1g}(R; \pi \rightarrow 3s)$	7.21	7.21	7.20	7.27	7.18
	$^1B_{2u}(R; n \rightarrow 3p)$	7.24	6.74	7.25		
	$^1B_{1u}(R; n \rightarrow 3p)$	7.44	7.03	7.45		
	$^3B_{3u}(V; n \rightarrow \pi^*)$	3.59	3.60	3.59	3.62	3.52
	$^3B_{1u}(V; \pi \rightarrow \pi^*)$	4.35	4.60	4.39	4.57	4.05
	$^3B_{2u}(V; (\pi \rightarrow \pi^*)$	4.39	4.57	4.40	4.59	4.10
	$^3A_{4}(V; n \rightarrow \pi^*)$	4.93	4.82	4.93	4.84	5.15
	$^3B_{2g}(V; n \rightarrow \pi^*)$	5.08	5.19	5.08		
	$^3B_{1u}(V; \pi \rightarrow \pi^*)$	5.28	5.59	5.29		
Pyridazine	$^1B_{1}(V; n \rightarrow \pi^*)$	3.83	3.78	3.83	3.79	3.86
	$^1A_{2}(V; n \rightarrow \pi^*)$	4.37	4.26	4.37	4.27	4.60
	$^1A_{1}(V; \pi \rightarrow \pi^*)$	5.26	5.43	5.29	5.44	5.18
	$^1A_{2}(V; n \rightarrow \pi^*)$	5.72	5.79	5.74	5.81	5.74
	$^1B_{2}(R; n \rightarrow 3s)$	6.17	5.59	6.17	5.69	6.67
	$^1B_{1}(V; n \rightarrow \pi^*)$	6.37	6.33	6.37	6.35	6.62
	$^1B_{2}(V; \pi \rightarrow \pi^*)$	6.75	6.86	6.74	6.85	
	$^3B_{1}(V; n \rightarrow \pi^*)$	3.19	3.18	3.19	3.19	3.12
	$^3A_{2}(V; n \rightarrow \pi^*)$	4.11	4.01	4.11	4.02	4.22
	$^3A_{1}(V; \pi \rightarrow \pi^*)$	4.82	5.07	4.83	5.06	4.46
Pyridine	$^1B_{1}(V; n \rightarrow \pi^*)$	4.95	4.99	4.96	4.98	4.99
	$^1B_{2}(V; \pi \rightarrow \pi^*)$	5.14	5.32	5.17	5.33	5.08
	$^1A_{2}(V; n \rightarrow \pi^*)$	5.40	5.28	5.40	5.27	5.70
	$^1A_{1}(V; \pi \rightarrow \pi^*)$	6.62	6.21	6.63	6.31	7.17
	$^1A_{1}(R; n \rightarrow 3s)$	6.76	6.68	6.76	6.65	6.39
	$^1A_{2}(R; n \rightarrow 3s)$	6.82	6.79	6.81	6.83	6.65
	$^1B_{1}(R; \pi \rightarrow 3p)$	7.39	7.34	7.38	7.38	7.21
	$^1A_{1}(V; \pi \rightarrow \pi^*)$	7.39	7.45	7.39	7.48	7.27
	$^3A_{1}(V; \pi \rightarrow \pi^*)$	4.30	4.53	4.33	4.53	4.06
	$^3B_{1}(V; n \rightarrow \pi^*)$	4.46	4.48	4.46	4.47	4.43
	$^3B_{2}(V; \pi \rightarrow \pi^*)$	4.79	4.98	4.79	4.98	4.49
	$^3A_{1}(V; \pi \rightarrow \pi^*)$	5.04	5.29	5.05	5.28	4.75
	$^3A_{2}(V; n \rightarrow \pi^*)$	5.36	5.24	5.35	5.23	5.62
	$^3B_{2}(V; \pi \rightarrow \pi^*)$	6.24	6.39	6.25	6.35	5.98
Pyrimidine	$^1B_{1}(V; n \rightarrow \pi^*)$	4.44	4.41	4.44	4.37	4.54
	$^1A_{2}(V; n \rightarrow \pi^*)$	4.85	4.77	4.86	4.73	5.06
	$^1B_{2}(V; \pi \rightarrow \pi^*)$	5.38	5.54	5.41	5.52	5.33
	$^1A_{2}(V; n \rightarrow \pi^*)$	5.92	5.96	5.93	5.93	6.08
	$^1B_{1}(V; \pi \rightarrow \pi^*)$	6.26	6.25	6.26	6.22	6.52
	$^1B_{2}(R; n \rightarrow 3s)$	6.70	6.20	6.72	6.25	7.11
	$^1A_{1}(V; \pi \rightarrow \pi^*)$	6.88	6.84	6.87	6.83	6.52
	$^3B_{1}(V; n \rightarrow \pi^*)$	4.09	4.07	4.10	4.05	4.12
	$^3A_{2}(V; n \rightarrow \pi^*)$	4.66	4.60	4.66	4.58	4.73
	$^3B_{2}(V; \pi \rightarrow \pi^*)$	4.96	5.17	4.96	5.14	4.63
Pyrrole	$^1A_{2}(R; \pi \rightarrow 3p)$	5.24	5.23	5.24	5.30	5.14
	$^1B_{1}(R; \pi \rightarrow 3p)$	6.00	5.91	5.98	5.94	5.89
	$^1A_{2}(R; \pi \rightarrow 3p)$	6.00	5.96	6.01	6.03	5.91

Continued on next page
Compound	State	TBE	CC2	CC3	ADC(2)	ADC(3)
		6.26	6.30	6.25	6.35	6.11
	$^1B_2(V; \pi \to \pi^*)$	6.30	6.47	6.32	6.47	6.29
	$^1A_1(V; \pi \to \pi^*)$	6.83	6.89	6.83	6.91	6.69
	$^3B_2(R; \pi \to 3p)$	4.51	4.72	4.53	4.71	4.26
	$^3A_2(R; \pi \to 3s)$	5.21	5.20	5.21	5.27	5.11
	$^3A_1(V; \pi \to \pi^*)$	5.45	5.66	5.46	5.62	5.23
	$^3B_3(R; \pi \to 3p)$	5.91	5.86	5.92	5.89	5.84
Streptocyanine	$^1B_2(V; \pi \to \pi^*)$	7.13	7.20	7.13	7.00	7.16
	$^3B_2(V; \pi \to \pi^*)$	5.47	5.60	5.48	5.55	5.33
Tetrazine	$^1B_3u(V; n \to \pi^*)$	2.47	2.38	2.46	2.42	2.42
	$^1A_4(V; n \to \pi^*)$	3.69	3.53	3.67	3.58	3.87
	$^1B_3g(V; n \to \pi^*)$	4.93	5.02	4.91	5.04	4.97
	$^1B_2u(V; \pi \to \pi^*)$	5.21	5.31	5.23	5.31	5.08
	$^1B_2g(V; n \to \pi^*)$	5.45	5.64	5.46	5.68	5.13
	$^1A_4(V; n \to \pi^*)$	5.53	5.56	5.52	5.59	5.49
	$^1B_2g(V; n \to \pi^*)$	6.12	6.18	6.13	6.21	6.50
	$^1B_3g(V; n \to \pi^*)$	6.91	6.95	6.92	6.97	6.59
	$^3B_3u(V; n \to \pi^*)$	1.85	1.81	1.85	1.85	1.74
	$^3A_4(V; n \to \pi^*)$	3.45	3.31	3.44	3.35	3.54
	$^3B_1g(V; n \to \pi^*)$	4.20	4.27	4.20	4.27	4.06
	$^3B_2u(V; \pi \to \pi^*)$	4.52	4.77	4.52	4.76	4.06
	$^3B_2g(V; n \to \pi^*)$	5.04	5.15	5.05	5.16	4.86
	$^3A_4(V; n \to \pi^*)$	5.11	5.13	5.11	5.16	5.07
	$^3B_1u(V; \pi \to \pi^*)$	5.42	5.70	5.42	5.67	5.06
Thioacetone	$^1A_2(V; n \to \pi^*)$	2.53	2.63	2.55	2.47	2.50
	$^1B_3(R; n \to 4s)$	5.56	5.50	5.55	5.47	5.65
	$^1A_1(V; \pi \to \pi^*)$	5.88	6.09	5.90	5.87	5.53
	$^1B_2(R; n \to 4p)$	6.51	6.53	6.51	6.43	6.53
	$^1A_1(R; n \to 4p)$	6.61	6.44	6.61	6.48	6.64
	$^3A_2(V; n \to \pi^*)$	2.33	2.33	2.34	2.20	2.26
	$^3A_1(V; \pi \to \pi^*)$	3.45	3.59	3.46	3.52	3.17
Thioformaldehyde	$^1A_2(V; n \to \pi^*)$	2.22	2.34	2.23	2.24	2.05
	$^1B_2(R; n \to 4s)$	5.96	5.82	5.91	5.80	5.94
	$^1A_1(V; \pi \to \pi^*)$	6.38	6.71	6.48	6.57	5.98
	$^3A_2(V; n \to \pi^*)$	1.94	1.94	1.94	1.86	1.77
	$^3A_1(V; \pi \to \pi^*)$	3.43	3.48	3.38	3.45	3.07
	$^3B_3(R; \pi \to 4s)$	5.72	5.64	5.72	5.62	5.71
	$^1A_2[F](V; n \to \pi^*)$	1.95	2.09	1.97	1.92	1.80
Thiophene	$^1A_1(V; \pi \to \pi^*)$	5.64	5.75	5.65	5.72	5.61
	$^1B_2(V; \pi \to \pi^*)$	5.98	6.07	5.96	6.07	5.79
	$^1A_2(R; \pi \to 3s)$	6.14	6.07	6.14	6.15	6.03
	$^1B_1(R; \pi \to 3p)$	6.14	6.15	6.14	6.24	6.02
	$^1A_2(R; \pi \to 3p)$	6.21	6.35	6.25	6.35	6.14
	$^1B_1(R; \pi \to 3s)$	6.49	6.48	6.50	6.51	6.43
	$^1B_2(R; \pi \to 3p)$	7.29	7.26	7.29	7.34	7.18
	$^3B_3(V; \pi \to \pi^*)$	3.92	4.12	3.94	4.11	3.65
	$^3A_1(V; \pi \to \pi^*)$	4.76	4.91	4.77	4.86	4.56
	$^3B_1(R; \pi \to 3p)$	5.93	6.00	5.95	6.09	5.83

Continued on next page
Compound	State	TBE	CC2	CC3	ADC(2)	ADC(3)
Thiopropynal	3A_2(R; $\pi \rightarrow 3s$)	6.08	6.03	6.09	6.11	5.97
	$^1A''$(V; $n \rightarrow \pi^*$)	2.03	2.20	2.05	2.08	1.86
	$^3A''$(V; $n \rightarrow \pi^*$)	1.80	1.84	1.81	1.74	1.63
Triazine	$^1A''_1$(V; $n \rightarrow \pi^*$)	4.72	4.64	4.73	4.58	4.83
	$^1A''_2$(V; $n \rightarrow \pi^*$)	4.75	4.75	4.74	4.69	4.99
	$^1E''$(V; $n \rightarrow \pi^*$)	4.78	4.72	4.78	4.66	4.95
	$^1A''_2$(V; $\pi \rightarrow \pi^*$)	5.75	5.89	5.78	5.83	5.78
	$^1A''_1$(V; $\pi \rightarrow \pi^*$)	7.24	7.32	7.24	7.18	6.78
	$^1E''$(R; $n \rightarrow 3s$)	7.32	6.87	7.35	6.89	7.68
	$^1E''$(V; $n \rightarrow \pi^*$)	7.78	7.71	7.79		
	$^1E''$(V; $\pi \rightarrow \pi^*$)	7.94	7.63	7.92	7.65	7.88
	$^3A''_2$(V; $n \rightarrow \pi^*$)	4.33	4.32	4.33	4.29	4.35
	$^3E''$(V; $n \rightarrow \pi^*$)	4.51	4.46	4.51	4.42	4.59
	$^3A''_1$(V; $n \rightarrow \pi^*$)	4.73	4.65	4.75	4.59	4.53
	$^3A''_1$(V; $\pi \rightarrow \pi^*$)	4.85	5.12	4.88	5.10	4.97
	$^3E''$(V; $\pi \rightarrow \pi^*$)	5.59	5.88	5.61	5.82	5.32
	$^3A''_2$(V; $\pi \rightarrow \pi^*$)	6.62	6.76	6.63	6.63	6.27
Water	1B_1(R; $n \rightarrow 3s$)	7.62	7.23	7.65	7.18	7.84
	1A_2(R; $n \rightarrow 3p$)	9.41	8.89	9.43	8.84	9.63
	1A_1(R; $n \rightarrow 3s$)	9.99	9.58	10.00	9.52	10.22
	3B_1(R; $n \rightarrow 3s$)	7.25	6.91	7.28	6.86	7.41
	3A_2(R; $n \rightarrow 3p$)	9.24	8.77	9.26	8.72	9.43
	3A_1(R; $n \rightarrow 3s$)	9.54	9.20	9.56	9.15	9.70

Figure S1: Histograms of the errors (in eV) obtained with ADC(2), ADC(2.5), and ADC(3) taking the TBE/aug-cc-pVTZ values of Refs. 1 and 2 as reference (as in Fig. 1 in the main text). “Count” refers to the number of transitions in each group. Note the difference of scaling in the vertical axes.
0-0 energies

For the 0-0 energies, we used the (EOM-)CCSD/def2-TZVPP geometries available in the Supporting Information of Ref. 3. We reproduce below the experimental values together with the literature references and the ZPVE corrections (mostly determined at the B3LYP/6-31+G(d) level, see Ref. 3 for details). Two “large” (10 non-hydrogen atoms) molecules have been added to the original set: p-diisocyno-benzene and tetrafluorobenzene. The geometries are given below in the same format as in Ref. 3.

Table S2: Experimental 0-0 energies and symmetries for the set of 0-0 energies. The experimental 0-0 energies are reported in both cm\(^{-1}\) (the unit used in most experimental works) and eV. The ZPVE are also indicated in eV in the rightmost column.

Molecule	State	Experimental reference	∆ZPVE
Acetaldehyde	\(^1A\)\(^1\) (n \rightarrow \pi^*)	29769 3.691	4 -0.070
Acetone	\(^1A\)\(^2\) (n \rightarrow \pi^*)	30435 3.773	5 -0.058
Acetyl cyanide	\(^1A\)\(^1\) (n \rightarrow \pi^*)	27511 3.411	6 -0.053
Acetylene	\(^1\Sigma\)\(^u\) (\pi \rightarrow \pi^*)	42197.7 5.232	7 -0.077
	\(^1\Delta\)\(^u\) (\pi \rightarrow \pi^*)	54116 6.710	8 -0.136
Acrolein	\(^1A\)\(^1\) (n \rightarrow \pi^*)	25858.1 3.206	9 -0.089
Aniline	\(^1A\)\(^1\) (\pi \rightarrow \pi^*)	34029 4.219	10 -0.191
Benzene	\(^1B\)\(^2\) (\pi \rightarrow \pi^*)	38086.7 4.722	11 -0.162
Benzonitrile	\(^1B\)\(^1\) (\pi \rightarrow \pi^*)	36513 4.527	12 -0.145
Benzoquinone	\(^1B\)\(^1\) (n \rightarrow \pi^*)	20045 2.485	13 -0.080
CCl\(_2\)	\(^1B\)\(^3\)	17256.9 2.140	14 0.010
CClF	\(^1A\)\(^1\)	25277.8 3.134	15 -0.001
CF\(_2\)	\(^1A\)\(^1\)	37226 4.615	16 -0.008
Cyanacetylene	\(^1\Sigma\)\(^\pi\) (\pi \rightarrow \pi^*)	38484.9 4.772	17 -0.118
	\(^1\Delta\)\(^\pi\) (\pi \rightarrow \pi^*)	44221 5.483	18 -0.119
Cyanoformaldehyde	\(^1A\)\(^1\) (n \rightarrow \pi^*)	26283.37 3.259	19 -0.063
Cyanogen	\(^1\Sigma\)\(^\pi\) (\pi \rightarrow \pi^*)	45399.85 5.629	20 -0.086
	\(^1\Delta\)\(^\pi\) (\pi \rightarrow \pi^*)	5.96	21 -0.078
2-Cyclopenten-1-one	\(^1A\)\(^1\) (n \rightarrow \pi^*)	27210 3.374	22 -0.096
Diacetylene	\(^1\Sigma\)\(^\pi\) (\pi \rightarrow \pi^*)	34912.37 4.329	23 -0.125
	\(^1\Delta\)\(^\pi\) (\pi \rightarrow \pi^*)	40845 5.064	24 -0.192
p-Dicyano-benzene	\(^1B\)\(^2\) (\pi \rightarrow \pi^*)	35120 4.354	25 -0.140
p-Diethynylbenzene	\(^1B\)\(^2\) (\pi \rightarrow \pi^*)	34255 4.247	26 -0.134
p-Difluoro-benzene	\(^1B\)\(^2\) (\pi \rightarrow \pi^*)	36838 4.567	27 -0.160
Diffuorodiazirine	\(^1B\)\(^1\) (n \rightarrow \pi^*)	28374.21 3.518	28 -0.072
2,6-Difluoro-pyridine	\(^1B\)\(^2\) (\pi \rightarrow \pi^*)	37820 4.689	29 -0.149
p-Diisocyno-benzene	\(^1B\)\(^2\) (\pi \rightarrow \pi^*)	35566 4.410	30 -0.137
Fluoro-benzene	\(^1B\)\(^2\) (\pi \rightarrow \pi^*)	37813 4.688	31 -0.161

Continued on next page
Molecule	State	Experimental reference	Ref.	ΔZPVE
Formaldehyde	$^1A_2^\prime (n \rightarrow \pi^*)$	28188.02 3.495	32	-0.085
Formic acid	$^1A'' (n \rightarrow \pi^*)$	37413.39 4.639	33	-0.096
Formylchloride	$^1A (n \rightarrow \pi^*)$	32760 4.062	34	-0.069
Formylfluoride	$^1A^\prime (n \rightarrow \pi^*)$	37491.7 4.648	35	-0.063
Glyoxal	$^1A_2 (n \rightarrow \pi^*)$	21973.43 2.724	36	-0.060
H$_2$C$_3$	$^1A_2 (\pi \rightarrow \pi^*)$	13677 1.696	37	-0.059
HCN	$^1\Sigma^+ (\pi \rightarrow \pi^*)$	52256.4 6.479	7	-0.120
HCP	$^1\Sigma^+ (\pi \rightarrow \pi^*)$	34769.7 4.311	7	-0.087
HNO	$^1A^\prime (n \rightarrow \pi^*)$	13154.4 1.631	7	-0.029
HPO	$^1A^\prime (n \rightarrow \pi^*)$	19032.78 2.360	38	-0.043
HPS	$^1A^\prime (\sigma \rightarrow \pi^*)$	12291.4 1.524	39	-0.019
HSiF	$^1A^\prime$	23260.021 2.884	40	-0.037
cis-Hydroquinone	$^1A_1 (\pi \rightarrow \pi^*)$	33534.782 4.158	41	-0.156
trans-Hydroquinone	$^1B_3u (\pi \rightarrow \pi^*)$	33500.054 4.153	41	-0.159
Isocyanogen	$^1\Sigma^- (\pi \rightarrow \pi^*)$	42523 5.272	42	-0.077
Nitrosomethane	$^1A'' (n \rightarrow \pi^*)$	14408 1.786	43	-0.026
Nitrosylcyanide	$^1A^\prime (n \rightarrow \pi^*)$	11339.9 1.406	44	0.004
Oxalyl fluoride	$^1A_u (n \rightarrow \pi^*)$	32445 4.023	45	-0.104
Phenylacetylene	$^1B_2 (\pi \rightarrow \pi^*)$	35877.18 4.448	46	-0.158
Phosgene	$^1A_2 (n \rightarrow \pi^*)$	32730 4.058	47	-0.089
Propynal	$^1A (n \rightarrow \pi^*)$	26162.94 3.244	48	-0.092
4H-pyran-4-one	$^1A^2 (n \rightarrow \pi^*)$	28360 3.516	49	-0.122
Pyrazine	$^1B_{3u} (n \rightarrow \pi^*)$	30875.78 3.828	50	-0.209
Pyrimidine	$^1B_1 (n \rightarrow p)$	31188 3.867	51	-0.174
Selenoformaldehyde	$^1A_2 (n \rightarrow \pi^*)$	13635 1.691	52	-0.062
SiCl$_2$	1B_1	30013.5 3.721	53	-0.015
Silylidene	1A_2 (Ryd)	15132.97 1.876	54	0.009
	1B_2 (Ryd)	29312.88 3.634	55	0.018
Tetrafluorobenzene	$^1B_{2u}$ ($\pi \rightarrow \pi^*)$	36555 4.532	56	-0.136
Tetrazine	$^1B_{3u}$ ($n \rightarrow \pi^*)$	18128.07 2.248	57	-0.093
Thioacetaldehyde	$^1A^\prime$ ($n \rightarrow \pi^*)$	2.22	58	-0.064
Thioacetone	1A_2 ($n \rightarrow \pi^*)$	2.33	58	-0.047
Thioacrolein	$^1A^\prime$ ($n \rightarrow \pi^*)$	15124.6 1.875	59	-0.050
Thiocarbonyll bromide	1A_2 ($n \rightarrow \pi^*)$	17992 2.231	60	-0.033
Thiocarboxynchlorofluoride	$^1A^\prime$ ($n \rightarrow \pi^*)$	21657.4 2.685	61	-0.032
	$^2A^\prime$ ($\pi \rightarrow \pi^*)$	35277 4.374	62	-0.066
Thiocarboxyfluoride	1A_2 ($n \rightarrow \pi^*)$	23477.1 2.911	63	-0.034
Thiocarboxybenzene	1A_2 ($n \rightarrow \pi^*)$	16395.6 2.033	62	-0.066
Thioformylchloride	$^1A^\prime$ ($n \rightarrow \pi^*)$	18792 2.330	64	-0.054
Thiophosgene	1A_2 ($n \rightarrow \pi^*)$	18712.2 2.320	65	-0.030
	2A_1 ($\pi \rightarrow \pi^*)$	34277.32 4.250	66	-0.069
Thiopropynal	$^1A^\prime$ ($n \rightarrow \pi^*)$	14656.4 1.817	66	-0.048
Trifluorpirnosomethane	$^1A^\prime$ ($n \rightarrow \pi^*)$	13929.7 1.727	67	-0.017
Acetaldehyde	$^3A''$ ($n \rightarrow \pi^*)$	27240 3.377	68	-0.074
Acrolein	$^3A''$ ($n \rightarrow \pi^*)$	24247.3 3.006	69	-0.109
Benzaldehyde	$^3A''$ ($n \rightarrow \pi^*)$	25183 3.122	70	-0.111
Benzoquinone	$^3B_{1g}$ ($n \rightarrow \pi^*)$	18370 2.278	71	-0.075

Continued on next page
Molecule	State	Experimental reference	cm$^{-1}$	eV	Ref.	ΔZPVE
CHCl	3A		2163.28	0.268	172	0.007
Cyanogen	$^3\Sigma^+_u$ ($\pi \rightarrow \pi^*$)	33289.9	4.127	73	-0.110	
4-Cyclopentene-1,3-dione	$^3B_2^1$ ($n \rightarrow \pi^*$)	20540	2.547	74	-0.074	
2-Cyclopenten-1-one	$^3A^+$ ($n \rightarrow \pi^*$)	25956.29	3.218	76	-0.111	
Formaldehyde	3A_2 ($n \rightarrow \pi^*$)	25194.34	3.124	32	-0.092	
Glyoxal	3A_u ($n \rightarrow \pi^*$)	19199	2.380	77	-0.056	
H$_2$C$_3$	$^3B_1^1$ ($\pi \rightarrow \pi^*$)	10354	1.284	78	-0.066	
Oxalyl Chloride	3A_2 ($n \rightarrow \pi^*$)	11002a	3.027	79	-0.085	
Ozone	3A_2	9553.021	1.184	78	-0.061	
Propynal	$^3A^+$ ($n \rightarrow \pi^*$)	24127.1	2.991	80	-0.106	
4H-pyran-4-one	$^3A^2$ ($n \rightarrow \pi^*$)	27291.5	3.384	80	-0.134	
4H-pyran-4-thione	$^3A^2$ ($n \rightarrow \pi^*$)	16846.4	2.089	81	-0.097	
Pyrazine	3B_3u ($n \rightarrow \pi^*$)	26820.3	3.325	82	-0.177	
Pyrimidine	$^3B_1^1$ ($n \rightarrow \pi^*$)	25853.0	3.538	83	-0.176	
Selenoformaldehyde	3A_2 ($n \rightarrow \pi^*$)	12171.0	1.509	84	-0.071	
SiF$_2$	3B_1	26319.5	3.263	85	-0.002	
SO$_2$	$^3B_1^1$	25765.737	3.195	86	-0.055	
Tetrazine	$^3B_{3u}$ ($n \rightarrow \pi^*$)	13608.0	1.687	87	-0.061	
Thioacetaldehyde	$^3A^+$ ($n \rightarrow \pi^*$)	16293.8	2.020	88	-0.060	
Thioacetone	3A_2 ($n \rightarrow \pi^*$)	17327.8	2.148	89	-0.045	
Thioacrolein	$^3A''$ ($n \rightarrow \pi^*$)	14036.2	1.740	90	-0.070	
Thioformaldehyde	3A_2 ($n \rightarrow \pi^*$)	14507.3	1.799	91	-0.080	
Thioformylchloride	$^3A'$ ($n \rightarrow \pi^*$)	17233.9	2.137	92	-0.050	
Thiophosgene	3A_2 ($n \rightarrow \pi^*$)	14793.788	2.169	93	-0.035	
Thiopropynal	$^1A''$ ($n \rightarrow \pi^*$)	13257.4	1.644	94	-0.064	
Triazine	$^3E^-$ ($n \rightarrow \pi^*$)	335a,b	3.701	95	-0.148	

a in nm; b "best estimate"

Cartesian coordinates (in Å) obtained at the (EOM-)CCSD/def2-TZVPP level of theory for the two additional compounds. The notations of the excited states refer to the ground-state point group symmetry.

p-Diisocyno-benzene

Ground state

C	0.000000	1.210459	0.692565
C	0.000000	1.210459	-0.692565
C	0.000000	0.000000	1.377022
C	0.000000	0.000000	-1.377022
C	0.000000	-1.210459	0.692565
C	0.000000	-1.210459	-0.692565
C	0.000000	0.000000	3.932314
C 0.000000 0.000000 -3.932314
N 0.000000 0.000000 2.763434
N 0.000000 0.000000 -2.763434
H 0.000000 2.135125 1.244480
H 0.000000 2.135125 -1.244480
H 0.000000 -2.135125 1.244480
H 0.000000 -2.135125 -1.244480

Excited state $[^1B_{2u} (\pi \to \pi^*)]$

C 0.000000 1.238754 0.709424
C 0.000000 1.238754 -0.709424
C 0.000000 -0.000000 1.404087
C 0.000000 -0.000000 -1.404087
C 0.000000 -1.238754 0.709424
C 0.000000 -1.238754 -0.709424
C 0.000000 -0.000000 3.944346
C 0.000000 -0.000000 -3.944346
N 0.000000 -0.000000 2.771103
N 0.000000 -0.000000 -2.771103
H 0.000000 -2.159635 1.265112
H 0.000000 -2.159635 -1.265112
H 0.000000 -0.000000 2.469482
H 0.000000 -0.000000 -2.469482

Tetrafluorobenzene

Ground state

C 0.000000 1.190995 0.692100
C 0.000000 1.190995 -0.692100
C 0.000000 1.190995 -0.692100
C 0.000000 0.000000 -1.393333
C 0.000000 0.000000 -1.393333
C 0.000000 0.000000 1.393333
F 0.000000 2.348323 -1.348963
F 0.000000 2.348323 1.348963
F 0.000000 -2.348323 1.348963
F 0.000000 -2.348323 -1.348963
H 0.000000 0.000000 -2.469482
H 0.000000 0.000000 2.469482

Excited state $[^1B_{2u} (\pi \to \pi^*)]$

C 1.178195 0.707583 0.063424
C 1.178195 -0.707583 0.063424
C 1.178195 -0.707583 0.063424
C 1.178195 0.707583 0.063424

S13
Element	X	Y	Z
C	-1.178195	-0.707583	0.063424
C	-1.178195	0.707583	0.063424
C	0.000000	1.473594	0.163267
F	2.339183	-1.319369	-0.118329
F	2.339183	1.319369	-0.118329
F	-2.339183	1.319369	-0.118329
F	-2.339183	-1.319369	-0.118329
H	0.000000	-2.523792	0.389226
H	0.000000	2.523792	0.389226
Table S3: 0-0 energies computed with ADC(2), ADC(3), CC2, and CC3. All values are in eV, and they have been obtained on the basis of the corresponding aug-cc-pVTZ frozen-core adiabatic energies determined on the (EOM-)CCSD/def2-TZVPP geometries. The ZPVE corrections are listed above.

Molecule	State	ADC(2)	ADC(3)	CC2	CC3
Acetaldehyde	$^1A'$ ($n\rightarrow\pi^*$)	3.455	3.830	3.671	3.663
Acetone	1A_2 ($n\rightarrow\pi^*$)	3.430	4.007	3.671	3.733
Acetyl cyanide	$^1A''$ ($n\rightarrow\pi^*$)	3.136	3.607	3.348	3.381
Acetylene	$^1\Sigma_u^-$ ($\pi\rightarrow\pi^*$)	5.323	4.753	5.322	5.163
	$^1\Delta_u$ ($\pi\rightarrow\pi^*$)	6.797	6.247	6.808	6.627
Acrolein	$^1A''$ ($n\rightarrow\pi^*$)	3.040	3.445	3.254	3.229
Aniline	$^1A''$ ($\pi\rightarrow\pi^*$)	4.264	4.165	4.261	4.169
Benzene	$^1B_{2u}$ ($\pi\rightarrow\pi^*$)	4.930	4.684	4.904	4.709
Benzonitrile	1B_1 ($\pi\rightarrow\pi^*$)	4.735	4.494	4.711	4.526
Benzoquinone	$^1B_{1g}$ ($n\rightarrow\pi^*$)	2.310	2.788	2.443	2.502
CCl$_2$	1B_1	2.066	1.986	2.180	2.232
CCIF	$^1A''$	3.048	2.978	3.170	3.198
CF$_2$	1B_1	4.504	4.474	4.632	4.642
Cyanoacetylene	$^1\Sigma^-$ ($\pi\rightarrow\pi^*$)	4.815	4.323	4.780	4.693
Cyanoformaldehyde	$^1A''$ ($n\rightarrow\pi^*$)	3.133	3.371	3.309	3.270
Cyanogen	$^1\Sigma_u$ ($\pi\rightarrow\pi^*$)	5.721	5.212	5.696	5.595
	$^1\Delta_u$ ($\pi\rightarrow\pi^*$)	6.051	5.529	6.045	5.907
2-Cyclopenten-1-one	$^1A'$ ($n\rightarrow\pi^*$)	3.065	3.734	3.275	3.355
Diacetylene	$^1\Sigma_u$ ($\pi\rightarrow\pi^*$)	4.268	3.927	4.237	4.243
	$^1\Delta_u$ ($\pi\rightarrow\pi^*$)	4.966	4.613	4.958	4.935
p-Dicyano-benzene	$^1B_{2u}$ ($\pi\rightarrow\pi^*$)	4.546	4.308	4.522	4.351
p-Diethynylbenzene	$^1B_{2u}$ ($\pi\rightarrow\pi^*$)	4.455	4.220	4.434	4.263
p-Diffuoro-benzene	$^1B_{2u}$ ($\pi\rightarrow\pi^*$)	4.631	4.519	4.741	4.525
Difluorodiazirine	1B_1 ($n\rightarrow\pi^*$)	3.488	3.304	3.477	3.501
2,6-Difluoro-pyridine	1B_2 ($\pi\rightarrow\pi^*$)	4.744	4.647	4.758	4.644
p-Disocyanobenzene	$^1B_{2u}$ ($\pi\rightarrow\pi^*$)	4.606	4.372	4.590	4.407
Fluoro-benzene	1B_2 ($\pi\rightarrow\pi^*$)	4.841	4.648	4.831	4.664
Formaldehyde	1A_2 ($n\rightarrow\pi^*$)	3.365	3.548	3.541	3.482
Formic acid	$^1A''$ ($n\rightarrow\pi^*$)	4.308	4.886	4.563	4.588
Formylchloride	$^1A''$ ($n\rightarrow\pi^*$)	3.839	4.219	4.075	4.047
Formylfluoride	$^1A''$ ($n\rightarrow\pi^*$)	4.410	4.820	4.661	4.611
Glyoxal	1A_2 ($n\rightarrow\pi^*$)	2.662	2.733	2.727	2.726
H$_2$C$_3$	1A_2 ($\pi\rightarrow\pi^*$)	1.952	1.418	1.930	1.713
HCN	$^1\Sigma^-$ ($\pi\rightarrow\pi^*$)	6.760	5.963	6.681	6.409
HCP	$^1\Sigma^-$ ($\pi\rightarrow\pi^*$)	4.458	3.794	4.432	4.250
HNO	$^1A''$ ($n\rightarrow\pi^*$)	1.555	1.403	1.600	1.637
HPO	$^1A'$ ($n\rightarrow\pi^*$)	2.087	2.291	2.242	2.277
HPS	$^1A''$ ($\sigma\rightarrow\pi^*$)	1.460	1.250	1.522	1.426
HSiF	$^1A''$	2.923	2.684	2.955	2.886
cis-Hydroquinone	1A_1 ($\pi\rightarrow\pi^*$)	4.119	4.103	4.125	4.092
trans-Hydroquinone	$^1B_{2u}$ ($\pi\rightarrow\pi^*$)	4.111	4.097	4.127	4.085

Continued on next page
Molecule	State	ADC(2)	ADC(3)	CC2	CC3
Isocyanogen	$^1\Sigma^-$ ($\pi \rightarrow \pi^*$)	5.209	5.168	5.405	5.108
Nitrosomethane	$^1A''$ ($n \rightarrow \pi^*$)	1.666	1.569	1.749	1.781
Nitrosylecyanide	$^1A''$ ($n \rightarrow \pi^*$)	1.441	1.165	1.417	1.446
Oxalyl fluoride	1A_u ($n \rightarrow \pi^*$)	3.758	4.209	3.928	3.988
Phenylacetylene	1B_2 ($\pi \rightarrow \pi^*$)	4.652	4.409	4.628	4.445
Phosgene	1A_2 ($n \rightarrow \pi^*$)	3.727	4.394	3.956	4.039
Propynal	$^1A''$ ($n \rightarrow \pi^*$)	3.039	3.430	3.251	3.241
4H-pyran-4-one	$^1A^2$ ($n \rightarrow \pi^*$)	3.168	3.971	3.422	3.487
Pyrazine	$^1B_{3u}$ ($n \rightarrow \pi^*$)	3.827	3.797	3.795	3.799
Pyrimidine	1B_1 ($n \rightarrow \pi$)	3.717	3.909	3.770	3.818
Selenoformaldehyde	1A_2 ($n \rightarrow \pi^*$)	1.659	1.625	1.812	1.708
SiCl$_2$	1B_1	3.749	3.541	3.794	3.697
Silylidene	1A_2 (Ryd)	2.127	1.557	2.089	1.850
Terafluorobenzene	$^1B_{2u}$ ($\pi \rightarrow \pi^*$)	4.532	4.501	4.553	4.486
Tetrazine	$^1B_{3u}$ ($n \rightarrow \pi^*$)	2.207	2.185	2.177	2.246
Thioacetaldehyde	$^1A''$ ($n \rightarrow \pi^*$)	2.145	2.169	2.300	2.204
Thioacetone	1A_2 ($n \rightarrow \pi^*$)	2.171	2.361	2.358	2.298
Thioacrolein	$^1A''$ ($n \rightarrow \pi^*$)	1.913	1.828	2.062	1.923
Thiocarbonylbromide	1A_2 ($n \rightarrow \pi^*$)	2.114	2.237	2.284	2.233
Thiocarbonylchlorofluoride	$^1A''$ ($n \rightarrow \pi^*$)	2.582	2.640	2.756	2.618
	$^2A'$ ($\pi \rightarrow \pi^*$)	4.112	4.007	4.542	4.324
Thiacarboxyli fluoride	1A_2 ($n \rightarrow \pi^*$)	2.889	2.825	3.029	2.815
Thioformaldehyde	1A_2 ($n \rightarrow \pi^*$)	2.042	1.911	2.154	2.038
Thioformyl chloride	$^1A'$ ($n \rightarrow \pi^*$)	2.282	2.277	2.448	2.337
Thiophosgene	1A_2 ($n \rightarrow \pi^*$)	2.240	2.368	2.425	2.349
	2A_1 ($\pi \rightarrow \pi^*$)	3.948	3.878	4.411	4.229
Thioacrolein	$^1A''$ ($n \rightarrow \pi^*$)	1.845	1.715	1.971	1.849
Trifluoronitrosomethane	$^1A''$ ($n \rightarrow \pi^*$)	1.666	1.470	1.717	1.739
Acetaldehyde	$^3A''$ ($n \rightarrow \pi^*$)	3.037	3.429	3.214	3.308
Acrolein	$^3A''$ ($n \rightarrow \pi^*$)	2.664	3.172	2.849	2.946
Benzaldehyde	$^3A''$ ($n \rightarrow \pi^*$)	2.711	3.333	2.900	3.050
Benzoquinone	$^3B_{1g}$ ($n \rightarrow \pi^*$)	2.161	2.522	2.229	2.351
CHCl	$^3A'$	0.091	0.010	0.190	0.270
Cyanogen	$^3\Sigma^+_u$ ($\pi \rightarrow \pi^*$)	4.329	3.790	4.263	4.006
4-Cyclopentene-1,3-dione	3B_1 ($n \rightarrow \pi^*$)	2.219	2.765	2.297	2.499
2-Cyclopenten-1-one	$^3A''$ ($n \rightarrow \pi^*$)	2.767	3.549	2.960	3.137
Formaldehyde	3A_2 ($n \rightarrow \pi^*$)	2.878	3.092	3.012	3.067
Glyoxal	3A_u ($n \rightarrow \pi^*$)	2.247	2.320	2.308	2.360
H$_2$C$_3$	3B_1 ($\pi \rightarrow \pi^*$)	1.395	1.115	1.378	1.308
Oxalyl Chloride	3A_u ($n \rightarrow \pi^*$)	2.663	3.238	2.808	3.004
Ozone	3A_2	1.377	0.459	1.051	1.164
Propynal	$^3A''$ ($n \rightarrow \pi^*$)	2.628	3.104	2.804	2.922
4H-pyran-4-one	$^3A^2$ ($n \rightarrow \pi^*$)	2.892	3.770	3.122	3.293
4H-pyran-4-thione	$^3A^2$ ($n \rightarrow \pi^*$)	1.934	2.117	2.095	2.044
Pyrazine	$^3B_{3u}$ ($n \rightarrow \pi^*$)	3.333	3.242	3.312	3.301
Pyrimidine	3B_1 ($n \rightarrow \pi^*$)	3.389	3.527	3.432	3.486
Selenoformaldehyde	3A_2 ($n \rightarrow \pi^*$)	1.340	1.403	1.461	1.475
Molecule	State	ADC(2)	ADC(3)	CC2	CC3
------------------	----------------	--------	--------	------	------
SiF$_2$	3B_1	2.932	3.019	2.992	3.176
SO$_2$	3B_1	2.774	2.829	2.804	2.925
Tetrazine	$^3B_{3u} (n \rightarrow \pi^*)$	1.666	1.543	1.642	1.673
Thioacetaldehyde	$^3A'' (n \rightarrow \pi^*)$	1.855	1.941	1.977	1.986
Thioacetone	$^3A_2^+ (n \rightarrow \pi^*)$	1.923	2.149	2.075	2.108
Thioacrolein	$^3A^+ (n \rightarrow \pi^*)$	1.624	1.628	1.742	1.712
Thioformaldehyde	$^3A_2 (n \rightarrow \pi^*)$	1.675	1.646	1.761	1.763
Thioformylchloride	$^3A'' (n \rightarrow \pi^*)$	1.980	2.050	2.117	2.115
Thiophosgene	$^3A_2^+ (n \rightarrow \pi^*)$	1.960	2.158	2.117	2.141
Thiopropynal	$^1A^+ (n \rightarrow \pi^*)$	1.515	1.501	1.613	1.613
Triazine	$^3E^+ (n \rightarrow \pi^*)$	3.451	3.730	3.530	3.643
References

(1) Loos, P.-F.; Scemama, A.; Blondel, A.; Garniron, Y.; Caffarel, M.; Jacquemin, D. A
Mountaineering Strategy to Excited States: Highly-Accurate Reference Energies and
Benchmarks. *J. Chem. Theory Comput.* 2018, 14, 4360–4379.

(2) Loos, P.-F.; Lipparini, F.; Boggio-Pasqua, M.; Scemama, A.; Jacquemin, D. A
Mountaineering Strategy to Excited States: Highly-Accurate Energies and Bench-
marks for Medium Size Molecules. *J. Chem. Theory Comput. submitted*, available at
http://arxiv.org/abs/1912.04173.

(3) Loos, P.-F.; Jacquemin, D. Chemically Accurate 0-0 Energies with not-so-Accurate
Excited State Geometries. *J. Chem. Theory Comput.* 2019, 15, 2481–2491.

(4) Liu, H.; Lim, E. C.; Judge, R. H.; Moule, D. C. The Hybrid Rotational Components in
the 0_0^0 Origin Band of the $\tilde{A}A'(S_1) \leftarrow \tilde{X}A'(S_0)$ Transition in Acetaldehyde. *J. Chem.
Phys.* 1995, 102, 4315–4320.

(5) Baba, M.; Hanazaki, I. The $S_1,^1 A_2(n, \pi^*)$ State of Acetone in a Supersonic Nozzle Beam.
Methyl Internal Rotation. *Chem. Phys. Lett.* 1983, 103, 93–97.

(6) Yoon, M.-C.; Choi, Y. S.; Kim, S. K. Fluorescence Excitation Spectroscopic Study of
the Jet-Cooled Acetyl Cyanide. *J. Chem. Phys.* 1999, 110, 7185–7191.

(7) Herzberg, G. *Molecular Spectra and Molecular Structure. III. Electronic Spectra and
Electronic Structure of Polyatomic Molecules*; D. Van Nostrand Company: London, UK,
1966.

(8) Foo, P.; Innes, K. Spectrum of Acetylene: 1650–1950 Å. *Chem. Phys. Lett.* 1973, 22,
439–442.

(9) Hollas, J. The Electronic Absorption Spectrum of Acrolein Vapour. *Spectrochim. Acta
1963, 19, 1425–1441.
(10) Sinclair, W. E.; Pratt, D. W. Structure and vibrational dynamics of aniline and aniline–
Ar from high resolution electronic spectroscopy in the gas phase. J. Chem. Phys. 1996,
105, 7942–7956.

(11) Christiansen, O.; Stanton, J. F.; Gauss, J. A Coupled Cluster Study of the 1^1A_{1g} and
1^1B_{2u} States of Benzene. J. Chem. Phys. 1998, 108, 3987–4001.

(12) Borst, D. R.; Pratt, D. W.; Schäfer, M. Molecular recognition in the gas phase. Dipole-
bound complexes of benzonitrile with water, ammonia, methanol, acetonitrile, and
benzonitrile itself. Phys. Chem. Chem. Phys. 2007, 9, 4563–4571.

(13) Horst, G. T.; Kommandeur, J. The Singlet $n\pi^*$ States of para-Benzoquinone. Chem.
Phys. 1979, 44, 287–293.

(14) Richmond, C.; Tao, C.; Mukarakate, C.; Fan, H.; Nauta, K.; Schmidt, T. W.; Kable, S. H.;
Reid, S. A. Unraveling the $\tilde{A}^1B_1 \leftrightarrow \tilde{X}^1A_1$ Spectrum of CCl$_2$: The Renner–Teller Effect,
Barrier to Linearity, and Vibrational Analysis Using an Effective Polyad Hamiltonian.
J. Phys. Chem. A 2008, 112, 11355–11362, PMID: 18925733.

(15) Karolczak, J.; Joo, D. L.; Clouthier, D. J. The electronic spectrum of chlorofluorocarbene.
J. Chem. Phys. 1993, 99, 1447–1456.

(16) Mathews, C. W. The Absorption Spectrum of CF$_2$. Can. J. Phys. 1967, 45, 2355–2374.

(17) Job, V.; King, G. The Electronic Spectrum of Cyanoacetylene: Part I. Analysis of the
2600-Å System. J. Mol. Spectrosc. 1966, 19, 155–177.

(18) Job, V.; King, G. The Electronic Spectrum of Cyanoacetylene: Part II. Analysis of the
2300-Å System. J. Mol. Spectrosc. 1966, 19, 178–184.

(19) Karolczak, J.; Clouthier, D. J.; Judge, R.; Moule, D. High-Resolution Absorption and
Pyrolysis Jet Spectroscopy of the 0^0_0 Band of the $\tilde{A}^1A' \leftrightarrow \tilde{X}^1A''(n \rightarrow \pi^*)$ Electronic
Transition of Formyl Cyanide, HCOCN. J. Mol. Spectrosc. 1991, 147, 61–70.
(20) Fish, G.; Cartwright, G.; Walsh, A.; Warsop, P. Rotational Structure in the $^{1}\Sigma_{u}^{-}\leftarrow^{1}\Sigma_{g}^{+}$ Transition of Cyanogen at 2200 Å. J. Mol. Spectrosc. 1972, 41, 20–32.

(21) Halpern, J. B.; Huang, Y. Radiative Lifetimes, Fluorescence Quantum Yields and Photodissociation of the $C_{2}N_{2}$ ($A^{1}\Sigma_{u}^{-}$) and ($B^{1}\Delta_{u}$) States: Evidence for Sterically Hindered, Triplet Mediated Crossings to the ($X^{1}\Sigma_{g}^{+}$) Ground State. Chem. Phys. 1997, 222, 71–86.

(22) Cheatham, C. M.; Laane, J. The Jetcooled Fluorescence Excitation Spectrum and RingBending Potential Energy Function and Conformation of 2Cyclopenten1one in the $S_{1}(n, \pi^{*})$ Electronic Excited State. J. Chem. Phys. 1991, 94, 7734–7743.

(23) Hardwick, J. L.; Ramsay, D. A. The Near Ultraviolet Band System of Diacetylene. Chem. Phys. Lett. 1977, 48, 399–401.

(24) Bandy, R. E.; Lakshminarayan, C.; Zwier, T. S. Spectroscopy and Photophysics of the $^{1}\Delta\leftarrow^{1}\Sigma_{g}^{+}$ Transition of Jet-Cooled $C_{4}H_{2}$, $C_{4}HD$, and $C_{4}D_{2}$. J. Phys. Chem. 1992, 96, 5337–5343.

(25) Fujita, K.; Fujiwara, T.; Matsunaga, K.; Ono, F.; Nakajima, A.; Watanabe, H.; Koguchi, T.; Suzuka, I.; Matsuzawa, H. a. Electronic spectra of p-dicyanobenzene (p-DCNB), p-DCNB-H2O complex, and p-DCNB dimer in a supersonic jet. J. Phys. Chem. 1992, 96, 10693–10697.

(26) Stearns, J. A.; Zwier, T. S. Infrared and Ultraviolet Spectroscopy of Jet-Cooled ortho-, meta-, and para-Diethynylbenzene. J. Phys. Chem. A 2003, 107, 10717–10724.

(27) Knight, A. E. W.; Kable, S. H. The $S_{1}\leftarrow S_{0}(^{1}B_{2u}\leftarrow^{1}A_{g})$ transition of pdfluorobenzene cooled in a supersonic free jet expansion. Excitation and dispersed fluorescence spectra, vibrational assignments, Fermi resonances, and forbidden transitions. J. Chem. Phys. 1988, 89, 7139–7160.
(28) Sieber, H.; Riedle, E.; Neusser, H. Doppler-Free Two-Photon Spectrum of the 0^0_0 Band of the $\tilde{A}^1B_1 \leftarrow \tilde{X}^1A_1$ Transition in Difluorodiazirine, F_2CN_2. *Chem. Phys. Lett.* **1990**, *169*, 191–197.

(29) Nibu, Y.; Okabe, C.; Shimada, H. Observation of Electronic Spectra of Three Isomers of 2,6-Difluoropyridine–Water Clusters. *J. Phys. Chem. A* **2003**, *107*, 1945–1954.

(30) Mehta-Hurt, D. N.; Korn, J. A.; Gutberlet, A. K.; Zwier, T. S. Vibronic Spectroscopy of a Nitrile/Isonitrile Isoelectronic Pair: para-Diisocyanobenzene and para-Isocyanobenzonitrile. *J. Phys. Chem. A* **2015**, *119*, 2863–2877, PMID: 25699407.

(31) Butler, P.; Moss, D. B.; Yin, H.; Schmidt, T. W.; Kable, S. H. Spectroscopy of the $\tilde{A}(^1B_2) \leftarrow -\tilde{X}(^3A_1)$ transition of jet-cooled fluorobenzene: Laser-induced fluorescence, dispersed fluorescence, and pathological Fermi resonances. *J. Chem. Phys.* **2007**, *127*, 094303.

(32) Clouthier, D. J.; Ramsay, D. A. The Spectroscopy of Formaldehyde and Thioformaldehyde. *Annu. Rev. Phys. Chem.* **1983**, *34*, 31–58.

(33) Beaty-Travis, L. M.; Moule, D. C.; Liu, H.; Lim, E. C.; Judge, R. Analysis of the High-Resolution Rotational Structure of the Origin and First Torsional Members of the 267-nm Band System of Formic Acid. *J. Mol. Spectrosc.* **2001**, *205*, 232–238.

(34) Ding, H.; J. Orr-Ewing, A.; N. Dixon, R. Rotational Structure in the $\tilde{A}(^1A^\prime) \leftarrow -\tilde{X}(^1A_1)$ Spectrum of Formyl Chloride. *Phys. Chem. Chem. Phys.* **1999**, *1*, 4181–4185.

(35) Crane, J. C.; Nam, H.; Beal, H. P.; Clauberg, H.; Choi, Y. S.; Moore, C.; Stanton, J. F. Vibrational Assignment of the S_1 Fluorescence Excitation Spectrum of Formyl Fluoride. *J. Mol. Spectrosc.* **1997**, *181*, 56–66.

(36) Padlus, J.; Ramsay, D. A. The 4550 Å Band System of Glyoxal I. Rotational Analyses of the (0-0) Bands for $\text{C}_2\text{H}_2\text{O}_2$, C_2HDO_2, and $\text{C}_2\text{D}_2\text{O}_2$. *Can. J. Phys.* **1967**, *45*, 1389–1412.
(37) Stanton, J. F.; Garand, E.; Kim, J.; Yacovitch, T. I.; Hock, C.; Case, A. S.; Miller, E. M.;
Lu, Y.-J.; Vogelhuber, K. M.; Wren, S. W. et al. Ground and Low-Lying Excited States
of Propadienylidene (H$_2$C=C=C::) Obtained by Negative Ion Photoelectron Spectroscopy.
J. Chem. Phys. **2012**, *136*, 134312.

(38) Tackett, B. S.; Clouthier, D. J. HPO does not follow Walsh’s rules! Improved molecular
structures from the spectroscopy of jet-cooled HPO and DPO. *J. Chem. Phys.* **2002**,
117, 10604–10612.

(39) Grimminger, R.; Clouthier, D. J.; Tarroni, R.; Wang, Z.; Sears, T. J. An Experimental
and Theoretical Study of the Electronic Spectrum of HPS, a Second row HNO Analog.
J. Chem. Phys. **2013**, *139*, 174306.

(40) Harper, W. W.; Karolczak, J.; Clouthier, D. J.; Ross, S. C. Chemical reaction jet
spectroscopy, molecular structure, and the bending potential of the \tilde{A}^1A^π state of
monofluorosilylene (HSiF). *J. Chem. Phys.* **1995**, *103*, 883–891.

(41) Humphrey, S. J.; Pratt, D. W. High Resolution $S_1 \leftrightarrow S_0$ Fluorescence Excitation Spectra
of Hydroquinone. Distinguishing the cis and trans Rotamers by their Nuclear Spin
Statistical Weights. *J. Chem. Phys.* **1993**, *99*, 5078–5086.

(42) Lynch, W. B.; Bechtel, H. A.; Steeves, A. H.; Curley, J. J.; Field, R. W. Observation of
the \tilde{A}^1A^π State of Isocyanogen. *J. Chem. Phys.* **2007**, *126*, 244307.

(43) Ernsting, N. P.; Pfab, J.; Romelt, J. Geometry Changes Accompanying Electronic
Excitation of Nitrosomethane in the 650 nm Region. *J. Chem. Soc., Faraday Trans. 2*
1978, *74*, 2286–2294.

(44) Dixon, R. N.; Johnson, P. A Rotational Analysis of the \tilde{A}^1A^π $\rightarrow \tilde{X}^1A'$ Electronic Origin
Band of NCNO near 882 nm. *J. Mol. Spectrosc.* **1985**, *114*, 174–184.
(45) Liverman, M. G.; Beck, S. M.; Monts, D. L.; Smalley, R. E. Fluorescence Excitation Spectrum of the $^1A_u(n\pi) \leftarrow ^1A_g$ (0–0) Band Of Oxalyl Fluoride in a Pulsed Supersonic Free Jet. *J. Chem. Phys.* **1979**, *70*, 192–198.

(46) Ribblett, J. W.; Borst, D. R.; Pratt, D. W. Styrene and phenylacetylene: Electronic effects of conjugating substituents “off” and “on” the axis of a benzene ring. *J. Chem. Phys.* **1999**, *111*, 8454–8461.

(47) Giddings, L.; Innes, K. The Electronic Spectra and Vibrational Assignments of Carbonyl Chloride and Formyl Fluoride. *J. Mol. Spectrosc.* **1962**, *8*, 328–337.

(48) Brand, J.; Chan, W.; Liu, D.; Callomon, J.; Watson, J. The 3820 Å Band System of Propynal: Rotational Analysis of the 0-0 Band. *J. Mol. Spectrosc.* **1974**, *50*, 304–309.

(49) Gordon, R. D.; Park, W. K. The 353 nm $n\pi^*$ Transition of 4H-pyran-4-one and a Deuterated Derivative. *Can. J. Chem.* **1993**, *71*, 1672–1675.

(50) Siebrand, W.; Meerts, W. L.; Pratt, D. W. Analysis and Deconvolution of Some $J' \neq 0$ Rovibronic Transitions in the High Resolution $S_1 \leftarrow S_0$ Fluorescence Excitation Spectrum of Pyrazine. *J. Chem. Phys.* **1989**, *90*, 1313–1321.

(51) Fischer, G.; Cai, Z.-L.; Reimers, J. R.; Wormell, P. Singlet and Triplet Valence Excited States of Pyrimidine. *J. Phys. Chem. A* **2003**, *107*, 3093–3106.

(52) Clouthier, D. J.; Judge, R.; Moule, D. The Laser Excitation Spectrum of Selenoformaldehyde: Vibrational Analyses of the $A^1A_2 \leftarrow X^1A_1$ and $a^3A_2 \leftarrow X^1A_1$ Electronic Transitions. *Chem. Phys.* **1987**, *114*, 417–422.

(53) Karolczak, J.; Clouthier, D. J. Pyrolysis jet spectroscopy of dichlorosilylene. *Chem. Phys. Lett.* **1993**, *201*, 409–415.

(54) Smith, T. C.; Evans, C. J.; Clouthier, D. J. Discovery of the Optically Forbidden $S_1 - S_0$ Transition of Silylidene ($H_2C=Si$). *J. Chem. Phys.* **2003**, *118*, 1642–1648.
(55) Harada, J.; Ogawa, K.; Tomoda, S. Molecular Motion and Conformational Interconversion of Azobenzenes in Crystals as Studied by X-ray Diffraction. *Acta Cryst. B* 1997, 53, 662–672.

(56) Okuyama, K.; Kakinuma, T.; Fujii, M.; Mikami, N.; Ito, M. Electronic spectra of 1,2,4,5-tetrafluorobenzene in a supersonic jet: butterfly tunneling in the excited state. *J. Phys. Chem.* 1986, 90, 3948–3952.

(57) Kerstel, E. R. T.; Becucci, M.; Pietraperzia, G.; Castellucci, E. Optothermal Spectroscopy of the Dissociating Lowest Electronic Singlet States of s-Tetrazine and Dimethyl-s-Tetrazine in a Molecular Beam. *J. Chem. Phys.* 1997, 106, 1318–1325.

(58) Judge, T. H.; Moule, D. C.; Bruno, A. E.; Steer, R. P. Thioketone Spectroscopy: An Analysis of the Lower Electronic Transitions in Thioacetone and Thioacetaldehyde. *Chem. Phys. Lett.* 1983, 102, 385–389.

(59) Judge, R. H.; Moule, D. C. A Vibronic Analysis of the Lower $\tilde{A}^1A'' \leftarrow \tilde{X}^1A'$ Singlet–Singlet and $\tilde{a}^3A'' \leftarrow \tilde{X}^1A'$ Triplet–Singlet Band Systems of Thioacrolein (2-Propenethial). *J. Chem. Phys.* 1984, 80, 4646–4650.

(60) Simard, B.; Hackett, P.; Steer, R. $\tilde{A} \leftarrow \tilde{X}$ Laser Excitation Spectroscopy of BrClCS and Br$_2$CS at Room Temperature and in Cold Supersonic Jets. *J. Mol. Spectrosc.* 1987, 126, 307–328.

(61) Subramaniam, C.; Moule, D. Analysis of the $\tilde{A}^1A'' \leftarrow \tilde{X}^1A'$ Electronic Transition in Thiocarbonyl Chlorofluoride. *J. Mol. Spectrosc.* 1974, 53, 443–454.

(62) Clouthier, D.; Knight, A.; Steer, R.; Judge, R.; Moule, D. The $\tilde{B}(1A') \leftarrow \tilde{X}(1A')$ Spectrum of ClFCS. *J. Mol. Spectrosc.* 1980, 83, 148–160.

(63) Moule, D.; Mehra, A. The $^1A_2 \leftarrow ^1A_1$ Transition in Thiocarbonyl Difluoride at 23477.1 cm$^{-1}$. *J. Mol. Spectrosc.* 1970, 35, 137–148.
(64) Judge, R.; Moule, D. Thiocarbonyl Spectroscopy: The $\tilde{A}^1A^\pi \leftarrow \tilde{X}^1A'$ and $\tilde{a}^3A^\pi \leftarrow \tilde{X}^1A'$ Electronic Transitions in Thioformyl Chloride, CHCIS. *J. Mol. Struct.* **1985**, *113*, 77–84.

(65) Fujiwara, T.; Lim, E. C.; Moule, D. C. Symmetry Segregation of the Vibronic Levels Within the $S_1 \leftarrow S_0$ System of Thiophosgene, Cl$_2$CS, by Optical-Optical Double Resonance Spectroscopy. *J. Chem. Phys.* **2007**, *126*, 144304.

(66) Judge, R.; Moule, D. A Vibronic Analysis of the Lower $\tilde{A}^1A^\pi \leftarrow \tilde{X}^1A'$ Singlet-Singlet and $\tilde{a}^3A^\pi \leftarrow \tilde{X}^1A'$ Triplet-Singlet Band Systems of Thiopropynal. *J. Mol. Spectrosc.* **1984**, *104*, 248–252.

(67) Dyet, J.; McCoustra, M.; Pfab, J. The Visible Spectrum of Jet-Cooled CF$_3$NO. *Chem. Phys. Lett.* **1987**, *135*, 534–538.

(68) Moule, D. C.; Ng, K. H. K. The Conformational Changes Accompanying the Triplet–Singlet Electronic Excitation of Qcetaldehyde, CH$_3$CHO. *Can. J. Chem.* **1985**, *63*, 1378–1381.

(69) Hlavacek, N. C.; McAnally, M. O.; Drucker, S. Lowest Triplet (n, π^*) Electronic State of Acrolein: Determination of Structural Parameters by Cavity Ringdown Spectroscopy and Quantum-Chemical Methods. *J. Chem. Phys.* **2013**, *138*, 064303.

(70) Ohmori, N.; Suzuki, T.; Ito, M. Why does intersystem crossing occur in isolated molecules of benzaldehyde, acetophenone, and benzophenone? *J. Phys. Chem.* **1988**, *92*, 1086–1093.

(71) Koyanagi, M.; Kogo, Y.; Kanda, Y. Phosphorescence from the two Triplet States of p-Benzoquinone and Toluquinone Vapour. *Mol. Phys.* **1971**, *20*, 747–750.

(72) Tao, C.; Mukarakate, C.; Terranova, Z.; Ebben, C.; Judge, R. H.; Reid, S. A. High Resolution Study of Spin-Orbit Mixing and the Singlet-Triplet Gap in Chlorocarbene:
Stimulated Emission Pumping Spectroscopy of CH\textsubscript{35}Cl and CD\textsubscript{35}Cl. *J. Chem. Phys.* **2008**, *129*, 104309.

(73) Callomon, J. H.; Davey, A. B. Rotational Analysis of the 3000 Å Absorption System of Cyanogen, C\textsubscript{2}N\textsubscript{2}. *Proc. Phys. Soc. (London)* **1963**, *82*, 335–336.

(74) Springer, M. G.; Hlavacek, N. C.; Jagusch, S. P.; Johnson, A. R.; Drucker, S. Cavity Ringdown Spectrum of the T\textsubscript{1}(n, \pi^*) \rightarrow S\textsubscript{0} Transition of 4-Cyclopentene-1,3-dione. *J. Phys. Chem. A* **2009**, *113*, 13318–13326, PMID: 19735120.

(75) Pillsbury, N. R.; Zwier, T. S.; Judge, R. H.; Drucker, S. Jet-Cooled Phosphorescence Excitation Spectrum of the T\textsubscript{1}(n, \pi^*) \leftarrow S\textsubscript{0} Transition of 2-Cyclopenten-1-one. *J. Phys. Chem. A* **2007**, *111*, 8357–8366.

(76) Ottinger, C.; Winkler, T. The Vibrational Level Structure of Trans-Glyoxal in the T\textsubscript{1} (3\textbf{A}\textsubscript{u}) State. *Chem. Phys. Lett.* **1999**, *314*, 411–420.

(77) Yoshii, T.; Kiritani, M.; Hirota, N.; Baba, M. Radiative and Nonradiative Processes in the Excited States of Jet-Cooled Oxalyl Chloride. *J. Phys. Chem.* **1996**, *100*, 3354–3358.

(78) Bouvier, A.; Inard, D.; Veyret, V.; Bussery, B.; Bacis, R.; Churassy, S.; Brion, J.; Malicet, J.; Judge, R. Contribution to the Analysis of the 3\textbf{A}\textsubscript{2} \leftarrow \tilde{X}\textbf{1}A\textsubscript{1} "Wulf" Transition of Ozone by High-Resolution Fourier Transform Spectrometry. *J. Mol. Spectrosc.* **1998**, *190*, 189–197.

(79) Birss, F. W.; Dong, R. Y.; Ramsay, D. A. The Band System of Propynal: Rotational Analysis of the 0–0 Band Near 4145 Å. *Can. J. Phys.* **1973**, *51*, 1810–1814.

(80) Hoffelt, L. M.; Springer, M. G.; Drucker, S. Phosphorescence Excitation Spectrum of the T\textsubscript{1}(n, \pi^*) \leftarrow S\textsubscript{0} Transition of 4H-pyran-4-one. *J. Chem. Phys.* **2008**, *128*, 104312.

(81) Ruth, A.; Fernholz, T.; Brint, R.; Mansfield, M. The T\textsubscript{1} \leftarrow S\textsubscript{0} Absorption Spectrum of Gaseous 4H-Pyran-4-thione. *J. Mol. Spectrosc.* **2002**, *214*, 80–86.
(82) Ottinger, C.; Vilesov, A. F. Collision-Induced Vibrational Relaxation of Pyrazine T_1 Observed in Spectrally Resolved Phosphorescence from a Beam. Z. Phys. Chem. 1995, 188, 111–117.

(83) Ottinger, C.; Vilesov, A.; Winkler, T. Laser-Induced Phosphorescence of Jet-Cooled Pyrimidine. Chem. Phys. Lett. 1993, 208, 299–306.

(84) Judge, R. H.; Clouthier, D. J.; Moule, D. C. The Laser Excitation Spectrum of CH$_2$Se and CD$_2$Se in the Near Infrared. J. Chem. Phys. 1988, 89, 1807–1812.

(85) Karolczak, J.; Judge, R. H.; Clouthier, D. J. Experimental Determination of the Structure of SiF$_2$ in Its Excited Triplet State. J. Am. Chem. Soc. 1995, 117, 9523–9528.

(86) Huang, C.-L.; Ju, S.-S.; Chen, I.-C.; Merer, A. J.; Ni, C.-K.; Kung, A. High-Resolution Spectroscopy of Jet-Cooled 32SO$_2$ and 34SO$_2$: The $a^3B_1 - \tilde{X}^1A_1$, 2^1_0 and 1^1_0 Bands. J. Mol. Spectrosc. 2000, 203, 151–157.

(87) Livak, D.; Innes, K. A Triplet-Singlet Transition of s-Tetrazine. J. Mol. Spectrosc. 1971, 39, 115–122.

(88) Judge, R. H.; Moule, D. C.; Bruno, A. E.; Steer, R. P. Thiocarbonyl Spectroscopy: Methyl Torsional Vibrations and Internal Rotational Barriers of Thioacetaldehyde in its \tilde{a}^3A'' and \tilde{X}^1A' States. J. Chem. Phys. 1987, 87, 60–67.

(89) Moule, D. C.; Smeyers, Y. G.; Senent, M. L.; Clouthier, D. J.; Karolczak, J.; Judge, R. H. An Analysis of the Methyl Rotation Dynamics in the $S_0(\tilde{X}^1A_1)$ and $T_1(\tilde{a}^3A_2)$ States of Thioacetone, (CH$_3$)$_2$CS and (CD$_3$)$_2$CS from Pyrolysis Jet Spectra. J. Chem. Phys. 1991, 95, 3137–3146.

(90) Fujiwara, T.; Lim, E. C.; Judge, R. H.; Moule, D. C. An Optical-Optical Double Resonance Probe of the Lowest Triplet State of Jet-Cooled Thiophosgene: Rovibronic Structures and Electronic Relaxation. J. Chem. Phys. 2006, 124, 124301.
(91) Ohta, N.; Fujita, M.; Takemura, T.; Shindo, Y.; Baba, H. Phosphorescence of s-Triazine Vapor. *Chem. Phys. Lett.* **1983**, *97*, 81–84.
