Transfection efficiency of pORF lacZ plasmid lipopolyplex to hepatocytes and hepatoma cells

Xun Sun, Hong-Wei Zhang, Zhi-Rong Zhang

Abstract

AIM: To develop a novel non-viral gene delivery system, which has a small particle size and a high transfection efficiency to hepatocyte and hepatoma cells.

METHODS: Lipid-polycation-DNA lipopolyplex (LPD) was prepared by mixing plasmid DNA and polylysine. The resulted polyplex was incubated for 10 min at room temperature, following the addition of preformed cationic liposomes. The morphology of LPD was observed by transmission electron microscopy. The diameter and surface charge of LPD were measured by photon correlation spectroscopy (PCS). The nuclease protection ability of LPD was evaluated by agarose gel electrophoresis. Estimation of the transfection efficiency was performed by galactosidase assay in Chang cells and SMMC-7721 cells.

RESULTS: LPD had a regular spherical surface. The average diameter and the zeta potential of LPD were 132.1 nm and 26.8 mV respectively. LPD could protect plasmid DNA from nuclease degradation after 2 hours incubation at 37°C while the naked DNA degraded rapidly. The average transfection efficiencies were 86.2±8.9% and 72.4±6.5% in Chang cells and SMMC-7721 cells respectively.

CONCLUSION: LPD has a rather small particle size and a high transfection activity. LPD may be a good non-viral vector for application in some gene delivery.

Sun X, Zhang HW, Zhang ZR. Transfection efficiency of pORF lacZ plasmid lipopolyplex to hepatocytes and hepatoma cells. World J Gastroenterol 2004; 10(4): 531-534

http://www.wjgnet.com/1007-9327/10/531.asp

INTRODUCTION

Gene therapy focuses on the therapeutic use of genes, and has achieved considerable advances in the treatment of both acquired and inherited diseases[1,2]. The success of gene therapy rests on the development of a vector that can selectively and efficiently deliver a gene to the target cells with minimal toxicity[3,4]. The vectors used to date can be classified into viral and non-viral groups.

Non-viral delivery systems for gene therapy have been increasingly proposed as safer alternatives to viral vectors. They have the potential to be repeatedly used with minimal host immune response and are targetable, stable in storage, and easy to produce in large quantities. These advantages have provided the impetus to continue their development. So far, several non-viral delivery systems have been developed, such as liposomes[5,7], nanoparticles[8-10], hydrogel[11] emulsion[12] and peptide nucleic acid[13]. Complexes formed between cationic liposomes and plasmid DNA are the predominant non-viral vectors employed for the transfection of eukaryotic cells in research laboratories[14-16]. Currently, several cationic lipid formulations have also undergone clinical evaluation as vectors for gene therapy in cancer and cystic fibrosis. However, the efficiency and specificity of non-viral delivery systems are not so high. To improve the transfection efficiency, some cationic lipids[17] and polymers[18-20] have been synthesized. Ligand or antibody mediated targeting of gene transfer has also been widely explored[21-24]. Furthermore, nuclear localization sequences (NLS) are studied to help the entry of plasmid DNA from cytoplasm into nucleus[25].

The liver possesses a variety of characteristics that make this organ very attractive for gene therapy[26-27]. The proportion of administered macromolecules internalized by hepatocytes depends on their particle size and biochemical characteristics. Only relatively small molecules can pass the fenestrate of sinusoidal endothelial cells of the liver, since their diameter is about 100 nm[28,29]. Polycations as a formulation component have been shown to enhance the efficiency of liposomes-mediated gene transfer both in vitro and in vivo. Specifically, lipid-polycation-DNA lipopolyplexes (LPD) have appeared promising as efficient gene-delivery vehicles for systemic administration[30-33]. In this study, we developed a novel lipopolyplex formulation, which is small in particle size and high in transfection efficiency to hepatocytes and hepatoma cells.

MATERIALS AND METHODS

Materials

Plasmid pORF lacZ (3.54 kb) was purchased from Invivogen (USA). Poly-L-lysine (PLL, M, 29 000), dimethyldioctadecyl ammonium bromide (DDAB) and β-galactosidase reporter gene staining kit were purchased from Sigma. Hepatoma cell line SMMC-7721 and hepatocyte cell line Chang were obtained from Shanghai Cell Institute, China Academy of Sciences. Cell culture media DMEM and RPMI 1640 were obtained from Gibco Co. (USA). Qiagen Giga Endo-free plasmid purification kit was purchased from Qiagen (CA,USA). All the other chemicals and reagents used were of the analytical grade obtained commercially.

Plasmid DNA preparation

Plasmid pORF lacZ (3.54 kb), is a eukaryotic expression vector containing the EF-1α-HTLV hybrid promoter within an intron. The lacZ gene codes for the enzyme β-galactosidase, whose activity allows for quick determination of cells expressing the lacZ gene. pORF-lacZ plasmid DNA was isolated and purified from DH5α E.coli using the Qiagen Giga Endo-free plasmid purification kit. DNA concentration and purity were quantified...
by UV absorbance at 260 nm and 280 nm on a GBC UV cintra
10e spectrophotometer. The structural integrity and topology
of purified DNA were analyzed by agarose gel electrophoresis.

LPD preparation

Cationic liposomes composed of DDAB/cholesterol were
prepared with the molar ratio of 1:1. The lipid mixture was
dissolved in appropriate chloroform and a thin lipid film was
formed in a round-bottomed flask by drying the solvent using
a rotary evaporator. The film was hydrated at 60°C with
the addition of 10 mM herpes buffer (pH 7.4). The lipids were
resuspended and then undergone ten passes through an extruder
with 200, 100 nm polycarbonate membranes respectively.
LPDs were formed by mixing equal volumes of DNA and PLL.
DNA and PLL were both diluted from the stock with 10 Mm
herpes buffer. After mixed, the solution was briefly vortexed,
and the resulting polyplexes were incubated for 10 min at
room temperature. Concentrated cationic liposomes were
subsequently added to the DNA/PLL mixture to achieve the
desired final component concentrations and ratios.

Size and zeta component

Diameter and surface charge of lipopolyplexes were measured
by photon correlation spectroscopy (PCS) (Malvern zetasizer
3000 HS, Malvern Instruments Ltd., UK) with a 50 mV laser.
Twenty µl of LPD was diluted by 3 ml of 10 mM herpes buffer
and added into the sample cell. The measurement time was set
as 2 min (rapid measurement) and each run consisted of 10
subruns[34]. The measurements were done at 25°C at an angle
of 90°. The size distribution followed a lognormal distribution.
The potential of the lipid carriers at the surface of spheres,
called the zeta potential(ζ), was derived from the mobile
particles in electric field by applying the smoluchowsky
relationship, which was measured at least three times and at
an average of appropriate concentrations of samples.

Negative stain electron microscopy

Just prior to use, the former-coated 100-mesh copper girds
were prepared by glow discharging. The girds were then floated
on 25 µl of samples for 90 s, wicked off, and floated on drops
of 1% aqueous uranyl acetate for 90 s. Finally, the samples
were wicked off, dried in air and stored at room temperature.
Negative stain electron micrographs of LPD were taken using
a JEM-100SX electron microscope.

Stability in DNase I

Naked DNA or LPDs were incubated with DNase I solution
(0.32 U/µg DNA) at 37°C for 5 min, 1 h and 2 h respectively.
The enzyme reaction was stopped by addition of 0.5M
EDTA[35]. Triton X-100 (final concentration 1% v/v) was
added to destroy the bilayer structure of liposomes and 0.9%
w/v heparin was added to release DNA from PLL/DNA
complexes[36]. The samples were carefully added to the wells
of a 0.8% agarose gel at a volume (representing 1 µg of DNA
per well). The gel was run in TBE buffer containing 0.5 µg/ml
EtBr at 100V for 1 h. Subsequently, the gel was removed
from the tank and visualized under UV light by molecular
analyst software.

Cell transfection

Chang cells and SMMC-7721 cells were cultured in DMEM
and RPMI-1640 respectively with 10% fetal bovine serum and
streptomycin (100 µg/ml). The cells were seeded at 2x10³ cells
per well onto 6-well plates 24 h before transfection. The cells
were about 70% confluence at the time of transfection. Then
the cells were washed twice by PBS, and 1 ml of serum-free
and antibiotics-free medium was added into each well[37]. For
each well in a transfection, LPDs containing 5 µg pORF-1acZ
were overlaid and mixed gently. The cells were incubated
with LPD for 5 hours at 37°C in a CO2 incubator. Following
incubation, LPD was removed and the cell surfaces were
rinsed thoroughly and treated with 2 ml fresh complete
medium. Then the cells were returned to the incubator for a
further 45 h to allow intracellular gene expression to proceed.

X-gal staining

Estimation of the transfection efficiency was performed using
galactosidase assay[38,39]. After the desired time of incubation,
the cells were washed with PBS twice and fixed with 2% formaldehyde and 0.2% glutaraldehyde for 10 minutes at
room temperature. Then the cells were rinsed twice and
stained by X-gal (20 mg/ml) according to the manufacture’s
instructions. The cells were incubated at 37°C overnight and
observed under a microscope. The transfected cells were blue
after X-gal staining. For each well, five visual fields were
chosen randomly. Cells stained blue were counted and the
transfection efficiency was calculated as the percentage of the
blue cells in each field.

RESULTS

Morphology, particle size and zeta potential

Transmission electron microscopy (Figure 1) demonstrated the
regular spherical surface of LPD. Figure 2 shows the average
diameter of LPD being 132.1 nm with a very narrow distribution
(polyindex 0.148). Figure 3 illustrates the zeta potential of LPD
being 26.8 mV in 10 mM herpes buffer (pH 7.4).

Figure 1 Electronic transmission microscopy of LPD (×35 000).

Figure 2 Size distribution of LPD. The particle size was measured
by photon correlation spectroscopy (Malvern zetasizer 3000 HS). The average diameter of LPD is 132.1 nm.

Stability in DNase I

Figure 4 shows that LPD could protect plasmid DNA from
nuclease degradation after 5 minutes, 1 hour and 2 hours of
incubation at 37°C while the naked DNA degraded rapidly.
Figure 3 Zeta potential of LPD. The zeta potential of LPD was 26.8 mV in 10 mM herps buffer (pH 7.4).

Figure 4 Agarose gel electrophoresis of naked DNA and LPD subjected to DNase degradation. Lane 1: LPD incubated with DNase for 5 minutes. Lane 2: LPD incubated with DNase for 1 hour. Lane 3: LPD incubated with DNase for 2 hours. Lane 4: Naked DNA incubated with DNase for 5 minutes. Lane 5: Naked DNA incubated with DNase for 1 hour. Lane 6: Naked DNA incubated with DNase for 2 hours.

Transfection efficiency

Figure 5 and 6 demonstrate that LPD had a rather high transfection efficiency both in Chang cells and in SMMC-7721 cells. The average transfection efficiencies were 86.2±8.9% and 72.4±6.5% in Chang cells and SMMC-7721 cells, respectively.

DISCUSSION

The amount of intact DNA present in LPD cannot be directly assayed by gel electrophoresis as the complexation hinders the binding between DNA and ethidium bromide. Therefore Triton X-100, a widely used detergent is employed to destroy the liposomal bilayer. Furthermore, dissociation of cationic polymer and DNA is also required. Traditionally, DNA is dissociated from PLL by digestion with trypsin and phenol extraction. This procedure is time-consuming and the lost DNA during extraction is immeasurable. Some new dissociation methods have been established based on the fact that the interaction between DNA and PLL was mainly due to electrostatic bonds[40-43]. By raising the pH of electrophoretic buffer above the pKa of PLL, PLL could become less protonated, thus reducing the charge and thereby allowing the complexes to disassociate under electrophoretic conditions. However, when pH was higher than 11.6, ethidium bromide would lose its affinity for DNA and fluorescence was lost. In this study, heparin at final concentration of 0.9% (w/v) was added to release DNA from the complexes[36]. Heparin, as an anionic polysaccharide can bind to PLL by electrostatic interaction. When enough amount of heparin was added, DNA could be completely released from PLL-DNA complexes. The presence of heparin did not interfere with the gel electrophoresis, so the sample could be loaded directly.

The size and surface charge of lipopolyplex could influence their physical stability, in vivo distribution, cellular interaction and extent of cell uptake. After intravenous administration, particles larger than 7 µm are normally filtered by the smallest capillaries of the lungs, and particles smaller than 7 µm in diameter may pass the smallest lung capillary beds and be entrapped in the capillary network of the liver and spleen. Particles between 100 nm and 2 µm in size are rapidly cleared from the bloodstream by the mononuclear phagocytic system (MPS). Typically in practice, 80-90% of hydrophobic particles were opsonized and taken up by fixed macrophages of the liver and spleen, often within a few minutes of intravenous administration[11]. Zeta potential measurements can be a useful tool for characterizing colloidal drug delivery systems. They can give information about the surface properties of the carrier and therefore helping determine how the constituent molecules are organized. In this study, the LPDs had a positive zeta potential of 26.8mV. Therefore, they could interact with negatively charged cell surface, which resulted in cellular internalization. Furthermore, plasmid DNA in LPDs was shielded from nuclease digestion due to the formation of charge complexes.

It has become clear that cationic liposome plays several roles in the process of transfection, such as condensing and protecting DNA, binding to cell surface, triggering endocytosis and releasing DNA/lipid complexes from endosome. The size of condensed DNA is thought to be critical for in vivo delivery because the particle size influences not only the biodistribution but also the efficiency of cellular uptake through endocytosis. At an appropriate condition, cationic polymer PLL can precondense plasmid DNA more effectively than cationic liposomes. Therefore, LPD has a rather small particle size and a high transfection activity in hepatocytes and hepatoma cells. LPD may be a superior vector for some applications in gene delivery compared to regular DNA/liposome complexes. Structurally, this formulation has been found to be a virus-like particle, each containing a condensed genome as the core and a lipidic shell as the envelope. The liver possesses a variety of characteristics which make this organ very attractive for gene therapy. Although some of the virus-mediated gene transfer systems have been found to be quite effective, their usefulness is limited, given that they induce an immune response, leading to the rapid rejection of transduced cells. To overcome this
problem, our further work will focus on the use of LPD in the treatment of liver cancer.

REFERENCES

1. Pouton CW, Seymour LW. Key issues in non-viral gene delivery. Adv Drug Deliv Rev 2001; 46: 187-203
2. Liu F, Huang L. Development of non-viral vectors for systemic gene delivery. J Control Release 2002; 78: 259-266
3. Nishikawa M, Huang L. Nonviral vectors in new millennium: delivery barriers in gene transfer. Hum Gene Ther 2001; 12: 861-870
4. Davis ME. Non-viral gene delivery systems. Curr Opin Biotechnol 2002; 13: 128-131
5. Stuart DD, Allen TM. A new liposomal formulation for antisense oligodeoxynucleotides with small size, high incorporation efficiency and good stability. Biochim Biophys Acta 2000; 1460: 219-229
6. Bailey AL, Sullivan SM. Efficient encapsulation of DNA plasmids in small neutral liposomes induced by ethanol and calcium. Biochim Biophys Acta 2000; 1468: 239-252
7. Sudimack JJ, Guo W, Tjarks W, Lee RJ. A novel pH-sensitive liposome formulation containing oleyl alcohol. Biochim Biophys Acta 2002; 1564: 31-37
8. Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 2003; 55: 329-347
9. Mao HQ, Roy K, Troung-LeVL, Janes KA, Lin K, Wang Y, August JT, Leong KW. Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J Control Release 2001; 70: 399-421
10. Corsi K, Chellat F, Yahia L, Fernandes JC. Mesenchymal stem cells induce cholesterol esterification in an osteoblastic cell line and show good stability. Biochim Biophys Acta 2003; 1564: 393-402
11. Vinogradov SV, Bronich TK, Kabanov AV. Nanosized cationic hydrogels for drug delivery: preparation, properties and interaction with cells. Adv Drug Deliv Rev 2002; 54: 135-147
12. Kim YJ, Kim TW, Chung H, Kwon IC, Sung HC, Jeong SY. The elimination of ligand-targeted liposomes by using poly(ethylene glycol) as a non-toxic gene carrier. Adv Drug Deliv Rev 2002; 54: 223-233
13. Templeton NS. Cationic liposome-mediated gene delivery in vivo. Biolid Rev 2002; 22: 283-295
14. Ewert K, Ahmad A, Evans HM, Schmidt HW, Safinya CR. Efficient synthesis and cell-transfection properties of a new multivalent cationic lipid for nonviral gene delivery. J Med Chem 2002; 45: 5023-5029
15. Kabanov AV, Lemieux P, Vinogradov S, Alakhov V. Pluronic block copolymers: novel functional molecules for gene therapy. Adv Drug Deliv Rev 2002; 54: 223-233
16. Maheshwari A, Mahato R, McGregor J, Han S, Smlawski WE, Park JS. Kim SW. Soluble biodegradable polymer-based cytokine gene delivery for cancer treatment. M z Thoer 2000; 2: 121-130
17. Li WM, Mayer LD, Bally MB. Prevention of antibody-mediated elimination of ligand-targeted liposomes by using poly(ethylene glycol)-modified lipids. J Pharmacol Exp Ther 2002; 300: 976-983
18. Mastrobattista E, Kapel RH, Eggenhuisen MH, Roholi P, Cronmaln DJ, Henning WE, Storm G. Lipid-coated polyplexes for targeted gene delivery to ovarian carcinoma cells. Cancer Gene Ther 2001; 8: 405-413
19. Arangoa M, Düzgün N, Tros de Ilarduya C. Increased receptor-mediated gene delivery to the liver by protamine-enhanced-asialofetuin-lipopolipexes. Gene Ther 2003; 10: 5-14
20. Fisher KD, Ulbrich K, Subr V, Ward CM, Mautner V, Blakey D, Seymour LW. A versatile system for receptor-mediated gene delivery permits increased entry of DNA into target cells, enhanced delivery to the nucleus and elevated rates of transgene expression. Gene Ther 2000; 7: 1347-1343
21. Escrivou V, Carrière M, Scherman D, Wils P, NLS bioconjugates for targeting therapeutic genes to the nucleus. Adv Drug Deliv Rev 2003; 55: 295-306
22. Ghosh SS, Takahashi M, Thummalra NR, Parashar B, Chowdhury NR, Chowdhury JR. Liver-directed gene therapy: promises, problems and prospects at the turn of the century. J Hepato 2000; 32(1 Suppl): 238-252
23. Hwang SH, Hayashi K, Takayama Y, Maitani Y. Liver-targeted gene transfer into a human hepatoblastoma cell line and in vivo by stegylcose-containing cationic liposomes. Gene Ther 2001; 8: 1276-1280
24. Jain RK. Delivery of molecular and cellular medicine to solid tumors. Adv Drug Deliv Rev 2001; 46: 149-168
25. Christie RJ, Grainger DW. Design strategies to improve soluble macromolecular delivery constructs. Adv Drug Deliv Rev 2003; 55: 422-437
26. Guo W, Gosselin MA, Lee RJ. Characterization of novel diolein-based LPDII vector for gene delivery. J Control Release 2002; 83: 121-132
27. Birchall JC, Kellaway IW, Gumbleton M. Physical stability and in vitro gene expression efficiency of nebulised lipid-particle-DNA complexes. Int J Pharm 2000; 197: 221-231
28. Li B, Li S, Tan Y, Stolz DB, Watkins SC, Block LH, Huang L. Lyophilization of cationic lipid-polymer-DNA (LPD) Complexes, J Pharm Sci 2002; 89: 355-364
29. Tsai JT, Furstoss KJ, Michnick T, Soane DL, Paul RW. Quantitative physical characterization of lipid-polyacrylamide-DNA lipoparticles. Biotechnol A ppl Biochem 2002; 36(1 Pt 1): 13-20
30. Dekle L, Toncheva V, Dubreuil P, Schacht EH, Barrett L, Seymour LW. Poly-L-glutamic acid derivatives as vectors for gene therapy. J Control Release 2000; 63: 187-202
31. Cui Z, Mumper RJ. Plasmid DNA-entrapped nanoparticles engineered from micromulsion precursors: in vitro and in vivo evaluation. Bioconjug Chem 2002; 13: 1319-1327
32. Moret I, Esteban Peris J, Guillem V, Benet M, Revert F, Dasi F, Crespo A, Alino SF. Stability of PEI-DNA and DOTAP-DNA complexes: effect of alkaline pH, heparin and serum. J Control Release 2001; 76: 169-181
33. Dokka S, Toledo D, Shi X, Ye J, Rojansaksul Y. High-efficiency in vitro transfection of macromolecules by lipopolipexes. Int J Pharm 2000; 206: 97-104
34. Sakurai F, Nishiooka T, Saoto H, Baba T, Okuda A, Masumoto O, Taga T, Yamashita F, Takakura Y, Hashida M. Interaction between DNA-cationic liposome complexes and erythrocytes is an important factor in systemic gene transfer via the intravenous route in mice: the role of the neutral helper lipid. Gene Ther 2001; 8: 677-686
35. Armeanu S, Pelisek J, Krausz E, Fuchs A, Groth D, Curt R, Keil O, Quilici J, Rolland PH, Reszka R, Nickol S. Optimization of nonviral gene transfer of vascular smooth muscle cells in vitro and in vivo. Mol Ther 2000; 1: 365-375
36. Männistö M, Vaderkenner S, Toncheva V, Elomaa M, Ruponen M, Schacht E, Urśli A. Structure-activity relationships of poly (L-lysine): effects of pegylation and molecular shape on physicochemical and biological properties in gene delivery. J Control Release 2002; 83: 169-182
37. Parker AL, Oupicky D, Dash PR, Seymour LW. Methodologies for monitoring nanoparticle formation by self-assembly of DNA with polypeptide ligands. Anal Biochem 2002; 302: 75-80
38. Hill IR, Garnett MC, Bignotti F, Davis SS. Determination of protection from serum nuclease activity by DNA-polyelectrolyte complexes using an electrophoretic method. Anal Biochem 2001; 291: 62-68
39. Safinya CR. Structures of lipid-DNA complexes: supramolecular assembly and gene delivery. Curr Opin Struct Biol 2003; 13: 440-448

Edited by Wu XN and Wang XL