The D_s, D^+, B_s and B^+ decay constants from $2 + 1$ flavor lattice QCD

Fermilab Lattice and MILC collaborations
A. Bazavov, C. Bernard, C. Bouchard, C. DeTar, D. Du, A.X. El-Khadra, J. Foley, E.D. Freeland, E. Gamiz, Steven Gottlieb, U.M. Heller, J. Kim, J. Komijani, A.S. Kronfeld, J. Laiho, L. Levkova, P.B. Mackenzie, E.T. Neil, M. Oktay, S. Qiu, J.N. Simone, R.L. Sugar, D. Toussaint, R.S. Van de Water and R. Zhou

31 July 2013
The D and B decay constants

- Among simplest Weak matrix elements to compute.
- Test of lattice technology: *e.g.*, heavy quark mass sensitivity, HQ formalisms, chiral extrapolations.
- The D and B decay constants provide tests of the CKM picture *e.g.*, $B^0 \rightarrow \mu^+\mu^-$ in SM and $|V_{ub}|$ from $B^+ \rightarrow \tau^+\nu$.
- This talk: Decay constants from three-flavor MILC asqtad lattices using asqtad light and clover (Fermilab interpretation) heavy valence quarks. PRELIMINARY.
- D decay constants with HISQ charm on MILC four-flavor HISQ lattices see talks by:

 - C. Bernard Wed 11:00 session: 6C
 - D. Toussaint Thu 17:50 session: 8C

We have published results from our previous asqtad study...
Conclusions from our previous study

PRD.85.114506, arXiv:1112.3051

Contributions in quadrature to percent error

\[
\begin{align*}
\text{D-meson system} & \\
f_{D^+} &= 218.9 \pm 11.3 \text{ MeV} \\
f_{D_s} &= 260.1 \pm 10.8 \text{ MeV} \\
f_{D_s}/f_{D^+} &= 1.188 \pm 0.025 \\
\end{align*}
\]

\[
\begin{align*}
\text{B-meson system} & \\
f_{B^+} &= 196.9 \pm 8.9 \text{ MeV} \\
f_{B_s} &= 242.0 \pm 9.5 \text{ MeV} \\
f_{B_s}/f_{B^+} &= 1.229 \pm 0.026 \\
\end{align*}
\]

Our current study addresses many of these sources of error...
Conclusions from our previous study

PRD.85.114506, arXiv:1112.3051

Contributions in quadrature to percent error

Improvements in current study:

- No u0 adjustment.
- HQ discretization, LQ discr., chiral extrap.

and statistical errors reduced by including finer $a \approx 0.058$ and 0.043 fm lattices and higher 2-pt statistics.

- Nearer to physical $m_l/m_h = 1/20$ helps in chiral extrap.
Conclusions from our previous study

PRD.85.114506, arXiv:1112.3051

Contributions in quadrature to percent error

... and more improvements:

- Better kappa tuning to reduce HQ mass errors.
- Better runs to compute \(Z_{V_{QQ}^4} \) and \(Z_{V_{qq}^4} \).
- New 2-pt fit technology to control 2-pt fit errors.
MILC asqtad $N_f = 2 + 1$

Current study includes

id	a [fm]	beta	m_l/m_h	$a m_h$	m_h/m_s	r_1/a	N_{config}	N_{tsrc}
A	0.043	7.81	0.2	0.014	1.079	7.208	801	4
B	0.059	7.46	0.1	0.018	1.019	5.307	827	4
C	0.058	7.465	0.139	0.018	1.024	5.330	801	4
D	0.058	7.47	0.2	0.018	1.028	5.353	673	8
E	0.058	7.48	0.4	0.018	1.037	5.399	593	4
F	0.083	7.075	0.05	0.031	1.255	3.738	791	4
G	0.083	7.08	0.1	0.031	1.256	3.755	1015	4
H	0.083	7.085	0.15	0.031	1.262	3.772	984	4
I	0.082	7.09	0.2	0.031	1.267	3.789	1931	4
J	0.081	7.11	0.4	0.031	1.290	3.858	1996	4
K	0.11	6.76	0.1	0.05	1.489	2.739	2099	4
L	0.11	6.76	0.14	0.05	1.489	2.739	2110	4
M	0.11	6.76	0.2	0.05	1.489	2.739	2259	4
N	0.11	6.79	0.4	0.05	1.534	2.821	2052	4
O	0.14	6.572	0.2	0.0484	1.156	2.222	631	24

Cf. our previous study:

- Two finer lattice spacings: 0.043 and 0.058 fm (id=A-E).
- Sea quarks nearer to physical: $m_l/m_h = 1/20$ (F).
- Better statistics: around $3.6 \times$ more $N_{config} \cdot N_{tsrc}$.
Charm and Bottom 2-pt functions

On each ensemble, for $H = \text{charm, bottom}$ and a range of m_q compute six 2-pt functions

\[
C^{(j,k)}(t) = \langle O_{H_q}^{(j)\dagger}(t) O_{H_q}^{(k)}(0) \rangle
\]

\[
C^{(k)}_{A_4}(t) = \langle A_{4\dagger}(t) O_{H_q}^{(k)}(0) \rangle
\]

with smearings $j, k \in \{\text{point, smeared}\}$. The quantity $\phi_{H_q} = f_{H_q} \sqrt{M_{H_q}}$ is found from the overlap

\[
\frac{\langle 0 \mid A_\mu \mid H_q(p) \rangle}{\sqrt{m_{H_q}}} = (p_\mu / m_{H_q}) \phi_{H_q}
\]

$O(a)$-improved A_4 is matched to continuum by factor

\[
\sqrt{Z_{V_4}^{QQ} Z_{V_4}^{qq} \rho_{A_4}^{Qq}}
\]

with nonperturbative Z_{V_4} and small one-loop ρ_{A_4} correction.
2-pt fitting details

- Fit four (five) 2-pt functions.
- New two stage fit process:
 1. Set empirical Bayesian priors for ground-state from $1+1$ state fits at large time.
 2. Use (broadened) priors in fit over a wide range of smaller non-overlapping times.
- Good isolation of ground-state using $4+4$ or $5+5$ states
- Bootstrap fits clearly show (expected) correlations.
Clover c- and b-quark kappa tuning

Checks: D_s HFS

Want $m_2(\kappa) = m(D_s)$ or $m(B_s)$

$$E(\vec{p})^2 = m_1^2 + \left(\frac{m_1}{m_2}\right)^2 \vec{p}^2 + O(p^4)$$

- High-statistics 2-pt tuning runs on $m_l = 0.2m_h$ ensembles.
- $E(\vec{p})$ vs \vec{p} fits include priors for $O(p^4)$ effects.
- Tunings corrected for sea-quark effects.
- Predict tuned kappa for all ensembles.

Expt. ΔM shown at zero

... and B_s HFS
Chiral fits

- Correct simulation $\phi = f\sqrt{M}$ for any kappa mistuning.
- NLO expression for ϕ from partially-quenched staggered chiral perturbation theory [Aubin and Bernard, arXiv:hep-lat/0510088].
- Add NNLO analytic (quadratic in quark mass) terms.
- Model both light- and heavy-quark discretization effects in the fits.
- Distance scale r_1, quark masses m_s, m_d and m_u and $O(a^2)$ LECs from MILC light meson fits.
Extrapolations for D^+ and D_s

PRELIMINARY analysis and data are still blinded.
B system fit

PRELIMINARY

a	m_l/m_h
0.043 fm	0.2
0.058 fm	0.2
0.059 fm	0.2
0.083 fm	0.1
0.082 fm	0.2
0.081 fm	0.4
0.11 fm	0.4
0.11 fm	0.1
0.11 fm	0.2
0.14 fm	0.2
0.14 fm	0.4
0.059 fm	0.1
0.083 fm	0.15
0.058 fm	0.14
0.083 fm	0.2
0.11 fm	0.2
0.11 fm	0.14
0.14 fm	0.2

$r_1^2m_\pi^2$ vs r_1^2/r_ϕ
Extrapolations for B^+ and B_s

PRELIMINARY analysis and data are still blinded.
Summary

Current study (predicted)

- Error budget is work in progress.
- Current projections shown on left.
- Anticipate reductions in systematic errors compared to our previous study.
- Underway: final cross-checks of this analysis and full error budget for this three-flavor asqtad study.
- Next: clover bottom quark calculations on MILC four-flavor HISQ lattices – including e.g., f_{B^+}/f_{D^+} with HISQ charm.

PRD.85.114506