A Compact Homogeneous S-space∗

Ramiro de la Vega† and Kenneth Kunen‡

November 3, 2018

Abstract
Under the continuum hypothesis, there is a compact homogeneous strong S-space.

1 Introduction
A space X is hereditarily separable (HS) iff every subspace is separable. An S-space is a regular Hausdorff HS space with a non-Lindelöf subspace. A space X is homogeneous iff for every $x, y \in X$ there is a homeomorphism f of X onto X with $f(x) = y$. Under CH, several examples of S-spaces have been constructed, including topological groups (see [4]) and compact S-spaces (see [7]). It is asked in [1, 5] whether there are compact homogeneous S-spaces. As we shall show in Theorem 4.2, there are under CH. This cannot be done in ZFC, since there are no compact S-spaces under MA + ¬CH (see [12]); there are no S-spaces at all under PFA (see [13]).

In Section 2 we use a slightly modified version of the construction in [7, 10] to refine the topology of any given second countable space, and turn it into a first countable strong S-space (i.e., each of its finite powers is an S-space). In Section 3 we show that if the original space is compact, then there is a natural compactification of the new space which is also a first countable strong S-space. If in addition the original space is zero-dimensional, then the ωth power of this compactification will be homogeneous by Motorov [9], proving Theorem 4.2.

∗2000 Mathematics Subject Classification: Primary 54G20, 54D30. Key Words and Phrases: Compact group, pointwise topology.
†University of Wisconsin, Madison, WI 53706, U.S.A., delavega@math.wisc.edu
‡University of Wisconsin, Madison, WI 53706, U.S.A., kunen@math.wisc.edu; partially supported by NSF Grant DMS-0097881.
2 A Strong S-Space

If τ is a topology on X, we write τ^I for the corresponding product topology on X^I; likewise if $\tau' \subseteq \tau$ is a base we write $(\tau')^I$ for the natural corresponding base for τ^I. If $E \subseteq X$, then $\text{cl}(E, \tau)$ denotes the closure of E with respect to the topology τ. This notation will be used when we are discussing two different topologies on the same set X.

The following two lemmas are well-known; the second is Lemma 7.2 in [10]:

Lemma 2.1 If X is HS and Y is second countable, then $X \times Y$ is HS.

Lemma 2.2 X^ω is HS iff X^n is HS for all $n < \omega$.

The next lemma, an easy exercise, is used in the proof of Theorem 2.4:

Lemma 2.3 If $(x, y) \in X \times Y$ and $S \subseteq X \times Y$, then $(x, y) \in \text{cl}(S)$ iff $y \in \text{cl}(\pi(S \cap (U \times Y)))$ for all neighborhoods U of x, where $\pi : X \times Y \rightarrow Y$ is projection.

The following is proved (essentially) in [10], but our proof below may be a bit simpler:

Theorem 2.4 Assume CH. Let ρ be a second countable T_3 topology on X, where $|X| = \aleph_1$. Then there is a finer topology τ on X such that (ω_1, τ) is a first countable locally compact strong S-space.

Proof. WLOG, $X = \omega_1$. For $\eta < \omega_1$ we write ρ_η for the topology of η as a subspace of (ω_1, ρ). Applying CH, list $\bigcup_{0 < n < \omega} [\omega_1]^n \subseteq \omega$ as $\{S_\mu : \mu \in \omega_1\}$, so that each $S_\mu \subseteq \mu^{n(\mu)}$ for some $n(\mu)$ with $0 < n(\mu) < \omega$.

For $\eta \leq \omega_1$ we construct τ_η a topology on η by induction on η so as to make the following hold for all $\xi < \eta \leq \omega_1$:

1. $\tau_\xi = \tau_\eta \cap \mathcal{P}(\xi)$.
2. τ_η is first countable, locally compact, and T_3.
3. $\tau_\eta \supseteq \rho_\eta$.

...
Note that (1) implies in particular that $\xi \in \tau_\eta$; that is, ξ is open. Thus, if $\tau = \tau_{\omega_1}$, then (ω_1, τ) is not Lindelöf. Also by (1), τ_η for limit η is determined from the τ_ξ for $\xi < \eta$. So, we need only specify what happens at successor ordinals.

For $n \geq 1$ and $\xi < \omega_1$, let $Iseq(n, \xi)$ be the set of all $f \in (\omega_1)^n$ which satisfy $f(0) < f(1) < \cdots < f(n-1) = \xi$. The following condition states our requirement on $\tau_{\xi+1}$:

4. For each $\mu < \xi$ and each $f \in Iseq(n, \xi)$, where $n = n_\mu$:

$$f \in \text{cl}(S_\mu, (\tau_{\xi+1})^{n-1} \times \rho) \implies f \in \text{cl}(S_\mu, (\tau_{\xi+1})^n).$$

If $n = n_\mu = 1$, then $(\tau_{\xi+1})^{n-1} \times \rho$ just denotes ρ. That is, (4) requires

$$\xi \in \text{cl}(E, \rho) \implies \xi \in \text{cl}(E, \tau_{\xi+1}) \quad (\ast)$$

for all E in the countable family $\{S_\mu : \mu < \xi \& n(\mu) = 1\}$. It is standard (see [7]) that one may define $\tau_{\xi+1}$ so that this holds. Now, consider (4) in the case $n = n_\mu \geq 2$. By (2), τ_ξ is second countable, so let τ'_ξ be a countable base for τ_ξ. Applying Lemma 2.3, (4) will hold if whenever $U = U_0 \times \cdots \times U_{n-2} \in (\tau'_\xi)^{n-1}$ is a neighborhood of $f \upharpoonright (n-1)$,

$$\xi \in \text{cl}(\pi(S_\mu \cap (U \times (\xi + 1))), \rho) \implies \xi \in \text{cl}(\pi(S_\mu \cap (U \times (\xi + 1))), \tau_{\xi+1}),$$

where $\pi : \xi^{n-1} \times (\xi + 1) \to (\xi + 1)$ is projection. But this is just a requirement of the form (\ast) for countably many more sets E, so again there is no problem meeting it.

Now, we need to show that τ^n is HS for each $0 < n < \omega$. We proceed by induction, so assume that τ^m is HS for all $m < n$. Fix $A \subseteq (\omega_1)^n$; we need to show that A is τ^n-separable. Applying the induction hypothesis, we may assume that each $f \in A$ has all coordinates distinct. Also, since permutation of coordinates induces a homeomorphism of $(\omega_1)^n$, we may assume that each $f \in A$ is strictly increasing; that is, $f \in Iseq(n, \xi)$, where $\xi = f(n-1)$. By the induction hypothesis and Lemma 2.1, A is separable in $(\tau_{\xi+1})^{n-1} \times \rho$. We can then fix μ such that $n(\mu) = n$, $S_\mu \subseteq A$, and S_μ is $(\tau_{\xi+1})^{n-1} \times \rho$-dense in A. Now, say $f \in A$ with $\xi = f(n-1) > \mu$. Applying (4), we have $f \in \text{cl}(S_\mu, \tau^n)$. Thus, $A \setminus \text{cl}(S_\mu, \tau^n)$ is countable, so A is τ^n-separable.
\[\spadesuit\]
3 Compactification

Definition 3.1 If \(\varphi \) is a continuous map from the \(T_2 \) space \(Y \) into \(X \), then \(Y \dot{\cup} \varphi X \) denotes the disjoint union of \(X \) and \(Y \), given the topology which has as a base:

a. All open subsets of \(Y \), together with
b. All \([U, K] := U \cup (\varphi^{-1}U \setminus K)\), where \(U \) is open in \(X \) and \(K \) is compact in \(Y \).

Our main interest here is in the case where \(X \) is compact and \(Y \) is locally compact. Then, if \(|X| = 1\), we have the 1-point compactification of \(Y \), and if \(Y \) is discrete and \(\varphi \) is a bijection we have the Aleksandrov duplicate of \(X \).

Lemma 3.2 Let \(Z = Y \dot{\cup} \varphi X \), with \(X, Y \) Hausdorff:

1. \(X \) is closed in \(Z \), \(Y \) is open in \(Z \), and both \(X, Y \) inherit their original topology as subspaces of \(Z \).
2. If \(Y \) is locally compact, then \(Z \) is Hausdorff.
3. If \(X \) is compact, then \(Z \) is compact.
4. If \(X, Y \) are first countable, \(X \) is compact, \(Y \) is locally compact, and each \(\varphi^{-1}(x) \) is compact, then \(Z \) is first countable.
5. If \(X, Y \) are zero dimensional, \(X \) is compact, and \(Y \) is locally compact, then \(Z \) is zero dimensional.
6. If \(X \) is second countable and \(Y^\omega \) is HS, then \(Z^\omega \) is HS.

Proof. For (3): If \(U \) is a basic open cover of \(Z \), then there are \(n \in \omega \) and \([U_i, K_i] \in U \) for \(i < n \) such that \(\bigcup_{i<n} U_i = X \). Thus, \(\bigcup_{i<n}[U_i, K_i] \) contains all points of \(Z \) except for (possibly) the points in the compact set \(\bigcup_{i<n} K_i \subseteq Y \).

For (4): \(Z \) is compact Hausdorff and of countable pseudocountable character.

For (5): \(Z \) is compact Hausdorff and totally disconnected.

For (6): By Lemma 2.2 it is sufficient to prove that each \(Z^n \) is HS. But \(Z^n \) is a finite union of subspaces of the form \(X^j \times Y^k \), which are HS by Lemma 2.1.
4 Homogeneity

The following was proved by Dow and Pearl [3]:

Theorem 4.1 If Z is first countable and zero dimensional, then Z^ω is homogeneous.

Actually, we only need here the special case of this result where Z is compact and has a dense set of isolated points; this was announced (without proof) earlier by Motorov [9].

Note that by Šapirovskii [11], any compact HS space must have countable π-weight (see also [6], Theorem 7.14), so if it is also homogeneous, it must have size at most 2^{\aleph_0} by van Douwen [2]. Under CH this implies, by the Čech – Pospīšil Theorem, that the space must be first countable.

Theorem 4.2 (CH) There is a (necessarily first countable) zero-dimensional compact homogeneous strong S-space.

Proof. Let X be the Cantor set 2^ω with its usual topology, let Y be 2^ω with the topology constructed in Theorem 2.4 let φ be the identity, and let $Z = Y \cup_\varphi X$. By Lemma 3.2, Z, and hence also Z^ω, are zero-dimensional first countable compact strong S-spaces; Z^ω is homogeneous by Theorem 4.1. ✩

No compact topological group can be an S-space or an L-space. However under CH there are, by [8], compact L-spaces which are right topological groups (i.e. they admit a group operation such that multiplication on the right by a fixed element defines a continuous map). We do not know whether there can be compact S-spaces which are right topological groups.
References

[1] A. V. Arkhangel’ski˘ı, Topological homogeneity. Topological groups and their continuous images, *Russian Math. Surveys* 42 (1987) 83-131.

[2] E. K. van Douwen, Nonhomogeneity of products of preimages and π-weight, *Proc. Amer. Math. Soc.* 69 (1978) 183-192.

[3] A. Dow and E. Pearl, Homogeneity in powers of zero-dimensional first-countable spaces, *Proc. Amer. Math. Soc.* 125 (1997) 2503-2510.

[4] A. Hajnal and I. Juhász, A separable normal topological group need not be Lindelöf, *Gen. Top. and App.* 6 (1976) 199-205.

[5] K. P. Hart, Review of [8], *Mathematical Reviews*, 2003a:54040.

[6] R. Hodel, Cardinal functions, I, in *Handbook of Set-Theoretic Topology*, North-Holland, 1984, pp. 1-61.

[7] I. Juhász, K. Kunen and M.E. Rudin, Two more hereditarily separable non-Lindelöf spaces, *Can. J. Math.* 28 (1976) 998-1005.

[8] K. Kunen, Compact L-spaces and right topological groups, *Top. Proc.* 24 (1999) 295-327.

[9] D.B. Motorov, Zero-dimensional and linearly ordered bicaompacta: properties of homogeneity type, *Russian Math. Surveys* 44 (1989) 190-191.

[10] S. Negrepontis, Banach spaces and topology, in *Handbook of set-theoretic topology*, North-Holland, Amsterdam, 1984, pp. 1045-1142.

[11] B. Šapirovski˘ı, π-character and π-weight in bicaompacta, Soviet Math. Dokl. 16 (1975) 999-1004.

[12] Z. Szentmiklóssy, S-spaces and L-spaces under Martin’s axiom, *Topology, Vol. II, Colloq. Math. Soc. János Bolyai* 23, North-Holland, 1980, pp. 1139-1145.

[13] S. Todorčević, *Partition Problems in Topology*, Contemporary Mathematics, 84, American Mathematical Society, 1989.