Serre dimension of monoid algebras

MANOJ K KESHARI and HUSNEY PARVEZ SARWAR

Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India

*Corresponding author.
E-mail: keshari@math.iitb.ac.in; mathparvez@gmail.com

Abstract. Let R be a commutative Noetherian ring of dimension d, M a commutative cancellative torsion-free monoid of rank r and P a finitely generated projective $R[M]$-module of rank t. Assume M is Φ-simplicial seminormal. If $M \in C(\Phi)$, then Serre dim $R[M] \leq d$. If $r \leq 3$, then Serre dim $R[\text{int}(M)] \leq d$. If $M \subseteq \mathbb{Z}_+^2$ is a normal monoid of rank 2, then Serre dim $R[M] \leq d$. Assume M is c-divisible, $d = 1$ and $t \geq 3$. Then $P \cong \otimes^t P \oplus R[M]^{t-1}$. Assume R is a uni-branched affine algebra over an algebraically closed field and $d = 1$. Then $P \cong \otimes^t P \oplus R[M]^{t-1}$.

Keywords. Projective modules; Serre dimension; Φ-simplicial monoid.

Mathematics Subject Classification. 13C10, 13D15.

1. Introduction

Throughout, rings are commutative Noetherian with 1; projective modules are finitely generated and of constant rank; monoids are commutative cancellative torsion-free; \mathbb{Z}_+ denotes the additive monoid of non-negative integers.

Let A be a ring and P a projective A-module. An element $p \in P$ is called unimodular, if there exists $\phi \in \text{Hom}(P, A)$ such that $\phi(p) = 1$. We say Serre dimension of A (denoted as Serre dim A) is \leq t, if every projective A-module of rank $\geq t + 1$ has a unimodular element. Serre dimension of A measures the surjective stabilization of the Grothendieck group $K_0(A)$. Serre’s problem on the freeness of projective $k[X_1, \ldots, X_n]$-modules, k a field, is equivalent to Serre dim $k[X_1, \ldots, X_n] = 0$.

After the solution of Serre’s problem by Quillen [16] and Suslin [21], many people worked on surjective stabilization of polynomial extension of a ring. Serre [20] proved Serre dim $A \leq \dim A$, Plumstead [14] proved Serre dim $A[X] \leq \dim A$, Bhatwadekar-Roy [4] proved Serre dim $A[X_1, \ldots, X_n] \leq \dim A$ and Bhatwadekar et al. [3] proved Serre dim $A[X_1, \ldots, X_n, Y_1^{\pm 1}, \ldots, Y_m^{\pm 1}] \leq \dim A$.

Anderson conjectured an analogue of Quillen–Suslin theorem for monoid algebras over a field which was answered by Gubeladze [8] as follows.

Theorem 1.1. Let k be a field and M a monoid. Then M is seminormal if and only if all projective $k[M]$-modules are free.
Gubeladze [11] asked the following:

Question 1.2. Let $M \subset \mathbb{Z}_+^r$ be a monoid of rank r with $M \subset \mathbb{Z}_+^r$ an integral extension. Let R be a ring of dimension d. Is Serre dim $R[M] \leq d$?

We answer Question 1.2 for some class of monoids. Recall that a finitely generated monoid M of rank r is called Φ-simplicial if M can be embedded in \mathbb{Z}_+^r and the extension $M \subset \mathbb{Z}_+^r$ is integral (see [10]). A Φ-simplicial monoid is commutative, cancellative and torsion-free.

DEFINITION 1.3.

Let $C(\Phi)$ denote the class of seminormal Φ-simplicial monoids $M \subset \mathbb{Z}_+^r$ of rank r such that if $\mathbb{Z}_+^r = \{t_1^{i_1} \cdots t_r^{i_r} | s_i \geq 0\}$, then for $1 \leq m \leq r$, $M_m = M \cap \{t_1^{i_1} \cdots t_r^{i_r} | s_i \geq 0\}$ satisfies the following properties: Given a positive integer c, there exist integers $c_i > c$ for $i = 1, \ldots, m - 1$ such that for any ring R, the automorphism $\eta \in \text{Aut}_R[M_m](R[t_1, \ldots, t_m])$ defined by $\eta(t_i) = t_i + c_i^m$ for $i = 1, \ldots, m - 1$, restricts to an R-automorphism of $R[M_m]$. It is easy to see that $M_m \in C(\Phi)$ and rank $M_m = m$ for $1 \leq m \leq r$.

Theorem 3.4 and Proposition 3.8 answer Question 1.2 for monoids in $C(\Phi)$.

Theorem 1.4. Let $M \subset \mathbb{Z}_+^r$ be a seminormal Φ-simplicial monoid of rank r and R a ring of dimension d.

1. If $M \in C(\Phi)$, then Serre dim $R[M] \leq d$.
2. If $r \leq 3$, then Serre dim $R[\text{int}(M)] \leq d$, where $\text{int}(M) = \text{int}(\mathbb{R}_+M) \cap \mathbb{Z}_+^r$ and $\text{int}(\mathbb{R}_+M)$ is the interior of the cone $\mathbb{R}_+M \subset \mathbb{R}_+^r$ with respect to Euclidean topology.

Corollary 3.6 follows from Theorem 1.4(1). This result is due to Anderson [1] when R is a field.

Theorem 1.5. Let R be a ring of dimension d and $M \subset \mathbb{Z}_+^2$ a normal monoid of rank 2. Then Serre dim $R[M] \leq d$.

The next result answers Question 1.2 partially for 1-dimensional rings (see Theorems 3.13 and 3.16). The proof uses the technique of Kang [12], Roy [17] and Gubeladze [9]. Let us recall two definitions. (i) A monoid M is called c-divisible, where $c > 1$ is an integer, if $cX = m$ has a solution in M for all $m \in M$. All c-divisible monoids are seminormal. (ii) Let R be a ring, \bar{R} the integral closure of R and C the conductor ideal of $R \subset \bar{R}$. Then R is called uni-branched if for any $p \in \text{Spec } R$ containing C, there is a unique $q \in \text{Spec } \bar{R}$ such that $q \cap R = p$.

Theorem 1.6. Let R be a ring of dimension 1, M a monoid and P a projective $R[M]$-module of rank r.

1. If M is c-divisible and $r \geq 3$, then $P \cong \wedge^r P \oplus R[M]^{r-1}$.
2. If R is a uni-branched affine algebra over an algebraically closed field, then $P \cong \wedge^r P \oplus R[M]^{r-1}$.
If R is a 1-dimensional anodal ring with finite seminormalization, then Theorem 1.6(ii) is due to Theorem 1.2 of [18]. At the end, we give some applications to minimum number of generators of projective modules.

2. Preliminaries

Let A be a ring and Q an A-module. We say $p \in Q$ is unimodular if the order ideal $O_Q(p) = \{ \phi(p) \mid \phi \in \text{Hom}(Q, A) \}$ equals A. The set of all unimodular elements in Q is denoted by $\text{Um}(Q)$. We write $E_n(A)$ for the group generated by the set of all $n \times n$ elementary matrices over A and $\text{Um}_n(A)$ for $\text{Um}(A^n)$. We denote by $\text{Aut}_A(Q)$, the group of all A-automorphisms of Q.

For an ideal J of A, we denote by $E(A \oplus Q, J)$, the subgroup of $\text{Aut}_A(A \oplus Q)$ generated by all the automorphisms $\Delta_{a\phi} = (\begin{smallmatrix} 1 & a \phi \\ 0 & \text{id}_Q \end{smallmatrix})$ and $\Gamma_q = (\begin{smallmatrix} q & 0 \\ 0 & q \end{smallmatrix})$ with $a \in J$, $\phi \in Q^*$ and $q \in Q$. Further, we shall write $E(A \oplus Q, J)$ for $E(A \oplus Q, A)$. We denote by $\text{Um}(A \oplus Q, J)$ the set of all $(a, q) \in \text{Um}(A \oplus Q)$ with $a \in 1 + J$ and $q \in JQ$.

We state some results of Lindel [13] for later use.

PROPOSITION 2.1 (Lemma 1.1 of [13])

Let A be a ring and Q an A-module. Let Q_s be free of rank r for some $s \in A$. Then there exist $p_1, \ldots, p_r \in Q \cdot \phi_1, \ldots, \phi_r \in Q^*$ and $t \geq 1$ such that following hold:

(i) $0 \simeq_A s' A = 0 \simeq_A s'^2 A$, where $s' = s^t$.

(ii) $s' Q \subset F$ and $s' Q^* \subset G$, where $F = \sum_{i=1}^r Ap_i \subset Q$ and $G = \sum_{i=1}^r A\phi_i \subset Q^*$.

(iii) The matrix $(\phi_i(p_j))_{1 \leq i, j \leq r} = \text{diagonal}(s', \ldots, s')$. We say F and G are s'-dual submodules of Q and Q^* respectively.

PROPOSITION 2.2 (Lemma 1.2 and Corollary 1.3 of [13])

Let A be a ring and Q an A-module. Assume Q_s is free of rank r for some $s \in A$. Let F and G be s-dual submodules of Q and Q^* respectively. Then

(i) for $p \in Q$, there exists $q \in F$ such that $\text{ht}(O_Q(p + sq)A_s) \geq r$.

(ii) If Q is projective A-module and $\bar{p} \in \text{Um}(Q/sQ)$, then there exists $q \in F$ such that $\text{ht}(O_Q(p + sq)) \geq r$.

PROPOSITION 2.3 (Proposition 1.6 of [13])

Let Q be a module over a positively graded ring $A = \bigoplus_{i \geq 0} A_i$ and Q_s be free for some $s \in R = A_0$. Let $T \subseteq A$ be a multiplicatively closed set of homogeneous elements. Let $p \in Q$ be such that $p_{T(1+sR)} \in \text{Um}(Q_{T(1+sR)})$ and $s \in \text{rad}(O_Q(p) + A_+)$, where $A_+ = \bigoplus_{i \geq 1} A_i$. Then there exists $p' \in p + sA_+Q$ such that $p'_{T} \in \text{Um}(Q_T)$.

PROPOSITION 2.4 (Proposition 1.8 of [13])

Under the assumptions of Proposition 2.3, let $p \in Q$ be such that $O_Q(p) + sA_+ = A$ and $A/O_Q(p)$ is an integral extension of $R/(R \cap O_Q(p))$. Then there exists $p' \in \text{Um}(Q)$ with $p' - p \in sA_+Q$.

Serre dimension of monoid algebras 271
The following result is due to Proposition 3.4 of [17].

PROPOSITION 2.5

Let A, B be two rings with $f : A \to B$ a ring homomorphism. Let $s \in A$ be non-zero divisor such that $f(s)$ is a non-zero divisor in B. Assume that we have the following cartesian square:

$$
\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow & & \downarrow \\
A_s & \xrightarrow{f(s)} & B_f(s)
\end{array}
$$

Further assume that $SL_r(B_f(s)) = E_r(B_f(s))$ for some $r > 0$. Let P and Q be two projective A-modules of rank r such that (i) $\wedge^r P \cong \wedge^r Q$, (ii) P_s and Q_s are free over A_s, (iii) $P \otimes_A B \cong Q \otimes_A B$ and $Q \otimes_A B$ has a unimodular element. Then $P \cong Q$.

DEFINITION 2.6 (§ 6 of [10])

Let R be a ring and M a Φ-simplicial monoid of rank r. Fix an integral extension $M \hookrightarrow \mathbb{Z}_+^r$. Let $\{t_1, \ldots, t_r\}$ be a free basis of \mathbb{Z}_+^r. Then M can be thought of as a monoid consisting of monomials in t_1, \ldots, t_r.

For $x = t_1^{a_1} \cdots t_r^{a_r}$ and $y = t_1^{b_1} \cdots t_r^{b_r}$ in \mathbb{Z}_+^r, define x is lower than y if $a_i < b_i$ for some i and $a_j = b_j$ for $j > i$. In particular, t_i is lower than t_j if and only if $i < j$.

For $f \in R[M]$, define the highest member $H(f)$ of f as am, where $f = am + a_1m_1 + \ldots + a_km_k$ with $m, m_i \in M$, $a \in R \setminus \{0\}$, $a_i \in R$ and each m_j is strictly lower than m for $1 \leq i \leq k$.

An element $f \in R[\mathbb{Z}_+^r]$ is called monic if $H(f) = at^s$, where $a \in R$ is a unit and $s > 0$. An element $f \in R[M]$ is said to be monic if f is monic in $R[\mathbb{Z}_+^r]$ via the embedding $R[M] \hookrightarrow R[\mathbb{Z}_+^r]$.

Define M_0 to be the submonoid $\{t_1^{s_1} \cdots t_r^{s_r-1} | s_i \geq 0\} \cap M$ of M. Clearly M_0 is finitely generated as M is finitely generated. Also $M_0 \hookrightarrow \mathbb{Z}_+^{r-1}$ is integral. Hence M_0 is Φ-simplicial. Further, if M is seminormal, then M_0 is seminormal.

Grade $R[M]$ as $R[M] = R[M_0] \oplus A_1 \oplus A_2 \oplus \ldots$, where A_i is the $R[M_0]$-module generated by the monomials $t_1^{s_1} \cdots t_r^{s_r-1} t_i \in M$. For an ideal I in $R[M]$, define its leading coefficient ideal $\lambda(I)$ as $\{a \in R | \exists f \in I \text{ with } H(f) = am \text{ for some } m \in M\}$. □

Lemma 2.7 (Lemma 6.5 of [10]). Let R be a ring and $M \subset \mathbb{Z}_+^r$ a Φ-simplicial monoid. If $I \subseteq R[M]$ is an ideal, then $ht(\lambda(I)) \geq ht(I)$, where $\lambda(I)$ is defined in Definition 2.6.

3. Main theorem

This section contains main results stated in the Introduction. We also give some examples of monoids in $C(\Phi)$.
3.1 Over $C(\Phi)$ class of monoids

Lemma 3.1. Let R be a ring and $M \subset \mathbb{Z}_+^r$ a monoid in $C(\Phi)$ of rank r. Let $f \in R[M] \subset R[\mathbb{Z}_+^r] = R[t_1, \ldots, t_r]$ with $H(f) = ut_1^{s_1} \cdots t_r^{s_r}$ for some unit $u \in R$. Then there exists $\eta \in \text{Aut}_R(R[M])$ such that $\eta(f)$ is a monic polynomial in t_r.

Proof. Since $M \in C(\Phi)$, we can choose positive integers c_1, \ldots, c_{r-1} such that the automorphism $\eta \in \text{Aut}_{R[t_r]}[t_1, \ldots, t_r]$ defined by $\eta(t_i) = t_i + t_r^{c_i}$ for $i = 1, \ldots, r-1$, restricts to an automorphism of $R[M]$ and such that $\eta(f)$ is a monic polynomial in t_r. □

Lemma 3.2. Let R be a ring of dimension d and $M \subset \mathbb{Z}_+^r$ a monoid in $C(\Phi)$ of rank r. Let P be a projective $R[M]$-module of rank $> d$. Write $R[M] = R[M_0] \oplus A_1 \oplus A_2 \cdots$, as defined in (2.6) and $A_+ = A_1 \oplus A_2 \oplus \cdots$ an ideal of $R[M]$. Assume that P_s is free for some $s \in R$ and P/sA_+P has a unimodular element. Then the natural map $\text{Um}(P) \to \text{Um}(P/sA_+P)$ is surjective. In particular, P has a unimodular element.

Proof. Write $A = R[M]$. Since every unimodular element of P/sA_+P can be lifted to a unimodular element of P_1+sA_+, if s is nilpotent, then elements of $1+sA_+$ are units in A and we are done. Therefore, assume that s is not nilpotent.

Let $p \in P$ be such that $\tilde{p} \in \text{Um}(P/sA_+P)$. Then $O_P(p) + sA_+ = A$. Hence $O_P(p)$ contains an element of $1+sA_+$. Choose $g \in A_+$ such that $1+sg \in O_P(p)$. Applying Proposition 2.2 with sg in place of s, we get $q \in F \subset P$ such that $\text{ht}(O_P(p+sgq)) > d$. Since $p+sgq$ is a lift of \tilde{p}, replacing p by $p+sgq$, we may assume that $\text{ht}(O_P(p)) > d$.

By Lemma 2.7, we get $\text{ht}(\lambda(O_P(p))) \geq \text{ht}(O_P(p)) > d$. Since $\lambda(O_P(p))$ is an ideal of R, we get $1 \in \lambda(O_P(p))$. Hence there exists $f \in O_P(p)$ such that the coefficient of $H(f)$ (highest member of λ) is a unit.

Suppose $H(f) = ut_1^{s_1} \cdots t_r^{s_r}$ with u a unit in R. Since $M \in C(\Phi)$, by Lemma 3.1, there exists $\alpha \in \text{Aut}_R(R[M])$ such that $\alpha(f)$ is monic in t_r. Thus we may assume that $O_P(p)$ contains a monic polynomial in t_r. Hence $A/O_P(p)$ is an integral extension of $R[M_0]/(O_P(p) \cap R[M_0])$ and $\tilde{p} \in \text{Um}(P/sA_+P)$. By Proposition 2.4, there exists $p' \in \text{Um}(P)$ such that $p' - p \in sA_+P$. This means $p' \in \text{Um}(P)$ is a lift of \tilde{p}. This proves the result. □

Remark 3.3. In Lemma 3.2, we do not need the monoid M to be seminormal. The next result proves Theorem 1.4(1).

Theorem 3.4. Let R be a ring of dimension d and M a monoid in $C(\Phi)$ of rank r. If P is a projective $R[M]$-module of rank $r' \geq d + 1$, then P has a unimodular element. In other words, Serre $\dim R[M] \leq d$.

Proof. We can assume that the ring is reduced with connected spectrum. If $d = 0$, then R is a field. Since M is seminormal, projective $R[M]$-modules are free, by Theorem 1.1. If $r = 0$, then $M = 0$ and we are done [20]. Assume $d, r \geq 1$ and use induction on d and r simultaneously.

If S is the set of all non-zero divisor of R, then $\dim S^{-1}R = 0$ and so $S^{-1}P$ is free in $S^{-1}R[M]$-module ($d = 0$ case). Choose $s \in S$ such that P_s is free. Consider the ring
\[R[M]/(sR[M]) = (R/sR)[M]. \] Since \(\dim R/sR = d - 1 \), by induction on \(d \), \(\text{Um}(P/sP) \) is non-empty.

Write \(R[M] = R[M_0] \oplus A_1 \oplus A_2 \cdots \), as defined in Definition 2.6 and \(A_+ = A_1 \oplus A_2 \oplus \cdots \) an ideal of \(R[M] \). Note that \(M_0 \in \mathcal{C}(\Phi) \) and \(\text{rank } M_0 = r - 1 \). Since \(R[M]/A_+ = R[M_0] \), by induction on \(r \), \(\text{Um}(P/A_+) \) is non-empty. Write \(A = R[M] \) and consider the following fiber product diagram:

\[
\begin{array}{ccc}
A/(sA \cap A_+) & \longrightarrow & A/sA \\
\downarrow & & \downarrow \\
A/A_+ & \longrightarrow & A/(s, A_+) \\
\end{array}
\]

If \(B = R/sR \), then \(A/(s, A_+) = B[M_0] \). Let \(u \in \text{Um}(P/A_+) \) and \(v \in \text{Um}(P/sP) \). Let \(\bar{u} \) and \(\bar{v} \) denote the images of \(u \) and \(v \) in \(P/(s, A_+) \) \(P \). Write \(P/(s, A_+)P = B[M_0] \oplus P_0 \), where \(P_0 \) is some projective \(B[M_0] \)-module of rank \(= r' - 1 \). Note that \(\dim(B) = d - 1 \) and \(\bar{u}, \bar{v} \) are two unimodular elements in \(B[M_0] \oplus P_0 \).

Case 1. Assume \(\text{rank}(P_0) \geq \max \{2, d\} \). Then by Theorem 4.5 of [6], there exists \(\sigma \in \text{E}(B[M_0] \oplus P_0) \) such that \(\sigma(\bar{u}) = \bar{v} \). Lift \(\sigma \) to an element \(\sigma_1 \in \text{E}(P/A_+) \) and write \(\sigma_1(u) = u_1 \in \text{Um}(P/A_+) \). Then images of \(u_1 \) and \(v \) are same in \(P/(s, A_+)P \). Patching \(u_1 \) and \(v \) over \(P/(s, A_+)P \) in the above fiber product diagram, we get an element \(p \in \text{Um}(P/(sA \cap A_+)P) \).

Note that \(sA \cap A_+ = sA_+ \). We have \(P_0 \) is free and \(P/sA_+P \) has a unimodular element. Use (3.2) to conclude that \(P \) has a unimodular element.

Case 2. Now we consider the remaining case, namely \(d = 1 \) and \(\text{rank}(P) = 2 \). Since \(B = R/sR \) is 0 dimensional, projective modules over \(B[M_0] \) and \(B[M] \) are free, by Theorem 1.1. In particular, \(P/sP \) and \(P/(s, A_+)P \) are free modules of rank 2 over the rings \(B[M] \) and \(B[M_0] \) respectively. Consider the same fiber product diagram as above.

Any two unimodular elements in \(\text{Um}_2(B[M_0]) \) are connected by an element of \(\text{GL}_2(B[M_0]) \). Further \(B[M_0] \) is a subring of \(B[M] = A/sA \). Hence the natural map \(\text{GL}_2(B[M]) \rightarrow \text{GL}_2(B[M_0]) \) is surjective. Hence any automorphism of \(P/(s, A_+)P \) can be lifted to an automorphism of \(P/sP \). By the same argument as above, patching unimodular elements of \(P/sP \) and \(P/A_+P \), we get a unimodular element in \(P/(sA \cap A_+)P \). Since \(sA \cap A_+ = sA_+ \) and \(P/sA_+P \) has a unimodular element, by Lemma 3.2, \(P \) has a unimodular element. This completes the proof. \(\square \)

Example 3.5.

1. If \(M \) is a \(\Phi \)-simplicial normal monoid of rank 2, then \(M \in \mathcal{C}(\Phi) \). To see this, by Lemma 1.3 of [10], \(M \cong (a_1, a_2) \cap \mathbb{Z}_+^2 \), where \(a_1 = (a, b) \), \(a_2 = (0, c) \) and \((a_1, a_2) \) is the group generated by \(a_1 \) and \(a_2 \). It is easy to see that \(M \cong ((1, a_1), (0, a_2)) \cap \mathbb{Z}_+^2 \), where \(\text{gcd}(b, c) = g \) and \(a_1 = b/g \), \(a_2 = c/g \). Hence \(M \in \mathcal{C}(\Phi) \).
2. If \(M \subset \mathbb{Z}_+^2 \) is a finitely generated rank 2 normal monoid, then it is easy to see that \(M \) is \(\Phi \)-simplicial. Hence \(M \in \mathcal{C}(\Phi) \) by (1).
(3) If M is a rank 3 normal quasi-truncated or truncated monoid (see Definition 5.1 of [10]), then $M \in \mathcal{C}(\Phi)$. To see this, by Lemma 6.6 of [10], M satisfies properties of Definition 1.3. Further, M_0 is a Φ-simplicial normal monoid of rank 2. By (1), $M_0 \in \mathcal{C}(\Phi)$.

□

COROLLARY 3.6

Let R be a ring of dimension d and $M \subset \mathbb{Z}_2^r$ a normal monoid of rank 2. Then $\text{Serre dim } R[M] \leq d$.

Proof. If M is finitely generated, then the result follows from Example 3.5(2) and Theorem 3.4.

If M is not finitely generated, then write M as a filtered union of finitely generated submonoids, say $M = \bigcup_{\lambda \in I} M_{\lambda}$. Since M is normal, the integral closure \bar{M}_{λ} of M_{λ} is contained in M. Hence $M = \bigcup_{\lambda \in I} \bar{M}_{\lambda}$. By Proposition 2.22 of [5], \bar{M}_{λ} is finitely generated. If P is a projective $R[M]$-module, then P is defined over $R[\bar{M}_{\lambda}]$ for some $\lambda \in I$ as P is finitely generated. Now the result follows from Example 3.5(2) and Theorem 3.4. □

The following result follows from Example 3.5(3) and Theorem 3.4.

COROLLARY 3.7

Let R be a ring of dimension d and M a truncated or normal quasi-truncated monoid of rank ≤ 3. Then $\text{Serre dim } R[M] \leq d$.

Now we prove Theorem 1.4(2).

PROPOSITION 3.8

Let R be a ring of dimension d and M a Φ-simplicial seminormal monoid of rank $r \leq 3$. Then $\text{Serre dim } R[\text{int}(M)] \leq d$.

Proof. Recall that $\text{int}(M) = \text{int}(\mathbb{R}_+^r) \cap \mathbb{Z}_+^r$. Let P be a projective $R[\text{int}(M)]$-module of rank $\geq d + 1$. Since M is seminormal, by Proposition 2.40 of [5], $\text{int}(M) = \text{int}(\tilde{M})$, where \tilde{M} is the normalization of M. Since normalization of a finitely generated monoid is finitely generated (see Proposition 2.22 of [5]), \tilde{M} is a Φ-simplicial normal monoid. By Theorem 3.1 of [10], $\text{int}(M) = \text{int}(\tilde{M})$ is a filtered union of truncated (normal) monoids (see Definition 2.2 of [10]). Since P is finitely generated, we get that P is defined over $R[N]$, where $N \subset \text{int}(M)$ is a truncated monoid. By Corollary 3.7, $\text{Serre dim } R[N] \leq d$. Hence P has a unimodular element. Therefore $\text{Serre dim } R[\text{int}(M)] \leq d$. □

Assumptions. In the following examples, R is a ring of dimension d, Monoid operations are written multiplicatively and $K(M)$ denotes the group of fractions of monoid M.

Example 3.9. For $n > 0$, consider the monoid $M \subset \mathbb{Z}_+^r$ generated by $\{i_1 i_2 \ldots i_r | \sum i_j = n\}$. Then M is a Φ-simplicial normal monoid. For integers $c_i = nk_i + 1$, $k_i > 0$
and \(i = 1, \ldots, r - 1 \), consider \(\eta \in \text{Aut}_{R[t_r]}(R[t_1, \ldots, t_r]) \) defined by \(t_i \mapsto t_i + t_i ^{c_j} \) for \(i = 1, \ldots, r - 1 \).

A typical monomial in the expansion of \(\eta(t_1^{i_1} \cdots t_{r-1}^{i_{r-1}}) = (t_1 + t_1 ^{c_1})^{i_1} \cdots (t_{r-1} + t_{r-1} ^{c_{r-1}})^{i_{r-1}} \) will look like \((t_1^{i_1-l_1}t_1^{c_1}) \cdots (t_{r-1}^{i_{r-1}-l_{r-1}}t_{r-1} ^{c_{r-1}})^{i_{r-1}}\) which belong to \(M \). So \(\eta(R[M]) \subset R[M] \). Similarly, \(\eta^{-1}(R[M]) \subset R[M] \). Hence \(\eta \) restricts to an \(R \)-automorphism of \(R[M] \). Therefore \(\eta \) satisfies the property of Definition 1.3 for \(M \). It is easy to see that \(M_m = M \cap \{t_1^{s_1} \cdots t_m^{s_m} \mid s_i \geq 0 \} \) for \(1 \leq m \leq r - 1 \) also satisfies this property. Hence \(M \in \mathcal{C}(\Phi) \). By (3.4), Serre dim \(R[M] \leq d \).

Example 3.10. Let \(M \) be a \(\Phi \)-simplicial monoid generated by monomials \(t_1^2, t_2^2, t_3^2, t_1 t_2, t_2 t_3 \). For integers \(c_j = 2k_j - 1 \) with \(k_j > 1 \), consider the automorphism \(\eta \in \text{Aut}_{R[t_1]}(R[t_1, t_2, t_3]) \) defined by \(t_j \mapsto t_j + t_3 ^{c_j} \) for \(j = 1, 2 \). Then it is easy to see that \(\eta \) restricts to an automorphism of \(R[M] \).

We claim that \(M \) is seminormal but not normal. For this, let

\[
z = (t_2^2)^{-1}(t_1 t_3)(t_2 t_3) = t_1 t_2 \in K(M) \setminus M, \text{ but } z^2 \in M,
\]

showing that \(M \) is not normal. For seminormality, let

\[
z = (t_2^2)^{\alpha_1}(t_2^2)^{\alpha_2}(t_3^2)^{\alpha_3}(t_1 t_3)^{\alpha_4}(t_2 t_3)^{\alpha_5} \in K(M)
\]

with \(\alpha_i \in \mathbb{Z} \) and \(z^2, z^3 \in M \).

We may assume that \(0 \leq \alpha_4, \alpha_5 \leq 1 \). Now \(z^2 \in M \Rightarrow \alpha_1, \alpha_2 \geq 0 \) and \(2\alpha_3 + \alpha_4 + \alpha_5 \geq 0 \). If \(\alpha_3 < 0 \), then \(\alpha_4 = \alpha_5 = 1 \) and \(\alpha_3 = -1 \). In this case, \(z^3 = (t_1^{2\alpha_1+1}t_2^{2\alpha_2+1})^3 \notin M \), a contradiction. Therefore \(\alpha_3 \geq 0 \) and \(z \in M \). Hence \(M \) is seminormal. It is easy to see that \(M \in \mathcal{C}(\Phi) \). By Theorem 3.4, Serre dim \(R[t_1^2, t_2^2, t_3^2, t_1 t_3, t_2 t_3] \leq d \).

Remark 3.11.

1. Let \(R \) be a ring and \(P \) a projective \(R \)-module of rank \(\geq 2 \). Let \(\bar{R} \) be the seminormalization of \(R \). It follows from arguments in (Lemma 3.1 of [2]) that \(P \otimes_R \bar{R} \) has a unimodular element if and only if \(P \) has a unimodular element.

2. Assume \(R \) is a ring of dimension \(d \) and \(M \in \mathcal{C}(\Phi) \). Let \(\bar{M} \) be the seminormalization of \(M \). If \(\bar{M} \) is in \(\mathcal{C}(\Phi) \), then Serre dim \(R[M] \leq \max\{1, d\} \), using [2] and Theorem 3.4.

3. Let \((R, m, K) \) be a regular local ring of dimension \(d \) containing a field \(k \) such that either char \(k = 0 \) or char \(k = p \) and tr-deg \(K/F_p \geq 1 \). Let \(M \) be a seminormal monoid. Then, using Theorem 1 of [15] and Theorem 1.2 of [23], we get Serre dim \(R[M] = 0 \). If \(M \) is not seminormal, then Serre dim \(R[M] = 1 \) using [11], [2] and [23].

Example 3.12. For a monoid \(M, \bar{M} \) denotes the seminormalization of \(M \).

1. Let \(M \subset \mathbb{Z}^2_+ \) be a \(\Phi \)-simplicial monoid generated by \(t_1^n, t_1 t_2, t_2^2 \), where \(n \in \mathbb{N} \). We claim that \(M \) is normal. To see this, let \(z = t_1^n t_2^2 = (t_1^n)^p (t_1 t_2)^q (t_2^2)^r \in K(M) \) with \(p, q, r \in \mathbb{Z} \) such that \(z^t \in M \) for some \(t > 0 \). Then \(i, j \geq 0 \). We need to show that
Let \(z \in M \). We may assume that \(0 \leq q < n \). Since \(i, j \geq 0 \), we get \(p, r \geq 0 \). Thus \(z \in M \) and \(M \) is normal. Hence, by (3.6), Serre dim \(R[t_1^q, t_1 t_2, t_2^q] \leq d \).

(2) The monoid \(M \subset \mathbb{Z}_+^3 \) generated by \(t_1^2, t_1 t_2, t_2^2 \) is seminormal but not normal. For this, let \(z = (t_1 t_2^2)(t_2^2)^{-1} = t_1 \in K(M) \setminus M \). Then \(z^2 \in M \) shows that \(M \) is not normal. For seminormality, let \(z = (t_1^2)^\alpha (t_1 t_2^2)^\beta (t_2^2)^\gamma \in K(M) \) with \(\alpha, \beta, \gamma \in \mathbb{Z} \) be such that \(z^2, z^3 \in M \). We may assume \(0 \leq \beta \leq 1 \). If \(\beta = 0 \), then \(\alpha, \gamma \geq 0 \) and hence \(z \in M \). If \(\beta = 1 \), then \(z^2 \in M \) implies \(\alpha \geq 0 \) and \(\gamma + 1 \geq 0 \). If \(\gamma = -1 \), then \(z^3 = (t_1)^{6\alpha+3} \notin M \), a contradiction. Hence \(\gamma \geq 0 \), proving that \(z \in M \) and \(M \) is seminormal. It is easy to see that \(M \in \mathcal{C}(\Phi) \). Therefore, by (3.4), Serre dim \(R[t_1^2, t_1 t_2, t_2^2] \leq d \).

(3) Let \(M \) be a monoid generated by \((t_1^2, t_1 t_2, t_2^2) \), where \(j \geq 3 \). Then \(M \) is not seminormal. For this, if \(z = (t_1 t_2^2)(t_2^2)^{-1} = t_1 t_2^{j-2} \in K(M) \setminus M \), then \(z^2 = t_1^2 t_2^{2(j-2)} \) and \(z^3 = (t_1^2)(t_1 t_2^2)(t_2^2)^{j-6} \) are in \(M \), which shows that \(M \) is not seminormal.

If \(j = 3 \), then observe that \(t_1 t_2 \) belongs to \(\bar{M} \). Since the monoid generated by \(t_1^2, t_1 t_2, t_2^2 \) is normal, we get that \(\bar{M} \) is generated by \(t_1^2, t_1 t_2, t_2^2 \). Hence Serre dim \(R[\bar{M}] \leq d \) by (1) above. Observe that if \(j \) is odd, then \(\bar{M} = (t_1^2, t_1 t_2, t_2^2) \) and if \(j \) is even, then \(\bar{M} = (t_1^2, t_1 t_2, t_2^2) \). So Serre dim \(R[\bar{M}] \leq d \) by Example 3.12(1), (2).

In both cases, applying Remark 3.11(1), we get Serre dim \(R[M] \leq \max \{1, d\} \).

(4) Let \(M \) be a monoid generated by \((t_1^3, t_1 t_2^2, t_2^3) \). Then \(M \) is not seminormal. For this, let \(z = (t_1 t_2^2)^2 t_2^{-3} \in K(M) \setminus M \). Then \(z^2 = t_1^2 (t_1 t_2^2) \in M \) and \(z^3 = t_1^3 t_2^3 \in M \). Hence seminormalization of \(M \) is \(\bar{M} = (t_1^3, t_1^2 t_2, t_2^3, t_1^2 t_2^3) \). By (3.9), Serre dim \(R[\bar{M}] \leq d \). Therefore, applying Remark 3.11(1), we get Serre dim \(R[M] \leq \max \{1, d\} \). \(\square \)

3.2 Monoid algebras over 1-dimensional rings

The following result proves Theorem 1.6(i).

Theorem 3.13. Let \(R \) be a ring of dimension 1 and \(M \) a c-divisible monoid. If \(P \) is a projective \(R[M] \)-module of rank \(r \geq 3 \), then \(P \cong \wedge^r P \oplus R[M] \wedge^{r-1} \).

Proof. If \(R \) is normal, then we are done [23]. Assume that \(R \) is not normal.

Case 1. Assume \(R \) has finite normalization. Let \(\tilde{R} \) be the normalization of \(R \) and \(C \) the conductor ideal of the extension \(R \subset \tilde{R} \). Then \(hC = 1 \). Hence \(R/C \) and \(\tilde{R}/C \) are zero dimensional rings. Consider the following fiber product diagram

\[
\begin{array}{ccc}
R[M] & \rightarrow & \tilde{R}[M] \\
\downarrow & & \downarrow \\
(R/C)[M] & \rightarrow & (\tilde{R}/C)[M]
\end{array}
\]

If \(P' = \wedge^r P \oplus R[M] \wedge^{r-1} \), then by [23], \(P \otimes \tilde{R}[M] \cong \wedge^r (P \otimes \tilde{R}[M]) \oplus \tilde{R}[M] \wedge^{r-1} \cong P' \oplus \tilde{R}[M] \). By Gubeladze [8], \(P/C P \) and \(P'/C P' \) are free \((R/C)[M] \)-modules. Further, \(SL_r((\tilde{R}/C))[M] = E_r((\tilde{R}/C))[M] \) for \(r \geq 3 \) [9]. Now using standard arguments of fiber product diagram, we get \(P \cong P' \).
Case 2. Now \(R \) need not have finite normalization. We may assume that \(R \) is a reduced ring with connected spectrum. Let \(S \) be the set of all non-zero divisors of \(R \). By [8], \(S^{-1} P \) is a free \(S^{-1} R[M] \)-module. Choose \(s \in S \) such that \(P_s \) is a free \(R_s[M] \)-module.

Now we follow the arguments of Theorem 4.1 of [17]. Let \(\hat{R} \) denote the \(s \)-adic completion \(R \). Then \(\hat{R}_{\text{red}} \) has a finite normalization. Consider the following fiber product diagram

\[
\begin{array}{c}
R[M] \longrightarrow \hat{R}[M] \\
\downarrow \quad \quad \quad \quad \quad \quad \downarrow \\
R_s[M] \longrightarrow \hat{R}_s[M]
\end{array}
\]

Since \(\hat{R}_s \) is a zero dimensional ring, by [9], \(\text{SL}_r(\hat{R}_s[M]) = E_r(\hat{R}_s[M]) \) for \(r \geq 3 \). If \(P' = \wedge^r P \oplus R[M]'^{-1} \), then \(P_s \) and \(P'_s \) are free \(R_s[M] \)-modules and by Case 1, \(P \otimes \hat{R}[M] \cong P' \otimes \hat{R}[M] \). By (2.5), \(P \cong P' \). This completes the proof.

The following result is due to Lemma 7.1 and Remark of [12].

Lemma 3.14. Let \(R \) be a 1-dimensional uni-branched affine algebra over an algebraically closed field, \(\hat{R} \) the normalization of \(R \) and \(C \) the conductor ideal of the extension \(R \subset \hat{R} \). Then \(\hat{R}/C = R/C + a_1 R/C + \cdots + a_m R/C \), where \(a_i \in \sqrt{C} \) the radical ideal of \(C \) in \(\hat{R} \).

Lemma 3.15. Let \(R \) be a 1-dimensional ring, \(\hat{R} \) the normalization of \(R \) and \(C \) the conductor ideal of the extension \(R \subset \hat{R} \). Assume \(\hat{R}/C = R/C + a_1 R/C + \cdots + a_m R/C \), where \(a_i \in \sqrt{C} \) the radical ideal of \(C \) in \(\hat{R} \). Let \(M \) be a monoid and write \(A = \hat{R}/C \).

(i) If \(\sigma \in \text{SL}_n(A[M]) \), then \(\sigma = \sigma_1 \sigma_2 \), where \(\sigma_1 \in \text{SL}_n((R/C)[M]) \) and \(\sigma_2 \in E_n(A[M]) \).

(ii) If \(P \) is a projective \(R[M] \)-module of rank \(r \), then \(P \cong \wedge^r P \oplus R[M]'^{-1} \).

Proof.

(i) Let \(\sigma = (b_{ij}) \in \text{SL}_n(A[M]) \). Write \(b_{ij} = (b_{ij})_0 + (b_{ij})_1 a_1 + \cdots + (b_{ij})_m a_m \), where \((b_{ij})_l \in (R/C)[M] \). If \(\alpha = ((b_{ij})_0) \), then \(\det(\sigma) = 1 = \det(\alpha) + c \), where \(c \in (\sqrt{C}/C)[M] \). Since \(c \in (R/C)[M] \) is nilpotent, \(\det(\alpha) \) is a unit in \((R/C)[M] \). Let \(\beta = \text{diagonal}(1/(1-c), 1, \ldots, 1) \in \text{GL}_n((R/C)[M]) \) and \(\sigma_1 = \alpha \beta \in \text{SL}_n((R/C)[M]) \).

Note that \(\sigma_1^{-1} \sigma = \beta^{-1} \alpha^{-1} \sigma = \beta^{-1} 1/(1-c) \tilde{\alpha} \sigma \), where \(\tilde{\alpha} = ((\tilde{b}_{ij})_0) \), \((\tilde{b}_{ij})_0 \) are minors of \((b_{ij})_0 \).

\[
\sigma_2 := \sigma_1^{-1} \sigma = \begin{bmatrix}
1 & 0 & \cdots & 0 \\
0 & \frac{1}{1-c} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \frac{1}{1-c}
\end{bmatrix}
\begin{bmatrix}
1 + c_{11} & c_{12} & \cdots & c_{1n} \\
c_{21} & 1 + c_{22} & \cdots & c_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
c_{n1} & c_{n2} & \cdots & 1 + c_{nn}
\end{bmatrix},
\]

where \(c_{ij} \in (\sqrt{C}/C)[M] \).
Note that $\sigma_2 \in \text{SL}_n(A[M])$ and $\sigma_2 = \text{Id}$ modulo the nilpotent ideal of $A[M]$. Hence $\sigma_2 \in E_n(A[M])$. Thus we get $\sigma = \sigma_1 \sigma_2$ with the desired properties.

(ii) Follow the proof of Theorem 3.13 and use Lemma 3.15(i) to get the result. \square

Now we prove Theorem 1.6(ii) which follows from Lemmas 3.14 and 3.15.

Theorem 3.16. Let R be a 1-dimensional uni-branched affine algebra over an algebraically closed field and M a monoid. If P is a projective $R[M]$-module of rank r, then $P \cong \wedge^r P \oplus R[M]^{-1}$.

4. Applications

Let R be a ring of dimension d and Q a finitely generated R-module. Let $\mu(Q)$ denote the minimum number of generators of Q. By Forster [7] and Swan [22], $\mu(Q) \leq \max \{ \mu(Q_p) + \dim(R/p) \mid p \in \text{Spec}(R), Q_p \neq 0 \}$. In particular, if P is a projective R-module of rank r, then $\mu(P) \leq r + d$.

The following result is well known.

Theorem 4.1. Let A be a ring such that Serre dim $A \leq d$. Assume A^m is cancellative for $m \geq d + 1$. If P is a projective A-module of rank $r \geq d + 1$, then $\mu(P) \leq r + d$.

Proof. Assume $\mu(P) = n > r + d$. Consider a surjection $\phi : A^n \twoheadrightarrow P$ with $Q = \ker(\phi)$. Then $A^n \cong P \oplus Q$. Since Q is a projective A-module of rank $\geq d + 1$, Q has a unimodular element q. Since $\phi(q) = 0$, ϕ induces a surjection $\bar{\phi} : A^n/qA^n \twoheadrightarrow P$. Since $n - 1 > d$, A^{n-1} is cancellative. Hence $A^{n-1} \cong A^n/qA$ and P is generated by $n - 1$ elements, a contradiction. \square

The following result is immediate from Theorem 4.1, Theorem 3.4, Corollary 3.6 and [6].

COROLLARY 4.2

Let R be a ring of dimension d, M a monoid and P a projective $R[M]$-module of rank $r > d$. Then

(i) If $M \in \mathcal{C}(\Phi)$, then $\mu(P) \leq r + d$.

(ii) If $M \subset \mathbb{Z}_+^2$ is a normal monoid of rank 2, then $\mu(P) \leq r + d$.

Let M be a c-divisible monoid, R a ring of dimension d and $n \geq \max\{2, d + 1\}$. Then Schaubhüser [19] proved that $E_{n+1}(R[M])$ acts transitively on $\text{Um}_{n+1}(R[M])$. Using Schaubhüser’s result and arguments of Theorem 4.4 of [6], we get that if P is a projective $R[M]$-module of rank n, then $E(R[M] \oplus P)$ acts transitively on $\text{Um}(R[M] \oplus P)$. Therefore the following result is immediate from Theorems 4.1 and 3.13.

COROLLARY 4.3

Let R be a ring of dimension 1, M a c-divisible monoid and P a projective $R[M]$-module of rank $r \geq 3$. Then $\mu(P) \leq r + 1$.
Acknowledgement

The authors would like to thank the referee for his/her critical remark. The second author would like to thank CSIR, India for a fellowship.

References

[1] Anderson D F, Projective modules over subrings of $k[X, Y]$ generated by monomials, Pacific J. Math. 79 (1978) 5–17
[2] Bhatwadekar S M, Inversion of monic polynomials and existence of unimodular elements (II), Math. Z. 200 (1989) 233–238
[3] Bhatwadekar S M, Lindel H and Rao R A, The Bass-Murthy question: Serre dimension of Laurent polynomial extensions, Invent. Math. 81 (1985) 189–203
[4] Bhatwadekar S M and Roy A, Some theorems about projective modules over polynomial rings, J. Algebra 86 (1984) 150–158
[5] Bruns W and Gubeladze J, Polytopes, Rings and K-Theory, Springer Monographs in Mathematics (2009)
[6] Dhorajia A M and Keshari M K, A note on cancellation of projective modules, J. Pure Appl. Algebra 216 (2012) 126–129
[7] Forster O, Über die Anzahl der Erzeugenden eines Ideals in einem Noetherschen Ring, Math. Z. 84 (1964) 80–87
[8] Gubeladze J, Anderson’s conjecture and the maximal class of monoid over which projective modules are free, Math. USSR-Sb 63 (1988) 165–188
[9] Gubeladze J, Classical algebraic K-theory of monoid algebras, Lect. Notes Math. 1437 (1990) (Springer) pp. 36–94
[10] Gubeladze J, The elementary action on unimodular rows over a monoid ring, J. Algebra 148 (1992) 135–161
[11] Gubeladze J, K-theory of affine toric varieties, Homology Homotopy Appl. 1 (1999) 135–145
[12] Kang M C, Projective modules over some polynomial rings, J. Algebra 59 (1979) 65–76
[13] Lindel H, Unimodular elements in projective modules, J. Algebra 172 (1995) no-2, 301–319
[14] Plumstead B, The conjectures of Eisenbud and Evans, Amer. J. Math 105 (1983) 1417–1433
[15] Popescu D, On a question of Quillen, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 45(93) (2002) no. 3–4, 209–212
[16] Quillen D, Projective modules over polynomial rings, Invent. Math. 36 (1976) 167–171
[17] Roy A, Application of patching diagrams to some questions about projective modules, J. Pure Appl. Algebra 24 (1982) no. 3, 313–319
[18] Sarwar H P, Some results about projective modules over monoid algebras, Comm. Algebra 44 (2016) 2256–2263
[19] Schabhüser G, Cancellation properties of projective modules over monoid rings (1991) (Münster: Universität Münster, Mathematisches Institut) iv+86 pp
[20] Serre J P, Sur les modules projectifs, Sem. Dubreil-Pisot 14 (1960–61) 1–16
[21] Suslin A A, Projective modules over polynomial rings are free, Sov. Math. Dokl. 17 (1976) 1160–1164
[22] Swan R G, The number of generators of a module, Math. Z. 102 (1967) 318–322
[23] Swan R G, Gubeladze proof of Anderson’s conjecture, Contemp. Math. 124 (1992) 215–250

COMMUNICATING EDITOR: B Sury