Extensional Uniformity for Boolean Circuits*

Pierre McKenzie¹, Michael Thomas², and Heribert Vollmer²

¹ Dép. d’informatique et de recherche opérationnelle, Université de Montréal, C.P. 6128, succ. Centre-Ville, Montréal (Québec), H3C 3J7 Canada
mckenzie@iro.umontreal.ca

² Institut für Theoretische Informatik, Leibniz Universität Hannover, Appelstr. 4, 30167 Hannover, Germany
{thomas, vollmer}@thi.uni-hannover.de

Abstract. Imposing an extensional uniformity condition on a non-uniform circuit complexity class \(\mathcal{C} \) means simply intersecting \(\mathcal{C} \) with a uniform class \(\mathcal{L} \). By contrast, the usual intensional uniformity conditions require that a resource-bounded machine be able to exhibit the circuits in the circuit family defining \(\mathcal{C} \). We say that \((\mathcal{C}, \mathcal{L}) \) has the Uniformity Duality Property if the extensionally uniform class \(\mathcal{C} \cap \mathcal{L} \) can be captured intensionally by means of adding so-called \(\mathcal{L} \)-numerical predicates to the first-order descriptive complexity apparatus describing the connection language of the circuit family defining \(\mathcal{C} \).

This paper exhibits positive instances and negative instances of the Uniformity Duality Property.

Keywords: Boolean circuits, uniformity, descriptive complexity.

1 Introduction

A family \(\{C_n\}_{n \geq 1} \) of Boolean circuits is uniform if the way in which \(C_{n+1} \) can differ from \(C_n \) is restricted. Generally, uniformity is imposed by requiring that some form of a resource-bounded constructor on input \(n \) be able to fully or partially describe \(C_n \) (see [1, 5, 8, 14, 19] or refer to [22] for an overview). Circuit-based language classes can then be compared with classes that are based on a finite computing mechanism such as a Turing machine.

Recall the gist of descriptive complexity. Consider the set of words \(w \in \{a, b\}^* \) having no \(b \) at an even position. This language is described by the \(\text{FO}[<, \text{Even}] \) formula \(\neg \exists i (\text{Even}(i) \land P_b(i)) \). In such a first-order formula, the variables range over positions in \(w \), a predicate \(P_\sigma \) for \(\sigma \in \{a, b\} \) holds at \(i \) iff \(w_i = \sigma \), and a numerical predicate, such as the obvious 1-ary \(\text{Even} \) predicate here, holds at its arguments iff these arguments fulfill the specific relation.

The following viewpoint has emerged [3, 5, 6] over two decades: when a circuit-based language class is characterized using first-order descriptive complexity, the circuit uniformity conditions spring up in the logic in the form of restrictions on the set of numerical predicates allowed.

* Supported in part by DFG VO 630/6-1, by the NSERC of Canada and by the (Québec) FQRNT.

M. Kaminski and S. Martini (Eds.): CSL 2008, LNCS 5213, pp. 64–78, 2008.
© Springer-Verlag Berlin Heidelberg 2008
As a well studied example [5, 12], $\text{FO}[\langle, +, \times\rangle] = \text{DLOGTIME-uniform AC}^0 \subsetneq \text{non-uniform AC}^0 = \text{FO[arb]}$, where the latter class is the class of languages definable by first-order formulae entitled to arbitrary numerical predicates (we use a logic and the set of languages it captures interchangeably when this brings no confusion).

In a related vein but with a different emphasis, Straubing [21] presents a beautiful account of the relationship between automata theory, formal logic and (non-uniform) circuit complexity. Straubing concludes by expressing the proven fact that $\text{AC}^0 \subsetneq \text{ACC}^0$ and the celebrated conjectures that $\text{AC}^0[q] \subsetneq \text{ACC}^0$ and that $\text{ACC}^0 \subsetneq \text{NC}^1$ as instances of the following conjecture concerning the class REG of regular languages:

$$\text{Q[arb]} \cap \text{REG} = \text{Q[reg]}. \quad (1)$$

In Straubing’s instances, Q is an appropriate set of quantifiers chosen from $\{\exists\} \cup \{\exists^{(q,r)} : 0 \leq r < q\}$ and reg is the set of regular numerical predicates, that is, the set of those numerical predicates of arbitrary arity definable in a formal sense by finite automata. We stress the point of view that intersecting $\{\exists\}[\text{arb}] = \text{FO[arb]}$ with REG to form $\text{FO[arb]} \cap \text{REG}$ in conjecture (1) amounts to imposing uniformity on the non-uniform class FO[arb]. And once again, imposing uniformity has the effect of restricting the numerical predicates: it is a proven fact that $\text{FO[arb]} \cap \text{REG} = \text{FO[reg]}$, and conjecture (1) expresses the hope that this phenomenon extends from $\{\exists\}$ to other Q, which would determine much of the internal structure of NC^1. We ask:

1. Does the duality between uniformity in a circuit-based class and numerical predicates in its logical characterization extend beyond NC^1?
2. What would play the role of the regular numerical predicates in such a duality?
3. Could such a duality help understanding classes such as the context-free languages in AC^0?

To tackle the first question, we note that intersecting with REG is just one out of many possible ways in which one can “impose uniformity”. Indeed, if \mathcal{L} is any uniform language class, one can replace $\text{Q[arb]} \cap \text{REG}$ by $\text{Q[arb]} \cap \mathcal{L}$ to get another uniform subclass of Q[arb]. For example, consider any “formal language class” (in the loose terminology used by Lange when discussing language theory versus complexity theory [14]), such as the class CFL of context-free languages. Undoubtedly, CFL is a uniform class of languages. Therefore, the class $\text{Q[arb]} \cap \text{CFL}$ is another uniform class well worth comparing with Q[<, +] or Q[<, +, \times]. Of course, $\text{FO[arb]} \cap \text{CFL}$ is none other than the poorly understood class $\text{AC}^0 \cap \text{CFL}$, and when Q is a quantifier given by some word problem of a nonsolvable group, $(\text{FO} + \{Q\})[\text{arb}] \cap \text{CFL}$ is the poorly understood class $\text{NC}^1 \cap \text{CFL}$ alluded to 20 years ago [11].

The present paper thus considers classes $\text{Q[arb]} \cap \mathcal{L}$ for various Q and \mathcal{L}. To explain its title, we note that the constructor-based approach defines uniform classes by specifying their properties: such definitions are intensional definitions.