PI3Kδ inhibition elicits anti-leukemic effects through Bim-dependent apoptosis

Running Title: The role of Bim in PI3Kδ inhibition therapies

Keywords: Bim, Bcl-2, PI3Kδ, Leukemia

Authors: Matthew J. Carter¹, Kerry L. Cox¹, Stuart J. Blakemore², Anna H. Turaj¹, Robert J. Oldham¹, Lekh N. Dahal¹, Stacey Tannheimer³, Francesco Forconi², Graham Packham², and Mark S. Cragg¹*

Affiliations: ¹Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom. ²Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom. ³Gilead Sciences Inc. Foster City, California, USA

*To whom correspondence should be addressed: Mark S Cragg, Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton, Faculty of Medicine, Southampton General Hospital, Southampton, SO16 6YD, UK (FAX: +44 (0) 23 80704061; e-mail: msc@soton.ac.uk)

Conflict of Interest

M.S.C. serves as a consultant for Bioinvent International and has previously served as an ad hoc consultant for Roche and Baxalta. He has previously received grant funding from Bioinvent, Roche, Gilead, and GSK. G.P. receives research funding from Aquinox Pharmaceuticals and is a founder and shareholder in Karus Therapeutics.
Abstract: PI3Kδ plays pivotal roles in the maintenance, proliferation, and survival of malignant B-lymphocytes. Although not curative, PI3Kδ inhibitors (PI3Kδi) demonstrate impressive clinical efficacy and, alongside other signaling inhibitors, are revolutionizing the treatment of hematological malignancies. However, only limited in vivo data are available regarding their mechanism of action. With the rising number of novel treatments, the challenge is to identify combinations that deliver curative regimes. A deeper understanding of the molecular mechanism is required to guide these selections. Currently, immunomodulation, inhibition of BCR-, chemokine/cytokine-signaling, and apoptosis represent potential therapeutic mechanisms for PI3Kδi. Here we characterize the molecular mechanisms responsible for PI3Kδi-induced apoptosis in an in vivo model of chronic lymphocytic leukemia (CLL). In vitro, PI3Kδi induced substantive apoptosis and disrupted microenvironment-derived signaling in murine (Eµ-Tc1) and human (CLL) leukemia cells. Furthermore, PI3Kδi imparted significant therapeutic responses in Eµ-Tc1-bearing animals and enhanced anti-CD20 monoclonal antibody (mAb) therapy. Responses correlated with upregulation of the pro-apoptotic BH3-only protein Bim. Accordingly, Bim−/− Eµ-Tc1-Tg leukemias demonstrated resistance to PI3Kδi-induced apoptosis, were refractory to PI3Kδi in vivo and failed to display combination efficacy with anti-CD20 mAb therapy. Therefore, Bim-dependent apoptosis represents a key in vivo therapeutic mechanism for PI3Kδi, both alone and in combination therapy regimes.
Introduction

Secondary lymphoid organs (SLOs) provide a key survival niche for neoplastic B-cells. Here, cells receive a milieu of pro-survival signals, including those emanating from the B-cell receptor (BCR), chemokine/cytokine receptors, integrins, and specific cell:cell interactions. Collectively, these pathways contribute towards malignant cell proliferation, survival, and therapeutic resistance.\(^1\)

Since phosphatidylinositol-3 kinase (PI3K) signalling is vital in many of these processes, its inhibition represents an attractive therapeutic strategy. Class I PI3Ks represent a prime target in hematological malignancies due to their roles in linking cell surface receptors to downstream kinase activation (e.g. Akt and Btk) in lymphocytes.\(^2,\ 3\) PI3Ks are heterodimeric, comprising a p110 catalytic subunit and a p85 regulatory subunit. Mammalian systems exhibit multiple isoforms of class I PI3K catalytic subunits (namely p110\(\alpha\), p110\(\beta\), p110\(\delta\), and p110\(\gamma\)), which display tissue-specific expression patterns and non-redundant roles in development.\(^4\) Both p110\(\alpha\) and p110\(\beta\) are expressed ubiquitously,\(^5,\ 6\) whereas p110\(\delta\) and p110\(\gamma\) are largely leukocyte-restricted.\(^4\)

Accordingly, mice deficient in p110\(\delta\) (referred to as PI3K\(\delta\) henceforth) activity exhibit profound disruption of lymphocyte homeostasis and humoral immunity\(^7\) via effects centered upon antigen receptor signaling,\(^7,\ 8\) cytokine production,\(^8,\ 9\) and T\(_{\text{reg}}\) function.\(^10\) Consequently, \(\delta\) isoform selective PI3K inhibitors (PI3K\(\delta\)i) have provided encouraging therapeutic responses in clinical trials,\(^11\) particularly in combination with anti-CD20 monoclonal antibodies (mAb),\(^12\) culminating in the approval of Zydelig (idelalisib) for the treatment of relapsed refractory CLL in combination with rituximab. Whilst the therapeutic potential of these agents is unquestionable, the exact \textit{in vivo} therapeutic mechanism remains ambiguous. With the ever-increasing number of novel therapeutic agents, the challenge is to identify the most efficacious, potentially curative, drug combinations. A clear mechanistic understanding of how these agents work will help provide a rational framework for improved efficacy and the circumvention of resistance mechanisms, which have emerged for other small molecule inhibitors.\(^13\)
Potential PI3Kδi in vivo effector mechanisms can be stratified into those influencing the malignant cell directly (intrinsic) and those mediating effects on the host immune system (immunomodulatory effects). The latter occurs through T_{reg} suppression, resulting in enhanced anti-tumor immunity in solid tumor models. In contrast to solid tumors, PI3Kδ is often expressed within malignant lymphocytes themselves; therefore additional malignant cell intrinsic mechanisms are likely to exist in hematological cancers. These include inhibition/alteration of tissue homing, microenvironment-derived support, and BCR-mediated survival signals.

It is likely that these effects are integrated in vivo and collectively modulate malignant cell survival through regulation of intrinsic apoptosis. Intrinsic apoptosis is regulated by members of the Bcl-2 family. Under normal conditions, the pro-apoptotic activities of activated Bax/Bak are repressed via association with pro-survival Bcl-2 family members (Bcl-2, Bcl-X\textsubscript{L}, Bcl-w, Mcl-1, and Bfl-1/A1). Following apoptotic stimuli, pro-survival molecules are inhibited by association with pro-apoptotic BH3-only proteins (Bad, Bid, Bik, Bim, Bmf, Hrk, Noxa, and Puma) and Bax/Bak subjected to further activation by a subset of these proteins. Subsequently, cell death ensues following saturation of pro-survival molecules and de-repression of activated Bax/Bak.

Bim is a major regulator of immune homeostasis, since Bim-/- animals exhibit expanded lymphocyte populations and increased autoreactivity. In B-cells, this homeostatic control manifests through BCR-mediated upregulation of Bim expression during immature B-cell negative selection, although additional BH3-only proteins also contribute. Furthermore, BCR signals maintain mature B-cell populations via a PI3K-dependent mechanism, which involves suppression of Bim. Similarly, soluble factors CXCL12, BAFF, and APRIL elicit their pro-survival effects either through suppression of Bim or increased expression of pro-survival Bcl-2 family members.

Based upon the key role of PI3Kδ in these processes, we hypothesized that PI3Kδi disrupt multiple pro-survival inputs culminating in Bim-mediated intrinsic apoptosis and in vivo clearance of malignant cells. Whilst prior studies have been performed assessing PI3Kδi-mediated immunomodulation, only limited data are available assessing the
impact of PI3Kδ inhibition within a malignant target in vivo. Using primary human and mouse (Eμ-Tcl1 Tg) CLL cells alongside a highly selective PI3Kδi, GS-9820, we demonstrate that intrinsic apoptosis driven by Bim is the central in vivo therapeutic mechanism for PI3Kδi. This knowledge allowed the rational design of a complementary drug combination strategy incorporating inhibitors of PI3Kδ and Bcl-2 (Venetoclax). This approach proved highly efficacious in vivo, effectively halting leukemia progression in treated animals.

Materials and Methods

Patients and cells

Diagnosis of CLL was according to the IWCLL-NCI 2008 criteria. Samples were studied following ethical committee approval (REC reference: 228/02/t) under the declaration of Helsinki. Malignant cell isolation, determination of purity, and in vitro culturing were described previously. Eμ-Tcl1 Tg leukemias were isolated from splenocytes by density gradient centrifugation and maintained in RPMI-1640 supplemented with 10% FCS, 1mM Pyruvate, 2mM Glutamine, 45 units/ml Penicillin, 45 μg/ml Streptomycin (Thermo Fisher, Loughborough, UK), 50 μM 2-Mercaptoethanol, and 200 μM L-Asparagine (Sigma, Gillingham, UK). Samples exhibiting >85% CD5+B220+ cells were used directly. Samples with <85% CD5+B220+ cells were first purified using a Mouse Pan B-Cell Isolation kit (Miltenyi Biotec, Bisley, UK).

Animals

Animals were maintained in local facilities and experiments approved by local ethical committees under Home Office license PPL30/2964. Eμ-Tcl1 Tg mice were a gift from Dr Egle (Salzburg Cancer Research Institute, Salzburg, Austria) following permission from Dr Pekarsky and Professor Croce (Ohio State University, Ohio, USA). Eμ-Tcl1 Tg animals were crossed with Bim−/− animals (Jackson Laboratory, Bar Harbor, USA) or Vav-Bcl-2 Tg animals (obtained from Professor Hacker following permission from Professor Adams). Animals were monitored for disease presentation by monthly blood sampling and CD5 x B220/CD19 flow cytometry. Animals were sacrificed once 2 out of
3 criteria were met: 1) CD5⁺ B-cells >80% of circulating lymphocytes. 2) Spleen (determined by palpation) >30 mm. 3) Total white blood cell (WBC) counts >5x10⁷/ml. In transplant experiments sex-matched SCID mice (Charles River, Saint-Germain-Nuelles, France) were inoculated with 1x10⁷ Eµ-Tcl1 Tg splenocytes and monitored for disease presentation. Animals were sacrificed when 2 out of 3 criteria were met: 1) spleen >30 mm, 2) WBC counts >5x10⁷/ml, 3) illness requiring euthanasia.

Antibodies and inhibitors

Anti-mouse CD20 (Clone: 18B12) mouse IgG₂a was produced in-house. 18B12 was administered *in vivo* by intraperitoneal injection of 250 μg in PBS. Anti-CD20-mediated opsonization of human targets was performed using Rituximab, which was gifted by Southampton General Hospital oncology pharmacy. GS-9820 was provided by Gilead Sciences Inc, (Foster City, CA) and administered *in vivo* at 10 mg/kg formulated in 0.5% Methylcellulose 0.1% Tween-80 *per os, bis in die* (BID). ABT-199 was administered *in vivo per os* by formulation in 60% Phosal-50 PG (Lipoid, Germany), 30% PEG-400, 10% Ethanol at 50 mg/kg for 7 days followed by 100 mg/kg for a further 14 days. Further inhibitors and antibodies utilized are detailed in the supplementary methods.

Cellular Assays

Annexin V/Propidium Iodide (PI) assays were performed as previously described.²⁴ For further details and other methods see supplementary methods.

Statistics

Data were expressed as mean ± SEM. Statistical significance was assessed by Student’s T-test, or two-way ANOVA. Survival was assessed via Mantel-Cox statistical analysis.
Results

PI3Kδ inhibition disrupts BCR-induced signaling and adhesion in Eμ-Tcl1 Tg Leukemias

To investigate the *in vivo* therapeutic mechanism of PI3Kδi we utilized the Eμ-Tcl1 Tg model, a gold standard for aggressive CLL.33, 34 Consistent with previous reports35, 36 our cohort presented with a CD5+ B-cell leukemia with phenotypic hallmarks of CLL, extensive splenomegaly, and a median survival of 294 days (supplementary figures 1-2). To inhibit PI3Kδ, we utilized the PI3Kδi GS-9820 (supplementary figure S3), recently the subject of clinical trials,37 as it has excellent isoform specificity30 and better pharmacokinetic properties than idelalisib in the mouse (Gilead unpublished observations and supplementary figure 3).

BCR-stimulation increased phosphorylation of the PI3K-target Akt at both S473 and T308, which was inhibited by prior application of GS-9820 in a dose-dependent manner (figure 1a & supplementary figure 4a). Concurrent inhibition of ERK, but not Syk, phosphorylation was also evident (supplementary figure 4b). GS-9820 also significantly inhibited BCR-induced adhesion to fibronectin (figure 1b), yet in contrast to inhibitors of Btk (ibrutinib) and Syk (R406) had no impact upon BCR internalization (figure 1c). These data indicate that GS-9820 effectively inhibits BCR-induced kinase signaling and impairs some functional consequences of BCR-stimulation.

PI3Kδ inhibition impairs chemotaxis and pro-survival responses to microenvironment-derived factors in Eμ-Tcl1 Tg Leukemias

To assess the impact of GS-9820 upon cellular migration and tissue homing responses, Eμ-Tcl1 Tg leukemias were examined for surface expression of chemokine receptors. Eμ-Tcl1 Tg leukemias exhibited heterogeneous surface staining for CXCR4, CXCR5, and CCR7, but were negative for CXCR3 (figure 2a). Whilst CXCR4 and CXCR5 expression was similar to that of normal B-cells, CCR7 was significantly reduced. Accordingly, both CXCL12 and CCL21 induced transmigration of Eμ-Tcl1 Tg leukemias in transwell assays (figure 2b). GS-9820, R406, and ibrutinib inhibited, but did not
ablate, CXCL12-mediated chemotaxis, as previously identified (figure 2b).14,38,39 Consistent with this, GS-9820 inhibited CXCL12 induced phosphorylation of AktS473 (figure 2c), yet in contrast to BCR signaling was unable to concomitantly inhibit ERK phosphorylation (supplementary figure 4c). These data suggest that CXCL12-mediated chemotaxis and downstream kinase activation is only partially PI3Kδ-dependent in E\textsubscript{μ}-Tcl1 Tg leukemias.

Since many stroma-derived soluble factors and cellular interactions provide support signals to malignant B-cells, we examined the ability of GS-9820 to impair these processes. CXCL12, BAFF, APRIL, or a combination of all 3 significantly improved the viability of E\textsubscript{μ}-Tcl1 Tg leukemias 5 days post ex vivo culture in comparison to medium alone and were effectively antagonized by GS-9820 (figure 3a). GS-9820 application also inhibited support arising from the follicular dendritic cell (FDC) line HK. For both CLL and E\textsubscript{μ}-Tcl1 cells co-culture with HK cells enhanced viability (figure 3b left & supplementary figure 4d). This survival advantage was disrupted by addition of GS-9820 after the formation of cell:cell contacts in these co-culture settings (figure 3b left and supplementary figure 4d). Additionally, both GS-9820 and ibrutinib inhibited cell:cell contact formation and adhesion when added prior to co-culture (figure 3b right). These data imply that both cytokine/chemokine and cell:cell contact-mediated support mechanisms are PI3Kδ-dependent in this system.

\textit{PI3Kδ inhibition reduces cellular viability co-incident with upregulation of Bim}

Previously, PI3K\textsubscript{i} have been reported to reduce the \textit{in vitro} viability of malignant B-cells, presumably through BCR inhibition.18 GS-9820 reduced cellular viability in both E\textsubscript{μ}-Tcl1 Tg leukemias and CLL samples (figure 4a); albeit with significant heterogeneity in individual E\textsubscript{μ}-Tcl1 Tg tumors. This reduction in viability was coincident with upregulation of Bim expression and Bim:Bcl-2 complex formation, indicative of enhanced Bim function (figures 4b and c). Similar effects were also observed in some, but not all, CLL samples and diffuse large B-cell lymphoma (DLBCL) cell lines (supplementary figures 5 and 7).
High pro-survival occupancy with BH3-only proteins sensitizes cells to subsequent apoptotic stimuli due to a reduced capacity to neutralize activated Bax/Bak, known as mitochondrial priming.40 Due to enhanced mitochondrial priming through Bim upregulation, we hypothesized that GS-9820-treated cells would exhibit enhanced sensitivity toward the Bcl-2 inhibitor ABT-199. Indeed, administration of GS-9820 24 hours prior to ABT-199 (to allow Bim upregulation) significantly enhanced cytotoxicity in comparison to ABT-199 treatment alone in E\textsubscript{μ}-Tcl1 Tg leukemias, CLL, and GS-9820-sensitive DLBCL cell lines (figure 4c & supplementary figures 5 and 7).

In comparison to normal B-cells, E\textsubscript{μ}-Tcl1 Tg leukemias exhibited extensive Bcl-2 and Bcl-X\textsubscript{L} expression, with little or no expression of Mcl-1, Bfl-1/A1, or Bcl-w (supplementary figure 8). Comparable levels of Bad and Bid were seen in E\textsubscript{μ}-Tcl1 Tg leukemias and normal B cells. Puma was absent in both, only upregulated following treatment with etoposide and concurrent with p53 induction, demonstrating the integrity of the TP53 pathway in E\textsubscript{μ}-Tcl1 Tg leukemias (supplementary figure 8c).41 However, significant heterogeneity in basal Bim expression was evident in E\textsubscript{μ}-Tcl1 Tg leukemias in comparison to normal B-cells, with the level predictive of overall sensitivity to GS-9820-induced death (supplementary figures 8a and b). These data indicate a direct link between PI3K\textsubscript{δ} (and its inhibition) and the regulation of Bim.

Genetic loss of Bim does not alter Tcl1-induced leukemiagenesis

Previously, Bim has been identified as a key tumor suppressor in both murine and human cancers, with reduced expression associated with therapeutic resistance.42-44 To further assess the role of Bim in Tcl1-mediated leukemiagenesis and PI3K\textsubscript{δ}i therapy, E\textsubscript{μ}-Tcl1 Tg animals were crossed with Bim−/− animals. Bim−/− E\textsubscript{μ}-Tcl1 Tg animals exhibited an equivalent median survival to Bim+/+ E\textsubscript{μ}-Tcl1 Tg albeit with a reduced leukemic burden at sacrifice (figure 5a). Nonetheless, PBMC, splenocyte, and lymph node (LN) cell numbers were largely comparable (figure 5b). Western blot revealed that Bim−/− E\textsubscript{μ}-Tcl1 Tg leukemias exhibited comparable levels of Bid, Puma, Bcl-2, and Bcl-X\textsubscript{L} expression to their Bim+/+ counterparts (supplementary figure 9a) indicating that compensatory changes in expression of activator BH3-only proteins, or pro-survival
molecules, had not occurred and that the tumors did not display stabilizing p53 mutations. Furthermore, leukemias arising in Bim^{−/−} E_μ-Tcl1 Tg animals exhibited an equivalent immunophenotype, to their Bim^{+/+} E_μ-Tcl1 Tg counterparts (figure 5c and supplementary figure 9b). Overall, these data indicate that Bim does not function as a tumor suppressor in this model.

Bim^{−/−} E_μ-Tcl1 Tg leukemias respond normally to PI3Kδ-dependent stimuli but are resistant toward PI3Kδi-induced cytotoxicity

Prior to assessing the impact of loss of Bim upon GS-9820-induced cytotoxicity, we first assessed the integrity of PI3K-dependent pathways in Bim^{−/−} E_μ-Tcl1 Tg leukemias and their sensitivity to GS-9820. Like their wild-type counterparts, Bim^{−/−} E_μ-Tcl1 Tg leukemias exhibited enhanced Akt^{S473} phosphorylation following BCR stimulation, which was ablated by GS-9820 in a dose-dependent manner (figure 6a). Furthermore, CXCL12-mediated chemotaxis remained intact and sensitive to GS-9820 inhibition (figure 6b). In contrast, genetic loss of Bim imparted significant resistance toward GS-9820- and ibrutinib-induced cytotoxicity in E_μ-Tcl1 Tg tumors, whereas responses toward fludarabine were less affected (figure 6c). Although significantly inhibited, residual levels of GS-9820- and ibrutinib-induced cell death were evident in Bim^{−/−} leukemias. This residual activity was absent in E_μ-Tcl1 Tg leukemias over-expressing Bcl-2 (supplementary figure 10) derived from vav-Bcl-2 Tg E_μ-Tcl1 Tg mice. These data demonstrate that Bim plays a major role in the cytotoxic responses induced by GS-9820 and ibrutinib with a minor contribution by other BH3-only proteins.

PI3Kδi elicit anti-leukemic effects in vivo dependent upon Bim

To investigate the mechanisms of PI3Kδi in vivo, SCID animals were inoculated with E_μ-Tcl1 Tg leukemias. These mice lack adaptive immune cells and permit the investigation of mechanisms independent of the reported effects on T_{reg}.

Following detection of CD5⁺ B-cells in the blood, mice were treated with 10 mg/kg GS-9820 or vehicle control per os BID. Although PI3Kδ-mutant animals exhibit colitis, GS-9820-recipient animals did not demonstrate any adverse effects attributable to treatment.
(supplementary figure 11a). GS-9820-treated animals exhibited a 75% reduction in leukemic burden 4-weeks post administration alongside tumour reductions in the peritoneum and spleen (figures 7a and b). Therapeutic responses to GS-9820 correlated with enhanced Bim expression (≈1.5 fold) in spleen-resident tumor cells in comparison to vehicle-recipient animals (figure 7a right). To dissect the role of Bim-dependent apoptosis in PI3Kδi therapy, Bim−/− Eμ-Tcl1 Tg leukemias were transferred into SCID recipients and assessed for responses toward GS-9820. Bim−/− Eμ-Tcl1 Tg leukemia-recipient animals appeared refractory to GS-9820, with little variation in leukemic burden, spleen deposits, or splenomegaly evident (figure 7b and c).

In addition to Treg inhibition, myeloid-derived suppressor cells (MDSC) have been implicated in PI3Kδi-mediated therapeutic responses. In both Bim+/+ and Bim−/− leukemia-recipient animals, the frequency of splenic MDSC populations (CD11b+ Ly6CHigh Ly6GLow monocytic-MDSC (M-MDSC) or CD11b+ Ly6CLow Ly6GHigh polymorphonuclear-MDSC (PMN-MDSC)) were unaffected by PI3Kδi administration (supplementary figure 12). Therefore, the therapeutic effects of PI3Kδi monotherapy appear largely dependent upon Bim-dependent intrinsic apoptosis within the malignant lymphocyte.

PI3Kδi enhance anti-CD20 mAb therapy in a Bim-dependent manner

Since PI3Kδi effectively combine with anti-CD20 mAb in the clinic we determined whether this synergistic effect was dependent upon Bim-induced apoptosis. Anti-CD20 mAbs induced a robust depletion of leukemic targets in Eμ-Tcl1 Tg-recipient animals that was ablated in mice lacking the FcyRγ chain−/−, required for activatory FcγR expression and activity (supplementary figure 11b). In agreement with other models these data identify activatory FcγR-mediated processes as the major anti-CD20 mAb effector mechanism in the Eμ-Tcl1 Tg model.

Consequently, the impact of GS-9820 upon antibody-dependent cellular phagocytosis (ADCP) was examined. Anti-CD20-mediated ADCP appeared unaffected by GS-9820 utilizing either murine or human cells (figure 8a left and center). Furthermore, GS-9820
did not influence maximal anti-CD20 mAb-mediated leukemia depletion 48 hours post-
treatment of either Bim⁺ or Bim⁻ leukemia-recipient animals (figure 8a right).
Collectively, these data indicate that augmentation of ADCP is not responsible for the
combination effects of GS-9820 and anti-CD20 mAb.

Both a single 250 μg dose of anti-CD20 mAb and GS-9820 monotherapy extended
overall survival (p<0.05 and p<0.005, respectively) in Bim⁺ Eμ-Tcl1 Tg-recipient
animals. Furthermore, anti-CD20 mAb and GS-9820 combination therapy enhanced the
duration of anti-CD20-mediated leukemia depletion and overall survival in comparison
to mAb therapy alone (p<0.005) (figure 8b left panels). In contrast, the therapeutic effect
of GS-9820 was lost in both monotherapy and combination therapy treatment groups in
Bim⁻ Eμ-Tcl1 Tg-recipient animals, whilst anti-CD20 mAb therapy appeared unaffected
and enhanced overall survival in comparison to vehicle controls (p<0.005) (figure 8b
right panels). These data confirm that Bim-dependent apoptosis represents the primary
therapeutic mechanism of GS-9820 in both monotherapy and combination therapy
regimes.

This knowledge can be employed in the design of subsequent treatment regimes. As a
proof of concept, it was reasoned that combinations of GS-9820 and ABT-199 would be
highly efficacious in vivo. Both ABT-199 monotherapy and combinations with GS-9820
appeared well tolerated, with no symptoms of toxicity associated with treatment. Whilst
GS-9820:ABT-199 combination-treated animals maintained weight, a slight, non-
significant reduction in the rate of weight gain was evident in comparison to other
treatment groups (supplementary figure 11c). Although ABT-199 monotherapy was
ineffective against Bim⁺ Eμ-Tcl1 Tg leukemias, combinations of GS-9820 and ABT-199
proved more effective than GS-9820 monotherapy alone (figure 8c). This strategy
reduced leukemic-burden by 95% in comparison to vehicle controls, effectively
sensitizing Eμ-Tcl1 Tg leukemias to ABT-199. These findings facilitate the design of
novel combination therapies and potentially provide a strategy to overcome
microenvironment-derived ABT-199 resistance.
Discussion

Extensive pre-clinical and clinical studies culminated in the approval of the PI3Kδi Zydelig (idelalisib) for the treatment of relapsed/refractory CLL in combination with rituximab.10, 12, 14 Although efficacious, this combination is not curative and primarily delays disease progression. In order to permit evidence-based design of potentially curative complementary drug combinations, a detailed mechanistic understanding of PI3Kδ inhibition is required. At present, \textit{in vivo} mechanistic insights are limited to PI3Kδi-mediated immunomodulation in the treatment of solid tumors (that lack PI3Kδ expression).10 In this setting, PI3Kδi enhance anti-tumor immunity through T\textsubscript{reg} and MDSC suppression.10 Since malignant lymphocytes often express PI3Kδ4 additional intrinsic mechanisms likely arise in lymphoid cancers. In the present study an \textit{in vivo} model of CLL was utilized in immunodeficient recipient animals. Within this system, animals lack adaptive immune cells (including T\textsubscript{reg}) and do not exhibit PI3Kδi-dependent augmentation of MDSCs (supplementary figure 12), allowing the dissection of intrinsic mechanisms from immunomodulatory effects.

Previous studies suggest that tumor intrinsic mechanisms augment BCR-,8, 14 chemokine/cytokine receptor-signaling,8, 14, 15 and stromal cell support.15, 16 BCR-signaling is inextricably linked with regulation of Bim-dependent apoptosis in both its pro-survival and pro-apoptotic signaling modes.22, 24, 25 In mature B-cells, BCR signals maintain B-lymphocyte populations via a PI3K-dependent mechanism linked to down-regulation of Bim expression25 and in response to antigen, BCR-signaling neutralizes Bim by MEK1-dependent phosphorylation.47 Conversely, in immature B-cells aberrant BCR-signaling directly upregulates Bim during negative selection.22, 24 Like BCR signaling, many cytokines/chemokines also modulate cellular survival. In particular, BAFF, APRIL, and CXCL12 are linked to concomitant downregulation of Bim and increased pro-survival expression.27-29 Furthermore, stromal cell interaction, particularly with FDCs, has been identified as a major determinant of survival in CLL and the E\textsubscript{μ}-Tcl1 Tg model, via CD44-mediated Mcl-1 upregulation and subsequent apoptotic resistance.48, 49 Cumulatively, these studies suggest a conserved link between BCR,
cytokines/chemokines, and cellular interactions in the regulation of intrinsic apoptosis and B-cell homeostasis.

Here we showed that PI3Kδi administration inhibited cellular viability (co-incident with upregulation of Bim activity) and chemotaxis, alongside inhibition of BAFF-, CXCL12-, APRIL-, and FDC-mediated survival pathways. Furthermore, PI3Kδi imparted a Bim-dependent reduction in Eμ-Tcl1 Tg leukemia cells in vivo, associated with increased Bim expression.

Upregulation of Bim has been observed in vitro with other BCR-inducible kinase inhibitors.50,51 Consequently, upregulation of Bim appears a common mechanism triggered by inhibition of BCR-inducible kinases. Although PI3Kδi-mediated Bim upregulation was evident in vitro in the absence of exogenous antigen, antigen contamination of in vitro cultures from murine tissues is likely. Therefore, it remains unclear whether Bim upregulation occurs via inhibition of the BCR. In DLBCL cell lines, where in vitro antigen-dependent BCR signaling is required for survival,52 PI3Kδi-mediated Bim upregulation was evident in some but not all cell lines. Therefore, removal of BCR-mediated Bim suppression may, at least in part, explain PI3Kδi-mediated Bim upregulation. However, since BAFF and BCR signals appear to co-operate in the maintenance of B-cell populations, via an NF-KB-centered integration node,53 it is likely that PI3Kδi-mediated Bim upregulation occurs as a consequence of inhibition of both BCR- and cytokine/chemokine-mediated pathways.

Based upon the data reported herein we propose a mechanism whereby PI3Kδ inhibition imparts therapeutic responses in hematological malignancies by both malignant cell intrinsic and immunomodulatory mechanisms. In the former, PI3Kδ inhibition abrogates BCR-mediated suppression of Bim, reducing the ability of malignant B-cells to survive in the periphery, and increasing reliance upon SLO-transit and survival networks. However, concurrent PI3Kδi-mediated inhibition of malignant B-cell entry into SLOs, migration to FDC-rich areas, and inhibition of SLO-resident pro-survival signals denies this. Cumulatively, these effects result in enhanced Bim expression, enhanced mitochondrial priming, and the apoptotic demise of malignant B-cells by a
“death by neglect”-like process. Similar observations have been reported previously, whereby microenvironmental support reduced mitochondrial priming of LN-resident CLL cells, which was reversed upon idelalisib administration.17

Although loss of Bim imparted significant \textit{in vitro} and \textit{in vivo} resistance toward PI3K\textsubscript{δi}, therapeutic responses were not totally ablated. Because only Bcl-2 Tg E\textsubscript{μ}-Tcl1 Tg leukemias were completely refractory to PI3K\textsubscript{δi}-induced cytotoxicity \textit{in vitro}, additional BH3-only proteins likely contribute. Indeed, co-operative relationships between Bim and other BH3-only proteins in hematopoiesis and responses to apoptotic stimuli are well documented, including downstream of the BCR.24, 26

In combination with anti-CD20 mAbs, PI3K\textsubscript{δi} administration enhanced the duration of leukemia depletion \textit{in vivo}, in line with clinical trial results.12 This effect was ablated upon genetic loss of Bim. It is likely that the enhanced duration of depletion offered by combinations of anti-CD20 mAbs and PI3K\textsubscript{δi} reflect the Bim-mediated reduction of mAb-resistant tumor deposits within SLOs. Indeed, the anatomical distribution of target cells, and their respective access to the hepatic reticuloendothelial system, has been linked to the extent of B-cell depletion within these sites.54 Thus, by reducing SLO-mediated mAb resistance and cellular support mechanisms, PI3K\textsubscript{δi} likely enhances anti-CD20 mediated depletion within SLOs and slows the rate of relapse after loss of mAb from the circulation.

Given that cytotoxicity through intrinsic apoptosis appears the primary effector mechanism of PI3K\textsubscript{δi} \textit{in vivo}, synergistic, or at least additive, therapeutic effects may be achieved by combining inhibitors of PI3K\textsubscript{δ} and Bcl-2, such as ABT-199 (Venetoclax). This hypothesis is supported by our, and others, observations of enhanced apoptosis when applied in combination.55 Surprisingly, \textit{in vivo} ABT-199 monotherapy proved ineffective in the treatment of Bim+/+ E\textsubscript{μ}-Tcl-1 Tg-recipient animals (figure 8c). In clinical trials ABT-199 has yielded impressive results in the treatment of relapsed/refractory CLL.56 This apparent ABT-199 resistance is most likely attributable to high levels of Bcl-X\textsubscript{L} expression (supplementary figure 8a), which in CLL has been linked to a 1000-fold reduction in ABT-199 sensitivity.46 In contrast to ABT-199 monotherapy, PI3K\textsubscript{δi}:ABT-
combination therapy reduced *in vivo* leukemic burden by 95% in comparison to vehicle controls. These effects are likely attributable to enhanced Bim-mediated mitochondrial priming following PI3Kδi application allowing greater ABT-199-mediated displacement of Bim, resulting in enhanced Bax/Bak activation.

This proof of concept experiment, demonstrates the ability of new mechanistic knowledge to provide rationale-based combination strategies for more effective treatments. Looking forward, inhibitors targeting additional aspects of microenvironmental support, such as IL-4 and CD40L, signaling could be incorporated. These T-cell mediated microenvironment-derived support signals enhance BCR signaling and generate therapeutic resistance toward Bcl-2 inhibitors. Since these pathways exhibit only partial PI3Kδ-dependency use of an additional JAK:STAT inhibitor may further enhance the efficacy of PI3Kδ:Bcl-2 inhibitor combinations and provide a curative treatment regime.
Acknowledgments: The authors gratefully acknowledge all patients who contributed the samples used in this study. We are grateful to the Experimental Cancer Medicine Centre funded University of Southampton, Faculty of Medicine Human Tissue Bank (Human Tissue Authority license 12009) and to I Tracy, I Henderson and K.N. Potter for the assistance with collecting and characterizing clinical material. The authors thank Christophe Quéva for advice during experimental design. Cell lines were the generous gift of (HK) Yong Sung Choi, (OCI-LY10) Alison Banham, and (HBL-1) Martin Dyer. Anti-mouse p53 antibody was kindly provided by Giovanna Roncador. Funding was provided by Kay Kendall Leukaemia Fund (687), Bloodwise (Grants 10012, 12050) and Cancer Research UK (C34999/A18087, ECMC C24563/A15581).

Conflict of Interest

M.S.C. serves as a consultant for Bioinvent International and has previously served as an ad hoc consultant for Roche and Baxalta. He has previously received grant funding from Bioinvent, Roche, Gilead, and GSK. G.P. receives research funding from Aquinox Pharmaceuticals and is a founder and shareholder in Karus Therapeutics.

Author Contributions

M.J.C. performed research, analyzed and interpreted data and wrote the manuscript; K.L.C. and A.H.T. assisted with in vivo experiments; L.N.D. performed in vitro experiments with primary human CLL samples, S.J.B. and R.J.O. aided in characterization of in vivo models; S.T. offered guidance with experimental planning and provided GS-9820; F.F. provided primary human CLL samples, G.K.P. helped design research, analyze data and edit the manuscript; M.S.C. designed research, analyzed and interpreted data and wrote the manuscript with M.J.C.
References

1. Burger J, Ghia P, Rosenwald A, Caligaris-Cappio F. The microenvironment in mature B-cell malignancies: a target for new treatment strategies. *Blood* 2009; 114: 3367 - 3375.

2. Nore BF, Vargas L, Mohamed AJ, Branden LJ, Backesjo CM, Islam TC, et al. Redistribution of Bruton's tyrosine kinase by activation of phosphatidylinositol 3-kinase and Rho-family GTPases. *European Journal of Immunology* 2000 Jan; 30(1): 145-154.

3. Andjelkovic M, Alessi DR, Meier R, Fernandez A, Lamb NJC, Frech M, et al. Role of translocation in the activation and function of protein kinase B. *Journal of Biological Chemistry* 1997 Dec 12; 272(50): 10963-10968.

4. Vanhaesebroeck B, Whitehead MA, Pineiro R. Molecules in medicine mini-review: isoforms of PI3K in biology and disease. *Journal of Molecular Medicine-Jmm* 2016 Jan; 94(1): 5-11.

5. Bi L, Okabe I, Bernard DJ, Wynshaw-Boris A, Nussbaum RL. Proliferative defect and embryonic lethality in mice homozygous for a deletion in the p110 alpha subunit of phosphoinositide 3-kinase. *Journal of Biological Chemistry* 1999 Apr 16; 274(16): 10963-10968.

6. Bi L, Okabe I, Bernard DJ, Nussbaum RL. Early embryonic lethality in mice deficient in the p110 beta catalytic subunit of PI 3-kinase. *Mammalian Genome* 2002 Mar; 13(3): 169-172.

7. Okkenhaug K, Bilancio A, Farjot G, Priddle H, Sancho S, Peskett E, et al. Impaired B and T cell antigen receptor signaling in p110 delta PI 3-kinase mutant mice. *Science* 2002 Aug 9; 297(5583): 1031-1034.

8. Bilancio A, Okkenhaug K, Camps M, Emery JL, Ruckle T, Rommel C, et al. Key role of the p110 delta isoform of PI3K in B-cell antigen and IL-4 receptor signaling: comparative analysis of genetic and pharmacologic interference with p110 delta function in B cells. *Blood* 2006 Jan 15; 107(2): 642-650.

9. Soond DR, Bjorgo E, Moltu K, Dale VQ, Patton DT, Torgersen KM, et al. PI3K p110 delta regulates T-cell cytokine production during primary and secondary immune responses in mice and humans. *Blood* 2010 Mar 18; 115(11): 2203-2213.

10. Ali K, Soond DR, Pineiro R, Hagemann T, Pearce W, Lim EL, et al. Inactivation of PI(3)K p110 delta breaks regulatory T-cell-mediated immune tolerance to cancer. *Nature* 2014 Jun 19; 510(7505): 407.

11. Brown JR, Byrd JC, Coutre SE, Benson DM, Flinn IW, Wagner-Johnston ND, et al. Idelalisib, an inhibitor of phosphatidylinositol 3-kinase p110 delta, for relapsed/refractory chronic lymphocytic leukemia. *Blood* 2014 May; 123(22): 3390-3397.
12. Furman RR, Sharman JP, Coutre SE, Cheson BD, Pagel JM, Hillmen P, et al. Idelalisib and Rituximab in Relapsed Chronic Lymphocytic Leukemia. *New England Journal of Medicine* 2014 Mar 13; 370(11): 997-1007.

13. Woyach JA, Furman RR, Liu TM, Ozer HG, Zapatka M, Ruppert AS, et al. Resistance Mechanisms for the Bruton's Tyrosine Kinase Inhibitor Ibrutinib. *New England Journal of Medicine* 2014 Jun; 370(24): 2286-2294.

14. Hoellenriegel J, Meadows SA, Sivina M, Wierda WG, Kantarjian H, Keating MJ, et al. The phosphoinositide 3'-kinase delta inhibitor, CAL-101, inhibits B-cell receptor signaling and chemokine networks in chronic lymphocytic leukemia. *Blood* 2011 Sep 29; 118(13): 3603-3612.

15. Herman SEM, Gordon AL, Wagner AJ, Heerema NA, Zhao W, Flynn JM, et al. Phosphatidylinositol 3-kinase-delta inhibitor CAL-101 shows promising preclinical activity in chronic lymphocytic leukemia by antagonizing intrinsic and extrinsic cellular survival signals. *Blood* 2010 Sep 23; 116(12): 2078-2088.

16. Fiorcari S, Brown WS, McIntyre BW, Estrov Z, Maffei R, O'Brien S, et al. The PI3-Kinase Delta Inhibitor Idelalisib (GS-1101) Targets Integrin-Mediated Adhesion of Chronic Lymphocytic Leukemia (CLL) Cell to Endothelial and Marrow Stromal Cells. *Plos One* 2013 Dec 23; 8(12).

17. Davids MS, Deng J, Wiestner A, Lannutti BJ, Wang L, Wu CJ, et al. Decreased mitochondrial apoptotic priming underlies stroma-mediated treatment resistance in chronic lymphocytic leukemia. *Blood* 2012 Oct 25; 120(17): 3501-3509.

18. Lannutti BJ, Meadows SA, Herman SEM, Kashishian A, Steiner B, Johnson AJ, et al. CAL-101, a p110 delta selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. *Blood* 2011 Jan; 117(2): 591-594.

19. Czabotar PE, Lessene G, Strasser A, Adams JM. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. *Nature Reviews Molecular Cell Biology* 2014 Jan; 15(1): 49-63.

20. Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. *Cancer Cell* 2002 Sep; 2(3): 183-192.

21. Llambi F, Moldoveanu T, Tait SWG, Bouchier-Hayes L, Temirov J, McCormick LL, et al. A Unified Model of Mammalian BCL-2 Protein Family Interactions at the Mitochondria. *Molecular Cell* 2011 Nov 18; 44(4): 517-531.
22. Enders A, Bouillet P, Puthalakath H, Xu YK, Tarlinton DM, Strasser A. Loss of the pro-apoptotic BH3-only Bcl-2 family member Bim inhibits BCR stimulation-induced apoptosis and deletion of autoreactive B cells. *Journal of Experimental Medicine* 2003 Oct 6; 198(7): 1119-1126.

23. Bouillet P, Metcalf D, Huang DCS, Tarlinton DM, Kay TWH, Kontgen F, et al. Proapoptotic Bcl-2 relative bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. *Science* 1999 Nov 26; 286(5445): 1735-1738.

24. Carter MJ, Cox KL, Blakemore SJ, Bogdanov YD, Hoppo L, Scott CL, et al. BCR-signaling-induced cell death demonstrates dependency on multiple BH3-only proteins in a murine model of B-cell lymphoma. *Cell Death and Differentiation* 2016 Feb; 23(2): 303-312.

25. Srinivasan L, Sasaki Y, Calado DP, Zhang B, Paik JH, DePinho RA, et al. PI3 Kinase Signals BCR-Dependent Mature B Cell Survival. *Cell* 2009 Oct 30; 139(3): 573-586.

26. Woess C, Tuzlak S, Labi V, Drach M, Bertele D, Schneider P, et al. Combined loss of the BH3-only proteins Bim and Bmf restores B-cell development and function in TACI-Ig transgenic mice. *Cell Death and Differentiation* 2015 Sep; 22(9): 1477-1488.

27. Craxton A, Draves KE, Gruppi A, Clark EA. BAFF regulates B cell survival by downregulating the BH3-only family member Bim via the ERK pathway. *Journal of Experimental Medicine* 2005 Nov 21; 202(10): 1363-1374.

28. Trushin SA, Carena AA, Bren GD, Rizza SA, Dong X, Abraham RS, et al. SDF-1 alpha Degrades whereas Glycoprotein 120 Upregulates Bcl-2 Interacting Mediator of Death Extralong Isoform: Implications for the Development of T Cell Memory. *Journal of Immunology* 2012 Aug 15; 189(4): 1835-1842.

29. Enzler T, Kater AP, Zhang W, Widhopf GF, II, Chuang H-Y, Lee J, et al. Chronic lymphocytic leukemia of E mu-TCL1 transgenic mice undergoes rapid cell turnover that can be offset by extrinsic CD257 to accelerate disease progression. *Blood* 2009 Nov 12; 114(20): 4469-4476.

30. Shugg RPP, Thomson A, Tanabe N, Kashishian A, Steiner BH, Puri KD, et al. Effects of isoform-selective Phosphatidylinositol 3-Kinase Inhibitors on Osteoclasts Actions on Cytoskeletal Organisation, Survival, and Resorption. *Journal of Biological Chemistry* 2013 Dec 6; 288(49): 35346-35357.

31. Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Doehner H, et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. *Blood* 2008 Jun 15; 111(12): 5446-5456.
32. Lim SH, Vaughan AT, Ashton-Key M, Williams EL, Dixon SV, Chan HTC, et al. Fc gamma receptor IIb on target B cells promotes rituximab internalization and reduces clinical efficacy. *Blood* 2011 Sep 1; **118**(9): 2530-2540.

33. Bichi R, Shinton SA, Martin ES, Koval A, Calin GA, Cesari R, et al. Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression. *Proceedings of the National Academy of Sciences of the United States of America* 2002 May 14; **99**(10): 6955-6960.

34. Bresin A, D'Abundo L, Narducci MG, Fiorenza MT, Croce CM, Negrini M, et al. TCL1 transgenic mouse model as a tool for the study of therapeutic targets and microenvironment in human B-cell chronic lymphocytic leukemia. *Cell Death & Disease* 2016 Jan; 7.

35. Johnson AJ, Lucas DM, Muthusamy N, Smith LL, Edwards RB, Delay MD, et al. Characterization of the TCL-1 transgenic mouse as a preclinical drug development tool for human chronic lymphocytic leukemia. *Blood* 2006 Aug 15; **108**(4): 1334-1338.

36. DiLillo DJ, Weinberg JB, Yoshizaki A, Horikawa M, Bryant JM, Iwata Y, et al. Chronic lymphocytic leukemia and regulatory B cells share IL-10 competence and immunosuppressive function. *Leukemia* 2013 Jan; **27**(1): 170-182.

37. Kater AP, Tonino SH, Kersten MJ, Hagenbeek A, Spiering M, van Oers MH, et al. Interim Analysis Of Dose-Escalation Stage Of a Phase 1b Study Evaluating Safety and Pharmacology Of GS-9820, a Second-Generation, Selective, PI3Kd-Inhibitor in Recurrent Lymphoid Malignancies. *Blood* 2013 Nov; **122**(21): 2881.

38. de Rooij MFM, Kuil A, Geest CR, Eldering E, Chang BY, Buggy JJ, et al. The clinically active BTK inhibitor PCI-32765 targets B-cell receptor- and chemokine-controlled adhesion and migration in chronic lymphocytic leukemia. *Blood* 2012 Mar 15; **119**(11): 2590-2594.

39. Buchner M, Baer C, Prinz G, Dierks C, Burger M, Zenz T, et al. Spleen tyrosine kinase inhibition prevents chemokine- and integrin-mediated stromal protective effects in chronic lymphocytic leukemia. *Blood* 2010 Jun 3; **115**(22): 4497-4506.

40. Certo M, Moore VD, Nishino M, Wei G, Korsmeyer S, Armstrong SA, et al. Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. *Cancer Cell* 2006 May; **9**(5): 351-365.

41. Nakano K, Vousden KH. PUMA, a novel proapoptotic gene, is induced by p53. *Molecular Cell* 2001 Mar; **7**(3): 683-694.
42. Egle A, Harris AW, Bouillet P, Cory S. Bim is a suppressor of Myc-induced mouse B cell leukemia. *Proceedings of the National Academy of Sciences of the United States of America* 2004 Apr 20; **101**(16): 6164-6169.

43. Richter-Larrea JA, Robles EF, Fresquet V, Beltran E, Rullan AJ, Agirre X, *et al.* Reversion of epigenetically mediated BIM silencing overcomes chemoresistance in Burkitt lymphoma. *Blood* 2010 Oct 7; **116**(14): 2531-2542.

44. Sinicrope FA, Rego RL, Okumura K, Foster NR, O'Connell MJ, Sargent DJ, *et al.* Prognostic impact of Bim, Puma, and Noxa expression in human colon carcinomas. *Clinical Cancer Research* 2008 Sep 15; **14**(18): 5810-5818.

45. Beers SA, French RR, Chan CH, Lim SH, Jarrett TC, Mora Vidal R, *et al.* Antigenic modulation limits the efficacy of anti-CD20 antibodies: implications for antibody selection. *Blood* 2010 Mar 16; **115**: 5191-5201.

46. Vogler M, Butterworth M, Majid A, Walewska RJ, Sun X-M, Dyer MJS, *et al.* Concurrent up-regulation of BCL-X(L) and BCL2A1 induces approximately 1000-fold resistance to ABT-737 in chronic lymphocytic leukemia. *Blood* 2009 Apr 30; **113**(18): 4403-4413.

47. Paterson A, Mockridge CI, Adams JE, Krysov S, Potter KN, Duncombe AS, *et al.* Mechanisms and clinical significance of BIM phosphorylation in chronic lymphocytic leukemia. *Blood* 2012 Feb 16; **119**(7): 1726-1736.

48. Pedersen IM, Kitada S, Leoni LM, Zapata JM, Karras JG, Tsukada N, *et al.* Protection of CLL B cells by a follicular dendritic cell line is dependent on induction of Mcl-1. *Blood* 2002 Sep 1; **100**(5): 1795-1801.

49. Heinig K, Gaetjen M, Grau M, Stache V, Anagnostopoulos I, Gerlach K, *et al.* Access to Follicular Dendritic Cells Is a Pivotal Step in Murine Chronic Lymphocytic Leukemia B-cell Activation and Proliferation. *Cancer Discovery* 2014 Dec; 4(12): 1448-1465.

50. Szydlowski M, Kiliszek P, Sewastianik T, Jablonska E, Bialopiotrowicz E, Gorniak P, *et al.* FOXO1 activation is an effector of SYK and AKT inhibition in tonic BCR signal-dependent diffuse large B-cell lymphomas. *Blood* 2016 2016-Feb-11; **127**(6): 739-748.

51. Rahmani M, Anderson A, Habibi JR, Crabtree TR, Mayo M, Harada H, *et al.* The BH3-only protein Bim plays a critical role in leukemia cell death triggered by concomitant inhibition of the PI3K/Akt and MEK/ERK1/2 pathways. *Blood* 2009 Nov 12; **114**(20): 4507-4516.

52. Young RM, Wu T, Schmitz R, Dawood M, Xiao W, Phelan JD, *et al.* Survival of human lymphoma cells requires B-cell receptor engagement by self-antigens. *Proceedings of the National Academy of Sciences of the United States of America* 2015 Nov 3; **112**(44): 13447-13454.
53. Stadanlick JE, Kaileh M, Karnell FG, Scholz JL, Miller JP, Quinn WJ, III, et al. Tonic B cell antigen receptor signals supply an NF-kappa B substrate for prosurvival BLyS signaling. *Nature Immunology* 2008 Dec; 9(12): 1379-1387.

54. Gong Q, Ou QL, Ye SM, Lee WP, Cornelius J, Diehl L, et al. Importance of cellular microenvironment and circulatory dynamics in B cell immunotherapy. *Journal of Immunology* 2005 Jan 15; 174(2): 817-826.

55. Choudhary GS, Al-Harbi S, Mazumder S, Hill BT, Smith MR, Bodo J, et al. MCL-1 and BCL-xL-dependent resistance to the BCL-2 inhibitor ABT-199 can be overcome by preventing PI3K/AKT/mTOR activation in lymphoid malignancies. *Cell Death & Disease* 2015 Jan; 6.

56. Seymour JF, Davids MS, Pagel JM, Kahl BS, Wierda WG, Puvvada S, et al. ABT-199 (GDC-0199) In Relapsed/Refractory Chronic Lymphocytic Leukemia and Small Lymphocytic Lymphoma: High Response Rates Among Patients with High Risk Disease Features Including Unmated IgHV. *Haematologica* 2014 Jun 1; 99: 249-249.

57. Aguilar-Hernandez MM, Blunt MD, Dobson R, Yeomans A, Thirdborough S, Larrayoz M, et al. IL-4 enhances expression and function of surface IgM in CLL cells. *Blood* 2016 2016-Jun-16; 127(24): 3015-3025.
Figure Legends

Figure 1 Inhibition of PI3Kδ disrupts BCR-induced signaling and adhesion in Eμ-Tcl1 Tg Leukemias

(A) Eμ-Tcl1-Tg Leukemia cells were pre-incubated with the indicated concentration of GS-9820 for 1h followed by stimulation with 20 μg/ml anti-IgM for 3 minutes. Akt phosphorylation status was subsequently assessed by western blot. Left panel: representative example; Right Panel: densitometry values from 6 independent tumors utilizing 0.6 μM GS-9820. Data represented as fold change in pAkt levels over baseline. (B) Eμ-Tcl1-Tg Leukemia cells were pre-incubated with 0.6 μM GS-9820 for 1h prior to stimulation with anti-IgM. Adhesion to Fibronectin coated-plates was then assessed 3h later. Data represents an average of 7 independent experiments utilizing different tumors. Adherent cell numbers are expressed as a proportion of a PLL-coated maximum adhesion control. (C) Eμ-Tcl1-Tg Leukemia cells were pre-incubated with 0.6 μM GS-9820, 1 μM R406, or 1 μM Ibrutinib for 1h prior to stimulation with anti-IgM. Cells were opsonized with anti-IgM on ice and levels of antibody retained at the cell surface monitored following warming to 37°C by indirect flow cytometry. MFI values were normalized to cells on ice prior to warming. Data represents an average of 3 independent experiments using different tumors. Error bars represent SEM. Data analyzed using an unpaired Student’s T-test. * = p < 0.05, ** = p< 0.005, *** = p< 0.0005, n.s = non-statistically significant.

Figure 2 GS-9820 inhibits chemotaxis and chemokine-dependent signaling

(A) Surface chemokine receptor expression was assessed in both Eμ-Tcl1-Tg leukemias and normal C57BL/6 B-cells by flow cytometry. Representative data depicted left. Data, expressed as MFI/ MFI isotype control (Filled Histogram), represent averages of 10 different tumor and 5 C57BL/6 B-cell populations. (B) CXCL12- (200 ng/ml) or CCL21- (1 μg/ml) mediated chemotaxis of Eμ-Tcl1 Tg leukemias was assessed in transwell assays (Left) and the impact of kinase inhibition (0.6 μM GS-9820, 1 μM R406, 1 μM Ibrutinib (IBR)) assessed in comparison to a DMSO control (Con) (Right). Data were normalized to medium alone (Left) or CXCL12 chemotaxis in DMSO treated cells (Right) and represent averages of 7 different tumors. (C) The impact of GS-9820 (0.6 μM) upon CXCL12-mediated (200 ng/ml) Akt phosphorylation was assessed by
western blot. Data representative of independent experiments using 2 different tumors.

Data analyzed using unpaired (A) or paired (B) Student’s T-test. Error bars represent SEM. * = p<0.05, ** = p<0.005, **** = p<0.00005, n.s = non-significantly different.

Figure 3 GS-9820 inhibits soluble factor- and HK cell-mediated microenvironmental support (A) ex vivo Eμ-Tcl1-Tg Leukemias were cultured alongside CXCL12 (500 ng/ml), BAFF (200 ng/ml), APRIL (500 ng/ml), or combinations of all 3 (Combo) in the absence (Left) or presence (Right) of GS-9820 (0.6 μM) and viability assessed by Annexin V/ PI flow cytometry after 5 days. Data were normalized to day 0 viability and represent averages of 8 different tumors. (B) Left: Eμ-Tcl1-Tg Leukemia: HK co-cultures were established prior to GS-9820 (0.6 μM) application. Viability was assessed 3 days later by Annexin V/PI flow cytometry. Right: Eμ-Tcl1-Tg Leukemias were pre-incubated with GS-9820 (0.6 μM) or Ibrutinib (IBR) (1 μM) prior to HK co-culture and cell:cell contact formation assessed by flow cytometry. Data represents averages of 7 different tumors. Data analyzed using paired Student’s T-test. Error bars represent SEM. * = p<0.05, ** = p<0.005, *** = p<0.0005, n.s = non-significantly different.

Figure 4 GS-9820 reduces cellular viability co-incident with upregulation of Bim in Eμ-Tcl1 Tg leukemias (A) Eμ-Tcl1-Tg leukemias (Left) or primary human CLL (Right) were cultured in the presence of GS-9820 or a DMSO control (Con) for 48h and assessed for viability by Annexin V/ PI flow cytometry. Data represents an average of 5 Eμ-Tcl1-Tg leukemias, and 14 CLL samples. (B) Eμ-Tcl1-Tg leukemia cells were cultured alongside GS-9820 or a DMSO control (Con) for 36h followed by western blot analysis. Left: Example blot. Right: Densitometry values of total Bim expression in GS-9820 (0.6 μM) (GS) treated cells normalized to vehicle control (Con) expressed as fold change from 6 different tumors. (C) Eμ-Tcl1-Tg leukemias were cultured for 24 or 36h alongside GS-9820 (0.6 μM) (GS) or vehicle control and lysed. Lysates were then subjected to immunoprecipitation with an anti-Bcl-2 mAb or an isotype control and the extent of Bim co-immunoprecipitation assessed by western blot. Left: Example blot.
Center: Densitometry data representing the relative fold change in Bim co-immunoprecipitation after 24h. Data are normalized to vehicle treated cells and expressed as fold change from control treatment. (C Right) Eμ-Tcl1-Tg leukemias were cultured in the presence of GS-9820 (0.6 μM) or a DMSO control for 24h followed by application of ABT199 for a further 24h in the presence of 0.6 μM GS-9820 or a DMSO control. Viability was assessed by Annexin V/ PI flow cytometry. Data represent an average of 6 different tumors, bars represent SEM. Statistical analysis was performed via paired Student’s T-test analysis. * = p<0.05, ** = p<0.005, **** = p<0.00005.

Figure 5 Genetic loss of Bim does not accelerate nor exacerbate Tcl1-induced leukemiagenesis. (A) Eμ-Tcl1-Tg animals were crossed onto a Bim^- background and monitored for survival (Left) and the number of circulating leukemia cells (Right) by flow cytometry. (T) = Terminal disease. Survival data represents sample groups of n=32 Bim^+/+ Eμ-Tcl1-Tg and n=12 Bim^- Eμ-Tcl1-Tg animals. (B) Eμ-Tcl1-Tg animals were culled and organs harvested once terminal disease status was reached. Cell counts were performed on the Blood (Left), Spleen (Center), and Lymph nodes (LN) (Right) of Bim^+/+, Bim^+/−, or Bim^- Eμ-Tcl1-Tg animals (Grey bars) and compared to aged C57BL/6 animals (Black bars). Cell count data represents median counts obtained from 8 C57BL/6, 15 Bim^+/+ Eμ-Tcl1 Tg, 17 Bim^+/− Eμ-Tcl1 Tg, and 9 Bim^- Eμ-Tcl1 Tg animals. (C) The surface phenotype of splenocytes derived from terminal Eμ-Tcl1-Tg animals were assessed by flow cytometry. Data was obtained from CD5^+ B220^+ gated cells and expressed as a ratio with the MFI of an appropriate isotype control. Data represents an average of values obtained from 16 different Eμ-Tcl1-Tg leukemias, 7 Bim^- Eμ-Tcl1-Tg leukemia, and 5 C57BL/6 B-cell populations. Survival analysis was performed using a Log-rank test and cell count data interpreted using an un-paired Student’s T-test. * = p<0.05, *** = p<0.0005, **** = p<0.00005, n.s = non-statistically different.

Figure 6 Bim^- Eμ-Tcl1 Tg leukemias remain sensitive to GS-9820-mediated inhibition of BCR-signaling and CXCL12-mediated chemotaxis but are refractive to cell death induced by GS-9820 and Ibrutinib. (A) Bim^- Eμ-Tcl1 Tg leukemia cells
were pre-incubated with GS-9820 or a DMSO control for 1h followed by stimulation with anti-mouse IgM (20 μg/ml) for 3 minutes. Akt phosphorylation status was subsequently assessed by western blot. Data are a representative example of 2 independent experiments utilizing different Bim^−/− tumors. (B) Eμ-Tcl1 Tg leukemias from both a Bim^{+/−} () and Bim^{−/−} () background were pre-incubated with GS-9820 (0.6 μM) (GS) for 1h and migration towards CXCL12 (200 ng/ml) assessed using a transwell migration assay. Data was normalized to CXCL12-mediated migration in control treated cells and expressed as a ratio. Data represents an average of values obtained from 4 different Bim^{+/+} and 6 different Bim^{−/−} tumors. (C) Bim^{+/+} and Bim^{−/−} Eμ-Tcl1 Tg leukemias were subjected to the indicated concentration of GS-9820, Ibrutinib (IBR), Fludarabine, or a DMSO control (Con) for 48h and assessed by Annexin V/ PI flow cytometry for viability. Data represents the average of values obtained from 12 Bim^{+/+} and 5 Bim^{−/−} Eμ-Tcl1 Tg Leukemias. Cell migration data was analyzed by paired Student’s T-test whilst viability assays were assessed by two-way ANOVA. * = p<0.05, **** = p<0.00005.

Figure 7 GS-9820 elicits anti-leukemic effects in vivo dependent upon the BH3-only protein Bim. (A) SCID mice were inoculated with 1x10^7 Bim^{+/+} Eμ-Tcl1 Tg splenocytes and monitored for disease by weekly blood sampling and flow cytometry. Upon leukemia detection, animals were randomized into groups (n=4 per group) receiving 10 mg/Kg GS-9820 or vehicle control per os BID and monitored for disease (Left). 4 weeks post-treatment, vehicle-recipient animals reached terminal disease and all mice were sacrificed, organs harvested and leukemia cells within the Spleen, Blood, and Peritoneal cavity (PC) enumerated (Center). (Right) Leukemia cells were purified from vehicle or GS-9820-treated animals and the expression of Bim assessed by western blot. Data is representative of two independent experiments performed using two different Bim^{+/+} tumors. (B) SCID animals were inoculated with either Bim^{+/+} or Bim^{−/−} Eμ-Tcl1 Tg tumors and leukemia-bearing animals treated with either GS-9820 or a vehicle control and monitored for disease progression as in (A) (Left; Bim^{+/+}, center). Data represent averages of 2 independent experiments using 2 different tumors per genotype expressed as % of the maximum leukemic burden achieved in vehicle treated mice (% Control). Right: 4 weeks post treatment the relative % change in CD5^+
CD19+ PBMC number was compared between GS-9820-treated mice of each genotype. (C) Animals from (B) were sacrificed when vehicle treated animals reached terminal disease and organs harvested (GS = GS-9820. Gross pathology (Left) and leukemic content in PBMCs (Center) and spleen (Right) were assessed. Data represent average values obtained from 2 independent experiments using 2 different Eμ-Tcl1 Tg leukemias per genotype with at least 7 animals present per group. Data was analyzed by paired Student’s T-test and leukemia enumeration curves were analyzed by two-way ANOVA. * = p<0.05, ** = p<0.005, *** = p<0.0005, **** = p<0.00005, n.s = non-statistically different.

Figure 8 GS-9820-mediated enhancement of anti-CD20 mAb therapy is dependent upon Bim. (A) GS-9820- (0.6 μM) or DMSO control-treated Eμ-Tcl1 Tg leukemias (n=3) (Left) or primary human CLL (n=4) (Center) were opsonized with anti-CD20 mAb (18B12 or Rituximab) or an isotype control, co-cultured with mouse (Left) or human (Center) macrophages and phagocytosis assessed by flow cytometry. (Right) SCID mice were inoculated with Bim+/+ or Bim−/− Eμ-Tcl1 Tg leukemias and randomized into treatment groups (n=5 per group) following presentation, receiving either anti-mouse CD20 (250 μg 18B12) and vehicle control or anti-CD20 (250 μg 18B12) and GS-9820 10 mg/kg per os BID. The extent of leukemia depletion was then assessed 48h later. Data were normalized to pre-treatment levels. (B) SCID mice were inoculated as in (A) and randomized into treatment groups (n=5 per group) receiving GS-9820 (10 mg/Kg), vehicle control, anti-mouse CD20 (250 μg 18B12) and vehicle or anti-CD20 and GS-9820. Mice were maintained on therapy and monitored for disease progression and overall survival. (C) SCID mice were inoculated with Bim+/+Eμ-Tcl1 Tg leukemias, as in (B), and randomized into treatment groups (n=5 per group) receiving GS-9820, ABT-199 (50-100 mg/kg), combinations of both, or a vehicle control and monitored disease progression. To assess initial sensitivity, animals were dosed with 50 mg/kg ABT199 for 7 days and escalated to 100 mg/kg for a further 14 days. Statistical analyses were performed using a paired Student’s T-test (A, B) or two-way ANOVA (C). n.s= non significant ***= p<0.0005, ****= p<0.00005. Survival analysis was performed using a log-rank test.
