Finite generation conjectures for cohomology over finite fields

Thomas Geisser

Abstract We relate motivic cohomology, and Weil-etale cohomology, both of which are finitely generated, by an intermediate cohomology theory, which we also conjecture to be finitely generated, and examine the relationship of the three theories.

1 Introduction

Bass conjectured that for a regular scheme X of finite type over the integers, the higher algebraic K-groups are finitely generated [1]. Via the localization sequence, this is equivalent to the finite generation of $K_i^n(X)$ for all X of finite type over the integers. In view of the spectral sequence from higher Chow groups to K-theory, it is a slightly stronger statement to conjecture the finite generation of higher Chow groups $CH_n(X, i)$ for all X of finite type over the integers. If we restrict ourselves to X of finite type over a finite field, then this is equivalent to the finite generation of motivic cohomology $H_i^M(X, \mathbb{Z}(n))$ for smooth X [21]. Under resolution of singularities, it implies finite generation of motivic cohomology for all X of finite type over a finite field, as one sees from the blow-up long exact sequence.

Still for X of finite type over a finite field, Lichtenbaum’s Weil-etale cohomology $H_i^W(X, \mathbb{Z}(n))$ is defined as the cohomology of $R\Gamma_G R\Gamma_{et}(\bar{X}, \mathbb{Z}(n))$, where G is the Weil-group of the finite field. Using ideas of Kahn, we showed in [5] that the finite generation of $H_i^W(X, \mathbb{Z}(n))$ for smooth and proper X is equivalent to the strong form of Tate’s and Beilinson’s conjecture. However, the groups $H_i^W(X, \mathbb{Z}(n))$ are not finitely generated if X is not smooth or not proper, and need to be modified in this case, see [6].

The purpose of this article is to relate the two finite generation conjectures with the help of an intermediate cohomology theory $H_i^F(X, \mathbb{Z}(n))$, which we
call Frobenius cohomology. It is defined as the cohomology of $R\Gamma_G\mathbb{Z}(n)(\bar{X})$, where $\mathbb{Z}(n)$ is Bloch’s cycle complex shifted appropriately. There are natural maps

$$H^i_M(X, \mathbb{Z}(n)) \xrightarrow{\alpha} H^i_F(X, \mathbb{Z}(n)) \xrightarrow{\beta} H^i_W(X, \mathbb{Z}(n)),$$

which can be studied separately. In fact they lie in a diagram

$$\xymatrix{ \cdots \ar[r] & H^i_M(X, \mathbb{Z}(n)) \ar[r]^\alpha \ar[d]^f & H^i_F(X, \mathbb{Z}(n)) \ar[r]^\beta \ar[d]^g & H^{i-1}_K(X, \mathbb{Z}(n)) \ar[r]^\gamma \ar[d]^h & \cdots }$$

with groups $H^i_K(X, \mathbb{Z}(n)) = H^i(Z(n)(\bar{X}), G)$ called Kato cohomology. They are a generalization of the integral version of Kato homology [15] (which is the case $n = \dim X$) defined in [8]. We conjecture all groups in the upper row of (1) to be finitely generated, and believe they form interesting invariants of X. For example, $H^{2n}_K(X, \mathbb{Z}(n)) = CH^n(X,G)$, and under Parshin’s conjecture, the groups $H^i_K(X, \mathbb{Z}(n))$ vanish for $i \leq n$ and are torsion for $i \neq 2n$. The first interesting example $H^3_K(X, \mathbb{Z}(2))$ consists of those elements in the cokernel of the integral cycle map $CH^2(X) \to H^{4}_{et}(X, \mathbb{Z}(2))$ which are in the image over the algebraic closure, or in classical language those elements in the unramified cohomology group $H^3_{nr}(X, \mathbb{Q}/\mathbb{Z}(2))$ which vanish in $H^3_{nr}(\bar{X}, \mathbb{Q}/\mathbb{Z}(2))$. Pirutka [18] used an idea of Colliot-Thélène to construct an element in $H^3_{nr}(X, \mathbb{Z}(2))$ for a geometrically rational surface (in all but finitely many characteristics), providing a 2-torsion element in $H^3_K(X, \mathbb{Z}(2))$.

Since the above theories exist for any scheme of finite type over a finite field, we define them in this generality and later specialize to smooth projective X.

2 Borel Moore homology theory

We consider separated schemes of finite type over a finite field \mathbb{F}_q of characteristic p, and $n \geq 0$ (the case $n < 0$ can be reduced to this case using the homotopy formula). Let φ be the geometric Frobenius, and $G = \langle \varphi \rangle$ be the Weil group of \mathbb{F}_q. Let $Z^c(n)$ be the cycle complex defined by Bloch shifted by $2n$, so that

$$H_i(Z^c(n)(X)) = CH^i(X, i-2n).$$

This agrees with motivic cohomology $H^{2d-i}_M(X, \mathbb{Z}(d-n))$ for smooth X of pure dimension d by [21].

Definition 2.1 Let A be an abelian group.

a) We define $H^i_M(X, A(n))$ to be $H_i(Z^c(n)(X) \otimes A)$.
b) We define Frobenius homology $H^F_i(X, A(n))$ to be the homology of the double complex

$$Z^c_i(n)(\tilde{X}) \otimes A \xrightarrow{\varphi^{-1}} Z^c_i(n)(\tilde{X}) \otimes A.$$

Here φ acts covariantly in \tilde{X} on cycles on $\tilde{X} \times \Delta^i$; the left and right hand complexes sit in homological degrees 1 and 0, respectively.

c) The Kato homology $H^K_i(X, A(n))$ is defined to be the homology of the complex of coinvariants $(Z^c_i(n)(\tilde{X}) \otimes A)_G$.

Note that $H^F_i(X, \mathbb{Z}/m(n))$ is isomorphic to $H^{1-i}(\text{Gal}(\mathbb{F}_q), \mathbb{Z}/m(n)(\tilde{X}))$ because with torsion coefficients, Galois cohomology can be calculated by the complex above. The following lemma follows from the definitions.

Lemma 2.2 The groups $H^F_i(X, A(n)), H^F_i(X, A(n))$ and $H^K_i(X, A(n))$ vanish for $i < 2n$. We have $H^F_{2n}(X, A(n)) \cong CH_n(X) \otimes A$ and

$$H^F_{2n}(X, A(n)) \cong H^F_{2n}(X, A(n)) \cong (CH_n(X) \otimes A)_G.$$

For all i, there are short exact sequences

$$0 \to H^F_i(\tilde{X}, A(n))_G \to H^F_i(X, A(n)) \to H^F_{i-1}(\tilde{X}, A(n))_G \to 0. \quad (2)$$

Proposition 2.3 We have an exact sequence

$$\cdots \to H^F_i(X, A(n)) \to H^F_{i+1}(X, A(n)) \to H^K_{i+1}(X, A(n)) \to H^F_{i-1}(X, A(n)) \to \cdots \quad (3)$$

All three theories are covariantly functorial for proper maps, contravariantly functorial for quasi-finite flat maps, and have localization long exact sequences.

Proof. This comes from the short exact sequence of double complexes

$$\begin{array}{ccc}
(Z^c_i(n)(\tilde{X}) \otimes A)_G & \longrightarrow & Z^c_i(n)(\tilde{X}) \otimes A \\
\downarrow & & \downarrow \\
0 & \longrightarrow & Z^c_i(n)(\tilde{X}) \otimes A \\
\downarrow & & \downarrow \\
0 & \longrightarrow & (Z^c_i(n)(\tilde{X}) \otimes A)_G
\end{array}$$

and $Z^c_i(n)(X) \otimes A \cong (Z^c_i(n)(\tilde{X}) \otimes A)_G$. Functoriality and the localization property are well-known for cycle complexes, and this carries over to $(Z^c_i(n)(X) \otimes A)_G$ by an easy diagram chase. \hspace{1cm} Q.E.D.

For a finitely generated field K of transcendence degree d over \mathbb{F}_q, define $H^F_i(K, A(j))$ to be colim $H^F_{2d+1-i}(U, A(d-j))$, where U runs through smooth schemes with function field K. By (2), the cohomology groups of K lie in short exact sequences.
0 \to H_{\mathcal{M}}^{s-t-1}(K \otimes_{\mathbb{F}_q} \bar{\mathbb{F}}_q, A(s-n))_G \to H_{\mathcal{F}}^{s-t}(K, A(s-n)) \to \\
\quad H_{\mathcal{M}}^{s-t}(K \otimes_{\mathbb{F}_q} \bar{\mathbb{F}}_q, A(s-n))^G \to 0, \quad (4)

where $K \otimes_{\mathbb{F}_q} \bar{\mathbb{F}}_q$ is a finite product of fields.

Proposition 2.4 We have functorial spectral sequences

\[
E_{s,t}^1 = \bigoplus_{X(o)} H_{\mathcal{M}}^{s-t}(k(x), A(s-n)) \Rightarrow H^{s+t}_c(X, A(n));
\]

\[
\bar{E}_{s,t}^1 = \bigoplus_{X(o)} H_{\mathcal{F}}^{s-t}(k(x), A(s-n)) \Rightarrow H^{s+t+1}_F(X, A(n)).
\]

Proof. This follows with the niveau filtration, together with the fact that

\[H^{s+t}_c(K, A(n)) := \operatorname{colim} H^{s+t}_c(U, A(n)) \cong H_{\mathcal{M}}^{s-t}(K, A(s-n))\]

and $H^{s+t+1}_F(K, A(n)) \cong H_{\mathcal{F}}^{s-t}(K, A(s-n))$ for a field K of transcendence degree s over the base field. \[Q.E.D.\]

2.1 Integral coefficients

Conjecture 2.5 The groups $H_c^i(X, \mathbb{Z}(n))$, $H_F^i(X, \mathbb{Z}(n))$ and $H^K_i(X, \mathbb{Z}(n))$ are finitely generated for any i, n and X.

By localization, it suffices to consider the case of smooth and proper X (assuming that every finitely generated field over \mathbb{F}_q has a smooth and proper model). This case will be considered in detail below.

Recall from [1] Parshin’s conjecture P_n, stating that $CH_n(X, i)$ is torsion for $i \neq 0$ and X smooth and projective.

Proposition 2.6 Assume Conjecture P_n. Then

\[H_{\mathcal{M}}^{s-t}(k, \mathbb{Z}(s-n)) \cong H_{\mathcal{F}}^{s-t}(k, \mathbb{Z}(s-n))\]

for $t \geq n$. For $t = n - 1$, the left hand side vanishes, and $H_{\mathcal{F}}^{s-n+1}(k, \mathbb{Z}(s-n)) \cong K_{s-n}^M(k \otimes_{\mathbb{F}_q} \bar{\mathbb{F}}_q)_G$. For $t < n - 1$, both sides vanish.

Proof. It suffices to show that the second map and the composition

\[H_{\mathcal{M}}^{s-t}(k, \mathbb{Z}(s-n)) \to H_{\mathcal{F}}^{s-t}(k, \mathbb{Z}(s-n)) \to H_{\mathcal{F}}^{s-t}(k, \mathbb{Z}(s-n))\]

are isomorphism for $t \geq n$. The total composition is an isomorphism for $t \geq n - 1$ by the Beilinson-Lichtenbaum conjectures. For the second map,
we compare to the analog short exact sequence for etale cohomology. By Parshin's conjecture, the groups $H^i_M(k, \mathbb{Z}(s-n))$ are torsion for $i < s-n$, so that Galois cohomology and cohomology of the Weil-group G agree for those groups. The result now follows with the Beilinson-Lichtenbaum conjectures by comparing with the Hochschild-Serre spectral sequence for Galois cohomology (for the finite product of fields $k \otimes \overline{\mathbb{F}}_q$).

Q.E.D.

Definition 2.7 We define the Kato complex $KC_n(X)$ of weight n to be the complex

$$
\bigoplus_{X(n)} \mathbb{Z} \leftarrow \bigoplus_{X(n+1)} (k(x) \otimes \overline{\mathbb{F}}_q) \leftarrow \cdots \leftarrow \bigoplus_{X(s)} K^M_{s-n}(k(x) \otimes \overline{\mathbb{F}}_q) G \leftarrow \cdots,
$$

with the summand indexed by $X(s)$ in degree $s-n$. The differentials are induced by boundary maps of higher Chow groups of discrete valuation rings.

Corollary 2.8 Assuming conjecture P_n, we have

$$H^K_i(X, \mathbb{Z}(n)) \cong H^{i-2n}(KC_n(X)).$$

In particular, $H^K_i(X, \mathbb{Z}(n))$ vanishes unless $2n \leq i \leq n + d$.

Proof. Compare the spectral sequences of Proposition 2.4 and use Proposition 2.6. Q.E.D.

2.2 Finite coefficients

Considering finite coefficients allows us to remove the hypothesis on Parshin’s conjecture and to compare to etale homology. Recall the sequence

$$
\cdots \rightarrow H^i_c(X, \mathbb{Z}/m(n)) \xrightarrow{\alpha} H^F_i(X, \mathbb{Z}/m(n)) \xrightarrow{\beta} H^K_i(X, \mathbb{Z}/m(n)) \rightarrow \cdots (5)
$$

Conjecture 2.5 implies the weaker

Conjecture 2.9 All terms in the sequence (5) are finite for all i, n, X.

Let $f : X \rightarrow \mathbb{F}_q$ be the structure map.

Definition 2.10 For $p \nmid m$ we define $H^i_{et}(X, \mathbb{Z}/m(n))$ as the (Borel-Moore) etale homology $H^{-i}(X_{et}, Rf^! \mu_{m}^{\otimes -n}) = H^{-i}(\text{Gal}(\mathbb{F}_q), R\Gamma_{et}(X, Rf^! \mu_{m}^{\otimes -n}))$.

Since $\text{Gal}(\mathbb{F}_q)$ has cohomological dimension 1 and $Rf^! \mu_{m}^{\otimes -n}$ is concentrated in negative degrees, we have

Lemma 2.11 The groups $H^i_{et}(X, \mathbb{Z}/m(n))$ vanish for $i < -1$.
Writing $\mathbb{Z}^c/m(n)$ for $\mathbb{Z}^c(n) \otimes \mathbb{Z}/m$, we showed in [7]:

Theorem 2.12 We have $Rf^!\mathbb{Z}/m \cong \mathbb{Z}^c/m(0)$ for any m. In particular $H^i_{\text{et}}(X, \mathbb{Z}/m(n))$ agrees with the ith etale hypercohomology of $\mathbb{Z}^c/m(n)$ if $p \nmid m$ and $n \leq 0$.

If $p \nmid m$ and k contains the m-th roots of unity, then cap-product with $\mathbb{Z}/m(1)(k) \cong \mu_m(k)$, defines a map $f^*\mu_m \otimes \mathbb{Z}^c/m(n) \to \mathbb{Z}^c/m(n-1)$ of complexes of sheaves on X/k, inducing a map

$$\mathbb{Z}^c/m(n) \to f^*\mu_m^\otimes -n \otimes \mathbb{Z}^c/m(0) \cong f^*\mu_m^\otimes -n \otimes Rf^!\mathbb{Z}/m \cong Rf^!\mu_m^\otimes -n.$$

This map is in general not an isomorphism for $n > 0$; for example, the left hand side vanishes for $n > \dim X$, but the right hand side is periodic in n.

This construction induces a map $\mathbb{Z}^c/m(n)(\bar{X}) \to R\Gamma_{\text{et}}(\bar{X}, \mathbb{Z}^c/m(n)) \to R\Gamma_{\text{et}}(\bar{X}, Rf^!\mu_m^\otimes -n)$, hence $\gamma : H_{i+1}^F(X, \mathbb{Z}/m(n)) \to H^i_{\text{et}}(X, \mathbb{Z}/m(n))$ by taking the cone of $\varphi - 1$. The shift in degrees stems from homological notation for Galois cohomology for the former, and cohomological notation for the latter.

Theorem 2.13 Let $n = 0$. Then Conjecture [2] holds for $p \nmid m$, and for any m under resolution of singularities.

Proof. If $n = 0$, then γ is an isomorphism by [7], hence Frobenius homology is finite. But by Jannsen-Kerz-Saito [16], Kato homology is finite.

If $m = p^r$, then Kato homology is finite under resolution of singularities. To show finiteness of Frobenius homology, one reduces by the usual device to the case that X is smooth and proper of dimension d. In this case, γ is isomorphic to the finite group $H^{d-i}_{\text{et}}(X, \nu_d^r)$ by Theorem [2.12] and the isomorphism $\mathbb{Z}^c/p^r(0) \cong \nu_d^r[d]$. Q.E.D.

As in Proposition [2.4], we obtain

Proposition 2.14 For $p \nmid m$ we have a spectral sequence

$$\tilde{E}^1_{s,t} = \bigoplus_{X(\sigma)} H^{s-t}_{\text{et}}(k(x), \mu_m^\otimes s-n) \Rightarrow H^{s+t}_{\text{et}}(X, \mathbb{Z}/m(n))$$

The \tilde{E}^1-terms lie in short exact sequences

$$0 \to H^{s-t-1}_{\text{et}}(k(x) \otimes_{\mathbb{F}_q} \overline{\mathbb{F}_q}, \mu_m^\otimes s-n)_G \to H^{s-t}_{\text{et}}(k(x), \mu_m^\otimes s-n) \to H^{s-t-1}_{\text{et}}(k(x) \otimes_{\mathbb{F}_q} \overline{\mathbb{F}_q}, \mu_m^\otimes s-n)_G \to 0.$$
Proposition 2.15 For k a field of transcendence degree s over \mathbb{F}_q and $p \nmid m$,

$$H^s_{\text{et}}(k, \mathbb{Z}(s-n)) \cong H^s_F(k, \mathbb{Z}(s-n)) \cong H^s_{\text{et}}(k, \mu_m^{s-n})$$

for $t \geq n$. The left term vanishes for $t < n$, the middle term vanishes for $t < n - 1$ and

$$H^{s-n+1}_F(k, \mathbb{Z}(s-n)) \cong H^{s-n}_M(k \otimes_{\mathbb{F}_q} \overline{\mathbb{F}}_q, \mathbb{Z}(s-n)) \cong H^{s-n}_F(k, \mu_m^{s-n})$$

The right term vanishes for $t < -1$.

Proof. It suffices to show that the maps

$$H^s_{\text{et}}(k, \mathbb{Z}(s-n)) \to H^{s-t}_F(k, \mathbb{Z}(s-n)) \to H^{s-t}_{\text{et}}(k, \mathbb{Z}(s-n))$$

are isomorphism for $t \geq n$. The total composition is an isomorphism by the Beilinson-Lichtenbaum conjectures. Comparing the sequences (4) and (7), it follows that the second map is an isomorphism by the Beilinson-Lichtenbaum conjectures for the finite product of fields $k \otimes_{\mathbb{F}_q} \overline{\mathbb{F}}_q$.

Q.E.D.

Definition 2.16 We define $KC_n/m(X)$ to be the complex

$$\bigoplus_{X(n)} \mathbb{Z}/m \leftarrow \bigoplus_{X(n+1)} H^1_{\text{et}}(k(x) \otimes_{\mathbb{F}_q} \overline{\mathbb{F}}_q, \mathbb{Z}(1)) \leftarrow \cdots$$

$$\leftarrow \bigoplus_{X(1)} H^{s-n}_{\text{et}}(k(x) \otimes_{\mathbb{F}_q} \overline{\mathbb{F}}_q, \mathbb{Z}(s-n)) \leftarrow \cdots,$$ \hspace{1cm} (8)

with the summand indexed by $X(s)$ in degree $s-n$.

As in the integral case we obtain:

Corollary 2.17 We have

$$H^K_i(X, \mathbb{Z}/m(n)) \cong H_{i-2n}(KC_n/m(X)),$$

and these groups vanish unless $2n \leq i \leq n + d$.

3 Smooth and proper X

In this section we assume that X is smooth and proper over \mathbb{F}_q, and discuss what other conjectures (like Parshin’s conjecture) imply for the cohomology groups defined above. We use cohomological notation because readers may be more familiar with it. Let $\mathbb{Z}(n)$ be Bloch’s higher cycle complex indexed by codimension, so that $\mathbb{Z}(n)(X)^i = z^n(X, 2n - i)$ and $H^i_{\text{Zar}}(X, \mathbb{Z}(n)) = \cdots$
$\text{CH}_{d-n}(X, 2n - i)$ is motivic cohomology for smooth X of pure dimension d.

If X is smooth of pure dimension d, we set

\begin{align*}
H^F_{i}(X, A(n)) &= H^{2d+1-i}_F(X, A(d-n)) \\
H^K_{i}(X, A(n)) &= H^{2d-i}_K(X, A(d-n)).
\end{align*}

The following are reformulations of Lemma 2.2:

Lemma 3.1 The groups $H^F_{i}(X, A(n))$ vanish for $i > 2n + 1$, and in general there are short exact sequences

\[0 \to H^{i-1}_M(\bar{X}, A(n))_G \to H^F_{i}(X, A(n)) \to H^i_M(\bar{X}, A(n))_G \to 0. \]

The groups $H^K_{i}(X, A(n))$ vanish for $i > 2n$, and

\[H^{2n}_K(X, A(n)) \cong H^{2n+1}_F(X, A(n)) \cong (\text{CH}^n(\bar{X}) \otimes A)_G. \]

Proposition 3.2 We have a commutative diagram with exact rows

\[
\begin{array}{cccccc}
\longrightarrow & H^1_M(X, Z(n)) & \alpha \longrightarrow & H^1_F(X, Z(n)) & \beta \longrightarrow & H^{i-1}_K(X, Z(n)) \\
\downarrow f & & \downarrow g & & \downarrow h & \\
\longrightarrow & H^1_M(X, Z(n)) & \longrightarrow & H^i_W(X, Z(n)) & \longrightarrow & H^{i-1}_M(X, Q(n)) \longrightarrow
\end{array}
\]

Proof. The upper row is exact by Proposition 2.3, and the lower row is the exact sequence relating etale cohomology to Weil-etale cohomology [5]. The maps f and g are induced by the change of topology from the Zariski to the etale site.

Q.E.D.

Remark. The vertical maps are isomorphisms after tensoring with Q, because motivic cohomology and etale hypercohomology of the motivic complex agree with rational coefficients.

Conjecture 3.3 The bold face terms are finitely generated for all i, n and X.

Finite generation of $H^i_M(X, Z(n))$ is a generalization of Bass’ conjecture, and finite generation of $H^i_W(X, Z(n))$ is equivalent to Tate’s and Beilinson’s conjecture. Lichtenbaum conjectured [17] also finite generation for the etale cohomology groups, except $H^{2n+2}_{et}(X, Z(n)) \cong H^2(G_k, H^{2n}_{et}(\bar{X}, Z(n)))$:

Conjecture 3.4 The group $H^i_M(X, Z(n))$ is finite for all $i \neq 2n, 2n + 1$, finitely generated for all $i = 2n$, and of cofinite type for $i = 2n + 2$.

Lemma 3.5 The map $h : H^i_K(X, Z(n)) \to H^i_M(X, Q(n))$ is bijective for $i < n$ and injective for $i = n$.
Proof. By the Beilinson-Lichtenbaum conjectures, both the map f as well as the map g are isomorphism for $i \leq n + 1$ and injective for $i = n + 2$. Q.E.D.

3.1 The case $n = 0, 1, 2, d$

Conjecture 3.3 holds for $n = 0$. In fact we have $H_i^p(X, \mathbb{Z}) \cong H_i^p(X, \mathbb{Z}) \cong \mathbb{Z}$ for $i = 0, 1$, $H_i^0(X, \mathbb{Z}) \cong H_i^0(X, \mathbb{Z}) \cong \mathbb{Z}$, and all other homology groups vanish.

Proposition 3.6 Let $n = 1$.

a) For $i = 1$, the four left groups in (11) are isomorphism to $O_X(X)^\times$, and for $i = 2$, they are isomorphic to $Pic(X)$.

b) The groups $H_i^K(X, \mathbb{Z}(1))$ vanish for $i \neq 2$, and $H_2^K(X, \mathbb{Z}(1)) \cong NS(\bar{X})_G$.

c) For $i = 3$,

\[
H_3^M(X, \mathbb{Z}(1)) = 0 \\
H_3^{et}(X, \mathbb{Z}(1)) \cong Br(X) \\
H_3^F(X, \mathbb{Z}(1)) \cong NS(\bar{X})_G,
\]

and $H_3^W(X, \mathbb{Z}(1))$ is an extension of $Br(\bar{X})^G$ by $NS(\bar{X})_G$.

d) All groups in (11) are finitely generated, except possibly $H_3^{et}(X, \mathbb{Z}(1)) \cong Br(X)$ and $H_3^{W}(X, \mathbb{Z}(1))$, whose finiteness is equivalent to Tate’s conjecture for divisors.

Proof. This follows from $\mathbb{Z}(1) \cong G_m[-1]$, Lemma 3.1 and $Pic^0(\bar{X})_G = 0$. Q.E.D.

Now consider the case $n = 2$. According to Parshin’s conjecture and Lemma 3.5, the groups $H_2^K(X, \mathbb{Z}(2))$ vanish for $i \leq 2$, and $H_2^K(X, \mathbb{Z}(2)) \cong CH^2(\bar{X})_G$. To describe the remaining group, let $\epsilon : \bar{X}_{et} \to X_{zar}$ be the canonical map of sites, and τ the composition of the boundary map in the lower row of (11) with the composition

\[
H^4_{et}(X, \mathbb{Z}(2)) \to H^0(X, R^4\epsilon_*\mathbb{Z}(2)) \cong H^0(X, R^4\epsilon_*\mathbb{Q}/\mathbb{Z}(2)) = H_{nr}^3(X, \mathbb{Q}/\mathbb{Z}(2)).
\]

The last term is known under the name unramified cohomology.

Proposition 3.7 The group $\tau_0 H_2^3(X, \mathbb{Z}(2))$ is isomorphic to the cohomology of the sequence

\[
H^2_M(X, \mathbb{Q}(2)) \to H^3_{nr}(X, \mathbb{Q}/\mathbb{Z}(2)) \to H^3_{nr}(\bar{X}, \mathbb{Q}/\mathbb{Z}(2))^G.
\]

Proof. The first statement follows from a diagram chase in (11), noting that due to the Beilinson-Lichtenbaum conjecture the maps f and g are injective,
coker $f = H^0(X, R^4\epsilon_*Z(2))$ and
\[\text{coker } g = \text{coker } (H^3_M(X, Z(2))^G \to H^3_{et}(\overline{X}, Z(2))^G) \subseteq H^0(\overline{X}, R^4\epsilon_*Z(2))^G. \]
Q.E.D.

Corollary 3.8 Under Parshin’s conjecture there is an exact sequence
\[0 \to H^3_K(X, Z(2)) \to H^3_{nr}(X, Q/Z(2)) \to H^3_{et}(\overline{X}, Z(2))^G. \]
Thus $\text{tor } H^3_K(X, Z(2))$ consists of those elements in the cokernel of the integral cycle map, whose pull back to the algebraic closure $H^3_{et}(\overline{X}, Z(2))^G$ lie in the image of the cycle map $\text{CH}^n(\overline{X}) \to H^{2n}_{et}(\overline{X}, Z(n))$.

Proof. Under Parshin’s conjecture, $H^3_K(X, Z(2))$ is torsion. Furthermore, coker f is the obstruction to the integral Tate conjecture, and coker g is the cokernel of the map $\text{CH}^2(X)^G \to H^2_{et}(\overline{X}, Z(2))^G$. Q.E.D.

Corollary 3.9 If X is geometrically rational, then there are isomorphisms $H^3_{nr}(X, Q/Z(2)) \cong H^3_K(X, Z(2))$.

Proof. For rational Z over a field k, we have $H^3_{nr}(Z, Q/Z(2)) = H^3_{et}(k, Q/Z(2))$, and $H^3_M(Z, Q(2)) \cong H^0(Z, H^2(Q(2))) \cong H^3_M(k, Q(2))$ by [3, 2.1.9], and for k the algebraic closure of a finite field these groups vanish. Q.E.D.

Pirutka [18] constructed an element in $H^3_{nr}(X, Z/2)$ for X a geometrically birational variety of dimension 5, giving a non-trivial 2-torsion element in $H^3_K(X, Z(2))$.

The following result is a consequence of the work of Jannsen, Kerz and Saito, see [8]:

Theorem 3.10 If $n = \dim X$, then Conjecture 3.3 is equivalent to conjecture P_0. In this case, $H^i_K(X, Z(n)) = 0$ for $i \neq 2n$, and $H^{2n}_{et}(X, Z(n)) \cong \mathbb{Z}^\pi_0(X)$.

3.2 Assuming Parshin’s conjecture

The cohomological Parshin conjecture P^n of [9] states that $H^i_M(X, Q(n)) = 0$ for smooth and proper X and $i \neq 2n$. This is equivalent to isomorphisms $H^i_{et}(X, Z(n)) \cong H^i_{W}(X, Z(n))$ for $i \leq 2n$, and injectivity in degree $2n + 1$ by [5]. By Lemma 3.5 Parshin’s conjecture implies that the groups $H^i_K(X, Z(n))$ vanish for $i < n$ if $n > 0$, and that they torsion for $i \leq 2n$. Diagram (11) for $i < 2n$ becomes
Finite generation conjectures for cohomology over finite fields

\[\cdots \rightarrow H^i_{\mathcal{M}}(X, \mathbb{Z}(n)) \rightarrow H^i_F(X, \mathbb{Z}(n)) \rightarrow H^{i-1}_{K}(X, \mathbb{Z}(n)) \rightarrow \cdots \]

\[H^i_{et}(X, \mathbb{Z}(n)) \rightarrow H^i_W(X, \mathbb{Z}(n)) \]

(12)

In degree \(2n+1\) we get

\[0 \rightarrow CH^n(X)_{\varphi} \rightarrow H^{2n}_K(X, \mathbb{Z}(n)) \rightarrow 0 \]

\[\cdots \]

\[H^{2n+1}_{et}(X, \mathbb{Z}(n)) \rightarrow H^{2n+1}_W(X, \mathbb{Z}(n)) \rightarrow CH^n(X)_{\mathbb{Q}} \rightarrow H^{2n+2}_{et}(X, \mathbb{Z}(n)) \]

The cokernel of the lower right horizontal map is the (conjecturally finite) group \(H^{2n+2}_W(X, \mathbb{Z}(n))\). In degree \(2n\) we have

\[H^{2n-2}_K(X, \mathbb{Z}(n)) \rightarrow CH^n(X)_{\alpha} \rightarrow H^{2n}_F(X, \mathbb{Z}(n)) \rightarrow H^{2n-1}_K(X, \mathbb{Z}(n)) \rightarrow 0 \]

\[H^{2n}_{et}(X, \mathbb{Z}(n)) \rightarrow H^{2n}_W(X, \mathbb{Z}(n)) \]

(13)

We get an exact sequence

\[H^{2n-2}_K(X, \mathbb{Z}(n)) \rightarrow \ker f \rightarrow \ker g \rightarrow H^{2n-1}_K(X, \mathbb{Z}(n)) \rightarrow \coker f \rightarrow \coker g \rightarrow 0. \]

By Corollary 5.4 below, \(f\) has conjecturally the same kernel and cokernel as the cycle map, whereas \(g\) is related to the cycle map over the algebraic closure.

\[0 \rightarrow H^{2n-1}_{\mathcal{M}}(\bar{X}, \mathbb{Z}(n))_{G} \rightarrow H^{2n}_F(\bar{X}, \mathbb{Z}(n)) \rightarrow CH^n(X)^G \rightarrow 0 \]

\[0 \rightarrow H^{2n-1}_{et}(\bar{X}, \mathbb{Z}(n))_{G} \rightarrow H^{2n}_W(\bar{X}, \mathbb{Z}(n)) \rightarrow H^{2n}_{et}(\bar{X}, \mathbb{Z}(n))^G \rightarrow 0 \]

Thus Kato homology measures the difference of the failure of the integral Tate conjecture over \(\mathbb{F}_q\) and over its algebraic closure.

4 The algebraic closure of a finite field

As we saw, the map \(H^i_{\mathcal{M}}(X, \mathbb{Z}(n)) \rightarrow H^i_K(X, \mathbb{Z}(n))\) is controlled by \(H^i_K(X, \mathbb{Z}(n))\). The maps \(H^i_F(X, \mathbb{Z}(n)) \rightarrow H^i_W(X, \mathbb{Z}(n))\) and \(H^i_F(X, \mathbb{Z}/m(n)) \rightarrow H^i_{et}(X, \mathbb{Z}/m(n))\) arise by taking Galois descent on the maps

\[H^i_{\mathcal{M}}(\bar{X}, \mathbb{Z}(n)) \rightarrow H^i_{et}(\bar{X}, \mathbb{Z}(n)). \]
It is thus important to get some ideas of the properties of this map. Since it is an isomorphism rationally, we focus on finite coefficients. Assume that $p \not| m$. By the proper base change theorem, $H^i_{\text{et}}(\bar{X}, \mathbb{Z}/m(n))$ is finite, and replacing $\mathbb{Z}/m(n)$ by $\mu_m^{\otimes n}$, we have a localization long exact sequence (the difference is that the latter is non-trivial for negative n). The question is if $H^i_{\text{M}}(\bar{X}, \mathbb{Z}/m(n))$ is finite. There are examples of Schoen showing that for certain threefolds over an algebraically closed field of characteristic 0, the group $\text{CH}^2(\bar{X})/l$ is not finite, which implies that $H^4_{\text{M}}(\bar{X}, \mathbb{Z}/l(2))$ cannot be finite. However, we are not aware of any examples in characteristic p.

For $N \geq i$, consider the following diagram

$$
\begin{array}{ccc}
H^i_{\text{M}}(\bar{X}, \mathbb{Z}/m(n)) & \longrightarrow & H^i_{\text{et}}(\bar{X}, \mu_m^{\otimes n}) \\
\cup_{S^n-m} & & \\
H^i_{\text{M}}(\bar{X}, \mathbb{Z}/m(N)) & \longrightarrow & H^i_{\text{et}}(\bar{X}, \mu_m^{\otimes N}).
\end{array}
$$

The lower row is an isomorphism by the Beilinson-Lichtenbaum conjecture, and finiteness of $H^i_{\text{M}}(\bar{X}, \mathbb{Z}/m(n))$ is equivalent to finiteness of the kernel of the cup-product with the Bott-element.

If $p = \text{char } k$, then $H^i_{\text{M}}(\bar{X}, \mathbb{Z}/p(n))$ has no localization long exact sequence. The groups $H^2_{\text{et}}(\bar{X}, \mathbb{Z}/p(1))$ and $H^3_{\text{et}}(\bar{X}, \mathbb{Z}/p(1))$ both contain the non-divisible p-torsion of the Brauer group $H^3(\bar{X}_\text{et}, \mathbb{Z}(1))$. For a supersingular abelian surface, this group contains the field $\bar{\mathbb{F}}_q$, hence is not finitely generated (however, its Galois invariants and coinvariants are finite). According to Milne, the unipotent part of $H^i(\bar{X}_\text{et}, \mathbb{Z}/p(n))$ and $H^{2d+1-i}(\bar{X}_\text{et}, \mathbb{Z}/p(d-n))$ are in duality. There is a long exact sequence

$$
\cdots \rightarrow H^i_{\text{M}}(\bar{X}, \mathbb{Z}/p(n)) \rightarrow H^i_{\text{et}}(\bar{X}, \mathbb{Z}/p(n)) \rightarrow H^{i-1-n}_{\text{Zar}}(\bar{X}, R^1\epsilon_*\nu^n) \rightarrow \cdots.
$$

By the above example, $H^0_{\text{Zar}}(\bar{X}, R^1\epsilon_*\nu^1)$ and $H^2_{\text{Zar}}(\bar{X}, R^1\epsilon_*\nu^1)$ are infinite, but we don’t know any example where $H^j_{\text{Zar}}(\bar{X}, R^1\epsilon_*\nu^n)$ is infinite for $j \neq n - 1, n$.

Regarding the integral structure of motivic cohomology, it is an interesting question if there is a presentation of the form

$$
H^i_{\text{M}}(\bar{X}, \mathbb{Z}(n)) \cong \mathbb{Z}^r \oplus (\mathbb{Q}/\mathbb{Z})^c \oplus (\mathbb{Q}_p/\mathbb{Z}_p)^{c_p} \oplus \text{finite}
$$

with $r = 0$ unless $i = 2n$. In this case, c would be independent of n as soon as $n \geq i$, and it would be interesting to study the variation of c for $n < i$. The analog statement for etale cohomology is wrong due to unipotent groups appearing, see the Brauer groups above.
5 The integral Tate conjecture

In this section, X is smooth and proper over a finite field \mathbb{F}_q.

Proposition 5.1 Fix an integer n and a scheme X, and consider the following statements:

a) Lichtenbaum’s conjecture \[3,4\]

b) The groups $H^i_W(X, \mathbb{Z}(n))$ are finitely generated.

c) Parshin’s conjecture.

Then $a) \iff b) \implies c)$.

Proof. $a) \implies c)$ This follows because $H^i_{et}(X, \mathbb{Q}(n)) \cong H^i_M(X, \mathbb{Q}(n))$, and the former vanishes for $i \neq 2n$ by hypothesis.

To show the equivalence of $a)$ and $b)$ we can assume Parshin’s conjecture, and consider the exact sequence of \[5\]

$$
\cdots \to H^i_{et}(X, \mathbb{Z}(n)) \to H^i_W(X, \mathbb{Z}(n)) \to H^i_M^{-1}(X, \mathbb{Q}(n)) \to \cdots.
$$

Then $a)$ and $b)$ imply each other for $i \leq 2n$ and $i > 2n + 2$, and we are left with

$$
0 \to H^{2n+1}_{et}(X, \mathbb{Z}(n)) \to H^{2n+1}_W(X, \mathbb{Z}(n)) \to H^{2n}_M(X, \mathbb{Q}(n))
\to H^{2n+2}_{et}(X, \mathbb{Z}(n)) \to H^{2n+2}_W(X, \mathbb{Z}(n)) \to 0.
$$

By the Weil-conjectures and counting coranks one sees that the corank C of $H^{2n+2}_{et}(X, \mathbb{Z}(n)) \cong H^{2n+1}_{et}(X, \mathbb{Q}/\mathbb{Z}(n))$ and of $H^{2n}_M(X, \mathbb{Q}/\mathbb{Z}(n))$ agree.

a) \implies b): Finiteness of $H^{2n+1}_{et}(X, \mathbb{Z}(n))$ implies that C agrees with the dimension of $H^{2n}_{et}(X, \mathbb{Q}(n))$, and since $H^{2n+2}_W(X, \mathbb{Z}(n))$ is torsion, $H^{2n+1}_W(X, \mathbb{Z}(n))/\mathrm{tor}$ must be a lattice of the same rank. Moreover $H^{2n}_M(X, \mathbb{Q}(n))$ surjects onto the divisible part of $H^{2n+2}_{et}(X, \mathbb{Z}(n))$, hence $H^{2n+2}_W(X, \mathbb{Z}(n))$ is finite.

b) \implies a) We see that $H^{2n+1}_{et}(X, \mathbb{Z}(n))$ is finite, because $H^{2n+1}_W(X, \mathbb{Q}(n)) \cong H^{2n}(X, \mathbb{Q}(n)) \cong \mathbb{Z}$. For the same reason, $H^{2n+2}_{et}(X, \mathbb{Z}(n))$ is an extension of the finite group $H^{2n+2}_W(X, \mathbb{Z}(n))$ and a torsion divisible group of finite corank.

Q.E.D.

Let us relate the cycle map to the change of topology map for motivic cohomology. Using the functorial identification $\mathbb{Z}/m(n) \cong \mathbb{Z}/m$ of \[11\] and $\mathbb{Z}/p^r(n) \cong \nu^r[-n]$ of \[10\], the l-adic cycle map can be factored as follows:

$$
c : H^i_M(X, \mathbb{Z}(n)) \otimes \mathbb{Z}_l \xrightarrow{\nu} H^i_{et}(X, \mathbb{Z}(n)) \otimes \mathbb{Z}_l \xrightarrow{\nu} H^i_{et}(X, \mathbb{Z}(n))^\wedge l \xrightarrow{\nu} H^i_{et}(X, \mathbb{Z}(n)).
$$

Here we write $A^\wedge l$ for the l-adic completion, and $H^i_{et}(X, \mathbb{Z}_l(n))$ for the l-adic cohomology $\lim H^i_{et}(X, \mathbb{Z}/l^r(n))$ to distinguish it from the hypercohomology of $\mathbb{Z}(n) \otimes \mathbb{Z}_l$.

Lemma 5.2 The completion map v is surjective.

Proof. The \mathbb{Z}_l-module $H^i_{et}(X, \mathbb{Z}(n))^\wedge \subseteq H^i_{et}(X, \hat{\mathbb{Z}}_l(n))$ is finitely generated and the cokernel of v is l-divisible by [12, (4.2)], hence must be trivial. $Q.E.D.$

Proposition 5.3 We have an exact sequence

$$0 \to \ker u \to \ker c \to \text{div} H^i_{et}(X, \mathbb{Z}(n)) \otimes \mathbb{Z}_l \to \coker u \to \coker c \to T_l H^{i+1}_{et}(X, \mathbb{Z}(n)) \to 0.$$

The groups $\ker u$ and $\coker u$ are torsion.

Proof. This is the kernel-cokernel sequence of the composition $c = (wv) \circ u$. The kernel of wv is the kernel of v, which is the group of divisible elements of $H^i_{et}(X, \mathbb{Z}(n)) \otimes \mathbb{Z}_l$. The cokernel of wv is the Tate module $T_l H^{i+1}_{et}(X, \mathbb{Z}(n))$. $Q.E.D.$

Corollary 5.4 Under Conjecture [3.4], the kernel and cokernel of u are equal to the kernel and cokernel of the cycle map, respectively.

Proof. If $i \neq 2n$, then all groups in the factorization of c are expected to be finite, and v and w are isomorphisms. The cycle map $CH^n(X) \otimes \mathbb{Z}_l \to H^i_{et}(X, \hat{\mathbb{Z}}(n))$ is rationally surjective if and only if $T_l H^{i+1}_{et}(X, \mathbb{Z}(n))$ vanishes, hence Tate’s conjecture is equivalent to $\text{Div} H^{i+1}_{et}(X, \mathbb{Z}(n))$ torsion free. It is rationally injective (Beilinson’s conjecture) if and only if $\text{div} H^{i+1}_{et}(X, \mathbb{Z}(n))$ is torsion. $Q.E.D.$

5.1 The algebraic closure of a finite field

Tate’s original conjecture involved cycles over the algebraic closure and taking invariants under the Galois group. Let $X_r = X \times_{\mathbb{F}_q} \mathbb{F}_{q^r}$, $G_r = Gal(\mathbb{F}_q/\mathbb{F}_{q^r})$ and consider the colimit over the composition
Finite generation conjectures for cohomology over finite fields

\[H^*_M(X_r, \mathbb{Z}(n)) \otimes \mathbb{Z}_l \xrightarrow{\gamma} H^*_M(X_r, \mathbb{Z}(n)) \otimes \mathbb{Z}_l \xrightarrow{v} H^*_\text{et}(X_r, \mathbb{Z}(n))^\wedge \xrightarrow{w} H^*_\text{et}(X_r, \hat{\mathbb{Z}}(n)) \rightarrow H^*_\text{et}(\bar{X}, \hat{\mathbb{Z}}(n))^G_r. \] (14)

It is clear that the first two groups commute with the colimit in \(r \), so if we write \(\gamma_*M = \text{colim} M^G_r \) for the largest continuous submodule of a Galois-module, then the colimit takes the form

\[\bar{c} : H^i_M(\bar{X}, \mathbb{Z}(n)) \otimes \mathbb{Z}_l \xrightarrow{\bar{u}} H^i_M(\bar{X}, \mathbb{Z}(n)) \otimes \mathbb{Z}_l \xrightarrow{\bar{v}} \text{colim} H^i_\text{et}(X_r, \mathbb{Z}(n))^\wedge \xrightarrow{\bar{w}} \text{colim} H^i_\text{et}(X_r, \hat{\mathbb{Z}}(n)) \rightarrow \gamma_*H^i_\text{et}(\bar{X}, \hat{\mathbb{Z}}(n)). \] (15)

Corollary 5.5 Under Conjecture \(\Delta \), \(\text{coker} \bar{c} = \text{coker} \bar{u} \).

Note that surjectivity of \(v \) implies that \(\text{colim} H^i_\text{et}(X_r, \mathbb{Z}(n))^\wedge \) surjects onto \(H^i_\text{et}(\bar{X}, \mathbb{Z}(n))^\wedge \), but the example of \(\text{Br}(X) = H^2_\text{et}(X, \mathbb{Z}(1)) \) shows that this surjection is not an isomorphism in general.

References

1. H. Bass, Some problems in classical algebraic K-theory. Algebraic K-theory, II: “Classical” algebraic K-theory and connections with arithmetic (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), pp. 3–73. Lecture Notes in Math., Vol. 342, Springer, Berlin, 1973.
2. S. Bloch, Algebraic cycles and higher K-theory. Adv. in Math. 61 (1986), no. 3, 267–304.
3. J.L. Colliot-Thélène, K-theory and algebraic geometry: connections with quadratic forms and division algebras (Santa Barbara, CA, 1992), 1-64, Proc. Sympos. Pure Math., 58, Part 1, Amer. Math. Soc., Providence, RI, 1995.
4. T. Geisser, Parshin’s conjecture revisited. K-theory and noncommutative geometry, 413–425, EMS Ser. Congr. Rep., Eur. Math. Soc., Zurich, 2008.
5. T. Geisser, Weil-etale cohomology over finite fields. Math. Ann. 330 (2004), no. 4, 665–692.
6. T. Geisser, Arithmetic cohomology over finite fields and special values of \(\zeta \)-functions. Duke Math. J. 133 (2006), no. 1, 27–57.
7. T. Geisser, Duality via cycle complexes, Ann. of Math. (2) 172 (2010), no. 2, 1095-1126.
8. T. Geisser, Arithmetic homology and an integral version of Kato’s conjecture, J. Reine Angew. Math. 644 (2010), 1-22.
9. T. Geisser, Parshin’s conjecture revisited, K-theory and noncommutative geometry, 413–425, EMS Ser. Congr. Rep., Eur. Math. Soc., Zurich, 2008.
10. T. Geisser, M. Levine, The \(p \)-part of K-theory of fields in characteristic \(p \). Inv. Math. 139 (2000), 459–494.
11. T. Geisser, M. Levine, The Bloch-Kato conjecture and a theorem of Suslin-Voevodsky. J. Reine Angew. Math. 530 (2001), 55–103.
12. U. Jannsen, Continuous etale cohomology. Math. Ann. 280 (1988), no. 2, 207–245.
13. U. Jannsen, Hasse principles for higher-dimensional fields, Preprint Universität Regensburg 18/2004.
14. U. Jannsen, S. Saito, Kato homology of arithmetic schemes, and higher class field theory over local fields, Doc. Math. (2003), 479-538.
15. K. Kato, A Hasse principle for two-dimensional global fields. With an appendix by Jean-Louis Colliot-Thélène. J. Reine Angew. Math. 366 (1986), 142–183.
16. M. Kerz, S. Saito, Cohomological Hasse principle and motivic cohomology for arithmetic schemes, Preprint 2010.
17. S. Lichtenbaum, Values of zeta-functions at nonnegative integers. Number theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983), 127–138, Lecture Notes in Math., 1068, Springer, Berlin, 1984.
18. A. Pirutka, Sur le groupe de Chow de codimension deux des variétés sur les corps finis, Preprint 2010.
19. P. Schneider, Über gewisse Galoiskohomologiegruppen, Math. Z. 168 (1979), no. 2, 181–205.
20. A. Suslin, Higher Chow groups and étale cohomology. Cycles, transfers, and motivic homology theories, 239–254, Ann. of Math. Stud., 143, Princeton Univ. Press, Princeton, NJ, 2000.
21. V. Voevodsky, Motivic cohomology groups are isomorphic to higher Chow groups in any characteristic. Int. Math. Res. Not. 2002, no. 7, 351–355.