The Modified Korteweg-de Vries Equation on the Half-Line with a Sine-Wave as Dirichlet Datum

Guenbo Hwang
Department of Mathematics, Daegu University,
Gyeonsan Gyeongbuk 712-714, Korea
ghwang@daegu.ac.kr

A. S. Fokas
Department of Applied Mathematics and Theoretical Physics,
University of Cambridge, Cambridge CB3 0WA, UK
t.fokas@damtp.cam.ac.uk

Received 14 January 2013
Accepted 15 February 2013

Boundary value problems for integrable nonlinear evolution PDEs, like the modified KdV equation, formulated on the half-line can be analyzed by the so-called unified transform method. For the modified KdV equation, this method yields the solution in terms of the solution of a matrix Riemann-Hilbert problem uniquely determined in terms of the initial datum \(q(x,0) \), as well as of the boundary values \(\{ q(0,t), q_x(0,t), q_{xx}(0,t) \} \). For the Dirichlet problem, it is necessary to characterize the unknown boundary values \(q_x(0,t) \) and \(q_{xx}(0,t) \) in terms of the given data \(q(x,0) \) and \(q(0,t) \). It is shown here that in the particular case of a vanishing initial datum and of a sine wave as Dirichlet datum, \(q_x(0,t) \) and \(q_{xx}(0,t) \) can be computed explicitly at least up to third order in a perturbative expansion and that at least up to this order, these functions are asymptotically periodic for large \(t \).

Keywords: Initial-boundary value problem; Generalized Dirichlet to Neumann map; modified Korteweg-de Vries equation.

2000 Mathematics Subject Classification: 47K15, 35Q55

1. Introduction

A unified method for analyzing boundary value problems for linear and integrable nonlinear PDEs was introduced in [9] and used extensively in the literature (reviews for the implementation of this method can be found in [10,13,17]). For integrable nonlinear evolution PDEs, the unified transform method yields novel integral representations formulated in the complex \(k \)-plane (the Fourier plane). These integrals, in addition to the exponentials which appear in the integrals of the linearized version of these nonlinear PDEs, also contain the entries of a matrix-valued function \(M(x,t,k) \), which is the solution of a matrix Riemann-Hilbert (RH) problem. This RH problem involves a jump matrix with explicit exponential \((x,t)\) dependence. In addition to explicit exponentials, the entries of the above jump matrix involve functions -called spectral functions- which depend only on \(k \) and which can be computed in terms of the initial condition and the associated boundary values. For example, for the modified KdV equation on the half-line, the spectral functions can be computed in terms of \(q(x,0), q(0,t), q_x(0,t) \) and \(q_{xx}(0,t) \); however for the Dirichlet problem \(q_x(0,t) \) and \(q_{xx}(0,t) \) are...
unknown. The most difficult step of the new method is the characterization of the unknown boundary values in terms of the given initial and boundary conditions. In a recent important development, this characterization was achieved via the analysis of the so-called global relation using two different approaches [15, 18]. Both these approaches involve the analysis of a system of quadratically non-linear equations; the formulation in [15] is based on the direct analysis of the eigenfunctions characterizing the relevant spectral functions, while the formulation in [18] is based on an extension of the approach of [1]. However, it should be noted that: (a) For a particular class of boundary conditions called linearizable, the global relation yields the spectral functions directly in terms of the given initial and boundary conditions bypassing the need to solve the above nonlinear equations. Thus, for this class of problems the new method is as effective as the classical inverse scattering transform method. (b) For the case that the boundary conditions vanish for large t, it is possible to obtain effective asymptotic results using the Deift-Zhou and the Deift-Zhou-Venakides techniques for the asymptotic analysis of these RH problems [5–8].

In contrast to the case that the boundary conditions vanish as $t \to \infty$, the analysis of the physically significant case of boundary conditions which are periodic in t, require the explicit characterization of the unknown boundary values in terms of the given data. Important results for such boundary value problems have been obtained in [2–4].

Here we concentrate on the simple example

$$q(x,0) = 0, \quad 0 < x < \infty; \quad q(0,t) = \varepsilon \sin t + O(\varepsilon^4), \quad \varepsilon \to 0, \quad t > 0. \quad (1.1)$$

Following the technique developed in [18] we compute explicitly the perturbation expansion in ε of both $q_x(0,t)$ and $q_{xx}(0,t)$. These explicit formulae show that at least up to the third order in ε, both $q_x(0,t)$ and $q_{xx}(0,t)$ are asymptotically periodic as $t \to \infty$.

In a recent breakthrough [14, 16], it has been shown that in the case of the nonlinear Schrödinger equation, if

$$q(x,0) = 0, \quad 0 < x < \infty, \quad q(0,t) = ae^{i\omega t} + o(1), \quad t \to \infty, \quad (1.2)$$

with a, ω real constants, then it is possible to solve the global relation exactly as $t \to \infty$ and to obtain an explicit formula for $q_x(0,t)$ as $t \to \infty$. The generalization of this result to the more complicated case of

$$q(0,t) = a \sin \omega t + o(t), \quad t \to \infty, \quad (1.3)$$

for both the nonlinear Schrödinger and the modified KdV equations is an open problem.

2. The spectral functions of the mKdV equation

We study the mKdV equation on the half-line

$$q_t + q_{xxx} - 6\lambda q^2 q_x = 0, \quad 0 < x < \infty, \quad 0 < t < T, \quad (2.1)$$

where $\lambda = \pm 1$, $T < \infty$ and $q(x,t)$ decays rapidly for all t as $x \to \infty$. We assume that the given initial condition $q_0(x) = q(x,0)$ vanishes sufficiently fast for all t as $x \to \infty$. We denote the boundary values as

$$g_0(t) = q(0,t), \quad g_1(t) = q_x(0,t), \quad g_2(t) = q_{xx}(0,t), \quad (2.2)$$

which are assumed to be sufficiently smooth.
The mKdV equation on the half-line with a sine-wave as Dirichlet datum

It is well-known that (2.1) admits the following Lax pair formulation:

$$
\begin{align*}
\mu_x + if_1(k)\tilde{\sigma}_3\mu &= Q(x,t,k)\mu, \\
\mu_t + if_2(k)\tilde{\sigma}_3\mu &= \tilde{Q}(x,t,k)\mu,
\end{align*}
$$

where $k \in \mathbb{C}$ is a spectral parameter, μ is a 2×2 matrix-valued eigenfunction, $\tilde{\sigma}_3 A = [\sigma_3, A]$ with $\sigma_3 = \text{diag}(1, -1)$, and

$$
\begin{align*}
f_1(k) &= k, \\
f_2(k) &= 4k^3, \\
Q(x,t) &= \begin{pmatrix} 0 & q \\ \lambda q & 0 \end{pmatrix}, \\
\tilde{Q}(x,t) &= 2Q^3 - Q_{xx} - 2ik(Q^2 + Q_t)\sigma_3 + 4k^2Q.
\end{align*}
$$

Let the domains $\{D_j\}_{j=1}^4$ be given by (cf. figure 1)

$$
\begin{align*}
D_1 &= \{ \text{Im} f_1 > 0 \text{ and } \text{Im} f_2 > 0 \}, \\
D_2 &= \{ \text{Im} f_1 > 0 \text{ and } \text{Im} f_2 < 0 \}, \\
D_3 &= \{ \text{Im} f_1 < 0 \text{ and } \text{Im} f_2 > 0 \}, \\
D_4 &= \{ \text{Im} f_1 < 0 \text{ and } \text{Im} f_2 < 0 \}.
\end{align*}
$$

We introduce the complex-valued functions $\Psi(x,k)$ and $\Phi(x,k)$ as the following solutions of the x-part and the t-part of the Lax pair (2.3) evaluated at $t = 0$ and $x = 0$, respectively:

$$
\begin{align*}
\Psi_x + if_1(k)\tilde{\sigma}_3\Psi &= Q_0\Psi, \\
\Phi_x + if_2(k)\tilde{\sigma}_3\Phi &= \tilde{Q}_0\Phi,
\end{align*}
$$

where $Q_0(x) = Q(x,0)$ and $\tilde{Q}_0(t,k) = \tilde{Q}(0,t,k)$. Equations (2.8) imply that the functions Ψ and Φ satisfy the following system of linear Volterra integral equations:

$$
\begin{align*}
\Psi(x,k) &= I - \int_x^\infty e^{-if_1(k)(x-\xi)}\tilde{\sigma}_3(Q_0\Psi)(\xi,k)d\xi, \quad k \in (\mathbb{C}^-, \mathbb{C}^+), \\
\Phi(x,k) &= I + \int_0^t e^{-if_2(k)(t-\tau)}\tilde{\sigma}_3(\tilde{Q}_0\Phi)(\tau,k)d\tau, \quad k \in \mathbb{C},
\end{align*}
$$

where the notation $k \in (\mathbb{C}^-, \mathbb{C}^+)$ in (2.9) denotes that the first and second column vectors of $\Psi(x,k)$ are defined for $\text{Im} k \leq 0$ and $\text{Im} k \geq 0$ respectively. Due to the symmetry of Q, the functions Ψ and Φ can be written in the form

$$
\begin{align*}
\Psi(x,k) &= \begin{pmatrix} \Psi_2(x,k) \\ \lambda \Psi_1(x,k) \end{pmatrix}, \quad k \in (\mathbb{C}^-, \mathbb{C}^+), \\
\Phi(t,k) &= \begin{pmatrix} \Phi_2(t,k) \\ \lambda \Phi_1(t,k) \end{pmatrix}, \quad k \in \mathbb{C}.
\end{align*}
$$

The spectral functions $\{a(k), b(k), A(k), B(k)\}$ can be expressed in terms of the initial datum and of the boundary values. Given $q_0(x)$, the spectral functions $\{a(k), b(k)\}$ are defined by

$$
a(k) = \Psi_2(0,k), \quad b(k) = \Psi_1(0,k), \quad k \in \mathbb{C}^+,
$$

while the spectral functions $\{A(k), B(k)\}$ are defined by

$$
A(k) = \Phi_2(T,k), \quad B(k) = e^{2if_2(k)T}\sigma_1\Phi_1(T,k), \quad k \in \mathbb{C},
$$

in terms of $\{g_0, g_1, g_2\}$.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors
The spectral functions satisfy the global relation

\[\Phi_1(t,k) + \frac{b(k)}{a(k)} \Phi_2(t,k) e^{-2\pi f(t,k)k} = c(t,k), \quad \text{Im} k \geq 0, \]

where \(c(t,k) \) is analytic and bounded in \(\text{Im} k > 0 \) and is of \(O(1/k) \) as \(k \to \infty \).

It has been shown in [12, 15] that the functions \(\Phi_1 \) and \(\Phi_2 \) satisfy the following system of nonlinear integral equations:

\[
\Phi_1(t,k) = \int_0^t e^{-8ik^3(t-t')} \left[-2ik\lambda g_0^2 \Phi_1 + (2\lambda g_0^3 + 4k^2 g_0 + 2ikg_1 - g_2) \Phi_2 \right] (t',k) \, dt',
\]

\[
\Phi_2(t,k) = 1 + \lambda \int_0^t \left[(2\lambda g_0^3 + 4k^2 g_0 - 2ikg_1 - g_2) \Phi_1 + 2ikg_0 \Phi_2 \right] (t',k) \, dt',
\]

Furthermore, for the Dirichlet problem, the unknown boundary values \(g_1(t) \) and \(g_2(t) \) satisfy the following relations:

\[
g_1(t) = \frac{2g_0(t)}{\pi} \int_{\partial D_1} \chi_2(t,k) \, dk + \frac{2}{\pi i} \int_{\partial D_1} \left[k\chi_1(t,k) - \frac{3g_0(t)}{2i} \right] \, \frac{dk}{k}
- \frac{2}{\pi i} \int_{\partial D_1} ke^{-8ik^3} \left[(\alpha^2 - \alpha) \frac{b(\alpha k)}{a(\alpha k)} \Phi_2(t,\alpha k) + (\alpha - \alpha^2) \frac{b(\alpha^2 k)}{a(\alpha^2 k)} \Phi_2(t,\alpha^2 k) \right] \, dk
+ 4 \left\{ (1 - \alpha^2) \sum_{j \in D_1} + (1 - \alpha) \sum_{j \in D_1^c} \right\} k_j e^{-8ik^3} \text{Res} \frac{b(k)}{a(k)} \Phi_2(t,k),
\]

and

\[
g_2(t) = \lambda g_0^3(t) - \frac{4}{\pi} \int_{\partial D_1} \left[k^2 \chi_1(t,k) - \frac{3g_0(t)}{2i} \right] \, \frac{dk}{k}
+ \frac{4g_0(t)}{\pi i} \int_{\partial D_2} \chi_2(t,k) \, dk + \frac{2g_1(t)}{\pi} \int_{\partial D_3} \chi_2(t,k) \, dk
+ \frac{4}{\pi} \int_{\partial D_3} k^2 e^{-8ik^3} \left[(1 - \alpha) \frac{b(\alpha k)}{a(\alpha k)} \Phi_2(t,\alpha k) + (1 - \alpha^2) \frac{b(\alpha^2 k)}{a(\alpha^2 k)} \Phi_2(t,\alpha^2 k) \right] \, dk
- 8i \left\{ (1 - \alpha) \sum_{j \in D_1} + (1 - \alpha^2) \sum_{j \in D_1^c} \right\} k^2_j e^{-8ik^3} \text{Res} \frac{b(k)}{a(k)} \Phi_2(t,k),
\]

where \(\alpha = e^{2\pi i/3} \), \(\{k_j\}_1^N \) is the set of the possible zeros of \(a(k) \) (assumed to be a finite set of simple zeros), \(D_1' = D_1 \cap \{\text{Re} k > 0\} \) and \(D_1'' = D_1 \cap \{\text{Re} k < 0\} \), and for \(j = 1,2 \), the symmetric combinations \(\chi_j, \hat{\chi}_j \) and \(\hat{\chi}_j \) are defined by

\[
\chi_j(t,k) = \Phi_j(t,k) + \alpha \Phi_j(t,\alpha k) + \alpha^2 \Phi_j(t,\alpha^2 k),
\]

\[
\hat{\chi}_j(t,k) = \Phi_j(t,k) + \alpha^2 \Phi_j(t,\alpha k) + \alpha \Phi_j(t,\alpha^2 k),
\]

\[
\hat{\chi}_j(t,k) = \Phi_j(t,k) + \Phi_j(t,\alpha k) + \Phi_j(t,\alpha^2 k).
\]
3. A perturbation expansion of the unknown boundary values

We expand the functions Φ_j, q_0 and g_0 as

$$
\Phi_j = \Phi_{j0} + \varepsilon \Phi_{j1} + \varepsilon^2 \Phi_{j2} + \cdots, \quad j = 1, 2, \quad (3.1a)
$$

$$
q_0 = \varepsilon q_{01} + \varepsilon^2 q_{02} + \cdots, \quad (3.1b)
$$

$$
g_0 = \varepsilon g_{01} + \varepsilon^2 g_{02} + \cdots, \quad (3.1c)
$$

where ε is a small perturbation parameter. Substituting (3.1a) into (2.15a) and (2.15b), we find $\Phi_{10} = 0$, $\Phi_{20} = 1$ and $\Phi_{21} = 0$.

We next derive the first few terms of the above expansions. We assume a vanishing initial datum, that is, $q_0(x) = 0$. In this case, $a(k) = 1$ and $b(k) = 0$.

Proposition 3.1. Assume that $q(x, 0) = 0$, $x > 0$, and

$$
q(0, t) = \varepsilon g_{01} + \varepsilon^2 g_{02} + \varepsilon^3 g_{03} + \cdots, \quad (3.2)
$$

where $\varepsilon > 0$ is a small perturbation parameter and g_{0n}, $n \geq 1$, are sufficiently smooth and compatible with the zero initial datum. (a) The unknown boundary value $q_x(0, t)$ can be expressed in the form

$$
q_x(0, t) = \varepsilon g_{11}(t) + \varepsilon^2 g_{12}(t) + \varepsilon^3 g_{13}(t) + \cdots, \quad (3.3)
$$

where

$$
g_{11}(t) = \frac{3c_1}{\pi} \int_0^t \frac{\dot{g}_{01}(t')}{(t - t')^{1/3}} dt', \quad g_{12}(t) = \frac{3c_1}{\pi} \int_0^t \frac{\dot{g}_{02}(t')}{(t - t')^{1/3}} dt', \quad (3.4)
$$

and
\[g_{13}(t) = -\frac{\lambda c_1}{\pi} \int_0^t g_{02}(t') \int_0^{t'} \frac{g_{11}(t''')}{(t-t''')^{4/3}} dt'' dt' + \frac{3c_1}{\pi} \int_0^t g_{03}(t') dt' + \lambda \frac{c_1}{\pi} \left\{ \int_0^t g_{01}(t') \int_0^{t'} \frac{g_{11}(t''')}{(t-t''')^{4/3}} dt'' dt' + \frac{3c_1}{\pi} \int_0^t g_{03}(t') dt' \right\} \]

\[+ \lambda \frac{c_1}{\pi} \int_0^t g_{01}(t') \int_0^{t'} \frac{g_{11}(t''')}{(t-t''')^{4/3}} dt'' dt' - \int_0^t g_{21}(t') \int_0^{t'} g_{21}(t''') \frac{g_{11}(t''')}{(t-t''')^{4/3}} dt''' dt' + \int_0^t g_{11}(t') \int_0^{t'} \frac{g_{01}(t''')}{(t-t''')^{4/3}} dt''' dt' \]

\[+ \int_0^t g_{11}(t') \int_0^{t'} \frac{g_{21}(t''')}{(t-t''')^{4/3}} dt''' dt' - \int_0^t g_{21}(t') \int_0^{t'} \frac{g_{21}(t''')}{(t-t''')^{4/3}} dt''' dt' + \int_0^t g_{11}(t') \int_0^{t'} \frac{g_{11}(t''')}{(t-t''')^{4/3}} dt''' dt' \]

\[+ \int_0^t g_{21}(t') \int_0^{t'} \frac{g_{01}(t''')}{(t-t''')^{4/3}} dt''' dt' \right\} + \lambda c_1 \int_0^t \left[g_{11}^2 - 2g_{01}g_{21} \right](t') dt', \quad (3.5) \]

with \(\tilde{t} = t - t' + t'' - t''' \) and

\[c_1 = -\frac{\sqrt{3}}{6} \Gamma(1/3). \quad (3.6) \]

(b) The unknown boundary value \(q_{xx}(0,t) \) can be expressed in the form

\[q_{xx}(0,t) = \varepsilon g_{21}(t) + \varepsilon^2 g_{22}(t) + \varepsilon^3 g_{23}(t) + \cdots, \quad (3.7) \]

where

\[g_{21}(t) = \frac{6c_2}{i\pi} \int_0^t \frac{g_{01}(t')}{(t-t')^{2/3}} dt', \quad g_{22}(t) = \frac{6c_2}{i\pi} \int_0^t \frac{g_{02}(t')}{(t-t')^{2/3}} dt' \quad (3.8) \]

and

\[g_{23}(t) = \frac{3\lambda}{2} g_{01}(t) - \frac{4\lambda c_2}{\pi i} \int_0^t g_{02}(t') \int_0^{t'} \frac{g_{11}(t''')}{(t-t''')^{5/3}} dt''' dt'' + \frac{3c_2}{\pi i} \int_0^t \frac{g_{03}(t')}{(t-t')^{2/3}} dt' + \lambda \frac{c_1}{\pi} \left\{ \int_0^t g_{01}(t') \int_0^{t'} \frac{g_{11}(t''')}{(t-t''')^{5/3}} dt''' dt'' + \frac{3c_1}{\pi i} \int_0^t \frac{g_{03}(t')}{(t-t')^{2/3}} dt' \right\} \]

\[+ \lambda \frac{c_1}{\pi} \int_0^t g_{01}(t') \int_0^{t'} \frac{g_{11}(t''')}{(t-t''')^{5/3}} dt''' dt'' - \int_0^t g_{21}(t') \int_0^{t'} \frac{g_{21}(t''')}{(t-t''')^{5/3}} dt''' dt'' \right\} \]

\[+ \int_0^t g_{11}(t') \int_0^{t'} \frac{g_{01}(t''')}{(t-t''')^{5/3}} dt''' dt'' - \int_0^t g_{21}(t') \int_0^{t'} \frac{g_{21}(t''')}{(t-t''')^{5/3}} dt''' dt'' \right\} + \lambda c_1 \int_0^t \left[g_{11}^2 - 2g_{01}g_{21} \right](t') dt', \quad (3.9) \]

with

\[c_2 = \frac{i\sqrt{3}}{12} \Gamma(2/3). \quad (3.10) \]
The mKdV equation on the half-line with a sine-wave as Dirichlet datum

Proof. (a) Equations (2.16a) and (3.1) imply

\[
g_{11}(t) = \frac{2}{\pi i} \int_{\partial D_3} \left[k \chi_{11}(t,k) - \frac{3g_{01}(t)}{2i} \right] dk. \tag{3.11}
\]

The function \(\Phi_{11}(t,k) \) is given by

\[
\Phi_{11}(t,k) = e^{-8i\kappa_3(t-t')} \left(4k^2 g_{01} + 2ikg_{11} - g_{21} \right) dt',
\]

and hence,

\[
\chi_{11}(t,k) = 12k^2 \int_0^t e^{-8i\kappa_3(t-t')} g_{01}(t') dt'. \tag{3.13}
\]

Substituting (3.13) into (3.11) and then integrating by parts with respect to \(dt' \), (3.11) can be written in the form

\[
g_{11}(t) = \frac{3}{\pi} \int_{\partial D_3} \int_0^t e^{-8i\kappa_3(t-t')} g_{01}(t') dt'dk. \tag{3.14}
\]

In order to integrate with respect \(dk \), we will use the identity

\[
\int_{\partial D_3} e^{-8i\kappa_3} dk = \frac{c_1}{t^{1/3}}, \quad c_1 = -\frac{\sqrt{3}}{6} \Gamma(1/3). \tag{3.15}
\]

In order to derive (3.15) we let \(\partial D_3 = C_1 \cup C_2 \), where \(C_1 = \partial D_3 \cap C_{IV} \) and \(C_2 = \partial D_3 \cap C_{III} \) (see figure 2). Cauchy’s theorem implies

\[
\int_{C_1} e^{-8i\kappa_3} dk = -\int_{\tilde{C}_1} e^{-8i\kappa_3} dk = -e^{-i\pi/6} \int_0^\infty e^{-8\rho^3} d\rho, \tag{3.16}
\]

where \(\tilde{C}_1 = \{ \arg k = -i\pi/6 \} \) (cf. figure 2). Hence, evaluating the rhs of the above equation, we obtain

\[
\int_{C_1} e^{-8i\kappa_3} dk = -\frac{e^{-i\pi/6}}{6} \Gamma(1/3) \frac{1}{t^{1/3}}. \tag{3.17}
\]

For the integral along \(C_2 \), we change variables, \(k \to \alpha^2 k \). Then the contour \(C_2 \) is deformed into \([0, \infty)\), and in analogy with (3.15) we now find

\[
\int_{C_2} e^{-8i\kappa_3} dk = \frac{e^{-5i\pi/6}}{6} \Gamma(1/3) \frac{1}{t^{1/3}}. \tag{3.18}
\]

Hence (3.17) and (3.18) imply (3.15). Using (3.15) in (3.14), we obtain

\[
g_{11}(t) = \frac{3c_1}{\pi} \int_0^t \frac{g_{01}(t')}{(t-t')^{1/3}} dt'. \tag{3.19}
\]

In a similar way we find that \(g_{12}(t) \) is given by (3.4).
In order to derive (3.5), we note that

$$g_{13}(t) = \frac{2}{\pi i} \int_{\partial D_3} \left[k \chi_{13}(t,k) - \frac{3g_{03}(t)}{2i} \right] dk + \frac{2g_{01}(t)}{\pi} \int_{\partial D_3} \chi_{22}(t,k) dk. \quad (3.20)$$

Using (2.15b) and (3.1), we find that the function Φ_{22} is given by

$$\Phi_{22}(t,k) = \lambda \int_{t'}^t \left[(4k^2 g_{01} - 2ik \lambda) \Phi_{11} + 2ik g_{01}^2 \right] dt'. \quad (3.21)$$

Thus,

$$\chi_{22}(t,k) = \lambda \int_{t'}^t (4k^2 g_{01} \chi_{11} - 2ik \lambda \Phi_{11} + 6ik g_{01}^2) dt', \quad (3.22a)$$

$$\dot{\chi}_{22}(t,k) = \lambda \int_{t'}^t (4k^2 g_{01} \dot{\chi}_{11} - 2ik \lambda \Phi_{11} + 6ik g_{01}^2) dt', \quad (3.22b)$$

$$\ddot{\chi}_{22}(t,k) = \lambda \int_{t'}^t (4k^2 g_{01} \ddot{\chi}_{11} - 2ik \lambda \Phi_{11} + 6ik g_{01}^2) dt', \quad (3.22c)$$

where the symmetric combinations $\dot{\chi}_{11}$ and $\ddot{\chi}_{11}$ are given by

$$\dot{\chi}_{11}(t,k) = 6ik \int_{t'}^t e^{-8ik^3(t-t')} g_{11}(t') dt', \quad (3.23a)$$

$$\ddot{\chi}_{11}(t,k) = -3 \int_{t'}^t e^{-8ik^3(t-t')} g_{21}(t') dt'. \quad (3.23b)$$

Furthermore, using (2.15a) we find

$$\Phi_{13}(t,k) = \int_{t'}^t e^{-8ik^3(t-t')} \left[-2ik \lambda g_{01}^2 \Phi_{11} + (2 \lambda g_{01}^3 + 4k^2 g_{03} + 2ik g_{13} - g_{23}) \right] dt', \quad (3.24)$$

which implies

$$\chi_{13}(t,k) = \int_{t'}^t e^{-8ik^3(t-t')} \left[-2ik \lambda g_{01}^2 \chi_{11} + 12k^2 g_{03} + 4k^2 g_{01} \dot{\chi}_{22} + 2ik g_{11} \ddot{\chi}_{22} - g_{21} \dddot{\chi}_{22} \right] dt'. \quad (3.25)$$
We next evaluate the second integral of (3.20); using (3.22) and (3.23) we obtain
\[
\int_{\partial D} \chi_{22}(t,k) dk = \lambda \int_{\partial D} \frac{f^2}{2} \left\{ \int_0^t \left[-g_{01}(t') \int_0^{t'} e^{-8ik^3(t'-\tau')} g_{21}(\tau') d\tau'' - g_{11}(t') \int_0^{t'} e^{-8ik^3(t'-\tau')} g_{21}(\tau') d\tau'' \right] d\tau' \right\} dk.
\]
(3.26)
Using the identity
\[
\int_{\partial D} k^2 \int_0^{t'} e^{-8ik^3(t'-\tau')} f(\tau'') d\tau'' d\tau' = \frac{\pi}{24} f(t'),
\]
(3.27)
we can integrate the rhs of (3.26) with respect to \(dk\):
\[
\int_{\partial D} \chi_{22}(t,k) dk = \frac{\lambda \pi}{2} \int_0^t \frac{f^2}{2} g_{11}(t') d\tau' - \lambda \pi \int_0^t g_{01}(t') g_{21}(t') d\tau'.
\]
(3.28)
Thus, the second integral of (3.20) yields
\[
\int_{\partial D} \frac{g_{01}(t)}{\pi} \int_{\partial D} \chi_{22}(t,k) dk = \lambda g_{01}(t) \int_0^t \frac{f^2}{2} \left[g_{11} - g_{01} g_{21} \right](t') d\tau'.
\]
(3.29)
Next we evaluate the first integral of (3.20); using (3.25) we find
\[
\int_{\partial D} k \chi_{13}(t,k) dk = \int_{\partial D} \int_0^t e^{-8ik^3(t'-\tau')} \left[-2\lambda ik^2 g_{01} \tilde{\chi}_{11} + 12k^3 g_{03} + 4k^3 g_{01} \tilde{\chi}_{22} \\
+ 2ik^2 g_{11} \tilde{\chi}_{22} - kg_{21} \tilde{\chi}_{22} \right](t',k) d\tau' dk.
\]
(3.30)
We will evaluate each integral of (3.30). For the first term of the rhs of (3.30), integrating by parts with respect to \(d\tau'\), we find
\[
\frac{3\lambda}{2i} \int_{\partial D} \int_0^t g_{02}^2(t') \left[e^{-8ik^3(t'-\tau')} g_{11}(t') - \int_0^{t'} e^{-8ik^3(t'-\tau'')} g_{11}(\tau'') d\tau'' \right] d\tau' dk.
\]
(3.31)
Using (3.15), (3.31) becomes
\[
\frac{3\lambda c_1}{2i} \int_0^t g_{02}^2(t') g_{11}(t') (t - t')^{1/3} d\tau' - \frac{3\lambda c_1}{2i} \int_0^t g_{02}^2(t') \int_0^{t'} \frac{g_{11}(\tau'')}{(t - \tau'')^{1/3}} d\tau'' d\tau',
\]
(3.32)
and then integrating by parts with respect to \(d\tau''\), we obtain
\[
-2\lambda i \int_{\partial D} k^2 \int_0^t e^{-8ik^3(t'-\tau')} g_{01}^2(t') \tilde{\chi}_{11}(t',k) d\tau' dk = \frac{\lambda c_1}{2i} \int_0^t g_{02}^2(t') \int_0^{t'} \frac{g_{11}(\tau'')}{(t - \tau'')^{1/3}} d\tau'' d\tau'.
\]
(3.33)
Similarly, the second term of rhs of (3.30) yields
\[
\int_{\partial D} 12k^3 \int_0^t e^{-8ik^3(t'-\tau')} g_{03}(t') d\tau' dk = \frac{3}{2i} \int_{\partial D} g_{03}(t') dk - \frac{3c_1}{2i} \int_0^t \frac{g_{03}(t')}{(t - t')^{1/3}} d\tau'.
\]
(3.34)
For the third term of the rhs of (3.30) we find

\[
\int_{\partial D_3} 4k^3 \int_0^t e^{-ik \tilde{t}(t')} g(t') \hat{\chi}_{22}(t', k) dt' dk = \lambda i \int_{\partial D_3} 96k^6 \int_0^t g(t') \int_0^t g(t'') e^{-ik \tilde{t} g(t''')} dt'' dt' + \lambda \int_{\partial D_3} 12k^3 \int_0^t g(t') \int_0^t g(t'') e^{-ik \tilde{t} g(t''')} dt'' dt',
\]

(3.35)

where \(\tilde{t} = t - t' + t'' - t''' \). Integrating by parts with respect to \(dt''' \), the first integral of (3.35) becomes

\[
\lambda \int_{\partial D_3} 12k^3 \int_0^t e^{-ik \tilde{t}(t')} g(t') \int_0^t g(t'') g(t''') dt'' dt' dk
\]

\[
+ \frac{3\lambda i}{2} \int_{\partial D_3} \int_0^t e^{-ik \tilde{t}(t')} g(t') \int_0^t g(t'') g(t''') dt'' dt' dk
\]

\[
- \frac{3\lambda i}{2} \int_{\partial D_3} \int_0^t g(t') \int_0^t g(t'') e^{-ik \tilde{t} g(t''')} dt'' dt' dk.
\]

(3.36)

Integrating by parts the first term of the above expression with respect to \(dt' \) and then employing (3.15), we find

\[
\lambda i \int_{\partial D_3} 96k^6 \int_0^t g(t') \int_0^t g(t'') e^{-ik \tilde{t} g(t''')} dt'' dt' = \frac{3\lambda c_1}{2i} \int_{\partial D_3} \int_0^t \frac{\tilde{g}(t')}{(t - t')^{1/3}} \int_0^t g(t'') g(t''') dt'' dt'
\]

\[
- \int_0^t g(t') \int_0^t g(t'') \int_0^t \frac{\tilde{g}(t''')}{(t - t'')^{1/3}} dt'' dt' = \frac{3\lambda c_1}{2i} \int_{\partial D_3} \int_0^t \frac{\tilde{g}(t')}{(t - t')^{1/3}} \int_0^t g(t'') g(t''') dt'' dt'
\]

(3.37)

The other two terms of the rhs of (3.35) can be computed in a similar way; hence (3.35) becomes

\[
\int_{\partial D_3} 4k^3 \int_0^t e^{-ik \tilde{t}(t')} g(t') \hat{\chi}_{22}(t', k) dt' dk
\]

\[
= -\frac{\lambda c_1}{2i} \int_{\partial D_3} \int_0^t g(t') \left\{ \int_0^t g(t'') \int_0^t \frac{\tilde{g}(t'''')}{t''''} dt'''' dt' \right\} - \int_0^t g(t') \int_0^t g(t'') \int_0^t \frac{\tilde{g}(t'''')}{t''''} dt'''' dt' \}
\]

(3.38)

Similarly, the fourth term of (3.30) yields

\[
2i \int_{\partial D_3} k^2 \int_0^t e^{-ik \tilde{t}(t')} g(t') \hat{\chi}_{22}(t', k) dt' dk
\]

\[
= -\frac{\lambda c_1}{2i} \int_{\partial D_3} \int_0^t g(t') \left\{ \int_0^t g(t'') \int_0^t \frac{\tilde{g}(t'''')}{t''''} dt'''' dt' \right\} + \int_0^t g(t') \int_0^t g(t'') \int_0^t \frac{\tilde{g}(t'''')}{t''''} dt'''' dt' \}
\]

(3.39)
and the last integral of (3.30) becomes

\[-\int_{\partial D} k \int_0^t e^{-ik(t-t')} g_{21}(t') \chi_{22}(t',k) dt' dk \]

\[= \frac{\lambda c_1}{2i} \int_0^t g_{21}(t') \left\{ \int_0^t g_{01}(t') \int_0^{t''} \frac{g_{21}(t''')} {i^{4/3}} dt''' dt'' dt' \right. \]

\[- \int_0^t g_{11}(t') \int_0^{t''} \frac{g_{11}(t''')} {i^{4/3}} dt''' dt'' dt' \left. + \int_0^t g_{21}(t') \int_0^{t''} \frac{g_{01}(t''')} {i^{4/3}} dt''' dt'' dt' \right\}. \]

Combining (3.39) with (3.40), (3.33), (3.34) and (3.38), as well as (3.29), we obtain (3.5).

(b) Recall that \(g_{21}(0,t) = g_2(t)\) is given by

\[g_2(t) = \lambda g_0^3(t) - \frac{4}{\pi} \int_{\partial D} \left[k^2 \chi_1(t,k) - \frac{3k g_0}{2i} \right] dk \]

\[+ \frac{4g_0(t)}{i\pi} \int_{\partial D} k \chi_2(t,k) dk + \frac{2g_1(t)}{\pi} \int_{\partial D} \chi_2(t,k) dk. \]

Hence, the first term of the expansion of \(g_2\) is

\[g_{21}(t) = -\frac{4}{\pi} \int_{\partial D} \left[k^2 \chi_{11}(t,k) - \frac{3k g_{01}}{2i} \right] dk. \]

Substituting (3.13) into (3.42) and integrating by parts with respect to \(dt'\) we find

\[g_{21}(t) = \frac{6}{i\pi} \int_{\partial D} k \int_0^t e^{-ik(t-t')} \hat{g}_{01}(t') dt' dk. \]

Following steps similar to those used in (a), we find

\[\int_{\partial D} k e^{-ik\hat{t}'} dk = \frac{c_2}{t^{2/3}}, \quad c_2 = \frac{i\sqrt{3}}{12} \Gamma(2/3). \]

Hence, employing (3.44) we obtain

\[g_{21}(t) = \frac{6c_2}{i\pi} \int_0^t \frac{\hat{g}_{01}(t')}{(t-t')^{2/3}} dt'. \]

The function \(g_{22}(t)\) can be obtained in a similar manner.

Next, we derive the third order term of the expansion, which satisfies

\[g_{23}(t) = \lambda g_0^3 - \frac{4}{\pi} \int_{\partial D} \left[k^2 \chi_{13}(t,k) - \frac{3k g_0}{2i} \right] dk \]

\[+ \frac{4g_0(t)}{i\pi} \int_{\partial D} k \chi_{22}(t,k) dk + \frac{2g_1(t)}{\pi} \int_{\partial D} \chi_{22}(t,k) dk. \]
In order to evaluate the second integral of the rhs of (3.46), we use (3.22b) together with (3.13) and (3.23):

\[
\int_{\partial D_3} k \hat{\chi}_{22}(t,k) dk = \lambda \int_{\partial D_3} 48k^5 \int_0^t g_{01}(t') \int_0^t e^{-8ik^3(t'-t'')} g_{01}(t'') dt'' dt' dk
\]

\[
+ \lambda i \int_{\partial D_3} 6k^2 \int_0^t g_{11}(t') \int_0^t e^{-8ik^3(t'-t'')} g_{21}(t'') dt'' dt' dk
\]

\[
- \lambda i \int_{\partial D_3} 6k^2 \int_0^t g_{21}(t') \int_0^t e^{-8ik^3(t'-t'')} g_{11}(t'') dt'' dt' dk + \lambda i \int_{\partial D_3} 6k^2 \int_0^t \hat{g}_{01}(t') dt' dk. \quad (3.47)
\]

Using (3.27), we find that the second and third integrals of the rhs of (3.47) vanish. For the first integral of the rhs of (3.47), integrating by parts with respect to \(dt'\) we find

\[
-6\lambda i \int_{\partial D_3} k^2 \int_0^t g_{01}(t') dt' dk + 6\lambda i \int_{\partial D_3} k^2 \int_0^t g_{01}(t') \int_0^t e^{-8ik^3(t'-t'')} g_{01}(t'') dt'' dt' dk. \quad (3.48)
\]

The first term of (3.48) cancels with the last term of the rhs of (3.47). Also, using (3.27), the second term of (3.48) yields

\[
\frac{\lambda i \pi}{4} \int_0^t g_{01}(t') g_{01}(t') dt' = \frac{\lambda i \pi}{8} g_{01}^2(t). \quad (3.49)
\]

Thus, we find

\[
\frac{4g_{01}(t)}{i\pi} \int_{\partial D_3} k \hat{\chi}_{22}(t,k) dk = \frac{\lambda}{2} g_{01}(t). \quad (3.50)
\]

The first and third integrals of (3.46) can be evaluated in a similar way as in \((a)\) and hence (3.9) follows. \(\square\)

4. Periodic boundary condition

We next concentrate in the particular case that the Dirichlet datum is a sine wave.

Proposition 4.1. Let

\[
q(0,t) = \varepsilon \sin t + O(\varepsilon^4), \quad \varepsilon \to 0, \quad t > 0; \quad q(x,0) = 0, \quad x \in \mathbb{R}^+. \quad (4.1)
\]

Then, \(q_{x}(0,t)\) and \(q_{xx}(0,t)\) are given by (3.3) and (3.7), where

\[
g_{12}(t) = g_{22}(t) = 0, \quad (4.2)
\]

\[
g_{11}(t) = \frac{1}{2} (\alpha e^{i\theta} + \alpha^2 e^{-i\theta}) + \int_{\partial D_3} e^{-8ik^3t} F(k^3) dk, \quad (4.3)
\]

\[
g_{21}(t) = \frac{i}{2} (\alpha^2 e^{i\theta} - \alpha e^{-i\theta}) - 2i \int_{\partial D_3} e^{-8ik^3t} k F(k^3) dk, \quad (4.4)
\]

with \(\alpha = e^{2i\pi/3}\), \(\partial \tilde{D}_3\) is depicted in figure 3 and

\[
F(k^3) = \frac{12}{i\pi} \left(\frac{k^3}{8k^3 + 1} - \frac{k^3}{8k^3 - 1} \right). \quad (4.5)
\]
The mKdV equation on the half-line with a sine-wave as Dirichlet datum

![Figure 3: The deformed contour \(\partial D_3 \), where \(\alpha = e^{2i\pi/3} \).](image)

Proof. Equation (3.13) implies that

\[
k\chi_{11}(t,k) = -6ik^3 e^{-8ik^3t} \int_0^t \left(e^{i\tau(8k^3+1)} - e^{i\tau(8k^3-1)} \right) d\tau.
\]

(4.6)

Integrating the above equation with respect \(d\tau \) and substituting the resulting expression into (3.11), we obtain

\[
g_{11}(t) = \frac{2}{i\pi} \int_{\partial D_3} \left[-\frac{6k^3}{8k^3+1} (e^{it} - e^{-8ik^3t}) + \frac{6k^3}{8k^3-1} (e^{-it} - e^{-8ik^3t}) + \frac{3}{4} (e^{it} - e^{-it}) \right] dk.
\]

(4.7)

Note that the integrand in (4.7) has removable singularities at \(k = -\alpha/2 \) and \(k = \alpha^2/2 \). Hence, before splitting, the integral we deform the contour \(\partial D_3 \) to the contour \(\partial D_3 \) depicted in figure 3. Thus, (4.7) yields

\[
g_{11}(t) = \frac{3}{2i\pi} \int_{\partial D_3} \left(\frac{e^{it}}{8k^3+1} + \frac{e^{-it}}{8k^3-1} \right) dk + \frac{12}{i\pi} \int_{\partial D_3} e^{-8ik^3t} \left(\frac{k^3}{8k^3+1} - \frac{k^3}{8k^3-1} \right) dk.
\]

(4.8)

The first integral in (4.8) can be evaluated by the residue theorem, and hence we find \(g_{11}(t) \) as in (4.3).

In order to derive (4.4) we use the representation

\[
g_{21}(t) = -\frac{3}{\pi} \int_{\partial D_3} \left(\frac{ke^{it}}{8k^3+1} + \frac{ke^{-it}}{8k^3-1} \right) dk - \frac{24}{\pi} \int_{\partial D_3} e^{-8ik^3t} \left(\frac{k^4}{8k^3+1} - \frac{k^4}{8k^3-1} \right) dk.
\]

(4.9)

Proposition 4.2. Let \(q(x,0) \) and \(q(0,t) \) be given by (4.1). Then the function \(\Phi_1(t,k) \) defined by (2.15a) satisfies \(\Phi_1(t,k) = e\Phi_{11}(t,k) + O(\varepsilon^2), \varepsilon \to 0, \) where

\[
\Phi_{11}(t,k) = \frac{e^{-8ik^3t} - e^{i\tau}}{2(2k + \alpha)} - \frac{e^{-8ik^3t} - e^{-it}}{2(2k - \alpha^2)} + e^{-8ik^3t} \left[\frac{\alpha(2k - \alpha)}{2(8k^3 + 1)} + \frac{\alpha^2(2k + \alpha^2)}{2(8k^3 - 1)} \right]
\]

\[
- \frac{4k^2(\sigma^2 + \alpha)}{(8k^3 + 1)(8k^3 - 1)} \right] + \frac{1}{4} \int_{\partial D_3} \frac{(k + k_1)F(k_1^3)}{k^3 - k_1^3} e^{-8ik_1^3t} dk_1,
\]

(4.10)
with $\partial D_3^{\sigma k}$ depicted in figure 4, and σ is given by

$$
\sigma = \begin{cases}
1 & \text{if } k \in \partial D_3, \\
\alpha & \text{if } \alpha k \in \partial D_3, \\
\alpha^2 & \text{if } \alpha^2 k \in \partial D_3.
\end{cases}
$$

(4.11)

Proof. Substituting (4.3) and (4.4) into (3.12) and then integrating the resulting expression with respect to $d\tau$, we find

$$
\Phi_{11}(t,k) = e^{-8ik^3_{1}t} - e^{it} \left(\frac{4k^2 - 2\alpha k + \alpha^2}{2(8k^3 + 1)} - \frac{4k^2 - 2\alpha^2 k + \alpha}{2(8k^3 - 1)}\right) \\
+ \frac{1}{4} \int_{\partial D_3^{\sigma k}} \frac{(k + k_1)F(k_1^3)}{k^3 - k_1^3} (e^{-8ik^3_{1}t} - e^{-8ik^3_{1}t}) dk_1.
$$

(4.12)

Employing the identities

$$
4k^2 - 2\alpha k + \alpha^2 = (2k + 1)(2k + \alpha^2), \quad 4k^2 + 2\alpha^2 k + \alpha = (2k - 1)(2k - \alpha),
$$

(4.13)

we obtain the first two terms in (4.10). On the other hand, the integrand in the second line in (4.12) has removable singularities at $k_1 = k, \alpha k, \alpha^2 k$. Hence, before splitting the integrals we deform the contours ∂D_3 to the contour $\partial D_3^{\sigma k}$ which are depicted in figure 4.

Then, the residue theorem implies

$$
\int_{\partial D_3^{\sigma k}} \frac{(k + k_1)F(k_1^3)}{k^3 - k_1^3} dk_1 = -2 \left[\frac{\alpha(2k - \alpha)}{8k^3 + 1} + \frac{\alpha^2(2k + \alpha^2)}{8k^3 - 1} - \frac{8k^2(\sigma^2 + \sigma)}{(8k^3 + 1)(8k^3 - 1)} \right],
$$

(4.14)

where σ is given in (4.11). Using the above equation in (4.12), we find (4.10).
Proposition 4.3. Let \(q(x, 0) \) and \(q(0, t) \) be given by (4.1). Then, \(\Phi_2(t, k) \) defined by (2.15b) satisfies

\[
\lambda \Phi_2(t, k) = \frac{\alpha_1(k) e^{-it(8k^3-1)}}{2(2k-\alpha)} - \frac{\alpha_1(k) e^{-it(8k^3+1)}}{2(2k+\alpha^2)} + \frac{\alpha^2 e^{2it}}{8(2k+\alpha)} - \frac{\alpha e^{-2it}}{8(2k-\alpha^2)} + c_1(k)
\]

\[
+ \int_{\partial D^k_3} c_2(k, k_2) e^{-it(8k^3 - 1)} dk_2 + \int_{\partial D^k_3} c_3(k, k_2) e^{-it(8k^3 + 1)} dk_2
\]

\[
+ \int_{\partial D^k_3} c_4(k, k_1) e^{-it(k^3 + k_1^3)} dk_1 + \int_{\partial D^k_3} c_5(k, k_1) e^{-it(8k^3 - 1)} dk_1
\]

\[
+ \int_{\partial D^k_3} c_6(k, k_1) e^{-it(8k^3 + 1)} dk_1 + \int_{\partial D^k_3} c_7(k, k_1, k_2) e^{-it(8k^3 + k_2^3)} dk_2
\]

with the contour \(\tilde{\partial}D^k_3 \) depicted in figure 4, and the constant \(\hat{\sigma} \) is given by

\[
\hat{\sigma} = \begin{cases}
1 & \text{if } -k \in \partial D_3, \\
\alpha & \text{if } -\alpha k \in \partial D_3, \\
\alpha^2 & \text{if } -\alpha^2 k \in \partial D_3.
\end{cases}
\]

The functions \(\alpha_1(k) \) and \(\{c_j\}_7 \) are defined by

\[
\alpha_1(k) = -\frac{4k^2(\sigma^2 + \sigma + 1)}{(8k^3 + 1)(8k^3 - 1)}, \quad c_1(k) = c^{(1)}_1(k) + c^{(2)}_1(k) + c^{(3)}_1(k),
\]

\[
c_2(k, k_2) = \frac{(2k - 1)(2k - \alpha^2)(k + k_2)}{8(8k^3 - k_2^3)(8k^3 - 1)} F(k^3_2),
\]

\[
c_3(k, k_2) = \frac{(2k + 1)(2k + \alpha)(k + k_2)}{8(k^3 - k_2^3)(8k^3 + 1)} F(k^3_2),
\]

\[
c_4(k, k_1) = \frac{\alpha_1(k)(k - k_1)}{4(k^3 + k_1^3)} F(k^3_1), \quad c_5(k, k_1) = -\frac{1}{(8k^3 - 1)(2k + \alpha)} F(k^3_1),
\]

\[
c_6(k, k_1) = \frac{k - k_1}{(8k^3 - 1)(2k - \alpha^2)} F(k^3_1), \quad c_7(k, k_1, k_2) = \frac{(k - k_1)(k + k_2)}{16(k^3 + k_2^3)} F(k^3_1) F(k^3_2),
\]

where

\[
c^{(1)}_1(k) = \frac{2k(2\alpha + 1) - 1}{8(4k^3 + 2(2\alpha + 1) - 1)} + \frac{3k^2 - k}{2(\alpha - 1)(8k^3 - 1)} + \frac{\alpha(8k^3 + 5)}{24(8k^3 + 1)(2k + \alpha^2)} - \frac{\alpha(8k^3 - 5)}{24(8k^3 + 1)(2k + \alpha^2)} - \frac{\alpha(8k^3 + 1)}{24(8k^3 + 1)(2k + \alpha^2)} - \frac{\alpha(8k^3 - 7)}{24(8k^3 + 1)(2k + \alpha^2)} - \frac{\alpha(2k + \alpha^2)}{6(2k + \alpha)} - \frac{\alpha(2k + \alpha^2)}{6(2k + \alpha)} - \frac{1}{2}
\]

\[
- \frac{\alpha(8k^3 + 1)}{4(2k - \alpha^2)} - \frac{k(8k^3 + 7)}{4(2k - \alpha^2)} - \frac{2k - \alpha}{6(2k - \alpha^2)} - \frac{\alpha}{2}
\]

\[
+ \frac{64k^5 + 8k^4 + 20k^2 + 7k}{12(8k^3 + 1)^2} + \frac{\alpha(3k^2 + k)}{6(8k^3 + 1)} + \frac{112k^5 - 24k^4 - 26k^2 + 9k}{12(8k^3 - 1)^2} + \frac{64i\sqrt{3}k^2 + 48i\sqrt{3}k^3 + 16k^4 + 20i\sqrt{3}k^3 + 16k^2 + 1}{6(16k^4 + 4k^2 + 1)^2} + \frac{4ik^4(3\log(k^2) - 6\log(k))}{\pi(64k^6 - 1)^2}.
\]

(4.22a)
We also note that Equation (3.21) implies that
\[c_1^{(2)}(k) = \frac{2k^2(\sigma^2 + \sigma)}{(6k^6 - 1)(2k + \alpha^2)(2k - \alpha)} - \frac{4\alpha(k)k^2(\check{\sigma}^2 + \check{\sigma} + 1)}{(8k^4 + 1)(8k^3 - 1)} \]
\[- \frac{2k^2(\sigma^2 + \sigma)(16k^4 + 8k^3 - 2k + 1)}{(8k^3 - 1)(2)(8k^3 + 1)^2} - \frac{8k\check{\alpha}(\sigma^2 + \sigma)}{(6k^6 - 1)(16k^4 + 4k^3 + 1)}, \] (4.22b)

and
\[c_1^{(3)}(k) = \frac{\alpha(8k^3 - 5)}{24(8k^3 - 1)^2} - \frac{\alpha}{8(8k^3 + 1)} + \frac{2k^3 - 1}{3(8k^3 - 1)^2} - \frac{3}{8(\alpha - 1)(8k^3 - 1)}. \] (4.22c)

Proof. Equation (3.21) implies that \(\Phi_{22} \) satisfies
\[\lambda \Phi_{22}(t, k) = \int_0^t [4k^2g_{01}(\tau) - 2ikg_{11}(\tau) - g_{21}(\tau)] \Phi_{11}(\tau, k)d\tau + 2ik \int_0^t g_0^{(2)}(\tau)d\tau. \] (4.23)

The second integral in (4.23) can be evaluated exactly,
\[2ik \int_0^t g_0^{(2)}(\tau)d\tau = \frac{k}{4}(e^{-2it} - e^{2it}) + ikt. \] (4.24)

We also note that
\[4k^2g_{01}(\tau) - 2ikg_{11}(\tau) - g_{21}(\tau) = -\frac{i}{2}(2k - 1)(2k - \alpha^2)e^{i\tau} + \frac{i}{2}(2k + 1)(2k + \alpha)e^{-i\tau} \]
\[- 2i \int_{\partial D_1} (k - k_1)F(k_1^3)e^{-8ik_1\tau}dk_1. \] (4.25)

We denote \(\Phi_{11}(t, k) \) by
\[\Phi_{11}(\tau, k) = \alpha_1(k)e^{-8it\tau} + \alpha_2(k)e^{i\tau} + \alpha_3(k)e^{-i\tau} + \frac{1}{4} \int_{\partial D_1} \frac{(k + k_2)F(k_2^3)}{k^3 - k_2^3}e^{-8ik_2\tau}dk_2, \] (4.26)

where \(\alpha_1(k) \) is given in (4.17) and \(\alpha_2(k), \alpha_3(k) \) are defined by
\[\alpha_2(k) = -\frac{1}{2(2k + \alpha)}, \quad \alpha_3(k) = \frac{1}{2(2k - \alpha^2)}. \] (4.27)

Substituting (4.25) and (4.26) into (4.23) and integrating the resulting expression with respect \(d\tau \), we find
\[\int_0^t [4k^2g_{01}(\tau) - 2ikg_{11}(\tau) - g_{21}(\tau)] \Phi_{11}(\tau, k)d\tau = \frac{\alpha_1(k)}{2(2k - \alpha)}(e^{-it(8k^3 - 1)} - 1) \]
\[- \frac{\alpha_1(k)}{2(2k + \alpha^2)}(e^{-it(8k^3 - 1)} - 1) - \frac{\alpha_2(k)}{4}(2k - 1)(2k - \alpha^2)(e^{2it} - 1) \]
\[- \frac{\alpha_3(k)}{4}(2k + 1)(2k + \alpha)(e^{-2it} - 1) + \frac{i\alpha_3(k)}{2}(2k + 1)(2k + \alpha)t \]
\[- \frac{i\alpha_3(k)}{2}(2k - 1)(2k - \alpha^2)t + I(t, k), \] (4.28)
The mKdV equation on the half-line with a sine-wave as Dirichlet datum

where

\[
I(t,k) = \frac{1}{8} (2k-1)(2k-\alpha^2) \int_{\partial D^3_1} \frac{(k+k_2)\left(e^{-\alpha(8k^3_1-1)} - 1\right)}{(k^3 - k^3_2)(8k^3_2 - 1)} F(k^3_2) \, dk_2 \\
- \frac{1}{8} (2k+1)(2k+\alpha) \int_{\partial D^3_1} \frac{(k+k_2)\left(e^{-\alpha(8k^3_1+1)} - 1\right)}{(k^3 - k^3_2)(8k^3_2 + 1)} F(k^3_2) \, dk_2 \\
+ 2\alpha_2(k) \int_{\partial D_1} \frac{(k-k_1)\left(e^{-\alpha(8k^3_1-1)} - 1\right)}{8k^3_1 - 1} F(k^3_1) \, dk_1 \\
+ 2\alpha_3(k) \int_{\partial D_1} \frac{(k-k_1)\left(e^{-\alpha(8k^3_1+1)} - 1\right)}{8k^3_1 + 1} F(k^3_1) \, dk_1 \\
+ \frac{\alpha_1(k)}{4} \int_{\partial D_1} \frac{(k-k_1)(k+k_2)\left(e^{-\alpha(8k^3_1+k^3_2)} - 1\right)}{(k^3 - k^3_2)(k^3_1 + k^3_2)} F(k^3_1)F(k^3_2) \, dk_2 \, dk_1. \tag{4.29}
\]

Using the definitions for \(\alpha_2(k)\) and \(\alpha_3(k)\) in (4.27), we find

\[
\frac{i\alpha_2(k)}{2} (2k+1)(2k+\alpha)t - \frac{i\alpha_3(k)}{2} (2k-1)(2k-\alpha^2)t = -ikt; \tag{4.30}
\]

thus, the term in (4.24) involving \(t\) cancels and then employing (4.24), equation (4.23) becomes

\[
\lambda \Phi_{22}(t,k) = \frac{\alpha_1(k)}{2(2k-\alpha)} \left(e^{-\alpha(8k^3_1-1)} - 1\right) - \frac{\alpha_1(k)}{2(2k+\alpha^2)} \left(e^{-\alpha(8k^3_1+1)} - 1\right) \\
- \frac{\alpha^2 e^{2\alpha t}}{8(2k+\alpha)} - \frac{\alpha e^{-2\alpha t}}{8(2k-\alpha^2)} + \frac{2k(2\alpha + 1) - 1}{8(4k^2 + 2k(2\alpha + 1) - 1)} + I(t,k). \tag{4.31}
\]

In what follows we evaluate each integral appearing in \(I(t,k)\). Using the residue theorem we find

\[
\int_{\partial D^3_1} \frac{(k+k_2)F(k^3_2)}{(k^3 - k^3_2)(8k^3_2 - 1)} \, dk_2 = \frac{\alpha(2k-\alpha)}{8k^3 + 1} + \frac{2\alpha^2 k(8k^3 - 7)}{3(8k^3 - 1)^2} - \frac{\alpha(8k^3 + 5)}{3(8k^3 - 1)^2} \\
+ \frac{16k^2(\alpha^2 + \alpha)}{(8k^3 - 1)^2(8k^3 + 1)} := \beta_1(k), \tag{4.32}
\]

\[
\int_{\partial D^3_1} \frac{(k+k_2)F(k^3_2)}{(k^3 - k^3_2)(8k^3_2 + 1)} \, dk_2 = -\frac{\alpha^2 (2k + \alpha^2)}{8k^3 - 1} - \frac{2\alpha k(8k^3 + 7)}{3(8k^3 + 1)^2} - \frac{\alpha^2 (8k^3 - 5)}{3(8k^3 + 1)^2} \\
+ \frac{16k^2(\alpha^2 + \alpha)}{(8k^3 - 1)(8k^3 + 1)^2} := \beta_2(k), \tag{4.33}
\]

\[
\int_{\partial D_1} \frac{(k-k_1)F(k^3_1)}{8k^3_1 - 1} \, dk_1 = \frac{\alpha(2k + \alpha)}{8} + \frac{\alpha^2 (2k + \alpha^2)}{24}, \tag{4.34}
\]

\[
\int_{\partial D_1} \frac{(k-k_1)F(k^3_1)}{8k^3_1 - 1} \, dk_1 = -\frac{\alpha^2 (2k - \alpha^2)}{8} - \frac{\alpha(2k - \alpha)}{24}. \tag{4.35}
\]
In order to compute \(\beta_4 \) by Cauchy’s theorem, we first deform \(C_1 \) to \(\tilde{C}_1 \) (cf. figure 2). Using \(k_2 = \nu \) with \(\nu = e^{-i\pi/6} \), \(\beta_4^{(1)} \) can be written in the form

\[
\beta_4^{(1)}(k) = \frac{12}{i\pi} \int_0^\infty \frac{\alpha r^4 (k + r\nu)(k + a r\nu)}{(k^3 - r^3 \nu^3)(8r^3 \nu^3 + 1)(8r^3 \nu^3 - 1)} \left(\frac{1}{8r^3 \nu^3 + 1} - \frac{1}{8r^3 \nu^3 - 1} \right) dr.
\]
For $\beta_4^{(2)}(k)$, letting $k_2 \to \alpha^2 k_2$, in analogy with $\beta_4^{(1)}(k)$, we obtain

$$\beta_4^{(2)}(k) = -\frac{12}{i\pi} \int_0^\infty \frac{\alpha r^4 v^5 (k + \alpha rv)(k + \alpha^2 rv)}{(k^3 - r^3 v^3)(k^3 + (8 r^3 v^3 + 1)(8 r^3 v^3 - 1))} \left(\frac{1}{8 r^3 v^3} + 1 - \frac{1}{8 r^3 v^3 - 1} \right) dr. \quad (4.45)$$

Evaluating (4.44) and (4.45) directly, we find

$$\beta_4^{(1)}(k) + \beta_4^{(2)}(k) = \frac{64i\sqrt{3}k^7 + 48i\sqrt{3}k^5 + 16k^4 + 20i\sqrt{3}k^3 + 16k^2 + 1}{6(2k + \alpha)^2(2k^2 + \alpha^2)^2(2k - \alpha)^2(2k - \alpha^2)^2}$$

$$+ \frac{4i k^4 (3 \log(k^2) - 6 \log(k))}{\pi(64k^6 - 1)^2}. \quad (4.46)$$

Combining the above results, we find (4.15), where $c_1(k)$ is given by

$$c_1(k) = \frac{\alpha_1(k)}{2(2k + \alpha^2)(2k - \alpha)} + \frac{2k(2\alpha + 1) - 1}{8(4k^2 + 2k(2\alpha + 1) - 1)} + \frac{\alpha^2 (2k + \alpha^2)}{24(2k + \alpha)} + \frac{\alpha(2k - \alpha)}{24(2k - \alpha^2)} - \frac{1}{8}$$

$$- \frac{1}{8} \frac{2k(2k - 1)(2k - \alpha^2)}{(2k + \alpha^2)} \beta_1(k) + \frac{1}{8} \frac{2k(2k + 1)(2k + \alpha)}{(2k + \alpha^2)} \beta_2(k) - \frac{\alpha_1(k)}{4} \beta_3(k) + \beta_4(k). \quad (4.47)$$

Simplifying (4.47), we find that $c_1(k)$ is given by the second equation in (4.17), where $\{c_1^{(j)}\}_1^3$ are defined in (4.22).

Proposition 4.4. Let $q(x,0)$ and $q(0,t)$ be given by (4.1). Then, $q_x(0,t)$ and $q_{xx}(0,t)$ are given by (3.3) and (3.7), where g_{21}, g_{22}, g_{23}, are given in proposition 4.1 and g_{13}, g_{23} are given by the following formulas:

$$\lambda g_{13}(t) = \left(\frac{3}{4} - \frac{i}{32} (3^{2/3} - 1) \right) e^{3it} + \left(\frac{\alpha}{16} - \frac{\alpha}{32} (3^{1/3} - 1) \right) e^{-3it}$$

$$+ d_1 e^{it} + d_2 e^{-it} + o(1), \quad t \to \infty, \quad (4.48)$$

and

$$\lambda g_{23}(t) = \left(\frac{i}{4} - \frac{i}{32} (3^{2/3} - 1) \right) e^{3it} - \left(\frac{i}{4} - \frac{i}{32} (3^{2/3} - 1) \right) e^{-3it}$$

$$+ d_3 e^{it} + d_4 e^{-it} + o(1), \quad t \to \infty, \quad (4.49)$$

with d_1, \ldots, d_4 constants.

Proof. We will derive equation (4.48); equation (4.49) can be derived in a similar way. Recalling (3.20), we denote $\lambda g_{13}(t)$ by

$$\lambda g_{13}(t) = \lambda g_{13}^{(1)}(t) + \lambda g_{13}^{(2)}(t), \quad (4.50)$$

where

$$\lambda g_{13}^{(1)}(t) = \frac{2}{i\pi} \int_{\partial D_3} k \lambda \left[\Phi_{13}(t,k) + \alpha \Phi_{13}(t,\alpha k) + \alpha^2 \Phi_{13}(t,\alpha^2 k) \right] dk, \quad (4.51)$$

$$\lambda g_{13}^{(2)}(t) = \frac{e^{-it} - e^{-it}}{\pi} \int_{\partial D_3} \lambda \left[\Phi_{22}(t,k) + \alpha \Phi_{22}(t,\alpha k) + \alpha^2 \Phi_{22}(t,\alpha^2 k) \right] dk. \quad (4.52)$$

We next compute the coefficients of the terms involving e^{3it} and e^{-3it}.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors
Regarding $\lambda g_{13}^{(2)}(t)$, we use (4.15). Note that the term involving e^{3it} arises from the third term in (4.15),

$$\frac{\alpha e^{2it}}{8(2k+\alpha)},$$

(4.53)

the relevant contribution for $\lambda g_{13}^{(2)}(t)$ is given by

$$\frac{\alpha^2}{8i\pi} \int_{\partial D_1} \left(\frac{1}{2k+\alpha} + \frac{2\alpha k + \alpha}{2\alpha^2 k + \alpha} \right) dk = \frac{3\alpha^2}{2i\pi} \int_{\partial D_1} \frac{k^2}{8k^3-1} dk = \frac{\alpha^2}{16},$$

(4.54)

where we have used the fact that the integrand has poles at $k = -\alpha/2$ and at $k = \infty$. Also, noting that the term involving e^{-3it} arises from the fourth term in (4.15),

$$\frac{\alpha e^{-2it}}{8(2k-\alpha^2)},$$

(4.55)

the relevant contribution for $\lambda g_{13}^{(2)}(t)$ is given by

$$\frac{\alpha}{8i\pi} \int_{\partial D_1} \left(\frac{1}{2k-\alpha^2} + \frac{2\alpha k - \alpha}{2\alpha^2 k - \alpha^2} \right) dk = \frac{3\alpha^2}{2i\pi} \int_{\partial D_1} \frac{k^2}{8k^3-1} dk = \frac{\alpha}{16},$$

(4.56)

where we have used the fact that the integrand has poles at $k = \alpha^2/2$ and at $k = \infty$.

Regarding $\lambda g_{13}^{(1)}(t)$, we use (3.24). According to the symmetric combination for $\lambda \Phi_{13}(t,k)$ in (4.51), we first need to evaluate the integrals

$$-2ike^{-8ik^3} \int_0^1 e^{8ik^3} \tau^2 g_{01}^2 (\tau) \Phi_{11}(\tau,k) d\tau$$

+ $e^{-8ik^3} \int_0^1 e^{8ik^3} \tau [4k^2 g_{01}(\tau) + 2ik g_{11}(\tau) - g_{21}(\tau)] \Phi_{22}(\tau,k) d\tau.$

(4.57)

For the first integral (involving $\Phi_{11}(\tau,k)$), we substitute (4.26) into (4.57) and then integrate the resulting expression with respect $d\tau$; in this way we find the following explicit expressions:

$$\frac{2}{k} e^{-8ik^3} \left[-2i \alpha_1(k) \frac{\alpha_1(k)(e^{2it} - 1)}{2} - \alpha_1(k) \frac{e^{-2it} - 1}{2} + \alpha_3(k) - 2 \alpha_2(k) \frac{e^{i(8k^3+1)} - 1}{8k^3+1} \right.$$

$$+ \left. \alpha_2(k) \frac{e^{i(8k^3-1)} - 1}{8k^3-1} + \alpha_2(k) \frac{e^{i(8k^3+3)} - 1}{8k^3+3} + \alpha_3(k) \frac{e^{i(8k^3-3)} - 1}{8k^3-3} \right].$$

(4.58)

Hence, the term involving e^{3it} arises from the term

$$\frac{k \alpha_2(k)}{2(8k^3+3)} \left(\frac{2k + \alpha}{2\alpha k + \alpha} \right).$$

(4.59)

The relevant contribution for $\lambda g_{13}^{(1)}(t)$ is given by

$$- \frac{1}{2i\pi} \int_{\partial D_1} \frac{k}{8k^3+3} \left(\frac{k}{2k+\alpha} + \frac{\alpha^2 k}{2\alpha k + \alpha} + \frac{\alpha k}{2\alpha^2 k + \alpha} \right) dk = \frac{3\alpha}{i\pi} \int_{\partial D_1} \frac{k^3}{(8k^3 + 3)(8k^3 + 1)} dk.$$

(4.60)
The mKdV equation on the half-line with a sine-wave as Dirichlet datum

Note that the above integrand has poles at \(k = -\alpha/2 \) and \(k = -\frac{3\alpha}{2} \); thus,

\[
\frac{3\alpha}{i\pi} \int_{\partial B_1} \frac{k^3}{(8k^3+3)(8k^3+1)} dk = \frac{\alpha^2}{16} (3^{1/3} - 1). \tag{4.61}
\]

The term involving \(e^{-3it} \) arises from the term

\[
\frac{k\alpha_3(k)}{2(8k^3-3)} = \frac{k}{4(2k-\alpha^2)(8k^3-3)}, \tag{4.62}
\]

and the relevant contribution for \(\lambda g_{13}^{(1)}(\tau) \) is given by

\[
\frac{1}{2i\pi} \int_{\partial B_1} \frac{k}{8k^3-3} \left(\frac{k}{2k-\alpha^2} + \frac{\alpha^2 k}{2\alpha k - \alpha^2} + \frac{\alpha k}{2\alpha^2 k - \alpha^2} \right) dk = \frac{3\alpha}{i\pi} \int_{\partial B_1} \frac{k^3}{(8k^3+3)(8k^3+1)} dk. \tag{4.63}
\]

The above integrand has poles at \(k = \alpha^2/2 \) and \(k = \frac{3\alpha}{2} \alpha^2 \), thus

\[
\frac{3\alpha}{i\pi} \int_{\partial B_1} \frac{k^3}{(8k^3+3)(8k^3+1)} dk = \frac{\alpha}{16} (3^{1/3} - 1). \tag{4.64}
\]

For the second integral in (4.57) (involving \(\Phi_{22}(\tau,k) \)), we substitute (4.15) into (4.57). We need to evaluate the integral

\[
e^{-8ik\tau} \int_0^t \left[-\frac{i}{2} e^{it} (4k^2 - 2\alpha k + \alpha^2) + \frac{i}{2} e^{-it} (4k^2 + 2\alpha^2 k + \alpha) \right] \times \left[\frac{\alpha_1(k)e^{it}}{2(2k-\alpha)} - \frac{\alpha_1(k)e^{-it}}{2(2k+\alpha^2)} + \frac{\alpha^2 e^{it(8k^3+2)}}{8(2k+\alpha)} - \frac{\alpha e^{it(8k^3-2)}}{8(2k-\alpha^2)} + c_1(k)e^{8k^3\tau} \right] d\tau. \tag{4.65}
\]

Letting

\[
u_1(k) = 4k^2 - 2\alpha k + \alpha^2, \quad v_2(k) = 4k^2 + 2\alpha^2 k + \alpha, \tag{4.66}
\]

and integrating the above expression with respect \(d\tau \), equation (4.65) can be written in the form

\[
e^{-8ik\tau} \left[\frac{i\alpha t}{4} \left(\frac{\nu_1(k)}{2k+\alpha^2} + \frac{\nu_2(k)}{2k-\alpha} \right) - \frac{\alpha_1(k)u_1(k)(e^{2it} - 1)}{8(2k-\alpha)} + \frac{\alpha_1(k)u_2(k)(e^{-2it} - 1)}{8(2k+\alpha^2)} \right.
\]

\[
- \frac{e^{i(8k^3+1)}}{2(8k^3+1)} \left(c_1(k)\nu_1(k) - \frac{\alpha^2\nu_2(k)}{8(2k+\alpha)} \right) + \frac{e^{i(8k^3-1)}}{2(8k^3-1)} \left(c_1(k)\nu_2(k) + \frac{\alpha\nu_1(k)}{8(2k-\alpha^2)} \right)
\]

\[
- \frac{\alpha^2 u_1(k)(e^{i(8k^3+3)} - 1)}{16(8k^3+3)(2k+\alpha)} - \frac{\alpha u_2(k)(e^{i(8k^3-3)} - 1)}{16(8k^3-3)(2k-\alpha^2)} \right]. \tag{4.67}
\]

Thus, the term involving \(e^{3it} \) arises from the term

\[
- \frac{\alpha^2 u_1(k)}{16(8k^3+3)(2k+\alpha)}. \tag{4.68}
\]
The relevant contribution for $\lambda g_{13}^{(1)}(t)$ is given by
\[
\frac{-\alpha^2}{8\pi i} \int_{\partial D_3} \frac{k}{8k^3 - 3} \left(\frac{u_1(k)}{2k + \alpha} + \frac{\alpha u_1(\alpha k)}{2\alpha k + \alpha} + \frac{\alpha^2 u_1(\alpha^2 k)}{2\alpha^2 k + \alpha} \right) dk
= -\frac{9\alpha}{2i\pi} \int_{\partial D_3} \frac{k^3}{(8k^3 + 3)(8k^3 + 1)} dk = -\frac{3\alpha^2}{32} (3^{1/3} - 1),
\tag{4.69}
\]
where we have used the fact that the integrand has poles at $k = -\alpha/2$ and $k = -\frac{3}{2}\alpha$. Similarly, we find that the term involving e^{-3it} arises from the term
\[
-\frac{\alpha u_2(k)}{16(8k^3 - 3)(2k - \alpha^2)}.
\tag{4.70}
\]
The relevant contribution for $\lambda g_{13}^{(1)}(t)$ is given by
\[
\frac{-\alpha}{8i\pi} \int_{\partial D_3} \frac{k}{8k^3 - 3} \left(\frac{u_2(k)}{2k - \alpha^2} + \frac{\alpha u_2(\alpha k)}{2\alpha k - \alpha^2} + \frac{\alpha^2 u_2(\alpha^2 k)}{2\alpha^2 k - \alpha^2} \right) dk
= -\frac{9\alpha^2}{2i\pi} \int_{\partial D_3} \frac{k^3}{(8k^3 - 3)(8k^3 - 1)} dk = -\frac{3\alpha}{32} (3^{1/3} - 1),
\tag{4.71}
\]
where we have used the fact that the integrand has poles at $k = \alpha^2/2$ and $k = \frac{3}{2}\alpha^2$.

Combining (4.54), (4.61) and (4.69) for the terms involving e^{3it}, as well as (4.56), (4.64) and (4.71) for the terms involving e^{-3it}, we find the following expressions for e^{3it} and e^{-3it}:
\[
\left(\frac{\alpha^2}{16} - \frac{\alpha^2}{32} (3^{1/3} - 1) \right) e^{3it} + \left(\frac{\alpha}{16} - \frac{\alpha}{32} (3^{1/3} - 1) \right) e^{-3it}.
\tag{4.72}
\]

\section*{Acknowledgments}

The authors are grateful to the EPSRC, UK, for partial support.

\section*{References}

[1] A. de Monvel Boutet, A. S. Fokas and D. Shepelsky, Analysis of the global relation for the nonlinear Schrödinger equation on the half-line, \textit{Lett. Math. Phys.} \textbf{65} (2003) 199–212.
[2] A. de Monvel Boutet, A. Its and V. Kotlyarov, Long-time asymptotics for the focusing NLS equation with time-periodic boundary condition, \textit{C. R. Math. Acad. Sci.} Paris \textbf{345} (2007) 615–620.
[3] A. de Monvel Boutet, A. Its, V. Kotlyarov, Long-time asymptotics for the focusing NLS equation with time-periodic boundary condition on the half-line, \textit{Commun. Math. Phys.} \textbf{290} (2009) 479–522.
[4] A. de Monvel Boutet, A. Kotlyarov, D. Shepelsky and C. Zheng, Initial boundary value problems for integrable systems: towards the long-time asymptotics, \textit{Nonlinearity} \textbf{23} (2010) 2483.
[5] P. Deift, S. Venakides and X. Zhou, The collisionless shock region for the long time behavior of the solutions of the KdV equation, \textit{Commun. Pure Appl. Math.} \textbf{47} (1994) 199–206.
[6] P. Deift, S. Venakides and X. Zhou, New results in small dispersion KdV by an extension of the steepest descent method for Riemann-Hilbert problems, \textit{Int. Math. Res. Notices} \textbf{6} (1997) 286–299.
[7] P. Deift and X. Zhou, A steepest descent method for oscillatory Riemann-Hilbert problems, \textit{Bull. Amer. Math. Soc.} \textbf{26} (1992) 119–123.
The mKdV equation on the half-line with a sine-wave as Dirichlet datum

[8] P. Deift and X. Zhou, A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the mKdV equation, *Ann. Math.* 137 (1993) 295–368.

[9] A. S. Fokas, A unified transform method for solving linear and certain nonlinear PDEs, *Proc. Roy. Soc. London A* 453 (1997) 1411–1443.

[10] A S Fokas, On the integrability of certain linear and nonlinear partial differential equations, *J. Math. Phys.* 41 (2000) 4188–4237.

[11] A. S. Fokas, Integrable nonlinear evolution equations on the half-line, *Comm. Math. Phys.* 230 (2002) 1–39.

[12] A. S. Fokas, The generalized Dirichlet-to-Neumann map for certain nonlinear evolution PDEs, *Comm. Pure Appl. Math.* LVI (2005) 639–670.

[13] A. S. Fokas, Lax pairs: novel type of separability, *Inv. Probl.* 25 (2009) 123007.

[14] A. S. Fokas and G. Hwang, An example of an explicit construction of the asymptotic form of the Neumann boundary value for the NLS, *Preprint*.

[15] A. S. Fokas and J. Lenells, The unified method: I. Non-linearizable problems on the half-line, *J. Phys. A: Math. Theor.* 45 (2012) 195201.

[16] A. S. Fokas A. S and J. Lenells, The unified method: IV. The explicit form of the Neumann boundary value for the NLS, *in preparation*.

[17] A. S. Fokas and E. A. Spence, Synthesis, as opposed to separation, of variables, *SIAM Review* 25 (2012) 291–324.

[18] J. Lenells and A. S. Fokas, The unified method on the half-line: II. NLS on the half-line with t-periodic boundary conditions, *J. Phys. A: Math. Theor.* 45 (2012) 195202.