AN AXIOMATIC CHARACTERIZATION OF THE GABRIEL-ROITER MEASURE

HENNING KRAUSE

ABSTRACT. Given an abelian length category \(\mathcal{A} \), the Gabriel-Roiter measure with respect to a length function \(\ell \) is characterized as a universal morphism \(\text{ind} \mathcal{A} \to P \) of partially ordered sets. The map is defined on the isomorphism classes of indecomposable objects of \(\mathcal{A} \) and is a suitable refinement of the length function \(\ell \).

In his proof of the first Brauer-Thrall conjecture \cite{Roiter}, Roiter used an induction scheme which Gabriel formalized in his report on abelian length categories \cite{Gabriel}. The first Brauer-Thrall conjecture asserts that every finite dimensional algebra of bounded representation type is of finite representation type. Ringel noticed (see the footnote on p. 91 of \cite{Gabriel}) that the formalism of Gabriel and Roiter works equally well for studying the representations of algebras having unbounded representation type. We refer to recent work \cite{Krause2, Krause3, Krause4} for some beautiful applications.

In this note we present an axiomatic characterization of the Gabriel-Roiter measure which reveals its combinatorial nature. Given a finite dimensional algebra \(\Lambda \), the Gabriel-Roiter measure is characterized as a universal morphism \(\text{ind} \Lambda \to P \) of partially ordered sets. The map is defined on the isomorphism classes of finite dimensional indecomposable \(\Lambda \)-modules and is a suitable refinement of the length function \(\text{ind} \Lambda \to \mathbb{N} \) which sends a module to its composition length.

The first part of this paper is purely combinatorial and might be of independent interest. We study length functions \(\lambda : S \to T \) on a fixed partially ordered set \(S \). Such a length function takes its values in another partially ordered set \(T \), for example \(T = \mathbb{N} \). We denote by \(\text{Ch}(T) \) the set of finite chains in \(T \), together with the lexicographic ordering. The map \(\lambda \) induces a new length function \(\lambda^* : S \to \text{Ch}(T) \), which we call chain length function because each value \(\lambda^*(x) \) measures the lengths \(\lambda(x_i) \) of the elements \(x_i \) occurring in some finite chain \(x_1 < x_2 < \ldots < x_n = x \) of \(x \) in \(S \). We think of \(\lambda^* \) as a specific refinement of \(\lambda \) and provide an axiomatic characterization. It is interesting to observe that this construction can be iterated. Thus we may consider \((\lambda^*)^*\), \(((\lambda^*)^*)^*\), and so on.

The second part of the paper discusses the Gabriel-Roiter measure for a fixed abelian length category \(\mathcal{A} \), for example the category of finite dimensional \(\Lambda \)-modules over some algebra \(\Lambda \). For each length function \(\ell \) on \(\mathcal{A} \), we consider its restriction to the partially ordered set \(\text{ind} \mathcal{A} \) of isomorphism classes of indecomposable objects of \(\mathcal{A} \). Then the Gabriel-Roiter measure with respect to \(\ell \) is by definition the corresponding chain length function \(\ell^* \). In particular, we obtain an axiomatic characterization of \(\ell^* \) and use it to reprove Gabriel’s main property of the Gabriel-Roiter measure. Note that we work with a slight generalization of Gabriel’s original definition. This enables us to characterize the injective objects of \(\mathcal{A} \) as those objects where \(\ell^* \) takes maximal values for some

\[\begin{align*}
2000 \text{ Mathematics Subject Classification. Primary: } & 18E10; \text{ Secondary: } 06A07, 16G10.
\end{align*}\]
length function ℓ. This is a remarkable fact because the Gabriel-Roiter measure is a combinatorial invariant, depending only on the poset of indecomposable objects and some length function, whereas the notion of injectivity involves all morphisms of the category \mathcal{A}.

1. Chains and length functions

The lexicographic order on finite chains. Let (S, \leq) be a partially ordered set. A subset $X \subseteq S$ is a chain if $x_1 \leq x_2$ or $x_2 \leq x_1$ for each pair $x_1, x_2 \in X$. For a finite chain X, we denote by $\min X$ its minimal and by $\max X$ its maximal element, using the convention $\max \emptyset < x < \min \emptyset$ for all $x \in S$.

We write $\text{Ch}(S)$ for the set of all finite chains in S and let $\text{Ch}(S, x) := \{ X \in \text{Ch}(S) \mid \max X = x \}$ for $x \in S$.

On $\text{Ch}(S)$ we consider the lexicographic order which is defined by

$$X \leq Y \iff \min(Y \setminus X) \leq \min(X \setminus Y) \text{ for } X, Y \in \text{Ch}(S).$$

Remark 1.1. (1) $X \subseteq Y$ implies $X \leq Y$ for $X, Y \in \text{Ch}(S)$.

(2) Suppose that S is totally ordered. Then $\text{Ch}(S)$ is totally ordered. We may think of $X \in \text{Ch}(S) \subseteq \{0, 1\}^S$ as a string of 0s and 1s which is indexed by the elements in S. The usual lexicographic order on such strings coincides with the lexicographic order on $\text{Ch}(S)$.

Example 1.2. Let $\mathbb{N} = \{1, 2, 3, \cdots \}$ and \mathbb{Q} be the set of rational numbers together with the natural ordering. Then the map

$$\text{Ch}(\mathbb{N}) \rightarrow \mathbb{Q}, \quad X \mapsto \sum_{x \in X} 2^{-x}$$

is injective and order preserving, taking values in the interval $[0, 1]$. For instance, the subsets of $\{1, 2, 3\}$ are ordered as follows:

$$\{\} < \{3\} < \{2\} < \{2, 3\} < \{1\} < \{1, 3\} < \{1, 2\} < \{1, 2, 3\}.$$

We need the following properties of the lexicographic order.

Lemma 1.3. Let $X, Y \in \text{Ch}(S)$ and $X^* := X \setminus \{\max X\}$.

(1) $X^* = \max\{X' \in \text{Ch}(S) \mid X' < X \text{ and } \max X' < \max X\}$.

(2) If $X^* < Y$ and $\max X \geq \max Y$, then $X \leq Y$.

Proof. (1) Let $X' < X$ and $\max X' < \max X$. We show that $X' \leq X^*$. This is clear if $X' \subseteq X^*$. Otherwise, we have

$$\min(X^* \setminus X') = \min(X \setminus X') < \min(X' \setminus X) = \min(X' \setminus X^*),$$

and therefore $X' \leq X^*$.

(2) The assumption $X^* < Y$ implies by definition

$$\min(Y \setminus X^*) < \min(X^* \setminus Y).$$

We consider two cases. Suppose first that $X^* \subseteq Y$. If $X \subseteq Y$, then $X \leq Y$. Otherwise,

$$\min(Y \setminus X) < \max X = \min(X \set \ Y)$$
and therefore $X < Y$. Now suppose that $X^* \not\subseteq Y$. We use again that $\max X \geq \max Y$, exclude the case $Y \subseteq X$, and obtain

$$\min(Y \setminus X) = \min(Y \setminus X^*) < \min(X^* \setminus Y) = \min(X \setminus Y).$$

Thus $X \leq Y$ and the proof is complete. \QED

Length functions. Let (S, \leq) be a partially ordered set. A *length function* on S is by definition a map $\lambda: S \rightarrow T$ into a partially ordered set T satisfying for all $x, y \in S$ the following:

- (L1) $x < y$ implies $\lambda(x) < \lambda(y)$.
- (L2) $\lambda(x) \leq \lambda(y)$ or $\lambda(y) \leq \lambda(x)$.
- (L3) $\lambda_0(x) := \text{card}\{\lambda(x') \mid x' \in S \text{ and } x' \leq x\}$ is finite.

Two length functions λ and λ' on S are *equivalent* if

$$\lambda(x) \leq \lambda(y) \iff \lambda'(x) \leq \lambda'(y) \text{ for all } x, y \in S.$$

Observe that (L2) and (L3) are automatically satisfied if $T = \mathbb{N}$. A length function $\lambda: S \rightarrow T$ induces for each $x \in S$ a map

$$\text{Ch}(S, x) \rightarrow \text{Ch}(T, \lambda(x)), \quad X \mapsto \lambda(X),$$

and therefore the following *chain length function*

$$S \rightarrow \text{Ch}(T), \quad x \mapsto \lambda^*(x) := \text{max}\{\lambda(X) \mid X \in \text{Ch}(S, x)\}.$$

Note that equivalent length functions induce equivalent chain length functions.

Example 1.4. (1) Let S be a poset such that for each $x \in S$ there is a bound $n_x \in \mathbb{N}$ with $\text{card} X \leq n_x$ for all $X \in \text{Ch}(S, x)$. Then the map $S \rightarrow \mathbb{N}$ sending x to $\text{max}\{\text{card} X \mid X \in \text{Ch}(S, x)\}$ is a length function.

(2) Let S be a poset such that $\{x' \in S \mid x' \leq x\}$ is a finite chain for each $x \in S$. Then the map $\lambda: S \rightarrow \mathbb{N}$ sending x to $\text{card}\{x' \in S \mid x' \leq x\}$ is a length function. Moreover, λ^* is a length function and equivalent to λ.

(3) Let $\lambda: S \rightarrow \mathbb{Z}$ be a length function which satisfies in addition the following properties of a *rank function*: $\lambda(x) = \lambda(y)$ for each pair x, y of minimal elements of S, and $\lambda(x) = \lambda(y) - 1$ whenever x is an immediate predecessor of y in S. Then λ^* is a length function and equivalent to λ.

Basic properties. Let $\lambda: S \rightarrow T$ be a length function and $\lambda^*: S \rightarrow \text{Ch}(T)$ the induced chain length function. We collect the basic properties of λ^*.

Proposition 1.5. Let $x, y \in S$.

- (C0) $\lambda^*(x) = \text{max}_{x' < x} \lambda^*(x') \cup \{\lambda(x)\}$.
- (C1) $x \leq y$ implies $\lambda^*(x) \leq \lambda^*(y)$.
- (C2) $\lambda^*(x) = \lambda^*(y)$ implies $\lambda(x) = \lambda(y)$.
- (C3) $\lambda^*(x') < \lambda^*(y)$ for all $x' < x$ and $\lambda(x) \geq \lambda(y)$ imply $\lambda^*(x) \leq \lambda^*(y)$.

The first property shows that the function $\lambda^*: S \rightarrow \text{Ch}(T)$ can be defined by induction on the length $\lambda_0(x)$ of the elements $x \in S$. The subsequent properties suggest to think of λ^* as a refinement of λ.
and (iii), we choose for each x by (M3). Thus sending the assertion is true for S. For x, y we have
\[
\lambda(x) = \max \lambda^*(x) = \max \lambda^*(y) = \lambda(y).
\]
To prove (C3), we use (C0) and apply Lemma 1.3 with $X = \lambda^*(x)$ and $Y = \lambda^*(y)$. In fact, $\lambda^*(x') < \lambda^*(y)$ for all $x' < x$ implies $X^* < Y$, and $\lambda(x) \geq \lambda(y)$ implies $\max X \geq \max Y$. Thus $X \leq Y$.

Corollary 1.6. Let $\lambda: S \to T$ be a length function. Then the induced map λ^* is a length function.

Proof. (L1) follows from (C1) and (C2). (L2) and (L3) follow from the corresponding conditions on λ. □

An axiomatic characterization. Let $\lambda: S \to T$ be a length function. We present an axiomatic characterization of the induced chain length function λ^*. Thus we can replace the original definition in terms of chains by three simple conditions which express the fact that λ^* refines λ.

Theorem 1.7. Let $\lambda: S \to T$ be a length function. Then there exists a map $\mu: S \to U$ into a partially ordered set U satisfying for all $x, y \in S$ the following:

- (M1) $x \leq y$ implies $\mu(x) \leq \mu(y)$.
- (M2) $\mu(x) = \mu(y)$ implies $\lambda(x) = \lambda(y)$.
- (M3) $\mu(x') < \mu(y)$ for all $x' < x$ and $\lambda(x) \geq \lambda(y)$ imply $\mu(x) \leq \mu(y)$.

Moreover, for any map $\mu': S \to U'$ into a partially ordered set U' satisfying the above conditions, we have
\[
\mu'(x) \leq \mu'(y) \iff \mu(x) \leq \mu(y) \text{ for all } x, y \in S.
\]

Proof. We have seen in Proposition 1.5 that λ^* satisfies (M1) – (M3). So it remains to show that for any map $\mu: S \to U$ into a partially ordered set U, the conditions (M1) – (M3) uniquely determine the relation $\mu(x) \leq \mu(y)$ for any pair $x, y \in S$. We proceed by induction on the length $\lambda_0(x)$ of the elements $x \in S$ and show in each step the following for $S_n = \{x \in S \mid \lambda_0(x) \leq n\}$.

(i) $\{\mu(x') \mid x' \in S_n \text{ and } x' \leq x\}$ is a finite set for all $x \in S$.
(ii) (M1) – (M3) determine the relation $\mu(x) \leq \mu(y)$ for all $x, y \in S_n$.
(iii) $\mu(x) \leq \mu(y)$ or $\mu(y) \leq \mu(x)$ for all $x, y \in S_n$.

For $n = 1$ the assertion is clear. In fact, S_1 is the set of minimal elements in S and $\lambda(x) \geq \lambda(y)$ implies $\mu(x) \leq \mu(y)$ for $x, y \in S_1$, by (M3). Now let $n > 1$ and assume the assertion is true for S_{n-1}. To show (i), fix $x \in S$. The map
\[
\{\mu(x') \mid x' \in S_n \text{ and } x' \leq x\} \longrightarrow \{\mu(x') \mid x' \in S_{n-1} \text{ and } x' \leq x\} \times \{\lambda(x') \mid x' \leq x\}
\]
by $\mu(x')$ to the pair $(\max y < x' \mu(y), \lambda(x'))$ is well-defined by (i) and (iii); it is injective by (M3). Thus $\{\mu(x') \mid x' \in S_n \text{ and } x' < x\}$ is a finite set. In order to verify (ii) and (iii), we choose for each $x \in S_n$ a Gabriel-Roiter filtration, that is, a sequence
\[
x_1 < x_2 < \ldots < x_{\gamma(x) - 1} < x_\gamma(x) = x
\]
in S such that x_1 is minimal and $\max_{x' < x_i} \mu(x') = \mu(x_{i-1})$ for all $1 < i \leq \gamma(x)$. Such a filtration exists because the elements $\mu(x')$ with $x' < x$ form a finite chain, by (i) and (ii). Now fix $x, y \in S$ and let $I = \{i \geq 1 \mid \mu(x_i) = \mu(y_i)\}$. We consider $r = \max I$ and put $r = 0$ if $I = \emptyset$. There are two possible cases. Suppose first that $r = \gamma(x)$ or $r = \gamma(y)$. If $r = \gamma(x)$, then $\mu(x) = \mu(y) = \mu(y_r) \leq \mu(y)$ by (M1). Now suppose $\gamma(x) \neq r \neq \gamma(y)$. Then we have $\lambda(x_{r+1}) \neq \lambda(y_{r+1})$ by (M2) and (M3). If $\lambda(x_{r+1}) > \lambda(y_{r+1})$, then we obtain $\mu(x_{r+1}) < \mu(y_{r+1})$, again using (M2) and (M3). Iterating this argument, we get $\mu(x) = \mu(x_{\gamma(x)}) < \mu(y_{\gamma(y)})$. From (M1) we get $\mu(x) < \mu(y_{r+1}) \leq \mu(y)$. Thus $\mu(x) \leq \mu(y)$ or $\mu(x) \geq \mu(y)$ and the proof is complete. □

Corollary 1.8. Let $\lambda : S \to T$ be a length function and let $\mu : S \to U$ be a map into a partially ordered set U satisfying (M1) – (M3). Then μ is a length function. Moreover, we have for all $x, y \in S$

$$\mu(x) = \mu(y) \iff \max_{x' < x} \mu(x') = \max_{y' < y} \mu(y') \text{ and } \lambda(x) = \lambda(y).$$

Iterated length functions. Let λ be a length function. Then λ^* is again a length function by Corollary 1.6. Thus we may define inductively $\lambda^{(n)} = \lambda$ and $\lambda^{(n-1)} = (\lambda^{(n-1)})^*$ for $n \geq 1$. In many examples, we have that $\lambda^{(1)}$ and $\lambda^{(3)}$ are equivalent. However, this is not a general fact. The author is grateful to Osamu Iyama for suggesting the following example.

Example 1.9. The following length functions $\lambda^{(1)}$ and $\lambda^{(3)}$ are not equivalent.

\[
\begin{array}{cccc}
\lambda^{(0)} : & 4 & 5 & 6 \\
\downarrow & \downarrow & \downarrow \\
3 & 2 & 1 \\
\end{array}
\quad
\begin{array}{cccc}
\lambda^{(1)} : & 3 & 6 & 5 \\
\downarrow & \downarrow & \downarrow \\
1 & 2 & 4 \\
\end{array}
\quad
\begin{array}{cccc}
\lambda^{(2)} : & 6 & 4 & 2 \\
\downarrow & \downarrow & \downarrow \\
5 & 3 & 1 \\
\end{array}
\quad
\begin{array}{cccc}
\lambda^{(3)} : & 3 & 5 & 6 \\
\downarrow & \downarrow & \downarrow \\
1 & 2 & 4 \\
\end{array}
\quad
\begin{array}{cccc}
\lambda^{(4)} : & 6 & 4 & 2 \\
\downarrow & \downarrow & \downarrow \\
5 & 3 & 1 \\
\end{array}
\end{array}
\]

2. **Abelian length categories**

In this section we recall the definition and some basic facts about abelian length categories. We fix an abelian category \mathcal{A}.

Subobjects. We say that two monomorphisms $\phi_1 : X_1 \to X$ and $\phi_2 : X_2 \to X$ in \mathcal{A} are equivalent, if there exists an isomorphism $\alpha : X_1 \to X_2$ such that $\phi_1 = \phi_2 \circ \alpha$. An equivalence class of monomorphisms into X is called a subobject of X. Given subobjects $\phi_1 : X_1 \to X$ and $\phi_2 : X_2 \to X$ of X, we write $X_1 \subseteq X_2$ if there is a morphism $\alpha : X_1 \to X_2$ such that $\phi_2 = \phi_1 \circ \alpha$. An object $X \neq 0$ is simple if $X' \subseteq X$ implies $X' = 0$ or $X' = X$.

Length categories. An object X of \mathcal{A} has finite length if it has a finite composition series

$$0 = X_0 \subseteq X_1 \subseteq \ldots \subseteq X_{n-1} \subseteq X_n = X,$$

that is, each X_i/X_{i-1} is simple. Note that X has finite length if and only if X is both artinian (i.e. it satisfies the descending chain condition on subobjects) and noetherian (i.e. it satisfies the ascending chain condition on subobjects). An abelian category is
called a \textit{length category} if all objects have finite length and if the isomorphism classes of objects form a set.

Recall that an object \(X \neq 0 \) is \textit{indecomposable} if \(X = X_1 \oplus X_2 \) implies \(X_1 = 0 \) or \(X_2 = 0 \). A finite length object admits a finite direct sum decomposition into indecomposable objects having local endomorphism rings. Moreover, such a decomposition is unique up to an isomorphism by the Krull-Remak-Schmidt Theorem.

\textbf{Example 2.1.} (1) The finitely generated modules over an artinian ring form a length category.

(2) Let \(k \) be a field and \(Q \) be any quiver. Then the finite dimensional \(k \)-linear representations of \(Q \) form a length category.

3. The Gabriel-Roiter measure

Let \(\mathcal{A} \) be an abelian length category. The definition of the Gabriel-Roiter measure of \(\mathcal{A} \) is due to Gabriel \cite{1} and was inspired by the work of Roiter \cite{5}. We present a definition which is a slight generalization of Gabriel’s original definition. Then we discuss some specific properties.

\textbf{Length functions.} A \textit{length function} on \(\mathcal{A} \) is by definition a map \(\ell \) which sends each object \(X \in \mathcal{A} \) to some real number \(\ell(X) \geq 0 \) such that

\begin{enumerate}
 \item \(\ell(X) = 0 \) if and only if \(X = 0 \), and
 \item \(\ell(X) = \ell(X') + \ell(X'') \) for every exact sequence \(0 \to X' \to X \to X'' \to 0 \).
\end{enumerate}

Note that such a length function is determined by the set of values \(\ell(S) > 0 \), where \(S \) runs through the isomorphism classes of simple objects of \(\mathcal{A} \). This follows from the Jordan-Hölder Theorem. We write \(\ell_1 \) for the length function satisfying \(\ell_1(S) = 1 \) for every simple object \(S \). Observe that \(\ell_1(X) \) is the usual composition length of an object \(X \in \mathcal{A} \).

\textbf{The Gabriel-Roiter measure.} We consider the set \(\text{ind}\mathcal{A} \) of isomorphism classes of indecomposable objects of \(\mathcal{A} \) which is partially ordered via the subobject relation \(X \subseteq Y \). Now fix a length function \(\ell \) on \(\mathcal{A} \). The map \(\ell \) induces a length function \(\text{ind}\mathcal{A} \to \mathbb{R} \) satisfying (L1) – (L3), and the induced chain length function \(\ell^* : \text{ind}\mathcal{A} \to \text{Ch}(\mathbb{R}) \) is by definition the \textit{Gabriel-Roiter measure} of \(\mathcal{A} \) with respect to \(\ell \). Gabriel’s original definition \cite{1} is based on the length function \(\ell_1 \). Whenever it is convenient, we substitute \(\mu = \ell^* \).

\textbf{An axiomatic characterization.} The following axiomatic characterization of the Gabriel-Roiter measure is the main result of this note.

\textbf{Theorem 3.1.} Let \(\mathcal{A} \) be an abelian length category and \(\ell \) a length function on \(\mathcal{A} \). Then there exists a map \(\mu : \text{ind}\mathcal{A} \to P \) into a partially ordered set \(P \) satisfying for all \(X,Y \in \text{ind}\mathcal{A} \) the following:

\begin{enumerate}
 \item \(X \subseteq Y \) implies \(\mu(X) \leq \mu(Y) \).
 \item \(\mu(X) = \mu(Y) \) implies \(\ell(X) = \ell(Y) \).
 \item \(\mu(X') < \mu(Y) \) for all \(X' \subset X \) and \(\ell(X) \geq \ell(Y) \) imply \(\mu(X) \leq \mu(Y) \).
\end{enumerate}

Moreover, for any map \(\mu' : \text{ind}\mathcal{A} \to P' \) into a partially ordered set \(P' \) satisfying the above conditions, we have

\[\mu'(X) \leq \mu'(Y) \iff \mu(X) \leq \mu(Y) \quad \text{for all} \quad X,Y \in \text{ind}\mathcal{A}. \]
Proof. Use the axiomatic characterization of the chain length function ℓ^* in Theorem 1.7.

Gabriel’s main property. Let ℓ be a fixed length function on A. The following main property of the Gabriel-Roiter measure $\mu = \ell^*$ is crucial; it is the basis for all applications.

Proposition 3.2 (Gabriel). Let $X, Y_1, \ldots, Y_r \in \text{ind} \ A$. Suppose that $X \subseteq Y = \oplus_{i=1}^r Y_i$. Then $\mu(X) \leq \max \mu(Y_i)$ and X is a direct summand of Y if $\mu(X) = \max \mu(Y_i)$.

Proof. The proof only uses the properties (GR1) – (GR3) of μ. Fix a monomorphism $\phi : X \to Y$. We proceed by induction on $n = \ell_1(X) + \ell_1(Y)$. If $n = 2$, then ϕ is an isomorphism and the assertion is clear. Now suppose $n > 2$. We can assume that for each i the ith component $\phi_i : X_i \to Y_i$ of ϕ is an epimorphism. Otherwise choose for each i a decomposition $Y_i' = \oplus_j Y_{ij}$ of the image of ϕ_i into indecomposables. Then we use (GR1) and have $\mu(X) \leq \max \mu(Y_{ij}) \leq \max \mu(Y_i)$ because $\ell_1(X) + \ell_1(Y') < n$ and $Y_{ij} \subseteq Y_i$ for all j. Now suppose that each ϕ_i is an isomorphism. Thus $\ell(X) \geq \ell(Y_i)$ for all i. Let $X' \subset X$ be a proper indecomposable subobject. Then $\mu(X') \leq \max \mu(Y_i)$ because $\ell_1(X') + \ell_1(Y) < n$, and X' is a direct summand if $\mu(X') = \max \mu(Y_i)$. We can exclude the case that $\mu(X') = \max \mu(Y_i)$ because then X' is a proper direct summand of X, which is impossible. Now we apply (GR3) and obtain $\mu(X) \leq \max \mu(Y_i)$. Finally, suppose that $\mu(X) = \max \mu(Y_i) = \mu(Y_k)$ for some k. We claim that we can choose k such that ϕ_k is an epimorphism. Otherwise, replace all Y_i with $\mu(X) = \mu(Y_i)$ by the image $Y_i' = \oplus_j Y_{ij}$ of ϕ_i as before. We obtain $\mu(X) \leq \max \mu(Y_{ij}) < \mu(Y_k)$ since $Y_{kj} \subset Y_k$ for all j, using (GR1) and (GR2). This is a contradiction. Thus ϕ_k is an epimorphism and in fact an isomorphism because $\ell(X) = \ell(Y_k)$ by (GR2). In particular, X is a direct summand of $\oplus_i Y_i$. This completes the proof. □

Gabriel-Roiter filtrations. We keep a length function ℓ on A and the corresponding Gabriel-Roiter measure $\mu = \ell^*$. Let $X, Y \in \text{ind} \ A$. We say that X is a Gabriel-Roiter predecessor of Y if $X \subset Y$ and $\mu(X) = \max_{Y' \subset Y} \mu(Y')$. Note that each object $Y \in \text{ind} \ A$ which is not simple admits a Gabriel-Roiter predecessor because μ is a length function on $\text{ind} \ A$. A Gabriel-Roiter predecessor X of Y is usually not unique, but the value $\mu(X)$ is determined by $\mu(Y)$.

A sequence $X_1 \subset X_2 \subset \ldots \subset X_{n-1} \subset X_n = X$ in $\text{ind} \ A$ is called a Gabriel-Roiter filtration of X if X_1 is simple and X_{i-1} is a Gabriel-Roiter predecessor of X_i for all $1 < i \leq n$. Clearly, each X admits such a filtration and the values $\mu(X_i)$ are uniquely determined by X. Note that (C0) implies

\begin{equation}
\mu(X) = \{ \ell(X_i) \mid 1 \leq i \leq n \}.
\end{equation}

Injective objects. In order to illustrate Gabriel’s main property, let us show that the Gabriel-Roiter measure detects injective objects. This is a remarkable fact because the Gabriel-Roiter measure is a combinatorial invariant, depending only on the poset of indecomposable objects and some length function, whereas the notion of injectivity involves all morphisms of the category A.

Theorem 3.3. An indecomposable object Q of A is injective if and only if there is a length function ℓ on A such that $\ell^*(X) \leq \ell^*(Q)$ for all $X \in \text{ind} \ A$.

We need the following lemma.

Lemma 3.4. Let \(\ell \) be a length function on \(\mathcal{A} \) and fix indecomposable objects \(X, Y \in \mathcal{A} \). Suppose that for each pair of simple subobjects \(X' \subseteq X \) and \(Y' \subseteq Y \), we have \(\ell(X') < \ell(Y') \). Then \(\ell^*(X) > \ell^*(Y) \).

Proof. We choose Gabriel-Roiter filtrations \(X_1 \subseteq \ldots \subseteq X_n = X \) and \(Y_1 \subseteq \ldots \subseteq Y_m = Y \). Then \(\ell(X_1) < \ell(Y_1) \) and the formula (3.1) implies

\[
\ell^*(X) = \{ \ell(X_i) \mid 1 \leq i \leq n \} > \{ \ell(Y_i) \mid 1 \leq i \leq m \} = \ell^*(Y).
\]

\(\square \)

Proof of the theorem. Suppose first that \(Q \) is injective. Then \(Q \) has a unique simple subobject \(S \) and we define a length function \(\ell = \ell_S \) on \(\mathcal{A} \) by specifying its values on each simple object \(T \in \mathcal{A} \) as follows:

\[
\ell(T) := \begin{cases}
1 & \text{if } T \cong S, \\
2 & \text{if } T \not\cong S.
\end{cases}
\]

Now let \(X \in \text{ind} \mathcal{A} \). We claim that \(\ell^*(X) \leq \ell^*(Q) \). To see this, let \(X' \subseteq X \) be the maximal subobject of \(X \) having composition factors isomorphic to \(S \). Using induction on the composition length \(n = \ell_1(X') \) of \(X' \), one obtains a monomorphism \(X' \to Q^n \), and this extends to a map \(\phi: X \to Q^n \), since \(Q \) is injective. Let \(X/X' = \oplus_i Y_i \) be a decomposition into indecomposables and \(\pi: X \to X/X' \) be the canonical map. Note that \(\ell^*(Y_i) < \ell^*(Q) \) for all \(i \) by our construction and Lemma 3.4. Then \((\pi, \phi): X \to (\oplus_i Y_i) \oplus Q^n \) is a monomorphism and therefore \(\ell^*(X) \leq \ell^*(Q) \) by the main property.

Suppose now that \(\ell^*(X) \leq \ell^*(Q) \) for all \(X \in \text{ind} \mathcal{A} \) and some length function \(\ell \) on \(\mathcal{A} \). To show that \(Q \) is injective, suppose that \(Q \subseteq Y \) is the subobject of some \(Y \in \mathcal{A} \). Let \(Y = \oplus_i Y_i \) be a decomposition into indecomposables. Then the main property implies \(\ell^*(Q) \leq \max \ell^*(Y_i) \leq \ell^*(Q) \) and therefore \(Q \) is a direct summand of \(Y \). Thus \(Q \) is injective and the proof is complete. \(\square \)

Let us mention that there is the following analogous characterization of the simple objects of \(\mathcal{A} \).

Corollary 3.5. An indecomposable object \(S \) of \(\mathcal{A} \) is simple if and only if there is a length function \(\ell \) on \(\mathcal{A} \) such that \(\ell^*(S) \leq \ell^*(X) \) for all \(X \in \text{ind} \mathcal{A} \).

Proof. Use the property (GR1) of the Gabriel-Roiter measure and apply Lemma 3.4 \(\square \)

The Kronecker algebra. Let \(\Lambda = \left[\begin{smallmatrix} k & k^2 \\ 0 & k \end{smallmatrix} \right] \) be the Kronecker algebra over an algebraically closed field \(k \). We consider the abelian length category which is formed by all finite dimensional \(\Lambda \)-modules. A complete list of indecomposable objects is given by the preprojectives \(P_n \), the regulars \(R_n(\alpha, \beta) \), and the preinjectives \(Q_n \). More precisely,

\[
\text{ind} \Lambda = \{ P_n \mid n \in \mathbb{N} \} \cup \{ R_n(\alpha, \beta) \mid n \in \mathbb{N}, (\alpha, \beta) \in \mathbb{P}^1_k \} \cup \{ Q_n \mid n \in \mathbb{N} \},
\]
and we obtain the following Hasse diagram.

\[\begin{array}{ccccccc}
7 & & & & \cdot & & \\
6 & & & & \cdot & & \\
5 & & & & \cdot & & \\
4 & & & & \cdot & & \\
3 & & & & \cdot & & \\
2 & & & & \cdot & & \\
1 & & & & \cdot & & \\
\end{array} \]

The set of indecomposables is ordered as follows via the Gabriel-Roiter measure with respect to \(\ell = \ell_1 \).

\[\ell^* : \quad Q_1 = P_1 < P_2 < P_3 < \ldots < R_1 < R_2 < R_3 < \ldots < Q_4 < Q_3 < Q_2 \]

\[(\ell^*)^* : \quad Q_1 = P_1 < R_1 < Q_2 < P_2 < R_2 < Q_3 < P_3 < R_3 < Q_4 < \ldots \]

Moreover, \(((\ell^*)^*)^*\) and \(\ell^*\) are equivalent length functions.

Remark 3.6. While \(\ell^*\) has been successfully employed for proving the first Brauer-Thrall conjecture, Hubery points out that \(((\ell^*)^*)^*\) might be useful for proving the second. In fact, one needs to find a value \(((\ell^*)^*)^*(X)\) such that the set \(\{X' \in \text{ind } \Lambda \mid (\ell^*)^*(X') = (\ell^*)^*(X)\}\) is infinite. The example of the Kronecker algebra shows that there exists such a value having only finitely many predecessors \(((\ell^*)^*(Y) < (\ell^*)^*(X)\). Note that in all known examples \(((\ell^*)^*)^*\) and \(\ell^*\) are equivalent.

Acknowledgements. This material has been presented at the “Advanced School and Conference on Representation Theory and Related Topics” in Trieste (ICTP, January 2006) and I am grateful to the organizers. In addition, I wish to thank Philipp Fahr, Andrew Hubery, Osamu Iyama, and Karsten Schmidt for helpful discussions and comments.

References

[1] P. Gabriel: Indecomposable representations II. Symposia Mathematica 11 (1973), 81–104.
[2] C. M. Ringel: The Gabriel-Roiter measure. Bull. Sci. Math. 129 (2005), 726–748.
[3] C. M. Ringel: Foundation of the representation theory of Artin algebras, using the Gabriel-Roiter measure. In: Trends in Representation Theory of Algebras and Related Topics. Contemp. Math. 406 (2006), 105–135.
[4] C. M. Ringel: The theorem of Bo Chen and Hall polynomials. Nagoya Math. J. 183 (2006).
[5] A. V. Roiter: Unboundedness of the dimension of the indecomposable representations of an algebra which has infinitely many indecomposable representations. Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), 1275-1282.

Henning Krause, Institut für Mathematik, Universität Paderborn, 33095 Paderborn, Germany.

E-mail address: hkrause@math.upb.de