Magnetoresponsive biocomposite hydrogels comprising of gelatin and valine based magnetic ionic liquid surfactant as controlled release nanocarrier for drug delivery

Akshay Kulshrestha,ab Sanjay Sharma,c Kuldeep Singh,ab and Arvind Kumarab*

aAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
bCSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research, G. B. Marg, Bhavnagar, 364002, Gujarat India.
cDepartment of Chemistry, Institute of Integrated & Honors Studies, Kurukshetra University, Kurukshetra, India.
Table of contents

	Description	Page
1	Fig. S1 Structural scheme of synthesized [ValC\textsubscript{16}][FeCl\textsubscript{4}]	3
2	Fig. S2 1H NMR of synthesized precursor.	4
3	Fig. S3 LCMS data of [ValC\textsubscript{16}][FeCl\textsubscript{4}]	5
4	Fig. S4 Raman spectra of [ValC\textsubscript{16}][FeCl\textsubscript{4}]	6
5	Fig. S5 UV spectra of [ValC\textsubscript{16}][FeCl\textsubscript{4}]	6
6	Fig. S6 EPR spectra of [ValC\textsubscript{16}][FeCl\textsubscript{4}]	7
7	Fig. S7 DSC thermogram of [ValC\textsubscript{16}][FeCl\textsubscript{4}] & [ValC\textsubscript{16}][Cl]	7
8	Fig. S8 TGA analysis of [ValC\textsubscript{16}][FeCl\textsubscript{4}] & [ValC\textsubscript{16}][Cl]	8
9	Table S1 Thermal parameter of [ValC\textsubscript{16}][FeCl\textsubscript{4}] & [ValC\textsubscript{16}][Cl]	8
10	Fig. S9 Wavelength vs I\textsubscript{1}/I\textsubscript{3} on increasing concentration of [ValC\textsubscript{16}][FeCl\textsubscript{4}]	9
11	Fig. S10 Concentration dependent morphological transitions in [ValC\textsubscript{16}][FeCl\textsubscript{4}]	9
12	Fig. S11 DLS plot of micelle using [ValC\textsubscript{16}][FeCl\textsubscript{4}]	10
13	Fig. S12 Autocorrelation function of [ValC\textsubscript{16}][FeCl\textsubscript{4}]	10
14	Fig. S13 Zeta Potential of Micelles and vesicles of [ValC\textsubscript{16}][FeCl\textsubscript{4}]	11
15	Fig. S14 EDX elemental mapping of gelatin-[ValC\textsubscript{16}][FeCl\textsubscript{4}] biocomposite gel.	11
16	Fig. S15 Stability of gelatin-[ValC\textsubscript{16}][FeCl\textsubscript{4}] biocomposite gel	12
17	Fig. S16 Swelling behavior of gelatin-[ValC\textsubscript{16}][FeCl\textsubscript{4}] biocomposite gel.	12
18	Table S2 Comparison of previously reported orinidazole drug loading efficiency in various systems.	13
19	Table S3 Comparison of previously reported 5-Fluorouracil drug loading efficiency in various systems.	14
20	Table S4 Kinetics study of drug release pattern using mathematical models.	15
21	Fig. S17 Drug release pattern in different electrolyte solution	15
1. Structural scheme of synthesized [ValC\textsubscript{16}][FeCl\textsubscript{4}].

Fig. S1. Synthetic procedure of [ValC\textsubscript{16}][FeCl\textsubscript{4}].
2. 1H NMR of the synthesis of [ValC$_{16}$][FeCl$_4$]

Fig. S2: 1H NMR of [ValC$_{16}$][Cl]

1H NMR chemical shift values of [ValC$_{16}$][Cl] CDCl$_3$, 500MHz: δ_H (ppm) 8.43 (s, 3H), 4.16(m, 3H), 3.98(t,2H), 2.16(s,1H), 1.60 (m,2H), 1.25-1.29(m, 26H,CH$_2$), 0.96(dd, 6H), 0.85(t,3H).
3. LCMS of the synthesis of [ValC$_{16}$][FeCl$_4$]

LCMS of [ValC$_{16}$][FeCl$_4$]: ESI+ 342.3, ESI – 197.8

Fig. S3 LCMS of [ValC$_{16}$][FeCl$_4$].
4. Raman spectra of [ValC\textsubscript{16}][FeCl\textsubscript{4}]

![Raman spectra of [ValC\textsubscript{16}][FeCl\textsubscript{4}]](image)

Fig. S4. Raman spectra of [ValC\textsubscript{16}][FeCl\textsubscript{4}]

5. UV spectra of [ValC\textsubscript{16}][FeCl\textsubscript{4}]

![UV spectra of [ValC\textsubscript{16}][FeCl\textsubscript{4}]](image)

Fig. S5. UV spectra of [ValC\textsubscript{16}][FeCl\textsubscript{4}]

6. EPR spectra of [ValC\textsubscript{16}][FeCl\textsubscript{4}]

![EPR spectra graph](image)

Fig. S6. EPR spectra of [ValC\textsubscript{16}][FeCl\textsubscript{4}]

7. DSC thermogram of [ValC\textsubscript{16}][FeCl\textsubscript{4}] & [ValC\textsubscript{16}][Cl].
Fig. S7 DSC thermogram of [ValC₁₆][FeCl₄] & [ValC₁₆][Cl].
8. Thermogravimetric analysis and parameters

![TGA analysis of [ValC\textsubscript{16}][FeCl\textsubscript{4}] & [ValC\textsubscript{16}][Cl].](image)

Fig. S8 TGA analysis of [ValC\textsubscript{16}][FeCl\textsubscript{4}] & [ValC\textsubscript{16}][Cl].

9. Thermal parameters of [ValC\textsubscript{16}][FeCl\textsubscript{4}] & [ValC\textsubscript{16}][Cl].

Table S1: \(T_\text{d} \), \(T_\text{start} \) and \(T_\text{onset} \) of [ValC\textsubscript{16}][FeCl\textsubscript{4}] & [ValC\textsubscript{16}][Cl].

SAILs	\(T_\text{start} \) (°C)	\(T_\text{d} \) (°C)	\(T_\text{onset} \) (°C)
[ValC\textsubscript{16}][Cl]	174	242	193
[ValC\textsubscript{16}][FeCl\textsubscript{4}]	180	251	207
10. Wavelength vs I_1/I_3 graph

![Graph showing wavelength vs I_1/I_3 on increasing concentration of [ValC$_{16}$][FeCl$_4$].](image)

Fig. S9 Wavelength vs I_1/I_3 on increasing concentration of [ValC$_{16}$][FeCl$_4$].

11. Concentration dependent morphological transitions in [ValC$_{16}$][FeCl$_4$].

![Micrographs showing concentration dependent morphological transitions](images)

Fig. S10 Concentration dependent morphological transitions in [ValC$_{16}$][FeCl$_4$].
12. DLS plot of micelle formation using [ValC\textsubscript{16}][FeCl\textsubscript{4}]

![DLS plot of micelle formation using [ValC\textsubscript{16}][FeCl\textsubscript{4}]](image)

Fig. S11 DLS plot of micelle using [ValC\textsubscript{16}][FeCl\textsubscript{4}]

13. Autocorrelation function of [ValC\textsubscript{16}][FeCl\textsubscript{4}].

![Autocorrelation function of [ValC\textsubscript{16}][FeCl\textsubscript{4}]](image)

Fig. S12. Autocorrelation function of [ValC\textsubscript{16}][FeCl\textsubscript{4}].
14. Zeta Potential of Micelles and vesicles of [ValC₁₆][FeCl₄]

![Zeta Potential of Micelles and vesicles of [ValC₁₆][FeCl₄]](image)

Fig. S13 Zeta Potential of Micelles and vesicles of [ValC₁₆][FeCl₄]

15. EDX elemental mapping of Gelatin- [ValC₁₆][FeCl₄] biocomposite gel

![EDX elemental mapping of Gelatin- [ValC₁₆][FeCl₄] biocomposite gel](image)
Fig. S14 EDX elemental mapping of Gelatin-[ValC$_{16}$][FeCl$_4$] biocomposite gel

16. Stability of gelatin- [ValC$_{16}$][FeCl$_4$] biocomposite gel

![Image of stability experiment](image_url)

Fig. S15 Stability of gelatin-[ValC$_{16}$][FeCl$_4$] biocomposite gel.

17. Swelling behavior of gelatin-[ValC$_{16}$][FeCl$_4$] biocomposite gel

![Image of swelling experiment](image_url)

Fig. S16 Swelling behavior of gelatin-[ValC$_{16}$][FeCl$_4$] biocomposite gel
18. Comparison of previously reported ornidazole drug loading efficiency in various systems.

Table S2 Comparison of previously reported ornidazole drug loading efficiency in various systems.

S.No	Materials	Loading efficiency of Oridazole(%)	Author	Year
1	Present work (magnetic biocomposite gel)	69.3%	-	-
2	Beta-cyclodextrin polymer microspheres (βCDPM)	8.86%	Y. Liu et al.²	2020
3	PVP electrospun fibers	-	S. Tort et al.³	2018
4	Polyethylene glycol-based micron-level particle	15-20%	S. Tamilvanan et al.⁴	2019
5	Ornidazole-Loaded Graphene Paper	10-17.3%	W. Quian et al.⁵	2018
6	Biopolymer-dextrin and poly(methyl methacrylate) microgel	30.54%	D. Das et al.⁶	2016
7	Biocompatible hydrogel derived from glycogen and poly(N-isopropylacrylamide)	19-31%	Priyapratim Patra et al.⁷	2016
19. Comparison of previously reported 5-Fluoro uracil drug loading efficiency in various systems.

Table S3 Comparison of previously reported 5-Fluoro uracil drug loading efficiency in various systems.

S.No	Materials	Loading efficiency of 5-FU (%)	Author	Year
1.	Present work (magnetic biocomposite gel)	78.3%	-	-
2.	Poly(ε-caprolactone) with 6-(chloromethyl)uracil	42%	S. Zhu et al.	2020
3.	Gelatin–rosin gum complex nanoparticle	50%	S. Joshi	2020
4.	polyurethane-based hydrogels	45-54 %	M. Kamaci et al.	2020
5.	PEGylated Ag2S QDs functionalized with Cetuximab (Cet) antibody	7.34%	F. D. Duman et al.	2019
6.	zinc nanoMOFs functionalized with folate	24%	B. Yang et al.	2017
7.	Self-Assembling Monomeric Nucleoside Molecular Nanoparticle	53%	H. Zhao et al.	2015
20. Kinetics study of drug release pattern using mathematical models

Table S4: Kinetics study of release of guest drugs by various mathematical models.

Guest Molecule	Release condition	*Zero Order	*First order	*Higuchi Model	*KorsMeyar Peppas	*Hixon Crowell	
		\(R^2 \)	Slope	\(R^2 \)	Slope	\(R^2 \)	Slope
Ornidazole	pH 7.4	0.83	0.75	0.89	0.006	0.93	8.3
5-Fluoro Uracil	pH 7.4	0.72	0.42	0.85	0.005	0.86	6.88

21. Drug release pattern in different electrolyte solutions

Fig. S17 Drug release pattern in different electrolyte solution
Annexure I

The Surface parameter equations are as follow:

1. The Adsorption efficiency (pC_{20}) and Effectiveness of Surface tension reduction (Π_{CAC}) of surfactant at air-water interface is estimated by using the relation (1)

$$pC_{20} = -\log C_{20}, \quad \Pi_{CMC} = \gamma_{H,0} - \gamma_{CAC}$$

where, C_{20} is the concentration reduce by 20mNm$^{-1}$ from the surface tension of the solvent (water)1, $\gamma_{H,0}$ stands for the surface tension of the pure water and γ_{CMC} stands for the surface tension of the solvent medium at CAC.

2. The amount of surfactants adsorbed at the interface is estimated from relative surface excess concentration (Γ_{max}). The values Γ_{max} of at the CMC have been calculated using Gibbs adsorption Eq. 2.

$$\Gamma_{max} = -\frac{1}{nRT} \frac{\partial \gamma}{\partial \ln C}$$

where “$\frac{\partial \gamma}{\partial \ln C}$” is the slope of $\gamma - \ln C$ plot in the pre CMC region and n is Gibbs adsorption coefficient.

3. Minimum area occupied by monomers at the interface was calculated using equation 4.

$$A_{min} = \frac{10^{16}}{\Gamma_{max} \cdot N_A}$$

where N_A is Avogadro number and the Unit of A_{min} is Å2.

4. The β value is obtained from the formula ($\beta = 1 - \alpha$) where the α is the degree of counterion dissociation which is obtained by ratio of the slope post micellar region and the pre micellar region (S_2/S_1) then the β value is further used to derive the value of standard free energy of micellization from the equation as follow:

$$\Delta G_{mic}^\alpha = (1 + \beta)RT \ln X_{cmc} \quad \text{.................. (4)}$$
Annexure-II

Various mathematical models and their equations

1. Zero order mathematical model:

 \[C_o - C_t = K_o t \]

 where \(C_o \) = initial concentration of the drug at time, \(t = 0 \), \(C_t \) = amount of drug released at time \(t \), \(K_o \) = zero order constant

2. First Order mathematical model:

 \[\ln C = \ln C_o - K_1 t \]

 where \(C_o \) = initial concentration of the drug at time \(K_1 \) = first order rate constant, \(C \) = percent of drug remaining at time

3. Higuchi model:

 \[Q = A\sqrt{D(2C_o - C_S)C_s t} \]

 \(Q \)=Cumulative amount of drug released at time per unit area, \(C_S \) is the drug solubility in the matrix and \(D \) is the diffusion coefficient of the drug molecule in the matrix, \(C_S \) =drug solubility in the matrix.

4. Korsmeyer- Peppas model

 \[\frac{M_t}{M_\infty} = K_{kp} t^n \]

 \(M_t \) = amount of drug released in time \(t \), \(M_\infty \) = amount of drug released after time \(\infty \), \(n \) = diffusional exponent or drug release exponent, and \(K_{kp} \) = Korsmeyer release rate constant.

5. Hixson–Crowell model

 \[C^{1/3}_0 - C^{1/3}_t = K_{HC} t \]

 \(K_{HC} \)= Hixson–Crowell constant

References
1. Vander Hoogerstraete, T.; Wellens, S.; Verachtert, K.; Binnemans, K., Removal of transition metals from rare earths by solvent extraction with an undiluted phosphonium ionic liquid: separations relevant to rare-earth magnet recycling. *Green Chemistry* 2013, 15 (4), 919-927.

2. Liu, Y.; Tang, P.; Pu, H.; Qian, H.; Sun, Q.; Zhao, L.; Li, M.; Li, H., Study on the synthesis and drug-loading optimization of beta-cyclodextrin polymer microspheres containing ornidazole. *Journal of Drug Delivery Science and Technology* 2020, 58, 101836.

3. Tort, S.; Yıldız, A.; Tuğcu-Demiröz, F.; Akca, G.; Kuzukiran, Ö.; Acartürk, F., Development and characterization of rapid dissolving ornidazole loaded PVP electrospun fibers. *Pharmaceutical Development and Technology* 2019, 24 (7), 864-873.

4. Tamilvanan, S.; Chanda, P., Ornidazole-loaded polyethylene glycol-based micron-level particles: influence of eutectic liquid on reservoir-type particle formation, drug entrapment efficiency and drug dissolution or release behavior. *Polymer Bulletin* 2019, 76 (9), 4389-4398.

5. Qian, W.; Wang, Z.; He, D.; Huang, X.; Su, J., Ornidazole-loaded graphene paper for combined antibacterial materials. *Journal of Saudi Chemical Society* 2018, 22 (5), 581-587.

6. Das, D.; Rameshbabu, A. P.; Patra, P.; Ghosh, P.; Dhara, S.; Pal, S., Biocompatible amphiphilic microgel derived from dextrin and poly(methyl methacrylate) for dual drugs carrier. *Polymer* 2016, 107, 282-291.

7. Patra, P.; Rameshbabu, A. P.; Das, D.; Dhara, S.; Panda, A. B.; Pal, S., Stimuli-responsive, biocompatible hydrogel derived from glycogen and poly(N-isopropylacrylamide) for colon targeted delivery of ornidazole and 5-amino salicylic acid. *Polymer Chemistry* 2016, 7 (34), 5426-5435.

8. Zhu, S.; Wen, L.; Xiao, Y.; Lang, M., Poly(ε-caprolactone) with pH and UCST responsiveness as a 5-fluorouracil carrier. *Polymer Chemistry* 2020, 11 (32), 5173-5180.

9. Joshi, S.; Singh, V., Gelatin–rosin gum complex nanoparticles: preparation, characterization and colon targeted delivery of 5-fluorouracil. *Chemical Papers* 2020, 74 (12), 4241-4252.

10. Kamaci, M., Polyurethane-based hydrogels for controlled drug delivery applications. *European Polymer Journal* 2020, 123, 109444.

11. Duman, F. D.; Akkoc, Y.; Demirci, G.; Bavili, N.; Kiraz, A.; Gozuacik, D.; Acar, H. Y., Bypassing pro-survival and resistance mechanisms of autophagy in EGFR-positive lung cancer cells by targeted delivery of 5FU using theranostic Ag2S quantum dots. *Journal of Materials Chemistry B* 2019, 7 (46), 7363-7376.

12. Yang, B.; Shen, M.; Liu, J.; Ren, F., Post-Synthetic Modification Nanoscale Metal-Organic Frameworks for Targeted Drug Delivery in Cancer Cells. *Pharmaceutical Research* 2017, 34 (11), 2440-2450.

13. Zhao, H.; Feng, H.; Liu, D.; Liu, J.; Ji, N.; Chen, F.; Luo, X.; Zhou, Y.; Dan, H.; Zeng, X.; Li, J.; Sun, C.; Meng, J.; Ju, X.; Zhou, M.; Yang, H.; Li, L.; Liang, X.; Chu, L.; Jiang, L.; He, Y.; Chen, Q., Self-Assembling Monomeric Nucleoside Molecular Nanoparticles Loaded with 5-FU Enhancing Therapeutic Efficacy against Oral Cancer. *ACS Nano* 2015, 9 (10), 9638-9651.