Application of a subordination theorem associated with certain new generalized subclasses of analytic and univalent functions

J. O. Hamzat and R. M. El-Ashwah

Abstract
The prime focus of the present work is to investigate some fascinating relations of some analytic and univalent functions using a subordination theorem.

Keywords: Analytic, Univalent, Starlike, Convex, Subordinating factor

Mathematics Subject Classification: Primary 30C45; 30C50; 30C55

Introduction
Let H denote the class of normalized analytic functions $f(z)$ having the form:

$$f(z) = z + a_2z^2 + a_3z^3 + ...$$

(1)

in the unit disk $U = \{ z \in \mathbb{C} : |z| < 1 \}$. Also, let S denote the subclass of H univalent in U. Suppose that S^* denote the subclass of S consisting of the functions $f(z)$ which are starlike in U. A function $f(z) \in K$ is said to be convex in U if $f(z) \in S$ satisfies the condition that $zf'(z) \in S^*$. If $f(z) \in H$ satisfies the geometric condition:

$$\Re \left(\frac{zf'(z)}{f(z)} \right) > \beta, \quad z \in U$$

for some real $\beta (0 \leq \beta < 1)$, then we say that $f(z)$ belongs to the class $S^*(\beta)$ starlike of order β, and if $f(z) \in H$ satisfies the geometric condition:

$$\Re \left(1 + \frac{zf''(z)}{f'(z)} \right) > \beta, \quad z \in U$$

for some real $\beta (0 \leq \beta < 1)$, then we say that $f(z)$ belongs to the class $K(\beta)$ convex of order β (see [1, 2]). Let the function $g(z)$ of the form:

$$g(z) = z + z^3 + z^5 + ... \quad z \in U$$

(2)

be in the class S^* while the function $g(z)$ of the form:

$$g(z) = z + z^2 + z^3 + ... \quad z \in U$$

(3)
be in the class K. With reference to (2) and (3), we can write that:

$$g_α(z) = \frac{z}{1 - z^α} = z + \sum_{k=1}^{∞} z^{1+kα} \quad z \in U,$$

(4)

where we consider the principal value of $z^{kα}$ for some real $α (0 < α ≤ 2)$. See Darus and Owa [3] for some properties of functions $f_α(z)$ of the form (4).

Here, we present a more generalized form of (4) such that:

$$g_{α,n}(z) = \frac{A^n z}{(A + B z^α)^n} = z + \sum_{k=1}^{∞} (-1)^k \frac{B^k}{A^k} n_k z^{1+kα} \quad z \in U,$$

(5)

for some real $α (0 < α ≤ 2), -1 < B < A ≤ 1, n ≥ 0$ and n_k is given by $n_k = \prod_{j=1}^{k} \left(\frac{n+j-1}{j} \right)$.

In view of (1) and (5), we introduce a class $H_{α,n}$ of analytic function $f_{α,n}(z)$ which is a convolution (or Hadamard product) of $f(z)$ and $g_{α,n}(f(z) * g_{α,n}(z))$ such that:

$$f_{α,n}(z) = z + \sum_{k=1}^{∞} (-1)^k \frac{B^k}{A^k} n_k a_{k+1} z^{1+kα} \quad z \in U,$$

(6)

In addition, if $f_{α,n}(z) \in H_{α,n}$ satisfies the following condition:

$$\Re \left(\frac{zf'_{α,n}(z)}{f_{α,n}(z)} \right) > γ \quad z \in U,$$

(7)

for some real $α (0 < α ≤ 2), n > 0$, and $γ (0 ≤ γ < 1)$, then $f_{α,n}$ belong to the starlike class $S^*_n(A, B, γ)$ (of order $γ$). Also, if $f_{α,n}(z) \in H_{α,n}$ satisfies the following condition:

$$\Re \left(1 + \frac{zf''_{α,n}(z)}{f_{α,n}(z)} \right) > γ \quad z \in U,$$

(8)

for some real $α (0 < α ≤ 2), n > 0$, and $γ (0 ≤ γ < 1)$, then $f_{α,n}$ belong to the convex class $K^*_n(A, B, γ)$ (of order $γ$). Here, it is noted that $f_{α,n}(z) \in H_{α,n}(z)$ belong to the convex class $K^*_n(A, B, γ) ⇔ zf'_{α,n}(z)$ belong to the starlike class $S^*_n(A, B, γ)$.

For the purpose of the present investigation, we shall call to mind the following definitions and lemmas.

Definition 1 (Subordination principle) For two functions f and g analytic in U, we say that f is subordinate to g, and write $f \prec g$ in U or $f(z) \prec g(z)$, if there exists a Schwarz function $w(z)$, which is analytic in U with $w(0) = 0$ and $|w(z)| < 1 \quad (z \in U)$, such that $f(z) = g(w(z)).$ It is known that:

$$f(z) \prec g(z) \quad ⇒ f(0) = g(0) \text{ and } f(U) \subset g(U).$$

Furthermore, if the function g is univalent in U:

$$f(z) \prec g(z) \quad ⇔ f(0) = g(0) \text{ and } f(U) \subset g(U).$$

(9)

Also, we say that $g(z)$ is superordinate to $f(z)$ in U (see [4–6]).

Definition 2 (Subordinating factor sequence) A sequence $\{b_k\}_{k=1}^{∞}$ of complex numbers is called subordinating factor sequence if for every univalent function $f(z)$ in K, we have the subordination given by:

$$\sum_{k=1}^{∞} a_k b_k z^k \prec f(z) \quad (z \in U, \ a_1 = 1) \text{ (see [4–6])}.$$
Lemma 1 The sequence $\{b_k\}_{k=1}^{\infty}$ is a subordinating factor sequence if and only if:

$$\Re\left\{1 + 2 \sum_{k=1}^{\infty} b_k z^k\right\} > 0 \quad (z \in U).$$

(11)

The lemma above is due to Wilf [7]. Interested reader can also refer to [4–6].

Lemma 2 Let $s(z)$ ($s(z) \neq 0$) be a univalent function in U. Also, let $\mu \neq 0$ be a complex number, then we have that:

$$\Re\left\{1 + z s'(z) s(z) - z s'(z) s(z)\right\} > \max\left\{0, \Re\left(\frac{\mu - 1}{\mu - s(z)}\right)\right\}.\quad (12)

Suppose that $r (r(z) \neq 0)$ satisfies the differential equation:

$$(1 - \mu) (r(z) - 1) + \mu \frac{z r'(z)}{r(z)} < (1 - \mu) (s(z) - 1) + \mu \frac{z s'(z)}{s(z)}, \quad z \in U

(13)

then $r < s$ and s is the best dominant (see [8] among others).

Lemma 3 Let ω be regular in H with $\omega(0) = 0$. Also, suppose that $|\omega(z)|$ attains its maximum value on the circle $|z| < 1$ at a point z_0, then:

$$z_0 \omega'(z_0) = \sigma \omega(z_0),

(14)

where σ is any real number and $\sigma \geq 1$ (see [8] among others).

Coefficient inequality

In this section, we consider the coefficient inequalities for function $f_{\alpha,n}(z)$ given by (6) belonging to both classes $S^\alpha_{\alpha,n} (A, B, \gamma)$ and $K_{\alpha,n} (A, B, \gamma)$ in the unit disk U.

Theorem 1 Let the function $f_{\alpha,n}(z)$ of the form (6) satisfy the inequality:

$$\sum_{k=1}^{\infty} (ka - \gamma + 1) n_k \frac{|B|^k}{A^k} |a_{k+1}| \leq 1 - \gamma.\quad (15)

Then, $f_{\alpha,n}(z) \in S^\alpha_{\alpha,n} (A, B, \gamma)$ for $0 \leq \gamma < 1$, $0 < \alpha \leq 2$, $-1 \leq B < A \leq 1$, $0 < A \leq 1$ and $n > 0$. The equality holds true for $f_{\alpha,n}(z)$ given by:

$$f_{\alpha,n}(z) = z + \frac{(1 - \gamma) e^{it}}{(ka - \gamma + 1) n_k \frac{|B|^k}{A^k}} z^{k+1} + A (k \geq 1).

\text{Proof} Suppose that the function $f_{\alpha,n}(z)$ given by (6) satisfies (15), then:

$$\left|\frac{zf_{\alpha,n}'(z)}{f_{\alpha,n}(z)} - 1\right| = \frac{\sum_{k=1}^{\infty} (-1)^k kan_k \frac{|B|^k}{A^k} |a_{k+1}| z^k}{1 + \sum_{k=1}^{\infty} (-1)^k n_k \frac{|B|^k}{A^k} |a_{k+1}| z^k}

\leq \frac{\sum_{k=1}^{\infty} kan_k |B|^k |a_{k+1}| |z|^k}{1 - \sum_{k=1}^{\infty} n_k |B|^k |a_{k+1}| |z|^k}

\leq \frac{\sum_{k=1}^{\infty} kan_k |B|^k |a_{k+1}| |z|^k}{1 - \sum_{k=1}^{\infty} n_k |B|^k |a_{k+1}| |z|^k} \leq 1 - \gamma.

This shows that $f_{\alpha,n}(z) \in S^\alpha_{\alpha,n} (A, B, \gamma)$, and this ends the proof.\qed
Corollary 1 Let the function \(f_{a,n}(z) \) of the form (6) satisfy the inequality:
\[
\sum_{k=1}^{\infty} (k\alpha + 1)n_k \frac{|B|^k}{A^k} |a_{k+1}| \leq 1.
\]
Then, \(f_{a,n}(z) \in S_{a,n}^+(A, B, 0) \).

Theorem 2 Let the function \(f_{a,n}(z) \) of the form (6) satisfy the inequality:
\[
\sum_{k=1}^{\infty} (k\alpha - \gamma + 1)n_k \frac{|B|^k}{A^k} |a_{k+1}| \leq 1 - \gamma.
\]
Then, \(f_{a,n}(z) \in K_{a,n}(A, B, \gamma) \) for \(0 \leq \gamma < 1 \), \(0 < \alpha \leq 2 \), \(-1 \leq B < A \leq 1 \), \(0 < A \leq 1 \) and \(n > 0 \). The equality holds true for \(f_{a,n}(z) \) given by:
\[
f_{a,n}(z) = z + \frac{(1 - \gamma) e^{i\pi}}{(k\alpha + 1) (k\alpha - \gamma + 1) n_k \frac{|B|^k}{A^k}} z^{1+k\alpha} \quad (k \geq 1).
\]

Proof The proof is similar to that of Theorem 1.

Corollary 2 Let the function \(f_{a,n}(z) \) of the form (6) satisfy the inequality:
\[
\sum_{k=1}^{\infty} (k\alpha + 1)^2 n_k \frac{|B|^k}{A^k} |a_{k+1}| \leq 1.
\]
Then, \(f_{a,n}(z) \in K_{a,n}(A, B, 0) \).

Remark 1 Putting \(A = n = 1 \) and \(B = -1 \) in Theorems 1 and 2, we obtain the results obtained by Darus and Owa [[3], Theorems 3 and 4].

Next, we present some subordination results.

Some subordination results
Our prime objective here is to establish sufficient conditions for functions belonging to the analytic class \(S_{a,n}^+(A, B, \gamma) \).

Theorem 3 Suppose that the function \(f_{a,n}(z) \) is as defined in (6). Let \(0 < \alpha \leq 2 \), \(n > 0 \), \(\sigma \neq -1 \) and \(\mu \) be a non-zero complex number in \(U \) such that:
\[
\Re \left\{ 1 + \frac{z[1 - \sigma(1 - 2\alpha)]}{(1 - z)(1 + \sigma z)} \right\} \geq \max \left\{ 0, \Re \left(\frac{\mu - 1}{\mu} \left(\frac{1 + \sigma z}{1 - z} \right) \right) \right\}.
\]
If
\[
(1 - \mu) \left(f_{a,n}'(z) - 1 \right) + \mu \left(\frac{zf_{a,n}''(z)}{f_{a,n}'(z)} \right) < (1 - \mu) \left(\frac{1 + \sigma z}{1 - z} \right) - 1 + \mu \left(\frac{(1 + \sigma z)}{(1 + \sigma z)(1 - z)} \right)
\]
holds true, then \(f_{a,n}(z) \in S_{a,n}^+(A, B, \gamma) \).

Proof Suppose that we let:
\[
r(z) = f_{a,n}'(z) \quad \text{and} \quad s(z) = \frac{1 + \sigma z}{1 - z}.
\]
(17)
Then,
\[
\Re \left\{ 1 + \frac{zs''(z)}{s'(z)} - \frac{zs'(z)}{s(z)} \right\} \geq \max \left\{ 0, \Re \left(\frac{\mu - 1}{\mu} \left(\frac{1 + \sigma z}{1 - z} \right) \right) \right\} = \max \left\{ 0, \Re \left(\frac{\mu - 1}{\mu} s(z) \right) \right\}
\]
and
\[
(1 - \mu)(r(z) - 1) + \mu \frac{zr'(z)}{r(z)} = (1 - \mu) \left(f'_{\alpha,n}(z) - 1 \right) + \mu \left(\frac{zf''_{\alpha,n}(z)}{f'_{\alpha,n}(z)} \right)
\]
\[
< (1 - \mu) \left(\frac{1 + \sigma z}{1 - z} - 1 \right) + \mu \left(\frac{(1 + \sigma)z}{(1 + \sigma)(1 - z)} \right) = (1 - \mu) \left(s(z) - 1 \right) + \mu \frac{zs'(z)}{s(z)}.
\]
\tag{18}

Using Lemma 2 in (18), then we obtain the desired result.

\[\square\]

Theorem 4 Let the analytic function \(f_{\alpha,n}(z) \) be defined as in (6). Suppose that \(f_{\alpha,n}(z) \) satisfies the condition that:
\[
\Re \left\{ \frac{zf''_{\alpha,n}(z)}{f'_{\alpha,n}(z)} \right\} < -\frac{1 + \sigma}{2(1 - \sigma)}, \quad \sigma \neq -1.
\]
\tag{19}

Then, for \(0 < \alpha \leq 2, \ n > 0 \) and \(\sigma > 1, \ f_{\alpha,n}(z) \in S^*_\alpha,n(A,B,\gamma). \)

Proof Setting:
\[
f'_{\alpha,n}(z) = \frac{1 + \sigma \omega(z)}{1 - \omega(z)}, \quad \omega(z) \neq 1.
\]

Then, \(\omega \) is regular in \(U \), and since \(\sigma \neq -1 \), then \(\omega(0) = 0 \). Also, it follows that:
\[
\Re \left\{ \frac{zf''_{\alpha,n}(z)}{f'_{\alpha,n}(z)} \right\} = \Re \left\{ \frac{(1 + \sigma)\omega'(z)}{(1 - \omega(z))(1 + \sigma \omega(z))} \right\} < \frac{\sigma + 1}{2(\sigma - 1)}, \quad \sigma \neq -1.
\]

Next, we show that \(|\omega(z)| < 1 \). So, let there exists a point \(z_0 \in U \) such that for \(|z| \leq |z_0|: \)
\[
\max |\omega(z)| = |\omega(z)| = 1.
\]

Then, appealing to Lemma 3 and setting \(\omega(z_0) = e^{i\theta}, \ z_0 \omega'(z_0) = \delta e^{i\theta} \) and for \(\delta \geq 1, \ \sigma > 1 \), we have that:
\[
\Re \left\{ \frac{zf''_{\alpha,n}(z)}{f'_{\alpha,n}(z)} \right\} \geq -\frac{1 + \sigma}{2(1 - \sigma)} \quad z \in U.
\]

which negates the hypothesis (19).

Hence, we conclude that \(|\omega(z)| < 1 \) for all \(z \in U \) and:
\[
f'_{\alpha,n}(z) < \frac{1 + \sigma z}{1 - z}, \quad \sigma \neq 1, \ z \in U.
\]

and this obviously ends the proof.

\[\square\]

Application of a subordination theorem

Let \(\mathcal{S}^*_\alpha,n(A,B,\gamma) \) and \(\mathcal{K}^*_\alpha,n(A,B,\gamma) \) denote the classes of functions \(f_{\alpha,n} \in H_{\alpha,n} \) whose coefficients satisfy conditions (15) and (16), respectively. We note that \(\mathcal{S}^*_\alpha,n(A,B,\gamma) \subseteq \mathcal{S}^*_\alpha,n(A,B,\gamma) \) and \(\mathcal{K}^*_\alpha,n(A,B,\gamma) \subseteq \mathcal{K}^*_\alpha,n(A,B,\gamma) \). Here, we consider an application of the subordination result given in Lemma 1 to both classes \(\mathcal{S}^*_\alpha,n(A,B,\gamma) \) and \(\mathcal{K}^*_\alpha,n(A,B,\gamma) \).
Theorem 5 Let $f_{α,n}(z) \in S^{\gamma}_{α,n}(A,B,\gamma)$. If $0 \leq \gamma < 1$, $0 < α \leq 2$, $-1 \leq B < A \leq 1$, $0 < A \leq 1$ and $n > 0$, then:

$$ n(α - γ + 1)|B| \quad (f_{α,n} * g_α) (z) < g_α(z) $$

(20)

for every function $g_α$ in $K_α$ and:

$$ \forall (f_{α,n}(z)) > -\frac{[nα|B| + (1 - γ)(A + n|B|)]}{n(α - γ + 1)|B|} $$

(21)

The constant factor:

$$ n(α - γ + 1)|B| \quad \frac{2}{[nα|B| + (1 - γ)(A + n|B|)]} $$

in the subordination result (20) is sharp.

Proof Let $f_{α,n} \in S^{\gamma}_{α,n}(A,B,\gamma)$ and let $g_α$ be any function in $K_α$. Then:

$$ n(α - γ + 1)|B| \quad (f_{α,n} * g_α) (z) < g_α(z) $$

(20)

Thus, by Definition 2, the subordination result (20) will hold true if:

$$ \forall \left\{ \frac{n(α - γ + 1)|B|}{2[nα|B| + (1 - γ)(A + n|B|)]} a_k \right\}^∞_{k=1} $$

is a subordinating factor sequence, with $a_1 = 1$, appealing to Lemma 1, this is equivalent to:

$$ \forall \left\{ 1 + \sum_{k=1}^∞ \frac{n(α - γ + 1)|B|}{[nα|B| + (1 - γ)(A + n|B|)]} a_k z^{α(k-1)α+1} \right\} > 0 \ (z \in U). $$

(22)

Since $n_k (kα - γ + 1) \frac{|B|^k}{A^k}$ is an increasing function of $k \ (k \geq 1)$, we have that:

$$ \forall \left\{ 1 + \sum_{k=1}^∞ \frac{n(α - γ + 1)|B|}{[nα|B| + (1 - γ)(A + n|B|)]} a_k z^{α(k-1)α+1} \right\} $$

$$ = \forall \left\{ 1 + \frac{n(α - γ + 1)|B|}{M} z + \frac{A}{M} \sum_{k=2}^∞ n(α - γ + 1) \frac{|B|}{A} a_k z^{α(k-1)α+1} \right\} $$

$$ \geq 1 - \frac{n(α - γ + 1)|B|}{M} r - \frac{A}{M} \sum_{k=2}^∞ n_k - 1 (k - 1)α - γ + 1 \frac{|B|}{A^k} a_k r^{(k-1)α+1} $$

$$ > 1 - \frac{n(α - γ + 1)|B|}{[nα|B| + (1 - γ)(A + n|B|)]} r - \frac{A}{[nα|B| + (1 - γ)(A + n|B|)]} r = 1 - r > 0 $$

(23)

where $M = [nα|B| + (1 - γ)(A + n|B|)]$.

Therefore, (22) holds true in U and this obviously proves the inequality (20) while (21) follows by taking:

$$ g_α (z) = \frac{z}{1 - z^α} \in K_α $$
in (20). Now, suppose that we consider the function $q_{\alpha,n}(z)$ of the form:

$$q_{\alpha,n}(z) = z - \frac{1 - \gamma}{n(\alpha - \gamma + 1)\frac{|B|}{A}}z^{\alpha + 1}$$

which belongs to the class $S^*_\alpha(A,B,\gamma)$. Then, using (20), we have that:

$$\frac{n(\alpha - \gamma + 1)|B|}{2[n\alpha|B| + (1 - \gamma)(A + n|B|)]} q_{\alpha,n}(z) \preceq \frac{z}{1 - z^\alpha} \quad (z \in U)$$

which can easily be verified that for $0 \leq \gamma < 1$, $0 < \alpha \leq 2$, $-1 \leq B < A \leq 1$, $0 < A \leq 1$, $n \geq 0$ and $|z| \leq r$:

$$\min \left\{ \Re \left(\frac{n(\alpha - \gamma + 1)|B|}{2[n\alpha|B| + (1 - \gamma)(A + n|B|)]} q_{\alpha,n}(z) \right) \right\} = -\frac{1}{2} \quad (z \in U)$$

and this evidently completes the proof of Theorem 5. For various choices of the parameters involved, several interesting results are obtained. Given below are few instances. □

Corollary 3 Let $f_{\alpha,n}(z) \in S^*_\alpha(1,1,\gamma)$. Then:

$$\frac{n(\alpha - \gamma + 1)}{2(\alpha - 2\gamma + 2)} \left(f_{\alpha,n} * g_{\alpha} \right)(z) < g_{\alpha}(z)$$

for every function g_{α} in K_{α} and:

$$\Re \left(f_{\alpha,n}(z) \right) > -\frac{(\alpha - 2\gamma + 2)}{(\alpha - \gamma + 1)}.$$

The constant factor:

$$\frac{n(\alpha - \gamma + 1)}{2(\alpha - 2\gamma + 2)}$$

is sharp.

Corollary 4 Let $f_{\alpha,1}(z) \in S^*_\alpha(1,1,\gamma)$. Then:

$$\frac{\alpha - \gamma + 1}{2(\alpha - 2\gamma)} \left(f_{\alpha,1} * g_{\alpha} \right)(z) < g_{\alpha}(z)$$

for every function g_{α} in K_{α} and:

$$\Re \left(f_{\alpha,1}(z) \right) > -\frac{(\alpha - 2\gamma)}{(\alpha - \gamma + 1)}.$$

The constant factor:

$$\frac{\alpha - \gamma + 1}{2(\alpha - 2\gamma)}$$

is sharp.

Corollary 5 [9, 10] Let $f_{1,1}(z) \in S^*_1(1,1,\gamma)$. Then:

$$\frac{2 - \gamma}{2(3 - 2\gamma)} \left(f_{1,1} * g_{1} \right)(z) < g_{1}(z)$$

for every function g_{1} in K_{1} and:

$$\Re \left(f_{1,1}(z) \right) > -\frac{(3 - 2\gamma)}{(2 - \gamma)}.$$

The constant factor:

$$\frac{2 - \gamma}{2(3 - 2\gamma)}$$
is sharp.

Corollary 6 [9–11] Let \(f_{1,1}(z) \in S_{1,1}^{\alpha}(1,-1,0) \). Then:
\[
\frac{1}{3} (f_{1,1} * g_1)(z) < g_1(z)
\]
for every function \(g_1 \) in \(K_1 \) and:
\[
\Re (f_{1,1}(z)) > -\frac{3}{2}.
\]

Theorem 6 Let \(f_{\alpha,n}(z) \in K_{\alpha,n}(A,B,\gamma) \). If \(0 \leq \gamma < 1, 0 < \alpha \leq 2, -1 \leq B < A \leq 1 \) and \(n > 0 \), then:
\[
\frac{n(\alpha + 1)(\alpha - \gamma + 1)|B|}{2 \left[n\alpha(\alpha + 1)|B| + (1 - \gamma)(A + n(\alpha + 1)|B|) \right]} (f_{\alpha,n} * g_\alpha)(z) < g_\alpha(z)
\]
for every function \(g_\alpha \) in \(K_\alpha \) and:
\[
\Re (f_{\alpha,n}(z)) > -\frac{n\alpha(\alpha + 1)|B| + (1 - \gamma)(A + n(\alpha + 1)|B|)}{n(\alpha + 1)(\alpha - \gamma + 1)|B|}.
\]

The constant factor:
\[
\frac{n(\alpha + 1)(\alpha - \gamma + 1)|B|}{2 \left[n\alpha(\alpha + 1)|B| + (1 - \gamma)(A + n(\alpha + 1)|B|) \right]}
\]
in the subordination result (24) cannot be replaced by a larger one, and the proof of which is similar to that of Theorem 3.

Corollary 7 Let \(f_{\alpha,n}(z) \in K_{\alpha,n}(1,-1,\gamma) \). Then:
\[
\frac{n(\alpha + 1)(\alpha - \gamma + 1)}{2 \left[n\alpha(\alpha + 1) + (1 - \gamma)(1 + n(\alpha + 1)) \right]} (f_{\alpha,n} * g_\alpha)(z) < g_\alpha(z)
\]
for every function \(g_\alpha \) in \(K_\alpha \) and:
\[
\Re (f_{\alpha,n}(z)) > -\frac{n\alpha(\alpha + 1) + (1 - \gamma)(1 + n(\alpha + 1))}{n(\alpha + 1)(\alpha - \gamma + 1)}.
\]

The constant factor:
\[
\frac{n(\alpha + 1)(\alpha - \gamma + 1)}{2 \left[n\alpha(\alpha + 1) + (1 - \gamma)(1 + n(\alpha + 1)) \right]}
\]
cannot be replaced by a larger one.

Corollary 8 Let \(f_{\alpha,1}(z) \in K_{\alpha,1}(1,-1,\gamma) \). Then:
\[
\frac{(\alpha + 1)(\alpha - \gamma + 1)}{2 \left[\alpha(\alpha + 1) + (1 - \gamma)(\alpha + 2) \right]} (f_{\alpha,1} * g_\alpha)(z) < g_\alpha(z)
\]
for every function \(g_\alpha \) in \(K_\alpha \) and:
\[
\Re (f_{\alpha,1}(z)) > -\frac{\alpha(\alpha + 1) + (1 - \gamma)(\alpha + 2)}{\alpha + 1)(\alpha - \gamma + 1)}.
\]

The constant factor:
\[
\frac{(\alpha + 1)(\alpha - \gamma + 1)}{2 \left[\alpha(\alpha + 1) + (1 - \gamma)(\alpha + 2) \right]}
\]
cannot be replaced by a larger one.
Corollary 9 [9, 10] Let \(f_{1,1}(z) \in \mathcal{K}_{1,1}(1, -1, \gamma) \). Then:

\[
\frac{2 - \gamma}{5 - 3\gamma} (f_{1,1} * g_1)(z) < g_1(z)
\]

(30)

for every function \(g_1 \) in \(K_1 \) and:

\[
\Re (f_{1,1}(z)) > -\frac{5 - 3\gamma}{2(2 - \gamma)}.
\]

(31)

The constant factor:

\[
\frac{2 - \gamma}{5 - 3\gamma}
\]

cannot be replaced by a larger one.

Corollary 10 [9, 10] Let \(f_{1,1}(z) \in \mathcal{K}_{1,1}(1, -1, 0) \). Then:

\[
\frac{2}{5} (f_{1,1} * g_1)(z) < g_1(z)
\]

(32)

for every function \(g_1 \) in \(K_1 \) and:

\[
\Re (f_{1,1}(z)) > -\frac{5}{4}.
\]

(33)

The constant factor:

\[
\frac{2}{5}
\]

cannot be replaced by a larger one.

For further illustrations on the applications of the subordination result stated in Lemma 1, interested reader can see [4, 6, 8–11].

Acknowledgements

The authors would like to express their sincerest thanks to the referees for a careful reading and various suggestions made for the improvement of the paper.

Authors’ contributions

Both authors read and approved the final manuscript.

Funding

The authors declare that they had no funding.

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

Competing interests

The authors declare that they have no competing interests.

Author details

1. Department of Mathematics, University of Lagos, Lagos, Nigeria. 2. Department of Mathematics, Faculty of Science, Damietta University, New Damietta 34517, Egypt.

References

1. Goodman, A. W.: Univalent Functions, vol. I and II. Mariner, Pubishing Co., INC, Tampa (1983)
2. Robertson, I. S.: On the theory of univalent functions. Ann. Math. Second Ser. 37(2), 374–408 (1936)
3. Darus, M, Owa, S: New subclasses concerning some analytic and univalent functions. Chin. J. Math. 2017(Article ID4674782), 4 (2017)
4. El-Ashwah, R.M.: Subordination results for certain subclass of analytic functions defined by Salagean operator. Acta Univ. Apulensis. 37, 197–204 (2014)
5. Oladipo, A. T., Breaz, D: A brief study of certain class of Harmonic functions of Bazilevic type. ISRN Math. Anal. 2013, 11 (2013). http://dx.doi.org/10.1155/2013/179856 Art. ID179856
6. Srivastava, H. M., Attiya, A. A.: Some subordination results associated with certain subclass of analytic functions. Appl. Math. Sci. 5(4), 1–6 (2004). Art. 82
7. Wilf, H. S.: Subordinating factor sequence for convex maps of the unit circle. Proc. Amer. Math. Soc. 12, 689–693 (1961)
8. Hamzat, J. O., Raji, M. T.: Subordination conditions for certain subclass of non-Bazilevic functions in the open unit disk. Int. J. Latest Eng. Tech. Manag. Sci. 1(1), 37–44 (2016)
9. Aouf, M. K., El-Ashwah, R. M., El-Deeb, S. A.: Subordination results for certain subclasses of uniformly starlike and convex functions defined by convolution. Eurp. J. Pure Appl. Math. 3(5), 903–917 (2010)
10. Frasin, B. A.: Subordination results for a class of analytic functions defined by a linear operator. J. Inequal. Pure Appl. Math. 7(4), 1–7 (2006). Art. 134
11. Singh, S.: A subordination theorems for spirallike functions. IJMMS. 24(7), 433–435 (2000)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.