Management of Stevens-Johnson Syndrome-Toxic Epidermal Necrolysis: Looking Beyond Guidelines!

Rajesh Kumar, Anupam Das¹, Sudip Das²

Abstract
Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are severe cutaneous adverse reactions, which are mainly caused by drugs; and these are usually associated with high degree of morbidity and mortality. Recently, two detailed guidelines were published on the management of SJS/TEN, Indian guidelines and UK guidelines. Still, there is no consensus on the management of SJS/TEN. In this article, our aim is to conceptualize the management aspect of SJS/TEN considering Indian setup. Early discontinuation of all medicines, supportive measures (hydration, electrolytes, and care of denuded skin), corticosteroids and cyclosporine has been found to be useful. Oral provocation test is reserved for patients, who undergo complete remission and this is to be done after hospitalization, under strict vigilance. As there is no consensus, the treatment should be individualized on case to case basis.

Key Words: Management, Stevens-Johnson syndrome, toxic epidermal necrolysis

Introduction
Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are severe cutaneous adverse reactions (SCAR), which are mainly caused by drugs; and these are usually associated with high morbidity and mortality.¹⁻³ The incidence of SJS varies from 1.2 to 6/million patient-years and that of TEN being 0.4–1.2/million patient-years, with the mortality rate in TEN being three times higher than that of SJS.⁴⁻⁷ High-risk drugs for the development of SJS-TEN include phenobarbital, phenytoin, carbamazepine, lamotrigine, nevirapine, nonsteroidal anti-inflammatory drugs, allopurinol, cotrimoxazole, homeopathic medicines, and fluconazole.⁸⁻²⁶

Diagnostic of Stevens-Johnson Syndrome-Toxic Epidermal Necrolysis
It is essentially a clinical diagnosis. Patients usually give a history of constitutional symptoms including fever, malaise, arthralgia, and sore throat. To start with, the lesions are erythematous to violaceous and purpuric macules which coalesce to form patches. Targetoid lesions may be present. Mostly, the lesions initially involve the trunk which spread distally to involve the limbs. One may also find flaccid bullae. These are usually followed by exfoliation of the skin. SJS is characterized by involvement of <10% body surface area; SJS-TEN overlap signifies 10%–30% involvement and the most severe form of the spectrum, TEN is characterized by involvement of >30% body surface area. Mucosal inflammation (oral, ocular, and genitourinary) is nearly universal. Pseudo-Nikolsky and Asboe Hansen signs can be elicited in most of the cases. Histopathology is usually not required for the diagnosis of SJS-TEN. However, the hallmark findings include full-thickness epidermal necrosis, subepidermal bulla, and scanty inflammatory infiltrate in the papillary dermis.²⁷ The
clinical differentials include morbilliform drug rash, erythema multiforme, drug-induced linear IgA disease, acute generalized exanthematous pustulosis, acute graft versus host disease, drug reaction with eosinophilia and systemic symptoms syndrome, staphylococcal scalded skin syndrome.

Recently, various serum markers have been studied, which can detect an early case of TEN and signal the progression of early morbilliform drug rash to a full-blown case of TEN. Some of them include soluble Fas ligand, granzyme B, soluble CD40 ligand, granulysin, serum high mobility group protein B1 (HMGB1), serum lactate dehydrogenase level, alpha-defensins 1–3 in the blister, Bcl-2 expression in the dermal infiltrate, thymus and activation-regulated chemokine, and glutathione-S transferase-pi expression.\(^ {28-33}\)

The prognosis of the disease is determined using the score of TEN (SCORTEN). It consists of 7 parameters:

- Age ≥40 years, heart rate ≥120/min, presence of cancer/hematologic malignancy, >10% body surface area involvement, raised blood urea nitrogen (>28 mg/dL), serum bicarbonate <20 mmol/L, serum glucose level >14 mmol/L, calculated within the first 24 h of admission of the patient.\(^ {34}\) Recently, it has been proposed that serial analysis of SCORTEN may provide a better picture regarding the mortality in comparison to the SCORTEN calculation done only on day 1.\(^ {35}\)

Drug provocation tests have been reported to be an effective modality in the preparation of a list of drugs which can be provided to patients who have suffered a drug eruption previously. However, this has to be done under strict medical supervision, preferably in a daycare setting or prolonged admission in a hospital.\(^ {36}\)

Management

General measures

- Immediate withdrawal of all the suspected drugs is the key to the management of SJS-TEN. Garcia-Doval et al. have shown that earlier withdrawal of the drug is associated with better prognosis. Moreover, it has also been demonstrated, and that patient who develops TEN due to drugs with long half-lives have an increased risk of death.\(^ {37}\)

- Maintenance of an ambient body temperature (31°C–32°C), proper fluid-electrolyte balance, and maintenance of a strict aseptic environment are crucial. Changing of dressing and wound debridement may be considered.\(^ {37}\) The aim should be maintenance of urine output of 50–80 mL/h with 0.5% NaCl supplemented with 20 mEq of KC\(^ {38}\)

- Banana leaf is used in many centers in India during the care of patients with SJS and TEN. It leads to pain reduction, increases the comfort, and leads to early wound healing.\(^ {39}\) However, leaves may be a source of infection and aggravate the chances of developing sepsis. Thus, autoclaved and aseptically handled banana leaves may be used to reduce chance of infection in the treatment of TEN.\(^ {40}\)

- Coverage of denuded skin should be done using paraffin gauze. Latest developments include utilization of porcine xenografts, human allografts, Biobrane (skin substitute made of a synthetic bilaminar membrane and Aquacel Ag, a moisture-retentive hydrofiber dressing known to release silver within the dressing).\(^ {41,42}\)

Patients with severe denudation may require umbilical cord mesenchymal stem cell transplantation.\(^ {43}\) The use of biological membranes reduces wound infections and prevents scarring during the healing phase. The use of biomembranes on exposed dermis and the sensitive dermal nerve endings avoids frequent dressing change and minimizes pain and discomfort, thus increasing the patient compliance.\(^ {44}\)

- It is debatable regarding the utility of transfer of the patient to a separate burn unit. Since there is not much literature available on the improved outcome of patients after transfer to a separate ward, it is difficult to comment on the same. However, there are studies published which have discussed the management of patients of TEN in the burn ward, with definitely improved outcome.\(^ {45-48}\) This emphasizes the role of early referral of cases of TEN to well-equipped centers

- Persistent inflammation and ulceration of the eyes with cicatrical complications of the lids lead to chronic sequelae including ocular surface damage and scarring. Good eye care with early referral to an ophthalmologist prevents complications such as scarring and synechiae formation.\(^ {49-51}\)

Medical management

- Steroids: From Indian perspective of the disease, systemic steroids have been used for decades in the management. Majority of cases are attributed to antibody-dependent cell-mediated cytotoxicity type of hypersensitivity phenomenon which is sensitive to corticosteroids. Early treatment with steroids was associated with improved outcome. Oral steroids, instituted within 24–48 h of onset of disease and tapering over the next 7–10 days gives best results.\(^ {52}\) Dexamethasone 8–16 mg/day is recommended, but the dose can be higher if considered necessary. In case, the recovery is not adequate, the dose of corticosteroids may be increased by 4 mg dexamethasone on the next day and the evaluation repeated on the next day.\(^ {52-55}\) However, there are no randomized controlled trials which have established the efficacy of steroids.\(^ {56}\) Methylprednisolone pulse therapy (MPT) has been found to reduce the levels of pro-inflammatory cytokines such as interferon-gamma, tumor necrosis factor (TNF)-alpha and interleukin-6 (IL-6), and
improves the survival rate in patients of TEN. However, blinded trials should be carried out to understand the role of MPT in TEN. On the other hand, multiple data have shown that use of steroids was associated with an increase in the duration of hospitalization. Moreover, it led to an increase in the rate of infective complications associated with SJS-TEN. Thus, the role of systemic corticosteroids in the management of TEN is controversial.

- **Cyclosporine:** As per the survey, cyclosporine is the second most commonly used immunomodulator in the treatment of SJS-TEN. It specifically targets granulysin, an important mediator of apoptosis of keratinocytes; and thus, leads to arrest of disease progression. In a clinical trial on 29 patients, cyclosporine was administered at the dose of 3 mg/kg/day for a duration of 10 days and thereafter, it was tapered over a month; there was stabilization of epidermal detachment. Besides, the drug was not associated with any increased mortality. Excellent results were also noted by Arévalo et al. who administered cyclosporine 3 mg/kg daily to 11 patients, with rapid epithelialization and better prognosis. In addition, Reese et al. reported good results in four patients who were given cyclosporine. In a recent study patients, from India, where cyclosporine was given at a dose of 3 mg/kg in three divided doses for 7 days and then tapered over the next 7 days. The mean duration of re-epithelialization and duration of hospital stay was significantly lower in patients receiving cyclosporine in comparison to those patients who were managed using supportive treatment only. Besides, there was no mortality. A recent retrospective study of 71 patients compared cyclosporine and intravenous immunoglobulin (IVIg) in the management of TEN and the use of cyclosporine offered a greater mortality benefit, in terms of standardized mortality ratio. Patients receiving IVIg had a higher mortality than predicted by SCORTEN, but those receiving cyclosporine had a lower mortality. Suprapharmacologic doses of intravenous dexamethasone followed by cyclosporin leads to modification of the immune response. Besides, the side-effects of steroids are minimized with interruption of the disease progression.

- **Tacrolimus:** Recently, a patient of phenytoin-induced SJS was given oral tacrolimus 0.12 mg/kg/day in 2 divided doses. The patient showed dramatic improvement within 48 h. Tacrolimus was tapered after 3 days, at the rate of 0.5 mg/kg body weight/day. Thus, tacrolimus which shares the similar mechanism of action like cyclosporine can be used in the management of SJS although larger studies must be done.

- **IVIgs:** According to a recent survey, this is the most common immunomodulator worldwide, used in the treatment of SJS-TEN. IVIg interferes with death ligand-induced apoptosis. It is used at a dose of 2 g/kg. Low-dose IVIg appears to be a safe and effective treatment for TEN in children as well. Eight controlled and five small, nonrandomized, retrospective studies have been documented. The interesting point is most of the studies favor the use of IVIg in TEN; a large, randomized, placebo-controlled trial (with and without corticosteroids) should be done to make things more conclusive. Paquet et al. concluded that the infusion of IVIg provides significant protection to the keratinocytes, thus limiting the disease progression. There are case reports and studies showing the effectiveness of IVIg in combination with methylprednisolone, IVIg with steroids and infliximab. Combination therapy with low-dose IVIg and steroids is more effective because it reduces mortality and leads to rapid resolution of the condition when compared to steroids alone in TEN. However, there are conflicting reports as well. A study has recently shown that IVIg is not effective in SJS-TEN in both adults and pediatric population. In a paper published by Huang et al., univariate analysis showed that high dosage in adults (>2 g/kg) is associated with reduced mortality, but when the data were adjusted by a multivariate logistic regression model, the doses did not correlate with mortality. Similarly, an analysis of 289 patients from the EuroSCAR study did not find any benefit from corticosteroids or IVIg compared to supportive therapy only. Adding to these data, a recent study did not find any significant decrease in the mortality rate in patients receiving a combination therapy of IVIg and corticosteroids. This could be attributed to other comorbidities in association with the drug hypersensitivity. An important consideration regarding administration of IVIg is the presence of renal impairment. In such cases, IVIg may actually lead to deterioration of the condition. From Indian perspective, management of SJS-TEN using IVIg is not at all cost-effective.

- **Cyclophosphamide:** Since it inhibits CD8, it has been used with success in TEN, at doses of 300 mg/day, tapering to 100 mg/day for up to 6 days. Larger studies are needed to corroborate these results, keeping in mind the chances of potential side effects.

- **Plasmapheresis:** It is a promising alternative modality. Egan et al. reported a series of six patients who underwent plasmapheresis, with good outcome. Besides, not a single case of mortality was reported. This has also been used with success in a patient of TEN with AIDS. However, this procedure requires intensive training and the cost factors also limit the use of plasmapheresis in our setting.

- **Intravenous N-acetylcysteine (NAC):** When this compound is used at a dose of 300 mg/kg/day, it was
found to reduce the time for re-epithelialization.\(^{[95]}\) Saavedra et al. administered 600 mg of intravenous NAC 8 h to a patient, which led to significant improvement of the lesions.\(^{[96]}\)

- **Biologics:** Cytokines such as IL-6 and TNF-alpha are found in higher quantities in the skin of patients of TEN. With this background, anti-TNF-alpha agents such as infliximab and etanercept have been used successfully.\(^{[97-100]}\)
- **Others:** Miscellaneous agents such as GSF have been used in patients of TEN (with or without neutropenia). Recombinant granulocyte colony-stimulating factor (G-CSF), 5 µg/kg/day for 5 days leads to rapid re-epithelialization of skin.\(^{[101]}\)

Literature for management of SJS-TEN in children is lacking. However, a recent review\(^{[102]}\) found that IVIg, systemic corticosteroids (prednisolone, methylprednisolone, and dexamethasone),\(^{[103]}\) dressings,\(^{[104,105]}\) surgical debridement, and support treatment alone; were the major treatment modalities. Few children were given ulinastatin, plasmapheresis, G-CSF,\(^{[106]}\) IV pentoxifylline,\(^{[107]}\) skin substitutes,\(^{[108]}\) and cyclosporine. Steroids and IVIg were associated with improved outcome and those treated only with supportive therapy seemed to have higher morbidity and mortality.

Management of sequelae

Since the disease involves ocular, oral, genitourinary, gastrointestinal, and respiratory mucosa, complications can be plenty, depending on the extent of the disease and the point of therapeutic intervention. Early referral to an ophthalmologist is quintessential for estimation of involvement of ocular mucosa. Visual outcome is better in those receiving ophthalmological treatment (topical steroids and lubricants), preferably within 7 days of onset of disease.\(^{[109,110]}\) Serious ocular complications such as corneal scarring, corneal xerosis, trichiasis, and subconjunctival fibrosis need gas permeable scleral contact lens therapy and amniotic membrane transplantation (AMT).

AMT has been reported to be an adjunct to conventional membrane transplantation for the maintenance of best-corrected visual acuity. Besides, AMT also helps to prevent intermediate-term scarring complications of the ocular surface.\(^{[111]}\)

Cutaneous complications are managed by nonadherent dressings. Management of bronchitis, bronchiectasis, bronchiolitis obliterans, and bronchiolitis obliterans organizing pneumonia is done using aerosols, nebulized saline, bronchodilators, bronchial aspiration, physical therapy, intubation and mechanical ventilation. Hypopharyngeal stenosis and esophageal strictures are rare complications. Removal of oral crusting should be done whenever required. Early institution of enteral feeding is crucial for the prevention of such sequelae. Severe cases may require laryngectomy.\(^{[112]}\) Prevention of genitourinary complications such as dyspareunia, adhesions, stenosis, erosions, and strictures require a mandatory consultation with a urologist along with catheterization to maintain the patency of the urinary tract.

Prevention: Is it possible?

Keeping in mind, the significant morbidity and mortality associated with the disease; it would have been extremely beneficial if the disease per se could be prevented. Pharmacogenomic screening of HLA alleles before initiating a drug has already been shown useful in the prevention of cutaneous adverse drug reactions.\(^{[113]}\) In December 2007, US Food and Drug Administration (USFDA) recommended HLA-B*1502 testing before the use of carbamazepine in the Asian population. Since then, HLA testing has been made mandatory in Hong Kong, Taiwan, and Singapore. However, there are many debatable points regarding this strategy. It is not clear whether to avoid phenytoin, oxcarbazepine, and lamotrigine in patients who test positive for HLA-B*1502.\(^{[114]}\) Besides, the hypothesis of increased incidence of carbamazepine-induced SJS-TEN in HLA-B*1502 positivity does not hold true in a few parts of Korea and Japan.\(^{[115]}\)

Most importantly, in a country like ours; where financial constraints become the rate-limiting factor before executing any strategy; pharmacogenomic testing is not a practical option. In Hong Kong and Taiwan, the HLA-B*1502 tests are offered without any cost to patients. However, in Singapore, the tests are subsidized up to 25% in government hospitals the private patients pay for the test in full. Of note, there are reports of cases of carbamazepine-induced SJS-TEN in HLA-B*1502 negative patients.\(^{[116]}\) Adding to the already existing problems, in near future, it is possible that Asian countries will face the problem of testing for HLA-B*5801 before prescription of allopurinol.\(^{[117]}\) Since the patients with chronic kidney disease and those who test positive for HLA-B*5801 are at a significantly higher risk of allopurinol-induced SCAR; a question arises; whether the HLA testing should be made mandatory in Asia-Pacific regions in patients who can afford. Besides, USFDA recommends testing for HLA-B*5701 for patients receiving abacavir.\(^{[118]}\)

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

What is new?

- A practical approach to deal with both the conditions.
- Management of sequelae.
- Thought to ponder, can it be prevented?
References

1. Patel PP, Gandhi AM, Desai CK, Desai MK, Dikshit RK. An analysis of drug induced Stevens-Johnson syndrome. Indian J Med Res 2012;136:1051-3.

2. Saha A, Das NK, Hazra A, Gharami RC, Chowdhury SN, Datta PK, et al. Cutaneous adverse drug reaction profile in a tertiary care out patient setting in Eastern India. Indian J Pharmaco 2012;44:792-7.

3. Patel TK, Thakkar SH, Sharma D. Cutaneous adverse drug reactions in Indian population: A systematic review. Indian Dermat Online J 2014;5:S76-86.

4. Barvaliya M, Sanmukhani J, Patel T, Paliwal N, Shah H, Tripathi C, et al. Drug-induced Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), and SJS-TEN overlap: A multicentric retrospective study. J Postgrad Med 2011;57:115-9.

5. Sanmarkan AD, Sori T, Thappa DM, Jaisankar TJ. Retrospective analysis of Stevens-Johnson syndrome and toxic epidermal necrolysis over a period of 10 years. Indian J Dermatol 2011;56:25-9.

6. Sharma VK, Sethuraman G, Minz A. Stevens Johnson syndrome, toxic epidermal necrolysis and SJS-TEN overlap: A retrospective study of causative drugs and clinical outcome. Indian J Dermatol Venereol Leprol 2008;74:238-40.

7. Sane SP, Bhatt AD. Stevens-Johnson syndrome and toxic epidermal necrolysis-challenges of recognition and management. J Assoc Physicians India 2000;48:999-1003.

8. Devi K, George S, Citron S, Suja V, Sidrve PK. Carbamazepine – The commonest cause of toxic epidermal necrolysis and Stevens-Johnson syndrome: A study of 7 years. Indian J Dermatol Venereol Leprol 2005;71:325-8.

9. Rajput R, Sagari S, Durgavanshi A, Kanwar A. Paracetamol induced Steven-Johnson syndrome: A rare case report. Contemp Clin Dent 2015;6:S278-81.

10. Pawar MP, Pore SM, Pradhan SN, Burute SR, Bhoi UY, Ramanand SJ, et al. Nevirapine: Most common cause of cutaneous adverse drug reactions in an outpatient department of a tertiary care hospital. J Clin Diagn Res 2015;9:FC17-20.

11. Kavitha S, Anbuchelvan T, Mahalaksmi V, Sathyra R, Sabararith TR, Gururaj N, et al. Stevens-Johnson syndrome induced by a combination of lamotrigine and valproic acid. J Pharm Bioallied Sci 2015;7:S756-8.

12. Rachana PR, Anuradha HV, Mounika R, Stevens Johnson syndrome-toxic epidermal necrolysis overlap secondary to interaction between methotrexate and etoricoxib: A case report. J Clin Diag Res 2015;9:F001-3.

13. Ramani YR, Mishra SK, Rath B, Rath SS. Ofloxacin induced cutaneous reactions in children. J Clin Diag Res 2015;9:F001-2.

14. Kameshwari JS, Devde R. A case report on toxic epidermal necrolysis with etoricoxib. Indian J Pharmaco 2015;47:221-3.

15. Madabhavi I, Revannasiddaiah S, Patel A, Anand A. Toxic epidermal necrolysis with the use of tamoxifen. BMJ Case Rep 2015;2015. pii: bcr2014209102.

16. Paik S, Sen S, Das J, Saha B, Tripathi SK. Allopurinol induced Stevens-Johnson syndrome – A case report. J Clin Diag Res 2015;9:W001-2.

17. Patel MP, Kute VB, Vanikar AV, Trivedi HL. Cyclophosphamide-induced toxic epidermal necrolysis: Vigilance needed. Clin Kidney J 2014;7:323-4.

18. Jha P, Himanshu D, Jain N, Singh AK. Imatinib-induced Stevens-Johnson syndrome. BMJ Case Rep 2013;2013. pii: bcr2012007926.

19. Mazumdar G, Shome K. Stevens-Johnson syndrome following use of metronidazole in a dental patient. Indian J Pharmaco 2014;46:121-2.

20. Naveen KN, Pai WV, Rai V, Athanikar SB. Retrospective analysis of Stevens Johnson syndrome and toxic epidermal necrolysis over a period of 5 years from Northern Karnataka, India. Indian J Pharmaco 2013;45:80-2.

21. Das A, Sil A, Mishra V, Das NK. Steven’s Johnson syndrome with toxic epidermal necrolysis due to thalidomide in a case of multiple myeloma. Indian J Pharmaco 2014;46:557-9.

22. Patel TK, Barvaliya MJ, Sharma D, Tripathi C. A systematic review of the drug-induced Stevens-Johnson syndrome and toxic epidermal necrolysis in Indian population. Indian Dermat Venereol Leprol 2013;79:389-98.

23. Singh PK, Kumar MK, Kumar D, Kumar P. Morphological pattern of cutaneous adverse drug reactions due to antiepileptic drugs in Eastern India. J Clin Diagn Res 2015;9:WC01-3.

24. Das S, Roy AK, Biswas I. A six-month prospective study to find out the treatment outcome, prognosis and offending drugs in toxic epidermal necrolysis from an urban institution in Kolkata. Indian J Dermatol 2013;58:191-3.

25. George J, Sharma A, Dixit R, Chhabra N, Sharma S. Toxic epidermal necrolysis caused by fluconazole in a patient with human immunodeficiency virus infection. J Pharmacoather 2012;3:276-8.

26. Taqi SA, Zaki SA, Nilofe AR, Sami LB. Trimethoprim-sulfamethoxazole-induced Steven Johnson syndrome in an HIV-infected patient. Indian J Pharmaco 2012;44:533-5.

27. Schwartz RA, McDonough PH, Lee BW. Toxic epidermal necrolysis: Part II. Prognosis, sequelae, diagnosis, differential diagnosis, prevention, and treatment. J Am Acad Dermatol 2013;69:187.e1-16.

28. Murata J, Abe R, Shimizu H. Increased soluble fas ligand levels in patients with Stevens-Johnson syndrome and toxic epidermal necrolysis preceding skin detachment. J Allergy Clin Immunol 2008;122:992-1000.

29. Posadas SJ, Padial A, Torres MJ, Mayorga C, Leyva L, Sanchez E, et al. Delayed reactions to drugs show levels of perforin, granzyme B, and fas-L to be related to disease severity. J Allergy Clin Immunol 2002;109:155-61.

30. Caproni M, Antiga E, Parodi A, Schena D, Marzano A, Quaglini P, et al. Elevated circulating CD40 ligand in patients with erythema multiforme and Stevens-Johnson syndrome/toxic epidermal necrolysis spectrum. Br J Dermatol 2006;154:1006-7.

31. Abe R, Yoshioka N, Murata J, Fujita Y, Shimizu H. Granulysin as a marker for early diagnosis of the Stevens-Johnson syndrome. Ann Intern Med 2009;151:514-5.

32. Fujita Y, Yoshioka N, Abe R, Murata J, Hashimoto K, et al. Rapid immunochromatographic test for serum granulysin is useful for the prediction of Stevens-Johnson syndrome and toxic epidermal necrolysis. J Am Acad Dermatol 2011;65:65-8.

33. Nakajima S, Watanabe H, Tohyama M, Sugita K, Iijima M, Hashimoto K, et al. High-mobility group box 1 protein (HMGB1) as a novel diagnostic tool for toxic epidermal necrolysis and Stevens-Johnson syndrome. Arch Dermatol 2011;147:1110-2.

34. Thong BY. Stevens-Johnson syndrome/toxic epidermal necrolysis: An Asia-Pacific perspective. Asia Pac Allergy 2013;3:215-23.

35. Bansal S, Garg VK, Sardana K, Sarkar R. A clinicotherapeutic analysis of Stevens-Johnson syndrome and toxic epidermal
necrosis with an emphasis on the predictive value and accuracy of SCORe of toxic epidermal necrosis. Int J Dermatol 2015;54:e18-26.
36. Ramam M, Kumar U, Bhat R, Sharma VK. Oral drug provocation test to generate a list of safe drugs: Experience with 100 patients. Indian J Dermatol Venereol Leprol 2012;78:595-8.
37. García-Doval I, LeClatch L, Bocquet H, Otero XL, Roujeau JC. Toxic epidermal necrosis and Stevens-Johnson syndrome: Does early withdrawal of causative drugs decrease the risk of death? Arch Dermatol 2000;136:323-7.
38. Fernando SL. The management of toxic epidermal necrosis. Austras J Dermatol 2012;53:165-71.
39. Dharmidharka VR, Kandoth PW. Use of banana leaves in Stevens-Johnson syndrome. Pediatr Dermatol 1994;11:1-8.
40. Srinivas CR, Sundaram VS, Raju BA, Prabhu SK, Thirumurthy M, Bhaskar AC, et al. Achieving asepsis of banana leaves for the management of toxic epidermal necrosis. Indian J Dermatol Venereol Leprol 2006;72:201-2.
41. Li X, Wang D, Lu Z, Chen J, Zhang H, Sun L, et al. Umbilical cord mesenchymal stem cell transplantation in drug-induced Stevens-Johnson syndrome. J Eur Acad Dermatol Venereol 2013;27:659-61.
42. Lehlolloya RJ, Esmail F, Christians SJ, Motsepe D, Todd G. Toxic epidermal necrosis with failure of re-epithelialization. Could umbilical cord mesenchymal stem cell transplantation have a role? J Eur Acad Dermatol Venereol 2013;27:923-5.
43. Li X, Wang D, Lu Z, Chen J, Zhang H, Sun L, et al. Answer to ‘toxic epidermal necrosis with failure of re-epithelialization. Could umbilical cord mesenchymal stem cell transplantation have a role?’ J Eur Acad Dermatol Venereol 2013;27:925.
44. Ramakrishnan KM, Sankar J, Venkatraman J. Role of biological membranes in the management of Stevens Johnson syndrome – Indian experience. Burns 2007;33:109-11.
45. Khoo AK, Foo CL. Toxic epidermal necrosis in a burns centre: A 6-year review. Burns 1996;22:275-8.
46. Ying S, Ho W, Chan HH. Toxic epidermal necrosis: 10 years experience of a burns centre in Hong Kong. Burns 2001;27:372-5.
47. Palmieri TL, Greenhalgh DG, Saffle JR, Spence RJ, Peck MD, Jeng JC, et al. A multicenter review of toxic epidermal necrosis treated in U.S. Burns centers at the end of the twentieth century. J Burn Care Rehabil 2002;23:87-96.
48. McGee T, Munster A. Toxic epidermal necrosis syndrome: Mortality rate reduced with early referral to regional burn center. Plast Reconstr Surg 1998;102:1018-22.
49. Jain R, Sharma N, Basu S, Iyer G, Ueta M, Sotozono C, et al. Stevens-Johnson syndrome: The role of an ophthalmologist. Surv Ophthalmol 2016;61:369-99.
50. Honavar SG, Bansal AK, Sangwan VS, Rao GN. Amniotic membrane transplantation for ocular surface reconstruction in Stevens-Johnson syndrome. Ophthalmology 2000;107:975-9.
51. Kompella VB, Sangwan VS, Bansal AK, Garg P, Aasuri MK, Rao GN, et al. Ophthalmic complications and management of Stevens-Johnson syndrome at a tertiary eye care centre in South India. Indian J Ophthalmol 2002;50:283-6.
52. Parshica JS. Corticosteroids in toxic epidermal necrosis. Indian J Dermatol Venereol Leprol 2008;74:493.
53. Parshica JS, Khaitan BK, Shantharam R, Mittal A, Girdhar M. Toxic epidermal necrosis. Int J Dermatol 1996;35:523-7.
54. Tripathi A, Ditto AM, Grammer LC, Greenberger PA, McGrath KG, Zeiss CK, et al. Corticosteroid therapy in an additional 13 cases of Stevens-Johnson syndrome: A total series of 67 cases. Allergy Asthma Proc 2000;21:101-5.
55. Kardaun SH, Jonkman MF. Dexamethasone pulse therapy for Stevens-Johnson syndrome/toxic epidermal necrosis. Acta Derm Venereol 2007;87:144-8.
56. Majumdar S, Mockenhaupt M, Roujeau J, Townshend A. Interventions for toxic epidermal necrosis. Cochrane Database Syst Rev 2002;4:CD001435.
57. Hirahara K, Kano Y, Sato Y, Horigoe C, Okazaki A, Ishida T, et al. Methylprednisolone pulse therapy for Stevens-Johnson syndrome/toxic epidermal necrosis: Clinical evaluation and analysis of biomarkers. J Am Acad Dermatol 2013;69:496-8.
58. Chave TA, Mortimer NJ, Sladden MJ, Hall AP, Hutchinson PE. Toxic epidermal necrosis: Current evidence, practical management and future directions. Br J Dermatol 2005;153:241-5.
59. Gerbts B, Voemans AF, Kreis RW. Toxic epidermal necrosis. 15 years’ experience in a Dutch burns centre. J Eur Acad Dermatol Venereol 2007;21:781-8.
60. Lee HY, Dunant A, Sekula P, Mockenhaupt M, Wolkenstein P, Valeyrue-Allanore L, et al. The role of prior corticosteroid use on the clinical course of Stevens-Johnson syndrome and toxic epidermal necrosis: A case-control analysis of patients selected from the multinational EuroSCAR and RegiSCAR studies. Br J Dermatol 2012;167:555-62.
61. Dhar S. Systemic corticosteroids in toxic epidermal necrosis. Indian J Dermatol Venereol Leprol 1996;62:270-1.
62. Singh GK, Chatterjee M, Verma R. Cyclosporine in Stevens Johnson syndrome and toxic epidermal necrosis and retrospective comparison with systemic corticosteroid. Indian J Dermatol Venereol Leprol 2013;79:686-92.
63. Valeyrue-Allanore L, Wolkenstein P, Brochard L, Ortonne N, Maître B, Revuz J, et al. Open trial of ciclosporin treatment for Stevens-Johnson syndrome and toxic epidermal necrosis. Br J Dermatol 2010;163:847-53.
64. Arévaló JM, Lorente JA, González-Herrada C, Jiménez-Reyes J. Treatment of toxic epidermal necrosis with cyclosporin A. J Trauma 2000;48:473-8.
65. Reese D, Henning JS, Rockers K, Ladd D, Gilson R. Cyclosporine for SJS/TEN: A case series and review of the literature. Cutis 2011;87:24-9.
66. Kirchhof MG, Miliszewski MA, Sikora S, Papp A, Dutz JP. Retrospective review of Stevens-Johnson syndrome/toxic epidermal necrosis treatment comparing intravenous immunoglobulin with cyclosporine. J Am Acad Dermatol 2014;71:941-7.
67. Rai R, Srinivas CR. Suprapharmacologic doses of intravenous dexamethasone followed by cyclosporine in the treatment of toxic epidermal necrosis. Indian J Dermatol Venereol Leprol 2008;74:263-5.
68. Dogra PM, Chatterjee M, Neema S. Tacrolimus for treatment of toxic epidermal necrosis. Indian J Dermatol Venereol Leprol 2015;81:642-4.
69. Thong BY, Mirakian R, Castells M, Pichler W, Romano A, Bonadonna P, et al. A world allergy organization international survey on diagnostic procedures and therapies in drug allergy/hypersensitivity. World Allergy Organ J 2011;4:257-70.
70. Viard I, Wehrli P, Bullani R, Schneider P, Holler N, Salomon D, Bonadonna P, et al. A world allergy organization international survey on diagnostic procedures and therapies in drug allergy/hypersensitivity. World Allergy Organ J 2011;4:257-70.
71. Lee HY, Lim YL, Thirumoorthy T, Pang SM. The role of intravenous immunoglobulin in toxic epidermal necrosis: A retrospective analysis of 64 patients managed in a
specialized centre. Br J Dermatol 2013;169:1304-9.

72. Tan AW, Thong BY, Tip LW, Chng HH, Ng SK. High-dose intravenous immunoglobulin in the treatment of toxic epidermal necrolysis: an Asian series. J Dermatol 2005;32:1-6.

73. Prins C, Kendel FA, Padilla RS, Hunziker T, Chimienti S, Viard I, et al. Treatment of toxic epidermal necrolysis with high-dose intravenous immunoglobulins: Multicenter retrospective analysis of 48 consecutive cases. Arch Dermatol 2003;139:26-32.

74. Teo L, Tay YK, Liu TT, Kwok C. Stevens-Johnson syndrome and toxic epidermal necrolysis: Efficacy of intravenous immunoglobulin and a review of treatment options. Singapore Med J 2009;50:29-33.

75. Chen J, Wang B, Zeng Y, Xu H. High-dose intravenous immunoglobulins in the treatment of Stevens-Johnson syndrome and toxic epidermal necrolysis in Chinese patients: A retrospective study of 82 cases. Eur J Dermatol 2010;20:743-7.

76. Mangla K, Rastogi S, Goyal P, Solanki RB, Rawal RC. Efficacy of low dose intravenous immunoglobulins in children with toxic epidermal necrolysis: An open uncontrolled study. Indian J Dermatol Venereol Leprol 2005;71:398-400.

77. Barron SJ, Del Vecchio MT, Aronoff SC. Intravenous immunoglobulin in the treatment of Stevens-Johnson syndrome and toxic epidermal necrolysis: A meta-analysis with meta-regression of observational studies. Int J Dermatol 2015;54:108-15.

78. Paquet P, Kaveri S, Jacob E, Pirson J, Quatresooz P, Piérard GE, et al. Skin immunoglobulin deposition following intravenous immunoglobulin therapy in toxic epidermal necrolysis. Exp Dermatol 2006;15:381-6.

79. Zhu QY, Ma L, Luo XQ, Huang HY. Toxic epidermal necrolysis: Performance of SCORTEN and the score-based comparison of the efficacy of corticosteroid therapy and intravenous immunoglobulin combined therapy in China. J Burn Care Res 2012;33:e285-308.

80. Gaitanis G, Spyridonos P, Patmanidis K, Koulouras V, Nastos G, Tsaplihidou M, et al. Treatment of toxic epidermal necrolysis with the combination of infliximab and high-dose intravenous immunoglobulin. Dermatology 2012;224:134-9.

81. Jagadeesan S, Sobhanakumari K, Sadanandam SM, Ravindran S, Divakaran MV, Skaria L, et al. Low dose intravenous immunoglobulins and steroids in toxic epidermal necrolysis: A prospective comparative open-label study of 36 cases. Indian J Dermatol Venereol Leprol 2013;79:506-11.

82. Bachot N, Revuz J, Roujeau JC. Intravenous immunoglobulin treatment for Stevens-Johnson syndrome and toxic epidermal necrolysis: A prospective noncomparative study showing no benefit on mortality or progression. Arch Dermatol 2003;139:33-6.

83. Worwick S, Cotliar J. Stevens-Johnson syndrome and toxic epidermal necrolysis: A review of treatment options. Dermatol Ther 2011;24:207-18.

84. Huang YC, Li YC, Chen TJ. The efficacy of intravenous immunoglobulin for the treatment of toxic epidermal necrolysis: A systematic review and meta-analysis. Br J Dermatol 2012;167:424-32.

85. Walsh S, Creamer D. IVIG in TEN: Time to re-evaluate the efficacy of intravenous immunoglobulin in the management of toxic epidermal necrolysis. Br J Dermatol 2012;167:230-1.

86. Schneck J, Fagot JP, Sekula P, Sassolas B, Roujeau JC, Mckenhaupt M, et al. Effects of treatments on the mortality of Stevens-Johnson syndrome and toxic epidermal necrolysis: A retrospective study on patients included in the prospective EuroSCAR study. J Am Acad Dermatol 2008;58:33-40.

87. Yang Y, Xu J, Li F, Zhu X. Combination therapy of intravenous immunoglobulin and corticosteroid in the treatment of toxic epidermal necrolysis and Stevens-Johnson syndrome: A retrospective comparative study in China. Int J Dermatol 2009;48:1122-8.

88. Shortt R, Gomez M, Wittman N, Cartotto R. Intravenous immunoglobulin does not improve outcome in toxic epidermal necrolysis. J Burn Care Rehabil 2004;25:246-55.

89. Trautmann A, Klein CE, Kömpgen E, Bröcker EB. Severe bullous drug reactions treated successfully with cyclophosphamide. Br J Dermatol 1998;139:1127-8.

90. Heng MC, Allen SG. Efficacy of cyclophosphamide in toxic epidermal necrolysis. Clinical and pathophysiologic aspects. J Am Acad Dermatol 1991;25:778-86.

91. Köstl M, Bláha M, Lánská M, Koštálová M, Bláha V, Štepánová E, et al. Beneficial effect of plasma exchange in the treatment of toxic epidermal necrolysis: A series of four cases. J Clin Apher 2012;27:215-20.

92. Narita YM, Hirahara K, Mizukawa Y, Kano Y, Shiohara T. Efficacy of plasmapheresis for the treatment of severe toxic epidermal necrolysis: Is cytokine expression analysis useful in predicting its therapeutic efficacy? J Dermatol 2011;38:236-45.

93. Egan CA, Grant WJ, Morris SE, Saffle JR, Zone JJ. Plasmapheresis as an adjunct treatment in toxic epidermal necrolysis. J Am Acad Dermatol 1999;40:568-61.

94. Nomura T, Abe R, Fujimoto K, Endo T, Shimizu H, Koike T, et al. Plasma exchange; a promising treatment for toxic epidermal necrolysis with AIDS. AIDS 2004;18:2446-2448.

95. Redondo F, de Felipe I, de la Peña A, Aramendia JM, Vanaclocha V. Drug-induced hypersensitivity syndrome and toxic epidermal necrolysis. Treatment with N-acetylcysteine. Br J Dermatol 1997;136:645-6.

96. Saavedra C, Cárdenas P, Castellanos H, Contreras K, Castro JR. Cephaloxin-induced toxic epidermal necrolysis treated with intravenous immunoglobulin and N-acetylcysteine. Case Reports Immunol 2012;2012:931528.

97. Fischer M, Fiedler E, Marsch WC, Wohlrab J. Antitumour necrosis factor-alpha antibodies (infliximab) in the treatment of a patient with toxic epidermal necrolysis. Br J Dermatol 2002;146:707-9.

98. Hunger RE, Hunziker T, Fößel T, Braithen LR. Rapid resolution of toxic epidermal necrolysis successfully treated with etanercept and anti-TNF-alpha treatment. J Allergy Clin Immunol 2005;116:923-4.

99. Meiss F, Helmbold P, Meykadeh N, Gaber G, Marsch WC, Fischer M, et al. Overlap of acute generalized exanthemeous pustulosis and toxic epidermal necrolysis: Response to antitumour necrosis factor-alpha antibody infliximab: Report of three cases. J Eur Acad Dermatol Venereol 2007;21:717-9.

100. Gubinelli E, Canzona F, Taronzi T, Raskovic D, Didona B. Toxic epidermal necrolysis successfully treated with etanercept. J Dermatol 2009;36:150-3.

101. Mahajan R, Kanwar AJ. Use of granulocyte colony-stimulating factor in the treatment of toxic epidermal necrolysis – Experience with 3 patients. Skinmed 2013;11:269-71.

102. Del Pozzo-Magana BR, Lazo-Langner A, Carleton B, Castro-Pastrana LS, Rieder MJ. A systematic review of treatment options for Stevens-Johnson syndrome and toxic epidermal necrolysis in children. J Pediatr Ther Clin Pharmacol 2011;18:e121-33.
103. Aihara Y, Ito R, Ito S, Aihara M, Yokota S. Toxic epidermal necrolysis in a child successfully treated with cyclosporin A and methylprednisolone. Pediatr Int 2007;49:659-62.
104. Lehrer-Bell KA, Kirsner RS, Tallman FG, Kerdel FA. Treatment of the cutaneous involvement in Stevens-Johnson syndrome and toxic epidermal necrolysis with silver nitrate-impregnated dressings. Arch Dermatol 1998;134:877-9.
105. Asz J, Asz D, Moushey R, Seigel J, Mallory SB, Foglia RP, et al. Treatment of toxic epidermal necrolysis in a pediatric patient with a nanocrystalline silver dressing. J Pediatr Surg 2006;41:e9-12.
106. Kalyoncu M, Cimsit G, Cakir M, Okten A. Toxic epidermal necrolysis treated with intravenous immunoglobulin and granulocyte colony-stimulating factor. Indian Pediatr 2004;41:392-5.
107. Sanclemente G, De la Roche CA, Escobar CE, Falabella R. Pentoxyfylline in toxic epidermal necrolysis and Stevens-Johnson syndrome. Int J Dermatol 1999;38:878-9.
108. Bannasch H, Kontny U, Krüger M, Stark GB, Niemeyer CM, Brandis M, et al. A semisynthetic bilaminar skin substitute used to treat pediatric full-body toxic epidermal necrolysis: Wraparound technique in a 17-month-old girl. Arch Dermatol 2004;140:160-2.
109. Sotozono C, Ueta M, Koizumi N, Inatomi T, Shirakata Y, Ikezawa Z, et al. Diagnosis and treatment of Stevens-Johnson syndrome and toxic epidermal necrolysis with ocular complications. Ophthalmology 2009;116:685-90.
110. Sheridan RL, Schulz JT, Ryan CM, Schnitzer JJ, Lawlor D, Driscoll DN, et al. Long-term consequences of toxic epidermal necrolysis in children. Pediatrics 2002;109:74-8.
111. Sharma N, Thenarasun SA, Kaur M, Pushker N, Khanna N, Agarwal T, et al. Adjunctive role of amniotic membrane transplantation in acute ocular Stevens-Johnson syndrome: A Randomized control trial. Ophthalmology 2016;123:484-91.
112. Harr T, French LE. Toxic epidermal necrolysis and Stevens-Johnson syndrome. Orphanet J Rare Dis 2010;5:39.
113. Lee HY, Chung WH. Toxic epidermal necrolysis: The year in review. Curr Opin Allergy Clin Immunol 2013;13:330-6.
114. Hung SL, Chung WH, Liu ZS, Chen CH, Hsih MS, Hui RC, et al. Common risk allele in aromatic antiepileptic-drug induced Stevens-Johnson syndrome and toxic epidermal necrolysis in Han Chinese. Pharmacogenomics 2010;11:349-56.
115. Shi YW, Min FL, Qin B, Zou X, Liu XR, Gao MM, et al. Association between HLA and Stevens-Johnson syndrome induced by carbamazepine in southern Han Chinese: Genetic markers besides B*1502? Basic Clin Pharmacol Toxicol 2012;111:58-64.
116. Hershfield MS, Callaghan JT, Tassaneeyakul W, Mushiroda T, Thorn CF, Klein TE, et al. Clinical pharmacogenetics implementation consortium guidelines for human leukocyte antigen-B genotype and allopurinol dosing. Clin Pharmacol Ther 2013;93:153-8.
117. Wu K, Reynolds NJ. Pharmacogenetic screening to prevent carbamazepine-induced toxic epidermal necrolysis and Stevens-Johnson syndrome: A critical appraisal. Br J Dermatol 2012;166:7-11.