Screening for Prediabetes and Type 2 Diabetes
Updated Evidence Report and Systematic Review for the US Preventive Services Task Force

Daniel E. Jonas, MD, MPH; Karen Crotty, PhD, MPH; Jonathan D. Y. Yun, MD, MPH; Jennifer Cook Middleton, PhD; Cynthia Feltner, MD, MPH; Sian Taylor-Phillips, PhD, MPhys, MSc; Colleen Barclay, MPH; Andrea Dotson, MD, MSPH; Claire Baker; Casey P. Balio, PhD; Christiane E. Voisin, MSLS; Russell P. Harris, MD, MPH

IMPORTANCE Type 2 diabetes is common and is a leading cause of morbidity and disability.

OBJECTIVE To review the evidence on screening for prediabetes and diabetes to inform the US Preventive Services Task Force (USPSTF).

DATA SOURCES PubMed/MEDLINE, Cochrane Library, and trial registries through September 2019; references; and experts; literature surveillance through May 21, 2021.

STUDY SELECTION English-language controlled studies evaluating screening or interventions for prediabetes or diabetes that was screen detected or recently diagnosed.

DATA EXTRACTION AND SYNTHESIS Dual review of abstracts, full-text articles, and study quality; qualitative synthesis of findings; meta-analyses conducted when at least 3 similar studies were available.

MAIN OUTCOMES AND MEASURES Mortality, cardiovascular morbidity, diabetes-related morbidity, development of diabetes, quality of life, and harms.

RESULTS The review included 89 publications (N = 68,882). Two randomized clinical trials (RCTs) (25,120 participants) found no significant difference between screening and control groups for all-cause or cause-specific mortality at 10 years. For harms (eg, anxiety or worry), the trials reported no significant differences between screening and control groups. For recently diagnosed (not screen-detected) diabetes, 5 RCTs (5138 participants) were included. In the UK Prospective Diabetes Study, health outcomes were improved with intensive glucose control with sulfonylureas or insulin. For example, for all-cause mortality the relative risk (RR) was 0.87 (95% CI, 0.79 to 0.96) over 20 years (10-year posttrial assessment). For overweight persons, intensive glucose control with metformin improved health outcomes at the 10-year follow-up (eg, all-cause mortality: RR, 0.64 [95% CI, 0.45 to 0.91]), and benefits were maintained longer term. Lifestyle interventions (most involving >360 minutes) for obese or overweight persons with prediabetes were associated with reductions in the incidence of diabetes (23 RCTs; pooled RR, 0.78 [95% CI, 0.69 to 0.88]). Lifestyle interventions were also associated with improved intermediate outcomes, such as reduced weight, body mass index, systolic blood pressure, and diastolic blood pressure (pooled weighted mean difference, −1.7 mm Hg [95% CI, −2.6 to −0.8] and −1.2 mm Hg [95% CI, −2.0 to −0.4], respectively). Metformin was associated with a significant reduction in diabetes incidence (pooled RR, 0.73 [95% CI, 0.64 to 0.83]) and reduction in weight and body mass index.

CONCLUSIONS AND RELEVANCE Trials of screening for diabetes found no significant mortality benefit but had insufficient data to assess other health outcomes; evidence on harms of screening was limited. For persons with recently diagnosed (not screen-detected) diabetes, interventions improved health outcomes; for obese or overweight persons with prediabetes, interventions were associated with reduced incidence of diabetes and improvement in other intermediate outcomes.
Prediabetes and type 2 diabetes are common, estimated to affect about 34% and 13% of all US adults in 2018, respectively. Prevalence of diabetes increased with age and was higher among American Indian/Alaska Native, Hispanic, non-Hispanic Asian, and non-Hispanic Black persons than among non-Hispanic White persons. Diabetes was estimated to be the third leading cause of years lived with disability in 2016 and the seventh leading cause of death in the US in 2017, accounting for more than 80,000 deaths per year. Morbidity from diabetes is due to macrovascular disease (atherosclerosis), microvascular disease (retinopathy, nephropathy, and neuropathy), and acute complications of hyperglycemia or hypoglycemia. Diabetes was the leading cause of kidney failure, lower-limb amputations, and new cases of blindness among US adults. Risk factors associated with development of diabetes in adults include older age, family history, overweight and obesity, dietary and lifestyle factors, environmental exposures, and others. Three tests can be used to identify diabetes or prediabetes: hemoglobin A1c (HbA1c) concentration, fasting plasma glucose level, or oral glucose tolerance test (Table 1).

In 2015, the US Preventive Services Task Force (USPSTF) recommended screening for abnormal blood glucose levels as part of cardiovascular risk assessment in adults aged 40 to 70 years who are overweight or obese. In addition, it recommended that clinicians offer or refer patients with abnormal blood glucose levels to intensive behavioral counseling interventions to promote a healthful diet and physical activity (B recommendation). This updated review evaluates the current evidence on screening for prediabetes and diabetes for populations and settings relevant to primary care in the US to inform an updated recommendation by the USPSTF.
Table 1. Criteria for the Diagnosis of Type 2 Diabetes and Prediabetes

Diagnosis	\(\text{HbA1c}^{a,b} \)	Fasting plasma glucose, mg/dL	OGTT, mg/dL	Other
Diabetes	≥6.5% (48 mmol/mol)^a	≥126	≥200	Random plasma glucose ≥200 mg/dL in a patient with classic symptoms of hyperglycemia or hyperglycemia crisis
Prediabetes^a	5.7% to 6.4% (39-47 mmol/mol)			

Abbreviations: HbA1c, hemoglobin A1c; IFG, impaired fasting glucose; IGT, impaired glucose tolerance; NA, not applicable; OGTT, oral glucose tolerance test.

*Conversion factor: To convert glucose values to mmol/L, multiply by 0.0555.

\(^a\) Adapted from American Diabetes Association (ADA) standards. \(^b\) A second test is required for confirmation unless there is a clear clinical diagnosis (eg, patient in hyperglycemic crisis).

\(^c\) Fasting is defined as no caloric intake for at least 8 hours.

\(^d\) Refers to values measured 2 hours postload on the 75-g OGTT. Per the ADA recommendations, the test should be performed as described by the World Health Organization, using a glucose load containing the equivalent of 75 g of anhydrous glucose dissolved in water.

\(^e\) Prediabetes is the term used for individuals potentially at increased risk for diabetes whose glucose levels are considered higher than normal but do not meet criteria for diabetes. ADA guidelines note that for all 3 tests the risk is continuous, extending below the lower limit of the range and becoming disproportionately greater at higher ends of the range.

Results

A total of 89 publications were included (Figure 2). \(^{15-103}\) Two randomized clinical trials (RCTs) addressed whether screening for diabetes improves health outcomes. \(^{36,38,49,51}\) This review found no trials that assessed screening for prediabetes and no trials that assessed KQ3. Most articles assessed interventions for prediabetes. Results for KQ8 are reported in the eResults in the Supplement. Individual study quality ratings are reported in eTables 2-6 in the Supplement.

Benefits of Screening

Key Question 1a. Is there direct evidence that screening for Type 2 diabetes and prediabetes in asymptomatic adults improves health outcomes?

Key Question 1b. Does the effectiveness of screening differ for subgroups defined by age, sex, race and ethnicity, socioeconomic status, or BMI?

Two RCTs (described in 5 articles) conducted in the UK evaluated invitations to screening for diabetes: the Anglo-Danish-Dutch Study of Intensive Treatment in People With Screen Detected Diabetes in Primary Care (ADDITION)–Cambridge (n = 20 184 participants) \(^{36,49}\) and the Ely study (n = 4936 participants) (eTable 7 in the Supplement). \(^{38,50,51}\) The trials began screening in 1990 (Ely) and 2002 (ADDITION-Cambridge). Duration of follow-up ranged from 7 to 13 years for the outcomes reported.

ADDITION-Cambridge was a cluster RCT of 33 general practices that evaluated a stepwise screening approach starting with the result of a random capillary blood glucose measurement. ADDITION-Cambridge was a screening and intervention study that randomized practices 1:3:3 to no screening, screening invitations followed by routine care of screen-detected diabetes; analyses combined the screening groups (comparing 5 control practices with 27 screening practices). Participants were aged 40 to 69 years (mean, 58) without known diabetes and at high risk of diabetes (based on a risk score of ≥1.7 on a diabetes risk score that included age, sex, BMI, steroid and antihypertensive medication, family and smoking history). \(^{104}\) Mean BMI was 30.5 (calculated as weight in kilograms divided by height in meters squared). Of those invited, 78% were screened (11 737/15 089) and 466 of those (4% of those screened, 3% of those invited) were diagnosed with diabetes based on 1999 World Health Organization criteria. Number diagnosed with diabetes was not reported for the control group.

The Ely study was a parallel-group RCT at a single practice that evaluated screening every 5 years with an oral glucose tolerance test along with screening for cardiovascular disease (CVD) risk factors (cholesterol and blood pressure). The study had no protocol for standard interventions for those with screen-detected diabetes. The risk of bias for the trial was rated as medium because of unclear methods of randomization, unclear allocation concealment, and baseline differences between groups. Participants were aged 40 to 65 years (mean, 51 years) and required to be free from known diabetes (not selected based on risk). In the initial 10-year phase, 68% of those invited were screened (1157/1705) and 116 (10% of those screened, 7% of those invited) were diagnosed with diabetes. Among a subset of participants who were diagnosed with diabetes and attended a health assessment after 12 years (n = 152 persons), diabetes cases were identified a mean of 3.3 years earlier for those in the screening group (n = 92) than in the control group (n = 60). \(^{50}\)
Evidence reviews for the US Preventive Services Task Force (USPSTF) use an analytic framework to visually display the key questions that the review will address to allow the USPSTF to evaluate the effectiveness and safety of a preventive service. The questions are depicted by linkages that relate interventions and outcomes. For additional information see the USPSTF Procedure Manual.\(^7\) BMI indicates body mass index.

Neither trial found a reduction in all-cause or type-specific mortality for screening compared with no screening over about 10 years of follow-up (all-cause mortality in ADDITION-Cambridge: HR, 1.06 [95% CI, 0.90 to 1.25]; Ely study: unadjusted HR, 0.96 [95% CI, 0.77 to 1.22]).

Evidence reviews for the US Preventive Services Task Force (USPSTF) use an analytic framework to visually display the key questions that the review will address to allow the USPSTF to evaluate the effectiveness and safety of a preventive service. The questions are depicted by linkages that relate interventions and outcomes. For additional information see the USPSTF Procedure Manual.\(^7\) BMI indicates body mass index.

Neither trial found a reduction in all-cause or type-specific mortality for screening compared with no screening over about 10 years of follow-up (all-cause mortality in ADDITION-Cambridge: HR, 1.06 [95% CI, 0.90 to 1.25]; Ely study: unadjusted HR, 0.96 [95% CI, 0.77 to 1.22]).

Evidence reviews for the US Preventive Services Task Force (USPSTF) use an analytic framework to visually display the key questions that the review will address to allow the USPSTF to evaluate the effectiveness and safety of a preventive service. The questions are depicted by linkages that relate interventions and outcomes. For additional information see the USPSTF Procedure Manual.\(^7\) BMI indicates body mass index.

Neither trial found a reduction in all-cause or type-specific mortality for screening compared with no screening over about 10 years of follow-up (all-cause mortality in ADDITION-Cambridge: HR, 1.06 [95% CI, 0.90 to 1.25]; Ely study: unadjusted HR, 0.96 [95% CI, 0.77 to 1.22]).
Figure 2. Literature Search Flow Diagram: Screening for Prediabetes and Type 2 Diabetes

9314 Unique citations identified through database search
5875 PubMed
2472 Cochrane library
685 ClinicalTrials.gov
182 WHO ICTRP

135 Additional unique citations identified through other sources
116 Previous USPSTF review
111 Screening for abnormal glucose and type 2 diabetes (2015)
5 Behavioral counseling for CVD prevention (2014)
19 Hand search

9349 Citations screened

6352 Citations excluded at title and abstract stage

2997 Full-text articles assessed for eligibility for all KQs

2908 Excluded
1005 Ineligible population
738 Ineligible study design
541 Ineligible outcome
356 Ineligible comparison
150 Ineligible treatment
62 Abstract only
22 Poor quality
20 Ineligible setting
9 Non-English-language
3 Ineligible screening
1 Ineligible country
1 Redundant outcomes

89 Articles included

5 Articles (2 studies) included for KQ1
5 Articles (3 studies) included for KQ2
9 Articles included for KQ3
64 Articles (39 studies) included for KQ4
8 Articles (5 studies) included for KQ5
44 Articles (25 studies) included for KQ6
56 Articles (36 studies) included for KQ7
17 Articles (8 studies) included for KQ8
58 Articles (38 studies) included for KQ9

CVD indicates cardiovascular disease; KQ, key question; USPSTF, US Preventive Services Task Force; WHO ICTRP, World Health Organization International Clinical Trials Registry Platform.

*The sum of the number of articles per KQ exceeds the total number of articles because some articles were applicable to multiple KQs.
Harms of Screening

Key Question 2a. What are the harms of screening for type 2 diabetes and prediabetes in asymptomatic adults?

Key Question 2b. Do the harms of screening differ for subgroups defined by age, sex, race and ethnicity, socioeconomic status, or BMI?

Five articles that evaluated participants in the ADDITION-Cambridge pilot phase, ADDITION-Cambridge trial, or Ely trial were included (eTable 7 in the Supplement). All 3 trials reported some information on anxiety from screening, 2 reported on depression, 2 reported on self-reported health, and 1 reported on worry about diabetes (eTable 9 in the Supplement). No 2 studies used the same outcome measures at similar time points. None of the trials reported on labeling, harms from false-positive results, burden, inconvenience, or unnecessary testing and treatment. Overall, results of the 3 trials did not find clinically important differences between the screening and control groups in measures of anxiety, depression, worry, or self-reported health, but the results suggest possible short-term increases in anxiety (at 6 weeks) among persons screened and diagnosed with diabetes compared with those screened and not diagnosed with diabetes (eResults and eTable 9 in the Supplement).

Benefits of Interventions for Type 2 Diabetes and Prediabetes

Key Question 4a. Do interventions for screen-detected type 2 diabetes and prediabetes improve health outcomes compared with no intervention, usual care, or interventions with different treatment targets?

Key Question 4b. Does the effectiveness of these interventions differ for subgroups defined by age, sex, race and ethnicity, socioeconomic status, or BMI?

One cluster RCT (ADDITION-Europe, described in 8 articles) evaluated interventions for individuals with screen-detected diabetes and 38 RCTs (described in 56 articles) that evaluated interventions for individuals with prediabetes were included (eResults and eTables 10 and 11 in the Supplement). For persons with diabetes, low strength of evidence from 1 cluster RCT (described in 8 articles) found no significant difference over a mean of 5.3 years of follow-up between an intensive multifactorial intervention aimed at controlling glucose, blood pressure, and cholesterol levels and routine care in the risk of all-cause mortality, cardiovascular-related mortality, and the occurrence of a first cardiovascular event (myocardial infarction, stroke, revascularization, or amputation). Differences remained nonsignificant at the 10-year follow-up. There was also no significant difference between groups in the risk of outcomes related to chronic kidney disease, visual impairment, and neuropathy. Of the 4 sites (Denmark, the Netherlands, UK-Cambridge, UK-Leicester), all but 1 (UK-Leicester) found no difference between groups across a range of quality-of-life outcomes.

For trials of interventions for people with prediabetes, the duration of follow-up in most trials was insufficient to assess for effects on mortality, CVD events, and other health outcomes (eResults in the Supplement). Most trials reporting mortality or CVD events over a follow-up duration of 6 years or less had few events with no significant difference between groups. In the 2 trials reporting outcomes beyond 6 years, 1 (the Finnish DPP) found no statistically significant difference for all-cause mortality (2.2 vs 3.9 deaths per 1000 person-years; HR, 0.57 [95% CI, 0.21 to 1.58]) or composite CVD events (22.9 vs 22.0 events per 1000 person-years; HR, 1.04 [95% CI, 0.72 to 1.51]) over 10 years of follow-up. The second trial (the China Da Qing Diabetes Prevention Outcomes Study) found lower all-cause mortality (28.1% vs 38.4%; HR, 0.71 [95% CI, 0.51 to 0.99]) and CVD-related mortality (11.9% vs 19.6%; HR, 0.59 [95% CI, 0.36 to 0.96]) for a 6-year combined lifestyle intervention group compared with controls at 23 years but not at earlier follow-ups; differences remained at the 30-year follow-up.

The trial was rated as having at least medium risk of bias mainly because of unclear randomization and allocation concealment methods and baseline differences for smoking that could bias results in favor of intervention. Five trials reporting quality of life found either no difference between groups, mixed results (improvements on some domains but not others), or small improvements in scores that are not likely clinically important (eResults in the Supplement).

Key Question 5a. Do interventions for recently diagnosed type 2 diabetes improve health outcomes compared with no intervention, usual care, or interventions with different treatment targets?

Key Question 5b. Does the effectiveness of these interventions differ for subgroups defined by age, sex, race and ethnicity, socioeconomic status, or BMI?

This review included 5 RCTs (described in 8 articles) evaluating interventions for recently diagnosed diabetes (eResults and eTable 12 in the Supplement). Three were related to the UK Prospective Diabetes Study (UKPDS), which was a randomized multicenter trial that ran for 20 years (from 1977 to 1997) in 23 sites across the UK. Moderate strength of evidence from the 5 RCTs found no statistically significant difference in all-cause mortality, diabetes-related mortality, and cardiovascular outcomes between intensive glucose control with sulfonylureas or insulin and conventional care at 10 years' or shorter follow-up (Figure 3). However, over longer-term follow-up (20 years after randomization), intensive glucose control with sulfonylureas or insulin decreased the risk for all-cause mortality (RR, 0.87 [95% CI, 0.79 to 0.96]), diabetes-related mortality (RR, 0.83 [95% CI, 0.73 to 0.96]), and myocardial infarction (RR, 0.85 [95% CI, 0.74 to 0.97]) (Figure 3; eResults in the Supplement). Tighter control of blood pressure compared with less tight control (<150/85 vs <180/105) resulted in a reduced risk of diabetes-related mortality and stroke after 9 years of follow-up, but there was no difference between groups at longer-term follow-up (10 years posttrial) (Figure 3; eResults in the Supplement). Intensive glucose control with metformin compared with conventional care
All-Cause Mortality

Source	Treatment	Follow-up duration, y	Intervention group	Control group	Relative risk (95% CI)	Favors intervention	Favors control
All-cause mortality	Davies et al, 2008	Group education^a	1	2 435	5 382	0.35 (0.07-1.82)	
	Khunti et al, 2012	Group education^a	3	15 422	11 376	1.21 (0.56-2.60)	
	Holman et al, 2008	BP control^b	9	134 624	83 307	0.82 (0.63-1.08)	
	UKPDS, 1998	Glucose control^c	10	489 2240	213 925	0.94 (0.80-1.10)	
	UKPDS, 1998	Weight control^d	10	50 292	89 322	0.64 (0.45-0.93)	
	Holman et al, 2008	BP control^b	10 posttrial	373 385	211 179	0.89 (0.75-1.08)	
	Holman et al, 2008	Glucose control^c	10 posttrial	1162 1567	537 601	0.87 (0.79-0.96)	
	Holman et al, 2008	Weight control^d	10 posttrial	152 190	217 294	0.75 (0.59-0.98)	
Diabetes specific mortality	Holman et al, 2008	BP control^b	9	82 676	62 328	0.68 (0.49-0.94)	
	UKPDS, 1998	Glucose control^c	10	285 2444	129 1009	0.90 (0.73-1.11)	
	UKPDS, 1998	Weight control^d	10	28 314	55 356	0.58 (0.37-0.91)	
	Holman et al, 2008	BP control^b	10 posttrial	203 555	122 268	0.84 (0.67-1.05)	
	Holman et al, 2008	Glucose control^c	10 posttrial	618 2111	297 841	0.83 (0.73-0.96)	
	Holman et al, 2008	Weight control^d	10 posttrial	81 261	120 291	0.70 (0.53-0.92)	
Myocardial infarction	Yang et al, 2013	Multifactorial^e	7	1 74	1 74	1.00 (0.06-15.7)	
	Holman et al, 2008	BP control^b	9	107 651	69 321	0.79 (0.59-1.07)	
	UKPDS, 1998	Glucose control^c	10	387 2342	186 952	0.84 (0.71-1.00)	
	UKPDS, 1998	Weight control^d	10	39 303	73 338	0.61 (0.41-0.89)	
	Holman et al, 2008	BP control^b	10 posttrial	205 553	115 275	0.90 (0.73-1.13)	
	Holman et al, 2008	Glucose control^c	10 posttrial	678 2051	319 819	0.85 (0.74-0.97)	
	Holman et al, 2008	Weight control^d	10 posttrial	81 261	126 285	0.67 (0.51-0.89)	
Stroke	Holman et al, 2008	BP control^b	9	38 720	34 356	0.56 (0.35-0.89)	
	UKPDS, 1998	Glucose control^c	10	148 2581	55 1083	1.11 (0.81-1.51)	
	UKPDS, 1998	Weight control^d	10	12 330	23 388	0.59 (0.29-1.18)	
	Holman et al, 2008	BP control^b	10 posttrial	90 668	58 332	0.77 (0.55-1.07)	
	Holman et al, 2008	Glucose control^c	10 posttrial	260 2469	116 1022	0.91 (0.73-1.13)	
	Holman et al, 2008	Weight control^d	10 posttrial	34 308	42 369	0.80 (0.50-1.27)	

BP indicates blood pressure; KQ, key question; UKPDS, UK Prospective Diabetes Study.

^a Group education in the DESSONDI trial.
^b Tighter blood pressure control (<150/85 vs <180/105) in the hypertension in diabetes study embedded in UKPDS.
^c Intensive therapy with sulfonylureas or insulin in UKPDS.
^d Metformin in overweight substudy UKPDS group.
^e Multifactorial intensive therapy.
in overweight persons reduced the risk of all-cause mortality, diabetes-related mortality, and myocardial infarction at both 10 and 20 years after randomization (Figure 3; eResults in the Supplement).

Harms of Interventions

Key Question 6. What are the harms of interventions for prediabetes, screen-detected type 2 diabetes, or recently diagnosed type 2 diabetes?

Harms of interventions for diabetes were sparsely reported, rare, and (when reported) not significantly different between intervention and control groups across trials (eResults in the Supplement). Four RCTs (described in 6 articles) reported on harms of interventions for screen-detected or recently diagnosed diabetes. None were specifically designed to investigate harms.

Twenty-one trials reported on harms associated with interventions for prediabetes (8 assessing a lifestyle intervention17-18,21,24,25,29-31,41,48,69,73,74,91,92 and 13 assessing a pharmacologic intervention22-23,25,29,41,56,58,59,64,66-68,70,71,90) (eResults in the Supplement). Categories and definitions used for adverse events were heterogeneous across studies, and few trials (3 trials) reported adverse events beyond 5 years of follow-up. Five trials reported rates of hypoglycemia (using various definitions), each comparing a different medication with placebo (liraglutide, sitagliptin, metformin, nateglinide, and rosiglitazone plus metformin); event rates were low, and no trial found a significant difference between groups over follow-up durations ranging from 8 weeks to 5 years.22,32,66,70,74

Twelve studies reported withdrawals due to adverse events associated with a pharmacotherapy intervention. Six trials (2 assessing metformin21,41 and 1 each assessing sitagliptin,32 nateglinide,66 valsartan,67 acarbose,90 and rosiglitazone plus metformin70) found no increased risk of withdrawals among the intervention group compared with placebo or control, and 6 found higher rates of withdrawals due to adverse effects associated with the pharmacologic intervention than the placebo, including 2 studies of acarbose68,71 and 1 study each assessing pioglitazone,66 ramipril,58 rosiglitazone,59 voglibose,64 and liaglutide.22

Nine studies of pharmacologic interventions reported on gastrointestinal adverse events; compared with placebo or control, higher rates were seen in studies assessing metformin (3 studies),21,70,73 acarbose (2 studies), and liraglutide (1 study),66 and rates were similar among groups in 1 study each assessing pioglitazone, sitagliptin, nateglinide, and valsartan.32,56,66,67 Seventeen studies reported other adverse events; types of events reported (and definitions) were heterogeneous and most found no difference between groups. Four studies of lifestyle interventions reported on musculoskeletal-related adverse events, 2 found no significant difference between groups,77,79 and 1 (the DPP) found higher rates of musculoskeletal symptoms per 100 person-years in the intensive lifestyle intervention group compared with the control group (24.1 vs 21.1 events per 100 person-years; P < .02) at 2.3 years but no difference between groups for sprains or fractures needing medical attention at 15 years after randomization.30

Benefits of Interventions for Prediabetes

Key Question 7a. Do interventions for prediabetes delay or prevent progression to type 2 diabetes?

Twenty-three trials (described in 33 articles16-18,20,21,26-28,31,33,34,40,44-46,48-60,62,65,67,73,74,86-89,92,96,98,101,102) compared lifestyle interventions with controls for delaying or preventing the onset of diabetes, and 15 trials (reported in 23 articles21,22,24,25,30,41,42,56,58,59,61,62,64,66-68,70,71,73,91,92) evaluated pharmacologic interventions to delay or prevent diabetes (eResults in the Supplement). Lifestyle interventions were significantly associated with a reduction in the incidence of diabetes (pooled RR, 0.78 [95% CI, 0.69 to 0.88]; 23 trials; 12,915 participants) (Figure 4). Most trials assessed high-contact lifestyle interventions. Pooled RRs were 0.63 (95% CI, 0.50 to 0.81) for follow-up less than 1 year, 0.58 (95% CI, 0.41 to 0.82) for follow-up 1 to 2 years, and 0.81 (95% CI, 0.73 to 0.89) for follow-up greater than 2 years. For medications, metformin, thiazolidinediones, and α-glucosidase inhibitors were all significantly associated with a reduction in diabetes (pooled RR, 0.73 [95% CI, 0.64 to 0.83] for metformin; 0.50 [95% CI, 0.28 to 0.92] for thiazolidinediones; and 0.64 [95% CI, 0.43 to 0.96] for α-glucosidase inhibitors) (Figure 4), although results for thiazolidinediones and α-glucosidase inhibitors were limited by imprecision, inconsistency, and risk of bias (for trials of α-glucosidase inhibitors).

The DPP compared an intensive lifestyle modification program with metformin and placebo, finding a greater reduction in diabetes incidence over about 3 years with a lifestyle program than with metformin, as compared with placebo (58% vs 31% reduction in diabetes incidence).73 The authors estimated that about 7 persons would need to be treated with the lifestyle intervention or about 14 with metformin to prevent 1 case of diabetes over about 3 years.73 Longer follow-up over a mean of 15 years reported by the DPPS also found greater reduction for persons in the lifestyle program than for those taking metformin, although it found a decline in between-group difference (27% vs 18% reduction in diabetes incidence).30

Key Question 7b. Does the effectiveness of these interventions differ for subgroups defined by age, sex, and ethnicity, socioeconmic status, or BMI?

Thirty-eight RCTs (described in 58 articles) were included (eResults in the Supplement).16-31,33,35-40,48-56,60-62,63,65-74,86-89,91,92,96-102 Lifestyle interventions were significantly associated with reduced systolic and diastolic blood pressure (pooled WMD, −1.7 mm Hg [95% CI, −2.6 to −0.8] for systolic and −1.2 mm Hg [95% CI, −2.0 to −0.4] for diastolic), weight (pooled WMD, −15 kg [95% CI, −1.56 to −0.74]), and BMI (pooled WMD, −0.54 [95% CI, −0.76 to −0.33]) (eFigures 2, 3, and 4 in the Supplement). Most trials evaluating hypoglycemic agents found no statistically significant association with changes in blood pressure or lipids. Trials of some hypoglycemic agents (metformin, acarbose, or liaglutide) reported reductions in weight and BMI, whereas meta-analysis of trials evaluating thiazolidinediones found a significant association with weight gain (pooled WMD, 1.9 kg [95% CI, 0.8 to 3.1]) (eResults in the Supplement).

Discussion

This evidence review evaluated benefits and harms of screening for prediabetes and diabetes and of interventions for prediabetes.
or diabetes that was screen detected or recently diagnosed for populations and settings relevant to US primary care; a summary of the evidence is provided in Table 2. For benefits of screening, the strength of evidence from 2 trials (25 120 total participants) was low (for no benefit) for mortality and was insufficient for all other outcomes. The data for outcomes other than mortality were limited, because data were missing for most participants, and the duration of follow-up in trials may have been too short to detect benefits for health outcomes. Neither trial assessed screening for prediabetes, and neither assessed initial screening with HbA1c or fasting glucose. For harms of screening, the strength of evidence was low from 2 trials (25 120 total participants) was low (for no benefit) for mortality and was insufficient for all other outcomes. Regarding applicability, the findings are applicable to other categories of prediabetes, US populations, and those in different BMI categories. For screen-detected diabetes, the strength of evidence from the ADDITION-Europe trial (3057 participants) was low (for no benefit). Follow-up may have been too short to detect benefits for health outcomes, and results were imprecise. For recently diagnosed (not screen-detected) diabetes, the strength of evidence from 5 trials (5138 participants) was moderate for improved long-term health outcomes. Regarding applicability, it is uncertain whether results from trials of persons with recently diagnosed diabetes are applicable to those with screen-detected diabetes. Recently diagnosed diabetes was generally clinically detected (eg, because of symptoms) and may represent a different subset of the diabetes spectrum, possibly with greater condition severity. The evidence of benefits for persons with recently diagnosed (not screen-detected) diabetes comes primarily from the UKPDS, conducted among predominantly White participants from 1977 through 1997, when routine care for CVD prevention would not have included treatments now considered to be current standard medical therapy (eg, statins, lower blood pressure targets). The comparison used in the hypertension in diabetes study embedded in UKPDS exemplifies differences from current standard therapy because it compared tighter control of blood pressure by targeting pressures less than 150/85 mm Hg vs less tight control targeting pressures less than 180/105 mm Hg.

For prediabetes, most trials had insufficient duration of follow-up for long-term health outcomes, reported few events, and found no differences between groups. One trial of a 6-year lifestyle intervention for persons with impaired glucose tolerance conducted in China (Da Qing, n = 576) reported lower all-cause mortality and CVD-related mortality at 23 years and at 30 years but not at earlier follow-up. The trial was limited by at least medium risk of bias, and the original trial was designed to assess diabetes incidence and not long-term health outcomes. Regarding applicability, the trial began in 1986, when (like UKPDS) routine care for CVD prevention would not have included treatments now considered to be current standard medical therapy. Participants had impaired glucose tolerance, and mean baseline BMI was 25.7; applicability to other categories of prediabetes, US populations, and those in different BMI categories is uncertain.

High strength of evidence from meta-analyses found that lifestyle interventions for obese or overweight persons with prediabetes were significantly associated with a reduction in the incidence of diabetes in trials ranging from 1 year of follow-up to 30 years of follow-up (including 13 trials with at least 3 years of follow-up). Lifestyle interventions were also significantly associated with reduced blood pressure, weight, and BMI. The clinical importance of the small mean reductions is somewhat uncertain. For blood pressure, for example, some guidelines suggest that reductions of 2 to 3 mm Hg could result in significant improvement in cardiovascular outcomes.205 Regarding applicability, the findings are applicable to overweight and obese adults, and most trials evaluated high-contact interventions (>360 minutes). For example, the intensive

Table 2

Category	No. of studies	Total No.	Risk ratio (95% CI)	Favors intervention	Favors control	I² %
Lifestyle intervention						
All (longest follow-up)	23	12 915	0.78 (0.69-0.88)			46.76
Time point, mo						
<12	4	3518	0.63 (0.50-0.81)			0.00
12-24	15	5946	0.58 (0.41-0.82)			55.70
>24	13	8947	0.81 (0.73-0.89)			40.56
Contact dose						
Medium	5	3579	0.67 (0.37-1.22)			70.70
High	18	9303	0.79 (0.71-0.89)			36.62
BMI						
<25	4	3803	0.46 (0.21-1.02)			82.92
25-29.5	6	3575	0.86 (0.71-1.05)			44.21
≥30	13	5503	0.77 (0.65-0.91)			20.13
Pharmacological intervention						
Metformin	3	2181	0.73 (0.64-0.83)			76.27
Acarbose or voglibose	3	3264	0.64 (0.43-0.96)			91.86
Pioglitazone or rosiglitazone	3	6238	0.50 (0.28-0.92)			

BMI indicates body mass index (calculated as weight in kilograms divided by height in meters squared); KQ, key question.
Table 2. Summary of Evidence on Screening for Prediabetes and Type 2 Diabetes

Topic	No. of studies (No. of publications; No. of participants)	Summary of findings	Consistency and precision	Study quality	Limitations (including reporting bias)	Over all strength of evidence	Applicability
KQ1: Benefits of screening	2 RCTs (5 publications; n = 25,120)	For invitations to screening with a stepwise approach (starting with random glucose measurement) or OGTT every 5 y compared with controls, no significant difference between groups for all-cause or cause-specific mortality at 10 y, or self-reported CVD events or quality of life at 7-13 y.	Consistency unknown (the 2 trials evaluated different screening approaches); imprecise	1 Good 1 Fair	Duration of follow-up may be too short; for outcomes other than mortality, missing data from most participants; reporting bias not detected	Low for no benefit for mortality Insufficient for all other outcomes	Asymptomatic adults aged 40-69 y; trials evaluated invitations to screening for diabetes; neither assessed screening for prediabetes or focused on fasting glucose or HbA1c as the initial test; mean BMI was 30-31 (NR in 1 trial)
KQ2: Harms of screening	3 RCTs (5 publications; n = 9328)	No significant differences between screening and control groups for anxiety, depression, worry, or self-reported health. Possible short-term increases in anxiety (at 6 wk) among persons screened and diagnosed with diabetes vs those not diagnosed with diabetes (STAI scores, 46.7 vs 37.0; P = .03). No trials reported on labeling, harms from false-positive results, burden, inconvenience, or unnecessary testing and treatment.	Consistency unknown (no 2 studies used similar measures at similar time points); imprecise	Fair (at least medium risk of bias)	Missing data from many participants; heterogeneity of measures used and timing of assessments; reporting bias not detected	Low for anxiety, depression, worry, or self-reported health Insufficient for other outcomes	Asymptomatic adults aged 40-69 y at high risk of diabetes
KQ3: Intervening at time of screen detection vs later	No eligible studies	NA	NA	NA	Insufficient	NA	
KQ4: Benefits of interventions	1 RCT (8 publications; n = 3057)	ADDITION-Europe found no difference over 5 to 10 y between an intensive multifactorial intervention aimed at controlling glucose, blood pressure, and cholesterol levels and routine care in the risk of all-cause mortality, cardiovascular-related mortality, cardiovascular events, quality of life, nephropathy, retinopathy, or neuropathy.	Consistency unknown (single study); imprecise	Fair	Follow-up may have been too short; decisions about medication choices were made by individual physicians and patients; reporting bias not detected	Low for no benefit	Adults aged 40-69 y with screen-detected diabetes; mean baseline HbA1c, 7.0% (median, 6.5%); mean BMI, 31.5; participants were predominantly White; screening risk questionnaire followed by random glucose measurement or invitation to have OGTT
Table 2. Summary of Evidence on Screening for Prediabetes and Type 2 Diabetes (continued)

Topic	No. of studies (No. of publications; No. of participants)	Summary of findings	Consistency and precision	Study quality	Limitations (including reporting bias)	Overall strength of evidence	Applicability
Benefits of interventions for prediabetes	38 studies (56 publications; n = 36 353)	Most trials reported mortality or CVD events after ≥6 y and reported few events with no difference between groups. Two trials had ≥10 y of follow-up: Finnish DPP (n = 505) found no statistically significant difference between groups for mortality or composite CVD events over 10 y, and Da Qing (n = 576) found no statistically significant difference between lifestyle and control groups at 20 y, but rates were lower in the combined intervention groups at 23 y for all-cause mortality (28.1% vs 38.4%; HR, 0.71 [95% CI, 0.51 to 0.99]) and CVD-related mortality (11.9% vs 19.6%; HR, 0.59 [95% CI, 0.36 to 0.96]); rates remained lower at 30-y follow-up for QOL, 5 trials suggested no clinically meaningful benefit.	Reasonably consistent for CVD events, mortality, and QOL; consistency unknown for aggregate microvascular outcome (single study); imprecise	Fair	Follow-up duration too short in most studies; at least medium risk of bias in the Da Qing trial, and relatively few participants; heterogeneity of measures used to assess QOL; reporting bias not detected	Low for long-term mortality benefit after 20 y	Adults with prediabetes; the trial reporting reduction in CVD events associated with acarbose included a population at high risk of CVD; the Da Qing trial, showing long-term mortality benefit associated with a lifestyle intervention, was conducted in China and used a 6-y lifestyle intervention

KQ5: Benefits of interventions for recently diagnosed diabetes

5 RCTs (8 publications; n = 5138) | Intensive glucose control with sulfonylureas or insulin decreased the risk for all-cause mortality (RR, 0.87 [95% CI, 0.79 to 0.96]), diabetes-related mortality (RR, 0.83 [95% CI, 0.73 to 0.96]), and myocardial infarction (RR, 0.85 [95% CI, 0.74 to 0.97]) over 20 y (10-y posttrial assessment) but not at shorter follow-up. For overweight persons, intensive glucose control with metformin decreased the risk for all-cause mortality (RR, 0.64 [95% CI, 0.45 to 0.91]), diabetes-related mortality (RR, 0.58 [95% CI, 0.37 to 0.91]), and myocardial infarction (RR, 0.61 [95% CI, 0.41 to 0.89]) at 10-y follow-up, and benefits were maintained longer term. | Consistency unknown, good precision for mortality and CVD outcomes; imprecise for other outcomes | Good | The longer-term results presented were from 10-y posttrial monitoring. Only 1 lifestyle intervention was included with follow-up for only 3 y and few clinical events. Reporting bias was not detected. Duration of diabetes at baseline was NR in the UKPDS. | Moderate for improved long-term health outcomes | Most of the data are from UKPDS, conducted from 1977-1997; 4 of the included studies were from the UK; participants were predominantly White |

KQ6: Harms of interventions

Harms of interventions for diabetes 4 RCTs (6 publications; n = 5402) | Overall, harms were generally sparsely reported, rare, and (when reported) not significantly different between groups. UKPDS reported major hypoglycemic events in 1% to 1.8% of participants receiving sulfonylureas or insulin (vs 0.7% in the conventional care group). | Unknown consistency; imprecise | Fair | Included studies all assessed different interventions; reporting bias not detected | Low | Screen-detected or newly diagnosed diabetes |

(continued)
Table 2. Summary of Evidence on Screening for Prediabetes and Type 2 Diabetes (continued)

Topic	No. of studies (No. of publications; No. of participants)	Summary of findings	Consistency and precision	Study quality	Limitations (including reporting bias)	Overall strength of evidence	Applicability
Harm of interventions for prediabetes	21 RCTs (38 publications; n = 32,468)	Lifestyle interventions: 2 studies found no or few musculoskeletal adverse events; DPP found higher rates of musculoskeletal symptoms among the intensive lifestyle intervention group; Medications: no increased risk of hypoglycemic events vs placebo in 5 trials assessing 5 different medications (liraglutide, sitagliptin, metformin, nateglinide, and rosiglitazone + metformin); Six pharmacologic trials found higher rates of GI adverse events vs controls: metformin (3 trials), acarbose (2 trials), and liraglutide (1 trial)	Lifestyle interventions: inconsistent, imprecise; Pharmacologic interventions: reasonably consistent; imprecise	Fair	Sparse reporting of harms (of 38 studies of interventions for prediabetes, 21 reported on harms)	Low	Adults with screen-detected or newly diagnosed prediabetes; most studies reporting harms assessed pharmacologic interventions

KQ7: Interventions for prediabetes to delay or prevent progression to diabetes

| Lifestyle: 23 RCTs (33 publications; n = 12,915) | Lifestyle interventions associated with reduction in diabetes (23 trials; pooled RR, 0.78 [95% CI, 0.69 to 0.88]) | Reasonably consistent (except for thiazolidinediones and AGIs); precise for lifestyle interventions and metformin, imprecise for thiazolidinediones and AGIs | Good: 6 | Fair: 30 | Heterogeneity in approaches to defining prediabetes; higher rates of dropout and nonadherence in studies of AGIs; reporting bias not detected | High for lifestyle interventions and metformin (for benefit) | Asymptomatic adults aged 40-60 y; most trials evaluated high-contact lifestyle interventions; mean baseline BMI ranged from 24 to 39 |
| Pharmacologic: 15 RCTs (23 publications; n = 24,295) | Follow-up <1 y: pooled RR, 0.63 (95% CI, 0.50 to 0.81); Follow-up 1-2 y: pooled RR, 0.58 (95% CI, 0.41 to 0.82); Follow-up >2 y: pooled RR, 0.81 (95% CI, 0.73 to 0.89) | For medications, metformin, thiazolidinediones, and AGIs were all associated with a reduction in diabetes (metformin pooled RR, 0.73 [95% CI, 0.64 to 0.83]; thiazolidinediones pooled RR, 0.50 [95% CI, 0.28 to 0.92]; AGIs pooled RR, 0.64 [95% CI, 0.43 to 0.96]) | |

KQ8: Change in health outcomes that results from reduction in diabetes incidence after interventions for prediabetes

| 8 Studies (17 publications; n = 23,489) | Two trials had >5 y of follow-up; 1 had >10 y of follow-up | Consistency unknown (single study with adequate long-term follow-up); imprecise | Fair | Most trials had insufficient follow-up to assess long-term health outcomes; at least medium risk of bias in the Da Qing trial; and relatively few participants | Low | Trials in the US and other highly developed countries had insufficient follow-up; Da Qing trial was conducted in China |
| | One trial (Da Qing, n = 576) reported reduction in both diabetes incidence and long-term adverse health outcomes with more than the 5-y follow-up, finding that a 6-y lifestyle intervention yielded an absolute decrease in diabetes incidence of 24% (over 6 y) and was associated with 10% fewer deaths and 8% fewer cardiovascular deaths over 30 y | |

(continued)
Table 2. Summary of Evidence on Screening for Prediabetes and Type 2 Diabetes (continued)

Topic	No. of studies (No. of publications; No. of participants)	Summary of findings	Consistency and precision	Study quality	Limitations (including reporting bias)	Over all strength of evidence	Applicability
Lifestyle: 28 studies (41 publications; n = 14,671)	Lifestyle interventions: associated with reduced SBP (pooled WMD, −1.7 mm Hg [95% CI, −2.6 to −0.8]) and DBP (pooled WMD, −1.2 mm Hg [95% CI, −2.0 to −0.4]), weight (pooled WMD, −1.2 kg [95% CI −1.6 to −0.7]), and BMI (pooled WMD, −0.54 [95% CI, −0.76 to −0.33])	Lifestyle: reasonably consistent; precise	Good: 5	Outcomes were often among many secondary outcomes and not the primary focus of trials; substantial or considerable statistical heterogeneity in some meta-analyses for weight, BMI, and lipids; reporting bias not detected	Asymptomatic adults aged 40–60 y; most trials evaluated high-contact lifestyle interventions; mean baseline BMI ranged from 24 to 39 (and was >30 in most)		
Pharmacologic: 13 studies (25 publications; n = 26,619)	Medications: most trials found no statistically significant association between hypoglycemic agents and changes in blood pressure or lipid levels but found reduction in weight and BMI (except thiazolidinediones were associated with weight gain (pooled WMD, 1.9 kg [95% CI, 0.8 to 3.1])	Hypoglycemic medications: inconsistent or consistency unknown (depending on the medication); imprecise	Fair: 33				

Abbreviations: ADDITION, Anglo-Danish-Dutch Study of Intensive Treatment in People With Screen Detected Diabetes in Primary Care; AGI, α-glucosidase inhibitor; BMI, body mass index (calculated as weight in kilograms divided by height in meters squared); CVD, cardiovascular disease; DBP, systolic blood pressure; DPP, Diabetes Prevention Program; GI, gastrointestinal; HbA1c, hemoglobin A1c; HR, hazard ratio; KQ, key question; NA, not applicable; NR, not reported; OGTT, oral glucose tolerance test; QOL, quality of life; RCT, randomized clinical trial; RR, relative risk; SBP, systolic blood pressure; STAI, State-Trait Anxiety Inventory; UKPDS, United Kingdom Prospective Diabetes Study; WMD, weighted mean difference.

* Unclear randomization and allocation concealment methods; baseline differences for smoking that bias results in favor of intervention.
* Three of the trials were related to the UKPDS, which was a randomized multicenter trial that ran for 20 years (from 1977 to 1997) in 23 sites across the UK.
* Tighter control of BP vs less tight control (<150/85 vs <180/105) decreased the risk of diabetes-related mortality (RR, 0.68 [95% CI, 0.49–0.94]) and stroke (RR, 0.56 [95% CI, 0.35–0.89]) at 9 years' follow-up, but the benefits were not maintained over longer term follow-up.
* Single study for each intervention and outcome, with most evidence of benefit coming from UKPDS trials.
* Estimated number needed to treat, 9 over 15 years.
* Estimated numbers needed to treat were 13 over 3 years and 8 over 15 years for metformin.
* Downgrading for imprecision and inconsistency for thiazolidinediones and AGIs and for risk of bias for AGIs.
* Unclear randomization and allocation concealment methods; baseline differences for smoking that bias results in favor of intervention.
* For some medications (rosiglitazone, acarbose), a single trial reported a statistically significant reduction in BP, but the finding has not been replicated.
* Trials reporting reduction in weight or BMI assessed metformin, acarbose, or liraglutide.
* Presence of dose response increased the strength of evidence for some outcomes (ie, greater improvement with high-contact interventions).
lifestyle modification program evaluated in the DPP comprised a 16-lesson curriculum covering diet, exercise, and behavior modification that was taught one-on-one by case managers. The goals of the lifestyle intervention were to achieve and maintain at least a 7% weight reduction through a low-calorie, low-fat diet and moderate-intensity physical activity for at least 150 minutes per week.

This review found high strength of evidence that using metformin for prediabetes was significantly associated with a reduction in diabetes incidence (defined in the trials by fasting glucose, oral glucose tolerance test result, or \(\text{HbA}_1c \) level), although head-to-head trial data demonstrated that lifestyle interventions were superior to metformin.\(^\text{90,73}\)

Limitations
This review has several limitations. First, non-English-language articles were excluded. Second, for studies of recently diagnosed diabetes, studies of persons who had diabetes for more than 1 year or with more advanced diabetes were excluded, aiming to identify the studies with good applicability to a screen-detected population. Third, the review did not evaluate studies of weight loss medications or bariatric surgery to treat diabetes.

Conclusions
Trials of screening for diabetes found no mortality benefit but had insufficient data to assess other health outcomes; evidence on harms of screening was limited. For persons with recently diagnosed (not screen-detected) diabetes, interventions improved health outcomes; for obese or overweight persons with prediabetes, interventions were associated with reduced incidence of diabetes and improvement in other intermediate outcomes.

Editorial Disclaimer
This evidence review is presented as a document in support of the accompanying USPSTF Recommendation Statement. It did not undergo additional peer review after submission to JAMA.

REFERENCES
1. National diabetes statistics report, 2020. Centers for Disease Control and Prevention. Published 2021. Accessed April 17, 2021. https://www.cdc.gov/diabetes/pdfs/data/statistics/national-diabetes-statistics-report.pdf
2. Mokdad AH, Ballestros K, Echko M, et al; US Burden of Disease Collaborators. The state of US Health, 1990-2016: burden of diseases, injuries, and risk factors among US states. JAMA. 2018;319(14):1444-1447. doi:10.1001/jama.2018.0158
3. Heron M. Deaths: leading causes for 2017. Natl Vital Stat Rep. 2019;68(4):1-77.
4. National Diabetes Fact Sheet. 2011. National Center for Chronic Disease Prevention and Health Promotion Division of Diabetes Translation, 2011.
5. Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88-98. doi:10.1038/nrendo.2017.751
6. American Diabetes Association. Classification and diagnosis of diabetes: standards of medical care in diabetes—2020. Diabetes Care. 2020;43 (Suppl 1):S1-S187. doi:10.2337/dc20-S002
7. Procedure Manual. US Preventive Services Task Force. Published 2015. Accessed July 13, 2021. https://www.uspreventiveservicestaskforce.org/uspstf/procedure-manual
8. Jonas D, Crotty K, Yun JD, et al. Screening for Prediabetes and Type 2 Diabetes Mellitus: An Evidence Review for the U.S. Preventive Services Task Force. Evidence Synthesis No. 207. Agency for Healthcare Research and Quality; 2021. AHRQ publication 21-05276-ED-1.
9. Jahan S. Human Development Report 2016. Human Development for Everyone. United Nations Development Programme; 2016.
10. West SL, Garteicher G, Mansfield AJ, et al. Comparative Effectiveness Review Methods: Clinical Heterogeneity. Agency for Healthcare Research and Quality; 2010.
11. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177-188. doi:10.1016/0197-2456(86)90046-2

12. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002; 21(11):1539-1558. doi:10.1002/sim.1186

13. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557-560. doi:10.1136/bmj.327.7414.557

14. Higgins JPT, Green S. Cochrane Handbook for Systematic Reviews of Interventions. John Wiley & Sons Ltd; 2011.

15. Simmons RK, Borch-Johnsen K, Lauritzen T, et al. A randomised trial of the effect and cost-effectiveness of early intensive multifactorial therapy on 5-year cardiovascular outcomes in individuals with screen-detected type 2 diabetes: the Anglo-Danish-Dutch Study of Intensive Diabetes in Primary Care (ADDITION-Europe) study. Diabetologia. 2015;58(1):143-154. doi:10.1007/s00125-014-3103-1

16. Davies MJ, Gray LJ, Troughton J, et al. Let’s Prevent Diabetes Team. A community based primary prevention programme for type 2 diabetes integrating identification and lifestyle intervention for prevention: the Let’s Prevent Diabetes cluster randomised controlled trial. Prev Med. 2016;84-85:12-21. doi:10.1016/j.ypmed.2015.12.012

17. Sakane N, Kotani K, Takahashi K, et al. Effects of telephone-delivered lifestyle support on the development of diabetes in participants at high risk of type 2 diabetes: J-DOITI, a pragmatic cluster randomised trial. BMJ Open. 2015;5(8):e007316. doi:10.1136/bmjopen-2014-007316

18. Bhopal RS, Douglas A, Wallia S, et al. Effect of a lifestyle intervention on weight change in south Asian individuals in the UK at high risk of type 2 diabetes: a family-cluster randomised controlled trial. Lancet Diabetes Endocrinol. 2014;3(3):218-227. doi:10.1016/s2213-8587(13)70204-3

19. Gokulrajakrishnan K, Ranjan H, Weber MB, et al. Effect of lifestyle improvement program on the biomarkers of adiposity, inflammation and gut hormones in overweight/obese Asian Indians with prediabetes. Acta Diabetol. 2017;54(4):843-852. doi:10.1007/s00592-017-1035-9

20. Hu Z, Qin L, Xu H. One-year results of a synthetic intervention model for the primary prevention of T2D among elderly individuals with prediabetes in rural china. Int J Environ Res Public Health. 2017;14(4):E417. doi:10.3390/ijerph14040417

21. O’Brien MJ, Perez A, Scanlan AB, et al. PREVENT-DM comparative effectiveness trial of lifestyle intervention and metformin. Am J Prev Med. 2017;52(6):788-797. doi:10.1016/j.amepre.2017.01.036

22. le Roux CW, Astrup A, Fujikura K, et al. SCALE Obesity Prediabetes NNB22-1839 Study Group. 3 Years of liraglutide versus placebo for type 2 diabetes risk reduction and weight management in individuals with prediabetes; a randomised, double-blind trial. Lancet. 2017;389(10077):1399-1409. doi:10.1016/s0140-6736(17)30069-7

23. Currie G, Bethel MA, Holzhauser B, Haffner SM, Holman RR, McMurray JJV. Effect of valsartan on kidney outcomes in people with impaired glucose tolerance. Diabetes Obes Metab. 2017;19(6):791-799. doi:10.1111/dom.12877

24. Espinoza SE, Wang CP, Tripathy D, et al. Pioglitazone is equally effective for diabetes prevention in older versus younger adults with impaired glucose tolerance. Age (Dordr). 2016;38(5-6):485-493. doi:10.1007/s11357-016-9946-6

25. Weber MB, Ranjani H, Staimer LR, et al. The stepwise approach to diabetes prevention: results from the D-CLIP randomised controlled trial. Diabetes Care. 2016;39(10):1760-1767. doi:10.2337/dc16-1241

26. Gray LJ, Yates T, Troughton J, Khunti K, Davies MJ; Let’s Prevent Diabetes Team. Engagement, retention, and progression to type 2 diabetes: a retrospective analysis of the cluster-randomised “Let’s Prevent Diabetes” trial. PLoS Med. 2016;13(7):e1002078. doi:10.1371/journal.pmed.1002078

27. Welsh P, Cezard G, Gill JM, et al. Associations between weight change and biomarkers of cardio metabolic risk in South Asians: secondary analyses of the POODIA trial. Lancet. 2016;40:1005-1011. doi:10.1016/s0140-6736(16)30675-9

28. Van Name MA, Camp AW, Magenheimer EA, et al. Effective translation of an intensive lifestyle intervention for Hispanic women with prediabetes in a community health center setting. Diabetes Care. 2016;39(4):525-531. doi:10.2337/dc15-1899

29. Ackermann RT, Liss DT, Finch EA, et al. A randomized comparative effectiveness trial for preventing type 2 diabetes. Am J Public Health. 2015;105(2):328-334. doi:10.2105/ajph.2015.302641

30. Diabetes Prevention Program Research Group. Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: the Diabetes Prevention Program Outcomes Study. Lancet Diabetes Endocrinol. 2015;3(10):866-875. doi:10.1016/s2213-8587(15)00291-0

31. Juul L, Andersen VJ, Arnoldsen J, Maindal HT. Effectiveness of a brief theory-based health promotion intervention among adults at high risk of type 2 diabetes: one-year results from a randomised trial in a community setting. Prim Care Diabetes. 2016;10(2):111-120. doi:10.1016/j.pcd.2015.07.002

32. Kaku K, Kadawaki T, Terauchi Y, et al. Sitagliptin improves glycemic excursions after a meal or after an oral glucose load in Japanese subjects with impaired glucose tolerance. Diabetes Obes Metab. 2015;17(10):1033-1041. doi:10.1111/dob.12507

33. Hellgren MI, Petzold M, Beteus-Forslund H, Wedel H, Jansson PA, Lindblad U. Feasibility of a large-scale, home-based physical activity intervention in participants with impaired glucose tolerance. Diabetes Care. 2015;38(10):1873-1880. doi:10.2337/dc15-0199-B

34. Ramachandran A, Sreelalatha C, Mary S, et al. Pioglitazone does not enhance the effectiveness of lifestyle modification in preventing conversion of impaired glucose tolerance to diabetes in Asian Indians: results of the Indian Diabetes Prevention Programme-2 (IDPP-2). Diabetologia. 2009;52(6):1019-1026. doi:10.1007/s00125-009-1315-x

35. Kuzel B, Hermanns N, Gorges D, Schwarz P, Haak T. Prevention of diabetes self-management program (PREDIAS): effects on weight, metabolic risk factors, and behavioral outcomes. Diabetes Care. 2009;32(7):1143-1146. doi:10.23736/S0149-3138.09-09710-1

36. Meaney MC, Pieper CF, Edelman DE, et al. Enhanced fitness: a randomized controlled trial of the effects of home-based physical activity counseling on glycemic control in older adults with prediabetes mellitus. J Am Geriatr Soc. 2012;60(9):1655-1662. doi:10.1111/j.1532-5415.2012.04119.x

37. Oldroyd JC, Unwin NC, White M, Imrie K, Mathers JC, Alberti KG. Randomised controlled trial evaluating the effectiveness of behavioural interventions to modify cardiovascular risk factors in men and women with impaired glucose tolerance: outcomes at 6 months. Diabetes Res Clin Pract. 2001;52(1):29-43. doi:10.1016/s0168-8227(00)00244-8

38. Yates T, Davies M, Gorely T, Bull F, Khunti K. Effectiveness of a pragmatic education program designed to promote walking activity in individuals with impaired glucose tolerance: a randomized controlled trial. Diabetes Care. 2009;32(8):1404-1410. doi:10.2337/dc09-0130
US Preventive Services Task Force Clinical Review & Education

47. Kosasa K, Noda M, Kuzuya T. Prevention of type 2 diabetes by lifestyle intervention: a Japanese trial in IGT males. Diabetes Res Clin Pract. 2005;67 (2):152-162. doi:10.1016/j.diabres.2004.06.010

48. Pan XR, Li GW, Hu YH, et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance: the Da Qing IGT and Diabetes Study. Diabetes Care. 1997;20(4):537-544. doi:10.2337/diacare.20.4.537

49. Simmons RK, Echouffo-Tcheugui JB, Sharp SJ, et al. Screening for type 2 diabetes and population mortality over 10 years (ADDITION-Cambridge): a cluster-randomised controlled trial. Lancet. 2012;380(9855):1741-1748. doi:10.1016/S0140-6736(12)61422-6

50. Rahman M, Simmons RK, Hennings SH, Wareham NJ, Griffin SJ. How much does screening bring forward the diagnosis of type 2 diabetes and reduce complications? twelve year follow-up of the Ely cohort. Diabetologica. 2012;55(6):1651-1659. doi:10.1007/s00125-011-2441-9

51. Rahman M, Simmons RK, Hennings SH, Wareham NJ, Griffin SJ. Effect of screening for type 2 diabetes on population-level self-rated health outcomes and measures of cardiovascular risk: 13-year follow-up of the Ely cohort. Diabet Med. 2012;29(7):886-892. doi:10.1111/j.1464-5491.2012.03570.x

52. Paddon CA, Eborall HC, French DP, et al. Predictors of anxiety and depression among people attending diabetes screening: a prospective cohort study embedded in the ADDITION (Cambridge) randomised control trial. Br J Health Psychol. 2011;16(pt 1):213-226. doi:10.1348/135910710X459366

53. Eborall HC, Griffin SJ, Prevost AT, Kinmonth AL, French DP, Sutton S. Psychological impact of screening for type 2 diabetes: controlled trial and comparative study embedded in the ADDITION (Cambridge) randomised controlled trial. BMJ. 2007;335(7618):486. doi:10.1136/bmj.39303.723449.55

54. Davies MJ, Heller S, Skinner TC, et al; Diabetes Education and Self Management for Ongoing and Newly Diagnosed Collaborative. Effectiveness of the diabetes education and self management for ongoing and newly diagnosed (DESMOND) programme for people with newly diagnosed type 2 diabetes: cluster randomised controlled trial. BMJ. 2008;336(7642):491-495. doi:10.1136/bmj.39474.922025.BE

55. Khunti K, Gray LJ, Skinner T, et al. Effectiveness of a diabetes education and self management programme (DESMOND) for people with newly diagnosed type 2 diabetes mellitus; three year follow-up of a cluster randomised controlled trial in primary care. BMJ. 2012;344:e2333. doi:10.1136/bmj.e2333

56. DeFranzo RA, Tripathy D, Schwenke DC, et al; ACT NOW Study. Pioglitazone for diabetes prevention in impaired glucose tolerance. N Engl J Med. 2011;364(2):1104-1115. doi:10.1056/NEJMoa1010499

57. Dagenais GR, Gerstein HC, Holman R, et al; DREAM Trial Investigators. Effects of ramipril and rosiglitazone on cardiovascular and renal outcomes in people with impaired glucose tolerance or impaired fasting glucose: results of the Diabetes Reduction Assessment with ramipril and rosiglitazone Medication (DREAM) trial. Diabetes Care. 2008;31(3):1007-1014. doi:10.2337/dc07-1658

58. Bosch J, Yusuf S, Gerstein HC, et al; DREAM Trial Investigators. Effect of ramipril on the incidence of diabetes. N Engl J Med. 2006;355(15):1551-1562. doi:10.1056/NEJMoa065061

59. Gerstein HC, Yusuf S, Bosch J, et al; DREAM (Diabetes Reduction Assesment with ramipril and rosiglitazone Medication) Trial Investigators. Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial. Lancet. 2006;368(9547):1096-1105. doi:10.1016/S0140-6736(06)69420-8

60. Tuomilehto J, Lindström J, Eriksson JG, et al; Finnish Diabetes Prevention Study Group. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344(18):1433-14350. doi:10.1056/NEJM200103310341801

61. Ramachandran A, Snehalatha C, Mary S, Mukes B, Bhaskar AD, Vijay V; Indian Diabetes Prevention Programme (IDPP). The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-I). Diabetologica. 2006;49 (2):289-297. doi:10.1007/s00125-005-0097-2

62. Ratner R, Goldberg R, Haffner S, et al; Diabetes Prevention Program Research Group. Impact of intensive lifestyle and metformin therapy on cardiovascular disease risk factors in the diabetes prevention program. Diabetes Care. 2005;28(4):888-894. doi:10.2337/diacare.28.4.888

63. Florez H, Pan Q, Ackerman RT, et al; Diabetes Prevention Program Research Group. Impact of lifestyle intervention and metformin on health-related quality of life: the diabetes prevention program randomized trial. J Gen Intern Med. 2012;27(12):1594-1601. doi:10.1007/s11606-012-2122-5

64. Kawamori R, Tajima N, Iwamoto Y, Kashigawa A, Shimamoto K, Kaku K; Voglibose Ph-3 Study Group. Voglibose for prevention of type 2 diabetes mellitus: a randomised, double-blind trial in Japanese individuals with impaired glucose tolerance. Lancet. 2009;373(9678):1607-1614. doi:10.1016/S0140-6736(09)6222-1

65. Li G, Zhang P, Wang J, et al. The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing Diabetes Prevention Study: a 20-year follow-up study. Lancet. 2008;371 (9626):1783-1789. doi:10.1016/S0140-6736(08)60766-7

66. Holman RR, Haffner SM, McMurray JJ, et al; NAVIGATOR Study Group. Effect of nateglinide on the incidence of diabetes and cardiovascular events. N Engl J Med. 2010;362(16):1443-1457. doi:10.1056/NEJMoa1001122

67. McMurray JJ, Holman RR, Haffner SM, et al; NAVIGATOR Study Group. Effect of valsartan on the incidence of diabetes and cardiovascular events. N Engl J Med. 2010;362(16):1477-1490. doi:10.1056/NEJMoa1001122

68. Nøjesild P, Boomsma W, Dekker JM, Kostense PJ, et al; Diabetes Prevention Programme Outcomes Study. Long-term safety, tolerability, and weight loss associated with metformin in the Diabetes Prevention Program Outcomes Study. Diabetes Care. 2012;35(4):731-737. doi:10.2337/dc11-1299

69. Griffin SJ, Borch-Johnsen K, Davies MJ, et al. Effect of early intensive multifactorial therapy on 5-year cardiovascular outcomes in individuals with type 2 diabetes detected by screening (ADDITION-Europe): a cluster-randomised trial. Lancet. 2011;378(9786):156-167. doi:10.1016/S0140-6736(11)60698-3

70. Simmons RK, Sharp SJ, Sandbaek A, et al. Does early intensive multifactorial treatment reduce total cardiovascular and diabetic burden in individuals with screen-detected diabetes? Findings from the ADDITION-Europe cluster-randomized trial. Diabet Med. 2012;29(11):e409-e416. doi:10.1111/j.1464-5491.2012.03799.x

71. Van den Donk M, Griffin SJ, Stellato RK, et al. Effect of early intensive multifactorial therapy compared with routine care on self-reported health status, general well-being, diabetes-specific quality of life and treatment satisfaction in screen-detected type 2 diabetes mellitus patients (ADDITION-Europe): a cluster-randomised trial. Diabetologica. 2013;56(11):2367-2377. doi:10.1007/s00125-013-3011-O

72. Charles M, Episkopou N, Witte DR, Borch-Johnsen K, Lauritzen T, Sandbaek A. Prevalence of neuropathy and peripheral arterial disease and the impact of treatment in people with screen-detected type 2 diabetes: the ADDITION-Denmark study. Diabetes Care. 2011;34 (10):2244-2249. doi:10.2337/dc11-0903

73. van den Donk M, Gorter KJ, Rutten GE. No negative effects of a multi-factorial, intensified treatment on self-reported health status, treatment
Clinical Review & Education US Preventive Services Task Force

USPSTF Report: Screening for Prediabetes and Type 2 Diabetes

satisfaction, and diabetes-related distress in screen-detected type 2 diabetes patients: the ADDITION-Netherlands study. Qual Life Res. 2010;19(4):509-513. doi:10.1007/s11136-010-9604-x

80. Janssen PG, Gorton KJ, Stolk RP, Rutten GE. Randomised controlled trial of intensive multifactorial treatment for cardiovascular risk in patients with screen-detected type 2 diabetes: 1-year data from the ADDITION-Netherlands study. Br J Gen Pract. 2009;59(558):43-48. doi:10.3399/bjgp09X394851

81. UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes. UKPDS 38. BMJ. 1998;317(7610):703-713. doi:10.1136/bmj.317.7160.703

82. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359(15):1577-1589. doi:10.1056/NEJMoa0806470

83. Holman RR, Paul SK, Bethel MA, Neil HA, Matthews DR. Long-term follow-up after tight control of blood pressure in type 2 diabetes. N Engl J Med. 2008;359(15):1565-1576. doi:10.1056/NEJMoa0806359

84. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352(9131):837-853. doi:10.1016/S0140-6736(98)07019-6

85. Lindblad U, Lindberg G, Månsson NO, et al. Can sulphonylurea addition to lifestyle changes help to delay diabetes development in subjects with impaired fasting glucose? the Nepi ANtidiabetes StudY (NANSY). Diabetes Obes Metab. 2011;13(2):185-188. doi:10.1111/j.1463-1326.2010.01331.x

86. Penn L, White M, Oldroyd J, Waller M, Alberti KG, Mathers JC. Prevention of type 2 diabetes in adults with impaired glucose tolerance: the European Diabetes Prevention RCT in Newcastle upon Tyne, UK. BMC Public Health. 2009;9:342. doi:10.1186/1471-2458-9-342

87. Sakane N, Sato J, Tsuchita K, et al. Japan Diabetes Prevention Program (JDPP) Research Group. Prevention of type 2 diabetes in a primary healthcare setting: three-year results of lifestyle intervention in Japanese subjects with impaired glucose tolerance. BMC Public Health. 2011;11(1):40. doi:10.1186/1471-2458-11-40

88. Lindahl B, Nilsson TK, Borch-Johnsen K, et al. A randomized lifestyle intervention with 5-year follow-up in subjects with impaired glucose tolerance: pronounced short-term impact but long-term adherence problems. Scand J Public Health. 2009;37(4):434-442. doi:10.1177/1403494808010373

89. Katula JA, Vitolins MZ, Morgan TM, et al. The Healthy Living Partnerships to Prevent Diabetes study: 2-year outcomes of a randomized controlled trial. Am J Prev Med. 2013;44(4 suppl 4):S324-S332. doi:10.1016/j.amepre.2012.01.015

90. Pan CY, Gao Y, Chen JW, et al. Efficacy of acarbose in Chinese subjects with impaired glucose tolerance. Diabetes Res Clin Pract. 2003;61(3):183-190. doi:10.1016/S0168-8227(03)00117-7

91. Apolzan JW, Venditti EM, Edelstein SL, et al. Diabetes Prevention Program Research Group. Long-term weight loss with metformin or lifestyle intervention in the Diabetes Prevention Program Outcomes Study. Ann Intern Med. 2019;170(10):682-690. doi:10.7326/M18-1605

92. Knowler WC, Fowler SE, Hamman RF, et al; Diabetes Prevention Program Research Group. 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet. 2009;374(9702):1677-1686. doi:10.1016/S0140-6736(09)6457-4

93. Yang Y, Yao JJ, Du JL, et al. Primary prevention of macroangiopathy in patients with short-duration type 2 diabetes by intensified multifactorial intervention: seven-year follow-up of diabetes complications in Chinese. Diabetes Care. 2013;36(4):978-984. doi:10.2337/dc12-0227

94. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352(9131):854-865. doi:10.1016/S0140-6736(98)07037-8

95. Diabetes Prevention Program Research Group. Long-term effects of metformin on diabetes prevention: identification of subgroups that benefited most in the Diabetes Prevention Program Outcomes Study. Diabetes Care. 2019;42(4):601-608. doi:10.2337/dc18-1970

96. Aekplakorn W, Tantayotai V, Numsangkul S, et al. Primary prevention of type 2 diabetes: a phase III randomized controlled trial. J Med Assoc Thailand. 2018;101(10):1343-1348.

98. Gong Q, Zhang P, Wang J, et al; Da Qing Diabetes Prevention Study Group. Morbidity and mortality after lifestyle intervention for people with impaired glucose tolerance: 30-year results of the Da Qing Diabetes Prevention Outcome Study. Lancet Diabetes Endocrinol. 2019;7(6):452-461. doi:10.1016/S2213-8587(19)30093-2

99. Kulkarni S, Xavier D, George B, Umesh S, Fathima S, Bantwal G. Effect of intensive lifestyle modification & metformin on cardiovascular risk in prediabetes: a pilot randomized control trial. Indian J Med Res. 2018;148(6):705-712. doi:10.4103/ijmrm. IJM R. 1201_17

100. Pedley CF, Case LD, Blackwell CS, Katula JA, Vitolins MZ. The 24-month metabolic benefits of the healthy living partnerships to prevent diabetes: a community-based translational study. Diabetes Metab Syndr. 2018;12(3):215-220. doi:10.1016/j.dsx. 2017.09.011

101. Wong EKX, Siu SC, Wong KW, Yu EYT, Lam CLK. Five-year effectiveness of short messaging service (SMS) for pre-diabetes. BMC Res Notes. 2018;11(1):709. doi:10.1186/s13104-018-3810-y

102. Wong CK, Fung CS, Siu SC, et al. A short message service (SMS) intervention to prevent diabetes in Chinese professional drivers with pre-diabetes: a pilot single-blinded randomized controlled trial. Diabetes Res Clin Pract. 2013;102(3):158-166. doi:10.1016/j.diabetres.2013.10.002

103. Griffin SJ, Rutten GEHM, Khunti K, et al. Long-term effects of intensive multifactorial therapy in individuals with screen-detected type 2 diabetes in primary care: 10-year follow-up of the ADDITION-Europe cluster-randomised trial. Lancet Diabetes Endocrinol. 2019;7(12):925-937. doi:10.1016/S2213-8587(19)30549-3

104. Griffin SJ, Little PS, Hales CN, Kinmonth AL, Wareham N. Diabetes risk score: towards earlier detection of type 2 diabetes in general practice. Diabetes Metab Res Rev. 2000;16(3):164-171. doi:10.1002/1520-7560(200005)016:3<164::AID-DMRR103>3.0.CO;2-R

105. Chobanian AV, Bakris GL, Black HR, et al; National Heart, Lung, and Blood Institute Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure; National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure; National High Blood Pressure Education Program Coordination Committee. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA. 2003;289(19):2560-2572. doi:10.1001/jama.289.19.2560