The statistical geometry of material loops in turbulence

Lukas Bentkamp, Theodore D. Drivas, Cristian C. Lalescu & Michael Wilczek

Material elements – which are lines, surfaces, or volumes behaving as passive, non-diffusive markers – provide an inherently geometric window into the intricate dynamics of chaotic flows. Their stretching and folding dynamics has immediate implications for mixing in the oceans or the atmosphere, as well as the emergence of self-sustained dynamos in astrophysical settings. Here, we uncover robust statistical properties of an ensemble of material loops in a turbulent environment. Our approach combines high-resolution direct numerical simulations of Navier-Stokes turbulence, stochastic models, and dynamical systems techniques to reveal predictable, universal features of these complex objects. We show that the loop curvature statistics become stationary through a dynamical formation process of high-curvature folds, leading to distributions with power-law tails whose exponents are determined by the large-deviations statistics of finite-time Lyapunov exponents of the flow. This prediction applies to advected material lines in a broad range of chaotic flows. To complement this dynamical picture, we confirm our theory in the analytically tractable Kraichnan model with an exact Fokker-Planck approach.
Chaotic flows tend to fold, writhe, and wrinkle material elements into a state of seemingly infinite complexity over time (see Fig. 1 and Supplementary Movie). A fundamental question is whether this tumultuous process has any predictable features which persist over long periods of time. Answering this question provides insights into the process of mixing which occurs in a whole range of systems, from the diffusion of dye into water, the dispersion of plankton colonies on the ocean surface, to the blast propagation in supernovae thermonuclear explosions. Material lines and interfaces, in particular, provide idealized descriptions of nutrient, temperature, and salinity fronts in the oceans, and potential vorticity fronts in the atmosphere. They are also closely related to the dynamics of vorticity filaments in fully developed turbulence, the formation of polymer chains, the dynamics of flexible phytoplankton chains, as well as the motion of magnetic field lines at high conductivity (or high magnetic Reynolds numbers). The latter is related to the dynamo problem, in which chaotic stretching, folding, and twisting processes are essential for sustaining the growth of a magnetic field. The progress we make in understanding how material elements react to turbulent flows stands to advance our understanding of these fundamental problems.

The geometry of material objects advected and deformed by a turbulent flow can be very complex. While volumes are preserved by incompressible flows, the length of lines and the area of surfaces typically grow exponentially, with their geometry appearing fractal. Since any curve in space is uniquely described by its curvature and torsion, there have been numerous works attempting to characterize the curvature of material lines but also of material surfaces and Lagrangian trajectories. Although material lines seem to become un-fatally complicated over time, the above works suggest that curvature distributions do in fact settle down to a well-defined stationary state which features robust power-law tails (see Fig. 2), sparking hope that certain features can be predicted by theory. Here we present a line of arguments based on the dynamical mechanism of folding or fold (i.e., curvature peak) formation and its relation to finite-time Lyapunov exponents that leads to a quantitative prediction of the power law of the curvature distribution observed in Fig. 2, panels b and c. We show that the high-curvature regime of the material line can be understood as an ensemble of persistent parabolic folds, which are formed by random stretching of the line. In this way, we illustrate how understanding dynamical mechanisms can be used to make deductions about statistical geometry. For example, our predicted curvature PDF power-law exponent \(-2.54 \pm 0.11\) (3% relative error to the measured exponent) implies that, in the long-time limit, the average curvature along advected loops is finite but all higher moments diverge. The only input of our theory is the distribution of Lyapunov exponents of the underlying flow field and, as such, our results apply to a wide range of chaotic dynamics. Our predictions are confirmed by direct numerical simulations of fully developed homogeneous, isotropic Navier-Stokes turbulence as well as by exact results in the analytically solvable Kraichnan model.

Results

To investigate the evolution of material loops \(L(\phi, t)\) in fully developed turbulence, we consider initially circular loops and parameterize them by the initial angle \(\phi \in [0, 2\pi]\). Each point of the loop follows the velocity field \(u(x, t)\) according to the tracer equation

\[
\partial_t L(\phi, t) = u(L(\phi, t), t).
\] (1)

The evolution of such a loop is shown in Fig. 1, which illustrates that the loop rapidly grows in length and diameter, while retaining a complex geometry due to the stretching and folding by the underlying turbulent flow.

As a key metric to characterize the geometry of the loop, we here focus on the curvature

\[
\kappa(\phi, t) = \frac{\left| \frac{\partial^2 L}{\partial \phi^2} \times \frac{\partial L}{\partial \phi} \right|}{||\frac{\partial L}{\partial \phi}||}.
\] (2)

Material lines grow non-uniformly in length over time. Hence for an evolving ensemble of loops, the distribution of curvature can be defined in different ways, depending on the probability measure we associate with the points along the loop. A simple way of defining the probability density function (PDF) of curvature \(f(\kappa; t)\), which does not depend on the initial parameterization, is to take curvature samples uniformly along the arc length of the loops. Specifically,

\[
f(\kappa; t) = \frac{1}{\langle L(t) \rangle} \left\langle \int_0^{L(t)} ds \delta(\kappa - \kappa(s, t)) \right\rangle
\] (3)

where \(\delta\) is the Dirac delta function, \(L(t)\) is the length of the loop at time \(t\), and \(\kappa(s, t)\) is the curvature of the loop as a function of arc length \(s\) at time \(t\). The average \(\langle \cdot \rangle\) taken to be uniform over loops, and we have here used \(\kappa\) to distinguish the loop (realization) dependent curvature from its sample-space variable \(\kappa\).

We use fully resolved turbulence simulations to investigate this measure of the statistical geometry of material lines (see Methods). Here, we focus on a data set at the Taylor-scale Reynolds number \(R_{\lambda} \approx 216\), in which we track 1000 randomly placed loops with an initial diameter of 10\(\eta\) (\(\eta\) is the Kolmogorov length scale). We test the robustness of our results with additional simulations at various Reynolds numbers in Supplementary Note 1.

The resulting curvature PDF at different times is shown in Fig. 2b. Remarkably, persistent power-law tails form within a few Kolmogorov time scales \(\tau_p\) which eventually range over several
decades of curvature after the loops have been deformed for $29\tau_\eta$ (~ 1.5 integral times). Within this observation window, the shape of the distribution appears to become stationary, whereas the support, i.e., the range from minimum to maximum curvature, grows indefinitely in extent. Hence the largest curvatures correspond to structures significantly smaller than the Kolmogorov length scale η. As we show in Supplementary Note 1, the distributions are almost indistinguishable for different Reynolds numbers when nondimensionalized by η, but they shift to larger κ when displayed in units of the integral length. This is a first indication that the curvature distribution is generated by the smallest scales of the flow, in particular by velocity gradients. Given the markedly complex shape of the deformed material loop, the universal shape of the distribution calls for a theoretical explanation, which we develop in the following.

Ensemble of material folds. The high-curvature regime of the curvature distribution is heavy-tailed and characterized by rare events. Over time, the material line will form isolated sites of extremely high curvature, as can be seen in Fig. 2a. Such curvature peaks mark sharp folds in the material line geometry. In the following, we reveal how such folds form stochastically and how this is related to the power-law exponent of the curvature distribution.

This picture in view, we estimate the high-curvature tail of the PDF (3) in the statistically steady state by replacing the ensemble average over entire loops in (3) by an ensemble of folds,

$$f(\kappa) \sim \int_0^\infty d\kappa_p f(\kappa_p) \int_{-\infty}^\infty ds \delta(\kappa - \kappa_p(\kappa_p; s)).$$

(4)

Here, κ_p is the peak curvature of a fold and $f(\kappa_p)$ its distribution. The second integral is the contribution of curvature at each curvature peak. As we will elaborate in more detail below, high-curvature folds develop a universal, locally parabolic shape. The curvature function around a peak with maximum κ_p, therefore, can be estimated as

$$\kappa_p^b(\kappa_p; s) = \frac{\kappa_p}{\left(1 + F^{-1}(\kappa_p s)^2\right)^{3/2}},$$

(5)

where $F^{-1}(x)$ denotes the inverse of the primitive of $\sqrt{1 + x^2}$ on the positive real line, originating from parameterizing the parabola by arc length. Remarkably, the curvature profile is characterized by the peak curvature as the only parameter. To further evaluate (4), we substitute the inner integration variable by $\kappa' = \kappa_p^b(\kappa_p; s)$ with the Jacobian

$$\left|\frac{d\kappa_p^b(\kappa'; \kappa_p)}{d\kappa'}\right| = \frac{1}{3\kappa'^2 \sqrt{(\kappa_p/\kappa')^{2/3} - 1}},$$

(6)

which yields

$$f(\kappa) \sim \int_\kappa^\infty d\kappa_p f(\kappa_p) \left|\frac{d\kappa_p^b(\kappa'; \kappa_p)}{d\kappa'}\right|.$$

(7)

This equation expresses the curvature PDF as a composition of the curvature peak PDF with the contribution from the locally parabolic folds.

Statistical evolution of curvature peaks. In what follows, we determine the curvature peak distribution $f(\kappa_p)$, which can be achieved by capturing the essence of the curvature peak dynamics. Since peaks are generally generated at medium curvature and then grow stochastically, we may define the generation time t_0 of a large peak as the time where it has first surpassed an arbitrary threshold κ_0 and its age as $\tau = t - t_0$. At time t, the ensemble of peaks larger than κ_0 can thus be attributed a distribution of ages $f(\tau; t)$. By the law of total probability, the peak distribution above κ_0 can be estimated as

$$f(\kappa_p; t) \sim \int_0^t d\tau f(\kappa_p; \tau)f(\tau; t).$$

(8)
where $f(\kappa_p; t)$ is the probability of a peak with curvature κ_p at time $t_0 + \tau$ that had curvature κ_p at time t_0. This decomposes the curvature peak distribution into a distribution of peaks with a given age and the distribution of ages. In (7), we are interested in the stationary regime $f(\kappa_p) := \lim_{t \to \infty} f(\kappa_p; t)$, which we expect to be well captured by the estimate (8) and to be independent of the arbitrary threshold κ_0. The peak age distribution can be estimated from the mean number of curvature peaks. Figure 3 shows that the mean numbers of curvature maxima above different thresholds grow at the same exponential rate, their age distribution also decays exponentially, implying that the bulk of the peaks is young even after a long exponential rate, a fact that will be corroborated below by Fig. 4b. Therefore parabolas become increasingly good local approximations of the folds.

Amplification of folds by turbulent stretching. We observe that those rare peaks that have existed for a long time can exhibit extremely high curvature. This is caused by fluid element stretching, a process quantitatively captured by the deformation tensor $F_{\beta}(\kappa, t) = \frac{\partial X(x, t)}{\partial x_\beta}$, where $X(x, t)$ is the Lagrangian map, mapping the initial condition x of a tracer particle to its position X at time t. The singular value decomposition of the deformation tensor associates two coordinate systems \mathbf{v}_1 and \mathbf{u}_i with the deformation (see Methods), as illustrated in Fig. 4a.

As discussed in ref. 32, generically a line element will align with the \mathbf{u}_1-direction and become stretched exponentially with $e^{\rho_1(t)}$ (whose mean asymptotically scales like e^β). The surrounding curve will be forced into the $\mathbf{u}_1-\mathbf{u}_2$ plane by compression in the \mathbf{u}_3-direction. The dominant stretching in the \mathbf{u}_1-direction locally decreases curvature. However, an exception to this generic setting occurs at a finite number of points along the loop when the initial material line lies perpendicular to \mathbf{v}_1 (see Fig. 4). In this case, the line element cannot align with \mathbf{u}_1 and will align with \mathbf{u}_2 instead.

To reveal the role of the finite-time Lyapunov exponents, let us consider a parabola $y = k_0 x^2/2$ which is initially already lying in the $\mathbf{v}_1-\mathbf{v}_2$ plane. Over time, it is subject to stretching $\dot{y} = e^{\rho_1(t)} y$ and $\dot{x} = e^{\rho_2(t)} x$, which preserves the parabolic shape, i.e., $y' = e^{\rho_1(t)-2\rho_2(t)} k_0 x^2/2$. In this process, the peak curvature increases as long as $\rho_1(t) > 2\rho_2(t)$, i.e., the first FTLE must be more than twice as large as the second one. We illustrate this at the example of a parabola in a linearized flow in Methods.
showing that its peak curvature grows as
\[\kappa_p(t) \approx C^{10}/C_0 \kappa_0^{(10)/2p(t)/2} \]
(11)
for some effective initial peak curvature \(\kappa_0 \). This equation can already be found in ref. 32, where it is derived for a generic material line. Let us call the growth rate of peaks \(\rho_p(t) = \rho_0(t) - 2\rho_2(t) \). In turbulence, this growth rate is typically asymptotically positive. In our simulation used for obtaining the FTLEs (see Methods), we can estimate the infinite-time Lyapunov exponents, \(\lambda_i = \lim_{t \to -\infty} \lambda(t) \), by taking the mean of the FTLEs at the final time of the simulation, which yields \(\lambda_1 \approx 0.12/\tau_\eta \) \(\lambda_2 \approx 0.03/\tau_\eta \) \(\lambda_3 \approx -0.15/\tau_\eta \) in good agreement with previous literature\(^{38,39}\), and thus \(\lambda_p = \lim_{i \to -\infty} \rho_p(i) \approx 0.06/\tau_\eta > 0 \).

Connecting the power-law exponent to fluid stretching. To relate the dynamical formation of folds to the power-law tails of the curvature PDF, we estimate the distribution of \(\kappa_p(t) \) by making statements about the distribution of FTLEs. By ergodicity, FTLEs behave like sums of independent and identically distributed random variables at large times\(^{39,40}\). The same is true for the growth rate of peaks \(\rho_p(t) \). Using its Cramér function \(S(\rho_p) \), we make a large-deviations estimate of the PDF,\(^{41}\)
\[f(\rho_p; t) \approx N(t) e^{-tS(\rho_p)}, \]
(12)
where \(N(t) \) is a normalization. Transforming by (11), the peak curvature PDF for peaks of age \(\tau \) can thus be written as
\[f(\kappa_p; \tau) \approx \frac{N(\tau)}{\kappa_p^{\tau}} e^{-\tau S(\kappa_p^{\tau}}). \]
(13)
Note that we here identified the peak age \(\tau \) with the time \(t \) and the curvature threshold \(\kappa_0 \) with the effective initial peak curvature \(\kappa_0 \). For the asymptotics that we are interested in, the distinction does not matter. Inserting this result into (8), combined with (9) and letting \(t \to \infty \), gives the asymptotic distribution of curvature peaks in the high-curvature regime
\[f(\kappa_p) \sim \int_0^\infty dt \ e^{-tN} \frac{N(t)}{\kappa_0^{\tau}} e^{-tS(\kappa_0^{\tau}}. \]
(14)

We now use the method of steepest descent\(^{41}\) in order to extract the large-\(\kappa_p \) asymptotics of the peak curvature distribution from our estimate (14). The result (see Methods) is that the distribution scales as a power law, \(f(\kappa_p) \sim \kappa_p^{1-a} \), with exponent
\[a = \min \left\{ \frac{1}{\rho_p} (\beta + S(\rho_p)) \right\}. \]
(15)
This minimum is estimated for our data in Fig. 5, where the Cramér functions have been estimated via (12) using FTLE histograms from an additional simulation (see Methods). While we are interested in finding the minimum for the fully converged Cramér function, the amount of samples needed to resolve large-deviations statistics increases exponentially with time, limiting our observation window of the minimum to a maximum time of about 30 to 40\(\tau_\eta \). In this regime, the minima still lie above the value of \(a \) inferred from the loops simulation (red line). However, an analysis of the time evolution of minima (Fig. 5, inset) reveals that they are well described by a slow, algebraic decay. Extrapolating the desired minimum toward \(t \to \infty \), we get the estimate \(a = 0.54 \pm 0.11 \), slightly below but within error bars of the curvature peak power-law exponent in Fig. 2c. For more details on the extrapolation, see Methods.

Given the power-law scaling of the peak distribution, \(f(\kappa_p) \sim \kappa_p^{-1-a} \), we can perform the integral (7) to obtain the prediction for the curvature PDF
\[f(\kappa) \sim \kappa^{-2-a}. \]
(16)
Hence the difference between the curvature power-law exponent and the curvature peak power-law exponent is 1. This difference originates from the curvature contributions of parabolic fold profiles around the peak curvature (5). Comparing Fig. 2b and c shows that this result is consistent with the fully resolved loops simulations. Likewise, our prediction based on Lyapunov exponents estimated by extrapolating the minimum in Fig. 5 captures the observed power-law exponents of both the curvature and curvature peak PDFs very well. In Supplementary Note 1, we explore our result at various Reynolds numbers, with comparable or even better agreement depending on how far the minima can be resolved in time. Therefore, as a central result, we can quantitatively relate the statistical geometry as characterized by the curvature PDF to the formation of folds and the statistics of FTLEs that determine their dynamical evolution.

Interestingly, an alternative formulation of our result can be obtained by using the Legendre transform of the Cramér function, which is known as the generalized Lyapunov exponent\(^{39}\). It can be shown (see Methods) that \(a \) is given implicitly by
\[\langle e^{\rho_p(-t)} \rangle \sim \langle e^{\rho_p(t)} \rangle \]
(17)
in the large-deviations approximation, where \(\sim \) indicates the same exponential scaling for large \(t \). This can be understood as the statement that the power-law exponent is chosen so that curvature peak generation (represented by the line growth rate \(\rho_p(t) \)) and peak amplification (represented by the peak curvature growth rate \(\rho_p(t) = \rho_1(t) - 2\rho_2(t) \)) are on average balanced. For example, in a flow with the same peak amplification (same statistics of \(\rho_p(t) \)) but stronger line growth (larger \(\langle e^{\rho_p(t)} \rangle \)) and thus stronger peak generation, a larger fraction of small-curvature
peaks will accumulate until the stationary state is reached. This means that the curvature PDF in the stationary state has to decay faster, corresponding to a larger α, as encoded in (17). We explore this result numerically in Supplementary Note 2, showing that this complementary way of computing α comes equally close to the value observed in the loops simulations.

Exact results in the Kraichnan model. To demonstrate the robustness of our results beyond Navier-Stokes turbulence, we consider the exactly solvable Kraichnan model\(^\text{42}\). The Kraichnan model of turbulence replaces the advecting velocity with a spatially correlated Gaussian random field, white in time, which mimics turbulence. While we do not expect the predictions of the curvature PDF power law from the Kraichnan model to be in quantitative agreement with our DNS results, it serves as a test case in which our approach can be compared rigorously against exact independent Fokker-Planck calculations.

In this setting, all of our argumentation about fold formation and its statistical implications can be made exact. First, the Cramér function takes the parabolic form\(^\text{40}\):

$$S(p) = \frac{(p - \lambda)^2}{2D_p},$$

with $\lambda_p = 3Q$, $D_p = 14Q$ and Q a constant related to the energy spectrum quantifying fluctuations of the velocity gradient (see Methods). λ_p and $D_p/1$ are the mean and variance of the Gaussian distribution of p that can be computed from the known multivariate Gaussian distribution of the p_i\(^\text{40}\). Now, the integral (14) can be performed exactly, yielding a power law $\kappa_p^{-1-\alpha}$ with

$$\alpha = -\frac{\lambda_p^2}{D_p} + \frac{\lambda_p^2}{2D_p^2} + \frac{2\beta}{D_p}.$$

The growth rate of the mean length of line elements in the Kraichnan model is $\beta = 4Q$, determined by $e^{\beta t} \sim (e^{(2\beta)t})$. This evaluates to $\alpha = 4/7$, a curvature peak PDF power law $-11/7$, and a curvature PDF power law $-18/7 \approx -2.571$. Although this is very close to the exponent -2.622 ± 0.002 that we find in Navier-Stokes turbulence, we believe that our measurements are precise enough to conclude that the exponents are in fact different and that their closeness is coincidental.

Importantly, this result based on our picture of curvature growth due to fold formation is consistent with an independent, complementary approach facilitated by the rapidly fluctuating velocity field. Using Itô calculus, one can obtain an exact Fokker-Planck equation for the curvature distribution (see Methods) and study its steady state. The equation takes the form

$$\partial_t f = -\partial_\kappa \left(-18Q\kappa f - 7Q\kappa^2 \partial_\kappa f + \frac{9P}{\kappa} f - 9P \partial_\kappa f \right),$$

and features the stationary solution

$$f(\kappa) = \frac{1}{Z} (9P + 7Q\kappa^2)^{-25/14},$$

where P is a constant quantifying fluctuations of second-order derivatives of velocity (see Methods) and Z is the normalization constant. This exact solution transitions between a κ^1 power law in the small-curvature regime and a $\kappa^{-18/7}$ power law in the large-curvature regime. Hence our framework based on the dynamical evolution of curvature peak statistics and Itô calculus yield exactly the same large-curvature exponent. The shape of the PDF is also in qualitative agreement with our numerical observations in Navier-Stokes turbulence, see Fig. 2b. A numerical analysis of the Kraichnan case can be found in Supplementary Note 7. Analogous computations\(^\text{43}\) have been done for the curvature PDF of magnetic field lines in the context of the turbulent dynamo problem without compensating for arc length.

We remark in passing that it would be interesting to study material line curvature statistics in the compressible d-dimensional Kraichnan model\(^\text{43}\) also from the complementary perspective of fold formation. There, the compressibility can be parameterized by an index ϕ and Lyapunov exponents can be explicitly computed (see §2.4 of ref. \text{44}). The chaotic phase characterized by positive leading Lyapunov exponent $\lambda_1 > 0$ occurs when $\phi < d/4$. In this regime, one can vary $\lambda_p = 1 - 2\lambda_2$ and analytically study its effect on curvature statistics. As such, the compressibility can be used to precisely control the curvature statistics.

Discussion

We investigated the curvature statistics of material loops in fully developed turbulence to characterize their statistical geometry. We find that the curvature PDF rapidly converges to a stationary distribution and establish a theory of curvature peaks forming along the loop to explain the power law in its high-curvature regime. Using the connection between curvature peak dynamics and finite-time Lyapunov exponents, we are able to theoretically link the power-law exponent to FTLE large-deviations statistics. In Navier-Stokes turbulence, we find our theory to be in very good agreement with direct numerical simulations. In the Kraichnan model, our theoretical prediction agrees precisely with exact analytical calculations.

An important issue concerns how the results presented here depend on the Reynolds number. In Supplementary Note 1, we provide numerical evidence that moderate variations of the Reynolds number lead qualitatively to the same picture with only very slight quantitative changes in the power-law exponents. When nondimensionalized by the Kolmogorov length scale, the curvature PDFs for different Reynolds numbers collapse in very good approximation, consistent with the notion that turbulent stretching and folding is driven by the tentatively universal small-scale velocity gradients in turbulence. In light of this, it seems plausible to us that the shape of the curvature distribution we observe is universal and will persist in the limit of large Reynolds number.

Our methods and theoretical predictions can be applied to a large class of chaotic flows and can thereby provide a new statistical-geometry perspective on the intricacies of their evolution. Since a host of processes are closely related to the transport of material lines, our results may help to shed light on such problems from biophysics, geophysics and astrophysics. For example, in polymer turbulence, the conformation tensor describing polymeric stresses is a materially transported quantity modified by (internal) restoration forces. As such, our computational and theoretical techniques used to study ideal material transport in the form of material lines, suitably adapted to accommodate internal degrees of freedom, provide a framework to study fluid–polymer interaction.

Our work may also shed new light on classical questions in magnetohydrodynamic (MHD) turbulence and, in particular, the dynamo problem. For example, curvature PDFs of magnetic field lines in MHD have been observed to form power-law tails in the kinematic stage\(^\text{43}\). It would be very interesting to study how this is related to the formation of folds in the magnetic field and how these folds behave in the non-linear stage of the turbulent dynamo. Furthermore, it is well known that flux cancellations in turbulent magnetic dynamos occur in part due to the folding/bundling of magnetic field lines\(^\text{45,46}\). In fact, our simulations indicate that tightly wound bundles along the loop are in close
Correspondence with curvature peaks (see Supplementary Note 3). Thus the statistical attributes (generation and growth rates) of the peaks predicted here may be indicative of the genericity and intensity of configurations that can stifle dynamo growth. It is also known that magnetic helicity—a measurement of the linkage, twist, and writhe of magnetic loops—has a profound effect on the growth rates for the dynamo\cite{morin2004}. The tools developed here can be used to study field lines in MHD in the highly conductive regime. Conditioning on the level of magnetic helicity, they could thus offer a new geometric perspective on the role that magnetic helicity plays in dynamo action.

Finally, we remark that it would be of great interest to generalize our framework to accommodate higher-dimensional structures, such as material surfaces. A material surface can be understood as a continuous family of material lines. We therefore expect it to form folds extending as one-dimensional structures across the surface. This could then be applied to study interfacial problems such as the dispersion of algae blooms or oil spills in the ocean, where the description of the boundary’s geometry is of crucial importance for prediction.

Methods

Navier-Stokes simulations for loop tracking. For the direct numerical simulations (DNS), we use our code TurfLE\cite{morin2019}. It implements a pseudo-spectral solver for the Navier-Stokes equation in the vorticity formulation with a third-order Runge-Kutta method for time stepping and a high-order Fourier smoothing\cite{morin2019} to reduce aliasing errors. The flow is forced on the large scales by maintaining a fixed energy injection rate in a discrete band of Fourier modes at small wavenumbers \(\xi \in [0, 2, 0] \) (DNS units). The simulations presented here were computed on 1024\(^3\) grid points with a small-scale resolution \(k_{\text{min}} = 2.8 \), where \(k_{\text{min}} \) is the maximum resolved wavenumber. Using the same initial background flow, we conducted two separate simulations with different sets of Lagrangian tracers.

The first simulation contains 10\(^5\) initially circular loops of diameter \(\sim 10^3 \). The second simulation contains 10\(^3\) initially circular loops of diameter \(\sim 10^3 \). In both cases, the loops are distributed uniformly in the domain, and the initial velocity field is corrupted with a small amount of noise to break the symmetry between the loops.

In the first simulation, we used Fourier modes with a small-scale resolution of 2\(^3\) for the initial conditions. The flow is forced on the large scales by maintaining a fixed energy injection rate in a discrete band of Fourier modes at small wavenumbers \(\xi \in [0, 2, 0] \) (DNS units). The simulations presented here were computed on 1024\(^3\) grid points with a small-scale resolution of 2\(^3\) for the initial conditions. The flow is forced on the large scales by maintaining a fixed energy injection rate in a discrete band of Fourier modes at small wavenumbers \(\xi \in [0, 2, 0] \) (DNS units). The simulations presented here were computed on 1024\(^3\) grid points with a small-scale resolution of 2\(^3\) for the initial conditions.

In the second simulation, we used Fourier modes with a small-scale resolution of 2\(^3\) for the initial conditions. The flow is forced on the large scales by maintaining a fixed energy injection rate in a discrete band of Fourier modes at small wavenumbers \(\xi \in [0, 2, 0] \) (DNS units). The simulations presented here were computed on 1024\(^3\) grid points with a small-scale resolution of 2\(^3\) for the initial conditions.

In both simulations, the flow is forced on the large scales by maintaining a fixed energy injection rate in a discrete band of Fourier modes at small wavenumbers \(\xi \in [0, 2, 0] \) (DNS units). The simulations presented here were computed on 1024\(^3\) grid points with a small-scale resolution of 2\(^3\) for the initial conditions.

In the first simulation, we used Fourier modes with a small-scale resolution of 2\(^3\) for the initial conditions. The flow is forced on the large scales by maintaining a fixed energy injection rate in a discrete band of Fourier modes at small wavenumbers \(\xi \in [0, 2, 0] \) (DNS units). The simulations presented here were computed on 1024\(^3\) grid points with a small-scale resolution of 2\(^3\) for the initial conditions.

In the second simulation, we used Fourier modes with a small-scale resolution of 2\(^3\) for the initial conditions. The flow is forced on the large scales by maintaining a fixed energy injection rate in a discrete band of Fourier modes at small wavenumbers \(\xi \in [0, 2, 0] \) (DNS units). The simulations presented here were computed on 1024\(^3\) grid points with a small-scale resolution of 2\(^3\) for the initial conditions.

In both simulations, the flow is forced on the large scales by maintaining a fixed energy injection rate in a discrete band of Fourier modes at small wavenumbers \(\xi \in [0, 2, 0] \) (DNS units). The simulations presented here were computed on 1024\(^3\) grid points with a small-scale resolution of 2\(^3\) for the initial conditions.

In the first simulation, we used Fourier modes with a small-scale resolution of 2\(^3\) for the initial conditions. The flow is forced on the large scales by maintaining a fixed energy injection rate in a discrete band of Fourier modes at small wavenumbers \(\xi \in [0, 2, 0] \) (DNS units). The simulations presented here were computed on 1024\(^3\) grid points with a small-scale resolution of 2\(^3\) for the initial conditions.

In the second simulation, we used Fourier modes with a small-scale resolution of 2\(^3\) for the initial conditions. The flow is forced on the large scales by maintaining a fixed energy injection rate in a discrete band of Fourier modes at small wavenumbers \(\xi \in [0, 2, 0] \) (DNS units). The simulations presented here were computed on 1024\(^3\) grid points with a small-scale resolution of 2\(^3\) for the initial conditions.

In both simulations, the flow is forced on the large scales by maintaining a fixed energy injection rate in a discrete band of Fourier modes at small wavenumbers \(\xi \in [0, 2, 0] \) (DNS units). The simulations presented here were computed on 1024\(^3\) grid points with a small-scale resolution of 2\(^3\) for the initial conditions.

In the first simulation, we used Fourier modes with a small-scale resolution of 2\(^3\) for the initial conditions. The flow is forced on the large scales by maintaining a fixed energy injection rate in a discrete band of Fourier modes at small wavenumbers \(\xi \in [0, 2, 0] \) (DNS units). The simulations presented here were computed on 1024\(^3\) grid points with a small-scale resolution of 2\(^3\) for the initial conditions.

In the second simulation, we used Fourier modes with a small-scale resolution of 2\(^3\) for the initial conditions. The flow is forced on the large scales by maintaining a fixed energy injection rate in a discrete band of Fourier modes at small wavenumbers \(\xi \in [0, 2, 0] \) (DNS units). The simulations presented here were computed on 1024\(^3\) grid points with a small-scale resolution of 2\(^3\) for the initial conditions.

In both simulations, the flow is forced on the large scales by maintaining a fixed energy injection rate in a discrete band of Fourier modes at small wavenumbers \(\xi \in [0, 2, 0] \) (DNS units). The simulations presented here were computed on 1024\(^3\) grid points with a small-scale resolution of 2\(^3\) for the initial conditions.

In the first simulation, we used Fourier modes with a small-scale resolution of 2\(^3\) for the initial conditions. The flow is forced on the large scales by maintaining a fixed energy injection rate in a discrete band of Fourier modes at small wavenumbers \(\xi \in [0, 2, 0] \) (DNS units). The simulations presented here were computed on 1024\(^3\) grid points with a small-scale resolution of 2\(^3\) for the initial conditions.

In the second simulation, we used Fourier modes with a small-scale resolution of 2\(^3\) for the initial conditions. The flow is forced on the large scales by maintaining a fixed energy injection rate in a discrete band of Fourier modes at small wavenumbers \(\xi \in [0, 2, 0] \) (DNS units). The simulations presented here were computed on 1024\(^3\) grid points with a small-scale resolution of 2\(^3\) for the initial conditions.

In both simulations, the flow is forced on the large scales by maintaining a fixed energy injection rate in a discrete band of Fourier modes at small wavenumbers \(\xi \in [0, 2, 0] \) (DNS units). The simulations presented here were computed on 1024\(^3\) grid points with a small-scale resolution of 2\(^3\) for the initial conditions.

In the first simulation, we used Fourier modes with a small-scale resolution of 2\(^3\) for the initial conditions. The flow is forced on the large scales by maintaining a fixed energy injection rate in a discrete band of Fourier modes at small wavenumbers \(\xi \in [0, 2, 0] \) (DNS units). The simulations presented here were computed on 1024\(^3\) grid points with a small-scale resolution of 2\(^3\) for the initial conditions.

In the second simulation, we used Fourier modes with a small-scale resolution of 2\(^3\) for the initial conditions. The flow is forced on the large scales by maintaining a fixed energy injection rate in a discrete band of Fourier modes at small wavenumbers \(\xi \in [0, 2, 0] \) (DNS units). The simulations presented here were computed on 1024\(^3\) grid points with a small-scale resolution of 2\(^3\) for the initial conditions.

In both simulations, the flow is forced on the large scales by maintaining a fixed energy injection rate in a discrete band of Fourier modes at small wavenumbers \(\xi \in [0, 2, 0] \) (DNS units). The simulations presented here were computed on 1024\(^3\) grid points with a small-scale resolution of 2\(^3\) for the initial conditions.
Since \(I \) and \(k \) behave like passive vectors, their dynamics can be described by the deformation tensor
\[
F_j(t) = \frac{\partial X_j}{\partial x_j}(\psi,0,t),
\]
where \(X(t) \) is the Lagrangian map. The singular value decomposition of \(F \),
\[
F(t) = U(t)\Lambda(t)U(t)^T,
\]
defines the orthonormal bases \(\psi_i(t) \) and \(\chi_i(t) \) and the finite-time Lyapunov exponents \(\rho_i(t) \) by \(A = \rho_i(t) \) where \(A \) is diagonal. Expanding \(I(t) \) and \(k(t) \) in the \(\psi_i \)-coordinate system yields
\[
I(t) = \sum_j \alpha_j(\psi_j(t)) \quad \text{and} \quad k(t) = \sum_j \beta_j(\psi_j(t)).
\]
Observing that \(F(t)I(t) = I(t) \) and \(F(t)k(t) = k(t) \), and applying the deformation tensor to the previous equations, we get
\[
I(t) = \sum_j \alpha_j(\psi_j(t))e^{\rho_j(t)} \quad \text{and} \quad k(t) = \sum_j \beta_j(\psi_j(t))e^{\rho_j(t)}.
\]
Inserting these expansions into (30) yields
\[
\rho_j(t) = \left(\sum_i \alpha_i(\psi_i(t)) \right)^{1/2} \left(\sum_i \beta_i(\psi_i(t)) \right)^{1/2} \kappa_j(0).
\]
As long as the infinite-time Lyapunov exponents \(t \to \infty \)-limits of the FTLEs are distinct from each other, we will have \(e^{\rho_j(t)} \forall \rho_j(t) \geq 0 \) for large \(t \). Assuming furthermore that the random coefficients in (33) are non-zero, we can drop those terms with slower exponential growth:
\[
\rho_j(t) \approx \sum_i \alpha_i(\psi_i(t)) \beta_i(\psi_i(t)) \kappa_j(0).
\]
While the FTLEs are known to converge slowly, \(V(t) \) and thus \(\alpha_i(t) \) and \(\beta_i(t) \) converge exponentially fast. We therefore have (cf. ref. 22)
\[
\rho_j(t) \approx \rho_j(0) \exp(1-2\rho_j(t)),
\]
for some effective initial peak curvature
\[
\rho_j(0) \approx \exp(1-2\rho_j(0)),
\]
which may differ from the actual initial peak curvature \(\rho_j(0) \) depending on the relative orientation of the initial parabola and the converged basis vectors \(\lim_{t \to \infty} \psi_j(t) \).

Extracting the power law by the method of steepest descent. In order to extract the asymptotic regime of the integral (14), we substitute the integration variable
\[
\rho_j = \frac{1}{\rho_j} \log \left(\frac{\kappa_j}{\kappa_0} \right),
\]
which yields
\[
\rho_j \approx -\frac{1}{\kappa_j} \int_0^\infty \!}\]
\[d\kappa = \mathbf{b} \cdot (\mathbf{n} \cdot \nabla \mathbf{u}) - (\mathbf{n} \cdot (\mathbf{t} \cdot \nabla \mathbf{u})) + \frac{1}{\kappa} \mathbf{b} \cdot (\mathbf{t} \cdot \nabla)^{2} \mathbf{u}. \]
(56)

\[d\rho = (\mathbf{n} \cdot \nabla \mathbf{u}) - (\mathbf{n} \cdot (\mathbf{t} \cdot \nabla \mathbf{u})) + \frac{1}{\kappa} \mathbf{b} \cdot (\mathbf{t} \cdot \nabla)^{2} \mathbf{u}. \]
(57)

Here, \(\mathbf{t} \), \(\mathbf{n} \), and \(\mathbf{b} \) denote the tangent, normal, and binormal vector of the Frenet-Serret frame, respectively. As shown in Supplementary Note 5, the evolution equations derive from the definitions of the various quantities combined with the tracer equation (1). All quantities are evaluated along the same Lagrangian trajectory.

In order to simplify the resulting expressions, we need to further restrict the spatial correlation structure of the model. Isotropy and incompressibility determine the form of the even derivatives of the spatial correlation tensor \(R_{ij}(r) \) at \(\theta \) (odd numbers of derivatives vanish) to be\(^{61}\)

\[-\delta_{i} \partial_{j} R_{i}(0) = \Omega(\delta_{ij} \partial_{k} - \delta_{ik} \partial_{j} - \delta_{jk} \partial_{i}) \]
(58)

and\(^{62}\)

\[\partial_{i} \partial_{j} \partial_{k} R_{i}(0) = \frac{1}{P(\delta_{i} \delta_{j} \delta_{k} + 6 \delta_{i} \delta_{j} \delta_{k} + 6 \delta_{i} \delta_{j} \delta_{k} - \text{(all others)})} \]
(59)

with \(Q \) and \(P \) scalar constants that depend on the exact form of \(R_{ij}(r) \). The last pair of brackets contains all 12 other permutations of Kronecker deltas. All terms arising from the Gaussian integration by parts formula can be evaluated using this result and the orthonormality of the Frenet-Serret frame. The resulting Fokker-Planck equation is (20). In Supplementary Note 6, we list results for all terms and exemplify computing one of them.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

The simulation results have been generated with our code TurTLE\(^{38}\), which is available on https://gitlab.mpi-dap.mpg.de/TurTLE/turtle. The loop refinement and post-processing codes are available from the corresponding author upon reasonable request.

Received: 8 July 2021; Accepted: 15 March 2022; Published online: 19 April 2022

References

1. Dimotakis, P. E. Turbulent mixing. *Annu. Rev. Fluid Mech.* 37, 329 (2005).
2. Prants, S., Budynskys, M. & Uley斯基, M. Identifying Lagrangian fronts with favourable fishery conditions. *Deep Sea Res. Part I* 90, 27 (2014).
3. Haynes, P. H. & McIntyre, M. E. On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forces. *J. Atmos. Sci.* 44, 828 (1987).
4. Oikhtam, K. Numerical study of comparison of vorticity and passive vectors in turbulence and inviscid flows. *Phys. Rev. E* 65, 046304 (2002).
5. Guala, M., Luthi, B., Liberson, A., Tsinobor, A. & Kinzelbach, W. On the evolution of material lines and vorticity in homogeneous turbulence. *J. Fluid Mech.* 533, 339 (2005).
6. Balkovsky, E., Fouxon, A. & Lebedev, V. Turbulent dynamics of polymer solutions. *Phys. Rev. Lett.* 84, 4765 (2000).
7. Liberson, A., Guala, M., Luthi, B., Kinzelbach, W. & Tsinobor, A. Turbulence in dilute polymer solutions. *Phys. Fluids* 17, 031707 (2005).
8. Bagheri, F., Mitra, D., Perlekar, P. & Brandt, L. Statistics of polymer extensions in turbulent channel flow. *Phys. Rev. E* 86, 056314 (2012).
9. Musielak, M. M., Karp-Boss, L., Jumars, P. A. & Fauci, L. J. Nutrient transport and acquisition by diatom chains in a moving fluid. *J. Fluid Mech.* 638, 401 (2009).
10. Davidson, P. A. Turbulence in Rotating, Stratified and Electrically Conducting Fluids https://doi.org/10.1017/CBO9781139208673 (Cambridge University Press, Cambridge, 2013).
11. Batchelor, G. K. & Taylor, G. I. The effect of homogeneous turbulence on material lines and surfaces. *Proc. R. Soc. Lond. A* 213, 349 (1952).
12. Girimaji, S. S. & Pope, S. B. Material-element deformation in isotropic turbulence. *J. Fluid Mech.* 220, 427 (1990).
13. Drummond, I. T. & Münch, W. Turbulent stretching of line and surface elements in model turbulent flows. *J. Fluid Mech.* 225, 529 (1991).
14. Drummond, I. T. Stretching and bending of line elements in random flows. *J. Fluid Mech.* 252, 479 (1993).
15. Liu, M. & Muzzio, F. The curvature of material lines in chaotic cavity flows. *Phys. Fluids* 8, 75 (1996).
16. Hobbs, D. M., Alvarez, M. M. & Muzzio, F. J. Mixing in globally chaotic flows. *Fractals* 5, 395 (1997).
17. Hobbs, D. M. & Muzzio, F. J. The curvature of material lines in three-dimensional chaotic flow. *Phys. Fluids* 10, 1942 (1998).
18. Cerbelli, S., Zalc, J. M. & Muzzio, F. J. The evolution of material lines curvature in deterministic chaotic flows. *Chem. Eng. Sci.* 55, 363 (2000).
19. Kivodtov, D. Geometry of turbulent tangles of material lines. *Phys. Lett. A* 318, 574 (2003).
20. Thiffeault, J.-L. Stretching and curvature of material lines in chaotic flows. *Physica D* 198, 169 (2004).
21. Leonard, A. Curvature and torsion of material lines in chaotic flows. *Fluid Dyn. Res.* 36, 261 (2005).
22. Leonard, A. The universal structure of high-curvature regions of material lines in chaotic flows. *J. Fluid Mech.* 622, 167 (2009).
23. Thiffeault, J.-L., Gouillart, E. & Finn, M. D. The size of ghost rods, in *Analysis and Control of Mixing with an Application to Micro and Macro Flow Processes*, edited by Cortezezi, L. and Mezić, I. pp. 339–350. https://doi.org/10.1007/978-3-211-99346-0_10 (Springer Vienna, Vienna, 2009).
24. Ma, T. & Bollt, E. M. Differential geometry perspective of shape coherence and curvature evolution by finite-time nonhyperbolic splitting. *SIAM J. Appl. Dyn. Syst.* 13, 1106 (2014).
25. Braun, W., De Lillo, F. & Eckhardt, B. Geometry of particle paths in turbulent flows. *J. Turbul.* 7, N06 (2006).
26. Xu, H., Ouellette, N. T. & Bodenschatz, E. Curvature of Lagrangian trajectories in turbulence. *Phys. Rev. Lett.* 98, 050201 (2007).
27. Scagliarini, A. Geometric properties of particle trajectories in turbulent flows. *J. Turbul.* 12, N25 (2011).
28. Bec, J., Biferale, L., Boffetta, G., Cencini, M., Musacchio, S. & Toschi, F. Lyapunov exponents of heavy particles in turbulence. *Phys. Fluids* 18, 091702 (2006).
29. Johnson, P. L. & Meneveau, C. Large-deviation joint statistics of the finite-time Lyapunov spectrum in isotropic turbulence. *Phys. Fluids* 27, 085110 (2015).
30. Balkovsky, E. & Fouxon, A. Universal long-time properties of Lagrangian statistics in the Batchelor regime and their application to the passive scalar problem. *Phys. Rev. E* 60, 4164 (1999).
31. Olver, F. W. J. *Asymptotics and Special Functions* https://doi.org/10.1201/9781498645458 (A K Peters, 1997).
32. Kraichnan, R. H. Small-scale structure of a scalar field convected by turbulence. *Phys. Fluids* 11, 945 (1968).
33. Schekochihin, A., Cowley, S., Maron, J. & Mahesh, L. Structure of small-scale magnetic fields in the kinematic dynamo theory. *Phys. Rev. E* 65, 016305 (2001).
34. Cardy, J., Falkovich, G. & Gawedzki, K., *Non-Equilibrium Statistical Mechanics and Turbulence*, edited by Nazarenko, S. and Zaboronski, O. V., London Mathematical Society Lecture Note Series https://doi.org/10.1017/CBO9780511812149 (Cambridge University Press, 2008).
35. Childress, S. & Gilbert, A. D. *Stretch, Twist, Fold*: The Fast Dynamo, Vol. 37 (Springer Science & Business Media, 1995).
36. Ott, E. Chaotic flows and kinematic dynamos: a tutorial review. *Phys. Plasmas* 5, 1636 (1998).
37. Boozer, A. H. Magnetic helicity and dynamos. *Phys. Fluids B: Plasma Phys.* 5, 2271 (1993).
38. Lalescu, C. C., Bramas, B., Rampp, M. & Wilczek, M. An efficient particle tracking algorithm for large-scale parallel pseudo-spectral simulations of turbulence. *https://arxiv.org/abs/2107.01104* [physics.fl-dyn].
Acknowledgements

We would like to acknowledge interesting and useful discussions with Maurizio Carbone. We thank Itzhak Fouxon, Perry Johnson, and Jean-Luc Thiffeault for comments on the manuscript. We thank Bérenger Bramas for his implementation of the particle tracking framework used in our simulations. Computational resources from the Max Planck Computing and Data Facility and support by the Max Planck Society are gratefully acknowledged. The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for funding this project by providing computing time on the GCS Supercomputer SuperMUC-NG at Leibniz Supercomputing Centre (www.lrz.de). T.D. was partially supported by NSF grant DMS-2106233 and the Charles Simonyi Endowment at the Institute for Advanced Study. 3D visualizations have been created with Blender63.

Author contributions
L.B., T.D., and M.W. designed the study. L.B. carried out the numerical simulations and analysis. C.I. helped with code development. All authors analyzed the data and wrote the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-022-29422-1.

Correspondence and requests for materials should be addressed to Michael Wilczek.

Peer review information Nature Communications thanks Moritz Linkmann, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2022