An averaging trick for smooth actions of compact quantum groups on manifolds

Debashish Goswami1, Soumalya Joardar2

Indian Statistical Institute
203, B. T. Road, Kolkata 700108
Email: goswamid@isical.ac.in

Abstract

We prove that, given any smooth action of a compact quantum group (in the sense of [9]) on a compact smooth manifold satisfying some more natural conditions, one can get a Riemannian structure on the manifold for which the corresponding $C^\infty(M)$-valued inner product on the space of one-forms is preserved by the action.

\textit{Dedicated to Prof. Kalyan B. Sinha on his seventieth birthday.}

1 Introduction

It is both interesting as well as important to study quantum group actions on classical (commutative) and noncommutative spaces. Indeed, quantum group actions can be viewed as generalised symmetries of a classical or quantum system modelled by commutative or noncommutative manifolds. In this context, it is natural ask the question whether one can have genuine (i.e. which are not groups) compact quantum group actions on (compact) classical spaces. Indeed, this has an affirmative answer in general. First examples of this kind were produced by S. Wang ([13], see also later of other mathematicians in this direction, e.g. [1], [3] etc.) who defined and studied a quantum-group generalisation of the group of permutations of n objects, called the quantum permutation group, and gave its action on the algebra of functions on finite set of cardinality n. For $n \geq 4$ this quantum group is a genuine one. However, in all such cases the underlying set is disconnected. It took quite a long time since the work of Wang before H. Huang ([11]) came up with several example of genuine compact quantum groups acting faithfully on compact connected topological spaces. On the other hand, there were indications (e.g. [2]) that such a construction would not be possible if the space is a connected smooth manifold. One of the author of the present paper (D. Goswami) made this conjecture and both the authors could prove ([9]) the non-existence of any faithful action of a genuine compact quantum group on a compact connected manifold if the action is assumed to be smooth and isometric in a natural sense. In this context, it turns out to be useful to prove an analogue of the classical averaging technique for compact group actions on Riemannian manifolds. The aim of this note is to achieve such a result for a smooth action of a compact quantum group on a compact Riemannian manifold under certain natural conditions which are valid for a large

1Partially supported by Swarnajayanti Fellowship from D.S.T. (Govt. of India)
2Acknowledges support from CSIR
class of examples. We hope it has the potential of generalisation to the context of noncommutative manifold a la Connes \cite{12}.

\section{Notaton and preliminaries}

We denote by $\hat{\otimes}$ spatial (minimal) C^* tensor product of C^* algebras.

Definition 2.1 A compact quantum group (CQG for short) is a unital C^* algebra Q with a coassociative coproduct Δ from Q to $Q \otimes Q$ such that each of the linear spans of $\Delta(Q)(Q \otimes 1)$ and $\Delta(Q)(1 \otimes Q)$ is norm-dense in $Q \otimes Q$.

An action of Q on a unital C^* algebra C is a unital \ast-homomorphism $\alpha : C \to C \otimes Q$ such that $(\alpha \otimes id)\alpha = (id \otimes \Delta)\alpha$ and $\overline{Sp(\alpha(C)(1 \otimes Q))} = C \hat{\otimes} Q$.

We denote by Q_0 the dense unital Hopf \ast algebra in Q spanned by the matrix coefficients of irreducible unitary representations of Q (see, e.g. \cite{14}). Given an action α of Q on C we always get a dense unital \ast-subalgebra C_0 of C on which α is algebraic, i.e. maps C_0 to the algebraic tensor product $C_0 \otimes Q_0$.

Definition 2.2 An action α is said to be faithful if the \ast-subalgebra of Q generated by $\{ (\omega \otimes id)\alpha(a), \omega \in C^*, a \in \mathcal{C} \}$, where C^* is the set of bounded linear functionals on \mathcal{C}, is dense in Q.

We refer \cite{15}, \cite{14} for the theory of unitary representation of CQG’s and to \cite{7} for the framework of noncommutative geometry given by spectral triples.

Definition 2.3 For a compact Riemannian manifold M, we say that action α of a CQG Q on $C(M)$ to be isometric if it maps $C^\infty(M)$ to $C^\infty(M, Q)$ and for every bounded linear functional ϕ on Q, one has $L \circ \alpha_\phi = \alpha_\phi \circ L$, where $\alpha_\phi = (id \otimes \phi) \circ \alpha$ and L is the restriction of the Hodge Laplacian $-d^* d$ on the space of smooth functions.

The following result is proved in \cite{8}.

Proposition 2.4 For a compact Riemannian manifold M, there is a universal object in the category of CQG’s having isometric actions on M. We call this CQG the quantum isometry group of M.

An action α of a CQG Q on $C(M)$ is called smooth if it maps $C^\infty(M)$ to $C^\infty(M, Q)$ and the span of $\alpha(C^\infty(M))(1 \otimes Q)$ is dense in $C^\infty(M, Q)$ in the natural Frechet topology. It has been proved in \cite{9} that smooth actions are automatically continuous as a map from $C^\infty(M)$ to $C^\infty(M, Q)$ in the respective Frechet topologies coming from that of $C^\infty(M)$. For any C^*-algebra \mathcal{C}, We consider the set of smooth \mathcal{C}-valued one-forms $\Omega^1(M, \mathcal{C})$ with the natural Frechet topology coming from M ($\Omega^1(M) := \Omega^1(M, \mathbb{C})$) and the obvious $C^\infty(M, \mathcal{C})$-bimodule structure. Given a smooth action α of Q we call a continuous \mathcal{C}-linear map $\Gamma : \Omega^1(M) \to \Omega^1(M, Q)$ to be a representation if Γ is co-associative in the obvious sense and $\Gamma(\xi f) = \Gamma(\xi)\alpha(f) = \alpha(f)\Gamma(\xi)$ for $\xi \in \Omega^1(M), f \in C^\infty(M)$.

2
We often say that α is a smooth action on M to mean that it is a smooth action on $C(M)$ in the sense discussed above. For such an action we denote $(d \otimes \text{id})(df)$ by $d\alpha(df)$. The $C^\infty(M)$-valued inner product on $\Omega^1(M)$ coming from the Riemannian structure is denoted by $\langle \langle \cdot, \cdot \rangle \rangle$ and we say that a smooth action α preserves the Riemannian structure (or the Riemannian inner product) if $\langle \langle d\alpha(df), d\alpha(dg) \rangle \rangle = \alpha(\langle \langle df, dg \rangle \rangle)$ for all $f, g \in C^\infty(M)$. It is proved in [9] that a smooth action on a compact Riemannian manifold M (without boundary) is isometric if and only if it preserves the inner product.

Before we state and prove the main result in the next section, let us collect a few facts about a smooth faithful action of compact quantum groups on compact manifolds, for the details of which the reader may be referred to [9] and references therein.

Proposition 2.5 If a CQG Q acts faithfully and smoothly on a smooth compact manifold M then we have:

(i) Q has a tracial Haar state, i.e. it is Kac type CQG.

(ii) The action is injective.

(iii) The antipode κ satisfies $\kappa(a^*) = \kappa(a)^*$.

We usually denote by \otimes algebraic tensor product of vector spaces or algebras. We also use Sweedler convention for Hopf algebra coproduct as well as its analogue for (co)-actions of Hopf algebras. That is, we simply write $\Delta(q) = q_{(1)} \otimes q_{(2)}$ suppressing finite summation, where Δ denote the co-product map of a Hopf algebra and q is an element of the Hopf algebra. Similarly, for an algebraic (co)action α of a Hopf algebra on some algebra C, we write $\alpha(a) = a_{(0)} \otimes a_{(1)}$.

3 The main result

Fix a compact Riemannian manifold M (not necessarily orientable) and a smooth action α of a CQG Q. We make the following assumptions for the rest of this paper.

Assumption I: There is a Fréchet dense unital \ast-subalgebra A of $C^\infty(M)$ such that $\langle \langle d\alpha(df), d\alpha(dg) \rangle \rangle \in A$ for all $f, g \in A$.

Assumption II: There is a well-defined representation Γ on $\Omega^1(M)$ in the sense discussed earlier, such that $\Gamma(df) = (d \otimes \text{id})(\alpha(f))$ for all $f \in C^\infty(M)$. We’ll denote this Γ by $d\alpha$.

We now state and prove the main result that we can equip M with a new Riemannian structure with respect to which the action becomes inner product preserving using an analogue of the averaging technique of classical differential geometry.

Theorem 3.1 M has a Riemannian structure such that α is inner product preserving.
Note that the first assumption holds for a large class of examples, such as algebraic actions of CQG’s compact, smooth, real varieties where the complexified coordinate algebra of the variety can be chosen as \(\mathcal{A} \). On the other hand, the second assumption means that the action on \(M \) in some sense lifts to the space of one-forms. This is always automatic for a smooth action by (not necessarily compact) groups, and in fact is nothing but the differential of the map giving the action. Moreover, it is easy to see that any CQG action which preserves the Riemannian inner product does admit such a lift on the bimodule of one-forms, i.e. satisfies the assumption II. Therefore, it is a reasonable assumption too.

Proof of Theorem 3.1

We break the proof of into a number of lemmas.

Lemma 3.2 Define the following map \(\Psi \) from \(\mathcal{A} \otimes \mathcal{Q}_0 \) to \(\mathcal{A} \):

\[
\Psi(F) := (\text{id} \otimes h)(\text{id} \otimes m)(\text{id} \otimes \kappa \otimes \text{id})(\alpha \otimes \text{id})(F).
\]

Here \(m : \mathcal{Q}_0 \otimes \mathcal{Q}_0 \rightarrow \mathcal{Q}_0 \) is the multiplication map. Then \(\Psi \) is a completely positive map.

Proof:

As the range is a subalgebra of a unital commutative \(\mathcal{C}^* \) algebra, it is enough to prove positivity. Let \(F = G^*G \) in \(\mathcal{A} \otimes \mathcal{Q}_0 \) where \(G = \sum_i f_i \otimes q_i \), (finite sum) for some \(f_i \in \mathcal{A}, q_i \in \mathcal{Q}_0 \). We write \(\alpha(f) = f_{(0)} \otimes f_{(1)} \) in Sweedler notation as usual, and observe that

\[
\Psi(F) = \sum_{ij} f_{i(0)}^* f_{j(0)} h(\kappa(f_{i(1)}^*) f_{j(1)}^*) q_i^* q_j
\]

\[
= \sum_{ij} f_{j(0)} f_{i(0)}^* h(q_j (\kappa(f_{j(1)})))^* \kappa(f_{i(1)}) q_i^*
\]

\[
= (\text{id} \otimes h)(\xi^* \xi) \geq 0,
\]

where \(\xi = \sum_i f_{i(0)}^* \otimes \kappa(f_{i(1)}) q_i^* \), and note also that we have used above the facts that \(h \) is tracial and \(\kappa \) is \(* \)-preserving. \(\square \)

For \(\omega, \eta \in \Omega^1(\mathcal{A}) \) We define

\[
<< \omega, \eta >> := \Psi(<< d\alpha(\omega), d\alpha(\eta) >>),
\]

which is well defined as we have assumed that \(<< d\alpha(ds_1), d\alpha(ds_2) >> \in \mathcal{A} \otimes \mathcal{Q}_0 \) for \(s_1, s_2 \in \mathcal{A} \). Moreover, by complete positivity of \(\Psi \) this gives a non-negative definite sesquilinear form on \(\Omega^1(\mathcal{A}) \). As the action is algebraic over \(\mathcal{A} \), we shall use Sweedler’s notation to prove the following

Lemma 3.3 For \(\omega, \eta \in \Omega^1(\mathcal{A}), \ f \in \mathcal{A} \), \(<< \omega, \eta >>' = (<< \eta, \omega >>)'^* \) and \(<< \omega, \eta f >>' = << \omega, \eta >> f \)
Proof:
It is enough to prove the lemma for \(\omega = d\phi \) and \(\eta = d\psi \) for \(\phi, \psi \in \mathcal{A} \). First observe that as we have \(\kappa = \kappa^{-1} \), for \(z \in \mathcal{Q}_0 \) applying \(\kappa \) on \(z(1)\kappa(z(2)) = \epsilon(z).1 \),
we get
\[
z(2)\kappa(z(1)) = \epsilon(z).1. \quad \quad (1)
\]
We denote \(<< d\phi(0), d\psi(0) >> \) by \(x \) and \(\phi^*_1\psi(1) \) by \(y \). Then
\[
<< d\phi, d\psi f >>' = (id \otimes h)(id \otimes m)(id \otimes \kappa \otimes id)(\alpha \otimes id)(x f(0) \otimes y f(1))
\]
\[
<< d\phi, d\psi f >>' = (id \otimes h)(id \otimes m)(id \otimes \kappa \otimes id)(\alpha \otimes id)(x(0) f(0)(0) \otimes x(1) f(0)(1) \otimes y f(1))
\]
\[
<< d\phi, d\psi f >>' = (id \otimes h)(x(0) f(0)(0) \otimes \kappa(x(1) f(0)(1)) y f(1))
\]
\[
<< d\phi, d\psi f >>' = x(0) f h(\kappa(x(1)) y).
\]
On the other hand,
\[
<< d\phi, d\psi >>' f = [(id \otimes h)(id \otimes m)(id \otimes \kappa \otimes id)(\alpha \otimes id) << d\alpha(d\phi), d\alpha(d\psi) >>] f
\]
\[
<< d\phi, d\psi >>' f = [(id \otimes h)(id \otimes m)(id \otimes \kappa \otimes id)(x(0) \otimes x(1) \otimes y)] f
\]
\[
<< d\phi, d\psi >>' f = x(0) f h(\kappa(x(1)) y).
\]
Also we have
\[
<< d\phi, d\psi >>' = (id \otimes h)(id \otimes m)(id \otimes \kappa \otimes id)(\alpha \otimes id)(<< d\phi(0), d\psi(0) >> \otimes \phi^*_1\psi(1))
\]
\[
<< d\phi, d\psi >>' = (id \otimes h)(id \otimes m)(id \otimes \kappa \otimes id)(\alpha \otimes id)(<< d\psi(0), d\phi(0) >>' \otimes \phi^*_1\psi(1))
\]
\[
<< d\phi, d\phi(0) >>' = h(\kappa(<< d\psi(0), d\phi(0) >>')) \phi^*_1\psi(1)(\text{ since } \kappa \text{ is } * \text{ preserving})
\]
Hence we have
\[
<< d\phi, d\phi >>' = < h(\kappa(<< d\psi(0), d\phi(0) >>'))) \psi^*_1(1) \phi(1) \quad (\text{ since } h \text{ is tracial and } h(\alpha^*) = \overline{h(\alpha)})
\]
But we can readily see that
\[
<< d\psi, d\phi >>' = < h(\kappa(<< d\psi(0), d\phi(0) >>'))) \psi^*_1(1) \phi(1) >
\]
which completes the proof of the lemma. □

Actually we can extend $\langle\cdot,\cdot\rangle$ to a slightly bigger set than $\Omega^1(\mathcal{A})$ namely $\Omega^1(\mathcal{A})C^\infty(M) = \{\omega f : \omega \in \Omega^1(\mathcal{A}), f \in C^\infty(M)\}$.

For $\omega, \eta \in \Omega^1(\mathcal{A})C^\infty(M)$, $\omega = \sum \omega_i f_i$ and $\eta = \sum \eta_i g_i$, finite sums, $\omega_i, \eta_i \in \Omega^1(\mathcal{A})$ and $f_i, g_i \in C^\infty(M)$ (say) we can choose sequences $f_i^{(n)}, g_i^{(n)}$ from \mathcal{A} such that $f_i^{(n)} \to f_i$ and $g_i^{(n)} \to g_i$ in the corresponding Fréchet topology and by Lemma 3.3 observe that

$$\langle\sum_i \omega_i f_i^{(n)}, \sum_j \eta_j g_j^{(n)}\rangle' = \sum_{i,j} f_i^{(n)} \langle\omega_i, \eta_j\rangle' g_j^{(n)}$$

$$\to \sum_{i,j} \int_i \langle\omega_i, \eta_j\rangle' g_j := \langle\omega, \eta\rangle'$$ (2)

Clearly this definition is independent of the choice of sequences $f_i^{(n)}$ and $g_i^{(n)}$. We next prove the following

Lemma 3.4 For $\phi, \psi \in \mathcal{A}$,

$$\langle d\alpha(d\phi), d\alpha(d\psi)\rangle' = \alpha(\langle d\phi, d\psi\rangle')$$ (3)

Proof:

With x, y as before we have

Claim 2: We can extend the definition of $\langle\cdot,\cdot\rangle'$ for $\omega, \eta \in \Omega^1(\mathcal{A})C^\infty(M)$ such that

$$\forall f \in C^\infty(M), \langle d\phi, d\psi f\rangle' = \langle d\phi, d\psi\rangle' f$$ (4)

Proof:

For $f \in C^\infty(M)$, define $\langle d\phi, d\psi f\rangle' := \lim \langle d\phi, d\psi f_n\rangle'$, where $f_n \in \mathcal{A}$ with $\lim f_n = f$, where the limits are taken in the Fréchet topology. Observe that $\langle d\phi, d\psi f_n\rangle'$ is Fréchet Cauchy as

$$\langle d\phi, d\psi f_n\rangle' - \langle d\phi, d\psi f_m\rangle' = \langle d\phi, d\psi\rangle'(f_n - f_m)$$

So $\langle d\phi, d\psi f\rangle' = \lim \langle d\phi, d\psi\rangle' f_n = \langle d\phi, d\psi\rangle' f$, again the limit is taken in the corresponding Fréchet topology.

That proves the claim.

$$\langle d\alpha(d\phi), d\alpha(d\psi)\rangle' = (id \otimes h \otimes id)(id \otimes m \otimes id)(id \otimes \kappa \otimes id \otimes id)(\alpha \otimes id \otimes id)(x \otimes \Delta(y))$$

$$= (id \otimes h \otimes id)(id \otimes m \otimes id)(id \otimes \kappa \otimes id \otimes id)(x(0) \otimes x(1) \otimes y(1) \otimes y(2))$$

$$= (id \otimes h \otimes id)(x(1) \otimes \kappa(x(2))y(1) \otimes y(2))$$

$$= x(0) \otimes h(\kappa(x(1))y(1))y(2).$$
On the other hand

\[\alpha(\langle d\phi, d\psi \rangle') = x_{(0)(0)} h(x_{(1)})y \otimes x_{(0)(1)} \]
\[= x_{(0)} \otimes x_{(1)(1)} h(\kappa(x_{(1)(1)})y) \]
\[= x_{(0)} \otimes x_{(1)(1)} h(\kappa(y)(x_{(1)(2)})) \quad (\text{since } h(\kappa(a)) = h(a)) \]

Hence it is enough to show that \(h(\kappa(c)b_{(2)})b_{(1)} = h(\kappa(b)c_{(1)})c_{(2)} \) where \(b, c \in Q_0 \),
for then taking \(x_{(1)} = b \) and \(y = c \) we can complete the proof.

We make the transformation \(T(a \otimes b) = \Delta(\kappa(a))(1 \otimes b) \).
Then

\[
(h \otimes id)T(a \otimes b) \\
= (h \otimes id)\Delta(\kappa(a))(1 \otimes b) \\
= ((h \otimes id)\Delta(\kappa(a)))b \\
= h(\kappa(a))b \\
= (h \otimes id)(a \otimes b)
\]

Hence \(h(b_{(2)}\kappa(c))b_{(1)} = (h \otimes id)T(b_{(2)}\kappa(c) \otimes b_{(1)}) \).
So, by using traciality of \(h \) it is enough to show that \(T(b_{(2)}\kappa(c) \otimes b_{(1)}) = c_{(1)}\kappa(b) \otimes c_{(2)} \).

\[
T(b_{(2)}\kappa(c) \otimes b_{(1)}) \\
= \Delta(\kappa(b_{(2)}\kappa(c)))(1 \otimes b_{(1)}) \\
= \Delta(c\kappa(b_{(2)}))(1 \otimes b_{(1)}) \\
= (c_{(1)} \otimes c_{(2)})(\kappa(b_{(2)}) \otimes \kappa(b_{(1)}))(1 \otimes b_{(1)}) \\
= (c_{(1)} \otimes c_{(2)})m_{23}(\kappa(b_{(2)}) \otimes \kappa(b_{(1)})) \otimes b_{(1)}) \\
= (c_{(1)} \otimes c_{(2)})m_{23}(\kappa \otimes \kappa \otimes id)\sigma_{13}(b_{(1)} \otimes b_{(2)}(1) \otimes b_{(2)(2)}) \\
= (c_{(1)} \otimes c_{(2)})m_{23}(\kappa \otimes \kappa \otimes id)\sigma_{13}(b_{(1)}(1) \otimes b_{(1)(2)} \otimes b_{(2)}) \\
= (c_{(1)} \otimes c_{(2)})m_{23}(\kappa(b_{(2)}) \otimes \kappa(b_{(1)(2)})) \otimes b_{(1)(1)}) \\
= (c_{(1)} \otimes c_{(2)})(\kappa(b_{(2)}) \otimes \epsilon(b_{(1)}).1_Q)(b_{(1)}(1) \otimes b_{(2)}) \\
= (c_{(1)} \otimes c_{(2)})(\kappa \otimes \kappa)((b_{(2)}) \otimes \epsilon(b_{(1)}).1_Q) \\
= (c_{(1)} \otimes c_{(2)})(\kappa \otimes \kappa)(\epsilon(b_{(1)})(b_{(2)} \otimes 1_Q) \\
= c_{(1)}\kappa(b) \otimes c_{(2)}
\]

Which proves the claim.

Now we proceed to define a new Riemannian structure on the manifold so that the action \(\alpha \) will be inner product preserving. For that we are going to need
the following

Lemma 3.5 (i) For $m \in M$, $Sp \{ds(m) : s \in A\}$ coincides with $T^*_m(M)$.
(ii) If $\{s_1, ..., s_n\}$ and $\{s'_1, ..., s'_n\}$ are two sets of functions in A such that each of $\{ds_i(m) : i = 1, ..., n\}$ and $\{ds_i(m) : i = 1, ..., n\}$ are bases for $T^*_m(M)$ and for $v, w \in T^*_m(M)$ with $v = \sum_i c_i ds_i(m) = \sum_i \tilde{c}_i ds_i(m)$ and $w = \sum_i d_i ds_i(m) = \sum_i \tilde{d}_i ds_i(m)$, then

$$\sum_{i,j} \tilde{c}_i \tilde{d}_j < ds_i, ds_j >' (m) = \sum_{i,j} \tilde{c}_i \tilde{d}_j < ds'_i, ds'_j >' (m),$$

where $<, >'$ is the new $C^\infty(M)$ valued inner product introduced earlier.

Proof:
Choosing a coordinate neighbourhood U around m and a set of coordinates $x_1, ..., x_n$ we have $ds(m) = \sum_{i=1}^n \frac{\partial}{\partial x_i}(m) dx_i(m)$.

Pick any $\eta \in T^*_m(M)$ i.e. we have $\eta = \sum_{i=1}^n c_i dx_i(m)$ for some c_i’s in \mathbb{R}.

Choose any $f \in C^\infty(M)$ with $\frac{\partial f}{\partial x_i}(m) = c_i$.

For $f \in C^\infty(M)$, by Fréchet density of A we have a sequence $s_n \in A$ and an $n_0 \in \mathbb{N}$ such that

$$\left| \frac{\partial s}{\partial x_i}(m) - \frac{\partial f}{\partial x_i}(m) \right| < \epsilon \forall n \geq n_0.$$

So $Sp \{ds(m) : s \in A\}$ is dense in $T^*_m(M)$. $T^*_m(M)$ being finite dimensional $Sp \{ds(m) : s \in A\}$ coincides with $T^*_m(M)$. Which proves (i).

For proving (ii) first we prove the following fact:

Let $m \in M$ and $\omega = \omega', \eta = \eta' \in \Omega^1(A)$ such that $\omega = 0$ in a neighbourhood U of m. Then $<\omega, \eta >' = 0$ for all $\eta \in \Omega^1(A)$.

For the proof of the above fact let $V \subset U$ such that $V \subset \bar{V} \subset U$.

Choose $f \in C^\infty(M)_{\mathbb{R}}$ such that $supp(f) \subset \bar{V}$, $f \equiv 1$ on V and $f \equiv 0$ outside U.

So we can write $\omega = (1 - f)\omega$. Then

$$<\omega, \eta >' (m) = <(1 - f)\omega, \eta >' (m) = <\omega, \eta > (m)(1 - f)(m) \text{ (by 4)} = 0.$$

Applying the above fact we can show:

Let $m \in M$ and $\omega = \omega', \eta = \eta' \in \Omega^1(A)$ such that $\omega = 0$ in a neighbourhood U of m. Then $<\omega, \eta >' = <\omega, \eta >', \forall \omega, \omega', \eta, \eta' \in \Omega^1(A)$.

For the proof it is enough to observe that $<\omega, \eta >' (m) - <\omega', \eta >' (m) = <\omega - \omega', \eta >' (m) + <\omega', \eta - \eta >' (m)$.

As $\{ds_1(m), ..., ds_n(m)\}$ and $\{ds'_1(m), ..., ds'_n(m)\}$ are two bases for $T^*_m(M)$.
Then they are actually bases for $T^*_x(M)$ for x in a neighbourhood U of m. So
there are \(\{ f_{ij} : i, j = 1(1)n \} \) in \(C^\infty(M) \) such that

\[
 ds_i = \sum_{j=1}^{n} f_{ij} ds_j'
\]
on \(U \) for all \(i = 1, \ldots, n \). Hence by the previous discussion

\[
 \langle ds_i, ds_j \rangle' \ (m) = \langle \sum_k f_{ik} ds_k', \sum_l f_{jl} ds_l' \rangle' \ (m) \quad (5)
\]

Let \(v = \sum_{i=1}^{n} c_i ds_i(m) = \sum_{i=1}^{n} c_i' ds_i'(m) \) and \(w = \sum_{i=1}^{n} d_i ds_i(m) = \sum_{i=1}^{n} d_i' ds_i'(m) \). So by definition

\[
 \langle v, w \rangle' = \sum_{ij} \bar{c}_i d_j \langle ds_i, ds_j \rangle' \ (m)
\]

Then we can define a new inner product on the manifold \(M \). For that let \(v, w \in T^*_m(M) \) by (i) of Lemma 3.5 we choose \(s_1, \ldots, s_n \in A \) such that \(ds_1(m), \ldots, ds_n(m) \) is a basis for \(T^*_m(M) \). Let \(\{ c_i, d_i : i = 1, \ldots, n \} \) be such that \(v = \sum_i c_i ds_i(m) \) and \(w = \sum_i d_i ds_i \). Then we define

\[
 \langle v, w \rangle' := \sum_{ij} \bar{c}_i d_j \langle ds_i, ds_j \rangle' \ (m).
\]

It is evident that this is a semi definite inner product. We have to show that this is a positive definite inner product. To that end let \(\langle v, v \rangle' = 0 \) i.e.

\[
 \sum_{ij} \bar{c}_i c_j \langle ds_i, ds_j \rangle' \ (x) = 0,
\]

where \(v = \sum_i c_i ds_i(x) \in T^*_x(M) \). Since the Haar state \(h \) is faithful on \(Q_0 \) and by assumption \(\langle \alpha ds_i, \alpha ds_j \rangle \in A \otimes Q_0 \), we can deduce that

\[
 \sum_{i,j} \bar{c}_i c_j ((id \otimes m)(id \otimes \kappa \otimes id)(\alpha \otimes id) \langle \alpha ds_i, \alpha ds_j \rangle)(x) = 0.
\]

Since \(\epsilon \circ \kappa = \epsilon \) on \(Q_0 \), applying \(\epsilon \) to the above equation, we get

\[
 \sum_{i,j} \bar{c}_i c_j ((id \otimes m)(id \otimes \epsilon \otimes \epsilon)(\alpha \otimes id) \langle \alpha ds_i, \alpha ds_j \rangle)(x) = 0.
\]
Using the fact that ϵ is $*$-homomorphism we get
\[\sum_{i,j} \bar{c}_i c_j < (id \otimes \epsilon)(d\alpha(ds_i))(x), (id \otimes \epsilon)(d\alpha(ds_j))(x) >= 0.\]

It is easy to see that $(id \otimes \epsilon)(d\alpha(ds_i)) = ds_i$ for all i. Hence we conclude that
\[< \sum_i c_i ds_i(x), \sum_i c_i ds_i(x) >= 0,\]
\[i.e. < v, v >= 0\]
and hence $v = 0$ (as \cdot, \cdot is strictly positive definite, being an inner product on $T^*_x M$) so that \cdot, \cdot' is indeed strictly positive definite, i.e. inner product. We have already noted ((ii) of Lemma 3.5) that our definition is independent of choice of s_i’s, and also that with respect to this new Riemannian structure on the manifold, α is inner product preserving. This completes the proof of the Theorem 3.1 on $\Omega^1(A)$ and hence on $\Omega^1(C^\infty(M))$.

\[\square\]

References

[1] Banica, T.: Quantum automorphism groups of small metric spaces, Pacific J. Math. 219 (2005), no. 1, 27–51.

[2] Banica, T., Bhowmick, J. and De Commer, K.: Quantum isometries and group dual subgroups, Ann. Math. Blaise Pascal 19 (2012), no. 1, 1–27.

[3] Bichon, J.: Quantum automorphism groups of finite graphs, Proc. Amer. Math. Soc. 131 (2003), no. 3, 665–673.

[4] Banica, T. and Goswami, D.: Quantum isometries and noncommutative spheres, Comm. Math. Phys. 298 (2010), no. 2, 343–356.

[5] Bhowmick, J., Goswami, D., Skalski, A.: Quantum isometry groups of 0-dimensional manifolds, Trans. Amer. Math. Soc. 363(2011).901-921.

[6] Bhowmick, J. and Goswami, D.: Quantum isometry groups : examples and computations, Comm. Math. Phys. 285 (2009), no.2, 421–444.

[7] Connes, A.: “Noncommutative Geometry”, Academic Press, London-New York (1994).
[8] Goswami, D.: Quantum Group of Isometries in Classical and Non Commutative Geometry, Comm. Math. Phys. 285 (2009), no. 1, 141–160.

[9] Goswami, D. and Joardar, S.: Rigidity of action of compact quantum groups on compact connected manifolds, arXiv 1309.1294.

[10] Goswami, D. and Joardar, S.: Quantum isometry groups of noncommutative manifolds obtained by deformation using unitary 2-cocycle, arXiv 1307.4850.

[11] Huang, H.: Faithful compact quantum group actions on connected compact metrizable spaces. J. Geom. Phys. 70 (2013), 232–236.

[12] Rieffel, Mark A.: Deformation Quantization for actions of R^d, Memoirs of the American Mathematical Society, November 1993. Volume 106. Number 506.

[13] Wang, S.: Quantum symmetry groups of finite spaces, Comm. Math. Phys., 195 (1998), 195–211.

[14] Maes, A. and Van Daele, A.: Notes on compact quantum groups, Nieuw Arch. Wisk. (4) 16 (1998), no. 1-2, 73–112.

[15] Woronowicz, S.L.: Compact Matrix Pseudogroups, Comm. Math. Phys., 111 (1987), 613–665.