Singular limit of an Allen-Cahn equation with nonlinear diffusion

PERLA EL KETTANI†, TADAHISA FUNAKI*, DANIELLE HILHORST%, HYUNJOON PARK†, AND SUNDER SETHURAMAN°

December 28, 2021

Abstract

We consider an Allen-Cahn equation with nonlinear diffusion, motivated by the study of the scaling limit of certain interacting particle systems. We investigate its singular limit and show the generation and propagation of an interface in the limit. The evolution of this limit interface is governed by mean curvature flow with a novel, homogenized speed in terms of a surface tension-mobility parameter emerging from the nonlinearity in our equation.

MSC 2020: 35K57, 35B40.

keywords: Allen-Cahn equation, Mean curvature flow, Singular limit, Nonlinear diffusion, Interface, Surface tension

1 Introduction

The Allen-Cahn equation with linear diffusion

$$u_t = \Delta u - \frac{1}{\varepsilon^2} F'(u)$$

was introduced to understand the phase separation phenomena which appears in the construction of polycrystalline materials [4]. Here, u stands for the order parameter which describes the state of the material, F is a double-well potential with two distinct local minima α_{\pm} at two different phases, and the parameter $\varepsilon > 0$ corresponds to the interface width in the phase separation process. When ε is small, it is expected that u converges to either of the two states $u = \alpha_+$ and $u = \alpha_-$. Thus, the limit $\varepsilon \downarrow 0$ creates a steep interface dividing two phases; this coincides with the phase separation phenomena and the limiting interface is known to evolve according to mean curvature flow; see [1, 7].

†Aix Marseille University, Toulon Univeristy, Laboratory Centre de Physique Théorique, CNRS, Marseille, France.
e-mail: Kettaneh.perla@hotmail.com

*Department of Mathematics, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
e-mail: funaki@ms.u-tokyo.ac.jp

%CNRS and Laboratoire de Mathématiques, University Paris-Saclay, Orsay Cedex 91405, France.
e-mail: Danielle.Hilhorst@math.u-psud.fr

†Department of Mathematical Sciences, Korean Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea. e-mail: hyunjoonps@gmail.com

°Department of Mathematics, University of Arizona, 621 N. Santa Rita Ave., Tucson, AZ 85750, USA.
e-mail: sethuram@math.arizona.edu
In this paper, we prove generation and propagation of interface properties for an Allen-Cahn equation with nondegenerate nonlinear diffusion. More precisely, we study the problem

\[
(P_\varepsilon) \begin{cases}
 u_t = \Delta \varphi(u) + \frac{1}{\varepsilon^2} f(u) & \text{in } D \times \mathbb{R}^+
 \quad \frac{\partial \varphi(u)}{\partial \nu} = 0 & \text{in } \partial D \times \mathbb{R}^+
 \quad u(x, 0) = u_0(x) & \text{for } x \in D
\end{cases}
\]

where the unknown function \(u \) denotes a phase function, \(D \) is a smooth bounded domain in \(\mathbb{R}^N, N \geq 2 \), \(\nu \) is the outward unit normal vector to the boundary \(\partial D \) and \(\varepsilon > 0 \) is a small parameter. The nonlinear functions \(\varphi \) and \(f \) satisfy the following properties.

We assume that \(f \) has exactly three zeros \(f(\alpha-) = f(\alpha+) = f(\alpha) = 0 \) where \(\alpha_- < \alpha < \alpha_+ \), and

\[f \in C^2(\mathbb{R}), \quad f'(\alpha-) < 0, \quad f'(\alpha+) < 0, \quad f'(\alpha) > 0 \]

so that

\[f(s) > 0 \text{ for } s < \alpha_-, \quad f(s) < 0 \text{ for } s > \alpha_. \]

We suppose that

\[\varphi \in C^4(\mathbb{R}), \quad \varphi' \geq C_\varphi \]

for some positive constant \(C_\varphi \). We impose one more relation between \(f \) and \(\varphi \), namely

\[\int_{\alpha_-}^{\alpha_+} \varphi'(s)f(s)ds = 0. \]

As for the initial condition \(u_0(x) \) we assume that \(u_0 \in C^2(\overline{D}) \). Throughout the paper, we define \(C_0 \) and \(C_1 \) as follows:

\[
C_0 := ||u_0||_{C^0(\overline{D})} + ||\nabla u_0||_{C^0(\overline{D})} + ||\Delta u_0||_{C^0(\overline{D})}
\]

\[
C_1 := \max_{|s-\alpha| \leq I} \varphi'(s) + \max_{|s-\alpha| \leq I} \varphi''(s) + \max_{|s-\alpha| \leq I} \varphi'''(s), \quad I = C_0 + \max(\alpha - \alpha_-, \alpha_+ - \alpha).
\]

Furthermore, we define \(\Gamma_0 \) by

\[\Gamma_0 := \{ x \in D : u_0(x) = \alpha \}. \]

In addition, we suppose \(\Gamma_0 \) is a \(C^{4+\nu}, 0 < \nu < 1 \) hypersurface without boundary such that

\[\Gamma_0 \subset D, \nabla u_0(x) \cdot n(x) \neq 0 \text{ if } x \in \Gamma_0 \]

\[u_0 > \alpha \text{ in } D_0^+, \quad u_0 < \alpha \text{ in } D_0^- \]

where \(D_0^- \) denotes the region enclosed by \(\Gamma_0 \), \(D_0^+ \) is the region enclosed between \(\partial D \) and \(\Gamma_0 \), and \(n \) is the outward normal vector to \(D_0^- \). It is standard that the above formulation, referred to as Problem \((P_\varepsilon) \), possesses a unique classical solution \(u_\varepsilon \).

The present paper is originally motivated by the study of the scaling limit of a Glauber+Zero-range particle system. In this microscopic system of interacting random walks, the Zero-range part governs the rates of jumps, while the Glauber part prescribes creation and annihilation rates of the particles. In a companion paper [9], we show that the system exhibits a phase separation and, under a certain space-time scaling limit, an interface arises, in the limit macroscopic density field of particles, evolving in time according to the motion by mean curvature. The system is indeed well approximated from macroscopic
viewpoint by the Allen-Cahn equation with nonlinear diffusion \((P^\varepsilon)\), or more precisely by its discretized equation. Although, in this paper, we study \((P^\varepsilon)\) under the Neumann boundary conditions, the formulation under periodic boundary conditions, used in the particle system setting in [27], can be treated similarly; see Remark [1] below.

In some other physical situations, it is expected that the diffusion can depend on the order parameter as in our case. In the experimental article [19], Wagner suggested that for metal alloys the diffusion depends in [28x585]for larger space dimensions \(N\). However, no rigorous proof on the motion of the interface in the nonlinear diffusion context has been given in [28x643]the Cahn equation with density dependent diffusion in 1 space dimension and showed a slow motion property. In [11], Fife and Lacey generalized the Allen-Cahn equation, which leads them to a parameter dependent diffusion Allen-Cahn equation. Recently, [12] considered an Allen-Cahn equation with density dependent diffusion in 1 space dimension and showed a slow motion property. However, no rigorous proof on the motion of the interface in the nonlinear diffusion context has been given for larger space dimensions \(N \geq 2\).

In this context, the purpose of this article is to study the singular limit of \(u^\varepsilon\) as \(\varepsilon \downarrow 0\). We first present a result on the generation of the interface. We use the following notation:

\[
\mu = f'(\alpha), \quad t^\varepsilon = \mu^{-1} \varepsilon^2 |\ln \varepsilon|, \quad \eta_0 = \min(\alpha - \alpha_-, \alpha_+ - \alpha).
\]

Theorem 1.1. Let \(u^\varepsilon\) be the solution of the problem \((P^\varepsilon)\), \(\eta\) be an arbitrary constant satisfying \(0 < \eta < \eta_0\). Then, there exist positive constants \(\varepsilon_0\) and \(M_0\) such that, for all \(\varepsilon \in (0, \varepsilon_0)\), the following holds:

(i) for all \(x \in D\)

\[
\alpha_+ - \eta \leq u^\varepsilon(x, t^\varepsilon) \leq \alpha_+ + \eta;
\]

(ii) if \(u_0(x) \geq \alpha + M_0 \varepsilon\), then

\[
u^\varepsilon(x, t^\varepsilon) \geq \alpha_+ - \eta;
\]

(iii) if \(u_0(x) \leq \alpha - M_0 \varepsilon\), then

\[
u^\varepsilon(x, t^\varepsilon) \leq \alpha_- + \eta.
\]

After the interface has been generated, the diffusion term has the same order as the reaction term. As a result the interface starts to propagate. Later, we will prove that the interface moves according to the following motion equation:

\[
(IP) \begin{cases}
V_n = -(N - 1) \lambda_0 \kappa & \text{on } \Gamma_t \\
\Gamma_{t|\varepsilon=0} = \Gamma_0,
\end{cases}
\]

where \(\Gamma_t\) is the interface at time \(t > 0\), \(V_n\) is the normal velocity on the interface, \(\kappa\) denotes its mean curvature, and \(\lambda_0\) is a positive constant which will be defined later (see (26) and (30)). It is well known that Problem \((IP)\) possesses locally in time a unique smooth solution. Fix \(T > 0\) such that the solution of \((IP)\), in [13], exists in \([0, T]\) and denote the solution by \(\Gamma = \bigcup_{0 \leq t \leq T} (\Gamma_t \times \{t\})\). From Proposition 2.1 of [27] such a \(T > 0\) exists, and one can deduce that \(\Gamma \in C^{4+\nu, \frac{4+\nu}{2}}\) in \([0, T]\), given that \(\Gamma_0 \in C^{4+\nu}\).

The second main theorem states a result on the generation and the propagation of the interface.

Theorem 1.2. Under the conditions given in Theorem 1.1, for any given \(0 < \eta < \eta_0\) there exist \(\varepsilon_0 > 0\) and \(C > 0\) such that

\[
u^\varepsilon \in \begin{cases}
[\alpha_- - \eta, \alpha_+ + \eta] & \text{for } x \in D \\
[\alpha_+ - \eta, \alpha_+ + \eta] & \text{if } x \in \Gamma_t^+ \setminus N_C(\Gamma_t) \\
[\alpha_- - \eta, \alpha_- + \eta] & \text{if } x \in \Gamma_t^- \setminus N_C(\Gamma_t)
\end{cases}
\]

for all \(\varepsilon \in (0, \varepsilon_0)\) and \(t \in [t^\varepsilon, T]\), where \(\Gamma_t^+\) denotes the region enclosed by \(\Gamma_t\), \(\Gamma_t^-\) is that enclosed between \(\partial D\) and \(\Gamma_t\), and \(N_r(\Gamma_t) := \{x \in D, \text{dist}(x, \Gamma_t) < r\}\).
This theorem implies that, after generation, the interface propagates according to the motion \((IP)\) with a width of order \(O(\varepsilon)\). Note that Theorems 1.1 and 1.2 extend similar results for linear diffusion Allen-Cahn equations due to \([1]\).

We now state an approximation result inspired by a similar result proved in \([3]\).

Theorem 1.3. (i) Let the assumptions of Theorem 1.2 hold and \(\rho > 1\). Then, the solution \(u^\varepsilon\) of \((P^\varepsilon)\) satisfies

\[
\lim_{\varepsilon \to 0} \sup_{\rho \varepsilon \leq t \leq T, x \in D} \left| u^\varepsilon(x,t) - U_0 \left(\frac{d^\varepsilon(x,t)}{\varepsilon} \right) \right| = 0,
\]

where \(U_0\) is a standing wave solution defined in \([20]\) and \(d^\varepsilon\) denotes the signed distance function associated with \(\Gamma^\varepsilon_t := \{x \in D : u^\varepsilon(x,t) = \alpha\}\), defined as follows:

\[
d^\varepsilon(x,t) = \begin{cases}
\text{dist}(x, \Gamma^\varepsilon_t) & \text{if } x \in D^\varepsilon_+ \\
-\text{dist}(x, \Gamma^\varepsilon_t) & \text{if } x \in D^\varepsilon_-
\end{cases}
\]

where \(D^\varepsilon_+\) denotes the region enclosed by \(\Gamma^\varepsilon_t\) and \(D^\varepsilon_-\) denotes the region enclosed between \(\partial D\) and \(\Gamma^\varepsilon_t\).

(ii) For small enough \(\varepsilon > 0\) and for any \(t \in [\rho \varepsilon, T]\), \(\Gamma^\varepsilon_t\) can be expressed as a graph over \(\Gamma_t\).

Remark 1. Theorems 1.1, 1.2 and 1.3 hold not only for the Neumann boundary condition of Problem \((P^\varepsilon)\) but also for periodic boundary conditions with \(D = \mathbb{T}^N\), with similar proofs as given in Sections 3, 4 and 5.

The paper is organized as follows. In Section 2, the interface motion \((IP)\) is formally derived from the problem \((P^\varepsilon)\) as \(\varepsilon \downarrow 0\). In particular, the constant \(\lambda_0\) is obtained. Section 3 studies the generation of interface and gives the proof of Theorem 1.1. In a short time, the reaction term \(f\) governs the system and the solution of \((P^\varepsilon)\) behaves close to that of an ordinary differential equation. Section 4 discusses the propagation of interface and Theorem 1.2 is proved. The sub- and super-solutions are constructed by means of two functions \(U_0\) and \(U_1\) formally introduced in asymptotic expansions in Section 2. Section 5 gives the proof of Theorem 1.3. Finally, in the Appendix, we define the mobility \(\mu_{AC}\) and the surface tension \(\sigma_{AC}\) of the interface, especially in our nonlinear setting, and show the relation \(\lambda_0 = \mu_{AC}\sigma_{AC}\).

2 Formal derivation of the interface motion equation

In this section, we formally derive the equation of interface motion of the Problem \((P^\varepsilon)\) by applying the method of matched asymptotic expansions. To this purpose, we first define the interface \(\Gamma_t\) and then derive its equation of motion.

Suppose that \(u^\varepsilon\) converges to a step function \(u\) where

\[
u(x,t) = \begin{cases}
\alpha_+ & \text{in } D^+_t \\
\alpha_- & \text{in } D^-_t
\end{cases}
\]

Let

\[
\Gamma_t = \overline{D^+_t} \cap \overline{D^-_t}, D^+_t \cup D^-_t = D, \ t \in [0,T].
\]

Let also \(\overline{d}(x,t)\) be the signed distance function to \(\Gamma_t\) defined by

\[
\overline{d}(x,t) := \begin{cases}
\text{dist}(x, \Gamma_t) & \text{for } x \in \overline{D^-_t} \\
\text{dist}(x, \Gamma_t) & \text{for } x \in \overline{D^+_t}
\end{cases}
\]
Assume that u^ε has the expansions

$$u^\varepsilon(x,t) = \alpha_\pm + \varepsilon u^\varepsilon_1(x,t) + \varepsilon^2 u^\varepsilon_2(x,t) + \cdots$$

away from the interface Γ and that

$$u^\varepsilon(x,t) = U_0(x,t,\xi) + \varepsilon U_1(x,t,\xi) + \varepsilon^2 U_2(x,t,\xi) + \cdots$$

(17)

near Γ, where $\xi = \frac{\mathcal{d}}{\varepsilon}$. Here, the variable ξ is given to describe the rapid transition between the regions \{u^\varepsilon \simeq \alpha^+\} and \{u^\varepsilon \simeq \alpha^-\}. In addition, we normalize U_0 and U_k so that

$$U_0(x,t,0) = \alpha, \quad U_k(x,t,0) = 0.$$

(18)

To match the inner and outer expansions, we require that

$$U_0(x,t,\pm\infty) = \alpha_\pm, \quad U_k(x,t,\pm\infty) = u^\varepsilon_k(x,t)$$

(19)

for all $k \geq 2$.

After substituting the expansion (17) into (P^ε), we collect the ε^{-2} terms, to obtain

$$\varphi(U_0)_{zz} + f(U_0) = 0.$$

Since this equation only depends on the variable z, we may assume that U_0 is only a function of the variable z, that is $U_0(x,t,z) = U_0(z)$. In view of the conditions (18) and (19), we find that U_0 is the unique increasing solution of the following problem

$$
\begin{cases}
\varphi(U_0)_{zz} + f(U_0) = 0 \\
U_0(-\infty) = \alpha_-, \quad U_0(0) = \alpha, \quad U_0(+\infty) = \alpha_+.
\end{cases}
$$

(20)

In order to understand the nonlinearity more clearly, we set

$$g(v) := f(\varphi^{-1}(v)),$$

where φ^{-1} is the inverse function of φ and define $V_0(z) := \varphi(U_0(z))$; note that such transformation is possible by the condition (3). Substituting V_0 into equation (20) yields

$$
\begin{cases}
V_{0zz} + g(V_0) = 0 \\
V_0(-\infty) = \varphi(\alpha_-), \quad V_0(0) = \varphi(\alpha), \quad V_0(+\infty) = \varphi(\alpha_+).
\end{cases}
$$

(21)

Condition (4) then implies the existence of the unique increasing solution of (21).

Next we collect the ε^{-1} terms in the asymptotic expansion. In view of the definition of $U_0(z)$ and the condition (18), we obtain the following problem

$$
\begin{cases}
(\varphi'(U_0)U_1)_{zz} + f'(U_0)U_1 = \frac{\partial \varepsilon t}{\partial \alpha} U_0 - (\varphi(U_0))_z \Delta d \\
U_1(x,t,0) = 0, \quad \varphi'(U_0)U_1 \in L^\infty(\mathbb{R}).
\end{cases}
$$

(22)

To prove the existence of solution to (22), we consider the transformed function $V_1 = \varphi'(U_0)U_1$, which gives the problem

$$
\begin{cases}
V_{1zz} + g'(V_0)V_1 = \frac{V_{0z}}{\varphi'(\varphi^{-1}(V_0))} \Delta d - V_{0z} \Delta d \\
V_1(x,t,0) = 0, \quad V_1 \in L^\infty(\mathbb{R}).
\end{cases}
$$

(23)
Now, Lemma 2.2 of \[1\] implies the existence and uniqueness of \(V_1\) provided that
\[
\int_\mathbb{R} \left(\frac{1}{\varphi'(\varphi^{-1}(V_0))} \, d_t - \Delta \bar{d} \right) V_0^2 = 0.
\]
Substituting \(V_0 = \varphi(U_0)\) and \(V_{0z} = \varphi'(U_0)U_{0z}\) yields
\[
\bar{d}_t = \frac{\int_\mathbb{R} V_{0z}^2}{\int_\mathbb{R} \varphi'(\varphi^{-1}(V_0))} \Delta \bar{d} = \frac{\int_\mathbb{R} (\varphi'(U_0)U_{0z})^2}{\int_\mathbb{R} \varphi'(U_0)U_{0z}^2} \Delta \bar{d}. \tag{24}
\]
It is known that \(\bar{d}_t = -V_n\), where \(V_n\) is equal to the normal velocity on the interface \(\Gamma_t\), and \(\Delta \bar{d}\) is equal to \((N-1)\kappa\), where \(\kappa\) is the mean curvature of \(\Gamma_t\). Thus, we obtain the equation of motion of the interface \(\Gamma_t\),
\[
V_n = -(N-1)\lambda_0 \kappa, \tag{25}
\]
where
\[
\lambda_0 = \frac{\int_\mathbb{R} (\varphi'(U_0)U_{0z})^2}{\int_\mathbb{R} \varphi'(U_0)U_{0z}^2}. \tag{26}
\]
The constant \(\lambda_0\) is interpreted as the surface tension \(\sigma_{AC}\) multiplied by the mobility \(\mu_{AC}\) of the interface; see Appendix. In particular, \(\text{IP}\) coincides with the equation (1) in \[4\].

Finally, we derive an explicit form of \(\lambda_0\). Indeed, we multiply the equation (20) by \(\varphi(U_0)z\), yielding
\[
\varphi(U_0)z \varphi'(U_0)z + f(U_0)\varphi(U_0) z = 0.
\]
Integrating from \(-\infty\) to \(z\), we obtain
\[
\frac{1}{2} \left[\varphi(U_0)z \right]^2(z) + \int_{-\infty}^z f(U_0)\varphi(U_0) zdz = 0
\]
or alternatively
\[
\frac{1}{2} \left[\varphi(U_0)z \right]^2(z) + \int_{a_-}^{U_0(z)} f(s)\varphi'(s)ds = 0.
\]
Hence,
\[
\varphi(U_0)z(z) = \sqrt{2\sqrt{W(U_0(z))}}, \tag{27}
\]
where \(W\) is given by
\[
W(u) = -\int_{a_-}^{u} f(s)\varphi'(s)ds = \int_{a}^{a_+} f(s)\varphi'(s)ds, \tag{28}
\]
the last equality holdinf by \[4\]. It follows that
\[
\int_\mathbb{R} \varphi(U_0)z U_{0z}(z)dz = \sqrt{2} \int_\mathbb{R} \sqrt{W(U_0(z))}U_{0z}(z)dz
\]
so that also
\[
\int_\mathbb{R} \varphi'(U_0)U_{0z}^2(z)dz = \sqrt{2} \int_{a-}^{a+} \sqrt{W(u)}du.
\]
Similarly, since
\[
\int_\mathbb{R} (\varphi'(U_0)U_{0z})^2dz = \sqrt{2} \int_\mathbb{R} (\varphi'(U_0)\sqrt{W(U_0(z))}U_{0z})dz,
\]
6
we get
\[\int_{\mathbb{R}} (\varphi'(U_0)U_0)^2 dz = \sqrt{2} \int_{\alpha_-}^{\alpha_+} \varphi'(u) \sqrt{W(u)} du, \] (29)
so that we finally obtain the formula
\[\lambda_0 = \frac{\int_{\alpha_-}^{\alpha_+} \varphi'(u) \sqrt{W(u)} du}{\int_{\alpha_-}^{\alpha_+} \sqrt{W(u)} du}. \] (30)
Note that if \(\varphi(u) = u \), the case of the linear diffusion Allen-Cahn equation, we recover the value \(\lambda_0 = 1 \) as expected.

3 Generation of the interface

In this section, we prove Theorem 1.1 on the generation of the interface. The main idea, based on the comparison principle Lemma 1, is to construct suitable sub- and super-solutions. The proof of Theorem 1.1 is given in Section 3.4.

3.1 Comparison principle

Lemma 1. Let \(v \in C^2(\overline{D} \times \mathbb{R}^+) \) satisfy
\[
(P) \begin{cases}
 v_t \geq \Delta \varphi(v) + \frac{1}{\varepsilon^2} f(v) & \text{in } D \times \mathbb{R}^+ \\
 \frac{\partial \varphi(v)}{\partial \nu} = 0 & \text{in } \partial D \times \mathbb{R}^+ \\
 v(x,0) \geq u_0(x) & \text{for } x \in D.
\end{cases}
\]
Then, \(v \) is a super-solution of Problem \((P^{\varepsilon})\) and we have
\[v(x,t) \geq u^{\varepsilon}(x,t), \quad (x,t) \in D \times \mathbb{R}^+. \]

If \(v \) satisfies the opposite inequalities in Problem \((P)\), then \(v \) is a sub-solution of Problem \((P^{\varepsilon})\) and we have
\[v(x,t) \leq u^{\varepsilon}(x,t), \quad (x,t) \in D \times \mathbb{R}^+. \]

Proof. Consider the inequality satisfied for the difference of a super-solution \(v \) and a solution \(u^{\varepsilon} \). Apply the maximum principle to the function \(w := v - u^{\varepsilon} \) to see that it is positive. \(\square \)

3.2 Solution of the corresponding ordinary differential equation

In the first stage of development, we expect that the solution behaves as that of the corresponding ordinary differential equation:
\[
\begin{cases}
 Y_{\tau}(\tau, \zeta) = f(Y(\tau, \zeta)) & \tau > 0 \\
 Y(0, \zeta) = \zeta & \zeta \in \mathbb{R}.
\end{cases}
\] (31)
We deduce the following result from [1].
Lemma 2. Let \(\eta \in (0, \eta_0) \) be arbitrary. Then, there exists a positive constant \(C_Y = C_Y(\eta) \) such that the following holds:

(i) There exists a positive constant \(\overline{\eta} \) such that for all \(\tau > 0 \) and all \(\zeta \in (-2C_0, 2C_0) \),

\[
e^{-\overline{\eta}\tau} \leq Y_{\zeta}(\tau, \zeta) \leq C_Y e^{\mu\tau}.
\]

(32)

(ii) For all \(\tau > 0 \) and all \(\zeta \in (-2C_0, 2C_0) \),

\[
\left| \frac{Y_{\zeta\zeta}(\tau, \zeta)}{Y_{\zeta}(\tau, \zeta)} \right| \leq C_Y (e^{\mu\tau} - 1).
\]

(iii) There exists a positive constants \(\varepsilon_0 \) such that, for all \(\varepsilon \in (0, \varepsilon_0) \), we have

(a) for all \(\zeta \in (-2C_0, 2C_0) \)

\[
\alpha_- - \eta \leq Y(\mu^{-1}|\ln \varepsilon|, \zeta) \leq \alpha_+ + \eta;
\]

(33)

(b) if \(\zeta \geq \alpha + C_Y \varepsilon \), then

\[
Y(\mu^{-1}|\ln \varepsilon|, \zeta) \geq \alpha_+ - \eta;
\]

(34)

(c) if \(\zeta \leq \alpha - C_Y \varepsilon \), then

\[
Y(\mu^{-1}|\ln \varepsilon|, \zeta) \leq \alpha_- + \eta.
\]

Proof. These results can be found in Lemma 4.7 and Lemma 3.7 of [1], except for (32). To prove (32), we follow similar computations as in Lemma 3.2 of [1]. Differentiating (31) by \(\zeta \), we obtain

\[
\begin{aligned}
Y_{\zeta\zeta}(\tau, \zeta) &= f'(Y(\tau, \zeta))Y_{\zeta}, \quad \tau > 0 \\
Y_{\zeta}(0, \zeta) &= 1,
\end{aligned}
\]

which yields the following equality,

\[
Y_{\zeta}(\tau, \zeta) = \exp \left[\int_0^\tau f(Y(s, \zeta)) \right].
\]

(35)

Hence, for \(\zeta = \alpha \),

\[
Y_{\zeta}(\tau, \alpha) = \exp \left[\int_0^\tau f(Y(s, \alpha)) \right] = e^{\mu\tau},
\]

where the last equality follows since \(Y(\tau, \alpha) = \alpha \). Also, for \(\zeta = \alpha_\pm \), by [1], we have

\[
Y_{\zeta}(\tau, \alpha_\pm) \leq e^{\mu\tau}.
\]

For \(\zeta \in (\alpha_- + \eta, \alpha_+ - \eta) \setminus \{\alpha\} \), Lemma 3.4 of [1] guarantees the upper bound of \(Y_{\zeta} \) in (32). We only need to consider the case that \(\zeta \in (-2C_0, 2C_0) \setminus (\alpha_- + \eta, \alpha_+ - \eta) \). It follows from [1] that we can choose a positive constant \(\eta \) and \(\overline{\eta} \) such that

\[
f'(s) < 0, \ s \in I,
\]

(36)

where \(I := (\alpha_- - \overline{\eta}, \alpha_- + \eta) \cup (\alpha_+ - \eta, \alpha_+ + \overline{\eta}) \). Moreover, [1] and (2) imply

\[
Y(\tau, \zeta) \in J,
\]

(37)
for ζ ∈ J where J := (min{−2C_0, α_− − η}, α_− + η) ∪ (α_+ − η, max{2C_0, α_+ + η}). Thus, (35), (36) and (37) guarantee the upper bound of (32) for ζ ∈ I, which leaves us only the case ζ ∈ (−2C_0, 2C_0) \ I.

We consider now the case ζ ∈ (α_+ + η, 2C_0); the case of ζ ∈ (−2C_0, α_− − η) can be analysed in a similar way. By (3.13) in [1], we have

\[
\ln Y(τ, ζ) = f'(α_+)τ + \int_{ζ}^{Y(τ, ζ)} \tilde{f}(s) ds, \quad \text{and} \quad \tilde{f}(s) = \frac{f'(s) - f'(α_+)}{f(s)}.
\]

(38)

Note that \(\tilde{f}(s) \to f''(α_+)f'(α_+) \) as \(s \to α_+ \), so that \(\tilde{f} \) may be extended as a continuous function. We define

\[
\tilde{F} := \|f\|_{L^∞(α_+ \max{2C_0, α_+ + η})}.
\]

Since (2) yields \(Y(τ, ζ) > α_+ \) for \(ζ ∈ (α_+ + η, 2C_0) \), by (38) we can find a constant \(C_Y \) large enough such that

\[
Y(τ, ζ) ≤ C_Y e^{f''(α_+)τ} ≤ C_Y e^{µτ}.
\]

Thus, we obtain the upper bound of (32).

For the lower bound, we first define

\[
\overline{µ} := - \min_{s ∈ I'} f'(s), \quad I' = [-2C_0, 2C_0] \cup [α_-, α_+].
\]

Note that \(\overline{µ} > 0 \) by (1). Thus, by (35), we obtain

\[
Y(τ, ζ) ≥ e^{-\overline{µ}τ}.
\]

3.3 Construction of sub- and super-solutions

We now construct sub- and super-solutions for the proof of Theorem 1.1. For simplicity, we first consider the case where \(\frac{∂u_0}{∂ν} = 0 \) on \(∂D \).

In this case, we define sub- and super- solution as follows:

\[
w^±(x, t) = Y\left(\frac{t}{ε^2}, u_0(x) ± εC_2 (e^{µτ/ε^2} - 1)\right) = Y\left(\frac{t}{ε^2}, u_0(x) ± P(t)\right)
\]

for some the constant \(C_2 \). In the general case, where (39) does not necessarily hold, we need to modify \(w^±_ε \) near the boundary \(∂D \). This will be discussed later in the proof of Theorem 1.1; see after equation (41).

Lemma 3. Assume (33). Then, there exist positive constants \(ε_0 \) and \(C_2, \overline{C}_2 \) independent of \(ε \) such that, for all \(ε \in (0, ε_0) \), \(w^±_ε \) satisfies

\[
\begin{align*}
&\mathcal{L}(w^-_ε) < -\overline{C}_2 e^{-\frac{µ}{ε^2}} < C_2 e^{-\frac{µ}{ε^2}} < \mathcal{L}(w^+_ε) \\
\frac{∂w^-_ε}{∂ν} &= \frac{∂w^+_ε}{∂ν} = 0
\end{align*}
\]

in \(D × [0, t^ε] \)

\[
\text{on } ∂D × [0, t^ε]. \tag{40}
\]

\]

9
Proof. We only prove that w^+_ε is the desired super-solution; the case for $w^-\varepsilon$ can be treated in a similar way. The assumption (39) implies
\[
\frac{\partial w^\pm_\varepsilon}{\partial \nu} = 0 \text{ on } \partial D \times \mathbb{R}^+.
\]

Define the operator \mathcal{L} by
\[
\mathcal{L}u = u_t - \Delta \varphi(u) - \frac{1}{\varepsilon^2}f(u).
\]

Then, direct computation with $\tau = t/\varepsilon^2$ gives
\[
\mathcal{L}(w^+_\varepsilon) = \frac{1}{\varepsilon^2}Y_\tau + P'(t)Y_\zeta - \left(\varphi''(w^+_\varepsilon)|\nabla u_0|^2(Y_\zeta)^2 + \varphi'(w^+_\varepsilon)\Delta u_0 Y_\zeta + \varphi'(w^+_\varepsilon)|\nabla u_0|^2 Y_\zeta + \frac{1}{\varepsilon^2}f(Y) \right)
\]
\[
= \frac{1}{\varepsilon^2}(Y_\tau - f(Y)) + Y_\zeta \left(P'(t) - \left(\varphi''(w^+_\varepsilon)|\nabla u_0|^2 Y_\zeta + \varphi'(w^+_\varepsilon)\Delta u_0 + \varphi'(w^+_\varepsilon)|\nabla u_0|^2 Y_\zeta \right) \right).
\]

By the definition of Y, the first term on the right-hand-side vanishes. By choosing ε_0 sufficiently small, for $0 \leq t \leq t_\varepsilon$, we have
\[
P(t) \leq P(t^\varepsilon) = \varepsilon^2 C_2(e^{\mu t/\varepsilon^2} - 1) = \varepsilon^2 C_2(\varepsilon^{-1} - 1) < C_0.
\]

Hence, $|u_0 + P(t)| < 2C_0$. Applying Lemma 2, 5 and 9 gives
\[
\mathcal{L}w^+_\varepsilon \geq Y_\zeta \left(C_2 \mu e^{\mu t/\varepsilon^2} - (C_0^2 C_1 C_Y e^{\mu t/\varepsilon^2} + C_0 C_1 + C_0^2 C_1 C_Y (e^{\mu t/\varepsilon^2} - 1)) \right)
\]
\[
= Y_\zeta \left((C_2 \mu - C_0^2 C_1 C_Y - C_0^2 C_1 C_Y) e^{\mu t/\varepsilon^2} + C_0^2 C_1 C_Y - C_0 C_1 \right).
\]

By (32), for C_2 large enough, we can find a positive constant \overline{C}_2 independent to ε such that
\[
\mathcal{L}w^+_\varepsilon \geq \overline{C}_2 e^{-\frac{\mu t}{2}}
\]

Thus, w^+_ε is a super-solution for Problem (P\varepsilon). \qed

3.4 Proof of Theorem 1.1

We deduce from the comparison principle Lemma 1 and the construction of the sub- and super-solutions that
\[
w^-\varepsilon(x,t^\varepsilon) \leq w^\varepsilon(x,t^\varepsilon) \leq w^+_\varepsilon(x,t^\varepsilon)
\]
under the condition (39).

If (39) does not hold, one can modify the functions w^\pm as follows: from condition (8), there exist positive constants d_0 and ρ such that (i) the distance function $d(x, \partial D)$ is smooth enough on $\{x \in D : d(x, \partial D) < 2d_0\}$ and (ii) $u_0(x) \geq \alpha + \rho$ if $d(x, \partial D) \leq d_0$. Let ξ be a smooth cut-off function defined on $[0, +\infty)$ such that $0 \leq \xi \leq 1, \xi(0) = \xi'(0) = 0$ and $\xi(z) = 1$ for $z \geq d_0$. Define
\[
u_0^+ := \xi(d(x, \partial D))u_0(x) + [1 - \xi(d(x, \partial D))] \max_D u_0
\]
\[
u_0^- := \xi(d(x, \partial D))u_0(x) + [1 - \xi(d(x, \partial D))] (\alpha + \rho).
\]

Then, $\nu_0^- \leq u_0 \leq \nu_0^+$ and u_0^ε satisfy the homogeneous Neumann boundary condition (39). Thus, by using a similar argument as in the proof of Lemma 3, we may find sub- and super-solutions as follows,
\[
w^\varepsilon(x,t) = Y \left(\frac{t}{\varepsilon^2}, u^\varepsilon_0(x) + \varepsilon^2 C_2 \left(e^{\mu t/\varepsilon^2} - 1 \right) \right).
\]
We now show (10), (11) and (12). By the definition of C_0 in (5), we have

$$-C_0 \leq \min_{x \in D} u_0(x) < \alpha + \rho.$$

Thus, for ε_0 small enough, we have that

$$-2C_0 \leq u_0^+(x) \pm (C_2\varepsilon - C_2\varepsilon^2) \leq 2C_0 \quad \text{for } x \in D$$

holds for any $\varepsilon \in (0, \varepsilon_0)$. Thus, the assertion (10) is a direct consequence of (33) and (41).

For (11), first we choose M_0 large enough so that

$$M_0\varepsilon - C_2\varepsilon + C_2\varepsilon^2 \geq C_Y\varepsilon.$$

Then, for any $x \in D$ such that $u_0^-(x) \geq \alpha + M_0\varepsilon$, we have

$$u_0^-(x) - \varepsilon^2C_2 \left(e^{\mu t/\varepsilon^2} - 1 \right) \geq u_0^-(x) - (C_2\varepsilon - C_2\varepsilon^2) \geq \alpha + M_0\varepsilon - C_2\varepsilon + C_2\varepsilon^2 \geq \alpha + C_Y\varepsilon.$$

Therefore, with (34) and (41), we see that

$$u^-(x, t^\varepsilon) \geq \alpha_\varepsilon - \eta$$

for any $x \in D$ such that $u_0^-(x) \geq \alpha + M_0\varepsilon$, which implies (11). Note that (12) can be shown in the same way. This completes the proof of Theorem 1.1.

4 Propagation of the interface

The main idea of the proof of Theorem 1.2 is that we proceed by imbrication: By the comparison principle Lemma 1, we show at the generation time that $u^+(x, 0) \geq w^+(x, t^\varepsilon)$ and $u^-(x, 0) \leq w^-(x, t^\varepsilon)$ so that we can pass continuously from the generation of interface sub- and super-solutions to the propagation of interface sub- and super-solutions.

To this end, we first introduce a modified signed distance function, and several estimates on the functions U_0 and U_1 useful in the sub- and super-solution construction, before showing Theorem 1.2 in Section 4.4.

4.1 A modified signed distance function

We introduce a useful cut off signed distance function d as follows. Recall the signed distance function d defined in (16), and interface Γ_t satisfying (13). Choose $d_0 > 0$ small enough so that the signed distance function d is smooth in the set

$$\{(x, t) \in \overline{D} \times [0, T], |d(x, t)| < 3d_0\}$$

and that

$$\text{dist}(\Gamma_t, \partial D) \geq 3d_0 \quad \text{for all } t \in [0, T].$$

Let $h(s)$ be a smooth non-decreasing function on \mathbb{R} such that

$$h(s) = \begin{cases}
 s & \text{if } |s| \leq d_0 \\
 -2d_0 & \text{if } s \leq -2d_0 \\
 2d_0 & \text{if } s \geq 2d_0.
\end{cases}$$

We then define the cut-off signed distance function d by

$$d(x, t) = h(\overline{d}(x, t)), \quad (x, t) \in \overline{D} \times [0, T].$$
Note, as \(d \) coincides with \(\overline{d} \) in the region

\[
\{(x, t) \in D \times [0, T] : |d(x, t)| < d_0\},
\]

that we have

\[
d_t = \lambda_0 \Delta d \text{ on } \Gamma_t.
\]

Moreover, \(d \) is constant near \(\partial D \) and the following properties hold.

Lemma 4. There exists a constant \(C_d > 0 \) such that

(i) \(|d_t| + |\nabla d| + |\Delta d| \leq C_d \),

(ii) \(|d_t - \lambda_0 \Delta d| \leq C_d|d| \)

in \(\overline{D} \times [0, T] \).

4.2 Estimates for the functions \(U_0, U_1 \)

Here, we give estimates for the functions which will be used to construct the sub- and super-solutions. Recall that \(U_0 \) (cf. (20)) is a solution of the equation

\[
(\varphi(U_0))_{zz} + f(U_0) = 0.
\]

We have the following lemma.

Lemma 5. There exists constants \(\hat{C}_0, \lambda_1 > 0 \) such that for all \(z \in \mathbb{R} \),

(i) \(|U_0|, |U_0_z|, |U_0_{zz}| \leq \hat{C}_0 \),

(ii) \(|U_0_z|, |U_0_{zz}| \leq \hat{C}_0 \exp(-\lambda_1|z|) \).

Proof. Recall that \(V_0 = \varphi(U_0) \) satisfies the equation \((21) \) with \(\varphi \in C^4(\mathbb{R}) \). Lemma 2.1 of [1] implies that there exist some positive constants \(\hat{C}_0 \) and \(\lambda_1 \) such that, for all \(z \in \mathbb{R} \),

\[
|V_0|, |V_0_z|, |V_0_{zz}| \leq \hat{C}_0;
\]

\[
|V_0_z|, |V_0_{zz}| \leq \hat{C}_0 \exp(-\lambda_1|z|),
\]

and therefore similar bounds for \(U_0 \). \(\square \)

In terms of the cut-off signed distance function \(d = d(x, t) \), for each \((x, t) \in \overline{D} \times [0, T] \), we define \(U_1(x, t, \cdot) : \mathbb{R} \to \mathbb{R} \) as the solution of the following equation:

\[
\begin{cases}
(\varphi'(U_0)U_1)_{zz} + f'(U_0)U_1 = (\lambda_0 U_{0z} - (\varphi(U_0))_z)\Delta d \\
U_1(x, t, 0) = 0, \quad \varphi'(U_0)U_1 \in L^\infty(\mathbb{R}).
\end{cases}
\]

(42)

Existence of the solution \(U_1 \) can be shown in the same way as that for \(\overline{U}_1 \) in (22). Finally, we give the following estimates for \(U_1 = U_1(x, t, z) \).

Lemma 6. There exists a constant \(\hat{C}_1, \lambda_1 > 0 \) such that for all \(z \in \mathbb{R} \)

(i) \(|U_1|, |U_{1z}|, |U_{1zz}|, |\nabla U_{1z}|, |\nabla U_1|, |\Delta U_1|, |U_{1t}| \leq \hat{C}_1 \),

(ii) \(|U_{1z}|, |U_{1zz}|, |\nabla U_{1z}| \leq \hat{C}_1 \exp(-\lambda_1|z|) \).

Here, the operators \(\nabla \) and \(\Delta \) act on the variable \(x \).
Proof. Define \(V_1(z) := \varphi'(U_0(z))U_1(z) \). As in (22), we obtain an equation for \(V_1 \):

\[
\begin{align*}
V_{1zz} + g'(V_0)V_1 &= \left[\lambda_0 \frac{V_{0z}}{\varphi'((\varphi^{-1}(V_0)))} - V_{0z} \right] \Delta d \\
V_1(x, t, 0) &= 0, \quad V_1 \in L^\infty(\mathbb{R}).
\end{align*}
\]

(43)

Applying Lemmas 2.2 and 2.3 of [1] to (43) implies the boundedness of \(V_1, V_{1z}, V_{1zz} \). Moreover, since \(d \) is smooth in \(\overline{D} \times [0, T] \), we can apply Lemma 2.2 of [1] to obtain the boundedness of \(\nabla V_1, \Delta V_1 \). The desired estimates for the function \(U_1 \) now follows via the smoothness of \(\varphi \) as in the proof of Lemma 5.

\[\square \]

4.3 Construction of sub- and super-solutions

We construct candidates sub- and super-solutions as follows: Given \(\epsilon > 0 \), define

\[
u^\pm(x, t) = U_0 \left(\frac{d(x, t) \pm \epsilon p(t)}{\epsilon} \right) + \epsilon U_1 \left(x, t, \frac{d(x, t) \pm \epsilon p(t)}{\epsilon} \right) \pm q(t)
\]

where

\[
p(t) = -e^{-\beta t/\epsilon^2} + e^{Lt} + K,
\]

\[
q(t) = \sigma \left(\beta e^{-\beta t/\epsilon^2} + \epsilon^2 Le^{Lt} \right),
\]

in terms of positive constants \(\epsilon, \beta, \sigma, L, K \). Next, we give specific conditions for these constants which will be used to show that indeed \(u^\pm \) are sub- and super-solutions. We assume that the positive constant \(\epsilon_0 \) obeys

\[
\epsilon_0^2 Le^{LT} \leq 1, \quad \epsilon_0 \hat{C}_1 \leq \frac{1}{2}.
\]

(45)

We first give a result on the boundedness of \(f'(U_0(z)) + (\varphi'(U_0(z)))_{zz} \).

Lemma 7. There exists \(b > 0 \) such that \(f'(U_0(z)) + (\varphi'(U_0))_{zz} < 0 \) on \(\{ z : U_0(z) \in [\alpha_-, \alpha_+ + b] \cup [\alpha_- - b, \alpha_+] \} \).

Proof. We can choose \(b_1, \mathcal{F} > 0 \) such that

\[
f'(U_0(z)) < -\mathcal{F}
\]

on \(\{ z : U_0(z) \in [\alpha_-, \alpha_+ + b_1] \cup [\alpha_+ - b_1, \alpha_+] \} \).

Note that \((\varphi'(U_0))_{zz} = \varphi''(U_0)U_{0zz} + \varphi'(U_0)U_{0zz} \). From Lemma 5, we can choose \(b_2 > 0 \) small enough so that

\[
|((\varphi'(U_0))_{zz}| < \mathcal{F}, \quad |(\varphi'(U_0))_{zz}| < \mathcal{F}
\]

on \(\{ z : U_0(z) \in [\alpha_-, \alpha_+ + b] \cup [\alpha_+ - b_2, \alpha_+] \} \). Define \(b := \min\{b_1, b_2\} \). Then, we have

\[
f'(U_0(z)) + (\varphi'(U_0))_{zz} < \mathcal{F} - \mathcal{F} = 0.
\]

\[\square \]

Fix \(b > 0 \) which satisfies the result of Lemma 7. Denote \(J_1 := \{ z : U_0(z) \in [\alpha_-, \alpha_+ + b] \cup [\alpha_- - b, \alpha_+] \}, J_2 := \{ z : U_0(z) \in [\alpha_- + b, \alpha_+ - b] \} \). Let

\[
\beta := -\sup \left\{ \frac{f'(U_0(z)) + (\varphi'(U_0(z)))_{zz}}{3} : z \in J_1 \right\}.
\]

(46)

The following result plays an important role in verifying sub- and super-solution properties.
Lemma 8. There exists a constant σ_0 small enough such that for every $0 < \sigma < \sigma_0$, we have

$$U_{0z} - \sigma(f'(U_0) + (\varphi'(U_0))_{zz}) \geq 3\sigma \beta.$$

Proof. To show the assertion, it is sufficient to show that there exists σ_0 such that, for all $0 < \sigma < \sigma_0$,

$$\frac{U_{0z}}{\sigma} - (f'(U_0) + (\varphi'(U_0))_{zz}) \geq 3\beta. \quad (47)$$

We prove the result on each of the sets J_1, J_2.

On the set J_1, note that $U_{0z} > 0$ on \mathbb{R}. If $z \in J_1$, for any $\sigma > 0$ we have

$$\frac{U_{0z}}{\sigma} - (f'(U_0) + (\varphi'(U_0))_{zz}) > -\sup_{z \in J_1}(f'(U_0) + (\varphi'(U_0))_{zz}) = 3\beta.$$

On the set J_2, which is compact in \mathbb{R}, there exists positive constants c_1, c_2 such that

$$U_{0z} \geq c_1, \quad |f'(U_0) + (\varphi'(U_0))_{zz}| \leq c_2.$$

Therefore, we have

$$\frac{U_{0z}}{\sigma} - (f'(U_0) + (\varphi'(U_0))_{zz}) \geq \frac{c_1}{\sigma} - c_2 \to \infty \text{ as } \sigma \downarrow 0,$$

implying (47) on J_2 for σ small enough. \qed

Before we give the rigorous proof that u^\pm are sub- and super-solutions, we first give detailed computations needed in the sequel. Recall (44). First, note, with U_0 and U_1 corresponding to u^+, that

$$\varphi(u^+) = \varphi(U_0) + (\varepsilon U_1 + q)\varphi'(U_0) + (\varepsilon U_1 + q)^2 \int_0^1 (1 - s)\varphi''(U_0 + (\varepsilon U_1 + q)s)ds$$

$$f(u^+) = f(U_0) + (\varepsilon U_1 + q)f'(U_0) + \frac{(\varepsilon U_1 + q)^2}{2} f''(\theta(x,t)), \quad (48)$$

where θ is a function satisfying $\theta(x,t) \in (U_0, U_0 + \varepsilon U_1 + q(t))$. Straightforward computations yield

$$(u^+) = U_{0z} \left(\frac{d_t + \varepsilon p_t}{\varepsilon} \right) + \varepsilon U_{1z} + U_{1z}(d_t + \varepsilon p_t) + q_t$$

$$\Delta \varphi(u^+) = \nabla \cdot \left((\varphi(U_0))_z \frac{\nabla d}{\varepsilon} + U_{1z}\varphi'(U_0) \nabla d + \varepsilon \nabla U_1 \varphi'(U_0) + (\varepsilon U_1 + q)(\varphi'(U_0))_z \frac{\nabla d}{\varepsilon} + \nabla R \right)$$

$$= \left((\varphi(U_0))_z \frac{\varepsilon^2 |\nabla d|^2}{\varepsilon^2} + (\varphi(U_0))_z \Delta d \frac{\varepsilon}{\varepsilon} \right)$$

$$+ (U_{1z}\varphi'(U_0))_z \frac{\varepsilon^2 |\nabla d|^2}{\varepsilon^2} + U_{1z}\varphi'(U_0) \nabla d + 2\nabla U_1 \varphi'(U_0) \cdot \nabla d + \nabla U_1 (\varphi'(U_0))_z \cdot \nabla d + \varepsilon \Delta U_1 \varphi'(U_0)$$

$$+ (U_{1z}\varphi'(U_0))_z \frac{\varepsilon^2 |\nabla d|^2}{\varepsilon^2} + q(\varphi'(U_0))_z \frac{\varepsilon^2 |\nabla d|^2}{\varepsilon^2} + \nabla U_1 (\varphi'(U_0))_z \cdot \nabla d$$

$$+ (\varepsilon U_1 + q)(\varphi'(U_0))_z \frac{\varepsilon^2 |\nabla d|^2}{\varepsilon^2} + \Delta R \quad (49)$$

where $R(x,t) = (\varepsilon U_1 + q)^2 \int_0^1 (1 - s)\varphi''(U_0 + (\varepsilon U_1 + q)s)ds$. Define $r(x,t) = \int_0^1 (1 - s)\varphi''(U_0 + (\varepsilon U_1 + q)s)ds$.

14
Then, we have
\[
\Delta R(x,t) = \nabla \cdot \nabla \left[\left((\varepsilon U_1)^2 + 2\varepsilon q U_1 + q^2 \right) r \right]
\]
\[
= \nabla \cdot \left[\left(2\varepsilon U_1 (U_{1z} \nabla d + \varepsilon \nabla U_1) + 2q (U_{1z} \nabla d + \varepsilon \nabla U_1) \right) r(x,t) + \left((\varepsilon U_1)^2 + 2\varepsilon q U_1 + q^2 \right) \nabla r(x,t) \right]
\]
\[
= \left[2 (U_{1z} \nabla d + \varepsilon \nabla U_1) + 2\varepsilon U_1 \left(U_{1zz} \frac{\nabla d}{\varepsilon} + U_{1z} \Delta d + 2\nabla U_{1z} \cdot \nabla d + \varepsilon \Delta U_1 \right) \right] r(x,t)
\]
\[
+ 2q \left(U_{1zz} \frac{\nabla d}{\varepsilon} + U_{1z} \Delta d + 2\nabla U_{1z} \cdot \nabla d + \varepsilon \Delta U_1 \right) r(x,t)
\]
\[
+ 2 \left[2\varepsilon U_1 (U_{1z} \nabla d + \varepsilon \nabla U_1) + 2q (U_{1z} \nabla d + \varepsilon \nabla U_1) \right] \nabla r(x,t)
\]
\[
+ \left((\varepsilon U_1)^2 + 2\varepsilon q U_1 + q^2 \right) \Delta r(x,t)
\]
(50)

where
\[
\nabla r(x,t) = \int_0^1 (1 - s) \varphi'''(U_0 + (\varepsilon U_1 + q)s) \left((U_0 + \varepsilon U_1)s \frac{\nabla d}{\varepsilon} + \varepsilon \nabla U_1 s \right) ds
\]
\[
\Delta r(x,t) = \int_0^1 (1 - s) \varphi'''(U_0 + (\varepsilon U_1 + q)s) \left((U_0 + \varepsilon U_1)s \frac{\Delta d}{\varepsilon} \right.
\]
\[
+ \left. (U_0 + \varepsilon U_1)s \frac{\nabla d}{\varepsilon} + \varepsilon \nabla U_1 s \right) ds
\]
\[
+ \int_0^1 (1 - s) \varphi^{(4)}(U_0 + (\varepsilon U_1 + q)s) \left((U_0 + \varepsilon U_1)s \frac{\nabla d}{\varepsilon} + \varepsilon \nabla U_1 s \right)^2 ds.
\]

Define \(l(x,t), r_i(x,t) \) for \(i = 1, 2, 3 \) as follows:
\[
l(x,t) = U_{1zz} \frac{\nabla d}{\varepsilon} + U_{1z} \Delta d + 2\nabla U_{1z} \cdot \nabla d + \varepsilon \Delta U_1
\]
\[
r_1(x,t) = \left[2 (U_{1z} \nabla d + \varepsilon \nabla U_1)^2 + 2\varepsilon U_1 l(x,t) \right] r(x,t) + 4\varepsilon U_1 \left(U_{1z} \nabla d + \varepsilon \nabla U_1 \right) \nabla r(x,t) + (\varepsilon U_1)^2 \Delta r(x,t)
\]
\[
r_2(x,t) = 2q l(x,t) r(x,t) + 4q (U_{1z} \nabla d + \varepsilon \nabla U_1) \nabla r(x,t) + 2\varepsilon q U_1 \Delta r(x,t)
\]
\[
r_3(x,t) = q^2 \Delta r(x,t).
\]

Thus,
\[
\Delta R = r_1 + r_2 + r_3.
\]
(51)

We have the following properties for \(r_i \).

Lemma 9. There exists \(C_r > 0 \) independent of \(\varepsilon \) such that
\[
|r_1| \leq C_r, \quad |r_2| \leq \frac{q}{\varepsilon} C_r, \quad |r_3| \leq \frac{q^2}{\varepsilon^2} C_r.
\]
(52)

Proof. Note that, by Lemmas 3, 6 and 45, the term \(U_a := U_0 + (\varepsilon U_1 + q)s \) is uniformly bounded. Hence, the terms \(\varphi'''(U_a), \varphi'''(U_a), \varphi^{(4)}(U_a) \) are uniformly bounded, and in particular \(r \) is bounded. By similar reasoning for \(\nabla r \) and \(\Delta r \), it follows that there exists some positive constants \(c_{\nabla}, c_{\Delta} \) such that
\[
|\nabla r| \leq \frac{c_{\nabla}}{\varepsilon}, \quad |\Delta r| \leq \frac{c_{\Delta}}{\varepsilon^2}.
\]

Moreover, by Lemmas 3, 6 there exists a positive constant \(c_l \) such that
\[
|l(x,t)| \leq \frac{c_l}{\varepsilon}.
\]
Combining these estimates yields (52). □
Let σ a fixed constant satisfying
\[0 < \sigma \leq \min\{\sigma_0, \sigma_1, \sigma_2\}, \] (53)
where σ_0 is the constant defined in Lemma 8 and σ_1 and σ_2 are given by
\[\sigma_1 = \frac{1}{2(\beta + 1)}, \quad \sigma_2 = \frac{\beta}{(F + C_r)(\beta + 1)}, \quad F = ||f''||_{L^\infty(\alpha_-, \alpha_+ + 1)}. \] (54)
Note that, since $\sigma < \sigma_1$ and Lemma 10, we have
\[\alpha_- - 1 \leq |u^\pm| \leq \alpha_+ + 1. \]

Lemma 10. Let β be given by (46) and let σ satisfy (53). Then, there exists $\varepsilon_0 > 0$ and a positive constant C_p, which does not depend on ε, such that
\[
\begin{cases}
\mathcal{L}(u^-) < -C_p < C_p < \mathcal{L}(u^+) \quad \text{in } \mathcal{D} \times [0, T] \\
\frac{\partial u^-}{\partial \nu} = \frac{\partial u^+}{\partial \nu} = 0 \quad \text{on } \partial\mathcal{D} \times [0, T]
\end{cases}
\] (55)
for every $\varepsilon \in (0, \varepsilon_0)$.

Proof. In the following, we only show that u^+ is a super solution; one can show that u^- is a sub-solution in a similar way.

Combining the computations above in (48), (49), (50) and (51), we obtain
\[
\mathcal{L}u^+ = (u^+)_t - \Delta (\varphi(u^+)) - \frac{1}{\varepsilon^2} f(u^+)
= E_1 + E_2 + E_3 + E_4 + E_5 + E_6,
\]
where
\[
E_1 = -\frac{1}{\varepsilon^2} \left((\varphi(U_0))_{zz} |\nabla d|^2 + f(U_0) \right) - \frac{|\nabla d|^2 - 1}{\varepsilon} q(\varphi'(U_0))_{zz} - \frac{|\nabla d|^2 - 1}{\varepsilon} (U_1 \varphi'(U_0))_{zz}
\]
\[
E_2 = \frac{1}{\varepsilon} U_{0z} dt - \frac{1}{\varepsilon} ((\varphi(U_0))_{zz} \Delta d + (U_{1z} \varphi'(U_0))_z + (U_1 \varphi'(U_0))_z z + U_1 f'(U_0))
\]
\[
E_3 = U_0p_t + q_t - \frac{1}{\varepsilon^2} \left[qf'(U_0) + q(\varphi'(U_0))_{zz} + \frac{q^2}{2} f''(\theta) \right] - r_3(x, t)
\]
\[
E_4 = \varepsilon U_1p_t - \frac{q}{\varepsilon} \left((\varphi(U_0))_{zz} \Delta d + U_1 f''(\theta) \right) - r_2(x, t)
\]
\[
E_5 = \varepsilon U_1 - \varepsilon \Delta U_1 \varphi'(U_0)
\]
\[
E_6 = U_{1z} dt - 2U_{1z} \varphi'(U_0) \cdot \nabla d - 2V_{1z} \varphi'(U_0) z \cdot \nabla d - (U_1 \varphi'(U_0))_z \Delta d - r_1(x, t) - \frac{(U_1)^2}{2} f''(\theta).
\]

Estimate of the term E_1. Using (20) we write E_1 in the form
\[
E_1 = -\frac{|\nabla d|^2 - 1}{\varepsilon^2} ((\varphi(U_0))_{zz} + q(\varphi'(U_0))_{zz}) - \frac{|\nabla d|^2 - 1}{\varepsilon} (U_1 \varphi'(U_0))_{zz}.
\]
We only consider the term $e_1 := \frac{|\nabla d|^2 - 1}{\varepsilon} (U_1 \varphi'(U_0))_{zz}$; the other terms can be bounded similarly. In the region where $|d| \leq d_0$, we have $|\nabla d| = 1$ so that $e_1 = 0$. If, however $|\nabla d| \neq 1$, we have
\[
\frac{|(U_1 \varphi'(U_0))_{zz}|}{\varepsilon} \leq \frac{\hat{C}_1}{\varepsilon} e^{-\lambda_1 |\frac{d}{\varepsilon} + p(t)|} \leq \frac{\hat{C}_1}{\varepsilon} e^{-\lambda_1 [\frac{d_0}{\varepsilon} - p(t)]} \leq \frac{\hat{C}_1}{\varepsilon} e^{-\lambda_1 [\frac{d_0}{\varepsilon} - (1 + e^{UT + K})]}.
\]
Choosing ε_0 small enough such that
\[
\frac{d_0}{2\varepsilon_0} - \left(1 + e^{LT} + K\right) \geq 0,
\]
we deduce
\[
\frac{|(U_1\varphi'(U_0))_{zz}|}{\varepsilon} \leq \frac{\hat{C}_1}{\varepsilon} e^{-\lambda_1 \frac{d_0}{2\varepsilon}} \to 0 \quad \text{as} \quad \varepsilon \downarrow 0.
\]
Thus, $\frac{1}{\varepsilon}|(U_1\varphi'(U_0))_{zz}|$ is uniformly bounded, so that there exists \hat{C}_2 independent of ε, L such that
\[
|e_1| \leq \hat{C}_2.
\]
Finally, as a consequence, we deduce that there exists \tilde{C}_1 independent of ε, L such that
\[
|E_1| \leq \tilde{C}_1. \tag{56}
\]

Estimate of the term E_2. Using (42), we write E_2 in the form
\[
E_2 = \frac{1}{\varepsilon} U_{0z} d_t - \frac{1}{\varepsilon} \lambda_0 U_{0z} \Delta d = \frac{U_{0z}}{\varepsilon} (d_t - \lambda_0 \Delta d).
\]
Applying Lemma 4, 5 and 6 gives
\[
|E_2| \leq C_4 \hat{C}_0 \frac{|d|}{\varepsilon} e^{-\lambda_1 |\frac{d}{\varepsilon} + p|} \leq C_4 \hat{C}_0 \max_{\xi \in \mathbb{R}} |\xi| e^{-\lambda_1 |\xi + p|}.
\]
Note that $\max_{\xi \in \mathbb{R}} |\xi| e^{-\lambda_1 |\xi + p|} \leq |p| + \frac{1}{\lambda_1}$ (cf. (13)). Thus, there exists \tilde{C}_2 such that
\[
|E_2| \leq \tilde{C}_2 (1 + e^{-LT}). \tag{57}
\]

Estimate of the term E_3. Substituting $p_t = \frac{q}{\varepsilon^2 \sigma}$ and then replacing q by its explicit form (cf. (14)) gives
\[
E_3 = \frac{q}{\varepsilon^2 \sigma} \left[U_{0z} - \sigma (f'(U_0) + (\varphi'(U_0))_{zz}) - \sigma q \left(\frac{1}{2} f''(\theta) + \frac{\varepsilon^2}{q^2} r_3 \right) \right] + q_t
\]
\[
= \frac{1}{\varepsilon^2} \left(\beta e^{-\frac{m t}{\varepsilon}} + \varepsilon^2 L e^{L t} \right) \left[U_{0z} - \sigma (f'(U_0) + (\varphi'(U_0))_{zz}) - \sigma^2 (\beta e^{-\frac{m t}{\varepsilon}} + L e^{2 e^{L t}}) \left(\frac{1}{2} f''(\theta) + \frac{\varepsilon^2}{q^2} r_3 \right) \right]
\]
\[
= \frac{1}{\varepsilon^2} \beta e^{-\frac{m t}{\varepsilon}} (I - \sigma \beta) + L e^{L t} [I + \varepsilon^2 \sigma L]
\]
where
\[
I := U_{0z} - \sigma (f'(U_0) + (\varphi'(U_0))_{zz}) - \sigma^2 (\beta e^{-\frac{m t}{\varepsilon}} + L e^{2 e^{L t}}) \left(\frac{1}{2} f''(\theta) + \frac{\varepsilon^2}{q^2} r_3 \right).
\]
Applying Lemma 8 using (45) and (53), yields
\[
I \geq 3\sigma \beta - \sigma \sigma_2 (\beta + L e^{2 e^{L t}}) \left(|f''(\theta)| + \frac{\varepsilon^2}{q^2} |r_3| \right)
\]
\[
\geq 3\sigma \beta - \sigma \sigma_2 (\beta + 1) \left(|f''(\theta)| + \frac{\varepsilon^2}{q^2} |r_3| \right)
\]
\[
\geq 2\sigma \beta,
\]
where the last inequality follows from (54). This implies that
\[E_3 \geq \frac{\sigma \beta^2}{\varepsilon^2} e^{-\frac{\varepsilon}{3}} + 2\sigma \beta L e^{Lt}. \] (58)

Estimate of the term \(E_4 \). Substituting again \(p_t = \frac{q}{\varepsilon^2 \sigma} \), with \(q \) in its explicit form (44) gives
\[E_4 = \frac{q}{\varepsilon \sigma} \left(U_{1z} - \sigma((\varphi'U_0)_z) \Delta d + U_1 f''(\theta) \right) - \sigma \frac{r_2}{q} \]
\[= \frac{1}{\varepsilon} \left(\beta e^{-\frac{\varepsilon}{3}} + \varepsilon^2 L e^{Lt} \right) \left(U_{1z} - \sigma((\varphi'U_0)_z) \Delta d + U_1 f''(\theta) \right) - \sigma \frac{r_2}{q}. \]

Applying Lemma 4, 5, 6 and 9 gives the uniform boundedness of the last factor in parenthesis. Thus, there exists a constant \(\tilde{C}_4 \) such that
\[|E_4| \leq \tilde{C}_4 \frac{1}{\varepsilon} \left(\beta e^{-\frac{\varepsilon}{3}} + \varepsilon^2 L e^{Lt} \right). \] (59)

Estimate of the terms \(E_5 \) and \(E_6 \). Applying Lemma 4, 5 and 6, it follows that there exists \(\tilde{C}_5 \) such that
\[|E_5| + |E_6| \leq \tilde{C}_5. \] (60)

Combination of the above estimates. Collecting the estimates (56),(57),(58),(59),(60), we obtain
\[\mathcal{L}(u^+) \geq \left[\frac{\sigma \beta^2}{\varepsilon^2} - \tilde{C}_4 \frac{\beta}{\varepsilon} \right] e^{-\frac{\varepsilon}{3}} + \left[2\sigma \beta L - \varepsilon \tilde{C}_4 L - \tilde{C}_2 \right] e^{Lt} - \tilde{C}_1 - \tilde{C}_2 - \tilde{C}_5 \]
\[\geq \left[\frac{\sigma \beta^2}{\varepsilon^2} - \tilde{C}_4 \frac{\beta}{\varepsilon} \right] e^{-\frac{\varepsilon}{3}} + \left[2\sigma \beta L \frac{3}{3} - \varepsilon \tilde{C}_4 L \right] e^{Lt} + \left[2\sigma \beta L \frac{3}{3} - \tilde{C}_5 \right] \]
\[+ \left[2\sigma \beta L \frac{3}{3} - \tilde{C}_6 \right] \]
where \(\tilde{C}_6 = \tilde{C}_1 + \tilde{C}_2 + \tilde{C}_5 \). Choose \(\varepsilon_0 \) small enough and \(L \) large enough so that
\[\sigma \beta > 3\tilde{C}_4 \varepsilon_0, \quad \sigma \beta L > 3 \max \{ \tilde{C}_2, \tilde{C}_6 \}. \]

Then, we deduce that there exists a positive constant \(C_p \), independent of \(\varepsilon \), such that \(\mathcal{L}(u^+) \geq C_p. \) \(\Box \)

4.4 Proof of Theorem 1.2

The proof of Theorem 1.2 is divided in two steps: (i) For large enough \(K > 0 \), we prove that \(u^-(x,t) \leq u^+(x,t) \leq u^+(x,t-t') \) for \(x \in \mathcal{D}, t \in [0, T-t'] \) and (ii) we employ (i) to show the desired result.

Step 1. Fix \(\sigma, \beta \) as in (46), (53). Without loss of generality, we may assume that
\[0 < \eta < \min \{ \eta_0, \sigma \beta \}. \]

Theorem 1.1 implies the existence of constants \(\varepsilon_0 \) and \(M_0 \) such that (10)-(12) are satisfied. Conditions (7) and (8) imply that there exists a positive constant \(M_1 \) such that
\[\text{if } d(x,0) \leq -M_1 \varepsilon, \quad \text{then } u_0(x) \leq \alpha - M_0 \varepsilon, \]
\[\text{if } d(x,0) \geq M_1 \varepsilon, \quad \text{then } u_0(x) \geq \alpha + M_0 \varepsilon. \]
Hence, we deduce, by applying (10), (12), that
\[u^\varepsilon(x,t^\varepsilon) \leq H^+(x) := \begin{cases} \alpha_+ + \frac{\eta}{4} & \text{if } d(x,0) \geq -M_1 \varepsilon \\ \alpha_- + \frac{\eta}{4} & \text{if } d(x,0) < -M_1 \varepsilon. \end{cases} \]

Also, by applying (10), (11),
\[u^\varepsilon(x,t^\varepsilon) \geq H^-(x) := \begin{cases} \alpha_+ - \frac{\eta}{4} & \text{if } d(x,0) > M_1 \varepsilon \\ \alpha_- - \frac{\eta}{4} & \text{if } d(x,0) \leq M_1 \varepsilon. \end{cases} \]

Next, we fix a sufficient large constant \(K \) such that
\[U_0(M_1 - K) \leq \alpha_- + \frac{\eta}{4} \quad \text{and} \quad U_0(-M_1 + K) \geq \alpha_+ - \frac{\eta}{4}. \]

For such a constant \(K \), Lemma 10 implies the existence of coefficients \(\varepsilon_0 \) and \(L \) such that the inequalities in (55) holds. We claim that
\[u^-(x,0) \leq H^-(x) \leq H^+(x) \leq u^+(x,0). \] (61)

We only prove the last inequality since the first inequality can be proved similarly. By Lemma 6 we have \(|U_1| \leq \hat{C}_1 \). Thus, we can choose \(\varepsilon_0 \) small enough so that, for \(\varepsilon \in (0,\varepsilon_0) \), we have \(\varepsilon \hat{C}_1 \leq \sigma \beta - \frac{\sigma}{4} \). Then, noting (44),
\[u^+(x,0) \geq U_0 \left(\frac{d(x,0) + \varepsilon p(0)}{\varepsilon} \right) - \varepsilon \hat{C}_1 + \sigma \beta + \varepsilon^2 \sigma L + \frac{3}{4} \eta. \]

In the set \(\{ x \in D : d(x,0) \geq -M_1 \varepsilon \} \), the inequalities above, and the fact that \(U_0 \) is an increasing function imply
\[u^+(x,0) > U_0(-M_1 + K) + \frac{3}{4} \eta \geq \alpha_- + \frac{\eta}{2} > H^+(x). \]

Moreover, since \(U_0 \geq \alpha_- \) in the set \(\{ x \in D : d(x,0) < -M_1 \varepsilon \} \), we have
\[u^+(x,0) > \alpha_- + \frac{3}{4} \eta > H^+(x). \]

Thus, we proved the first inequality in (61) above.

The inequalities (61) and Lemma 10 now permit to apply the comparison principle Lemma 1 so that we have
\[u^-(x,t) \leq u^\varepsilon(x,t+t^\varepsilon) \leq u^+(x,t) \quad \text{for} \quad x \in \overline{D}, t \in [0,T-t^\varepsilon]. \] (62)

Step 2. Choose \(C > 0 \) so that
\[U_0(C - e^{LT} - K) \geq \alpha_- - \frac{\eta}{2} \quad \text{and} \quad U_0(-C + e^{LT} + K) \leq \alpha_- + \frac{\eta}{2}. \]

Then, we deduce from (62), noting (44), that
\[\begin{align*} &\text{if } d(x,t) \geq \varepsilon C, \text{ then } u^\varepsilon(x,t+t^\varepsilon) \geq \alpha_- - \eta \\ &\text{if } d(x,t) \leq -\varepsilon C, \text{ then } u^\varepsilon(x,t+t^\varepsilon) \leq \alpha_- + \eta \end{align*} \]

and since \(\alpha_\pm \pm \eta \) are respectively sub- and super-solutions of \((P^\varepsilon) \), we conclude that
\[u^\varepsilon(x,t+t^\varepsilon) \in [\alpha_- - \eta, \alpha_+ + \eta] \]

for all \((x,t) \in D \times [0,T-t^\varepsilon], \varepsilon \in (0,\varepsilon_0). \)
Remark 2. These sub and super solutions guarantee that \(u^{\varepsilon} \simeq \alpha_{+} \) (respectively, \(u^{\varepsilon} \simeq \alpha_{-} \)) for \(d(x, t) \geq c \) (respectively, \(d(x, t) \leq -c \)) with \(t > \rho t^{\varepsilon}, \rho > 1 \) and \(\varepsilon > 0 \) small enough. In fact, by the definition of \(q(t) \), we expect

\[
\varepsilon U_{1} \pm q(t) = O(\varepsilon)
\]

t for \(t > (\rho - 1)t^{\varepsilon} \). Also, by Lemma 5 we expect

\[
0 < U_{0}(\varepsilon) - \alpha_{-} < \varepsilon \varepsilon \text{ for } z > \frac{c}{\varepsilon}, \quad 0 < \alpha_{+} - U_{0}(\varepsilon) < \varepsilon \varepsilon \text{ for } z < -\frac{c}{\varepsilon}.
\]

These estimates yield that there exists a positive constant \(c' \) such that

\[
|u^{\varepsilon}(x, t) - \alpha_{+}| \leq c\varepsilon \text{ for } d(x, t) > c, \quad |u^{\varepsilon}(x, t) - \alpha_{-}| \leq c\varepsilon \text{ for } d(x, t) < -c
\]

for \(t > \rho t^{\varepsilon} \).

5 Proof of Theorem 1.3

We now introduce the concept of an eternal solution. A solution of an evolution equation is called eternal if it is defined for all positive and negative times. In our problem, we study the nonlinear diffusion problem

\[
w_{\tau} = \Delta \varphi(w) + f(w), \quad ((z', z(N)), \tau) \in \mathbb{R}^{N} \times \mathbb{R},
\]

where \(z' \in \mathbb{R}^{N-1} \) and \(z(N) \in \mathbb{R} \). In order to prove Theorem 1.3, we first present two lemmas.

Lemma 11. Let \(S \) be a domain of \(\mathbb{R}^{N} \times \mathbb{R} \) and let \(u \) be a bounded function on \(S \) satisfying

\[
u_{t} = \Delta \varphi(u) + f(u), \quad (x, t) \in S,
\]

where \(\varphi, f \) satisfy conditions (1), (3). Then, for any smooth bounded subset \(S' \subset S \) separated from \(\partial S \) by a positive constant \(\tilde{d} \) we have

\[
\|u\|_{C^{2+\theta, 1+\theta/2}(\overline{S}')} \leq C',
\]

for any positive constants \(0 < \theta < 1 \) and \(C' = C'\|u\|_{L^{\infty}(S)} \) which depends on \(\|u\|_{L^{\infty}(S)} \), \(\varphi, f, \tilde{d}, \theta \) and the size of \(S' \), where

\[
\|u\|_{C^{k, k'}(\overline{S}')} = \|u\|_{C^{k, k'}(S')} + \sum_{i,j=1}^{N} \sup_{(x,t),(y,t) \in S', x \neq y} \left\{ \left| D^{k}_{x}u(x, t) - D^{k}_{x}u(y, t) \right| \right\} \|x - y\|^{{\theta}}
\]

\[
+ \sup_{(x,t),(x',t') \in S', t \neq t'} \left\{ \left| D^{k}_{t'}u(x, t') - D^{k}_{t'}u(x, t) \right| \right\} \|t - t'\|^{{\theta}}
\]

where \(k, k' \) are non-negative integers and \(0 < \theta, \theta' < 1 \).

Proof. Since \(S' \) is separated from \(\partial S \) by a positive distance, we can find subsets \(S_{1}, S_{2} \) such that \(S' \subset S_{2} \subset S_{1} \subset S \) and such that \(\partial S, \partial S', \partial S_{1} \) are separated by a positive distance less than \(\tilde{d} \). By condition 3 the regularity of \(u(x, t) \) is the same as the regularity of \(v(x, t) = \varphi(u(x, t)) \). Note that by (64) \(v \) satisfies

\[
v_{t} = \varphi'(\varphi^{-1}(v)) [\Delta v + g(v)] \quad g(s) = f(\varphi^{-1}(s))
\]
on \(S \). By Theorem 3.1 p. 437–438 of [13], there exists a positive constant \(c_{1} \) such that

\[
|\nabla v| \leq c_{1} \text{ in } S_{1}
\]
where c_4 depends only on $N, \varphi, \|u\|_{L^\infty(S)}$ and the distance between S and S_1. This, together with Theorem 5, p 122 of [10], imply that
\[
\|v\|_{W^{2,1}(S_2)} \leq c_2 (\|v\|_{L^p(S_1)} + \|\varphi'(\varphi^{-1}(v))g(v)\|_{L^p(S_1)})
\]
for any $p > N + 2$ where c_2 is a constant that depends on c_1, p, N, φ. With this, by fixing p large enough, the Sobolev embedding theorem in chapter 2, section 3 of [15] yields
\[
\|v\|_{C^{1+\theta, (1+\theta)/2}(S_2)} \leq c_3 \|v\|_{W^{2,1}(S_2)}
\]
where $0 < \theta < 1 - \frac{N+2}{p}$ and c_4 depends on c_2 and p. This implies that $\varphi'(\varphi^{-1}(v)), g(v)$ are bounded uniformly in $C^{1+\theta, (1+\theta)/2}(S_2)$. Therefore, by Theorem 10.1 p 351-352 of [15] we obtain
\[
\|v\|_{C^{2+\theta, 1+\theta/2}(S')} \leq c_4 \|v\|_{C^{1+\theta, (1+\theta)/2}(S_2)}
\]
where c_4 depends on c_2, f and φ. \hfill \square

Remark 3. Lemma [11] implies uniform $C^{2,1}$ boundedness of the entire solution w in the whole space. This can be derived as follows: Let
\[
S_{(a,b)} = \{(x, t) \in \mathbb{R}^N \times \mathbb{R}, |x-a|^2 + (t-b)^2 \leq 2\}, \quad S'_{(a,b)} = \{(x, t) \in \mathbb{R}^N \times \mathbb{R}, |x-a|^2 + (t-b)^2 \leq 1\}
\]
where $(a, b) \in \mathbb{R}^N \times \mathbb{R}$. Then, Lemma [11] implies uniform $C^{2,1}$ boundedness of w within $S'_{(a,b)}$ where the upper bound is fixed by (65). Since this upper bound is independent to the choice of (a, b), we have uniform $C^{2,1}$ bound of w in the whole space.

Next, we present a result inspired by a similar one in [5].

Lemma 12. Let $w((z', z^{(N)}), \tau)$ be a bounded eternal solution of (63) satisfying
\[
\liminf_{z^{(N)} \to -\infty} \inf_{z' \in \mathbb{R}^{N-1}, \tau \in \mathbb{R}} w((z', z^{(N)}), \tau) = \alpha_- , \quad \limsup_{z^{(N)} \to \infty} \sup_{z' \in \mathbb{R}^{N-1}, \tau \in \mathbb{R}} w((z', z^{(N)}), \tau) = \alpha_+ , \quad (66)
\]
where $z' = (z^{(1)}, z^{(2)}, \ldots, z^{(N-1)})$. Then, there exists a constant $z^* \in \mathbb{R}$ such that
\[
w((z', z^{(N)}), \tau) = U_0(z^{(N)} - z^*).
\]

Proof. We prove the lemma in two steps. First we show w is an increasing function with respect to the $z^{(N)}$ variable. Then, we prove that w only depends on $z^{(N)}$, which means that there exists a function $\psi : \mathbb{R} \to (\alpha_-, \alpha_+)$ such that
\[
w((z', z^{(N)}), \tau) = \psi(z^{(N)}), \quad ((z', z^{(N)}), \tau) \in \mathbb{R}^N \times \mathbb{R}.
\]
From the increasing property with respect to $z^{(N)}$, this allows us to identify ψ as the unique standing wave solution U_0 of the problem (20) up to a translation factor z^*.

We deduce from (66) that there exist $A > 0$ and $\eta \in (0, \eta_0)$ such that
\[
\begin{cases}
\alpha_- - \eta \leq w((z', z^{(N)}), \tau) \leq \alpha_+ + \eta, & z^{(N)} \geq A \\
\alpha_- - \eta \leq w((z', z^{(N)}), \tau) \leq \alpha_+ + \eta, & z^{(N)} \leq -A
\end{cases}
\]
where η_0 is defined in (9).

Let $\tilde{\tau} \in \mathbb{R}, \rho \in \mathbb{R}^{N-1}$ be arbitrary. Define
\[
w^\delta((z', z^{(N)}), \tau) := w((z' + \rho, z^{(N)} + s), \tau + \tilde{\tau})
\]

21
where $s \in \mathbb{R}$. Fix $\chi \geq 2A$ and define
\[
b^* := \inf \left\{ b > 0 : \varphi(w^x) + b \geq \varphi(w) \text{ in } \mathbb{R}^N \times \mathbb{R} \right\}.
\] (68)

We will prove that $b^* = 0$, which will imply that $w^x \geq w$ in $\mathbb{R}^N \times \mathbb{R}$ since φ is a strictly increasing function. To see this, we assume that this does not hold, that is $b^* > 0$. Note, by (66) and (67) we have
\[
w^x \geq \alpha_+ - \eta > \alpha_- + \eta \geq w \text{ if } z^{(N)} = -A, \lim_{z^{(N)} \to \pm \infty} \varphi(w^x) - \varphi(w) \to 0.
\] (69)

Let $E = \{(x,t) \in \mathbb{R}^N \times \mathbb{R}, \varphi(w^x) - \varphi(w) > 0\}$. Define a function Z on E as follows
\[
Z((z', z^{(N)}), \tau) := e^{-Cz^\tau}[\varphi(w^x) - \varphi(w)]((z', z^{(N)}), \tau),
\]
\[
C_Z := \max \left(\sup_{z \in E} [\varphi'(w^x) - \varphi'(w)]\Delta \varphi(w) + [\varphi'(w)f(w) - \varphi'(w^x)f(w^x)], 0 \right) \geq 0.
\]

Note that C_Z is bounded, since w^x is bounded uniformly in $C^{2,1}(E)$ by Remark 3 and in view of (1) and (3) we have
\[
\lim_{x \to y} \frac{\varphi'(x) - \varphi'(y)}{\varphi'(y)} = \frac{\varphi''(y)}{\varphi'(y)} < \infty, \lim_{x \to y} \frac{\varphi'(x)f(x) - \varphi'(y)f(y)}{\varphi'(y)} = \frac{(\varphi' f)'(y)}{\varphi'(y)} < \infty.
\] (70)

Direct computations give
\[
Z_\tau - \varphi'(w^x)\Delta Z = e^{-Cz^\tau} \varphi'(w)[\Delta \varphi(w) + f(w)] - e^{-Cz^\tau} \varphi'(w^x)[\Delta \varphi(w^x) + f(w^x)]
\]
\[
- C_Z Z - e^{-Cz^\tau} \varphi'(w^x)\Delta \varphi(w^x)
\]
\[
= \left([\varphi'(w) - \varphi'(w^x)]\Delta \varphi(w) + [\varphi'(w)f(w) - \varphi'(w^x)f(w^x)] \right) e^{-Cz^\tau} - C_Z Z
\]
\[
\leq C_Z Z - C_Z Z = 0
\]

in E. Then, the maximum principle [17] Theorem 5 p.173 yields that the maximum of Z is located at the boundary of E. By the definition of E, $Z = 0$ on the boundary of E which implies $Z \leq 0$ in E.

This contradicts the definition of E. Thus, we conclude that $b^* = 0$.

Next, we prove that $w \leq w^x$ for any $\chi > 0$ (see (73) below). For this purpose, define
\[
\chi^* := \inf \left\{ \chi \in \mathbb{R}, w^\chi \geq w \text{ for all } \chi \geq \chi \right\}.
\] (71)

Then, our goal can be obtained by proving that $\chi^* \leq 0$. By the previous argument, we already know that $\chi^* \leq 2A$. Since $w((z', \infty), \tau) = \alpha_-$, it follows from (66) that $\chi^* > -\infty$, since otherwise we would have
\[
\alpha_- = w^{-\infty}((z', z^{(N)}), \tau) \geq w,
\]
leading to a contradiction since $w((z', +\infty), \tau) = \alpha_+ > \alpha_-$. Thus, we conclude $-\infty < \chi^* \leq 2A$.

Assume that $\chi^* > 0$, and define $E^x := \{(z', z^{(N)}), \tau) \in \mathbb{R}^N \times \mathbb{R}; |z^{(N)}| \leq A\}$. If $\inf_{E^x}(w^x - w) > 0$, then there exists $\delta_0 \in (0, \chi^*)$ such that $w \leq w^{x-\delta}$ in E^x for all $\delta \in (0, \delta_0)$. Since $w \leq w^{x-\delta}$ on ∂E^x, we deduce from a similar argument as above that $w \leq w^{x-\delta}$ in $\{(z', z^{(N)}), \tau \in \mathbb{R}^N \times \mathbb{R}; |z^{(N)}| \geq A\}$. This contradicts the definition of χ^* in (71) so that $\inf_{E^x}(w^x - w) = 0$. Thus, we must have a sequence $((z_n', z_n), (t_n))$ and $z_\infty \in [-A, A]$ such that
\[
w((z_n', z_n), t_n) - w^x((z_n', z_n), t_n) \to 0, \quad z_n \to z_\infty \text{ as } n \to \infty.
\]

Define $w_n((z', z^{(N)}), \tau) := w((z' + z_n, z^{(N)}), \tau + t_n)$. Since w_n is bounded uniformly in $C^{2+\theta,1+\theta/2}(\mathbb{R}^N \times \mathbb{R})$ by Lemma 1, w_n converges in $C^{2,1}_{loc}$ to a solution w_∞ of (63). Define \tilde{Z} by
\[
\tilde{Z}((z', z^{(N)}), \tau) := [\varphi(w_\infty^x) - \varphi(w_\infty)]((z', z^{(N)}), \tau).
\]
Since φ is strictly increasing, by (71) we have

\[
\begin{cases}
\tilde{Z}(z', z^{(N)}), \tau \geq 0 \text{ in } \mathbb{R}^N \times \mathbb{R} \\
\tilde{Z}(0, z_{\infty}), 0 = \lim_{n \to \infty} [\varphi(w_{\infty}^{x_{0}}) - \varphi(w_{n})][(0, z_{n}), 0] = \lim_{n \to \infty} [\varphi(w_{\infty}^{x_{0}}) - \varphi(w)]((z_{n}', z_{n}), t_{n}) = 0.
\end{cases}
\tag{72}
\]

Then, direct computation gives

\[
\tilde{Z}_\tau - \varphi'(w_{\infty}^{x})\Delta \tilde{Z} = \varphi'(w_{\infty}^{x})[\Delta \varphi(w_{\infty}^{x}) + f(w_{\infty}^{x})] - \varphi'(w_{\infty}^{x})[\Delta \varphi(w_{\infty}^{x}) + f(w_{\infty}^{x})] \\
= [\varphi'(w_{\infty}^{x}) - \varphi'(w_{\infty}^{x})] \Delta \varphi(w_{\infty}^{x}) + [\varphi'(w_{\infty}^{x}) f(w_{\infty}^{x}) - \varphi'(w_{\infty}^{x}) f(w_{\infty}^{x})],
\]

If $\tilde{Z} = 0$ we obtain $\tilde{Z}_\tau - \varphi'(w_{\infty}^{x}) \Delta \tilde{Z} = 0$. If $\tilde{Z} > 0$, we obtain

\[
\tilde{Z}_\tau - \varphi'(w_{\infty}^{x}) \Delta \tilde{Z} = \left(\frac{[\varphi'(w_{\infty}^{x}) - \varphi'(w_{\infty}^{x})] \Delta \varphi(w_{\infty}^{x}) + [\varphi'(w_{\infty}^{x}) f(w_{\infty}^{x}) - \varphi'(w_{\infty}^{x}) f(w_{\infty}^{x})]}{\varphi'(w_{\infty}^{x}) - \varphi'(w_{\infty}^{x})} \right) \tilde{Z} \\
\geq -C \tilde{Z},
\]

for some positive constant C, where the last inequality follows from (70) and the fact that $\Delta \varphi(w_{\infty}^{x})$ is uniformly bounded in the whole space. Since by (72) \tilde{Z} attains a non-positive minimum at $(0, z_{\infty}, 0)$, we deduce from the maximum principle applied on the domain $\mathbb{R}^N \times (-\infty, 0]$ that $\tilde{Z} = 0$ for all $(z', z^{(N)}) \in \mathbb{R}^N$, $\tau \leq 0$. Hence, $\tilde{Z} \equiv 0$ in $\mathbb{R}^N \times \mathbb{R}$. This implies that

\[
w_{\infty}(0, 0) = w_{\infty}(\rho, \chi^x, \tilde{\tau}) = w_{\infty}(2\rho, 2\chi^x, 2\tilde{\tau}) = \cdots = w_{\infty}(k\rho, k\chi^x, k\tilde{\tau})
\]

for all $k \in \mathbb{Z}$, contradicting the fact that $w_{\infty}(k\rho, k\chi^x, k\tilde{\tau}) \to \alpha_+$ as $k \to \infty$ and $w_{\infty}(k\rho, k\chi^x, k\tilde{\tau}) \to \alpha_-$ as $k \to -\infty$.

Thus, we have $\chi^x \leq 0$, and therefore

\[
w((z', z^{(N)}), \tau) \leq w^0((z', z^{(N)}), \tau) = w((z' + \rho, z^{(N)}), \tau + \tilde{\tau})
\tag{73}
\]

holds for any $\rho \in \mathbb{R}^{N-1}, \tilde{\tau} \in \mathbb{R}$.

We now show that w only depends on $z^{(N)}$. Suppose w depends on z' and τ. Then, there exist $z_1', z_2' \in \mathbb{R}^{N-1}, z^{(N)} \in \mathbb{R}$ and $t_1', t_2' \in \mathbb{R}$ such that

\[
w((z_1', z^{(N)}), t_1') < w((z_2', z^{(N)}), t_2').
\tag{74}
\]

Then, by letting $z' = z_2'$, $\rho = z_1' - z_2'$ and $\tau = t_2' - t_1'$ in the inequality (73), we deduce

\[
w((z_2', z^{(N)}), t_2') \leq w((z_1', z^{(N)}), t_1'),
\]

contradicting (74). This implies that w only depends on $z^{(N)}$, namely $w((z', z^{(N)}), \tau) = \psi(z^{(N)})$. Finally, from the definition of χ^x, we have that ψ is increasing. \hfill \Box

Proof of Theorem 1.3. We first prove (i). Recall that $d(x, t)$ is the cut-off signed distance function to the interface Γ_t moving according to equation (13), and $d^\varepsilon(x, t)$ is the signed distance function corresponding to the interface

\[
\Gamma_t^\varepsilon := \{ x \in D, \ u^\varepsilon(x, t) = \alpha \}.
\]

Let T_1 be an arbitrary constant such that $T_1 \leq T < T_1 < T$. Assume by contradiction that (15) does not hold. Then, there exist $\eta > 0$ and sequences $\varepsilon_k \downarrow 0, t_k \in [\rho t^\varepsilon, T], x_k \in D$ such that $\alpha_+ - \eta > \alpha > \alpha_- + \eta$ and

\[
|u^\varepsilon_k(x_k, t_k) - U_0 \left(\frac{d^\varepsilon_k(x_k, t_k)}{\varepsilon_k} \right)| \geq \eta.
\tag{75}
\]
For the inequality (75) to hold, by Theorem 1.2 and $U_0(\pm \infty) = \alpha_\pm$, we need
$$d^k(x_k, t_k) = \mathcal{O}(\varepsilon_k).$$

With these observations, and also by Theorem 1.2, there exists a positive constant \tilde{C} such that
$$|d(x_k, t_k)| \leq \tilde{C}\varepsilon_k$$
for ε_k small enough.

If $x_k \in \Gamma_{t_k}$, then the left-hand side of (75) vanishes, which contradicts this inequality. Since the sign can either be positive or negative, by extracting a subsequence if necessary we may assume that
$$u^\varepsilon_k(x_k, t_k) - \alpha > 0 \quad \text{for all } k \in \mathbb{N},$$
which is equivalent to
$$d^k(x_k, t_k) > 0 \quad \text{for all } k \in \mathbb{N}. $$

By (76), each x_k has a unique orthogonal projection $p_k := p(x_k, t_k) \in \Gamma_{t_k}$. Let y_k be a point on Γ_{t_k} that has the smallest distance from x_k, and therefore $u^\varepsilon_k(y_k, t_k) = \alpha$. Moreover, we have
$$u^\varepsilon_k(x, t_k) > \alpha \quad \text{if} \quad \|x - x_k\| < \|y_k - x_k\|.$$

We now rescale u^ε_k around (p_k, t_k). Define
$$w^k(z, \tau) := u^\varepsilon_k(p_k + \varepsilon_k \mathcal{R}_k z, t_k + \varepsilon_k^2 \tau),$$
where \mathcal{R}_k is a orthogonal matrix in $SO(N, \mathbb{R})$ that rotates the $z^{(N)}$ axis, namely the vector $(0, \cdots, 0, 1) \in \mathbb{R}^N$ onto the unit normal vector to Γ_{t_k} at $p_k \in \Gamma_{t_k}$, say $-\frac{x_k - p_k}{\|x_k - p_k\|}$. To prove our result, we use Theorem 1.2 which gives information about u^ε_k for $t_k + \varepsilon_k^2 \tau \geq t^\varepsilon_k$. Then, since Γ_t is separated from ∂D by some positive distance, w^k is well-defined at least on the box
$$B_k := \left\{(z, \tau) \in \mathbb{R}^N \times \mathbb{R} : |z| \leq \frac{c}{\varepsilon_k}, \quad -(\rho - 1) \frac{\ln \varepsilon_k}{\mu} \leq \tau \leq \frac{T - T_1}{\varepsilon_k^2} \right\},$$
for some $c > 0$. We remark that $B_k \subset B_{k+1}, k \in \mathbb{N}$ and $\lim_{k \to \infty} B_k = \mathbb{R}^N \times \mathbb{R}$. Writing $\mathcal{R}_k = (r_{ij})_{1 \leq i, j \leq N}$, we remark that $\mathcal{R}_k^{-1} = \mathcal{R}_k^T$, which implies that
$$\sum_{i=1}^N r_{li}^2 = 1, \quad \sum_{i=1, j \neq m}^N r_{ji} r_{li} = 0. \quad (80)$$

Since
$$\partial_{z_i}^2 \varphi(w^k) = \varepsilon_k^2 \sum_{j=1}^N \sum_{\ell=1}^N r_{ji} r_{\ell i} \partial_{x_{1j}} \varphi(u^\varepsilon_k),$$
we have
$$\Delta \varphi(w^k) = \varepsilon_k^2 \sum_{i=1}^N \partial_{z_i}^2 \varphi(w^k)$$
$$= \varepsilon_k^2 \sum_{i=1}^N \sum_{\ell=1}^N r_{li}^2 \partial_{x_\ell}^2 \varphi(u^\varepsilon_k) + \varepsilon_k^2 \sum_{i=1}^N \sum_{j, \ell = 1, j \neq \ell}^N r_{ji} r_{\ell i} \partial_{x_{1j}} \varphi(u^\varepsilon_k)$$
$$= \varepsilon_k^2 \Delta \varphi(u^\varepsilon_k).$$
Thus, we obtain
\[w^k_r = \Delta \varphi(w^k) + f(w^k) \in B_k. \]

From the propagation result in Theorem 1.2 and the fact that the rotation matrix \(R_k \) maps the \(z^{(N)} \) axis to the unit normal vector of \(\Gamma_t \) at \(p_k \), there exists a constant \(C > 0 \) such that
\[z^{(N)} \geq C \Rightarrow w^k(z, \tau) \geq \alpha_+ - \eta > \alpha, \quad z^{(N)} \leq -C \Rightarrow w^k(z, \tau) \leq \alpha_- + \eta < \alpha \]
(81)
as long as \((z, \tau) \in B_k\).

It follows from the first line of (14) that \(\alpha_- - \eta_0 \leq w^k \leq \alpha_+ + \eta_0 \) for \(k \) large enough. Then, by Lemma 11 we can find a subsequence of \((w^k)\) converging to some \(w \in C^{2,1}(\mathbb{R}^N \times \mathbb{R}) \) which satisfies
\[w_r = \Delta \varphi(w) + f(w) \]on \(\mathbb{R}^N \times \mathbb{R} \).

From Remark 2 we can deduce (66). Then, by Lemma 12, there exists \(z^* \in \mathbb{R} \) such that
\[w(z, \tau) = U_0(z^{(N)} - z^*). \]
(82)

Define sequences of points \(\{z_k\}, \{\tilde{z}_k\} \) by
\[z_k := \frac{1}{\varepsilon_k} R^{-1}_k(x_k - p_k), \quad \tilde{z}_k := \frac{1}{\varepsilon_k} R^{-1}_k(y_k - p_k). \]
(83)

From (76) and Theorem 1.2 we have
\[|d(x_k, t_k)| = \|x_k - p_k\| = O(\varepsilon_k), \]
\[\|y_k - p_k\| \leq \|y_k - x_k\| + \|x_k - p_k\| = |d^{x_k}(x_k, t_k)| + |d(x_k, t_k)| = O(\varepsilon_k) \]
(see Figure 1), which implies that the sequences \(z_k \) and \(\tilde{z}_k \) are bounded. Thus, there exist subsequences of \(\{z_k\}, \{\tilde{z}_k\} \) and \(z_\infty, \tilde{z}_\infty \in \mathbb{R}^N \) such that
\[z_{k_n} \to z_\infty, \quad \tilde{z}_{k_n} \to \tilde{z}_\infty, \quad \text{as} \quad k \to \infty. \]

![Diagram](image)

(a) Points \(x_k, y_k, p_k \) and interfaces \(\Gamma_{t_k}, \Gamma^{\varepsilon}_{t_k} \) inside the box \(B_k \).

(b) Points \(z_\infty \) and \(\tilde{z}_\infty \) and hyperplanes \(z^{(N)} = z^* \), \(z^{(N)} = z^{(N)}_\infty \).

Figure 1: In (a) the distance between \(\Gamma_{t_k} \) and \(\Gamma^{\varepsilon}_{t_k} \) is of \(O(\varepsilon_k) \). In (b), since we rescale space by \(\varepsilon^{-1} \), the distance between two hyperplanes is of \(O(1) \).

Since the normal vector to \(\Gamma_{t_k} \) at \(p_k \) is equal to \(x_k - p_k \), and the mapping \(R^{-1}_k \) sends the unit normal vector to \(\Gamma_{t_k} \) at \(p_k \) to the vector \((0, \cdots, 0, 1) \in \mathbb{R}^N \), we conclude \(z_\infty \) must lie on the \(z^{(N)} \) axis so that we can write
\[z_\infty = (0, \cdots, 0, z^{(N)}_\infty). \]
Since, by (77),
\[
 w(z_\infty, 0) = \lim_{k_n \to \infty} w^{k_n}(z_{k_n}, 0) = \lim_{k_n \to \infty} u^{\varepsilon_kn}(x_{k_n}, t_{k_n}) \geq \alpha,
\]
we deduce from (82) and the fact that \(U_0 \) is an increasing function that
\[
 w(z_\infty, 0) = U_0(z_\infty^{(N)} - z^*) \geq \alpha \Rightarrow z_\infty^{(N)} \geq z^*.
\]

From the definition of \(y_{k_n} \) and (79), we have
\[
 w(\tilde{z}_\infty, 0) = \lim_{k \to \infty} w^{k_n}(\tilde{z}_{k_n}, 0) = \lim_{k \to \infty} u^{\varepsilon_kn}(y_{k_n}, t_{k_n}) = \alpha. \tag{84}
\]

Next, we show that
\[
 w(z, 0) \geq \alpha \text{ if } ||z - z_\infty|| \leq ||\tilde{z}_\infty - z_\infty||. \tag{85}
\]
Choose \(z \in \mathbb{R}^N \) satisfying \(||z - z_\infty|| \leq ||\tilde{z}_\infty - z_\infty|| \) and a sequence \(a_{k_n} \in \mathbb{R}^+ \) such that \(a_{k_n} \to ||z - z_\infty|| \) and \(\varepsilon_{k_n} a_{k_n} \leq ||x_{k_n} - y_{k_n}|| \) as \(k \to \infty \). Then, we define sequences \(n_{k_n} \) and \(b_{k_n} \) by
\[
 n_{k_n} = \frac{z - z_{k_n}}{z - z_{k_n}}, \quad b_{k_n} = a_{k_n} n_{k_n} + z_{k_n}.
\]
Note that \(b_{k_n} \to z \) as \(k \to \infty \). Then, by (83), we obtain
\[
 w(z, 0) = \lim_{k_n \to \infty} w^{k_n}(b_{k_n}, 0) = \lim_{k_n \to \infty} u^{\varepsilon_{k_n}}(p_{k_n} + \varepsilon_{k_n} \mathcal{R}_{k_n}(a_{k_n} n_{k_n} + z_{k_n}), t_{k_n})
 = \lim_{k_n \to \infty} u^{\varepsilon_{k_n}}(\varepsilon_{k_n} a_{k_n} \mathcal{R}_{k_n} n_{k_n} + x_{k_n}, t_{k_n}) \geq \alpha,
\]
where the last inequality holds by (78).

Note that (82) implies \(\{w = \alpha\} = \{(z, \tau) \in \mathbb{R}^N \times \mathbb{R}, z^{(N)} = z^*\} \). Thus, we have either \(z_\infty = \tilde{z}_\infty \) or, in view of (82), (84) and (85), that the ball of radius \(||\tilde{z}_\infty - z_\infty|| \) centered at \(z_\infty \) is tangent to the hyperplane \(z^{(N)} = z^* \) at \(\tilde{z}_\infty \). Hence, \(\tilde{z}_\infty \) is a point on \(z^{(N)} \) axis. With this observation and (82), we have
\[
 \tilde{z}_\infty = (0, \ldots, 0, z^*).
\]
This last property implies
\[
 \frac{d^{k_n} n_{k_n}}{\varepsilon_{k_n}} = \frac{||x_{k_n} - y_{k_n}||}{\varepsilon_{k_n}} = \frac{||\mathcal{R}_{k_n}(z_{k_n} - \tilde{z}_{k_n})||}{\varepsilon_{k_n}} = ||z_{k_n} - \tilde{z}_{k_n}|| \to ||z_\infty - \tilde{z}_\infty|| = z^{(N)}_\infty - z^*. \tag{86}
\]
We have therefore reached a contradiction since, by (76), (82) and (86),
\[
 0 = |w(z_\infty, 0) - U_0(z^{(N)}_\infty - z^*)|
 = \lim_{k_n \to \infty} \left[w^{k_n}(z_{k_n}, 0) - U_0 \left(\frac{d^{k_n} n_{k_n}}{\varepsilon_{k_n}} \right) \right]
 = \lim_{k_n \to \infty} \left[u^{\varepsilon_{k_n}}(x_{k_n}, t_{k_n}) - U_0 \left(\frac{d^{k_n} n_{k_n}}{\varepsilon_{k_n}} \right) \right],
\]
contradicting (75).

For the proof of (ii), we use the same method as in [3].
Appendix: Mobility and surface tension

Mobility is defined as a linear response of the speed of traveling wave to the external force. More precisely, motivated by (4.1) and (4.2) in [18], let us consider the nonlinear Allen-Cahn equation with external force δ on \mathbb{R} for small enough $|\delta|$

$$u_t = \varphi(u)_{zz} + f(u) + \delta, \quad z \in \mathbb{R},$$

and corresponding traveling wave solution $U = U_\delta(z)$ with speed $c(\delta)$:

$$\varphi(U_\delta)_{zz} + c(\delta)U_\delta + f(U_\delta) + \delta = 0, \quad z \in \mathbb{R},$$

where $\alpha_{\pm, \delta}$ are two stable solutions of $f(u) + \delta = 0$. Then, we define the mobility by

$$\mu_{AC} := -\frac{c'(0)}{\alpha_+ - \alpha_-},$$

with a normalization factor $\alpha_+ - \alpha_-$ as in [18]; compare (4.6) and (4.7) in [18] noting that the boundary conditions at $\pm \infty$ are switched so that we have a negative sign for μ_{AC}.

To derive a formula for μ_{AC}, we multiply $\varphi(U_\delta)_z$ by (88) and integrate it over \mathbb{R} to obtain

$$c(\delta) \int_{\mathbb{R}} U_{\delta z} \varphi(U_\delta)_z dz + \delta(\varphi(\alpha_+) - \varphi(\alpha_-)) = O(\delta^2),$$

by noting that

$$\int_{\mathbb{R}} \varphi(U_\delta)_{zz} \varphi(U_\delta)_z dz = \frac{1}{2} \int_{\mathbb{R}} \{ (\varphi(U_\delta)_z)^2 \}_z dz = 0,$$

$$\int_{\mathbb{R}} \varphi(U_\delta)_z dz = \varphi(\alpha_{+, \delta}) - \varphi(\alpha_{-, \delta}) = \varphi(\alpha_+) - \varphi(\alpha_-) + O(\delta),$$

$$\int_{\mathbb{R}} f(U_\delta) \varphi(U_\delta)_z dz = \int_{\mathbb{R}} f(U_\delta) \varphi'(U_\delta) U_{\delta z} dz = - \int_{\alpha_{-, \delta}}^{\alpha_{+, \delta}} W'(u) du = O(\delta^2).$$

The last line follows by the change of variable $u = U_\delta(z)$, $W'(u) = -f(u)\varphi'(u)$ (recall (28)), $\int_{\alpha_-}^{\alpha_+} W'(u) du = 0$ and $W'(\alpha_\pm) = 0$, $W' \in C^1$. However, since one can at least formally expect $U_\delta = U_0 + O(\delta)$ (recall (20) for U_0), by (27),

$$\int_{\mathbb{R}} U_{\delta z} \varphi(U_\delta)_z dz = \int_{\mathbb{R}} U_{0 z} \varphi(U_0)_z dz + O(\delta)$$

$$= \int_{\mathbb{R}} U_{0 z} \sqrt{2W(U_0(z))} dz + O(\delta)$$

$$= \int_{\alpha_-}^{\alpha_+} \sqrt{2W(u)} du + O(\delta),$$

by the change of variable $u = U_0(z)$ again. This combined with (89) leads to

$$c'(0) = -\frac{\varphi(\alpha_+) - \varphi(\alpha_-)}{\int_{\alpha_-}^{\alpha_+} \sqrt{2W(u)} du}.$$

Thus, the mobility is given by the formula

$$\mu_{AC} = \frac{\varphi'_+}{\int_{\alpha_-}^{\alpha_+} \sqrt{2W(u)} du} = \frac{\varphi'_+}{\int_{\mathbb{R}} \varphi'(U_0) U_{0 z}^2(z) dz},$$

(90)
where
\[\varphi^\pm = \frac{\varphi(\alpha_\pm) - \varphi(\alpha_-)}{\alpha_+ - \alpha_-}. \]

On the other hand, surface tension is defined as a gap of the energy of the microscopic transition surface from \(\alpha_- \) to \(\alpha_+ \) in normal direction and that of the constant profile \(\alpha_- \) or \(\alpha_+ \). More precisely, define the energy of a profile \(u = \{u(z)\}_{z \in \mathbb{R}} \) by
\[\mathcal{E}(u) = \int_{\mathbb{R}} \left\{ \frac{1}{2} \left(\varphi(u)_z \right)^2 + W(u) \right\} dz. \]
Recall that the potential \(W \) is defined by (28), and \(\mathcal{E}(u) \) is defined through \(\varphi \). We observe that \(\mathcal{E} \) is defined through \(\varphi \).

Note that the nonlinear Allen-Cahn equation, that is (87) with \(\delta = 0 \), is a distorted gradient flow associated with \(\mathcal{E}(u) \):
\[u_t = -\frac{\delta \mathcal{E}(u)}{\delta \varphi(u)} , \quad z \in \mathbb{R}, \]
where the right hand side is defined as a functional derivative of \(\mathcal{E}(u) \) in \(\varphi(u) \), which is given by
\[\frac{\delta \mathcal{E}(u)}{\delta \varphi(u)} = -\varphi(u)_{zz} - f(u(z)). \]

Indeed, to see the second term \(-f(u(z)) \), setting \(v = \varphi(u) \), one can rewrite \(W(u) = W(\varphi^{-1}(v)) \) as a function of \(v \) so that
\[(W(\varphi^{-1}(v)))' = W'(\varphi^{-1}(v))(\varphi^{-1}(v))' = -f(\varphi^{-1}(v))\varphi'(\varphi^{-1}(v)) \frac{1}{\varphi'(\varphi^{-1}(v))} = -f(\varphi^{-1}(v)) = -f(u). \]

We call the flow “distorted”, since the functional derivative is taken in \(\varphi(u) \) and not in \(u \). One can rephrase this in terms of the change of variables \(v(z) = \varphi(u(z)) \). Indeed, we have \(\mathcal{E}(u) = \tilde{\mathcal{E}}(v) \) under this change, where
\[\tilde{\mathcal{E}}(v) = \int_{\mathbb{R}} \left\{ \frac{1}{2} v_z^2 + W(\varphi^{-1}(v)) \right\} dz, \]
and
\[\frac{\delta \tilde{\mathcal{E}}}{\delta v} = -v_{zz} - f(\varphi^{-1}(v)) = -v_{zz} - g(v). \]
Therefore, in the variable \(v(z) \), the nonlinear Allen-Cahn equation can be rewritten as
\[v_t = \varphi'(u) u_t = -\varphi'(\varphi^{-1}(v)) \cdot \frac{\delta \tilde{\mathcal{E}}}{\delta v} = \varphi'(\varphi^{-1}(v)) \{v_{zz} + g(v)\}. \]

This type of distorted equation for \(v \) is sometimes called Onsager equation; see [16].

Now we come back to the computation of the surface tension \(\sigma_{AC} \). In fact, it is given by
\[\sigma_{AC} = \frac{1}{\varphi^+} \int_{\mathbb{R}} V_u^2 dz = \frac{1}{\varphi^+} \int_{\alpha_-}^{\alpha_+} \varphi'(u) \sqrt{2W(u)} du, \] (91)
where $V_0 = \varphi(U_0)$ and satisfies (21). Indeed, the second equality follows from (29). To see the first equality, by definition,

$$\sigma_{AC} = \frac{1}{\varphi_{\pm}^*} \min_{u : u(\pm\infty) = \alpha_{\pm}} \mathcal{E}(u) = \frac{1}{\varphi_{\pm}^*} \min_{v : v(\pm\infty) = \varphi(\alpha_{\pm})} \tilde{\mathcal{E}}(v)$$

and the minimizers of $\tilde{\mathcal{E}}$ under the condition $v(\pm\infty) = \varphi(\alpha_{\pm})$ are given by V_0 and its spatial shifts. Thus,

$$\sigma_{AC} = \frac{1}{\varphi_{\pm}^*} \tilde{\mathcal{E}}(V_0) = \frac{1}{\varphi_{\pm}^*} \int_{\mathbb{R}} \left\{ \frac{1}{2} V_0^2 + W(\varphi^{-1}(V_0)) \right\} dz.$$

However, since $V_0 z = \sqrt{2W(U_0(z))}$ by (27), we have $\int_{\mathbb{R}} W(\varphi^{-1}(V_0)) dz = \int_{\mathbb{R}} \frac{1}{2} V_0^2 dz$. In particular, this implies the first equality of (91).

By (30) combined with (90) and (91), we see that $\lambda_0 = \mu_{AC} \sigma_{AC}$.

Remark 4. The linear case $\varphi(u) = K u$ is discussed by Spohn [18], in which K is denoted by κ. In this case, since $\varphi' = \kappa$ and $\varphi_{\pm}^* = \kappa$, by (90) and (91), we have $\mu_{AC} = \left[\int_{\mathbb{R}} U_0^2 dz \right]^{-1}$ and $\sigma_{AC} = \kappa \int_{\mathbb{R}} U_0^2 dz$. These formulas coincide with (4.7) and (4.8) in [18] by noting that U_0 is the same as w in [18] in the linear case except that the direction is switched due to the choice of the boundary conditions.

Acknowledgement

The authors are grateful to the professors Henri Berestycki and Francois Hamel for a useful discussion. P. El Kettani, D. Hilhorst and H.J. Park thank IRN ReaDiNet as well as the French-Korean project STAR. T. Funaki was supported in part by JSPS KAKENHI, Grant-in-Aid for Scientific Researches (A) 18H03672 and (S) 16H06338, and thanks also IRN ReaDiNet. S. Sethuraman was supported by grant ARO W911NF-181-0311, a Simons Foundation Sabbatical grant, and by a JSPS Fellowship, and thanks Waseda U. for the kind hospitality during a sabbatical visit.

References

[1] Matthieu Alfaro, Danielle Hilhorst, Hiroshi Matano : The singular limit of the Allen-Cahn equation and the FitzHugh-Nagumo system. Journal of Differential Equations 2 (2008), 505-565.

[2] Matthieu Alfaro, Danielle Hilhorst : Generation of Interface for an Allen-Cahn Equation with Non-linear Diffusion. Mathematical Modelling of Natural Phenomena 5 (2010), 1-12.

[3] Matthieu Alfaro, Hiroshi Matano : On the validity of formal asymptotic expansions in Allen-Cahn equation and FitzHugh-Nagumo system with generic initial data. Discrete and Continuous Dynamical Systems Series B, Volume 17, Issue 6 (2012), 1639-1649.

[4] Samuel M. Allen, John W. Cahn : A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metallurgica, Volume 27, Issue 6 (1979), 1085-1095.

[5] Henri Berestycki, Francois Hamel : Generalized travelling waves for reaction-diffusion equations. Contemporary Mathematics 446 (2007), 101-124.

[6] Danielle Brochet, Xinfu Chen and Danielle Hilhorst : Finite dimensional exponential attractor for the phase field model. Applicable Analysis 49, 3-4 (1993), 197-212.

[7] Xinfu Chen : Generation and propagation of interfaces for reaction-diffusion equations. Journal of Differential Equations Volume 96, Issue 1 (1992), 116-141.
[8] Roberta Dal Passo, Lorenzo Giacomelli, Amy Novick-Cohen: Existence for an Allen-Cahn/Cahn-Hilliard system with degenerate mobility. Interfaces and Free Boundaries Volume 1, Issue 2 (1999), 199-226.

[9] Perla El Kettani, Tadahisa Funaki, Danielle Hilhorst, Hyunjoon Park and Sunder Sethuraman: Mean curvature interface limit from Glauber+Zero-range interacting particles, arXiv:2004.05276v2.

[10] N. V. Krylov: Lectures on Elliptic and Parabolic Equations in Sobolev Spaces. American Mathematical Society, 2008, Providence, R.I.

[11] Paul C. Fife, Andrew A. Lacey: Motion by curvature in generalized Cahn-Allen models. Journal of Statistical Physics 77 (1994), 173-181.

[12] Raffaele Folino, César A. Hernández Melo, Luis Lopez Rios, Ramón G. Plaza: Exponentially slow motion of interface layers for the one-dimensional Allen-Cahn equation with nonlinear phase-dependent diffusivity. Zeitschrift für angewandte Mathematik und Physik (2020), 71:132.

[13] Danielle Hilhorst, Yong-Jung Kim, Dohyun Kwon, Thanh Nam Nguyen: Dispersal towards food: the singular limit of an Allen-Cahn equation. Journal of Mathematical Biology 76 (2018), 531-565.

[14] Gary M. Lieberman: Second Order Parabolic Differential Equations. World Scientific, 1996, Singapore.

[15] O. A. Ladyženskaja, V. A. Solonnikov, N. N. Ural’ceva: Linear and quasilinear equations of parabolic type. Vol. 23 American Mathematical Society, 1968, Providence, R.I.

[16] A. Mielke: On evolutionary Γ-convergence for gradient systems. In: Macroscopic and large scale phenomena: coarse graining, mean field limits and ergodicity, 187–249, Lect. Notes Appl. Math. Mech., 3, Springer, 2016.

[17] Murray H. Protter, Hans F. Weinberger: Maximum Principles in Differential Equations, Springer, 1984, New York.

[18] Herbert Spohn: Interface motion in models with stochastic dynamics. Journal of Statistical Physics volume 71, (1993), 1081-1132.

[19] Carl Wagner: On the solution of diffusion problems involving concentration-dependent diffusion coefficients. JOM 4 (1952), 91-96.