Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Tackling the politicisation of COVID-19 data reporting through open access data sharing

Public health policies are only as good as the quality of the data on which they are based. Policy decisions that are so crucial to containing an emerging pathogen are challenged by the sparsity of data on which to optimise them. The earlier, and more completely, the data can be compiled, the better the robustness of risk estimates, forecasting, and modelling. Within 3 weeks of the announcement by WHO of an anomalous cluster of severe coronavirus cases in Wuhan, China, the Johns Hopkins University (JHU) Center for Systems Science and Engineering (CSSE) launched the COVID-19 Dashboard. With the utmost transparency, Dong and colleagues detail the challenges faced and the solutions developed in providing a central, user-friendly database for publicly available epidemiological data compiled from over 3500 locations across 195 countries and regions. The reliable granular surveillance of reported SARS-CoV-2 cases, deaths and case fatalities, and vaccine doses administered in many instances, has provided an evidence-base for determining effective local, national, and international control measures. Methodological innovations in the data curation process proved fundamental to overcoming anomalies that arose from a myriad of sources, including the politicisation of COVID-19 risk assessments.

The JHU CSSE Dashboard was not susceptible to the same misalignment of incentives as some government officials who were more concerned about short-term economic repercussions of measures to curtail COVID-19 transmission than accurate risk evaluations. Regression analysis of country-specific death rates among 137 countries, showed that approximately 400,000 deaths were estimated to be unaccounted for during the first year of the pandemic, most likely among autocratic governments. During the early stages of the pandemic, the Chinese Government limited knowledge of deaths. Similarly, some Brazilian hospitals have been implicated in the under-reporting of COVID-19 deaths in response to government pressure to avoid triggering the apparent need for lockdown measures.

The Lancet Global Health. Now and then: lessons from the rollout of ART. Lancet Glob Health 2021; 9: e721.

1. Rajasingh R, Govender NP, Jordan A, et al. The global burden of HIV-associated cryptococcal infection in adults in 2020: a modelling analysis. Lancet Infect Dis 2022; published online Aug 29. https://doi.org/10.1016/S1473-3099(22)00949-6.

2. Rajasingh R, Smith RM, Park BJ, et al. Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect Dis 2017; 17: 873-81.

3. Chanda-Kapata P, Mtoumi F, Kapata N, et al. Tuberculosis, HIV/AIDS and malaria health services in sub-Saharan Africa—a situation analysis of the disruptions and impact of the COVID-19 pandemic. Int J Infect Dis 2022; published online March 25. https://doi.org/10.1016/j.ijid.2022.03.033.

4. Park BJ, Wannemuehler KA, Manston BJ, Govender N, Pappas PG, Chiller TM. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS 2009; 23: 525-30.

5. GBD 2019 HIV Collaborators. Global, regional, and national sex-specific burden and control of the HIV epidemic, 1990–2019, for 204 countries and territories: the Global Burden of Diseases Study 2019. Lancet HIV 2021; 8: e53–51.

6. The Lancet Global Health. Now and then: lessons from the rollout of ART. Lancet Glob Health 2021; 9: e721.

7. Rodrigues ML. Funding and Innovation in diseases of neglected populations: the paradox of cryptococcal meningitis. PLoS Negl Trop Dis 2016; 10: e0004429.

8. Mirza SA, Phelan M, Rimland D, et al. The changing epidemiology of cryptococcosis: an update from population-based active surveillance in 2 large metropolitan areas, 1992–2000. Clin Infect Dis 2003; 36: 789–94.

9. Dromer F, Mauthouin-Pélissier S, Fontanet A, Ronin O, Dupont B, Lortholary O. Epidemiology of HIV-associated cryptococcosis in France (1985–2001): comparison of the pre- and post-HAART eras. AIDS 2004; 18: 555–62.

10. Tenforde MW, Mokomane M, Leerne T, et al. Advanced human immunodeficiency virus disease in Botswana following successful antiretroviral therapy rollout: incidence of and temporal trends in cryptococcal meningitis. Clin Infect Dis 2017; 65: 779–86.

11. Molloy SF, Chiller T, Greene GS, et al. Cryptococcal meningitis: a neglected NTD? PLoS Negl Trop Dis 2012; 6: e0005575.
Trump White House Administration advised hospitals to send data on SARS-CoV-2 and intensive care unit capacities to a private company, bypassing the US Center for Disease Control and Prevention (CDC).\(^7\) Concerningly, a relationship was exposed between the private contractor and the Trump family’s corporation.\(^8\) The switch to sending data to a private contractor led to a hiatus in publicly available data from the US CDC.\(^9\) Moreover, the transition was accompanied by sporadic updates, with many irregularities in the data and inconsistencies in the definition of metrics from the contracted private company.\(^7\) Even the appearance of such impropriety undermines public confidence in the accuracy of such data and the willingness to adhere to government recommendations regarding COVID-19 specifically and potentially to health policies more broadly. However, the objectivity of the JHU CSSE Dashboard as an independent data source remained steadfast. The data validation undertaken consisted of computational scanning for large deviations across temporal trajectories, with manual review and confirmation of any anomalies appearing in the data. For instances of anomalous spikes in data due to a backlog in reporting, the respective health agencies were contacted to correctly distribute reporting dates retrospectively. Furthermore, the data collation for the JHU CSSE Dashboard maintains consistent definitions for case and death counts (using those specified by the US CDC) and includes both probable and confirmed numbers in the overall count. As new COVID-19 variants continue to emerge, human behaviour shifts, and policies evolve, the JHU CSSE COVID-19 Dashboard will continue to be a highly informative tool for decision makers and the public alike.

We declare no competing interests.

Chad R Wells, *Alison P Galvani
alison.galvan@yale.edu
Yale Center for Infectious Disease Modeling and Analysis, Yale School of Public Health, New Haven, CT 06520, USA

1. Dong E, Ratcliffe J, Goyea TD, et al. The Johns Hopkins University Center for Systems Science and Engineering COVID-19 Dashboard: data collection process, challenges faced, and lessons learned. Lancet Infect Dis 2022; published online Aug 31. https://doi.org/10.1016/S1473-3099(22)00434-0.
2. Cassan G, Van Steenoor M. Political regime and COVID 19 death rate: efficient, biasing or simply different autocracies? An econometric analysis. SSM Popul Health 2021; 16:100912.
3. Zhong R, Mazar P, Kao J, Krolik A. No ‘negative’ news: how China censored the coronaviruses. The New York Times. Dec 19, 2020. https://www.nytimes.com/2020/12/19/technology/china-coronavirus-censorship.html (accessed July 7, 2022).
4. ReliefWeb. Yemen: Houthis risk civilians’ health in Covid-19 [EN/AR]. Jun 1, 2021. https://reliefweb.int/report/yemen/yemen-houthis-risk-civilians-health-covid-19-enar (accessed July 7, 2022).
5. Troianovski A. ‘You can’t trust anyone’: Russia’s hidden Covid toll is an open secret. The New York Times. April 10, 2021. https://www.nytimes.com/2021/04/10/world/europe/covid-russia-death.html (accessed July 7, 2022).
6. Phillips T, Milhorrowan F. Brazil hospital chain accused of hiding Covid deaths and giving unproven drugs. The Guardian. Sept 29, 2021. https://amp.theguardian.com/global-development/2021/sep/29/brazil-prevent-senior-hospital-chain-covid-acusations (accessed July 12, 2022).
7. Huang P, Simmons-Duffin S. COVID-19 hospital data system that bypasses CDC plagued by delays, inaccuracies. NPR. July 31, 2020. https://www.npr.org/sections/health-shots/2020/07/31/897429054/covid-19-hospital-data-system-that-bypasses-cdc-plagued-by-delays-inaccuracies (accessed July 7, 2022).
8. Temple-Raston D, Mak T. Irregularities in COVID reporting contract award process raise new questions. NPR. July 29, 2020. https://www.npr.org/sections/health-shots/2020/07/29/896645314/irregularities-in-covid-reporting-contract-award-process-raise-new-questions (accessed July 7, 2022).
9. Sun LH, Goldstein A. Disappearance of covid-19 data from CDC website spurs outcry. The Washington Post. July 16, 2020. https://www.washingtonpost.com/health/2020/07/16/coronavirus-hospitalization-data-outcry/ (accessed July 7, 2022).