Research Article

Multiple Standing Waves for Nonlinear Schrödinger-Poisson Systems

Jian Zhou and Yunshun Wu

School of Mathematical Sciences, Guizhou Normal University, Guiyang 550025, China

Correspondence should be addressed to Jian Zhou; zhousjandepict@163.com

Received 31 March 2021; Accepted 1 June 2021; Published 18 June 2021

Academic Editor: Yuri Latushkin

Copyright © 2021 Jian Zhou and Yunshun Wu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we consider the following nonlinear Schrödinger-Poisson systems. Under suitable conditions on $V, K, g,$ and h, when $1 < s < 6$, we obtain two nontrivial solutions for the problem and when $g(x, \cdot)$ is odd and $6 < s < \infty$, we obtain infinitely many solutions for the problem.

1. Introduction

In this paper, we consider the following nonlinear Schrödinger-Poisson equations on \mathbb{R}^3

\[
\begin{align*}
-\Delta u + V(x)u + K(x)\psi u &= g(x, u) - h(x)|u|^{s-2}u, \quad \text{in } \mathbb{R}^3, \\
-\Delta \psi &= K(x)u^2, \quad \text{in } \mathbb{R}^3.
\end{align*}
\]

(1)

Such problem arises when one is looking for standing wave solutions $\psi(t, x) = e^{-i\omega t/h}u(x)$ for the nonlinear Schrödinger equation

\[
\begin{align*}
\frac{i\hbar}{2m} \frac{\partial \psi}{\partial t} &= -\frac{\hbar}{2m} \Delta \psi + U(x)\psi + K(x)\psi \psi^* - f(x, |\psi|)\psi, \quad (t, x) \in \mathbb{R}^+ \times \mathbb{R}^3,
\end{align*}
\]

(2)

coupled with the Poisson equation

\[
-\Delta \phi = K(x)u^2, \quad x \in \mathbb{R}^3.
\]

(3)

It is well known that the Schrödinger-Poisson systems have a strong physical meaning because they appear in quantum mechanics models and in semiconductor theory (see [1–3]). Problem (1) is a special case of the following Schrödinger-Poisson system:

\[
\begin{align*}
-\Delta u + V(x)u + K(x)\phi u &= f(x, u), \quad \text{in } \mathbb{R}^3, \\
-\Delta \phi &= K(x)u^2, \quad \text{in } \mathbb{R}^3.
\end{align*}
\]

(4)

Cerami and Vaira in [4] studied the existence of positive solutions for the problem where they considered $V(x) = 1$, $f(x, u) = k(x)|u|^{p-2}u$, and $4 < p < 6$. After that, many researchers have focused on the problem under various conditions (see [5, 6]).

In recent years, the Schrödinger-Poisson system has been studied widely under variant assumptions on $V, K,$ and f (see [7–10]). Because the problem is set on the whole space \mathbb{R}^3, it is well known that the main difficulty of this problem is the lack of compactness for Sobolev embedding, and then, it is usually difficult to prove that a minimizing sequence or a (PS) sequence is strongly convergent if we seek solutions by variational methods. In order to overcome this difficulty, most of them dealt with the situation where V is a positive constant or being radially symmetric (see [11–13]). When V is not a constant and not radially symmetric, there have been many works by developing various variational techniques (see [4, 14–17]).
In paper [18], Sun et al. considered the system
\[
\begin{align*}
-\Delta u + a(x)u + \phi u &= k(x)|u|^q - 2u - h(x)|u|^{p - 2}u, \quad \text{in } \mathbb{R}^3, \\
-\Delta \phi &= u^2, \quad \lim_{|x| \to \infty} \phi(x) = 0, \quad \text{in } \mathbb{R}^3,
\end{align*}
\]
where \(1 < q < 2 < p < +\infty\), \(a(x), k(x), \) and \(h(x)\) are measurable functions satisfying suitable assumptions. They obtained infinitely many solutions in \(H^1(\mathbb{R}^3) \times D^{1,2}(\mathbb{R}^3)\) with negative energy. Since \(2 < p < \infty\) is allowed to be supercritical, the usual Sobolev space \(H^1(\mathbb{R}^3)\) cannot be used for the study; to overcome this difficulty we introduce a new space which is motivated by [19].

We should also mention another recent paper [20]; Wang et al. considered a similar problem
\[
\begin{align*}
-\Delta u + V(x)u + \phi(x)u &= k(x)|u|^q - 2u - h(x)|u|^{p - 2}u + g(x), \quad \text{in } \mathbb{R}^3, \\
-\Delta \phi &= u^2, \quad \text{in } \mathbb{R}^3,
\end{align*}
\]
and a nontrivial solution is obtained (see [20], Theorem 2). Note that there is an inhomogeneous term on the right-hand side of the first equation. Here \(1 < q < 2 < p < 4\) and the potential \(V\) satisfies a coercive condition so that the working space can be compactly embedded into Lebesgue spaces.

Now, we turn to our problem (1). Since the space dimension is \(N = 3\), the critical Sobolev exponent \(2^* = 6\). For \(p \in (1, 6)\) we denote
\[
p_0 = \frac{2N}{2N - p(N - 2)} = \frac{6}{6 - p}, \quad p' = \frac{p}{p - 1}.
\]

Note that \(p'\) is the conjugate exponent in Hölder inequality. To state our results on the problem (1), we make the following assumptions:

\((V)\) \(V \in C(\mathbb{R}^3, \mathbb{R})\) satisfies \(0 < \inf_{\mathbb{R}^3} V(x) \leq \sup_{\mathbb{R}^3} V(x) < +\infty\).

\((K)\) \(K \in L^{\infty}(\mathbb{R}^3) \cap L^2(\mathbb{R}^3), K(x) \geq 0\) for a.e. \(x \in \mathbb{R}^3\).

\((g)\) \(g \in C([\mathbb{R}^3 \times \mathbb{R}, \mathbb{R}])\); for some \(r \in (1, 2)\) and \(b \in L^\infty(\mathbb{R}^3) \cap L^2(\mathbb{R}^3), \) we have
\[
|g(x, u)| \leq b(x)|u|^{r - 1}, \quad (x, u) \in \mathbb{R}^3 \times \mathbb{R}.
\]

\((g')\) There exist \(\delta > 0, \theta \in (1, 2),\) and \(a \in L^\infty(\mathbb{R}^3) \cap L^b(\mathbb{R}^3), a(x) \geq 0\) such that
\[
G(x, u) = \int_0^u g(x, \tau)d\tau \geq a(x)|u|^\theta, \quad (x, u) \in \mathbb{R}^3 \times (-\delta, \delta).
\]

\((h)\) \(s \in (\theta, 6)\) and \(h \in L^\infty(\mathbb{R}^3) \cap L^b(\mathbb{R}^3), h(x) \geq 0\) for \(x \in \mathbb{R}^3\).

\((h')\) \(s > \theta, h \in L^\infty(\mathbb{R}^3),\) and \(h(x) \geq 0\) for \(x \in \mathbb{R}^3\).

Remark 1. It follows from \((g)\) and \((g')\) that \(r \leq \theta\) for \(a(x) > 0\) and \(\delta\) small enough.

Under these assumptions, it is clear that the zero function \(u(x) = 0\) is the trivial solution of problem (1). Our main results on the existence of multiple nontrivial solutions are the following theorems.

Theorem 2. Suppose \((V), (K), (g), (h)\) are satisfied; then, problem (1) has two nontrivial solutions.

Theorem 3. Suppose \((V), (K), (g), (h)\) are satisfied. If \(g(x, \cdot)\) is odd, then problem (1) admits infinitely many solutions.

The paper is organized as follows. In Section 2, we give some useful notions and set up the variational framework of the problem. In Section 3, we prove Theorem 2, and the proof of Theorem 3 is given in Section 4. For simplicity, throughout this paper, we denote the norm on \(L^\infty = L^6(\mathbb{R}^3)\) with \(1 < \theta < \infty\) by \(|u|_{\theta} = \int_{\mathbb{R}^3} |u|^\theta dx\).

2. Preliminary

Thanks to condition \((V)\), the norm
\[
\|u\| = \left(\left(\int (|\nabla u|^2 + V(x)u^2) \right)^{1/2} \right)
\]
is an equivalent norm on \(H^1 = H^1(\mathbb{R}^3)\). Let \(q \in [2, 6]\); then, we have a continuous embedding \(H^1 \hookrightarrow L^q\). Hence, there is a constant \(S_q\) such that
\[
|u|_{q} \leq S_q \|u\|, \quad u \in H^1.
\]

For later use, we also denote by \(S\) the best Sobolev constant for the continuous embedding \(\mathcal{D}^{1,2} \hookrightarrow L^6\).

For \(u \in H^1\), it is well known that the Poisson equation
\[
-\Delta \phi = K(x)u^2
\]
has a unique solution \(\phi = \phi_u\) in \(\mathcal{D}^{1,2}(\mathbb{R}^3)\). Note that according to [21], Theorem 2.2.1,
\[
\phi_u(x) = \frac{1}{4\pi} \int K(y)u^2(y) \frac{dy}{|x - y|}.
\]

Consequently, \(\phi_u \geq 0\) in \(\mathbb{R}^3\). We also know that there exists \(a_1 > 0\) such that
\[
0 \leq \frac{1}{4} K(x)\phi_u^2 \leq a_1 \|u\|^4, \quad \text{for all } u \in H^1.
\]

See [14], Lemma 1.1.
Define a functional $\Phi : H^1 \to \mathbb{R}$,

$$
\Phi(u) = \frac{1}{2} \int \left(|\nabla u|^2 + V(x)u^2 \right) + \frac{1}{4} \int K(x)\phi_u u^2 - \int G(x, u) + \frac{1}{s} \int h(x)|u|^s.
$$

(15)

Under our assumptions, it is easy to see that $\Phi \in C^1(H^1)$. According to Benci and his collaborators [1, 22], it is well known that if u is a critical point of Φ, then (u, ϕ_u) is a (weak) solution of (1).

To find critical points of Φ, some compactness conditions, such as the well-known Palais-Smale condition (PS) for short, are crucial. To establish the (PS) condition for Φ, we need the following results.

Proposition 4. Let $f \in C(\mathbb{R}^N \times \mathbb{R}, \mathbb{R})$ such that

$$
|f(x, u)| \leq \alpha(x)|u|^{r-1} + \beta(x)|u|^{s-1}, \quad (x, u) \in \mathbb{R}^N \times \mathbb{R},
$$

(16)

for $1 \leq r \leq 2 \leq s < 2^*$, $\alpha \in L^{\infty}(\mathbb{R}^N) \cap L^s(\mathbb{R}^N)$, and $\beta \in L^{\infty}(\mathbb{R}^N) \cap L^s(\mathbb{R}^N)$. Then, the functional $\Psi : D^{1,2}(\mathbb{R}^N) \to \mathbb{R}$,

$$
\Psi(u) = \int F(x, u), \quad \text{where } F(x, u) = \int_0^u f(x, \tau)d\tau,
$$

(17)

is of class C^1 and $\nabla \Psi : D^{1,2}(\mathbb{R}^N) \to (D^{1,2}(\mathbb{R}^N))^\ast$ is compact.

Remark 5. Proposition 4 is a special case of do Ó ([23], Lemma 1). Note that since the embedding $H^1(\mathbb{R}^N) \hookrightarrow D^{1,2}(\mathbb{R}^N)$ is continuous, the statement of Proposition 4 remains valid if we replace $D^{1,2}(\mathbb{R}^N)$ with $H^1(\mathbb{R}^N)$.

Motivated by Ruiz ([13], Lemma 2.1), we also have the following result.

Lemma 6. Suppose $K \in L^2(\mathbb{R}^N)$ and $u_n \to u$ in H^1. Then, $\phi_{u_n} \to \phi_u$ in $D^{1,2}(\mathbb{R}^N)$.

Proof. As in the proof of [13], Lemma 2.1, we define linear functionals $T_n, T : D^{1,2} \to \mathbb{R}$,

$$
T_n(v) = \int K(x)u_n^2v, \quad T(v) = \int K(x)u^2v.
$$

(18)

It can be shown that T_n and T are continuous. Note that

$$
\int \nabla \phi_{u_n} \cdot \nabla v = T_n(v), \quad \int \nabla \phi_u \cdot \nabla v = T(v),
$$

(19)

by the isometry between $D^{1,2}$ and $D^{1,2} \ast$ via the Riesz representation theorem; it suffices J. Let $\epsilon > 0$; we choose $R > 0$ such that

$$
\int_{|x| \geq R} K^2(x) < \epsilon^2.
$$

(20)

Now, let $v \in D^{1,2}$ with $\|v\|_{D^{1,2}} \leq 1$; using the Hölder inequality, we have

$$
|T_n(v) - T(v)| \leq \left(\int |x| \geq R \right) K(x)|u_n^2 - u^2| |v| + \sup_{R^1} K \cdot \|u_n^2 - u^2\|_{L^{6/5}}^{5/6} + \sup_{R^1} K \cdot \|u_n^2 - u^2\|_{L^{6/5}}^{5/6}.
$$

(21)

Since $\{u_n\}$ is bounded in $D^{1,2}$ and

$$
\int_{|x| \leq R} |u_n^2 - u^2|^{6/5} \to 0
$$

(22)

by the compactness of the Sobolev embedding, letting $n \to \infty$ in (21), we deduce

$$
\lim_{n} |T_n(v) - T(v)| \leq C \epsilon
$$

(23)

uniformly for $\|v\|_{D^{1,2}} \leq 1$. It follows that $T_n \to T$ in $(D^{1,2})^\ast$. The proof is completed.

Remark 7. Even though we have this lemma in hand, we do not know how to deduce

$$
\int K(x)\left(\phi_{u_n} - \phi_u \right) u_n - u \to 0
$$

(24)

from $u_n \to u$. However, we can still deduce the (PS) condition for our functional (see the proof of Lemma 9).

3. Proofs of Theorem 2

To prove Theorem 2, we will apply the truncated method, see e.g. [24]. For a function $u : \mathbb{R}^3 \to \mathbb{R}$, we set $u^+ = \max \{ u, 0 \}$. Then, we define the truncated functional $\Phi_+ : H^1 \to \mathbb{R}$,

$$
\Phi_+(u) = \frac{1}{2} \left((|\nabla u|^2 + V(x)u^2) + \frac{1}{4} \int K(x)\phi_u u^2 - \int G(x, u) + \frac{1}{s} \int h(x)(u^+)^s. \right.
$$

(25)
It is well known that Φ_+ is of class C^1; the critical points of Φ_+ are solutions of the truncated problem
\begin{align*}
-\Delta u + V(x)u + K(x)\phi u &= g(x, u^+) - h(x)(u^+)^{-1}, & \text{in } \mathbb{R}^3, \\
-\Delta \phi &= K(x)u^2, & \text{in } \mathbb{R}^3.
\end{align*}
(26)

Moreover, suppose $u \in H^1$ is a critical point of Φ_+, then $u \geq 0$. Hence, u is a solution of (1).

Lemma 8. Under the assumptions of Theorem 2, the functional Φ_+ is coercive. As a consequence, Φ_+ is bounded from below.

Proof. By (g_1), we have
\begin{equation}
|G(x, u)| \leq \frac{1}{r} b(x)|u|^r, \quad (x, u) \in \mathbb{R}^3 \times \mathbb{R}.
\end{equation}
(27)

Note that $K(x)|\phi u|^2 \geq 0$ and $h(x) \geq 0$ on \mathbb{R}^3; using the Hölder inequality and the fact
\begin{equation}
\frac{1}{r} \frac{r'}{r_0} = 6, \quad \frac{1}{r_0} = \frac{r}{6},
\end{equation}
(28)
we have
\begin{align*}
\Phi_+(u) &= \frac{1}{2} \|u\|^2 + \frac{1}{4} \int K(x)\phi u^2 - \int G(x, u^+) + \frac{1}{s} \int h(x)(u^+)^s \\
&\geq \frac{1}{4} \|u\|^2 - \frac{1}{r} \int b(x)|u|^r \\
&\geq \frac{1}{2} \|u\|^2 - \frac{1}{r} \left(\int |b(x)| r_0 \right)^{1/r_0} \left(\int |u|^{r_0} \right)^{1/r_0} \\
&\geq \frac{1}{2} \|u\|^2 - \frac{1}{r} |b(x)| r_0 |u|_6^6 \\
&\geq \frac{1}{2} \|u\|^2 - \frac{1}{r} |b(x)| S_6^6 |u|_r^r.
\end{align*}
(29)

Since $r < 2$, we get $\Phi_+(u) \to +\infty$ as $\|u\| \to \infty$. Thus, we have proved Lemma 8. \hfill \Box

Lemma 9. Under the assumptions of Theorem 2, the functional Φ_+ satisfies the (PS) condition.

Proof. Let $\{u_n\} \subset H^1$ be a (PS) sequence of Φ_+. By Lemma 8, $\{u_n\}$ is bounded. Hence, up to a subsequence, we have $u_n \rightharpoonup u$ in H^1. Firstly, we have
\begin{equation}
\left\langle \Phi'_+(u_n) - \Phi'_+(u), \ u_n - u \right\rangle \to 0.
\end{equation}
(30)

To apply Proposition 4, let $\Psi_1, \Psi_2 : H^1 \to \mathbb{R}$,
\begin{align*}
\Psi_1(u) &= \int G(x, u^+), \\
\Psi_2(u) &= \frac{1}{s} \int h(x)(u^+)^s.
\end{align*}
(31)

By our assumptions (g_1) and (h_1), we can apply Proposition 4 (see also Remark 5) and deduce
\begin{equation}
\nabla \Psi_1(u_n) \rightharpoonup \nabla \Psi_1(u) \text{ in } H^1, \quad \nabla \Psi_2(u_n) \rightharpoonup \nabla \Psi_2(u) \text{ in } H^1.
\end{equation}
(32)

Therefore, since $\{u_n\}$ is bounded in H^1, we have
\begin{align*}
\left\| \int K(x) \left(\phi_{u_n} - \phi_u \right) u_n (u_n - u) \right\|_{L6} &\leq |K|_{\infty} \left\| \phi_{u_n} - \phi_u \right\|_{L6} \|u_n\|_{L12} |u_n - u|_{L12} \\
&\to 0.
\end{align*}
(34)

Combining (30)–(34), we obtain
\begin{equation}
\|u_n - u\|^2 = \left\langle \Phi'_+(u_n) - \Phi'_+(u), \ u_n - u \right\rangle - \int K(x) \left(\phi_{u_n} - \phi_u \right) u_n (u_n - u) \\
+ \int |g(x, u^+_n) - g(x, u^+_n)| (u_n - u) \\
- \int h(x) \left((u_n^+)^{r_1} - (u^+)^{r_1} \right) (u_n - u) \\
= o(1) - \int K(x) \left(\phi_{u_n} - \phi_u \right) u_n (u_n - u) \\
= o(1) - \int K(x) \phi_u (u_n - u)^2 \\
= o(1) \int K(x) \phi_u (u_n - u)^2.
\end{equation}
(35)

Since the integral in the final line is nonnegative, we deduce that $u_n \rightharpoonup u$ in H^1; thus, we have proved Lemma 9. \hfill \Box

Now we are ready to present the proof of Theorem 2.
Proof of Theorem 2. Firstly, we claim that the zero function \(0\) is not a minimizer of \(\Phi_\ast\). For this purpose, we choose a nonnegative function \(v \in C_0^\infty \setminus \{0\}\). Suppose \(t \in (0, |v|_{\infty}^\ast \delta)\); then, for all \(x \in \mathbb{R}^3\), we have \(0 \leq tv(x) < \delta\). Thus, using \((g_3)\) and noting that \(\phi_v = t^2 \phi_v\), we deduce

\[
\Phi_\ast(tv) = \frac{t^2}{2} \int (|\nabla v|^2 + V(x)v^2) + \frac{1}{4} \int K(x)\phi_v(tv)^2
- \int G(x, tv) + \frac{t^2}{s} \int h(x)v^4 \\
\leq \frac{t^2}{2} \int (|\nabla v|^2 + V(x)v^2) + \frac{1}{4} \int K(x)\phi_vv^2
+ \frac{t^6}{4} \int K(x)\phi_vv^2
- \int a(x)v^2 + \frac{t^s}{s} \int h(x)v^4.
\]

Because \(\theta \in (1, 2)\) and \(s \in (\theta, 6)\), we see that

\[
\Phi_\ast(tv) < 0 = \Phi_\ast(0)
\]

for \(t > 0\) small enough. So \(0\) is not a minimizer of \(\Phi_\ast\).

By Lemma 8 and Lemma 9, we know that \(\Phi_\ast\) is bounded from below and satisfies the (PS) condition. It is well known that there exists a minimizer \(u_\ast\) of \(\Phi_\ast\) (see e.g., [25], Corollary 2.5). By the claim above, we see that \(u_\ast \neq 0\) and it is a critical point of \(\Phi_\ast\). As mentioned at the beginning of this section, \(u_\ast \geq 0\) and it is a nontrivial solution of (1).

In a similar manner, by considering \(\Phi : H^1 \rightarrow \mathbb{R}\),

\[
\Phi_\ast(u) = \frac{1}{2} \int (|\nabla u|^2 + V(x)u^2) + \frac{1}{4} \int K(x)\phi_u u^2
- \int G(x, u) + \frac{1}{s} \int h(x)(u^s)^4,
\]

we can obtain another nontrivial solution \(u_\ast\), which is non-negative on \(\mathbb{R}^3\). This completes the proof of Theorem 2.

4. Proofs of Theorem 3

In this section, we prove Theorem 3. Note that, in our Theorem 3, since \(s \in (1, +\infty)\) is allowed to be supercritical, the usual space \(H^1(\mathbb{R}^3)\) cannot be used as our framework for the study of problem (1). For this reason, motivated by [18, 19], we introduce a new space as our working space. Let \(\mathcal{D}^{1,2}\) be the completion of \(C_0^\infty(\mathbb{R}^3)\) under the norm

\[
|u|_{\mathcal{D}^{1,2}}^2 = \int |\nabla u|^2.
\]

For a nonnegative measurable function \(l(x)\) and \(1 < q < +\infty\), we define the weighted Lebesgue space

\[
L^q_l(\mathbb{R}^3) = \left\{ u \text{ is measurable : } \int l(x)|u|^q < \infty \right\},
\]

and it is associated with the seminorm

\[
|u|_{q,l} = \left(\int l(x)|u|^q \right)^{1/q}.
\]

Motivated by [18, 19], let \(E\) be the completion of \(C_0^\infty(\mathbb{R}^3)\) with respect to the norm

\[
|u|_E = |u| + |u|_{j,h}.
\]

Then, \(E\) is a Banach space.

Lemma 11. If \((V)\) and \((g_i)\) are satisfied, then we have the compact embedding \(\mathcal{D}^{1,2} \hookrightarrow L^q_l(\mathbb{R}^3)\). Furthermore, we also have the compact embedding \(E \hookrightarrow L^q_l(\mathbb{R}^3)\).

Proof. By our assumption on \(b\), using the results in [26] (see [26], page 255), the embedding \(\mathcal{D}^{1,2} \hookrightarrow L^q_l(\mathbb{R}^3)\) is well defined and compact. The compactness of \(E \hookrightarrow L^q_l(\mathbb{R}^3)\) follows from the continuity of \(E \hookrightarrow \mathcal{D}^{1,2}\).

Lemma 12 ([19], Lemma 2.2). Given \(\alpha, \beta > 0\), there is \(C > 0\) such that, for any \(u \in E\)

\[
\alpha \int (|\nabla u|^2 + V(x)u^2) + \beta \int h(x)|u|^4 \leq C(||u||_E^2 + ||u||_{j,h}^2),
\]

and for \(||u||_E \geq 1\), we have

\[
\alpha \int (|\nabla u|^2 + V(x)u^2) + \beta \int h(x)|u|^4 \geq C||u||_E^2.
\]

Now, let us define the variational functional corresponding to problem (1). We set \(\Phi : E \rightarrow \mathbb{R}\) as

\[
\Phi(u) = \frac{1}{2} \int (|\nabla u|^2 + V(x)u^2) + \frac{1}{4} \int K(x)\phi_u u^2
- \int G(x, u) + \frac{1}{s} \int h(x)|u|^s.
\]

By Lemma 11, all the integrals in (45) are well defined and converge; we know that the weak solutions of problem (1) correspond to the critical points of \(C^1\) functional \(\Phi : E \rightarrow \mathbb{R}\) with derivative given by

\[
\langle \Phi'(u), v \rangle = \int (\nabla u \nabla v + V(x)uv) + \int K(x)\phi_uuv
- \int g(x,u)v + \int h(x)|u|^{s-2}uv.
\]

Lemma 13. Under the assumptions of Theorem 3, the functional \(\Phi\) is coercive.
Proof. Because S is the best Sobolev constant
\begin{equation}
S = \inf_{u \in W^{1,2}(\Omega)} \frac{\|u\|_{2}^{2}}{\|u\|_{2}^{2}}
\end{equation}
using (g₁) and Hölder inequality, we get
\begin{equation}
\int G(x, u) \leq \frac{1}{r} \int b(x)|u|^{r} \leq \frac{1}{r} S^{2} |b| \|u\| \leq C \|u\|_{r}^{r}.
\end{equation}
For $\|u\|_{E}$ large enough, (48) together with Lemma 12 give that
\begin{equation}
\Phi(u) = \frac{1}{2} \int (\nabla u)^{2} + V(x)u^{2} + \frac{1}{2} \int K(x)|u|^{2} - \int h(x)|u|^{r} \\
\geq C\|u\|_{E}^{2} - C\|u\|_{E} \to \infty, \quad \text{as } \|u\|_{E} \to +\infty.
\end{equation}
because $r < 2$. This implies that Φ is coercive on E. \hfill \Box

In general, to prove the (PS) condition, the reflexivity of the space is needed. However, we do not know whether E is reflexive, but we can still prove the following.

Lemma 14. Under the assumptions of Theorem 3, the functional Φ satisfies the (PS) condition.

Proof. From Lemma 13, we can deduce that every (PS) sequence $\{u_{n}\}$ of Φ is bounded in E, and $\{u_{n}\}$ is also bounded in H^{1}. Therefore, we can assume that for some $u \in E$, up to a subsequence
\begin{align}
&u_{n} \rightharpoonup u \text{ in } H^{1}, \\
&u_{n} \to u \text{ in } L^{1}_{\text{loc}}(\mathbb{R}^{3}), \quad t \in [2, 6), \\
&u_{n} \to u \text{ a.e. in } \mathbb{R}^{3}.
\end{align}

First, we show that $\Phi'(u) = 0$. For any $\varphi \in C_{0}^{\infty}(\mathbb{R}^{3})$, since
\begin{equation}
\langle \Phi'(u_{n}), \varphi \rangle = o(1)\|\varphi\|_{E},
\end{equation}
we have
\begin{equation}
\int (\nabla u_{n} \nabla \varphi + V(x)u_{n}\varphi) + \int K(x)\psi_{u_{n}}u_{n}\varphi - \int g(x, u_{n})\varphi
\end{equation}
\begin{equation}
+ \int h(x)|u_{n}|^{r-2}u_{n}\varphi = o(1)\|\varphi\|_{E}.
\end{equation}
Now, we claim that
\begin{align}
&\int K(x)\Phi_{u_{n}}u_{n}\varphi \to \int K(x)\Phi_{u}\varphi, \\
&\int h(x)|u_{n}|^{r-2}u_{n}\varphi \to \int h(x)|u|^{r-2}\varphi,
\end{align}
which is shown by (50) and (51).
\begin{equation}
\int g(x, u_{n})\varphi \to \int g(x, u)\varphi.
\end{equation}
Indeed, by (14), we see that $\Phi_{u_{n}}$ is bounded in $\mathcal{D}^{1,2}$, hence up to a subsequence $\Phi_{u_{n}} \to \Phi_{u}$ in $\mathcal{D}^{1,2}$, we have
\begin{equation}
\int K(x)\psi_{u_{n}}\varphi \to \int K(x)\psi_{u}\varphi, \quad as \ n \to \infty.
\end{equation}
Moreover, by the Hölder inequality, we get
\begin{equation}
\int K(x)\psi_{u_{n}}(u_{n} - u)\varphi \leq |K|_{\infty}, \|\psi_{u_{n}}\|_{50} \|u_{n} - u\|_{L^{1,2}(\mathbb{R}^{3})} \to 0, \quad (57)
\end{equation}
where $\Omega = \text{supp } \varphi$. Therefore, (56) and (57) give that
\begin{equation}
\int K(x)\Phi_{u_{n}}u_{n}\varphi - \int K(x)\Phi_{u}u_{n}\varphi = \int K(x)(\Phi_{u_{n}} - \Phi_{u})u_{n}\varphi
\end{equation}
\begin{equation}
+ \int K(x)(\Phi_{u_{n}} - \Phi_{u})u\varphi \to 0.
\end{equation}
Thus, (53) holds.
Next, we verify (54) and (55). It is easy to see that the sequence $\{h^{\frac{r-1}{2}}|u_{n}|^{r-2}u_{n}\}$ is bounded in $L^{r}(\mathbb{R}^{3})$. Since $u_{n} \to u \text{ a.e. in } \mathbb{R}^{3}$, applying the Brezis-Lieb lemma, up to a subsequence, we have
\begin{equation}
h^{\frac{r-1}{2}}|u_{n}|^{r-2}u_{n} \to h^{\frac{r-1}{2}}|u|^{r-2}u \text{ in } L^{r}(\mathbb{R}^{3}).
\end{equation}
Moreover, $h^{\frac{1}{5}} \in L^{r}(\mathbb{R}^{3})$; thus, we have (54). Similarly, using (g₁) and the Lebesgue theorem, we have (55). Letting $n \to \infty$ in (52), we have
\begin{equation}
\int (\nabla u_{n} \nabla \varphi + V(x)u_{n}\varphi) + \int K(x)\psi_{u_{n}}u_{n}\varphi - \int g(x, u_{n})\varphi + \int h(x)|u_{n}|^{r-2}u_{n}\varphi = 0,
\end{equation}
that is, $\Phi'(u) = 0$.
Next, we prove $u_{n} \to u \text{ in } H^{1}$. By Lemma 11 and the fact that $\langle \Phi'(u_{n}), u_{n} \rangle = o(1)\|u_{n}\|_{E}$ and $\langle \Phi'(u), u \rangle = 0$, we have
\begin{equation}
\lim_{n \to \infty} \|u_{n}\|^{2} + \int K(x)\psi_{u_{n}}u_{n}^{2} + \int h(x)|u_{n}|^{r} = \int g(x, u)u_{n} + \int g(x, u)u
\end{equation}
\begin{equation}
= \|u\|^{2} + \int K(x)\psi_{u}u^{2} + \int h(x)|u|^{r}.
\end{equation}
On the other hand, by $-\Delta u = K(x)u^{2}$, the Hölder inequality, and Sobolev inequality, we get $\|\Phi_{u_{n}}\|_{2} \leq C\|u_{n}\|_{12/5}$, so we can see that $\Phi_{u_{n}}$ is bounded in $\mathcal{D}^{1,2}(\mathbb{R}^{3})$; hence, we can assume
\begin{equation}
\Phi_{u_{n}} \to \Phi_{u} \text{ in } \mathcal{D}^{1,2}(\mathbb{R}^{3}).
\end{equation}
Hence, by the weak lower semicontinuity of the norm $\|\cdot\|_{2}$, we get
By Fatou’s lemma, we have
\[
\int h(x)|u|^s \leq \liminf_{n \to \infty} \int h(x)|u_n|^s.
\] (64)

It follows from (63) and (64) that
\[
\lim_{n \to \infty} \left(\|u_n\|^2 + \int K(x)\phi_{u_n} u_n^2 + \int h(x)|u_n|^s \right) \\
\geq \liminf_{n \to \infty} \|u_n\|^2 + \liminf_{n \to \infty} \int K(x)\phi_{u_n} u_n^2 + \liminf_{n \to \infty} \int h(x)|u_n|^s \\
\geq \liminf_{n \to \infty} \|u_n\|^2 + \int K(x)\phi_u u^2 + \int h(x)|u|^s.
\] (65)

From (61) and (65), we see that
\[
\|u\|^2 \geq \liminf_{n \to \infty} \|u_n\|^2.
\] (66)

Having verified the (PS) condition, we investigate the geometry of \(\Phi\). First, we note that obviously, \(\Phi\) is even (by our assumption on \(g\)).

Let
\[
\Omega := \{ x \in \mathbb{R}^3 : b(x) = 0 \},
\] (71)

and we define
\[
Y := \{ u \in E : u(x) = 0 \text{ a.e. } x \in \Omega \}.
\] (72)

Then, \(Y\) is an infinitely dimensional Banach space under the norm \(\|\|_{E}\). Therefore, from [19], Lemma 3.3, we know that the seminorm \(\|u\|_{p} = (\int b(x)|u|^p)^{1/p}\) is a norm on \(Y\).

Let \(\Sigma\) be the class of the closed and symmetric (with respect to the origin) subsets of \(E \setminus \{0\}\). For \(A \in \Sigma\), we define the genus \(\gamma(A)\) by
\[
\gamma(A) = \min \{ m \in \mathbb{N} | \exists \varphi \in C(A, \mathbb{R}^m \setminus \{0\}) \text{ such that } \varphi(x) = -\varphi(-x) \}.
\] (73)

If such a minimum does not exist, we define \(\gamma(A) = +\infty\).

The main properties of the genus can be found in [27, 28]; we omit them here.

Lemma 15. Given \(m \in \mathbb{N}\), there is \(\varepsilon = \varepsilon(m)\) such that
\[
\gamma(\{ u \in E | \Phi(u) \leq \varepsilon \}) \geq m.
\] (74)

Proof. Given \(m \in \mathbb{N}\), let \(X_m\) be a \(m\)-dimensional subspace of \(E\); as in the proof of Theorem 2, we can choose \(\varepsilon = \varepsilon(m) > 0\) and \(\eta > 0\) such that \(\Phi(u) \leq -\varepsilon\), if \(\|u\| = \eta\) (for \(\eta\) small enough).

Denote \(S := \{ u \in X_m | \|u\| = \eta \}; S\) is a sphere in \(X_m\). Then, we have
\[
S \subset \{ u \in E | \Phi(u) \leq -\varepsilon \},
\] (75)

so, by the monotonicity property of genus, we have
\[
\gamma(\{ u \in E | \Phi(u) \leq -\varepsilon \}) \geq \gamma(S) = m.
\] (76)

The proof is completed. \(\square\)

Let
\[
\Sigma_m := \{ A \in \Sigma | \gamma(A) \geq m \}.
\] (77)

From Lemma 15, we can define a sequence of real numbers
\[
c_m := \inf_{A \in \Sigma_m} \sup_{u \in A} \Phi(u).
\] (78)

Then,
\[
c_1 \leq c_2 \leq \cdots \leq c_m \leq c_{m+1} \leq \cdots.
\] (79)

By Lemma 13, \(\Phi\) is coercive and bounded from below.
That is, \(c_m > -\infty \), for \(\forall m \in \mathbb{N} \). For \(c \in \mathbb{R} \), denote \(K_c := \{ u \in E | \Phi(u) = c, \Phi'(u) = 0 \} \). Then, a standard argument (see [29]) gives the following.

Lemma 16. All the \(c_m \) are critical values of \(\Phi \). Furthermore, if \(c = c_m = c_{m+1} = \cdots = c_{m+r} \), then \(\gamma(K_c) \geq r + 1 \).

Proof of Theorem 3. Because \(\Phi \) is even and note that by Lemma 15, \(\Phi' = \sum_m \), thus \(c_m \leq -e(m) < 0 \), for \(\forall m \in \mathbb{N} \). This final Lemma 16 gives the existence of infinitely many critical points of \(\Phi \). So problem (1) has infinitely many solutions. This completed the proof of Theorem 3. \(\square \)

Data Availability

No date were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This research was supported by the National Natural Science Foundation of China (No. 11501143) and Doctoral research project of Guizhou Normal University (No. GZNUD [2017]27, GZNUD [2019]14).

References

[1] V. Benci and D. Fortunato, “An eigenvalue problem for the Schrödinger-Maxwell equations,” *Topological Methods in Nonlinear Analysis*, vol. 11, no. 2, pp. 283–293, 1998.

[2] I. Catto and P. L. Lions, “A necessary and sufficient condition for the stability of general molecular systems,” *Communications in Partial Differential Equations*, vol. 17, no. 7, pp. 1051–1100, 1992.

[3] E. H. Lieb, “Thomas-Fermi and related theories of atoms and molecules,” *Reviews of Modern Physics*, vol. 53, no. 4, pp. 603–641, 1981.

[4] G. Cerami and G. Vaira, “Positive solutions for some nonautonomous Schrodinger-Poisson systems,” *Journal of Differential Equations*, vol. 248, no. 3, pp. 521–543, 2010.

[5] L. Huang, E. M. Rocha, and J. Chen, “Two positive solutions of a class of Schrodinger-Poisson system with indefinite nonlinearity,” *Journal of Differential Equations*, vol. 255, no. 8, pp. 2463–2483, 2013.

[6] L. Huang, E. M. Rocha, and J. Chen, “Positive and sign-changing solutions of a Schrodinger-Poisson system involving a critical nonlinearity,” *Journal of Mathematical Analysis and Applications*, vol. 408, no. 1, pp. 55–69, 2013.

[7] Z. Liu, Z. Q. Wang, and J. Zhang, “Infinitely many sign-changing solutions for the nonlinear Schrödinger-Poisson system,” *Annali di Matematica*, vol. 195, no. 3, pp. 775–794, 2016.

[8] A. Salvatore, “Multiple solitary waves for a non-homogeneous Schrödinger–Maxwell system in \(\mathbb{R}^3 \),” *Advanced Nonlinear Studies*, vol. 6, no. 2, pp. 157–169, 2006.

[9] J. Sun and S. Ma, “Ground state solutions for some Schrodinger-Poisson systems with periodic potentials,” *Journal of Differential Equations*, vol. 260, no. 3, pp. 2119–2149, 2016.

[10] Y. Ye and C. L. Tang, “Existence and multiplicity of solutions for Schrödinger-Poisson equations with sign-changing potential,” *Calculus of Variations and Partial Differential Equations*, vol. 53, no. 1–2, pp. 383–411, 2015.

[11] A. Ambrosetti and D. Ruiz, “Multiple bound states for the Schrödinger-Poisson problem,” *Communications in Contemporary Mathematics*, vol. 10, no. 3, pp. 391–404, 2008.

[12] D. Mugnai, “The Schrödinger-Poisson system with positive potential,” *Communications in Partial Differential Equations*, vol. 36, no. 7, pp. 1099–1117, 2011.

[13] D. Ruiz, “The Schrodinger-Poisson equation under the effect of a nonlinear local term,” *Journal of Functional Analysis*, vol. 237, no. 2, pp. 655–674, 2006.

[14] C. O. Alves, M. A. S. Souto, and S. H. M. Soares, “Schrödinger-Poisson equations without Ambrosetti-Rabinowitz condition,” *Journal of Mathematical Analysis and Applications*, vol. 377, no. 2, pp. 584–592, 2011.

[15] A. Azzollini and A. Pomponio, “Ground state solutions for the nonlinear Schrodinger-Maxwell equations,” *Journal of Mathematical Analysis and Applications*, vol. 345, no. 1, pp. 90–108, 2008.

[16] H. Liu, H. Chen, and X. Yang, “Multiple solutions for superlinear Schrodinger-Poisson system with sign-changing potential and nonlinearity,” *Computers & Mathematics with Applications*, vol. 68, no. 12, pp. 1982–1990, 2014.

[17] L. Xu and H. Chen, “Multiplicity of small negative-energy solutions for a class of nonlinear Schrodinger-Poisson systems,” *Computers & Mathematics with Applications*, vol. 243, pp. 817–824, 2014.

[18] M. Sun, J. Su, and L. Zhao, “Infinitely many solutions for a Schrodinger-Poisson system with concave and convex nonlinearities,” *Discrete & Continuous Dynamical Systems - A*, vol. 35, no. 1, pp. 427–440, 2015.

[19] S. Liu and S. Li, “An elliptic equation with concave and convex nonlinearities,” *Nonlinear Analysis: Theory, Methods & Applications*, vol. 53, no. 6, pp. 723–731, 2003.

[20] L. Wang, S. Ma, and X. Wang, “On the existence of solutions for nonhomogeneous Schrodinger-Poisson system,” *Boundary Value Problems*, vol. 2016, no. 1, Article ID 76, 2016.

[21] L. C. Evans, “Partial differential equations,” *Grad. Stud. Math.*, vol. 19, 1998.

[22] V. Benci, D. Fortunato, A. Masiello, and L. Pisani, “Solitons and the electromagnetic field,” *Mathematische Zeitschrift*, vol. 232, no. 1, pp. 73–102, 1999.

[23] J. Marcos and Ö. Bezzera do, “Solutions to perturbed eigenvalue problems of the p-Laplacian in \(\mathbb{R}^N \),” *Electronic Journal of Differential Equations*, vol. 11, pp. 1–15, 1997.

[24] S. Liu, “Multiple solutions for coercive \(p \)-Laplacian equations,” *Journal of Mathematical Analysis and Applications*, vol. 316, no. 1, pp. 229–236, 2006.

[25] M. Willem, “Minimax theorems,” in *Progr. Nonlinear Diff. Eqns Appl.*, vol. 24, Birkhäuser, Boston, 1996.

[26] E. Tonkes, “A semilinear elliptic equation with convex and concave nonlinearities,” *Topological Methods in Nonlinear Analysis*, vol. 13, no. 2, pp. 251–271, 1999.

[27] P. H. Rabinowitz, “Minimax method in critical point theory with applications to differential equations,” in *CBMS Reg. Conf.*, vol. 65, Amer. Math. Soc., 1986.
[28] M. Struwe, *Variational Methods*, Springer, Berlin, 1990.

[29] J. García Azorero and I. Peral Alonso, "Multiplicity of solutions for elliptic problems with critical exponent or with a non-symmetric term," *Transactions of the American Mathematical Society*, vol. 323, no. 2, pp. 877–895, 1991.