TH1 and TH2 cytokine data in insulin secretagogues users newly diagnosed with breast cancer

Zachary A.P. Wintroba, Jeffrey P. Hammel, George K. Nimako, Dan P. Gaile, Alan Forrest, Alice C. Ceacareanu

State University of New York at Buffalo, Dept. of Pharmacy Practice, NYS Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, NY 14203, United States

Cleveland Clinic, Dept. of Biostatistics and Epidemiology, 9500 Euclid Ave., Cleveland, OH 44195, United States

State University of New York at Buffalo, Dept. of Biostatistics, 718 Kimball Tower, Buffalo, NY 14214, United States

The UNC Eshelman School of Pharmacy, Division of Pharmacotherapy and Experimental Therapeutics, Campus Box 7569, Chapel Hill, NC 27599, United States

Roswell Park Cancer Institute, Dept. of Pharmacy Services, Elm & Carlton Streets, Buffalo, NY 14263, United States

Abstract

Stimulation of insulin production by insulin secretagoues use may impact T helper cells' cytokine production. This dataset presents the relationship between baseline insulin secretagoues use in women diagnosed with breast cancer and type 2 diabetes mellitus, the T-helper 1 and 2 produced cytokine profiles at the time of breast cancer diagnosis, and subsequent cancer outcomes. A Pearson correlation analysis evaluating the relationship between T-helper cytokines stratified by of insulin secretagoues use and controls is also provided.

© 2017 Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Specifications Table

Subject area	Clinical and Translational Research
More specific subject area	Biomarker Research, Cancer Epidemiology
Type of data	Tables
How data was acquired	Tumor registry query was followed by vital status ascertainment, and medical records review
	Luminex®-based quantitation from plasma samples was conducted for the following T-helper 1 and T-helper 2 cytokines: Interleukine-2, soluble interleukine-2 receptor α, interleukine-12 subunit p40, interleukine-12 subunit p70, interferon α 2, interferon γ, chemokine ligand 10 (interferon gamma-induced protein 10), chemokine ligand 9 (monokine-induced by interferon γ), chemokine ligand 8 (interleukine-8) interleukine-5, interleukine-10, and interleukine-13.
	A Luminex®-200™ instrument with Xponent 3.1 software was used to acquire all data
Data format	T-helper 1 and 2 produced cytokines were determined from the corresponding plasma samples collected at the time of breast cancer diagnosis
Experimental factors	The dataset included 97 adult females with diabetes mellitus and newly diagnosed breast cancer (cases) and 194 matched controls (breast cancer only). Clinical and treatment history were evaluated in relationship with cancer outcomes and factor-helper 1 and 2 produced cytokine profiles. A cytokine correlation analysis was also performed.
Experimental features	United States, Buffalo, NY - 42° 53' 50.3592"N; 78° 52' 2.658"W
Data source location	The data is with this article

Value of the data

- This dataset represents the observed relationship between insulin secretagogues use, circulating T-helper 1 and 2 produced cytokines at breast cancer diagnosis and cancer outcomes
- Presented data has the potential to guide future research exploring the potential use of insulin secretagogues in the modulation of type 1 and type 2 immunity
- Our observations can assist further research exploring the relationship between insulin secretagogues use and T-helper-driven signaling in the occurrence of breast cancer.

1. **Data**

 Reported data represents the observed association between pre-existing use of injectable insulin before breast cancer diagnosis and the T-helper 1 and 2 produced cytokine profiles upon cancer diagnosis in women with both breast cancer and diabetes mellitus (Table 1). Data in Table 2 includes the observed correlations between T-helper 1 and 2 cytokines stratified by diabetes mellitus pharmacotherapy and controls.

2. **Experimental design, materials and methods**

 Evaluation of the association between profiles of T-helper 1 and 2 produced cytokines, injectable insulin use and BC outcomes was carried out under two protocols approved by both Roswell Park Cancer Institute (EDR154409 and NHR009010) and the State University of New York at Buffalo
Table 1
T-Helper 1 and 2 produced cytokines’ associations with secretagogue use.

Biomarker	Biomarker Grouping	Concentration (ng/ml)	Control	No Secretagogue	Any Secretagogue	Unadjusted p-value (MVP)			
			p1	p2	p3	Global Test			
IL-2 (pg/ml)	Median (25th–75th)	1.60 (1.60–3.20)	1.60 (1.60–3.46)	1.60 (1.60–3.20)	0.420 (0.100)	0.760 (0.970)	0.400 (0.300)	0.650 (0.170)	
	OS-Based	189 (97.4%)	43 (91.5%)	49 (98.0%)	0.080 (0.080)	1.000 (0.080)	0.200 (0.080)	0.140 (0.180)	
	Optimization	35.37 to 516.64	5 (2.6%)	4 (8.5%)	1 (2.0%)	0.450 (0.440)	0.950 (0.660)	0.520 (0.510)	0.730 (0.660)
	DFS-Based	131 (67.5%)	29 (61.7%)	34 (68.0%)	0.440 (0.010)	0.660 (0.100)	0.510 (0.470)	0.660 (0.660)	
	Optimization	1.99 to 516.64	63 (32.5%)	18 (38.3%)	16 (32.0%)	0.210 (0.020)	0.270 (0.030)	0.350 (0.160)	
sIL-2Ra (pg/ml)	Median (25th–75th)	3.20 (1.60–47.32)	6.38 (1.60–98.14)	12.07 (1.60–60.42)	0.430 (0.100)	0.240 (0.630)	0.880 (0.230)	0.430 (0.210)	
	Quartiles	84 (43.3%)	20 (42.6%)	16 (32.0%)	0.270 (0.270)	0.460 (0.270)	0.270 (0.350)		
	OS-Based	16 (8.2%)	4 (8.5%)	6 (12.0%)	0.170 (0.170)	0.180 (0.170)	0.070 (0.170)	0.900 (0.100)	
	Optimization	50 (25.8%)	7 (14.9%)	15 (30.0%)	0.120 (0.120)	0.460 (0.460)	0.520 (0.520)	0.270 (0.270)	
	DFS-Based	144 (22.7%)	16 (34.0%)	13 (26.0%)	0.120 (0.120)	0.460 (0.460)	0.270 (0.270)	0.350 (0.350)	
	Optimization	76.80 to 316.79	8 (17.0%)	13 (26.0%)	0.120 (0.120)	0.460 (0.460)	0.270 (0.270)	0.350 (0.350)	
IL-12p40 (pg/ml)	Median (25th–75th)	8.16 (1.75–30.81)	16.02 (4.59–41.28)	10.10 (3.39–28.42)	0.110 (0.090)	0.430 (0.560)	0.400 (0.110)	0.230 (0.180)	
	Quartiles	74 (38.1%)	11 (23.4%)	13 (26.0%)	0.230 (0.230)	0.160 (0.160)	0.560 (0.560)	0.190 (0.190)	
	OS-Based	29 (14.9%)	7 (14.9%)	12 (24.0%)	0.150 (0.150)	0.180 (0.180)	0.900 (0.900)	0.180 (0.180)	
	Optimization	42 (21.6%)	15 (31.9%)	15 (30.0%)	0.150 (0.150)	0.180 (0.180)	0.900 (0.900)	0.180 (0.180)	
	DFS-Based	49 (25.3%)	14 (29.8%)	10 (20.0%)	0.150 (0.150)	0.180 (0.180)	0.900 (0.900)	0.180 (0.180)	
	Optimization	53 (27.3%)	8 (17.0%)	9 (18.0%)	0.150 (0.150)	0.180 (0.180)	0.900 (0.900)	0.180 (0.180)	
IL-12p70 (pg/ml)	Median (25th–75th)	1.60 (1.60–3.20)	3.20 (1.60–7.06)	2.12 (1.60–4.40)	0.013 (0.023)	0.440 (0.980)	0.190 (0.270)	0.047 (0.053)	
	OS-Based	5 (2.6%)	2 (4.3%)	4 (8.0%)	0.620 (0.620)	0.090 (0.680)	0.680 (0.140)		
	Optimization	189 (97.4%)	45 (95.7%)	46 (92.0%)	0.460 (0.460)	0.190 (0.740)	0.740 (0.450)		
Biomarker	Biomarker Grouping	Concentration (ng/ml)	Control	No Secretagogue	Any Secretagogue	Unadjusted p-value (MVP)			
-----------	-------------------	-----------------------	---------	----------------	------------------	-------------------------			
						p¹	p²	p³	Global Test
DFS-Based	0.10 to 2.20	120 (61.9%)	20 (42.6%)	25 (50.0%)	0.018	0.130	0.460	0.033	
Optimization	2.28 to 2510.07	74 (38.1%)	27 (57.4%)	25 (50.0%)	(0.033)	(0.380)	(0.420)	(0.100)	
IFN-α (pg/ml)	Median (25th–75th)	7.24 (3.20–13.61)	7.39 (3.20–22.78)	8.00 (3.87–16.94)	0.460 (0.230)	0.300 (0.830)	0.980 (0.270)	0.510 (0.410)	
Quartiles	0.61 to 1.60	56 (28.9%)	15 (31.9%)	12 (24.0%)	0.390	0.790	0.680	0.710	
	3.47 to 7.40	42 (21.6%)	9 (19.1%)	12 (24.0%)	(0.100)	(0.250)	(0.430)	(0.720)	
	7.43 to 15.15	52 (26.8%)	8 (17.0%)	12 (24.0%)	(0.100)	(0.250)	(0.430)	(0.720)	
	15.32 to 1880.18	44 (22.7%)	15 (31.9%)	14 (28.0%)	(0.100)	(0.250)	(0.430)	(0.720)	
OS-Based	0.61 to 4.18	63 (32.5%)	17 (36.2%)	13 (26.0%)	0.630	0.380	0.280	0.540	
Optimization	4.18 to 1880.18*	131 (67.5%)	30 (63.8%)	37 (74.0%)	(0.600)	(0.990)	(0.430)	(0.720)	
DFS-Based	0.61 to 2.66	29 (14.9%)	7 (14.9%)	3 (6.0%)	0.990	0.110	0.190	0.240	
Optimization	2.93 to 1880.18	165 (85.1%)	40 (85.1%)	47 (94.0%)	(0.600)	(0.047)	(0.130)	(0.100)	
IFN-γ (pg/ml)	Median (25th–75th)	13.32 (4.70–36.30)	11.26 (3.20–42.84)	8.53 (2.80–34.28)	0.620 (0.860)	0.140 (0.420)	0.550 (0.450)	0.350 (0.770)	
Quartiles	0.07 to 3.86	42 (21.6%)	13 (27.7%)	18 (36.0%)	0.300	0.120	0.780	0.200	
	4.03 to 12.43	50 (25.8%)	11 (23.4%)	12 (24.0%)	(0.250)	(0.690)	(0.080)	(0.300)	
	12.55 to 37.33	56 (28.9%)	8 (17.0%)	8 (16.0%)	(0.250)	(0.690)	(0.080)	(0.300)	
	38.74 to 646.43	46 (23.7%)	15 (31.9%)	12 (24.0%)	(0.250)	(0.690)	(0.080)	(0.300)	
OS-Based	0.07 to 230.77	188 (96.9%)	44 (93.6%)	49 (98.0%)	0.380	1.000	0.350	0.550	
Optimization	376.09 to 646.43	6 (3.1%)	3 (6.4%)	1 (2.0%)	(0.350)	(0.840)	(0.150)	(0.490)	
DFS-Based	0.07 to 187.14	187 (96.4%)	43 (91.5%)	49 (96.0%)	0.230	1.000	0.200	0.250	
Optimization	206.34 to 646.43*	7 (3.6%)	4 (8.5%)	1 (2.0%)	(0.250)	(0.690)	(0.080)	(0.300)	
CXCL-10 (IP-10, pg/ml)	Median (25th–75th)	488 (347–814)	440 (338–728)	470 (355–662)	0.650 (0.990)	0.680 (0.210)	0.910 (0.170)	0.850 (0.350)	
Quartiles	1.6 to 344.8	48 (24.7%)	13 (27.7%)	12 (24.0%)	0.960	0.920	0.950	0.990	
	346.1 to 484.3	48 (24.7%)	11 (23.4%)	14 (28.0%)	(0.250)	(0.690)	(0.080)	(0.300)	
	484.5 to 744.8	47 (24.2%)	12 (25.5%)	13 (26.0%)	(0.250)	(0.690)	(0.080)	(0.300)	
	751.0 to 3745.0	51 (26.3%)	11 (23.4%)	11 (22.0%)	(0.250)	(0.690)	(0.080)	(0.300)	
OS-Based	1.6 to 428.3	81 (41.8%)	22 (46.8%)	21 (42.0%)	0.530	0.970	0.630	0.820	
Optimization	428.9 to 3745.0*	113 (58.2%)	25 (53.2%)	29 (58.0%)	(0.390)	(0.910)	(0.820)	(0.800)	
DFS-Based	1.6 to 549.1	114 (58.8%)	27 (57.4%)	31 (62.0%)	0.870	0.680	0.650	0.890	
Optimization	549.1 to 3745.0*	80 (41.2%)	20 (42.6%)	19 (38.0%)	(0.830)	(0.440)	(0.500)	(0.680)	
	Median	25th–75th	Quartiles	OS-Based	Optimization	DFS-Based	Optimization		
---------	----------	-------------	---------------	-----------	--------------	------------	--------------		
CXCL-9 (MIG, pg/ml)	-	199–274	(119–304)	1.9 to 103.9	0.090	1.9 to 120.1	0.090		
Quartiles	0.420	0.730	0.220	0.410		0.200			
CXCL-8 (IL-8, pg/ml)	-	4.44	(2.50–6.86)	0.36 to 3.07	0.018	0.45 to 118	0.061		
Quartiles	0.008	0.003	0.090	0.090		0.45 to 118	0.061		
IL-5 (pg/ml)	-	0.48	(0.35–0.77)	0.08 to 0.30	0.017	0.08 to 0.38	0.027		
Quartiles	0.610	0.011	0.090	0.090		0.021	0.035		
IL-10 (pg/ml)	-	1.60	(1.60–6.59)	0.18 to 1.6	0.220	3.20 to 197.53	0.270		
Quartiles	0.220	0.890	0.150	0.150		0.270	0.350		

Notes:
- Median values are given.
- Quartiles represent the 25th, 50th, and 75th percentiles.
- OS-Based and DFS-Based optimization values are indicated with asterisks (*) for respective groups.
- Additional quartile and optimization values are provided for comparison.

References:
- Z.A. Wintrob et al. / Data in Brief 11 (2017) 413–427
| Biomarker | Biomarker Grouping | Concentration (ng/ml) | Control | No Secretagogue | Any Secretagogue | Unadjusted p-value (MVP) | \(p^1 \) | \(p^2 \) | \(p^3 \) | Global Test |
|-----------|-------------------|-----------------------|---------|----------------|----------------|-------------------------|--------|--------|--------|------------|
| IL-13 (pg/ml) | Median, ng/ml | 1.60 | 1.60 | 1.60 | 0.810 | 0.290 | 0.590 | 0.580 |
| (25th–75th) | (1.60–4.49) | (1.60–4.38) | (1.60–3.13) | (0.760) | (0.330) | (0.140) | (0.520) |
| OS-Based | 0.00 to 1.55 | 24 (12.4%) | 7 (14.9%) | 8 (16.0%) | 0.640 | 0.500 | 0.880 | 0.760 |
| Optimization | **1.60 to 1239.25** | 170 (87.6%) | 40 (85.1%) | 42 (84.0%) | (0.450) | (0.410) | (0.550) | (0.570) |
| DFS-Based | 0.00 to 1.01 | 19 (9.8%) | 5 (10.6%) | 5 (10.0%) | 0.790 | 1.000 | 1.000 | 0.960 |
| Optimization | **1.16 to 1239.25** | 175 (90.2%) | 42 (89.4%) | 45 (90.0%) | (0.720) | (0.970) | (0.620) | (0.900) |

Overall survival (OS)- and disease-free survival (DFS)-optimized biomarker ranges associated with poorer outcomes are represented in bold. ALQ = above limit of quantitation. MVP = p-value of the multivariate adjusted analysis. Interleukine-2, IL-2; soluble interleukine-2 receptor α, sIL-2Rα; interleukine-12 subunit p40, IL-12p40; interleukine-12 subunit p70, IL-12p70; interferon α 2, IFN-α2; interferon γ, IFN-γ; chemokine ligand 10, CXCL-10 (interferon gamma-induced protein 10, IP-10); chemokine ligand 9, CXCL-9 (monokine-induced by interferon γ, MIG); chemokine ligand 8, CXCL-8 (interleukine-8, IL-8); interleukine-5, IL-5; interleukine-10, IL-10; interleukine-13, IL-13.
Table 2
T-Helper 1 and 2 produced cytokines’ correlations by secretagogue use.

Compared Biomarkers	Group	Unadjusted Correlation	Adjusted Correlation				
		Pearson Correlation	95% Confidence	p-value	Pearson Correlation	95% Confidence	p-value
			Interval			Interval	
IL-2 sIL-2Ra	All Subjects (n=291)	0.268	0.158 to 0.371	<0.001	0.278	0.168 to 0.381	<0.001
	Controls (n=194)	0.197	0.058 to 0.329	0.006	0.212	0.072 to 0.344	0.003
	No Secretagogue (n=43)	0.486	0.218 to 0.686	<0.001	0.478	0.196 to 0.687	0.001
	Any Secretagogue (n=54)	-0.068	-0.330 to 0.204	0.624	-0.024	-0.298 to 0.253	0.865
IL-2 IL-12p40	All Subjects (n=291)	0.454	0.357 to 0.540	<0.001	0.454	0.357 to 0.541	<0.001
	Controls (n=194)	0.711	0.634 to 0.775	<0.001	0.722	0.647 to 0.784	<0.001
	No Secretagogue (n=43)	0.411	0.126 to 0.633	0.005	0.431	0.138 to 0.655	0.004
	Any Secretagogue (n=54)	0.672	0.494 to 0.797	<0.001	0.646	0.451 to 0.782	<0.001
IL-2 IL-12p70	All Subjects (n=291)	0.250	0.139 to 0.354	<0.001	0.253	0.142 to 0.358	<0.001
	Controls (n=194)	0.461	0.342 to 0.565	<0.001	0.463	0.344 to 0.568	<0.001
	No Secretagogue (n=43)	0.212	-0.094 to 0.482	0.168	0.243	-0.074 to 0.516	0.126
	Any Secretagogue (n=54)	0.117	-0.156 to 0.373	0.398	0.096	-0.185 to 0.362	0.501
IL-2 IFN-a2	All Subjects (n=291)	0.339	0.233 to 0.437	<0.001	0.339	0.232 to 0.437	<0.001
	Controls (n=194)	0.494	0.380 to 0.594	<0.001	0.493	0.378 to 0.594	<0.001
	No Secretagogue (n=43)	0.631	0.407 to 0.783	<0.001	0.645	0.417 to 0.796	<0.001
	Any Secretagogue (n=54)	0.110	-0.162 to 0.367	0.426	0.099	-0.182 to 0.364	0.488
IL-2 IFN-γ	All Subjects (n=291)	0.379	0.276 to 0.473	<0.001	0.387	0.285 to 0.481	<0.001
	Controls (n=194)	0.529	0.419 to 0.623	<0.001	0.531	0.421 to 0.626	<0.001
	No Secretagogue (n=43)	0.604	0.370 to 0.765	<0.001	0.639	0.409 to 0.793	<0.001
	Any Secretagogue (n=54)	0.163	-0.109 to 0.413	0.235	0.146	-0.135 to 0.405	0.305
IL-2 CXCL-10 (IP-10)	All Subjects (n=291)	-0.027	-0.142 to 0.088	0.641	-0.031	-0.146 to 0.085	0.603
	Controls (n=194)	0.011	-0.130 to 0.152	0.874	0.009	-0.130 to 0.151	0.898
	No Secretagogue (n=43)	-0.059	-0.353 to 0.246	0.706	-0.034	-0.342 to 0.280	0.834
	Any Secretagogue (n=54)	-0.148	-0.400 to 0.124	0.281	-0.169	-0.424 to 0.055	0.111
IL-2 CXCL-9 (MIG)	All Subjects (n=291)	0.192	0.079 to 0.300	0.001	0.183	0.069 to 0.293	0.002
	Controls (n=194)	0.170	0.030 to 0.303	0.018	0.160	0.018 to 0.295	0.027
	No Secretagogue (n=43)	0.382	0.092 to 0.612	0.010	0.387	0.086 to 0.623	0.012
	Any Secretagogue (n=54)	-0.029	-0.295 to 0.240	0.832	-0.107	-0.372 to 0.174	0.452
IL-2 CXCL-8 (IL-8)	All Subjects (n=291)	0.163	0.049 to 0.273	0.005	0.159	0.044 to 0.270	0.007
	Controls (n=194)	0.379	0.252 to 0.494	<0.001	0.396	0.269 to 0.509	<0.001
	No Secretagogue (n=43)	0.333	0.037 to 0.576	0.027	0.317	0.006 to 0.572	0.043
	Any Secretagogue (n=54)	-0.160	-0.410 to 0.113	0.245	-0.224	-0.470 to 0.055	0.111
IL-2 IL-5 E	All Subjects (n=291)	0.082	-0.034 to 0.195	0.164	0.080	-0.036 to 0.193	0.177
	Controls (n=194)	0.060	-0.082 to 0.199	0.406	0.057	-0.086 to 0.197	0.433
	No Secretagogue (n=43)	0.207	-0.099 to 0.478	0.178	0.216	-0.102 to 0.494	0.176
	Any Secretagogue (n=54)	-0.069	-0.331 to 0.202	0.616	-0.082	-0.350 to 0.198	0.566
	IL-2-IL10						
----------------	-----------	----------------------	------------------	--------	--------	--------	----------------------
All Subjects							
Controls (n=194)	0.174	0.060 to 0.283	0.003	0.180	0.066 to 0.289	0.002	
No Secretagogue (n=43)	0.109	-0.197 to 0.397	0.482	0.134	-0.186 to 0.427	0.408	
Any Secretagogue							
All Subjects (n=291)	0.550	0.331 to 0.713	<0.001	0.565	0.460 to 0.654	<0.001	
Controls (n=194)	0.102	-0.013 to 0.214	0.082	0.111	-0.005 to 0.224	0.059	
No Secretagogue (n=43)	0.235	0.098 to 0.364	<0.001	0.241	0.103 to 0.371	<0.001	
All Secretagogue							
Any Secretagogue (n=54)	0.213	-0.093 to 0.483	0.166	0.239	-0.079 to 0.512	0.134	
IL-2-IL13							
All Subjects							
Controls (n=194)	0.355	0.251 to 0.452	<0.001	0.357	0.252 to 0.454	<0.001	
No Secretagogue (n=43)	0.142	0.001 to 0.277	0.048	0.145	0.003 to 0.281	0.044	
Any Secretagogue							
All Subjects (n=291)	0.689	0.490 to 0.820	<0.001	0.720	0.527 to 0.843	<0.001	
Controls (n=194)	0.210	0.097 to 0.317	<0.001	0.208	0.095 to 0.316	<0.001	
No Secretagogue (n=43)	-0.124	-0.379 to 0.149	0.371	-0.117	-0.380 to 0.164	0.413	
All Secretagogue							
Any Secretagogue (n=54)	-0.096	-0.273 to 0.262	0.967	0.025	-0.253 to 0.298	0.862	
sIL-2Rα IL-12p40							
All Subjects							
Controls (n=194)	0.164	0.050 to 0.274	0.005	0.165	0.050 to 0.275	0.005	
No Secretagogue (n=43)	0.042	-0.100 to 0.182	0.563	0.046	-0.096 to 0.187	0.526	
Any Secretagogue							
All Subjects (n=291)	0.665	0.455 to 0.804	<0.001	0.688	0.480 to 0.823	<0.001	
Controls (n=194)	0.164	0.050 to 0.274	0.005	0.165	0.050 to 0.275	0.005	
No Secretagogue (n=43)	-0.013	-0.280 to 0.255	0.923	0.026	-0.253 to 0.300	0.854	
All Secretagogue							
Any Secretagogue (n=54)	0.569	0.324 to 0.742	<0.001	0.628	0.394 to 0.786	<0.001	
sIL-2Rα IFN-α2							
All Subjects							
Controls (n=194)	0.111	-0.161 to 0.368	0.421	0.180	-0.101 to 0.434	0.203	
No Secretagogue (n=43)	-0.039	-0.153 to 0.077	0.511	-0.032	-0.147 to 0.084	0.587	
Any Secretagogue							
All Subjects (n=291)	-0.038	-0.178 to 0.104	0.599	-0.027	-0.168 to 0.115	0.709	
Controls (n=194)	-0.052	-0.347 to 0.253	0.741	-0.037	-0.344 to 0.278	0.821	
No Secretagogue (n=43)	-0.068	-0.329 to 0.204	0.625	0.016	-0.261 to 0.290	0.912	
sIL-2Rα CXCL-10	(IP-10)						
All Subjects							
Controls (n=194)	0.119	0.004 to 0.231	0.042	0.123	0.007 to 0.235	0.037	
No Secretagogue (n=43)	0.150	0.009 to 0.285	0.036	0.158	0.016 to 0.293	0.029	
Any Secretagogue							
All Subjects (n=291)	0.043	-0.227 to 0.307	0.756	0.066	-0.213 to 0.336	0.641	
Controls (n=194)	0.043	-0.227 to 0.307	0.756	0.066	-0.213 to 0.336	0.641	
sIL-2Rα CXCL-9	(MIG)						
All Subjects							
Controls (n=194)	0.146	0.032 to 0.257	0.012	0.155	0.040 to 0.266	0.008	
No Secretagogue (n=43)	0.149	0.008 to 0.284	0.038	0.150	0.008 to 0.286	0.037	
Any Secretagogue							
All Subjects (n=54)	0.660	0.449 to 0.802	<0.001	0.678	0.465 to 0.817	<0.001	
Controls (n=194)	0.023	-0.163 to 0.118	0.752	-0.020	-0.161 to 0.123	0.788	
No Secretagogue (n=43)	0.022	-0.247 to 0.288	0.871	0.019	-0.258 to 0.293	0.893	
sIL-2Ra	IL-10						
---------	-------						
All Subjects (n=291)	0.236	0.124 to 0.341	<0.001	0.234	0.122 to 0.340	<0.001	
Controls (n=194)	0.054	-0.088 to 0.193	0.456	0.053	-0.090 to 0.193	0.470	
No Secretagogue (n=43)	0.496	0.230 to 0.693	<0.001	0.541	0.276 to 0.730	<0.001	
Any Secretagogue (n=54)	-0.029	-0.295 to 0.240	0.833	0.059	-0.221 to 0.329	0.681	

sIL-2Ra	IL-13					
All Subjects (n=291)	0.050	-0.065 to 0.164	0.391	0.046	-0.070 to 0.161	0.433
Controls (n=194)	-0.014	-0.155 to 0.127	0.841	-0.019	-0.161 to 0.123	0.792
No Secretagogue (n=43)	0.438	0.158 to 0.652	0.003	0.489	0.209 to 0.695	0.001
Any Secretagogue (n=54)	-0.081	-0.341 to 0.191	0.560	-0.015	-0.289 to 0.262	0.919

IL-12p40	IL-12p70					
All Subjects (n=291)	0.853	0.819 to 0.882	<0.001	0.854	0.819 to 0.883	<0.001
Controls (n=194)	0.653	0.564 to 0.727	<0.001	0.655	0.565 to 0.729	<0.001
No Secretagogue (n=43)	0.927	0.869 to 0.960	<0.001	0.930	0.871 to 0.963	<0.001
Any Secretagogue (n=54)	0.286	0.019 to 0.514	0.034	0.283	0.009 to 0.519	0.041

IL-12p40	IFN-α2					
All Subjects (n=291)	0.591	0.510 to 0.661	<0.001	0.590	0.510 to 0.661	<0.001
Controls (n=194)	0.721	0.645 to 0.782	<0.001	0.725	0.649 to 0.786	<0.001
No Secretagogue (n=43)	0.930	0.875 to 0.962	<0.001	0.934	0.877 to 0.965	<0.001
Any Secretagogue (n=54)	0.341	0.081 to 0.558	0.010	0.357	0.090 to 0.576	0.009

IL-12p40	IFN-γ					
All Subjects (n=291)	0.492	0.399 to 0.574	<0.001	0.493	0.400 to 0.575	<0.001
Controls (n=194)	0.473	0.356 to 0.576	<0.001	0.482	0.365 to 0.584	<0.001
No Secretagogue (n=43)	0.755	0.588 to 0.860	<0.001	0.771	0.604 to 0.873	<0.001
Any Secretagogue (n=54)	0.209	-0.062 to 0.451	0.126	0.211	-0.068 to 0.460	0.133

IL-12p40	CXCL-10 (IP-10)					
All Subjects (n=291)	0.041	-0.074 to 0.155	0.484	0.044	-0.072 to 0.159	0.458
Controls (n=194)	0.082	-0.059 to 0.221	0.252	0.077	-0.066 to 0.217	0.290
No Secretagogue (n=43)	0.065	-0.240 to 0.358	0.678	0.063	-0.253 to 0.367	0.698
Any Secretagogue (n=54)	0.113	-0.160 to 0.369	0.414	0.149	-0.132 to 0.408	0.293

IL-12p40	CXCL-9 (MIG)					
All Subjects (n=291)	0.172	0.058 to 0.281	0.003	0.169	0.054 to 0.280	0.004
Controls (n=194)	0.248	0.111 to 0.376	<0.001	0.249	0.111 to 0.378	<0.001
No Secretagogue (n=43)	0.251	-0.054 to 0.512	0.101	0.259	-0.057 to 0.528	0.103
Any Secretagogue (n=54)	-0.038	-0.302 to 0.233	0.787	-0.140	-0.400 to 0.141	0.323

IL-12p40	CXCL-8 (IL-8)					
All Subjects (n=291)	0.292	0.183 to 0.394	<0.001	0.295	0.180 to 0.397	<0.001
Controls (n=194)	0.571	0.467 to 0.659	<0.001	0.572	0.468 to 0.660	<0.001
No Secretagogue (n=43)	0.350	0.055 to 0.588	0.020	0.369	0.065 to 0.611	0.017
Any Secretagogue (n=54)	-0.050	-0.313 to 0.221	0.720	-0.096	-0.362 to 0.184	0.499

IL-12p40	IL-5					
All Subjects (n=291)	0.297	0.188 to 0.398	<0.001	0.296	0.187 to 0.398	<0.001
Controls (n=194)	0.070	-0.071 to 0.209	0.329	0.071	-0.072 to 0.211	0.328
No Secretagogue (n=43)	0.907	0.833 to 0.949	<0.001	0.915	0.844 to 0.954	<0.001
Any Secretagogue (n=54)	-0.061	-0.323 to 0.210	0.661	-0.086	-0.353 to 0.194	0.545

IL-12p40	IL-10							
All Subjects (n=291)	0.909	0.886 to 0.927	<0.001	0.910	0.888 to 0.928	<0.001		
Controls (n=194)	0.904	0.874 to 0.927	<0.001	0.905	0.875 to 0.928	<0.001		
No Secretagogue (n=43)	0.924	0.864 to 0.958	<0.001	0.926	0.863 to 0.960	<0.001		
Any Secretagogue (n=54)	0.625	0.428 to 0.764	<0.001	0.618	0.412 to 0.763	<0.001		
	All Subjects (n=291)	Controls (n=194)	No Secretagogue (n=43)	Any Secretagogue (n=54)	Controls (n=194)	No Secretagogue (n=43)	Any Secretagogue (n=54)	
----------------	----------------------	------------------	------------------------	-------------------------	------------------	------------------------	-------------------------	
IL-12p70								
IL-13	0.374	0.271 to 0.469	<0.001	0.376	0.273 to 0.471	<0.001		
IFN-α2	0.444	0.323 to 0.550	<0.001	0.449	0.327 to 0.555	<0.001		
IFN-γ	0.865	0.764 to 0.925	<0.001	0.871	0.768 to 0.930	<0.001		
CXCL-10	0.587	0.379 to 0.739	<0.001	0.578	0.360 to 0.736	<0.001		
CXCL-9	0.749	0.693 to 0.795	<0.001	0.749	0.693 to 0.796	<0.001		
CXCL-8	0.816	0.682 to 0.896	<0.001	0.823	0.688 to 0.903	<0.001		
CXCL-8	0.897	0.828 to 0.939	<0.001	0.898	0.826 to 0.941	<0.001		
CXCL-10	0.526	0.438 to 0.605	<0.001	0.526	0.437 to 0.605	<0.001		
CXCL-9	0.506	0.393 to 0.604	<0.001	0.508	0.394 to 0.606	<0.001		
CXCL-8	0.678	0.475 to 0.813	<0.001	0.683	0.471 to 0.820	<0.001		
CXCL-8	0.816	0.701 to 0.889	<0.001	0.813	0.693 to 0.890	<0.001		
CXCL-10	0.047	-0.069 to 0.161	0.426	0.053	-0.063 to 0.168	0.367		
CXCL-9	0.059	-0.082 to 0.199	0.411	0.063	-0.080 to 0.203	0.386		
CXCL-8	0.087	-0.219 to 0.377	0.577	0.078	-0.239 to 0.380	0.630		
CXCL-8	0.074	-0.197 to 0.336	0.591	0.050	-0.229 to 0.321	0.725		
CXCL-10	0.235	0.124 to 0.341	<0.001	0.235	0.123 to 0.342	<0.001		
CXCL-9	0.377	0.249 to 0.492	<0.001	0.371	0.242 to 0.487	<0.001		
CXCL-8	0.233	-0.073 to 0.498	0.129	0.250	-0.067 to 0.521	0.116		
CXCL-8	-0.061	-0.324 to 0.210	0.660	-0.075	-0.343 to 0.205	0.599		
CXCL-10	0.182	0.069 to 0.291	0.002	0.188	0.074 to 0.297	<0.001		
CXCL-9	0.203	0.064 to 0.335	0.004	0.210	0.070 to 0.342	0.003		
CXCL-8	0.293	-0.008 to 0.545	0.053	0.260	-0.017 to 0.500	0.063		
CXCL-8	0.254	-0.014 to 0.489	0.061					
CXCL-10	0.254	0.143 to 0.358	<0.001	0.255	0.143 to 0.360	<0.001		
CXCL-9	0.030	-0.111 to 0.171	0.674	0.033	-0.109 to 0.174	0.649		
CXCL-8	0.877	0.782 to 0.932	<0.001	0.896	0.811 to 0.944	<0.001		
CXCL-8	-0.042	-0.306 to 0.229	0.765	-0.026	-0.299 to 0.252	0.858		
CXCL-10	0.897	0.872 to 0.917	<0.001	0.897	0.872 to 0.918	<0.001		
CXCL-9	0.709	0.631 to 0.773	<0.001	0.709	0.630 to 0.773	<0.001		
CXCL-8	0.970	0.945 to 0.984	<0.001	0.970	0.944 to 0.984	<0.001		
CXCL-8	0.817	0.703 to 0.890	<0.001	0.827	0.714 to 0.898	<0.001		
CXCL-10	0.412	0.312 to 0.503	<0.001	0.413	0.312 to 0.504	<0.001		
CXCL-9	0.375	0.247 to 0.490	<0.001	0.380	0.252 to 0.495	<0.001		
CXCL-8	0.964	0.933 to 0.980	<0.001	0.966	0.936 to 0.982	<0.001		
CXCL-8	0.501	0.269 to 0.677	<0.001	0.492	0.250 to 0.676	<0.001		
CXCL-10	0.620	0.544 to 0.686	<0.001	0.622	0.546 to 0.688	<0.001		
CXCL-9	0.571	0.468 to 0.659	<0.001	0.571	0.467 to 0.660	<0.001		
CXCL-8	0.796	0.652 to 0.885	<0.001	0.823	0.688 to 0.903	<0.001		
CXCL-10	0.823	0.713 to 0.894	<0.001	0.821	0.706 to 0.894	<0.001		
IFN-α2	CXCL-10 (IP-10)	All Subjects (n=291)	0.047	-0.068 to 0.161	0.424	0.053	-0.063 to 0.167	0.370
		Controls (n=194)	0.056	-0.086 to 0.195	0.440	0.0616	-0.081 to 0.202	0.396
		No Secretagogue (n=43)	0.046	-0.258 to 0.341	0.769	0.064	-0.253 to 0.368	0.694
		Any Secretagogue (n=54)	-0.085	-0.345 to 0.187	0.540	-0.122	-0.385 to 0.159	0.390
	CXCL-9 (MIG)	All Subjects (n=291)	0.345	0.240 to 0.443	<0.001	0.342	0.236 to 0.441	<0.001
		Controls (n=194)	0.413	0.289 to 0.524	<0.001	0.406	0.280 to 0.518	<0.001
		No Secretagogue (n=43)	0.445	0.167 to 0.657	0.002	0.457	0.169 to 0.673	0.002
		Any Secretagogue (n=54)	-0.096	-0.355 to 0.176	0.486	-0.103	-0.368 to 0.178	0.471
	CXCL-8 (IL-8)	All Subjects (n=291)	0.397	0.296 to 0.490	<0.001	0.403	0.302 to 0.496	<0.001
		Controls (n=194)	0.396	0.270 to 0.508	<0.001	0.409	0.283 to 0.521	<0.001
		No Secretagogue (n=43)	0.479	0.209 to 0.681	<0.001	0.495	0.218 to 0.699	<0.001
		Any Secretagogue (n=54)	0.258	-0.010 to 0.492	0.057	0.253	-0.025 to 0.494	0.071
	IL-5	All Subjects (n=291)	0.146	0.032 to 0.257	0.012	0.147	0.032 to 0.258	0.012
		Controls (n=194)	0.043	-0.099 to 0.182	0.554	0.045	-0.097 to 0.186	0.533
		No Secretagogue (n=43)	0.829	0.704 to 0.904	<0.001	0.831	0.702 to 0.908	<0.001
		Any Secretagogue (n=54)	-0.004	-0.271 to 0.264	0.978	0.008	-0.268 to 0.283	0.956
	IL-10	All Subjects (n=291)	0.655	0.584 to 0.716	<0.001	0.657	0.586 to 0.718	<0.001
		Controls (n=194)	0.813	0.758 to 0.855	<0.001	0.840	0.762 to 0.858	<0.001
		No Secretagogue (n=43)	0.783	0.631 to 0.877	<0.001	0.790	0.635 to 0.884	<0.001
		Any Secretagogue (n=54)	0.750	0.604 to 0.848	<0.001	0.760	0.612 to 0.856	<0.001
	IL-13	All Subjects (n=291)	0.556	0.471 to 0.630	<0.001	0.560	0.475 to 0.635	<0.001
		Controls (n=194)	0.538	0.429 to 0.631	<0.001	0.545	0.437 to 0.637	<0.001
		No Secretagogue (n=43)	0.790	0.642 to 0.881	<0.001	0.803	0.655 to 0.891	<0.001
		Any Secretagogue (n=54)	0.551	0.332 to 0.713	<0.001	0.547	0.320 to 0.715	<0.001
IFN-γ	CXCL-10 (IP-10)	All Subjects (n=291)	0.062	-0.054 to 0.175	0.295	0.068	-0.048 to 0.182	0.251
		Controls (n=194)	0.085	-0.057 to 0.223	0.239	0.103	-0.040 to 0.241	0.156
		No Secretagogue (n=43)	-0.056	-0.351 to 0.248	0.719	-0.079	-0.381 to 0.238	0.626
		Any Secretagogue (n=54)	0.066	-0.206 to 0.328	0.635	0.019	-0.258 to 0.293	0.892
	CXCL-9 (MIG)	All Subjects (n=291)	0.287	0.178 to 0.389	<0.001	0.291	0.181 to 0.393	<0.001
		Controls (n=194)	0.358	0.228 to 0.475	<0.001	0.354	0.224 to 0.473	<0.001
		No Secretagogue (n=43)	0.347	0.053 to 0.587	0.020	0.375	0.071 to 0.614	0.015
		Any Secretagogue (n=54)	-0.033	-0.298 to 0.237	0.812	-0.039	-0.311 to 0.240	0.787
	CXCL-8 (IL-8)	All Subjects (n=291)	0.432	0.334 to 0.521	<0.001	0.442	0.344 to 0.530	<0.001
		Controls (n=194)	0.485	0.370 to 0.586	<0.001	0.504	0.390 to 0.603	<0.001
		No Secretagogue (n=43)	0.325	0.027 to 0.569	0.031	0.347	0.040 to 0.594	0.026
		Any Secretagogue (n=54)	0.192	-0.080 to 0.438	0.160	0.180	-0.100 to 0.434	0.202
	IL-5	All Subjects (n=291)	0.136	0.022 to 0.247	0.020	0.136	0.021 to 0.248	0.021
		Controls (n=194)	0.047	-0.094 to 0.188	0.514	0.049	-0.093 to 0.190	0.497
		No Secretagogue (n=43)	0.613	0.383 to 0.771	<0.001	0.658	0.436 to 0.805	<0.001
		Any Secretagogue (n=54)	0.001	-0.267 to 0.269	0.995	0.022	-0.255 to 0.296	0.876
	IFN-γ	IL-10	CXCL-10 (IP-10)	CXCL-9 (MIG)	CXCL-8 (IL-8)			
----------------------	--------	-------------	----------------	--------------	--------------			
All Subjects (n=291)	0.477	0.383 to 0.561	<0.001	0.476	0.382 to 0.561	<0.001		
Controls (n=194)	0.475	0.358 to 0.577	<0.001	0.480	0.362 to 0.582	<0.001		
No Secretagogue (n=43)	0.620	0.393 to 0.776	<0.001	0.618	0.380 to 0.780	<0.001		
Any Secretagogue (n=54)	0.681	0.506 to 0.803	<0.001	0.678	0.495 to 0.804	<0.001		
All Subjects (n=291)	0.492	0.400 to 0.575	<0.001	0.490	0.397 to 0.573	<0.001		
Controls (n=194)	0.503	0.390 to 0.601	<0.001	0.504	0.389 to 0.603	<0.001		
No Secretagogue (n=43)	0.660	0.448 to 0.801	<0.001	0.647	0.420 to 0.798	<0.001		
Any Secretagogue (n=54)	0.459	0.218 to 0.647	<0.001	0.443	0.190 to 0.640	<0.001		

	CXCL-10 (IP-10)	CXCL-9 (MIG)	CXCL-8 (IL-8)
All Subjects (n=291)	0.093	-0.022 to 0.206	0.114
Controls (n=194)	0.089	-0.052 to 0.227	0.216
No Secretagogue (n=43)	0.213	-0.093 to 0.483	0.165
Any Secretagogue (n=54)	0.048	-0.222 to 0.312	0.727
All Subjects (n=291)	0.108	-0.007 to 0.220	0.065
Controls (n=194)	0.121	-0.020 to 0.258	0.092
No Secretagogue (n=43)	0.112	-0.195 to 0.399	0.473
Any Secretagogue (n=54)	0.005	-0.263 to 0.273	0.970

	CXCL-10 (IP-10)	IL-5	
All Subjects (n=291)	0.000	-0.115 to 0.115	0.996
Controls (n=194)	-0.007	-0.148 to 0.134	0.918
No Secretagogue (n=43)	0.049	-0.255 to 0.344	0.755
Any Secretagogue (n=54)	-0.167	-0.416 to 0.106	0.224
All Subjects (n=291)	0.058	-0.057 to 0.172	0.324
Controls (n=194)	0.067	-0.075 to 0.206	0.353
No Secretagogue (n=43)	0.107	-0.200 to 0.394	0.493
Any Secretagogue (n=54)	0.156	-0.117 to 0.407	0.257

	CXCL-10 (IP-10)	IL-10	
All Subjects (n=291)	0.140	0.026 to 0.251	0.106
Controls (n=194)	0.140	-0.001 to 0.275	0.051
No Secretagogue (n=43)	0.142	-0.165 to 0.424	0.360
Any Secretagogue (n=54)	0.270	0.003 to 0.502	0.046

	CXCL-10 (IP-10)	IL-13	
All Subjects (n=291)	0.118	0.003 to 0.230	0.043
Controls (n=194)	0.107	-0.035 to 0.244	0.137
No Secretagogue (n=43)	0.392	0.104 to 0.620	0.008
Any Secretagogue (n=54)	-0.052	-0.315 to 0.219	0.710

	CXCL-10 (IP-10)	IL-5	
All Subjects (n=291)	0.038	-0.077 to 0.153	0.515
Controls (n=194)	0.025	-0.165 to 0.117	0.734
No Secretagogue (n=43)	0.356	0.062 to 0.593	0.017
Any Secretagogue (n=54)	0.159	-0.114 to 0.409	0.248

	CXCL-10 (IP-10)	IL-10	
All Subjects (n=291)	0.149	0.035 to 0.260	0.011
Controls (n=194)	0.274	0.139 to 0.400	0.001
No Secretagogue (n=43)	0.126	-0.181 to 0.411	0.417
Any Secretagogue (n=54)	-0.077	-0.338 to 0.195	0.577
Demographic and clinical patient information was linked with cancer outcomes and profiles of T-helper 1 and 2 produced cytokines of corresponding plasma specimen harvested at BC diagnosis and banked in the Roswell Park Cancer Institute Data Bank and Bio-Repository.

2.1. Study population

All incident breast cancer cases diagnosed at Roswell Park Cancer Institute (01/01/2003-12/31/2009) were considered for inclusion \(n = 2194 \). Medical and pharmacotherapy history were used to determine the baseline presence of diabetes.

2.2. Inclusion and exclusion criteria

All adult women with pre-existing diabetes at breast cancer diagnosis having available banked treatment-naive plasma specimens (blood collected prior to initiation of any cancer-related therapy - surgery, radiation or pharmacotherapy) in the Institute’s Data Bank and Bio-Repository were included.
Subjects were excluded if they had prior cancer history or unclear date of diagnosis, incomplete clinical records, type 1 or unclear diabetes status. For a specific breakdown of excluded subjects, please see the original research article by Wintrob et al. [1].

A total of 97 female subjects with breast cancer and baseline diabetes mellitus were eligible for inclusion in this analysis.

2.3. Control-matching approach

Each of the 97 adult female subjects with breast cancer and diabetes mellitus (defined as “cases”) was matched with two other female subjects diagnosed with breast cancer, but without baseline diabetes mellitus (defined as “controls”). The following matching criteria were used: age at diagnosis, body mass index category, ethnicity, menopausal status and tumor stage (as per the American Joint Committee on Cancer). Some matching limitations applied [1].

2.4. Demographic and clinical data collection

Clinical and treatment history was documented as previously described [1]. Vital status was obtained from the Institute’s Tumor Registry, a database updated biannually with data obtained from the National Comprehensive Cancer Networks’ Oncology Outcomes Database. Outcomes of interest were breast cancer recurrence and/or death.

2.5. Plasma specimen storage and retrieval

All the plasma specimens retrieved from long-term storage were individually aliquoted in color coded vials labeled with unique, subject specific barcodes. Overall duration of freezing time was accounted for all matched controls ensuring that the case and matched control specimens had similar overall storage conditions. Only two instances of freeze-thaw were allowed between biobank retrieval and biomarker analyses: aliquoting procedure step and actual assay.

2.6. Luminex® assays

A total of 12 biomarkers - interleukine-2, soluble interleukine-2 receptor α, interleukine-12 subunit p40, interleukine-12 subunit p70, interferon α 2, interferon γ, chemokine ligand 10 (interferon gamma-induced protein 10), chemokine ligand 9 (monokine-induced by interferon γ), chemokine ligand 8 (interleukine-8), interleukine-5, interleukine-10, and interleukine-13 - were quantified according to the manufacturer protocol. The Luminex® HCYTOMAG-60K panel (Millipore Corporation, Billerica, MA) was used in this study.

2.7. Biomarker-pharmacotherapy association analysis

Biomarker cut-point optimization was performed for each analyzed biomarker. Biomarker levels constituted the continuous independent variable that was subdivided into two groups that optimized the log rank test among all possible cut-point selections yielding a minimum of 10 patients in any resulting group. Quartiles were also constructed. The resultant biomarker categories were then tested for association with type 2 diabetes mellitus therapy and controls by Fisher’s exact test. The continuous biomarker levels were also tested for association with diabetes therapy and controls across groups by the Kruskall-Wallis test and pairwise by the Wilcoxon rank sum. Multivariate adjustments were performed accounting for age, tumor stage, body mass index, estrogen receptor status, and cumulative comorbidity. The biomarker analysis was performed using R Version 2.15.3. Please see the original article for an illustration of the analysis workflow [1].

Correlation analyses were performed using SAS Version 9.4.
Funding sources

This research was funded by the following grant awards: Wadsworth Foundation Peter Rowley Breast Cancer Grant awarded to A.C.C. (UB Grant number 55705, Contract CO26588).

Acknowledgements

Authors acknowledge the valuable help of Dr. Chi-Chen Hong with case-control matching.

Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2017.02.044.

Reference

[1] Z. Wintrob, J.P. Hammel, T. Khoury, G.K. Nimako, H.-W. Fu, Z.S. Fayazi, D.P. Gaile, A. Forrest, A.C. Ceacareanu, Insulin use, adipokine profiles and breast cancer prognosis, Cytokine (2017) 45–61. http://dx.doi.org/10.1016/j.cyto.2016.10.017.