Towards a unified generic framework to define and observe contacts between livestock and wildlife: a systematic review

Sonny A Bacigalupo Corresp., 1, Linda K Dixon 2, Simon Gubbins 2, Adam J Kucharski 3, Julian A Drewe 1

1 Royal Veterinary College, Hatfield, United Kingdom
2 The Pirbright Institute, Woking, Surrey, United Kingdom
3 London School of Hygiene & Tropical Medicine, University of London, London, United Kingdom

Corresponding Author: Sonny A Bacigalupo
Email address: sbacigalupo@rvc.ac.uk

Wild animals are the source of many pathogens of livestock and humans. Concerns about the potential transmission of economically important and zoonotic diseases from wildlife have led to increased surveillance at the livestock-wildlife interface. Knowledge of the types, frequency and duration of contacts between livestock and wildlife is necessary to identify risk factors for disease transmission and to design possible mitigation strategies. Observing the behaviour of many wildlife species is challenging due to their cryptic nature and avoidance of humans, meaning there are relatively few studies in this area. Further, a consensus on the definition of what constitutes a ‘contact’ between wildlife and livestock is lacking. A systematic review was conducted to investigate which livestock-wildlife contacts have been studied and why, as well as the methods used to observe each species. Over 30,000 publications were screened, of which 122 fulfilled specific criteria for inclusion in the analysis. The majority of studies examined cattle contacts with badgers or with deer; studies involving wild pig contacts with cattle or with domestic pigs were the next most frequent. There was a range of observational methods including motion-activated cameras and global positioning system collars. As a result of the wide variation and lack of consensus in the definitions of direct and indirect contacts, we developed a unified framework to define livestock-wildlife contacts that is sufficiently flexible to be applied to most wildlife and livestock species for non-vector-borne diseases. We hope this framework will help standardise the collection and reporting of contact data; a valuable step towards being able to compare the efficacy of wildlife-livestock observation methods. In doing so, it may aid the development of better disease transmission models and improve the design and effectiveness of interventions to reduce or prevent disease transmission.
Towards a unified generic framework to define and observe contacts between livestock and wildlife: a systematic review

Sonny A. Bacigalupo¹, Linda K. Dixon², Simon Gubbins², Adam J. Kucharski³, Julian A. Drewe⁴

¹Royal Veterinary College, University of London, Hatfield, UK
²The Pirbright Institute, Woking, Surrey, UK
³London School of Hygiene & Tropical Medicine, University of London, London, UK

Corresponding Author

Sonny Bacigalupo¹

Royal Veterinary College, Hawkshead Lane, Brookmans Park, Hatfield, AL9 7TA, UK

Email address: sbacigalupo@rvc.ac.uk
Abstract

Wild animals are the source of many pathogens of livestock and humans. Concerns about the potential transmission of economically important and zoonotic diseases from wildlife have led to increased surveillance at the livestock-wildlife interface. Knowledge of the types, frequency and duration of contacts between livestock and wildlife is necessary to identify risk factors for disease transmission and to design possible mitigation strategies. Observing the behaviour of many wildlife species is challenging due to their cryptic nature and avoidance of humans, meaning there are relatively few studies in this area. Further, a consensus on the definition of what constitutes a ‘contact’ between wildlife and livestock is lacking. A systematic review was conducted to investigate which livestock-wildlife contacts have been studied and why, as well as the methods used to observe each species. Over 30,000 publications were screened, of which 122 fulfilled specific criteria for inclusion in the analysis. The majority of studies examined cattle contacts with badgers or with deer; studies involving wild pig contacts with cattle or with domestic pigs were the next most frequent. There was a range of observational methods including motion-activated cameras and global positioning system collars. As a result of the wide variation and lack of consensus in the definitions of direct and indirect contacts, we developed a unified framework to define livestock-wildlife contacts that is sufficiently flexible to be applied to most wildlife and livestock species for non-vector-borne diseases. We hope this framework will help standardise the collection and reporting of contact data; a valuable step towards being able to compare the efficacy of wildlife-livestock observation methods. In doing so, it may aid the development of better disease transmission models and improve the design and effectiveness of interventions to reduce or prevent disease transmission.
Introduction

The interface where livestock and wildlife may come into contact with each other is an area of growing scientific interest, particularly as wildlife can act as a ‘reservoir’ for diseases of livestock [1]. Disease transmission between livestock and wildlife can have marked economic impact, such as African swine fever outbreaks in domestic pigs and wild boar (Sus scrofa) in Europe and Asia [2], where the loss of 12-20% of the global pig herd in 2019 led to a 10% increase in the food price index of pork [3]. The impact of disease transmission on wildlife can be seen in the loss of around half the global saiga (Saiga tatarica) antelope population in 2015 to Pasteurella multocida, a pathogen harboured by livestock [4]. Contact between wildlife and livestock may also lead to conflict between humans and wildlife, with compensation for large carnivore predation and other damage costing 28.5 million euros annually in Europe [5]. The proximity of agricultural land to wildlife habitats is a key factor in human-wildlife conflicts and in the spill-over of pathogens from wildlife to livestock and humans [6]. The emergence of diseases from wildlife that infect humans via livestock intermediaries, such as bat-borne Hendra virus (affecting humans via horses) and Nipah virus (affecting humans via pigs) [7], further highlight the importance of contacts between wildlife, livestock and people. These contacts are seldom recorded, however, because many wildlife species are cryptic and therefore difficult to observe, capture and sample.

Observing wildlife-livestock contacts is becoming easier with advances in remote technologies such as motion-activated cameras, global positioning system (GPS) collars and proximity loggers [8-10]. These methods are usually (but not always) used to monitor one species at a time. They are not standardised, however, meaning there are many variations in monitoring protocols, often
depending on basic practicalities such as battery life, people-hours, cost and the aims of the study. The methods used to monitor livestock-wildlife contacts may influence (or be influenced by) the kind of contact to be monitored, the context of the study and what the data will be used for.

Livestock-wildlife contact data is needed to inform the simulation and modelling of diseases that have multiple host species, but information on the types of contact needed for transmission and the rates at which these occur is lacking [11]. Knowledge of livestock-wildlife contact data can be used to identify risk factors and predict where these contacts are more or less likely to occur, for example predicting the likelihood of badger (*Meles meles*) visits to cattle farms in the context of bovine tuberculosis transmission [12]. It could also be used to implement and improve mitigation strategies to prevent unwanted livestock-wildlife contacts. To mitigate wolf (*Canis lupus*) predation on sheep, for example, the effectiveness of prevention programs needs to be evaluated in ways that do not depend on livestock attacks alone, using methods such as GPS monitoring of wolf movements around sheep farm bio-fences [5, 13]. Similarly, the effectiveness of measures taken to prevent disease transmission can also be evaluated such as by comparing deer-cattle contact rates between farms with and without deer fences installed [14-16]. Knowledge of livestock-wildlife contacts can be used in these contexts to limit the economic loss associated with disease and predation. Given these multiple ways of gathering and using livestock-wildlife contact data, the definition of what constitutes a relevant contact will vary depending on the aim of the study.
In the context of disease transmission, defining contact is challenging and while types of contact are often broadly grouped into being ‘direct’ or ‘indirect’, there are no standardised definitions [17]. Direct contacts are usually thought of as representing physical contact or being in close proximity over a short period of time, and so may include fighting, mating between feral and domestic animals of the same species, or being face-to-face or nose-to-nose. Indirect contacts are more difficult to define due to issues of long-distance aerosol transmission, environmental persistence of pathogens in spores and fomites, and intermediate insect vectors [11]. Other ecological definitions of livestock-wildlife contacts could also include avoidance behaviour or competition for resources between species. This variation in definitions means it is difficult to make meaningful comparisons between studies and to apply findings from one study to different contexts. Therefore, a standardised generic template for defining livestock-wildlife contacts would be useful.

The aim of this study was to systematically review the reasons for, and observational methods used in, studies investigating livestock-wildlife contacts, and to propose a generalised framework for defining contacts between livestock and wildlife.
Methods

Literature Search and Data Extraction

We defined livestock as ‘farmed domesticated mammals’ [18], wild animals as ‘free-ranging non-domesticated mammals’, and contact as ‘activity implying an interaction or association between species including the shared use of resources such as farmland’. The terms interaction and contact were used synonymously within the literature, but contact is used here for consistency. The systematic review question was “Which methods have been used to assess the frequency of, and types of, contacts between wild animals and livestock or livestock farms worldwide?”.

Search terms for wildlife, livestock and type of contact were combined by the Boolean operators ‘OR’ and ‘AND’ to identify publications that investigated contact between any wild and domestic mammal (Table S1). Search terms were based on common species names, and generic terms such as ‘feral’, ‘wildlife’, ‘livestock’ and ‘farm’. Searches were conducted in CAB Abstracts, Scopus and Pubmed. CAB Abstracts is a comprehensive database of life science research with broad coverage of veterinary literature in particular, and Scopus has a broad coverage of interdisciplinary journals [19, 20].

Search results were consolidated into Microsoft Excel and duplicates were identified and removed using queries followed by manual inspection. Titles, abstracts and full texts of the retrieved publications were evaluated by SAB against pre-specified exclusion and inclusion criteria (Table 1). Any papers for which the criteria were not clear were also evaluated by JAD. In all such cases both authors agreed on the final decision. We wished to capture publications
that collected, used or analysed data to investigate direct or indirect contacts between farmed livestock and terrestrial wild mammals whose adult bodyweight is typically >5kg. Specifically, publications were included if they attempted to quantify, characterise, or identify risk factors for livestock-wildlife contacts. Only articles in English and those accessible to researchers were included. All reasonable efforts were made to access papers that passed abstract screening. We excluded studies in which predation events were the sole indicator of livestock-wildlife contacts, and studies of wild animals that were not free-living, were tamed or were relocated for the purpose of the study. Publications until 11 November 2019 were included, and no time restrictions were applied to the start of the search. Working definitions of direct and indirect contact were developed before performing the literature search and used to avoid ambiguity when evaluating publications for inclusion.

Direct contact was provisionally defined prior to reviewing the papers as physical contact between at least one wild animal and one farm animal. Indirect contact was provisionally defined as contact between at least one wild animal and a resource used by at least one farm animal including, but not limited to, food, water and space. Therefore, studies that investigated wildlife and livestock shared resource use, but did not explicitly investigate contacts, were included. These definitions were used throughout the process of identifying and analysing the papers in this review. Study data was extracted and livestock and wildlife species, observation methods and definitions were categorised. Where available, the power of each study, defined as the likelihood of detecting contacts, was recorded. Themes that emerged during data extraction were grouped into seven broad study themes, namely behavioural, competition, conservation, disease, human-wildlife conflict, methods papers and wildlife management (Fig. S1). Where studies had
more than one theme, themes were subjectively allocated as dominant (primary) or secondary based on the aims of the study. Results were visualised and plotted using R (version 3.6.3 [21]) and R packages listed in Table S2.

Development of a Generic Unified Framework

Following categorisation of definitions, a generic unified framework was developed by grouping and identifying commonalities in definitions of ‘direct’ and ‘indirect’ contact, namely relating to space and time. The spatial and temporal limits separating relevant contacts from inconsequential contacts and non-contact events were identified for each study, and a framework was developed based on defining contacts in relation to both space and time. Using this framework, relevant contacts were defined using the parameters of critical space (S_C) and critical time (T_C). We defined S_C as the critical space (distance or area) between animals below which a contact relevant to the study is considered to have occurred, and T_C as the critical time window within which a relevant contact is considered to have occurred.
Results

During data categorisation and analyses, many publications were categorised into more than one group due to studying multiple species, using multiple detection methods and having multiple themes, and therefore the number of studies exceed 122 (100%) in several instances reported below.

Search results, quality appraisal and themes

A total of 43,032 papers were identified by the search terms across all three databases, of which 30,080 were unique results. After screening using the exclusion and inclusion criteria in Table 1, 122 publications remained in the final analysis (Fig. 1). Publication date ranged from 1980 to 2019, with 117 (96%) published in the last 20 years (Fig. 2). Studies conducted in Europe, North America and Africa made up 89% of the results (Table S3) with the USA and UK producing the most publications (21% and 18%, respectively).

Low study power was mentioned briefly in only 11 (9%) publications and statistical power calculations were not performed. The level of uncertainty was acknowledged in 64 (53%) publications.

Disease was the dominant theme and featured in 80 of 122 studies (66%), followed by human-wildlife conflict (22/122; 18%), competition between wildlife and livestock (17/122; 14%), conservation (16/122; 13%), wildlife management (11/122; 9%), behavioural studies (3/122; 2%) and methods validation (2/122; 2%) (Fig. S1). Within the disease-themed papers, *Mycobacterium bovis* was the most studied pathogen (49/80; 61%) followed by foot-and-mouth disease virus.
Wildlife-cattle contacts were the focus of 98 of the 122 studies (80%) and a further 22 studies (18%) focused on sheep, pigs, farmed deer and camelids. The most studied wildlife species were deer (30/122; 25%), wild pigs [including wild boar] (26/122; 21%) and badgers (25/122; 20%: Fig. S2 and S3). The wildlife species were not specified in 11 papers, some of which studied wild ungulates competing for livestock grazing [22-24], others that concerned wildlife as hosts of cattle diseases such as bovine tuberculosis [25-27] and foot-and-mouth disease [28, 29], and the remainder that were completely unspecified.

Methods used to observe livestock-wildlife contacts

Methods that monitored both livestock and wildlife species were used in 88 publications (72%) whereas 34 studies (28%) monitored wildlife only. Camera trapping was the most frequent method of monitoring wildlife (37 studies, 31%), and was most prominently used in badgers, deer and wild pigs (Fig. 3). GPS collars were the second most used method to monitor wildlife (29 studies, 24%), and while they were also used predominantly on badgers, deer and wild pigs, they were used proportionally more than cameras to monitor predators such as big cats and wolves and large herbivores such as buffalo, wild horses and elephants. Other methods used to monitor wildlife were direct visualisation (21; 17%), farmer questioning (20; 16%), radio-transmitters (17; 14%), activity signs (15; 12%) and proximity loggers (7; 6%). Some studies utilised more than one observation method, and therefore the numbers of studies exceed 122 (100%) Studies that monitored livestock tended to use the same methods as for wildlife, although 10 studies dedicated fewer resources to monitor livestock; for example [30] used GPS collars to monitor wild deer and farmer questioning to monitor cattle behaviour. Studies that did not monitor livestock tended to infer wildlife-livestock contact from monitoring only the activities of
wildlife on or around livestock holdings, such as on pasture, in buildings and the shared use of resources such as livestock feed.

A variety of methods were used to observe different types of contact data (Fig. S4). Methods such as GPS collars and radio-tracking (telemetry) were used to collect the locations of wildlife (e.g. [10, 31, 32]), whereas proximity loggers were used to detect close proximity contacts between livestock and wildlife or with postulated high-risk disease transmission areas such as badger latrines (e.g. [9]). Camera traps and direct visualisation were used to observe behavioural activity, such as nose-to-nose contacts between cattle and badgers [33], foxes taking piglets from farrowing huts [34] and wild boar eating from cattle troughs [35]. Some methods were used to detect the presence of wild animals on farms or on pasture only, such as surveys of activity signs to detect wild boar rooting on sheep pasture [36] and GPS collars to demonstrate the avoidance of livestock pasture by lions [37]. Thirty studies combined more than one method to monitor wildlife, such as [38] which combined activity signs, GPS collar data and camera traps to monitor feral swine activity at and around domestic pig pens. The majority of studies, however, used only one method and were able to collect information about the type of contact defined by the study.

Definitions of direct and indirect contacts

Definitions for both direct contact and indirect contact were provided by 27 studies, with a further four defining direct contact only and 54 defining indirect contact only (Table 2; Table 3). Definitions of direct contact tended to focus on the spatial distance between wildlife and livestock at one point in time (Table 2). Definitions of indirect contact tended to focus on the use...
of space or resources by wildlife in a location previously or subsequently occupied by livestock, within a certain time frame (Table 3). There were some variations to these trends: two studies specified a time frame longer than one time point to define direct contact [15, 39]. The amount of time was usually determined by the context of the study, such as the survival time of a specified pathogen in the environment, known as the critical time window of a contact [40]. Contacts were also defined in 15 studies as the shared use of resources between livestock and wildlife, such as feed and water. There were large variations between studies in the defined distances and time windows, with direct contact distances ranging from physical contact (seven studies) to within 120 metres of each other (one study), and indirect definitions ranging from within the same camera image (two studies) to within 50 kilometres of a location (one study). There was less variation in definitions between studies with similar contexts and aims. For example, among *M. bovis* transmission studies in cattle and badgers, the definition of direct contact ranged from physical contact to within two metres (six studies), and indirect contacts were defined as presence on farmland, sharing of resources and visits to badger latrines by cattle (20 studies). Importantly, no definition of contact was provided in 25 studies (44%) that reported direct contacts, and 34 studies (29%) that reported indirect contacts.

Regardless of the contact definitions or methods used to observe contacts, direct contacts were detected much less frequently than indirect contacts. For example, one study [15] found no instances of cattle within two metres of deer, compared to over 40,000 indirect contacts of deer with cattle via shared feed. Overall, the median number of direct contacts between wildlife and livestock was in single figures, whereas the median number of indirect contacts occurred in the order of hundreds or even thousands (Table 4). Low study power was acknowledged, but not
calculated, by 11 studies (9%), and is likely to be a feature of many more which did not report it.

No studies reported adequate power. The low power of studies to observe rare contacts, coupled with the variation in, or lack of, contact definitions, makes it very difficult to compare the effectiveness of the methods used to observe wildlife-livestock contacts.

Proposed unified framework to define direct and indirect contacts

Space (area or distance between animals) and time were crucial components of the varied definitions of direct and indirect contact in this review. In an effort to unify these parameters, a novel generic framework to categorise wildlife-livestock contacts is proposed in Fig. 4, based on the locations of individuals in space and time. Using this framework, we propose that the contact type (direct or indirect) is defined using the two parameters S_C and T_C. Multiple critical thresholds can be used within the framework to differentiate between definitions of direct contact (S_{C_1} and T_{C_1}) and indirect contact (S_{C_2} and T_{C_2}). For a direct contact to occur, two individuals are within the same pre-specified critical space (distance or area: S_{C_1}) within a pre-specified critical time window (T_{C_1}). Similarly, for an indirect contact to occur, animals are within another pre-specified critical space (S_{C_2}) within another pre-specified critical time window (T_{C_2}). The reader is directed to Fig. 4 for examples from the literature of possible combinations of S_C and T_C. T_{C_2} may be the same as T_{C_1} (if S_{C_2} is larger than S_{C_1}: compare example A with example B in Figure 4) or T_{C_2} may be different from T_{C_1} (in which case T_{C_2} will usually, but not always, be larger than T_{C_1}: compare example A with examples C, D, E and F in Figure 4). Similarly, S_{C_2} may be the same as S_{C_1} (if T_{C_2} is larger than T_{C_1}: compare example A with examples C and E in Figure 4) or S_{C_2} may be different from S_{C_1} (in which case S_{C_2} will usually, but not always, be larger than S_{C_1}: compare example A with examples B, D and F in Figure 4). Same, near and different are
used here to illustrate spatial and temporal differences between examples. These terms are relative and will vary along with \(S_C \) and \(T_C \) depending on the system being studied, the objectives of the study and other factors such as host behaviour and the biology of the pathogen, in the case of disease studies; therefore, values for \(T_{C1}, T_{C2}, S_{C1} \) and \(S_{C2} \) should be decided in advance of a study being conducted, and they should be clearly reported when data are presented.

Although the exact values of the critical distance between animals and the critical time window over which this happens will depend on the system being studied as well as the specific objectives of each study, the adoption of this generic framework to define direct and indirect contacts will help identify studies with similar definitions where results are more easily comparable.
Discussion

The need for a generic unified framework

This review has found that definitions of contact are wide-ranging and highly dependent on the context of the study. Definitions can vary depending on the species and demographics of the wildlife and livestock involved, the methods used to detect contacts and the system being studied such as the environmental conditions and pathogen characteristics in studies where contacts are representative of disease transmission. Definitions of direct contact were extremely diverse, ranging from direct physical contact to animals being merely within a hundred metres of each other. Indirect contact ranged from animals sharing resources, being within five kilometres of each other or overlapping in home ranges, and the time window that these events occurred in varied from hours to weeks.

The aim of this generic unified framework is to promote consistent reporting of definitions of contacts enabling comparisons to be made between the approaches of wildlife-livestock contact studies, regardless of the species or pathogen studied or the context of the study. This is needed because our systematic review found that while wildlife-livestock contact data was collected in terms of space and time, some studies omitted space or time in their definitions, or there was a complete lack of a definition. Conflicting and overlapping definitions of direct and indirect contact were also identified. Making any sort of meaningful comparison between such studies is challenging. For example it is difficult to assess what, if any, implications there are for deer-cattle disease transmission from a behavioural study showing deer avoid cattle despite similar habitat preferences [41], without knowing what types of contact (e.g., direct or indirect; what
specific types) were likely to be meaningful. It is even difficult to compare studies within the
same system, for example establishing the relevance of cattle-badger contacts for bovine
tuberculosis transmission when some studies define a contact as ‘presence on farm’ [42, 43] and
others define it as ‘presence in buildings’, and neither study defines the time window. Use of the
generic unified framework would enable consistent reporting of definitions between studies and
is an important step if the results of wildlife-livestock contact studies are to be comparable.

Applications of a generic unified framework

Models that incorporate empirical rather than theoretical information on the frequency and
duration of contacts important for disease transmission are more likely to be useful for disease
mitigation [11]. The use of a standardised definition framework in future studies of livestock-
wildlife contacts would enable consistency in datasets and enable the retrospective selection of
contact data relevant to a particular model, which could then be incorporated in a similar way to
the data used in recent bovine tuberculosis transmission models [16, 44]. The generic unified
framework proposed in this current paper could also be useful in designing livestock-wildlife
contact studies, since defining the type of contact to be detected - in addition to practical
considerations, such as an area’s signal strength affecting the viability of GPS device use - helps
with the choice of detection method. The framework is also flexible and applicable to different
contexts, species and diseases since it allows for the variation in definitions seen in this review,
and it is hoped it will broaden the range of future livestock-wildlife contact studies.

To resolve human-wildlife conflicts usually requires robust livestock-wildlife contact studies. At
least 120 studies that only used predation events to infer livestock-wildlife contacts were
excluded from the review, yet predators – particularly wolves – were the second most commonly studied group of wild mammals. Given that predation studies appear to form a large proportion of wildlife-livestock contact studies, this is an area where adoption of the generic framework could help design meaningful contact studies to evaluate preventive measures without relying solely on predation events.

Further development of the generic unified framework

The generic unified framework does not provide an overall consensus on definitions of direct and indirect contact, but does provide a structure with which to start this process. While using the generic unified framework provides a standardised definition of contact in time and space, identifying the types of contact that are relevant to the study, and thus the values of S_C and T_C, will vary depending on the objectives and context of each study. While a universally accepted set of definitions for contacts is difficult to devise, we hope that by defining S_C and T_C here we will encourage the start of the debate around (and between) studies of similar contexts, and perhaps then acceptable ranges for these values will emerge. Developing a framework for deriving S_C and T_C, based upon the species studied, environment, pathogen and methodology is beyond the scope of this review, and would be a necessary next step so that wildlife-livestock contact rates could be comparable between studies of similar contexts. For example, for disease studies, it would be advisable that S_C and T_C were based on values below which transmission is likely to occur, such as aerosol dispersion distance and environmental survivability. For any system, there may be a range of appropriate values for S_C and T_C.
The generic unified framework presented in this paper is a step towards being able to compare observation methods and contact data in order to standardise and evaluate different monitoring methods. This is important as our systematic review revealed that the methods used to observe livestock-wildlife contacts to date have often had low detection rates and therefore been of low power due to the difficulty of monitoring cryptic wildlife species, and the rarity of some types of wildlife-livestock contacts, particularly direct contacts. Further considerations for the comparison of observation methods are the representativeness of individuals monitored, especially with methodologies that require the marking of individuals such as GPS and proximity loggers, and a standardised system for relativizing the number of contacts with regards to the total observation effort. For example, two studies will not be comparable if study A only uses 3 camera traps and study B uses 100 camera traps, or if study C collects GPS locations every hour when study D collects only one GPS fix per day. Reporting representativeness of individuals and relativizing contact rates in terms of total population will go some way to establishing the power of wildlife-contact studies. Furthermore, it may be useful for studies to indicate the detection limits of the methodology used, in terms of space and time.

Scope of existing wildlife-livestock contact studies

This review has identified the narrow scope and limited geographic range of livestock-wildlife contact studies, which means the data summarised in this review should not be considered representative of all wildlife-livestock contacts worldwide. The majority of studies focussed on cattle-wildlife contacts and diseases of cattle. Bovine tuberculosis (infection with *M. bovis*) featured prominently, indicative of the economic and potentially zoonotic importance of this disease to the USA and UK, where the most livestock-wildlife contact studies were conducted [45, 46]. Foot-and-mouth-disease was the most studied viral pathogen and this is most likely
explained by its broad geographical spread and high economic impact [47]. This demonstrates the human-centric view of the wildlife-livestock interface, with most focus on the impacts on humans and domestic animals, and very little (if any) focus on the value of wildlife [48]. There were, however, some livestock-wildlife contact studies of high impact conservation importance such as infection with Mannheimia spp. in bighorn sheep (*Ovis canadensis*) and Pasteurella spp. in saiga antelope [49-51]. If we are to collect more (and better) wildlife-livestock contact data that include a broader range of species and contexts, careful consideration must be used when selecting the most effective and practical observational method for monitoring cryptic wildlife species.

This review highlights that observing contacts between multiple species is possible and can yield high quality information. Increasing the efficiency of monitoring methods would justify their use for more applications. Health surveillance systems at livestock-wildlife interfaces have been suggested as a method to detect and control emerging diseases along with preventing contact between wildlife and livestock [52]. Preventing high-risk contacts may be more cost-effective than surveillance, but the effectiveness of prevention strategies will need to be evaluated by monitoring contacts, or lack thereof. More efficient monitoring will also allow for quantitative risk assessments of wildlife-livestock contacts which are presently difficult to conduct due to a limited understanding of potential contacts leading to pathogen transmission [53]. Some observation methods such as camera traps are likely to have the ability to identify new potential transmission routes between livestock and wildlife (e.g., the use of cattle salt licks by racoons [26]), and may identify livestock-wildlife contacts previously not considered (e.g., observing farm visits by foxes during a study focussing on badgers [54]). Identifying wildlife species that
may be the origin of rapidly emerging human diseases is a priority to prevent future pandemics [55]. In situations where human infections are mediated by livestock, rapid implementation of observational methods to detect contacts between wildlife and livestock could more quickly identify wildlife hosts and risky behaviours. In order to determine the efficiency and efficacy of different observational methods, the methods used and data collected by them must be comparable, hence the need for a unified framework.

Limitations of this review

Our study has some limitations which we summarise here. At present, our generic unified framework does not explicitly account for disease transmission via vectors or fomites, although the latter will to some extent be captured within our definition of indirect contact. In order that observation methods were likely to be comparable between species, we focussed on terrestrial mammals so did not address diseases primarily hosted by birds or bats such as avian influenza, Nipah virus and Hendra virus. Small terrestrial mammals (<5kg) were also not included for this reason, and because a disproportionate number of rodent studies focus on their roles as laboratory animals or farm pests, and not on contacts with livestock. While the generic unified framework may be applicable to these types of wildlife, it is unclear which observational methods seen in this review would be most effective or efficient, and the conclusions drawn from this review may not be reflective of systems that involve other taxa.

Conclusion

As human populations continue to expand and agriculture encroaches further on wildlife habitats, disease spill-over (in both directions) between wildlife, livestock and humans is becoming more frequent [1]. As a result, the study of contacts between livestock and wildlife is receiving ever increasing attention. This systematic review of the observational methods used to
study contacts, and the subsequent proposal of a generic unified framework for defining contacts, are two steps towards ensuring that data are collected and reported in a standardised way at a time of increasingly urgent need.
Acknowledgements

RVC manuscript number PPS_02151.
References

1. Wiethoelter, A.K., D. Beltrán-Alcrudo, R. Kock, and S.M. Mor, *Global trends in infectious diseases at the wildlife–livestock interface*. Proceedings of the National Academy of Sciences, 2015. **112**(31): p. 9662-9667.

2. Dixon, L.K., K. Stahl, F. Jori, L. Vial, and D.U. Pfeiffer, *African Swine Fever Epidemiology and Control*. Annual review of animal biosciences, 2019. **8**.

3. Pitts, N. and T. Whitnall, *Impact of African swine fever on global markets*. Agricultural Commodities, 2019. **9**(3): p. 52.

4. Fereidouni, S., G.L. Freimanis, M. Orynbayev, P. Ribeca, J. Flannery, D.P. King, S. Zuther, M. Beer, D. Höper, and A. Kydyrmanov, *Mass die-off of saiga antelopes, Kazakhstan, 2015*. Emerging infectious diseases, 2019. **25**(6): p. 1169.

5. Bautista, C., E. Revilla, J. Naves, J. Albrecht, N. Fernández, A. Olszańska, M. Adamec, T. Berezowska-Cnota, P. Ciucci, and C. Groff, *Large carnivore damage in Europe: Analysis of compensation and prevention programs*. Biological conservation, 2019. **235**: p. 308-316.

6. Jones, B.A., D. Grace, R. Kock, S. Alonso, J. Rushton, M.Y. Said, D. McKeever, F. Mutua, J. Young, and J. McDermott, *Zoonosis emergence linked to agricultural intensification and environmental change*. Proceedings of the National Academy of Sciences, 2013. **110**(21): p. 8399-8404.

7. Field, H., P. Young, J.M. Yob, J. Mills, L. Hall, and J. Mackenzie, *The natural history of Hendra and Nipah viruses*. Microbes and infection, 2001. **3**(4): p. 307-314.

8. Böhm, M., M.R. Hutchings, and P.C.L. White, *Contact networks in a wildlife-livestock host community: identifying high-risk individuals in the transmission of bovine TB among badgers and cattle*. PLoS ONE, 2009(No.April): p. e5016.

9. Drewe, J.A., H.M. O'Connor, N. Weber, R.A. McDonald, and R.J. Delahay, *Patterns of direct and indirect contact between cattle and badgers naturally infected with tuberculosis*. Epidemiology and Infection, 2013. **141**(7): p. 1467-1475.

10. Barasona, J.A., M.C. Latham, P. Acevedo, J.A. Armenteros, A.D.M. Latham, C. Gortazar, F. Carro, R.C. Soriguier, and J. Vicente, *Spatiotemporal interactions between wild boar and cattle: implications for cross-species disease transmission*. Veterinary Research, 2014. **45**(122): p. (12 December 2014).

11. Craft, M.E., *Infectious disease transmission and contact networks in wildlife and livestock*. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015. **370**(1669): p. 20140107.
12. Robertson, A., J. Judge, G. Wilson, I.J. Vernon, R.J. Delahay, and R.A. McDonald, *Predicting badger visits to farm yards and making predictions available to farmers*. PloS one, 2019. 14(5).

13. Ausband, D.E., M.S. Mitchell, S.B. Bassing, and C. White, *No trespassing: Using a biofence to manipulate wolf movements*. Wildlife Research, 2013. 40(3): p. 207-216.

14. Lavelle, M.J., C.I. Henry, K. LeDoux, P.J. Ryan, J.W. Fischer, K.M. Pepin, C.R. Blass, M.P. Glow, S.E. Hygnstrom, and K.C. VerCauteren, *Deer response to exclusion from stored cattle feed in Michigan, USA*. Preventive veterinary medicine, 2015. 121(1-2): p. 159-164.

15. Lavelle, M.J., S.L. Kay, K.M. Pepin, D.A. Grear, H. Campa, III, and K.C. VerCauteren, *Evaluating wildlife-cattle contact rates to improve the understanding of dynamics of bovine tuberculosis transmission in Michigan, USA*. Preventive Veterinary Medicine, 2016. 135: p. 28-36.

16. Wilber, M.Q., K.M. Pepin, H. Campa III, S.E. Hygnstrom, M.J. Lavelle, T. Xifara, K.C. VerCauteren, and C.T. Webb, *Modelling multi-species and multi-mode contact networks: Implications for persistence of bovine tuberculosis at the wildlife–livestock interface*. Journal of Applied Ecology, 2019. 56(6): p. 1471-1481.

17. Eames, K., S. Bansal, S. Frost, and S. Riley, *Six challenges in measuring contact networks for use in modelling*. Epidemics, 2015. 10: p. 72-77.

18. FAO. *Livestock Statistics - Concepts, Definitions and Classifications*. 2020 [cited 2020 26th February 2020]; Available from: http://www.fao.org/economic/the-statistics-division-ess/methodology/methodology-systems/livestock-statistics-concepts-definitions-and-classifications/en/.

19. Grindlay, D.J.C., M.L. Brennan, and R.S. Dean, *Searching the Veterinary Literature: A Comparison of the Coverage of Veterinary Journals by Nine Bibliographic Databases*. Journal of Veterinary Medical Education, 2012. 39(4): p. 404-412.

20. Aghaei Chadegani, A., H. Salehi, M. Yunus, H. Farhadi, M. Fooladi, M. Farhadi, and N. Ale Ebrahim, *A comparison between two main academic literature collections: Web of Science and Scopus databases*. Asian Social Science, 2013. 9(5): p. 18-26.

21. R Core Team, *R: A language and environment for statistical computing*. 2020, R Foundation for Statistical Computing: Vienna, Austria.
22. Mizutani, F., M. Kadohira, and B. Phiri, *Livestock-wildlife joint land use in dry lands of Kenya: a case study of the Lolldaiga Hills ranch*. Animal Science Journal, 2012. **83**(6): p. 510-516.

23. Sitters, J., I.M.A. Heitkönig, M. Holmgren, and G.S.O. Ojwang, *Herded cattle and wild grazers partition water but share forage resources during dry years in East African savannas*. Biological Conservation, 2009. **142**(4): p. 738-750.

24. Crawford, C.L., Z.M. Volenec, M. Sisanya, R. Kibet, and D.I. Rubenstein, *Behavioral and Ecological Implications of Bunched, Rotational Cattle Grazing in East African Savanna Ecosystem*. Rangeland Ecology & Management, 2019. **72**(1): p. 204-209.

25. Munyeme, M., J.B. Muma, H.M. Munang’andu, C. Kankya, E. Skjerve, and M. Tryland, *Cattle owners’ awareness of bovine tuberculosis in high and low prevalence settings of the wildlife-livestock interface areas in Zambia*. BMC Veterinary Research, 2010. **6**(21): p. (20 April 2010).

26. Witmer, G., A.E. Fine, J. Gionfriddo, M. Pipas, K. Shively, K. Piccolo, and P. Burke, *Epizootiologic survey of Mycobacterium bovis in wildlife and farm environments in northern Michigan*. Journal of Wildlife Diseases, 2010. **46**(2): p. 368-378.

27. Katale, B.Z., E.V. Mbugi, E.D. Karimuribo, J.D. Keyyu, S. Kendall, G.S. Kibiki, P. Godfrey-Faussett, A.L. Michel, R.R. Kazwala, P.v. Helden, and M.I. Matee, *Prevalence and risk factors for infection of bovine tuberculosis in indigenous cattle in the Serengeti ecosystem, Tanzania*. BMC Veterinary Research, 2013. **9**(267): p. (30 December 2013).

28. Brahmbhatt, D.P., G.T. Fosgate, E. Dyason, C.M. Budke, B. Gummow, F. Jori, M.P. Ward, and R. Srinivasan, *Contacts between domestic livestock and wildlife at the Kruger National Park Interface of the Republic of South Africa*. Preventive Veterinary Medicine, 2012. **103**(1): p. 16-21.

29. Molla, B., G. Ayelet, Y. Asfaw, Y. Jibril, and E. Gelaye, *Participatory epidemiology and associated risk factors of foot-and-mouth disease in cattle in South Omo zone, South-Western Ethiopia*. J. Vet. Med. Anim. Health, 2013. **5**(11): p. 322-328.

30. Pruvot, M., D. Seidel, M.S. Boyce, M. Musiani, A. Massolo, S. Kutz, and K. Orsel, *What attracts elk onto cattle pasture? Implications for inter-species disease transmission*. Preventive Veterinary Medicine, 2014. **117**(2): p. 326-339.

31. Raizman, E.A., H.B. Rasmussen, L.E. King, F.W. Ihwagi, and I. Douglas-Hamilton, *Feasibility study on the spatial and temporal movement of Samburu's...*
cattle and wildlife in Kenya using GPS radio-tracking, remote sensing and GIS.

Preventive Veterinary Medicine, 2013. 111(01-Feb): p. 76-80.

32. Cooper, S.M., H.L. Perotto-Baldivieso, M.K. Owens, M.G. Meek, and M.
Figueroa-Pagán, Distribution and interaction of white-tailed deer and cattle in a
semi-arid grazing system. Agriculture, Ecosystems & Environment, 2008.
127(01-Feb): p. 85-92.

33. Tolhurst, B.A., R.J. Delahay, N.J. Walker, A.I. Ward, and T.J. Roper, Behaviour
of badgers (Meles meles) in farm buildings: opportunities for the transmission of
Mycobacterium bovis to cattle? Applied Animal Behaviour Science, 2009.
117(01-Feb): p. 103-113.

34. Fleming, P.A., S.J. Dundas, Y.Y.W. Lau, and J.R. Pluske, Predation by red foxes
(Vulpes vulpes) at an outdoor piggery. Animals, 2016. 6(10): p. 60.

35. Kukielka, E., J.A. Barasona, C.E. Cowie, J.A. Drewe, C. Gortazar, I. Cotarelo, and
J. Vicente, Spatial and temporal interactions between livestock and wildlife in
South Central Spain assessed by camera traps. Preventive Veterinary Medicine,
2013. 112(03-Apr): p. 213-221.

36. Guillermo Bueno, C., I.C. Barrio, R. García-González, C.L. Alados, and D.
Gómez-García, Does wild boar rooting affect livestock grazing areas in alpine
grasslands? European Journal of Wildlife Research, 2010. 56(5): p. 765-770.

37. Oriol-Cotterill, A., D.W. Macdonald, M. Valeix, S. Ekwanga, and L.G. Frank,
Spatiotemporal patterns of lion space use in a human-dominated landscape.
Animal Behaviour, 2015. 101: p. 27-39.

38. Wyckoff, A.C., S.E. Henke, T.A. Campbell, D.G. Hewitt, and K.C. VerCauteren,
Movement and habitat use of feral swine near domestic swine facilities. Wildlife
Society Bulletin, 2012. 36(1): p. 130-138.

39. Cooper, S.M., H.M. Scott, G.R.d.l. Garza, A.L. Deck, and J.C. Cathey,
Distribution and interspecies contact of feral swine and cattle on rangeland in
South Texas: implications for disease transmission. Journal of Wildlife Diseases,
2010. 46(1): p. 152-164.

40. Cowie, C.E., M.R. Hutchings, J.A. Barasona, C. Gortázar, J. Vicente, and P.C.L.
White, Interactions between four species in a complex wildlife: livestock disease
community: implications for Mycobacterium bovis maintenance and transmission.
European Journal of Wildlife Research, 2016. 62(1): p. 51-64.

41. Mattiello, S., W. Redaelli, C. Carenzi, and C. Crimella, Effect of dairy cattle
husbandry on behavioural patterns of red deer (Cervus elaphus) in the Italian
Alps. Applied Animal Behaviour Science, 2002. 79(4): p. 299-310.
42. Mullen, E.M., T. MacWhite, P.K. Maher, D.J. Kelly, N.M. Marples, and M. Good, *The avoidance of farmyards by European badgers Meles meles in a medium density population*. Applied Animal Behaviour Science, 2015. 171: p. 170-176.

43. Sleeman, D.P., J. Davenport, and A. Fitzgerald, *Incidence of visits by badgers to farmyards in Ireland in winter*. Veterinary Record, 2008. 163(24): p. 724.

44. Silk, M.J., J.A. Drewe, R.J. Delahay, N. Weber, L.C. Steward, J. Wilson-Aggarwal, M. Boots, D.J. Hodgson, D.P. Croft, and R.A. McDonald, *Quantifying direct and indirect contacts for the potential transmission of infection between species using a multilayer contact network*. Behaviour, 2018. 155(7-9): p. 731-757.

45. De la Rua-Domenech, R., *Human Mycobacterium bovis infection in the United Kingdom: incidence, risks, control measures and review of the zoonotic aspects of bovine tuberculosis*. Tuberculosis, 2006. 86(2): p. 77-109.

46. O’Brien, D.J., S.M. Schmitt, S.D. Fitzgerald, and D.E. Berry, *Management of bovine tuberculosis in Michigan wildlife: current status and near term prospects*. Veterinary microbiology, 2011. 151(1-2): p. 179-187.

47. Knight-Jones, T. and J. Rushton, *The economic impacts of foot and mouth disease–What are they, how big are they and where do they occur?* Preventive veterinary medicine, 2013. 112(3-4): p. 161-173.

48. Chardonnet, P., B.d. Clers, J. Fischer, R. Gerhold, F. Jori, and F. Lamarque, *The value of wildlife*. Revue scientifique et technique-Office international des épizooties, 2002. 21(1): p. 15-52.

49. Clifford, D.L., B.A. Schumaker, T.R. Stephenson, V.C. Bleich, M.L. Cahn, B.J. Gonzales, W.M. Boyce, and J.A.K. Mazet, *Assessing disease risk at the wildlife-livestock interface: a study of Sierra Nevada bighorn sheep*. Biological Conservation, 2009. 142(11): p. 2559-2568.

50. O’Brien, J.M., C.S. O’Brien, C. McCarthy, and T.E. Carpenter, *Incorporating foray behavior into models estimating contact risk between bighorn sheep and areas occupied by domestic sheep*. Wildlife Society Bulletin, 2014. 38(2): p. 321-331.

51. Beauvais, W., S. Zuther, C. Villeneuve, R. Kock, and J. Guitian, *Rapidly assessing the risks of infectious diseases to wildlife species*. Royal Society open science, 2019. 6(1): p. 181043.

52. Gortazar, C., I. Diez-Delgado, J.A. Barasona, J. Vicente, J. De La Fuente, and M. Boadella, *The wild side of disease control at the wildlife-livestock-human interface: a review*. Frontiers in veterinary science, 2015. 1: p. 27.
53. Miller, R.S., M.L. Farnsworth, and J.L. Malmberg, *Diseases at the livestock–wildlife interface: status, challenges, and opportunities in the United States.* Preventive veterinary medicine, 2013. **110**(2): p. 119-132.

54. O'Mahony, D.T., *Multi-species visit rates to farmyards: implications for biosecurity.* Veterinary Journal, 2015. **203**(1): p. 126-128.

55. Morse, S.S., J.A. Mazet, M. Woolhouse, C.R. Parrish, D. Carroll, W.B. Karesh, C. Zambrana-Torrelio, W.I. Lipkin, and P. Daszak, *Prediction and prevention of the next pandemic zoonosis.* The Lancet, 2012. **380**(9857): p. 1956-1965.

56. Brook, R.K., E.v. Wal, F.M.v. Beest, and S.M. McLachlan, *Evaluating use of cattle winter feeding areas by elk and white-tailed deer: implications for managing bovine tuberculosis transmission risk from the ground up.* Preventive Veterinary Medicine, 2013. **108**(02-Mar): p. 137-147.

57. Hockings, K.J., T. Humle, S. Carvalho, and T. Matsuzawa, *Chimpanzee interactions with nonhuman species in an anthropogenic habitat.* Behaviour, 2012. **149**(03-Apr): p. 299-324.

58. Campbell, E.L., A.W. Byrne, F.D. Menzies, K.R. McBride, C.M. McCormick, M. Scantlebury, and N. Reid, *Interspecific visitation of cattle and badgers to fomites: A transmission risk for bovine tuberculosis?* Ecology and Evolution, 2019. **9**(15): p. 8479-8489.

59. Tolhurst, B.A., A.I. Ward, and R.J. Delahay, *A study of fox (Vulpes vulpes) visits to farm buildings in Southwest England and the implications for disease management.* European Journal of Wildlife Research, 2011. **57**(6): p. 1227-1230.

60. Vercauteren, K.C., M.J. Lavelle, N.W. Seward, J.W. Fischer, and G.E. Phillips, *Fence-line contact between wild and farmed cervids in Colorado: potential for disease transmission.* Journal of Wildlife Management, 2007. **71**(5): p. 1594-1602.

61. Vercauteren, K.C., M.J. Lavelle, N.W. Seward, J.W. Fischer, and G.E. Phillips, *Fence-line contact between wild and farmed white-tailed deer in Michigan: potential for disease transmission.* Journal of Wildlife Management, 2007. **71**(5): p. 1603-1606.

62. Jori, F., A. Relun, B. Trabucco, F. ChARRIER, O. Maestrini, D. Chavener, D. Cornelis, F. Casabianca, and E.M.C. Etter, *Questionnaire-based assessment of wild boar/domestic pig interactions and implications for disease risk management in Corsica.* Frontiers in Veterinary Science, 2017. **4**(December): p. 198.

63. Trabucco, B., F. Chabrier, F. Jori, O. Maestrini, D. Cornélis, E. Etter, S. Molia, A. Relun, and F. Casabianca, *Stakeholder's practices and representations of contacts between domestic and wild pigs: a new approach for disease risk assessment?* Acta agriculurae Slovvenica, 2013: p. 117-122.
64. Benham, P.F.J. and D.M. Broom, Interactions between cattle and badgers at pasture with reference to bovine tuberculosis transmission. British Veterinary Journal, 1989. 145(3): p. 226-341.

65. Drewe, J.A., N. Weber, S.P. Carter, S. Bearhop, X.A. Harrison, S.R.X. Dall, R.A. McDonald, and R.J. Delahay, Performance of proximity loggers in recording intra- and inter-species interactions: A laboratory and field-based validation study. PLoS ONE, 2012. 7(6): p. -.

66. Garnett, B.T., R.J. Delahay, and T.J. Roper, Use of cattle farm resources by badgers (Meles meles) and risk of bovine tuberculosis (Mycobacterium bovis) transmission to cattle. Proceedings of the Royal Society of London. Series B, Biological Sciences, 2002. 269(1499): p. 1487-1491.

67. Woodroffe, R., C.A. Donnelly, C. Ham, S.Y.B. Jackson, K. Moyes, K. Chapman, N.G. Stratton, and S.J. Cartwright, Badgers prefer cattle pasture but avoid cattle: implications for bovine tuberculosis control. Ecology Letters, 2016. 19(10): p. 1201-1208.

68. Walter, W.D., C.W. Anderson, R. Smith, M. Vanderklok, J.J. Averill, and K.C. VerCauteren, On-farm mitigation of transmission of tuberculosis from white-tailed deer to cattle: literature review and recommendations. Veterinary Medicine International, 2012. 2012: p. Article ID 616318.

69. Hill, J.A., Wildlife-cattle interactions in northern Michigan: implications for the transmission of bovine tuberculosis. 2005.

70. Balseiro, A., Á. Oleaga, L.M.Á. Morales, P.G. Quirós, C. Gortázar, and J.M. Prieto, Effectiveness of a calf-selective feeder in preventing wild boar access. European Journal of Wildlife Research, 2019. 65(3): p. 38.

71. Barasona, J.A., J. Vicente, I. Diez-Delgado, J. Aznar, C. Gortázar, and M.J. Torres, Environmental presence of Mycobacterium tuberculosis complex in aggregation points at the wildlife/livestock interface. Transboundary and emerging diseases, 2017. 64(4): p. 1148-1158.

72. Cadenas-Fernández, E., J.M. Sanchez-Vizcaíno, A. Pintore, D. Denurra, M. Cherchi, C. Jurado, J. Vicente, and J.A. Barasona, Free-ranging pig and wild boar interactions in an endemic area of African swine fever. Frontiers in veterinary science, 2019. 6: p. 376.

73. Payne, A., S. Chappa, J. Hars, B. Dufour, and E. Gilot-Fromont, Wildlife visits to farm facilities assessed by camera traps in a bovine tuberculosis-infected area in France. European Journal of Wildlife Research, 2016. 62(1): p. 33-42.
Richomme, C., D. Gauthier, and E. Fromont, *Contact rates and exposure to interspecies disease transmission in mountain ungulates.* Epidemiology and Infection, 2006. **134**(1): p. 21-30.

Wu, N., C. Abril, A. Thomann, E. Grosclaude, M.G. Doherr, P. Boujon, and M.P. Ryser-Degiorgis, *Risk factors for contacts between wild boar and outdoor pigs in Switzerland and investigations on potential Brucella suis spill-over.* BMC Veterinary Research, 2012. **8**(116): p. (20 July 2012).

Wyckoff, A.C., S.E. Henke, T.A. Campbell, D.G. Hewitt, and K.C. VerCauteren, *Feral swine contact with domestic swine: a serologic survey and assessment of potential for disease transmission.* Journal of Wildlife Diseases, 2009. **45**(2): p. 422-429.

Dion, E., L. VanSchalkwyk, and E.F. Lambin, *The landscape epidemiology of foot-and-mouth disease in South Africa: A spatially explicit multi-agent simulation.* Ecological Modelling, 2011. **222**(13): p. 2059-2072.

Kukielska, E.A., F. Jori, B. Martínez-López, E. Chenais, C. Masembe, D. Chavernac, and K. St_hl, *Wild and domestic pig interactions at the wildlife-livestock interface of Murchison Falls National Park, Uganda, and the potential association with African swine fever outbreaks.* Frontiers in Veterinary Science, 2016. **3**(April): p. 31.

Arzamendia, Y. and B. Vilá, *Vicugna habitat use and interactions with domestic ungulates in Jujuy, Northwest Argentina.* Mammalia, 2015. **79**(3): p. 267-278.

Colman, J.E., D. Tsegaye, C. Pedersen, R. Eidesen, H. Arntsen, Ø. Holand, A. Mann, E. Reimers, and S.R. Moe, *Behavioral interference between sympatric reindeer and domesticated sheep in Norway.* Rangeland Ecology & Management, 2012. **65**(3): p. 299-308.

Kolowski, J.M. and K.E. Holekamp, *Spatial, temporal, and physical characteristics of livestock depredations by large carnivores along a Kenyan reserve border.* Biological Conservation, 2006. **128**(4): p. 529-541.

Laporte, I., T.B. Muhly, J.A. Pitt, M. Alexander, and M. Musiani, *Effects of wolves on elk and cattle behaviors: implications for livestock production and wolf conservation.* PLoS ONE, 2010(No.August): p. e11954.

Mattiello, S., A. Pozzi, P. Leggeri, M. Trabalza-Marinucci, W. Redaelli, and C. Carenzi, *Social and spatial interactions between red deer and cattle in the Italian alps.* Zeitschrift fur Saugetierkunde, 1997. **62**(SUPPL. 2): p. 134-138.

Steyaert, S.M., O.-G. Støen, M. Elfström, J. Karlsson, R. Van Lammeren, J. Bokdam, A. Zedrosser, S. Brunberg, and J.E. Swenson, *Resource selection by...
sympatric free-ranging dairy cattle and brown bears Ursus arctos. Wildlife biology, 2011. 17(4): p. 389-403.

85. Rüttimann, S., M. Giacometti, and A.G. McElligott, Effect of domestic sheep on chamois activity, distribution and abundance on sub-alpine pastures. European Journal of Wildlife Research, 2008. 54(1): p. 110-116.

86. Schroeder, N.M., R. Ovejero, P.G. Moreno, P. Gregorio, P. Taraborelli, S.D. Matteucci, and P.D. Carmanchahi, Including species interactions in resource selection of guanacos and livestock in Northern Patagonia. Journal of Zoology, 2013. 291(3): p. 213-225.

87. Stahl, P., J.M. Vandel, S. Ruette, L. Coat, Y. Coat, and L. Balestra, Factors affecting lynx predation on sheep in the French Jura. Journal of Applied Ecology, 2002. 39(2): p. 204-216.

88. Anderson, A., C. Slootmaker, E. Harper, R.S. Miller, and S.A. Shwiff, Predation and disease-related economic impacts of wild pigs on livestock producers in 13 states. Crop protection, 2019. 121: p. 121-126.

89. Barasona, J.A., K.C. VerCauteren, N. Saklou, C. Gortazar, and J. Vicente, Effectiveness of cattle operated bump gates and exclusion fences in preventing ungulate multi-host sanitary interaction. Preventive Veterinary Medicine, 2013. 111(01-Feb): p. 42-50.

90. Carrasco-Garcia, R., J.A. Barasona, C. Gortazar, V. Montoro, J.M. Sanchez-Vizcaino, and J. Vicente, Wildlife and livestock use of extensive farm resources in South Central Spain: implications for disease transmission. European Journal of Wildlife Research, 2016. 62(1): p. 65-78.

91. Carusi, L.C.P., M.S. Beade, and D.N. Bilenca, Spatial segregation among pampas deer and exotic ungulates: A comparative analysis at site and landscape scales. Journal of Mammalogy, 2017. 98(3): p. 761-769.

92. Howe, R., R. Boone, J. DeMartini, T. McCabe, and M. Coughenour, A spatially integrated disease risk assessment model for wildlife/livestock interactions in the Ngorongoro Conservation Area of Tanzania. Proceedings of the 9th Symposium of the International Society for Veterinary Epidemiology and Economics, Breckenridge, Colorado, USA, August 6-11 2000, 2000: p. Id 127.

93. Meunier, N.V., P. Sebulime, R.G. White, and R. Kock, Wildlife-livestock interactions and risk areas for cross-species spread of bovine tuberculosis. Onderstepoort Journal of Veterinary Research, 2017. 84(1): p. a1221.

94. Ward, A.I., B.A. Tolhurst, N.J. Walker, T.J. Roper, and R.J. Delahay, Survey of badger access to farm buildings and facilities in relation to contact with cattle. Veterinary Record, 2008. 163(4): p. 107-111.
95. Weise, F.J., H. Hauptmeier, K.J. Stratford, M.W. Hayward, K. Aal, M. Heuer, M. Tomeletso, V. Wulf, M.J. Somers, and A.B. Stein, *Lions at the gates: Transdisciplinary design of an early warning system to improve human-lion coexistence.* Frontiers in Ecology and Evolution, 2019. 6: p. 242.

96. Zarco-González, M. and O. Monroy-Vilchis, *Effectiveness of low-cost deterrents in decreasing livestock predation by felids: a case in Central Mexico.* Animal Conservation, 2014. 17(4): p. 371-378.

97. Kaczensky, P., S. Khaliun, J. Payne, B. Boldgiv, B. Buuveibaatar, and C. Walzer, *Through the eye of a Gobi khulan—Application of camera collars for ecological research of far-ranging species in remote and highly variable ecosystems.* PloS one, 2019. 14(6).

98. Scantlebury, M., M.R. Hutchings, D.J. Allcroft, and S. Harris, *Risk of disease from wildlife reservoirs: badgers, cattle, and bovine tuberculosis.* Journal of Dairy Science, 2004. 87(2): p. 330-339.

99. Smith, L.A., G. Marion, D.L. Swain, P.C.L. White, and M.R. Hutchings, *Inter- and intra-specific exposure to parasites and pathogens via the faecal-oral route: A consequence of behaviour in a patchy environment.* Epidemiology and Infection, 2009. 137(5): p. 630-643.

100. Hutchings, M.R. and S. Harris, *Quantifying the risks of TB infection to cattle posed by badger excreta.* Epidemiology and Infection, 1999. 122(1): p. 167-174.

101. Brook, R.K., *Incorporating farmer observations in efforts to manage bovine tuberculosis using barrier fencing at the wildlife-livestock interface.* Preventive Veterinary Medicine, 2010. 94(03-Apr): p. 301-305.

102. O'Mahony, D.T., *Use of water troughs by badgers and cattle.* Veterinary Journal, 2014. 202(3): p. 628-629.

103. Atwood, T.C., T.J. Deliberto, H.J. Smith, J.S. Stevenson, and K.C. Vercauteren, *Spatial ecology of raccoons related to cattle and bovine tuberculosis in Northeastern Michigan.* Journal of Wildlife Management, 2009. 73(5): p. 647-654.

104. Tsukada, H., M. Takeuchi, M. Fukasawa, and N. Shimizu, *Depredation of concentrated feed by wild mammals at a stock farm in Japan.* Mammal Study, 2010. 35(4): p. 281-287.

105. Barth, S.A., S. Blome, D. Cornelis, J. Pietschmann, M. Laval, O. Maestrini, L. Geue, F. Charrier, E. Etter, C. Menge, M. Beer, and F. Jori, *Faecal Escherichia coli as biological indicator of spatial interaction between domestic pigs and wild boar (Sus scrofa) in Corsica.* Transboundary and Emerging Diseases, 2018. 65(3): p. 746-757.
106. Maleko, D.D., G.N. Mbassa, W.F. Maanga, and E.S. Sisya, *Impacts of wildlife-livestock interactions in and around Arusha National Park, Tanzania.* Current Research Journal of Biological Sciences, 2012. 4(4): p. 471-476.

107. Mullen, E.M., T. MacWhite, P.K. Maher, D.J. Kelly, N.M. Marples, and M. Good, *Foraging Eurasian badgers Meles meles and the presence of cattle in pastures. Do badgers avoid cattle?* Applied Animal Behaviour Science, 2013. 144(03-Apr): p. 130-137.

108. Ribeiro-Lima, J., M. Carstensen, L. Cornicelli, J.D. Forester, and S.J. Wells, *Patterns of cattle farm visitation by white-tailed deer in relation to risk of disease transmission in a previously infected area with bovine tuberculosis in Minnesota, USA.* Transboundary and Emerging Diseases, 2017. 64(5): p. 1519-1529.

109. Robertson, A., R.J. Delahay, G.J. Wilson, I.J. Vernon, R.A. McDonald, and J. Judge, *How well do farmers know their badgers? Relating farmer knowledge to ecological survey data.* Veterinary Record, 2017. 180(2): p. 48.

110. Woodroffe, R., C.A. Donnelly, C. Ham, S.Y.B. Jackson, K. Moyes, K. Chapman, N.G. Stratton, and S.J. Cartwright, *Use of farm buildings by wild badgers: implications for the transmission of bovine tuberculosis.* European Journal of Wildlife Research, 2017. 63(1): p. 6.

111. Triguero-Ocaña, R., J.A. Barasona, F. Carro, R.C. Soriguer, J. Vicente, and P. Acevedo, *Spatio-temporal trends in the frequency of interspecific interactions between domestic and wild ungulates from Mediterranean Spain.* PloS one, 2019. 14(1).

112. Bromen, N.A., J.T. French, J. Walker, and J.M. Tomeček, *Spatial relationships between livestock guardian dogs and mesocarnivores in central Texas.* Human–Wildlife Interactions, 2019. 13(1): p. 8.

113. Chavez, A.S. and E.M. Gese, *Landscape use and movements of wolves in relation to livestock in a wildland-agriculture matrix.* Journal of Wildlife Management, 2006. 70(4): p. 1079-1086.

114. Ham, C., C.A. Donnelly, K.L. Astley, S.Y. Jackson, and R. Woodroffe, *Effect of culling on individual badger Meles meles behaviour: Potential implications for bovine tuberculosis transmission.* Journal of Applied Ecology, 2019. 56(11): p. 2390-2399.

115. Muhly, T.B., M. Alexander, M.S. Boyce, R. Creasey, M. Hebblewhite, D. Paton, J.A. Pitt, and M. Musiani, *Differential risk effects of wolves on wild versus domestic prey have consequences for conservation.* Oikos, 2010. 119(8): p. 1243-1254.
116. Odadi, W.O., D.M. Kimuyu, R.L. Sensenig, K.E. Veblen, C. Riginos, and T.P. Young, *Fire-induced negative nutritional outcomes for cattle when sharing habitat with native ungulates in an African savanna*. Journal of Applied Ecology, 2017. 54(3): p. 935-944.

117. Gehring, T.M., K.C. VerCauteren, M.L. Provost, and A.C. Cellar, *Utility of livestock-protection dogs for deterring wildlife from cattle farms*. Wildlife Research, 2010. 37(8): p. 715-721.

118. Braz, P.H., M.R. Oliveira, V.S. Silva, W.M. Tomas, R.S. Juliano, T.A. Moreira, N.P. Zimmermann, and A.O. Pellegrin, *Risk of exposure of farms and subsistence nurseries to contact with wild boar in southern Mato Grosso do Sul*. Pesquisa Veterinária Brasileira, 2019. 39(2): p. 148-154.

119. Judge, J., R.A. McDonald, N. Walker, and R.J. Delahay, *Effectiveness of biosecurity measures in preventing badger visits to farm buildings*. PLoS ONE, 2011(No.December): p. e28941.

120. Kamler, J.F., U. Stenkewitz, T. Gharajehdaghipour, and D.W. Macdonald, *Social organization, home ranges, and extraterritorial forays of black-backed jackals*. The Journal of Wildlife Management, 2019. 83(8): p. 1800-1808.

121. Van Der Weyde, L.K., T.Y. Hubel, J. Horgan, J. Shotton, R. McKenna, and A.M. Wilson, *Movement patterns of cheetahs (Acinonyx jubatus) in farmlands in Botswana*. Biology Open, 2017. 6(1): p. 118-124.

122. Viggers, K.L. and J.P. Hearn, *The kangaroo conundrum: home range studies and implications for land management*. Journal of Applied Ecology, 2005. 42(1): p. 99-107.

123. Berentsen, A.R., R.S. Miller, R. Misiewicz, J.L. Malmberg, and M.R. Dunbar, *Characteristics of white-tailed deer visits to cattle farms: implications for disease transmission at the wildlife-livestock interface*. European Journal of Wildlife Research, 2014. 60(2): p. 161-170.

124. Tolhurst, B.A., A.I. Ward, R.J. Delahay, A.M. MacMaster, and T.J. Roper, *The behavioural responses of badgers (Meles meles) to exclusion from farm buildings using an electric fence*. Applied Animal Behaviour Science, 2008. 113(01-Mar): p. 224-235.

125. Miguel, E., V. Grosbois, A. Caron, T. Boulinier, H. Fritz, D. Cornélis, C. Foggin, P.V. Makaya, P.T. Tshabalala, and M.d. Garine-Wichatitsky, *Contacts and foot and mouth disease transmission from wild to domestic bovines in Africa*. Ecosphere, 2013. 4(4): p. art51.

126. Miguel, E., V. Grosbois, H. Fritz, A. Caron, M.d. Garine-Wichatitsky, F. Nicod, A.J. Loveridge, B. Stapelkamp, D.W. Macdonald, and M. Valeix, *Drivers of foot-
and-mouth disease in cattle at wild/domestic interface: insights from farmers, buffalo and lions. Diversity and Distributions, 2017. 23(9): p. 1018-1030.

127. Abade, L., J. Cusack, R.J. Moll, P. Strampelli, A.J. Dickman, D.W. Macdonald, and R.A. Montgomery, Spatial variation in leopard (Panthera pardus) site use across a gradient of anthropogenic pressure in Tanzania's Ruaha landscape. PloS one, 2018. 13(10).

128. Acebes, P., J. Traba, and J.E. Malo, Co-occurrence and potential for competition between wild and domestic large herbivores in a South American desert. Journal of Arid Environments, 2012. 77: p. 39-44.

129. Atickem, A. and L.E. Loe, Livestock-wildlife conflicts in the Ethiopian highlands: assessing the dietary and spatial overlap between mountain nyala and cattle. African Journal of Ecology, 2014. 52(3): p. 343-351.

130. Borgnia, M., B.L. Vilá, and M.H. Cassini, Interaction between wild camelids and livestock in an Andean semi-desert. Journal of Arid Environments, 2008. 72(12): p. 2150-2158.

131. Coe, P.K., B.K. Johnson, J.W. Kern, S.L. Findholt, J.G. Kie, and M.J. Wisdom, Responses of elk and mule deer to cattle in summer. Journal of Range Management, 2001. 54(2 (Special Electronic Section)): p. A51-A76.

132. Cohen, W.E., D.L. Drawe, F.C. Bryant, and L.C. Bradley, Observations on white-tailed deer and habitat response to livestock grazing in south Texas. Journal of Range Management, 1989. 42(5): p. 361-365.

133. Dohna, H.z., D.E. Peck, B.K. Johnson, A. Reeves, and B.A. Schumaker, Wildlife-livestock interactions in a western rangeland setting: quantifying disease-relevant contacts. Preventive Veterinary Medicine, 2014. 113(4): p. 447-456.

134. Engeman, R., C. Betsill, and T. Ray, Making contact: rooting out the potential for exposure of commercial production swine facilities to feral swine in North Carolina. EcoHealth, 2011. 8(1): p. 76-81.

135. Jori, F., W. Vosloo, B.d. Plessis, R. Bengis, D. Brahmbhatt, B. Gummow, and G.R. Thomson, A qualitative risk assessment of factors contributing to foot and mouth disease outbreaks in cattle along the western boundary of the Kruger National Park. Revue Scientifique et Technique - Office International des Épizooties, 2009. 28(3): p. 917-931.

136. Kitts-Morgan, S.E., R.E. Carleton, S.L. Barrow, K.A. Hilburn, and A.K. Kyle, Wildlife visitation on a multi-unit educational livestock facility in northwestern Georgia. Southeastern Naturalist, 2015. 14(2): p. 267-280.
137. Knust, B.M., P.C. Wolf, and S.J. Wells, *Characterization of the risk of deer-cattle interactions in Minnesota by use of an on-farm environmental assessment tool*. American journal of veterinary research, 2011. 72(7): p. 924-931.

138. Kuiters, A.T., G.W.T.A.G. Bruinderink, and D.R. Lammertsma, *Facilitative and competitive interactions between sympatric cattle, red deer and wild boar in Dutch woodland pastures*. Acta Theriologica, 2005. 50(2): p. 241-252.

139. Loft, E.R., J.W. Menke, and J.G. Kie, *Interaction of cattle and deer on mountain rangeland*. California Agriculture, 1986. 40(01-Feb): p. 06-Sep.

140. Moa, P.F., I. Herfindal, J.D. Linnell, K. Overskaug, T. Kvam, and R. Andersen, *Does the spatiotemporal distribution of livestock influence forage patch selection in Eurasian lynx Lynx lynx?* Wildlife Biology, 2006. 12(1): p. 63-70.

141. Pearson, H.E., J.A.L.M.L. Toribio, M. Hernandez-Jover, D. Marshall, and S.J. Lapidge, *Pathogen presence in feral pigs and their movement around two commercial piggeries in Queensland, Australia*. Veterinary Record, 2014. 174(13): p. 325.

142. Salter, R.E. and R.J. Hudson, *Range relationship of feral horses with wild ungulates and cattle in western Alberta*. Journal of Range Management, 1980. 33(4): p. 266-271.

143. Shrestha, R., *Coexistence of wild and domestic ungulates in the Nepalese Trans-Himalaya: resource competition or habitat partitioning?*, in Coexistence of wild and domestic ungulates in the Nepalese Trans-Himalaya: resource competition or habitat partitioning? 2007: _s, Norway. p. 35 pp.

144. Valls-Fox, H., S. Chamaillé-Jammes, M. de Garine-Wichatsky, A. Perrotton, N. Courbin, E. Miguel, C. Guerbois, A. Caron, A. Loveridge, B. Stapelkamp, M. Muzamba, and H. Fritz, *Water and cattle shape habitat selection by wild herbivores at the edge of a protected area*. Animal Conservation, 2018: p. -.

145. Wronski, T., J.D. Bariyanga, A. Apio, and M. Plath, *Interactions between wildlife, humans and cattle: activity patterns of a remnant population of impala on the degraded Mutara Rangelands, Rwanda*. Rangeland Journal, 2015. 37(4): p. 357-365.

146. Anon, *Caught on camera: surveillance monitors badgers' visits to farms*. The Veterinary record, 2013. 173(5): p. 105-.
Figure 1

Flow chart documenting literature retrieval and criteria used to select articles for inclusion in the systematic review of direct and indirect contacts between wildlife and livestock.

Search categories (contact term, livestock and wildlife) were combined by the Boolean operator ‘AND’ to identify publications containing all three terms. Databases were searched up to 11 November 2019 with no historic limit.
Figure 2

Distribution of the publication year of 122 publications included in the systematic review.

Publication date ranged from 1980 to 2019, with 117 (96%) published in the last 20 years.
Figure 3

Observation methods used to monitor wildlife.

Data from 122 publications included in the systematic review. The size and shade of circles indicate the number of studies in each category. Many publications used more than one method to monitor contacts, and therefore the number of studies exceeds 122 (100%) for some groups.
Figure 4

A proposed generic framework for describing and categorising contacts between livestock and wildlife.

Examples from studies of contacts between badgers and cattle are provided to demonstrate the use of the framework. S_{c1} represents ‘critical space 1’, the maximum amount of space (distance or area) within which direct contact may occur; and T_{c1} represents ‘critical time 1’, the maximum duration of time within which direct contact may occur. Similarly, S_{c2} represents ‘critical space 2’, the maximum amount of space (distance or area) within which indirect contact may occur; and T_{c2} represents ‘critical time 2’, the maximum duration of time within which indirect contact may occur. Same, near and different are used here to illustrate spatial and temporal differences between examples (see Tables 3 and 4 for values and ranges for these parameters from published studies). Note that the lighter blue shading does not extend all the way to the right of the diagram because there is an upper limit to the value of time which T_{c2} can take: beyond this value, animals in the same (or nearby) space will not be in contact.
Manuscript to be reviewed

Diagram Description

- **Different Space, Same Time**
 - **Near in Space, Same Time**: e.g. Observations of foraging badgers revealed they remained 10–15 metres from cattle in fields (ref 64).
 - **Same Space, Same Time**: e.g. Video camera surveillance recorded nose-to-nose contact between badgers and cattle in a farm building (ref 33).

- **Different Space, Near In Time**
 - **Near in Space, Near in Time**: e.g. Badger locations recorded every 20 minutes by GPS showed they preferred land >50 metres from cattle (ref 67).
 - **Same Space, Near in Time**: e.g. GPS records showed cattle by a badger latrine within 24 hours of a badger visiting that latrine (ref 9).

- **Different Space, Different Time**
 - **Near in Space, Different Time**: e.g. Badgers avoided foraging in paddocks containing cattle but would forage there at other times (ref 42).
 - **Same Space, Different Time**: e.g. Video cameras recorded cattle and badgers drinking from the same water trough on different nights (ref 102).

Legend
- Direct Contact
- Indirect Contact
- No Contact
Table 1 (on next page)

Exclusion and inclusion criteria to select studies for the systematic review of livestock-wildlife contact.
Exclusion Criteria

1. Study does not involve a wild mammal species where adults are typically heavier than 5kg.
2. Study does not involve a farmed mammal species where adults are typically heavier than 5kg, or farmland associated with such livestock.
3. Study does not attempt to collect, use or analyse data to investigate contacts between wild animals and livestock or livestock farms.
4. Study does not attempt to collect, use or analyse data to establish at least one of the following: characterisation of, the nature of, frequency of, or risk factors for, contacts between wildlife and livestock.
5. Full text not available in English.
6. Full text not accessible to reviewers.
7. The method of recording livestock-wildlife contacts relies solely on predation events where the only observations are livestock kills or scat analysis.
8. Wild animals were non-free-living, pre-tamed or relocated for the purpose of the study.

Inclusion Criteria

The study aims to collect, use, or analyse data to establish at least one of the following:
1. A quantifiable measure of direct contact between wildlife and livestock, where direct contact is defined as physical contact between at least one wild animal and one farm animal.
2. A quantifiable measure of indirect contact between wildlife and livestock, where indirect contact is defined as contact between at least one wild animal and a resource used by at least one farm animal including, but not limited to, food, water and space.
3. Characterise and establish the type of, or risk factors for, direct or indirect contact between wildlife and livestock, as defined above.
Table 2 (on next page)

Definitions of direct contact from a systematic review of studies of livestock and wildlife.

Parameters are listed in ascending order of distance and time between animals and time windows. Definitions that have been used for both direct and indirect contacts are shaded grey. Percentages are rounded to the nearest integer.
‘Direct contact’ definition	Number (%) of publications using this definition	% Cumulative	References
At least two individuals making physical contact	9 (16)	16	[33, 56-63]
Individuals close enough to inhale expired breath	1 (2)	18	[64]
Individuals within one metre of the same location within one second	1 (2)	20	[15]
Individuals within two metres of each other	5 (9)	29	[9, 40, 65-67]
Individuals within five metres of each other	3 (5)	34	[8, 68, 69]
Individuals within the same camera image	5 (9)	43	[35, 70-73]
Individuals within 20 metres of each other	1 (2)	45	[74]
Individuals within 20 metres of the same location within 15 minutes	1 (2)	46	[39]
Individuals within same farm building	1 (2)	48	[34]
Individuals within holding (farm) boundary	1 (2)	50	[75]
Individuals within 100 metres of each other	2 (4)	54	[76, 77]
Individuals within 120 metres of each other	1 (2)	55	[78]
Studies that reported the frequency of, types of, or risk factors for, direct contacts without first defining them	25 (45)	100	[13, 22, 25, 26, 29, 30, 41, 79-96]
Total	56 (100)		
Table 3 (on next page)

Definitions of indirect contact from a systematic review of studies of livestock and wildlife.

Parameters are listed in ascending order of distance and time. Definitions that have been used for both direct and indirect contacts are shaded grey. Percentages are rounded to the nearest integer.
‘Indirect contact’ definition	Number (%) of publications using this definition	% Cumulative	References
Individuals within the same camera image	2 (2)	2	[73, 97]
Two individuals photographed by the same camera trap within a specific time interval	1 (1)	3	[35]
Latrine (faecal pits) visits	5 (4)	7	[9, 65, 98-100]
Individuals visiting the same food or water source at the same time	2 (2)	9	[25, 62]
Individuals visiting the same food and water sources at unspecified time intervals	13 (11)	20	[15, 27, 56, 63, 66, 68, 70, 89, 90, 101-104]
Individuals in the same space at the same time	2 (2)	22	[106, 107]
Individuals in the same space at different times	3 (3)	24	[31, 58, 105]
Individuals in the same space at unspecified time interval	3 (3)	27	[10, 12, 69]
Individuals using the same food or water source within six hours	1 (1)	28	[40]
Individuals within 20 metres of the same location within six hours	1 (1)	28	[39]
Individuals within 30 metres of livestock or feed	1 (1)	29	[108]
Presence in farm buildings at unspecified time interval	5 (4)	34	[26, 33, 59, 109, 110]
Individuals within 50 metres of each other	1 (1)	34	[85]
Individuals within 52 metres of the same location within one hour	1 (1)	35	[111]
Individuals within 120 metres	1 (1)	36	[28]
Individuals using the same space with seven days	2 (2)	38	[24, 72]
Individuals using the same space within	1 (1)	39	[74]
‘Indirect contact’ definition	Number (%) of publications using this definition	% Cumulative	References
---	---	--------------	---------------------
15 days			
Presence on pasture at the same time	5 (4)	43	[49, 64, 91, 95, 96]
Presence on pasture at unspecified time interval	8 (7)	50	[30, 34, 36, 67, 112-115]
Presence on pasture at different times	1 (1)	51	[116]
At holding boundary and on pasture at unspecified time interval	1 (1)	52	[117]
Presence on farm at unspecified time interval	12 (10)	62	[42, 43, 50, 54, 88, 94, 118-123]
At holding (farm) boundary	3 (3)	65	[60, 61, 124]
Individuals within 120 metres of the same location at different times	1 (1)	66	[78]
Individuals within 300 metres of the same location within 15 days	2 (2)	67	[125, 126]
Individuals within 500 metres of the same location within six weeks	1 (1)	68	[93]
Individuals within 500 metres from holding (farm) boundary	2 (2)	70	[75, 76]
Individuals within 50 kilometres of the same location within three months	1 (1)	71	[51]
Studies that reported the frequency of, types of, or risk factors for, indirect contacts without first defining them	34 (29)	100	[22, 23, 29, 32, 37, 41, 79-84, 89, 92, 127-146]
Total	116 (100)		
Table 4 (on next page)

A summary of the types of contact(s) reported between livestock and wildlife, and the method(s) used to observe contacts, from a systematic review of 122 studies.
Livestock	Wildlife	Method(s)*	Type of contact recorded	Examples of the types of contact(s) reported between each livestock and wildlife species	Reference	
Camelid	Antelope	Multiple (d,k,q)	Yes Yes	Shared space use	[51]	
Camelid	Direct visualisation	Yes Yes	Wild camelids grazing with domestic llamas	[79]		
Camelid	Multiple (a,d)	No Yes	Shared forage	[130]		
Cattle	Antelope	Activity signs	No Yes	Shared space use	[129]	
Cattle	Direct visualisation	No Yes	Unspecified contact	[145]		
Cattle	Model	No Yes	No contacts observed	[92]		
Cattle	Multiple (a,k,q)	Yes Yes	Shared space use	[51]		
Cattle	Questioning	Yes Yes	Shared space use. Shared grazing and water source	[93]		
Badger	Activity signs	No Yes	Cattle investigating or grazing at badger latrines and setts on pasture	[98]		
Badger	Camera	Yes Yes	Badgers and cattle being within two metres of each other. Cattle investigating badger setts and latrines. Badgers visiting farms, feed stores and cattle houses and foraging on cattle pasture. Shared use of water and feed troughs	[54, 58, 73, 102, 104, 146]		
Badger	Direct visualisation	Yes Yes	Badgers foraging on cattle pasture	[64]		
Badger	GPS	No Yes	Badger visits to cattle farms. Badgers and cattle being present on pasture at the same time, and at different times	[42, 107, 114]		
Badger	Model	No Yes	Cattle grazing at or investigating badger latrines	[99, 100]		
Badger	Multiple (a,c,m)	Yes Yes	Badgers and cattle being within two metres of each other. Badgers visiting feed stores and shared use of feed and water troughs	[66]		
Badger	Multiple (a,c,r)	No Yes	Badgers in and around cattle buildings	[109]		
Badger	Multiple (a,q)	No Yes	Badgers visiting cattle housing, feed stores and feed and water troughs	[12]		
Badger	Multiple (a,c)	No Yes	Badgers visiting farmyards	[43]		
Badger	Multiple (d,c,r)	No Yes	Badgers visiting farm boundaries	[124]		
Badger	Multiple (c,g)	Yes Yes	Nose to nose contact. Badgers visiting farmyards, farm buildings and feed stores and eating cattle feed	[33]		
Badger	Multiple (c,q)	Yes Yes	Nose to nose contact. Badgers visiting, urinating and defecating in farmyards, farm buildings and feed stores and eating cattle feed	[94]		
Badger	Multiple (c,r)	Yes Yes	Shared space use	[67]		
Livestock	Wildlife	Method(s)*	Type of contact recorded	Examples of the types of contact(s) reported between each livestock and wildlife species	Reference	
-----------	----------	------------	--------------------------	---	-----------	
			Direct	Indirect		
Livestock	Wildlife	Method(s)*	Type of contact recorded	Examples of the types of contact(s) reported between each livestock and wildlife species	Reference	
				Shared use of feed troughs	[110]	
				Badgers and cattle being within one to two metres of each other. Cattle visits to badger latrines	[8, 9, 65]	
		Proximity logger	Yes	Yes		
		Camera	No	Yes	No contacts observed	[127]
		GPS	No	Yes	Lion presence on cattle pasture. Cheetah visits to cattle farms	[95, 121]
		Multiple (a,c)	Yes	Yes	Predation events and wild felid presence on cattle pasture	[96]
		GPS	No	Yes		
		Model	Yes	No	Cattle and buffalo being within 100 metres of each other	[77]
		Literature review	No	Yes		
		Questioning	Yes	Yes	Shared grazing and water source	[93]
		Activity signs	No	Yes		
		Direct visualisation	Yes	No	No contacts observed	[79, 86]
		Multiple (a,d)	No	Yes		
		Camera	Yes	Yes		
		GPS	Yes	Yes	Wolf visits to cattle pasture	
		Multiple (a,d)	No	Yes	Wolf and coyote presence on cattle pasture	
		Radio-telemetry	No	Yes	Wolf visits to cattle pasture. Jackal visits to cattle farms	
		Activity signs	No	Yes		
		Camera	Yes	Yes		
		Direct visualisation	Yes	Yes		
		Camera	Yes	Yes		
		Direct visualisation	Yes	Yes		
		Camera	Yes	Yes		
Livestock	Wildlife	Method(s)*	Type of contact recorded	Examples of the types of contact(s) reported between each livestock and wildlife species	Reference	
-----------	----------	------------	--------------------------	--	-----------	
			Direct	Indirect	Deer visits to cattle pastures and feeding areas	[32, 108, 139]
		GPS	No	Yes	No contacts observed	[68]
		Literature review	Yes	Yes	Cattle and deer at water sources at the same time	[71]
		Multiple (a,c)	Yes	Yes	Unspecified contact	[56]
		Multiple (d,c)	Yes	Yes	Cattle and deer within 1.5 metres of each other. Shared use of water and food points	[40]
		Multiple (c,p)	Yes	Yes	Deer presence on cattle pasture	[117]
		Multiple (g,l)	No	Yes	Unspecified direct contact. Deer visits to cattle feed stores	[30, 136]
		Multiple (g,q)	Yes	Yes	Deer visits to stored feed	[15]
		Proximity logger	Yes	Yes	Deer presence on cattle farms, and visiting and damaging feed stores	[101, 137]
		Questioning	No	Yes	Deer visits to cattle pasture and shared salt licks	[131-133, 139]
		Radio-telemetry	No	Yes	Elephant home range overlapping with cattle grazing. Elephants using same water source at the same time and at different times to cattle	[31, 144]
Elephant	GPS		No	Yes	Elephant home range overlapping with cattle grazing. Elephants using same water source at the same time and at different times to cattle	[31, 144]
Hyena	Multiple (d,r)	Yes	Yes	Predation events	[81]	
Kangaroo	Radio-telemetry	No	Yes	Kangaroo presence on cattle farms	[122]	
Not specified	Camera	Yes	Yes	Raccoons licking salt lick less than thirty centimetres away from cattle, and sharing water sources. Savannah wildlife grazing at the same and at different times to cattle	[24, 26, 116]	
	Direct visualisation	Yes	Yes	Cattle and savanna wildlife sharing water sources at the same and at different times	[22]	
	Questioning	Yes	Yes	Wildlife and cattle sharing water sources and grazing at the same and at different times	[25, 27-29, 106]	
	Radio-telemetry	No	Yes	No contacts observed	[23]	
Racoon	Multiple (c,l,r)	No	Yes	Shared space use. Shared food and water sources	[103]	
Sheep/Goat	Direct visualisation	Yes	Yes	Chamois and ibex in close proximity to cattle. Shared use of cattle pasture	[74]	
	Multiple (g,m)	No	Yes	No contacts observed	[49]	
Livestock	Wildlife	Method(s)*	Type of contact recorded	Examples of the types of contact(s) reported between each livestock and wildlife species	Reference	
-----------	----------	------------	--------------------------	--	-----------	
Wild horse	GPS	No	Yes	Spatial overlap of zebra home ranges with cattle grazing areas. Shared use of water source	[31]	
	Multiple (a,d)	No	Yes	Feral horses grazing in close proximity to cattle, and using pasture prior to cattle	[142]	
Wild pig	Activity signs	No	Yes	Wild boar presence on pasture previously grazed by cattle	[36, 138]	
	Camera	Yes	Yes	Wild boar and cattle sharing water sources and feed troughs at the same time and at different times	[35, 70, 73, 90, 104]	
	GPS	No	Yes	Shared space and water sources	[10, 111]	
	Multiple (c,g)	Yes	Yes	Wild boar and cattle sharing water source at the same time	[71]	
	Multiple (c,p)	Yes	Yes	Feral pigs and cattle being within 20 metres of the same location at different times	[39]	
	Multiple (g,l)	Yes	Yes	Wild boar and cattle being within 1.5 metres of each other. Shared use of food and water points	[40]	
	Questioning	Yes	Yes	Shared water sources	[88, 93]	
Farmed deer	Big cat	Radio-telemetry	No	Yes	No contacts observed	[140]
	Deer	Camera	Yes	Sparring and nose to nose contact, and presence of wild deer at fence-line of farmed deer	[60, 61]	
Goat	Antelope	Multiple (d,k,q)	Yes	Yes	Shared space use	[51]
	Big cat	Camera	No	No contacts observed	[127]	
	Multiple (a,c)	Yes	Yes	Predation events and wild felid presence on goat pasture	[96]	
	Camelid	Direct visualisation	Yes	Yes	Shared forage sources at different times	[79, 86]
	Multiple (a,d)	No	Yes	Shared forage	[130]	
	Camelid	Radio-telemetry	No	Jackal visits to goat farms	[120]	
	Canine	Multiple (d,r)	Yes	Predation events	[81]	
	Chimpanzee	Direct visualisation	Yes	No	No contacts observed	[57]
	Deer	Camera	Yes	No contacts observed	[90]	
	Hyena	Multiple (d,r)	Yes	Predation events	[81]	
	Not specified	Camera	No	Presence on pasture of predators not associated with livestock predation	[112]	
	Wild pig	Camera	Yes	No contacts observed	[90]	
	Questioning	Yes	Yes	Predation and presence on farm	[88]	
Livestock	Wildlife	Method(s)*	Type of contact recorded	Examples of the types of contact(s) reported between each livestock and wildlife species	Reference	
-----------	------------------	------------	--------------------------	--	-----------	
Not specified	Big cat	GPS	No	Yes	No contacts observed	[37]
	Sheep/Goat	Direct visualisation	No	Yes	Shared space use and forage	[143]
	Wild horse	Multiple (c,g)	Yes	Yes	Livestock within photographing distance of khulan horses	[97]
Pig	Canine	Camera	Yes	Yes	Foxes approaching and entering farrowing huts and taking piglets. Fox presence in pig paddocks	[34]
Deer	Camera	Yes	Yes	Yes	Shared water sources	[35, 90]
	Multiple (g,l)	Yes	Yes	Yes	Deer and pigs within 1.5 metres of each other. Shared use of food and water	[40]
Wild pig	Camera	Yes	Yes	Yes	Shared food and water sources. Wild boar visiting acorn fields used by domestic pigs	[35, 90]
	GPS	No	Yes	Yes	No contacts observed	[141]
	Multiple (a,c,g)	No	Yes	Yes	Wild boar home range overlap with domestic pigs and shared space use	[105]
	Multiple (a,c,q)	No	Yes	Yes	No contacts observed	[118]
	Multiple (c,m)	Yes	Yes	Yes	Pigs and wild boar present in the same camera trap image. Shared use of water	[72]
	Multiple (c,q)	Yes	Yes	Yes	Wild boar and pigs within 1.5 metres of each other. Shared use of food and water	[40]
	Multiple (g,l)	No	Yes		Feral swine presence around pig farms	[134]
	Multiple (m,q)	Yes	Yes		Evidence of mating (cross-bred piglets). Wild boar within two metres of pig enclosure	[75]
	Multiple (p,r)	Yes	Yes		Feral and domestic swine in contact through fences. Feral pigs within 500 metres of pig farm	[76]
	Questioning	Yes	Yes		Wild and domestic pigs fighting and mating. Shared use of water, food and space at different times	[62, 63, 78]
Sheep	Antelope	Multiple (d,k,q)	Yes	Yes	Shared space use	[51]
Badger	GPS	No	Yes		Badger visits to sheep farms	[42]
Big cat	Radio-telemetry	Yes	Yes		Predation	[87, 140]
Camelid	Direct visualisation	Yes	Yes	Shared forage sources at different times	[79, 86]	
Camellid	Multiple (a,d)	No	Yes		Shared forage	[130]
Canine	GPS	Yes	No		No contacts observed	[13]
Livestock	Wildlife	Method(s)*	Type of contact recorded	Examples of the types of contact(s) reported between each livestock and wildlife species	Reference	
-----------	-----------------	------------	--------------------------	---	-----------	
		Radio-telemetry	Direct	Indirect	Jackal visits to sheep farms	[120]
	Chimpanzee	Direct visualisation	Yes	No	No contacts observed	[57]
	Deer	Camera	Yes	Yes	Deer and sheep within five metres of each other	[80]
		Direct visualisation	Yes	Yes	Deer and sheep within five metres of each other	[80]
	Hyena	Multiple (d,r)	Yes	Yes	Predation events	[81]
	Kangaroo	Radio-telemetry	No	Yes	Kangaroo visits to sheep farms	[122]
	Not specified	Camera	No	Yes	Presence on pasture of predators not associated with livestock predation	[112]
	Sheep/Goat	Direct visualisation	Yes	Yes	Chamois and ibex in close proximity to domestic sheep and sharing pasture	[74, 85]
		Radio-telemetry	No	Yes	Unspecified contact	[50]
	Wild pig	Activity signs	No	Yes	Wild boar foraging on sheep pasture	[36]
		Camera	Yes	Yes	No contacts observed	[90]
		Questioning	Yes	Yes	Predation and presence on sheep farms	[88]

1 *Some studies used multiple methods combining variations of activity signs (a), cameras (c), Direct visualisation (d), GPS (g), literature review and expert knowledge elicitation (k), models (m), pathogen monitoring (p), proximity loggers (l), questioning (q) and radio-telemetry (r).

2 Where modelling alone is reported, empirical data was used that was not specifically wildlife-livestock contact data. For example, using data on cattle grazing habits to model the frequency of contact with badger faeces on pasture.