Speciation among sympatric lineages in the genus *Palythoa* (Cnidaria: Anthozoa: Zoantharia) revealed by morphological comparison, phylogenetic analyses and investigation of spawning period

Masaru Mizuyama 1, Giovanni D Masucci 1, James D Reimer Corresp. 2, 3

1 Molecular Invertebrate Systematics and Ecology Laboratory, Graduate School of Marine Science, University of the Ryukyus, Nishihara, Okinawa, Japan
2 Molecular Invertebrate Systematics and Ecology Laboratory, Department of Marine Sciences, Chemistry and Biology, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan
3 Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan

Corresponding Author: James D Reimer
Email address: jreimer@sci.u-ryukyu.ac.jp

Zoantharians are sessile marine invertebrates and colonial organisms possessing sexual and asexual reproductive ability. The zooxanthellate zoantharian genus *Palythoa* is widely distributed in coral reef ecosystems. In the Ryukyu Archipelago, Japan, sympatric *Palythoa tuberculosa* and *P. mutuki* are the dominant species of this genus in the intertidal zone. Previous phylogenetic analyses have shown that these two species are closely related, and additionally revealed a putative sympatric hybrid species (designated as *Palythoa* sp. yoron). In this study, we attempted to delineate *Palythoa* species boundaries and to clarify the relationships among these three groups plus another additional putative sympatric species (*P. aff. mutuki*) by multiple independent criteria. The morphology of these four lineages was clearly different; for example the number of tentacles was significantly different for each species group in all pairwise comparisons. From observations of gonadal development conducted in 2010 and 2011, *P. sp. yoron* and *P. aff. mutuki* appear to be reproductively isolated from *P. tuberculosa*. In the phylogenetic tree resulting from maximum likelihood analyses of the ITS-rDNA sequence alignment, *P. tuberculosa* and *P. sp. yoron* formed a very well supported monophyletic clade (NJ=100%, ML=95%, Bayes=0.99). This study demonstrates that despite clear morphological and/or reproductive differences, *P. tuberculosa* and *P. sp. yoron* are phylogenetically entangled and closely related to each other, as are *P. mutuki* and *P. aff. mutuki*. Additionally, no single molecular marker was able to divide these four lineages into monophyletic clades by themselves, and a marker that has enough resolution to solve this molecular phylogenetic species complex is required. In summary, the morphological and reproductive results suggest these lineages are four separate species, and that incomplete genetic lineage sorting may prevent the accurate phylogenetic detection of distinct species with the DNA
markers utilized in this study, demonstrating the value of morphological and reproductive data when examining closely related lineages.
Speciation among sympatric lineages in the genus *Palythoa* (Cnidaria: Anthozoa: Zoantharia) revealed by morphological comparison, phylogenetic analyses and investigation of spawning period

Authors: Masaru Mizuyama*, Giovanni Diego Masucci, James Davis Reimer

Affiliation

*Author: Molecular Invertebrate Systematics and Ecology Laboratory, Graduate School of Marine Science, University of the Ryukyus, Nishihara, Okinawa, Japan; e-mail: mizuyama58@live.jp, giovannimasucci@me.com

Author: Molecular Invertebrate Systematics and Ecology Laboratory, Department of Marine Sciences, Chemistry, and Biology, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan; e-mail: jreimer@sci.u-ryukyu.ac.jp

***Author:** Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan

*corresponding author; e-mail: jreimer@sci.u-ryukyu.ac.jp
Abstract

Zoantharians are sessile marine invertebrates and colonial organisms possessing sexual and asexual reproductive ability. The zooxanthellate zoantharian genus *Palythoa* is widely distributed in coral reef ecosystems. In the Ryukyu Archipelago, Japan, sympatric *Palythoa tuberculosa* and *P. mutuki* are the dominant species of this genus in the intertidal zone. Previous phylogenetic analyses have shown that these two species are closely related, and additionally revealed a putative sympatric hybrid species (designated as *Palythoa* sp. yoron). In this study, we attempted to delineate *Palythoa* species boundaries and to clarify the relationships among these three groups plus another additional putative sympatric species (*P. aff. mutuki*) by multiple independent criteria. The morphology of these four lineages was clearly different; for example the number of tentacles was significantly different for each species group in all pairwise comparisons. From observations of gonadal development conducted in 2010 and 2011, *P. sp. yoron* and *P. aff. mutuki* appear to be reproductively isolated from *P. tuberculosa*. In the phylogenetic tree resulting from maximum likelihood analyses of the ITS-rDNA sequence alignment, *P. tuberculosa* and *P. sp. yoron* formed a very well supported monophyletic clade (NJ=100%, ML=95%, Bayes=0.99). This study demonstrates that despite clear morphological and/or reproductive differences, *P. tuberculosa* and *P. sp. yoron* are phylogenetically entangled and closely related to each other, as are *P. mutuki* and *P. aff. mutuki*. Additionally, no single molecular marker was able to divide these four lineages into monophyletic clades by themselves, and a marker that has enough resolution to solve this molecular phylogenetic species complex is required. In summary, the morphological and reproductive results suggest these lineages are four separate species, and that incomplete genetic lineage sorting may prevent the accurate phylogenetic detection of distinct species with the DNA markers utilized in this study,
demonstrating the value of morphological and reproductive data when examining closely related lineages.

Introduction

Zoantharians are sessile marine invertebrates and colonial organisms possessing sexual and asexual reproductive ability (Ryland 1997). Zoantharians belong to subclass Hexacorallia (Cnidaria, Anthozoa) and they have the significant feature of embedding small particles (sand, detritus) into their body column. Zooxanthellate zoantharian species are found worldwide in tropical and subtropical shallow water areas (Trench 1974, Reimer et al. 2006).

Traditionally, zoantharian classification has been based on morphological characters such as the relative degree of coenenchyme development, number of tentacles per polyp, oral disk diameter, and position and features of the sphincter muscle (Ryland and Lancaster 2003). However, sand encrustation (Reimer et al. 2010) and large intraspecific variation have often made histological classification difficult (Muirhead and Ryland 1985, Mueller and Haywick 1995, Reimer et al. 2010). Phylogenetic work using mitochondrial 16S ribosomal DNA and cytochrome oxidase subunit I (mtCOI) and the nuclear internal transcribed spacer region of ribosomal DNA (ITS-rDNA) as molecular markers have begun to reveal evolutionary relationships in this group (e.g. Reimer et al. 2004, Sinniger et al. 2005, Reimer et al. 2007b).

The zooxanthellate zoantharian genus Palythoa Lamouroux, 1816 is widely distributed in coral reef ecosystems as a common group of organisms. In the Ryukyu Archipelago of southern Japan (Fig. 1), Palythoa tuberculosa (Esper, 1805) and P. mutuki Haddon & Shackleton, 1891 are the dominant species of this genus in the intertidal zone (Irei et al. 2011). Reimer et al. (2007a) showed that these two species are closely related with phylogenetic analyses based on
ITS-rDNA and mtCOI. Furthermore, they revealed a putative hybrid species (designated as *Palythoa* sp. yoron), which was presumed to have originated via interspecies hybridization between *P. tuberculosa* and *P. mutuki*, based on shared additive patterns of nucleotide polymorphisms of ITS-rDNA sequences, and indicated a potential reticulate evolutionary history in these three species groups. A subsequent investigation conducted by Shiroma and Reimer (2010) revealed that *P.* sp. yoron was sympatric in the intertidal zone with these two other species in Okinawa, but also was present in a different microenvironment than *P. tuberculosa* and *P. mutuki*. As well, *P.* sp. yoron is intermediate in morphological form between *P. tuberculosa* and *P. mutuki*. (Fig. 2, Table 1), with all three species readily distinguishable from one another (Shiroma and Reimer 2010).

In this study, we attempted to determine the delimitation of *Palythoa* species boundaries and to clarify the relationships among species groups using multiple independent criteria. We first made primary hypotheses of species delimitation based on morphology and habitat preference. We then re-examined these hypotheses via genetic data and investigated ovary development through time as a proxy to clarify the timing of spawning and the possibility of cross-hybridization among putative species.

Materials and Methods

Specimen collection

Specimens of *Palythoa* species were collected in the intertidal zone from several sites in the Ryukyu Archipelago, including Okinawa-jima Island, Yoron-to Island, Okinoerabu-jima Island, and Tokunoshima Island (Fig. 1, Table 2) between March 2010 to October 2012. All specimens were stored in 99.5% ethanol for DNA analyses or 5% formalin-SW solution for morphological and anatomical analyses.
Each specimen was identified according to morphological classification methodology (Pax 1910), supplemented with a key to field identification (Reimer 2010), and ecological and morphological aspects of *P*. sp. yoron (Shiroma and Reimer 2010). Characters employed for identification of *Palythoa* species were environment (habitat), coenenchyme development, polyp structure, number of polyps per colony, and numbers of tentacles per polyp. All specimens were identified preliminarily as *Palythoa tuberculosa* (Fig. 2 A), *P. mutuki* (Fig. 2 B) and *P*. sp. yoron (Fig. 2 C). During collection, it was noticed that certain specimens had a similar external appearance with *P. mutuki* but with less well developed marginal ridges and larger polyp sizes. Such specimens were found sympatrically with other specimens, and these were designated as *P*. aff. *mutuki* (Fig. 2 D). In addition, spawning timing investigations for all species groups were carried out between June 2010 to December 2010, and from June 2011 to February 2012 at Kaminomine, Tokunoshima, Kagoshima (27° 46′ 09″ N, 129° 02′ 16″ E) by monthly sampling. In particular, for collecting *P. tuberculosa*, investigation was conducted in a wide area from lagoon tide pools to the outer reef in 2010. However, in 2011-2012 investigations were conducted only in tide pools due to rough sea conditions. At least five different colonies of approximately ten polyps for each species were collected in whole or partially.

Morphological analyses

External anatomy

Fixed specimens were cut horizontally at the oral disk height by surgical knife and tweezers under stereomicroscope (S8APO, Leica, Tokyo) and the number of tentacles, which is one of the characters for *Palythoa* species (e.g. Ryland and Lancaster 2003), were counted (Table 3). To eliminate pseudo-replication in comparison among species, a single polyp was chosen with the table of random number from each colony. The mean numbers of tentacles per
polyp for each species pair were compared using Mann-Whitney U test with Bonferroni correction.

Cnidae analyses were conducted using undischarged nematocysts from the tentacles, column, pharynx, and mesenteriel filaments of polyps (n=3/species group) under a Nikon Eclipse80i stereomicroscope (Nikon, Tokyo). Cnidae sizes were measured using ImageJ v1.45s (Rasband 2012). Cnidae classification followed England (1991) and Ryland and Lancaster (2004; see also Table 4).

Spawning period investigation

Ovary development of all preserved colonies was observed via cross sections made by cutting polyps vertically through the mouth located at the center of oral disk under a stereomicroscope. During anthozoans’ oogenesis, oocytes form a single-layered germinal ribbon down the mesoglea of the central third of the septa. Subsequently, the germinal ribbon develops a sequence of swollen nodes where the septum folds locally in an S and the layers fuse (Ryland 1997, Ryland 2000). When we observed a germinal ribbon in a polyp, we counted the polyp as “possessing developing ovaries”, and the number of polyps possessing developing ovaries were totaled. To evaluate the spawning period of each species, the ratio of the number of polyps possessing developing and/or developed ovaries to the total number of polyps examined was calculated over time. When the calculated proportion of developed/developing ovaries dropped dramatically, we designated this as the start of the estimated spawning period. The end of the estimated spawning period was defined as the point where the number of developed/developing ovaries reached 0%.
Molecular analyses

DNA extraction, PCR amplification and direct sequencing

DNA from each specimen was extracted using a DNeasy Blood and Tissue Kit (QIAGEN, Tokyo, Japan) according to the manufacturer’s instructions. A small amount of tissue from each specimen was removed using a surgical knife sterilized by open flame. Extracted DNA was subsequently stored at -20°C, and then we amplified target sequences via polymerase chain reaction (PCR).

Three molecular markers that have previously been used for differentiation of *Palythoa* were chosen; 1) the mitochondrial 16S of ribosomal DNA (mt 16S-rDNA), 2) the mitochondrial cytochrome c oxidase subunit I (mtCOI), and 3) the internal transcribed spacer region of nuclear ribosomal DNA (ITS-rDNA) (Reimer *et al.* 2004, Sinniger *et al.* 2005, Reimer *et al.* 2007a, etc.). Furthermore, a nuclear housekeeping gene, 4) asparagine-linked glycosylation 11 protein (ALG11) region, was also examined for the first time in zoantharians. This marker has been found to be more informative than mtCOI in examining sponge relationships and succeeded in solving previously debated nodes, and has also been considered to be useful for resolving cnidarian relationships (Belinky *et al.* 2012).

Thermal cycler programs were set to the following conditions: (1) mt 16S-rDNA; an initial denaturing step at 94°C for 2 minutes, followed by 40 cycles of 30 seconds' 94°C, 1 minute annealing at 52°C and 2 minutes' extension at 72°C, followed by 5 minute final elongation at 72°C with Zoantharia-specific primer set 16Sant1a (5'-GCC ATG AGT ATA GAC GCA CA-3') and 16SbmoH (5'-CGA ACA GCC AAC CCT TGG-3') (Sinniger *et al.*, 2005); (2) mtCOI; 1 min at 95°C, then 35 cycles: 1 min at 95°C, 1 min at 40°C and 90 sec at 72°C, followed by 7 min at 72°C with the universal primers HCO2198 (5'-TAA ACT TCA GGG TGA
CCA AAA AAT CA-3') and LCO1490 (5'-TAA ACT TCA GGG TGA CCA AAA AAT CA-3')
(Folmer et al. 1994); and (3) ITS-rDNA; 1 min at 95°C, then 35 cycles of 1 min at 94°C, 1 min
at 50°C, and 2 min at 72°C, followed by 10 min at 72°C with Zoantharia-specific primers Zoan-
f (5’-CTT GAT CAT TTA GAG GGA GT-3’) and Zoan-r (5’-CGG AGA TTT CAA ATT TGA GCT-3’)
(Reimer et al. 2007a).

Amplification for the remaining coding region (ALG11) was performed by touch-down
PCR and nested PCR because of low numbers of copies in the whole genome as this is a single-
copy gene. For ALG11, although we basically followed the original protocols (Sperling et al.
2007, Belinky et al. 2012), some modifications were required to fit the thermal cycler we used,
and the conditions were as follows: (4) ALG11 first touchdown, 2 min at 95ºC, then 13 cycles of
1 min at 95 ºC, 1 min at 52-40ºC (dropping one degree for each cycle), 1.5 min at 72ºC;
followed by 20 cycles of 1 min at 95ºC, 1 min at 52ºC, 1.5 min at 72ºC; lastly 5 min at 72ºC
with primers ALG11-D1 (5’-TTY CAY CCN TAY TGY AAY GCN GGN GG-3’) and ALG11-
R1 (5’-ATN CCR AAR TGY TCR TTC CAC AT-3’), and (5) MAT-f (5’-GGN GAR GGN
CAY CCN GAY AA-3’). In the second touchdown procedure an amplicon of the first
touchdown was utilized as the template, followed by 2 min at 95ºC, then 35 cycles of 1 min at
95 ºC, 1 min at 52ºC, and 1.5 min at 72ºC. In the end, nested PCR was performed with 2 min at
95ºC, and then 35 cycles of 1 min at 95 ºC, 1 min at 52ºC, and 1.5 min at 72ºC with primers
ALG11-D2 (5’-TGY AAY GCN GGN GGN GGN GGN GA-3’) and ALG11-R2 (5’-CCR AAR
TGY TCR TTC CAC ATN GTR TG-3’).

Amplicons were outsourced for sequencing to a private sequencing company (Fasmac
Co., Ltd., Kanagawa, Japan) on an Applied Biosystems 3730xl DNA sequencer, using BigDye
Terminator V3.1 and the same primer sets as for PCR as described above. Sequence data were edited using BioEdit v.7.2.0 (Hall, 1999).

Sequence alignment

The total number of novel sequences obtained from specimens in this study were (1) mt 16S-rDNA; 38; (2) mtCOI; 20; (3) ITS-rDNA; 35 and (4) ALG11; 65, respectively. Obtained sequences were aligned by BioEdit v7.2.0 (Hall 1999) with other sequences deposited in GenBank (Table 5).

As numerous indels (inserts and deletions) were confirmed in ITS-rDNA sequences, alignment was performed using ClustalW (Thompson *et al.* 1994) with gap penalties of 10 for open and 1 for extended, followed by manual fixing for obviously misaligned areas such as gap position. Sequences of the 5.8S rDNA region located between internal transcribed spacer 1 (ITS1) and internal transcribed spacer 2 (ITS2) were removed from analyses because the substitution rate is apparently lower than ITS1 and ITS2, and an admixture of different substitution rates could lead to a misleading choice of the appropriate substitution model. Additionally, in order to not overestimate for genetic distance in following phylogenetic analyses, sites were removed if they had a percentage of gaps and/or ambiguous sites higher than 95% (partial-deletion option).

Fifty-six out of sixty-five specimens had one or more degenerate codes in sequences of the ALG11 region. All degenerate codes were divided into two standard bases using PHASE v2.1.1, which implements a Bayesian statistical method for reconstructing haplotypes from population genotype data (Stephens *et al.* 2001, Stephens and Scheet 2005). Furthermore, first and second codon positions were removed from the dataset by checking amino acid sequences after translation.
Thus, each dataset was modified as needed, with additional previously reported sequences added from GenBank, and we generated four alignments; (1) mtCOI; 451 bp of 47 sequences; (2) mt 16S-rDNA; 697 bp of 54 sequences; (3) ITS-rDNA; 317 bp of 60 sequences and (4) ALG11; 578 bp of 121 sequences. These were used for subsequent phylogenetic analyses.

Substitution model selection

Substitution models for each gene were estimated by jModelTest v2.1.3 (Posada et al. 2012) through the following steps. Initially, likelihood calculations were carried out for all substitution models with configurations of 7 substitution schemes, equal or unequal base frequencies (+F), rate variation among sites with a number of rate categories (+G, nCat 5) and base tree topology (ML optimized). Subsequently, the most appropriate model for each marker was selected under (i) the corrected Akaike information criterion (AICc) for Maximum-Likelihood and neighbor-joining phylogenetic estimation, or (ii) Bayesian information criterion (BIC) for Bayes estimation. Thus, the (i)TrN/(ii)TrNef for mt 16S-rDNA, (i)F81/(ii)JC for mtCOI, (i,ii)K80+Γ for ITS-rDNA, and (i)K80+Γ/(ii)TPM1uf+Γ models for ALG11 were employed, respectively.

Gene tree estimations

For four distinct datasets (mt 16S-rDNA, mtCOI, ITS-rDNA, ALG11), phylogenetic analyses were applied independently with the optimal substitution model under AICc estimated by jModelTest. Maximum-Likelihood (ML) analyses were performed using PhyML (Guindon and Gascuel 2003) and neighbor-joining (NJ) methods were performed using MEGA5.2.2 (Tamura et al. 2011). All other parameters besides substitution model and the discrete gamma
distribution were implemented with the default value. Bootstrap analyses (Felsenstein 1985) of 1000 replicates were tested to evaluate the support of every branch.

Bayesian inference for gene trees was performed using BEAST v.1.8.0 (Heled and Drummond 2010) with the optimal substitution model under BIC. All parameters were used as default values except for the molecular clock, in which the rate was changed to the log-normal relaxed model, while only the substitution model for ALG11 was modified to TPM1uf after generating the initial setting file. Four Markov chain Monte Carlo (MCMC) simulations were run for 10 million generations with sampling intervals of 1,000. Convergence of analyses and adequacy of the sample sizes, with ESS values above 200 (ESS = the number of effectively independent draws from the posterior distribution that the Markov chain is equivalent to) were confirmed in Tracer v.1.5. (Rambaut et al. 2013). Analyses were combined using LogCombiner v.1.8.0, which is included within BEAST, after excluding the first 10% as burn-in. Obtained trees were summarized in a maximum clade credibility tree using TreeAnotator v.1.8.0 and visualized in FigTree v.1.4.0.

Species tree estimations

*BEAST estimates the species tree directly from the sequence data, nucleotide substitution model parameters and the coalescent process (Heled and Drummond 2010). The species trees were built by grouping all 235 sequences by putative species groups and simultaneously estimating each of three individual gene trees (mt 16S-rDNA, ITS-rDNA and ALG11), and the summary species trees using BEAST were drawn for two different species model; (1) a six species model including *P. tuberculosa*, *P. sp. yoron*, *P. mutuki*, *P. aff. mutuki*, *P. sp. sakurajimensis* sensu Reimer *et al.* (2007) and *P. heliodiscus*, and (2) a four species model
combining *P. sp. yoron* with *P. tuberculosa*, and *P. aff. mutuki* with *P. mutuki*, along with *P. sp. sakurajimensis* and *P. heliodiscus*.

All parameters were used as default except for; (1) the molecular clock rate, which was changed to the log-normal relaxed model (Drummond *et al.* 2006), (2) the substitution rate for mt 16S-rDNA, for which the range was calibrated to between 0.001-0.002/Mya based on the reported substitution rate for mtCOI (Shearer *et al.* 2002), and (3) the substitution model for ALG11 was modified to TPM1uf after generating the setting file. MCMC analyses were run for 100 million generations with sampling intervals of 10,000 and excluding the first 10% as burn-in. All the parameters in the output file were confirmed in Tracer v1.5. Obtained trees were summarized in a maximum clade credibility tree using TreeAnnotator v.1.8.0.

Results

Morphological analyses

The numbers of tentacles were measured for single randomly selected polyps from eleven colonies of *P. tuberculosa*, eight colonies of *P. sp. yoron*, seven colonies of *P. mutuki*, and eight colonies of *P. aff. mutuki*. The mean number of tentacles ± standard deviation per polyp was 31.6±3.4 for *P. tuberculosa*, 40.5±2.6 for *P. sp. yoron*, 54.4±7.4 for *P. mutuki*, and 71.0±4.1 for *P. aff. mutuki*. Each respective mean number of tentacles was significantly different (*p*<0.01) from all others in all pair tests (Table 3).

For cnidae, many subtle differences in sizes of the various types of cnidae present in different tissues were present (Table 4; Fig. 3). However, the most obvious differences were in small holotrichs, which were rarely observed in the tentacles of column of both *P. aff. mutuki* and *P. mutuki*, and additionally observed in the tentacles and pharynx of *P. aff. mutuki*, but were never observed in tissues of *P. sp. yoron* or *P. tuberculosa* (Table 4). However, these small
holotrichs were only observed in one out of three specimens each of P. aff. mutuki and P. mutuki, and thus no diagnostic differences were observed in the cnidae of all four species-groups examined (Table 4).

In summary, we could clearly distinguish all four Palythoa species groups based on tentacle numbers (Table 3), as well as gross external morphology (Fig. 2), but not via cnidae analyses (Table 4).

Estimated spawning period

During the initial investigation of June to December in 2010, developed ovaries were observed in P. tuberculosa from the middle of June to the middle of September with decreasing numbers of polyps possessing ova (Fig. 4A, Table 6). Additionally, matured eggs were also observed multiple times (on 28 July and 20 September). In contrast, developed ovaries and matured eggs were observed (Fig. 5A, B) only one time (on 26 October) in P. sp. yoron. As well, developing ovaries were observed in P. mutuki from the end of July to the middle of September, however, no matured eggs were observed during this investigation.

In 2011, developed ovaries were observed in P. aff. mutuki on 15 June (Fig. 5E, F, Fig. 4B), and subsequently developed ovaries were observed in P. sp. yoron in early October and early November (Fig. 5C, D), for the second consecutive year. On the other hand, no fully developed ovaries were observed in P. tuberculosa and P. mutuki despite developing ovaries being observed continuously during the summer season (on 23 July, 22 August and 5 October), similar as observed in 2010.

Phylogenetic analyses

Molecular phylogenetic trees

mtCOI
The phylogenetic tree resulting from maximum likelihood analyses of the mtCOI sequence alignment is shown in Fig. 6A. *Palythoa tuberculosa*, *P.* sp. yoron, *P. mutuki* and *P.* aff. *mutuki* formed one mixed clade with low bootstrap support (Maximum-Likelihood [ML] = <50%, Neighbor-joining [NJ] = 64%, Bayes [B] = 0.99). Three sequences of *P. mutuki* used in previous research (Reimer *et al.* 2007; Reimer *et al.* 2011) formed one group with sequences from *P.* sp. sakurajimensis.

mt 16S-rDNA

The phylogenetic tree resulting from maximum likelihood analyses of the mt 16S-rDNA sequence alignment is shown in Fig. 6B. *Palythoa tuberculosa*, *P.* sp. yoron, *P. mutuki* and *P.* aff. *mutuki* formed one mixed clade with low bootstrap support (ML = 65%, NJ = 64%, B < 0.50). Within this mixed clade, *P. mutuki* and *P.* aff. *mutuki* formed a mixed subclade with low bootstrap support in ML and NJ analyses, however, this monophyletic clade was strongly supported in Bayesian analyses (ML = 64%, NJ = 64%, B = 1.0). Additionally, two sequences of *P. mutuki* from GenBank that were distinguished from other sequences of *P. mutuki* in previous research (Reimer *et al.*, 2006; AB219220, AB219221) formed a monophyletic subclade with two novel sequences from this study (KX389366, KX389368; ML = 64%, NJ = 63%, B = 1.0).

ITS-rDNA

The phylogenetic tree resulting from maximum likelihood analyses of the ITS-rDNA sequence alignment is shown in Fig. 6C. *Palythoa tuberculosa* and *P.* sp. yoron formed a very well supported monophyletic clade (ML = 95%, NJ = 99%, B = 0.96). Within this clade were two comparatively well supported sub-clades, one made by sequences obtained only from *P.* sp. yoron sequences (=KX389470, KX389471, DQ997921; ML = 90%, NJ = 99%, B = 1.0), and the other including three *P. tuberculosa* sequences (DQ997909, DQ997929, DQ997919; ML = 70%,...
Palythoa mutuki was paraphyletic and two well supported clades that included sequences from both *P. mutuki* and *P. aff. mutuki* were present (KX389473, KX389474, KX389475, KX389476, KX389481; ML=93%, NJ=99%, B=1.0; and DQ997892, KX389479, KX389480, KX389483; ML=72%, NJ=77%, B=1.0).

ALG11

The phylogenetic tree resulting from maximum likelihood analyses of the ALG11 sequence alignment is shown in Fig. 6D. Compared to the above phylogenetic trees, this tree was the most admixed, regardless of morphospecies. For example, sequences from *P. sp. sakurajimensis* (used as outgroup here) appeared throughout the tree. Only three terminal clades showed high bootstrap values (KX389373, KX389374, KX389379; ML=80%, NJ=86%, B=1.0; and KX389403, KX389422; ML=90%, NJ=95%, B=1.0; and KX389414, KX389418, KX389422; ML=78%, NJ=78%, B=1.0).

Topology comparison between trees

Examining the two outgroups used in this study, *Palythoa* sp. sakurajimensis was phylogenetically much closer to *P. tuberculosa, P. sp. yoron, P. mutuki* and *P. aff. mutuki* compared to *P. heliodiscus* in every gene tree. There were few differences in sequences from the other four species groups, with only one base pair difference in the mtCOI tree, resulting in *P. sp. sakurajimensis’* sequences forming one group with some *P. mutuki* specimens, and only one to two base pairs’ difference in the mt 16S-rDNA tree for all four species groups. In particular, in the ALG11 tree, *P. sp. sakurajimensis’* sequences were admixed with the other four species groups.

Palythoa tuberculosa and *P. sp. yoron* (designated as the “*Palythoa tuberculosa* group” here), and *P. mutuki* and *P. aff. mutuki* (designated as “*Palythoa mutuki* group” here) did not
separate into four species groups in each DNA marker’s tree. The *P. tuberculosa* group formed a monophyletic clade in the ITS-rDNA tree and one grouping in the mt 16S-rDNA gene tree with one base difference from the *P. mutuki* group. On the other hand, the *P. mutuki* group did not show any common pattern, *i.e.* admixed with all other species groups except for *P. heliodiscus* in the ALG11 gene tree, most sequences forming one monophyletic clade with the *P. tuberculosa* group due to no differences in sequences with some sequences forming one group with *P. sp. sakurajimensis* due to a one base pair difference from other specimens in the mtCOI tree, forming a monophyletic clade with one subclade in the mt 16S-rDNA tree, and forming a paraphyletic clade with a monophyletic subclade of *P. tuberculosa* in the ITS-rDNA tree.

Species trees

All hypothetical species were fully supported with posterior probability under both the four and six species models (Fig. 7A, B). The divergence time from the most recent common ancestor of *P. tuberculosa, P. sp. yoron, P. mutuki* and *P. aff. mutuki*, (divergence of *P. sp. sakurajimensis* in both cases), was calculated as 147,000 years before present with 95% credible interval [lower 30,900 – upper 292,000] under the six species model and as 113,000 years under the four species model with 95% credible interval [lower 25,500 – upper 231,000].

Discussion

The purpose of this study was to re-evaluate the systematics of some *Palythoa* species using an integrative approach. Primary hypotheses of species delimitation were based on external morphology (phenetic criterion) and habitat preferences (ecological criterion). These hypotheses were then examined in the light of additional characters, namely the number of tentacles, spawning periods and genetic data.
Morphology and plasticity

The mean numbers of tentacles were significantly different among specimens of the four putative species; *P. tuberculosa*, *P. sp. yoron*, *P. mutuki* and *P. aff. mutuki* (Table 3). However, in previous research, the tentacle number of *P. tuberculosa* has been reported as various ranges, *i.e.* 30 to 40 (Klunzinger 1877), up to 50 (Walsh and Bowers 1971), 38 to 52 (Reimer and Todd 2009), 30 to 37 (Shiroma and Reimer 2010), or 30 to 50 (Hibino *et al.* 2013). A wider range of variations has been reported in *P. mutuki*, with 88 to 144 (Ryland and Lancaster 2003), 60 to 74, approximately 80 for *P. mutuki*-related (Reimer and Todd 2009), or 42 to 66 (Shiroma and Reimer 2010) reported. Thus, the ranges of tentacle numbers can be assumed to be 30 to 52 for *P. tuberculosa* and 42 to 144 for *P. mutuki*, and therefore tentacle numbers of *P. sp. yoron* and *P. aff. mutuki* observed in this study are within ranges of previously reported intraspecific variation.

These differences between tentacle numbers reported in the literature and our data may be partly explained by the fact that previous authors did not consider *P. sp. yoron* and *P. aff. mutuki* as different species.

However, Ong *et al.* (2013) also demonstrated phenotypic plasticity in *P. tuberculosa* with high ability to acclimate against changes in light-induced environments. From *in situ* observations, *P. sp. yoron* seems to prefer locations exposed to strong current such as extensive reef flats where the back reef moat is widely developed. Correspondingly, *P. sp. yoron* is also often found in back reef moats, as Shiroma and Reimer (2010) mentioned, covered with sand or other loose detritus. High numbers of tentacles enable them to acquire nutritious detritus and feed on planktonic organisms, but strong-current environments repeatedly cover colonies with sand. From the viewpoint of its small, tetrapod colony shape, *P. sp. yoron* seems have adapted to such an environment. Therefore, to ensure whether differences in tentacle numbers and colony
form between *P. tuberculosa* and *P. sp. yoron* are caused by species differentiation, the
observation of reaction norms of each species with transplantation experiments is needed.

Although previous cnidae research with detailed statistical analyses revealed finer-scale
differences among *Palythoa* species (Ryland and Lancaster 2004), we did not observe any useful
diagnostic differences with utility for rapid identification of species groups in this study.

Spawning periods and reproductive isolation

Over the two years analyzed, *P. sp. yoron* consistently developed ovaries later than the
three other putative species. If we assume a sharp drop in the proportion of developed ovaries as
the consequence of the release of eggs, the annual spawning period estimated for *P. sp. yoron*
was early to mid-November and that of *P. aff. mutuki* mid- to late June. The spawning period of
P. tuberculosa in Okinawa-jima I. has been reported in early August (Yamazato *et al.* 1973),
from the end of July to middle August (Shiroma and Reimer 2010), and on 19 and 20 August in
2009 (Hirose *et al.* 2011). In our study, spawning was estimated to have occurred in August in
2010 and possibly from early July in 2011. The reproductive season of *P. mutuki* was presumed
that be synchronized with *P. tuberculosa* in 2010, although developed eggs were not confirmed.

Little is known about the sexual reproductive ability of this species, and according to Ryland and
Lancaster (2003) the only previous records of *P. mutuki* possessing developed oocytes are from
Fiji and Tuvalu. To overcome this lack of knowledge, closer examinations via staging of
histological sections for gonadal development (such as done by Polak *et al.* 2011) are required.

Interpreting these results in terms of putative reproductive isolation is not straightforward.

Even assuming that a sharp drop in the proportion of developed ovaries translates into a major
spawning event, which seems to be a reasonable hypothesis, this does not exclude the
possibility of eggs being released much later than the initial peak. For example, while we
403 estimated the spawning period of *P. tuberculosa* to have occurred in August in 2010, nearly 20% of individuals still had developing or developed ovaries on September 20th, which may have been released as mature eggs at any time from then until October 26th (Fig. 4A), and enabled potential cross-fertilization with *P*. sp. yoron. On the other hand, data thus far indicate spawning on one or two nights per year for brachycneminic zoantharians (Ryland 1997), and reabsorption of oocytes (Ono et al. 2005) that did not spawn. More work is needed to determine exact spawning patterns of *Palythoa tuberculosa* and closely *Palythoa* related species, but the asynchrony of both ovary development (*P*. sp. yoron) and spawning peaks for *P. tuberculosa* and *P*. aff. *mutuki* suggest that at least partial pre-zygotic reproductive isolation is possible among *P*. sp. yoron, *P. tuberculosa* and *P*. aff. *mutuki* at Tokunoshima I.

Species boundaries in phylogenetic trees

The four genetic markers analyzed in this study displayed contrasting patterns. The two mitochondrial genes were relatively conservative, as has been reported for other anthozoans (Shearer et al. 2002; Huang et al. 2008), but mt 16S-rDNA allowed the recovery of *P. heliodiscus*, *P*. sp. sakurajimensis, the *P. mutuki* group and the *P. tuberculosa* group as four genetically homogeneous groups (phenetic criterion), and all species or species groups were reciprocally monophyletic with the exception of *P. tuberculosa*. ITS-rDNA showed a similar pattern with the *P. mutuki* group and the *P. tuberculosa* group represented in distinct clades, although the *P. mutuki* group was paraphyletic. This consistency across mitochondrial and nuclear markers also suggests that there is no genetic exchange (biologic criterion) between these four groups, and thus provides a first level of species delimitation. In contrast, all *Palythoa* spp. besides *P. heliodiscus* were largely mixed in the tree recovered from the ALG11 marker, which strongly suggests incomplete lineage sorting for this gene.
Despite obvious differences in morphology and reproductive season between *P. tuberculosa* and *P.* sp. yoron, as well between *P. mutuki* and *P.* aff. *mutuki*, no molecular marker was successful in dividing these species pairs into their own monophyletic clades. *Palythoa* sp. yoron formed a subclade from two specimens in Reimer *et al.* (2007a), however, in this study reconstructing phylogenetic trees based on the same genomic region with more specimens of *P.* sp. yoron, one mixed monophyletic clade was supported well with all the other *P. tuberculosa* specimens. The same pattern was observed with *P. mutuki* and *P.* aff. *mutuki*. These results imply either gene flow between each pair of nominal species or incomplete lineage sorting. Although these two alternative hypotheses are not mutually exclusive, the absence of intermediate morphotypes and the presence of distinct spawning periods lead us to favor the latter over extensive gene flow. Sequences from other single-copy nuclear markers like ALG11 are required to more thoroughly resolve these two species pairs.

Sympatric speciation timing

Recently, sympatric speciation has come to be understood as a major generator of marine biodiversity (reviewed in Bowen *et al.* 2013). Under such situations, ecological (e.g. behavior or microhabitat) boundaries lead to isolation. However, the hierarchy of timing of sympatric speciation processes (e.g. the order that separation occurs via phylogenetic, reproductive, and morphological criteria) as lineages diverge remains not well understood, with no clear consensus (Norris and Hull 2012; Pabijan *et al.* 2017). For example, in tropical bivalves, phylogenetic differences (=cryptic species) have been observed without any clear evidence of morphological differences (e.g. Lemer *et al.* 2014). On the other hand, in many marine taxa, it has been proposed that during sympatric speciation, reproductive isolation is one driving force behind lineage divergence (Palumbi 1994).
In this study, morphology and reproductive data sets showed four *Palythoa* lineages, while DNA markers showed either two lineages (ITS-rDNA, mtCOI, mt 16S-rDNA) or one admixed lineage (ALG11). Combined molecular analyses suggested either two or four lineages were equally possible (Fig. 7). Such varied results along a speciation continuum between different datasets reflect the patterns to be expected during ongoing or incomplete speciation events (Nosil et al. 2009). As all four *Palythoa* lineages can be found in sympatry at Tokushima I., our results suggest that reproductive isolation, perhaps caused by past hybridization and back-crossing events (Reimer et al. 2007a; MacLeod et al. 2015), led to the generation of these different lineages and morphological differentiation. Phylogenetic differentiation currently remains incomplete due to the evolutionary recentness of these events, estimated as less than 200,000 years before present. Such confounding data, with reproductive isolation but incomplete genetic lineage sorting, can be expected due to the extended duration of speciation events (Norris and Hull 2012).

Conclusions

Overall, the data imply that *Palythoa* species have a much more complex evolutionary history at the species level than previously expected (e.g. in Reimer et al. 2007a). However, natural hybridization between *P. tuberculosa*, *P. sp. yoron* and *P. aff. mutuki* seems to not be currently occurring, at least for populations at Tokunoshima I. observed in this study. In spite of ambiguous phylogenetic differentiation between *P. tuberculosa* and *P. sp. yoron*, and between *P. mutuki* and *P. aff. mutuki*, we consider these four lineages are all distinct species based on their morphological differentiation and distinct spawning periods. *In situ* observation of spawning events combined with genomic level examinations will help further clarify the hierarchy of
timing in speciation events, and these four sympatric *Palythoa* lineages present a potential model system for such studies.
Acknowledgements

The authors sincerely thank Dr. D. Albinsky (University of the Ryukyus, UR) for technical help during molecular experiments. The people of Tokunoshima I. are thanked for help during field surveys. As well, thanks to Dr. M. Obuchi and Dr. A. Iguchi (both UR), who both spared much time for discussion of statistical analyses. Dr. M. Maronna (U. Sao Paolo) is thanked for comments on alignments. Finally, MISE Laboratory members are thanked for their support. Comments from three reviewers and the editor greatly improved an earlier version of this manuscript.
References

Belinky F, Szitenberg A, Goldfarb I, Feldstein T, Wörheide G, Ilan M, Huchon D. 2012. ALG11 – A new variable DNA marker for sponge phylogeny: comparison of phylogenetic performances with the 18S rDNA and the COI gene. Molecular Phylogenetics and Evolution 63: 702–713.

Bowen BW, Rocha LA, Toonen RJ, Karl SA, ToBo Laboratory. 2013. The origins of tropical marine biodiversity. Trends in Ecology and Evolution 28: 359-366.

Darriba D, Taboada GL, Doallo R, Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9:8, 772.

Drummond AJ, Suchard MA, Xie D, Rambaut A. 2010. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution. 29: 1969-1973. DOI: 10.1093/molbev/mss075.

Drummond AJ, Ho SY-W, Phillips MJ, Rambaut A. 2006 Relaxed phylogenetics and dating with confidence. PLOS Biology 4: 699-710. DOI: 10.1371/journal.bio.0040088.

England KW. 1991. Nematocysts of sea anemones (Actiniaria, Ceriantharia and Corallimorpharia: Cnidaria): nomenclature. Hydrobiologia 216/217: 691–697. DOI: 10.1007/BF00026532

Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791.

Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294–299.
Guindon S, Gascuel O. 2003. A simple, fast, and accurate algorithm to estimate large
phylogenies by maximum likelihood. Systematic Biology 52: 696-704.

Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis
program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95-98.

Hatta M, Fukami H, Wang W, Omori M, Shimoike K, Hayashibara T, Ina Y, Sugiyama T.
1999. Reproductive and genetic evidence for a reticulate evolutionary history of mass-spawning
corals. Molecular Biology and Evolution 16: 1607–1613.

Heled J, Drummond AJ. 2010. Bayesian inference of species trees from multilocus data.
Molecular Biology and Evolution 27: 570-580.

Hibino Y, Todd PD, Yang S, Benayahu Y, Reimer JD. 2013. Molecular and
morphological evidence for conspecificity of two common Indo-Pacific species of Palythoa
(Cnidaria: Anthozoa). Hydrobiologia 733: 31-43. DOI: 10.1007/s10750-013-1587-5

Hill MS, Hill AL, Lopez J, Peterson KJ, Pomponi S. 2013 Reconstruction of family-level
phylogenetic relationships within Demospongiae (Porifera) using nuclear encoded housekeeping
genes. PLoS ONE 8: e50437. DOI: 10.1371/journal.pone.0050437.

Hirose M, Obuchi M, Hirose E, Reimer JD. 2011. Timing of spawning and early
development of Palythoa tuberculosa (Anthozoa, Zoantharia, Sphenopidae) in Okinawa, Japan.

Biological Bulletin 220: 23–31.

Huang D, Meier R, Todd PA, Chou LM. 2008. Slow mitochondrial COI sequence
evolution at the base of the metazoan tree and its implications for DNA barcoding. Journal of
Molecular Evolution 66: 167-174.
Isomura N, Iwao K, Fukami H. 2013. Possible natural hybridization of two morphologically distinct species of *Acropora* (Cnidaria, Scleractinia) in the Pacific: fertilization and larval survival rates. PLoS ONE 8: e56701. DOI: 10.1371/journal.pone.0056701.

Irei Y, Nozawa Y, Reimer JD. 2011. Distribution patterns of five zoanthid species at Okinawa Island, Japan. Zoological Studies 50: 426-433.

Kimura S, Hashimoto Y. 1972. Toxicity of the zoanthid *Palythoa tuberculosa*. Toxicon 10: 611-617.

Klunzinger KB. 1877. Die Korallthiere des Rothen Meeres. 1: Die Alcyonarien und Malacodermen. Verlag der Gutmann’schen Buchhandlung (Otto Enslin), Berlin (in German and Latin).

Leache AD, Fujita MK. 2010. Bayesian species delimitation in West African forest geckos (*Hemidactylus fasciatus*). Proceeding of the Royal Society B 277: 3071-3077. DOI: 10.1098/rspb.2010.0662.

Lemer S, Buge B, Bemis A, Giribet G. 2014. First molecular phylogeny of the circumtropical bivalve family Pinnidae (Mollusca, Bivalvia): Evidence for high levels of cryptic species diversity. Molecular Phylogenetics and Evolution 75: 11-23.

MacLeod A, Rodríguez A, Vences M, Orozco-terWengel P, García C, Trillmich F, Gentile G, Caccone A, Quezada G, Steinfartz S. 2015. Hybridization masks speciation in the evolutionary history of the Galápagos marine iguana. Proceedings of the Royal Society B 282: 20150425. http://dx.doi.org/10.1098/rspb.2015.0425

Mayr E, 1957. Species concepts and definitions. in E. Mayr (ed.), The Species Problem, American Association for the Advancement of Science Publication, 50.
Mueller E, Haywick DW. 1995. Sediment assimilation and calcification by the western Atlantic reef zoanthid Palythoa caribaeorum. Bulletin De L’institut Oceanographique (Monaco) 14: 89100.

Muirhead A, Ryland JS. 1985. A review of the genus Isaurus Gray 1828 (Zoanthidea), including new records from Fiji. Journal of Natural History 19: 323-335.

Nosil P, Harmon LJ, Seehausen O. 2009. Ecological explanations for (incomplete) speciation. Trends in Ecology and Evolution 24: 145-156.

Norris RD, Hull PM. 2011. The temporal dimension of marine speciation. Evolutionary Ecology 26: 393-415.

Ohki S, Kowalski RK, Kitanobo S, Morita M. 2015. Changes in spawning time led to the speciation of the broadcast spawning corals Acropora digitifera and the cryptic species Acropora sp. 1 with similar gamete recognition systems. Coral Reefs 34: 1189–1198. DOI 10.1007/s00338-015-1337-4

Ong CW, Reimer JD, Todd PA. 2013. Morphologically plastic responses to shading in the zoanthids Zoanthus sansibaricus and Palythoa tuberculosa. Marine Biology 160: 1053-1064 DOI: 10.1007/s00227-012-2158-4.

Pabijan M, Zieliński P, Dudek K, Stuglik M, Babik W. 2017. Isolation and gene flow in a speciation continuum in newts. Molecular Phylogenetics and Evolution 116: 1-12.

Palumbi SR. 1994. Genetic divergence, reproductive isolation, and marine speciation. Annual Revue of Ecology and Systematics 25: 547-572

Polak O, Loya Y, Brickner I, Kramarski-Winter E, Benayahu Y. 2011. The widely-distributed Indo-Pacific zoanthid Palythoa tuberculosa: a sexually conservative strategist. Bulletin of Marine Science 87: 605-621.
Posada D 2008. jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 1253-1256.

Putron SJ, Ryland JS. 2009. Effect of seawater temperature on reproductive seasonality and fecundity of *Pseudoplexaura porosa* (Cnidaria: Octocorallia): latitudinal variation in Caribbean gorgonian reproduction. Invertebrate Biology 128: 213-222.

Rambaut A, Suchard MA, Xie D, Drummond AJ. 2013, Tracer v1.5. Available from http://beast.bio.ed.ac.uk/Tracer.

Rasband WS. 2012. ImageJ: Image processing and analysis in Java. Astrophysics Source Code Library 1: 6013.

Reimer JD. 2010. Key to field identification of shallow water brachycnemic zoanthids (Order Zoantharia: Suborder Brachycnemina) present in Okinawa. Galaxea, Journal of Coral Reef Studies 12: 23-29.

Reimer JD, Hirose M, Yanagi K, Sinniger F. 2011. Marine invertebrate diversity in the oceanic Ogasawara Islands: a molecular examination of zoanthids (Anthozoa: Hexacorallia) and their *Symbiodinium* (Dinophyceae). Systematics and Biodiversity 9: 133-43.

Reimer JD, Nakachi S, Hirose S, Hirose E, Hashiguchi S. 2010. Using hydrofluoric acid for morphological investigations of zoanthids (Cnidaria: Anthozoa): A critical assessment of methodology and necessity. Marine Biotechnology 12: 605–617. DOI 10.1007/s10126-0099249-3

Reimer JD, Ono S, Fujiwara Y, Takishita K, Tsukahara J. 2004. Reconsidering *Zoanthus* spp. diversity: Molecular evidence of conspecificity within four previously presumed species. Zoological Science 21: 517-525.
Reimer JD, Takishita K, Maruyama T. 2006. Molecular identification of symbiotic dinoflagellates (Symbiodinium spp.) from Palythoa spp. (Anthozoa: Hexacorallia) in Japan. Coral Reefs 25: 521-527.

Reimer JD, Takishita K, Ono S, Maruyama T. 2007a. Diversity and evolution in the zoanthid genus Palythoa (Cnidaria: Hexacorallia) based on nuclear ITS-rDNA. Coral Reefs 26: 399–410. DOI 10.1007/s00338-007-0210-5.

Reimer JD, Takishita K, Ono S, Tsukahara J, Maruyama T. 2007b. "Molecular evidence suggesting interspecific hybridization in Zoanthus spp. (Anthozoa: Hexacorallia). Zoological Science 24: 346–359.

Reimer JD, Todd PA. 2009. Preliminary molecular examination of zooxanthellate zoanthid (Hexacorallia, Zoantharia) and associated zooxanthellae (Symbiodinium spp.) diversity in Singapore. Raffles Bulletin of Zoology 22: 103–120.

Reimer JD, Irei Y, Fuji T, Yang S-Y. 2013. Molecular analyses of shallow-water zooxanthellate zoanthids (Cnidaria: Hexacorallia) from Taiwan and their Symbiodinium spp. Zoological Studies 52: 38.

Ryland JS. 1997. Reproduction in Zoanthidea (Anthozoa: Hexacorallia). Invertebrate Reproduction and Development 31: 177-188.

Ryland JS. 2000. Reproduction in British zoanthids, and an unusual process in Parazoanthus anguicoma. Journal of the Marine Biological Association of the United Kingdom 80: 943-944.

Ryland JS, Lancaster JE. 2003. Revision of methods of separating species of Protopalythoa (Hexacorallia: Zoanthidea) in the tropical West Pacific. Invertebrate Systematics 17: 407-428.
Ryland JS, Lancaster JE. 2004. A review of zoanthid nematocyst types and their population structure. Hydrobiologia 530(1/3): 179–187. DOI: 10.1007/s10750-004-2685-1

Shearer TL, Oppen MJH, Romano SL, Worheide GW. 2002. Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). Molecular Ecology 11: 2475-2487.

Shiroma E, Reimer JD. 2010. Investigations into the reproductive patterns, ecology, and morphology in the zoanthid genus *Palythoa* (Cnidaria: Anthozoa: Hexacorallia) in Okinawa, Japan. Zoological Studies 49: 182-194.

Sinniger F, Montoya-Burgos JI, Chevaldonna P, Pawlowski J. 2005. Phylogeny of the order Zoantharia (Anthozoa, Hexacorallia) based on the mitochondrial ribosomal genes. Marine Biology 147: 1121–1128.

Sperling EA, Pisani D, Peterson KJ. 2007. Poriferan paraphyly and its implications for Precambrian palaeobiology. Geological Society London Special Publications 286: 355–368.

Stephens M, Scheet P. 2005. Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. American Journal of Human Genetics 76:449-462.

Stephens M, Smith N, Donnelly P. 2001. A new statistical method for haplotype reconstruction from population data. American Journal of Human Genetics 68: 978-989.

Swain TD. 2010. Evolutionary transitions in symbioses: dramatic reductions in bathymetric and geographic ranges of Zoanthidea coincide with loss of symbioses with invertebrates. Molecular Ecology 19: 2587-2598.

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28: 2731-2739.
Thompson JD, Higgins GD, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673–4680.

Trench RK. 1974. Nutritional potentials in Zoanthus sociatus (Coelenterata, Anthozoa).

Helgoländer wissenschaftliche Meeresuntersuchungen 26: 174-216.

Vollmer S, Palumbi S. 2002. Hybridization and the evolution of reef coral diversity. Science 296: 5575, 2023-2025. DOI: 10.1126/science.1069524.

Yamazato K, Yoshimoto F, Yoshihara N. 1973. Reproductive cycle in a zoanthid Palythoa tuberculosa Esper. Publications of the Seto Marine Biological Laboratory 20:275-283.

Walsh GE, Bowers RL. 1971. A review of Hawaiian zoanthids with descriptions of three new species. Zoological Journal of the Linnaean 50: 161-180. DOI: 10.1111/j.10963642.1971.tb00757.x

Figure legends

Fig. 1. Map of Palythoa species specimen locations in the Ryukyu Archipelago, including Okinawa-jima Island, Zamami-jima Island, Yoron-to Island, Okinoerabu-jima Island, and Tokunoshima Island. Locations for specimens collected in this study represented by closed symbols, location for spawning timing investigations represented by open symbol.

Fig. 2 In situ images of A Palythoa tuberculosa, B P. mutuki, C P. sp. yoron, D P. aff. mutuki, E P. tuberculosa (left; “Pt”) and P. sp. yoron (right, “Py”), and F P. mutuki (left, “Pm”) and P. aff.
mutuki (right, “Pam”). Scale bars in A, C, E are 2 cm, in B, D, F 1 cm. All images taken by M. Mizuyama.

Fig. 3 – Cnidae in tentacles, column, pharynx, and filaments of Palythoa aff. mutuki, Palythoa mutuki, Palythoa sp. yoron, and Palythoa tuberculosa. S = spirocysts, B = basitrichs, HS = holotrichs small, HL= holotrichs large, P = microbasic p-mastigophores.

Fig. 4A. Monthly change of ratio of number of polyps possessing developing and/or developed ovaries (N) on total number of examined polyps (Nt) in 2010. Red, P. tuberculosa; blue, P. mutuki; yellow, P. sp. yoron. B. Monthly change of ratio of number of polyps possessing developing and/or developed ovaries (N) on total number of examined polyps (%) in 2011. Red, P. tuberculosa; blue, P. mutuki; yellow, P. sp. yoron; green, P. aff. mutuki.

Fig. 5 Cross section of polyp of A Palythoa sp. yoron (26 October 2010) and B matured eggs; C P. sp. yoron (9 November 2011) and D germinal ribbon inside a mesentery; E P. aff. mutuki (21 June 2011), and F developed ovaries. Abbreviations: te, tentacles; od, oral disk; co, coenenchyme; mo, mouth; ph, pharynx; eg, eggs; mf, mesenterial filament; gr, germinal ribbon; ov, ovary. Scale bars: 2 mm in A and E; 500 μm in B; 1 mm in C, D and F. All images taken by M. Mizuyama.

Fig. 6A. Maximum likelihood (ML) tree of cytochrome oxidase subunit I (COI) sequences. B. ML tree of mitochondrial 16S ribosomal DNA (mt 16S-rDNA) sequences. C. Maximum likelihood tree of internal transcribed spacer of ribosomal DNA (ITS-rDNA) sequences. D.
Maximum likelihood tree of asparagine-linked glycosylation 11 protein (ALG11) region. Values at branches represent ML and NJ bootstrap probabilities, respectively (>50%). Bayesian posterior probabilities of >0.95 are represented by thick branches. Sequences from specimens identified as *Palythoa heliodiscus* indicated by light purple circles, from *P*. sp. sakurajimensis as dark purple, from *P*. *mutuki* as dark blue, from *P*. aff. *mutuki* as green, from *P*. sp. yoron as yellow, and from *P*. *tuberculosa* as red. GenBank accession numbers of sequences generated in this study in **bold**. For specimen information, please see Tables 2 (for novel sequences) and 5 (for previously reported sequences).

Fig. 7 Species trees for *Palythoa* under A. six species model, and B. four species model. Values at branches represent upper and lower limits of demographic time under the coalescent model.

Tables

Table 1. Characters employed for identification of *Palythoa* species.

Table 2. Examined *Palythoa* specimens in this study.

Table 3. The mean number of tentacles ± standard deviation and results of Mann-Whitney U test with Bonferroni correction between each *Palythoa* species pairs. N = total number of examined polyps for each species (one per colony).

Table 4. Cnidae types and sizes of *Palythoa* aff. *mutuki*, *Palythoa* *mutuki*, *Palythoa* sp. yoron and *Palythoa* *tuberculosa*. Frequency: relative abundance of cnidae type in decreasing order;
numerous, common, occasional, rare, very rare (N = number of specimens found/total specimens examined).

Table 5. GenBank accession numbers of genus *Palythoa* sequences from previous studies used in this study’s phylogenetic analyses.

Table 6. Number of polyps possessing developing and/or developed ovaries (N), total number of examined polyps (Nt) and ratio of N to Nt for collected specimens of *P. tuberculosa*, *P. mutuki*, *P. sp. yoron* and *P. aff. mutuki* on each sampling date. *indicates observation of developed ovaries in specimens.
Table 1 (on next page)

Characters employed for identification of *Palythoa* species.
| Species | $P.~tuberculosa$ | $P.~$sp. yoron $|$ $P.~mutuki$ | $P.~aff.~mutuki$ |
|------------------|-----------------|-----------------|-----------------|
| Typical environment | Backreef moat - out reef | Reef flat, tide pool | Reef flat, reef edge, surge channel | Reef flat, reef edge, surge channel |
| Coenenchyme development | Well-developed | Moderately developed | Not well developed; or stoloniferous | Not well developed; or stoloniferous |
| Polyp structure | immersae (= “embedded”) | intermediae (= “moderate”) | liberae (= “free-standing”) | liberae (= “free-standing”) |
| Surface structure of capitular ridges | Smooth | Smooth | Jagged | Smooth |
| Number of polyps/colony | >10 | <10 | >10 | >10 |
Examined *Palythoa* specimens in this study from the Ryukyu Archipelago.
Table 2. Examined *Palythoa* specimens in this study.

Specimen code	Location/Region	GPS code	Species ID	Date (m/d/y)	Collected by	Fixed by	mt COI	mt 16S-rDNA	ITS-rDNA	ALG11
2PtOkOd	Odo/Okinawa	1	*P. tuberculosa*	Aug 18. 09	MM*1	99.5% EtOH	NA	NA	NA	KX389373
4PtOkOd	Odo/Okinawa	1	*P. tuberculosa*	Aug 23. 09	MM	99.5% EtOH	NA	KX389335	KX389374	
5PtOkOd	Odo/Okinawa	1	*P. tuberculosa*	Aug 23. 09	MM	99.5% EtOH	NA	NA	NA	KX389375
37PtYoMa	Maehama/Yoron	2	*P. tuberculosa*	Mar 03. 10	JDR*2	99.5% EtOH	NA	KX389336	KX389376	
39PtYoUk	Ukachi/Yoron	3	*P. tuberculosa*	Mar 04. 10	MM	99.5% EtOH	NA	KX389337	KX389459	KX389377
40PtYoUk	Ukachi/Yoron	3	*P. tuberculosa*	Mar 04. 10	MM	99.5% EtOH	NA	NA	NA	KX389378
49PtYoUk	Ukachi(West)/Yoron	4	*P. tuberculosa*	Mar 04. 10	MM	99.5% EtOH	NA	NA	NA	KX389379
63PtErYa	Yakomo/Okinerabu	5	*P. tuberculosa*	Mar 05. 10	MM	99.5% EtOH	NA	KX389338	KX389380	
65PtErYa	Yakomo/Okinerabu	5	*P. tuberculosa*	Mar 05. 10	MM	99.5% EtOH	NA	NA	NA	KX389381
91PtToYo	Yonama/Tokunoshima	6	*P. tuberculosa*	Mar 08. 10	MM	99.5% EtOH	NA	NA	NA	KX389382
98PtToKa	Kaminomine/Tokunoshima	7	*P. tuberculosa*	Mar 09. 10	MM	99.5% EtOH	NA	NA	NA	KX389383
100PtToKa	Kaminomine/Tokunoshima	7	*P. tuberculosa*	Mar 09. 10	MM	99.5% EtOH	NA	KX389339	KX389384	
358PtOkAk	Akazaki/Okinawa	8	*P. tuberculosa*	Jun 24. 12	MM	99.5% EtOH	NA	KX389340	KX389385	
361PtOkAk	Oku/Okinawa	9	*P. tuberculosa*	Jun 25. 12	MM	99.5% EtOH	NA	NA	NA	KX389386
371PtZaAm	Ama/Zamami	10	*P. tuberculosa*	Jul 16. 12	YM*3	99.5% EtOH	NA	KX389341	KX389387	
3PyOkOd	Odo/Okinawa	1	*P. sp. yoron*	Aug 18. 09	MM	99.5% EtOH	KX389439	KX389342	KX389460	KX389388
	Location	Species	Collection Date	Protocol	EtOH %	Accession Numbers				
-----	------------------	---------	-----------------	----------	--------	-------------------				
14PyOkOd	Odo/Okinawa	1	P. sp. yoron	Aug 23. 09	MM	99.5% EtOH	KX389440 KX389343 KX389472 KX389389			
15PyOkOd	Odo/Okinawa	1	P. sp. yoron	Sep 05. 09	MM	99.5% EtOH	KX389441 KX389344 KX389461 KX389390			
16PyOkOd	Odo/Okinawa	1	P. sp. yoron	Sep 05. 09	MM	99.5% EtOH	NA KX389345 KX389462 KX389391			
43PyYoUk	Ukachi/Yoron	3	P. sp. yoron	Mar 04. 10	MM	99.5% EtOH	KX389442 KX389346 KX389470 KX389392			
44PyYoUk	Ukachi/Yoron	3	P. sp. yoron	Mar 04. 10	MM	99.5% EtOH	NA KX389347 KX389471 KX389393			
51PyYoUk	Ukachi(West)/Yoron	4	P. sp. yoron	Mar 04. 10	MM	99.5% EtOH	KX389442 KX389348 KX389461 KX389390			
53PyYoUk	Ukachi(West)/Yoron	4	P. sp. yoron	Mar 04. 10	MM	99.5% EtOH	NA KX389349 NA KX389395			
81PyErYa	Yakomo/Okinoerabu	5	P. sp. yoron	Mar 05. 10	MM	99.5% EtOH	KX389444 KX389350 KX389463 KX389396			
83PyErYa	Yakomo/Okinoerabu	5	P. sp. yoron	Mar 05. 10	MM	99.5% EtOH	NA KX389351 KX389464 KX389397			
85PyErYa	Yakomo/Okinoerabu	5	P. sp. yoron	Mar 05. 10	MM	99.5% EtOH	KX389445 KX389352 KX389465 KX389398			
87PyErYa	Yakomo/Okinoerabu	5	P. sp. yoron	Mar 05. 10	MM	99.5% EtOH	NA KX389353 NA KX389399			
105PyToKa	Kaminomine/Tokunoshima	7	P. sp. yoron	Mar 09. 10	MM	99.5% EtOH	KX389446 KX389354 KX389467 KX389400			
107PyToKa	Kaminomine/Tokunoshima	7	P. sp. yoron	Mar 09. 10	MM	99.5% EtOH	KX389447 KX389355 KX389468 KX389401			
109PyToKa	Kaminomine/Tokunoshima	7	P. sp. yoron	Mar 09. 10	MM	99.5% EtOH	NA KX389356 KX389469 NA			
359PyOkAk	Akazaki/Okinawa	8	P. sp. yoron	Jun 24. 12	MM	99.5% EtOH	KX389448 KX389357 NA KX389402			
42PmYoUk	Ukachi/Yoron	3	P. mutuki	Mar 04. 10	MM	99.5% EtOH	NA KX389366 KX389488 KX389403			
61PmYoUk	Ukachi/Yoron	3	P. mutuki	Mar 04. 10	JDR	99.5% EtOH	NA NA NA KX389404			
73PmErYa	Yakomo/Okinoerabu	5	P. mutuki	Mar 05. 10	MM	99.5% EtOH	NA NA KX389484 KX389405			
75PmErYa	Yakomo/Okinoerabu	5	P. mutuki	Mar 05. 10	MM	99.5% EtOH	NA KX389367 KX389482 KX389406			
77PmErYa	Yakomo/Okinoerabu	5	P. mutuki	Mar 05. 10	MM	99.5% EtOH	NA NA KX389481 KX389407			
93PmToYo	Yonama/Tokunoshima	6	P. mutuki	Mar 08. 10	MM	99.5% EtOH	NA NA NA KX389408			
Collection No.	Location	Date	Species	Treatment	Pure Yeast	GenBank Accession Numbers				
---------------	--------------	-----------	------------	-----------	------------	--------------------------				
94PmToYo	Yonama/Tokunoshima	Mar 08. 10	*P. mutuki*	MM	99.5% EtOH	NA, NA, NA, KX389409				
95PmToYo	Yonama/Tokunoshima	Mar 08. 10	*P. mutuki*	MM	99.5% EtOH	KX389368, KX389487, NA				
216PmOkOd	Odo/Okinawa	May 04. 11	*P. mutuki*	MM	99.5% EtOH	NA, NA, NA, KX389410				
218PmOkOd	Odo/Okinawa	May 04. 11	*P. mutuki*	MM	99.5% EtOH	NA, NA, KX389483, KX389411				
220PmOkOd	Odo/Okinawa	May 04. 11	*P. mutuki*	MM	99.5% EtOH	NA, NA, KX389489, KX389412				
222PmOkOd	Odo/Okinawa	May 04. 11	*P. mutuki*	MM	99.5% EtOH	NA, NA, KX389485, KX389413				
240PmErSu	Sumiyoshi/Okinoerabu	Jun 18. 11	*P. mutuki*	MM	99.5% EtOH	NA, NA, NA, KX389414				
280PmToKa	Kaminomine/Tokunoshima	Oct 05. 11	*P. mutuki*	MM	99.5% EtOH	NA, NA, NA, KX389415				
316PmOkKo	Komesu/Okinawa	Feb 25. 12	*P. mutuki ?	MM	99.5% EtOH	KX389370, KX389480, KX389416				
319PmOkMi	Mizugama/Okinawa	Mar 29. 12	*P. mutuki ?	MM	99.5% EtOH	KX389371, KX389486, KX389417				
320PmOkMi	Mizugama/Okinawa	Mar 29. 12	*P. mutuki*	MM	99.5% EtOH	NA, NA, NA, KX389418				
323PmOkTe	Teniya/Okinawa	Apr 05. 12	*P. mutuki*	MM	99.5% EtOH	NA, NA, NA, KX389419				
324PmOkTe	Teniya/Okinawa	Apr 05. 12	*P. mutuki*	MM	99.5% EtOH	NA, NA, NA, KX389420				
349PmOkSh	Shioya Bay/Okinawa	Jun 17. 12	*P. mutuki*	MM	99.5% EtOH	NA, NA, NA, KX389421				
362PmOkOk	Oku/Okinawa	Jun 25. 12	*P. mutuki*	MM	99.5% EtOH	NA, NA, NA, KX389422				
155PamErYa	Yakomo/Okinerabu	July 25. 10	*p. aff. mutuki*	MM	70% EtOH	KX389449, KX389358, KX389473, KX389423				
159PamToKa	Kaminomine/Tokunoshima	July 28. 10	*p. aff. mutuki*	MM	70% EtOH	KX389473, KX389424				
229PamErYa	Yakomo/Okinerabu	Jun 17. 11	*p. aff. mutuki*	MM	99.5% EtOH	KX389450, KX389359, KX389474, NA				
231PamErYa	Yakomo/Okinerabu	Jun 17. 11	*p. aff. mutuki*	MM	99.5% EtOH	KX389451, KX389360, KX389475, KX389425				
233PamErYa	Yakomo/Okinerabu	Jun 17. 11	*p. aff. mutuki*	MM	99.5% EtOH	KX389452, KX389361, KX389476, KX389426				
237PamErSu	Sumiyoshi/Okinerabu	Jun 18. 11	*p. aff. mutuki*	MM	99.5% EtOH	KX389453, KX389362, KX389479, NA				
Specimen Code	Location	Number	Scientific Name	Collection Date	Collector	Collection Type	Alcohol	GenBank Accession Numbers	Notes	
---------------	-------------------	--------	-----------------	-----------------	-----------	-----------------	---------	--------------------------	-------	
248PamToKa	Kaminomine/Tokunoshima	7	P. aff. mutuki	Jun 21. 11	MM	99.5% EtOH	KX389454	KX389363, KX389478, KX389427		
250PamToKa	Kaminomine/Tokunoshima	7	P. aff. mutuki	Jun 21. 11	MM	99.5% EtOH	KX389455	KX389364, KX389477, KX389428		
328PamOkTe	Teniya/Okinawa	14	P. aff. mutuki	Apr 05. 12	MM	99.5% EtOH	KX389456	NA, NA, KX389429		
364PamOkOk	Oku/Okinawa	9	P. aff. mutuki	Jun 25. 12	MM	99.5% EtOH	KX389457	KX389365, NA, KX389430		
215PsOkIk	Ieki E/Okinawa	16	Palythoa sp. sakurajimensis	Apr 29. 11	MM	99.5% EtOH	KX389431			
1595#	Wanli Tung/Taiwan	2	Palythoa sp. sakurajimensis	Sep. 09	JDR	99.5% EtOH	KF499690, KX389432			
1597#	Wanli Tung/Taiwan	1	Palythoa sp. sakurajimensis	Sep. 09	JDR	99.5% EtOH	KF499696, KF499662, KF499778, KX389433			
1635#	Bitouchiao/Taiwan	8	Palythoa sp. sakurajimensis	Sep. 09	JDR	99.5% EtOH	KF499735, KF499652, KF499783, KX389434			
321PhOkMi	Mizugama/Okinawa	13	P. heliodiscus	Mar 29. 12	MM	99.5% EtOH	KX389458	NA, NA, KX389435		
TN116	Mizugama/Okinawa	13	P. heliodiscus	Aug 19. 10	TN*4	99.5% EtOH	NA	NA, NA, KX389436		
TN119	Mizugama/Okinawa	13	P. heliodiscus	Jul 4. 12	TN	99.5% EtOH	NA	NA, NA, KX389437		
TN121	Mizugama/Okinawa	13	P. heliodiscus	Jul 4. 12	TN	99.5% EtOH	NA	NA, NA, KX389438		

MM*: Masaru Mizuyama, JDR**: James Davis Reimer, YM**: Yu Miyazaki, TN**: Tohru Nishimura

#Specimen from Reimer et al. (2013).

GPS code: 1, N 26° 05' 15", E 127° 42' 30"; 2, N 27° 01' 16", E 128° 26' 28"; 3, N 27° 04' 00", E 128° 25' 24";
4, N 27° 03' 54", E 128° 25' 11"; 5, N 27° 20' 05", E 128° 32' 49"; 6, N 27° 52' 17", E 128° 53' 23";
7, N 27° 46' 13", E 129° 02' 18"; 8, N 26° 49' 17", E 128° 18' 50"; 9, N 26° 50' 49", E 128° 17' 12";
10, N 26° 13′ 35″, E 127° 17′ 33″; 11, N 27° 21′ 21″, E 128° 31′ 44″; 12, N 26° 05′ 17″, E 127° 42′ 06″;
13, N 26° 21′ 35″, E 127° 44′ 20″; 14, N 26° 34′ 07″, E 128° 08′ 48″; 15, N 26° 39′ 50″, E 128° 06′ 31″;
16, N 26° 23′ 40″, E 128° 00′ 22″.
Table 3 (on next page)

The mean number of tentacles ± standard deviation and results of Mann-Whitney U test with Bonferroni correction between each *Palythoa* species pairs. N = total number of examined polyps for each species (one per colony).
Table 3. The mean number of tentacles ± standard deviation and results of Mann-Whitney U test with Bonferroni correction between each *Palythoa* species pairs. N = total number of examined polyps for each species (one per colony).

Species	*P. tuberculosa*	*P. sp. yoron*	*P. mutuki*	*P. aff. mutuki*
	31.6 ± 3.4		<0.001	<0.001
(N=11)			<0.001	<0.001
P. sp. yoron	40.5 ± 2.56	<0.001	<0.001	
(N=8)				
P. mutuki	54.4 ± 7.43	<0.001		
(N=7)				
P. aff. mutuki	71 ± 4.14			
(N=8)				
Table 4 (on next page)

Cnidae types and sizes of *Palythoa aff. mutuki*, *Palythoa mutuki*, *Palythoa* sp. yoron and *Palythoa tuberculosa*.

Frequency: relative abundance of cnidae type in decreasing order; numerous, common, occasional, rare, very rare (N = number of specimens found/total specimens examined).
Table 4. Cnidae types and sizes of *Palythoa* aff. *mutuki*, *Palythoa mutuki*, *Palythoa* sp. yoron and *Palythoa tuberculosa*. Frequency: relative abundance of cnidae type in decreasing order; numerous, common, occasional, rare, very rare (N = number of specimens found/total specimens examined).

	Palythoa aff. mutuki	*Palythoa mutuki*	*Palythoa sp. yoron*	*Palythoa tuberculosa*						
	Length x width (µm)	Frequency	Length x width (µm)	Frequency						
Tentacles										
Spirocysts	12-36 x 3-8	Numerous (3/3)	13-41 x 2-8	Numerous (3/3)						
Bassitrichs	16-55 x 4-7	Common (3/3)	14-63 x 3-8	Common (3/3)						
Holotrichs small	15-20 x 5-9	Rare (1/3)	0	0						
Holotrichs large	35-77 x 19-31	Occasional (2/3)	39-78 x 18-32	Occasional (2/3)						
P-mastigophores	25-50 x 5-10	Common (3/3)	15 x 4	Very rare (single specimen)						
Column										
Spirocysts	-	0	-	0						
Basitrichs	21-53 x 5-7	Occasional (2/3)	25-83 x 5-9	Common (3/3)						
Holotrichs small	21 x 7	Very rare (single)	19-24 x 8	Rare (1/3)						
	Size	Number								
----------------	---------------	------------	---------------	------------	---------------	------------	---------------	------------	---------------	------------
Holotrichs large	32-69 x 15-30	Numerous (3/3)	24-85 x 17-31	Numerous (3/3)	39-88 x 18-36	Numerous (3/3)	34-81 x 14-38	Numerous (3/3)		
P-mastigophores	21-46 x 6-8	Rare (1/3)	-	0	-	0	52-54 x 7-8	Occasional (2/3)		
Actinopharynx										
Spirocysts	-	0	18-32 x 4-6	Occasional (2/3)	16-65 x 3-8	Occasional (2/3)	19-36 x 4-7	Rare (1/3)		
Basitrichs	19-55 x 4-10	Numerous (3/3)	16-72 x 3-8	Numerous (3/3)	17-69 x 3-9	Numerous (3/3)	22-62 x 3-10	Numerous (3/3)		
Holotrichs small	19-20 x 7-8	Rare (1/3)	-	0	-	0	0			
Holotrichs large	34-93 x 18-33	Numerous (3/3)	34-72 x 4-31	Numerous (3/3)	38-77 x 10-33	Common (3/3)	40-85 x 18-38	Numerous (3/3)		
P-mastigophores	29-40 x 7-11	Rare (1/3)	-	0	21-29 x 6-7	Occasional (2/3)	28-52 x 5-8	Rare (1/3)		
Mesenteries										
filaments										
Spirocysts	15 x 24	Very rare (single specimen)	-	0	-	0	28 x 8	Very rare (single specimen)		
Basitrichs	25-69 x 4-10	Numerous (3/3)	41-80 x 5-10	Numerous (3/3)	33-66 x 4-9	Numerous (3/3)	24-74 x 5-9	Numerous (3/3)		
Holotrichs small	-	0	-	0	-	0	-	0		
----------------	----------------	----------------	----------------	----------------	----------------					
Holotrichs large	37-64 x 22-35	Numerous (3/3)	44-83 x 21-32	Numerous (3/3)	51-90 x 21-35					
P-mastigophores	27-39 x 5-10	Occasional 2/3	21 x 6	Very rare (single specimen)	21-29 x 4-8					
					45-85 x 22-42					
					Occasional (2/3)					

Manuscript to be reviewed
Table 5 (on next page)

GenBank accession numbers of genus *Palythoa* sequences used in this study.
Table 5. GenBank accession numbers of genus *Palythoa* sequences used in this study.

Sequence code	Species	mtCOI accession number	mt 16S-rDNA accession number	ITS-rDNA accession number	Reference		
PtEW3	*P. tuberculosa*	NA	NA	DQ997902	Reimer *et al.* 2007a		
PtAT1	*P. tuberculosa*	AB219195	NA	NA	Reimer *et al.* 2006		
PtAT2	*P. tuberculosa*	AB219196	NA	DQ997897	Reimer *et al.* 2006		
PtBA1	*P. tuberculosa*	AB219197	NA	NA	Reimer *et al.* 2006		
PtWK1	*P. tuberculosa*	AB219198	NA	NA	Reimer *et al.* 2006		
PtYS1	*P. tuberculosa*	AB219200	NA	NA	Reimer *et al.* 2006		
PtMil1	*P. tuberculosa*	AB219199	AB219218	NA	Reimer *et al.* 2006		
PtIsK3	*P. tuberculosa*	AB219203	NA	NA	Reimer *et al.* 2006		
PtEO1	*P. tuberculosa*	AB219205	NA	NA	Reimer *et al.* 2006		
PtKK1	*P. tuberculosa*	AB219206	NA	NA	Reimer *et al.* 2006		
PtIsK2	*P. tuberculosa*	AB219207	NA	NA	Reimer *et al.* 2006		
PtYS4	*P. tuberculosa*	NA	NA	DQ997903	Reimer *et al.* 2006		
PtIrHo16	*P. tuberculosa*	NA	NA	DQ997909	Reimer *et al.* 2006		
PtCN1	*P. tuberculosa*	NA	NA	DQ997896	Reimer *et al.* 2006		
PtCN14	*P. tuberculosa*	NA	NA	DQ997933	Reimer *et al.* 2006		
PtIsO1	*P. tuberculosa*	AB219202	NA	NA	Reimer *et al.* 2006		
PtIsO13	*P. tuberculosa*	NA	NA	DQ997919	Reimer *et al.* 2006		
PtIsO11	*P. tuberculosa*	NA	NA	DQ997929	Reimer *et al.* 2006		
PtIsrael13	*P. tuberculosa*	NA	NA	DQ997931	Reimer *et al.* 2006		
PtOtsFu11	*P. tuberculosa*	NA	NA	DQ997945	Reimer *et al.* 2007a		
PtIrHo11	*P. tuberculosa*	NA	NA	DQ997914	Reimer *et al.* 2007a		
PtOtsNi3	*P. tuberculosa*	NA	NA	DQ997939	Reimer *et al.* 2006		
PtIrHo13	*P. tuberculosa*	NA	NA	DQ997911	Reimer *et al.* 2007a		
PtL1	*P. tuberculosa*	NA	EU333661	NA	Reimer & Todd 2009		
Code	Species	Accession	Accession	Accession	Author		
---------	-----------------	-------------	-------------	-------------	-----------------		
PtK2	*P. tuberculosa*	NA	EU333654	NA	Reimer & Todd 2009		
PtL3	*P. tuberculosa*	NA	EU333662	NA	Reimer & Todd 2009		
PtK7	*P. tuberculosa*	NA	EU333657	NA	Reimer & Todd 2009		
PtYoS1	*P. sp. yoron*	AB219204	AB219219	DQ997921	Reimer et al. 2007a		
PmAT	*P. mutuki*	AB219209	NA	NA	Reimer et al. 2006		
PmPM2	*P. mutuki*	AB219210	NA	NA	Reimer et al. 2006		
Pm1162	*P. mutuki*	JF419796	NA	NA	Reimer et al. 2011		
Pm1163	*P. mutuki*	JF419788	NA	NA	Reimer et al. 2011		
PmBA1	*P. mutuki*	AB219215	NA	NA	Reimer et al. 2006		
PmYS1	*P. mutuki*	AB219213	NA	NA	Reimer et al. 2006		
PmIrHo1	*P. mutuki*	NA	NA	DQ997888	Reimer et al. 2007a		
PmYS2	*P. mutuki*	NA	NA	DQ997892	Reimer et al. 2007a		
PpAT1	*P. mutuki*	AB219211	AB219220	DQ997891	Reimer et al. 2007a		
PmMil1	*P. mutuki*	AB219217	AB219225	DQ997889	Reimer et al. 2007a		
PmEs1	*P. mutuki*	NA	NA	DQ997894	Reimer et al. 2007a		
PpAT2	*P. mutuki*	AB219212	AB219221	NA	Reimer et al. 2006		
PpYS1	*P. mutuki*	NA	AB219222	NA	Reimer et al. 2006		
PamTOB51	*P. aff. mutuki*	NA	GQ464873	GQ464902	Swain 2010		
PsPSH1	*P. sp. sakurajimensis*	NA	DQ997842	DQ997886	Reimer et al. 2007a		
PsPWS1	*P. sp. sakurajimensis*	NA	DQ997863	DQ997887	Reimer et al. 2007a		
PsPEWn1	*P. sp. sakurajimensis*	NA	DQ997862	NA	Reimer et al. 2007a		
PsGYi	*P. sp. sakurajimensis*	KF499720	NA	NA	Reimer et al. 2013		
Ps1595	*P. sp. sakurajimensis*	KF499697	NA		Reimer et al. 2013		
Code	Genus	Accession 1	Accession 2	Accession 3	Accession 4	Accession 5	Author(s) and Year
--------	----------------	-------------	-------------	-------------	-------------	-------------	-------------------
Ps1597	*P. sp. sakurajimensis*	KF499696	NA	KF499778			Reimer et al. 2013
Ps1635	*P. sp. sakurajimensis*	KF499735	NA	KF499776			Reimer et al. 2013
PhIsK2	*P. heliodiscus*	NA	NA	DQ997885			Reimer et al. 2007a
PhIsK11	*P. heliodiscus*	NA	NA	DQ997880			Reimer et al. 2007a
PhEK1	*P. heliodiscus*	NA	NA	DQ997882			Reimer et al. 2007a
PhSaiLL1	*P. heliodiscus*	AB219214	AB219223	NA			Reimer et al. 2006
PhEK1	*P. heliodiscus*	NA	AB219224	NA			Reimer et al. 2006
PhPpM1	*P. heliodiscus*	AB219216	NA	NA			Reimer et al. 2006
Table 6 (on next page)

Ovary development in polyps of four species of *Palythoa*.

Number of polyps possessing developing and/or developed ovaries (N), total number of examined polyps (Nt) and ratio of N to Nt for collected specimens of *P. tuberculosa*, *P. mutuki*, *P. sp. yoron* and *P. aff. mutuki* on each sampling date. * indicates observation of developed ovaries in specimens.
Table 6. Number of polyps possessing developing and/or developed ovaries (N), total number of examined polyps (Nt) and ratio of N to Nt for collected specimens of *P. tuberculosa*, *P. mutuki*, *P. sp. yoron* and *P. aff. mutuki* on each sampling date. * indicates observation of developed ovaries in specimens.

Species	*P. tuberculosa*		*P. mutuki*		*P. sp. yoron*		*P. aff. mutuki*		
Date	N	Nt	N/Nt (%)	N	Nt	N/Nt (%)	N	Nt	N/Nt (%)
2010.06.15	2	60	3	0	13	0	0	18	0
07.28	36	61	*59	12	22	55	0	49	0
08.30	42	80	53	5	20	25	0	52	0
09.20	27	118	*23	7	25	28	0	51	0
10.26	0	198	NA	NA	NA	NA	16	52	*31
12.08	0	89	0	0	54	0	0	53	0
2011.06.21	40	78	51	1	36	3	0	54	0
07.23	9	63	14	14	30	47	0	53	0
08.22	10	63	16	14	40	35	1	43	2
10.05	10	65	15	15	37	41	18	46	*41
11.09	0	72	0	2	34	6	15	40	*40
11.28	5	52	10	0	31	0	0	44	0
12.16	0	63	0	0	36	0	0	40	0
2012.02.12	0	82	0	0	52	0	0	47	0
Figure 1

Map of Palythoa species specimen locations in the Ryukyu Archipelago in this study.

Map of *Palythoa* species specimen locations in the Ryukyu Archipelago, including Okinawa-jima I., Zamami-jima I., Yoron-to I., Okinoerabu-jima I., and Tokunoshima I. Locations for specimens collected in this study represented by closed symbols, location for spawning timing investigations represented by open symbol.
Figure 2

In situ images of *Palythoa* species examined in this study.

In situ images of **A** *Palythoa tuberculosa*, **B** *P. mutuki*, **C** *P.* sp. yoron, **D** *P.* aff. *mutuki*, **E** *P.* tuberculosa (left; “Pt”) and *P.* sp. yoron (right, “Py”), and **F** *P. mutuki* (left, “Pm”) and *P.* aff. *mutuki* (right, “Pam”). Scale bars in **A**, **C**, **E** are 2 cm, in **B**, **D**, **F** 1 cm. All images taken by M. Mizuyama.
Figure 3

Cnidae of *Palythoa* species examined in this study.

Cnidae in tentacles, column, pharynx, and filaments of *Palythoa aff. mutuki*, *Palythoa mutuki*, *Palythoa* sp. yoron, and *Palythoa tuberculosa*. S = spirocysts, B = basitrichs, HS = holotrichs small, HL= holotrichs large, P = microbasic p-mastigophores.

A *Palythoa aff. mutuki*

Tentacles	Column	Pharynx	Mesenteries Filaments
S B HS HL P	B HS HL P	B HS HL P	S B HL P

B *Palythoa mutuki*

Tentacles	Column	Pharynx	Mesenteries Filaments
S B HL B HS HL	S B HL P	B HL P	

C *Palythoa* sp. yoron

Tentacles	Column	Pharynx	Mesenteries Filaments
S B HL P	HL S B HL P	B HL P	

D *Palythoa tuberculosa*

Tentacles	Column	Pharynx	Mesenteries Filaments
S B HL P	S B HL P	S B HL P	

80 μm
Figure 4 (on next page)

Monthly change of ratio of number of polyps possessing developing and/or developed ovaries (N) on total number of examined polyps (Nt).

A. Monthly change of ratio of number of polyps possessing developing and/or developed ovaries (N) on total number of examined polyps (Nt) in 2010. Red, *P. tuberculosa*; blue, *P. mutuki*; yellow, *P. sp. yoron*. B. Monthly change of ratio of number of polyps possessing developing and/or developed ovaries (N) on total number of examined polyps (%) in 2011. Red, *P. tuberculosa*; blue, *P. mutuki*; yellow, *P. sp. yoron*; green, *P. aff. mutuki*.
A

B

Sampling date

P. tuberculosa
P. mutuki
P. sp. yoron

Manuscript to be reviewed

PeerJ reviewing PDF | (2018:02:25675:2:1:NEW 6 Jun 2018)
Figure 5

Cross sections of *Palythoa* sp. *yoron* and *P*. aff. *mutuki* showing ovary development.

Cross section of polyp of **A** *Palythoa* sp. *yoron* (26 October 2010) and **B** matured eggs; **C** *P*. sp. *yoron* (9 November 2011) and **D** germinal ribbon inside a mesentery; **E** *P*. aff. *mutuki* (21 June 2011), and **F** developed ovaries. Abbreviations: *te*, tentacles; *od*, oral disk; *co*, coenenchyme; *mo*, mouth; *ph*, pharynx; *eg*, eggs; *mf*, mesenterial filament; *gr*, germinal ribbon; *ov*, ovary. Scale bars: 2 mm in **A** and **E**; 500 μm in **B**; 1 mm in **C**, **D** and **F**. All images taken by M. Mizuyama.
Figure 6

Phylogenetic trees of four DNA markers for *Palythoa* species examined in this study.

A. Maximum likelihood (ML) tree of cytochrome oxidase subunit I (COI) sequences. **B.** ML tree of mitochondrial 16S ribosomal DNA (mt16S rDNA) sequences. **C.** Maximum likelihood tree of internal transcribed spacer of ribosomal DNA (ITS-rDNA) sequences. **D.** Maximum likelihood tree of asparagine-linked glycosylation 11 protein (ALG11) region. Values at branches represent ML and NJ bootstrap probabilities, respectively (>50%). Bayesian posterior probabilities of >0.95 are represented by thick branches.
Figure 7 (on next page)

Species trees for *Palythoa* under A six species model, and B four species model. Values at branches represent posterior probability.
