ABSTRACT
This study was conducted to detect the prevalence of Babesiosis in different areas at Baghdad city, by using microscopic examination; 180 sheep’s head blood samples were collected from each local breed (122 males and 58 females) with different age groups from 6 months to more than one year old, during the period extended from 1/October 2019 to end of April 2020. Giemsa stained blood smears were done for detection Babesia spp. The overall rate of infection with Babesia spp. in sheep was 15.55% (28/180), significant differences P≤0.05 was recorded between male 19.67% (24/122) and female 6.89% (4/58), and sheep with equal or more than one year old registered higher rate of infection 18.18% (2/11), also highest rate of infection recorded in April 45% (9/20) with highly significant differences P≤0.01 between months of study.

Key world: prevalence, babesia, local breed, blood samples, sheep, Iraq.
INTRODUCTION
Babesiosis is a tick-borne infectious disease caused by intra-erythrocytic Apicomplexan protozoan parasites of the genus *Babesia*. Wild and domestic animals are reservoir hosts for more than 100 *Babesia* spp.. Humans are infected by a few of these species and described as an important disease of livestock. Economically *Babesia* is the most widespread parasite due to exposure of 400 million animals’ infection through the world, with consequent heavy economic losses such as mortality, reduction in meat and milk yield and indirectly through control measures of ticks. Babesiosis especially in ruminants has great economic importance, because unlike many other parasitic disease, it effects adults more severely than young animal, leading to direct losses through death and the restriction of movement of animals by quarantine laws. Three species that are morphologically different, *B. ovis, B. motasi* and *B. crassa*, effect sheep and goats severely; victims are characterized by such symptoms as fever, anemia, jaundice, emaciation, hemoglobinuria and death. *Babesia* spp. are transmitted by tick species belong to the genera *Hyalomma, Rhipicephalus* and *Boophilus*. Generally, diagnosis of Babesiosis is make by microscopic identification of Giemsa stained blood smear, Some researchers studied the prevalence of *Babesia* spp., in Iraq Zangana recorded the prevalence of *Babesia motasi* in Duhok province 4% (20/500) in goats, while Renneker recorded 1.5% (3/195) in sheep of *Babesia ovis* in the Kurdistan Region, and Abdul-Hassan and Ali registered highest rate of *Babesia spp.* in goats 11.7% at Al-Qadisiya province. This finding was accordance with Hussain et al (9) in Qena province upper Egypt who recorded 11.53% (15/130) *Babesia motasi* and 10% (13/130) with *Babesia ovis*, with single or paired pyriform of ovoid shape and close accordance with Haghi et al (7) whom recorded overall rate with ovine Babesiosis in sheep and goats 15.4% (34/220) in Iran and accordance with Nasir, M. A., (11) who recorded 17.86% (5/28) with ovine Babesiosis in Turkish awassi sheep in Baghdad city. Significant differences P ≤ 0.05 was recorded between male that showed highest rate of infection 19.67% (24/122) and female which recorded 6.89% (4/58) (Table 2). This result not compatible with Kage et al whom registered highest rate with *Babesia spp.* in sheep and goat’s female in India (10), also in accordance with Rjeibi et al (16) in Tunis recorded highest rate in female 10.8% than in male 2.1%, this due to differences in number of samples collected and method of diagnosis. Older sheep with age group 1 year and above revealed highest rate of infection *Babesia spp.* 18.18% (2/11) without significant differences between age groups (Table 3). This result agreed with Kage et al in India whom observed that sheep and goats oldest than 6 months age recorded highest rate of infection (10), also with Abdul-Hassan, in Al-Qadisiya province, Iraq who recorded 26.6% in goats (1). Animals less than 6 months of age were resistable to Babesial infection because of the natural resistance supports from dam colostrum. According to months of study

2- Laboratory examination
Giemsa stained blood smears were done after fixing blood smears by using absolute Ethanol according to (6). The Laboratory examinations were done at the research Parasitology laboratory of the Veterinary Medicine College /Baghdad University. Stained smears were examined under oil immersion (X100).

RESULTS AND DISCUSSION
Result of the study recorded total rate of Infection with *Babesia spp.* in sheep by microscopic examination of giemsa stained blood smear 15.56% (28/180) at Baghdad city (Table 1). *Babesia spp.* prepared by microscopic examination as singly small round, ovoid or pairs as pear or pyriform shape intraerythrocytic, stained dark blue (Fig 1). This finding was accordance with Hussain et al (9) in Qena province upper Egypt who recorded 11.53% (15/130) *Babesia motasi* and 10% (13/130) with *Babesia ovis*, with single or paired pyriform of ovoid shape and close accordance with Haghi et al (7) whom recorded overall rate with ovine Babesiosis in sheep and goats 15.4% (34/220) in Iran and accordance with Nasir, M. A., (11) who recorded 17.86% (5/28) with ovine Babesiosis in Turkish awassi sheep in Baghdad city. Significant differences P ≤ 0.05 was recorded between male that showed highest rate of infection 19.67% (24/122) and female which recorded 6.89% (4/58) (Table 2). This result not compatible with Kage et al whom registered highest rate with *Babesia spp.* in sheep and goat’s female in India (10), also in accordance with Rjeibi et al (16) in Tunis recorded highest rate in female 10.8% than in male 2.1%, this due to differences in number of samples collected and method of diagnosis. Older sheep with age group 1 year and above revealed highest rate of infection *Babesia spp.* 18.18% (2/11) without significant differences between age groups (Table 3). This result agreed with Kage et al in India whom observed that sheep and goats oldest than 6 months age recorded highest rate of infection (10), also with Abdul-Hassan, in Al-Qadisiya province, Iraq who recorded 26.6% in goats (1). Animals less than 6 months of age were resistable to Babesial infection because of the natural resistance supports from dam colostrum. According to months of study
April showed highest rate of infection with *Babesia spp.* 45% (9/20), with highest significant difference (P≤0.01) between months of study (Table4). This result disagreed with Abdul-Hassan whom registered highest rate of *Babesia spp.* in goats in October and lower in April at Al-Qadisiya province, Iraq (1). This fluctuation in prevalence between months might be due to samples number used and variation of environmental conditions that effect both parasite and vector, differences in results might be due to numbers of ticks and continuous exposure of animals in study areas (14).

Figure 1. Giemsa stained blood smear under oil immersion(X100) showed *Babesia spp.* intraerythrocytic singly small round or ovoid (black arrow) or pairs pyriform shape (red arrow)

Infection	No	Percentage (%)
Positive	28	15.56
Negative	152	84.44
Total	180	100%

** (P≤0.01)-Highly significant

Table 2. Rate of Infection with *Babesia spp.* according to sex
Sex

Male
Female
Total

* (P≤0.05)-Significant.

Table 3. Rate of Infection with *Babesia spp.* according to age groups
Age groups
6 months
6-12 months
≥ 1 years
Total

NS: Non-Significant

Table 4: Rate of Infection with *Babesia spp.* according to months of study.
Months

October
November
December
January
February
March
April
Total

** (P≤0.01)-Highly significant.

REFERENCES

1. Abdul-Hassan, N. S. 2016. An investigation of *Babesia spp.* in goats in AL-Qadisyiah Province. Al-Qadisiyah Journal of Veterinary Medicine Sciences, 15(1), 77-80

2. Aktas, M., K. Altay and N. Dumanli, 2007. Determination of prevalence and risk factors for infection with *Babesia ovis* in small ruminants from Turkey by polymerase chain
3. Al-Abedi, G. J. K. and A. M. A. Al-Amery 2020. Molecular diagnosis and phylogenetic analysis of babesia species isolated from ticks of infested cattle in Wasit Governorate, Iraq. Iraqi Journal of Agricultural Sciences, 51(5), 1249-1260
4. Altay, K., N. Dumanli and M. Aktas, 2007. Molecular identification, genetic diversity and distribution of Theileria and Babesia species infecting small ruminants. Veterinary Parasitology, 147(1-2), 161-165
5. Ameen, K. A. H., B. A., Abdullah, and R. A. Abdul-Razaq 2012. Seroprevalence of Babesia bigemina and Anaplasma marginale in domestic animals in Erbil, Iraq. Iraqi Journal of Veterinary Sciences, 26(3), 109-114
6. Chaudhri, S. S. and S. K. Gupta, 2003. Manual of General Veterinary Parasitology. 1st Ed. Department of Veterinary Parasitology College of Vet. Sci. Haryana Agricultural University, India p.p: 46-47.
7. Hagh, M. M., F. Etemadifar, M. Fakhar, S. H. Teshnizi, M. Soosaraei, A. Shokri and H. Mashhadi 2017. Status of babesiosis among domestic herbivores in Iran: A systematic review and meta-analysis. Parasitology research, 116(4), 1101-1109
8. Hatem, A. N. 2020. Prevalence and ecology of the brown Dog Tick Rhipicephalus sanguineus in Domestic Mammals in Basrah Province, Iraq, with the acaricidal effect of quercus brantti acorns extract in adults. Iraqi Journal of Agricultural Science, 51(6), 1670-1677
9. Hussein, N. M., Mohammed E. S., Hassan A. A. and El-Dakhly K. M. 2017. Distribution pattern of Babesia and Theileria species in sheep in Qena Province, Upper Egypt. Arch Parasitol, 1(102), 2
10. Kage S., M. G., J. N. Lakkundi, B. P. Shivashankar and P. E. D’Souza 2019. Prevalence of ixodid ticks on Babesia ovis infected sheep and goats in Karnataka state
11. Nasir, M. A., N. N. Al-Anbery and A. A. Taha 2018. The effect of kind blood parasite infection on some productive traits in Turkish Awassi sheep. Iraqi Journal of Agricultural Science, p.p: 48(6-B)
12. Onoja, I., P. Malachy, W. P. Mshelia, S. O. Okaiyeto, S. Danbirni and G. Kwanashie 2013. Prevalence of babesiosis in cattle and goats at Zaria abattoir, Nigeria. J. Vet. Adv, 3(7), 211-214
13. Ranjbar-Bahadori, S., B. Eckert, Z. Omidian, N. S. Shirazi and P. Shayan 2012. Babesia ovis as the main causative agent of sheep babesiosis in Iran. Parasitology Research, 110(4), 1531-1536
14. Razmi, G. R., A. Naghibi, M. R. Aslani, K. Dastjerdi and H. Hossieni 2003. An epidemiological study on Babesia infection in small ruminants in Mashhad suburb, Khorasan province, Iran. Small Ruminant Research, 50(1-2), 39-44
15. Reneker, S., J. Abdo, M. A. Bakheit, B. Kullmann, D. Beyer, J. Ahmed and U. Seitzer 2013. Coinfection of sheep with Anaplasma, Theileria and Babesia species in the Kurdistan Region, Iraq. Transboundary and Emerging Diseases, 60, 113-118
16. Rjeibi, M. R., M. A. Darghouth and M. Gharbi 2016. Prevalence of Theileria and Babesia species in Tunisian sheep. Onderstepoort Journal of Veterinary Research, 83(1), 1-6
17. Terkawi, M. A., O. M. Thekisoe, C. Katsande, A. A. Latif, B. J. Mans, O. Matthee and I. Igarashi 2011. Serological survey of Babesia bovis and Babesia bigemina in cattle in South Africa. Veterinary Parasitology, 182(2-4), 337-342
18. Vannier, E., and P. J. Krause 2012. Human babesiosis. New England Journal of Medicine, 366(25), 2397-2407
19. Walker, A., A. Bouattour, J.L. Camicas, A. Estrada-Pena, I.G. Horak, A.A. Latif, R.G. Pegram, and P.M. Preston, 2003. Ticks of Domestic animals in Africa: A guide to identification of species, 1st Ed. bioscience reports, Edinburgh, Scotland, UK, pp. 114–200
20. Zangana, I. K., and I. A. Naqid 2011. Prevalence of piroplasmosis (Theileriosis and Babesiosis) among goats in Duhok Governorate. AL-Anbar J. Vet. Sci, 4(2).