The dormant blood microbiome in chronic, inflammatory diseases

Marnie Potgieter¹, Janette Bester¹, Douglas B. Kell²,* and Etheresia Pretorius¹

¹Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia 0007, South Africa and ²School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, 131, Princess St, Manchester M1 7DN, Lancs, UK

*Corresponding author: School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, 131, Princess St, Manchester M1 7DN, Lancs, UK. Tel: (+44)161 306 4492; E-mail: dbk@manchester.ac.uk

One sentence summary: Atopobiosis of microbes (the term describing microbes that appear in places other than where they should be), as well as the products of their metabolism, seems to correlate with, and may contribute to, the dynamics of a variety of inflammatory diseases.

Editor: Prof. Antoine Danchin

ABSTRACT

Blood in healthy organisms is seen as a ‘sterile’ environment: it lacks proliferating microbes. Dormant or not-immediately-culturable forms are not absent, however, as intracellular dormancy is well established. We highlight here that a great many pathogens can survive in blood and inside erythrocytes. ‘Non-culturability’, reflected by discrepancies between plate counts and total counts, is commonplace in environmental microbiology. It is overcome by improved culturing methods, and we asked how common this would be in blood. A number of recent, sequence-based and ultramicroscopic studies have uncovered an authentic blood microbiome in a number of non-communicable diseases. The chief origin of these microbes is the gut microbiome (especially when it shifts composition to a pathogenic state, known as ‘dysbiosis’). Another source is microbes translocated from the oral cavity. ‘Dysbiosis’ is also used to describe translocation of cells into blood or other tissues. To avoid ambiguity, we here use the term ‘atopobiosis’ for microbes that appear in places other than their normal location. Atopobiosis may contribute to the dynamics of a variety of inflammatory diseases. Overall, it seems that many more chronic, non-communicable, inflammatory diseases may have a microbial component than are presently considered, and may be treatable using bactericidal antibiotics or vaccines.

Keywords: ‘sterile’ blood microbiome; culturability; dormancy; dysbiosis; atopobiosis; Parkinson’s disease; Alzheimer disease

INTRODUCTION

‘Overall, it seems inevitable that the availability of these methods will cause the catalog of disease states recognized as having a microbial contribution to their etiology to expand enormously in the short term, particularly as improved methods for resuscitation of small cell numbers are found’ (Davey and Kell 1996).

Over the years, a variety of diseases that were previously considered non-communicable have been found to have a microbial component, the role of Helicobacter pylori in ulcerogenesis (Marshall and Warren 1984) being a particularly well-known example. There have also been hints for a microbial component to many other non-communicable diseases, but culturing the relevant organisms has rarely been successful. However, there is increasing recognition that microbes may be present in forms that are not easily culturable, and a number of recent articles have brought these possibilities more sharply into focus. Our aim is to review these developments. The manuscript structure is shown in Fig. 1.
A note on terminology: viable, culturable, dormant and sterile

In this field, much confusion has arisen historically because of a failure to recognize that most microbes reproduce by binary fission and that this reproduction must be a minimal property or hallmark of a microbial cell that possesses ‘life’ or is ‘alive’ (Proal, Albert and Marshall 2011). Thus, as with Schrödinger’s cat (e.g. Primas 1981; Gribbin 1985), we cannot say that an individual microbial cell ‘is’ alive, only (if true) that it ‘was’ alive, since it will by then have become two cells. This implies that being alive is not best treated as though it were an innate property of a cell, but the definition must be operational, and include both the cell and the ‘environment’ (experiment) used to detect the status a posteriori (Kell et al. 1998).

Thus, as with Postgate (e.g. Postgate 1967, 1969, 1976), we equate viability with culturability, and stress that culturability—the ability to reproduce—is to be determined operationally. Other methods that do not determine culturability are not tests of viability per se, but merely measure what they measure (e.g. the content of a chemical such as ATP, membrane permeability to a dye, enzymatic activity, macromolecular sequences and so on). In addition, it is impossible in principle to (cor)relate macroscopic measurements of a culture with the ability of individual cells to divide (Kell et al. 1991; Davey and Kell 1996). In other words, if the macroscopic ATP content of say a starving culture were to decrease by 50%, we would not know if all of the cells had lost half their ATP or half of the cells had lost all of their ATP (or anything in between). The culturability of the former would likely be 50% and of the latter 100%, despite the same macroscopic ATP content.

A lack of culturability may mean that a cell is non-viable under the circumstances tested, but viability or non-viability are not the only two possible states here. An apparent non-culturability of a surviving cell also admits another possibility, for which the natural term is ‘dormant’ (Kaprelyants, Gottschall and Kell 1993; Epstein 2013). This is that the cell is not presently culturable (viable), but it is not ‘dead’ (in the sense of an operationally irreversible loss of viability) in that it may be induced to return to a state of culturability (by a process or processes typically referred to as ‘resuscitation’). This also means that the term ‘viable-but-non-culturable’, while quite common in use, is in fact an oxymoron that is to be discouraged (Kell et al. 1998). The eminent microbial physiologist Howard Gest is similarly scathing about the term ‘unculturable’ (Gest 2008), noting that one just needs to try harder to culture organisms. Table 1 shows the three terms best suited to discuss these issues, while Fig. 2 shows a diagrammatic representation of the macroscopic physiological microbial states we mostly consider.

The assessment of replication potential (culturability) of individual cells may be done microscopically (e.g. by microscopic counts) or macroscopically (e.g. via colony formation on an agar plate or through the ‘most probable number’ technique). The latter has the advantage of potentially assessing dormancy in the absence of any contaminating culturable cells that might proliferate during the assay (Kaprelyants, Mukamolova and Kell 1994; Votyakova, Kaprelyants and Kell 1994; Kell et al. 1998).

For assessing culturability (=viability), we do not therefore include

Table 1. Operational definitions of viable, non-viable and dormant microbes. These are the three terms we consider best suited to describe the macroscopic physiological states of microbes as regards their ability to replicate. We note that the terms ‘not immediately culturable’ (NIC) and ‘active but not culturable’ (ABNC) can also have some utility (Kell et al. 1998), while dormant cells are sometimes referred to as ‘persisters’. Other variants of ‘dormancy’ that have been used include ‘anabiosis’ (Keilin 1959) and ‘cryptobiosis’ (e.g. Clegg 2001; Neuman 2006); all these terms imply a reversible state between the appearance of being living and non-living in different circumstances. This definition of dormancy also likely includes cells that may operationally be ‘injured’, and possibly wall-less L-forms (Domingue and Woody 1997; Mattman 2001; Allan, Hoischen and Gumpert 2009; Dominguez-Cuevas et al. 2012; Errington 2013; Mercier, Kawai and Errington 2013, 2014) provided they are or may become culturable. ‘Sterile’ refers to an absence of operationally viable organisms as defined in this table.

Term	Properties
Viable	Capable of observable replication, i.e. culturable, by any stated means.
Non-viable	Incapable of observable replication by any stated means normally capable of effecting replication in the relevant organism.
Dormant	Not viable in the sense of not being more or less immediately culturable, but may be returned to a state of viability or culturability by preincubation under suitable conditions.
other strategies in which cells do not actually divide, such as the so-called direct viable count of Kogure, Simidu and Taga (1979). Thus, we here highlight the point that the possibility of microbial dormancy means that a system that appears to be devoid of culturable microbes may still contain dormant cells or forms that may become culturable.

The ‘sterile’ blood microbiome brought into question

The circulation is a closed system and the blood in healthy organisms was first believed to be a sterile environment (Drennan 1942; Proal, Albert and Marshall 2014). This definition is used in the most usual sense of an absence of culturable microbes, since blood can of course provide a suitable growth medium for microbes (as in blood culture; Wilson and Weinstein 1994; Weinstein 1996; Schroeter et al. 2012; cf. Valencia-Shelton and Loeffelholz 2014), and any bacteraemia or sepsis, even at 1–10 cells mL$^{-1}$ (Murray 2015), is potentially life-threatening (e.g. Vincent et al. 2009; Eleftheriadis et al. 2011; Havey, Fowler and Daneman 2011; Montassier et al. 2013). However, the principle of the presence of truly sterile blood in healthy humans has been challenged, as operationally it does not mean that dormant or non-culturable forms of organisms are absent (Kaprelyants, Gottschal and Kell 1993; Kell et al. 1998; McLaughlin et al. 2002) (see Table 1). Nearly 50 years ago, the existence of a novel bacteriological system was noted in 71% of blood samples taken from diseased humans and from 7% of supposedly healthy humans, when RBCs were lysed (Domingue and Schlegel 1977). A year later, corynebacteria-like microorganisms developing in hemo-cultures were shown within RBCs (Tedeschi et al. 1978), and in 2001 it was found that even ‘healthy’ blood specimens can contain bacterial 16S ribosomal DNA (Nikkari et al. 2001). Domingue and Woody (1997) and Domingue (2010) summarizes much of this earlier literature. L-forms are bacterial variants that lack some or all of a cell wall. Nonetheless they can divide, especially in osmotically stabilized media, by processes that variously involve membrane blebbing, tubulation, vesiculation and fission (Allan, Hoischen and Gumpert 2009; Errington 2013; Mercier, Kawai and Errington 2014). While it remains unclear whether what was seen in these earlier studies (Domingue and Woody 1997; Domingue 2010) may have been L-forms (Mattman 2001), that could in time revert to normal bacteria under the correct conditions (Casadesués 2007), L-forms are becoming a topic of considerable current research (Devine 2012; Domínguez-Cuevas et al. 2012; Mercier, Kawai and Errington 2013, 2014). The presence of a blood bacterial microbiome has also been associated with a variety of infectious, as well as non-infectious disease states (Huang et al. 2006; Thwaites and Gant 2011; Nielsen et al. 2012; Prajsnar et al. 2012; Wang et al. 2012a; Kibu et al. 2014; Sato et al. 2014). It is, for example, known that H. pylori can exist not only in the gastric mucosa but also in peripheral blood, where it could cause bacteremia (Huang et al.

Figure 2. A diagrammatic representation of the major macroscopic physiological states of microbes and their interrelationships.
erythrocytes mL \(\sim \) et al. (Eisenreich et al. 2013; Prajsnar et al. 2012), while many other pathogens, such as Listeria monocytogenes (Kyarath and Freitag 2012), Salmonella typhimurium (Eisenreich et al. 2010; Claudi et al. 2014; Holden 2015) and Yersinia pestis (Jaberg 1991), are well known to persist intracellularly; Gest (2008) gives other historical examples. The same is true for viruses, which are not discussed here.

The presence of an aberrant blood microbiota (as assessed by sequencing) has been implicated in type II diabetes and cardiovascular disease (Amar et al. 2011, 2013; Sato et al. 2014). There is also growing evidence that periodontal disease and gingivitis are closely linked to cardiovascular disease (Yang et al. 2013; Ramirez et al. 2014). Oral bacterial translocation into the blood has been implicated in the development of periodontal disease-induced endocarditis and myocardial and/or cerebral infarction, especially in patients with heart valve dysfunction (Koren et al. 2011; Amar and Engelke 2014; Seringec et al. 2014).

We will argue in the next sections that the existence of potentially viable (but possibly non-proliferating) pleomorphic bacteria in the blood of healthy humans (McLaughlin et al. 2002) may therefore be of some significance in pathology. If such a microbiome can disrupt homeostasis, it can ultimately play a fundamental role in disease development and progression. It has therefore been proposed that the blood microbiota might therefore represent or contribute to the first step in the kinetics of atherosclerosis (Sato et al. 2014), cardiovascular disease and type II diabetes (Amar et al. 2011), and therefore ultimately serve as biomarkers for cardiovascular disease risk (Amar et al. 2013). However, in the quest to use the blood microbiota as biomarkers, the question of detectability and cultivability are key concepts.

In particular, the existence of a blood microbiome is only really meaningful and of scientific interest if it represents an undisturbed state, and is not, for instance, an artefact caused by the external introduction of microbes through human intervention, reagent contamination (Schroeter et al. 2012; Salter et al. 2014) and so forth. We therefore rehash the evidence that while such artefacts are certainly possible, and must be excluded rigorously, the phenomenon of a human blood microbiome cannot be dismissed as such an artefact in toto.

Evidence that these observations are not due to contamination

While contamination from reagents (e.g. Schroeter et al. 2012; Salter et al. 2014), or simply poor sterile technique with needles and so on, can lead to an artefactual appearance of a blood microbiome, we consider that the following arguments, taken together, exclude the thought that the entire (and considerable) literature on a blood microbiome can be explained via contamination.

(l) The first argument is that there are significant differences between the blood microbiomes of individuals harboring disease states and nominally healthy controls, despite the fact that samples are treated identically (see later). Some similar arguments apply to the assessment of drug transporters under different conditions (Keil and Oliver 2014).

(II) A second argument is that the morphological type of organism (e.g. coccus versus bacillus) seems to be characteristic of particular diseases.

(III) A third argument is that in many cases (see below) relevant organisms lurk intracellularly, which is hard to explain by contamination.

(IV) A fourth argument is that there are just too many diseases where bacteria have been found to play a role in the pathogenesis, that all of them may be caused by contamination.

(V) Finally, the actual numbers of cells involved seem far too great to be explicable by contamination; given that blood contains more than 10^10 erythrocytes mL^{-1}, if there was just one bacterial cell per 100 000 erythrocytes (see below and Amar et al. 2011), this will equate to 10^4 bacteria mL^{-1}.

These are not small numbers.

It is important to point out that molecular methods have been used frequently to detect active sepsis. These selfsame methods are also used in environmental biology (as we pointed out in this review), without undue concern about the potential for contamination. Contamination will always be a concern, of course, as noted by Nikkari et al. (2001), but many papers since 2001 have documented strategies for detecting prokaryotic DNA in blood and serum using appropriate and careful controls (Anthony et al. 2000; Mylotte and Tayara 2000; Jiang et al. 2009; Varani et al. 2009; Mancini et al. 2010; Chang et al. 2011; Grif et al. 2012a; Fernández-Cruz et al. 2013; Gaibani et al. 2013). Also, detecting bacteria in blood cultures during sepsis is considered the standard diagnostic tool for blood stream infections (Muñoz et al. 2008; Varani et al. 2009), and some laboratories consider that e.g. PCR testing should always be a complement for the traditional blood culture test (Grif et al. 2012b).

The role of dormancy

Dormancy in microbiology is of course well known, even for non-sporulating bacteria, and has been defined as a stable but reversible nonreplicating state (Mariotti et al. 2013; see also Table 1 and Kaprelants, Gottschal and Kell 1993; Keil et al. 1998, 2003). The importance of dormant or non-cultured (as opposed to ‘non-culturable’) organisms has long been recognized in environmental microbiology (e.g. Mason, Hamer and Bryers 1986; Aman, Ludwig and Schleifer 1995; Elers et al. 2000; Hugenholtz 2002; Keller and Zengler 2004; Pham and Kim 2012; Epstein 2013), because of the 100-fold or greater difference between microscopically observable cells and those capable of forming a colony on an agar plate (‘the great plate count anomaly’, see below).

Of the four main possibilities, what we do not know in general is whether the ‘missing’ cells

(i) are incapable of growth on the enrichment/isolation media, (ii) are killed by the enrichment/isolation media (e.g. Tanaka et al. 2014),

(iii) have lost viability irreversibly (i.e. are operationally dead) or

(iv) are in a dormant or not-immediately-culturable state from which we might resuscitate them (to effect culturability) if only we knew how.

The fact that typical isolation media and incubation conditions do not admit the measurable growth of all strains is certainly well known (indeed it is the basis for selective isolation media!), and it took a good while to learn how to culture pathogens such as H. pylori (Marshall and Warren 1984; Marshall 2006), Legionella pneumophila (Feeley et al. 1978; Saito et al. 1981; Meyer 1983), Tropheryma whippelii (Maiwald and Relman 2001; Maiwald et al. 2006), and could contribute to Parkinson’s disease (PD) or related pathologies that precede motor symptoms (Nielsen et al. 2012). Helicobacter pylori was also previously implicated in the development of anemia (Wang et al. 2012b; Kibru et al. 2014). Staphylococcus aureus can also use neutrophils as ‘Trojan horses’ to disseminate infection (Thwaites and Gant 2011; Prajsnar et al. 2012),...
2003; Renesto et al. 2003) and so on (Singh et al. 2013). The majority of bacteria that persist in a ’non-culturable’ form in wounds (e.g. Dowd et al. 2008; Percival et al. 2012), or in diseases such as cystic fibrosis (Lewis 2010) or tuberculosis (Young, Stark and Kirsten 2008; Zhang, Yew and Barer 2012), and even simply in conventional cultures of Escherichia coli (e.g. Koch 1987; Balaban et al. 2004; Keren et al. 2004a,b; Gerdes and Maisonneuve 2012; Amato, Orman and Brynildsen 2013; Germain et al. 2013; Maisonneuve, Castro-Camargo and Gerdes 2013; Gerdes and Gerdes 2014; Holden 2015), where phenotypic culture differentiation is well established (Koch 1971), are also ’normally culturable’ by established means. Thus, the existence of operationally ’non-culturable’ forms of only moderately fastidious bacteria is very well established, and more and more bacteria previously thought ’unculturable’ are being brought into culture (e.g. Zengler et al. 2002; Keller and Zengler 2004; Stevenson et al. 2004; Gich et al. 2005; Kamagata and Tamaki 2005; D’Onofrio et al. 2010; Nichols et al. 2010; Vartoukian, Palmer and Wade 2010; Dedysy 2011; Pham and Kim 2012; Puspita et al. 2012, 2013; Stewart 2012; Allen-Vercoe 2013; Narihiro and Kamagata 2013; Singh et al. 2013; Walker et al. 2014; Lagier et al. 2015a,b; Ling et al. 2015).

In environmental microbiology, some bacteria pass through the usual 0.2 μm filters, and have been referred to as ’ultramicrobacteria’ (Macdonell and Hood 1982; Morita 1997). It was proposed (Kaprelyants, Gottschal and Kell 1993) that rather than being small (starved) forms of normal bacteria they were more likely to be normal forms of small bacteria, and this seems to have been accepted (Lysak et al. 2010; Sahin et al. 2010; Duda et al. 2012; Soina et al. 2012).

The ability to culture certain kinds of soil bacteria by preincubation in weak broth is also well established (e.g. Bakken and Olsen 1981; Kaprelyants, Gottschal and Kell 1993), and our own experiments showed very high levels of resuscitability of dormant cells of Micrococcus luteus (e.g. Kaprelyants and Kell 1993; Kaprelyants, Mukamolova and Kell 1994; Kaprelyants et al. 1996, 1999; Kell et al. 1998, 2003; Mukamolova et al. 1998a,b, 1999, 2002a,b). In a similar way, substrate-accelerated death of non- or slowly growing microorganisms has been known for decades (Postgate 1967; Calcott and Postgate 1972; Calcott and Calvert 1981).

Thus, any of several well-established mechanisms may contribute to the (often) large differences observable between microscopic counts and the number of operationally cultivable microbes, with the greatest likelihood being that we simply have to develop more and better methods to bring these strains back into culture, i.e. to resuscitate them. In particular, however, this ’great plate count anomaly’ has, of course, been brought into much sharper focus because of the advent of culture-independent, sequence-based means for detecting and (to a certain extent) enumerating microbes (though not, of course, of assessing their culturability).

Sequence-based methods for detecting non-proliferating microbes

The vast majority of microbial species remain uncultivated and, until recently, about half of all known bacterial phyla were identified only from their 16S ribosomal RNA gene sequence (Lasken and McLean 2014). Also, single-cell genomics is a powerful tool for accessing genetic information from uncultivated microorganisms (Lasken 2012; Rinke et al. 2013; Cavanagh et al. 2014; Clingenpeel et al. 2014). Bacterial single-cell genome sequencing and bioinformatics are, however, challenging (Pallen, Loman and Penn 2010; Didelot et al. 2012; Loman et al. 2012; Fricke and Rasko 2014).

The development of sequence-based methods for microbes (and especially non-eukaryotes) owes much to the pioneering work of Carl Woese and colleagues, who recognized the utility of small subunit ribosomal RNA (based on both its essentiality and the small but significant sequence variations) and applied it with great effect in molecular phylogenetics (Woese and Fox 1977; Woese, Kandler and Wheelis 1990). Notwithstanding modern reinterpretations of the taxonomic details derived therefrom (e.g. Williams et al. 2013), there can be little doubt that this work drew the attention of microbiologists to the potential of sequence-based methods for detecting microbes that were then invisible to methods based solely on culture, e.g. in clinical microbiology (Didelot et al. 2012; Loman et al. 2012; Proal et al. 2013; Fricke and Rasko 2014). rRNA remains a widely used strategy for detecting specific microbes. This has of course led to metagenomics, the large-scale sequencing of macromolecules and indeed (statistically) entire genomes from complex (non-axenic) environments, increasing the requirement for a full set of complete reference sequences (Kyrpides et al. 2014) and not just those of 16S rRNA (Yarza et al. 2013). Even the coupling of sequences to activities has now become possible (e.g. Radajewski et al. 2000; Wang et al. 2012c).

Microbiome analyses: latest technologies employed

More recently, gut metagenomics has been systematized with NIH’s Human Microbiome project (HMP) and the European MetaHIT project aiming to deciphering the structure and function of the human gut microbiota (Fredrickks 2013; Robles-Alonso and Guarner 2014). The HMP has developed a reference collection of 16S ribosomal RNA gene sequences collected from sites across the human body (Koren et al. 2013; Ding and Schloss 2014). This information can be used to associate changes in the microbiome with changes in health, and particularly also the blood microbiome. The Integrative Human Microbiome Project (iHMP, http://hmp2.org), the second phase of the NIH HMP, aims to study the interactions by analyzing microbiome and host activities in longitudinal studies of disease-specific cohorts and by creating integrated data sets of microbiome and host functional properties (The Integrative HMP (iHMP) Research Network Consortium 2014), ultimately allowing us to analyze host and microbial DNA (genome) and RNA (transcriptome) sequences (Morgan and Huttenhower 2014). However, in the HMP study, the main anatomic sites where samples are collected are skin, mouth, nose, colon and vagina (EIAKaiby et al. 2014). So far as we are aware, these projects do not focus on the blood microbiome (which is probably unsurprising when most commentators assume that it does not exist).

The gut microbiome is by far the largest numerically, and our purpose here is not to review it in any detail, since this has been done very well in terms of

(i) its constitution (Lozupone et al. 2012; Weinstock 2012),
(ii) temporal variation (Caporaso et al. 2011; Flores et al. 2014; Thaiss et al. 2014),
(iii) changes associated with diet (Muegge et al. 2011),
(iv) obesity (Turnbaugh et al. 2006, 2009),
(v) age and geography (Delzenne and Cani 2011; Delzenne et al. 2011; Yatsunenko et al. 2012),
(vi) inflammation (Cani et al. 2008, 2012),
(vii) the immune system (Kau et al. 2011; McDermott and Huffnagle 2014)
(viii) and various pathologies (Pflughoeft and Versalovic 2012; Schulz et al. 2014).
It was implied that a better understanding of microbiome-encoded pathways for xenobiotic metabolism might also have implications for improving the efficacy of pharmacologic interventions with neuromodulatory agents (Gonzalez et al. 2011), and that the exploration of microbiome and metagenome might give us insightful new perspectives regarding human genetics and how the microbiota contribute to immunity, as well as to metabolic and inflammatory diseases (Cho and Blaser 2012; Blaser et al. 2013; Blaser 2014; Leslie and Young 2015). This is because it is assumed in such studies that it is the small-molecule products of the gut microbiome that can appear in the human serum metabolome, and thus influence the rest of the human body (e.g. Wikoff et al. 2009; Holmes et al. 2011; Le Chatelier et al. 2013, and see Table 2). Here we also need to mention lipopolysaccharide (LPS), a main constituent of the Gram-negative outer membrane that induces the production of cytokines and/or chemokines, which in turn regulate inflammatory and innate and subsequent adaptive immune responses (Glaros et al. 2013; Rhee 2014; Ronco 2014). The release of LPS may therefore change gut homeostasis, may play a role in e.g. inflammatory bowel disease and necrotizing enterocolitis (Rhee 2014), and may certainly act as an acute phase protein in sepsis (Ding and Jin 2014).

By contrast, our theme here is that it is additionally the microbes themselves that can pass from the gut (and other ‘external’ surfaces) into the human body, a phenomenon sometimes known as ‘dysbiosis’, albeit this term is more commonly used with another meaning. We here need to discriminate a changed (pathologic) microbiota in the place of origin from the results of a translocation of microbiota to other areas of the body. In the following sections, we use the term dysbiosis to describe changes in a microbiome in its main origin (typically the gut), and we coin the term ‘atopobiosis’ to describe microbes that appear in places other than where they should be.

The origin of detectable but non-proliferating microbes appears to be mainly via ‘atopobiosis’ of the gut microbiome

Dysbiosis, also known as dysbacteriosis, particularly referring to microbial imbalance in the digestive tract, has been widely discussed (e.g. Scher and Abramson 2011; Scanlan et al. 2012; Amar et al. 2013; Bested, Logan and Selhub 2013; Duytschaever et al. 2013; Vaara 2013). Core to this literature is the idea that factors that lead to significant changes in the gut microbiota composition (dysbiosis) ultimately result in pathology (Larsen et al. 2010; Amar et al. 2011, 2013; Bested, Logan and Selhub 2013; Burcelin et al. 2013; De Angelis et al. 2013; Fremont et al. 2013; Lanter, Sauer and Davies 2014; Petriz et al. 2014; Power et al. 2014; Tojo et al. 2014). Table 3 gives a list of diseases, largely inflammatory diseases, which have been associated with gut dysbiosis.

In addition, we argue here that as well as gut dysbiosis, a derangement of the gut microbiome, what we are seeing here, often called ‘translocation’ in the context of surgery (Swank and Deitch 1996; MacFie 2004) and various diseases (Berg 1995) (see Table 4 that lists diseases and conditions where bacterial translocation is specifically implicated), is what might better be called atopobiosis (Greek πάπος or atos or atopos, in the wrong place), i.e. an appearance of members of the gut (or other) microbiome in the wrong place. Bacterial translocation is therefore discussed in the context of the movement of gut origin microbes [that changed from normal (dysbiosis)] that moved across the ‘intact’ gastrointestinal tract into normally sterile tissues, including blood, where the organisms may then directly cause infection or inflammation leading to tissue injury, organ failure, etc. (Steinberg 2003; West and Rath 2003; Balzan et al. 2007). We stress that they may be found in both infectious and non-infectious diseases as well as being translocated during surgery, and that atopobiosis of bacteria originating in the oral cavity, e.g. in periodontal disease, may also be significant in rheumatoid arthritis, for instance (see below). Fig. 3 provides a schematic representation of dysbiosis, bacterial translocation and atopobiosis.

How do gut bacteria escape into blood?

If the gut microbiome is seen as the main source of the blood microbiome, it is necessary to establish which kinds of conditions might permit this in the absence of real physical damage (as may, for instance, be caused by surgery) leading to microbial translocation. Wiest, Lawson and Geuking (2014) mention three possible points of entrance for bacteria into the surrounding (sterile) tissue:

(i) by dendritic cells via processes between epithelial cells, not affecting tight junction function,
(ii) via injured/inflamed epithelium with dysfunctional epithelial barrier,
(iii) and via M cells overlying Peyer’s patches as specialized cells providing access of microbial products to antigen-presenting cells.

We discuss bacterial translocation in this context in the following sections.

The role of M cells and Peyer’s patches in gut microbial translocation and atopobiosis

While the gut epithelium represents the largest mucosal tissue, the mechanisms underlying the interaction between the microbiome and the epithelial cells remain poorly understood (Mathias et al. 2014). Although this is a vast and complex field that warrants a review of its own, we briefly argue that gut dysbiosis results in an atypical interaction of both the microbiota, as well as their secretory products, with the gut epithelial layer. This results in an altered barrier function, which may also lead to changed mucosal immunity and ultimately to atopobiosis. The gut epithelium is necessarily normally quite impermeable to microbes, but there is increasing evidence that direct chemical communication between the microbiota and the epithelial cells regulates mucosal integrity (Venkatesh et al. 2014). A possible point of entry is by direct cellular uptake, and there is one type of cell that can take up microbes, and these are the M cells overlaying the Peyer’s patches (Kern 1995; Clark and Jepson 2011; Corr, Gahan and Hill 2008; Lelouard et al. 2010; Fukuda, Hase and Ohno 2011). Peyer’s patches are seen as the ‘immune sensors’ of the gut epithelium. Considerable evidence exists that they provide a primary route for the limited translocation of microbes between the gut epithelium and the blood system (Jung, Hugot and Barreau 2010). These interactions with the cells of the gut may suggest that changes in the intestinal microbiota also influence mucosal immunity (Sato, Kiyono and Fujihashi et al. 2014). This is indeed the case, and gut dysbiosis has been shown to play a significant role in the development of autoimmune diseases, in particular inflammatory bowel diseases (Clemente et al. 2012; Morgan et al. 2012; Hold et al. 2014; Kostic, Xavier and Gevers 2014; Owyang and Wu 2014; Ma et al. 2015). It was also
Table 2. Some examples of small molecule gut metabolites whose secretion has been implicated in various disease states.

Metabolite	Intermediates/products	Synthesis	Role in health and disease	References
Amino acids	The gut microbiota is not itself an important source of amino acids during periods of adequate protein intake. Some commensal members produce biologically active components from amino acids. Amino acid supplementation in a mouse model of ulcerative colitis has been shown to promote overall growth of commensal microbiota. The effect was considered to be mediated via the stimulatory effect on mucin production by amino acid supplementation.			Faure et al. (2006); Devaraj, Hemarajata and Versalovic (2013); Bergen (2014)
Benzoates	Gut microbiota in mice with active colitis displayed enrichment for genes involved in benzoate degradation. Hippurate derives from plant food polyphenols and is a conjugate of benzoic acid with glycine. In humans a large portion of hippurate is believed to be derived from precursors absorbed in the small intestines. It is reliably decreased in IBD.			Rechner et al. (2002); Aronov et al. (2011); De Preter and Verbeke (2013); Rooks et al. (2014)
Bile acids	Bile acids are synthesized from cholesterol in the liver and further metabolized into secondary bile acids by the gut microbiota. The amino acid sides chain of glyco- and tauro-conjugated bile acids are cleaved by bacterial bile salt hydrolase (BSH) enzyme to yield unconjugated bile acids (cholic and chenodeoxycholic acids). These products will then be further modified by gut bacteria to produce secondary bile acids. A decrease in this conversion is positively correlated with liver cirrhosis. Bile acids can modulate the composition of the microbiota in the gut, where they function as signaling molecules and may constitute a mechanism of quorum sensing. In turn, the microbiota strongly affect bile acid metabolism by promoting deconjugation, dehydrogenation and dehydroxylation. It can also inhibit bile acid synthesis in the liver by alleviation of farnesoid X receptor inhibition in the ileum. Bile acids can induce FMO3 expression by an FXR-dependent mechanism.			Martin et al. (2007); Bennett et al. (2013); Gérard (2013); Kakiyama et al. (2013); Martinez et al. (2013); Sayin et al. (2013); Joyce et al. (2014)
Lipids	Cholesterol	The gut microbiota impact on the host systemic lipid metabolism. When administered as probiotics Bifidobacteria and Lactobacillus can enhance dyslipidemia and insulin resistance. Microbiota have an influence on cholesterol metabolism and weight gain in the host via the bacterial BSH mechanism.		Martin et al. (2007); Martinez et al. (2009, 2013); Yu et al. (2013); Joyce et al. (2014)
Methylamines and products of choline metabolism	Cleavage of choline and phosphatidylcholine (PC) by the gut microbiota via the enzyme choline TMA-lyase produces TMA. Oxidation of TMA by hepatic flavin-containing monooxygenase 3 (FMO3) forms TMAO. Microbial metabolism of L-carnitine also produces TMA via a novel Rieske-type protein. Risk for major adverse cardiovascular events coincides with higher levels of TMAO.			Wang et al. (2011); Craciun and Balaksu (2012); Koeth et al. (2013); Tang et al. (2013); Zhu et al. (2014)
Neurotransmitters	It was recently discovered that gut microbiota produce tryptophan decarboxylase, the enzyme responsible for decarboxylating tryptophan to tryptamine. Tryptamine promotes the release of serotonin by enterochromaffin cells. In a rat model it was shown that Bifidobacteria treatment resulted in increased tryptophan and kynurenic acid levels. Another study in mice showed the potential of Lactobacillus rhamnosus to modulate the GABAergic system. Decreased levels of dopamine were measured in fecal samples from active colitis mice.			Desbonnet et al. (2008); Bravo et al. (2011); Rooks et al. (2014); Williams et al. (2014); O’Mahony et al. (2015)
Table 2. (Continued.)

Metabolite	Intermediates/products	Synthesis	Role in health and disease	References
Phytochemicals, particularly polyphenolic	Chlorogenic acids, hydrolysable tannins and	A significant amount of polyphenols reaches the colon and is believed to	A significant amount of polyphenols reaches the colon and is believed to contribute to gut health by promoting the growth of some commensals. Polyphenolic bioconversion by microbiota is paramount in the production of a large range of bioactive molecules. The exact roles of these molecules in health and disease are yet to be fully understood. Nonetheless epidemiological studies have tied polyphenols to health benefits such as antioxidative, anticarcinogenic, antiadipogenic, antidiabetic and neuroprotective properties. Gut microbiota can also convert dietary polyphenols to benzoate.	Tomas-Barberan et al. (2014); Kahle et al. (2006); Aronov et al. (2011); van Duynhoven et al. (2011); Cardona et al. (2013); Marin et al. (2015)
compounds	flavonoids	L. plantarum has genes encoding for the enzyme involved in saturation metabolism of PUFA.		
Polyunsaturated fatty acids (PUFA)	Omega 3 and 6	The SCFAs are produced from bacterial fermentation of non-digestible polysaccharides. They play a role in metabolic syndrome prevention and treatment. Evidence point to their potential to promote metabolic control in type 2 diabetes. SCFAs are a major source of energy for colonocytes and also contribute up to 10% of the host’s daily caloric requirements. They are further involved in the control of energy utilization and maintenance of metabolic homeostasis via the G Protein coupled Receptor 43 (GPR43) receptor. SCFA products also dampen inflammatory response through this receptor. SCFAs have also been shown to affect cell proliferation and apoptosis (in cancer cells), and in epigenetic machinery such as histone acetylation by butyrate.	Kishino et al. (2013)	
Short-chain fatty acids (SCFAs)	Most abundant acetate, propionate, butyrate;	The SCFAs are produced from bacterial fermentation of non-digestible polysaccharides. They play a role in metabolic syndrome prevention and treatment. Evidence point to their potential to promote metabolic control in type 2 diabetes. SCFAs are a major source of energy for colonocytes and also contribute up to 10% of the host’s daily caloric requirements. They are further involved in the control of energy utilization and maintenance of metabolic homeostasis via the G Protein coupled Receptor 43 (GPR43) receptor. SCFA products also dampen inflammatory response through this receptor. SCFAs have also been shown to affect cell proliferation and apoptosis (in cancer cells), and in epigenetic machinery such as histone acetylation by butyrate.		Bergman (1990); Maslowski et al. (2009); den Besten et al. (2013); Kimura et al. (2013); Natarajan and Pluznick (2014); Puddu et al. (2014)
Vitamins	B-group vitamins, vitamin B12; vitamin C,	It is well established that the gut microbiota synthesizes a large number of vitamins de novo. This is important since humans lack biosynthetic pathways for vitamins. The deleterious effects of vitamin deficiencies are well known. It has only recently been suggested that vitamin B12 may also contribute to shaping the structure and function of microbial communities in the human gut.		Hill (1997); Cooke, Behan and Costello (2006); Arumugam et al. (2011); LeBlanc et al. (2013); Degnan, Taga and Goodman (2014)
Other noteworthy bioactives	biotin, vitamin K	It is well established that the gut microbiota synthesizes a large number of vitamins de novo. This is important since humans lack biosynthetic pathways for vitamins. The deleterious effects of vitamin deficiencies are well known. It has only recently been suggested that vitamin B12 may also contribute to shaping the structure and function of microbial communities in the human gut.		
Conjugated linoleic acid (CLA), bacteriocin	CLA is associated with a diverse array of biological activities, and predominantly associated with activation of peroxisome proliferator activated receptors (PPARs) and the associated switching on and off of genes. Some Bifidobacteria and Lactobacillus species have been shown to produce CLA. Bacteriocins are peptides synthesized by bacteria and have narrow (same species) or broad (across genera) spectrum activity against other bacteria. A large number of archaea and bacteria are believed to produce at least one bacteriocin.	Bowdish, Davidson and Hancock (2005); Ross et al. (2010)		
Tetrathionate and nitric oxide	Tetrathionate and nitric oxide are produced in an inflammatory environment and are central to the fitness of several Enterobacteriaceae. Tetrathionate utilization positively correlated with active colitis in a mouse model. Bacterial growth depends on the presence of nitrogen. Synthesis of amino acids by the microbiome depends on the recycling of nitrogen back into gastrointestinal organs.	Winter et al. (2010); Bergen (2014); Rooks et al. (2014)		
Table 3. Various pathologies that have been associated with dysbiosis of the gut.

Condition	References
Asthma	Abrahamsson et al. (2014)
AD	Karri, Martinez and Coimbatore (2010); Alam et al. (2014)
Atherosclerosis	Koren (2011)
Autism spectrum disorders	Parracho et al. (2005); Finegold et al. (2010); Adams et al. (2011); Williams et al. (2011, 2012); De Angelis et al. (2013); Kang et al. (2013)
β-Cell autoimmunity	de Goffau et al. (2014)
Cardiovascular disease	Amar et al. (2011)
Crohn’s disease	Seksik et al. (2003)
Chronic fatigue syndrome	Sheedy et al. (2009); Proal et al. (2013)
Cystic fibrosis	Scanlan et al. (2012); Bruzzese et al. (2014); Sánchez-Calvo et al. (2008); Duyschaever et al. (2011, 2013); Madan et al. (2012)
HIV/AIDS	Lozupone et al. (2013); McHardy et al. (2013); Vujkovic-Cvijin et al. (2013)
IgE-associated eczema	Abrahamsson et al. (2012)
Inflammation	Cani et al. (2008, 2012); Delzenne and Cani (2011); Delzenne et al. (2011)
Inflammatory bowel disease	Conte et al. (2006); Clemente et al. (2012); Manichanh et al. (2012); Morgan et al. (2012); Nagalingam and Lynch (2012); Bakhtiar et al. (2013)
Iron deficiency	Balamurugan et al. (2010); Zimmermann et al. (2010); Dostal et al. (2012, 2014)
Liver disease	Schnabl and Brenner (2014)
Multiple sclerosis	Berer et al. (2011)
Obesity	Delzenne and Cani (2011); Geurts et al. (2014)
Rheumatoid arthritis	Detert et al. (2010); Berer et al. (2011); Scher and Abramson (2011); Bingham and Moni (2013); Brusca, Abramson and Scher (2014); Catrina, Deane and Scher (2014); Cénit et al. (2014); Demoruelle, Deane and Holers (2014); Taneja (2014)
Parkinson’s Disease	Scheperjans et al. (2015); Vizcarra et al. (2015)
Sarcoïdosis	Almenoff et al. (1996)
Systemic lupus erythematosus	Hevia et al. (2014); Zhang et al. (2014a)
Symptomatic atherosclerosis/stroke	Karlsson et al. (2012)
Type 1 diabetes	Brown et al. (2012); Owen andMohamadzadeh (2013); Petersen and Round (2014)
Type 2 diabetes	Larsen et al. (2010); Brown et al. (2012); Qin et al. (2012); Karlsson et al. (2013); Everard et al. (2014)

Table 4. Diseases and conditions where bacterial translocation (of gut or oral origin) and consequent chronic infection are specifically implicated

Diseases and conditions where translocation of bacteria are present	References
Communications disease	Balagopal et al. (2008); Montes-de-Oca et al. (2011); Page, Nelson and Kelleher (2011); Lin, Weinberg and Chung (2013); Sacchi et al. (2015)
Hepatitis C virus (HCV) infection	French et al. (2013); Munteanu et al. (2014)
HIV/AIDS infection	Sandler and Douek (2012); Klatt, Funderburg and Brenchley (2013); Vázquez-Castellanos et al. (2014)
Pneumonia in immunocompromised patients	Sawa (2014)

Diseases usually seen as non-communicable

Abdominal compartment syndrome	Mifkovic et al. (2013)
Alcoholic liver disease	Chen and Schnabl (2014); Malaguarnera et al. (2014)
Allergic disease: bacterial translocation during pregnancy	Abrahamsson Wu and Jenmalm (2015)
Atherosclerosis	Epstein, Zhou and Zhu (1999); Kozarov et al. (2006); Erridge (2008); Renko et al. (2008); Epstein et al. (2009); Nagata, de Toledo and Oho (2011); Rosenfeld and Campbell (2011); Hopkins (2013); Dinakaran et al. (2014); Rogler and Rosano (2014); Taseid et al. (2014)
Burn wounds	Macintire and Bellhorn (2002); Sharma (2007); Abol letta et al. (2013)
Cirrhosis	Wiest and Garcia-Tsao (2009); Jun et al. (2010); Giannelli et al. (2014); Wiest, Lawson and Geuking (2014)
Chronic kidney disease	Anders, Andersen and Stecher (2013); Sabatino et al. (2014)
Metabolic syndrome	Festi et al. (2014)
Non-alcoholic fatty liver disease	Bieghs and Trautwein (2014)
Table 4. (Continued.)

Diseases and conditions where translocation of bacteria are present	References
Obesity	Vajro, Paolella and Fasano (2013); Sanz and Moya-Pérez (2014)
Pancreatitis	Mífkovic et al. (2009); Guo et al. (2014); Oláh and Romics (2014)
Rheumatoid arthritis	Ogrendik (2009b, 2013b); Ebringer and Rashid (2014); Koziel, Mydel and Potempa (2014)
Schizophrenia	Severance et al. (2013); Severance, yolken and Eaton (2014)
Sepsis and Septic shock*	Tsujimoto, Ono and Mochizuki (2009); Wallet et al. (2011); Deitch (2012); Leli et al. (2014)
Stroke	Sjrjänen et al. (1988); Emsley and Tyrrell (2002); Emsley et al. (2003); Emsley and Hopkins (2008); McCol, Allan and Rothwell (2009); Emsley and Chamorro (2010); Grau, Urbanek and Palm (2010); Wang et al. (2012a); Chien et al. (2013); Dalager-Pedersen et al. (2014); Fugate et al. (2014)

Suggested that a changed gut microbiota represents the initial site of autoimmunity generation, and might be a critical epigenetic factor in autoimmune diseases such as rheumatoid arthritis (Schering and Abramson 2011; Luckey et al. 2013; Brusca, Abramson and Schering 2014; Catrina, Deane and Schering 2014; Cénit et al. 2014; Tanéja 2014). There is also evidence that regulatory T cells in the gut are influenced by microbial factors, and that a changed microbiota (dysbiosis) may influence the induction and suppressor functions of these cells, in turn leading to a changed gut mucosal immunity (Kinoshiba and Takeda 2014).

We have earlier reviewed the literature that suggests that dysbiosis can cause gut epithelial barrier dysfunction, and thereby provide a point of entry into the body, including the blood, resulting in atopobiosis. This is supported by recent research that has suggested that blood microbiota might be implicated in various (cardiovascular and other) diseases. Sequence-based techniques provided evidence for the presence of such a blood microbiome. The question now arises as to whether such a microbiome's presence can be directly measured by e.g. ultrastructural (microscopic) methods, since a consequence of any translocation of microbes between the gut microbiome and blood is that they should then be observable in blood. The next sections will provide visual evidence of the presence of such a microbiota in Alzheimer’s disease (AD) and PD. As shown in Table 3, these conditions are known to be associated with the presence of dysbiosis.

Direct measurement by ultrastructural (microscopic) methods

Direct measurement by ultrastructural (microscopic) methods of analysis shows that microbes are in fact common constituents of blood in inflammatory diseases [previously seen in PD—Fig. 8 in (Preterorius et al. 2014a) and in AD—Fig. 2 in (Lipinski and Preterorius 2013)]. We show and annotate selected micrographs from these papers in Fig. 4. An important concern that needs to be addressed, as is also the case with sequence-based methods, is whether the presence of microbiota in whole blood is indeed not the result of introduced external contamination. There is in fact considerable evidence in the literature that bacteria as well as other microorganisms can reside inside RBCs (e.g. Minaey 2014), and thus able to cross the RBC membrane somehow (see Table 5). Transmission electron microscopy (TEM) analysis showing bacteria inside cells would also tend to imply that the bacteria were not externally introduced artefactually during the preparation of the samples.

For the current paper, we have revisited our AD and PD samples and figures from Pretorius et al. (2014a) and Lipinski and Pretorius (2013) and noted the prevalence of bacteria in almost all of the AD and PD samples, in numbers much in excess of those seen in our database of thousands micrographs from healthy individuals. Here we show additional micrographs from the previously published samples (see Figs 5 and 6). In both conditions (see Figs 5AD and 6PD), microbes were noted in close proximity to RBCs, and in some cases RBCs extended pseudopodia-like projections towards the microbiota. SEM analysis of AD whole blood (Fig. 5) shows that mostly coccus-shaped bacteria are present. White blood cells are seen in close proximity to these bacteria in AD patients (see Fig. 5A–C), SEM analyses of PD patients (Fig. 6) show both coccus- and bacillus-shaped bacteria in close proximity to RBCs. We also observed that RBCs extend pseudopodia towards these bacteria and this might be part of the mechanism by which the bacteria enter the RBCs (see Fig. 6C–F). We also note possibly dividing cocci-shaped bacteria in both these conditions, indicated with blue arrows on Fig. 5A (AD patient) and Fig. 6D (PD patient). This might suggest that these bacteria may become culturable under appropriate conditions (see also Soina et al. 2012; Epstein 2013).

TEM analysis of the samples from Lipinski and Pretorius (2013) and Pretorius et al. (2014a) showed the presence inside RBCs of cells that appeared to be microbial in nature (unpublished data). These internalized cells further provide evidence for a sustained presence of such a blood microbiota (and one hardly explained by contamination) (see Fig. 7A and B: AD and C and D: PD). Bacteria are shown with arrows in the micrographs. No bacterial membrane was noted; therefore, the bacteria may be L-forms. There seems to be bacterial species selectivity for a given disease, as our preliminary observations suggest a prevalence for bacillus-type
bacteria in AD, but both coccus- and bacillus-shaped bacteria in PD patients.

Our observations suggest that the presence of bacteria in these two diseases occurs in only a small fraction of the RBC population, which is why we had not really noted them in our previous studies (e.g. Bester et al. 2013; Pretorius et al. 2013, 2014a,b; Pretorius and Kell 2014), and SEM and TEM analysis confirms this observation. We have never (or not yet) found bacteria inside RBCs from healthy controls (these without overt, diagnosed diseases) when studying blood smears using TEM analysis. The microscopy preparation methods involve a washing process, and this may wash away some of the bacteria, or RBCs and white blood cells associated with bacteria. Therefore, the actual quantification of the bacteria can only be done by other means; however, dormancy and viability versus non-viability issues pertain (as discussed above).

We found a definite association between RBCs and bacteria, with RBCs (see Figs 6 and 7) forming pseudopodia-like extension, as if in the process of engulfing bacteria. Both coccoid (round) and bacillary (elongated) bacteria were found in PD whole blood SEM micrographs, but only coccoid forms in AD whole blood SEM micrographs. Samples from 25 diagnosed AD patients were studied and bacteria were detected in 14 individuals from this AD sample, while samples from 30 PD patients were studied, in 21 of whom we detected bacteria. Obviously, the type of bacteria cannot be identified from ultrastructural observations. As with the timeline of established cases such as the role of *H. pylori* in ulcers and colon cancer, the next tasks are to bring

Figure 3. Schematic representation of dysbiosis, bacterial translocation and atopobiosis. (A) When intestinal microbiota are associated with dysbiosis, (B) the gut barrier (1 and 2) becomes compromised; this leads to (C), a route of entry via the gut epithelia causing (D) bacterial translocation. Bacterial translocation is also associated with a compromised systemic immune system barrier (3). Therefore, intestinal microbiota dysbiosis (A) followed by bacterial translocation (D) results in (E) atopobiosis. (F) The results of bacterial translocation are seen in various conditions (see Table 4).
these microscopically observed bacteria into culture and to carry out sequence-based studies to establish their role (if any) in non-communicable diseases. However, to illustrate that the bacteria may indeed be engulfed by the RBCs, and to confirm that the phenomenon is not due to external contamination, we show TEM micrographs from both of the studied diseases (see Fig. 7, AD and PD).

CONCLUDING REMARKS AND PROSPECTIVE EXPERIMENTS

‘Non-culturable’ (which should be called ‘not-easily-culturable’ or ‘not-yet-cultured’) microbes are commonplace in the ‘environmental microbiology’ of soil and water, and the blood certainly represents an ‘environment’. As we show here, there is a large and scattered literature, increasing in size, to the effect that there might be a (mainly dormant) microbial component in a variety of chronic diseases that are normally considered to be non-microbial or non-communicable in nature, even when microbes appear absent by culturability criteria. Our previous

Table 5. Some microorganisms that are known to invade red blood cells.

Pathogen	Type of microorganism	Mechanism of invasion	References
Anaplasma marginale	A tick-borne pathogen that causes the disease anaplasmosis in cattle.	Via major surface protein 1a (MSP1a)	Kocan et al. (2004)
Bartonella bacilliformis	Bartonella species are fastidious Gram-negative bacteria, which belong to the alpha group of the domain Proteobacteria.	The Trw T4SS mediates attachment of *Bartonella* to red blood cells in *Bartonella* lineage 4. *Bartonella* is collected in pits and trenches that form as a result of deformation factor. Invaginations supposedly pinch off to carry the content in a vacuole structure to the cytoplasm of the red blood cell where the organism persists.	Iwaki-Egawa and Ihler (1997); Coleman and Minnick (2001); Rolain et al. (2003); Eicher and Dehio (2012)
B. quintana	Gram-negative bacteria, which belong to the alpha group of the domain Proteobacteria.	Invasion shown in mouse erythrocytes. Mechanism to be identified.	Vitry et al. (2014)
Brucella melitensis	Facultative intracellular Gram-negative coccobacilli.	Invasión shown in mouse erythrocyte. Mechanism to be identified.	
Francisella tularensis	Highly infectious bacterium, which can cause severe disease tularemia with an infection of fewer than 10 bacteria	Via serum complement-dependent and independent mechanisms.	Conlan (2011); Horzempa et al. (2011)
Mycoplasma suis	A member or the hemotrophic mycoplasma group that parasitize erythrocytes in pigs.	Invasion occurs in a similar manner to that of *P. falciparum* and *B. bacilliformis*. Attachment via MSG1 (GAPDH) protein.	Groebel et al. (2009); Zhang et al. (2014)
M. bovis	Small cell wall-less bacterium that contributes to a number of chronic inflammatory diseases in dairy and feedlot cattle.	Undetermined.	van der Merwe, Prysiuk and Perez-Casal (2010)
M. gallisepticum	Mycoplasmas are small cell wall-less prokaryotes.	Not known.	Vogl et al. (2008)
Plasmodium falciparum	The main malaria parasite, part of whose life cycle involves inhabiting RBCs.	Recognition of surface receptors precedes a reorientation where the apical end is adjusted to the erythrocyte. A tight junction that involves high-affinity ligand receptor interactions is formed. The tight junction moves from the apical to posterior pole and is powered by the actin-myosin motor of the parasite. The adhesive proteins at the junction are proteolytically removed when the posterior pole is reached, most likely by a rhomboid resident protease in a process that facilitates membrane resealing. The invasion process produces a parasitophorous vacuole containing the merozoite.	Cowman and Crabb (2006)
Table 5. (Continued.)

Pathogen	Type of microorganism	Mechanism of invasion	References
Streptococcus pneumoniae	Gram-positive bacterium which causes infection-related diseases.	LPXTG motif-containing pneumococcal proteins, erythrocyte lipid rafts and erythrocyte actin remodeling are involved in the invasion mechanism. Occurs in a similar manner to sporozoite entry.	Yamaguchi et al. (2013)
Theileria sporozites	Intracellular protozoan transmitted by ixodid ticks. Infect wild and domesticated ruminants. Phylogenetically most closely related to *Babesia*.		Shaw (2003); Bishop et al. (2004)

Figure 5. RBCs with microbiota from patients with diagnosed AD (additional micrographs from sample used in Lipinski and Pretorius 2013). These micrographs are representative of bacteria found in smears of 14 of the 30 AD individuals. (A and B) coccus-shaped bacteria associated with white blood cell; (B) coccus-shaped bacteria associated with an erythrocyte and white blood cell; (C) two white blood cells associated with coccus-shaped bacteria; (D) a string of coccus-blue arrow shows possibly dividing coccoid bacteria; (E) an erythrocyte associated with coccus-shaped bacteria; (F) a high machine magnification of a coccus-shaped bacteria associated with a dense matted fibrin deposit. Scale bar: 1 μm.

Figure 6. RBCs with microbiota from patients with diagnosed PD (additional micrographs from sample used in Pretorius et al. 2014a). These micrographs are representative of bacteria found in smears of 21 of the 30 PD individuals. (A) A collection of coccus- and bacillus-shaped bacteria; (B) coccus- and bacillus-shaped bacteria associated with erythrocyte; (C) bacillus-shaped bacteria in close proximity with erythrocyte. Erythrocyte forms extensions towards bacteria. (D and E) bacillus-shaped bacteria associated with elongated erythrocytes; (F) coccus- and bacillus-shaped bacteria close to erythrocyte that extends pseudopodia towards the bacteria. Coccus-shaped bacteria shown with pink arrows; bacillus-shaped bacteria shown with white arrows. Dividing coccus-shaped bacteria shown with blue arrow. Scale bar: 1 μm.

We have here pointed up the likelihood of a steady crop of effectively dormant microbes being a feature of blood biology in chronically diseased humans, including those with non-communicable diseases. As with any complex system, the magnitude of any component is affected by the kinetics of every relevant step; while the precise nature of all the interactions is uncertain, Fig. 8 describes the general network—the first step in any systems analysis (Kell 2006; Kell and Knowles 2006).

Consequently, we recognize that the analysis above has largely been qualitative (the ‘presence’ of a microbial component in a specific disease is a qualitative statement). However, chronic, non-communicable diseases are very far from being...
Figure 7. TEM confirming the presence of bacteria inside erythrocytes of (A and B) AD, (C and D) PD. (Additional micrographs from sample used in Lapiński and Pretorius (2013) and Pretorius et al. (2014a). Arrows in each micrograph show the presence of cellular inclusions, without visible membranes. Inclusions are not typically noted in erythrocytes. We suggest that these inclusions are bacteria, possibly as L-forms. Scale bar = 1 μm (A, C, D); 200 nm (D).

Static (and thousands of human genes change their expression at least 2-fold even on a diurnal basis; Zhang et al. 2014b). Thus, a clear further issue is to seek to understand how the blood microbiome may co-vary with the day-to-day dynamics of chronic diseases. For example, rheumatoid arthritis has circadian rhythms (Straub and Cuto 2007) and is well known to provide significant variations (‘flares’; Flurey et al. 2014) in severity at different times. A reasonable strategy is thus to look for changes in a detectable blood microbiome in this and other diseases that show such flares. As with H. pylori and stomach ulcers (and cancer), the simple prediction is that bactericidal antibiotics should be of value in the treatment of such supposedly non-communicable diseases. Indeed, this prediction is borne out for diseases such as rheumatoid arthritis (Ogrendik 2009a, 2013a; Kwaitkowska and Maślińska 2012) and multiple sclerosis (Ochoa-Repáraz et al. 2009; 2011), while antipneumococcal vaccination has shown efficacy in preventing stroke (Vila-Corcoles et al. 2014). Of course, events such as heart attacks and strokes (and see Table 4) may also be seen as sudden increases in severity of an underlying condition, and in some cases (such as the much increased likelihood of strokes after subarachnoid haemorrhages; McMahon et al. 2013), analysis of changes in the blood microbiome might prove predictive.

The obvious next tasks are thus to relate the number and nature of blood microbes observed in cases such as the above to microbial sequences and antigens that can be detected in aliquots of the same samples (e.g. Salipante et al. 2013, 2015), to determine the physiological state of the various microbes (including e.g. whether they are L-forms), and to establish methods to bring them (back) into culture. Since microbes, inflammation and various syndromes are such common co-occurrences (as are coagulopathies; Kell and Pretorius 2015), longitudinal studies will have a specially important role, as they will both show the dynamics and be able to help discriminate cause and effect during the time evolution of chronic, non-communicable diseases in ageing populations. The immunogenicity of persisters, and their ability to induce various kinds of inflammation, must be rather different from that of replicating organisms, and this must be investigated. Armed with such collective knowledge, we might be better placed to develop therapeutics such as pre- and probiotics and bactericidal antibiotics for use in such cases previously thought to lack a microbial contribution.

Figure 8. Relationships between a dormant blood microbiome and chronic disease dynamics.
Phylogenetics: a discipline of evolutionary biology that studies the relationships between organisms based on how closely similar some of their macromolecular sequences are.

Plasmid: a small, circular DNA molecule that can replicate independently of the chromosomal DNA.

Pleomorphic: possessing the ability to change shape or size in response to environmental stimuli.

Resuscitation: induction of apparently non-culturability to a state of culturability.

Sterile: refers to an absence of operationally viable organisms.

Viable: capable of observable replication, i.e. culturable, by any stated means.

REFERENCES

Aboelatta YA, Abd-Elsalam AM, Omar AH, et al. Selective digestive decontamination (SDD) as a tool in the management of bacterial translocation following major burns. Ann Burns Fire Disasters 2013;26:182–8.

Abrahamsson TR, Jakobsson HE, Andersson AF, et al. Low diversity of the gut microbiota in infants with atopic eczema. J Allergy Clin Immun 2012;129:434–40,440 e431–32.

Abrahamsson TR, Jakobsson HE, Andersson AF, et al. Low gut microbiota diversity in early infancy precedes asthma at school age. Clin Exp Allergy 2014;44:842–50.

Abrahamsson TR, Wu RY, Jenmalm MC. Gut microbiota and allergy: the importance of the pregnancy period. Pediatr Res 2015;77:214–9.

Adams JB, Johansen IJ, Powell LD, et al. Gastrointestinal flora and gastrointestinal status in children with autism—comparisons to typical children and correlation with autism severity. BMC Gastroenterol 2011;11:22.

Alam MZ, Alam Q, Kamal MA, et al. A possible link of gut microbiota alteration in type 2 diabetes and Alzheimer’s disease pathogenicity: an update. CNS Neurol Disord-Dr 2014;13:383–90.

Allan EJ, Hoischen C, Gumpert J. Bacterial L-forms. Adv Appl Microbiol 2009;68:1–39.

Allen SJ. Gastrointestinal complications and cardiac surgery. J Extra-Corp Technol 2014;46:142–9.

Allen-Vercoe E. Bringing the gut microbiota into focus through microbial culture: recent progress and future perspective. Curr Opin Microbiol 2013;16:625–9.

Almenoff PL, Johnson A, Lesser M, et al. Growth of acid fast L-forms from the blood of patients with sarcoidosis. Thorax 1996;51:530–3.

Aman MJ, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 1995;59:143–69.

Amar J, Lange C, Payros G, et al. Blood microbiota dysbiosis is associated with the onset of cardiovascular events in a large general population: the D.E.S.I.R. study. PLoS One 2013;8:e54461.

Amar J, Serino M, Lange C, et al. Involvement of tissue bacteria in the onset of diabetes in humans: evidence for a concept. Diabetologia 2011;54:3055–61.

Amar S, Engelke M. Periodontal innate immune mechanisms relevant to atherosclerosis. Mol Oral Microbiol 2014, DOI:10.1111/omi.12087.

Amato SM, Orman MA, Brynildsen MP. Metabolic control of persister formation in Escherichia coli. Mol Cell 2013;50:475–87.

Anders HJ, Andersen K, Stecher B. The intestinal microbiota, a leaky gut, and abnormal immunity in kidney disease. Kidney Int 2013;83:1010–6.
Anthony RM, Brown TJ, French GL. Rapid diagnosis of bacteremia by universal amplification of 23S ribosomal DNA followed by hybridization to an oligonucleotide array. J Clin Microbiol 2000;38:781–8.

Aronov PA, Luo FJ, Plummer NS, et al. Colonic contribution to uremic solutes. J Am Soc Nephrol 2011;22:1769–76.

Arunugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature 2011;473:174–80.

Bakhtiar SM, LeBlanc JG, Salvucci E, et al. Implications of the human microbiome in inflammatory bowel diseases. FEMS Microbiol Lett 2013;342:10–7.

Bakken LR, Olsen RA. The relationship between cell size and viability of soil bacteria. Microb Ecol 1987;13:103–14.

Balaban NQ, Merrin J, Chait R, et al. Bacterial persistence as a phenotypic switch. Science 2004;305:1622–5.

Balagopal A, Philip FH, Astemborski J, et al. Human immunodeficiency virus-related microbial translocation and progression of hepatitis C. Gastroenterology 2008;135:226–33.

Balakrishnan A, Marathe SA, Joglekar M, et al. Bacteriological/permeability increasing protein: a multifaceted protein with functions beyond LPS neutralization. Innate Immun 2013;19:339–47.

Balamurugan R, Mary RR, Chittaranjan S, et al. Low levels of faecal lactobacilli in women with iron-deficiency anaemia in south India. Brit J Nutr 2010;104:931–4.

Balzan S, de Almeida Quadros C, de Cleva R, et al. Bacterial translocation from the gastrointestinal tract. J Gastroenterol Hepatol 2008;23:149–54.

Bennett BJ, de Aguilar Vallim TQ, Wang Z, et al. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab 2013;17:49–60.

Berger RD. Bacterial translocation from the gastrointestinal tract. Trends Microbiol 1995;3:149–54.

Bergen WG. Small-intestinal or colonic microbiota as a potential amino acid source in animals. Amino Acids 2014;47:251–8.

Bergman E. Energy contributions of volatile fatty acids from fermentation of the gut microbiota as a potential amino acid source in animals. Amino Acids 2014;47:251–8.

Bested AC, Logan AC, Selhub EM. Intestinal microbiota, probiotics and mental health: from Metchnikoff to modern antidepressants. Acta Psychiatr Scand 2013;128:241–8.

Bowdish DM, Davidson DJ, Hancock R. A re-evaluation of the role of host defence peptides in mammalian immunity. Curr Protein Pept Sci 2005;6:35–51.

Bravo JA, Forsythe P, Chew MV, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. P Natl Acad Sci 2011;108:16050–5.

Brown K, DeCoffe D, Molcan E, et al. Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease. Nutrients 2012;4:1095–119.

Brusca SB, Abrahamson SB, Scher JU. Microbiome and mucosal inflammation as extra-articular triggers for rheumatoid arthritis and autoimmunity. Curr Opin Rheumatol 2014;26:101–7.

Bruzese E, Callegari ML, Raia V, et al. Disruption intestinal microbiota and intestinal inflammation in children with cystic fibrosis and its restoration with Lactobacillus GG: a randomised clinical trial. PLoS One 2014;9:e87796.

Burcelin R, Serino M, Chabo C, et al. Metagenome and metabolism: the tissue microbiota hypothesis. Diabetes Obes Metab 2013;15 (Suppl 3):61–70.

Calcott PH, Calvert TJ. Characterization of 3’-5’-cyclic AMP phosphodiesterase in Klebsiella aerogenes and its role in substrate-accelerated death. J Gen Microbiol 1981;122:313–21.

Calcott PH, Postgate JR. On substrate-accelerated death in Klebsiella aerogenes. J Gen Microbiol 1972;70:115–22.

Cani PD, Bibiloni R, Kra use C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 2008;57:1470–81.

Cani PD, Osto M, Geurts L, et al. Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes 2013;4:279–88.

Caporaso JG, Lauber CL, Costello EK, et al. Moving pictures of the human microbiome. Genome Biol 2011;12:R50.

Cardona F, Andres-Lacueva C, Tulipani S, et al. Benefits of prebiotics on gut microbiota and implications in human health. J Nutr Biochem 2013;24:1415–22.

Casadesus J. Bacterial L-forms require peptidoglycan synthesis for cell division. Bioessays 2007;29:1189–91.

Cattina AJ, Deane KD, Scher JU. Gene, environment, microbiome and mucosal immune tolerance in rheumatoid arthritis. Rheumatology 2014;DOI:10.1093/rheumatology/keu469.

Cavanagh PH, Hjerde E, Holden MT, et al. Whole-genome sequencing reveals clonal expansion of multiresistant Staphylococcus haemolyticus in European hospitals. J Antimicrob Chemother 2014;69:2920–7.

Cenit MC, Matzaraki V, Tsigchelaia EF, et al. Rapidly expanding knowledge on the role of the gut microbiome in health and disease. Biochim Biophys Acta 2014;1842:1891–92.

Chang SS, Hsu HL, Cheng JC, et al. An efficient strategy for broad-range detection of low abundance bacteria without DNA decontamination of PCR reagents. PLoS One 2011;6:e20303.

Chen P, Schnabl B. Host-microbiome interactions in alcoholic liver disease. Gut Liver 2014;8:237–41.

Chien LN, Chi NF, Hu CJ, et al. Central nervous system infections and stroke—a population-based analysis. Acta Neurol Scand 2013;128:241–8.

Cho I, Blaser MJ. The human microbiome: at the interface of health and disease. Nat Rev Genet 2012;13:260–70.

Chu BC, Otten K, Krewulak KD, et al. The solution structure, binding properties, and dynamics of the bacterial siderophore-binding protein Febp. J Biol Chem 2014;289:29219–34.
Clark MA, Jepson MA. Intestinal M cells and their role in bacterial infection. Int J Med Microbiol 2003;293:17–39.

Claudi B, Sprote P, Chirkova A, et al. Phenotypic variation of Salmonella in host tissues delays eradication by antimicrobial chemotherapy. Cell 2014;158:722–33.

Clegg JS. Cryptobiosis—a peculiar state of biological organization. Comp Biochem Phys B 2001;128:613–24.

Clemente JC, Ursell LK, Parfrey LW, et al. The impact of the gut microbiota on human health: an integrative view. Cell 2012;148:1258–70.

Clifton MC, Corrent C, Strong RK. Siderocalins: siderophore-binding proteins of the innate immune system. Biometals 2009;22:557–64.

Clingenpeel S, Schwientek P, Hugenholzt P, et al. Effects of sample treatments on genome recovery via single-cell genomics. ISME J 2014;8:2546–9.

Coleman SA, Minnick MF. Establishing a direct role for the Bartonella bacilliformis invasion-associated locus B (ialB) protein in human erythrocyte parasitism. Infect Immun 2001;69:4373–81.

Conlan JW. Francisella tularensis: a red-blooded pathogen. J Infect Dis 2011;204:6–8.

Conte MP, Schippa S, Zamboni I, et al. Gut-associated bacterial microbiota in paediatric patients with inflammatory bowel disease. Gut 2006;55:1760–70.

Cooke G, Behan J, Costello M. Newly identified vitamin K-producing bacteria isolated from the neonatal faecal flora. Microb Ecol HealthDisc 2006;18:133–8.

Corr SC, Gahan CC, Hill C. M-cells: origin, morphology and role in mucosal immunity and microbial pathogenesis. FEMS Immunol Med Mic 2008;52:2–12.

Cowman AF, Crabbe BS. Invasion of red blood cells by malaria parasites. Cell 2006;124:755–66.

Craciuni S, Balasiku EP. Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme. Proc Natl Acad Sci USA 2012;109:21307–12.

Dalager-Pedersen M, Sogaard M, Schonheyder HC, et al. Risk for myocardial infarction and stroke after community-acquired bacteremia: a 20-year population-based cohort study. Circulation 2014;129:1387–96.

Davey HM, Kell DB. Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. Microbiol Rev 1996;60:641–96.

De Angelis M, Piccolo M, Vannini L, et al. Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS One 2013;8:e76993.

de Goffau MC, Fuentes S, van den Bogert B, et al. Aberrant gut microbiota composition at the onset of type 1 diabetes in young children. Diabetologia 2014;57:1569–77.

De Preter V, Verbeke K. Metabolomics as a diagnostic tool in gastroenterology. World J Gastrointest Pharmacol Ther 2013;4:97–107.

Dedysh SN. Cultivating uncultured bacteria from northern wetlands: knowledge gained and remaining gaps. Front Microbiol 2011;2:184.

Degnan PH, Taga ME, Goodman AL. Vitamin B_{12} as a modulator of gut microbiological activity. Cell Metab 2014;20:769–78.

Deitch EA. Gut-origin sepsis: evolution of a concept. Surgeon 2012;10:350–6.

Delzenne NM, Cani PD. Interaction between obesity and the gut microbiota: relevance in nutrition. Annu Rev Nutr 2011;31:15–31.

Delzenne NM, Neyrinck AM, Bäckhed F, et al. Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat Rev Endocrinol 2011;7:639–46.

Demoruelle MK, Deane KD, Holers VM. When and where does inflammation begin in rheumatoid arthritis? Curr Opin Rheumatol 2014;26:64–71.

Den Besten G, van Eunen K, Groen AK, et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 2013;54:2325–40.

Desbonnet L, Garrett L, Clarke G, et al. The probiotic Bifidobacterium infantis: an assessment of potential antidepressant properties in the rat. J Psychiatr Res 2008;43:164–74.

Detert J, Pischon N, Burmester GR, et al. The association between rheumatoid arthritis and periodontal disease. Arthritis Res Ther 2010;12:218.

Devaraj S, Hemarajata P, Versalovic J. The human gut microbiome and body metabolism: implications for obesity and diabetes. Clin Chem 2013;59:617–28.

Devine KM. Bacterial L-forms on tap: an improved methodology to generate Bacillus subtilis L-forms heralds a new era of research. Mol Microbiol 2012;83:10–3.

Didelot X, Bowden R, Wilson DJ, et al. Transforming clinical microbiology with bacterial genome sequencing. Nat Rev Genet 2012;13:601–12.

Diggle SP, Griffín AS, Campbell GS, et al. Cooperation and conflict in quorum-sensing bacterial populations. Nature 2007;450:411–4.

Dinakaran V, Rathinavel A, Pushpanathan M, et al. Elevated levels of circulating DNA in cardiovascular disease patients: metagenomic profiling of microbiome in the circulation. PLoS One 2014;9:e105221.

Ding PH, Jin LJ. The role of lipopolysaccharide-binding protein in innate immunity: a revisit and its relevance to oral/periodontal health. J Periodontal Res 2014;49:1–9.

Ding T, Schloss PD. Dynamics and associations of microbial community types across the human body. Nature 2014;509:357–60.

Domínguez-Gómez GJ. Demystifying pleomorphic forms in persistence and expression of disease: Are they bacteria, and is peptidoglycan the solution? Discoop Med 2010;10:234–46.

Domínguez-Gómez GJ, Schlegel JU. Novel bacterial structures in human blood: cultural isolation. Infect Immun 1977;15:621–7.

Domínguez-Gómez GJ, Sr, Woody HB. Bacterial persistence and expression of disease. Clin Microbiol Rev 1997;10:320–44.

Domínguez-Cuevas P, Mercier R, Leaver M, et al. The rod to L-form transition of Bacillus subtilis is limited by a requirement for the protoplasm to escape from the cell wall sacculus. Mol Microbiol 2012;83:52–66.

D’Onofrio A, Crawford JM, Stewart EJ, et al. Siderophores from neighboring organisms promote the growth of uncultured bacteria. Chem Biol 2010;17:254–64.

Dostal A, Baumgartner J, Riesen N, et al. The role of iron supplementation on dominant bacterial groups in the gut, faecal SCFA and gut inflammation: a randomised, placebo-controlled intervention trial in South African children. Brit J Nutr 2014;112:547–56.

Dostal A, Chassard C, Hilty FM, et al. Iron depletion and repletion with ferrous sulfate or electrolytic iron modifies the composition and metabolic activity of the gut microbiota in rats. J Nutr 2012;142:271–7.

Dowd SE, Sun Y, Secor FR, et al. Survey of bacterial diversity in chronic wounds using pyrosequencing, DGGE, and full ribosome shotgun sequencing. BMC Microbiol 2008;8:43.
Drennan M. What is ‘Sterile Blood’? Brit Med J 1942;2:526.
Duda VI, Suzina NE, Polivtseva VN, et al. Ultramicrobacteria: formation of the concept and contribution of ultramicrobacteria to biology. Mikrobiologija 2012;81:415–27.
Duytschaever G, Huys G, Bekaat M, et al. Cross-sectional and longitudinal comparisons of the predominant fecal microbiota compositions of a group of pediatric patients with cystic fibrosis and their healthy siblings. Appl Environ Microb 2011;77:8015–24.
Duytschaever G, Huys G, Bekaat M, et al. Dysbiosis of bifidobacteria and Clostridium cluster XIVa in the cystic fibrosis fecal microbiota. J Cyst Fibros 2013;12:206–15.
Ebringer A, Rashid T. Rheumatoid arthritis is caused by a Proteus urinary tract infection. APMIS 2014;122:363–8.
Eicher SC, Dehio C. Bartonella entry mechanisms into mammalian host cells. Cell Microbiol 2012;14:1166–73.
Elers H, Pernthaler J, Glockner FO, et al. Culturability and in situ abundance of pelagic bacteria from the North Sea. Appl Environ Microb 2013;79:657–65.
Eisenreich W, Danekar T, Heesemann J, et al. Carbon metabolism of intracellular bacterial pathogens and possible links to virulence. Nat Rev Microbiol 2010;8:401–12.
Eleftheriadis T, Liakopoulos V, Leivaditis K, et al. Virulence factors involved in the intracellular growth of Legionella pneumophila. J Microbiol Meth 2009;76:102–7.
Emsley HC, Chamorro A. Stroke bugs: current and emerging concepts relevant to infection in cerebrovascular disease. Hippokratia 2011;15:12–7.
ElRakaiby M, Dutilh BE, Rizkallah MR, et al. Pharmacomicobiomics: the impact of human microbiome variations on systems pharmacology and personalized therapeutics. Omics 2014;18:402–14.
Emsley HC, Hopkins SJ. Acute ischaemic stroke and infection: recent and emerging concepts. Lancet Neurol 2008;7:341–53.
Emsley HC, Smith CJ, Gavin CM, et al. An early and sustained peripheral inflammatory response in acute ischaemic stroke: relationships with infection and atherosclerosis. J Neuroimmun 2003;139:93–101.
Emsley HC, Tyrrell PJ. Inflammation and infection in clinical stroke. J Cerebr Blood F Met 2002;22:1399–419.
Epstein SE, Zhou YF, Zhu J. Infection and atherosclerosis: emerging mechanistic paradigms. Circulation 1999;100:e20–8.
Epstein SE, Zhu J, Najafi AH, et al. Insights into the role of infection in atherogenesis and in plaque rupture. Circulation 2009;119:3133–41.
Epstein SS. The phenomenon of microbial uncultivability. Curr Opin Microbiol 2013;16:636–42.
Erridge C. The roles of pathogen-associated molecular patterns in atherosclerosis. Trends Cardiovas Med 2008;18:52–6.
Errington J. L-form bacteria, cell walls and the origins of life. Open Biol 2013;3:120143.
Everard A, Matamoros S, Geurts L, et al. Saccharomyces boulardii administration changes gut microbiota and reduces hepatic steatosis, low-grade inflammation, and fat mass in obese and type 2 diabetic db/db mice. MBio 2014;5:e01011–4.
Fauve M, Mettraux C, Moennoz D, et al. Specific amino acids increase mucin synthesis and microbiota in dextran sulfate sodium-treated rats. J Nutr 2006;136:1558–64.
Feeley JC, Gorman GW, Weaver RE, et al. Primary isolation media for Legionnaires disease bacterium. J Clin Microbiol 1978;8:320–5.
Fernández-Cruz A, Marín M, Kestler M, et al. The value of combining blood culture and SeptiFast data for predicting complicated bloodstream infections caused by Gram-positive bacteria or Candida species. J Clin Microbiol 2013;51:1130–6.
Festi D, Schiumerini R, Eusebi LH, et al. Gut microbiota and metabolic syndrome. World J Gastroenterol 2014;20:16079–94.
Finegold SM, Dowd SE, Gontcharova V, et al. Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe 2010;16:444–53.
Flores GE, Caporaso JG, Henley JB, et al. Temporal variability is a personalized feature of the human microbiome. Genome Biol 2014;15:531.
Flurey CA, Morris M, Richards P, et al. It’s like a juggling act: rheumatoid arthritis patient perspectives on daily life and flare while on current treatment regimes. Rheumatology 2014;53:696–703.
Fredricks DN. The Human Microbiota: How Microbial Communities Affect Health and Disease. Hoboken, NJ: Wiley, 2013.
Fremont M, Coomans D, Massart S, et al. High-throughput 16S rRNA gene sequencing reveals alterations of intestinal microbiota in myalgic encephalomyelitis/chronic fatigue syndrome patients. Anaerobe 2013;22:50–6.
French AL, Evans CT, Agnieszka DM, et al. Microbial translocation and liver disease progression in women coinfected with HIV and hepatitis C virus. J Infect Dis 2013;208:679–89.
Fricke WF, Rasko DA. Bacterial genome sequencing in the clinic: bioinformatic challenges and solutions. Nat Rev Genet 2014;15:49–55.
Fugate JE, Lyons JL, Thakur KT, et al. Infectious causes of stroke. Lancet Infect Dis 2014;14:869–80.
Fukuda S, Hase K, Ohno H. Application of a mouse ligated Peyer’s patch intestinal loop assay to evaluate bacterial uptake by M cells. J Vis Exp 2011:e3225–30.
Gaibani P, Mariconti M, Bua G, et al. Development of a broad-range 23S rDNA real-time PCR assay for the detection and quantification of pathogenic bacteria in human whole blood and plasma specimens. Biomed Res Int 2013;2013:264651.
Gérard P. Metabolism of cholesterol and bile acids by the gut microbiota. Pathogens 2013;3:14–24.
Gerdes K, Maisonneuve E. Bacterial persistence and toxin-antitoxin loci. Annu Rev Microbiol 2012;66:103–23.
Germain E, Castro-Roa D, Zenkin N, et al. Molecular mechanism of bacterial persistence by HpaA. Mol Cell 2013;52:248–54.
Gest H. The Modern Myth of ‘Unculturable’ Bacteria: Scotoma of Contemporary Microbiology. Faculty Research (Bloomington), 2008, http://hdl.handle.net/2022/3149 (19 March 2015, date last accessed).
Geurts L, Neyrinck AM, Delzenne NM, et al. Gut microbiota controls adipose tissue expansion, gut barrier and glucose metabolism: novel insights into molecular targets and interventions using prebiotics. Benef Microbes 2014;5:3–17.
Giannelli V, DiGregorio V, lebva V, et al. Microbiota and the gut-liver axis: bacterial translocation, inflammation and infection in cirrhosis. World J Gastroenterol 2014;20:16795–810.
Gich F, Schubert K, Bruns A, et al. Specific detection, isolation, and characterization of selected, previously uncultured members of the freshwater bacterioplankton community. Appl Environ Microb 2005;71:5908–19.
Glaros TG, Chang S, Gilliam EA, et al. Causes and consequences of low grade endotoxemia and inflammatory diseases. Front Biosci 2013;5:754–65.
Gonzalez A, Stombaugh J, Lozupone C, et al. The mind-body-microbial continuum. Dialogues Clin Neurosci 2011;13:55–62.
Grau AJ, Urbanek C, Palm F. Common infections and the risk of stroke. Nat Rev Neurol 2010;6:681–94.
Gribbin JR. In Search of Schrödinger’s Cat: Quantum Physics and Reality. London: Bantam Books, 1985.

Grif K, Fille M, Wüchner R, et al. Rapid detection of bloodstream pathogens by real-time PCR in patients with sepsis. Wien Klin Wochenschr 2012;124:266–70.

Grif K, Heller I, Prodinger WM, et al. Improvement of detection of bacterial pathogens in normally sterile body sites with a focus on orthopedic samples by use of a commercial 16S rRNA broad-range PCR and sequence analysis. J Clin Microbiol 2012b;50:2250–4.

Groebl K, Hoelzel K, Wittenbrink MM, et al. Mucoplasma suis invades porcine erythrocytes. Infect Immun 2009;77:576–84.

Guo ZZ, Wang P, Yi ZH, et al. The crosstalk between gut inflammation and gastrointestinal disorders during acute pancreatitis. Curr Pharm Des 2014;20:1051–62.

Harrison F, Buckling A. Cooperative production of siderophores by Pseudomonas aeruginosa. Front Biosci 2009;14:4113–26.

Havey TC, Fowler RA, Daneman N. Duration of antibiotic therapy for bacteremia: a systematic review and meta-analysis. Crit Care 2011;15:R267.

Hevia A, Milani C, Lopez P, et al. Intestinal dysbiosis associated with systemic lupus erythematosus. MBio 2014;5:e01548–14.

Hill MJ. Intestinal flora and endogenous vitamin synthesis. Eur J Cancer Prev 1997;6 (Suppl 1):543–5.

Hold GL, Smith M, Grange C, et al. Role of the gut microbiota in inflammatory bowel disease pathogenesis: what have we learnt in the past 10 years? World J Gastroenterol 2014;20:1192–210.

Holden DW. Microbiology. Persisters unmasked. Science 2015;347:30–2.

Holmes E, Li J, Athanasiou T, et al. Understanding the role of gut microbiome-host metabolic signal disruption in health and disease. Trends Microbiol 2011;19:349–59.

Hopkins PN. Molecular biology of atherosclerosis. Physiol Rev 2013;93:1317–542.

Horzempa J, O’Dee DM, Stolz DB, et al. Invasion of erythrocytes by Francisella tularensis. J Infect Dis 2011;204:51–9.

Huang Y, Fan XG, Tang ZS, et al. Detection of Helicobacter pylori DNA in peripheral blood from patients with peptic ulcer or gastritis. APMS 2006;114:851–6.

Hugenholtz P. Exploring prokaryotic diversity in the genomic era. Genome Biol 2002;3:0003.1–0003.8.

Isberg RR. Discrimination between intracellular uptake and surface adhesion of bacterial pathogens. Science 1991;252:934–8.

Iwaki-Egawa S, Ihler GM. Comparison of the abilities of proteins from Bartonella bacilliformis and Bartonella henselae to deform red cell membranes and to bind to red cell ghost proteins. FEMS Microbiol Lett 1997;157:207–17.

Jepson MA, Clark MA. Studying M cells and their role in infection. Trends Microbiol 1998;6:359–65.

Jiang W, Lederman MM, Hunt P, et al. Plasma levels of bacterial DNA correlate with immune activation and the magnitude of immune restoration in persons with antiretroviral-treated HIV infection. J Infect Dis 2009;199:1177–85.

Joyce SA, MacSharry J, Casey PG, et al. Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut. P Natl Acad Sci USA 2014;111:7421–6.

Jun DW, Kim KT, Lee OY, et al. Association between small intestinal bacterial overgrowth and peripheral bacterial DNA in cirrhotic patients. Dig Dis Sci 2010;55:1465–71.

Jung C, Hugot JP, Barreau F. Peyer’s patches: the immune sensors of the intestine. Int J Inflamm 2010;2010:823710.

Kahle K, Kraus M, Scheppach W, et al. Studies on apple and blueberry fruit constituents: do the polyphenols reach the colon after ingestion? Mol Nutr Food Res 2006;50:418–23.

Kakiyama G, Pandak WM, Gillevet PM, et al. Modulation of the fecal bile acid profile by gut microbiota in cirrhosis. J Hepatol 2013;58:949–55.

Kamagata Y, Tamaki H. Cultivation of uncultured fastidious microbes. Microbes Environ 2005;20:85–91.

Kang DW, Park JG, Ilhan ZE, et al. Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS One 2013;8:e68322.

Kaprelyants AS, Gottschal JC, Kell DB. Dormancy in non-sporulating bacteria. FEMS Microbiol Rev 1993;10:271–85.

Kaprelyants AS, Kell DB. Dormancy in stationary-phase cultures of Micrococcus luteus: flow cytometric analysis of starvation and resuscitation. Appl Environ Microb 1993;59:3187–96.

Kaprelyants AS, Mukamolova GV, Davey HM, et al. Quantitative analysis of the physiological heterogeneity within starved cultures of Micrococcus luteus by flow cytometry and cell sorting. Appl Environ Microb 1996;62:1311–6.

Kaprelyants AS, Mukamolova GV, Kell DB. Estimation of dormant Micrococcus luteus cells by penicillin lysis and by resuscitation in cell-free spent medium at high dilution. FEMS Microbiol Lett 1994;115:347–52.

Kaprelyants AS, Mukamolova GV, Kormer SS, et al. Intercellular signalling and the multiplication of prokaryotes: bacterial cytokines. Symp Soc Gen Microbi 1999;57:33–69.

Karlsson FH, Fak F, Nookaew I, et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun 2012;3:1245.

Karlsson FH, Tremaroli V, Nookaew I, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 2013;498:99–103.

Kari S, Martinez VA, Coimbatore G. Effect of dihydrotestosterone on gastrointestinal tract of male Alzheimer’s disease transgenic mice. 2010;48:453–65.

Kau AL, Ahern PP, Grifﬁn NW, et al. Human nutrition, the gut microbiome and the immune system. Nature 2011;474:327–36.

Keilm D. The problem of anabiosis or latent life: history and current concept. P Roy Soc Lond B Bio 1959;150:149–91.

Kell DB. Metabolomics, modelling and machine learning in systems biology: towards an understanding of the languages of cells. The 2005 Theodor Bücher lecture. FEBS J 2006;273:873–94.

Kell DB. Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases. BMC Med Genomics 2009;2:2.

Kell DB. Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson’s, Huntington’s, Alzheimer’s, prions, bactericides, chemical toxicology and others as examples. Arch Toxicol 2010;84:825–89.

Kell DB, Kaprelyants AS, Grafen A. Pheromones, social behaviour and the functions of secondary metabolism in bacteria. Trends Ecol Evol 1995;10:126–9.

Kell DB, Kaprelyants AS, Weichart DH, et al. Viability and activity in readily culturable bacteria: a review and discussion of the practical issues. Anton Leuww 1998;73:169–87.

Kell DB, Knowles JD. The role of modeling in systems biology. In: Szallasi Z, Stelling J, Periwal V (eds). System Modeling in...
Cellular Biology: From Concepts to Nuts and Bolts. Cambridge: MIT Press, 2006, 3–18.
Kell DB, Mukamolova GV, Finan CL. Resuscitation of ‘uncultured’ microorganisms. In: Bull AT, et al. (ed). Microbial Diversity and Bioprospecting. Washington, DC: American Society for Microbiology, 2003, 100–8.
Kell DB, Oliver SG. How drugs get into cells: tested and testable predictions to help discriminate between transporter-mediated uptake and lipoidal bilayer diffusion. Front Pharmacol 2014;5:231.
Kell DB, Pretorius E. Serum ferritin is an important inflammatory disease marker, as it is mainly a leakage product from damaged cells. Metallomics 2014;4:748–73.
Kell DB, Pretorius E. The simultaneous occurrence of both hypercoagulability and hypofibrinolysis in blood and serum during systemic inflammation, and the roles of iron and fibrinogen. Integr Biol 2015;7:24–52.
Kell DB, Ryder HM, Krapelyants AS, et al. Quantifying heterogeneity: flow cytometry of bacterial cultures. Anton Leeuwenhoek 1991;60:145–58.
Keller M, Zengler K. Tapping into microbial diversity. Nat Rev Microbiol 2004;2:141–50.
Keren I, Kaldalu N, Spoering A, et al. Persistor cells and tolerance to antimicrobials. FEMS Microbiol Lett 2004a;230:13–8.
Keren I, Shah D, Spoering A, et al. Specialized persistor cells and the mechanism of multidrug tolerance in Escherichia coli. J Bacteriol 2004b;186:8172–80.
Kernéis S, Bogdanova A, Kraehenbuhl JP, et al. Conversion by Peyer’s patch lymphocytes of human enterocytes into M cells that transport bacteria. Science 1997;277:949–52.
Kibru D, Gelaw B, Alemu A, et al. Helicobacter pylori infection and its association with anemia among adult dyspeptic patients attending Butajira Hospital, Ethiopia. BMC Infect Dis 2014;14:656.
Kimura I, Ozawa K, Inoue D, et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun 2013;4:1829.
Kinosita H, Takeda K. Microbial and dietary factors modulating intestinal regulatory T cell homeostasis. FEBS Lett 2014;588:4182–7.
Kishino S, Takeuchi M, Park S-B, et al. Polynsaturated fatty acid saturation by gut lactic acid bacteria affecting host lipid composition. P Natl Acad Sci USA 2013;110:17808–13.
Klatt NR, Funderburg NT, Brenchley JM. Microbial translocation, immune activation, and HIV disease. Trends Microbiol 2013;21:6–13.
Kocan KM, de la Fuente J, Blouin EF, et al. Anaplasma marginale (Rickettsiales: Anaplasmataceae): recent advances in defining host-pathogen adaptations of a tick-borne rickettsia. Parasitology 2004;129 (Suppl):285–300.
Koch AL. The adaptive responses of Escherichia coli to a feast and famine existence. Adv Microb Physiol 1971;6:147–217.
Koch AL. The variability and individuality of the bacterium. In: Neidhardt FC, et al. (eds). Escherichia coli and Salmonella Typhimurium: Cellular and Molecular Biology. Washington, DC: American Society for Microbiology, 1987, 1606–14.
Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 2013;19:576–85.
Kogure K, Simidu U, Taga N. A tentative direct microscopic method for counting living marine bacteria. Can J Microbiol 1979;25:415–20.
Koren O, Knights D, Gonzalez A, et al. A guide to enterotypes across the human body: meta-analysis of microbial community structures in human microbiome datasets. PLoS Comput Biol 2013;9:e1002863.
Koren O, Spor A, Felin J, et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. P Natl Acad Sci USA 2011;108:4592–8.
Kostic AD, Xavier RJ, Gevers D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 2014;146:1489–99.
Kotsaki A, Giamarellos-Bourboulis EJ. Emerging drugs for the treatment of sepsis. Expert Opin Emerg Dr 2012;17:379–91.
Kozaroz E, Sweier D, Shelburne C, et al. Detection of bacterial DNA in atheromatous plaques by quantitative PCR. Microbes Infect 2006;8:687–93.
Koziel J, Mydel P, Potempa J. The link between periodontal disease and rheumatoid arthritis: an updated review. Curr Rheumatol Rep 2014;16:408.
Kwiatkowska B, Maślińska M. Macrolide therapy in chronic inflammatory diseases. Mediat Inflamm 2012;2012:636157.
Kyprides NC, Hugenholtz P, Eisen JA, et al. Genomic encyclopedia of bacteria and archaea: sequencing of a myriad of type strains. PLoS Biol 2014;12:1001920.
Lagier JC, Edouard S, Pagnier I, et al. Current and past strategies for bacterial culture in clinical microbiology. Clin Microbiol Rev 2015a;28:208–36.
Lagier JC, Hugon P, Khelaïfa S, et al. The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota. Clin Microbiol Rev 2015b;28:237–64.
Lanter BB, Sauer K, Davies DG. Bacteria present in carotid arterial plaques are found as biofilm deposits which may contribute to enhanced risk of plaque rupture. MBio 2014;5:e01206-14.
Larsen N, Vogensen FK, van den Berg FW, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 2010;5:e9085.
Lasken RS. Genomic sequencing of uncultured microorganisms from single cells. Nat Rev Microbiol 2012;10:631–40.
Lasken RS, McLean JS. Recent advances in genomic DNA sequencing of microbial species from single cells. Nat Rev Genet 2014;15:577–84.
Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut microbiome correlates with metabolic markers. Nature 2013;500:541–6.
LeBlanc JG, Milani C, de Giori GS, et al. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol 2013;24:160–8.
Leli C, Cardaccia A, Ferranti M, et al. Procalcitonin better than C-reactive protein, erythrocyte sedimentation rate, and white blood cell count in predicting DNAemia in patients with sepsis. Scand J Infect Dis 2014;46:745–52.
Lelu M, Chhatwal J, Sebo P, et al. Procalcitonin kills pathogens without detectable resistance. Nature 2015;517:455–9.
Lipinski B, Pretorius E. The role of iron-induced fibrin in the pathogenesis of Alzheimer’s disease and the protective role of magnesium. Front Hum Neurosci 2013;7:735.

Loman NJ, Constantinidou C, Chan JZ, et al. High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity. Nat Rev Microbiol 2012;10:599–606.

Lozupone CA, Li M, Campbell TB, et al. Alterations in the gut microbiota associated with HIV-1 infection. Cell Host Microbe 2013;14:329–39.

Lozupone CA, Stombaugh JI, Gordon JI, et al. Diversity, stability and resilience of the human gut microbiota. Nature 2012;489:220–30.

Luckey D, Gomez A, Murray J, et al. Bugs, us: the role of the gut in autoimmunity. Indian J Med Res 2013;138:732–43.

Lysak LV, Lapygina EV, Konova IA, et al. Quantity and taxonomic composition of ultramicrobacteria in soils. Microbiology 2010;79:408–12.

Ma HD, Wang YH, Chang C, et al. The intestinal microbiota and microenvironment in liver. Autoimmun Rev 2015;14:183–91.

McColl BW, Allan SM, Rothwell NJ. Systemic infection, inflammation and acute ischemic stroke. Neuroscience 2009;158:1049–61.

McDermott AJ, Huffnagle GB. The microbiome and regulation of inflammation. Gut Microbes 2013;4:566–71.

MacFie J. Current status of bacterial translocation as a cause of surgical sepsis. Brit Med Bull 2004;71:1–11.

McHardy IH, Li X, Tong M, et al. HIV Infection is associated with compositional and functional shifts in the rectal mucosal microbiota. Microbiome 2013;1:26.

Macintire DK, Bellhorn TL. Bacterial translocation: clinical implications and prevention. Vet Clin N Am-Small 2002;32:1165–78.

McLaughlin RW, Vali H, Lau PCK, et al. Are there naturally occurring pleomorphic bacteria in the blood of healthy humans? J Clin Microbiol 2002;40:4771–5.

McMahon CJ, Hopkins S, Vail A, et al. Inflammation as a predicator for delayed cerebral ischemia after aneurysmal subarachnoid haemorrhage. J Neurointerv Surg 2013;5:512–7.

Madar JC, Koestler DC, Stanton BA, et al. Serial analysis of the gut and respiratory microbiome in cystic fibrosis in infancy: interaction between intestinal and respiratory tracts and impact of nutritional exposures. MBio 2012;3:e00251–12.

Maisonuneuve E, Castro-Camargo M, Gerdes K. (p)ppGpp controls bacterial persistence by stochastic induction of toxin-antitoxin activity. Cell 2013;154:1140–50.

Maisonuneuve E, Gerdes K. Molecular mechanisms underlying bacterial persisters. Cell 2014;157:539–48.

Maiwald M, Relman DA. Whipple’s disease and Tropheryma whippeli: secrets slowly revealed. Clin Infect Dis 2001;32:457–63.

Maiwald M, von Herbay A, Fredricks DN, et al. Cultivation of Tropheryma whipplei from cerebrospinal fluid. J Infect Dis 2003;188:801–8.

Malaguarnera G, Giordano M, Nunnari G, et al. Gut microbiota in alcoholic liver disease: pathogenetic role and therapeutic perspectives. World J Gastroenterol 2014;20:16639–48.

Mancini N, Carletti S, Ghidoli N, et al. The era of molecular and other non-culture-based methods in diagnosis of sepsis. Clin Microbiol Rev 2010;23:235–51.

Manichanh C, Borruel N, Casellas F, et al. The gut microbiota in IBD. Nat Rev Gastroenterol 2012;9:599–608.

Marin L, Miguélez EM, Villar CJ, et al. Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. BioMed Res Int 2015;2015:905215.

Mariotti S, Pardini M, Gagliardi MC, et al. Dormant Mycobacterium tuberculosis fails to block phagosomal maturation and shows unexpected capacity to stimulate specific human T lymphocytes. J Immunol 2013;191:274–82.

Marshall B. Helicobacter connections. ChemMedChem 2006;1:783–802.

Marshall BJ, Warren JR. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1984;1:1311–5.

Martin F-PJ, Dumas M-E, Wang Y, et al. A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model. Mol Syst Biol 2007;3:112.

Martinez I, Perdicaro DJ, Brown AW, et al. Diet-induced alterations of host cholesterol metabolism are likely to affect the gut microbiota composition in hamsters. Appl Environ Microb 2013;79:516–24.

Martinez I, Wallace G, Zhang C, et al. Diet-induced metabolic improvements in a hamster model of hypercholesterolemia are strongly linked to alterations of the gut microbiota. Appl Environ Microb 2009;75:4175–84.

Maslowski KM, Vieira AT, Ng A, et al. Regulation of inflammatory responses by gut microbiota and chemotactant receptor GPR43. Nature 2009;461:1282–6.

Mason CA, Hamer G, Bryers JD. The death and lysis of microorganisms in environmental processes. FEMS Microbiol Rev 1986;39:373–401.

Mathias A, Pais B, Favre L, et al. Role of secretory IgA in the mucosal sensing of commensal bacteria. Gut Microbes 2014;5:688–95.

Mattman L. Cell Wall Deficient Forms: Stealth Pathogens. Boca Raton, FL: CRC Press, 2001.

Mercier R, Kawai Y, Errington J. Excess membrane synthesis drives a primitive mode of cell proliferation. Cell 2013;152:997–1007.

Mercier R, Kawai Y, Errington J. General principles for the formation and proliferation of a wall-free (L-form) state in bacteria. Elife 2014;3:e04629.

Meyer RD. Legionella infections: a review of five years of research. Rev Infect Dis 1983;5:258–78.

Mikovic A, Skuljety J, Pindak D, et al. Specific aspects of acute pancreatitis. Bratisl Lek Listy 2009;110:544–52.

Mikovic A, Skuljety J, Sykora P, et al. Intra-abdominal hypertension and acute pancreatitis. Bratisl Lek Listy 2013;114:166–71.

Minasyan H. Erythrocyte and blood antibacterial defense. Eur J Microbiol Immunol 2014;4:138–43.

Montassier E, Batard E, Gastinne T, et al. Recent changes in bacteriaemia in patients with cancer: a systematic review of epidemiology and antibiotic resistance. Eur J Clin Microbiol 2013;32:841–50.

Montes-de-Oca M, Blanco MJ, Marquez M, et al. Haemodynamic derangement in human immunodeficiency virus-infected patients with hepatitis C virus-related cirrhosis: the role of bacterial translocation. Liver Int 2011;31:850–8.

Morgan XC, Huttenhower C. Meta’omic analytic techniques for studying the intestinal microbiome. Gastroenterology 2014;146:1437–48.

Morgan XC, Tickle TL, Sokol H, et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 2012;13:R79.

Morita RF. Bacteria in Oligotrophic Environments: Starvation-Survival Lifestyle. New York: Chapman and Hall, 1997.
fibris fibril formation: the use of scanning electron microscopy. Toxicol Mech Method 2013;23:352–9.
Primas H. Chemistry, Quantum Mechanics and Reductionism. Berlin: Springer, 1981.
Proal AD, Albert PJ, Marshall TG. Autoimmune disease and the human metagencode. In: Nelson KE (ed). Metagenomics of the Human Body. New York: Springer Science and Business Media, 2011.
Proal AD, Albert PJ, Marshall TG, et al. Immunostimulation in the treatment for chronic fatigue syndrome/myalgic encephalomyelitis. Immunol Res 2013;56:398–412.
Proal AD, Albert PJ, Marshall TG. Inflammatory disease and the human microbiome. Discov Med 2014;17:257–65.
Puddu A, Sanguineti R, Montecucco F, et al. Evidence for the gut microbiota short-chain fatty acids as key pathological molecules improving diabetes. Mediat Inflamm 2014;2014:162021.
Puleo F, Arvanitakis M, Van Gossum A, et al. Gut failure in the ICU. Semin Respir Crit Care 2011;32:626–68.
Puspita DJ, Kamagata Y, Tanaka M, et al. Are uncultivated bacteria really uncultivable? Microbes Environ 2012;27:356–66.
Puspita DJ, Uehara M, Katayama T, et al. Resuscitation promoting factor (Rpf) from Tomitella biformata AHU 1821(T) promotes growth and resuscitates non-dividing cells. Microbes Environ 2013;28:58–64.
Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012;490:55–60.
Radajewski S, Ineson P, Parekh NR, et al. Stable-isotope probing as a tool in microbial ecology. Nature 2000;403:646–9.
Ramírez JH, Parra B, Gutierrez S, et al. Biomarkers of cardiovascular disease are increased in untreated chronic periodontitis: a case control study. Aust Dent J 2014;59:29–36.
Ratledge C. Iron metabolism and infection. Food Nutr Bull 2007;28:S515–23.
Rechner AR, Kuhnle G, Hu H, et al. The metabolism of dietary polyphenols and the relevance to circulating levels of conjugated fatty acids. Free Radical Res 2002;36:1229–41.
Renesto P, Crapoletti N, Ogata H, et al. Genome-based design of a cell-free culture medium for Tropheryma whipplei. Lancet 2003;362:447–9.
Renko J, Lepp PW, Oksala N, et al. Bacterial signatures in atherosclerotic lesions represent human commensals and pathogens. Atherosclerosis 2008;201:192–7.
Rhee SH. Lipopolysaccharide: basic biochemistry, intracellular signaling, and physiological impacts in the gut. Intest Res 2014;12:90–5.
Rinke C, Schwientek P, Sczyrba A, et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 2013;499:431–7.
Robles-Alonso V, Guarner F. From basic to applied research: lessons from the human microbiome projects. J Clin Gastroenterol 2014;48 (Suppl 1):S3–4.
Rogler G, Rosano G. The heart and the gut. Eur Heart J 2014;35:426–30.
Rolain JM, Maurin M, Mallet MN, et al. Culture and antibiotic susceptibility of Bartonella quintana in human erythrocytes. Antimicrob Agents Ch 2003;47:614–9.
Ronco C. Endotoxin removal: history of a mission. Blood Purif 2014;37 (Suppl 1):S5–8.
Rooks MG, Veiga P, Wardwell-Scott LH, et al. Gut microbiome composition and function in experimental colitis during active disease and treatment-induced remission. ISME J 2014;8:1403–17.
Rosenfeld ME, Campbell LA. Pathogens and atherosclerosis: update on the potential contribution of multiple infectious organisms to the pathogenesis of atherosclerosis. Thromb Haemostasis 2011;106:858–67.
Ross R, Mills S, Hill C, et al. Specific metabolite production by gut microbiota as a basis for probiotic function. Int Dairy J 2010;20:269–76.
Sabatino A, Regolisti G, Brusasco I, et al. Alterations of intestinal barrier and microbiota in chronic kidney disease. Nephrol Dial Transpl 2014, DOI:10.1093/ndt/gfu287.
Sacchi P, Cima S, Corbella M, et al. Liver fibrosis, microbial translocation and immune activation markers in HIV and HCV infections and in HIV/HCV co-infection. Dig Liver Dis 2015;47:218–25.
Sahin N, Gonzalez JM, Iizuka T, et al. Characterization of two aerobic ultramicrobacteria isolated from urban soil and a description of Oxalibacterium solurbis sp. nov. FEMS Microbiol Lett 2010;307:25–9.
Saito A, Rolfe RD, Edelstein PH, et al. Comparison of liquid growth media for Legionella pneumophila. J Clin Microbiol 1981;14:623–7.
Salipante SJ, Roach DJ, Kitzman JO, et al. Large-scale genomic sequencing of extraintestinal pathogenic Escherichia coli strains. Genome Res 2015;25:119–28.
Salipante SJ, Sengupta DJ, Rosenthal C, et al. Rapid 16S rRNA next-generation sequencing of polymicrobial clinical samples for diagnosis of complex bacterial infections. PLoS One 2013;8:e65226.
Salter SJ, Cox MJ, Turek EM, et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol 2014;12:87.
Sánchez-Calvo JM, García-Castillo M, Lamas A, et al. Gut microbiota composition in cystic fibrosis patients: molecular approach and classical culture. J Cyst Fibros 2008;7:550.
Sandler NG, Douek DC. Microbial translocation in HIV infection: causes, consequences and treatment opportunities. Nat Rev Microbiol 2012;10:655–66.
Sanz Y, Moya-Pérez A. Microbiota, inflammation and obesity. Adv Exp Med Biol 2014;817:291–317.
Sato J, Kanazawa A, Ikeda F, et al. Gut dysbiosis and detection of ‘live gut bacteria’ in blood of Japanese patients with type 2 diabetes. Diabetes Care 2014;37:2343–50.
Sato S, Kiyono H, Fujishashi K. Mucosal immunosenescence in the gastrointestinal tract: a mini-review. Gerontology 2014.
Sawa T. The molecular mechanism of acute lung injury caused by Pseudomonas aeruginosa: from bacterial pathogenesis to host response. J Intensive Care 2014;2:10.
Sayin SI, Wahlstrom A, Felin J, et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab 2013;17:225–35.
Scanlan PD, Buckling A, Kong W, et al. Gut dysbiosis in cystic fibrosis. J Cyst Fibros 2012;11:454–5.
Scheperjans F, Aho V, Pereira PA, et al. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Movement Disord 2015;30:350–8.
Scher JU, Abramson SB. The microbiome and rheumatoid arthritis. Nat Rev Rheumatol 2011;7:569–78.
Schnabl B, Brenner DA. Interactions between the intestinal microbiome and liver diseases. Gastroenterology 2014;146:1513–24.
Schroeter J, Wilkemeyer I, Schiller RA, et al. Validation of the microbiological testing of tissue preparations using the
BACTEC blood culture system. Transfus Med Hemother 2012;39: 387–90.

Schulz MD, Atay C, Heringer J, et al. High-fat-diet-mediated dysbiosis promotes intestinal carcinogenesis independently of obesity. Nature 2014;514:508–12.

Seksik P, Rigot-Guenn L, Garamet C, et al. Alterations of the dominant faecal bacterial groups in patients with Crohn’s disease of the colon. Gut 2003;52:237–42.

Seringee N, Guncu G, Arihan O, et al. Investigation of hemorheological parameters in periodontal diseases. Clin Hemorheol Microcirc 2014, DOI:10.3233/CH-141892.

Severance EG, Gressitt KL, Stallings CR, et al. Discordant patterns of bacterial translocation markers and implications for innate immune imbalances in schizophrenia. Schizophr Res 2013;148:130–7.

Severance EG, Yolken RH, Eaton WW. Autoimmune diseases, gastrointestinal disorders and the microbiome in schizophrenia: more than a gut feeling. Schizophr Res 2014, DOI:10.1016/j.schres.2014.06.027.

Sharma BR. Infection in patients with severe burns: causes and prevention thereof. Infect Dis Clin N Am 2007;21:745–59.

Shaw MK. Cell invasion by Theileria sporozoites. Trends Parasitol 2003;19:2–6.

Sheedy JR, Wettenhall RE, Scanlon D, et al. Increased d-lactic acid intestinal bacteria in patients with chronic fatigue syndrome. In Vivo 2009;23:621–8.

Sia AK, Allred BE, Raymond KN. Siderocalins: siderophore binding proteins evolved for primary pathogen host defense. Curr Opin Chem Biol 2013;17:150–7.

Singh S, Eldin C, Kowalczewska M, et al. Axenic culture of fastidious and intracellular bacteria. Trends Microbiol 2013;21:92–9.

Soina VS, Lysak LV, Konova IA, et al. Study of ultramicrobacteria (nanoforms) in soils and subsoil deposits by electron microscopy. Eurasin Soil Sci 2012;45:1048–56.

Steinberg SM. Bacterial translocation: what it is and what it is not. Am J Surg 2003;186:301–5.

Stevenson BS, Eichorst SA, Wertz JT, et al. New strategies for cultivation and detection of previously uncultured microbes. Appl Environ Microb 2004;70:4748–55.

Stewart EJ. Growing unculturable bacteria. J Bacteriol 2012;194:4151–60.

Straub RH, Cutolo M. Circadian rhythms in rheumatoid arthritis: implications for pathophysiology and therapeutic management. Arthritis Rheum 2007;56:399–408.

Swank GM, Deitch EA. Role of the gut in multiple organ failure: bacterial translocation and permeability changes. World J Surg 1996;20:411–7.

Syrijänen J, Valtonen VV, Livaninen M, et al. Preceding infection as an important risk factor for ischaemic brain infarction in young and middle aged patients. Brit Med J 1988;296:1156–60.

Tanaka T, Kawasaki K, Daimon S, et al. A hidden pitfall in the preparation of agar media undermines microorganism cultivability. Appl Environ Microb 2014;80:7659–66.

Taneja V. Arthritis susceptibility and the gut microbiome. FEBS Lett 2014;588:4244–9.

Tang WH, Wang Z, Levison BS, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. New Engl J Med 2013;368:1575–84.

Tedeschi GG, Bondi A, Paparelli M, et al. Electron microscopical evidence of the evolution of corynebacteria-like microorganisms within human erythrocytes. Experientia 1978;34:458–60.

Thaiss CA, Zeevi D, Levy M, et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 2014;159:514–29.

The Integrative HMP (iHMP) Research Network Consortium. The Integrative Human Microbiome Project: dynamic analysis of microbiome-host omics profiles during periods of human health and disease. Cell Host Microbe 2014;16:276–89.

Thwaites GE, Cant V. Are bloodstream leukocytes Trojan Horses for the metastasis of Staphylococcus aureus? Nat Rev Microbiol 2011;9:215–22.

Tojo R, Suárez A, Clemente MG, et al. Intestinal microbiota in health and disease: role of bifidobacteria in gut homeostasis. World J Gastroenterol 2014;20:15163–76.

Tomas-Barberan F, Garcia-Villalba R, Quartieri A, et al. In vitro transformation of chlorogenic acid by human gut microbiota. Mol Nutr Food Res 2014;58:1122–31.

Touati D. Iron and oxidative stress in bacteria. Arch Biochem Biophys 2000;373:1–6.

Traseid M, Manner IW, Pedersen KK, et al. Microbial translocation and cardiometabolic risk factors in HIV infection. AIDS Res Hum Retrov 2014;30:514–22.

Tsujimoto H, Ono S, Mochizuki H. Role of translocation of pathogen-associated molecular patterns in sepsis. Surg Infect 2009;26:109–9.

Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature 2009;457:480–4.

Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006;444:1027–131.

Vaarala O. Human intestinal microbiota and type 1 diabetes. Curr Diabet Rep 2013;13:601–7.

Vajro P, Paolella G, Fasano A. Microbiota and gut-liver axis: their influence on obesity and obesity-related liver disease. J Pediatr Gastro Nutr 2013;56:461–8.

Valencia-Shelton F, Loefellholz M. Nonculture techniques for the detection of bacteriaemia and fungemia. Future Microbiol 2014;9:543–59.

van der Merwe J, Prysliak T, Perez-Casal J. Invasion of bovine peripheral blood mononuclear cells and erythrocytes by Mycoplasma bovis. Infect Immun 2010;78:4570–8.

van Duynhoven J, Vaughan EE, Jacobs DM, et al. Metabolic fate of polyphenols in the human superorganism. P Natl Acad Sci USA 2011;108 (Suppl 1):4531–8.

Varani S, Stanzani M, Paolucci M, et al. Diagnosis of bloodstream infections in immunocompromised patients by real-time PCR. J Infect 2009;58:346–51.

Vartoukian SR, Palmer RM, Wade WG. Strategies for culture of ‘unculturable’ bacteria. FEMS Microbiol Lett 2010;309:1–7.

Vázquez-Castellanos JF, Serrano-Villar S, Latorre A, et al. Altered metabolism of gut microbiota contributes to chronic immune activation in HIV-infected individuals. Mucosal Immunol 2014, DOI:10.1038/mi.2014.107.

Venkatess M, Mukherjee S, Wang H, et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity 2014;41:296–310.

Vila-Corcoles A, Ochoa-Gondar O, Rodriguez-Blanco T, et al. Evaluating clinical effectiveness of pneumococcal vaccination in preventing stroke: the CAPAMIS Study 3-year follow-up. J Stroke Cerebrovasc 2014;23:1577–84.

Vincent JL, Rello J, Marshall J, et al. International study of the prevalence and outcomes of infection in intensive care units. JAMA 2009;302:2323–9.

Vitry MA, Hanot Mambres D, Deghelt M, et al. Brucella melitensis invades murine erythrocytes during infection. Infect Immun 2014;82:3927–38.
Vizcarra JA, Wilson-Perez HE, Espay AJ. The power in numbers: gut microbiota in Parkinson’s disease. Movement Disord 2015;30:296–8.

Vogl G, Plaickner A, Szathmary S, et al. Mycoplasma gallisepticum invades chicken erythrocytes during infection. Infect Immun 2008;76:71–7.

Votyakova TV, Kaprelyants AS, Kell DB. Influence of viable cells on the resuscitation of dormant cells in Micrococcus luteus cultures held in an extended stationary phase: the population effect. Appl Environ Microb 1994;60:3284–91.

Vujkovic-Cvijin I, Dunham RM, Iwai S, et al. Dysbiosis of the gut microbiota is associated with HIV disease progression and tryptophan catabolism. Sci Transl Med 2013;5:193–1.

Walker AW, Duncan SH, Louis P, et al. Phylogeny, culturing, and metagenomics of the human gut microbiota. Trends Microbiol 2014;22:267–74.

Wallet F, Loiez C, Herwegh S, et al. Usefulness of real-time PCR for the diagnosis of sepsis in ICU-acquired infections. Infect Disord Drug Targets 2011;11:348–53.

Wang Y, Chen Y, Zhou Q, et al. A culture-independent approach to unravel uncultured bacteria and functional genes in a complex microbial community. PLoS One 2012c;7:e47530.

Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011;472:57–63.

Wang Z, Zhang L, Guo Z, et al. A unique feature of iron loss via close adhesion of Helicobacter pylori to host erythrocytes. PLoS One 2012b;7:e50314.

Wang ZW, Li Y, Huang LY, et al. Helicobacter pylori infection contributes to high risk of ischemic stroke: evidence from a meta-analysis. J Neurol 2012a;259:2527–37.

Weinstein MP. Current blood culture methods and systems: clinical concepts, technology, and interpretation of results. Clin Infect Dis 1996;23:40–6.

Weinstock GM. Genomic approaches to studying the human microbiota. Nature 2012;489:250–6.

West SA, Buckling A. Cooperation, virulence and siderophore production in bacterial parasites. Proc R Soc B 2003;270:37–44.

West R, Garcia-Tsao G. Bacterial translocation (BT) in cirrhosis. Hepatology 2005;41:422–33.

West R, Lawson M, Geuking M. Pathological bacterial translocation in liver cirrhosis. J Hepatol 2014;60:197–209.

West R, Rath HC. Gastrointestinal disorders of the critically ill. Bacterial translocation in the gut. Best Pract Res Clin Gastroenterol 2003;17:397–425.

Wikoff WR, Anfora AT, Liu J, et al. Metabolomics analysis reveals large effects of gut microflora on marnalian blood metabolites. P Natl Acad Sci USA 2009;106:3698–703.

Williams BB, Van Benschoten AH, Cimermancic P, et al. Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine. Cell Host Microbe 2014;16:495–503.

Williams BL, Hornig M, Buie T, et al. Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances. PLoS One 2011;6:e24585.

Williams BL, Hornig M, Parekh T, et al. Application of novel PCR-based methods for detection, quantitation, and phylogenetic characterization of Sutterella species in intestinal biopsy samples from children with autism and gastrointestinal disturbances. MBio 2012;3:00261–11.

Williams TA, Foster PG, Cox CJ, et al. An archaeal origin of eukaryotes supports only two primary domains of life. Nature 2013;504:231–6.

Wilson ML, Weinstein MP. General principles in the laboratory detection of bacteremia and fungemia. Clin Lab Med 1994;14:69–82.

Winter SE, Thiennimitr P, Winter MG, et al. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 2010;467:426–9.

Woese CR, Fox GE. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. P Natl Acad Sci USA 1977;74:5088–90.

Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. P Natl Acad Sci USA 1990;87:4576–79.

Xayarath B, Freitag NE. Optimizing the balance between host and environmental survival skills: lessons learned from Listeria monocyctogenes. Future Microbiol 2012;7:839–52.

Yamaguchi M, Terao Y, Mori-Yamaguchi Y, et al. Streptococcus pneumoniae invades erythrocytes and utilizes them to evade human innate immunity. PLoS One 2013;8:e77282.

Yang J, Feng L, Ren J, et al. Correlation between the severity of periodontitis and coronary artery stenosis in a Chinese population. Aust Dent J 2013;58:333–8.

Yarza P, Spröer C, Swiderski J, et al. Sequencing orphan species initiative (SOS): filling the gaps in the 16S rRNA gene sequence database for all species with validly published names. Syst Appl Microbiol 2013;36:69–73.

Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature 2012;486:222–7.

Young D, Stark J, Kirschner D. Systems biology of persistent infection: tuberculosis as a case study. Nat Rev Microbiol 2008;6:520–8.

Yu RQ, Yuan JL, Ma IY, et al. Probiotics improve obesity-associated dyslipidemia and insulin resistance in high-fat diet-fed rats. Zhongguo Daig Er Ke Za Zhi 2013;15:1123–7.

Zengler K, Toledo G, Rapp M, et al. Cultivating the uncultured. P Natl Acad Sci USA 2002;99:15681–6.

Zhang H, Liao X, Sparks JB, et al. Dynamics of gut microbiota in autoimmune lupus. Appl Environ Microb 2014a;80:7551–60.

Zhang R, Lahens NF, Ballance HI, et al. A circadian gene expression atlas in mammals: implications for biology and medicine. P Natl Acad Sci USA 2014b;111:16219–24.

Zhang Y, Yew WW, Barer MR. Targeting persisters for tuberculosis control. Antimicrob Agents Ch 2012;56:2223–30.

Zhang Y, Zou Y, Ma P, et al. Identification of Mycoplasma suis MSG1 interaction proteins on porcine erythrocytes. Arch Microbiol 2014c;80:7551–60.

Zhu Y, Jameson E, Crosatti M, et al. Carnitine metabolism to trimethylamine by an unusual Rieske-type oxygenase from human microbiota. P Natl Acad Sci USA 2014;111:4268–73.

Zimmermann MB, Chassard C, Rohner F, et al. The effects of iron fortification on the gut microbiota in African children: a randomized controlled trial in Cote d’Ivoire. Am J Clin Nutr 2010;92:1406–15.