CT-Invariant Quantum Spin Hall Effect in Ferromagnetic Graphene

Qing-feng Sun1,,* and X. C. Xie1,2

1Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078, USA
(Received 13 July 2009; published 12 February 2010)

We predict a quantum spin Hall effect (QSHE) in ferromagnetic graphene under a magnetic field. Unlike the previous QSHE, this QSHE appears in the absence of spin-orbit interaction and thus, is arrived at from a different physical origin. The previous QSHE is protected by the time-reversal (T) invariance. This new QSHE is protected by CT invariance, where C is the charge conjugation operation. Because of this QSHE, the longitudinal resistance exhibits quantum plateaus. The plateau values are at 1/2, 1/6, 3/28, … (in units of $h/e^2$), depending on the filling factors of the spin-up and spin-down carriers. The spin Hall resistance is also investigated and is found to be robust against the disorder.

DOI: 10.1103/PhysRevLett.104.066805
PACS numbers: 73.43.-f, 72.25.-b, 81.05.U–

In the years since the spin Hall effect (SHE) has been discovered, it has generated great interest [1–4]. In the SHE, an applied longitudinal charge current or voltage bias induces a transverse spin current due to the spin-dependent scatterings [1,2] of the spin-orbit interaction (SOI) [3]. Soon afterwards, the quantum SHE (QSHE) was also predicted [5,6]. The QSHE occurs in a topological insulator in which the bulk material is an insulator with two helical edge states carrying the current [7]. The edge states, with opposite spins on a given edge or opposite edges for a given spin direction containing opposite propagation directions, lead to a quantized spin Hall conductance. The QSHE is a new quantum state of matter with a nontrivial topological property. The existence of QSHE was first proposed in a graphene film in which the SOI opened a band gap and established the edge states [5,6]. But the subsequent work found that the SOI in the graphene was quite weak and the gap opening was small, so the QSHE was difficult to observe [8]. Soon afterwards, the QSHE was also predicted to exist in some other systems [9–12]. Recently, the QSHE was successfully realized in the CdTe/HgTe/CdTe quantum wells, and a quantized longitudinal resistance plateau was experimentally observed due to the QSHE [11].

Another subject that has also been extensively investigated in recent years is graphene, a single-layer hexagonal lattice of carbon atoms [13], after it has been successfully fabricated [14,15]. Graphene has a unique band structure with a linear dispersion near the Fermi surface, giving it many peculiar properties. For example, the quasiparticles obey the Dirac-like equation and have relativistic-like behaviors, and its Hall plateaus are at the half-integer values.

In this Letter, we predict a new kind of QSHE in a ferromagnetic graphene. Let us first imagine a twodimensional system consisting of the following characteristics: (i) its carriers contain electrons and holes; (ii) both electrons and holes are completely spin-polarized with opposite spin polarizations. When a high perpendicular magnetic field is applied to the system, the edge states are formed and the carriers move only along the edges. In particular, the electrons (with their spins up) and holes (with their spins down) move in opposite directions on a given edge [see the inset in Fig. 1(a)]. Therefore, the QSHE automatically exists in this system. Although the ordinary metals (or doped semiconductors) cannot meet the above two characteristics, a ferromagnetic graphene does. Recently, several approaches to realize a ferromagnetic graphene have been suggested [16–18]. For example, the ferromagnetic graphene can be realized by growing the graphene on a ferromagnetic insulator (e.g., EuO) [17]. For a ferromagnetic graphene, as soon as the Fermi energy $E_F$ is tuned to lie between the spin-up and spin-down Dirac
points [see the inset in Fig. 1(b)], the above two characteristics are met and the QSHE occurs. In the following calculations, we consider four- and six-terminal graphene Hall bars (see the insets in Fig. 1(a)]. The results reveal that the transverse spin current and spin Hall resistance indeed show the quantized plateaus because of the QSHE.

Comparing this new QSHE with the previously-studied QSHE, there are two essential differences: (i) The previous QSHE comes from the SOI and the proposed systems all contain the time-reversal symmetry [5–7,9,10], while the present QSHE exists without the SOI and breaks the time-reversal symmetry. However, this new QSHE is protected by CT invariance. (ii) In the previous QSHE, the edge states only carry a spin current while at equilibrium; in this QSHE system, the edge states carry both spin and charge currents at equilibrium with the two edges states being CT partners of each other [see the inset in Fig. 1(a)]. Thus, this is a new kind of QSHE and the system is a new type of topological insulator. Because of the topological invariance, the plateaus of the spin Hall resistance are robust to disorder or impurity scattering. So the plateau is very stable and its value can be used as the standard value for the spin Hall resistance.

In the tight-binding representation, the four- or six-terminal ferromagnetic graphene device [see the insets in Fig. 1(a)] can be described by the Hamiltonian [19]

$$H = \sum_{i,\sigma} (\varepsilon_0 - \sigma M) a_{i\sigma}^\dagger a_{i\sigma} - \sum_{(ij),\sigma} t e^{i\phi_{ij}} a_{i\sigma}^\dagger a_{j\sigma},$$  

where $a_{i\sigma}$ and $a_{i\sigma}^\dagger$ are the annihilation and creation operators at the discrete site $i$. $\varepsilon_0$ is the on-site energy (i.e., the Dirac-point energy), $M$ is the ferromagnetic exchange split [17], and $t$ is the nearest neighbor hopping element. Here, the whole device, including the center region and four or six terminals, is made of the ferromagnetic graphene. With the presence of a perpendicular magnetic field $B$, a phase factor $\phi_{ij}$ is added to the hopping element, $\phi_{ij} = \int_I A \cdot d\vec{l}/\phi_0$ with the vector potential $\vec{A} = (-By, 0, 0)$ and $\phi_0 = \hbar/e$.

The transmission coefficient $T_{pq\sigma}(\epsilon)$ from the terminal $q$ to the terminal $p$ with spin $\sigma$ can be calculated from the equation [20] $T_{pq\sigma}(\epsilon) = \text{Tr}[\Gamma_{\sigma\sigma} G_{\sigma\sigma} G_{\sigma\sigma}^\dagger]$, where $\Gamma_{\sigma\sigma}(\epsilon) = [\Sigma_{\sigma\sigma}(\epsilon) - \Sigma_{\sigma\sigma}^\dagger(\epsilon)]$, the Green functions $G_{\sigma\sigma}(\epsilon) = [G_{\sigma\sigma}(\epsilon)]^{-1} = 1/[\epsilon - \mathbf{H}_{\sigma\sigma} - \sum_{\sigma'} \Sigma_{\sigma\sigma}(\epsilon)]$, and $\mathbf{H}_{\sigma\sigma}$ is the Hamiltonian of the center region. The retarded self-energy $\Sigma_{\sigma\sigma}(\epsilon)$ due to the coupling to the terminal $p$ can be calculated numerically [21]. After obtaining the transmission coefficient, the particle current in the terminal $p$ with the spin $\sigma$ can be calculated from the Landauer-Büttiker formula $I_{pq\sigma} = (1/h) \int d\epsilon \sum_{\sigma'} T_{pq\sigma}(\epsilon) \times [f_{\sigma\sigma}(\epsilon) - f_{\sigma\sigma}(\epsilon')]$, where $f_{\sigma\sigma}(\epsilon) = 1/[\exp(\epsilon - \mu_{\sigma\sigma}/k_BT) + 1]$ is the Fermi distribution function in the terminal $p$, with the spin-dependent chemical potential $\mu_{\sigma\sigma}$ and the temperature $T$. In the following numerical calculations, we take $t = 1$ as the energy unit and only consider the zero temperature case ($T = 0$), as the thermal energy $k_BT$ is normally much smaller than other energy scales in the problem. The sample width is denoted by $N$, and the insets of Fig. 1(a) show a system with $N = 3$. In the calculations, we choose $N = 80$ and 40, and the corresponding widths are 33.9 and 16.9 nm. The magnetic field is described by the $\phi$ with $\phi = (3\sqrt{3}/4)a^2B/\phi_0$ and the magnetic flux in a honeycomb lattice is $2\phi$.

We first consider the four-terminal device (see the inset at the top right corner of Fig. 1(a) and a small bias $V$ is applied between the longitudinal terminals 1 and 3 to study the induced charge current $I_{ne}[I_{ne} = e(I_{\sigma1} + I_{\sigma2})]$ and spin current $I_{ns}[I_{ns} = (h/2)(I_{\sigma1} - I_{\sigma2})]$ in the transversal terminals 2 and 4. Here the boundary conditions for the four terminals are $\mu_{\sigma1} = \mu_{\sigma1} = eV/2$, $\mu_{\sigma2} = \mu_{\sigma3} = 0$, $\mu_{\sigma3} = -eV/2$, and $\mu_{\sigma4} = 0$. The currents in the terminals 2 and 4 satisfy the relations: $I_{x2} = -I_{x4} \equiv I_x$ and $I_{x4} = -I_{x2} \equiv -I_x$. Figures 1(a) and 1(b) show the Hall conductance $I_x/V$ and spin Hall conductance $I_{\sigma}/V$ versus the Dirac-point energy $\epsilon_0$, respectively. For a nonferromagnetic graphene ($M = 0$) under the high magnetic field ($\phi = 0.005$), $I_x/V$ is zero and $I_{\sigma}/V$ exhibits the plateaus at odd integer values $ne^2/h$ ($n = \pm 1, \pm 3, \ldots$) due to the quantum Hall effect (QHE). These results have been observed in recent experiments [14,15]. For a ferromagnetic graphene with $M \neq 0$, the spin current emerges [see Fig. 1(b)] since the QSHE. The spin Hall conductance $I_{\sigma}/V$ also shows the quantized plateaus. By considering the edge state under the high magnetic field, the plateau values of $I_{\sigma}/V$ and $I_x/V$ can be analytically derived to be at $(\nu_1 - \nu_2)e/8\pi$ and $(\nu_1 + \nu_2)e^2/2gh$ [22], where $\nu_{\sigma}$ is the Landau filling factor for spin $\sigma$. In particular, when $|\epsilon_0| < |M|$, in which case the Fermi energy $E_F$ ($E_F = 0$) is located between the spin-up Dirac point $\epsilon_0 - M$ and the spin-down Dirac point $\epsilon_0 + M$, $I_x$ is zero and a net quantum spin current emerges in the transversal terminals. In addition, if in the open circuit case, the spin accumulation emerges at the sample boundaries instead of the spin current [22].

Since the QSHE can give rise to quantum plateaus in resistances, we next study the longitudinal and Hall resistances in the six-terminal Hall device [see the inset in the lower left corner of Fig. 1(a)]. Now we consider a small bias $V$ applied to the longitudinal terminals 1 and 4. The transversal terminals 2, 3, 5, and 6 are all voltage probes, their charge currents vanish ($I_{pe} = 0$) and $\mu_{\sigma1} = \mu_{\sigma3} = \mu_{\sigma5} = \mu_{\sigma6}$. Combining these boundary conditions with the Landauer-Büttiker formula, the voltages $V_p$ ($V_{p} = \mu_{p\sigma}/e$ in four voltage probes can be obtained, then the longitudinal resistance $R_{14,23} = (V_2 - V_3)/I_{14}$ and Hall resistance $R_{14,26} = (V_2 - V_6)/I_{14}$ are calculated, here $I_{14} = -I_{1e} \equiv I_{4e}$. The resistances contain the properties $R_{14,26} = R_{14,35}$ and $R_{14,23} = R_{14,65}$.

Figures 2(a) and 2(b) show the longitudinal and Hall resistances, $R_{14,23}$ and $R_{14,26}$, versus the energy $\epsilon_0$ and the exchange split $M$ at an external magnetic field $\phi = 0.005$. Because of the QSHE and QHE, both $R_{14,23}$ and $R_{14,26}$ may
be nonzero, and they both exhibit plateau structures. The plateau values are determined by the filling factors \( \nu_1 \) and \( \nu_1 \). For the fixed filling factors \( \nu_1 \) and \( \nu_1 \), \( R_{14,23} \) and \( R_{14,26} \) maintain their plateau values regardless of \( \epsilon_0 \) and \( M \). By considering the carriers transport along the edge states, the plateau values can be analytically derived [22] \( R_{14,23} = 0 \) and \( R_{14,26} = 1/(\nu_1 + \nu_1) \) for \( (\nu_1, \nu_1) = (+, +) \) or \((-\nu_1, \nu_1) = (-, -) \), and \( R_{14,23} = (|\nu_1|/(|\nu_1|^2 + |\nu_1|^2)) \) for \( (\nu_1, \nu_1) = (+, -) \) or \((-\nu_1, \nu_1) = (-, +) \). Some plateau values for low \( \nu_1 \), \( \nu_1 \) have been labeled in Fig. 2. The numerical results in Fig. 2 are in excellent agreement with the analytic plateau values (the differences between them are less than \( 10^{-6} \)). Furthermore, \( R_{14,23} \) and \( R_{14,26} \) have the following properties: While \( |\epsilon_0| > |M| \) with \( (\nu_1, \nu_1) = (+, +) \) or \((-\nu_1, \nu_1) = (-, -) \), the longitudinal resistance \( R_{14,23} \) is zero and only the Hall resistance \( R_{14,26} \) exists because the spin-up and spin-down carriers are simultaneously both electronlike or hololike and move in the same direction. On the other hand, while \( |\epsilon_0| < |M| \) with \( (\nu_1, \nu_1) = (+, -) \) or \((-\nu_1, \nu_1) = (-, +) \), the Fermi energy \( E_F \) is located between \( \epsilon_0 + M \) and \( \epsilon_0 - M \), the longitudinal resistance \( R_{14,23} \) emerges since now the spin-up and spin-down carriers move in opposite directions for a given edge. (i) While \( \nu_1 = -\nu_1 \equiv \nu \), the Hall resistance \( R_{14,26} = 0 \), only the longitudinal resistance \( R_{14,23} \) exists with the value \((1/2\nu)\hbar/e^2\). This means that only the QSH emerges and the QHE vanishes in this region. In this case, the system has the CT invariance. Furthermore, if \( \nu_1 = -\nu_1 \equiv \pm 1 \), \( R_{14,26} = 0 \), and \( R_{14,23} = (1/2)\hbar/e^2 \). Now the observed phenomena are completely the same with the QSH from the SOI [5–7,9,10], but their physical mechanisms are different. (ii) While \( \nu_1 \neq -\nu_1 \) but still with \( (\nu_1, \nu_1) = (+, -) \) or \((-\nu_1, \nu_1) = (-, +) \), \( R_{14,26} \) is now nonzero since the numbers of the spin-up and spin-down edge states are different. In this case, both resistances \( R_{14,23} \) and \( R_{14,26} \) have nonzero quantized plateaus and the QSH and QHE coexist. Figure 3 shows the resistances \( R_{14,23} \) and \( R_{14,26} \) versus the energy \( \epsilon_0 \) for a fixed \( M \) (i.e., along the horizontal lines in Fig. 2), and it clearly shows that the quantum plateaus persist very well.

Up to now, we demonstrate the existence of QSH in the ferromagnetic graphene from both physical picture and detailed numerical calculations. In the following, we study the properties of the spin Hall resistance \( R_s \), a measurable quantity robust to dephasing [23], and well reflecting the topological invariance of the system. We again consider the four-terminal Hall bar. But now the transversal terminals 2 and 4 are spin-biased probes with boundary conditions \( I_{\nu_1} = I_{\nu_1} = 0 \) (\( p = 2, 4 \)). Here the spin Hall resistance \( R_s \) is defined as the transversal spin bias over the longitudinal charge current: \( R_s = (\mu_{23} - \mu_{24})/eI_{13} = -(\mu_{23} - \mu_{24})/eI_{13} \). Since the spin bias \( \mu_{23} - \mu_{24} \) is experimentally measurable, so is the \( R_s \) [24,25]. Figure 4 shows \( R_s \) versus the energy \( \epsilon_0 \) for different ferromagnetic exchange split \( M \) and magnetic field \( \phi \). For \( |\epsilon_0| > |M| \) with \( (\nu_1, \nu_1) = (+, +) \) or \((-\nu_1, \nu_1) = (-, -) \), \( R_s \) is zero. On the other hand, while \( |\epsilon_0| < |M| \) with \( (\nu_1, \nu_1) = (+, -) \) or \((-\nu_1, \nu_1) = (-, +) \), \( R_s \) exists. \( R_s \) exhibits the quantum plateaus, and its plateau values are at \((1/(\nu_1 + |\nu_1|))\hbar/e^2\). For a small \( M \) (e.g., \( M = 0.02 \) or \( 0.05 \) in Fig. 4(b)) or a high magnetic field \( \phi \) (e.g., \( \phi = 0.005 \) in Fig. 4(a)), \( (\nu_1, \nu_1) \) can only equal to...
(1, −1), so only the plateau of \( R_s = h/2e^2 \) emerges. But for a large \( M \) or a small magnetic field \( \phi \), \((\nu_1, \nu_2)\) may be \((1, −3), (3, −1), (1, −5), (5, −1), \) etc., then the plateaus of \( R_s = h/4e^2, h/6e^2, \) etc., are also possible.

Finally, we examine the disorder effect on the spin Hall resistance \( R_s \). Here we assume that the disorder only exists in the central region [see dotted box in top right inset of Fig. 1(a)]. Because of the disorder, the on-site energy \( \epsilon_0 \) + \( w_i - \sigma M \) for each site \( i \) in the central region is changed to \( \epsilon_0 + w_i - \sigma M \), where \( w_i \) is uniformly distributed in the range \([-W/2, W/2]\) with the disorder strength \( W \). Figure 5(a) shows \( R_s \) versus the energy \( \epsilon_0 \) at the different disorder strengths \( W \) and Fig. 5(b) shows \( R_s \) versus the disorder strength \( W \) at different energies \( \epsilon_0 \). The results show that the quantum plateaus of \( R_s \) are very robust against the disorder because of the topological invariance of the system. The quantum plateau maintains its quantized value very well even when \( W \) reaches 2 [see Figs. 5(a) and 5(b)]. Since the plateau is so robust and stable, its value can be used as the standard for the spin Hall resistance. In addition, even for a very large disorder strength \( W \) (e.g., \( W = 5 \) or larger), the plateau value only slightly decreases while maintaining the plateau structure [see Fig. 5(b)]. This is because although the disorder strongly weakens the spin bias \( \mu_{21} - \mu_{22} \), it also weakens the longitudinal charge current \( I_{13} \), so the value of \( R_s \) is affected less. This means that in the large disorder limits (\( W \to \infty \)), although the QSHE is broken, the SHE still holds.

In summary, we predict a new QSHE in the ferromagnetic graphene film. Unlike the QSHEs studied so far, the origin of this QSHE is not caused by the spin-orbit interaction. The results also show that the system can exhibit the QSHE, the QHE, and the coexistence of the QSHE and QHE, depending on the filling factors of the spin-up and spin-down carriers. Because of the QSHE and QHE, both the longitudinal and Hall resistances exhibit the plateau structures. The plateau values (in the unit of \( h/e^2 \)) are at \( 1/2, 1/6, 3/28, \ldots \), for the longitudinal resistance and at \( \pm 1/2, \pm 1/4, \pm 1/6, \pm 2/7, \ldots \), for the Hall resistance. In addition, the spin Hall resistance has also investigated and found to be robust against the disorder.

This work was financially supported by NSF-China under Grants Nos. 10525418, 10734110, and 10821403, China-973 program and US-DOE under Grants No. DE-FG02-04ER46124. Q. F. S. gratefully acknowledges Professor R. B. Tao for many helpful discussions.