In a Nutshell: Sequential Parameter Optimization

Thomas Bartz-Beielstein
thomas.bartz-beielstein@th-koeln.de

Lorenzo Gentile
lorenzo.gentile@th-koeln.de

Martin Zaefferer
martin.zaefferer@th-koeln.de

SPOTSeven Lab
TH Koeln
Steinmüllerallee 6, 51643 Gummersbach

www.spotseven.de
Abstract

The performance of optimization algorithms relies crucially on their parameterizations. Finding good parameter settings is called algorithm tuning. Using a simple simulated annealing algorithm, we will demonstrate how optimization algorithms can be tuned using the sequential parameter optimization toolbox (SPOT). SPOT provides several tools for automated and interactive tuning. The underlying concepts of the SPOT approach are explained. This includes key techniques such as exploratory fitness landscape analysis and response surface methodology. Many examples illustrate how SPOT can be used for understanding the performance of algorithms and gaining insight into algorithm’s behavior. Furthermore, we demonstrate how SPOT can be used as an optimizer and how a sophisticated ensemble approach is able to combine several meta models via stacking.

1 Introduction

The performance of modern search heuristics such as evolution strategies (ES), differential evolution (DE), or simulated annealing (SANN) relies crucially on their parameterizations—or, statistically speaking, on their factor settings. Finding good parameter settings for an optimization algorithm will be referred to as tuning. We will illustrate how an existing search heuristic can be tuned using the sequential parameter optimization toolbox (SPOT), which is one possible implementation of the sequential parameter optimization (SPO) framework introduced in Bartz-Beielstein (2006). The version of SPOT presented in this article is implemented in R. R is “a freely available language and environment for statistical computing and graphics which provides a wide variety of statistical and graphical techniques: linear and nonlinear modelling, statistical tests, time series analysis, classification, clustering, etc.” R Core Team (2017). R can be downloaded from https://cran.r-project.org. The SPOT package can be installed from within R using the install.packages() command.

install.packages("SPOT")

Note, that the package only has to be installed once (unless an update to a more recent version is needed). Unlike installation, the package has to be loaded to the R work space every time a new R session is started. SPOT can be loaded to the work space with R’s library() command.

library("SPOT")

In order to keep the setup as simple as possible, we will use simulated annealing for illustrating the tuning procedure. Simulated annealing is freely available in R. This implementation of the simulated annealing heuristic will be referred to as SANN in the following.

Response surface methodology (RSM) will be used in this article (Box & Draper 1987). It can be seen as a set of statistical methods for empirical model building. Using design of experiments, a response (dependent variable, output variable, or fitness value, \(y\)) that depends on one or several input variables (independent variables or solutions, \(\vec{x}\)) is optimized. The underlying model can be formulated as

\[
y = f(\vec{x}) + \epsilon,
\]

where \(\epsilon\) represents some noise (uncertainty, error observed) in the response \(y\). The term response surface refers to the surface represented by \(f(\vec{x})\). In order to estimate the quality of a solution, the term fitness is used in evolutionary optimization. In physics, the concept of a potential or energy function is used. Since we are dealing with minimization, a low fitness value \(f(\vec{x})\) implies that \(\vec{x}\) is a good solution.

This report is structured as follows. The algorithm-tuning framework consists of three levels, which are useful for distinguishing several problem domains. These levels are introduced in Sec. 2. The first level (objective function) is detailed in Sec. 3. Section 4 describes the second level (optimization algorithm). Here, the well known simulated annealing algorithm is used. Section 5 describes the third level (tuning). This tuning example can be used as a starting point for beginners. Details of the SPOT configuration are described in Sec. 6. Visual inspection of the results plays an important role in the SPOT approach. Section 7 describes the plot functions that are provided in the SPOT toolbox and that enable an exploratory fitness landscape analysis. The response surface methodology is introduced in Sec. 8. Tools for an statistical analysis are described in Sec. 9. Applying SPOT to deterministic problems is briefly explained in Sec. 10. Finally, ensemble models via stacking is described in Sec. 11. This report concludes with a summary in Sec. 12.
2 Levels During Tuning and Optimization

We will consider algorithm tuning and surrogate model based optimization in this article. Figure 1 shows the different levels that are used in these scenarios.

2.1 Algorithm Tuning

Algorithm tuning is also referred to as off-line parameter tuning in contrast to on-line parameter tuning (Eiben & Smith, 2003). Algorithm tuning involves the following three levels, which describe the experimental setup.

(L1) The real-world system. This system allows the specification of an objective function, say f. As an example, we will use the sphere function in the following.

(L2) The optimization algorithm, here SANN. It requires the specification of algorithm parameters.

(L3) The tuning algorithm, here SPOT.

An optimization algorithm (L2) requires parameters, e.g., the initial temperature of SANN or the mutation rate of evolution strategies. These parameters determine the performance of the optimization algorithm. Therefore, they should be tuned. The algorithm is in turn used to determine optimal values of the objective function f from level (L1).

The term algorithm design summarizes factors that influence the behavior (performance) of an algorithm, whereas problem design refers to factors from the optimization (simulation) problem. The initial temperature in SANN is one typical factor which belongs to the algorithm design, the search space dimension belongs to the problem design.

2.2 Surrogate Model Based Optimization

Instead of tuning an optimization algorithm, SPOT itself can be used as a surrogate model based optimization algorithm. Then, SPOT has the same role as SANN in the algorithm tuning scenario. In this the surrogate model based optimization setting, only two levels exist: the objective function (L1) and the optimization algorithm (L2). This situation is seen on the right hand side of Figure 1.

2.3 The SPOT Algorithm

SPOT finds improved solutions in the following way (see Algorithm 1): initially, a population of (random) solutions is created. The initialization step is shown in line 1 in Algorithm 1. Then, the solutions are evaluated on the objective function (level L1). This is line 3. Next, surrogate models are built (line 5). A global search is performed to generate new candidate solutions (line 6). The new solutions are evaluated...
on the objective function (level L1) (line 7). These steps are repeated, until a satisfying solution has been found.

Algorithm 1 Sequential parameter optimization

1: \(t = 0 \). \(P(t) = \text{SetInitialPopulation()} \).
2: Select one or several surrogate models \(\mathcal{M} \).
3: Evaluate\((P(t))\) on \(f \).
4: while not \(\text{TerminationCriterion()} \) do
5: \(\text{Use } P(t) \text{ to build a model } M(t) \text{ using } \mathcal{M} \).
6: \(P'(t+1) = \text{GlobalSearch}(M(t)) \).
7: \(\text{Evaluate}(P'(t+1)) \text{ on } f \).
8: \(P(t+1) = P(t) \cup P'(t+1) \).
9: \(t = t + 1 \).
10: end while

3 Level L1: Objective Function

Before SANN can be started, the user has to specify an objective function \(f \). To keep things as simple as possible, the sphere function

\[
f(x) = \sum_{i=1}^{n} x_i^2
\]

will be used:

```r
sphere <- function(x) {
  sum(x^2)
}
sphere(c(1, 2))
```

[1] 5

The `sphere()` function uses vector inputs. A matrix-based implementation is defined as `funSphere()` in the SPOT package.

```r
funSphere
```

```r
## function (x)
## matrix(apply(x, 1, function(x) sum(x^2)), , 1)
## <environment: namespace:SPOT>
```

A surface plot of this function in the interval \([0; 1] \times [0; 1]\) is shown in Fig. 2.
4 Level L2: Simulated Annealing SANN

Simulated annealing is a generic probabilistic heuristic algorithm for global optimization \cite{Kirkpatrick1983}. The name comes from annealing in metallurgy. Controlled heating and cooling of a material reduces defects. Heating enables atoms to leave their initial positions (which are local minima of their internal energy), and controlled cooling improves the probability to find positions with lower states of internal energy than the initial positions. The SANN algorithm replaces the current solution with a randomly generated new solution. Better solutions are accepted deterministically, where worse solutions are accepted with a probability that depends on the difference between the corresponding function values and on a global parameter, which is commonly referred to as the *temperature*. The algorithm parameter *temp* specifies the initial temperature of the SANN algorithm. The temperature is gradually decreased during the optimization. A second parameter, *tmax*, is used to model this cooling scheme.

We consider the \texttt{R} implementation of SANN, which is available via the general-purpose optimization function \texttt{optim()} from the \texttt{R} package \texttt{stats}, which is part of every \texttt{R} installation. The function \texttt{optim()} is parametrized as follows

\begin{verbatim}
optim(par, fn, gr = NULL, ..., method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN", "Brent"), lower = -Inf, upper = Inf, control = list(), hessian = FALSE)
\end{verbatim}

Here, \texttt{par} denotes *initial values for the parameters to be optimized over*. Note, the problem dimension is specified by the length of this vector, so \texttt{par=c(1,1,1,1)} denotes a four-dimensional optimization problem. \texttt{fn} is a *function to be minimized* (or maximized), with first argument the vector of parameters over which minimization is to take place. \texttt{gr} defines a *function to return the gradient* for the \texttt{"BFGS"}, \texttt{"CG"} and \texttt{"L-BFGS-B"} methods. If it is \texttt{NULL}, a finite-difference approximation will be used. For the SANN method it specifies a function to generate a new candidate point. If it is \texttt{NULL}, a default Gaussian Markov kernel is used. The symbol \texttt{...} represents *further arguments* (optional) that can be be passed to \texttt{fn} and \texttt{gr}. The parameter \texttt{method} denotes the *optimization method* to be used. Here, we will use the parameter value SANN.

The parameters \texttt{lower}, \texttt{upper} specify *bounds* on the variables for the \texttt{"L-BFGS-B"} method, or bounds in which to search for method “Brent”. So, we will not use these variables in our examples. The argument \texttt{control} defines a relatively long *list of control parameters*. We will use the following parameters from this list:

1. \texttt{maxit}, i.e., the *maximum number of iterations*, which is for SANN the maximum number of
function evaluations. This is the stopping criterion.

2. **temp** controls the SANN algorithm. It is the *starting temperature* for the cooling schedule with a default value of 10.

3. Finally, we will use **tmax**, which is the number of *function evaluations at each temperature* for the SANN method. Its default value is also 10.

To obtain reproducible results, we will set the *random number generator* (RNG) seed. Using a two-dimensional objective function (sphere) and the starting point (initial values for the parameters to be optimized over) (10, 10), we can execute the optimization runs as follows:

```r
set.seed(123)
resSANN <- optim(c(10, 10), sphere, method = "SANN", control = list(maxit = 100,
                     temp = 10, tmax = 10))
resSANN
```

```
## $par
## [1] 4.835178 4.664964
##
## $value
## [1] 45.14084
##
## $counts
## function gradient
## 100 NA
##
## $convergence
## [1] 0
##
## $message
## NULL
```

The best, i.e., smallest, function value, which was found by SANN, reads 45.14084. The corresponding point in the search space is approximately (4.835178, 4.664964). No gradient information was used and one hundred function evaluations were performed. The variable *convergence* is an integer code, and its value 0 indicates successful completion of the SANN run. No additional *message* is returned.

Now that we have performed a first run of the SANN algorithm on our simple test function, we are interested in improving SANN’s performance. The SANN heuristic requires some parameter settings, namely **temp** and **tmax**. If these values are omitted, a default value of ten is used. The questions is: Are the default algorithm parameter settings, namely **temp** =10 and **tmax** =10, adequate for SANN or can these values be improved? That is, we are trying to tune the SANN optimization algorithm.

A typical beginner in algorithm tuning would try to improve the algorithm’s performance by manually increasing or decreasing the algorithm parameter values, e.g., choosing **temp** = 20 and **tmax** = 5.

```r
set.seed(123)
resSANN <- optim(par = c(10, 10), fn = sphere, method = "SANN", control = list(maxit = 100,
                     temp = 20, tmax = 5))
resSANN
```

```
## $par
## [1] 6.163905 6.657100
##
## $value
## [1] 82.3107
##
## $counts
## function gradient
## 100 NA
```
Obviously, the manual “tuning” step worsened the result. And, this procedure is very time consuming and does not allow efficient statistical conclusions. Therefore, we will present a different approach, which uses SPOT. Although the setup for the tuning procedure with SPOT is very similar to the setup discussed in this section, it enables deeper insights into the algorithm’s performance.

5 Level L3: SPOT

This section presents an example, which demonstrates, how SPOT can be used to tune the SANN algorithm defined at level L2. The goal of this tuning procedure is to determine improved parameter settings for the SANN algorithm. As a level L1 function, which will be optimized by SANN, the sphere function was chosen.

Example 1 (Using Random Forest). First, the problem setup for level L1 has to be specified. To keep the situation as simple as possible, we will use the sphere test function, which is defined in Equation (1). The problem design requires the specification of the starting point x_0 for the search.

$x_0 = c(-1, 1, -1)$

Since x_0 has three elements, we are facing a three dimensional optimization problem. SANN will be used to determine its minimum function value.

Secondly, the problem setup for level L2 has to be defined. Again, several settings have to be specified for the SANN algorithm to be tuned. The budget, i.e., the maximum number of function evaluations that can be used by SANN is specified via

$maxit = 100$

As above, the R implementation of SANN will be used via the optim() function. We will consider two parameters:

1. the initial temperature (temp) and
2. the number of function evaluations at each temperature (tmax).

Both are integer values. All parameters and settings of SANN which were used for this simple example are summarized in Table [7].

Thirdly, the tuning procedure at level L3 has to be specified. To interface SANN with SPOT, a wrapper function sann2spot() is used. Note, SPOT uses matrices as the basic data structure. The matrix format was chosen as a compromise between speed and flexibility. The matrix command can be used as follows:

sann2spot <- function(algpar) {
 performance <- NULL
 for (i in 1:nrow(algpar)) {
 resultList <- optim(par = c(10, 10), fn = sphere, method = "SANN", control = list(maxit = 100, temp = algpar[i, 1], tmax = algpar[i, 2]))
 performance <- c(performance, resultList$value)
 }
 return(matrix(performance, , 1))
}
Table 1: SANN parameters. The first two parameters belong to the algorithm design, whereas the remaining parameters are from the problem design. Note, the starting point defines the problem dimension, i.e., by specifying a three dimensional starting point the problem dimension is set to three. The initial seed is the value that the RNG is initialized with.

Name	Symbol	Factor name
Initial temperature	t	temp
Number of function evaluations at each temperature	t_{max}	t_{max}
Starting point	$x_0 = (-1, 1, -1)$	x_0
Problem dimension	$n = 3$	sphere()
Objective function	sphere()	sphere()
Quality measure	Expected performance, e.g., $E(y)$	y
Initial seed	s	1
Budget	maxit = 100	maxit

Now we can test the interface. First, we run SANN with $\text{temp} = 10$ and $\text{tmax} = 10$. A second SANN run is performed using $\text{temp} = 20$ and $\text{tmax} = 5$.

```r
set.seed(1)
sann2spot(algpar = matrix(c(10, 10), 1))
## [,1]
## [1,] 8.224742
set.seed(1)
sann2spot(algpar = matrix(c(20, 5), 1))
## [,1]
## [1,] 22.53343
```

SPOT itself has various parameters that need to be configured so that it can solve the tuning problem efficiently. A configuration or control list can be defined for SPOT. If no configuration list is specified, the default configuration that works fine for many problems, is used.

In the following, some elements of the configuration list that are important for our example (tuning SANN + sphere) will be explained.

- **types:** Since SANN’s parameters temp and tmax are integers, we provide this type information via `types = c("integer", "integer")`.
- **funEvals:** The number of algorithm runs, i.e., runs of the SANN algorithm, is specified via `funEvals`.
- **noise:** SANN is a stochastic optimizer, so we specify `noise = TRUE`.
- **seedFun:** Also due to the stochasticity of the optimizer, a random number generator seed has to be specified, `seedFun = 1`. Every time an algorithm configuration is tested, the RNG seed will be set. For the first evaluation, the seed will be `seedFun`, subsequent evaluations will increment this value.
- **replicates:** Since our evaluations are subject to noise, we can make replicates to mitigate it. In our example, each algorithm configuration will be evaluated twice, so the setting `replicates = 2` is used.
- **seedSPOT:** An additional seed for SPOT can be specified using `seedSPOT = 1`. This second seed is only set once in the beginning. This ensures that the SPOT run is reproducible, since SPOT itself may also be of a stochastic nature (depending on the configuration).
• **design**: The design parameter defines the method to be used to generate an initial design (a set of initial algorithm settings [here: a number of pairs of temp and tmax]). A Latin hyper cube design (LHD) is specified via `design = designLHD`.

• **model**: Based on the initial design and subsequent evaluations, a model can be trained to learn the relation between algorithm parameters (temp, tmax) and algorithm performance. To generate the meta model, we use a random forest implementation ([Breiman, 2001](#)). This can be specified via `model = buildRandomForest`. Random forest was chosen, because it is a robust method which can handle categorical and numerical variables.

• **optimizer**: Once a model is trained, we need an optimizer to find the best potential algorithm configuration, based on the model. Here, we choose a very simple optimizer, which creates a large LHD and evaluates it on the model: `optimizer = optimLHD`.

• **optimizerControl**: The specified optimizer may have options that need to be set. Here, we only specify the number of model evaluations to be performed by the optimizer with `optimizerControl = list(funEvals=100)`.

Overall, we obtain the following configuration:

```r
spotConfig <- list(
  types = c("integer", "integer"), # data type of tuned parameters
  funEvals = 50, # maximum number of SANN runs
  noise = TRUE, # problem is noisy (SANN is nondeterministic)
  seedFun = 1, # RNG start seed for algorithm calls (iterated)
  replicates = 2, #2 replicates for each SANN parameterization
  seedSPOT = 1, # main RNG
  design = designLHD, # initial design: Latin Hypercube
  model = buildRandomForest, # model = buildKriging Kriging surrogate model
  optimizer = optimLHD, # Use LHD to optimize on model
  optimizerControl = list(funEvals=100) # 100 model evals in each iteration
)
```

The region of interest (ROI) specifies SPOT’s search intervals for the SANN parameters, i.e., for tmax and temp. Here, both parameters temp and tmax will be tuned in the region between one and 100.

```r
tempLo = 1
tempHi = 100
tmaxLo = 1
tmaxHi = 100
lower = c(tempLo, tmaxLo)
upper = c(tempHi, tmaxHi)
```

The order (first temp then tmax) has to be the same as in the `sann2spot` interface. Now we are ready to perform our first experiment. We will start SPOT via `spot()`. The result is stored in a list, e.g., `resRf`.

```r
resRf <- spot(x = NULL, fun = sann2spot, lower = lower, upper = upper, control = spotConfig)
```

Now, we are able to take a look at the results from the tuning procedure. Output from the SPOT run, which is stored in the list `resRf`, has the following structure.

```r
str(resRf)
## List of 7
##  $ xbest : num [1, 1:2] 3.69
##  $ ybest : num [1, 1] 0.00198
##  $ x : num [1:50, 1:2] 43.61 37.29 98.18 85.5 79.57 ...
##  $ y : num [1:50, 1] 4.03 103.08 64.03 10.14 27.5 ...
##  $ count : int 50
##  $ msg : chr "budget exhausted"
##  $ modelFit : List of 3
```
SPOT generates many information which can be used for a statistical analysis. For example, the best configuration found can be displayed as follows:

```r
cbind(resRf$xbest, resRf$ybest)
```

SPOT recommends using `temp = 3` and `tmax = 69`. These parameter settings differ significantly from the default values. These values also make sense: The starting temperature `temp` should be low and the number of evaluations at each temperature `tmax` should be high. Hence, worse solutions will rarely be accepted by SANN, which leads to a very localized search. This is a good configuration for this example, since the sphere function is unimodal.

6 Details

6.1 Details 1: The spot() Interface

SPOT uses the same interface as R’s standard `optim()` function, which uses the arguments reported
Table 2: SPOT arguments

name	description
x	Optional start point (or set of start points), specified as a matrix. One row for each point, and one column for each optimized parameter.
fun	Objective function. It should receive a matrix x and return a matrix y. In case the function uses external code and is noisy, an additional seed parameter may be used, see the control$seedFun argument in the function documentation for details.
lower	Vector that defines the lower boundary of search space.
upper	Vector that defines the upper boundary of search space.
control	List of additional settings

Table 3: SPOT return values

name	description	type
xbest	Parameters of the best found solution	matrix
ybest	Objective function value of the best found solution	matrix
x	Archive of all evaluation parameters	matrix
y	Archive of the respective objective function values	matrix
count	Number of performed objective function evaluations	integer
msg	Message specifying the reason of termination	character
modelFit	The fit of the model from the last SPOT iteration, i.e., an object returned by the last call to the function specified by control$model	list

in Table 2.

Note, take care of consistency of upper, lower and, if specified, x. In cases of inconsistency, the dimension of the variable lower will be taken into account to establish the dimension of the problem. The function spot() returns a list with the values shown in Table 3.

6.2 Details 2: SPOT Configuration

SPOT configuration settings are listed in Table 4. The configuration list stores information about SPOT specific settings. All settings not specified in the list will be set to their default values.

6.3 Details 3: Initial Designs

The problem design comprehends the information about the optimization problem, e.g., the starting point \(x_0 = (-1,1,-1) \) belongs to the problem design. A region of interest (ROI) specifies algorithm parameters and associated lower and upper bounds for the algorithm parameters.

- Values for temp are chosen from the interval \([1;100]\).
- Values for \(t_{\text{max}} \) are chosen from the interval \([1;100]\).

SPOT implements a sequential approach, i.e., the available budget is not used in one step. Rather, sequential steps are made, comprised of model training, optimization, and evaluation. To initialize this procedure, some first data set is required to train the first, coarse-grained meta model.

Example 2 (Modifying the number of function evaluations). For example, the total number of SANN algorithm runs, i.e., the available budget, can be set to 10 using \(\text{funEvals} = 10 \), the size of the initial design can be modified via \(\text{designControl$size} \), the number of repeated evaluations of the initial design can be modified via \(\text{designControl$replicates} \), and the number of replicates used for each new algorithm design point suggested by SPOT can be modified via \(\text{replicates} \).

```r
spotConfig10 <- list(funEvals = 10, designControl = list(size = 6, replicates = 1),
                      noise = TRUE, seedFun = 1, seedSPOT = 1, replicates = 2, model = buildRandomForest)
```

Using this configuration, the budget will be spent as follows: Six initial algorithm design points (parameter sets) will be created, and each will be evaluated just once. Afterwards, SPOT will have a remaining
name	description	default
funEvals	Budget of function evaluations (spot uses no more than funEvals evaluations of fun)	20
types	Vector of data type of each variable as a string.	"numeric"
design	A function that creates an initial design of experiment. Functions that accept the same parameters, and return a matrix like designLHD or designUniformRandom can be used.	designLHD
designControl	List of controls passed to the control list of the design function.	empty list
model	Function that builds a model of the observed data. Functions that accept the same parameters, and return a matrix like buildKriging or buildRandomForest can be used.	buildKriging
modelControl	List of controls passed to the control list of the model function.	empty list
optimizer	Function that is used to optimize the model, finding the most promising candidate solutions. Functions that accept the same parameters, and return a matrix like optimLHD or optimLBFGSB can be used.	optimLHD
optimizerControl	List of controls passed to the control list of the optimizer function.	empty list
noise	Boolean, whether the objective function has noise.	FALSE
OCBA	Boolean, indicating whether Optimal Computing Budget Allocation (OCBA) should be used in case of a noisy objective function. OCBA controls the number of replications for each candidate solution. Note, that replicates should be larger than one in that case, and that the initial experimental design (see design) should also have replicates larger than one.	FALSE
OCBAbudget	Number of objective function evaluations that OCBA can distribute in each iteration.	3
replicates	Number of times a candidate solution is initially evaluated, that is, in the initial design, or when created by the optimizer.	1
seedFun	Initial seed for the objective function in case of noise. The default means that no seed is set. The user should be very careful with this setting. It is intended to generate reproducible experiments for each objective function evaluation, e.g., when tuning non-deterministic algorithms. If the objective function uses a constant number of random number generations, this may be undesirable. Note, that this seed is by default set prior to each evaluation. A replicated evaluation will receive an incremented value of the seed. Sometimes, the user may want to call external code using random numbers. To allow for that case, the user can specify an objective function (fun), which has a second parameter seed, in addition to first parameter (matrix x). This seed can then be passed to the external code, for random number generator initialization. See end of examples section in the documentation of spot() for a demonstration.	NA
seedSPOT	Value used to initialize the random number generator. It ensures that experiments are reproducible.	1
duplicate	In case of a deterministic (non-noisy) objective function, this handles duplicated candidate solutions. By default (duplicate = "EXPLORE"), duplicates are replaced by new candidate solutions, generated by random sampling with uniform distribution. If desired, the user can set this to "STOP", which means that the optimization stops and results are returned to the user (with a warning). This may be desirable, as duplicates can be an indicator of convergence, or problems with the configuration. In case of noise, duplicates are allowed regardless of this parameter.	"EXPLORE"
plots	Logical. Should the progress be tracked by a line plot?	FALSE
budget of four evaluations. These can be spent on sequentially testing two additional design points. Each of
these will be evaluated twice.

res10 <- spot(fun = sann2spot, lower = lower, upper = upper, control = spotConfig10)

Results from these runs can be displayed as follows. The first two columns show the settings of
the algorithm parameters \texttt{temp} and \texttt{tmax}, respectively. The third row shows the corresponding function
values:

\[
\text{cbind(res10$x, res10$y)}
\]

\[
\begin{array}{ccc}
\text{[,1]} & \text{[,2]} & \text{[,3]} \\
[1,] & 25.454322 & 79.91839 & 13.429821426 \\
[2,] & 93.392836 & 10.12510 & 88.943521433 \\
[3,] & 9.143432 & 42.74037 & 0.011436182 \\
[4,] & 70.072590 & 30.52438 & 74.191697318 \\
[5,] & 47.651660 & 50.88496 & 57.968961980 \\
[6,] & 61.529701 & 91.37430 & 11.290122825 \\
[7,] & 11.598664 & 91.19592 & 0.008496108 \\
[8,] & 11.598664 & 91.19592 & 0.050744463 \\
[9,] & 12.436667 & 90.58432 & 0.008496108 \\
[10,] & 12.436667 & 90.58432 & 0.426068154 \\
\end{array}
\]

The results show the desired outcome: the first six configurations are unique, the following four contain
replications (two identical settings, but with different stochastic result).

\texttt{designLHD()} is the default setting to generate designs. A simple one-dimensional design with values
from the interval \([-1, 1]\) can be generated as follows:

\[
\text{designLHD}(-1, 1)
\]

\[
\begin{array}{l}
\text{[,1]} \\
[1,] & 0.26479322 \\
[2,] & 0.91469238 \\
[3,] & -0.74340436 \\
[4,] & 0.41414078 \\
[5,] & 0.11284640 \\
[6,] & -0.41965779 \\
[7,] & -0.92411596 \\
[8,] & 0.76315614 \\
[9,] & -0.25867274 \\
[10,] & -0.03293109 \\
\end{array}
\]

A more complicated design, which consists of numeric values for the first variable in the range from
-1 to +1, of integer values for the second variable in the range from -2 to 4, of integer values for the third
variable in the range from 1 to 9, and with two factors 0 and 1 for the fourth variable, can be generated
as follows:

\[
\text{designLHD}(c(-1, -2, 1, 0), c(1, 4, 9, 1), control = list(size = 5, retries = 100,
\text{types} = c(\text{"numeric", \"integer", \"factor", \"factor\}))
\]

\[
\begin{array}{cccc}
\text{[,1]} & \text{[,2]} & \text{[,3]} & \text{[,4]} \\
[1,] & -0.7755956 & 1 & 3 & 0 \\
[2,] & 0.1777632 & 2 & 8 & 1 \\
[3,] & 0.8543608 & 0 & 1 & 1 \\
[4,] & 0.4930152 & 4 & 5 & 0 \\
[5,] & -0.4011451 & -1 & 7 & 0 \\
\end{array}
\]

Designs can also be combined as illustrated in the following example. The corresponding plot (Fig. 3)
shows the resulting design.
Fig. 3: Combination of two LHDs.

```r
set.seed(123)
x1 <- designLHD(c(-1, -1), c(1, 1), control = list(size = 50, retries = 100))
x2 <- designLHD(x1, c(-2, -2), c(2, 2), control = list(size = 50, retries = 100))
plot(x2, pch = 1)
points(x1, pch = 4)
```

Designs based on uniform random sampling can be generated with the function `designUniformRandom()` as follows:

```r
designUniformRandom(c(-1, 0), c(1, 10), control = list(size = 5)
```

```
## [,1] [,2]
## [1,] -0.59701202 3.6807802
## [2,] 0.95638068 0.4767697
## [3,] -0.17457507 4.5883452
## [4,] -0.04937504 1.3611036
## [5,] -0.96457920 4.8153870
```

6.4 Details 4: Models

In SPOT, a meta model or surrogate model is used to determine promising algorithm design points. To that end, it aims to learn the relation between algorithm parameters and the corresponding algorithm performance. The different models and their options are described next.

6.4.1 Kriging

As default, the `buildKriging()` function is used for modeling. This function builds a Kriging model (also known as Gaussian process regression) loosely based on code by [Forrester et al. (2008)](https://doi.org/10.1016/j.autostar.2007.11.009). Kriging models are based on measures of similarity, or kernels. Here, a Gaussian kernel is used:

\[
k(x, x') = \exp\left(-\sum_{i=1}^{n} \theta_i |x_i - x'_i|^{p_i}\right).
\]

By default exponents are fixed at a value of two, \(p_i = 2, (i = 1, \ldots, n) \), and the nugget effect (or regularization constant) is used. To correct the uncertainty estimates in case of using the nugget effect,
re-interpolation is also by default turned on (see Forrester et al. (2008) for more details on these features of the model).

Example 3 (SPOT as a surrogate model based algorithm). The following code exemplifies how a Kriging model is built with an artificial data set. Note, this example exemplifies how SPOT can be used as a surrogate model based optimization algorithm, i.e., no algorithm is tuned.

```r
## Test-function:
braninFunction <- function(x) {
  (x[2] - 5.1/(4*pi^2) * (x[1]^2) + 5/pi * x[1] - 6)^2 + 10 * (1 - 1/(8 * pi)) * cos(x[1]) + 10
}

## Create design points
set.seed(1)
x <- cbind(runif(20) * 15 - 5, runif(20) * 15)
# Compute observations at design points (for Branin function)
y <- as.matrix(apply(x, 1, braninFunction))

## Create model with default settings
fit <- buildKriging(x, y, control = list(algTheta = optimLHD))

## Print model parameters
print(fit)

## ------------------------
## Forrester Kriging model.
## ------------------------
## Estimated activity parameters (theta) sorted from most to least important variable
## x1  x2
## 6.90722 0.4533334
##
## exponent(s) p:
## 2
##
## Estimated regularization constant (or nugget) lambda:
## 1.098503e-05
##
## Number of Likelihood evaluations during MLE:
## 600
##
## Define a new location
newloc <- matrix(c(1, 2), nrow = 1)
## Predict at new location
predict(fit, newloc)

## $y
## [1] 22.29809
##
## True value at location
braninFunction(newloc)
## [1] 21.62764
```

6.4.2 Handling Factor Variables in the Kriging Model

Sometimes, parameters optimized or modeled by SPOT functions will not be numerical, but rather categorical. This may, e.g., occur if an evolutionary algorithm is tuned: while some parameters like mutation rates may be real valued, the selection between different mutation operators may be a categorical parameter. Hence, if \(x_i \), the \(i \)th dimension of a parameter configuration \(\vec{x} \), is a factor variable (see parameter
Hamming distance, that determines the number of positions at which the corresponding values are different, will be used instead of $|x_i - x_i'|$. To illustrate how factor variables can be handled, we create a test function that uses a factor variable. Here, the third dimension x_3 is categorical.

```r
braninFunctionFactor <- function(x) {
  y <- (x[2] - 5.1/(4*pi^2) * (x[1]^2) + 5/pi * x[1] - 6)^2 + 10 * (1 - 1/(8 * pi)) * cos(x[1]) + 10
  if (x[3] == 1)
    y <- y + 1
  else if (x[3] == 2)
    y <- y - 1
  y
}
```

To test how this affects our model, we first generate some training data and fit the model with default settings, which ignores factor information and uses the standard kernel.

```r
set.seed(1)
## Replace x with new data
x <- cbind(runif(50) * 15 - 5, runif(50) * 15, sample(1:3, 50, replace = TRUE))
##
y <- as.matrix(apply(x, 1, braninFunctionFactor))
fitDefault <- buildKriging(x, y, control = list(algTheta = optimLBFGSB))
```

Afterwards we fit the model, which includes information about the factor variable.

```r
fitFactor <- buildKriging(x, y, control = list(algTheta = optimLBFGSB, types = c("numeric", "numeric", "factor")))
```

We generate some new, unseen data for testing and perform some predictions with both models.

```r
## Replace xtest with new data
xtest <- cbind(runif(200) * 15 - 5, runif(200) * 15, sample(1:3, 200, replace = TRUE))
##
ytest <- as.matrix(apply(xtest, 1, braninFunctionFactor))
## Predict test data with both models, and compute error
ypredDef <- predict(fitDefault, xtest)$y
ypredFact <- predict(fitFactor, xtest)$y
mean((ypredDef - ytest)^2)
## [1] 4.530052
mean((ypredFact - ytest)^2)
## [1] 1.514656
```

The error of the factor-aware model is lower. This demonstrates that users should make sure to declare the nature of the modeled variables correctly, via the `types` variable.

6.5 Details 5: Optimization on the Meta Model

Minimization by Latin hyper cube sampling (LHS) is the default optimizer used for finding the next algorithm design parameters on the meta model. The LHS procedure generates a set of LHD points. The function `optimLHD()` uses LHS to optimize a specified target function as follows: A Latin hyper cube Design (LHD) is created with `designLHD()`, then evaluated by the objective function. All results are reported, including the best (minimal) objective value, and corresponding design point. A standalone optimization run using `optimLHD()` can be implemented as follows. It uses 100 design points as a default value.

```r
resOptimumLHD <- optimLHD(, fun = funSphere, lower = c(-10, -20), upper = c(20, 8))
str(resOptimumLHD)
## List of 6
```
Using more sophisticated algorithms, as the variable metric algorithm (L-BFGS-B), might lead to better results. However, they are not as robust as the simple optimLHD() search. Also, L-BFGS-B is a pure local search, which may not be ideal to solve potentially multi-modal tuning problems.

```
resOptimBFGS <- optimLBFGSB()
resOptimBFGS$ybest
```

Hence, SPOT also includes interfaces to more sophisticated algorithms, such as differential evolution from DEoptim package or various methods included in the nloptr package. For further details on these, see e.g., the help of the corresponding functions.

Details 6: SPOT Loop: Continued Evaluation

Sometimes, users may desire to continue a previously finished SPOT run. We will demonstrate, how SPOT can be restarted, reusing the collected data.

Example 4 (SPOT with continued evaluation). The surrogate model based optimization setting will be used to exemplify the continued evaluation. The two dimensional sphere function is used as an objective function (level L1) and SPOT will be used at level L2. SPOT uses 5 function evaluations.

```
control01 <- list(designControl = list(size = 5, replicates = 1), funEvals = 5)
res1 <- spot(), funSphere, lower = c(-10, -20), upper = c(20, 8))
cbind(res1$x, res1$y)
```

Now, we continue with a larger budget. If we would like to add 3 function evaluations, the total number of function evaluations is $5 + 3 = 8$. To continue a SPOT run, the command spotLoop() can be used as follows: spotLoop(x, y, fun, lower, upper, control, ...). The arguments are:

- **x**: the known candidate solutions that the SPOT loop is started with, specified as a matrix. One row for each point, and one column for each optimized parameter.
- **y**: the corresponding observations for each solution in x, specified as a matrix. One row for each point.
- **fun**: is the objective function. It should receive a matrix x and return a matrix y.
- **lower**: is the vector that defines the lower boundary of search space. This determines also the dimensionality of the problem.
• \textit{upper}: is the vector that defines the upper boundary of search space.

• \textit{control}: is the list with control settings for \texttt{spot}.

• \ldots: additional parameters passed to \texttt{fun}.

```r
control01$funEvals <- 8
res2 <- spotLoop(res1$x, res1$y, funSphere, lower = c(-2, -3), upper = c(1, 2), control01)
cbind(res2$x, res2$y)
## [,1]      [,2]      [,3]
## [1,] 0.6316685 -0.331533262 0.50891934
## [2,] -1.9919658 1.794239861 7.18722443
## [3,] -1.1705672 -1.892056374 4.95010495
## [4,] 0.3218145 -2.276289054 5.28505643
## [5,] -0.5957906 0.411274430 0.52411310
## [6,] -1.8502780 0.025438423 3.42417578
## [7,] 0.3335189 0.311271847 0.20812503
## [8,] 0.1119788 0.009135746 0.01262271
```

7 Exploratory Fitness Landscape Analysis

7.1 Introduction to SPOT’s Plot Functions

The \texttt{SPOT} package offers three plot functions that can be used to visualize data or evaluate a model’s performance creating 2D and 3D surface plots.

- \texttt{plotFunction()} plots function objects
- \texttt{plotData()} plots data
- \texttt{plotModel()} plots model objects, created by \texttt{build*} functions from the \texttt{SPOT} package.

7.1.1 \texttt{plotFunction}

The function \texttt{plotFunction()} visualizes the fitness landscape. It generates a (filled) contour plot or perspective / surface plot of a function. It has several options for changing plotting styles, colors etc., but default values should be fine in many cases. The basic arguments are:

\[
\text{plotFunction}(f, \text{lower}, \text{upper}, \text{type})
\]

Example 5 (Plot of the sphere function). The following code generates a 2D filled contour plot of the sphere function (see Fig. 4). Note that \texttt{plotFunction()} requires a function that handles matrix objects, so \texttt{funSphere()} is used.

```r
plotFunction(funSphere, rep(-1, 2), rep(1, 2))
```

Example 6 (Plotting a user defined function). Figure 5 shows the plot of the user defined function

\[
f(\bar{x}) = \sum_{i=1}^{n} (x_i^3 - 1).
\]

(2)

It also illustrates how the color scheme can be modified.
myFunction <- function (x){
 matrix(apply(x, 1, function(x) sum(x^3-1)), 2)
}
plotFunction(myFunction, rep(-1,2), rep(1,2), color.palette = rainbow)

We can also generate a perspective plot of the user defined function (see Fig. 6):

plotFunction(myFunction, rep(-1, 2), rep(1, 2), type = "persp", theta = 10, phi = 25, border = NA)

7.1.2 plotModel

Furthermore, plotModel() offers the possibility to visualize models that have already been trained, e.g., during a SPOT run. Some simple examples are given below.

Example 7 (Plotting a trained model). First, we generate some training data. To demonstrate how plots from data with more than two input dimensions can be generated, we generate a three-dimensional input design, i.e., we consider a functional relationship of the type

$$ f : \mathbb{R}^3 \rightarrow \mathbb{R}, \quad y = f(x_1, x_2, x_3). $$

The output is one dimensional.

```
set.seed(123)
x <- 30
x.test <- designLHD(rep(-1, 3), rep(1, 3), control = list(size = k))
y.test <- funSphere(x.test)
head(cbind(x.test, y.test))
```
Fig. 5: Example 6. Plotting the user defined function from Equation 2 with plotFunction() using the color palette rainbow.

Fig. 6: Example 6. Perspective plot of the user defined function from Equation 2 using plotFunction().
Then, we train a standard response surface using SPOT’s buildRSM() function. We generate the default contour plot using plotModel().

```
fit.test <- buildRSM(x.test, y.test)
plotModel(fit.test)
```

Passing the argument `type="contour"` to the `plotModel()` function, a 2D contour plot can be generated as shown in Fig. 8. By default, the dependent variable \(y \) is plotted against the first two \(x_i \) variables from Equation 3. Note, that the argument `which` specifies the independent variables \(x_i \) that are plotted.

```
plotModel(fit.test, which = c(1, 3), type = "contour", pch1 = 24, col1 = "blue")
```

Perspective plots of the same model can be generated as follows. The arguments `theta` and `phi` can be used to modify the view point. The result is shown in Fig. 9.

```
par(mfrow = c(1, 2))
plotModel(fit.test, type = "persp", border = "NA", theta = 255, phi = 20)
plotModel(fit.test, which = 1:2, type = "persp", border = "NA")
par(mfrow = c(1, 1))
```

7.1.3 plotData

Finally, using plotData(), different models built on provided data can be compared. The plotData() function generates a (filled) contour or perspective plot of a data set with two independent and one dependent variable. The plot is generated by some interpolation or regression model. By default, the LOESS function is used. Some simple examples are given below.

```
```
Fig. 8: Example 2D representation of a model using `plotModel()` with the argument `contour`.

Fig. 9: Example 3D representations of a model using `plotModel()` with different view points.
Example 8 (Plotting data using LOESS and random forest). Figure 10 shows a comparison of two different models fitting the same data.

```r
pplotData(x.test, y.test)
pplotData(x.test, y.test, type = "filled.contour", cex1 = 1, col1 = "red", pch1 = 21,
model = buildRandomForest)
```

Example 9 (Perspective plot). Figure 11 shows a perspective plot, which is based on the same data that were used in Example 8.

```r
## Plot 3D figure
plotData(x.test, y.test, type = "persp", border = NA, model = buildLOESS)
```

7.2 Exploratory Fitness Landscape Analysis Using SPOT

This section demonstrates how functions from the SPOT package, which were introduced in Sec. 7, can be used to perform a visual inspection of the fitness landscape during an interactive SPOT run. These results can also be used to illustrate the algorithm’s performance. In this section, reference will be made to the application shown in Sec. 5, in which SPOT is used for the tuning procedure of two SANN design parameters: starting temperature `temp` and the number of function evaluations at each temperature `tmax`.

The fitness landscape can be visualized in two different ways:

1. Because SPOT builds a surrogate model during the sequential optimization, this model can be used to visualize the fitness landscape. In this case, the `plotModel()` function will be used.

2. Using standard interpolation or local regression functions. In this case, the `plotData()` function will be used. Note, that the `plotData()` function allows the specification of several interpolation functions (LOESS is default).

Using `plotFunction()` is usually not applicable, because the underlying (true) analytical function is not known. We consider the SPOT model based approach first.

7.2.1 Plotting the Final Model with `plotModel`

Plotting the final model from the SPOT run might be the most generic way of visualizing the results, because during the optimization, the optimizer trusted this model. So, why should it be considered unreliable after the optimization is finished? Based on the tuning results from Example 1, we will demonstrate how the final model, which was built during the SPOT run, can be plotted. Since the model is stored in the result list from the SPOT run, i.e., in `resRf`, the parameter `resRf$modelFit` can be passed as an argument to the `plotModel()` function. The result is shown in Fig. 12.

```r
plotModel(resRf$modelFit)
```

7.2.2 Plotting the Data with `plotData`

Results from Example 1 were obtained with the random forest model. But, the data can be fitted to a different model, e.g., a locally (weighted) scatter plot smoothing (LOESS) or Kriging model as follows.

Example 10 (Plotting data using LOESS). Figure 13 illustrates the LOESS model fit, which uses the data generated with a random forest model.

```r
plotData(resRf$x, resRf$y, model = buildLOESS)
```

Example 11 (Plotting data using Kriging). Plotting the same data as in Fig. 13 with a Kriging model can easily be done. The result is shown in Fig. 14.
Fig. 10: Example 8. 2D representations using plotData(). Top: The default LOESS model is used for interpolation. Bottom: random forest was used for interpolation.
Fig. 11: Example 9. 3D representation of a data set using plotData().

Fig. 12: Example 1. Surface plot from the SPOT run with random forest. The function plotModel() was used to generate this plot, based on the random forest model.
Fig. 13: Example 10: Results from the SPOT run with random forest, visualized with a LOESS model using plotData().

\[
\text{plotData}(\text{resRf$x, resRf$y, model = buildKriging})
\]

This result can be compared to a case in which Kriging models were used during the SPOT run and for the final illustration.

Example 12. The same setting as in the random forest based optimization will be used. Only the meta model will be changed. The SPOT configuration parameters can be changed as follows:

\[
\begin{align*}
\text{spotConfig$model} & = \text{buildKriging} \\
\text{spotConfig$optimizer} & = \text{optimLBFGSB} \\
\text{spotConfig$modelControl} & = \text{list(algTheta = optimLBFGSB)} \\
\end{align*}
\]

Now, the Kriging model used during the SPOT run will be used to visualize the fitness landscape. The result is shown in Fig. 15.

\[
\text{plotModel}(\text{resK$modelFit})
\]

The landscape generated with the random forest based SPOT run from Example 10 shown in Fig. 14 and the landscape from Example 12 which used the Kriging-based SPOT run, differ. We can check if longer runs increase the similarities.

7.2.3 Continued Runs

The optimization procedure from Example 1 which is described in Sec. 5 uses 50 runs of the SANN algorithm. Now this number is increased to 100 and the procedure is continued. This means, an additional 50 evaluations are necessary since the results from the first runs are reused.

Example 13 (Example 1 continued with 50 additional runs). The fitness landscape of the random forest meta model with 100 function evaluations is shown at the top in Fig. 16.
Fig. 14: Example 11. Results from the SPOT run with random forest, visualized with a Kriging model using plotData().

Fig. 15: Example 12. This shows the result of a SPOT run with Kriging, the visualization is based on the final Kriging model.
Example 14 (Example 12 continued with 50 additional runs). In a similar manner, new results can be added to the Kriging based optimization runs from Example 12.

A comparison of the models resulting from the two long runs (Example 13 and 14) is shown in Fig. 16. A visual inspection indicates that the landscapes are qualitatively similar, e.g., poor algorithm settings can be found in the lower right corner.
Fig. 16: Comparison of the long runs with 100 function evaluations and two different surrogate models. Top: Example 13. Long run using Random forest model. Bottom: Example 14. Long run with 100 function evaluations using a Kriging model.
8 Response Surface Methodology (RSM)

Using the \texttt{rsm} package, which is maintained by \cite{Lenth2012}, the \texttt{buildRSM()} function builds a linear response surface model. The arguments of \texttt{buildRSM(x, y, control = list())} are as follows:

- \textbf{x}: design matrix (sample locations), rows for each sample, columns for each variable.
- \textbf{y}: vector of observations at \textbf{x}
- \textbf{control}: list, with the options for the model building procedure:
 - mainEffectsOnly: logical, defaults to FALSE. Set to TRUE if a model with main effects only is desired (no interactions, second order effects).
 - canonical: logical, defaults to FALSE. If this is TRUE, use the canonical path to descent from saddle points. Else, simply use steepest descent

\textbf{Example 15 (Path of the steepest descent).} First, we create some design points and compute observations at design points. Then, using \texttt{buildRSM()}, the response surface model is built. The function \texttt{descentSpotRSM()} returns the path of the steepest descent.

```r
x <- designUniformRandom(lower = rep(-5, 2), upper = rep(15, 2), control = list(size = 20))
y <- funSphere(x)
fit <- buildRSM(x, y)
## Create model with default settings
## Predict new point
predict(fit, cbind(1, 2))
## $y
## [1] 5
## True value at location sphere(c(1, 2))
## [1] 5
descentSpotRSM(fit)
## Path of steepest descent from ridge analysis:
## $x
##             [,1] [,2]
## [1,] 4.594420 5.21888
## [2,] 3.955628 4.60130
## [3,] 3.335624 3.96680
## [4,] 2.725014 3.32384
## [5,] 2.133192 2.66396
## [6,] 1.560158 1.99562
## [7,] 0.996518 1.31036
## [8,] 0.461060 0.61664
## [9,] -0.065004 -0.09400
## [10,] -0.572280 -0.80464
## $y
##             [,1]
## [1,] 48.34540359
## [2,] 36.81895456
## [3,] 26.86188971
## [4,] 18.47361365
## [5,] 11.64719099
## [6,] 6.41659217
## [7,] 2.71009145
## [8,] 0.59282121
## [9,] 0.01306152
## [10,] 0.97494993
```
Fig. 17: Example 15. Illustrating the response surface, which fits the sphere function.

This situation is illustrated in Fig. 17.

plot(fit)

8.1 RSM and SPOT

Example 16 (RSM with SPOT). We can use RSM for an interactive tuning approach. The starting point in this example are the 100 design points that were generated during the Kriging-based SPOT run in Example 14. These 100 data points are used to build a response surface with `buildRSM()`.

```r
rsm100K <- buildRSM(x = res100K$x, y = res100K$y)
summary(rsm100K$rsmfit)
```

```
## Call:
## rsm(formula = y ~ FO(x1, x2) + TWI(x1, x2) + PQ(x1, x2), data = codedData)
##
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)
## (Intercept)   50.5759   5.4677    9.250 7.234e-15 ***
## x1            37.4445   3.9033    9.593 1.347e-15 ***
## x2           -36.7993   4.0066    9.185 9.957e-15 ***
## x1:x2       -18.5259   4.1972    4.414 2.708e-05 ***
## x1^2          -11.9005   5.6435    2.109 0.0376291 *
## x2^2          -25.4375   6.5577    3.879 0.0001944 ***
## ---
## Signif. codes:  < 0.001 ***  0.001 **  0.01 *  0.05 .  0.1   1
##
## Multiple R-squared: 0.7836, Adjusted R-squared: 0.7721
## F-statistic: 68.08 on 5 and 94 DF, p-value: < 2.2e-16
```

Analysis of Variance Table

Response: y
Following the path of the steepest descent on the RSM meta model, we obtain a new design point, which can be evaluated.

(xSteep <- descentSpotRSM(rsm100K))

Path of steepest descent from ridge analysis:

\hat{x}

	V1	V2
1	47.0845	51.384
2	43.8670	54.956
3	40.9465	58.810
4	38.3725	62.852
5	36.2935	67.223
6	34.7095	71.876
7	33.7195	76.764
8	33.2740	81.840
9	33.3235	87.057
10	33.8680	92.274

\hat{y}

	[,1]
1	45.246195
2	39.708586
3	33.918724
4	27.953296
5	21.717621
6	15.163739
7	8.309532
8	1.063617
9	-6.654501
10	-14.722493

We have chosen the eighth point, i.e.,
Then we determine its function value.

\[(y_{\text{New}} \leftarrow \text{sann2spot}(x_{\text{New}}))\]

\[
\begin{bmatrix}
[1,] \\
[1,] 0.09871212
\end{bmatrix}
\]

Next, we can refine the rsm meta model by including this point to the set of design points.

\[
x_{101} \leftarrow \text{rbind}(\text{res100K}\$x, x_{\text{New}})
\]
\[
y_{101} \leftarrow \text{rbind}(\text{res100K}\$y, y_{\text{New}})
\]
\[
rsm101K \leftarrow \text{buildRSM}(x = x_{101}, y = y_{101})
\]
\[
\text{summary}(rsm101K\$rmsfit)
\]

\[
\begin{array}{rrrrr}
\text{Estimate} & \text{Std. Error} & \text{t value} & \text{Pr(>|t|)} \\
(\text{Intercept}) & 50.5892 & 5.4365 & 9.3054 & 5.045e-15 *** \\
x_1 & 37.4612 & 3.8772 & 9.6618 & 8.727e-16 *** \\
x_2 & -36.8123 & 3.9823 & -9.2440 & 6.825e-15 *** \\
x_{1}\times x_2 & -18.5126 & 4.1719 & -4.4374 & 2.451e-05 *** \\
x_1^2 & 5.6137 & -2.1191 & 0.0366875 * \\
x_2^2 & -25.4750 & 6.5066 & -3.9153 & 0.0001699 *** \\
\end{array}
\]

\#
\#

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Analysis of Variance Table

\[
\begin{array}{rrrrr}
\text{Df} & \text{Sum Sq} & \text{Mean Sq} & \text{F value} & \text{Pr(>F)} \\
\text{FO(x1, x2)} & 2 & 42109 & 21054.5 & 149.5869 < 2.2e-16 \\
\text{TWI(x1, x2)} & 1 & 4103 & 4102.8 & 29.1492 0.000559 \\
\text{PQ(x1, x2)} & 2 & 2284 & 1141.8 & 8.1120 0.000559 \\
\text{Residuals} & 95 & 13371 & 140.8 & 0.8069 0.759838 \\
\text{Lack of fit} & 40 & 4945 & 123.6 & 0.8069 0.759838 \\
\text{Pure error} & 55 & 8426 & 153.2 & 0.8069 0.759838 \\
\end{array}
\]

Stationary point of response surface:

\[
\begin{array}{rr}
x_1 & 2.978901 \\
x_2 & -1.804897 \\
\end{array}
\]

Stationary point in original units:

\[
\begin{array}{rr}
V_1 & 197.95560 \\
V_2 & -36.83017 \\
\end{array}
\]

Eigenanalysis:

\#
\#

eigen() decomposition

$values

[1] -7.206176 -30.164858

$vectors

[,1] [,2]

#
Fig. 18: Example 16. `buildRSM()` was used to build a response surface. Data from the Kriging-based SPOT run with 100 function evaluations and one additional point, which was calculated using the steepest descent function `descentSpotRSM()`, were used to generate this model.

```
## x1 -0.8920338 0.4519686
## x2 0.4519686 0.8920338

The resulting plot is shown in Fig. 18.
```

```
plot(rsm101K)
```

```
Now, we have two options for continuing the optimization. Either, we continue following the path of the steepest descent, i.e., we use SPOT’s `descentSpotRSM()` function.
```

```
descentSpotRSM(rsm101K)
```

```
## Path of steepest descent from ridge analysis:
## $x
##
## V1 V2
## 1 47.0845 51.384
## 2 43.8670 54.956
## 3 40.9465 58.810
## 4 38.3725 62.852
## 5 36.2935 67.223
## 6 34.7095 71.876
## 7 33.7195 76.764
## 8 33.2740 81.840
## 9 33.3730 87.057
## 10 33.8680 92.274
##
## $y
## [,1]
## [1,] 45.257160
## [2,] 39.716711
## [3,] 33.923393
## [4,] 27.953878
## [5,] 21.713329
```
Fig. 19: Example 16. buildRS() was used to build a response surface. Data from the Kriging-based SPOT run with 100 function evaluations, one additional point, which was calculated using the steepest descent function descentSpotRSM(), and one additional SPOT run with nine additional design points, were used to generate this model. Altogether, 110 design points were used to generate this model.

Or, we can continue with SPOT. Following this second option, we have built an updated Kriging model using nine additional function evaluations.

```
spotConfig$model = buildKriging
spotConfig$optimizer = optimLBFGSB
spotConfig$modelControl = list(algTheta = optimLBFGSB)
spotConfig$funEvals <- 110
res110K <- spotLoop(x = x101, y = y101, fun = sann2spot, lower = lower, upper = upper,
                    control = spotConfig)
```

Finally, we can plot the updated model (see Fig. 19).

```
plotModel(res110K$modelFit)
```

9 Statistical Analysis

This section describes two basic approaches for the analysis of the results from the previous example: tree-based analysis and regression analysis. We will continue using the data from Example 13.

9.1 Tree-based Analysis

SPOT’s buildRandomForest() function is a wrapper function for the randomForest function from the randomForest package. Since the randomForest package has no default plot function, we switch to the party package. This package provides the ctree() function, which can be applied as follows:
Fig. 20: Tree based analysis with Kriging data. tmax and temp.

9.2 Regression Analysis

9.2.1 Building the Linear Model

Data from the SPOT run can be used for building linear models. First, we extract the data from the result file. Then we can use the standard \texttt{lm()} function for building the linear model.

```r
tmaxtempz.df <- data.frame(res100K$x[, 1], res100K$x[, 2], res100K$y)
names(tmaxtempz.df) <- c("tmax", "temp", "y")
tmaxtempz.tree <- ctree(y ~ ., data = tmaxtempz.df)
plot(tmaxtempz.tree, type = "simple")
```

The result is shown in Fig. 20.

```r
xyz100K.df <- data.frame(res100K$x[, 1], res100K$x[, 2], res100K$y)
names(xyz100K.df) <- c("x", "y", "z")
lm100K <- lm(z ~ x * y, data = xyz100K.df)
summary(lm100K)
```

```r
## Call:  
## lm(formula = z ~ x * y, data = xyz100K.df)  
## Residuals:  
##    Min     1Q  Median     3Q    Max  
##    -62.02 -4.323  -2.869  2.339  58.572  
## Coefficients:  
##                Estimate  Std. Error t value  Pr(>|t|)  
## (Intercept) 4.01764  3.32864 1.2067  0.22941   
## x 1.10072  0.07689 14.3140  < 2e-16 ***  
## y -0.14263  0.07960 -1.7920  0.07579   .  
## x:y -0.00916  0.00182 -5.0230  2.35e-06 ***  
## ---  
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
```
Fig. 21: Diagnostic plots of the linear regression model.

```
## Residual standard error: 12.76 on 96 degrees of freedom
## Multiple R-squared: 0.7469, Adjusted R-squared: 0.739
## F-statistic: 94.42 on 3 and 96 DF, p-value: < 2.2e-16
```

Diagnostic plots can be generated as follows:

```r
par(mfrow = c(2, 2))
plot(lm100K)
par(mfrow = c(1, 1))
```

The result is shown in Fig. 21.

9.2.2 Estimating Variable Effects

R’s `termplot()` function can be used to plot regression terms against their predictors, optionally with standard errors and partial residuals added.

```r
par(mfrow = c(1, 2))
termplot(lm100K, partial = TRUE, smooth = panel.smooth, ask = FALSE)
par(mfrow = c(1, 1))
```

The result is shown in Fig. 22.

The `car` package provides the function `avPlots()`, which can be used for visualization as follows:

```r
par(mfrow = c(1, 3))
avPlots(lm100K, ask = F)
par(mfrow = c(1, 1))
```

The result is shown in Fig. 23.
Fig. 22: Example 13: Termplots.

Fig. 23: Example 13: Added variable plots.
10 Deterministic Problems and Surrogate Model Based Optimization

Previous sections discussed the tuning of non-deterministic, i.e., noisy, algorithms, which is the usual case when tuning evolutionary algorithms. This section presents an application of SPOT in a simple setting: We will describe how SPOT can be used for optimizing deterministic problems directly, i.e., we apply SPOT in the context of surrogate model based optimization. To present a very simple example, SPOT will be used for minimizing the sphere function. Level L2 from Fig. 1 is omitted, and the tuning algorithm for level L3 is applied directly to the real-world system on level L1. So instead of tuning the stochastic SANN heuristic, which in turn optimizes the sphere function, SPOT tries to find the minimum of the deterministic sphere function directly. This example illustrates necessary modifications of the SPOT configuration in deterministic settings. Since no randomness occurs, repeats or other mechanism to cope with noise are not necessary anymore. The interval \([-5; 5] \times [-5; 5]\] was chosen as the region of interest, i.e., we are considering a two-dimensional optimization problem.

```
res <- spot(funSphere, c(-5, -5), c(5, 5), control = list(optimizer = optimLBFGSB))
```

We can extract the best solution with the following command.

```
res$xbest
## [,1] [,2]
## [1,] 0.002331392 0.0006375823
res$ybest
## [,1]
## [1,] 5.841901e-06
```

11 Model Ensembles: Stacking

SPOT provides several models that can be used as surrogates. Sometimes it is not obvious, which surrogate should be chosen. Ensemble-based models provide a well-established solution to this model selection problem (Bartz-Beielstein & Zaefferer, 2017). Therefore, SPOT provides a stacking approach, that combines several models in a sophisticated manner. The stacking procedure is described in detail in Bartz-Beielstein (2016).

Example 17 (Stacking). We will use the data from Example 7 to illustrate the stacking approach.

```
fit.stack <- buildEnsembleStack(x.test, y.test)
plotModel(fit.stack)
```

The plot is shown in Fig. 24. We can compare predicted and true values as follows:

```
xNew <- cbind(1, 1, 1)
predict(fit.stack, xNew)
## $y
## 1
## 2.984905
funSphere(xNew)
## [,1]
## [1,] 3
```

38
12 Summary

This report describes experimental methods for tuning algorithms. Using a simple simulated annealing algorithm, it was demonstrated how optimization algorithms can be tuned using the SPOT. Several tools from the SPOT for automated and interactive tuning were illustrated and the underlying concepts of the SPOT approach were explained. Central in the SPOT approach are techniques such as exploratory fitness landscape analysis and response surface methodology. Furthermore, we demonstrated how SPOT can be used as optimizer and how a sophisticated ensemble approach is able to combine several meta models via stacking.

Acknowledgment

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 722734.

Appendix

The required packages for compiling this document can be installed via:

```r
packList <- c("car", "datasets", "formatR", "ggplot2", "graphics", "grDevices", 
              "knitr", "lhs", "maptree", "MASS", "mvtnorm", "party", "plyr", "pwr", "randomForest", 
              "reshape2", "rpart", "rsm", "SPOT", "stats", "tree", "utils", "xtable")
for (i in 1:length(packList)) {
  install.packages(packList[i], repos = "http://cran.r-project.org")
}
```

References

Bartz-Beielstein, T. (2006). *Experimental Research in Evolutionary Computation—The New Experimentalism*. Natural Computing Series. Berlin, Heidelberg, New York: Springer.
Bartz-Beielstein, T. (2016). *Stacked Generalization of Surrogate Models - A Practical Approach*. Technical Report 5/2016, TH Köln, Köln. https://cos.bibl.th-koeln.de/frontdoor/index/index/docId/375

Bartz-Beielstein, T. & Zaefferer, M. (2017). Model-based methods for continuous and discrete global optimization. *Applied Soft Computing*, 55, 154 – 167.

Box, G. E. P. & Draper, N. R. (1987). *Empirical Model Building and Response Surfaces*. New York NY: Wiley.

Breiman, L. (2001). Random Forests. *Machine Learning*, 45(1), 5–32.

Eiben, A. E. & Smith, J. E. (2003). *Introduction to Evolutionary Computing*. Berlin, Heidelberg, New York: Springer.

Forrester, A., Sóbester, A., & Keane, A. (2008). *Engineering Design via Surrogate Modelling*. Wiley.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. *Science*, 220(4598), 671–680.

Lenth, R. V. (2012). *Response-Surface Methods in R Using rsm (Updated to version 2.00)*. Technical report.

R Core Team (2017). *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing, Vienna, Austria.