A WDM capable integrated optical readout of a MEMS sensor

G. Putrinoa*, M. Martyniuk1, A. Keatingb, L. Faraone1, J.M. Dell1

aSchool of Electrical, Electronic and Computer Engineering, The University of Western Australia, Crawley, WA 6009, Australia
bSchool of Mechanical Engineering, The University of Western Australia, Crawley, WA 6009, Australia

Abstract

We present experimental validation of an integrated readout technique for interrogating the suspension height of micro-electro-mechanical systems (MEMS) structures using a doubly clamped beam as the demonstration structure. This readout technique is envisaged to be useful in applications such as MEMS-based chemical sensing, where it is necessary to obtain the accurate position of a MEMS beam. The approach is based on the suspended MEMS structure modulating light transmission in an underlying optical waveguide via Fabry-Perot phenomena. Our experimental results show that changing the doubly clamped beam suspension height by 100 nm can result in an up to 20 dB change in optical power transmitted through an underlying optical waveguide.

1. Introduction

Microcantilever sensors are readily integrated into an array using low-cost, mass-production fabrication techniques developed for micro-electromechanical systems (MEMS), and can facilitate simultaneous multi-analyte chemical sensing [1-3]. MEMS-based microstructures are extremely sensitive elements, demonstrating mass detection limits as low as $10^{-21}$ g in controlled, laboratory conditions [4, 5]. If the top surface of the micro-cantilever is functionalized to preferentially adsorb specific molecules, an extremely sensitive and selective sensor can be fabricated.

Readout technologies for MEMS sensors include the use of light reflected from the cantilever tip to a distant quadrant detector [1], electrical sensing (piezoresistive, piezoelectric, capacitive, Lorentz...
force/emf sensing and tunneling current techniques), and optical sensing based on optical interference either in an interferometer or the use of diffraction from an optical grating formed by a line of cantilevers. The latter is often described as an array, but is still effectively a sensor for a single analyte [4, 6, 7].

The typical deflection noise density (DND) for micro-cantilever sensor systems that use quadrant detectors such as those found in atomic force microscopes (AFMs) is in the range of 100-1000 fm/√Hz, although laboratory values of 17 fm/√Hz have been achieved [8, 9]. The lowest shot noise limited DND previously reported was 6 fm/√Hz for a readout using an optical resonance approach [10]. A significant drawback of these AFM-based readout approaches is that none of them is compatible with the passive, non-electrical readout of large arrays of MEMS sensors and future techniques will need to have the sensitivity of the above techniques, plus the ability to address large arrays of MEMS structures. Recently developed techniques to address large arrays include using cantilevers as optical waveguides [11], optical differential detection method [12], or photonic microharp array [13]. Our investigations have focused on resonant optical interferometric techniques that lend themselves easily to large scale integration and are compatible with division multiplexed systems. In this work we present experimental validation of the technique and compare it to finite difference time domain (FDTD) simulations of the device.

2. Description of the device and optical modeling

The proposed and investigated approach is schematically shown in Fig. 1. In sensing applications, the doubly clamped beam would change its height or mechanical resonance frequency in response to an absorbed analyte. To sense such changes, an optically resonant cavity is created when a MEMS beam with a reflective undersurface is suspended above a diffraction grating etched into a waveguide. When light travels through the silicon waveguide, the grating will diffract some of the light out of the waveguide towards the MEMS beam. The MEMS beam will reflect the light back towards the grating, creating an interferometric effect. The intensity of the light travelling through the waveguide is hence amplitude modulated by movement of the MEMS beam.

Figure 1(b) shows a cross-section of the full device. Light is launched into the silicon waveguide via the input grating coupler. The grating couplers were designed to be broadband and have optimized coupling efficiency for light at a wavelength of 1550 nm [14]. The light modulated by the interferometer is coupled out by an output grating coupler providing a sensitive measure of the beam deflection.

Two dimensional electromagnetic modeling of the structure was undertaken using the Meep finite difference time domain (FDTD) package [15]. The model was based on a silicon-on-insulator (SOI) platform for the optical waveguide/grating structure, which consisted of a 230 nm epitaxial silicon layer for the waveguide, 2000 nm thick buried oxide for the bottom cladding layer, and a silicon handle wafer.

Fig. 1. (a) Isometric view of the proposed interrogating grating structure. (b) Cross-section of the full device.
as the base. The waveguides are designed to be single mode in the direction perpendicular to the plane of the substrate and multimode in the plane of the waveguide. SOI photonic structures have the advantage of being a relatively well developed technology. Further, silicon provides very strong optical guiding so that minimal evanescent field coupling will occur, reducing crosstalk and leakage in closely spaced multiplexed arrays. The grating is a square-wave grating of 610 nm pitch, 50 nm depth and 11.9 µm in length, and, in the absence of the cantilever structure, is an efficient waveguide output coupler [14]. The bottom surface of the suspended cantilever is assumed to be a perfect reflector at the wavelength of interest (1550 nm), and extending 1 µm beyond the interrogating grating on all sides.

3. Fabrication of device and experimental setup

The waveguides and diffraction gratings were fabricated using a silicon on insulator (SOI) wafer by the LETI standard passive process using the ePIXfab silicon photonics platform. The buried oxide (BOX) layer was 2 µm thick, and the epitaxial silicon was 220 nm thick. The waveguides and gratings (pitch 630 nm, depth 70 nm) were etched into the silicon using a deep ultra-violet (DUV) lithography process. Silicon dioxide was then deposited to cover the structures and chemomechanically polished (CMP) down to a thickness of 100 nm above the waveguides in order to supply a flat surface for further fabrication steps.

Plasma enhanced chemical vapour deposition (PECVD) silicon nitride was used as the structural material to fabricate MEMS microbridges with a gold undercoat using surface micro-machining [16]. The gold was 50 nm thick in order to provide good reflection for the infra-red light that was used in the experiment (at wavelengths of 1550, 1585, and 1610 nm). The beams were 220 µm long and 20 µm wide, with top hat style anchors. The sacrificial layer used was the low stress polyimide PI-2610 of thickness of 1.6 µm. The chip was bonded to a piezoelectric device which was used to drive the microbridge at its resonant frequency of 291 kHz. A Polytec OFV-5000 vibrometer controller with a DD-500 displacement decoder was used to monitor the displacement of the microbridges to determine the gap between the suspended beam and the waveguide and to measure the mechanical resonance frequency.

Fiber to fiber insertion losses were measured with an InGaAs photodetector to be 12-25 dB, depending on the wavelength used, arising largely from the grating coupler losses. The amplitude change of this output power was then measured as a function of microbridge position above the central grating.

4. Results and analysis

Figure 2(a) shows the measured optical output at a wavelength of 1585 nm as a function of grating-microbridge gap for a piezo-driven MEMS beam over a 250 nm range at its resonant frequency of 291 kHz. The measured range was limited by the piezo drive power and not the beam characteristics. As the optical output results from an interferometric effect which is periodic with the gap under the beam, the optical output is not monotonic.

The measured transmitted optical power data shown in Fig. 2(a) are overlayed on optical finite difference time domain (FDTD) simulations (open squares), which present the ratio of optical output power to input power as a function of the gap. Good correlation between the theoretical and experimental results is evident. Slight discrepancies between the model and the experimental results are most likely related to the assumed perfect reflector in the model, and the use of a 2D model which did not include electrical fringing effects or mechanical dynamics at resonance.

The experiment was repeated at wavelengths of 1550 nm and 1610 nm. The results of all three lasers are shown in Fig. 2(b) with each measurement normalized to its peak power. The transmission maxima are shifted due to the changing wavelength of the lasers. This effect could be useful for extending the gap
range for applications which require a larger range of operation. It should be noted here that the waveguide gratings were optimized for a wavelength of 1550 nm, which led to a smaller signal-to-noise ratio (and larger scatter in the data) for the other two wavelengths. These results demonstrate that the device operates in a systematic manner over a wide range of wavelengths, enabling wave division multiplexing (WDM) techniques to address large numbers of MEMS beams on a single chip array.

5. Conclusion

This work has presented experimental validation of an integrated system for measuring the changes in height of a suspended microbridge. The technique is scalable and WDM techniques could be used to address massive arrays of beams on a chip. Although this experiment was performed using microbridges, we believe that the technique is easily extended to microcantilevers and other MEMS structures.

References

[1] N. Lavrik, M. Sepaniak, and P. Datskos. Rev. Sci. Instrum. 75, p. 2229-53 (2004)
[2] A. Loui, T.V. Ratto, T.S. Wilson, S.K. McCall, E.V. Mukerjee, A.H. Love, and B.R. Hart. The Analyst 133, p. 608 (2008)
[3] M. Baller et al. A cantilever array-based artificial nose,” Ultramicroscopy 82, p. 1-9 (2000).
[4] Y.T. Yang, C. Callegari, X.L. Feng, K.L. Ekinci, and M.L. Roukes. Nano Lett. 6, p. 583–6 (2006)
[5] M. Li, H.X. Tang, and M.L. Roukes. Nature Nanotechnol. 2, p. 114–20 (2007)
[6] T.H. Stievater et al. Appl. Phys. Lett. 89, p. 269902 (2006)
[7] D. Kong et al. “A MEMS sensor array for explosive particle detection,” in Proc. Int. Conf. Inf. Acquisition 2004, p. 278281
[8] T. Fukuma, M. Kimura, K. Kobayashi, K. Matsushige, and H. Yamada. Rev. Sci. Instrum. 76, p. 053704 (2005)
[9] H.P. Lang et al. Analytica Chimica Acta 393, p. 59–65 (1999)
[10] C. Schonenberger and S.F. Alvarado. Rev. Sci. Instrum. 60, p. 31313134 (1989)
[11] K. Zinoviev, C. Dominguez, J.A. Plaza, V.J.C. Busto, and L.M. Lechuga. J. Lightw. Technol. 24, p. 2132 (2006)
[12] J.W. Noh, R. Anderson, S. Kim, J. Cardenas, and G.P. Nordin. Opt. Exp. 16, p. 12 114–12 123 (2008)
[13] T.H. Stievater et al. “Photonic microharp chemical sensors,” Opt. Exp. 16, p. 2423–30 (2008)
[14] D. Taillaert et al. Jpn. J. Appl. Phys. 45, p. 6071–7 (2006)
[15] A.F. Oskooi et al. Comput. Phys. Commun. 181, p. 687–702 (2010)
[16] M. Martyniuk et al. Smart Materials and Structures 15, p. S29-38 (2006)
[17] G. Putrino, A. Keating, M. Martyniuk, L. Faraone, and J. Dell. J. Lightw. Technol. 30, p. 1863-8 (2012)