ARTIFICIAL NEURAL NETWORK APPROACH: AN APPLICATION TO HARMONIC LOAD FLOW FOR RADIAL SYSTEMS

A.Arunagiri1, Suresh K2, B.Venkatesh3, R.Ramesh Kumar4 and Mustajab Ahmed Khan1

1EEET Department, Yanbu Industrial College, Yanbu, KSA.
2Research Scholar, Bharath University, Chennai, India.
3Faculty of Engineering, Ryerson University, Toronto, Canada.
Contact: aarunagiri@yic.edu.sa.

ABSTRACT

Radial Distribution Systems (RDS) require special load flow methods to solve power flow equations owing to their high R/X ratio. Increasing use of power electronic devices and effect of magnetic saturation cause harmonics in RDS. This paper reports a multi-layer feed forward ANN with error back propagation learning algorithm for the calculation of bus voltages and power loss for different harmonic components. The proposed method is tested upon a 33-bus RDS and the results are reported for various harmonics. Extensive testing of the proposed ANN based approach indicates its viability for harmonic load flow assessment for radial systems.

KEYWORDS: Radial Distribution Systems; Harmonic components.

1. INTRODUCTION

Analysis of distribution system using power flow is important in the field of power systems. Distribution systems are predominantly characterized by their high R/X ratio and radial topology. Matrix based iterative methods do not lend themselves for radial distribution systems owing to these characteristics. Numerous algorithms have been developed using simple recursive equations [1-3].

Rapid industrialization has led to increasing use of power electronic devices in transmission and distribution systems. Modern industrial and domestic consumers use an ever-increasing number of devices that primarily employ power electronics based power-conditioners. Use of AC machines employing magnetic circuits in the saturation region also introduces harmonics in electrical power systems.

Many existing methods for distribution system load flow, fail to obtain a solution in several instances. Large RDS have complicated structure and are subject to changes in their topology frequently for maintenance, load balancing, network reconfiguration and emergency operations under the umbrella of Supervisory Control and Data Acquisition (SCADA). SCADA requires a fast Distribution Load Flow (DLF) algorithm that computes the voltage solution very rapidly for online scheduling.

Load flow calculation in harmonic polluted radial system with distributed generation has been carried out using abstract data types with complex parameters[4].

A multiple-frequency three-phase load-flow with two sub models including the fundamental power flow (FPF) and harmonic frequency power-flow (HPF) model has been developed and the standard Fourier analysis
was used to deal with the harmonic loads to
get injection currents [5]. Fuzzy number
based methodology for harmonic load-flow
calculation including uncertainties has been
applied for interconnected system[6].
Artificial neural network approach has been
applied for the radial distribution system
analysis [7]. From the above, one may see the
need for an efficient algorithm that reliably
and rapidly solves the power flow equations
for radial distribution systems characterized
by high R/X ratio, radial topology and for
various harmonic loads.
In this paper an ANN based harmonic load
flow solution technique for the radial system
has been developed. A database consisting of
different load patterns and the corresponding
voltage solution with the power loss is created
for third, fifth and seventh order of harmonics
using ladder iterative technique. The neural
network is trained to learn the features of the
load to estimate the bus voltage, angle and the
total loss. The trained neural network can be
instantly recalled to give output for an
untrained set of inputs without going through
the conventional iterative procedure, and that
saves considerable execution time especially
on a large systems.
The proposed method makes use of multi-
layer feed forward ANN with error back
propagation learning algorithm for the
calculation of bus voltages and power loss for
different harmonic components.
In section 2, a simple ladder network
technique is explained for solving the radial
system power balance equations. Using this
technique, a data base providing information
of the possible real and reactive power
demands for various harmonics at different
buses and their corresponding voltage
solution is created. Section 3 briefly
introduces the Back Propagation Network, its
architecture, training algorithm and
recognition phase. Section 4 discusses an
implementation of BPN for determining the
bus voltages for various harmonics. Section 5
presents the results of sample systems being
studied by the proposed method for different
harmonics. Section 6 presents the conclusion.

2. LADDER ITERATIVE TECHNIQUE

It is assumed that the ladder network
parameters for lines, loads and substation
voltage V_S are known. The voltage solution of
this network can be obtained by repeating the
forward and backward sweeps iteratively.
2.1 FORWARD SWEEP:
Compute bus voltages and associated currents
starting from last bus to the first bus.
\[
I_i = \left(\frac{S_i}{V_s} \right)
\]
\[
I_{i+1} = I_i + I_{i+1} \quad \text{for } i = 4, 3, 2, 1.
\]
\[
V_i = V_{i+1} + Z_{i+1} * I_{i+1}
\]
For i=5, V_5 is assumed to be V_S in the first
iteration and equals the value computed in
the backward sweep in the subsequent
iterations. I_5 is computed using (1).
2.2 BACKWARD SWEEP:
The backward sweep starts from 2nd bus to the
last bus (5th bus). Taking V_1=V_S. The ith
bus voltages are computed as below using current
values computed in the forward sweep:
\[
V_i = V_{i+1} + Z_{i+1} * I_{i+1} \quad \text{for } i = 2, 3, 4, 5.
\]
The forward and backward sweeps are
continued until the difference between the
specified voltage at source and computed
voltage in the forward sweep is within the
tolerance limit.
3. BPN ARCHITECTURE

The most common BPN architecture is presented in Fig. 2. It is shown to have three layers, namely, input, hidden and output layers. Other applications may have several hidden layers. During training, several sets of input and their corresponding output vectors are considered. The training phase is used to determine the weights between the input, hidden and output layers.

The neurons used in the study use the sigmoid activation function defined by the following equation:

\[
\text{output} = \frac{1.0}{1.0 + e^{-\alpha v}}
\]

(3)

where \(\alpha\) is the abruptness of the sigmoid function and \(v\) is the total input to the neuron.

Let the vector \(\mathbf{X}\) represent an input to the input layer as shown in the Fig. 2. The net input at the hidden layers is computed by the matrix equation as below:

\[
\mathbf{V}_H = [WH] \mathbf{X}
\]

(4)

where \(WH_{ji}\) denotes the weight between \(i^{th}\) input layer node and \(j^{th}\) hidden layer node.

The output of the hidden layer nodes are given by

\[
\mathbf{Y}_H = \Phi (\mathbf{V}_H)
\]

(5)

where \(\Phi\) is the appropriate activation function.

In a similar manner, the total input at the output layer is given by the following equation:

\[
\mathbf{V}_O = [WO] \mathbf{V}_H
\]

(6)

The output of the output layer node is given by

\[
\mathbf{Y} = \Phi (\mathbf{V}_o)
\]

(7)

The steps for well-established training algorithm based upon Newton’s steepest descent technique is given below:

1. Read the training set and randomly initialize the weights. Set iteration index \(n=1\).
2. Set training set index \(\rho=1\).
3. Propagate \(\mathbf{X}_\rho\) through the network.
4. Determine the error vector of the \(\rho^{th}\) training set \(\mathbf{E}_\rho = \mathbf{O}_\rho - \mathbf{Y}_\rho\) where \(\mathbf{O}_\rho\) is the vector of expected output.
5. Correct the weights using Newton’s steepest descent technique.
6. If \(\rho < \text{number training sets} \ P\), set \(\rho = \rho+1\) and go to step 3.
7. If \(\sum_{\rho=1}^{P} |\mathbf{E}_{\rho}|^2 > \text{tolerance} \ \varepsilon\), increment the iteration index \(n\) and go to step 2.

The above method works well and has been well documented. The method requires that, the input and output to be from a continuous domain. Further, it also requires that the input and output set of vectors are non-contradictory for a successful training and operational function.

The RDS under study consists of 33 buses. The substation transformer is connected to bus 1 and there is no direct loading at bus1. The voltage at bus 1 is known and is specified as 1.0 per unit. The resistance and reactance of lines between any two buses and the base load condition is mentioned in table 1.
4. IMPLEMENTATION OF BPN TO DETERMINE HARMONIC LOAD FLOW SOLUTION

The input vector for the BPN is the real and reactive power loads for different harmonics at various buses of the power system. The resistance of the different lines remains the same for different harmonics while the reactance changes according to the order of harmonics. Load flow solution for different load patterns is obtained using ladder iterative technique with the relevant impedance component for the third, fifth and seventh order harmonics.

Sixty sets of loads were created by the following scheme:
(a) Varying both the real and reactive power loads simultaneously at all the load buses of the radial system.
(b) Varying both the real and reactive power loads simultaneously at a single load bus of the radial system.
(c) Varying only the real power load at a single load bus of the radial system.
(d) Varying only the reactive power load at a single load bus of the radial system.

Equation (8) and (9) represents the train input and train target matrix for a particular order of harmonics.

\[
\begin{align*}
P_{1,1} & P_{2,1} & P_{60,1} \\
P_{1,2} & P_{2,2} & P_{60,2} \\
P_{1,3} & P_{2,3} & P_{60,3} \\
& & \\
P_{1,32} & P_{2,32} & P_{60,32}
\end{align*}
\]

\[
\begin{align*}
Q_{1,1} & Q_{2,1} & Q_{60,1} \\
Q_{1,2} & Q_{2,2} & Q_{60,2} \\
Q_{1,3} & Q_{2,3} & Q_{60,3} \\
& & \\
Q_{1,32} & Q_{2,32} & Q_{60,32}
\end{align*}
\]

Train Input = (8)

\[
\begin{align*}
\delta_{1,1} & \delta_{2,1} & \delta_{60,1} \\
\delta_{1,2} & \delta_{2,2} & \delta_{60,2} \\
\delta_{1,3} & \delta_{2,3} & \delta_{60,3} \\
& & \\
\delta_{1,32} & \delta_{2,32} & \delta_{60,32}
\end{align*}
\]

Train Target = (9)

Where \(V_{ij} \) and \(\delta_{ij} \) represents the voltage and corresponding angle solution at the \(j \)th load of the \(i \)th load pattern for the particular order of harmonics. \(PL_i \) represents the total loss for the \(j \)th load pattern for the particular order of harmonics calculated from the ladder iterative technique.

For the multi layer feed forward ANN, tan-sigmoid transfer function (TANSIG) is used as activation function. For the considered 33 bus system, 64 input layer nodes (32+32, for real and reactive powers at each bus, there is no direct load connected at bus 1) and 65 output layer nodes are used. (32+32+1, for voltage magnitude and angle at each bus. The voltage magnitude angle is specified at the substation, the last node represents the power loss for the particular load condition).

After successful training of the ANN it should be able to produce the bus voltage magnitude with angle and the total power loss for any of
the untrained input load pattern with minimum time and maximum accuracy.

5. RESULTS AND DISCUSSION

A 33 bus radial distribution system Fig. 3 was tested using the proposed method. The power flow equations were solved using the ladder iterative technique explained in section 2. In order to achieve a broad representation of the power system in the Back Propagation Network, approximately sixty input-output vector pairs were generated for each of the harmonics for the considered 33-bus system. The BPN was trained in MATLAB® environment and the trained result for third harmonics is shown in Fig. 4. Thereafter, the BPN is ready for use. The results from the conventional harmonic load flow solution and from the trained ANN for different harmonics are shown in Table 2. The method seems to work well and is found to be very efficient and fast. The execution time to reach the voltage solution from the trained ANN is approximately one third of the execution time of the conventional method. The bus voltages and the power loss from BPN for the test inputs for the different order of harmonics are compared with ladder iterative technique solution and is listed in table 2.

For the minor changes in the network from the far end of the source, will not affect the results very much. However if the system topology changed from the sending end side, the proposed approach will not work satisfactorily, since the considered system is radial. Effectiveness of the proposed method for the system topology changes can be considered for the future work. As long as if the ANN is trained with the sufficient data (it may be real or simulated) the outcome of the ANN will be the expected outcome.

6. CONCLUSIONS

This paper presents a well defined approach to determine the harmonic load flow solution of a radial distribution system for various order of harmonics. Since collecting data from
the real system with harmonic sources for a large system is a difficult task, a 33 bus radial system is considered for analysis. Several load sets were considered and their solution was assessed using the conventional method of ladder network technique. Then using these sets of input and output vector pairs, the Back Propagation Network is trained. Thereafter, the BPN is ready for use wherein, given a harmonic load, it gives out the voltage solution with minimum time and maximum accuracy.

REFERENCES

[1] Kersting, W. H., and Mendive, D. L., 1976, "An application of ladder network theory to the solution of three phase radial load flow problem", IEEE PES winter meeting, New York, January.

[2] Kersting, W. H., 1984, "A method to design and operation of distribution system", IEEE Transactions on PAS-103, pp. 1945-1952.

[3] Stevens, R. A., Rizy, D. T. and Puruker, S. L., 1986, "Performance of conventional power flow routines for real time distribution automation applications", Proceedings of 18th southeastern symposium on systems theory, (IEEE computer society), pp. 196-200.

[4] Ciprian Bud, Bogdan Tomoiaga, Mercia Chindris."The Load Flow Calculation in Harmonic Polluted Radial Electric Networks with Distributed Generation" 9th International conference on Electrical power quality and Utilisation, Barcelona, 9-11 Oct 2007.

[5] Weih-Min Lin, Tung-Sheng Zhan, Ming-Tong Tsay," Multiple-frequency three-phase load flow for harmonic analysis" IEEE transactions on Power Systems, Vol 19 Issue 2, PP 897-904, May 2004.

[6] A. A. Romero, H.C. Zini, G. Ratta and R. Dib," A fuzzy number based methodology for harmonic load-flow calculation, considering uncertainties" Lat. Am. appl. res. vol.38 no.3 Bahia Blanca July/Sept. 2008

[7] Arunagiri,B.Venkatesh, K.Ramasamy, “Artificial neural network approach—a application to radial loadflow algorithm", IEICE Electronics Express, Vol. 3, No. 14, pp.353-360, 2006

[8] W. F. Tinny and C. E. Hart, Power flow solution of the Newton Method, IEEE Transactions PAS, Vol. PAS-86, No.11, Nov. 1967.

[9] B. Stott and O. Alsac , “Fast Decoupled Load Flow” IEEE Transactions on Power Apparatus and Systems, Vol.PAS-93, pp.859-869, May/June 1974.

[10] B. Stott, ‘ Review of Load Flow Calculation Methods’, Proceedings of the IEEE, Vol. 62, No. 7, July 1984
Table 1: System Under Study

S. No.	From Bus	To Bus	R (Ω)	X (Ω)	P (kW)	Q (kvar)	V (p.u.)
1	1	2	0.0922	0.047	100	60	1
2	2	3	0.493	0.251	90	40	0.997
3	3	4	0.366	0.186	120	80	0.9829
4	4	5	0.3811	0.194	60	30	0.9754
5	5	6	0.819	0.707	60	20	0.9679
6	6	7	0.1872	0.618	200	100	0.9495
7	7	8	1.7114	1.235	200	100	0.946
8	8	9	1.03	0.74	60	20	0.9323
9	9	10	1.044	0.74	60	20	0.926
10	10	11	0.1966	0.065	45	30	0.9201
11	11	12	0.3744	0.123	60	35	0.9192
12	12	13	1.468	1.155	60	35	0.9177
13	13	14	0.5416	0.712	120	80	0.9115
14	14	15	0.591	0.526	60	10	0.9092
15	15	16	0.7463	0.545	60	20	0.9078
16	16	17	1.289	1.721	60	20	0.9064
17	17	18	0.732	0.574	90	40	0.9043
18	2	19	0.164	0.156	90	40	0.9037
19	19	20	1.5042	1.355	90	40	0.9965
20	20	21	0.4095	0.478	90	40	0.9929
21	21	22	0.7089	0.937	90	40	0.9922
22	3	23	0.4512	0.308	90	50	0.9916
23	23	24	0.898	0.709	420	200	0.9793
24	24	25	0.896	0.701	420	200	0.9726
25	6	26	0.203	0.103	60	25	0.9693
26	26	27	0.2842	0.144	60	25	0.9475
27	27	28	1.059	0.933	60	20	0.945
28	28	29	0.8042	0.700	120	70	0.9335
29	29	30	0.5075	0.258	200	600	0.9253
30	30	31	0.9744	0.965	150	70	0.9217
31	31	32	0.3105	0.361	210	100	0.9176
32	32	33	0.341	0.530	60	40	0.9167

Losses: 210.9983 kW
TABLE 2A

3rd Harmonic, load = 1% of total load, voltage magnitude: 0.1pu

Line number	Sending Bus	Receiving Bus	Resistance Ω	Reactance Ω	Real Power KW	Reactive Power KVAR	Voltage Solution from BPN in pu (conventional)	Voltage Solution in pu (conventional)	Percentage Accuracy
1	1	2	0.0922	0.141	1	0.6	0.1000	0.1000	100
2	2	3	0.493	0.7533	0.9	0.4	0.0995	0.0975	99.98
3	3	4	0.366	0.5592	1.2	0.8	0.0972	0.0975	99.97
4	4	5	0.3811	0.5823	0.6	0.3	0.0960	0.0958	99.98
5	5	6	0.819	2.121	0.6	0.2	0.0947	0.0950	99.97
6	6	7	0.1872	1.8564	2	1	0.0911	0.0914	99.97
7	7	8	1.7114	3.7053	2	1	0.0901	0.0901	100
8	8	9	1.03	2.22	0.6	0.2	0.0877	0.0874	99.97
9	9	10	1.044	2.22	0.6	0.2	0.0866	0.0870	99.96
10	10	11	0.1966	0.195	0.45	0.3	0.0856	0.0850	99.94
11	11	12	0.3744	0.3714	0.6	0.35	0.0855	0.0849	99.94
12	12	13	1.468	3.465	0.6	0.35	0.0852	0.0852	100
13	13	14	0.5416	2.1387	1.2	0.8	0.0841	0.0837	99.96
14	14	15	0.591	1.578	0.6	0.1	0.0836	0.0832	99.96
15	15	16	0.7463	1.635	0.6	0.2	0.0834	0.0830	99.96
16	16	17	1.289	5.163	0.6	0.2	0.0831	0.0835	99.96
17	17	18	0.732	1.722	0.9	0.4	0.0827	0.0837	99.97
18	2	19	0.164	0.4695	0.9	0.4	0.0826	0.0822	99.96
19	19	20	1.5042	4.0662	0.9	0.4	0.0994	0.0994	100
20	20	21	0.4095	1.4352	0.9	0.4	0.0989	0.0994	99.95
21	21	22	0.7089	2.8119	0.9	0.4	0.0988	0.0972	99.84
22	3	23	0.4512	0.9249	0.9	0.5	0.0986	0.0976	99.9
23	23	24	0.898	2.1273	4.2	2	0.0967	0.0980	99.87
24	24	25	0.896	2.1033	4.2	2	0.0956	0.0956	100
25	6	26	0.203	0.3102	0.6	0.25	0.0951	0.0954	99.97
26	26	27	0.2842	0.4341	0.6	0.25	0.0907	0.0927	99.8
27	27	28	1.059	2.8011	0.6	0.2	0.0902	0.0912	99.9
28	28	29	0.8042	2.1018	1.2	0.7	0.0877	0.0707	98.3
29	29	30	0.5075	0.7755	2	6	0.0859	0.0879	99.8
30	30	31	0.9744	2.889	1.5	0.7	0.0852	0.0832	99.8
31	31	32	0.3105	1.0857	2.1	1	0.0844	0.0854	99.9
32	32	33	0.341	1.5906	0.6	0.4	0.0842	0.0812	99.7
Total Loss	2.3947KW	Loss from BPN	2.52KW	88.47%					
TABLE 2B

5th Harmonic, load = 0.5% of total load, voltage magnitude: 0.075pu

Line number	Sending Bus	Receiving Bus	Resistance Ω	Reactance Ω	Real Power KW	Reactive Power KVAr	Voltage Solution in pu (conventional)	Voltage Solution from BPN in pu	Percentage Accuracy
1	1	2	0.0922	0.235	0.5	0.3	0.0750	0.0750	100
2	2	3	0.493	1.2555	0.45	0.2	0.0745	0.0723	99.78
3	3	4	0.366	0.932	0.6	0.4	0.0723	0.0743	99.8
4	4	5	0.3811	0.9705	0.3	0.15	0.0711	0.0722	99.89
5	5	6	0.819	3.555	0.3	0.1	0.0698	0.0596	98.98
6	6	7	0.1872	3.094	1	0.5	0.0658	0.0648	99.9
7	7	8	1.7114	6.1755	1	0.5	0.0646	0.0743	99.03
8	8	9	1.03	3.7	0.3	0.1	0.0621	0.0635	99.86
9	9	10	1.044	3.7	0.3	0.1	0.0609	0.0629	99.8
10	10	11	0.1966	0.325	0.225	0.15	0.0598	0.0548	99.5
11	11	12	0.3744	0.619	0.3	0.175	0.0597	0.0596	99.9
12	12	13	1.468	5.775	0.3	0.175	0.0595	0.0595	100
13	13	14	0.5416	3.5645	0.6	0.4	0.0583	0.0575	99.92
14	14	15	0.591	2.63	0.3	0.05	0.0577	0.0583	99.94
15	15	16	0.7463	2.725	0.3	0.1	0.0574	0.0563	99.89
16	16	17	1.289	6.605	0.3	0.1	0.0572	0.0532	99.6
17	17	18	0.732	2.87	0.45	0.2	0.0567	0.0565	99.98
18	18	19	0.164	0.7825	0.45	0.2	0.0565	0.0546	99.81
19	19	20	1.5042	6.777	0.45	0.2	0.0745	0.0775	99.7
20	20	21	0.4095	2.392	0.45	0.2	0.0739	0.0735	99.96
21	21	22	0.7088	4.6865	0.45	0.2	0.0738	0.0733	99.95
22	22	23	0.4512	1.5415	0.45	0.25	0.0737	0.0735	99.98
23	23	24	0.898	3.5455	2.1	1	0.0718	0.0735	99.83
24	24	25	0.896	3.5055	2.1	1	0.0708	0.0608	99
25	25	26	0.203	0.517	0.3	0.125	0.0703	0.0623	99.2
26	26	27	0.2842	0.7235	0.3	0.125	0.0654	0.0654	100
27	27	28	1.059	4.6685	0.3	0.1	0.0649	0.0609	99.8
28	28	29	0.8042	3.503	0.6	0.35	0.0621	0.0631	99.9
29	29	30	0.5075	1.2925	1	3	0.0601	0.0631	99.7
30	30	31	0.9744	4.815	0.75	0.35	0.0593	0.0583	99.9
31	31	32	0.3105	1.8095	1.05	0.5	0.0585	0.0485	99
32	32	33	0.341	2.651	0.3	0.2	0.0582	0.0602	99.8

Total Loss: 1.189KW
Loss from BPN: 1.03KW

Percentage Accuracy: 84.1

TABLE 2C

7th Harmonic, load = 0.25% of total load, voltage magnitude: 0.0.05pu

Line number	Sending Bus	Receiving Bus	Resistance Ω	Reactance Ω	Real Power KW	Reactive Power KVAR	Voltage Solution from BPN in pu (conventional)	Percentage Accuracy
1	1	2	0.0922	0.329	0.25	0.15	0.0500	99.9
2	2	3	0.493	1.7577	0.225	0.1	0.0494	99.89
3	3	4	0.366	1.3048	0.3	0.2	0.0467	99.89
4	4	5	0.3811	1.3587	0.15	0.075	0.0450	100
5	5	6	0.819	4.949	0.15	0.05	0.0433	99.89
6	6	7	0.1872	4.3316	0.5	0.25	0.0376	99.9
7	7	8	1.7114	8.6457	0.5	0.25	0.0356	99.9
8	8	9	1.03	5.18	0.15	0.05	0.0320	99.97
9	9	10	1.044	5.18	0.15	0.05	0.0302	99.89
10	10	11	0.1966	0.455	0.1125	0.075	0.0286	99.9
11	11	12	0.3744	0.8666	0.15	0.0875	0.0285	99.8
12	12	13	1.468	8.085	0.15	0.0875	0.0282	99.8
13	13	14	0.5416	4.9903	0.3	0.2	0.0263	99.87
14	14	15	0.591	3.682	0.15	0.025	0.0254	99.9
15	15	16	0.7463	3.815	0.15	0.05	0.0249	99.89
16	16	17	1.289	12.047	0.15	0.05	0.0245	99.9
17	17	18	0.732	4.018	0.225	0.1	0.0236	100
18	18	19	0.164	1.0955	0.225	0.1	0.0234	99.96
19	19	20	1.5042	9.4878	0.225	0.1	0.0494	99.9
20	20	21	0.4095	3.3488	0.225	0.1	0.0488	99.8
21	21	22	0.7089	6.5611	0.225	0.1	0.0487	99.9
22	22	23	0.4512	2.1581	0.225	0.125	0.0486	99.88
23	23	24	0.898	4.9637	1.05	0.5	0.0461	99.9
24	24	25	0.896	4.9077	1.05	0.5	0.0451	99.91
25	25	26	0.203	0.7238	0.15	0.0625	0.0445	99
26	26	27	0.2842	1.0129	0.15	0.0625	0.0371	99.94
27	27	28	1.059	6.5359	0.15	0.05	0.0365	99.97
28	28	29	0.8042	4.9042	0.3	0.175	0.0325	99.96
29	29	30	0.5075	1.8095	0.5	1.5	0.0297	99.98
30	30	31	0.9744	6.741	0.375	0.175	0.0287	99.89
31	31	32	0.3105	2.5333	0.525	0.25	0.0273	99.97
32	32	33	0.341	3.7114	0.15	0.1	0.0270	99.88

System Parameters	Load	Voltage Solution from BPN in pu	Percentage Accuracy
Total Loss	0.9358KW	Loss from BPN 0.84KW	90.42
تطبيق أساليب عشب العصب الصناعي على سريان الامال في الأنظمة المحورية في ظل توافقات غير مرغوب فيها

أرونجيري، سوريش، فنكيتش، راميش كومار، مستجاب أحمد خان

*كلية ينبع الصناعية، المملكة العربية السعودية
* جامعة باراث، الهند
* جامعة ريسون، كندا

المختصر:

تتطلب الأنظمة المحورية توزيع الطاقة طرق خاصة لسريان الامال وكي يحل مساعيات سريان القوي. نزيدة استعمال الأجهزة الإلكترونية وتأثير التشيح المغناطيسي آدى إلى ظهور توافقات غير مرغوب فيها في الأنظمة التوزيع المحورية.

تقدم هذه المقالة البحثية نظام متعدد الطبقات لتقنية الأتمام مع وجود برنامج لسريان الاختفاء في الاتجاه المعاكس وذلك لحساب الجهد وفقد القوة لأكثر من مركبة توافقة غير مرغوب فيها.

تم اختبار الطريقة المقترحة على 33 مسار للتوزيع المحوري وتم توضيح الطبقات لكل تردد من التوافقات غير المرغوب فيها. وقد اثبتت هذه الاختبارات للطريقة المقترحة جدوي هذه الطريقة لتقييم سريان الامال في الأنظمة المحورية في وجود توافقات غير مرغوب فيها.