1. INTRODUCTION

The emphasis in the studies of dynamics of hydrated proteins has been on two processes, namely, the structural α-relaxation and the secondary β-relaxation of hydration water, analogous to those of glass-formers. Their relaxation times $\tau_{\alpha}(T)$ and $\tau_{\beta}(T)$ were determined by dielectric relaxation, nuclear magnetic resonance, and neutron scattering. The phenomenon that attracted most interest is the protein dynamical transition (PDT), first observed in M"ossbauer spectroscopy and in neutron scattering by a change in temperature dependence of the mean-squared displacements (MSD) at temperature T_{β} which depends on the experimental timescale. The PDT is believed to be essential for biological activity of the protein. If not masked by the methyl group contribution, another change in T-dependence of the MSD occurs at T_g below T_{β} independent of the experimental timescale, analogous to that found by neutron scattering in glass-formers of different kinds.

The crossover of the MSD at T_g was explained in terms of the caged molecular dynamics and the associated nearly constant loss changing intensity at T_g as proffered by the coupling model. The PDT at T_d was explained by the β-relaxation of hydration water of the Johari-Goldstein (JG) kind entering the experimental time window. It is not due to the α-relaxation as proposed in ref 15, simply because its relaxation time $\tau_{\alpha}(T)$ at $T = T_d$ is orders of magnitude too long for it to be involved. Advances were made in characterizing the α-relaxation and the hydration water β-relaxation and understanding their roles in the changes in MSD observed at T_g and at T_d of the PDT. Notwithstanding, the question that remains is whether there are still some features of the dynamics not yet been explored, and if found, the new features may deepen the current level of knowledge of the dynamic processes in hydrated proteins. Our exploration is motivated by the new findings in recent experimental studies and theoretical interpretations.

Received: September 22, 2020
Accepted: December 8, 2020
Published: December 23, 2020
of the dynamics of highly asymmetric mixtures (HAM) of two glass-formers A and B with glass transition temperature T_g of A much higher than T_g of B and particularly at low concentration of the fast component B. The dynamics of HAM are composed of three processes, α_1, α_2, and JG β. The α_1 and α_2 are cooperative relaxations that give rise to glass transition at temperatures $T_g^{\alpha_1}$ and $T_g^{\alpha_2}$, respectively, and can be observed by calorimetry. The slower α_1 is dominated by the slower component A with participation of the component B, and its relaxation times $\tau_{\alpha_1}(T)$ has Vogel–Fulcher–Tammann (VFT) temperature dependence, leading to the higher $T_g^{\alpha_1}$. The α_2 is contributed by the component B in the presence of the slower A component with relaxation times $\tau_{\alpha_2}(T)$ shorter than $\tau_{\alpha_1}(T)$. At temperatures above $T_g^{\alpha_1}$, $\tau_{\alpha_2}(T)$ also has a VFT dependence. However, at temperatures below $T_g^{\alpha_1}$, $\tau_{\alpha_2}(T)$ changes to assume an Arrhenius dependence because the B molecules are confined by the immobile A molecules. The confinement by the frozen matrix of component A causes localization of the α_2-relaxation at temperatures below $T_g^{\alpha_2}$ to make it in some way like a secondary relaxation. Despite $\tau_{\alpha_2}(T)$ being Arrhenius below $T_g^{\alpha_1}$, the α_2-relaxation will subsequently become vitrified at $T_g^{\alpha_2}$. Both $T_g^{\alpha_2}$ and $T_g^{\alpha_1}$ increase monotonically with a decrease in the concentration of the faster component c_B, although a different interpretation was also reported.34–37 At lower c_B, the difference ($T_g^{\alpha_1} - T_g^{\alpha_2}$) is larger and $\tau_{\alpha_2}(T)$ becomes more separated from $\tau_{\alpha_1}(T)$, making the former easier to determine.36,37 The β-relaxation involves the more local motions of the B molecules coupled to the A molecules at temperatures below $T_g^{\beta_1}$ and $T_g^{\beta_2}$. This β-relaxation has properties indicating that it is strongly connected to each of the two α-relaxations and thus it is of the JG kind.37,38 For example, its relaxation time $\tau_{\beta}(T)$ changes temperature dependence from Arrhenius below $T_g^{\beta_1}$ to a stronger Arrhenius dependence above $T_g^{\beta_1}$ and exhibits another change on crossing $T_g^{\beta_2}$ to assume a super-Arrhenius T-dependence above $T_g^{\beta_2}$. This double change in temperature dependence is easier to observe in HAM at lower concentration of the fast component c_B.34–37 An example of HAM showing all the properties described above is 50% methyl-tetrahydrofuran (MTHF) in polystyrene with a high molecular weight of 60,000 g/mol.30 The relaxation times $\tau_{\alpha_1}(T)$, $\tau_{\alpha_2}(T)$, and $\tau_{\beta}(T)$ and their properties of this example are summarized in Figure S1 in the Supporting Information.

Since the T_g of dry proteins is much higher than the T_g of water, it is reasonable to consider hydrated proteins as HAM and to expect similar dynamics. This hypothesis is supported by a close correlation between solvent and protein dynamics based on experimental and simulation evidence,38–41 like the coupling between components A and B found in the α_1-, α_2-, and JG β-relaxations in HAM,39–47 and also in peptide solutions.42,43

In this paper, we verify by experiments the anticipated analogy of the dynamics in hydrated proteins with those in HAM. The α_1 process is predetermined by the protein but facilitated by the coupling with the hydration water. Its $\tau_{\alpha_1}(T)$ has Vogel–Fulcher–Tammann (VFT) dependence above $T_g^{\alpha_1}$. The α_2 process is contributed mainly by the hydrated water coupled to protein. The T-dependence of its $\tau_{\alpha_2}(T)$ changes from VFT dependence at temperatures above $T_g^{\alpha_2}$ to Arrhenius below $T_g^{\alpha_1}$, which continues with temperature falling until the α_2-relaxation is vitrified at $T_g^{\alpha_2}$. The JG β process originates from the hydration water, and for this reason, it is also called the ν-relaxation.2,4,5 Below $T_g^{\alpha_2}$, its $\tau_{\beta}(T)$ or equivalent $\tau_{\beta}(T)$ has an Arrhenius dependence in response to confinement by the frozen α_1 and α_2 processes combined. By increasing temperature to cross $T_g^{\alpha_2}$, $\tau_{\beta}(T)$ assumes a stronger Arrhenius dependence due to devitrification of the α_2 process. A further increase in temperature and after crossing $T_g^{\alpha_1}$, the α_1 process is also devitrified. Consequently, $\tau_{\beta}(T)$ has its temperature dependence changed to super-Arrhenius or VFT-like, in response to the equilibrium liquid state of the hydrated protein above $T_g^{\alpha_1}$. The VFT-like dependence of $\tau_{\beta}(T)$ continues with increasing temperature until $\tau_{\beta}(T)$ matches the timescale of either the Mößbauer or the neutron scattering spectrometer, giving rise to the PDT. Thus, if verified, the dynamics of hydrated proteins are richer than presently known and the additional properties of the α_1, α_2, and ν processes that we found enhance the current knowledge and impact theoretical interpretation.

2. RESULTS AND DISCUSSION

2.1. Neutron Scattering Measurements of Hydrated Myoglobin. As mentioned before, in HAM, the observation of the three processes, α_1, α_2, and JG β, their properties, and inter-relationship is best brought out at lower concentrations of the faster component because $\tau_{\alpha_1}(T)$, $\tau_{\alpha_2}(T)$, and $\tau_{\beta}(T)$ become more widely separated. Many neutron scattering and dielectric relaxation studies of hydrated proteins in the past were performed at higher hydration levels h, and this explains why together the three processes and their properties were not made known. Therefore, we made neutron scattering measurements of hydrated myoglobin at $h = 0.30$ and dielectric relaxation at slightly lower $h = 0.28$ in order to better resolve
first by the weaker relaxation strength of the α_2-relaxation and second by myoglobin being probed in H-MYO/D$_2$O instead of water, while the α_2-relaxation is predominately contributed by water. The secondary change in T-dependence of $(\chi''(T))$ is the PDT at $T_\text{D} \approx 250$–255 K and $T_\text{D} \approx 275$ K, respectively, for 1 and 13 μeV energy resolutions.

Differential scanning calorimetry (DSC) is a conventional method to detect glass transition and glass transition temperature. The technique was applied to hydrated biomolecules, and the results of the studies before 1994 were reviewed by Sartor et al.45 According to the review,44 the DSC measurements of myoglobin crystals and hydrated powders in 1986 by Doster et al.45 had an increase in heat capacity observed at \sim220 K and was attributed to glass–liquid transition of water. This temperature of \sim220 K is much higher than the onset temperature of the glass transition of 162–170 K for vitrified and freezable water in hydrated methemoglobin (MethHb) in the 1992 study by Sartor et al.46 The sharp glass transitions in myoglobin crystals and hydrated powders in calorimetry by Miyazaki et al.37 with T_g values at 188 and 216 K are in conflict with those by Doster et al.45 Although the DSC T_g of hydrated myoglobin powder (0.4 g/g) was reported in Figure 4 of the 2010 paper of Doster et al.44 to be \sim170 K. The 1994 paper by Sartor et al.44 not only addressed the discrepancy between the DSC T_g values but also resolved the discrepancy by their own DSC studies of hydrated lysozyme, hemoglobin, and myoglobin powders to show that their heat capacity slowly increases with increasing temperature, without showing an abrupt increase characteristic of glass–liquid transition. Their study further showed that annealing from \sim150 K up to the denaturation temperature has a substantial calorimetric effect, which may be confused with glass transition. The results led them to suggest that the DSC glass transition in hydrated hemoglobin, myoglobin, and lysozyme occurs over a broad temperature range that extends from \sim150 K up to the denaturation temperature, and no single glass transition temperature from DSC can be assigned to the three hydrated proteins.44 Bearing in mind the problem of DSC data revealed by Sartor et al., we nevertheless made our own DSC measurements on the same hydrated sample H-MYO in D$_2$O at $h = 0.30$ studied by neutron scattering. The DSC measurement was carried out by cooling the sample directly to \sim100 K and then heating back to 300 K at a rate of 5 K/min. The results during heating were recorded and presented in Figure S3 of the Supporting Information without any annealing. A small endothermic hump observed at \sim200 K in our sample seems to indicate $T_\text{g} \approx 204$ K, but it could result from the unfreezing of the fastest portion of the broad distribution of relaxation time of the structural dynamics in the hydrated proteins, as suggested by Sartor et al.45 Despite the uncertainty of DSC data, we still have a reliable determination of $T_\text{g} \approx 198$ K from neutron scattering. As we shall see, this T_g is supported by dielectric relaxation data to be presented next.

2.2. Dielectric Spectra of Hydrated Myoglobin

Comparison of the dielectric loss $\varepsilon''(\nu)$ spectra of hydrated myoglobin H-MYO at $h = 0.28$ over 11 decades of frequencies from 103 to 263 K are shown in Figure 2 together with the dielectric $\varepsilon'(\nu)$/log f of the real part $\varepsilon'(\nu)$ with respect to log f. The latter enables all three processes, α_1, α_2, and ν- or JG- β-relaxation, to be resolved in the high temperature range from 203 to 263 K. The source of the H-MYO sample in the dielectric study was the same as that in the neutron scattering study. Dielectric measurements were made on both the heating and cooling paths of the sample, and the same results were obtained. The possibility of the α_1 process might be a polarization process of Maxwell–Wagner type due to enhanced conductivity of the sample. An effective criterion is the comparison of the values of ε''' and ε'' at the frequency of the loss peak. In the case where $\varepsilon''' = \varepsilon''$, there is strong indication that the loss peak is of Maxwell–Wagner type. It was found otherwise, and therefore, the α_1 process is correlated with the segmental-like mobility of the hydrated protein. Further support comes from the fact that its timescale and temperature dependence to be shown in Figure 3 are consistent with the calorimetric glass transition at 204 K of the H-MYO hydrated at 0.30 (see Figure S3 in the Supporting Information). Regarding the rather high strength of the α_1 process, as has been already reported for many hydrated...
From Figure 3, the arrow indicates the temperature at which $\tau_\alpha(T) = 5$ ns (dotted horizontal line), which is five times the neutron experimental timescale $\tau_{\text{exp}} = 1$ ns. The latter is commonly used to compare with the temperature T_α at the onset of the rise of the MSD defining the PDT in Figure 1a.9,15,56 It can be seen from Figure 3 that T_α is about 250 K, in good agreement with a value of 250–255 K determined by the MSD in Figure 1, assuming that the change in T_α with the increase in h from 0.28 to 0.30 is not large and within the accuracy of determining h. The α2 was observed dielectrically before in hydrated lysozyme and myoglobin by others,1,3,6 but the various interpretations given are different from this paper.

In contrast to the other works, our dielectric data of hydrated myoglobin data at $h = 0.28$ are more complete in showing not only all three processes at the same time but also their individual and inter-related properties as well as the two glass transition temperatures T^α_{gs} and T^β_{gs}, and verifying the dielectric $\tau(T)$ determines the PDT temperature T_α determined by neutron scattering (see Figure 1a) by the criterion $\tau_\alpha(T)$ equal to five times the experimental timescale (see Figure 3).

Our conclusion that α2 is the structural relaxation of water component is furthermore supported by the 2H NMR study of H-MYO/D$_2$O ($h = 0.35$),57 which reported that 2H spin–lattice relaxation is exponential above ≈ 195 K but nonexponential below (see Figure S4 in the Supporting Information). This observation means that the D$_2$O subsystem becomes non-ergodic on the experimental timescale $T_{\text{g}}(195$ K) = 0.02 s upon cooling through this temperature. In Figure 3, we find $\tau_\alpha(195$ K) $\approx T_{\text{g}}(195 K)$, while α2 is faster and slower than α1 at higher and lower temperatures, respectively. These findings show that α2 is the ergodicity-restoring process of the D$_2$O subsystem and, hence, it can be identified with its structural relaxation.
K, as shown in Figure 5 for hydrated elastin at $h = 0.23$. Found by a dielectric study of hydrated elastin at $h = 0.23^{54}$ and to ps and still T_f^{d} has not been reached. By contrast, in hydrated globular proteins, the ν-relaxation is in the liquid state when $T_\nu(T_d)$ matches $5\tau_{\text{exp}}$ of either Mössbauer or neutron scattering spectroscopy, i.e., T_d is above T_f^{ul} and $T_\nu(T)$ has VFT dependence (see deuteron NMR data in Figure 3). On the other hand, in hydrated elastin, the T_d satisfying the rule $T_\nu(T_d) = 5\tau_{\text{exp}}$ is far below T_f^{ul} (see the broken line at 5 ns in the inset of Figure 5), and thus, the ν-relaxation is confined in the glassy matrix and $T_\nu(T)$ has Arrhenius T-dependence. This difference in the property of the ν-relaxation at temperature where $T_\nu(T) = 5\tau_{\text{exp}}$ between hydrated globular proteins and hydrated elastin is important. It is the reason why the protein dynamic transition (PDT) was observed in hydrated globular protein but not in hydrated elastin.\(^{10}\) Since the dynamics of hydrated collagen are similar to those of hydrated elastin as shown by dielectric data in ref 10, we predict that the PDT cannot be observed by neutron scattering as well.

2.5. Dielectric and Neutron Scattering Data of Ribonuclease A. It is worthwhile to briefly mention the dielectric relaxation\(^{10}\) and neutron scattering data\(^{15,55}\) of the globular protein ribonuclease A (RNase A) at hydration level $h = 0.4$. Like hydrated lysozyme and myoglobin, the dynamics of RNase A were shown\(^{15}\) to have all the $\alpha 1$, $\alpha 2$, and ν processes, the nearly constant loss of caged molecules, and most of their properties. The protein dynamic transition was observed by neutron scattering, and it conforms to the rule $T_\nu(T_d) = 5\tau_{\text{exp}}$ verified in the other hydrated globular proteins. The dielectric spectra are shown in Figures S5 and S6 of the Supporting Information. Hence, the data of hydrated RNase throw another support of the generality of the dynamics of hydrated proteins proffered in this paper.

3. SUMMARY AND CONCLUSIONS

In summary, we have provided neutron scattering, dielectric relaxation, and deuteron NMR data in three hydrated globular proteins, myoglobin, BSA, and RNase, and the fibrous elastin to show the presence of three relaxations, $\alpha 1$, $\alpha 2$, and ν, with properties that are inter-related, analogous to the $\alpha 1$, $\alpha 2$, and JG β-relaxations in highly asymmetric mixtures of two molecular glass-formers. There are two glass transition temperatures T_f^{ul} and T_f^{al} corresponding, respectively, to vitrification of the $\alpha 1$ and $\alpha 2$ processes. The $\alpha 2$-relaxation responds to vitrification of $\alpha 1$-relaxation by changing the T-dependence of its relaxation time $\tau_{\alpha 2}(T)$ on crossing T_f^{al}. The ν-relaxation responds to the two vitrifications of $\alpha 1$- and ν-relaxations by changing the T-dependence of its relaxation time $\tau_{\nu}(T)$ on crossing T_f^{al} and T_f^{ul}. The ν-relaxation generates the protein dynamic transition (PDT) at T_d where $T_\nu(T_d)$ matches approximately five times the experimental instrument timescale τ_{exp} provided that $T_d > T_f^{\text{al}}$. The ν-relaxation is in the liquid state and $T_\nu(T)$ has VFT-like temperature dependence. The ν-relaxation of the hydrated globular proteins considered in this paper satisfies the condition $T_d > T_f^{\text{al}}$ and the PDT is generated and detected. On the other hand, if $T_d < T_f^{\text{al}}$, the ν-relaxation is confined within the glassy state and $T_\nu(T)$ has Arrhenius temperature dependence. This contrasting condition $T_d < T_f^{\text{al}}$ of the ν-relaxation prevails in hydrated elastin, which renders the ν-relaxation ineffective in generating the PDT, and explains why PDT was not found by neutron scattering before in the case of hydrated elastin. Thus, the dynamics of hydrated proteins are exactly the same as those of highly asymmetric mixtures of glass-formers and are richer and diversified than...
presently known. The advances made by this study should have impact on future research efforts in the dynamics of hydrated proteins and applications.

4. MATERIALS AND METHODS

4.1. Sample Preparation. Myoglobin (MYO) from equine skeletal muscle was purchased from Sigma-Aldrich (Shanghai, China). In order to exclude the effect of ions, the protein was dialyzed. It was then dissolved in D$_2$O to allow full deuterium exchange of all exchangeable hydrogen atoms and then lyophilized for 12 h to obtain the dry sample. The lyophilized MYO is then suspended on top of liquid D$_2$O in a desiccator to absorb D$_2$O till the desired hydration level $(h, \text{gram D}_2\text{O}/\text{gram protein}).$ The deuterium oxidized (D$_2$O, 99.9 atom % D) was purchased from Sigma-Aldrich (Shanghai, China). The hydration levels of protein samples were controlled by measuring the sample weights before and after water adsorption. The h of the dry sample is 0.02, while it is 0.3 for the hydrated one, which corresponds to a case that roughly a single layer of water molecules covers the protein surface. The accuracy of h is controlled within 10% error, e.g., $h = 0.3 \pm 0.03$ gram water/gram protein. All samples were sealed tightly in the aluminum cans in a nitrogen atmosphere for subsequent neutron scattering experiments.

5. EXPERIMENTAL SECTION

5.1. Elastic Incoherent Neutron Scattering. The elastic scattering intensity $S(q,\Delta t)$ is normalized to the lowest temperature (\sim10 K) and is approximately the value of the intermediate scattering function when decaying to the instrument resolution time (Δt). All the $S(q,\Delta t)$ data were obtained in the temperature range from \sim10 to 300 K during heating with a heating rate of 1.0 K/min by using the HFBS at NIST and DNA at J-PARC. The energy resolutions of HFBS and DNA are 1 meV and 13 meV, corresponding to the resolution times of \sim1 ns and \sim80 ps, respectively. The results from instruments with the two different resolutions were summed over the same q from 0.45 to 1.75 Å$^{-1}$. The mean-squared atomic displacements $(\langle x^2(t) \rangle)$ were obtained with the Gaussian approximation of $S(q,\Delta t) = \exp(-\frac{1}{2}q^2\langle x^2(t) \rangle)$ in the Gaussian approximation range from 0.45 to 0.9 Å$^{-1}$.

5.2. Broadband Dielectric Spectroscopy. Dielectric relaxation data of hydrated myoglobin H-MYO with $h = 0.28$ gram water/gram protein were obtained in the frequency range from 10 mHz to 3 GHz, by the combination of dielectric response analysis (Novocontrol Dielectric Analyzer) and coaxial reflectometry (Agilent Network Analyzer 8753ES). Myoglobin powder was hydrated, compacted, and transferred in a sealed capacitor cell by using the same procedures used for hydrated biomolecules in refs 6, 10. Temperature was varied over a wide range, spanning from the deep glassy state to ambient temperature, following isothermal steps after a suitable equilibration time. Real and imaginary parts of the spectra have been simultaneously fitted with a superposition of Havriliak–Negami and Cole–Cole relaxation functions. The derivative of the real part was used to resolve the $\alpha 1$ and $\alpha 2$ processes by suppressing the conductivity contribution, as done before in ref 6. The characteristic relaxation times reported in Figure 2 correspond to the maximum of the loss function of each process, i.e., the most probable time in the distribution of relaxation times at each temperature for each of the three relaxation process $\alpha 1$, $\alpha 2$, and ν.

■ ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.0c04655.

Example of the dynamics observed in a highly asymmetric mixtures given and illustrated by the dielectric, calorimetry, light scattering, and neutron scattering data of MTHF in mixture with PS; neutron elastic intensity $S(q,\Delta t)$ of dry H-MYO and H-MYO in D$_2$O at $h = 0.30$ as well as calorimetry measurement; results from 3H spin–lattice relaxation studies of hydrated myoglobin; and dielectric and neutron scattering data of hydrated RNase (PDF).

■ AUTHOR INFORMATION

Corresponding Authors

Simone Capaccioli – Dipartimento di Fisica, Università di Pisa, I-56127 Pisa, Italy; CNR-IPCF, I-56127 Pisa, Italy; Email: simone.capaccioli@unipi.it
Kia L. Ngai – CNR-IPCF, I-56127 Pisa, Italy; orcid.org/0000-0003-0599-4094; Email: kiai@acsiem.org

Authors

Lirong Zheng – School of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
Apostolos Kyritsis – Department of Physics, National Technical University of Athens, 157 80 Athens, Greece; orcid.org/0000-0001-5893-7849
Alessandro Paciaroni – Dipartimento di Fisica, Università degli Studi di Perugia, 06123 Perugia, Italy
Michael Vogel – Institute of Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany; orcid.org/0000-0003-2706-3522

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.0c04655

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

The L.H. group acknowledges NSFC grants 11974239 and 31630002 and the Innovation Program of Shanghai Municipal Education Commission. L.Z. acknowledges the Instrumental Analysis Center and the student innovation center at Shanghai Jiao Tong University. The authors declare no competing financial interest.

■ REFERENCES

(1) Khodadadi, S.; Pawlus, S.; Roh, J. H.; Garcia Sakai, V.; Mamonov, E.; Sokolov, A. P. The origin of the dynamic transition in proteins. J. Chem. Phys. 2008, 128, 195106.
(2) Shinbashi, N.; Yamamoto, W.; Yoyokawa, A.; Yoshinari, T.; Yagihara, S.; Kita, R.; Ngai, K. L.; Capaccioli, S. Glass Transitions in Aqueous Solutions of Protein (Bovine Serum Albumin). J. Phys. Chem. B 2009, 113, 14448–14456.
(3) Jansson, H.; Swenson, J. The protein glass transition as measured by dielectric spectroscopy and differential scanning calorimetry. Biochim. Biophys. Acta, Proteins Proteomics 2010, 1804, 20–26.
problems in protein dynamics.

Quasielastic neutron scattering studies on couplings of protein and folded and intrinsically disordered proteins.

Glass transition and dynamics relaxation.

Studies on the Temperature-Dependent Water and Protein Dynamics Susceptibility of a Globular Protein.

Water and impact on the dynamics of aqueous mixtures and hydrated biomolecules.

Vogel, M. Origins of Apparent Fragile-to-Strong Transitions of Protein Hydration Waters.

The dynamical transition of proteins, concepts and misconceptions.

Wood, K.; Fröhlich, A.; Paciaroni, A.; Moulin, M.; Härtelein, M.; Zaccai, G.; Tobias, D. J.; Weik, M. Coincidence of Dynamical Transitions in a Soluble Protein and Its Hydration Water: Direct Measurements by Neutron Scattering and MD Simulations.

W. The protein–solvent glass transition.

W. The two-step scenario of the protein dynamical transition.

Nai, K. L.; Capaccioli, S.; Paciaroni, A. Change of caged dynamics at Tg in hydrated proteins: trend of mean squared displacements after correcting for the methyl-group rotation contribution.

Khoصادadi, S.; Sokolov, A. P. Protein dynamics: from rattling in subzero temperatures.

Intrinsic Confinement Effects in a Binary Glass-Forming System.

Evidence of Dynamic Heterogeneities in Glass-Forming Materials.

Dynamic and thermodynamic properties of glass-forming substances.

An extended coupling model description of the anomalous dynamics in binary glass forming mixtures.

Unified explanation of the anomalous dynamics in binary glass-forming mixtures and polymer blends with large difference in glass transition temperatures of the two components: A critical review.

Controling the Protein Dynamical Transition with Sugar-Based Bioproductant Matrices: A Neutron Scattering Study.

Evidence of Coupling between the Motions of Water and Peptides.

Dynamic and thermodynamic properties of glass-forming solutions.

A dielectric and nuclear magnetic resonance spectroscopy study.

Change of caged dynamics: unified description.

Dynamic and thermodynamic properties of glass-forming systems.

The two-step scenario of the protein dynamical transition in glass-forming mixtures.

Contrasting two different interpretations of the dynamics in binary glass forming mixtures.

Molecular dynamic in binary mixtures and polymer blends with large difference in glass transition temperatures of the two components: A critical review.

Nai, K. L.; Paciaroni, A. Controlling the Protein Dynamical Transition with Sugar-Based Bioproductant Matrices: A Neutron Scattering Study.

Evidence of Coupling between the Motions of Water and Peptides.

A protein dynamics force constant measured by neutron scattering.

The microscopic origins of relaxation processes in aqueous peptide solutions undergoing a glass transition.

The Kinetic Unfreezing of Molecular Motions in Hydrated Lysozyme, Hemoglobin, and Myoglobin.

Thermal properties of water in myoglobin crystals and solutions at subzero temperatures.
(46) Sartor, G.; Hallbrucker, A.; Hofer, K.; Mayer, E. Calorimetric glass-liquid transition and crystallization behavior of a vitreous, but freezable, water fraction in hydrated methemoglobin. *J. Phys. Chem.* 1992, 96, 5133−5138.

(47) Miyazaki, Y.; Matsuo, T.; Suga, H. Glass transition of myoglobin crystal. *Chem. Phys. Lett.* 1993, 213, 303−308.

(48) Ngai, K. L.; Paluch, M. Inference of the Evolution from Caged Dynamics to Cooperative Relaxation in Glass-Formers from Dielectric Relaxation Data. *J. Phys. Chem. B* 2003, 107, 6865.

(49) Capaccioli, S.; Paluch, M.; Prevosto, D.; Wang, L.-M.; Ngai, K. L. Many-body nature of relaxation processes in glass-forming systems. *J. Phys. Chem. Lett.* 2012, 3, 735−743.

(50) Frauenfelder, H.; Chen, G.; Berendzen, J.; Fenimore, P. W.; Jansson, H.; McMahon, B. H.; Stroe, I. R.; Swenson, J.; Young, R. D. A unified model of protein dynamics. *Proc. Natl. Acad. Sci.* 2009, 106, 5129−5134.

(51) Panagopoulou, A. Dynamics of hydrated proteins. Ph D thesis, Dept. of Physics, National Technical University of Athens.

(52) Samouillan, V.; André, C.; Dandurand, J.; Lacabanne, C. Effect of Water on the Molecular Mobility of Elastin. *Biomacromolecules* 2004, 5, 958−964.

(53) Panagopoulou, A.; Kyritsis, A.; Vodina, M.; Pissis, P. Dynamics of uncrystallized water and protein in hydrated elastin studied by thermal and dielectric techniques. *Biochim. Biophys. Acta, Proteins Proteomics* 2013, 1834, 977−988.

(54) Samouillan, V.; Tintar, D.; Lacabanne, C. Hydrated elastin: Dynamics of water and protein followed by dielectric spectroscopies. *Chem. Phys.* 2011, 385, 19−26.

(55) Wood, K.; Caronna, C.; Fouquet, P.; Haussler, W.; Natali, F.; Olliver, J.; Orecchini, A.; Plazanet, M.; Zaccai, G. A benchmark for protein dynamics: Ribonuclease A measured by neutron scattering in a large wavevector-energy transfer range. *Chem. Phys.* 2008, 345, 305−314.

(56) Fenimore, P. W.; Frauenfelder, H.; McMahon, B. H.; Parak, F. G. Slaving: Solvent fluctuations dominate protein dynamics and functions. *Proc. Natl. Acad. Sci.* 2002, 99, 16047−16051.

(57) Tan, P.; Liang, Y.; Xu, Q.; Mamontov, E.; Li, J.; Xing, X.; Hong, L. Gradual cross-over from sub-diffusion to normal-diffusion: a many-body effect in protein surface water. *Phys. Rev. Lett.* 2018, 120, 248101.

(58) Liu, Z.; Huang, J.; Tyagi, M.; O’Neill, H.; Zhang, Q.; Mamontov, E.; Jain, N.; Wang, Y.; Zhang, J.; Smith, J. C.; Hong, L. Dynamical Transition of Collective Motions in Dry Proteins. *Phys. Rev. Lett.* 2017, 119, No. 048101.

(59) Meyer, A.; Dimeo, R. M.; Gehring, P. M.; Neumann, D. A. The high-flux backscattering spectrometer at the NIST Center for Neutron Research. *Rev. Sci. Instrum.* 2003, 74, 2759−2777.

(60) Fujiwara, S.; Chatake, T.; Matsuo, T.; Kono, F.; Tominaga, T.; Shibata, K.; Sato-Tomita, A.; Shibayama, N. Ligation-Dependent Picosecond Dynamics in Human Hemoglobin As Revealed by Quasielastic Neutron Scattering. *J. Phys. Chem. B* 2017, 121, 8069−8077.

(61) Roh, J. H.; Curtis, J. E.; Azzam, S.; Novikov, V. N.; Peral, I.; Chowdhuri, Z.; Gregory, R. B.; Sokolov, A. P. Influence of Hydration on the Dynamics of Lysozyme. *Biophys. J.* 2006, 91, 2573−2588.