Li, Y. and Swertz, M. and Vera, G. and Fu, J.Y. and Breitling, R. and Jansen, R. (2009) *DesignGG: an R-package and web tool for the optimal design of genetical genomics experiments*. BMC Bioinformatics, 10 (188).

http://eprints.gla.ac.uk/25647/

Deposited on: 21 May 2010
Software

designGG: an R-package and web tool for the optimal design of genetical genomics experiments
Yang Li*1, Morris A Swertz1,2, Gonzalo Vera1, Jingyuan Fu2, Rainer Breitling1 and Ritsert C Jansen1,2

Address: 1Groningen Bioinformatics Center, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands and 2Department of Genetics, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
Email: Yang Li* - yang.li@rug.nl; Morris A Swertz - m.a.swertz@rug.nl; Gonzalo Vera - gonzalo.veera.rodriguez@gmail.com; Jingyuan Fu - j.fu@rug.nl; Rainer Breitling - r.breitling@rug.nl; Ritsert C Jansen - r.c.jansen@rug.nl
* Corresponding author

Abstract

Background: High-dimensional biomolecular profiling of genetically different individuals in one or more environmental conditions is an increasingly popular strategy for exploring the functioning of complex biological systems. The optimal design of such genetical genomics experiments in a cost-efficient and effective way is not trivial.

Results: This paper presents designGG, an R package for designing optimal genetical genomics experiments. A web implementation for designGG is available at http://gbic.biol.rug.nl/designGG. All software, including source code and documentation, is freely available.

Conclusion: DesignGG allows users to intelligently select and allocate individuals to experimental units and conditions such as drug treatment. The user can maximize the power and resolution of detecting genetic, environmental and interaction effects in a genome-wide or local mode by giving more weight to genome regions of special interest, such as previously detected phenotypic quantitative trait loci. This will help to achieve high power and more accurate estimates of the effects of interesting factors, and thus yield a more reliable biological interpretation of data. DesignGG is applicable to linkage analysis of experimental crosses, e.g. recombinant inbred lines, as well as to association analysis of natural populations.

Background

Genetical genomics [1] has become a popular strategy for studying complex biological systems using a combination of classical genetics, biomolecular profiling and bioinformatics [2-5]. By measuring molecular variation, using transcriptomics, proteomics, metabolomics and related emerging technologies, in genetically different individuals, genetical genomics has the potential to identify the functional consequences of natural and induced genetic variation. Recently, genetical genomics has been generalized to achieve a comprehensive understanding of the dynamics of molecular networks by combining environmental and genetic perturbation [6,7]. This type of large scale "omics" study leads to a better understanding of why individuals of the same species respond differently to drugs, pathogens, and other environmental factors.
Optimize your Genetical Genomics Experiment

1. Define analysis platform

- Single channel
- Dual channel

2. Define individual genotypes

Upload tab delimited file, e.g.

3. Define experimental factors

Factors	Levels
TempCelsius	15 24 29
Tissue	Brain Liver Kidney
Factor 3	1 2 3

4. Set constraints

- Total number of slides: 80
- Number of strains per level: 4

Figure 1
Screenshot of the designGG web interface.
The objective of designGG is to find an optimal allocation of genetically different samples to different conditions and experimental units (arrays) favoring a precise estimate of interesting parameters, such as main genetic effects and interaction effects between genotype and drug treatment. A simple case with one environmental factor can be expressed as \(y = \mu + G \times E + \varepsilon \), where \(y \) is the measurement vector, \(\varepsilon \) is the error term, and \(G \times E \) denotes main effect and interaction effects of genotype and environment. In matrix notation, a model with one or more genotype factors (quantitative trait loci; QTL) and one or more environmental factors can be written as:

\[
y = X\beta + \epsilon,
\]

where \(X \) is the design matrix of samples by parameters and \(\beta \) is the effect of genotype and environmental factors. The least squares estimate of \(\beta \) is \(b = (X'X)^{-1}X'Y \) with \(\text{var}(b) = \sigma^2(X'X)^{-1} \). The optimal experiment design is defined as the one that minimizes the double sum of the variances of \(b \) firstly summed over all parameters and then summed over all genotypic markers. We use an optimization algorithm (simulated annealing [18]) to search the experimental design space of all possible allocations to produce an optimal design matrix \(X \). During the optimization, the algorithm utilizes the available marker information from the individuals to optimize the allocation of individuals to microarrays and conditions.

In the optimization, the experimenter can, of course, give more weight to parameters of higher interest, which will then be estimated with higher accuracy. Particularly, prior knowledge about expected effect sizes of interesting factors can be incorporated as weight parameters for the algorithm and the weight is inversely proportional to the expected effect size of the corresponding factors. In addition, it is also possible to specify the genome regions that are of major interest in a particular experiment, by specifying a region parameter. For example, if the relevant phenotype is known to map to certain genome regions, parameters for the markers in these regions can be given full weight in the optimization algorithm, whereas parameters for other markers can be given lesser or even zero weight. Thus, mapping resolution can improve and the power for finding QTLs in focal regions can be increased.

DesignGG is a package entirely written in the R language [19]. Every function of the designGG library is available as a stand-alone R tool and detailed help is available according to the standard format of R documentation.

Results

Web tool

Users can apply this method using a web interface (Figure 1) that we have generated using MOLGENIS [20,21]:

1. Choose the platform. Select the single- or dual-channel option for one-color or two-color gene expression microarrays (the dual-channel option is also used for any other technology profiling pairs of samples).
| Arguments | Description | Possible value(s) |
|--------------------|---|--|
| **bTwoColorArray** | The type of platform | T (TRUE) or F (FALSE) for the dual- or single-channel option, respectively. For example, F for one-color and T for two-color gene expression microarrays (the dual-channel option is also used for any other technology profiling pairs of samples) |
| **genotype** | Genotype information | A matrix of marker genotypes for each marker and each strain. The values can be numeric: "1" and "0" for two homozygous genotypes, respectively (optionally, "0.5" for heterozygous allele). They can also be characters: "A" "B" or "H" and "H" is for heterozygous allele; NA for missing data. The column names are strain names, such as "Strain 1", "Strain 2", etc. The row names are marker names, such as "C1M1", "C2M2", etc. |
| **nEnvFactors** | Number of environmental factors in the study | A numeric integer value between 1 and 3 which indicates the number of environmental factors to be studied. Experiments with more than three environmental factor are not recommended here since the power to estimate the high-order interactions is very limited for a realistic number of samples (several hundreds). |
| **nLevels** | Number of levels for each environmental factor | A numeric integer vector. For example, there are two different levels for two environmental factors under study, then we use nLevels <- c(2, 2) |
| **Level** | Level values for each environmental factor | A list which specifies the levels for each factor in the experiment. The element is a vector describing all levels of the environmental factor. In the given example, temperature levels are 16 and 24 and drug treatment levels are 5 and 10. The we use: Level <- list(c(16, 24), c(5, 10)) |
| **nSlides** | Total number of slides available for the experiment. | A numeric integer value |
| **nTuple** | Average number of strains to be assigned onto each condition | A numeric value which is larger than 1 |
| **region** | Genome region of biological interest | A numeric integer vector which indicates the markers of biological interest, for example those previously detected for phenotypic quantitative trait loci. The value is the marker index (i.e., the row number in the genotype data table), not the marker name. |
| **weight** | The weights for estimating genetic and environmental factors, and their interaction terms | A numeric vector which indicates the parameters of biological interest. Higher weights correspond to higher interest, and the optimization is adjusted in such a way as to result in a higher accuracy of the estimate for the parameters with higher weight. Prior knowledge about expected effect sizes of interesting factors can also be incorporated as weight parameters for the algorithm. The weight is inversely proportional to the expected effect size of the corresponding parameter, if the same relative accuracy is intended. When there is no environmental perturbation, weights is 1, as there is only one parameter of interest (genotype); When nEnvFactor = 1, weight = c(wQ, wF1, wQF1); When nEnvFactor = 2, weight = c(wQ, wF1, wF2, wQF1, wQF2, wQF1F2); When nEnvFactor = 3, weight = c(wQ, wF1, wF2, wF3, wQF1, wQF2, wQF1F2, wQF2F3, wQF1F2, wQF1F3, wQF2F3, wQF1F2F3). Here wQ represents the weight for genotype effect, wF1 represents the weight for environmental factor F1 effect and wQF1 represents the weight for interaction between genotype and F1 effect, etc. |
| **nIterations** | Number of iterations of the simulated annealing method | A numeric integer value larger than 1. Default = 3000 |
2. Upload a tab separated value (TXT) file containing the genotype data matrix (individuals × markers). Each cell contains a genotype label (e.g. A or B for the parental alleles, H for heterozygous loci; NA for missing data).

3. Set parameters. Specify the number of environmental factors, their number of levels, and the possible values of these levels. Specify either the total number of slides (assays) or the number of samples allocated within each condition.

4. Use advanced options if only one or a few genome regions or particular factors are of major interest. It is possible to optimize the experimental design by focusing on certain regions (e.g. the first 20 markers on chromosome I). Prior knowledge about expected effect sizes of interesting factors can also be incorporated as weight parameters for the algorithm.

5. Start the optimization algorithm by clicking on the button Optimize Experimental Design (Figure 1).

6. Get results. After the optimization is finished, the optimal experimental design will be displayed online (in table format), and will be available as text files for download.

R package

Here we illustrate how to apply the designGG R package using an example: suppose we are studying the effect of genetic factors (Q), temperature (F1), drug treatment (F2), and their interaction on gene expression using two-colour microarrays. There are 100 microarray slides available for this experiment, and we plan to study two different levels for each environment, which are 16°C and 24°C for F1 (temperature), and 5 μM and 10 μM for F2 (drug treatment). Then the R package can also be used in command line form as follows:

1. Prepare the input file specifying the genotype of each individual at each marker position. The file should be formatted as tab separated values (TXT), as illustrated in Table 1.

2. Load the designGG package by starting the R application and typing the command:

   ```r
   > library(designGG)
   ```

 Specify the input arguments (Steps 3–5 correspond to steps 2–4 of using the web tool. The order of the following commands in steps 3–5 does not matter).

3. Choose the platform of the experiment. In this example, we use two-color microarray, thus:

   ```r
   > bTwoColorArray <- T #if paired; F otherwise
   ```

4. Load the marker data and specify the following required arguments (number of environmental factors, number of levels per factor, the values of each level, and the number of available slides):

   ```r
   > data(genotype) #an example data attached with the designGG package
   # The command below can be used to read TXT data
   # genotype <- read.table("genotype.txt")
   > nEnvFactors <- 2
   > nLevels <- c(2, 2)
   > Level <- list(c(16, 24), c(5, 10))
   > nSlides <- 100; nTuple <- NULL
   ```

 An alternative to specifying `nSlides` is to specify `nTuple`, the number of strains to be allocated onto each condition. For example,
5. In addition to the required arguments specified in step 4, there are some optional ones for a tailored experimental design: e.g., we might be especially interested in the genome region between 1st marker and 20th marker, where a known phenotypic QTL from previous study locates. They can then specify that the optimization algorithm should only take genotypes at markers 1 to 20 into account:

\begin{verbatim}
> region <- seq(1, 20, by = 1)
\end{verbatim}

Additionally, if we want that the estimates of all interaction effects are twice as accurate as the estimates of the main effects (genotype, temperature and drug treatment), then we specify weights for the estimates:

\begin{verbatim}
> weight <- c(0.5,0.5,0.5,1,1,1,1)
\end{verbatim}

Here the order of elements in the weight vector is such that first the main effects are listed, starting with the genotype, followed by the two environmental factors in the order used for \texttt{nLevels} and \texttt{Level}, then the one-way interactions, in the same order, and finally the two-way interaction between all three factors.

6. The following commands specify the directory where the resulting optimal design tables are to be stored and the name of the output files (design tables):

\begin{verbatim}
> directory <- "C:\myproject\design"

> fileName <- "myDesign"
\end{verbatim}

A detailed explanation of the above arguments can also be found in Table 2.

7. Run \texttt{designGG} to obtain your optimal design:

\begin{verbatim}
> myOutput <- designGG(genotype, nSlides, nEnvFactors, nLevels, LevelRegion, weight = weight, nIterations = 10)
\end{verbatim}

It should be noted that the number of iteration of the simulated annealing method (\texttt{nIterations}) is set to 10 here for testing purposes. The default value (\texttt{nIterations} = 3000) is recommended, but it will result in a longer computing time.

8. Output can be found in the directory or retrieved with:

\begin{verbatim}
> optimalArrayDesign <- myOutput$arrayDesign

> optimalCondDesign <- myOutput$conditionDesign
\end{verbatim}

Example output tables for allocation of strains on arrays and different conditions are shown in Table 3 and 4, respectively.

9. In addition, users can check the curve of optimization score recorded as the algorithm iterates using:

\begin{verbatim}
> plotAllScores (myOutput$plot.obj)
\end{verbatim}

Details of default settings such as method (SA: simulated annealing) or \texttt{nSearch} (equals 2) can be found in the \texttt{designGG} manual or the online help. Example genotype data and output tables are also provided along with the package. The R package can be found in Additional file 1 and most up-to-date version of the software can be downloaded at \url{http://gbic.biol.rug.nl/designGG}.

Expected Results

Two tables summarize the optimal design: The table pair design is only used for two-channel experiments and describes how samples are paired together in one assay e.g., a two-color microarray chip (Table 3). The table environment design lists how samples are assigned to environments/experimental factors (Table 4).

Conclusion

DesignGG, a freely-available R package and web tool presented in this work, represents a novel tool for the researcher interested in system genetics. Based on the care-
ful experimental design provided by designGG, limited resources, such as arrays and samples, are maximally exploited, and more accurate estimates of parameters of interest can be achieved.

Availability and requiredments
Project name: designGG R package and web tool
Project home page: http://gbic.bioc.rug.nl/designGG
Programming language: R

Requirement: R statistical software available at http://www.r-project.org/ for the stand-alone version.

Authors' contributions
YL developed designGG. RCJ and RB directed the project. MAS, GV and JF helped to implement the web tool. All authors wrote the manuscript, and read and approved the final version.

Additional material

Additional file 1
designGG: an R-package for the optimal design of genetical genomics experiments. DesignGG aims at finding an optimal design of genetical genomics experiments which maximize the power and resolution of detecting genetic, environmental and interaction effects. This will help to achieve high power and more accurate estimates of the effects of interesting factors, and thus yield a more reliable biological interpretation of data. Click here for file [http://www.biomedcentral.com/content/supplementary/1471-2105-10-188-S1.zip]

Acknowledgements
This work was supported by the Netherlands Organization for Scientific Research, NWO-86504001. We thank Danny Arens for help in implementing the web tool.

References
1. Jansen RC, Nap JP: Genetical genomics: the added value from segregation. Trends Genet 2001, 17(7):388-391.
2. Bystrynik L, Wiersing E, Donnitz B, Suutini S, Fletcher MT, Wiltshire T, Su AI, Vellenga E, Wang J, Manly KF, et al.: Uncovering regulatory pathways that affect hematopoietic stem cell function using ‘genetical genomics’. Nat Genet 2005, 37(3):225-232.
3. Schadt EE, Lamb J, Yang X, Zhu J, Edwards S, GuhaThakurta D, Sieberts SK, Monks S, Reitman M, Zhang C, et al.: An integrative genomics approach to infer causal associations between gene expression and disease. Nat Genet 2005, 37(7):710-717.
4. Chen Y, Zhu J, Lum PY, Yang X, Pinto S, MacNeil DJ, Zhang C, Lamb J, Edwards S, Sieberts SK, et al.: Variations in DNA elucidate molecular networks that cause disease. Nature 2008, 452(7186):429-435.
5. Brem RB, Kruglyak L: The landscape of genetic complexity across 5,700 gene expression traits in yeast. Proc Natl Acad Sci USA 2005, 102(5):1572-1577.
6. Li Y, Breitling R, Jansen RC: Generalizing genetical genomics: getting added value from environmental perturbation. Trends Genet 2008, 24(10):518-524.
7. Li Y, Alvarez OA, Gutteling EW, Tijsterman M, Fuj J, Riksen JA, Hazendonk E, Prins P, Plasterk RH, Jansen RC, et al.: Mapping determinants of gene expression plasticity by genetical genomics in C. elegans. PloS Genet 2006, 2(12):e222.
8. Churchill GA: Fundamentals of experimental design for cDNA microarrays. Nat Genet 2002, 32(Suppl):490-495.
9. Fu J, Jansen RC: Optimal design and analysis of genetic studies on gene expression. Genetics 2006, 172(3):1993-1999.
10. Fisher RA: The design of experiments. 4th edition. Edinburgh: Oliver and Boyd; 1947.
11. Kerr MK, Churchill GA: Experimental design for gene expression microarrays. Biostatistics 2001, 2(2):183-201.
12. Yang YH, Speed T: Design issues for cDNA microarray experiments. Nat Rev Genet 2002, 3(6):579-588.
13. Fournier MV, Carvalho PC, Magee DD, Carvalho MGC, Appasani K: Experimental Design for Gene Expression Analysis. In Bioarrays From Basics to Diagnostics Humana Press; 2007:29.
14. Wit E, Nobile A, Khanin R: Near-optimal designs for dual-channel microarray studies. Appl Statistics 2005, 54(5):817-830.
15. Lam AC, Fu J, Jansen RC, Haley CS, de Koning DJ: Optimal design of genetic studies of gene expression with two-color microarrays in outbred crosses. Genetics 2008, 180(3):1691-1698.
16. Rosa GJ, de Leon N, Rosa AJ: Review of microarray experimental design strategies for genetical genomics studies. Physiol Genomics 2006, 28(1):15-23.
17. Woo Y, Krueger W, Kaur A, Churchill G: Experimental design for three-color and four-color gene expression microarrays. Bioinformatics 2005, 21(Suppl 1):i459-467.
18. Wit E, Nobile A, Khanin R: Simulated annealing for near-optimal dual-channel microarray designs. Appl Statistics 2005:817-830.
19. The R Project for Statistical Computing [http://www.r-project.org/]
20. Swertz MA, De Brock EO, Van Hiju m SA, De Jong A, Buist G, Baer- ends Rj, Kok J, Kuipers OP, Jansen RC: Molecular Genetics Information System (MOLGENIS): alternatives in developing local experimental genomics databases. Bioinformatics 2004, 20(13):2075-2083.
21. Swertz MA, Jansen RC: Beyond standardization: dynamic software infrastructures for systems biology. Nat Rev Genet 2007, 8(3):235-243.