Earth’s Impact Events Through Geologic Time:
A List of Recommended Ages for Terrestrial Impact
Structures and Deposits

Martin Schmieder¹,² and David A. Kring¹,²

Abstract

This article presents a current (as of September 2019) list of recommended ages for proven terrestrial impact structures (n=200) and deposits (n=46) sourced from the primary literature. High-precision impact ages can be used to (1) reconstruct and quantify the impact flux in the inner Solar System and, in particular, the Earth–Moon system, thereby placing constraints on the delivery of extraterrestrial mass accreted on Earth through geologic time; (2) utilize impact ejecta as event markers in the stratigraphic record and to refine bio- and magnetostratigraphy; (3) test models and hypotheses of synchronous double or multiple impact events in the terrestrial record; (4) assess the potential link between large impacts, mass extinctions, and diversification events in the biosphere; and (5) constrain the duration of melt sheet crystallization in large impact basins and the lifetime of hydrothermal systems in cooling impact craters, which may have served as habitats for microbial life on the early Earth and, possibly, Mars. Key Words: Impact craters—Ejecta—Ages—Geochronology—Terrestrial—Cratering record. Astrobiology 20, 91–141.

1. Introduction

Impact cratering is a fundamental process in the Solar System, shaping asteroids, planets, and their satellites (e.g., Baldwin, 1971; Shoemaker, 1983; Melosh, 1989; Ryder, 1990; French, 1998, 2004; Canup and Asphaug, 2001; Kring and Cohen, 2002; Osinski and Pierazzo, 2012). Unlike the Moon, whose surface has been modified by numerous large and small impacts for more than 4 billion years (Ga, Gyr) (e.g., Stöffler et al., 2006), the Earth has retained a limited impact cratering record due to tectonic recycling of the crust, erosion, and the burial of impact craters underneath layers of sediment and lava (e.g., Grieve, 1987, 2001a, 2001b) (Fig. 1).

Before ~3.7 Ga before present, when most of the large lunar impact basins were created, impact rates in the Earth–Moon system were much higher than they are today (e.g., Turner et al., 1973; Tera et al., 1974; Ryder, 1990; Kring and Cohen, 2002; Grieve et al., 2006; Johnson and Melosh, 2012; Bottke and Norman, 2017). However, no traces of those Hadean (>4.0 Ga) and Eoarchean (4.0–3.6 Ga) impacts on the early Earth are currently known in the geologic record (e.g., Koeberl, 2006). Only 200 proven impact structures (counting fields of small impact craters produced during the same event as one) and 46 individual horizons of proximal and distal impact ejecta (again, counting layers with the same age at different localities as one) have thus far been recognized on our planet (Fig. 2). Those impact structures and deposits span a time from more than ~3.4 Ga, represented by Paleoarchean impact spherule layers in South Africa and Western Australia produced by large impacts (e.g., Glass and Simonson, 2012, 2013), to roughly 6 years ago when the Chelyabinsk airburst in Russia (February 15, 2013) shattered windows and its main stony meteorite mass produced an ~7 m-wide circular impact penetration hole in frozen Lake Chebarkul (e.g., Borovička et al., 2013; Popova et al., 2013).

The smallest geologic features on Earth’s surface produced by impact, usually only a few meters wide and commonly associated with surviving meteorite fragments, are (fields of) penetration funnels, pits, and small craters that form at relatively low, atmosphere-decelerated (ballistic) impact velocities (e.g., Melosh, 1989; Beauford, 2015). Some of the impact structures listed in this article belong to that type of low-energy impact feature (e.g., the crater-like pits produced...
during the fall of the Imilac pallasite in Chile, or the temporary Chalyabinsk ice-penetration hole, which we chose to include in the present listing). Hypervelocity impacts of larger meteoroids, at much higher incoming velocities, produce craters that show different morphologies with increasing size (e.g., Melosh, 1989; French, 1998). A textbook example of a well-preserved simple, bowl-shaped impact crater associated with its ejecta blanket is the 1.2 km-diameter Meteor Crater (aka Barringer Meteorite Crater) in Arizona (Shoemaker, 1960; Kring, 2017b) (Fig. 1). Earth’s impact craters larger than ~2 to 4 km in diameter are of complex morphology and structure, such as the ~3.8 km-diameter Steinheim Basin in Germany characterized by a pronounced central peak (uplift) and the ~25 km-diameter Nördlinger Ries with an ~10 km-wide inner ring of uplifted target rock and a well-preserved blanket of proximal impact ejecta surrounding the crater (e.g., Stöffler et al., 2002, 2013; Kring, 2005; Schmieder and Buchner, 2013). The 180 km-diameter Chicxulub crater on the Yucatán Peninsula in Mexico is a peak-ring basin similar in morphology and structure to the Schrödinger Basin on the Moon (Kring, 1995; Kring et al., 2016, 2017a; Morgan et al., 2016). The deeply eroded Vredefort impact structure in South Africa, probably ~250 to 300 km in original diameter, may represent the remnants of a terrestrial multiring basin (e.g., Melosh, 1989; Spudis, 1993; Therriault et al., 1997; French, 1998).
To assess the temporal distribution of impact events and calculate impact rates as an expression of the impact flux through time, different geochronologic techniques have been developed and applied. These include, first, crater counting and the calculation of isochrons based on the crater size–frequency distribution for the Moon, Mars, and other planetary bodies characterized by a crater production record (e.g., Hartmann and Neukum, 2001; this technique is not applicable to the geologically active Earth); second, stratigraphic age constraints (e.g., Koeberl et al., 2001; Lindström et al., 2005; Schmieder and Buchner, 2008); third, isotopic age determinations using the U–Pb, Ar–Ar (K–Ar), Rb–Sr, and (U–Th)/He geo-/thermochronometers and/or the 14C method with impact lithologies sampled in natural outcrop or drillings on Earth, in meteorites, or samples returned from space missions (e.g., Tera et al., 1974; Bottomley et al., 1990; Deutsch and Schärer, 1994; Jourdan et al., 2009, 2012); and, finally, methods other than those mentioned above. We here predominantly focus on the stratigraphic and isotopic methods. Due to improvements in U–Pb (e.g., chemical abrasion thermal ionization mass spectrometry [CA-TIMS]) (Schoene, 2014; Kenny et al., 2019a), secondary ion mass spectrometry (SIMS) (Kenny et al., 2019b), and 40Ar–39Ar geochronologic instrumentation and methods (e.g., Renne et al., 2010, 2011, 2013; Sprain et al., 2015; Schmieder et al., 2018a), the most precisely constrained “impact ages” today come with uncertainties on the thousands-of-years (ka, kyr) level.

This article provides a current (as of September 2019) summary of predominantly stratigraphic and isotopic recommended ages for proven impact structures and deposits on Earth. Structures and deposits of likely but, to some degree, uncertain impact origin (e.g., numerous oblong depressions near Rio Cuarto in Argentina; Schultz and Lianza,
1992; cf. Cione et al., 2002; Reimold et al., 2018; Cróstaa et al., 2019c; the recently reported Hiawatha “impact crater” in Greenland; Kjerr et al., 2018; and enigmatic glass deposits such as the Edeowie glass found in South Australia; Haines et al., 2001; glasses found near Dakhleh, Egypt; Osisinski et al., 2008; and the Pica glass found in the Atacama Desert of Chile; Roperch et al., 2017) are, therefore, not included. Likewise, the 1908 Tunguska airburst event in Russia, which seemingly did not produce any geologic feature other than uprooted trees, is not listed here (e.g., Kulik, 1940; Krinov, 1960). The present article does not intend to be the latest reference pertaining to the formation of simple and complex impact craters, their impact ejecta, and the physical aspects of the cratering process (e.g., Melosh, 1989; Melosh and Ivanov, 1999; Osisinski et al., 2011, 2012; Kenkmann et al., 2012), the petrology of impactites (rocks produced or modified by impact) (e.g., French, 1998; Stöffler and Grieve, 2007; Grieve and Therriault, 2012), or the verification of impact structures through the identification of macro- and microscopic shock-metamorphic features (e.g., shatter cones and shocked quartz and zircon grains) (French, 1998; French and Koeberl, 2010; Ferrière and Osisinski, 2012). For details about the more specific geologic features of terrestrial impact structures, we refer the reader to a number of review articles that summarize the impact cratering record of each continent on Earth, such as the works of Grieve (2006) for Canada in North America, Reimold et al. (2018) and Cróstaa et al. (2019b) for South America, Schmieder and Buchner (2013) for Europe, Reimold and Koeberl (2014) and Chabou (2019) for Africa and the Arab World, respectively, Masaitis (1999) and Reimold et al. (2008) for Russia and Asia, and Haines (2005) for Australia. [Somewhat surprisingly, there is currently no up-to-date review of the impact cratering record of the United States, and Walter H. Bucher’s (1936) early work on the country’s “cryptexplosion structures” probably remains the most recent systematic review of its kind; however, many impact structures in the United States were included in the more general listings of Freeberg (1969), Classen (1977), and Groller (1985), and a website project maintained by Beauford (2019) provides basic information and the relevant literature for almost all impact structures and crater fields recognized in the country.] Nor does this relatively short summary provide an in-depth explanation and discussion of the isotopic methods commonly used to determine impact ages, such as the U–Pb and Ar–Ar geochronometers. In this context, we recommend the comprehensive summaries on the U–Pb technique by, for example, Corfu (2013) and Schoene (2014), and on the Ar–Ar (and K–Ar) method by McDougall and Harrison (1999) and Kelley (2002). Previous U–Pb, Ar–Ar, and Rb–Sr geochronologic work on several terrestrial impact structures includes that of Bottomley et al. (1990) and Deutsch and Schärer (1994), from which much was learned regarding how different geochronometers behave with different types of impact crater materials analyzed. This summary builds upon that previous work, including critical evaluations of Earth’s impact crater ages that ensued (Jourdan et al., 2009, 2012; Jourdan, 2012). It should serve as a robust geochronologic database and a backbone for ongoing and future studies that make use of Earth’s impact crater ages for, for example, statistical calculations and cratering flux models (e.g., Mazrouei et al., 2019). Such studies have, in part, relied on a flawed representation of the terrestrial impact cratering record with partly inaccurate ages as input parameters (e.g., Telecka and Matyjasek, 2011; and the recently published Encyclopedic Atlas of Terrestrial Impact Craters of Flamenti et al., 2019 that lists numerous inaccurate impact ages), inevitably compromising the validity and significance of their conclusions (see also discussions in Miljkovic´, 2013, 2014; Schmieder et al., 2014c; Rampino and Caldeira, 2015; Meier and Holm-Alwmark, 2017). Finally, this work presents a referenced source for current best-estimate ages that can be listed in online impact databases, such as the Earth Impact Database (hosted at the University of New Brunswick, Fredericton, Canada), which has recently been complemented by the database Impact Earth maintained by Osisinski and Grieve (2019).

2. Data and Methods

Stratigraphic, isotopic, and additional age constraints are predominantly sourced from the primary literature, highlighting the work that led to the establishment of the (currently) preferred age for any particular impact event. Some ages are taken from summary articles (e.g., Grieve, 2006). Impact ages are grouped into three main categories: (1) stratigraphic age constraints; (2) isotopic ages, including U–Pb, Ar–Ar, K–Ar, Rb–Sr, (U–Th)/He, and 14C ages (while considering ages obtained using the high-temperature U–Pb and Ar–Ar geochronometers are usually preferred); and (3) age constraints other than the ones mentioned above.

2.1. Stratigraphic ages

The determination of relative stratigraphic ages, by superposition, can be applied to all impact structures on Earth and elsewhere, where the age of the host rock is to some degree constrained. Every impact structure has a target rock that the impacting body penetrated and, through simple geologic cross-cutting relationships, the youngest rock units affected by the impact provide a maximum (oldest possible) age for the impact. In turn, the oldest undisturbed rocks that fill the crater after its formation, commonly crater lake sediments in continental paleosettings, constrain the minimum (youngest possible) impact age. Some terrestrial impact crater ages are only very imprecisely constrained by the age of the impacted target rock as a maximum age (e.g., the <1800 million years [Ma, Myr] Île Rouleau impact structure, Québec, Canada) (Grieve, 2006). Sometimes, the stratigraphic age for an impact can only be bracketed within several hundred million years, as in the case of the 12 km-diameter Wells Creek impact structure in Tennessee (e.g., Wilson, 1953; Ford et al., 2012; Ford, 2015, and references therein). The crater must be younger than Mississippian (∼323 Ma) and older than Late Cretaceous (∼100 Ma) (see Cohen et al., 2013, for current stratigraphic age values), suggesting a “best-estimate” age of ∼211 ± 111 Ma and a relative error on the age of >100% (the commonly published age is 200 ± 100 Ma) (e.g., Grieve, 2001a). However, other stratigraphically constrained impact ages are remarkably precise, such as that of the ∼14 km-wide marine Lockne crater in Ordovician rocks of Central Sweden. There, the impact age is precisely constrained to be 455 Ma plus and minus a few hundred thousand years, because both the
youngest preimpact and oldest postimpact sediments lie in the late Sandbian (early Caradocian) lower Lagenochitina dalbyensis chitinozoan microfossil zone studied in great detail (Grahn et al., 1996; Grahn, 1997; Ormö et al., 2014). The stratigraphic method equally applies to impact ejecta layers.

2.2. Isotopic ages

Both the Wells Creek and Lockne impact craters described above have no or little recognized impact melt, respectively, that could potentially be used as material for radioisotopic analysis. However, a relatively large number of terrestrial impact structures have preserved impact melt-bearing rocks (e.g., Dence, 1971; von Engelhardt, 1984; Dressler and Reimold, 2001; Stöffler and Grieve, 2007; Osinski et al., 2018), such as the up to ~2.5 km-thick, differentiated crystalline melt sheet (the Sudbury Igneous Complex) overlain by ~1.5 km of melt-bearing impact breccia (the Onaping Formation) at the ~200 to 250 km-diameter Sudbury Basin in Ontario, Canada (e.g., Grieve, 2006; Davis, 2008; Roussell and Brown, 2009; Grieve et al., 2010); the up to ~1.2 km-thick melt sheet at the 100 km-diameter Manicouagan impact structure in Quebec, Canada (e.g., Floran et al., 1978; Grieve, 2006; Spray et al., 2010) (Fig. 3A); and the up to ~250 m-thick melt-bearing impact breccia (suevite) of the 25 km-diameter Nördlinger Ries crater in Germany (e.g., von Engelhardt et al., 1995; von Engelhardt, 1997; Stöffler et al., 2013) (Fig. 3B). The Ries impact also produced green glassy tektites (moldavites) (Fig. 3C), distal melt ejecta found ~200 to 500 km northeast of the crater (e.g., Stöffler et al., 2002; Trnka and Houzar, 2002). Because of the (partial to complete) resetting of geochronometers, for example, the U–Pb and K–Ar system, during high-temperature melting and degassing (diffusion) events such as major impacts (e.g., Jourdan et al., 2012), impact melt lithologies are in most cases suitable for geochronologic analysis using a variety of radioisotopic geochronometers.

2.2.1. U–Pb ages. One method used to determine impact ages is the uranium–lead (U–Pb) and coupled lead–lead (Pb–Pb) geochronometer (e.g., Nier, 1939; Wetherill, 1956, 1963; Tera and Wasserburg, 1972, 1974; and see Corfu, 2013 and Schoene, 2014 for reviews of its historical development and application). The U–Pb geochronometer is today used with several different technical setups. These include laser ablation inductively coupled plasma mass spectrometry.

FIG. 3. Impact crater materials commonly used for geochronologic analysis and two exemplary results. (A) Approximately 100 m-tall cliff of the impact melt sheet at the Manicouagan impact structure, Quebec, Canada (Baie Memory Entrance Island, photo taken by M. Schmieder in summer 2006). This type of impact melt rock is suitable for whole-rock Ar–Ar analysis and usually contains minerals (e.g., zircon) that can be analyzed using the U–Pb method. (B) Suevite, a polymict impact breccia with dark, elongated fäldle of impact glass from the Ries crater, Germany (Katzenstein Castle near Discingen, Baden-Württemberg). Impact glass is commonly used as sample material for Ar–Ar geochronology. (C) A green, glassy Ries tektite (moldavite) found in Besednice, Czech Republic. (D) Concordia (Wetherill) diagram showing U–Pb geochronologic results for zircon in impact melt rock from the Rochechouart impact structure in France (unpublished data). (E) Shocked zircon grain with LA-ICP-MS laser ablation pit created during U–Pb analysis in impact melt rock from the Charlevoix impact structure, Quebec, Canada (backscattered electron image) (Schmieder et al., 2019). (F) Argon–argon age diagram showing a well-defined plateau age, including relevant statistics for a Ries tektite sample similar to the one shown in (C) (from Schmieder et al., 2018a). LA-ICP-MS, laser ablation inductively coupled plasma mass spectrometry.
spectrometry (LA-ICP-MS), SIMS (SIMS and nanoSIMS), sensitive high-resolution ion microprobe (SHRIMP) analysis, and thermal ionization mass spectrometry after chemically abrading the mineral sample for better results (CA-TIMS). The latter, again, comes in different variations (isotope dilution, ID-TIMS; and total evaporation, TE-TIMS) (e.g., Davis, 2008). Each of these techniques has its advantage and disadvantage. While LA-ICP-MS and SIMS/SHRIMP are routinely and rapidly applied to thin-section or grain mount samples that can preserve the textural context of the sample, producing moderately precise U–Pb and Pb–Pb ages, CA-TIMS completely dissolves the mineral sample but produces much more precise ages with errors commonly in the range of a few thousands to tens of thousands of years (e.g., Schoene, 2014; Schaltegger et al., 2015). The U-bearing minerals most commonly used for the U–Pb geochronologic analysis of impact materials are either intensely shocked or melt-grown zircon crystals (Fig. 3D, E) (e.g., Davis, 2008; Crow et al., 2017; Kenny et al., 2019a, 2019b), baddeleyite (Krogh et al., 1984; Corfu and Lightfoot, 1996), monazite (e.g., Tohver et al., 2012; Erickson et al., 2017, 2019a, 2019b), and to a lesser degree titanite (Ames et al., 1998) and apatite, although recent results for terrestrial impact craters suggest the latter is a promising target mineral for future studies (McGregor et al., 2018, 2019). Uranium–lead results are typically visualized in a concordia diagram (Wetherill or Tera-Wassenburg plot) alongside their internal statistics (mean square weighted deviation [MSWD] and probability p as a measure of statistical fit) and can be corrected for a nonradiogenic (“common”) lead component. Zircon crystals from the less severely shocked, unmelted portion of the target rock of an impact structure commonly tend to yield older dates on or near concordia (the curve along which U–Pb ages from different U decay series are equal), reflecting the crystallization and/or metamorphic age(s) of the host rock (e.g., Schärer and Deutsch, 1990; Wielicki et al., 2012; Schmieder et al., 2015b). In contrast, intensely shocked and recrystallized zircon grains (so-called granular zircon, locally with μ-sized baddeleyite domains as a thermal decomposition product of zircon) (Wittmann et al., 2006; Timms et al., 2017) are chronometrically reset and commonly yield younger concordia ages, potentially reflecting the impact (Fig. 3D) (e.g., Hodych and Dunning, 1992; Krogh et al., 1993; Wielicki et al., 2012; Kenny et al., 2019b). If the isotopic system is affected by variable loss of Pb, a discordant array of dates may define a lower intercept with concordia from which the age of the impact can be derived (e.g., Kamo et al., 1996; Miintäri and Koivisto, 2001). However, episodic and/or modern postimpact Pb loss can cause significant disturbance of the U–Th–Pb system, and some zircon U–Pb ages obtained for impact events (e.g., the Ediacaran Acraman impact in South Australia) and their geologic significance are not straightforward to interpret (Schmieder et al., 2015b). A special type of zircon is typically U- and Th-rich metamict (internally radiation-damaged, pseudomorphous) zircon (e.g., Pidgeon et al., 1966; Meldrum et al., 1998; Nasdala et al., 2001), which is more susceptible to U–Pb chronometric resetting during impact events (and other thermostromorphic processes) than nonmetamict zircon (e.g., Schwarz et al., 2016a and unpublished data; Stockli et al., 2018; McGregor et al., 2019; Schmieder et al., 2019). The use of metamict (do-
Argon–argon results for impact structures can be disturbed by the effects of sample alteration causing the diffusive loss of radiogenic 40Ar and younger apparent ages (e.g., Schmieder et al., 2014a), and also the incorporation of inherited 36Ar* with inclusions of incompletely degassed older target rock material and/or excess argon from Ar-bearing fluids interacting with the sample, both causing older apparent ages (inherited and excess argon are summarized under the term “extraneous argon”) (e.g., Kelley, 2002). Such effects can be identified, quantified, and corrected for using the isochron approach (e.g., Roddick, 1978; Kuiper, 2002; Jourdan et al., 2008, 2011; Jourdan, 2012; Schmieder et al., 2015a). Statistically robust Ar–Ar results ideally form a “plateau” in the age spectrum (Fig. 3F), a sequence of individual degassing steps with increasing temperature that all overlap within a narrow error limit and include most (ideally at least 70%) of the 39Ar extracted from the sample (e.g., Jourdan, 2012). They are, moreover, characterized by their internal statistics expressed through MSWD and p values for plateau sections and isochrons (and are typically reported with 2σ errors; that is, at the ∼95% confidence level, as is done in this work unless otherwise stated). Precise Ar–Ar ages have been obtained for a number of impacts on Earth, such as 66.05±0.031 Ma for glassy microtektites from the 180 km-diameter Chicxulub crater linked to the end-Cretaceous mass extinction (Renne et al., 2018). High-precision Ar–Ar results for the Chicxulub microtektites at the K/T boundary (more recently also known as the K/Pg boundary) were recently used to calibrate the timing and duration of the contemporaneous reverse magnetic chron C29r (Sprain, 2017; Sprain et al., 2008, 2011; Schmieder and Jourdan, 2013a). High-precision Ar–Ar results for the Chicxulub impact crater, Mexico, published by Roddick et al. (1992) using the K decay constants of Steiger and Jäger (1977) and the Fish Canyon sanidine (FCs) standard with a then-reported age of 27.84 Ma, becomes 66.05±0.18 Ma (2σ) after the recalculation of individual step ages, plateau sections and ages, and weighted mean (average) ages (n=3 plateau ages; MSWD=0.18; p=0.84) obtained from those results using Isoplot 4.15 (Ludwig, 2008) and the ArAR tool of Mercer and Hodges (2016). This recalculated age is within uncertainty indistinguishable from the more recent U–Pb age of 66.021±0.081 Ma for zircon crystals in ash layers around the K/T boundary in the Denver Basin (Clyde et al., 2016). It is also equivalent to Ar–Ar results of 66.038±0.049 Ma for glassy microtektites found at the K/T boundary in Beloc, Haiti (Renne et al., 2013; Sprain et al., 2015), an age of 66.051±0.031 Ma for similar microtektites at a K/T section exposed on Gorgonilla Island off the coast of Colombia (Renne et al., 2018), and an age of 66.052±0.043 Ma for tephra in the “Iridium Z coal” layer ∼1 cm above the iridium anomaly of the K/T boundary interval (Renne et al., 2013; Sprain et al., 2018). The ~24 km-diameter Boltysk impact structure in Ukraine, another end-Cretaceous impact structure (Kelley and Gurov, 2002), has a recalculated age of 65.80±0.67 Ma that is, within a somewhat larger error envelope, identical to the age of the Chicxulub impact (Jourdan, 2012). However, from the identification of distal Chicxulub ejecta in the basal lake sediments of the Boltysk crater, we know that this impact predates Chicxulub by a few thousand years (Jolley et al., 2010).

Likewise, through recalculation, the age of the ~35 km-diameter Manson impact structure, Iowa (decades ago still a contender for the K/T boundary impact site), also sees a notable shift from 74.1±0.1 Ma (Izett et al., 1998) to an older recommended age of 75.9±0.1 Ma (Table 1). The ~100 km-diameter Popigai impact structure in Russia, with a previously recommended Ar–Ar age of 35.7±0.2 Ma (Bottomley et al., 1997) has, after a reinterpretation of the original Ar–Ar results, a more conservative recalculated age of 36.63±0.92 Ma, which accounts for the spread of ~1 Myr between four plateau ages, not all of which overlap (n=4 plateau ages; MSWD=7.6; p=0.000) (see also Jourdan et al., 2009). From this recalculation, a time gap of at least ~0.5 Myr (and up to ~3 Myr) seems to occur between Popigai and the somewhat younger (34.86±0.32 Ma) ~40 to 45 km-diameter Chesapeake impact structure (a.k.a. Chesapeake Bay; final collapsed diameter ∼85 km) on the East coast of the United States (Assis Fernandes et al., 2019). This asteroid “one-two punch” is in agreement with the occurrence of two relatively closely spaced, but separate, distal ejecta layers in the Upper Eocene (Glass et al., 1985; Koeberl, 2009) (Table 2), known as the older clinopyroxene layer geochemically linked to the Popigai impact (Whitehead et al., 2000) and the younger North American (micro-)tektites linked to the Chesapeake impact (Deutsch and Koeberl, 2006).

In a few cases, recalculation of the original Ar–Ar results was omitted due to potentially unreliable standard ages used in the original geochronologic analysis. This, for example, applied to ages obtained using the B4M muscovite standard, which was commonly used in geochronology laboratories in the 1980s (e.g., for the Haughton impact structure, Canada) (Jessberger, 1988) and later (for the Ilyinets impact structure, Ukraine) (Pesonen et al., 2004). The B4M standard was recently shown to be quite heterogeneous in composition and age between finer- and coarser-grained domains of the...
No	Impact structure	Country	Latitude	Longitude	Diameter (m)	Type of target rock	Type of impactor	Stratigraphic age constraints	Radiometric age constraints	Other age constraints	Recommended age (Ma)	Recommended age reference*	Pre-recedition age (Ma)
1	Chelyabinsk	Russia	45°58’N	60°18’E	0.007	Ice	LL-chondrite	Recent	Fall February 15, 2013, main mass left 8 m-wide temporary hole in frozen Lake Chebarkul	0.000006	Boevička et al. (2013)		
2	Caracas	Peru	16°40’S	69°02’W	0.0135	Sedimentary	H-chondrite	Recent	Fall September 15, 2007	0.000012	Tancrús et al. (2009)		
3	Stekhämlik	Russia	53°40’N	55°59’E	0.0094	Sedimentary (soil, loam)	BIAB iron	Recent	Fall May 17, 1990	0.000029	Potapov (1992)		
4	Sildjbo Ain (Field)	Russia	46°09’N	134°39’E	0.027	Crystalline	BAB iron	Recent	Fall February 12, 1947	0.000072	Krnov (1971)		
5	Imilac	Chile	24°12’S	68°48’W	0.015	Crystalline (volcanic, soil)	Pallasitic	Recent	Found 1822 AD, fall produced ~15 m-wide impact pit, ~4 m deep	>0.0002	Bushwald (1973); Ivyan (2006)		
6	Sobolev	Russia	46°17’N	137°54’E	0.053	Sedimentary	Iron	Recent	Trees in crater	0.0003±0.00025	Yarmolyuk (1951); Khryashev (1981)		
7	Wabar	Saudi Arabia	21°30’N	50°28’E	0.116	Sedimentary (sand)	BIAB iron	Historical	Luminescence dating, historical	~0.0003	Bursich (2003); Pascott et al. (2004)		
8	Whitecourt	Canada	54°00’N	115°36’W	0.036	Sedimentary	BIAB iron	Quaternary (14C)	Preservation of morphology	<0.0011	Heid et al. (2008)		
9	Dugzaragta	Australia	27°45’S	117°05’E	0.021	Crystalline	Mesoosiderite	Quaternary (10Be/26Al exposure age)	Thermoluminescence dating	≤0.004	Shoomaker and Shoomaker (1988); Sighiroti et al. (2015)		
10	Kamil	Egypt	22°01’N	26°05’E	0.045	Sedimentary	Iron (ataxite)	Quaternary (14C)	~0.00324	~0.0035	Pedersen et al. (1992)		
11	Kaali (Kuuligirv (Field))	Estonia	58°22’N	22°40’E	0.11	Sedimentary	IAB iron	Quaternary (14C)	~0.004	~0.0047	Romula and Cassidy (1973)		
12	Vaca Muerta	Chile	25°45’S	70°30’W	0.007	Crystalline (volcanic)	Mesoosiderite	Quaternary (14C)	Fall produces field of pitted crater largest ~7.16 m in diameter and 1.35 m deep in crater	~0.005	Preservation of ejecta blanket		
13	Campo del Cielo (Field)	Argentina	27°38’S	61°42’W	0.115	Sedimentary	IAB iron	Quaternary (14C)	~0.007	~0.007	Shoemaker and Shoomaker (1988); Haines (2005); Shoemaker et al. (2005)		
14	Voevers	Australia	22°58’S	125°22’E	0.08	Sedimentary	BAB iron	Quaternary (14C)	Preservation of ejecta blanket	~0.0047	Shoemaker and Shoomaker (1988); Haines (2005); Shoemaker et al. (2005)		
15	Mozasko (Field)	Poland	52°29’N	27°24’E	0.1	Sedimentary	IAB iron	Quaternary (14C)	Luminescence dating	~0.005	Stankowski et al. (2007)		
16	Hlumstsa (Field)	Estonia	57°57’N	16°54’E	0.08	Sedimentary	Unknown	Quaternary (14C)	~0.007	~0.007	Raadik et al. (2001); Losiak et al. (2009); Losiak (2019), personal communication		
17	Macha (Field)	Russia	60°05’N	117°39’E	0.3	Sedimentary	Iron	Quaternary (14C)	~0.00375±0.00008	~0.0008	Gurov et al. (1998); Gurov and Gurova (1998)		
18	Haviland	United States	37°35’N	99°10’W	0.015	Sedimentary	Pallasitic (diogenite)	Quaternary (14C)	Cosmogenic nuclides (14C)	0.020±0.002	Honda et al. (2002)		
19	Boxhole	Australia	22°37’S	135°12’E	0.185	Crystalline	BIAB iron	Quaternary (14C)	26Al/39Ar exposure age	0.03±0.005	Shoomaker et al. (1990)		
20	Henbury	Australia	24°35’S	133°09’E	0.157	Sedimentary	BIAB iron	Quaternary (14C)	Cosmogenic nuclides (14C)	0.042±0.019	Kohman and Goel (1963)		
21	Armgard	Algeria	26°05’S	4°23’E	0.45	Sedimentary	Lower Devonian target rocks	Quaternary (14C)	Lower Devonian target rocks (14C)	≤0.17	Lambert et al. (1980); Gibbons et al. (2008); Haines (2014)		
22	Hickman	Australia	23°02’S	119°41’E	0.26	Mixed (banded iron formation, rhyolite)	Quaternary (14C)	Plumbage of local drainage system	Plumbage of local drainage system	≤0.17	Gibbons et al. (2008); Haines (2014)		
23	Barringer (Meteor Crater)	United States	35°02’N	111°01’W	1.186	Sedimentary	IAB iron	Early Triassic to Quaternary	39Cl surface exposure; 26Al, 39Ar exposure	~0.0567±0.0048	Sutton et al. (1985); Marrero et al. (2010); Kring (2017b) and references therein; Barrow et al. (2019)		
24	Odessa (Field)	United States	31°45’N	102°29’W	0.168	Sedimentary	IAB iron	Quaternary (14C)	Optically stimulated luminescence	0.0635±0.0045	Holliday et al. (2005)		

(continued)
No	Impact structure	Country	Latitude	Longitude	Diameter (km)	Type of target rock	Type of impactor	Stratigraphic age constraints	Radiometric age constraints	Other age constraints	Recommended age (Ma)	Recommended age reference*	Precalculated age (Ma)	
25	Wolfe Creek (Kondinakal)	Australia	19°18'S	127°46'E	0.875	Sedimentary	BIAB iron	Optical stimulated luminescence, ²⁶⁰⁹Be, ⁹⁷³⁰⁸Ne exposure	0.120±0.009	Shoemaker et al. (1990, 2005), Barlow et al. (2019)	0.570±0.047			
26	Twaining (Pretoria Saltpan)	South Africa	25°24'S	28°05'E	1.13	Crystalline	Chondritic	Glass fusion track	0.20±0.104	Sooster et al. (1999), Reimold et al. (2007)	0.25±0.05			
27	Kalkkop	South Africa	32°43'S	24°26'E	0.64	Sedimentary	Chondritic?	U-Th series dating of limestone	0.576±0.047	Jourdan et al. (2011), recalculated	0.663±0.09			
28	Lunar	India	19°59'N	76°31'E	1.83	Crystalline (basalt)	Carbonaceous chondrite?	Ar-Ar (impact melt rock)	0.576±0.047	Jourdan et al. (2011), recalculated	0.663±0.09			
29	Montaraqui	Chile	23°56'S	68°17'W	0.46	Crystalline (garnet, volcanics)	IAB? iron	(U-Th)/He (zircon and apatite from impact melt)	0.815±0.011	Rodetti et al. (2019)	0.91±0.014			
30	Pantasma	Nicaragua	13°12'N	85°37'W	14	Crystalline (volcanic)	Chondritic	Ar-Ar (impact glass)	1.13±0.10	Jourdan et al. (2012)	1.4±0.1			
31	Zhamsunshin	Kazakhstan	48°24'N	60°58'E	14	Mixed	Carbonaceous chondrite	Ar-Ar (impact glass)	1.13±0.10	Jourdan et al. (2012)	1.4±0.1			
32	Bosumwei	Ghana	6°32'N	1°25'W	10.5	Crystalline	Chondrite?	Ar-Ar (I-vory Coast tektites)	1.13±0.10	Jourdan et al. (2012)	1.4±0.1			
33	New Québec (Pinguichult)	Canada	61°17'N	73°40'W	3.44	Crystalline	Chondrite (L?	Ar-Ar (impact melt rock)	1.13±0.10	Jourdan et al. (2012)	1.4±0.1			
34	Tapanzene (Mădășna)	Slovenia	33°19'N	4°02'E	1.75	Sedimentary	Eocene or younger	Preservation of crater morphology	1.13±0.10	Jourdan et al. (2012)	1.4±0.1			
35	Tenoumer	Mauritania	22°55'N	10°24'W	1.9	Crystalline		Ar-Ar (impact melt rock)	1.13±0.10	Jourdan et al. (2012)	1.4±0.1			
36	Aouellou	Mauritania	20°15'N	12°41'W	0.36	Sedimentary		K-Ar (impact glass)	3.1±0.3	Jourdan et al. (2012)	3.58±0.04			
37	Elgygytgyn	Russia	67°30'N	172°05'E	18	Crystalline		Ar-Arg (impact melt rock)	3.8±0.3	Jourdan et al. (2012)	3.7±0.3			
38	Roter Kamme	Namibia	52°27'N	16°18'E	2.8	Mixed		Ar-Arg (impact melt rock)	3.8±0.3	Jourdan et al. (2012)	3.7±0.3			
39	Rigach	Kazakhstan	48°30'N	82°00'E	7	Mixed	sedimentary	Mocone or younger	5±3	Jourdan et al. (2012)	5±3			
40	Khotken	Russia	54°54'N	108°47'E	12	Sedimentary	Mocone to Piscine	Proven ando to Miocene	5±3	Jourdan et al. (2012)	5±3			
41	Xiuyan	China	40°22'N	123°27'E	1.8	Crystalline		Ar-Arg (impact melt rock)	3.8±0.3	Jourdan et al. (2012)	3.7±0.3			
42	Shunak	Kazakhstan	47°12'N	72°42'E	2.8	Crystalline (volcanic)		Crater morphology	12±5	Jourdan et al. (2012)	14.08±0.038			
43	Nördlinger Ries (Ries crater)	Germany	48°53'N	10°37'E	24	Mixed	No contamination	Mocone or younger	14.08±0.038	Jourdan et al. (2012)	14.08±0.038			
44	Steinheimer Becken (Steinheim Basin)	Germany	48°40'N	10°04'E	3.8	Sedimentary	Pulssite?	Mocone crater lake sediments	Presumably synchronous with Ries impact	14.08±0.038	Jourdan et al. (2012)	14.08±0.038		
45	Haughton	Canada	75°22'N	89°41'W	24	Mixed	No contamination	Ar-Arg (impacts)	23.4±1.0	Jourdan et al. (2012)	23.4±1.0			
46	Jebel Waag as Sina	Jordan	31°03'N	36°48'E	6	Sedimentary	Middle Eocene	Tectonic history	14.08±0.038	Jourdan et al. (2012)	14.08±0.038			
47	Karakul (Kara-Kul)	Tajikistan	39°01'N	73°27'E	52	Crystalline		Tectonic history	30±2±0.5	Jourdan et al. (2012)	30±2±0.5			
48	Logonok	Belarus	54°12'N	27°48'E	17	Mixed		Ar-Arg (impact glass)	30±2±0.5	Jourdan et al. (2012)	30±2±0.5			
49	Beyenchime-Salatin	Russia	71°50'N	123°30'E	8	Sedimentary			33±33	Jourdan et al. (2012)	33±33			
50	Eagle Butte	Canada	49°42'N	110°35'W	10	Sedimentary	Late Cretaceous or younger	Late Cretaceous	6±5	Jourdan et al. (2012)	6±5			
51	Guev	Russia	48°21'N	40°14'E	3	Sedimentary	Younger than Late Cretaceous	Late Cretaceous	6±5	Jourdan et al. (2012)	6±5			
52	Chesapeake Bay	United States	37°15'N	76°05'W	~40 to 45	Sedimentary	Chondritic (L?)	Ar-Arg (alkites and impact melt rock)	3.84±0.32	Jourdan et al. (2012)	3.84±0.32			
53	Chukchich	Russia	75°42'N	97°48'E	6	Mixed	Cretaceous or younger	Maastichnan or younger	7±7	Jourdan et al. (2012)	7±7			
54	Maple Creek	Canada	49°48'N	109°06'W	6	Sedimentary			6±5	Jourdan et al. (2012)	6±5			

(continued)
No	Impact structure	Country	Latitude	Longitude	Diameter (km)	Type of target rock	Type of impactors	Stratigraphic age constraints	Radiometric age constraints	Other age constraints	Recommended age (Ma)	Recommended age reference	Pre-reckalculated age (Ma)
55	Popigai	Russia	71°30'N	111°00'E	100	Mixed	Chondrite (H or L?)	Ar-Ar (impact melt rock)	36.63±0.92	Bottomley et al. (1997), recalculation, mean of 4 plateau ages	35.7±0.2		
56	Wanapitei	Canada	46°28'N	80°45'E	7.5	Crystalline	Chondrite (L or LL?)	Ar-Ar (impact melt rock)	37.7±1.2	Greve (2006) after Bottomley et al. (1979), recalculated	37.2±1.2		
57	Mistasun	Canada	55°53'N	63°18'W	28	Crystalline	No contamination?	U-Pb (CA-TIMS, melt rock zircon)	37.83±0.05	Shoemaker and Shoemaker (1986)			
58	Connolly Basin	Australia	23°32'S	124°45'E	9	Sedimentary	Palaeogene	~66 to 23	Masaitis et al. (1989)	120 Koeberl et al. (1992)	0.78 Schmieder and Renne et al. (1992)		
59	Logancha	Russia	65°30'N	95°48'E	20	Mixed	Palaeogene	~66 to 23	Lambert et al. (1981)	120 Koeberl et al. (1992)	0.78 Schmieder and Renne et al. (1992)		
60	Tin Tider (Tademot)	Algeria	27°36'N	5°07'E	6	Sedimentary	Comacia or younger	~56 to 41	Vishnevsky (2007)	120 Koeberl et al. (1992)	0.78 Schmieder and Renne et al. (1992)		
61	Chuby (Shuyli)	Kazakhstan	49°10'N	57°17'E	5.5	Sedimentary	Early to Middle Eocene	<100	Oliviera et al. (2017), Crista et al. (2019b)	120 Koeberl et al. (1992)	0.78 Schmieder and Renne et al. (1992)		
62	Santa Mara	Brazil	10°10'S	45°14'W	10	Sedimentary	Late Cretaceous	120 Koeberl et al. (1992)	0.78 Schmieder and Renne et al. (1992)	120 Koeberl et al. (1992)	0.78 Schmieder and Renne et al. (1992)		
63	Kamesnok	Russia	48°20'N	10°15'E	25	Sedimentary	Ar-Ar (impact glass)	50.37±0.40	Jourdan et al. (2012) after Litte et al. (1994)	50.5±1.6			
64	Montagnais	Canada	42°53'N	64°13'W	45	Sedimentary (shelf)	Ar-Ar (impact melt rock)	51.1±1.6	Bottomley and York (1980), recalculated	50.5±1.6			
65	Goat Paddock	Australia	18°20'S	126°40'E	5.1	Sedimentary	Early Eocene (palaeontol.)	~56 to 48	Milk and Macdonald (2005)	120 Koeberl et al. (1992)	0.78 Schmieder and Renne et al. (1992)		
66	Ragozinka	Russia	58°18'N	62°0'E	9	Mixed	Thetanian, Early Eocene (Sanov Suite)	~59 to 56	Vishnevsky (1999)	120 Koeberl et al. (1992)	0.78 Schmieder and Renne et al. (1992)		
67	Sierra Madure	United States	30°36'N	102°55'W	13	Sedimentary	Albion (Georgetown Fm.) or younger	<13	Wylie and Gilby (1990), McMahon and Sorkhabi (1994)	120 Koeberl et al. (1992)	0.78 Schmieder and Renne et al. (1992)		
68	Marquez	United States	31°17'N	96°18'W	13	Sedimentary	Around Palaeocene/Eocene transition	58.3±3.1	Sharpnent and Gilby (1990), McMahon and Sorkhabi (1994)	120 Koeberl et al. (1992)	0.78 Schmieder and Renne et al. (1992)		
69	BP structure	Libya	21°19'N	24°20'E	2	Sedimentary	Early Cretaceous or younger (Nubian Sandstone)	≤1 ≤20	Koebel et al. (2005b)	120 Koeberl et al. (1992)	0.78 Schmieder and Renne et al. (1992)		
70	Oasis	Libya	21°35'N	24°24'E	18	Sedimentary	Early Cretaceous or younger (Nubian Sandstone)	≤1 ≤20	Koebel et al. (2005b)	120 Koeberl et al. (1992)	0.78 Schmieder and Renne et al. (1992)		
71	Mount Toondina	Australia	27°57'S	135°22'E	4	Sedimentary	Aptian to Albian, Early Cretaceous, or younger (Boullag Shale)	<1 <25	Plescic et al. (1994)	120 Koeberl et al. (1992)	0.78 Schmieder and Renne et al. (1992)		
72	Chacxuhb	Mexico	21°20'N	89°30'W	180	Mixed	Carbonaceous chondrite?	66.05±0.043	Swisher et al. (1992), recalculated Renne et al. (2013, 2018), Sprant et al. (2015, 2018), Clyde et al. (2016)	0.78 Schmieder and Renne et al. (1992)			
73	Bolotsh	Ukraine	48°45'N	32°10'E	24	Crystalline	Chondrite?	Ar-Ar (impact melt rock)	65.80±0.67	Kelly and Groen (2002), recalculated Jourdan (2012), Crista et al. (2019)	70.3±2.2		
74	Cerro do Jaru	Brazil	30°12'S	56°32'W	13.5	Mixed	Early Cretaceous (Serra Geral Fm.) or younger	≤35	70.7±2.2	70.3±2.2			
75	Kara	Russia	69°05'N	64°18'E	65	Mixed	Chondrite?	Ar-Ar (impact melt rock)	65.5±0.1	74.1±0.1	70.3±2.2		
76	Mammon	United States	42°35'N	94°31'W	35	Mixed	Chondrite	Ar-Ar (sulphide in melt breccia)	77.85±0.78	70.3±2.2			
77	Lappajarvi	Finland	63°09'N	23°42'E	23	Mixed	H-chondrite	U-Pb (zircon in impact melt rock)	77.85±0.78	70.3±2.2			

(continued)
No	Impact structure	Country	Latitude	Longitude	Diameter (km)	Type of target rock	Type of impact	Stratigraphic age constraints	Radiometric age constraints	Other age constraints	Recommended age (Ma)	Recommended age reference	Pre-recalculation age (Ma)
78	Zeleny Gai	Ukraine	48°42'N	32°30'E	3.5	Crystalline	Ar-He (impact melt rock)	(U-Th)/He (apatite and zircon)	~85	~83.5	80±2.07	Maastricht (1999)	
79	Wetumpka	United States	32°31'N	86°11'W	6.5	Mixed	Chondrite?	Close to Santonian/ Campanian boundary			~85	Schmieder et al. (2016a); Schmieder et al. (2016b)	
80	Suvansevi North	Finland	62°39'N	28°10'E	3.5	Crystalline	Ar-Ar (impact melt rock)				89.8–83.6 Ma	Cox et al. (2019)	
81	Yallalie	Australia	30°28'S	115°47'E	15	Sedimentary	Coniacian, Late Cretaceous				<1.83	Kiems et al. (1999)	
82	Agoudal	Morocco	31°59'N	5°31'W	1.3	Sedimentary	Early Jurassic (Kazoo dolomite)	(U-Th)/He (apatite and zircon)	~94–90		~102–95	Brandt et al. (2002)	
83	Kgagadi	Botswana	22°29'S	27°35'E	3.5	Crystalline	Early Jurassic (Touremian or younger)	(U-Th)/He (apatite and zircon)	~94–90		~110–114	Sexl et al. (1990a)	
84	Avak	United States	71°15'N	156°36'E	12	Sedimentary	Turonian, Late Cretaceous (palynology)	(U-Th)/He (apatite and zircon)	~145 to 94		~145 to 94	Bernet and Fenton (2008)	
85	Upheaval Dome	United States	38°26'N	109°54'W	10	Sedimentary	Early Jurassic (Toarcian) or younger	(U-Th)/He (apatite and zircon)	~145 to 94		~145 to 94	Bernet and Fenton (2008)	
86	Deep Bay	Canada	56°24'N	102°59'W	13	Crystalline	Early Cretaceous to Turonian	(U-Th)/He (apatite and zircon)	~145 to 94		~145 to 94	Bernet and Fenton (2008)	
87	Rotmistrovka	Ukraine	49°00'N	32°00'E	2.7	Crystalline	Early Cretaceous to Turonian	(U-Th)/He (apatite and zircon)	~145 to 94		~145 to 94	Bernet and Fenton (2008)	
88	Vista Alegre	Brazil	25°57'S	52°41'W	9.5	Mixed	Early Cretaceous (~134 Ma Serra Geral Fm.) or younger	(U-Th)/He (apatite and zircon)	~145 to 94		~145 to 94	Bernet and Fenton (2008)	
89	Mien	Sweden	56°25'N	14°52'E	9	Crystalline	Stone?	Ar-Ar (impact melt rock)	~122.4±2.3		~122.4±2.3	Boy et al. (1990), recalculated	
90	Vargulio	Brazil	26°50'S	52°07'W	12	Sedimentary	Early Cretaceous (~134 Ma Serra Geral Fm.) or younger	(U-Th)/He (apatite and zircon)	~122.4±2.3		~122.4±2.3	Boy et al. (1990), recalculated	
91	Serra da Cangalha	Brazil	8°05'S	46°52'W	12	Sedimentary	Late Permian or younger	(U-Th)/He (apatite and zircon)	~122.4±2.3		~122.4±2.3	Boy et al. (1990), recalculated	
92	Tookoonooka	Australia	27°00'S	143°00'E	55	Sedimentary	Barremian/Aptian boundary	(U-Th)/He (apatite and zircon)	~122.4±2.3		~122.4±2.3	Boy et al. (1990), recalculated	
93	Dellen	Sweden	61°55'N	16°39'E	19	Crystalline	Stone?	Ar-Ar (impact melt rock)	~122.4±2.3		~122.4±2.3	Boy et al. (1990), recalculated	
94	Mjohanir	Norway	73°48'N	29°40'E	20–40	Sedimentary (sea floor)	Early Berriasian (Volgan/Ryazanian boundary)	(U-Th)/He (apatite and zircon)	~143±2.12		~143±2.12	Smelror et al. (2001)	
95	Monweng	South Africa	25°28'S	23°32'E	70	Crystalline	LL-chondrite	(U-Th)/He (apatite and zircon)	~143±2.12		~143±2.12	Smelror et al. (2001)	
96	Des Plaines	United States	42°03'N	87°52'W	8	Sedimentary	Pennsylvanian	(U-Th)/He (apatite and zircon)	~143±2.12		~143±2.12	Smelror et al. (2001)	
97	Kentland	United States	40°45'N	87°24'W	13	Sedimentary	Younger than Mississippian, older than Pennsylvanian	(U-Th)/He (apatite and zircon)	~143±2.12		~143±2.12	Smelror et al. (2001)	
98	Middlesboro	United States	36°37'N	83°44'W	6	Sedimentary	Early Pennsylvanian	(U-Th)/He (apatite and zircon)	~143±2.12		~143±2.12	Smelror et al. (2001)	
99	Riachulo	Brazil	7°43'S	46°39'W	4.5	Sedimentary	Early Pennsylvanian	(U-Th)/He (apatite and zircon)	~143±2.12		~143±2.12	Smelror et al. (2001)	

(continued)
No	Impact structure	Country	Latitude	Longitude	Diameter (km)	Type of target rock	Type of impactor	Stratigraphic age constraints	Radiometric age constraints	Other age constraints	Recommended age (Ma)	Recommended reference	Pre-recalcul. age (Ma)	
100	Tavan Khor Ovoo (Tabun-Khan-Obo)	Mongolia	44°06'N	109°36'E	1.3	Crystalline	Late Triassic to Late Cretaceous	Maximum age based on morphologic expression, likely a few Myr old	150±20	Masaitis (1999)				
101	Vepriai	Lithuania	55°06'N	24°36'E	8	Sedimentary	Middle Devonian to Late Jurassic, likely Middle Jurassic	~250 (Masaitis 1999)	160±5	Masaitis et al. (1980); Masaitis (1999)				
102	Decaturville	United States	39°54'N	92°43'W	6	Mixed	Younger than Pennsylvanian	~350 (Masaitis 1980); Masaitis (1999); Gurov et al. (2002)	165±6	Masaitis (1999); Gurov et al. (2002)				
103	Zapadnyaya (Bablyiska)	Ukraine	49°44'N	29°00'E	3.2	Crystalline	K-Ar (impact melt rock)	~100 (Masaitis 1999)	169±7	Gurov et al. (2009)				
104	Obolon'	Ukraine	49°30'N	32°35'E	20	Sedimentary	Iron?	Early Triassic to Middle Jurassic (Bathonian)	K-Ar (impact melt rock)	~360	Masaitis (1999)			
105	Mishina Gora	Russia	58°40'N	28°00'E	2.5	Mixed	Latest Devonian or younger	~360 (Masaitis 1999)	150±10	Masaitis (1999); Gurov et al. (2002)				
106	Serpent Mount	United States	39°02'N	83°24'W	8	Sedimentary	Tourmaisian, Early Mississippian (Cuyahoga Fm.) or younger	~360 (Masaitis 1999)	150±10	Masaitis (1999); Gurov et al. (2002)				
107	Viewfield	Canada	49°35'N	103°04'W	2.5	Sedimentary	Younger than Mississippian, likely older than Triassic-Jurassic	~150 (Masaitis 1999)	150±10	Masaitis (1999); Gurov et al. (2002)				
108	São Miguel do Tapuio	Brazil	5°38'S	41°23'E	20	Sedimentary	Late Devonian or younger (Cabezas Fm.)	~360 (Masaitis 1999)	150±10	Masaitis (1999); Gurov et al. (2002)				
109	Aorounga	Chad	19°06'N	19°15'E	16	Sedimentary	Late Devonian (?) or younger	~360 (Masaitis 1999)	150±10	Masaitis (1999); Gurov et al. (2002)				
110	Gwesi-Fada	Chad	17°25'N	21°45'E	22	Sedimentary	Late Devonian (?) or younger	~360 (Masaitis 1999)	150±10	Masaitis (1999); Gurov et al. (2002)				
111	Piccaninnny	Australia	17°32'S	128°25'E	7	Sedimentary	Frasnian (Late Devonian) or younger	~360 (Masaitis 1999)	150±10	Masaitis (1999); Gurov et al. (2002)				
112	Puchezh-Katunki	Russia	57°00'N	43°35'E	80	Mixed	Early Triassic to Middle Jurassic	~200 (Masaitis 1999)	150±10	Masaitis (1999); Gurov et al. (2002)				
113	Gow Lake	Canada	56°27'N	104°29'W	5	Crystalline	Iron?	Ar-Ar (impact melt rock)	~150 (Masaitis 1999)	150±10	Masaitis (1999); Gurov et al. (2002)			
114	Cloud Creek	United States	43°07'N	106°45'W	7	Sedimentary	Late Triassic (Norian?) to Middle Jurassic (Bathonian?)	~200 (Masaitis 1999)	150±10	Masaitis (1999); Gurov et al. (2002)				
115	Quarktiz	Algeria	29°00'N	7°33'W	3.5	Sedimentary	Visean, Carboniferous to Paleogene	~200 (Masaitis 1999)	150±10	Masaitis (1999); Gurov et al. (2002)				
116	Rochecourant	France	45°50'N	0°56'E	23-40	Crystalline	Chondrite? Iron? Stony-iron?	~200 (Masaitis 1999)	150±10	Masaitis (1999); Gurov et al. (2002)				
117	Red Wing Creek	United States	47°36'N	103°33'W	9	Sedimentary	Perm-Triassic (Sparingly Fm.) to Bathonian, Middle Jurassic (Piper Fm.)	~200 (Masaitis 1999)	150±10	Masaitis (1999); Gurov et al. (2002)				
118	Wells Creek	United States	36°23'N	87°40'W	12	Sedimentary	~200 (Masaitis 1999)	~200 (Masaitis 1999)	150±10	Masaitis (1999); Gurov et al. (2002)				
119	Manicouagan	Canada	51°23'N	68°42'W	100	Mixed	No contamination?	~200 (Masaitis 1999)	~200 (Masaitis 1999)	~200 (Masaitis 1999)	Masaitis (1999); Gurov et al. (2002)			
120	Lake Saint Martin	Canada	51°47'N	98°32'W	40	Mixed	Devonian to Middle Jurassic	~200 (Masaitis 1999)	~200 (Masaitis 1999)	~200 (Masaitis 1999)	Masaitis (1999); Gurov et al. (2002)			
121	Lappsum	Finland	60°08'20''N 20°07'30''E	9	Mixed	Middle Ordovician (Caradocian) or younger	~200 (Masaitis 1999)	~200 (Masaitis 1999)	~200 (Masaitis 1999)	Masaitis (1999); Gurov et al. (2002)				
No	Impact structure	Country	Latitude	Longitude	Diameter (km)	Type of target rock	Type of impactor	Stratigraphic age constraints	Radiometric age constraints	Other age constraints	Recommended age reference	Recommended age (Ma)	Pre-recalculation age (Ma)	
-----	--------------------------	-----------------	----------	-----------	---------------	---------------------	------------------	-----------------------------	--------------------------	------------------------	---------------------------	------------------------	--------------------------	
122	Paukkala	Finland	62°12'N	29°23'E	10	Mixed	Younger than Mesoproterozoic	Ar-Ar (recrystallized feldspar glass and impact melt breccia)		23.1±0.22	Schmieder et al. (2010a); Schwartz et al. (2015)	23.1±0.22		
123	Saqqr	Saudi Arabia	29°35'N	38°42'E	34	Sedimentary	Early Devonian (Jafu Fm.) to Late Cretaceous			7.0–410	Neville et al. (2014); Kenkmann et al. (2015)	7.0–410		
124	Glover Bluff	United States	43°58’N	89°32’W	8	Sedimentary	Early Ordovician or younger	~9 Ma (U-Th)/He zircon age; Older paleomagnetic age	~260 to 2,307; ~97;	845	Road (1983);			
125	Karikkoselkä	Finland	62°13’N	25°14’E	1.5	Crystalline	Younger than Late Devonian, older than Middle–Albian	Ar-Ar (SHRM, SIMS, monazite and zircon), Ar-Ar (var. lithologies)	9–11 Ma (U-Th)/He zircon age; Older paleomagnetic age					
126	Stem River	Canada	59°31’N	117°37’W	25	Mixed	Early Devonian to Late Triassic	U-Pb (SHRM, LA-ICP-MS, SIMS, monazite and zircon)	~383 to 108; 132±1.37	254.7±2.57; 259±5.7; 251±5.2±9.9	Tovber et al. (2012); Erickson et al. (2017); Hauser et al. (2019)	254.7±2.57; 259±5.7; 251±5.2±9.9		
127	Araguaninha	Brazil	16°46’S	52°59’W	40	Mixed	Early Carboniferous to Middle Jurassic	Ar-Ar minimum age (impact melt rock)	~383 to 165	359–163	Macdonald et al. (2005)	359–163		
128	Glikson	Australia	23°59’S	121°34’E	19	Sedimentary	Palaeozoic		<508±5		Masaitis (1999)			
129	Kursk	Russia	51°40’N	36°00’E	6	Sedimentary	Early Carboniferous to Middle Jurassic	Ar-Ar minimum age (impact melt rock)	~383 to 165	359–163	Macdonald et al. (2005)	359–163		
130	Gosses Bluff (Tbarala)	Australia	23°50’S	132°19’E	22	Sedimentary	Early Carboniferous to Middle Jurassic	Ar-Ar minimum age (impact melt rock)	~383 to 165	359–163	Macdonald et al. (2005)	359–163		
131	Douglas (Sheep Mountain) (Field)	Wyoming, United States	42°40’N	105°28’W	0.15	Sedimentary	Early Permian (Uppermost Casper Fm.)	Early Permian (Uppermost Casper Fm.)	~280		Kasting and Hannon (1996); Kenkmann et al. (2018)	286±2.6±2.6		
132	Ternovka (Terny)	Ukraine	48°01’N	E33°05’E	16–19	Mixed	Chondrite?	K-Ar (feldspar and mica)	230±10		Valet et al. (1981)	230±10		
133	West Clearwater Lake	Canada	56°13’N	74°30’W	36	Mixed	No contamination	Ar-Ar (impact melt rock)	286±2.6±2.6		Bottomly et al. (1990); Schmieder et al. (2015a)	286±2.6±2.6		
134	Luara	Democratic	10°10’S	27°55’E	17	Sedimentary	Late Neoproterozoic or younger	Ar-Ar (impact melt rock)	286±2.6±2.6		Master et al. (2001); Passy et al. (2011)	286±2.6±2.6		
135	Elbow	Canada	50°59’N	106°43’W	8	Sedimentary	Middle Devonian to pre-Jurassic	Ar-Ar (impact melt rock)	286±2.6±2.6		Master et al. (2001); Passy et al. (2011)	286±2.6±2.6		
136	Saarjärvi	Finland	65°17’N	28°25’E	1.5	Crystalline	Early Carboniferous to Late Permian	Fission track	393–201		Grieve (2006)			
137	Dobcle	Latvia	56°35’N	23°15’E	4.5	Sedimentary	Early Carboniferous to Late Permian	~600–520	401–201		Grieve (2006)			
138	West Hawk Lake	Canada	49°46’N	95°11’W	2.44	Crystalline	Early Carboniferous to Late Permian	Ar-Ar (impact melt rock)	351±207		Masaitis (1999)			
139	Sjöjan	Sweden	61°02’N	14°52’E	52	Mixed	Younger than ~2.22 Ga	Ar-Ar (impact melt rock)	~380±9.2±4.6		Jourdan and Retzlaff (2012)	380±9.2±4.6		
140	Flynn Creek	United States	36°17’N	85°40’W	3.8	Sedimentary	Late Devonian (conodonts)	Ar-Ar (impact melt rock)	~382±Ma		Schieber and Over (2005)	382±Ma		
141	Kaluga	Russia	54°30’N	36°15’W	15	Mixed	Middle Devonian	Ar-Ar (impact melt rock)	~394 to 383		Masaitis (1999, 2002)			
142	Nicholson Lake	Canada	62°40’N	102°41’W	12.5	Mixed	Early Carboniferous to Late Permian	Ar-Ar (impact melt rock)	357±5.5		McGregor et al. (2018)			
143	Crovod Creek	United States	37°50’N	91°23’W	7	Sedimentary	Early Ordovician to pre-Pennsylvanian	Ar-Ar (impact melt rock)	485–323		Snyder and Gerdemann (1965)	485–323		
144	Lac Couture	Canada	60°08’N	75°20’W	8	Crystalline	Early Ordovician to pre-Pennsylvanian	Ar-Ar (impact melt rock)	429±25		Bottemy et al. (1990); recalculated Lepaulaud et al. (2019)	429±25		
145	Tunnunik (Prince Albert)	Canada	72°27’N	113°54’W	25	Sedimentary	Katian or younger (Neville Fm.)	Ar-Ar (impact melt rock)	453±430		Whitehead et al. (2003); Schmieder et al. (2019)	453±430		

(continued)
No.	Impact structure	Country	Latitude	Longitude	Diameter (km)	Type of target rock	Type of impacta	Stratigraphic age constraints	Radioisotopic age constraints	Other age constraints	Recommended age (Ma)	Recommended age referencea	Pre-reCalculation age (Ma)
147	Ilynuts	Ukraine	49°08'N	29°11'E	8.5	Mixed	Iron?	Ar-Ar (impact melt breccia)	~445±20	Pesonen et al. (2004)			
148	Glasford	United States	40°36'N	89°47'W	4	Sedimentary		Ar-Ar (impact melt rock)	450±2	Bottomley et al. (1990), recalculated	445 ± 2		
149	Pilot	Canada	60°17'N	111°01'W	6	Crystalline		Ar-Ar (impact melt rock)	~450	Sharpton et al. (1997); Grieve (2006)			
150	Slate Islands	Canada	48°40'N	87°00'W	30	Mixed		Ar-Ar (impact melt rock)	~450	Miheen (1994)			
151	Calvin	United States	41°50'N	85°57'W	8.5	Sedimentary	Crystalline	458–444	~453–445	McGregor et al. (2019)			
152	La Moineerie	Canada	45°26'N	66°37'W	8	Crystalline		U-Pb (LA-ICP-MS on apatite)	543±3	Mckay et al. (1996)			
153	Brent	Canada	46°05'N	78°29'W	3.8	Crystalline	Chondrite (L. or LL?)	458–453	~458	Milstein (1994)			
154	Kärdeja	Estonia	58°59'N	22°40'E	4	Mixed	Transition A. curvata/	455±1		Grahm et al. (1996)			
155	Lockne	Sweden	63°00'N	14°48'E	7.5–14	Mixed	Lower L. dalbyensis zone (= late Sandbian), likely slightly older than Lockne	455±1		Grahm et al. (1996); Grahm (1997); Ormo et al. (2014)			
156	Mälängen	Sweden	62°55'N	14°33.84'E	0.7	Mixed	Lower L. dalbyensis zone (= late Sandbian), likely slightly younger than Kärdeja	455±1		Grahm et al. (1996)			
157	Tvären	Sweden	58°46'N	17°25'E	2	Mixed	Contemporaneous with Lockne	458		Ormo et al. (2014); Ormo et al. (2014)			
158	East Clearwater Lake	Canada	56°05'N	74°07'W	26	Crystalline	Chondrite (L. or LL?)	458		Ormo et al. (1994); Grahm et al. (1996)			
159	Hummeld	Sweden	57°22'04"N	16°14.56'E	1.2	Mixed	Chondrite	465±1		Bottomley et al. (1990); Schneider et al. (2015a)			
160	Granby	Sweden	58°25'N	14°56'E	3	Sedimentary	Upper C. regnelli zone (= early Darriwilian)	466±1		Awramark et al. (2015), after Grahm et al. (1996)			
161	Decovna	United States	43°19'N	91°46'WW	5.5	Sedimentary	Early–Middle Darriwilian (Middle Ordovician)	467±2		Bergstrom et al. (2018); French et al. (2018)			
162	Ames	United States	36°15'N	98°10'W	16	Mixed	Early–Middle Darriwilian (Middle Ordovician)	468±1		Koebel et al. (2001)			
163	Rock Elm	United States	44°43'N	92°14'W	6	Sedimentary	Early to Middle Ordovician (Fossil to Darriwilian)	472±2		Conda (1985); French et al. (2004)			
164	Lawn Hill	Australia	18°40'S	138°39'E	18	Mixed	Early to Middle Ordovician	476±2		Darlington et al. (2016), recalculated			
165	Ramgath	India	25°20'N	76°37'E	10	Sedimentary	Neoproterozoic to Middle Jurassic (Callovian)	~750 to 1655		Ray et al. (2003); Kenkmann et al. (2019)			

(continued)
No	Carwell	Location	Other age constraints
166	Carswell	Canada 58°27'N 109°30'W 39 Mixed	Ar-Ar (adularia in impact melt rock)
167	Newport	United States 48°58'N 101°58'W 3 Sedimentary	Late Cambrian to Early Ordovician (Deadwood, Fm.)
168	Mizarai	Lithuania 54°00'N 23°54'E 5 Mixed	Early Ordovician to Early to Middle Cambrian
169	Ritland	Norway 59°14'N 6°26'E 2.7 Mixed	Early Cambrian
170	Neugrand	Estonia 59°20'N 23°33'E 20 Crystalline	Neoprotorezoic to Cambrian; Nonmagmatic iron?
171	Gardnos	Norway 60°39'N 9°00'E 5 Crystalline	Neoprotorezoic to Cambrian; Chondrite?
172	Holford	Canada 44°28'N 76°38'W 2.35 Crystalline	Latest Protorezoic to Early Paleozoic; Distal ejecta in Ediacaran Bushveld.
173	Acraman	Australia 32°01'S 155°27'E 40-90 Crystalline (dacite)	U-Pb (zircon in melt breccia)
174	Saiikjarvi	Finland 61°24'N 22°24'E 6 Crystalline	Same iron? Iron? Chondrite? Ashochondrite
175	Strangways	Australia 15°12'S 133°35'E 25 Mixed	U-Pb (zircon from impact melt rock)
176	Beaverhead	United States 44°36'N 113°00'W 60 Mixed	Ar-Ar (impact melt rock)
177	Janisjarvi	Russia 61°58'N 30°55'E 14 Crystalline	Ar-Ar (impact melt rock)
178	Goyder	Australia 13°29'S 135°02'E 3 Sedimentary	Mesoproterozoic or younger; Paleoproterozoic (Penicosti Sandstone) or younger; younger than Yampi Orogeny; older than Ediacaran (Marinoan glaciation)
179	Spider	Australia 16°44'S 126°05'E 13 Sedimentary	Paleoproterozoic or younger; Mesoproterozoic or younger
180	Île Rouleau	Canada 50°41'N 73°53'W 4 Sedimentary	Paleoproterozoic or younger; Mesoproterozoic or younger
181	Santa Fe	United States 35°45'N 105°56'W 6-13 Crystalline	U-Pb (zircon)
182	Matt Wilson	Australia 15°30'S 131°11'E 7.5 Sedimentary	Mesoproterozoic (Jasper Gorge Sandstone) or younger
183	Shoemaker (Lake Teague)	Australia 25°52'S 120°53'E 30 Mixed	Mesoproterozoic (Teague Granite) or younger; Paleoproterozoic or younger
184	Sumunnen	Finland 62°39'N 25°22'5'CE 2.6 Crystalline	Mesoproterozoic to Early Cambrian; Paleoproterozoic to Early Cambrian; Neoprotorezoic to Neoprotorezoic
185	Clewiston	Australia 18°10'S 137°56'E 15 Sedimentary	Minimum K-Ar alteration age (illite)
186	Foehn	Australia 16°40'S 136°47'E 6 Sedimentary	K-Ar alteration age (illite)
187	Iso-Naakkima	Finland 62°11'57"N 27°07'59"E 3 Sedimentary	K-Ar alteration age (illite)
188	Kametuk	Ukraine 47°46'N 32°21'E 1.2 Crystalline	Paleoproterozoic to Lake Miozero Protorezoic (Dalgalantia Superserie) -- Bjögian, Middle Janiasic
189	Woodleigh	Australia 26°05'S 114°43'E 60 Mixed	Paleoproterozoic to Lake Miozero Protorezoic (Dalgalantia Superserie) -- Bjögian, Middle Janiasic

Table 1. (Continued)
No	Impact structure	Country	Latitude	Longitude	Diameter (km)	Type of target rock	Type of impactor	Stratigraphic age constraints	Radiometric age constraints	Other age constraints	Recommended age (Ma)	Recommended age reference	Pre-reconstruction age (Ma)
190	Kelly West	Australia	19°56'S	133°57'E	10	Crystalline	Proterozoic, likely Neoproterozoic	Paleozoic to later Neoproterozoic	Ar-Ar (impact melt breccia)	~1640 to 550	~1700 to 541	Haines (2005)	
191	Amelia Creek	Australia	20°51'S	134°53'E	20	Mixed		Paleozoic to later Neoproterozoic	Ar-Ar (impact melt breccia)	1151±10	Haines (2005)		
192	Keurusselkä	Finland	62°08'N	24°36'E	30	Crystalline		Paleozoic to later Neoproterozoic ?	~1870 to 541	1849.53±0.21	Krogh et al. (1984); Davis (2008)		
193	Liverpool	Australia	12°24'S	134°03'E	1.6	Sedimentary		Paleozoic to later Neoproterozoic ?	~1870 to 541	2023±4	Kamo et al. (1996)		
194	Söderfjärden	Finland	63°00'N	21°35'E	6.6	Crystalline		Ar-Ar (melt breccia)	~1880 to 640	Schmieder et al. (2014b)	Schmieder et al. (2016b); Schwarz et al. (2016a)		
195	Suvasvesi South	Finland	62°24'N	28°12'E	3.8	Crystalline		Ar-Ar (impact melt breccia)	~710 to 1880	1849.53±0.21	Krogh et al. (1984); Davis (2008)		
196	Presqu‘ile	Canada	49°43'N	78°48'W	24	Crystalline		Neoarchean or younger	<27.29	Higgins and Tait (1990)			
197	Sudbury	Canada	46°36'N	81°11'W	200	Crystalline		U-Pb (CA-TIMS, melt-grown zircon in felsic norite)	1849.53±0.21	2023±4	Kamo et al. (1996)		
198	Vredefort	South Africa	27°07'S	27°30'E	250	Crystalline		U-Pb (CA-TIMS, melt-crystallized zircon)	~2500 to 1700	2229±5	Fletcher and McNaughton (2002); Erickson et al. (2019a, 2019b)		
199	Dhala	India	25°18'N	78°08' E	11	Mixed		Younger than Bundelhund Craton, older than Vindhyan Supergroup U-Pb (monazite and zircon in impact melt rock)	~2500 to 1700	2229±5	Fletcher and McNaughton (2002); Erickson et al. (2019a, 2019b)		
200	Yarrabubba	Australia	27°10'S	119°50' E	30–70	Crystalline							

Sorting by “numerical” age (not listed for stratigraphic maximum ages). A stratigraphic age of ≤573 Ma (Luizi) can alternatively be written as a numerical value of 287±287 Ma and is then listed before a seemingly younger age, such as 455±1 Ma (Lockne). In such cases, the more conservative stratigraphic maximum/minimum age notation is preferred over the numerical value.

1Type of target rock largely taken from the Earth Impact Database (as of 2018; now offline) and Osinski and Grieve (2019).
2Type of impactor taken from the Earth Impact Database (2018) and the literature, including Palme et al. (1978, 1979, 1981), Morgan et al. (1993), Evans et al. (1993), Schmidt and Pernicka (1994), Schmidt et al. (1997), Koeberl (1998), Maier et al. (2006), Tagle and Hecit (2006), Koeberl et al. (2007a), Tagle et al. (2009), Goderis et al. (2009, 2013), Koeberl (2014), Magna et al. (2017), Pati et al. (2017), Buchner et al. (2018), and Moust et al. (2019), and references in those articles.
3Recalculated ages calculated using the ASTAR tool of Mercer and Hodges (2016).
4Temporary impact penetration hole.
5Impact pit(s).
6Field of impact craters (higher energy) together with impact pits and/or funnels (lower energy). CA-TIMS = Chemical abrasion thermal ionization mass spectrometry; ID-TIMS = Isotope dilution thermal ionization mass spectrometry; LA-ICP-MS = Laser ablation inductively coupled plasma mass spectrometry; SHRIMP = Sensitive high-resolution ion microprobe; SIMS = Secondary ion mass spectrometry.
Impact ejecta and deposits	Country	Latitude	Longitude	Diameter (km)	Type of impactor	Stratigraphic age constraints	Radioisotopic age constraints	Other age constraints	Recommended age reference	Recommended age (Ma)	Pre-recalculation age (Ma)
1 Rio Cuarto (fresh)	Argentina	Chondrite (H?)	Holocene	Ar-Ar (glass)	Source crater uncertain	~0.004 to 0.010, 0.006 to 0.002	Schulte et al. (2004, 2006)	0.114 ± 0.026	0.07 ± 0.2	0.114 ± 0.026	0.114 ± 0.026
2 Rio Cuarto (old)	Argentina	Chondrite (H?)	Pleistocene	Ar-Ar (glass)	Source crater uncertain	0.115 ± 0.026, recalculated	Schulte et al. (2004, 2006), Bland et al. (2002)	0.230 ± 0.030, recalculated	0.445 ± 0.021	0.45 ± 0.021	
3 Centinela del Mar	Argentina	Chondrite	Pleistocene	Ar-Ar (glass)	Source crater uncertain	0.232 ± 0.030, 0.449 ± 0.021	Schulte et al. (2004, 2006), recalculated	0.445 ± 0.021	0.45 ± 0.021		
4 Belize impact glass	Belize	Chondrite	Pleistocene	Ar-Ar (glass)	Source crater uncertain	0.769 ± 0.016	0.445 ± 0.021	0.45 ± 0.021			
5 Australasian Tektites	Semiglobal	Chondrite?	Pleistocene	Ar-Ar (glass)	Source crater uncertain	0.788 ± 0.028	Schultz et al. (2004, 2006), recalculated	0.816 ± 0.007	-	-	
6 Darwin Glass	Australia	Pleistocene	Ar-Ar (glass)	Source crater uncertain	0.828 ± 0.007	Lo et al. (2002), recalculated	Jourdan (2012), after Koehler et al. (1997b)	3.33 ± 0.10	5.33 ± 0.05	5.33 ± 0.05	
7 Ivory Coast tektites	Africa	Chondrite	Pleistocene	Ar-Ar (glass)	Source crater uncertain	3.64 ± 0.007	Jourdan et al. (2010), recalculated	3.33 ± 0.10	5.33 ± 0.05	5.33 ± 0.05	
8 Eocene or younger?											
9 Bolivian Blanca	Argentina	Pleistocene	Ar-Ar (glass)	Source crater uncertain	3.64 ± 0.007	Jourdan et al. (2010), recalculated	3.33 ± 0.10	5.33 ± 0.05	5.33 ± 0.05		
10 Chassigno	Argentina	Pleistocene	Ar-Ar (glass)	Source crater uncertain	3.64 ± 0.007	Jourdan et al. (2010), recalculated	3.33 ± 0.10	5.33 ± 0.05	5.33 ± 0.05		
11 Atacamaite	Chile	Pleistocene	Ar-Ar (glass)	Source crater uncertain	3.64 ± 0.007	Jourdan et al. (2010), recalculated	3.33 ± 0.10	5.33 ± 0.05	5.33 ± 0.05		
12 Torkelena	Denmark	Pleistocene	Ar-Ar (glass)	Source crater uncertain	3.64 ± 0.007	Jourdan et al. (2010), recalculated	3.33 ± 0.10	5.33 ± 0.05	5.33 ± 0.05		
13 Central European Tektites	Czech Republic, Austria, Germany, Poland	Middle Miocene	Ar-Ar (glass)	Source crater uncertain	3.64 ± 0.007	Jourdan et al. (2010), recalculated	3.33 ± 0.10	5.33 ± 0.05	5.33 ± 0.05		
14 Uraguas	Uruguay	Middle Miocene	Ar-Ar (glass)	Source crater uncertain	3.64 ± 0.007	Jourdan et al. (2010), recalculated	3.33 ± 0.10	5.33 ± 0.05	5.33 ± 0.05		
15 Libyan Desert Glass	Egypt	Eocene	Ar-Ar (glass)	Source crater uncertain	3.64 ± 0.007	Jourdan et al. (2010), recalculated	3.33 ± 0.10	5.33 ± 0.05	5.33 ± 0.05		
16 North American Tektites	United States	Late Eocene	Ar-Ar (glass)	Source crater uncertain	3.64 ± 0.007	Jourdan et al. (2010), recalculated	3.33 ± 0.10	5.33 ± 0.05	5.33 ± 0.05		
17 Chondrites											
18 K/T (K/Pg)	Worldwide	Paleocene	Eocene boundary	Ar-Ar (glass)	Source crater uncertain	3.64 ± 0.007	Jourdan et al. (2010), recalculated	3.33 ± 0.10	5.33 ± 0.05	5.33 ± 0.05	
19 Paleogene boundary ejecta	Atlantic	Paleocene	Eocene boundary	Ar-Ar (glass)	Source crater uncertain	3.64 ± 0.007	Jourdan et al. (2010), recalculated	3.33 ± 0.10	5.33 ± 0.05	5.33 ± 0.05	
20 Nunavut (Disko)	Greenland	Paleocene	Eocene boundary	Ar-Ar (glass)	Source crater uncertain	3.64 ± 0.007	Jourdan et al. (2010), recalculated	3.33 ± 0.10	5.33 ± 0.05	5.33 ± 0.05	
21 K/T (K/Pg) boundary ejecta Worldwide	Carbonaceous chondrite	Paleocene	Ar-Ar (glass)	Source crater uncertain	3.64 ± 0.007	Jourdan et al. (2010), recalculated	3.33 ± 0.10	5.33 ± 0.05	5.33 ± 0.05		
22 Tookooomoka ejecta horizon	Australia	Paleocene	Ar-Ar (glass)	Source crater uncertain	3.64 ± 0.007	Jourdan et al. (2010), recalculated	3.33 ± 0.10	5.33 ± 0.05	5.33 ± 0.05		
23 Eocene boundary ejecta	Australia	Paleocene	Ar-Ar (glass)	Source crater uncertain	3.64 ± 0.007	Jourdan et al. (2010), recalculated	3.33 ± 0.10	5.33 ± 0.05	5.33 ± 0.05		
24 Late Triassic boundary ejecta	United Kingdom	Paleocene	Ar-Ar (glass)	Source crater uncertain	3.64 ± 0.007	Jourdan et al. (2010), recalculated	3.33 ± 0.10	5.33 ± 0.05	5.33 ± 0.05		
25 Late Devonian boundary ejecta	China	Paleocene	Ar-Ar (glass)	Source crater uncertain	3.64 ± 0.007	Jourdan et al. (2010), recalculated	3.33 ± 0.10	5.33 ± 0.05	5.33 ± 0.05		
26 Senessee/Hony ejecta	Belgium	Paleocene	Ar-Ar (glass)	Source crater uncertain	3.64 ± 0.007	Jourdan et al. (2010), recalculated	3.33 ± 0.10	5.33 ± 0.05	5.33 ± 0.05		
27 Late Triassic boundary ejecta	United States	Paleocene	Ar-Ar (glass)	Source crater uncertain	3.64 ± 0.007	Jourdan et al. (2010), recalculated	3.33 ± 0.10	5.33 ± 0.05	5.33 ± 0.05		

(continued)
Impact ejecta and deposits	Country	Latitude	Longitude	Diameter (km)	Type of impactor	Stratigraphic age constraints	Radioisotopic age constraints	Other age constraints	Recommended age (Ma)	Recommended age reference	Pre-recalculation age (Ma)	
28 Hallen ejecta layer	Sweden					Late Sandbian (Late Ordovician)	From Lockne–Målingen impact	Source crater unknown	~ 455	Starkell et al. (2000)		
29 Osmussaar Breccia	Estonia	59°18'N	23°21'E			Middle Ordovician (Early Darriwilian)		Source crater unknown	~ 466	Ahmavark et al. (2010)		
30 Valkejokiik Breccia	Sweden	68°22'N	19°14'E			Middle Cambrian	Source crater hidden underneath mountain		~ 521 to 514	Örmo et al. (2017)		
31 Acreman-Bunyeroo horizon	Australia					Chondrite	From Acreman impact		~ 655	Schmidt et al. (2015b)		
32 Boa Pada Member	Scotland; United Kingdom					Chondrite	Mesoproterozoic	Ar-Ar (authigenic K-feldspar)	Source crater hidden	1177 ± 5	Parnell et al. (2011)	
33 Lake Superior/ Michigan ejecta	United States					Paleoproterozoic	From Sudbury impact		1849.53 ± 0.21	Addison et al. (2005); Cannon et al. (2010)		
34 Grønnesø	Greenland					Carbonaceous chondrite	Paleoproterozoic	Source crater unknown	~ 1990	Glass and Simonson (2012, 2013); Huber et al. (2019)		
35 Zaonega spherules	Russia					Carbonaceous chondrite	Paleoproterozoic	Source crater unknown	~ 2050 to 1975	Glass and Simonson (2012, 2013); Huber et al. (2014)		
36 Dales Gorge; Kuruman	Western Australia; South Africa					Ordinary chondrite? Enstatite chondrite? Chondrite?	Paleoproterozoic	Source crater unknown	2495 ± 16	Simonson et al. (2009); Glass and Simonson (2012, 2013); Simonson et al. (2009); Hassler et al. (2011); Glass and Simonson (2012, 2013)		
37 Bee Gorge; Parahurudoo; Rev 80; Wittenoom Jeeramale	Western Australia; South Africa					Ordinary chondrite? Enstatite chondrite?	Novarocran	Source crater unknown	2541 ± 18	Glass and Simonson (2012, 2013); Simonson et al. (2009); Hassler et al. (2011); Glass and Simonson (2012, 2013)		
38 Carawine; Monteville	Western Australia; South Africa					Ordinary chondrite? Enstatite chondrite?	Novarocran	Source crater unknown	2629 ± 5	Rasmussen et al. (2005); Simonson et al. (2009); Glass and Simonson (2012, 2013)		
39 S5 (Barberton)	South Africa					Paleorachn	Source crater unknown	~ 3234	Lowe and Byeby (2010); Glass and Simonson (2012, 2013); Lowe et al. (2014); Lowe et al. (2003, 2014); Lowe et al. (2012, 2013); Lowe et al. (2012, 2013)			
40 S4 (Barberton)	South Africa					Carbonaceous chondrite	Paleorachn	Source crater unknown	~ 3234	Lowe et al. (2003, 2014); Lowe et al. (2012, 2013); Lowe et al. (2012, 2013)		
41 S3 (Barberton)	South Africa					Carbonaceous chondrite	Paleorachn	Source crater unknown	~ 3243	Lowe et al. (2003, 2014); Lowe et al. (2012, 2013); Lowe et al. (2012, 2013)		
42 S2 (Barberton)	South Africa					Carbonaceous chondrite	Paleorachn	Source crater unknown	~ 3260	Lowe et al. (2003, 2014); Lowe et al. (2012, 2013); Lowe et al. (2012, 2013)		
43 S6 (Barberton)	South Africa					Carbonaceous chondrite	Paleorachn	Source crater unknown	~ 3330	Lowe and Byeby (2010); Glass and Simonson (2012, 2013); Lowe et al. (2014)		
44 S7 (Barberton)	South Africa					Carbonaceous chondrite	Paleorachn	Source crater unknown	3416 ± 5	Lowe et al. (1991); Lowe and Byeby (2010); Glass and Simonson (2012, 2013); Lowe et al. (2014)		
45 Marble Bar	Western Australia					Paleorachn	Source crater unknown	~ 3460	Glass and Simonson (2012, 2013); Lowe et al. (2014); Glass and Simonson (2012, 2013); Lowe et al. (2014)			
46 S1 (Barberton); Warrawoona	South Africa; Western Australia					Paleorachn	Source crater unknown	3470 ± 2	Byefy et al. (2002); Lowe et al. (2003, 2014); Lowe et al. (2012, 2013)			

*Type of impactor taken from Menec et al. (1990), Koeberl (1997), McDonald (2002), Kyte et al. (2003, 2011), Tagle and Hect (2006), Simonson et al. (2009), Godier et al. (2012, 2013, 2017), Glass and Simonson (2013), Koeberl (2014), Mougel et al. (2017), Folco et al. (2018), and references in those articles.

*Recalculated age calculated using the ArAr tool of Mercier and Hodges (2016).
muscovite and is, therefore, not recommended as a standard in modern Ar–Ar geochronology (Heri et al., 2014). Finally, some impact structures, predominantly those in Russia and Ukraine, have only K–Ar ages (e.g., Val’ter et al., 1981; Gurov et al., 2009). Because any possible disturbance of the isotopic system (e.g., alteration or contamination with older material as outlined above) cannot be identified and quantified, K–Ar age values should be treated as “ballpark” numbers until more robust Ar–Ar results are available.

2.3. Rb–Sr, (U–Th)/He, and 14C ages

The Rb–Sr method has been applied to impact melt lithologies and mineral separates from a number of terrestrial impact structures (e.g., Reimold et al., 1981; Deutsch et al., 1992). However, Rb–Sr ages are notoriously unreliable due to the high mobility of Rb and Sr and, consequently, the susceptibility of the Rb–Sr isotopic system to alteration (e.g., Jourdan et al., 2009; Nebel et al., 2011; Schmieder et al., 2015a). Today, all of the older Rb–Sr ages for terrestrial impact structures (e.g., Reimold et al., 1981) have been superseded by more robust U–Pb and/or Ar–Ar ages and, therefore, none of the original Rb–Sr results is recommended as best-estimate ages in this summary (Table 1).

The low-temperature (U–Th)/He geothermochronometer can monitor the cooling of impact lithologies to temperatures below approximately 200–180°C using zircon and ~110–40°C using the less He-retentive mineral apatite (e.g., Stockli et al., 2000; Farley and Stockli, 2002; Farley, 2002; Reiners et al., 2004; Reiners, 2005). While (U–Th)/He analyses of uplifted basement rocks at the large Manicouagan impact structure resulted in ages younger than the impact age due to slow cooling and postimpact He loss (van Soest et al., 2011; Biren et al., 2014), (U–Th)/He age determinations for other terrestrial impact structures and distal ejecta deposits yielded ages that are, within error, consistent with U–Pb and Ar–Ar ages (Young et al., 2013; Biren et al., 2019) and precise stratigraphic ages (Wartho et al., 2012). In the absence of more robust stratigraphic and isotopic age constraints, a (U–Th)/He age of 663 ± 90 ka currently represents the most reasonable estimate for the age of the ~350-m-diameter Monturaqui impact crater in the Chilenan Andes (Ukstins Peate et al., 2010).

Finally, the 14C (radiocarbon) method has occasionally been applied to charcoal and other types of organic material found at geologically young impact craters, such as the Xiuyan crater in China (>50 ka) (Liu et al., 2013) and the Kaali and Ilumetsa impact crater fields in Estonia (Losiak et al., 2016, 2017, 2019). Because of the short half-life of 14C of ~5730 years, the method fails to determine ages older than roughly 50,000 years (Hughen et al., 2004; Muscheler et al., 2014).

2.4. Other ages

Impact ages obtained via different methods, such as fission track analysis (on zircon, apatite, or glass) (e.g., Bigazzi and De Michele, 1996), cosmogenic nuclides and exposure ages (e.g., Marrero et al., 2010; Barrows et al., 2019), luminescence (e.g., Prescott et al., 2004), or paleomagnetic methods (e.g., Pesonen et al., 1999; Lepaulard et al., 2019), were selected as best-estimate ages, provided they agree with the local geologic constraints. Recent re-

views of fission track analysis and its application in the Earth sciences are provided by Malusà and Fitzgerald (2019) and articles therein. This technique, based on the identification of damage trails in crystals and glasses induced by the spontaneous fission of 238U in the sample and their density (e.g., Kohn et al., 2019), has been applied to impact lithologies ever since their discovery (e.g., Genty et al., 1967, 1969; Koebel et al., 1993; McHone and Sorkhabi, 1994; Weber et al., 2005). In the case of the 1.13 km-diameter Tswaing impact crater in South Africa, a fission track age of 220±104 ka for impact glass (Storzer et al., 1999) is preferred over a very poorly constrained stratigraphic age (<2.05 Ga) and Ar–Ar results that are disturbed toward more ancient apparent ages due to the presence of inherited 40Ar* sourced from the Paleoproterozoic granitic target rock (Jourdan et al., 2007). Sometimes, these geochronologic techniques provide the only age constraints for an impact structure other than the (maximum) stratigraphic age.

3. Result: A List of Recommended Ages for Terrestrial Impact Structures and Deposits

Significant work on the terrestrial impact structures has produced a large number of ages of different type and quality (e.g., for the Nördlinger Ries in Germany) (Buchner et al., 2010a, 2010b, 2013 and references therein; Schmieder et al., 2018a, 2018b). In such cases, the most precise and accurate ages obtained by using modern isotopic techniques, in line with geologic and stratigraphic constraints, were carefully chosen as the recommended best-estimate impact age. Stratigraphic constraints were calibrated using the latest International Chronostratigraphic Chart (ICS; updated, v2018/08) (Cohen et al., 2013). It is important to keep in mind that stratigraphic ages in the ICS may (slightly) change in the future as those ages are refined.

The recommended terrestrial impact ages (n=200) are listed in Table 1, and ages for impact deposits (distal and proximal ejecta; n=46) are listed in Table 2. Both tables are sorted by age, with the youngest impact structures and deposits on top and the oldest ones at the bottom. Twenty impact structures have either stratigraphic or isotopic ages with relative errors ±1% (e.g., Chixulub and the Ries); 36 have errors ±2%. All terrestrial impact ages are, in addition, plotted in histograms in Fig. 4. They can be used to:

1. reconstruct and quantify the impact (mass) flux in the inner Solar System and, in particular, the Earth–Moon system through geologic time, thereby assessing Earth’s impact rate (e.g., Grieve and Dence, 1979; Montanari et al., 1998; Grieve, 2001a, 2001b; Bland, 2005; Meier and Holm-Alwmark, 2017; Mazrouei et al., 2019);
2. utilize impact ejecta as event markers in the (bio-)stratigraphic record and to refine magnetostratigraphy, for example, around the K/T boundary (e.g., Sprain et al., 2015, 2018) and in the Neogene stratigraphic record (e.g., Schmieder et al., 2018a, 2018b);
3. test models of synchronous double or multiple impacts in the terrestrial record, such as that proposed for the apparent East and West Clearwater Lake impact
crater doublet in Québec, Canada (e.g., Dence et al., 1965; cf. Schmieder et al., 2015a), and the postulated Late Triassic terrestrial impact crater chain (e.g., Spray et al., 1998; cf. Schmieder et al., 2010b, 2014a);

(4) assess the potential link between large impacts and mass extinction and diversification events in the biosphere, exemplified most dramatically by the Chicxulub impact at the K/T boundary (e.g., Alvarez et al., 1980; Rampino, 1999; Grey et al., 2003; Schmitz et al., 2008; Schulte et al., 2010; Racki, 2012; DePalma et al., 2019);

and

(5) constrain the duration of melt sheet crystallization in large impact craters (e.g., Davis, 2008; Kenny et al., 2019a) and the lifetime of hydrothermal systems in cooling impact craters (e.g., Ames et al., 1998; Abramov and Kring, 2004, 2007; Schmieder and Jourdan, 2013a, 2013b; Pickersgill et al., 2019a; Kenny et al., 2019b), which may have served as potential habitats for microbial life on the early Earth and possibly also Mars (e.g., Kring, 2000; Rathbun and Squyres, 2002; Cockell et al., 2003; Osinski et al., 2013; Rummel et al., 2014).

4. Discussion

4.1. Considerations on the terrestrial impact flux from the age distribution

With a representative set of precise and accurate isotopic ages for terrestrial impacts, as well as stratigraphic ages within their generally larger envelope of uncertainty (Tables 1 and 2), one can examine and re-evaluate the potential temporal connection between impact events on Earth themselves and the overall terrestrial impact cratering record (e.g., Grieve and Dence, 1979; Grieve and Robertson, 1979; Grieve, 1987, 1991, 2001a, 2001b; Grieve and Pesonen, 1996).

As more impact structures are discovered and their ages determined and refined, a population of the Phanerzoic impact structures and deposits stands out: those with Ordovician ages. The Ordovician period spans the time between ~485 and ~443 Ma (Cohen et al., 2013). At present, 22 of the currently known 200 impact structures on Earth, that is, more than 10%, have proven or very likely Ordovician ages, creating a distinct age spike in the terrestrial impact cratering record. A representative histogram is shown in Fig. 4. Recent additions to the list of (very likely) Ordovician impacts, based on new U–Pb and Ar–Ar geochronologic results, include, for example, the 54 km-diameter Charlevoix impact structure (453–430 Ma via LA–ICP–MS U–Pb on zircon in impact melt rock) (Schmieder et al., 2019), the 50 km-diameter Carswell impact structure (Alwmark et al., 2017), and the 8 km-diameter Osmussaar Breccia in Estonia (Alwmark et al., 2010), all three located in Canada; as well as the 18 km-diameter Lawn Hill impact structure in Australia (Darlington et al., 2016). Those impact structures, six in the United States, nine in Canada, five in Sweden, and one in Estonia, Ukraine, and Australia, respectively, were produced over several million years (e.g., Grahn et al., 1996; Alwmark et al., 2010). In addition, a large number of fossil meteorites found in Ordovician limestone in Sweden (e.g., Schmitz et al., 1996, 2001) and the impact-produced Osmussaar Breccia in Estonia (Alwmark et al., 2010) testify to a period of enhanced bombardment of Earth by asteroids at that time. Analysis of the fossil meteorites and impact breccias suggests that most of the Ordovician impacts are linked to the collisional breakup of the L-chondrite parent asteroid in space some 470 Myr ago (e.g., Ar–Ar results of Bogard et al., 1976, 1995; Korochantseva et al., 2007;
Swindle et al., 2014), which then sent large masses of partially shock-melted stony meteorites into Earth-crossing orbits. Extraterrestrial chromite grains extracted from reburial deposits of the Lockne impact structure and the Osmussaar Breccia indicated an L-chondritic source (Alwmark and Schnitz, 2007; Alwmark et al., 2010). Geochemical analysis of impact melt rock from the East Clearwater Lake impact structure in Canada also suggested an ordinary (possibly L-) chondritic impactor (Palme et al., 1979; McDonald, 2002; Daly et al., 2018). However, the Ordovician bombardment of Earth was one of numerous but predominantly relatively small asteroids.

Apparent “clusters” of impacts, that is, two or more impact events with overlapping or nearly overlapping ages, also seem to occur in geologic times other than the Ordovician. For example, at least four impact structures, Popigai in Russia (Bottomley et al., 1997, Ar–Ar age recalculated), Chesapeake in the United States (Assis Fernandes et al., 2019), and Wanapitei (Bottomley et al., 1979, recalculated) and Mistastin in Canada (Sylvester et al., 2013), have isotopic ages that all fall in the time range between ~38 and ~35 Ma in the Late Eocene (Cohen et al., 2013). However, not all of their (recalculated) ages overlap (n = 4 impact crater ages; MSWD = 114; p = 0.000). From the age distribution (and the associated uncertainty) alone, the formation of four larger impact structures within a few million years may appear like the usual background production when considering the effective impact crater distribution and cratering rate (Wanapitei-sized impact craters are statistically produced every ~60,000 years; Mistastin-sized craters every ~600,000 years; Chesapeake-sized craters every ~4.5 Myr; and Popigai-sized impact craters every ~26 Myr) (e.g., Grieve and Shoemaker, 1994; French, 1998). However, a distinct ~2.5 Myr-long spike in extraterrestrial 3He in pelagic limestone (Farley et al., 1998), in combination with a strong enrichment in extraterrestrial chromite grains in Upper Eocene sediments of the Global Boundary Stratotype Section and Point (GSSP) for the Eocene–Oligocene at Massignano, Italy, (Schnitz et al., 2015; Boschi et al., 2017), argues for a Late Eocene asteroid (or comet) shower, thereby potentially producing a distinct impact cluster. One mechanism that can explain the formation of clusters in the terrestrial impact crater record is one or more impacts in space causing the breakup of large asteroids into families of asteroids, members of which can then be delivered to the Earth (e.g., Zappalà et al., 1998; Nesvorný et al., 2002, 2006; Farley et al., 2006; Bottke et al., 2007; Claeys and Goderis, 2007; Schmitz et al., 2008). Trace element analysis of impactites suggested that the Popigai and Wanapitei impact structures both had L-chondritic impactors (Masaitis and Raithlin, 1986; Tagle and Claeys, 2004, 2005; Tagle and Hecht, 2006; Tagle et al., 2006), although Kyte et al. (2011) argued that the Popigai-derived Upper Eocene clinoxyroxene sphalerite layer may be linked to the impact of an H-chondrite. The nature of the impactor that produced the Chesapeake crater is, at this point, still somewhat uncertain (McDonald et al., 2009; Goderis et al., 2010). The geochemical and oxygen isotopic analysis of extraterrestrial chromite grains found in Upper Eocene sediments at Massignano indicates an H-chondritic source for the Popigai impact and an L-chondritic source for the somewhat younger Chesapeake impact (Schmitz et al., 2015; Boschi et al., 2017).

In addition to seemingly clustered impacts, the recognition of an apparent periodic pattern in the timing of impact events has caused a debate that started in the mid-1980s and still continues today. Following Raup and Sepkoski (1984), who found that mass extinctions in the Phanerzoic seem to have a periodic pattern potentially caused by extraterrestrial forces (such as periodic comet showers), other researchers also recognized through time-series analysis that large impacts occurred in a similar repetitive pattern of predominantly ~26 and ~30 Myr intervals over the past ~250 Myr and may, therefore, be causally linked (e.g., Alvarez and Muller, 1984; Davis et al., 1984; Rampino and Stothers, 1984; Torbett and Smoluchowski, 1984; Muller, 1985; Rampino and Haggerty, 1996; Rampino and Caldeira, 2015, 2017). However, one should keep in mind that those periodicity models were based on the impact crater ages available in the 1980s and 90s, and since then, other workers have called the proposed periodicity into question (e.g., Grieve et al., 1988; Heisler and Tremaine, 1989; Baks, 1990; Weissman, 1990; Yabushita, 1996; MacLeod, 1998; Montanari et al., 1998; Bailey-Jones, 2011), some of them noting that the apparent periodicity may, in part, be an artificial effect due to the rounding of imprecise impact ages to integer values, often in multiples of 5 or 10 Ma (e.g., Jetsu and Pelt, 2000; Grieve and Kring, 2007). More recently, Meier and Holm-Alwmark (2017) demonstrated that the apparent periodic pattern in Earth’s impact events, at least those filtered for reasonably precise and accurate age constraints (compare Baks, 1990), may be related to clusters of impacts with similar ages that seem to be the main carriers of the periodic signal. Based on refined statistics, they argued that there is currently no evidence for periodicity in the terrestrial impact record when up-to-date impact crater ages are used as input parameters. Ages presented in Tables 1 and 2 of this work aim to help resolve such issues and debates.

In the context of seemingly periodic impacts and extinction events (Raup and Sepkoski, 1984) and the “kill curve” of Raup (1990), we also refer to the role of impacts in Earth’s biosphere (Section 4.4).

Precise and accurate impact ages, moreover, help constrain the preserved terrestrial crater size–frequency distribution and, by inference, estimate the impact cratering rate in the Earth–Moon system in the past. Figure 5 shows the cumulative number of Earth’s impact structures of variable size with reasonably well-constrained ages (~10 Ma error) for the entire Earth, including very small impact craters (and pits) ~7 to 500 m in diameter (which are usually not plotted because they are preferentially removed from Earth’s record by erosion; e.g., Grieve and Dence, 1979; Hughes, 2000). Because the terrestrial impact record is incomplete for several reasons outlined earlier (e.g., Johnson and Bowling, 2014; Hergen and Kenkmann, 2015) (Fig. 1), the lunar impact record and its crater size–frequency distribution are commonly used as a proxy for the impact crater production rate on Earth (e.g., Neukum and Ivanov, 1994; Neukum et al., 2001; Werner et al., 2002; Ivanov et al., 2003). Additional constraints come from the size–frequency distribution of near-Earth asteroids (e.g., Shoemaker et al., 1979; Durda et al., 1998; Morbidelli, 1999; Bottke et al., 2000; Werner et al., 2002; Stuart and Binzel, 2004; Michel and Morbidelli, 2007; Le Feuvre and Wieczorek, 2011; Johnson
and Bowling, 2014; Wheeler and Mathias, 2019), the population of Earth-crossing comets, the Sun’s position in the galactic plane (e.g., Shoemaker, 1998a, 1998b; Ye, 2018), as well as the distribution of extraterrestrial ³He (Farley, 1995, 1998, 2001), platinum-group metals (Peucker-Ehrenbrink, 2001), and fossil meteorites and extraterrestrial chromite grains (e.g., Schmitz et al., 1996, 2001, 2015; Heck et al., 2004; Alwmark and Schmitz, 2009; Schmitz, 2013) in marine sediments. While some authors proposed that the impact flux in the Earth–Moon system has continuously declined over the past 3 Gyr (Minton and Malhotra, 2010), others suggested that the impact flux has remained more or less stable over the last 2 Gyr (e.g., Neukum and Ivanov, 1994; Hörz, 2000; Hughes, 2000). Part of this debate is whether the Earth has seen a significant increase of impacts, particularly those producing craters >20 km in diameter, over the last few hundred Myr—perhaps by a factor of two or three (e.g., Grieve, 1984; McEwen et al., 1997; Shoemaker, 1998a, 1998b; Hughes, 2000; Bland, 2005; cf. Grier et al., 2001). More recently, Mazrouei et al. (2019) suggested that the terrestrial impact flux experienced an increase by a factor of 2.6 some 290 Myr ago. It is beyond the scope of this geochronology-focused article to assess Earth’s effective impact cratering rate, but while Bland (2005) provides a useful summary and discussion, the list of recommended impact ages (Tables 1 and 2) may help place additional constraints on the Proterozoic (2.5 Ga to ~541 Ma) and Phanerozoic (~541 Ma until present) terrestrial impact crater production.

4.2. Impact-delivered extraterrestrial mass accreted on Earth over time

While the distribution of impact ages in the geologic time line suggests that the Earth was hit by asteroids (and/or comets) more frequently during, for example, the Ordovician compared with other periods of time, it is important to note that this temporal distribution is biased by various factors. First, the terrestrial impact cratering record is, with currently 200 impact structures recognized on Earth, very limited and, therefore, not representative of a planetary production record (e.g., Grieve and Dence, 1979; Johnson and Bowling, 2014). Because the majority of impactors hit the seafloor (particularly during geologic times with supercontinents) and the oceanic crust has been tectonically recycled in multiple Wilson cycles over ~2 Gyr (e.g., Scotese, 2001), most impact structures have been removed from Earth’s surface (e.g., Johnson and Bowling, 2014; Hergarten and Kenkmann, 2015). With the exception of the ~20 to 40 km-diameter Jurassic–Cretaceous Mjølnir impact structure off the coast of Norway (Dypvik et al., 1996), the ~45 km-diameter Eocene Montagnais impact structure on the Scotian Shelf of eastern Canada (Jansa et al., 1989), and evidence for the Pleistocene submarine Eltanin impact (Gersonde et al., 1997), no impact structures are currently known on the present-day seafloor. Second, some countries (e.g., the United States, Canada, Australia, and many European countries) have a longer tradition in impact crater research compared with others (e.g., China), which may cause an apparent preponderance of impacts in those countries and their respective geologic settings. Australia and Finland, for example, have a relatively high density of preserved Precambrian impact structures because much of their landmass consists of Archean and Proterozoic rocks that can preserve this old cratering record (Fig. 2). Third, impact ages can be more precisely determined stratigraphically in well-characterized sedimentary target settings similar to that at the Lockne crater, Sweden, than in others (e.g., Île Rouleau, Canada), an effect that probably contributes to the impact age spike in the Ordovician. Lastly, the impact age distribution shown in Fig. 4 does not take into account the actual magnitude of the impact events that occurred over time, which can be expressed by the mass of projectile material delivered to Earth during impact and the corresponding impact energy (half of the projectile mass times the impact velocity squared) (e.g., French, 1998).

An alternative and perhaps more informative way of representing the impact flux through geologic time is plotting the accreted impactor mass versus time (Fig. 6). By using equations modified after the work of Abramov et al. (2012) and well-established impact crater scaling laws (e.g., Grieve et al., 1981; Lakomy, 1990; Melosh, 1989), along with
reasonable constraints on the type of impactors (e.g., Tagle and Hecht, 2006; Goderis et al., 2012; Koeberl, 2014), their bulk density (e.g., Consolmagno and Britt, 1998; Consolmagno et al., 2008; Macke, 2010; Macke et al., 2011), different types of target rock (e.g., Abramov et al., 2012), and variable impact velocities (e.g., between 10 and 20 km$^{-1}$), the absolute and relative mass flux can be calculated. However, because many of the input parameters are associated with significant uncertainties, these calculations can only provide approximate first-order estimates. For this purpose, we calculated the mass of the three largest impacting bodies based on transient crater diameter values in the literature (125 km for Vredefort, 110 km for Sudbury, and 100 km for Chicxulub) (Stöffler et al., 1994; Kring, 1995, 2005; Therriault et al., 1997; Grieve and Therriault, 2000). Moreover, such calculations do not take into account the mass accreted from potentially large impacts on Earth that created the Archean spherule layers because the size and type of those projectiles are not well constrained. (One could potentially use the thickness of an ejecta layer as a gauge for the corresponding impactor size, but distal ejecta layers become thinner with distance from their source crater and postimpact sedimentary reworking commonly modifies the thickness of fallout deposits; e.g., McGetchin et al., 1973; Simonson et al., 2000; Byerly et al., 2002; Johnson and Melosh, 2012; Johnson et al., 2016.) Therefore, estimates of the total accreted projectile mass based on the impact crater record alone are minimum estimates.

Doing the relative mass flux calculations for the partially preserved terrestrial impact crater record ($n = 200$) with the above caveat in mind (and not taking into account the [large] impacts that produced the terrestrial impact ejecta deposits), a few things become immediately apparent (Fig. 6): The giant Vredefort impact alone delivered >40% of the total projectile mass accreted among all 200 known crater-forming impacts over the last >2 Gyr, and the three largest impact structures on Earth—Vredefort, Sudbury, and Chicxulub—were created by projectiles that together make up >90% of that total impactor mass. The end-Cretaceous Chicxulub impact concentrates >70% of all extraterrestrial mass in the Phanerozoic impact crater record ($n = 172$). In contrast, other relatively large impacts (e.g., Acraman and Manicouagan) in the Ediacaran and Phanerozoic only contributed a small percentage of the total impactor mass. For example, the Ordovician impacts, creating a large group of medium-sized and smaller impactors with proven and likely Ordovician ages (Fig. 4) (Section 4.1), only delivered ~0.3% of the total impactor mass (Fig. 6) because those projectiles were, although numerous, relatively small. Seeingly sizeable impact events such as the Ries–Steinheim double impact ~14.8 Myr ago (Stöffler et al., 2002; Schmieder et al., 2018a, 2018b) and the three largest Pleistocene impacts (Bosumtwi, Zhamanshin, and Pantasma, not including the enigmatic impact that created the large Australasian tektite strewn field) (e.g., Hartung and Koeberl, 1994; Cavosie, 2018; Rochette et al., 2019), all producing impact craters >10 km in diameter, delivered asteroid masses that are statistically insignificant (~0.01% or less). Such calculations put the production rate, relative abundance, and effective significance of large- versus medium-sized
and small impacts through geologic time (e.g., Grieve and Dence, 1979; Grieve, 2001a, 2001b; Meier and Holmlund Alwmark, 2017; Rampino and Caldeira, 2017; Mazrouei et al., 2019) into a different perspective.

However, one should also keep in mind that the above relative impactor mass distribution is only relevant to the partially preserved impact crater record observable today \((n = 200)\) and, therefore, draws a distorted image of the true impact crater production over time. Assuming Chicxulub-sized (\(~180\) km diameter) impacts occur approximately every \((100–150\) Myr (Grieve and Shoemaker, 1994; Neukum and Ivanov, 1994; French, 1998), the production record for the past \(~2\) Gyr, at a more or less constant impact rate, would contain \(~20\) Chicxulub- or Sudbury-sized impacts (producing \(~150\) to \(200\) km-diameter craters), \(~77\) Popigai-sized impacts (\(~100\) km), \(~450\) Siljan-sized impacts (\(~50\) km), and \(~5780\) Ries-sized impacts (\(~20\) km). Those \(>6000\) impacts producing craters \(>20\) km in diameter would have delivered several hundred million megatons of impactor material to Earth, only \(~6\)% of which would have been concentrated in the Vredefort projectile (Chicxulub \(~3\)%). The same calculations adjusted for an impact rate \(~2\) to \(3\) times lower before \(\sim 0.3\) Ga (e.g., Shoemaker, 1998b; Mazrouei et al., 2019) yield roughly \(2300\) impacts producing craters \(>20\) km in diameter over \(~2\) Gyr (Vredefort \(~10\%\); Chicxulub \(~5\%) of accreted impactor mass). The above calculations, depending on the cratering rate chosen, suggest that today’s partial preservation record \((n = 200)\) represents only some \(15–25\)% of the impact craters produced over the past \(~2\) Gyr. These estimates are broadly consistent with those of Johnson and Bowling (2014).

4.3. Geochronologic evidence for double and multiple impact events on Earth

There has been an ongoing debate about the geologic and geochronologic evidence for double and multiple impact events on Earth (Spray et al., 1998; Miljković et al., 2013, 2014; Schmieder et al., 2014a, 2014c, 2015a, 2016b). Classic examples of pairs of closely spaced impact craters are the \(~25\) km Nordlinger Ries and \(~3.8\) km Steinheim Basin in Germany (Stöffler et al., 2002) and the two Clearwater Lakes in Québec, Canada (e.g., Dence et al., 1965; Schmieder et al., 2015a) (Fig. 7). While the age of the Nordlinger Ries is precisely constrained (tektite Ar–Ar age of \(14.808 \pm 0.038\) Ma) (Schmieder et al., 2018a, 2018b), the

![FIG. 7. The two clearwater Lakes in Québec, Canada. The western structure, West Clearwater Lake, is \(~36\) km in diameter and has a ring of islands where impact melt-bearing rocks occur. The eastern structure, East Clearwater Lake \(~26\) km in diameter, has a more subtle appearance. Both impact structures were considered to represent a 290 million year-old impact crater doublet (Dence et al., 1965; Reimold et al., 1981) until recently. New Ar–Ar geochronologic results, however, demonstrate that the eastern crater formed during the Middle Ordovician \(~465\) Ma), a time of intense asteroid bombardment of Earth, whereas the western crater formed in the Early Permian \(~286\) Ma) and is therefore \(~180\) Myr younger (Schmieder et al., 2015a). Landsat OLI/TIRS satellite image taken on June 13, 2013, when the western lake was still partly frozen (Source: GloVis, USGS). Scene width \(~120\) km. OLI, Operational Land Imager; TIRS, Thermal Infrared Sensor.](image-url)
age of the Steinheim Basin is still somewhat enigmatic. However, the two impact craters are thought to be genetically linked because of their proximity, the similar age of their Middle Miocene crater lake sediments (Heizmann and Hesse, 1995), and their geometric alignment with the Central European tekite strewn field to the northeast (Stöffler et al., 2002). Clearly, a representative isotopic age for Steinheim would help assess that situation with more confidence; unfortunately, previous Ar–Ar results for impact-melted sandstone and (U–Th)/He results for zircon crystals from the central uplift of the complex Steinheim impact crater failed to produce geologically meaningful results (Buchner et al., 2010a).

In Canada, the larger, ~36 km-diameter West Clearwater Lake impact structure has a ring of islands where impact melt-bearing rocks occur. East Clearwater Lake, 26 km in diameter, has a more subtle appearance and impact melt rock is only known from drillings (e.g., Simonds et al., 1978; Reimold et al., 1981; Grieve, 2006). For almost 50 years, these two impact structures had been considered a textbook example of an impact crater doublet created simultaneously by the impact of a binary asteroid (Dence et al., 1965) in the early Permian some 290 Myr ago (Reimold et al., 1981). However, repeated Ar–Ar analysis (Bottomley et al., 1990; Schmieder et al., 2015a), alongside other lines of geological evidence (e.g., Scott et al., 1997), eventually made a convincing case against the double impact scenario. While the larger western crater was indeed produced in the Permian at 286.2 ± 2.6 Ma (Schmieder et al., 2015a), the eastern crater is almost 180 Myr older and, with an age around 465 Ma (Bottomley et al., 1990; Schmieder et al., 2015a; Biren et al., 2016), is part of the prominent Ordovician impact crater population preserved on our planet (Fig. 4 and Table 1).

Two closely spaced impact structures similar in spatial arrangement to the Clearwater Lakes in Canada are the Suvasvesi North and South impact structures in Finland, both ~4 km in diameter and ~6 km apart from center to center (e.g., Pesonen et al., 1996b; Lehtinen et al., 2002). Not surprisingly, the two impact structures had previously been considered a possible crater doublet created by the impact of a binary asteroid (Werner et al., 2001). However, more recent Ar–Ar and U–Pb (zircon) geochronologic results for impact melt rock samples from both structures suggest Suvasvesi South is considerably older (≥720 Ma, i.e., Proterozoic) than the Suvasvesi North structure (~85 Ma, Cretaceous). Similar to the two Clearwater Lake impact structures, Suvasvesi North and South seem to constitute a “false” impact crater doublet (Schmieder et al., 2014c, 2016b; Schwarz et al., 2016a). In contrast, the 14 km-diameter Lockne and 0.7 km-diameter Målingan impact structures in Sweden may represent a true crater doublet (Ormø et al., 2014) within the framework of multiple impacts during the Ordovician (see also Section 4.1). A review and geochronologic assessment of these and other proposed terrestrial impact crater doublets (e.g., Gusev and Kamensk in Russia; Movshovic et al. 1991; Melosh and Stansberry, 1991; Bottke and Melosh, 1996; Masaitis, 1999) are provided by Schmieder et al. (2014c).

While the Ordovician period can be regarded as a time of intense impact flux, there is currently no evidence for synchronous multiple impact events resulting in the formation of larger-scale impact crater chains on Earth. Although such a scenario had been proposed for at least five impact structures with overlapping ages (Manicouagan and Lake Saint Martin in Canada, Red Wing Creek in the United States, Rochechouart in France, and Obolon in Ukraine) in the Late Triassic some 214 Myr ago (Spray et al., 1998), more recent Ar–Ar age determinations on the Lake Saint Martin (227.8±0.9 Ma) (Schmieder et al., 2014a) and Rochechouart (206.92±0.32 Ma) (Cohen et al., 2017; cf. Schmieder et al., 2010b) impacts and refined stratigraphic age constraints for Obolon (<185 Ma) (Schmieder and Buchner, 2008) demonstrated that all of those craters have very different ages and are thus unrelated. We conclude that the Late Triassic Earth did not see a multiple impact event similar to the impact of several large fragments of comet Shoemaker-Levy 9 on Jupiter as observed by the Hubble Space Telescope in July 1994 (Crawford et al., 1994). While there are geologically old impact crater chains on the Moon and other planetary bodies that formed after the impact of tidally disrupted “rubble pile” asteroids or comets (e.g., Wichman and Wood, 1995; Schenk et al., 1996; Richardson et al., 1998), no such chain is known to exist on Earth and their formation over shorter periods of geologic time is considered very unlikely (Bottke et al., 1997).

4.4. The role of impacts and impact ages in Earth’s biosphere

With the advent of the “New Catastrophism” in the wake of the impact mass extinction hypothesis, according to which Earth’s Mesozoic life—most prominently the dinosaurs—was wiped out due to the impact of a large asteroid that was also the source of a global iridium anomaly (Alvarez et al., 1979, 1980; Ganapathy, 1980; Hsu, 1980; Kyte et al., 1980; Smit and Hertogen, 1980), larger meteorite impacts have been discussed as potential triggers for most, if not all, of the “big five” biological extinction events in the geologic past (e.g., Raup and Sepkoski, 1984; Raup, 1990, 1992; Hodicky and Dunning, 1992; Sepkoski, 1996; Hallam and Wignall, 1997; Rampino et al., 1997; Toon et al., 1997; Rampino, 1999; Pálfy, 2004; Reimold et al., 2005, 2008; Kelley, 2007; Racki, 2012; and see also Section 4.1 on impact periodicity). The concept of impact-driven mass extinctions led to the concept of an impact kill curve (Raup, 1990, 1992) that correlates extinction magnitude or species exterminated with impact crater size. Chicxulub, it was postulated, was particularly devastating because of its large size. That then begged the question: What was the threshold of an extinction level event? It was subsequently recognized that there may be a family of kill curves that reflect extant ambient and biological conditions at the time of impact (Kring, 2002). Yet, the question remained: What is the threshold size of event or events needed to cause extinction? The community has probed that question in two ways. First, an effort has been made to locate evidence of shock metamorphism at mass extinction horizons, which has generated contradictory results (e.g., Retallack et al., 1998 for the end-Permian; and Bice et al., 1992; Patzer et al., 2004; Kring et al., 2017a for the Late Triassic). The second approach has been to locate ejecta from other large impact events and determine if they are correlated with extinctions (e.g., Grey et al., 2003; Pálfy, 2004; Clutson et al., 2018).
The Late Devonian Frasnian/Famennian transition, associated with an extinction event, has an age (~372 Ma) (Percival et al., 2018; cf. Kaufmann, 2006) that is similar to a previously published age of 377±2 Ma for the ≥52 km-diameter Siljan impact structure in Sweden, Europe’s largest impact structure (Reimold et al., 2005). However, current Ar–Ar results suggest that the Siljan impact occurred at either ~400 or ~380 Ma (Jourdan and Reimold, 2012). Therefore, a causal link with the Frasnian/Famennian boundary event appears implausible (Racki, 2012). Likewise, there is currently no convincing evidence of global-scale impacts at the end-Permian at ~252 Ma (e.g., Retallack et al., 1998; Reimold and Koeberl, 2000; Renne et al., 2004; Wignall et al., 2004), which marks the biggest of all life crises on Earth during which more than 95% of marine species and 70% of terrestrial vertebrates went extinct (e.g., Erwin et al., 2002). The event that created the Permo-Triassic ~40 km-diameter Araguainha impact structure in Brazil, South America’s largest impact structure with a U–Pb age of 254.7±2.5 Ma (Töhrer et al., 2012), may have had continent-scale effects (Töhrer et al., 2013, 2018), but was likely too small to cause a global biological trauma (e.g., Walkden and Parker, 2008). A more recent set of geochronologic results, moreover, suggests that the Araguainha impact may be somewhat older (259±5 Ma) (Erickson et al., 2017). Instead, the end-Permian extinction event may have been caused by volcanic activity in large igneous provinces, such as the Emeishan and Siberian Traps in the final stages of the Permian (e.g., Shen et al., 2011; Burgess et al., 2017; Ernst and Youbi, 2017) and potentially other compounding environmental factors.

It appears, however, that there may be a small, but measurable, extinction event that is correlated with the Manicouagan impact event around ~215 Ma (Onoue et al., 2016), which would have produced regional to global environmental consequences (Durda and Kring, 2004; Kring, 2017a) and may be linked to a positive platinum group element anomaly in Upper Triassic deep-sea sediments (Sato et al., 2017). The door on those events has just opened; many more details should be forthcoming now that relevant outcrops have been located for more detailed study. Evidence for impact coinciding with the end-Triassic at ~201 Ma is somewhat dubious (e.g., Olsen et al., 2002; Simms, 2003, 2007; Tanner et al., 2004; Hesselbo et al., 2007; Kring et al., 2007; Schmieder et al., 2010b; Smith, 2011; Lindström et al., 2015), although earlier reports of putative shocked quartz grains at the Triassic/Jurassic boundary in Austria (Badjukov et al., 1987) and Italy (Bice et al., 1992) and an iridium anomaly (Olsen et al., 2002) certainly leave room for new research. The Latest Triassic (Rhaetian) ~40 km-diameter Rochechouart impact structure in France previously had an age that overlapped with the Triassic/Jurassic boundary (Schmieder et al., 2010a), but new Ar–Ar results suggest that the impact occurred some ~5 Myr before the transition (Cohen et al., 2017). Similar to widespread volcanism during the end-Permian, the Central Atlantic Magmatic Province (CAMP) may be a driving force of extensive seismicity, emission of gases, and extinction at the end of the Triassic (e.g., Marzoli et al., 1999; Lindström et al., 2015; Davies et al., 2017).

Thus far, the only convincing case for impact as the trigger of a mass extinction and severe, global-scale paleoenvironmental effects remains the giant Chicxulub impact on the Yucatán Peninsula in Mexico, which has been stratigraphically, (micro)‐paleontologically, geochemically, and in terms of precise U–Pb and Ar–Ar ages linked with the Cretaceous/Paleogene boundary at ~66.05 Ma (e.g., Hildebrand et al., 1991; Kring and Boynton, 1991; Toon et al., 1997; Smít, 1999; Kring, 2007; Schulte et al., 2010; Renne et al., 2013, 2018; DePalma et al., 2019). Some of the hazardous paleoenvironmental effects caused by the Chicxulub impact (see Kring, 2007 for a summary) include a roughly Richter magnitude 10.5 earthquake that, in turn, triggered a large-scale tsunami and, in paleolakes and lagoons, forceful seiches (e.g., Smít and Romein, 1985; Bourgeois et al. 1988; DePalma et al., 2019); the global distribution of airborne distal impact ejecta (e.g., Smít, 1999; Claeyis et al., 2002); shock-heating of the atmosphere and widespread wildfires caused by the fallout of hot ejecta (e.g., Wolbach et al., 1985; Melosh et al., 1990; Kring and Durda, 2002; Durda and Kring, 2004; Robertson et al., 2013; Belcher et al., 2015); an almost instantaneous phase of “impact winter” caused by atmospheric dust blocking the sunlight (e.g., Vellekoop et al., 2014, 2016; Brugger et al., 2017), followed by a superimposed, slower greenhouse effect in response to the voluminous release of atmospherically active gases (e.g., water vapor, CO₂, and SO₂) from the carbonate- and sulfate-dominated target rock (Kring et al., 1996; Pope et al., 1997; Pierazzo et al., 1998; Kring, 2007); and the acidification of ocean water and leaching of soil due to acid rain (e.g., Prinn and Fegley, 1987; Retallack et al., 1987; D’Hondt et al., 1994; Retallack, 1996). At the time of impact, the contemporaneous Deccan trap volcanism in India had already been active (Renne et al., 2015; Richards et al., 2015).

It is worth noting that large impacts, capable of causing widespread havoc and mass extinctions, do not only have detrimental effects on the biosphere. While the end-Ordovician extinction (~443 Ma) was most likely related to climatic effects and glaciation (e.g., Wang et al., 2019), some researchers have argued that frequent impacts during the mid-Ordovician (~470 to 458 Ma) may have, in fact, boosted biodiversity (Schmitz et al., 2008). A similar biodiversity effect among fossil plankton was also proposed for the Acanram impact in the Ediacaran (Grey et al., 2003), a time when more highly organized organisms emerged (e.g., Knoll et al., 2006); stratigraphic and isotopic age constraints for the Acanram impact are, however, relatively imprecise (Schmieder et al., 2015b). Recently, Erickson et al. (2019a, 2019b) suggested the ~2.23 Ga Yarrabubba impact in Western Australia, which potentially affected a Paleoproterozoic “Snowball Earth,” may have been a trigger mechanism for the release of large amounts of water vapor into the atmosphere (Kring, 2003), thereby creating a warming effect that may have helped Earth escape its icehouse state (see also Koeberl et al., 2007b; Koeberl and Ivanov, 2019).

4.5. High-precision impact geochronology and its relevance to exo- and astrobiology

Could life have first flourished on Earth beneath the floor of an impact crater? This question (the Impact-Origin of Life Hypothesis) (Kring, 2000, 2019) has not been answered
quite yet, but an integral part of it—a temporal component studied in detail using high-precision geochronologic techniques—is a core aspect of this work. As formulated in previous studies suggesting that the origin of life may lie in impact crater settings (e.g., Kring 2000, 2003, 2019; Cockell and Lee, 2002; Ryder, 2002; Osinski, 2003, 2011; Cockell, 2006), cooling impact craters that hosted hydrothermal systems are thought to have served as a habitat for microbial life on the early Earth and, possibly, Mars (e.g., Abramov and Mojzsis, 2009; Osinski et al., 2013, 2017; Rummel et al., 2014; Grimm and Marchi, 2018; Bowling and Marchi, 2018).

A number of geo-biological paleoenvironmental settings have been proposed as potential loci for the origin and evolution of microbial life on the Hadean–Archean Earth more than 3.8 Ga ago (e.g., Nisbet and Sleep, 2001); a recent review is provided by Westall et al. (2018). These settings include, among others, sulfide-rich hydrothermal vents (e.g., Baross and Hoffman, 1985; Russell and Hall, 1997; Russell and Arndt, 2005; Martin et al., 2008) and hydrothermal-sedimentary crustal settings, in which prebiotic molecules may have been initially produced, stabilized, and complexified as a starting material for organic life (e.g., Westall et al., 2018). Impact craters and basins on the early Earth, hosting extensive postimpact hydrothermal systems, would have provided a very similar promising setting (e.g., Abramov and Kring, 2004). The largest asteroid impacts on the Hadean and Archean Earth more than 3.7 Ga ago would have created at least ~40 basins ~1000 km in diameter and several of order 5000 km-diameter (Grieve, 1980; Kring and Cohen, 2002; Kring, 2003; Grieve et al., 2006) and would have, at the same time, delivered prebiotically relevant elements, such as structurally bound water, carbon, nitrogen, phosphorous, and sulfur (e.g., Kring and Cohen, 2002; Pasek and Lauretta, 2008; Svetsov and Shuvalov, 2015; Barnes et al., 2016) (compare Section 4.2 and Fig. 6). However, smaller impact craters some tens of km across would have been much more abundant and saturated Earth’s surface (e.g., Abramov and Mojzsis, 2009). While the largest of those impact events likely vaporized surface water (Sleep et al., 1989; Zahnle and Sleep, 2006) and produced large amounts of impact melt (e.g., Grieve and Cintala, 1992; Grieve et al., 2006), making surface conditions untenable for life, numerical models suggest the subsurface was still habitable (Abramov and Kring, 2004, 2005, 2007; Abramov and Mojzsis, 2009; Grimm and Marchi, 2018). Basin-sized and smaller impacts would have produced subsurface hydrothermal systems conducive for prebiotic chemical reactions that could have led to the early evolution of microbes (e.g., Kring, 2000, 2003; Ryder, 2002; Bowling and Marchi, 2018). The volumes of impact-generated habitable zones for mesophilic, thermophilic, and hyperthermophilic microbial life forms in the subsurface of the Hadean–Archean Earth (i.e., inside impact craters and the fractured crust below) were significant (of order ~10³ km³) (Abramov and Mojzsis, 2009). As with the flux of impactor mass over time (see Section 4.2), the largest impact structures would have provided the most voluminous hydrothermally altered and habitable zones. The volume of rock that sustained habitable temperatures (≤110°C) over hundreds of thousands of years attained up to ~40,000 km³ in larger impact structures ~200 km across (Abramov and Kring, 2004). The colonization of the central domains of such impact craters may have occurred some ~20,000 years after the impact (Abramov and Kring, 2004; Abramov and Mojzsis, 2009). This estimate is consistent with the relatively rapid recovery of life at ground zero inside the Chicxulub crater after ~30,000 years (Lowery et al., 2018).

Although large impacts were much more abundant during the Hadean and Archean before ca. 3.7 Ga (e.g., Turner et al., 1973; Tera et al., 1974; Ryder, 1990; Kring and Cohen, 2002; Bottke and Norman, 2017), impact craters and their hydrothermally altered rocks and minerals accessible on Earth today (e.g., Allen et al., 1982; Osinski et al., 2001, 2013; Zürcher and Kring, 2004; Naumov, 2005; Kring et al., 2017b) are valuable analog sites for the type of impact-produced, wet, and warm habitat described above. Putative fossils of microbial life found in hydrothermally altered impact glass, for example, at the early Cretaceous, 19 km-diameter Dellen impact structure in Sweden (Lindgren et al., 2010) and the Miocene Ries crater in Germany (Sapers et al., 2014, 2015), as well as sulfur isotopic signatures indicating microbial reduction of target rock sulfate at the Miocene, ~24 km-diameter Haughton impact structure, Canada (Parnell et al., 2010), and the latest Triassic, ~40 km-diameter Rochechouart impact structure, France (Simpson et al., 2017), may be evidence for the colonization of impact-crater-hosted habitable zones by thermophilic microbes. Figure 8 shows a variety of impactites typically found in terrestrial impact structures, including lithologies enriched in biologically relevant elements (such as carbon and sulfur) and hydrothermally altered rocks that may represent analogues for the setting in impact-crater-hosted microbial habitats (e.g., Kring, 2000, 2003; Ryder, 2002; Cockell et al., 2003; Cockell, 2006).

In addition to habitable volumes and substrates, two key factors in hot fluid systems as biological habitats are their temperature and lifetime. Geochronologic studies and numerical modeling suggest that the largest terrestrial impact craters, such as Sudbury and Chicxulub, may have sustained initially hot (>300°C) hydrothermal systems for more than 2 Myr (e.g., Ames et al., 1998; Abramov and Kring, 2004, 2007; Zürcher and Kring, 2004), whereas medium-sized impact craters around 20–30 km in diameter were generally thought to cool down more rapidly, perhaps over a few thousands or tens of thousands of years (e.g., Pohl et al., 1977; Osinski et al., 2001). Recent high-precision U–Pb and Ar–Ar results for the 23 km-diameter Lappajärvi impact crater in Finland, however, suggest those initial estimates may have been too conservative. An older zircon U–Pb age of ~77.85 Ma, recording lead diffusion at ~900°C (Kenny et al., 2019b), in combination with significantly younger Ar–Ar results of ~76 to 75 Ma for impact melt rock and K-feldspar that record argon diffusion at ~400 to 200°C over several hundred thousand years (Schmieder and Jourdan, 2013a), indicates that even the comparatively small Lappajärvi crater cooled down from initially hot, impact melt-producing temperatures (>200°C) (Bischoff and Stöfﬂer, 1984) to hotter-than-habitable conditions over a period of at least 1.3 Myr (Kenny et al., 2019b). This demonstrates that modern isotopic techniques have the capacity to resolve various stages of an impact event as a protracted geologic process rather than an instantaneous event. It is becoming more apparent that the most precise and accurate impact ages are obtained by using high-temperature geochronometers and/
FIG. 8. Impact lithologies with biologically relevant elements and/or evidence of hydrothermal alteration as potential analogues for impact crater-hosted microbial habitats. (A) Impact melt breccia rich in carbon (enriched in dark interstitial material) from the ~5 km-diameter Gardnos impact structure, Norway. (B) Impact glass from the Nördlinger Ries, Germany, with vesicular domain of silica glass (lechatelierite) and whiskers (trichites) of pyroxene; this type of glass has been linked with possible evidence of fossil microbial life (e.g., Lindgren et al., 2010; Sapers et al., 2014, 2015). (C) Hydrothermally altered impact melt rock with larger vesicle lined by secondary clay minerals from the ~80 km Puchezh-Katunki impact structure, Russia. (A–C) Optical images, plane-polarized light. (D) Altered and locally corroded K-feldspar overgrown by clay minerals in shock-recrystallized and hydrothermally altered granite from the Lappajärvi impact structure, Finland. Unaltered K-feldspar (darker gray) from this sample was used for high-precision Ar–Ar geochronology (Schmieder and Jourdan, 2013a). Secondary electron image. (E) Clay alteration domain (gray, with irregular cracks) and secondary barite (Ba-sulfate) in altered impact melt rock from the ~90 km-diameter Acraman impact structure, South Australia (Williams, 1994; Schmieder et al., 2015b). (F) Small pyrite (Fe-sulfide) frambooids in zeolite (light gray: analcime; darker gray: Na-dachiardite) in hydrothermally altered reworked suevitic breccia from the 180 km-diameter Chicxulub impact crater (Kring et al., 2017b). (E, F) Backscattered electron images.
or, if available, rapidly cooled (distal) impact melt lithologies that landed (far) outside their hot and slowly cooling source crater (Schmieder et al., 2018a; Kenny et al., 2019b). More importantly, the slow cooling of the Lappajärvi crater resolved by combined high-resolution U–Pb and Ar–Ar geochronology makes medium-sized impact craters (*~20 to 30 km in diameter), which are orders of magnitude more common over geologic time than Sudbury- or Chicxulub-sized craters (e.g., French, 1998), an important type of habitat for thermophilic and hyperthermophilic microbes on the early Earth (Kring, 2000, 2003; Cockell et al., 2003; Cockell, 2006). A scheme of a slow-cooling complex impact crater, such as Lappajärvi, is shown in Fig. 9. Slowly cooling impact crater-hosted hydrothermal systems similar in volume and lifetime to that at Lappajärvi are, therefore, also relevant to astro- and exobiology. In analogy to Earth, medium-sized impact craters on early (Noachian) Mars may have been an important extraterrestrial habitat, as well (e.g., Newsom, 1980; Newsom et al., 1986, 2001; Rathbun and Squyres, 2002; Abramov and Kring, 2005; Schwenzer and Kring, 2009; Osinski et al., 2013; Rummel et al., 2014; Abramov and Mojzsis, 2016).

5. Conclusions

This work presents a comprehensive collection of revised ages for terrestrial impact structures and deposits. Impact geochronology and the use of the U–Pb and Ar–Ar techniques and other methods have significantly refined the timeline for a number of impact events on Earth, whose ages can be correlated with other impacts and geologic events in Earth history, and which can be used to assess the impact (mass) flux on Earth through geologic time. Based on the latest geochronologic results, synchronous double impacts on Earth seem to be rare, and evidence for a large-scale multiple impact event on our planet is currently missing. However, the Ordovician marks a time period of intense bombardment over several million years, supported by a growing number of Ordovician U–Pb, Ar–Ar, and stratigraphic impact ages. Only the Chicxulub impact at the K/T boundary 66.05 Myr ago has been firmly linked to a mass extinction event, in part, based on high-precision U–Pb and Ar–Ar results. The latter can also be used to determine the lifetime of hydrothermal systems in cooling impact craters, as recently done for the slowly cooled Lappajärvi impact crater in Finland as an analog site for impact crater-hosted habitats for microbial life on the early Earth and, possibly, Mars.

Acknowledgments

We thank Drs. Timmons Erickson (NASA Johnson Space Center, Jacobs—JETS), Thomas Kenkmann (University of Freiburg), Gavin Kenny (Swedish Museum of Natural
History), Irmeli Mänttäri (Geological Survey of Finland), Annemarie Pickersgill (University of Glasgow), and Birger Schmitz (University of Lund) for discussion and information about some of the impact ages reported in this article. We also thank Drs. Christian Koeberl and Gordon Osinski and an anonymous reviewer for their constructive reviews, as well as Editor Dr. Sherry Cady for their careful handling of our article.

Author Disclosure Statement

No competing financial interests exist.

Funding Information

This work was supported by the NASA Solar System Exploration Research Virtual Institute (SSERVI) contract NNA14AB07A (D.A.K., principal investigator). This is LPI Contribution number 2217. LPI is operated by USRA under a cooperative agreement with the Science Mission Directorate of the National Aeronautics and Space Administration.

References

Abels, A. (2003) Investigation of impact structures in Finland (Söderfjärden, Lumper, Lappajärvi) by digital integration of multidisciplinary geodata. Doctoral thesis, Westfälische Wilhelms-Universität, Münster, Germany, 321 p.

Abels, A. (2005) Spider impact structure, Kimberley Plateau, Western Australia: interpretations of formation mechanism and age based on integrated map-scale data. *Aust J Earth Sci* 52:653–664.

Abels, A., Plado, J., Pesonen, L.J., and Lehtinen, M. (2002) The impact cratering record of Fennoscandia—a close look at the database. In *Impacts in Precambrian Shields*, edited by J. Plado and L.J. Pesonen, Springer, Berlin, Heidelberg, pp 1–58.

Abramov, O. and Kring, D.A. (2004) Numerical modeling of an impact-induced hydrothermal system at the Sudbury crater. *J Geophys Res Planets* 109:16.

Abramov, O. and Kring, D.A. (2005) Impact-induced hydrothermal activity on early Mars. *J Geophys Res Planets* 110:19.

Abramov, O. and Kring, D.A. (2007) Numerical modeling of impact-induced hydrothermal activity at the Chicxulub crater. *Meteorit Planet Sci* 42:93–112.

Abramov, O. and Mojzsis, S.J. (2009) Microbial habitability of the Hadean Earth during the late heavy bombardment. *Nature* 459:419–422.

Abramov, O. and Mojzsis, S.J. (2016) Thermal effects of impact bombardments on Noachian Mars. *Earth Planet Sci Lett* 442:108–120.

Abramov, O., Wong, S.M., and Kring, D.A. (2012) Differential melt scaling for oblique impacts on terrestrial planets. *Icarus* 218:906–916.

Addison, W.D., Brumpton, G.R., Vallini, D.A., McNaughton, N.J., Davis, D.W., Kissin, S.A., Fralick, P.W., and Hammond, A.L. (2005) Discovery of distal ejecta from the 1850 Ma Sudbury impact event. *Geology* 33:193–196.

Allen, C.C., Gooding, J.L., and Keil, K. (1982) Hydrothermally altered impact melt rock and breccia: contributions to the soil of Mars. *J Geophys Res Solid Earth* 87:10083–10101.

Alvarez, W., Alvarez, L.W., Asaro, F., and Michel, H.V. (1979) Anomalous iridium levels at the Cretaceous/Tertiary boundary at Gubbio, Italy. In *Cretaceous-Tertiary Boundary Events Symposium*, W.K. Christensen and T. Birkelund, Vol. 2. University of Copenhagen, Denmark, p 69.

Alvarez, L.W., Alvarez, W., Asaro, F., and Michel, H.V. (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction. *Science* 208:1095–1108.

Alvarez, W. and Muller, R.A. (1984) Evidence from crater ages for periodic impacts on the Earth. *Nature* 308:718–720.

Alwmark, C. (2009) Shocked quartz grains in the polymict breccia of the Granby structure, Sweden—verification of an impact. *Meteorit Planet Sci* 44:1107–1113.

Alwmark, C. and Schmitz, B. (2007) Extraterrestrial chromite in the resurge deposits of the early Late Ordovician Lockne crater, central Sweden. *Earth Planet Sci Lett* 253:291–303.

Alwmark, C. and Schmitz, B. (2009) The origin of the Brunflo fossil meteorite and extraterrestrial chromite in mid-Ordovician limestone from the Gärde quarry (Jämtland, central Sweden). *Meteorit Planet Sci* 44:95–106.

Alwmark, C., Schmitz, B., and Kirsimäe, K. (2010) The mid-Ordovician Osmussaar breccia in Estonia linked to the disruption of the L-chondrite parent body in the asteroid belt. *GSA Bull* 122:1039–1046.

Alwmark, C., Ferrière, L., Holm-Alwmark, S., Ormö, J., Leroux, H., and Sturkell, E. (2015) Impact origin for the Hummeln structure (Sweden) and its link to the Ordovician disruption of the L-chondrite parent body. Geology 43:279–282.

Alwmark, C., Bleeker, W., LeCheminant, A., Page, L., and Scherstén, A. (2017) An early Ordovician 40Ar–39Ar age for the ~50 km Carswell impact structure, Canada. *GSA Bull* 129:1442–1449.

Ames, D.E., Watkinson, D.H., and Parrish, R.R. (1998) Dating of a regional hydrothermal system induced by the 1850 Ma Sudbury impact event. *Geology* 26:447–450.

Assis Fernandes, V., Hopp, J., Schwarz, W.H., Fritz, J.P., Trieloff, M., and Povenmire, H. (2019) 40Ar–39Ar step heating ages of North American tektites and of impact melt rock samples from the Chesapeake Bay impact structure. *Geochim Cosmochim Acta* 255:289–308.

Badjukov, D.D., Lobitzer, H., and Nazarow, M.A. (1987) Quartz grains with planar features in the Triassic-Jurassic boundary sediments from Northern Limestone Alps, Austria. *Lunar Planet Sci* 18:38–39.

Bailey-Jones, C.A. (2011) Bayesian time series analysis of terrestrial impact cratering. *Month Not Royal Astronom Soc* 416:1163–1180.

Baksi, A.K. (1990) Search for periodicity in global events in the geologic record: quo vadimus? *Geology* 18:983–986.

Baldwin, R.B. (1971) On the history of lunar impact cratering: the absolute time scale and the origin of planetesimals. *Icarus* 14:36–52.

Banet, A.C. and Fenton, J.P.G. (2008) An examination of the Simpson core test wells suggests an age for the Avak impact feature near Barrow, Alaska. In *The Sedimentary Record of Meteorite Impacts*, GSA Special Paper 437, edited by K. Evans, J.W. Horton, Jr., D.T. King, and J.R. Morrow, Geological Society of America, Boulder, CO, pp 139–145.

Baratoux, D., Bouley, S., Baratoux, L., Colas, F., Dauvergne, J.L., Vauballon, J., Chennaoui-Aoudjehane, H., Jambon, A., Gatriceca, J., Losiak, A., and Bourdeille, C. (May 16–20, 2012) Karakul depression, Tadjikistan—A Young Impact Crater? [abstract 6037]. In *Symposium on the Asteroids, Comets, Meteors Conference*, Niigata. LPI Contribution No. 1667.
Barros, J.A. and Hoffman, S.E. (1985) Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. *Orig Life Evol Biosph* 15: 327–345.

Barrows, T.T., Magee, J., Miller, G., and Fifield, L.K. (2019). The age of Wolfe Creek meteorite crater (Kandinald), Western Australia. *Meteorit Planet Sci* 54:2686–2697.

Basurah, H.M. (2003) Estimating a new date for the Wabar shiek Konservat-Lagerstätte to the Darriwilian (Middle Ordovician) global peak influx of meteorites. *Lethaia* 36:1109–1111.

Bogard, D.D., Husain, L., and Wright, R.J. (1976) *40*Ar-*39*Ar dating of collisional events in chondrite parent bodies. *J Geophys Res* 81:5664–5678.

Bogard, D.D., Garrison, D.H., Norman, M., Scott, E.R.D., and Keil, K. (1995) *39*Ar-*40*Ar age and petrology of Chico: large-scale impact melting on the L chondrite parent body. *Geochim Cosmochim Acta* 59:1383–1399.

Borovicka, J., Spurny, P., Brown, P., Wiegert, P., Kalenda, P., Clark, D., and Shiben, L. (2013) The trajectory, structure and origin of the Chelyabinsk asteroidal impactor. *Nature* 503:235–237.

Boschi, S., Schmitz, B., Heck, P.R., Cronholm, A., Defouilloy, C., Kita, N.T., Monechi, S., Montanari, A., Rout, S.S., and Terfelt, F. (2017) Late Eocene *3He* and Ir anomalies associated with ordinary chondritic spinels. *Geochim Cosmochim Acta* 204:205–218.

Botte, W.F., Jr. and Melosh, H.J. (1996) Binary asteroids and the formation of doublet craters. *Icarus* 124:372–391.

Botte, W.F., and Norman, M.D. (2017) The Late Heavy Bombardment. *Ann Rev Earth Planet Sci* 45:619–647.

Bottke, W.F., Richardson, D.C., and Love, S.G. (1997) Can tidal disruption of asteroids make crater chains on the Earth and Moon? *Icarus* 126:470–474.

Bottke, W.F., Jedicke, R., Morbidelli, A., Petit, J.M., and Gladman, B. (2000) Understanding the distribution of near-Earth asteroids. *Science* 288:2190–2194.

Bottke, W.F., Vokrouhlicky, D., and Nesvorny, D. (2007) An asteroid breakup 160 Myr ago as the probable source of the K/T impactor. *Nature* 449:48–53.

Bottomley, R.J. and York, D. (1988) Age measurement of the submarine Montagnais impact crater. *Geophys Res Lett* 15: 1409–1412.

Bottomley, R.J., York, D., and Grieve, R.A.F. (1979) Possible source craters for the North American tektites—a geochronological investigation. *EOS Trans Am Geophys Union* 60: 309.

Bottomley, R.J., York, D., and Grieve, R.A.F. (1990) *40*Argon-39 Argon dating of impact craters. *Proc Lunar Planet Sci Conf* 20:421–431.

Bottomley, R., Grieve, R., York, D., and Masaitis, V. (1997) The age of the Popigai impact event and its relation to events at the Eocene/Oligocene boundary. *Nature* 388:365–368.

Bourgeois, J., Hansen, T.A., Wilber, P.L., and Kauffman, E.G. (1988) A tsunami deposit at the Cretaceous-Tertiary boundary in Texas. *Science* 241:567–570.

Bowling, T.J. and Marchi, S. (2018) Revisiting the origin and evolution of habitable environments in post-impact hydrothermal systems beneath martian Craters [abstract 2654]. In *Lunar and Planetary Science XLIX*, The Woodlands, TX: LPI Contribution No. 2083.

Brandt, D. and Reimold, W.U. (1995) The geology of the Pretoria Saltpan impact structure and the surrounding area. *S Afr J Geol* 98:287–303.

Brandt, D., Holmes, H., Reimold, W.U., Paya, B.K., Koeberl, C., and Hancock, P.J. (2002) Kgagodi Basin: the first impact structure recognized in Botswana. *Meteorit Planet Sci* 37: 1765–1779.

Brenan, R.L., Peterson, B.L., and Smith, H.J. (1975) The origin of Red Wing Creek structure: McKenzie County, North Dakota. *Earth Sci Bull* 8:1–42.

Bron, K.A. and Gostin, V. (2012) The Tooookoonooka marine impact horizon, Australia: sedimentary and petrologic evidence. *Meteorit Planet Sci* 47:296–318.

Brugger, J., Feulner, G., and Petri, S. (2017) Baby, it’s cold outside: climate model simulations of the effects of the asteroid impact at the end of the Cretaceous. *Geophys Res Lett* 44:419–427.
Lunar and Planetary Science L. LPI Contribution No. 2132. Lunar and Planetary Institute, Houston, TX.

Cróssta, A.P., Reimold, W.U., Vasconcelos, M.A.R., Hauser, N., Oliveira, G.I.G., Maziviero, M.V., and Góes, A.M. (2019b) Impact cratering; The South American record—part 1. Geochim Cosmochim Acta 202:264–284.

Cróssta, A.P., Reimold, W.U., Vasconcelos, M.A.R., Hauser, N., Oliveira, G.I.G., Maziviero, M.V., and Góes, A.M. (2019c) Impact cratering; The South American record—part 2. Geochim Cosmochim Acta 197:191–220.

Crow, C.A., McKeegan, K.D., and Moser, D.E. (2017) Coordinated U–Pb geochronology, trace element, Ti-in-zircon thermometry and microstructural analysis of Apollo zircons. Geochim Cosmochim Acta 202:624–284.

Daly, R.T., Schultz, P.H., Lassiter, J.C., Loewy, S.W., Thompson, L.M., and Spray, J.G. (2018) Contrasting meteoritic signatures within the Clearwater East and Clearwater West impact structures: the view from osmium isotopes. Geochim Cosmochim Acta 235:262–284.

Darlington, V., Blenkinsop, T., Dirks, P., Salisbury, J., and Tomkins, A. (2016) The Lawn Hill annulus: a Ordovician meteorite impact into water-saturated dolomite. Meteorit Planet Sci 51:2416–2440.

Davis, J.H.F.L., Marzoli, A., Bertrand, H., Youbi, N., Ernesto, M., and Schaltegger, U. (2017) End-Triassic mass extinction started by intrusive CAMP activity. Nat Commun 8:15596.

Davis, D.W. (2008) Sub-million-year age resolution of Pre-Davies, J.H.F.L., Marzoli, A., Bertrand, H., Youbi, N., Ernesto, M., and Schaltegger, U. (2017) End-Triassic mass extinction started by intrusive CAMP activity. Nat Commun 8:15596.

Deutsch, A. and Koeberl, C. (2006) Establishing the link between terrestrial impact craters and Cretaceous-Tertiary boundary. Geochim Cosmochim Acta 70:819–844.

Deutsch, A., Buhl, D., and Langenhorst, F. (1992) On the significance of crater ages: new ages for Dellen (Sweden) and Araguainha (Brazil). Tectonophys 216:205–218.

D’Hondt, S., Pinson, M.E., Sigurdsson, H., Hanson Jr, A.K., and Carey, S. (1994) Surface-water acidification and extinction at the Cretaceous-Tertiary boundary. Geology 22:983–986.

Dressler, B.O. and Reimold, W.U. (2001) Terrestrial impact melt rocks and glasses. Earth Sci Rev 56:205–284.

Durdia, D.D. and Kring, D.A. (2004) Ignition threshold for impact-generated fires. J Geophys Res Planets 109:E08004.

Durdia, D.D., Greenberg, R., and Jedecic, R. (1998) Collisional models and scaling laws: a new interpretation of the shape of the main-belt asteroid size distribution. Icarus 135: 431–440.

Dypvik, H., Gudlaugsson, S.T., Tsikalas, F., Attrep, M., Jr., Ferrell, R.E., Jr., Krinsley, D.H., Mark, A., Faleide, J.I., and Nagy, J. (1996) Mjölnir structure: an impact crater in the Barents Sea. Geology 24:779–782.

Earth Impact Database. (2018) Online Resource. University of New Brunswick, Fredericton, Canada. Available online at www.passe.net/EarthImpactDatabase/New%20website_05-2018/ index.html (accessed April 6, 2019).

Elo, S., Kuivasaari, T., Lehtinen, M., Sarapää, O., and Uutela, A. (1993) Iso-Naakima, a circular structure filled with Neoproterozoic sediments, Pieksämäki, southeastern Finland. Bull Geol Soc Finland 65:3–30.

Emrich, G.H. and Bergstrom, R.E. (1962) Des Plaines disturbance, Northeastern Illinois. GSA Bull 73:959–968.

Englund, K.J. and Roen, J.B. (1963) Origin of the Middle-l nerves Basin, Kentucky. USGS Prof Pap 450:E20–E22.

Erickson, T.M., Timms, N.E., Kirkland, C.L., Tohver, E., Cavosie, A.J., Pearce, M.A., and Reddy, S.M. (2017) Shocked monazite chronometry: integrating microstructural and in situ isotopic age data for determining precise impact ages. Contrib Mineral Petrol 172:11.

Erickson, T.M., Kirkland, C.L., Timms, N.E., Cavosie, A.J., and Davison T.M. (June 10–13, 2019a) The Yarrabubba impact structure, Western Australia; an environmental savior durine Paleoproterozoic Snowball Earth? In Abstract presented at the “Impacts and Their Role in the Evolution of Life” Conference, Tällberg, Sweden.

Erickson, T.M., Kirkland, C.L., Timms, N.E., Cavosie, A.J., and Davison T.M. (September 30 to October 1, 2019b) Shocked zircon and monazite ages establish Yarrabubba, Western Australia, as the Earth’s oldest preserved impact structure [abstract 5107]. In Large Meteorite Impacts VI 2019, Brasilia, Brazil. LPI Contribution No. 2136.

Ernst, R.E. and Youbi, N. (2017) How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record. Palaeogeogr Palaeoclimatol Palaeoecol 478:30–52.

Erwin, D.H., Bowring, S.A., and Yugan, J. (2002) End-Permian mass extinctions: a review. In Catastrophic Events and Mass Extinctions: Impacts and Beyond, GSA Special Paper 356, edited by C. Koeberl and K.G. MacLeod, Geological Society of America, Boulder, CO, pp 363–384.

Evans, N.J., Gregoire, D.C., and Goodfellow, W.D. (1993). Use of platinum-group elements for impactor identification: Terrrestrial impact craters and Cretaceous-Tertiary boundary. Geochim Cosmochim Acta 57:3737–3748.

Farley, K.A. (1995) Cenozoic variations in the flux of interplanetary dust recorded by 3He in a deep-sea sediment. Nature 376:153–156.

Farley, K.A. (2001) Extraterrestrial helium in seafloor sediments: identification, characteristics, and accretion rate over geologic time. In Accretion of Extraterrestrial matter throughout Earth’s History, edited by B. Peucker-Ehrenbrink and B. Schmitz, Springer, Boston, MA, pp 197–204.

Farley, K.A. (2002) (U–Th)/He dating: techniques, calibrations, and applications. In Noble Gases in Geochemistry and Cosmochemistry, edited by D. Porcelli, C.J. Ballentine, and B. Schmitz, Springer, Boston, MA, pp 197–204.

Farley, K.A. and Stockli, D.F. (2002) (U–Th)/He dating of phosphates:apatite, monazite, and xenotime. In Phosphates:
French, B.M., Cordua, W.S., and Plessia, J.B. (2004) The Rock Elm meteorite impact structure. Wisconsin: geology and shock-metamorphic effects in quartz. GSA Bull 116:200–218.

French, B.M., McKay, R.M., Liu, H.P., Briggs, D.E., and Witzke, B.J. (2018) The Decorah structure, northeastern Iowa: geology and evidence for formation by meteorite impact. GSA Bull 130:2062–2086.

Fudali, R.F. and Cressy, P.I. (1976) Investigation of a new stony meteorite from Mauritania with some additional data on its find site: aoueloull crater. Earth Planet Sci Lett 30:262–268.

Ganapathy, R. (1980) A major meteorite impact on the earth 65 million years ago: evidence from the Cretaceous-Tertiary boundary clay. Science 209:921–923.

Gentner, W., Kleinnmann, B., and Wagner, G.A. (1967) New K-Ar and fission track ages of impact glasses and tektites. Earth Planet Sci Lett 2:83–86.

Gentner, W., Storzer, D., and Wagner, G.A. (1969) New fission track ages of tektites and related glasses. Geochim Cosmochim Acta 33:1075–1081.

Gersonde, R., Kyte, F.T., Bleil, U., Diekmann, B., Flores, J.A., Gohl, K., Grahl, G., Hagen, R., Kuhn, G., Siero, F.J., and Völder, K. (1997) Geological record and reconstruction of the late Pliocene impact of the Eltanin asteroid in the Southern Ocean. Nature 390:357–363.

Glass, B.P. and Simonson, B.M. (2012) Distal impact ejecta layers: spherie and more. In Impact!, edited by F. Jourdan and W.U. Reimold, Mineralogical Society of America, Chantilly, Virginia. Elements Vol. 8, pp 43–48.

Glass, B.P. and Simonson, B.M. (2013) Distal Impact Ejecta Layers: A Record of Large Impacts in Sedimentary Deposits. Springer, Berlin, Heidelberg, 716 p.

Glass, B.P., Burns, C.A., Crosbie, J.R., and DuBois, D.L. (1985) Late Eocene North American microtektites and clinopyroxene-bearing spherie. J Geophys Res Solid Earth 90:175–196.

Glikson, A.Y., Hickman, A.H., and Vickers, J. (2008) Hickman Crater, Ophthalmia Range, Western Australia: evidence supporting a meteorite impact origin. Aust J Earth Sci 55:1107–1117.

Glikson, A., Hickman, A., and Crossley, R. (2016a) Evidence for a shock-metamorphic breccia within a buried impact crater, Lake Raeside, Yilgarn Craton, Western Australia. Aust J Earth Sci 63:99–109.

Glikson, A., Hickman, A., Evans, N.J., Kirkland, C.L., Park, J.W., Rapp, R., and Romano, S. (2016b) A new ∼3.46 Ga asteroid impact ejecta unit at Marble Bar, Pilbara Craton, Western Australia: a petrological, microprobe and laser ablation ICP-MS study. Precambr Res 279:103–122.

Goderis, S., Kallesøe, E., Tagle, R., Dyvik, H., Schmitt, R.T., Erzinger, J., and Claeyss, P. (2009) A non-magnetic iron projectile for the Gardnos impact event. Chemical Geology 258:145–156.

Goderis, S., Hertogen, J., Vanhaecke, F., Claeyss, P., Gibson, R.L., and Reimold, W.U. (2010) Siderophile elements from the Eyereville drill cores of the Chesapeake Bay impact structure do not constrain the nature of the projectile. In Large Meteorite Impacts and Planetary Evolution IV, GSA Special Paper 465, edited by R.L. Gibson and W.U. Reimold, Geological Society of America, Boulder, CO, pp 395–409.

Goderis, S., Paquay, F., and Claeyss, P.H. (2012) Projectile identification in terrestrial impact structures and ejecta material. In Impact Cratering: Processes and Products, edited
Haines, P.W. (2014) Collaborative scientific drilling at Hickman Crater. GSWA extended abstracts, GSWA Seminar (2014, Fremantle, WA), Geological Survey of Western Australia, East Perth, Western Australia, pp 1–4.

Haines, P.W. and Rawlings, D.J. (2002) The Foelsche structure, Northern Territory, Australia: an impact crater of probable Neoproterozoic age. Meteorit Planet Sci 37:269–280.

Haines, P.W., Jenkins, R.I., and Kelley, S.P. (2001) Pleistocene glass in the Australian desert: the case for an impact origin. Geology 29:899–902.

Haines, P.W., Sweet, I.P., and Mitchell, K. (August 12–17, 1994) Cleanskin structure, Northern Territory and Queensland, Australia: evidence for an impact origin [abstract 5176]. In 75th Annual Meeting of the Meteoritical Society, Cairns, Australia, Supplement to Meteoritics & Planetary Science.

Hallam, A. and Wignall, P.B. (1997) Mass Extinctions and Their Aftermath. Oxford University Press, Oxford, 328 p.

Hargraves, R.B., Kellogg, K.S., Fiske, P.S., and Hougen, S.B. (1994) Allochthonous impact-shocked rocks and superimposed deformations at the Beaverhead site in southwest Montana. In Large Meteorite Impacts and Planetary Evolution, GSA Special Paper 293, edited by B.O. Dressler, R.A.F. Grieve, and V.L. Sharp ton, Geological Society of America, Boulder, CO, pp 225–236.

Hart, R.J., Andreoli, M.A., Tredoux, M., Moser, D., Ashwal, L.D., Eide, E.A., Webb, S.J., and Brandt, D. (1997) Late Jurassic age for the Morokweng impact structure, southern Africa. Earth Planet Sci Lett 147:25–35.

Hartmann, W.K. and Neukum, G. (2001) Cratering chronology and the evolution of Mars. In Chronology and evolution of Mars, edited by R. Kallenbach, J. Geiss, and W.K. Hartmann, Springer, Dordrecht, pp 165–194.

Hartung, J. and Koeberl, C. (1994) In search of the Australasian tektite source crater: the Tonle Sap hypothesis. Meteoritics 29:411–416.

Hassler, S.W., Simonson, B.M., Sumner, D.Y., and Bodin, L. (2011) Paraburdoo spherule layer (Hamersley Basin, Western Australia): distal ejecta from a fourth large impact near the Archean-Proterozoic boundary. Geology 39:307–310.

Hauser, N., Reimold, W.U., Cavosie, A.J., Crosta, A.P., Schwarz, W.H., Trieloff, M., Da Silva Maia de Souza, C., Pereira, L.A., Rodrigues, E.N., and Brown, M. (2019) Linking shock textures revealed by BSE, CL, and EBSD with U–Pb data (LA-ICP-MS and SIMS) from zircon from the Araguainha impact structure, Brazil. Meteorit Planet Sci 54:2286–2311. DOI: 10.1111/maps.13371.

Hecht, L., Reimold, W.U., Sherlock, S., Tagle, R., Koeberl, C., and Schmitt, R.T. (2008) New impact-melt rock from the Roter Kamm impact structure, Namibia: further constraints on impact age, melt rock chemistry, and projectile composition. Meteorit Planet Sci 43:1201–1218.

Heck, P.R., Schmitz, B., Baur, H., Halliday, A.N., and Wieler, R. (2004) Fast delivery of meteorites to Earth after a major asteroid collision. Nature 430:323–325.

Heiser, J. and Tremaine, S. (1989) How dating uncertainties affect the detection of periodicity in extinctions and craters. Icarus 77:213–219.

Heizmann, E.P.J. and Hesse, A. (1995) [The Middle Miocene bird and mammal faunae of the Nördlinger Ries (MN 6) and the Steinheim Basin (MN 7) A comparison]. Cour. Forsch Inst Senckenb 181:171–185.

Herd, C.D.K., Froese, D.G., Walton, E.L., Kofman, R.S., Herd, E.P.K., and Duke, M.J.M. (2008) Anatomy of a young impact event in central Alberta, Canada: prospects for the missing Holocene impact record. Geology 36:955–958.

Hergarten, S. and Kenkmann, T. (2015) The number of impact craters on Earth: any room for further discoveries?. Earth Planet Sci Lett 425:187–192.

Heli, A.R., Robyr, M., and Villa, I.M. (2014) Petrology and geochemistry of “muscovite age standard” B4M. In Advances in 40Ar/39Ar dating: From Archaeology to Planetary Sciences, edited by F. Jourdan, D.F. Mark, and C. Verati, Geological Society of London Special Publications Vol. 378, Geological Society, London, UK, pp 69–78.

Hesseltbo, S.P., McRoberts, C.A., and Pálgy, J. (2007) Triassic-Jurassic boundary events: problems, progress, possibilities. Palaeogeogr Palaeoclimatol Palaeoecol 244:1–10.

Higgins, M. and Tait, L. (1990) A possible new impact structure near Lac de la Presqu’île, Québec, Canada. Meteoritics 25:235–236.

Hildebrand, A.R., Penfield, G.T., Kring, D.A., Pilkington, M., Camargo, Z.A., Jacobsen, S.B., and Boynton, W.V. (1991) Chicxulub crater: a possible Cretaceous/Tertiary boundary impact crater on the Yucatan Peninsula, Mexico. Geology 19:867–871.

Hodych, J.P. and Dunning, G.R. (1992) Did the Manicouagan impact trigger end-of-Triassic mass extinction?. Geology 20:51–54.

Holliday, V.T., Kring, D.A., Mayer, J.H., and Goble, R.J. (2005) Age and effects of the Odessa meteorite impact, western Texas, USA. Geology 33:945–948.

Holm-Alwmark, S., Alwmark, C., Ferriè`re, L., Lindström, S., Meier, M.M.M., Scherstén, A., Herrmann, M., Masaitsi, V.L., Mashchak, M.S., Naumov, M.V., and Jourdan, F. (2019) An Early Jurassic age for the Puchezh-Katunki impact structure (Russia) based on 40Ar/39Ar dating and palynology. Meteorit Planet Sci 54:1764–1780.

Honda, M., Caffee, M.W., Miura, Y.N., Nagai, H., Nagao, K., and Nishizumi, K. (2002) Cosmogenic nuclides in the Brenham pallasite. Meteorit Planet Sci 37:1711–1728.

Hörz, F. (2000) Time-variable cratering rates? Science 288:2095.

Hsi, K.J. (1980) Terrestrial catastrophe caused by cometary impact at the end of Cretaceous. Nature 285:201–203.

Huber, M.S., Cr´ene, A.E., McDonald, I., Hecht, L., Melezhik, V.A., and Koeberl, C. (2014) Impact spherules from Karelia, Russia: possible ejecta from the 2.02 Ga Vredefort impact event. Geology 42:375–378.

Huber, M.S., Koeberl, C., Smith, F.C., Glass, B.P., Mundil, R., and McDonald, I. (2019) Geochemistry of a confirmed Precambrian impact ejecta deposit: the Grænsesø spherule layer, South Greenland. Meteorit Planet Sci 54:2254–2272. DOI: doi.org/10.1111/maps.13271.

Hughen, K., Lehman, S., Overpeck, J., Marchal, O., Herring, C., and Turnbull, J. (2004) 14C activity and global carbon cycle changes over the past 50,000 years. Science 303:202–207.

Hughes, D.W. (2000) A new approach to the calculation of the cratering rate of the Earth over the last 125±20 Myr. Myr Month Not Royal Astronom Soc 317:429–437.

Ivanov, B.A., Neukum, G., Bottke, W.F., and Hartmann, W.K. (2003) The comparison of size–frequency distributions of impact craters and asteroids and the planetary cratering rate. In Asteroids III, edited by W.F. Bottke, A. Cellino, P. Paolicchi, and R.P. Binzel, University of Arizona Press, Tucson, AZ, pp 89–101.
Izett, G.A., Masaitis, V.L., Shoemaker, E.M., Dalrymple, G.B., and Steiner, M.B. (February 9–12, 1994) Eocene age of the Kamenšek buried crater of Russia. In New Developments Regarding the KT Event and Other Catastrophes in Earth History Conference, Houston, TX, pp 55–56. LPI Contribution No. 825.

Izett, G.A., Cobban, W.A., Obadovich, J.D., and Dalrymple, G.B. (1998) 40Ar/39Ar age of the Manson impact structure, Iowa, and correlative impact ejecta in the Crow Creek Member of the Pierre Shale (Upper Cretaceous), South Dakota and Nebraska. GSA Bull 110:361–376.

Jansa, L.F., Pe-Piper, G., Robertson, P.B., and Friedenreich, O. (1989) Montagnais: a submarine impact structure on the Scotian Shelf, eastern Canada. GSA Bull 101:450–463.

Jessberger, E.K. (1988) 40Ar/39Ar dating of the Haughton impact crater. Meteoritics 23:233–234.

Jetsu, L. and Pelt, J. (2000) Spurious periods in the terrestrial impact crater record. Astronom Astrophys 353:409–418.

Johnson, B.C. and Bowling, T.J. (2014) Where have all the craters gone? Earth’s bombardment history and the expected terrestrial cratering record. Geology 42:587–590.

Johnson, B.C. and Melosh, H.J. (2012) Impact spherules as a record of an ancient heavy bombardment of Earth. Nature 485:75–77.

Johnson, B.C., Collins, G.S., Minton, D.A., Bowling, T.J., Simonson, B.M., and Zuber, M.T. (2016) Spherule layers, crater scaling laws, and the population of ancient terrestrial impactors. Icarus 271:350–359.

Jolley, D., Gilmour, I., Gurov, E., Kelley, S., and Watson, J. (2010) Two large meteorite impacts at the Cretaceous-Paleogene boundary. Geology 38:835–838.

Jourdan, F. (2012) The 40Ar/39Ar dating technique applied to planetary sciences and terrestrial impacts. Aust J Earth Sci 59:199–224.

Jourdan, F. and Reimold, W.U. (August 12–17, 2012) Age of the Serra da Canastra impact structure. In Impact! Proceedings of the 7th International Conference on Impact Cratering: Processes and Products, edited by G.R. Osinski and E. Pierazzo, Wiley-Blackwell, Chichester, pp 60–75.

Jourdan, F., Collins, G.S., and Wünnemann, K. (2012) The modification stage of crater formation. In Impact Cratering: Processes and Products, edited by G.R. Osinski and E. Pierazzo, Wiley-Blackwell, Chichester, pp 60–75.

Jourdan, F., Collins, G.S., and Wünnemann, K. (2012) The modification stage of crater formation. In Impact Cratering: Processes and Products, edited by G.R. Osinski and E. Pierazzo, Wiley-Blackwell, Chichester, pp 60–75.

Jourdan, F., Renne, P.R., and Reimold, W.U. (2007) The problem of inherited 40Ar in dating impact glass by the 40Ar/39Ar method: evidence from the Tsovaing impact crater (South Africa). Geochim Cosmochim Acta 71:1214–1231.

Jourdan, F., Renne, P.R., and Reimold, W.U. (2008) High-precision 40Ar/39Ar age of the Jánisjárvi impact structure (Russia). Earth Planet Sci Lett 265:438–449.

Jourdan, F., Renne, P.R., and Reimold, W.U. (2009) An appraisal of the ages of terrestrial impact structures. Earth Planet Sci Lett 286:1–13.

Jourdan, F., Moynier, F., Koeberl, C., and Eroglu, S. (2011) 40Ar/39Ar age of the lunar crater and consequence for the geochronology of planetary impacts. Geology 39:671–674.

Jourdan, F., Reimold, W.U., and Deutsch, A. (2012) Dating terrestrial impact structures. In Impact!, edited by F. Jourdan and W.U. Reimold, Elements, Vol. 8, Mineralogical Society of America, Chantilly, Virginia, pp 49–53.

Jourdan, F., Nomade, S., Wingate, M.T., Eroglu, E., and Deino, A. (2019) Ultraprecise age and formation temperature of the Australasian tektites constrained by 40Ar/39Ar analyses. Meteorit Planet Sci 19, DOI: 10.1111/maps.13305. 54:2573–2591.

Kallesøe, E., Corfu, F., and Dypvik, H. (2009) U-Pb systematics of zircon and titanite from the Gardnos impact structure, Norway: evidence for impact at 546 Ma? Geochim Cosmochim Acta 73:3077–3092.

Kamo, S.L., Reimold, W.U., Krogh, T.E., and Colliston, W.P. (1996) A 2.023 Ga age for the Vredefort impact event and a first report of shock metamorphosed zircons in pseudotachylitic breccias and granophyre. Earth Planet Sci Lett 144:369–387.

Kasting, J., and Huntoon, P.W. (1996) Cluster of five small Pennsylvania meteorite impact craters on Sheep Mountain near Douglas, Wyoming. In NASA’s Wyoming Space Grant Fellowship Program 1995-6 Space Science Research: Graduate and Undergraduate Fellowship reports, edited by T.M. Ciardi and P.E. Johnson, University of Wyoming, Laramie, WY, pp 57–64.

Kauffman, B. (2006) Calibrating the Devonian Time Scale: a synthesis of U-Pb ID-TIMS ages and conodont stratigraphy. Earth Sci Rev 76:175–190.

Kelley, S. (2002) K-Ar and Ar-Ar dating. In Noble Gases in Geochemistry and Cosmochemistry, edited by D. Porcelli, C.J. Ballentine, and R. Wieler, Reviews in Mineralogy and Geochemistry Vol. 47, Mineralogical Society of America, Washington, DC, pp 785–818.

Kelley, S. (2007) The geochronology of large igneous provinces, terrestrial impact structures, and their relationship to mass extinctions on Earth. J Geol Soc 164:923–936.

Kelley, S.P. and Gurov, E. (2002) Boltýsh, another end-Cretaceous impact. Meteorit Planet Sci 37:1031–1043.

Kelley, S.P. and Spray, J.G. (1997) A Late Triassic age for the Rochechouart impact structure, France. Meteorit Planet Sci 32:629–636.

Kenkmann, T., and Poelchau, M.H. (2009) Low-angle collision with Earth: the elliptical impact crater Matt Wilson, Northern Territory, Australia. Geology 37:459–462.

Kenkmann, T., Vasconcelos, M.A., Crosta, A.P., and Reimold, W.U. (2011) The complex impact structure Serra da Cangalha, Tocantins State, Brazil. Meteorit Planet Sci 46: 875–889.

Kenkmann, T., Collins, G.S., and Wünnemann, K. (2012) The modification stage of crater formation. In Impact Cratering: Processes and Products, edited by G.R. Osinski and E. Pierazzo, Wiley-Blackwell, Chichester, pp 60–75.

Kenkmann, T., Afifi, A.M., Stewart, S.A., Poelchau, M.H., Cook, D.J., and Neville, A.S. (2015) Saqqar: a 34 km diameter impact structure in Saudi Arabia. Meteorit Planet Sci 50: 1925–1940.

Kenkmann, T., Sundell, K.A., and Cook, D. (2018) Evidence for a large Paleozoic Impact Crater Strewn Field in the Rocky Mountains. Sci Rep 8:13246.

Kenkmann, T., Wulf, G., and Agarwal, A. (September 30 to October 1, 2019) India’s third impact crater: Ramgarh, Rajasthan [abstract 5007]. In Large Meteorite Impacts VI 2019, Brasília, Brazil, LPI Contribution No. 2136.

Kenny, G.G., Crowley, J.L., Schmitz, M.D., Andreoli, M.A.G., and Gibson, R.L. (September 30 to October 1, 2019a) High-precision geochronology and thermal modeling of the Morokweng impact melt sheet, South Africa [abstract 5061]. In Large Meteorite Impacts VI 2019, Brasilia, Brazil. LPI Contribution No. 2136.

Kenny, G.G., Schmieder, M., Whitehouse, M.J., Nemchin, A.A., Morales, L.F., Buchner, E., Bellucci, J.J., and Snape, A.A., Morales, L.F., Buchner, E., Bellucci, J.J., and Snape, A.A. (2019b) A new U-Pb age for shock-recrystallised zircon from the Lappaja¨rvi impact crater, Finland, and implications for the accurate dating of impact events. Geochim Cosmochim Acta 245:479–494.

Khryanina, L.P. (1981) Sobolevskiy meteorite crater (Sikhote-Alin’ Range). Int Geol Rev 23:1–10.

King, D.T., Petruny, L.W., and Neathery, T.L. (2007) Ecosystem perturbation caused by a small Late Cretaceous marine impact, Gulf Coastal Plain, USA. In Large Ecosystem Perturbations:
Causes and Consequences, GSA Special Paper 424, edited by S. Monechi, R. Coccioni, and M.R. Rampino, Geological Society of America, Boulder, CO, pp 97–107.

Kirkham, A. (2003) Glaucolithic spherules from the Triassic of the Bristol sw area, SW England: probable microtektite pseudomorphs. Proc Geol Assoc 114:11–21.

Kjær, K.H., Larsen, N.K., Binder, T., Bjørk, A.A., Eisen, O., Fahnstock, M.A., Funder, S., Garde, A.A., Haack, H., Helm, V., and Houmark-Nielsen, M. (2018) A large impact crater beneath Hiawatha Glacier in northwest Greenland. Sci Adv 4: eaar8173.

Knoll, A., Walter, M., Narbonne, G., and Christie-Blick, N. (2006) The Ediacaran Period: a new addition to the geologic time scale. Lethaia 39:13–30.

Koeberl, C. (1997) Libyan Desert Glass: geochemical composition and origin. In Proceedings of the Silica '96, Pyramids, De Michele V, Segrate, Milan, Italy, pp 121–131.

Koeberl, C. (1998) Identification of meteoritic components in impactites. Geol Soc London Spec Pub 140:133–153.

Koeberl, C. (2006) Impact processes on the early Earth. In Early Earth, edited by J.W. Valley, Elements Vol 2, Mineralogical Society of America, Chantilly, Virginia, pp 211–216.

Koeberl, C. (2009) Late Eocene impact craters and impactoclastic layers—an overview. In The Late Eocene Earth—Hothouse, Icehouse, and Impacts, GSA Special Paper 452, edited by C. Koeberl and A. Montanari, Geological Society of America, Boulder, CO, pp 17–26.

Koeberl, C. (2014) The geochemistry and cosmochemistry of impacts, In Treatise on Geochemistry, Vol. 2, edited by H.D. Holland and K.K. Turekian, Elsevier, Amsterdam, Netherlands; Heidelberg, Germany, pp 73–118.

Koeberl, C. and Ivanov, B.A. (2019) Asteroid impact effects on Snowball Earth. Meteorit Planet Sci 13. DOI: 10.1111/maps.1329. Meteoritics & Planetary Science 54:2273–2285.

Koeberl, C. and Reimold, W.U. (1995) The Newport impact structure, North Dakota, USA. Geochim Cosmochim Acta 59: 4747–4767.

Koeberl, C., Hartung, J.B., Kunk, M.J., Klein, J., Matsuda, J.I., Nagao, K., Reimold, W.U., and Storzer, D. (1993) The age of the Roter Kamm impact crater, Namibia: constraints from 40Ar/39Ar, K-Ar, Rb-Sr, fission track, and 10Be-26Al studies. Meteoritics 28:204–212.

Koeberl, C., Reimold, W.U., and Brandt, D. (1996) Red Wing Creek structure, North Dakota: petrographical and geochemical studies, and confirmation of impact origin. Meteorit Planet Sci 31:335–342.

Koeberl, C., Armstrong, R.A., and Reimold, W.U. (1997a) Morokweng, South Africa: a large impact structure of Jurassic-Cretaceous boundary age. Geology 25:731–734.

Koeberl, C., Bottomley, R., Glass, B.P., and Storzer, D. (1997b) Geochemistry and age of Ivory Coast tektites and microtektites. Geochim Cosmochim Acta 61:1745–1772.

Koeberl, C., Reimold, W.U., and Kelley, S.P. (2001) Petrography, geochemistry, and argon-40/argon-39 ages of impact-melt rocks and breccias from the Ames impact structure, Oklahoma: the Nicor Chestnut 18-4 drill core. Meteorit Planet Sci 36:651–669.

Koeberl, C., Reimold, W.U., Cooper, G., Cowan, D., and Vincent, P.M. (2005a) Aorounga and Gwendi Fada impact structures, Chad: remote sensing, petrography, and geochemistry of target rocks. Meteorit Planet Sci 40:1455–1471.

Koeberl, C., Reimold, W.U., and Plescia, J. (2005b) BP and Oasis impact structures, Libya: remote sensing and field studies. In Impact Tectonics, edited by C. Koeberl and H. Henkel. Springer, Berlin, Heidelberg, pp 161–190.

Koeberl, C., Shukolyukov, A., and Lugmair, G.W. (2007a) Chromium isotopic studies of terrestrial impact craters: identification of meteoritic components at Bosumtwi, Clearwater East, Lappajärvi, and Rochechouart. Earth Planet Sci Lett 256:534–546.

Koeberl, C., Ivanov, B.A., and Goodman, J. (2007b) Impact triggering of the Snowball Earth deglaciation? [abstract 8035]. In Bridging the Gap II: effect of Target Properties on the Impact Cratering Process, Lunar and Planetary Institute, Houston TX, pp 62–63. LPI Contribution No. 1360.

Koeberl, C., Cróst, A.P., and Schulz, T. (2019) Geochemical investigation of the Atacamaites, a new impact glass occurrence in South America [abstract 1255]. In Lunar and Planetary Science L, LPI Contribution No. 2132. Lunar and Planetary Institute, Houston TX.

Kohman, T.P. and Goel, P.S. (1963) Terrestrial ages of meteorites from cosmogenic C14. In Radioactive Dating, IAEA, Vienna, pp 395–411.

Kohn, B., Chung, L., and Gleadow, A. (2019) Fission-track analysis: field collection, sample preparation and data acquisition. In Fission-Track Thermochronology and Its Application to Geology, edited by M.G. Malusà and P.G. Fitzgerald, Springer, Cham, Switzerland, Lunar and Planetary Institute, Houston TX, pp 25–48.

Korochantseva, E.V., Triloff, M., Lorenz, C.A., Buykin, A.I., Ivanova, M.A., Schwarz, W.H., Hopp, J., and Jessberger, E.K. (2007) L-chondrite asteroid breakup tied to Ordovician meteorite shower by multiple isochron 40Ar-39Ar dating. Meteorit Planet Sci 42:113–130.

Kriens, B.J., Shoemaker, E.M., and Herkenhoff, K.E. (1999) Geology of the Upheaval Dome impact structure, southeast Utah. J Geophys Res Planets 104:18867–18887.

Kring, D.A. (1995) The dimensions of the Chicxulub impact crater and impact melt sheet. J Geophys Res Planets 100: 16979–16986.

Kring, D.A. (2000) Impact events and their effect on the origin, evolution, and distribution of life. GSA Today 10:1–7.

Kring, D.A. (2002) Reevaluating the impact cratering kill curve. Meteorit Planet Sci 37:1648–1649.

Kring, D.A. (2003) Environmental consequences of impact cratering events as a function of ambient conditions on Earth. Astrobiology 3:133–152.

Kring, D.A. (2005) Hypervelocity collisions into continental crust composed of sediments and an underlying crystalline basement: comparing the Ries (~24 km) and Chicxulub (~180 km) impact craters. Geochemistry 65:1–46.

Kring, D.A. (2007) The Chicxulub impact event and its environmental consequences at the Cretaceous–Tertiary boundary, Palaeogeogr Palaeoclimatol Palaeoecol 255:4–21.

Kring, D.A. (2017a) Field Guide: Petrified Forest with Notes for Guides to the Geology of Barringer Meteorite Crater, Arizona (a.k.a. Meteor Crater), 2nd edition, Lunar and Planetary Institute, Houston, TX. 11 p. LPI Contribution No. 2164.

Kring, D.A. (2017b) Guidebook to the Geology of Barringer Meteorite Crater, Arizona (a.k.a. Meteor Crater), 2nd edition, Lunar and Planetary Institute, Houston, TX. 270 p. LPI Contribution No. 2040.

Kring, D.A. (September 8–12, 2019) Updated status of the impact—origin of life hypothesis [abstract 1037]. In The First Billion Years—Habitability Meeting, Big Sky, MT. https://www.hou.usra.edu/meetings/habitability2019/pdf/1037.pdf
Kring, D.A. and Boynton, W.V. (1991) Altered spherules of impact melt and associated relic glass from the K/T boundary sediments in Haiti. Geochim Cosmochim Acta 55:1737–1742.

Kring, D.A. and Cohen, B.A. (2002) Cataclysmic bombardment throughout the inner solar system 3.9–4.0 Ga. J Geophys Res Planets 107:5009.

Kring, D.A. and Durda, D.D. (2002) Trajectories and distribution of material ejected from the Chicxulub impact crater: implications for postimpact wildfires. J Geophys Res Planets 107:5062.

Kring, D.A., Melosh, H.J., and Hunten, D.M. (1996) Impact-induced perturbations of atmospheric sulfur. Earth Planet Sci Lett 140:201–212.

Kring, D.A., Wolbach, W.S., Patzer, A., and Goodwin, D. (August 13–17, 2007) A test of the impact-mass extinction hypothesis at the Triassic-Jurassic boundary [abstract 5130]. In 70th Annual Meteoritical Society Meeting, Tucson, AZ, Supplement to Meteoritics & Planetary Science, Vol. 42, p. 5130.

Kring, D.A., Kramer, G.Y., Collins, G.S., Potter, R.W., and Chandnani, M. (2016) Peak-ring structure and kinematics from a multi-disciplinary study of the Schrödinger impact basin. Nat Commun 7:13161.

Kring, D.A., Claeys, P.H., Gulick, S.P., Morgan, J.V., and Collins, G.S. (2017a) Chicxulub and the exploration of large peak-ring impact craters through scientific drilling. GSA Today 27:5.

Kring, D.A., Schmieder, M., Shaulis, B.J., Riller, U., Cockell, C., and Coolen, M.J.L.; IODP-ICDP Expedition 364 Science Party (2017b) Probing the impact-generated hydrothermal system in the peak ring of the Chicxulub Crater and its potential as a habitat [abstract no. 1212]. In Lunar and Planetary Science XLVIII, LPI Contribution No. 1964. Lunar and Planetary Institute, Houston TX.

Krinov, E.L. (1960) The Tunguska Meteorite. Int Geol Rev 2:8–19.

Krinov, E.L. (1971) New studies of the Sikhote-Alin iron meteorite shower. Meteoritics 6:127–138.

Krogh, T.E., Davis, D.W., and Corfu, F. (1984) Precise U-Pb ages of single shocked zircons linking distal K/T ejecta to the Chicxulub crater. Nature 316:731–734.

Kroener, A., Byerly, G.R., and Lowe, D.R. (1991) Chronology of early Archaean granite-greenstone evolution in the Barberton Mountain Land, South Africa, based on precise dating by single zircon evaporation. Earth Planet Sci Lett 103:41–54.

Kuiper, Y.D. (2002) The interpretation of inverse isochron diagrams in 40Ar/39Ar geochronology. Earth Planet Sci Lett 203:499–506.

Kulik, L.A. (1940) The Meteorite Expedition to the stony Tunguska in 1939. DAN Proc USSR Acad Sci 28:597–601.

Kyte, F.T., Zhou, Z., and Wasson, J.T. (1980) Siderophile-enriched sediments from the Cretaceous–Tertiary boundary. Nature 288:651–656.

Kyte, F.T., Shukolyukov, A., Hildebrand, A.R., Lugmair, G.W., and Hanova, J. (2011) Chromium-isotopes in Late Eocene impact spherules indicate a likely asteroid belt provenance. Earth Planet Sci Lett 302:279–286.

Kyte, F.T., Shukolyukov, A., Lugmair, G.W., Lowe, D.R., and Byerly, G.R. (2003) Early Archaean spherule beds: chromium isotopes confirm origin through multiple impacts of projectiles of carbonaceous chondrite type. Geology 31:283–286.

Lakomy, R. (1990) Distribution of impact induced phenomena in complex terrestrial impact structures: implications for transient cavity dimensions. In Lunar and Planetary Science XXI, Vol. 21. Lunar and Planetary Institute, Houston, TX, pp 676–677.

Lambert, P., McHone, J.F., Jr., Dietz, R.S., and Houfani, M. (1980) Impact and impact-like structures in Algeria part I: four bowl-shaped depressions. Meteoritics 15:157–179.

Lambert, P., McHone, J.F., Jr., Dietz, R.S., Briedj, M., and Djender, M. (1981) Impact and impact-like structures in Algeria part II: multi-ringed structures. Meteoritics 16:203–227.

Layer, P.W. (2000) Argon-40/argon-39 age of the El’gygytgyn impact event, Chukotka, Russia. Meteorit Planet Sci 35: 591–599.

Le Feuvre, M. and Wieczorek, M.A. (2011) Nonuniform cratering of the Moon and a revised crater chronology of the inner Solar System. Icarus 214:1–20.

Lehtinen, M., Pesonen, L.J., Stehlík, H., and Kuulusa, M. (2002) The Suvasvesi South structure, Central Finland: new evidences for impact [abstract 1188]. Lunar and Planetary Science, Vol. 33, Lunar and Planetary Institute, Houston, TX.

Lepaulard, C., Gattacceca, J., Swanson-Hysell, N., Quesnel, Y., Demory, F., and Osiński, G.R. (2019) A Paleozoic age for the Tunnunik impact structure. Meteorit Planet Sci 54:740–751.

Lindgren, P., Ivarsson, M., Neubeck, A., Broman, C., Henkel, H., and Holm, N.G. (2010) Putative fossil life in a hydrothermal system of the Dellen impact structure, Sweden. Int J Astrobiol 9:137–146.

Lindström, M., Ormö, J., Sturkell, E., and von Dalwigk, I. (2005) The Lockne crater: revision and reassessment of structure and impact stratigraphy. In Impact Tectonics, edited by C. Koeberl and H. Henkel, Springer, Berlin, Heidelberg, pp 357–388.

Lindström, S., Pedersen, G.K., Van De Schootbrugge, B., Hansen, K.H., Kuhlmann, N., Thein, J., Johansson, L., Ingemann Petersen, H., Alwmark, C., Dybkjær, K., Weibel, R., Erlström, M., Nielsen, L.H., Ochsmann, W., and Tegner, C. (2015) Intense and widespread seismicity during the end-Triassic mass extinction due to emplacement of a large igneous province. Geology 43:387–390.

Liu, K.X., Chen, M., Ding, X.F., Fu, D.P., Ding, P., Shen, C.D., Liu, X., and Xiao, W.S. (2013) AMS radiocarbon dating of lacustrine sediment from an impact crater in northeastern China. Nucl Instrum Methods Phys Res 294:593–596.

Lo, C.-H., Howard, K.T., Chung, S.L., and Meffre, S. (2002) Laser fusion argon-40/argon-39 ages of Darwin impact glass. Meteorit Planet Sci 37:1555–1562.

Losiak, A., Wild, E.M., Geppert, W.D., Huber, M.S., Jöeljët, A., Kriiska, A., Kulkov, A., Päavel, K., Piriković, I., Plado, J., and Steier, P. (2016) Dating a small impact crater: an age of Kaalii crater (Estonia) based on charcoal emplaced within proximal ejecta. Meteorit Planet Sci 51:681–695.

Losiak, A., Jöeljët, A., Plado, J., Syszka, M., Wild, E.M., Bronikowska, M., Belcher, C., Kirsimäe, K., and Steier, P. (2017) Dating Ilumetsa Craters (Estonia) based on charcoal emplaced within its proximal ejecta blankets [abstract 1879]. In Lunar and Planetary Science XLVIII, LPI Contribution No. 1964. Lunar and Planetary Institute, Houston, TX.

Losiak, A., Belcher, C., Jöeljët, A., Plado, J., and Syszko, M. (2019) Death from space: origin of charcoal found in proximal ejecta blanket of Kaali Craters (is NOT what we think) [abstract 2406]. In Lunar and Planetary Science L, LPI
Contribution No. 2132. Lunar and Planetary Institute, Houston, TX.

Lowe, D.R. and Byerly, G.R. (2010) Did LHB end not with a bang but a whimper? The geologic evidence [abstract 2563]. In Lunar and Planetary Science XL. LPI Contribution No. 1533. Lunar and Planetary Institute, Houston, TX.

Lowe, D.R., Byerly, G.R., Kyte, F.T., Shukolyukov, A., Asaro, F., and Krull, A. (2003) Sphalerite beds 3.47–3.24 billion years old in the Barberton Greenstone Belt, South Africa: a record of large meteorite impacts and their influence on early crustal and biological evolution. Astrobiology 3:7–48.

Lowe, D.R., Byerly, G.R., and Kyte, F.T. (2014) Recently discovered 3.42–3.23 Ga impact layers, Barberton Belt, South Africa: 3.8 Ga detrital zircons, Archean impact history, and tectonic implications. Geology 42:747–750.

Lowery, C.M., Brailerow, T.J., Owens, J.D., Rodriguez-Tovar, F.J., Jones, H., Smit, J., Whalen, M.T., Claeyss, P.H., Farley, K., Gulick, S.P., and Morgan, J.V. (2018) Rapid recovery of life at ground zero of the end-Cretaceous mass extinction. Nature 558:288–291.

Lozej, G.P. and Beales, F.W. (1975) The unmetamorphosed sedimentary fill of the Brent meteorite crater, southeastern Ontario. Can J Earth Sci 12:606–628.

Ludwig, K.R. (August 26, 2008) Isoplot 4.15. Berkeley Geochronology Center Special Publication No. 4, rev. Available online at www.bgc.org/isoplot_etc/isoplot.html (accessed November 18, 2019).

Macdonald, F.A., Wingate, M.T.D., and Mitchell, K. (2005) Geology and age of the Glikson impact structure, Western Australia. Aust J Earth Sci 52:641–651.

Macke, R.J. (2010) Survey of meteorite physical properties density, porosity and magnetic susceptibility. PhD thesis, University of Central Florida, Orlando, FL, 333 p.

Macke, R.J., Britt, D.T., and Consolmagno, G.J. (2011) Density, porosity, and magnetic susceptibility of achondritic meteorites. Meteorit Planet Sci 46:311–326.

MacLagan, E. (2018) Constraints on emplacement and timing of the Steen River impact structure, Alberta, Canada. MSc thesis, University of Alberta, Edmonton, Alberta, Canada, 78 p.

MacLagan, E.A., Walton, E.L., Herd, C.D.K., and Dence, M. (2018) Investigation of impact melt in allochthonous crater-fill deposits of the Steen River impact structure, Alberta, Canada. Meteorit Planet Sci 53:2285–2305.

MacLeod, N. (1998) Impacts and marine invertebrate extinctions. Geol Soc London Spec Pub 140:217–246.

Magna, T., Žák, K., Pack, A., Mouynier, F., Mougel, B., Peters, S., Skála, R., Jonášová, Š., Mizera, J., and Randa, Z. (2017) Zhamanshin astrobleme provides evidence for carbonaceous chondrite and post-impact exchange between ejecta and Earth’s atmosphere. Nat Comm 8:227.

Maier, W.D., Andreoli, M.A., McDonald, I., Higgins, M.D., Boyce, A.J., Shukolyukov, A., Lugmair, G.W., Ashwal, L.D., Gräser, P., Ripley, E.M., and Hart, R.J. (2006) Discovery of a 25-cm asteroid clast in the giant Morokweng impact crater, South Africa. Nature 441:203–206.

Malusá, M.G. and Fitzgerald, P.G., editors (2019) Fission-Track Thermochronology and its Application to Geology. Springer, Cham, Switzerland, 395 p.

Mänttäri, I. and Koivisto, M. (2001) Ion microprobe uranium-lead dating of zircons from the Lappajärvi impact crater, western Finland. Meteorit Planet Sci 36:1087–1095.

Mänttäri, I., Kohonen, J., Kujala, H., and Pihlaja, P. (August 20–28, 2004) A revised age for the Sääksjärvi meteorite impact, southwestern Finland: the connection with a Caledonian foreland basin [abstract 1434]. In 32nd International Geological Congress, Florence, Italy.

Marjanac, T., Marjanac, L., and Tomša, A.M. (2006) Glass spherules in Upper Eocene flysch of Croatian Adriatic-Endian evidence of an impact into carbonate target? In Proceedings of the 40th ESLAB–1st International Conference on Impact Cratering in the Solar System, ESA-ESTEC, Noordwijk, Netherlands, pp 231–236.

Mark, D.F., Lindgren, P., and Fallick, A.E. (2014) A high-precision 40Ar/39Ar age for hydrated impact glass from the Dellen impact, Sweden. In Advances in 40Ar/39Ar Dating: From Archaeology to Planetary Sciences, edited by F. Jourdan, D.F. Mark, and C. Verati, Geological Society of London Special Publications, Vol. 378, Geological Society, London, UK, pp 349–366.

Marrero, S., Phillips, F.M., Caffee, M.W., Smith, S.S., and Kring, D.A. (July 26–30, 2010) Re-dating the Barringer Meteorite Crater (AZ) impact using the cosmogenic chlorine-36 surface exposure method [abstract 5150]. In 73rd Annual Meeting of the Meteoritical Society, 2010, New York, NY, Supplement to Meteoritics & Planetary Science.

Martin, W., Baross, J., Kelley, D., and Russell, M.J. (2008) Hydrothermal vents and the origin of life. Nat Rev Microbiol 6:805–814.

Marvin, U.B. and Kring, D.A. (1992) Authentication controversies and impact petrography of the New Quebec crater. Meteoritics 27:585–595.

Marzoli, A., Remne, P.R., Piccillo, E.M., Ernesto, M., Bellieni, G., and De Min, A. (1999) Extensive 200-million-year-old continental flood basalts of the Central Atlantic Magmatic Province. Science 284:616–618.

Masaitis, V.I. (1999) Impact structures of northeastern Eurasia: the territories of Russia and adjacent countries. Meteorit Planet Sci 34:691–711.

Masaitis, V.I. (2002) The middle Devonian Kaluga impact crater (Russia): new interpretation of marine setting. Deep Sea Res Part II Top Stud Oceanogr 49:1157–1169.

Masaitis, V.I., Danilin, A.N., Mashchak, M.S., Raikhlin, A.I., Selivanovskaya, T., and Shadkhem, G. (1980) The Geology of Astroblemes. Nedra Press, Leningrad, 231 p.

Masaitis, V.I., and Raikhlin, A.I. (1986) The Popigai crater was formed by the impact of an ordinary chondrite. Akad Nauk SSSR Doklady 286:1476–1478.

Master, S., Dumont, P., and Ladmirant, H. (2001) Age constraints on the Luizi Structure, a possible new impact structure on the Kudelungu Plateau, Katanga Province, Democratic Republic of Congo. Meteorit Planet Sci Suppl 36:A124.

Maziviero, M.V., Vasconcelos, M.A., Cróst a, A.P., Góes, A.M., Reimold, U., and De Carneiro, C. (2013) Geology and impact features of Riachão structure, northern Brazil. Meteorit Planet Sci 48:2044–2058.

Mazrouei, S., Ghent, R.R., Bottke, W.F., Parker, A.H., and Geron, T.M. (2019) Earth and Moon impact flux increased at the end of the Paleozoic. Science 363:253–257.

McDonald, I. (2002) Clearwater East impact structure: a re-interpretation of the projectile type using new platinum-group element data from meteorites. Meteorit Planet Sci 37:459–464.

McDonald, I., Bartosova, K., and Koeberl, C. (2009) Search for a meteoritic component in impact breccia from the Eyreville core, Chesapeake Bay impact structure: considerations from platinum-group element contents. In The ICDP-USGS Deep Drilling Project in the Chesapeake Bay Impact Structure:...
McEwen, A.S., Moore, J.M., and Shoemaker, E.M. (1997) The Earth’s Impact Events Through Time...

Michel, P. and Morbidelli, A. (2007) Review of the population...

Merrihue, C. and Turner, G. (1966) Potassium-argon dating...

Merrill, G.K. (1980) Ordovician conodonts from the Aaland island, Finland. GFF 101:329–341.

Michel, P. and Morbidelli, A. (2007) Review of the population of impactors and the impact cratering rate in the inner solar system. Meteorit Planet Sci 42:1861–1869.

Mlikotić, K., Collins, G.S., Mannick, S., and Bland, P.A. (2013) Morphology and population of binary asteroid impact craters. Earth Planet Sci Lett 363:121–132.

Mlikotić, K., Collins, G.S., and Bland, P.A. (2014) Reply to comment on: “supportive comment on: “morphology and population of binary asteroid impact craters,”’’ by K. Miljiotić, GS Collins, S. Mannick and PA Bland—an updated assessment.” Earth Planet Sci Lett 405:285–286.

Miller, R.M. (2010) Roter Kamm impact crater of Namibia: new data on rim structure, target rock geochemistry, ejecta, and meteorite trajectory. In Large Meteorite Impacts and Planetary Evolution IV, GSA Special Paper 465, edited by R.L. Gibson and W.U. Reimold, Geological Society of America, Boulder, CO, pp 489–508.

Milstein, R.L. (1994) The Calvin impact crater, Cass County, Michigan: identification and analysis of a subsurface Ordovician astrobleme. PhD thesis, Oregon State University, Corvallis, Oregon, 126 p.

Milton, D.J. and Macdonald, F.A. (2005) Goat Paddock, Western Australia: an impact crater near the simple–complex transition. Aust J Earth Sci 52:689–697.

Minton, D.A. and Malhotra, R. (2010) Dynamical erosion of the asteroid belt and implications for large impacts in the inner Solar System. Icarus 207:744–757.

Montalvo, P.E., Cavosie, A.J., Kirkland, C.L., Evans, N.J., McDonald, B.J., Talavera, C., Erickson, T.M., and Lugo-Centeno, C. (2018) Detrital shocked zircon provides first radiometric age constraint (<1472 Ma) for the Santa Fe impact structure, New Mexico, USA. GSA Bull 131:845–863.

Montanari, A., Bagatin, A.C., and Farinella, P. (1998) Earth cratering record and impact energy flux in the last 150 Ma. Planet Space Sci 46:271–281.

Morbidelli, A. (1999) Origin and evolution of near Earth asteroids. Celest Mech Dyn Astronom 73:39–50.

Morgan, J.W., Janssens, M.J., Hertogen, J., Gros, J., and Takahashi, H. (1979) Ries impact crater, southern Germany: search for meteoritic material. Geochim Cosmochim Acta 43:803–815.

Morgan, J., Gulick, S., Bralover, T., Chenot, E., Christen, G., Claey, P.H., Cockell, C., Collins, G., Coolen, M., Ferrière, L., Gebhardt, C., Goto, K., Jones, H., Kring, D., Le Ber, E., Loﬁ, J., Long, X., Lowery, C., Mellet, C., Ocampo-Torres, R., Osinski, G., Perez-Cruz, L., Pickersgill, A., Poelchau, M., Rae, A., Rasmussen, C., Rebollo-Vieyra, M., Riller, U., Sato, H., Schmitt, D., Smit, J., Tikoo-Schantz, S., Tomioka, N., Fucugauchi, J.U., Whalen, M., Wittmann, A., Yamaguchi, K., and Zylberman, W. (2016) The formation of peak rings in large impact craters. Science 354:878–882.

Morrow, J.R., Sandberg, C.A., Malkowski, K.J., and Joachimski, M.M. (2009) Carbon isotope chemost.pigraphy and precise dating of middle Frasnian (lower Upper Devonian) Alamo Breccia, Nevada, USA. Palaeogeogr Palaeoclimatol Palaeoecol 282:105–118.

Moug el, B., Moynier, F., Göpel, C., and Koeberl, C. (2017) Chromium isotope evidence in ejecta deposits for the nature of Paleoproterozoic impactors. Earth Planet Sci Lett 460:105–111.

Moug el, B., Moynier, F., Koeberl, C., Wielandt, D., and Bizzarro, M. (2019) Identification of a meteoritic component using chromium isotopic composition of impact rocks from the lunar impact structure. India. Meteorit Planet Sci 54:2592–2599.

Mouysouvic, Y.V., Mi l,yavsk, A.Y., and Titova, G.N. (1991) Detection of peak rings in large impact craters. Nature 349:251–254.

Mercer, C.M. and Hodges, K.V. (2016) ArAr—a software tool to promote the robust comparison of K–Ar and 40Ar/39Ar dates published using different decay, isotopic, and monitorage parameters. Chem Geol 440:148–163.

Merrihue, C. and Turner, G. (1966) Potassium-argon dating by activation with fast neutrons. J Geophys Res 71:2852–2857.

Merrill, G.K. (1980) Ordovician conodonts from the Aaland islands, Finland. GFF 101:329–341.

Michel, P. and Morbidelli, A. (2007) Review of the population of impactors and the impact cratering rate in the inner solar system. Meteorit Planet Sci 42:1861–1869.

Milkotić, K., Collins, G.S., Mannick, S., and Bland, P.A. (2013) Morphology and population of binary asteroid impact craters. Earth Planet Sci Lett 363:121–132.

Milkotić, K., Collins, G.S., and Bland, P.A. (2014) Reply to comment on: “supportive comment on: “morphology and population of binary asteroid impact craters,”’’ by K. Milkotić, GS Collins, S. Mannick and PA Bland—an updated assessment.” Earth Planet Sci Lett 405:285–286.
Pesonen, L.J., Ja¨ rvela¨ , J., Sarapa¨ a¨ , O., and Pietarinen, H. Peucker-Ehrenbrink, B. (2001) Iridium and osmium as tracers of extraterrestrial matter in marine sediments. In Accretion of Extraterrestrial Matter Throughout Earth’s History, edited by B. Peucker-Ehrenbrink and B. Schmitz, Springer, Boston, MA, pp 163–178.

Picketsgill, A.E., Christou, E., Mark, D.F., Lee, M.R., Tremblay, M.M., Rasmussen, C., Morgan, J.V., Gulick, S.P.S., Schmieder, M., Bach, W., Osinski, G.R., Simpson, S.L., Kring, D.A., Cockell, C.C., Collins, G.S., Christeson, G.L., Tikoo, S.M., Stockli, D.F., Ross, C., Wittmann, A., and Swindle, T.D.; the Expedition 364 Scientists. (September 30 to October 1, 2019a) Six million years of hydrothermal activity at Chixculub? [abstract 5082]. In Large Meteorite Impacts VI 2019, Brasilia, Brazil, LPI Contribution No. 2136. Lunar and Planetary Institute, Houston, TX.

Pickett, J., Koeberl, C., and Pati, P. (2008) The Dhala structure, Bundelkhand craton, Central India—eroded remnant of a large Paleoproterozoic impact structure. Meteorit Planet Sci 43:1383–1398.

Pinto, J.A., Warme, J.E., Evans, K.R., King, D.T., and Picken, A.R. (2019b) A refined age for the Gow Lake impact structure [abstract 2375]. In Lunar and Planetary Science L. LPI Contribution No. 2132. Lunar and Planetary Institute, Houston, TX.

Pidgeon, R.T., O’Neil, J.R., and Silver, L.T. (1966) Uranium and lead isotopic stability in a metamict zircon under experimental hydrothermal conditions. Science 154:1538–1540.

Pierazzo, E., Kring, D.A., and Melosh, H.J. (1998) Hydrocode simulation of the Chixculub impact event and the production of climatically active gases. J Geophys Res Planets 103: 28607–28625.

Pinto, J.A., Warme, J.E., Evans, K.R., King, D.T., and Morrow, J.R. (2008) Alamo Event, Nevada: crater stratigraphy and impact breccia realms. In The Sedimentary Record of Meteorite Impacts, GSA Special Paper 437, edited by K.R. Evans, Geological Society of America, Boulder, CO, pp 99–137.

Pirajno, F., Hawke, P., Glikson, A.Y., Haines, P.W., and Uysal, T. (2003) Shoemaker impact structure, Western Australia. Aust J Earth Sci 50:775–796.

Plado, J., Hietala, S., Kreitsmann, F., Lerssi, J., and Lee, M.R., and Osinski, G.R. (1999) Energy, volatile production, and climatic effects of the Suvasvesi N impact structure, Finland. Lunar Planet Sci 27:1021–1022.

Pesonen, L.J., Elo, S., Lehtinen, M., Jokinen, T., Puranen, R., and Kivekäs, L. (1999) Lake Karikoselkä impact structure, central Finland: new geophysical and petrographic results. In Large Meteorite Impacts and Planetary Evolution II, GSA Special Paper 339, edited by B.O. Dressler and V.L. Sharpston, Geological Society of America, Boulder, CO, pp 131–148.

Pesonen, L.J., Mader, D., Gurov, E.P., Koeberl, C., Kinnunen, K.A., Donadini, F., and Handler, R. (2004) Paleomagnetism and 40Ar/39Ar age determinations of impactites from the Ilyinets structure, Ukraine. In Cratering in Marine Environments and on Ice, edited by H. Dypvik, M.J. Burchell, and P.H. Claeys, Springer, Berlin, Heidelberg, pp 251–280.
EARTH’S IMPACT EVENTS THROUGH TIME

Renne, P.R., Melosh, H.J., Farley, K.A., Reimold, W.U., Koeberl, C., Rampino, M.R., Kelly, S.P., and Ivanov, B.A. (2004) Is Bedout an impact crater? Take 2. Science 306: 610–612.

Renne, P.R., Mundil, R., Balco, G., Min, K., and Ludwig, K.R. (2010) Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology. Geochim Cosmochim Acta 74:5349–5367.

Renne, P.R., Balco, G., Ludwig, K.R., Mundil, R., and Min, K. (2011) Response to the comment by WH Schwartz et al. on “Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology” by PR Renne et al. (2010). Geochim Cosmochim Acta 75:5097–5100.

Renne, P.R., Deino, A.L., Hilgen, F.J., Kuiper, K.F., Mark, D.F., Mitchell, W.S., Morgan, L.E., Mundil, R., and Smit, J. (2013) Time scales of critical events around the Cretaceous-Paleogene boundary. Science 339:684–687.

Renne, P.R., Sprain, C.J., Richards, M.A., Self, S., Vanderkluysen, L., and Pande, K. (2015) State shift in Deccan volcanism at the Cretaceous-Paleogene boundary, possibly induced by impact. Science 350:76–78.

Renne, P.R., Arenillas, I., Arz, J.A., Vajda, V., Gilabert, V., and Bermúdez, H.D. (2018) Multi-proxy record of the Chicxulub impact at the Cretaceous-Paleogene boundary from Gorgonilla Island, Colombia. Geology 46:547–550.

Retallack, G.J. (1996) Acid trauma at the Cretaceous-Tertiary boundary in eastern Montana. GSA Today 6:1–7.

Retallack, G.J., Leahy, G.D., and Spoon, M.D. (1987) Evidence from paleosols for ecosystem changes across the Cretaceous/Tertiary boundary in eastern Montana. Geology 15:1090–1093.

Retallack, G.J., Seyedolali, A., Krull, E.S., Holser, W.T., Ambers, C.P., and Kyte, F.T. (1998) Search for evidence of impact at the Permain-Triassic boundary in Antarctica and Australia. Geology 26:979–982.

Richards, M.A., Alvarez, W., Self, S., Karlstrom, L., Renne, P.R., Manga, M., Sprain, C.J., Smit, J., Vanderkluysen, L., and Gibson, S.A. (2015) Triggering of the largest Deccan eruptions by the Chicxulub impact. GSA Bull 127:1507–1520.

Richardson, D.C., Botike Jr, W.F., and Love, S.G. (1998) Tidal distortion and disruption of Earth-crossing asteroids. Icarus 134:47–76.

Risi, F., Kallesøe, E., Dypvik, H., Kroglø, S.O., and Nilsen, O. (2011) The Ritland impact structure, southwestern Norway. Meteorit Planet Sci 46:748–761.

Robertson, D.S., Lewis, W.M., Sheehan, P.M., and Toon, O.B. (2013) K-Pg extinction: reevaluation of the heat-fire hypothesis. J Geophys Res Biogeosci 118:329–336.

Robin, E., Swinburne, N.H., Froget, L., Rocchia, R., and Gayraud, J. (1996) Characteristics and origin of the glass spherules from the Paleocene flood basalt province of western Greenland. Geochim Cosmochim Acta 60:815–830.

Rochette, P., Alaç, R., Beck, P., Brocard, G., Cavosie, A.J., Debaillie, V., Devouard, B., Jourdan, F., Moguel, B., Moustadt, F., and Moynier, F. (2019) Pantasma: evidence for a Paleocene circa 14 km diameter impact crater in Nicaragua. Meteorit Planet Sci 54:880–901.

Rodrick, J.C. (1978) The application of isochron diagrams in 40Ar-39Ar dating: a discussion. Earth Planet Sci Lett 41: 233–244.

Romanía, A. and Cassidy, W.A. (1973) The Campo del Cielo, Argentina, meteorite crater field. Meteoritics 8:430–431.

Roperch, P., Gattacceca, J., Valenzuela, M., Devouard, B., Lorand, J.P., Arriagada, C., Rochette, P., Latorre, C., and Beck, P. (2017) Surface vitrification caused by large fires in Late Pleistocene wetlands of the Atacama Desert. Earth Planet Sci Lett 469:15–26.

Roussel, D.H. and Brown, G.H. (2009) A Field Guide to the Geology of Sudbury, Ontario. Open File Report 6243, Ontario Geological Survey, Canada, 200 p.

Rummel, J.D., Beaty, D.W., Jones, M.A., Bakermans, C., Barlow, N.G., Boston, P.J., Chevrier, V.F., Clark, B.C., de Vera, J.P.P., Gough, R.V., Hallsworth, J.E., Head, J.W., Hipkin, V.J., Kieft, T.L., McEwen, A.S., Mellon, M.T., Mikucki, J.A., Nicholson, W.L., Omelon, C.R., Peterson, R., Roden, E.E., Sherwood Lollar, B., Tanaka, K.L., Viola, D., and Wray, J.J. (2014) A new analysis of Mars “special regions”: findings of the second MEPAG Special Regions Science Analysis Group (SR-SAG2). Astrobiology 14: 887–968.

Russell, M.J. and Arndt, N.T. (2005) Geodynamic and metabolic cycles in the Hadean. Biogeoscience 2:97–111.

Russell, M.J. and Hall, A.J. (1997) The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J Geol Soc 154:377–402.

Ryder, G. (1990) Lunar samples, lunar accretion and the early bombardment of the Moon. Eos Trans AGU 71:313–323.

Ryder, G. (2002) Mass flux in the ancient Earth-Moon system and benign implications for the origin of life on Earth. J Geophys Res Planets 107:5022.

Salameh, E., Khoury, H., Reimold, W.U., and Schneider, W. (2008) The first large meteorite impact structure discovered in the Middle East: Jebel Waqf as Suwwan, Jordan. Meteorit Planet Sci 43:1681–1690.

Sapers, H.M., Banerjee, N.R., and Osinski, G.R. (2015) Potential for impact glass to preserve microbial metabolism. Earth Planet Sci Lett 430:95–104.

Sapers, H.M., Osinski, G.R., Banerjee, N.R., and Preston, L.J. (2014) Enigmatic tubular features in impact glass. Geology 42:471–474.

Sato, H., Onoue, T., Nozaki, T., and Suzuki, K. (2013) Osmium isotope evidence for a large Late Triassic impact event. Nutr Comm 4:2455.

Schaller, M.F. and Fung, M.K. (2018) The extraterrestrial impact evidence at the Palaeocene–Eocene boundary and sequence of environmental change on the continental shelf. Phil Trans R Soc A 376:20170081.

Schaller, M.F., Fung, M.K., Wright, J.D., Katz, M.E., and Kent, D.V. (2016) Impact ejecta at the Paleocene-Eocene boundary. Science 354:225–229.

Schaltegger, U., Schaerer, U. and Deutsch, A. (1990) Isotope systematics and shock-wave metamorphism: II. U-Pb and Rb-Sr in naturally shocked rocks; the Haughton Impact Structure, Canada. Geochim Cosmochim Acta 54:3435–3447.

Schenk, P.M., Asphaug, E., McKinnon, W.B., Melosh, H.J., and Weissman, P.R. (1996) Cometary nuclei and tidal disruption: the geologic record of crater chains on Callisto and Ganymede. Icarus 121:249–274.

Schieber, J. and Over, D.J. (2005) Sedimentary fill of the Late Devonian Flynn Creek Crater: a hard target marine impact. In
Understanding Late Devonian and Permain-Triassic Biotic and Climatic Events—Towards an Integrated Approach, edited by D.J. Over, J.R. Morrow, and P.B. Wignall, Elsevier, Development of Palaeontology Strata, Vol. 20, Elsevier, Amsterdam; San Diego, CA, pp 51–69.

Schmidt, G. and Pernicka, E. (1994) The determination of platinum group elements (PGE) in target rocks and fall-back material of the Nördlinger Ries impact crater, Germany. Geochim Cosmochim Acta 58:5083–5090.

Schmidt, G., Palme, H., and Kratz, K.L. (1997) Highly siderophile elements (Re, Os, Ir, Ru, Rh, Pd, Au) in impact melts from three European impact craters (Sääksjärvi, Mien, and Dellen): clues to the nature of the impacting bodies. Geochim Cosmochim Acta 61:2977–2987.

Schmieder, M., Trieloff, M., Schwarz, W.H., Buchner, E., and Jourdan, F. (2014a) Supportive comment on: “Morphology and population of binary asteroid impact craters,” by K. Miljkovic, GS Collins, S. Mannick and PA Bland [Earth Planet. Sci. Lett. 363 (2013) 121–132]—an updated assessment. Earth Planet Sci Lett 405:281–284.

Schmieder, M. and Buchner, E. (2008) Dating impact craters: palaeogeographic versus isotopic and stratigraphic methods—a brief case study. Geol Mag 145:586–590.

Schmieder, M. and Buchner, E. (2013) Impaktereignisse in Europa (Impact events in Europe). German J Geol 164:387–415.

Schmieder, M. and Jourdan, F. (2013a) The Lappajärvi impact structure (Finland): age, duration of crater cooling, and implications for early life. Geochim Cosmochim Acta 112:321–339.

Schmieder, M. and Jourdan, F. (2013b) Cosmic hotspots for life. Aust Sci 34:16–20.

Schmieder, M., Buchner, E., Jourdan, F., Schwarz, W.H., Trieloff, M., van Soest, M.C., Wartho, J.A., Hodges, K.V., Moilanen, J., Hietala, S., and Öhman, T. (2010a) Updating the Finnish impact cratering record [abstract 2036]. In Lunar and Planetary Science XLII. Lunar and Planetary Institute, Houston, TX.

Schmieder, M., Buchner, E., Schwarz, W.H., Trieloff, M., and Lambert, P. (2010b) A Rhaetian 40Ar/39Ar age for the Rochechouart impact structure (France) and implications for the latest Triassic sedimentary record. Meteorit Planet Sci 45:1225–1242.

Schmieder, M., Schwarz, W.H., Buchner, E., Trieloff, M., Moilanen, J., and Öhman, T. (2010c) A Middle-Late Triassic 40Ar/39Ar age for the Pässäkkä impact structure (SE Finland). Meteorit Planet Sci 45:572–582.

Schmieder, M., Seyfried, H., and Gerel, O. (2013) The circular Uneged Uul structure (East Gobi Basin, Mongolia)—geomorphic and structural evidence for meteorite impact into an unconsolidated coarse-clastic target? J Asian Earth Sci 64:58–76.

Schmieder, M., Jourdan, F., Tohver, E., and Cloutis, E.A. (2014a) 40Ar/39Ar age of the Lake Saint Martin impact structure (Canada)—unchaining the Late Triassic terrestrial impact craters. Earth Planet Sci Lett 406:37–48.

Schmieder, M., Jourdan, F., Öhman, T., Tohver, E., Meyers, C., and Frew, A. (2014b) A Proterozoic 40Ar/39Ar age for the Söderfjärden impact structure, Finland [abstract 1301]. In Lunar and Planetary Science XLV. LPI, Houston, TX.

Schmieder, M., Trieloff, M., Schwarz, W.H., Buchner, E., and Jourdan, F. (2014c) Supportive comment on: “Morphology and population of binary asteroid impact craters,” by K. Miljkovic, GS Collins, S. Mannick and PA Bland [Earth Planet. Sci. Lett. 363 (2013) 121–132]—an updated assessment. Earth Planet Sci Lett 405:281–284.

Schmieder, M., Schwarz, W.H., Trieloff, M., Tohver, E., Buchner, E., Hopp, J., and Osinski, G.R. (2015a) New 40Ar/39Ar dating of the Clearwater Lake impact structures (Québec, Canada)—not the binary asteroid impact it seems? Geochim Cosmochim Acta 148:304–324.

Schmieder, M., Tohver, E., Jourdan, F., Denyszyk, S.W., and Haines, P.W. (2015b) Zircons from the Acraman impact melt rock (South Australia): shock metamorphism, U–Pb and 40Ar/39Ar systematics, and implications for the isotopic dating of impact events. Geochim Cosmochim Acta 161:71–100.

Schmieder, M., Jourdan, F., Moilanen, J., Buchner, E., and Öhman, T. (2016a) A Late Mesoproterozoic 40Ar/39Ar age for a melt breccia from the Keurusselkä impact structure, Finland. Meteorit Planet Sci 51:303–322.

Schmieder, M., Schwarz, W.H., Trieloff, M., Buchner, E., Hopp, J., Tohver, E., Pesonen, L.J., Lehtinen, M., Moilanen, J., Werner, S.C., and Öhman, T. (2016b) The two Suvasvesi impact structures, Finland: argon isotopic evidence for a “false” impact crater doublet. Meteorit Planet Sci 51:966–980.

Schmieder, M., Kennedy, T., Jourdan, F., Buchner, E., and Reimold, W.U. (2018a) A high-precision 40Ar/39Ar age for the Nördlinger Ries impact crater, Germany, and implications for the accurate dating of terrestrial impact events. Geochim Cosmochim Acta 220:146–157.

Schmieder, M., Kennedy, T., Jourdan, F., Buchner, E., and Reimold, W.U. (2018b) Response to comment on “A high-precision 40Ar/39Ar age for the Nördlinger Ries impact crater, Germany, and implications for the accurate dating of terrestrial impact events” by Schmieder et al. Geochim et Cosmochemica Acta 220 (2018) 146–157. Geochim Cosmochim Acta 238:602–605.

Schmieder, M., Shaulis, B.J., Lapen, T.J., Buchner, E., and Kring, D.A. (2019) In situ U–Pb analysis of shocked zircon from the Charlevoix impact structure, Quebec, Canada. Meteorit Planet Sci 54:1808–1827.

Schmitz, B. (2013) Extraterrestrial spinels and the astronomical perspective on Earth’s geological record and evolution of life. Geochemistry 73:117–145.

Schmitz, B., Lindström, M., Asaro, F., and Tassinari, M. (1996) Geochemistry of meteorite-rich marine limestone strata and fossil meteorites from the lower Ordovician at Kinnekulle, Sweden. Earth Planet Sci Lett 145:31–48.

Schmitz, B., Tassinari, M., and Peucker-Ehrenbrink, B. (2001) A rain of ordinary chondritic meteorites in the early Ordovician. Earth Planet Sci Lett 194:1–15.

Schmitz, B., Harper, D.A., Peucker-Ehrenbrink, B., Stouge, S., Alwmark, C., Cronholm, A., Bergström, S.M., Tassinari, M., and Xiao Feng, W. (2008) Asteroid breakup linked to the Great Ordovician biodiversification event. Nat Geosci 1:49–53.

Schmitz, B., Boschi, S., Cronholm, A., Heck, P.R., Monetchi, S., Montanari, A., and Terfelt, F. (2015) Fragments of Late Eocene Earth-impacting asteroids linked to disturbance of asteroid belt. Earth Planet Sci Lett 425:77–83.

Schoene, B. (2014) Chapter 4.10: U–Th–Pb geochronology. In Treatise on Geochemistry, edited by H.D. Holland and K. K. Turekian, Elsevier, Amsterdam; Heidelberg, Germany, pp 341–378.

Schulte, P., Alegret, L., Arenillas, I., Arz, J.A., Barton, P.J., Bown, P.R., Bralower, T.J., Christeson,G.L., Claeys, P.H.,
Cockell, C.S., Collins, G.S., Deutsch, A., Goldin, T.J., Goto, K., Grajales-Nishimura, J.M., Grieve, R.A.F., Gulick, S.P.S., Johnson, K.R., Kessling, W., Koeberl, C., Krinsley, D.A., MacLeod, K.G., Matsu, T., Melesh, J., Montanari, A., Morgan, J.V., Neal, C.R., Nichols, D.J., Norris, R.D., Pierazzo, E., Ravizza, G., Rebolloredo-Vieya, M., Reimold, W.U., Robbin, E., Salge, T., Speijer, R.P., Sweet, A.R., Urrutia-Fucugauchi, J., Vajda, V., Whalen, M.T., and Wuu, P.S. (2010) The Chicxulub asteroid impact and mass extinction the Cretaceous-Paleogene boundary. Science 327: 1214–1218.

Shultz, P.H. and Lianza, R.E. (1992) Recent grazing impacts on the Earth recorded in the Rio Cuarto crater field, Argentina. Nature 355:234–237.

Shultz, P.H., Zarate, M., Hames, W., Camillio, C., and King, J. (1998) A 3.3-Ma impact in Argentina and possible consequences. Science 282:2061–2063.

Shultz, P.H., Zarate, M., Hames, B., Koeberl, C., Bunch, T., Storzer, D., Renne, P., and Wittke, J. (2004) The Quaternary impact record from the Pampas, Argentina. Earth Planet Sci Lett 219:221–238.

Shultz, P.H., Zarate, M., Hames, W.E., Harris, R.S., Bunch, T.E., Koeberl, C., Renne, P., and Wittke, J. (2006) The record of Miocene impacts in the Argentine Pampas. Meteorit Planet Sci 41:749–771.

Schulze, D.S., Jourdan, F., Hecht, L., Reimold, W.U., and Schmitt, R.T. (2016) Tenourmer impact crater, Mauritania: impact melt genesis from a lithologically diverse target. Meteorit Planet Sci 51:323–350.

Schwarz, W.H., Schmieder, M., Buchner, E., Trieloff, M., Moilanen, J., and Ohman, T. (2015) A Carnian 40Ar/39Ar age for the Paasselkä impact structure (SE Finland)—an update. Meteorit Planet Sci 50:135–140.

Schwarz, W.H., Breutmann, G., Schmitt, A.K., Trieloff, M., Ludwig, T., Hanel, M., Buchner, E., Schmieder, M., Pesonen, L.J., and Moilanen, J. (August 7–12, 2016a) U/Pb dating of zircon from the Suvasvesi impact structures, Finland [abstract 6297]. In 79th Annual Meeting of the Meteoritical Society, Berlin, Germany. LPI Contribution No. 1921. Lunar and Planetary Institute, Houston, TX.

Schwarz, W.H., Trieloff, M., Bollinger, K., Gantert, N., Fernandes, V.A., Meyer, H.P., Povenmire, H., Jessberger, E.K., Guglielmino, M., and Koeberl, C. (2016b) Coeval ages of Australasian, Central American and Western Canadian tektites reveal multiple impacts 790 ka ago. Geochim Cosmochim Acta 178:307–319.

Schwenzer, S.P. and Kring, D.A. (2009) Impact-generated hydrothermal systems capable of forming phyllosilicates on Noachian Mars. Geology 37:1091–1094.

Scotese, C.R. (2001) Paleomap Project. Available online at www.scotese.com (accessed April 19, 2019).

Scott, R.G., Pilkington, M., and Tanczyk, E.J. (1997) Magnetic investigations of the West Hawk, Deep Bay and Clearwater impact structures, Canada. Meteorit Planet Sci 32:293–308.

Sepkoski, J.J. (1996) Patterns of Phanerozoic extinction: a perspective from global data bases. In Global Events and Event Stratigraphy in the Phanerozoic, edited by O.H. Walliser, Springer, Berlin, Heidelberg, pp 35–51.

Sharpton, V.L. and Gibson, J.W., Jr. (1990) The Marquez Dome impact structure, Leon County, Texas. In Lunar and Planetary Science XXI, Lunar and Planetary Institute, Houston, TX, pp 1136–1137.

Sharpton, V.L., Copeland, P., Dressler, B.O., and Spell, T.L. (1997) New age constraints on the Slate Islands impact structure, Lake Superior, Canada. In Lunar and Planetary Science XXVIII, Lunar and Planetary Institute, Houston, TX, pp 1287–1288.

Shen, S.Z., Crowley, J.L., Wang, Y., Bowring, S.A., Erwin, D.H., Sadler, P.M., Cao, C.Q., Rothman, D.H., Henderson, C.M., Ramezani, J., and Zhang, H. (2011) Calibrating the end-Permain mass extinction. Science 334:1367–1372.

Sheppard, S., Johnson, S.P., Wingate, M.T.D., Kirkland, C.L., and Pirajno, F. (2010) Explanatory Notes for the Gascoyne Province. Geological Survey of Western Australia, East Perth, Western Australia, 336 p.

Sherlock, S.C., Kelley, S.P., Glazovskaya, L., and Peate, I.U. (2009) The significance of the contemporaneous Logosik impact structure (Belarus) and Afro-Arabian flood volcanism. J Geol Soc 166:5–8.

Shoemaker, E.M. (1960) Penetration mechanics of high velocity meteorites, illustrated by Meteor crater, Arizona. In 21st International Geological Congress, Copenhagen, pp 418–434.

Shoemaker, E.M. (1983) Asteroid and comet bombardment of the Earth. Ann Rev Earth Planet Sci 11:461–494.

Shoemaker, E.M. (1998a) Impact cratering through geologic time. J R Astronom Soc Canada 92:297–309.

Shoemaker, E.M. (1998b) Long-term variations in the impact cratering rate on Earth. Geol Soc London Spec Pub 140: 7–10.

Shoemaker, E.M. and Shoemaker, C.S. (1985) Impact structures of Western Australia. Meteoritics 20:754–755.

Shoemaker, E.M. and Shoemaker, C.S. (1986) Connolly Basin: a probable eroded impact crater in Western Australia. In Lunar and Planetary Science XVII, Lunar and Planetary Institute, Houston, TX, pp 797–798.

Shoemaker, E.M. and Shoemaker, C.S. (1988) Impact structures of Australia (1987). In Lunar and Planetary Science XIX, Lunar and Planetary Institute, Houston, TX, pp 1079–1080.

Shoemaker, E.M. and Shoemaker, C.S. (1997) Notes on the geology of Liverpool crater, Northern Territory, Australia. In Lunar and Planetary Science XXVIII, Lunar and Planetary Institute, Houston, TX, pp 1211–1312.

Shoemaker, E.M., Williams, J.G., Helin, E.F., and Wolfe, R.F. (1979) Earth-crossing asteroids: orbital classes, collision rates with Earth, and origin. Asteroids 1:253–282.

Shoemaker, E.M., Shoemaker, C.S., Nishizumi, K., Kohl, C.P., Arnold, J.R., Klein, J., Fink, D., Middleton, R., Kubik, P.W., and Sharma, P. (1990) Ages of Australian meteorite craters—a preliminary report. Meteoritics 25:409.

Shoemaker, E.M., Macdonald, F.A., and Shoemaker, C.S. (2005) Geology of five small Australian impact craters. Aust J Earth Sci 52:529–544.

Sighinolfi, G.P., Sibilia, E., Contini, G., and Martini, M. (2015) Thermoluminescence dating of the Kamil impact crater (Egypt). Meteorit Planet Sci 50:204–213.

Simms, M.J. (2003) Uniquely extensive seismite from the latest Triassic of the United Kingdom: evidence for bolide impact? Geology 31:557–560.

Simms, M.J. (2007) Uniquely extensive soft-sediment deformation in the Rhaetian of the UK: evidence for earthquake or...
Swisher, C.C., Grajales-Nishimura, J.M., Montanari, A., Suuroja, K. and Suuroja, S. (2000) Neugrund structure—the EARTH’S IMPACT EVENTS THROUGH TIME 139

Swindle, T.D., Kring, D.A., and Weirich, J.R. (2014) 40Ar/39Ar ages of impacts involving ordinary chondrite meteorites. In Advances in 40Ar/39Ar Dating: From Archaeology to Planetary Sciences, edited by F. Jourdan, D.F. Mark, and C. Verati, Geological Society London Special Publications, Vol. 378, London, UK, pp 333–347.

Swisher, C.C., Grajales-Nishimura, J.M., Montanari, A., Margolis, S.V., Claeys, P.H., Alvarez, W., Renne, P., Cedillo-Pardoa, E., Maurrasse, F.J.R., Curtis, G.H., and Smit, J. (1992) Coeval 40Ar/39Ar ages of 65.0 million years ago from Chicxulub crater melt rock and Cretaceous-Tertiary boundary tektites. Science 257:954–958.

Sylvestre, P., Crowley, J., and Schmitz, M. (August 25–30, 2005) An ordinary chondrite impactor for the Popigai crater, Siberia. Geochim Cosmochim Acta 69:2877–2889.

Tagle, R. and Claeys, P.H. (2004) Comet or asteroid shower in the late Eocene? Science 305:492.

Tagle, R. and Claeys, P.H. (2005) An ordinary chondrite impactor for the Popigai crater, Siberia. Geochim Cosmochim Acta 69:2877–2889.

Tanner, L.H., Lucas, S.G., and Chapman, M.G. (2004) Assessing the record and causes of Late Triassic extinctions. Earth Sci Rev 65:103–139.

Telecka, M. and Matyjasek, J. (2011) Paleopositions of the chains of the meteorite craters on the Earth. Ann Univ Mariae Curie-Skłodowska 66:53–62.

Tera, F. and Wassenburg, G.J. (1972) U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth Planet Sci Lett 14:281–304.

Tera, F. and Wassenburg, G.J. (1974) U-Th-Pb systematics on lunar rocks and inferences about lunar evolution and the age of the moon. Proc Lunar Planet Sci Conf 5:1571–1599.

Tera, F., Papanastassiou, D.A., and Wassenburg, G.J. (1974) Isotopic evidence for a terminal lunar cataclysm. Earth Planet Sci Lett 22:1–21.

Theriault, A.M., Grieve, R.A.F., and Reimold, W.U. (1997) Original size of the Vredefort structure: implications for the geological evolution of the Witwatersrand Basin. Meteorit Planet Sci 32:71–77.

Timms, N.E., Erickson, T.M., Pearce, M.A., Cavosie, A.J., Schmieder, M., Tohver, E., Reddy, S.M., Zanetti, M.R., Nemchin, A.A., and Wittmann, A. (2017) A pressure-temperature phase diagram for zircon at extreme conditions. Earth Sci Rev 165:185–202.

Tohver, E., Lana, C., Cawood, P.A., Fletcher, I.R., Jourdan, F., Sherlock, S., Rasmussen, B., Trinadade, R.I.F.D., Yokoyama, E., Souza Filho, C.R., and Marangoni, Y. (2012) Geochronological constraints on the age of a Permo–Triassic impact event: U-Pb and 40Ar/39Ar results for the 40km Araguainha structure of central Brazil. Geochim Cosmochim Acta 86:214–227.

Tohver, E., Cawood, P.A., Riccomini, C., Lana, C., and Trinadade, R.I.F.D. (2013) Shaking a methane fizz: seismicity from the Araguainha impact event and the Permian–Triassic global carbon isotope record. Palaeogeogr Palaeoclimatol Palaeoecol 387:66–75.

Turner, G., Cadogan, P.H., and Yonge, C.J. (1973) Argon seconostratigraphy. In Proceedings of the Fourth Lunar Science Conference (Supplement 4, Geochimica et Cosmochimica Acta) Vol 2., pp 1889–1914.

Ukstins Peate, I., van Soest, M.C., Wartho, J.A., Cabrol, N., Grin, E., Piatek, J., Pietek, J., and Chong, G. (2010) A novel application of (U-Th)/He geochronology to constrain the age of small, young meteorite impact craters: a case study of the Monturaqui Crater, Chile [abstract 2161]. In Lunar and Planetary Science XLIII. LPI Contribution No. 1553. Lunar and Planetary Institute, Houston, TX.

Valter, A.A., Ryabenko, V.A., and Kotlovskaya, F.I. (1981) The Ternovka astrobleme: new and most deeply eroded meteorite crater on the Ukrainian shield. Doklady Akad Nauk SSSR 2:3–7.

van Soest, M.C., Hodges, K.V., Wartho, J.A., Biren, M.B., Monteleone, B.D., Ramezanii, J., Spray, J.G., and Thompson, L.M. (2011) U-Th/He dating of terrestrial impact structures: the Manicouagan example. Geochim Geophys Geosyst 12: Q0A16.

Vellekoop, J., Stuijs, A., Stuijs, J., Schouten, S., Weijers, J.W., Damsté, J.S.S., and Brinkhuis, H. (2014) Rapid short-term cooling following the Chicxulub impact at the Cretaceous–Paleogene boundary. Proc Natl Acad Sci USA 111:7537–7541.

Vellekoop, J., Esmeray-Senlet, S., Miller, K.G., Browning, J.V., Stuijs, A., van de Schootbrugge, B., Damsté, J.S.S., and Brinkhuis, H. (2016) Evidence for Cretaceous-Paleogene
boundary bolide “impact winter” conditions from New Jersey, USA. Geology 44:619–622.

Villeneuve, M., Sandeman, H.A., and Davis, W.J. (2000) A method for intercalibration of U-Th-Pb and 40Ar/39Ar ages in the Phanerozoic. Geochim Cosmochim Acta 64:4017–4030.

Vishnevsky, S.A. (1999) Ragozinka: eocenian marine impact crater on the middle Urals, Russia. Meteorit Planet Sci Suppl 34:A117.

Vishnevsky, S.A. (2007) Shiyli Dome, Kazakhstan: origin of central uplift by elastic response [abstract 8013]. In Bridging the Gap II: Effect of Target Properties on the Impact Cratering Process Conference, Lunar and Planetary Institute, Houston, TX, pp 125–126. LPI Contribution No. 1360.

von Engelhardt, W. (1984) Melt products from terrestrial impact structures. Proc Int Geol Congr 19:149–163.

von Engelhardt, W. (1997) Suevite breccia of the Ries impact crater, Germany: petrography, chemistry and shock metamorphism of crystalline rock clasts. Meteorit Planet Sci 32: 545–554.

von Engelhardt, W., Arndt, J., Fecker, B., and Pankau, H.G. (1995) Suevite breccia from the Ries crater, Germany: origin, cooling history and devitrification of impact glasses. Meteoritics 30:279–293.

Walkden, G., and Parker, J. (2008) The biotic effects of large bolide impacts: size versus time and place. Int J Astrobiol 7: 209–215.

Walkden, G., Parker, J., and Kelley, S. (2002) A Late Triassic impact ejecta layer in southwestern Britain. Science 298: 2185–2188.

Wang, G., Zhan, R., and Percival, I.G. (2019) The end-Ordovician mass extinction: a single-pulse event? Earth Sci Rev 192:15–33.

Wang, K. and Chatterton, B.D.E. (1993) Microspherules in Devonian sediments: origins, geological significance, and contamination problems. Can J Earth Sci 30:1660–1667.

Wanke, H. and König, H. (1959) Eine neue Methode zur Kalium-Argon-Altersbestimmung und ihre Anwendung auf Steinmeteoretite. Zeitschrift Naturforsch A 14:860–866.

Wartho, J.A., van Soest, M.C., King Jr, D.T., and Petruny, L.W. (2012) An (U-Th)/He age for the shallow-marine Wetumpka impact structure, Alabama, USA. Meteorit Planet Sci 47: 1243–1255.

Weber, J.C., Poulos, C., Donelick, R.A., Pope, M.C., and Heller, N. (2005) The Kentland impact crater, Indiana (USA): an apatite fission-track age determination attempt. In Impact Tectonics, edited by C. Koeberl and H. Henkel, Springer, Berlin, Heidelberg, pp 447–466.

Weissman, P.R. (1990) The cometary impactor flux at the Earth. In Global Catastrophes in Earth History: An Interdisciplinary Conference on Impacts, Volcanism, and Mass Mortality, GSA Special Paper 247, edited by V.L. Sharpston and P.D. Ward, Boulder, CO, Geological Society of America, Boulder, CO, pp 171–180.

Werner, S.C., Plado, J., Pesonen, L.J., and Kuulusa, M. (2001) The two Suvasvesi Lakes in Central Finland—a possible doublet impact structure. Meteorit Planet Sci 36:A223–A224.

Werner, S.C., Harris, A.W., Neukum, G., and Ivanov, B.A. (2002) The near-Earth asteroid size–frequency distribution: a snapshot of the lunar impactor size–frequency distribution. Icarus 156:287–290.

Westall, F., Hickman-Lewis, K., Hinman, N., Gautret, P., Campbell, K.A., Bréhéret, J.G., Foucher, F., Hubert, A., Sorieul, S., Dass, A.V., and Kee, T.P. (2018) A hydrothermal-sedimentary context for the origin of life. Astrobiology 18: 259–293.

Wetherill, G.W. (1956) Discordant uranium-lead ages, I. Eos Trans AGU 37:320–326.

Wetherill, G.W. (1963) Discordant uranium-lead ages: 2. Discordant ages resulting from diffusion of lead and uranium. J Geophys Res 68:2975–2966.

Wheeler, L.F. and Mathias, D.L. (2019) Effects of asteroid property distributions on expected impact rates. Icarus 321: 767–777.

Whitehead, J., Papanastassiou, D.A., Spray, J.G., Grieve, R.A.F., and Wasserburg, G.J. (2000) Late Eocene impact ejecta: geochemical and isotopic connections with the Popigai impact structure. Earth Planet Sci Lett 181:473–487.

Whitehead, J., Kelley, S., Sherlock, S.C., Grieve, R.A.F., Spray, J.G., and Trepmann, C.A. (August 5–7, 2003) Structural and geochronologic constraints on the timing of the Charlevoix impact, Quebec, Canada [abstract 4084]. In Large Meteorite Impacts III Conference, Nordlingen, Germany. Lunar and Planetary Institute, Houston, TX.

Wichman, R.W. and Wood, C.A. (1995) The Davy Crater Chain: implications for tidal disruption in the Earth-Moon System and elsewhere. Geophys Res Lett 22:583–586.

Wielicki, M.M., Harrison, T.M., and Schmitt, A.K. (2012) Geochemical signatures and magmatic stability of terrestrial impact produced zircon. Earth Planet Sci Lett 321: 20–31.

Wignall, P., Thomas, B., Willink, R., and Watling, J. (2004) Is Bedout an impact crater? Take 1. Science 306:609–610.

Williams, G.E. (1994) Acraman: a major impact structure from the Neoproterozoic of Australia. In Large Meteorite Impacts and Planetary Evolution, GSA Special Paper 293, edited by B.O. Dressler, R.A.F. Grieve, and V.L. Sharpston, Geological Society of America, Boulder, CO, p 209.

Williams, G.E. and Gostin, V.A. (2005) Acraman–Bunyeroo impact event (Ediacaran), South Australia, and environmental consequences: twenty-five years on. Aust J Earth Sci 52: 607–620.

Wilshire, H.G., Offield, T.W., Howard, K.A., and Cummings, D. (1972) Geology of the Sierra Madera cryptovolcanic structure, Pecos County, Texas. In Contributions to Astrogeology Geological Survey Professional Paper 599-H, Washington, DC, 47 p.

Wilson, C.W., Jr. (1953) Wilcox deposits in explosion craters, Stewart County, Tennessee, and their relations to origin and age of Wells Creek Basin structure. GSA Bull 64: 753–768.

Wittmann, A., Kenkmann, T., Schmitt, R.T., and Stöfller, D. (2006) Shock-metamorphosed zircon in terrestrial impact craters. Meteorit Planet Sci 41:433–454.
Wolbach, W.S., Lewis, R.S., and Anders, E. (1985) Cretaceous extinctions: evidence for wildfires and search for meteoritic material. *Science* 230:167–170.

Yabushita, S. (1996) Are cratering and probably related geological records periodic? *Earth Moon Planets* 72:343–356.

Yarmolyuk, V.A. (1951) Sobolevskiy crater: *Priroda*, 6:40–42.

Ye, Q.Z. (2018) Meteor showers from active asteroids and dormant comets in near-Earth space: a review. *Planet Space Sci* 164:7–12.

Young, K.E., van Soest, M.C., Hodges, K.V., Watson, E.B., Adams, B.A., and Lee, P. (2013) Impact thermochronology and the age of Haughton impact structure, Canada. *Geophys Res Lett* 40:3836–3840.

Zahnle, K. and Sleep, N.H. (2006) Impacts and the early evolution of life. In *Comets and the Origin and Evolution of Life*, edited by P.J. Thomas, C.F. Chyba, and C.P. McKay, Springer, Berlin, Heidelberg, pp 207–251.

Zappalà, V., Cellino, A., Gladman, B.J., Manley, S., and Migliorini, F. (1998) Asteroid showers on Earth after family breakup events. *Icarus* 134:176–179.

Zürcher, L. and Kring, D.A. (2004) Hydrothermal alteration in the core of the Yaxcopoil-1 borehole, Chicxulub impact structure, Mexico. *Meteorit Planet Sci* 39:1199–1221.

Abbreviations Used

- CA-TIMS = chemical abrasion thermal ionization mass spectrometry
- ICS = International Chronostratigraphic Chart
- LA-ICP-MS = laser ablation inductively coupled plasma mass spectrometry
- MSWD = mean square weighted deviation
- SHRIMP = sensitive high-resolution ion microprobe
- SIMS = secondary ion mass spectrometry