КОРПОРАТИВНЫЕ ПРОГРАММЫ ПРОФИЛАКТИКИ НАРУШЕНИЯ ЗДОРОВЬЯ У РАБОТНИКОВ ВРЕДНЫХ ПРЕДПРИЯТИЙ КАК ИНСТРУМЕНТ УПРАВЛЕНИЯ ПРОФЕССИОНАЛЬНЫМ РИСКОМ

О.Ю. Устинова1,2, Н.В. Зайцева1, Е.М. Власова1, В.Г. Костарев3

1 Федеральный научный центр медико-профилактических технологий управления рисками здоровья населения, Россия, 614045, г. Пермь, ул. Монастырская, 82
2 Пермский государственный национальный исследовательский университет, Россия, 614990, г. Пермь, ул. Букреева, 15
3 Управление Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека по Пермскому краю, Россия, 614016, г. Пермь, ул. Куйбышева, 50

В современных социально-экономических условиях сохранение трудового долголетия является приоритетным направлением деятельности специалистов охраны и медицины труда. Опять взаимодействия с работодателями, заинтересованными в сохранении высококвалифицированного персонала, показал, что внедрение на предприятиях корпоративных профилактических программ позволяет снизить уровень профессионального и производственно обусловленного риска для здоровья работников.

Определена оценка эффективности корпоративной профилактической программ с позиции управления профессиональным и производственно обусловленным риском.

Обследовано: группа наблюдения – 221 работник химических предприятий Пермского края, мужчины (в возрасте 55–40 лет, средний стаж 19,2 ± 7,8 г.), группа сравнения – 79 работников заводоуправления теке же предприятий (возраст – 55–39 лет, средний стаж 21,2 ± 7,6 г.). В ходе исследования были проведены: анализ результатов специальной оценки условий труда, медицинского документирования, клиническое, лабораторное и инструментальное исследование, математическая обработка полученного материала с построением прогностических эволюционных моделей профессионального риска.

Анализ риска здоровью. 2020. № 2

© Устинова О.Ю., Зайцева Н.В., Власова Е.М., Костарев В.Г., 2020

Устинова Ольга Юрьевна – доктор медицинских наук, заместитель директора по клинической работе, доцент, заведующий кафедрой экологии человека и безопасности жизнедеятельности (e-mail: ustinova@fcrisk.ru; тел.: 8 (342) 236-32-64; ORCID: http://orcid.org/0000-0002-9916-5491).

Зайцева Нина Владимировна – академик РАН, доктор медицинских наук, профессор, научный руководитель (e-mail: znv@ferisk.ru; тел.: 8 (342) 233-11-25; ORCID: http://orcid.org/0000-0003-2356-1145).

Власова Елена Михайловна – кандидат медицинских наук, заведующий отделением профпатологии (e-mail: vlasovaem@fcrisk.ru; тел.: 8 (342) 236-87-60; ORCID: http://orcid.org/0000-0003-3344-3361).

Костарев Виталий Геннадьевич – кандидат медицинских наук, главный государственный санитарный врач по Пермскому краю, руководитель (e-mail: urnp@59.rospotrebndzor.ru; тел.: 8 (342) 239-35-63; ORCID: https://orcid.org/0000-0001-5133-8385).
Оценка и управление профессиональными и производственно обусловленными рисками является составной частью системы охраны труда, включающей сохранение жизни и здоровья работников в процессе трудовой деятельности (установление связи нарушений здоровья с работой, поиск методик, позволяющих уточнить величину профессионального риска) [9–11].

На практике основным профилактическим мероприятием со стороны работодателя являются ПМО, регламентируемые приказом 302н, которые направлены на выявление клинических форм заболеваний, являющихся медицинскими противопоказаниями к продолжению трудовой деятельности. Сложившийся подход не содержит ни медико-профилактической составляющей, ни элементов управления профессиональным риском.

Опыт взаимодействия с работодателями, заинтересованными в сохранении высококвалифицированного персонала, показал, что внедрение на предприятии корпоративных профилактических программ с учетом уровня риска развития заболеваний позволяет минимизировать риск для здоровья работников и сохранить профессиональную трудоспособность [7].

Цель исследования – оценка эффективности корпоративной профилактической программы с позиции управления профессиональным риском.

Материалы и методы. Для выполнения работы были сформированы: группа наблюдения – 221 работник химических предприятий Пермского края, мужчины (возраст 55–40 лет, средний стаж 19,2 ± 7,8 г.), группа сравнения – 79 работников водоуправления тех же предприятий (возраст – 55–39 лет, средний стаж 21,2 ± 7,6 г.). Основные профессии в группе наблюдения: хлораторщик, электролизник расплавленных солей, плавильщик расплавленных металлов, разливщик цветных металлов и сплавов, прокальщик. В группу сравнения вошли специалисты охраны труда и промышленной безопасности, инженеры, работающие без воздействия вредных производственных факторов. Группы сопоставимы по полу, социальному статусу, стажу работы, профессиональной специализации управления профессиональным риска. Нарушения здоровья у работников вредных предприятий…

1 Конституция Российской Федерации от 12 декабря 1993 г. Принята всенародным голосованием 12.12.1993
2 Трудовой кодекс Российской Федерации от 30.12.2001 № 197-ФЗ (ред. от 02.08.2019) [Электронный ресурс] // КонсультантПлюс. – URL: http://www.consultant.ru/document/cons_doc_LAW_28399/ (дата обращения: 20.05.2020).
3 Об утверждении перечней вредных и (или) опасных производственных факторов и работ, при выполнении которых проводятся предварительные и периодические медицинские осмотры (обследования), и порядка проведения обязательных предварительных и периодических медицинских осмотров (обследований) работников, занятых на тяжелых работах и на работах с вредными и (или) опасными условиями труда: Приказ Минздравсоцразвития РФ от 12 апреля 2011 г. № 302н (ред. от 18.05.2020) [Электронный ресурс] // КонсультантПлюс. – URL: http://www.consultant.ru/document/cons_doc_LAW_120902/ (дата обращения: 20.05.2020).
стажевые подгруппы: 0–5 лет; 5,1–10 лет; 10,1–15 лет; 15,1 лет и более.

В ходе исследования проведены: анализ результатов специальной оценки условий труда (СОУТ) рабочих мест обследуемого контингента, медицинской документации, заключительных актов по результатам ПМО; клинический осмотр врачами-специалистами с оценкой состояния системы кровообращения и органов дыхания; лабораторное и инструментальное исследование; математическая обработка полученного материала с построением прогностических эволюционных моделей профессионального риска [12].

Социологическое исследование распространённости непрофессиональных факторов риска, влияющих на развитие болезней системы кровообращения (БСК) и органов дыхания (БОД), осуществлено методом раздаточного анкетирования; способ отбора респондентов – целевой [13].

Для оценки функциональной активности эндотелия сосудов выполнялась проба потокзависимой (эндотелийзависимой) вазодилатации плечевой артерии с использованием аппарата ультразвукового исследования (УЗИ) Vivid q (GE Vingmed Ultrasound AS, Норвегия) линейным датчиком 4–13 МГц (D.S. Celermajer).

Оценка морфологической структуры экстракоронарных отделов брахиоцефальных артерий (БЦА) осуществлялась на ультразвуковом сканере Vivid q (Diapason частот 4–13 МГц). Оценивалась толщина комплекса интима-медиа (ТКИМ).

Кардиоинтервалография с оценкой баланса звеньев вегетативной нервной системы (ВНС) проводилась по стандартной методике (Р.М. Баевский, 1979; Д. Жемайтите, 1989) в программе «ПолиСпектр-8/EX» («Нейрософт», Россия).

Анализ функции внешнего дыхания выполнен методом спирографии (СПГ) на компьютерном спирографе Schiller SP-10 с применением датчика SP-20 (Schiller AG, Швейцария).

Лабораторные исследования включали тесты, выполненные унифицированными гематологическими, биохимическими и иммуноферментными методами, позволяющими оценить функциональное состояние органов-мишеней. Лабораторная диагностика проведена с использованием автоматических анализаторов (гематологического – АТ5diff AL, биохимического – Konelab 20, ThermoFisher, Финляндия, и иммуноферментного – Infinite F50 Teca, Австрия).

Оценка риска проводилась в соответствии с P 2.2.1766-03. Связь нарушения здоровья с условиями труда устанавливалась на основании показателей относительного риска (RR), доверительного интервала (CI) и этиологической доли ответов, обусловленных воздействием фактора профессионального риска (ЕF), с помощью электронного калькулятора [9].

Статистическую обработку осуществляли с помощью методов вариационной статистики. Проверка статистических гипотез относительно параметров моделей проводилась с использованием критерия Стьюдента и квадратичной (χ²). При нормальном распределении и использовании критерия Стьюдента данные представлены в виде среднего (S) и стандартного отклонения (SD) и в виде медианы (Me) и интерквартильного размаха (25-й и 75-й процентили) при распределении, отличном от нормального. Уровень значимости – P = 0,05 (p < 0,05).

Обработка полученных данных проводилась при помощи пакета программ SPSS 16.0, Stata/SE 12.1 for Windows, программного модуля, выполненного в виде макроса MS Excel. Было выполнено ситуационное моделирование [14–16].

Исследование осуществлено в рамках научных мероприятий ФБУН «ФНЦ медико-профилактических технологий управления рисками здоровью населения» на 2018 г. в соответствии с нормами, изложенными в Хельсинкской декларации (редакция 2008 г.), и правилами ICH GCP, а также в соответствии с Национальным стандартом РФ ГОСТ Р 52379-2005 «Надлежащая клиническая практика» (ICH E6 GCP). Программа исследования утверждена на заседании локального этического комитета (протокол № 33 от 12.02.2018 г.).

Результаты и их обсуждение. Условия труда работников основных профессий химических предприятий определяет сочетанное воздействие химического (хлор и его соединения, сера и ее соединения), физического (шум, вибрация, микроклимат) факторов и тяжести труда. Согласно результатам СОУТ на 100 % рабочих мест работников группы наблюдения условия труда оценены как «вердые», у работников группы наблюдения – «допустимые» (табл. 1).

Группа	Удельный вес рабочих мест по классу условий труда	1 и 2	3.1	3.2	3.3	3.4
Наблюдения	0	30	55	15	0	
Сравнения	100	0	0	0	0	

4 Руководство по оценке риска для здоровья работников. Организационно-методические основы, принципы и критерии оценки. 2.2. Гигиена труда [Электронный ресурс] // КОДЕКС: электронный фонд правовой и нормативно-технической документации. – URL: http://docs.cntd.ru/document/901902053 (дата обращения: 20.05.2020).
Априорный профессиональный риск у работников группы наблюдения соответствовал высокому (непереносимому) и среднему (существенному), группы сравнения − малому и пренебрежимо малому (табл. 2).

Анализ распространенности поведенческих факторов риска показал, что между группами отсутствуют статистически достоверные различия (р > 0,05). В частности, доля куриющих работников в группах наблюдения и сравнения составила 31 и 27 % соответственно (χ² = 3,5, p = 0,06). Анализ употребления алкогольных напитков также не выявил достоверных различий. Установлено, что основная масса обследованных работников потребляет алкоголь до двух раз в месяц, 95 % работников группы наблюдения, 77 % – группы сравнения, (р > 0,05). На выбор алкоголя влияет уровень образования. Работники с высшим образованием в 62,2 % случаев отдают предпочтение слабому алкоголю (вино), V Cramers = 0,464, p < 0,05. Лица с начальным и средним образованием предпочитают крепленные вина, крепкие напитки, пиво, V Cramers = 0,464, p < 0,05. Выявлена слабая связь (r = 0,2, p < 0,05) между возрастом работника и употреблением пива: работники в возрасте до 30 лет употребляют пиво раз в неделю и чаще в количестве более 1 л (43,7 % в группе наблюдения и 38,2 % в группе сравнения, р > 0,05). Одной из особенностей формирования патологии органов дыхания у работников химических производств является длительный латентный период развития заболевания, в пределах условной нормы за счет компенсаторных реакций системы дыхания у работников химических производств.

Артериальная гипертония (АГ) по уровню офисного артериального давления (АД) наблюдалась в 33 % случаев у работников группы наблюдения, в 18 % – группы сравнения (χ² = 6,7, p = 0,01; RR = 1,7; 95 % CI = 1,1–3,1; EF = 66 %). Отмечалось увеличение работников с верифицированным диагнозом в зависимости от стажа. У работников группы наблюдения при стаже более 10 лет в 3,5 раза чаще верифицировалась АГ (χ² = 4,3, p = 0,03), при стаже более 15 лет – в 2,7 раза (χ² = 6,7, p = 0,01). Результаты представлены в табл. 3.

Распространенность артериальной гипертензии в зависимости от стажа работы в группах наблюдения и сравнения, %

Группа наблюдения	Группа сравнения		
Рабочее место	Профессиональный риск	Рабочее место	Профессиональный риск
Хлораторщик	Высокий (непереносимый)	Мастер	Малый (умеренный)
Электролизник расплавленных солей	Средний (существенный)	Старший мастер	Мальй (умеренный)
Разливщик цветных металлов и сплавов	Средний (существенный)	Начальник отделения	Пренебрежимо малый
Плавильщик	Средний (существенный)	Заместитель начальника цеха	Пренебрежимо малый
Прокалщик	Средний (существенный)	Начальник цеха	Пренебрежимо малый

Таблица 2

Категории профессионального риска работников основных профессий химических производств по контингентам (Р 2.2.1766-03)
Группа наблюдения

Рабочее место
Хлораторщик
Электролизник расплавленных солей
Разливщик цветных металлов и сплавов
Плавильщик
Прокалщик

Таблица 3

Группа	Стаж, лет			
	0–5	5,1–10	10,1–15	более 15
Наблюдения	12,7	17,6	30,6	59,6
Сравнения	4,0	5,0	9,0	22,3
ρ*	p > 0,05	p > 0,05	p > 0,05	p > 0,05

Примечание: *p – достоверность различий между значениями в группах наблюдения и сравнения.

Болезни органов дыхания (БОД) с обструктивными нарушениями на уровне нижних отделов также чаще встречались у работников группы наблюдения: показатель в три раза превышает данные группы сравнения (χ² = 17,6, p < 0,001; RR = 3,2; 95 % CI = 1,7–5,8; EF = 51 %). При стаже 15 лет и более у 19,1 % работников была диагностирована хроническая обструктивная болезнь легких, а в группе наблюдения только в 5 % случаях (p < 0,05). Одной из особенностей формирования патологии органов дыхания у работников химических производств является длительный латентный период развития заболевания и сохранение функции внешнего дыхания в пределах условной нормы за счет функциональных резервов.

Согласно литературным данным, профессиональные факторы могут выступать в качестве триггеров, запускающих патогенетические механизмы развития и прогрессирования обструктивных заболеваний. Неблагоприятные профессиональные факторы (физические, химические и психофизиологические) приводят к дисбалансу оксидантной и антиоксидантной систем [17–20].

Оценка функциональной активности эндотелия плечевой артерии в пробе эндотелийзависимой вазодилатации показала, что у 85,5 % работников...
групсы наблюдения отмечалась патологическая ре-
акция, а в группе сравнения подобная реакция была
отмечена только у 3,7 % (χ² = 168,6; ρ < 0,001;
RR = 22,5; 95 % CI = 7,4–68,4; EF = 85 %). Прирость
диаметра плечевой артерии после реокклюзии у ра-
ботников группы наблюдения составил 5,22 ± 1,34,
в группе сравнения – 13,53 ± 1,08 (ρ < 0,001), а сред-
нее значение коэффициента чувствительности было
в пять раз ниже у работников группы наблюдения, чем
в группе сравнения (0,053 ± 0,024 и 0,265 ± 0,058,
ρ < 0,001). Полученные результаты подтверждают
положение о связи нарушения функциональной ак-
тивности эндотелия с экспозицией вредных произ-
водственных факторов [21].

Результаты математического моделирования
показали, что вероятность развития АГ преимуще-
ственно ассоциирована с производственным шумом
(Ф = 1621; R² = 0,95; ρ = 0,001, r = 0,3), БОД – с по-
вышением в ВРЗ концентрации хлора и его соеди-
нений (Ф = 296; R² = 0,79; ρ = 0,003, r = 0,3); вероят-
ность эндотелиальной дисфункции и с производст-
венным шумом (Ф = 3387; R² = 0,96; ρ < 0,001;
r = 0,6), и с содержанием в ВРЗ хлора и его соеди-
нений (Ф = 54; R² = 0,29; p < 0,001).

Признаки атеросклероза в виде локального уве-
личения ТКИМ зарегистрированы практически у ка-
жного третьего работника группы наблюдения (29 %
у работников группы наблюдения, 15 % – группы
сравнения, ρ = 0,05; OR = 2,3; 95 % CI = 1,2–4,4;
RR = 1,9; 95 % CI = 1,1–3,3). Результаты УЗИ БЦА на
экстракраниальном уровне выявили достоверные
различия по ТКИМ. в группе наблюдения – 0,99 ± 0,02 мм, в группе сравнения – 0,77 ± 0,05 мм,
(ρ < 0,001). При этом темп прироста ТКИМ у работни-
ков группы наблюдения при стаже более 10 лет со-
ставил 0,016 мм в год, при норме до 0,0138 мм в год.

Анализ данных кардиоинтервалографии показал
глубокие нарушения компенсаторных механизмов
у 35 % работников группы наблюдения и только
у 12 % – группы сравнения, сопровождающиеся па-
тологической стабилизацией модуляции сердечного
ритма с переходом на нейрогуморальный уровень
регуляции (χ² = 15,6; ρ < 0,01; RR = 3,9; 95 %
CI = 1,5–2,3; EF = 46 %). В ходе исследования уста-
новлено, что в группе наблюдения с возрастом мощ-
ность HF (дыхательные волны, отражающие ак-
тивность парасимпатического звена регуляции, сни-
жалась значительнее, чем мощность LF (отражающие активность симпатических центров продолжатов
мозга, в том числе кардиостимулирующего и взо-
констрикторного). Прояслялась тесная связь ме-
жду мощностью HF и темпами показателями
РМССС (квадратный корень из средней суммы квад-
ратов разностей между соседними NN-интервалами)
и рННСС (количество пар соседних NN-интервалов),
что свидетельствует в основном об активности пара-
симпатической системы. В норме в результате ослаб-
ления активности парасимпатических и повышения
симпатических влияний снижение в структуре вариа-
табельности ритма сердца (ВРС) начинается после
50 лет. Среднее значение волн HF в покое (HF,T) у работников группы наблюдения находились в пре-
делах физиологических значений, но показатели бы-
ли достоверно ниже аналогичных группы сравнения
(33,2 ± 3,4 % – в группе наблюдения, 27,9 ± 3,1 % –
в группе сравнения, p = 0,026), что указывает на
большее включение центральных эрготропных и гу-
морально-метаболических механизмов. Индекс ваго-
симпатического взаимодействия (LF/HF) у работни-
ков группы наблюдения практически в два раза пре-
вышал аналогичный показатель у работников группы
сравнения (1,9 ± 0,5 и 1,0 ± 0,3 соответственно,
ρ = 0,008). При анализе временных параметров ВРС
в группе наблюдения отмечалось снижение SDNN,
(50,5 ± 5,9 мс – в группе наблюдения, 64,5 ± 11,9 мс –
в группе сравнения, p = 0,042); RMSSD(, (43,0 ± 7,7 мс,
66,1 ± 16,7 мс соответственно, p = 0,013), что под-
тверждает снижение ВРС; увеличение тонуса сим-
патической нервной системы на фоне снижения
тонуса парасимпатической системы у работников
группы наблюдения по отношению к группе срав-
нения (табл. 4).

Таблица 4
Показатели временного и спектрального анализов вариабельности ритма сердца в покое у работников химических производств

Показатель	Норма	Группа наблюдения	p*
SDNN1, мс	54,5–65,1	50,5 ± 5,8	0,05
RMSSD1, мс	36,3–48,5	42,9 ± 7,6	0,05
LF1, мс²	513,1–1425,5	1040 ± 280	0,05
HF1, мс²	461,1–1618,0	853 ± 292	0,05
LF/HF1	0,5–2,3	1,9 ± 0,5	0,05
HF1, %	21,05–50,55	25,6 ± 4,1	0,05
LF1, %	41,2–60,0	57,5 ± 4,9	0,05

Примечание: *p – достоверность различий между группами наблюдения и сравнения.

Анализ полученных данных установил зависи-
мость вероятности повышения индекса вагосимпати-
ческого равновесия (LF/HF) от увеличения уровня
производственного шума (Ф = 1257; R² = 0,9; ρ < 0,001,
r = 0,6), а также концентрации в ВРЗ хлора (Ф = 61;
R² = 0,3; p < 0,001, r = 0,3) и гидрохлорида (Ф = 136;
R² = 0,5; p < 0,001, r = 0,3).

Анализ показателей СПГ не выявил отклонений
от условной нормы у работников обеих групп. Однако
при анализе показателей СПГ в динамике было уста-
новлено, что у 29 % работников группы наблюдения отмечалось ежегодное снижение объема форсированного выдоха за 1 с на 39,2 ± 5,8 мл в год при допустимом – 30 мл в год; у работников группы сравнения ежегодное снижение объема форсированного выдоха за 1 с в среднем составляло 31,5 ± 3,1 мл в год (р < 0,05), что свидетельствует о субклиническом течении БОД.

Анализ результатов лабораторных исследований выявил у работников группы наблюдения ряд отклонений в показателях, отражающих субклинические нарушения в системе кровообращения и дыхания, а именно характеризующих наличие кардиориска (RR = 1,8; 95 % CI = 1,2–2,8; EF = 45 %), а также признаки вторичного иммунодефицитного состояния и степень выраженности адаптационных реакций [21–23]. У работников группы наблюдения наблюдалось повышение концентрации мочевой кислоты до 378 [313; 420] мкмоль/дм3 (в группе сравнения – 302 [251; 358] мкмоль/дм3, р < 0,05). Указаные изменения выявлены уже при стаже работы, начиная с 5–10 лет (389 [309; 462] мкмоль/дм3 в группе наблюдения, 296 [239; 364] мкмоль/дм3 в группе сравнения, р < 0,05). Статистически значимым было повышение атерогенной фракции – липопротеинов низкой плотности – у работников в группе наблюдения: 4,2 [3,7; 5,5] мкмоль/дм3, (3,2 [2,8; 3,6] мкмоль/дм3 – в группе сравнения, р < 0,05). Уровень суперовысоконцентрации С-реактивного белка (в группе сравнения – 6,7 [6,2; 7,2] mg/dl) достоверно превышал аналогичный показатель группы наблюдения – 5,0 [4,5; 5,5] mg/dl (р < 0,05), а концентрация VEGF у работников группы наблюдения достигала 345 [242; 510] pg/dl (в группе наблюдения – 179 [90; 299] pg/dl, р < 0,001). При сравнительном анализе данного показателя в стажевых группах максимальной его концентрация наблюдалась у работников при стаже 15,1 г. и более (471 [332; 695] pg/dl в группе наблюдения и 106 [81; 259] pg/dl в группе сравнения, р < 0,001). Уровень гомоцистеина у работников группы наблюдения составил 12,5 [10,0; 14,4] мкмоль/дм3, в группе сравнения – 7,8 [4,6; 12,2] мкмоль/дм3 (р < 0,001), при этом статистически значимые различия были выявлены в группе со стажем 15,1 г. и более – 13,7 [10,8; 14,9] мкмоль/дм3 у работников группы наблюдения и 8,5 [4,6; 13,6] мкмоль/дм3 у работников группы сравнения (р < 0,05). Обращало на себя внимание, что у работников группы наблюдения концентрация кортизола крови (287 [191; 487] нмоль/см3) превышала аналогичный показатель у работников группы сравнения (204 [178; 352] нмоль/см3, р < 0,05). При стаже 15 лет и более (6,7 [5,6; 8,7]·109/дм3 – в группе наблюдения; 5,5 [4,7; 7,2]·109/дм3 – в группе сравнения, р < 0,05). Нарушение фагоцитарного звена также наблюдалось преимущественно у работников группы наблюдения (абсолютный фагоцитоз в группе наблюдения – 2,11 [1,54; 2,83]·107/дм3, в группе сравнения – 1,77 [1,40; 2,23]·107/дм3, р < 0,05), и как и нарушение гуморального звена иммунитета (уровень IgA у работников группы наблюдения составил 2,4 [1,93; 2,83] г/дм3, группы сравнения – 1,79 [1,40; 2,16] г/дм3, р < 0,001), а также активация клеточного звена иммунитета (в группе наблюдения концентрация CD16+56+-лимфоцитов составила 0,32 [0,27; 0,60]·109/л, в группе сравнения – 0,22 [0,21; 0,25]·109/л, р < 0,05; CD3+CD25+ в группе наблюдения – 0,35 [0,24; 0,52]·109/л, в группе сравнения – 0,14 [0,10; 0,16]·109/л, р < 0,001).

По результатам обследования выделены основные патогенетические звенья развития БСК и БОД – синдромы эндотелиальной дисфункции, субклинического воспаления и антисциндента стRESS, с учетом чего разработана корпоративная программа профилактики нарушения здоровья работников [7].

Опыт работы с предприятиями показал, что эффективность реализации программы профилактики повышается при взаимодействии со специалистами охраны труда. Гигиенические мероприятия позволяют снизить уровень риска здоровья работника.

В результате построения математических моделей зависимости «экспозиция – стаж – ответ» установлена вероятность развития производственно обусловленных БОД в зависимости от уровня и длительности экспозиции производственных факторов. Уровень риска развития БОД у работников химических производств в существующих условиях труда сформирует 8 дополнительных случаев заболевания, а к 5 годам достигнет 14 случаев в год. В отношении производственно обусловленной AG уровень риска к концу первого года работы, а к 5 годам достигнет 14 случаев в год. Ситуационное моделирование показало, что снижение концентрации хлора в воздухе рабочей зоны до уровня ПДК может способствовать уменьшению индивидуального риска развития БОД у стажированных работников (5 лет и более) на 42 % (с 14 до 6 случаев в год).

Учитывая полученные результаты, разработана корпоративная программа профилактики здоровья с ранжированием работников на группы риска:
– 1-я группа – работники, не предъявляющие жалобы, не имеющие клинических признаков БСК и/или БОД (стадия удовлетворительной адаптации или резистентности);
– 2-я группа – работники, предъявляющие жалобы, но имеющие функциональные нарушения при отсутствии клинических симптомов (стадия неудовлетворительной адаптации);
– 3-я группа – работники, предъявляющие жалобы и имеющие лабораторные или функциональные признаки БСК и/или БОД (стадия напряжения адаптации);
- 4-я группа – работники с впервые установленными БСК и / или БОД, не имеющие противопоказаний к продолжению профессиональной деятельности (стадия срыва адаптации).

Группы риска были сформированы по результатам ПМО.

Корпоративные программы предполагают взаимодействие службы охраны труда и промышленной безопасности предприятия с медицинскими организациями и центрами профпатологии.

По результатам ПМО работодатель принимает решение о целесообразности разработки и реализации корпоративной профилактической программы и заключает договор с научным учреждением на оценку риска здоровья работников, на разработку и реализацию программы.

Мероприятия, обеспечивающие сохранение трудовых ресурсов, обеспечиваются работодателем: модернизация производства, в том числе создание новых рабочих мест, соответствующих классу условий труда, дополнительные для предпенсионных работников, имеющих медицинские противопоказания к выполнению работ в вредных условиях труда; информирование работника о профессиональном риске; ограничение влияния вредных факторов на работника (защита временем, дозой, расстоянием); использование современных средств индивидуальной защиты (активных шумопоглощающих наушников, полумасок со сменными фильтрами и т.п.) повышенное качество ПМО.

В соответствии с ранжированием на группы риска по результатам предыдущего ПМО ежегодный медицинский осмотр у данного контингента работников проводился по программе углубленного обследования с расширением объема, регламентированного приказом 302н, в зависимости от этого осуществлено повторное ранжирование на группы риска с целью проведения медико-профилактических или медико-реабилитационных мероприятий.

Первичная профилактика болезней системы кровообращения и органов дыхания включала: информирование работника о вероятности развития БСК и БОД; краткое профилактическое консультирование; формирование мотивации на сохранение здоровья: само- контроль АД, пульса, индекса массы тела, окружность талии и бедер, отказ от курения или исключение пассивного курения, отказ от курения или исключение для ингаляционных, повышение качества жизни, улучшение переносимости физической нагрузки, сохранение трудоспособности.

Медико-профилактические и медико-реабилитационные мероприятия включают четыре этапа: первый этап – мероприятия по профилактике БОД и БСК у работников 1-й группы риска направлены на улучшение качества жизни, улучшение переносимости физической нагрузки, сохранение трудоспособности, введение о профессиональных рисках здоровья; краткое профилактическое консультирование; неспецифическую сезонную иммунопрофилактику и формирование саногенной мотивации. Для работников 2-й группы риска к общим мероприятиям дополнительно проводилось углубленное профилактическое консультирование; неспецифическая сезонная иммунопрофилактика и противогриппозная вакцинация; физическая профилактика: физиотерапия (азролонизация), иглорефлексотерапия, массаж волостной части головы и воротниковой зоны, лечебная физкультура – 10 сеансов; оздоровление в санатории-профилактории по программе профилактики 14 дней.

Программа для работников 3 группы была расширена вакцинацией трудящихся с частыми рецидивами БОД вакциной «Пневмо 23» и медикаментозной профилактикой: антиоксиданты, поливитаминные и полиминеральные комплексы курсами по 14 дней два раза в год. По показаниям – терапия БОД и / или БСК. Физическая профилактика включала лекарственный фонофорез и магнитотерапию – 10 сеансов, массаж грудной клетки и дыхательную гимнастику – 10 сеансов; антиоксидантную терапию, энергосберегающие препараты, бета-каротин с минеральными веществами – курс 30 дней.

Для работников 4-й группы проводилось информирование о профессиональных рисках и о трудовом прогнозе; формирование саногенной мотивации; физическая и медикаментозная профилактика, а также лечение основного заболевания (постоянная гипотензивная терапия и / или бронходилататоры и муколитические препараты и т.п.), оздоровление в санатории-профилактории по программе реабилитации 21 день.

Медико-профилактические и медико-реабилитационные мероприятия включают четыре этапа: первый этап – мероприятия по профилактике БОД и БСК у работников 1-й группы риска, а также часто и длительно болеющих простудными заболеваниями путем организации диспансерного наблюдения в условиях медицинского пункта предприятия; второй этап – мероприятия по профилактике БОД и БСК у работников 2-й группы риска, а также часто и длительно болеющих простудными заболеваниями путем организации диспансерного наблюдения в условиях медицинского пункта предприятия со- вместно с врачом-профпатологом медицинской организации; третий этап – регулярное оздоровление работников, имеющих начальные формы общего заболевания БОД и БСК у работников 3-й группы риска в центре профпатологии с проведением экспертизы профпригодности; четвертый этап – медико-реабилитационные мероприятия работникам 4-й группы риска ежедневно в центре профпатологии, экспертиза профпригодности и связи заболевания с профессией.

Медико-профилактические и медико-реабилитационные мероприятия направлены на повышение качества жизни, улучшение переносимости физической нагрузки, сохранение трудоспособности.
установление или снижение выраженности симптомов БСК и БОД, снижение количества резидентов БОД или ухудшения БСК, снижение смертности.

Результаты обследования через год после реализации корпоративной программы показали, что при действии профилактической программы снизилась доля производственной обусловленности для болезней системы кровообращения (EF = 66% до внедрения программы; EF = 47% – после реализации программы) и болезней органов дыхания (EF = 51% до внедрения программы; EF = 39% – после реализации программы). В группе наблюдения достоверно уменьшилось количество работников, у которых на момент ПМО зарегистрировано высокое АД (до реализации программы 33% работников, после – 11%, p < 0,05; RR = 1,1; 95% CI = 1,0 – 3,3; EF = 39%), в 1,8 раза уменьшилось количество работников с ограничениями к выполнению отдельных видов работ по результатам ПМО по причине БСК (до реализации программы 14 работников, после – 8, p < 0,05) и практически в 3 раза – по причине болезней органов дыхания (до реализации программы 32 работника, после – 11, p < 0,05); в 2,5 раза снизилась обращаемость работников за медицинской помощью по поводу БСК и болезней органов дыхания, в том числе ОРВИ; отмечено снижение количества нуждающихся в дообследовании (с 35 до 26%) и представленных на экспертизу профпригодности (с 30 до 14%); практически в 3 раза снизилась доля работников, имеющих медицинские противопоказания к продолжению трудовой деятельности (по причине АГ – с 33 до 11%, по заболеваниям органов дыхания – с 14,5 до 5,0%). Наблюдалась положительная динамика при сравнительном анализе результатов обследования (табл. 5).

Анализ функциональной активности эндотелия плечевой артерии показал, что до реализации программы профилактики минимальный прирост диаметра составил 5%, максимальный – 32%, вариационный размах R = 27; а после реализации – 10,42 и 28,57% соответственно, R = 18,15% (см. табл. 5).

Результаты по показателям УЗИ БЦА до и после реализации программы профилактики выявили уменьшение ТКИМ, что также свидетельствует об улучшении структурного состояния эндотелия сосудов (см. табл. 5).

Оценка эффективности реализации программы профилактики показала, что для атерогенных фракций холестерина (ЛПНП) связь с условиями труда становится недостоверна (R = 1,2; 95% CI = 0,9 – 1,6); а для уровня мочевой кислоты в крови (R = 1,3; 95% CI = 1,3 – 9,6; EF = 32,5%) и функциональной активности эндотелия плечевой артерии (R = 2,1; 95% CI = 1,1 – 6,3; EF = 33%) отмечено снижение этиологической доли и относительного риска, то есть снижается риск развития болезней системы кровообращения и органов дыхания.

Таблица 5

Сравнительный анализ показателей до и после реализации программы профилактики

Показатель	До реализации программы профилактики	После реализации программы профилактики	p*
Лабораторные показатели			
Липопротеины низкой плотности, ммоль/дм³	5,5 ± 0,5	4,9 ± 0,2	< 0,05
С-реактивный белок, мкмоль/дм³	6,7 ± 2,2	4,7 ± 0,5	< 0,05
Мочевая кислота, мг/дм³	390 ± 82,7	267 ± 37,3	< 0,05
Гомоцистеин, мкмоль/дм³	15,1 ± 3,2	8,9 ± 2,4	< 0,05
Активность эндотелия плечевой артерии			
Минимальный прирост диаметра плечевой артерии, %	5	10,42	< 0,05
Максимальный прирост диаметра плечевой артерии, %	32	28,57	< 0,05
Вариационный размах прироста диаметра плечевой артерии, %	27	18,15	< 0,05
Ультразвуковое исследование брахиоцефальных артерий			
Толщина комплекса интима-медия	1,2 ± 0,09	0,9 ± 0,07	< 0,05

Примечание: *p – достоверность различий между группой наблюдения и группой сравнения.

Выводы:
1. У работников химических предприятий на фоне реализации профилактической программы уменьшено снижение производственной обусловленности для болезней системы кровообращения (EF = 66% до внедрения программы; EF = 47% – после) и органов дыхания (EF = 51% до внедрения программы; EF = 39% – после).
2. В результате реализации профилактической программы с учетом уровня риска практически в три раза снизилась доля работников, имеющих медицинские противопоказания к продолжению трудовой деятельности (по причине АГ – с 33 до 11%, по заболеваниям органов дыхания – с 14,5 до 5,0%).
3. Внедрение на предприятиях корпоративных профилактических программ позволяет снизить риск развития болезней системы кровообращения и органов дыхания и сохранить работнику профессиональную трудоспособность, а работодателю трудовой потенциал предприятия.

Финансирование. Исследование не имело спонсорской поддержки.
Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.
CORPORATE PROGRAMS FOR PREVENTING HEALTH DISORDERS AMONG WORKERS EMPLOYED AT ADVERSE PRODUCTIONS AS A TOOL FOR OCCUPATIONAL RISK MANAGEMENT

O.Yu. Ustinova1,2, N.V. Zaitseva1, E.M. Vlasova1, V.G. Kostarev3

1Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, 82 Monastyrskaya Str., Perm, 614045, Russian Federation
2Perm State University, 15 Bukireva Str., Perm, 614990, Russian Federation
3Federal Service for Surveillance over Consumer Rights protection and Human Well-being, Perm regional office, 50 Kuibysheva Str., Perm, 614016, Russian Federation

Given the existing social and economic conditions, a true priority in activities performed by specialists in occupational medicine and labor protection is to preserve workers health and to prolong periods of their working capability. Experience in cooperating with employers who were interested in preserving their highly qualified personnel revealed that implementation of corporate prevention programs at an enterprise allowed reducing work-related and occupational health risks for workers.

Our research goal was to assess efficiency of a corporate prevention program bearing in mind managing occupational and work-related risks.

Data and methods. Our test group included 221 male workers employed at chemical productions in Perm (aged 55–40, average working experience amounted to 19.2 ± 7.8 years); our reference group was made up of 79 office workers employed at the same enterprises (aged 55–39, average working experience amounted to 21.2 ± 7.6). The research involved analyzing result of specific assessment of working conditions; medical documentation analysis; clinical, laboratory, and instrumental research; mathematical processing of all obtained data with creating predictive evolution models of occupational risks.

Results. A priori occupational risks for workers from the test group were high (intolerable) and average (significant); risks for workers from the reference group were small and negligible. An assessment of a cause-and-effect relation between work and health disorders revealed that AH (EF=66 %) and respiratory organs diseases (EF=51 %) were to a great extent work-related. Basic pathogenetic mechanisms of circulatory system diseases and respiratory organs diseases were determined as per research results; they were syndromes of endothelial dysfunction, sub-clinic inflammation, and oxidative stress; given that, we developed a corporate prevention program aimed at preventing health disorders among workers.

Results of the program implementation revealed that there was an authentic decrease in number of workers who had high blood pressure at the moment of a periodical medical examination (38 % prior to the program implementation and 11 % after it had been implemented, p < 0.05); there was 1.8 times decrease in number of workers who were not admitted due to respiratory organs diseases (32 workers prior the program implementation and 11 workers after it had been implemented, p < 0.05) and practically 3 times decrease in number of workers who were not admitted due to respiratory organs diseases (32 workers prior the program implementation and 11 workers after it had been implemented, p < 0.05); there was also a decrease in number of workers who applied for medical aid.

Key words: occupational risk, risk management, corporate prevention programs, prevention of health disorders, assessment of working conditions, circulatory system diseases, respiratory organs diseases.
4. Titova E.Ya., Golub' S.A. Contemporary problems of health protection for workers at a large industrial enterprise and working under occupational hazards. Health Risk Analysis, 2017, no. 4, pp. 83–90. DOI: 10.21668/health.risk/2017.4.09.eng

5. Alekseev V.B., Shur P.Z., Shlyapnikov D.M., Kostarev V.G. Hygienic evaluation of the impact of working conditions on the health of workers of the complex for production of phthalic anhydride and fumaric acid. Gigiena i sanitariya, 2018, vol. 97, no. 1, pp. 54–58 (in Russian).

6. Panev N.I., Korotenko O.Yu., Filimonov S.N., Semenova E.A., Panev R.N. Prevalence of cardiovascular pathology in workers of the aluminum industry. Gigiena i sanitariya, 2019, vol. 98, no. 3, pp. 276–279 (in Russian).

7. Ponomareva T.A., Vlasova E.M., Shklyaev O.V. Prevalence, etiological factors and structure of occupational bronchial asthma in diverse industrial sectors of the republic of Bashkortostan. Meditsina truda i ekologiya cheloveka, 2017, vol. 11, no. 3, pp. 43–48 (in Russian).

8. Bazarova E.L., Fedoruk A.A., Roslaya N.A., Osherov I.S., Babenko A.G. Experience of workplace hazard assessment connected with effect of the cooling microclimate in the conditions of modernization of the enterprise. Zdorov'e naseleniya i sreda obitaniya, 2019, vol. 318, no. 9, pp. 56–61 (in Russian).

9. Denisov E.I., Stepanyan I.V., Chelischevka M.Yu. Statisticheskaya otsenka svyazi narushenii zdrov'ya s rabotoi (SOS) [Statistic assessment of a relation between health disorders and work (SAR)]. Neirokibernetika. Available at: http://neurocomp.ru/cgi-bin/opr/sos/start.py (06.04.2020) (in Russian).

10. Boiko I.V., Andreenko O.N., Greben'kov S.V., Shalukho E.S., Fedorov V.N., Orlova G.P. The experience of joint work of the clinic of occupational pathology (center of occupational pathology) and the department of the scientific support of sanitary and epidemiological surveillance and expertise to establish the connection of diseases with the occupation. Gigiena i sanitariya, 2018, vol. 97, no. 12, pp. 1239–1243 (in Russian).

11. Meshchakova N.M., Shyakhmetov S.F., Dyakovich M.P. The improvement of methodical approaches to the health risk assessment in workers exposed to the chemical factor. Gigiena i sanitariya, 2017, vol. 96, no. 3, pp. 270–274 (in Russian).

12. Zaitseva N.V., Shur P.Z., Kiri'yano D.A., Chigvintsev V.M., Dolgikh O.V., Luzhetskii K.P. Methodical approaches for calculating the probability of negative responses for personal human health risk assessment. Profilakticheskaya i klinicheskaya meditsina, 2015, vol. 56, no. 3, pp. 5–11 (in Russian).

13. Shushkova T.S., Tulakin A.V., Ustyusin B.V., Sukhalkin B.N., Kutakova N.S., Shubenkova T.I. Metodicheskie podkhody k integral'noi otsenke funktsional'noi sostoyaniya organizma gornorabochikh [Methodical approaches to integral assessment of miners’ functional state]. Sanitarnyi vrach, 2013, no. 4, pp. 40–45 (in Russian).

14. Lebedeva-Neseyriya N.A., Barg A.O., Tsinker M.Yu., Kostarev V.G. Assessment of correlation between heterogeneous risk factors and morbidity among working population in Russian regions with different background of health formation. Health Risk Analysis, 2019, no. 2, pp. 91–100. DOI: 10.21668/health.risk/2019.2.10.eng

15. Zaitseva N.V., Shur P.Z., Kiri'yano D.A., Kamaltdinov M.R., Tsinker M.Yu. Methodical approaches for health population risk estimation based evolution models. Zdorov'e naseleniya i sreda obitaniya, 2013, no. 1, pp. 4–6 (in Russian).

16. Chigvintsev V.M. Analiz matematicheskih modeli regul'yazitsi raboty immunnoi i neiroenendocrinoi sistem s uchetom funktsional'nykh narushenii organov [Analysis of a mathematical model that describes immune and endocrine systems regulation taking into account functional disorders in organs]. Matematicheskoe modelirovanie v estestvennykh naukakh, 2017, no. 1, pp. 128–131 (in Russian).

17. Pryanichnikova N.I., Mazhaeva T.V., Dubenko S.E., Obukhova T.Yu., Chirkova I.A. Risk factors and metabolic disorders possibility in workers at an enterprise included into «Uralslabeast» public corporation. Meditsina truda i promyshlennaya ekologiya, 2014, no. 6, pp. 22–25 (in Russian).

18. Strakhova L.A., Blinova T.V., Troshin V.V., Kolesov S.A., Rakhmanov R.S., Umnyagina I.A. The evaluation of oxidative stress as a criterion of the risk of disease development in working people of various ages. Meditsina truda i ekologiya cheloveka, 2018, no. 2, pp. 61–65 (in Russian).

19. Baradaran A., Nasri H., Rafieian-Kopaei M. Oxidative stress and hypertension: Possibility of hypertension therapy with antioxidants. Journal of Research in Medical Sciences: The Official Journal of Isfahan University of Medical Sciences, 2014, vol. 19, no. 4, pp. 358–367.

20. Berntavova I. Endothelial dysfunction in experimental models of arterial hypertention: cause or consequence? BioMed research international, 2014, 598271 p. Available at: http://www.hindawi.com/journals/bmri/2014/598271 (05.09.2019).

21. Golbidi S., Frisbee J.C., Laher I. Chronic stress impacts the cardiovascular system: animal models and clinical outcomes. American journal of physiology. Heart and circulatory physiology, 2015, vol. 308, no. 12, pp. 1476–1498. DOI: 10.1152/ajheart.00859.2014

22. Jiménez M.C., Rexrode K.M., Glynn R.J., Ridker P.M., Gaziano J.M., Sesso H.D. Association between High-Sensitivity C-Reactive Protein and Total Stroke by Hypertensive Status Among Men. Journal of the American Heart Association, 2015, vol. 9, no. 4, pp. e002073. DOI: 10.1161/JAHA.115.002073

23. Bushueva T.V., Roslaya N.A., Roslyi O.F. Comparative analysis of the immune profile of metallurgical workers exposed to different chemical factors of production environment. Gigiena i sanitariya, 2015, vol. 94, no. 2, pp. 47–50 (in Russian).