ON THE END-TO-END SOLUTION TO MANDARIN-ENGLISH CODE-SWITCHING SPEECH RECOGNITION

Zhiping Zeng1, Yerbolat Khassanov2, Van Tung Pham1,2, Haihua Xu1, Eng Siong Chng1,2, Haizhou Li3

1Temasek Laboratories, Nanyang Technological University, Singapore
2School of Computer Science and Engineering, Nanyang Technological University, Singapore
3Department of Electrical and Computer Engineering, National University of Singapore, Singapore

ABSTRACT
Code-switching (CS) refers to a linguistic phenomenon where a speaker uses different languages in an utterance or between alternating utterances. In this work, we study end-to-end (E2E) approaches to the Mandarin-English code-switching speech recognition (CSSR) task. We first examine the effectiveness of using data augmentation and byte-pair encoding (BPE) subword units. More importantly, we propose a multitask learning recipe, where a language identification task is explicitly learned in addition to the E2E speech recognition task. Furthermore, we introduce an efficient word vocabulary expansion method for language modeling to alleviate data sparsity issues under the code-switching scenario. Experimental results on the SEAME data, a Mandarin-English CS corpus, demonstrate the effectiveness of the proposed methods.

Index Terms— Code-switching, speech recognition, end-to-end, multitask learning, language identification

1. INTRODUCTION
Code-switching (CS) is a linguistic phenomenon, where speaker’s utterances contain different languages, either in a given utterance or between utterances. It frequently appears in world wide areas. Therefore, developing a code-switching speech recognition system is important and has received increasing attention recently.

While DNN-HMM-based ASR framework is popular in code-switching speech recognition (CSSR) [1][2], it has some clear limitations. Firstly, one needs to build a big lexicon mixed with words from different languages, and it would take more human efforts to label pronunciations for those words from different languages. Secondly, components of the DNN-HMM-based ASR system are optimized separately. This would lead to sub-optimal performance.

In this paper, we pursue an End-to-End (E2E) strategy to resolve Mandarin-English CSSR instead. In contrast to the DNN-HMM-based approach, it doesn’t require any lexicon modeling efforts. More importantly, the entire recognition system comprises compactly connected neural networks that are jointly learned from scratch. To our best knowledge, this is the first attempt of using E2E strategy to CSSR task. Our contributions mainly lies in the following aspects.

Firstly, we manage to build competitive E2E baseline systems using data augmentation and byte-pair encoding (BPE) based subword units [3][5]. We found data augmentation is more effective to the E2E framework than the DNN-HMM-based one. Besides, we found the BPE subword units yield better recognition results than characters. This is consistent with what is reported in [3].

Secondly, we employ a multitask learning (MTL) [6] method to enhance our E2E-based CSSR. Specifically, we propose to use language identification (LID) as the auxiliary task to help improving the speech recognition performance. It showed that the LID-based MTL helps on Token Error Rate (TER) reduction.

Thirdly, to alleviate the cross-lingual data sparsity issue in language modeling, we introduce a word vocabulary expansion method inspired by [7]. Note that in [7], this technique is applied for monolingual data, while this work applies it to the code-switching data.

The paper is organized as follows. Related work are presented in Section 2. Then, proposed E2E CSSR approaches are introduced in Section 3. Experimental setups are described in Section 4 then results and analyses are reported in Section 5. Finally, we conclude in Section 6.

2. RELATED WORK
Previous works on code-switching speech recognition relied on the conventional GMM-HMM or DNN-HMM framework [1][2][3]. Recently, end-to-end speech recognition methods have drawn much attention and produced promising recognition results [10][17]. There are two main directions for end-to-end speech recognition. One is the earlier proposed Connectionist Temporal Classification (CTC) [10], and the other is the attention mechanism based method [11]. CTC performed well on various corpora such as WSJ [12][13] and SWB [14]. Recently, inspired from the attention-based machine translation framework [15], attention-based E2E began to play a
crucial role in speech recognition, achieving the state-of-the-art results [16]. Despite the two methods are different, researchers in [17] exploited the advantages of each methods to build the hybrid CTC/attention based E2E ASR system, which leads to better results compared to an ASR system built with either single method.

We apply end-to-end ASR approach to code-switching speech recognition task in this paper. This differs from the previous end-to-end ASR that has worked only for monolingual case. Recently, it was shown that E2E method can be employed to perform multilingual speech recognition simultaneously [18,19]. However, the multilingual speech recognition is not a code-switching task.

3. APPROACHES TO END-TO-END CSSR

In this section, we present various approaches to achieve better end-to-end code-switching speech recognition. We first aim to build competitive baselines. To start with, we investigate data augmentation method and study different subword units as the output of the decoder. After that, we employ a MTL by introducing the LID as the auxiliary task to boost the performance of our end-to-end CSSR. Finally, we propose a modified neural language modeling framework, aiming to alleviate the cross-lingual data sparsity issue within the CSSR task.

3.1. Approaches to develop CSSR baselines

One major challenge of building the E2E system is that it requires a lot of data to train the model [20]. To deal with this problem, we apply speech speed perturbation based data augmentation method proposed in [21,22] as the effectiveness of the method has been proved in the conventional DNN-HMM ASR method. By manipulation, we obtained $x3$ times of the original data, with a speaking rate of 90%, 100%, and 110% of the original data respectively. In this work, E2E with data augmentation is one of our baseline.

Another issue for E2E system is how to select the output units for the decoder. As we are dealing with both Mandarin and English output units simultaneously, it sounds straightforward to use characters as the units. However, this will result in only 26 output units for English and several thousand for Mandarin. We conjecture that such an unbalanced situation will be disadvantageous to English, yielding worse recognition results. To balance the units between the two languages, we decide to use subword units [16] for English. BPE subword units have shown to be helpful for English [5]. As a result, in this work, we use the BPE subwords for English, while leaving the output units of Mandarin fixed with characters. Therefore, another baseline in this work is to apply BPE subword units on the E2E system trained with data augmentation.

3.2. Multitask Learning of CSSR with LID

Inspired from the work in [17], we adopted a hybrid CTC/attention based E2E architecture to conduct CSSR. Specifically, let X be the input acoustic sequence, Y be the output sequence comprising characters or BPE units, $L_{CTC}(Y|X)$ be the CTC objective loss, $L_{att}(Y|X)$ be the attention-based objective loss. Then, the objective loss $L_{MTL}(Y|X)$ of the entire hybrid E2E system is as follows:

$$L_{MTL}(Y|X) = \lambda_1 L_{att}(Y|X) + (1 - \lambda_1) L_{CTC}(Y|X)$$ (1)

where $\lambda_1 \in [0, 1]$ is a hyper-parameter to control the contribution of each model.

For the code-switching system, although we can infer the language ID from the decoding transcription, the language information has not been used explicitly during training. We believe that using the language ID would improve the CSSR performance. To this end, we extend the multitask learning method as indicated in Eq (1). The framework is illustrated in Figure 1. As a result, the whole training objective loss is changed as follows:

$$L_{MTL}(Y|X) = \lambda_1 L_{att}(Y|X) + (1 - \lambda_1) L_{CTC}(Y|X)$$
$$+ \lambda_2 L_{lid}(Z|X)$$ (2)

where Z is the output LID sequence, $L_{lid}(Z|X)$ represents the LID objective loss, and we restrict $\lambda_2 \in [0, 1]$.

Fig. 1. A multitask learning (MTL) framework with LID for E2E-based CSSR. The LID task can share the same attention module (left) or use a separate attention module (right).

As indicated in Figure 1, we have investigated two methods to incorporate the LID into the hybrid CTC/attention framework. One is to share the same attention module with the speech recognition task (LID\textsubscript{shared}), and another is to learn an independent attention model by itself (LID\textsubscript{indep}). Both methods use the same objective function as in the Eq (2).

3.3. Vocabulary expansion for neural language model

The performance of E2E speech recognition can be further improved when its output is rescoring by neural language models (NLM) [11]. However, the vocabulary coverage of the
NLM is usually a shortened list of the entire ASR vocabulary, and such the list is usually only composed of most frequent words, due to the necessity of learning complexity restriction. Consequently, the probability of those infrequent words that are out-of-shortlist are not well learned by the NLM.

In CSSR scenario, we treat those words that occur at the cross-lingual transition positions as ‘infrequent’ words, in addition to other ‘infrequent’ words that we have in monolingual text. The main idea is to ‘borrow’ probability mass for such ‘infrequent’ words (target words) from those words that are in the shortlist and semantically close to the target words, as advocated in [7].

The benefit of using the method in [7] is that we don’t have to learn a big NLM. However, the downside of the method is that word semantic clustering is needed beforehand. This can be done with word embedding vector. For the more details of implementation, one can refer to [7].

4. EXPERIMENTAL SETUP

4.1. Data

We conduct experiments on the SEAME corpus [23] which is a spontaneous conversational Mandarin-English code-switching speech corpus. The utterances that contain code-switching are about 54% in our training set. We define two test sets that contains code-switching speech [2]. One is biased to Mandarin speech (denoted as dev_sge), and another is biased to English (dev_sge). Each test set contains 10 speakers with balanced gender [1]. In what follows, we report token error rate (TER) on the test data. The so-called ‘token’ here refers to the unit of Chinese character and English word respectively.

4.2. DNN-HMM baseline system

Besides two baselines in Section 3.1 we also build a DNN-HMM system as another baseline for comparison. We use Kaldi toolkit [24] to train a lattice-free maximum mutual information (MMI) based time delay neural network (TDNN) [25]. The TDNN has 6 hidden layers with 1024 hidden units, and the input features are 40 dimensional MFCC plus 100 dimensional i-vectors. The outputs are senones that are language independent. For language modeling, we only use the transcriptions of the training part of the SEAME data to train the 4-gram language model. Detailed setup can be found in [2].

One of the differences between the CSSR and the monolingual ASR is that there is cross-lingual substitutions (CLS) for the CSSR. Table 2 reports various kinds of substitution rates from different E2E systems. We note from Table 2 that there are much fewer CLS than same language substitutions, and they are about 10% on each test sets. Besides, it can be seen that $S_{E \rightarrow M}$ is higher than $S_{M \rightarrow E}$ by $\sim 5\%$ which indicates that more English words is substituted by Mandarin characters than the other way.

Table 3 shows the top 5 examples of CLS on both test sets. From Table 3 most of the CLS are only involved with

4.3. E2E ASR system setup

We use ESPnet toolkit [26] to train our E2E ASR system. The encoder consists of one-layer CNN and six-layers BLSTM with 320 hidden units. The decoder consists of one-layer LSTM with 300 hidden units. CTC weight is fixed with 0.2. The attention method used in this work is a combination of content-based and location-based methods [27]. For the BPE subword units, we trained 3 models corresponding with the vocabulary size 3k, 4k and 5k units.

5. EXPERIMENTAL Results AND Analysis

5.1. Results of the E2E CSSR system

Table 1 reports our TER results of the E2E CSSR system with different setups, using those from the Kaldi LF-MMI TDNN CSSR system as a contrast.

We have three observations from in Table 1. Firstly, our E2E ASR systems are not as competitive as the LF-MMI TDNN systems in general. This suggests that further effort is required to improve the E2E ASR system at least on the limited training data. Secondly, data augmentation significantly helps on TER reduction for our E2E ASR system, suggesting that more data might further reduce the performance gap between our E2E and LF-MMI TDNN systems. Thirdly, the BPE subword units are much more effective than the character units for English, which brings TER down from 38.4% to 36.1% on the dev_sge set in its best case.

Table 1. The TER of different E2E CSSR systems as compared to the LF-MMI TDNN ASR counterparts.

System	Data Aug	Subword	TER (%)	
			dev_{man}	dev_{sge}
Kaldi-TDNN	No	N.A	23.5	30.9
Kaldi-TDNN-DA	Yes	N.A	22.1	30.9
E2E-CHAR	No	Character	34.5	46.4
E2E-DA-CHAR	Yes	Character	26.5	38.4
E2E-DA-BPE3k	Yes	BPE	26.4	36.1
E2E-DA-BPE4k	Yes	BPE	26.6	36.2
E2E-DA-BPE5k	Yes	BPE	26.9	36.9

One of the differences between the CSSR and the monolingual ASR is that there is cross-lingual substitutions (CLS) for the CSSR. Table 2 reports various kinds of substitution rates from different E2E systems. We note from Table 2 that there are much fewer CLS than same language substitutions, and they are about 10% on each test sets. Besides, it can be seen that $S_{E \rightarrow M}$ is higher than $S_{M \rightarrow E}$ by $\sim 5\%$ which indicates that more English words is substituted by Mandarin characters than the other way.

Table 3 shows the top 5 examples of CLS on both test sets. From Table 3 most of the CLS are only involved with

1. Here English refers to Singapore English (sge).
2. Our KALDI format based test sets are released in the following link: https://github.com/zengzp0912/SEAME-dev-set
3. https://github.com/espnet/

Table 2. Different substitution errors, where ‘M’ and ‘E’ stand for Mandarin and English respectively.

Substitutions	System	dev_{man} (%)	dev_{sge} (%)
S_{E→E}	E2E-DA-CHAR	30.8	38.5
	E2E-DA-BPE	20.9	25.3
S_{E→M}	E2E-DA-CHAR	8.4	5.0
	E2E-DA-BPE	8.0	5.2
S_{M→E}	E2E-DA-CHAR	2.7	5.2
	E2E-DA-BPE	3.0	5.1
S_{M→M}	E2E-DA-CHAR	12.9	14.7
	E2E-DA-BPE	13.0	14.7

Table 3. Top 5 cross-lingual substitution examples

Ref	Hyps	count	Ref	Hyps	count
ah	的	87	the	the	39
ch	答	75	哼	lor	36
er	啊	38	oh	21	
the	的	37	有	you	18
oh	哼	36	词	ch	17

5.2. Effect of MTL with LID

Figure 2 shows the TER of the two MTL with LID for E2E CSSR methods, LID_{shared} and LID_{indep}, at different weighting factor λ₂ in Eq 2. The baseline results are the corresponding best results from Table 1, i.e. E2E-DA-CHAR and E2E-DA-BPE3k. We observe that the two methods improve the results in most cases, and both methods can yield the best results when λ₂ is around 0.2. However, there are no obvious difference between the two methods.

![Fig. 2](image)

Fig. 2. TER results of the MTL with LID for E2E CSSR: TER versus LID weighting factor (λ₂). dev_{man} is indicated by left axis, while dev_{sge} is indicated by right axis.

Table 4. TER(%) results of the two E2E MTL framework with LID CSSR methods (λ₂ = 0.2). ‘M’, ‘E’ and ‘ALL’ mean English, Mandarin and total TER of the test sets respectively.

Systems	dev_{man} (%)	dev_{sge} (%)
E2E-DA-CHAR	21.8	39.2
+ LID_{shared}	21.8	38.7
E2E-DA-BPE3k	23.3	37.2
+ LID_{indep}	23.3	37.2

Table 5. TER of the NLM vocabulary expansion.

Method	dev_{man} (%)	dev_{sge} (%)
NoLM	26.0	35.8
5-gram KN	25.9	35.6
RNN-LM	25.1	34.6
Proposed NLM	25.0	34.5

5.3. Effect of the NLM vocabulary expansion

Table 5 reports the TER results of the N-best (N=30) rescoring with the NLM vocabulary expansion method, where the NLM is the RNN-LM in practice. We see from Table 5 that the proposed NLM vocabulary expansion method achieved consistent improved TER results over the best results shown in the last row of Table 4.

all, the proposed methods yield improved results though not significant. It seems more effective when it is applied to the character based system.

6. CONCLUSION

In this paper we proposed several approaches to improve E2E based Mandarin-English code-switching speech recognition. These approaches include data augmentation, byte-pair encoding subword units for English language, language identification based multitask learning, as well as the vocabulary expansion for neural language models to rescore the N-best results. Experiment results showed that applying the proposed approaches significantly reduces the TER of two dev sets from 34.5% and 46.5% to 25.0% and 34.5% respectively, which is close to the results of strong LF-MMI TDNN system.

7. ACKNOWLEDGMENT

This work is supported by the project of Alibaba-NTU Singapore Joint Research Institute.
8. REFERENCES

[1] Emre Yilmaz, Henk van den Heuvel, and David A. van Leeuwen, “Acoustic and textual data augmentation for improved ASR of code-switching speech,” in Proc. of INTERSPEECH, 2018.

[2] Pengcheng Guo, Haihua Xu, Lei Xie, and Eng Siong Chng, “Study of semi-supervised approaches to improving english-mandarin code-switching speech recognition,” in Proc. of INTERSPEECH, 2018.

[3] Albert Zeyer, Kazuki Irie, Ralf Schlüter, and Hermann Ney, “Improved training of end-to-end attention models for speech recognition,” arXiv preprint arXiv:1805.03294, 2018.

[4] Rico Sennrich, Barry Haddow, and Alexandra Birch, “Neural machine translation of rare words with subword units,” arXiv preprint arXiv:1508.07909, 2015.

[5] Taku Kudo, “Subword regularization: Improving neural network translation models with multiple subword candidates,” arXiv preprint arXiv:1804.10959, 2018.

[6] Sinno Jialin Pan, Qiang Yang, et al., “A survey on transfer learning,” IEEE Transactions on knowledge and data engineering, vol. 22, no. 10, pp. 1345–1359, 2010.

[7] Yerbolat Khassanov and Eng Siong Chng, “Unsupervised and efficient vocabulary expansion for recurrent neural network language models in asr,” Proc. of INTERSPEECH, 2018.

[8] Ewald van der Westhuizen and Thomas Niesler, “Synthesising isizulu-english code-switch bigrams using word embeddings,” Proc. of INTERSPEECH, 2017.

[9] Ngoc Thang Vu, Dau-Cheng Lyu, Jochen Weiner, et al., “A first speech recognition system for Mandarin-English code-switching conversational speech,” in Proc. of ICASSP, 2012.

[10] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber, “Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks,” in Proc. of ICML, 2006.

[11] William Chan, Navdeep Jaitly, et al., “Listen, attend and spell: A neural network for large vocabulary conversational speech recognition,” in Proc. of ICASSP, 2016.

[12] Alex Graves and Navdeep Jaitly, “Towards end-to-end speech recognition with recurrent neural networks,” in Proc. of ICML, 2014.

[13] Awni Y Hannun, Andrew L Maas, Daniel Jurafsky, and Andrew Y Ng, “First-pass large vocabulary continuous speech recognition using bi-directional recurrent dnns,” arXiv preprint arXiv:1408.2873, 2014.

[14] Awni Hannun, Carl Case, Jared Casper, et al., “Deep speech: Scaling up end-to-end speech recognition,” arXiv preprint arXiv:1412.5567, 2014.

[15] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio, “Neural machine translation by jointly learning to align and translate,” CoRR, vol. abs/1409.0473, 2014.

[16] Chung-Cheng Chiu, Tara N Sainath, Yonghui Wu, et al., “State-of-the-art speech recognition with sequence-to-sequence models,” arXiv preprint arXiv:1712.01769, 2017.

[17] Shinji Watanabe, Takaaki Hori, Suyoun Kim, John R Hershey, and Tomoki Hayashi, “Hybrid ctc/attention architecture for end-to-end speech recognition,” IEEE Journal of Selected Topics in Signal Processing, vol. 11, no. 8, pp. 1240–1253, 2017.

[18] Shinji Watanabe, Takaaki Hori, and John R Hershey, “Language independent end-to-end architecture for joint language identification and speech recognition,” in Proc. of ASRU, 2017.

[19] Shubham Toshniwal, Tara Sainath, Ron Yang Weiss, et al., “Multilingual speech recognition with a single end-to-end model,” in Proc. of ICASSP, 2018.

[20] Prajit Ramachandran, Peter J Liu, and Quoc V Le, “Unsupervised pretraining for sequence to sequence learning,” arXiv preprint arXiv:1611.02683, 2016.

[21] Tom Ko, Vijayaditya Peddinti, Daniel Povey, and Sanjeev Khudanpur, “Audio augmentation for speech recognition,” in Proc. of INTERSPEECH, 2015.

[22] Tom Ko, Vijayaditya Peddinti, Daniel Povey, et al., “A study on data augmentation of reverberant speech for robust speech recognition,” in Proc. of ICASSP, 2017.

[23] Dau-Cheng Lyu, Tien Ping Tan, Engsiong Chng, and Haizhou Li, “Seame: a mandarin-english code-switching speech corpus in south-east asia,” in Proc. of INTERSPEECH, 2010.

[24] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, et al., “The kaldi speech recognition toolkit,” in Proc. of ASRU, 2011.

[25] Daniel Povey, Vijayaditya Peddinti, et al., “Purely sequence-trained neural networks for ASR based on lattice-free MMI,” in Proc. of INTERSPEECH, 2016.

[26] Jan K Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, and Yoshua Bengio, “Attention-based models for speech recognition,” in Advances in Neural Information Processing Systems 28, 2015, pp. 577–585.