Review

Gold and silver nanoparticles: Green synthesis, microbes, mechanism, factors, plant disease management and environmental risks

Fatimah S. Al-khattaf

Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

Abstract

Metal nanoparticles were being used in different processes of developmental sectors like agriculture, industry, medical and pharmaceuticals. Nano-biotechnology along with sustainable organic chemistry has immense potential to reproduce innovative and key components of the systems to support surrounding environment, human health, and industry sustainably. Different unconventional methods were being used in green chemistry to synthesize gold and silver nanoparticles from various microbes. So, we reviewed different biological processes for green synthesis of metal nanoparticles. We also studied the mechanism of the synthesis process and procedures to characterize them. Some metallic nanoparticles have shown their potential to act as antimicrobial agent against plant pathogens. Here, we outlined green nanoparticles synthesized from microbes and highlighted their role against plant disease management.

Keywords:
Green synthesis nanoparticles
Fungi
Bacteria
Mechanism
Factors
Plant disease management
Environmental risks

Contents

1. Introduction ... 3625
2. Green synthesis of nanoparticles. ... 3625
 2.1. Polysaccharide method .. 3625
 2.2. Tollens method ... 3625
 2.3. Irradiation method ... 3625
 2.4. Polyoxometalates method .. 3625
 2.5. Biological method .. 3626
3. Microbial synthesis of nanoparticles by microbes .. 3626
 3.1. Fungi .. 3626
 3.1.1. The mechanism of biosynthesis of NPs using fungi 3626
 3.2. Bacteria ... 3627
 3.2.1. Mechanism of NPs synthesis using bacteria .. 3627
4. Factors affecting biological synthesis of metal nanoparticles 3628
 4.1. pH .. 3628
 4.2. Effect of temperature .. 3628
 4.3. Effect of AgNO₃ concentration .. 3628
5. Phytopathogens control by green synthesized nanoparticles 3628
6. Mechanisms of nanoparticles against plant pathogenic microorganisms. 3629

© 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

E-mail address: falkhataf@ksu.edu.sa
Peer review under responsibility of King Saud University.
1. Introduction

Nanobiotechnology has been advanced as a substitute to replace environmentally destructive technologies and productions because of their negative significances being faced globally and the insufficient timeline to gain beneficial results (Hurst, 2020). It is assumed that by the end of 2020 green chemistry may have an insufficient timeline to gain beneficial results (Hurst, 2020). It is replace environmentally destructive technologies and productions resources (Zuin et al., 2020). That’s why different approaches have logical resources in methods and production processes, which need for developing countries which biodiversity-rich is using their bio-savation of the environment (Chen et al., 2020). The challenge development, resource management and sustainability, and conservation of the environment (Chen et al., 2020). The challenge for developing countries which biodiversity-rich is using their biological resources in methods and production processes, which need to be done along with environmental sustainability using natural resources (Zuin et al., 2020). That’s why different approaches have been adopted in this field by using modern green process engineering (MGPE), like the production of nanoparticles (NPs) from biological systems (Mondal et al., 2020). Nanoparticles (NPs) are a broad series of substances with measurements less than 100 nm, that can be utilized in different processes of different sectors, such as agriculture, materials and manufacturing, mechanical industries, medical, pharmaceutical, environmental due to their multiple characteristics (Guleria et al., 2020). The use of agricultural NPs is now being investigated in nano-barcoding, nano-sensors, seed germination, transport hormones in plants, transfer of target genes, water management and plant disease management (Hayles et al., 2017). Plant pathogens and pests’ reason significant declines in production yield, with global decline projected at 20% – 40% each year (Flood, 2010). Recent pest management depends intensively on the use of chemicals, such as herbicides, fungicides, and insecticides. Although, use of aforesaid chemical have attractive benefits such as high availability, reliability, and raid action, but toxic substances resulted in severe impacts to non-targeted objects, and pathogens are becoming more stronger and developing immunity against different pesticides, herbicides and fungicides (Chormade et al., 2011). This phenomenon supported the idea of some incentive to improve cost-effective, high-performance fungicides with minor impacts to the environment. The utilization of biological systems, such as bacteria, fungi, and algae, to synthesize NPs has benefits such as lower energy usage and clean and safe technology without the use of harmful chemicals (Mie et al., 2014). Utilization of different nanotechnology techniques in protecting plants against different diseases is just at its initial phase (Elmer and White, 2018). NPs can protect the plant by adopting two procedures (a) NPs by themselves promoting crop protection or (b) NPs as serving carriers for existing an individual or combine pesticides or other active compounds (Worrall et al., 2018). Therefore, in current review, we have tried to observe complete aspect of the biosynthesis and mechanisms of metal nanoparticles from microbes like fungi, bacteria, and algae along with their ability to act as an antimicrobial agent and the mode of their action.

2. Green synthesis of nanoparticles

Day by day, multiple techniques are produced for the nanoparticle synthesis. Biological procedures, physical procedures, and chemical procedures are the three basic groups of these techniques. Anyhow the most appropriate procedure to synthesize NP is the biological procedure owing to its uncomplicatedness, harmlessness, and cost-effectiveness. The reducing and capping agents are performing a significant role in the NP synthesis. Chemical materials that are employed in the physical and chemical procedures of synthesis of NP are hazardous and extremely toxic, which are responsible for environmental issues. Chemical and microorganisms being used in biological processes are not only harmless to surrounding environment but also safe for no targeted organisms. That’s why most appropriate and recommended process for NS synthesis are biological processes (Awad et al., 2013). At present there is dire need of developing sustainable procedures and methods to nanoparticles, as NPs are needed to use in areas are in direct link of humans (Shams et al., 2013). By developing understanding of green and sustainable technologies, we can develop safe strategies to use NPs and can be grouped in following five methods:

2.1. Polysaccharide method

Green synthesis of AgNPs using the polysaccharide method (cellulose) from biological applications as an example of biological applications for environmental sustainability. Water hyacinth (biological applications) has a high percentage of cellulose in its shoot and roots. The cellulose was extracted from the shoot or roots of the plant and used as reducing and stabilizing agents. Also, the particle shape and size were under control by changing the pH of the solution and reaction time (Mochochoko et al., 2013).

2.2. Tollens method

The Tollens reaction is mild, facile, and managed in a single biosynthetic phase. In this method, Tollens-reagent and reducing sugars have based role in the Ag + ions reduction, yielding AgNPs with a high degree of size- and shape-control of AgNPs, the smallest size of AgNPs has ranged from 5 to 8 nm when used triazole sugar (Korbekandi et al., 2013).

2.3. Irradiation method

The gamma irradiation method is fairly suitable to synthesis the small metallic NPs. This method can be carried out in absence of reducing agents at room temperature. The gamma irradiation utilized a templating model to confine the locus of reaction into virtual “nanoreactors” or “nanomolds,” to controlled in particle size and shape or template-free model (Flores-Rojas et al., 2020).

2.4. Polyoxometalates method

Polyoxometalates (POMs) are a vast group of molecular metal-oxide have much application owing to their unique compositions, structures. Meanwhile, reduced forms of POMs have a great capacity of electron storage and/or transfer capacities, and therefore, it can be engaged to serve as an effective acceptors or donors of numerous electrons. Henceforth, soluble polyoxometalates are proficient in synthesizing noble NPs by multi-electron redox reactions by a one-step reaction at room temperature (Cauerff and Castro 2013).
AgNPs and AuNPs of varying size and shape from fungal species.

Table 1

Fungi	Nanoparticles	Characterization	Location	Reference
Alternaria alternata	Au	12–29 Spherical, triangular, hexagonal	Extracellular	Sarkar et al. 2012
A. oryzae var. viridis	Au	10–60 Spherical	Mycelial surface	Binupriya et al. 2010
Fusarium oxysporum	Au	20–50 Spherical	Extracellular	Husen and Siddiqi, 2014
P. fellutanum	Ag	5–25 Spherical	Extracellular	Karthiasean et al. 2009
T. koningii	Au	10–14 Spherical	Cell-free filtrate	Maliszewska, 2013
T. viride	Ag	5–40 Spherical	Extracellular	Fayaz et al., 2010
Bacillus endophyticus	Ag	5–35 Spherical	Intracellular	Gan et al., 2018
Streptomyces griseoplanus	Ag	19–40 Spherical	Extracellular	Vijayabharath et al., 2018
Nocardopsis flavascens	Ag	5–50 Spherical	Extracellular	Ranjani et al., 2018
Caldicellulosiruptor changbaensis	Au	20–60 Spherical	Intracellular/Extracellular	Bing et al., 2018
Streptomyces lividans	Au	2–15 Spherical	Extracellular	Ahmed et al., 2018
Micrococcus yunnanensis	Au	15–55 Spherical	Extracellular	Jafari et al., 2018

2.5. Biological method

It has been shown that biological synthesis is significant nanofactories that hold enormous potential as eco-friendly and profitable equipment, evading noxious, severe substances, and the great energy needs essential for chemical and physical procedures. The biological protocol includes the synthesis of NPs by utilizing organism like plant and microorganisms such as bacteria, fungi, and yeast. The theory of biological synthesis based on many organisms were become evolved to tolerate conditions of enriched metal concentrations. Such micro-organisms have ability to change the more toxic chemicals and substances in less toxic and harmful components or convert them in complete nontoxic substances (Sharma and Bisen, 1992). The development of NPs is an establishment of the “consequence” of the tolerance procedures of an organism into high-concentration specific metal. The biosynthesis of “Natural” biogenic metallic NP synthesis is divided into two major categories: (a) Bio reduction: Relatively strong models of metallic ions may be obtained by bio reduction reaction utilizing biological protocol resources and is obtained by dissimilar metal reduction. The metal ion has been oxidized and reduced by specific enzymes (Deplanche et al., 2010). (b) Biosorption: The metallic ions have been connected to the organism itself from an aquatic or soil sample. The ions of metal are binding to the peptides or cell walls chain were synthesized by bacteria and fungi after that these peptides chains are formed strong structures of NPs (Yong et al., 2002). Advantages of green or biological synthesize involve a non-toxic chemical used in biosynthesis, significant product, energy efficiency, low-cost production, good economic value, lowest waste, therefore, is called environmentally-friendly processes, competitive advantages, protect human health and fewer risks at biosynthesis time.

3. Microbial synthesis of nanoparticles by microbes

3.1. Fungi

Many fungal species have great ability for making different metal NPs which can be utilized in various processes. More than 6,000 biologically active compounds are recognized to be formed by filamentous fungal species especially (imperfect fungi and ascomycetes) and other fungal species (Bérdy, 2005). These microorganisms are extensively used as reducing and stabilizing agents, due to tolerance of heavy metal and the ability to bioaccumulate and internalize metals. In addition, fungal species can be simply developed on a broader scale (nanofactories) and can provide NPs with morphology and controlled-size (Khan et al., 2017). AgNPs and AuNPs have been produced from various fungi, as seen in Table 1.

3.1.1. The mechanism of biosynthesis of NPs using fungi

3.1.1.1. Intracellular synthesis. In the case of intracellular synthesis, the metal primary is added to the culture and became interior the biomass. So, extraction of the NPs is wanted after the biosynthesis, employing chemical processing, centrifugation, and filtration to rid of the biomass and releasing the NPs (Molnár et al., 2018). The intracellular mechanism requires particular ion transportation in the fungal cell. In the intracellular biosynthesis of Ns, the cell wall presents an important role. The mechanism entails, electrostatic interaction of the positive charge (+) of the metal ions with the negative charge (−) of the cell wall. The enzymes link to the cell wall converts the ions into NPs, and these NPs are diffused across the cell wall (Nasreen et al., 2014). A stepwise mechanism for intracellular synthesis of NPs using Verticillium sp., this mechanism based on three steps, 1) trapping, 2) capping, and 3) bioreduction. It is an electrostatic interaction as the fungal cell surface contact with metal ions and traps the ions. The enzymes in the cell wall bioreduce metal ions to NPs of metal (Molnár et al., 2018). NPs synthesized using the intracellular system are smaller in size compared to the extracellular system synthesized NPs (Thakkar et al., 2010). The small size of NPs could be possibly due to the formation of particles inside the fungi. But NPs extraction processing becomes difficult and increasing the cost of NPs synthesis (Zhang et al., 2011). There are only a few studies that showed the intracellular synthesis of NPs by fungi such as Phoma sp. (Chen et al., 2003) for AgNPs and Epicoccum Nigrum (Sheikhloo et al., 2011) for AuNPs.

3.1.1.2. Extracellular synthesis. For the extracellular synthesis of NPs, numerous methods have been suggested by many researchers

(1) At first the method recommended was the steps linked to synthesize the CdNPs by F. oxysporum. The analysis of the protein examination to identify the existence of NADH-dependent reductase and responsibility for the reduction of Cd ions (Cd²⁺) to the formation of CdNPs (Ahmad et al., 2003).

(2) The second method of extracellular synthesis is the establishment by AgNPs were synthesized with the involvement of quinone and NADPH-nitrate reductase. In this case, both quinone and NADPH were provided to the electron needed to silver ion (Ag+) and turn it into Ag neutral (Ag⁰) (Durán et al., 2003). (3) The third method of extracellular synthesis process of production of AgNPs requires the 1) NADPH and NADP are the principal roots of bioreducing and 2) hydroxyquinoline maybe works as an electron shuttle to move the electrons resulted due to the reduction process of Ag⁺ ions to Ag⁰ in the existence of nitrate reductase enzyme.
The development of hydroxyquinoline is alike to that of quinones in electron transport. SDS-PAGE of fungal protein assured the occurrence of an enzyme (Kumar et al., 2007). Type of the fourth method is Michaelis–Menten kinetics (models of enzyme kinetics) aimed to synthesize the NPs wherever the reaction at start exhibits pseudo-zero order kinetics and then tracks higher-order kinetics. Consequently, at a starting state, the quantity of silver nitrate is greater, and when the reaction continues the quantity of silver nitrate reduces significantly. The biological reduction of various metallic NP was originated by a protein having amino acid with -SH bonds and probably the cysteine undergo the process of dehydrogenation on having a reaction with silver nitrate to form AgNPs. AgNPs will be capped by the free amino acid Mukherjee et al. (2008). The fifth method describes the involvement of multiple peptides or/and proteins is play important role in the bioreduction of metal ions, meaning surface-bound peptides/protein molecules acting as a stabilizing and reducing agent to the formation of AgNPs. FTIR spectra of different fungal species’ culture the existence of amide I, II, and III groups. The same mechanism was applied with AgNPs showing the reduction of silver ions by amide I and amide II groups, also AgNPs were stabilization by fungal protein (Sanghi and Verma 2009).

3.2. Bacteria

Bacteria have been easily applied as nanofactories to synthesize different NPs. Both the intracellular and extracellular methods have described.

Both extracellular and intracellular synthesis of NPs mainly involves oxidoreductase enzymes like (NADH-dependent nitrate reductase and NADPH-dependent sulfite reductase) and factor cellular of transporters. Extracellular biological synthesis ensues exterior to the bacterial cell after using various systems, for example (1) the bacterial biomass, (b) the supernatant of bacterial cultures, and (c) cell-free extracts. These mechanisms can be intracellular or extracellular synthesis metal NPs. AgNPs and AuNPs have been produced from various bacteria, as seen in Table 2.

3.2.1. Mechanism of NPs synthesis using bacteria

3.2.1.1. Role of enzyme and proteins. Most experiments have indicated the potential role of proteins and enzymes as the key bioactive moiety that works during the synthesis of NPs as a reducing and capping agent. Various defense systems have been adopted by Bacteria, viz. Dissimilatory oxidation, metal ion reduction, precipitation, complex formation to combat the toxicity of metals (Tanzil et al. 2016). Metal NPs are generated using redox reactions which happen both extracellularly and intracellularly. Metal nanoparticles are produced either intracellularly or extracellularly by redox reactions that occur. The potential presence of nitrate reductases in metal bio reduction. Previous reports demonstrated a possible mechanism for the bio reduction of Ag+ to Ag0 using Streptomyces sp. LK3 at room temperature, this study obtained the nitrate reductase enzyme from Streptomyces sp. LK3 is responsible for biosensing (Karthurik et al., 2014). Biosynthesis of AgNPs using Alcaligenes faecalis using NADH and NADH dependent reductases enzyme as reducing agent is responsible for biomediated synthesis of AgNPs (Divya et al., 2019). Bacteria like Geobacter sulfurreducens has pilin proteins as conductive to the extracellular synthesis of NPs. Pilin proteins found in bacterial external appendages has a significant function in transfer of electron and reduction to the formation of uranium nanoparticles (UNPs). In the absence of pilin proteins, uranium nanoparticles are formed inside the periplasmic space by intracellular synthesis. Pilin mode of action is significantly related to the biominalization of uranium and extracellular synthesis of uranium nanoparticles (Reguera, 2012). This hypothesis based on AgNPs is synthesized by photoinduced electron transfer. Electron transfer through amino acids containing binding side chains like amides, aliphatic amines, alkyld groups, or alcohols have low binding energy with Ag+ and allow to formation Ag0 clusters and produce AgNPs by photoinduction. Hence, it was found that fast exogenic aggregation of Ag0 into Ag+ groups was ultimately required for effective AgNPs (Reguera, 2012).

3.2.1.2. Role of electron shuttle quinones (or redox mediators). During NP synthesis, electrons can be transported through indirect reactions via a low molecular weight redox medium such as 1) NADH and coenzyme Q or 2) oxygen / superoxide or by direct interactions between cytochrome redox proteins and metal ions. Both cytochromes and redox mediators enhance extracellular metal NPs synthesis. Shewanella oneidensis MR-1 transferring electrons by 1) metal-reducing machinery by iron III oxides (Fe3O4) or 2) Mtr pathway (cytochromes and proteins) for transferring electrons from the inner to the outer membrane to the surface. In bacteria, metal NPs extracellular synthesis via a similar mechanism (Shi et al., 2012). To prove the concept of cytochromes role in the extracellular NPs synthesis, a Shewanella oneidensis, mutant strain, with deficient cytochrome genes was used to for the AgNPs synthesis. The resultant AgNPs were smaller in size and lower in number as compared to the wild-type strain of the same species. Hence, it was proved that cytochrome has a significant function in electrons transportation to extracellular metal ions (Ng et al., 2013).

Cytochrome has been shown to involve the direct participation of extracellular cytochrome protein complexes. Reduction of ferric citrate (C6H5FeO7) and ferric acid (Fe3O4H) with Geobacter sulfurreducens, a bacterium that degrades minerals (Liu et al., 2014). In general, this report describes multi-component methods that operate individually or in complex ways to help electrons move from
the inner to the outer membrane and thus, aids in the synthesis of extracellular metal ions in NPs.

3.2.1.3. Role of exopolysaccharides. Bacterial cell that have multiple biological functionalities and have diverse biological functionalities, such as environmental tolerance, surface adherence, and cellular interactions produce and secrete bacterial exopolysaccharides (EPSs) (Rehm, 2009). EPSs have been investigated as agents for greener processing of various metal NPs because of their capacity to reducing metal ions to synthesize NPs and stabilizing them as capping agents (Cacchi et al., 2012). Rhamnose and pyranose sugars (EPSs) were reproductive factors in Escherichia coli for the formation of AgNPs. FTIR spectroscopy results from the interaction of EPS with metal ions having more than one negative charge are well known chemical interactions, such as environmental tolerance, surface adherence, and cellular interactions.

4. Factors affecting biological synthesis of metal nanoparticles

4.1. pH

Generally, pH of the substrate and medium acts a fundamental role in control the shape and size of the NPs. The shape and size of NPs changing with the pH of the substrate or medium and large size NPs are generated at an acidic pH (Binupriya et al., 2010). Alkaline pH promoted the synthesis of AgNPs when silver nitrate was added to the cell filtrate of the fungus Epicoccum nigrum (Qian et al., 2013). The fungus Penicillium oxalicum-Mediated synthesis of AgNPs was studied by utilizing the filtrate of Epicoccum nigrum (Phanjom and Ahmed, 2017). No production of AgNPs was studied by utilizing the filtrate of Rhizopus stolonifer at 80 or 10 °C, which was accredited to the enzymes and support molecules may be denaturation or inactivation (AbdelRahim et al., 2017).

4.2. Effect of temperature

The temperature utilized in the production of AgNPs operating fungi could have a significant impact on main parameters such as the velocity of the synthesis and the stability and size of the AgNPs (Elamawi et al., 2018). The production rate of AgNPs by Fusarium oxysporum was increased at temperatures between 60 and 80 °C. Continuous increase of temperature manage fungal biomass secreted higher value of protein and acceleration of synthesis rate (Birla et al., 2013). Aspergillus oryzae used to production AgNPs, a high-temperature effect on the rate of production. If reaction starts at 30 °C temperatures can be complemented at 6 h but when used 90 °C for reaction can be finished after 10 min. while no synthesis occurred at 10 °C, meaning very significant temperature on the rate of production (Phanjom and Ahmed, 2017). No production of AgNPs was studied by utilizing the filtrate of Rhizopus stolonifer at 80 or 10 °C, which was accredited to the enzymes and support molecules may be denaturation or inactivation (AbdelRahim et al., 2017).

4.3. Effect of AgNO3 concentration

In a great number of the various studies applying fungal species for extracellular synthesis of AgNPs, Silver nitrate (AgNO3) was utilized at a quantity of 1 mM (Xue et al., 2016). In some studies, a lower concentration of metal precursor (AgNO3) instigated in a smaller NPs size (Phanjom and Ahmed, 2017), but other studies achieved using the intermediate concentration of AgNO3 leads to smaller sizes of AgNPs (AbdelRahim et al., 2017). Processing of the Rhizopus stolonifer to bio-template for AgNPs obtained the smallest AgNPs size (2.86 nm) at 10 mM AgNO3, while sizes range from 54.67 to 14.23 nm were attained at 100 and 1 mM, correspondingly (AbdelRahim et al., 2017). The concentration of AgNO3 affects the quantity of AgNPs generated not only AgNPs size. In research using Fusarium oxysporum, it was observed that the concentration of AgNPs improved as metal predecessor quantity developed between 0.1 and 1.5 mM, although no changes remained noticed at greater concentrations (Körbeekandi et al., 2013).

5. Phytopathogens control by green synthesized nanoparticles

In different areas, including plant disease control, NPs have been used (Masum et al., 2019). In general, pesticides, along with symbiotic plants, animal species and human beings, are used selectively for parasites of crop plants without affecting plants themselves. Nevertheless, the indiscriminating usage of these chemicals/pesticides remains to be significant for environmental and societal concern (Kutz et al., 1991). Furthermore, the production new strains of pathogenic is a progressive concern, the chemical or pesticide implementation is costly and not always successful. Currently, development in the field of green synthesis has encouraged researchers and scientists to use its ability against pathogenic microorganisms. Biosynthesized metallic NPs such as, gold, silver, zinc and copper, have been reported against many species of pathogenic microorganisms such as Gram-negative bacteria, Gram-positive and some fungal species. The silver NPs get more support owing many biological sources which usage for green synthesis such as fungi, bacteria or plants (Nisar et al., 2019). Nanotechnology has potential opportunities in different ways in plant pathogenic treatment. The raw usage of NPs to seeds or...
folic spray against plant disease causing agents, that are more severely repressed, as likened to other chemical released by pesticides, is the most widely used process. In another side nanomaterials are used as carrier materials of chemical active ingredients for the controlled release of pesticide products. (Mujeerub & Tanveer 2014). A list of NP-dependent researches for plant disease control is presented in Table 2.

6. Mechanisms of nanoparticles against plant pathogenic microorganisms

The precise mode of action of NPs is not well known, against phytopathogens. Some processes have been documented to date, such as protein disruption (Hajipour et al., 2012), production and antioxidant degradation of reactive oxygen species (ROS), membrane disability work (e.g., disruption to membranes, lack of membrane permeability), genotoxicity, and transporter gene expression inhibition (Lemire et al., 2013). These pathways cannot work independently, but act against different phytopathogens in combination. The electrostatic attraction accrues bacterial cell membranes and negatively charged NPs as negative or positive charges decrease, causing NPs to adhere to the cell membranes. The morphological properties of membranes affected by NPs and membrane depolymerization disrupt membrane permeability and respiratory activity, and ultimately lead to damage to cell components, resulting in death. This breakdown of cellular structures causes the leakage of substances inside the cell, including enzymes, proteins, metabolites and DNA. In addition, NP can create irregular holes in the cell walls of microorganisms to facilitate penetration of NPs into extracellular and intracellular spaces (Alghuthaymi et al., 2015). NP behavior of membrane damage and cell surface perforations formed can be observed using TEM. TEM exhibits severe disruption of cell walls, leakage of nuclear and cytoplasmic material, and swelling. It causes bacterial death. (Masum et al., 2019, Ibrahim et al., 2020). Related effects with AgNPs have also been found in several other plant fungi, such as Alternaria alternata and Trichosporon asahii. NP toxicity can occur due to ROS formation (Xia et al., 2016). Free radicals can destroy cell walls and various biological molecules like cell wall, proteins, fats, and DNA. DNA damage can occur, for example deletions, mutations, and single strand rupture, double strand breakage, and protein crosslinking (Soenen et al., 2011). Antimicrobial pathways include cell membrane damage and ROS formation (Zhang et al., 2018). Cell membrane damage and AgNP were detected in Azotobacter vinelandii cells by TEM and AgNP-induced hydroxyl radicals were detected in bacterial cells using electron spin resonance.

7. Environmental risks of nanoparticles

In addition to this benefit, certain harmful or harmful impacts of such NPs on different factors of the ecosystem can be revealed in many studies that NPs may be utilized to monitor or regulate plant disease causing agents (Worrall et al., 2018). The NPs that were utilized for controlling plant pathogens may be dispersion from the agricultural land to the soil, water and atmosphere. The dispersion can transport by air and can occur leaving, surface run-off by rain, (Morales-Diaz et al., 2017). Therefore, in agriculture treatment by nanomaterials is required a standard usage for ecologically sustainable and safe environment. The use of NPs for the treatment of plant pathogens. Knowledge of potential risks for direct or indirect application to crop plants and the ecosystem in which crop plants interact with animals, microorganisms or humans should be accompanied. The use of NPs for the treatment of plant pathogens. Knowledge of potential risks for utilization on crops and interaction with ecosystem which the plants have.

Declaration of Competing Interest

The authors declare no conflict of interest.

References

Abdelrahim, K., Mahmoud, S.Y., Ali, A.M., Almaira, K.S., Mustafa, A.E.Z., Hussein, S. M., 2017. Extracellular biosynthesis of silver nanoparticles using Rhizopus stolonifer. Saudi J. Biol. Sci. 24, 208–216. https://doi.org/10.1016/j.sjbs.2016.10.025.

Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Kahn, M.I., Kumar, R., 2003. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf. B Biointerf. 28, 313–318. https://doi.org/10.1016/S0928-4921(03)00174-7.

Alghuthaymi, M.A., Almoannar, H., Rai, M., Said-Galiev, E., Abd-Elsalam, K.A., 2015. Myconanoparticles: Synthesis and their role in phytopathogens management. Biotechnol. Biotechnol. Equip. 29, 221–236.

Awwad, A., Salem, N., Abdeen, A. 2013. Green synthesis of silver nanoparticles using coraf leaf biomass and its antibacterial activity. Int. J. Ind. Chem. 4 (1), 1–6. https://doi.org/10.1186/2228-5547-4-12.

Béry, J. 2005. Bioactive microbial metabolites. J. Antibiot. 58, 1–26. https://doi.org/10.1038/ja.2005.1.

Binupriya, A.R., Satishkumar, M., Vijayaraghavan, K., Yun, S.L. 2010. Bioreduction of trivalent aurum to nanocrystalline gold particles by active and inactive cells and cell free extract of Aspergillus oryzae var. viridis. J. Hazard Mater. 177, 539–545.

Birla, S.S., Gaikwad, S.C., Gade, A.K., Rai, M.K. 2013. Rapid synthesis of silver nanoparticles from Fusarium oxysporum by optimizing physicochemical conditions. Sci. World J 2013, ID paper 796018, doi: 10.1155/2013/796018.

Cacchi, S., Caponetti, E., Casadeli, M., Di Giulio, G., Fabrizi, G., Forte, G., Goggiamani, A., Moreno S., Paolacci, P., Petrucci, F., Prastaraa A. Saladino, M.L., 2012. Suzuki-Miyaura cross-coupling of amidenaclization salts catalyzed by alginate/gellan-stabilized palladium nanoparticles under aerobic conditions in water. Green Chemistry, 14, 317–320, doi: 10.1039/c2gc15679b.

Cauherf, A., Castro, G.R. 2013. Bionanoparticles, a green nanochemistry approach. Electron J Biotechnol. 16, 1–10.

Chen, J.C., Lin, Z.H., Ma, X.X., 2003. Evidence of the production of silver nanoparticles via pretreatment of Phoma sp.3.2883 with silver nitrate. Lett. Appl. Microbiol. 37, 105–108.

Chen, T.L., Kim, H., Pan, S.Y., Tseng, P.C., Lin, Y.P., Chiang, P.C., 2020. Implementation of green chemistry principles in circular economy system towards sustainable development goals: Challenges and perspectives. Sci. Total Environ. 716, 136998.

Choudhury, A.R., Malhotra, A., Bhattacharjee, P., Prasad, G., 2014. Facile and rapid thermo-regulated biominaleralization of gold by pullulan and study of its thermodynamic parameters. Carbohydr. Polym. 106, 154–159.

Deplanche, K., Caldeiri, I., Mikhneenko, I., Sargent, F., Macaskie, L. 2010. Involvement of hydrogenases in the formation of high catalytic Pd(0) nanoparticles by bio reduction of Pd(II) using Escherichia coli strains. Microbiology 156, 2630–2640. https://doi.org/10.1099/mic.0.036681-0.

Dwyer, M., George, S.K., Saqib, H., Joseph, S., 2019. Biogenic synthesis and effect of silver nanoparticles (AgNPs) to combat caterpillar-related urinary tract infections. Biocatal. Agric. Biotechnol. 18, 101037.

Du, L., Xu, Q., Huang, M., Xian, L., Feng, J.X., 2015. Synthesis of small silver nanoparticles using γ-irradiation applied in gamma-irradiation of AgNPs. J Nanobiotechnol 3, 1–8.

El-Alamawi, R.M., Al-Harbi, R.E., Hendi, A.A., 2018. Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egypt. J. Biol. Pest Control. 28, 28. https://doi.org/10.1186/s41938-018-0028-1.

Elmer, W., White, J.C. 2018. The Future of Nanotechnology in Plant Pathology. Annu. Rev. Phytopathol. 56, 111–133.

Flood, J., 2010. The importance of plant health to food security. Food Secur. 2, 215–226.

Flores-Rojas, G.G., López-Saucedo, F., Bucio, E., 2020. Gamma-irradiation applied in the controlled release of pesticide products. (Mujeebur & Tanveer 2011). Perspectives for nanomaterials is required a standard usage for ecologically sustainable and safe environment. The use of NPs for the treatment of plant pathogens. Knowledge of potential risks for direct or indirect application to crop plants and the ecosystem in which crop plants interact with animals, microorganisms or humans should be accompanied. The use of NPs for the treatment of plant pathogens. Knowledge of potential risks for utilization on crops and interaction with ecosystem which the plants have.

Declaration of Competing Interest

The authors declare no conflict of interest.
activity against *Macrophomina phaseolina*, the charcoal rot pathogen of sorghum. Biocatal. Agric. Biotechnol. 14, 166–171.

Ranjani, A., Gopinath, P.M., Ananth, S., Narchonai, G., Santhanam, P., Thajuddin, N., Dhanasekaran, D., 2018. Multidimensional dose–response toxicity exploration of silver nanoparticles from *Nocardiopsis flavescens* RD30. Appl. Nanosci. 8, 699–713.

Bing, W., Sun, H., Wang, F., Song, Y., Ren, J., 2018. Hydrogen-producing Hyper thermophilic Bacteria Synthesized Size-controllable Fine Gold Nanoparticles with Excellence for Eradicating Biofilm and Antibacterial Applications. J. Mater. Chem. B. 6, 4602–4609. https://doi.org/10.1039/C8TB00549D.

Ahmed, E., Kalathil, S., Shi, L., Alharbi, O., Wang, P., 2018. Synthesis of ultra-small platinum, palladium and gold nanoparticles by *Shewanella loihica* PV-4 electrochemically active biofilms and their enhanced catalytic activities. J. Saudi Chem. Soc. 22, 919–929.

Jafari, M., Rokhbakhsh-Zamen, F., Shakihaie, M., Moshafi, M.H., Ameri, A., Rahimi, H. R., Forootanfar, H., 2018. Cytotoxic and antibacterial activities of biologically synthesized gold nanoparticles assisted by *Micrococcus yunnanensis* strain J2.

Jafari, M., Rokhbakhsh-Zamen, F., Shakihaie, M., Moshafi, M.H., Ameri, A., Rahimi, H. R., Forootanfar, H., 2018. Cytotoxic and antibacterial activities of biologically synthesized gold nanoparticles assisted by *Micrococcus yunnanensis* strain J2.

Maliszewska, I., 2013. Microbial mediated synthesis of gold nanoparticles: preparation, characterization and cytotoxicity studies. Dig. J. Nanomater. Bios. 8, 1123–1131.

Fayaz, M., Tiwary, C.S., Kalaichelvan, P.T., Venkatesan, R., 2010. Blue orange light emission from biogenic synthesized silver nanoparticles using *Trichoderma viride*. Coll. Surf. B Biointerf. 75, 175–178.

Sarkar J., Ray S., Chattopadhyay D., Laskar A., Acharya K. 22012. Mycogenesis of gold nanoparticles using a phytopathogen *Alternaria alternata*. Bioprocess. Biosyst. Eng. 35, 637–643.