Nutrient density of prestarter diets from 1 to 10 days of age affects intestinal morphometry, enzyme activity, serum indices and performance of broiler chickens

Ficinine V. Ivanovich a, Ocmanyan A. Karlovich b, Reza Mahdavi b, *, Egorov I. Afanasyevich a

a All-Russian Research and Technological Institute of Poultry, Sergiev Posad, Moscow 141311, Russia
b Special Animal Husbandry Department, Faculty of Animal Science and Biology, Moscow Timiryazev Agricultural Academy, Moscow 127550, Russia

ARTICLE INFO

Article history:
Received 20 February 2017
Received in revised form 7 May 2017
Accepted 22 June 2017
Available online 3 July 2017

Keywords:
Chickens
Prestarter
Intestinal histomorphology
Enzyme activity
Energy
Amino acids

ABSTRACT

A total of 480 day-old Cobb 500 broilers were used to investigate the effects of different levels of digestible amino acids (DAA; 100%, 107% and 114% of Cobb recommendations) and ME (3,000 or 2,900 kcal/kg) of prestarter diet on mixed sex broilers performance, enzyme activity, small intestine morphology, and serum metabolites. Broilers were randomly allotted to 6 treatments, where each treatment applied to 4 pens with 20 birds in each. The birds were subjected to their respective treatment diets from 1 to 10 days of age. This was followed by feeding common starter and finisher diets for the last 29 days. The enzyme activity of the pancreas was measured at 10 days of age. Morphometric indexes of jejunum were measured at 10 days of age and the end of the feeding period. Our results showed that the body weight (BW) increased as the DAA density of the prestarter diet increased from 100% to 114% over the first 10 days and the entire period of the study. Birds fed 114% DAA presented a better feed conversion ratio on day 10 ($P < 0.05$). At day 39, carcass weight and breast yield increased as the DAA levels increased from 100% to 114% ($P < 0.05$). The whole intestine length, small intestine length, and weights of the pancreas were lower in birds fed 100% DAA-diets at 10 days of age ($P < 0.05$). Increasing the dietary DAA and ME did not affect serum amylase, lipase, and protease concentrations and pancreatic amylase and lipase activity ($P > 0.05$); however, the activity of pancreatic protease increased as the DAA level increased from 100% to 114% ($P < 0.05$). The villus width and villus surface area (VSA) increased as the DAA level increased from 100% to 114% on day 10 ($P < 0.05$). At 10 days of age, crypt depth was the lowest in the birds fed plenty DAA prestarter diets ($P < 0.05$). It was found that dietary treatments at 39 days of age did not affect intestinal morphology. The results of the present work indicate that DAA level of 114% of Cobb recommendations and energy level of 2,900 kcal/kg diet may be recommended for starting broiler chicks.

© 2017, Chinese Association of Animal Science and Veterinary Medicine. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The early life nutrition of broilers plays a crucial role in their productivity because of their muscle cell proliferation and development of digestive tract during this period (Vieira and Moran, 1999). The transition from late embryogenesis to the early post-hatch period is characterized by major morphological and physiological changes allowing the bird to immediately consume nutrients after hatching (Willemsen et al., 2010). This transition is fundamental as the bird shifts from metabolism based on the lipid-rich yolk to a solid carbohydrate and protein based diet at hatch. Diet
is an important characteristic of poultry production, and different poultry species or lines have different requirements depending on genetic, age, environment, and the health status of the poultry. In the recent years, interest in early nutrition research has increased regarding the strong positive correlation exists between early live weight and body weight (BW) at the end of the production cycle (Tona et al., 2004; Willemsen et al., 2008). In this connection, an increase in the average early weight will minimize the number of small birds that, for any reason, do not eat. As a result, the overall lifetime performance of the chickens would be seriously affected by posthatch nutrition (Geyra et al., 2001b). The ratio of macronutrients has a major influence on posthatch performance and body composition of broiler chickens (Collin et al., 2003; Swennen et al., 2007) and under- and over-formulation of macronutrients will decrease this performance (Kidd et al., 2004). Therefore, the composition of prestarter diet (the content of crude protein, amino acids, energy, macro, and microelements) can influence the subsequent growth and development of broiler chickens. In general, diets with high ME or high energy: protein ratio induces energy deposition as fat. Increasing the CP content of the diet beyond requirements will result in leaner birds but with poorer efficiency, as the elimination of excess nitrogen is an energy consuming process (Swennen et al., 2007). An amino acid balance and the ideal protein concept (Emmert and Baker, 1997) can also affect broiler response to dietary energy. Amino acids in excess of that required for protein synthesis and other aspects of body metabolism are catabolized; which, as a result, incurs an energy cost and metabolic stress (Sklan and Plavnik, 2002). Wang et al. (2015) reported that high nutrient density diets (high amino acid and AME) might improve broiler performance without affecting their intestinal structure during 8 to 21 days. In another study performed by Ullah et al. (2012), the performance of chicks in 35 days of age was significantly higher in broilers fed 2,850 ME and 1.4% total lysine during the first 10 days posthatch than other treatments. Although the advantages of broiler performance of feeding increased amino acid densities have been well documented, a limited number of works has been reported on the effects of manipulation of nutrient densities in pre-starter diets on the enzyme activity and intestinal morphology.

Thus, the aim of the present study is to find the appropriate levels of ME and digestible amino acids (DAA) in pre-starter phase to the optimum production at the lowest cost and determine whether providing dietary DAA higher and ME lower than Cobb recommendations affects the performance, enzymes activity, intestinal morphology, and serum indices of broilers.

2. Material and methods

2.1. Experimental design

In this study, 480 day-old Cobb 500 broilers (mixed sex) were housed in cage pens (Battery) according to a completely randomized design in factorial arrangement, consisting of 2 levels of ME (2,900 and 3,000 kcal/kg) and 3 levels of DAA (100%, 107%, and 114% of Cobb recommendations) during 1 to 10 days of age. A fixed proportion of DAA relative to CP were maintained in graded increments of CP from 21.4% to 24.6%. Water and feed were offered ad libitum. Birds were fed one of 6 experimental diets from 1 to 10 days of age, the same starter diet from 11 to 21 days of age, and same finisher diet from 22 to 39 days of age. During the pre-starter phase, broilers were divided into 6 treatments as follows: 1) 3,000 kcal/kg ME and 100% of DAA and CP (normal) of Cobb recommendations; 2) 3,000 kcal/kg ME and 107% of DAA and CP (high) of Cobb recommendations; 3) 3,000 kcal/kg ME and 114% of DAA and CP (plenty) of Cobb recommendations; 4) 2,900 kcal/kg ME and 100% of DAA and CP (normal) of Cobb recommendations; 5) 2,900 kcal/kg ME and 107% of DAA and CP (high) of Cobb recommendations; 6) 2,900 kcal/kg ME and 114% of DAA and CP (plenty) of Cobb recommendations. Before formulation of the experimental diets, ingredients were analyzed for nutrient concentration by NIRS DS 2500 FOSS. The analytical values obtained from these values are shown in Table 1. The formula and chemical composition of the dietary treatments are shown in Table 2.

2.2. Productive performance and serum indices

Body weight and feed consumption were obtained weekly followed by calculating body weight gain (BWG), daily feed intake (FI), and feed conversion ratio (FCR) using these data. On day 10, one chicken from each replicate of each treatment with BW close to the mean replicate was selected and then sacrificed by neck dislocation and collected blood samples. The blood samples were transferred into tubes and centrifuged at 3,521 × g at 4 °C for 4 min using HETTICH EBA 2805. The sera were removed and stored at −20 °C for further analysis. Immediately after slaughter, the pancreas was removed, weighed, and stored in liquid nitrogen for subsequent analyses. The length of intestine and small intestine was individually measured. Serum protease was determined using BS 3000P spectrophotometer and Nanobenzoyl-4-guanine p-nitroanilide (BAPNA) according to the procedure described by Mikhailova et al. (2014). Moreover, lipase and amylase in serum were determined with commercial kits (Human company, Germany), using the Chem Well 2900 analyzer (Awareness Technology, Inc., USA). Pancreatic protease activity was measured calorimetrically based on casein hydrolysis method as described by Batoev (1971), amylase activity was determined based on starch hydrolysis by modified Smith-Roy’s method (Merina-Gluzkina, 1965). Pancreatic lipase was analyzed with commercial kits (Diagon company, Russia) using semiautomatic spectrophotometer BS 3000P.

On day 39, 4 birds per treatment (had BW close to the mean replicate) were selected for carcass traits evaluation. Birds were weighed, sacrificed by neck dislocation, bled, plucked, and eviscerated. Carcass yield was calculated as hot eviscerated carcass weight (without feet, head, and abdominal fat) relative to live body weight. Prime cuts yield included whole breast yield (with skin and bones), legs yield (thighs and drumsticks with bones and skin), and abdominal fat (fat located around the cloaca, cloacal bursa, gizzard, proventriculus, and adjacent abdominal muscles).

2.3. Tissue sampling and analysis of histological samples

At days 10 and 39, 4 birds per treatment were sacrificed by neck dislocation and their jejunum (midpoint from the pancreatic duct to Meckel’s diverticulum) was excised. The jejunum was of particular interest because it is a major site of nutrient absorption in poultry (Horn et al., 2009) and intestinal mass. In a study, it was observed that villus height and area increased several folds in the jejunum and duodenum and less in the ileum to 10 days of age (Uni et al., 1999). Tissue samples (5 cm) were removed and flushed with

Table 1	Nutrient analysis of ingredients used in experimental diets.		
Analysis/ingredient	Corn	Soybean meal	Wheat
AME, kcal/kg	3,350	2,386	3,075
Crude protein, %	7.73	47.71	12.14
Digestible Lys, %	0.20	2.66	0.28
Digestible Met + Cys, %	0.26	1.11	0.41
Digestible Thr, %	0.25	1.54	0.31

AME = apparent metabolizable energy.
0.9% NaCl and then fixed in 10% neutral buffered formalin solution for morphometric analysis. The tissues were processed by dehydration through a series of graded alcohols, cleared with xylene. Paraffin-embedded tissue sections (5 μm) were prepared using an HM-325 universal automated microtome (Microm international GmbH, Germany). Slides were stained by the Hematoxylin–Eosin method, as described by Uni et al. (1995). Micrographs were taken with a Jenamed-2 light microscope (Carl Zeiss, Jena, Germany) using Image Scope C (Systems for Microscopy and Analysis LLC, Russia) to calculate the morphometric variables.

Morphometric parameters, including villus height from the tip of the villus to the crypt, midpoint villus width, crypt depth from the base of the villi to the base of the crypt, and V/C ratio (calculated by dividing villus height by crypt depth) were recorded in the next step. Villus surface area was calculated as follows (Sakamoto et al., 2000):

\[
\text{Villus surface area} = 2\pi \times \left(\frac{VW}{2} \right) \times VH
\]

where \(\pi = 3.14 \), \(VW = \) villus width, and \(VH = \) villus height.

2.4. Statistical analysis

Data were analyzed in a 2 × 3 factorial arrangement of dietary treatments using analysis of variance and General Linear Model (GLM) procedure of SAS (SAS/STAT Version 9.2, SAS Institute Inc., Cary, NC) to determine the main effects of dietary ME, DAA, and their interactions. If a significant effect was detected, the differences between treatments were separated using Duncan’s multiple range test. Differences between mean values were considered significant at \(P < 0.05 \). Also, all percentage data were subjected to angular transformation to stabilize variances (arc sine square root percentage transformation) before statistical analysis.

3. Results

3.1. Performance parameters and carcass characteristics

Results showed that there was no significant effect of ME content of prestarter diet on productive performance parameters (Table 3). The BW increased as the DAA density of the prestarter diet increased from 100% to 114%, over the first 10 days \((P < 0.0001) \) and the entire period of the study \((P < 0.01) \). Interaction of DAA and ME was not significant for the body weight, feed consumption, and feed conversion ratio of the birds during the first 10 days of age and across the 39 days study \((P > 0.05) \). When assessed for 39 days, birds fed plenty DAA prestarter diets exhibited the highest body weight, regardless of diet ME content. Feed consumption was not influenced by dietary treatments. Increasing DAA density of prestarter diet improved feed conversion ratio only in the prestarter period \((P < 0.0001) \).

As shown in Table 4, carcass weight, breast muscle weight, and legs weight were significantly increased as the DAA density of the prestarter diet increased from 100% to 114% \((P < 0.003) \). There was not observed a significant effect of ME or interactions between ME and DAA density of prestarter diets on carcass traits \((P > 0.05) \). The main effects of ME, DAA, and their interactions were not significant for the relative weight of carcass, legs, wings and abdominal fat \((P > 0.05) \).

3.2. Enzymes activity and serum metabolites

The results of the dietary treatments on the serum metabolites, pancreas weight, and enzymes activity are shown in Table 5. No significant difference \((P > 0.05) \) existed among treatments as regard to serum amylase, lipase, and protease levels. Concerning pancreas weight, it was noticed a significant increase \((P < 0.01) \) in plenty DAA group \((1.16 \ g) \) compared to normal and high DAA groups \((0.97 \ and

Table 2

Item	Pre-starter 1	Pre-starter 2	Pre-starter 3	Starter 4	Starter 5	Starter 6	Finisher 7	Finisher 8
Ingredients, %/treatment								
Corn	44.33	39.44	34.56	46.78	41.90	37.01	23.45	22.14
Sunflower oil	2.59	3.36	4.14	0.55	1.32	2.10	3.97	4.54
Soybean meal	32.89	37.01	41.12	32.49	36.60	40.71	29.80	23.90
Wheat	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00
GS-methionine	0.31	0.35	0.39	0.31	0.35	0.39	0.31	0.28
Lysine-HCl	0.26	0.25	0.25	0.27	0.26	0.25	0.28	0.30
l-threonine	0.14	0.15	0.16	0.14	0.15	0.16	0.14	0.13
Choline chloride	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Limestone	2.39	2.37	2.34	2.39	2.37	2.34	2.17	1.98
NaCl (salt)	0.23	0.24	0.23	0.22	0.23	0.23	0.21	0.20
Vitamin premix\(^1\)	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
Mineral premix\(^2\)	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Sodium sulfate	0.13	0.12	0.11	0.13	0.12	0.11	0.12	0.13
Ammonium phosphate	1.54	1.52	1.51	1.53	1.51	1.51	1.35	1.20
CelloLux	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.02

Calculated analyses

Item	Pre-starter 1	Pre-starter 2	Pre-starter 3	Starter 4	Starter 5	Starter 6	Finisher 7	Finisher 8
ME, kcal/kg	3,000	3,000	3,000	2,900	2,900	2,900	3,050	3,130
Crude protein, %	21.40	23.00	24.60	21.40	23.00	24.60	21.15	19.10
Digestible Lys, %	1.19	1.28	1.37	1.19	1.28	1.37	1.15	1.03
Digestible Met + Cys, %	0.88	0.95	1.02	0.88	0.95	1.02	0.87	0.80
Digestible Thr, %	0.80	0.86	0.92	0.80	0.86	0.92	0.77	0.69
Calcium, %	0.96	0.96	0.96	0.96	0.96	0.96	0.88	0.80
Available P, %	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.40

ME = metabolizable energy.

\(^1\) Vitamin premix provided 1 kg of diet with: vitamin A, 10,800 IU; vitamin D3, 2,160 IU; vitamin E, 15 IU; vitamin K3, 1.0 mg; vitamin B1, 4 mg; riboflavin, 5 mg; pantothenic acid, 10 mg; niacin, 25 mg; vitamin B6, 8 mg; folic acid, 0.4 mg; vitamin B12, 0.08 mg; biotin, 0.15 mg.

\(^2\) Mineral premix provided 1 kg of diet with: I, 0.35 mg; Se, 0.15 mg; Zn, 40 mg; Cu, 8 mg; Fe, 80 mg; Mn, 100 mg.

\(^3\) CelloLux contains enzyme complex of cellulose, glucanase and xylanase.

260
F.V. Ivanovich et al. / Animal Nutrition 3 (2017) 258–265
Table 3
Effect of dietary energy and DAA on the performance of broiler chicks (n = 4).

ME, kcal/kg	DAA, %	BWG, g	FI, g	FCR
1 to 10 d	11 to 21 d	22 to 39 d	1 to 39 d	
1 to 10 d	11 to 21 d	22 to 39 d	1 to 39 d	

SEM
- 4.46
- 10.35
- 35.00
- 44.14
- 5.89
- 20.83
- 52.57
- 66.23

Factorial analysis
- ME, kcal/kg
 - 3,000: 168.78 ± 18.97
 - 2,900: 175.84 ± 14.80

- DAA, %
 - 100: 157.26 ± 11.97
 - 107: 168.79 ± 8.03

- P-value
 - <0.0001

- Other values:
 - 0.08
 - ±
 - ±
 - ±
 - ±
 - ±
 - ±
 - ±
 - ±

Table 4
Effect of dietary energy and DAA on the carcass traits (n = 4).

ME, kcal/kg	DAA, %	Carcass parameter, g	Carcass parameter, %
1 to 10 d	11 to 21 d	22 to 39 d	1 to 39 d
1 to 10 d	11 to 21 d	22 to 39 d	1 to 39 d

SEM
- 3.58
- 28.71

Factorial analysis
- ME, kcal/kg
 - 3,000: 2,053.67 ± 92.76
 - 2,900: 2,080.92 ± 85.15

- DAA, %
 - 100: 2,013.50 ± 80.83
 - 114: 2,151.25 ± 53.86

- P-value
 - 0.03

- Other values:
 - 0.003
 - 0.001
 - 0.002
 - 0.006
 - 0.03
 - 0.06
 - 0.09

DAA – digestible amino acids; ME – metabolizable energy; FI – feed intake.

Within a column, means with different superscripts differ significantly (P < 0.05).
1.02 g). In addition, no significant effect was observed for ME or the interactions between dietary ME and DAA content on the enzymes activities, serum metabolites, and pancreas weight. Increasing dietary DAA from 100% to 114% significantly increased (P < 0.04) pancreatic protease (from 139.50 to 159.63 mg/g per min). Besides, pancreatic amylase (mg/g per min) and lipase (U/L) were not influenced by dietary treatments (P > 0.05).

3.3. Intestinal morphology

As shown in Table 6, the length of intestine was affected by DAA level of pre-starter diets. As compared to normal pre-starter diets, the plenty inclusion of DAA increased the total intestine length and small intestine length by 6.63 and 6.25 cm, respectively (P < 0.05). The main effect of ME and interaction between DAA and ME was not significant for the whole intestinal length and small intestinal length (P > 0.05). Our results showed that villus width and VSA at 10 days of age increased as the DAA level of the pre-starter diet increased from 100% to 114% (P < 0.05). At 10 days of age, VSA was increased by 34% to 100% between 4 and 10 days after hatching. The rapid growth of the intestine due to increased absorptive function of the intestine due to increased absorptive surface area, expression of brushborder enzymes, and nutrient transport systems (Amat et al., 1996). Consequently, these changes might result in improvements in broiler performance. In addition, the higher growth rate of chickens on a plenty DAA and protein diets is most likely the consequence of their increased cumulative BW and protein consumption. The lack of any consistent interaction between dietary concentration of ME and DAA on BWG, FI, and FCR in the current experiment suggests that the response in performance parameters to increasing concentrations of DAA and CP from 21.4% to 24.6% is independent of the dietary ME level over the range from 2.900 to 3.000 kcal/kg. A previous study found a positive correlation between BW of 7 to 10 days of age and final BW on 42 days of age (Vieira and Moran, 1999; Tona et al., 2004; Saki, 2005; Hooshmand, 2006).

Table 5
Effect of dietary energy and DAA on the enzyme activity (n = 4).

ME, kcal/kg	DAA, %	Pancreatic enzymes	Serum enzymes		
		Amylase, mg/g per min	Lipase, U/L	Protease, mg/g per min	
		Amylase, U/L	Lipase, U/L	Protease, U/L	
3.000	100	0.92 ± 0.09	14,656.77 ± 2,311.32	48,091.00 ± 5,413.00	134.25 ± 9.74
3.000	107	1.05 ± 0.14	13,933.33 ± 2,217.11	45,257.33 ± 2,617.50	148.75 ± 15.78
3.000	114	1.14 ± 0.13	12,600.00 ± 2,078.46	48,694.00 ± 5,308.52	161.75 ± 9.50
2.900	100	1.02 ± 0.11	13,933.33 ± 2,499.78	47,875.00 ± 4,624.91	144.75 ± 23.95
2.900	107	0.99 ± 0.14	13,823.33 ± 2,886.73	47,920.50 ± 5,890.03	144.50 ± 11.36
2.900	114	1.18 ± 0.08	14,085.00 ± 974.11	47,832.33 ± 1,975.58	157.50 ± 11.56
SEM		0.06	1,043.43	2,491.65	7.28

Factorial analysis

ME, kcal/kg	P-value	DAA, %	P-value
3.000	0.63	100	0.11
2.900	0.06	107	0.13
114	0.16	114	0.10

DAA – digestible amino acids; ME – metabolizable energy.

Footnotes:

*Within a column, means with different superscripts differ significantly (P < 0.05).

4. Discussion

Although we observed that final performance of broiler is influenced by DAA and protein concentration of pre-starter diet, no effect of ME levels of the pre-starter diet on performance parameters at 10 days of age and across the 39-day study was observed. This observation may in part be due to the fact that decreasing the dietary ME level of pre-starter by 100 kcal/kg may not be enough reduction to see differences in growth performance. A previous study (Vieira et al., 2006) in broilers showed that the effect of the level of energy (from 2.870 to 3.100 kcal/kg) in pre-starter period was not significant on the BWG of broilers at 7 and 42 days of age whereas 3.000 kcal/kg energy diet improved feed conversion ratio at 7 days of age and 3,100 kcal/kg energy diet significantly decreased feed consumption. The BWG responses due to increased dietary DAA levels in the pre-starter phase reported herein agreed well with findings of Noy and Sklan (2002), and Bahreiny et al. (2013). Noy and Sklan (2002) showed that feed conversion ratio did not change significantly with energy level (from 3.050 to 3.110 kcal/kg) of the diet but decreased with increasing protein level (from 18% to 28%) during the 7 days posthatch. Previous studies showed that increasing essential amino acids in a constant ratio to CP enhanced performance during the 7 days posthatch (Sklan and Noy, 2003). Hargis and Creger (1980) reported that adequate protein availability in the pre-starter period seems to be essential to increase muscle development in later phases. The strong effect of DAA and protein on performance of broilers at 10 days of age in the current study can be explained by the high protein and amino acids requirements of newly hatched chicks to meet the needs for rapid growth and the effects of additional supplementation of DAA and protein on the better development of the gastrointestinal tract posthatch. It is well documented that BW enhances fourfold to fivefold during the first 10 days of age, during which considerable changes in gut weight and morphology are observed. The rapid growth of the intestine reaches a maximum between 6 and 10 days and declines thereafter (Sklan, 2001). Uni et al. (1996) reported that in broiler chicks the height and perimeter of villi in all segments of the small intestine increased by 34% to 100% between 4 and 10 days after hatching. The crypt depth and the number of enterocytes per longitudinal section of villi also increased with age. As shown in Table 6, plenty DAA and protein concentration of pre-starter diets increased the intestinal length and VSA and decreased crypt depth. It is assumed that an increased villus height is paralleled by an increased digestive and absorptive function of the intestine due to increased absorptive surface area, expression of brushborder enzymes, and nutrient transport systems (Amat et al., 1996). Consequently, these changes might result in improvements in broiler performance. In addition, the higher growth rate of chickens on a plenty DAA and protein diets is most likely the consequence of their increased cumulative DAA and protein consumption. The lack of any consistent interaction between dietary concentration of ME and DAA on BWG, FI, and FCR in the current experiment suggests that the response in performance parameters to increasing concentrations of DAA and CP from 21.4% to 24.6% is independent of the dietary ME level over the range from 2.900 to 3.000 kcal/kg. A previous study found a positive correlation between BW of 7 to 10 days of age and final BW on 42 days of age (Vieira and Moran, 1999; Tona et al., 2004; Saki, 2005; Hooshmand, 2006). Li et al. (2007)
Table 6

ME, kcal/kg	3,000	108.24 ± 4.69	514.50 ± 82.98	134.61 ± 20.78	197.08 ± 19.41	2.62 ± 0.16	415.90 ± 63.19	82.98 ± 13.88	134.61 ± 20.78	197.08 ± 19.41	2.62 ± 0.16	514.50 ± 82.98	134.61 ± 20.78	197.08 ± 19.41	2.62 ± 0.16		
2,900	109.39 ± 4.26	513.50 ± 83.19	134.61 ± 20.78	197.08 ± 19.41	2.61 ± 0.16	513.50 ± 83.19	134.61 ± 20.78	197.08 ± 19.41	2.61 ± 0.16	513.50 ± 83.19	134.61 ± 20.78	197.08 ± 19.41	2.61 ± 0.16	513.50 ± 83.19	134.61 ± 20.78	197.08 ± 19.41	2.61 ± 0.16
2,800	107.59 ± 4.14	512.50 ± 83.19	134.61 ± 20.78	197.08 ± 19.41	2.61 ± 0.16	512.50 ± 83.19	134.61 ± 20.78	197.08 ± 19.41	2.61 ± 0.16	512.50 ± 83.19	134.61 ± 20.78	197.08 ± 19.41	2.61 ± 0.16	512.50 ± 83.19	134.61 ± 20.78	197.08 ± 19.41	2.61 ± 0.16
2,700	105.00 ± 4.01	511.50 ± 83.19	134.61 ± 20.78	197.08 ± 19.41	2.61 ± 0.16	511.50 ± 83.19	134.61 ± 20.78	197.08 ± 19.41	2.61 ± 0.16	511.50 ± 83.19	134.61 ± 20.78	197.08 ± 19.41	2.61 ± 0.16	511.50 ± 83.19	134.61 ± 20.78	197.08 ± 19.41	2.61 ± 0.16
2,600	102.40 ± 3.88	510.50 ± 83.19	134.61 ± 20.78	197.08 ± 19.41	2.61 ± 0.16	510.50 ± 83.19	134.61 ± 20.78	197.08 ± 19.41	2.61 ± 0.16	510.50 ± 83.19	134.61 ± 20.78	197.08 ± 19.41	2.61 ± 0.16	510.50 ± 83.19	134.61 ± 20.78	197.08 ± 19.41	2.61 ± 0.16
2,500	100.00 ± 3.75	509.50 ± 83.19	134.61 ± 20.78	197.08 ± 19.41	2.61 ± 0.16	509.50 ± 83.19	134.61 ± 20.78	197.08 ± 19.41	2.61 ± 0.16	509.50 ± 83.19	134.61 ± 20.78	197.08 ± 19.41	2.61 ± 0.16	509.50 ± 83.19	134.61 ± 20.78	197.08 ± 19.41	2.61 ± 0.16

Digestion and absorption of nutrients early in life depend primarily on pancreatic enzyme activity (Nitsan et al., 1991). As shown in Table 5, plenty DAA and protein concentration of prestarter diets significantly increased protease activity. This finding was in agreement with Stringhini et al. (2009) wherein the authors studied the effect of protein and amino acid supplementation levels for broilers in the prestarter ration. The conclusion of the authors was that birds fed 20% CP and non-supplemented with amino acids showed higher amylase activities and lower trypsin activities than 22% CP supplemented with amino acids. Zhao et al. (2007) reported that the activities of amylase and protease in the jejunal fluid of ducks are mainly dependent on dietary protein content but not ME content. Dietary protein induces pancreatic proteases via secretion of cholecystokinin, which is a potent pancreatic protease inducer (Green et al., 1992). Moreover, dietary amino acids induce pancreatic protease activity by promoting translation and transient activation of translation initiation via mammalian target of rapamycin (mTOR) pathway may be associated with this induction (Hashimoto and Hara, 2003). In our experiment, pancreatic lipase was not affected by different ME level. Differences in the effects of ME density on lipase activity observed by other authors (Maiorca et al., 2004) may have been caused by differences in the range of dietary ME used in the respective experiments.

In agreement with our findings, Swatson et al. (2002) and Abbasi et al. (2014) observed significantly heavier pancreas in broilers fed increased levels protein diet. Maiorca et al. (2004) reported that increasing the energy level of prestarter diet did not affect pancreas relative weight. The increase in the pancreas weight in chicks fed plenty DAA and protein diets might be attributed to their higher BW. Our statistical analysis showed a significant positive correlation between BW and weight of pancreas.

In accordance with the present study, Maiorca et al. (2004) stated that dietary energy level (2,900 and 3,200 kcal/kg) had not significant effects on intestine length at 7 days posthatch. A previous study in broilers showed that the increased intestinal length of broilers fed the higher level of dietary lys might be due to increased nutrient absorption (Jackson and Diamond, 1996). The higher dietary levels of DAA and protein lead to increased nutrients in the small intestine. Such an increase can result in an enhanced protein synthesis in the small intestine and promote the full growth of small intestine, and subsequently, increased small intestinal length. The increase in intestinal length, in turn, can improve digestion by increasing the exposure of nutrients to brushborder hydrolytic enzymes as well as pancreatic and biliary secretions.

There is a lack of report linking the effects of amino acids and ME to the development of the gastrointestinal tract of poultry during the prestarter period. In the current trial, small intestine
lengths, villus width, and VSA increased in broilers fed high or plenty DAA and protein diets as compared with birds fed the normal DAA and protein ratio and breeding system on performance and carcass characteristics of male and female broilers. Int J Poult Sci 2007;8(12):1140–7.

Horn NL, Donkin SS, Applegate TJ, Addeo O. Intestinal mucin dynamics: response of broiler chicks and white Pekin ducklings to dietary threonine. Poult Sci 2009;88:1906–14.

Jackson S, Diamond J. Metabolic and digestive responses to artificial selection in chickens. Evolution 1996;50:1638–50.

Kidde MT, McDaniel CD, Branton SL, Miller ER, Boren BB, Fancher BI. Increasing amino acid density improves live performance and carcass yields of commercial broilers. J Appl Poult Res 2010;4:593–604.

Laudadio V, Passantino I, Perillo A, Lopresti G, Passantino A, Khan RJ, et al. Pro- ductive performance and histological features of intestinal mucosa of broilers fed different dietary protein levels. Poult Sci 2012;91:265–70.

Li Y, Yuan L, Yang X, Ni Y, Xia Y, Barth S, et al. Effect of early feed restriction on villus height increased as dietary threonine increased from 0.8% to 0.87% during the first 2 weeks posthatch. Br Poult Sci 2003;44(2):266–7.

Nitsan Z, Dunnington EA, Siegel PB. Organ growth and digestive enzyme levels to 15 days of age in lines of chickens differing in body weight. Int J Poult Sci 1991;70:2040–8.

Noy Y, Sklan D. Nutrient use in chicks during the first week posthatch. Poult Sci 2002;81:391–9.

Sakamoto K, Hirose H, Onizuka A. Evolutionary study of changes in intestinal morphology and mucus gel on total parenteral nutrition in rats. J Surg Res 2000;94:99–106.

Sakai AA. Effect of posthatch feeding on broiler performance. Int J Poult Sci 2005;4(1):1–6.

Sklan D. Development of the digestive tract of poultry. World's Poult Sci J 2001;57:415–27.

Sklan D, Noy Y. Crude protein and essential amino acid requirements in chicks during the first week posthatch. Br Poult Sci 2003;44(2):266–74.

Sklan D, Plavnik I. Interactions between dietary crude protein and essential amino acid intake on performance in broilers. Br Poult Sci 2002;43:442–9.

Stringhini JH, Andrade ML, Xavier SAG. Protein and amino acid supplementation levels for broilers in pre-starter ration. Int J Poult Sci 2009;8(10):946–51.

Swatson HK, Gous R, Iji PA, Zarrinkalam R. Effect of dietary protein level, amino acid balance and feeding level on growth, gastrointestinal tract, and mucosal structure of the small intestine in broiler chickens. Anim Res 2002;51:501–15.

Batoev T. Photometric determination of activity of proteolytic enzymes in pancreas, pancreatic juice by diminishing of casein concentration. Sb Nauch Tr Byurat S.-Ulia 1975;2:122–6.

Collin A, Malheiro BD, Moraes VMB, Van ASP, Darras VM, Taulos M, et al. Effects of dietary macronutrient content on energy metabolism and uncoupling protein mRNA expression in broiler chickens. Br J Nutr 2003;90:261–9.

Emmerling JL, Baker DH. Use of the ideal protein concept for precision formulation of amino acid levels in broiler diets. J Appl Poult Res 1997;6:462–70.

Green GM, Jurkowski G, Berube FL, Rivard N, Guan D, Morisset J. Role of cholecystokinin in induction and maintenance of dietary protein-stimulated pancreatic growth. Am J Physiol 1992;262:G740–6.

Haley O, Nadel Y, Barak M, Rozenboim L, Sklan D. Early posthatch feeding stimu- lates satellite cell proliferation and skeletal muscle growth in Turkey poulets. J Nutr 2003;133:1376–82.

Hargis PH, Cregar CR. Effects of varying dietary protein and energy levels on growth rate and body fat in broilers. Poult Sci 1980:59:1499–504.

Hashimoto N, Hara H. Dietary amino acids promote pancreatic protease synthesis at the transcription stage in rats. J Nutr 2003;133:3052–7.

Hooshmand M. Effect of early feeding programs on broiler performance. Int J Poult Sci 2006;5(12):1140–3.

Moran Jr ET. Nutrition of the developing embryo and hatchling. Poult Sci 2007;86:1043–9.

Moran JR et. Nutrition of the developing embryo and hatching. Poult Sci 2007;86:1043–9.

Nitsan Z, Dunnington EA, Siegel PB. Organ growth and digestive enzyme levels to 15 days of age in lines of chickens differing in body weight. Int J Poult Sci 1991;70:2040–8.

Noy Y, Sklan D. Nutrient use in chicks during the first week posthatch. Poult Sci 2002;81:391–9.

Sakamoto K, Hirose H, Onizuka A. Quantitative study of changes in intestinal morphology and mucus gel on total parenteral nutrition in rats. J Surg Res 2000;94:99–106.

Sakai AA. Effect of posthatch feeding on broiler performance. Int J Poult Sci 2005;4(1):1–6.

Sklan D. Development of the digestive tract of poultry. World's Poult Sci J 2001;57:415–27.

Sklan D, Noy Y. Crude protein and essential amino acid requirements in chicks during the first week posthatch. Br Poult Sci 2003;44(2):266–74.

Sklan D, Plavnik I. Interactions between dietary crude protein and essential amino acid intake on performance in broilers. Br Poult Sci 2002;43:442–9.

Sklan D, Noy Y. Hydrolysis and absorption in the small intestines of posthatch chicks. Poult Sci 2000;79:1396–10.

Stringhini JH, Andrade ML, Xavier SAG. Protein and amino acid supplementation levels for broilers in pre-starter ration. Int J Poult Sci 2009;8(10):946–51.

Swatson HK, Gous R, Iji PA, Zarrinkalam R. Effect of dietary protein level, amino acid balance and feeding level on growth, gastrointestinal tract, and mucosal structure of the small intestine in broiler chickens. Anim Res 2002;51:501–15.

Swenner Q, Decuyper E, Buysse J. Implications of dietary macronutrients for growth and metabolism in broiler chickens. World's Poult Sci J 2007;63:541–56.
Tona K, Onagbesan O, De Ketelaere B, Decuyper E, Bruggeman V. Effects of age of broiler breeders on egg quality, hatchability, chick quality chick weight and chick posthatch growth to 24 days. J Appl Poult Res 2004;13:30–8.

Ullah MS, Pasha TN, Ali Z, Khattak SFM, Hayat Z. Effects of different pre-starter diets on broiler performance, gastro intestinal tract morphometry and carcass yield. J Anim Plant Sci 2012;22(3):570–5.

Uni Z, Noy Y, Sklan D. Posthatch changes in morphology and function of the small intestine in heavy- and light-strain chicks. Poult Sci 1995;74:1622–9.

Uni Z, Noy Y, Sklan D. Development of the small intestine in heavy and light strain chicks before and after hatching. Br Poult Sci 1996;37:63–71.

Uni Z, Noy Y, Sklan D. Posthatch development of small intestinal function in the poultry. Poult Sci 1999;78:215–22.

Vieira SL, Viola ES, Berres J, Olmos AR, Conde ORA, Almeida JG. Performance of broilers fed increased levels energy in the pre-starter diet and on subsequent feeding programs having with acidulated soybean soap stock supplementation. Braz J Poult Sci 2006;8(1):55–61.

Vieira S, Moran E. Effects of egg of origin and chick posthatch nutrition on broiler live performance and meat yields. World’s Poult Sci J 1999;55:125–42.

Wang X, Peebles ED, Morgan TW, Harkess RL, Zhai W. Protein source and nutrient density in the diets of male broilers from 8 to 21 d of age: effects on small intestine morphology. Braz J Poult Sci 2015;94:61–7.

Willemsen H, Debonne M, Swennen Q, Everaert N, Careghi C, Han H, et al. Delay in feed access and spread of hatch: importance of early nutrition. World’s Poult Sci 2010;66:177–88.

Willemsen H, Everaert N, Witters A, De Smit L, Debonne M, Verschuere F, et al. Critical assessment of chick quality measurements as an indicator of posthatch performance. Poult Sci 2008;87:2358–66.

Xu ZR, Hu CH, Xia MS, Zhan XA, Wang MQ. Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers. Poult Sci 2003;82:1030–6.

Zaboli GR, Miri A. Effect of dietary lysine to crude protein ratio in diets containing corn, cottonseed meal and soybean meal on broiler performance during starter period. Life Sci J 2013;10(3s):454–8.

Zhao F, Hou SS, Zhang HF, Zhang ZY. Effects of dietary metabolizable energy and crude protein content on the activities of digestive enzymes in jejunal fluid of Peking ducks. Poult Sci 2007;86:1690–5.