Improved Jacobi matrix method for the numerical solution of Fredholm integro-differential-difference equations. (English) Zbl 1371.65135 Math. Sci., Springer 10, No. 3, 83-93 (2016).

Summary: This study is aimed to develop a new matrix method, which is used as an alternative numerical method to the other method for the high-order linear Fredholm integro-differential-difference equation with variable coefficients. This matrix method is based on orthogonal Jacobi polynomials and using collocation points. The improved Jacobi polynomial solution is obtained by summing up the basic Jacobi polynomial solution and the error estimation function. By comparing the results, it is shown that the improved Jacobi polynomial solution gives better results than the direct Jacobi polynomial solution, and also, than some other known methods. The advantage of this method is that Jacobi polynomials comprise all of the Legendre, Chebyshev, and Gegenbauer polynomials and, therefore, is the comprehensive polynomial solution technique.

MSC:

65R20 Numerical methods for integral equations
45B05 Fredholm integral equations
45J05 Integro-ordinary differential equations

Keywords:

orthogonal Jacobi polynomials; Fredholm integro-differential-difference equation; residual error technique; matrix method; collocation; error estimation

Software:

Maple

Full Text: DOI

References:

[1] Pcooden-Schrijner, P; Doorn, EA, Analysis of random walks using orthogonal polynomials, J. Comput. Appl. Math., 99, 387-399, (1998) · Zbl 0930.60064 · doi:10.1016/S0377-0427(98)00172-1
[2] Fischer, B; Prestin, J, Wavelets based on orthogonal polynomials, Math. Comp., 66, 1593-1618, (1997) · Zbl 0896.42020 · doi:10.1090/S0025-5718-97-00876-4
[3] El-Mikkawy, MEA; Cheon, GS, Combinatorial and hypergeometric identities via the Legendre polynomials—a computational approach, Appl. Math. Comput., 166, 181-195, (2005) · Zbl 1073.65019
[4] Chihara, T.S.: An Introduction to Orthogonal Polynomials. Gordon and Breach, Philadelphia (1978) · Zbl 0389.33008
[5] Szego, G.: Orthogonal Polynomials, vol. 23. Amer Mathema Soci, Colloquium Publication, New York (1939) · Zbl 65.0278.03
[6] Grünbaum, FA, Matrix valued Jacobi polynomials, Bull. Des. Sci. Math., 127, 207-214, (2003) · Zbl 1026.33016 · doi:10.1016/S0007-4497(03)00009-5
[7] Eslahchi, MR; Dehghan, M, Application of Taylor series in obtaining the orthogonal operational matrix, Comput. Math Appl., 61, 2596-2604, (2011) · Zbl 1221.33021 · doi:10.1016/j.camwa.2011.03.004
[8] Ruse, M.E.: Elementary Theory of Angular Momentum. Wiley, Oxford (1957) · Zbl 0079.20102
[9] Bijker, R., et al.: Latin-American School of Physics: XXXV ELAF: Supersymmetry and Its Applications in Physics. AIP Conf. Series

\textbf{744} (2004) · Zbl 0930.60064
[10] Weber, HJ, A simple approach to Jacobi polynomials: integr, Transf. Spec. Funct., 18, 217-221, (2007) · Zbl 1115.33010 · doi:10.1080/10652460701208569
[11] De, R; Dutt, R; Sukhatme, U, Mapping of shape invariant potentials under point canonical transformations, J. Phys. A Math. Genet., 25, 843-850, (1992) · doi:10.1088/0305-4470/25/13/013
[12] Eslahchi, MR; Dehghan, M; Ahmadi-Asl, S, The general Jacobi matrix method for solving some nonlinear ordinary differential equations, Appl. Math. Model., 36, 3387-3398, (2012) · Zbl 1252.65121 · doi:10.1016/j.apm.2011.09.082
[13] Kalateh Bojdi, Z; Ahmadi-Asl, S; Aminataei, A, The general shifted Jacobi matrix method for solving the general high order linear differential-difference equations with variable coefficients, J. Math. Res. Appl., 1, 10-23, (2013) · Zbl 1301.33014
Bhrawy, A.H; Taha, M; José, ATM, A review of operational matrices and spectral techniques for fractional calculus, Nonlinear Dyn., 81, 1023-1052, (2015) · Zbl 1348.65106 · doi:10.1007/s11071-015-2087-0

Bhrawy, A.H: A Jacobi spectral collocation method for solving multi-dimensional nonlinear fractional sub-diffusion equations. Num. Algorithms 1-23 (2015) · doi:10.1007/s11075-015-0087-2 · Zbl 1348.65143

Bhrawy, AH; Alofi, AS, The operational matrix of fractional integration for shifted Chebyshev polynomials, Appl. Math. Lett., 26, 25-31, (2013) · Zbl 1255.65147 · doi:10.1016/j.aml.2012.01.027

Bhrawy, A.H., Ezz-Eldien, S.S.: A new Legendre operational technique for delay fractional optimal control problems. Calcolo 1-23 (2015) · doi:10.1007/s10092-015-0160-0 · Zbl 1377.49032

Bhrawy, A.H, et al.: A numerical technique based on the shifted Legendre polynomials for solving the time-fractional coupled KdV equations. Calcolo 1-17 (2015) · doi:10.1007/s10092-014-0132-x · Zbl 1345.65060

Bhrawy, AH; Zaky, MA; Gorder, RA, A space-time Legendre spectral tau method for the two-sided space-time Caputo fractional diffusion-wave equation, Numer. Algorithms, 71, 151-180, (2016) · Zbl 1334.65166 · doi:10.1007/s11071-015-9999-9

Bhrawy, AH; Zaky, MA, Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation, Nonlinear Dyn., 80, 101-116, (2015) · Zbl 1345.65060 · doi:10.1007/s11071-014-1854-7

Doha, EH; Bhrawy, AH; Ezz-Eldien, SS, A new Jacobi operational matrix: an application for solving fractional differential equations, Appl. Math. Model., 36, 4311-4343, (2012) · Zbl 1255.65147 · doi:10.1016/j.aml.2011.12.031

Gülsu, M; Sezer, M, Approximations to the solution of linear Fredholm integro-differential-difference equation of high order, J. Franklin Inst., 343, 720-737, (2006) · Zbl 1113.65122 · doi:10.1016/j.jfranklin.2006.07.003

Saadatmandi, M; Dehghan, M, Numerical solution of the higher-order linear Fredholm integro-differential-difference equation with variable coefficients, Comput. Math. Appl., 59, 2996-3004, (2010) · Zbl 1193.65229 · doi:10.1016/j.camwa.2010.02.018

Dehghan, M; Saadatmandi, M, Chebyshev finite difference method for Fredholm integro-differential equations, Int. J. Comput. Math., 85, 123-130, (2008) · Zbl 1131.65107 · doi:10.1080/00207160500069847

Behiriy, SH, Hashim, H, Wavelet methods for the numerical solution of Fredholm integro-differential equations, Int. J. Appl. Math., 11, 27-36, (2002)

Şahin, N; Yüzbaşı, Ş; Sezer, M, A Bessel polynomial approach for solving general linear Fredholm integro-differential-difference equations, Int. J. Comput. Math., 88, 3093-3111, (2011) · Zbl 1242.65288 · doi:10.1080/00207160.2011.584973

Kurt, N; Sezer, M, Polynomial solutions of high-order linear Fredholm integro-differential equations with constant coefficients, J. Franklin Inst., 345, 1090-1096, (2008) · Zbl 1113.65122 · doi:10.1016/j.jfranklin.2006.07.003

Kurt, A, Collocation method with residual correction using Chebyshev series, Appl. Math. Modell., 36, 1-23 (2012) · Zbl 1252.34019 · doi:10.1016/j.apm.2011.12.031

Pour-Mahmoud, J; Rahimi-Ardabili, MY; Shahmorad, S, Numerical solution of the system of Fredholm integro-differential equations by the tau method, Appl. Math. Comput., 168, 465-478, (2005) · Zbl 1082.65000

Shahmorad, S, Numerical solution of the general form linear Fredholm-Volterra integro-differential equations by the tau method with an error estimation, Appl. Math. Comput., 167, 1418-1429, (2005) · Zbl 1082.65062 · doi:10.1016/j.amc.2004.08.045

Yüzbaşı, Ş; Sezer, M, An improved Bessel collocation method for solving Lane-Emden differential equations, Math. Comput. Model., 57, 1298-1311, (2013) · doi:10.1016/j.mcm.2012.10.032

Yüzbaşı, Ş; Sezer, M; Keskin, Y, Numerical solutions of integro-differential equations and application of a population model with an improved Legendre method, Adv. Appl. Math. Mech., 7, 2086-2101, (2015) · Zbl 1345.65147 · doi:10.1016/j.aml.2012.05.012

Wei, Y; Chen, Y, Convergence analysis of the spectral methods for weakly singular Volterra integro-differential equations with smooth solutions, Adv. Appl. Math. Mech., 4, 1-20, (2012) · Zbl 1252.34019 · doi:10.4208/aamm.10-m1055