CLOSED IDEALS AND LIE IDEALS OF $C_0(X) \otimes^\text{min} A$

BHARAT TALWAR AND RANJANA JAIN

Abstract. In this article, we prove that a closed ideal of $C_0(X) \otimes^\text{min} A$ is a finite sum of product ideals, where X is a locally compact Hausdorff space and A is a C^*-algebra with only finitely many closed ideals. As an application, we characterize the closed Lie ideals of $C_0(X) \otimes^\text{min} B(H)$, H being a separable Hilbert space. Further, for a C^*-algebra A, the primitive ideals of $C_0(X) \otimes^\text{min} A$ are characterized. We also prove that for a simple unital C^*-algebra A and a compact Hausdorff space X, A has Dixmier property if and only if $C(X) \otimes^\text{min} A$ has the same.

1. Introduction

Let $A \otimes^\alpha B$ denote the completion of the algebraic tensor product of two C^*-algebras A and B under an algebra cross norm $\|\cdot\|_\alpha$, then one may ask the following natural question: Can the closed ideals of $A \otimes^\alpha B$ be identified in terms of the closed ideals of A and B? In 1978, Wassermann [22] established an astonishing result, which he termed as a pathology, that not every closed ideal of $B(H) \otimes^\text{min} B(H)$ is a finite sum of product ideals, \otimes^min being the minimal C^*-tensor norm (for definition, see [19]).

On the other hand, closed ideals of the Banach algebras $A \otimes^h B$, $A \otimes^\gamma B$ and $A \otimes \delta$ are directly related to the closed ideals of A and B, where \otimes^h, \otimes^γ and \otimes are the Haagerup tensor product, Banach space projective tensor product and operator space projective tensor product, respectively.

It is interesting to note that every closed ideal of these spaces is a finite sum of product ideals if either A or B possesses finitely many closed ideals (see, for instance, [1, 7, 11]). In the present article we deal with their counterpart for the minimal C^*-tensor norm assuming one of the C^*-algebras to be commutative. In particular, we prove that every closed ideal of $C_0(X) \otimes^\text{min} A$ is a finite sum of product ideals, where X is a locally compact Hausdorff space and A is a C^*-algebra with finitely many closed ideals. In order to prove this we establish an appropriate (surjective) correspondence between a class of closed subsets of X and the closed ideals of $C_0(X,A)$, for any C^*-algebra A.

Interestingly, this correspondence turns out to be bijective if A has finitely many closed ideals. This correspondence further enables us to give a nice characterization of primitive ideals of $C_0(X) \otimes^\alpha A$, namely, every primitive ideal of $C_0(X) \otimes^\alpha A$ is precisely of the form $C_0(X) \otimes^\alpha I + J \otimes^\alpha A$ for some primitive ideals I of A and J of $C_0(X)$, where \otimes^α is either \otimes^min or \otimes^h or \otimes. Note that if $A \otimes^\text{min} B$ has property (F) of Tomiyama and $I \subseteq A$ and $J \subseteq B$ are primitive ideals then $I \otimes^\text{min} B + A \otimes^\text{min} J$ is a primitive ideal of $A \otimes^\text{min} B$ ([3, Theorem 5]). Similar results for Haagerup tensor norm and operator space projective norm are also known (see, [11, Theorem 5.13], [11, Theorem 7]).

If B is a Banach algebra, it naturally imbibes a Lie algebra structure with the Lie bracket given by $[a,b] = ab - ba$ for every $a, b \in B$. A closed subspace L of B is said to be a Lie ideal if $[B,L] \subseteq L$ where $[B,L] = \text{span}\{[b,l] : b \in B, l \in L\}$. The closed Lie ideals for C^*-algebras are extensively studied, one may refer to the expository article [16] for details. Recently some research has been done to identify the closed Lie ideals for the various tensor products of C^*-algebras. In [16, Section 5], [9, Section 4]) the closed Lie ideals of $C_0(X) \otimes^\text{min} A$ have been characterized in terms of closed subspaces of X, X being a locally compact Hausdorff space and A being a simple C^*-algebra with at most one tracial state. However, if A is not simple nothing is known about the closed Lie ideals of such spaces. In Section 3, we characterize the closed Lie ideals of $C_0(X,A)$ in terms of some closed subspaces of X. As an application, we first prove that a closed subspace L of $C_0(X) \otimes^\text{min} B(H)$ is a Lie ideal if and only if there exist two closed subsets $S_1 \subseteq S_2$ of X and a closed subspace K
of $C_0(X) \otimes \mathbb{C}1$ such that $L = \overline{J(S_1) \otimes K(H) + J(S_2) \otimes B(H) + K}$, where H is a separable Hilbert space and for $F \subseteq X$, $J(F) := \{ f \in C_0(X) : f(F) \subseteq \{0\} \}$. Finally, as another application we prove that for a compact Hausdorff space X, $C(X) \otimes_{\min} A$ has Dixmier property if and only if A has the same, A being simple unital C^*-algebra.

2. Closed ideals of $C_0(X) \otimes_{\min} A$

Let X be a locally compact Hausdorff space and A be any C^*-algebra. It is a well known fact that there is a bijective correspondence between the closed subsets of X and the closed ideals of $C_0(X)$ given by $F \leftrightarrow J(F)$. However, if we move from complex valued functions to the vector valued functions, such a correspondence is not known. Although, in the literature, it is established that every closed ideal of $C_0(X,A)$ is of the form $\{ f \in C_0(X,A) : f(x) \in I_x, \forall x \in X \}$ where for every $x \in X$, I_x is a closed ideal of A [17 V.26.2.1], but this description fails to be fruitful while moving from $C_0(X,A)$ to $C_0(X) \otimes_{\min} A$ in order to determine the closed ideals.

We first generalize the former notion to the continuous vector valued functions by establishing a correspondence between the closed subsets of X and closed ideals of $C_0(X,A)$. This correspondence will further enable us to characterize closed ideals of $C_0(X) \otimes_{\min} A$ in terms of closed ideals of A and subsets of X, when A has finitely many closed ideals. This is due to the fact that there exists an isometric *-isomorphism $\hat{\varphi} : C_0(X) \otimes_{\min} A \rightarrow C_0(X,A)$, which takes $f \otimes a$ to $a f$ for every $f \in C_0(X)$ and $a \in A$, where $(a f)(x) = f(x) a$ (see, [19 Theorem 4.14 (iii)], [14 Proposition 1.5.6]).

Let us first fix some notations for further use. For any $t \in \mathbb{N}$, the set $\{1, 2, 3, \ldots, t\}$ be denoted by N_t. The spaces $C_b(X,A)$ and $C_c(X,A)$, as usual, denote the C^*-algebras of all bounded continuous functions and compactly supported continuous functions, respectively, from X to A endowed with sup norm. For a non-unital C^*-algebra A, \hat{A} will denote its unitization. For a locally compact Hausdorff space X and any function $g \in C_0(X)$, we define $\hat{g} \in C_0(X,\hat{A})$ (resp., $\hat{g} \in C_0(X,A)$) by $\hat{g}(x) = g(x) 1$, where 1 is the unit of \hat{A} (resp., of A) if A is non unital (resp., if A is unital).

For an indexing set Δ, let $S = \{ S_i \}_{i \in \Delta}$ and $T = \{ T_i \}_{i \in \Delta}$ be collections of subsets of some sets Y and Z. We define S to be compatible with T if whenever for some subset γ of Δ, $\cap_{j \in \gamma} T_j = T_i$ for some $i \in \Delta$, then $\cap_{j \in \gamma} S_j = S_i$. For a locally compact Hausdorff space X, $\alpha \in \Delta$ and T as above, define a collection $T^\alpha := \{ S = \{ S_i \}_{i \in \Delta} : S_i$ is a closed subset of X for every $i \in \Delta, S$ is compatible with $T \text{ and } S_\alpha = X \}$.

Theorem 2.1. Let X be a locally compact Hausdorff space, A be a C^*-algebra and $\mathcal{I} = \{ I_i \}_{i \in \Delta}$ be the collection of all closed ideals of A with $I_\beta = A$. Then there exists a surjection θ from T^Δ into \mathcal{K}, the set of all closed ideals of $C_0(X,A)$.

Proof. Define $\theta : T^\Delta \rightarrow \mathcal{K}$ by $\theta(S) = J(S)$ where $J(S) = \{ f \in C_0(X,A) : f(S_i) \subseteq I_i, \forall i \in \Delta \}$. Clearly θ is well defined. To see that θ is onto, consider $J \in \mathcal{K}$. For each $i \in \Delta$, set $S_i = \cap_{j \in \gamma} I_j$ for some subset γ of Δ, then

$$S_i = \cap_{j \in \gamma} I_j \cap_{j \in \gamma} I_j^{-1} \cap_{j \in \gamma} S_j,$$

so that $S = \{ S_i \}_{i \in \Delta}$ is compatible with \mathcal{I}. Since, $S_\beta = \cap_{j \in \gamma} I_j^{-1} \cap_{j \in \gamma} S_j = \cap_{j \in \gamma} I_j$, we obtain $S \in T^\Delta$. Clearly $J \subseteq J(S)$, so it is sufficient to prove that J is dense in $J(S)$. For this, let $f \in J(S)$ be non zero and $\epsilon > 0$ be arbitrary.

We first claim that for any $x \in X$, there exists an element $h_x \in J$ such that $\| h_x(x) - f(x) \| \leq \frac{\epsilon}{2}$. Indeed, if $\gamma' = \{ i \in \Delta : x \in S_i \}$, then $x \in \cap_{i \in \gamma'} S_i$ and $f(x) \in \cap_{i \in \gamma'} I_i = I_j$ for some $j \in \Delta$. Let I_j denote the closed ideal of A generated by the set $\{ g(x) : g \in \hat{J} \}$. Then $x \in S_r$, which implies that $f(x) \in I_r$. Hence $\| \sum_{i=1}^n a_i g_i(x) b_i - f(x) \| \leq \frac{\epsilon}{2}$ for some $a_1, a_2, \ldots, a_k, b_1, b_2, \ldots, b_k$ in A (resp., in \hat{A}) if A is unital (resp., if A is non unital). From [12 Corollary 4.2.10], we know that J is a closed ideal of $C_0(X,\hat{A})$, thus we have a function $h_x = \sum_{i=1}^n a_i g_i b_i$ in J which satisfies the required condition.

Denote by $\hat{X} = X \cup \{ \infty \}$, the one point compactification of X. For each $x \in X$, let \hat{h}_x and \hat{f} be the continuous extensions of h_x and f to \hat{X} which take ∞ to 0, and let $\hat{h}_x 0$ be the continuous
Let \(A \) be a \(C^* \)-algebra and \(I = \{ I_1, I_2, \ldots, I_n = A \} \), \(n \in \mathbb{N} \), be the set of all closed ideals of \(A \). Then the map \(\theta \) from \(T_\mathcal{F}^\circ \) to the set of all closed ideals of \(C_0(X, \mathcal{I}) \) is a bijection. In particular, every closed ideal of \(C_0(X, \mathcal{I}) \) is precisely of the form \(\{ f \in C_0(X, \mathcal{I}) : f(x) = 0, \forall x \in F \} \), for some closed subset \(F \) of \(X \).

Theorem 2.2. Let \(X \) be a locally compact Hausdorff space, \(A \) be a \(C^* \)-algebra and \(\mathcal{I} = \{ I_1, I_2, \ldots, I_n = A \} \), \(n \in \mathbb{N} \), be the set of all closed ideals of \(A \). Then the map \(\theta \) from \(T_\mathcal{F}^\circ \) to the set of all closed ideals of \(C_0(X, \mathcal{I}) \) is a bijection. In particular, every closed ideal of \(C_0(X, \mathcal{I}) \) is precisely of the form \(\{ f \in C_0(X, \mathcal{I}) : f(x) = 0, \forall x \in F \} \), for some closed subset \(F \) of \(X \).

Proof. Let \(S = \{ S_i \}_{i \in \mathbb{N}_n} \) and \(S' = \{ S'_i \}_{i \in \mathbb{N}_n} \) be two distinct elements of \(T_\mathcal{F}^\circ \) so that \(S_i \neq S'_i \) for some \(i \in \mathbb{N}_n \setminus \{ n \} \). Without loss of generality, we may assume that there exists \(x \in S_i \setminus S'_i \).

Define a non-empty subset \(\gamma = \{ j \in \mathbb{N}_n : x \notin S'_j \} \) of \(\mathbb{N}_n \). By Urysohn’s Lemma [18; Theorem 2.12], as \(\mathcal{V}_x = \{ \cup_{i \in \gamma} S'_i \}^\circ \) is an open set containing \(x \), there exists \(g \in C_c(X) \) such that \(g(x) = 1 \), \(g(X) \subseteq [0, 1] \) and \(\text{supp}(g) \subseteq V_x \). It is easy to see that \((\cap_{j \in \gamma} I_j) \setminus I_i \neq \emptyset \), because if \(\cap_{j \in \gamma} I_j \subseteq I_i \) then \(\cap_{j \in \gamma} S'_j \subseteq S'_i \), which is not true as \(x \in \cap_{j \in \gamma} S'_j \) but \(x \notin S'_i \). Let \(a \in (\cap_{j \in \gamma} I_j) \setminus I_i \). Consider the function \(h = a \cdot g \in C_0(X, \mathcal{I}) \). Observe that \(h \notin J(S_i) \), since \(x \in S_i \) but \(h(x) = a'(x) \hat{g}(x) = a \notin I_i \). However, we assert that \(h \in J(S') \) which proves \(J(S) \neq J(S') \). For \(k \in \gamma \), \(y \in S'_k \) implies \(y \in V_x^\circ \), so that \(h(y) = a \hat{g}(y) = 0 \in I_k \). Also, if \(k \in \gamma^c \), then \(h(y) = a \hat{g}(y) \in (\cap_{j \in \gamma^c} I_j) \subseteq I_k \) for every \(y \in S'_k \).

In the quest of proving the main result regarding the characterization of closed ideals of \(C_0(X) \otimes_{min} A \), we require few more ingredients.

Lemma 2.3. Let \(X \) be a locally compact Hausdorff space and \(A \) be a \(C^* \)-algebra. Then for a closed subspace \(C \) of \(A \) and a closed ideal \(J(Y) \) of \(C_0(X) \), \(Y \subseteq X \) being closed, there is an isometric isomorphism of Banach spaces

\[
J(Y) \otimes C^\min \cong \{ f \in C_0(X, A) : f(Y) = \{ 0 \}, f(X) \subseteq C \}.
\]

Proof. Denote by \(J \) the closed subspace \(\{ f \in C_0(X, A) : f(Y) = \{ 0 \}, f(X) \subseteq C \} \) of \(C_0(X, A) \), and \(I = J(Y) \). Let \(\varphi \) denote the restriction of \(\hat{\varphi} \) to \(\overline{T \otimes C^\min} \), where \(\hat{\varphi} : C_0(X) \otimes_{min} A \to C_0(X, A) \)
is the isometric $*$-isomorphism as discussed earlier. Then for $\sum_{j=1}^{n} f_j \otimes c_j \in I \otimes C$, we have $\varphi(\sum_{j=1}^{n} f_j \otimes c_j)(Y) = \{0\}$, so that $\varphi(I \otimes C) \subseteq J$. Since φ is an isometry, it is sufficient to prove that $\varphi(I \otimes C)$ is dense in J.

Let $g \in J$ and $\epsilon > 0$ be arbitrary. Since J is also a closed subspace of $C_0(X, C)$ and $C_0(X, C)$ is dense in $C_0(X, C)$, there exists a function $h \in C_0(X, C)$ such that $\|g - h\| < \epsilon/2$. Let $K := \text{supp}(h)$, $B_r(b) := \{c \in C : \|c - b\| < r\}$ and $B^r_r(b) := B_r(b) \setminus \{0\}$, where $b \in C$ and $r > 0$. Since $\|h(y)\| = \|g(y) - h(y)\| < \epsilon/2$ for every $y \in Y$, the collection $\{h^{-1}(B^r_r(h(x)) \setminus \overline{h(Y)}) : x \in K \setminus Y\} \cup h^{-1}(B_r(0))$ forms an open cover of the compact set K. Fix a finite subcover, say, $h^{-1}(B_r(0)) \cup \{h^{-1}(B^r_r(h(x_i)) \setminus \overline{h(Y)}) : 1 \leq i \leq n\}$. Since K is a compact subset of a locally compact Hausdorff space X, there exists a partition of unity subordinate to this finite subcover, i.e. there exist functions f_0, f_1, \ldots, f_n in $C_c(X)$ such that $0 \leq f_i \leq 1$ for all $0 \leq i \leq n$, supp$(f_0) \subseteq U_0 := h^{-1}(B_r(0))$, supp$(f_i) \subseteq U_i := h^{-1}(B^r_r(h(x_i)) \setminus \overline{h(Y)})$ for all $1 \leq i \leq n$ and $\sum_{i=0}^{n} f_i(x) = 1$ for $x \in K$ (see [13, Theorem 2.13]).

Let $V = (\sum_{i=0}^{n} f_i)^{-1}(0, 3/2)$. Then $V \cap (\cup_{i=0}^{n} U_i)$ is an open set containing K. Pick $\hat{f} \in C_c(X)$ such that \hat{f} is 1 on K, supp$(\hat{f}) \subseteq V \cap (\cup_{i=1}^{n} U_i)$ and $0 \leq \hat{f} \leq 1$. Then for $\hat{f} = \sum_{i=0}^{n} f_i(x)$, supp$(\hat{f}) \subseteq V \cap U_i$ because supp$(f_i) \subseteq U_i$ and supp$(\hat{f}) \subseteq V$. Now for $x \in K$, we have

$$\hat{f}(x) = \sum_{i=0}^{n} f_i(x)$$

Also notice that $0 \leq \sum_{i=0}^{n} \hat{f}_i \leq 3/2$ because for $x \in V \cap (\cup_{i=0}^{n} U_i)$, $\sum_{i=0}^{n} \hat{f}_i(x) = \sum_{i=0}^{n} f_i(x) \leq \sum_{i=0}^{n} f_i(x) = 3/2$ and for $x \in (V \cap (\cup_{i=0}^{n} U_i))^c$, we have $\sum_{i=0}^{n} f_i(x) = 0$.

Now for $1 \leq i \leq n$, the open set U_i, and thus $V \cap U_i$ is disjoint from Y so that $\sum_{i=1}^{n} \hat{f}_i \otimes h(x_i) \in I \otimes C$. Fix $x_0 \in K^c$, then for each $x \in X$

$$\|h(x) - \sum_{i=1}^{n} \hat{f}_i(x)h(x_i)\| = \|h(x)\| \sum_{i=0}^{n} \hat{f}_i(x) - \sum_{i=0}^{n} \hat{f}_i(x)h(x_i)\|$$

$$\leq \sum_{i=0}^{n} \|h(x) - h(x_i)\| \hat{f}_i(x)$$

$$= \sum_{i : x \in U_i \cap V} \|h(x) - h(x_i)\| \hat{f}_i(x)$$

$$< \epsilon.$$

Hence we obtain $\|g - \varphi(\sum_{i=1}^{n} \hat{f}_i \otimes h(x_i))\| < \frac{\epsilon}{2}$, proving that $\varphi(I \otimes C)$ is dense in J. \hfill \Box

As a consequence of the above result, we have an interesting observation which identifies certain closed ideals of $C_0(X, A)$ with some closed ideals of $C_0(X) \otimes_{\min} A$. Below, we will use the notation $J(x)$ for $J(\{x\})$, $x \in X$, for convenience. Note that, in a C^*-algebra, finite sum of closed ideals is again a closed ideal.

Corollary 2.4. Let X be a locally compact Hausdorff space and I be a closed ideal of a C^*-algebra A. Then for any $x \in X$

$$C_0(X) \otimes_{\min} I + J(x) \otimes_{\min} A = \{f \in C_0(X, A) : f(x) \in I\}$$

Proof. Let $J_1 = C_0(X) \otimes_{\min} I + J(x) \otimes_{\min} A$ and $J_2 = \{f \in C_0(X, A) : f(x) \in I\}$, then J_1 and J_2 are closed ideals of $C_0(X) \otimes_{\min} A$ and $C_0(X, A)$, respectively. From Lemma 2.3, it is clear that $J_1 \subseteq J_2$. For the other containment, consider $f \in J_2$. Let $\hat{f} \in C_c(X)$ be such that \hat{f} takes values in $[0, 1]$ and $\hat{f}(x) = 1$. For every $y \in X$, define $g(y) := f(x)f(y)$, then by Lemma 2.3, $g \in C_0(X) \otimes_{\min} I$. Now for $h = f - g$, $h(x) = f(x) - f(x)f(x) = f(x) - f(x) = 0$, which shows that $h \in J(x) \otimes_{\min} A$ and hence $f = h + g \in J_1$. \hfill \Box
We would now extend the above result from the singleton \(\{ x \} \) to any closed subset of \(X \) and the proof requires little more efforts.

Corollary 2.5. Let \(Y \) be a closed subset of a locally compact Hausdorff space \(X \). For any closed ideal \(I \) of a \(C^* \)-algebra \(A \), we have

\[
C_0(X) \otimes \min I + J(Y) \otimes \min A = \{ f \in C_0(X, A) : f(Y) \subseteq I \}
\]

Proof. Let \(I = \{ I_i \}_{i \in \Delta} \) be the set of all closed ideals of \(A \) with \(I_\beta = A \), for some \(\beta \in \Delta \), and set \(I = I_\beta \). If \(t = \beta \) then the result is trivial. Otherwise, let \(J_1 = C_0(X) \otimes \min I + J(Y) \otimes \min A \) and \(J_2 = \{ f \in C_0(X, A) : f(Y) \subseteq I_i \} \). Then, by Theorem 2.4 there exist elements \(S = \{ S_i \}_{i \in \Delta} \) and \(S' = \{ S'_i \}_{i \in \Delta} \) in \(T^\Delta_2 \) such that \(J_1 = J(S) \) and \(J_2 = J(S') \). It is sufficient to prove that \(S = S' \).

We first mention a common trick used in the proof. For any \(x \in X \) and a closed subset \(F \) of \(X \) with \(x \not\in F \), Urysohn’s Lemma implies that there exists \(f \in C_c(X) \) such that \(f(x) = 1 \) and \(f(F) = 0 \). Then for any fixed \(a \in A \) and any \(y \in X \), there exists a function \(g(y) := f(y)a \) in \(C_0(X, A) \) such that \(g(x) = a \) and \(g \) vanishes on \(F \).

We now claim that \(S_t = \cap_{f \in A} f^{-1}(I_t) = Y \). For \(f \in J_1 \), \(f = f_1 + f_2 \) for some \(f_1 \in C_0(X) \otimes \min I_t \) and \(f_2 \in J(Y) \otimes \min A \). Thus, for any \(y \in Y \), \(f(y) = f_1(y) + f_2(y) \subseteq I_t \) as \(f_2(y) = 0 \) by Lemma 2.3, so that \(Y \subseteq S_t \).

For the reverse containment assume that \(Y \nsubseteq S_t \). Pick \(a \in A \setminus I_t \) and \(x \in S_t \setminus Y \), then there exists a function in \(C_0(X, A) \) which vanishes on \(Y \) and maps \(x \) to \(a \) which is a contradiction to the definition of \(S_t \). On the similar lines, using the fact that \(S'_t = \cap_{g \in J_t} g^{-1}(I_t) \), one can easily deduce that \(S_t = Y = S'_t \).

Now fix \(i \in \Delta \) with \(i \neq \beta, i \neq t \). Note that \(J_2 = \cap_{i \in \Delta} \{ f \in C_0(X, A) : f(S_i') \subseteq I_i \} \), so that \(G_t := \{ f \in C_0(X, A) : f(S_i') \subseteq I_i \} \subseteq \{ f \in C_0(X, A) : f(S_i') \subseteq I_i \} = G_t \) (say), for every \(i \in \Delta \).

Case(i): \(I_t \subseteq I_i \), then \(S'_i = \emptyset = S_i \). For \(y \in S'_i \subseteq S_t \) and \(a \in I_t \setminus I_i \), there is a function in \(C_0(X, A) \) which takes \(y \) to \(a \). Then such a function is in \(G_t \) but not in \(G_i \). Also, if there exists an \(x \in S_t \subseteq S_i = Y \), then \(a'g \) as defined above will be a function in \(C_0(X) \otimes \min I_t \subset I_i \) which takes an element \(x \) of \(S_t \) to \(a \) which does not belong to \(I_i \), which is a contradiction to the definition of \(S_i \).

Case(ii): \(I_t \supseteq I_i \), then \(S_i = S'_t = S'_i \). To see this, if \(S'_t \) is properly contained in \(S'_i \), then for \(x \in S'_t \setminus S'_i \) and \(a \not\in I_i \), there exists a function in \(C_0(X, A) \) which takes \(x \) to \(a \) and \(S'_i \) to 0. This function belongs to \(G_i \) but does not belong to \(G_i \), which is a contradiction. Similarly, if \(S_i \) is properly contained in \(S_t \), then for \(x \in S_t \setminus S_i \) and \(a \not\in I_i \), there is a function in \(J(Y) \otimes \min A \subset J_i \) which takes \(x \) outside \(I_i \) which contradicts the definition of \(S_i \).

Case(iii): \(I_i \) is neither a subset nor a superset of \(I_t \), then we claim that \(S_i = S'_i = \emptyset \). If \(I_i \cap I \neq \emptyset \), then \(I \subseteq I_i \) so that by Case(i), \(S_i \cap S_i = \emptyset = S'_i = S'_i \cap S'_I \). Now, for \(x \in S'_i \), \(x \not\in S_i' \), as argued in Case (ii), we obtain that \(G_i \) is not contained in \(G_i \), which is a contradiction, thus \(S_i' = \emptyset \). Similarly, for \(x \in S_t \), \(x \) is not a member of \(Y = S_i \). So for any \(a \in I_i \setminus I_i \), applying the technique mentioned in the beginning, we get a function \(g \) in \(J(Y) \otimes \min A \subset J_i \) such that \(g(x) \not\in I_i \), a contradiction.

This proves that \(S = S' \), and hence \(J_1 = J_2 \).

We are now ready to prove the main result of this section. Note that a product ideal is a closed ideal of the form \(I \otimes \min J \), where \(I \) and \(J \) are closed ideals of \(A \) and \(B \), respectively.

Theorem 2.6. Let \(X \) be a locally compact Hausdorff space and \(A \) be a \(C^* \)-algebra with finitely many closed ideals, say, \(I_1, I_2, \ldots, I_n \) with \(I_1 = \{0\} \) and \(I_n = A \). Then for any closed ideal \(K \) of \(C_0(X) \otimes \min A \), there exists \(S = \{ S_i \}_{i \in \mathbb{N}_n} \in T_2^n \) where \(I = \{ I_i \}_{i \in \mathbb{N}_n} \), such that

\[
K = \sum_{j=2}^{n} J(\cup_{k \in \gamma_j} S_k) \otimes \min I_j,
\]

where \(\gamma_j = \{ i \in \mathbb{N}_n : I_j \not\subset I_i \} \), for every \(j \in \{2, 3, \ldots, n\} \).

In particular, every closed ideal of \(C_0(X) \otimes \min A \) is a finite sum of product ideals.

Proof. By Theorem 2.2 there exists \(S = \{ S_i \}_{i \in \mathbb{N}_n} \in T_2^n \) such that \(K = J(S) = \{ f \in C_0(X, A) : f(S_i) \subseteq I_i, i \in \mathbb{N}_n \} \). Set \(K' = \sum_{j=2}^{n} J(\cup_{k \in \gamma_j} S_k) \otimes \min I_j \), then by Lemma 2.3, \(K' \) can be considered as...
a closed ideal of $C_0(X, A)$. By virtue of Theorem 2.8, it is sufficient to prove that $S_i = \cap_{f \in K} f^{-1}(I_i)$ for every $i \in \mathbb{N}_n$.

It is clear that $S_n = X = \cap_{f \in K} f^{-1}(A)$. Fix $i \in \mathbb{N}_{n-1}$ and consider any $x \in S_i$. For $f \in K'$, $f = f_2 + f_3 + \cdots + f_n$, where $f_r \in J(\cup_{k \in \gamma_r} S_k) \otimes^{\text{min}} I_r$ for every $r \in \{2, 3, \ldots, n\}$. Then for any such r, either $i \in \gamma_r$ or $i \in \gamma_r^c$. If $i \in \gamma_r$, then $f_r(x) = 0 \in I_i$. If $i \in \gamma_r^c$ then $f_r(x) \in I_r \subseteq I_i$. These two conclusions together imply that $S_i \subseteq \cap_{f \in K} f^{-1}(I_i)$.

Next, pick $x \notin S_i$ and define $\alpha_i = \{j \in \mathbb{N}_n : I_j \not\subseteq I_i\}$. Note that α_i is non empty as $n \in \alpha_i$. It is sufficient to prove the existence of a function $f \in K'$ such that $f(x) \notin I_i$. We shall actually prove that such a function exists in the subset $\sum_{r \in \alpha_i} J(\cup_{k \in \gamma_r} S_k) \otimes^{\text{min}} I_r$ of K'. It is further enough to prove that there exists an $r \in \alpha_i$ such that $x \notin \cup_{k \in \gamma_r} S_k$, so that the required function f exists in $J(\cup_{k \in \gamma_r} S_k) \otimes^{\text{min}} I_r$. In fact, by Urysohn’s Lemma there exists a function $g \in C_r(X)$ such that $0 \leq g \leq 1$, $g(x) = 1$ and $g(\cup_{k \in \gamma_r} S_k) = \{0\}$. Then by Lemma 2.3 for $a \in I_r \setminus I_i$ (since $I_r \not\subseteq I_i$), the function $g' \hat{g}$ serves the purpose. We claim that $\cap_{r \in \alpha_i}(\cup_{k \in \gamma_r} S_k) = S_i$, which will ensure the existence of such an r.

When $r \in \alpha_i$, we have $i \in \gamma_r$ and hence $S_i \subseteq \cap_{r \in \alpha_i}(\cup_{k \in \gamma_r} S_k)$. We now prove the reverse inclusion. Set $\alpha_i = \{r_1, r_2, \ldots, r_q\}$ and for each $r_j \in \alpha_i$, let there be p_{r_j} number of elements in γ_{r_j}, say $\gamma_{r_j} = \{r_{1, r_j}, \ldots, r_{p_{r_j}, r_j}\}$. So

$$\bigcap_{r \in \alpha_i}(\cup_{k \in \gamma_r} S_k) = \bigcup_{1 \leq r_j \leq p_{r_j}} (S_{r_{1, r_j}} \cap S_{r_{2, r_j}} \cap \cdots \cap S_{r_{p_{r_j}, r_j}}).$$

We have obtained that $\cap_{r \in \alpha_i}(\cup_{k \in \gamma_r} S_k)$ is a union of $\Pi_{r_j=1}^{p_{r_j}} r_{r_j}$ objects, each of which is an intersection of q objects which looks like $S_{r_{1, r_j}} \cap S_{r_{2, r_j}} \cap \cdots \cap S_{r_{p_{r_j}, r_j}}$. Pick an ideal $I_{r_{1, r_j}} \cap I_{r_{2, r_j}} \cap \cdots \cap I_{r_{p_{r_j}, r_j}}$. Then there exists an $m \in \mathbb{N}_n$ such that $I_m = I_{r_{1, r_j}} \cap I_{r_{2, r_j}} \cap \cdots \cap I_{r_{p_{r_j}, r_j}}$, and hence $S_m = S_{r_{1, r_j}} \cap S_{r_{2, r_j}} \cap \cdots \cap S_{r_{p_{r_j}, r_j}}$. If $S_m \subseteq S_i$, we are done. Otherwise, $S_m \not\subseteq S_i$ will imply $I_m \not\subseteq I_i$ and hence $m \in \alpha_i$. Thus $m = r_j$ for some $j \in \{1, 2, \ldots, k\}$. Then $r_{1, r_j} \in \gamma_{r_j}$, which implies $(I_m = I_{r_j}) \not\subseteq I_{r_{1, r_j}}$, which is a contradiction to the fact that $I_m = I_{r_{1, r_j}} \cap I_{r_{2, r_j}} \cap \cdots \cap I_{r_{p_{r_j}, r_j}}$.

As an important consequence of the above result, we now describe the precise form of closed ideals of $C_0(X) \otimes^{\text{min}} B(H)$, in terms of product ideals. Note that for a Hilbert space H, the set of all closed ideals forms a chain (see, [15 Corollary 6.2]). In the following, w_0 denotes the cardinality of the set of all natural numbers and for every $i \in \mathbb{N}$, let $w_i = 2^{w_0-1}$ so that w_1 is continuum.

Corollary 2.7. Let X be a locally compact Hausdorff space and H be a Hilbert space with w_n ($n \in \mathbb{N}$) as its Hilbert dimension. Then the closed ideals of $C_0(X) \otimes^{\text{min}} B(H)$ are of the form $\sum_{j=1}^{n+2} J(S_{j-1}) \otimes^{\text{min}} I_j$, where I_j’s are closed ideals of $B(H)$ and S_j’s are some closed subsets of X.

Proof. Let $\{0\} = I_0 \subseteq I_1 \subseteq I_2 \subseteq \cdots \subseteq I_{n+2} = B(H)$ be the chain of closed ideals of $B(H)$ and J be a closed ideal of $C_0(X) \otimes^{\text{min}} B(H)$. By Theorem 2.1 there exists $n + 3$ closed subsets $S_0 \subseteq S_1 \subseteq S_2 \subseteq \cdots \subseteq S_{n+2} = X$ such that $J = J(S)$ where $S = \{S_j\}_{j=0}^{n+2}$. As in Theorem 2.2 for $j \in \mathbb{N}_{n+2}, \cup_{k \in \gamma_j} S_k = S_{j-1}$ and hence $J = \sum_{j=1}^{n+2} J(S_{j-1}) \otimes^{\text{min}} I_j$.

We now move on to characterize the primitive ideals of these spaces. Recall that a **primitive ideal** of a C^*-algebra is the kernel of some irreducible $*$-representation. Also, a closed ideal K of a C^*-algebra A is called **prime** if whenever two closed ideals I and J in A satisfy $IJ \subseteq K$, then either $I \subseteq K$ or $J \subseteq K$. Since $C_0(X) \otimes^{\text{min}} A$ has property (F) of Tomiyama, a closed ideal K of the C^*-algebra $C_0(X) \otimes^{\text{min}} A$ is prime if and only if there exist an element $x \in X$ and a closed prime ideal $I \subseteq A$ such that $K = C_0(X) \otimes^{\text{min}} I + J(x) \otimes^{\text{min}} A$ (see [14 Proposition 5.1]). We prove a similar characterization for the primitive ideals. Note that every maximal ideal of a C^*-algebra is primitive, and every prime ideal of $C_0(X)$ is maximal.

Theorem 2.8. Let X be a locally compact Hausdorff space and A be a C^*-algebra. A closed ideal K of $C_0(X) \otimes^{\text{min}} A$ is primitive if and only if it is of the form $K = C_0(X) \otimes^{\text{min}} I + J(x) \otimes^{\text{min}} A$ for some primitive ideal I of A and for some $x \in X$.
proof. Since \(J(x) \) is primitive ideal being a maximal ideal, the if part follows from \([5 \text{ Theorem } 5]\). For the converse, let \(K \) be a primitive ideal of \(C_0(X) \otimes_{\min} A \). Since every primitive ideal of a \(C^* \)-algebra is prime, there exist an element \(x \in X \) and a closed prime ideal \(I \subseteq A \) such that \(K = J(x) \otimes_{\min} A + C_0(X) \otimes_{\min} I \). We prove that \(I \) is the kernel of some irreducible *-representation. Let \(\varphi_1 : C_0(X) \to C_0(X)/J(x) \) and \(\varphi_2 : A \to A/I \) be the natural quotient maps. By \([20 \text{ Theorem } 5]\), we have \((C_0(X) \otimes_{\min} A)/K \cong (C_0(X)/J(x)) \otimes_{\min} (A/I) \cong C \otimes_{\min} (A/I) \cong A/I \). Let \(\psi \) be the isometric *-isomorphism from \(A/I \) to \((C_0(X) \otimes_{\min} A)/K\); \((\psi', H)\) be an irreducible *-representation of \(C_0(X) \otimes_{\min} A \) whose kernel is \(K \) and \(\psi'' \) \(C_0(X) \otimes_{\min} A \) be the isomorphism induced from \((\psi', H)\). Then \(\psi'' \circ \psi \circ \varphi_2 \) is an irreducible *-representation of \(A \) whose kernel is \(I \).

\[\text{Remark 2.9. Corollary 2.4 and Theorem 2.5 together imply that a closed ideal } J \text{ in } C_0(X,A) \text{ is primitive if and only if there exist a primitive ideal } I \text{ of } A \text{ and an element } x \in X \text{ such that } J = \{ f \in C_0(X,A) : f(x) \in I \}. \]

Let \(\otimes \) denote the operator space projective or the Haagerup tensor norm. It is known that for \(C^* \)-algebras \(A \) and \(B \), every primitive ideal of \(A \otimes \beta B \) is of the form \(A \otimes \beta J + \beta I \otimes B \) for some prime ideals \(I \subseteq A \) and \(J \subseteq B \), and that if \(I \subseteq A \) and \(J \subseteq B \) are primitive ideals, then \(A \otimes \beta J + I \otimes B \) is a primitive ideal of \(A \otimes \beta B \) (see, \([1 \text{ Theorem 5.13}], [11 \text{ Theorem 7}]\)). However, if \(A \) and \(B \) are separable, then a closed ideal \(K \) of \(A \otimes \beta B \) is primitive if and only if there exist primitive ideals \(I \subseteq A \) and \(J \subseteq B \) such that \(K = A \otimes \beta J + I \otimes \beta B \). We extend this result partially to the non-separable case. In the following result \(\text{Prim}(A) \) represents the space of primitive ideals of \(A \).

\[\text{Corollary 2.10. Let } X \text{ be a locally compact Hausdorff space and } A \text{ be a } C^* \text{-algebra. A closed ideal } K \text{ of } C_0(X) \otimes \beta A \text{ is primitive if and only if it is of the form } K = C_0(X) \otimes \beta I + J(x) \otimes \beta A \text{ for some } \text{primitive ideal } I \text{ of } A \text{ and for some } x \in X. \]

\[\text{Proof. We just need to prove the ‘only if’ part. Since } C_0(X) \otimes_{\min} A \text{ has property } (F) \text{ of Tomiyama and } C_0(X) \text{ is nuclear, by }[2 \text{ Corollary 4.4}], \text{ the map } \Phi : \text{Prim}(C_0(X) \otimes_{\min} A) \to \text{Prim}(C_0(X) \otimes h A) \text{ given by } \Phi(L) = L \cap (C_0(X) \otimes h A) \text{ is a homeomorphism. Also, by }[2 \text{ Lemma 1.1}], \text{ we have } (C_0(X) \otimes_{\min} I + J(x) \otimes_{\min} A) \cap (C_0(X) \otimes h A) = C_0(X) \otimes h I + J(x) \otimes h A. \text{ On the similar lines of the proof given in }[2 \text{ Lemma 1.1, Corollary 4.4}], \text{ one can easily check that this equality also holds for the operator space projective norm. The result is now an easy consequence of Theorem 2.5} \square \]

3. Closed Lie ideals of \(C_0(X,A) \)

The Lie normalizer of a subspace \(S \) of a Lie algebra \(A \) is defined by \(N(S) := \{ a \in A : [a, A] \subseteq S \} \). It can be easily verified that \(N(I) \) is a closed subalgebra of \(A \) for a closed ideal \(I \subseteq A \). The Lie normalizer plays an important role in determining the Lie ideals of \(A \) (for instance, see \([9, 3]\)). We identify the Lie normalizer of ideals of \(C_0(X,A) \) and use this identification to characterize its closed Lie ideals.

\[\text{Theorem 3.1. Let } X \text{ be a locally compact Hausdorff space and } A \text{ be a } C^* \text{-algebra with } I = \{ I_i \}_{i \in \Delta} \text{ as the collection of all closed ideals such that } I_i = A. \text{ Then a closed subspace } L \text{ of } C_0(X,A) \text{ is a closed Lie ideal if and only if there is an element } S = \{ S_i \}_{i \in \Delta} \subseteq T_\Delta I \text{ such that } \{ f \in C_0(X,A) : f(S_i) \subseteq [I_i, A], \forall i \in \Delta \} \subseteq L \subseteq \{ f \in C_0(X,A) : f(S_i) \subseteq N(I_i), \forall i \in \Delta \}. \]

\[\text{Proof. We know that a closed subspace } L \text{ of the } C^* \text{-algebra } C_0(X,A) \text{ is a Lie ideal if and only if there exists a closed ideal } J \subseteq C_0(X,A) \text{ such that } [J, C_0(X,A)] \subseteq L \subseteq N(J) \text{ (}[4 \text{ Proposition 5.25, Theorem 5.27}]\). By Theorem 2.4, } J = J(S) \text{ for some } S = \{ S_i \}_{i \in \Delta}. \text{ Since for any fixed } a \in A
and \(x \in X \), there is an element in \(C_0(X, A) \) which takes \(x \) to \(a \), we have

\[
N(J) = \{ f \in C_0(X, A) : [f, g] \in J(S), \forall g \in C_0(X, A) \} = \{ f \in C_0(X, A) : [f, g](x) \in I_i, \forall x \in S_i, g \in C_0(X, A), \forall i \in \Delta \} = \{ f \in C_0(X, A) : f(x) \in N(I_i), \forall x \in S_i, i \in \Delta \} = \{ f \in C_0(X, A) : f(S_i) \subseteq N(I_i), \forall i \in \Delta \}.
\]

We know from [1] Proposition 5.25 that \([I, B] = I \cap [B, B]\) for closed ideal \(I \) of a \(C^* \)-algebra \(B \). This fact, along with Lemma 2.3 gives

\[
[J, C_0(X, A)] = [C_0(X, A), C_0(X, A)] \cap J = [C_0(X) \otimes_{\min} A, C_0(X) \otimes_{\min} A] \cap J = C_0(X) \otimes [A, A] \cap J = C_0(X) \cap [A, A] \cap J = \{ f \in C_0(X, A) : f(N(I_i)) \subseteq [A, A] \cap J, \forall i \in \Delta \} = \{ f \in C_0(X, A) : f(S_i) \subseteq [I_i, A], \forall i \in \Delta \}.
\]

Hence the result. \(\square \)

Recall that a \(C^* \)-algebra \(A \) is said to have the \emph{centre-quotient property} if \(Z(A/I) = (Z(A) + I)/I \) for every closed ideal \(I \) of \(A \), where \(Z(A) \) is the centre of \(A \) [3].

Lemma 3.2. A \(C^* \)-algebra \(A \) has centre-quotient property if and only if \(N(I) = I + Z(A) \) for every closed ideal \(I \) in \(A \).

Proof. Let \(I \) be a closed ideal of \(A \) and \(\pi : A \to A/I \) be the natural quotient map. Then \(N(I) = \pi^{-1}(Z(A/I)) \). So that \(Z(A/I) = (I + Z(A))/I \) if and only if \(N(I) = \pi^{-1}((I + Z(A))/I) = I + Z(A) \).

\(\square \)

A unital \(C^* \)-algebra \(A \) is called \emph{weakly central} if the continuous surjection \(\psi : \text{Max}(A) \to \text{Max}(Z(A)) \) given by \(\psi(I) = I \cap Z(A) \) is an injection, where \(\text{Max}(B) \) denotes the space of all maximal ideals of a \(C^* \)-algebra \(B \) endowed with hull-kernel topology. It is well known that a unital \(C^* \)-algebra with unique maximal ideal must have one dimensional centre [3] Lemma 2.1. Since weak centrality and centre-quotient property are equivalent in unital \(C^* \)-algebras (see, [2] Theorem 1 and 2), presence of unique maximal ideal of a unital \(C^* \)-algebra \(A \) implies that \(A \) has centre-quotient property. In [8] Lemma 4.6 it was observed that for a simple unital \(C^* \)-algebra \(A \) and a closed ideal \(I \subseteq A \), \(N(I) = I + C_0(X, C1) \). In the following we generalize this result to a unital \(C^* \)-algebra with unique maximal ideal. It can also be observed that centre-quotient property passes to \(C_0(X, A) \) even though \(C_0(X, A) \) does not have a unique maximal ideal.

Theorem 3.3. Let \(X \) be a locally compact Hausdorff space and \(A \) be a unital \(C^* \)-algebra with a unique maximal ideal. Then \(N(J) = J + C_0(X, C1) \), for any closed ideal \(J \) of \(C_0(X, A) \).

Proof. Note that \(Z(C_0(X, A)) = C_0(X, C1) \) [8] Corollary 1, and hence \(J + C_0(X, C1) \subseteq N(J) \). Let \(\mathcal{I} = \{ I_i \}_{i \in \Delta} \) be the collection of all closed ideals of \(A \) with \(A = I_\beta \) and let \(I_\beta \) be the unique maximal ideal of \(A, \beta, \beta' \in \Delta \). Then, Theorem [21] there exists an element \(S = \{ S_i \}_{i \in \Delta} \in \mathcal{T}_\beta \) such that \(J = J(S) \). Since \(A \) has centre-quotient property, by Lemma 3.2, \(N(I_i) = I_i + C1 \) for every \(i \in \Delta \). Let \(f \in N(J) = \{ g \in C_0(X, A) : g(S_i) \subseteq I_i + C1, \forall i \in \Delta \} \) as noted in Theorem 3.1. Since \(I_\beta \) is the unique maximal ideal of \(A \) and \(S \in \mathcal{T}_\beta \), we have \(S_{\alpha} \subseteq S_{\beta'} \) for every \(\alpha \in \Delta \setminus \{ \beta \} \).

On \(S_{\beta'} \), write \(f = g + h \) which satisfy \(h(S_{\beta'}) \subseteq C1 \) and \(g(S_i) \subseteq I_i \) for every \(i \in \Delta \setminus \{ \beta \} \). This is possible as no proper ideal of \(A \) can intersect \(C1 \). Since \(I_{\beta'} \cap C1 = \{ 0 \} \), by Hahn-Banach Theorem, there exists \(T \in A^* \) such that \(||T|| = 1 \), \(T(I_{\beta'}) = \{ 0 \} \) and \(T(\lambda I) = \lambda \) for \(\lambda \in \mathbb{C} \). Then \(TF = Th \)
on S^β. Also f vanishes at infinity and $\|T\| = 1$, so we obtain that Tf vanishes at infinity because $\|Tf\| \leq f\|f\|$. Since $\|Th\| = \|h\|$, Th and hence h is a continuous function vanishing at infinity. So $g = f - h$ is continuous on S^β and is vanishing at infinity. By [8, Theorem 4.5], there exists an $h' \in C_0(X)$ such that $h''_{S^\beta} = h$. For $x \in S^\beta$, define $g'(x) = f(x) - h'(x)$. Then $f = g' + h'$ with $g' \in J(S)$ and $h' \in C_0(X, \mathbb{C})1$ and we are done.

With this identification of Lie normalizer, we can now characterize the Lie ideals of a class of C^*-algebras. Recall that a bounded linear functional f on a C^*-algebra B is said to be a tracial state if f is positive of norm 1 and $f([a, b]) = 0$ for every $a, b \in B$.

Corollary 3.4. Let X be a locally compact Hausdorff space and A be a unital C^*-algebra with unique maximal ideal and no tracial state. Then a closed subspace L of $C_0(X, A)$ is a Lie ideal if and only if it is of the form $J + K$ for some closed ideal J of $C_0(X, A)$ and a closed subspace K of $C_0(X, \mathbb{C}1)$.

Proof. Let $I = \{I_i\}_{i \in \Delta}$ be the collection of all closed ideals of A. Because A has no tracial state, from [8, Lemma 2.4], $C_0(X, A)$ has no tracial state. Thus, by [4, Proposition 5.25], $[J, A] = J$ for every closed ideal J of $C_0(X, A)$. From [4, Theorem 5.27] and Theorem 3.3 it can be concluded that a closed subspace L of $C_0(X, A)$ is a Lie ideal if and only if there exists a closed ideal J of $C_0(X, A)$ such that $J \subseteq L \subseteq J + C_0(X, \mathbb{C}1)$. Hence L must be of the form $J + K$ for some closed subspace K of $C_0(X, \mathbb{C}1)$.

As a consequence, we can now characterize all closed ideals of $C_0(X) \otimes \min B(H)$.

Corollary 3.5. For a separable Hilbert space H and a locally compact Hausdorff space X, a closed subspace L of $C_0(X) \otimes \min B(H)$ is a Lie ideal if and only if there exist two closed subsets $S_1 \subseteq S_2$ of X and a closed subspace K of $C_0(X) \otimes \mathbb{C}1$ such that

$$L = J(S_1) \otimes K(H) + J(S_2) \otimes B(H) + K.$$

Proof. The result is an easy consequence of Corollary 3.4 and Corollary 3.4 using the fact that $B(H)$ has no tracial state.

Recall that a unital C^*-algebra A is said to have singleton Dixmier property if for any $a \in A$, the closed convex hull of the set $\{u^*au : u$ is a unitary in $A\}$ intersects the centre $Z(A)$ exactly once. If this intersection is non-empty for every $a \in A$, then A is said to have Dixmier property. For C^*-algebras A and B, it can be very difficult to see when $A \otimes \min B$ has Dixmier property because the unitaries of $A \otimes \min B$ are not known. A C^*-algebra A is said to be postliminal if for every irreducible representation (ψ, H) of A, $K(H) \subseteq \psi(A)$. Every commutative C^*-algebra is postliminal since its non zero irreducible representations are one dimensional.

Corollary 3.6. Let X be a compact Hausdorff space and A be a unital postliminal C^*-algebra with a unique maximal ideal. Then $C(X) \otimes \min A$ has singleton Dixmier property.

Proof. The C^*-algebra $C(X) \otimes \min A$ is postliminal. Now, the centre-quotient property and singleton Dixmier property are equivalent in $C(X, A)$ ([3, Theorem 2.12]). Thus Lemma 3.2 and Theorem 3.3 gives the result.

Theorem 3.7. Let A be a simple unital C^*-algebra and X be a compact Hausdorff space. Then A has Dixmier property if and only if $C(X) \otimes \min A$ has Dixmier property.

Proof. We will make use of the fact that a unital C^*-algebra B has Dixmier property if and only if B is weakly central, for every maximal ideal $I \subset B$, $B/(I \cap Z(B))B$ has at most one tracial state and if $B/(I \cap Z(B))B$ has a tracial state τ then $\tau(I/(I \cap Z(B))B) = \{0\}$ [3, Theorem 2.6]. From Lemma 3.2, Theorem 3.3 and [21, Theorem 1 and 2], it can be easily seen that $C(X) \otimes \min A$ is weakly central. Suppose A has Dixmier property. Then A has at most one tracial state being a simple unital C^*-algebra having Dixmier property [9]. Let K be a maximal ideal of $C(X) \otimes \min A$. Then there exists an $x \in X$ such that $K = J(x) \otimes \min A$ [6, Theorem 3.1]. Set $B = C(X) \otimes \min A$.

As noted earlier, $Z(B) = C(X) \otimes_{\min} C1$. So, $K \cap Z(B) = J(x) \otimes_{\min} C1$ from Lemma 23 and $(J(x) \otimes_{\min} C1)(B) = J(x) \otimes_{\min} A$. Thus

$$B/(K \cap Z(B))(B) = B/K \cong (C(X)/J(x)) \otimes_{\min} A \cong C \otimes_{\min} A \cong A,$$

where the second isomorphism follows from [20] Theorem 5. So $B/(K \cap Z(B))(B)$ has at most one tracial state. If it has a tracial state, then

$$K/(K \cap Z(B))(B) = K/K = \{0\}$$

hence the last condition is also satisfied.

Conversely, suppose $C(X) \otimes_{\min} A$ has Dixmier property. Since A has a unique maximal ideal it is clearly weakly central. Rest follows from [3] Theorem 2.6], since every simple quotient of $C(X) \otimes_{\min} A$ is isomorphic to A. \hfill \square

References

[1] S. D. Allen, A. M. Sinclair and R. R. Smith, The ideal structure of the Haagerup tensor product of C*-algebras, J. Reine Angew. Math. 442 (1993), 111–148.
[2] R. J. Archbold et al., Ideal spaces of the Haagerup tensor product of C*-algebras, Internat. J. Math. 8 (1) (1997), 1–20.
[3] R. J. Archbold, L. Robert and A. Tikuisis, The Dixmier property and tracial states for C*-algebras, J. Funct. Anal. 273 (8) (2017), 2655–2718.
[4] M. Brešar, E. Kissin and V. S. Shulman, Lie ideals: from pure algebra to C*-algebras, J. Reine Angew. Math. 623 (2008), 73–121.
[5] A. Guichardet, Tensor products of C*-algebras Part I. Finite tensor products, Math. Inst. Aarhus Univ. Lecture notes series 12 (1969).
[6] V. P. Gupta and R. Jain, On closed Lie ideals of certain tensor products of C*-algebras, Math. Nachr. 291 (8-9) (2018), 1297–1309.
[7] V.P. Gupta and R. Jain, On Banach space projective tensor product of C*-algebras, Preprint at arxiv: 1801.06705 [math.OA].
[8] V.P. Gupta, R. Jain and B. Talwar, On closed Lie ideals of certain tensor products of C*-algebras II, Preprint at arxiv: 1801.06705v4 [math.OA].
[9] U. Haagerup and L. Zsidó, Sur la propriété de Dixmier pour les C*-algèbres, C. R. Acad. Sci. Paris Sér. I Math. 298 (8) (1984), 173–176.
[10] R.Haydon and S. Wassermann, A commutation result for tensor products of C*-algebras, Bull. London Math. Soc. 5 (1973), 283–287.
[11] R. Jain and A. Kumar, Ideals in operator space projective tensor product of C*-algebras, J. Aust. Math. Soc. 91 (2) (2011), 275–288.
[12] R. V. Kadison and J. R. Ringrose, Fundamentals of the theory of operator algebras, Vol. I, Pure and Applied Mathematics, 100, Academic Press, Inc., New York, 1983.
[13] E. Kaniuth, A course in commutative Banach algebras, Graduate Texts in Mathematics, 246, Springer, New York, 2009.
[14] A. J. Lazar, The space of ideals in the minimal tensor product of C*-algebras, Math. Proc. Cambridge Philos. Soc. 148 (2) (2010), 243–252.
[15] E. Luft, The two-sided closed ideals of the algebra of bounded linear operators of a Hilbert space, Czechoslovak Math. J. 93 (18) (1968), 595–605.
[16] L.W. Marcoux, Projections, commutators and Lie ideals in C*-algebras, Math. Proc. R. Ir. Acad, 110A (1) (2010), 31–55.
[17] M. A. Naimark, Normed rings, Groningen, 1964.
[18] W. Rudin, Real and complex analysis, third edition, McGraw-Hill Book Co., New York, 1987.
[19] M. Takesaki, Theory of operator algebras I, Springer-Verlag, New York, 1979.
[20] J. Tomiyama, Applications of Fubini type theorem to the tensor products of C*-algebras, Tôhoku Math. J. 19 (2) (1967), 213–226.
[21] J. Vesterstrøm, On the homomorphic image of the center of a C*-algebra, Math. Scand. 29 (1971), 134–136.
[22] S. Wassermann, A pathology in the ideal space of $L(H) \otimes L(H)$, Indiana Univ. Math. J. 27 (6) (1978), 1011–1020.

Department of Mathematics, University of Delhi, Delhi-110007, INDIA.

E-mail address: btalwar.math@gmail.com

Department of Mathematics, University of Delhi, Delhi-110007, INDIA.

E-mail address: rjain@maths.du.ac.in