Quantum interference effects in the un-modulated quantum systems with light-matter interaction have been widely studied, such as electromagnetically induced transparency (EIT) and Autler-Townes splitting (ATS). However, the similar quantum interference effects in the Floquet systems (i.e., periodically modulated systems), which might cover rich new physics, were rarely studied. In this article, we investigate the quantum interference effects in the Floquet two- and three-level systems analytically and numerically. We show a coherent destruction tunneling effect in a lotus-like multi-peak spectrum with a Floquet two-level system, where the intensity of the probe field is periodically modulated with a square-wave sequence. We demonstrate that the multi-peak split into multiple transparency windows with tunable quantum interference if the Floquet system is asynchronously controlled via a third level. Based on phenomenological analysis with Akaike information criterion, we show that the symmetric central transparency window has a similar mechanism to the traditional ATS or EIT depending on the choice of parameters, additional with an extra degree of freedom to control the quantum interference provided by the modulation period. The other transparent windows are shown to be asymmetric, different from the traditional ATS/EIT windows. These non-trivial quantum interference effects open up a new scope to explore the applications of the Floquet systems.

I. INTRODUCTION

Floquet systems, which could be characterized by periodically modulated Hamiltonian, display rich dynamics and novel phenomena that are absent in their unmodulated counterparts, such as quantum dynamical decoupling, time crystal, Mach-Zehnder interferometer, time-domain Fresnel lenses, and Floquet topological phase. The studies of periodically modulated systems are also known as Floquet engineering. Moreover, for the Floquet systems, the dynamic steady-states are periodic steady-states, which emerge in a balance of the energy injection by the periodic driving and the relaxation processes. To explore the stability properties of the periodic steady-states, the time-average values of observable physical quantities are usually observed experimentally, and stroboscopic evolution of a periodically driven quantum system in steps of the modulation period is usually adopted in theoretical studies.

Quantum interference effect (QIE) is the key to the quantum nature of a system. In an atom-field interacting quantum system, QIE enables rich interesting physics and applicable phenomena, such as electromagnetically induced transparency (EIT) and Autler-Townes splitting (ATS). Both of them are observed with a transparency window induced by the un-modulated coherent drive fields, though they originate from controversial mechanisms that have been studied over decades in various systems and scenarios. In the above un-modulated systems, the properties of QIE can be adjusted by manipulating the properties of the system, which is relatively difficult. Few studies have been done to alter the properties of QIE by using tunable auxil-

* Corresponding email: dengxh@sustech.edu.cn
tery energy levels or phase-modulated fields 27,28. Recently, with the rising interest in Floquet systems, rich novel physics are discovered, where the Floquet parameters (such as modulation period, modulation scheme, etc.) may be useful tools for tuning the properties of QIEs. However, to our knowledge, the QIEs in the Floquet controlled systems have not been adequately studied 30, especially the effect of the modulation period on the properties of QIEs.

In this work, we first study the Floquet two-level system, where the intensity of the probe field has the form of square-wave periodic sequence, which is a basic model of direct frequency comb spectroscopy 31 and is different from the sine/cosine pulse trains in the Mach-Zehnder interferometer 32,33. Note that here the modulation period is shorter than the system’s coherence time. We explore the steady excitation probability over a wide driving strength range and give the analytically results with some special scenarios. A lotus-like multi-peak spectrum is observed and the coherent destruction of tunneling effect is found in the strong driving regime. When the Floquet two-level system assisted with a third energy level and a periodically modulated control field, each peak splits into two, resulting in multiple transparency windows. Here the modulation pulse of the control field is the same as that of the probe field, but they are asynchronous. An intriguing finding is that the central transparency window (CTW) in the Floquet three-level system has a similar profile to the traditional EIT or ATS in the un-modulated systems. We use the Akaike information criterion (AIC) method 33 to discern the CTW from EIT and ATS by evaluating their relative AIC weights for different modulation periods and find that the CTW could be EIT-like or ATS-like in different parameter regimes. Moreover, the quantum interference of the CTW can be modified by the modulation period, which as an additional degree of freedom increases the tunable space of CTW. Therefore, the CTW may provide a superior platform for the explosion of quantum technology than the traditional EIT/ATS.

This work is outlined as follows. We explore the QIEs in the Floquet two-level system in Sec. II and Floquet three-level system in Sec. III. Conclusions and discussions are given in the last section of the article.

II. THE FLOQUET TWO-LEVEL SYSTEM

In this section, we first explore the QIEs in a Floquet two-level system denoted by 0 and 1 with energy ω0,1, as shown in Fig. 1(a). A probe field with frequency ωp and periodically modulated Rabi frequency Ωp(t) = Ωp(t + τ) couples levels 0 and 1. Here τ is the modulation period and the detuning between the transition frequency (i.e., ω10 = ω1 − ω0) and the frequency of the probe field is ∆ = ω10 − ωp. To simplify the calculation, we consider the square-wave periodic sequence as the modulation scheme in this work, i.e.,

$$\Omega_p(t) = \left\{ \begin{array}{ll} \Omega_p, & t \in [n\tau, (n + \frac{1}{2})\tau] \\ 0, & t \in [(n + \frac{1}{2})\tau, (n + 1)\tau] \end{array} \right. \quad (1)$$

with n = 0, 1, 2 · · · . The Hamiltonian of such system is

$$H = \Delta(-|0\rangle\langle 0| + |1\rangle\langle 1|)/2 - \Omega_p(t)|0\rangle\langle 1| + h.c.)/(2,2)$$

with h = 1. Note that for our time-dependent Hamiltonian, here we apply rotating-wave approximation (RWA) by assuming ω = 1/τ ≪ 2ω10. Ωp ≪ ω10, which are also the parameter ranges of many experimental studies. Our earlier experimental work has shown the validity of the RWA with a periodically driven superconducting qutrit 34. Moreover, in Appendix A we also theoretically verified the validity of RWA in detail. With the assumption of Markovian noise background, the Floquet systems’ density matrix evolves as the Lindblad master equation 34,35,

$$\dot{\rho} = -i[H(t), \rho] + \gamma_{10} \left(2\sigma_{01} \rho \sigma_{10} - \sigma_{11} \rho - \rho \sigma_{11} \right) + \gamma_\phi \left(2\sigma_{10} \rho \sigma_{10} - \sigma_{11} \rho - \rho \sigma_{11} \right), \quad (3)$$

where $\sigma_{ij} = |i\rangle \langle j| (i, j = 0, 1)$ is the projection operators and $H(t)$ is shown in Eq. 2. To observe the steady-state characteristics of the periodically driven systems, we only observe the data at the end of each modulation period (i.e., the time evolution step is τ), and ignore the micro-dynamics within one modulation period. The dynamics start from the ground state 0 and then evolve to the steady states (see also Fig. 3), which are observed to study the steady-state characteristics of the periodically driven systems.
Eq. (7) can be reduced to
\[\omega = \frac{\Omega_p}{2} - \sum_{n=1}^{\infty} (-1)^n \Omega_{pn} \cos(\omega_n t), \tag{4} \]
where
\[\Omega_{pn} = \frac{\Omega_p}{(2n-1)\pi}, \tag{5} \]
\[\omega_n = (2n-1)\omega, \quad (n = 1, 2, 3 \cdots). \tag{6} \]
These expressions clearly demonstrate that the square-wave modulated field is equivalent to employing many frequency-tunable fields and the distance between them can be adjusted by the modulation frequency \(\omega \) with frequency separation \(\omega_{n+1} - \omega_n = 2\omega \).

In the strong driving range (\(\Omega_p > -13dBm \)), the peaks get broader and overlap with each other, eventually forming a lotus pattern, which is too complex to get the analytic solution. However, we can obtain the steady solutions of \(\rho_{11} \) with \(\Delta = 0 \) by calculating the optical Bloch equations (see Appendix B),
\[\rho_{11} = \frac{1}{2} - \frac{\gamma_{10} + \gamma_{11}}{2} \sum_{n=-\infty}^{\infty} \frac{\gamma_{10}^2}{\gamma_1^2 + (\Omega_p/2 - n\omega)^2}, \tag{7} \]
where \(\gamma_1 = 3\gamma_{10}/4 + \gamma_{11}/2 \) and \(n \) are integers. \(\Omega_n \) is a series of Bessel functions with variable \(\Omega_p/\omega \) [see Eq. (11)]. When \(\tau \to 0 \), \(\Omega_0 \to 1 \) and \(\Omega_{n\neq0} \to 0 \), then Eq. (7) can be reduced to \(\rho_{11} \approx \frac{1}{2} - \frac{2\gamma_1}{\gamma_1 + \gamma_2}, \) which is close to the conventional result of the un-modulated system \(\rho_{11} = \frac{1}{2} - \frac{2\gamma_1}{\gamma_1 + 2\gamma_2} \), with \(\gamma_1 = \gamma_{10}/2 + \gamma_1' \), except the effective Rabi frequency of the probe field to be \(\Omega_p/2 \). These indicate that when \(\tau \to 0 \), the central peak of the multi-peak phenomenon is similar to the single resonant peak in the un-modulated system. However, when \(\tau \) away from 0, \(\Omega_n \) significantly modifies the signal and induces a non-trivial phenomenon, coherent destruction of tunneling [37, 38], where the steady excitation probability \(\rho_{11} \) is partially suppressed and arising from the superposition of degenerate Floquet states. When \(\Delta = 0 \), from Eq. (7) one finds that the conditions for \(\rho_{11} \) to take the local minimum values are \(\Omega_p = 2n\omega, \quad (n = 1, 2 \cdots) \). Expanding to the more general cases, the positions of the coherent destruction of tunneling are determined by the relationship between the effective Rabi frequency and the modulation frequency, i.e.,
\[\sqrt{\Omega_p^2 + \Delta^2} = 2n\omega, \quad (n = 1, 2 \cdots) \], as the white dashed lines shown in Fig. (b).

III. THE FLOQUET THREE-LEVEL SYSTEM

![Image](image.png)

FIG. 2. (a) Schematic of a three-level system. Based on the above two-level system, a control-field resonantly couples levels \(|1 \rangle \) and \(|2 \rangle \) with a periodically modulated Rabi frequency \(\Omega_c(t) = \Omega_c(t + \tau) \). \(\gamma_{21} \) is the population damping rate from level \(|2 \rangle \) to \(|1 \rangle \). \(\gamma_2^d \) is the dephasing rate of state \(|2 \rangle \). (b) A contour map of \(\rho_{11} \) as a function of \(\Delta \) and \(\tau \). The graph is obtained by numerically calculating the Lindblad master equation Eq. (9) for \(\gamma_{10} = 1, \gamma_{21} = 1.4, \gamma_{21}^d = 0.4, \gamma_2^d = 0.2 \). \(\Omega_c = 10.8 \) and \(\Omega_p = 1 \) [i.e., the vertical yellow dashed line in Fig. (b)]. The white dashed lines show the positions of the resonance peaks, i.e., \(\Delta = \Omega_0/4 \), \(\tau = 2n\pi, \quad (n = 0, 1, 2 \cdots) \). (c), (d) The steady excitation probability \(\rho_{11} \) as a function of the probe field detuning with \(\tau = 0.027 \) [i.e., the vertical black line in (b)]. Here we normalized the parameters in terms of \(\gamma_{10} \).

In this section, we further explore the QIEs in a Floquet three-level system, as shown in Fig. (a). Here we assume the modulation scheme of \(\Omega_c(t) \) is asynchronous to that of \(\Omega_p(t) \), i.e.,
\[\Omega_c(t) = \begin{cases} 0, & t \in [n\tau, (n + \frac{1}{2})\tau) \\ \Omega_c, & t \in [(n + \frac{1}{2})\tau, (n + 1)\tau] \end{cases} \tag{8} \]
with \(n = 0, 1, 2 \cdots \). Similar to the above two-level system, the Lindblad master equation can be written as
\[\dot{\rho} = -i[H(t), \rho] + \sum_{j=1,2} \frac{\gamma_{jj}^d}{2} \{2\sigma_j \rho \sigma_j - \sigma_j^\dagger \sigma_j \} + \sum_{j=1,2} \frac{\gamma_{jj}^d}{2} \{2\sigma_j \rho \sigma_j^\dagger - \sigma_j^\dagger \sigma_j \}, \tag{9} \]
with
\[H(t) = \frac{\Delta}{2} \left\{ -|0\rangle \langle 0| + |1\rangle \langle 1| + |2\rangle \langle 2| \right\} - \frac{\Omega_p(t)}{2} |0\rangle \langle 1| + \frac{\Omega_c(t)}{2} |1\rangle \langle 2| + h.c. \right. \tag{10} \]
Similar to Eq. (2), here we apply RWA by assuming \(\omega = 1/\tau \ll 2\omega_{10}, 2\omega_{21}, \Omega_p \ll \omega_{10} \) and \(\Omega_c \ll \omega_{21} \).
To study the steady-state properties of the Floquet three-level system, only the data at the end of each modulation period (i.e., the time evolution step is \(\tau \)) is observed. The dynamics start from the ground state \([0]\), we show the contour map of \(\rho_{11} \) as a function of the probe field detuning \(\Delta \) and the modulation period \(\tau \) in Fig. 2(b). One finds that each peak in Fig. 1(b) splits into two when an added control field couples \([1] \) to \([2] \), resulting in multiple transparency windows, which is similar to the multi-chromatic ATS with multi-tone control fields studies in the un-modulated systems [11–12].

The positions of the peaks, as the white dashed lines shown in Fig. 2(b), could be demonstrated to be exactly the maximal constructive interference of transitions \([+\rangle \leftrightarrow [0]\rangle \) and \([-\rangle \leftrightarrow [0]\rangle \), while EIT exhibits a narrow transparency window in a wide non-interference transparency window. The modulation period as a new adjustable dimension enriches the interference properties of EIT and ATS, but the modulation period as a new adjustable dimension enriches the interference properties of EIT and ATS, but the modulation period as a new adjustable dimension enriches the interference properties of EIT and ATS. The fitted value of the interference term \(\Lambda \) is close to zero and Eq. (11) reduces to

\[
\text{Im}(\rho_{10})_{\text{ATS}} = \frac{\Omega_p}{4B} \left(\frac{\Omega_c}{2} \right)^2 + \left(\frac{\Omega_c}{2} \right)^2 + 2A \cdot (12)
\]

Equation (12) is exactly the sum of two Lorentzian peaks corresponding to transitions \([+\rangle \leftrightarrow [0]\rangle \) and \([-\rangle \leftrightarrow [0]\rangle \) with Stark splitting \(\Omega_c \). By comparing the values of \(\text{Im}(\rho_{10})_{\text{ATS}} \) and \(\text{Im}(\rho_{10})_{\text{QI}} \) in Eqs. (11) and (12) under \(\Delta = 0 \), we find that when \(0 < \Lambda < \Gamma - \Gamma < \Lambda < 0 \), it induces destructive (constructive) interference and shallows (deepens) the absorption valley. Moreover, when \(\Lambda \approx \Gamma \), absorption is almost completely suppressed (i.e., \(\text{Im}(\rho_{10})_{\text{QI}} \approx 0 \)) due to complete destructive interference between transitions \([+\rangle \leftrightarrow [0]\rangle \) and \([-\rangle \leftrightarrow [0]\rangle \). Similarly, one has almost complete constructive interference for \(\Lambda \approx -\Gamma \). When the control field is getting weaker or the decoherence rates are getting greater, the absorption dip corresponding to the transparency might disappear. Therefore, the additional condition for the probe transparency dip to be observed is \(\partial \text{Im}(\rho_{10})_{\text{QI}}/\partial \Delta |_{\Delta=0} > 0 \), giving \(\Omega_c > 2\sqrt{\Gamma - \Lambda/3} \).

To explore the interference properties of the CTW in our Floquet three-level system, the AIC method is used to discern the CTW from QI and ATS models in Eqs. (11) and (12) by evaluating their relative AIC weights for different modulation periods.

A. ATS-like profile

In this section, we use the parameters that satisfy the ATS model in Eqs. (12), i.e., \(\gamma_{10} = 1, \gamma_{21} = 1.4, \gamma_{1} = 0.4, \gamma_{2} = 0.2, \Omega_p = 1 \) and \(\Omega_c = 10.8 \), which is also consistent with the parameters in Fig. 2. Then \(\Gamma = 0.9 \) and \(\Lambda = 0 \), where a non-interference transparency window appears for the un-modulated system. In Fig. 3, the numerical results of \(\text{Im}(\rho_{10})_{\text{QI}} \) obtained from Eq. (11) for the Floquet three-level system. Note that here we only focus on the properties of the CTW and the numerical results is obtained by calculating the dynamic steady states of the Floquet three-level system with time evolution step \(\tau \). As an objective way to identify the more appropriate model for the CTW in the Floquet three-level system, we also plot the fitting profile for each \(\tau \) using QI\((\Omega_c, \Omega_p, \Lambda)\) and ATS\((\Omega_c, \Omega_p, \Gamma)\) models with fitting parameters \(\Omega_p, \Omega_c, \Gamma \) and \(\Lambda \) in Eqs. (11) and (12) as a comparison. For small Floquet period, e.g., \(\tau = 0.001 \), ATS and QI fitting curves converge and both fit well with the simulated absorption. The fitted value of the interference term \(\Lambda \) is close to 0, which indicates that the CTW in rapidly modulated system has the similar properties to the transparency in it un-modulated counterparts. This could be understood as the quantum Zeno effect [50]. For larger Floquet pe-
Hence the AIC per-point weights are

\[\bar{w}_{QI} = \frac{\exp(-\frac{1}{2}I_{QI})}{\exp(-\frac{1}{2}I_{ATS}) + \exp(-\frac{1}{2}I_{QI})} \]

for QI model and \(\bar{w}_{ATS} = 1 - \bar{w}_{QI} \) for ATS model. Greater weight means more likelihood fitting. For \(\tau = 0.001, 0.05, 0.1, 0.15 \), \(\bar{w}_{QI} = 0.51, 0.74, 0.75, 0.64 \) respec-

tively. Not surprisingly, for \(\tau = 0.001 \), \(\bar{w}_{QI} \approx \bar{w}_{ATS} \). In general regions of \(\tau \), \(\bar{w}_{QI} > \bar{w}_{ATS} \), which means that the QI model is indeed the more appropriate model for the CTW in the Floquet three-level system.

B. EIT-like profile

In this section, we further consider the parameters that satisfy the QI model in Eqs. (11), i.e., \(\gamma_{10} = 1, \gamma_{21} = 0.1, \gamma^{\phi}_{1} = 3, \gamma^{\phi}_{2} = 0, \Omega_{p} = 1 \) and \(\Omega_{c} = 3.55 \). Then \(\Gamma = 1.775, \Lambda = 1.725 \), which corresponds to almost completely destructive interference between transitions \(|+\rangle \leftrightarrow |0\rangle \) and \(|-\rangle \leftrightarrow |0\rangle \) under \(\Delta = 0 \). Similar to Sec. III A, Fig. 4 shows the numerical results of Im(\(\rho_{10} \)) for each \(\tau \) using the QI model in Eqs. (11). Note that here the poor ATS fitting results are ignored. When \(\tau = 0.001 \), the CTW has a narrow dip at zero detuning, which is similar to the conventional EIT in the un-modulated system. As the modulation period increases, the dip becomes shallow, and the mod-

ulation weakens the strength of the destructive interference. Therefore, in the EIT parameter regime, the CTW is demonstrated to exhibit an EIT-like profile but with interference adjustable with the modulation period.

IV. DISCUSSIONS AND CONCLUSIONS

We investigate the QIEs in the Floquet two- and three-
level systems. In the Floquet two-level system, the monochromatic periodic pulses (e.g. square-wave) generate equivalent poly-chromatic drivings, which enable
lotus-like multi-peak phenomenon and the coherent destruction of tunneling effect. In the Floquet three-level system, where the probe and control fields are asynchronously modulated by the same square-wave pulses, multiple transparency windows are observed and the quantum interference of the system can be tuned by the modulation periods of the external fields. And the CTW becomes EIT-like or ATS-like by adjusting the modulation periods of the external fields without changing the properties of the systems, which will greatly improve the application prospects of the existing systems. Moreover, the multiple transparency windows may provide a powerful platform beyond the applications based on the traditional single transparent window, such as multi-frequency all-optical switching, which can switch on/off multi-chromatic fields simultaneously.

The modulation scheme proposed here can be easily implemented experimentally in various three-level systems, such as atoms gases [52, 53], superconducting quantum circuits [54], quantum dots [55], nanoplasmics [56], optomechanics [57, 58] and so on. For a qutrit, which is a three-level artificial atom in the superconducting circuits, it can be manipulated by microwave fields. The modulation period τ that can be realized experimentally is about dozens of ns [59], which is much smaller than the coherence time of the system (about 0.5ms) [59]. For such systems, hundreds of periods can be realized within the coherence time of the system.

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant Nos. U1930201, 91836101, U1801661 and 11934010, the Key-Area Research and Development Program of Guangdong Province (Grant No. 2018B030326001), Guangdong Provincial Key Laboratory(Grant No. 2019B121203002), the Science, Technology and Innovation Commission of Shenzhen Municipality (No. JCYJ20170412152620376, No. KYTDPT20181011104202253), Grant No.2016ZT06D348, and the Natural Science Foundation of Guangdong Province (Grant No. 2017B030308003). X.-Q.L acknowledges the support by the Foundation of Hunan Educational Committee (Grant No. 19C1585), the Natural Science Foundation of Hunan Province of China (Grant No. 2020JJJ466), and the National Natural Science Foundation of China (Grants No. 12104214).

Appendix A: The validity of rotating-wave approximation for time-dependent Hamiltonian

In this section, we verify the validity of RWA with the Floquet two-level system described in the main text. The exact Hamiltonian is

$$H(t) = H_0 - \frac{\Omega_p(t)(1 + e^{2i\omega_p t})}{2} \langle 0 | 1 + h.c. \rangle \quad (A1)$$

with $H_0 = \Delta (\langle 0 | 0 \rangle + \langle 1 | 1 \rangle)/2$. Here $\exp(2i\omega_p t)$ is the counter-rotating term proportional to $\exp[i(t\omega_1 + \omega_p - \Delta)t]$. Substituting Eq. (4) in the main text into Eq. (A1), the coupling term between levels $|0\rangle$ and $|1\rangle$ becomes

$$\left[\frac{\Omega_p}{2} - \sum_{n=1}^\infty (-1)^n\Omega_{pn}\cos(\omega_n t) \right] (1 + e^{2i\omega_p t}) \quad (A2)$$

The counter-rotating term $\exp(2i\omega_p t)$ causes rotating terms proportional to $\exp[\pm i(\omega_1 \pm 2\omega_p)t]$, which is usually a fast rotating term ($2\omega_p \gg \omega_n$) that can be ignored. For example in superconducting circuit (atom) experiments, the frequency of near-resonant microwave (laser) is several GHz (THz) [60, 61], however, the modulation frequency is about dozens of MHz [59]. Another condition for RWA to be applicable in Eq. (A2) is $\Omega_{pn} \ll \omega_n + \omega_p$, which can be simplified to $\Omega_{pn} \ll \omega_p \approx \omega_{10}$, and this is the scenario we considered. Note that here we focus on the situation for small n, because the corresponding Rabi frequency Ω_{pn} decreases sharply as n increases. Therefore, in our Floquet system, the RWA is validly and in ω_p’s rotating frame, Eq. (A1) becomes

$$H(t)_{\text{RWA}} = H_0 - \frac{\Omega_p(t)}{2} |0\rangle \langle 1| + h.c. \quad (A3)$$

In Fig. 5 we compare the numerical results of ρ_{11} obtained from Eq. (A1) and Eq. (A3) for the extensive parameters that we study in the main text, and find that the
RWA results agree well with the exact results. Similarly, for our Floquet three-level system, the conditions for the RWA to be applicable are $\omega \ll 2\omega_1, 2\omega_2, \Omega_p \ll \omega_1$ and $\Omega_c \ll \omega_2$.

Appendix B: Analytical results of the Floquet two-level system

![Graph](image)

FIG. 6. $(\Omega_n)^2$ [obtained from Eq. (B15)] as a function of τ with $\Omega_p = 1$. Here we normalized the parameters in terms of γ_{10}.

In the weak driving range ($\Omega_p < \omega$), the sidebands are well separated and show clearly resonance peaks caused by the different frequency components. The analytical results of these sidebands can be easily obtained as

$$
\rho_{11} = \frac{\gamma_1^2 (\Omega_p^2/2)^2}{(\gamma_1')^2 + \Delta^2 + \gamma_1^2 (\Omega_p^2/2)^2} + \sum_{n=1}^{\infty} \frac{\gamma_1^2 \Omega_{pn}^2}{\gamma_1^2 + (\Delta + \omega_n)^2 + \gamma_1^2 \Omega_{pn}^2} \quad (B1)
$$

with $\gamma_1' = \gamma_{10}/2 + \gamma_1^0$. Equation (B1) consists of a series of independent Lorentzians, each one with width $\sqrt{(\gamma_1')^2 + \gamma_1^2 \Omega_{pn}^2}/\gamma_{10}$.

In the strong driving range ($\Omega_p > \omega$), the pattern becomes too complex to get the analytic solution. However, we can get the analytical expression for the resonance condition ($\Delta = 0$) and expand to the general case. When $\Delta = 0$, the optical Bloch equations are

$$
\frac{\partial V(t)}{\partial t} = -\gamma_1' V, \quad (B2)
$$
$$
\frac{\partial U(t)}{\partial t} = \frac{\gamma_{10}}{2} - \frac{1}{2}(\gamma_{10} + \gamma_1')U(t) + i\Omega_p(t)U(t) - \frac{1}{2}(\gamma_{10} - \gamma_1')W(t), \quad (B3)
$$
$$
\frac{\partial W(t)}{\partial t} = \frac{\gamma_{10}}{2} - \frac{1}{2}(\gamma_{10} + \gamma_1')W(t) - i\Omega_p(t)W(t) - \frac{1}{2}(\gamma_{10} - \gamma_1')U(t), \quad (B4)
$$

where

$$
V(t) = \frac{1}{2} \left[\rho_{10}(t) + \rho_{01}(t) \right], \quad (B5)
$$
$$
U(t) = \frac{1}{2} \left[\rho_{11}(t) - \rho_{00}(t) + \rho_{01}(t) - \rho_{10}(t) \right], \quad (B6)
$$
$$
W(t) = \frac{1}{2} \left[\rho_{11}(t) - \rho_{00}(t) - \rho_{01}(t) + \rho_{10}(t) \right]. \quad (B7)
$$

In the absence of damping ($\gamma_{10} = \gamma_1' = 0$), the solutions of Eqs. (B3) and (B4) show that the components $U(t)$ and $W(t)$ oscillate with frequencies $\pm \Omega_p(t)$, and their oscillation frequencies differ by $2\Omega_p(t)$. Therefore, in a frame oscillating with $\Omega_p(t)$ the terms proportional to $(\gamma_{10} - \gamma_1')/2$ oscillate with $\mp 2\Omega_p(t)$. Thus, we can ignore the rapidly oscillating terms, and obtain the solutions of $U(t)$ and $W(t)$ by direct integration [62],

$$
U(t) = -\frac{\gamma_{10}}{2} \int_0^t dt' A(t-t') e^{i\Omega_p(t') - i\omega_n(t')}, \quad (B8)
$$

where

$$
A = \frac{1}{2} (\gamma_{10} + \gamma_1' - i\Omega_p), \quad B = \frac{i(-1)^{n+1} \Omega_{pn}}{\omega_n}. \quad (B9)
$$

It is seen from Eq. (B9) that

$$
\frac{\rho_{11}(t) - \rho_{00}(t)}{2} = \text{Re}[U(t)], \quad (B10)
$$

Combined with $\rho_{11}(t) + \rho_{00}(t) = 1$, the population of state $|1\rangle$ is

$$
\rho_{11}(t) = \frac{1}{2} - \text{Re}[U(t)]. \quad (B11)
$$

From Eq. (B10), we also get

$$
\text{Im}[\rho_{10}(t)] = -\text{Im}[U(t)]. \quad (B12)
$$

Substituting Eq. (B8) into Eq. (B11) and Eq. (B12), and straightforward calculating the steady solution of ρ_{11} and $\text{Im}(\rho_{10})$

$$
\rho_{11}(\infty) = \frac{1}{2} - \frac{\gamma_{10} \gamma_1'}{2} \sum_{n=-\infty}^{\infty} \frac{\Omega_n^2}{\gamma_1^2 + (\Omega_p/2 - n\omega)^2}, \quad (B13)
$$
$$
\text{Im}[\rho_{10}(\infty)] = \frac{\gamma_{10}}{2} \sum_{n=-\infty}^{\infty} \frac{\Omega_n^2 (\Omega_p/2 - n\omega)}{\gamma_1^2 + (\Omega_p/2 - n\omega)^2} \quad (B14)
$$
From Eqs. (B13)-(B15), we find that the steady solutions of \(\rho \) and \(\text{Im}(\rho) \) with \(\Omega \) are a series of Bessel functions with variable \(\Omega_p/\omega \). In fig. 6, we plot \(\rho_n \) as a function of \(\tau \) with \(\Omega_p = 1 \) and find that only \(\Omega_0^2 \neq 0 \), when \(\tau \to 0 \).

Appendix C: Derivation of IQ and ATS models in Eqs. (11) and (12)

In this section, we derive the IQ and ATS models in Eqs. (11) and (12) with no modulated Hamiltonian

\[
H = \frac{\Delta}{2} (|1\rangle\langle 1| + |2\rangle\langle 2|) - (\frac{\Omega_p}{2} |0\rangle\langle 0| + \frac{\Omega_c}{2} |1\rangle\langle 1| + h.c.)
\]

The dynamics affected by the control field could be better studied in dressed state representation by replacing the \(H(t) \) in Eq. (3) with Eq. (C1) \((15) \). The elements in the density matrix associated with the probed transition dynamics are

\[
\dot{\rho}_0 - \frac{i}{\hbar} \left(\Delta + \frac{\Omega_c}{2} \right) \rho_0 - \Lambda \rho_+ + \frac{i \Omega_p}{2\sqrt{2}} (\rho_{00} - \rho_- - \rho_+),
\]

\[
\dot{\rho}_+ = \frac{i}{\hbar} \left(\Delta - \frac{\Omega_c}{2} \right) \rho_+ - \Lambda \rho_0 + \frac{i \Omega_p}{2\sqrt{2}} (\rho_{00} - \rho_+ - \rho_-).
\]

From Eqs. (C2) and (C3), one finds that \(\Lambda \) cross-couples the two dressed states’ dynamics and induces quantum interference between \(\rho_0 \) and \(\rho_+ \). Then we give the first-order steady solutions of \(\rho_0 \) and \(\rho_+ \) with the weak probe field approximation, where the steady-state zero-order populations and coherence are \(\rho_0^0 = 1, \rho_+^0 = \rho_-^0 = 0 \). With these conditions, Eqs. (C2) and (C3) become

\[
\dot{\rho}_0 = - \frac{i}{\hbar} \left(\Delta + \frac{\Omega_p}{2} \right) \rho_0 - \Lambda \rho_+ + \frac{i \Omega_p}{2\sqrt{2}},
\]

\[
\dot{\rho}_+ = - \frac{i}{\hbar} \left(\Delta - \frac{\Omega_p}{2} \right) \rho_+ - \Lambda \rho_0 + \frac{i \Omega_p}{2\sqrt{2}}.
\]

This set of equations can be solved by writing in the matrix form,

\[
\begin{pmatrix}
\dot{\rho}_0 \\
\dot{\rho}_+
\end{pmatrix} =
\begin{pmatrix}
\frac{i \Omega_p}{2\sqrt{2}} & \Lambda \\
\frac{i \Omega_p}{2\sqrt{2}} & \frac{-i \Omega_p}{2\sqrt{2}} + \Lambda
\end{pmatrix}
\begin{pmatrix}
\rho_0 \\
\rho_+
\end{pmatrix},
\]

and then integrating

\[
R(t) = \int_{-\infty}^{t} e^{-M(t-t')\Lambda} dt' = M^{-1} A.
\]

This yields

\[
\rho_0 = \frac{i \Omega_p}{2\sqrt{2}} \left(i (\Delta - \frac{\Omega_p}{2}) + \Lambda \right) + \frac{i \Omega_p}{2\sqrt{2}} \left(i (\Delta + \frac{\Omega_p}{2}) - \Lambda \right) - \Lambda^2,
\]

\[
\rho_+ = \frac{i \Omega_p}{2\sqrt{2}} \left(i (\Delta + \frac{\Omega_p}{2}) + \Lambda \right) + \frac{i \Omega_p}{2\sqrt{2}} \left(i (\Delta - \frac{\Omega_p}{2}) - \Lambda \right) + \Lambda^2.
\]

Then the absorption of the probe field is \(\text{Im}(\rho_{10}) = \text{Im}(\rho_0 + \rho_0 + \rho_-)/\sqrt{2} \).

[1] J. Jing, L.-A. Wu, M. Byrd, J. Q. You, T. Yu, and Z.-M. Wang, Phys. Rev. Lett. 114, 190502 (2015).
[2] W. Zhang, V. V. Dobrovitski, L. F. Santos, L. Viola, and B. N. Harmon, Phys. Rev. B 75, 201302(R) (2007).
[3] W. Zhang, N. P. Konstantinidis, V. V. Dobrovitski, B. N. Harmon, L. F. Santos, and L. Viola, Phys. Rev. B 77, 125336 (2008).
[4] D. V. Else, B. Bauer, and C. Nayak, Phys. Rev. Lett. 117, 090402 (2016).
[5] K. Sacha and J. Zakrzewski, Rept. Prog. Phys. 81, 016401 (2018).
[6] W. D. Oliver, Y. Yu, J. C. Lee, K. K. Berggren, L. S. Levitov, and T. P. Orlando, Science 310, 1653 (2005).
[7] S. Shevchenko, S. Ashhab, and F. Nori, Phys. Rep. 492, 1 (2010).
[8] J. Degert, W. Wohlleben, B. Chatel, M. Motzkus, and B. Girard, Phys. Rev. Lett. 89, 203003 (2002).
[9] Y. Han, X.-Q. Luo, T.-F. Li, W. Zhang, S.-P. Wang, J. S. Tsai, F. Nori, and J. Q. You, Phys. Rev. Applied 11, 014053 (2019).
[10] H. Wu and J.-H. An, Phys. Rev. B 102, 041119(R) (2020).
[11] M. Bukov, L. D’Alessio, and A. Polkovnikov, Adv. Phys. 64, 139 (2014).
[12] W.-L. Song, J.-B. You, J. K. Xu, W. L. Yang, and J.-H. An, Phys. Rev. Applied 14, 054049 (2020).
