Table A1 Description of German Shepherd dog populations. Summary statistics for behaviour traits and other dog attributes within the UK and the Swedish GSD populations.

	UK	Sweden
Number	182	68
Behaviour traits†		
Stranger-directed aggression	0.29±0.88	-0.04±0.9
Dog-directed aggression	-0.13±0.97	0.21±1.14
Stranger-directed fear	-0.02±1.11	-0.13±1.1
Human-directed playfulness	-0.2±1.08	0.23±0.77
Excitability	0.06±0.95	0.17±0.99
Separation anxiety	0.03±0.89	0.02±0.96
Lack of obedience	-0.09±0.95	-0.02±0.85
Stranger-directed interest	0.24±0.96	-0.08±0.79
Attachment/ Attention seeking	-0.12±1	0.06±0.94
Chasing	0.24±0.93	-0.3±0.97
Non-social fear	0.11±1	0.17±1.15
Dog-directed fear	-0.01±0.92	0.11±0.97
Touch-sensitivity	-0.02±0.87	-0.04±1
Sex‡		
Male	97 (53%)	38 (56%)
Female	85 (47%)	30 (44%)
Role‡		
Pet dog	152 (84%)	37 (51%)
Show dog	22 (12%)	1 (1%)
Show and working dog	2 (1%)	0
Working dog	6 (3%)	19 (28%)
Coat length		
Short	106 (58%)	31 (46%)
Long	70 (38%)	35 (51%)
Coat colour‡		
Saddle tan/ Black tan	125 (69%)	13 (19%)
Sable	41 (23%)	32 (47%)
Black	12 (7%)	16 (24%)
Other	4 (2%)	7 (10%)

†Mean and SD
‡Count and percentage
Table A4 Significance of associations between population attributes and genetic ancestries. The proportion of ancestries estimated by ADMIXTURE (cluster 1, cluster 2, cluster 3) based on markers located within selection signature regions were fitted as fixed effects in separate linear models to test their association with different response variables (population attributes: behaviour traits, role of the dog, coat colour and coat length). The P-values for the respective models are shown in the table.

Behaviour traits†	Cluster 1	Cluster 2	Cluster 3
Stranger-directed aggression	0.214	0.497	0.111
Dog-directed aggression	0.324	0.750	0.395
Stranger-directed fear	0.527	0.527	0.282
Human-directed playfulness	0.242	0.797	0.280
Excitability	0.670	0.795	0.573
Separation anxiety	0.210	0.641	0.291
Lack of obedience	0.694	0.733	0.570
Stranger-directed interest	0.056	0.891	0.045*
Attachment/ Attention seeking	0.213	0.262	0.475
Chasing	0.535	0.082	0.120
Non-social fear	0.992	0.081	0.406
Dog-directed fear	0.027*	0.158	0.118
Touch-sensitivity	0.746	0.503	0.998
Show dog	0.037*	0.851	0.027*
Working dog	4.61e-06***	0.580	1e-05***
Coat length	4.96e-05***	0.0914	0.001**
Coat colour	<2e-16***	0.979	<2e-16***

† Behaviour traits were adjusted based on other fixed effects as defined in a previous study¹. However, the population was not fitted as fixed effect for all behaviour traits and coat colour not for Chasing because the ancestry might be confounded with these attributes.

*P < 0.05
**P < 0.01
***P < 0.0001
Table A6 Overlaps between genes located in selection signature regions and candidate genes for morphological traits and behaviour reported in other studies. A list of candidate genes in canids was compiled using the following references and was compared to genes located in regions detected as selection signatures in this study.

Putative trait	Candidate gene†	Study
Athletic success	ARFGGEF3, ASIP, CACHD1, CPQ, GRK4, HTT, RGS12	Kim et al. 201812
Barking	CLINT1	Ilska et al. 201710
Behaviour	ANKRD27, CAB39L, CEP126, EBPL, EPB41L1, FNDCA3, FYN, GRAMD1C, HTT, KPNA3, LDLRAD4, LRP1B, NUDCD1, PREX2, RASGEF1B, RCBTB1, RFX1, SETDB2, SHISA6, SLC17A8, SORCS2, SPATA5, STIM2, TBC1D14, TOP3A, USF3, ZRANB3	MacLean et al. 20195, Zapata et al. 201619, Friedrich et al. 20191
Brain development	CACNA1A, RAII	Pendleton et al. 201814
Coat colour	ASIP, RALY	Vaysse et al. 201217, Dreger et al. 20137, Freedman et al. 20168, Boyko et al. 20104
Domestication	RAB3GAP1	Axelsson et al. 2013³
Fur length, shedding	MC5R	Hayward et al. 20169, Schlamp et al. 201516
Tameness	CCSER1, DEK, EPAS1, FOXN2, GRAMD1C, GRK7, ITCH, KDM1B, NAA50, NCAM1, NCOA6, PIGU, RNF7, SIDT1, SPICE1, TP53INP2, ZDHHC23	Kukekova et al. 201813
Weight	R3HDM1	Plassais et al. 201915

†Candidate genes for multiple traits are highlighted in bold
Figure A1 Ancestry proportions of GSDs based on genotypes of SNPs from putatively selected regions assuming three underlying ancestries (K = 3 clusters) as revealed by ADMIXTURE. Each cluster is represented by a colour and the length of the specific coloured segment indicates the dog’s proportion of membership in that cluster. The labels indicate the origin of the dog (Sweden or UK) and the coat colour (1 = saddle tan, 0 = sable, black or others).
Figure A2 Fine-mapping of target regions under divergent selection between German Shepherd dog populations. Particularly compelling regions that showed evidence of divergent selection in all three selection signature test statistics (SNP window-based F_{ST}, ΔROH_{prop}, and XP-EHH) are located on Chr 1, 24 and 32. The plots illustrate the FDR-adjusted P-values from association analyses for phenotypic traits (behaviour, coat colour, coat length) (above, “Regional association”) and the selection signature test statistics (below, “Selection signatures”) for all SNPs in these regions. The plots were created using a modified R code from that of Saxena et al. 200790.

Chromosome 1 (24.0 to 25.5Mb)
Chromosome 24 (22.0 to 26.0 Mb)

Regional association

Selection signatures
Chromosome 32 (53.5 to 56.7Mb)

Regional association

Selection signatures