Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Original article

CD19 B cell repopulation after ocrelizumab, alemtuzumab and cladribine: Implications for SARS-CoV-2 vaccinations in multiple sclerosis

David Baker a, *, Amy MacDougall b, Angray S. Kang a, c, Klaus Schmierer a, e, Gavin Giovannoni a, c, Ruth Dobson d, e, **

a The Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
b Medical Statistics, London School of Hygiene and Tropical Medicine, London, United Kingdom
c Centre for Oral Immunobiology and Regenerative Medicine, Dental Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
d Preventive Neurology Unit, Wolfson Institute of Population Medicine, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
e Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom

ARTICLE INFO

Keywords:
Multiple sclerosis
Ocrelizumab
Rituximab
CD20
Alemtuzumab
Cladribine

ABSTRACT

Background: Ocrelizumab maintains B-cell depletion via six-monthly dosing. Whilst this controls relapsing multiple sclerosis, it also inhibits seroconversion following SARS-CoV-2 vaccination unlike that seen following alemtuzumab and cladribine treatment. Emerging reports suggest that 1–3% B-cell repopulation facilitates seroconversion after CD20-depletion.

Objective: To determine the frequency of B-cell repopulation levels during and after ocrelizumab treatment.

Methods: Relapse data, lymphocyte and CD19 B-cell numbers were obtained following requests to clinical trial data-repositories. Information was extracted from the phase II ocrelizumab extension (NCT00676715) trial and the phase III cladribine tablet (NCT00213135) and alemtuzumab (NCT00530348/NCT00548405) trials obtained clinical trial data requests

Results: Only 3–5% of people with MS exhibit 1% B-cells at 6 months after the last infusion following 3–4 cycles of ocrelizumab, compared to 50–55% at 9 months, and 85–90% at 12 months. During this time relapses occurred at consistent disease-breakthrough rates compared to people during standard therapy. In contrast most people (90–100%) exhibited more than 1% B-cells during treatment with either cladribine or alemtuzumab.

Conclusions: Most people demonstrate B cell repletion within 3 months of the last treatment of alemtuzumab and cladribine. However, few people repopulate peripheral B-cells with standard ocrelizumab dosing. Controlled studies are warranted to examine a view that delaying the dosing interval by 3–6 months may allow more people to potentially seroconvert after vaccination.

1. Background

Therapeutic B cell targeting antibodies such as ocrelizumab and rituximab are used as a maintenance treatment for the control of multiple sclerosis (MS). Their efficacy may relate to either the direct long-term depletion of memory B cells and development of regulatory B cells within the regenerating CD19 population (Baker et al., 2020a) or indirectly through the blockade of T cell activity (Jelcic et al., 2018).

Six-monthly dosing schedules, as used in MS, maintain continuous CD20+ B cell suppression in the periphery.

Given the blunted antibody response to other vaccines (Baker et al., 2020b) it is not surprising that CD20-depleting antibodies, notably rituximab and ocrelizumab, repeatedly and consistently appear to induce poor seroconversion following natural infection with SARS-CoV-2 (Louapre et al., 2020; Sormani et al., 2021a). Furthermore seroconversion in CD20-depleted, COVID-19 vaccinated individuals is universally

MedRXiv: doi: https://medrxiv.org/cgi/content/short/2021.09.26.21264023v1
* Corresponding author at: The Blizard Institute, Queen Mary University of London, 4 Newark Street, London, E1 2AT, United Kingdom.
** Co-corresponding author at: Preventive Neurology Unit, Wolfson Institute of Population Health, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom.
E-mail addresses: david.baker@qmul.ac.uk (D. Baker), Ruth.Dobson@qmul.ac.uk (R. Dobson).

https://doi.org/10.1016/j.msard.2021.103448
Received 9 October 2021; Received in revised form 30 November 2021; Accepted 1 December 2021
Available online 4 December 2021
2211-0348 © 2021 Elsevier B.V. All rights reserved.
poor (Achiron et al., 2021; Sormani et al., 2021b; Tallantyre et al., 2021). In contrast many people treated with cladribine tablets and alemtuzumab after therapy show seroconversion following COVID-19 vaccination (Achiron et al., 2021; Sormani et al., 2021b; Tallantyre et al., 2021).

Whilst protection from MS may result from depletion of memory B cells (Baker et al., 2017a), seroconversion has been attributed to immature/naïve B cell repletion and occurs following the development of 1–3% B cell repopulation (Madelon et al., 2021; Mruk et al., 2021; Stefanski et al., 2021; Disanto et al., 2021). However, the frequency of people achieving 1% B cell repopulation at specific time intervals following ocrelizumab dosing is largely unknown (Gibiansky et al., 2021). We hypothesised that it may require an extended-dose interval to achieve 1% peripheral B cell repopulation in at least 50%, given the median time of 60–72 weeks for B cells to recover to the lower limit of normal (80 cells/μl) following ocrelizumab infusion (Baker et al., 2020a).

2. Methods

Anonymised trial data was provided by the trial sponsors following an independent panel review of the data analysis plans at clinical-trialsdatarequest.com of the data analysis plans (#5836. #11529). The trials were performed in accordance with the International Conference on Harmonisation Guidelines for Good Clinical Practice and the principles of the Declaration of Helsinki. All patients provided written informed consent. This analysis was not subject to further ethical review.

Access to the Roche/Genentech phase II ocrelizumab extension trial in (NCT00676715) was requested (#5984) and supplied under contract to the Vivli, Inc managed portal. Data from people with relapsing MS who had received three or four 6-monthly cycles of 600 mg ocrelizumab prior to an 18 month treatment-free observation period were used. Lymphocyte and CD19+ total lymphocyte count or the absolute number of cells/μl following either 4 infusion cycles (0–72 weeks) of ocrelizumab or 3 ocrelizumab infusion cycles (24–72 weeks) after either placebo or beta interferon (0–24 weeks). At 24 weeks after last infusion 4/123 pwMS had over 40cells/μl. Relapses were ascribed to approximate times following the last infusion and the unadjusted, annualized relapse rate were calculated. PwMS people with multiple sclerosis.

Table 1

Treatment	Time from Treatment Onset	Number of CD19+ cells of total lymphocytes/total 1% B cells	2% B cells	3% B cells
Ocrelizumab	6 months	4/81 (5%)	3/81 (4%)	2/81 (2%)
3 cycles	9 months	43/80 (54%)	30/80 (38%)	22/80 (28%)
Ocrelizumab	12 months	76/84 (90%)	68/84 (81%)	57/84 (68%)
4 cycles	15 months	44/48 (92%)	41/48 (85%)	35/48 (73%)
18 months	6 months	29/31 (93%)	25/31 (81%)	22/31 (71%)
9 months	1/39 (3%)	1/39 (3%)	1/39 (3%)	
12 months	20/40 (50%)	11/40 (28%)	8/40 (20%)	
15 months	35/41 (85%)	25/41 (61%)	19/41 (46%)	
18 months	26/28 (93%)	20/28 (71%)	14/28 (50%)	
Ocrelizumab	0 months	68/92 (74%)	25/92 (27%)	13/92 (14%)
3 cycles	6 months	67/84 (80%)	20/84 (24%)	6/84 (7%)
Ocrelizumab	9 months	77/83 (93%)	64/83 (77%)	51/83 (61%)
4 cycles	12 months	84/84 (100%)	81/84 (96%)	76/84 (90%)
15 months	49/49 (99%)	47/49 (96%)	46/49 (94%)	46/49 (94%)
18 months	37/37 (100%)	36/37 (99%)	34/37 (92%)	31/37 (84%)
0 months	36/46 (78%)	13/46 (28%)	5/46 (11%)	0/46 (0%)
6 months	31/39 (79%)	7/39 (18%)	1/39 (3%)	1/39 (3%)
9 months	42/43 (98%)	34/43 (79%)	24/43 (56%)	19/43 (44%)
12 months	41/41 (100%)	39/41 (95%)	38/41 (93%)	31/41 (76%)
15 months	29/29 (100%)	29/29 (100%)	28/29 (97%)	25/29 (86%)
18 months	28/28 (100%)	28/28 (100%)	26/28 (93%)	24/28 (86%)

Individuals received 600 mg ocrelizumab Q24W for 3 or 4 cycles followed an 18 month treatment-free period. The data was extracted from the phase II ocrelizumab extension study (Baker et al., 2020a) supplied, via the www.vivil.org portal, using R software. The last ocrelizumab infusion occurred around 72 weeks. Data capture was scheduled for weeks 96 (6 months), 108 (9 months), 120 (12months), 132 (15 months) and 144 (18 months). The results represent the approximate time from the last infusion (months) and report the frequency of people reaching 1%, 2% or 3% CD19 of total lymphocyte count or the absolute number of cells/μl following either 4 infusion cycles (0–72 weeks) of ocrelizumab or 3 ocrelizumab infusion cycles (24–72 weeks) after either placebo or beta interferon (0–24 weeks).
Lymphocyte numbers and CD19 peripheral counts information from the phase III (CLARITY) clinical trial of oral cladribine (NCT00213135) was supplied by the European Medicines Agency following a Freedom of Information request (Baker et al., 2017a). Data relating to the 3.5 mg/kg licenced dose was extracted. In addition, access to the Sanofi/Genzyme phase III alemtuzumab CARE-MS1 (NCT00530348) and CARE-MS-2 (NCT00548405) trials (Baker et al., 2017b) was requested (#11529) and supplied under contract by the clinicalstudydatarequest.com portal. Lymphocyte and peripheral blood CD19 B cell data, relating to the 12 mg licenced dose, were extracted from the CARE-MS trials.

3. Results

3–5% of people had repopulated to 1–3% B cell count by the end of the standard ocrelizumab dose interval of 6 months (Table 1). At 9 months following treatment cessation there was 50–55% B cell repopulation, and at 12 months 85–90% B cells had repopulated to at least 1% B cells (Table 1, Fig. 1). During the treatment-free observation period between week 96 to week 108 there were 9 relapses (3 cycles) and 4 relapses in people who received 4 cycles of treatment (Table 1). This frequency of disease breakthrough was comparable to 9/99 people relapsing (3 cycles) and 6/49 (4 cycles) during week 72–96 period on standard treatment schedule (Table 1, Supplementary Figure 1 & 2). There was again evidence that baseline BMI was associated with CD19 re-population. For each increase in BMI of 5 units, the odds of having CD19 count above 1% of total lymphocyte count increased by 2.50 (95% confidence interval: 1.45–5.20; \(p = 0.003 \)) as suggested previously (Kletzl et al., 2019; Signoriello et al., 2020).

In contrast to the persistent B cell depletion following ocrelizumab treatment (Table 1), the majority of people treated with either cladribine tablets (Table 2) or alemtuzumab (Table 3) maintained 1% B cell levels and also developed at least 10–20 CD19 B cells/μl, in contrast to levels detected after ocrelizumab (Table 1–3). B cell depletion was most marked about after the second set of treatments during the cladribine treatment cycle (Table 2). Depletion was evident within the first month of alemtuzumab treatment followed by rapid B cell repopulation (Table 3).

4. Discussion

During the COVID-19 pandemic ocrelizumab infusions were delayed by 1–3 months, with no apparent major rebound in disease activity, suggesting the potential safety of an delayed-dosing scheme (Maarouf et al., 2020; Rolfes et al., 2021; van Lierop et al., 2021; Baker et al., 2021). The importance of mounting a sterilising response relates not only to clinical severity of infection, but also that immunosuppressed individuals may harbour prolonged SARS-CoV-2 infection allowing serial mutations to develop, impacting on infectivity and immune escape (Khoury et al., 2021; Corey et al., 2021). Given the importance of neutralizing antibody responses (Khoury et al., 2021), and the finding that protective SARS-CoV-2 antibody titres subside over time, COVID-19 breakthrough can and will occur. This is already seen in vaccinated, healthy individuals (Shrotri et al., 2021). This is further complicated as SARS-CoV-2 variants appear that have increased infectivity and immune-escape features requiring more antibody to neutralize infection, compared to the initial SAR-CoV-2 strain (Uru et al., 2021). As CD20-treated individuals often produce lower titre antibody responses than untreated controls (Achiron et al., 2021;
Multiple Sclerosis and Related Disorders 57 (2022) 103448

4

gent agents are sufficient to protect CD20-depleted individuals. However, 2021), which could help augment the protective effect of any immunity high-titre antibody response through monoclonal antibody cocktails or

and CD8 anti-viral T cell responses following the initial vaccination that particular need of effective booster (third cycle) vaccinations to limit multiple sclerosis.

Data supplied by the European Medicines Agency (Gibiansky et al., 2021). The repeated one month later. The information was extracted from the phase III trial

Individuals received 0.875 mg/kg cladribine tablets over 1 week and this was repeated one month later. The information was extracted from the phase III trial data supplied by the European Medicines Agency (Gibiansky et al., 2021). The second cycle of cladribine was not adjusted to lymphopenia as occurs in the li...
Funding
This research received no specific funding.

CReditiT authorship contribution statement

David Baker: Conceptualization, Writing – original draft, Formal analysis, Writing – review & editing. Amy MacDougall: Formal analysis, Writing – review & editing. Angray S. Kang: Conceptualization, Writing – review & editing. Klaus Schmierer: Conceptualization, Writing – review & editing. Gavin Giovannoni: Conceptualization, Writing – review & editing. Ruth Dobson: Conceptualization, Writing – original draft, Writing – review & editing.

Declaration of Competing Interest

DB, KS, GG RB, have received compensation for consultancy/educational activity from Roche/Genentech, Merck, and/or Sanofi/Genzyme who manufacture COVID-19 and MS drugs discussed in this study. These were not involved in the content or the decision to publish. AM, AK have nothing relevant to declare. Although considered irrelevant DB, KS, GG RB have received compensation for consultancy/educational activity from all companies manufacturing licenced disease modifying agents in the MS space.

Acknowledgments

This publication is in part based on research using data from data contributors Roche and Sanofi that has been made available through Vivli, Inc and Clinicalstudydatarequest.com. Clinicalstudydatarequest.com and Vivli have not contributed to or approved, and are not in any way responsible for, the contents of this publication. Data analysis, interpretation and conclusions made are independent from Roche, Sanofi and Merck.

References

Achiron, A., Mandel, M., Dreyer-Alster, S., Harari, G., Magalashvili, D., et al., 2021. Humoral immune response to COVID-19 and MS drugs discussed in this study. These were not involved in the content or the decision to publish. AM, AK have nothing relevant to declare. Although considered irrelevant DB, KS, GG RB have received compensation for consultancy/educational activity from all companies manufacturing licenced disease modifying agents in the MS space.

DB, KS, GG RB have received compensation for consultancy/educational activity from Roche/Genentech, Merck, and/or Sanofi/Genzyme who manufacture COVID-19 and MS drugs discussed in this study. These were not involved in the content or the decision to publish. AM, AK have nothing relevant to declare. Although considered irrelevant DB, KS, GG RB have received compensation for consultancy/educational activity from all companies manufacturing licenced disease modifying agents in the MS space.

König, M., Torguetan, H.M., Overas, M.H., Chopra, A., Lorenzten, A.R., et al., 2021. Efficacy and safety of a third SARS-CoV-2 vaccination in multiple sclerosis vaccine non-responders. MedRxiv. https://doi.org/10.1101/2021.07.21.21266669.

Rools, L., Pawlik, M., Pfeiffer, S., Nelte, C., Lux, A., et al., 2021. Ocrelizumab extended interval dosing in multiple sclerosis in times of COVID-19. Neuroimmunol. Neuroinflamm. 10, e976. https://doi.org/10.18291/nni.210195.

Lee, C.C., Hsieh, C.C., Ko, W.C., 2021. Molnupiravir—a novel oral anti-SARS-CoV-2 Agent. Antibiotic 10, 1294.

References

Achiron, A., Mandel, M., Dreyer-Alster, S., Harari, G., Magalashvili, D., et al., 2021. Humoral immune response to COVID-19 and MS drugs discussed in this study. These were not involved in the content or the decision to publish. AM, AK have nothing relevant to declare. Although considered irrelevant DB, KS, GG RB have received compensation for consultancy/educational activity from all companies manufacturing licenced disease modifying agents in the MS space.

DB, KS, GG RB have received compensation for consultancy/educational activity from Roche/Genentech, Merck, and/or Sanofi/Genzyme who manufacture COVID-19 and MS drugs discussed in this study. These were not involved in the content or the decision to publish. AM, AK have nothing relevant to declare. Although considered irrelevant DB, KS, GG RB have received compensation for consultancy/educational activity from all companies manufacturing licenced disease modifying agents in the MS space.

König, M., Torguetan, H.M., Overas, M.H., Chopra, A., Lorenzten, A.R., et al., 2021. Efficacy and safety of a third SARS-CoV-2 vaccination in multiple sclerosis vaccine non-responders. MedRxiv. https://doi.org/10.1101/2021.07.21.21266669.

Rools, L., Pawlik, M., Pfeiffer, S., Nelte, C., Lux, A., et al., 2021. Ocrelizumab extended interval dosing in multiple sclerosis in times of COVID-19. Neuroimmunol. Neuroinflamm. 10, e976. https://doi.org/10.18291/nni.210195.

Lee, C.C., Hsieh, C.C., Ko, W.C., 2021. Molnupiravir—a novel oral anti-SARS-CoV-2 Agent. Antibiotic 10, 1294.

References

Achiron, A., Mandel, M., Dreyer-Alster, S., Harari, G., Magalashvili, D., et al., 2021. Humoral immune response to COVID-19 and MS drugs discussed in this study. These were not involved in the content or the decision to publish. AM, AK have nothing relevant to declare. Although considered irrelevant DB, KS, GG RB have received compensation for consultancy/educational activity from all companies manufacturing licenced disease modifying agents in the MS space.

DB, KS, GG RB have received compensation for consultancy/educational activity from Roche/Genentech, Merck, and/or Sanofi/Genzyme who manufacture COVID-19 and MS drugs discussed in this study. These were not involved in the content or the decision to publish. AM, AK have nothing relevant to declare. Although considered irrelevant DB, KS, GG RB have received compensation for consultancy/educational activity from all companies manufacturing licenced disease modifying agents in the MS space.