COVID-19 in long-term care facilities for the elderly: laboratory screening and disease dissemination prevention strategies

Edgar Nunes de Moraes (https://orcid.org/0000-0002-8923-1029) 1
Luciana de Gouvêa Viana(https://orcid.org/0000-0001-8967-2433) 2
Letícia Maria Henriques Resende (https://orcid.org/0000-0003-1238-0488) 2
Leonardo de Souza Vasconcellos (https://orcid.org/0000-0002-9456-8726) 2
Alexandre Sampayo Moura (https://orcid.org/0000-0002-4818-5425) 3
André Menezes (https://orcid.org/0000-0002-0358-6161) 4
Nereu Henrique Mansano (https://orcid.org/0000-0002-0937-3597) 5
Rogério Rabelo (https://orcid.org/0000-0002-8723-4461) 6

Abstract An infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the 2019 Novel Coronavirus Disease (COVID-19) pandemic has unveiled a hitherto hidden reality: the vulnerability of the population living in long-term care facilities for the elderly (LTCF). To date, several scientific publications have revealed a concentration of up to 60% of deaths attributed to COVID-19 in such institutions. Most LTCF residents share the primary risk factors currently associated with increased morbimortality due to the COVID-19 infection. It is crucial to define actions to prevent SARS-CoV-2 spread in this environment, besides the usual measures of social distancing and isolation of the carriers of this disease. This paper proposes strategies for the investigation of this infection in LTCF residents and workers using laboratory tests available in Brazil. The early identification of individuals with SARS-CoV-2, who may actively and continuously spread the virus, allows adopting measures aimed at interrupting the local transmission cycle of this infection.

Key words SARS-CoV-2, COVID-19, Older adults, Long-term care facilities, Screening, laboratory diagnosis

Resumo A pandemia da “novel coronavirus disease” 2019 (COVID-19), infecção causada pelo coronavírus 2 da síndrome respiratória aguda grave (SARS-CoV-2), tem descortinado uma realidade até então oculta: a vulnerabilidade da população residente em instituições de longa permanência para idosos (ILPI). Diversas publicações científicas têm revelado a concentração de até 60% dos óbitos atribuídos à COVID-19 em tais instituições. A maioria dos residentes em ILPI reúne os principais fatores de risco para morbimortalidade pela COVID-19, o que torna imprescindível a definição de ações voltadas à prevenção da transmissibilidade do SARS-CoV-2 neste ambiente, além das medidas usuais de distanciamento social e isolamento dos portadores da doença. Propõem-se, no presente artigo, estratégias de rastreamento da infecção em residentes e trabalhadores de ILPI por meio de testes laboratoriais disponíveis no Brasil. A identificação precoce de indivíduos portadores do SARS-CoV-2 com possibilidades de transmissão ativa e continuada do vírus permite a adoção de medidas que interrompam o ciclo de transmissão local da infecção.

Palavras-chave SARS-CoV-2, COVID-19, Idosos, Instituições de longa permanência para idosos, Rastreamento
Introdução

As instituições de longa permanência para idosos (ILPI) representam o principal fator de risco para morbimortalidade da infecção pelo coronavírus 2 da síndrome respiratória aguda grave (SARS-CoV-2), pois reúnem todas as condições necessárias para a “tempestade perfeita”. Em países da América do Norte, Ásia, Europa e Oceania, entre 30% e 60% de todos os óbitos pela coronavirus disease 2019 (COVID-19) ocorreram nas ILPI e afins1,2. Após a introdução do vírus nestas instituições, a taxa de transmissibilidade é superior a 60%, com alta mortalidade3,4. Certamente, a maior mortalidade deve-se à causalidade cumulativa e sinérgica associada à infecção pelo SARS-CoV-2 em idosos frágeis. Tais idosos são sabidamente mais susceptíveis à doença, pois apresentam múltiplos fatores de risco, como hipertensão arterial, diabetes mellitus e doenças cardiovasculares, que, usualmente, ocorrem de forma associada5-9. Além da maior prevalência de comorbidades, os idosos institucionalizados são mais frágeis e apresentam dependência funcional, o que reduz ainda mais sua reserva homeostática, culminando em maior comprometimento da sua capacidade de recuperação de qualquer agravamento agudo10. E, por fim, residem em ambiente coletivo com outros idosos frágeis e um número significativo de funcionários que, transitem em outros ambientes de risco, como hospitais e outros serviços de saúde, outras ILPI, transporte público, etc.

Medidas preventivas e de controle da COVID-19 são as estratégias mais efetivas na redução do risco de contaminação dos idosos residentes em ILPI: restrição humanizada de visitas e controle de acesso de trabalhadores e prestadores de serviços, com a exigência de lavagem rigorosa e adequada das mãos ou uso de álcool em gel a 70%, rastreamento da presença de sintomas gripais (febre e sintomas respiratórios) e troca de roupas e calçados. Outras medidas preventivas incluem distanciamento social, maior separação entre os trabalhadores e os idosos nas atividades não relacionadas ao cuidado, redução das atividades em grupo e das refeições coletivas e reforço das medidas higiénicas e de limpeza para os ambientes da ILPI. O uso de máscara facial é recomendado para todos os trabalhadores da ILPI e para os idosos residentes nas atividades fora do quarto. Deve-se recomendar que trabalhadores evitem contato com outras ILPI ou serviços de saúde durante a pandemia, particularmente se houver casos confirmados de COVID-19 nestes locais11,12.

Um grande desafio no controle da pandemia da COVID-19 está no reconhecimento de uma pessoa infectada e na interrupção da rota de transmissão do SARS-CoV-2. Existem evidências crescentes de que muitos pacientes com COVID-19 são assintomáticos ou apresentam apenas sintomas leves, mas são capazes de transmitir o vírus a outras pessoas. Rigorosas investigações epidemiológicas e testes laboratoriais são úteis na identificação de pessoas com infecção assintomática e, para melhor prevenir e controlar a doença, recomenda-se rastrear populações de alto risco, especialmente em um espaço confinado com infecção diagnostica ou suspeita11. Entende-se, portanto, que o monitoramento dos indivíduos com síndrome gripal e, também, dos assintomáticos deve ser adicionado às medidas preventivas e de controle da infecção pelo SARS-CoV-2 nas ILPI, tanto para idosos residentes quanto para trabalhadores. Integra-se a esta estratégia o rastreamento laboratorial utilizando testes capazes de detectar a presença do vírus (testes antígenicos ou moleculares) e/ou de anticorpos contra o vírus (testes imunológicos) como parte da rotina nas ILPI ao longo do enfrentamento da pandemia.

O principal objetivo do rastreamento laboratorial nas ILPI é a identificação de idosos residentes e trabalhadores portadores do SARS-CoV-2, que, portanto, apresentam potencial de transmissão ativa e continuada do vírus para todos os outros coabitantes e frequentadores da instituição afetada. Este reconhecimento permite a adoção de medidas restritivas, como o afastamento do funcionário ou o isolamento rigoroso do idoso, quebrando, assim, o ciclo de transmissão local do vírus. Considerando os recursos humanos e tecnológicos disponíveis nos sistemas de saúde público e privado do Brasil, propõe-se uma estratégia de rastreamento e monitoramento destes ambientes com vistas a mitigar a transmissão do SARS-CoV-2.

Diagnóstico laboratorial da infecção pelo SARS-CoV-2

A melhor estratégia para a detecção do vírus SARS-CoV-2 é a reação em cadeia da polimerase com transcrição reversa em tempo real (rRT-PCR), considerada “padrão ouro” para o diagnóstico da COVID-19 em indivíduos sintomáticos. O exame é realizado em amostras do trato respiratório superior (swab de nasofarínge e/orofarínge) e inferior (esarro, aspirado traqueal ou lavado broncoalveolar). O rRT-PCR
detecta partículas do RNA viral, infectantes e não infectantes, que confirmam a presença do vírus no paciente. Na maioria dos indivíduos com COVID-19 clinicamente manifesta, RNA viral no swab nasofaríngeo torna-se detectável desde o primeiro dia de sintomas, atinge o pico de detecção na primeira semana e começa a declinar na terceira, tornando-se, subsequentemente, indetectável. Em alguns casos, o RNA viral foi detectado por rRT-PCR mesmo após a sexta semana de infecção. Por outro lado, tentativas de isolar o vírus em cultura não tiveram sucesso após o oitavo dia do início dos sintomas, o que se correlaciona com o declínio da infectividade ao final da primeira semana da doença. Em um estudo de 205 pacientes com COVID-19, a positividade para rRT-PCR foi maior no lavado broncoalveolar (93%), seguido de escarro (72%), swab nasofaríngeo (63%), swab orofaríngeo (32%), fezes (29%) e sangue (1%). Resultados falso-negativos ocorreram principalmente devido ao momento inadequado da coleta de amostras em relação ao início da doença e deficiência na técnica de coleta, principalmente nos swabs nasofaríngeos. A especificidade da maioria dos testes de rRT-PCR é de 100%. Ocasionalmente, resultados falso-positivos podem ocorrer devido à falhas técnicas. Além das exigências pré-analíticas quanto à coleta, conservação e transporte da amostra, impactando na sensibilidade do teste, o rRT-PCR depende de equipamentos sofisticados que podem não estar presentes em locais com recursos limitados, dificultando o acesso ao exame. Ressalta-se, também, a escassez de kits de coleta de amostras respiratórias em diversos países, dada a grande demanda gerada pela pandemia da COVID-19.

Os testes imunológicos chegaram ao mercado como alternativa para suprir a demanda de exames para o diagnóstico, acompanhamento e mapeamento epidemiológico da COVID-19. Entretanto, é importante considerar as limitações destes exames, em especial no que se refere à dinâmica da resposta imunológica ao SARS-CoV-2. Trata-se da detecção de anticorpos (anticorpos totais IgA/IgG ou IgM/IgG ou anticorpos isolados IgA, IgG e IgM) no sangue total, sangue capilar, soro ou plasma (testes laboratoriais remotos – TLR, testes rápidos ou point of care por imunocromatografia) ou soro/plasma (ELISA ou quimioluminescência).

Metanálise publicada recentemente avaliou os diferentes métodos sorológicos para identificação da infecção pelo SARS-CoV-2 revelando alta especificidade, com destaque ao ELISA e à imunocromatografia, atingindo níveis superiores a 99%. Em relação à sensibilidade, destacaram-se o ELISA e a quimioluminescência (90 a 96%). Já a imunocromatografia, metodologia aplicada nos testes rápidos, apresentou sensibilidade entre 80 e 86%. Além disso, independentemente do método, o estudo apontou que testes combinados de IgG/IgM parecem ser uma escolha melhor em termos de sensibilidade do que a determinação isolada de apenas um tipo de anticorpo.

Considerando a relação direta entre os testes sorológicos baseados na pesquisa de anticorpos e a resposta imune humoral secundária a uma infecção, o momento de realização do exame diante de provável exposição é crucial. De acordo com as medidas cinéticas de alguns estudos, tem-se o pico de IgM de 5 a 12 dias após a infecção pelo SARS-CoV-2, seguido por lenta queda. IgG atinge concentrações máximas após o dia 20, aproximadamente, à medida em que os anticorpos IgM desaparecem. Estas estimativas devem ser levadas em consideração na condução de estudos de soroprevalência e, no nível individual, talvez possam ser adotadas estratégias diferenciadas, como a repetição do teste frente a um achado negativo.

Pesquisadores brasileiros conduziram outra metanálise com vistas a avaliar o desempenho de diferentes tipos de testes para diagnóstico da COVID-19 atualmente disponíveis no Brasil. Foram avaliados 16 testes devidamente registrados na Agência Nacional de Vigilância Sanitária (ANVISA), em sua maioria testes rápidos, para detectar anticorpos IgM e/ou IgG. Os autores concluíram que a precisão diagnóstica combinada dos testes disponíveis no Brasil foi satisfatória, mas destacaram a possibilidade de 10 a 44% de resultados de falso-negativos de testes que detectam anticorpos SARS-CoV-2 IgM, úteis na detecção de COVID-19 na fase aguda a apontaram para a necessidade de estudos futuros que abordem o desempenho diagnóstico de testes para a COVID-19 na população brasileira.
regiões com transmissão local do SARS-CoV-2, considera-se que tais testes apresentam alto valor preditivo positivo (VPP) e baixo valor preditivo negativo (VPN), particularmente quando aplicado na fase aguda da doença, ou seja, um teste negativo não afasta a infecção pelo novo coronavírus, tampouco o risco de transmissibilidade do paciente. Devido a tais limitações, a Organização Mundial da Saúde (OMS) recomenda a utilização do método molecular no diagnóstico da infecção pelo SARS-CoV-2. A entidade reconhece o papel dos exames sorológicos na pesquisa e na vigilância da doença, mas não os recomenda para a detecção de casos13. O Centro de Controle e Prevenção de Doenças dos Estados Unidos (CDC) segue a mesma linha e não recomenda os testes imunológicos para confirmação da infecção aguda pelo novo coronavírus, mas sim, o rRT-PCR20. Considera-se, porém, que, se usados em conjunto com outros testes diagnósticos e história clínica, testes sorológicos podem ser aplicados como parte do algoritmo de definição de COVID-19 e identificar casos prováveis31.

O Ministério da Saúde do Brasil preconiza que os TLR sejam realizados apenas em pessoas sintomáticas que receberam o diagnóstico de síndrome gripal compatíveis com a COVID-19, a partir do 8º dia do início do quadro22. O TLR disponibilizado pelo Ministério da Saúde é denominado ONE STEP COVID-2019 TEST® e pode ser realizado com amostras de sangue total, soro ou plasma humano colhido por punção capilar (polpa digital) ou por flebotomia (punção venosa). O teste detecta a presença de anticorpos IgM e IgG, sem distinção, e os resultados são fornecidos em 15 minutos. Segundo dados do fabricante, este apresenta sensibilidade relativa de 86,43% e especificidade relativa de 99,57%, sendo recomendada a realização do exame e amarelo após 10 dias de provável infecção ou 7 dias após os sintomas iniciais, para que a detecção dos anticorpos ocorra com maior precisão. Nestes casos, a positividade do teste pode contribuir para confirmar o diagnóstico, em pacientes sintomáticos. Na ausência de sintomas, a positividade no teste pode indicar (se for um verdadeiro positivo) presença de anticorpos contra o SARS-CoV-2 e, consequentemente, exposição ao vírus, não sendo possível afirmar se o indivíduo é infectante ou não neste momento23. No caso das ILPI, esta positividade é uma forte evidência de circulação do vírus neste ambiente, principalmente se ocorrer no idoso residente. O trabalhador com TLR positivo deverá ser afastado por, no mínimo, 10 dias, para se reduzir o risco de contaminação dos idosos residentes na ILPI. Idealmente, todos os trabalhadores e residentes da ILPI deveriam fazer o rRT-PCR para se reconhecer rapidamente os indivíduos portadores do vírus e afastá-los ou isolá-los rigorosamente, reduzindo, assim, o risco de transmissibilidade da doença na ILPI.

No Brasil, estabeleceu-se como prioridade a realização dos TLR em pessoas com 60 anos ou mais e residentes em ILPI23. Devido às limitações ainda existentes no país para realização do rRT-PCR, inquéritos com testes sorológicos sequenciais nos idosos e trabalhadores de ILPI poderiam ser uma alternativa nas estratégias de contenção e detecção precoce da COVID-19 nestas entidades24. A testagem para COVID-19 em ILPI deve ser acompanhada de medidas concretas de controle e prevenção da doença, como isolamento ou transferência dos trabalhadores infectados e afastamento dos trabalhadores com a infecção, assim como para a reintegração ou readmissão dos idosos e o retorno ao trabalho dos profissionais. Infelizmente, o “Tendão de Aquiles” nas ILPI são os residentes e trabalhadores assintomáticos, que também devem ser monitorados de forma seriada e contínua ao longo da pandemia4.

Diante do exposto, propõem-se algumas estratégias de rastreamento laboratorial da COV-ID-19 nas ILPI, para idosos e trabalhadores, sintomáticos ou não, considerando suas vantagens e desvantagens.

Situação 1: idoso residente em ILPI sintomático

Na presença de sintomas da COVID-19, o idoso residente em ILPI deve ser transferido imediatamente para hospital ou enfermaria de baixa complexidade, onde receberá a assistência médica e interdisciplinar, conforme o quadro clínico e funcional, caso a instituição não tenha condições adequadas de isolamento25. Os idosos institucionalizados são, usualmente, dependentes para as atividades de vida diária e, portanto, necessitam de cuidados de enfermagem26. Outro aspecto relevante é a rapidez com que quadros sintomáticos leves podem se agravar exigindo decisões quanto à proporcionalidade terapêutica e início de medidas suportivas e/ou cuidados paliativos. Idosos com critérios de gravidade, como insuficiência respiratória e/ou hemodinâmica, devem ser rigorosamente avaliados quanto à proporcionalidade terapêutica, utilizando-se a Classificação Clínico-Funcional proposta por Moraes et al.19. Medidas de suporte respiratório e hemodinâmico estão recomendadas nos idosos
estratos 1 a 5 e nos idosos estratos 6 e 7, desde que não apresentem evidências de doença incurável e avançada. Idosos estrato 8, bem como estratos 6 e 7 devido a doença incurável e avançada, devem receber tratamento sintomático com medidas de conforto (cuidado paliativo predominante). A diferença entre eles será o perfil de medidas instituídas e o potencial de reversibilidade, que é inversamente proporcional à fragilidade e/ou ao avanço da doença incurável e avançada. Esse potencial, associado às preferências do paciente, determinarão os objetivos do cuidado e o plano terapêutico. Idosos nos estratos 9 e 10 devem receber cuidado paliativo exclusivo. Por definição, devem ser considerados em fase final de vida se tiverem expectativa de vida inferior a 12 meses previamente à COVID-19, seja por doença incurável e avançada, seja por fragilidade grave.

Em ambas as situações (quadro leve ou grave) está indicada a realização do rRT-PCR para confirmação diagnóstica. Na presença de positividade, recomenda-se a realização do rRT-PCR em todos os idosos e trabalhadores da ILPI de origem. Na ausência de condições de realização em todos indivíduos, recomenda-se que o rRT-PCR seja feito, prioritariamente, no setor destinado aos idosos COVID-19 ou, em último caso, nos residentes sintomáticos ou naqueles de alto risco (idosos recém-admitidos da comunidade ou de outras ILPI e nos que necessitem de tratamento em serviços de saúde externos, como hemodiálise, dentre outros)27. A readmissão do idoso na ILPI poderá ser realizada após 14 dias do início dos sintomas, desde que esteja assintomático por, pelo menos, 72 horas (sem uso de antitérmicos) e, pelo menos, 10 dias a partir do início dos sintomas; Estratégia baseada em testes laboratoriais: o retorno às atividades está condicionado à resolução completa da febre (sem uso de antitérmicos) e dos sintomas respiratórios (tosse e dispneia), associada a dois resultados negativos consecutivos de rRT-PCR realizados com intervalo maior ou igual a 24h.

As ILPI devem estar organizadas para a adoção de medidas de recomposição da força de trabalho, devido a substituição dos profissionais afastados, com o objetivo de se evitar a sobrecarga dos trabalhadores em atividade e, consequentemente, a perda da qualidade dos cuidados com os idosos residentes na instituição. Sugere-se as seguintes alternativas: remanejamento de profissionais de outros serviços do Sistema Único de Assistência Social ou do Sistema Único de Saúde (da rede pública ou privada), ou até mesmo de outras políticas públicas, cujas atividades tenham sido temporariamente reduzidas ou suspensas; contratação temporária em caráter emergencial de novos trabalhadores, dentre outros arranjos localmente possíveis29.

Situação 3: idoso residente e trabalhador de ILPI assintomáticos

A maioria das publicações científicas analisadas utilizou a estratégia de rastreamento após a identificação de indivíduos sintomáticos, com confirmação da presença do SARS-CoV-2 nas vias aéreas. Estudo realizado em uma *nursing home* norte-americana após a confirmação da doença em um trabalhador registrou alta taxa de transmissibilidade (63%), associada à taxa de internação de 19% e taxa de mortalidade de 26%. Procede-se o rastreamento da infecção pelo SARS-CoV-2 por meio de rRT-PCR em secreção respiratória de todos os idosos residentes e trabalhadores. No seguimento da instituição, os autores evidenciaram alta prevalência de idosos assintomáticos com a COVID-19 (56%), ou melhor, pré-sintomáticos, pois a maioria (86%) evoluiu, posteriormente, com sintomas gripais3. Outro estudo estadunidense utilizou a mesma metodologia em uma instituição de idosos mais independentes (*assisted living*), após internação de dois residentes com a doença aguda. O rastreamento em massa com o rRT-PCR identificou idosos e trabalhadores assintomáticos ou com sintomas leves, o que permitiu a aplicação de medidas de isolamento mais restritivas dentre os residentes...
Figura 1. Monitoramento laboratorial da COVID-19 em idoso residente em ILPI sintomático.
Figura 2. Rastreamento laboratorial da COVID-19 em trabalhador de ILPI sintomático.
e o afastamento dos profissionais infectados, resultando em desfechos clínicos bem favoráveis. Os autores concluem que o rastreamento da COVID-19 baseado somente na presença de sintomas é inadequado e defendem que a identificação precoce de pessoas assintomáticas entre residentes e trabalhadores, em combinação com a adesão às estratégias preventivas, pode reduzir a disseminação do vírus neste tipo de comunidade. Destacam, também, que, apesar da sensibilidade e a especificidade da rRT-PCR em swabs de nasofarínge para detectar SARS-CoV-2 em pessoas assintomáticas não ser bem conhecida, este é o teste indicado para tal propósito até o momento. Em contraponto, pesquisadores franceses mostraram pouco impacto na transmissão viral da doença na instituição avaliada e sugeriram novas evidências para se indicar a realização de rRT-PCR amplamente nas ILPI. Neste estudo, ao contrário dos anteriormente citados, somente os trabalhadores foram submetidos ao rastreamento com swab de nasofarínge e a definição do diagnóstico de COVID-19 no caso índice se deu pela tomografia computadorizada de tórax, tendo sido o resultado de rRT-PCR negativo. Outra limitação do estudo é a ausência de definição dos desfechos clínicos dos idosos institucionalizados.

A melhor estratégia de rastreamento da presença da infecção pelo SARS-CoV-2 nas ILPI poderia ser a realização sequenciada do rRT-PCR, a cada 7 dias, nos idosos e trabalhadores, independentemente da presença de sintomas gripais, pois a presença de portadores assintomáticos é, portanto, na COVID-19 em idosos residentes em ILPI. Todavia, as limitações de acesso ao exame impedem que este seja amplamente implementado nas ILPI no Brasil.

Sugerimos uma estratégia mais factível, que consiste na realização de teste imunológico a cada sete dias, utilizando-se o TLR com anticorpos totais (IgG/IgM) ou, idealmente, o teste com regiões teste distintas para IgM e IgG. A positividade no TLR (IgG/IgM) sugere exposição ao SARS-CoV-2. Nestes casos, está indicada a realização do rRT-PCR para definição do risco de transmissibilidade contida da doença na ILPI. O afastamento do trabalhador deverá ser imediato, que poderá retornar imediatamente às atividades profissionais caso tenha dois exames consecutivos de rRT-PCR negativos, com intervalo mínimo de 24 horas. Na ausência de rRT-PCR, retornar após 10 dias, desde que permaneça assintomático. Na presença de rRT-PCR positivo, o retorno às atividades deve ser condicionado a duas possíveis estratégias (Figura 3):

- Estratégia baseada no tempo: retorno às atividades com 10 dias após o teste positivo para COVID-19, desde que o trabalhador não desenvolva sintomas da COVID-19;
- Estratégia baseada em testes laboratoriais: retorno imediato às atividades profissionais após realização de dois exames de rRT-PCR com resultados negativos em duas amostras consecutivas colhidas com intervalo mínimo de 24h.

Idosos com sorologia positiva devem realizar o rRT-PCR, que irá definir qual a melhor estratégia de isolamento. Caso o exame seja positivo, recomenda-se o isolamento mais rigoroso na ILPI, de forma setorizada, garantindo-se o máximo de afastamento possível dos demais residentes. Caso a ILPI não disponha das condições adequadas de isolamento, pode ser necessária sua transferência para uma unidade de acolhimento específica para COVID-19. Na presença de dois exames negativos de rRT-PCR, o idoso pode retornar às atividades habituais de convívio na ILPI.

De outra forma, a utilização do TLR com regiões teste distintas para IgM e IgG permite o reconhecimento provável de infecção recente ou tardia pelo SARS-CoV-2, reduzindo a demanda por rRT-PCR para confirmação diagnóstica. Assim, dependendo da região teste positiva, sugerem-se as seguintes condutas:

- Idoso residente: a presença de IgM positivo e IgG negativo sugere provável infecção recente. O idoso deverá ser isolado rigorosamente na ILPI. Como, em alguns casos, pode haver resultados de IgM falso-positivos, é importante repetir o exame após 7 dias para verificar o surgimento de IgG e confirmar a infecção. A presença de anticorpo IgM e IgG sugere provável infecção prévia há menos de três semanas. Por sua vez, a presença de IgG negativo e IgG positivo sugere infecção mais antiga, há mais de três semanas. Nestes casos, não é necessária a repetição dos testes imunológicos e nem o isolamento rigoroso do idoso.

- Trabalhador: a presença de IgM positivo e IgG negativo sugere provável infecção recente. O funcionário deverá ser afastado e é importante repetir o exame após 7 dias para verificar o surgimento de IgG e confirmar a infecção. A presença de anticorpo IgM e IgG positivos sugere provável infecção prévia há menos de três semanas. Por sua vez, a presença de IgM negativo e IgG positivo sugere infecção mais antiga, há mais de três semanas. Nestes casos, não é necessária a repetição dos testes imunológicos, bem como o afastamento do trabalhador.

Por fim, dependendo da disponibilidade do rRT-PCR, pode-se utilizar uma estratégia híbrida...
Figura 3. Rastreamento laboratorial da COVID-19 em idoso residente e trabalhador de ILPI assintomáticos.
da, com realização do teste molecular e do teste imunológico com regiões teste distinto para IgM e IgG, na fase inicial do monitoramento das ILPI. Nessa estratégia, como não se conhece o grau de contaminação que possa ter se desenvolvido na ILPI, os testes laboratoriais seriam usados para avaliar o risco em qualquer estágio de contato, recente ou tardio. Idosos com rRT-PCR positivo devem ser isolados rigorosamente dentro da ILPI ou em unidades de acolhimento, dependendo das condições locais. Trabalhadores com rRT-PCR positivo devem ser afastados, seguindo-se as diretrizes já apresentadas. Os casos negativos seriam acompanhados semanalmente com a realização do teste imunológico e a conduta dependeria do resultado, conforme abordado anteriormente (Figura 4).

Em suma, sugerimos três estratégias de rastreamento da COVID-19 para utilização nas ILPI, com o objetivo de oferecer algum apoio laboratorial para a definição de condutas nestas instituições. A escolha da estratégia está condicionada aos recursos disponíveis e deve considerar as limitações dos testes laboratoriais em portadores assintomáticos do SARS-CoV-2. Por ser assintomático, a principal preocupação é com o isolamento deste residente ou trabalhador dos demais e o monitoramento clínico mais rigoroso para a identificação rápida dos indivíduos sintomáticos. Sabe-se que a apresentação clínica da COVID-19 no idoso, particularmente no frágil, pode ser atípica, inclusive sem febre. As estratégias sugeridas são:

Opção 1: Teste rápido com anticorpos totais e confirmação com rRT-PCR para os casos positivos.

Opção 2: Teste rápido com diferenciação IgM e IgG.

Opção 3: Teste rápido com diferenciação IgM e IgG + rRT-PCR para identificar inicialmente a situação de cada ILPI (estratégia híbrida) e monitoramento dos casos negativos com exames imunológicos a cada 7 dias.

Idosos assintomáticos que retornam de internações hospitalares de qualquer natureza ou novas admissões em ILPI têm indicação de realização do rRT-PCR. Se o resultado laboratorial for negativo, o ideal seria repetir em 24h, para se ter a máxima certeza possível. Todavia, as limitações de acesso à repetição do rRT-PCR podem inviabilizar esta conduta. Outra possibilidade é a realização dos testes imunológicos nesses idosos antes de seu retorno, caso o rRT-PCR não seja disponível (ou diante de um resultado negativo de teste molecular). Assim, dependendo da positividade IgM e/ou IgG, pode-se tomar decisões de admissão ou não, conforme fluxograma da Figura 5, a partir do resultado imunológico. A positividade do teste molecular contraindica a inclusão do idoso na ILPI por 14 dias.

Conclusões

Os idosos institucionalizados representam o principal alvo da infecção pelo SARS-CoV-2, com altas taxas de mortalidade. O rastreamento laboratorial de idosos residentes e trabalhadores de ILPI é uma estratégia de controle e prevenção que deve ser associada às outras medidas protetivas, de forma sinérgica. Apesar do rRT-PCR ser considerado “padrão ouro” para o diagnóstico da infecção, ainda há limitações para seu uso rotineiro, particularmente nos indivíduos assintomáticos. Os testes imunológicos, dentre eles os TLR ou testes rápidos, podem ser utilizados como alternativas factíveis e complementares no rastreamento laboratorial da COVID-19, dependendo do acesso das ILPI brasileiras a tais opções. Desta forma, sugerimos que as ILPI tenham condições de implementar estratégias de prevenção da COVID-19, baseadas nos seguintes princípios:

Medidas tradicionais de controle e prevenção da doença;

Afastamento imediato de todo trabalhador com sintoma gripal até confirmação ou não da infecção pelo SARS-CoV-2.

Transferência imediata do idoso sintomático, mesmo com sintoma gripal leve, para uma unidade de saúde.

Realização de rRT-PCR em todos os idosos e funcionários da instituição onde foi confirmada a exposição ao SARS-CoV-2.

Rastreamento semanal com teste imunológico, diante da dificuldade de acesso ao rRT-PCR, durante a pandemia da COVID-19.
Figura 4. Rastreamento laboratorial da COVID-19 em ILPI: estratégia híbrida.
Figura 5. Rastreamento laboratorial da COVID-19 em ILPI com o uso do teste imunológico com regiões teste distintas para IgM e IgG.
Colaboradores
EN Moraes, LG Viana, LMH Resende, LS Vasconcellos, AS Moura, A Menezes, NH Mansanoe R Rabelo contribuíram substancialmente para a concepção ou delineamento do estudo; ou a aquisição, a análise ou a interpretação dos dados do trabalho; na elaboração de versões preliminares do artigo ou na revisão crítica de importante conteúdo intelectual; na aprovação final da versão a ser publicada; na concordância em ser responsável por todos os aspectos do trabalho, no sentido de garantir que as questões relacionadas à exatidão ou à integridade de qualquer parte da obra sejam devidamente investigadas e resolvidas.

Agradecimentos
Agradecemos ao Prof. Eugênio Vilaça Mendes e ao Dr. Marco Antônio Bragança Matos, Consultores do CONASS; à Enfermeira Maria José de Oliveira Evangelista, Gerente do Núcleo da Atenção Primária à Saúde e Coordenadora do Projeto da Planificação da Atenção à Saúde do CONASS pela revisão e pelas contribuições na elaboração da versão final do artigo. Agradecemos, também, aos colegas Flávia Lanna de Moraes, Áurea Lacerda Cançado, Tatiana de Carvalho Espíndola Pinheiro e Fabiano Gonçalves Guimarães pela análise crítica e aprimoramento da presente proposta.

Referências
1. Comas-Herrera A, Zalakain J, Litwin C, Hsu AT, Lane N, Fernández JL. Mortality associated with COVID19 outbreaks in care homes: early international evidence. International Long-Term Care Policy Network [Internet]. 2020. [acessado 2020 Maio 22]. Disponível em: https://ltccovid.org/2020/04/12/mortality-associated-with-covid-19-outbreaks-in-care-homes-early-international-evidence/.
2. Tan LF, Seetharaman SK. COVID-19 outbreak in nursing homes in Singapore. J Microbiol Immunol Infect 2020 [Epub ahead of print]. [acessado 2020 Maio 22]. Disponível em: https://doi.org/10.1016/j.jmii.2020.04.018.
3. Arons MM, Hatfield KM, Reddy SC, Kimball A, James A, Jacobs JR, Taylor J, Spicer K, Bardossy AC, Oakley LP, Tanwar S, Dyal JW, Harney J, Chisty Z, Bell JM, Metheron M, Paul P, Carlson CM, McLaughlin HP, Thornburg N, Tong S, Tamin A, Tao Y, Uehara A, Harcourt J, Clark S, Brostrom-Smith C, Page LC, Kay M, Lewis J, Montgomery P, Stone ND, Clark TA, Honein MA, Duchin JS, Jernigan JA. Public Health–Seattle and King County and CDC COVID-19 Investigation Team. Presymptomatic SARS-CoV-2 Infections and Transmission in a Skilled Nursing Facility. N Engl J Med 2020; 382(22):2081-2090.
4. Gandhi M, Yokoe DS, Havlir DV. Asymptomatic Transmission, the Achilles’ Heel of Current Strategies to Control Covid-19. N Engl J Med 2020; 382(22):2158-2160.
5. Barra RP, Moraes EN, Jardim AA, Oliveira KK, Bonati PCR, Issa AC, Machado CJ. A importância da gestão correta da condição crônica na Atenção Primária à Saúde para o enfrentamento da COVID-19 em Uberlândia, Minas Gerais. APS em Revista 2020; 2(1):38-43.
6. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L, Wei Y, Li H, Wu X, Xu J, Tu S, Zhang Y, Chen H, Gao B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395(10229):1054-1062.
7. Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med 2020; 8:e21.
8. South A, Diz D, Chappell M. COVID-19, ACE2, and the cardiovascular consequences. Am J Physiol Heart Circ Physiol 2020; 318(5):H1084-H1090.
9. Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, Liu J, Shan H, Lei C, Hui DSC, Du B, Li L, Zeng G, Yuen K, Chen R, Tang C, Wang T, Chen P, Xiang J, Li S, Wang J, Liang Z, Peng Y, Wei L, Liu Y, Hu Y, Peng P, Wang J, Liu J, Chen Z, Li G, Zheng Z, Qiu S, Luo J, Ye C, Zhu S, Zhong N, China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med 2020; 382(18):1708-1720.
10. Moraes EN, Lanna FM, Santos RR, Bicalho MAC, Machado CJ, Romero D. A New Proposal for the Clinical-Functional Categorization of the Elderly: Visual Scale of Frailty (VS-Frailty). J Aging Res Clin Practice 2016; 3(1):24-30.
11. Yen MY, Schwartz J, King CC, Lee CM, HP. Recommendation for protecting against and mitigate the COVID-19 pandemic in long-term care facilities. J Microbiol Immunol Infect 2020. https://doi.org/10.1016/j.jmi.2020.04.003
12. Gao Z, Xu Y, Sun C, Wang X, Guo Y, Qiu S, Ma K. A systematic review of asymptomatic infections with COVID-19. J Microbiol Immunol Infect 2020. https://doi.org/10.1016/j.jmi.2020.05.001
13. Sethuraman N, Jeremiah SS, Ryo A. Interpreting Diagnostic Tests for SARS-CoV-2. JAMA 2020. https://doi.org/10.1001/jama.2020.8259

14. Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, Tan W. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA 2020; 323(18):1843-1844.

15. Yan Y, Chang L, Wang L. Laboratory testing of SARS-CoV, MERS-CoV, and SARS-CoV-2 (2019-nCoV): Current status, challenges, and countermeasures. Rev Med Virol 2020; 30:e2106.

16. Kontou PI, Braliou GG, Dimou NL, Nikolopoulos G, Bagos PG. Antibody tests in detecting SARS-CoV-2 infection: a meta-analysis. Diagnostics (Basel) 2020; 10(5):319.

17. Brito FA, Resende LM, Viana LG, Xavier SG, Neves SP. Estratégias laboratoriais para identificação da infecção pelo novo coronavírus. Belo Horizonte: UFMG, 2020. [Internet]. [acessado 2020 Maio 25]. Disponível em: https://www.medicina.ufmg.br/coronavirus/material-informativo/argitos.

18. Castro R, Luz PM, Wakimoto MD, Veloso VG, Grinzes-tejic B, Perazzo H. COVID-19: a meta-analysis of diagnostic test accuracy of commercial assays registered in Brazil. Braz J Infect Dis 2020; 24(2):180-187.

19. World Health Organization (WHO). Laboratory testing strategy recommendations for COVID-19: interim guidance 2020. Genebra: WHO, 2020. [Internet]. [acessado 2020 Maio 27]. Disponível em: https://www.who.int/publications-detail/laboratory-testing-strategy-recommendations-for-covid-19-interim-guidance.

20. Centers for Disease Control and Prevention. Interim Guidelines for COVID-19 Antibody Testing in Clinical and Public Health Settings 2020. Atlanta: Centers for Disease Control and Prevention; 2020. [Internet]. [acessado 2020 Maio 22]. Disponível em: https://www.cdc.gov/coronavirus/2019-ncov/lab/resources/antibody-tests-guidelines.html.

21. Association of Public Health Laboratories. Public Health Considerations: Serologic Testing for COVID-19. Version 1. Silver Spring: Association of Public Health Laboratories; 2020. [Internet]. [acessado 2020 Maio 22]. Disponível em: https://www.aphl.org/programs/preparedness/Crisis-Management/Documents/Serologic-Testing-for-COVID-19.pdf.

22. Brasil. Ministério da Saúde (MS). Nota Técnica N° 4/2020-SAPS/MS. 2020. [acessado 2020 Maio 22]. Disponível em: https://estegostarb.saude.gov.br/image?file=20200415_N_Notatecnica_4_810624768246175867.pdf.

23. Celer Biotecnologia S/A. Instruções de Uso: ONE STEP COVID-2019 TEST (IMUNOCROMATOGRAFIA). Belo Horizonte: Celer Biotecnologia S/A; 2020. [Internet]. [acessado 2020 Maio 22]. Disponível em: https://celer.ind.br/produto/celer-one-step-covid-19-test/.

24. Vieira LMF, Emery E, Andriolo A. COVID-19 – Diagnóstico laboratorial para os clínicos. São Paulo: SciELO; 2020.

25. Agência Nacional de Vigilância Sanitária (Anvisa). Nota Técnica GVMS/GGTES/ANVISA N° 05/2020: Orientações para a prevenção e o controle de infecções pelo novo coronavírus (SARS-CoV-2) em instituições de longa permanência para idosos (ILPI). Brasília: Anvisa; 2020. [acessado 2020 Maio 22]. Disponível em: https://www20.anvisa.gov.br/segurancadopaciente/index.php/alertas/item/nota-tecnica-n-05-2020-gvms-ggtes-anvisa-orientacoes-para-a-prevencao-e-o-controle-de-infeccoes-pelo-novo-coronavirus-sars-cov-2-ilpi.

26. Agência Nacional de Vigilância Sanitária (Anvisa). RDC 283, de 26 de setembro de 2005. Regulamento Técnico que define normas de funcionamento para as Instituições de Longa Permanência para Idosos, de caráter residencial. Brasília: Anvisa; 2020 [acessado 2020 Maio 22]. Disponível em: https://www20.anvisa.gov.br/segurancadopaciente/index.php/legislacao/item/rdc-283-de-26-de-setembro-de-2005.

27. Centers for Disease Control and Prevention. Testing Guidance for Nursing Homes Interim Testing Guidance in Response to Suspected or Confirmed COVID-19 in Nursing Home Residents and Healthcare Personnel 2020. Atlanta: Centers for Disease Control and Prevention; 2020. [Internet]. [acessado 2020 Maio 22]. Disponível em: https://www.cdc.gov/coronavirus/2019-ncov/hcp/nursing-homes-testing.html.

28. Centers for Disease Control and Prevention. Criteria for Return to Work for Healthcare Personnel with Suspected or Confirmed COVID-19 (Interim Guidance) 2020. Atlanta: Centers for Disease Control and Prevention; 2020. [Internet]. [acessado 2020 Maio 22]. Disponível em: https://www.cdc.gov/coronavirus/2019-ncov/hcp/return-to-work.html.

29. Brasil. Ministério da Cidadania. Secretaria Especial do Desenvolvimento Social, Secretaria Nacional de Assistência Social. Portaria nº 65, de 6 de maio de 2020. Aprova orientações e recomendações gerais aos gestores e trabalhadores do Sistema Único de Assistência Social dos estados, municípios e Distrito Federal quanto ao atendimento nos serviços de acolhimento de pessoas idosas ou com deficiência no contexto de emergência em saúde pública decorrente do novo Coronavírus, COVID-19. Diário Oficial da União; 2020; 7 maio.

30. Roxby AC, Greninger AL, Hattfeld KM, Lynch JB, Del-lit TH, James A, Taylor J, Page LC, Kimball A, Arons M, Munanga A, Stone N, Jernigan JA, Reddy SC, Lewis J, Cohen SA, Jerome KR, Duchin JS, Neme S. Outbreak Investigation of COVID-19 Among Residents and Staff of an Independent and Assisted Living Community for Older Adults in Seattle, Washington. JAMA Internal Medicine Published online 2020. [acessado 2020 Maio 22]. Disponível em: https://doi.org/10.1001/jamainternmed.2020.2233.

31. Guery R, Cecile D, Noelle B, Virginie N, Louise C, Francois R, Decker LD. Limited effectiveness of systematic screening by nasopharyngeal RT-PCR of medicalized nursing home staff after a first case of COVID-19 in a resident. Medicine et Maladies Infectieuses 2020 [Epub ahead of print]. [acessado 2020 Maio 22]. Disponível em: https://doi.org/10.1016/j.medinf.2020.04.020.

Artigo apresentado em 16/06/2020
Aprovado em 17/06/2020
Versão final apresentada em 19/06/2020