Supplementary Material

Tab. S1 - Distribution of trees sampled by species harvested to fit allometric biomass equations in secondary tropical forests of the southeast Yucatán peninsula. (N): number of trees; (DBH range): range in diameter at breast height (cm); (H range): range in total tree height (m); (Class): wood density classification (H is high, I is intermediate, and L is low).

No	Scientific name	N	DBH range (cm)	H range (m)	Biomass range (kg)	Wood density (g cm⁻³)	Class			
					Stem	Branches	Foliage	Total-tree		
					0.22-32.12	0.08-19.48	0.01-2.34	0.32-47.70	0.80 ± 0.03	H
1	Lonchocarpus rugosus	13	1.4 - 10	3.10 - 11.0						
2	Pouteria campechiana	14	1.6 - 9.9	2.50 - 11.0	0.25-26.90	0.08-10.72	0.01-2.69	0.34-36.85	0.79 ± 0.02	H
3	Malmea depressa	13	1.5 - 10	3.10 - 10.0	0.23-20.65	0.04-9.85	0.05-2.51	0.32-32.09	0.78 ± 0.01	H
4	Pouteria unilocularis	17	1.2 - 10	2.90 - 11.30	0.20-29.95	0.09-25.76	0.06-5.33	0.35-54.98	0.78 ± 0.01	H
5	Chrysophyllum mexicanum	15	1.2 - 9.9	2.70 - 12.0	0.09-27.63	0.08-9.82	0.05-3.98	0.24-40.68	0.77 ± 0.01	H
6	Lonchocarpus xau	12	1.4 - 9.9	2.15 - 10.60	0.06-28.04	0.07-17.04	0.04-4.51	0.16-46.82	0.76 ± 0.02	H
7	Psidium sartorium	13	1.3 - 9.5	2.80 - 13.40	0.26-32.48	0.05-19.29	0.02-3.01	0.34-52.97	0.75 ± 0.02	H
8	Coccoloba diversifolia	13	1.3 - 9.9	1.50 - 11.80	0.08-25.92	0.01-15.34	0.02-3.55	0.12-40.03	0.74 ±0.03	H
9	Croton reflexiolius	15	1.3 - 9.8	2.80 - 11.20	0.01-28.91	0.06-14.12	0.03-3.39	0.11-45.58	0.72 ± 0.002	H
10	Brosimum alicastrum	14	1.2 - 10	2.80 - 11.20	0.16-24.21	0.13-12.43	0.09-4.21	0.38-40.86	0.71 ± 0.02	H
11	Dipholis salicifolia	18	1.1 - 9.9	2.50 - 10.70	0.11-25.12	0.03-18.90	0.04-2.23	0.17-37.43	0.69 ± 0.01	H
12	Luehea speciosa	12	1.4 - 10	2.80 - 10.40	0.16-24.80	0.05-10.28	0.02-1.94	0.23-37.02	0.67 ± 0.02	H
13	Guettarda combii	17	1.2 - 10	2.20 - 10.40	0.03-20.39	0.02-16.43	0.01-3.38	0.15-39.24	0.64 ± 0.01	H
14	Swartzia cabensis	14	1.1 - 8.9	2.45 - 11.0	0.12-21.10	0.04-6.80	0.02-1.38	0.23-28.11	0.63 ± 0.03	H
15	Piscidia piscipula	15	1.2 - 10	2.20 - 10.80	0.11-23.79	0.00-15.37	0.01-3.17	0.15-37.86	0.62 ± 0.02	H
16	Zuelania guidoniana	14	1.1 - 10	2.20 - 12.20	0.14-27.05	0.04-13.34	0.03-2.57	0.20-39.67	0.62 ± 0.01	H
17	Lysiloma latisiliquum	15	1.3 - 10	2.60 - 11.20	0.14-23.79	0.03-12.85	0.01-3.46	0.20-31.91	0.61 ± 0.02	H
18	Licaria campechiana	16	1.4 - 9.9	3.20 - 9.60	0.19-17.78	0.08-19.48	0.09-7.86	0.36-42.85	0.61 ± 0.01	H
19	Vitex gaumeri	12	1.2 - 10	2.75 - 10.60	0.12-20.10	0.02-15.17	0.04-5.71	0.17-34.05	0.52 ± 0.04	I
20	Simarouba glauca	14	1.4 - 9.8	2.80 - 9.90	0.20-16.00	0.03-11.06	0.03-2.68	0.20-39.67	0.42 ± 0.01	I
21	Bursera simaruba	13	1.5 - 10	3.10 - 10.0	0.16-11.95	0.02-3.41	0.03-0.99	0.22-14.80	0.29 ± 0.02	L
22	Cecropia peltata	12	1.1 - 9.9	2.20 - 9.0	0.04-10.90	0.00-6.70	0.01-0.84	0.05-16.18	0.25 ± 0.02	L
Allometric equations to estimate above-ground biomass of small-diameter mixed tree species in secondary tropical forests

Tab. S2 - Allometric regression models tested for estimating biomass from 22 species with high structural importance in secondary tropical forests. (AGB): above-ground biomass (kg) and can correspond to stem, branch or foliage biomass; (β_0, β_1): regression coefficients of the models to be estimated; (ln): natural logarithm function; (DBH): diameter at breast height (cm); (CF): Correction Factor; (H): total tree height (m); (ρ): wood density (g cm$^{-3}$) by species. We assumed that the error terms are independent and identically distributed as $\varepsilon \sim N(0,\sigma^2_e)$.

No	Reference	Allometric regression model
1	Hughes et al. (1999)	$\text{AGB} = \exp[\beta_0 + \beta_1 \ln(DBH^2)](CF/10^6)+\varepsilon_i$
2	Ketterings et al. (2001)	$\text{AGB} = 0.11^\beta_0 \times DBH^{2+\beta_1}+\varepsilon_i$
3	Cairns et al. (2003)	$\text{AGB} = \exp[-\beta_0 + \beta_1 \ln(DBH^2)+\beta_2/2] + \varepsilon_i$
4	Bi et al. (2004)	$\text{AGB} = \exp[\beta_0 + \beta_1 \ln(DBH^{2})] + \varepsilon_i$
5	Chave et al. (2005)	$\text{AGB} = \exp[\beta_0 + \beta_1 \ln(\rho \times DBH^{2-H})] + \varepsilon_i$
6	Urquiza-Hass et al. (2007)	$\text{AGB} = [\beta_0 + \beta_1 \ln(DBH^{2-H})](\rho/0.72) + \varepsilon_i$
7	Chave et al. (2014)	$\text{AGB} = \beta_0 (\rho \times DBH^{2-H})^{\beta_1} + \varepsilon_i$
8	Soriano-Luna et al. (2015)	$\text{AGB} = \exp(-\beta_0)(DBH^{2-H})^{\beta_1} + \varepsilon_i$
Tab. S3 - Program that can be used to fit a system of biomass estimation equations by tree structural component, stem, branches and foliage, using SAS/ETS®.

Prior to simultaneous fit, models I and II were selected from a set of models:

```plaintext
# Read the biomass_tree data
proc import out=groups.biomass datafile="direction\biomass_tree.csv" run;

# Example of simultaneous fit with model I. where B0 to B5 are regression coefficients of the parameters to be estimated, ρ is the wood density, DBH is diameter at breast height (cm), H = total tree height (m). We use the command resid.component_type to indicate the weights but with the expression included within a square root (sqrt) to correct the heteroscedasticity of the residuals, as indicated in the material and methods section (see Alvarez-Gonzalez et al. 2005). The term iv that appears in the fit command for each parameter indicates that a numerical starting value of the iterative parameter estimation procedure must be included.

proc model data=groups.biomass;
parms B0 B1 B2 B3 B4 B5;
stem=B0*(ρ*DBH**2*H)**B1;
branches=B2*(ρ*DBH**2*H)**B3;
foliage=B4*(ρ*DBH**2*H)**B5;
total=B0*(ρ*DBH**2*H)**B1+B2*(ρ*DBH**2*H)**B3+B4*(ρ*DBH**2*H)**B5;
resid.stem=resid.stem*sqrt(1/(stem+resid.stem));
resid.branches=resid.branches*sqrt(1/branches+resid.branches));
resid.foliage=resid.foliage*sqrt(1/foliage+resid.foliage));
fit stem branches foliage total start=(B0 iv B1 iv B2 iv B3 iv B4 iv B5 iv)/itsur;
out=groups.Model1_simultaneous outest=params outcov;
run;
```
Tab. S4 - Program to fit an equation to estimate the total-tree biomass under an independent approach using SAS®.

```sas
proc model data=groups.biomass;
parms B0 iv B1 iv;
DBH2=1/(DBH**2*H); # weighting function
total=B0*(ρ*DBH**2*H)**B1
fit total/breusch=(1 ρ DBH H) out=groups.Model1_independent;
weight DBH2;
run;
```
Tab. S5 – Goodness-of-fit statistics for the regression models fit to 22 tree species. (AGB): aboveground biomass (kg); (ρ): wood density (g cm⁻³); (β₀, β₁): regression coefficients of the parameters to be estimated; (DBH): diameter at breast height (cm); (H): total tree height (m); (ln): the natural logarithm function; (CF): Correction Factor; (adj-R²): proportion of variance explained by model; (AIC): the Akaike information criterion. We assume that the error terms are independent and identically distributed as ε~N(0,σ²).

No.	Allometric model	RMSE	R²	AIC
1	AGB=β₀(ρˣDBH²ˣH)⁰¹+ε_i	11.35	0.94	1509.81
2	AGB=exp(-β₀)(DBH²ˣH)⁰¹+ε_i	11.15	0.93	1511.87
3	AGB=exp[β₀+β₁ln(ρˣDBH²ˣH)]+ε_i	11.76	0.93	1520.21
4	AGB=exp[β₀+β₁ln(DBH²ˣH)]+ε_i	13.98	0.92	1570.87
5	AGB=exp[-β₀+β₁ln(DBH²⁾+β₂/2]+ε_i	14.06	0.92	1572.56
6	AGB=exp[β₀+β₁ln(DBH²)(CF/10⁶)]+ε_i	16.64	0.91	1620.51
7	AGB=0.11×β₀ DBH²+ε_i	17.05	0.91	1626.69
8	AGB=[β₀+β₁ln(DBH²ˣH)](ρ/0.72)+ε_i	11.56	0.82	1516.91