Bridging Machine Learning and Sciences: Opportunities and Challenges

Taoli Cheng
Mila, University of Montreal
chengtaoli.1990@gmail.com

Abstract
The application of machine learning in sciences has seen exciting advances in recent years. As a widely applicable technique, anomaly detection has been long studied in the machine learning community. Especially, deep neural nets-based out-of-distribution detection has made great progress for high-dimensional data. Recently, these techniques have been showing their potential in scientific disciplines. We take a critical look at their applicative prospects including data universality, experimental protocols, model robustness, etc. We discuss examples that display transferable practices and domain-specific challenges simultaneously, providing a starting point for establishing a novel interdisciplinary research paradigm in the near future.

1. Introduction
The advances in the deep learning revolution have been expanding their influence in many domains and accelerating research in a generalized interdisciplinary manner. Neural nets serving as general function approximators have been employed in scientific applications including object identification/classification, anomaly/novelty detection, autonomous control, and neural net-based simulation, etc. Great successes have been made in multiple scientific disciplines. A typical example is AlphaFold (Jumper et al., 2021) for accurate protein structure prediction. At the same time, a lot of progress has been made in physical sciences (Baldi et al., 2014; Ribli et al., 2019), biology (Ching et al., 2018), molecule generation / drug discovery (Gottiipati et al., 2020), medical imaging (Zhang et al., 2020), etc.

Despite the successes, there are many challenges or unrecognized pitfalls in transporting machine learning techniques into more traditional science domains. Not being aware of these possible pitfalls could result in vain efforts and sometimes catastrophic consequences in real-world model deployment. In the following, we take a holistic look at the current collaborative scheme in machine learning applications for sciences in this new cross-disciplinary research era.

The differences between general machine learning (mainly focused on computer vision (CV) and natural language processing (NLP)) and tailored scientific applications reside in all parts of the pipeline. The following aspects build an intertwined picture in the modern machine learning-assisted scientific discovery:

• **Nature of the data:** In natural sciences especially physical sciences, scientists usually strictly design (and usually simplify) the experimental environments to probe the considered phenomena. Thus the nature of scientific data is under control to be free of external noises due to the laboratory settings. (And normally systematic uncertainties can be well estimated through control datasets) However, the format of the data can be more complex (and non-human-readable) compared with natural images.

• **Inference process:** Model inference in real-world settings can come in complicated and varying formats. As for scientific applications, usually, the experimental focus defines the inference process. And consequently, the inference process affects the result interpretation.

• **Benchmarks:** In the machine learning community usually benchmark datasets used for model evaluation is restricted to a few public datasets such as MNIST (Lecun et al., 1998), ImageNet (Deng et al., 2009), CIFAR (Krizhevsky, 2009), or SVHN (Netzer et al., 2011). This inevitably results in “overfitted” strategies and research focuses. In contrast, domain sciences haven’t yet built common datasets for model training and evaluation, sometimes resulting in difficulties in model comparison.

• **Uncertainty quantification:** Uncertainty of deep neural net outputs can be hard to quantify due to the complexity involved. When applied in sciences, the capability to incorporate uncertainty estimates in the pipeline is important for rigorous result interpretation and robust model prediction.

• **Generalization and Robustness:** We would like the deep models to perform well at various tasks in real-world environments. Furthermore, a common approach
in sciences is first training models on simulation data with labeling information. When applied to real data, the dataset shift seeks for remedies to retain accuracy and robustness as in the cases of computer vision or natural language modeling. However, the focus of the simulation-to-real adaptation in sciences differs in the sense that usually the two environments are known however we normally need higher precision.

Keeping these differences in mind helps shape the research guidelines toward a well-focused and suited technology transfer. Adapting the workflow according to the needs promotes and secures scientific applications and transforms the research paradigm in a universal manner. Finally, the interplay between machine learning and scientific discovery benefits from a communal understanding of the field vocabulary, the publishing traditions, the collaboration schemes, and the academic setups (Wagstaff, 2012). This new regime solicits novel community infrastructures for more impactful research works in the next few years.

2. Scientific Discovery

Modern scientific discovery highly depends on the practices of hypothesis testing and corresponding statistical interpretation, which builds on and renovates the established theories. A recent example of successful scientific discovery is the Higgs boson (Englert & Brout, 1964; Higgs, 1964) observed at the Large Hadron Collider (Aad et al., 2012; Chatrchyan et al., 2012). The Higgs boson was predicted by physicists about four decades ago. The properties of the Higgs boson have been well studied during the last decades. This makes dedicated searches possible at the particle colliders.

![Diagram](Figure 2. A typical pipeline for machine learning applications in Large Hadron Collider physics. The pipeline is composed of event generation, data preprocessing, model training, and model inference.)

The results interpretation highly depends on the associated scientific approaches. Obviously, devoting all the efforts to increasing class-inclusive metrics (as has been widely practiced in the machine learning community) could result in biased research protocols. In the following, we take a careful look at one application area bridging machine learning and sciences: anomaly detection.

3. An Example: Out-of-Distribution Detection

Thanks to the capacity to process high-dimensional data, deep neural networks-based out-of-distribution (OOD) detection in computer vision and natural language processing has shown great potential and seen much progress in the past few years (Hendrycks & Gimpel, 2017; Vaze et al., 2021; Ahmed & Courville, 2020; Ren et al., 2019b; Pang et al., 2021). Models trained on in-distribution (ID) data are expected to “know” what they don’t know. Thus they are used to detect unseen patterns as anomalies, by the associated uncertainties or likelihood. On the other hand, OOD detection also serves as a check for model calibration and confidence level, setting the observed exclusion limits or claiming an observation under the statistical interpretation (Read, 2002). Fig. 1 displays a typical discovery histogram for bump-hunt in the dimension of the Higgs boson mass.

The results interpretation highly depends on the associated scientific approaches. Obviously, devoting all the efforts to increasing class-inclusive metrics (as has been widely practiced in the machine learning community) could result in biased research protocols. In the following, we take a careful look at one application area bridging machine learning and sciences: anomaly detection.
robustness against dataset shifts.

At the same time, as an important emerging research area, scientific applications of machine learning are seeing great success in advancing the discovery of novel natural phenomena. Anomaly detection techniques have been used to search for (rare) novel particles for high energy physics, galactic activities for astrophysics, and novel molecular mechanisms for molecular physics.

Despite these successes, OOD detection in the machine learning community often follows common workflow and conventions, which might result in unexpected failures in real-world applications. The components of the typical workflow (Fig. 3) reflect fundamental differences and focuses in these two streams of research. The motives and protocols share some common aspects, yet display essential differences and focuses. Understanding these differences in research protocols enables effective application and fosters innovative, impactful collaborations. We discuss these aspects respectively in the following.

![Figure 3: Connection and differences in the pipelines for domain science practices and machine learning practices.](image)

3.1. Datasets and Input Representation

The first and foremost element in the pipeline is the data under consideration. Computer vision and natural language processing, as the main application areas of machine learning, have restricted input formats. In contrast, data in sciences come in diverse formats, including raw device response records in particle detectors, light spectra received by telescopes, X-ray images, etc.

These differences motivate intriguing research topics specifically for scientific applications. On the one hand, the input formats of scientific data request novel tailored neural architectures that are aware of the underlying inductive biases. For instance, many scientific data have inherent symmetries or are constrained by physics laws or associated invariances. In the same vein, equivariant neural networks (Cohen & Welling, 2016) and geometric deep learning (Bronstein et al., 2021) have pioneered neural architectures and mechanisms for incorporating the concepts of symmetries. They have been gaining attention in particle physics (Bogatskiy et al., 2020), computational chemistry (Anderson et al., 2019; Batzner et al., 2022), etc. At the same time, these approaches have boosted research in regular machine learning applications (computer vision, natural language processing, etc.). Similar motives can broaden the research horizon of “classical” machine learning, forge multidisciplinary collaborations, and facilitate innovative research advances. On the other hand, attention-based transformers (Vaswani et al., 2017) have reigned the NLP community and more recently intruded computer vision (Dosovitskiy et al., 2020). They have been successful in processing multiple data formats (Reed et al., 2022). These achievements indicate potential directions for cross-disciplinary research protocols with a uniform framework and reusable and shareable modules that can be interfaced with scientific tasks.

Regarding the data collection process, while image labeling is expensive for machine learning research, simulation data with labels in sciences are relatively cheaper to generate (although it could take much computing resources in some cases). That means we can have as much data as we need. As a practical result, some strategies (e.g., those dedicated to small datasets) are not necessarily appropriate for scientific applications. On the other hand, models trained on simulated data are confronted with performance degradation-associated distribution shifts when applied to real data. This will be further discussed in section 3.4.

3.2. Inference, Decision, and Evaluation

In most scientific applications, model inference \(^1\) is closely related to the underlying hypotheses to be tested and thus the evaluation metrics should depend on the chosen test sets which are supposed to resemble the real-world deployment circumstances. In other words, the components of the test sets define the inference strategies. At the same time, the test sets are determined by the science under investigation.

The well-adopted practice in the machine learning community is testing the model on all the classes for a benchmark dataset and reporting class-inclusive metrics (Hendrycks & Gimpel, 2017). In most of the research literature, the model evaluation metrics are reported for classifying two large benchmark datasets separately collected (e.g., models trained on CIFAR are tested against other datasets such as SVHN, or even tested on uniform noise as the OOD). This convention is, of course, convenient and effective for a preliminary assessment.

However, in scientific applications, depending on the context, due to the common imbalance of in-distribution classes, it is more suitable to test against class-conditional in-distribution data. A generic example is that background events have different class weights, sometimes in extreme

\(^1\)We follow the definition in deep learning for the terminology “inference”, which mostly refers to the decision-making process at test time.
imbalance. If the phenomenon of interest is detected under the circumstance of a specific set of background events, we will need to adjust our evaluation metrics to be calculated for the distribution of focus.

Test datasets One problem of current scientific applications is the lack of consensus on benchmark test datasets. Researchers might work under different selected subsets, different data qualities, and different simulation settings. Even in more focused sub-fields, researchers usually report model metrics on their own datasets. This brings variations and concerns in model comparison.

From another practical point of view, robustness examination and stress tests also benefit from a “complete” set of test sets. Research schemes might bias toward specific scenarios if they are only tested on a limited set of data.

Evaluation metrics For anomaly detection, a widely-reported metric is the Area Under the ROC curve (AUC) score based on the binary ID/OOD classification. OOD classes are usually from other datasets different from the training datasets. The selection of ID and OOD datasets is rotating around common benchmarks MNIST/Fashion-MNIST or CIFAR-10/CIFAR-100/ImageNet/SVHN. However, this kind of inclusive measure doesn’t give much information on context-sensitive use cases. Meanwhile, different datasets have intrinsic dataset shifts which affect the validity of this approach. Though there are recent proposals (Ahmed et al., 2019; Lundberg & Lee, 2017). But for scientific data, we need to examine the information with equations and physics laws. This brings challenges as well as opportunities for new directions in domain-specific model interpretability.

In scientific applications, novel events or phenomena are usually further analyzed by choosing promising working points. One example of useful metrics is the Significance Improvement Characteristic (Gallicchio et al., 2011) \[\text{SIC} = \frac{\epsilon_B}{\epsilon_S} \] composed of the background rejection rate \(\frac{1}{\epsilon_B} \) (\(\epsilon_B \) is equivalently the false positive rate) and the signal efficiency \(\epsilon_S \) (true positive rate). Moving away from the single-metric regime will enrich our understanding of the model performance and allow more productive community-wide research protocols.

Recasting “OOD Detection / Anomaly Detection” Following the previous discussion, it’s worth rethinking the terminology “OOD Detection”. We argue that we should develop context-aware OOD detection strategies instead of inclusive benchmarks and metrics. Real-world applications come in various formats, settings, and objectives. These complexities might make straightforward model comparison difficult. This then leads to what should be the focus of reporting a model’s performance and properties. While simple metrics are limited in their representative scope, the underlying rules and mechanisms can be shareable and universal.

3.3. Model Examination and Failure Analysis

Failure mode analysis can serve as a portal for better understanding the methods proposed. It’s not a “bonus” compared with the AUC. Rather, it helps reveal crucial aspects of the model learning mechanisms and provides insights into the robustness under variable deployment circumstances. These inspections often lead to further research ideas and model improvement directions. For instance, OOD detection in computer vision might fail because of the pixel correlation (Ren et al., 2019b). This inspection leads to the remedies proposed there.

On the other hand, scientific data may have a complex nature that makes model examination difficult compared with the cases in CV or NLP. Usually, they come in formats not “human-readable”. To interpret model performance and examine model failures would require extra interfaces or tools. Sometimes, involving theoretical and expert-designed features becomes necessary.

Model Interpretability Usually, science domains can have different insights (or theoretical foundations) in interpreting what the corresponding model learns. For images, people peek into textures, shapes, and patterns (Arrieta et al., 2019; Lundberg & Lee, 2017). But for scientific data, we need to examine the information with equations and physics laws. This brings challenges as well as opportunities for new directions in domain-specific model interpretability.

To better understand what the model has learned, and thus has control over the usage and further development of the algorithms, latent representations can be investigated with the assistance of relevant theories (Cheng, 2019; Faucett et al., 2021). These studies open the door for connecting model performance, model understanding, and model robustness.

3.4. Generalization and Robustness

Building generalizable and robust models is the goal of every machine learning practitioner. There are different understandings of what “robustness” (Basart, 2021) stands for, especially across different domains. In the ML community, adversarial attacks (Goodfellow et al., 2015) caused by perturbations in the input space are under frequent scrutiny. Models robust to malicious attacks have been developed and investigated. In scientific applications, we may have a different definition and focus regarding model “robustness”. In anomalous signal detection, we would like the model to 1) be effective across an extensive range of unseen signals, 2) have less distortion under the simulation-to-data shift, and 3) be invariant to spurious correlations.
Uncertainty Quantification and Model Calibration

In counting experiments, which is the main probing method in particle physics, statistical and systematic uncertainties (Barlow, 1989; Cranmer, 2014; Demortier, 2008) are the common uncertainties we consider for interpreting the results. While the statistical uncertainty is simply determined by the intrinsic randomness of the data itself, the systematic uncertainty generally consists of different factors in the experimental pipeline, including the object reconstruction efficiency, the simulation/modeling uncertainty, etc. Uncertainty plays an important role in quantifying the signal significance and credibility of the observation. An example is the 5-sigma standard for claiming an observation, which means only with a probability of about one in a million the observation is due to random fluctuations. Larger uncertainties lead to less precise measurements and less effective signal detection.

Inserting neural nets into the pipeline could result in complicated uncertainty quantification. Calibration of the outputs and estimation of the effects of nuisance parameters need extra effort. Meanwhile, the terminologies are different in the machine learning community. Uncertainties in deep neural models are usually categorized into epistemic uncertainty (model uncertainty) and aleatoric uncertainty (data uncertainty) (Gal, 2016). At first sight, the aleatoric uncertainty seems identical to the statistical uncertainty, while the epistemic uncertainty shares a similar meaning with the systematic uncertainty.

Quantifying what the neural networks don’t know, or the uncertainty of the outputs, is important to ensure we have a trustworthy deployment of the models (Ovadia et al., 2019; Malinin & Gales, 2018). Calibration is one method to quantify the quality of model uncertainty. (A calibrated model should have a decent alignment between the model confidence and the actual likelihood.) Especially for OOD detection, out-of-distribution uncertainty (“know what is unknown by the model”) is also an important indicator. One typical method that has a long history is ensemble models (Lakshminarayanan et al., 2017). At the same time, in the framework of Bayesian Neural Networks, the Monte Carlo drop-out (Gal & Ghahramani, 2016) technique can serve as a surrogate for estimating model uncertainty.

Meanwhile, taking epistemic uncertainty into account can increase model robustness and improve OOD detection performance (Lakshminarayanan et al., 2017). Correspondingly in scientific applications, systematic uncertainty has been associated with nuisance parameters (Dorigo & De Castro Manzano, 2020; d’Agnolo et al., 2022; Ghosh et al., 2021). And incorporating this uncertainty in the training strategy can result in more robust and powerful models.

A directly related topic is then model calibration. Model outputs in probabilities can be misaligned with the predicted accuracy. This misalignment might yield erroneous predictions which high confidence, resulting in failures in a real-world deployment. Model uncertainty calibration (Guo et al., 2017; Gal, 2016) has been revisited for deep neural networks. Correspondingly, approximate likelihood ratio (Cranmer et al., 2015) via neural classifiers can be combined with output calibration to estimate likelihood ratios in precision.

Distribution Shift

Due to the large dimensionality under consideration in deep learning models, the effects under distribution shift are hard to quantify. Robustness under distribution shift can be realized through adversarial training strategies (Ganin et al., 2016; Li et al., 2018). Other approaches (Magliacane et al., 2018) leverage domain invariances to achieve robustness. Similar approaches have been taken in High Energy Physics (Louppe et al., 2017), though used in another context.

In the same vein, for many scientific domains, simulation plays an important role in modeling the background. Especially for supervised learning, data with label information are mostly dependent on the simulator. Models trained on simulation data will have degraded performance when directly applied to real data. Though there are workarounds for background estimation, achieving domain invariance brings more opportunities and makes even complex search strategies possible.

Spurious Correlation

A critical factor affecting OOD detection performance and the applicational potential is the spurious correlations (McCoy et al., 2019; Ming et al., 2021) – the correlations might not hold further in unseen datasets. Manifest in computer vision, for instance, the active pixel number might be a strong confounder for OOD detection in the generative approach (Ren et al., 2019a). They may result in defective model performance, severe failure of model deployment (under distribution shift), and harmful consequences in extreme cases.

In scientific data, spurious correlations have slightly different origins and underlying contexts. And their application consequences are closely related to the scientific approach (or search strategy). Moreover, our laboratory environment provides possibilities to better control spurious factors.

Cleverly ameliorating spurious correlations could even bring improved OOD detection performance. For instance, incorporating invariances can serve as a strategy for improved representation learning and boosted performance.

Invariances

Spurious correlation, as discussed before, could result in catastrophic consequences if not dealt with care when the model is deployed in real-world applications. Incorporating invariances or employing invariant training
objectives/procedures (Arjovsky et al., 2019) to “environments” has been systematically discussed in the context of computer vision.

However, for science data, the related invariances could come from a different source and at the same time can be incorporated in a more disciplined manner. As a concrete example, in searching for a specific signal type (e.g., mass resonance), we expect event excess in that observational dimension (e.g., invariant mass). Incorporating model invariance w.r.t. the observational dimension can serve as a critical handle for effective signal detection and better generalization (Cheng & Courville, 2022).

4. Summary
We’re at a pivotal moment in history where advanced computational techniques can drive groundbreaking scientific discoveries. Deep learning as a unifying tool, can tackle diverse scientific problems, facilitating an enriching exchange between scientific domains and machine learning that fuels innovation. The coming decades call for a novel collaboration scheme of machine learning and sciences, which will foster great opportunities for machine learning researchers and domain scientists. By clarifying the current research protocols, identifying obstacles and pitfalls, discussing possible solutions, and conceiving future directions, we can advance this career further.

In order to make the discussion more concrete, we utilize anomaly detection – a popular topic in machine learning and an emerging research direction in sciences – to take a detailed look at the current gaps. We discussed different components in the pipeline and analyzed the communal practices and the differences in the machine learning community and the science. We also discussed opportunities and challenges and proposed potential solutions for the new generation’s collaborative innovation in this new era.

Acknowledgements
This work is supported by the IVADO postdoctoral research funding.

References
Aad, G. et al. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B, 716:1–29, 2012. doi: 10.1016/j.physletb.2012.08.020.

Ahmed, F. and Courville, A. Detecting semantic anomalies. Proceedings of the AAAI Conference on Artificial Intelligence, 34(04):3154–3162, Apr. 2020. doi: 10.1609/aaai.v34i04.5712. URL https://ojs.aaai.org/index.php/AAAI/article/view/5712.

Anderson, B. M., Hy, T. S., and Kondor, R. Cormorant: Covariant molecular neural networks. In NeurIPS, 2019.

Arjovsky, M., Bottou, L., Gulrajani, I., and Lopez-Paz, D. Invariant risk minimization. ArXiv, abs/1907.02893, 2019.

Arrieta, A. B., Rodríguez, N. D., Ser, J. D., Ben-netot, A., Tabik, S., Barbado, A., García, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R., and Herrera, F. Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai. Inf. Fusion, 58:82–115, 2019. URL https://api.semanticscholar.org/CorpusID:204824113.

Baldi, P., Sadowski, P., and Whiteson, D. Searching for Exotic Particles in High-Energy Physics with Deep Learning. Nature Commun., 5:4308, 2014. doi: 10.1038/ncomms5308.

Barlow, R. Statistics. A guide to the use of statistical methods in the physical sciences. 1989.

Basart, S. Towards Robustness of Neural Networks. arXiv e-prints, art. arXiv:2112.15188, December 2021.

Batzner, S., Musaelian, A., Sun, L., Geiger, M., Mailoa, J. P., Kornbluth, M., Molinari, N., Smidt, T. E., and Kozinsky, B. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. Nature Communications, 13, 2022.

Bogatskiy, A., Anderson, B. M., Offermann, J. T., Roussi, M., Miller, D. W., and Kondor, R. Lorentz group equivariant neural network for particle physics. ArXiv, abs/2006.04780, 2020.

Bronstein, M. M., Bruna, J., Cohen, T., and Velivckovi‘c, P. Geometric deep learning: Grids, groups, graphs, geodesics, and gauges. ArXiv, abs/2104.13478, 2021.

Chatrchyan, S. et al. Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC. Phys. Lett. B, 716:30–61, 2012. doi: 10.1016/j.physletb.2012.08.021.

Cheng, T. Interpretability Study on Deep Learning for Jet Physics at the Large Hadron Collider. In 33rd Annual Conference on Neural Information Processing Systems, 11 2019.

Cheng, T. and Courville, A. Invariant Representation Driven Neural Classifier for Anti-QCD Jet Tagging. 1 2022.
Ching, T., Himmelstein, D. S., Beaulieu-Jones, B. K., Kalinin, A. A., Do, B. T., Way, G. P., Ferrero, E., Agapow, P.-M., Zietz, M., Hoffman, M. M., et al. Opportunities and obstacles for deep learning in biology and medicine. *Journal of The Royal Society Interface*, 15(141):20170387, 2018.

Cohen, T. and Welling, M. Group equivariant convolutional networks. In *ICML*, 2016.

Cranmer, K. Practical Statistics for the LHC. In 2011 European School of High-Energy Physics, pp. 267–308, 2014. doi: 10.5170/CERN-2014-003.267.

Cranmer, K., Pavez, J., and Louppe, G. Approximating Likelihood Ratios with Calibrated Discriminative Classifiers. *JHEP*, 2015.

d’Agnolo, R. T., Grosso, G., Pierini, M., Wulzer, A., and Zanetti, M. Learning new physics from an imperfect machine. *Eur. Phys. J. C*, 82(3):275, 2022. doi: 10.1140/epjc/s10052-022-10226-y.

D’Agnolo, R. T., Grosso, G., Pierini, M., Wulzer, A., and Zanetti, M. Learning new physics from an imperfect machine. *Eur. Phys. J. C*, 82(3):275, 2022. doi: 10.1140/epjc/s10052-022-10226-y.

Demortier, L. P Values and Nuisance Parameters. 2008. doi: 10.5170/CERN-2008-001.23. URL https://cds.cern.ch/record/1099967.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In *2009 IEEE Conference on Computer Vision and Pattern Recognition*, pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

Dorigo, T. and De Castro Manzano, P. Dealing with Nuisance Parameters using Machine Learning in High Energy Physics: a Review. 7 2020.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al. An image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint arXiv:2010.11929*, 2020.

Englert, F. and Brout, R. Broken symmetry and the mass of gauge vector mesons. *Phys. Rev. Lett.*, 13:321–323, Aug 1964. doi: 10.1103/PhysRevLett.13.321. URL https://link.aps.org/doi/10.1103/PhysRevLett.13.321.

Faucett, T., Thaler, J., and Whiteson, D. Mapping machine-learned physics into a human-readable space. *Physical Review D*, 103(3), Feb 2021. doi: 10.1103/physrevd.103.036020. URL https://doi.org/10.1103%2Fphysrevd.103.036020.

Gal, Y. Uncertainty in deep learning. 2016.

Gal, Y. and Ghahramani, Z. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In *international conference on machine learning*, pp. 1050–1059. PMLR, 2016.

Gallicchio, J., Huth, J., Kagan, M., Schwartz, M. D., Black, K., and Tweedie, B. Multivariate discrimination and the Higgs + W/Z search. *JHEP*, 04:069, 2011. doi: 10.1007/JHEP04(2011)069.

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M., and Lempitsky, V. S. Domain-adversarial training of neural networks. In *J. Mach. Learn. Res.*, 2016.

Ghosh, A., Nachman, B., and Whiteson, D. Uncertainty-aware machine learning for high energy physics. *Phys. Rev. D*, 104(5):056026, 2021. doi: 10.1103/PhysRevD.104.056026.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining and harnessing adversarial examples. In Bengio, Y. and LeCun, Y. (eds.), 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6572.

Gottipati, S. K., Sattarov, B., Niu, S., Pathak, Y., Wei, H., Liu, S., Thomas, K. M. J., Blackburn, S., Coley, C. W., Tang, J., Chandar, S., and Bengio, Y. Learning to navigate the synthetically accessible chemical space using reinforcement learning. In *ICML*, 2020.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. On calibration of modern neural networks. In *Proceedings of the 34th International Conference on Machine Learning - Volume 70*, ICML’17, pp. 1321–1330. JMLR.org, 2017.

Hendrycks, D. and Gimpel, K. A baseline for detecting misclassified and out-of-distribution examples in neural networks. *ArXiv*, abs/1610.02136, 2017.

Higgs, P. W. Broken symmetries, massless particles and gauge fields. *Phys. Lett.*, 12:132–133, 1964. doi: 10.1016/0031-9163(64)91136-9.

Jumper, J. M., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Zidek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohli, S. A. A., Ballard, A., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D. A., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A. W., Kavukcuoglu, K., Kohli, P., and Hassabis, D. Highly accurate protein structure prediction with alphafold. *Nature*, 596:583 – 589, 2021.
Krizhevsky, A. Learning multiple layers of features from tiny images. Technical report, 2009.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. Simple and scalable predictive uncertainty estimation using deep ensembles. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R. (eds.), Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/9ef2ed4b7fd2c810847fffa5fa85bce38-Paper.pdf.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

Li, Y., Gong, M., Tian, X., Liu, T., and Tao, D. Domain generalization via conditional invariant representations. In AAAI, 2018.

Louppe, G., Kagan, M., and Cranmer, K. Learning to pivot with adversarial networks. In NIPS, 2017.

Lundberg, S. M. and Lee, S.-I. A unified approach to interpreting model predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17, pp. 4768–4777, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

Magliacane, S., Van Ommen, T., Claassen, T., Bongers, S., Versteeg, P., and Mooij, J. M. Domain adaptation by using causal inference to predict invariant conditional distributions. Advances in neural information processing systems, 31, 2018.

Malinin, A. and Gales, M. J. F. Predictive uncertainty estimation via prior networks. In NeurIPS, 2018.

McCoy, R. T., Pavlick, E., and Linzen, T. Right for the wrong reasons: Diagnosing syntactic heuristics in natural language inference. In ACL, 2019.

Ming, Y., Yin, H., and Li, Y. On the impact of spurious correlation for out-of-distribution detection. In AAAI Conference on Artificial Intelligence, 2021. URL https://api.semanticscholar.org/CorpusID:237490294.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng, A. Y. Reading digits in natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning and Unsupervised Feature Learning 2011, 2011. URL http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf.

Ovadia, Y., Fertig, E., Ren, J., Nado, Z., Sculley, D., Nowozin, S., Dillon, J. V., Lakshminarayanan, B., and Snoek, J. Can you trust your model’s uncertainty? evaluating predictive uncertainty under dataset shift. ArXiv, abs/1906.02530, 2019.

Pang, G., Shen, C., Cao, L., and van den Hengel, A. Deep learning for anomaly detection. ACM Computing Surveys (CSUR), 54:1 – 38, 2021.

Read, A. L. Presentation of search results: The CL(s) technique. J. Phys. G, 28:2693–2704, 2002. doi: 10.1088/0954-3899/28/10/313.

Reed, S., Zolna, K., Parisotto, E., Colmenarejo, S. G., Novikov, A., Barth-Maron, G., Gimenez, M., Sulsly, Y., Kay, J., Springenberg, J. T., Eccles, T., Bruce, J., Razavi, A., Edwards, A., Heess, N., Chen, Y., Hadsell, R., Vinyals, O., Bordbar, M., and de Freitas, N. A generalist agent, 2022.

Ren, J., Liu, P. J., Fertig, E., Snoek, J., Poplin, R., Depristo, M., Dillon, J., and Lakshminarayanan, B. Likelihood ratios for out-of-distribution detection. In Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., and Garnett, R. (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019a. URL https://proceedings.neurips.cc/paper/2019/file/1e79596878b2320cac26dd792a6c51c9-Paper.pdf.

Ren, J., Liu, P. J., Fertig, E., Snoek, J., Poplin, R., Depristo, M. A., Dillon, J. V., and Lakshminarayanan, B. Likelihood ratios for out-of-distribution detection. ArXiv, abs/1906.02845, 2019b.

Ribli, D., Pataki, B. A., and Csabai, I. An improved cosmological parameter inference scheme motivated by deep learning. Nature Astron., 3(1):93–98, 2019. doi: 10.1038/s41550-018-0596-8.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Attention is all you need. Advances in neural information processing systems, 30, 2017.

Vaze, S., Han, K., Vedaldi, A., and Zisserman, A. Open-set recognition: A good closed-set classifier is all you need. ArXiv, abs/2106.02845, 2019b.

Zhang, J., Xie, Y., Li, Y., Shen, C., and Xia, Y. Covid-19 screening on chest x-ray images using deep learning based anomaly detection. ArXiv, abs/2003.12338, 2020.