ON THE LIFTING PROBLEM IN \mathbb{P}^4 IN CHARACTERISTIC p

PAOLA BONACINI

ABSTRACT. Given \mathbb{P}^4_k, with k algebraically closed field of characteristic $p > 0$, and $X \subset \mathbb{P}^4_k$ an integral surface of degree d, let $Y = X \cap H$ be the general hyperplane section of X. We suppose that $h^0 \mathcal{F}_Y(s) \neq 0$ and $h^0 \mathcal{F}_X(s) = 0$ for some $s > 0$. This determines a nonzero element $\alpha \in H^1 \mathcal{F}_X(s)$ such that $\alpha \cdot H = 0$ in $H^1 \mathcal{F}_X(s)$. We find different upper bounds of d in terms of s, p and the order of α and we show that these bounds are sharp. In particular, we see that $d \leq s^2$ for $p < s$ and $d \leq s^2 - s + 2$ for $p \geq s$.

1. Introduction

Let $X \subset \mathbb{P}^4_k$, with k algebraically closed field of positive characteristic p, be an integral surface of degree d. Let $Y = X \cap H$ be the general hyperplane section of X and consider a surface of degree s containing Y. In this paper we study the problem of lifting a surface of H of degree s containing Y to a hypersurface in \mathbb{P}^4_k of degree s containing X. In particular, we suppose that $h^0 \mathcal{F}_Y(s) \neq 0$ and $h^0 \mathcal{F}_X(s) = 0$ for some $s > 0$.

In the case that $\text{char } k = 0$ the problem has been studied and solved by Mezzetti and Raspani in [14] and in [16], showing that $d \leq s^2 - s + 2$ and that this bound is sharp, and in [15] Mezzetti classifies the border case $d = s^2 - s + 2$. Other results concerning the lifting problem have been obtained in characteristic 0 for curves in \mathbb{P}^3 (see [11], Corollary p. 147, [5] and [22] Corollario 2) and for integral varieties of codimension 2 in \mathbb{P}^n (see, for example, [16] for $n = 5$, [20] for $n = 6$ and [19] for the general case). In the case that $\text{char } p > 0$ the lifting problem has been studied for curves in \mathbb{P}^3 in [1].

In this paper, the starting point is that the non lifting section of $H^0 \mathcal{F}_Y(s)$ determines a nonzero element $\alpha \in H^1 \mathcal{F}_X(s)$ such that $\alpha \cdot H = 0$ in $H^1 \mathcal{F}_X(s)$. The order of α is the maximum integer $m \in \mathbb{N}$ such that $\alpha = \beta \cdot H^m$ for some $\beta \in H^1 \mathcal{F}_X(s - m - 1)$. For $p < s$ we need to relate s and m. In particular, in Theorem 3 we suppose that $p < s$ and we show that:

(1) $d \leq s^2 - s + 2 + p^n$, if $s \geq 2m + 3$, with $p^n \leq m + 1$ and $p^{n+1} > m + 1$;
(2) $d \leq s^2$ if $s \leq 2m + 2$.

As a consequence, we see that for $p < s$ it must be $d \leq s^2$. For $p \geq s$ in Theorem 4 we show that $d \leq s^2 - s + 2$, which is the same bound as in the characteristic 0 case. In Example 5 we see that the bounds given in Theorem 3 and in Theorem 4 are sharp.

2. Hilbert function of points in \mathbb{P}^2

Let us denote by X a zero-dimensional scheme in \mathbb{P}^2_k, where k is an algebraically closed field of any characteristic. Let $H_X : \mathbb{N} \to \mathbb{N}$ be the Hilbert function of X and
let us consider the first difference of H_X:

$$\Delta H(X, i) = H(X, i) - H(X, i - 1).$$

It is known [4] that there exist $a_1 \leq a_2 \leq t$ such that:

$$\Delta H(X, i) = \begin{cases}
 i + 1 & \text{for } i = 0, \ldots, a_1 - 1 \\
 a_1 & \text{for } i = a_1, \ldots, a_2 - 1 \\
 < a_1 & \text{for } i = a_2 \\
 \text{non increasing} & \text{for } i = a_2 + 1, \ldots, t \\
 0 & \text{for } i > t.
\end{cases}$$

Definition 1. We say that X has the Hilbert function of decreasing type if for $a_2 \leq i < j < t$ we have $\Delta H(X, i) > \Delta H(X, j)$.

The following is a result well known in characteristic 0 (see [6] and [10, Corollary 4.3]) and proved in any characteristic in [2, Corollary 4.3].

Theorem 1. Let $C \subset \mathbb{P}^3$ be an integral curve and let X be its general plane section. Then H_X is of decreasing type.

The following result will be useful in the proof of the main results of the paper.

Proposition 1. Let $X \subset \mathbb{P}^2$ be a 0-dimensional scheme whose Hilbert function is of decreasing type. Let us suppose that $h^0 \mathcal{I}_X(s - 1) = 0$ for some $s > 0$ and that one of the following conditions holds:

1. $h^0 \mathcal{I}_X(s) > 3$;
2. $h^0 \mathcal{I}_X(s) = 2$ and there exists $i \in \mathbb{N}$ such that $\Delta H_X(s + i) \leq s - i - 2$.

Then $\deg X \leq s^2 - s + i + 1$.

Proof. The proof is a straightforward computation and follows by the fact that the Hilbert function of X is of decreasing type.

If $h^0 \mathcal{I}_X(s) > 3$, then we see that:

$$\deg X \leq \frac{s(s + 1)}{2} + \frac{(s - 2)(s - 1)}{2} = s^2 - s + 1 < s^2 - s + i + 1.$$

Let $h^0 \mathcal{I}_X(s) = 2$ and let us suppose that $i = \min\{k \in \mathbb{N} \mid \Delta H_X(s + k) \leq s - k - 2\}$. Since H_X is of decreasing type, $\Delta H_X(s + k) = s - k - 1$ for $k \leq i - 1$ and $\Delta H_X(s + k) \leq s - k - 2$ for $k \geq i$. Then:

$$\deg X \leq \frac{s(s + 1)}{2} + \sum_{k=0}^{i-1} (s - k - 1) + \sum_{k=i}^{s-3} (s - k - 2) = s^2 - s + i + 1.$$

\]

3. Frobenius Morphism and Incidence Varieties

In this section we show some results about incidence varieties and Frobenius morphism. First let us recall the definition of absolute and relative Frobenius morphism:

Definition 2. The absolute Frobenius morphism of a scheme X of characteristic $p > 0$ is $F_X : X \to X$, where F_X is the identity as a map of topological spaces and on each U open set $F_X^U : \mathcal{O}_X(U) \to \mathcal{O}_X(U)$ is given by $f \mapsto f^p$ for each $f \in \mathcal{O}_X(U)$. Given $X \to S$ for some scheme S and $X^{p/S} = X \times_S F_S S$, the absolute Frobenius
morphisms on X and S induce a morphism $F_{X/S}: X \rightarrow X^{p/S}$, called the Frobenius morphism of X relative to S.

Given \mathbb{P}^n for some $n \in \mathbb{N}$, let us consider the bi-projective space $\mathbb{P}^n \times \mathbb{P}^n$ and let $r \in \mathbb{N}$ be a non negative integer. Let $k[\mathbb{L}]$ and $k[\mathbb{Z}]$ be the coordinate rings of \mathbb{P}^n and \mathbb{P}^n, respectively. Let $M_r \subset \mathbb{P}^n \times \mathbb{P}^n$ be the hypersurface of equation:

$$h_r := \sum_{i=0}^n t_i x_i^p = 0.$$

Note that in the case $r = 0$ M_r is the usual incidence variety M of equation $\sum_i t_i x_i = 0$. If $r \geq 1$, M_r is determined by the following fibred product:

$$
\begin{array}{ccc}
M & \xrightarrow{(F_M)^*} & (P_{M_r})^* \\
\downarrow & & \downarrow \\
F_{M_r} & \xrightarrow{\pi} & M_r \\
\downarrow & & \downarrow \\
\mathbb{P}^n & \xrightarrow{p} & \mathbb{P}^n
\end{array}
$$

where $F: \mathbb{P}^n \rightarrow \mathbb{P}^n$ is the absolute Frobenius.

Remark 1. $M = \mathbb{P}(\mathcal{F}_p(-1))$, so that by [3] Lemma 1.5 $M_r = \mathbb{P}(F_{*-}(\mathcal{F}_p(-1)))$ and by [7] Ch.II, ex. 7.9 we see that $\text{Pic}(M_r) = \mathbb{Z} \times \mathbb{Z}$ for any $r \geq 0$. Moreover, since we have:

$$0 \rightarrow \mathcal{O}_{\mathbb{P}^n \times \mathbb{P}^n}(-1, -p^r) \rightarrow \mathcal{O}_{\mathbb{P}^n \times \mathbb{P}^n} \rightarrow \mathcal{O}_{M_r} \rightarrow 0$$

and $H^1\mathcal{O}_{\mathbb{P}^n \times \mathbb{P}^n}(m, n) = 0$ for any $m, n \in \mathbb{Z}$ by the Künneth formula [17] Ch.VI, Corollary 8.13, then any hypersurface $V \subset M_r$ is the complete intersection given by $g = h_r = 0$ for some bi-homogeneous $g \in k[\mathbb{L}, \mathbb{Z}]$.

Let $\eta \in \mathbb{P}^n$ be the generic point and and consider $g_{M_r}: M_r \rightarrow \mathbb{P}^n$. Then $g_{M_r}^{-1}(\eta)$ is isomorphic to the hypersurface H_r of \mathbb{P}^n of degree p^r such that, over the algebraic closure $\overline{k(\eta)}$ of $k(\eta)$, $(H_r)_{\text{red}}$ is the generic hyperplane H of \mathbb{P}^n.

Proposition 2. $\Omega_{M_r/\mathbb{P}^n}|_H \cong F^{*}\mathcal{F}_H(-p^r)$.

Proof. The sheaf $\mathcal{E} = F_{*-}(\mathcal{F}_p(-1)) = F^{*}\mathcal{F}_p(-p^r)$ is determined by the exact sequence $0 \rightarrow \mathcal{O}_{\mathbb{P}^n}(-p^r) \rightarrow \mathcal{O}_{\mathbb{P}^n} \oplus \mathcal{O}_{\mathbb{P}^n} \rightarrow \mathcal{E} \rightarrow 0$ and, since $M_r = \mathbb{P}(F^{*}(\mathcal{F}_p(-1)))$, by [7] Ch.III, Ex. 8.4(b) we have also $0 \rightarrow \Omega_{M_r/\mathbb{P}^n} \rightarrow p_{M_{r}}^{*}(F^{*}\mathcal{F}_p(-p^r)) \otimes \mathcal{O}_{M_r} \rightarrow \mathcal{O}_{M_r}(-1, 0) \rightarrow \mathcal{O}_{M_r} \rightarrow 0$. When we restrict to H, by the fact that the sequence locally splits it follows that the following sequence is exact:

$$0 \rightarrow \Omega_{M_r/\mathbb{P}^n}|_H \rightarrow p_{M_{r}}^{*}(F^{*}\mathcal{F}_p(-p^r)) \otimes \mathcal{O}_{M_r}(-1, 0)|_H \rightarrow \mathcal{O}_H \rightarrow 0$$

(2) $\Rightarrow 0 \rightarrow \Omega_{M_r/\mathbb{P}^n}|_H \rightarrow F^{*}\mathcal{F}_p(-p^r)|_H \rightarrow \mathcal{O}_H \rightarrow 0.$

Since $\mathcal{F}_p(-1)|_H \cong \mathcal{F}_H(-1) \otimes \mathcal{O}_H$, then $F^{*}\mathcal{F}_p(-p^r)|_H \cong F^{*}\mathcal{F}_H(-p^r) \otimes \mathcal{O}_H$. By the fact that $F^{*}\mathcal{F}_H$ is stable (see [18] Ch.II, Theorem 1.3.2 and [13] Theorem 2.1) and that $\mu(F^{*}\mathcal{F}_H(-p^r)) > 0$, it follows that $\text{Hom}(F^{*}\mathcal{F}_H(-p^r), \mathcal{O}_H) = 0$ and so by (2) also that $\Omega_{M_r/\mathbb{P}^n}|_H \cong F^{*}\mathcal{F}_H(-p^r)$. \qed
Now we prove some results about the projection from a hypersurface in \(M \) to \(\mathbb{P}^n \).

Theorem 2. Let \(V \subset \mathbb{P}^n \times \mathbb{P}^n \) be an integral hypersurface in \(M \) such that the projection \(\pi: V \to \mathbb{P}^n \) is dominant and not generically smooth. Then there exist \(r \geq 1 \) and \(V_r \subset M_r \) integral hypersurface such that \(\pi \) can be factored in the following way:

\[
\begin{array}{ccc}
V & \xrightarrow{\pi} & \mathbb{P}^n \\
\downarrow F_r & & \downarrow \pi_r \\
V_r & &
\end{array}
\]

where the projection \(\pi_r \) is dominant and generically smooth and \(F_r \) is induced by the commutative diagram:

\[
\begin{array}{ccc}
V & \xrightarrow{F_r} & V_r \\
\downarrow j & & \downarrow i \\
M & & M_r
\end{array}
\]

Proof. The proof works as in [1, Theorem 3.3]. Indeed, the proofs ofLemma 3.1 and Proposition 3.2 in [1] works also for \(\mathbb{P}^n \times \mathbb{P}^n \). □

Proposition 3. Let \(V_r \subset M_r \) be an integral hypersurface given by:

\[
\begin{align*}
q(t, x) &= 0 \\
\sum_{i=0}^{n} t_i x_i^{p_i} &= 0
\end{align*}
\]

such that the projection \(\pi_r: V_r \to \mathbb{P}^n \) is generically smooth. Then \(\pi_r \) is not smooth exactly on the following closed subset of \(V_r \):

\[
V_r \cap V \left(x_i^{p_i} \frac{\partial q}{\partial t_i} - x_j^{p_j} \frac{\partial q}{\partial t_i}, i, j = 0, \ldots, n \right).
\]

Proof. Let \(P_0 = (a, b) \in V_r \) be such that \(V_r \) is not smooth in \(P_0 \). Then there exists \(\lambda \in k \) such that:

\[
\frac{\partial q}{\partial t_i}(P_0) = \lambda b_i^{p_i}
\]

for any \(i = 0, \ldots, n \).

If \(P_0 \) is a regular point, then the projective tangent space \(T_{V_r, P_0} \) at \(P_0 \in V_r \) is given by the equations:

\[
\sum_{i=0}^{n} \frac{\partial q}{\partial x_i}(P_0)x_i + \sum_{i=0}^{3} \frac{\partial q}{\partial t_i}(P_0)t_i = \sum_{i=0}^{n} (a_i x_i + b_i t_i) = 0
\]

if \(r = 0 \) and by the equations:

\[
\sum_{i=0}^{n} \frac{\partial q}{\partial x_i}(P_0)x_i + \sum_{i=0}^{n} \frac{\partial q}{\partial t_i}(P_0)t_i = \sum_{i=0}^{n} b_i^{p_i} t_i = 0
\]
if $r \geq 1$. In both cases the projection on $\mathbb{T}_{\mathbb{P}^3}$ is not surjective if and only if there exists $\lambda \in k$ such that:

$$\frac{\partial q}{\partial t_i}(P_0) = \lambda b_i q^r \quad \forall i = 0, \ldots, n.$$

This together with (3) proves the statement. □

4. Lifting problem

Let $X \subset \mathbb{P}^4$ be a scheme and, following the previous notation, consider the projections $p_{M_r}: M_r \rightarrow \mathbb{P}^4$ and $g_{M_r}: M_r \rightarrow \mathbb{P}^4$. Let $T_r = p_{M_r}^{-1}(X)$ and:

$$\mathcal{I}_r(m, n) = g_{M_r}^* (\mathfrak{O}_{\mathbb{P}^4}(m)) \otimes g_{M_r}^* (\mathfrak{I}_X(n))$$

for every $m, n \in \mathbb{Z}$.

Proposition 4. If $\mathcal{I}_r = \mathcal{I}_r(0, 0)$ and \mathcal{I}_{T_r} is the ideal sheaf of T_r in M_r, then $\mathcal{I}_r = \mathcal{I}_{T_r}$.

Proof. The proof works as in [1, Proposition 4.1]. □

Let $X \subset \mathbb{P}^4$ be an integral surface of degree d. Let $Y = X \cap H$ be the generic hyperplane section of X and let $Z = Y \cap K$ be the generic plane section of Y. Let \mathcal{I}_X be the ideal sheaf of X in \mathbb{P}^4, \mathcal{I}_Y the ideal sheaf of Y in $H \cong \mathbb{P}^3$ and \mathcal{I}_Z the ideal sheaf of Z in $K \cong \mathbb{P}^2$. Let us consider for any $s \in \mathbb{N}$ the following maps:

$$\pi_s: H^0 \mathcal{I}_X(s) \rightarrow H^0 \mathcal{I}_Y(s) \quad \text{and} \quad \phi_s: H^1 \mathcal{I}_X(s-1) \rightarrow H^1 \mathcal{I}_X(s)$$

A sporadic zero of degree s is an element $\alpha \in \ker(\pi_s) = \coker(\phi_s)$.

Definition 3. The order of a sporadic zero α is the maximum integer m such that $\alpha = \beta \cdot H^m$, for some $\beta \in H^1 \mathcal{I}_X(s - m - 1)$.

Proposition 5. Let α be a sporadic zero of degree s and let $h^0 \mathcal{I}_X(s) = 0$. Then one of the following conditions holds:

1. $\deg X \leq s^2 - s + 1$;
2. $h^0 \mathcal{I}_Y(s) = 1$ and $h^0 \mathcal{I}_Z(s) = 2$.

Proof. Let $q = \min \{ i \mid h^0 \mathcal{I}_Y(i) \neq 0 \}$. So $q \leq s$ and by hypothesis there is an integral surface of degree q containing Y that does not lift to an integral surface of degree q containing X. In particular we have a sporadic zero of degree q for X and by [21, Theorem 2.1] we get a sporadic zero for Y of degree $s' \leq q$. By [2, Theorem 4.1] this means that there is an integral curve of degree s' in K containing Z that does not lift to a surface in H of degree s containing Y. However, by restricting the integral surface of degree q containing Y to K we see that $d \leq qs'$.

If $s' < s$, then we see that $\deg X = \deg Z \leq s^2 - s$.

So we can suppose that $q = s' = s$, which implies that $h^0 \mathcal{I}_Z(s) \geq 1 + h^0 \mathcal{I}_Y(s) \geq 2$. If $h^0 \mathcal{I}_Z(s) \geq 3$, then by Theorem 1 and by Proposition 1 we get $\deg X = \deg Z \leq s^2 - s + 1$. So we can suppose that $h^0 \mathcal{I}_Z(s) = 2$, which implies also that $h^0 \mathcal{I}_Y(s) = 1$.

The following result, together with Proposition 4, provides us with the tools for the proof of the main results of this paper.
Lemma 1. Let α be a sporadic zero of degree s and order m. Suppose that α determines a non-liftable integral surface R in H of degree s containing Y and that $I_R = \langle f \rangle$ for some $f \in H^0\mathcal{O}_H(s)$. Then for some $r \in \mathbb{N}$ such that $p^r \leq m + 1$ there exist:

1. $f_i \in H^0\mathcal{O}_H(s)$ for $i = 0, \ldots, 4$ such that the subscheme of H associate to the ideal $(f, x_i p^r f_j - x_j p^r f_i|_H, i, j = 0, \ldots, 4)$ is a 1-dimensional scheme E (which can have isolated or embedded 0-dimensional subschemes) such that $Y \subset E \subset R$;
2. a reflexive sheaf \mathcal{N} of rank 3 such that we have the exact sequence:

\[
0 \to \mathcal{N} \to F^r \Omega_H(p^r) \to \mathcal{E}|_R(s) \to 0,
\]

being $\mathcal{E}|_R \subset \mathcal{O}_R$ the ideal sheaf of E.

Proof. Let $r \geq 0$ and let $\mathcal{E}_r = p_{M_r}^* \mathcal{F}_X$. Given the generic point $\eta \in \mathbb{P}^4$ and $g_{M_r} : M_r \to \mathbb{P}^4$, we have seen that $g_{M_r}^{-1}(\eta)$ is isomorphic to the hypersurface H_r of \mathbb{P}^4 of degree p^r such that, over $k(\eta)$, $(H_r)_{\text{red}} = H$.

By proceeding as in [1] Theorem 1.2, Step 1 and Step 2 and by Theorem 2 we see that there exist $r \geq 0$ and $V_r \subset M_r$ hypersurface given by:

\[
\begin{aligned}
q(\eta, \xi) &= 0 \\
\sum_{i=0}^4 t_i x_i p^r &= 0
\end{aligned}
\]

such that the projection $p_{V_r} : V_r \to \mathbb{P}^4$ is generically smooth and, given $g_{V_r} : V_r \to \mathbb{P}^4$, $g_{V_r}^{-1}(\eta)$ is the complete intersection of H_r with a hypersurface of \mathbb{P}^4 of degree s and it is such that $g_{V_r}^{-1}(\eta)_{\text{red}} \cong R$ over $k(\eta)$. This means that $m \geq p^r - 1$.

Let $U \subset V_r$ be the subscheme where p_{V_r} is not smooth. Then by Proposition 3 we see that:

\[
U = V_r \cap V \begin{pmatrix} x_i p^r \frac{\partial q}{\partial t_i} - x_j p^r \frac{\partial q}{\partial t_j} \end{pmatrix} | i, j = 0, \ldots, 4.
\]

By proceeding as in [1] Theorem 1.2, Step 3 we see that $U \supseteq T_r$, $\dim U = 5$ and we have for some $b > 0$:

\[
0 \to \Omega_{V_r/\mathbb{P}^5} \to \Omega_{M_r/\mathbb{P}^4} \otimes \mathcal{O}_{M_r} \to \mathcal{E}|_{U^(b, s)} \to 0,
\]

with $\mathcal{E}|_{U^{(b, s)}} \subset \mathcal{O}_{V_r}$ ideal sheaf of U.

Restricting (4) to H, by Proposition 2 we get a surjective map $F^r \Omega_H(p^r) \otimes \mathcal{O}_H \to \mathcal{E}|_R(s)$, with $\mathcal{E}|_R \subset \mathcal{O}_R$ ideal sheaf of the 1-dimensional scheme $E = U \cap g_{M_r}^{-1}(\eta)_{\text{red}}$. Note that $E \supseteq T_r \cap g_{M_r}^{-1}(\eta)_{\text{red}} \cong Y$. The kernel of the map $F^r \Omega_H(p^r) \to \mathcal{E}|_R(s)$ is the sheaf \mathcal{N} that determines the exact sequence (3) and it is torsion free and normal and so it is reflexive. Moreover, by (5) we get

\[
E = V \begin{pmatrix} q|_H, x_i p^r \frac{\partial q}{\partial t_i} - x_j p^r \frac{\partial q}{\partial t_j} |_H \end{pmatrix} | i, j = 0, \ldots, 4,
\]

where $q|_H = f$, and so the statement is proved by taking $f_i = \frac{\partial q}{\partial t_i}|_H$ for any $i = 0, \ldots, 4$. □

Now we can prove the first main result of the paper.
Theorem 3. Let α be a sporadic zero of degree s and order m and let $p < s$. Suppose that $h^0 \mathcal{F}_X(s) = 0$. Then:

1. if $s \geq 2m+3$, we have $d \leq s^2 - s + p^r + 1$, with $p^r \leq m + 1$ and $p^{r+1} > m + 1$;
2. if $s \leq 2m + 2$, we have $d \leq s^2$.

Proof. By Proposition 5 we can suppose that $h^0 \mathcal{F}_Y(s) = 1$ and $h^0 \mathcal{F}_Z(s) = 2$. In particular, if $s \leq 2m + 2$, we get the conclusion. So we suppose that $s \geq 2m + 3$ and we also see that the surface R of degree s containing Y that can not be lifted to a hypersurface of degree s containing X is integral. Let $I_R = (f)$ in H be the ideal of R.

By Lemma 1 we see that there exist $r \in \mathbb{N}$ with $p^r \leq m + 1$ and $f_i \in H^0 \mathcal{O}_H(s)$ for $i = 0, \ldots, 4$ such that the subscheme of H associate to the ideal $(f, x_i p^r f_j - x_j p^r f_i |_H, i, j = 0, \ldots, 4)$ is a 1-dimensional scheme E, which can have isolated or embedded 0-dimensional schemes, such that $Y \subset E \subset R$. Moreover, there exists a reflexive sheaf \mathcal{N} of rank 3 such that we have the exact sequence:

$$0 \to \mathcal{N} \to F^{r*} \Omega_H(p^r) \to \mathcal{F}_{E|R}(s) \to 0,$$

being $\mathcal{F}_{E|R} \subset \mathcal{O}_R$ the ideal sheaf of E. We want to prove that $d \leq s^2 - s + 1 + p^r$.

Note that $c_1(\mathcal{N}) = -p^r - s$ and

$$c_2(\mathcal{N}) = s^2 + p^r s + p^{2r} - \deg E.$$

So we see that if \mathcal{N} is semistable, by the Bogomolov inequality for semistable reflexive sheaves and by the fact that $\deg E \geq \deg Y = \deg X$ we get the statement. So we can suppose that \mathcal{N} is unstable. Moreover by Theorem 1 and by Proposition 1 we can suppose that $\Delta H_2(s+i) = s - i - 1$ for any $i \leq p^r$. Given $g \in H^0 \mathcal{O}_K(s)$ such that $f|_K$ and g are generators of I_Z in degree s, by [11 Proposition 1.4] we see that $f|_K$ and g are the only generators of I_Z in degree $\leq s + p^r$. By these assumptions we will get a contradiction.

Restricting (7) to K we get:

$$0 \to \mathcal{N}|_K \to F^{r*} \Omega_K(p^r) \oplus \mathcal{O}_K \to \mathcal{F}_{E\cap K}|_{E\cap K}(s) \to 0.$$

Since N is unstable of rank 3, $F^{r*} \Omega_H(p^r)$ is stable and $c_1(F^{r*} \Omega_H(p^r)) = -p^r < 0$, the maximal destabilizing subsheaf \mathcal{F} of \mathcal{N} has rank at most 2 and $c_1(\mathcal{F}) < 0$. By [12 Theorem 3.1] we see that $F|_K$ is still semistable and so it must be $h^0 \mathcal{N}|_K = 0$. By (9) we see that $h^0 \mathcal{F}_{E\cap K}|_{E\cap K}(s) \geq 1$, which implies that $h^0 \mathcal{F}_{E\cap K}(s) \geq 2$ and, since $E \cap K \supseteq Z$ and $h^0 \mathcal{F}_Z(s) = 2$, we get that $h^0 \mathcal{F}_{E\cap K}(s) = 2$. Since $E \cap K$ is integral of degree s and $R \cap K \supseteq E \cap K$, we see that $\deg (E \cap K) \leq s^2$.

Recall that for any $i, j = 0, \ldots, 4$:

$$x_i p^r f_j - x_j p^r f_i |_H \in H^0 \mathcal{F}_E(s + p^r) \Rightarrow x_i p^r f_j - x_j p^r f_i |_K \in H^0 \mathcal{F}_Z(s + p^r)$$

where $p^r \leq m + 1$. By the assumption that $f|_K$ and g generate I_Z in degree $\leq s + p^r$ we can say that:

$$x_i p^r f_j - x_j p^r f_i |_K = h_{ij} f|_K + l_{ij} g,$$

for some $h_{ij}, l_{ij} \in H^0 \mathcal{O}_K(p^r)$. So:

$$E \cap K = V (f|_K, l_{ij} g | i, j = 0, \ldots, 4).$$

So $E \cap K$ contains the complete intersection of 2 curves of degree $s \cdot \deg(f|_K, g)$, but we have seen that $\deg(E \cap K) \leq s^2$. This implies that $E \cap K$ is the complete
intersection $V(f|_K, g)$ and so $\mathcal{I}_{E \cap K | R \cap K} \cong \mathcal{O}_{R \cap K}(-s)$. So by (9) we have:

$$0 \to \mathcal{N}|_K \to F^{r*} \Omega_K(p^r) \oplus \mathcal{O}_K \to \mathcal{O}_{R \cap K} \to 0. \tag{11}$$

By the fact that $h^0 \mathcal{N}|_K = 0$, that $R \cap K$ is integral and by the commutative diagram:

\[
\begin{array}{c}
0 \\
\downarrow \\
0 \\
\downarrow \\
0 \\
\downarrow \\
0 \\
\downarrow \\
0
\end{array}
\quad
\begin{array}{c}
0 \\
\downarrow \\
0 \\
\downarrow \\
\downarrow \\
\downarrow \\
\downarrow \\
0
\end{array}
\quad
\begin{array}{c}
\mathcal{N}|_K \\
\downarrow \\
F^{r*} \Omega_K(p^r) \\
\downarrow \\
0
\end{array}
\quad
\begin{array}{c}
\mathcal{O}_K \\
\downarrow \\
\mathcal{O}_K \\
\downarrow \\
\mathcal{O}_K \\
\downarrow \\
\mathcal{O}_K \\
\downarrow \\
\mathcal{O}_K
\end{array}
\quad
\begin{array}{c}
\mathcal{N}|_K \\
\downarrow \\
F^{r*} \Omega_K(p^r) \\
\downarrow \\
0 \\
\downarrow \\
0
\end{array}
\quad
\begin{array}{c}
0 \\
\downarrow \\
0
\end{array}
\]

we get the exact sequence:

$$0 \to \mathcal{O}_K(-s) \to \mathcal{N}|_K \to F^{r*} \Omega_K(p^r) \to 0. \tag{12}$$

By the exact sequence:

$$0 \to F^{r*} \Omega_K(p^r) \to \mathcal{O}_K^\oplus 3 \to \mathcal{O}_K(p^r) \to 0$$

and by the fact that $p^r \leq m + 1 < \frac{s}{2}$ we see that $\text{Ext}^1(F^{r*} \Omega_K(p^r), \mathcal{O}_K(-s)) = 0$ and so $\mathcal{N}|_K \cong F^{r*} \Omega_K(p^r) \oplus \mathcal{O}_K(-s)$. Since $F^{r*} \Omega_K(p^r)$ is stable and:

$$\mu(F^{r*} \Omega_K(p^r)) = \frac{-p^r}{2} > \mu(\mathcal{O}_K(-s)) = -s,$$

we see that the maximal destabilizing subsheaf of $\mathcal{N}|_K$ is $F^{r*} \Omega_K(p^r)$. So, since \mathcal{N} is unstable of rank 3, by [12, Theorem 3.1] the maximal destabilizing subsheaf of \mathcal{N} must be a reflexive sheaf \mathcal{F} of rank 2 such that:

$$\mathcal{F}|_K \cong F^{r*} \Omega_K(p^r). \tag{13}$$

So, being \mathcal{F} the maximal destabilizing sheaf of \mathcal{N}, we have the following commutative diagram:
where \(\mathcal{I}_T \) is the ideal sheaf in \(H \) of a zero-dimensional scheme \(T \) and \(\mathcal{Q} \) is a rank 1 sheaf such that \(c_1(\mathcal{Q}) = 0 \). Since \(\mathcal{Q}|_K \cong \mathcal{O}_K \), \(\mathcal{Q} \) must be torsion free and so \(\mathcal{Q} = \mathcal{I}_W \) for some zero-dimensional scheme \(W \). So we get:

\[
0 \to \mathcal{I}_T(-s) \to \mathcal{I}_W \to \mathcal{I}_{E|R}(s) \to 0,
\]

by which we get that \(W \neq \emptyset \), because \(h^0\mathcal{I}_Y(s) = 1 \). Moreover:

\[
h^1\mathcal{E}(n) = h^1\mathcal{I}_{E|R}(n) = \deg W - \deg T
\]

for any \(n < s \) and:

\[
h^1\mathcal{E}(s) = h^1\mathcal{I}_{E|R}(s) = \deg W - \deg T - 1,
\]

because \(h^0\mathcal{I}_{E|R}(s) = 0 \).

Let \(F \subset E \) be the equidimensional component of dimension 1. Then there exists a sheaf \(\mathcal{K} \) of finite length determining the following exact sequence:

\[
0 \to \mathcal{I}_E \to \mathcal{I}_F \to \mathcal{K} \to 0.
\]

Then we see that \(h^1\mathcal{E}(n) = h^0\mathcal{K} \) for \(n \ll 0 \), so that by (14) we see that \(h^0\mathcal{K} = \deg W - \deg T \). Moreover:

\[
h^0\mathcal{E}(s) - h^0\mathcal{F}(s) + h^0\mathcal{K} - h^1\mathcal{E}(s) + h^1\mathcal{F}(s) = 0
\]

and so, since \(Y \subset F \subset E \), \(h^0\mathcal{E}(s) = h^0\mathcal{F}(s) = 1 \) and by (15) we get:

\[
h^1\mathcal{F}(s) = h^1\mathcal{E}(s) - h^0\mathcal{K} = -1.
\]

This is impossible and so we get a contradiction. \(\square \)

Corollary 1. Let \(h^0\mathcal{I}_Y(s) \neq 0 \) and let \(p < s \). If \(\deg X > s^2 \), then \(h^0\mathcal{I}_X(s) \neq 0 \).

In the following theorem we see that for \(p \geq s \) the bound for \(d \) is independent on the order of the sporadic zero \(\alpha \) and coincides with the bound of the characteristic zero case (see [14] and [16]).

Theorem 4. Let \(h^0\mathcal{I}_Y(s) \neq 0 \), \(h^0\mathcal{I}_X(s) = 0 \) and let \(p \geq s \). Then \(\deg X \leq s^2 - s + 2 \).
This implies that $\mathcal{I}_{X \cap H_r}(s) \to 0$, where $\mathcal{I}_{X \cap H_r} \subset \mathcal{O}_{H_r}$ is the ideal sheaf of $X \cap H_r$. Since $h^0(\mathcal{I}_{X \cap H_r}(s)) \neq 0$ and $h^0(\mathcal{I}(s)) = 0$, it must be $h^1(\mathcal{I}(s - p^r) \neq 0$. By the fact that X is integral we see that it must be $p^r < s$ and so $r = 0$ and $p^r = 1$.

Now we show that the bounds given in Theorem 3 and Theorem 4 are sharp.

Example 1. Let r, p, $s \in \mathbb{N}$ such that $s \geq 2p^r$. Let us consider $E = \mathcal{O}_{\mathbb{P}^4}(p^r - 2s) \oplus \mathcal{O}_{\mathbb{P}^4}(-p^r - s)$ and $\mathcal{F} = F^r \Omega_{\mathbb{P}^4}(p^r - 1)$. Then, since $E^r \otimes F$ is generated by global sections, by [5] the dependency locus of a general homomorphism $\varphi \in \text{Hom}(E, \mathcal{F})$ is a smooth surface $X \subset \mathbb{P}^4$, and it is determined by the sequence:

\begin{equation}
0 \to \mathcal{O}_{\mathbb{P}^4}(p^r - 2s) \oplus \mathcal{O}_{\mathbb{P}^4}(-p^r - s) \to F^r \Omega_{\mathbb{P}^4}(p^r - 1) \to \mathcal{I}_X \to 0.
\end{equation}

Together with:

\begin{equation}
0 \to F^r \Omega_{\mathbb{P}^4}(p^r) \to \mathcal{O}_{\mathbb{P}^4} \to \mathcal{O}_{\mathbb{P}^4}(p^r) \to 0
\end{equation}

this implies that $h^1(\mathcal{I}_X) = 0$, so that $h^0(\mathcal{O}_X) = 1$ and X is connected and, being smooth, X is integral. Moreover, $h^3(\mathcal{I}_X(s)) = 0$ and by a computation with Chern classes we see that $\deg X = s^2 - p^r s + 2p^{2r}$.

Let $H \subset \mathbb{P}^4$ be a general hyperplane and let $H_r \subset \mathbb{P}^4$ be the nonreduced hypersurface of degree p^r such that $H_{r,\text{red}} = H$. Then, $(F^r)^{-1}(H) = H_r$. This shows that we have a commutative diagram:

\[
\begin{array}{ccc}
H_r & \xrightarrow{i} & H \\
\downarrow{\pi} & & \downarrow{\jmath} \\
\mathbb{P}^4 & \to & \mathbb{P}^4
\end{array}
\]

So we have:

\[i^*(F^r \Omega_{\mathbb{P}^4}(p^r)) = i^*(F^r \Omega_{\mathbb{P}^4}(1)) = \pi^*(j^*(\Omega_{\mathbb{P}^4}(1))) \cong \pi^*(\Omega_H(1)) \otimes \mathcal{O}_{H_r}.
\]

This implies that $h^0(\mathcal{O}_{\mathbb{P}^4}(p^r)) \geq 1$. In particular, by [10] we see that $h^0(\mathcal{I}_{X \cap H_r}(s)) = 0$, so that $h^0(\mathcal{I}_X(s)) = 0$. Moreover, by [16] and by [17] we see that $h^1(\mathcal{I}_X(s - p^r - 1) = 0$. This shows that X has a sporadic zero of degree s and order $m = p^r - 1$. So:

1. if $r = 0$ and $s \geq 2$, then $p^r = 1$, $m = 0$ and $\deg X = s^2 - 2s + 2$;
2. if $s = 2p^r + 1$, then $s = 2m + 3$ and $\deg X = s^2 - \frac{2p^r}{2} = s^2 - s + p^r + 1$;
3. if $s = 2p^r$, then $s = 2m + 2$ and $\deg X = s^2$.

This shows that the bounds in Theorem 3 and Theorem 4 are sharp.

References

[1] P. Bonacini, Laudal’s Lemma in positive characteristic, J. Algebraic Geom. 18 (2009), no. 3, 459–475.
[2] P. Bonacini, On the plane section of an integral curve in positive characteristic, Proc. Am. Math. Soc., 136 (2008), no.7, 2289–2297.
[3] L. Ein, Stable vector bundles on projective spaces in char $p > 0$, Math. Ann., 254 (1980), no. 1, 53–72.
ON THE LIFTING PROBLEM IN \mathbb{P}^4 IN CHARACTERISTIC p

[4] A. V. Geramita, P. Maroscia, L. G. Roberts, *The Hilbert function of a reduced k-algebra*, J. London Math. Soc. 28 2 (1983), 433–452.

[5] L. Gruson, C. Peskine, *Section plane d’une courbe gauche: postulation*, Enumerative Geometry and Classical Algebraic Geometry (Nice, 1981), Progr. Math., no. 24, Birkhäuser, Boston, Mass., 1982, pp. 33–35.

[6] J. Harris, *The Genus of space curves*, Math. Ann. 249 (1980), no. 3, 191–204.

[7] R. Hartshorne, *Algebraic Geometry*, Graduate Texts in Mathematics 52, Springer-Verlag, New York, 1977.

[8] S. L. Kleiman, *Geometry on Grassmannians and applications to splitting bundles and smoothing cycles*, Inst. Hautes Études Sci. Publ. Math. No. 36 (1969), 281–297.

[9] O. A. Laudal, *A generalized trisecant lemma*, Algebraic Geometry (Proc. Sympos. Univ. Tromsø, Tromsø, 1977), Lecture Notes in Math., no. 687, Springer-Verlag, Berlin, 1978, pp. 112–149.

[10] R. Maggioni, A. Ragusa, *The Hilbert function of generic plane sections of curves of \mathbb{P}^3*, Inv. Math. 91 (1988), 253–258.

[11] R. Maggioni, A. Ragusa, *Construction of smooth curves of \mathbb{P}^3 with assigned Hilbert function and generators’ degrees*, Le Matematiche 42 (1987), no. 1-2, 195–209 (1989).

[12] M. Maruyama, *Boundedness of semistable sheaves of small ranks*, Nagoya Math. J., 78 (1980), 65–94.

[13] V. B. Mehta, A. Ramanathan, *Homogeneous bundles in characteristic p*, in Algebraic geometry - open problems, Proc. Conf., Ravello/Italy 1982, Lect. Notes Math. 997, 315–320 (1983).

[14] E. Mezzetti, I. Raspanti, *A Laudal-type theorem for surfaces in \mathbb{P}^4*, Commutative algebra and algebraic geometry, I (Italian) (Turin, 1990), Rend. Sem. Mat. Univ. Politec. Torino 48 (1990), no. 4, 529–537 (1993).

[15] E. Mezzetti, *The border cases of the lifting theorem for surfaces in \mathbb{P}^4*, J. Reine Angew. Math. 433 (1992), 101–111.

[16] E. Mezzetti, *Differential-geometric methods for the lifting problem and linear systems on plane curves*, J. Algebraic Geom. 3 (1994), no. 3, 375–398.

[17] J. S. Milne, *Étale cohomology*, Princeton Mathematical Series, no. 33, Princeton University Press, Princeton, N.J., 1980.

[18] C. Okonek, M. Schneider, H. Spindler, *Vector bundles on complex projective spaces*, Progress in Mathematics, 3, Birkhäuser, Boston, Mass., 1980.

[19] M. Roggero, *Sulle sezioni di un fascio riflessivo di rango 2 definiti sottovarietà intrese*, Boll. Un. Mat. Ital. D (6) 4 (1985), no. 1, 57–61 (1986).

[20] M. Roggero, *Lifting problem for codimension two subvarieties in \mathbb{P}^{n+2}: border cases*, Geometric and combinatorial aspects of commutative algebra (Messina, 1999), 309–326, Lecture Notes in Pure and Appl. Math., 217, Dekker, New York, 2001.

[21] M. Roggero, *Generalizations of “Laudal Trisecant Lemma” to codimension 2 subvarieties in \mathbb{P}^N*, Quaderni del Dipartimento di Matematica di Torino 23/2003.

[22] R. Strano, *On the hyperplane sections of curves*, Proceedings of the Geometry Conference (Milan and Gargnano, 1987), Rend. Sem. Mat. Fis. Milano 57 (1987), 125–134 (1989).

Dipartimento di Matematica e Informatica, Università di Catania, Viale A. Doria 6, 95124, Catania, Italy, bonacini@dmi.unict.it