AN A PRIORI ESTIMATE FOR THE SINGLY PERIODIC
SOLUTIONS OF A SEMILINEAR EQUATION

GENEVIEVE ALLAIN AND ANNE BEAULIEU

Abstract. There exists an exponentially decreasing function f such that any singly 2π-periodic positive solution u of $-\Delta u + u - u^p = 0$ in $[0, 2\pi] \times \mathbb{R}^{N-1}$ verifies $u(x_1, x') \leq f(\|x'\|)$. We prove that with the same period and with the same function f, any singly periodic positive solution of $-\varepsilon^2 \Delta u - u + u^p = 0$ in $[0, 2\pi] \times \mathbb{R}^{N-1}$ verifies $u(x_1, x') \leq f(\|x'\|/\varepsilon)$. We have a similar estimate for the gradient.

1. Introduction.

Let N be an integer, $N \geq 2$, let ε and p be positive real numbers, $p > 1$. We study the equation

\begin{equation}
-\varepsilon^2 \Delta u + u - u^p = 0 \text{ in } S^1 \times \mathbb{R}^{N-1}
\end{equation}

where $S^1 = [0, 2\pi]$. We mean that u is 2π-periodic in x_1. We consider the positive solutions of (1.1), $u(x_1, x')$ ($x_1 \in S^1$ and $x' \in \mathbb{R}^{N-1}$) that tend to 0 as $\|x'\|$ tends to ∞, uniformly in x_1. It is known that these solutions are radial in x' and decreasing in $\|x'\|$. This can be proved by an application of the moving plane method \cite{3, 7, 8}. The ground-state solution w_0, defined and radial on \mathbb{R}^{N-1} is a particular solution which does not depend on x_1. In \cite{2}, Dancer proved the existence of positive solutions really depending on x_1 and x'. In \cite{11}, we studied the case $N = 2$ and we proved the following result:

\textbf{Theorem 1.1.} (i) The first continuum Σ_1 of positive bounded solutions even in x_1 and x' of (1.1) bifurcating from $(\varepsilon_*, w_0(x'/\varepsilon*))$ is composed of $(\varepsilon_*, w_0(x'/\varepsilon*))$ and of all the solutions (ε, z) of (1.1) such that $z > 0$, z even in x_1 and x_2, $\lim_{x_2 \to \infty} z = 0$ and $\frac{\partial z}{\partial x_1} < 0$ in $[0, \pi] \times \mathbb{R}^+$. (ii) There exists a bounded subset A of $L^\infty(S^1 \times \mathbb{R}^+)$ such that the set Σ_1 is entirely contained in $[0, \varepsilon_*) \times A$. (iii) For each $(\varepsilon, z) \in \Sigma_1$, z is an isolated point of \{$v \in L^\infty(S^1 \times \mathbb{R}^+); v$ even in x_1 and x'; (ε, v) solution of (1.1)\}. For every $\varepsilon > 0$, $\varepsilon < \varepsilon_*$, there exists a finite number of solutions (ε, z) in Σ_1. (iv) There exists ε_0 such that for all $0 < \varepsilon < \varepsilon_0$ this continuum is a curve that has a one to one C^1 parameterization $\varepsilon \to (\varepsilon, z_\varepsilon)$.

In this paper we suppose that

\begin{equation}
1 < p < \frac{N + 2}{N - 2}
\end{equation}

If \(N = 2 \), this condition is \(p > 1 \).

We know, see [2], that the condition (1.2) for \(p \) is a necessary and sufficient condition to have the following property: There exists \(M > 0 \) such for all \(\varepsilon > 0 \), any positive solution \(u \) of (1.1) verifies

\[
\|u\|_{L^\infty} \leq M
\]

This property is related to the nonexistence of positive solutions for the equation

\[
-\Delta u - u^p = 0
\]

more precisely (1.4) \((v \geq 0), -\Delta v - v^p = 0 \) in \(\mathbb{R}^N \) \(\Rightarrow (v = 0) \)

(see Gidas and Spruck [4]). This paper is devoted to some a priori estimates for the solutions of (1.1).

Theorem 1.2. There exists a real number \(K \) independent of \(\varepsilon > 0 \) and of any solution \(u \) of (1.1), such that for all \(x = (x_1, x') \) in \(S^1 \times \mathbb{R}^{N-1} \), we have, with \(r' = \|x'\| \),

\[
u(x) \leq Ke^{-\frac{r'}{\varepsilon}}(\frac{r'}{\varepsilon})^{\frac{2-N}{2}}
\]

(1.5)

\[
\|\nabla u(x)\| \leq \frac{K}{\varepsilon} e^{-\frac{r'}{\varepsilon}}(\frac{r'}{\varepsilon})^{\frac{2-N}{2}}
\]

(1.6)

In [1], we have proved (1.5) for \(N = 2 \) but with a constant \(K \) depending on the solution \((\varepsilon, u)\) for \(\varepsilon \) greater than some \(\varepsilon > 0 \). Our proof extends easily for \(N \geq 2 \) and for the derivatives of \(u \). We have now to prove that \(K \) is independent from the solution \((\varepsilon, u)\), even when \(\varepsilon \) tends to 0.

In all what follows we will use \(\tilde{u}(x_1, x') = u(\varepsilon x_1, \varepsilon x') \) for \((x_1, x') \in S^1/\varepsilon \times \mathbb{R}^{N-1} \). The notation \(\Delta' \) will stand for the Laplacian operator in \(\mathbb{R}^{N-1} \).

2. Proof of Theorem 1.2

We begin the proof by two propositions.

Proposition 2.1. Let \(v \) be a bounded solution of

\[
-\Delta v + v - v^p = 0 \quad \text{in} \quad \mathbb{R}^2
\]

(2.7)

Let us suppose that \(\frac{\partial v}{\partial x_i} \) is bounded and \(\frac{\partial v}{\partial x_i} \leq 0 \) in \(\mathbb{R}^2 \), for \(i = 1 \) or \(i = 2 \). Then \(v \) does not depend on the variable \(x_i \).

Proof: From Ghoussoub-Gui, [6], Theorem 1.1, there exist a function \(U \) and a vector \(a \in \mathbb{R}^2 \) such that \(v(x) = U(a.x) \). We have

\[-\|a\|^2U''(a.x) + (U - U^p)(a.x) = 0\]

If \(a_i \neq 0 \), \(U \) is monotone and bounded in \(\mathbb{R} \). The only possibility is that \(U \) is a constant function, equal to 0 or 1, so is \(v \).
Proposition 2.2. Let \((\varepsilon, u)\) be solutions of (1.1). Then \(\tilde{u}(x_1, r)\) tends to 0 as \(r\) tends to \(\infty\), uniformly with respect to \(x_1\) and to \(\varepsilon\) and \(u\).

Proof In this proof, we omit the indices of the sequences. Let us suppose, by contradiction, that there exist a sequence \((a, b)\) in \(\mathbb{R}^N\), with \(||b||\) tending to \(+\infty\), a real positive number \(\varepsilon_2\) and solutions \((\varepsilon, u)\) of (1.1) such that \(\tilde{u}(a, b) \geq \varepsilon_2\). We can suppose \(\varepsilon_2 < 1\). For every solution \((\varepsilon, u)\), we have that \(\lim_{r \to +\infty} \tilde{u}(x_1, r) = 0\), uniformly in \(x_1\). So, for every \(\varepsilon_1 \in]0, \varepsilon_2[\), there exists a sequence, \(\tilde{b}, ||\tilde{b}|| \geq ||b||\), such that \(\tilde{u}(a, \tilde{b}) = \varepsilon_1\). We define a sequence, still denoted by \(b\), with \(||b||\) tending to \(\infty\), such that \(\tilde{u}(a, b) = \varepsilon_2\). As \(\tilde{u}\) is radial in \(x'\), let us define
\[
v(x_1, r) = \tilde{u}(x_1 + a, r + ||b||) \text{ for } r \geq -||b||
\]
and
\[
\bar{v}(x_1, r) = \tilde{u}(x_1 + a, r + ||\tilde{b}||) \text{ for } r \geq -||\tilde{b}||
\]
The function \(v\) verifies
\[
-v_{x_1x_1} - v_{rr} - \frac{N - 2}{r + ||b||} v_r + v - v^p = 0
\]
and \(\bar{v}\) verifies a similar equation. It is standard that the both sequences \(v\) and \(\bar{v}\) tend uniformly on the compact sets of \(\mathbb{R}^2\) to limits, which will be denoted respectively by \(z\) and \(\bar{z}\). But \(z\) and \(\bar{z}\) are positive, bounded and non increasing in the variable \(r\) and they are periodic in \(x_1\). Moreover, \(z\) and \(\bar{z}\) verify
\[
-z_{x_1x_1} - z_{rr} + z - z^p = 0 \text{ in } \mathbb{R}^2
\]
By Proposition 2.1, \(z\) and \(\bar{z}\) depend only on \(x_1\). By Kwong, [9], if they are not constant functions, they oscillate indefinitely as \(x_1\) tends to \(\infty\), around the solution 1. As \(0 < \varepsilon_1 < \varepsilon_2 < 1\), then \(z\) and \(\bar{z}\) are not constant solutions. So \(z\) and \(\bar{z}\) oscillate infinitely around 1, too. The function \(h = z - 1\) and the function \(\bar{h} = \bar{z} - 1\) verify respectively the equations
\[
(2.8) \quad h'' + h(-1 + \frac{z^p - 1}{z - 1}) = 0 \quad \text{and} \quad \bar{h}'' + \bar{h}(-1 + \frac{\bar{z}^p - 1}{\bar{z} - 1}) = 0
\]
As \(z \geq \bar{z}\) and \(z(0) > \bar{z}(0)\), we have from the ordinary differential equations theory that \(z > \bar{z}\). It is easy to see that \(-1 + \frac{z^p - 1}{z - 1} > -1 + \frac{\bar{z}^p - 1}{\bar{z} - 1}\). By the Sturm Theory (see Ince, quoted in [9], Lemma 1), applied to the equations (2.8), there exists at least a zero of \(\bar{z} - 1\) between any two consecutive zeroes of \(\bar{z} - 1\). But there exist pairs \((\alpha, \beta)\) of zeroes of \(\bar{z} - 1\) such that \(\bar{z} > 1\) in \(]\alpha, \beta[\). Thus \(z > 1\) in \(]\alpha, \beta[\). We get a contradiction. We infer that the sequence \((a, b)\), in the beginning of this proof, doesn’t exist. We have proved the proposition.

We will need the following lemma

Lemma 2.1. There exists \(M\), such that for all solution \((\varepsilon, u)\) of (1.1)
\[
(2.9) \quad ||\nabla \tilde{u}||_{L^\infty(\frac{S_1}{\varepsilon} \times \mathbb{R}^N - 1)} \leq M
\]
Proof Let \((a, b) \in (S^1/\varepsilon) \times \mathbb{R}^{N-1}\). We set \(v(x_1, x') = \tilde{u}(x_1 + a, x' + b)\). It verifies
\[-\Delta v + v - v^p = 0\] in \((S^1/\varepsilon) \times \mathbb{R}^{N-1}\). Moreover, we have \(\|v\|_\infty \leq M\), for a constant \(M\) independent from \(\varepsilon\). By standard elliptic arguments, \([5]\), \(\nabla v\) is bounded on the compact sets of \(\mathbb{R}^N\). So, there exists \(M\), independent from \(\varepsilon\), such that \(\|\nabla v(0, 0)\| \leq M\). This proves (2.9).

Proof of Theorem 1.2 We define

\[h(r') = \int_0^{2\pi/\varepsilon} \tilde{u}(x_1, r')dx_1\]

There exists a constant \(C\), independent from the solution \((\varepsilon, u)\), such that \(\|h\|_{L^\infty(\mathbb{R}^{N-1})} \leq C\). Since \(u \to 0\), uniformly in \(x_1\), as \(r'\) tends to \(\infty\), then for all \(\eta < 1\), there exists \(X > 0\) such that for all \(r' > X\) and for all \(\varepsilon\) we have for all solution \((\varepsilon, u)\) and for all \(x_1 \in \frac{S^1}{\varepsilon}\).

(2.10) \(\tilde{u}^{p-1}(x_1, r') < \eta\)

Integrating (1.1) with respect to \(x_1\), we find for \(r' > X\)

(2.11) \(h_{rr} + ((N - 2)/r')h_r > (1 - \eta)h\)

Let us multiply (2.11) by \(h_r\), we obtain that the function \(h_r^2 - (1 - \eta)h^2\) is non increasing. Moreover, it tends to 0 as \(r'\) tends to \(\infty\). We get \(h_r + \sqrt{1 - \eta}h \leq 0\), for \(r' > X\). So there exists \(C\) such that for all \(r'\)

(2.12) \(h(r') \leq \frac{C}{\varepsilon} e^{-\sqrt{1 - \eta}r'}\)

Let us remark that the constant \(C\) is independent from the choice of the solution \((\varepsilon, u)\).

Let \(R > 0\) be a given positive real number. We use a Harnack inequality (\([2]\), Theorem 9.20) to get that there exists a constant \(C\) independent from \(y\) and from \(\varepsilon\) such that

(2.13) \(\sup_{B_R(y)} \tilde{u} \leq C \int_{B_{2R}(y)} \tilde{u} dx_1 dx' \leq C \int_{\|x' - y'\| \leq 2R} \int_{y_1 - R}^{y_1 + R} \tilde{u}(x_1, x')dx_1dx'\)

that gives

\(\sup_{B_R(y)} \tilde{u} \leq C \int_{\|x' - y'\| \leq 2R} h(||x'||)dx'.\)

Finally, using (2.12), for all \(\eta \in]0, 1[\) there exists \(C\), independent from the solution \((\varepsilon, u)\), such that,

(2.14) \(\tilde{u}(y) \leq \frac{C}{\varepsilon} e^{-\eta\|y'\|}\)
For the remainder of the proof, we will need the Green function for the equation. We have

\begin{equation}
G(x, x') = \sum_{j=0}^{\infty} \frac{k_j^{N-3}}{\varepsilon^{N-1}} g\left(\frac{k_j}{\varepsilon} x'\right) \cos(j x_1)
\end{equation}

where \(k_j = \sqrt{1 + \varepsilon^2 j^2}\) and \(g\) is the Green function for the operator \(-\Delta' + I\) in \(\mathbb{R}^n\), \(n = N - 1\), with the null limit at infinity. It is recalled in [3] that

\begin{equation}
0 < g(r) \leq C e^{-r (1 + r)^{(n-3)/2}} \quad \text{for } n \geq 2 \quad \text{and} \quad g(r) = \frac{1}{2} e^{-r} \quad \text{for } n = 1
\end{equation}

We will need the following estimate, valid for all \(\eta \in [0, 1]\).

\begin{equation}
\int_{\mathbb{R}^{N-1}} g\left(\|y' - x'\|\right) e^{-\eta \|y'\|} dy' \leq C e^{-\eta \|x'\|}
\end{equation}

which is an easy consequence of (2.16). For all function \(f\), that is \(2\pi\)-periodic in \(x_1\), the solution of

\begin{equation}
-\varepsilon^2 \Delta u + u = f \quad \text{in } \mathbb{R}^N
\end{equation}

that is \(2\pi\)-periodic in \(x_1\) and that tends to 0, as \(\|x'\|\) tends to \(\infty\) is \(u = G* f\). If \(f\) is positive, then \(u\) is positive, by the maximum principle. So \(G\) is positive. Moreover we can use (2.15) to verify that

\begin{equation}
\int_{S^1} G(x, x') dx_1 = \frac{2\pi}{\varepsilon^{N-1}} g\left(\frac{x'}{\varepsilon}\right)
\end{equation}

Let us prove that for all \(\eta \in [0, 1]\), there exists \(C\), independent from \(x_1\) and from \((\varepsilon, u)\) such that

\begin{equation}
\tilde{u}(x_1, x') \leq C e^{-\eta \|x'\|}
\end{equation}

It is clear by (2.14) that for all solution \((\varepsilon, u)\) and all \(\eta \in [0, 1]\), the function \(\tilde{u} e^{\eta \|x'\|}\) belongs to \(L^\infty(\mathbb{R}^N)\). We set

\begin{equation}
K(\eta) = \|\tilde{u} e^{\eta \|x'\|}\|_{\infty}
\end{equation}

We use the Green function \(G\) to get

\begin{equation}
u(x_1, x') = \int_{S^1 \times \mathbb{R}^{N-1}} G(y_1 - x_1, y' - x') u(y_1, y') dy_1 dy'
\end{equation}

and (2.18) gives

\begin{equation}
\tilde{u}(x_1, x') \leq 2\pi K\left(\frac{\eta}{p}\right)^p \int_{\mathbb{R}^{N-1}} g\left(\|y' - x'\|\right) e^{-\eta \|y'\|} dy'
\end{equation}

By (2.17), we infer that there exists a constant \(C\), independent from \((\varepsilon, u)\), such that

\begin{equation}
K(\eta) \leq C K\left(\frac{\eta}{p}\right)^p
\end{equation}

Now, let \(\tau = (\tau_1, \tau')\) be such that the function \(\tilde{u}(x + \tau) e^{\eta \|x' + \tau'\|}\) attains its maximal value at \(x = 0\). The existence of \(\tau\) is provided by (2.14). Let us suppose that \(K(\eta)\)
tends to ∞. We claim that $\|\tau'\|$ tends to infinity. Let us prove this claim. Let α be a positive real number, that will be chosen later. We set

$$v(x) = \tilde{u}(\alpha x + \tau)e^{\eta \|\alpha x' + \tau'\|}/K(\eta)$$

It verifies

$$-\Delta v + \left(1 + \eta^2 + \frac{(N-2)\eta}{\|\alpha x' + \tau'\|}\right)\alpha^2 v$$

$$= K(\eta)^{p-1}\alpha^2 e^{-(p+1)\eta\|\alpha x' + \tau'\|}p^p + \frac{2\eta\alpha^2}{K(\eta)}\sum_{i=2}^{N} \frac{\partial \tilde{u}}{\partial x_i}(\alpha x + \tau)(\frac{\alpha x_i + \tau_i}{\|\alpha x' + \tau'\|}e^{\eta\|\alpha x' + \tau'\|})$$

If $\|\tau'\|$ were bounded, we would choose α that tends to 0 such that $K(\eta)^{p-1}\alpha^2 e^{-(p+1)\eta\|\alpha x' + \tau'\|}$ tends to 1. By Lemma 2.1 and by standard results, v would tend to a limit τ, uniformly in the compact sets of \mathbb{R}^N. Then, τ would verify $-\Delta \tau - \tau^p = 0$ while $0 \leq \tau \leq 1$ and $\tau(0) = 1$. This is impossible by (1.4). So, if we suppose that $K(\eta)$ tends to ∞, then $\|\tau'\|$ tends to ∞. Let $\tilde{\tau} = (\tilde{\tau}_1, \tilde{\tau}_2)$ be such that $K(\frac{\tilde{\tau}}{p}) = \tilde{u}(\tilde{\tau})e^{\frac{\tilde{\tau}}{p}\|\tau'\|}$. We have $K(\frac{\tilde{\tau}}{p})^p = \tilde{u}^p(\tilde{\tau})e^{p\|\tau'\|}$, that gives

$$\tag{2.22} K\left(\frac{\tilde{\tau}}{p}\right)^p \leq K(\eta)\tilde{u}^{p-1}(\tilde{\tau})$$

Then (2.21) and (2.22) give

$$\tag{2.23} K(\eta) \leq CK\left(\frac{\tilde{\tau}}{p}\right)^p \leq CK(\eta)\tilde{u}^{p-1}(\tilde{\tau})$$

Consequently, if $K(\eta)$ tends to ∞, then $K(\frac{\tilde{\tau}}{p})$ tends to ∞, too. Then, $\|\tilde{\tau}'\| \to \infty$. By Proposition 2.2 we have $\tilde{u}(\tilde{\tau}) \to 0$. Then (2.23) gives a contradiction. So, we have proved that for all $\eta \in]0, 1[$, $K(\eta)$ is bounded, independently from (ε, u). We have (2.19). Now, let us choose η such that $\eta p > 1$. In [3], it is proved that for $b > 1$ and for $N - 1 \geq 2$

$$\tag{2.24} \int_{\mathbb{R}^{N-1}} g(\|x' - y\|)e^{-b\|y\|}dy' \leq C\|x'\|^{\frac{2-N}{2}}e^{-\|x'\|}$$

We can use (2.16) to prove that the estimate (2.24) is valid also for $N = 2$. Now we use (2.20), (2.18) and (2.24) to obtain (1.5) with K independent from (ε, u). Now, let us estimate the gradient of u. We have, for $i = 1, ..., N$

$$\tag{2.25} \frac{\partial u}{\partial x_i}(x_1, x') = p \int_{S^1 \times \mathbb{R}^{N-1}} G(y_1 - x_1, y' - x')(u^{p-1}\frac{\partial \tilde{u}}{\partial x_i})(y_1, y')dy_1dy'$$

Since $\frac{\partial \tilde{u}}{\partial x_i}$ is bounded and $u \leq Ce^{-r'/\varepsilon}$, that gives

$$|\frac{\partial u}{\partial x_i}(x_1, x')| \leq \frac{C}{\varepsilon} \int_{S^1 \times \mathbb{R}^{N-1}} G(y_1 - x_1, y' - x')e^{-(p-1)\|y'\|/\varepsilon}dy_1dy'$$

and (2.18) gives

$$\tag{2.26} |\frac{\partial \tilde{u}}{\partial x_i}(x_1, x')| \leq C \int_{\mathbb{R}^{N-1}} g(\|y' - x\|)e^{-(p-1)\|y\|}dy'$$
Now, the proof is more easy if \(p > 2 \) than if \(p < 2 \). If \(p > 2 \), we deduce directly \((1.6) \) from \((2.24) \) and \((2.26) \). If \(1 < p < 2 \), we deduce from \((2.17) \) and \((2.26) \) that

\[
\left| \frac{\partial \tilde{u}}{\partial x_i}(x_1, x') \right| \leq Ce^{-(p-1)||x'||}
\]

Iterating this process, we get an integer \(k \) such that

\[
\left| \frac{\partial \tilde{u}}{\partial x_i}(x_1, x') \right| \leq Ce^{-k(p-1)||x'||}
\]

with \(k(p-1) < 1 \) and \((k+1)(p-1) \geq 1 \). If \((k+1)(p-1) > 1 \), we get \((1.6) \) and the proof is complete. If \((k+1)(p-1) = 1 \), we get

\[
\left| \frac{\partial \tilde{u}}{\partial x_i}(x_1, x') \right| \leq C \int_{\mathbb{R}^{N-1}} g(||y' - x'||) e^{-||y'||} dy'
\]

If \(N \geq 3 \), we have

\[
\int_{\mathbb{R}^{N-1}} g(||y' - x'||) e^{-||y'||} dy' \leq C \int_{\mathbb{R}^{N-1}} e^{-||x'-y'||(N-4)/2/||x'-y'||^{N-3}} dy'
\]

We can write the integral in the right hand member of this inequality as \(I = I_1 + I_2 \) and

\[
I_1 = \int_{||z|| \leq ||x'||} e^{-||z||-||z+x'||(1 + ||z||)(N-4)/2/||z||^{N-3}} dz
\]

and

\[
I_2 = \int_{||z|| \geq ||x'||} e^{-||z||-||z+x'||(1 + ||z||)(N-4)/2/||z||^{N-3}} dz
\]

We obtain, as \(||x'|| \) tends to \(\infty \),

\[
I_1 \leq e^{-||x'||} \int_{0}^{||x'||} (1 + s)^{N-4} s ds \quad \text{and} \quad I_2 \leq e^{||x'||} \int_{||x'||}^{+\infty} e^{-2s(1 + s)^{N-4}} s ds
\]

These integrals are both less than \(Ce^{-||x'||} ||x'||^{N/2} \). Thus, if \(N \geq 3 \) we have obtained that

\[
(2.27) \quad \left| \frac{\partial \tilde{u}}{\partial x_i}(x_1, x') \right| \leq Ce^{-||x'||} ||x'||^{N/2}
\]

If \(N = 2 \), we have, when \(||x'|| \) tends to \(\infty \)

\[
\int_{\mathbb{R}} g(||y' - x'||) e^{-||y'||} dy' \leq C \int_{\mathbb{R}} e^{-||x'-y'||-||y'||} dy' \leq C ||x'|| e^{-||x'||}
\]

In any case, we get that there exists \(b \in [0, 1] \), with \(b + p - 1 > 1 \) and such that

\[
\left| \frac{\partial \tilde{u}}{\partial x_i}(x_1, x') \right| \leq Ce^{-b||x'||}
\]

Using this estimate in \((2.23) \) and thanks to \((2.24) \), we get \((1.6) \), for \(1 < p < 2 \). If \(p = 2 \), \((2.26) \) is \((2.27) \) and we deduce \((2.28) \) again. This ended the proof of Proposition \(1.2 \).
References

[1] G. Allain, A. Beaulieu, Singly periodic solutions of a semilinear equation, Ann. I.H.P. Analyse non linéaire 26 (4) (2009) 1277-1297.

[2] E.N. Dancer, New solutions of Equations on \mathbb{R}^n, Ann. Scuola Norm. Sup. Pisa Cl. Sci.(4) Vol. XXX (2001) 535-563.

[3] B. Gidas, W. M. Ni, L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in \mathbb{R}^n, Mathematical Analysis and Applications Part A, Adv. Math. Suppl. Studies 7A, Academic Press, New York, (1981) 369-402.

[4] B. Gidas, L. Spruck, Global and local behaviour of positive solutions of semilinear elliptic equations, Comm. Pure Appl. Math. 34 (1981), 525-598.

[5] D. Gilbarg, N. Trudinger, "Elliptic partial differential equations of second order", 2nd edition, Springer-Verlag, Berlin, 1983.

[6] N. Ghoussoub, C. Gui, On a conjecture of de Giorgi and related problems, Math. Ann. 311 (1998) 481-491.

[7] L. Almeida, L. Damascelli, Y. Ge, A few symmetry results for nonlinear elliptic PDE on noncompact manifolds, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 19, no 3, (2002) 313-342.

[8] H. Berestycki, L. Nirenberg, On the method of moving plane and the sliding method, Bol. Soc. Bras. Mat. 22 (1991) 1-39.

[9] M. K. Kwong, Uniqueness of positive solutions of $\Delta u - u + u^p = 0$ in \mathbb{R}^n, Arch. Rational Mech. Anal. 105 no 3, (1989) 243-266.

Université Paris-Est Créteil, Laboratoire d’Analyse et de Mathématiques Appliquées, UMR CNRS 8050, Faculté de Sciences et Technologie, 61, av. du Général de Gaulle, 94010 Créteil cedex, FRANCE
E-mail address: allain@u-pec.fr

Université Paris-Est Marne la Vallée, Laboratoire d’Analyse et de Mathématiques Appliquées, UMR CNRS 8050, 5 boulevard Descartes, 77454 Marne la Vallée cedex 2, FRANCE
E-mail address: anne.beaulieu@univ-mlv.fr