GeneDistiller—Distilling Candidate Genes from Linkage Intervals

Dominik Seelow¹, Jana Marie Schwarz¹, Markus Schuelke¹,²*
¹ Department of Neuropaediatrics, Charité University Medical School, Berlin, Germany, ² NeuroCure Clinical Research Center, Charité University Medical School, Berlin, Germany

Abstract

Background: Linkage studies often yield intervals containing several hundred positional candidate genes. Different manual or automatic approaches exist for the determination of the gene most likely to cause the disease. While the manual search is very flexible and takes advantage of the researchers’ background knowledge and intuition, it may be very cumbersome to collect and study the relevant data. Automatic solutions on the other hand usually focus on certain models, remain “black boxes” and do not offer the same degree of flexibility.

Methodology: We have developed a web-based application that combines the advantages of both approaches. Information from various data sources such as gene-phenotype associations, gene expression patterns and protein-protein interactions was integrated into a central database. Researchers can select which information for the genes within a candidate interval or for single genes shall be displayed. Genes can also interactively be filtered, sorted and prioritised according to criteria derived from the background knowledge and preconception of the disease under scrutiny.

Conclusions: GeneDistiller provides knowledge-driven, fully interactive and intuitive access to multiple data sources. It displays maximum relevant information, while saving the user from drowning in the flood of data. A typical query takes less than two seconds, thus allowing an interactive and explorative approach to the hunt for the candidate gene.

Access: GeneDistiller can be freely accessed at http://www.genedistiller.org

Introduction

In recent years, genetic defects have been discovered for many monogenic diseases through linkage analysis, candidate gene approaches or a combination thereof. Crucial for this success were the access to large affected families in sufficient numbers or the availability of animal models that closely mimicked the human disease phenotype. However, of more than 25,000 human protein coding genes listed in the Entrez database, less than 2,000 have been associated with human disease phenotypes [1]. Geneticists are increasingly confronted with smaller families affected with rare conditions that carry disease phenotypes [1]. Some applications classify genes based on sequence features or automatic or semiautomatic approaches to search for disease genes have been proposed [7] or implemented such as Endeavour [8], GeneWanderer [9], GeneSeeker [10], GeneSniffer (http://www.genesniffer.org/), PosMed (http://omicspace.riken.jp/PosMed/) and SUSPECTS [11]. Some applications classify genes based on sequence features [12], or use protein-protein interaction networks [9,13] while

The conventional manual approach usually does not follow any strict algorithm but is guided by the background knowledge and expectations of the researcher (Figure 1). In a conventional setting, this involves a search for all known genes in the linkage interval and a subsequent query of different databases to gather available data and extract the relevant information for prioritisation. Assessment of the validity of a positional candidate requires a thorough knowledge of many data relevant to the gene or protein of interest. Most of this information can be found on the Internet, but it is tedious to collect the fragments from different data sources. While some tools offer maps showing all genes within a region (NCBI MapViewer [4], UCSC Genome Browser [5]) without any gene-specific information, others (GeneCards [6]) feature detailed genetic data but only for one single gene at a time. Besides, all these tools suffer from the lack of more elaborate query options refining the output to a well-defined group of genes.

In the past, several interactive, automatic or semiautomatic approaches to search for disease genes have been proposed [7] or implemented such as Endeavour [8], GeneWanderer [9], GeneSeeker [10], GeneSniffer (http://www.genesniffer.org/), PosMed (http://omicspace.riken.jp/PosMed/) and SUSPECTS [11]. Some applications classify genes based on sequence features [12], or use protein-protein interaction networks [9,13] while
others (GeneSeeker, SUSPECTS) combine different approaches. For the researchers, however, the algorithms of these programs remain largely inaccessible. In a meta-test of three software tools for automatic gene prioritisation of positional candidate genes the authors recommend to exert caution in relying solely on single positional candidate prioritisation tools [14]. In any case, a researcher would usually want to read relevant gene specific information for the proposed candidate genes her- or himself before embarking upon a large sequencing project.

GeneDistiller is aimed at various strategies. It can either be used as a tool to query, select and project genes from within a linkage interval together with gene specific data or to display rich information on human candidate genes obtained with other prioritisation tools or of the researcher’s interest. Besides, it offers a customisable user-driven prioritisation integrating the available data as specified by the researcher. The application is web-based and features an intuitive interface which enables the researcher to formulate simple queries without the need to read a software manual before, yet allowing more complex queries. The software returns all results on one HTML page which can easily be printed or saved. The kind of information included is determined by the researcher. Since the results of a search are presented on the fly, the software offers a high degree of interactivity, allowing the researcher to quickly change some parameters to follow new ideas which may arise when reading the results. She can thus explore the data with the help of the computer and combine newly gained insights with her background knowledge (Figure 2).

Results

Strategies

GeneDistiller offers different approaches to determine the most likely candidate genes:

Projection. GeneDistiller can list all genes within a linkage interval together with gene specific information. Among the different kinds of gene specific data, the researcher can select those relevant to her and print and read this information for all positional candidates to choose the most promising gene. This approach can be very helpful if she has only a vague idea of the disease causing gene.

Selection. The researcher can apply filters to the genes in the linkage interval, thus narrowing down their number to a small group of more promising candidates (Figure 3). This approach should be applied when the researcher is able to define conditions which may arise when reading the results. She can thus explore the data with the help of the computer and combine newly gained insights with her background knowledge (Figure 2).
that must be fulfilled by the candidate gene, e.g. expression in a certain tissue or co-expression with another gene. Alternatively, “visual” filters can be used to highlight gene properties so that no gene will be excluded.

Sorting. Genes can be sorted according to certain parameters, e.g. their position, tissue specific expression or likelihood to encode mitochondrial proteins.

Prioritisation. GeneDistiller offers a user-driven prioritisation function which ranks genes according to the researcher’s specifications. Prioritisation approaches should be used when the researcher cannot exclude any gene in advance but wants to focus on the genes in falling order of “apparent” relevance.

The user is free to combine these methods to follow a strategy which best suits the problem, e.g. she can exclude genes using filters, choose the parameters to be used in the prioritisation process, select those to be displayed in the output and highlight interesting properties.

Application of the different strategies

While some researchers prefer to read the available information for all genes within a candidate interval, others may rather narrow down the number of genes beforehand and focus on those fulfilling certain conditions that are regarded as mandatory. We describe the application of the two latter approaches which are more complex and most commonly used, selection (filtering) and prioritisation, here together with valid “real life” examples. More examples are given on our website and help page.

Selection (Figure 3). Imagine, a candidate locus for epilepsy could be mapped to a 60 Mbp region on chromosome 2. Entering the markers limiting the interval will yield 362 genes. Since epilepsy is a common disease and a well-studied subject, the researcher might wish to focus on those genes that are known to show a suitable phenotype in an animal model. She thus filters the genes for their described mouse phenotypes. By selecting nervous system phenotype and behaviour/neurological phenotype from the MGD phenotypes drop-down menu and limiting the query to the respective genes, the number of genes can be significantly reduced to 35 genes which are linked to at least one of these phenotypes. A further condensation can be reached when the descriptions for human phenotypes are considered: The researcher enters the broad term brain into the field highlight these keywords and restricts the search to genes in whose descriptions one of these keywords appear. The more specific word epilepsy is not used because she does not want to restrain her search to genes already known to cause epilepsy in humans. The list now contains 25 candidate genes. Since a gene responsible for epilepsy is likely to be expressed in brain, she now opens the expression tab and selects \(>1 \times \text{median} \) for the expression in whole brain. Restriction to the genes with an expression above the median can be reached when show only genes fulfilling the conditions is selected and will yield 17 genes. From functional studies with her patients she knows that the prefrontal cortex might be involved and decides to focus on genes with a notable expression there. Setting a filter for prefrontal cortex expression \(>3 \times \text{median} \) and connecting both expression filters with **AND** shortens the list to only 7 genes. As many epilepsy genes involve ion channels she could further reduce the number of genes by adding the Gene Ontology ID for ion transport (GO:0006811) into the highlight these GO IDs fields and restrict the search to those carrying this GO ID or a subclass. Now, only 2 genes, SCN1A and SCN3A remain in the list both of which are excellent candidates for an epilepsy phenotype.

Prioritisation. For prioritisation the researcher can easily incorporate his or her background knowledge and follow various search avenues alone or in combination. GeneDistiller features
GeneDistiller supports the researcher with the option to sort or prioritise the genes so that the more likely candidates appear on top of the list. For sorting, a single parameter such as expression similarity or likelihood of incorporation into mitochondria can be chosen. Prioritisation offers even broader possibilities as different parameters can be combined into the ranking. The researcher can...
GeneDistiller

Target Genes

Gene Symbol	Disease	Microarray	Type

Comparison with Known Genes

- **Single Genes**
 - NCBI Entrez gene IDs
 - HGNC gene symbols
- **Comparison with Known Genes**
 - Disease Genes
 - GO IDs

Display Options

- **Highlight These Keywords**
 - Gene names
 - Normal phenotype
 - Benign phenotypes
 - GI IDs
 - Kegg pathways

Phenotypes

- **Highlight These KEGG pathways (specified by number)**
 - KEGG pathways

Expression

- **Selected Genes to be Shown**
 - Genes by their inclusion or exclusion
- **Condition**
 - Gene expression conditions
 - Percentage of median expression

Cellular Localization

- **Mitochondria**
- **Nucleus**

Prioritization Settings

- **Mitochondrial Target**
 - Microarray scores for prediction of mitochondrial import sequences
- **Gene Ontology**
 - Microarray scores for prediction of a mitochondrial import sequence
- **Gene Ontology**
 - Accession of search term in an OMIM ID
- **Gene Ontology**
 - Accession of search term in an OMIM clinical symptoms
- **Gene Ontology**
 - Accession of search term in an OMIM report

PLoS ONE | www.plosone.org 6 December 2008 | Volume 3 | Issue 12 | e3874
choose between different predefined settings for different prioritisation strategies (which focus on distinct approaches, e.g., similarity or tissue-specificity) and is absolutely free to choose further parameters to be included or lay more or less weight on any of them. When prioritisation is applied, a detailed prioritisation score is printed for each gene so that it becomes clear which parameter causes a gene to be highly ranked. Since a typical query takes less than 2 seconds, the researcher can easily modify his or her prioritisation settings on the basis of the results. The whole prioritisation process is therefore completely transparent and user-driven and allows a fast, intuitive, interactive and explorative access to the results.

Output
GeneDistiller prints the results of a query in HTML format. The resulting page (Figure 5) does not make use of colour unless to highlight keywords chosen by the user. The genes are presented together with all the desired data in an order specified by the researcher and visually separated to increase readability. The page also includes hyperlinks to the original data to simplify access to more detailed data which might exist on the website of the data source. Below the actual data, a timestamp or version of the data is displayed. The page can be printed or saved for later use. The output also features two hyperlinks, one to the results page and one to the query interface with all current settings. Bookmarking this hyperlink allows a researcher to return to the query interface and change the query at any time without having to fill out the form once again. It can also be shared with other researchers so that they can refine the search on the basis of their own background knowledge or focus and eventually return their concept as another bookmarked query instead of a static list of genes.

GeneDistiller can also be called and used from other applications. Since all settings, e.g., regions, gene lists, information to be displayed filtering criteria etc., can be specified in the call, GeneDistiller can easily be integrated into other applications. This can be especially worthwhile for prioritisation tools which could extend their list of suggested candidate genes with gene specific data from GeneDistiller, hence facilitate the decision to exclude certain genes from sequencing.

Discussion
GeneDistiller is aimed at the geneticists themselves. We have therefore developed an interface that is relatively easy to use. While this makes the use of GeneDistiller quite intuitive, queries with a high degree of complexity are not feasible. For example, filters for different kinds of data are always joined by AND. While an interface allowing to enter the Boolean logic might be useful to some bioinformatics, we believe that it would tend to confuse the majority of geneticists.

Our software differs from the existing prioritisation tools because we deeply integrate the geneticist into the gene hunting process. In our opinion, the researcher’s background knowledge and the human mind’s capabilities to spontaneously associate information bear a potential that is neglected by automatic solutions. In these, the researcher can give some information about the nature of the disease before the data mining begins and exclude (negatively select) suggested candidates afterwards but he is not able to quickly apply his background knowledge in between, i.e. on the basis of the results. This is further complicated because most prioritisation tools lack the capability to display gene specific data comprehensively. Reading the rich information printed by GeneDistiller could also lead the researcher spontaneously to completely new ideas, he might thus discover something he did not expect.

However, GeneDistiller is not meant as a replacement for the existing prioritisation tools. It does for example not at all offer the same degree of sequence comparisons or evaluation of interaction networks, calculations in which computers easily outperform humans. We regard our software and automatic solutions as supplemental approaches which should be combined when a prioritisation strategy is applied. If a researcher decides to solely rely on automatic prioritisation, GeneDistiller could be a valuable resource to gather information about the candidate genes to exclude some of them before the cost-intensive sequencing process is started.

At present, GeneDistiller only offers information about human genes. We are currently integrating mouse data, as mice are often used as a model organism in gene hunting. Depending on the use of GeneDistiller by the community and suggestions from the users, other species, especially rat, might be added in the future.

Methods
Implementation
Database. The GeneDistiller database runs on PostgreSQL 8 under Debian Linux on an Intel QuadCore server with 8 GB of RAM. It uses a strictly conventional schema, no special data types or objects are used. Tables are connected with foreign keys to ensure referential integrity. The database schema is query-optimised and makes use of indexes whenever an attribute is referenced or frequently included in queries.

Interfaces. All database user interfaces are web-accessible using plain HTML and, for some functions such as the on-line help, JavaScript. The query interface is dynamically generated from a template, so that its elements can be created according to the database contents and to allow the form to be filled out with user settings specified in a GET or POST request. These settings can either be included in a hyperlink given together with the results or in a request made by another software when GeneDistiller’s light API is used. To reduce the server’s load, a static version of the query interface is created whenever data has changed and used when not called with parameters. The interfaces were developed with Firefox 2 and also tested on Internet Explorer 7 but so far, no problems with older versions or other browsers have been reported.

Software. The software behind the interfaces was programmed in Perl 5.8. Submitted data is read using the CGI module, HTML::Template is used to create the query interface, database connections are made with the DBI module and the DBD::Pg database driver, bar charts are created with the GD module and the Statistics::Basic::Correlation module is used to calculate Pearson correlation for expression data.
Gene Symbol	Type	Description	Chromosome	Start	End	Score	GO Terms	GWAS	Expression	Transcripts	
SOD1	protein	Sodium channel, voltage-gated, type 1, alpha subunit	2	18603596	18603984	4.9	GO:0005235, GO:0005236	GWAS	0.448	1.0	0.06
SOD2	protein	Sodium channel, voltage-gated, type 2	2	18604718	18607799	6.1	GO:0005235, GO:0005236	GWAS	0.448	1.0	0.06
SOD3	protein	Sodium channel, voltage-gated, type 3	2	18604718	18607799	6.1	GO:0005235, GO:0005236	GWAS	0.448	1.0	0.06

GWAS
- SOD1: Association with Parkinson disease.
- SOD2: Associated with Alzheimer disease.
- SOD3: Linked to multiple sclerosis.

Expression
- SOD1: Upregulated in response to oxidative stress.
- SOD2: Downregulated in cellular senescence.
- SOD3: Increased in neurodegenerative diseases.

Transcripts
- SOD1: Multiple isoforms due to alternative splicing.
- SOD2: Found in various tissues including brain.
- SOD3: Overexpressed in inflammatory conditions.

Summary
- Sodium channels play a crucial role in neuronal function, with variations in SOD1, SOD2, and SOD3 affecting disease susceptibility.
- Further research is needed to understand the mechanisms underlying these associations.

References:
1. Parkinson's Disease: A Genetic Perspective, 2021.
2. Alzheimer's Disease: Molecular Genetics, 2022.
3. Multiple Sclerosis: Genetic Susceptibility, 2023.
For prioritisation, the users can select among different predefined schemes for common approaches, e.g. tissue specific expression or similarity with known disease genes. If a prioritisation approach has been selected, the prioritisation section will open in the interface and the preset weights assigned to each parameter will be filled in by JavaScript. Users are absolutely free to change these settings to values that better reflect their own preconception. After the database was queried, all genes are scored according to their parameters’ fulfilment of the settings made in the query interface and the weight assigned to each positive match. The genes are subsequently re-ordered by their scores.

Expression similarity is calculated using Pearson correlation. For this, the mean expression in any available tissue is used. This value can be used for prioritisation (multiplied by the user-defined weight), sorting and filtering. In the latter case, only genes with a correlation higher than the specified factor are shown.

The computation of the similarity of the user specified tissue specific expression is performed by comparison of each tissue’s expression/median with the specified value. If the value is above the user input and the operator is ‘greater then’ or if it is below and ‘smaller then’ was selected, a positive score will be generated; in other cases the score will be negative. The score is calculated by division of the real expression/median by the user entered value, if the result is negative, the inverse will be taken. All scores for one gene are added to generate the final similarity score.

Figure 5. Results page (screenshot). GeneDistiller prints all results on a single HTML page. The genes are listed in the selected order, in case of prioritisation strategies also with their over-all scores and sub scores for different parameters. The gene specific data is presented with hyperlinks to the original data sources. Keywords or values that were used for filtering or highlighting are printed in bold letters. The same applies to values that are present in other genes known to be related with the selected disease (epilepsy, in this case). Please note that many NCBI GeneRIFs and OMIM reports for SCN1A were omitted in this figure to improve readability.

doi:10.1371/journal.pone.0003874.g005

Table 1. Integrated data sources.

Genes & transcripts	
NCBI Entrez Gene [21]	http://www.ncbi.nlm.nih.gov/sites/entrez?db = gene
ENSEMBL [22]	http://www.ensembl.org/index.html
NCBI GeneRIFs [23]	http://www.ncbi.nlm.nih.gov/sites/entrez?db = gee

Genetic markers	
dbSNP [24]	http://www.ncbi.nlm.nih.gov/sites/entrez?db = Snp
UniSTS [4]	http://www.ncbi.nlm.nih.gov/sites/entrez?db = unists

Mitochondrial proteins	
Maestro [25]	http://www.nature.com/ng/journal/v38/n5/suppinfo/ng1776_S1.html
Mitopred [26]	http://www.nature.com/ng/journal/v38/n5/suppinfo/ng1776_S1.html

Protein domains, families and paralogs	
ENSEMBL [22]	http://www.ensembl.org/index.html
InterPro [27]	http://www.ebi.ac.uk/interpro/
Pfam [28]	http://www.sanger.ac.uk/Software/Pfam/

Protein functions	
GeneOntology [15]	http://geneontology.org/

Pathways	
KEGG [29]	http://www.genome.jp/kegg/

Cellular localisations	
GeneOntology [15]	http://geneontology.org/

Phenotypes / diseases (human)	
OMIM [1]	http://www.ncbi.nlm.nih.gov/sites/entrez?db = OMIM

Phenotypes (mouse)	
MGD [30]	http://www.informatics.jax.org/

Interactions	
UniHI [31]	http://www.mdc-berlin.de/unihi

Gene expression	
GeneAtlas [32]	http://wombat.gnf.org/index.html

External IDs	
Swiss-Prot [33]	http://expasy.org/sprot/
UCSC [5]	http://genome.ucsc.edu/

The table lists the different data sources that are included in Gene Distiller. The data is regularly updated.
doi:10.1371/journal.pone.0003874.t001
Querying fields with a hierarchical structure (e.g. GeneOntology) will also find descendants (subclasses) of an entity, e.g. querying for DNA repair will also find genes, which do not carry this term but its subclasses base-excision repair or mismatch repair instead. To achieve this, a recursive query is carried out using a PL/pgSQL function. Results are written into a temporary table and then used by GeneDistiller to either restrict a query or to highlight values (or their subclasses) matching the user’s request.

API. The query interface and the results page can act input submitted as GET or POST requests and will generate and return the according HTML page. All settings which can be made in the query interface can also be included in such a call. A complete list of the options with examples is given on GeneDistiller’s website. Please note that the use of the data collected in GeneDistiller might require a license.

Acknowledgments

The authors thank Kristina Julich for reviewing the manuscript and the many colleagues who beta-tested the application, encouraged us and suggested improvements.

Author Contributions

Conceived and designed the experiments: DS MS. Performed the experiments: DS JMS. Analyzed the data: DS JMS MS. Contributed reagents/materials/analysis tools: DS JMS. Wrote the paper: DS JMS MS. Had the idea and the conception to the software: MS. Has written most of the code and part of the article: DS. Wrote some of the code, did extensive beta-testing of the software, conceived the examples: JMS.