Primitive Central Idempotents of Rational Group Algebras

Geoffrey Janssens

Abstract

We give a description of the primitive central idempotents of the rational group algebra $\mathbb{Q}G$ of a finite group G. Such a description is already investigated by Jespers, Olteanu and del Río, but some unknown scalars are involved. Our description also gives answers to their questions.

Let G be a finite group. The complex group algebra $\mathbb{C}G$ is semisimple and a description of its primitive central idempotents is well known. These are the elements $e(\chi) = \frac{1}{|G|} \sum_{g \in G} \chi(1) \chi(g^{-1})g$, where χ runs through the irreducible characters of G. Using Galois descent one obtains that the primitive central idempotents of the semisimple rational group algebra $\mathbb{Q}G$ are the elements $e_\mathbb{Q}(\chi) = \sum_{\sigma \in \mathbb{S}_\chi} \sigma(e(\chi))$, with $G_\chi = Gal(\mathbb{Q}(\chi)/\mathbb{Q})$. Rather recently, Olivieri et al. [3] obtained a character free method for describing the primitive central idempotents of $\mathbb{Q}G$ provided that G is a finite monomial group. Their method relies on a theorem of Shoda on pairs of subgroups (H, K) of G with K normal in H, H/K abelian and so that an irreducible character of H with kernel K induces an irreducible character of G. Such pairs are called Shoda pairs. The main ingredient in this theory are the elements $\epsilon(H, K)$ of $\mathbb{Q}H$ with $K < H \leq G$. These are defined as $\prod_{M/K \in M(H/K)} (K-M)$ if $H \neq K$ and as H if $H = K$, where $M(H/K)$ denotes the set of minimal non-trivial normal subgroups of H/K and $K = \frac{1}{|K|} \sum_{k \in K} k$. Furthermore, $e(G, H, K)$ denotes the sum of the different G-conjugates of $\epsilon(H, K)$.

For arbitrary finite groups, Jespers, Olteanu and del Río obtained a description of $e_\mathbb{Q}(\chi)$ in [2]. It is shown that $e_\mathbb{Q}(\chi)$ is a \mathbb{Q}-linear combination of the elements $e(G, H_i, K_i)$, with (H_i, K_i) Shoda pairs in some subgroups of G. They posed the question ([2, Remark 3.4]) whether one could determine the scalars and the Shoda pairs involved. In this paper we answer both questions by giving a full description of the primitive central idempotents of $\mathbb{Q}G$, for G a finite group.

Throughout G is a finite group. For χ an arbitrary complex character of G we put: $e(\chi) = \frac{1}{|G|} \sum_{g \in G} \chi(1) \chi(g^{-1})g$ and $e_\mathbb{Q}(\chi) = \sum_{\sigma \in \mathbb{S}_\chi} \sigma(e(\chi))$. Note that in general these elements do not have to be idempotents. Recall that the Möbius μ-function, $\mu : \mathbb{N} \rightarrow \{ -1, 0, 1 \}$, is the map defined by $\mu(1) = 1, \mu(n) = 0$ if $a^2 \mid n$ with $a > 1$ and $\mu(n) = (-1)^r$ if $n = p_1 p_2 \ldots p_r$ for different primes p_1, \ldots, p_r. The induction of a character ϕ of a subgroup H to G is defined as $\phi_H^G(g) = \frac{1}{|H|} \sum_{y \in G} \phi(y^{-1}gy)$, where $\phi(x) = \phi(x)$ if $x \in H$ and $\phi(x) = 0$ otherwise. By 1_G we denote the trivial character of G.

To prove our result we make use of the Artin Induction Theorem. Although this is probably well known, we state and prove it in the following specific form. Recall that for a rational valued character χ of a group G, $\chi(g) = \chi(g^i)$ for $(i, \sigma(g)) = 1$.

1
Proposition 1 (Artin) If \(\psi \) is a rational valued character of \(G \), then

\[
\psi = \sum_{i=1}^{r} d_{C_i} \chi_{G}^{(i)}
\]

where the sum runs through a set \(\{C_1, \ldots, C_r\} \) of representatives of conjugacy classes of cyclic subgroups of \(G \). Furthermore, if \(C_i = \langle c_i \rangle \) then

\[
d_{C_i} = \frac{|G : \text{Cent}(c_i)|}{|G : C_i|} \sum_{C_i^* \geq C_i} \mu([C_i^* : C_i]) \psi(z^*)
\]

where the sum runs through all the cyclic subgroups \(C_i^* \) of \(G \) containing \(C_i \) and \(C_i^* = \langle z^* \rangle \).

Proof. For every cyclic subgroup \(C = \langle c \rangle \) of \(G \), there exists exactly one \(i \in \{1, \ldots, r\} \) such that \(C \) is \(G \)-conjugated to \(C_i \). Say, \(C = C_i^{g^{-1}} \). Set \(a_C = \frac{|\text{Cent}(c)|}{|C_i|} d_C \). First we prove that \(a_C = a_{C_i} \) and \(1_G^C = 1_G^{C_i} \). To prove the second equality, note that \(1_G^C(g) = \frac{1}{|C_i|} \sum_{y \in G} 1_C(y^{-1}gy) \), where the function \(1_C(y^{-1}gy) \) is defined as 1 if \(y^{-1}gy \in C \) and 0 otherwise. This combined with the fact that conjugation preserves the order of subgroups and that it is an automorphism of \(G \) we easily see that \(1_G^C = 1_G^{C_i} \).

Now we prove that \(a_C = a_{C_i} \). Define the sets \((C_i) \uparrow^g = \{ K \mid C_i \leq K \leq G \} \) and \((C) \uparrow^g = \{ K \mid C \leq K \leq G \} \). There is a bijective correspondence between these sets. A map from \((C_i) \uparrow^g \to (C) \uparrow^g \) is given by conjugation with \(g^{-1} \) and the invers map is conjugation by \(g \). Along with the fact that \(C^g = \langle c^g \rangle \) if \(C = \langle c \rangle \) and \(|C| = |C^g| \), we see immediately that \(a_C = a_{C_i} \).

All this yields, \(\sum_C a_C 1_G^C = \sum_{i=1}^{r} k_i a_{C_i} 1_G^{C_i} = \sum_{i=1}^{r} d_{C_i} 1_G^{C_i} \), where \(k_i = \frac{|C_i|}{|\text{Cent}(c_i)|} \) (with \(C_G(c_i) \) the conjugacy class of \(c_i \) in \(G \)). The result now follows from Artin’s Induction Theorem, [1, page 489], which says that every rational valued character of \(G \) is of the form \(\sum_C a_C 1_G^C \), with \(a_C \) as above and the sum runs over all cyclic subgroups \(C \) of \(G \).

Recall that by \(\hat{C} \) we denote \(\epsilon(C_i, C_i) = \frac{1}{|C_i|} \sum_{c_i \in C_i} c_i \).

Theorem 2 Let \(G \) be a finite group and \(\chi \) an irreducible complex character of \(G \). Let \(C_i = \langle c_i \rangle \), then we denote

\[
b_{C_i} = \frac{|G : \text{Cent}(c_i)|}{|G : C_i|} \sum_{C_i^* \geq C_i} \mu([C_i^* : C_i]) \sum_{\sigma \in G} \sigma(\chi)(z^*)
\]

where the sum runs through all the cyclic subgroups \(C_i^* \) of \(G \) which contain \(C_i \) and \(z^* \) is a generator of \(C_i^* \). Then

\[
e_Q(\chi) = \sum_{i=1}^{r} b_{C_i} \chi(1) \frac{|G : \text{Cent}(G)|}{|G : C_i|} e(G, C_i, C_i) = \sum_{i=1}^{r} b_{C_i} \chi(1) \frac{|G : C_i|}{|G : C_i|} \sum_{k=1}^{m} \hat{C}_i g_{i,k},
\]

where the first sum runs through a set \(\{C_1, \ldots, C_r\} \) of representatives of conjugacy classes of cyclic subgroups of \(G \) and \(T_i = \{g_{i1}, \ldots, g_{im_i}\} \) a right transversal of \(C_i \) in \(G \).

Proof. Let \(\chi \) be an irreducible complex character of \(G \). First we suppose that \(\chi(G) \subseteq \mathbb{Q} \). Then \(G_\chi = \{1\} \) and then by Proposition 1, \(\chi = \sum_{i=1}^{r} b_{C_i} 1_G^{C_i} \).
We get
\[
e_Q(\chi) = e(\chi) = \frac{\chi(1)}{|G|} \sum_{g \in G} (\sum_{i=1}^{r} bC_i, 1_G^G((y^{-1})g) \sum_{g \in G} 1_G^G((y^{-1})g)
= \frac{\chi(1)}{|G|} \sum_{i=1}^{r} \frac{bC_i}{|C_i|} \sum_{g \in G} 1_G^G((y^{-1})g)
= \frac{\chi(1)}{|G|} \sum_{i=1}^{r} \frac{bC_i}{|G:C_i|} |G| e(1_G^G)
= \sum_{i=1}^{r} \frac{bC_i}{|G:C_i|} e(1_G^G)
\]

Let } T_i = \{g_{i1}, \ldots, g_{im}\} \text{ be a right transversal of } C_i \text{ in } G. \text{ Then }
\[
e(1_G^G) = \frac{1}{|G|} \sum_{g \in G} 1_G^G((y^{-1})g)
= \frac{1}{|G|} \sum_{g \in G} \frac{|G|}{|C_i|} 1_C((y^{-1})g)
= \sum_{g \in G} \frac{|G|}{|C_i|} \sum_{g \in G} 1_C((y^{-1})g)
= \sum_{g \in G} \frac{|G|}{|C_i|} \sum_{j=1}^{m_i} 1_{C_i}(g_{ij} g^{-1} g_{ij})
= \sum_{j=1}^{m_i} g_{ji}
\]

With this expression for } e(1_G^G) \text{ we obtain one of the equalities in the statement of the result.

Obviously, the sum } \sum_{k=1}^{m_i} \tilde{C}^{qik}_i \text{ adds the elements of the } G \text{-orbit of } \tilde{C}_i = e(C_i, C_i) \text{ and each of them } [Cen_G(\tilde{C}_i) : C_i] \text{ times. So }
\[
\sum_{k=1}^{m_i} \tilde{C}^{qik}_i = [Cen_G(\tilde{C}_i) : C_i] e(G, C_i, C_i).
\]

A simple substitution in the earlier found expression for } e_Q(\chi) \text{ yields the theorem.

Assume now that } \chi \text{ is an arbitrary irreducible complex character of } G. \text{ Then it is clear and well known that } \sum_{\sigma \in G_x} \sigma \circ \chi \text{ is a rational valued character of } G. \text{ Hence, by the first part we get }
\[
e(\sum_{\sigma \in G_x} \sigma(\chi)) = \frac{1}{|G|} \sum_{g \in G} (\sum_{\sigma \in G_x} \sigma(1)) \sum_{\sigma \in G_x} \sigma(\chi(g^{-1}))
= \frac{|G_x| \chi(1)}{|G|} \sum_{\sigma \in G_x} \sigma(\chi(g^{-1}))
= \frac{|G_x| \chi(1)}{|G|} \sum_{\sigma \in G_x} \sigma(\chi(g^{-1}))
= |G_x| e_Q(\chi)
\]

Since } \sum_{\sigma \in G_x} \sigma(\chi(1)) = |G_x| \chi(1), \text{ the rational case yields the theorem. \hfill \Box}

We finish with some remarks. First note that the elements } e(G, C_i, C_i) \text{ are not necessarily idempotents. Second, the definition of } b_{C_i} \text{ is not character-free. However one easily obtains a character free upperbound:
\[
b_{C_i} \leq \frac{|G : Cen_G(c_i)|}{|G : C_i|} \sum_{c_i \geq C_i} \mu((C_i^* : C_i)) \phi(\nu(1)) \leq \frac{|G : Cen_G(c_i)||G : Z(G)|}{|G : C_i|} \sum_{c_i \geq C_i} \mu((C_i^* : C_i)) \phi(\nu(n)),
\]

where } \phi \text{ denotes the } \phi \text{-Euler function. Hence, we can obtain a finite algorithm, that easily can be implemented in for example GAP, to compute all primitive central idempotents of } \mathbb{Q}G. \text{ This answers one of the questions posed in [2, Remark 3.4]. Also the description of the idempotents only makes use of pairs of subgroups } (C_i, C_i) \text{, with } C_i \text{ cyclic. This answers the second question posed in [2, Remark 3.4].}
References

[1] Bertram Huppert, Character Theory of Finite Groups, De Gruyter expositions in mathematics; 25, 1998

[2] Eric Jespers, Gabriela Olteanu and Ángel del Río, Rational Group Algebras of Finite Groups: from Idempotents to Units of Integral Group Rings, to appear in, Algebras and Representation Theory

[3] A.Olivieri, Á.del Río, J.J. Simón, On monomial characters and central idempotents of rational group algebras, Communications in Algebra 32 (2004), 1531-1550.

G.Janssens
Departement of Mathematics, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
e-mail: geofjans@vub.ac.be