Predominance of Fetal Type DJ_n Joining in Young Children with B Precursor Lymphoblastic Leukemia as Evidence for an In Utero Transforming Event

By Robert Wasserman,* Naomi Galili,† Yoshinori Ito,‡ Betty Anne Reichard,† Sara Shane,‡ and Giovanni Rovera‡

From the *Division of Oncology, The Children's Hospital of Philadelphia, Department of Pediatrics, The University of Pennsylvania School of Medicine; and †The Wistar Institute, Philadelphia, Pennsylvania 19104

Summary

The presence of N sequences in the complementarity determining region 3 (CDR3) of the rearranged immunoglobulin H chain is developmentally regulated: N regions are generally present in the DJ_n joinings of adult B cells but are often absent in fetal B cells. Analysis of the CDR3 in 61 B precursor acute lymphoblastic leukemias indicated that 87.5% of the leukemias obtained from children ≤3 yr old lacked N regions at the DJ_n junction. In contrast, in children >3 yr old, only 11.1% of the leukemias lacked N regions at this junction, a frequency similar to what we have observed in B cells from children and adults. These findings suggest that the majority of leukemias presenting within the first 3 yr of age arise from an in utero transforming event.

Hypervariability within the CDR3 of the human Ig H chain is initially generated at the time of VDJ joining by the recombination of multiple V_m, D, and J_m gene segments (1-3). This VDJ recombination process is dependent upon two recombinase enzymes, RAG1 and RAG2, since mice deficient in either gene fail to produce lymphocytes with rearrangements in their Ig or TCR loci (4-8). Exonucleolytic activity produces joinings in which germline nucleotides are lost from the ends of the joined segments (1-4). Variability is increased when nontemplate-derived nucleotides (N regions) are added between joined gene segments through the action of another enzyme, terminal deoxynucleotidyl transferase (Tdt)† (1-4). In both IgH and TCR rearrangements, palindromic (P) mono- or dinucleotides may be found adjacent to a recombined gene gene segment when the segment is present in its entirety. These germline-encoded nucleotides arise from a flip-over mechanism of the 5' end of one strand of the joining segment (9).

The developmental regulation of N region addition has been demonstrated in both mice and humans (10-13). DJ_n joinings that lack N regions are found more frequently at the fetal stage of development. No more than 5% of the DJ_n junction sequences of B lymphocytes present in murine fetal liver contained an N region, whereas in newborn mouse spleen and liver, 5-23% of the DJ_n junctions had N regions (10-12). In contrast, a significantly higher percentage of DJ_n junctions with N regions (64-73%) were found in B cells from adult (4-8 wk) murine spleen (10-12). A similar trend was found in human B cells; evaluation of >500 DJ_n joining DNA sequences obtained from human fetal, neonatal, and adult lymphoid tissue revealed N regions at the DJ_n junction at frequencies of 68%, 86%, and 91-100%, respectively (13, 14). Together, these observations suggest that CDR3 sequences lacking N regions at the DJ_n junction are representative of a DJ_n recombination event that occurred during the time of fetal development when TdT activity may have been absent. Indeed, in the murine system, TdT levels rise slowly in the developing thymus, which correlates with the absence of N regions in fetal TCR-γ/δ rearrangements (15, 16). Similarly, in the murine B lymphoid system, TdT was not detected in fetal liver but was demonstrated in adult bone marrow B lineage cells (16).

The functional significance of the absence of N regions in the early stage of development is not clear. Gu et al. (12) speculate that the absence of N regions implies predominant expression of germline-encoded specificities. Thus, idiotypic interactions in a germline-encoded network might play a functional role in the development of the antibody repertoire early in ontogeny. In newborns, Feeney (10) found a higher percentage of N regions in productive vs. nonproductive rearrangements and speculated that this increase suggests a preferential activation of B cells whose IgH sequences contain N regions by antigens or cellular interactions. Alternatively, IgH sequences with N regions might have an advan-

† Abbreviation used in this paper: Tdt, terminal deoxynucleotidyl transferase.
tage in the transition from pre-B cell to B cell, perhaps through enhanced binding to surrogate L chains.

B lineage acute lymphoblastic leukemia (ALL) of childhood results from the transformation of B precursor cells and their clonal expansion (17–19). We reasoned that if lack of N regions at the DJ₆ junction was a marker for fetal-derived B cells, then leukemias arising from an in utero transforming event should show a bias for DJ₆ joinings that lack N regions. Furthermore, the age distribution of leukemias lacking N regions at their DJ₆ joinings might provide insight into the length of time required to develop clinical disease from the time of the transforming event.

Materials and Methods

Source of Cells. Bone marrow samples with >70% lymphoblast replacement were obtained at diagnosis from 63 patients (6 mo

Table: DNA sequence of the DJ₆ region from 61 cases of B lineage lymphoblastic leukemias. The first column indicates the sequence code (case number and the length of the CDR3, including the Va and J₆ primers). Each sequence is subdivided into D (and when applicable multiple D with enhanced binding to surrogate L chains.

PATIENT	HGC	CDR3 CODE (LENGTH)	DJ₆	K	J
C16-111	2.5	(L94)	Vα5-17	(3)	26
C16-121	3.0	(L94)	Vα5-17	(3)	26
C16-131	3.5	(L94)	Vα5-17	(3)	26
C16-141	4.0	(L94)	Vα5-17	(3)	26
C16-151	4.5	(L94)	Vα5-17	(3)	26
C16-161	5.0	(L94)	Vα5-17	(3)	26
C16-171	5.5	(L94)	Vα5-17	(3)	26
C16-181	6.0	(L94)	Vα5-17	(3)	26
C16-191	6.5	(L94)	Vα5-17	(3)	26
C16-201	7.0	(L94)	Vα5-17	(3)	26
C16-211	7.5	(L94)	Vα5-17	(3)	26
C16-221	8.0	(L94)	Vα5-17	(3)	26
C16-231	8.5	(L94)	Vα5-17	(3)	26
C16-241	9.0	(L94)	Vα5-17	(3)	26
C16-251	9.5	(L94)	Vα5-17	(3)	26
C16-261	10.0	(L94)	Vα5-17	(3)	26
C16-271	10.5	(L94)	Vα5-17	(3)	26
C16-281	11.0	(L94)	Vα5-17	(3)	26
C16-291	11.5	(L94)	Vα5-17	(3)	26
C16-301	12.0	(L94)	Vα5-17	(3)	26

Figure 1. DNA sequence of the DJ₆ region from 61 cases of B lineage lymphoblastic leukemias. The first column indicates the sequence code (case number and the length of the CDR3, including the Va and J₆ primers). Each sequence is subdivided into D (and when applicable multiple D with enhanced binding to surrogate L chains.

1578
Fetal Type DJ₆ Joining in Young Children with B Precursor Leukemia
DNA Sequence Analysis. DNA sequencing data were analyzed for utilization of D and J segments using the sequence analysis software pack (Release 5; Genetic Computer Corp., Madison, WI) at the University of Wisconsin and a Micro Vax II computer (Digital Equipment Corp., Marlboro, MA), according to described criteria (14).

Results and Discussion

80 DNA sequences of VDJ joinings from 61 B lineage ALLs were analyzed for the presence of N regions at the DJβ junction (Fig. 1). Overall, 31/80 (38.8%) DJβ junctions lacked N regions, a frequency higher than that reported for human adult tissues and similar to that found in human fetal tissue (13). When the percentage of leukemias lacking N regions was analyzed as a function of age at diagnosis, a striking pattern emerged: in patients ≤3 yr old, 87.5% (14/16) of the leukemias were comprised entirely of CDR3 sequences lacking N regions; whereas in children >3 yr old, only 11.1% (5/45) of the leukemias met this criterion.

The percentage of leukemias without N regions in children ≤3 yr old was much higher than expected even when compared with data reported for normal human fetal liver or neonatal cord blood (13), whereas the frequency observed in children >3 yr old was close to that observed in adults (13, 14). To exclude the possibility that the paucity of N regions in these young patients could be due to an inherent abnormality in TdT activity, we examined the DJβ joinings in lymphocytes obtained from the end of therapy marrows of three of these patients when residual leukemia was not detectable using PCR analysis (Fig. 2). N regions were present...
References

1. Pascual, V., and J.D. Capra. 1991. Human immunoglobulin heavy-chain variable region genes: organization, polymorphism, and expression. Adv. Immunol. 49:1.

2. Blackwell, T.K., and F.W. Alt. 1989. Molecular characterization of the lymphoid V(D)J recombination activity. J. Biol. Chem. 264:10327.

3. Lewis, S., and M. Gellert. 1989. The mechanism of antigen receptor gene assembly. Cell. 59:585.

4. Kallenbach, S., N. Doyen, M.F. D'Andon, and F. Rougeon. 1989. Three lymphoid-specific factors account for all junctional diversity characteristic of somatic assembly of T-cell receptor and immunoglobulin genes. Proc. Natl. Acad. Sci. USA. 89:2799.

5. Shatz, D.G., M.A. Oettinger, and D. Baltimore. 1989. The V(D)J recombination activating gene, RAG-1. Cell. 59:1035.

6. Oettinger, M.A., D.G. Schatz, C. Gorka, and D. Baltimore. 1990. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science (Wash. DC). 248:1517.

7. Shinkai, Y., G. Rathbun, K.-P. Lam, E.M. Oltz, V. Stewart, T. Lewis, S. Lewis, and M. Gellert. 1990. A two-step mutation model for the evolution of the immune system. Science (Wash. DC). 248:1517.

This work was supported by grants CA-10815 and CA-47983 from the National Cancer Institute, and CH515 from the American Cancer Society.

Address correspondence to Giovanni Rovera, The Wistar Institute, 36th & Spruce Streets, Suite 374, Philadelphia, PA 19104.

Received for publication 18 June 1992 and in revised form 4 August 1992.
M. Mendelsohn, J. Charron, M. Datta, F. Young, A.M. Stall, and F.W. Alt. 1992. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell. 68:855.

8. Mommaerts, P., J. Iacomini, R.S. Johnson, K. Herrup, S. Tonegawa, and V.E. Papaioannou. 1992. RAG-1-Deficient mice have no mature B and T lymphocytes. Cell. 68:869.

9. Lafaille, J.J., A. DeCloux, M. Bonneville, Y. Takagaki, and S. Tonegawa. 1989. Functional sequences of T cell receptors γδ genes: implications for γδ T cell lineages and for a novel intermediate of V(D)J joining. Cell. 59:859.

10. Feeney, A.J. 1990. Lack of N regions in fetal and neonatal mouse immunoglobulin V-D-J junctional sequences. J. Exp. Med. 172:1377.

11. Bangs, L.A., I.E. Sanz, and J.M. Teale. 1991. Comparison of D, Jα, and junctional diversity in the fetal, adult, and aged B cell repertoires. J. Immunol. 146:1996.

12. Gu, H., I. Förster, and K. Rajewsky. 1990. Sequence homologies, N sequence insertion and Jα gene utilization in VαDα joining: Implications for the joining mechanism and the oncogenic timing of Ly1 B cell and B-CLL progenitor generation. EMBO (Eur. Mol. Biol. Organ.) J. 9:2133.

13. Sanz, I. 1991. Multiple mechanisms participate in the generation of diversity of human H chain CDR3 regions. J. Immunol. 147:1720.

14. Yamada, M., R. Wasserman, B.A. Reichard, S. Shane, A.J. Caton, and G. Rovera. 1991. Preferential utilization of specific immunoglobulin heavy chain diversity and joining segments in adult human peripheral blood B lymphocytes. J. Exp. Med. 173:395.

15. Rothenberg, E., and D. Triglia. 1983. Clonal proliferation unlinked to terminal deoxynucleotidyl transferase synthesis in thymocytes of young mice. J. Immunol. 130:1627.

16. Gregoire, K.E., I. Goldschneider, R.W. Barton, and F.J. Bollum. 1979. Ontogony of terminal deoxynucleotidyl transferase-positive cells in lymphohemopoietic tissues of rat and mouse. J. Immunol. 123:1347.

17. Korsmeyer, S.J., A. Arnold, A. Bakhhi, J.V. Ravetch, U. Siebenlist, P.A. Hieter, S.O. Sharrow, T.W. LeBien, J.H. Kersey, D.G. Poplack, P. Leder, and T.A. Waldmann. 1983. Immunoglobulin gene rearrangement and cell surface antigen expression in acute lymphocytic leukemias of T-cell and B-cell precursor origin. J. Clin. Invest. 71:301.

18. Nadler, L.M., S.J. Korsmeyer, K.C. Anderson, A.W. Boyd, B. Slaughenhoupt, E. Park, J. Jensen, F. Coral, R.J. Mayer, S.E. Sallan, J. Ritz, and S.F. Schlossmann. 1984. B cell origin of non-T cell acute lymphoblastic leukemia: A model for discrete stages of neoplastic and normal pre-B cell differentiation. J. Clin. Invest. 74:332.

19. Greaves, M.F. 1986. Differentiation-linked leukaemogenesis in lymphocytes. Science (Wash. DC). 234:697.

20. Foon, K.A., and R.F. Todd III. 1986. Immunologic classification of leukemia and lymphoma. Blood. 68:1.

21. Sambrook, J., E.F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual. 2nd Ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

22. Higuchi, R. 1989. Simple and rapid preparation of samples for PCR. In PCR. Technology: Principles and Applications for DNA Amplification. H.A. Ehrlich, editor. Stockton Press, New York. 31-38.

23. Saiki, R.K., D.H. Gelfand, S. Stoffel, S.J. Scharf, R. Higuchi, G.T. Horn, K.T. Mullis, and H.A. Ehrlich. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science (Wash. DC). 239:487.

24. Yamada, M., S. Hudson, O. Tournay, S. Bittenbender, S. Shane, B. Lange, Y. Tsubimoto, A.J. Caton, and G. Rovera. 1989. Detection of minimal disease in hematopoietic malignancies of the B-cell lineage by using third-complementarity-determining region (CDR-III)-specific probes. Proc. Natl. Acad. Sci. USA. 86:5123.

25. Sanger, F., S. Nicklen, and A.R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA. 74:5463.

26. Wasserman, R., Y. Ito, N. Galili, M. Yamada, B.A. Reichard, S. Shane, B. Lange, and G. Rovera. 1992. The pattern of joining (Jα) gene usage in the human immunoglobulin heavy chain is established predominantly at the B precursor cell stage. J. Immunol. 149:511.

27. Wasserman, R., M. Yamada, Y. Ito, L.R. Finger, B.A. Reichard, S. Shane, B. Lange, and G. Rovera. 1992. Vα gene rearrangement events can modify the immunoglobulin heavy chain during progression of B-lineage acute lymphoblastic leukemia. Blood. 79:223.

28. Yamada, M., R. Wasserman, B. Lange, B.A. Reichard, R.B. Womer, and G. Rovera. 1990. Minimal residual disease in childhood B-lineage lymphoblastic leukemia: persistence of leukemic cells during the first 18 months of treatment. N. Engl. J. Med. 323:448.

29. Schroeder, H.W., Jr., and J.Y. Wang. 1990. Preferential utilization of conserved immunoglobulin heavy chain variable gene segments during human fetal life. Proc. Natl. Acad. Sci. USA. 87:6146.

30. Greaves, M.F. 1988. Speculations on the cause of childhood acute lymphoblastic leukemia. Leukemia (Baltimore). 2:120.

31. Allansmith, M., B.H. McClellan, M. Butterworth, and J.R. Maloney. 1968. The development of immunoglobulin levels in man. J. Pediatr. 72:276.