THE FOURIER TRANSFORM OF THICK DISTRIBUTIONS

RICARDO ESTRADA, JASSON VINDAS, AND YUNYUN YANG

Abstract. We first construct a space \(\mathcal{W}(\mathbb{R}^n_c) \) whose elements are test functions defined in \(\mathbb{R}^n_c = \mathbb{R}^n \cup \{\infty\} \), the one point compactification of \(\mathbb{R}^n \), that have a thick expansion at infinity of special logarithmic type, and its dual space \(\mathcal{W}'(\mathbb{R}^n_c) \), the space of \(sl \)-thick distributions. We show that there is a canonical projection of \(\mathcal{W}'(\mathbb{R}^n_c) \) onto \(\mathcal{S}'(\mathbb{R}^n) \). We study several \(sl \)-thick distributions and consider operations in \(\mathcal{W}'(\mathbb{R}^n_c) \).

We define and study the Fourier transform of thick test functions of \(\mathcal{S}_r(\mathbb{R}^n) \) and thick tempered distributions of \(\mathcal{S}'_r(\mathbb{R}^n) \). We construct isomorphisms

\[
\mathcal{F}_r : \mathcal{S}'_r(\mathbb{R}^n) \rightarrow \mathcal{W}'(\mathbb{R}^n_c),
\]

\[
\mathcal{F}^* : \mathcal{W}'(\mathbb{R}^n_c) \rightarrow \mathcal{S}'_r(\mathbb{R}^n),
\]

that extend the Fourier transform of tempered distributions, namely, \(\Pi \mathcal{F}_r = \mathcal{F} \Pi \) and \(\Pi \mathcal{F}^* = \mathcal{F} \Pi \), where \(\Pi \) are the canonical projections of \(\mathcal{S}'_r(\mathbb{R}^n) \) or \(\mathcal{W}'(\mathbb{R}^n_c) \) onto \(\mathcal{S}'(\mathbb{R}^n) \).

We determine the Fourier transform of several finite part regularizations and of general thick delta functions.

1. Introduction

The aim of this article is to construct the Fourier transform of thick tempered distributions in several variables. Thick distributions were introduced in one variable in [12] and in several variables in [36, 37, 38, 39]. Thick distributions have found applications in understanding problems in several areas, such as quantum field theory [4], engineering [26, 34], the understanding of singularities in mathematical physics as considered in [4] or in [6], or in obtaining formulas for the regularization of multipoles [8, 25] that play a fundamental role in the ideas of the late professor Stora on convergent Feynman amplitudes [24, 33]. They also appear in other problems, as generalizations of Frahm formulas [16] involving discontinuous test functions [17, 37]. Thick distributions are the distributional theory corresponding to the theory given by Blanchet and Faye [2], whose aim is the study of the dynamics of point particles in high post-Newtonian approximations of general relativity [3] and who develop such a scheme in the context of finite parts, pseudo-functions and Hadamard regularization, as studied by Sellier [30, 31]. In this article we consider spaces with one thick point, located at the origin, but it is possible to consider spaces with a finite number of such singular points.

The Fourier transform of one-dimensional thick distributions with one special point at the origin was given in [12]. The transform of thick distributions is shown to belong to a space \(\mathcal{W}' \) of distributions on the space \(\mathbb{R}_c = \mathbb{R} \cup \{\infty\} \), the one point compactification of

\[2010 \text{ Mathematics Subject Classification.} \quad 46F10, 42B10.\]

\[\text{Key words and phrases.} \quad \text{Thick distributions, Hadamard finite part, Fourier transform, thick delta functions.}\]

J. Vindas was supported by Ghent University through the BOF-grants 01J11615 and 01J04017.

Y. Yang was supported through the grant 407-0371000086 from Hefei University of Technology.
the real line. Employing this thick Fourier transform it is possible to understand several
puzzles, particularly those found in [5].

The theory of thick distributions in higher dimensions [36] is quite different from that
in one dimension, because the topology of \(\mathbb{R}^n \setminus \{0\} \), \(n \geq 2 \), is quite unlike that of \(\mathbb{R} \setminus \{0\} \),
since the latter space is disconnected, consisting of two unrelated rays, while the former
is connected, all directions of approach to the point 0 are related, and such behavior
imposes strong restrictions on the singularities. Therefore the thick Fourier transform in
several variables cannot be constructed as a straightforward extension of the transform
in one variable; such construction in several variables, the Fourier transform in
\(S'_c(\mathbb{R}^n) \) is connected, all directions of approach to the point
since the latter space is disconnected, consisting of two unrelated rays, while the former

In Section 2 we review some useful results from the theory of thick distributions and then
in Section 3 we collect the Fourier transform of several tempered distributions in order
to find the asymptotic expansion of the Fourier transform of finite part regularizations
of thick test functions. Taking into account the asymptotic behavior of such Fourier
transforms we construct a space \(W(\mathbb{R}^n) \) whose elements are test functions defined in
\(\mathbb{R}_c^n = \mathbb{R}^n \cup \{\infty\} \), the one point compactification of \(\mathbb{R}^n \), that have a thick expansion
at infinity of special logarithmic type. We are thus able in Section 4 to define Fourier
transform operators \(F, F^* \), topological isomorphism of \(S'_c(\mathbb{R}^n) \) to \(W(\mathbb{R}^n) \) and from
\(W(\mathbb{R}^n) \) to \(S'_c(\mathbb{R}^n) \), respectively; the subscript ‘t’ is used because these are the transforms
of test functions.

We study the dual space \(W'(\mathbb{R}^n) \), the space of \(sl-\)thick distributions in Section 5. We
consider the basic operations in \(W'(\mathbb{R}^n) \), such as linear changes of variables, derivatives,
and multiplication by polynomials. We study several \(sl-\)thick distributions, particularly
the finite part regularization at infinity of power functions and thick delta functions at
infinity. We are therefore able in Section 6 to define and study the Fourier transform of
thick test tempered distributions of \(S'_c(\mathbb{R}^n) \). We construct isomorphisms

\[
F_*: S'_c(\mathbb{R}^n) \rightarrow W'(\mathbb{R}^n),
\]

\[
F^*: W'(\mathbb{R}^n) \rightarrow S'_c(\mathbb{R}^n),
\]

that extend the Fourier transform of tempered distributions, namely,

\[
\Pi_{W',S'}F_* = F \Pi_{S'_c,S'_c}, \quad \Pi_{S'_c,S'}F^* = F \Pi_{W',S'},
\]

where \(\Pi_{W',S'} \) and \(\Pi_{S'_c,S'} \) are the canonical projections of \(S'_c(\mathbb{R}^n) \) or \(W'(\mathbb{R}^n) \) onto \(S'_c(\mathbb{R}^n) \).

We give the transformation rules for the Fourier transform of derivatives, multiplications,
and linear changes of variables, as well as the Fourier inversion formulas. We determine
the Fourier transform of several finite part regularizations and of general thick delta
functions.

Since we need to employ many spaces, operators, and distributions, following advise of
one referee, we also included an appendix that lists the many notations used.

2. Preliminaries

We shall use basic facts about distributions and general functional analysis as can be
found in the textbooks [14, 21, 22, 29, 32]. However, in this section we recall several
recently introduced or not so well known ideas that will be needed in our analysis. We
will also fix the notation employed; particularly, we use the Fourier transform

\[
F\{f(x);u\} = \int_{\mathbb{R}^n} f(x) e^{ix\cdot u} \, dx.
\]
We will write
\[c_{m,n} = \frac{2\Gamma (m + 1/2) \pi^{(n-1)/2}}{\Gamma (m + n/2)} = \int_{S} \omega_{j}^{2m} d\sigma (\omega), \quad C = c_{0,n}. \]

Notice that \(c_{0,n} = C = 2\pi^{n/2}/\Gamma (n/2), \) is the surface area of the unit sphere \(S \) of \(\mathbb{R}^{n}, \) denoted as \(C_{n-1} \) in \([36]. \)

2.1. Spaces of thick test functions and spaces of thick distributions. The construction of the space of thick test functions \(\mathcal{D}_{s,a} (\mathbb{R}^{n}) \) and its dual, \(\mathcal{D}'_{s,a} (\mathbb{R}^{n}) \), the space of thick distributions is as follows \([36]. \) Let \(a \) be a fixed point of \(\mathbb{R}^{n}. \) Let \(\mathcal{D}_{s,a} (\mathbb{R}^{n}) \) denote the vector space of all smooth functions \(\phi \) defined in \(\mathbb{R}^{n} \setminus \{a\} \), with support of the form \(K \setminus \{a\} \), where \(K \) is compact in \(\mathbb{R}^{n} \), that admit a strong asymptotic expansion of the form
\[\phi (a + x) = \phi (a + rw) \sim \sum_{j=m}^{\infty} a_{j} (w) r^{j}, \quad \text{as} \quad x \to 0, \]
where \(m \in \mathbb{Z}. \) We denote \(\mathcal{D}_{s,0} (\mathbb{R}^{n}) \) as \(\mathcal{D}_{s} (\mathbb{R}^{n}) \). The space \(\mathcal{D}_{s,a} (\mathbb{R}^{n}) \) has a natural topology that makes it a complete locally convex topological vector space \([36]. \)

Definition 2.1. The space of distributions on \(\mathbb{R}^{n} \) with a thick point at \(x = a \) is the dual space of \(\mathcal{D}_{s,a} (\mathbb{R}^{n}) \). We denote it by \(\mathcal{D}'_{s,a} (\mathbb{R}^{n}) \), or just as \(\mathcal{D}' (\mathbb{R}^{n}) \) when \(a = 0. \)

In general, we shall denote by \(\Pi \) canonical projections, say from \(E \) to \(F, \) if they exist but as \(\Pi_{E,F} \) when we would like to emphasize the spaces. In particular we will need the projection operator \(\Pi = \Pi_{\mathcal{D}', \mathcal{D}_{s,a}} (\mathbb{R}^{n}), \mathcal{D}' (\mathbb{R}^{n}) : \mathcal{D}'_{s,a} (\mathbb{R}^{n}) \to \mathcal{D}' (\mathbb{R}^{n}) \), dual of the inclusion \(i : \mathcal{D} (\mathbb{R}^{n}) \to \mathcal{D}_{s,a} (\mathbb{R}^{n}) \). Observe that \(\mathcal{D} (\mathbb{R}^{n}) \), the space of standard test functions, is a closed subspace of \(\mathcal{D}_{s,a} (\mathbb{R}^{n}) \).

Typical elements of \(\mathcal{D}'_{s,a} (\mathbb{R}^{n}) \) are the finite part regularizations considered in Definition \([2.4] \) and the thick delta functions of order \(q, g (w) \delta_{s}^{[q]} (x - a) \) for \(g \in \mathcal{D}' (S) \) given as
\[\langle g (w) \delta_{s}^{[q]} (x - a) , \phi \rangle = \frac{1}{C} g (w) , a_{q} (w)), \]
if \(\phi \in \mathcal{D}_{s,a} (\mathbb{R}^{n}) \) has the development \([2.22]. \) When \(g = 1 \) they are called plain thick delta functions.

We refer to \([36] \) for the definition of the basic operations on thick distributions, like derivatives, changes of variables, and multiplication by smooth functions. In general, derivatives are denoted as \(\nabla \), distributional derivatives are denoted as \(\nabla \), following \([15] \), while thick distributional derivatives are denoted as \(\nabla \).

2.1.1. Other spaces of thick distributions. Let \(\mathcal{A} (\mathbb{R}^{n}) \) be a space of test functions in \(\mathbb{R}^{n} \) and let \(\mathcal{A}' (\mathbb{R}^{n}) \) be the corresponding space of distributions\([4] \). Our aim in this section is to construct the spaces of thick test functions and distributions, \(\mathcal{A}_{s,a} (\mathbb{R}^{n}) \) and \(\mathcal{A}'_{s,a} (\mathbb{R}^{n}) \). Our construction will apply in multiple cases. For instance, \(\mathcal{A} (\mathbb{R}^{n}) \) can be \(\mathcal{E} (\mathbb{R}^{n}) \), the space of all smooth functions and thus \(\mathcal{A}' (\mathbb{R}^{n}) \) becomes \(\mathcal{E}' (\mathbb{R}^{n}) \), the space of distributions with compact support; or \(\mathcal{A} (\mathbb{R}^{n}) \) can be \(\mathcal{S} (\mathbb{R}^{n}) \), so that \(\mathcal{A}' (\mathbb{R}^{n}) \) becomes the space of tempered distributions \(\mathcal{S}' (\mathbb{R}^{n}) \). The case of \(\mathcal{K} (\mathbb{R}^{n}) \) and \(\mathcal{K}' (\mathbb{R}^{n}) \) played a central role in the asymptotic analysis of thick distributions \([39] \).

\(^4\)In the sense of Zemanian \([10] \): we assume that \(\mathcal{D} (\mathbb{R}^{n}) \subset \mathcal{A} (\mathbb{R}^{n}) \subset \mathcal{E} (\mathbb{R}^{n}) \) densely and continuously and that differentiation is a continuous map of \(\mathcal{A} (\mathbb{R}^{n}) \).
Definition 2.2. Let $A(\mathbb{R}^n)$ be a space of test functions in \mathbb{R}^n. The space $A_{s,a}(\mathbb{R}^n)$ consists of those functions ϕ defined in $\mathbb{R}^n \setminus \{a\}$ that can be written as $\phi_1 + \phi_2$, where $\phi_1 \in D_{s,a}(\mathbb{R}^n)$ and where $\phi_2 \in A(\mathbb{R}^n)$. The topology of $A_{s,a}(\mathbb{R}^n)$ is the finest topology induced by the map $A:D_{s,a}(\mathbb{R}^n) \times A(\mathbb{R}^n) \rightarrow A_{s,a}(\mathbb{R}^n)$, $A(\phi_1, \phi_2) = \phi_1 + \phi_2$. The space of thick distributions $A'_{s,a}(\mathbb{R}^n)$ is the corresponding dual space.

The topology of $A_{s,a}(\mathbb{R}^n)$ can actually be described in several ways. Suppose for instance that $\rho \in D(\mathbb{R}^n)$ is a test function that satisfies that $\rho(x) = 1$ in a neighborhood of $x = a$. If $|| \rho ||_1$ is a continuous seminorm of $D_{s,a}(\mathbb{R}^n)$ while $|| \rho ||_2$ is a continuous seminorm of $A(\mathbb{R}^n)$, then $||\rho|| = \max \{||\rho \phi||_1, ||(1-\rho) \phi||_2\}$ is a continuous seminorm of $A_{s,a}(\mathbb{R}^n)$ and the collection of seminorms so constructed form a basis for the continuous seminorms of $A_{s,a}(\mathbb{R}^n)$. The elements of $A_{s,a}(\mathbb{R}^n)$ can be described as those smooth functions defined in $\mathbb{R}^n \setminus \{a\}$ that show the behavior of thick test functions near $x = a$ while at infinity show the behavior of the elements of $A(\mathbb{R}^n)$. Similar considerations apply to the dual spaces.

Naturally one may consider spaces of thick test functions and thick distributions on smooth manifolds. In particular, considering the one point compactification $\mathbb{R}^n_\infty = \mathbb{R}^n \cup \{\infty\}$, that can be identified with a sphere in dimension $n+1$, we obtain $D_{s,\infty}(\mathbb{R}^n)$, the space of smooth functions in \mathbb{R}^n with a thick point at ∞, namely, smooth functions ϕ such that $\psi(x) = \phi(x/|x|^2)$ has a thick point at the origin. We can also consider another simple modification of thick test functions, namely, by considering functions whose expansion at the thick point is given not in terms of the asymptotic sequence $\{r^j\}$ but in terms of another asymptotic sequence. The topology of such spaces can be constructed in a completely analogous fashion. In this article we will need to consider test functions with expansions in terms of the sequence $\{r^j \ln r, r^j\}$. The space $\mathcal{W}_{p,\infty}(\mathbb{R}^n)$ of the Definition 4.1.

2.2. Finite parts. Let us now recall the notion of the finite part of a limit [14, Section 2.4]. Let X be a topological space, and let $x_0 \in X$. Suppose \mathfrak{F}, the basic functions, is a family of strictly positive functions defined for $x \in V \setminus \{x_0\}$, where V is a neighborhood of x_0, such that all of them tend to infinity at x_0 and such that, given two different elements $f_1, f_2 \in \mathfrak{F}$, then $\lim_{x \to x_0} f_1(x)/f_2(x)$ is either 0 or ∞.

Definition 2.3. Let $G(x)$ be a function defined for $x \in V \setminus \{x_0\}$ with $\lim_{x \to x_0} G(x) = \infty$. The finite part of the limit of $G(x)$ as $x \to x_0$ with respect to \mathfrak{F} exists and equals A if we can write\footnote{Such a decomposition, if it exists, is unique since any finite number of elements of \mathfrak{F} has to be linearly independent.} $G(x) = G_1(x) + G_2(x)$, where G_1, the infinite part, is a linear combination of the basic functions and where G_2, the finite part, has the property that the limit $A = \lim_{x \to x_0} G_2(x)$ exists. We then employ the notation $F.p.\mathfrak{F} \lim_{x \to x_0} G(x) = A$.

The Hadamard finite part limit corresponds to the case when $x_0 = 0$ and \mathfrak{F} is the family of functions $x^{-\alpha} \ln x^\beta$, where $\alpha > 0$ and $\beta \geq 0$ or where $\alpha = 0$ and $\beta > 0$, or when $x_0 = \infty$ and \mathfrak{F} is the family of functions $x^\alpha \ln x^\beta$, where $\alpha > 0$ and $\beta \geq 0$ or where $\alpha = 0$ and $\beta > 0$. We then use the simpler notations $F.p.\lim_{x \to 0^+} G(x)$ or $F.p.\lim_{x \to \infty} G(x)$.

Consider now a function f defined in \mathbb{R}^n that may or may not be integrable over the whole space but which is integrable in the region $|x| > \varepsilon$ for any $\varepsilon > 0$. Then the radial
finite part integral is defined as

\[\text{F.p.} \int_{\mathbb{R}^n} f(\mathbf{x}) \, d\mathbf{x} = \text{F.p.} \lim_{\varepsilon \to 0^+} \int_{|\mathbf{x}| > \varepsilon} f(\mathbf{x}) \, d\mathbf{x}, \]

if the finite part limit exists. The notion of finite part integrals and its name were introduced by Hadamard [19], who used them in his study of fundamental solutions of partial differential equations.

Definition 2.4. If \(g \) is a locally integrable function in \(\mathbb{R}^n \setminus \{0\} \) such that the radial finite part integral of \(g\phi \) exists for each \(\phi \) belonging to a space of thick test functions \(\mathcal{A}_\ast(\mathbb{R}^n) \), then we can define a thick distribution \(\mathcal{P}f \{g(\mathbf{z}) ; \mathbf{x}\} = \mathcal{P}f (g) \in \mathcal{A}_\ast(\mathbb{R}^n) \) as

\[\langle \mathcal{P}f \{g(\mathbf{z}) ; \mathbf{x}\} , \phi(\mathbf{x}) \rangle = \langle \mathcal{P}f (g) , \phi \rangle = \text{F.p.} \int_{\mathbb{R}^n} g(\mathbf{x}) \phi(\mathbf{x}) \, d\mathbf{x}. \]

The notation \(\mathcal{P}f (f(\mathbf{x})) \) was introduced by Schwartz [29, Chp. 2, §2], who called it a pseudofunction, a term that is still in use.

A particularly important case of finite part limits is the finite part of a meromorphic \(f \) function at a pole \(\omega \), which is exactly the value of the regular part of \(f \), say \(g \), at the pole: \(\text{F.p.} \lim_{\lambda \to \omega} f(\lambda) = g(\omega) \).

Example 2.5. Let \(x_0 > 0 \) and let \(\varphi \) be a continuous function in \([x_0, \infty) \), that satisfies the asymptotic relation \(\varphi(x) = Ax^\beta + Bx^\beta \ln x + o(x^{-\infty}) \) as \(x \to \infty \). The finite part integral \(F(\lambda) = \text{F.p.} \int_{x_0}^{\infty} x^\lambda \varphi(x) \, dx \) exists for all \(\lambda \in \mathbb{C} \), and \(F \) will be a meromorphic function, with a double pole at \(\lambda = -\beta - 1 \), with singular part \(B(\lambda + \beta + 1)^{-2} - A(\lambda + \beta + 1)^{-1} \), and the finite part is

\[\text{F.p.} \lim_{\lambda \to -\beta - 1} F(\lambda) = \text{F.p.} \int_{x_0}^{\infty} x^{-\beta - 1} \varphi(x) \, dx. \]

Notice that we have two very different finite part limits in (2.4) and in this case they give the same result; in fact, that is usually true with radial finite part integrals [39] but not otherwise [15, 35].

3. Some Fourier Transforms

We need the Fourier transform of several distributions in \(\mathbb{R}^n \) for later use, especially transforms of the type \(\mathcal{F} \{ \mathcal{P} f (r^{-N}) a(w) ; u \} \) where \(\mathbf{x} = r\mathbf{w} \) are polar coordinates, and where \(a \) is a smooth function defined on the unit sphere \(\mathbb{S} \). The formulas for such transforms are available [28] but we preferred to present a self consistent approach to their derivation since these ideas will be useful when considering the Fourier transform of thick distributions.

We start with the case when \(a = 1 \). In this case it is well known that

\[\mathcal{F} \{ r^\lambda ; u \} = \frac{\pi^{n/2} \lambda + n \Gamma(\frac{\lambda + n}{2}) s^{-\lambda - n}}{\Gamma(-\frac{\lambda}{2})}, \]

whenever \(\lambda \neq -n, -n - 2, -n - 4, \ldots [14, 21, 22, 29] \). Here \(u = sv \) are polar coordinates. Observe that \(\mathcal{F} \{ r^\lambda ; u \} \) is in fact analytic at \(\lambda = 0, 2, 4, \ldots \), so that the right side can be

\[\text{The same notation is employed for standard distributions.} \]
computed as a limit employing (3.2), namely,
\[F\{r^{2q}; u\} = \lim_{\lambda \to 2q} \pi^{n/2} \lambda^{n} \Gamma(\frac{\lambda+n}{2}) s^{-\lambda-n} \frac{(2\pi)^n}{\Gamma(-\frac{\lambda}{2})} = (2\pi)^n (-1)^q \nabla^q \delta(u). \]

This is of course the result we would obtain if we use that \(F\{1; u\} = (2\pi)^n \delta(u) \) and that \(F\{r^{2q}f(x); u\} = (-1)^q \nabla^{2q} F\{f(x); u\}. \) Next, let us now find \(F\{Pf(r^{-n-2m}); u\} \) for \(m = 0, 1, 2, \ldots \) We have
\[r^\lambda = \frac{c_{m,n} \nabla^m \delta(x)}{(2m)! (\lambda + 2m + n)} + Pf\left(\frac{1}{r^{n+2m}}\right) + O(\lambda + 2m + n), \]
as \(\lambda \to -(2m + n), \) so that we obtain the finite part limit \(\lim_{\lambda \to -(2m + n)} r^\lambda = Pf(r^{-n-2m}). \) Therefore \(F\{Pf(r^{-n-2m}); u\} \) equals
\[\text{F.p.} \lim_{\lambda \to -(2m + n)} F\{r^\lambda; u\} = \text{F.p.} \lim_{\lambda \to -(2m + n)} \frac{\pi^{n/2} \lambda^{n} \Gamma(\frac{\lambda+n}{2}) s^{-\lambda-n}}{\Gamma(-\frac{\lambda}{2})}. \]

This finite part limit is actually already computed in the first edition of [29]. It follows easily from the following lemma [23, 39].

Lemma 3.1. Let \(k \in \mathbb{N}. \) We have that as \(\lambda \to -k, \)
\[\Gamma(\lambda) = \frac{(-1)^k}{k! (\lambda + k)} + \frac{(-1)^k \psi(k + 1)}{k!} + O(\lambda + k), \]
where \(\psi(\lambda) = \Gamma'(\lambda)/\Gamma(\lambda) \) is the digamma function so that \(\psi(k + 1) = \sum_{j=1}^k 1/j - \gamma, \gamma \) being Euler’s constant. If \(k = 0, 1, 2, \ldots, \) and \(f \) is analytic in a neighborhood of \(-k,\)
\[\text{F.p.} \lim_{\lambda \to -k} \Gamma(\lambda) f(\lambda) = \frac{(-1)^k \psi(k + 1)}{k!} f(-k) + \frac{(-1)^k}{k!} f'(-k). \]

The ensuing result is therefore obtained.

Lemma 3.2. If \(m = 0, 1, 2, \ldots \) then
\[F\{Pf/r^{n+2m}; u\} = \frac{(-1)^m \pi^{n/2}}{m! \Gamma(\frac{n}{2} + m)} \left(\frac{s}{2}\right)^{2m} \left\{ \psi(m + 1) + \psi\left(\frac{n}{2} + m\right) - 2 \ln\left(\frac{s}{2}\right) \right\} \]

Our next task is to find the Fourier transform of distributions of the form \(Pf(r^{-N}) \) \(a(w) \) when \(a = Y_k \) is a spherical harmonic\(^4\) of degree \(k. \)

Lemma 3.3. If \(Y_k \in H_k \) and \(\lambda \neq -n - k, -n - k - 2, -n - k - 4, \ldots \)
\[F\{r^\lambda Y_k(w); sv\} = \frac{i^k \pi^{n/2} \lambda^{n+\lambda} \Gamma(\frac{k+n+\lambda}{2})}{\Gamma(\frac{k-\lambda}{2})} s^{-\lambda-n} Y_k(v). \]

Proof. Notice that for a general \(k, \) the Fourier transform of \(r^\lambda Y_k(w), \) a homogeneous distribution of degree \(\lambda, \) is homogeneous of degree \(-\lambda + n, \) so that the Funk-Hecke formula [18, 20] as presented in [9] yields that
\[F\{r^\lambda Y_k(w); sv\} = C_{k,\lambda} s^{-(\lambda+n)} Y_k(v), \]
for some constants \(C_{k,\lambda} \) that depend on \(k \) and \(\lambda \) but not otherwise on \(Y_k. \) Thus, it suffices to show that for each \(k \) (3.3) holds for just one spherical harmonic of degree \(k. \) We use

\(^4\)We denote this as \(Y_k \in H_k. \) For more on spherical harmonics, see [11, 27].
induction on \(k \). If \(k = 0 \) then (3.3) is exactly (3.1). Let us assume it true for \(k \) and let us prove it for \(k + 1 \). Indeed, we take \(Y_{k+1}(x) = Y_k(\xi)x_n \) where \(x = (\xi, x_n) \), so that

\[
\mathcal{F}\{\mathcal{F}^{-1}Y_{k+1}(w); s v\} = -i \frac{\partial}{\partial u_n} \left(\frac{k^{\pi n/2}2^{\lambda-1+n} \Gamma\left(\frac{k+n+\lambda-1}{2}\right)}{\Gamma\left(\frac{k-\lambda+1}{2}\right)} s^{1-\lambda-n} Y_k(v) \right)
\]

\[
= \frac{\Gamma\left(\frac{k+n+\lambda-1}{2}\right)}{\Gamma\left(\frac{k-\lambda+1}{2}\right)} \frac{\partial}{\partial u_n} \left(Y_k(u) s^{\lambda+1-k-n} \right) - i \frac{k^{\pi n/2}2^{\lambda-1+n} \Gamma\left(\frac{k+n+\lambda-1}{2}\right)}{\Gamma\left(\frac{k-\lambda+1}{2}\right)} s^{-\lambda-n} Y_{k+1}(v)
\]

as required.

Since \(\mathcal{F}\{\mathcal{F}^{-1}Y_k(w); s v\} \) is analytic at \(\lambda = k + 2q, q = 0, 1, 2, \ldots \), at this value of \(\lambda \) (3.3) is the limit of the expression as \(\lambda \to k + 2q \). In fact, using the product formula

\[
Y_k(u) \nabla^{2m} \delta(u) = \frac{(-1)^k 2^k m!}{(m-k)!} Y_k(\nabla) \nabla^{2m-2k} \delta(u), \quad m \geq k,
\]

from [10] Prop. 3.3, we indeed obtain

\[
\mathcal{F}\{i k^{\pi n/2}2^{\lambda-n} \Gamma\left(\frac{k+n+\lambda}{2}\right) s^\lambda Y_k(v)\} = \lim_{\lambda \to k + 2q} \frac{i k^{\pi n/2}2^{\lambda-n} \Gamma\left(\frac{k+n+\lambda}{2}\right)}{\Gamma\left(\frac{k-\lambda}{2}\right)} Y_k(v)
\]

\[
= \frac{(-1)^k}{k! q!} \left(2\pi\right)^n \frac{(k+q)!}{(2m)^{k+q}} Y_k(\nabla) \nabla^{2q+2m} \delta(u).
\]

If we now use the Lemma 3.1 as before, we obtain the following formula.

Lemma 3.4. If \(Y_k \in \mathcal{H}_k \) and \(m = 0, 1, 2, \ldots \) then

\[
\mathcal{F}\left\{ \mathcal{P} f \left(\frac{1}{r^{n+k+2m}} \right) Y_k(w); s v \right\} = \frac{(-1)^m i k^{\pi n/2}}{m! \Gamma\left(\frac{n}{2} + k + m\right)} \left(\frac{s}{2}\right)^{2m+k} \left\{ \psi(1+m) + \psi\left(\frac{n}{2} + k + m\right) - 2 \ln\left(\frac{s}{2}\right) \right\} Y_k(v).
\]

Let now \(a \) be a smooth function on the sphere, \(a \in \mathcal{D}(\mathbb{S}) \). Then we can write it in terms of spherical harmonics as

\[
a(w) = \sum_{m=0}^{\infty} Y_m(w),
\]

where \(Y_m = Y_m\{a\} \in \mathcal{H}_m \) are given as \(Y_m(w) = \int_{\mathbb{S}} Z_m(w,v) a(v) \, d\sigma(v) \); here \(Z_m(w,v) \) is the reproducing kernel of \(\mathcal{H}_m \), namely [11] Thm. 5.38

\[
(n+2m-2) \sum_{q=0}^{\lfloor m/2 \rfloor} (-1)^q \frac{n(n+2) \cdots (n+2m-2q-4)}{2q!(m-2q)!} (w \cdot v)^{m-2q}.
\]

We thus obtain the following.
Proposition 3.5. If $\beta \neq 0, 1, 2, \ldots$ then
\[
\mathcal{F}\left\{\mathcal{P} f\left(\frac{1}{r^{\alpha+\beta}}\right) a(w) ; u\right\} = \mathcal{P} f\left(s^\beta\right) K_\beta\{a(w) ; v\},
\]
where $K_\beta\{a(w) ; v\} = (K_\beta(w, v), a(w))_w$, and
\[
\sum_{m=0}^{\infty} \kappa_{\beta,m} Z_m(w, v), \quad \kappa_{\beta,m} = \frac{i^m n^{n/2-\beta} \Gamma(m-\beta)}{\Gamma(m+n+\beta)}.
\]

The operator K_β is analytic for $\beta \neq 0, 1, 2, \ldots$; for $\beta = q \in \mathbb{N}$ we have the next formula.

Proposition 3.6. If $q = 0, 1, 2, \ldots$ then
\[
\mathcal{F}\left\{\mathcal{P} f\left(\frac{1}{r^{\alpha+q}}\right) a(w) ; u\right\} = s^q (K_q\{a(w) ; v\} + L_q\{a(w) ; v\} \ln s),
\]
where $K_q\{a(w) ; v\} = (K_q(w, v), a(w))_w$, and
\[
L_q(w, v) = \sum_{m=0}^{\left\lfloor q/2 \right\rfloor} \lambda_{q,q-2m} Z_{q-2m}(w, v), \quad \lambda_{q,q-2m} = \frac{-i^q 2^{-q+1} n^{n/2}}{m! \Gamma(\frac{n}{2} + q - m)}.
\]

3.1. The operators K_β. Notice that K_β is the analytic continuation of an integral operator $a \sim \int_\mathbb{S} K_\beta(w, v) a(w) \, d\sigma(w)$, namely, if $\Re \beta > 0$ then employing polar coordinates we obtain
\[
\mathcal{F}\left\{r^{-\alpha-\beta} a(w) ; u\right\} = s^\beta \Gamma(-\beta) e^{-i\pi\beta/2} \int_\mathbb{S} a(w) (w \cdot v + i0)^\beta \, d\sigma(w),
\]
since in dimension 1 [22] $\mathcal{F}\left\{x_+^{-1-\beta} ; t\right\} = \Gamma(-\beta) e^{-i\pi\beta/2} (t + i0)^\beta$ if $\beta \neq 0, 1, 2, \ldots$ Thus,
\[
K_\beta(w, v) = \Gamma(-\beta) e^{-i\pi\beta/2} (w \cdot v + i0)^\beta,
\]
a distributional kernel for $\beta \neq 0, 1, 2, \ldots$ that becomes an integral operator if $\Re \beta > 0$.

Observe that the distribution $(t + i0)^\beta$ is an entire function of β. The singularity of $K_\beta(w, v)$ at $\beta = q \in \mathbb{N}$ is produced by the term $\Gamma(-\beta)$. The formula of the Proposition 3.6 can therefore be derived by computing the finite part of the limit of $K_\beta(w, v) s^\beta$ as $\beta \to q$, because the Lemma 3.1 gives
\[
\text{F.p.} \lim_{\lambda \to q^-} \Gamma(\lambda) a^\lambda = \left(-\frac{1}{q!}\right)^q (\psi(q + 1) + \ln a) a^{-q}.
\]
Hence, since $(w \cdot v + i0)^q = (w \cdot v)^q$,
\[
K_q(w, v) = \frac{(-1)^q e^{-i\pi q/2}}{q!} \left(\psi(q + 1) + \ln \left(\frac{e^{i\pi/2}}{(w \cdot v + i0)}\right)\right) (w \cdot v)^q,
\]
and

\[L_q (w, v) = \frac{(-1)^q e^{-i\pi q/2}}{q!} (w \cdot v)^q. \]

It also interesting to observe the form of \(K_m (w, v) \) for \(m = 1, 2, 3, \ldots, \)

\[K_m (w, v) = (m - 1)! \delta^m (w \cdot v + i0)^{-m} = (m - 1)! \delta^m (w \cdot v)^{-m} - \pi (-i)^{m+1} \delta^{(m-1)} (w \cdot v) = -2\pi (-i)^{m+1} \delta^{(m-1)} (w \cdot v), \]

where \(\delta^{(m-1)}(x) \) is the Heisenberg delta function \[14, \text{(2.61), (2.63)}].

If \(\beta \neq 0, 1, 2, \ldots, \) the coefficients \(\kappa_{\beta, m} \) never vanish for \(\beta \neq -n - q, \) \(q = 0, 1, 2, \ldots, \) but they could vanish for some \(m \) when \(\beta = -n - q, \) so that the operator \(K_{\beta} \) is an isomorphism of \(D(\mathbb{S}) \) for \(\beta \neq -n - q, \) but \(K_{-n-q}(D(\mathbb{S})) \) is a subspace of finite codimension of \(D(\mathbb{S}) \).

The Fourier inversion formula yields the inverses of the operators \(K_{\beta} \) for \(\beta \in \mathbb{C} \setminus \mathbb{Z} \) or for \(\beta \in \{1 - n, 2 - n, \ldots, -1\} \) as

\[K_{\beta}^{-1} \{ A(v); w \} = \frac{1}{(2\pi)^n} K_{-n-\beta} \{ A(v); \overline{w} \}, \quad A \in D(\mathbb{S}). \]

3.2. The operators \(\Phi_q \) and \(\Sigma_q \). It is convenient to consider a variant of the operators \(K_{\beta} \) in case \(\beta \in \mathbb{Z}. \) Let us start with some notation. If \(q \in \mathbb{N} \) we denote as \(P_q \) the space of restrictions of homogeneous polynomials of degree \(q \) to \(\mathbb{S}, \) that is \(P_q = H_0 \oplus H_{q-2} \oplus H_{q-4} \oplus \cdots. \) Let \(X \) be a space of functions or generalized functions over \(\mathbb{S}, \) as \(D(\mathbb{S}), L^2(\mathbb{S}), \) or \(D'(\mathbb{S}), \) that equals the closure in \(X \) of the sum \(H_0 \oplus H_1 \oplus H_2 \oplus \cdots. \) Then \(X_q \) is the space \(X \) if \(1 - n \leq q \leq -1; \) if \(q \geq 0, \) \(X_q \) is the sum \(\bigoplus X \mid_{m \neq q} \cdots H_m, \) while if \(q \leq -n \) then \(X_q = X_{-n-q}. \) Notice that

\[X_q \oplus P_{-n-q} = X, \quad q \leq -n, \quad X_q \oplus P_q = X, \quad q \geq 0. \]

We define the operators \(\Phi_q : D_q \rightarrow D_q \) as \(\Pi K_q \iota, \) where \(\iota \) is the canonical injection of \(D_q \) into \(D(\mathbb{S}) \) and \(\Pi \) the canonical projection of \(D(\mathbb{S}) \) onto \(D_q. \) We can also consider the \(\Phi_q \) as operators from \(D_q' \) to itself, by duality or employing the expansion \[13.3. \]. The Propositions \[3.3. \] and \[3.6. \] immediately give the ensuing.

Proposition 3.7. The operators \(\Phi_q \) are isomorphisms of the space \(X_q \) to itself for \(X = D(\mathbb{S}) \) or \(D'(\mathbb{S}). \) Its inverses are given as

\[\Phi_q^{-1} \{ A(v); w \} = \frac{1}{(2\pi)^n} \Phi_{-n-q} \{ A(v); \overline{w} \}, \quad A \in X_q. \]

Observe that for \(X = D(\mathbb{S}) \) or \(D'(\mathbb{S}) \) we have \(X_q = K_q (X), \) for \(q < 0. \) This is not true for \(q \geq 0, \) but we have \(X_q = \Pi K_q (X) \) where \(\Pi \) is the canonical projection of \(X \) onto \(X_q. \)

The operators \(\Sigma_q : P_q \rightarrow P_q \) are defined as \(\Pi L_q \iota, \) where \(\iota \) is the canonical injection of \(P_q \) into \(D(\mathbb{S}) \) and \(\Pi \) the canonical projection of \(D(\mathbb{S}) \) onto \(P_q. \) They are isomorphisms of the space \(P_q. \)

5Such closures will be denoted as \(\bigoplus X \mid_{m=0}^{\infty} H_m \)
6The results also holds for \(X = L^2(\mathbb{S}), \) but we will not need this case presently.
4. The Fourier transform of thick test functions

In this section we will construct a space $\mathcal{W}(\mathbb{R}^n)$ such that it is possible to define an operator
\begin{equation}
(4.1) \quad \mathcal{F}_{*t} : \mathcal{S}_s(\mathbb{R}^n) \longrightarrow \mathcal{W}(\mathbb{R}^n),
\end{equation}
the Fourier transform of test functions, which has the expected properties of such a transform.

Let us start by observing that if ϕ is a thick test function in \mathbb{R}^n, then in general it is not locally integrable at the origin, so that, in general, it does not give a unique distribution. Therefore, we cannot imbed $\mathcal{S}_s(\mathbb{R}^n)$ into $\mathcal{S}'(\mathbb{R}^n)$ and consequently, if $\phi \in \mathcal{S}_s(\mathbb{R}^n)$ then in general we cannot define $\mathcal{F}(\phi)$ as a distribution of the space $\mathcal{S}'(\mathbb{R}^n)$. On the other hand, any $\phi \in \mathcal{S}_s(\mathbb{R}^n)$ does have regularizations $f \in \mathcal{S}'(\mathbb{R}^n)$; however f is not unique, since if f_0 is a regularization, then so are all distributions of the form $f_0 + g$, where $\text{supp} \; g \subset \{0\}$, that is, where g is a sum of derivatives of the Dirac delta function at the origin. It will be convenient to use the notation $\mathcal{S}_{s, \text{reg}}(\mathbb{R}^n)$ for the subspace of $\mathcal{S}'(\mathbb{R}^n)$ whose elements are the regularizations of thick test functions.

Our first task is then to identify those distributions of the form $\mathcal{F}(f_0)$ where f_0 is a regularization of a thick test function $\phi \in \mathcal{S}_s(\mathbb{R}^n)$. It should be clear that if $\Phi_0 = \mathcal{F}(f_0)$ for one such regularization of ϕ, then so are all distributions of the form $\Phi_0 + p$ for any polynomial p and, conversely, if Φ is the Fourier transform of a regularization of ϕ then $\Phi = \Phi_0 + p$ for some polynomial p. Observe now that if $\phi \in \mathcal{S}_s(\mathbb{R}^n)$ then ϕ coincides with a test function of the space $\mathcal{S}(\mathbb{R}^n)$ outside any ball around the origin, while at the origin it has a strong asymptotic expansion of the form $\phi(x) \sim \sum_{m=-M}^{\infty} a_m(w) r^m$, as $r \to 0^+$, where $a_m \in \mathcal{D}(\mathbb{S})$. We can therefore readily obtain the properties of the Fourier transform $\Phi_0 = \mathcal{F}(f_0)$ of the pseudofunction $f_0 = P_f(\phi)$, the finite part regularization of ϕ. Indeed, Φ_0 is smooth in all of \mathbb{R}^n, and our analysis of the Section 3 combined with the techniques of [32] or of [14] Chpt. 4] yield the asymptotic expansion of $\Phi_0(u)$ as $|u| \to \infty$ as follows: if $u = sv$ are polar coordinates then we have the strong expansion
\begin{equation}
(4.2) \quad \Phi_0(sv) \sim \sum_{m \leq -n} s^{-m-n} \left(K_{-m-n} \{ a_m(w); v \} + L_{-m-n} \{ a_m(w); v \} \right) \ln s
\end{equation}
as $s \to \infty$, uniformly with respect to v. Consequently we introduce the space $\mathcal{W}_{\text{pre}}(\mathbb{R}^n)$.

Definition 4.1. The space $\mathcal{W}_{\text{pre}}(\mathbb{R}^n)$ consists of those smooth functions Φ defined in \mathbb{R}^n that admit a strong asymptotic expansion of the form
\begin{equation}
(4.3) \quad \Phi(sv) \sim \sum_{q=0}^{Q} (A_q(v) + P_q(v) \ln s) s^q + \sum_{q=1}^{\infty} A_{-q}(v) s^{-q},
\end{equation}
where $A_q \in \mathcal{K}_q(\mathcal{D}(\mathbb{S}))$ for $q \leq -n$, $A_q \in \mathcal{D}(\mathbb{S})$ for $q > -n$, and where the $P_q \in \mathcal{P}_q$ for $q \in \mathbb{N}$. The topology of $\mathcal{W}_{\text{pre}}(\mathbb{R}^n)$ is constructed as explained in Subsection 2.1.1.

Our analysis so far yields the ensuing result.

It is possible to consider $\mathcal{F}(\phi)$ as a distribution of the Lizorkin distributional spaces, but for our purposes a different approach is more convenient.
The Fourier transform is an isomorphism of the vector spaces $\mathcal{S}_*,\text{reg} (\mathbb{R}^n)$ **and** $\mathcal{W}_{\text{pre}} (\mathbb{R}^n)$.

Notice that we have not defined a topology for the space $\mathcal{S}_*,\text{reg} (\mathbb{R}^n)$ yet; once a topology is introduced, we shall see that the Fourier transform is not only an algebraic isomorphism, but actually an isomorphism of topological vector spaces. First, however, we need to consider the notions of delta part and polynomial part of distributions.

4.1. Delta parts and polynomial parts.

In general it is not possible to separate the contribution to a distribution from a given point; to talk about the “delta part at x_0” of all distributions does not make sense. However, sometimes, we can actually separate the delta part.\(^8\)

Definition 4.3. Let $f_0 \in \mathcal{D}' (\mathbb{R}^n \setminus \{0\})$ be a distribution defined in the complement of the origin. Suppose the pseudofunction $\mathcal{P}f (f_0 (x))$ exists in $\mathcal{D}' (\mathbb{R}^n)$ (respectively in $\mathcal{D}'_c (\mathbb{R}^n)$). Let $f \in \mathcal{D}' (\mathbb{R}^n)$ (respectively in $f \in \mathcal{D}'_c (\mathbb{R}^n)$) be any regularization of f_0. Then the delta part at 0 of f is the distribution $f - \mathcal{P}f (f_0 (x))$, whose support is the origin.\(^9\)

It is easy to construct distributions whose delta part is not defined. Indeed, the function $\sin r^{-k}$ is locally integrable in \mathbb{R}^n, and thus it gives a well defined regular distribution in $\mathcal{D}' (\mathbb{R}^n)$. If $k > n$, then the distributional derivative $(\nabla_i) \sin r^{-k}$ is another well defined distribution, but its delta part at the origin is not defined, since $\mathcal{P}f (\nabla_i \sin r^{-k})$ does not exist.

It must be emphasized that even though when it exists, $\mathcal{P}f (f_0 (x))$ is in a way the natural regularization of f_0, other regularizations appear also very naturally, as we now illustrate. Consider the distribution $\mathcal{P}f (r^{-k})$ in \mathbb{R}^n. Then the distributional derivative $\nabla_i \mathcal{P}f (r^{-k})$ is a regularization of $-kx_i r^{-k-2}$, the ordinary derivative of r^{-k}; however \[^{(3.16)}\text{in Thm.7.1] if k - n = 2m is an even positive integer, then}

$$\nabla_i \mathcal{P}f (r^{-k}) = \mathcal{P}f (-kx_i r^{-k-2}) - \frac{c_{m,n}}{(2m)!k} \nabla_i \Delta^m \delta (x),$$

where $c_{m,n}$ is given by \[^{(2.1)}\text{. Therefore,} (-c_{m,n}/(2m)!k) \nabla_i \Delta^m \delta (x)$ is the delta part of the distribution $\nabla_i \mathcal{P}f (r^{-k})$ in $\mathcal{D}' (\mathbb{R}^n)$. In the space $\mathcal{D}'_c (\mathbb{R}^n)$, now for any integer $k \in \mathbb{Z}$, the delta part of the thick derivative $\nabla_i^\alpha \mathcal{P}f (r^{-k})$ is given \[^{(3.16)}\text{Thm.7.1] as} C_{n,\alpha} \delta_{[k-n+1]}^{\alpha} .$$

Another illustration of “natural” regularizations that differ from the finite part is the following. In \mathbb{R}^n for $n \geq 2$, and for $m \in \mathbb{N}$, the distribution $\lambda^{n+2m} \mathcal{P}f (|\lambda x|^{-n-2m})$ is a regularization of r^{-n-2m} and in $\mathcal{D}' (\mathbb{R}^n)$ its delta part is $\ln \lambda c_{m,n} \nabla^{2m} \delta (x) / (2m)!$, while in $\mathcal{D}'_c (\mathbb{R}^n)$ its delta part is $\ln \lambda C \delta_{[2m]}^{[k]}$, as follows from \[^{(3.16)}\text{(5.13), (5.14)\. More generally} \[^{(11)}\text{let} A be a non singular n x n matrix, let} b \in \mathcal{D} (\mathcal{S})$, and put $B_\alpha (z) = b (z/|z|) |z|^{\alpha}$, the extension to $\mathcal{D}' (\mathbb{R}^n \setminus \{0\})$ that is homogeneous of degree α. Then in $\mathcal{D}'_c (\mathbb{R}^n)$ we have $\mathcal{P}f \{B_\alpha (Az) ; x\} = \mathcal{P}f \{B_\alpha (z) ; Ax\} - Cb (w) |Aw|^k \ln |Aw| \delta_{[k-n]}^{[k-n]} (x),$ so that the distribution $\mathcal{P}f \{B_k (z) ; Ax\}$ has a non trivial delta part while $\mathcal{P}f \{B_k (z) ; x\}$ does not.\(^8\)Notice that this delta part is in fact a spherical delta part.\(^9\)Naturally, when $k - n = 2m \geq 0$, the projection of the thick delta part is precisely the distributional delta part, and this agrees with \[^{(3.16)}\text{(7.7)].}
When \(f_0 \) is a smooth function defined in \(\mathbb{R}^n \setminus \{0\} \) such that the Hadamard regularization exists at the origin, and \(f \in \mathcal{D}'(\mathbb{R}^n) \) is a regularization of \(f_0 \), then we call \(f_0 \) the ordinary part of \(f \). Thus, for instance, \(-kx_i r^{-k-2}\) is the ordinary part of \((\nabla_i) \mathcal{P} f (r^{-k})\).

In a similar fashion, one may consider the polynomial part of distributions. Not all distributions have a well defined polynomial part, but all the elements of \(\mathcal{W}_{\text{pre}}(\mathbb{R}^n) \) do. Let us start with the case of a distribution that is homogeneous of degree \(q \). Then the polynomial part we constructed is a polynomial part, since we have employed polar coordinates.

\[
E_q = \Pi_{\text{pol}}(F_q)(u) = F_q(u) + \tilde{F}_q(u),
\]

where \(E_q = \Pi_{\text{pol}}(F_q) \) is the homogeneous polynomial of degree \(q \) given as

\[
E_q(u) = \Pi_{\text{pol}}(F_q) = (\sum_{k \leq q/2} Y_{q-2k,q}(v))s^q,
\]

and \(\tilde{F}_q = F_q - E_q \) is the polynomial free part of \(F_q \).

In the general case when \(F \) has the asymptotic expansion of the form

\[
F(sv) \sim \sum_{q=0}^{Q} (A_q(v) + P_q(v) \ln s) s^q + \sum_{q=1}^{\infty} A_{-q}(v) s^{-q},
\]

then the polynomial part of \(F \) is the polynomial

\[
\Pi_{\text{pol}}(F) = \sum_{q=0}^{Q} \Pi_{\text{pol}}(A_q(v))s^q.
\]

The polynomial free part of \(F \) is \(F - \Pi_{\text{pol}}(F) \).

It is possible to define the polynomial part of other distributions, not just those with an asymptotic expansion of the form \((4.8)\), but this construction is enough for our purposes, since it gives the polynomial part in \(\mathcal{W}_{\text{pre}}(\mathbb{R}^n) \). It should also be noticed that the polynomial part we constructed is a radial polynomial part, since we have employed polar coordinates.

The polynomial part allows us to understand why \(\mathcal{K}_q(\mathcal{D}(\mathbb{S})) = \mathcal{D}_q \) and \(\mathcal{K}_q(\mathcal{D}'(\mathbb{S})) = \mathcal{D}'_q \) for \(q < -n \). In fact we have the following.

Lemma 4.4. Let \(A \in \mathcal{D}(\mathbb{S}) \). If \(m \in \mathbb{N} \), then \(A \in \mathcal{K}_{-(n+m)}(\mathcal{D}(\mathbb{S})) \) if and only if the function \(A(v) s^m \) is polynomial free. Similarly, if \(A \in \mathcal{D}'(\mathbb{S}) \), then \(A \in \mathcal{K}_{-(n+m)}(\mathcal{D}'(\mathbb{S})) \) if and only if the distribution \(A(v) s^m \) is polynomial free.

Proof. Follows at once from the Propositions 3.5 and 3.6. \(\square \)

4.2. The space \(\mathcal{W}(\mathbb{R}^n) \).

We can now consider the topology of the spaces \(\mathcal{W}_{\text{pre}}(\mathbb{R}^n) \) and \(\mathcal{S}_{*,\text{reg}}(\mathbb{R}^n) \), as well as define the space \(\mathcal{W}(\mathbb{R}^n) \).

The space \(\mathcal{S}_{*,\text{reg}}(\mathbb{R}^n) \) admits the representation

\[
\mathcal{S}_{*,\text{reg}}(\mathbb{R}^n) = \mathcal{S}_{*,\text{ord}}(\mathbb{R}^n) \oplus \mathcal{D}'_{\{0\}}(\mathbb{R}^n),
\]

where \(\mathcal{D}'_{\{0\}}(\mathbb{R}^n) \) is the space of distributions with support at the origin and where \(\mathcal{S}_{*,\text{ord}}(\mathbb{R}^n) \) is the space of ordinary parts of regularizations of thick test functions. Clearly the \(\mathcal{P} f \) operator is an isomorphism of \(\mathcal{S}_* (\mathbb{R}^n) \) onto \(\mathcal{S}_{*,\text{ord}}(\mathbb{R}^n) \). We define the topology of \(\mathcal{S}_{*,\text{ord}}(\mathbb{R}^n) \) by asking \(\mathcal{P} f \) to be a topological isomorphism. The space \(\mathcal{D}'_{\{0\}}(\mathbb{R}^n) \) has a topology as a
closed subspace of $S' (\mathbb{R}^n)$. The topology of $S_{\ast, \text{reg}} (\mathbb{R}^n)$ is the direct sum topology. Notice that the topology of $S_{\ast, \text{reg}} (\mathbb{R}^n)$ is stronger but not equal to the subspace topology inherited from $S' (\mathbb{R}^n)$. We can now complete the Theorem 4.2: The Fourier transform is a topological isomorphism of the spaces $S_{\ast, \text{reg}} (\mathbb{R}^n)$ and $W_{\text{pre}} (\mathbb{R}^n)$.

We now define the space $W (\mathbb{R}^n)$.

Definition 4.5. The space $W (\mathbb{R}^n)$ is formed by the polynomial free elements of $W_{\text{pre}} (\mathbb{R}^n)$, with the subspace topology. Explicitly, $\Phi \in W$ if it is smooth in \mathbb{R}^n and at infinity it has an asymptotic expansion

$$
\Phi (sv) \sim \sum_{q=0}^{Q} (A_q (v) + P_q (v) \ln s) s^q + \sum_{q=1}^{\infty} A_{-q} (v) s^{-q},
$$

where $A_q \in D_q$ for $q \in \mathbb{Z}$ and the $P_q \in P_q$ are homogeneous polynomials of degree q.

The space $W (\mathbb{R}^n)$ is exactly the space needed to define the Fourier transform of thick test functions; the condition $A_q \in D_q$ in the expansion (4.11), which is equivalent to the fact that Φ is polynomial free, will play a very important role in the behavior of the Fourier transform of thick distributions. Notice in fact that

$$
W_{\text{pre}} (\mathbb{R}^n) = W (\mathbb{R}^n) \oplus P (\mathbb{R}^n),
$$

as topological vector spaces. Therefore the space $W (\mathbb{R}^n)$ can also be constructed as a quotient space. Namely, if we define the equivalence relation $F \sim G$ if $F - G$ is a polynomial, then $W (\mathbb{R}^n)$ is canonically isomorphic to $W_{\text{pre}} (\mathbb{R}^n) / \sim$. Similarly, if we consider the equivalence relation $f \sim g$ when $\text{supp} (f - g) \subset \{0\}$ in $S_{\ast, \text{reg}} (\mathbb{R}^n)$, then $S_{\ast} (\mathbb{R}^n) \simeq S_{\ast, \text{ord}} (\mathbb{R}^n) \simeq S_{\ast, \text{reg}} (\mathbb{R}^n) / \sim$.

When $\phi \in S_{\ast} (\mathbb{R}^n)$ we shall denote by $F_{\ast, t} (\phi)$ the element $\Pi_{W_{\text{pre}} , W} (F (P f (\phi)))$ of $W (\mathbb{R}^n)$, and call it the thick Fourier transform of ϕ. We can also define a Fourier transform in $W (\mathbb{R}^n)$, $F_{\ast} : W (\mathbb{R}^n) \rightarrow S_{\ast} (\mathbb{R}^n)$, as

$$
F_{\ast} \{ \Phi (u) ; x \} = (2\pi)^n F_{\ast, t}^{-1} \{ \Phi (u) ; -x \}.
$$

We immediately obtain the following important result.

Theorem 4.6. The thick Fourier transform $F_{\ast, t}$ is a topological isomorphism of $S_{\ast} (\mathbb{R}^n)$ onto $W (\mathbb{R}^n)$. The thick Fourier transform $F_{\ast} : W (\mathbb{R}^n) \rightarrow S_{\ast} (\mathbb{R}^n)$ is a topological isomorphism of $W (\mathbb{R}^n)$ onto $S_{\ast} (\mathbb{R}^n)$.

5. **The space $W' (\mathbb{R}^n)$**

In this section we shall consider the distributions of the space $W' (\mathbb{R}^n)$. The first thing we would like to point out is that the functions of $W (\mathbb{R}^n)$ are smooth functions in \mathbb{R}^n with a special type of thick behavior at infinity; therefore the elements of $W' (\mathbb{R}^n)$ are actually distributions over the space $\mathbb{R}^n_c = \mathbb{R}^n \cup \{ \infty \}$, the one point compactification of \mathbb{R}^n. From now on we shall also employ the more informative notation $W' (\mathbb{R}^n)$ when we want to call attention to the dimension n and the simpler notation W when no explicit mention of n is needed. The elements of W' shall be called *sl–thick distributions*, since the thick test functions of W have a special type of logarithmic expansion at infinity.

Several distributions defined on \mathbb{R}^n admit canonical extensions to $W' (\mathbb{R}^n)$. Indeed, if $W (\mathbb{R}^n) \subset A (\mathbb{R}^n)$ continuously and with dense image, where $A (\mathbb{R}^n)$ is a space of

\(^{10}\)In general $F (P f (\phi))$ does not belong to W.
test functions, then \(\mathcal{A}'(\mathbb{R}^n) \) is canonically imbedded into \(\mathcal{W}'(\mathbb{R}^n) \). The simplest case is when \(\mathcal{A}(\mathbb{R}^n) = \mathcal{E}(\mathbb{R}^n) \), the space of all smooth functions in \(\mathbb{R}^n \), which gives that each distribution of compact support, \(f \in \mathcal{E}'(\mathbb{R}^n) \) admits a canonical extension to \(\mathcal{W}'(\mathbb{R}^n) \), namely one whose support in \(\mathbb{R}^n_c \) is precisely the original support of \(f \),

\[
(5.1) \quad \langle f, \Phi \rangle_{W' \times W} = \langle f, \Phi \rangle_{E' \times E}.
\]

Actually we can also take \(\mathcal{A}(\mathbb{R}^n) = \mathcal{K}(\mathbb{R}^n) \), so that any distribution \(f \in \mathcal{K}'(\mathbb{R}^n) \) admits a canonical extension to \(\mathcal{W}'(\mathbb{R}^n_c) \), given by the Cesàro evaluation,

\[
(5.2) \quad \langle f, \Phi \rangle_{W' \times W} = \langle f, \Phi \rangle_{(C)}
\]

since \(\langle f, \Phi \rangle_{(C)} \) exists whenever \(\Phi \in \mathcal{K}(\mathbb{R}^n) \) \(^{14} \) and \(\mathcal{W}(\mathbb{R}^n) \subset \mathcal{K}(\mathbb{R}^n) \). We shall employ the same notation for both the distribution of \(\mathcal{K}'(\mathbb{R}^n) \) and its canonical extension to \(\mathcal{W}'(\mathbb{R}^n_c) \). On the other hand, \(\mathcal{W}(\mathbb{R}^n) \) is not contained in \(\mathcal{S}(\mathbb{R}^n) \), and this means that tempered distributions do not have \textit{canonical} extensions in \(\mathcal{W}'(\mathbb{R}^n) \). In fact, it is not hard to see that actually all elements of \(\mathcal{S}'(\mathbb{R}^n) \) have \textit{many} extensions to \(\mathcal{W}'(\mathbb{R}^n) \), but it is not possible to construct a continuous extension procedure, similarly to the situation explained in \(^{[4]} \).

Another important class of \(sl-\)thick distributions are the thick deltas at infinity.

Definition 5.1. If \(G \in \mathcal{D}'_q \) then we define \(G(\mathbf{v}) \delta_{\infty}^{[q]} \), the thick delta at infinity of order \(q \) as

\[
(5.3) \quad \langle G(\mathbf{v}) \delta_{\infty}^{[q]}, \Phi \rangle_{W' \times W} = \frac{1}{C} \langle G, A_q \rangle_{\mathcal{D}'_q \times \mathcal{D}_q},
\]

if \(\Phi \in \mathcal{W} \) has the asymptotic expansion \(^{[4.11]} \). Similarly, if \(H \in \mathcal{P}'_q = \mathcal{P}_q \) then we define \(H(\mathbf{v}) \delta_{\infty}^{[q]} \) the thick logarithmic delta of order \(q \) at infinity as

\[
(5.4) \quad \langle H(\mathbf{v}) \delta_{\infty}^{[q]}, \Phi \rangle_{W' \times W} = \frac{1}{C} \langle H, P_q \rangle_{\mathcal{P}'_q \times \mathcal{P}_q}.
\]

Sometimes one may construct extensions of a tempered distribution \(g \) by considering a finite part at infinity\(^{[13]} \), a construction we shall now denote as \(\mathcal{P}f_W(g) \), or later simply as \(\mathcal{P}f(g) \) if there is no danger of confusion. Consider for example the distribution \(\mathcal{P}f(s^\lambda), \ s = |u|, \) of \(\mathcal{S}'(\mathbb{R}^n) \) : this tempered distribution yields the \(sl-\)thick distribution \(\mathcal{P}f_W(s^\lambda) \) obtained from the generally divergent integral \(\int_{\mathbb{R}^n} s^\lambda \Phi(u) \, du, \ \Phi \in \mathcal{W} \), by taking the radial finite part at \(0 \), or at \(\infty \), or at both. Using the ideas of the Example \(^{[2.5]} \) we can see the structure of \(\mathcal{P}f_W(s^\lambda) \).

Lemma 5.2. The parametric \(sl-\)thick distribution \(\mathcal{P}f_W(s^\lambda) \) is a meromorphic function of \(\lambda \), analytic in the region \((\mathbb{C} \setminus \mathbb{Z}) \cup \{0, 2, 4, \ldots \} \), with simple poles at \(\lambda = m, \ m \in \{-n - 1, -n - 3, -n - 5, \ldots \} \cup \{-1, -2, \ldots, 1 - n\} \cup \{1, 3, 5, \ldots \} \), the residues at these poles being

\[
(5.5) \quad \text{Res}_{\lambda=m} \mathcal{P}f_W(s^\lambda) = -C\delta_{\infty}^{[-n-m]}(u),
\]

and double poles at \(\lambda = m, \ m = -n - 2q \in \{-n, -n - 2, -n - 4, \ldots \} \) with singular part

\[
(5.6) \quad \frac{C\delta_{\infty}^{[2q]}(u)}{(\lambda - m)^2} + \frac{c_{q,n} \nabla^{2q} \delta(u)}{(2q)! (\lambda - m)}. \]

The finite part of \(\mathcal{P}f_W(s^\lambda) \) at any pole \(\lambda = m \) is precisely \(\mathcal{P}f_W(s_m) \).

\(^{11}\)Clearly the finite part at infinity does \textit{not exist} for all \(g \in \mathcal{S}'(\mathbb{R}^n) \).
Many of the constructions that we have discussed can also be done in the space \mathcal{W}_pre'. Notice, however, that several distributions of \mathcal{W}_pre' could vanish in \mathcal{W} so that their projection to \mathcal{W}' could be zero. For instance, the plain thick delta $\delta^{[0]}_{0\infty}$ is not zero in \mathcal{W}_pre' but it is zero in \mathcal{W}'. If one considers the finite part $\mathcal{P}_f\mathcal{W}_\text{pre}'(s^k)$ then it would not be analytic at $\lambda = 0, 2, 4, \ldots$; for instance, it has a simple pole at $\lambda = 0$ with residue $-C\delta^{[0]}_{0\infty}$.

One of the consequences of the fact that \mathcal{W}' is a space over the compact space \mathbb{R}^n_+ is that several of the usual operations on sl—thick distributions could have additional terms at infinity. This is the case for the linear changes of variables and for the multiplications by polynomials. Curiously, however, derivatives in \mathcal{W}' can be defined in the standard way by duality, since the derivative operators send \mathcal{W} to \mathcal{W},

\begin{align}
\langle \nabla_j (F), \Phi \rangle = - \langle F, \nabla_j (\Phi) \rangle, \quad F \in \mathcal{W}', \Phi \in \mathcal{W}.
\end{align}

5.1. **Linear changes of variables in \mathcal{W}'.** Let A be a non-singular $n \times n$ matrix. If $\Phi \in \mathcal{W}$ then the function Φ_A given by $\Phi_A(u) = \Phi(Au)$ does not belong to \mathcal{W}, in general, but it belongs to \mathcal{W}_pre'. Therefore we define the function of \mathcal{W} obtained by the change of variables, $\tau^\mathcal{W}_A(\Phi)$ as

\begin{align}
\tau^\mathcal{W}_A(\Phi) = \Pi_{\mathcal{W}_\text{pre}}^{\mathcal{W}}(\Phi_A).
\end{align}

We can then define the change of variables in sl—thick distributions by duality.

Definition 5.3. Let A be a non-singular $n \times n$ matrix. If $F \in \mathcal{W}'$ then the distribution $\tau^\mathcal{W}_A(F)$, the sl—thick version of $F(Au)$, is defined as

\begin{align}
\left\langle \tau^\mathcal{W}_A(F), \Phi \right\rangle = \frac{1}{|\det(A)|} \left\langle F, \tau^\mathcal{W}_{A^{-1}}(\Phi) \right\rangle.
\end{align}

It is important to observe that if $F \in \mathcal{K}'(\mathbb{R}^n)$ then it has a canonical extension to $\mathcal{W}'(\mathbb{R}^n)$, and the restriction of $\tau^\mathcal{W}_A(F)(x)$ to \mathbb{R}^n is precisely $F(Ax)$ but in general $\tau^\mathcal{W}_A(F)(x)$ is not the canonical extension of $F(Ax)$. A simple example is provided by the delta function at the origin, $\delta(x)$, and the change $A = tI$ for $t \neq 0$. We have $\delta(tx) = |t|^{-n} \delta(x)$, of course, but

\begin{align}
\tau^\mathcal{W}_{tt}(\delta)(x) = |t|^{-n} \delta(x) - |t|^{-n} \ln t \delta^{[0]}_{0\infty}(x).
\end{align}

Interestingly, if A is an orthogonal matrix, in particular if it is a rotation, and $F \in \mathcal{K}'(\mathbb{R}^n)$ then the canonical extension of $F(Ax)$ is precisely $\tau^\mathcal{W}_A(F)(x)$. Therefore we give the following definitions.

Definition 5.4. A sl—thick distribution $F \in \mathcal{W}'$ is called radial if $\tau^\mathcal{W}_A(F) = F$ for all orthogonal matrices A. We say that F is homogeneous of order λ if

\begin{align}
\tau^\mathcal{W}_{tt}(F)(x) = t^\lambda F(x), \quad t > 0.
\end{align}

Notice that a distribution $F \in \mathcal{K}'(\mathbb{R}^n)$ is radial if and only if its canonical extension is, but (5.10) shows that a corresponding result does not hold for homogeneous distributions.

On the other hand, a distribution of the form $G(v) \delta^{[q]}_{q\infty}$ is radial if and only if G is constant, where we observe that the plain thick delta at infinity $\delta^{[q]}_{\infty}$ is a non zero sl—thick distribution for $q \neq 0, 2, 4, \ldots$ and $q \neq -n, -n-2, -n-4, \ldots$. Furthermore, since the plain thick logarithmic deltas at infinity $\delta^{[4]}_{\infty,\infty}, \delta^{[3]}_{\infty,\infty}, \delta^{[5]}_{\infty,\infty}, \ldots$ vanish, the distributions $c\delta^{[q]}_{q\infty}$ for $q = 0, 2, 4, \ldots$ and c constant are the radial distributions of the form $G(v) \delta^{[q]}_{q\infty}$.
It is useful to know the sl–thick radial homogeneous distributions.

Proposition 5.5. Let $\lambda \in \mathbb{C}$. Then the set of sl–thick radial homogeneous distributions of order λ form a vector space of dimension 1, generated by the distribution

\[
\mathcal{P} f_{\mathcal{W}} (s^1) \quad \text{for } \lambda \in (\mathbb{C} \setminus \mathbb{Z}) \cup \{0, 2, 4, \ldots \},
\]

\[
\delta_{[n-m]}^{[-n-m]} \quad \text{for } \lambda = m,
\]

\[
m \in \{-n-1, -n-3, -n-5, \ldots\} \cup \{1, 2, \ldots, n-1\} \cup \{1, 3, 5, \ldots\},
\]

\[
\delta_{[n-m]}^{[-n-m]} \quad \text{for } \lambda = m, \quad m \in \{-n, -n-2, -n-4, \ldots\}.
\]

5.1.1. **Multiplication by polynomials in \mathcal{W}'.** In general if $\Phi \in \mathcal{W}$ then $u_j \Phi (u)$ is in \mathcal{W}_{pre} but it does not belong to \mathcal{W}. Therefore we define the multiplication operator

\[
M_{u_j}^\mathcal{W} : \mathcal{W} \rightarrow \mathcal{W}, \quad M_{u_j} (\Phi) = \Pi_{\mathcal{W}_{\text{pre}},\mathcal{W}} (u_j \Phi),
\]

and by duality the operator $M_{u_j}^\mathcal{W} : \mathcal{W}' \rightarrow \mathcal{W}'$ as

\[
\left\langle M_{u_j}^\mathcal{W} (F), \Phi \right\rangle = \left\langle F, M_{u_j} (\Phi) \right\rangle.
\]

The multiplication operators $M_{u_j}^\mathcal{W}$ and $M_{p}^\mathcal{W}$, where p is a polynomial, can be defined in a similar way.

Example 5.6. Sometimes $M_{u_j}^\mathcal{W} (F)$ resembles a standard multiplication, as in the product formula

\[
M_{u_j}^\mathcal{W} (\mathcal{P} f_{\mathcal{W}} (s^1)) = \mathcal{P} f_{\mathcal{W}} (u_j s^1),
\]

but sometimes extra terms at infinity appear, as in the formula

\[
M_{u_j}^\mathcal{W} (\delta (u)) = -\omega_j \delta_{[-1]}^{|\cdot|} (u).
\]

6. **The Fourier transform of thick distributions**

The Fourier transform of thick tempered distributions $f \in \mathcal{S}_t^\prime (\mathbb{R}^n), \mathcal{F}_s (f) \in \mathcal{W}' (\mathbb{R}^n)$ can now be defined in the usual way,

\[
\left\langle \mathcal{F}_s \{ f (x) ; u \}, \Phi (u) \right\rangle = \left\langle f (x), \mathcal{F}_t^* \{ \Phi (u) ; x \} \right\rangle, \quad \Phi \in \mathcal{W} (\mathbb{R}^n).
\]

Similarly, the Fourier transform of distributions $G \in \mathcal{W}' (\mathbb{R}^n), \mathcal{F}_s^* (G) \in \mathcal{S}_t' (\mathbb{R}^n)$ is defined as

\[
\left\langle \mathcal{F}_s^* \{ G (u) ; x \}, \phi (x) \right\rangle = \left\langle G (u), \mathcal{F}_{s,t}^* \{ \phi (x) ; u \} \right\rangle, \quad \phi \in \mathcal{S}_s (\mathbb{R}^n).
\]

Theorem 6.1. The thick Fourier transform \mathcal{F}_s is a topological isomorphism of $\mathcal{S}_t' (\mathbb{R}^n)$ onto $\mathcal{W}' (\mathbb{R}^n)$. The thick Fourier transform \mathcal{F}_s^* is a topological isomorphism of $\mathcal{W}' (\mathbb{R}^n)$ onto $\mathcal{S}_t' (\mathbb{R}^n)$.

The properties of the Fourier transform of thick distributions are similar to those of the transform in $\mathcal{S}_t' (\mathbb{R}^n)$ but one must remember that the operations in $\mathcal{W}' (\mathbb{R}^n)$ may or may not be the standard ones. We have,

\[
\mathcal{F}_s \{ f (A x) ; u \} = \frac{1}{|\det A|} \mathcal{T}_{A^{-1}} f_{\mathcal{W}} (f (x) ; u),
\]
for A a non-singular matrix, and in particular, if $t \neq 0$

$$\mathcal{F}_* \{ f (tx); u \} = t^{-n} t_{-t}^{\mathcal{W}_t} (\mathcal{F}_* \{ f (x); u \}) .$$

It follows that \mathcal{F}_* and \mathcal{F}^* send radial thick distributions to radial thick distributions, and homogeneous distributions of degree λ to homogeneous distributions of degree $-n - \lambda$. We also have the usual interchange of multiplication and differentiation,

$$\mathcal{F}_* \{ x_j f (x); u \} = -i \nabla_{u_j} \mathcal{F}_* \{ f (x); u \} ,$$

$$\mathcal{F}_* \{ \nabla_x f (x); u \} = -i M_{u_j}^W \mathcal{F}_* \{ f (x); u \} ,$$

where the modified multiplication operator $M_{u_j}^W$ is given by (5.10). The formulas for the inverse transforms are a variant of the usual ones,

$$\mathcal{F}^{-1} (\mathcal{F}^*) \{ f (x); u \} = \frac{1}{(2\pi)^n} \mathcal{F}_* \{ f (x); -u \} ,$$

$$\mathcal{F}^{-1} (\mathcal{F}_*) \{ F (u); x \} = \frac{1}{(2\pi)^n} \mathcal{F}^* \{ F (u); -x \} .$$

Another important property is that the Fourier transforms \mathcal{F}_* or \mathcal{F}^* of extensions of distributions of $\mathcal{S}' (\mathbb{R}^n)$ to $\mathcal{S}' (\mathbb{R}^n)$ or $\mathcal{W}' (\mathbb{R}^n)$ are extensions of the Fourier transform, that is

$$\Pi_{\mathcal{W}'} \mathcal{F}_* \{ f (x); u \} = \mathcal{F} \{ \Pi_{\mathcal{S}'} f (x); u \} ,$$

$$\Pi_{\mathcal{S}'} \mathcal{F}^* \{ F (u); x \} = \mathcal{F} \{ \Pi_{\mathcal{W}'} F (u); x \} .$$

We are now ready to give the Fourier transform of several thick distributions.

Example 6.2. Let us compute the Fourier transform $\mathcal{F}_* \{ \delta^0_* (x); u \}$ of the plain thick delta function. Since $\delta^0_* (x)$ is radial and homogenous of degree $-n$, its transform is radial and homogeneous of degree 0. Also, the projection of $\delta^0_* (x)$ onto \mathcal{S}' is the standard delta function $\delta (x)$, whose transform is the constant function 1. From the Proposition 5.3 it follows that the only radial, homogeneous of degree 0 sl-thick distribution whose projection to \mathcal{S}' is the constant distribution 1 is precisely $\mathcal{P}_W (1)$. Hence

$$\mathcal{F}_* \{ \delta^0_* (x); u \} = \mathcal{P}_W (1) .$$

A similar argument yields

$$\mathcal{F}_* \{ \delta^{2m}_* (x); u \} = (-1)^m \Gamma (m + 1/2) \Gamma (n/2) \frac{\Gamma (m + n/2) \Gamma (1/2) (2m)!}{\Gamma (m + n/2) \Gamma (1/2) (2m)!} \mathcal{P}_W (s^{2m}) ,$$

and by inversion,

$$\mathcal{F}^* \{ \mathcal{P}_W (s^{2m}); x \} = (-1)^m \Gamma (m + n/2) \Gamma (1/2) (2m)! \frac{\Gamma (m + n/2) \Gamma (n/2)}{(2\pi)^n} \delta^{2m}_* (x) .$$

Example 6.3. The ensuing formulas, reminiscent of (3.1), also follow along the same lines,

$$\mathcal{F}_* \{ \mathcal{P} f (r^\lambda); u \} = \frac{\pi^{n/2} 2^{2\lambda + n} \Gamma (\lambda + n)}{\Gamma (\lambda)} \mathcal{P}_W (s^{\lambda - n}) ,$$

$$\mathcal{F}^* \{ \mathcal{P} f (r^\lambda); x \} = (-1)^m \Gamma (m + n/2) \Gamma (1/2) (2m)! \frac{\Gamma (m + n/2) \Gamma (n/2)}{(2\pi)^n} \delta^{2m}_* (x) .$$
\[(6.15) \quad \mathcal{F}^* \{ \mathcal{P} f_W (s^\lambda) ; x \} = \frac{\pi^{n/2} \lambda^{n+\Gamma} \left(\lambda+n \right)}{\Gamma \left(-\lambda \right)} \mathcal{P} f (r^{-\lambda-n}) , \]

whenever \(\lambda \in \mathbb{C} \setminus \mathbb{Z} \). Interestingly, \(\mathcal{P} f_W (s^\lambda) \) is analytic at \(0, 2, 4, \ldots \) so that \((6.13) \) can be recovered by taking the limit as \(\lambda \to 2m \) in the right side of \((6.15) \).

Example 6.4. Formulas \((6.14) \) and \((6.15) \) are equalities of meromorphic functions and thus by considering the residues, finite parts, or singular parts at the poles of both sides we obtain the Fourier transform of several thick distributions. Let start with \(m \in \{ -n-1, -n-3, -n-5, \ldots \} \cup \{ -1, -2, \ldots, 1-n \} \cup \{ 1, 3, 5, \ldots \} \), so that \(\lambda = m \) is a simple pole of the function in \((6.15) \). From the Lemma 5.2 the residue of the left side is

\[\mathcal{F}^* \left\{ -C \delta_\infty^{[-n-m]} (u) ; x \right\} , \]

while if we recall [36, (4.13)] that \(\text{Res}_{\mu = k} \mathcal{P} f (r^\mu) = C \delta_{[\mu-k]}^n (x) \), we obtain the residue of the right side as \(Cg (m) \delta_{[m]}^n (x) \) where

\[(6.16) \quad g (\lambda) = \frac{\pi^{n/2} \lambda^{n+\Gamma} \left(\lambda+n \right)}{\Gamma \left(-\lambda \right)} . \]

Therefore
\[(6.17) \quad \mathcal{F}^* \{ \delta_\infty^{[-n-m]} (u) ; x \} = -g (m) \delta_{[m]}^n (x) , \]

and by inversion,
\[(6.18) \quad \mathcal{F}_* \{ \delta_{[m]}^n (x) ; u \} = -g (-n-m) \delta_\infty^{[-n-m]} (u) , \]

since \(g (m) g (-n-m) = (2\pi)^n \). Similarly, consideration of the finite parts of both sides of \((6.15) \) yields
\[(6.19) \quad \mathcal{F}^* \{ \mathcal{P} f_W (s^m) ; x \} = g (m) \{ \mathcal{P} f (r^{-m-n}) + \chi_m \delta_{[m]}^n (x) \} , \]

and
\[(6.20) \quad \mathcal{F}_* \{ \mathcal{P} f (r^{-m-n}) ; u \} = g (-n-m) \{ \mathcal{P} f_W (s^m) + \chi_{-m-n} \delta_\infty^{[-n-m]} (u) \} , \]

where
\[(6.21) \quad \chi_m = \chi_{m-n} = \frac{C}{2} \left[2 \ln 2 + \psi \left(\frac{m+n+1}{2} \right) + \psi \left(\frac{-m+1}{2} \right) \right] . \]

Studying the coefficients of order \(-2\) at the poles of order \(2 \), \(m = -n-2q \) for \(q \in \mathbb{N} \) gives
\[(6.22) \quad \mathcal{F}^* \{ \delta_{[2q]}^{[2q]} (u) ; x \} = \frac{(-1)^n 2^{1-2q} \pi^{n/2}}{q! \Gamma \left(\frac{n+2q}{2} \right)} \delta_{[n-2q]}^{[n-2q]} (x) , \]

and
\[(6.23) \quad \mathcal{F}_* \{ \delta_{[n-2q]}^{[n-2q]} (x) ; u \} = \frac{(-1)^n 2^n 2^{n+2q-1} \pi^{n/2} q! \Gamma \left(\frac{n+2q}{2} \right)}{2} \delta_{[n,\infty]}^{[2q]} (u) . \]

We have considered the transform of plain thick deltas so far, now we compute the Fourier transform of general thick deltas.

Example 6.5. Let \(\phi \in \mathcal{S}_* \), with expansion \(\sum_{j=m}^{\infty} a_j r^j \) at zero and let \(\Phi = \mathcal{F}_{*,t} (\phi) \in \mathcal{W} \), with expansion \(\sum_{q=0}^{n-m} \{ A_q (v) + P_q (v) \ln s \} s^q + \sum_{q=1}^{\infty} A_{-q} (v) s^{-q} \) at infinity. Then \(A_q = \delta_{[q]}^n (a_{-n-q}) \), therefore if \(G \in \mathcal{D}'_q \) then
\[\langle G \delta_{\infty}^{[q]}, \Phi \rangle = \frac{1}{C} \langle G, A_q \rangle = \frac{1}{C} \langle G, \delta_{[q]}^n (a_{-n-q}) \rangle = \frac{1}{C} \langle \delta_{[q]}^n (G), a_{-n-q} \rangle = \langle \delta_{[q]}^n (G), \delta_{[n-q]}^{[-n-q]} (\phi) \rangle , \]
or
\begin{equation}
\mathcal{F}^* \left\{ G(v) \delta_\infty^{[q]}(u) ; x \right\} = \mathcal{R}_q \left\{ G(v) ; w \right\} \delta_s^{[-n-q]}(x),
\end{equation}
giving the transform of all thick deltas at infinity $G\delta_\infty^{[q]}$, for arbitrary $q \in \mathbb{Z}$, since G needs to be \mathcal{D}'_q. Similarly, for $q \in \mathbb{N}$
\begin{equation}
\mathcal{F}^* \left\{ H(v) \delta_\infty^{[q]}(u) ; x \right\} = \mathcal{L}_q \left\{ H(v) ; w \right\} \delta_s^{[-n-q]}(x).
\end{equation}

Example 6.6. We now consider the transform of the general thick deltas $f(w) \delta_s^{[m]}(x)$. Let $m = -n - q$. Different formulas arise depending on m and q. If $1 - n \leq m, q \leq -1$ then $\mathcal{D}' = \mathcal{D}'_m = \mathcal{D}'$ so that inversion of (6.24), remembering (3.12), gives
\begin{equation}
\mathcal{F}^* \left\{ f(w) \delta_s^{[m]}(x) ; u \right\} = \mathcal{R}_m \left\{ f(w) ; v \right\} \delta_s^{[-n-m]}(u).
\end{equation}
If $m \geq 0$, that is $q \leq -n$, we decompose $f \in \mathcal{D}'(S)$ as $f = p_m + f_m$ where $f_m \in \mathcal{D}'_q = \mathcal{D}'_m$ and $p_m \in \mathcal{P}_m$. We now notice that $\mathcal{F}^* (p \delta_s^{[m]})$ is the finite part regularization $\mathcal{P}_f \mathcal{W} (P_m(u))$ of a homogeneous polynomial of degree m, namely $P_m = \mathcal{F} \left(\Pi_{S',S^T} (f \delta_s^{[m]}) \right)$, obtaining
\begin{equation}
\mathcal{F}^* \left\{ f(w) \delta_s^{[m]}(x) ; u \right\} = \mathcal{P}_f \mathcal{W} (P_m(u)) + \mathcal{R}_m \left\{ f_m(w) ; v \right\} \delta_s^{[-n-m]}(u).
\end{equation}
In particular, when $m = 0$, since $\mathcal{F}^* (\delta_s^{[0]}) = \mathcal{P}_f \mathcal{W} (1)$, we obtain
\begin{equation}
\mathcal{F}^* \left\{ f(w) \delta_s^{[0]}(x) ; u \right\} = MP \mathcal{W} (1) + \mathcal{R}_0 \left\{ f(w) ; v \right\} \delta_s^{[-n]}(u),
\end{equation}
where M is the constant $M = (1/C) \langle f(w), 1 \rangle$.

Finally, if $m \leq -n$, i.e. $q \geq 0$, the decomposition $f = p_m + f_m$ where $f_m \in \mathcal{D}'_q = \mathcal{D}'_m$ and $p_m \in \mathcal{P}_{-n-m} = \mathcal{P}_q$ yields
\begin{equation}
\mathcal{F}^* \left\{ f(w) \delta_s^{[m]}(x) ; u \right\} = (2\pi)^n L_{-n-m} \left\{ p_m(w) ; -v \right\} \delta_s^{[-n-m]}(u)
+ \mathcal{R}_m \left\{ f_m(w) ; v \right\} \delta_s^{[-n-m]}(u).
\end{equation}

We will consider the thick Fourier transform of several other distributions in forthcoming papers.

Appendix A. Guide to notation

Constants
- $c_{n,m}$, equation (2.11)
- C, surface area of the unit sphere, equation (2.1)

Spaces
- $\mathcal{D}_{s,a}(\mathbb{R}^n)$, $\mathcal{D}_s(\mathbb{R}^n)$, paragraph before Definition 2.1
- $\mathcal{D}'_{s,a}(\mathbb{R}^n)$, $\mathcal{D}'_s(\mathbb{R}^n)$, Definition 2.1
- $\mathcal{A}_{s,a}(\mathbb{R}^n)$, in particular $\mathcal{S}_{s,a}(\mathbb{R}^n)$, Definition 2.2
- $\mathcal{A}'_{s,a}(\mathbb{R}^n)$, in particular $\mathcal{S}'_{s,a}(\mathbb{R}^n)$, Definition 2.2
- X_q, in particular \mathcal{D}_q and \mathcal{D}'_q, Subsection 3.2
- \mathcal{P}_q, polynomials of degree q on the sphere, Subsection 3.2
- $\mathcal{S}_{s,reg}(\mathbb{R}^n)$, paragraph after equation (4.1)
- $\mathcal{W}_{pre}(\mathbb{R}^n)$, Definition 4.1
- $\mathcal{W}(\mathbb{R}^n)$, Definition 4.5

Operators
\[K_\beta \{a(w); v\} = \langle K_\beta (w, v), a(w) \rangle_w, \]
\[L_q \{a(w); v\} = \langle L_q (w, v), a(w) \rangle_w, \]
\[\delta_q \{a(w); v\}, \]
Subsection 3.2

ordinary part, Subsection 4.1

polynomial part, Subsection 4.1

polynomial free part, Subsection 4.1

\[F^* \{f(x); u\}, \text{ Fourier transform of thick distributions,} \]
\[F^* \{g(z); x\} = P f(g), \]
Definition 2.4

\[G(v) \delta^{[q]}_{in,\infty}, \]
Definition 5.1

\[H(v) \delta^{[q]}_{\infty}, \]
Definition 5.1

\[Pf_{W}(g), \]
paragraph after Definition 5.1

Distributions

\[g(w) \delta^{[q]}_{\infty}(x-a), \]
equation (2.3)

\[Pf \{g(z); x\} = Pf(g), \]
Definition 2.4

\[G(v) \delta^{[q]}_{\infty}, \]
Definition 5.1

\[H(v) \delta^{[q]}_{\infty}, \]
Definition 5.1

\[Pf_{W}(g), \]
paragraph after Definition 5.1

References

[1] Axler, S., Bourdon, P., and Ramey, W., *Harmonic Function Theory*, second edition, Springer, New York, 2001.

[2] Blanchet, L. and Faye, G., Hadamard regularization, *J. Math. Phys.* 41 (2000), 7675–7714.

[3] Blanchet, L., Faye, G., and Nissanke, S., Structure of the post-Newtonian expansion in general relativity, *Phys. Rev. D.* 72 (2005), 044024, 10pp.

[4] Blinder, S. M., Delta functions in spherical coordinates and how to avoid losing them: Fields of point charges and dipoles, *Amer. J. Phys.* 62 (1994), 511–515.

[5] Bondurant, J. D. and Fulling, S. A., The Dirichlet-to-Robin transform, *J. Phys. A* 8 (2005), 1505–1532.

[6] Bowen, J. M., Delta function terms arising from classical point-source fields, *Amer. J. Phys.* 62 (1994), 511–515.

[7] Estrada, R., The non-existence of regularization operators, *J. Math. Anal. Appl.* 286 (2003), 1–10.

[8] Estrada, R., Regularization and derivatives of multipole potentials, *J. Math. Anal. Appl.* 446 (2017), 770–785.

[9] Estrada, R., The Funk-Hecke formula, harmonic polynomials, and derivatives of radial distributions, *Bol. Soc. Parana. Mat.* 37 (2019), 143–157.

[10] Estrada, R., Products of harmonic polynomials and delta functions, *Advances in Analysis* 3 (2018), 23–27.

[11] Estrada, R., Changes of variables in hypersingular integrals, *Indian J. Math.* 60 (2018), 23–36.

[12] Estrada, R. and Fulling, S. A., Spaces of test functions and distributions in spaces with thick points, *Int. J. Appl. Math. Stat.* 10 (2007), 25–37.

[13] Estrada, R. and Kanwal, R. P., Regularization, pseudofunction, and Hadamard finite part, *J. Math. Anal. Appl.* 141 (1989), 195–207.

[14] Estrada, R. and Kanwal, R. P., *A Distributional Approach to Asymptotics. Theory and Applications*, second edition, Birkhäuser, Boston, 2002.

[15] Farassat, F., *Introduction to generalized functions with applications in aerodynamics and aeroacoustics*, NASA Technical Paper 3248 (Hampton, VA: NASA Langley Research Center) (1996); http://ntrs.nasa.gov.

[16] Frahm, C. P., Some novel delta-function identities, *Am. J. Phys.* 51 (1983), 826–829.
[17] Franklin, J., Comment on ‘Some novel delta-function identities’ by Charles P Frahm (Am. J. Phys 51 826–9 (1983)), Am. J. Phys. 78 (2010), 1225–1226.
[18] Funk, P., Beiträge zur Theorie der Kugelfunktionen, Math. Ann. 77 (1916), 136–152.
[19] Hadamard, J., Lectures on Cauchy’s Problem in Linear Differential Equations, Dover, New York, 1952 (reprint of the 1923 edition by Yale University Press).
[20] Hecke, E., Über orthogonal-invariante Integralgleichungen, Math. Ann. 78 (1918), 398–404.
[21] Horváth, J., Topological Vector Spaces and Distributions, vol.I., Addison-Wesley, Reading, Massachusetts, 1966.
[22] Kanwal, R. P., Generalized Functions: Theory and Technique, Third Edition, Birkhäuser, Boston, 2004.
[23] Lebedev, N. N., Special Functions and their Applications, Dover, New York, 1972.
[24] Nikolov, N. M., Stora, R., and Todorov, I., Renormalization of massless Feynman amplitudes in configuration space, Rev. Math. Phys. 26 (2014), 143002.
[25] E. Parker, An apparent paradox concerning the field of an ideal dipole, European J. Physics 38 (2017), 025205 (9 pp).
[26] Paskusz, G. F., Comments on “Transient analysis of energy equation of dynamical systems”, IEEE Trans. Edu. 43 (2000), 242.
[27] Rubin, B., Introduction to Radon Transforms (with Elements of Fractional Calculus and Harmonic Analysis), Cambridge University Press, Cambridge, 2015.
[28] Samko, S. G., On the Fourier transform of the functions $Y_m(\frac{x}{|x|^{n+\alpha}})$, Soviet Math. 22 (1978), 60–64.
[29] Schwartz, L., Théorie des Distributions, second edition, Hermann, Paris, 1966.
[30] Sellier, A., Asymptotic expansion of a class of multi-dimensional integrals, Canad. J. Math. 48 (1996), 1079–1090.
[31] Sellier, A., Hadamard’s finite part concept in dimensions $n \geq 2$. Definition and change of variables, associated Fubini’s theorem, derivation, Math. Proc. Cambridge Philos. Soc. 122 (1997), 131–148.
[32] Trèves, F., Topological Vector Spaces, Distributions, and Kernels, Academic Press, New York, 1967.
[33] Várilly, J. C. and Gracia-Bondía, J. M., Stora’s fine notion of divergent amplitudes, Nucl. Phys. B 912 (2016), 28–37.
[34] Vibet, C., Transient analysis of energy equation of dynamical systems, IEEE Trans. Edu. 42 (1999), 217–219.
[35] Yang, Y. and Estrada, R., Regularization using different surfaces and the second order derivatives of $1/r$, Appl. Anal. 92 (2013), 246–258.
[36] Yang, Y. and Estrada, R., Distributions in spaces with thick points, J. Math. Anal. Appl. 401 (2013), 821–835.
[37] Yang, Y. and Estrada, R., Extension of Frahm formulas for $\partial_i \partial_j (1/r)$, Indian J. Math. 55 (2013), 1–9.
[38] Yang, Y. and Estrada, R., Applications of the thick distributional calculus, Novi Sad Journal of Mathematics 44 (2014), 121–135.
[39] Yang, Y. and Estrada, R., Asymptotic expansion of thick distributions, Asymptot. Anal. 95 (2015), 1–19.
[40] Zemanian, A. H., Generalized Integral Transforms, Interscience, New York, 1965.

R. ESTRADA, DEPARTMENT OF MATHEMATICS, LOUISIANA STATE UNIVERSITY, BATON ROUGE, LA 70803, U.S.A.
E-mail address: restrada@math.lsu.edu

J. VINDAS, DEPARTMENT OF MATHEMATICS: ANALYSIS, LOGIC AND DISCRETE MATHEMATICS, GENT UNIVERSITY, KRIJGSLAAN 281, BUILDING S8, B 9000 GHENT, BELGIUM
E-mail address: jasson.vindas@ugent.be

Y. YANG, SCHOOL OF MATHEMATICS, HEFEI UNIVERSITY OF TECHNOLOGY, HEFEI 230009, CHINA
E-mail address: yangyunyun@hfut.edu.cn