Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Evolutionary analysis of patient’s morbidity and mortality in emergency surgical care during the pandemic: Retrospective comparison between first and second waves of COVID-19

Carlos Bustamante Recuenco, Esther María Cano Pecharromán, Gloria María Mendoza Esparrell, Mahur Esmaillii Ramos, Javier Broekhuizen Benítez, Leticia Martín Paniagua, A. Teresa Calderón Duque, Tomás Balsa Marín

PII: S2173-5077(22)00382-9
DOI: https://doi.org/10.1016/j.cireng.2022.10.007
Reference: CIRENG 2802
To appear in: Cirugía Española (English Edition)

Received Date: 7 March 2022
Accepted Date: 9 August 2022

Please cite this article as: [doi: https://doi.org/]

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier.
Análisis evolutivo de morbimortalidad en cirugía de urgencias durante la pandemia: comparación retrospectiva entre primera y segunda ola de COVID-19.

Evolutionary analysis of patient morbidity and mortality in emergency surgical care during the pandemic: a retrospective comparison of the first and second waves of COVID-19

Authors:

1. Bustamante Recuenco, Carlos (corresponding author), MD, PhD
2. Cano Pecharromán, Esther María, MD
3. Mendoza Esparrell, Gloria María, MD
4. Esmaillii Ramos, Mahur, MD
5. Broekhuizen Benítez, Javier, MD
6. Martín Paniagua, Leticia MD
7. Calderón Duque, A. Teresa, MD, PhD
8. Balsa Marín, Tomás, MD, PhD

Institution:

1- FEA Cirugía General y del Aparato digestivo, Hospital Nuestra Señora del Prado (CTRA. MADRID, Av. Extremadura, KM 114, 45600 Talavera de la Reina, Toledo)
Dirección e-mail: carlosb121990@gmail.com

2- Residente Cirugía General y del Aparato digestivo, Hospital Nuestra Señora del Prado (CTRA. MADRID, Av. Extremadura, KM 114, 45600 Talavera de la Reina, Toledo)
Dirección e-mail: esthermcpm@gmail.com

3- FEA Cirugía General y del Aparato digestivo, Hospital Nuestra Señora del Prado (CTRA. MADRID, Av. Extremadura, KM 114, 45600 Talavera de la Reina, Toledo)
Dirección e-mail: gmndoza.esp@gmail.com

4- Residente Cirugía General y del Aparato digestivo, Hospital Nuestra Señora del Prado (CTRA. MADRID, Av. Extremadura, KM 114, 45600 Talavera de la Reina, Toledo)
Dirección e-mail: mahur.esmailli@gmail.com

5- Residente Cirugía General y del Aparato digestivo, Hospital Nuestra Señora del Prado (CTRA. MADRID, Av. Extremadura, KM 114, 45600 Talavera de la Reina, Toledo)
Dirección e-mail: drjavierbbenitez@gmail.com

6- Residente Cirugía General y del Aparato digestivo, Hospital Nuestra Señora del Prado (CTRA. MADRID, Av. Extremadura, KM 114, 45600 Talavera de la Reina, Toledo)
Dirección e-mail: lmartinp01@hotmail.com
Resumen

Introducción: Desde el comienzo de la pandemia, la morbilidad y mortalidad en la atención urgente al paciente quirúrgico ha sido objeto de estudio. Sin embargo, la mayoría de los estudios compararon dicha variable con la propia de la época pre-COVID, obviando la evolución de la misma durante la propia pandemia. Con el objetivo de analizar este posible cambio, realizamos un estudio comparativo de morbilidad y mortalidad en cirugía de urgencias entre la primera y segunda ola de la pandemia en nuestro centro.

Material y Métodos: Estudio retrospectivo longitudinal que incluyó a todos los pacientes mayores de 18 años ingresados y/o intervenidos quirúrgicamente de forma urgente en los dos períodos de máxima incidencia (PMI) de infección por COVID-19 (1ºPMI: 22/03/2020-31/05/2020; 2ºPMI: 26/08/2020-30/11/2020). Se analizó la incidencia de infección por SARS-CoV2, el tratamiento recibido, la morbilidad precoz y los posibles factores de riesgo de complicaciones.

Resultados: Se analizaron 173 pacientes (1ºPMI: 66; 2ºPMI: 107). La incidencia de COVID-19 fue mayor en el segundo periodo (14,95% vs. 4,54%). La infección por SARS-CoV-2 se asoció a una mayor tasa de complicaciones, sin embargo, no se observaron diferencias estadísticamente significativas en la morbilidad general (p=0,746) ni en la de los pacientes COVID positivos (p=0,582) entre ambos períodos. El tratamiento quirúrgico se asoció con una menor tasa de complicaciones tanto en la primera (p=0,006) como en la segunda ola (p=0,014). Dicho tratamiento quirúrgico fue más frecuente en el segundo PMI (70,1% vs 57,6%) aunque no se alcanzó la significación estadística al respecto de esta afirmación (p=0,065).
Conclusiones: No se observaron diferencias significativas en la morbimortalidad de los pacientes ingresados y/o intervenidos quirúrgicamente de urgencias en los dos períodos de máxima incidencia de SARS-CoV-2 en nuestro centro. El tratamiento quirúrgico se asoció con una menor morbimortalidad, siendo este más frecuente en el segundo PMI.

Palabras clave: SARS-CoV-2, COVID-19, cirugía de urgencias, morbimortalidad.

Abstract

Introduction: Since the beginning of the pandemic, morbidity and mortality in emergency care of surgical patients have been the subject of several studies. However, most of these have compared this variable with that of the pre-COVID period, ignoring its evolution during the pandemic itself. In order to analyze this possible change, we performed a comparative study of morbidity and mortality in emergency surgery between the first and second waves of the pandemic in our center.

Methods: Retrospective longitudinal study including all patients over the age of 18 admitted and/or operated in the emergency setting in the two maximum incidence periods (MIP) of COVID-19 infection (1\(^{st}\) MIP: 22/03/2020-31/05/2020; 2\(^{nd}\) MIP: 26/08/2020-30/11/2020). The incidence of SARS-CoV-2 infection, treatment received, early morbidity and mortality and possible risk factors for complications were analyzed.

Results: A total of 173 patients were analyzed (1\(^{st}\) MIP: 66; 2\(^{nd}\) MIP: 107). The incidence of COVID-19 was higher in the second period (14.95% vs. 4.54%). SARS-CoV-2 infection was associated with a higher rate of complications; however, no statistically significant differences were observed in morbimortality rate, either in the total sample ($P= .746$) or in patients with a positive COVID-19 test ($P= .582$) between both periods. Surgical treatment was found to be associated with a lower complication rate in both the first ($P=.006$) and second waves ($P=.014$), and it was more frequent in the second MIP (70.1% vs 57.6%), although statistical significance was not reached ($P=.065$).

Conclusions: No significant differences were observed in morbidity and mortality of patients admitted and/or operated in the emergency setting in the two periods of maximum incidence of SARS-CoV-2 at our center. Surgical treatment was associated with lower morbidity and mortality rates, and it was more frequent in the second MIP.

Keywords: SARS-CoV-2, COVID-19, emergency surgery, morbidity, mortality

Introduction

SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is an infectious agent of animal origin and is the seventh coronavirus described in our species.\(^1\) It is the cause of the disease known as COVID-19, whose symptoms are either mild or moderate in 80% of cases (fever, dry cough and asthenia). In its initial forms, it caused acute respiratory failure, metabolic acidosis, coagulopathy and multiple organ failure in 50%-60% of cases.\(^2\) Its rapid transmission through aerosols led to global expansion of the disease, and the World Health Organization (WHO) declared a pandemic in March 2020.\(^3\) Since then, we have had to make many changes to standard clinical practice. Without a doubt, healthcare systems around the globe have been negatively affected by the current pandemic.

Confronted by the propagation of COVID-19, Spanish hospitals were forced to reorganize themselves to respond to the demand for medical care, which increased dramatically at the onset of this new disease. Emergency surgery immediately underwent changes, as it was surgery that could not be delayed. The new situation led to the creation of protocols and recommendations by different organizations, such as the Spanish Association of Surgeons (Asociación Española de Cirujanos, AEC) or the World Society of Emergency Surgery (WSES),\(^4,5\) with the aim to unify and facilitate this transition. Although several articles have been published regarding the differences in morbidity and mortality in emergency surgery between the current era and the pre-COVID era,\(^6,8\) the evolution of that variable during the pandemic itself has been the subject of a much smaller study.
Therefore, we have decided to retrospectively compare morbidity and mortality rates between the 2 peak periods of maximum incidence of COVID-19 infection at our hospital, which is a level II public hospital with 330 hospitalization beds and 12 intensive care beds (ICU) that provides healthcare to a population of almost 200,000 inhabitants in a large, mainly rural region. Our secondary objectives were to analyze the percentage of surgical procedures performed in each period and to identify possible risk factors for morbidity and mortality.

Methods

Two maximum incidence periods (MIP) of COVID-19 cases were defined: the first period from March 22, 2020 – May 31, 2020 (70 days), and the second period from August 26, 2020 – November 30, 2020 (96 days) (Figure 1A and 1B). These periods were established based on the criteria defined in the documents published by the AEC. These documents establish 5 pandemic phases based on the percentage of beds occupied by COVID-positive patients and the impact on medical care. We used the cut-off point in phase II to define the time intervals because surgical activity was limited after that date. This phase is also defined by a COVID occupancy of 0%-25% of hospital and ICU beds.

For these 2 MIP, we retrospectively analyzed and compared all patients older than 18 years of age who were admitted by the general surgery department, regardless of the treatment performed. Likewise, admissions from other services that subsequently required specific urgent management (surgical or conservative) were also included. Patients with the following criteria were excluded: lack of data, incomplete follow-up, or hospitalization for the dignified death protocol. The following variables were analyzed and compared: age, sex, anesthetic risk (ASA), hypertension (HTN), diabetes mellitus (DM), dyslipidemia (DLP), lung disease, cardiac disease, kidney disease, immunosuppression status, screening for SARS-CoV-2 before admission, SARS-CoV-2 infection defined as positive in the reverse transcriptase-polymerase chain reaction (RT-PCR) test or appearance of symptoms during hospitalization or within the first 20 days after hospital discharge, surgical treatment, hospital stay, and early morbidity/mortality. The Clavien-Dindo (C-D) classification was applied to determine the severity of postoperative complications. Patient data were extracted from an internal surgery department database.

SARS-CoV-2 infection was determined by positive RT-PCR. In the absence of said test, the diagnosis was determined by the presence of symptoms or radiological signs on the computed tomography (CT) scan that were highly suggestive of infection and/or a positive IgM result in the serological tests for COVID-19. In case of discrepancy, priority was given to the result of the RT-PCR. Diagnostic and screening tests were requested based on the protocol of the center during both periods, which is shown in Figure 2.

This study was conducted in accordance with the STROBE recommendations and the principles of the Declaration of Helsinki. Approval was obtained from the Clinical Research Ethics Committee.

Statistical analysis:
Quantitative variables were expressed according to the mean and standard deviation if they followed normal distribution (Shapiro-Wilk or Kolmogorov-Smirnov test) or the median and interquartile range otherwise. As a hypothesis contrast test, the chi-square test was used for qualitative variables and the Student’s t test or Mann-Whitney U for quantitative variables according to compliance with the assumption of normality. The analysis of risk factors for morbidity and mortality was performed using multiple binary logistic regression, including those variables with $P<.020$ in the univariate analysis or those considered possible predictors theoretically. The data analysis was performed with the SPSS version 25.0® statistical program (IBM, SPSS Statistics for Windows, Version 25.0, Amonk, NY).

Results

As shown in Figure 1C, 66 patients were included in the first peak period and 107 in the second (total = 173). No significant differences were detected in age, sex or specific comorbidities (Table 1). A higher percentage of ASA I patients ($P=.019$) and a lower percentage of ASA II patients ($P=.028$) were detected in the second MIP, while the proportion of ASA III-IV cases was similar in both groups ($P=.875$). In the second wave, greater screening for SARS-CoV-2 infection was performed ($P=.020$) compared to the first, using more radiological and RT-PCR screening ($P<.001$).
Surgical treatment was 14% lower in the first wave (Table 2), although this difference did not reach statistical significance ($P=0.065$) and occurred due to a higher rate of interventions in cases of intestinal obstruction in the second wave (85% vs 67%; $P=0.102$). As shown in Figure 3, this difference was not observed in other pathologies. The laparoscopic approach was 8% higher in the second period ($P=0.348$).

No correlation was found between the MIP and general morbidity and mortality (1st MIP: 34.8%, 2nd MIP: 31.7%; $P=0.746$), and this result remained unchanged when the adverse events were classified according to the Clavien-Dindo scale. COVID-positive patients had high morbidity and mortality (52.6%), a datum that was similar in both periods. Specifically, in the second wave, a greater number of COVID-related pneumonias and respiratory failure (RF) were recorded, complications that were not detected in any cases of the first wave. In contrast, RF due to non-COVID causes was statistically significantly higher in the first period (7.6% vs 0%; $P=0.007$). Surgical complications were similar, as was hospital stay.

By applying the previously mentioned selection criteria, a multiple binary logistic regression model was obtained with 15 variables (Table 3). First, it was applied to the entire sample, and the MIP was included as an extra predictor variable, but no influence was detected on morbidity and mortality (OR: 0.857; 95% CI: 0.306-2.397; $P=0.768$) or on C-D III-IV complications (OR:0.578; 95% CI:0.086-3.886; $P=0.573$). The diagnosis of COVID was associated with a higher rate of C-D III-IV complications (OR: 7.559; 95% CI: 1.193-47.913; $P=0.032$), yet this relationship was lost when the sample was divided by MIP. Surgical treatment was associated with lower morbidity and mortality (1st MIP: $P=0.006$; 2nd MIP: $P=0.014$). Kidney disease and the existence of ≥ 2 comorbidities were associated with a higher rate of complications; however, in the case of this latter variable, the relationship was only detected in the first wave (OR: 2.173; 95% CI: 1.140-4.414; $P=0.018$).

Discussion

Several studies have compared morbidity and mortality in elective and emergency surgery during the pandemic versus the pre-COVID era. To date, the conclusions have been practically unanimous regarding higher morbidity and mortality. However, the possible change of this variable during successive waves has been the subject of less study. In this context, we believe that its analysis will allow conclusions to be drawn that, without intending to replace the current recommendations of scientific societies, could contribute to the improvement of urgent care.

The periods of our study were defined according to the AEC criteria, focusing on the repercussions of care on urgent surgical activity and creating 2 groups of patients treated under similar conditions, thereby reducing the periodicity bias of the target variable.

Series like Rosenthal et al have reported a lower incidence of surgical emergencies during the first wave, which has been easily attributable to the fear of infection when visiting medical centers. As reported in the study by Cano-Valderrama, it was mainly patients with comorbidities who made fewer visits to the emergency department. In our series, a lower incidence of surgical pathology was observed in the 1st MIP compared to the 2nd MIP (0.97 admissions/day vs 1.11 admissions/day; $P=0.179$); the lower comorbidity of the first wave was only reflected by a higher percentage of ASA-II patients, since the percentages of ASA I-II were similar (59.1% vs 57% 2nd MIP). The fact that it is not a comparison with the “pre-COVID” era, but instead a comparison between the first and second waves, justifies the smaller differences in these variables compared to those obtained in the aforementioned studies.

As seen in Figure 2, the screening protocol underwent certain changes between the 1st and 2nd MIP. COVID infection was defined in such a way that said definition was applicable in both periods, with the aim of reducing detection bias. The main difference in the screening protocol was the failure to perform RT-PCR on asymptomatic patients with negative serology in the first wave. The greater availability of this latter test in this period may explain why this decision was made, despite its lower reliability compared to RT-PCR. This fact explains the higher use of serological screening during the 1st MIP compared to the second, when the necessary RT-PCR tests were available. Accurate screening methods for SARS-CoV-2 infection facilitated epidemiological and therapeutic management, and this may also explain the higher percentage of surgical treatment of the 2nd MIP (70.1% vs 57%), which in turn reflects a situation closer to normal. However, the higher COVID occupancy of the ICU in the 1st MIP (Figure 1B) could have influenced the lower surgical treatment in that period; meanwhile, the ward occupancy was similar in both periods. The laparoscopic approach also increased in the 2nd MIP. The development of pneumoperitoneum evacuation methods and the
reduction of the initial controversy20 regarding the possible aerosolization of viral particles may explain this difference.21

When the surgical procedures were analyzed, we found 18% more interventions for partial or total intestinal obstruction in the 2nd MIP ($P=.102$). This may be explained by the fact that it is a pathology that can be treated with conservative management, and such management was used more extensively during the 1st MIP due to the excess patient load. No significant differences were observed in the remaining procedures.

In our study, the rate of C-D III-IV complications (7.6%) and mortality (6.1%) obtained in the 1st MIP were lower than those reported in the national series by Pérez Rubio et al2 (12% and 11%, respectively) and Maldonado-Marcos et al3 (21.7% and 6.5%). Being a level II hospital with a smaller population, as well as having a preparation period of 10-15 days between the involvement of these centers and ours, may explain this difference. Regarding COVID-positive patients, mortality and morbidity rates of 10.5% and 52.6%, respectively, were detected; these results are comparable to international series.22,23 Specifically, an absence of COVID-related respiratory complications was detected, together with 7.6% of non-COVID RF in the first wave, results that are opposite to those of the second period, which we feel reflect an underdiagnosis of the infection by SARS-CoV-2 in the 1st MIP. In the comparative analysis, no differences were detected in general morbidity and mortality between the two periods, despite the lower healthcare burden and the better epidemiological management of the second wave. In this context, the lower volume of surgical emergencies in the 1st MIP may explain this result.

The AEC recommendations for emergency care establish the need to maintain the indications for urgent surgery in the pandemic, introducing SARS-CoV-2 infection in the protocols, which are related to greater postoperative morbidity and mortality24-26 and the epidemiological scenario.5 This statement is based on the inherent benefit of surgery and COVID-positive patient series with acceptable postoperative results.27 In our series, although morbidity and mortality could be influenced by several factors, surgical treatment was associated with a lower rate of complications in both periods in the adjusted analysis, a fact that reinforces current recommendations.5 Also in line with the literature,26 the diagnosis of COVID infection led to a greater number of C-D III-IV events in our series, while the existence of 2 or more previous comorbidities was also associated with greater morbidity and mortality, but only in the 1st MIP.

Based on our results, the creation of a specific therapeutic algorithm that takes into account the healthcare scenario, as well as the diagnosis of COVID-19 and the number of patient comorbidities, is the first objective to improve urgent surgical care in the future.

Our research has the same limitations of any single-center retrospective study, such as selection bias and the lower external validity of our results. Furthermore, the limited sample size may have influenced the results of certain sub-analyses. Likewise, an information bias may have occurred due to the underdiagnosis of both the SARS-CoV-2 infection and surgical pathology due to the decrease in the number of urgent consultations17,18 in the first wave. The strengths of the study include the definition of periods using the AEC phase criteria, strict definition of the variables, analysis of the screening methods, and use of an adjusted analysis of morbidity and mortality to reduce the effect of possible confounding variables.

Based on our results, we conclude that there were no differences in the morbidity and mortality rates in emergency surgery between the first and second waves of the pandemic at our hospital. Surgical treatment was more frequent in the second wave and was statistically associated with lower morbidity and mortality, while COVID-19 infection, chronic kidney disease, and the existence of 2 or more comorbidities were associated with a higher rate of complications. In our opinion, it is necessary to plan and execute prospective studies with larger sample sizes to obtain more evidence and improve urgent surgical care.

\textbf{Funding}

This study has received no specific funding.
Conflict of interests

The authors confirm the absence of any conflict of interests with funding or academic organizations regarding the content of this manuscript.

References

Bibliography

1. Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019 Mar;17(3):181-192. doi: 10.1038/s41579-018-0118-9. PMID: 30531947; PMCID: PMC7097006.
2. Aranda-Narváez JM, Tallón-Aguilar L, Pareja-Ciuró F, Martín-Martín G, González-Sánchez AJ, Rey-Simó I, et al. Atención de la urgencia quirúrgica durante la pandemia COVID-19. Recomendaciones de la Asociación Española de Cirujanos. Cir Esp. octubre de 2020;98(8):433-41.
3. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020. http://dx.doi.org/10.1056/NEJMoa2002032.
4. Balibrea JMose, Badia JMose, Rubio Pérez I, Martín Antona E, Álvarez Peña E, García Botella S, et al. Manejo quirúrgico de pacientes con infección por COVID-19. Recomendaciones de la Asociación Española de Cirujanos. Cir Esp. mayo de 2020;98(5):251-9.
5. De Simone B, Chouillard E, Sartelli M, Biffl WL, Di Saverio S, Moore EE, et al. The management of surgical patients in the emergency setting during COVID-19 pandemic: the WSES position paper. World J Emerg Surg. diciembre de 2021;16(1):14.
6. Pérez-Rubio A, Sebastián Tomás JC, Navarro-Martínez S, González Guardiola P, Torrecillas Meroño DG, Domingo del Pozo C. Incidencia de la patología abdominal quirúrgica urgente durante la pandemia por SARS-CoV-2. Cir Esp. diciembre de 2020;98(9):618-24.
7. Álvarez Gallego M, Gortázar de las Casas S, Pascual Migueláñez I, Rubio-Pérez I, Barragán Serrano C, Álvarez Peña E, et al. Impacto de la pandemia por SARS-CoV-2 sobre la actividad y profesionales de un Servicio de Cirugía General y del Aparato Digestivo en un hospital terciario. Cir Esp. junio de 2020;98(6):320-7.
8. Di Martino M, García Septiern J, Maqueda González R, Muñoz de Nova JL, de la Hoz Rodríguez Á, Correa Botino A, et al. Cirugía electiva durante la pandemia por SARS-CoV-2 (COVID-19): análisis de morbimortalidad y recomendaciones sobre priorización de los pacientes y medidas de seguridad. Cir Esp. noviembre de 2020;98(9):525-32.
9. Maldonado-Marcos E, Caula-Freixa C, Planellas-Giné P, Rodríguez-Hermosa JI, López-Ben S, Delisau-Puig O, et al. Estudio del impacto de la pandemia por SARS-CoV-2 en la práctica quirúrgica urgente y electiva en un hospital de tercer nivel. Cir Esp. mayo de 2021;99(5):368-73.
10. Documentos de posicionamiento y recomendaciones de la AEC en relación con la cirugía y COVID-19 [aecirujanos.es [Internet]; [citado 31 de octubre de 2021]. Disponible en: https://www.aecirujanos.es/Documentos-de-posicionamiento-y-recomendaciones-de-la-AEC-en-relacion-con-la-cirugia-y-COVID19_es_116_508_0_345.html
11. Clavien PA, Sanabria JR, Strasberg SM. Proposed classification of complications of surgery with examples of utility in cholecystectomy. Surgery. mayo de 1992;111(5):518-26.
12. von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP, et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet Lond Engl. 20 de octubre de 2007;370(9596):1453-7.
13. World Medical Association declaration of Helsinki. Recommendations guiding physicians in biomedical research involving human subjects. JAMA. 19 de marzo de 1997;277(11):925-6.
14. Tarim IA, Derebey M, Özbalci GS, Özşay O, Yüksek MA, Büyükkakncak S, et al. The impact of the COVID-19 pandemic on emergency general surgery: a retrospective study. Sao Paulo Med J Rev Paul Med. febrero de 2021;139(1):53-7.
15. Aminian A, Safari S, Razeghian-Jahromi A, Ghorbani M, Delaney CP. COVID-19 Outbreak and Surgical Practice: Unexpected Fatality in Perioperative Period. Ann Surg. julio de 2020;272(1):e27-9.
16. Lei S, Jiang F, Su W, Chen C, Chen J, Mei W, et al. Clinical characteristics and outcomes of patients undergoing surgeries during the incubation period of COVID-19 infection. EClinicalMedicine. abril de 2020;21:100331.

17. Rosenthal, M. G. et al. Where Did All the Appendicitis Go? Impact of the COVID-19 Pandemic on Volume, Management, and Outcomes of Acute Appendicitis in a Nationwide, Multicenter Analysis. Ann Surg Open 2, e048 (2021).

18. Cano-Valderrama O, Morales X, Ferrigni CJ, Martín-Antona E, Turrado V, García A, Cuñarro-López Y, Zarain-Obrador L, Duran-Poveda M, Balibrea JM, Torres AJ. Acute Care Surgery during the COVID-19 pandemic in Spain: causes and complications. A multicentre retrospective cohort study. Int J Surg. 2020 Aug;80:157-161. doi: 10.1016/j.ijsu.2020.07.002. Epub 2020 Jul 15. PMID: 32679205; PMCID: PMC7361112.

19. Yüce M, Filiztekin E, Özkaya KG. COVID-19 diagnosis - A review of current methods. Biosens Bioelectron. 2021 Jan 15;172:112752. doi: 10.1016/j.bios.2020.112752. Epub 2020 Oct 24. PMID: 33126180; PMCID: PMC7584564.

20. De Simone B, Chouillard E, Di Saverio S, Pagani L, Sartelli M, Biffl WL, Coccolini F, Pieri A, Khan M, Borzellino G, Campanile FC, Ansalone L, Catena F. Emergency surgery during the COVID-19 pandemic: what you need to know for practice. Ann R Coll Surg Engl. 2020 May;102(5):323-332. doi: 10.1308/rcsann.2020.0097. Epub 2020 Apr 30. PMID: 32352836; PMCID: PMC7374780.

21. Rubio-Pérez I, Badia JM, Mora-Rillo M, Martín Quirós A, García Rodríguez J, Balibrea JM, et al. COVID 19: conceptos clave para el cirujano. Cir Esp. junio de 2020;98(6):310-9.

22. Nepogodiev D, Bhangu A, Glasbey JC, Li E, Omar OM, Simoes JF, et al. Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study. The Lancet. julio de 2020;396(10243):27-38.

23. Inzunza M, Romero C, Irrarrázaval MJ, Ruiz-Esquide M, Achurra P, Quezada N, et al. Morbidity and Mortality in Patients with Perioperative COVID-19 Infection: Prospective Cohort in General, Gastroesophagic, Hepatobiliary, and Colorectal Surgery. World J Surg. junio de 2021;45(6):1652-62.

24. Madrazo Z, Osorio J, Otero A, Biondo S, Videla S; COVID-CIR Collaborative Group. Postoperative complications and mortality following emergency digestive surgery during the COVID-19 pandemic: A multicenter collaborative retrospective cohort study protocol (COVID-CIR). Medicine (Baltimore). 2021 Feb 5;100(5):e24409. doi: 10.1097/MD.00000000000024409. PMID: 33592888; PMCID: PMC7870207.

25. María FM, Lorena MR, María Luz FV, Cristina RV, Dolores PD, Fernando TF. Overall management of emergency general surgery patients during the surge of the COVID-19 pandemic: an analysis of procedures and outcomes from a teaching hospital at the worst hit area in Spain. Eur J Trauma Emerg Surg. 2021 Jun;47(3):693-702. doi: 10.1007/s00068-020-01558-z. Epub 2021 Jan 5. PMID: 33399877; PMCID: PMC7782559.

26. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054–1062.

27. Gao Y, Xi H, Chen L. Emergency Surgery in Suspected COVID-19 Patients With Acute Abdomen: Case Series and Perspectives. Ann Surg. julio de 2020;272(1):e38-9.
COVID series on 3/4/20
28 COVID+ patients in ICU

COVID series on 12/10/20
17 COVID+ patients in ICU

1st period of maximum incidence

2nd period of maximum incidence

Initial number of patients
59 patients excluded due to duplication or loss of data
176 patients

3 patients eliminated because of palliative care
173 patients included in the study

66 patients (38.15%) in the 1st period
107 patients (61.85%) in the 2nd period

3 (4.54%) SARS-CoV-2+ patients

etc

Figure 1 A) Diagram of Intensive Care Unit (ICU) occupancy, for both general and COVID+ patients; B) Occupancy diagram in the hospitalization wards, for both general and COVID+ patients; C) Flow diagram for patient recruitment during the 2 study periods.

Figure 2: Screening protocol for COVID infection in patients with criteria for hospital admission during the 1st and 2nd waves of the pandemic

Ag: antigen test for COVID-19

Emergency Department circuit for patients with criteria for hospital admission

MIP 1
MIP 2

Clinical or radiological suspicion
Yes
No
Previous symptoms?
Ag
PCR and serology
Asymptomatic >7 days
<7 days
Investigation
COVID ward
Non-COVID ward

Figure 3: Therapeutic management according to diagnosis at admission and inclusion period

*P value corresponding to the comparison between 1st and 2nd waves of the pandemic.

1st period
Perianal abscess
Acute appendicitis
Acute cholecystitis
Acute diverticulitis
Intestinal obstruction
Incarcerated hernia
Hollow-organ perforation

2nd period
Surgical treatment
Conservative management
Figura 3: A: Diagrama de ocupación de Unidad de Vigilancia Intensiva (UVI) general y por pacientes COVID +. B: Diagrama de ocupación en planta de hospitalización general y por pacientes COVID +. C: Diagrama de flujo de reclutamiento de pacientes durante los dos periodos del estudio.
Figura 4: Protocolo de cribado de infección COVID en pacientes con criterios de ingreso durante la primera y segunda ola.

Ag: test de antígeno para COVID-19.
Figura 3: Manejo terapéutico según diagnóstico al ingreso y período de inclusión

p valor correspondiente a comparación entre primera y segunda ola
	First period	Second period	P value
n=173 (%)	66 (38.2)	107 (61.8)	0.955
Age, years (SD*)	61.92 (22.4)	61.73 (21.7)	
Sex, n (%)			
Females	24 (36.4)	42 (39.3)	0.704
Males	42 (63.6)	65 (60.7)	
Anesthetic risk (ASA*), n (%)			
ASA I	7 (10.6)	27 (25.2)	0.019
ASA II	32 (48.5)	34 (31.8)	0.028
ASA III	14 (21.2)	34 (31.8)	0.132
ASA IV	13 (19.7)	11 (10.3)	0.082
ASA V	0	1 (0.9)	0.431
Number of comorbidities, n (%)			
None	21 (31.8)	38 (35.5)	0.618
One	18 (27.3)	21 (19.6)	0.242
Two or more	27 (40.9)	48 (44.9)	0.611
Comorbidities, n (%)			
Arterial hypertension	25 (37.9)	52 (48.6)	0.168
Diabetes Mellitus	14 (21.2)	20 (18.7)	0.685
Cardiac disease	15 (22.7)	23 (21.5)	0.849
Kidney disease	5 (7.6)	6 (5.6)	0.606
Lung disease	11 (16.7)	23 (21.5)	0.438
Immunosuppression	7 (10.6)	12 (11.2)	0.901
Pre-admission/preoperative screening, n (%)			
General screening	62 (93.9)	107 (100)	0.020
Serology screening	58 (87.9)	55 (51.4)	<0.001
Radiology screening	4 (6.1)	57 (53.3)	<0.001
Screening with RT-PCR***	33 (50)	106 (99.1)	<0.001

* Standard deviation
** Classification using the American Society of Anesthesiologists anesthetic risk stratification.
*** Polymerase chain reaction test reverse transcription

Table 1: Demographic characteristics of the study sample
Table 2: General therapeutic management, morbidity and mortality in the sample studied

	1st period	2nd period	P value
n=173 (%)			
Treatment, n (%)			
Conservative	66 (38.2)	107 (61.8)	
Surgical	38 (57.6)	75 (70.1)	
Treatment of COVID-positive patients, n (%)			
Conservative	0 (0)	6 (37.5)	0.758
Surgical	3 (100)	10 (62.5)	
Surgical approach, n (%)			
Laparoscopic	7 (18.9)	20 (27)	0.348
Open	30 (81.1)	54 (73)	
Conversion	1 (2.6)	1 (1.3)	0.561
Morbidity and mortality <30 days, n (%)			
	23 (34.8)	34 (31.7)	0.746
Severity n (%)			
Clavien-Dindo I-II	14 (21.2)	20 (18.7)	0.735
Clavien-Dindo III-IV	5 (7.6)	5 (4.7)	0.512
Clavien-Dindo V	4 (6.1)	9 (8.4)	0.545
Type of complications, n (%)			
Anastomotic dehiscence	1 (1.5)	3 (2.8)	0.662
Surgical site infection	4 (6.1)	5 (4.7)	0.690
Postoperative ileus	3 (4.5)	6 (5.6)	1.000
Postoperative hemorrhage	2 (3)	1 (0.9)	0.559
Intraabdominal abscess	1 (1.5)	1 (0.9)	1.000
Evisceration	1 (1.5)	0 (0)	0.382
Intestinal obstruction	1 (1.5)	1 (0.9)	1.000
COVID pneumonia	0 (0)	7 (6.5)	0.045
RF, COVID	0 (0)	4 (3.7)	0.299
RF, non-COVID	5 (7.6)	0 (0)	0.007
Cardiovascular	5 (7.6)	6 (5.6)	0.750
Thromboembolic	1 (1.5)	1 (0.9)	1.000
Other**	4 (6.1)	8 (7.5)	1.000
Mortality of COVID-positive patients, n (%)			
Yes	0 (0)	2 (12.5)	1.000
No	3 (100)	14 (87.5)	
Morbidity-mortality of COVID-positive patients, n (%)			
Yes	1 (33.3)	9 (56.3)	0.582
No	2 (66.7)	7 (43.7)	
Mortality of surgical patients, n (%)			
Yes	2 (5.3)	6 (8)	0.715
No	36 (94.7)	69 (92)	
Morbidity-mortality of surgical patients, n (%)			
Yes	17 (44.7)	28 (37.3)	0.448
No	21 (55.3)	47 (62.7)	
Hospital stay, days (IQR)	6.5 (10)	5 (6)	0.126
Postoperative infection, n (%)	2 (3.1)	9 (9)	0.155

* Respiratory insufficiency
**Acute urine retention, uncontrolled HTN, hyperglycemia, allergic reaction to medication, confusion syndrome, anemia but no active bleeding

Adjusted morbidity-mortality analysis	1st period	2nd period				
	OR*	**95%CI**	P value	OR*	**95%CI**	P value
Age >70 years	0.455	(0.087-2.328)	0.351	0.952	(0.228-3.971)	0.946
Male sex	1.142	(0.143-9.114)	0.901	2.611	(0.420-7.488)	0.723
ASA ≥3	3.513	(0.576-21.437)	0.173	2.592	(0.598-11.027)	0.197
Diabetes mellitus	0.727	(0.066-7.953)	0.794	2.498	(0.308-14.516)	0.308
Lung disease	0.120	(0.010-1.375)	0.088	2.058	(0.320-8.526)	0.320
Cardiac disease	0.286	(0.022-3.731)	0.340	3.743	(0.739-18.960)	0.111
Kidney disease	23.112	(12.430-39.846)	**0.001**	29.548	(15.674-47.321)	**0.001**
Immunosuppression	1.664	(0.101-27.523)	0.722	0.853	(0.120-5.267)	0.864
Pre-admission RT-PCR	0.501	(0.076-3.301)	0.473	0.576	(0.902-3.897)	1.000
Positive COVID diagnosis	0.697	(0.026-18.474)	0.829	2.912	(0.745-11.382)	0.124
No comorbidities	0.072	(0.004-4.148)	0.084	2.165	(0.349-18.852)	0.484
One comorbidity	1.060	(0.103-10.918)	0.961	3.814	(0.697-20.854)	0.123
Two or more comorbidities	2.173	(1.140-4.414)	**0.018**	1.922	(0.844-4.379)	0.120
Surgical treatment	0.059	(0.008-0.449)	**0.006**	0.151	(0.034-0.679)	**0.014**
Alert phase IV-V	2.787	(0.438-17.746)	0.278	0.801	(0.127-5.045)	0.813

*Odds ratio
**Confidence Interval

Table 3: General and comparative analysis of risk factors for morbidity and mortality