Sparsifying networks by traversing Geodesics

Guruprasad Raghavan
Caltech
Pasadena, CA 91106
graham@caltech.edu

Matt Thomson
Caltech
Pasadena, CA 91106
mthomson@caltech.edu

Abstract

The geometry of weight spaces and functional manifolds of neural networks play an important role towards ‘understanding’ the intricacies of ML. In this paper, we attempt to solve certain open questions in ML, by viewing them through the lens of geometry, ultimately relating it to the discovery of points or paths of equivalent function in these spaces. We propose a mathematical framework to evaluate geodesics in the functional space, to find high-performance paths from a dense network to its sparser counterpart. Our results are obtained on VGG-11 trained on CIFAR-10 and MLP’s trained on MNIST. Broadly, we demonstrate that the framework is general, and can be applied to a wide variety of problems, ranging from sparsification to alleviating catastrophic forgetting.

1 Introduction

The geometry of weight manifolds and functional spaces represented by artificial neural networks is an important window to ‘understanding’ machine learning. Many open questions in machine learning, when viewed through the lens of geometry, can be related to finding points or paths of equivalent function in these spaces. Two prominent examples are (i) Enabling networks to learn multiple tasks sequentially while avoiding catastrophic forgetting[1] and (ii) to discover high-performance paths from a dense neural network to its sparser counterparts (sparsification) [2, 3]. Both these questions, although appearing very different, can be adequately solved by formulating paths in the weight manifold.

In this paper, we propose a mathematical framework grounded in differential geometry to find novel solutions to these problems in machine learning. We formalize the “search” for a suitable network as a dynamic movement on a curved pseudo-Riemannian manifold [4]. Further, we demonstrate that geodesics, minimum length paths, on the weight manifold provide high performance paths that the network can traverse to maintain performance while ‘searching-out’ for networks that satisfy additional objectives. Specifically we develop a procedure based on the geodesic equation for finding sets of path connected networks that achieve high performance while also satisfying a second objective like sparsification. Broadly, our work provides procedures that will help discover an array of high-performing neural network architectures for the task of interest.

2 Mathematical framework

Preliminaries: We represent a feed-forward neural network (NN) as a smooth, C^∞ function $f(x, w)$, that maps an input vector, $x \in \mathbb{R}^k$, to an output vector, $f(x, w) = y \in \mathbb{R}^m$. The function, $f(x, w)$, is parameterized by a vector of weights, $w \in \mathbb{R}^n$, that are typically set in training to solve a specific task. We refer to $W = \mathbb{R}^n$ as the weight space (W) of the network, and we refer to $\mathcal{F} = \mathbb{R}^m$ as the functional manifold [5]. In addition to f, we are interested in a loss function, $L : \mathbb{R}^m \times \mathbb{R} \to \mathbb{R}$, that provides a scalar measure of network performance for a given task (Figure 1).

NeurIPS 2020 workshop on Differential Geometry meets Deep Learning
Figure 1: Geometric framework for analyzing neural network resilience (A) Three networks \((N_1, N_2, N_3)\) in weights space \(W\) and their relative distance in functional space and loss space. Damage is analyzed by asking how movement in weight space changes functional performance and loss through introduction of a pullback metric \(g\).

Construction of metric tensor \((g)\): We use differential geometry, rooted in a functional notion of distance, to analyse how infinitesimal movements in the weight space \((W)\) impact functional performance of the network. Specifically, we construct a local distance metric, \(g\), that can be applied at any point in \(W\) to measure the functional impact of an arbitrary network perturbation.

To construct a metric mathematically, we fix the input, \(x\), into a network and ask how the output of the network, \(f(x, w)\), moves on the functional manifold, \(F\), given an infinitesimal weight perturbation, \(du\), in \(W\) where \(w_d = w_t + du\). For an infinitesimal perturbation \(du\),

\[
f(x, w_t + du) \approx f(x, w_t) + J_{w_t}du,
\]

where \(J_{w_t}\) is the Jacobian of \(f(x, w_t)\) for a fixed \(x\), \(J_{t,i} = \frac{\partial f_i}{\partial x_j}\), evaluated at \(w_t\). We measure the change in functional performance given \(du\) as the mean squared error

\[
d(w_t, w_d) = |f(x, w_t) - f(x, w_d)|^2 = du^T(J_{w_t}^TJ_{w_t})du = du^Tg_{w_t}du
\]

where \(g_{w_t} = J_{w_t}^TJ_{w_t}\) is the metric tensor evaluated at the point \(w_t \in W\). The metric tensor \(g\) is an \(n \times n\) symmetric matrix that defines an inner product and local distance metric, \(\langle du, du \rangle_w = du^Tg_wdu\), on the tangent space of the manifold, \(T_w(W)\) at each \(w \in W\).

Global paths in functional space: Globally, we can use the metric to determine the functional performance change across a network connected set of networks. Mathematically, the metric changes as we move in \(W\) due to the curvature of the ambient space that reflects changes in the vulnerability of a network to weight perturbation (Figure 1c). As a network moves along a path, \(\gamma(t) \in W\) from a given trained network \(\gamma(0) = w_t\) to a \(p\)-sparse hyperplane (hyperplane that contains \(p\%\)-sparse NNs) such that \(\gamma(1) = w_s\), we can analyze the integrated impact of sparsification on network performance along \(\gamma(t)\) by using the metric \((g)\) to calculate the length of the path \(\gamma(t)\) as:

\[
L(\gamma) = \int_0^1 \langle \frac{d\gamma(t)}{dt}, \frac{d\gamma(t)}{dt} \rangle_{\gamma(t)} dt,
\]

where \(\langle \frac{d\gamma(t)}{dt}, \frac{d\gamma(t)}{dt} \rangle_{\gamma(t)} = \frac{d\gamma(t)}{dt}^Tg_{\gamma(t)} \frac{d\gamma(t)}{dt}\) is the infinitesimal functional change accrued while traversing path \(\gamma(t) \in W\). As our objective is to find a path \(\gamma(t) \in W\) that minimizes the total function length \((L(\gamma))\), we evaluate the geodesic between the dense network and its sparser counter part. The shortest path in functional space is desirable because it ensures that the \(p\)-sparse NN is functionally similar to the dense-NN.

3 Geodesics

In this section, we evaluate the geodesic path, defined as the minimum functional path-length in weight space between any pair of networks. We also demonstrate that the formulation of high-performance paths holds the key to solving seemingly unrelated open-questions: (i) catastrophic forgetting and (ii) network sparsification.

Network sparsification: We pose the problem of finding a \(p\)-sparse counterpart \((w^p)\) of a dense NN \((w_{\text{full}})\) as finding a geodesic from \((w_{\text{full}})\) to a \(p\%\) sparse hyperplane \((W^p)\). The sparse hyper-plane is
the set of all networks that are \(p\% \) sparse. As the geodesic minimizes the total distance traversed on the functional space, it ensures that the sparse network obtained will be both, functionally similar to the original network and high-performing. **Catastrophic forgetting:** In order to obtain a single network well-trained on two sequential tasks, we train two networks on the two tasks independently (\(w_{t1}, w_{t2} \)) and pose the problem of finding a network that performs well on both the tasks, as a geodesic between the two trained networks (\(W_{t1} \) and \(W_{t2} \)) on the functional space. The functional manifold used could pertain to either of the tasks (ensuring that a single dataset/task is used at a time).

Geodesics mathematical machinery: To find geodesics on \(W \), we can solve the geodesic equation given by:

\[
\frac{d^2 w^n}{dt^2} + \Gamma^n_{\mu\nu} \frac{dw^\mu}{dt} \frac{dw^\nu}{dt} = 0
\]

where, \(w^j \) defines the \(j \)'th basis vector of the weights space \(W \), \(\Gamma^n_{\mu\nu} \) specifies the Christoffel symbols defined by:

\[
\Gamma^n_{\mu\nu} = \frac{1}{2} \left(\frac{\partial g_{n\nu}}{\partial x^\mu} + \frac{\partial g_{n\mu}}{\partial x^\nu} - \frac{\partial g_{\mu\nu}}{\partial x^n} \right)
\]

On the manifold. The Christoffel symbols capture infinitesimal changes in the metric tensor (\(g \)) along a set of directions in the manifold. They are computed by setting the covariant derivative of the metric tensor along a path specified by \(\gamma(t) \) to zero.

We, specifically, compute geodesic paths, \(\gamma(t) \), so that \(\gamma(0) = w_{t1} \) and \(\gamma(1) \in W \), where \(W \) is the sparsity hyper-plane (for network sparsification) and \(\gamma(1) = w_{t2} \) (for the catastrophic forgetting problem). As the computation of the Christoffel symbols is both memory and computationally intensive, we propose an optimization algorithm to evaluate the ‘approximate’ geodesic in the manifold.

Given a trained network, our procedure updates the weights of the network to optimize performance given a direction of sparsification. To discover a geodesic path \(\gamma(t) \), we begin at a trained network and iteratively solve for the tangent vector, \(\theta(w) \), at every point, \(w = \gamma(t) \), along the path, starting from \(w_{t1} \) and terminating at the sparse hyperplane, \(W_p \) (for sparsification) or network \((w_{t2}) \) trained for task-2 (for catastrophic forgetting). We specifically solve

\[
\arg\min_{\theta(w)} \langle \theta(w), \theta(w) \rangle_w - \beta \langle \theta(w)^T v_w \rangle \text{ subject to: } \theta(w)^T \theta(w) \leq 0.01.
\]

The tangent vector \(\theta(w) \) is obtained by simultaneously optimizing two objective functions: (1) minimizing the increase in functional distance along the path measured by the metric tensor (\(g_w \))

\[
\min: \langle \theta(w), \theta(w)^T g_w \theta(w) \rangle_w - \gamma \langle \theta(w)^T v_w \rangle \text{ and (2) maximizing the dot-product between the tangent vector and } v_w \text{, vector pointing in the desired direction }
\]

\[
\max: \langle \theta(w)^T v_w \rangle \text{ to enable movement towards the sparse hyperplane or network } w_{t2}.
\]

Our optimization procedure is a quadratic program that trades off, through the hyper-parameter \(\beta \), motion towards the damage hyper-plane and the maximization of the functional performance of the intermediate networks along the path (elaborated in the appendix). The strategy discovers multiple paths from the trained network \(w_{t1} \) to \(W_p \), sparse hyper-plane, where networks maintain high functional performance during sparsification. Of the many paths obtained, we can select the path with the shortest total length (with respect to the metric \(g \)) as the best approximation to the geodesic in the manifold.

Geodesics for network sparsification: We apply the geodesic strategy to discover high-performance paths from a trained network (VGG11 on CIFAR-10) to a sparse hyperplane (blue curve in figure-2A). Here, the sparse hyperplane is defined as all networks that have zeroed out 50 (out of 60) conv-filters from layer-1 in VGG11. We compared our strategy with conventional heuristic fine-tuning (figure-2A) and demonstrate that the geodesic procedure is both rational and computationally efficient. Specifically, an iterative prune-train cycle achieved through structured pruning of a single node at a time, coupled with SGD re-training requires 70 training epochs to identify a sparsification path. However, our geodesic strategy finds paths that quantitatively out-perform the iterative prune-train procedure and obtains these paths with only 10 training epochs (figure 2A.B).

In figure-2C, we apply the geodesic strategy to find a path from a trained multi-layer perceptron (MLP) to its 70% sparser counterpart. The geodesic discovers a network performing at a test-accuracy of 96.8% on the 70% sparse hyperplane. Additionally, the same geodesic strategy enables us to dynamically shift networks between different weight configurations (eg from a dense to sparse or vice-versa) while maintaining performance (Figure 2D). The rapid shifting of networks is relevant for networks on neuromorphic hardware to ensure that the real-time functionality of the hardware isn’t compromised while transitioning between different power configurations.
Geodesics for alleviating catastrophic forgetting: In this section, we present our preliminary results on the geodesic framework formulated to alleviate catastrophic forgetting. We chose two datasets (MNIST and Fashion MNIST) and train our network on both tasks one after the other. On doing so, we notice that the network initially performs at an accuracy of 99% on MNIST (after training on MNIST alone), but drops its performance to 10% after being trained with Fashion MNIST. This is a clear demonstration of the network catastrophically forgetting.

To alleviate this issue, we train 2 networks (on MNIST and Fashion MNIST). We find a geodesic path from w_{t1} to w_{t2} on the functional manifold (MNIST dataset). As we traverse the geodesic, we obtain a set of networks along the path that perform well on both MNIST and Fashion-MNIST (without having to be trained on both datasets simultaneously!). In figure-2F, we evaluated the geodesic path between the 2 trained networks and show that some networks along the geodesic have an accuracy of 80% on both the MNIST and Fashion MNIST dataset, without requiring rigorous training using both datasets simultaneously.

Discussion: We have established a mathematical framework to view neural networks from the lens of the geometry of their functional manifolds. Practically, we demonstrate this strategy is very useful to discover sparser NN’s that are functionally similar to denser NN’s. In addition, we find networks along the path between two networks that can perform multiple tasks efficiently, alleviating catastrophic forgetting.
References

[1] German I Parisi et al. “Continual lifelong learning with neural networks: A review”. In: Neural Networks 113 (2019), pp. 54–71.

[2] Christos Louizos, Max Welling, and Diederik P Kingma. “Learning Sparse Neural Networks through L_0 Regularization”. In: arXiv preprint arXiv:1712.01312 (2017).

[3] Jonathan Frankle and Michael Carbin. “The lottery ticket hypothesis: Finding sparse, trainable neural networks”. In: arXiv preprint arXiv:1803.03635 (2018).

[4] Shun-Ichi Amari. “Differential geometry of curved exponential families-curvatures and information loss”. In: The Annals of Statistics (1982), pp. 357–385.

[5] Detlef H Mache, József Szabados, and Marcel G de Bruin. Trends and Applications in Constructive Approximation. Vol. 151. Springer Science & Business Media, 2006.

[6] Song Han et al. “Learning both weights and connections for efficient neural network”. In: Advances in neural information processing systems. 2015, pp. 1135–1143.