СИБИРСКИЙ РАДИОГЕЛИОГРАФ: ПЕРВЫЕ РЕЗУЛЬТАТЫ

SIBERIAN RADIOHELIOGRAF: FIRST RESULTS

С.В. Лесовой
Институт солнечно-земной физики СО РАН,
Иркутск, Россия, sylesovoi@gmail.com

А.Т. Альтынцев
Институт солнечно-земной физики СО РАН,
Иркутск, Россия, alytynsev@iszf.irk.ru

А.А. Кочанов
Институт солнечно-земной физики СО РАН,
Иркутск, Россия, kochanov@iszf.irk.ru

В.В. Гречнев
Институт солнечно-земной физики СО РАН,
Иркутск, Россия, grechnev@iszf.irk.ru

А.Б. Губин
Институт солнечно-земной физики СО РАН,
Иркутск, Россия, gubin@iszf.irk.ru

Д.А. Жданов
Институт солнечно-земной физики СО РАН,
Иркутск, Россия, zdhanov@iszf.irk.ru

Е.Ф. Иванов
Институт солнечно-земной физики СО РАН,
Иркутск, Россия, eugenessrt@gmail.com

А.М. Уралов
Институт солнечно-земной физики СО РАН,
Иркутск, Россия, uralov@iszf.irk.ru

Л.К. Кашапова
Институт солнечно-земной физики СО РАН,
Иркутск, Россия, lk@iszf.irk.ru

А.А. Кузнецов
Институт солнечно-земной физики СО РАН,
Иркутск, Россия, a_kuzn@iszf.irk.ru

Н.С. Мещалкина
Институт солнечно-земной физики СО РАН,
Иркутск, Россия, nata@iszf.irk.ru

П.А. Сыч
Институт солнечно-земной физики СО РАН,
Иркутск, Россия, sych@iszf.irk.ru

S.V. Lesovoi
Institute of Solar-Terrestrial Physics SB RAS,
Irkutsk, Russia, sylesovoi@gmail.com

A.T. Altyntsev
Institute of Solar-Terrestrial Physics SB RAS,
Irkutsk, Russia, alytynsev@iszf.irk.ru

A.A. Kochanov
Institute of Solar-Terrestrial Physics SB RAS,
Irkutsk, Russia, kochanov@iszf.irk.ru

V.V. Grechnev
Institute of Solar-Terrestrial Physics SB RAS,
Irkutsk, Russia, grechnev@iszf.irk.ru

A.V. Gubin
Institute of Solar-Terrestrial Physics SB RAS,
Irkutsk, Russia, gubin@iszf.irk.ru

D.A. Zhdanov
Institute of Solar-Terrestrial Physics SB RAS,
Irkutsk, Russia, zdhanov@iszf.irk.ru

E.F. Ivanov
Institute of Solar-Terrestrial Physics SB RAS,
Irkutsk, Russia, eugenessrt@gmail.com

A.M. Uralov
Institute of Solar-Terrestrial Physics SB RAS,
Irkutsk, Russia, uralov@iszf.irk.ru

L.K. Kashapova
Institute of Solar-Terrestrial Physics SB RAS,
Irkutsk, Russia, lk@iszf.irk.ru

A.A. Kuznetsov
Institute of Solar-Terrestrial Physics SB RAS,
Irkutsk, Russia, a_kuzn@iszf.irk.ru

N.S. Meshalkina
Institute of Solar-Terrestrial Physics SB RAS,
Irkutsk, Russia, nata@iszf.irk.ru

R.A. Sych
Institute of Solar-Terrestrial Physics SB RAS,
Irkutsk, Russia, sych@iszf.irk.ru

Аннотация. Начаты регулярные наблюдения активных процессов в атмосфере Солнца с помощью первой очереди многовалкового Сибирского радиогелиографа — Т-образной 48-антенной решетки с диапазоном рабочих частот 4–8 ГГц и мгновенной полосой приема 10 МГц. Антенны установлены на центральных антенных постах Сибирского солнечного радиотелескопа, максимальная база 107.4 м, угловое разрешение до 70″. Приведены примеры наблюдений диска Солнца на различных частотах, «отрицательных» всплесков и солнечных вспышек. Чувствительность по компактным источникам достигает 0.01 солнечных единиц потока (≈10"-4 от полного потока Солнца) при времени накопления 0.3 с. Высокая чувствительность радиогелиографа обеспечивает мониторинг солнечной активности и исследование активных процессов в атмосфере Солнца с помощью радиогелиографа. Приведены примеры наблюдений солнечной активности.

Abstract. Regular observations of active processes in the solar atmosphere have been started using the first stage of the multiwave Siberian Radioheliograph (SRH), a T-shaped 48-antenna array with a 4–8 GHz operating frequency range and a 10 MHz instantaneous receiving band. Antennas are set on the central antenna posts of the Siberian Solar Radio Telescope. The maximum baseline is 107.4 m, and the angular resolution is up to 70″. We present examples of observations of the solar disk at different frequencies, “negative” bursts, and solar flares. The sensitivity to compact sources reaches 0.01 solar flux units (≈10"-4 of the total solar flux) with an accumulation time of 0.3 s. The high sensitivity of the SRH enables monitoring of solar activity and allows one to study active processes from characteristics of their microwave emission.
позволяет исследовать активные процессы по характери- стикам их микроволнового излучения, включая сверхслабые события, не регистрировавшиеся ранее.

Ключевые слова: Солнце, радиоизлучение, солнечные вспышки, радиотелескопы, отрицательные всплески.

I. ВВЕДЕНИЕ

В Институте солнечно-земной физики СО РАН создан крупнейший комплекс инструментов для наземных наблюдений различных явлений космической погоды и их источников — от событий в атмосфере Солнца до возмущений ионосферной плазмы. Видное место как в этом комплексе, так и в международной кооперации занимает инструментарий для мониторинга и диагностики солнечных активных процессов радиоастрономическими методами. Наряду с задачами фундаментальной физики Солнца радио- наблюдения важны для решения прикладных задач, особенно в России, где до настоящего времени не налажен систематический мониторинг солнечной активности с помощью внеатмосферных космических технологий.

Радиотелескопы расположены в Радиоастрономической обсерватории (РАО) (уровни Бадары, Бурятская республика). Наблюдения Солнца проводятся в течение светового дня с 00 до 10 UT летом и с 02 до 08 UT зимой. Благодаря удаленности обсерватории от населенных пунктов уровень радиопомех низок. В обсерватории создается многоволновый Сибирский радиогелиограф (СРГ) [Lang, 1993; Wang et al., 2015] и работает ряд спектрополяриметров интегрального излучения Солнца, перекрывающих диапазон принимаемых частот от 50 МГц до 24 ГГц. В диапазоне рабочих частот 4–8 ГГц первой очереди СРГ доступны данные наблюдений Бадарского широкополосного микроволнового спектрополяриметра (BBMS) [Zhananov, Zandanov, 2015].

Данные наблюдений на радиотелескопах РАО используются российскими и зарубежными учеными в исследованиях фундаментальных проблем физики Солнца, в том числе в рамках международных программ. Перспективы использования данных наблюдений для решения прикладных задач обусловлен значительный вклад Института прикладной геофизики Росгидромета в развитие комплекса радиотелескопов. Данные радиомониторинга солнечной активности, в том числе в реальном времени, доступны на сайте обсерватории [http://badary.iszf.irk.ru].

Радиоастрономические наблюдения предоставляют уникальную информацию о процессах нагрева плазмы и ускорения частиц в атмосфере Солнца. Интегральный поток излучения Солнца на частоте 2.8 ГГц (так называемый индекс 10.7 см) является наиболее объективной оценкой текущего уровня солнечной активности и ее изменчивости на протяжении нескольких солнечных циклов. Индекс 10.7 см используется в качестве входного параметра в различных моделях озона — магнитосферы и ионосферы.

Достоинством мониторинга солнечной активности в радиодиапазоне является его всепогодность, так как атмосферные условия слабо влияют на при-
и определять положение их источников на диске Солнца. При развитии вспышечных процессов наблюдаются всплески радиоизлучения, интенсивность которых может превышать его фоновые значения в миллионы раз. Данные о спектре спорадического излучения и его источниках являются одним из важнейших средств диагностики спорадической солнечной активности. Мониторинг спектрального состава и интенсивности мощных радиовсплесков необходим для анализа причин сбоев в работе электронных систем на космических аппаратах, радаров, систем навигации и связи, а обобщение и систематизация этих данных важны для разработчиков аппаратуры.

Среди задач наблюдений в микроволновом диапазоне — выделение прогностических признаков генерации мощных солнечных вспышек, возбуждения ударных волн и появления в межпланетном пространстве потоков ускоренных электронов и протонов.

Поскольку угловое разрешение телескопов определяется отношением длины волны принимаемого излучения к их апертуре, для наблюдений эволюции структуры активных областей и вспышечных явлений необходимо создание инструментов размерами Солнечного диска. Это в настоящее время невозможно на трёхлетнем спектрально-интерферометрическом интервале от 5.7 ГГц на ССРТ в течение светового дня в виде двумерных радиокарт и одномерных распределений радиоизлучения. В настоящее время на основе ССРТ создан новый инструмент — многоволновый Сибирский радиоастрономический спектрограф [Lesovoi et al., 2014]. В 2016 г. начались наблюдения на первой очереди СРГ-48 в диапазоне частот 4–8 ГГц с 48-антенной решеткой.

Одновременное получение изображений Солнца было возможно на трех частотах — 5.7 ГГц на ССРТ и 17 и 34 ГГц на японском радиоастрономическом обсерватории NoRH [Nakajima et al., 1995], наблюдательное время которого с 23 до 06 UT имеет значительное перекрытие с ССРТ. Есть перекрытие и с радиотелескопом РАТАН-600, на котором получаются одномерные распределения радиоактивности по диску Солнца с высоким спектральным разрешением [Bogod, 2011; Kalthman et al., 2015] в широком диапазоне частот.

Многоволновые наблюдения несут богатую информацию о спокойной солнечной атмосфере и активных процессах в ней, а совместный анализ микроволновых наблюдений с данными других диапазонов даёт уникальный материал для понимания различных солнечных процессов, их взаимосвязи и влияния на околоземную среду (см., например, [Альтынцев, 2014]). Современное состояние цифровой электроники и вычислительной техники позволяет создавать многоэлементные радиоинтерферометры, позволяющие с

Рис. 1. Центральная часть антенной решетки СРГ и северный луч ССРТ
высокой скоростью получать изображения Солнца на ряде частот практически одновременно.

Актуальность развития нового поколения радиогеологофов подтверждается реализацией в настоящее время нескольких проектов. В микроволновом диапазоне наиболее крупными (с базой около километра и более) являются американский Frequency Agile Solar Radiotelescope (FASR) [Bastian et al., 1998] и китайский Mingantu Ultrawide Spectral Radioheliograph (MUSER) [Yan et al., 2009]. В настоящее время проекты находятся на разных стадиях реализации. По проекту FASR для разработки и тестирования систем радиогеолофа используется Expanded Owens Valley Solar Array (18 антенн, диапазон 1–9 ГГц). Ведутся работы по увеличению количества антенн и расширению диапазона принимаемых частот до 2.5–18 ГГц [Gary et al., 2012]. На китайском радиогеолофе Минганту, расположенном во Внутренней Монголии, выполнен монтаж антенных систем CSRH-I (40 антенн, 0.4–2.0 ГГц) и CSRH-II (60 антенн, 2–15 ГГц). В настоящее время решаются вопросы фазовой калибровки, начаты пробные наблюдения на отдельных частотах.

В настоящей статье представлены предварительные результаты наблюдений на первой очереди СРГ с 48-антенной Т-образной решеткой в диапазоне частот 4–8 ГГц. Пробные наблюдения на отдельных частотах выполнялись с начала 2016 г. С июля 2016 г. ведутся рутинные наблюдения на СРГ–48 на пяти частотах. В этот период солнечная активность была низкой, что позволило оценить возможности нового инструмента при исследовании слабых событий, недоступных для регистрации телескопами интегрального потока.

II. ХАРАКТЕРИСТИКИ СИБИРСКОГО РАДИОГЕЛЕОГРАФА С 48-АНТЕННОЙ РЕШЕТКОЙ

Сибирский солнечный радиотелескоп, на базе которого создается Сибирский радиогеолоф, имеет следующие характеристики [Grechev et al., 2003]. ССРГ — крестообразный интерферометр, состоящий из двух линейантен В–3 и С–Ю по 128 антенн диаметром 2.5 м каждая. Расстояние между крайними антеннами составляет 622.3 м, что определяет угловое разрешение до 21'' в двумерных изображениях и до 15'' в одномерных распределениях радиоизлучения. Измеряются потоки в обеих круговых поляризациях (РСР и ЛСР). Период модуляции поляризации 14 мс определяет предельное временное разрешение одномерных измерений. Двумерные изображения формируются вследствие изменения положения Солнца относительно интерферционных максимумов, во первых, из-за одновременного приема на разных частотах в полосе 5.67–5.79 ГГц и, во-вторых, из-за суточного вращения Земли. Последнее определяет время прохождения интерферционного максимума по диску Солнца, поэтому получение изображений на ССРГ возможно не чаще, чем через 2–3 мин.

Метод построения изображений Сибирским радиогеолофом принципиально иной — фурье-синтез [Lesovoi et al., 2014]. Временное разрешение, определяемое характеристиками регистрирующей аппаратуры, на порядки выше. В настоящее время ведутся регулярные наблюдения с помощью 48-элементной решетки, антенны которой установлены на центральных антенных постах ССРГ вдоль восточного, западного и южного лучей. Продолжаются юстировка и отладка систем СРГ–48. Частоты приема солнечного излучения с полосой 10 МГц каждая задаются программой управления в диапазоне 4–8 ГГц. Интервал между измерениями на одной частоте — 0.84 с, время переключения частоты приема — около 2 с. Максимальная база составляет 107.4 м, пространственное разрешение достигает 70'' на 8 ГГц. Приимаются обе круговые поляризации излучения, а чувствительность по компактным источникам достигает 10⁻⁴ полного потока Солнца [Lesovoi, Kobeč, 2017].

Количество принимаемых частотных каналов можно менить в зависимости от задачи наблюдений. В наблюдениях квазистационарных источников, таких, например, как пяточные источники, еписок сканируемых частот может составлять несколько сотен для достижения требуемого спектрального разрешения. При исследованиях выпущенных событий требуется высокое временное разрешение, для достижения которого можно ограничить количество частотных каналов. С 1 июля 2016 г. наблюдения ведутся на пяти частотах — 4.5, 5.2, 6.0, 6.8, 7.5 ГГц. Данные, необходимые для построения радиокарт, доступны на [ftp://badary.iszf.irk.ru/data/srh48]. Разработано и тестируется программное обеспечение, позволяющее строить «сырые» изображения Солнца, производить их чистку и калибровать в единицах яркостной температуры. Прорабатываются форматы данных для хранения и программное обеспечение для их первичной обработки в режиме удаленного доступа.

Одновременно с наблюдениями на СРГ–48 продолжается получение изображений Солнца на частоте 5.7 ГГц оставшимися антеннами ССРГ в первоначальном режиме. Использование всех антенн северного луча и крайних антенн остальных лучей позволяет получать двумерные изображения компактных образований в атмосфере Солнца с разрешением до 21'' и интервалом 2–3 мин. Ежедневные карты в интенсивности и круговой поляризации, полученные вблизи местного полудня, доступны на [ftp://badary.iszf.irk.ru].

Мониторинг солнечной активности и контроль работы основных систем СРГ осуществляются с помощью корреляционных кривых, являющихся аналогом радиопотока и наглядно представляющих изменения во времени суммы кросскорреляций всех пар антенн. Методы расчета корреляционных кривых и их связь с характеристиками излучения Солнца представлены в работе [Lesovoi, Kobeč, 2017]. Изменения на корреляционных кривых связаны с вариациями как яркости источников, так и их структуры. Корреляционные кривые приводятся в реальном времени на http://badary.iszf.irk.ru/srhCorrPlot.php.
Пример корреляционной кривой 9 августа 2016 г. на рис. 2 интересен наличием трех отрицательных всплесков и последующей вспышкой рентгеновского класса C2.5 в активной области 12574 (N04E59). В начале этого дня на СРГ проводились регламентные работы, наблюдения начались в 02:45 UT.

На рис. 3 представлен пример набора изображений Солнца на пяти частотах в правой и левой поляризации, полученных без использования процедур чистки изображений от вклада боковых лепестков интерферометра. Яркий источник на северо-западе является откликом на активную область NOAA 12571. Боковые лепестки выглядят как узкие «зебраполоски». На изображениях с частотами ниже 6 ГГц видно также уширение на восточном лимбе, которое связано с восходящими активными областями. Поле зрения на приведенных изображениях на треть превышает размер диска Солнца. Видимые размеры ярких компактных источников уменьшаются на больших частотах, так как они определяются сверткой с диаграммой направленности интерферометра, которая уменьшается с ростом частоты.

Для калибровки изображений в яркостных температурах усовершенствована методика, используемая на NoRH и ССРТ. По изображениям строятся распределения яркости для областей, занятых солнечным диском и небом. Разность между положениями максимумов гистограмм соответствует яркостной температуре спокойного Солнца [Kochanov et al., 2013]. Эта температура, снижающаяся с ростом частоты, определяется по данным измерений [Zirin et al., 1991; Borovik, 1994]. В частности, на указанных выше пяти частотах приняты значения 18.7, 17.1, 15.4, 14.3, и 13.5 тысяч Кельвин. Яркостные температуры изображений компактных источников могут быть ниже истинных, если реальные размеры источников меньше диаграммы направленности СРГ-48.
Предварительные результаты первых наблюдений

В результате поглощения излучения компактных радиоисточников или областей спокойного Солнца в экранирующей их низкотемпературной плазме, извергнутой в корону при зурах, возникают отрицательные всплески — временные депрессии радиопотока ниже квазистационарного уровня. Зависимость глубины поглощения от частоты экранируемого излучения и свойств поглощающей плазмы позволяет оценить температуру, плотность и размеры микроволновой плазмы, если радиопоглощение наблюдается на нескольких частотах [Grechnev et al., 2013]. Отрицательные всплески несут существенную информацию об эруптивных событиях, но наблюдаются редко. Наибольшее их число за год (14) было зарегистрировано всеми наземными станциями в 1991 г. Наблюдение трех отрицательных всплесков за один день 9 августа 2016 г. беспреде- дентно (рис. 2).

Судя по полученным на СРГ изображениям, эти отрицательные всплески были вызваны снижением яркости северного источника вблизи восточного лимба. Максимум его яркостной температуры вблизи минимума первого отрицательного всплеска на рис. 4, а составлял 0.22 МК. После окончания отрицательного всплеска яркостная температура затеняющегося источника возросла до 0.53 МК (рис. 4, б), тогда как у трех прочих источников ее изменение не превышало 13 %. Последнее значение является верхней границей суммарной ошибки измерения яркостных температур по данным СРГ вследствие неста- бильности калибровки и неравномерности по полю изображения. Яркостные температуры понижены относительно обычно наблюдавшихся величин, что обусловлено недостаточным пространственным разрешением текущей конфигурации СРГ-48.

На рис. 5 приведены временные профили потока затенявшегося микроволнового источника в интервале частот 3.75 ГГц и минимум 1 с.е.п. Сравнение с интегральным потоком солнечного излучения на частоте 3.75 ГГц, записанным радиопоглощением Нобеяма (NoRP) с интервалом 1 с, демонстрирует солнечное происхождение отрицательных всплесков и высокую чувствительность СРГ. При депрессиях интенсивности, достигавших ~5 с.е.п. (1 с.е.п. = $10^{-22} \text{Вт/(м}^2\text{Гц})$) на частоте 5.2 ГГц, поляризация смещалась в сторону положительных зна- чений, что соответствует затенению левополяри- зованного источника (рис. 4, а, в).

Корональных выбросов массы в связи с отрицательными всплесками не зарегистрировано, а наблюдений Солнца на SDO/AIA в этот день не было. Поднимающиеся струи вещества (сержи) удалось обнаружить на изображениях в ультрафиолетовом канале 304 Å космической обсерватории STEREO-A, располагавшейся на орбите Земли восточнее ее на 152°. Изображения, приведенные на рис. 6, — нега- тивы дисперсионных карт, выявляющих все измене- ния на изображениях. Каждая точка такой карты представляет дисперсию значений в этой точке по всем изображениям, полученным в данном интер- вале времени [Grechnev, 2003]. Рамкой обозначена область, вариации потока в которой приведены на рис. 5, б. Появление отрицательных всплесков однозначно соответствует сердцу, экранированное микроволновым источник. Дальнейший анализ этих отрицательных всплесков позволит оценить параметры сердцей.

Наряду с высокой чувствительностью регистрирующая система СРГ обладает достаточно широким динамическим диапазоном для наблюдений микроволнового излучения вспышек без использования антенна. На рис. 7 показаны корреляционные кривые с тремя мощными вспышками М-класса: M5.0 (02:11), M7.6 (05:16) и M5.5 (05:31 UT), записанные 23 июля 2016 г. Наиболее интенсивным был микроволновый всплеск в последней вспышке, поток которого на частотах СРГ превосходил 800 с.е.п. В интервале 05:28:30–05:30:30 UT наблюдается смена знака поляризации в полосе СРГ (рис. 8). Инверсия поляризации вспышечного микроволнового излучения может быть вызвана разными причинами. Для их выяснения необходимо дальнейшие иссле- дования данных с пространственным разрешением.

Рис. 9 представляет корреляционные кривые вспышки М7.6 18 апреля 2016 г. При общем согла- сии данных СРГ (рис. 9, а) и NoRP (рис. 9, б, в), временной профиль всплеска, как обычно, становится более резким с повышением частоты. Это событие интересно выраженным широкополосным коле- баниями интенсивности микроволнового излучения с периодом около 30 с.

Как правило, диапазон приема СРГ 4–8 ГГц не охватывает весь спектр гиросинхротонного излучения мощных солнечных вспышек, который может простираться до нескольких десятков ГГц. Тем не менее, изображения, полученные СРГ, позволяют выделить важные вспышечные структуры — например, обнаружить высокие вспышечные пет- ли, невидимые на высоких частотах [Altyntsev et al., 2016; Fleishman et al., 2016]. У большинства умеренных и слабых микроволновых всплесков макси- мум спектра находится в полосе частот СРГ или близко к ней [Nita et al., 2004].

Для изучения сложных солнечных явлений перспективен совместный анализ наблюдений на СРГ и данных других диапазонов солнечного излучения. В качестве примера дан предварительный анализ эруптивной вспышки C2.2 16 марта 2016 г. До начала этого события на СРГ проводились регу- лярные работы. Антенны были наведены на Солнце около 06:36 UT. СРГ наблюдало это событие на частоте 6 ГГц с интервалом между изображениями 1 с.

На рис. 10 представлена эрупция протуберанца вблизи западного лимба, наблюдавшаяся в канале 304 Å телескопа Atmospheric Imaging Assembly (AIA) [Lemen et al., 2012] космической обсерватории SDO. Дугами разных стилей на рис. 10, a−g обведен верхний край поднимающегося протубе- ранца, а на рис. 10, d штриховой кривой показана аппроксимация его ускорения, достигшего 1.8 км/с2.

S.V. Lexovoi, А.Т. Altyntsev, A.A. Kochanov, et al.
Сибирский радиогелиограф: первые результаты

Рис. 4. Радиоизображения Солнца, полученные СРГ (SRH — Siberian Radioheliograph) на 5.2 ГГц в интенсивности и поляризации (после чистки) во время первого отрицательного всплеска (слева) и после него (справа). Отрицательный всплеск связан с затенением северного источника у восточного лимба. По оссям указаны угловые секунды от центра солнечного диска.

Рис. 5. Наблюдения 9 августа 2016 г. Построенные по изображениям СРГ на частоте 5.2 ГГц временные профиля интенсивности (а) и поляризации (б) затеняющегося источника в сравнении с записью интегрального потока NoRP на частоте 3.75 ГГц (в) и потоком ультрафиолетового излучения в канале 304 Å для области, ограниченной рамкой на рис. 6. г. Вертикальными штриховыми линиями отмечены моменты наблюдений изображений на рис. 4. Серые вертикальные полосы обозначают интервалы, которым соответствуют изображения на рис. 6.
Рис. 6. Наблюдения 9 августа 2016 г. Изображения трех сержек, выделенные дисперсионным анализом кадров STEREO-A/EUVI 304 Å в указанных интервалах. Рамка в центре обозначает область, по которой построены временные профили на рис. 5, г. Тонкая штриховая дуга обозначает солнечный лимб, видимый со стороны STEREO-A. Толстая сплошная дуга соответствует восточному лимбу, видимому с Земли. По осям указаны угловые секунды от центра солнечного диска со стороны STEREO-A.

Рис. 7. Корреляционные графики с записью мощных вспышек 23 июля 2016 г.
Рис. 8. Корреляционные кривые двух вспышек 23 июля 2016 г. с инверсией поляризации в полосе СРГ (05:28:30–05:30:30 UT)

Рис. 9. Корреляционные кривые вспышки M7.6, записанные 18 апреля 2016 г. СРГ на 6 ГГц (а) и NoRH на 17 ГГц (б) и 34 ГГц (в)
Для сравнения на рис. 10, d приведены также временные профили жесткого рентгеновского излучения, зарегистрированного Fermi Gamma-Ray Burst Monitor [Meegan et al., 2009], и микроволнового всплеска, построенного по изображениям SDO на 6 ГГц. Подъем протуберанца начался за несколько минут до резкого начала вспышки в жестком рентгеновском и микроволновом диапазоне. Ускорение до высоких энергий основной массы электронов во вспышке, ответственных за всплеск в жестком рентгеновском и микроволновом диапазоне, явно было следствием эрупции протуберанца. Такая последовательность событий типична для эруптивных вспышек [Grechnev et al., 2015, 2016].

На рис. 11 приведены временные профили вспышек в разных диапазонах излучения: в двух каналах жесткого рентгена — Fermi/GBM (a), в микроволновом на частоте 6 ГГц — SDO/AIA 193 Å (b) и в канале ультрафиолета — SDO/AIA 304 Å (c). Последовательности временных профилей рассчитано по скользящим (бегущим) разностям изображений (из каждого текущего кадра вычитан наблюдавшийся за 48 с до него) в пределах масок, выделяющих яркие области над лентами шириной в картинной плоскости ≤4°, т. е. высотой до 3000 км (эти области видны и на изображениях в 304 Å на рис. 10, a, c). Область температурной чувствительности канаала 193 Å начинается с 0.2 МК (≤2·10^7 К). Следовательно, временной профиль на рис. 11, a относится к горячим плотным областям над вспышечными лентами, длительное последовательное подавление скользящих вычитаний. Сходство временных профилей на 6 ГГц и в канале 193 Å не оставляет сомнений. Такого сходства нет с временными профилями в канале 193 Å для каждой из отдельных областей над лентами. Следовательно, источники микроволнового излучения были рассредоточены по всей длине лент, располагались, скорее всего, в нижних частях вспышечной аркады.

Сходство микроволнового всплеска с жестким рентгеном на рис. 11, a меньше, чем с временным профилем в канале 193 Å. Быстрый рост излучения на 6 ГГц произошел почти одновременно с жестким рентгеновским, но медленное нарастание микроволнового излучения началось раньше. Начальный участок записи на 6 ГГц менее надежен из-за нерасчетных наведенных антенн CPG в начале событий; тем не менее аналогичный рост излучения в канале 193 Å подтверждает корректность записи. Второй пик после 06:39 также обнаруживается в излучении диапазона 25–50 кэВ, хотя и слабее, чем в микроволновом, но не виден в более жестком излучении 50–98 кэВ, что указывает на более мягкий спектр электронов во втором пике. Продолжительная подзарядка микроволнового всплеска вызвана, вероятно, тепловым тормозным излучением плазмы во вспышечной аркаде и излучением ускоренных электронов, захваченных в ее петлях. При указанных различиях между вспышками в микроволновом и жестком рентгеновском диапазонах имеется их общее сходство и соответствие отдельных структурных деталей. Скорее всего, источники жесткого рентгеновского излучения также были рассредоточены по длине лент, что соответствует модальным представлениям.

Комбинированный микроволновый спектр этого события на рис. 12, скомпилированный из данных спектрополариметров интегрального потока [Zhdanov, Zandanov, 2015] и NoRP, представляет серию импульсов длительностью 5–10 с и частотами спектрального максимума <10 ГГц. Ширина спектра этих импульсных всплесков во время второго пика (06:39:00–06:40:30 UT) не превышает 2–3 ГГц, являясь нетипично узкой для гиросцинхронного излучения даже при мягком спектре излучающих электронов. Различия спектров микроволновых импульсов предполагают разные их источники, подтверждая вывод об их расположении в разных местах над лентами.
Рис. 11. Временные профили жесткого рентгеновского Fermi/GBM (α), микроволнового СРГ (β) и крайнего ультрафиолетового SDO/AIA 193 Å (γ), излучения вспышки 16 марта 2016 г. Каждая точка временного профиля (γ) вычислена по разности между текущим изображением SDO/AIA в канале 193 Å и изображением, наблюдаемым на 48 с ранее в пределах ярких областей надвспышечными лентами.

Рис. 12. Динамический спектр вспышки 16 марта 2016 г. Горизонтальными линиями обозначена полоса частот СРГ.

Еще одна особенность этой вспышки — весьма скромный микроволновый поток (до 18 с.е.п.) при достаточно интенсивном всплеске в жестком рентгене. Среди причин слабости микроволнового излучения могла быть компактность его источников.

Предварительный анализ наблюдений на СРГ-48 эруптивной вспышки 16 марта 2016 г. демонстрирует, что даже с неполной антенной решеткой, ограничивающей его пространственное разрешение, совместный анализ полученных изображений с данными спектрополяриметров и других диапазонов солнечного излучения позволяет исследовать взаимосвязь эрупции и вспышки и выявить свойства неразрешаемой вспышечной конфигурации. Наблюдения на
инструментах с ограниченными пространственным разрешением и динамическим диапазоном привели к впечатлению о преобладании нетепловых процессов в простых одно- и двухлетних вскрытых конфигурациях. Эти представления трудно согласовать с наблюдениями других типов излучения (например, в крайне ультрафиолете) и известными моделями. Соответствие в рассмотренном событии различных вскрытых проявлений, наблюдаемых в разных диапазонах, согласуется с моделями и выводами последних исследований [например, Grechnev et al., 2017].

IV. ЗАКЛЮЧЕНИЕ

Наблюдения с помощью первой очереди многоволнового Сибирского радиогелиоографа демонстрируют эффективность проектных решений и их практической реализации. Т-образная антенная решетка с избыточными базами позволила реализовать быстрые и эффективные алгоритмы построения изображений Солнца без привлечения дополнительных наблюдений иных космических источников. Высокая чувствительность интерферометра \((\sim 10^{-2} \text{ с.e.p.})\) в сочетании с широким динамическим диапазоном позволяет без использования аттенюаторов наблюдать компактные источники мощных солнечных вслесков. Достоинствами СРГ являются достаточно высокое для исследования многих процессов временного разрешение (до 0.84 с в одночастотном режиме), многочастотный прием с возможностью выбора сетки рабочих частот в зависимости от программы наблюдений, возможности синтеза изображений с оптимизацией требуемых параметров (например, пространственного разрешения или чувствительности), отсутствие геометрических искажений, присущих прежнему ССРТ.

СРГ позволяет синтезировать десятки тысяч изображений Солнца в день. Методы и программные средства для синтеза и калибровки изображений и их последующего анализа частично разработаны, в том числе в наших предшествовавших исследованиях. Для решения разнообразных наблюдательных и исследовательских задач необходимы их развитие и адаптация.

Следующим шагом в развитии СРГ будет дополнение решетки до 96 антенн. Пространственное разрешение СРГ-96 достигнет 15". Дополнительные антенны уже санкционированы, в том числе на краинных антенных постах ССРТ, удаленных на 330 м от центра антенной решетки. Как показывает опыт наблюдений на ССРТ, такое разрешение позволит исследовать процессы инициации корональных выбросов массы и их распространения до высот в один-два радиуса Солнца, заполняя разрыв между наблюдениями в ультрафиолетовом и оптическом диапазонах [Uralov et al., 2002, Alissandrakis et al., 2013]. Важной задачей будет являться многоволновое наблюдение активных областей с целью верификации технологий корональной магнитографии [Nita et al., 2011].

Приведенный обзор результатов первых наблюдений, относящихся лишь к немногим из широкого круга возможных задач, показывает высокий наблюдательный потенциал нового инструмента. Предварительный анализ событий нуждается в уточнении: некоторые упомянутые наблюдательные результаты требуют осмысления. Вместе с тем, продолжающиеся наблюдения поставляют новый материал. В силу перечисленных обстоятельств привлекает интерес к развитию программно-методического комплекса СРГ и анализу поставляемых им данных.

Авторы благодарны П.М. Свидскому за полезные обсуждения. Работа выполнена при поддержке Программы 7 фундаментальных исследований пре-зидиума РАН «Экспериментальные и теоретические исследования объектов Солнечной системы и планетных систем звезд. Переходные и взрывные процессы в астрофизике», гранта РФФИ 15-02-01089 А, 15-02-03717 А, а также при поддержке ФАНО уникальной научной установки ССРТ в рамках проекта «Исследование сверхслабой солнечной активности в микроволновом диапазоне». Экспериментальные данные получены с использованием ССРТ.

СПИСОК ЛИТЕРАТУРЫ

Альтынцев А.Т., Каппапа Л.К. Введение в радиоастрономию Солнца. Иркутск: Изд. ИГУ, 2014. 203 с.

Лесовой С.В., Кобец В.С. Корреляционные кривые Сибирского радиогелиоографа // Солнечно-земная физика 2017. Т. 3, № 1. С. 17–21

Alissandrakis C.E., Kochanov A.A., Patsourakos S., Altyntsev A.T., Lesovoi S.V., Lesovaya N.N. Microwave and EUV observations of an erupting filament and associated flare and coronal mass ejections // Publications of the Astronomical Society of Japan. 2013. V. 65, N SP1, article id. S8, 10 pp.

Altyntsev A.T., Meshalkina N., Meszarosova, H., Karlicky M., Palshin V., Lesovoi S. Sources of quasi-periodic pulses in the flare of 18 August 2012 // Solar Phys. 2016. V. 291, iss. 2. P. 445–463.

Bastian T.S., Gary D.E., White S.M., Hurford G.J. Toward a frequency-agile solar radiotelescope // 18 NSO/Sacramento Peak Summer Workshop “Synoptic Solar Physics”. Sunspot, New Mexico 8–12 September 1997. P. 563 (ASP Conference Series. 1998. V. 140).

Bogod V.M., 2011, RATAN-600 radio telescope in the 24\textit{th} solar-activity cycle. I. New opportunities and tasks // Astrophys. Bull. 2011. V. 66, iss. 2. P. 190–204.

Borovik V.N. Quiet Sun from multifrequency radio observations on RATAN-600 // Lecture Notes in Phys. 1994. V. 432. P. 185–190.

Fleishman G.D., Pal’shin V.D., Meshalkina N.S., Lysenko L., Kashapova L.K., Altyntsev A.T. A Cold flare with delayed heating // Astrophys. J. 2016. V. 822, iss. 2, article id. 71. 20 p.

Gary D.E., Nita G.M., Sane N. Expanded Owens Valley Solar Array (EOVSA) tested and prototype // American Astronomical Society, AAS Meeting 220, id. 204.30 2012.

Grechnev V.V. A method to analyze imaging radio data on solar flares // Solar Phys. 2003. V. 213, iss. 1. P. 103–110.

Grechnev V.V., Lesovoi S.V., Smolkov G.Ya., Krissinel B.B., Zandanov V.G., Altyntsev A.T., Kardapolova N.N., Sergeev R.Y., Uralov A.M., Maksimov V.P., Lubyshev B.I. The Siberian Solar Radio Telescope: The current state of the instrument, observations, and data // Solar Phys. 2003. V. 216, iss. 1. P. 239–272.

Grechnev V.V., Kuz’menko I.V., Uralov A.M., Chertok M., Kochanov A.A. Microwave negative bursts as indications of connection between eruptive filaments and a large-scale coronal magnetic environment // Publications of the Astronomical Society of Japan. 2013. V. 65, N SP1, article id. S10, 9 p.
REFERENCES

Alessandrakis C.E., Kochanov A.A., Patsourakos S., Altyntsev A.T., Lesovoi S.V., Lesovoya N.N. Microwave and EUV Observations of an Erupting Filament and Associated Flare and Coronal Mass Ejections. Publications of the Astronomical Society of Japan. 2013, vol. 65, no. SP1, article id. S8, 10 p.

Altyntsev A.T., Kashapova L.K. Vvedenie v radioastronomiyu Solntsa [Introduction to Solar Radio Astronomy]. Irkutsk, IGU Publ., 2014. 203 p. (In Russian).

Altyntsev A., Meshalkina N., Meszarosova, H., Karlicky M., Palshin V., Lesovoi S. Sources of quasi-periodic pulses in the flare of 18 August 2012. Solar Phys. 2016, vol. 291, iss. 2, pp. 445–463.

Bastian T.S., Gary D.E., White S.M., Hurford G.J. Toward a frequency- agile solar radiotelescope. 18 NSF/Sacramento Peak Summer Workshop "Synosic Solar Physics". SanSpot, New Mexico–8–12 September 1997, p. 563 (ASP Conference Series. 1998, vol. 140).

Bogod V.M., 2011, RATAN-600 radio telescope in the 24th solar-activity cycle. I. New opportunities and tasks. Astrophys. Bull. 2011, vol. 66, iss. 2, pp. 190–204.

Borovik V.N. Quiet Sun from multifrequency radio observations on RATAN-600. Lecture Notes in Phys. 1994, vol. 432, pp. 185–190.

Fleishman G.D., Pal’shin V.D., Meshalkina N.S., Lysenko L., Kashapova L.K., Altyntsev A.T. A cold flare with delayed heating. Astrophys. J. 2016, vol. 822, iss. 2, article id. 71, 20 p.

Gary D.E., Nita G.M., Sane N. Expanded Owens Valley Solar Array (EOVSA) testbed and prototype. American Astronomical Society, AAS Meeting 220, id. 204.30 2012.

Grechnev V.V. A method to analyze imaging radio data on solar flares. Solar Phys. 2003, vol. 213, iss. 1, pp. 103–110.

Grechnev V.V., Lesovoi S.V., Smolkov G.Ya., Krissinel B.B., Zandanov V.G., Altyntsev A.T., Kardapilova N.N., Seese R.Y., Uralov A.M., Kochanov V.P., Labushev B.I. The Siberian Solar Radio Telescope: The current state of the instrument, observations, and data. Solar Phys. 2003, vol. 216, iss. 1, pp. 239–272.

Grechnev V.V., Kuz’menko I.V., Uralov A.M., Chertok M., Kochanov A.A. Microwave negative bursts as indications of reconnection between eruptive filaments and a large-scale coronal magnetic environment. Publications of the Astronomical Society of Japan. 2013, vol. 65, no. SP1, article id. S10, 9 p.

Grechnev V.V., Uralov A.M., Kuzmenko I.V., Kochanov A.A., Chertok M.I., Kalashnikov S.S. Responsibility of a filament eruption for the initiation of a flare, CME, and blast wave, and its possible transformation into a bow shock // Solar Phys. 2015, vol. 290. 2016, no. 12, pp. 1104–1122.

Grechnev V.V., Uralov A.M., Kiselev V.I., Kochanov A.A. Microwave and EUV Observations of an Erupting Filament and Associated Flare and Coronal Mass Ejections. Publications of the Astronomical Society of Japan. 2013, vol. 65, no. SP1, article id. S8, 10 p.

Kashapova L.K. A Tiny eruptive filament as a flux- rope progenitor and driver of a large-scale CME and wave // Solar Phys. 2016, vol. 291. 2016, no. 2, pp. 1173–1208.

Kochanov A.A., Afinogentov S.A., Prosovetov D.V., Rudenko G.V., Grechnev V.V. Imaging of the solar atmosphere by the Siberian Solar Radio Telescope at 5.7 GHz with an enhanced dynamic range // Publications of the Astronomical Society of Japan. 2013. V. 65, N SP1, article id. S19, 12 p.

Lang K.R., Willson R.F., Kile J.N., Lemen J., Strong K.T., Bogod V.M., Gelfreikh G.B., Ryabov B.I., Hafizov S.R., Abramov V.F., Tsvetkov S.V. Magnetospheres of solar active regions inferred from spectral-polarization observations with high spatial resolution // Astrophys. J. 1993. V. 419. P. 398–417.

Lemen J.R., Title A.M., Akin D.J., et al. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO) // Solar Phys. 2012. V. 275. P. 17–40.

Lesovoi S.V., Altyntsev A.T., Ivanov E.F., Gubin A.V. A 96-antenna radioheliograph // Res. Astronomy and Astrophys. 2014. V. 14. N 7. P. 864–868.

Meegan C., Licht G., Bhat P. N., et al. The Fermi Gamma-ray Burst Monitor // Astrophys. J. 2009. V. 702. P. 791–804.

Nakajima H., Nishio M., Enome S., Shiibashu K., Takano T., Hanaka Y., Torii C., Sekiguchi H., Bushimata T., Kashiwama S., Shinohara N., Irizmuyi J., Koshishi H., Kosugi T., Shiomi Y., Sawa M., Kai K. New Nobeyama Radio Heliograph // J. Astrophys. Astron. Suppl. 1995. V. 16. P. 437–442.

Nita G.M., Fleishman G.D., Jing, Yu, Lesovoi S.V., Bogod V.M., Yasnov L.V., Wang H., Gary D.E. Three-dimensional structure of microwave sources from solar rotation stereoscopy versus magnetic extrapolations // Astrophys. J. 2011. V. 737. Iss. 2. Article id. 62, 12 p.

Nita G.M., Gary D.E., Lee J. Statistical study of two years of solar flare radio spectra obtained with the Owens Valley Solar Array // Astrophys. J. 2004. V. 605. Iss. 1. P. 528–545.

Smolkov G.Ia., Pistolkors A.A., Treskov T.A., Krissinel B.B., Putlov V.A. The Siberian Solar Radio-Telescope — parameters and principle of operation, objectives and results of first observations of spatio-temporal properties of development of active regions and flares // Astrophys. Space Sci. 1986. V. 119. N 1. P. 1–4.

Uralov A.M., Lesovoi S.V., Zandanov V.G., Grechnev V.V. Dual-filament initiation of a coronal mass ejection: Observations and model // Solar Phys. 2002. V. 208. Iss. 1. P. 69–90.

Zhan D.A., Zandanov V.G. Observations of microwave fine structures by the Badary broadband microwave spectropolarimeter and the Siberian Solar Radio Telescope // Solar Phys. 2015. V. 290. P. 287–294.
