BLACK HOLE POWERED NEBULAE AND A CASE STUDY OF THE ULTRALUMINOUS X-RAY SOURCE IC 342 X-1

Dávid Cseh1, Stéphane Corbel1, Philip Kaaret2, Cornelia Lang3, Fabien Grisé2, Zsolt Paragi1,4, Anastasios Tzioumis5, Valeriu Tudose6, and Hua Feng7

1 Laboratoire Astrophysique des Interactions Multi-échelles (UMR 7158), CEA/DSM-CNRS-Université Paris Diderot, CEA Saclay, F-91191 Gif sur Yvette, France; david.cseh@cea.fr
2 Department of Physics and Astronomy, University of Iowa, Van Allen Hall, Iowa City, IA 52242, USA
3 Joint Institute for VLBI in Europe, Postbus 2, 7990 AA Dwingeloo, The Netherlands
4 MTA Research Group for Physical Geodesy and Geodynamics, P.O. Box 91, 1521 Budapest, Hungary
5 Australia Telescope National Facility, CSIRO, P.O. Box 76, Epping, NSW 1710, Australia
6 ASTRON, Oude Hoogeveensedijk 4, 7991 PD Dwingeloo, The Netherlands
7 Department of Engineering Physics and Center for Astrophysics, Tsinghua University, Beijing 100084, China

Received 2011 July 7; accepted 2012 January 21; published 2012 March 16

ABSTRACT

We present new radio, optical, and X-ray observations of three ultraluminous X-ray sources (ULXs) that are associated with large-scale nebulae. We report the discovery of a radio nebula associated with the ULX IC 342 X-1 using the Very Large Array (VLA). Complementary VLA observations of the nebula around Holmberg II X-1, and high-frequency Australia Telescope Compact Array and Very Large Telescope spectroscopic observations of NGC 5408 X-1 are also presented. We study the morphology, ionization processes, and the energetics of the optical/radio nebulae of IC 342 X-1, Holmberg II X-1, and NGC 5408 X-1. The energetics of the optical nebula of IC 342 X-1 is discussed in the framework of standard bubble theory. The total energy content of the optical nebula is \(6 \times 10^{52}\) erg. The minimum energy needed to supply the associated radio nebula is \(9.2 \times 10^{50}\) erg. In addition, we detected an unresolved radio source at the location of IC 342 X-1 at the VLA scales. However, our Very Long Baseline Interferometry (VLBI) observations using the European VLBI Network likely rule out the presence of any compact radio source at milliarcsecond (mas) scales. Using a simultaneous Swift X-ray Telescope measurement, we estimate an upper limit on the mass of the black hole in IC 342 X-1 using the “fundamental plane” of accreting black holes and obtain \(M_{BH} \leq (1.0 \pm 0.3) \times 10^6\) \(M_\odot\). Arguing that the nebula of IC 342 X-1 is possibly inflated by a jet, we estimate accretion rates and efficiencies for the jet of IC 342 X-1 and compare with sources like S26, SS433, and IC 10 X-1.

Key words: accretion, accretion disks – black hole physics – ISM: bubbles – ISM: jets and outflows – X-rays: binaries

Online-only material: color figures

1. INTRODUCTION

Ultraluminous X-ray sources (ULXs) are variable non-nuclear X-ray sources in external galaxies with luminosities greatly exceeding the Eddington luminosity of a stellar-mass compact object, assuming isotropic emission (Colbert & Mushotzky 1999; Kaaret et al. 2001). The irregular variability, observed on timescales from seconds to years, suggests that ULXs are binary systems containing a compact object that is either a stellar-mass black hole with beamed (King et al. 2001; Körding et al. 2002) or super-Eddington emission (Begelman 2002), or an intermediate-mass black hole (IMBH). IMBHs have been invoked in contexts ranging from the remnants of Population III (Madau & Rees 2001) stars to the formation of supermassive black holes (SMBHs; Ptak & Griffiths 1999); SMBHs may form through the hierarchical merger of lower mass black holes (e.g., Ebisuzaki et al. 2001).

Several ULXs show emission-line optical nebulae, which can be used as a calorimeter to infer the total intrinsic power of the ULX (Pakull & Mirioni 2002, 2003; Russell et al. 2011). In general, the nebulae around ULXs are either photoionized due to the high X-ray and UV luminosity of the compact object (Pakull & Mirioni 2002, 2003; Kaaret et al. 2004; Kaaret & Corbel 2009; Moon et al. 2011) or shock-ionized driven by jets, outflows, and/or disk winds (Pakull & Mirioni 2002; Roberts et al. 2003; Abolmasov et al. 2007). In several cases, two-component optical line profiles are present, indicating a mixture of the two mechanisms or alternatively the narrow line could be due to the shock precursor. Another common feature is the presence of the high-ionization He ii emission line. It can have various origins: the nebula, the donor, the accretion disk, or a disk wind. The ionizing photon rate needed to produce the narrow high-excitation He ii line of the nebulae in photoionized sources indicates that their X-ray emission is at most mildly beamed (Pakull & Mirioni 2002, 2003; Kaaret et al. 2004; Kaaret & Corbel 2009; Moon et al. 2011).

Only a handful of radio detections of ULXs have been made so far, including NGC 5408 X-1 (Kaaret et al. 2003; Soria et al. 2006a; Lang et al. 2007), Ho II X-1 (Miller et al. 2005), and M16 (van Dyk et al. 1994; Lacey et al. 1997), if not considered a supernova remnant (SNR; Matonick & Fesen 1997). Most of these sources show large nebulae (>∼50 pc) that are likely powered by continuous energy input from the ULX. Shock-dominated ones are probably powered in the same manner as the W50 nebula is powered by the Galactic binary SS433 (Dubner et al. 1998). However, the ULX radio nebulae require greater total energy content than W50. A similarly powerful nebula, S26, was found by Pakull et al. (2010) in optical and by Soria et al. (2010) in radio. For other possible radio associations with ULXs, we refer the reader to Sánchez-Sutil...
et al. (2006), Soria et al. (2006b), and Mezcua & Lobanov (2010).

The X-ray spectra of ULXs share some similar properties with the canonical black hole states of Galactic black hole binaries (GBHBs; Kaaret & Feng 2009; Soria 2011). A number of ULXs show state transitions (Kubota et al. 2001; Feng & Kaaret 2006, 2009; Godet et al. 2009; Grise et al. 2010; Servillat et al. 2011). In GBHBs during the X-ray hard state, the sources are associated with self-absorbed compact jets (Corbel et al. 2004; Fender et al. 2004). Given the similarities between ULXs and GBHBs, it is interesting to investigate the presence of such compact jets for ULXs with hard X-ray spectra.

In this paper, we present new radio and optical observations of two ULXs that are associated with large-scale nebulae: Holmberg II X-1 (Ho II X-1) and NGC 5408. In addition, we present discovery of a radio nebula associated with IC 342 X-1. In Section 2, we describe observations, data analysis, and results. The energetics of the optical and radio nebulae and the jet properties of IC 342 X-1 are investigated in Section 3. In Section 4, we briefly summarize our results.

2. OBSERVATIONS, ANALYSIS, AND RESULTS

2.1. VLA Observations of IC 342 X-1 and Ho II X-1

Observations of IC 342 X-1 and Ho II X-1 were carried out using the C- and B-array configurations of the Very Large Array (VLA) of the National Radio Astronomy Observatory (NRAO). The observations were made at 4.8 and 8.5 GHz (VLA program code: AL711) and the details are summarized in Table 1. Data calibration, combination in the (u, v) plane, and imaging were carried out using the NRAO Astronomical Image Processing System (AIPS; e.g., Greisen 2003). We adjusted the Robust weighting parameter between 0 and −2 to bring out the fine-scale radio emission and parameters that are identified in image captions.

2.1.1. Radio Detection of IC 342 X-1

Figure 1 shows the 5 GHz VLA B- and C-array combined image of IC 342 X-1 with Robust = 0 weighting overlaid on the Hubble Space Telescope (HST) image of Feng & Kaaret (2008). Extended radio emission is present surrounding the position of IC 342 X-1. Diffuse emission is detected at up to the 10σ level with a peak intensity of ∼120 μJy beam⁻¹ and the estimated total flux density in the nebula is ∼2 mJy. The corresponding luminosity at a distance of 3.9 Mpc (Tikhonov & Galazutdinova 2010) is $L_{\text{neb}} = 1.8 \times 10^{35}$ erg s⁻¹, with $L = n L_\nu$. We find that the size of the nebula is 16″ × 8″, which corresponds to 300 pc × 150 pc. We estimate the volume of the nebula by taking a sphere with a diameter of 12″. Comparing the 5 GHz radio map to the HST image, the optical and the radio nebulae are both elongated in the NE–SW direction, possibly exhibiting a shock front. The size of the radio nebula is consistent with the size of the optical nebula (Pakull & Mirioni 2002; Grise et al. 2006; Feng & Kaaret 2008).

Figure 2 illustrates a more uniformly weighted image of the 5 GHz radio emission surrounding IC 342 X-1. We weighted the radio image with a robust parameter of −2 in order to resolve out the diffuse nebular emission and show the fine-scale structure. The strongest radio emission appears toward the NE of the ULX and is coincident with the strongest Hα emission. The radio

Table 1

Source	Instrument	Configuration	Central Frequency	On-source Time	Observation Date	Flux
IC 342 X-1	VLA	B	4.8 GHz	3.2 h	2007 Dec 6	2.0 ± 0.1 mJy
IC 342 X-1	VLA	C	4.8 GHz	3.2 h	2008 Apr 25	a
Ho II X-1	VLA	B	4.8 GHz	3.2 h	2007 Dec 8	613 ± 61 μJy
Ho II X-1	VLA	C	8.5 GHz	3.2 h	2008 Apr 21	395 ± 40 μJy
NGC 5408 X-1	ATCA	6D	5.5 GHz	12 h	2009 Aug 23	226 ± 33 μJy
NGC 5408 X-1	ATCA	6D	9 GHz	12 h	2009 Aug 23	137 ± 36 μJy
NGC 5408 X-1	ATCA	6D	17.9 GHz	12 h	2009 Aug 23	76 ± 20 μJy
NGC 5408 X-1	ESO VLT	...	575–731 nm	0.7 h	2010 Apr 12	...
IC 342 X-1	EVN	...	1.6 GHz	12 h	2011 Jun 15	≤21 μJy b
IC 342 X-1	Swift/XRT	PC	0.3–10 keV	9.4 ks	2011 Jun 15	2.67 c

Notes.

a B and C configuration data were combined.
b 3σ upper limit.
c Unabsorbed flux in units of 10⁻¹² erg cm⁻² s⁻¹.

Figure 1. VLA 5 GHz image of IC 342 X-1 overlaid on the Hα HST image. Contours represent radio emission and are drawn at 3, 4, 5, 6, 7, 8, 9, and 10 times the rms noise level of 11 μJy beam⁻¹. The peak brightness is 122.4 μJy beam⁻¹. The resolution of the image is 2″.5 × 1″.6 at P.A. = −13° and the image was made with Robust = 0 weighting. The sign “>” marks the X-ray position of the ULX.

(A color version of this figure is available in the online journal.)
Figure 2. VLA 5 GHz image of IC 342 X-1 overlaid on the Hα HST image shown in Figure 1. This image was made with Robust = −2 weighting and therefore the largest extended features are missing. The resolution is 1.6′ × 1.1′ at P.A. = −19°. Contours represent radio emission and are drawn at 3, 4, 5, and 6 times the rms noise level of 15 μJy beam−1. The peak brightness is 96.3 μJy beam−1. The sign “>” marks the X-ray position of the ULX. (A color version of this figure is available in the online journal.)

emission extends farther to the NE in regions of little or no Hα emission.

Figure 2 also reveals an unresolved radio source at the location of IC 342 X-1. This unresolved source is detected with a flux density of ~96.3 μJy at the 6.5σ level. The corresponding luminosity is 8.8 × 1033 erg s−1. The HST position of the ULX is R.A. = 03h45m55.61, decl. = +68°04′55″.30 (J2000.0) with the 90% positional errors of 0.2 arcsec (Feng & Kaaret 2008). We obtained the position of the radio peak of R.A. = 03h45m55.54, decl. = +68°04′55″.18 using the maxfit task of AIPS. The distance between the two positions is ~0.4 arcsec. Using the AIPS task jmfit, we estimate a radio positional uncertainty of ~0.1 arcsec at 1σ. Therefore, the optical and radio positions are consistent using 90% positional errors.

Figure 4. Radio spectrum of the nebula of Ho II X-1. The best-fit spectral index is α = −0.53 ± 0.07 for a flux density, S ∝ να.

2.1.2. Multi-frequency Radio Observations of Ho II X-1

The radio nebula of Ho II X-1 was first detected at 1.4 and 5 GHz by Miller et al. (2005). Here, we have conducted observations of Ho II X-1 at 5 and 8 GHz in order to constrain the shape and spectrum of the radio nebula. Figure 3 shows the VLA images of Ho II X-1 overlaid on HST He II and Hβ images from Kaaret et al. (2004). On the left, the unweighted (Robust = 0) 5 GHz B-array image is shown. The right panel shows a Robust = −1 image made at 8 GHz using the C-array configuration. The asymmetric morphology of the nebula might indicate some outflows or ambient density gradient to the west.

Previously, the radio spectrum was not well constrained; Miller et al. (2005) had high uncertainties on the flux at 5 GHz of Ho II X-1. However, we now have flux density measurements at three frequencies (1.4, 8, and 5 GHz, using the image from Miller et al. 2005 at 1.4 GHz) and Figure 4 illustrates the fitted three-point spectral index of α = −0.53 ± 0.07, (S ∝ να). The radio spectrum is consistent with optically thin, synchrotron emission, further constraining the nebular nature of the radio
counterpart of this ULX nebula. The integrated flux density of the nebula is 1.05 ± 0.10 mJy, 613 ± 61 mJy, and 395 ± 40 mJy at 1.4, 5, and 8 GHz.

2.2. Swift/XRT and EVN Observations of IC 342 X-1

2.2.1. VLBI Observation

We conducted simultaneous X-ray and radio measurements of the VLA core (see Section 2.2.1) to test its compactness in order to estimate the mass of the black hole (see Section 3.4) with the minimum uncertainty. To check whether the VLA core is consistent with a compact jet at 10 mas scale, we carried out European VLBI Network (EVN) observations (EVN program code: EC032) at 1.6 GHz. The 12 hr observations were accommodated on 2011 June 15 from 03:30 to 15:30 (UT), simultaneously with the Swift/X-ray Telescope (XRT) observations. The participating Very Long Baseline Interferometry (VLBI) stations were Effelsberg (Germany), Jodrell Bank Lovell Telescope, Cambridge (United Kingdom), Medicina, Noto (Italy), Toruń (Poland), Onsala (Sweden), Urumqi (P.R. China), Svetloe, Zelenchukskaya, Badary (Russia), and the phased array of the Westerbork Synthesis Radio Telescope (The Netherlands). The aggregate bitrate per station was 1024 Mbps. There were eight 8 MHz intermediate frequency channels in both left and right circular polarizations.

The source was observed in phase-reference mode. This allowed us to increase the coherent integration time spent on the target source and thus to improve the sensitivity of the observations. Phase referencing involves regularly interleaving observations between the target source and a nearby, bright, and compact reference source. The delay, delay rate, and phase solutions derived for the phase-reference calibrator (J0344+6827) were interpolated and applied to the target within the target-reference cycle time of 5 minutes. The target source was observed for 3.5 minute intervals in each cycle.

AIPS was used for the VLBI data calibration following standard procedures (Diamond 1995). The visibility amplitudes were calibrated using system temperatures and antenna gains measured at the antennas. Fringe fitting was performed for the calibrator sources using 3 minute solution intervals. The calibrated visibility data were exported to the Caltech Difmap program (Sheperd et al. 1994) used to make a naturally weighted VLBI image. The achieved 1σ rms noise level was 7 μJy beam$^{-1}$ and we did not detect any source above the 3σ noise level in a field of view of 700 × 700 mas. Therefore, the VLA core is likely to be a clump of emission from the nebula. Our EVN observation places a 3σ upper limit on the flux density of $F_{\nu} \leq 21$ μJy and on the luminosity of the putative compact jet of $\leq 1.9 \times 10^{33}$ erg s$^{-1}$.

2.2.2. Swift Observation

The Swift XRT obtained 9394 s of good exposure in its photon-counting (PC) mode on 2011 June 15, from 02:57:31 to 17:47:47 (UT). We retrieved level two event files and used the default data screening methods as described in the XRT user’s guide. We extracted an X-ray spectrum for the source using a circular extraction region with a radius of 20 pixels (corresponding to 90% of the point spread function at 1.5 keV); background was estimated from a nearby circular region with a radius of 40 pixels and subtracted. We fitted the X-ray spectrum using the XSPEC (Arnaud 1996) spectral fitting tool and the sxpc08i12s6_20070901v101.rmf response matrix.

Fitting the spectrum in the 0.3–10 keV band with an absorbed power law leads to a good fit with χ^2/dof = 14.7/25, with a photon index of $\Gamma = 1.57\pm0.26$ and an equivalent hydrogen absorption column density of $N_{\text{H}} = 4.5^{+1.0}_{-1.5} \times 10^{21}$ cm$^{-2}$. The absorbed flux in the 0.3–10 keV band was 1.97 × 10$^{-12}$ erg cm$^{-2}$ s$^{-1}$. The source clearly has a hard X-ray spectrum with a flux slightly lower than any of the previous XMM-Newton observations. The column density is consistent within the errors with the XMM-Newton values from Feng & Kaaret (2009). The unabsorbed flux is 2.67 × 10$^{-12}$ erg cm$^{-2}$ s$^{-1}$, corresponding to an unabsorbed luminosity of 4.86 × 1039 erg s$^{-1}$ in the 0.3–10 keV band at a distance of 3.9 Mpc.

2.3. ATCA Observations of NGC 5408 X-1

The radio nebula of NGC 5408 X-1 was the first detected radio counterpart of an ULX (Kaaret et al. 2003). Later, it was confirmed that it is an extended source (Lang et al. 2007). We obtained deep high-frequency ATCA Compact Array Broadband Backend (CABB; Wilson et al. 2011) observations to better constrain the morphology and the high-frequency part of the radio spectra of the nebula at 5.5, 9, and 18 GHz.

We observed NGC 5408 X-1 with the CABB-upgraded ATCA in configuration 6D (baselines up to 6 km) on 2009 August 23 (program code: C1159). The data were obtained simultaneously at 5.5 and 9 GHz and at 17 and 19 GHz with 12 hr on-source integration time for both sets (Table 1). We observed in phase-reference mode; the phase calibrator was 1424+418 and the primary calibrator was PKS 1934-638. The data reduction was performed using the miriad software package (Sault et al. 1995). We combined the 17 GHz and 19 GHz images in order to enhance sensitivity.

Figure 5 shows the ATCA images of the nebula surrounding NGC 5408 X-1 at 5.5, 9, and 18 GHz. The 5.5 GHz image was
uniformly weighted, and the 9 and 18 GHz maps were naturally weighted in order to achieve the best sensitivity. Plotting the geometric mean beam size versus the flux density, Lang et al. (2007) found that the turnover indicates that the radio emission is resolved with an angular size of 1.5–2.0 arcsec. Our new radio images show that the size of the nebula is consistent with the previously estimated angular size. At 9 and 18 GHz the source extent is only slightly larger than the corresponding beam sizes, but the elongated contours suggest that the nebula is resolved. This is typical for a weak, optically thin, steep-spectrum source, i.e., going toward higher frequencies, one gains resolution while the relative sensitivity decreases.

We used all available measurements to fit the radio spectrum. Figure 6 shows previous measurements (Lang et al. 2007) and the relative sensitivity decreases. i.e., going toward higher frequencies, one gains resolution while This is typical for a weak, optically thin, steep-spectrum source, but the elongated contours suggest that the nebula is resolved. The fitting reduces steps can be found in Cseh et al. (2011). Here we use a trace width of 8 pixels corresponding to 2′′ in order to accept a large fraction of the nebular emission. Figure 8 shows the optical spectrum of NGC 5408 X-1. This portion of the optical spectrum shows the forbidden sulphur and nitrogen lines and the Hα line. The lines are at wavelengths of 6589.9 ([N ii]), 6573.7 (Hα), 6654.4 ([N ii]), 6727.6 ([S ii]), and 6742.0 ([S ii]) in units of Å. The corresponding fluxes are 0.46±0.02, 33.1±0.1, 1.07±0.02, 1.57±0.01, and 1.15±0.01 in the units of 10−16 erg s−1 cm−2. The Gaussian FWHMs of the lines represent the instrumental resolution of ~2.4 Å.

2.4. ESO VLT Observations of NGC 5408 X-1

As one can gain information about the ionization process from the line flux ratios of Hα versus the forbidden sulphur lines, we conducted Very Large Telescope (VLT) observations. VLT FORS-2 observations of NGC 5408 X-1 were obtained on 2010 April 12 using the GRIS_1200R grism with a slit width of 1′0 covering the spectral range 5750–7310 Å with dispersion 0.38 Å pixel−1 and spectral resolution λ/λ_λ = 2140 at the central wavelengths, respectively. The observation block consisted of three 849 s exposures with a 12 pixel offset along the spatial axis between successive exposures. CCD pixels were binned for readout by two in both the spatial and spectral dimensions. The average seeing for our new observations was 0.62 arcsec. Data reduction steps can be found in Cseh et al. (2011). Here we use a trace width of 8 pixels corresponding to 2′′ in order to accept a large fraction of the nebular emission.

Figure 8 shows the optical spectrum of NGC 5408 X-1. This portion of the optical spectrum shows the forbidden sulphur and nitrogen lines and the Hα line. The lines are at wavelengths of 6589.9 ([N ii]), 6573.7 (Hα), 6654.4 ([N ii]), 6727.6 ([S ii]), and 6742.0 ([S ii]) in units of Å. The corresponding fluxes are 0.46±0.02, 33.1±0.1, 1.07±0.02, 1.57±0.01, and 1.15±0.01 in the units of 10−16 erg s−1 cm−2. The Gaussian FWHMs of the lines represent the instrumental resolution of ~2.4 Å.

3. DISCUSSION

3.1. The Optical Nebula Around IC 342 X-1

In this section, we use models developed for expanding bubbles to calculate parameters of the nebula based on the observed optical properties. We follow the formalism developed by Weaver et al. (1977) and Ostriker & McKee (1988) describing the hydrodynamic structure of a bubble. These formulae are valid for shock-dominated sources, i.e., jet- or wind-inflated bubbles, but not for photoionized bubbles. As IC 342 X-1 is considered to be a shock-dominated source (Pakull & Mirioni 2003; Roberts et al. 2003; Abolmasov et al. 2007), we can apply the well-known self-similar expansion law as a function of time, τ:

$$ R = \left(\frac{125}{154\pi} \right)^{1/5} \left(\frac{L_{\text{tot}}}{\rho_0} \right)^{1/5} \tau^{3/5}, $$

where L_{tot} is the mechanical luminosity (corresponding to a jet or a wind or an initial explosion energy) and R is the radius of the bubble expanding with velocity $v_{\text{exp}} = \frac{R}{\tau}$ into the interstellar medium (ISM). The mass density ρ_0 is assumed to be constant and $\rho_0 = \mu m_p n$, where $\mu = 1.38$ is the mean atomic weight, m_p is the proton mass, and n is the hydrogen number density. The characteristic age of the bubble is $\tau = 3R/5v_{\text{exp}}$. The kinetic energy carried by the swept-up mass in the expanding shell is $E_k = (15/77)L_{\text{tot}}$, while the energy emitted (the
cooling) by the fully radiative shock expanding into the ISM is $E_{\text{rad}} = (27/77) L_{\text{tot}}$. The thermal energy of the gas between the reverse shock and the swept-up shell is $E_{\text{th}} = (5/11) L_{\text{tot}}$. Thus, the total energy is $E_{\text{tot}} = E_k + E_{\text{rad}} + E_{\text{th}} = L_{\text{tot}}$.

Feng & Kaaret (2008) found that the bright main body of the nebula has an angular diameter of about 6" in the Hα image. Pakull & Mirioni (2003), Grisé et al. (2006), and Feng & Kaaret (2008) report an additional elongated structure to the southwest. Considering the entire structure of the bubble, we estimate the volume of the optical nebula by taking a sphere with a diameter of $\sim 10''$, which corresponds to ~ 190 pc at a distance of 3.9 Mpc (Tikhonov & Galazutdinova 2010).

The high flux ratio between the forbidden [S II] lines at 6716 Å and 6732 Å and the Balmer Hα line indicates the presence of shock-ionized gas. Abolmasov et al. (2007) infer a shock velocity of $v_{\text{exp}} \simeq 20$–100 km s$^{-1}$, however, line ratios of a standard library of radiative shock models, e.g., He II versus Hβ is 0.036 ± 0.015, suggest a shock velocity of $\simeq 100$ km s$^{-1}$ (Allen et al. 2008). Using this velocity, we find the characteristic age of the bubble is $\tau = 5.6 \times 10^5$ yr. Feng & Kaaret (2008) found that the color–magnitude diagram suggests that the minimum stellar age in the environment of the ULX is 10 Myr. The characteristic age of the nebula is much shorter and might suggest that the nebula formation is not related to the formation of the central black hole or black hole progenitor, instead it might represent the actively accreting phase of the binary.

Recalling the scaling of the total radiative flux and the flux in the Balmer lines (Dopita & Sutherland 1996; Abolmasov et al. 2007)\footnote{We note that there is a typo in Equation (3.3) of Dopita & Sutherland (1996) (and consequently in Equation (1) of Abolmasov et al. 2007), pointed out to us by M. W. Pakull. The numerical factor should read 1.14×10^{-3} rather than 2.28×10^{-3} as the maximum radiative flux is $(1/2) \rho v^3$ and not $\rho v^3.$}:

$$L_{\text{H}\beta} = 6.53 \times 10^{-3} \left(\frac{v_{\text{exp}}}{100 \text{ km s}^{-1}} \right)^{-0.59} L_{\text{rad}}. \quad (2)$$

So, the total shock power represented as radiative losses is $L_{\text{rad}} = 1.2 \times 10^{39}$ erg s$^{-1}$, using the Hβ flux of Abolmasov et al. (2007) of 4.3×10^{15} erg s$^{-1}$ cm$^{-2}$. As a consequence, the total mechanical luminosity is $L_{\text{tot}} = (77/27)L_{\text{rad}} = 3.4 \times 10^{39}$ erg s$^{-1}$, and the total kinetic power carried by the swept-up mass is $L_k = 6.6 \times 10^{38}$ erg s$^{-1}$. Similarly, the internal (thermal) luminosity is $L_{\text{th}} = 1.5 \times 10^{39}$ erg s$^{-1}$. The energy we see at $t = \tau$ is $E_{\text{tot}} = L_{\text{tot}} \tau = 6.0 \times 10^{52}$ erg. From Equation (1), one can derive that $n = 1.0$ cm$^{-3}$ by substituting R, τ, and L_{tot}. The optical swept-up mass is then $\dot{M} = \mu n m_p V = 2.4 \times 10^{38}$ g or $M = 1.2 \times 10^5 M_\odot$.

IC 342 X-1 is sometimes considered as an SNR (e.g., Roberts et al. 2003). Here we intend to show that the total energy content does not depend significantly on the interpretation of the

![Figure 7](image7.png) 18 GHz ATCA 6D-array, naturally weighted image of NGC 5408 X-1 overlaid on the [O III] HST image. The sign “>” marks the X-ray position of the ULX. The north direction is up. (A color version of this figure is available in the online journal.)

![Figure 8](image8.png) VLT optical spectrum of the nebula around NGC 5408 X-1. The dereddened flux is plotted vs. wavelength and no redshift correction was applied.

\begin{equation}
E_{\text{rad}} = (27/77) L_{\text{tot}}. \nonumber
\end{equation}
origin of the bubble. An SNR in the pressure-driven snowplow stage—i.e., radiative dominant phase following the adiabatic phase—has an initial explosion energy, E_i (Cioffi et al. 1988):

$$E_i = 6.8 \times 10^{53} \left(\frac{R}{\text{pc}} \right)^{3.16} \left(\frac{v_{\text{exp}}}{\text{km s}^{-1}} \right)^{1.38} \left(\frac{n}{\text{cm}^{-3}} \right)^{1.16} \text{ erg.} \hspace{1cm} (3)$$

We have treated the metallicity correction factor, $\zeta_{n,1}$, as 1 for clarity (Cioffi et al. 1988; Thornton et al. 1998). Substituting R, v, and n—and taking $n = 1.0$ cm$^{-3}$ (see above)—we obtain $E_i \approx 6.0 \times 10^{52}$ erg. We note that a similar formula of Chevalier (1974) provides $E_i = 5.0 \times 10^{52}$ erg. This initial energy is remarkably high, although somewhat expected as a single/simple SNR will not remain visible once it has expanded beyond $R \approx 100$ pc with a canonical $E_i \approx 10^{51}$ erg (Matonick & Fesen 1997; Roberts et al. 2003). The estimated energy is in good agreement with the total energy content of the bubble, E_{tot}, within model uncertainties. We note that an SNR nature for the nebula around IC 342 X-1 is strongly challenged by its high shock velocity coupled with its large size (Pakull & Grisé 2008).

3.2. The Radio Nebula Around IC 342 X-1

When radiation is via synchrotron emission, one can assume equipartition between the energy of relativistic particles and the magnetic field. We calculate the minimum total energy of the radio nebula that corresponds to equipartition (Longair 1994):

$$E_{\text{min}} = 3 \times 10^{13} \eta^{4/7} \left(\frac{V}{\text{m}^3} \right)^{3/7} \left(\frac{v}{\text{Hz}} \right)^{2/7} \left(\frac{L_v}{\text{W Hz}^{-1}} \right)^{4/7} \text{ erg,} \hspace{1cm} (4)$$

where $\eta - 1$ is the ratio of energy in protons to relativistic electrons, V is the volume, v is the observing frequency, and L_v is the synchrotron luminosity. As is customary, we do not account for relativistic protons, therefore $\eta - 1 = 0$ (e.g., Fender et al. 1999). Substituting the corresponding values of $V \approx 1.79 \times 10^{56}$ m3, $v = 5 \times 10^8$ Hz, $L_v = 3.64 \times 10^{18}$ W Hz$^{-1}$, and a filling factor of unity, we find the energy required to power the nebula is $E_{\text{min}} = 9.2 \times 10^{55}$ erg. This suggests that the radio-emitting material carries a fraction $\sim 10^{-2}$ of the initial energy. For comparison, the energy carried by mildly relativistic material in normal Type Ic supernovae has been suggested to be at most 10^{-4} (Paragi et al. 2010), while for the jet-inflated bubble around the extragalactic microquasar S26, this fraction is a few times 10^{-3} (Soria et al. 2010). These fractions suggest that most of the energy is stored in protons, nuclei, and non-relativistic bulk motion.

We calculate the magnetic field strength corresponding to the minimum energy condition (Longair 1994):

$$B_{\text{min}} = 1.8 \times 10^{10} \left(\frac{\eta L_v}{V} \right)^{2/7} v^{1/7} \mu \text{G} \hspace{1cm} (5)$$

where the units and inputs are the same as above. We obtain $B_{\text{min}} = 7.4 \mu \text{G}$.

When energy loss is due to synchrotron radiation, the lifetime of an electron is (Longair 1994; Tudose et al. 2006)

$$\tau_{\text{sy}} = 2.693 \times 10^{13} \left(\frac{v}{\text{Hz}} \right)^{-1/2} \left(\frac{B_{\text{min}}}{\mu \text{G}} \right)^{-3/2} \text{ yr.} \hspace{1cm} (6)$$

Substituting $v = 5 \times 10^8$ Hz and $B_{\text{min}} = 7.4 \mu \text{G}$, we find $\tau_{\text{sy}} = 18.8$ Myr. So, consistently, the cooling timescale is ~ 34 times longer than the age of the bubble and ~ 2 times higher than the minimum age of the ULX stellar environment.

We note that the value of η, the energy ratio of relativistic protons to electrons, can be estimated from the high-energy part of the SNR spectra (Abdo et al. 2010; Acciari et al. 2011). Assuming IC 342 X-1 has a ratio similar to that found for a scenario in which the high-energy gamma-rays from the Tycho SNR are produced by leptons (Acciari et al. 2011), then $\eta - 1 = 10^2$ and the minimum energy obtained from Equation (4) is increased by a factor of $\eta^{4/7} = 10^{100/7} = 13.9$. This would mean that $E_{\text{min}}/E_{\text{tot}} = 0.2$. Instead, if the gamma-ray emission from Tycho is from hadrons, then $\eta - 1 = 2.5 \times 10^3$ and $E_{\text{min}}/E_{\text{tot}}$ would be ≈ 1.3. Thus, if the high-energy gamma-ray emission of shock-inflated bubbles originates from the same electron distribution that produces the radio, then via the η parameter the value of E_{min} could increase, but interestingly does not violate the total energy obtained from the optical.

3.3. The Radio and Optical Nebulae of Ho II X-1 and NGC 5408 X-1

3.3.1. Ho II X-1

Our new, higher resolution VLA radio observations clearly reveal that the morphology of the radio nebula follows the structure of the optical one (Figure 3). The radio nebula is resolved with a size of $5.5 \times 2.7^\prime$, corresponding to ~ 81 pc \times 40 pc. One could argue that this morphology reflects either a jet activity or an outflow. However, Pakull & Mirioni (2002) and Kaaret et al. (2004) showed that the nebula of Ho II X-1 is consistent with photoionization by the central compact source. On the other hand, a complex velocity structure in the inner regions of the optical nebula indicates the impact of the central object also in the form of winds or jets (Lehmann et al. 2005). As the [S II] versus Hα ratio is $\ll 1$ (Abolmasov et al. 2007), i.e., collisional excitation of the nebula is negligible, the morphology probably reflects an outflow rather than a well-collimated jet. This outflow is either relatively weaker than a jet—thus preventing shock ionization—or the outflow is more isotropic than collimated. We note that weakly collimated outflows, in addition to jets, have been directly observed in SS433 with VLBI (Paragi et al. 1999). In addition, the asymmetry of the outflow is probably due to the fact that the nebula is density bounded to the east and south of the central object (Pakull & Mirioni 2002; Kaaret et al. 2004).

Furthermore, the minimum energy required to power the radio nebula of Ho II X-1 is 2.6×10^{59} erg with a magnetic field strength of 13 μG and the synchrotron lifetime is $\tau_{\text{sy}} = 25$ Myr (Miller et al. 2005). This energy requirement is a factor of 35 less than needed for IC 342 X-1, a shock-dominated source, which might also support a weak or uncollimated outflow.

Interestingly, Grisé et al. (2010) studied an X-ray state transition of Ho II X-1 and found that it is difficult to interpret the thermal component of the X-ray spectra as disk emission or thermal Comptonization. On the other hand, this thermal component might be linked to the complex velocity structure of the nearby environment. We note that disk wind signatures have been found for GRS1915+105 (Neilsen & Lee 2009) and SS433 (Fabrika 2004), i.e., for sources likely accreting above their Eddington-limit. Searching for relativistic disk lines and/or Fe K absorption line variation in the X-ray spectrum of ULXs might help disentangle whether some of these ULXs are similar to high-accretion rate Galactic binaries.
Probably, the nebula is powered only by photoionization without which is much smaller than the optical nebula of IC 342 X-1. The energy needed to power the radio nebula of IC 342 X-1 is radiatively inefficient and perhaps advection dominated or self-absorbed compact jets are ubiquitous in the X-ray hard state of X-ray binaries. Using the correlation with the minimum scatter (Körding et al. 2006a),

\[
\log \left(\frac{M}{M_\odot} \right) = 1.02^{-1} \left(1.59 \log \left(\frac{L_X}{\text{erg s}^{-1}} \right) - \log \left(\frac{L_R}{\text{erg s}^{-1}} \right) - 10.15 \right),
\]

and our radio and X-ray measurements, one can estimate the upper limit of the mass of the black hole in IC 342 X-1. However, we must consider the intrinsic rms scatter in the measured fundamental plane relation of 0.12 dex within 1σ. Substituting the upper limit of radio luminosity of the putative compact jet \(L_r = 1.9 \times 10^{33} \text{ erg s}^{-1}\) and the simultaneously measured X-ray luminosity \(L_X = 4.86 \times 10^{39} \text{ erg s}^{-1}\), we estimate the mass of the black hole to be \(M_{BH} \approx (1.0 \pm 0.3) \times 10^3 M_\odot\). This limit is valid only if IC 342 X-1 enters the canonical hard state. We note that further observations could help place tighter constraints on the black hole mass or help test if ULXs exhibiting hard X-ray spectra are, indeed, in the radiatively inefficient, hard X-ray state (see Section 3.5.1).

3.3.2. NGC 5408 X-1

Figure 7 shows a shell-like optical morphology of NGC 5408 X-1 and a filled structure of the radio nebula with a maximum intensity near the ULX. The optical nebula is resolved, with a diameter of \(\approx 2.5\) pc (Grisèle et al. 2012), which is much smaller than the optical nebula of IC 342 X-1. Probably, the nebula is powered only by photoionization without any jet or outflow activity. Our optical spectra also suggest this, as the [S II] versus Hz line ratio is \(\ll 1\) (Figure 8). Furthermore, the energy needed to power the radio nebula of NGC 5408 X-1 is \(3.6 \times 10^{49} \text{ erg} \) with an equipartition field of \(16\mu G\) and a synchrotron cooling time of \(\tau_s = 20 \text{ Myr}\) (Lang et al. 2007), which is, similar to Ho II X-1, a factor of 25 less than the energy needed to power the radio nebula of IC 342 X-1.

3.4. Upper Limit on the Mass of the BH in IC 342 X-1

Self-absorbed compact jets are ubiquitous in the X-ray hard states of GBHBs (Corbel et al. 2004; Fender et al. 2004). IC 342 X-1 was found to have a hard X-ray spectrum in all available XMM-Newton and Chandra observations covering the period from 2001 to 2006 (Feng & Kaaret 2009, 2008) as well as in our recent Swift/XRT measurement (see Section 2.4.1), thus the presence of compact jets is expected if the hard X-ray spectrum is equivalent to the canonical hard state of GBHBs.

In addition, the morphology of the radio nebula is somewhat similar to the system SS433/W50 and may suggest a jet orientation along an axis slightly east of north (Feng & Kaaret 2008). As we pointed out earlier, an unresolved radio source is detected at the location of the ULX. This morphology might argue against the notion that the compact emission is the hot spot at the end of the jet pointing close to our line of sight. To test the compactness of this emission, we conducted VLBI measurements using the EVN (Section 2.2) and we did not detect any source above the 3σ noise level, thus it is likely to be consistent with a clump of emission from the nebula and might be an effect of a steep radio spectrum. We can set an upper limit on the flux of the putative compact jet of \(1.9 \times 10^{33} \text{ erg s}^{-1}\), using our 3σ noise level of 21 \(\mu Jy\).

When black holes are in the hard state, i.e., their accretion is radiatively inefficient and perhaps advection dominated or jet dominated, a relationship holds between X-ray luminosity, radio luminosity, and black hole mass (Merloni et al. 2003; Falcke et al. 2004). This relationship, the fundamental plane of black holes, has been studied on a wide mass range from black hole X-ray binaries to low luminosity active galactic nuclei. Using the correlation with the minimum scatter (Körding et al. 2006b),

\[
\log \left(\frac{M}{M_\odot} \right) = 0.60^{-1} \left(0.56 \log \left(\frac{L_X}{\text{erg s}^{-1}} \right) - \log \left(\frac{E_{min}}{\text{erg}} \right) - 9.2 \right),
\]

Table 3 shows the main characteristics of the specific sources: the average X-ray luminosity \(L_X\), the jet power estimated from the environment \(Q_j\), the mass of the black hole \(M_{BH}\), the total energy content \(E_{tot}\), the lifetime of the bubble \(\tau\), and the minimum energy estimated from the radio counterpart of the nebula \(E_{min}\).

Name	\(L_X\) (erg s\(^{-1}\))	\(Q_j\) (erg s\(^{-1}\))	\(M_{BH}\) (\(M_\odot\))	\(L_{tot} \tau = E_{tot}\) (erg)	\(\tau\) (yr)	\(E_{min}\) (erg)
IC 342 X-1	\(1.6 \times 10^{39}\)	\(3.4 \times 10^{39}\)	\(\leq 1.0 \times 10^{34}\)	\(6.0 \times 10^{52}\)	\(5.6 \times 10^5\)	\(9.2 \times 10^{50}\)
S26	\(6.2 \times 10^{38}\)	\(5 \times 10^{38}\)	n/a	\(3.16 \times 10^{53}\)	\(2 \times 10^5\)	\(10^{50}\)
IC 10 X-1	\(1.5 \times 10^{38}\)	\(1.27 \times 10^{38}\)	23–34	\(2 \times 10^{52}\)	\(5 \times 10^5\)	n/a
SS433	\(\sim 10^{38}\)	\(2 \times 10^{38}\)	16	\(2 \times 10^{51}\)	\(2 \times 10^5\)	\(10^{49}\)

Notes: The table shows the average X-ray luminosity \(L_X\), the time-averaged jet power estimated from the environment \(Q_j\), the mass of the black hole \(M_{BH}\), the total energy content \(E_{tot}\), the lifetime of the bubble \(\tau\), and the minimum energy estimated from the radio counterpart of the nebula \(E_{min}\). SS433 (Kirschner & Chevalier 1980; Begelman et al. 1980; Dubner et al. 1998; Blundell et al. 2008; Perez & Blundell 2009; Fabrika 2004). S26 (Pakull et al. 2010; Soria et al. 2010). IC 10 X-1 (Lozinskaya & Moiseev 2007; Bauer & Brandt 2004).

\(^{a}\) Estimated using the fundamental plane.

\(^{b}\) This value was calculated using Equation (4) using the parameters found by Dubner et al. (1998): a radius of \(\sim 30\) pc, a distance of 3 kpc, a radio flux density of 71 Jy at 1.4 GHz, and taking a spectral index of \(-0.48\) between 85 MHz and 5 GHz. We note that this value is two orders of magnitude larger than that quoted by Dubner et al. (1998), however consistent with the value of Begelman et al. (1980).
argue against the formation of the black hole in a supernova explosion.

Considering S26, the X-ray photon index is $\Gamma = 1.4$ (Soria et al. 2010), consistent with a source being in the hard state. However, no radio core was detected with a 3\,σ upper limit of 0.03 mJy, which is one-third of the peak intensity of IC 342 X-1, and the total jet power of S26 is an order higher than for IC 342 X-1 (Table 3). Using the fundamental plane (Equation (7)), we obtain an upper limit on the mass of $M \simeq (1.0 \pm 0.4) \times 10^7 M_\odot$. Given that $Q_j \propto M$ in the hard state (Körönd et al. 2006b, 2008), and assuming similar accretion efficiencies for IC 342 X-1 and S26, then one can calculate on the basis of the ratios of the jet powers that the average mass accretion rate of S26 is ~ 15 times higher than that of IC 342 X-1.

IC 10 X-1 has an X-ray photon index of $\Gamma = 1.83$, potentially being in the hard state (Bauer & Brandt 2004). Using the fundamental plane and adopting the average X-ray luminosity of 1.5×10^{38} erg s$^{-1}$ and a mass of $\sim 30 M_\odot$ (Table 3), the expected core radio flux is then $\sim 10 \mu Jy$ at a distance of 0.7 Mpc. Thus, the source could be detected with e-MERLIN or the EVLA.

3.5.1. Jet Characteristics, Accretion Rates, and Efficiencies

In this and the following sections we investigate the possibility that the nebula around IC 342 X-1 is powered by a jet and the consequences regarding the jet properties.

The elongated morphology of the nebula and its shock-ionized nature are indicative of jet inflation. If the nebula is inflated by a jet, then the total power available in the bubble has to be equal with the time-averaged total jet power, i.e., $Q_j = L_{\text{tot}}$, derived from the optical bubble (Pakull et al. 2010; Soria et al. 2010). We note that calculating the jet power using the minimum energy (E_{min}) derived from the radio bubble would lead to an underestimation. This could be either due to a mild deviation from equipartition, resulting in $E_{\text{radio,tot}} / E_{\text{min}} = 10 \sim 100$ (e.g., Paragi et al. 2010), or due to the fact that the kinetic power associated with the bulk motion is also transferred to thermal ions (Soria et al. 2010).

In general, the total jet power is a constant fraction (f) of the available accretion power (however, see Coriat et al. 2011 for possible variation of f). Thus, we can write

$$Q_j = fQ_{\text{acc}} = fM_{\text{acc}} c^2, \quad f < 1,$$

where f is typically in the range of 10^{-3} to 10^{-1} (Falcke & Biermann 1995, 1999).

Taking a constant rate of energy input that is characterized by the power of the jet, the rest-mass transport along the jet, M_j, is (Kaiser & Alexander 1997)

$$M_j = \frac{Q_j}{(\gamma - 1)c^2}.$$ (9)

Taking a minimum Lorentz factor of $\gamma = 2$ (Mirabel & Rodríguez 1999; Fender 2003), we find $M_j \simeq 6.0 \times 10^{-8} M_\odot$ yr$^{-1}$ (3.8×10^{18} g s$^{-1}$).

Körönd et al. (2008) found that the total jet power could be estimated from the flux of the compact jet as

$$Q_j \simeq 7.2 \times 10^{36} \left(\frac{L_{\text{jet,radio}}}{10^{30} \text{erg s}^{-1}}\right)^{12/17} \text{erg s}^{-1}.$$ (10)

This relationship was found for FR I and FR II radio galaxies and scaled to Cyg X-1. (See Gallo et al. 2005) and Russell et al. (2007) for the jet power estimation of Cyg X-1. Substituting the total jet power obtained from the optical nebula ($Q_j = 3.4 \times 10^{39}$ erg s$^{-1}$), we find that the expected average luminosity of the putative radio core would be 6.1×10^{33} erg s$^{-1}$. Not detecting a compact jet with an upper limit of 1.9×10^{32} erg s$^{-1}$ could mean that either its flux is variable, and currently below our detection limit but with an average above, or the hard X-ray spectrum does not represent the canonical hard state of GBHBs.

In addition, it is possible to estimate the accretion rate, for hard state objects, based on the luminosity of the compact radio jet (Körönd et al. 2006b, 2008, and references therein):

$$M \simeq 4 \times 10^{17} \left(\frac{L_{\text{jet,radio}}}{10^{30} \text{erg s}^{-1}}\right)^{12/17} \text{g s}^{-1}.$$ (11)

For IC 342 X-1, we obtain an upper limit, due to the fact that we do not detect a compact jet, of $M \lesssim 8.2 \times 10^{15}$ g s$^{-1}$ ($1.3 \times 10^{-6} M_\odot$ yr$^{-1}$). This rate is close to the Eddington rate for a $100 M_\odot$ compact object. Comparing the accretion rate to the jet mass-loss rate of $M_j \simeq 3.8 \times 10^{18}$ g s$^{-1}$ leads to the conclusion that the jet efficiency is $f \gtrsim 0.046$. This would be a typical value for a jet efficiency and could be consistent with the assumption of Körönd et al. (2008) of $f = 10^{-4}$ for obtaining the relationship of Equation (11).

Let us compare IC 342 X-1 to the peculiar sources SS433 and GRS1915+105. The jet mass flow rate in SS433 is $M_j = 5 \times 10^{-7} M_\odot$ yr$^{-1}$ and the available accretion rate is $M = 10^{-4} M_\odot$ yr$^{-1}$ (Perez & Blundell 2009; Fabrika 2004), so the jet efficiency is $f = 5 \times 10^{-3}$, which is also within the typical range for black hole jets. Comparing the accretion rate of IC 342 X-1 to SS433, we find $M_g \lesssim 1 / M_{\text{SS433}} \gtrsim 10^{-2}$. In contrast, the accretion rate of IC 342 X-1 might be an order of magnitude higher than the rate of GRS 1915+105 of $\sim 10^{19}$ g s$^{-1}$ (e.g., Rushton et al. 2010). It is interesting to note that if one takes the lifetime of the surrounding bubble, and assumes a constant accretion rate (Bagelman 2002), then the compact object in SS433 could accrete $\sim 20 M_\odot$. During the lifetime of the nebula, the compact object in IC 342 X-1 could accrete only $\lesssim 1 M_\odot$. This comparison of accretion rates suggests that there is no need to invoke super-Eddington accretion for IC 342 X-1 if the mass of the black hole is above $\simeq 100 M_\odot$.

4. CONCLUSIONS

We studied the radio and optical nebulae of three ULXs. One of these ULXs, IC 342 X-1, is a newly discovered radio association.

1. We confirmed that the radio spectra of the nebulae surrounding Ho II X-1 and NGC 5408 X-1 are consistent with optically thin synchrotron emission.
2. We estimated the energy needed to supply both the optical and radio nebulae around IC 342 X-1. The energy needed, 6×10^{52} erg, is ~ 2 orders of magnitude higher than the explosion energy of a supernova. By comparing the age of the bubble to the stellar environment, we found that the nebula is much younger, indicating that the nebula formation is not necessarily related to the formation of the black hole progenitor.
3. We estimated that the minimum energy needed to power the radio nebula of IC 342 X-1 is 9.2×10^{50} erg, at least an order of magnitude higher than that of Ho II X-1 and NGC 5408 X-1. The fraction of energy carried by relativistic material is relatively high.
4. In addition to the discovery of a radio nebula around IC 342 X-1, we found a radio component unresolved on VLA scales that was not detected with VLBI. This puts an upper limit on the flux density of a compact jet. The ULX was found with a hard X-ray spectrum in observations covering ~10 yr. Use of the “fundamental plane” of accreting black holes, which is valid for hard state objects, would place an upper limit on the mass of the black hole in IC 342 X-1 of (1.0 ± 0.3) × 10^3 M_☉.

5. According to the above properties of IC 342 X-1, we argued that the nebula is possibly inflated by a jet. We found that the calculated time-averaged jet power, jet efficiency, and available accretion power could be consistent with the nebula being inflated by a jet.

In summary, the energetics of the surrounding nebula along with the possible jet properties and accretion rate support the idea that the nebula surrounding IC 342 X-1 could be an inflated bubble driven by the jet from the central black hole.

We thank the referee, M. W. Pakull, for the constructive comments that improved the quality of the paper. The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement number ITN 215212 “Black Hole Universe.” P.K. and F.G. acknowledge partial support from NASA grant NNX10AF86G. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. Based on observations made with ESO Telescopes at the La Silla or Paranal Observatories under program ID 385.D-0782(A). Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Institute. STScI is operated by the association of Universities for Research in Astronomy, Inc. under the NASA contract NAS 5-26555. The Australia Telescope is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. The European VLBI Network is a joint facility of European, Chinese, South African, and other radio astronomy institutes funded by their national research councils.

Facilities: VLA, VLT:Antu, ATCA, EVN, Swift, HST

REFERENCES
Abdo, A. A., Ackermann, M., Ajello, M., et al. 2010, ApJ, 710, L92
Abolmasov, P., Fabrika, S., Sholukhova, O., & Afanasiev, V. 2007, Astrophys. Bull., 62, 36
Acciari, V. A., Aliu, E., Arlen, T., et al. 2011, ApJ, 730, L20
Allen, M. G., Groves, B. A., Dopita, M. A., Sutherland, R. S., & Kewley, L. J. 2008, ApJS, 178, 20
Arnaud, K. A. 1996, in ASP Conf. Ser. 101, Astronomical Data Analysis

The Astrophysical Journal, 749:17 (11pp), 2012 April 10

Cseh et al.

Diamond, P. J. 1995, in ASP Conf. Ser. 82, Very Long Baseline Interferometry and the VLBA, ed. J. A. Zensus, P.J. Diamond, & P.J. Napier (San Francisco, CA: ASP), 227
Dopita, M. A., & Sutherland, R. S. 1996, ApJS, 102, 161
Dubner, G. M., Holdaway, M., Goss, W. M., & Mirabel, I. F. 1998, AJ, 116, 1842
Ebisuzaki, T., Makino, J., Tsuru, T. G., et al. 2001, ApJ, 562, L19
Fabrika, S. 2004, Astrophys. Space Phys. Rev., 12, 1
Falcke, H., & Biermann, P. L. 1995, A&A, 293, 665
Falcke, H., & Biermann, P. L. 1999, A&A, 342, 49
Falcke, H., Körding, E., & Markoff, S. 2004, A&A, 414, 895
Fender, R. P. 2003, MNRS, 340, 1353
Fender, R. P., Belloni, T. M., & Gallo, E. 2004, MNRS, 355, 1105
Fender, R. P., Garrington, S. T., McKay, D. J., et al. 1999, MNRS, 304, 865
Feng, H., & Kaaret, P. 2006, ApJ, 650, L75
Feng, H., & Kaaret, P. 2008, ApJ, 675, 1067
Feng, H., & Kaaret, P. 2009, ApJ, 696, 1712
Gallo, E., Fender, R., Kaiser, C., et al. 2005, Nature, 436, 819
Godet, O., Barret, D., Webb, N. A., Farrell, S. A., & Gehrels, N. 2009, ApJ, 705, L109
Greisen, E. W. 2003, in Information Handling in Astronomy—Historical Vistas, ed. A. Heck (Astrophysics and Space Science Library, Vol. 285; Dordrecht: Kluwer), 109
Grisé, F., Pakull, M., & Motch, C. 2006, in Proc. The X-ray Universe 2005, ed. A. Wilson (ESA-SP 604; Noordwijk: ESA), 451
Grisé, F., Kaaret, P., Feng, H., Kajava, J. J. E., & Farrell, S. A. 2010, ApJ, 724, L148
Grisé, F., Kaaret, P., Corbel, S., et al. 2012, ApJ, 745, 123
Körding, E., Falcke, H., & Corbel, S. 2006a, A&A, 456, 439
Körding, E., Falcke, H., & Markoff, S. 2002, A&A, 382, L13
Körding, E., Fender, R., & Migliari, S. 2006b, MNRS, 369, 1451
Körding, E. G., Jester, S., & Fender, R. 2008, MNRS, 383, 277
Kubota, A., Mizuno, T., Makishima, K., et al. 2001, ApJ, 547, L119
Lacey, C., Durić, N., & Goss, W. M. 1997, ApJ, 109, 417
Lang, C. C., Kaaret, P., Corbel, S., & Mercer, A. 2007, ApJ, 666, 79
Lehmann, I., Becker, T., Fabrika, S., et al. 2005, A&A, 431, 847
Longair, M. S. 1994, High Energy Astrophysics, Vol. 2 (2nd ed.; Cambridge: Cambridge Univ. Press), 296
Lozinskaya, T. A., & Moiseev, A. V. 2007, MNRS, 381, L26
Loz, P. A., & Rees, M. J. 2001, ApJ, 551, 27
Matonick, D. M., & Fesen, R. A. 1997, ApJS, 112, 49
Merloni, A., Heinz, S., & Di Matteo, T. 2003, MNRAS, 345, 1057
Mezzacca, M., & Lobanov, A. P. 2010, Astron. Nachr., 332, 379
Miller, N. A., Mushotzky, R. F., & Neff, S. G. 2005, ApJ, 623, 109
Mirabel, I. F., & Rodríguez, L. F. 1999, ARA&A, 37, 409
Moon, D., Harrison, F. A., Cenko, S. B., & Shariff, J. A. 2011, ApJ, 731, L32
Neilsen, J., & Lee, J. C. 2009, Nature, 458, 481
Ostriker, J. P., & McKee, C. F. 1988, Rev. Mod. Phys., 60, 1
Pakull, M., & Grisé, F. 2008, in AIP Conf. Proc. 1010, A Population Explosion: The Nature & Evolution of X-ray Binaries in Diverse Environments, ed. R. M. Bandyopadhyay, S. Watcher, D. Gelino, & C. R. Gelino (Melville, NY: AIP), 303
Pakull, M., & Mirioni, L. 2002, arXiv:astro-ph/0202488
Pakull, M., & Mirioni, L. 2003, RevMexAA (Conf. Ser.), 15, 197
Pakull, M. W., Soria, R., & Motch, C. 2010, Nature, 466, 209
Paragi, Z., Taylor, G. B., Kouveliotou, C., et al. 2010, Nature, 463, 516
Paragi, Z., Vermeulen, R. C., Fejes, I. et al. 1999, A&A, 348, 910
Perez, M. S., & Blundell, K. M. 2009, MNRS, 397, 849
Ptak, A., & Griffiths, R. 1999, ApJ, 517, 85
Russel, T. P., & McKee, C. F. 1988, Rev. Mod. Phys., 60, 1
Sakamoto, Y., & Pooley, G. 2006, ApJ, 640, 662
Sánchez-Salú, J. R., Munoz-Arjona, A. J., Martí, J., et al. 2006, A&A, 452, 739
Sault, R. J., Teuben, P. J., & Wright, M. C. H. 1995, in ASP Conf. Ser. 77, Astronomical Data Analysis Software and Systems IV, ed. R. A. Shaw, H. E. Payne, & J. J. E. Hayes (San Francisco, CA: ASP), 433
Servillat, M., Farrell, S. A., Lin, D., et al. 2011, ApJ, 743, 6
Shepherd, M. C., Pearson, T. J., & Taylor, G. B. 1994, BAAS, 26, 987
Soria, R. 2011, Astron. Nachr., 332, 330
Soria, R., Fender, R. P., Hannikainen, D. C., Read, A. M., & Stevens, I. R. 2006a, MNRAS, 368, 1527
Soria, R., Kuncic, Z., Broderick, J. W., & Ryder, S. D. 2006b, MNRAS, 370, 1666
Soria, R., Pakull, M. W., Broderick, J. W., Corbel, S., & Motch, C. 2010, MNRAS, 409, 541
Thornton, K., Gaulditz, M., Janka, H.-Th., & Steinmetz, M. 1998, ApJ, 500, 95
Tikhonov, N. A., & Galuzutdinova, O. A. 2010, Astron. Lett., 36, 167
Tudose, V., Fender, R. P., Kaiser, C. R., et al. 2006, MNRAS, 372, 417
van Dyk, S. D., Sramek, R. A., Weiler, K. W., Hyman, S. D., & Virden, R. E. 1994, ApJ, 425, L77
Weaver, R., McCray, R., Castor, J., Shapiro, P., & Moore, R. 1977, AJ, 218, 377
Wilson, W. E., Ferris, R. H., Axtens, P., et al. 2011, MNRAS, 416, 832
Yang, H., & Skillman, E. D. 1993, AJ, 106, 1448