Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
An updated knowledge of Black seed (Nigella sativa Linn.): Review of phytochemical constituents and pharmacological properties

Md Faruque Ahmad a,*, Fakhruddin Ali Ahmad b, Syed Amir Ashraf c, Hisham H. Saad a, Shadma Wahab d, Mohammed Idreesh Khan e, M. Ali f, Syam Mohan g, Khalid Rehan Hakeem h,*, Md Tanwir Athar j, k, **

a Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Saudi Arabia
b Department of Laboratory Medicine Al-Hada and Taif Military Hospital, Saudi Arabia
c Dept. of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Saudi Arabia
d College of Pharmacy, King Khalid University, Abha, Saudi Arabia
e Department of Clinical Nutrition, College of Applied Health Sciences in Arras, Qassim University, Saudi Arabia
f College of pharmacy, Dept. of Pharmacognosy, Jazan University, Saudi Arabia
gh Medical Research Center, Jazan University, Jazan, Saudi Arabia
hi Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
ig Bioactive Natural Product Laboratory, Hamdard University, India
jh Scientific Research Center, Prince Sultan Military Medical City, Riyadh, Saudi Arabia

ARTICLE INFO

Keywords:
Black Seed
N. sativa
Phytochemistry
Pharmacological properties
Antioxidant

ABSTRACT

N. sativa (N. sativa) has been used since ancient times, when a scientific concept about the use of medicinal plants for the treatment of human illnesses and alleviation of their sufferings was yet to be developed. It has a strong religious significance as it is mentioned in the religious books of Islam and Christianity. In addition to its historical and religious significance, it is also mentioned in ancient medicine. It is widely used in traditional systems of medicine for a number of diseases including asthma, fever, bronchitis, cough, chest congestion, dizziness, paralysis, chronic headache, back pain and inflammation. The importance of this plant led the scientific community to carry out extensive phytochemical and biological investigations on N. sativa. Pharmacological studies on N. sativa have confirmed its antidiabetic, antitussive, anticancer, antioxidant, hepatoprotective, neuroprotective, gastroprotective, immunomodulator, analgesic, antimicrobial, anti-inflammatory, spasmolytic, and bronchodilator activity. The present review is an effort to explore the reported chemical composition and pharmacological activity of this plant. It will help as a reference for scientists, researchers, and other health professionals who are working with this plant and who need up to date knowledge about it.

1. Introduction

N. sativa belongs to family Ranunculaceae and it is possibly one of the most significant medicinal plants in history. It is mentioned in different historical and religious text books. In southern Asia, the seed of this plant is popularly known as ‘Kalonji’ in the middle east most common name is ‘habbat us sauda’ and popular name of this plant in English is ‘black cumin’ (Gilani et al., 2004; Tavakkoli et al., 2017).

The seed of this plant is used in ancient medicine for a number of ailments including back pain, asthma, fever, bronchitis, cough, chest congestion, dizziness, paralysis, chronic headache, inflammation, infertility, and other gastrointestinal disorders like dyspepsia, flatulence, diarrhea, and dysentery (Durmuskahya and Ozturk, 2013; Gholamnezhad et al., 2016; Nasir et al., 2014; Shah, 1966). Additionally, N. sativa seed oil is used for the remedy of an abscess, nasal ulcer, swollen joint, orchitis and eczema. N. sativa oil is also used in combination with honey for asthmatic problems, bronchopasms and chest congestion (Gholamnezhad et al., 2016; Nasir et al., 2014). In ancient literature, N. sativa is also attributed as an analgesic, liver tonic, diuretic, appetite stimulant, analgesic and digestive (Gilani et al., 2004;
The review includes a total of 8 clinical trials. An attempt was made to document relevant literature that is only focused on *N. sativa* and pharmacological properties; was made using keywords such as engines. Papers from between 1966 and 2017 were included. The search divided into 3-7 united follicles. Each follicle contains numerous black are found in the form of inflated capsules. The capsules are further seeds which are oval in shape and black measuring about 1 mm in diameter (Fig. 1) (Gholamnezhad et al., 2016; Randhawa et al., 2005).

3. Plant description

The *N. sativa* plant is a green colour with finely divided linear leaves. The flower is pale blue and white in colour with 5-10 petals. The fruits are found in the form of inflated capsules. The capsules are further divided into 3-7 united follicles. Each follicle contains numerous black seeds which are oval in shape and black measuring about 1 mm in diameter (Fig. 1) (Gholamnezhad et al., 2016; Randhawa et al., 2005).

3.1. Scientific name and classification

It is a plant of the family Ranunculaceae. This family is also known as buttercup or crowfoot. It is comprised of over 2,000 known species of flowering plants in 43 genera, which is distributed all over the world. The largest genera are Ranunculus. It comprises 600 species that also includes *N. sativa*.

3.2. Synonym

The seeds of the plants are known as ‘Black cumin’ in English, In Arab countries, they are known as ‘Habba Al-Sauda’ or ‘Habba Al-Barakah’. The popular Urdu name of this plant is ‘Kalonji’. It is known as ‘Siyah Danch’ and Cork out in Persian and Turkish respectively. The plant is also known as Love-in-a-mist, Habatul Barakah, Sonez, Krishana, Jiraka and Sidadanah (Sultan et al., 2012).

3.3. Distribution

N. sativa is native to Africa and South west Asia. It is also grown in India, Bangladesh, Turkey, Pakistan, Sri Lanka, Syria and other Mediterranean regions. High quality seeds are known to come from Egypt as Egypt has the most suitable environment for growing this plant (Naz, 2011).

4. Traditional and Religious significance of *N. sativa*

N. sativa has a long religious and historical background and is mentioned in various religious literature. It is mentioned in the old testament of Bible and is found in the book of Isaiah where it is mentioned as “ketzah” a spice for bread and cake that can be used in many ways (Naz, 2011). It is mentioned as Melanthoin and Gith in old literature (Rahmani and Aly, 2015). It is also mentioned in the Chinese and Indian Traditional medicine. It has been used to treat various disease from thousands of years ago and known as a vital drug in Indian medicine (Sharma et al., 2001).

The *N. sativa* has been discussed in the Traditional Arab and Islamic Medicine (TAIM) with the name “Habb-e-Sauda”. It is known as prophetic medicine as use of this seed has been mentioned by prophet (SAW). It has been mentioned in the book of Bukhari that “*N. sativa* is healing of all the diseases (Bukhari 5687)”.

5. Chemical constituents

The first report of the chemical components has been documented in the 1880s. It was reported by Greenish et al that it is composed of oils, proteins, carbohydrates and fibres (Greenish, 1880). There have been many studies to find out the chemical nature of *N. sativa* and it was found that the medicinal value of *N. sativa* is mainly due to the presence of its quinone constituent which is also known as thymoquinone (TQ) (Sahak et al., 2016). TQ is the main constituent of the volatile oil and has a variety of pharmacological properties such as hepatoprotective (Hassanein et al., 2016; Laskar et al., 2016; Saheb et al., 2016), anti-inflammatory (Abd-Elbaset et al., 2017; Shaarani et al., 2017), antibacterial (Goel and Mishra, 2018), antioxidant (Erol et al., 2017), fungicidal (Almshawit and Macreadie, 2017), nephroprotective (Koth et al., 2018) and anticancer (Almoyad, 2018; Majdalawi et al., 2017; Shaarani et al., 2017). There is also literature showing evidence for the molecular mechanism of this molecule (Gholamnezhad et al., 2016). Other components found in the *N. sativa* includes p-cymene, carvacrol, thymohydroquinone (THQ), dihydrothymoquinone (DHTQ), α-thujene, thymol, t-anethole, β-pinene, α-pinene, and γ-terpinene (Sahak et al., 2016). The important constituents of the *N. sativa* have been summarized in Table 1 and the chemical structure has been presented in Fig. 2.

6. The pharmacological activity of *N. sativa*

N. sativa has been reported to have a variety of pharmacological activities, which are categorized as follows.

6.1. Antimicrobial activity

6.1.1. Antibacterial effect

Thymohydroquinone obtained from the volatile oil of *N. sativa* has a high significant effect against gram-positive microorganisms, including *Staphylococcus aureus*. Diethyl-ether extract of *N. sativa* was investigated to possess the concentration-dependent inhibitory effect on gram-positive bacteria *S. aureus* and gram-negative bacteria *Pseudomonas aeruginosa* and *Escherichia coli* (Aljabre et al., 2015). *N. sativa* showed an additive effect with various drugs such as doxycycline, chloramphenicol, erythromycin, nalidixic acid and lincomycin (Hassan and Hatem, 1991). In the management of neonates with staphylococcal pustular skin infections, *N. sativa* extract demonstrated almost similar results to topical antibiotic mupirocin (Rafati et al., 2014). *N. sativa* exhibited promising outcomes against many multi-drug-resistant gram positive and gram negative bacteria including resistant *S. aureus* and
Due to the excessive use of antifungal drugs, resistance is a widespread problem. Plant based medicines have attracted researchers as potential alternative treatments for fungal infections (Alsaiedy, 2014; Doudi et al., 2014). Antifungal activity is chiefly due to TQ of *N. sativa*. TQ, thymohydroquinone and thymol confirmed antifungal activity against dermatophytes, moulds and yeasts (Taha et al., 2010). The ether extract of *N. sativa* inhibits the growth of *Candida yeast* (Khan et al., 2003). Further, antifungal effects of *N. sativa* extracts were also seen against *C. albicans* (Moghim et al., 2015). It was reported that TQ inhibits in *in vitro Aspergillus niger* and *Fusarium solani* activity similar to the antifungal drug amphotericin-B (Al-Qurashi et al., 2007; Randhawa et al., 2005). Moderate antifungal effects were found by TQ in three main groups of dermatophytes Trichophyton, Epidermophyton and Microsporum (Abd-El-Kader and Khater, 1995). *N. sativa* ether extracts also exhibit antifungal results but produce a more favorable action in higher concentrations. Extracts inhibit 80–100% growth of the most dermatophytes in range of 40 mg/ml, while the minimum inhibitory concentration of TQ against different dermatophytes ranged from 0.125 to 0.25 mg/ml (Aljabre et al., 2005).

6.2. Cardio protective activity

Cardiovascular diseases (CVDs) that include coronary heart disease, cerebrovascular disease, heart failure, hypertension and peripheral vascular diseases are leading cause of death worldwide and it was estimated that by 2020, almost 23.6 million people are likely to die from CVD (Ahmad et al., 2013b; Ibrahim et al., 2014). Numerous cardio protective effects of *N. sativa* have been observed.

6.2.1. Antihypertensive effect

N. sativa counteracts several risks of cardiovascular diseases by its versatile pharmacological action due to its antioxidant (Leong et al., 2013), diuretic (Zaoui et al., 1999), calcium channel blocking (Boskabady et al., 2005) and cardiac depressant properties (El-Taher et al., 2003; El Tahir and Ageel, 1994; El Tahir et al., 1993). It has been reported in a randomised controlled trial of 108 patients that the consumption of *N. sativa* seed for 2 months can lower the BP in the mildly hypertensive patients (Dehkordi and Kamkham, 2008; Fellah Huseini et al., 2013).

6.2.2. Antiatherogenic effect

Globally, atherosclerosis is the most common reason for morbidity and mortality. It is a multifactorial disease with many different threats (Joshi et al., 2005). Hyperlipidemia, low-density lipoproteins (LDL), clotting factors and inflammation all collectively contribute to the development of an atherosclerotic plaque (D’Souza et al., 2007). It has been illustrated that the volatile oils of *N. sativa* and its active constituent TQ have valuable results for hyperglycaemia and hyperlipidemia (Ali and Blunden, 2003; Asgary et al., 2013). TQ has been reported to improve hyperlipidemia and protect against the development of atherosclerosis.

6.2.3. Improve endothelial function

Endothelial dysfunction is a pathological state that contributes to the pathogenesis of a number of cardiovascular diseases, diabetes mellitus, obesity, dyslipidemia, atherosclerosis and ageing. These disorders are linked with overproduction of reactive oxygen species in the arterial vessel wall (Idris-Khodja and Schini-Kerth, 2012; Vanhoutte et al., 2009). It has been found that inhibition of oxidative stress and normalization of the angiotensin system by TQ improved endothelial...
6.3. Gastroprotective activity

N. sativa oil increases gastric levels of mucin and glutathione, and decreases gastric mucosal histamine content. Therefore it can play a significant role in treating gastric ulcers induced by indomethacin and ethanol (El-Dakhakhny et al., 2000; Rifat-uz-Zaman and Khan, 2004). The pepsinogen proenzyme of pepsin is released from stomach cells and mixes with the gastric juice hydrochloric acid, and is converted to pepsin (Kanter et al., 2006; Tanaka et al., 2001). TQ stimulates pepsinogen to activate pepsin in gastric juice and exhibits protective action against gastric ulcers (Kanter et al., 2006). Anti-inflammatory result of TQ has also been reported in the treatment of gastric injury. TQ reduces neutrophil invasion via decreasing myeloperoxidase which acts as a marker of acute inflammation. The scavenging of free radicals and antioxidant activities of TQ play a significant role in the effect the plant has on gastrointestinal disorders (Magdy et al., 2012). The bioactive constituents affecting the gastric physiology are documented in Table 2.

In a comparative study between *N. sativa* seeds and a triple therapy using clarithromycin, amoxicillin, and omeprazole, it was reported *N. sativa* was clinically significant against *Helicobacter pylori* (*H. pylori*). In an experiment of 88 adult patients with positive *H. pylori* infection, *H. pylori* eradication was observed respectively 82.6%, 47.6%, 66.7% and 47.8% with triple therapy, 1 gm NS + 40 mg omeprazole, 2 gm NS + 40 mg omeprazole and 3 gm NS + 40 mg omeprazole. Eradication rate with 2 gm NS was significant in reference to 1 g and 3 gm (Salem et al., 2010).

6.4. Neuroprotective activity

The brain is susceptible to oxidative stress injury due to its high rate of oxidative metabolic action, reactive oxygen species metabolites

![Fig. 2. Important bioactive compounds of *N. sativa* Linn.](image-url)
production and a relatively high content of polyunsaturated fatty acids with low antioxidant capacity, non-replicating character of its neuronal caudal CA1 region (Sayeed et al., 2013). Flumazenil is a particular antagonist of GABA receptors of BZD site (MacDonald and Barker, 1977). It is used to find out the role of BZD receptors in controlling sugar levels particularly in diabetic patients. (Abdelmeguid et al., 2010; Houcher et al., 2007; Kanter, 2008; Sultan et al., 2014). Furthermore, it increases the numbers of islets cells, de"

6.5.1. Pancreatic cancer

Thymoquinone is the major constituent of *N. sativa* oil extract that induces apoptosis and inhibits proliferation in pancreatic ductal adenocarcinoma (PDAC) cells (Chebl et al., 2009). TQ induces proapoptotic modes and anti-inflammatory actions and acts as a novel inhibitor of pro-inflammatory pathways. The high molecular weight glycoprotein mucin 4 is abnormally expressed in cancer of the pancreas and contributes to the regulation of proliferation, differentiation and metastasis of pancreatic cancer cells. TQ exhibits a down-regulatory effect on mucin 4 in pancreatic cancer cells (Torres et al., 2010).

6.5.2. Hepatic cancer

Hepatocellular carcinoma is one of the widespread malignant diseases, and globally the number of cases has rapidly increased over the past decades. The cytotoxic action of *N. sativa* seed was exhibited on human hepatoma HepG2 cell lines following 24-hr incubation with different concentrations of the *N. sativa* extract (Thabrew et al., 2005). It was found that oral administration of TQ is useful in rising the actions of glutathione transferase and quinine reductase and acts as a potential prophylactic source against toxicity in hepatic cancer and chemical carcinogenesis (Nagi and Almakk, 2009).

6.5.3. Prostate and renal cancer

TQ has been shown to be useful for the management of hormone refractory and hormone-sensitive prostate cancer (Yi et al., 2006). TQ prevents prostate tumour growth with almost no chemotoxic side effects. It has also been reported that endothelial cells were more susceptible to thymoquinone-induced cell proliferation, cell apoptosis and cell migration inhibition in contrast to PC3 cancer cells. TQ inhibited growth of vascular endothelial factor-induced extracellular signal-regulated kinase activation.

6.6. Anti diabetic activity

Diabetes mellitus (DM) is a chronic metabolic disorder that affects 8.3% population of the world. Improper management of this disease leads to secondary diseases that include retinopathy, cataract, neuropathy and cardiac problems (Heshmati and Namazi, 2015). It has been reported that the treatment of diabetes type 2 patients with *N. sativa* seed dose of 2 gm/day for the duration of 3 months decreases postprandial glucose levels, fasting blood glucose levels, insulin resistance, as well as decreases glycosylated haemoglobin (Bamosa et al., 2010). It has also been shown that *N. sativa* seed considerably enhances high-density lipoprotein concentration (HDL-C), decreases serum total cholesterol (TC), low-density lipoprotein, cholesterol (LDL-c) and tri-glyceride (TG) levels (Bamosa et al., 2010).

N. sativa active antioxidant constituents and TQ enhance secretion of insulin via improving mitochondria energy metabolism as well as improving insulin receptors intracellular pathways (Mansi, 2005). Among all mechanisms, antioxidant mechanisms are an important way to control the hyperglycemic stage of diabetic patients. *N. sativa* enhances the antioxidant enzymes and leads to oxidative stress reduction, and consequently it facilitates pancreatic beta-cells regeneration (Abdelmeguid et al., 2010; Houcher et al., 2007; Kanter, 2008; Sultan et al., 2014). Furthermore, it increases the numbers of islets cells, declines the resistance of insulin and enhances insulin secretion (Bamosa et al., 2010; Mansi, 2005; Rchid et al., 2004; Salama, 2011). *N. sativa* and its TQ decrease gluconeogenesis, expression of gluconeogenic enzymes like glucose-6-phosphatase and fructose 1, 6-biphosphatase and hepatic glucose production, consequentially exhibit significant effect in controlling sugar levels particularly in diabetic patients. (Abdelmeguid et al., 2010; Houcher et al., 2007).

6.7. Antioxidant activity

It has been revealed that *N. sativa* extracts and essential oils possess strong antioxidant activity (Ashraf et al., 2011; Sultan et al., 2012). The antioxidant effect of TQ has been found in different diseases, including diabetes, asthma, carcinogenesis and encephalomyelitis. TQ preserves the activity of a variety of antioxidant enzymes such as glutathione peroxidase, glutathione-S-transferase and catalase and also acts as free radical and superoxide scavenger. It has been reported that TQ acts as a nephroprotective and decreases SSAT and CYP3A1 gene expression via antioxidant mechanisms (Awad et al., 2011; Mansour et al., 2002). It
reacts with GSH, NADH and NADPH and forms glutathionyl-dihydro-thymoquinone, offering evidence for potent free radical scavengers (Khalife and Lupidi, 2007). Influential chemo preventive action of TQ has been shown against MC-induced fibrosarcoma tumours due to the antioxidant activity and its interference with DNA synthesis (Badary and Gamal, 2000). Treatment with N. sativa extract prevented liver damage induced by lipid peroxidation (Meral et al., 2001). The favourable safety profile of herbal medicines is one of the reasons people often favour herbal medicines. It has been reported that a mixture of N. sativa with honey exhibits protection against methylnitrosourea-induced oxidative stress and carcinogenesis (Ahmad, 2018, 2019; Ahmad et al., 2013a; Ahmad et al., 2011; Mabrouk et al., 2002). Antioxidant properties of N. sativa ethanol extract exhibit protection from diabetes by improving antioxidant enzyme glutathione peroxidase and decreasing blood glucose levels, lipids levels (Kaleem et al., 2006).

N. sativa containing flavonoids enhance gastric mucus and strengthen mucosal immune defense by scavenging superoxide and hydroxyl free radicals (Badary et al., 2003). Inhibition of lipid peroxidation non-enzymatically has been revealed by TQ and N. sativa oil (Houghton et al., 1995). Formation of lipid peroxide and lactate dehydrogenase are suppressed by N. sativa oil even in low concentrations and increase the availability of superoxide dismutase and glutathione (GSH) simultaneously falling lipid peroxidation and free radical generation (Houghton et al., 1995; Mansoor, 2000).

6.8. Anti-dyslipidemic and anti-obesity

Dyslipidemia is a wide term covering diverse lipoprotein and lipid disorders. It exhibits a significant role in the provocation of cardiovascular ailments. The research was carried out to assess the therapeutic result of a combination of black seed with garlic in the treatment of dyslipidemia. Patients that were treated with garlic, black seed and simvastatin for 8 weeks show considerable differences between cholesterol, triglyceride, Non-HDL, and LDL levels (Hamed Ahmad Alobaidi, 2002). Antioxidant properties of N. sativa oil has a strong potentiation effect on the cellular immunity mediated by T cells, whilst suppressor activity on immunity mediated by B cells has been reported by other constituents. N. sativa stimulatory properties on cellular immunity are linked to the nature of the immune response (Salem, 2005). The effects of N. sativa and TQ on the cellular and humoral immunity have been compared and documented in Table 3. In vitro results of black seed soluble fractions on human peripheral blood mononuclear cells response to various mitogens were observed. It was found that major stimulatory results were not exhibited by components on peripheral blood mononuclear cells response to T cell mitogens phytohemagglutinin while components showed a stimulatory outcome on the peripheral blood mononuclear cells response to pooled allogeneic cells. Moreover, N. sativa fractionated proteins illustrated stimulatory activity in lymphocyte cultures (Haq et al., 1995; Salem, 2005).

Oxidative stress is one of the most important causes of T cell-mediated autoimmune disorders of the central nervous system and is important for the progression of experimental allergic encephalomyelitis (EAE) (Majdalawieh and Fayyad, 2015; Mohamed et al., 2004). This can enhance severity upon astrocyte proliferation and infiltration of inflammatory cells. TQ expresses its valuable effects against allergic encephalomyelitis (Chakrabarty et al., 2003). It has been observed that TQ treatment significantly raises glutathione levels in red blood cells and acts as a detoxifying agent due to of its defensive activity against oxidative stress linked with reactive oxygen species (ROS), as well as leading to inhibition of the infiltration of mononuclear cells in the brain and spinal cord (Majdalawieh and Fayyad, 2015; Pompella et al., 2003).

6.9. Immunomodulatory activity

The immunomodulatory effects are one of the most valuable properties of N. sativa. Active constituents of N. sativa augment the immunomodulatory properties through T cells and NK cells (El-Kadi and Kandil, 1986). Significant effects were shown with treatment of N. sativa oil in most of the participating subjects by a 55% increase in CD4 and CD8 T cell ratios and improving the function of NK cells (Haq et al., 1999). N. sativa oil has a strong potentiating effect on the cellular immunity mediated by T cells, whilst suppressor activity on immunity mediated by B cells has been reported by other constituents. N. sativa stimulatory properties on cellular immunity are linked to the nature of the immune response (Salem, 2005). The effects of N. sativa and TQ on the cellular and humoral immunity have been compared and documented in Table 3. In vitro results of black seed soluble fractions on human peripheral blood mononuclear cells response to various mitogens were observed. It was found that major stimulatory results were not exhibited by components on peripheral blood mononuclear cells response to T cell mitogens phytohemagglutinin while components showed a stimulatory outcome on the peripheral blood mononuclear cells response to pooled allogeneic cells. Moreover, N. sativa fractionated proteins illustrated stimulatory activity in lymphocyte cultures (Haq et al., 1995; Salem, 2005).

Oxidative stress is one of the most important causes of T cell-mediated autoimmune disorders of the central nervous system and is important for the progression of experimental allergic encephalomyelitis (EAE) (Majdalawieh and Fayyad, 2015; Mohamed et al., 2004). This can enhance severity upon astrocyte proliferation and infiltration of inflammatory cells. TQ expresses its valuable effects against allergic encephalomyelitis (Chakrabarty et al., 2003). It has been observed that TQ treatment significantly raises glutathione levels in red blood cells and acts as a detoxifying agent due to of its defensive activity against oxidative stress linked with reactive oxygen species (ROS), as well as leading to inhibition of the infiltration of mononuclear cells in the brain and spinal cord (Majdalawieh and Fayyad, 2015; Pompella et al., 2003).

6.10. Antihistaminic activity

Traditional use of N. sativa seeds and its active constituents have a significant value on the inflammatory disorders mediated through

Table 3

Comparison of immuno-modulatory activities of *N. sativa* Linn and Thymoquinone.

Activity	N. sativa	Thymoquinone
	Improvement of the proliferative capability of T lymphocytes and splenocytes	Improvement of number of circulating and thymus-homing CD4+ and CD8+ T lymphocytes
	Increase IL-3 secretion from PBMCs	Increase IL-2 serum level
	Elevation and suppression of IL-8 secretion from PWM-activated and un-stimulated lymphocytes	Inhibition of cytokine secretion, (IL-10, IL-12, TNFα) and DC maturation survival
Cellular immunity	Enhanced CD4 + T cell count acts as therapeutic role against HIV infection	Suppression of IL-13 and IL-5 release by mast cells
	Stimulation of CD4 + T lymphocytes	Increase total leukocyte count, chemokine expression, phagocytic action, chemotaxis
	Increase peripheral lymphocyte and monocyte counts	Inhibition of DC survival, maturation, and cytokine secretion (IL-10, IL-12, TNFα)
Humoral immunity	Decrease serum IgA, IgM levels.	Increase total immunoglobulin particularly IgGs levels as well as antibody Hemagglutination

Reference	Reference
(Badri et al., 2011; Majdalawieh et al., 2010; Swamy and Tan, 2000)	(Badri et al., 2011; Haq et al., 1995)
(Badri et al., 2011; Haq et al., 1995)	(Haq et al., 1995; Xuan et al., 2010)
(El Gazzar, 2007; Onifade et al., 2013)	(Onifade et al., 2013; Salem and Hossain, 2000)
(Fararh et al., 2004; Islam et al., 2004; Onifade et al., 2013)	(Fararh et al., 2004; Islam et al., 2004; Xuan et al., 2010)
(Haq et al., 1995; Xuan et al., 2010)	(Elbaid et al., 2011; Mohany et al., 2012; Sapmaz et al., 2016)
Calcium uptake and efflux stimulation, which can lead to a reduction in stimulation of an inhibitory effect on calcium channels (Boskabady and Shahabi, 1997), the results on muscarinic receptors (Boskabady and Sheiravi, 2002), an effect on histamine (H1) receptors (Boskabady and Sheiravi, 2002) and the ability to open potassium channels (Boskabady et al., 2004a).

Several pharmacological properties of *N. sativa* on tracheal chains have been demonstrated such as relaxant and functional antagonistic results on muscarinic receptors (Boskabady and Shahabi, 1997), the stimulation of an inhibitory effect on calcium channels (Boskabadi and Shirmohammadi, 2002), an effect on histamine (H1) receptors (Boskabady and Sheiravi, 2002) and the ability to open potassium channels (Boskabady et al., 2004a).

6.11. Anthelmintic activity

Several studies have shown that *N. sativa* and its essential oil have anthelmintic action against earthworms, tapeworms, nematodes and cestodes (Agarwal et al., 1979; Akhtar and Riffat, 1991). *N. sativa* induces oxidative stress against mature worms which was revealed by declining activities of an antioxidant enzymes, glutathione peroxidase and superoxide dismutase glutathione as well as hexokinase and glucose-6-phosphate dehydrogenase. This plays a key role in the control of the overgrowth of helminthes (Mohamed et al., 2005; Salem, 2005). It has been reported in an *in vitro* study of *N. sativa* seeds against *S. mansoni*, cercariae, miracidia and adult worms that they exhibit strong actions against the entire phases of the parasite as well as an inhibitory result on eggs. Black seeds reduce the action of glutathione peroxidase, glutathione reductase, superoxide dismutase and glutate metabolism enzymes, hexokinase and glucose-6-phosphate dehydrogenase (G6PD) and consequently exhibit oxidative stress to worms (Forouzanfar et al., 2014; Mohamed et al., 2005). Praziquantel is used as an anthelmintic medicine. It averts recently hatched insect larvae development in the body. *N. sativa* oil exhibits an additive effect in the treatment of schistosomiasis when it is given with praziquantel.

6.12. Anti-Inflammatory activity

A randomized double-blind placebo-controlled clinical trial was conducted whereby it was reported that 5 ml of *N. sativa* oil improved sperm count and motility, semen pH, semen volume, and its round cells after 2 months of treatment of infertile men (Kolahdooz et al., 2014). It has been reported that 300 mg/kg b.w of *N. sativa* seeds taken for 60 days increased the number of spermatoocytes, total sperm count and motility, weight of the reproductive organs and the number of mature leydig cells (Mohammad et al., 2009). *N. sativa* oil also demonstrated the ability to repair testicular degeneration, increase lipid peroxidation and abnormal sperms against sodium valproate testicular toxins. In relation to oxidative stress, TQ has exhibited some defensive roles such as superoxide anion scavengers, direct cytoprotective effects and androgen activities. Consequently this leads to protect sperm and semen against testicular toxins. (Hala, 2011; Mahdavi et al., 2015).

6.13. Anti-nociceptive & Anti-inflammatory activity

N. sativa produces significant anti-nociceptive & anti-inflammatory properties. *N. sativa* oil and TQ exhibit antinociceptive properties through supraspinal opioid activation. It has recommended that *N. sativa* inhibits the generation of eicosanoids in lipid peroxidation and leukocytes. They inhibit 5-lipoxygenase (5-LOX) and cyclooxygenase (COX) pathways of arachidonic acid metabolism (Pise and Padwal, 2017). In the progression of inflammatory diseases, inflammatory factors such as eicosanoids and ROS play a significant role. The anti-inflammatory properties were widely searched in two major inflammatory disorders such as allergic encephalomyelitis and ulcerative colitis (Majdalawi and Fayyad, 2015; Nieto et al., 2000). It has been found that TQ through anti-inflammatory and antioxidant properties significantly improve allergic encephalomyelitis and ulcerative colitis (Choudhary et al., 2001; Koch et al., 2000; Mahdavi et al., 2015).

6.14. Oral ulcerations and mucositis healing activity

Topical *N. sativa* oil was reported to have a good curative effect on the healing of chemically induced oral ulcers. Oral ulcers were treated with topical applications of *N. sativa* twice a day for 3 days. The results illustrated an important healing process with *N. sativa* treatment and a noticeable anti-inflammatory action (Munoz-Corcuera et al., 2009; Porter and Leao, 2005). Researchers confirmed that *N. sativa* oil enhanced the healing of ulcers and the development of pathogenic organisms at the ulcer site (Al-Douri and Al-Kazaz, 2010). In chemotherapy and radiotherapy there can be side effects of oral mucositis. In a research study, *N. sativa* has been shown to counteract the oral mucositis induced by chemotherapy and radiotherapy. Treatment with *N. sativa* reduced the histologically monitored cheek mucosal damage in mucositis (Lofty and Zayed, 2009).

The wound healing effects of 4 aqueous extracts of traditional medicinal plants that include *N. sativa*, *Pluche indica*, *Melastoma malabathricum* and *Piper sarmentosum* were reported in a study. It was observed

Table 4	Comparative studies of immunomodulatory activities of *N. sativa* Linn and Thymoquinone.		
Activity	*N. sativa*	Thymoquinone	Reference
Cellular immunity	Improvement of the proliferative capability of T lymphocytes and splenocytes	Improvement of number of circulating and thymus-homing CD4+ and CD8+ T lymphocytes	(Badr et al., 2011; Majdalawi and et al., 2010; Swamy and Tan, 2000)
	Increase IL-3 secretion from PBMCs	Increase IL-2 serum level	(Badr et al., 2011; Haq et al., 1995)
	Elevation and suppression of IL-8 secretion from PWM-activated and un-stimulated lymphocytes	Inhibition of cytokine secretion, (IL-10, IL-12, TNFα) and DC maturation survival	(Ihaq et al., 1995; Xuan et al., 2010)
	Enhanced CD4+ T cell count acts as therapeutic role against HIV infection	Suppression of IL-13 and IL-5 release by mast cells	(El Gazzar, 2007; Onifade et al., 2013)
	Stimulation of CD4+ T lymphocytes	Increase total leukocyte count, chemokine expression, phagocytic action, chemotaxis	(Onifade et al., 2013; Salem and Hossain, 2000)
	Increase peripheral lymphocyte and monocyte counts	Inhibition of DC survival, maturation, and cytokine secretion (IL-10, IL-12, TNFα)	(Fararh et al., 2004; Islam et al., 2004; Xuan et al., 2010)
Humoral immunity	Decrease serum IgA, IgM levels	Increase total immunoglobulin particularly IgG levels as well as antibody Hemagglutination	(Elbaid et al., 2011; Mohany et al., 2012; Sampaix et al., 2016)
that *N. sativa* extract exhibited a considerable improvement of human gingival fibroblasts proliferation compared with other extracts (Rahmani and Aly, 2015).

6.15. Nephroprotective activity

It has been reported in various studies that TQ demonstrates a key role in various pathogenic conditions of kidneys. TQ attenuates oxidative stress and inflammation by providing protection from various toxic agents (Benhelima et al., 2016). It reduces gentamicin-induced nephrotoxicity indexes and degenerative changes. TQ supplementation prevents acute renal failure induced by gentamicin by recovering mitochondrial function and enhancing the production of ATP. TQ during ifosfamide treatment improves the severity of ifosfamide-induced renal damage, phosphaturia, glucosuria, high serum creatinine level and urea and stabilise clearance rate of creatinine. Pyelonephritis induced oxidative damage of the kidneys can be protected by TQ administration. Also the cisplatin antitumor action is potenitated by TQ as well as it protects against nephrotoxicity induced by cisplatin (Badary et al., 1997; Darakshan et al., 2015; El Daby, 1997). It has also been reported that *N. sativa* shows a significant nephroprotective activity on paracetamol-induced nephrotoxicity (Canayakin et al., 2016).

6.16. Antiarthritic activity

It has been reported that the number of inflammatory joints and the extent of morning stiffness are improved by TQ. In a placebo-controlled study of 40 females with rheumatoid arthritis treated with *N. sativa*, TQ showed protective results against rheumatoid arthritis, and a decrease in arthritis scoring (disease activity score (DAS-28) and bone resorption were reported (Hadi et al., 2016).

7. Conclusion

Published reports clearly suggest that *N. sativa* is an important medicinal plant in the traditional system of medicine. The presence of alkaloids, coumarins, saponins, flavonoids, fixed oils and phenolics are responsible for the medicinal activity of *N. sativa*. Additionally, myristic acid, vitamins and some trace metals are also reported in the seeds of this plant which are add value to its medicinal properties. In conclusion, all the above findings strongly support the traditional uses of *N. sativa*. More clinical studies are needed to investigate the effectiveness of the plants pharmacological active constituents to overcome life threatening diseases such as acquired immunodeficiency syndrome (AIDS), various types of cancer, diabetes, cardiac disorders and the current coronavirus virus (COVID-19) outbreak. Favorable effects can be achieved from the various forms of *N. Sativa* that include black seed, powder and oil and the various benefits of different preparations need to be researched. It is essential to state here that using *N. Sativa* does not require any prescription from a physician or approval from any health governing agency. It can be suggested to health professionals, as studies already show that *N. sativa* can be used in many diseases which are commonly affect people.

Declaration of Competing Interest

The authors declare no conflict of interest among them.

Appendix A. Supplementary data

Supplementary data associated with this article can be found in the online version, at https://doi.org/10.1016/j.jhermed.2020.100404.

References

Abd-El-Rader, H., Seddek, S., El-Shansawany, A., 1995. In vitro study of the effect of some medicinal plants on the growth of some dermatophytes. Ann Ist Vet Med J 6 (7), 36–42.

Abd-Elhanet, M., Arafah, E.S.A., El Sherbiny, G.A., Abdel-Baky, M.S., Eldengy, A.N.A., 2017. Thymoquinone mitigate ischemia-reperfusion-induced liver injury in rats: a potential role of nitric oxide signaling pathway. Naunyn. Schmiedebergs Arch. Pharmacol 390 (1), 69–76.

Adelmeqeid, N.E., Fakhoury, R., Kamal, S.M., Al Wafii, R.I., 2010. Effects of Nigella sativa and thymoquinone on biochemical and subcellular changes in pancreatic islets of streptozotocin-induced diabetic rats. J. Diabetes 3 (4), 266–266.

Agarwal, R., Kharya, M., Shrivastava, R., 1979. Antimicrobial & anthenamic activities of the essential oil of Nigella sativa Linn. Indian J. Exp. Biol. 17 (11), 1264–1266.

Ahmad, M.F., 2018. Ganoderma lucidum: persuasive biologically active constituents and their health endorsement. Biomed. Pharmacother. 107, 507–519.

Ahmad, M.F., 2019. Ganoderma lucidum: A Macro Fungus with Phytochemicals and Their Pharmacological Properties, Plant and Human Health, Volume 2. Springer, pp. 491–515.

Ahmad, M.F., 2020. Ganoderma lucidum: A rational pharmacological approach to surmount the cancer. J. Ethnopharmacol., 113047.

Ahmad, M.F., Ahmad, F.A., Azad, A., Alam, S., Ashraf, A., 2013a. Nutraceuticals is an important me...
Boskabady, M., Shafei, M., Parsaee, H., 2005. Effects of aqueous and macerated extracts from Nigella sativa on guinea pig isolated heart activity. Pharmacoe 60 (12), 943–948.

Boskabady, M., Shahabi, M., 1997. Bronchodilatory and antioxidant effects of Nigella sativa on isolated guinea pig tracheal chains. Iran. J. Med. Sci. 22, 127–133.

Boskabady, M., Sheiravi, N., 2002. Inhibitory effect of Nigella sativa on histamine (H1) receptors of isolated guinea pig ileum. J. Ethnopharmacol. 35 (4), 448–467.

Canayakin, D., Bayir, Y., Kilic Bagyutalp, N., Seren Kanoğlu, E., Atmaca, H.T., Kocak Ozger, F.B., Keles, M.S., Halici, Z., 2016. Paracetamol-induced nephrotoxicity and oxidative stress in rats: the protective role of Nigella sativa. Pharm. Biol. 54 (10), 2092–2091.

Chakrabarty, A., Emerson, M., LeVine, S., 2003. Hemeoxygenase-1 in SJL mice with experimental allergic encephalomyelitis. Multi. Scler. 9 (4), 372–381.

Chakravarty, N., 1993. Inhibition of histamine release from mast cells by nigellone. Ann. Allergy 70 (3), 257–242.

Chee, N., Chiptsyna, G., Gong, Q., Yeo, C.J., Arafat, H.A., 2009. Anti-inflammatory effects of the Nigella sativa seed extract, thymoquinone, in pancreatic cancer cells. HPB 11 (5), 373–381.

Choudhary, S., Kothavaraisi, A., Yong, S., Wade, M., Socko, B., Day, B., Anan, N., 2001. Novel antioxidants zolimid and ADEL1201 ameliorate colitis in rats. Dig. Dis. Sci. 46 (10), 2222–2230.

D’Souza, T., Mengi, S., Hassanjari, S., Chattopadhyay, S., 2007. Efficacy study of the bindweed root fraction (F-3) of Acoccus calamus in hyperlipidemia. Indian J. Pharm. 39 (4), 196–200.

Darakshian, S., Pour, A.B., Golagha, A.H., Sisakhtnezhad, S., 2015. Thymoquinone and its therapeutic potentials. Pharmcol. Res. 95, 138–158.

Dehkordi, F.R., Kamkhah, A.F., 2008. Antihypertensive effect of Nigella sativa seed oil in healthy volunteers: a randomized, double-blind, placebo-controlled clinical trial. J. Appl. Pharm. Sci. 6 (02), 167–171.

Heshmati, J., Namazi, N., 2015. Effects of black seed (Nigella sativa) on metabolic parameters in diabetes mellitus: a systematic review. Complem. Ther. Med. 23 (2), 117–122.

Houchez, Z., Boudiaf, K., Benboubeta, M., Houchez, B., 2007. Effects of methanolic extract and commercial oil of Nigella sativa L. on blood glucose and antioxidant capacity in all-oxygenated diabetic rats. Pteridines 18 (1), 8–18.

Kantar, M., Zarka, R., de Braekeleer, M., Heoul, J., 1995. Fixed oil of Nigella sativa and derived thymoquinone inhibit eicosanoid generation in leukocytes and membrane lipid peroxidation. Planta Med. 61 (01), 33–36.

Inbham, R.M., Hamdan, N.S., Mahmud, R., Imam, M.U., Saini, S.M., Rashid, S.N.A., Shafar, S.A.A., Ab Latif, S., Ismail, M., 2014. A randomised controlled trial on hypotyroidic effects of Nigella Sativa seeds powder in menopausal women. J. Transl. Med. 12 (1), 1–7.

Iddris-Khodja, N., Schini-Kerth, V., 2012. Thymoquinone improves aging-related endothelial dysfunction in the rat mesenteric artery. Naunyn Schmiedebergs Arch. Pharmacol. 385 (7), 749–758.

Joshi, S.C., Sharma, M., Jain, S., 2005. Hypotyroidic effects of Myristica fragrans seeds on cholesterol fed rabbits. Botanical product’s seminar and expo. Japair 140–143.

Khan, M.A., 1999. Chemical composition and medicinal properties of Nigella sativa Linn. Afr. J. Tradit. Complement. Altern. Med. 8 (5S), 226–232.

Khalife, K., Lupidi, G., 2007. Nonenzymatic reduction of thymoquinone in physiological solution. Indian J. Pharmacol. Sci. 46 (10), 2230.

Khalife, K., Lupidi, G., 2007. Nonenzymatic reduction of thymoquinone in physiological solution. Indian J. Pharmacol. Sci. 46 (10), 2230.

Khan, A., Chen, H., Tania, M., Zhang, D., 2011. Anticancer activities of Nigella sativa (black cumin). Afr. J. Tradit. Complement. Altern. Med. 8 (5S), 226–232.

Khan, M., Ashfaq, M., Zuberi, H., Mahmod, M., Gilani, A., 2003. The in vivo antiluminal activity of the aqueous extract from Nigella sativa seeds. Phytoscience. Res. 33 (1), 87–96.

Kantar, M., Goksun, O., Uysal, H., 2006. The antioxidative and antiasthmatic effect of Nigella sativa and its major constituent, thymoquinone on ethanol-induced gastric mucosal damage. Arch. Toxicol. 80 (4), 217–224.

Khaeder, M., Eckl, P., Bresgen, N., 2007. Effects of aqueous extracts of medicinal plants on MNNG-treated rat hepatocytes in primary cultures. J. Ethnopharmacol. 112 (1), 199–202.

Khaliife, K., Lupidi, G., 2007. Nonenzymatic reduction of thymoquinone in physiological solution. Indian J. Pharmacol. Sci. 46 (10), 2230.

Khan, A., Chen, H., Tania, M., Zhang, D., 2011. Anticancer activities of Nigella sativa (black cumin). Afr. J. Tradit. Complement. Altern. Med. 8 (5S), 226–232.

Khan, M., Ashfaq, M., Zuberi, H., Mahmod, M., Gilani, A., 2003. The in vivo antiluminal activity of the aqueous extract from Nigella sativa seeds. Phytoscience. Res. 33 (1), 87–96.

Kantar, M., Goksun, O., Uysal, H., 2006. The antioxidative and antiasthmatic effect of Nigella sativa and its major constituent, thymoquinone on ethanol-induced gastric mucosal damage. Arch. Toxicol. 80 (4), 217–224.

Khaeder, M., Eckl, P., Bresgen, N., 2007. Effects of aqueous extracts of medicinal plants on MNNG-treated rat hepatocytes in primary cultures. J. Ethnopharmacol. 112 (1), 199–202.

Khaliife, K., Lupidi, G., 2007. Nonenzymatic reduction of thymoquinone in physiological solution. Indian J. Pharmacol. Sci. 46 (10), 2230.
through suppressing AKT and extracellular signal-regulated kinase signaling pathways. Mol. Cancer Biol. 7 (7), 1789–1796.
Zaoui, A., Cherrah, Y., Lacaille-Dubois, M., Settaf, A., Amarouch, H., Hassar, M., 1999. Diuretic and hypotensive effects of Nigella sativa in the spontaneously hypertensive rat. Therapie 55 (3), 379–382.

Ziaeie, T., Moharreri, N., Hosseinzadeh, H., 2012. Review of pharmacological and toxicological effects of Nigella sativa and its active constituents. J. Med. Plants Res. 2 (42), 16–42.