INNOVATIONS IN POLY(VINYL ALCOHOL) DERIVED NANOMATERIALS

ABSTRACT

Poly(vinyl alcohol) (PVA) has been considered as an important commercial synthetic thermoplastic polymer. PVA is a low cost, reasonably processable, optically transmitting, heat stable, and mechanically robust plastic. PVA-based nanomaterials usually comprise of the nanocomposites (PVA/graphene, PVA/carbon nanotube, PVA/nanodiamond, PVA/metal nanoparticle) and nanofibers. The structural, optical, mechanical, and electrical properties of the PVA-based nanomaterials have been enhanced with nanofiller addition or nanostructuring. This review offers fundamentals and advanced aspects of poly(vinyl alcohol) and the derived nanomaterials. It highlights recent advances in PVA nanocomposites and nanofibers for potential applications. The PVA-based nanomaterials have been successfully employed in fuel cells, sensors, batteries, membranes, electronics, and drug delivery relevances. The challenges and opportunities to strengthen the research fields of PVA-based nanomaterials have also been presented.

Keywords: PVA; nanocomposite; nanofiber; graphene; fuel cell

INTRODUCTION

Poly(vinyl alcohol) (PVA) is a synthetic thermoplastic polymer having water solubility [1, 2]. It is represented as [CH₂CH(OH)]ₙ. It is a low cost and easily processable polymer [3-5]. Commercial production of PVA is usually attained via vinyl acetate monomer [6, 7]. PVA is susceptible to partial or complete hydrolysis, which may affect the final polymer properties [3]. Hydrogen bonding between PVA chains is often responsible for the semicrystalline nature of this polymer [8]. PVA has good water solubility, thermal stability, corrosion resistance, and optical transmission [9]. Different morphologies of PVA have also proven useful for pharmaceutical and
biomedical characteristics. PVA has found applications in number of fields including membranes, coatings, adhesives, sensors, batteries, fuel cells, textiles, paper making, and biomedical frameworks [10-16]. Attempts have been made to form PVA nanocomposites to increase their span in technical arenas [17]. Different types of nanofillers have been incorporated in PVA matrix to enhance the structural, optical, electrical, and mechanical properties of this versatile polymer [18]. In this review, various prospects of PVA nanocomposites and other nanomaterials have been comprehended. Especially, the physical properties and applications of various PVA nanocomposites and nanofibers have been discussed. PVA has been reinforced with nanocarbon and inorganic nanofillers to broaden the prospects of these materials for technical applications such as fuel cells, batteries, membranes, sensors, electronics and drug delivery. Such nanocomposites have found future potential for efficient commercial materials.

POLY(VINYL ALCOHOL)

Poly(vinyl alcohol) (PVA) is a white colored odorless synthetic thermoplastic polymer. It exists in powdered or granular form [18]. It is a nontoxic and biocompatible polymer [1]. It has excellent dielectric, optical, and charge storage properties [19]. Table 1 shows physical properties of neat PVA. This polymer has wide ranging applications in adhesives, coatings, electronics, construction, textiles, paper, and biomedical industries [20, 21]. Usually, vinyl acetate monomer is used for the commercial production of PVA. In alkaline conditions, the ester groups of poly(vinyl acetate) are substituted with hydroxyl groups to form PVA. Polymerization of poly(vinyl acetate) occurs at low temperatures (-80 °C to -20 °C) [3, 22, 23]. During thermal degradation, weight loss of PVA is observed between 100-200°C owing to loss of moisture and backbone cleavage. Doping of PVA with nanofillers has resulted in significant improvements in adhesive, optical, electrical, and mechanical characteristics of the nanocomposites [4, 24, 25].

Property	Value
Form	White
Density	1.19-1.31 g cm⁻³
Thermal stability	100, 150, 200 °C
Melting point	230 °C
Glass transition temperature	75-85 °C
Specific heat	1.5 J/(gK)
Refractive index	1.47
Dielectric constant	12.06 (50 Hz, 140 °C)
Charge storage	1.91×10⁻⁶ F
POLY(VINYL ALCOHOL) DERIVED NANOMATERIALS

PVA-based nanocomposite

The PVA-based nanocomposites have been developed using various nanofillers [18, 26-28]. The nature, shape, and content of nanofillers may affect the PVA-based nanocomposite properties [29, 30]. The organic or inorganic nature of nanofiller such as melt oxide nanoparticles or nanocarbons (carbon nanotube, graphene, etc.) modify the physical properties of PVA according to their reinforcing efficiency. Similarly, the nanofiller content affects the dispersion properties of nanoparticles and also the mechanical and thermal properties. The 0, 1, 2, and 3-dimensional nanomaterials have been used as nanofillers in polymers [31]. Usually, the nanofillers <5 wt.% are effective to enhance the thermal conductivity, electrical conductivity, dimensional stability, strength, and modulus of the PVA nanocomposites [32]. In this regard, nanocarbon nanofillers have large surface area to better interact with the polymeric materials [33, 34].

Fig. 1. Schematic of dispersion state of (i) GON and (ii) C:G hybrid nanofillers within PVA matrix [35]

The PVA/graphene and PVA/graphene oxide nanocomposites have been designed. In this regard, various synthesis methods have been used to obtain high performance PVA nanocomposites with graphene or graphene oxide nanofillers. El Miri N et. al. [35] formed hybrid nanofillers with cellulose nanocrystals (CNC) and graphene oxide nanosheets (GON) referred as C:G in various ratios (2:1, 1:1 and 1:2). Aggregation may occur in the PVA/GON nanocomposite system given in Fig. 1(i). Conversely, the hybrid system of C:G nanofiller had homogeneous dispersion (Fig. 1b(ii)). Fine dispersion may be due to the hydrogen bonding interactions between
PVA and C:G. The PVA nanocomposite with 5wt.% hybrid nanofiller (1:2) enhanced the Young's modulus and tensile strength by 320% and 124%, respectively, relative to neat PVA. Another important strategy used to enhance the properties of PVA nanocomposite is the incorporation of inorganic nanoparticle decorated graphene or GO nanofillers. Zhang et al. [36] produced magnetic nanoparticle-attached graphene oxide (GO@Fe₃O₄). The nanofiller was reinforced in PVA matrix. The 0.3 wt.% GO@Fe₃O₄ enhanced the failure strain to 237% in PVA/GO@Fe₃O₄, relative to neat PVA (72%). The effect of mechanical property improvement was dedicated to the incorporation of inorganic nanoparticle decorated GO in PVA. The magnetic nature of iron nanoparticles was useful to enhance the superparamagnetic behavior of the nanocomposites. The PVA/GO@Fe₃O₄ had also improved thermal stability, relative to PVA.

The graphene-based nanofillers have been efficiently employed to enhance the thermal and mechanical properties of PVA nanocomposites, relative to unfilled PVA matrix [37-40]. Graphene is also found to be advantageous in PVA property enhancement, as compared with carbon nanotubes.

The PVA matrix has also been reinforced with carbon nanotubes (CNTs). Chen et. al. [41] reinforced multi-walled carbon nanotube (MWCNT) in poly(vinyl alcohol) matrix. Inclusion of 9.1 wt.% MWCNT increased the tensile strength and Young's modulus to 2.7 and 4.5, respectively. Hung et. al. [42] prepared PVA and poly(vinyl pyrrolidone) (PVP) functional MWCNT. Addition of PVP treated MWCNT enhanced the mechanical properties of the nanocomposite (Fig. 2). Neat PVA had tensile strength of 1.8MPa. Addition of 1wt.% PVP-MWCNT enhanced the tensile strength to 4.2 MPa. Inclusion of 0.5-2 wt.% nanofiller improved the elastic modulus from 1.5 to 2.5 MPa. The use of functional carbon nanotube nanofiller is quite advantageous to enhance the mechanical properties. However, as compared to the graphene nanofillers, carbon nanotubes have sometimes been found to be less efficient [36, 37]. The obvious reason of declined physical properties relative to polymer/graphene is the nanotube aggregation in PVA matrix.

Fig. 2. Comparison of tensile elastic modulus, tensile strength, and elongation at break of the composite hydrogels as a function of MWCNT content [42]
The poly(vinyl alcohol) and nanodiamond (ND)-based nanocomposites have also been identified as an important category. Angjellari et al. [43] used detonation nanodiamond (DND) to fill the PVA matrix. The 0.5-5 wt.% DND loaded nanocomposites have been prepared. Inclusion of 5 wt.% DND enhanced the indentation modulus to 200%. The PVA/DND nanocomposite had well-dispersed nanoparticles in the matrix. Varga et al. [44] proposed a model describing interactions between PVA and ND (Fig. 3). According to this model, the PVA molecules may form hydrogen bonding to the hydrophilic surface of ND. Release of free OH increases owing to decrease in zeta potential of ND upon ultrasonication in PVA solution.

Fig. 3. Schematic model describing interaction of ND and PVA [44]

PVA nanocomposites with metal oxide nanoparticles have also been reported [45, 46]. Mandal et al. [47] filled PVA with Fe (II) and Fe (III) oxides. The 10 wt.% iron oxide loading enhanced the flux, selectivity, and pervaporation separation index, relative to the neat PVA. Roy et al. [48] has filled PVA with zinc oxide (ZnO) nanoparticles. The dielectric property relies on the conductivity of nanocomposites. Inclusion of ZnO impeded the electron movement, and so enhanced the dielectric properties of these materials. The optical properties of the nanocomposites were also improved with nanoparticle addition, relative to neat PVA. In conclusion, PVA with nanocarbon nanofillers has shown enhanced thermal and mechanical properties. Inclusion of inorganic nanoparticles have enhanced the optical, dielectric, and membranes properties of the nanocomposites [49]. Thus, these materials have been employed in optoelectronic devices, superparamagnetic structures, strengthened and heat stable aerospace materials, and enhanced dielectric permittivity materials [50, 51].

PVA-based nanofibers

Electrospinning has been considered as a modest method for nanofiber preparation. This method has been applied for various polymers including PVA [52]. Electrospinning has been used to form ultrafine fibers of <100 nm diameter. This method involves using polymer solution or polymer melt. The archetypal electrospinning set up is given in Fig. 4. Commonly used
systems are the vertical and horizontal ones. The electrospinning system usually consists of a spinneret, high voltage power supply, and collecting plate. The liquid jet is ejected through the capillary spinneret under high voltage [53].

![Schematic diagram of electrospinning set up](image)

Fig. 4. Schematic diagram of electrospinning set up (a) typical vertical set up and (b) horizontal set up of electrospinning apparatus [52]

The charged surface of the ejected polymer jet is attracted towards the collector. The electrospun nanofibers are collected on the collecting plate. Electrospinning has been used to form nanocomposite nanofibers [54, 55]. Electrospinning technique has been used to reinforce the PVA nanofibers with nanocarbon nanofillers and metal nanoparticles. Owing to good fiber formation properties of PVA and PVA-based nanocomposites, these materials are useful for membranes and coatings [5, 56-60]. Poly(vinyl alcohol) is a water soluble polymer, so it has successfully been used to produce nanocomposite nanofibers [61-64]. For electrospinning, a solvent is usually used to dissolve the desired polymer. Then, the polymer solution is used to form the polymer fibers under the influence of electrostatic force. During fiber formation, the solvent is evaporated. In this regard, water is an inert, environmentally-friendly, and inexpensive solvent. Thus, PVA is an advantageous polymer i.e. easily dissolved in water and processed. The
hydroxyl groups of PVA has been found accountable for the hydrophilicity of nanofibers [65]. This hydrophilic polymer is easily soluble in water and can be used for electrospinning. PVA is also used to reduce the surface tension of the solution, so processability becomes easy. Poly(vinylalcohol)-based nanocomposite nanofibers have been prepared via combining the electrospinning and sol-gel techniques [66]. As, PVA is a biocompatible polymer owing to in situ or ex situ non-toxicity. The biocompatible nature of PVA nanofibers render them useful for biomedical applications such as tissue engineering, bioimplants, etc. [28]. Hence, PVA nanofibers have fine processability, hydrophilicity, and biocompatibility for biomedical engineering.

Abd El-aziz et. al. [67] developed PVA and hydroxyapatite (HA) nanocomposite nanofibers using electrospinning process. Glutaraldehyde was used to cross-link the nanofibers. Glutaraldehyde is a dialdehyde. During cross-linking, the hydroxyl groups of the PVA and the aldehyde groups of glutaraldehyde react in the presence of strong acid to form covalent bonding. The cross-linking was beneficial because it enhanced the mechanical properties and insolubility of PVA fibers. In this way, the PVA and nanocomposite fibers can be used for water filtration applications. Scanning Electron Microscopy (SEM) was used to analyze the morphology of the PVA/HA nanocomposite nanofibers (Fig. 5). The nanofibers were found oriented in axial direction. The spherical HA nanoparticles were found dispersed on the individual nanofibers. The energy-dispersive X-ray (EDX) was used to analyze the elemental composition of the nanofibers.

Wang et. al. [68] formed PVA nanofibers with ZnS:Cu. The nanofibers were studied for luminescence, crystalline, and morphology properties. Puguan et. al. [69] produced cross-linked electrospun PVA membranes. The nanofibers had diameter of 260 ± 61 nm. SEM micrographs of crosslinked PVA membrane is given in Fig. 6. The crosslinking density and degree of swelling of the membranes were also studied.

Wu et. al. [70] prepared thiol-functional mesoporous poly(vinyl alcohol)/SiO₂ nanocomposite nanofibers. The functional PVA/SiO₂ nanocomposite nanofiberous membranes had high Cu²⁺ ion adsorption capacity of 489.12 mg/g owing to surface area >290 m²/g. The membranes were promising materials for heavy metal ion removal from water.
Hence, PVA nanocomposite nanofibers have been formed using electrospinning method and used for various applications including metal ion removal, separation, and structural materials.

Fig. 6. Surface SEM images of electrospun PVA substrate in (a) 1 K and (b) 5 K magnification [69]

APPLICATIONS OF POLY(VINYL ALCOHOL)-BASED NANOMATERIALS

Fuel cells are facile energy sources having light weight, environmental friendliness, and low CO\(_2\) emission. Direct-methanol fuel cell or (DMFC) is a category of proton-exchange fuel cells, in which methanol is used as a fuel. The foremost benefit of using methanol fuel is the ease of methanol transport in diverse environmental conditions. Use of methanol as a general energy transport medium enhances the power density and fuel cell efficiency of DMFC [71]. In these fuel cells, efficient proton-exchange membranes are also used to enhance the conductivity and cell performance. In these fuel cells, efficient membranes having high methanol permeability are desirable. PVA-based proton exchange membranes have been developed for DMFC. The PVA membranes having low fuel permeability and high ionic conductance may lead to high fuel cell efficiency and power density. Inclusion of nanoparticles in PVA membranes also enhances the membrane performance. Methanol permeability is an important parameter to DMFC. The lower methanol permeability of DMFC depicts high fuel utilization efficiency. The DMFC fuel cell is usually modified to obtain high power density (amount of power per unit fuel volume). The methanol fuel causes high power density of fuel cells. The PVA and silica nanoparticles have been used as solid electrolyte for DMFC [72]. Addition of silica nanoparticles enhanced the membrane strength, stability, and permeability. The PVA/CNT nanocomposite-based DMFC membranes possess high ionic conductivity and reduced methanol permeability [73]. The power density of the fuel cell was observed as 39-87 mWcm\(^{-2}\). Li et. al. [74] proposed quaternized poly(vinyl alcohol) (QPVA) and chitosan nanoparticle-filled quaternized poly(vinyl alcohol) (CQPVA). The CQPVA was used as a membrane in DMAFC (Fig. 7). Inclusion of nanoparticles in proton exchange membranes usually facilitates the ionic transport through the membranes.
Addition of 10% chitosan nanoparticles enhanced the ionic conductivity and reduced the methanol permeability of the CQPVA membranes. The power density of the fuel cell was found as 67 mWcm$^{-2}$.

The PVA-based nanocomposites have been tested for sensor applications. Chirizzi et. al. [75] introduced CuO nanowires of 120-170 nm in PVA matrix. The material was used to form amperometric nonenzymatic H$_2$O$_2$ sensor. The electrodes had large current density to reduce H$_2$O$_2$. The sensor has shown high sensitivity, reproducibility, and low detection limit. The morphological and electrochemical properties of PVA-based nanocomposite sensors have shown superior performance [76, 77].

The PVA-based nanofibrous membranes have been used for toxic ion removal from polluted water. The PVA/silver nanoparticle membranes have been used for this purpose [78]. Filippo et. al. [79] designed poly(vinyl alcohol)/silica nanoparticle (PVA/SiO$_2$)-based nanocomposite nanofiberous membranes for Cu$^{2+}$ adsorption. The mechanism for the adsorption of Cu$^{2+}$ ions on the membrane is given in Fig. 8. The mechanism involves the electrostatic interaction i.e. ionic interactions between the positively charged metal ions and negatively charged PVA and lone-pair electron donation to the matrix [70]. The PVA/SiO$_2$ offers low cost and efficient membranes for toxic heavy metal ion removal.
Fig. 8. The mechanism of Cu2+ adsorption on PVA/SiO2 composite nanofiber [70]

Fig. 9. Composite with film on upper surface [84]
The PVA-based nanocomposites have also been focused for drug-release applications [80, 81]. The bioadhesive nature of these materials are useful in this regard. The PVA gel carriers have been used for controlled release of drugs [82, 83]. Nugent et. al. [84] prepared cross-linked poly(vinyl alcohol)-based nanomaterials. The nanocomposites have shown high physical strength and localized controlled drug delivery. Fig. 9 shows the PVA-based nanocomposite film. The micro-thermal analysis was used to study the gel microstructure. The PVA-based nanocomposite coatings have also been used for implantable devices [85].

FUTURE STANDPOINTS AND SUMMARY

Table 2 summarizes few essential PVA nanocomposite systems discussed in this review. Various nanofillers have been incorporated in PVA matrices to enhance the physical properties and technical performance. The PVA-based nanomaterials have found applications in various technical fields [86]. These nanomaterials have opened new possibilities for fuel cells, sensors, membranes, and biomedical sectors. Future research on PVA-based nanomaterials must focus new design variations through tailoring their physicochemical properties [87, 88].

Matrix	Nanofiller	Property/application	Ref.
PVA	Graphene oxide, cellulose nanocrystals	Mechanical properties	[35]
	Magnetic nanoparticle-attached graphene oxide	Mechanical properties	[36]
	Carbon nanotube	Mechanical properties	[41]
	Carbon nanotube	Mechanical properties	[42]
	Nanodiamond	Indentation modulus	[43]
	Nanodiamond	zeta potential	[44]
	Fe (II) and Fe (III) oxides	Membrane selectivity, flux	[47]
	ZnO	Dielectric property	[48]
	Hydroxyapatite	Mechanical properties, membrane performance	[67]
SiO$_2$	Metal ion removal		[70]
Chitosan nanoparticle	Fuel cell membrane		[74]
CuO nanowires	H$_2$O$_2$ sensor		[75]
Silica nanoparticle	Membranes for ion adsorption		[79]

One of the main challenges to form high performance PVA related materials is the development of new synthesis methodologies [89, 90]. Moreover, the use of unexplored nanofillers and modified nanoparticles may improve the nanocomposite performance. To achieve interfacial interactions and controlled morphologies in PVA-based nanomaterials are also challenging factors [91]. Very few attempts have been seen regarding the PVA nanocomposite in...
DMFC membranes and electrolytes. Novel nanofibrous membrane have been used to reduce the methanol permeability, and enhance the power density and cell performance. The PVA-based nanomaterials offered promising platform for the development of innovative amperometric nonenzymatic H_2O_2 sensor [92-94]. However, facile miniaturization of these sensing devices need to be focused in future [95-97]. Further research on PVA-based nanofibrous membranes are promising materials for heavy metal ion removal and recovery [98]. The PVA-based nanocomposites must be engrossed for better crystallinity, adhesiveness, and controlled drug release. Research may also reveal high performance biomedical tissue engineering implants [99, 100].

In few words, PVA-based nanocomposites and nanofibers have been reviewed in this article. The nanocarbon nanofillers and metal nanoparticles have been reinforced in PVA matrix. The PVA/nanocarbon materials had resulted in enhanced mechanical, thermal, electrical, optical, permeability, and morphological features of these materials. The physical properties, fabrication, and applications of these materials have been methodically reviewed. Progress in PVA-based nanocomposites have revealed solicitations in fuel cells, sensors, membranes, drug delivery, biomedical implants, coatings, adhesives, electronics, and other applications.

REFERENCES

1. Doğan, E., Tokcan, P., Diken, M., Yılmaz, B., Kızılduman, B. and Sabaz P.: Synthesis, Characterization and Some Biological Properties of PVA/PVP/PN Hydrogel Nanocomposites: Antibacterial and Biocompatibility. Advances in Materials Science 19 (2019) 32-45.

2. Limpan, N., Prodpran, T., Benjakul, S. and Prasarpran, S.: Influences of degree of hydrolysis and molecular weight of poly (vinyl alcohol)(PVA) on properties of fish myofibrillar protein/PVA blend films. Food Hydrocolloids 29 (2012) 226-233.

3. Alexy, P., Káčová, D., Kříšák, M., Bakoš, D. and Šimková B.: Poly (vinyl alcohol) stabilisation in thermoplastic processing. Polymer Degradation and Stability 78(2002) 413-421.

4. Malathi, J., Kumaravadiel, M., Brahmanandhan, G., Hema, M., Baskaran, R. and Selvasekarapandian, S.: Structural, thermal and electrical properties of PVA–LiCF$_3$SO$_3$ polymer electrolyte. Journal of Non-Crystalline Solids 356 (2010) 2277-2281.

5. Jenni, A., Holzer, L., Zurbriggen, R. and Herwegh, M.: Influence of polymers on microstructure and adhesive strength of cementitious tile adhesive mortars. Cement and Concrete Research 35 (2005) 35-50.

6. Song, H.: Fabrication and characterisation of electrospun polyvinylidene fluoride (PVDF) nanocomposites for energy harvesting applications: Brunel University London (2016).

7. El-Aasser, M.S.: Emulsion polymerization of vinyl acetate: Springer Science & Business Media (2012).

8. Wang, R. and Wang Q. Li, L.: Evaporation behaviour of water and its plasticizing effect in modified poly (vinyl alcohol) systems. Polymer International 52 (2003) 1820-1826.
9. Mok, C.F., Ching, Y.C., Muhamad, F., Osman, N.A.A., Dai Hai, N. and Hassan, C.R.C. Adsorption of Dyes Using Poly (vinyl alcohol)(PVA) and PVA-Based Polymer Composite Adsorbents: A Review. Journal of Polymers and the Environment (2020) 1-19.

10. Das, L., Das, P., Bhowal, A. and Bhattachariee, C.: Synthesis of hybrid hydrogel nano-polymer composite using Graphene oxide, Chitosan and PVA and its application in waste water treatment. Environmental Technology & Innovation (2020) 100664.

11. Murad, S.K. and Kadhim, S.H.: Synthesis, Characterization and Electrical Conductivity of Poly Vinyl Alcohol Graft Adipic Acid and Application as Sensors. International Journal of Pharmaceutical Research 12 (2020).

12. Madiwale, P.V., Singh, G.P., Biranje, S. and Adivarekar, R.: Preparation of Silk Fibroin/PVA Hydrogels Using Chemical-free Cross-Linking for Tissue Engineering Applications. Journal of the Technical Textile 268 (2019).

13. Yu, J., Buffet, J.-C. and O'Hare, D.: Aspect Ratio Control of Layered Double Hydroxide Nanosheets and their Application for High Oxygen Barrier Coating in Flexible Food Packaging. ACS Applied Materials & Interfaces (2020).

14. Beşen, B.S.: Production of Disposable Antibacterial Textiles Via Application of Tea Tree Oil Encapsulated into Different Wall Materials. Fibers and Polymers. 20 (2019) 2587-2593.

15. Albayrak Ari, G. and Gülen, C.: The Effect of Cross-linking Technique on Membrane Performance for Direct Methanol Alkaline Fuel Cell Application. Journal of Natural & Applied Sciences 23 (2019).

16. Chen, S., Lan, R., Humphreys, J. and Tao, S.: Perchlorate based ‘over-saturated gel electrolyte’ for an aqueous rechargeable hybrid Zn-Li battery. ACS Applied Energy Materials. (2020).

17. Peng, J. and Cheng, Q.: High-performance nanocomposites inspired by nature. Advanced Materials 29 (2017): 1702959.

18. Aslam, M., Kalyar, M.A. and Raza, Z.A.: Polyvinyl alcohol: a review of research status and use of polyvinyl alcohol based nanocomposites. Polymer Engineering & Science 58 (2018): 2119-2132.

19. Stammen, J.A., Williams, S., Ku, D.N. and Guldborg, R.E.: Mechanical properties of a novel PVA hydrogel in shear and unconfined compression. Biomaterials 22 (2001) 799-806.

20. Squillace, O., Fong, R., Shepherd, O., Hind, J., Tellam, J., Steinke, N.-J., et al.: Influence of PVAc/PVA Hydrolysis on Additive Surface Activity. Polymers 12 (2020) 205.

21. Marten, F.L.: Vinyl alcohol polymers. Kirk-Othmer Encyclopedia of Chemical Technology. 2000.

22. Mansur, H.S., Oréfice, R.L. and Mansur, A.A.: Characterization of poly(vinyl alcohol)/poly(ethylene glycol) hydrogels and PVA-derived hybrids by small-angle X-ray scattering and FTIR spectroscopy. Polymer 45 (2004) 7193-7202.

23. Lenney, W.E. and Iacoviello, J.G.: Vinyl acetate-ethylene copolymer emulsions prepared in the presence of a stabilizing system of a low molecular weight polyvinyl alcohol and a surfactant. Google Patents (1990).

24. Tang, X. and Alavi S.; Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and their biodegradability. Carbohydrate polymers 85 (2011) 7-16.

25. Daw, S., Basu, R.K. and Das, S.K.: Red mud reinforced polyvinyl alcohol composite films: synthesis, chemical, mechanical and thermal properties. SN Applied Sciences 1 (2019) 625.
26. Aslam, M., Kalyar, M.A. and Raza ZA.: Investigation of structural and thermal properties of distinct nanofillers-doped PVA composite films. Polymer Bulletin 76 (2019) 73-86.

27. Lee, S.-Y., Mohan, D.J., Kang, I.-A., Doh, G.-H., Lee, S. and Han, S.O.: Nanocellulose reinforced PVA composite films: effects of acid treatment and filler loading. Fibers and Polymers 10 (2009) 77-82.

28. Pangon, A., Saesoo, S., Saengkrit, N., Rukanonchais, U. and Intasanta, V.: Multicarboxylic acids as environment-friendly solvents and in situ crosslinkers for chitosan/PVA nanofibers with tunable physicochemical properties and biocompatibility. Carbohydrate polymers 138 (2016) 156-165.

29. Chi, F., Hu, S., Xiong, J. and Wang, X.: Adsorption behavior of uranium on polyvinyl alcohol-g-amidoxime: Physicochemical properties, kinetic and thermodynamic aspects. Science China Chemistry 56 (2013) 1495-1503.

30. Hou, R., Zhang, G., Du, G., Zhan, D., Cong, Y., Cheng, Y., et al.: Magnetic nanohydroxyapatite/PVA composite hydrogels for promoted osteoblast adhesion and proliferation. Colloids and Surfaces B: Biointerfaces 103 (2013) 318-325.

31. Li, Y., Yang, T., Yu, T., Zheng, L. and Liao K.: Synergistic effect of hybrid carbon nanotube–graphene oxide as a nanofiller in enhancing the mechanical properties of PVA composites. Journal of Materials Chemistry 21 (2011) 10844-10851.

32. Wang, J., Cheng, Q., Lin, L., Chen, L. and Jiang L.: Understanding the relationship of performance with nanofiller content in the biomimetic layered nanocomposites. Nanoscale 5 (2013) 6356-6362.

33. Jeong, J.S., Moon, J.-S., Jeon, S.Y., Park, J.H., Alegaonkar, P.S. and Yoo, J.B.: Mechanical properties of electrospun PVA/MWNTs composite nanofibers. Thin Solid Films 515 (2007) 5136-5141.

34. Liang, J., Huang, Y., Zhang, L., Wang, Y., Ma, Y., Guo, T., et al.: Molecular-level dispersion of graphene into poly (vinyl alcohol) and effective reinforcement of their nanocomposites. Advanced Functional Materials 19 (2009) 2297-2302.

35. El Miri, N., El Achaby, M., Fihri, A., Larzek, M., Zahouily, M., Abdelouahdi, K., et al.: Synergistic effect of cellulose nanocrystals/graphene oxide nanosheets as functional hybrid nanofiller for enhancing properties of PVA nanocomposites. Carbohydrate polymers 137 (2016) 239-248.

36. Zhang, J., Wang, J., Lin, T., Wang, C.H., Ghorbani, K., Fang, J., et al.: Magnetic and mechanical properties of polyvinyl alcohol (PVA) nanocomposites with hybrid nanofillers–graphene oxide tethered with magnetic Fe3O4 nanoparticles. Chemical Engineering Journal 237 (2014) 462-468.

37. Peng, Z. and Kong, L.X.: A thermal degradation mechanism of polyvinyl alcohol/silica nanocomposites. Polymer Degradation and Stability 92 (2007) 1061-1071.

38. Li, J., Li, Y., Song, Y., Niu, S. and Li, N.: Ultrasonic-assisted synthesis of polyvinyl alcohol/phytic acid polymer film and its thermal stability, mechanical properties and surface resistivity. Ultrasonics Sonochemistry 39 (2017) 853-862.

39. Kaboorani, A. and Riedl, B.: Improving performance of polyvinyl acetate (PVA) as a binder for wood by combination with melamine based adhesives. International Journal of Adhesion and Adhesives. 31 (2011) 605-611.

40. Rowe, A.A., Tajvidi, M. and Gardner, D.J.: Thermal stability of cellulose nanomaterials and their composites with polyvinyl alcohol (PVA). Journal of Thermal Analysis and Calorimetry 126 (2016) 1371-1386.
41. Chen, W., Tao, X., Xue, P. and Cheng, X.: Enhanced mechanical properties and morphological characterizations of poly (vinyl alcohol)–carbon nanotube composite films. Applied Surface Science 252 (2005) 1404-1409.

42. Huang, Y., Zheng, Y., Song, W., Ma, Y., Wu, J. and Fan, L.: Poly (vinyl pyrrolidone) wrapped multi-walled carbon nanotube/poly (vinyl alcohol) composite hydrogels. Composites Part A: Applied Science and Manufacturing 42 (2011) 1398-1405.

43. Angjellari, M., Tamburri, E., Montaina, L., Natali, M., Passeri, D., Rossi, M., et al.: Beyond the concepts of nanocomposite and 3D printing: PVA and nanodiamonds for layer-by-layer additive manufacturing. Materials & Design 119 (2017) 12-21.

44. Varga, M., Stehlik, S., Kaman, O., Izak, T., Domonkos, M., Lee, D., et al. Templated diamond growth on porous carbon foam decorated with polyvinyl alcohol-nanodiamond composite. Carbon 119 (2017) 124-132.

45. Yu, Godovsky, D., Varfolomeev, A.V., Efremova, G.D., Cherepanov, V.M., Kapustin, G.A., Volkov, A.V. and Moskvina, M.A.: Magnetic properties of polyvinyl alcohol-based composites containing iron oxide nanoparticles. Advanced Materials for Optics and Electronics 9 (1999) 87-93.

46. Deshmukh, K., Ahamed, M.B., Deshmukh, R.R., Pasha, S.K., Chidambaram, K., Sadasivuni, K.K., Ponnama, D. and AlMaadeed, M.A.A.: Eco-friendly synthesis of graphene oxide reinforced hydroxypropyl methylcellulose/polyvinyl alcohol blend nanocomposites filled with zinc oxide nanoparticles for high-k capacitor applications. Polymer-Plastics Technology and Engineering 55 (2016) 1240-1253.

47. Mandal, M.K., Sant, S.B. and Bhattacharya, P.K.: Dehydration of aqueous acetonitrile solution by pervaporation using PVA–iron oxide nanocomposite membrane. Colloids and Surfaces A: Physicochemical and Engineering Aspects 373 (2011) 11-21.

48. Roy, A.S., Gupta, S., Sindhu, S. and Parveen. A.: Ramamurthy PC. Dielectric properties of novel PVA/ZnO hybrid nanocomposite films. Composites Part B: Engineering 47 (2013) 314-319.

49. Wang, X., Lu, X., Liu, B., Chen, D., Tong, Y. and Shen, G.: Flexible energy-storage devices: design consideration and recent progress. Advanced Materials 26 (2014) 4763-4782.

50. Choudhary, S.: Characterization of amorphous silica nanofiller effect on the structural, morphological, optical, thermal, dielectric and electrical properties of PVA–PVP blend based polymer nanocomposites for their flexible nanodielectric applications. Journal of Materials Science: Materials in Electronics 29 (2018) 10517-10534.

51. Al-Gunaid, M.Q., Saeed, A.M., Subramani, N.K. and Madhukar, B.S.: Optical parameters, electrical permittivity and I–V characteristics of PVA/Cs 2 CuO 2 nanocomposite films for opto-electronic applications. Journal of Materials Science: Materials in Electronics 28 (2017) 8074-8086.

52. Koosha, M. and Mirzadeh, H.: Electrospinning, mechanical properties, and cell behavior study of chitosan/PVA nanofibers. Journal of Biomedical Materials Research Part A 103 (2015) 3081-3093.

53. Jiang, S., Chen, Y., Duan, G., Mei, C., Greiner A. and Agarwal, S.: Electrospun nanofiber reinforced composites: A review. Polymer Chemistry 9 (2018) 2685-2720.

54. Teo, W.-E. and Ramakrishna, S.: Electrospun nanofibers as a platform for multifunctional, hierarchically organized nanocomposite. Composites Science and Technology 69 (2009) 1804-1817.

55. Chronakis, I.S.: Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process—a review. Journal of Materials Processing Technology 167 (2005) 283-293.
56. Wang, X., Fang, D., Yoon, K., Hsiao, B.S. and Chu, B.: High performance ultrafiltration composite membranes based on poly (vinyl alcohol) hydrogel coating on crosslinked nanofibrous poly (vinyl alcohol) scaffold. Journal of Membrane Science 278 (2006) 261-268.

57. Xiao, S., Feng, X. and Huang, R.Y.: Investigation of sorption properties and pervaporation behaviors under different operating conditions for trimesoyl chloride-crosslinked PVA membranes. Journal of Membrane Science 302 (2007) 36-44.

58. Vashisth, P. and Pruthi, V.: Synthesis and characterization of crosslinked gellan/PVA nanofibers for tissue engineering application. Materials Science and Engineering C 67 (2016) 304-312.

59. Fang, X., Ma, H., Xiao, S., Shen, M., Guo, R., Cao, X., et al.: Facile immobilization of gold nanoparticles into electrospun polyethylenimine/polyvinyl alcohol nanofibers for catalytic applications. Journal of Materials Chemistry 21 (2011) 4493-4501.

60. Mollá, S. and Compañ, V.: Polyvinyl alcohol nanofiber reinforced Nafion membranes for fuel cell applications. Journal of Membrane Science 372 (2011) 191-200.

61. Koski, A., Yim, K. and Shivkumar, S.: Effect of molecular weight on fibrous PVA produced by electrospinning. Materials Letters 58 (2004):493-7.

62. Zhang, C.L., Lv, K.P., Cong, H.P. and Yu, S.H.: Controlled assemblies of gold nanorods in PVA nanofiber matrix as flexible free-standing SERS substrates by electrospinning. Small 8 (2012) 648-653.

63. Liu, N., Fang, G., Wan, J., Zhou, H., Long, H. and Zhao, X.: Electrospun PEDOT: PSS–PVA nanofiber based ultrahigh-strain sensors with controllable electrical conductivity. Journal of Materials Chemistry 21 (2011) 18962-18966.

64. Yuan, J., Mo, H., Wang, M., Li, L., Zhang, J. and Shen, J.: Reactive electrospinning of poly (vinyl alcohol) nanofibers. Journal of Applied Polymer Science 124 (2012) 1067-1073.

65. Cho, D., Hoepker, N. and Frey, M.W.: Fabrication and characterization of conducting polyvinyl alcohol nanofibers. Materials Letters 68 (2012) 293-295.

66. Gong, J., Shao, C., Pan, Y., Gao, F. and Qu, L.: Preparation, characterization and swelling behavior of H3PW12O40/poly (vinyl alcohol) fiber aggregates produced by an electrospinning method. Materials Chemistry and Physics 86 (2004) 156-160.

67. El-aziz, A.A., El-Maghraby, A. and Taha, N.A.: Comparison between polyvinyl alcohol (PVA) nanofiber and polyvinyl alcohol (PVA) nanofiber/hydroxyapatite (HA) for removal of Zn2+ ions from wastewater. Arabian Journal of Chemistry. 10 (2017) 1052-1060.

68. Wang, H., Lu, X., Zhao, Y. and Wang, C.: Preparation and characterization of ZnS: Cu/PVA composite nanofibers via electrospinning. Materials Letters 60 (2006) 2480-2484.

69. Puguan, J.M.C., Kim, H.-S., Lee, K.-J. and Kim, H.: Low internal concentration polarization in forward osmosis membranes with hydrophilic crosslinked PVA nanofibers as porous support layer. Desalination 336 (2014) 24-31.

70. Wu, S., Li, F., Wang, H., Fu, L., Zhang, B. and Li, G.: Effects of poly (vinyl alcohol)(PVA) content on preparation of novel thiol-functionalized mesoporous PVA/SiO\textsubscript{2} composite nanofiber membranes and their application for adsorption of heavy metal ions from aqueous solution. Polymer 51 (2010) 6203-6211.

71. Luc, S.J., Pan, W.-H., Chang, C.-M. and Liu, Y.-L.: High-performance direct methanol alkaline fuel cells using potassium hydroxide-impregnated polyvinyl alcohol/carbon nano-tube electrolytes. Journal of Power Sources 202 (2012) 1-10.
72. Lue, S.J., Mahesh, K., Wang, W.-T., Chen, J.-Y. and Yang, C.-C.: Permeant transport properties and cell performance of potassium hydroxide doped poly (vinyl alcohol)/fumed silica nanocomposites. Journal of membrane science 367 (2011) 256-264.

73. Pan, W.-H., Lue, S.J., Chang, C.-M. and Liu, Y.-L.: Alkali doped polyvinyl alcohol/multi-walled carbon nano-tube electrolyte for direct methanol alkaline fuel cell. Journal of membrane science 376 (2011) 225-232.

74. Li, P.C., Liao, G.M., Kumar, S.R., Shih, C.M., Yang, C.C., Wang, D.M. and Lue, S.J.: Fabrication and characterization of chitosan nanoparticle-incorporated quaternized poly (vinyl alcohol) composite membranes as solid electrolytes for direct methanol alkaline fuel cells. Electrochimica Acta 187 (2016) 616-628.

75. Chirizzi, D., Guascito, M.R., Filippo, E., Malitesta, C. and Tepore, A.: A novel nonenzymatic amperometric hydrogen peroxide sensor based on CuO@ Cu2O nanowires embedded into poly (vinyl alcohol). Talanta 147 (2016) 124-131.

76. Ajitha, B., Reddy, Y.A.K., Reddy, P.S., Jeon, H.-J. and Ahn, C.W.: Role of capping agents in controlling silver nanoparticles size, antibacterial activity and potential application as optical hydrogen peroxide sensor. RSC Advances 6 (2016) 36171-36179.

77. Kumar, D., Umrao, S., Mishra, H., Srivastava, R.R., Srivastava, M., Srivastava, A. and Srivastava, S.K.: Eu: Y2O3 highly dispersed fluorescent PVA film as turn off luminescent probe for enzyme free detection of H2O2. Sensors and Actuators B: Chemical 247 (2017) 170-178.

78. Vasileva, P., Donkova, B., Karadjova, I. and Dushkin, C.: Synthesis of starch-stabilized silver nanoparticles and their application as a surface plasmon resonance-based sensor of hydrogen peroxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects 382 (2011) 203-210.

79. Filippo, E., Serra, A. and Manno, D.: Poly (vinyl alcohol) capped silver nanoparticles as localized surface plasmon resonance-based hydrogen peroxide sensor. Sensors and Actuators B: Chemical 138 (2009) 625-630.

80. Galeska, I., Kim, T.K., Patil, S.D., Bhardwaj, U., Chatttopadhyay, D., Papadimitrakopoulos, F. and Burgess, D.J.: Controlled release of dexamethasone from PLGA microspheres embedded within polyacid-containing PVA hydrogels. The AAPS Journal 7 (2005) E231-E240.

81. Hoare, T.R., Kohane, D.S.: Hydrogels in drug delivery: Progress and challenges. Polymer 49 (2008) 1993-2007.

82. Fredenberg, S., Wahlgren, M., Reslow, M. and Axelsson, A.: The mechanisms of drug release in poly (lactic-co-glycolic acid)-based drug delivery systems—a review. International Journal of Pharmaceutics. 415 (2011) 34-52.

83. Zhang X., Tang, K. and Zheng, X.: Electrospinning and crosslinking of COL/PVA nanofiber-microsphere containing salicylic acid for drug delivery. Journal of Bionic Engineering 13 (2016) 143-149.

84. Nugent, M.J. and Higginbotham, C.L.: Preparation of a novel freeze thawed poly (vinyl alcohol) composite hydrogel for drug delivery applications. European Journal of Pharmaceutics and Biopharmaceutics 67 (2007) 377-386.

85. Lee, P.-J., Ho, C.-C., Hwang, C.-S. and Ding, S.-J.: Improved physicochemical properties and biocompatibility of stainless steel implants by PVA/ZrO2-based composite coatings. Surface and Coatings Technology 258 (2014) 374-380.
86. Wu, W., Wu, Z., Yu, T., Jiang, C. and Kim, W.-S.: Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Science and Technology of Advanced Materials. 16 (2015) 023501.

87. Mittal, V.: Polymer nanotubes nanocomposites: synthesis, properties and applications: John Wiley & Sons; (2014).

88. Krishnamoorti, R. and Vaia, R.A.: Polymer nanocomposites. Journal of Polymer Science Part B: Polymer Physics 45 (2007) 3252-3256.

89. Gerasin, V.A., Antipov, E.M., Karbushev, V.V., Kulichikhin, V.G., Karpacheva, G.P., Talroze, R.V. and Kudryavtsev, Y.V.: New approaches to the development of hybrid nanocomposites: from structural materials to high-tech applications. Russian Chemical Reviews 82 (2013) 303.

90. Ma, L.-J., Liu, Y. and Zhang, J.-H.: Modification of PVA-based composite coating packaging material with nano-SiO2, Nano-TiO2 and liquid paraffin. Food Science 34 (2013) 341-346.

91. Li, J., Shao, L., Zhou, X. and Wang, Y.: Fabrication of high strength PVA/rGO composite fibers by gel spinning. Rsc Advances 4 (2014) 43612-43618.

92. Ponnamma, D., Parangusan, H., Deshmukh, K., Kar, P., Muzaffar, A., Pasha, S.K., Ahamed, M.B. and Al-Maadeed, M.A.A.: Green synthesized materials for sensor, actuator, energy storage and energy generation: a review. Polymer-Plastics Technology and Materials 59 (2020) 1-62.

93. Raza, A., Wang, J., Yang, S., Si, Y. and Ding, B.: Hierarchical porous carbon nanofibers via electrospinning. Carbon Letters (Carbon Lett) 15(2014) 1-14.

94. Raj, D.R., Prasanth, S., Vineeshkumar, T. and Sudarsanakumar, C.: Ammonia sensing properties of tapered plastic optical fiber coated with silver nanoparticles/PVP/PVA hybrid. Optics Communications 340 (2015) 86-92.

95. Kamoun, E.A., Kenawy, E.-R.S. and Chen, X.: A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. Journal of Advanced Research 8 (2017) 217-233.

96. Karami, H., Aminifar, A., Tavallali, H. and Namdar, Z.-A.: PVA-based sol–gel synthesis and characterization of CdO–ZnO nanocomposite. Journal of Cluster Science 21 (2011) 1-9.

97. Dhanasekar, M., Jenefer, V., Nambari, R.B., Babu, S.G., Selvam, S.P., Neppolian, B. and Bhat, S.V.: Ambient light antimicrobial activity of reduced graphene oxide supported metal doped TiO2 nanoparticles and their PVA based polymer nanocomposite films. Materials Research Bulletin 97 (2018) 238-243.

98. Ananth, A.N., Daniel, S.K., Sironmani, T.A. and Umapathi, S.: PVA and BSA stabilized silver nanoparticles based surface–enhanced plasmon resonance probes for protein detection. Colloids and Surfaces B: Biointerfaces 85 (2011) 138-144.

99. Goenka, S., Sant, V. and Sant, S.: Graphene-based nanomaterials for drug delivery and tissue engineering. Journal of Controlled Release 173 (2014) 75-88.

100. Zulkifli, F.H., Hussain, F.S.J., Zeyohannes, S.S., Rasad, M.S.B.A. and Yusuff, M.M.: A facile synthesis method of hydroxyethyl cellulose-silver nanoparticle scaffolds for skin tissue engineering applications. Materials Science and Engineering: C 79 (2017) 151-160.