Abstract. The article deals with the problem of finding vertex-minimal graphs with a given automorphism group. We exhibit two undirected 16-vertex graphs having automorphism groups A_4 and A_5. It improves the Babai’s bound for A_4 and the graphical regular representation bound for A_5. The graphs are constructed using projectivisation of the vertex-face graph of icosahedron.

Key words. graph, icosahedron, hemi-icosahedron, automorphism group, alternating group.

AMS subject classifications. 05C25, 05E18, 05C35.

1. Introduction.

1.1. Outline. This article addresses a problem in graph representation theory of finite groups - finding undirected graphs with a given automorphism group and minimal number of vertices.

Denote by $\mu(G)$ the minimal number of vertices of undirected graphs having automorphism group isomorphic to G, $\mu(G) = \min_{\Gamma: \text{Aut}(\Gamma) \cong G} |V(\Gamma)|$. It is known [1] that $\mu(G) \leq 2|G|$, for any finite group G which is not cyclic of order 3, 4 or 5. See Babai [2] and Cameron [4], for expositions of this area. There are groups which admit a graphical regular representation, for such groups $\mu(G) \leq |G|$. For some recent work see [6], [7], [9].

For alternating groups A_n, $\mu(A_n)$ is known for $n \geq 13$, see Liebeck [10]. If $n \equiv 0 \text{ or } 1(\text{mod } 4)$, then $\mu(A_n) = 2^n - n - 2$. Additionally, for $n \geq 5$ A_n admits a graphical regular representation, see [13]. Thus for A_5 the best published estimate until now seemed to be $\mu(A_5) \leq 60$.

In this paper we exhibit graphs $\Gamma_i = (V, E_i)$, $i \in \{4, 5\}$, such that $|V| = 16$ and $\text{Aut}(\Gamma_i) \cong A_i$. The graph Γ_5 (also denoted Π_5) is listed in [5] together with order of its automorphism group. These μ values are less than the Babai’s bound for groups A_4 and A_5. For A_5 our graph has fewer vertices than the graphical regular representation. The new graphs are based on projectivisation of vertex-face incidence relation of icosahedron.

*Institute of Life Sciences and Technologies, Daugavpils University, Daugavpils, LV-5400, Latvia (peteris.daugulis@du.lv).
1.2. Notations. We use standard notations for undirected graphs, see Diestel [8]. A bipartite graph Γ with vertex partition sets V_1 and V_2 is denoted as $\Gamma = (V_1, V_2, E)$.

Given a polyhedron P, we denote its vertex, edge and face sets as $V = V(P)$, $E = E(P)$ and $F = F(P)$, respectively. We can think of P as the triple (V, E, F).

If S is a subset of \mathbb{R}^3 not containing the origin, then its image under a projectivisation map to $P(\mathbb{R}^3)$ is denoted by $\pi(S)$ or $[S]$, $[S] = \bigcup_{x \in S} [x]$.

2. Main results.

2.1. Vertex-face graphs of polyhedra.

Definition 2.1. Let $P = (V, E, F)$ be a polyhedron. An undirected bipartite graph $\Gamma_P = (V, F, I)$ is the vertex-face graph of P if $v \sim f$ iff $v \in V$, $f \in F$ and $v \in f$. In other words, Γ_P corresponds to the vertex-face incidence relation in $V \times F$.

Definition 2.2. Let $S = (V, E, F)$ be a centrally symmetric polyhedron. Let S be positioned in \mathbb{R}^3 so that its center is at $(0, 0, 0)$. We call the undirected bipartite graph $\Pi_S = ([V], [F], I_P)$ projective vertex-face graph if for any $v_p \in [V]$, $f_p \in [F]$ we have $v_p \sim f_p$ iff $v \in f$ for some $v \in \pi^{-1}(v_p)$ and $f \in \pi^{-1}(f_p)$.

2.2. Projective vertex-face graph of icosahedron and A_5.

Let $I = (V, E, F)$ be a regular icosahedron. Denote by $\text{Rot}(I) \leq SO(3)$ the group of rotational symmetries of I - rotations of \mathbb{R}^3 preserving V and E. It is known that $\text{Rot}(I) \simeq A_5$. Π_I is shown in Fig.1. We note that Π_I can be interpreted as the vertex-face graph of hemi-icosahedron, see [12].

![Fig.1. - Π_I.](image)

Proposition 2.3. Let I be regular icosahedron. Then $\text{Aut}(\Pi_I) \simeq A_5$.
Proof. The stated fact can be checked using an appropriate software, such as Magma, see [3]. Nevertheless we give a proof based on the geometric construction. We prove that \(\text{Rot}(I) \cong \text{Aut}(\Pi_I) \) in two steps.

First we prove that there is a subgroup in \(\text{Aut}(\Pi_I) \) isomorphic to \(\text{Rot}(I) \). We show that there is an injective group morphism \(f_1 : \text{Rot}(I) \to \text{Aut}(\Gamma_I) \to \text{Aut}(\Pi_I) \). \(f_1 : \text{Rot}(I) \to \text{Aut}(\Gamma_I) \) maps every \(\rho \in \text{Rot}(I) \) to \(f_1(\rho) \in \text{Aut}(\Gamma_I) \) which is the permutation of \(V \cup F \) induced by \(\rho \): \(f_1(\rho)(x) = \rho(x) \) for any \(x \in V \cup F \). Rotations of \(I \) preserve the vertex-face incidence relation and \(f_1 \) is a group morphism. \(f_2 : \text{Aut}(\Gamma_I) \to \text{Aut}(\Pi_I) \) maps every \(\varphi \in \text{Aut}(\Gamma_I) \) to \(\varphi_P \in \text{Aut}(\Pi_I) \) defined by the rule \(\varphi_P([x]) = [\varphi(x)] \) for any \(x \in V(\Gamma_I) \). Projectivization and composition commute therefore \(f_2 \) is a group morphism. \(f \) is injective since there is no nontrivial rotation of \(I \) sending each vertex to another vertex in the same projective class.

In the second step we show that \(|\text{Aut}(\Pi_I)| \leq 60 \) by a counting argument. Every vertex \(v \in [V] \) is contained in a subgraph \(\sigma(v) \) shown in Fig.2.

![Fig.2. - \(\sigma(v) \).](image)

All \(\Pi_I \)-vertices in \([V]\) have degree 5, all \(\Pi_I \)-vertices in \([F]\) have degree 3. It follows that \([V]\) and \([F]\) both are unions of \(\text{Aut}(\Pi_I) \)-orbits. \(v \) can be mapped by a \(\Pi_I \)-automorphism in at most 6 possible ways. After fixing the image of \(v \) it follows again by \(\text{Aut}(\Pi_I) \)-invariance of \([V]\) that the subgraph \(\sigma(v) \) can be mapped in at most 10 ways. Any permutation of \([V]\) by an automorphism determines a unique permutation of \([F]\). Thus \(|\text{Aut}(\Pi_I)| \leq 60 \). We have shown that \(\text{Aut}(\Pi_I) = f(\text{Rot}(I)) \cong A_5 \). \(\square \)

Remark 2.4. A graph isomorphic to \(\Pi_I \) is listed without discussion of automorphism group in [5] as one of connected edge-transitive bipartite graphs, ET16.5.

2.3. A modification of the projective vertex-face graph of icosahedron and \(A_4 \).

Since \(A_5 \) has subgroups isomorphic to \(A_4 \), we can try to modify \(\Pi_I \) so that the automorphism group of the modified graph is isomorphic to \(A_4 \). We find generators for a subgroup \(H \leq \text{Rot}(I) \), such that \(H \cong A_4 \), and add 3 extra edges to \(\Pi_I \) which are permuted only by elements of \(H \).
Denote by I_1 the polyhedral (1-skeleton) graph of I, $Aut(I_1) \cong Sym(I) \cong A_5 \times Z_2$. An isomorphism $Sym(I) \to Aut(I_1)$ takes a symmetry f to $f|_{I_1}$.

Proposition 2.5. Choose a 6-subset of vertices $W = \{O, A, B, C, D, E\} \subseteq V(I)$ such that $I_1[W]$ is isomorphic to the 5-wheel, see Fig.3.

![Fig.3 - $I_1[W]$](image)

Define an undirected graph $\Xi_I = ([V] \cup [F], I_p \cup J)$ by adding 3 edges to Π_I: $J = \{[A] \sim [C], [B] \sim [O], [D] \sim [E]\}$, see Fig.4. Then $Aut(\Xi_I) \cong A_4$.

![Fig.4 - extra edges.](image)

Proof. Consider the subgroup $H = \langle r_1, r_2 \rangle \leq Rot(I)$ generated by two rotations: r_1 - rotation by $\frac{2\pi}{3}$ radians around the line passing through the center of the face OCD and the center of I, r_2 - rotation by π radians around the line passing through the center of the edge OB and the center of I.

It can be checked that $H \cong A_4$. Note that the vertices O, A, B, C, D, E in Fig.3 represent the 6 projective classes of V.

We have to show that $Aut(\Xi_I) \cong H$. First we show that $H \leq Aut(\Xi_I)$. Ξ_I differs from Π_I by 3 extra edges. It suffices to note by direct inspection that r_1 permutes these extra edges and r_2 fixes each of them. To show that $Aut(\Xi_I) \leq H$ we observe that any additional rotation r' does not permute these three new edges and thus $r' \notin Aut(\Xi_I)$. \square

Remark 2.6. If D is dodecahedron then $\Pi_D \cong \Pi_I \cong A_5$.

Acknowledgements. We used Magma, see Bosma et al. [3], and Nauty, available at http://cs.anu.edu.au/~bdm/data/, see McKay and Piperno [11]. The author thanks Valentina Beinarovica for her assistance.
16-vertex graphs with automorphism groups A_4 and A_5 from icosahedron

REFERENCES

[1] L. Babai (1974), On the minimum order of graphs with given group, Canad. Math. Bull., 17, pp. 467-470.
[2] L. Babai (1995), Automorphism groups, isomorphism, reconstruction, In Graham, Ronald L.; Grötschel, Martin; Lovász, László, Handbook of Combinatorics I, North-Holland, pp. 1447-1540.
[3] W. Bosma, J. Cannon, and C. Playoust (1997), The Magma algebra system. I. The user language, J. Symbolic Comput., 24, pp. 235-265.
[4] P. Cameron (2004) Automorphisms of graphs, in Topics in Algebraic Graph Theory (ed. L. W. Beineke and R. J. Wilson), Cambridge Univ. Press, Cambridge, (ISBN 0521801974), pp.137-155.
[5] M. Conder (2017) Complete list of all connected edge-transitive bipartite graphs on up to 63 vertices Retrieved February 13, 2019, from https://www.math.auckland.ac.nz/ conder/AllSmallETBgraphs-upto63-full.txt.
[6] P. Daugulis (2017), A note on another construction of graphs with $4n + 6$ vertices and cyclic automorphism group of order $4n$. Archivum Mathematicum, 53(1), pp.13-18.
[7] P. Daugulis (2014) 10-vertex graphs with cyclic automorphism group of order 4. http://arxiv.org/abs/1410.1163
[8] R. Diestel (2010), Graph Theory. Graduate Texts in Mathematics, Vol.173, Springer-Verlag, Heidelberg.
[9] C. Graves, S.J. Graves, L.-K.Lauderdale (2017), Smallest graphs with given generalized quaternion automorphism group. Journal of Graph Theory, pp.1097-0118, http://dx.doi.org/10.1002/jgt.22166
[10] M. Liebeck (1983), On graphs whose full automorphism group is an alternating group or a finite classical group, Proc. London Math. Soc. (3) 47, 337-362.
[11] B. D. McKay and A. Piperno (2013), Practical Graph Isomorphism, II, J. Symbolic Computation, 60, pp. 94-112.
[12] P. McMullen and E. Schulte (2002), 6C. Projective Regular Polytopes. Abstract Regular Polytopes (1st ed.) Cambridge University Press, pp. 162-165. ISBN 0-521-81496-0.
[13] M. E. Watkins (1974), Graphical regular representations of alternating, symmetric, and miscellaneous small groups, Aequationes mathematicae, Volume 11, Issue 1, pp 40-50.