Modeling and prediction of surface roughness using multiple regressions: A noncontact approach

Dhiren R. Patel1✉ | Mysore B. Kiran2 | Vinay Vakharia1

1Department of Mechanical Engineering, Pandit Deendayal Petroleum University, Gujarat, India
2Department of Industrial Engineering, Pandit Deendayal Petroleum University, Gujarat, India

Correspondence
Dhiren R. Patel, Department of Mechanical Engineering, Pandit Deendayal Petroleum University, Gujarat, India.
Email: dhirenpatel85@gmail.com

Abstract
In the present work, a machine vision system is introduced, which captures images and extracts surface texture features of machined surfaces. The texture feature parameters are extracted using the gray-level co-occurrence matrix and correlated with different surface roughness parameters recorded by a contact-type surface profilometer. The image acquisition carried out at different roughness levels in order to extract texture features. The variation between each texture features and surface roughness parameter is investigated. Multiple regression models are developed to predict the subjective estimation of surface roughness parameter (Ra) and qualitative detection of the degree of surface roughness. It is observed that the linear detection model shows better performance characteristics compared with a nonlinear detection model. The comparison between measured and predicted results shows that the linear detection model had a maximum relative error of 2.01%, drastically better than nonlinear detection model of −9.60% error parts, hence indicating better surface detection capability over the nonlinear detection model. The results demonstrate that the prediction of surface roughness using linear regression model is a reliable approach of noncontact measurement.

KEYWORDS
gray-level co-occurrence matrix, surface profilometer, surface roughness parameters, texture features

1 INTRODUCTION

Technological advancement in the heavy industry requires precise and quality machined surface, which directly or indirectly demands methods in terms of accuracy, precision, and quick measurement.1 Turning operation generates tiny valley and peak with microgeometric uniqueness known as surface roughness due to friction, fracture, or plastic deformation during chip separation. There are numerous parameters that influence surface roughness.2 In machining industries, surface roughness has a direct impact on the fatigue resistance, quality, and performance of the product.3 Average surface roughness, also known as arithmetical mean deviation, is a key parameter widely used to demonstrate the individuality of the machined surface.
Many researchers have proposed different approaches to predict surface roughness based on machining theory.4-9 Surface measurement is primarily divided into two categories: (a) contact measurement and (b) noncontact measurement.10-12 Contact-type measurements are currently used due to the compact design, high measurement accuracy, and the ability to deliver consistent output for surface inspection.13 However, the study did not provide universal testimony for the significance of these advantages for the accuracy of measurements.14 Extensive research is carried out on non-contact-type assessment of surface roughness parameters using machine vision system and artificial intelligence technology, which include methods such as laser speckle, light scattering, and optical interference.15-19 Pontes et al20 proposed the technique called multilayer perceptron (MLP) network architecture, which considerably reduces errors in predicting surface roughness parameters of machined components compared with currently used techniques. Huaian et al presented a new methodology to assess surface roughness that uses uniform texture direction without any primary necessities, which defeats the present issues such as limited range, complex calculations, and so on. This improves the accuracy of noncontact measurement up to a certain degree. However, the field of reference for relevancy still needs to be straightened out.21 Mia et al established a model based on an artificial neural network to predict surface roughness of turned components. The Bayesian regularization of network architecture provided the highest accuracy.22 Chen et al23 developed an optical path using the laser speckle method, which enhances the accuracy of measurement in inspection machinery, though the workability of the proposed method is very crucial to accomplish on a regular basis. Zhu et al24 proposed a surface roughness prediction model based on a multiwavelength fiber optic sensor to minimize the error difference (less than 3%), which is better than characteristic curves between surface roughness and scattering intensity ratio.

The objective of the present work is to examine the correlation between surface roughness parameters and image texture features of computer numerical control (CNC) turned components with non-contact-type approach as it consists of points of interest such as high efficiency of measurement with accuracy, great adaptability, noncontact in nature, the ability to secure a large amount of information, and high performance-price ratio over contact-type measurement. It is aimed to extract the surface texture features by gray-level co-occurrence matrix (GLCM) and correlate it to surface roughness parameter measured by a surface profilometer. Linear and nonlinear regression models were established for arithmetical mean deviation (Ra) prediction, and the feasibility of detection models has been explored in the present work.

Subsequent sections of the article are organized as follows. Section 2 describes preparation of specimen and measurement of surface roughness using surface profilometer followed by image processing. Section 3 talks about linear and nonlinear regression model development for the comparison of the predicted roughness values with the measured values. Section 4 deals with concluding part where the researcher identifies that both the models are efficient; however, the linear regression model dominates in terms of precision.

2 MATERIALS AND METHODS

The average surface roughness (Ra) is generally used as a dimensional index to determine the surface finish of a machined surface.25 Assessment of roughness parameters plays a vital role to distinguish problems such as friction, contact deformation, and tightness of contact joint accuracy in industrial sectors.26

2.1 Measurement of surface roughness parameters using surface profilometer

The machining process of 12 low carbons steel workpieces having a diameter of 30 mm and a height of 18 mm was carried out on a CNC turning machine. The experiments were conducted by varying operating parameters such as spindle speed, feed rate, and depth of cut using Taguchi method. Table 1 shows the value of CNC turning cutting parameters.

Stylus instrument, also known as surface profilometer, is used as a contact-type surface roughness measurement of the machined component. It consists of a diamond stylus probe that is moved perpendicularly to the direction of roughness, and a characteristic of surface roughness is recorded at the other ends.13 It is most widely used technique because of its advantages and generating a profile of an object along a well-defined direction.13 Surface roughness measurement of 12 CNC turned components has been carried out on contact-type stylus instrument called surface profilometer as shown in Figure. 1. The measuring conditions for measurement are given in Table 2.
Specimen number	Speed (rpm)	Feed (mm/min)	Depth of cut (mm)
1	400	150	0.05
2	400	750	0.15
3	400	1250	0.25
4	400	2000	0.45
5	800	150	0.05
6	800	750	0.15
7	800	1250	0.25
8	800	2000	0.45
9	1200	150	0.05
10	1200	750	0.15
11	1200	1250	0.25
12	1200	2000	0.45

Table 1 Cutting parameters of computer numerical control turning

Figure 1 Surface profilometer (Handysurf 35B)

2.2 Image processing of CNC turned surfaces

In order to achieve precise information from captured images of the machined surface, uneven illumination, geometric image distortion, and noise should be eliminated. The digital image contains noise generated from photosensitive electron microscope elements. A filtering algorithm is used to eliminate unwanted noise from digital images as it is difficult to remove dead pixels and other pollutants directly through a charge-coupled device (CCD) camera. The algorithm retains the important details of the image texture.

The machine vision system has been taken into account for direct measurement because of its advantages in many sectors. It is connected with CCD camera PULNIX; captures the image of a machined surface, illuminated by ordinary lighting as shown in Figure 2.

The machine vision system has been kept in such a manner that the camera can focus on the machined surface and store corresponding images. It takes advantage of high speed, higher spatial resolution, and easiest method to measure the roughness of the workpiece more precisely. It can be very useful to predict surface roughness offline, online, and in-process. In order to collect rich information from captured raw images as shown in Figure 3, it needs to be preprocessed to make free from all artifacts and noise. The image processing tool of MATLAB was used to enhance the captured images to get precise result.
Table 2: Measuring Condition

Parameter	Value
Evaluation length	8 mm
Measuring speed	0.6 mm/s
Cutoff value	0.8 mm
Type of filter	Gaussian
Form remove	Straight
Material of stylus	Diamond
Radius of stylus	5 μm
Number of line scans	Single

Figure 2 Setup of a machine vision system

Figure 3 Raw images of turned components
The preprocessing of the captured image was executed before the stage of image feature extraction to enhance the image by adjusting the contrast. The actual image of the machined component was subdivided into 15 equal parts to take advantage of the nonoverlapping loop of images that help to create a strong database, and ultimately developed model will be more robust compared with overlapping. Furthermore, subimages were preprocessed by continuous two-dimensional (2D) wavelet transform in which images are being converted into grayscale by extracting coefficient from discrete wavelet transform. It provides better result for nonstationary signals. “Wavelet image processing” toolbox of MATLAB has been utilized to remove the noise. Haar wavelet has been chosen as it gives the least coefficient from discrete wavelet transform. It provides better result for nonstationary signals.

Generally in the captured image of a machined component, GLCM works on the probability of two pixels occurrences in a certain positional manner. The relative position between the two pixels and the gray value distribution in the texture image space is accessible by GLCM. As an advantage of discrimination of textures, texture analysis was done for image classification for different datasets.

As shown in Table 4, various image texture features were extracted using the gray-level co-occurrence matrix. Segmenting the preprocessed image into 32 × 32 pixels of subimages, assists to prepare the image dataset. This dataset of images has been loaded to extract the various texture features listed in Table 4. The extraction process has been carried out by varying orientation at 0°, 45°, 90°, and 135° at constant displacement of d = 1.

Table 3: Denoise process parameters in 2D wavelet

Wavelet	Haar
Level	2
Thresholding method	Soft, fixed from the threshold
Noise structure	Unscaled white noise, horizontal details coefficient
Threshold value at level 1	3.33
Threshold value at level 2	2.884

Table 4: Texture features extracted using gray-level cooccurrence matrix

Texture feature	Equation	Texture feature	Equation		
Contrast	$G - 1 \sum_{n=0}^{G-1} \left\{ \sum_{i=0}^{G-1} \sum_{j=0}^{G-1} P(i,j) \right\}_n$	Homogeneity	$G - 1 \sum_{i=0}^{G-1} \sum_{j=0}^{G-1} P(i,j) \left(\frac{1}{1 + x} \right)$		
Correlation	$G - 1 \sum_{i=0}^{G-1} \sum_{j=0}^{G-1} \left(\frac{P(i,j)}{x(x+1)} \right) \sum_{i=0}^{G-1} \sum_{j=0}^{G-1} \log(P(i,j))$	Sum entropy	$\sum_{i=0}^{G-1} \sum_{j=0}^{G-1} P(i,j) \log(P(i,j))$		
Cluster prominence	$G - 1 \sum_{i=0}^{G-1} \sum_{j=0}^{G-1} \left(i + j - \mu_x - \mu_y \right)^4 X P(i,j)$	Difference variance	$G - 1 \sum_{i=0}^{G-1} \sum_{j=0}^{G-1} (i - \mu)^2 P(i,j)$		
Dissimilarity	$G - 1 \sum_{i=0}^{G-1} \sum_{j=0}^{G-1} P(i,j)	i - j	$	Difference entropy	$G - 1 \sum_{i=0}^{G-1} \sum_{j=0}^{G-1} P(i,j) \log(P(i,j))$
Energy	$G - 1 \sum_{i=0}^{G-1} \sum_{j=0}^{G-1} \left(P(P(i,j)) \right)$	Inverse difference moment normalized	$G - 1 \sum_{i=0}^{G-1} \sum_{j=0}^{G-1} \left(\frac{1}{1 + x(j-j)} \right) P(i,j)$		
Entropy	$G - 1 \sum_{i=0}^{G-1} \sum_{j=0}^{G-1} P(i,j) X \log(P(i,j))$	Homogeneity	$G - 1 \sum_{i=0}^{G-1} \sum_{j=0}^{G-1} P(i,j)$		
3 | RESULTS AND DISCUSSION

In this section, the results of surface roughness measurement using surface profilometer and multiple regressions are compared and discussed.

3.1 | Texture feature extraction and analysis

The image acquisition of machined components has been carried out for several times at roughness levels of 2.20, 2.60, 2.80, 2.90, 3.43, 3.50, 3.80, 5.06, 5.36, 6.50, 7.30, and 8.10 μm. The GLCM was established at an angle of 0°, 45°, 90°, and 135°. As a result of this, numerous texture feature parameters such as contrast, correlation, cluster prominence, dissimilarity, energy, entropy, homogeneity, maximum probability, sum entropy, difference variance, difference entropy, inverse difference normalized (INN), and inverse difference moment normalized were extracted. Correlation values of all texture features are listed in Table 5.

From the extracted data, the average value of each texture features was computed at every stage. The relevancy of texture features and Ra can be visualized graphically as shown in Figures 4 to 16.

From the diagrams of texture features and roughness parameter, it can be seen that correlation (F2), homogeneity (F7), maximum probability (F8), INN (F12), and inverse difference moment normalized (F13) showed a proportional trend with change in the value of arithmetic mean deviation, whereas contrast F1), cluster prominence (F3), dissimilarity (F4), entropy (F6), sum entropy (F9), difference variance (F10), and difference entropy (F11) showed inversely proportional behavior as texture feature decreases with an increase in arithmetic mean deviation.

3.2 | Development and analysis of multiple linear detection models

The relationship between two or more variables can be estimated by regression analysis. Multiple regression equations were developed for surface roughness detection of the workpiece as stated in texture feature and roughness variation

Texture feature	Correlation with Ra (%)	Texture feature	Correlation value (%)
Contrast (F1)	−82.59	Maximum probability (F8)	99.60
Correlation (F2)	89.05	Sum entropy (F9)	−98.64
Cluster Prominence (F3)	−90.89	Difference variance (F10)	−82.59
Dissimilarity (F4)	−95.67	Difference entropy (F11)	−98.33
Energy (F5)	98.86	Inverse difference normalized (F12)	85.00
Entropy (F6)	−99.04	Inverse difference moment	83.58
Homogeneity (F7)	87.33	Normalized (F13)	

TABLE 5 Correlation values between arithmetical mean deviation and texture features

[FIGURE 4] Correlation trend between gray-level co-occurrence matrix texture feature contrast (F1) and average surface roughness Ra (μm)
FIGURE 5 Correlation trend between gray-level co-occurrence matrix texture feature correlation (F2) and average surface roughness Ra (µm)

FIGURE 6 Correlation trend between gray-level co-occurrence matrix texture feature cluster prominence (F3) and average surface roughness Ra (µm)

FIGURE 7 Correlation trend between gray-level cooccurrence matrix texture feature dissimilarity (F4) and average surface roughness Ra (µm)

FIGURE 8 Correlation trend between gray-level cooccurrence matrix texture feature energy (F5) and average surface roughness Ra (µm)
FIGURE 9 Correlation trend between gray-level cooccurrence matrix texture feature entropy (F6) and average surface roughness Ra (µm)

FIGURE 10 Correlation trend between gray-level cooccurrence matrix texture feature homogeneity (F7) and average surface roughness Ra (µm)

FIGURE 11 Correlation trend between gray-level cooccurrence matrix texture feature maximum probability (F8) and average surface roughness Ra (µm)

FIGURE 12 Correlation trend between gray-level cooccurrence matrix texture feature sum entropy (F9) and average surface roughness Ra (µm)
FIGURE 13 Correlation trend between gray-level cooccurrence matrix texture feature difference variance (F10) and average surface roughness Ra (µm)

FIGURE 14 Correlation trend between gray-level cooccurrence matrix texture feature difference entropy (F11) and average surface roughness Ra (µm)

FIGURE 15 Correlation trend between gray-level cooccurrence matrix texture feature inverse difference normalized (F12) and average surface roughness Ra (µm)

FIGURE 16 Correlation trend between gray-level cooccurrence matrix texture feature inverse difference moment normalized (F13) and average surface roughness Ra (µm)
rule. Results obtained by surface profilometer and image texture features extraction using GLCM shows that dissimilar-
ity, energy, entropy, homogeneity, maximum probability, sum entropy, difference variance, difference entropy, INN have
strong relationships with average surface roughness (Ra). The mathematical model for linear regression can be obtained
as the following Equation (1). The statistical analysis results are listed in Table 6.

\[
Ra = -17.46 - 1.883 \times F4 + 7.009 \times F5 - 3.220 \times F6 - 7.032 \times F7 + 22.406 \times F8 + 4.610 \times F9 + 0.1686 \times F10 + 0.979 \times F11 + 29.63 \times F12.
\] (1)

Regression Equation (1) can be justified from Table 6, as the coefficient of determination \(R^2 (0.9989) \) approaches to 1. \(F \)-statistics and associated probability demonstrate that regression model showed an outstanding linear relationship.
The above parameters conclude that linear detection model generated for finding relationship behavior was suitable.32

3.3 Development and analysis of multivariate nonlinear detection model

In regression analysis, it is quite difficult to conclude the behavior of detection model for evaluation of sample data.
Various curve models have been taken into account to overcome this difficulty. Palanikumar33 selected several functional
forms such as exponential, power, inverse, logarithmic, two times and three times functions for the nonlinear fitting
of image texture feature, and surface roughness parameters. The results showed that there was a linear, quadratic, and
cubic relationship between Ra and dissimilarity (F4), homogeneity (F7), and entropy (F9), respectively. The nonlinear
regression Equation (2) constructed with image texture features and average surface roughness (Ra) is shown below.

\[
Ra = 61.5 + X1 \times F4 + X2 \times F7 + X3 \times F9 + X4 \times F4^2 + X5 \times F7^2 + X6 \times F9^2 + X7 \times F4^3 + X8 \times F7^3 + X9 \times F9^3.
\] (2)

In Equation (2), X1 to X9 represents the regression coefficients. The coefficient values obtained for nonlinear mul-
tiple regression model are shown in Table 7. By substituting the values of regression coefficients in Equation (2), the
mathematical model of the nonlinear detection model can be obtained as follows.

\[
Ra = 61.5 - 128.3 \times F4 + 120.1 \times F7 + 69.97 \times F9 + 51.9 \times F4^2 - 319.6 \times F7^2 - 43.72 \times F9^2 - 7.09 \times F4^3 + 287.3 \times F7^3 + 8.63 \times F9^3.
\] (3)

One cannot judge the reliability of nonlinear function relation between the roughness parameter and texture features
directly. To judge it, a fitting degree of Equation (3) should be determined first in order to check the performance of the
established model. The \(R^2 \) and \(F \) tests were performed on the model to evaluate the fitting effect on multiple regression
models. The test results of the nonlinear detection model are shown in Table 8.

Test factor	\(R^2 \)	\(F \)	\(P \)	Error variance
Calculating value	99.98%	23602.26	.002	0.0008

TABLE 6 Statistical result of linear regression model

Regression coefficient	X1	X2	X3	X4	X5	X6	X7	X8	X9
Calculating result	-128.3	120.1	69.97	51.9	-319.6	-43.72	-7.09	287.3	8.63

TABLE 7 Nonlinear multiple regression coefficients

Test factor	\(R^2 \)	\(F \)	\(P \)	Error variance
Calculating value	99.64%	1170.45	.007	0.0162

TABLE 8 Statistical results of nonlinear regression model
TABLE 9 Analysis of the relative error between actual and predicted roughness value

Test samples of image texture features	Linear regression detection model	Nonlinear regression detection model						
	Actual value Ra (µm)	Detection value Ra (µm)	Absolute error	Relative error (%)	Actual value Ra (µm)	Detection value Ra (µm)	Absolute error	Relative error (%)
	2.200	2.219	−0.019	−0.85	2.200	2.208	−0.008	−0.37
	2.600	2.548	0.052	2.01	2.600	2.628	−0.028	−1.07
	2.800	2.798	0.002	0.08	2.800	3.038	−0.238	−8.51
	2.900	2.921	−0.021	−0.74	2.900	3.178	−0.278	−9.60
	3.430	3.425	0.005	0.14	3.430	3.352	0.078	2.28
	3.500	3.514	−0.014	−0.39	3.500	3.563	−0.063	−1.81
	3.800	3.755	0.045	1.19	3.800	3.978	−0.178	−4.68
	5.060	5.069	−0.009	−0.18	5.060	5.036	0.024	0.48
	5.360	5.366	−0.006	−0.11	5.360	5.623	−0.263	−4.91
	6.500	6.514	−0.014	−0.21	6.500	6.674	−0.174	−2.68
	7.300	7.314	−0.014	−0.19	7.300	7.369	−0.069	−0.95
	8.100	8.064	0.036	0.45	8.100	8.289	−0.189	−2.34

From Table 8, as the coefficient of determination R^2 (0.9964) approaches toward unity, it signifies that the nonlinear regression Equation (3) fits well. The existence of the remarkable nonlinear relationship was noticed between dependent and independent variables, hereby confirming the successful demonstration of nonlinear detection model for the evaluation of sample data.34

3.4 Performance analysis of multivariate regression detection model

Multiple regression analysis is a statistical method that assists to find a correlation between a continuous dependent and at least two discrete independent variables. It is considered to estimate surface roughness parameters due to the broad area of tasks such as analyzing categorical, ordinal, or experimental data.35 Multiple models have been utilized to expose the surface roughness of the test sample. By doing so, one can identify the reliability and performance of the regression
model. Substituting the values of texture feature parameters into Equations (1) and (3), the detected values and error values can be obtained as presented in Table 9.

The comparison graph of testing results and measured results for linear and nonlinear detection model is shown in Figure 17A,B, respectively. The maximum relative error in the linear detection model is 2.01%, which justifies the good detection capability of the linear detection model developed for the turned workpiece. The maximum relative error observed in the nonlinear detection model is \(-9.60%\) as shown in Table 9.

From the test results, it is found that detection capability for linear detection model is better compared with nonlinear detection model for turned workpiece surface roughness. Compared with nonlinear detection model, the maximum detection error was decreased by 80% using the linear detection model, which demonstrates the better execution attributes over nonlinear detection model.

4 | CONCLUSION

The researcher has used the CNC turning workpiece as an outcome of the study to detect surface roughness by image texture feature analysis, which proposes a detection method via a noncontact approach based on the machine vision system. The mathematical relationship was developed using multiple regression modeling between image texture features of machined surfaces and arithmetic mean deviation (Ra) measured by a surface profilometer. Multiple linear and nonlinear regression models were used to judge the behavior of the detection model and analyze the experimental data. Statistical analysis showed that both linear and nonlinear detection models fit well into the multivariant regression model. In the present work, researcher found that performance of maximum detection error for linear detection model was 2.01% over nonlinear detection model of \(-9.60\%\), which showed better performance characteristics of linear detection model over nonlinear detection model to predict various statistical roughness parameters of flat rough surfaces. From the results, one can conclude to the point of predicting surface roughness effectively via a noncontact approach. Experiments show the minimal relative error in prediction of Ra and hence the obtained results provide motivation for extending proposed prediction model for amplitude parameters, namely, root mean square roughness (Rq); maximum height of peaks (Rp); maximum height of the profile (Rt), and 10-point height (Rz).

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest regarding the publication of this article.
AUTHOR CONTRIBUTIONS
Dhiren R. Patel contributed to the conceptualization, data curation, formal analysis, methodology, resources, software, validation, and writing original draft. M. B. Kiran and Vinay Vakharia supported supervision, writing, review, and editing.

NOMENCLATURE

Symbol	Description
μm	micrometer
μx	mean value of Px
μy	mean value of Py
2D	two dimensional
ANN	artificial neural network
CCD	charge-coupled device
CNC	computer numerical control
d	pixel distance
DWT	discrete wavelet transform
Fi	texture feature number
G	number of gray levels utilized
GLCM	gray-level co-occurrence matrix
i	gray value
INN	inverse difference normalized
j	gray value
min	minute
mm	millimeter
R²	coefficient of determination
Ra	arithmetic mean deviation of profile
RPM	revolutions per minute
σx	SD of Px
σy	SD of Py
Θ	orientation
μ	mean value of P

ORCID

Dhiren R. Patel https://orcid.org/0000-0002-0249-6842

REFERENCES

1. Bas G, Stoev L, Durakbasa NM. Assessment of the production quality in machining by integrating a system of high precision measurement. *Procedia Eng*. 2015;100:1616-1624. https://doi.org/10.1016/j.proeng.2015.01.535.
2. Benardos PG, Vosniakos G. Predicting surface roughness in machining: a review. *Int J Mach Tool Manuf*. 2003;43:833-844. https://doi.org/10.1016/S0890-6955(03)00059-2.
3. Cai Y, Liu Z, Shi Z, Song Q, Wan Y. Influence of machined surface roughness on thrust performance of micro-nozzle manufactured by micro-milling. *Exp Therm Fluid Sci*. 2016;77:295-305. https://doi.org/10.1016/j.expthermflusci.2016.05.004.
4. Tseng TL(B), Konada U, Kwon Y(J). A novel approach to predict surface roughness in machining operations using fuzzy set theory. *J Comput Des Eng*. 2016;3:1-13. https://doi.org/10.1016/j.jcde.2015.04.002.
5. Brahmeswara Rao D, Venkata Rao K, Gopala Krishna A. A hybrid approach to multi response optimization of micro milling process parameters using Taguchi method based graph theory and matrix approach (GTMA) and utility concept. *Measurement*. 2018;120:43-51. https://doi.org/10.1016/j.measurement.2018.02.005.
6. Xie N, Zhou J, Zheng B. An energy-based modeling and prediction approach for surface roughness in turning. *Int J Adv Manuf Technol*. 2018;96:2293-2306. https://doi.org/10.1007/s00170-018-1738-y.
7. Kibbou D, Majdouline M. Prediction of surface quality based on the non-linear vibrations in orthogonal cutting process: time domain modeling. *J Manuf Mater Process*. 2019;3:53. https://doi.org/10.3390/jmmp3030053.
8. Yin Y, Zhang L, Liao W, Niu H, Chen F. Computers in industry a knowledge resources fusion method based on rough set theory or quality prediction. *Comput Ind*. 2019;108:104-114. https://doi.org/10.1016/j.compind.2019.02.012.
9. He CL, Zong WJ, Zhang JJ. Influencing factors and theoretical modeling methods of surface roughness in turning process: state-of-the-art. 2018;129:15-26. https://doi.org/10.1016/j.ijmachtools.2018.02.001.
10. Huaiyan Y, Liu J, Peng A, Enhui L, Hang Z. Visual method for measuring the roughness of a grinding piece based on color indices. Opt Express. 2016;24:583-593. https://doi.org/10.1364/OE.24.017215.

11. Alexander VV, Deng H, Islam MN, Terry FL Jr. Non-contact surface roughness measurement of crankshaft journals using a super-continuum laser. Conference on Lasers Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America, 2010); 2010:3-4. https://doi.org/10.1364/CLEO_AGPS.2010.AFA3.

12. Leelawattananon T, Thowlalla W, Chittayasothorn S. Surface roughness measurement application using multi-frame techniques. 2015 International Conference on Computer Applications Technologies; 2015:86-91. https://doi.org/10.1109/CCATS.2015.30.

13. Gao W, Hatajema H, Fang FZ, et al. On-machine and in-process surface metrology for precision manufacturing. CIRP Ann. 2019;68:843-866. https://doi.org/10.1016/j.cirp.2019.05.005.

14. Stepien K. Testing the accuracy of surface roughness measurements carried out with a portable profilometer. Key Eng Mater. 2015;637:69-73. https://doi.org/10.4028/www.scientific.net/KEM.637.69.

15. Yang B, Yan C, Zhang J, Zhang H. Refractive index and surface roughness estimation using passive multispectral and multangular polarimetric measurements. Opt Commun. 2016;381:336-345. https://doi.org/10.1016/j.optcom.2016.07.042.

16. Gong Y, Mixture ST, Gao P, Mellott NP. Surface roughness measurements using power Spectrum density analysis with enhanced spatial correlation length. J Phys Chem. 2016;120:22358-22364. https://doi.org/10.1021/acs.jpcc.6b06635.

17. Zhang X, Cui J, Wang W, Lin C. A study for texture feature extraction of high-resolution satellite images based on a direction measure and gray level co-occurrence matrix fusion algorithm. Urban Remote Sens Monit Synth Model Urban Environ. 2017;17:1474. https://doi.org/10.3390/s17071474.

18. Yıldırım M, Okutucu-özüyurt T, Dursunkaya Z. Optics & Laser Technology a numerical algorithm to determine straightness error, surface roughness, and waviness measured using a fiber optic interferometer. Opt Laser Technol. 2016;85:19-29. https://doi.org/10.1016/j.optlastec.2016.05.014.

19. Przetacki D, Majchrowski R, Marciniak-podsadna L. Experimental research of surface roughness and surface texture after laser cladding. Appl Surf Sci. 2016;388:420-423. https://doi.org/10.1016/j.apsusc.2015.12.093.

20. Pontes FJ, Amorim GF, Balestrassi PP, Paiva AP, Ferreira JR. Design of Experiments and Focused Grid Search for neural network parameter optimization. Neurocomputing. 2016;186:374-381. https://doi.org/10.1016/j.neucom.2015.12.061.

21. Huaiyan YI, Jian LIU, Enhui LU, Peng AO. Measuring grinding surface roughness based on the sharpness evaluation of colour images. Measurement. 2016;92:246-474. https://doi.org/10.1016/j.measurement.2016.06.048.

22. Chen CC, Guo XM, M J, Wang WS. Surface roughness measurement based on laser speckle angle correlation. Laser Technol. 2015;39:497-500. https://doi.org/10.7510/jjgs.

23. Zhu N, Zhang J. Surface roughness prediction model and experimental results based on multi- wavelength fiber optic sensors. Opt Express. 2016;24:25119-25128. https://doi.org/10.1364/OE.24.025119.

24. Mohd A, Haron H, Sharif S. Expert systems with applications prediction of surface roughness in the end milling machining using artificial neural network. Expert Syst Appl. 2010;37:1755-1768. https://doi.org/10.1016/j.eswa.2009.07.033.

25. Shivanna DM, Kiran MB, Kavitha SD. Evaluation of 3D surface roughness parameters of EDM components using vision system, in: Procedia. Mater Sci. 2014;5:2132-2141. https://doi.org/10.1016/j.mspro.2014.07.416.

26. Pfeifer T, Wiegers L. Reliable tool wear monitoring by optimized image and illumination control in machine vision. Measurement. 2000;28:209-218. https://doi.org/10.1016/S0263-2241(00)0014-2.

27. Lee J, Choi HJ, Nam J, Jo SB, Kim M, Lee SW. Development and analysis of an online tool condition monitoring and diagnosis system for a milling process and its real-time implementation. J Mech Sci Technol. 2017;31:5695-5703. https://doi.org/10.1007/s12206-017-1104-4.

28. Patel DR, Kiran MB. Evaluation of surface roughness and roundness improvement in wire electrical discharge turning based on statistical analyses. Mater Today Proc. 2019;18:3008-3016. https://doi.org/10.1016/j.matpr.2019.07.172.

29. Vakharia V, Dave NJ. Feature extraction and classification of machined component texture images using wavelet and artificial intelligence techniques. 8th International conference on Mechanical and Aerospace Engineering. Prague: IEEE; 2017:140-144.

30. Patel DR, Vakharia V, Kiran MB. Texture classification of machined surfaces using image processing and machine learning techniques. FME Trans. 2019;47:865-872. https://doi.org/10.5937/fmet1904865P.

31. Thamma R. Comparison between multiple regression models to study effect of turning parameters on the surface roughness. Proceedings of the 2008 IAIE-IME International Conference; 2008:103.

32. Palanikumar K. Application of Taguchi and response surface methodologies for surface roughness in machining glass fiber reinforced plastics by PCD tooling. Int J Adv Manuf Technol. 2008;36:19-27. https://doi.org/10.1007/s00170-006-0811-0.

33. Mohammadi A, Tehrani AF. A new approach to surface roughness and roundness improvement in wire electrical discharge turning based on statistical analyses. Int J Adv Manuf Technol. 2008;39:64-73. https://doi.org/10.1007/s00170-007-1179-5.

34. Sidda Reddy B, Padmanabhan G, Reddy KV. Surface roughness prediction techniques for CNC turning. Asian J Sci Res. 2008;1:256-264. https://doi.org/10.3923/ajsr.2008.256.264.
How to cite this article: Patel DR, Kiran MB, Vakharia V. Modeling and prediction of surface roughness using multiple regressions: A noncontact approach. *Engineering Reports*. 2020;2:e12119.
https://doi.org/10.1002/eng2.12119