Quantum hybridization negative differential resistance from non-toxic halide perovskite nanowire heterojunctions and its strain control

Juho Lee†, Muhammad Ejaz Khan1,2† and Yong-Hoon Kim1*

Abstract

While low-dimensional organometal halide perovskites are expected to open up new opportunities for a diverse range of device applications, like in their bulk counterparts, the toxicity of Pb-based halide perovskite materials is a significant concern that hinders their practical use. We recently predicted that lead triiodide (PbI3) columns derived from trimethylsulfonium (TMS) lead triiodide (CH3)3SPbI3 (TMSPbI3) by stripping off TMS ligands should be semimetallic, and additionally ultrahigh negative differential resistance (NDR) can arise from the heterojunction composed of a TMSPbI3 channel sandwiched by PbI3 electrodes. Herein, we computationally explore whether similar material and device characteristics can be obtained from other one-dimensional halide perovskites based on non-Pb metal elements, and in doing so deepen the understanding of their mechanistic origins. First, scanning through several candidate metal halide inorganic frameworks as well as their parental form halide perovskites, we find that the germanium triiodide (GeI3) column also assumes a semimetallic character by avoiding the Peierls distortion. Next, adopting the bundled nanowire GeI3-TMSGeI3-GeI3 junction configuration, we obtain a drastically high peak current density and ultrahigh NDR at room temperature. Furthermore, the robustness and controllability of NDR signals from GeI3-TMSGeI3-GeI3 devices under strain are revealed, establishing its potential for flexible electronics applications. It will be emphasized that, despite the performance metrics notably enhanced over those from the TMSPbI3 case, these device characteristics still arise from the identical quantum hybridization NDR mechanism.

Keywords: Non-toxic halide perovskite nanowires, Semi-metallicity, Quantum-hybridization negative differential resistance, Strain engineering, First-principles calculations

1 Introduction

Research in halide perovskites field has rapidly progressed due to their potential for optoelectronic applications such as solar cells, lasers, photodetectors, and light-emitting diodes [1–5]. However, excellent materials properties like defect tolerance, long charge carrier diffusion length, low cost, facile synthesizability, etc. make them also promising for non-optoelectronic device applications. Recently, we predicted that the one-dimensional (1D) inorganic lead triiodide (PbI3) framework derived from the trimethylsulfonium lead triiodide (CH3)3SPbI3 (TMSPbI3) perovskite by removing TMS ligands should be semimetallic, rendering it a promising electrode material [6]. Moreover, in view of realizing advanced multi-valued logic devices [7–9], we predicted large room-temperature negative differential resistance (NDR) with high peak-to-valley ratios and current densities can be derived from PbI3-TMSPbI3-PbI3 heterojunction tunneling devices [6]. However, as in the case for solar cell applications [10–13], the toxicity of Pb-based halide perovskites could potentially become the bottleneck for its commercialization.

†Juho Lee and Muhammad Ejaz Khan contributed equally to this work
*Correspondence: y.h.kim@kaist.ac.kr
1 School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
Full list of author information is available at the end of the article
In this work, adopting a first-principles approach that combines density functional theory (DFT) and nonequilibrium Green’s function (NEGF) approaches, we discuss the electronic and quantum transport characteristics of non-toxic TMS germanium triiodide (CH$_3$)$_3$GeI$_3$ (TMSGeI$_3$) and its inorganic framework, germanium triiodide GeI$_3$. We first confirm that the quasi-1D organic-inorganic hybrid halide perovskite TMSGeI$_3$ with a semiconducting character is dynamically stable. Concurrently, we find that its 1D inorganic framework, GeI$_3$, which adopts the face-sharing [GeI$_6$] octahedral geometry, assumes a semi-metallic character like PbI$_3$. Next, considering van der Waals (vdW) bundled quasi-1D heterojunctions in which semiconducting TMSGeI$_3$ channels with sub-5 nm dimensions are sandwiched between semimetallic GeI$_3$ electrodes, we obtain excellent NDR properties characterized by high NDR peak current density (up to ~2700 kA cm$^{-2}$) and peak-to-valley current ratios (PVRs, up to ~44) at low-bias regimes (<0.8 V). Importantly, we also demonstrate the NDR performances are robustly preserved even after uniaxial strains are applied along the GeI$_3$-TMSGeI$_3$-GeI$_3$ heterojunction column direction, and particularly under a 4% compressive strain NDR metrics can be further enhanced to the enormous NDR peak current density of 5300 kA cm$^{-2}$ and PVRs of 87. It will be emphasized that these superb NDR characteristics originate from the quantum hybridization NDR mechanism [6, 14].

2 Methods/experimental

2.1 DFT calculations

We performed DFT calculations with the Vienna Ab-initio Simulation Package [15]. The plane-waves were expanded with a kinetic energy cutoff of 500 eV to obtain basis sets with the self-consistency cycle convergence energy criterion of 10^{-8} eV. Atomic structures were optimized using conjugate-gradient approach until the Hellmann–Feynman forces were less than 0.001 eV/Å. The simulations were performed within the Perdew-Burke-Ernzenhof parameterization of generalized gradient approximation revised for solids (PBEsol) [16], which was confirmed to be a suitable exchange-correlation functional for describing TMS-based halide perovskites including their inter-column vdW interactions [6]. The core and valence electrons were handled by the projector augmented wave method [15]. The k-point meshes of $5 \times 5 \times 8$ and $1 \times 1 \times 8$ were employed for unit cells of three-dimensional (3D) TMSGeI$_3$ and 1D GeI$_3$ wire structures, respectively. A vacuum space of more than 15 Å was inserted perpendicular to the periodic 1D structure to avoid interactions with their neighboring images in a periodic boundary condition setup. In order to determine the dynamic stability of TMSGeI$_3$ perovskite and GeI$_3$ inorganic metal-halide nanostructure, we adopted the $2 \times 2 \times 3$ and $1 \times 1 \times 4$ supercells, respectively, and computed the force constant matrices based on small displacement method.

2.2 DFT-based NEGF calculations

For the finite-bias non-equilibrium electronic structure calculations, we used the DFT-NEGF method implemented within the TranSIESTA code [17, 18]. The surface Green’s function g were extracted from separate DFT calculations for four unit cells of GeI$_3$ crystals with the $5 \times 5 k$-point sampling along the surface ab plane and $10 k$-point sampling along the surface-normal charge transport c direction. The transmission functions were then obtained according to

$$T(E; V_b) = Tr[\Gamma_L(E; V_b)G(E; V_b)\Gamma_R(E; V_b)G^T(E; V_b)],$$ \hspace{1cm} (1)$$

where G is the retarded Green’s function for the channel C and $\Gamma_{L/R} = i\left(\Sigma_{L/R} - \Sigma_{L/R}^+\right)$ are the broadening matrices. The current density–bias voltage (J-V_b) characteristics were calculated by invoking the Landauer-Büttiker formula [19],

$$I(V_b) = \frac{2e}{h} \int_{\mu_L}^{\mu_R} T(E; V_b)\left[f(E - \mu_R) - f(E - \mu_L)\right]dE.$$ \hspace{1cm} (2)$$

Analyses on DFT-NEGF calculation output were performed using the Inelastica code and our in-house codes that implement the multi-space constrained-search DFT formalism [14, 20–22].

3 Results and discussion

3.1 Screening process of metal-halide inorganic frameworks to detect metallicity

A ubiquitous key challenge in hybrid halide perovskite-based device applications is how to eliminate the hazards of Pb exposure [10–13]. Naturally, the approach employing another group 14 metal, Sn or Ge, has been actively explored as a viable option to eliminate the hazardous Pb element. In view of coming up with a non-toxic alternative to the semimetallic 1D PbI$_3$ nanowire and its semiconductor quasi-1D parental perovskite form TMSnPbI$_3$, we thus performed the computational screening process (see Fig. 1a, left) by adopting the structural template of distorted face-sharing [BX$_6$] octahedral geometry of PbI$_3$ and replacing Pb with Ge or Sn as a cation B in combination with three different types of halogen anions (X: Cl, Br, and I). In Fig. 1b and c, we show the atomic structures of non-toxic bulk TMSGeI$_3$ perovskite and its inorganic core GeI$_3$ nanowire, respectively, optimized within the PBEsol [16]. Note that the GeI$_3$ framework composed of connected face-sharing [GeI$_6$] octahedra can be prepared by removing two organic TMS ligands per
TMSGeI₃ unit cell. Similar to the experimentally synthesized TMSPbI₃ counterpart [23, 24], the 3D crystal structure of TMSGeI₃ has hexagonal symmetry in the space group P6₃mc (no. 186) and can be considered as a composite of semi-1D TMSGeI₃ columns assembled by vdW interactions.

As the first step of our computational screening pipeline, we considered the BX₃ inorganic framework candidates in view of the electronic structure and their dynamical stabilities. The screening results are summarized in the right panel of Fig. 1a, and the optimized atomic structures of BX₃ inorganic framework candidates are provided in Fig. 2a. We then observe that Br- or Cl-based metal halides, GeBr₃, GeCl₃, SnBr₃, and SnCl₃, as well as PbBr₃ and PbCl₃, assume semiconducting characters with the B-X bond-length alternation or contracting-expanding Peierls distortions of [BX₆] octahedral cages (Fig. 2a top panel). On the other hand, in the case of I-based metal halides, GeI₃, and SnI₃, uniform (i.e., without Peierls distortion) Ge-I bond lengths of 2.82 Å and Sn-I bond lengths of 2.93 Å were observed from the optimized GeI₃ and SnI₃ structures, respectively (Fig. 2a). These bond lengths are comparable to the uniform Pb-I bond lengths of 3.06 Å in the PbI₃ nanowire. Then, as hinted by the avoidance of the Peierls distortion and like in the PbI₃ case, GeI₃ and SnI₃ assume semi-metallic characters by preserving a linear dispersion at the Fermi-level (Fig. 2b).

At this point, we provide more explanations on the mechanisms of the emergent semi-metallicity or the avoidance of Peierls distortions in PbI₃, GeI₃ and SnI₃ nanowires. The synthesis of TMSPbI₃ demonstrated that, unlike typical amine-based A cations, the sulfur-based (CH₃)₃S⁺ cation can play a unique role of stabilizing 1D PbI₃ frameworks. Then, the removal of TMS ligands from a 1D TMSBX₃ nanowire will increase the electron count within the BX₃ inorganic framework and form half-filled 1D bands, which typically induce Peierls distortions and open bandgaps. However, as explicitly confirmed above, the quasi-1D nature or circumferential interactions between large I⁻ lone-pair orbitals can avoid direct interactions between Pb cations or the contracting-expanding distortion of [BX₆] octahedral cages [6]. Namely, the suppression of Peierls distortion in PbI₃, GeI₃ and SnI₃ nanowires can be understood in terms of the quasi-1D character of the BX₃ nanowire atomic structure and the large size of I⁻ anions. More detailed discussions can be found in Sect. 2.3 and Additional Fig. 9 of Ref. [6].

Next, we explored the dynamic stabilities of GeI₃ and SnI₃ inorganic frameworks by calculating their
phonon spectra. We find that imaginary phonon modes are absent in the phonon band dispersion of GeI₃ (Fig. 2c, left), which confirms the stability of this 1D semimetallic nanostructure. On the other hand, the phonon spectra of SnI₃ displayed significant imaginary modes, which indicates its unstable nature (Fig. 2c, right). Their vibrational projected density of states (DOS) revealed that iodine is the major contributor for the low-frequency phonon modes of BX₃ frameworks (Fig. 2c). Having identified the inorganic GeI₃ column as the promising non-toxic alternative to PbI₃, we further confirmed its semimetallic character by employing Heyd–Scuseria–Ernzerhof (HSE) hybrid functional that corrects the self-interaction error within the local and semi-local DFT exchange-correlation functional [25] (Fig. 2b, middle). In summary, carrying out the screening process, we identified GeI₃ as a promising non-toxic 1D semimetallic material.

Before considering device applications based on GeI₃-based heterojunctions, we also discuss the material properties of its parental form, TMSGeI₃ perovskite (Fig. 3). In Fig. 3a, we show the calculated electronic band structures of bulk (3D) TMSGeI₃ perovskites. At the PBEsol level, we obtain an indirect bandgap of 2.67 eV (Fig. 3a), which is reduced by about 0.43 eV from the bandgap of TMSPbI₃ analogues (3.1 eV). We note that this reduced bandgap value is promising in view of photovoltaic applications [5]. Computing the phonon spectrum of TMSGeI₃ perovskite (Fig. 3b), we further confirmed the absence of imaginary modes or its high dynamical stability.

3.2 Ultrahigh NDR from halide perovskite nanowire junctions and its strain dependence

Adopting the vdW bundled heterojunction nanowires consisting of GeI₃-TMSGeI₃-GeI₃ (Fig. 4a), we next carried out DFT-based NEGF calculations and examined the bias-dependent quantum transport properties. As discussed previously [6], such heterojunction structures could be prepared by selectively peeling off organic TMS ligands from TMSGeI₃ through a chemical etching process and exposing stable semimetallic GeI₃ columns that can be utilized as electrodes [26]. We previously examined the NDR performance of PbI₃-TMSPbI₃-PbI₃ junctions by varying the length of TMSPbI₃ channel length.
which apparently originates from the fact that the same GeI₃ inorganic framework is shared throughout the GeI₃-TMSGeI₃-GeI₃ junction. The marginal hole SBH then allows the appearance of ample metal induced gap states (MIGS) spatially within the TMSGeI₃ channel region and energetically between the TMSGeI₃ valence band maximum (dotted lines) and the GeI₃ Fermi levels (solid lines). Different from conventional MIGS [27, 28], they are quantum-hybridized states entangling two GeI₃ electrode states and the special electrode-channel-electrode quantum-hybridized character can be confirmed by observing their response to finite bias voltages and corresponding transmissions. Specifically, upon increasing the applied bias, we find that until \(V_b = 0.5 \) V (NDR peak; Fig. 4c middle panel) that corresponds to twice of the hole SBH (0.25 eV) the MIGS bound by quasi-Fermi levels (dotted lines) tilt symmetrically [22], maintaining the hybridization across the TMSGeI₃ channel and producing large transmission values. However, upon further increasing the bias to \(V_b = 0.8 \) V (NDR valley; Fig. 4c right panel), we observe that the spatial hybridization becomes abruptly broken and MIGS are distributed into an asymmetric form (MIGS accumulated near the left GeI₃ electrode) with negligible transmission values. This quantum-hybridization NDR mechanism will be once more explained below based on molecular projected Hamiltonian eigenstates (see Fig. 5d).

The differences between the quantum-hybridization NDR performance of the GeI₃-TMSGeI₃-GeI₃ junction and that of the PbI₃-TMSPbI₃-PbI₃ counterpart [6, 14] can be then understood in terms of the differences in SBHs (~0.25 eV at the GeI₃-TMSGeI₃ interface vs. ~0.15 eV at the PbI₃-TMSPbI₃ interface) and channel lengths (36.6 Å of the 5UC TMSGeI₃ vs. 39.8 Å of the 5UC TMSPbI₃). Specifically, compared with the PbI₃-TMSPbI₃-PbI₃ case, the shorter channel length (larger SBH) of the GeI₃-TMSGeI₃-GeI₃ junction results in the increased NDR peak current density (bias voltage position). The shift of the NDR peak position to a higher bias regime will result in a similar upshift of the NDR valley position. This will then allow a more dramatic collapse of quantum-hybridized states, which should translate into the reduction of the NDR valley current density or the enhancement of NDR PVR.

Finally, in view of wearable and flexible electronics applications, we applied uniaxial strain along the \(c \)-axis at constant volume by compressing and stretching the GeI₃-TMSGeI₃-Gel₃ junction and repeated the room temperature transport calculations. Figure 5a and b show the \(J-V_b \) characteristics of the GeI₃-TMSGeI₃-Gel₃ junctions with 4% compressive (red circle) and 4% tensile (blue triangle) strain applied and the corresponding transmission spectra, respectively. In Fig. 5a, we can
confirm the robustness of NDR signals at low-bias operating conditions (< 0.8 V) regardless of the applied strain. While the NDR peaks appear at more or less similar V_b values of ~0.5 V, the NDR valleys are shifted to higher V_b values with increasing compressive strain. The subsequent analysis of the electronic structures of bundled GeI$_3$ and TMSGeI$_3$ with compressive and tensile strain along the c-axis clarifies that the semimetallicity of GeI$_3$ is robustly preserved within ±4% uniaxial strain conditions (Fig. 5c). Overall, we found that the application of a compressive strain further leads to the enhancement of the NDR performance: Compared to the unstrained junction, the PVR value significantly increases from 44.3 to 87.1 at 4 compression. Moreover, with the 4 compression, the peak current density is significantly enhanced from 2741 to 5365 kA·cm$^{-2}$ (Fig. 5a). On the other hand, the decrease in the peak current density upon stretching was obtained as shown in Fig. 5a. These variations in the peak current density can be understood in terms of the change in the coupling strength between electrode and channel states [19]. Via shortening the distance between GeI$_3$ electrodes, the hybridization of TMSGeI$_3$-GeI$_3$ interface states and accordingly their spatial extensions are substantially increased. This can be directly visualized through the molecular projected Hamiltonian eigenstates [20–22] that contribute most strongly to quantum transport (orange left triangle in Fig. 5b): compared to the unstrained case, as shown in the top panel of Fig. 5d, the compressive strain or the shortened TMSGeI$_3$-GeI$_3$ interfacial bond length results in strong delocalization of interfacial states into the channel region. On the other hand, under the tensile strain, the extended TMSGeI$_3$-GeI$_3$ interfacial bond length should cause the weakening of their coupling strength and decrease the peak current density.

4 Conclusions

In summary, carrying out combined DFT and NEGF calculations, we explored structural, electronic, and charge transport properties of the lead-free nontoxic hybrid halide perovskite TMSGeI$_3$ nanowires, their GeI$_3$ inorganic frameworks, and GeI$_3$-TMSGeI$_3$-GeI$_3$ junctions. Through a computational screening process, we first identified that the 1D GeI$_3$ inorganic framework that adapts a face-sharing [GeI$_6$] octahedral geometry exhibits a metallic behavior without Peierls distortion and is dynamically stable. Concurrently, we confirmed the semiconducting character
of the quasi-1D parental TMSGeI₃ perovskite nanowires as well as its dynamical stability. Next, adopting the van der Waals bundled nanowire heterojunction structures in which TMSGeI₃ channels with sub-5 nm dimensions are sandwiched between GeI₃ electrodes, we predicted that excellent NDR characteristics can be obtained. Characterized by drastically high peak current density (~ 2741 kA·cm⁻²) and room-temperature resistive switching ratio (PVR ≈ 44.3), we emphasized that these NDR metrics emerge from the quantum hybridization NDR mechanism. Finally, in view of flexible electronics applications, we confirmed that the NDR performances are robustly preserved under uniaxial tensile and compressive strains and particularly the NDR peak current density and PVR can be further enhanced to 5365 kA·cm⁻² and 87.1, respectively, under 4% compressive strain. Our work demonstrates the significant potential of low-dimensional hybrid halide perovskites for the realization of beyond-CMOS and wearable flexible electronic devices.

Acknowledgements
None.

Author contributions
YHK oversaw the project, and JL and MEK carried out calculations. All authors analyzed the computational results and co-wrote the manuscript. All authors read and approved the final manuscript.

Funding
This work was supported by the Samsung Research Funding & Incubation Center of Samsung Electronics (No. SRFC-TA2003-01). Computational resources were provided by KISTI Supercomputing Center (KSC-2018-C2-0032).

Availability of data and materials
Not applicable.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
¹School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea. ²Department of Computer Engineering, National University of Technology, Islamabad 44000, Pakistan.

Received: 31 January 2022 Accepted: 8 May 2022
Published online: 01 June 2022

Fig. 5 a The NDR J-Vb characteristics of the van der Waals bundled GeI₃-SUC TMSGeI₃-GeI₃ junction under +4% (compressive), 0%, and −4% (tensile) uniaxial strains. b Electronic transmission spectra of the unstrained as well as strained device at different Vb values. Orange and cyan left triangle indicate the points that contribute most strongly to quantum tunneling at NDR peak and valley, respectively. c Electronic band structures of 1D GeI₃ columns and quasi-1D TMSGeI₃ at +4%, 0%, and 4% uniaxial strains. d Molecular projected Hamiltonian states for the NDR device with compressive strain (top) and without strain (bottom) at the NDR peak (left) and valley (right) positions, respectively. The isosurface level is 3 × 10⁻³ Å⁻³.
References
1. W.-J. Yin, J.-H. Yang, J. Kang, Y. Yan, S.-H. Wei, J. Mater. Chem. A 3, 8926 (2015)
2. M.V. Kovalenko, L. Protesescu, M.I. Bodnarchuk, Science 358, 745 (2017)
3. Q.A. Akkerman, G. Raino, M.V. Kovalenko, L. Manna, Nat. Mater. 17, 394 (2018)
4. H.J. Snaith, Nat. Mater. 17, 372 (2018)
5. A.K. Jena, A. Kulkarni, T. Miyasaka, Chem. Rev. 119, 3036 (2019)
6. M.E. Khan, J. Lee, S. Byeon, Y.-H. Kim, Adv. Funct. Mater. 29, 1807620 (2019)
7. A. Nourbakhsh, A. Zubair, M.S. Dresselhaus, T. Palacios, Nano Lett. 16, 1359 (2016)
8. J. Shim et al., Nat. Commun. 7, 13413 (2016)
9. H. Son, J. Lee, T.H. Kim, S. Choi, H. Choi, Y.-H. Kim, S. Lee, Appl. Surf. Sci. 581, 152396 (2022)
10. F. Giustino, H.J. Snaith, ACS Energy Lett. 1, 1233 (2016)
11. A.M. Ganose, C.N. Savory, D.O. Scanlon, Chem. Commun. 53, 20 (2016)
12. S. Chakrabortty, W. Xie, N. Mathews, M. Sherburne, R. Ahuja, M. Asta, S.G. Mhaisalkar, ACS Energy Lett. 2, 837 (2017)
13. Z. Xiao, Z. Song, Y. Yan, Adv. Mater. 31, e1803792 (2019)
14. T.H. Kim, J. Lee, R.-G. Lee, Y.-H. Kim, Npj Comput. Mater. 8, 50 (2022)
15. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)
16. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 100, 136406 (2008)
17. J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, J. Phys. Condens. Matter 14, 2745 (2002)
18. M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Phys. Rev. B 65, 165401 (2002)
19. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995)
20. Y.-H. Kim, S.S. Jang, Y.H. Jang, W.A. Goddard III, Phys. Rev. Lett. 94, 156801 (2005)
21. J. Lee, H.S. Kim, Y.-H. Kim, Adv. Sci. 7, 2001038 (2020)
22. J. Lee, H. Yeo, Y.-H. Kim, Proc. Natl. Acad. Sci. U. S. A. 117, 10142 (2020)
23. A. Kaltzoglou et al., Inorg. Chem. 56, 6302 (2017)
24. A. Kaltzoglou et al., Polyhedron 140, 67 (2018)
25. J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 124, 219906 (2006)
26. E.W. Elliott, R.D. Glover, J.E. Hutchison, ACS Nano 9, 8050 (2015)
27. Y.-H. Kim, H.S. Kim, Appl. Phys. Lett. 100, 213113 (2012)
28. B.-K. Kim et al., Npj 2D Mater. Appl. 5, 9 (2021)

Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.