A complete DNA sequence map of the ovine Major Histocompatibility Complex

Jianfeng Gao1,2†, Ka Liu2,4†, Haibo Liu2,4, Hugh T Blair3, Gang Li1,2, Chuangfu Chen1, Pingping Tan2, Runlin Z Ma2,4*

Abstract

Background: The ovine Major Histocompatibility Complex (MHC) harbors clusters of genes involved in overall resistance/susceptibility of an animal to infectious pathogens. However, only a limited number of ovine MHC genes have been identified and no adequate sequence information is available, as compared to those of swine and bovine. We previously constructed a BAC clone-based physical map that covers entire class I, class II and class III region of ovine MHC. Here we describe the assembling of a complete DNA sequence map for the ovine MHC by shotgun sequencing of 26 overlapping BAC clones.

Results: DNA shotgun sequencing generated approximately 8-fold genome equivalent data that were successfully assembled into a finished sequence map of the ovine MHC. The sequence map spans approximately 2,434,000 nucleotides in length, covering almost all of the MHC loci currently known in the sheep and cattle. Gene annotation resulted in the identification of 177 protein-coding genes/ORFs, among which 145 were not previously reported in the sheep, and 10 were ovine species specific, absent in cattle or other mammals. A comparative sequence analyses among human, sheep and cattle revealed a high conservation in the MHC structure and loci order except for the class II, which were divided into Ila and I Ib subregions in the sheep and cattle, separated by a large piece of non-MHC autosome of approximately 18.5 Mb. In addition, a total of 18 non-protein-coding microRNAs were predicted in the ovine MHC region for the first time.

Conclusion: An ovine MHC DNA sequence map was successfully assembled by shotgun sequencing of 26 overlapping BAC clone. This makes the sheep the second ruminant species for which the complete MHC sequence information is available for evolution and functional studies, following that of the bovine. The results of the comparative analysis support a hypothesis that an inversion of the ancestral chromosome containing the MHC has shaped the MHC structures of ruminants, as we currently observed in the sheep and cattle. Identification of relative large numbers of microRNAs in the ovine MHC region helps to provide evidence that microRNAs are actively involved in the regulation of MHC gene expression and function.

Background

The sheep is one of the major domestic animal species for human meat protein, milk, and its wool is a source of industrial fiber. The Major Histocompatibility Complex (MHC) of the sheep, also designated as ovine Lymphocyte Antigen (OLA), harbors clusters of immunological genes involved in overall resistance/susceptibility of the animal to infectious diseases [1-3]. A number of agriculturally important traits, especially those related to disease resistance to various pathogenic viruses, bacteria and parasites, are closely linked to genes in the MHC [4-6]. Furthermore, genetic loci in the MHC are organized to form distinct functional clusters as class I, class II, and class III, which show a considerable level of conservation among mammal species [7-19]. The importance of sheep MHC molecules in disease resistance [6,20-23] and the associated structure features in artiodactyls have led to increased studies on the sheep MHC [5,21,24-26]. However, the detailed sequence information for ovine MHC is not sufficiently adequate, and only a small number of ovine MHC genes have been identified as compared to those in sheep and cattle.
Results and Discussion

DNA shotgun sequencing was successfully performed for 26 overlapping BAC clones, generating approximately 8-fold coverage of the genome equivalent data. The fully-assembled sequences for all of the BAC clones were deposited into GenBank with accession numbers FJ986852 - FJ985877 (Table 1). The quality of the sequence determined was adequate, with an estimated error rate less than 0.025% for most of the BAC clones. An average of 1.3 gaps existed per BAC clone, mostly due to highly repetitive sequence. A gap here refers to a stretch of DNA for which the exact nucleotide base identity (A, G, T, or C) remain ambiguous after resequencing, represented by a tandem number of “N” between the determined sequences.

A complete DNA sequence map of the ovine MHC was successfully assembled as guided by the BAC clone physical map (Figure 1). The map spans approximately 2,434,000 nucleotide bases in length, covering almost all MHC loci currently known for both ovine and bovine species. The finished sequence map was discontinuous, as expected from the physical map. The major sequence segment spans approximately 2,071,000 nucleotide bases, harboring class I, class III, and class IIa of the ovine MHC. The shorter sequence segment spans approximately 363,000 nucleotide bases, harboring loci in the class IIb region and extending into the non-MHC region.

Sequence analysis resulted in the identification and annotation of 177 protein-coding genes/ORFs in the ovine MHC (Figure 1, Additional table 1). Of the 177 ovine genes identified, 131 were homologous to previously annotated genes in cattle, sheep or other mammal species, 36 matched to the predicted but not yet annotated genes in the cattle, and 10 were ovine species specific, having not been found in human, mouse, cattle or other mammal sequences. The location, transcriptional orientation, and relative size of the identified genes were determined (Figure 1). Among the genes identified, a total of 145 identified ovine genes were reported for the first time by this study. The ovine-specific genes were temporally nominated as “OaN” followed by a numeric number, where “Oa” is abbreviation for Ovis aries, and “N” for novel (Additional file1). Preliminary experiments confirmed the mRNA transcripts for 4 of the predicted ovine-specific genes (data not shown). The distribution of these novel genes seems to be random throughout the ovine MHC region. It is interesting to notice that a multiple DQ loci (DQ cluster) were identified, each with different orientation of transcription, when compared with those of other sheep breeds [39,40]. Such difference may be due either to breed or haplotype differences, as a subsequence of differential gene duplication [41].

An additional 18 genes encoding micro RNAs were identified by software prediction in an effort to search for non-protein-coding genes/components using the Rfam database analysis tools (Table 2). The orientation and distribution of these micro RNAs showed a randomized pattern throughout MHC region. This is the first time that a relatively large number of microRNAs have been identified in ovine MHC region. Given the functional importance of microRNAs for regulating gene expression by mRNA cleavage or repression, this preliminary finding help to provide evidence that microRNAs may be actively involved in the MHC response to pathogens in general.

Sequence alignments among the human, sheep, and cattle MHC showed an overall conservation, with the
level of homology reaching over 85% for the MHC class I, class III, and part of class II regions. The major difference in the MHC structures was found in the class II region. In human it was a continuous segment with no interruption, while in the sheep and cattle it was divided into IIa and IIb subregions by a large piece of non-MHC autonomic insertion. In addition, the gene order of class IIb in both ovine and bovine regions showed an opposite orientation relative to that of human (Figure 2). Analysis of the sequence homology between ovine and bovine MHC regions demonstrated a remarkable conservation, with the overall homology reaching 86%. The actual level of homology could be higher because a number of gaps (over 10-40 kb) in the available bovine sequence contributed negatively to the homology score. For virtually any locus currently identified in bovine MHC, a homologous match could be identified in the ovine MHC, including those in the class IIB region (Figure 2). It is noteworthy that the ovine and bovine MHC class IIa and IIB regions exhibited exactly the same gene order and structural layout. In addition, the piece of non-MHC autonomic insertion between IIa and IIb was estimated to be of the same length (approximately 18.5 Mb) for both species. Furthermore, the order of bovine and ovine genetic loci within the inserted autonomic region was essentially the same as tested by over 120 SS-PCRs (data not shown). Taken together, these results support the hypothesis that cattle and sheep shared an ancestral chromosome containing the MHC before their divergence by evolution.

The hypothesis that cattle and sheep shared an ancestral chromosome was previously proposed in the studies of cattle [42-44]. Detailed mapping of BTA23 by radiation hybrid analysis [43,45] suggested that the ancestral MHC

Table 1 Assembly of 26 BAC-clone based DNA sequences covering entire Ovine MHC region

BAC clone ID	GenBank Accession Number	Insert length (bp)	Average coverage	Single-base error probability	Reads number	High repeat sequence	Scaffolds	No. of Gaps inside	No. of Gaps outside
271H22	FJ985865	159959	793491	1.118 × 10^5	2974	No	1	0	0
304C7	FJ985867	134586	80733	2.127 × 10^4	2509	Yes	1	1	0
142M19	FJ985860	134479	811391	4.257 × 10^4	2715	Yes	1	2	0
373D13	FJ985872	172485	815691	5.308 × 10^4	3311	No	1	3	0
283N15	FJ985866	150521	7165	2.068 × 10^4	2472	No	1	0	0
222G18	FJ985862	167309	778757	0.790 × 10^4	2783	No	1	0	0
55L9	FJ985854	145292	823565	0.195 × 10^4	2941	No	1	0	0
197N2	FJ985876	90102	650404	0.488 × 10^4	1438	No	1	2	0
429P24	FJ985873	198404	902502	3.497 × 10^4	4009	No	1	2	0
225S15	FJ985863	139059	79057	6.830 × 10^4	2335	Yes	1	1	0
453O11	FJ985874	143310	805201	0.802 × 10^4	2473	No	1	2	0
63M17	FJ985856	129209	852801	3.780 × 10^4	2394	No	1	1	0
163P3	FJ985861	165447	735517	1.049 × 10^4	2833	No	1	0	0
119K1	FJ985858	156603	775008	0.309 × 10^4	2665	No	1	2	0
349I12	FJ985871	149708	84984	7.600 × 10^4	2994	No	1	2	0
345B17	FJ985869	134643	769046	10.58 × 10^4	2736	No	2	0	1
68G10	FJ985857	165531	814164	6.535 × 10^4	3681	Yes	1	1	0
346G21	FJ985870	138311	867944	9.059 × 10^4	2807	No	1	1	0
441I0	FJ985853	134434	832584	16.47 × 10^4	2705	No	1	2	0
262P19	FJ985875	174317	727217	0.490 × 10^4	2989	No	2	1	1
239C1	FJ985864	142287	79438	0.736 × 10^4	2940	No	1	2	0
141C4	FJ985859	160633	765743	0.624 × 10^4	2992	No	1	1	0
374N21	FJ985877	83460	9112	3.860 × 10^4	3648	No	2	1	1
21H3	FJ985852	119055	813723	0.380 × 10^4	2157	No	1	1	0
304D17	FJ985868	140735	814013	4.291 × 10^4	2599	No	1	1	0
58G13	FJ985855	139598	8827674	2.187 × 10^4	3845	No	2	4	0

* Defined as a ratio between total number of base pairs sequenced and total number of base pairs of the inserts in a given BAC clone.
* Error probability of a particular base call, corresponding to a quality value as determined by the equation:
 \[Q = -10\log_{10}(P_e) \] where \(P_e \) is the error probability.
* The total number of shotgun DNA sequencing reactions performed for a given BAC clone.
* In genomic mapping, a series of contigs that are in the right order but not necessarily connected in one continuous stretch of sequence.
* The number of regions where the exact nucleotide base (G, A, T, or C) could not determined, represented by a strips of “N” in a given BAC clone.
was likely disrupted by a large inversion that produced the bovine MHC class IIa and IIb regions. With the availability of detailed sequence information from the two ruminant species (bovine and ovine), the hypothesis has now gained additional support from the experimental data. Our sequence analysis also identified a butyrophilin-like (Btnl) cluster at the boundary between the ovine class IIa and III (Figure 3). Banal is critical for milk secretion and production [46]. Comparison of Btnl loci duplication showed that sheep has a moderate number of Btnl copies, more than that seen in platypus but less than those shown by mouse, rat or swine that have a larger litter sizes (Figure 3). Btnl is absent in non-mammal species like amphioxus, frog, and chicken, appears (Btnl2) in platypus, and is duplicated extensively in mammals that have more litter sizes. This might be an indication that milk production was closely associated with the function of MHC in mammals, due to the apparent need for mammals to protect their offspring from microbial infections via milk ingestion. Taken together, we propose a hypothesis that, formation of the Btnl loci is associated not only with the gene duplication of immunological loci, but also with the emergence of mammals in evolutionary history.

Conclusion

A complete ovine MHC sequence map was assembled by successful shotgun sequencing of 26 overlapping BAC clones. This makes the sheep the second ruminant species for which the MHC sequence is available for evolutionary and functional studies. Gene annotation resulted in the identification of 177 genes, among which 145 were identified for the first time, and 10 were ovine-species specific. In addition, a total of 18 micro-RNAs coding sequences were predicted in the ovine MHC region helps to provide evidence that micro RNAs are actively involved in the regulation of MHC gene expression and function.

Methods

DNA shotgun sequencing

Shotgun sequencing libraries were constructed individually for each of the 26 BAC clones following the modified
protocols described by Celera Genomics Group [47]. Briefly, *E. coli* stock containing the target BAC clones were used to prepare the BAC clone DNA, which were solicited to form randomized small DNA fragments between 0.5 - 2.0 kb. After cloning of the small fragments into the plasmids, random DNA sequencing was performed with an ABI 3730 automated DNA sequencers (Applied Biosystems, USA) to generate the randomized short DNA sequence reads.

Assembling of BAC clone sequences

The short random DNA sequences generated by the sequencing were assembled into full-length sequence utilizing the Prep program (U.W., Seattle, WA, USA) for each

Gene Name	Rfam Accession No.	Start coordinate	End coordinate	Orientation	Score
let-7	RF00027	35	51	+	34.2
miR-160	RF00247	173327	173343	+	34.2
miR-156	RF00073	180706	180722	-	34.2
miR-17	RF00051	243137	243153	-	34.2
miR-166	RF00075	465267	465295	+	34.2
miR-166	RF00075	1062114	1062131	-	36.2
miR-2	RF00047	1243062	1243078	+	34.2
lin-4	RF00052	1608564	1608580	+	34.2
miR-10	RF00104	1978042	1978059	+	36.2
miR-101	RF00253	2046800	2046816	+	34.2
miR-395	RF00451	2082358	2082373	-	32.2
miR-156	RF00073	2084006	2084023	-	36.2
miR-219	RF00251	2098884	2098955	-	127
miR-219	RF00251	2098930	2098950	-	42.1
miR-156	RF00073	2131290	2131307	-	36.2
miR-156	RF00073	2339014	2339030	+	34.2
miR-166	RF00075	2348202	2348217	-	32.2
miR-399	RF00445	2354071	2354086	+	32.2

a The scores are bits (logs-odds) scores which represent the log of the probability of the query given the model over the probability of random sequence given the model.

Figure 2 Gene order comparisons for the selected class II loci from HLA, OLA, and BoLA. Genetic loci in class II region were compared by aligning HLA, OLA and BoLA at telere—centromere orientation. The orthologous loci were linked by solid lines. Solid and open box represent the selected class II loci and non-MHC loci, respectively. Shaded carmine boxes indicate regions of conservation among species. Red ellipses indicate the potential breaking points. Tel, Telomere, Cen, Centromere.
of the BAC clones. Resequencing was performed when necessary for gaps detected during the sequence assembly, including sequencing by primer walking of the PCR-amplified fragments for regions showing low level of accuracy. Blast alignments [48] of the repeat-masked, assembled sequence against NCBI EST and non-redundant nucleotide databases were performed to identify expressed sequences and other highly conserved regions likely to contain functional genes.

Sequence analysis
The assembled ovine MHC sequence was analyzed using an automatic Ensemble pipeline [49] with modifications to aid the manual duration process. Simple and interspersed repeats were detected using Tandem Repeats Finder [50] and Repeat Masker, respectively, using the mammalian library along with cow-specific repeats submitted to EMBL/NCBI/DDBJ. The combination of simple and interspersed repeats was used as a filter to mask the sequence during analysis. Novel genes or CDS loci were identified by having an open reading frame (ORF), plus certain similarity to the known genes or proteins. A predicted gene was defined by having high sequence homology to the predicted gene or ORF in other species. Pseudo genes were identified by sequence homology to known Pseudo genes (not shown). Comparative sequence alignments were performed using the waviest pipeline http://genome.lbl.gov/cgi-bin/WGVistaInput.

Acknowledgements
We thank Professor Jun Wang for assistance in the sequence analysis and gene annotation, and anonymous reviewers of BMC-Genomics for their critical review comments that helped to improve the quality of the manuscript. This work was funded by research grants from National Natural Science Foundation of China (30125024, 30771148), Ministry of Science and Technology of China (2006DFA33750), and China Ministry of Agriculture (2008ZX08008-005B). Professor Hugh Blair is funded by the National Research Centre for Growth and Development.

Author details
1School of Life Sciences, Shihezi University, Xinjiang 832007, China. 2Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing 100101, China. 3Institute of Veterinary Animal and Biomedical Sciences, Massey University, New Zealand. 4Graduate School of Chinese Academy of Sciences, Beijing 100149, China.

Authors’ contributions
KL carried out experiments, data analysis and gene annotation; JFG carried out conformational experiments; HBL and GL carried out construction of shotgun libraries; HTB assisted in manuscript writing, CFC and PPT performed data checking and technical assistance. RZM supervised the studies and wrote the manuscript. All authors read and approved the final manuscript.

Received: 10 May 2010 Accepted: 10 August 2010 Published: 10 August 2010

References
1. Danchin E, Vitiello V, Vienne A, Richard O, Gouret P, McDermott MF, Pontarotti P: The major histocompatibility complex origin. Immunological reviews 2004, 198:216-232.
2. Fajnik MF, Kasahara M: Comparative genomics of the MHC: glimpses into the evolution of the adaptive immune system. Immunity 2001, 15(3):351-362.
3. Kaufman J: The origins of the adaptive immune system: whatever next? Nature immunology 2002, 3(12):1124-1125.
4. Escayg AP, Hickford JG, Bullock DW: Association between alleles of the ovine major histocompatibility complex and resistance to footrot. Research in veterinary science 1997, 63(3):283-287.

5. Burkamp J, Filhister P, Stear MJ, Epplen JT: Class I and class II major histocompatibility complex alleles are associated with faecal egg counts following natural, predominantly Osteriogia circumcincta infection. Parasitology research 2006, 92(8):693-696.

6. Konnai S, Takehashi SN, Tajima S, Yim SA, Okada K, Onuma M, Aida Y: The influence of ovine MHC class II DRB1 alleles on immune response in bovine leukemia virus infection. Microbiology and immunology 2003, 47(3):223-232.

7. The MHc Sequencing Consortium: Complete sequence and gene map of a human major histocompatibility complex. Nature 1999, 401(6756):921-923.

8. Takada T, Kurnanovics A, Amadou C, Yoshino M, Jones EP, Athanasiou M, Evans GA, Fischer Lindahl K: Species-specific class I gene expansions formed the telomeric 1 mb of the mouse major histocompatibility complex. Genome research 2003, 13(4):389-600.

9. Xie T, Rowen L, Aguado B, Aheam ME, Madden A, Qin S, Campbell RD, Hood L: Analysis of the gene-dense major histocompatibility complex class III region and its comparison to mouse. Genome research 2003, 13(12):2621-2636.

10. Hurt P, Walter L, Sudbrak R, Klages S, Muller I, Shiina T, Inoko H, Lehrahc H, Gunther E, Reinhardt R, Himmelbauer H: The genomic sequence and comparative analysis of the rat major histocompatibility complex. Genome research 2004, 14(4):631-639.

11. Debenham SL, Hart EA, Ashurst JL, Howe KL, Ollier WE, Brinns MW: Genomic sequence of the class II region of the canine MHC: comparison with the MHC of other mammalian species. Genome biology 2005, 8(1):48-59.

12. Yukhi N, Beck T, Stephens RM, Nishigaki Y, Neumann K, O’Brien SJ: Comparative genomic organization of human, murine, and feline MHC class II region. Genome research 2003, 13(6A):1169-1179.

13. Renard C, Hart E, Sehra H, Beasley H, Coggill P, Howe K, Harrow J, Gilbert J, Sims J, Rogers J, Ando A, Shigenari A, Shima T, Inoko H, Chardon P, Beck S: The genomic sequence and analysis of the swine major histocompatibility complex. Genomics 2006, 88(1):96-110.

14. Belov P, Deakin JE, Papenfuss AT, Baker ML, Melman SD, Arumugam TV, Ollier WE, Brinns MW: Nucleotide sequence of the MHC class I genomic region of a teleost, the medaka. Immunogenetics 2002, 53(10-11):930-940.

15. Ohita Y, Okamura K, McKenney EC, Barti S, Hashimoto K, Flajnik MF: Primitive synteny of vertebrate major histocompatibility complex class I and class II genes. Proceedings of the National Academy of Sciences of the United States of America 2000, 97(9):4712-4717.

16. Terado T, Okamura K, Ohita Y, Shin DH, Smith SL, Hashimoto K, Taketomo K, Nonaka M, Hikima F, Flajnik MF, Nonaka M: Molecular cloning of C4 gene and identification of the class III complement region in the shark MHC. Immunology 2003, 11(3):2461-2466.

17. Shima T, Shimizu S, Hosokawa K, Kohara S, Watanabe S, Hanzawa K, Beck S, Kukulis JK, Inoko H: Comparative genomic analysis of two avian (quail and chicken) MHC regions. J Immunol 2004, 172(11):6751-6756.

18. Elkay CG, Tellam RL, Werley KC, Gibbs RA, Muzny DM, Weinstock GM, Adelson DL, Eichler EE, Elnitski L, Guigo R, Hamrick DL, Kappes SM, Lewin HA, Lynn DJ, Smith SL, Hashimoto K, Taketomo K, Nonaka M, Hikima F, Flajnik MF, Nonaka M: The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science (New York, NY) 2009, 324(5926):522-528.

19. Bonnecaze C, Richard M, Faivre B, Westerdahl H, Sorge C: An Mhc class I allele associated to the expression of T-dependent immune response in the house sparrow. Immunogenetics 2006, 57(10):923-935.

20. Dukkipati VS, Blair HT, Garrick DJ, Murray A: "Ovar-Mhc" - ovine major histocompatibility complex structure and gene polymorphisms. Genet Mol Res 2006, 5(4):581-608.

21. Galindo RC, Ayoubi P, Garcia-Perez AL, Naranjo V, Kocman KM, Gotorzar C, de la Fuente J: Differential expression of inflammatory and immune response genes in sheep infected with Anaplasma phagocytophilum. Veterinary immunology and immunopathology 2008, 126(1-2):27-34.

22. Mena A, Nichani AK, Popowych Y, Godson DL, Dent T, Townsend HG, Mutwin G, Hecker R, Babulak LA, Griebel P: Innate immune responses induced by CpG oligodeoxynucleotide stimulation of ovine blood mononuclear cells. Immunology 2003, 110(2):250-257.

23. Gruszczynska J, Brokiowska K, Charon KM, Swiderek WP: Restriction fragment length polymorphism of exon 2 Ovar-DRB1 gene in Polish Heath Sheep and Polish Lowland Sheep. Journal of applied genetics 2005, 46(3):311-314.

24. Mihalidou D, Ballingall KT, Ellis SA, Russell GC, McKeever DJ: Haplotype characterization of transcribed ovine major histocompatibility complex (MHC) class I genes. Immunogenetics 2005, 57(7):499-509.

25. Liu H, Liu K, Wang J, Ma RZ: A BAC clone-based physical map of ovine major histocompatibility complex. Genomics 2006, 88(1):88-95.

26. Devenser EY, Wright H, Watson S, Ballingall K, Hudson N, Diamond AG, Howard JC: Class II major histocompatibility complex genes of the sheep. Animal genetics 1991, 22(3):211-223.

27. Ballingall KT, Fardoe K, McKeever DJ: Genetic organisation and allelic diversity within coding and non-coding regions of the Ovar-DRB1 locus. Immunogenetics 2008, 60(2):95-103.

28. Scott PC, Choi CL, Brandon MR: Genetic organization of the ovine MHC class II region. Immunogenetics 1998, 47(5):116-122.

29. Gao et al: Comparative genome organization of human, murine, and feline MHC class II region. Genome research 2003, 13(3):4169-4179.

30. Escayg AP, Hickford JG, Montgomery GW, Dodds KG, Bullock DW: Polymorphism at the ovine major histocompatibility complex class I loci. Animal genetics 1996, 27(5):305-312.

31. de la Fuente J: Inversion complexity of restriction element usage in cattle. Animal genetics 2005, 36(4):235-239.

32. Amils M, Ramaya V, Nomine J, Lewin HA: The major histocompatibility complex of ruminants. Revue scientifique et technique (International Office of Epizootics) 1998, 17(1):108-120.

33. Everts-van der Wind A, Kato SR, Band MR, Rebeiz M, Larkin DM, Everts RE, Green CA, Liu L, Natarajan S, Goldammer T, Lee JH, McKay S, Womack JE, Lewin HA: A 1463 gene cattle-human comparative map with anchor points defined by human genome sequence coordinates. Genome research 2004, 14(7):1434-1437.

34. Childers CP, Newkirk HL, Honeycutt DA, Ramlachan N, Muzney DM, Sodergren E, Gibbs RA, Weinstock GM, Womack JE, Skow LC: Comparative analysis of the bovine MHC class IIb sequence identifies inversion breakpoints and three unexpected genes. Animal genetics 2006, 37(2):121-129.

35. Masioudou D, Ballingall KT, Ellis SA, Russell GC, McKeever DJ: Haplotype characterization of transcribed ovine major histocompatibility complex (MHC) class I genes. Immunogenetics 2005, 57(7):499-509.
43. Band M, Larson JH, Womack JE, Lewin HA: A radiation hybrid map of BTA23: identification of a chromosomal rearrangement leading to separation of the cattle MHC class II subregions. Genomics 1998, 53(3):269-275.

44. Andersson L, Rask L: Characterization of the MHC class II region in cattle. The number of DQ genes varies between haplotypes. Immunogenetics 1988, 27(2):110-120.

45. Itoh T, Watanabe T, Ihara N, Mariani P, Beattie OW, Sugimoto Y, Takasuga A: A comprehensive radiation hybrid map of the bovine genome comprising 5593 loci. Genomics 2005, 85(4):413-424.

46. Ogg SL, Weidon AK, Dobbie L, Smith AJ, Mather IH: Expression of butyrophilin (Btm1a1) in lactating mammary gland is essential for the regulated secretion of milk-lipid droplets. Proceedings of the National Academy of Sciences of the United States of America 2004, 101(27):10084-10089.

47. Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle PF, George RA, Lewis SE, Richards S, Ashburner M, Hennies SN, Sutton GG, Wortman JR, Yandell MD, Zhang Q, Chen LX, Brandon RC, Rogers YH, Blazej RG, Lampert M, Pfeiffer BD, Wan KH, Doyle C, Baxter EG, Helt G, Nelson CR, et al: The genome sequence of Drosophila melanogaster. Science (New York, NY) 2000, 287(5461):2185-2195.

48. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. Journal of molecular biology 1990, 215(3):403-410.

49. Potter SC, Clarke L, Curwen V, Keenan S, Mongin E, Searle SM, Stabenau A, Storey R, Clamp M: The Ensembl analysis pipeline. Genome research 2004, 14(5):934-941.

50. Benson G: Tandem repeats finder: a program to analyze DNA sequences. Nucleic acids research 1999, 27(2):573-580.

doi:10.1186/1471-2164-11-466

Cite this article as: Gao et al.: A complete DNA sequence map of the ovine Major Histocompatibility Complex. BMC Genomics 2010 11:466.