Synthesis of a pyruvylated N-acetyl-β-D-mannosamine containing disaccharide repeating unit of a cell wall glycopolymer from *Paenibacillus alvei*

Simon Krauter, a Christina Schäffer, b and Paul Kosma a

Department of Chemistry a and Department of Nanobiotechnology b, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria

Email: paul.kosma@boku.ac.at

Dedicated to Horst Kunz on the occasion of his 80th birthday

Received 09-08-2020 **Accepted** 10-23-2020 **Published on line** 11-04-2020

Abstract

A disaccharide implicated in anchoring of bacterial Surface-layer proteins to secondary cell wall glycopolymers has been prepared by glycosylation of a protected N-acetyl glucosamine acceptor with a glucopyranosyl donor to generate the β-(1→4)-linkage. Subsequent inversion of the configuration and azide introduction at position 2 with triflic anhydride, however, led to formation of a tetrazole derivative. Alternatively, displacement of a 2-O-mesylate by sodium azide, reduction and N-acetylation enabled the conversion into the distal N-acetyl-β-D-mannosamine residue. Pyruvylation of the latter unit and global deprotection afforded the disaccharide repeating unit from *Paenibacillus alvei* as a ligand for crystallographic and binding studies.

Keywords: Secondary cell wall polymer, pyruvate, glycosylation, surface layer protein, tetrazole

DOI: https://doi.org/10.24820/ark.5550190.p011.358
Introduction

Pyruvic acid ketal substituents attached to diol systems bridging positions 2,3; 3,4 as well as 4,6 on various glycans have increasingly been detected in the past few years. Due to their negative charge, pyruvyl groups may exert a number of biologically relevant interactions such as contributing to antigenic properties in bacterial polysaccharides such as *Streptococcus pneumoniae* serotype 4, *Klebsiella pneumoniae*, *Acinetobacter baumannii* and *Bacteroides fragilis* as examples. In addition, in a few Gram-positive bacteria, pyruvylation of so-called non-classical secondary cell wall polymers (SCWP) has been implicated to exert non-covalent interactions with surface (S-) layer proteins. S-layer proteins self-assemble into two-dimensional crystalline lattices that completely cover the bacterial surface. A terminal 4,6-O-Pyr-β-D-ManNAc residue in the SCWP of *Bacillus anthracis* has been described to serve as the main mechanism to anchor the S-layer via N-terminal homology (SLH) domain. A similar role may be relevant for SCWP-SLH interactions in *Bacillus cereus*. We have been interested in studying the underlying molecular details of SCWP-SLH binding using the SCWP from *Paenibacillus alvei* as model system. This SCWP contains (1→3)-4,6-O-Pyr-β-D-ManNAc-(1→4)-β-D-GlcNAc-(1→ repeating units covalently attached to N-acetylmuramic residues of peptidoglycan. A similar backbone structure has been found in an SCWP from *Lysinibacillus sphaericus* CCM 2177, albeit with only every second β-D-ManNAc unit being substituted by a pyruvyl ketal, probably due to hydrolysis occurring upon isolation from the peptidoglycan using hydrofluoric acid. Recently we could show by using X-ray crystallography of a truncated variant of the *P. alvei* S-layer protein SpaASLH - representing the three consecutive SLH domains - liganded to the monosaccharide 4,6-O-Pyr-β-D-ManNAcOMe and the disaccharide β-D-GlcNAc-(1→3)-4,6-O-Pyr-β-D-ManNAcOMe, that the 4,6(S)-O-pyruvylated N-acetyl-mannosamine residue was the main contributor to binding. Main binding features included a π-stacking interaction of ManNAc with tryptophan 151 and ionic interactions of the pyruvyl carboxylic group with arginine 61. It should be noted that the synthetic mono- and disaccharide ligands were bound in two mutually exclusive different binding grooves of the protein allowing for dynamic properties during cell growth and division. Isothermal microcalorimetry data, however, indicated that the 4,6-O-Pyr-β-D-ManNAcOMe ligand was efficiently bound in solution (K_D ~29 nM), while the disaccharide fragment did not show any binding. The crystal structure of the complex with the latter ligand with a terminal N-acetylglucosamine residue also revealed disorder of the N-acetylglucosamine moiety and absence of any hydrogen bonding to the protein surface. In order to provide more insight into these interactions and to clarify the role of an “internal” N-acetyl glucosamine unit we have, thus, set out to prepare the alternate disaccharide mimicking the native situation in the SCWP repeat for crystallographic and binding studies. Herein we describe the synthesis of that disaccharide ligand and report on an unusual side reaction encountered during azide introduction of a triflate intermediate leading to formation of a tetrazole derivative.

Results and Discussion

The synthesis of the alternately connected repeating unit of the SCWP from *P. alvei* required the challenging 1,2-cis-connection of the ManNAc residue to position 4 of a suitable GlcNAc acceptor derivative. Previously, a 4,6-O-pyruvylated 2-azido-2-deoxy-mannopyranosyl phenylthioglycoside donor had been used for the assembly of a terminal trisaccharide fragment of the SCWP from *B. anthracis*, which, however, also led to formation of the unwanted α-anomer. Reactions of 4,6-O-benzylidene protected 2-azido-2-deoxy-mannopyranosyl diphenyl phosphate as well as related phenylthioglycoside donors, however, were reported to proceed in high β-selectivity and in good yields. Thus, we opted to use a 4,6-O-benzylidene group as a
temporary protecting group for a late stage introduction of the 4,6-O-pyruvyl ketal and follow the established route for β-mannosides by inverting the configuration of a gluco-precursor into the 2-deoxy-2-azido-manno derivative.19-22

The synthesis of the gluco-configured imidate donor - developed by R. Schmidt - commenced with the selective de-O-acetylation of the known (Ref 23) 3-O-benzyl substituted glucopyranose 1 to give the hemiacetal 2 in 76% yield (Scheme 1). Compound 2 was then converted into the N-phenyltrifluoroacetimidate donor 3 in 82% yield by reaction with N-phenyl trifluoroacetimidoyl chloride/K2CO3 in dichloromethane. As glycosyl acceptor, 3,6-di-O-benzyl methyl glycoside 4 was prepared according to literature.24,25 The coupling step of 4 with donor 3 promoted by TMSO-triflate at room temperature led to complete consumption of the donor within 1 h and formation of a main product, which, however, was first identified as the orthoester intermediate. The structural assignment of the orthoester was based on the homonuclear coupling constant J1',2' (5 Hz), the upfield shift of proton H-2' (4.46 ppm) and the orthoester methyl group (1.7 ppm), in agreement with literature data.26 In order to allow for orthoester rearrangement into the glycoside, the reaction time was then increased to 3 days, when TLC controls revealed complete disappearance of the orthoester and formation of disaccharide product 5, isolated in a 1:1 mixture with acceptor 4 in 43% yield (based on the respective 1H NMR integration values of 4 and 5). Separation of the residual glycosyl acceptor 4 - almost comigrating with disaccharide 5 - was attempted by de-O-acetylation with triethylamine.

After 40 h reaction time, the disaccharide product was obtained as 3:1 mixture of the 2,4,6-triol 6 and diol 7 containing a 2-O-acetyl group. The latter ester group was surprisingly stable and would have needed forcing

Scheme 1. Synthesis of disaccharide 9 and attempted azide introduction via triflate activation.
conditions for complete removal. Hence, the mixture was carried through the ensuing introduction of the 4,6-O-benzylidene group using benzaldehyde dimethylacetal and FeCl₃ as catalyst²⁷ to give a mixture of 8 and 9 followed by a subsequent Zemplén transesterification - again with prolonged reaction time - to eventually provide the alcohol 9 in an overall isolated yield of 65% (for 3 steps).

The introduction of the 2-azido group with inversion of configuration was first attempted via nucleophilic displacement of the corresponding triflate intermediate with sodium azide in DMF. Reaction of 9 with excess triflic anhydride in pyridine resulted in the formation of a highly polar spot as observed on a TLC plate. After work-up of the reaction mixture the crude residue was dissolved in DMF and treated with sodium azide at 70 °C for 2 h. Chromatography of the reaction mixture afforded a major apolar product 10 (33%) and a poor yield of the expected azido derivative 11 (10%). The NMR spectra of 10 showed a significant downfield proton shift of one methyl group (2.44 ppm), connected to an upfield shifted carbon at 8.8 ppm as observed in an HSQC experiment.²⁸ In addition, the N-H signal was absent, and a quaternary carbon was seen at 153.7 ppm, in a range expected for an N-C=N moiety. The upfield shifted methyl group showed an HMBC correlation to this quaternary carbon and a NOESY interaction with H-2 of the glucosamine residue. This data thus indicated the presence of a 1,2,3,4-tetrazole unit at position 2 of the glucosamine unit. The structure of 10 was eventually confirmed by HR-ESI-TOF MS data (m/z = 806.349) being consistent with the formula C₄₃H₄₁N₇O₉. Formation of the tetrazole ring may be rationalized by reaction of pyridine with trifluoromethanesulfonic anhydride to produce a cationic pyridinium ion intermediate A or a direct reaction of the acetamido group with triflic anhydride to produce an iminium triflate that is in equilibrium with the nitrilium ion B.²⁹⁻³¹ A subsequent formal 3+2 cycloaddition with the azide anion would then generate the 2-tetrazolyl product 10. The occurrence of a planar keteniminium intermediate C was considered to be less likely, since the glucoconfiguration of the reducing unit in product 10 remained unchanged throughout the reaction. A non-charged triflate imidate was also ruled out, since a highly polar product was observed by TLC upon activation of 9 with triflic anhydride and pyridine. In order to gain more insight into the amide activation, a model reaction was carried out in an in-situ NMR experiment using the per-O-acetylated N-acetyl-glucosamine 12 in a 2:1 mixture of deuterated dichloromethane / pyridine with 2 equivalents of triflic anhydride at 27 °C. The NMR spectra of the resulting product 13 formed within one hour only showed broad lines of non-deuterated pyridine signals at 8.65, 7.61 and 7.21 ppm for H-2/6, H-4 and H-3/5, respectively, indicating the presence of pyridinium-hydrotriflate.²⁹ In addition, ¹³C NMR signals showed only pyridine solvent signals at 149.11, 135.40 and 123.11 ppm for C-2/6, C-4 and C-3/5. Signals of pyridinium species were absent (see supporting information). Notably, a downfield ¹¹H NMR shift of one methyl group (2.88 ppm) connected to a carbon signal at 15.51 ppm and an HMBC correlation to a quaternary carbon signal at 158.66 ppm was observed. In addition, H-2 of the glucosamine unit also showed an HMBC correlation to the latter quaternary signal and an HSQC connectivity to an unusually downfield-shifted ¹³C NMR signal at 64.23 ppm, in a region not expected for N-linked carbons. A similar downfield shifted C-2 signal of an N-acetyl-β-D-glucosamine residue present in a 2-acetimidoyl linkage had previously been observed.³² Thus, the in-situ NMR experiment indicated the presence of the triflyl-imidate 13 as the reactive intermediate. Upon aqueous extraction - as used for the ensuing azidation reaction - the NMR spectrum of the crude mixture, however, indicated the presence of cationic pyridinium species as seen from characteristic ¹¹H and ¹³C NMR shifts of H-4/C-4 (8.66/148.82 ppm) and C-3/C-5 (8.15/128.01 ppm), respectively.

To the best of our knowledge a similar tetratoze carbohydrate byproduct has rarely been described in the literature, but this side reaction could be a reason for reduced yields of triflation/azidation reactions when involving sterically hindered alcohols in the presence of an acetamido sugar.³³⁻³⁴ On the other hand, this facile amide activation would merit to be explored in the future for versatile modifications of acetamido sugars.
Next, replacement of pyridine by less nucleophilic bases (sym-collidine, triethylamine) was tried but was not successful. Also, introduction of the 2-amino moiety via oxidation of the secondary alcohol, oxime formation and reduction were explored, but proved to be inefficient. Eventually, reactivity of the leaving group was modified by replacing the triflyl group by a mesyl group in order to prevent amide activation. Reaction of 9 with methanesulfonyl chloride for 2 days at room temperature afforded the crude mesylate 14 which was directly subjected to reaction with sodium azide in DMF (Scheme 2). Reaction conditions had to be optimized to prevent degradation but still to enable progress of the reaction. Heating to 120 °C and a prolonged reaction time of 5 days was necessary to eventually give the azido-derivative 11 in 70% yield. The structure of the resulting 2-azido-2-deoxy-mannosyl fragment was evident from the small value of the homonuclear coupling constant $J_{1',2'}$ being characteristic of a manno-glycoside (1.4 Hz) and by the value of the heteronuclear coupling constant ($J_{C1',H1'} = 160$ Hz).

Scheme 2. Synthesis of target disaccharide 19: Azide introduction, pyruvylation and global deprotection.

Reduction of the azido group with ensuing N-acetylation was accomplished via a Staudinger reaction of 11 using polymer-bound triphenylphosphine as described previously. The resin had to be extracted thoroughly with aqueous MeOH to recover the intermediate free amine, which was subsequently N-acylated under standard conditions to furnish the acetamido derivative 15 in 53% yield. For the introduction of the pyruvyl unit, the benzylidene group was cleaved by the action of trifluoroacetic acid to give diol 16 in near theoretical yield. Installation of the pyruvyl moiety on the β-D-ManNAc residue was achieved by reaction of 16 with methyl pyruvate promoted by TMSO-triflate in acetonitrile to generate the (S)-isomer 17 in a good yield of 75%. The stereochemical assignment of the pyruvyl ketal was based on literature-known chemical shift features. The 13C NMR chemical shift of the methyl carbon in S-configured 4,6-O-pyruvyl ketals in hexopyranoses was observed significantly downfield (17: 25.55 ppm) compared to the R-configured counterparts. In addition, diagnostic ROESY correlations were observed between the geminal H-6 protons of the ManNAc unit and the methyl ester group. Deprotection of 17 was carried out by hydrogenolysis of the benzyl protecting groups with 10% Pd-carbon in methanol to afford 18, followed by saponification of the methyl ester with aqueous NaOH to furnish disaccharide 19 as the sodium salt. NMR data of 19 were in full agreement with the structural assignments and the NMR features of the native glycan. Binding and crystallographic data with the SpaASLH protein from *P. alvei* in the presence of disaccharide 19 will be published in due course.
Experimental Section

General. All purchased chemicals were used without further purification unless stated otherwise. Solvents were dried over activated 4 Å (CH₂Cl₂, DMF) and 3 Å (CH₃CN) molecular sieves. Cation exchange resin DOWEX 50 H⁺ was regenerated by consecutive washing with HCl (3 M), water and dry MeOH. Aqueous solutions of salts were saturated unless stated otherwise. Concentration of organic solutions was performed under reduced pressure < 40 °C. Optical rotations were measured with an Anton Paar MCP100 Polarimeter. Thin layer chromatography was performed on Merck precoated plates: generally, on 5 x 10 cm, layer thickness 0.25 mm, Silica Gel 60F₂₅₄; alternatively, on HPTLC plates with 2.5 cm concentration zone (Merck). Spots were detected by staining with a dipping reagent (anisaldehyde-H₂SO₄) and heating. For column chromatography silica gel (0.040 – 0.063 mm) was used. HP-column chromatography was performed on pre-packed columns (YMC-Pack SIL-06, 0.005 mm, 25 x 1 cm and 25 x 2 cm). NMR spectra were recorded with a Bruker Avance III 600 instrument (600.22 MHz for ¹H, 150.93 MHz for ¹³C, 564.77 MHz for ¹⁹F) using standard Bruker NMR software. ¹H spectra were referenced to 7.26 (CDCl₃), 3.34 (MeOD) and 0.00 (D₂O, external calibration to 2,2-dimethyl-2-silapentane-5-sulfonic acid) ppm unless stated otherwise. ¹³C spectra were referenced to 77.16 (CDCl₃), 53.52 (CD₂Cl₂), 49.00 (CD₃OD) and 67.40 (D₂O, external calibration to 1,4-dioxane) ppm. Assignments were based on COSY, HSQC, HMBC and TOCSY data. ESI-MS data were obtained on a Micromass Q-TOF Ultima Global instrument.

2,4,6-Tri-O-acetyl-3-O-benzyl-D-glucopyranose (2). A solution of 1 (3.8 g, 8.67 mmol) and NH₄OAc (2.67 g, 34.7 mmol) in dry DMF (35 mL) was stirred for 5 days at rt under Ar when TLC showed complete conversion. The solution was concentrated in vacuo and the residue purified by chromatography on silica gel (toluene-EtOAc 4:1 → 1:1) to give 2 (2.62 g, 76%) as colorless syrup; Rf = 0.46 (toluene-EtOAc 4:1); ¹H NMR (600 MHz, CDCl₃): δ = 7.34-7.22 (m, 5 H, Ar-H), 5.45 (dd, 1 H, J₁,OH = 3.7 Hz, J₁,2 = 3.7 Hz, H-1α), 5.09 (t, 1 H, J₄,5 = J₄,3 = 9.7 Hz, H-4β), 5.09 (t, 1 H, J₄,5 = J₄,3 = 9.7 Hz, H-4α), 4.87 (dd, 1 H, J₁,2 = 9.2, J₁,1 = 7.9 Hz, H-2β), 4.87 (dd, 1 H, J₁,2 = 9.7, J₁,1 = 3.9 Hz, H-2α), 4.71 (d, 1 H, J₂ = 12.1 Hz, CH₂Arα), 4.66 (d, 1 H, J₂ = 11.6 Hz, CH₂Arβ), 4.62 (d, 1 H, J₂ = 11.9 Hz, CH₂Arβ), 4.61 (d, 1 H, J₂ = 11.8 Hz, CH₂Arβ), 4.61 (d, 1 H, J₁,1 = 8.2 Hz, H-1β), 4.19 (dd, 1 H, J₆a,₆b = 12.4, J₆a,₆b = 5.2 Hz, H-6aβ), 4.18-4.08 (m, 4 H, H-6bβ, H-6aα, H-6bα, H-5α), 4.04 (t, 1 H, J₃,4 = J₃,5 = 9.6 Hz, H-3α), 3.79 (d, 1 H, JₒH,₁ = 9.6 Hz, OHβ), 3.72 (t, 1 H, J₃,4 = J₃,5 = 9.3 Hz, H-3β), 3.63 (dd, 1 H, J₃,5 = 10.1, J₆a,₆b = 5.2, J₆a,₆b = 2.4 Hz, H-5β), 3.33 (d, 1 H, JₒH,₁ = 3.3 Hz, OHα), 2.08 (s, 3 H, CH₃CO), 2.06 (s, 3 H, CH₃COβ), 2.05 (s, 3 H, CH₃COβ), 1.97 (s, 3 H, CH₃COβ), 1.95 (s, 3 H, CH₃COβ); ¹³C NMR for α-anomer (150 MHz, CDCl₃): δ = 170.90, 170.10 and 169.48 (C=O), 138.12 (Cq, Ar-C), 128.39 (2 C, Ar-C), 127.71 (Ar-C), 127.54 (2 C, Ar-C), 90.31 (C-1), 76.86 (C-3), 74.88 (CH₂Ar), 73.41 (C-2), 69.79 (C-4), 67.73 (C-5), 62.27 (C-6), 20.82, 20.74 and 20.70 (CH₃CO); ¹³C NMR for β-anomer (150 MHz, CDCl₃): δ = 171.19, 170.85 and 169.39 (C=O), 137.68 (Cq, Ar-C), 128.46 (2 C, Ar-C), 127.90 (Ar-C), 127.67 (2 C, Ar-C), 95.84 (C-1), 79.59 (C-3), 75.39 (C-2), 74.46 (CH₂Ar), 72.30 (C-5), 69.66 (C-4), 62.27 (C-6), 20.82, 20.74 and 20.70 (CH₃CO) ppm. NMR data were in agreement with the literature.³⁹

3-O-Benzyl-2,4,6-tri-O-acetyl-D-glucopyranosyl N-phenyl-trifluoroacetimidate (3). K₂CO₃ (660 mg, 4.773 mmol) was added to a solution of 2 (860 mg, 2.170 mmol) in dry DCM (30 mL) under Ar followed by dropwise addition of N-phenyltrifluoroacetimidoyl chloride (NPTFI-Cl, 690 µL, 4.34 mmol) at room temperature. The suspension was stirred for 7 d, then filtered over Celite® and rinsed with DCM. The organic phase was concentrated in vacuo to give a yellowish, waxy product. Purification of the residue by column chromatography (toluene-EtOAc 4:1 containing 0.2% TEA) afforded 1.008 g (82%) of 3 as off-white waxy solid; Rf = 0.27 (toluene-EtOAc 4:1); [α]D = 29 (c 1.3 CHCl₃); ¹H NMR: (600 MHz, CDCl₃) δ = 7.36-7.32 (m, 3 H, Ar-H), 7.32-7.21 (m, 2 H, Ar-H), 7.25-7.23 (m, 2 H, Ar-H), 7.14-7.11 (m, 1 H, Ar-H), 6.86-6.80 (m, 2 H, Ar-H), 5.78-5.60
Arkivoc 2021, iv, 137-151
Krauter, S. et al.

Methyl 2,4,6-tri-O-acetyl-3-O-benzyl-β-d-glucopyranosyl-(1→4)-2-acetamido-3,6-di-O-benzyl-2-deoxy-β-D-glucopyranoside (6). A suspension of 4 (490 mg, 1.18 mmol), donor 3 (880 mg, 1.55 mmol) and acid-washed molecular sieves 4 Å (1.37 g) in DCM (30 ml) was stirred at rt under Ar for 30 min, then cooled with an external NaCl/ice-bath for further 40 min. TMSOTf (21 µl, 0.12 mmol) was added to the mixture stirred overnight at rt. TLC showed complete consumption of the donor, intermediate orthoester (Rf = 0.63, EtOAc-DCM 4:1) and unreacted acceptor. The reaction mixture was stirred for additional 24 h, followed by quenching with TEA (150 µl) and filtration over Celite®. The filtrate was concentrated in vacuo and the residue subjected to column chromatography (toluene-EtOAc 3:2 →2:3→0:1) to give a 1:1 mixture of 620 mg of the desired disaccharide 5 (43%) as well as recovered acceptor 4 (43%); Rf = 0.39 (EtOAc-DCM 4:1). An analytical aliquot of the mixture was purified by HILIC-HPLC using a gradient H2O→MeCN; [α]20° -19 (c 0.2, CHCl3); 1H NMR: (600 MHz, CDCl3): δ = 7.37-7.20 (m, 15 H, Ar-H), 5.91 (d, 1 H, JNH,2 = 8.3 Hz, NH), 5.08 (t, 1 H, J4a,3′ = J4a′,5′ = 9.7 Hz, H-4′), 5.00 (dd, 1 H, J2,3′ = 9.6, J2,1′ = 8.2 Hz, H-2′), 4.72 (d, 1 H, J7 = 11.9 Hz, CH2Ar), 4.65 (d, 1 H, J1,2′ = 12.4 Hz, CH2Ar), 4.63 (d, 1 H, J1 = 12.2 Hz, CH2Ar), 4.59 (d, 1 H, J1 = 12.2 Hz, CH2Ar), 4.57 (d, 1 H, J1,2 = 8.0 Hz, H-1), 4.57 (d, 1 H, J1 = 12.5 Hz, CH2Ar), 4.49 (d, 1 H, J1 = 12.0 Hz, CH2Ar), 4.44 (d, 1 H, J1,2 = 8.0 Hz, H-1′), 4.18 (dd, 1 H, J6a,5′ = 4.8, J6a′,6b′ = 12.3 Hz, H-6a′), 3.99 (dd, 1 H, J6b′,5′ = 2.7, J6b′,6a′ = 12.6 Hz, H-6b′), 3.97 (dd, 1 H, H-4), 3.84 (dd, 1 H, J6a,5′ = 5.2, J6a′,6b′ = 10.2 Hz, H-6a), 3.81 (dd, 1 H, H-3), 3.79 (dd, 1 H, J6b′,5′ = 4.7, J6b′,6a′ = 10.4 Hz, H-6b), 3.64 (dd, 1 H, J6b′,6a′ = 4.7, J6b′,5′ = 10.0, J5,6a = 5.2 Hz, H-5), 3.57 (t, 1 H, J2,3′ = J3,4′ = 9.5 Hz, H-3′), 3.43 (s, 3 H, OCH3), 3.40 (dd, 1 H, J3,4′ = 9.3, J3′,4′ = 9.9 Hz, H-3′), 1.99 (s, 3 H, CH3CO), 1.98 (s, 3 H, CH3CO), 1.97 (s, 3 H, CH3CO), 1.92 (s, 3 H, CH3CO); 13C NMR: (150 MHz, CDCl3): δ = 170.71 (C=O), 170.25 (C=O), 169.62 (C=O), 169.28 (C=O), 138.45 (Cq, Ar-C), 138.08 (Cq, Ar-C), 137.72 (Cq, Ar-C), 129.57 (Ar-C), 128.47 (2 C, Ar-C), 128.45 (2 C, Ar-C), 128.29 (2 C, Ar-C), 127.90 (2 C, Ar-C), 127.88 (2 C, Ar-C), 127.84 (2 C, Ar-C), 127.66 (2 C, Ar-C), 127.56 (1 C, Ar-C), 101.30 (C-1), 99.67 (C-1′), 79.86 (C-3′), 76.74 (C-3), 74.97 (C-4), 74.36 (C-5), 74.04 (CH2Ar), 73.55 (CH2Ar), 72.94 (C-2′), 72.89 (CH2Ar), 72.04 (C-5′), 69.53 (C-4′), 69.12 (C-6), 61.98 (C-6′), 56.50 (OCH3), 52.05 (C-2), 23.28 (HNCOC2H5), 20.88 (CH2CO), 20.72 (CH2CO), 20.68 (CH2CO) ppm. HRMS (~ESI-TOF) m/z [M+H]+ calcd for C42H51NO14 794.3382; found 794.3384.

Methyl 3-O-benzyl-4,6-O-benzylidene-β-D-glucopyranosyl-(1→4)-2-acetamido-3,6-di-O-benzyl-2-deoxy-β-D-glucopyranoside (8). The mixture of 4 and 5 was dissolved in MeOH (8 ml), water (1 ml) and treated with triethylamine (1 ml) for 40 h at rt. The solution was then concentrated, and the residue was subjected to chromatography on silica gel (EtOAc) to remove monosaccharide acceptor 4 and to give a 3:1 mixture of 6 and the 2-O-acetyl derivative 7 (245 mg). Data for 6: Rf = 0.23 (EtOAc); 1H NMR (600 MHz, CDCl3): δ = 7.37-7.27 (m, 15 H, Ar-H), 5.64 (d, 1 H, JNH,2 = 7.8 Hz, N-H), 4.95 (d, 1 H, J7 = 11.6 Hz, CH2Ar), 4.87 (d, 1 H, J7 = 11.6 Hz, CH2Ar), 4.74 (d, 1 H, J1,2 = 7.8 Hz, H-1), 4.73 (d, 1 H, J2 = 11.6 Hz, CH2Ar), 4.70 (d, 1 H, J2 = 12.0 Hz, CH2Ar), 4.62 (d, 1 H, J2 = 11.9 Hz, CH2Ar), 4.56 (d, 1 H, J2 = 12.0 Hz, CH2Ar), 4.51 (d, 1 H, J1,2′ = 7.8 Hz, H-1′), 4.12 (dd, 1 H, J3,4′ = 8.9, J3,3′ = 8.9 Hz, H-3), 3.97 (dd, 1 H, J4,3′ = 8.9, J4,5′ = 8.9 Hz, H-4′), 3.92 (dd, 1 H, J6a,5′ = 3.6, J6a′,6b′ = 11.2 Hz, H-6a), 3.80 (dd, 1 H, J6b′,5′ = 2.9, J6b′,6a′ = 11.4 Hz, H-6b), 3.67 (dd, 1 H, J6a′,6b′ = 3.5, J6b′,6a′ = 11.9 Hz, H-6a′), 3.59 (dd, 1 H, J5,6b = 2.9, J5,6a = 3.4, J5,4 = 9.1 Hz, H-5), 3.50 (dd, 1 H, J6a′,6b′ = 5.3, J6b′,6a′ = 11.9 Hz, H-6b′), 3.47 (dd, 1 H, J4,3′ = 9.3, J4,5′ = 9.3 Hz, H-4′), 3.47 (s, 3 H, OMe), 3.44 (dd, 1 H, J3,2′ = 9.3, J3,1′ = 7.7 Hz, H-2′), 3.37 (dd, 1 H, J3,1′ = 8.6, J2,1 = 7.7, J2,N-H = 7.7 Hz, H-2), 3.26 (dd, 1 H, J3,2′ = 9.1 Hz, H-3′), 3.11 (ddd, 1 H, J3,5′,6a′ = 8.9, J3,5′,6a′ = 8.9 Hz, H-3′).
3.5, $^3J_{5',6b'} = 5.4$, $^3J_{5',4'} = 9.3$ Hz, H-5') and 1.86 (s, 3H, NaCl); 13C NMR: (150 MHz, CDCl$_3$): $\delta = 170.60$ (C=O), 138.80 (2 C, Cq, Ar-C), 137.60 (Cq, Ar-C), 128.62 (2 C, Ar-C), 128.47 (2 C, Ar-C), 128.09 (2 C, Ar-C), 127.93 (3 C, Ar-C), 127.70 (1 C, Ar-C), 127.37 (2 C, Ar-C), 102.56 (C-1'), 100.79 (C-1), 83.82 (C-3'), 78.71 (C-3), 77.53 (C-4), 75.28 (C-5'), 75.13 (C-2'), 74.68 (CH$_2$Ar), 74.46 (C-5), 74.20 (CH$_2$Ar), 73.69 (CH$_2$Ar), 70.24 (C-4'), 68.74 (C-6), 62.42 (C-6'), 56.98 (C-2'), 56.68 (OCH$_3$) and 23.57 (NHCOC$_3$) ppm. ESI-QTOFMS: m/z calcd for C$_{36}$H$_{45}$NO$_{11}$+: [M+H]$^+$ 668.3065; found 668.3066.

The mixture was dispersed in MeCN (5 mL) under Ar. Benzylidene dimethylacetal (0.079 mL, 0.526 mmol) and FeCl$_3$ (11 mg, 0.07 mmol) were then added and the dispersion was stirred for 3 h at rt. The mixture was concentrated, and the residue was dissolved in EtOAc (100 mL), washed with satd aq NaHCO$_3$ and water. The organic phase was dried and concentrated to afford a ~4:1 mixture of 8 and 9 as syrup (275 mg). A solution of the residue in dry MeOH (9 mL) was stirred with solid NaOMe (13 mg, 0.241 mmol) for 18 days at rt. The reaction was quenched by addition of Dowex 50 H$^+$ resin and filtered. The filtrate was concentrated and flash-chromatographed with dichloromethane to give 9 as colorless fluffy solid. Yield: 250 mg (0.33 mmol, 65% for 3 steps). $R_i = 0.45$ (EtOAc); $[\alpha]_D^{20} +5.6$ (c 0.95, CHCl$_3$); 1H NMR (600 MHz, CDCl$_3$): $\delta = 7.42$-7.26 (m, 20 H, ArH), 5.56 (d, 1 H, 3J$_{NH,2} = 7.7$ Hz, NH), 5.47 (s, 1 H, ArCH), 4.93 (d, 1 H, 3J$_{2} = 11.5$ Hz, CH$_2$Ar), 4.88 (d, 1 H, 3J$_{2} = 11.5$ Hz, CH$_2$Ar), 4.78 (d, 1 H, 3J$_{2,6} = 7.8$ Hz, H-1), 4.76 (d, 1 H, 3J$_{2} = 11.7$ Hz, CH$_2$Ar), 4.69 (d, 1 H, 3J$_{2} = 11.9$ Hz, CH$_2$Ar), 4.59 (d, 1 H, 3J$_{2,2'} = 7.0$ Hz, H-1'), 4.54 (d, 1 H, 3J$_{2} = 12.2$ Hz, CH$_2$Ar), 4.12 (t, 1 H, 3J$_{3,4} = 7.2$, 9.0 Hz, H-3), 4.08 (dd, 1 H, 3J$_{6a',5'} = 5.0$, 3J$_{6a',6b'} = 10.4$ Hz, H-6a'), 4.00 (t, 1 H, 3J$_{4,3} = 3$J$_{4,5} = 8.8$ Hz, H-4), 3.98 (dd, 1 H, 3J$_{6a,5} = 3.3$, 3J$_{6a,6b} = 11.0$ Hz, H-6a), 3.80 (dd, 1 H, 3J$_{6b,6a} = 11.2$, 3J$_{6b,5} = 2.3$ Hz, H-6b), 3.58 (dd, 1 H, 3J$_{4',3'} = 8.9$, 3J$_{4',5'} = 8.9$ Hz, H-4'), 3.58 (m, 1 H, H-5), 3.53 (dd, 1 H, 3J$_{6b',6a} = 10.4$, 3J$_{6b',5'} = 10.4$ Hz, H-6b'), 3.49 (t, 1 H, 3J$_{3',4'} = 3$J$_{3',4'} = 8.4$ Hz, H-3'), 3.47 (dd, 1 H, 3J$_{2',1'} = 7.3$ Hz, H-2'), 3.47 (s, 3 H, OCH$_3$), 3.31 (dd, 1 H, 3J$_{2,3} = 9.4$, 3J$_{2,1} = 7.8$, 3J$_{2,NH} = 7.8$ Hz, H-2), 2.87 (dt, 1 H, 3J$_{5',6a'} = 5.0$, 3J$_{5',6b'} = 7.5$ Hz, H-6b'), 1.86 (s, 3 H, NHCOC$_3$); 13C NMR: (150 MHz, CDCl$_3$): 170.41 (C=O), 138.79 (Cq, Ar-C), 138.44 (Cq, Ar-C), 137.81 (Cq, Ar-C), 137.31 (Cq, Ar-C), 128.96 (Ar-C), 128.42 (2 C, Ar-C), 128.37 (2 C, Ar-C), 128.29 (2 C, Ar-C), 128.22 (2 C, Ar-C), 128.02 (2 C, Ar-C), 127.97 (2 C, Ar-C), 127.86 (Ar-C), 127.76 (Ar-C), 127.60 (Ar-C), 127.44 (2 C, Ar-C), 126.03 (2 C, Ar-C), 103.21 (C-1'), 101.20 (ArCH), 100.77 (C-1), 81.31 (C-4'), 80.33 (C-3'), 78.33 (C-3), 77.91 (C-4), 75.03 (C-2'), 74.52 (CH$_2$Ar), 74.42 (C-5), 74.24 (CH$_2$Ar), 73.53 (CH$_2$Ar), 68.64 (C-6'), 68.49 (C-6), 66.28 (C-5'), 57.09 (C-2), 56.69 (OCH$_3$), 23.60 (CH$_3$CO). ESI-QTOFMS: m/z calcd for C$_{34}$H$_{49}$NO$_{11}$+: [M+H]$^+$ 756.3378; found 756.3381.

Methyl 2-azoido-3-O-benzyl-4,6-O-benzylidene-2-deoxy-β-D-mannopyranosyl-(1→4)-3,6-di-O-benzyl-2-deoxy-2-(1H-5-methyl-1,2,3,4-tetrazol-1-yl)-β-D-glucopyranoside (10). Compound 9 (20 mg, 0.026 mmol) was dried on a high vacuum line and coevaporated with toluene twice. DCM (0.2 mL) and pyridine (0.1 mL) were added under Ar through a septum and the mixture was cooled with an external ice/NaCl-mixture. A 1 M Tf$_2$O-solution in DCM (63 mL) was added and the colour changed to dark violet/blue. The solution was stirred for 30 min, whereupon additional Tf$_2$O-solution (20 μL) was added and the reaction warmed up to room temperature and kept stirring for 70 min. The mixture was diluted with DCM (10 mL) and quenched with saturated NaHCO$_3$-solution (10 mL). The aqueous phase was washed with DCM (5 mL), the combined organic phases were dried over MgSO$_4$ and filtered. Concentration of the filtrate afforded the crude triflate (25 mg) as brown oil. The activated triflate was dissolved in dry DMF (0.3 mL) under Ar-atmosphere and NaN$_3$ (8.5 mg, 0.13 mmol) was added and the mixture was stirred for 6 h at rt. Thereafter a condenser was attached to the flask and the mixture was heated to 70 °C for 2 h, when TLC showed complete consumption of the starting material. The reaction mixture was diluted with EtOAc (10 mL) and washed with H$_2$O (10 mL) and brine (10 mL). The organic phase was dried with MgSO$_4$ and concentrated in vacuo. The residue was purified by column chromatography (toluene-EtOAc 5:1) giving 10 (7 mg, 33%) and 11 (2 mg, 10%) as syrup. Data for 10: $R_i = 0.88$ (toluene-EtOAc 5:1); $[\alpha]_D^{20} -29.8$ (c 0.6, CHCl$_3$); 1H NMR (600 MHz, CDCl$_3$): $\delta = 7.48$-7.46 (m, 2 H, Ar-H), 7.41-7.31 (m, 13 H, Ar-
Reaction of acetamidomethoxy-1,3,4,6-tetra-O-acetyl-β-D-glucopyranoside (12) with triffic anhydride and pyridine. Compound 12 (8 mg, 0.021 mmol) was dried in high vacuum overnight and dissolved in CDCl₃ (0.4 mL) and pyridine-δ₅ (0.2 mL) under Ar-atmosphere in an NMR tube. Tf₂O (0.045 mL of a 1 M solution in DCM) was added slowly at room temperature and NMR spectra recorded over several hours. Data for 13: ¹H NMR (600 MHz, CDCl₃): δ = 8.56 (br signal, 0.6 H, H-2,6-pyr), 7.61 (br signal, 0.53 H, H-4-pyr), 7.21 (br signal, H-3,5-pyr), 6.02 (dd, 1 H, ³J₁₂ = 8.1, J = 0.8 Hz, H-1), 5.57 (t, 1 H, ³J₃₂ = ³J₄₅ = 9.5 Hz, H-3), 5.28 (ddd, 1 H, ³J₄₃ = 9.5, ³J₄₅ = 10.2 Hz, H-4), 4.35 (dd, 1 H, ³J₆₀₅ = 4.5, ³J₆₀₆ = 12.5 Hz, H-6a), 4.23 (ddd, 1 H, J = 0.7, ³J₁₂ = 8.1, ³J₂₃ = 9.4 Hz, H-2), 4.14 (dd, 1 H, ³J₆₅ = 2.3, ³J₆₆ = 12.5 Hz, H-6b), 4.06 (dd, 1 H, ³J₅₆ = 2.4, ³J₅₆ = 4.4, ³J₅₄ = 10.2 Hz, H-5), 2.88, 2.01, 2.00, 1.99 and 1.97 (5 s, each 3 H, CH₃CO); ¹³C NMR: (150 MHz, CDCl₃): δ = 170.12 (C=O), 169.99 (C=O), 168.70 (C=O), 158.66 (C=N), 149.12 (2 C, J = 27.4 Hz, C-2,6-pyr), 135.40 (J = 24.7 Hz, C-4-pyr), 123.11 (2 C, J = 24.8 Hz, C-3,5-pyr), 92.71 (C-1), 73.12 (C-3), 72.86 (C-5), 67.58 (C-4), 64.23 (C-2), 61.54 (C-6), 20.43 (CH₃CO), 20.31 (CH₃CO), 20.28 (CH₃CO), 20.22 (CH₃CO), 15.51 (CH₃C=O); ¹⁹F NMR (564.7 MHz, CDCl₃): δ = -78.41 ppm.

Methyl 2-azido-3-O-benzyl-4,6-O-benzylidene-2-deoxy-β-D-mannopyranosyl-(1→4)-2-acetamido-3,6-di-O-benzyl-2-deoxy-β-D-glucopyranoside (11). A solution of 9 (160 mg, 0.212 mmol) in dry pyridine (2.5 mL) and DCM (5 mL) was cooled with an ice bath under Ar. Mesyl chloride (49 µL, 0.635 mmol), was then added through a septum with a syringe and the solution was stirred for 2 d at rt. The mixture was diluted with DCM (20 mL), washed with water (20 mL) and NaHCO₃-solution (20 mL). The aqueous phase was reextracted with DCM (3 x 10 mL). The combined organic phases were dried (MgSO₄) and concentrated in vacuo to obtain 170 mg (96%) of 14 as a brownish amorphous solid; Rf = 0.58 (EtOAc); [α]°D -27.4 (c 0.23, CHCl₃); ¹H NMR (600 MHz, CDCl₃): δ = 7.40-7.27 (m, 20 H, Ar-H), 5.94 (d, 1 H, ³J₉₁₂ = 8.3 Hz, NH), 5.51 (s, 1 H, ArCH), 4.98 (d, 1 H, J = 11.2 Hz, CH₂Ar), 4.70 (s, 2 H, CH₂Ar), 4.68 (d, 1 H, ³J₁₂ = 6.5 Hz, H-1), 4.65 (d, 1 H, J = 11.8 Hz, CH₂Ar), 4.64 (d, 1 H, J = 11.1 Hz, CH₂Ar), 4.57 (d, 1 H, ³J₁₂ = 7.9 Hz, H-1'), 4.50 (d, ³J₁₂ = 11.5 Hz, CH₂Ar), 4.37 (dd, 1 H, ³J₁₂ = 8.4 Hz, ³J₂₃ = 8.4 Hz, H-2'), 4.24 (dd, 1 H, ³J₆₀₅ = 4.9 Hz, ³J₆₀₆ = 10.5 Hz, H-6a'), 4.10 (dd, 1 H, ³J₃₄ = 5.7, ³J₃₂ = 5.7 Hz, H-3'), 3.91 (dd, 1 H, ³J₆₀₅ = 2.9, ³J₆₀₆ = 9.2 Hz, H-6a), 3.81-3.34 (m, 4 H, H-2, H-5, H-6b, H-5') 3.69 - 3.64 (m, 2 H, H-3', H-4'), 3.60 (dd, 1 H, ³J₆₀₅ = 10.5, ³J₆₀₆ = 10.5 Hz, H-6b'), 3.46 (s, 3 H, OMe), 3.16 (ddd, 1 H, ³J₅₆ = 4.6, ³J₅₆ = 10.3, ³J₅₄ = 9.4 Hz, H-5'), 2.84 (s, 3 H, CH₃SO₂), 1.90 (s, 3 H, Nac). HRMS (ESI-TOF) m/z [M+H]⁺ calcld for C₄₄H₅₁NO₃₁S 834.3154, found 834.3154.

A solution of 14 (36 mg, 0.043 mmol) and NaN₃ (44 mg, 0.68 mmol) in dry DMF (1 mL) was stirred under Ar at
140 °C for 16 d. The mixture was diluted with EtOAc and washed with H2O (10 mL) and brine (10 mL). The organic phase was dried (MgSO4), filtered and concentrated in vacuo. The product was purified by column chromatography (toluene-EtOAc 1:1) to give 23 mg (70%) of 11 as colorless amorphous solid; Rf = 0.6 (EtOAc; [α]D0 -28.2 (c 1.0, CHCl3); 1H NMR (600 MHz, CDCl3): δ = 7.47-7.27 (m, 20 H, Ar-H), 5.66 (d, 1 H, JNH,2 = 7.8 Hz, N-H), 4.88 (d, 1 H, J = 11.6 Hz, CH2Ar), 4.78 (d, 1 H, J = 12.1 Hz, CH2Ar), 4.75 (d, 1 H, J1,2 = 7.1 Hz, H-1), 4.66 (d, 1 H, J2 = 11.8 Hz, CH2Ar), 4.65 (d, 1 H, J2 = 12.4 Hz, CH2Ar), 4.63 (d, 1 H, J2 = 11.3 Hz, CH2Ar), 4.62 (d, 1 H, J1,2 = 1.4 Hz, H-1'), 4.45 (d, 1 H, J = 11.9 Hz, CH2Ar), 4.09 (dd, 1 H, J6a,6' = 5.0, J6b,6b' = 10.6 Hz, H-6a'), 4.01 (t, 1 H, J3,2 = J3,4 = 8.0 Hz, H-3), 3.95 (t, 1 H, J4,3 = J4,5 = 7.9 Hz, H-4), 3.91 (t, 3J',3' = J4,5' = 9.5 Hz, 1 H, H-4'), 3.84 (dd, 1 H, J2,1' = 1.1 Hz, J2,3' = 3.7 Hz, H-2'), 3.79 (dd, 1 H, J6a,6 = 3.7, J6a,6b = 10.7 Hz, H-6a), 3.75 (dd, 1 H, J6b,6b = 1.1, J2,3 = 8.0, J2,NH = 8.0 Hz, H-2), 3.47 (s, 3 H, OCH3), 3.07 (dd, 1 H, J5,6a = 4.9, J5,6b = 9.8, J5',4' = 9.8 Hz, H-5'), 1.89 (s, 3 H, NAc); 13C NMR: (150 MHz, CDCl3): δ = 170.24 (C=O), 139.86 (Cq, Ar-C), 137.83 (Cq, Ar-C), 137.82 (Cq, Ar-C), 137.30 (Cq, Ar-C), 128.99 (Ar-C), 128.54 (2 C, Ar-C), 128.47 (2 C, Ar-C), 128.35 (2 C, Ar-C), 128.22 (2 C, Ar-C), 128.01 (1 C, Ar-C), 127.92 (4 C, Ar-C), 127.86 (Ar-C), 127.65 (Ar-C), 127.54 (2 C, Ar-C), 126.04 (2 C, Ar-C), 101.55 (ArCH), 101.00 (C-1), 99.95 (C-1'), 78.44 (C-4'), 77.94 (C-3), 77.77 (C-4), 76.68 (C-3'), 74.41 (C-5), 74.03 (CH2Ar), 73.64 (CH2Ar), 72.85 (CH2Ar), 69.05 (C-6), 68.34 (C-6'), 67.21 (C-5'), 63.63 (C-2'), 56.67 (OCH3), 55.59 (C-2), 23.51 (CH3CO). HRMS (ESI-TOF) m/z [M+H]+ calcld for C43H48N4O10 781.3447; found 781.3443.

Methyl 2-acetamido-3-O-benzyl-4,6-O-benzylidene-2-deoxy-β-D-mannopyranosyl-(1→4)-2-acetamido-3,6-di-O-benzyl-2-deoxy-β-D-glucopyranoside (15). A suspension of 14 (50 mg, 0.064 mmol) in DCM (4 mL) was stirred with polymer-bound PPh3 (475 mg, 1.425 mmol) for 2 d at rt under Ar. H2O (3 mL) was added following by 5 minutes of vigorous stirring. Then, the polymer was filtered off with Celite® followed by washing with MeOH (10 mL) and H2O (10 mL). Concentration of the filtrate afforded the amine intermediate (33 mg, 69%). The residue (33 mg, 0.044 mmol) and a catalytic amount of DMAP were dissolved in pyridine (0.5 mL) under Ar. Ac2O (25 μL, 0.264 mmol) was added at ice-bath temperature and the solution warmed to rt and stirred for 1.5 h. The reaction was quenched by addition of MeOH (0.1 mL), concentrated and coevaporated with toluene three times in vacuo which gave 15 (29 mg, 83%) as colorless amorphous solid. Rf = 0.4 (EtOAc; [α]D0 -0.3 (c 1.0, CHCl3); 1H NMR (600 MHz, CDCl3): δ = 7.49-7.27 (m, 20 H, Ar-H), 5.67 (d, 1 H, JNH,2 = 8.2 Hz, NH), 5.56 (d, 1 H, JNH,2 = 9.1 Hz, NH'), 5.48 (d, 1 H, ArCH), 4.82 (d, 1 H, J = 11.8 Hz, CH2Ar), 4.78 (d, 1 H, J1,2 = 7.7 Hz, H-1), 4.71-4.67 (m, 2 H, CH2Ar), 4.67 (d, 1 H, J = 12.2 Hz, CH2Ar), 4.70 (d, 1 H, J = 11.9 Hz, CH2Ar), 4.63 (d, 1 H, J = 11.6 Hz, CH2Ar), 4.52 (d, 1 H, J = 12.1 Hz, CH2Ar), 4.47 (d, 1 H, J = 12.1 Hz, CH2Ar), 4.15 (dd, 1 H, J6a,6b = 10.4 Hz, H-6a'), 4.08 (t, 1 H, J3,2 = 8.5, J3,4 = 8.5 Hz, H-3), 4.04 (dd, 1 H, J = 8.3, J4,5 = 8.3 Hz, H-4), 3.80 (dd, 1 H, J3,4 = 3.3, J6b,6a = 11.1 Hz, H-6a), 3.73 (dd, 1 H, J3,4 = 2.8, J6b,6a = 10.9 Hz, H-6b), 3.61 (t, 1 H, J3,4 = 10.2, J6b,6a = 10.2 Hz, H-6b), 3.57 (t, 1 H, J = 9.3, J4,5 = 9.3 Hz, H-4'), 3.55 (dd, 1 H, J3,6 = 2.7, J5,4 = 9.1 Hz, H-5), 3.50-3.45 (m, 1 H, H-5), 3.48 (s, 3 H, OMe), 3.36 (dd, 1 H, J = 8.1, J1,2 = 8.1, J2,1 = 8.1, J2,1 = 5.0, J3,6b = 10.2, J5,4 = 9.7 Hz, H-5'), 1.92 (s, 3 H, NAc), 1.90 (s, 3 H, NAc); 13C NMR: (150 MHz, CDCl3): δ = 170.51 (2 C, C=O), 137.89 (Cq, Ar-C), 129.03 (Ar-C), 128.56 (2 C, Ar-C), 128.43 (2 C, Ar-C), 128.39 (2 C, Ar-C), 128.23 (1 C, Ar-C), 128.00 (1 C, Ar-C), 127.90 (2 C, Ar-C), 127.72 (2 C, Ar-C), 127.7 (2 C, Ar-C), 126.08 (2 C, Ar-C), 101.68 (ArCH), 100.77 (C-1), 99.61 (C-1'), 78.69 (C-4'), 78.58 (C-3), 76.70 (C-4*), 75.64 (C-3'), 74.21 (C-5), 73.97 (CH2Ar), 73.55 (CH2Ar), 71.44 (CH2Ar), 68.63 (C-6), 68.63 (C-6'), 67.03 (C-5'), 56.79 (2 C, C-2, OCH3), 50.42 (C-2'), 23.56 (CH3CO), 23.39 (CH3CO) ppm. HRMS (ESI-TOF) m/z [M+H]+ calcld for C45H52N2O31 797.364; found 797.3645.

Methyl 2-acetamido-3-O-benzyl-2-deoxy-β-D-mannopyranosyl-(1→4)-2-acetamido-3,6-di-O-benzyl-2-deoxy-β-D-glucopyranoside (16). Trifluoroacetic acid (290 μL) was added to a solution of 15 (26 mg, 0.033 mmol) in
DCM (1150 µL) externally cooled with an ice/NaCl-bath below 0 °C under Ar and stirred for 25 min. The solution was diluted with DCM (5 mL), followed by addition of DOWEX anion-exchange resin (HCO₃⁻ form, 10 g). The resin was filtered off and washed with DCM (20 mL). The filtrate was concentrated and the residue was purified by column chromatography (EtOAc-MeOH 95:5) to give 16 (23 mg, 99%) as colorless crystals, m.p. 113-115°C; Rf = 0.25 (EtOAc-MeCN 4:1); [α]D²⁰ = -45.8 (c 1.0, CHCl₃); ¹H NMR (600 MHz, CDCl₃): δ = 7.35-7.26 (m, 15 H, Ar-H), 6.03 (d, 1 H, ³JNH₂= 9.7 Hz, NH'), 5.66 (d, 1 H, ³JNH₂= 8.3 Hz, NH), 4.83 (d, 1 H, ³J= 11.8 Hz, CH₂Ar), 4.76 (d, 1 H, ³J= 11.9 Hz, CH₂Ar), 4.65 (ddd, 1 H, ³J= 1.4, ³J= 4.5 Hz, H-2'), 4.65 (d, 1 H, ³J= 11.9 Hz, CH₂Ar), 4.61 (d, 1 H, ³J= 11.9 Hz, CH₂Ar), 4.60 (d, 1 H, ³J= 11.8 Hz, H-1'), 4.60 (d, 1 H, ³J= 7.0 Hz, H-1), 4.44 (d, 1 H, ³J= 12.0 Hz, CH₂Ar), 4.29 (d, 1 H, ³J= 11.4 Hz, CH₂Ar), 4.04 (t, 1 H, ³J= 8.4, ³J= 8.4 Hz, H-3), 3.90 (t, 1 H, ³J= 8.6, ³J= 8.6 Hz, H-4), 3.72 (dd, 1 H, ³J= 2.8, ³J= 12.0 Hz, H-6a'), 3.71 (d, 1 H, ³J= 3.8 Hz, H-6a), 3.71 (app d, 1 H, ³J= 3.8 Hz, H-6b), 3.61 (dd, 1 H, ³J= 4.8, ³J= 11.2 Hz, H-6b'), 3.57 (ddd, 1 H, ³J= 7.5, ³J= 8.4, ³J= 8.4 Hz, H-2), 3.54 (t, 1 H, ³J= 9.5, ³J= 9.5 Hz, H-4'), 3.53 (ddd, 1 H, ³J= 3.3, ³J= 4.4 Hz, H-5), 3.45 (s, 3 H, OCH₃), 3.21 (dd, 1 H, ³J= 4.2, ³J= 9.4 Hz, H-3'), 3.10 (dd, 1 H, ³J= 3.1, ³J= 4.7, ³J= 9.8 Hz, H-5'), 1.93 (s, 3 H, CH₃CO), 1.82 (s, 3 H, CH₃CO); ¹³C NMR: (150 MHz, CDCl₃): 170.68 (C=O), 170.51 (C=O), 138.50 (Cq, Ar), 137.78 (Cq, Ar), 137.53 (Cq, Ar-C), 128.52 (6 C, Ar-C), 128.22 (2 C, Ar-C), 127.97 (1 C, Ar-C), 127.95 (2 C, Ar-C), 127.87 (1 C, Ar-C), 127.82 (1 C, Ar-C), 127.62 (2 C, Ar-C), 101.10 (C-1), 98.80 (C-1'), 79.52 (C-3'), 78.71 (C-4), 76.35 (C-5), 76.16 (C-5'), 74.13 (C-5), 74.02 (CH₂Ar), 73.49 (CH₂Ar), 70.68 (CH₂Ar), 68.76 (C-7), 66.67 (C-4'), 61.83 (C-6'), 56.58 (OCH₃), 55.69 (C-2'), 23.48 (CH₃CO), 23.26 (CH₃CO) ppm. HRMS ([ESI-TOF] m/z [M+H]+) calc'd for C₃₈H₄₈N₂O₁₁ 709.3331; found 709.3332.

Methyl 2-acetamido-3-O-benzyl-2-deoxy-4,6-O-[(1-methoxycarbonyl)ethylidene]-β-d-mannopyranosyl-(1→4)-2-acetamido-3,6-di-O-benzyl-2-deoxy-β-d-glucopyranoside (17). A solution of methyl pyruvate (100 µL of a stock solution containing 100 µL in 2.4 mL MeCN) was added to an ice-cold solution of 16 in MeCN (1150 µL) under Ar and stirred for 10 min. TMSOTf (19 µL, 0.105 mmol) was then added through a septum and the solution was stirred at ice-bath temperature for 4.5 h, when TLC showed consumption of the starting material. The solution was diluted with EtOAc and washed with satd aq NaHCO₃-solution. The organic phase was dried (MgSO₄), filtered and concentrated in vacuo. The product was purified by column chromatography (toluene-EtOAc 1:1) to give 10 mg (75%) of 17 as syrup; Rf = 0.43 (EtOAc-MeCN 4:1); [α]D²⁰ = -16 (c 0.15, CHCl₃); ¹H NMR (600 MHz, CDCl₃): δ = 7.32-7.20 (m, 15 H, Ar-H), 5.67 (br s, 1 H, NH), 5.50 (br s, 1 H, NH), 4.68 (d, 1 H, ³J= 11.6 Hz, CH₂Ar), 4.65 (d, 1 H, ³J= 7.4 Hz, H-1), 4.62 (d, 1 H, ³J= 12.3 Hz, CH₂Ar), 4.58 (d, 1 H, ³J= 12.1 Hz, CH₂Ar), 4.57 (d, 1 H, ³J= 11.8 Hz, CH₂Ar), 4.553 (d, 1 H, ³J= 1.3 Hz, H-1'), 4.547 (dd, 1 H, ³J= 1.4, ³J= 5.0, ³J= 9.9 Hz, H-2'), 4.51 (d, 1 H, ³J= 11.6 Hz, CH₂Ar), 4.36 (d, 1 H, ³J= 11.8 Hz, CH₂Ar), 3.93-3.88 (m, 2 H, H-3', H-4'), 3.81 (dd, 1 H, ³J= 5.0, ³J= 10.6 Hz, H-6a), 3.75 (s, 3 H, CO₂CH₃), 3.73 (dd, 1 H, ³J= 3.4, ³J= 4.8, ³J= 10.9 Hz, H-6a'), 3.63 (dd, 1 H, ³J= 3.1, ³J= 11.0 Hz, H-6b'), 3.49 (dd, 1 H, ³J= 10.3, ³J= 10.7 Hz, H-6b), 3.47-3.40 (m, 2 H, H-5', H-4), 3.39 (s, 3 H, OCH₃), 3.36-3.30 (m, 2 H, H-2, H-3'), 2.97 (dd, 1 H, ³J= 4.8, ³J= 10.3, ³J= 10.3 Hz, H-5'), 1.81 (s, 6 H, 2 x CH₂CO), 1.48 (s, 3 H, CH₃); ¹³C NMR: (150 MHz, CDCl₃): δ = 170.69 (2 x C=O), 170.10 (C=O, pyr), 138.63 (Cq, Ar-C), 138.21 (Cq, Ar-C 137.93 (Cq, Ar-C), 128.50 (2 C, Ar-C), 128.38 (2 C, Ar-C), 128.28 (2 C, Ar-C), 127.94 (1 C, Ar-C), 127.87 (2 C, Ar-C), 127.65 (1 C, Ar-C), 127.53 (3 C, Ar-C), 127.32 (2 C, Ar-C), 100.86 (C-1), 99.51 (C-1'), 99.11 (Cq, CO₂CH₃), 78.67 (C-3), 76.47 (C-4'), 75.25 (C-4), 75.10 (C-3'), 74.26 (C-5'), 73.85 (CH₂Ar), 73.52 (CH₂Ar), 71.3 (CH₂Ar), 68.72 (C-6'), 66.43 (C-5), 65.18 (C-6), 56.72 (OCH₃), 56.24 (C-2), 52.76 (CO₂CH₃), 50.34 (C-2'), 25.54 (CH₃CO₂CH₃), 23.36 (2 x CH₃CO) ppm. HRMS ([ESI-TOF] m/z [M+H]+) calc'd for C₄₂H₅₂N₂O₁₃, 793.3542; found 793.3541.
containing 10% Pd-carbon catalyst was evacuated and flushed with Ar four times. The atmosphere was switched to H₂ and the mixture was stirred for 5 h at rt, when TLC showed complete consumption of the starting material. The catalyst was filtered off over Celite® and washed with MeOH several times (10 mL in total). The filtrate was concentrated in vacuo to give 18 (3.2 mg, 89%) as amorphous solid; Rᵣ = 0.75 (CHCl₃-MeOH-H₂O 3:2.5:0.5); ¹H NMR (600 MHz, MeOD): δ = 4.85 (d, 1 H, J²₂',₃' = 1.7 Hz, H-1'), 4.61 (dd, 1 H, J²₂',₃' = 1.6, J³₂',₃' = 4.6 Hz, H-2'), 4.30 (d, 1 H, J³₁₂ = 8.5 Hz, H-1), 4.00 (dd, 1 H, J³₆₆₆,₉' = 5.0, J³₆₆,₉' = 10.5 Hz, H-6a'), 3.85 (dd, 1 H, J³₂',₃' = 4.7, J³₂',₄' = 9.8 Hz, H-3'), 3.82 (s, 3 H, CO₂CH₃), 3.81 (dd, 1 H, J³₆₆₆,₅ = 2.1, J³₆₆₆₆,₆ = 12.3 Hz, H-6a), 3.77 (dd, 1 H, J³₆₆₆₆,₅ = 10.5, J³₆₆₆₆,₆ = 10.5 Hz, H-6b'), 3.72 (dd, 1 H, J³₆₆₆,₅ = 4.0, J³₆₆₆,₆ = 12.2 Hz, H-6b), 3.66 (dd, 1 H, J³₂',₃' = 10.3, J³₂',₄' = 8.5 Hz, H-2'), 3.64 (dd, 1 H, J³₄₃ = 9.2, J³₄₃ = 9.2 Hz, H-4'), 3.57 (dd, 1 H, J³₄₃,₅ = 10.0, J³₄₃,₅ = 10.0 Hz, H-4'), 3.53 (dd, 1 H, J³₃₄ = 8.9, J³₃₄ = 10.4 Hz, H-3), 3.44 (s, 3 H, OCH₃), 3.37 (dt, 1 H, J³₅₆₆₆,₅ = 5.0, J³₅₆₆₆,₅ = 10.0, J³₅₆₆,₅ = 10.0 Hz, H-5'), 3.28 (dd, 1 H, J³₆₆₆,₅ = 2.0, J³₆₆₆,₅ = 3.9, J³₆₆₆,₅ = 9.7 Hz, H-5), 2.01 (s, 3 H, CH₃CO), 1.96 (s, 3 H, CH₃CO), 1.48 (s, 3 H, CH₃); ¹³C NMR: (150 MHz, MeOD): 174.72 (NHC=O), 173.63 (NHC=O), 171.96 (OC=O), 103.47 (C-1), 101.72 (C-1'), 100.72 (Cq, C₂C₂CH₃), 80.64 (C-4), 76.34 (C-5), 75.96 (C-4'), 74.08 (C-3), 70.96 (C-3'), 68.38 (C-5'), 65.65 (C-6'), 61.63 (C-6), 57.00 (OCH₃), 56.97 (C-2), 54.83 (C-2'), 53.17 (CO₂CH₃), 25.86 (CH₃), 22.89 (CH₃CO), 22.66 (CH₃CO) ppm. HRMS (⁺ESI-TOF) m/z [M+H⁺] calcd for C₂₃H₃₄N₂O₁₃, 523.2134; found 523.2134.

Methyl 2-acetamido-2-deoxy-4,6-O-(1-carboxyethylidene)-β-D-mannopyranosyl-(1→4)-2-acetamido-2-deoxy-β-D-glucopyranoside sodium salt (19). A solution of 18 (3.2 mg, 0.007 mmol) in MeOH (1.5 mL) and 0.2 M NaOH (530 µl) was stirred for 2 h at rt when TLC indicated complete consumption of the starting material. The pH-value was was adjusted to neutral with Dowex cation exchange resin (H⁺ form). The resin was filtered off and washed with water (10 mL). The solution was frozen and lyophilized to afford 2.5 mg (77%) of product. Final purification was done by filtration on BioGel P-2 (5% EtOH in water) to give 2.2 mg (68%) of 19 as colorless solid; [α]D²⁰ -38.9 (c 0.1, H₂O); ¹H NMR (600 MHz, D₂O): δ = 4.94 (d, 1 H, J³₁₂ = 1.8 Hz, H-1'), 4.61 (dd, 1 H, J³₂',₃' = 1.7, J³₂',₄' = 4.7 Hz, H-2'), 4.43 (d, 1 H, J³₁₂ = 8.0 Hz, H-1), 4.04 (dd, 1 H, J³₆₆₆₆,₅ = 5.3, J³₆₆₆₆,₆ = 10.7 Hz, H-6a'), 3.99 (dd, 1 H, J³₂',₃' = 4.7, J³₂',₄' = 10.0 Hz, H-3'), 3.87 (dd, 1 H, J³₆₆₆,₅ = 2.2, J³₆₆₆,₆ = 12.3 Hz, H-6a), 3.75 (t, 1 H, J³₆₆₆,₅ = 10.9, J³₆₆₆,₆ = 10.9 Hz, H-6b'), 3.73 (dd, 1 H, J³₆₆₆,₅ = 5.2, J³₆₆₆,₆ = 12.2 Hz, H-6b), 3.70 (dd, 1 H, J³₂',₃' = 8.1, J³₂',₄' = 10.2 Hz, H-2), 3.69 (t, 1 H, J³₄₃ = 9.1, J³₄₃ = 9.1 Hz, H-4), 3.65 (dd, 1 H, J³₄₃ = 9.0, J³₄₃ = 10.1 Hz, H-3), 3.63 (t, 1 H, J³₄₃,₅ = 10.1, J³₄₃,₅ = 10.1 Hz, H-4'), 3.50 (s, 3 H, OCH₃), 3.49 (dd, 1 H, J³₆₆₆,₅ = 2.4, J³₆₆₆,₆ = 5.0, J³₆₆₆,₅ = 9.2 Hz, H-4'), 3.45 (dd, 1 H, J³₆₆₆,₅ = 5.0, J³₆₆₆,₅ = 10.1, J³₆₆₆,₅ = 10.1 Hz, H-5'), 2.08 (s, 3 H, CH₃CO), 2.04 (s, 3 H, CH₃CO), 1.47 (s, 3 H, CH₃); ¹³C NMR: (150 MHz, D₂O): 176.30 (C=O), 176.25 (C=O), 175.50 (C=O), 102.69 (Cq, C₂C₂CH₃), 80.64 (C-4), 76.34 (C-5), 75.96 (C-4'), 74.08 (C-3), 70.96 (C-3'), 68.38 (C-5'), 65.65 (C-6'), 61.63 (C-6), 57.00 (OCH₃), 56.97 (C-2), 54.83 (C-2'), 53.17 (CO₂CH₃), 25.86 (CH₃), 22.89 (CH₃CO), 22.66 (CH₃CO) ppm. HRMS (⁺ESI-TOF) m/z [M+Na⁺] calcd for C₂₃H₃₄N₂O₁₄Na⁺, 531.1797, found 531.1798.

Acknowledgements

The authors gratefully acknowledge Dr. Markus Blaukopf for support with NMR measurements and HPLC separations as well as Marlene Neuinger and Elise Loppinet for technical support. Financial support by the Austrian Science Fund FWF to C. Schäffer and P. Kosma (project P27374-B22) is gratefully acknowledged.
Supplementary Material

1H and 13C NMR spectra of novel compounds can be found in the supporting information.

References

1. Hager, F. F.; Sützl, L.; Stefanovic, C.; Blaukopf, M; Schäffer, C. Int. J. Mol. Sci. 2019, 20, E4929. https://doi.org/10.3390/ijms20194929
2. Pereira, C. L.; Geissner, A.; Anish, C.; Seeberger, P. H. Angew. Chem. Int. Ed. 2015, 54, 10016-10019. https://doi.org/10.1002/anie.201504847
3. Geissner, A.; Pereira, C. L.; Leddermann, M.; Anish, C.; Seeberger, P. H. ACS Chem. Biol. 2016, 11, 335-344. https://doi.org/10.1021/acschembio.5b00768
4. Yang, F. L.; Liao, P. C.; Chou, J. C.; Tsai, K. C.; Sheu, F.; Lin, T. L.; Hsieh, P. F.; Wang, J. T.; Hua, K. F.; Wu, S. H. J. Biol. Chem. 2011, 286, 21041-21051. https://doi.org/10.1074/jbc.M111.222091
5. Kenyon, J. J.; Marzaioli, A. M.; Hall, R. M.; De Castro, C. Glycobiology 2014, 24, 554-563. https://doi.org/10.1093/glycob/cwu024
6. Kenyon, J. J.; Speciale, I.; Hall, R. M.; De Castro, C. Carbohydr. Res. 2016, 434, 12-17. https://doi.org/10.1016/j.carres.2016.07.016
7. Baumann, H.; Tzianabos, A. O.; Mallory, B. C.; Carey, V. J.; Kasper, D. L.; Jennings, H. J. Biochemistry, 1992, 31, 4081-4089. https://doi.org/10.1021/bi00131a026
8. Schäffer, C.; Messner, P. Microbiol. 2005, 151, 643-651. https://doi.org/10.1099/mic.0.27749-0
9. Sleytr, U. B.; Schuster, B.; Egelseer, E. M.; Pum, D. FEMS Microbiol. Rev. 2014, 38, 823-864. https://doi.org/10.1111/1574-6976.12063
10. Sychanta, D.; Chapman, R. N.; Bamford, N. C.; Boons, G.-J.; Howell, P.L.; Clarke, A. J. Biochemistry 2018, 57, 1949-1953. https://doi.org/10.1021/acs.biochem.8b00060
11. Chapman, R. N.; Liu, L.; Boons, G.-J. J. Am. Chem. Soc. 2018, 140, 17079-17085. https://doi.org/10.1021/jacs.8b08857
12. Mesnage, S.; Fontaine, T.; Mignot, T.; Delepierre, M.; Mock, M.; Fouet, A. EMBO J. 2000, 19, 4473-4484. https://doi.org/10.1093/emboj/19.17.4473
13. Forsberg, L. S.; Choudhury, B.; Leoff, C.; Marston, C. K.; Hoffmaster, A. R.; Saile, E.; Quinn; C. P.; Kannenberg, E. L.; Carlson, R. W. Glycobiology, 2011, 21, 934-948. https://doi.org/10.1093/glycob/cwr026
14. Schäffer, C.; Müller, N.; Mandal, P. K.; Christian, R.; Zayni, S.; Messner, P. Glycoconj. J. 2000, 17, 681-690. https://doi.org/10.1023/A:1011062302889
15. Ilk, N.; Kosma, P.; Puchberger, M.; Egelseer, E. M.; Mayer, H. F.; Sleytr, U. B.; Sára, M. J. Bacteriol. 1999, 181, 7643-7646. https://doi.org/10.1128/JB.181.24.7643-7646.1999
16. Blackler, R.; López-Guzmán, A., Hager, F. F.; Janesch, B.; Martinz, G.; Gagnon, S. M. L.; Haji-Ghassemi, O.; Kosma, P.; Messner, P.; Schäffer, C.; Evans, S. V. Nat. Commun. 2018, 9, 3120.
17. Arihara, R., Kakita, K., Yamada, K., Nakamura, S., Hashimoto, S. J. Org. Chem. 2015, 80, 4278-4288.
https://doi.org/10.1021/jacs.5b00139

18. Gagarinov, I. A.; Fang, T.; Liu, L.; Srivastava, A. D.; Boons, G.-J. Org. Lett. 2015, 17, 928-931.
https://doi.org/10.1021/acs.orglett.5b0031

19. Classon, B.; Garegg, P. J.; Oscarson, S.; Tiden, A. K.; Carbohydr. Res. 1992, 216, 187-196.
https://doi.org/10.1016/0008-6215(92)84161-K

20. Gridley, J. J.; Osborn, H. M. I. J. Chem. Soc. Perkin Trans 1, 2000, 1471-1491.
https://doi.org/10.1039/a909165c

21. Kunz, H.; Günther, W. Angew. Chem. 1988, 100, 1118-1119.
https://doi.org/10.1002/ange.19881000822

22. David, S.; Malleron, A.; Dini, C. Carbohydr. Res. 1989, 188, 193-200.
https://doi.org/10.1016/0008-6215(89)84070-4

23. Van Dorst, J. A. L. M.; Voskamp, A. F.; Kamerling, J. P.; Vliegenthart, J. F. G. Liebigs Ann. Chem. 1997, 1227-1233.

24. Ogawa, S.; Hirai, K.; Odagiri, T.; Matsunaga, N.; Yamazaki, T.; Nakajima, A. Eur. J. Org. Chem. 1998, 1099-1109.
https://doi.org/10.1002/(SICI)1099-0690(199806)1998:6<1099::AID-EJOC1099>3.0.CO;2-R

25. Cromer, R.; Spohr, U.; Khare, D. P.; LePendu, J.; Lemieux, R. U. Can. J. Chem. 1992, 70, 1511-1522.
https://doi.org/10.1139/v92-187

26. Yang, Z.; Lin, W.; Yu, B. Carbohydr. Res. 2000, 329, 879-884.
https://doi.org/10.1016/S0008-6215(00)00242-1

27. Basu, N.; Maity, S. K.; Roy, S.; Singha, S.; Ghosh, R. Carbohydr. Res. 2011, 346, 534-539.
https://doi.org/10.1016/j.carres.2011.01.003

28. Sveshnikov, N. N.; Nelson, J. H. Magn. Res. Chem. 1997, 35, 209-212.
https://doi.org/10.1002/(SICI)1099-458X(199703)35:3<209::AID-OMR40>3.0.CO;2-6

29. Charette, A. B.; Grenon, M. Can. J. Chem. 2001, 79, 1694-1703.
https://doi.org/10.1139/v01-150

30. Tona, V.; Maryasin, B.; de la Torre, A.; Sprachmann, J.; González, L.; Maulide, N. Org. Lett. 2017, 19, 2662-2665.
https://doi.org/10.1021/acs.orglett.7b01004

31. Kaiser, D.; Maulide, N. J. Org. Chem. 2016, 81, 4421-4428.
https://doi.org/10.1021/acs.joc.6b00675

32. Trattnig, N.; Blaukopf, M.; Bruxelle, J.-F.; Pantophlet, R.; Kosma, P. J. Am. Chem. Soc. 2019, 141, 7946-7954.
https://doi.org/10.1021/jacs.9b02872

33. Cai, Y.; Ling, C.-C.; Bundle, D. R. J. Org. Chem. 2009, 74, 580-589.
https://doi.org/10.1021/jo801927k

34. Lehnhoff, S.; Ugi, I. Heterocycles 1995, 40, 801-808.
https://doi.org/10.3987/COM-94-S69

35. Ziegler, T.; Eckhardt, E.; Herold, G. Tetrahedron Lett. 1992, 33, 4413-4416.
https://doi.org/10.1016/S0040-4039(00)60097-7

36. Schüle, G.; Ziegler, T. Liebig's Ann. 1996, 1599-1607.
https://doi.org/10.1002/jlac.199619961016
37. Garegg, P. J.; Jansson, P. E.; Lindberg, B.; Lindh, F.; Lööngren, J.; Kvarnström, I.; Nimmich, W. *Carbohydr. Res.* **1980**, *78*, 127.
https://doi.org/10.1016/S0008-6215(00)83666-6

38. Jansson, P. E.; Lindberg, J.; Widmalm, G. *Acta Chem. Scand.* **1993**, *47*, 711-715.
https://doi.org/10.3891/acta.chem.scand.47-0711

39. Takano, T.; Harada, Y.; Nakatsubo, F.; Koji, M. *Cell. Chem. Technol.* **1990**, *24*, 333-341.
https://doi.org/10.1016/0008-6215(90)80036-3

This paper is an open access article distributed under the terms of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)