Electron trap liberation in MgF2 doped with Yb2+ using a two-color excitation experiment

P. S. Senanayake, J.-P. R. Wells, M. F. Reid, G. Berden, A. Meijerink et al.

Citation: Appl. Phys. Lett. 100, 041902 (2012); doi: 10.1063/1.3678630
View online: http://dx.doi.org/10.1063/1.3678630
View Table of Contents: http://apl.aip.org/resource/1/APPLAB/v100/i4
Published by the American Institute of Physics.

Related Articles
Investigation of defect levels in Cs2Hg6S7 single crystals by photoconductivity and photoluminescence spectroscopies
J. Appl. Phys. 112, 063702 (2012)
Flat bands near Fermi level of topological line defects on graphite
Appl. Phys. Lett. 101, 113113 (2012)
Praseodymium valence determination in Lu2SiO5, Y2SiO5, and Lu3Al5O12 scintillators by x-ray absorption spectroscopy
Appl. Phys. Lett. 101, 101902 (2012)
Temperature dependent recombination dynamics in InP/ZnS colloidal nanocrystals
Appl. Phys. Lett. 101, 091910 (2012)
Intrinsic defect in BiNbO4: A density functional theory study
J. Appl. Phys. 112, 043706 (2012)

Additional information on Appl. Phys. Lett.
Journal Homepage: http://apl.aip.org/
Journal Information: http://apl.aip.org/about/about_the_journal
Top downloads: http://apl.aip.org/features/most_downloaded
Information for Authors: http://apl.aip.org/authors

ADVERTISEMENT

HAVE YOU HEARD?
Employers hiring scientists and engineers trust
physicstodayJOBS
http://careers.physicstoday.org/post.cfm
Electron trap liberation in MgF$_2$ doped with Yb$^{2+}$ using a two-color excitation experiment

P. S. Senanayake, J.-P. R. Wells, M. F. Reid, G. Berden, A. Meijerink, and R. J. Reeves

1Department of Physics and Astronomy, University of Canterbury, PB4800, Christchurch 8020, New Zealand
2Department of Physics and Astronomy and MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, PB 4800, Christchurch 8140, New Zealand
3FELIX Free-Electron Laser Facility, FOM Institute for Plasmaphysics “Rijnhuizen,” P.O. Box 1207, 3430 BE Nieuwegein, The Netherlands
4Debye Institute for NanoMaterials Science, University of Utrecht, P.O. Box 80000, TA 3500 Utrecht, The Netherlands

(Received 30 October 2011; accepted 4 January 2012; published online 24 January 2012)

We utilize the optical transitions of Yb$^{2+}$ excited by an ultraviolet optical parametric amplifier to probe electron trap liberation in MgF$_2$ via the observation of a photoluminescence enhancement effect induced by a subsequent infrared pulse from a free-electron laser. The temperature dependence of the enhancement suggests that we liberate very shallow traps having a depth of approximately 17 cm$^{-1}$. The observed “trap spectrum” is consistent with a simple model of a Coulomb trap. © 2012 American Institute of Physics. [doi:10.1063/1.3678630]

The interconfigurational $f \rightarrow d$ transitions of both trivalent and divalent lanthanide ions have attracted extensive interest over recent years as increasing availability of high energy light sources have made comprehensive investigations of the energy-level structure of the excited configuration more readily practicable. These investigations are most often driven by possible applications in tunable ultraviolet (UV) lasers or efficient mercury-free lighting.

A complicating feature of the emission spectra obtained from some lanthanide-doped materials is the presence of impurity-trapped excitons (ITE) which form the lowest-energy emitting state under certain conditions. The ITE consists of a hole localized on the lanthanide ion and an electron delocalized on the neighboring metal cations. The ITE emission is typically by a significant red shift and broadening relative to the absorption, as well as long (up to tens of milliseconds) lifetimes.ITE emission (often termed “anomalous” emission) is most commonly observed for divalent lanthanides ($\text{Eu}^{2+}$ and $\text{Yb}^{2+}$).

We have recently demonstrated that it is possible to study in detail the energy level structure of ITE in CaF$_2$:Yb$^{2+}$ using a two-color transient photoluminescence enhancement technique which is similar to that reported earlier. Our technique uses short-pulsed UV excitation of the interconfigurational $f \rightarrow d$ transitions with subsequent formation of the ITE. The pulsed infrared (IR) output of a free-electron laser (FEL) is spatially overlapped with the UV beam and given a short temporal delay relative to the lifetime of the ITE emitting state(s), i.e., around 100 $\mu$s. As the FEL wavelength is widely tunable we may scan through any intra-excitonic transitions in a given wavelength region. When the FEL is resonant with an ITE transition an increase in the luminescence intensity is observed at the time delay given to the FEL pulse. This occurs because the first excited exciton level (at 40 cm$^{-1}$) has a shorter radiative lifetime than the lowest emitting level. Thus, whenever we populate high-lying exciton states, non-radiative relaxation leads to a significant population in the first excited level yielding an increase in the emission on a timescale associated with the overall lifetime of the first excited state. In those experiments IR enhancement was also observed that decayed with the radiative lifetime of the lowest ITE state. This was interpreted as liberation of electrons from shallow traps that were subsequently captured at the lanthanide sites.

Here we report results for MgF$_2$ crystals doped with divalent ytterbium. The luminescent properties of MgF$_2$:Yb$^{2+}$ have been reported previously. In MgF$_2$, divalent ytterbium occupies the Mg$^{2+}$ site, which is six-coordinate and has $D_{3h}$ point group symmetry. Characteristic $f \rightarrow d$ absorption and emission appears to have been observed although it has been suggested that this system could exhibit ITE emission. That the observed emission has its origin in $d \rightarrow f$ transitions is fairly strongly supported by the fact that the red shift between the lowest energy absorption peaks and the emission is small and that vibronic structure is observed. This is most certainly not the case in the Yb$^{2+}$ doped CaF$_2$ and SrF$_2$ systems.

The experiments described here employed highly polished crystals cut from the same boule as those used in the earlier study of Lizzo. They contained 0.6 mol% of ytterbium and were grown using the Bridgman technique in a reducing atmosphere. 335 nm excitation was provided by a Quantronix TOPAS traveling wave optical parametric amplifier (OPA) having a repetition rate of 1 kHz and a pulse length of 3 ps. The Dutch free-electron laser (FELIX) in Nieuwegein was used to excite the samples in the infrared. The output of FELIX consists of a 6 $\mu$s long macropulse with a repetition rate of 10 Hz in the experiments performed here. The IR radiation was tuned between 5 and 25 $\mu$m. The two lasers were synchronized and have an electronically variable delay, which was limited to less than one millisecond due to the repetition rate of the OPA. The two beams were spatially
overlapped on the sample with a spot size of close to 100 μm. The resultant fluorescence was collected using a TRIAX 320 spectrometer and detected with an RCA C31034 photomultiplier tube.

Figure 1(a) shows the 10 K photoluminescence decay of MgF₂:Yb⁺⁺ under UV excitation of the f→d interconfigurational transitions at a wavelength of 335 nm, through the direct excitation of the E band of Lizzo.⁶ Emission is monitored at 475 nm, which is the peak of the emission band. This underlying transient is well approximated by a single exponential decay having a decay time of 7.5 ms and is entirely consistent with the findings of Ref. 6. The increase in photoluminescence observed at a time delay of 150 μs arises from the application of an infrared pulse from the FEL. The IR wavelength used was 750 cm⁻¹ (13.3 μm), and no IR pulse was applied in the preceding UV excitation period. It can be seen that the application of the IR pulse induces an increase in the emission detected from the sample of up to 8% and that the enhanced emission component decays with the same characteristic lifetime that is observed in the absence of the IR excitation. This suggests that the enhanced emission arises from the same emitting state and is therefore quite unlike that observed for the ITE emission in CaF₂:Yb⁺⁺ for example. We have also varied the time delay between the excitation pulses from 40 to 600 μs and have found no variation in the temporal characteristics.

Figure 1(b) shows the temporal evolution of the emission spectrum under the application of both the UV and IR pulses with a shorter time delay of 50 μs between them. There is signal preceding the arrival of the UV pulse at t = 0 because the lifetime of the Yb⁺⁺ emission exceeds the repetition rate of UV laser. What is immediately obvious is that there is no spectral shift observed in the spectrum upon the arrival of the IR pulse. Again, this is in contrast to the spectral behavior of the ITE photoluminescence enhancement (Ref. 3, Fig. 1(b)) where emission from different states with substantially different bond lengths yields considerable spectral shifts under IR excitation and therefore the available population of emitters is shifted around in both the time and spectral domains. Thus it seems reasonable to conclude that the observed emission spectrum from MgF₂:Yb⁺⁺ is indeed d→f emission, as suggested in Ref. 6.

We observe that for a given IR fluence the fractional enhancement of the signal does not depend on the UV excitation density up to 14 GW/cm², the maximum available from the UV source. However, the fractional enhancement increases with IR excitation density, and there is clear evidence of the onset of saturation, as is shown in Fig. 2(a).
This is accompanied by an increasing rise-time observed on the transient photoluminescence enhancement itself (Fig. 2(b)). The low-power rise-time essentially matches the macropulse length of 6 μs, i.e., it is instrument limited. However, at the highest powers we observe rise-times as long as 21 μs.

The origin of the photoluminescence enhancement can most likely be attributed to the IR pulse liberating electron traps, which become populated upon application of the UV pulse through photoionization into the conduction band. In effect, the IR pulse at least partially reverses the cycle and the liberated electrons relax back into the Yb²⁺ d shell. Therefore, the IR pulse increases the total available population of emitters, and an enhancement of the emission intensity can be observed. This interpretation explains several observations. In particular, the observed saturation of the transient enhancement under increasing IR excitation which can be explained as the available shallow trap states being depleted. Further the increasing rise-time observed is likely associated with electrons occupying high-mobility states within the conduction band and reflects the lifetime of the free carrier. The constant fractional enhancement with UV excitation power density shows that at least up to 14 GW/cm² we are not yet saturating the empty traps available to receive the photoionized electrons.

Production of traps in MgF₂ by high-energy ionizing radiation or UV excitation has been previously studied.⁷,⁸ Many of these traps have excited states lying just below the conduction band. For example, the F center excited state is 565 cm⁻¹ below the conduction band⁷ and is an efficient intrinsic electron trap. One can estimate the depth of the traps we are observing using the temperature dependence of the signal. It is found that the enhancement effect diminishes in amplitude extremely quickly as the sample temperature increases above 10 K and is no longer detectable above a temperature of 20 K. This occurs due to thermal escape of electrons and we determine a trap depth of approximately 17 cm⁻¹.

Figure 3 shows the spectral dependence of the transient enhancement. The signal has been integrated over time, and the underlying luminescence from the UV excitation alone subtracted. The spectrum is essentially flat between 400 and 1100 cm⁻¹ whilst the apparent drop in signal at higher energies matches very well the FEL power, which reduces at shorter wavelengths for the laser settings used in this experiment. A simple model of a Coulomb or delta trap⁹ with a trap depth of 17 cm⁻¹ is consistent with our observed spectral response, since in this experiment the excitation energy is in the essentially flat high-energy tail.

In summary, we have observed trap liberation in MgF₂:Yb²⁺ in a two-color excitation experiment that uses infrared pulses to liberate trapped electrons subsequent to excitation of Yb²⁺ at 335 nm. A risetime can be observed on the induced signal which is as long as 21 μs for high infrared excitation densities and the magnitude of the effect appears to saturate. The trap-liberation spectrum is essentially flat over the wavelength range studied and this is consistent with the observed temperature dependence of the effect from which we derive a trap depth of 17 cm⁻¹ under the assumption of a Coulomb trap model. This value is quite different from CaF₂ and SrF₂ (Refs. 3 and 4) which have trap depths around 400 cm⁻¹. However MgF₂ has the rutile structure and is, therefore, fundamentally different from both CaF₂ and SrF₂.

The authors acknowledge support from the Marsden fund of the Royal Society of New Zealand under contract (No. 09-UOC-080). We thank the Dutch FOM organization for providing the required FELIX beamtime and the FELIX staff for their assistance. P.S.S. acknowledges support from the University of Canterbury.

⁷P. Dorenbos, J. Phys. Condens. Matter 15, 575 (2003).
⁸P. Dorenbos, J. Phys. Condens. Matter 15, 2645 (2003).
⁹M. F. Reid, P. S. Senanayake, J.-P. R. Wells, G. Berden, A. Meijerink, A. Salkeld, C.-K. Duan, and R. J. Reeves, Phys. Rev. B. 84, 113110 (2011).
¹⁰P. S. Senanayake, J.-P. R. Wells, M. F. Reid, G. Berden, A. Meijerink, and R. J. Reeves, “Impurity-trapped excitons and electron traps in CaF₂:Yb and SrF₂:Yb probed by transient photoluminescence enhancement,” J. Lumin. (in press).
¹¹M. Forcales, T. Gregorkiewicz, I. V. Bradley, and J.-P. R. Wells, Phys. Rev. B. 65, 195208 (2002).
¹²S. Lizzo, A. Meijerink, G. J. Dirksen, and G. Blasse, J. Lumin. 63, 223 (1995).
¹³G. P. Summers, J. Phys. C: Solid State Phys. 8, 3621 (1975).
¹⁴A. P. Sergeev and P. B. Sergeev, Quantum Electron. 38, 251 (2008).
¹⁵T. Gregorkiewicz, D. T. X. Thao, and J. M. Langer, Appl. Phys. Lett. 75, 4121 (1999).