In the last 20 years, a stream of research emerged under the label of “complex problem solving” (CPS; see e.g., the two editions from Frensch and Funke, 1995 and Sternberg and Frensch, 1991). This research was intended to describe the way people deal with complex, dynamic, and intransparent situations. One of the promoters of this field, Dietrich Dörner from Bamberg University, proposed to use complex computer-simulated scenarios as stimulus material in psychological experiments (see e.g., Brehmer and Dörner, 1993). This line of research lead to subtle insights into the way how people deal with complexity and uncertainty (see Dörner, 1997; Osman, 2010).

Besides knowledge-rich, realistic, intransparent, complex, dynamic scenarios with many variables, a second line of research used more simple, knowledge-lean scenarios with a low number of variables (“minimal complex systems,” MCS) that have been proposed recently in problem-solving research for the purpose of educational assessment (see Greiff et al., 2012). In both cases, the idea behind the use of microworlds is to increase validity of problem solving tasks by presenting interactive environments that can be explored and controlled by participants while pursuing certain action goals.

The construction principles behind the minimal complex systems follow certain formalisms like linear structural equations or finite state automata (both described in Funke, 2001). Subjects have to first explore such systems (they have to understand the causal relations between input and output variables) and then use the acquired causal knowledge to control the given system in order to reach given goal values.

The main argument presented here is: both types of systems—CPS and MCS—can only be dealt with successfully if causal dependencies between input and output variables are identified and used for system control. System knowledge is necessary for control and intervention. But CPS and MCS differ in their way of how causal dependencies are identified and how the mental model is constructed; therefore, they cannot be compared directly to each other with respect to the cognitive processes that are necessary for solving the tasks.

The argument in more detail: In case of the more simple MCS problems, a complete causal analysis of the system under scrutiny can be done in short time (e.g., in 3 min). Typically, the acquired causal knowledge is assessed via a causal diagram that has to be drawn by the participant (Bleich and Funke, 2006). In case of the more complex CPS systems, time is not enough to run a complete causal analysis of the given scenario because of its complexity. Normally, causal knowledge about the CPS system is not assessed (there are exceptions: e.g., Wittmann and Süss, 1999). Instead, the use of heuristics and the use of causal knowledge derived from previous everyday experience are necessary for constructing a causal model.

So, the role of causal cognition is different in both types of problems. In the simpler knowledge-lean systems, systematic causal analysis is the main task during exploration; no reliance upon previous knowledge (except from strategic knowledge) is recommended. A detailed point-by-point analysis is needed, domain knowledge is not important at all (instructions sometimes warn to rely on such knowledge). In the more complex knowledge-rich systems, a precise causal analysis through systematically controlled exploration is nearly impossible; instead, reliance upon previous content knowledge is highly important.

In the next section, I will contrast the two approaches by describing the role of causal analyses for a problem-solver who has to handle either the task of carefully analyzing systems from the MCS type or systems from the CPS type.

MCS: Problem Situations that Could be Understood Completely by Precise Causal Analyses

Problems that could be understood completely by a precise causal analysis need to consist of a small set of input and output variables. Otherwise, constraints of working memory and of time for analysis would make such a complete analysis impossible. For problem-solving research within educational contexts, Greiff et al. (2012) proposed the use of MicroDYN items according to the formalisms of linear structural equations (see Funke, 2001) that could be analyzed within 5 min testing time. A typical MicroDYN example containing all possible types of effects between input and output variables is shown in Figure 1.

The task for the subject is twofold: first, to explore the system by manipulating the input variables and observing the effects of this manipulation on the output variables;
FIGURE 1 | A typical MicroDYN item as an example for a more simple system with different kinds of effects. For the selected sets of endogenous and exogenous variables any cover story is possible (from Graiff et al., 2012, p. 192).
and uncertainty. Strohschneider and Güss (1999) compared students from India and Germany while working on the complex scenario “MORO.” Subjects in this scenario had to take the role of a developmental aide and to improve the living conditions of the Moro tribe sustainably over a period of 20 (simulated) years. In their conclusions about the detected cultural differences, Strohschneider and Güss (1999, p. 250) state: “We thus explain the problem-solving differences by differences in strategic (or heuristic) expertise, and we argue that these differences in expertise are due to a number of specific characteristics of the cultural learning environment.”

On a more theoretical level, Medin et al. (2014; see also Medin and Atran, 2004) argue that cognition occurs in “cultural ecosystems”—it would be interesting to learn if even abstract MCS tasks would be conceptualized differently in different cultures. For CPS tasks, this happens for sure. Strohschneider and Güss (1998, p. 713), for example, observed differences in planning and problem-solving styles between German and Brazilian students with the MCS simulation “Coldstorage” that can be interpreted as “effects of different sociocultural conditions, such as accountability of the environment, value systems, and objective planning necessities.”

All organisms that have intentions and follow goals will, at some point in time, face problems in reaching them. For solving these problems, the obstacles between given and goal state need to be removed, and this presupposes causal cognition. Causal cognition (in the sense of understanding of causal relationships between input and output variables of dynamic systems) lies at the heart of problem solving when dynamic problems require the manipulation of exogenous variables in order to reach certain goal values in the endogenous variables.

When it comes to complex and knowledge-rich problems the use of heuristic decision rules is necessary; more important: the role of general world knowledge and of specific domain knowledge increases strongly. Therefore, cultural differences (Güss and Robinson, 2014) and cultural ecosystems (Medin et al., 2014) will become more visible when dealing with complex problems.

ACKNOWLEDGMENTS
This research was supported by a grant from the German Research Foundation (DFG Fu 173/14-2) to the author. Thanks to Andreas Fischer, Daniel Holt, and the two reviewers for their helpful comments.

REFERENCES
Blech, C., and Funke, J. (2006). Zur Reaktivität von Kausaldiagramm-Analysen beim komplexen Problemlosen [On the reactivity of causal diagram analyses in complex problem solving research]. Z. Psychol. 214, 185–195. doi: 10.1026/0044-3409.214.4.185
Brehmer, B., and Dörner, D. (1993). Experiments with computer-simulated microworlds: escaping both the narrow straits of the laboratory and the deep blue sea of the field study. Comput. Hum. Behav. 9, 171–184. doi: 10.1016/0747-5632(93)90005-D
Danner, D., Hagemann, D., Holt, D. V., Hager, M., Schankin, A., Wüstenberg, S., et al. (2011). Measuring performance in dynamic decision making. Reliability and validity of the Tailorshop simulation. J. Individ. Diff. 32, 225–233. doi: 10.1027/1614-0001/a000055
Dörner, D. (1997). The Logic of Failure: Recognizing and Avoiding Error in Complex Situations. New York, NY: Basic Books.
Fischer, A., Greiff, S., and Funke, J. (2012). The process of solving complex problems. J. Probl. Solving 4, 19–42. doi: 10.7771/1932-6246.4118
Frensch, P. A., and Funke, J. (eds.). (1995). Complex Problem Solving: The European Perspective. Hillsdale, NJ: Erlbaum.
Funke, J. (2001). Dynamic systems as tools for analysing human judgement. Think. Reason. 7, 69–89. doi: 10.1080/13546780042000046
Greiff, S., Wüstenberg, S., and Funke, J. (2012). Dynamic problem solving: a new assessment perspective. Appl. Psychol. Meas. 36, 189–213. doi: 10.1177/0146211612439620
Güss, C. D., and Robinson, B. (2014). Predicted causality in decision making: the role of culture. Front. Psychol. 5:479. doi: 10.3389/fpsyg.2014.00479
Medin, D. L., and Atran, S. (2004). The native mind: biological categorization and reasoning in development and across cultures. Psychol. Rev. 111, 960–983. doi: 10.1037/0033-295X.111.4.960
Medin, D. L., Ojalehto, B., Marin, A., and Bang, M. (2014). “Culture and epistemologies: putting culture back into the ecosystem,” in Advances in Culture and Psychology, Vol. 4, eds M. J. Gelfand, C.-Y. Chiu, and Y.-Y. Hong (New York, NY: Oxford University Press), 177–217.
Osman, M. (2010). Controlling uncertainty: a review of human behavior in complex dynamic environments. Psychol. Bull. 136, 65–86. doi: 10.1037/a0017815
Sternberg, R. J., and Frensch, P. A. (eds.). (1999). Complex Problem Solving: Principles and Mechanisms. Hillsdale, NJ: Erlbaum.
Strohschneider, S., and Güss, C. D. (1998). Planning and problem solving; differences between Brazilian and German students. J. Cross. Cult. Psychol. 29, 695–716. doi: 10.1177/0022022198296002
Strohschneider, S., and Güss, C. D. (1999). The fate of the Moros: a cross-cultural exploration of strategies in complex and dynamic decision making. Int. J. Psychol. 34, 235–252. doi: 10.1080/0207599993998873
Tschirgi, J. E. (1980). Sensible reasoning: a hypothesis about hypotheses. Child Dev. 51, 1–10. doi: 10.2307/1129583
Wittmann, W. W., and Süß, H.-M. (1999). “Investigating the paths between working memory, intelligence, knowledge, and complex-problem performances via Brunswik symmetry” in Learning and Individual Differences, eds P. L. Ackerman, P. C. Kyllonen, and R. D. Roberts (Washington, DC: American Psychological Association), 77–102. doi: 10.1037/10315-004

Conflict of Interest Statement: The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 23 May 2014; accepted: 25 June 2014; published online: 16 July 2014.

Citation: Funke J (2014) Analysis of minimal complex systems and complex problem solving require different forms of causal cognition. Front. Psychol. 5:739. doi: 10.3389/fpsyg.2014.00739

This article was submitted to Cognitive Science, a section of the journal Frontiers in Psychology.

Copyright © 2014 Funke. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.