Research Article

Sufficient Conditions for Graphs to Be k-Connected, Maximally Connected, and Super-Connected

Zhen-Mu Hong, Zheng-Jiang Xia, Fuyuan Chen, and Lutz Volkmann

1School of Finance, Anhui University of Finance & Economics, Bengbu 233030, China
2Institute of Statistics and Applied Mathematics, Anhui University of Finance & Economics, Bengbu 233030, China
3Lehrstuhl II für Mathematik, RWTH Aachen University, Aachen 52056, Germany

Correspondence should be addressed to Zhen-Mu Hong; zmhong@mail.ustc.edu.cn

Received 7 January 2021; Revised 24 January 2021; Accepted 27 January 2021; Published 22 February 2021

Copyright © 2021 Zhen-Mu Hong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Let G be a connected graph with minimum degree $\delta(G)$ and vertex-connectivity $\kappa(G)$. The graph G is k-connected if $\kappa(G) \geq k$, maximally connected if $\kappa(G) = \delta(G)$, and super-connected if every minimum vertex-cut isolates a vertex of minimum degree. In this paper, we present sufficient conditions for a graph with given minimum degree to be k-connected, maximally connected, or super-connected in terms of the number of edges, the spectral radius of the graph, and its complement, respectively. Analogous results for triangle-free graphs with given minimum degree to be k-connected, maximally connected, or super-connected are also presented.

1. Introduction

Let $G = (V, E)$ be a simple connected undirected graph, where $V = V(G)$ is the vertex-set of G and $E = E(G)$ is the edge-set of G. The order and size of G are defined by $n = |V(G)|$ and $m = |E(G)|$, respectively; $d_G(x)$ is the degree of a vertex x in G, that is, the number of edges incident with x in G; $\delta(G) = \min\{d_G(x) : x \in V(G)\}$ is the minimum degree of G. For a subset $X \subseteq V(G)$, use $G[X]$ to denote the subgraph of G induced by X. For two subsets X and Y of $V(G)$, let $[X, Y]$ be the set of edges between X and Y. The complement of G is denoted by \overline{G}. Let $G_1 \cup G_2$ denote the disjoint union of graphs G_1 and G_2, and let $G_1 \vee G_2$ denote the graph obtained from $G_1 \cup G_2$ by joining each vertex of G_1 to each vertex of G_2. The graph G is called a triangle-free graph if G contains no triangle. Denote by $\rho(G)$ the largest eigenvalue or the spectral radius of the adjacency matrix of G and it is called the spectral radius of G. If G is connected, then, by Perron-Frobenius Theorem, $\rho(G)$ is simple and there exists a unique (up to a multiple) corresponding positive eigenvector.

A vertex-cut of a connected graph G is a set of vertices whose removal disconnects G. The vertex-connectivity or simply the connectivity $\kappa = \kappa(G)$ of a connected graph G is the minimum cardinality of a vertex-cut of G if G is not complete, and $\kappa(G) = n - 1$ if G is the complete graph K_n of order n. A vertex-cut S is a minimum vertex-cut or a k-cut of G if $|S| = \kappa(G)$. Apparently, $\kappa(G) \leq \delta(G)$ for any graph G. The graph G is k-connected if $\kappa(G) \geq k$, maximally connected if $\kappa(G) = \delta(G)$, and super-connected (or super-κ) if every minimum vertex-cut isolates a vertex of minimum degree. Hence, every super-connected graph is also maximally connected. An edge-cut of a connected graph G is a set of edges whose removal disconnects G. The edge connectivity $\lambda = \lambda(G)$ of a connected graph G is defined as the minimum cardinality of an edge-cut over all edge-cuts of G. An edge-cut S is a minimum edge-cut if $|S| = \lambda(G)$. The inequality $\lambda(G) \leq \delta(G)$ is obvious. The graph G is maximally edge-connected if $\lambda(G) = \delta(G)$, and it is super-edge-connected if every minimum edge-cut consists of edges incident with a vertex of minimum degree. Therefore, every super-edge-connected graph is also maximally edge-connected. For graph-theoretical terminology and notation not defined here, one can refer to [1, 2].
Sufficient conditions for graphs to be maximally (edge-) connected or super-(edge-) connected were given by several authors, depending on the order, the maximum and minimum degree, the diameter, the girth, the degree sequence, the clique number and so on. The paper in [3] by Hellwig and Volkmann gives a survey on this topic. Recently, Volkmann and Hong [4] proved that a connected graph or a connected triangle-free graph is maximally edge-connected or super-edge-connected if the number of edges is large enough, and the results corresponding to triangle-free graphs were generalized to connected graphs with given clique number by Volkmann [5].

On the other hand, the relationship between graph properties and eigenvalues has attracted much attention. Fiedler [6] initiated the research on the relationship between graph connectivity and graph eigenvalues, and Fiedler and Nikiforov [7] initiated the investigation on the spectral radius of the graph, or its complement, respectively. Cioabă [8] investigated the relationship between edge-connectivity and adjacency eigenvalues of regular graphs. From then on, the edge-connectivity problem has been intensively studied by many researchers, such as Duan et al. [9], Gu et al. [10], Liu et al. [11], Liu et al. [12], and Suil O [13]. For vertex-connectivity, Li [14] presented sufficient conditions for a graph to be k-connected using spectral radius and signless Laplacian spectral radius; Feng et al. [15] demonstrated sufficient conditions based on spectral radius for a graph to be k-connected and k-edge-connected; Feng et al. [16] obtained a tight sufficient condition for a connected graph with fixed minimum degree to be k-connected based on its spectral radius, for sufficiently large order. Vertex-connectivity and the second largest adjacency eigenvalue of regular graphs were studied by Abiad et al. [17], Cioabă and Gu [18], O [19], and Zhang [20]. The relationship between vertex-connectivity and adjacency eigenvalues or Laplacian eigenvalues of graphs has been investigated by Hong et al. [21–23] and Liu et al. [24].

Motivated by the researches mentioned above, this paper presents sufficient conditions for a graph with a given minimum degree to be k-connected, maximally connected, or super-connected in terms of the number of edges, the spectral radius of the graph, or its complement, respectively. In addition, we also give sufficient conditions for a triangle-free graph with given minimum degree to be k-connected, maximally connected, or super-connected in terms of the number of edges or its spectral radius, respectively. The results on k-connected graph in this paper improve the result in [16] by Feng et al. to some extent.

The rest of this paper is organized as follows. In Section 2, we present sufficient conditions for a graph with given minimum degree to be k-connected in terms of the number of edges, the spectral radius of the graph, and its complement, respectively. In terms of the same parameters as in Section 2, by setting $k = \delta$, we get sufficient conditions for a graph with given minimum degree to be maximally connected in Section 3, and we obtain sufficient conditions for a graph with given minimum degree to be super-connected in Section 4. In Section 5, sufficient conditions for a triangle-free graph to be k-connected, maximally connected, or super-connected are acquired in terms of the number of edges and the spectral radius of the graph, respectively.

2. k-Connected Graphs

Let G be a connected graph of order n, minimum degree δ, and vertex-connectivity κ. If $n \leq 4$ or $\delta = 1$, then $\kappa = \delta$. If $\delta = n - 1$, then $G = K_n$, and $\kappa = \delta$. If $\delta = n - 2$, then when u and v are nonadjacent, the other $n - 2$ vertices are all common neighbors of u and v. It is necessary to delete all common neighbors of some pair of vertices to separate the graph, so $\kappa \geq n - 2 = \delta$. Therefore, we only need to consider $n \geq 5$ and $2 \leq \delta \leq 3$ in the following.

Theorem 1. Let G be a connected graph of order $n \geq 5$, size m, and minimum degree $\delta \geq k \geq 2$.

(a) If

$$m \geq \frac{1}{2} n(n - 1) - (\delta - k + 2)(n - \delta - 1),$$

then G is k-connected, unless $G = K_{k-1} \vee (K_{\delta-k+2} \cup K_{n-\delta-1})$.

(b) If $n \geq (1/2)(k + 1)(\delta - k + 2) + (\delta + 2)$ and

$$m \geq \frac{1}{2} n(n - 1) - \frac{1}{2} (\delta - k + 2)(2n - 2\delta + k - 3),$$

then G is k-connected, unless G is a subgraph of $K_{k-1} \cup (K_{\delta-k+2} \cup K_{n-\delta-1})$.

Proof. Let $\kappa = \kappa(G)$. On the contrary, suppose that G is not k-connected; that is, $1 \leq \kappa \leq k - 1$. Let S be an arbitrary minimum vertex-cut, and let X_0, X_1, \ldots, X_p ($p \geq 2$), denote the vertex sets of the components of $G - S$, where $|X_0| \leq |X_1| \leq \ldots \leq |X_p|$. Each vertex in X_0 is adjacent to at most $|X_0| - 1$ vertices of X_0 and $\kappa = |S|$ vertices of S. Thus,

$$\delta |X_0| \geq \sum_{x \in X_0} d(x) \geq |X_0|||X_0| + \kappa - 1|,$$

and so $|X_0| \geq \delta - \kappa + 1$. Let $Y = \cup_{i=1}^{p+1} X_i$; then $|Y| = n - \kappa - |X_0|$. Therefore,

$$\delta - \kappa + 1 \leq |X_0| \leq |Y| \leq n - \delta - 1.$$

Since $G - S$ is disconnected, there are no edges between X_0 and Y in G and

$$m \leq \frac{1}{2} n(n - 1) - |X_0| \cdot |Y|.$$

(a) Since we suppose that G is not k-connected, it suffices to prove $G = K_{k-1} \vee (K_{\delta-k+2} \cup K_{n-\delta-1})$. By (4) and $|X_0| + |Y| = n - \kappa$, and since $\kappa \leq k - 1$, we obtain

$$|X_0| \cdot |Y| \geq (\delta - \kappa + 1)(n - \delta - 1) \geq (\delta - k + 2)(n - \delta - 1).$$

Substituting (6) into (5), it follows that
\[m \leq \frac{1}{2} n (n - 1) - (\delta - k + 2)(n - \delta - 1). \] (7)

Combining this with (1), we obtain \(m = (1/2)n(n - 1) - (\delta - k + 2)(n - \delta - 1) \). Hence, all the inequalities in (6) must be equalities and so \(k = k - 1 \), \(|X_0| \geq k - \delta + 2 \), and \(|Y| = n - \delta - 1 \). Thus, \(G \) is obtained from \(K_\kappa \) by deleting all the edges of the complete bipartite subgraph \(K_{|X_0|,|Y|} \) of \(K_\kappa \). That is, \(G[X_0] = K_{k-\delta+2}, G[S] = K_{k-1}, G[Y] = K_{n-\delta-1}, \) and \(G = K_{k-1} \cup (K_{k-\delta+2} \cup K_{n-\delta-1}) \).

(b) To prove that \(G \) is a subgraph of \(K_{k-1} \cup (K_{k-\delta+2} \cup K_{n-\delta-1}) \), we first show that \(|X_0| = \delta - k + 2 \). Suppose that \(|X_0| > \delta - k + 3 \). Since \(|X_0| \leq |Y|, |X_0| + |Y| = n - k \), and \(k \leq k - 1 \), we have

\[|X_0| \cdot |Y| \geq (\delta - k + 3)(n - k - (\delta - k + 3)) \]
\[\geq (\delta - k + 3)(n - \delta - 2). \] (8)

Substituting (8) into (5), it follows that

\[m \leq \frac{1}{2} n (n - 1) - (\delta - k + 3)(n - \delta - 2). \] (9)

Combining this with (2), it is easy to get \(n \leq (1/2)(k + 1)(\delta - k + 2) + (\delta + 2) \). By the hypothesis, we have \(n = (1/2)(k + 1)(\delta - k + 2) + (\delta + 2) \). Hence, \(m = (1/2)n(n - 1) - (\delta - k + 3)(n - \delta - 2) \) and all the inequalities in (8) must be equalities. Thus, \(k = k - 1, |X_0| = \delta - k + 3, |Y| = n - \delta - 2, \) and \(G \) is obtained from \(K_\kappa \) by deleting all the edges of the complete bipartite subgraph \(K_{|X_0|,|Y|} \) of \(K_\kappa \). That is, \(G = K_{k-1} \cup (K_{k-\delta+2} \cup K_{n-\delta-2}) \). However, \(\delta(G) = \delta(K_{k-1} \cup (K_{k-\delta+2} \cup K_{n-\delta-2})) = \delta + 1 > \delta, \) a contradiction. Thus, \(|X_0| \leq \delta - k + 2 \). Combining this with \(|X_0| \geq \delta - k + 1 \geq \delta - k + 2 \), we get \(|X_0| = \delta - k + 2 \). Since \(|S| = k - 1 \) and \(d_G(x) \geq \delta \) for each \(x \in X_0 \), we have that each vertex of \(X_0 \) is adjacent to each vertex of \(S \). Thus, \(G[X_0 \cup S] = K_{k+1} \) and \(G \) is a subgraph of \(K_{k-1} \cup (K_{k-\delta+2} \cup K_{n-\delta-1}) \).

Theorem 2. Let \(G \) be a connected graph of order \(n \) and minimum degree \(\delta \geq k - 2 \). If

\[\rho(G) \geq \rho(K_{k-1} \cup (K_{k-\delta+2} \cup K_{n-\delta-1})), \] (10)

then \(G \) is \(k \)-connected, unless \(G = K_{k-1} \cup (K_{k-\delta+2} \cup K_{n-\delta-1}) \), where \(\rho(K_{k-1} \cup (K_{k-\delta+2} \cup K_{n-\delta-1})) \) is the largest root of the equation

\[\lambda^3 - (n - 3)\lambda^2 + ((\delta - k + 2)(n - \delta - 1) - 2n + 3)\lambda + (\delta - k + 2)(n - \delta - 1)k - n + 1 = 0. \] (11)

Proof. Let \(\kappa = \kappa(G) \). Assume that (10) holds but \(1 \leq \kappa < k - 1 \). Let \(S \) be an arbitrary minimum vertex-cut of \(G \), and let \(X_0, X_1, \ldots, X_{p-1} \) (\(p \geq 2 \)), denote the vertex-sets of the components of \(G - S \), where \(|X_0| \leq |X_1| \leq \cdots \leq |X_{p-1}| \). Each vertex in \(X_i \) is adjacent to at most \(|X_{i-1}| - 1 \) vertices of \(X_i \) and \(\kappa = |S| \) vertices of \(S \). Thus,

\[\delta |X_i| \leq \sum_{x \in X_i} d(x) \leq |X_i|(|X_i| - 1 + \kappa), \] (12)

and so \(|X_i| \geq \delta - k + 1 \) for each \(i = 0, 1, \ldots, p - 1 \). Let \(Y = \bigcup_{i=0}^{p-1} X_i \). Then, \(\delta - k + 1 \leq |X_0| \leq |Y| \leq n - \delta - 1 \) and \(|X_0| + |Y| = n - \kappa \). Since there are no edges between \(X_0 \) and \(Y \) in \(G \), \(G \) is a subgraph of \(K_{\kappa} \cup (K_{|X_0|} \cup K_{|Y|}) \) and \(\rho(G) \leq \rho(K_{\kappa} \cup (K_{|X_0|} \cup K_{|Y|})) \).

Next, we will show

\[\rho(K_{\kappa} \cup (K_{|X_0|} \cup K_{|Y|})) \leq \rho(K_{\kappa} \cup (K_{\delta-k+2} \cup K_{n-\delta-1})) \leq \rho(K_{k-1} \cup (K_{\delta-k+2} \cup K_{n-\delta-1})). \] (13)

Denote \(G(a, b, \kappa) = K_\kappa \cup (K_a \cup K_b) \) for short, where \(b \geq a \geq \delta - k + 1 \) and \(a + b + \kappa = n \). Let \(x = (x_1, x_2, \ldots, x_\ell) \) be the unique positive unit eigenvector corresponding to \(\rho(G(a, b, \kappa)) \). By symmetry, let \(x = x_i \) for any \(i \in K_a \) or \(y = y_j \) for any \(j \in K_b \), \(z = x_j \) for any \(z \in K_\kappa \). According to \(\lambda x = (a - 1)x + \kappa y, \)

\[\lambda y = ax + (\kappa - 1)y + bz, \]
\[\lambda z = \kappa y + (b - 1)z. \] (14)

Thus, \(\rho(G(a, b, \kappa)) \) is the largest root of the equation

\[f(\lambda; a, b, \kappa) = \lambda^3 - (n - 3)\lambda^2 + (ab - 2n + 3)\lambda + ab(\kappa + 1) - n + 1 = 0. \] (15)

Then, we have

\[f(\lambda; a, b, \kappa) - f(\lambda; \delta - k + 1, n - \delta - 1, \kappa) = (\lambda + \kappa + 1)(ab - (\delta - k + 1)(n - \delta - 1)) \geq 0, \] (16)

for any \(\lambda \geq 0 \) and \(b \geq a \geq \delta - k + 1 \). Therefore, \(\rho(G(a, b, \kappa)) \leq \rho(G(\delta - k + 1, n - \delta - 1, \kappa)) \) for any \(b \geq a \geq \delta - k + 1 \), which means that

\[\rho(K_{\kappa} \cup (K_{|X_0|} \cup K_{|Y|})) \leq \rho(K_{\kappa} \cup (K_{\delta-k+2} \cup K_{n-\delta-1})). \] (17)

Since \(K_{\kappa} \cup (K_{|X_0|} \cup K_{|Y|}) \) is a subgraph of \(K_{k-1} \cup (K_{\delta-k+2} \cup K_{n-\delta-1}) \) for any \(\kappa \leq k - 1 \),

\[\rho(K_{\kappa} \cup (K_{|X_0|} \cup K_{|Y|})) \leq \rho(K_{k-1} \cup (K_{\delta-k+2} \cup K_{n-\delta-1})). \] (18)

Hence, from the discussion above, we have

\[\rho(G) \leq \rho(K_{\kappa} \cup (K_{|X_0|} \cup K_{|Y|})) \leq \rho(K_{k-1} \cup (K_{\delta-k+2} \cup K_{n-\delta-1})). \] (19)

By (10), the above inequalities must be equalities. Thus, \(|X_0| \geq \delta - k + 2 \), \(\kappa = k - 1 \), \(|Y| = n - \delta - 1 \), and so \(G = K_{k-1} \cup (K_{\delta-k+2} \cup K_{n-\delta-1}) \). The result follows from (15).
Remark 1. In Corollary 3.5 in [16], the authors showed that if G is a connected graph of minimum degree $\delta(G) \geq \delta > k \geq 3$ and order $n \geq (\delta - k + 2)(k^2 - 2k + 4) + 3$, and $\rho(G) \geq \rho(K_{\delta - k + 3} \cup K_{n - \delta - 1})$, then G is k-connected, unless $G = \rho(K_{\delta - k + 3} \cup K_{n - \delta - 1})$. Apparently, without restriction on the order of graph, Theorem 2 improves Corollary 3.5 in [16].

Theorem 3. Let G be a connected graph of order n and minimum degree $\delta \geq k \geq 3$. If G is a subgraph of $K_{\delta - k + 3} \cup K_{n - \delta - 1}$ and $n \geq (1/2)(\delta - k + 2)(k^2 - 2k + 7)$, then

$$\rho(G) < n - \delta + k - 3,$$

unless $G = K_{\delta - k + 3} \cup K_{n - \delta - 1}$.

Proof. Denote $H = K_{\delta - k + 3} \cup K_{n - \delta - 1}$ for short. Let $x = (x_1, x_2, \ldots, x_n)^T$ be the unique positive unit eigenvector corresponding to $\rho(G)$. Recall that Rayleigh's principle implies that

$$\rho(G) = x^T A(G)x = 2\sum_{ij \in E(G)} x_i x_j.$$

Assume that G is a proper subgraph of H. Clearly, we could assume that G is obtained by omitting just one edge uv of H. Let X, Y, Z be the set of vertices of H of degree δ, $n - 1$, $n - \delta + k - 3$, respectively, where $|X| = \delta - k + 2$, $|Y| = k - 1$, and $|Z| = n - \delta - 1$. Since $\delta(G) = \delta$, G must contain all the edges between X and Y. Therefore, $\{u, v\} \subseteq Y \cup Z$, with three possible cases: (a) $\{u, v\} \subseteq Y$; (b) $u \in Y, v \in Z$; and (c) $\{u, v\} \subseteq Z$. We shall show that case (c) yields a graph whose spectral radius is not smaller than the spectral radius of the graph in case (b) and that case (b) yields a graph whose spectral radius is not smaller than the spectral radius of the graph in case (a).

Firstly, suppose that case (a) occurs; that is, $\{u, v\} \subseteq Y$. Choose a vertex $w \in Z$. If $x_u > x_w$, then by removing the edge uw and adding the edge uv we obtain a new graph G_1 which is covered by case (b). By the Rayleigh principle,

$$\rho(G_1) - \rho(G) \geq x^T A(G_1)x - x^T A(G)x = 2x_u(x_u - x_w) \geq 0.$$

(22)

If $x_w > x_u$, then by removing all the edges between X and $\{u\}$ and adding all the edges between X and $\{w\}$ we obtain a new graph G_1 which is also covered by case (b). By the Rayleigh principle,

$$\rho(G_1) - \rho(G) \geq x^T A(G_1)x - x^T A(G)x = 2(x_w - x_u)\sum_{x \in X} x_i > 0.$$

(23)

Secondly, suppose that case (b) occurs; that is, $u \in Y, v \in Z$. Choose a vertex $w \in Z$ and $w \neq v$. If $x_u \geq x_w$, then by removing the edge uw and adding the edge uv we obtain a new graph G_2 which is covered by case (c). By the Rayleigh principle,

$$\rho(G_2) - \rho(G) \geq x^T A(G_2)x - x^T A(G)x = 2x_u(x_u - x_w) \geq 0.$$

(24)

If $x_w > x_u$, then by removing all the edges between X and $\{u\}$ and adding all the edges between X and $\{w\}$ we obtain a new graph G_2 which is also covered by case (c). By the Rayleigh principle,

$$\rho(G_2) - \rho(G) \geq x^T A(G_2)x - x^T A(G)x = 2(x_w - x_u)\sum_{x \in X} x_i > 0.$$

(25)

Therefore, we could assume that $\{u, v\} \subseteq Z$. By symmetry, let $x = x_i$ for any $i \in X$; $y = x_i$ for any $j \in Y$; $z = x_\ell$ for any $\ell \in Z$, $\{u, v\}$; and $t = x_m = x_w$. According to $2 \geq x_m - (\delta - \delta - 3)z + 2t$,

$$\lambda x = (\delta - k + 1)x + (k - 1)y,$$

$$\lambda y = (\delta - k + 2)y + (n - \delta - 3)z + 2t,$$

$$\lambda z = (k - 1)y + (n - \delta - 3)z.$$

(26)

Thus, $\rho(G)$ is the largest root of the equation

$$f(\lambda) = \lambda^2 - (n - 5)\lambda^3 + ((n - \delta - 1)(\delta - k - 2) - 4\delta + 7)\lambda^2 + [(\delta k + 2\delta + 2)(n - \delta + k - 3) - (k^2 + 3)(n - 1) + 6] \lambda + 2((\delta + k - 1)(k(n - \delta - 2) - 1)) + (k - 1)(n - \delta - 3) = 0.$$

(27)

By some basic calculations, we have

$$f(n - \delta + k - 3) = 2n^2 - (\delta - k + 2)(k^2 - 2k + 7)n + (\delta - k + 2)((\delta - k + 1)(k^2 - 2k + 7)) - (k^2 - 2k + 7).$$

(28)

Set $g(x) = 2x^2 - (\delta - k + 2)(k^2 - 2k + 7)x + (\delta - k + 2)((\delta - k + 1)(k^2 - 2k + 7)) - (k^2 - 2k + 7)$. Since $n \geq (1/2)(\delta - k + 2)(k^2 - 2k + 7) > (1/4)(\delta - k + 2)(k^2 - 2k + 7)$, we get

$$f(n - \delta + k - 3) = g(n) \geq \rho\left(\frac{1}{2}\lambda(\delta - k + 2)(k^2 - 2k + 7)\right)$$

$$= (\delta - k + 2)((\delta - k + 1)(k^2 - 2k + 7)) - (k^2 - 2k + 7) + (\delta - k + 2)((\delta - k + 1)(k^2 - 2k + 7)) - (k^2 - 2k + 7).$$

(29)

By $3 \leq k \leq 3 - n$ and $n \geq (1/2)(\delta - k + 2)(k^2 - 2k + 7)$, we have $n \geq (2)(\delta - k + 3)$ and then

$$\rho(G_2) - \rho(G) \geq x^T A(G_2)x - x^T A(G)x = 2x_u(x_u - x_w) \geq 0.$$

(24)
Complexity

\[f(n - \delta + k - 4) = -n^2 + 4(\delta - k + 3)n^2 \]
\[-((k^2 - 8k + 5\delta + 23)(\delta - k + 2) - 5)n \]
\[+ ((k^2 - 5k + 2\delta + 15)(\delta - k + 2) + 2) \]
\[= -n(n - 2(\delta - k + 3)) \]
\[- (\delta - k + 2)(k - 3) \]
\[- 2(\delta - k + 3)(\delta - k + 2) + 2 \]
\[\leq n(n - 2(\delta - k + 3)) \]
\[- 2(3 \cdot 3 + k - (k - 1)) < 0, \]

(30)

\[f(0) = 2(\delta - k + 1)(n - \delta - 2) - 1 + (k - 1)n(n - \delta - 3) \]
\[\geq 2(k - 1) > 0, \]
\[f(-2) = -2(k - 2)(\delta - k + 2) + 2 < 0, \]
\[f(-\infty) > 0. \]

Therefore, it is easy to find that the largest root of \(f(x) = 0 \) is in the interval \((n - \delta + k - 4, n - \delta - k - 3)\), which yields \(\rho(G) < n - \delta - k - 3 \).

The following lemma gives a sharp upper bound of the spectral radius of connected graphs with given number of edges and minimum degree.

Lemma 1 (see [25]). Let \(G \) be a connected graph with \(n \) vertices and \(m \) edges. Let \(\delta = \delta(G) \) be the minimum degree of \(G \) and let \(\rho(G) \) be the spectral radius of the adjacency matrix of \(G \). Then,

\[\rho(G) \leq \frac{\delta - 1}{2} + \sqrt{2m - \delta n + \frac{(\delta + 1)^2}{4}}. \]

(31)

Equality holds if and only if \(G \) is either a regular graph or a bidegree graph in which each vertex is of degree either \(\delta \) or \(n - 1 \).

Theorem 4. Let \(G \) be a connected graph of order \(n \) and minimum degree \(\delta \geq k \geq 3 \). If \(n \geq (1/2)(\delta - k + 2)(k^2 - 2k + 7) \) and

\[\rho(G) \geq n - \delta + k - 3, \]

(32)

then \(G \) is \(k \)-connected, unless \(G = K_{n-1} \cup (K_{\delta-k+2} \cup K_{n-\delta-1}). \)

Proof. On the contrary, suppose that \(\kappa(G) < k \). Since \(G \) is connected and \(\rho(G) \geq n - \delta + k - 3 \), by Lemma 1, we have

\[n - \delta + k - 3 \leq \rho(G) \leq \frac{\delta - 1}{2} + \sqrt{2E(G) - \delta n + \frac{(\delta + 1)^2}{4}}, \]

(33)

which yields

\[|E(G)| \geq \frac{1}{2}n(n - 1) - \frac{1}{2}(\delta - k + 2)(2n - 2\delta + k - 3). \]

(34)

Since \(n \geq (1/2)(\delta - k + 2)(k^2 - 2k + 7) \), we obtain \(n \geq (1/2)(k + 1)(\delta - k + 2) + (\delta + 2) \). By Theorem 1 (b), \(G \) is a subgraph of \(K_{n-1} \cup K_{\delta-k+2} \cup K_{n-\delta-1} \). Since \(\rho(G) \geq n - \delta + k - 3 \), by Theorem 3, \(G = K_{n-1} \cup (K_{\delta-k+2} \cup K_{n-\delta-1}). \) The proof is completed. \(\square \)

Remark 2. In Theorem 3.4 in [16], the authors proved that if \(G \) is a connected graph of minimum degree \(\delta(G) \geq \delta \geq k \geq 3 \) and order \(n \geq (\delta - k + 2)(k^2 - 2k + 4) + 3 \), and \(\rho(G) \geq n - \delta + k - 3 \), then \(G \) is \(k \)-connected unless \(G = \rho(K_{n-1}) \cup (K_{\delta-k+2} \cup K_{n-\delta-1}) \). Obviously, Theorem 4 improves Theorem 3.4 in [16] from the perspective of the restriction on the order of graph.

Another sufficient condition for graphs to be \(k \)-connected can be obtained by using the spectral radius of the complement of a graph.

Theorem 5. Let \(G \) be a connected graph of order \(n \geq 5 \) and minimum degree \(\delta \geq k \geq 2 \). If

\[\rho(G) \leq \sqrt{(\delta - k + 2)(n - \delta - 1)}, \]

(35)

then \(G \) is \(k \)-connected, unless \(G = K_{n-1} \cup (K_{\delta-k+2} \cup K_{n-\delta-1}). \)

Proof. Let \(\kappa = \kappa(G) \). Assume that (35) holds but \(1 \leq \kappa \leq k - 1 \). Let \(S \) be an arbitrary minimum vertex-cut of \(G \), and let \(X_0, X_1, \ldots, X_{p-1} \), \(p \geq 2 \), denote the vertex-sets of the components of \(G - S \), where \(|X_0| \leq |X_1| \leq \cdots \leq |X_{p-1}| \). Each vertex in \(X_i \) is adjacent to at most \(|X_i| - 1 \) vertices of \(X_i \) and \(\kappa = |S| \) vertices of \(S \). Thus,

\[\delta |X_0| \leq \sum_{x \in X_i} d(x) \leq |X_0|(|X_0| - 1 + \kappa), \]

(36)

and so \(|X_i| \geq \delta - \kappa + 1 \) for each \(i = 0, 1, \ldots, p - 1 \). Let \(Y = \cup_{i=0}^{p-1} X_i \). Then, \(\delta - \kappa + 1 \leq |X_0| \leq |Y| \leq n - \delta - 1 \) and \(|X_0| + |Y| = n - \kappa |. Since there are no edges between \(X_0 \) and \(Y \) in \(G \), \(K_{|X_0|,|Y|} \mid Y \) is a subgraph of \(G \). Thus,

\[\rho(G) \geq \rho(K_{|X_0|,|Y|} \mid Y) \]
\[\geq \sqrt{\delta - k + 1} \]
\[\geq \sqrt{(\delta - k + 1)(n - \delta - 1)} \geq \sqrt{(\delta - k + 2)(n - \delta - 1)}. \]

(37)

By (35), the above inequalities must be equalities. Thus, \(|X_0| = \delta - k + 2 \), \(\kappa = k - 1 \) and \(G = K_{\delta-k+2,n-\delta-1} \), and so \(G = K_{n-1} \cup (K_{\delta-k+2} \cup K_{n-\delta-1}). \) \(\square \)

3. **Maximally Connected Graphs**

If \(\delta = \delta(G) \), then \(G \) is maximally connected. Therefore, by setting \(k = \delta \) in Theorem 1, we obtain the following theorem.

Theorem 6. Let \(G \) be a connected graph of order \(n \geq 5 \), size \(m \), and minimum degree \(\delta \geq 2 \).

(a) If \(m \geq \left(\frac{n - 2}{2} \right) + 2\delta - 1 \), then \(G \) is maximally connected, unless \(G = K_{n-1} \cup (K_2 \cup K_{n-\delta-1}). \)
(b) If \(n \geq 2\delta + 3 \) and \(m \geq \left(\frac{n-2}{2} \right) + \delta \), then \(G \) is maximally connected, unless \(G \) is a subgraph of \(K_{\delta-1} \cup (K_2 \cup K_{n-\delta-1}) \).

Theorem 7. Let \(G \) be a connected graph of order \(n \geq 5 \) and minimum degree \(\delta \geq 2 \). If
\[
\rho(G) \geq \frac{\delta - 1}{2} + \sqrt{(n - \delta - 1)(n - 4) + \frac{(\delta + 1)^2}{4}}, \tag{38}
\]
then \(G \) is maximally connected, unless \(G = K_{n-4} \cup (K_2 \cup K_2) \).

Proof. On the contrary, suppose that \(\kappa(G) < \delta \). Since \(G \) is connected, by (38) and Lemma 1, we have
\[
\frac{\delta - 1}{2} + \sqrt{(n - \delta - 1)(n - 4) + \frac{(\delta + 1)^2}{4}} \leq \rho(G) \leq \frac{\delta - 1}{2} + \sqrt{2|E(G)| - \delta n + \frac{(\delta + 1)^2}{4}}, \tag{39}
\]
which yields
\[
|E(G)| \geq \left(\frac{n-2}{2} \right) + 2\delta - 1. \tag{40}
\]
By Theorem 6 (a), \(G = K_{\delta-1} \cup (K_2 \cup K_{n-\delta-1}) \). To complete the proof, we only need to show \(\delta = n - 3 \).

Since \(|E(G)| = \left(\frac{n-2}{2} \right) + 2\delta - 1\), the equalities hold in (39). Thus, by Lemma 1, \(G \) is either a regular graph or a bidirected graph in which each vertex is of degree \(\delta \) or \(n - 1 \). However, the vertices of \(G \) have degrees from the set \(\{\delta, n-3, n-1\} \). Therefore, \(\delta = n - 3 \) and the result follows. \(\square \)

By setting \(k = \delta \) in Theorem 2, we obtain the following result.

Theorem 8. Let \(G \) be a connected graph of order \(n \geq 5 \) and minimum degree \(\delta \geq 2 \). If
\[
\rho(G) \geq \rho(K_{\delta-1} \cup (K_2 \cup K_{n-\delta-1})), \tag{41}
\]
then \(G \) is maximally connected, unless \(G = K_{\delta-1} \cup (K_2 \cup K_{n-\delta-1}) \), where \(\rho(K_{\delta-1} \cup (K_2 \cup K_{n-\delta-1})) \) is the largest root of the equation
\[
\lambda^3 - (n - 3)\lambda^2 - (2\delta - 1)\lambda + 2\delta(n - \delta - 1) - n + 1 = 0. \tag{42}
\]

Theorem 9. Let \(G \) be a connected graph of order \(n \) and minimum degree \(\delta \geq 2 \). If \(n \geq \delta^2 - 2\delta + 7 \) and
\[
\rho(G) \geq n - 3, \tag{43}
\]
then \(G \) is maximally connected, unless \(G = K_{\delta-1} \cup (K_2 \cup K_{n-\delta-1}) \).

Proof. Set \(k = \delta \) in the proofs of Theorems 3 and 4. If \(\delta \geq 3 \), then the result follows from Theorem 4. If \(\delta = 2 \), then case (a) cannot occur in the proof of Theorems 3. In Theorem 3, by noting that \(f(n-3) > 0 \), \(f(n-4) < 0 \), \(f(0) > 0 \), \(f(-\sqrt{3}) = 2\sqrt{3} - 4 < 0 \), and \(f(-\infty) > 0 \), we have \(\rho(G) < n - 3 \) and so Theorem 3 holds for \(\delta = k = 2 \). Hence, Theorem 4 also holds for \(\delta = k = 2 \) and the result follows. \(\square \)

Remark 3. In the proof of Theorem 3, if we take \(k = \delta \geq 2 \) and \(n = \delta^2 - 2\delta + 6 \), then \(f(n-3) = g(n) = g(\delta^2 - 2\delta + 6) = 10 - 4\delta < 0 \) when \(\delta \geq 3 \). Notice that \(f(\infty) = +\infty \). So, the largest root of \(f(x) = 0 \) is greater than \(n - 3 \) if \(\delta \geq 3 \), and it follows that \(\rho(G) > n - 3 \). That is to say, the requirement \(n \geq \delta^2 - 2\delta + 7 \) in Theorem 9 is best possible when \(\delta \geq 3 \).

By setting \(k = \delta \) in Theorem 5, we have the following result.

Theorem 10. Let \(G \) be a connected graph of order \(n \geq 5 \) and minimum degree \(\delta \geq 2 \). If
\[
\rho(G) \leq \sqrt{2(n - \delta - 1)}, \tag{44}
\]
then \(G \) is maximally connected, unless \(G = K_{\delta-1} \cup (K_2 \cup K_{n-\delta-1}) \).

4. Super-Connected Graphs

For any connected graph \(G \) of order \(n \), if \(2 \leq n \leq 4 \), then \(G \) is super-\(k \). Therefore, \(n \geq 5 \) is considered in this section.

Theorem 11. Let \(G \) be a connected graph of order \(n \geq 5 \), size \(m \), and minimum degree \(\delta \). If
\[
m \geq \left(\frac{n-2}{2} \right) + 2\delta, \tag{45}
\]
then \(G \) is super-\(k \), unless \(G = (K_\delta \cup (K_2 \cup K_{n-\delta-2})) - e \), where \(e = xy \) is an edge of \(K_\delta \cup (K_2 \cup K_{n-\delta-2}) \) with \(d(x) = \delta + 1 \) and \(d(y) = n - 1 \).

Proof. Since \(m \geq \left(\frac{n-2}{2} \right) + 2\delta \), by Theorem 6 (a), \(\kappa(G) = \delta \). On the contrary, suppose that \(G \) is not super-\(k \). Let \(S \) be an arbitrary minimum vertex-cut with \(\delta \) vertices, and let \(X_0, X_1, \ldots, X_{p-1} \) (\(p \geq 2 \)) denote the vertex-sets of the components of \(G - S \), where \(2 \leq |X_0| \leq |X_1| \leq \cdots \leq |X_{p-1}| \). Denote \(Y := \bigcup_{i=1}^{p-1} X_i \). Since \(G - S \) is disconnected, there are no edges between \(X_0 \) and \(Y \) in \(G \), and
\[
m \leq \frac{1}{2} (n - 1) - |X_0| \cdot |Y|. \tag{46}
\]
Thus, by \(|X_0| + |Y| = n - \delta \) and \(2 \leq |X_0| \leq |Y| \leq n - \delta - 2 \), we have
\[m \leq \frac{1}{2} n(n - 1) - |X_0| \cdot |Y| \leq \frac{1}{2} n(n - 1) - 2(n - \delta - 2) \]
\[= \left(\frac{n - 2}{2} \right) + 2\delta + 1. \]

(47)

If \(m = \left(\frac{n - 2}{2} \right) + 2\delta + 1 \), then all the inequalities in the above proof must be equalities. It is deduced that \(p = 2 \), \(|X_0| = 2 \), \(|Y| = n - \delta - 2 \), and \(d_G(s) = n - 1 \) for each \(s \in S \), \(\delta_{G[X_0]}(x) = 1 \) for each \(x \in X_0 \), and \(d_{G[Y]}(y) = n - \delta - 3 \) for each \(y \in Y \). That is, \(G[X_0] = K_2, G[S] = K_\delta, G[Y] = K_{n-\delta-2} \), and \(G \cong K_\delta \vee (K_2 \cup K_{n-\delta-2}) \). However, \(\delta(G) = \delta + 1 > \delta \), which is a contradiction. Therefore, \(m \leq \left(\frac{n - 2}{2} \right) + 2\delta \). By (45), \(m = \left(\frac{n - 2}{2} \right) + 2\delta \).

Next, we show that \(G \) is a proper subgraph of \(K_\delta \vee (K_2 \cup K_{n-\delta-2}) \). It suffices to prove that \(|X_0| = 2 \) and \(p = 2 \). If \(|X_0| \geq 3 \), then \(n \geq \delta + 6 \). Combining (45) with (46), we obtain

\[\left(\frac{n - 2}{2} \right) + 2\delta \leq m \leq \frac{1}{2} (n^2 - n) - |X_0| \cdot |Y| \]
\[\leq \frac{1}{2} (n^2 - n) - 3(n - \delta - 3) \]
\[\leq \left(\frac{n - 2}{2} \right) + 2\delta. \]

(48)

All the above inequalities must be equalities, and so \(|X_0| = |Y| = 3, n = \delta + 6, \) and \(G \cong K_\delta \vee (K_2 \cup K_3) \). However, \(\delta(G) = \delta + 2 > \delta \), which is a contradiction. Therefore, \(X_0 = 2 \).

If \(p \geq 3 \), then \(n \geq \delta + 6 \). Let \(Y_1 = \bigcup_{i=2}^{p-1} X_i \). Then \(|X_1| + |Y_1| = n - \delta - 2 \) and \(2 = |X_0| \leq |X_1| \leq |Y_1| \leq n - \delta - 4 \). Since \(G - S \) is disconnected, there are no edges among \(X_0 \), \(X_1 \), and \(Y_1 \) in \(G \) (i.e., \([X_0, X_1] = \varnothing, [X_0, Y_1] = \varnothing, [X_1, Y_1] = \varnothing \)), and

\[m \leq \frac{1}{2} (n^2 - n) - |X_0| \cdot (|X_1| + |Y_1|) - |X_1| \cdot |Y_1| \]
\[\leq \frac{1}{2} (n^2 - n) - 2(n - \delta - 2) - 2 \cdot 2 \]
\[= \left(\frac{n - 2}{2} \right) + 2\delta - 3 \left(\frac{n - 2}{2} \right) + 2\delta, \]

which is a contradiction. Therefore, \(p = 2 \).

Let \(H = K_\delta \vee (K_2 \cup K_{n-\delta-2}) \). Then \(G \subseteq H \) and \(|E(H)| = |E(G)| + 1 \). Therefore, \(G = H - e \). Since \(\delta(H) = \delta + 1 \) and \(\delta(G) = \delta, e = xy \) is an edge of \(H \) with \(d(x) = \delta + 1 \) and \(d(y) = n - 1 \).

Theorem 12. Let \(G \) be a connected graph of order \(n \geq 5 \) and minimum degree \(\delta \). If

\[\rho(G) \geq \frac{\delta - 1}{2} + \sqrt{2 + (n - \delta - 1)(n - 4) + \frac{(\delta + 1)^2}{4}}, \]

(50)

then \(G \) is super-\(\kappa \).

Proof. On the contrary, suppose that \(G \) is not super-\(\kappa \). Since \(G \) is connected, by (50) and Lemma 1, we have

\[\sqrt{2 + (n - \delta - 1)(n - 4) + \frac{(\delta + 1)^2}{4}} \leq \rho(G) - \frac{\delta - 1}{2} \leq \sqrt{2|E(G)| - \delta n + \frac{(\delta + 1)^2}{4}}, \]

(51)

which yields

\[|E(G)| \geq \left(\frac{n - 2}{2} \right) + 2\delta. \]

(52)

By Theorem 11, \(G = K_\delta \vee (K_2 \cup K_{n-\delta-2}) - e \), where \(e = xy \) is an edge of \(K_\delta \vee (K_2 \cup K_{n-\delta-2}) \) with \(d(x) = \delta + 1 \) and \(d(y) = n - 1 \).

Since \(|E(G)| = \left(\frac{n - 2}{2} \right) + 2\delta \), the equalities hold in (51). Thus, by Lemma 1, \(G \) is either a regular graph or a bipartite graph in which each vertex is of degree \(\delta \) or \(n - 1 \). However, the vertices of \(G \) have degree from the set \(\{\delta, \delta + 1, n - 3, n - 2, n - 1\} \). Thus, \(G \) cannot be a bipartite graph, which yields a contradiction. Hence, \(G \) is super-\(\kappa \) .

Theorem 13. Let \(G \) be a connected graph of order \(n \geq 5 \) and minimum degree \(\delta \). If

\[\rho(G) \geq \rho(K_\delta \vee (K_2 \cup K_{n-\delta-2})), \]

(53)

then \(G \) is super-\(\kappa \), where \(\rho(K_\delta \vee (K_2 \cup K_{n-\delta-2})) \) is the largest root of the equation

\[\lambda^3 - (n - 3)\lambda^2 - (2\delta + 1)\lambda + 2(\delta + 1)(n - \delta - 2) - n + 1 = 0. \]

(54)

Proof. On the contrary, suppose that \(G \) is not super-\(\kappa \). Let \(S \) be an arbitrary minimum vertex-cut with \(\kappa \leq \delta \) vertices, and let \(X_0, X_1, \ldots, X_{p-1} (p \geq 2) \) denote the vertex-sets of the components of \(G - S \), where \(2 \leq |X_0| \leq |X_1| \leq \cdots \leq |X_{p-1}|. \) Denote \(Y = \bigcup_{i=0}^{p-1} X_i \). Then \(2 \leq |X_0| \leq |Y| \leq n - \kappa - 2 \) and \(|X_0| + |Y| = n - \kappa \). Since there are no edges between \(X_0 \) and \(Y \) in \(G \), \(G \) is a subgraph of \(K_\kappa \vee (K_{|X_0|} \cup K_{|Y|}) \) and \(\rho(G) \leq \rho(K_\kappa \vee (K_{|X_0|} \cup K_{|Y|})) \).

According to (15) in the proof of Theorem 2, \(\rho(K_\kappa \vee (K_{|X_0|} \cup K_{|Y|})) \) is the largest root of the equation

...
5. Sufficient Conditions for Triangle-Free Graphs

Let us extend an interesting result by applying the famous theorem of Mantel [26] and Turán [27].

Theorem 16. Let G be a connected triangle-free graph of order n, size m, and minimum degree $\delta \geq k \geq 2$. If

$$m \geq \delta^2 + \frac{1}{4}(n - 2\delta + k - 1)^2,$$

then G is k-connected, unless $V(G) = X \cup S \cup Y$ and S is a minimum vertex-cut of G with $G[S] = K_{\delta,k-1}, G[X \cup S] = K_{\delta,0},$ and $G[Y \cup S] = K_{n-(2\delta+k-1)/2}, n-(2\delta+k-1)/2)$.

Proof. Let $k = \kappa(G)$. On the contrary, suppose that $\kappa \leq k - 1$. Let S be a minimum vertex-cut of G, and let X, Y_1, \ldots, Y_{p-1} $(p \geq 2)$ denote the vertex-sets of the components of $G - S$, where $|X| \leq |Y_1| \leq \cdots \leq |Y_{p-1}|$. Let $Y = \bigcup_{i=1}^{p-1} Y_i$. Then $|X| \leq |Y|$ and $|X| + |Y| = n - \kappa$. By Theorem 15, we deduce that

$$|E(G[X \cup S])| \leq \left\lfloor \frac{(|X| + |S|)^2}{4} \right\rfloor,$$

$$|E(G[Y \cup S])| \leq \left\lfloor \frac{(|Y| + |S|)^2}{4} \right\rfloor,$$

with equalities if and only if

$$G[X \cup S] = K_{\left\lfloor (|X|+|S|)/2 \right\rfloor, \left\lfloor (|X|+|S|)/2 \right\rfloor},$$

$$G[Y \cup S] = K_{\left\lfloor (|Y|+|S|)/2 \right\rfloor, \left\lfloor (|Y|+|S|)/2 \right\rfloor}.$$

If $x \in X$, then $\delta \leq d_G(x) \leq |X| + |S|$. The assumption $\kappa \leq k - 1 \leq \delta - 1$ implies that x has at least one neighbor $y \in X$. Since G is triangle-free, we deduce that $N_G(x) \cap N_G(y) = \emptyset$, where $N_G(x)$ is the neighbor set of x. As $N_G(x) \cup N_G(y) \subseteq X \cup S$, it follows that

$$|X| + |S| \geq |N_G(x) \cup N_G(y)| \geq 2\delta,$$

and thus $|X| \geq 2\delta - |S| = 2\delta - \kappa$. Therefore, we arrive at

$$2\delta - \kappa \leq |X| \leq |Y| \leq n - 2\delta.$$

Together with $|X| + |Y| = n - \kappa$ and (62), it leads to
Let G be a connected triangle-free graph of order n, size m, and minimum degree $\delta \geq 2$. If

$$m \geq \delta^2 + \frac{1}{4}(n - \delta - 1)^2,$$

then G is maximally connected, unless $V(G) = X \cup S \cup Y$, and S is a minimum vertex-cut of G with $G[S] = K_{\delta, \delta}$, and $G[Y \cup S] = K_{(n-\delta-1)/2, (n-\delta-1)/2}$.

Theorem 19. Let G be a connected triangle-free graph of order n and minimum degree $\delta \geq 2$. If

$$\rho(G) \geq \frac{\delta - 1}{2} + \sqrt{\frac{1}{4}(n - 2\delta + k - 1)^2 - \delta(n - 2\delta) - \left(\frac{\delta + 1}{2}\right)^2},$$

then G is super-κ.

Proof. Let $\kappa = \kappa(G)$. On the contrary, suppose that G is not super-κ. Since $m \geq \delta^2 + \left(\frac{1}{4}(n - \delta)^2\right)$, by Theorem 18, $\kappa = \delta$. Let S be a minimum vertex-cut of G with δ vertices, and let X, Y_1, \ldots, Y_{p-1} $(p \geq 2)$ denote the vertex-sets of the components of $G - S$, where $2 \leq |X| \leq |Y_1| \leq \cdots \leq |Y_{p-1}|$. Set $Y = \bigcup_{i=1}^{p} Y_i$; then $|Y| \geq |X| \geq 2$. Therefore, with the same proceeding of the proof of Theorem 16 (from (62) to (65)), we arrive at

$$\delta \leq |X| \leq |Y| \leq n - \delta.$$

Together with $|X| + |Y| = n - \delta$, and (62), it leads to

$$m = |E(G[X \cup S])| + |E(G[Y \cup S])| - |E(G[S])|$$

$$\leq \frac{1}{4}(|X| + |S|)^2 + \frac{1}{4}(|Y| + |S|)^2 - |E(G[S])|$$

$$\leq \frac{1}{4}(|X| + |S|)^2 + \frac{1}{4}(|Y| + |S|)^2$$

$$= \frac{1}{4}(|X| + |Y| + |S|)^2 + |S|^2 - \frac{|X| \cdot |Y|}{2}$$

$$\leq \frac{n^2 + \delta^2 - \delta(n - 2\delta)}{2}$$

$$= \delta^2 + \frac{1}{4}(n - \delta)^2.$$
Combining this with (72), we have \(m = \delta^2 + \left(\frac{1}{4} (n - \delta)^2 \right) \), and so \(|X| = |S| = \delta, |Y| = n - 2\delta, |E(G[S])| = 0, |E(G[X \cup S])| = \delta^3, \) and \(|E(G[Y \cup S])| = \left(\frac{1}{4} (n - \delta)^2 \right) \). Therefore, \(G[S] = K_{\delta}, G[X \cup S] = K_{\delta, \delta}, \) and \(G[Y \cup S] = K_{(n-2\delta),(n-2\delta)} \). Thus, \(G[X] = K_{\delta} \), which contradicts the fact that \(G[X] \) is a component of \(G \) with at least two vertices. The result follows. \(\square \)

Theorem 21. Let \(G \) be a connected triangle-free graph of order \(n \) and minimum degree \(\delta \geq 2 \). If

\[
\rho(G) \geq \frac{\delta - 1}{2} + \sqrt{\frac{1}{4} (n - \delta^2) - \delta (n - 2\delta) + \frac{(\delta + 1)^2}{4}},
\]

then \(G \) is super-\(\kappa \).

Proof. Since \(G \) is connected, by (75) and Lemma 1, we have

\[
\sqrt{2\left[\frac{1}{4} (n - \delta^2) - \delta (n - 2\delta) + \frac{(\delta + 1)^2}{4} \right]} \leq \rho(G) - \frac{\delta - 1}{2} \leq \sqrt{2|E(G)| - \delta n + \frac{(\delta + 1)^2}{4}},
\]

which yields

\[
|E(G)| \geq \frac{\delta^2 + \frac{1}{4} (n - \delta^2)}{2}.
\]

By Theorem 20, \(G \) is super-\(\kappa \). \(\square \)

Remark 4. The lower bound on \(m \) given in Theorem 20 is sharp. For example, let \(n = 3\delta + 3, V(G) = X \cup S \cup Y, G[X] = K_{\delta}, G[Y] = K_{1, \delta + 1}, \) and \(S \) is a minimum vertex-cut of \(G \) with \(G[S] = K_{\delta}, G[X \cup S] = K_{\delta, \delta}, \) and \(G[Y \cup S] = K_{\delta, \delta + 1} \). It is easy to check that

\[
|E(G)| = \delta (\delta + 1) + (\delta + 1)^2 = \delta^2 + \frac{1}{4} (n - \delta^2) - 1.
\]

However, \(G - S = K_{1, \delta} \cup K_{1, \delta + 1} \), which yields that \(G \) is not super-connected.

Data Availability

No data were used to support the findings of the study.

Conflicts of Interest

The authors declare no conflicts of interest.

Acknowledgments

The research of Zhen-Mu Hong is supported by NSFC (no. 11601002), Key Projects in Natural Science Research of Anhui Provincial Department of Education (nos. KJ2020A0015, KJ2018A0438, and KJ2016A003) and Outstanding Young Talents International Visiting Program of Anhui Provincial Department of Education (no. ggwxf2018031). The research of Fuyuan Chen is supported by NSFC (no. 11601001).

References

[1] J. A. Bondy and U. S. R. Murty, *Graph Theory*. Graduate Texts in Mathematics, Springer, NY, New York, 2008.

[2] J.-M. Xu, *Theory and Application of Graphs*, Kluwer Academic Publishers, Boston London, 2003.

[3] A. Hellwig and L. Volkmann, “Maximally edge-connected and vertex-connected graphs and digraphs: a survey,” *Discrete Mathematics*, vol. 308, no. 15, pp. 3265–3296, 2008.

[4] L. Volkmann and Z.-M. Hong, “Sufficient conditions for maximally edge-connected and super-edge-connected graphs,” *Communications in Combinatorics and Optimization*, vol. 2, no. 1, pp. 35–41, 2017.

[5] L. Volkman, “Sufficient conditions for maximally edge-connected and super-edge-connected graphs depending on the clique number,” *Discussiones Mathematicae Graph Theory*, vol. 39, no. 2, pp. 567–573, 2019.

[6] M. Fiedler, “Algebraic connectivity of graphs,” *Czechoslovak Mathematical Journal*, vol. 23, no. 2, pp. 298–305, 1973.

[7] M. Fiedler and V. Nikiforov, “Spectral radius and Hamiltonicity of graphs,” *Linear Algebra and Its Applications*, vol. 432, pp. 2170–2173, 2009.

[8] S. M. Cioabă, “Eigenvalues and edge-connectivity of regular graphs,” *Linear Algebra and Its Applications*, vol. 432, pp. 458–470, 2010.

[9] C. Duan, L. Wang, and X. Liu, “Edge connectivity, packing spanning trees, and eigenvalues of graphs,” *Linear and Multilinear Algebra*, vol. 68, no. 6, pp. 1077–1095, 2020.

[10] X. Gu, H.-J. Lai, P. Li, and S. Yao, “Edge-disjoint spanning trees, edge connectivity, and eigenvalues in graphs,” *Journal of Graph Theory*, vol. 81, no. 1, pp. 16–29, 2016.

[11] H. Liu, M. Lu, and F. Tian, “Edge-connectivity and (signless) Laplacian eigenvalue of graphs,” *Linear Algebra and Its Applications*, vol. 439, no. 12, pp. 3777–3784, 2013.

[12] R. Liu, H.-J. Lai, and Y. Tian, “Spanning tree packing number and eigenvalues of graphs with given girth,” *Linear Algebra and Its Applications*, vol. 578, pp. 411–424, 2019.

[13] S. O., “Edge-connectivity in regular multigraphs from eigenvalues,” *Linear Algebra and Its Applications*, vol. 491, pp. 4–14, 2016.

[14] R. Li, “Spectral conditions for a graph to be \(k \)-connected,” *Annals of Pure and Applied Mathematics*, vol. 8, no. 1, pp. 11–14, 2014.

[15] L.-H. Feng, P.-L. Zhang, H. Liu, W.-J. Liu, M.-M. Liu, and Y.-Q. Hu, “Spectral conditions for some graphical properties,” *Linear Algebra and Its Applications*, vol. 524, pp. 182–198, 2017.

[16] L. Feng, P. Zhang, and W. Liu, “Spectral radius and \(k \)-connectedness of a graph,” *Monatshefte für Mathematik*, vol. 185, no. 4, pp. 651–661, 2018.

[17] A. Abiad, B. Brimkov, and X. Martínez-Rivera, “Spectral bounds for the connectivity of regular graphs with given order,” *The Electronic Journal of Linear Algebra*, vol. 34, pp. 428–443, 2018.

[18] S. M. Cioabă and X. Gu, “Connectivity, toughness, spanning trees of bounded degree, and the spectrum of regular graphs,” *Czechoslovak Mathematical Journal*, vol. 66, no. 3, pp. 913–924, 2016.

[19] S. O., “The second largest eigenvalues and vertex-connectivity of regular multigraphs,” *Discrete Applied Mathematics*, vol. 279, pp. 118–124, 2020.

[20] W. Zhang, “Matching extendability and connectivity of regular graphs from eigenvalues,” *Graphs and Combinatorics*, vol. 36, no. 1, pp. 93–108, 2020.
[21] Z.-M. Hong, Z.-J. Xia, and H.-J. Lai, "Vertex-connectivity and eigenvalues of graphs," *Linear Algebra and Its Applications*, vol. 579, pp. 72–88, 2019.

[22] Z.-M. Hong, H.-J. Lai, and Z.-J. Xia, "Connectivity and eigenvalues of graphs with given girth or clique number," *Linear Algebra and Its Applications*, vol. 607, pp. 319–340, 2020.

[23] Z.-M. Hong, Z.-J. Xia, H.-J. Lai, and R. Liu, "Fractional arboricity, strength and eigenvalues of graphs with fixed girth or clique number," *Linear Algebra and Its Applications*, vol. 611, pp. 135–147, 2021.

[24] R. Liu, H.-J. Lai, Y. Tian, and Y. Wu, "Vertex-connectivity and eigenvalues of graphs with fixed girth," *Applied Mathematics and Computation*, vol. 344-345, pp. 141–149, 2019.

[25] Y. Hong, J.-L. Shu, and K. Fang, "A sharp upper bound of the spectral radius of graphs," *Journal of Combinatorial Theory, Series B*, vol. 81, no. 2, pp. 177–183, 2001.

[26] W. Mantel, “Problem 28,” *Wiskundige Opgaven*, vol. 10, pp. 60-61, 1907.

[27] P. Turán, “On an extremal problem in graph theory (Hungarian),” *Mat Fiz. Lapok*, vol. 48, pp. 436–452, 1941.