Wray 977 (GX301-2): a hypergiant with pulsar companion

L. Kaper¹, H.J.G.L.M. Lamers²,³, E. Ruymaekers⁴,⁵,⁶, E.P.J. van den Heuvel⁴,⁵, and E.J. Zuiderwijk⁷,⁸

¹ European Southern Observatory, Karl Schwarzschild Str. 2, D-85748 Garching bei München, Germany
² Sterrenkundig Instituut, Princetonplein 5, Postbus 80000, Utrecht, The Netherlands
³ SRON Utrecht, Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands
⁴ Astronomical Institute “Anton Pannekoek”, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
⁵ Center for High Energy Astrophysics (CHEAF), Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
⁶ Institut voor Sterrenkunde, K.U. Leuven, Celestijnenlaan 200B, 3001 Heverlee, Belgium
⁷ Kapteyn Astronomical Institute, Postbus 800, 9700 AV Groningen, The Netherlands
⁸ Royal Greenwich Observatory, Madingley Road, Cambridge CB3 0EZ, England

Received November 28, 1994 / Accepted January 26, 1995

Abstract. Wray 977, the B supergiant companion of the X-ray pulsar GX301-2, should be classified as B1 Ia+, based on a comparison of its optical spectrum to that of ζ¹ Sco, a well-known B hypergiant and one of the brightest stars in our galaxy. The classification of Wray 977 as a hypergiant results in a new distance determination of the binary system, i.e. d = 5.3 kpc (previously 1.8 ± 0.4 kpc). The “average” X-ray luminosity of the pulsar is then \(\sim 10^{37} \) erg s\(^{-1}\), in good agreement with the predicted X-ray luminosity resulting from accretion of a dense, low-velocity (\(v_\infty = 400 \) km s\(^{-1}\)) stellar wind. A mass-loss rate of \(\lesssim 10^{-5} \) M\(_\odot\) yr\(^{-1}\) is estimated from the Hα profile. A new upper limit for the inclination of the system is derived which provides a lower limit to the (present) mass of Wray 977 (48 M\(_\odot\)). Regarding current binary evolution scenarios, the empirical lower mass limit for black-hole formation in a binary increases to \(M_{ZAMS} \gtrsim 50 \) M\(_\odot\).

Key words: Stars: binaries: close - Stars: evolution - Stars: individual: Wray 977 - Stars: pulsars: individual: GX301-2 - Stars: supergiants - X-rays: stars

1. Introduction

The most recent spectral study of Wray 977 (BP Cru), the optical counterpart (Vidal 1973) of the high-mass X-ray pulsar GX 301-2 (4U1223-62) was presented by Parkes et al. (1980). They derived a spectral type of B2 Ia for the supergiant and concluded that the mass-loss rate is probably higher than \(\sim 3 \times 10^{-6} \) M\(_\odot\) yr\(^{-1}\), adding the remark that “the spectrum of Wray 977 does show more signs of mass loss than a ‘normal’ B2 supergiant”. Adopting \(v = 10.83 \) (Hammerschlag-Hensberge et al. 1976) and absolute magnitude \(M_V = -7.0 \) for a B2 Ia star (Balona & Crampton 1974), they derived a distance to Wray 977 of 1.8 ± 0.4 kpc. This distance implied an average X-ray luminosity of \(\sim 10^{36} \) erg s\(^{-1}\) for the 696s pulsar GX 301-2.

The orbital period of this high-mass X-ray binary system (HMXB) is 41.5 days (Watson et al. 1982), based on the periodicity in X-ray flaring events of GX 301-2. Pulse-timing analysis carried out by White & Swank (1984) and, from a more extended dataset, by Sato et al. (1986) resulted in the accurate determination of the orbital elements of GX 301-2. The system is characterized by a large eccentricity (\(e = 0.47 \)), and the mass function \(f(m) = 31.9 \pm 0.8 \) M\(_\odot\) is the highest known for a HMXB with pulsar companion. The latter fact was used by Van den Heuvel & Habets (1984) to derive an observational lower mass limit for black-hole formation (\(M_{ZAMS} \gtrsim 40 \) M\(_\odot\)) in a massive binary. Given the supergiant’s radius (43 R\(_\odot\), Parkes et al. 1980), the absence of an eclipse in the X-ray lightcurve constrains the inclination of the system to \(i \lesssim 78^\circ \). A plausible set of parameters is \(i \approx 75^\circ \) and hence, from the mass function, \(M \approx 38 \) M\(_\odot\) (Sato et al. 1986).

Several authors have tried to explain the observed modulation of the X-ray luminosity of GX 301-2 with orbital phase. White & Swank (1984) proposed that the mass loss from Wray 977 must be extreme and that the wind velocity at the neutron star’s orbit is much lower than usually adopted for a normal B supergiant. Leahy
Fig. 1. The optical spectrum of Wray 977 (bottom) from 4300-4700 Å and that of the hypergiant ζ1 Sco (top) are very similar. The spectrum of ζ1 Sco was kindly provided to us by Dr. O. Stahl. The Hγ and He I 4471 Å line of Wray 977 are stronger and have a P Cygni-type profile suggesting that Wray 977 has an even higher mass-loss rate than ζ1 Sco. The O II lines are stronger and the N II lines weaker than those in the spectrum of ζ1 Sco, indicating that Wray 977 has a slightly earlier spectral type than ζ1 Sco, i.e. B1 Ia+. The strong O II lines, the relatively weak He I 4387 Å line in comparison with the Si III lines, and the strong Balmer emission are consistent with an extremely high luminosity of Wray 977.

(1991) and Haberl (1991) suggested that a gas stream in the system might be responsible for the observed drastic increase in X-ray luminosity just before each periastron passage. In the following, we will present arguments that Wray 977 is not a normal B supergiant, but a B hypergiant. This results in a new distance determination of the system; new estimates for the various stellar parameters are given in Section 3, including a new lower limit to the mass of Wray 977. In the final section we discuss the implications for massive binary evolution.

2. Spectral classification and luminosity of Wray 977

In Figs. 1 and 2 we show parts of the optical spectrum of Wray 977, obtained in February 1984, with the Cassegrain spectrograph (CASPEC) mounted on the 3.6m telescope at the European Southern Observatory in Chile (Tab. 1). The spectra (partly) cover the wavelength region from 4300 to 6700 Å. The Balmer (up to Hγ) and the strong helium lines have P Cygni-type profiles indicating a strong stellar wind. The Hα emission, combined with spectral type B, usually classifies a star as Be, but for a Be star the luminosity class should be in the range V-III (cf. Underhill & Doazan 1982). Hammerschlag et al. (1979) and Parkes et al. (1980) classified the optical spectrum of Wray 977, using line strength ratios of Si IV/He I, Mg II/He I and O II/He I. The great strength of the O II lines, particularly O II 4349 Å, is indicative of a high luminosity. Therefore, they proposed that the spectral type of Wray 977 is B2 Ia.

JD-2440000	Δλ (Å)	texp (sec.)	Orbital phase
5743.842	4300-5100	3000	0.263
5744.850	5500-6000	600	0.288
5746.878	6500-6700	900	0.336

In the atlas of optical spectra of galactic B supergiants (Lennon et al. 1992), only one of the early B supergiants shows emission in the Balmer series: HD190603 with spectral type B1.5 Ia+. The ‘+‘-classification refers to a class of “super-supergiants” (Keenan 1971), initially consisting of the four reddest of the brightest stars in the Large Magellanic Cloud (Feast & Thackeray 1956). Van Gen-
deren (1979) named these stars hypergiants. A well-known early-B hypergiant is ζ¹ Sco (HD152236), one of the most-luminous stars in our galaxy. It is located in the neighborhood of the open cluster NGC 6231 in the association I Scorpii, which has a distance modulus \((m - M)_0 = 11.5\) (Stothers 1972). The spectral type of ζ¹ Sco is B1.5 Ia+, \(T_{\text{eff}} = 19,000\) K (Appenzeller & Wolf 1979), and the absolute magnitude \(M_V = -8.74\) (Humphreys 1978). The ultraviolet P Cygni profiles can be found in Wolf & Appenzeller (1979) and are comprised in the new IUE atlas of Snow et al. (1994).

If we compare the optical spectrum of Wray 977 with that of ζ¹ Sco (Figs. 1 and 2), we note that the two spectra are very similar. To enable a more quantitative comparison, we have measured the equivalent widths (EWs) of the most important spectral lines in the wavelength range 4300-6700 Å (Table 2). The uncertainty in EW (due to e.g. the normalization of the spectra) is estimated to be 10% or less. A careful inspection of the spectra shows that the O II lines in the spectrum of Wray 977 are stronger and the N II lines weaker than their counterparts in the spectrum of ζ¹ Sco, which is confirmed by the measured EWs listed in Table 2. Using the atlases of OB-star spectra by Lennon et al. (1992) and Walborn & Fitzpatrick (1990), we conclude that Wray 977 has a slightly earlier spectral type than ζ¹ Sco: B1 in stead of B1.5. For this spectral type the relative strength of the He I 4387 Å line compared to the Si III lines at \(\lambda\lambda 4552-68-75\) provides a good indication of the luminosity class. The fact that the He I line is weaker than the Si III lines clearly demonstrates that the luminosity class is Ia+ (see Walborn & Fitzpatrick 1990). Indeed, the spectrum of HD169454 (B1Ia+) resembles the spectrum of Wray 977 even more (Wolf, private communication).

Wolf & Stahl (1985) found that fluorescence lines of Fe III are sensitive to luminosity in early-B supergiants. An example of an Fe III emission line at 5979 Å (and at 5999 Å at the border of the plot) in the spectrum of ζ¹ Sco is shown in Fig. 2. In agreement with the hypergiant nature of this star. Due to the bad signal-to-noise in this

Fig. 2. The optical spectrum of ζ¹ Sco and Wray 977 in the wavelength region from 5600 to 6000 Å. Note the weaker N II lines in the spectrum of Wray 977 and the stronger emission in the He I profile at 5876 Å. Although a fluorescence line of Fe III is present in the spectrum of ζ¹ Sco, the bad S/N prohibits a firm detection of this line in this part of the spectrum of Wray 977.
Table 2. Line equivalent widths for χ^1 Sco and Wr ay 977. The uncertainty in EW is estimated to be 10% or less. Some unidentified lines may correspond to interstellar features.

Line	λ (Å)	EW (Å)	Remarks
O I (2)	4319	0.33	0.66 blend
H$_2$	4340	0.99	0.50 blend
O I (2)	4346	0.27	0.34 blend
O I (2)	4349	0.58	0.76 blend
O I (2)	4367	0.28	0.23 blend
He3 I	4387	0.54	0.63 blend
O I (5)	4417	0.70	0.91 blend
He3 I	4437	0.09	0.07 blend
unident.	4466	0.22	
He3 I	4471	0.81	0.47
Mg II (4)	4881	0.33	0.29 blend
Si II (2)	4553	0.69	0.84
Si II (2)	4568	0.49	0.53
Si II (3)	4575	0.37	0.41
O I (15)	4591	0.28	0.28 blend
O I (15)	4596	0.20	0.31
N II (5)	4601	0.36	0.24
N II (5)	4607	0.39	0.28
N II (5)	4614	0.26	0.21
N II (5)	4621	0.30	0.21
N II (5)	4631	0.54	0.42
O II (1)	4642	0.85	0.92 blend
O II (1)	4649	0.85	1.23 blend
O II (1)	4662	0.25	0.40 blend
unident.	4668		
O II (1)	4676	0.37	0.90 blend
unident.	4704	0.13	0.33 blend
He3 II	4713	0.30	0.46 blend
unident.	4726		
Si III (9)	4820	0.19	0.12
Si III (9)	4829	0.16	0.18
H3 II	4861	0.26	-1.13
He3 I	4921	0.77	0.60
N II (24)	4994	0.09	0.11
N II (19)	5001	0.48	0.32 blend
He3 II	5025	0.36	-0.17 blend
He3 I	5047	0.75	0.61 blend
N II (3)	5667	0.63	0.33 blend
N II (3)	5680	1.32	0.76 blend
Al II (2)	5696	0.22	0.27 blend
N II (3)	5711	0.35	0.32 blend
Al II (2)	5723	0.39	0.32 blend
Si III (4)	5740	0.52	0.49
Fe I2	5783	0.47	0.89 blend
He3 II	5876	0.63	0.13
Na I	5890	0.78	1.18 interst.
Na I	5896	0.73	1.13 interst.
He3 I	6563	-5.16	-0.70
He3 I	6678	1.08	0.60

The presence of this line, although an emission feature might be identified at 5979 Å.

Finally, the P Cygni shape of the H Balmer and the strong He I lines is consistent with the extreme luminosity of Wr at 977. Rosendhal (1973) showed that the net strength of H$_\alpha$ is correlated with luminosity for early-type supergiants. Wolff & Tully (1984) derived a similar relation between H$_\alpha$ strength and L, but then for late-B supergiants. The H equivalent width (~7.1 and ~5.2 for Wr at 977 and χ^1 Sco, respectively) suggests that the luminosity of Wr at 977 is even higher than that of χ^1 Sco. Regarding the small number of early-type supergiants and their uncertain absolute magnitudes, we adopt for Wr at 977 the same luminosity as χ^1 Sco, although this might be a lower limit.

From the above, we conclude that the spectral type of Wr at 977 is B1 Ia+ and that its absolute magnitude is $M_V = -8.7$. Then, using BC = -1.87 (Schmidt-Kaler 1982) and E(B-V) = 1.9 (Van Dishoeck & Black 1989), we find that the luminosity of Wr at 977 is $L = 1.3 \times 10^8 L_\odot$ and its distance $d = 5.3$ kpc, which is a three-fold increase over the current value. Consequently, the X-ray luminosity of GX301-2 is an order of magnitude higher, i.e. in the range between 6.6×10^{35} and 7.3×10^{37} erg s$^{-1}$ (Van Paradijs 1991).

3. Wr at 977 (GX301-2) revisited

The new classification of Wr at 977 makes it the first hypergiant for which a lower limit on the mass is known. We will argue below that the lower mass limit has to be increased. In the previous section we introduced new values for the luminosity of and the distance to Wr at 977. Combined with the adopted effective temperature of 20,800 K corresponding to spectral type B1 (Schmidt-Kaler 1982), we derive for the radius $R = 87 R_\odot$ (previously 43R_\odot, Parkes et al. 1980). This has important consequences for the binary system. The projected semi-major axis of the X-ray pulsar follows from pulse-timing analysis: $a_X \sin i = 159 \pm 1.5 R_\odot$ (Sato et al. 1986). The derived mass function of the system is:

$$f(m) = \frac{(M_{HG} \sin i)^3}{(M_X + M_{HG})^2} = 31.9 \pm 0.8 M_\odot$$

with i the system’s inclination, and M_{HG} and M_X the masses of the hypergiant and the X-ray pulsar, respectively. If we define the mass ratio $q = M_X / M_{HG}$, we can write Eq. 1 as:

$$M_{HG} = \frac{31.9(q + 1)^2}{(\sin i)^3}$$

The radius of the hypergiant and the absence of X-ray eclipses set an upper limit to the system’s inclination. For a radius of 43R_\odot, eccentricity $e = 0.47$, and periastron
resulting X-ray luminosity is all models estimate that the mass-loss rate derived from the H of the velocity law is equal to one. Although none of the results for LTE populations and $/5$ and $/5$/$/5$ are obtained for other B1 hypergiants. De Koter (1993) for a B1 supergiant, the H profile is computed for two different mass-loss rates: 10^{-5} M$_\odot$ yr$^{-1}$ (Bieging et al. 1989). The relation between mass loss and T_{eff} and L of Lamers and Leitherer (1993), based on O stars, predicts $M = 1.7 \times 10^{-5}$ M$_\odot$ yr$^{-1}$, given the T_{eff} and L of Wray 977. In Fig. 3 we show the Hα profile of Wray 977 and three theoretical profiles resulting from the SEIBALMER program of Lamers (1994). Using departure coefficients that result from the radiative transfer code of De Koter (1993) for a B1 supergiant, the H profile is computed for two different mass-loss rates: 10^{-5} (triangles) and 5×10^{-6} M$_\odot$ yr$^{-1}$ (diamonds). The squares give the results for LTE populations and $M = 10^{-5}$ M$_\odot$ yr$^{-1}$. For all models v_∞ was set to 400 km s$^{-1}$ and the β-parameter of the velocity law is equal to one. Although none of the models can fit the blue-shifted P Cygni absorption, we estimate that the mass-loss rate derived from the H profile is between 5×10^{-6} and 10^{-5} M$_\odot$ yr$^{-1}$.

The X-ray luminosity produced by wind accretion can be estimated using the formalism of Bondi & Hoyle (1944). The accretion radius is given by $r_{\text{acc}} = 2GM_Xv_{\text{rel}}^2$ and the resulting X-ray luminosity is

$$L_X = \frac{M^2_{\text{acc}}GM_X}{4\pi v_{\text{rel}}^2} R_X.$$

(3)

The large eccentricity of the orbit ($e = 0.47$) implies that the separation between the binary components and the orbital velocity of the neutron star strongly depend on radius in periastron is of the same order of magnitude as in apastron (3.7 and 6.2 R_\odot, respectively). This is caused by the fact that the relative velocity (i.e., the vector sum of orbital and wind velocity) does not change much as a function of orbital phase. The orbital velocity is at its maximum and the wind velocity at its minimum in periastron, and vice versa in apastron. Using the above derived values for the system parameters, we find that the X-ray luminosity is 4.1×10^{37} and 1.0×10^{37} erg s$^{-1}$ in periastron and apastron, respectively. This is compatible with the observed “average” X-ray luminosity of $\sim 10^{37}$ erg s$^{-1}$ (see section 2), but does not explain by itself the large variations in X-ray flux (e.g., Haberl 1991). We note that periastron passage is very close to the star, of the order of 10 R_\odot above the stellar surface.

4. Discussion

There is no consensus about the evolutionary status of early B hypergiants; it is suggested that these very luminous stars are the progenitors of Luminous Blue Variables (LBVs). In fact, Wray 977 has a spectral type and luminosity similar to that of P Cygni, but the mass-loss features in the spectra of e.g., P Cygni and S Dor are more extreme (cf. Stahl & Wolf 1982). LBVs are found close to the Humphreys-Davidson limit in the HRD and are characterized by phases of extreme mass loss where M can reach values of $10^{-4} - 10^{-3}$ M$_\odot$ yr$^{-1}$ (Lamers 1989). Lamers & Fitzpatrick (1988) proposed that the LBV phase is related to the fact that these massive stars reach their Eddington limit while they evolve towards the red. As a consequence, they lose their outer stellar layers. After the LBV phase, the blue supergiant will become a Wolf-Rayet star. As the name suggests, LBVs exhibit dramatic variability in their optical light; Wray 977 shows variations of ~ 0.1 mag in V (e.g., Pakull 1982) like other early-type hypergiants.

The occurrence of an LBV phase in massive binaries might explain the existence of some double neutron star systems (like PSR 2303+46) that cannot have been formed by common-envelope evolution (Van den Heuvel et al. 1994). In this scenario, the energy required to expel the envelope of the supergiant (i.e., the progenitor of the second neutron star) is derived from the orbital energy of the neutron star companion. If one applies the formalism of CE-evolution to the system PSR 2303+46, the orbital period of 12.33d implies that the progenitor system had an orbital period > 10.8 yr, which excludes the occurrence of a spiral-in phase. If a star spontaneously sheds its envelope without the need of a companion spiralling in, this problem can be overcome. It appears that, if the progenitor of the PSR 2303+46 system was a HMXB with a supergiant that undergoes an LBV phase ($M_{\text{ZAMS}} \gtrsim 40 - 45$ M$_\odot$) with a high mass-loss rate, a consistent picture for its origin can be found.
Fig. 3. The Hα line of Wray 977 (thick line) and ζ^1 Sco (dashed line) and three model calculations from the SEIBALMER-method (Lamers 1994). The triangles and diamonds, respectively, correspond to a model with a mass-loss rate of 10^{-5} and 5×10^{-6} M_\odot yr$^{-1}$, $v_\infty = 400$ km s$^{-1}$, and velocity law parameter $\beta = 1$; The squares represent a model with $M = 10^{-5}$ M_\odot yr$^{-1}$, $v_\infty = 400$ km s$^{-1}$, $\beta = 1$, but LTE populations

The new lower limit on the mass of Wray 977 has consequences for the observed lower mass limit for black-hole formation in a binary as derived by Van den Heuvel & Habets (1984), based on the fact that GX301-2 is a neutron star. We propose that this limit is shifted to $M_{ZAMS} \gtrsim 50$ M_\odot. Since it is not clear if all stars with an initial mass exceeding 50 M_\odot will indeed form a black hole (see e.g. Maeder 1992), the newly determined lower mass limit might have important consequences for the number of black holes formed in binaries.

Acknowledgements. We thank Dr. O. Stahl for providing us with an optical spectrum of ζ^1 Sco and Dr. A. van Genderen for his information about hypergiants. Dr. D. Lennon’s help in classifying the optical spectrum of Wray 977 is highly appreciated. Dr. T. Bedding and Dr. G. Thimm are acknowledged for their helpful suggestions. We are grateful to the referee Dr. Wolf to show the similarity between the spectra of HD169454 and Wray 977. ER is a postdoctoral researcher of the Belgian National Fund for Scientific Research.

References

Appenzeller, L., Wolf, B., 1979, A&AS 38, 51
Balona, L. A., Crampton, D., 1974, MNRAS 166, 203
Bieging, J.-H., Abbott, D.C., Churchwell, E.B., 1989, ApJ 340, 518
Bondi, H., Hoyle, F., 1944, MNRAS 104, 273
De Koter, A., 1993, Ph.D. thesis, University of Utrecht
Garmaty, C.D., Conti, F.S., 1984, ApJ 284, 705
Feast, M., Tackray, 1956, MNRAS 116, 587
Haberl, F., 1991, ApJ 376, 245
Hamerschlag-Hensberge G., Zuiderwijk, E.J., Van den Heuvel, E.P.J., 1976, A&A 40, 321
Hamerschlag-Hensberge G., De Loore, C., Van den Heuvel, E.P.J., Zuiderwijk, E.J., 1979, A&A 76, 245
Humphreys, R., 1978, ApJS 38, 309
Keenan, 1971, Contr. KPNO No. 554, p. 35
Lamers, H.J.G.L.M., 1989, in Physics of Luminous Blue Variables, Eds. Davidson, Moffat, Lamers, IAU Coll. 113, p. 153
Lamers, H.J.G.L.M., 1994, in preparation
Lamers, H.J.G.L.M., Fitzpatrick, E.L., 1988, ApJ 324, 279
Leahy, D.A., 1991, MNRAS 250, 310
Leemon, D.J., Dufton, P.L., Fitzsimmons, A., 1992, A&AS 94, 569
Maeder, A., 1992, A&A 264, 105
Pakull, M.W., 1982, in Proc. Workshop on Accreting Neutron Stars, Garching, MPE Report 177, p. 53
Parkes, G.E., Mason, K.O., Murdin, P.G., Culhane, J.J., 1980, MNRAS 191, 547
Pritiia K.K., Barklow M.J., Howarth I.D., 1990, ApJ 361, 607
Rosendhal, J.D., 1973, ApJ 186, 909
Sato, N., Nagase, F., Kawai, N., et al. 1986, ApJ 304, 241
Schaller, G., Schaerer, D., Meynet, G., Maeder, A., 1992, A&A 96, 269
Schmidt-Kaler, Th., 1982, in Astron. and Astroph. of Stars and Starclusters, Eds. Schaifers, Voigt, Springer-Verlag
Snow, T.P., Lamers, H.J.G.L.M., Lindholm, D.M., Odell, A., 1994, ApJS, in press
Stahl, O., Wolf, B., 1982, A&A 110, 272
Sterken, C., Wolf, B., 1978, A&A 70, 641
Stothers, R., 1972, ApJ 175, 717
Underhill, A.B., Doazan, V., 1982, NASA Mon. Ser. B stars with and without emission lines, NASA SP-456
Van den Heuvel, E.P.J., Habets, G.M.H.J., 1984, Nat 309, 598
Van den Heuvel, E.P.J., Kaper, L., Ruymaekers, E., 1994, in New Horizons in X-ray Astronomy, Ed. Makino, p. 75
Van Dishoeck, E.F., Black, E.F., 1989, ApJ 340, 273
Van Genderen, A., 1979, A&AS 38, 151
Van Paradijs, J.A., 1991, in Neutron Stars: theory and observation, Eds. Ventura & Pines, Kluwer Ac. Publ., p. 245
Vidal, N.V., 1973, ApJ 186, L81
Wallborn, N.R., Fitzpatrick, E.L., 1990, PASP 102, 379
Watson, M.G., Warwick, R.S., Corbet, R.H.D., 1982, MNRAS 109, 915
White, N.E., Swank, J.H., 1984, ApJ 287, 856
Wolf, B., Appenzeller, I., 1979, A&A 78, 15
Wolf, B., Stahl, O., 1985, A&A 148, 412
Wolff, S.C., Tully, R.B., 1984, ApJ 281, 67

This article was processed by the author using Springer-Verlag \LaTeX{} A&A style file \LaTeX{} version 3.