Spresso:
An ultrafast compound pre-screening method based on compound decomposition

Keisuke Yanagisawa1,2
Shunta Komine2,3
Shogo D. Suzuki2,3
Takashi Ishida1,2,3,4
Masahito Ohue1,3,4
Yutaka Akiyama1,2,3,4

1. Dept. CS, School of Computing, Tokyo Tech.
2. Education Academy of Computational Life Sciences (ACLS), Tokyo Tech.
3. Dept. CS, Graduate School of Information Science and Engineering, Tokyo Tech.
4. Advanced Computational Drug Discovery Unit (ACDD), Tokyo Tech.

* The software was renamed from ESPRESSO to Spresso (same pronunciation) in October 2016.
Speedy **PRE-**S**creening method**

with **S**egmented **cOMPounds**

(http://www.bi.cs.titech.ac.jp/spresso/)
Docking-based virtual screening

Virtual screening

Compound DB → Drug candidates

Docking calculation

A protein & a compound → A conformation
Conformation search

Translation
3 dimensions

Rotation
3 dimensions

Internal rotation
N dimensions

Problem: **Computationally expensive**
Compound pre-screening

Decreasing calculation with pre-screening

- Compound DB
- Pre-screening
- Docking
- Drug candidates

Ex: 10,000,000 compounds × 1/100 → 100,000 compounds → 1,000 compounds
Existing pre-screening methods

Pre-screening

Ligand-based
- ML\(^1\), Shape matching\(^2\) etc.
- Requiring known compounds resulting in difficulty finding novel drug candidates
- Light weight calculation

Structure-based
- Rough docking (Glide HTVS\(^3,4\))
- No bias toward known actives
- Insufficient speed (1 sec / compound = 1 CPU year for ZINC DB)

1) H. Geppert, et al. *J Chem Inf Model*, 2010.
2) A. Vuorinen, et al. *J Med Chem*, 2014.
3) S. B. Mirza, et al. *J Mol Graph Model*, 2016.
4) A. Grover, et al. *Biochim Biophys Acta*, 2012.
Our approach

- **Structure-based**
- **Ultrafast** compared to existing method

	Ligand-based	Structure-based	Spresso
wo/ known compound	😞	☺	☻
pre-screening speed	☻	😞	☻

© 2016 Keisuke YANAGISAWA
Ideas for acceleration

Idea I. Compound decomposition

Idea II. Rough compound evaluation

Fragment

score = x
score = y
score = z

Compound

score = w
Idea I. Compound decomposition

Creating **fragments** without any rotatable bond

1) S. Komine et al., *IPSJ SIG Technical Report*, 2015-BIO-42, 2015.
Another benefit of decomposition

Sharing of fragment docking results for duplication

Example of duplicated fragments

Decomposition result compounds: ZINC “drugs now” subset (10,639,555 entries)
Idea II. Rough compound evaluation

Compound evaluation without re-construction

Generalized Sum-3 (GS₃) of fragment scores is adopted

\[GS₃ = \sqrt[3]{\sum_f (\text{score}_f)^3} \]
Method

Decomposition

Fragment Docking by Glide SP or Glide HTVS

Evaluation

 compounds

fragments

fragments

compounds

© 2016 Keisuke YANAGISAWA
Spresso is **open-sourced** under GPLv3 license (http://www.bi.cs.titech.ac.jp/spresso)

Acknowledgements

東京工業大学 Tokyo Institute of Technology

東京工業大学 情報生命博士教育院 Education Academy of Computational Life Sciences

国立研究開発法人 科学技術振興機構 Japan Science and Technology Agency

科研費 KAKENHI

© 2016 Keisuke YANAGISAWA