GEVREY REGULARIZING EFFECT OF THE CAUCHY PROBLEM
FOR NON-CUTOFF HOMOGENEOUS KAC’S EQUATION

NADIA LEKRINE AND CHAO-JIANG XU

Abstract. In this work, we consider a spatially homogeneous Kac’s equation with a non
cutoff cross section. We prove that the weak solution of the Cauchy problem is in the
Gevrey class for positive time. This is a Gevrey regularizing effect for non smooth initial
datum. The proof relies on the Fourier analysis of Kac’s operators and on an exponential
type mollifier.

1. Introduction

In this work, we consider the following Cauchy problem for spatially homogeneous non
linear Kac’s equation,

\[\frac{\partial f}{\partial t} = K(f, f), \quad v \in \mathbb{R}, \quad t > 0, \]

where \(f = f(t, v) \) is the nonnegative density distribution function of particles with velocity
\(v \in \mathbb{R} \) at time \(t \). The right hand side of equation (1.1) is given by Kac’s bilinear collisional
operator

\[K(f, g) = \int_{\mathbb{R}} \int_{-\pi/2}^{\pi/2} \beta(\theta) [f(v')g(v') - f(v)g(v)] d\theta dv, \]

where

\[v' = v \cos \theta - v_\ast \sin \theta, \quad v'_\ast = v \sin \theta + v_\ast \cos \theta. \]

We suppose that the cross-section kernel is non cut-off. To simplify the notations, we
suppose (see [7, 8] for the precise description of cross-section kernel) that

\[\beta(\theta) = C_0 \frac{|\cos \theta|}{|\sin \theta|^{1+2s}}, \quad -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}, \]

where \(0 < s < 1 \) and \(C_0 > 0 \), then

\[\int_{-\pi/2}^{\pi/2} \beta(\theta) d\theta = +\infty, \]

and

\[\begin{aligned}
\int_{-\pi/2}^{\pi/2} \beta(\theta) |\theta| d\theta &= C_s < +\infty, \quad 0 < s < 1/2, \\
\int_{-\pi/2}^{\pi/2} \beta(\theta) \theta^2 d\theta &= C_s < +\infty, \quad 0 < s < 1.
\end{aligned} \]
Hereafter, use the following function spaces: For $1 \leq p \leq +\infty$, $\ell \in \mathbb{R}$,
\[L^p_\ell(\mathbb{R}) = \{ f; \|f\|_{L^p_\ell} = \left(\int_{\mathbb{R}} |(\langle v \rangle f(f(v))^p dv \right)^{1/p} < +\infty \} \]

where $\langle v \rangle = (1 + |v|^2)^{1/2}$.

\[L^{\log}L(\mathbb{R}) = \{ f; \|f\|_{L^{\log}L} = \int_{\mathbb{R}} |f(v)| \log(1 + |f(v)|)dv < +\infty \} \]

For $k, \ell \in \mathbb{R}$,
\[H^k_\ell(\mathbb{R}) = \{ f \in S'(\mathbb{R}); \langle v \rangle^k f \in H^\ell(\mathbb{R}) \} . \]

We assume that the initial datum $f_0 \neq 0$ satisfies the natural boundedness on the mass, energy and entropy, that is,
\[(1.4) \quad f_0 \geq 0, \quad \int_{\mathbb{R}} f_0(v) \left(1 + |v|^2 + \log(1 + f_0(v)) \right)dv < +\infty. \]

In [7], L. Desvillettes has proved the existence of a nonnegative weak solution to the Cauchy problem (1.1), (see also [11] by using a stochastic calculus),
\[(1.5) \quad f \in L^{\infty}(]-\infty, +\infty[; L^1_1(\mathbb{R})) , \]

if $f_0 \in L^1_k(\mathbb{R})$ for some $k \geq 2$. The weak solution satisfies the conservation of mass
\[(1.6) \quad \int_{\mathbb{R}} f(t,v)dv = \int_{\mathbb{R}} f_0(v)dv, \quad \forall t > 0, \]

the conservation of energy
\[(1.7) \quad \int_{\mathbb{R}} f(t,v)|v|^2 dv = \int_{\mathbb{R}} f_0(v)|v|^2 dv, \quad \forall t > 0, \]

and also the entropy inequality
\[(1.8) \quad \int_{\mathbb{R}} f(t,v) \log f(t,v)dv \leq \int_{\mathbb{R}} f_0(v) \log f_0(v)dv, \quad \forall t > 0, \]

but does not conserve the momentum.

L. Desvillettes proved also in [7] (see also [10]), the C^{∞}-regularity of weak solutions if $f_0 \in L^1_\ell(\mathbb{R})$ for any $\ell \in \mathbb{N}$. This regularizing effect properties is now well-known for non-cut-off homogeneous Boltzmann equations (see also [3, 4, 12, 13]).

In this work, we consider the higher order regularity, the Gevrey regularity of solutions to the Cauchy problem (1.1). We start by recalling the definition of the Gevrey class functions. $u \in G^\alpha(\mathbb{R}^n)$ (the Gevrey class function space with index α), if for $\alpha \geq 1$, there exists $C > 0$ such that for any $k \in \mathbb{N}$,
\[\|D^k u\|_{L^2(\mathbb{R}^n)} \leq C^{k+1} (k!)^{\alpha}, \]

or equivalently, there exists $c_0 > 0$ such that $e^{c_0 (D^{1/\alpha}) u} \in L^2(\mathbb{R}^n)$, where
\[(D) = (1 + |Dv|^2)^{1/2}, \quad \|D^k u\|_{L^2(\mathbb{R}^n)}^2 = \sum_{|\beta| = k} \|D^\beta u\|_{L^2(\mathbb{R}^n)}^2. \]

Note that $G^\alpha(\mathbb{R}^n)$ is the usual analytic function space. If $0 < \alpha < 1$, the above definition gives the ultra-analytical function class. Recall that we give here the Gevrey class functions on \mathbb{R}^n, and so we can use the Fourier transformation and give an equivalent definition by using a Fourier multiplier $e^{c_0 (D^{1/\alpha}) u}$, we can also replace L^2-norm by L^{∞}-norm.

Our result on the Gevrey regularity can be stated as follows.
Theorem 1.1. Assume that the initial datum \(f_0 \in L^{1+2s} \cap L \log L(\mathbb{R}) \), and the cross-section \(\beta \) satisfy \((1.2)\) with \(0 < s < \frac{1}{2} \). For \(T_0 > 0 \), if \(f \in L^\infty([0, T_0]; L^{1+2s} \cap L \log L(\mathbb{R})) \) is a nonnegative weak solution of the Cauchy problem \((1.1)\), then for any \(0 < s' < s \), there exists \(0 < T_* \leq T_0 \) such that

\[
f(t, \cdot) \in G^{\frac{s'}{s}}(\mathbb{R})
\]

for any \(0 < t \leq T_* \).

Remark 1.2. The above results is a smoothing effect property in the Gevrey class for the Cauchy problem. We suppose nothing about regularity and high order moment controls for the initial datum.

Recall that Kac’s equation is obtained when one considers radially symmetric solutions of the spatially homogeneous Boltzmann equation for Maxwellian molecules (see [7]). The Cauchy problem for the spatially homogeneous Boltzmann equation is defined by:

\[
\frac{\partial g}{\partial t} = Q(g, g), \quad v \in \mathbb{R}^3, \quad t > 0; \quad g|_{t=0} = g_0,
\]

where the Boltzmann collision operator \(Q(g, f) \) is a bi-linear functional given by

\[
Q(g, f) = \int_{\mathbb{R}^3} \int_{\mathbb{S}^2} B(v - v_*, \sigma) (g(v')f(v') - g(v)f(v)) \, d\sigma \, dv_*,
\]

for \(\sigma \in \mathbb{S}^2 \) and where

\[
v' = \frac{v + v_*}{2} + \frac{|v - v_*|}{2} \sigma, \quad v' = \frac{v + v_*}{2} - \frac{|v - v_*|}{2} \sigma.
\]

The non-negative function \(B(\varepsilon, \sigma) \) called the Boltzmann collision kernel depends only on \(|\varepsilon| \) and the scalar product \(<\varepsilon, \sigma> \). In most of the cases, the collision kernel \(B \) can not be expressed explicitly. However, to capture its main property, it can be assumed to be in the form

\[
B(|v - v_*|, \cos \theta) = \Phi(|v - v_*|) b(\cos \theta), \quad \cos \theta = \frac{v - v_*}{|v - v_*|}, \quad -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}.
\]

The Maxwellian case corresponds to \(\Phi \equiv 1 \). Except for hard sphere model, the function \(b(\cos \theta) \) has a singularity at \(\theta = 0 \). We assume that

\[
\sin \theta \, b(\cos \theta) \approx K \theta^{1-2s} \quad \text{when} \quad \theta \to 0,
\]

where \(K > 0, 0 < s < 1 \). Remark that the solution of Boltzmann equation satisfies also the conservation of mass, energy and the entropy inequality.

A function \(g \) is radially symmetric with respect to \(v \in \mathbb{R}^3 \), if it satisfy the property

\[
g(t, v) = g(t, Av), \quad v \in \mathbb{R}^3
\]

for any rotation \(A \) in \(\mathbb{R}^3 \). We proved the following results.

Theorem 1.3. Assume that the initial datum \(g_0 \in L^{1+2s} \cap L \log L(\mathbb{R}^3) \), \(g_0 \geq 0 \) is radially symmetric. Let \(\Phi \equiv 1 \) and let \(b \) satisfy \((1.7)\) with \(0 < s < \frac{1}{2} \). If \(g \) is a nonnegative radially symmetric weak solution of the Cauchy problem \((1.9)\) such that \(g \in L^\infty([0, +\infty[; L^{1+2s} \cap L \log L(\mathbb{R}^3)) \), then

\[
g(t, \cdot) \in G^{\frac{s'}{s}}(\mathbb{R}^3)
\]

for any \(t > 0 \) and any \(0 < s' < s \).
Remark that for the non cut-off spatially homogeneous Boltzmann equation, we have the H^∞-regularizing effect of weak solutions (see also [9, 12, 13, 4]). Namely if f is a weak solution of the Cauchy problem (1.9) and the cross section b satisfy (1.11), then we have $f(t, \cdot) \in H^\infty(R)$ for any $0 < t$.

Notice that, for the Boltzmann equation, the local solutions having the Gevrey regularity have been constructed in [16] for initial data having higher Gevrey regularity, and the propagation of Gevrey regularity for solutions of Boltzmann equation is studied in [8]. The result given here is concerned with the production of the Gevrey regularity for weak solutions whose initial data have no assumption on the regularity. This regularizing effect property of the Cauchy problem is analogous to the results of [13] where linearized Boltzmann equation is considered. In [14], we have the ultra-analytical regularizing effect of the Cauchy problem in $G_1^2(R^3)$ for the homogeneous Landau equations, which is optimal as seen from the Cauchy problem of heat equation.

2. Fourier analysis of Kac’s operators

We will now be interested in studying the Fourier analysis of the Kac’s collision operator. This is a key step in the regularity analysis of weak solutions. For simplification of notations, we use (\cdot, \cdot) instead of $(\cdot, \cdot)_{L^2(R^3)}$. We have firstly the following coercivity estimate deduced from the non cut-off of collision kernel.

Proposition 2.1. Assume that the cross-section is non cut-off, satisfies the assumption (1.2). Let $f \geq 0, f \neq 0, f \in L^1_1(R) \cap L \log L(R)$, then there exists a constant $c_f > 0$, depending only on $\beta, \|f\|_{L^1_1}$, and $\|f\|_{L \log L}$, such that

\[
- \left(K(f, g), g \right) \geq c_f \|g\|_{H^s(R)}^2 - C \|f\|_{L^1} \|g\|_{L^2}^2
\]

for any smooth function $g \in H^1(R)$.

Remark 2.2. In the proof of Proposition 2.1, the following properties are essential (see (44) in [11]):

(H-1) there exists a $r > 0$ such that $\int_{v \in R, |v| \leq r} f(v) dv \geq \frac{1}{4} \|f\|_{L^1}$

(H-2) there exists a $\delta > 0$ such that $\int_A f(v) dv < \frac{1}{4} \|f\|_{L^1}$ for any measurable set $A \subset R$ satisfying $|A| < \delta$.

As stated in Lemma 2.2 of [11](p.1738), Lebesgue’s dominated convergence theorem shows that both properties follow only from the assumption $f \in L^1$. However, the proof of Theorem 1.6 and Theorem 1.8 require that r and δ can be chosen uniformly with respect to t if Proposition 2.1 is applied to solution $f(t, v)$. Under the conservation of mass (1.6), (H-1) and (H-2), respectively, follow from (1.7) and (1.8), respectively. In the proof of Theorem 1.6 the property (H-2) will be checked directly without the entropy inequality (see Lemma 5.1 below).

Recall the following weak formulation for collision operators

\[
(K(f, g), h) = \int_{R^2} \int_{\pi}^\pi \beta(\theta)f(v_\perp)g(v_\parallel)(h(v_\parallel) - h(v_\perp))d\theta dv_\perp dv_\parallel,
\]
The coercivity term in H^s is deduced from the following positive term,

$$
\frac{1}{2} \int_{\mathbb{R}^2} \int_{-\pi}^{\pi} \beta(\theta) f(v_\cdot) (g(v') - g(v))^2 d\theta dv, dv.
$$

The second term of right hand side can be estimated by using the Cancellation lemma of [1]. But in the Maxwellian case, by an appropriate change of variable, we then have,

$$
\left| \frac{1}{2} \int_{\mathbb{R}^2} \int_{-\pi}^{\pi} \beta(\theta) f(v_\cdot) (g(v') - g(v))^2 d\theta dv, dv \right|
$$

$$\leq C \int_{\mathbb{R}^2} \int_{-\pi}^{\pi} |\sin(\theta)|^{-1-2\alpha} \left| \int f(v) |g(v')|^2 d\theta \right| dv, dv,$n

The coercivity term in H^s is deduced from the following positive term,

$$
\frac{1}{2} \int_{\mathbb{R}^2} \int_{-\pi}^{\pi} \beta(\theta) f(v_\cdot) (g(v') - g(v))^2 d\theta dv, dv.
$$

Here we need the Bobylev formula, i.e. the Fourier transform of collision operators:

$$
\mathcal{F}(K(f, g))(\xi) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \beta(\theta) \left[\hat{f}(\xi, \theta) \sin(\theta) \hat{g}(\xi, \theta) - \hat{f}(0) \hat{g}(\xi, \theta) \right] d\theta,
$$

for suitable functions f and g and by using both properties (1) and (2) and the unifom integrability of f_\cdot. From the above formula, we can get also the following upper bound estimates (see [1, 4, 13]). For $m, \ell \in \mathbb{R}$, and for suitable functions f, g, we have

$$
\|K(f, g)\|_{H^m(\mathbb{R}^n)} \leq C \|f\|_{H^\alpha_m(\mathbb{R}^n)} \|g\|_{H^{\alpha+2\ell}(\mathbb{R}^n)},
$$

where $\alpha^+ = \max(\alpha, 0)$.

To study the Gevrey regularity of the weak solution, as in [13, 14], we consider the exponential type mollifier. For $0 < \delta < 1$, $c_0 > 0$ and $0 < s' < s$, we set

$$
G_\delta(t, \xi) = \frac{e^{c_0 t |\xi|^2}}{1 + \delta e^{c_0 t |\xi|^2}},
$$

where

$$
\langle \xi \rangle = (1 + |\xi|^2)^{\frac{s}{2}}, \quad \xi \in \mathbb{R}.
$$

Then, for any $0 < \delta < 1$,

$$
G_\delta(t, \xi) \in L^\infty([0, T] \times \mathbb{R}),
$$

and

$$
\lim_{\delta \to 0} G_\delta(t, \xi) = e^{c_0 t \langle \xi \rangle^{2s}}.
$$

Denote by $G_\delta(t, D_\cdot)$, the Fourier multiplier of symbol $G_\delta(t, \xi)$, we have

$$
G_\delta g(t, v) = G_\delta(t, D_\cdot) g(t, v) = \mathcal{F}_{\hat{\xi} \to \xi}^{-1}(G_\delta(t, \xi) \hat{g}(t, \xi)).
$$
Then our aim is to prove the uniform boundedness (with respect to $0 < \delta < 1$ of the term $\|G_\delta(t, D_\hbar)f(t, \cdot)\|_{L^2(\mathbb{R})}$ for the weak solution of the Cauchy problem \eqref{Cauchy_problem}. In what follows, we will use the same notation G_δ for the pseudo-differential operators $G_\delta(t, D_\hbar)$ and also its symbol $G_\delta(t, \xi)$.

Lemma 2.3. Let $T > 0, c_0 > 0$. We have that for any $0 < \delta < 1$ and $0 \leq t \leq T$, $\xi \in \mathbb{R}$,

$$|\partial_t G_\delta(t, \xi)| \leq c_0(\xi)^{2\delta} \|G_\delta(t, \xi)\|,$$

and

$$|\partial_\xi G_\delta(t, \xi)| \leq 2s'c_0 t (\xi)^{2\delta - 1} G_\delta(t, \xi)$$

with $C > 0$ independent of δ.

In fact, we have the following formulas

\begin{equation}
\partial_t G_\delta(t, \xi) = c_0(\xi)^{2\delta} \|G_\delta(t, \xi)\| \frac{1}{1 + \delta e^{|\theta(t)|^{2\delta}}},
\end{equation}

\begin{equation}
\partial_\xi G_\delta(t, \xi) = 2s'c_0 t (1 + |\xi|^2)^{\delta - 1} \|G_\delta(t, \xi)\| \frac{1}{1 + \delta e^{|\theta(t)|^{2\delta}}},
\end{equation}

and

\begin{equation}
\partial^2_\xi G_\delta(t, \xi) = \left(2s'c_0 t (1 + |\xi|^2)^{\delta - 1} \|G_\delta(t, \xi)\| \frac{1 - \delta e^{|\theta(t)|^{2\delta}}}{(1 + \delta e^{|\theta(t)|^{2\delta}})^2} + 2s'c_0 t \left(1 + |\xi|^2)^{\delta - 1} + 2(\xi'^{\delta - 2} + 1)\xi^2 (1 + |\xi|^2)^{\delta - 2}\right) G_\delta(t, \xi) \right) \frac{1}{1 + \delta e^{|\theta(t)|^{2\delta}}}.\end{equation}

Lemma 2.4. There exists $C > 0$ such that for all $0 < \delta < 1$ and $\xi \in \mathbb{R}$, we have,

\begin{equation}
|G_\delta(\xi) - G_\delta(\xi \cos \theta)| \leq C \sin^2(\theta/2) (\xi)^{2\delta} \|G_\delta(\xi \cos \theta)\| G_\delta(\xi \sin \theta),
\end{equation}

and

\begin{equation}
\left|\left(\partial_\xi G_\delta(\xi) - \partial_\xi G_\delta(\xi \cos \theta)\right) G_\delta(\xi \cos \theta)\right| \leq C \sin^2(\theta/2) (\xi)^{4\delta - 1} \|G_\delta(\xi \cos \theta)\| G_\delta(\xi \sin \theta),
\end{equation}

where $(4\delta - 1)^+ = \max\{4\delta - 1, 0\}$.

Proof. For the estimate \eqref{Lemma_2.4_estimate1}, we have, by using the Taylor formula

$$G_\delta(\xi) - G_\delta(\xi \cos \theta) = (\xi - \xi \cos \theta) \int_0^1 \left(\partial_\xi G_\delta(\xi \cos \theta + \tau(\xi - \xi \cos \theta))\right) d\tau$$

where $\xi = \xi \cos \theta + \tau(\xi - \xi \cos \theta)$. Then \eqref{Lemma_2.4_estimate2} implies

$$|G_\delta(t, \xi \cos \theta)| \leq 4s'c_0 t |\xi| \sin^2(\theta/2) \int_0^1 G_\delta(t, \xi'\xi) \xi'^{2\delta - 1} d\tau.$$

For $0 \leq \tau \leq 1$ and $-\pi/4 \leq \theta \leq \pi/4$,

$$\frac{\sqrt{2}}{2} |\xi| \leq |\xi'\xi| = |\xi \cos \theta + \tau(\xi - \xi \cos \theta)| \leq |\xi|,$$

which implies, for $0 < 2s' < 1$, that there exists $C_\epsilon > 0$ such that

$$|\xi'|^{2\delta} \leq (\xi)^{2\delta}, \quad |\xi'|^{2\delta - 1} \leq C_\epsilon (\xi)^{2\delta - 1}.$$

On the other hand, $G_\delta(t, \xi) = G_\delta(t, |\xi|)$ is increasing with respect to $|\xi|$, since for $\xi > 0$,

$$\partial_\xi G_\delta(t, \xi) > 0,$$

then

$$G_\delta(t, \xi') \leq G_\delta(t, \xi).$$
By using
\[|\xi|^2 = |\xi \cos \theta|^2 + |\xi \sin \theta|^2, \]
and
\[(1 + a + b)^{2s'} \leq (1 + a)^{2s'} + (1 + b)^{2s'}, \]
we get
\[(1 + \delta e^\alpha)(1 + \delta e^\beta) \leq 3(1 + \delta e^{\alpha+\beta}), \]
we have
\[G_\delta(\xi) \leq 3G_\delta(\xi \cos \theta)G_\delta(\xi \sin \theta). \]
Thus
\[|G_\delta(\xi) - G_\delta(\xi \cos \theta)| \leq C \sin^2(\theta/2)\langle \xi \rangle^{2s'} G_\delta(\xi \cos \theta)G_\delta(\xi \sin \theta). \]
We have proved the estimate (2.9) when \(|\theta| \leq \pi/4 \). If \(\pi/4 \leq |\theta| \leq \pi/2 \), we have
\[|G_\delta(\xi) - G_\delta(\xi \cos \theta)| \leq |G_\delta(\xi)| + |G_\delta(\xi \cos \theta)| \leq 2|G_\delta(\xi)| \]
\[\leq 6 G_\delta(\xi \cos \theta)G_\delta(\xi \sin \theta) \leq C \sin^2(\theta/2) G_\delta(\xi \cos \theta)G_\delta(\xi \sin \theta). \]
For the estimate (2.10), by using (2.8), we have that if \(|\theta| \leq \pi/4 \),
\[\left| \left(\partial_\xi G_\delta(\xi) \right) - \left(\partial_\xi G_\delta(\xi \cos \theta) \right) \right| = \left| \left(\xi - \xi \cos \theta \right) \int_0^1 \left(\partial^2_\xi G_\delta(\xi_\tau) \right) d\tau \right| \]
\[\leq C |\xi| \sin^2(\theta/2) \langle \xi \rangle^{2(2s'-1)} \int_0^1 G_\delta(\xi_\tau) d\tau \]
\[\leq C \sin^2(\theta/2) \langle \xi \rangle^{4s'-1} G_\delta(\xi \sin \theta)G_\delta(t, \xi \cos \theta). \]
The case \(\pi/4 \leq |\theta| \leq \pi/2 \) is similar to (2.9). Thus, we have proved Lemma 2.4 \(\Box \)

We now study the commutators of Kac’s collision operators with the above mollifier operators.

Proposition 2.5. Assume that \(0 < s' < 1/2 \), Let \(f, g \in L^2_s(\mathbb{R}_+^2) \) and \(h \in H^{r'}(\mathbb{R}_+) \), then we have that
\[\left| \left(G_\delta K(f, g), h \right) - \left(K(f, G_\delta g), h \right) \right| \leq C \| G_\delta f \|_{L^2_s(\mathbb{R}_+^2)} \| G_\delta g \|_{H^{r'}(\mathbb{R}_+)} \| h \|_{H^{r'}(\mathbb{R}_+)}. \]
and
\[\left| \left((v G_\delta) K(f, g), h \right) - \left(K(f, (v G_\delta) g), h \right) \right| \leq C \left(\| f \|_{L^2_s(\mathbb{R}_+^2)} + \| G_\delta f \|_{L^2_s(\mathbb{R}_+^2)} \right) \| G_\delta g \|_{H^{r'}(\mathbb{R}_+)} \| h \|_{H^{r'}(\mathbb{R}_+)}. \]
Proof. By definition, we have, for a suitable function \(F \),
\[\mathcal{F}(G_\delta F)(\xi) = G_\delta(t, \xi)\hat{F}(\xi), \]
and
\[\mathcal{F}((v G_\delta) F)(\xi) = i\partial_\xi(G_\delta \hat{F})(\xi) = i(\partial_\xi G_\delta)(\xi)\hat{F}(\xi) + iG_\delta(\xi)(\partial_\xi \hat{F})(\xi). \]
By using the Bobylev formula (2.2) and the Plancherel formula,

\[
(2\pi)^{1/2} \left\{ [G_\delta K(f, g), h] - [K(f, G_\delta g), h] \right\}
\]

\[
= \int_{\mathbb{R}} \int_{-\pi}^{\pi} \beta(\theta) G_\delta(\xi) \left\{ \hat{f}(\xi \sin \theta) \hat{g}(\xi \cos \theta) - \hat{f}(0) \hat{g}(\xi) \right\} d\theta \overline{h(\xi)} d\xi
\]

\[
- \int_{\mathbb{R}} \int_{-\pi}^{\pi} \beta(\theta) \left\{ \hat{f}(\xi \sin \theta) (F(G_\delta g)) (\xi \cos \theta) - \hat{f}(0) (F(G_\delta g))(\xi) \right\} d\theta \overline{h(\xi)} d\xi
\]

\[
= \int_{\mathbb{R}} \int_{-\pi}^{\pi} \beta(\theta) \left\{ G_\delta(\xi) - G_\delta(\xi \cos \theta) \right\} \hat{g}(\xi \cos \theta) \overline{h(\xi)} d\theta d\xi.
\]

The above formula can be justified by the cutoff approximation of collision kernel \(\beta(\theta) \), then (2.9) and (1.3) imply

\[
\left| [G_\delta K(f, g), h] - [K(f, G_\delta g), h] \right| \leq C \int_{\mathbb{R}} \int_{-\pi/2}^{\pi/2} \beta(\theta) \sin^2(\theta/2) |G_\delta(\xi \sin \theta)| \hat{f}(\xi \sin \theta)| \hat{g}(\xi \cos \theta)| \langle \xi \rangle^{2 \nu} | \hat{h}(\xi)| d\theta d\xi
\]

\[
\leq C \left\| G_\delta \hat{f} \right\|_{L^2(\mathbb{R}^2)} \int_{-\pi/2}^{\pi/2} \beta(\theta) \sin^2(\theta/2) \left\| G_\delta(\xi \cos \theta) \hat{g}(\xi \cos \theta) \right\| \langle \xi \rangle^{2 \nu} | \hat{h}(\xi)|^{1/2} \|^2 \| h \|_{H^\nu(\mathbb{R})} d\theta
\]

\[
\leq C \left\| G_\delta \hat{f} \right\|_{L^2(\mathbb{R}^2)} \left\| G_\delta \hat{g} \right\|_{L^2(\mathbb{R}^2)} \left\| h \right\|_{H^\nu(\mathbb{R})} \left\| h \right\|_{H^\nu(\mathbb{R})},
\]

where we have used the following continuous embedding

\[
L^2_\alpha(\mathbb{R}) \subset L^1(\mathbb{R}), \quad \alpha > 1/2.
\]

We have proved (2.12).

To treat (2.13), by using (2.15), we similarly have,

\[
(2\pi)^{1/2} \left\{ \left\langle (v G_\delta) K(f, g), h \right\rangle - \left\langle K(f, (v G_\delta) g), h \right\rangle \right\}
\]

\[
= \int_{\mathbb{R}} \int_{-\pi}^{\pi} \beta(\theta) \left\{ \partial_\xi \left(G_\delta(\xi) \hat{f}(\xi \sin \theta) \hat{g}(\xi \cos \theta) \right) \right\} d\theta \overline{h(\xi)} d\xi d\theta
\]

\[
- i \int_{\mathbb{R}} \int_{-\pi}^{\pi} \beta(\theta) \sin \theta \left(\partial_\xi \hat{f}(\xi \sin \theta) G_\delta(\xi) \hat{g}(\xi \cos \theta) \right) \overline{h(\xi)} d\xi d\theta
\]

\[
+ i \int_{\mathbb{R}} \int_{-\pi}^{\pi} \beta(\theta) \hat{f}(\xi \sin \theta) \left(\partial_\xi G_\delta(\xi) \hat{g}(\xi \cos \theta) - (\partial_\xi G_\delta(\xi)) \hat{g}(\xi \cos \theta) \right) \overline{h(\xi)} d\xi d\theta
\]

\[
= (I) + (II).
\]
For the term \((I) \), we have
\[
|I| \leq \int_{\mathbb{R}^d} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \beta(\xi) |\sin(\xi)| |G_\delta(\xi \cos \theta) \hat{g}(\xi \cos \theta)| \left| \hat{h}(\xi) \right| d\xi d\theta
\]
\[
+ \int_{\mathbb{R}^d} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \beta(\xi) |\sin(\xi)| |G_\delta(\xi) - G_\delta(\xi \cos \theta)| \left| \hat{g}(\xi \cos \theta) \right| \left| \hat{h}(\xi) \right| d\xi d\theta
\]
\[
\leq I_1 + I_2.
\]

Firstly, \((1.3) \) with the hypothesis \(0 < s < 1/2 \) implies that
\[
I_1 \leq \|\delta \mathcal{F} \|_{L^2(\mathbb{R}^d)} \int_{\mathbb{R}^d} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \beta(\xi) |\sin(\xi)| |G_\delta(\xi \cos \theta) \hat{g}(\xi \cos \theta)| \left| \hat{h}(\xi) \right| d\xi d\theta
\]
\[
\leq C \|f\|_{L^1(\mathbb{R}^d)} \int_{\mathbb{R}^d} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \beta(\xi) \left| \frac{\sin(\theta)}{|\cos \theta|^{1/2}} \right| d\theta \|\hat{h}\|_{L^2(\mathbb{R}^d)}
\]
\[
\times \left(\int_{\mathbb{R}^d} |G_\delta(\xi \cos \theta) \hat{g}(\xi \cos \theta)|^2 \left| d(\xi \cos \theta) \right| \right)^{1/2}
\]
\[
\leq C \|f\|_{L^1(\mathbb{R}^d)} \|G_\delta \hat{g}\|_{L^2(\mathbb{R}^d)} \|h\|_{L^2(\mathbb{R}^d)}.
\]

For the term \(I_2 \), by using \((2.9) \) we have the following estimates which are also true for \(0 < s < 1 \),
\[
I_2 \leq \int_{\mathbb{R}^d} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \beta(\xi) |\sin(\xi)| \left| \frac{\sin^2(\theta/2)}{|\cos \theta|^{1/2}} \right| |G_\delta(\xi \sin \theta) (\delta \mathcal{F})(\xi \sin \theta)|
\]
\[
\times \left(\int_{\mathbb{R}^d} |G_\delta(\xi \sin \theta) (\delta \mathcal{F})(\xi \sin \theta)|^2 \left| d(\xi \sin \theta) \right| \right)^{1/2}
\]
\[
\leq C \|h\|_{H^s(\mathbb{R}^d)} \|G_\delta \hat{g}\|_{H^s(\mathbb{R}^d)} \|h\|_{H^s(\mathbb{R}^d)}
\]
\[
\times \left(\int_{\mathbb{R}^d} |G_\delta(\xi \sin \theta) (\delta \mathcal{F})(\xi \sin \theta)|^2 \left| d(\xi \sin \theta) \right| \right)^{1/2}
\]
\[
\leq C \|G_\delta \hat{g}\|_{H^s(\mathbb{R}^d)} \|G_\delta (v \mathcal{F})\|_{L^2(\mathbb{R}^d)} \|h\|_{H^s(\mathbb{R}^d)}.
\]

Moreover, for a suitable function \(F \), we have
\[
G_\delta (v \mathcal{F}) = v G_\delta F + [G_\delta, v] F,
\]
and
\[
\mathcal{F}([G_\delta, v] F)(\xi) = i(\mathcal{F} G_\delta)(\xi) \mathcal{F}(\xi).
\]
Then the symbolic calculus \((2.7) \) implies that, for \(0 < 2s' < 1 \), we have
\[
(2.16) \quad \|G_\delta (v \mathcal{F})\|_{H^s(\mathbb{R}^d)} \leq C \|G_\delta F\|_{H^{s'}(\mathbb{R}^d)}
\]
for any \(\alpha \geq 0 \), then
\[
(2.17) \quad |(I)| \leq C \left(\|f\|_{L^1(\mathbb{R}^d)} + \|G_\delta f\|_{L^2(\mathbb{R}^d)} \right) \|G_\delta \hat{g}\|_{H^s(\mathbb{R}^d)} \|h\|_{H^s(\mathbb{R}^d)}
\]
On the other hand, for the term (II), we have
\[
\partial \xi(G_\delta(\xi)\hat{g}(\xi \cos \theta)) - (\partial \xi(G_\delta(\xi)))\hat{g}(\xi \cos \theta) = [G_\delta(\xi) - G_\delta(\xi \cos \theta)](\partial \xi \hat{g})(\xi \cos \theta) + G_\delta(\xi)(\cos \theta - 1)(\partial \xi \hat{g})(\xi \cos \theta) + [(\partial \xi G_\delta(\xi)) - (\partial \xi G_\delta(\xi \cos \theta))] \hat{g}(\xi \cos \theta)
\]
\[= A_1 + A_2 + A_3.
\]
Thus
\[
|\langle II \rangle| \leq C \int_{\mathbb{R}_\xi} \int_{\mathbb{R}_\theta} \beta(\theta) |\hat{f}(\xi \sin \theta)| A_1 + A_2 + A_3 \left| \hat{h}(\xi) \right| d\xi d\theta.
\]
We study now the above 3 terms on the right-hand side. By using (2.9),
\[
\int_{\mathbb{R}_\xi} \int_{\mathbb{R}_\theta} \beta(\theta) \left| \hat{f}(\xi \sin \theta) \right| |A_1| \left| \hat{h}(\xi) \right| d\xi d\theta
\]
\[\leq \int_{\mathbb{R}_\xi} \int_{\mathbb{R}_\theta} \beta(\theta) \sin^2(\theta/2) \left| G_\delta(\xi \sin \theta) \hat{f}(\xi \sin \theta) \right| \left| \hat{g}(\xi \cos \theta) \right| d\xi d\theta
\]
\[\leq C \|G_\delta f\|_{L^1(\mathbb{R}_v)} \int_{\mathbb{R}_\xi} \beta(\theta) \left| \sin^2(\theta/2) \right| \left| \hat{f}(\xi \sin \theta) \right| d\xi d\theta
\]
\[\leq C \|G_\delta f\|_{L^1(\mathbb{R}_v)} \|G_\delta \|_{\mathcal{H}^r(\mathbb{R}_v)} \|h\|_{\mathcal{H}^r(\mathbb{R}_v)}.
\]
The estimate (2.11) and cos $\theta - 1 = -2 \sin^2(\theta/2)$ imply
\[
\int_{\mathbb{R}_\xi} \int_{\mathbb{R}_\theta} \beta(\theta) |\hat{f}(\xi \sin \theta)| |A_2| \left| \hat{h}(\xi) \right| d\xi d\theta
\]
\[\leq C \int_{\mathbb{R}_\xi} \int_{\mathbb{R}_\theta} \beta(\theta) \sin^2(\theta/2) \left| G_\delta(\xi \sin \theta) \hat{f}(\xi \sin \theta) \right| d\xi d\theta
\]
\[\leq C \|G_\delta f\|_{L^2(\mathbb{R}_v)} \|G_\delta \|_{\mathcal{H}^r(\mathbb{R}_v)} \|h\|_{L^2(\mathbb{R}_v)}.
\]
Finally, the hypothesis $0 < s < 1/2$ implies $(4s' - 1)^+ < 2s'$, then (2.10) yields,
\[
\int_{\mathbb{R}_\xi} \int_{\mathbb{R}_\theta} \beta(\theta) |\hat{f}(\xi \sin \theta)| |A_3| \left| \hat{h}(\xi) \right| d\xi d\theta
\]
\[\leq C \int_{\mathbb{R}_\xi} \int_{\mathbb{R}_\theta} \beta(\theta) \sin^2(\theta/2) \left| G_\delta(\xi \sin \theta) \hat{f}(\xi \sin \theta) \right| d\xi d\theta
\]
\[\leq C \|G_\delta f\|_{L^2(\mathbb{R}_v)} \|G_\delta \|_{\mathcal{H}^r(\mathbb{R}_v)} \|h\|_{\mathcal{H}^r(\mathbb{R}_v)}.
\]
By summing the above 3 estimates, (2.16) implies that
\[
|\langle II \rangle| \leq C \|G_\delta f\|_{L^2(\mathbb{R}_v)} \|G_\delta \|_{\mathcal{H}^r(\mathbb{R}_v)} \|h\|_{\mathcal{H}^r(\mathbb{R}_v)}.
\]
Proof of Proposition (2.18) is established. □

Remark 2.6. In the proof of estimate for the term I_1 and the last term of (II), we have used crucially the restrict assumption $0 < s < 1/2$.
3. Sobolev regularizing effect of weak solutions

We will first give an H^{∞}-regularizing effect results for Kac’s equation. The following Theorem is more precise than Theorem 1.1 of [13] where the homogeneous Boltzmann equation with Maxwellian molecules has been studied.

Theorem 3.1. Assume that the initial datum $f_0 \in L^1_{2n+2} \cap L \log L(\mathbb{R})$, and the cross-section β satisfy \((L_2)\) with $0 < s < \frac{1}{2}$. If $f \in L^\infty([0, +\infty[; L^1_{2n+2} \cap L \log L(\mathbb{R}))$ is a nonnegative weak solution of the Cauchy problem \((L_1)\), then $f(t, \cdot) \in H^s_{2n}(\mathbb{R})$ for any $t > 0$.

Remark 3.2. 1) This is a H^{∞}-smoothing effect results for the Cauchy problem, it is different from that of \([7, 11]\) where their assumption is that all moments of the initial datum are bounded.

2) The results of theorem 3.1 is also true if we assume the following Debye-Yukawa type collision kernel:

$$\beta(\theta) = C_0 \frac{\cos \theta}{\sin \theta} (\log |\theta|^{-1})^m, \quad 0 < m.$$

To prove the Theorem 3.1 we use, as in \([13]\), the mollifier of polynomial type

$$M_0(t, \xi) = \langle \xi \rangle^{N-1} (1 + \delta |\xi|^2)^{-N_0},$$

for $0 < \delta < 1$, $t \in [0, T_0]$ and $2N_0 = T_0N + 4$.

The idea is the same as the section 3 of \([13]\), but now we need to estimate the commutators with weighted $\langle \nu \rangle^2$. It is analogous to the computation of preceding section. We give here only the main points of the proof.

Lemma 3.3. We have that for any $0 < \delta < 1$ and $0 \leq t \leq T_0$, $\xi \in \mathbb{R}$,

$$|\partial_t M_0(t, \xi)| \leq N \log \langle \xi \rangle M_0(t, \xi).$$

For $-\pi/4 \leq \theta \leq \pi/4$,

$$|M_0(\xi) - M_0(\xi \cos \theta)| \leq C \sin^2(\theta/2) M_0(\xi \cos \theta),$$

$$|\partial_\theta (\xi) - \partial_\theta (\xi \cos \theta)| \leq C \sin^2(\theta/2) (\xi)^{-1} M_0(\xi \cos \theta),$$

and

$$|\partial^2_\theta (\xi) - \partial^2_\theta (\xi \cos \theta)| \leq C \sin^2(\theta/2) (\xi)^{-2} M_0(\xi \cos \theta),$$

where the constant C depends on T_0, N, but is independents of $0 < \delta < 1$.

We prove also this Lemma by using the Taylor formula, and for any $k \in \mathbb{N}$,

$$|\partial^k_\theta M_0(\xi)| \leq C_k \langle \xi \rangle^{-k} M_0(\xi), \quad \xi \in \mathbb{R}$$

with C_k depends on T_0, N, but is independents of $0 < \delta < 1$. Moreover, for the polynomial mollifier, we can substitute the inequality \((2.11)\) by the following inequality,

$$M_0(\xi) \leq C M_0(\xi \cos \theta), \quad -\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4},$$

here again C depending on N_0, T, and independents of $\delta > 0$. We have therefore

Proposition 3.4. Assume that $0 < s < 1/2$, we have that

$$\left| \left((\nu M_0) K(f, g), h \right) - \left(K(f, (\nu M_0) g), h \right) \right| \leq C \|f\|_{L^2(\mathbb{R})} \|g\|_{L^2(\mathbb{R})} \|h\|_{L^2(\mathbb{R})}.$$
and

\[(3.3) \quad \left\| (v^2 M_\delta) K(f, g), h \right\| \leq C \left\| f \right\|_{L^2(\mathbb{R}))} \left\| M_\delta g \right\|_{L^2(\mathbb{R}))} \left\| h \right\|_{L^2(\mathbb{R}))}, \]

The proof of (3.2) is similar to (2.13) where we substitute Lemma 2.4 by Lemma 3.3 and replace (2.11) by (3.1). Consider now the estimate (3.3), we have, as in the proof of (3.4)

\[\|L\|_{L^2(\mathbb{R}))} \left\| M_\delta g \right\|_{L^2(\mathbb{R}))} \left\| h \right\|_{L^2(\mathbb{R}))}, \]

and for 0 < 2s < 1,

\[|B_2| \leq C \left\| f \right\|_{L^2(\mathbb{R}))} \left(\left\| M_\delta g \right\|_{L^2(\mathbb{R}))} + \left\| M_\delta (v g) \right\|_{L^2(\mathbb{R}))} \right\| h \right\|_{L^2(\mathbb{R}))}. \]

The term B_3 is evidently more complicated, but the idea is the same, we omit here their computations.

Using the continuous embedding

\[L^1_f(\mathbb{R}) \subset H^{-1}(\mathbb{R}), \]

the upper bounded (2.3) with m = −2, ℓ = 2 and 0 < 2s < 1 imply,

\[\|K(f, g)\|_{H^{-2}(\mathbb{R}))} \leq C \left\| f \right\|_{L^2(\mathbb{R}))} \left\| M_\delta g \right\|_{L^2(\mathbb{R}))} \leq C \left\| f \right\|_{L^2(\mathbb{R}))} \left\| M_\delta g \right\|_{L^2(\mathbb{R}))}. \]

Let f \in L^{\infty}(0, +\infty; L^1_{2+2s}(\mathbb{R})) be a weak solution of the Cauchy problem (1.1), then we can take

\[f_1 = M_\delta(t, D_\delta)(v^2 M_\delta(t, D_\delta) f \in L^{\infty}(0, T_0; H^{2+2s}_{2+2s}(\mathbb{R})), \]

as test functions of the Cauchy problem (1.1). By using similar manipulations as in (13), we can obtain the regularity with respect to t variable, to simplify the notations we suppose that f_1 \in C^1([0, T_0]; H^{2+2s}_{2+2s}(\mathbb{R})). We have

\[(\partial_t f(t, \cdot), f_1(t, \cdot))_{L^2(\mathbb{R}))} = (K(f, f), f_1)_{L^2(\mathbb{R}))}. \]

Then Lemma 3.3 Proposition 3.4 the coercivity estimate (2.1) and the conservations (1.6), (1.7), (1.8) imply that

\[\frac{d}{dt}\left\| M_\delta f(t) \right\|^2_{L^2(\mathbb{R}))} + \varepsilon_0 \left\| M_\delta f(t) \right\|^2_{H^s(\mathbb{R}))} \leq C_0 \log^{1/2}(|D_\delta|) \left\| M_\delta f(t) \right\|^2_{L^2(\mathbb{R}))} + C \left\| f(t) \right\|_{L^2(\mathbb{R}))} \left\| M_\delta f(t) \right\|^2_{L^2(\mathbb{R}))}. \]

We now use the following interpolation inequality, for any small \varepsilon > 0

\[\|\log^{1/2}(|D_\delta|) M_\delta f(t) \|^2_{L^2(\mathbb{R}))} \leq \varepsilon \left\| M_\delta f(t) \right\|^2_{H^s(\mathbb{R}))} + C \left\| M_\delta f(t) \right\|^2_{L^2(\mathbb{R}))}. \]
Then for $t \in [0, T_0]$,

$$\frac{d}{dt} \|M_\delta f(t)\|_{L_2^2(\mathbb{R})}^2 \leq C_1 \|M_\delta f(t)\|_{L_2^2(\mathbb{R})}^2$$

where C_1 depends on T_0, N, but independents of $0 < \delta < 1$. So that for $t \in [0, T_0]$,

$$\|M_\delta f(t)\|_{L_2^2(\mathbb{R})} \leq e^{C_1 t} \|M_\delta f(0)\|_{L_2^2(\mathbb{R})} \leq e^{C_1 t} \|f_0\|_{H_2^{-1}(\mathbb{R})} \leq e^{C_1 t} \|f_0\|_{L_2^2(\mathbb{R})}.$$

We have therefore proved for $t \in [0, T_0]$,

$$(1 + |D_0|^2)^{N-1} f(t, \cdot) \in L_2^2(\mathbb{R}).$$

Since we can choose arbitrary $N > 0$ and $T_0 > 0$, we have proved Theorem 3.1.

4. Gevrey regularizing effect of solutions

Theorem 3.1 implies that the weak solution of the Cauchy problem (1.1) satisfies $f \in L^\infty([t_0, T_0]; H_2^1(\mathbb{R}))$ for any $t_0 > 0$. Then f is a solution of the following Cauchy problem:

$$\begin{align*}
\frac{df}{dt} &= K(f, f), \\
\phi &= f(t_0, \cdot) \in H_2^1(\mathbb{R}).
\end{align*}$$

We now study the local Gevrey regularizing effect of the Cauchy problem, and suppose that the initial datum is $f_0 \in H_2^1 \cap L_2^1(\mathbb{R})$. We state this result as the:

Theorem 4.1. Assume that the initial datum $f_0 \in H_2^1 \cap L_2^1(\mathbb{R})$, and the cross-section β satisfy \((\ref{beta-condition}) \) with $0 < s < \frac{1}{2}$. For $T_0 > 0$, if $f \in L^\infty([0, T_0]; H_2^1 \cap L_2^1(\mathbb{R}))$ is a nonnegative weak solution of the Cauchy problem (1.1), then for any $0 < s' < s$, there exists $0 < T_s \leq T_0$ such that $f(t, \cdot) \in G^{s'}(\mathbb{R})$ for any $0 < t \leq T_s$. More precisely, there exists $c_0 > 0$,

$$e^{c_0|D_0|^{2s'}} f \in L^\infty([0, T_s]; L_2^1(\mathbb{R})).$$

Remark 4.2. The above Gevrey smoothing effect property of Cauchy problem is for any weak solution $f \in L^\infty([0, T_0]; H_2^1 \cap L_2^1(\mathbb{R}))$, so that we don’t need to use the uniqueness of solution for Kac’s equation.

We prove the above theorem by construction of a priori estimates for the mollified weak solution. Take $f \in L^\infty([0, T_0]; H_2^1 \cap L_2^1(\mathbb{R}))$ to be a weak solution of the Cauchy problem (1.1), then (2.3) with $m = \ell = 0$ implies that, (recall the assumption $0 < s < 1/2$)

$$K(f, f) \in L^\infty([0, T_0]; L^2(\mathbb{R})).$$

So that we need to choose a test function $\varphi \in C^1([0, T_0]; L^2(\mathbb{R}))$ to make sense

$$(K(f, f), \varphi)_{L^2(\mathbb{R})}.$$

The right way is to choose a mollified weak solution f, we first have

$$\tilde{f}(t, \cdot) = \left(G_\delta(t, D_0) \varphi \right)^2 G_\delta(t, D_0) f(t, \cdot) \in L^\infty([0, T_0]; H^1(\mathbb{R})).$$

Here again we suppose that $\tilde{f} \in C^1([0, T_0]; H^1(\mathbb{R}))$, and study the equation of (1.1) in the following weak formulation

$$\begin{align*}
(\partial_t f(t, \cdot), f(t, \cdot))_{L_2^2(\mathbb{R})} &= (K(f, f), \tilde{f})_{L_2^2(\mathbb{R})}.
\end{align*}$$

(4.1)
Then Proposition 2.5 implies

\[\left(\partial_t f(t, \cdot), \tilde{f}(t, \cdot) \right)_{L^2(\mathbb{R})} = \frac{1}{2} \frac{d}{dt} \|G_\delta f(t)\|_{L^2(\mathbb{R})}^2 \]

\[- \left(\partial_t G_\delta(t, D_x) f(t, \cdot), G_\delta(t, D_x) f(t, \cdot) \right)_{L^2(\mathbb{R})} \]

\[- \left(v \partial_t G_\delta(t, D_x) f(t, \cdot), v G_\delta(t, D_x) f(t, \cdot) \right)_{L^2(\mathbb{R})} \]

Hence Lemma 4.3 is proved.

Then we estimate the two terms on right hand side by using the following lemma.

Lemma 4.3. There exists \(C > 0 \) such that

\[\left\| \left(\partial_t G_\delta(t, D_x) f(t, \cdot), G_\delta(t, D_x) f(t, \cdot) \right)_{L^2(\mathbb{R})} \right\| \leq C \|G_\delta f\|_{H^r(\mathbb{R})}^2, \]

and

\[\left\| \left(v \partial_t G_\delta(t, D_x) f(t, \cdot), v G_\delta(t, D_x) f(t, \cdot) \right)_{L^2(\mathbb{R})} \right\| \leq C \|G_\delta f\|_{H^r(\mathbb{R})}^2. \]

Proof. (4.2) can be deduced directly from (2.6) by using the Plancherel formula. For (4.3), we have

\[\left\| \left(v \partial_t G_\delta(t, D_x) f(t, \cdot), v G_\delta(t, D_x) f(t, \cdot) \right)_{L^2(\mathbb{R})} \right\| = C \left\| \left(\partial_t \left(c_0(\xi)^{2s} G_\delta(t, \xi) \frac{1}{1 + \delta e^{i t} \xi^{2s}} \tilde{f}(t, \xi) \right) \right) \frac{\mathcal{F}(v G_\delta f)(t, \xi)}{d\xi} \right\| \]

\[\leq C \int_{\mathbb{R}} (\xi)^{2s} \left| \partial_t \left(c_0(\xi)^{2s} G_\delta(t, \xi) \tilde{f}(t, \xi) \right) \right| \left| \mathcal{F}(v G_\delta f)(t, \xi) \right| d\xi \]

\[+ C \int_{\mathbb{R}} \left| \partial_t \left(c_0(\xi)^{2s} \frac{1}{1 + \delta e^{i t} \xi^{2s}} \right) \right| \left| G_\delta(t, \xi) \tilde{f}(t, \xi) \right| \left| \mathcal{F}(v G_\delta f)(t, \xi) \right| d\xi \]

\[\leq C \|G_\delta f\|_{H^r(\mathbb{R})}^2, \]

where we use the fact that

\[\left| \partial_t \left(c_0(\xi)^{2s} \frac{1}{1 + \delta e^{i t} \xi^{2s}} \right) \right| \leq C(\xi)^{2s}. \]

Hence Lemma 4.3 is proved. \(\square \)

Then (4.1) and Lemma 4.3 give

\[\frac{1}{2} \frac{d}{dt} \|G_\delta f(t)\|_{L^2(\mathbb{R})}^2 - \left(K(f, f), \tilde{f} \right)_{L^2(\mathbb{R})} \leq C \|G_\delta f\|_{H^r(\mathbb{R})}^2, \]

On the other hand, we have

\[\left(K(f, f), \tilde{f} \right)_{L^2(\mathbb{R})} = \left(G_\delta K(f, f), G_\delta \tilde{f} \right)_{L^2(\mathbb{R})} \]

\[= \left(K(f, G_\delta f), G_\delta \tilde{f} \right)_{L^2(\mathbb{R})} + \left(K(f, v G_\delta f), v G_\delta \tilde{f} \right)_{L^2(\mathbb{R})} \]

\[+ \left(G_\delta K(f, f) - K(f, G_\delta f), G_\delta \tilde{f} \right)_{L^2(\mathbb{R})} \]

\[+ \left(v G_\delta K(f, f) - K(f, v G_\delta f), v G_\delta \tilde{f} \right)_{L^2(\mathbb{R})}. \]

Then Proposition 2.5 implies

\[\left\| \left(G_\delta K(f, f) - K(f, G_\delta f), G_\delta \tilde{f} \right)_{L^2(\mathbb{R})} \right\| \leq C \|G_\delta f\|_{L^2(\mathbb{R})} \|G_\delta f\|_{H^r(\mathbb{R})}^2. \]
and

\[
\left| \left(\nu G_\delta K(f, f) - K(f, \nu G_\delta f), \nu G_\delta f \right) \right|_{L^2(\mathbb{R})} \leq C \left(\|f\|_{L^1(\mathbb{R})} + \|G_\delta f\|_{L^2(\mathbb{R})} \right) \|G_\delta f\|_{H^1(\mathbb{R})}^2.
\]

The Proposition 2.1 implies

\[
-K(f, G_\delta f) \leq f_\delta \|G_\delta f\|_{H^1(\mathbb{R})}^2 - \|f\|_{L^1(\mathbb{R})} \|G_\delta f\|_{L^2(\mathbb{R})}^2,
\]

\[
-K(f, \nu G_\delta f, \nu G_\delta f) \leq f_\delta \|G_\delta f\|_{H^1(\mathbb{R})}^2 - \|f\|_{L^1(\mathbb{R})} \|G_\delta f\|_{L^2(\mathbb{R})}^2.
\]

Since

\[
\|G_\delta f\|_{H^1(\mathbb{R})}^2 \leq \|G_\delta f\|_{H^1(\mathbb{R})}^2 + \|f\|_{L^1(\mathbb{R})} \|G_\delta f\|_{L^2(\mathbb{R})}^2 + C \|G_\delta f\|_{L^2(\mathbb{R})}^2,
\]

By summing all the above estimates and (4.3), we obtain

\[
\frac{d}{dt}\|G_\delta f(t)\|_{L^2(\mathbb{R})}^2 + c_f(t) \|G_\delta f(t)\|_{H^1(\mathbb{R})}^2 \leq C \|G_\delta f(t)\|_{H^1(\mathbb{R})}^2 + \|f(t)\|_{L^1(\mathbb{R})} \|G_\delta f(t)\|_{L^2(\mathbb{R})}^2 + C \|G_\delta f(t)\|_{L^2(\mathbb{R})}^2.
\]

End of proof of Theorem 4.1

By using (1.6) and (1.7), we have

\[
\|f(t)\|_{L^1(\mathbb{R})} + \|f(t)\|_{L^2(\mathbb{R})} \leq C \|f_0\|_{L^2(\mathbb{R})}, \quad c_f(t) \geq c_{f_0} > 0.
\]

Then (4.3) yields

\[
\frac{d}{dt} \|G_\delta f(t)\|_{L^2(\mathbb{R})}^2 + c_{f_0} \|G_\delta f(t)\|_{H^1(\mathbb{R})}^2 \leq C_{f_0} \|G_\delta f(t)\|_{H^1(\mathbb{R})}^2 + C \|G_\delta f(t)\|_{L^2(\mathbb{R})}^2.
\]

We now need the following interpolation inequality, for \(0 < s' < s\) and any \(\lambda > 0\),

\[
\|u\|_{L^p(\mathbb{R})} \leq \lambda \|u\|_{L^{s'}(\mathbb{R})} + \lambda^{-\frac{1}{s'}} \|u\|_{L^s(\mathbb{R})}.
\]

Then for any small \(\varepsilon > 0\),

\[
C_{f_0} \|G_\delta f(t)\|_{H^1(\mathbb{R})}^2 \leq \varepsilon \|G_\delta f(t)\|_{H^1(\mathbb{R})}^2 + C_{\varepsilon f_0} \|G_\delta f(t)\|_{L^2(\mathbb{R})}^2,
\]

and

\[
C \|G_\delta f(t)\|_{L^1(\mathbb{R})} \|G_\delta f(t)\|_{H^1(\mathbb{R})} \leq \varepsilon \|G_\delta f(t)\|_{H^1(\mathbb{R})}^2 + C_{\varepsilon} \|G_\delta f(t)\|_{L^2(\mathbb{R})}^{s' + 2}.
\]

We finally get from (4.3) that for any \(0 < \varepsilon \) and \(0 < s' < s\), there exists \(C_\varepsilon > 0\) such that

\[
\frac{d}{dt} \|G_\delta f(t)\|_{L^2(\mathbb{R})}^2 + (c_{f_0} - 2\varepsilon) \|G_\delta f(t)\|_{H^1(\mathbb{R})}^2 \leq C_{\varepsilon f_0} \|G_\delta f(t)\|_{L^2(\mathbb{R})}^2 + C_{\varepsilon} \|G_\delta f(t)\|_{L^2(\mathbb{R})}^{s' + 2}.
\]

We choose \(0 < 2\varepsilon \leq c_{f_0}\), we get

\[
\frac{d}{dt} \|G_\delta f(t)\|_{L^2(\mathbb{R})}^2 \leq C_1 \|G_\delta f(t)\|_{L^2(\mathbb{R})} + C_2 \|G_\delta f(t)\|_{L^2(\mathbb{R})}^{s' + 1}, \quad t \in [0, T_0],
\]

with \(C_1, C_2 > 0\) and independent of \(\delta > 0\). Then

\[
\frac{d}{dt} \left(e^{-C_1 t} \|G_\delta f(t)\|_{L^2(\mathbb{R})} \right) \leq C_2 e^{C_1 t} \left(e^{-C_1 t} \|G_\delta f(t)\|_{L^2(\mathbb{R})} \right)^{s' + 1}.
\]
So that, for $0 < \delta < 1$,
\[
\|G_\delta f(t)\|_{L^2(\mathbb{R}^n)} \leq \frac{C_1 e^{C_3 t} \|f_0\|_{L^2(\mathbb{R}^n)}}{(C_1 + C_2 (1 - e^{C_3 t}) \|f_0\|_{L^2(\mathbb{R}^n)})^{\frac{1}{2}}}.
\]

We now choose $0 < T_* \leq T_0$ small enough so that
\[
(C_1 + C_2 (1 - e^{C_3 t}) \|f_0\|_{L^2(\mathbb{R}^n)})^{\frac{1}{2}} \geq C_3 > 0, \quad t \in [0, T_*],
\]
then by compactness and by taking limit $\delta \to 0$, we have for $t \in [0, T_*]$,
\[
\|e^{\alpha_0 (D_3) t^2} f\|_{L^2([0,T_*]; L^2(\mathbb{R}^n))}^2 \leq e^{C_1 T_*} \|f_0\|_{L^2(\mathbb{R}^n)}^2.
\]

We therefore have proved Theorem 4.1.

5. Radially symmetric Boltzmann equations

We consider now the Boltzmann collision operators (1.10). In the Maxwellian case, the Bobylev’s formula takes the form
\[
\mathcal{F}(Q(g, f))(\xi) = \int_{\mathbb{R}^3} b \left(\frac{\xi}{|\xi|} \cdot \sigma \right) \left[\tilde{g}(\xi) \tilde{f}(\xi^+) - \tilde{g}(0) \tilde{f}(\xi) \right] d\sigma,
\]
where $\xi \in \mathbb{R}^3$,
\[
\xi^+ = \frac{\xi + |\xi| \sigma}{2}, \quad \xi^- = \frac{\xi - |\xi| \sigma}{2}.
\]

On the other hand
\[
|\xi^+|^2 = |\xi|^2 \frac{1 + \frac{\xi}{|\xi|} \cdot \sigma}{2}, \quad |\xi^-|^2 = |\xi|^2 \frac{1 - \frac{\xi}{|\xi|} \cdot \sigma}{2},
\]
so that if we define θ by
\[
\cos \theta = \frac{\xi}{|\xi|} \cdot \sigma,
\]
we obtain
\[
|\xi^+|^2 = |\xi|^2 \cos^2 \left(\frac{\theta}{2} \right), \quad |\xi^-|^2 = |\xi|^2 \sin^2 \left(\frac{\theta}{2} \right).
\]

We now consider the radially symmetric function with respect to $\nu \in \mathbb{R}^3$, namely the function satisfy the property
\[
h(\nu) = h(A \nu), \quad \nu \in \mathbb{R}^3
\]
for any proper orthogonal 3×3 matrix A, then $h(\nu) = h(0, 0, |\nu|)$. Denote by $\mathcal{F}_{\mathbb{R}^3}$ the Fourier transformation in \mathbb{R}^3 and $\mathcal{F}_{\mathbb{R}^1}$ the Fourier transformation in \mathbb{R}^1. Then $\mathcal{F}_{\mathbb{R}^3}(h)(\xi)$ is also radially symmetric with respect to $\xi \in \mathbb{R}^3$, and it is in the form
\[
\mathcal{F}_{\mathbb{R}^3}(h)(\xi) = \mathcal{F}_{\mathbb{R}^1}(h)(0, 0, |\xi|) = \int_{\mathbb{R}^3} e^{-i|\xi|\nu_3} \left(\int_{\mathbb{R}^2} h(v_1, v_2, v_3) dv_1 dv_2 \right) dv_3.
\]

So that
\[
\mathcal{F}_{\mathbb{R}^3}^{-1}(\mathcal{F}_{\mathbb{R}^3}(h)(0, 0, \cdot))(u) = \int_{\mathbb{R}^2} h(v_1, v_2, u) dv_1 dv_2
\]
is an even function in \mathbb{R}, and we have

Lemma 5.1. Assume that $h \in L^1_k(\mathbb{R}^3)$, $h \geq 0$ is a radially symmetric function for certain $k \geq 0$, and uniformly integrable in \mathbb{R}^3, then

$$\mathcal{F}_{\mathbb{R}^3}^{-1}(\mathcal{F}_{\mathbb{R}^3}(h)(0, 0, \cdot)) \in L^1_k(\mathbb{R})$$

is a nonnegative even function, and uniformly integrable in \mathbb{R}.

Proof. By using (5.2), it is evident that $h \in L^1_k(\mathbb{R}^3)$ implies $\mathcal{F}_{\mathbb{R}^3}^{-1}(\mathcal{F}_{\mathbb{R}^3}(h)(0, 0, \cdot)) \in L^1_k(\mathbb{R})$, and $h \geq 0$ implies $\mathcal{F}_{\mathbb{R}^3}^{-1}(\mathcal{F}_{\mathbb{R}^3}(h)(0, 0, \cdot)) \geq 0$. Hence we need only to check the uniform integrability of $\mathcal{F}_{\mathbb{R}^3}^{-1}(\mathcal{F}_{\mathbb{R}^3}(h)(0, 0, \cdot))$ in \mathbb{R}. Since $h \in L^1(\mathbb{R}^3)$, for any $\varepsilon > 0$, there exists $R_0 > 0$ such that

$$\int_{\{v \in \mathbb{R}^3 : |v| \leq R_0\}} |h(v_1, v_2, v_3)| dv_1 dv_2 dv_3 < \frac{\varepsilon}{2}.$$

The uniform integrability of h in \mathbb{R}^3 imply that, there exists $\delta_1 >$ such that

$$\int_B |h(v_1, v_2, v_3)| dv_1 dv_2 dv_3 < \frac{\varepsilon}{2},$$

for any $B \subset \mathbb{R}^3$ with $|B| \leq \delta_1$. Choose new $\delta_0 = \delta_1(R_0^2)^{-1}$, then for any $A \subset \mathbb{R}$, if $|A| \leq \delta_0$, we have

$$\int_A |\mathcal{F}_{\mathbb{R}^3}^{-1}(\mathcal{F}_{\mathbb{R}^3}(h)(0, 0, \cdot))(u)| du \leq \int_{\mathbb{R}^3 \setminus A} |h(v_1, v_2, v_3)| dv_1 dv_2 dv_3 \leq \int_{|v_1| \leq R_0, |v_2| \leq R_0, v_3 \in A} |h(v_1, v_2, v_3)| dv_1 dv_2 dv_3 + \frac{\varepsilon}{2} < \varepsilon,$$

because of $||(v_1, v_2, v_3) \in \mathbb{R}^3 ; |v_1| \leq R_0, |v_2| \leq R_0, v_3 \in A|| \leq R_0^2 |A| \leq \delta_1$.

Remark 5.2. In the proof of above Lemma, if $h \in L \log L(\mathbb{R}^3)$ then h is uniformly integrable in \mathbb{R}^3 with δ_1 depends only on $e, ||h||_{L \log L(\mathbb{R}^3)}$ and $||h||_{L^1(\mathbb{R}^3)}$. Therefore, $\mathcal{F}_{\mathbb{R}^3}^{-1}(\mathcal{F}_{\mathbb{R}^3}(h)(0, 0, \cdot))$ is uniformly integrable in \mathbb{R}^3 with δ_0 also depends only on $e, ||h||_{L \log L(\mathbb{R}^3)}$ and $||h||_{L^1(\mathbb{R}^3)}$.

End of proof of Theorem 1.3.

Suppose now $g \in L^{\infty}(0, +\infty ; L^1_{2,2} \cap L \log L(\mathbb{R}^3))$ is a non negative radially symmetric weak solution of the Cauchy problem (1.9). Setting, for $t \geq 0, u \in \mathbb{R}$,

$$f(t, u) = \mathcal{F}_{\mathbb{R}^3}^{-1}(\mathcal{F}_{\mathbb{R}^3}(g)(t, 0, 0, \cdot))(u) = \int_{\mathbb{R}^3} g(t, v_1, v_2, u) dv_1 dv_2,$$

hereafter, the time variable t is always considered as parameters for the Fourier transformation, then $f(t, u)$ is an even function with respect to $u \in \mathbb{R}$, and

$$\hat{f}(t, \tau) = \mathcal{F}_{\mathbb{R}^3}(f(t, \cdot))(\tau) = \mathcal{F}_{\mathbb{R}^3}(g)(t, 0, 0, \tau).$$

So that the Bobylev’s formula (5.1) give, for $\xi \in \mathbb{R}^3$,

$$\mathcal{F}_{\mathbb{R}^3}(Q(g, g))(\xi) = \int_0^\infty \beta(\theta) \left[\hat{f}(t, |\xi| \sin(\theta/2)) \hat{f}(t, |\xi| \cos(\theta/2)) - \hat{f}(t, 0) \hat{f}(t, |\xi|) \right] d\theta,$$

where

$$\beta(\theta) = \frac{1}{2} \sin \theta |b(\cos \theta)|.$$
Then the right hand side of (5.4) is Fourier transformation of Kac’s operator \(K(f, \cdot) \). We have proved that if \(g(t, \cdot) \) is a non negative radially symmetric weak solution of the Cauchy problem (1.9), then \(f(t, u) \) is a weak solution of the Cauchy problem of Kac’s equation:

\[
\begin{align*}
\frac{\partial f}{\partial t}(t, u) &= K(f, f)(t, u), \\
f(0, u) &= f_0(u) = \int_{\mathbb{R}^3} g_0(v_1, v_2, u) dv_1 dv_2,
\end{align*}
\]

or equivalently in the Fourier variable:

\[
\begin{align*}
\frac{\partial \hat{f}}{\partial \tau}(\tau, \cdot) &= \frac{\partial}{\partial \theta} \{ \hat{f}(t, \tau \sin(\theta)/2) \hat{f}(t, \tau \cos(\theta)/2) - \hat{f}(t, 0) \hat{f}(t, \tau) \}, \\
\hat{f}(0, \cdot) &= \hat{f}_0(\cdot) = \hat{g}_0(0, \cdot).
\end{align*}
\]

Under the assumption of Theorem 1.3 for \(g(t, \cdot) \), Lemma 5.1 and Remark 5.2 implies that \(f(t, u) \) satisfy the hypothesis of Theorem 1.1 except \(f \) belong to \(L \log L \) which substituted by the uniform integrability of \(f = f_0(\cdot) \) in \(\mathbb{R} \). As it is point out in the Remark 2.2 this property is enough to assure the coercivity (2.1). Then we apply Theorem 1.1 to the Cauchy problem (5.5), thus there exists \(T_s > 0 \) such that for \(0 < t \leq T_s \),

\[
e^{c_0 t(\cdot)^2} \hat{f}(t, \cdot) = e^{c_0 t(\cdot)^2} \mathcal{F}_{\mathbb{R}^1}(g)(t, 0, \cdot) \in H^1(\mathbb{R}^1).
\]

It remain to prove the Gevrey smoothing effect in the global time interval. Kac’s equation shares with the homogeneous Boltzmann equation for Maxwellian molecules the existence and uniqueness theory for the Cauchy problem, see [15] for the uniqueness of weak solution for the non-cut-off Boltzmann equation. We take \(0 < t_0 < t_1 \leq T_s \), and consider the Cauchy problem (5.5) with even initial datum \(\hat{f}(t_1, \cdot) \). The Sobolev embedding

\[
H^1(\mathbb{R}) \subset L^{\infty}(\mathbb{R})
\]

imply that

\[
\|e^{c_0 (\cdot)^2} \hat{f}(t_1, \cdot)\|_{L^{\infty}(\mathbb{R})} \leq C\|e^{c_0 (\cdot)^2} \hat{f}(t_1, \cdot)\|_{H^1(\mathbb{R})} \leq C\|e^{c_0 (\cdot)^2} f(t_1, \cdot)\|_{L^2(\mathbb{R})} < +\infty
\]

Now the following propagation of Gevrey regularity results deduces the Gevrey smoothing effect in the global time interval.

Theorem 5.3. (Theorem 2.3 of [8])

Let \(f_0 \) be a non negative, even function, satisfying

\[
\sup_{\xi \in \mathbb{R}} \left(|\hat{f}_0(\xi)| e^{c_0 (\xi)^2} \right) < +\infty,
\]

for some \(c_1 > 0 \) and the cross-section \(\beta \) satisfying (1.2) with \(0 < s < 1 \). Then the solution of the Cauchy problem (5.5) satisfies \(f(t, \cdot) \in G^{s, c_1}(\mathbb{R}^1) \) for any \(t \geq 0 \).

In conclusion, if \(g \in L^{\infty}(0, +\infty[; L^1_{2+2s} \cap L \log L(\mathbb{R}^3)) \) is a non negative radially symmetric weak solution of the Cauchy problem (1.9), then under the assumption of Theorem 1.3 we have proved that for any fixed \(0 < t < +\infty \), there exists \(c_0 > 0 \) such that

\[
e^{c_0 (\cdot)^2} f(t, \cdot) \in L^2(\mathbb{R})
\]
where f is the function defined by (5.3). We can finish now the proof by the following estimations, for fixed $t > 0$,

$$
\left\| e^{\frac{2}{\nu} (D_x^3, D_v^2) \frac{s^2}{s^2}} g(t, \cdot) \right\|_{L^2(\mathbb{R}^3)}^2 = \int_{\mathbb{R}^3} \left| e^{\frac{2}{\nu} (D_x^3, D_v^2) \frac{s^2}{s^2}} \mathcal{F}_{\mathbb{R}^3}(g)(t, \xi_1, \xi_2, \xi_3) \right|^2 d\xi
= \int_{\mathbb{R}^3} \left| e^{\frac{2}{\nu} (D_x^3, D_v^2) \frac{s^2}{s^2}} \mathcal{F}_{\mathbb{R}^3}(g)(t, 0, 0, \xi) \right|^2 d\xi
= C \int_0^{\infty} \left| e^{\frac{2}{\nu} (D_x^3, D_v^2) \frac{s^2}{s^2}} \hat{f}(t, \tau) \right|^2 d\tau
\leq C \int_0^{\infty} \left| e^{\frac{2}{\nu} (D_x^3, D_v^2) \frac{s^2}{s^2}} \hat{f}(t, \tau) \right|^2 d\tau
\leq C \left\| e^{\frac{2}{\nu} (D_x^3, D_v^2) \frac{s^2}{s^2}} f(t, \cdot) \right\|_{L^2(\mathbb{R}^3)}^2 < +\infty.
$$

We finished the proof of Theorem 1.23.

REFERENCES

[1] R. Alexandre, L. Desvillettes, C. Villani and B. Wennberg, Entropy dissipation and long-range interactions, Arch. Rational Mech. Anal., 152 (2000) 327-355.
[2] R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu, T. Yang, Uncertainty principle and kinetic equations, J. Funct. Anal., 255 (2008) 2013-2066.
[3] Alexandre R., El Safadi M., Littlewood Paley decomposition and regularity issues in Boltzmann equation homogeneous equations. I. Non cutoff and Maxwell cases, Math. Methods, Modellings Appl. Sci. (2005) 8-15.
[4] Alexandre R., El Safadi M., Littlewood Paley decomposition and regularity issues in Boltzmann equation homogeneous equations. II. Non cutoff case and non Maxwellian molecules. Discrete Contin. Dyn. Syst, 24 (2009), No.1, 1-11.
[5] R. Alexandre and C. Villani, On the Boltzmann equation for long-range interaction, Comm. Pure and Appl. Math., 55 (2002) 30-70.
[6] H. Chen, W.-X. Li and C.-J. Xu, Propagation of Gevrey regularity for solutions of Landau equations. Kinetic and Related Models, 1 (2008) 355-368.
[7] L. Desvillettes, About the regularization properties of the non cut-off Kac equation, Comm. Math. Phys., 168 (1995) 417-440.
[8] L. Desvillettes, G. Furioli and E. Terraneo, Propagation of Gevrey regularity for solutions of Boltzmann equation for Maxwellian molecules, Trans. Amer. Math. Soc. 361 (2009) 1731-1747.
[9] L. Desvillettes and B. Wennberg, Smoothness of the solution of the spatially homogeneous Boltzmann equation without cutoff. Comm. Partial Differential Equations, 29-1-2 (2004) 133-155.
[10] Fournier N., Existence and regularity study for two-dimensional Kac equation without cutoff by a probabilistic approach. Ann. Appl. Probab. 10 (2000), 434-462.
[11] C. Graham and S. Méléard, Existence and regularity of a solution of a Kac equation without cutoff using the stochastic calculus of variations, Comm. Math. Phys. 205 (1999) 551-569.
[12] Z. H. Huo, Y. Morimoto, S. Ukai and T. Yang, Regularity of solutions for spatially homogeneous Boltzmann equation without Angular cutoff. Kinetic and Related Models, 1 (2008) 453-489.
[13] Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Regularity of solutions to spatially homogeneous Boltzmann equation without Angular cutoff, Discrete Contin. Dyn. Syst., 28 (2009) 187-212.
[14] Y. Morimoto and C.-J. Xu, Ultra-analytic effect of Cauchy problem for a class of kinetic equations, J. Diff. Equ. 247 (2009) 596-617.
[15] G. Toscani and C. Villani, Probability metrics and uniqueness of the solution to the Boltzmann equation for a Maxwell gas. J. Statist. Phys., 94 (3-4) (1999) 619-637.
[16] S. Ukai, Local solutions in Gevrey classes to the nonlinear Boltzmann equation without cutoff, Japan J. Appl. Math., 1-1 (1984) 141–156.
[17] C.-J. Xu, Fourier analysis of non cutoff Boltzmann equations. Lecture notes of “Morning side center of mathematics” of Chinese Academy of Sciences, to publish by Higher Education press of China, Beijing 117 pages.
Université de Rouen, UMR 6085-CNRS, Mathématiques, Avenue de l’Université, BP.12, 76801 Saint Etienne du Rouvray, France
E-mail address: lekrinenadia@yahoo.fr

Université de Rouen, UMR 6085-CNRS, Mathématiques, Avenue de l’Université, BP.12, 76801 Saint Etienne du Rouvray, France

and School of mathematics, Wuhan University, 430072, Wuhan, China
E-mail address: Chao-Jiang.Xu@univ-rouen.fr