Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Nucleotide-binding oligomerization domain-like receptor X1 restricts porcine reproductive and respiratory syndrome virus-2 replication by interacting with viral Nsp9

Huiyuan Jinda, Tao Songb, Sufang Caoc, Yanting Suna, Jinhe Wanga, Wang Donga, Yan Zhanget a, Zhen Dingc, Ting Wangc, Zhao Xingd, Wenqibao

a Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
b College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066604, China
c College of Animal Science, Jiangxi Agricultural University, Nanchang 330045, China

d College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China

1. Introduction

Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically important viral diseases affecting the swine industry worldwide since it was first reported in 1987 (Harding et al., 2017; Snijder et al., 2013). The etiological agent of this devastating disease, PRRS virus (PRRSV), is a positive-sense single-stranded RNA virus that belongs to the family Arteriviridae, order Nidovirales (Loving et al., 2015). The virus engages with the host cellular protein interaction network during infection, facilitating virus hijacking of the host molecular machinery to fulfill the viral life cycle (Ke and Yoo, 2017; Lunney et al., 2016; Rahe and Murtough, 2017; Shi et al., 2015; Sun et al., 2012). Based on their genetic and antigenic differences, PRRSV strains are classified into 2 distinct genotypes, PRRSV-1 (European type) and PRRSV-2 (North American type) (Han and Yoo, 2014; Murtough et al., 2010). The ~15 kb viral genome contains at least 10 open reading frames (ORFs), which encode at least 14 nonstructural proteins (Nsp) and 8 structural proteins (Han and Yoo, 2014).

Among the nonstructural proteins, Nsp9 contains an RNA-dependent RNA polymerase (RdRp) domain in its C-terminal portion, which is critical for viral RNA synthesis, and replication efficiency (Fang and Snijder, 2010; Yang et al., 2015; Zhou et al., 2011). In this regard, recent advances show that amino acids at positions 519, 544, 586 and 592 in Nsp9 contribute to enhanced pathogenicity and determine the fatal virulence of the virus (Xu et al., 2018; Zhao et al., 2018). In addition, two highly conserved T-cell epitopes have been identified in Nsp9, which may provide broad cross-protection against diverse PRRSV strains (Parida et al., 2012; Rascon-Castelo et al., 2015). Noteworthy, multiple novel antiviral treatments, including Nsp9 specific Camel single-domain antibodies, and siRNA targeting Nsp9, as well as vaccine strategy of de-optimization of codon pair bias in Nsp9, significantly decreased PRRSV replication in vitro and in vivo (Gao et al., 2015; Liu et al., 2015; Xie et al., 2014; Zheng et al., 2015; Zhu et al., 2018). Finally, Nsp9 was found to associate with at least 9 PRRSV encoded proteins, including Nsp1α, Nsp1β, Nsp3, Nsp7α, Nsp7β, Nsp8, Nsp11, Nsp12, and nucleocapsid (N) protein, validating the notion of this...
protein as a core component of the viral replication/transcription complex (RTC) (Chen et al., 2017; Liu et al., 2016; Nan et al., 2018). Further exploring the interaction of Nsp9 with host cellular proteins and analyzing the biological significance are necessary for fully understanding the replication mechanisms and pathogenesis of PRRSV (Wen et al., 2017).

Nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) X1 (also known as CLR13.1 and NOD9), a member of the NLR family proteins, is initially identified as key mediators of immune defense and inflammation (Arnoult et al., 2009; Coutermarsh- Ott et al., 2016; Elias et al., 2014; Imbeault et al., 2014; Kang et al., 2015; Kanneganti, 2010; Kobylansky et al., 2016; Li et al., 2016; Lupfer and Kanneganti, 2013; Moore et al., 2008; Philipson et al., 2015; Singh et al., 2015; Soares et al., 2014; Tattoli et al., 2016; Ting et al., 2009; Wang et al., 2013). To date, accumulated evidence indicated that NLRX1 inhibits NF-κB (Nuclear factor-kappa B) signaling, inflammation, some activation, double-stranded RNA (dsRNA) activated kinase PKR, or antiviral factor imply that the role of NLRX1 in viral infection is more complex than previously thought and remains to be clarified.

2. Materials and methods

2.1. Cells, viruses, and antibodies

HEK293T and PAMs cells (Jing et al., 2017b) were cultured and maintained in RPMI-1640 supplemented with 10% heat-inactivated fetal bovine serum (FBS). Hela and Marc-145 cells were cultured and maintained in DMEM supplemented with 10% heat-inactivated FBS. PRRSV strain HN1 (GenBank: AY457635.1) is a highly pathogenic PRRSV-2 (North American) strain, which was isolated from the lung of pigs suffering from “high fever” syndrome in Henan Province, China (Cao et al., 2015). The virus was amplified and titered in Marc-145 cells. UV- inactivated PRRSV was generated by irradiating the virus with short-wave UV light (254 nm) for 1 h. The loss of infectivity was confirmed by the inability of the UV-exposed virus to produce a cytopathic effect on monolayer of Marc-145 cells.

Mouse monoclonal anti-HA, anti-Flag, and anti-β-actin antibodies were purchased from ABLonol Biotechnology (China). Anti-Flag polyclonal antibody (Macgene, China), anti-NLRX1 polyclonal antibody (Proteintech, China), were purchased and used according to the manufacturers’ recommendations. HRP-conjugated anti-mouse and anti-rabbit IgG light (or heavy) chain specific antibodies (Abbkine Science, USA) were purchased and used according to the manufacturers’ recommendations. A monoclonal antibody directed against PRRSV N protein was produced from hybridoma cells derived from Sp2/0 myeloma cells and spleen cells of BALB/c mice immunized with recombinant N protein (Jing et al., 2017b).

Table 1 The sequences of primers used for construction of NLRX1, and Nsp9 protein mutants.

Primer names	Sequence (5’-3’)
NLRX1-F	TTTGAATTTCTAGAGGTTGAGGCAACATTTGGCCAG
NLRX1-R	TTCTCCAGGCAAGCCCTGGAGCTCCGGTG
NLRX1-ΔL-F	TTGAAATTCGTGCCAGGTCAGACAGTTGTCGTA
NLRX1-ΔL-R	TTATGAGGTGGGGCCACCATGGCAGTCAGT
Nsp9-F	TTCAGCCCTAAGCAGCTTGAAGCTGATCTCG
Nsp9-R	TTTCGCGACTGTAATAGGCTGATGTTC
Nsp9ΔR-R	TTTCGCGACTGTAATAGGCTGATGTTC
NLRX1-F	TTCAGCCCTAAGCAGCTTGAAGCTGATCTCG
NLRX1-R	TTTCGCGACTGTAATAGGCTGATGTTC

Table 2 The sequences of primers used for real-time PCR.

Primer names	GeneBank	Sequence (5’-3’)
Nlrx1-F	NM_001204769.1	CAGACCCTCACAAGCATCTA
Nlrx1-R	NM_001204769.1	CAGACCCTCACAAGCATCTA
β-actin-F	XM_021086047.1	TGAAGAAGCTTGCATTCAGT
β-actin-R	XM_021086047.1	GCAGAGGACGACGAGCTG
GApdh-F	NM_001195426.1	TCTGTAGCTCCTTAAAC
GApdh-R	NM_001195426.1	TCTGTAGCTCCTTAAAC

2.2. Plasmids constructions and mutagenesis

The Flag or HA epitope tag was amplified by PCR and cloned into the pCAGGS-MCS vector to generate the pCAGGS–Flag or pCAGGS–HA plasmid, encoding an N-terminal Flag or HA tag (Jing et al., 2017b). Expression plasmids for Flag–tagged Nsp9 (full-length and truncated) were constructed by PCR amplification of the cDNA from PRRSV-infected Marc-145 cells. Plasmids encoding full-length and truncated NLRX1 (NM_024618) were constructed by PCR amplification using the specific primers listed in Table 1. All constructs were confirmed by DNA sequencing.

2.3. Transfection and NLRX1 gene silencing by siRNA

The cells were transfected with expression plasmids using Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instructions. Where necessary, empty control plasmid was added to ensure that each transfection receives the same amount of total DNA. For siRNA knockdowns, cells plated in 6-well plates and transfected with 30 nM the indicated siRNAs twice over a 48-h period by using Lipofectamine 2000. SiRNA sequences used are as follows: si-NLRX1-1#, 5'- UUGUCAAUCUCUGCGCAA-3'; si-NLRX1-2#, 5'-GGUGUCCGCUUUGCAGGA-3'; si-NLRX1-3#, 5'-GCCAGUUCUGCGCGGGAU-3'; Negative control siRNA, 5'-UUCGCGAAGCUCUGCACU-3' (Table 2).

2.4. TCID50 assay for PRRSV

PRRSV titers were expressed as the tissue culture infectious dose 50 (TCID50) per milliliter using the Reed–Muench method as previously described (Jing et al., 2017a). Briefly, Marc-145 cells were seeded in 96-well plates, following, infected with serial 10-fold dilutions of PRRSV samples in eight replicates. Plates were incubated for 72–96 h before virus titers were calculated.

2.5. Quantitative RT-PCR (qPCR)

Total RNA was isolated at the indicated time points using TRIzol reagent. qPCR was performed using SYBR Green Real Time PCR Master Mix (Toyobo Biologics, Osaka, Japan) in a LightCycler 480 (Roche...
Molecular Biochemicals). Individual transcripts in each sample were assayed three times. The PCR conditions were as follows: initial denaturation for 10 min at 95 °C, followed by 40 cycles of 15 s at 95 °C, 15 s at 58 °C and 40 s at 72 °C. The fold change in gene expression relative to normal was calculated using the delta delta cycles to threshold (ΔΔCT) method. Gene expression in Marc-145 cells and PAMs was normalized to that of GAPDH and β-actin, respectively. Primers were designed using the Primer Express software (version 3.0; Applied Biosystems, Carlsbad, CA). Absolute quantitative mRNA levels were calculated using standard curves as previously described (Ke et al., 2017).

2.6. Western blotting analysis

Cells cultured in 60-mm dishes were prepared by adding 120 μL of 2 × lysis buffer A (65 mM Tris – HCl [pH 6.8], 4% sodium dodecyl sulfate (SDS), 3% DL-dithiothreitol, and 40% glycerol). The cell extracts were boiled for 10 min, and then resolved with 8%–12% SDS-PAGE. The separated proteins were electrophoretically transferred onto a polyvinylidene difluoride (PVDF) membrane (Millipore, Billerica, MA). Run for 1–2 h at 100 V on ice. The western blotting was probed with specific antibodies. The expression of β-actin was detected with a mouse monoclonal antibody to demonstrate equal protein sample loading. Densitometry quantification of protein bands of interest was performed using ImageJ software (Table 3).

2.7. Indirect immunofluorescence assay (IFA)

Hela cells seeded on microscope coverslips and placed in 24-well dishes were transfected with Flag-tagged Nsp9 expression plasmid when the cells reached approximately 70–80% confluency. At 28 h after transfection, cells were fixed with 4% paraformaldehyde for 10 min, subsequently permeated with 0.1% Triton X-100 for 10 min at room temperature. After three washes with PBS, cells were sealed with PBS containing 5% bovine serum albumin for 1 h, followed by incubation with rabbit polyclonal antibody against NLRX1 and mouse monoclonal antibody against Flag tag for 1 h at room temperature separately. Successively, cells were treated with FITC-labeled goat anti-mouse and Cy3-labeled goat anti-rabbit (Invitrogen) antibodies for 1 h, with DAPI for 15 min at room temperature. After washing with PBS, fluorescent images were acquired using a confocal laser scanning microscope (OLYMPUS FLUOVIEW Ver.3.1, Japan).

2.8. Co-immunoprecipitation (Co-IP) and immunoblotting analyses

To investigate the interactions between proteins, HEK293T cells were lysed in immunoprecipitation lysis buffer (RIPA). After the lysates were incubated for 1 h at 37 °C with RNase and DNase, the lyase proteins were incubated overnight at 4 °C with the indicated antibodies. Protein A + G agarose beads (30 μL; Beyotime) were then added to each immunoprecipitation reaction for another 6 h. The agarose beads were then washed three times and the captured proteins were resolved on 8%–12% SDS-PAGE, transferred to PVDF membranes, and analyzed by immunoblotting.

2.9. Statistical analysis

The results represent the means and standard deviations from three independent experiments. GraphPad Prism 5 software (GraphPad Software, San Diego, CA, USA) was used for data analysis using a two-tailed unpaired t-test *P < 0.05; **P < 0.01.

3. Results

3.1. PRRSV infection significantly upregulated NLRX1 expression

Our work has previously shown that PRRSV infection up-regulates the expression of NLRX1 in Marc-145 cells, a highly permissive cell line derived from epithelial cells of a monkey kidney (Jing et al., 2014). To ascertain this result in the main target cells of acute PRRSV infection, porcine alveolar macrophages (PAMs) were infected with PRRSV at an MOI of 0.1. Real-time PCR was performed at 12 h, 24 h, and 48 h post infection (hpi) to determine the expression levels of NLRX1. As shown in Fig. 1A, the data showed that NLRX1 expression was significantly up-regulated at 24 h, and increased at a steady-state level in PRRSV-infected PAMs when compared to non-infected cells (> 10-folds). Moreover, UV-inactivated PRRSV failed to induce NLRX1 mRNA expression, indicating that the up-regulation of NLRX1 dependents on viral replication (Fig. 1A). Next, PAMs were infected at different MOI with PRRSV for 48 h before analysis for the mRNA expression of NLRX1. Result indicated that PRRSV up-regulated NLRX1 in a dose dependent manner (Fig. 1B).

Aiming to clarify whether PRRSV induces NLRX1 expression in protein level, PAMs were infected at an MOI of 0.1 with PRRSV or UV-inactivated PRRSV for the designated time. NLRX1 protein levels measured by Western blotting reflected the changes in mRNA observed, suggesting that endogenous NLRX1 expression was upregulated by PRRSV infection (Fig. 1C).

3.2. Ectopic expression of NLRX1 impaired PRRSV replication in Marc-145 cells

In order to investigate whether the upregulation of NLRX1 might have a correlation with PRRSV infection, we transfected Marc-145 cells with NLRX1 expression plasmid, followed by infection with PRRSV. NLRX1 activity on viral infection was monitored by measuring PRRSV titers in the culture supernatants collected at 12, 24 and 48 hpi. As shown in Fig. 2A, overexpression of NLRX1 consistently reduced viral titers of PRRSV at 12–48 hpi. Next, Marc-145 cells transfected with NLRX1 were infected with different MOI of PRRSV, a TCID50 assay was used to determine the effect of NLRX1 on the production of infectious PRRSV particles. As expected, TCID50 data suggested that overexpression of NLRX1 inhibited PRRSV proliferation, especially at low infection doses (Fig. 2B).

3.3. Enhancement of PRRSV replication by NLRX1 knockdown in PAMs

Since Marc-145 cells are monkey derived though they are PRRSV permissible, we wondered whether endogenous NLRX1 had the same effect on PRRSV replication in primary PAM cells. To this end, three pairs of siRNA duplexes against NLRX1 were individually transfected into PAMs. The knockdown efficiency of these siRNA was evaluated by real-time PCR. Result indicated that si-NLRX1-2# achieved the highest efficiency (Fig. 3A). Western blot analysis further showed that si-NLRX1-2# reduced the level of NLRX1 protein by ∼87% compared to the controls transfecte transfection with NC siRNA (Fig. 3B).

To investigate the function of endogenous NLRX1 in PRRSV replication, PAMs were treated with NC siRNA or si-NLRX1-2# followed...
by PRRSV infection. Then viral titers were measured by TCID_{50} at 12–48 hpi. We observed that reduced NLRX1 protein expression was correlated with increased PRRSV in PAMs (Fig. 3C). In aggregate, these data suggested that NLRX1 can potentially inhibit replication of PRRSV in PAMs.

3.4. NLRX1 suppressed the synthesis of viral subgenomic RNAs

NLRX1 contains a carboxy-terminal LRR domain, a central NOD domain and a unique N-terminal CARD-related X domain (Moore et al., 2008) (Fig. 4A). To better understand how NLRX1 impaired PRRSV replication, we mapped the domains of NLRX1 required for this restriction. To this end, we transfected Marc-145 cells with plasmids encoding either the full-length NLRX1 or its mutants prior to PRRSV infection. Progeny virus in culture supernatants was determined by TCID_{50} assay. The results showed that constructs lacking the X domain (ΔX) impaired PRRSV replication. Whereas constructs lacking the LRR domain (ΔL) did not. As shown in Fig. 4B, construct encoding LRR alone or LRR in combination with NOD domain also impaired PRRSV replication, suggesting that LRR is the key domain of NLRX1 that impairs PRRSV replication.

The C-terminal LRR domain of NLRX1 has been shown to bind RNA, and participate in regulation of steady-state levels of a subset of mitochondrial RNA (Feng et al., 2017; Hong et al., 2012; Singh et al., 2018). The observations in Fig. 4B led to our working hypothesis that NLRX1 modulated viral RNA synthesis. To test this, increasing dose of NLRX1 was transfected into Marc-145 cells followed by PRRSV infection, qPCR was then performed to test the total viral RNA levels. Result in Fig. 4C showed that NLRX1 inhibited the synthesis of viral RNAs in a dose-dependent manner. Furthermore, knockdown of endogenous NLRX1 in PAMs increased the levels of viral total RNA (Fig. 4D). The PRRSV genome is a single-strand positive-sense RNA flanked by the 5′ and 3′ untranslated regions (UTRs). A set of 3′-coterminal subgenomic RNAs (sgRNAs) are produced during infection (Han and Yoo, 2014). Thus, we evaluated the role of NLRX1 in viral sgRNAs synthesis. These synthesized viral sgRNAs were then quantified by qPCR after the infection of the Marc-145 cells with PRRSV. As shown in Fig. 4E, the relative levels of viral gRNA and sgRNAs, including gRNA, replication, suggesting that LRR is the key domain of NLRX1 that impairs PRRSV replication.

The C-terminal LRR domain of NLRX1 has been shown to bind RNA, and participate in regulation of steady-state levels of a subset of mitochondrial RNA (Feng et al., 2017; Hong et al., 2012; Singh et al., 2018). The observations in Fig. 4B led to our working hypothesis that NLRX1 modulated viral RNA synthesis. To test this, increasing dose of NLRX1 was transfected into Marc-145 cells followed by PRRSV infection, qPCR was then performed to test the total viral RNA levels. Result in Fig. 4C showed that NLRX1 inhibited the synthesis of viral RNAs in a dose-dependent manner. Furthermore, knockdown of endogenous NLRX1 in PAMs increased the levels of viral total RNA (Fig. 4D).

The PRRSV genome is a single-strand positive-sense RNA flanked by the 5′ and 3′ untranslated regions (UTRs). A set of 3′-coterminal subgenomic RNAs (sgRNAs) are produced during infection (Han and Yoo, 2014). Thus, we evaluated the role of NLRX1 in viral sgRNAs synthesis. These synthesized viral sgRNAs were then quantified by qPCR after the infection of the Marc-145 cells with PRRSV. As shown in Fig. 4E, the relative levels of viral gRNA and sgRNAs, including gRNA,
sgRNA2 to 4, apparently declined in NLRX1-overexpressing cells compared to the control, but the relative levels of viral sgRNA5-7 had no significant differences. This result suggested the inhibitory role of NLRX1 in the process of synthesizing long sgRNAs and genomic RNA.

3.5. NLRX1 interacted with PRRSV Nsp9

Nucleocapsid (N)-Nsp9 interaction has been shown to be involved in the production of PRRSV sgRNAs (Liu et al., 2016). To explore the mechanism by which NLRX1 suppresses viral sgRNAs synthesis, we investigated whether NLRX1 interacts with PRRSV Nsp9/N protein. To this end, HEK293T cells were transfected with plasmids expressing Flag–Nsp9/N and HA–NLRX1 and co-immunoprecipitated with Flag antibody or HA antibody. Even though no co-immunoprecipitation of N protein was detectable with overexpressed NLRX1 in HEK293T cells (data not shown), HA–NLRX1 was co-precipitated with Flag–tagged Nsp9 and vice versa (Fig. 5A).

Next, we investigated whether NLRX1 could colocalize with Nsp9. Hela cells were transfected with plasmids expressing Flag–Nsp9. Confocal data revealed ectopically expressed Flag–Nsp9 and endogenous NLRX1 partially co-localized with each other in the cytoplasm (Fig. 5B).

To identify the binding region within NLRX1 involved in the Nsp9–NLRX1 interaction, HEK293T cells were co-transfected with various combinations of HA–tagged full-length or deleted versions of NLRX1 and Flag–tagged Nsp9. Mapping studies by Co-IP revealed that Nsp9 interacted with the C-terminal LRR domain of NLRX1, but not with its central NOD domain or N-terminal X domains (Fig. 5C).

PRRSV Nsp9 contains N-terminal RdRp domain and a C-terminal domain of unknown function (Wen et al., 2017; Zhao et al., 2015). To further investigate which domain within Nsp9 is required for binding with NLRX1, plasmids expressing Nsp9 mutants were constructed and their ability to interact with NLRX1 was assessed by Co-IP. Result showed that WT Nsp9 and Nsp9C, but not the Nsp9N, bound to NLRX1 (Fig. 5E). The results showed that the RdRp domain of Nsp9 is responsible for interaction with NLRX1.

4. Discussion

NLRX1 was the first NLR shown to reduce type-I IFN production and facilitate viruses infection, by binding to MAVS (mitochondrial antiviral signaling protein) on mitochondria and STING (stimulator of interferon genes) on endoplasmic reticulum (ER), as demonstrated for Sindbis-virus, HIV-1, HSV-1 and KSHV (Guo et al., 2016; Ma et al., 2017; Moore et al., 2008; Qin et al., 2017). However, all of these functions reported for NLRX1 are not without controversy. For example, NLRX1 prevented IAV-induced macrophage apoptosis. Its deficiency led to increased pulmonary viral titer, inflammation, and reduced pulmonary function during IAV Infection (Jaworska et al., 2014). Analogously, NLXR1 was required for immediate IRF1 (interferon regulatory factor 1)-directed antiviral responses. Replication of both hepatitis A virus (HAV) and hepatitis C virus (HCV) was enhanced in NLRX1-deficient hepatocytes (Feng et al., 2017). Adding to these similarities, we show here that NLRX1 acts to restrict PRRSV replication. Based on these observations, it is possible that the effect of NLRX1 during viral infection is a double-edged sword, potentially weakening IRF3 mediated responses as well as presenting a hurdle to be overcome by the virus.

NLRX1 and IAV PB1-F2 interaction is critical for the control of IAV replication and inflammation, indicating that interaction between NLRX1 and viral component might be a key factor in determining the outcome of viral infections (Jaworska et al., 2014). Our study shows that NLRX1 inhibits PRRSV replication by suppression its RNA synthesis. This is achieved by the association of PRRSV Nsp9 with LRR domain of NLRX1. Strikingly, C-terminal LRR domain of NLRX1 has been shown to possess a RNA binding site (Hong et al., 2012). In this regard, NLRX1 interacts with Rhinovirus (RV) RNA in polarized airway
epithelial cells (Unger et al., 2014). Likewise, NLRX1 also binds HAV genomic RNA to suppress PKR activation (Feng et al., 2017). Collectively, these findings support a model in which NLRX1 interacts with various viral factors to achieve an optimal immune state against diverse viruses. Future studies will be necessary to assess whether the Nsp9 of PRRSV-1 interacts with NLRX1.

Nsp9, the key enzyme encoded by ORF1b for RNA-templated RNA synthesis (RdRp) (Fang and Snijder, 2010), is closely related to the replication efficiency and pathogenicity for piglets (Li et al., 2014b; Music and Gagnon, 2010; Xu et al., 2018; Zhao et al., 2018). As a consequence, several host proteins have been reported to interact with PRRSV Nsp9. On the one hand, interaction between Nsp9 and cellular annexin A2, retinoblastoma protein (pRb), DDX5 positively regulates the replication of PRRSV in vitro, demonstrating that PRRSV heavily relies on host cellular proteins to complete life cycle (Dong et al., 2014; Li et al., 2014a; Zhao et al., 2015). On the other hand, recent literature indicated that the interaction of Nsp9 with SUMO E2 conjugating enzyme Ubc9 and cellular protein interleukin-2 enhancer binding factor 2 (ILF2) through its RdRp domain resulted in a significantly decrease of virus titers, indicating that cells utilize host antiviral factors as defense mechanisms to limit PRRSV infection (Wang et al., 2017; Wen et al., 2017). Altogether, these results provide insights into the complex interactions of PRRSV RdRp with the host proteome. Noteworthy, the Nsp9 C-terminal fragment consisting of amino acid residues 599–646 was also identified as the N protein binding region (Liu et al., 2016), strengthening the concept that the C-terminal RdRp domain is a common protein interacting platform. Thus, the C-terminal RdRp domain of Nsp9 might be promising drug targets for interfering with PRRSV replication.

Despite our knowledge on the unique discontinuous transcription of arterivirus and coronavirus has rapidly grown over the last years, the molecular mechanisms controlling template switch still remain unclear (Di et al., 2018; Sola et al., 2015). In coronavirus, RNA helicase DDX1 was reported to benefit the synthesis of longer sgRNAs by unwinding the hairpin loop structure of viral gRNA, implying that RNA secondary structure may hinder the balance between shorter and longer sgRNAs synthesis (Wu et al., 2014). In line with this, a recent study suggested that PRRSV sgRNA2-5, but not sgRNA6-7, were impaired in helicase DHX9-knockdown cells (Liu et al., 2016). In this study, we observed that ectopic expression of NLRX1 had no effects on
the abundance of shorter sgRNA5-7. We therefore hypothesized that longer sgRNAs transcript could stop upon reaching NLRX1-Nsp9-RNA complex, thereby switching to produce shorter sgRNAs. Further investigations will be required to dissect the NLRX1-dependent mechanism for the effective control of continuous and discontinuous RNA synthesis.

In summary, these above findings indicate that NLRX1 inhibits the replication of PRRSV by interacting with viral Nsp9 in vitro, providing more knowledge for understanding the mechanisms associated with the replication regulation of PRRSV. Significant effort is still required to further uncover the potential interaction of Nsp9 with host cellular proteins and translate the current understanding of RdRp biology into effective antiviral drug development.

Conflict of interest

None.

Acknowledgments

This study was supported by Key Scientific Research Project of University in Henan Province (19A230003), the Key Technologies Research and Development Program of Henan Province (192102110176), Doctoral Science Foundation (53000176) of Henan University of Animal Husbandry and Economy, Research Innovation Team of Veterinary Bio-technology (2018KYTD16) and Key Discipline of Preventive Veterinary Medicine of Henan University of Animal Husbandry and Economy (MXK2016102).
References

Abdul-Sater, A.A., Said-Sadier, N., Lam, V.M., Singh, B., Pettengill, M.A., Soares, D., Tatoli, I., Lipinski, S.J., Girardin, S.E., Rosenstiel, P., Ojcius, D.M., 2010. Enhancement of reactive oxygen species production and chlamydial infection by the mitochondrial NLR PRRX1. J. Biol. Chem. 285 (8), 5437-5445.

Ali, M.E., Biel, A., Parada, C., Dams, F., Uitterlinden, A.G., Horvath, C., Picard, F., van Os, M.J., 2015. PRRX1 mediates nuclear-mitochondrial communication. EMBO J. 34 (5), 432-446.

Ali, M.E., Biel, A., Parada, C., Dams, F., Uitterlinden, A.G., Horvath, C., Picard, F., van Os, M.J., 2015. PRRX1 mediates nuclear-mitochondrial communication. EMBO J. 34 (5), 432-446.

Ali, M.E., Biel, A., Parada, C., Dams, F., Uitterlinden, A.G., Horvath, C., Picard, F., van Os, M.J., 2015. PRRX1 mediates nuclear-mitochondrial communication. EMBO J. 34 (5), 432-446.

Ali, M.E., Biel, A., Parada, C., Dams, F., Uitterlinden, A.G., Horvath, C., Picard, F., van Os, M.J., 2015. PRRX1 mediates nuclear-mitochondrial communication. EMBO J. 34 (5), 432-446.

Ali, M.E., Biel, A., Parada, C., Dams, F., Uitterlinden, A.G., Horvath, C., Picard, F., van Os, M.J., 2015. PRRX1 mediates nuclear-mitochondrial communication. EMBO J. 34 (5), 432-446.

Ali, M.E., Biel, A., Parada, C., Dams, F., Uitterlinden, A.G., Horvath, C., Picard, F., van Os, M.J., 2015. PRRX1 mediates nuclear-mitochondrial communication. EMBO J. 34 (5), 432-446.

Ali, M.E., Biel, A., Parada, C., Dams, F., Uitterlinden, A.G., Horvath, C., Picard, F., van Os, M.J., 2015. PRRX1 mediates nuclear-mitochondrial communication. EMBO J. 34 (5), 432-446.

Ali, M.E., Biel, A., Parada, C., Dams, F., Uitterlinden, A.G., Horvath, C., Picard, F., van Os, M.J., 2015. PRRX1 mediates nuclear-mitochondrial communication. EMBO J. 34 (5), 432-446.

Ali, M.E., Biel, A., Parada, C., Dams, F., Uitterlinden, A.G., Horvath, C., Picard, F., van Os, M.J., 2015. PRRX1 mediates nuclear-mitochondrial communication. EMBO J. 34 (5), 432-446.

Ali, M.E., Biel, A., Parada, C., Dams, F., Uitterlinden, A.G., Horvath, C., Picard, F., van Os, M.J., 2015. PRRX1 mediates nuclear-mitochondrial communication. EMBO J. 34 (5), 432-446.

Ali, M.E., Biel, A., Parada, C., Dams, F., Uitterlinden, A.G., Horvath, C., Picard, F., van Os, M.J., 2015. PRRX1 mediates nuclear-mitochondrial communication. EMBO J. 34 (5), 432-446.

Ali, M.E., Biel, A., Parada, C., Dams, F., Uitterlinden, A.G., Horvath, C., Picard, F., van Os, M.J., 2015. PRRX1 mediates nuclear-mitochondrial communication. EMBO J. 34 (5), 432-446.

Ali, M.E., Biel, A., Parada, C., Dams, F., Uitterlinden, A.G., Horvath, C., Picard, F., van Os, M.J., 2015. PRRX1 mediates nuclear-mitochondrial communication. EMBO J. 34 (5), 432-446.

Ali, M.E., Biel, A., Parada, C., Dams, F., Uitterlinden, A.G., Horvath, C., Picard, F., van Os, M.J., 2015. PRRX1 mediates nuclear-mitochondrial communication. EMBO J. 34 (5), 432-446.

Ali, M.E., Biel, A., Parada, C., Dams, F., Uitterlinden, A.G., Horvath, C., Picard, F., van Os, M.J., 2015. PRRX1 mediates nuclear-mitochondrial communication. EMBO J. 34 (5), 432-446.

Ali, M.E., Biel, A., Parada, C., Dams, F., Uitterlinden, A.G., Horvath, C., Picard, F., van Os, M.J., 2015. PRRX1 mediates nuclear-mitochondrial communication. EMBO J. 34 (5), 432-446.

Ali, M.E., Biel, A., Parada, C., Dams, F., Uitterlinden, A.G., Horvath, C., Picard, F., van Os, M.J., 2015. PRRX1 mediates nuclear-mitochondrial communication. EMBO J. 34 (5), 432-446.

Ali, M.E., Biel, A., Parada, C., Dams, F., Uitterlinden, A.G., Horvath, C., Picard, F., van Os, M.J., 2015. PRRX1 mediates nuclear-mitochondrial communication. EMBO J. 34 (5), 432-446.

Ali, M.E., Biel, A., Parada, C., Dams, F., Uitterlinden, A.G., Horvath, C., Picard, F., van Os, M.J., 2015. PRRX1 mediates nuclear-mitochondrial communication. EMBO J. 34 (5), 432-446.

Ali, M.E., Biel, A., Parada, C., Dams, F., Uitterlinden, A.G., Horvath, C., Picard, F., van Os, M.J., 2015. PRRX1 mediates nuclear-mitochondrial communication. EMBO J. 34 (5), 432-446.

Ali, M.E., Biel, A., Parada, C., Dams, F., Uitterlinden, A.G., Horvath, C., Picard, F., van Os, M.J., 2015. PRRX1 mediates nuclear-mitochondrial communication. EMBO J. 34 (5), 432-446.

Ali, M.E., Biel, A., Parada, C., Dams, F., Uitterlinden, A.G., Horvath, C., Picard, F., van Os, M.J., 2015. PRRX1 mediates nuclear-mitochondrial communication. EMBO J. 34 (5), 432-446.

Ali, M.E., Biel, A., Parada, C., Dams, F., Uitterlinden, A.G., Horvath, C., Picard, F., van Os, M.J., 2015. PRRX1 mediates nuclear-mitochondrial communication. EMBO J. 34 (5), 432-446.

Ali, M.E., Biel, A., Parada, C., Dams, F., Uitterlinden, A.G., Horvath, C., Picard, F., van Os, M.J., 2015. PRRX1 mediates nuclear-mitochondrial communication. EMBO J. 34 (5), 432-446.

Ali, M.E., Biel, A., Parada, C., Dams, F., Uitterlinden, A.G., Horvath, C., Picard, F., van Os, M.J., 2015. PRRX1 mediates nuclear-mitochondrial communication. EMBO J. 34 (5), 432-446.

Ali, M.E., Biel, A., Parada, C., Dams, F., Uitterlinden, A.G., Horvath, C., Picard, F., van Os, M.J., 2015. PRRX1 mediates nuclear-mitochondrial communication. EMBO J. 34 (5), 432-446.

Ali, M.E., Biel, A., Parada, C., Dams, F., Uitterlinden, A.G., Horvath, C., Picard, F., van Os, M.J., 2015. PRRX1 mediates nuclear-mitochondrial communication. EMBO J. 34 (5), 432-446.

Ali, M.E., Biel, A., Parada, C., Dams, F., Uitterlinden, A.G., Horvath, C., Picard, F., van Os, M.J., 2015. PRRX1 mediates nuclear-mitochondrial communication. EMBO J. 34 (5), 432-446.
roles in virus infection. Arch. Microbiol. 197 (4), 503–512.
Singh, K., Poteryakhina, A., Zheltukhin, A., Bhatelia, K., Prajapati, P., Sripada, L., Tomar, D., Singh, R., Singh, A.K., Chumakov, P.M., Singh, R., 2015. NLRX1 acts as tumor suppressor by regulating TNF-alpha induced apoptosis and metabolism in cancer cells. Biochem. Biophys. Acta 1853 (5), 1073–1086.
Singh, K., Sripada, L., Anastasiadis, Z., Roy, M., Prajapati, P., Gohil, D., Bhatelia, K., Chumakov, P.M., Singh, R., 2018. NLRX1 resides in mitochondrial RNA granules and regulates mitochondrial RNA processing and bioenergetic adaptation. Biochim. Biophys. Acta. Molecular cell research 1865 (9), 1260–1276.
Snijder, E.J., Kikkert, M., Fang, Y., 2013. Arterivirus molecular biology and pathogenesis. J. Gen. Virol. 94 (Pt 10), 2141–2163.
Soares, F., Tattoli, I., Rahman, M.A., Robertson, S.J., Belcheva, A., Liu, D., Streutker, C., Winer, S., Winer, D.A., Martin, A., Philpott, D.J., Arnoult, D., Girardin, S.E., 2014. The mitochondrial protein NLRX1 controls the balance between extrinsic and intrinsic apoptosis. J. Biol. Chem. 289 (28), 19317–19330.
Sola, I., Almazan, F., Zuniga, S., Eauzaunes, L., 2015. Continuous and discontinuous RNA synthesis in coronaviruses. Annu. Rev. Virol. 2 (1), 265–288.
Stokman, G., Kors, L., Bakker, P.J., Rampalieli, E., Claessen, N., Teske, G.J.D., Butter, L., van Andel, H., van den Bergh Weerman, M.A., Larsen, P.W.B., Dressing, M.C., Zuurhuis, C.J., Girardin, S.E., Florquin, S., Leemans, J.C., 2017. NLRX1 dampens oxidative stress and apoptosis in tissue injury via control of mitochondrial activity. J. Exp. Med. 214 (8), 2405–2420.
Sun, Y., Han, M., Kim, C., Calvert, J.G., Yoo, D., 2012. Interplay between interferon-mediated innate immunity and porcine reproductive and respiratory syndrome virus. Viruses 4 (4), 424–446.
Tattoli, I., Carneiro, L.A., Jehanno, M., Magalhaes, J.G., Shu, Y., Philpott, D.J., Arnoult, D., Girardin, S.E., 2008. NLRX1 is a mitochondrial NOD-like receptor that amplifies NF-kappaB and JNK pathways by inducing reactive oxygen species production. EMBO Rep. 9 (3), 293–300.
Tattoli, I., Killackey, S.A., Foerster, E.G., Molinario, R., Maisonneuve, C., Rahman, M.A., Winer, S., Winer, D.A., Streutker, C.J., Philpott, D.J., Girardin, S.E., 2016. NLRX1 acts as an epithelial-intrinsic tumor suppressor through the modulation of TNF-Mediated proliferation. Cell Rep. 14 (11), 2576–2586.
Theus, M.H., Brickle, T., Meza, A.L., Coutemarx-Ort, S., Hazy, A., Gris, D., Allen, I.C., 2017. Loss of NLRX1 exacerbates neural tissue damage and NF-kappaB signaling following brain injury. J. Immunol. 199 (10), 3547–3558.
Ting, J.P., Winer, S., Winer, D.A., Streutker, C.J., Philpott, D.J., Girardin, S.E., 2016. NLRX1 acts as an epithelial-intrinsic tumor suppressor through the modulation of TNF-Mediated proliferation. Cell Rep. 14 (11), 2576–2586.
Wang, Y.G., Fang, W.L., Wei, J., Wang, T., Wang, N., Ma, J.L., Shi, M., 2013. The involvement of NLRX1 and NLRP3 in the development of nonalcoholic steatohepatitis in mice. J. Clin. Med. Assoc. 76 (12), 686–692.
West, X., Bian, T., Zhang, Z., Zhou, L., Ge, X., Han, J., Guo, X., Yang, H., Yu, K., 2017. Interleukin-2 enhancer binding factor 2 interacts with the upf1 or upf2 of porcine reproductive and respiratory syndrome virus and exerts negatively regulatory effect on the viral replication. Virol. J. 14 (1), 125.
Wu, C.H., Chen, P.J., Yeh, S.H., 2014. Nucleoplasmin phosphorylation and RNA helicase DDIX1 recruitment enables coronavirus transition from discontinuous to continuous transcription. Cell Host Microbe 16 (4), 462–472.
Xia, X., Gui, J., Wang, H.Y., Zhu, L., Matsueda, S., Wang, Q., Yang, X., Hong, J., Songyang, Z., Chen, Z.J., Wang, R.F., 2011. NLRX1 negatively regulates TLR-induced NF-kappaB signaling by targeting TRAF6 and IKB. Immunity 34 (6), 843–853.
Xie, J., Zhou, H., Cui, J., Chen, Y., Zhang, M., Deng, S., Zhou, P., Su, S., Zhang, G., 2014. Inhibition of porcine reproductive and respiratory syndrome virus by specific siRNA targeting Nsp9 gene. Infect. Genet. Evol. 28, 64–70.
Xu, L., Zhou, L., Sun, W., Zhang, P., Ge, X., Guo, X., Han, J., Yang, H., 2018. Nonstructural protein 9 residues 586 and 592 are critical sites in determining the replication efficacy and fatal virulence of the Chinese highly pathogenic porcine reproductive and respiratory syndrome virus. Virology 517, 135–147.
Yang, Q., Zhang, Q., Tang, J., Feng, W.H., 2015. Lipid rafts both in cellular membrane and viral envelope are critical for PRRSV efficient infection. Virology 484, 170–180.
Yin, H., Sun, G., Yang, Q., Chen, C., Qi, Q., Wang, H., Li, J., 2017. NLRX1 accelerates cisplatin-induced ototoxicity in H991-OCI cells via promoting generation of ROS and activation of JNK signaling pathway. Sci. Rep. 7, 44311.
Zeng, C., Zhou, Z., Han, Y., Wen, Z., Guo, C., Huang, S., Xiao, D., Ye, X., Ou, M., Huang, C., Ye, X., Yang, G., Jing, C., Nie, L., 2017. Interactions of TRAF6 and NLRX1 gene polymorphisms with environmental factors on the susceptibility of type 2 diabetes mellitus vascular complications in a southern Han Chinese population. J. Diab. Comp. 31 (12), 1652–1657.
Zhao, K., Gao, J.C., Xiong, J.Y., Guo, J.C., Yang, Y.B., Jiang, C.G., Tang, Y.D., Tian, Z.J., Cai, X.H., Tong, G.Z., An, T.Q., 2018. Two residues in NSP9 contribute to the enhanced replication and pathogenicity of highly pathogenic porcine reproductive and respiratory syndrome virus. J. Virol. 92 (7).
Zhao, S., Ge, X., Wang, X., Liu, A., Guo, X., Zhou, L., Yu, K., Yang, H., 2015. The DEAD-box RNA helicase 5 positively regulates the replication of porcine reproductive and respiratory syndrome virus by interacting with viral Nsp9 in vitro. Virus Res. 195, 217–224.
Zheng, L., Li, X., Zhu, L., Li, W., Bi, J., Yang, G., Yin, G., Liu, J., 2015. Inhibition of porcine reproductive and respiratory syndrome virus replication in vitro using DNA-based short antisense oligonucleotides. BMC Vet. Res. 11, 199.
Zhou, Y., Zheng, H., Gao, F., Tian, D., Yuan, S., 2011. Mutational analysis of the SDD fi cation. BMC Vet. Res. 14 (1), 109.