Supplementary Information

Supplementary Theory

Adaption of manual lesion volume correction

Supplementary Fig. S1 shows a schematic view of a coronal section through the mouse brain after focal ischemia on the left hemisphere and explains our notation for MLC. We follow the framework of Loubinoux et al. and Gerriets et al.¹² and generalize it in the following way: instead of working with the whole hemispheric volumes, we consider an arbitrary region on the contralateral side with volume V_{cu} that can also be completely delineated on the MRI scan on the ipsilateral side and has an ipsilateral volume V_{iu}, the u stands for edema uncorrected volume. A good example would be the whole brain (used in this study) or only forebrain, which is common in most published studies. Other examples could be the striatum or the hippocampus if one were interested in the extent of damage to specific brain structures only. The ipsilateral and contralateral volumes are assumed symmetric without swelling, i.e. $V_{le} = V_{ce} = \frac{1}{2} V_{te}$, where V_{te} is the edema corrected total volume of the brain region. The edema uncorrected lesion volume within the brain region as delineated on a T2w image is LV_u. Assuming a homogenous expansion of the lesion due to edema (compression factor $F_1 < 1$) and a uniform compression of healthy tissue outside the lesion by a factor $F_2 > 1$, the lesion volume excluding edema would be

$$LV_e = F_1 \cdot LV_u \quad (1)$$

For the contralateral brain region the edema corrected brain region volume:

$$V_{ce} = F_2 \cdot V_{cu} = \frac{1}{2} V_{te} \quad (2)$$

The ipsilateral brain region can be divided into swollen damaged tissue and compressed undamaged tissue, which leads to

$$V_{le} = F_1 \cdot LV_u + F_2 \cdot (V_{iu} - LV_u) = \frac{1}{2} V_{te} \quad (3)$$

The uncorrected volumes can be delineated on an MR image which leaves 4 unknown LV_e, F_1, F_2, V_{te}. To solve the underdetermined linear system, equations (1)-(3) can be divided by the total brain region volume, transforming edema corrected lesion volume and the other unknown parameters to units of percent of hemispheric brain region volume, i.e. $LV_e \rightarrow LV_e / (\frac{1}{2} V_{te}), F_1 \rightarrow F_1 / (\frac{1}{2} V_{te}), F_2 \rightarrow F_2 / (\frac{1}{2} V_{te}), \frac{1}{2} V_{te} \rightarrow 100\%$.

Solving for LV_e leads to

$$\%LV_e = \frac{V_{eu} - V_{iu} + LV_u}{V_{cu}} \times 100 \quad (4)$$

i.e. we have shown that equation (2) from Gerriets et al. for the relative hemispheric edema corrected lesion volume can be generalized to an arbitrary subregion of the brain that is present on both hemispheres. If the region contains the whole lesion, no additional assumptions are needed compared to the original framework and we have managed a way to analyze data without whole brain coverage by the MR scan. Moreover, when interested only in damage to a specific subregion, MR images do not need to cover the whole lesion.
but only the specific region of interest. In this case, however, an additional, quite crude approximation is needed that tissue inside the lesion is homogenously expanded.

It is important to note that generally

\[V_{lu} + V_{cu} \neq V_{le} + V_{ce} \]

(5)

i.e. the total volume of the brain region can also be altered due to edema since there are no stiff boundaries. This means that the other equations derived by Gerriets et al. for the space-occupying effect or absolute edema corrected lesion volume are generally not applicable. Only in the case of the whole ipsilateral hemispheric volume \(HV_i = V_{lu} \) and whole contralateral volume \(HV_c = V_{cu} \) the skull acts as an inelastic barrier and equation (5) holds, leading to the expression for the absolute edema corrected lesion volume (in \(\text{mm}^3 \)) derived by Gerriets et al.

\[LV_e = HV_c + HV_i - (HV_c + HV_i - LV_u) \cdot \frac{HV_c + HV_i}{2HV_c} \]

(6)

Note that this requires whole brain coverage by the MRI scan. Only then \(LV_u \) and \(LV_e \) can both be expressed in the same absolute/relative units and the absolute/relative space occupying effect can be calculated via

\[SE = LV_u - LV_e \]

(7)

or expressed in percent of the lesion volume as delineated on T2w images

\[\%SE = \frac{LV_u - LV_e}{LV_u} \times 100 \]

(8)

Supplementary Figures

Supplementary Fig. S1. Schematic of a coronal section of the mouse brain explaining the nomenclature used for the manual edema correction of lesion volume. Infarcted tissue is assumed to be homogenously expanded (gray) whereas healthy tissue is assumed to be compressed (white). We will show how to calculate the edema corrected percent damage to an arbitrary brain region. Here, the striatum is taken as an example (solid lines). The ipsilateral region is expanded whereas the contralateral region is compressed compared to a brain in absence of edema (dashed lines). The advantage of this generalized framework is that full brain coverage by MRI is not required and the lesion can extend beyond the brain region of interest.
Supplementary Fig. S2. Analysis Pipeline. First, T2w image volumes of each mouse were coregistered automatically to the Allen template with an initial rigid body transformation with 6 degrees of freedom (dof) followed by an affine transformation (12 dof) using ELASTIX. The affine coregistration step only extracted the transformation parameters, which were later concatenated with the parameters from non-linear transformation (warping) to allow a single combined transformation from mouse space into Allen space (and vice versa). This avoids artifacts from concatenated interpolations. The T2w image was then segmented into tissue compartments of gray matter (GM), white matter (WM), and cerebrospinal fluid (CBF) using the ‘unified approach’ for segmentation and normalization provided by SPM8. In this step, we used the basic parameters settings and tissue probability maps (TPMs) from SPMMouse. TPMs were previously brought in registration with the Allen template using SPMMouse's warping. Although warping into target space is also conducted by SPM's unified approach, we used ELASTIX due to better performance in registering T2w images i) from mice with large lesion territory and ii) from mice that had PT-related surgery wounds. Detailed ELASTIX parameters can be found in supplementary table 1. We used two synthetic images generated by linear combination of i) the three TPMs from SPMMouseAllen as fixed image and ii) the three tissue compartment maps derived from the T2w-segmentation step as moving image by setting the image intensity I of voxel (x,y,z) to

\[I(x,y,z) = a \cdot \text{GM}(x,y,z) + b \cdot \text{WM}(x,y,z) + c \cdot \text{CSF}(x,y,z), \quad a=10000, \quad b=20000, \quad c=40000 \]

Here GM, WM, and CSF represent the respective calculated tissue probabilities.

To cope with high-intensity values in the T2w lesion territory and resulting defective values in the tissue compartments, values inside the lesion of the moving image were downsampled by an empirically determined factor 1/3. At the end of the warping step the concatenation of linear and nonlinear transformation parameters allowed to transform the T2w image and other images (in registration with the T2w) such as the lesion mask into Allen space. To save memory, registered images were downsampled to 70 µm isotropic resolution.
Supplementary Fig. S3. PT lesion territory and local tissue swelling and compression. Incidence maps depict the lesion territory across PT mice after transformation into Allen space (panel 1). Numbers above slices denote the distance to the Bregma (mm). Panel 2 depicts the voxel-wise mean edema-induced volume changes across PT mice. While voxels in green represent local volume preservation, voxels in red represent a local expansion. Voxelwise t-statistics over maps of PT and sham mice confirmed non-homogeneous volume changes and the largest cluster identified with high spatial correspondence tissue swelling in the region of the PT-lesion (panel 3).

Supplementary tables

ELASTIX parameter	Value	Description
Transform	"BSplineTransform"	Type of transformation function
Registration	"MultiMetricMultiResolution Registration"	Allows combination of different cost functions
Interpolator	"BSplineInterpolator"	Registration method
Optimizer	"AdaptiveStochasticGradientDescent"	Optimization routine
MaximumNumberOfIterations	1000	Optimizer parameter
MaximumStepLength	0.015	Optimizer parameter
Metric	"AdvancedMattesMutualInformation" "TransformBendingEnergyPenalty"	Cost function
---------------------------------	--	--
ImageSampler	"RandomCoordinate"	Subset selection of voxels used for optimization
NumberOfSpatial Samples	2048	ImageSampler parameter
NewSamplesEvery Iteration	"true"	ImageSampler parameter
NumberOfResolutions	4	Intermediate resampling steps (image pyramid levels)
GridSpacingSchedule	8 4 2 1	Image pyramid parameter
FinalGridSpacingIn Voxels	5 5 5	Image pyramid parameter
FinalBSpline InterpolationOrder	3	Interpolation method

Supplementary Table 1. ELASTIX parameters used for nonlinear image warping. Full parameter files available online at http://elastix.bigr.nl/wiki/index.php/Parameter_file_database.
Species	Stroke model	MRI time point	MRI sequence	FOV, covers whole brain?	Appropriate equation was used?	Reference
rat	MCAO	24h	RARE	no	yes	Baskerville et al. 4
mouse	MCAO	24h	RARE	NA	no	Berthet et al. 5
mouse	MCAO	24h	RARE	yes	yes	Frieler et al. 6
mouse	MCAO	24h	RARE	no	yes	Hochmeister et al. 7
mouse	MCAO	24h	RARE	yes	no,	Igarashi et al. 8
rat	MCAO	24h	MSME	no	yes	Juenemann et al. 9
rat	MCAO	multiple	RARE	no	yes	Kang et al. 10
rat	MCAO	multiple	RARE	no	yes	Kang et al. 11
mouse	MCAO	48h	RARE	NA	yes	Khanna et al. 12
mouse	MCAO	48h	RARE	NA	yes	Khanna et al. 13
rat	MCAO	24h	RARE	yes	yes	Leoni et al. 14
rat	ICH	multiple	FLASH	no	no	Marinkovic et al. 15
rat	PT	NA	RARE	no	yes	Möller et al. 16
rat	MCAO	24h	RARE	no	yes	Reid et al. 17
dog	MCAO	24h	RARE	yes	yes	Rink et al. 18
rat	MCAO	48h	RARE	NA	yes	Rink et al. 19
mouse	MCAO	multiple	RARE	no	yes	Stubbe et al. 20
rat	MCAO	24h	RARE	no	yes	Wayman et al. 21
rat	MCAO	24h	RARE	no	yes	Weise et al. 22
mouse	thrombo-embolic MCAO	24h	RARE	no	no	Zhang et al. 23

Supplementary Table 2. Systematic review of studies using MLC. A Pubmed search of studies that cite the original papers of Gerriets et al. and Loubinoux et al. 1,2 was performed, 20 original contributions were found. All used coronal MRI slices. A FOV_z < 12 mm (mouse) or 22 mm (rat) was considered non-whole brain coverage. If the used equation for absolute/relative edema corrected lesion volume did not match the corresponding equation from Gerriets et al. this lead to a "no" in the corresponding column. Abbreviations: intracerebral hemorrhage (ICH) rapid acquisition with relaxation enhancement (RARE), multi slice multi spin echo (MSME), rostral-caudal field of view (FOV_z), not available (NA)
Supplementary Table 3. Signal to noise ratios (SNR) and ratios of gray matter to white matter volume for different groups

Group	SNR in gray matter	Gray matter/white matter ratio
MCAO	66.648 ± 14.673	2.326 ± 0.172
PT	61.532 ± 3.764	2.806 ± 0.318
sham	77.591 ± 4.140	2.303 ± 0.449
all	69.516 ± 11.911	2.414 ± 0.373
Allen brain atlas	NA	2.566 ± 0.000

Supplementary Table 3. Signal to noise ratios (SNR) and ratios of gray matter to white matter volume for different groups. For SNR, signal was measured in voxels with a gray matter probability 1% in the corresponding tissue probability map resulting from the SPMMouse segmentation. Noise was measured as the SD of signal across voxels in a 20x20 voxel square in all four corners and all slices of the image volume. Gray and white matter volumes were assessed by adding probability values over all voxels in the corresponding tissue probability map from the SPMMouse segmentation. Note that SNR values of sham animals were higher since these were scanned with only 20 slices closer to the sensitivity center of the MRI coil, whereas all other animals were scanned with 32 slices. Values represent mean±SD.

Supplementary references

1. Gerriets T. Noninvasive Quantification of Brain Edema and the Space-Occupying Effect in Rat Stroke Models Using Magnetic Resonance Imaging. *Stroke* 2004; 35: 566–571.

2. Loubinoux I, Volk A, Borredon J, Guirimand S, Tiffon B, Seylaz J *et al.* Spreading of vasogenic edema and cytotoxic edema assessed by quantitative diffusion and T2 magnetic resonance imaging. *Stroke* 1997; 28: 419-26–7.

3. Ashburner J, Friston KJ. Unified segmentation. *Neuroimage* 2005; 26: 839–851.

4. Baskerville TA, Macrae IM, Holmes WM, McCabe C. The influence of gender on ‘tissue at risk’ in acute stroke: A diffusion-weighted magnetic resonance imaging study in a rat model of focal cerebral ischaemia. *J Cereb Blood Flow Metab* 2016; 36: 381–6.

5. Berthet C, Xin L, Buscemi L, Benakis C, Gruetter R, Hirt L *et al.* Non-invasive
diagnostic biomarkers for estimating the onset time of permanent cerebral ischemia. *J Cereb Blood Flow Metab* 2014; **34**: 1848–55.

6 Frieler RA, Ray JJ, Meng H, Ramnarayanan SP, Usher MG, Su EJ et al. Myeloid mineralocorticoid receptor during experimental ischemic stroke: effects of model and sex. *J Am Heart Assoc* 2012; **1**: e002584.

7 Hochmeister S, Engel O, Adzemovic MZ, Pekar T, Kendlbacher P, Zeitelhofer M et al. Lipocalin-2 as an Infection-Related Biomarker to Predict Clinical Outcome in Ischemic Stroke. *PLoS One* 2016; **11**: e0154797.

8 Igarashi H, Huber VJ, Tsujita M, Nakada T. Pretreatment with a novel aquaporin 4 inhibitor, TGN-020, significantly reduces ischemic cerebral edema. *Neurol Sci* 2011; **32**: 113–6.

9 Juenemann M, Braun T, Doenges S, Nedelmann M, Mueller C, Bachmann G et al. Aquaporin-4 autoantibodies increase vasogenic edema formation and infarct size in a rat stroke model. *BMC Immunol* 2015; **16**: 30.

10 Kang B-T, Leoni RF, Silva AC. Impaired CBF regulation and high CBF threshold contribute to the increased sensitivity of spontaneously hypertensive rats to cerebral ischemia. *Neuroscience* 2014; **269**: 223–31.

11 Kang B-T, Leoni RF, Kim D-E, Silva AC. Phenylephrine-induced hypertension during transient middle cerebral artery occlusion alleviates ischemic brain injury in spontaneously hypertensive rats. *Brain Res* 2012; **1477**: 83–91.

12 Khanna S, Heigel M, Weist J, Gnyawali S, Teplitsky S, Roy S et al. Excessive α-tocopherol exacerbates microglial activation and brain injury caused by acute ischemic stroke. *FASEB J* 2015; **29**: 828–36.

13 Khanna S, Rink C, Ghoorkhanian R, Gnyawali S, Heigel M, Wijesinghe DS et al. Loss of miR-29b following acute ischemic stroke contributes to neural cell death and infarct size. *J Cereb Blood Flow Metab* 2013; **33**: 1197–206.
14 Leoni RF, Paiva FF, Kang B-T, Henning EC, Nascimento GC, Tannús A et al. Arterial spin labeling measurements of cerebral perfusion territories in experimental ischemic stroke. *Transl Stroke Res* 2012; 3: 44–55.

15 Marinkovic I, Mattila OS, Strbian D, Meretoja A, Shekhar S, Saksi J et al. Evolution of intracerebral hemorrhage after intravenous tPA: reversal of harmful effects with mast cell stabilization. *J Cereb Blood Flow Metab* 2014; 34: 176–81.

16 Möller K, Pösel C, Kranz A, Schulz I, Scheibe J, Didwischus N et al. Arterial Hypertension Aggravates Innate Immune Responses after Experimental Stroke. *Front Cell Neurosci* 2015; 9: 461.

17 Reid E, Graham D, Lopez-Gonzalez MR, Holmes WM, Macrae IM, McCabe C. Penumbra detection using PWI/DWI mismatch MRI in a rat stroke model with and without comorbidity: comparison of methods. *J Cereb Blood Flow Metab* 2012; 32: 1765–77.

18 Rink C, Christoforidis G, Abduljalil A, Kontzialis M, Bergdall V, Roy S et al. Minimally invasive neuroradiologic model of preclinical transient middle cerebral artery occlusion in canines. *Proc Natl Acad Sci U S A* 2008; 105: 14100–5.

19 Rink C, Roy S, Khan M, Ananth P, Kuppusamy P, Sen CK et al. Oxygen-sensitive outcomes and gene expression in acute ischemic stroke. *J Cereb Blood Flow Metab* 2010; 30: 1275–87.

20 Stubbe T, Ebner F, Richter D, Engel O, Randolf Engel O, Klehmet J et al. Regulatory T cells accumulate and proliferate in the ischemic hemisphere for up to 30 days after MCAO. *J Cereb Blood Flow Metab* 2013; 33: 37–47.

21 Wayman C, Duricki DA, Roy LA, Haenzi B, Tsai S-Y, Kartje G et al. Performing Permanent Distal Middle Cerebral with Common Carotid Artery Occlusion in Aged Rats to Study Cortical Ischemia with Sustained Disability. *J Vis Exp* 2016; : 53106.
22 Weise G, Lorenz M, Pösel C, Maria Riegelsberger U, Störbeck V, Kamrad M et al. Transplantation of cryopreserved human umbilical cord blood mononuclear cells does not induce sustained recovery after experimental stroke in spontaneously hypertensive rats. *J Cereb Blood Flow Metab* 2014; 34: e1-9.

23 Zhang Y, Fan S, Yao Y, Ding J, Wang Y, Zhao Z et al. In vivo near-infrared imaging of fibrin deposition in thromboembolic stroke in mice. *PLoS One* 2012; 7: e30262.