Synthesis, Characterization and Photophysicochemical Properties of Zinc(II) Phthalocyanine With New Benzenesulfonamide Derivative Substituents

Gülen Atiye Öncül
Çanakkale Onsekiz Mart University: Canakkale Onsekiz Mart Universitesi

Ömer Faruk Öztürk (✉ ofo1723@hotmail.com)
Çanakkale Onsekiz Mart University Faculty of Sciences and Arts: Canakkale Onsekiz Mart Universitesi
Fen Edebiyat Fakultesi https://orcid.org/0000-0002-9244-6805

Mehmet Pişkin
Çanakkale Onsekiz Mart University: Canakkale Onsekiz Mart Universitesi

Research Article

Keywords: Phthalocyanine, Aggregation, Schiff base, Photochemistry, Singlet oxygen, Photodegradation

Posted Date: December 8th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1092717/v1

License: ☛ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Novel (E)-4-((5-bromo-2-hydroxy-3-methoxybenzylidene)amino)-N-(pyridin-2-yl)benzenesulfonamide 1, (E)-4-((5-bromo-2-(3,4-dicyanophenoxy)-3-methoxybenzylidene)amino)-N-(pyridin-2-yl)benzene sulfonamide 2 and 2(3),9(10),16(17),23(24)-tetra-[(E)-4-((5-bromo-3-methoxy-2-(λ1-oxidanyl)benzyl idene)amino)-N-(pyridine-2-yl)benzenesulfonamide]phthalocyaninato zinc(II) phthalocyanine 3 were synthesized. Their (1-3) structures were illuminated with spectroscopic methods such as FT-IR, 1H NMR, 13C NMR, UV–vis, MALDI-TOF mass spectra and also elemental analysis. The spectroscopic, photophysical and photochemical properties of the zinc(II) phthalocyanine 3 were investigated in dimethyl sulfoxide and its effects on the above mentioned properties were reported as a result of containing new type benzenesulfonamide derivatives as substituents. In addition, its above-mentioned properties were reported by comparing different species with those of their substituted and/or unsubstituted counterparts. The zinc(II) phthalocyanine 3 has photosensitizing abilities suitable and sufficient especially for photocatalytic applications.

Introduction

Schiff base metal complexes are widely used in medicine for treating multiple viral diseases due to their transition metal complexes, which plays a key role in several areas, including antibacterial, antifungal, anticancer, and anti-inflammatory drugs. Moreover, these organometallic materials are used as a catalyst in many reactions. Many Schiff base complexes are used to synthesize medication compounds. This is because of the reactive interaction of the Schiff base ligand with the metal ion which is more effective when compared with the interaction of metal-free Schiff bases [1]. Sulfonamides with other drugs enables the spectrum of activity to be further expanded. Sulfonamide compounds are used in the field of chemistry as polymer, ion carrier, reagent, antiseptic agent and ligand. In the field of pharmacy, they are frequently used as antimicrobial agents [2]. Sulfonamides are cheap and durable, they can be applied easily, and their spectrum of activity is wide, which ensures their widespread use.

Phthalocyanines (Pcs) are synthetic pigments that contain four isoindole units and they have low solubility in common solvents. Substitutions can change the solubility, photophysicochemical properties of phthalocyanines. Substituted Pc derivatives have great technological and commercial interest as dyes and pigments [3]. Numerous properties arise from their electronic delocalization, which makes them valuable in science and technology as photo-conducting agents in photocopying devices, electrocatalysts, data storage systems, liquid crystals, photosensitizers in photodynamic therapy (PDT), gas sensors, solar cell technology, optical read–write discs, Langmuir–Blodgett films and non-linear optics [3–9]. Pcs generate singlet oxygen (1O2) in solutions by excitation at Q band region. 1O2 reacts with organic molecules. This oxidizing process is favourable for many applications such as degradation of pollutants, catalysis of some reactions, anti-microbial studies, DNA degradation and PDT of cancer [10–13].
Metallophthalocyanines (MPcs) have relatively high singlet oxygen quantum yields. Especially zinc phthalocyanines (ZnPcs) are of interest due to their high molar absorption coefficients in red wavelength and its strong activity to produce singlet oxygen [14]. The main restriction of ZnPc utilization is low resolution due to aggregation. PDT is used in the treatment of cancer followed by activation of the chemicals by light [10, 13]. Such applications are based on the relative stability of Pc molecules to air and light, and on the delocalized electronic nature of the Pc ring system [15–17]. Interactions affect aggregation and solubility tendencies in most organic solvents which limit their applications in many fields [18, 19]. The photophysical properties of the phthalocyanine dyes are strongly influenced by the nature of the central metal ion [19–21]. The presence of diamagnetic metal ion such as zinc (II) in the phthalocyanine core results in large triplet state quantum yields, leading to generation of higher concentration of singlet oxygen, hence improved PDT activity [19–21]. ZnPcs have been extensively studied as potential photosensitizers in PDT [19–21].

The pyridine ring is widely used as an important compound in pharmaceutical chemistry due to its potential biological activity. Pyridine structures are found in many natural compounds; it is also frequently used in functional materials [22, 23]. Pyridine and its derivatives have anticarcinogenic, antiviral, antioxidant, antidiabetic, antibacterial properties which exhibit biological and pharmacological activities.

The aim of this study is to synthesize a new photosensitizer for PDT with sufficient and suitable fluorescence properties, photostability and high singlet oxygen generating ability, which combines three different bioactive groups Schiff base, benzenesulfonamide and phthalocyanine in a single structure. The effects of the presence of a new benzenesulfonamide derivative containing electron donor group as methoxy and Schiff base and strongly electron acceptor groups such as Schiff base, bromine, and pyridine on the Pc ring on spectroscopic, photophysicochemical properties were researched in dimethyl sulfoxide (DMSO). In addition, these properties of the new zinc(II) Pc 3 were compared with the properties of different benzenesulfonamide derivative substituted zinc(II) phthalocyanines and unsubstituted zinc(II) phthalocyanine presented in previous studies [24, 25].

Materials And Methods

Experimental Section

The materials, equipment, devices, photophysical and photochemical parameters, formulas and the rest of the figures used in this study are given in Electronic Supplementary Information file.

\[(E)-4-(5-bromo-2-hydroxy-3-methoxybenzylidene)amino]-N-(pyridine-2-yl)benzenesulfonamide (Compound 1)\]

Two solutions were prepared under N₂ by adding sulfapyridine (1.99 g, 0.01 mol) in 100 mL absolute Ethanol (EtOH) and mixing, and also by adding 5-Bromo-3-methoxysalicylaldehyde (1.85 g, 0.01 mol) in
10 mL EtOH and mixing. Under N$_2$, 5-Bromo-3-methoxysalicylaldehyde solution was added dropwise to the Sulfapyridine solution and stirred. Then, a catalytic amount of p-Toluenesulfonic acid monohydrate (p-TsOH) was added to this mixture and it was refluxed under N$_2$ at 78 °C for 6 hours. The resulting orange precipitate was filtered, and the crude product was purified by washing several times with cold EtOH. Yield: 3.55 g (95.55%). Anal. Calc. for C$_{19}$H$_{16}$N$_3$O$_4$S: C, 49.36; H, 3.49; N, 9.09; S, 6.97. Found: C, 49.73; H, 3.16; N, 9.25; S, 6.46%. IR (KBr, ν_{max}/cm$^{-1}$): 3435 (O-H), 3129, 3017, 2965, 1614 (C=N), 1254 (C-O), 1143 (-SO$_2$ str, sym), 1350 (-SO$_2$ str, asym), 1143, 1134 (C–O std.), 1083, 1027, 958, 873, 837, 762, 662 (C–C str.). 1H NMR (DMSO-d$_6$, δ, ppm): 14.24 (s, 1H, O-H), 11.52 (s, 1H, N-H), 9.20 (s, 1H, CH=N), 8.33-6.56 (m, 11H, Ar-H), 4.00 (s, 3H, -OCH$_3$); 13C NMR (DMSO-d$_6$, δ, ppm): 163.57 (C8), 160.67 (C7), 156.97 (C9), 153.21 (C2), 152.77 (C13), 139.78 (C12), 128.56 (C11), 122.11 (C10), 139.22 (C4), 121.39 (C6), 116.14(C16), 110.69 (C3); UV-vis (DMF, λ_{max}(nm) (log)): 360 (2.88), 290 (3.44).

$\text{[(E)-4-((5-bromo-2-(3,4-dicyanophenoxy)-3-methoxybenzylidene)amino)-N-(pyridine-2-yl)benzenesulfonamide} (\text{Compound 2})$

5-Nitrobenzene-1,2-dicarbonitrile (0.166 g, 0.95 mmol) and compound 1 (0.50 g, 1.08 mmol) were added to 12 ml of dried DMSO solvent under N$_2$, and the temperature of the reaction mixture was increased to 55°C and stirred for a period. Finely ground dehydrated K$_2$CO$_3$ (1.60 g, 11.56 mmol) was put in to the reaction mixture in six equal portions at ten-minute intervals, and the resulting reaction mixture was stirred at 55°C for four days. At the end of this period, after determining that the reaction was completed using thin layer chromatography technique, it was poured into ice water, the precipitate formed was washed several times with distilled water and filtered under vacuum, and also dried over P$_2$O$_5$ in vacuum. The crude product was separated using column chromatography technique with silica gel as filler and THF:Hexane (1:1; per vol.) solvent system as eluent to give pure dark brown compound 2 (0.42 g, 73%) using the column chromatography technique. The compound 2 is soluble in THF, Acetone, N,N-dimethylformamide (DMF) and DMSO. Mp: 84°C. Anal. Calc. for C$_{27}$H$_{18}$BrN$_5$O$_4$S: C, 55.11; H, 3.08; N, 11.90; S, 5.45 Found: C, 55.32; H, 3.16; N, 11.84; S, 5.15%. IR (ATR) ν_{max}/cm$^{-1}$: 3056 (=C–H str.), 2230 (C≡N str.), 1601 (C=C str.), 1531 (C=N), 1486, 1406 (C–H bend.), 1381 (-SO$_2$ str), 1265, 1134(C–O std.), 1083, 1027, 958, 873, 837, 762, 662 (C–C str.). 1H NMR (DMSO-d$_6$, δ, ppm): 10.19(s, 1H, -N-H), 8.88(s, 1H, CH=N), 8.52-6.48(m, 11H, Ar-CH), 3.81(s, 3H, -OCH$_3$). 13C-NMR (DMSO-d$_6$) (δ: ppm): 164.09, 161.29, 156.11, 153.27, 151.54, 150.77, 150.38, 149.79, 147.43, 142.21, 139.22, 136.55, 135.69, 130.77, 129.42, 129.06, 128.55, 125.27, 124.10, 123.62, 122.34, 121.86, 120.17, 118.86, 112.95,108.87, 57.10.

$2,9(10),16(17),23(24)$-teta-$\text{[(E)-4-((5-bromo-3-methoxy-2(\lambda^1$-oxidanyl)benzylidene)amino-N-(pyridine-2-yl)benzenesulfonamide)]zinc(II) phthalocyanine} (\text{ZnPc 3})$

In a glass sealed tube, a mixture of the compound 2 (0.20 g, 0.406 mmol) and Zinc(II) acetate dihydrate [Zn(OAc)$_2$.2H$_2$O] (0.149 g, 0.812 mmol) was added into dried N,N-dimethylformamide (DMF) (2 mL) under N$_2$. The reaction mixture was heated to 85°C for a time under N$_2$. Then, 3 drops of 1,8-
diazabicyclo[5.4.0]undec-7-ene (DBU) were added to the reaction mixture as a basic catalyst under N₂ and stirred by heating at 158°C for 7 hours. As a result of this time, a certain amount of crude product 3 with a dirty grass green color was formed. It was precipitated with the solvent system of acetic acid: water (70:30; per vol.) and collected by filtration. The precipitate was purified by washing several times with hot acetic acid, water, methanol, ethanol, acetone, and diethyl ether sequentially, using the Soxhlet apparatus. In addition, the crude product obtained after the above extraction step was separated with the aid of column chromatography as an advanced purification technique, using silica gel as filler and Chloroform:Methanol (10:3; per vol.) solvent system as eluent to give pure grass green phthalocyanine complex 3 (0.06 g, 22%). The ZnPc 3 is soluble in THF, Acetone, DMF and DMSO. M.p. > 300°C. Anal. Calc. for C₁₀₈H₇₂Br₄N₂₀O₁₆S₄Zn: C, 53.58; H, 3.08; N, 11.57; S, 5.30 Found: C, 53.72; H, 3.11; N, 11.35; S, 5.76%. IR (ATR) υ_max/cm⁻¹: 3049(=C‒H str.), 1524 (C=N), 1489 (C‒H bend.), 1230 (C−O std.), 1341 (O=S=O)sym. 1H-NMR (400MHz, DMSO-d₆, ppm): 10.06 (s, 4H, -N‒H); 8.60 (s, 4H, C=H=N); 8.23-6.48 (m, 44H, Ar-C); 3.31 (s,12H, -OC₃H₃). 13C-NMR (DMSO-d₆), (δ; ppm): 188.54, 161.02, 160.85, 156.06, 154.12, 153.77, 153.26, 152.86 143.69, 140.87, 139.46, 136.98, 136.78, 133.11, 131.46, 129.87, 128.52, 124.41, 123.70, 123.59, 121.85, 118.88, 117.23, 116.50, 116.35, 115.84, 114.40, 112.95, 109.50, 107.84. UV–vis (DMSO): λ_max(nm) (logɛ): 698 (2.92), 627 (1.25), 322 (1.81). MALDI-TOF-MS (m/z): Calculated: 2419.12; Found: 2420.14 [M+H]+.

Results And Discussion

The newly compound 1 was synthesized by the condensation reaction of 5-bromo-3-methoxysalicylaldehyde, a derivative of salicylaldehyde, and sulfapyridine, the antibiotic agent and main metabolite of Sulfasalazine, under an inert atmosphere of nitrogen (N₂), in anhydrous ethanol and presence of p-toluene sulfonic acid (p-TsOH) as a catalyst. The newly compound 2, on the other hand, was synthesized by the nucleophilic aromatic substitution reaction of compound 1 and 4-Nitrophthalonitrile under an inert atmosphere in dried DMSO and in the presence of K₂CO₃ as a mild base catalyst. Finally, in this study, the newly ZnPc complex 3 was synthesized through the cyclotetramerization reaction of the compound 2 with zinc acetate dihydrate in dried N, N-dimethylformamide (DMF) under an inert N₂ atmosphere (Scheme 1). Each of the synthesized new compounds (1 and 2) and newly ZnPc complex 3 were purified using different purification techniques. The structures of each of these (1-3) were characterized by the spectroscopic techniques. In the IR spectrum of the compound 1, its absorption bands, broad O-H stretching vibration attributed to its phenolic group, as well as a sharp C=N stretching vibration attributed to its azomethine group, were observed at 3435 cm⁻¹ and 1614 cm⁻¹, respectively (Fig. S1 in ESI). Also, the absorption bands of stretching vibrations attributed to its aromatic CH, aliphatic CH, C=C, phenolic C-O, observed at 3017-3129 cm⁻¹, 2745-2965 cm⁻¹ and 1254 cm⁻¹, respectively (Fig. S1 in ESI). Absorption bands of its vibrations attributed to SO₂ (asymmetric) and SO₂ (symmetrical) groups were also observed at 1350 cm⁻¹ and 1143 cm⁻¹, respectively (Fig. S1 in ESI). The absence of strong absorption bands in the FT-IR spectrum of the compound 2 in the ranges of 1500-1570 cm⁻¹ and 1300-1370 cm⁻¹ is attributed to the fact that it does not
contain –NO₂ group. Also, no absorption bands were observed in it, attributable to a strong or moderate and broad O-H stretching vibration at frequencies of 3600-3300 cm⁻¹ and attributable to O-H bending vibration at frequencies of 1450-1200 cm⁻¹. In its FT-IR spectrum, the weak intensity sharp bond stretching vibration observed at 2230 cm⁻¹ is attributed to the nitrile group, and the severe bond stretching vibration observed at 1265 cm⁻¹ is attributed to the Ar–O–Ar group (Fig. S2 in ESI). The absence of sharp bond stretching vibration with weak or moderate intensity in the FTIR spectrum of the ZnPc 3 in the range 2210 cm⁻¹ to 2280 cm⁻¹ was attributed to the absence of the nitrile group and indicated its conversion to the ZnPc 3 [24-27] (Fig. S3 in ESI). Therein, moderate absorption bands attributed to aromatic and –C=C– stretch vibrations were observed at 3049 cm⁻¹ and 1633 cm⁻¹ and 1588 cm⁻¹, respectively (Fig. S3 in ESI).

The ¹H-NMR spectra of the compounds 1 and 2 and the ZnPc 3 were documented in DMSO-d₆ at 25°C. The characteristic ¹H-NMR peaks of the compound 1 are at 14.24 δ(OH), 11.52 δ(NH), 9.20 δ(CH=N), and 8.33-6.56 ppm δ(Ar-H) (Fig. S4 in ESI). Also, in the ¹³C-NMR spectrum of the compound 1, carbons (C8), (C7) and (C9) were watched at 163.57, 160.67, 156.97 ppm, respectively, and its other aromatic ring carbons between 153.21-110.69 ppm (Fig. S5 in ESI). No proton attributed to -O-H was observed in the ¹H NMR spectrum of the compound 2. In its NMR spectrum, protons attributed to new aromatic protons were observed, unlike those of the compound 1 (Fig. S6 in ESI). In it, signals attributed to methoxy (–OCH₃) protons were observed individually at δ3.81 ppm (Fig. S6 in ESI). Therein, attributed to 1,2-Benzenedicarbonitrile, as well as [(E)-4-((5-bromo-2-(3,4-dicyanophenoxy)-3-methoxybenzylidene)amino]) N-(pyridin-2-yl) signals of aromatic protons attributed to the benzenesulfonamide derivative were observed in the ranges of δ 7.40-8.08 ppm and δ 8.52-6.48 ppm, respectively (Fig. S6 in ESI). Therein, chemical shifts at δ 10.19 ppm and δ 8.88 ppm, respectively, attributed to -NH attached to the -SO₂ group and which are broad, and also attributed to (-CH= N) and integrated as a proton for each, were observed (Fig. S6 in ESI). In the ¹³C-NMR spectrum of the compound 2, the signals in the range of δ118-125 ppm attributed to the nitrile carbon were monitored (Fig. S7 in ESI). In the ¹³C-NMR spectrum of the compound 2, signals in the range of δ118-125 ppm attributed to nitrile carbons were monitored. Other signals attributed to its aliphatic and aromatic carbons for the compound 2 were monitored, in harmonious with the structure proposed (Fig. S7 in ESI). In the ¹H-NMR spectrum of the ZnPc 3, the signals of the protons attributed to the -N-H units containing hydrogen bonds, as well as to the HC=N- units, were monitored at δ 10.06 ppm and δ 8.60 ppm, respectively, as 4 protons for each (Fig. S8 in ESI). Therein, signals attributed to its aromatic protons, multiplet and integrated as 44 protons, were monitored in the range of δ 8.23-6.48 ppm (Fig. S8 in ESI). The signals attributed to aliphatic protons of its –OCH₃ groups, integrated as singlet and 12 protons, were monitored at δ3.31 ppm (Fig. S8 in ESI).

In the ZnPc 3’s ¹³C-NMR spectrum, no minimum intensity signals were observed, typically in the range of 115-125 ppm, attributed to the C≡N unit, as characteristic of hydrogen-free carbons and deshielding due to nitrogen (Fig. S9 in ESI). In the ¹³C-NMR spectrum of the ZnPc 3, signals characteristically attributable to its aliphatic and aromatic carbons were observed in the respective chemical shift regions, consistent with the proposed structure (Fig. S9 in ESI). These results obtained in its ¹³C NMR spectrum indicate that
the cyclotetramerization reaction has taken place successfully and is converted into a proposed newly benzenesulfonamide-derived zinc(II) phthalocyanine 3.

The 1H- and 13C- NMR spectral results of the newly compounds 1, 2 and ZnPc 3 are in concordance with those of their counterparts in the literature [24,25]. The ZnPc 3 was also characterized by MALDI-TOF mass spectrometry using 2,5-dihydroxybenzoic acid as a MALDI matrix (Fig. S10 in ESI). Its molecular ion peak, [M+H]$^+$, was watched at 2420.14 Da (Fig. S10 in ESI). In Figure S11 in the electronic supplementary information file (ESI), electronic transitions in the range of 300-400 nm were observed in the UV-vis spectrum of the new benzenesulfonamide derivative 1 in DMF. These electronic transitions are band transitions originating from aromatic rings and unpaired electrons. The band observed at 340 nm is the $n\to\pi^*$ transition belonging to the CH=N (azomethine) group [30]. Figure 2 and Table 1 show the ZnPc 3 in DMSO has monomeric demeanor demonstrated by a single and narrow Q band, distinctive feature of metallo-phthalocyanines [24-29]. Its Soret band, characteristic for phthalocyanines, was also watched at about 340 nm (Figure 2). Since the ZnPc 3 has (E)-4-((5-bromo-3-methoxy-2-($\overset{1}{\lambda}$-oxidanyl)benzylidene)amino)-N-(pyridine-2-yl) as substituents on its ring, its Q band was observed that shifted to red region about 18 nm compared to Std-ZnPc. These properties allow the use of light with longer wavelengths that can penetrate more into the tissue, enabling more effective treatment of deeply located lesions [31]. It was determined that its Q band in DMSO was shorter and less red shifted than ZnPcs containing different types of benzenesulfonamide-derived substituents in the literature [24,25]. This may be related to the binding of the novel benzenesulfonamide derivative, which contains strong electron acceptor groups that deactivate the ring, such as pyridine and bromine, at the peripheral positions of the phthalocyanine ring, resulting in less redshift of absorption in the NIR region [32] than its counterparts [24,25].

The ZnPc 3 in DMSO has a higher molar extinction coefficient (ε) than its counterparts in the literature [24, 25] (Table 1). This result is related to the effect of increasing the monomerization of Pc [33]. It was also found that this effect was reduced when the Pc ring was replaced by a benzenesulfonamide derivative containing 2-methyl-1,3,4-thiadiazole and methoxy units or containing only 2-methyl-1,3,4-thiadiazole unit [24, 25].

Photophysical properties

Aggregation studies

The ZnPc 3, practically soluble in polar aprotic solvents dichloromethane (DCM) and dimethylsulfoxide (DMSO), as well as in chloroform (CHCl$_3$), one of the apolar solvents, without aggregation (Figure 1). The ZnPc 3 is soluble with very little aggregation in DMF, THF, acetonitrile, which are polar aprotic solvents, and in toluene, another apolar solvent (Figure 1). In addition, the ZnPc 3 in methanol (MeOH) and ethanol (EtOH), which are polar protic solvents, is very slightly soluble (Figure 1). The tendency for the ZnPc 3 to form aggregates in different types of solvents increases in the following order: DMSO < CHCl$_3$ < DCM < DMF < THF < toluene < acetonitrile < EtOH < MeOH. This result indicates that aggregation can increase
with solvent polarity. DMSO is an organic dipolar aprotic solvent with an amphipathic structure that can dissolve a wide variety of poorly soluble polar and apolar molecules. It is used in biological studies, drug therapy, and in vivo administration of water-insoluble substances. The photophysicsochemical properties of the ZnPc 3 have been investigated in DMSO both because of the above-mentioned properties of DMSO and because it shows a very good solubility in DMSO without aggregation.

The Q and B bands of a Pc are affected by different concentrations of Pc in the solvent during its aggregation study, the observation of a new band formation indicates that the Pc contains aggregate species [19,34]. The aggregation behavior of the ZnPc 3 was investigated at ten different concentrations, starting from 1.00×10^{-5} M in DMSO, up to 2.00×10^{-6} M (Figure 2). It was determined that the Q and B bands of the ZnPc 3 were not affected in this solvent and at above-stated concentration ranges, and Lambert-Beer law was obeyed, and no new band formation was observed. It was observed that the intensities of the Q and B band absorptions decreased together with the decrease of the concentration of the ZnPc 3 in this solvent. Also, no new band formation of H- or J-type aggregation was observed due to the concentration change of the ZnPc 3 in this solvent. The ZnPc 3 has monomeric species in this solvent.

Fluorescence spectra

The fluorescence emission and excitation spectra of the phthalonitrile compound 2 containing the novel benzenesulfonamide derivative in DMSO are given in Figure S12 in ESI. Its excitation wavelengths (λ_{Ex}) resulting from electronic transitions were observed with maximum intensity at 300 and 353 nm. Its emission wavelength was observed with maximum intensity at 421 nm. The ZnPc 3 and Std-ZnPc's I_{Ex} and I_{Em} peaks with maximum intensity, as well as Stokes shifts (Δ_{Stokes}), are listed in Table 1. The ZnPc 3’s Δ_{Stokes} in DMSO is both typical and similar for MPcs [19,34-37]. Its Δ_{Stokes} in DMSO was shorter than that of its counterparts in the literature [24,25]. The fluorescent excitation spectrum of the ZnPc 3 in DMSO is like its fluorescent emission spectrum (Figure 3). Also, in the same solvent, the fluorescence excitation spectrum of the ZnPc 3 and its absorption spectrum are mirror images of each other. Thus, it was determined that the nuclear configurations of the ground and excited states for the ZnPc 3 in DMSO were similar and it was not affected by excitation [19,34-37]. The ZnPc 3 was exhibited similar fluorescent behavior with its counterparts in the previous studies [24,25].

Fluorescence quantum yields and lifetimes

The fluorescence quantum yield (Φ_F) and fluorescence lifetime (τ_F) of a fluorophore are significant parameters for fluorophores in single-molecule fluorescence spectroscopy. Φ_F is the primary parameter characterizing the emission properties around a chromophore. Φ_F gives the possibility that the excited state is disabled by fluorescence rather than some other non-radiative mechanism [38,39]. The values of the photophysical parameters of the ZnPc 3 and Std-ZnPc in DMSO are presented in Table 2. Among the photophysical parameters of the ZnPc 3 in DMSO, Φ_F, τ_F, fluorescence rate constant (k_F), natural radiation lifetime (τ_0) values are characteristic for MPcs [19,34-37] (Table 2). Except for the k_F value, all
its above-mentioned values are lower than both its counterparts in the literature [24,25] and those of Std-ZnPc (Table 2). The reduction in \(\Phi_F \) from a fluorophore induced by various molecular interactions with the quencher molecule is related to the quenching of fluorescent intensity due to the nature of the substituent on the Pc ring.

The ZnPc 3's \(t_F \) in DMSO was determined by use of the time-correlated single photon counting (TCSPC) technique and by fitting the fluorescence decay data to a mono-exponential in DMSO (Fig. 4). The reason why its \(t_F \) is shorter than its counterparts in the literature [24,25] and Std-ZnPc [36,37] may be related to the fact that it contains different kinds of benzenesulfonamide derivatives from peripheral positions as tetrakis (Table 2). Thus, the shorter lifetime may result from an increase in non-radiative processes as relaxation becomes important with a higher state density.

In its fluorescence decay process, \(k_F \)’s value, a first-order rate constant [39,40], may be higher than that of Std-ZnPc [36,37] and its counterparts in the literature [24,25] (Table 2). This may be due to the presence of a new benzenesulfonamide derivative containing both electron donor and strongly electron acceptor groups on the Pc skeleton. If the emission is the only decay process, the time the molecule will have been called the natural radiation lifetime (\(\tau_0 \)). The fact that it's \(\tau_0 \) has a shorter duration than both its counterparts in the literature [24,25] and Std-ZnPc [36,37]. It may be related to the presence of different types of benzenesulfonamide derivative substituents containing electron donor and strongly electron acceptor units, as mentioned above. The rate constant of the ZnPc 3 for intersystem crossing (\(k_{ST} \))' value in DMSO is higher than that of tetra-(15-crown-5)-Pc and its lutetium Pcs in the literature [41] and Std-ZnPc (Table 2). The type of substituent containing different groups on its skeleton and the metal in its cavity may have increased its \(k_{ST} \) value by significantly altering it [42]. The rate constant for non-radiative depopulation of S1 (\(k_{nr} \)) contains the rate constants of all non-radiative processes [40]. The \(knr \) value of the ZnPc 3 in DMSO is lower than that of the MPcs containing different types of substituents and metal in the literature [43-45] but higher than that of Std-ZnPc (Table 2). \(k_{nr} \) is about six times its radiation rate constant; therefore, further reduction of the radiation-free rate will affect the emission lifetime. The observed rate constant (\(k_{obs} \)) is the sum of all rate constants depopulating the first excited singlet state (S1) [44,46]. The \(k_{obs} \) value of the ZnPc 3 in DMSO is lower than that of Pc containing 2,6-dimethoxyphenoxy substituted strontium(II) (SrPc) in the literature [44] but higher than that of Std-ZnPc. The nonradiative relaxation processes in the medium, on the order of a few milliseconds, are related to the triple state lifetime [47]. The nonradiative lifetime (\(\tau_{nr} \)) of the ZnPc 3 in DMSO was found longer than that of the SrPc [44] in the literature, but shorter than that of different kinds of ZnPcs [44,48,49] and Std-ZnPc. The presence of benzenesulfonamide-derived substituents containing donor and strong acceptor units on the phthalocyanine ring distinctively changes its photophysical parameters.

Photochemical properties

Singlet oxygen quantum yields (\(\Phi_\Delta \))
Fluorescent emission into the triplet manifold of a photosensitizer and cross-system transition are the two main photophysical processes that take place after photosensitizers have formed their singlet excited states. Thanks to this factor, the fluorescent emission competes with the intersystem crossing (ISC) and follows the singlet oxygen production processes. However, these results are not mutually exclusive. Thus, a photosensitizer can participate in high ISC efficiency and singlet oxygen generation as well as have a Φ_F [50]. Singlet oxygen quantum yield (Φ_Δ) is a quantitative amount of efficiency at which it can use energy in the form of light to convert ground-state oxygen to reactive-type 1O$_2$ to determine the use of photosensitizers in PDT. 1,3-Diphenylisobenzofuran (DPBF) can react with 1O$_2$ and changes in its concentrations are reflected in its singlet oxygen production [51]. DPBF is more accurate and has a better absorption spectrum, higher speed reaction with 1O$_2$ and greater sensitivity and responsiveness to 1O$_2$ [52]. Φ_Δ of the ZnPc 3 in DMSO was determined by using DPBF as a quencher. There was no change in the Q band intensities of the ZnPc 3 during the Φ_Δ determination and the disappearance of DPBF absorbance at 417 nm confirmed that the ZnPc 3 was not degraded during singlet oxygen study (Fig. 5). The Φ_Δ value of the ZnPc 3 in DMSO was found less than its counterparts in the literature [24,25] and Std-ZnPc, and it was characteristic for MPcs [19,38] (Table 2). The presence of the substituent containing electron donor and strongly acceptor units in the phthalocyanine skeleton may promote less ISC between the single and triplet states of the molecules, resulting in less efficient 1O$_2$ generation [53-58].

Photodegradation studies

For use as a photosensitizer in PDT, a drug must also have appropriate stability under applied light [59]. That is, it must be neither strongly determined to be eliminated from the body for a long time nor unstable to decay before it kills the cancer cells. This stability is necessary to maintain the photosensitizing molecule’s efficiency for 1O$_2$ production and to keep the unchanged drug concentration. Pcs commonly display optimum stability against decomposition caused by light irradiation. Photodegradation is oxidative degradation of a compound to determine its stability under applied light irradiation, and is a process in which Pc, as photosensitizer, decays under light irradiation due to 1O$_2$ attack, which also express for photocatalytic studies PDT [59]. The Φ_d was determined by monitoring the degradation behavior of the ZnPc 3 by the light using UV-vis spectrophotometer after photo-irradiation for every 20 minutes (Fig. 6). It was determined that the spectrum band shapes of the ZnPc 3 were not distorted under the light irradiation and only intensities of both the B and Q bands decreased (Fig. 6). This indicates that during its photodegradation studies, degradation under light irradiation takes place without any photo-transformation. The ZnPc 3 Φ_d value is characteristic for MPcs [19] (Table 2) and the ZnPc 3 has similar stability for MPcs [19]. It was determined that the ZnPc 3 had the desired stability for photochemical degradation and was more stable than its counterparts containing different types of benzenesulfonamide in literature [24,25]. The stability of the ZnPc 3 is considerably less than that of Std-ZnPc [19,36,37]. This is due to the presence of new types of benzenesulfonamide-derived substituents containing electron donor and strong electron acceptor groups in its skeleton. This may make it suitable for use in photocatalytic reactions, particularly as a photosensitizer for PDT [60-62].
Conclusion

In this study, the synthesis of three different new compounds, benzenesulfonamide derivative 1 and its phthalonitrile derivative compound 2 and zinc(II) phthalocyanine 3 (ZnPc 3), containing Schiff base, pyridine, 4-bromo-2-methoxyphenol groups together, were carried out. Also, their structures were characterized by widely known spectroscopic techniques. The ZnPc 3’s aggregation behavior in different solvents and concentrations as well as its photophysicochemical properties in DMSO were investigated and the results obtained for these properties were compared with those of its other counterparts in the literature [24,25], as well as with that of unsubstituted zinc(II) phthalocyanine (Std-ZnPc). The ZnPc 3 is practically soluble without aggregation in dichloromethane and chloroform, as well as in dimethylsulfoxide (DMSO) which is biocompatible and non-toxic to cells. It exhibited little aggregation in N, N-dimethylformamide, Tetrahydrofuran, acetonitrile, and toluene, therefore it has slightly soluble in these solvents. It aggregates significantly in methanol and ethanol, and very slightly soluble. With these solubility and aggregation properties in the specified solvents, it can be used for photocatalytic applications, especially as photosensitizer for photodynamic therapy (PDT) and for other technological applications. Its Q band in DMSO was reported to be less redshifted than those of Pc containing different types of benzenesulfonamide derivatives in the literature [24,25]. It was determined that the shape of its emission spectrum is approximately mirror image of the shape of the absorption spectrum, so that the ground and excited state have similar vibrational properties, and the emitting molecule is the same as the absorbing molecule. The presence of benzenesulfonamide-derived substituents containing donor and strong acceptor units on the Pc ring was reported to significantly alter its photophysical parameters compared to its counterparts in the literature [24,25]. Its ability to produce singlet oxygen has been reported to be lower than that of benzenesulfonamide-derived counterparts containing different types of groups in the literature [24,25], but as a photosensitizer for PDT applications, it has the potential to produce sufficient singlet oxygen. The presence of a substituent containing an electron withdrawing group in Pc skeleton can distinctively change the ability to produce singlet oxygen by affecting intersystem crossing between the singlet state and triplet state of the molecules. The photostability of the newly benzenesulfonamide-derived ZnPc 3 containing both electron donor and electron acceptor units from peripheral positions as tetra on its skeleton has been reported to be suitable for a photosensitizer. In conclusion, these data obtained both for the ZnPc 3 new benzenesulfonamide derivative in this study and for ZnPcs containing different types of benzenesulfonamide derivatives from the literature [24,25] suggest that they are more clinically useful agents for cancer PDT. Therefore, these phthalocyanines need to be investigated further in tumour models both in vivo and in vitro.

Declarations

Authors’ Contributions

ÖFÖ and MP edited the draft for general write up and performed the experiments, GAÖ performed the experiments and characterization studies. ÖFÖ and MP took part in writing the text of the manuscript. All authors took part in the discussion of the results.
Funding

Çanakkale Onsekiz Mart University/ The Scientific Research Coordination Unit. (FDK-2018-2567)

Data Availability

All data generated or analyzed during this study are included in this published article and its supplementary information

Ethics Approval

not applicable

Consent to Participate

not applicable

Consent for Publication

not applicable

Conflicts of Interest/Competing Interests

the authors declare no conflicts of interest or competing interests.

References

1. Ibrahim FM, Abdalhadi SM (2021) Performance of Schiff Bases Metal Complexes and their Ligand in Biological Activity: A Review. Al-Nahrain Journal of Science ANJS Vol. 24, 1-10 DOI: 10.22401/ANJS.24.1.01

2. Claudel M, Schwarte JV, Fromm KM (2020) Review: New Antimicrobial Strategies Based on Metal Complexes. Chemistry, 2, 849–899 doi:10.3390/chemistry2040056

3. Kadish K, Smith K M, Guilard R (Eds.) (2003) The Porphyrin Handbook Vols. 15–20, Academic Press

4. Walter MG, Rudine AB, Wamser CC (2010) Porphyrins and phthalocyanines in solar photovoltaic cells. J. Porphyrins Phthalocyanines, 14, 759–792 https://doi.org/10.1142/S1088424610002689

5. Ali H, Van Lier JE (1999) Metal complexes as photo- and radiosensitizers. Chem Rev., 99: 2379 https://doi.org/10.1016/S0040-4039(00)01531-8

6. Pişkin M, Durmuş M, Bulut M (2011) Synthesis, characterization, photophysical and photochemical properties of 7-oxy-3-methyl-4-phenylcoumarin- substituted indium phthalocyanines. Inorganica Chimica Acta, 373, 107-116 https://doi.org/10.1016/j.ica.2011.03.066

7. Pişkin M, Öztürk N, Durmuş M (2017) Spectroscopic and electrochemical behavior of the novel tetra-2-methyl-pyrazinoporphyrazines. J. Mol. Struct., 1149: 893-899 https://doi.org/10.1016/j.molstruc.2017.08.053

8. Granito C, Goldenberg LM, Bryce MR, Monkman AP, Troisi L, Pasimini L, Petty MC (1996) Optical and Electrochemical Properties of Metallophthalocyanine Derivative Langmuir–Blodgett Films. Langmuir, 12, 472 https://doi.org/10.1021/la950490m

9. Orman EB, M. Pişkin M, Odabaş Z, Özkaya AR (2021) Electrochemical, Spectroelectrochemical, and Electrocatalytic Dioxygen Reducing Properties of Peripheral Tetra-2,6-dimethoxyphenoxy Substituted
10. Ishii K (2012) Functional singlet oxygen generators based on phthalocyanines. Coord. Chem. Rev., 256: 1556-1568 https://doi.org/10.1016/j.ccr.2012.03.022

11. Aktaş A, Pişkin M, Durmuş M, Bıyıklıoğlu Z (2014) Synthesis, photophysical and photochemical properties of zinc phthalocyanines bearing fluoro-functionalized substituents. J. Lumin., 145: 899-906 https://doi.org/10.1016/j.jlumin.2013.09.019

12. Ghanem BS, Pişkin M, Durmuş M, El-Khoulî ME, Al-Raqa SY (2015) Synthesis, photophysical and photochemical properties of novel phthalocyanines substituted with triptycene moieties. Polyhedron, 90: 85-90 https://doi.org/10.1016/j.poly.2015.01.037

13. Pişkin M (2016) The novel 2,6-dimethoxyphenoxy substituted phthalocyanine dyes having high singlet oxygen quantum yields. Polyhedron, Vol. 104, 17-24. DOI: 10.1016/j.poly.2015.11.017

14. Pişkin M, Durmuş M, Bulut M (2011) Synthesis, characterization, photophysical and photochemical properties of 7-oxy-3-methyl-4-phenylcoumarin-substituted indium phthalocyanines. Journal of Photochemistry and Photobiology, Vol.223 1: 37–49 https://doi.org/10.1016/j.ica.2011.03.066

15. Hoffman JW, Zeeland F, Turker S, Talsma H, Lambrechts SAG, Sakharov DV, Hennink WE, Van Nostrum CF (2007) Peripheral and axial substitution of phthalocyanines with solketal groups: synthesis and in vitro evaluation for photodynamic therapy. Journal of Medicinal Chemistry, 50, 1485–1494 https://doi.org/10.1021/jm061136w

16. Bonnet R, Martinez G (2001) Photobleaching of Sensitisers used in Photodynamic Therapy. Tetrahedron, 57, 9513–9547. https://doi:10.1016/S0040-4020(01)00952-8

17. Al-Sohaimi BR, Pişkin M, Aljuhani A, Al-Raqa SY, Durmuş M (2016) Enhancing photophysical and photochemical properties of zinc(II) phthalocyanine dyes by substitution of triptycene moieties. J. Lumin., 173: 82-88 https://doi.org/10.1016/j.jlumin.2015.12.053

18. Çakır V, Çakır D, Pişkin M, Durmuş M, Bıyıklıoğlu Z (2014) Water soluble peripheral and non-peripheral tetrasubstituted zinc phthalocyanines: Synthesis, photochemistry and bovine serum albumin binding behaviour. Journal of Luminescence Vol. 154, 274-284 https://doi:10.1016/j.jlumin.2014.04.030

19. Nyokong T (2007) Effects of substituents on the photochemical and photophysical properties of main group metal phthalocyanines. Coord. Chem. Rev., 251, 1707-1722 https://doi.org/10.1016/j.ccr.2006.11.011

20. Liu MO, Tai CH, Sain MZ, Hu AT, Chou Fl (2004) Photodynamic applications of phthalocyanines. J. Photochem. Photobiol. A: Chem., 165, 131 https://doi.org/10.1016/j.jphotochem.2004.03.009

21. Al-Sohaimi BR, Pişkin M, Ghanem BS, Al-Raqa SY, Durmuş M (2016) Efficient singlet oxygen generation by triptycene substituted A3B type zinc(II) phthalocyanine photosensitizers. Tetrahedron Lett., 57: 300-304 https://doi.org/10.1016/j.tetlet.2015.12.004

22. Kenchappa R, Bodke YD, Chandrashekar A, Telkar S, Manjunatha KS, Sindhe MA (2017) Synthesis of some 2, 6-bis (1-coumarin-2-yl)-4-(4-substituted phenyl) pyridine derivatives as potent biological agents. Arabian Journal of Chemistry Vol: 10, 1336-1344 https://doi.org/10.1016/j.arabjc.2013.03.020
23. Keleş T, Barut B, Biyıklıoğlu Z, Özel A (2017) A comparative study on DNA/BSA binding, DNA photocleavage and antioxidant activities of water soluble peripherally and non-peripherally tetra-3-pyridin-3-ylpropoxy-substituted Mn (III), Cu (II) phthalocyanines. Dyes and Pigments, 139, 575-586 https://doi.org/10.1016/j.dyepig.2016.12.045

24. Şahal H, Pişkin M, Organ GA, Öztürk ÖF, Kaya M, Canpolat E (2018) Zinc (II) phthalocyanine containing Schiff base containing sulfonamide: synthesis, characterization, photophysical, and photochemical properties. Journal of Coordination Chemistry, Vol:71:22, 3763–3775 https://doi: 10.1080/00958972.2018.1524140

25. Pişkin M, Canpolat E, Öztürk ÖF (2020) The new zinc phthalocyanine having high singlet oxygen quantum yield substituted with new benzenesulfonamide derivative groups containing Schiff base, Journal of Molecular Structure 1202, 127181. Journal of Molecular Structure, 1202, 127181 https://doi.org/10.1016/j.molstruc.2019.12718

26. Nyokong T, Jiang J, Mingos DMP (Eds.) (2010) Functional Phthalocyanine Molecular Materials, 45–87. Springer, London

27. Akçay HT, Pişkin M, Demirbaş Ü, Bayrak R, Durmuş M, Menteşe E, Kantekin H (2013) Novel triazole bearing zinc (II) and magnesium (II) metallo-phthalocyanines: Synthesis, characterization, photophysical and photochemical properties. J. Organomet. Chem., 379, 745 https://doi: 10.1016/j.jorganchem.2013.08.029

28. Demirbaş Ü, Bayrak R, Pişkin, Türker Akçay H, Durmuş M, Kantekin H (2013) Synthesis, photophysical and photochemical properties of novel tetra substituted metal free and metallophthalocyanines bearing triazine units. J. Organomet. Chem., 724, 225 https://doi.org/10.1016/j.jorganchem.2012.11.001

29. Demirbaş Ü, Pişkin M, Bayrak R, Ünlüer D, Düğü E, Durmuş M, Kantekin H (2016) Synth. Met., 219, 76 The determination of photophysical and photochemical parameters of novel metal-free, zinc (II) and lead (II) phthalocyanines bearing 1,2,4-triazole groups. Synth. Met., 219, 76 https://doi.org/10.1016/j.synthmet.2016.05.008

30. Rsmussen JC, Toftlund H, Nivorzhkin AN, Bourasse J, Ford PC (1996) Luminescent tetranuclear copper(I) clusters containing tetradeutate N, S Schiff base ligands. X-Ray crystal structure of Cu₄L₂ (L=N, N’-(2,2’-diphenyl)-bis(1,3-Diphenyl-4-iminomethyl-5-thiopyrazole). Inorg. Chem. Acta., 251, 291-298 https://doi.org/10.1016/S0020-1693(96)05282-6

31. Allison RR, Sibata CH (2010) Oncologic photodynamic therapy photosensitizers: a clinical review. Photodiagnosis Photodyn. Ther. 7: 61–75 doi: 10.1016/j.pdpdt.2010.02.001

32. Nemykin VN, Lukyanets EA (2010) Synthesis of substituted phthalocyanines. Arkivoc, 1, 136-208 https://doi:10.3998/ark.5550190.0011.104

33. Chin Y, Lim SH, Zorlu Y, Ahsen V, Kiew LV, Chung LY, Dumoulin F, Lee HB (2014) Improved Photodynamic Efficacy of Zn (II) Phthalocyanines via Glycerol Substitution, 9 (5) e97894 https://doi.org/10.1371/journal.pone.0097894
34. Stillman MJ, Nyokong T (1989) Phthalocyanines Properties and Applications, In: C.C. Leznoff CC, Lever ABP (Ed.), vol. 1, chapter 3, VCH Publishers, New York

35. Lakowicz JR (2006) Principles of Fluorescence Spectroscopy, 3rd ed.; Springer US: Boston, MA

36. Elzien H, Ali A, Pişkin M, Altun S, Durmuş M, Odabaş Z (2016) Synthesis, characterization, photophysical, and photochemical properties of novel zinc (II) and indium (III) phthalocyanines containing 2-phenylphenoxy units. Journal of Luminescence 173, 113–119 http://dx.doi.org/10.1016/j.jlumin.2015.12.010

37. Şahin S, Pişkin M, Altun S, Durmuş M, Odabaş Z (2016) First investigation on the photophysical and photochemical properties of azo-bridged phthalocyanine photosensitizers. Journal of Luminescence 180, 219–223 http://dx.doi.org/10.1016/j.jlumin.2016.08.039

38. Ogunsipe A, Chen JY, Nyokong T (2004) Photophysical and photochemical studies of zinc (II) phthalocyanine derivatives—effects of substituents and solvents. New J. Chem., 28, 822-827 https://doi.org/10.1039/B315319C

39. De Silva AP, Nimal Gunaratne HQ, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE (1997) Signaling Recognition Events with Fluorescent Sensors and Switches. Chem Rev., 97, 5:1515–1566 https://doi.org/10.1021/cr960386p

40. Valeur B (2001) Molecular Fluorescence; Wiley-VCH Verlag GmbH: Weinheim, Germany

41. Smola SS, Snurnikova OV, Fadeyev EN, Sinelshchikova AA, Gorbunova YG, Lapkina LA, Tsivadze AY, Rusakova NV (2012) The First Example of Near-Infrared 4f Luminescence of Sandwich-Type Lanthanide Phthalocyaninates. Macrocycles, 5(4-5) 343-349 https://10.6060/mhc2012.121193r.

42. Nijegorodov N, Mabbs R, Winkoun DP (2003) Influence of weak and strong donor groups on the fluorescence parameters and the intersystem crossing rate constant. Spectrochimica Acta, Part A, 59, 595-606. https://doi.org/10.1016/S1386-1425(02)00207-X

43. Ghazal B, Husain A, Ganesan A, Durmuş M, Zhang X, Makhseed S (2019) Exceptionally effective generation of singlet oxygen in aqueous media via iodinated zinc-phthalocyanine. Dyes and Pigments 164, 296–304. https://doi.org/10.1016/j.dyepig.2019.01.036

44. Pişkin M (2021) Synthesis, characterization, thermal and photophysical properties of novel strontium (II) phthalocyanine. J. Incl. Phenom. Macrocycl. Chem. https://doi.org/10.1007/s10847-021-01094-2

45. Pal AK, Varghese S, Cordes DB, Slawin AMZ, Samuel IDW, Zysman-Colman E (2017) Near-Infrared Fluorescence of Silicon Phthalocyanine Carboxylate Esters. Scientific Reports, 7, 12282 https://doi.org/10.1038/s41598-017-12374-8

46. Bohg SA, Simmerrmacher M, Westberg M, Bregnhøj M, Rosenberg M, De Vico L, Veiga M, Laursen BW, Ogilby PR, Sauer SPA, Sørensen TJ (2017) Azadoxatriangulenium and Diazaaxatriangulenium: Quantum Yields and Fundamental Photophysical Properties. ACS Omega, 2, 193–203 https://doi.org/10.1021/acsomega.6b00211
47. Dovrat M, Goshen Y, Jedrzejewski J, Balberg I, Sa’ar A (2004) Radiative versus nonradiative decay processes in silicon nanocrystals probed by time-resolved photoluminescence spectroscopy. Physical Review, B 69, 155311 https://doi.org/10.1103/PhysRevB.69.1553

48. Bezera de Souza TG, Vivas MG, Mendonça CR, Plunkett S, Filatov MA, Sengec MO, De Boni L (2016) Studying the intersystem crossing rate and triplet quantum yield of meso-substituted porphyrins by means of pulse train fluorescence technique. J. Porphyrins Phthalocyanines, 20: 2–10 https://doi.org/10.1142/S1088424616500048

49. Cocca LHZ, Ayhan MM, Gürek AG, Ahsen V, Bretonnière Y, De Siqueira JP, Gotardo F, Mendonça CR, Hirel C, De Boni L (2016) Mechanism of the Zn (II)phthalocyanines’ photochemical reactions depending on the number of substituents and geometry. Molecules, 21(5), 635–651 https://doi.org/10.3390/molecules210506573

50. Li X, Kolemen S, Yoon J, Akkaya EU (2017) Activatable Photosensitizers: Agents for Selective Photodynamic Therapy. Adv. Funct. Mater., 27, 1604053 https://doi.org/10.1002/adfm.201604053

51. Cheng Y, Samia AC, Meyers JD, Panagopoulos I, Fei BW, Burda C (2008) Highly Efficient Drug Delivery with Gold Nanoparticle Vectors for in Vivo Photodynamic Therapy of Cancer. J. Am. Chem. Soc. 130, 10643 https://doi.org/10.1021/ja801631c

52. Zhang XF, Li XL (2011) The photostability and fluorescence properties of diphenylisobenzofuran. J. Lumin. 131, 2263. https://doi.org/10.1016/j.jlumin.2011.05.048

53. Magadla A, Babu B, Mack J, Nyokong T (2021) Positively charged styryl pyridine substituted Zn(II) phthalocyanines for photodynamic therapy and photoantimicrobial chemotherapy: effect of the number of charges. Dalton Trans., 50, 9129-9136 https://doi.org/10.1039/D1DT01047F

54. Güzel E, Baş H, Biyiklioglu Z, Şişman İ (2021) Dye-sensitized solar cells using silicon phthalocyanine photosensitizers with pyridine anchor: Preparation, evaluation of photophysical, electrochemical, and photovoltaic properties. Appl Organomet Chem., 35: e6214 https://doi.org/10.1002/aoc.6214

55. Boyar CY, Çamur M (2019) Novel water soluble 7-oxy-4-(pyridine-3-yl)coumarin substituted phthalocyanines as potential photosensitizers for photodynamic therapy. Inorganica Chimica Acta, 494, 30-41 https://doi.org/10.1016/j.ica.2019.05.004

56. Jeong H, Choi M (2016) Design and Properties of Porphyrin-based Singlet Oxygen Generator. Isr. J. Chem., 56, 110 –118. https://doi.org/10.1002/ijch.201500026

57. Morone M, Beverina L, Abbotta A, Silvestri F, Collini E, Ferrante C, Bozio R, Pagani GA (2006) Enhancement of Two-Photon Absorption Cross-Section and Singlet-Oxygen Generation in Porphyrins upon β-Functionalization with Donor–Acceptor Substituents. Org. Lett., 8, 13, 2719–2722 https://doi.org/10.1021/ol060742i

58. Liau J, Li J, Yuan X, Wang W, Xue J (2016) In vitro photodynamic activities of zinc (II) phthalocyanines substituted with pyridine moieties Photodiagnosis and Photodynamic Therapy. Photodiagnosis and Photodynamic Therapy 13, 341–343 http://dx.doi.org/10.1016/j.pdpdt.2015.07.003 1572-1000
59. Bonnett R, Martinez G (2001) Photobleaching of sensitizers used in photodynamic therapy. Tetrahedron, 57: 9513-9547 https://doi.org/10.1016/S0040-4020(01)00952

60. Mencaroni L, Carlotti B, Cesaretti A, Elisei F, Grgićević A, Škorić I, Spalletti A (2020) Competition between fluorescence and triplet production ruled by nitro groups in one-arm and two-arm styrylbenzene heteroanalogues. Photochem. Photobiol. Sci., 19, 1665-1676 https://doi.org/10.1039/D0PP00271B

61. Crespo-Hernández CE, Vogt R A, Sealey B (2013) On the Primary Reaction Pathways in the Photochemistry of Nitro-Polycyclic Aromatic Hydrocarbons. Mod. Chem. Appl., 1:3 https://doi.org/10.4172/2329-6798.1000106

62. Yüzeroğlu M, Keser Karaoğlan G, Gümrükçü Köse G, Erdoğmuş A (2021) Synthesis of new zinc phthalocyanines including Schiff base and halogen; photophysical, photochemical, and fluorescence quenching studies. Journal of Molecular Structure, 1238, 130423 https://doi.org/10.1016/j.molstruc.2021.130423

Tables

Table 1 Absorption data (Q \(\lambda_{\text{max}}\)), excitation (\(\lambda_{\text{Ex}}\)), emission (\(\lambda_{\text{Em}}\)) and Stokes shift (\(\Delta_{\text{Stokes}}\)) spectral data in DMSO for the ZnPc 3 and Std-ZnPc.

Sample	\(Q_{\lambda_{\text{max}}}\) (nm); loge	\(\lambda_{\text{Ex}}\) (nm)	\(\lambda_{\text{Em}}\) (nm)	\(\Delta_{\text{Stokes}}\) (nm)
ZnPc 3	690; 5.06	700	708	8
Std-ZnPc	672; 5.14	672	682	10

\(^a\) Data from Ref. [19].

Table 2 Photophysical and photochemical parameters for the ZnPc 3, and Std-ZnPc in DMSO.

Sample	\(\Phi_F\)	\(\tau_F\) (ns)	\(a_k_F\) \(\times10^7\)	\(b_k_{nr}\) \(\times10^7\)	\(c_k_{ST}\) \(\times10^7\)	\(d_k_{obs}\) \(\times10^7\)	\(e_{\tau_o}\) (ns)	\(f_{\tau_{nr}}\) (ns)	\(\Phi_d\)	\(\Phi_\Delta\)	\(\Phi_F + \Phi_\Delta\)
ZnPc 3	0.14	2.71	5.17	31.73	31.76	36.90	19.36	3.15	88.51	0.50	0.64
Std-ZnPc \(^g\)	0.20	3.99	5.01	20.04	25.06	25.05	19.95	4.99	2.61	0.67	0.87

\(^a\)\(k_F\) is the rate constant for fluorescence. Values calculated using \(k_F = \Phi_F / \tau_F\)

\(^b\)\(k_{nr}\) is the non-radiative rate constant. Values calculated using \(k_{nr} = (1-\Phi_F) / \tau_F\)
c k_{ST} is the rate constant for intersystem crossing. Values calculated using $k_{ST} = k_F \times (1-\Phi_F) / \Phi_F$

d k_{obs} is the decay constant observed in time-resolved fluorescence experiments. Values calculated using $k_{obs} = k_F + k_{nr}$

e τ_o is the natural radiative lifetime. Values calculated using $\tau_o = \tau_F / \Phi_F$

f τ_{nr} is the nonradiative lifetime. Values calculated using $\tau_{nr} = 1 / k_{nr}$

g Data from Ref. [36]

h Data from Ref. [38]

Scheme

The Scheme is available in the Supplementary Files section.

Figures

![Absorbance vs Wavelength](image.png)
Figure 1

UV-vis spectra of the ZnPc 3 in the studied polar and apolar solvents.

Figure 2

UV-vis spectra of the ZnPc 3 in DMSO at certain concentrations. Inset: Plots of absorbance versus concentration.

Figure 3

Fluorescence absorption, emission, and excitation spectra of the ZnPc 3 in DMSO. Excitation wavelength: 655 nm.
Figure 4

TCSPC technique for the ZnPc 3 in DMSO. Excitation wavelength: 655 nm. Bottom: Fitting residues for the ZnPc 3.
Figure 5

A typical spectrum for the determination of singlet oxygen quantum yield of the ZnPc 3, in DMSO at 1 × 10\(^{-5}\) M. Inset: Plots of DPBF absorbance versus time.

Figure 6

The absorption spectral changes of the ZnPc 3 in DMSO under light irradiation showing the disappearance of the Q-band at twenty minutes intervals. Inset: Plot of absorbance versus time.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- GraphicalAbstract.jpg
- Scheme.docx
- ElectronicSupplementaryInformationESI.pdf