Accurate ranking of influential spreaders in networks based on dynamically asymmetric link-impact

Ying Liu,1,2 Ming Tang,2,3 Younghae Do,4 and Pak Ming Hui5

1School of Computer Science, Southwest Petroleum University, Chengdu 610500, China
2Web Sciences Center, University of Electronic Science and Technology of China, Chengdu 610054, China
3School of Information Science Technology, East China Normal University, Shanghai 200241, China
4Department of Mathematics, Kyungpook National University, Daegu 702-701, South Korea
5Department of Physics, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China

(Dated: May 11, 2017)

We propose an efficient and accurate measure for ranking spreaders and identifying the influential ones in spreading processes in networks. While the edges determine the connections among the nodes, their specific role in spreading should be considered explicitly. An edge connecting nodes i and j may differ in its importance for spreading from i to j and from j to i. The key issue is whether node j, after infected by i through the edge, would reach out to other nodes that i itself could not reach directly. It becomes necessary to invoke two unequal weights w_{ij} and w_{ji} characterizing the importance of an edge according to the neighborhoods of nodes i and j. The total asymmetric directional weights originating from a node leads to a novel measure s_i which quantifies the impact of the node in spreading processes. A s-shell decomposition scheme further assigns a s-shell index or weighted coreness to the nodes. The effectiveness and accuracy of rankings based on s_i and the weighted coreness are demonstrated by applying them to nine real-world networks. Results show that they generally outperform rankings based on the nodes’ degree and k-shell index, while maintaining a low computational complexity. Our work represents a crucial step towards understanding and controlling the spread of diseases, rumors, information, trends, and innovations in networks.

PACS numbers: 89.75.Hc, 87.19.X-, 89.75.Fb

I. INTRODUCTION

The structural properties of complex networks and the intricate interplay between the structure and spreading dynamics lead to highly diversified spreading capabilities among individual nodes. From the perspective of the severity of a spreading process, the most influential spreaders are those resulting in a much larger final infected proportion of the whole system when the spread of a disease or a piece of information originates from them than from other nodes. Centrality measures such as the degree [1], betweenness [2], closeness [3], eigenvector centrality [4] and k-shell coreness [5] have been used to identify the most influential spreaders. The degree is the simplest measure. In social networks, for example, an individual with a large degree has more direct contacts to other people and is thus likely to be more influential than one with a small degree for transmitting disease or information. Subsequent research indicates that the core nodes as identified by the k-shell decomposition are the most influential spreaders [6]. Algorithms based on other centrality measures have been proposed to improve the accuracy of identifying influential spreaders [7-10]. They include the neighborhood coreness [11], improved eigenvector centrality [12, 13], H-index [14, 15] and nonbacktracking centrality [16].

Methods other than centrality-based algorithms have also been proposed for predicting how influential a node can be in a spread. For example, by counting the number of possible infection paths of various lengths, the final infection range can be estimated for a spread originated from any node [17]. The degree distribution of clusters of infected nodes after certain transmission events leads to a node property called the expected force, which can be applied to predict the spreading influence of all nodes under different epidemiological models [18]. The dynamic-sensitive centrality is able to locate influential nodes from both topological features and the dynamical parameters, such as the infection and recovery rates in a susceptible-infected-recovered (SIR) spreading model [19]. In the k-truss decomposition, which is a triangle-based extension of k-shell decomposition, the maximal k-truss subgraph contains the most influential spreaders [20].

In most studies on identifying influential spreaders so far, the networks are taken to be unweighted and undirected. Each edge is treated to be equivalent in its function, as in the centralities and ranking methods [10]. However, edges in a network could be quite different [21]. In weighted networks, the weight of an edge reflects the strength of the interaction between the connected nodes, as in situations concerning the number of communications, size of trade, intimacy of friendship and frequency of cooperation, etc. [22-24]. In addition, edges may not be equally important in keeping the network robust [25]. An example is the small influence on network robustness in food web networks when redundant links are removed [26]. In terms of network functionality, differences among edges are also observed. For example, removing redundant links has no effect on network synchronization [27] but closing specific routes in air transportation networks can minimize the spreading of a disease [28]. To quantify the weight of an edge, a class of measures relying on its importance in the network structure have been defined [29]. For example, the edge betweenness counts the number of shortest
paths between any two nodes that go through the edge and it can be regarded as the weight of an edge \[30\]. Immunizing edges of high betweenness was found to be effective in suppressing epidemics \[31\], but deleting such edges in scale-free networks would enhance the transmission efficiency dramatically \[32\]. In global air transportation network, the strength of an edge that reflects the volume of passengers travelling between two airports was found to correlate positively with the product of the degree of the connected nodes. Thus, a measure \[w_{ij} = (k_i k_j)^\theta\] \[33\] was introduced as the weight of an edge. This measure has been adopted in many works for distinguishing the importance among edges in unweighted networks \[34-36\].

In the present work, we propose a better measure to quantify the importance of an edge when spreading processes are concerned. As spreading is necessarily directional, e.g. only an infected node would spread a disease to a neighboring susceptible node but not the other way round, the new measure stresses the importance of an edge in the spreading dynamics in the vicinity of the two nodes connected by the edge and it has the general property of \(w_{ij} \neq w_{ji}\). The sum of asymmetric weights of links originated from a node defines a new measure of the strength \(s_i\) of a node \(i\), which is shown to be an efficient quantity for identifying influential spreaders with a low computational complexity. Based on the node strength, a \(s\)-shell decomposition scheme is proposed for assigning a \(s\)-shell index to every node, which provides a more accurate ranking of the nodes in their influence in spreading processes.

The paper is organized as follows. In Sec. II the degree centrality, \(k\)-shell index, the spreading model used in the study and the methods of evaluating the performance of measures for identifying influential spreaders are introduced for completeness. In Sec. III we propose a new measure that focuses on the importance of an edge in the dynamics of a spreading process. The measure is then applied to define a node strength for every node. A \(s\)-shell decomposition method that emphasizes the importance of a node in the spreading dynamics is proposed. In Sec. IV we apply the node strength and \(s\)-shell index to rank and identify influential spreaders in nine real-world networks and demonstrate their effectiveness. A conclusion is given in Sec. V.

II. CENTRALITIES, SPREADING MODEL AND EVALUATION METHODS

We review briefly the degree centrality and the \(k\)-shell index for completeness. They are efficient measures for identify influential spreaders \[37-39\]. We will compare the performance of our newly defined node strength and \(s\)-shell index with these methods. The Susceptible-Infected-Recovered (SIR) model is adopted to simulate the spreading dynamics on networks. To quantify the performance of our measures in predicting the influence of the nodes and identifying influential spreaders, the Kendall’s correlation and the imprecision function are introduced.

A. The degree and \(k\)-shell centrality

In a graph \(G = (V, E)\), where \(V\) is the set of nodes and \(E\) is the set of edges, the degree \(k_i\) of a node \(i\) is the number of links it carries. It is given by \(k_i = \sum_j a_{ij}\), where \(a_{ij}\) is an element of the adjacent matrix, with \(a_{ij} = 1\) if there is a link between nodes \(i\) and \(j\) and \(a_{ij} = 0\) otherwise. The \(k\)-shell decomposition method decomposes the network into hierarchical shells in a progressive process. Initially, nodes with degree \(k = 1\) are removed from the network together with their links. After the process, there may appear nodes with only one link left. These nodes and their links are then removed and the process is repeated until there is no nodes left in the network with only one link. The removed nodes and links form the 1-shell, and these nodes are assigned with an index \(k_1 = 1\). Next, nodes with degree \(k \leq 2\) are removed in a similar way and the set of removed nodes are assigned an index \(k_2 = 2\). This pruning process is continued until all nodes are removed and assigned a \(k\)-shell index. This index is called the \(k\)-shell index or coreness of a node. It represents the core position of a node in the network. Nodes with a large \(k\)-shell are considered as to be at the core of the network, while nodes with a small \(k\)-shell form the peripheral part of the network.

Nodes with large degree and large coreness are considered the most influential spreaders in networks. These measures have a low computational complexity of order \(O(E)\) and \(O(N + E)\), where \(N\) and \(E\) are the number of nodes and edges in the network respectively.

B. SIR model

The SIR model is chosen to simulate spreading on complex networks. In the model, the nodes have three possible states: S (susceptible), I (infected) and R (recovered). At each time step, the infected nodes infect their susceptible neighbors with a probability \(\lambda\) and then recover with a probability \(\beta\). To quantify the influence of each node on spreading, we let one node, node \(i\) say, be infected and all the other nodes being susceptible initially. The SIR dynamics proceeds from the seed infected node to other nodes until there is no infected node in the network. The recovered nodes at the end are those once infected and the fraction of recovered nodes gives the final infected range of the initial seed. For an initially infected node \(i\), the spreading dynamics is repeated for 100 times. The average infected range \(M_i\) of node \(i\) is recorded and taken to reflect the influence or the spreading efficiency of the node \(i\). This quantity can be obtained for any node \(i\) in the network and used as a measure to rank the nodes on their importance in the spreading dynamics. This dynamics-based list is taken to be the exact ranking that gauges the accuracy of other topology-based measures.

While the final infected ranges for the nodes vary with the parameters \(\lambda\) and \(\beta\) in the SIR model, the relative ranking of spreading efficiency of the nodes remains unchanged in a wide range of infection probabilities \[38\]. Thus, we take the recovered probability to be \(\beta = 1\) for simplicity. The infection probability \(\lambda\) should be chosen more carefully. Too large an
infection probability gives spreading efficiencies of the nodes that are too close to each other to distinguish their relative importance clearly. In the results that follow, we choose an infection probability λ above the epidemic threshold that gives a final infected range that amounts to 1% to 20% of the system for most nodes [6].

C. The Kendall’s tau correlation and imprecision function

Two figures of merit are used to quantify the performance of different topology-based measures for predicting the spreading efficiency of the nodes. The Kendall’s tau correlation coefficient measures the ranking consistency of two lists that rank the same set of objects. By referring to the number of concordant ranking pairs and the number of discordant ranking pairs in two ranking lists of N objects, the correlation coefficient is evaluated by

$$\tau = \frac{\sum_{i<j} \text{sgn}[(x_i - x_j)(y_i - y_j)]}{N(N-1)}$$

where $\text{sgn}(x)$ is the sign function which returns 1 if $x > 0$, -1 if $x < 0$, and 0 if $x = 0$, and the summation is over all distinguished pairs i and j. Here, x_i is the rank of node i in ranking list 1, while y_i is the rank of node i in ranking list 2. In the present context, list 1 is a topology-based ranking and list 2 is the SIR dynamics-based ranking. If $(x_i - x_j)$ has the same sign as $(y_i - y_j)$, the two lists give the same relative ranking of node i and node j. Therefore, a large τ implies a more concordant relation between two methods of ranking the nodes.

For spreading processes, it is also important to quantify the accuracy in pinpointing the most influential spreaders. For a topology-based measure θ, e.g. some kind of node centrality, let $M_\theta(p)$ be the average spreading efficiency of the pN nodes carrying the highest measure θ. Similarly, let $M_{\text{eff}}(p)$ be the average spreading efficiency of pN nodes carrying the highest actual spreading efficiency according to the SIR dynamics. The imprecision function [6]

$$\varepsilon_\theta(p) = 1 - \frac{M_\theta(p)}{M_{\text{eff}}(p)}$$

quantifies how close is the average spreading of the pN nodes based on centrality ranking to the actual spreading. A smaller ε_θ represents a higher accuracy of θ in identifying the most influential spreaders.

III. DYNAMICAL IMPORTANCE OF EDGES AND WEIGHTED NODE CENTRALITY

The dynamical importance of an edge is analyzed by focusing on the spreading dynamics and the edge’s local structure. This leads to the necessity of assigning bi-directional and asymmetric weights to an edge. A novel node strength s can then be defined to quantify the impact of a node on spreading. A s-shell decomposition method is proposed to be a reliable way of ranking the nodes for spreading processes.

![Figure 1](https://via.placeholder.com/150)

FIG. 1. (Color online) Local structure of a network emphasizing the role of the link e_{ij} in spreading a disease from node i to node j and then to reach out to nodes that node i itself cannot reach. The same link e_{ji}, however, plays a different role as it does not help spread the disease to nodes beyond the reach of node j after it infects node i. The asymmetry requires the assignment of directional weights with $w_{ij} \neq w_{ji}$.

A. Dynamical importance of edges

Figure 1 shows part of a network. When a disease originates from node i and spreads along the edge e_{ij}, node j will be infected first. Once node j is infected, it could spread to other parts of the network through node j’s “out-reaching” edges, which are edges that connect node j to nodes that are not in i’s neighborhood. The number of out-reaching edges from j is denoted by k_j^{out} and it is three in the example of Fig. 1. Note that k_j^{out} should depend on the node i, as j must be a neighboring node of i. In contrast, the edge e_{ik} has zero out-reaching edge after it is infected by node i. Therefore, the edge e_{ij} is expected to be more important in that it is more likely to lead to a larger infected area than confining the infection to node i’s neighborhood as e_{ik} does [18, 39]. We are, therefore, motivated to introduce a new measure to distinguish the different importance of edges in a spreading process, even though the links may be unweighted in the construction of the network.

For our purpose, we define a weight w_{ij} for an edge e_{ij} by

$$w_{ij} = 1 + (k_i k_j^{\text{out}})^a$$

(3)

to represent its importance in a spreading process from node i to node j. The first term stands for a basic and symmetric effect of an edge. The factor k_j^{out} is included to reflect the potential impact of node i through infecting its neighbor j. The product $k_i k_j^{\text{out}}$ include the degree of node i into consideration. The idea can be illustrated by considering a leaf node (node of degree 1) connected to a hub (node of large degree), the number of out-reaching links is very large for this leaf node. However, its impact is not necessarily high because only when itself and its neighboring hub are infected that the infection could spread to the other part of the network. The parameter a serves to tune the contribution of $k_i k_j^{\text{out}}$ to the
importance of edge \(e_{ij}\).

The presence of \((k_{ij}^{out})^a\) emphasizes the asymmetric importance of an edge. The weight \(w_{ij}\) is different from \(w_{ji}\) for the same link connecting node \(i\) and node \(j\). From Eq. (3), \(w_{ji} = 1 + (k_{ij}^{out})^a\), which measures the importance of the edge \(e_{ji}\) when a spread goes from node \(j\) to node \(i\) along the link \(e_{ji}\) and then move on to other parts of the network. Note that \(w_{ij} \neq w_{ji}\) generally as they are defined by considering the neighborhoods of the neighbors of node \(i\) and node \(j\), respectively. Given a network, \(w_{ij}\) and \(w_{ji}\) can be evaluated entirely based on the network topology and they label every edge to better reflect the bidirectional and yet asymmetric contributions of the edge in spreading processes.

B. A novel node strength and \(s\)-shell decomposition

It will be advantageous to introduce a node-level quantity analogous to the degree to quantify the importance of a node in spreading dynamics. This will put the computational complexity at the same level as those based on the degree and \(k\)-shell decomposition. Motivated by the idea of weighted degree \([22]\) that the strength of a node in a weighted graph is the sum of the weights of its edges, we define the strength \(s_i\) of a node \(i\) by

\[
s_i = \sum_{j \in \Gamma_i} w_{ij},
\]

where the summation is over the nodes \(j\) belonging to the neighborhood \(\Gamma_i\) of node \(i\). Invoking \(w_{ij}\) in the definition of \(s_i\) makes it a better measure in quantifying a node’s importance in spreading dynamics.

We propose a \(s\)-shell decomposition method as an extension of the \(k\)-shell decomposition. The algorithm is as follows. With the strengths \(s_i\) evaluated for all nodes, the algorithm starts with removing the nodes with the smallest strength \(s_m\) and the links associated with the nodes. Let node \(i\) be removed. The strength of its neighboring node \(j\) is then updated to \(s_j - w_{ij}\) as the edge \(e_{ij}\) is removed. The network is then checked and the removal of nodes with \(s_m\) continues until no nodes of strength less than or equal to \(s_m\) remains. The deleted nodes are assigned a \(s\)-shell index of \(s_s = 1\), where the symbol emphasizes that the decomposition is based on the nodes’ strength and the subscript represents a shell. The trimming process is repeated for the nodes with the smallest strength among the remaining nodes and the nodes so removed are assigned the index \(s_s = 2\). This pruning process is continued until all nodes are removed and assigned a \(s_s\) index. The \(s\)-shell index of a node can be regarded a weighted coreness of the node emphasizing its importance in spreading dynamics.

IV. PERFORMANCE IN IDENTIFYING INFLUENTIAL SPREADERS IN REAL-WORLD NETWORKS

To examine the effectiveness of using the node strength and weighted coreness in identifying influential spreaders, we apply the measures to nine real-world networks as listed in Table I. The real networks studied are: (1) CA-Hep (giant connected component of collaboration network of arXiv in high-energy physics theory) \([41]\); (2) Astro physics (collaboration network of astrophysics scientists) \([42]\); (3) Email contact (email contacts at Computer Science Department of University College London) \([6]\); (4) PGP (an encrypted communication network) \([43]\); (5) Blog (the communication relationships between owners of blogs on the MSN (Windows Live) Spaces website) \([44]\); (6) AS (Internet at the autonomous system level) \([45]\); (7) Router (the router level topology of the Internet, collected by the Rocketfuel Project) \([46]\); (8) Hamster (friendships and family links between users of the website hamsterster.com) \([47]\); and (9) Netsci (collaboration network of network scientists) \([48]\). The new measures are found to outperform predictions based on the degree centrality and \(k\)-shell decomposition, as we now show.

A. Performance of node strength

From the structure of each network, every node carries a degree \(k_i\) and a node strength \(s_i\). Using the SIR dynamics, the spreading efficiency \(M_i\) of each node can be obtained by simulations. Fig. 2 compares the correlations between the spreading efficiency with the node strength and with the degree in nine real-world networks. Here, we take \(a = 0.5\) in Eq. (3) in determining \(w_{ij}\) for the edges. The sensitivity to the parameter \(a\) will be discussed later. The strength and the degree are both positively correlated with the spreading efficiency. The merit of using the strength over the degree as a measure is that
their values cover a much wider range and they can distinguish the spreading efficiency more specifically. This advantage is built into the definition of the node strength as it captures the key elements in spreading dynamics.

The node strength provides a ranking of the nodes. This list can be compared with the list based on the actual spreading efficiency by calculating the Kendall’s tau correlation coefficient. We calculate the ranking correlation of nodes’ spreading efficiency and their strength for different values of \(a \) and obtained \(\tau(a) \), as shown in Fig. 4 (squares). For \(a = 0 \) (see Eq. 4), \(s_i \) reduces to the degree \(k_i \) and thus \(\tau(a = 0) \) measures the correlation between the rankings based on the degree and the spreading efficiency. Note that \(\tau \) is significantly enhanced for \(a > 0 \), implying that the node strength, which includes the bi-directional and asymmetric weights of the edges, ranks the nodes more accurately. Results in Fig. 4 further show that there exists an optimal value of \(a \) for each network at which \(\tau \) is a maximum. The optimal value of each network is given in Table 1, together with the other network properties. Fig. 4 also shows the \(\tau(a) \) obtained by ranking the nodes according to the \(s \)-shell index. The results will be discussed later.

Fig. 4 shows the imprecision function of the ranking based on the node strength, together with the results based on the degree and \(k \)-shell index for comparison. Recall that a lower imprecision implies a higher accuracy in identifying the influential spreaders. The node strength (triangles) gives an imprecision which is less than 0.1 for all \(p \) in nearly all cases. Only in the network Netsci, the imprecision is slightly larger than 0.1 for a few values of \(p \). The results show that the node strength outperforms the degree (squares) in accuracy in almost all networks. Only in the network Hamster, the imprecisions based on node strength and on the degree become comparable but they are both small. The node strength, therefore, a better index for pinpointing the influential spreaders than the degree. More noticeably is that the node strength performs even better than the \(k \)-shell index in most cases, except at some small values of \(p \) in the AS and Netsci networks. The \(k \)-shell index is regarded as an efficient measure for identifying influential spreaders and it is widely used in ranking algorithms. However, the assignment of \(k \)-shell index requires a higher computational complexity and complete network structure than index relying solely on node-level quantities such as the degree or the node strength. The node strength introduced here does not only provide a more accurate measure, but also a computationally efficient method in handling large-scale networks.

B. Performance of weighted coreness

The \(k \)-shell index works better than the degree in identifying influential spreaders [39]. Here, we investigate how the \(s \)-shell index \(s_s \) or weighted coreness works in comparison to the other measures. The results of the Kendall’s tau correlation of \(s_s \) ranking in Fig. 4 suggests that it is a better measure than using the node strength in eight systems out of nine. In the Emailcontact network, \(s_s \) and \(s \) rankings work equally well. In fact, the \(s_s \) and \(s \) rankings approach the same value of \(\tau \) as \(a \) increases. Given that the optimal values of \(a \) in the networks are less than or equal to 1, the weighted coreness gives...
The imprecision of rankings based on the degree \(k\), black squares), \(k\)-shell index \(k_S\), red circles) and node strength \(s\), blue triangles) evaluated at the optimal value of \(a\) as a function of \(p\) for nine real-world networks. The node strength provide a better measure for identifying influential spreaders.

The imprecision of rankings based on the degree \(k\), black squares), \(k\)-shell index \(k_S\), red circles) and node strength \(s\), blue triangles) evaluated by \(s\)-shell decomposition, as a function of \(p\). The weighted coreness \(s_s\) provides a further improvement over \(s\) in identifying influential spreaders.

a better ranking. Note that the \(a = 0\) case gives the value of \(\tau\) corresponding to the \(k\)-shell index \(k_S\). Using \(s_s\) to rank the nodes always gives a higher \(\tau\) than the \(a = 0\) value, implying \(s\)-shell index is also a better measure than the \(k\)-shell index.

The imprecision functions of rankings using \(s_s\) and \(s\) are compared in Fig. Fig. 5. Their performances are comparable and they both work better than measures based on the degree alone (see Fig. 4). Looking closer, the lower imprecision of \(s_s\) ranking in six (CA-Hep, PGP, Blog, AS, Router and Netsci) out of nine cases suggests that the \(s\)-shell decomposition method is more accurate in identifying influential spreaders in real-world networks. Even in the networks of Astro, Emailcontact and Hamster that \(s_s\) and \(s\) work almost equally well, the imprecision of \(s_s\) is slightly lower or equal to that of \(s\). Only in the Hamster network that \(s\) works slightly better than \(s_s\) at \(p = 0.01\), even so the imprecision functions are small (under 0.05) on the absolute scale.

C. Robustness of proposed weighted centrality

So far, we have used the optimal value of \(a\) to evaluate \(w_{ij}\) and \(s_i\), and compared results with other measures. However, the optimal value is not often known precisely in real applications. It will be useful to examine the performance of the node strength \(s_i\) for some arbitrarily chosen value of \(a\). Let us set \(a = 1/2\) so that the term \(k_i k_{i,j}^{\text{out}}\) in \(w_{ij}\) represents a geometric mean. The comparison in Fig. Fig. 6 of the imprecision function shows that \(s\) ranking gives a lower imprecision than the degree and \(k\)-shell index. An interesting point is that the imprecision of node strength evaluated at \(a = 1/2\) is even lower than that evaluated at the optimal value of \(a\) in the AS network for \(p < 0.1\). The result indicates that although the best performing overall ranking correlation coefficient occurs at some optimal \(a\), the same value does not necessarily give the best identification of the most influential spreaders.

Fig. 7 compares the effectiveness of the node strength and the \(s\)-shell decomposition for \(a = 1/2\). Again, the \(s\)-shell index works better in most cases. In fact, the results resemble those in Fig. 5 when the optimal \(a\) is used. These results further support the assertion that the node strength and the corresponding \(s\)-shell index are better measures for spreading processes than methods based on the degree. Between them,
the s-shell index performs slightly better, but evaluating the index requires more computing effort than the node strength alone.

V. CONCLUSION

The roles of nodes and edges in deciding the structural properties of a network should be carefully distinguished from their roles in determining the extent of spreading processes. Although an edge between nodes i and j certainly helps spread a disease, its role may be different when the infection goes from i to j than in the other direction. It is because what matters is whether the node j, after infected by i, would reach out to other nodes that node i itself could not reach. If so, the link carries a greater importance for infection from i to j which is quantified by a higher weight w_{ij} for the link. It is, therefore, necessary to invoke asymmetric and bidirectional weights with $w_{ij} \neq w_{ji}$ for a link so as to capture the dynamics in spreading processes. Here, we introduced a form of w_{ij} (see Eq. (3)) and showed that it facilitates more accuracy ranking in the node’s importance. Pictorially, the network is better described by the nodes connected by links with asymmetric weights in different directions when spreading dynamics is concerned.

To establish the effectiveness of our method, the weights of the links were used to construct a node strength s that predicts the importance of a node in spreading processes. A s-shell decomposition scheme based on the node strength was then introduced. The s-shell index s_s of the nodes provide another way of ranking them. Applying s and s_s rankings to nine real-world networks, it was found that our novel measures generally outperform the standard rankings based on the degree of the nodes and the k-shell decomposition method. Superiority is shown in both the overall performance of the ranking as indicated by Kendall’s tau correction coefficient and in identifying the influential spreaders as indicated by the imprecision.

The success of our measure relies on the asymmetry in the weights contained in w_{ij} and w_{ji}. To stress the point, we constructed a related network with weighted links but the weights are symmetric by assigning a weight w'_{ij} to a link according to

$$w'_{ij} = \frac{1}{2}(w_{ij} + w_{ji}),$$

with w_{ij} given by Eq. (3). The weights w'_{ij} can then be used to assign a strength s' to the nodes and a corresponding s-shell decomposition based on s' can be carried out to assign an index s'_s to each node. Fig. 8 compares the Kendall’s tau correlation of rankings based on s_s and s'_s with the actual SIR spreading efficiency for different values of the parameter a. In all cases, the measure with asymmetric weights s_s works better than that without the asymmetry. In the EmailContact and Hamster networks, the two measures are equally accurate. The results confirm that it is important to include the different roles of a link in spreading a disease between nodes i and j in two different directions into the construction of a reliable measure.

In summary, we proposed a node strength as an alternative centrality measure for efficient and accurate identification of influential spreaders. The idea of examining the functionality of a link in spreading in either directions is a general one and thus could be further developed for ranking a set of objects. We used the SIR model as the spreading dynamics. However, the idea of invoking asymmetric weights $w_{ij} \neq w_{ji}$ for a link...
ACKNOWLEDGMENTS

This work was jointly funded by the National Natural Science Foundation of China (Grant No. 11575041, 61672238), the Scientific Research Starting Program of Southwest Petroleum University (No. 2014QHZ024), the Data Intelligence Academic Innovation Team of Southwest Petroleum University (2015CXTD06) and the Fundamental Research Funds for the Central Universities (Grant No. ZYGX2015J153).

[1] L. C. Freeman, Centrality in social networks conceptual clarification, Soc. Net. 1 215 (1978).
[2] L. C. Freeman, A set of measures of centrality based upon betweenness, Sociometry 40 35 (1977).
[3] G. Sabidussi, The centrality index of a graph, Psychometrika 31 81 (1966).
[4] P. Bonacich and P. Floyd, Eigenvector-like measures of centrality for asymmetric relations, Soc. Net. 23 191 (2001).
[5] B. Bollobás, Graph Theory and Combinatorics: Proc. Cambridge Combinatorial Conf. in honor of P. Erdős, Academic Press NY (1984).
[6] M. Kitsak, L. K. Gallos, F. Havlin, L. Liljeros, H. E. Muchnik, H. E. Stanley and H. A. Makse, Identification of influential spreaders in complex networks, Nat. Phys. 6 888 (2010).
[7] S. Pei and H. A. Makse, Spreading dynamics in complex networks, J. Stat. Mech. 12 12002 (2013).
[8] D.-B. Chen, H. Gao, L. Lü and T. Zhou, Identifying influential nodes in large-scale directed networks: The role of clustering, PLoS ONE 8 e77455 (2013).
[9] Z.-M. Ren, A. Zeng, D.-B. Chen, H. Liao and J.-G. Liu, Iterative resource allocation for ranking spreaders in complex networks, Europhys. Lett. 106 48005 (2014).
[10] L. Lü, D.-B. Chen, X.-L. Ren, Q.-M. Zhang, Y.-C. Zhang and T. Zhou, Vital nodes identification in complex networks, Phys. Rep. 650 1 (2016).
[11] J. Bae and S. Kim, Identifying and ranking influential spreaders in complex networks by neighborhood coreness Physica A 395 549 (2014).
[12] T. Martin, X. Zhang and M. E. J. Newman, Localization and centrality in networks, Phys. Rev. E 90 052808 (2014).
[13] A. J. Alvarez-Socorro, G. C. Herrera-Almarza and L. A. González-Díaz, Eigencentrality based on dissimilarity measures reveals central nodes in complex networks Sci. Rep. 5 17095 (2015).
[14] J. E. Hirsch, An index to quantify an individual’s scientific research output Proc. Natl. Acad. Sci. USA 102 16569 (2005).
[15] L. Lü, T. Zhou, Q. M. Zhang and H. E. Stanley, The H-index of a network node and its relation to degree and coreness Nat. Comm. 7 10168 (2016).
[16] F. Radicchi and C. Castellano, Leveraging percolation theory to single out influential spreaders in networks Phys. Rev. E 93 062314 (2016).
[17] F. Bauer and J. T. Lizier, Identifying influential spreaders and efficiently estimating infection numbers in epidemic models: A walk counting approach, Europhys. Lett. 99 68007 (2012).
[18] G. Lawyer Understanding the influence of all nodes in a network, Sci. Rep. 5 8665 (2015).
[19] J.-G. Liu, J.-H. Lin, Q. Guo and T. Zhou, Locating influential nodes via dynamics-sensitive centrality Sci. Rep. 6 21380 (2016).
[20] F. D. Malliaros, M.-E. G. Rossi and M. Vazirgiannis, Locating influential nodes in complex networks, Sci. Rep. 6 19307 (2016).
[21] D. Grady, C. Thiemann and D. Brockmann, Robust classification of salient links in complex networks, Nat. Comm. 3 864 (2012).
[22] T. Opsahl, F. Agneessens and J. Skvoretz, Node centrality in weighted networks: Generalizing degree and shortest paths Soc. Net. 32 245 (2010).
[23] A. Garas, F. Schweitzer and S. Havlin, A k-shell decomposition method for weighted networks New J. Phys. 14 083030 (2012).
[24] M. Eidsaa and E. Almaas, S-core decomposition: A generalization of k-core analysis to weighted networks Phys. Rev. E 88 062819 (2013).
[25] Z.-X. Wu and P. Holme, Onion structure and network robustness, Phys. Rev. E 84 026106 (2011).
[26] S. Allesina, A. Bodini and M. Pascual, Functional links and robustness in food webs, Phil. Trans. R. Soc. B 364 1701 (2009).
[27] C.-J. Zhang and A. Zeng, Network skeleton for synchronization: identifying redundant connections, Physica A 402 180 (2014).
[28] N. N. Chung, L. Y. Chew, J. Zhou and C. H. Lai, Impact of edge removal on the centrality betweenness of the best spreaders, Europhys. Lett. 98 58004 (2012).
[29] D. Brockmann and D. Helbing, The hidden geometry of complex network-driven contagion phenomena, Science 342 1337 (2013).
[30] U. A. Brandes faster algorithm for betweenness centrality, J. Math. Sociology 25 163 (2001).
[31] P. Holme, B. J. Kim, C. N. Yoon and S. K. Han, Attack vulnerability of complex networks, Phys. Rev. E 65 056109 (2002).
[32] G.-Q. Zhang, D. Wang and G.-J. Li, Enhancing the transmission efficiency by edge deletion in scale-free networks, Phys. Rev. E 76 017101 (2007).
[33] A. Barrat, M. Barthélémy, R. Pastor-Satorras and A. Vespignani, The architecture of complex weighted networks, Proc. Natl. Acad. Sci. USA 101 3747 (2004).
[34] W.-X. Wang, B.-H. Wang, B. Hu, G. Yan and Q. Ou, General dynamics of topology and traffic on weighted technological networks, Phys. Rev. Lett. 94 188702 (2005).
[35] M. Tang and T. Zhou, Efficient routing strategies in scale-free networks with limited bandwidth, Phys. Rev. E 84 026216 (2011).
[36] H. F. Zhang, J. R. Xie, M. Tang and Y. C. Lai, Suppression of epidemic spreading in complex networks by local information based behavioral responses, Chaos 24 043106 (2014).
[37] C. Castellano and R. Pastor-Satorras, Competing activation mechanism in epidemics on networks, Sci. Rep. 2 371 (2012).
[38] Y. Liu, M. Tang, T. Zhou and Y. Do, Core-like groups result in invalidation of identifying super-spreader by k-shell decompo-
[39] Y. Liu, M. Tang, T. Zhou and Y. Do, Improving the accuracy of the k-shell method by removing redundant links: From a perspective of spreading dynamics, Sci. Rep. 5 13172 (2015).

[40] Y. Liu, M. Tang, T. Zhou and Y. Do, Identify influential spreaders in complex networks, the role of neighborhood, Physica A 452 289 (2016).

[41] J. Leskovec, J. Kleinberg and C. Faloutsos, Graph Evolution: Densification and Shrinking Diameters, ACM Trans. on Knowledge Discovery from Data (ACM TKDD) 1 1 (2007).

[42] M. E. J. Newman, The structure of scientific collaboration networks, Proc. Natl. Acad. Sci. USA 98 404 (2001).

[43] M. Boguñá, R. Pastor-Satorras, A. Diaz-Guilera and A. Arenas, A Models of social networks based on social distance attachment, Phys. Rev. E 70 056122 (2004).

[44] N. Xie, Social network analysis of blogs, M.Sc. Dissertation, University of Bristol (2006).

[45] M. E. J. Newman, Network data, Available at: http://www-personal.umich.edu/~mejn/netdata (Accessed: 12/12/2012).

[46] N. Spring, R. Mahajan, D. Wetherall and T. Anderson, Measuring ISP topologies with Rocketfuel, IEEE/ACM Trans. Networking 12 2 (2004).

[47] J. Kunegis, Hamsterster full network dataset - KONECT Available at: http://konect.uni-koblenz.de/networks/petster-hamster (Accessed: 01/03/2014).

[48] M. E. J. Newman, Finding community structure in networks using the eigenvectors of matrices, Phys. Rev. E 74 036104 (2006).