Emergence of magnetism in graphene materials and nanostructures

Oleg V Yazyev

1 Department of Physics, University of California, Berkeley, CA 94720, USA
2 Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
E-mail: yazyev@civet.berkeley.edu

Received 29 April 2009, in final form 1 December 2009
Published 7 April 2010
Online at stacks.iop.org/RoPP/73/056501

Abstract
Magnetic materials and nanostructures based on carbon offer unique opportunities for future technological applications such as spintronics. This paper reviews graphene-derived systems in which magnetic correlations emerge as a result of reduced dimensions, disorder and other possible scenarios. In particular, zero-dimensional graphene nanofragments, one-dimensional graphene nanoribbons and defect-induced magnetism in graphene and graphite are covered. Possible physical mechanisms of the emergence of magnetism in these systems are illustrated with the help of computational examples based on simple model Hamiltonians. In addition, this review covers spin-transport properties, proposed designs of graphene-based spintronic devices, magnetic ordering at finite temperatures as well as the most recent experimental achievements.

(Some figures in this article are in colour only in the electronic version)

Contents
1. Introduction 1
2. Brief overview of experimental progress 2
3. Basic computational approaches 3
 3.1. Model Hamiltonians 3
 3.2. Counting rules 5
4. Finite graphene fragments: a simple illustration 5
 5.1. Physical mechanism of edge magnetism 7
 5.2. Possible applications in spintronics 7
5. Zigzag edges and nanoribbons 9
 5.3. Magnetic ordering at finite temperatures 11
6. Magnetism in graphene and graphite 12
 6.1. Radiation damage and defects in carbon materials 12
 6.2. Defect-induced magnetism in graphene 12
 6.3. Magnetism in graphite and multilayer graphene 14
7. Conclusions and perspectives 15
Acknowledgments 15
References 15

1. Introduction
Magnetic materials are essential for modern technology. All presently used magnetic materials involve the elements belonging to either the d- or the f-block of the periodic table. For instance, among the periodic table elements only the late transition metals, Fe, Co and Ni, are ferromagnets at room temperature. Magnetic ordering in these transition metals originates from the partially filled d-electron bands. However, magnetism is not common for the light p-block elements belonging to the second period of the periodic table, even despite the fact that carbon is able to form very diverse and complex molecular structures. In principle, such materials may possess a number of attractive properties, such as low density, biocompatibility, plasticity and many others, which stimulates the search for light-element based magnetism (Makarova and Palacio 2006).

The field of light-element magnetism and, in particular, of carbon-based magnetism is currently gaining increasing importance for the following two reasons. Firstly, the field of carbon-based magnetism has always been a very controversial area of research which suffered from the poor reproducibility of experimental results. However, the situation seems to have improved over the last few years. Several examples of magnetism in carbon-based materials continue to be reliably reproduced by different research groups. The second driving
force is the first isolation of graphene, a truly two-dimensional form of carbon which has attracted enormous attention in science and technology (Novoselov et al 2004). Graphene has a fairly simple honeycomb atomic structure, but a rather unique electronic structure with linear band dispersion at the Fermi level (see figure 1) which is largely responsible for many novel physical phenomena observed in this material (for review see Geim and Novoselov (2007), Katsnelson (2007), Castro Neto et al (2009)). Importantly, graphene can also be considered as a unifying concept for understanding a broad class of sp² carbon materials which includes polycyclic aromatic molecules, fullerenes, carbon nanotubes and graphite as well as their further modifications obtained by patterning, chemical treatment, implantation of defects, impurities, etc.

While ideal graphene is non-magnetic itself, many of its derivative materials and nanostructures, both realized in practice and considered theoretically, show various scenarios of magnetism. The magnetic graphene nanostructures are particularly promising for applications in the field of spintronics, a very probable future step in the evolution of the electronics industry, which promises information storage, processing and communication at faster speeds and lower energy consumption (Wolf et al 2001, Awschalom and Flatté 2007, Chappert et al 2007, Fert 2008). While traditional electronics exploits only the charge of electron, spintronics will also make use of its spin degree of freedom. For the field of spintronics graphene can offer a possibility of tuning its spin-transport properties by means of various applied stimuli. For instance, it was suggested that half-metallicity of zigzag graphene nanoribbons can be triggered by external electric fields (Son et al 2006b). If realized in practice, this would allow for efficient electric control of spin transport, a very desirable effect which is hard to achieve using other materials. In addition, materials based sp-elements are expected to have high magnitudes of the spin-wave stiffness (Edwards and Katsnelson 2006) and, thus, nanostructures made of these elements would possess higher Curie temperatures or spin correlation lengths (Yazyev and Katsnelson 2008). Materials based on light elements also display weak spin-orbit and hyperfine couplings which are the main channels of relaxation and decoherence of electron spins (Trauzettel et al 2007, Yazyev 2008a, Fischer et al 2009). This property makes carbon nanomaterials promising for transport of spin-polarized currents and for spin-based quantum information processing.

This review provides a brief introduction to the current state of the field of magnetic materials and nanostructures based on graphene. The possible scenarios for the onset of magnetism in graphene nanostructures are illustrated by means of a simple theoretical model based on the mean-field Hubbard Hamiltonian. The next section briefly reviews the landmark experimental reports in the field. Then follows the introduction of the theoretical model and its specific consequences for describing the electronic structure and magnetic properties of graphene-based materials. The main part of this paper applies the theoretical model described and reviews both theoretical and experimental published works on magnetic graphene systems classified according to their dimensionality: (1) finite graphene nanofragments, (2) one-dimensional graphene edges and graphene nanoribbons and (3) two-dimensional graphene and graphite with magnetism induced by the presence of point defects. Of these three classes, magnetic graphene edges and nanoribbons will be covered in more detail since these one-dimensional objects continue to receive special attention in the scientific community. Future perspectives of the field are outlined in the last section.

2. Brief overview of experimental progress

The first reproducible experimental reports of magnetism in p-block compounds were published in 1991 when magnetic ordering was observed in crystalline p-nitrophenyl nitronyl nitroxide (p-NPNN) by Takahashi et al 1991, Tamura et al 1991 and in a charge transfer complex of \(\text{C}_6\text{O} \) and tetrakis (dimethylamino)ethylene (TDAE) (Allemand et al 1991). Molecular structures of these organic materials made of light elements only (C, H, N and O) are shown in figure 2. In their molecular crystals the uncompensated electron spins are localized on weakly coupled molecular units. Because of the weak coupling between electron spins, the long-range magnetic order is realized only...
at low temperatures. The two organic materials mentioned above, p-NPNN and TDAE-C\textsubscript{60}, are characterized by Curie temperatures of 0.6 K and 16 K, respectively. Since 1991 a large number of other organic magnetic materials have been examined. In all cases the temperatures below which long-range magnetic order is established (Curie temperatures, \(T_C\), and Néel temperatures, \(T_N\), in the case of ferromagnetic and antiferromagnetic orderings, respectively) were much lower than room temperature, which renders such materials useless for practical applications.

The next milestone experiment was reported ten years later when ferromagnetism with \(T_C \approx 500\) K was observed in rhombohedral C\textsubscript{60} under high pressure (Makarova \textit{et al} 2001). This observation, however, demonstrates very well the controversial character of the field. Five years later several authors retracted the original publication since the measured content of magnetic impurities was shown to be close to the amount needed to explain the observed magnetization of the samples (Makarova \textit{et al} 2006). In addition, the measured \(T_C\) was found to be very similar to the one of cementite Fe\textsubscript{3}C. The question of possible high-temperature magnetic ordering in C\textsubscript{60}-based materials remains open.

Two years later room-temperature ferromagnetism was observed in highly oriented pyrolytic graphite (HOPG) irradiated with high-energy (2.25 MeV) protons (Esquinazi \textit{et al} 2003). Figure 3 shows the magnetization loop for a proton-irradiated sample compared with untreated HOPG. Further experimental investigations revealed that the magnetic order in proton-bombarded graphite has two-dimensional, that is, graphene-like character (Barzola-Quiquia \textit{et al} 2007) and originates from the carbon \(\pi\)-electron system rather than from possible d-element impurities (Ohldag \textit{et al} 2007). Interestingly, it was shown that the chemical nature of the high-energy particles plays a crucial role in producing magnetic ordering. While proton irradiation leads to the onset of ferromagnetism in irradiated samples, both helium (Esquinazi \textit{et al} 2003) and iron (Barzola-Quiquia \textit{et al} 2008) ions show no clear effect. On the other hand, the implantation of carbon ions was also reported to induce ferromagnetism in HOPG (Xia \textit{et al} 2008).

A number of reports have also pointed out that even untreated graphite exhibits ferromagnetism (Kopelevich \textit{et al} 2000, Esquinazi \textit{et al} 2002). Very recently, by using a combination of scanning probe techniques and magnetization measurements, Červenka and co-authors have shown that the intrinsic ferromagnetism of graphite is related to the presence of grain boundaries which can be considered as 2D periodic networks of point defects (Červenka \textit{et al} 2009). Room-temperature magnetic hysteresis has also been reported for graphene samples produced in bulk quantities from graphite using the chemical approaches (Matte \textit{et al} 2009, Wang \textit{et al} 2009b).

3. Basic computational approaches

3.1. Model Hamiltonians

The vast majority of computational studies of magnetic carbon nanostructures are currently performed using first-principles electronic structure methods based on density functional theory (DFT). This approach is now implemented in a large number of public computer codes and well described in a variety of graduate-level textbooks (for instance, see Koch and Holthausen (2002), Martin (2004), Marx and Hutter (2009)). For pedagogical purposes, a simpler approach based on model Hamiltonians will be adopted in this review paper. Moreover, it will be demonstrated below that such simplified models very often allow deeper understanding of the results obtained.

A simple model which is widely used for studying magnetic effects in sp2 carbon materials is the one-orbital mean-field Hubbard model. This model considers only
the π-symmetry electronic states which are formed by the unhybridized p_z atomic orbitals of sp^2 carbon atoms. As shown in figure 1(b) the low-energy electronic states have π-symmetry and thus play the dominant role in the properties of graphene systems. The Hubbard-model Hamiltonian can be partitioned into two parts,

$$\hat{H} = \hat{H}_0 + \hat{H}'.$$ (1)

The first term is the nearest-neighbor tight-binding Hamiltonian

$$\hat{H}_0 = -t \sum_{(i,j),\sigma} [c_{i\sigma}^\dagger c_{j\sigma} + \text{h.c.}],$$ (2)

in which the operators $c_{i\sigma}$ and $c_{i\sigma}^\dagger$ annihilate and create an electron with spin σ at site i, respectively. The notation $\langle \cdot, \cdot \rangle$ stands for the pairs of nearest-neighbor atoms; ‘h.c.’ is the Hermitian conjugate counterpart. The well-established method familiar to chemists. From the computational point of view, the Hamiltonian matrix is determined solely by the atomic structure: the off-diagonal matrix elements are converged. The final self-consistent solution provides the spin densities

$$M_i = \frac{\langle n_{i\uparrow} \rangle - \langle n_{i\downarrow} \rangle}{2}$$ (5)

at each atom i and the total spin of the system $S = \sum_i M_i$. For a given graphene structure both local and total spins (magnetic moments) depend exclusively on the dimensionless parameter U/t.

After the model has been introduced, the following three critical questions can be asked. (1) Is the one-orbital approximation accurate enough compared with the methods considering all electrons? (2) Which value of the empirical parameter U/t should be used? (3) Is the mean-field approximation justified for graphene-based systems?

(1) It has been shown that the results of mean-field Hubbard-model calculations correspond closely to the ones obtained using first-principles methods if the parameter U/t is chosen appropriately (Fernández-Rossier and Palacios 2007, Gunlycke et al 2007, Pisani et al 2007). The first-principles methods either treat all electrons on an equal footing or disregard the localized atomic core states which are not important in most cases. One notable exception is the calculation of hyperfine interactions. In this case the spin polarization of the 1s atomic core states of carbon atoms has a significant contribution to the Fermi contact hyperfine couplings (Yazyev et al 2005, Yazyev 2008a). Otherwise, the results of DFT calculations performed using a generalized-gradient-approximation family exchange-correlation functional are best reproduced when $U/t \approx 1.3$. The results of the local-spin-density approximation calculations are best fitted using $U/t \approx 0.9$ (Pisani et al 2007).

(2) Ideally, the empirical parameter U/t must be estimated using experimental knowledge. Unfortunately, there are no direct experiments performed on magnetic graphene systems which would allow to estimate U/t. Magnetic resonance studies of neutral soliton states in two-dimensional sp^2 carbon polymer which can be viewed as a trans-polyacetylene, a one-dimensional sp^2 carbon polymer which can be viewed as a minimum-width zigzag graphene nanoribbon, give the range of values $U \sim 3.0–3.5$ eV (Kuroda and Shirakawa 1987, Thomann et al 1985). This interval corresponds to $U/t \sim 1.1–1.3$ which also makes us confident in the results of the generalized-gradient-approximation DFT calculations. Increasing U/t leads to the enhancement of magnetic
moments. The range of meaningful magnitudes is limited by $U/t \approx 2.23$ above which the ideal graphene undergoes a Mott–Hubbard transition into an antiferromagnetically ordered insulating state (Sorella and Tosatti 1992). In the computational examples considered below a value of $U/t = 1.2$ will be used. (3) This question is the most difficult to answer. A comparison of the mean-field results with the ones obtained using exact diagonalization and quantum Monte Carlo simulations illustrates the validity of this approximation for the relevant values of U/t (Fajtlowicz et al 2009). Magnetic graphene materials and nanostructures need not be considered as strongly correlated systems.

3.2. Counting rules

There are two important consequences coming from the model Hamiltonians we have introduced. The honeycomb lattice of graphene is a bipartite lattice. That is, it can be partitioned into two mutually interconnected sublattices A and B (see figure 1(a)). Each atom belonging to sublattice A is connected to the atoms in sublattice B only and vice versa. Moreover, the graphene systems whose faces are hexagons are called benzenoid (or honeycomb) systems. Carbon atoms in such systems have either three or two nearest neighbors. The class of benzenoid systems is a subclass of bipartite systems.

The spectrum of the tight-binding Hamiltonian of a honeycomb system can be analyzed using a mathematically rigorous approach of the benzenoid graph theory (Fajtlowicz et al 2005). An important result for us is that this theory is able to predict the number of zero-energy states of the nearest-neighbor tight-binding Hamiltonian in a ‘counting rule’ fashion. The number of such states is equal to the graph’s nullity

$$\eta = 2\alpha - N,$$

where N is the total number of sites and α is the maximum possible number of non-adjacent sites, i.e. the sites which are not the nearest neighbors to each other. The onset of magnetism in the system is determined by the so-called Stoner criterion which refers to the competition of the exchange energy gain and the kinetic-energy penalty associated with the spin polarization of the system (Mohn 2003). The gain in exchange energy is due to the exchange splitting of the electronic states subjected to spin polarization (Palacios et al 2008)

$$\Delta_\epsilon = \epsilon_\uparrow - \epsilon_\downarrow = \frac{U}{2} \sum_i n_i^2,$$

where $\sum_i n_i^2$ is the inverse participation ratio, a measure of the degree of localization of the corresponding electronic state. The kinetic-energy penalty is proportional to the energy of this state. Thus, the zero-energy states undergo spin polarization at any $U > 0$ irrespective of their degree of localization. One can view spin polarization as one of the mechanisms for escaping an instability associated with the presence of low-energy electrons in the system. Other mechanisms, such as the Peierls distortion, were shown to be inefficient in the case of graphene nanostructures (Pisani et al 2007).

Although the benzenoid graph theory is able to predict the occurrence of zero-energy states, it is not clear how the electron spins align in these states. The complementary knowledge is supplied by Lieb’s theorem (Lieb 1989) which determines the total spin of a bipartite system described by the Hubbard model. This theorem states that in the case of repulsive electron–electron interactions ($U > 0$), a bipartite system at half-filling has the ground state characterized by the total spin

$$S = \frac{1}{2} |N_A - N_B|,$$

where N_A and N_B are the numbers of sites in sublattices A and B, respectively. The ground state is unique and the theorem holds in all dimensions without the necessity of a periodic lattice structure. Importantly, the two counting rules are linked by the relation $\eta \geq |N_A - N_B|$.

In the following section, the application of these two simple counting rules will be demonstrated on small graphene fragments and compared with the results of numerical calculations.

4. Finite graphene fragments: a simple illustration

Let us first try to understand the origin of magnetism in finite graphene fragments (also referred to as nanoflakes, nanoislands or nanodisks) as a function of their shape and size. Three simple examples of nanometer sized graphene fragments are shown in figure 4. From the point of view of single-orbital physical models, only the connectivity of the π-electron conjugation network is important. Such π-systems may constitute only small parts of more complex molecules or bulk materials. In the simplest case, the π-electron networks shown in figure 4 can be realized in the corresponding all-benzenoid polycyclic aromatic hydrocarbon (PAH) molecules with the edges of the fragments being passivated by hydrogen atoms. Each carbon atom at the edge of the fragment is bonded to one hydrogen atom such that all carbon atoms are sp^2-hybridized. Current progress in synthesizing such molecules and understanding their properties has recently been reviewed (Wu et al 2007).

The hexagonal graphene fragment shown in figure 4(a) is thus equivalent to the coronene molecule. For this fragment, the number of sites belonging to the two sublattices is equal, $N_A = N_B = 12$. The number of non-adjacent sites is maximized when all atoms belonging to either of the two sublattices are selected, i.e. $\alpha = 12$. Thus, both the number of zero-energy states η and the total spin S are zero. The tight-binding model predicts a wide band gap of $1.08 \approx 3.0$ eV for this graphene molecule. As expected, the mean-field Hubbard-model solution for this fragment does not reveal any magnetism.

The second graphene fragment shown in figure 4(b) has a triangular shape. It is not surprising that the corresponding hypothetical PAH molecule is called triangulane. Unlike coronene, the two sublattices of this triangular fragment are no longer equivalent: $N_A = 12$ and $N_B = 10$. The unique choice maximizing the number of non-adjacent sites is achieved by selecting the atoms belonging to the dominant
sublattice A, i.e. \(\alpha = N_A = 12 \). Thus, the benzenoid graph theory predicts the presence of two zero-energy states on sublattice A. Lieb’s theorem predicts the \(S = 1 \) (spin-triplet) ground state or, equivalently, a magnetic moment of \(2 \mu_B \) per molecule. The two low-energy electrons populate a pair of zero-energy states according to Hund’s rule, that is, their spins are oriented parallel to each other. The mean-field Hubbard-model results for this system at half-filling are shown in figure 5(a). One can see that spin polarization lifts the degeneracy of the zero-energy electronic states and opens an energy gap \(\Delta_S = 0.30t \approx 0.8 \) eV. The system is stabilized by spin polarization. Most of the spin-up electron density localized on the atoms in sublattice A (see figure 5(a)) originates from the two electrons populating the non-bonding states. However, one can notice an appreciable amount of spin-down density on the atoms in sublattice B which is compensated by an equivalent contribution of the spin-up density in sublattice A. The occurrence of the induced magnetic moments is a manifestation of the spin-polarization effect which is related to the exchange interaction of the fully populated states with the two unpaired electrons.

The third bowtie-shaped graphene molecule shown in figure 4(c) is composed of two triangulane fragments sharing one hexagon. For this system Lieb’s theorem predicts the spin-singlet ground state \((N_A = N_B = 19) \). However, the choice of the set of atoms which maximizes the number non-adjacent sites is less evident in this case. Figure 4(c) shows such a selection \((\alpha = 20) \) which involves the atoms belonging to both sublattice A and sublattice B in the left and right parts of the structure. These atoms are marked differently in the figure. Hence, there are \(\eta = 2 \times 20 - 38 = 2 \) zero-energy states as confirmed by the tight-binding calculation. The zero-energy states are spatially segregated in the two triangular parts of the molecule (Wang et al. 2009a). To satisfy the spin-singlet ground state, the two zero-energy states have to be populated by two electrons with oppositely oriented spins. In other words, the ground electronic configuration breaks spin-spatial symmetry and exhibits antiferromagnetic ordering. This result can be verified by mean-field Hubbard-model calculations as shown in figure 5(b). It can be argued that this example violates
Hund’s rule. However, one has to keep in mind that each of the two non-bonding states is localized within one of the graphene sublattices. That is, there are two electronic sub-bands, each populated by electrons according to Hund’s rule. The coupling between the electron spins in these two sub-bands is antiferromagnetic due to the superexchange mechanism (Anderson 1950, Kramers 1934).

The two counting rules can be applied to larger graphene fragments. It was shown that the total spin of triangular fragments with edges cut along the zigzag direction scales linearly with fragment size (Ezawa 2007, Fernández-Rossier and Palacios 2007, Wang et al 2008a) as illustrated in figure 6. The average magnetic moment per carbon atom thus decays with increasing the system size. The evolution of magnetic properties with increasing size for hexagonal fragments with edges cut along the same zigzag direction is less trivial. It has been shown theoretically that above some critical size the system undergoes a transition into a broken-symmetry antiferromagnetic state (Fernández-Rossier and Palacios 2007). The critical size itself depends strongly on the value of U/t. However, it is easier to explain the origin of this behavior in large systems from the standpoint of edge magnetism, which will be explained in the next section.

Finally, a few words have to be said about the possibility of realizing in practice the magnetic graphene fragments we have discussed. It is expected that such magnetic systems are more reactive than the non-magnetic polyaromatic molecules. Although triangulane itself has never been isolated, successful synthesis of its chemical derivatives shown in figure 7 has been reported (Allinson et al 1995, Inoue et al 2001). The spin-triplet ground state of these chemical compounds was verified by the electron spin resonance measurements. In principle, this example can be considered as an indirect proof of edge magnetism in graphene systems, at least in finite products produced by means of the chemical bottom–up approach. The synthesized triangulane derivatives are reactive molecules, but nevertheless can be handled in common organic solvents and stored for many months at room temperature provided the solution is isolated from atmospheric oxygen (Allinson et al 1995). Larger magnetic triangular molecules have not been synthesized so far. The PAH molecule corresponding to the considered bowtie fragment was hypothesized by Eric Clar and named ‘Clar’s goblet’ after him (Clar 1972). Attempts to synthesize this molecule have failed (Clar and Mackay 1972).

The examples shown above illustrate how three different magnetic scenarios can be realized in very simple finite graphene systems. These examples also provide a way for designing nanostructures with predefined magnetic interactions, a highly useful tool for developing novel spintronic devices. The value of this approach has already been demonstrated by the proposal of reconfigurable spintronic logic gates exploiting the strong antiferromagnetic couplings in the bowtie-shaped graphene fragments (Wang et al 2009a). Several devices for controlling spin-currents based on triangular graphene fragments have also been described recently (Ezawa 2009b). A number of other intriguing properties predicted for zero-dimensional graphene fragments are potentially interesting from both fundamental and applied points of view (Akola et al 2008, Ezawa 2008, 2009a).

5. Zigzag edges and nanoribbons

5.1. Physical mechanism of edge magnetism

As one moves on toward larger graphene fragments or infinite systems, the application of counting rules becomes impractical. An alternative approach considers the effects of edges of graphene nanostructures which can be conveniently modeled using one-dimensional periodic strips of graphene. Such models are commonly referred to as graphene nanoribbons. There are two high-symmetry crystallographic directions in graphene, armchair and zigzag, as shown in figure 1(a). Cutting graphene nanoribbons along these directions produces armchair and zigzag nanoribbons, respectively (figure 8).

The band structures of armchair and zigzag nanoribbons are remarkably different. Figure 8(a) shows the tight-binding band structure of a $\sim 1.5\text{ nm}$ wide armchair nanoribbon. For this particular armchair graphene nanoribbon, introducing a pair of parallel armchair edges opens a gap of $0.26t$. The nearest-neighbor tight-binding model predicts either metallic or semiconducting behavior for armchair nanoribbons (Nakada et al 1996, Barone et al 2006, Brey and Fertig 2006, Ezawa 2006, Peres et al 2006, Son et al 2006a), and the two situations alternate as the nanoribbon’s width increases. The band gap of semiconducting graphene nanoribbons decreases with increasing width. In the case of metallic nanoribbons two bands cross the Fermi level at the Γ point. No magnetic ordering is predicted in this case.
Within the same model all zigzag graphene nanoribbons are metallic and feature a flat band extending over one-third of the one-dimensional Brillouin zone at $k \in (2\pi/3a; \pi/a)$ ($a = 0.25$ nm is the unit cell of the zigzag edge) as shown in figure 8(b). Strictly speaking, the flat band does not correspond to zero-energy states, but rather to the states with energies that approach zero with increasing nanoribbon width. The low-energy states are localized at the edge and decay quickly in the bulk.

High density of low-energy electronic states suggests a possibility of magnetic ordering. Indeed, the mean-field Hubbard-model solution for this system reveals magnetic moments localized at the edges as shown in figure 9(a). The localized magnetic moments display ferromagnetic ordering along the zigzag edge while the mutual orientation of the magnetic moments localized at the opposite edges is antiparallel (Fujita et al. 1996, Son et al. 2006b, Fernández-Rossier 2008). Thus, the net magnetic moment of a zigzag nanoribbon is zero in agreement with Lieb’s theorem ($N_A = N_B$). The band structure corresponding to the mean-field Hubbard-model solution is compared with the tight-binding band structure in figure 9(b). The introduced electron–electron interactions open a band gap across the whole flat-band segment turning the system into a semiconductor ($\Delta S = 0.20t$ at $U/t = 1.2$). The spin-polarization almost does not affect the electronic states at higher energies. The band structures for the two spin channels are equivalent, but spin-spatial symmetry is broken.

The coupling between the magnetic edges can be ascribed to the superexchange mechanism as in the case of bowtie graphene fragment considered in the previous section. The magnitude of the antiferromagnetic coupling shows a w^{-2} dependence as a function of nanoribbon width w (Jung et al. 2009). The interedge magnetic coupling strength of ~ 25 meV has been calculated from first principles for a ~ 1.5 nm wide nanoribbon (Pisani et al. 2007). Unlike the antiferromagnetic ground state, a zigzag graphene nanoribbon with ferromagnetic interedge orientation is a metal with two bands crossing the Fermi level at $k \approx 2\pi/3a$ (figure 9(c)). The possibility of switching between the two states was exploited in a proposal of a graphene-based magnetic sensor (Muñoz-Rojas et al. 2009) described in the next section. The coupling between the magnetic moments localized at the edges can be controlled by means of either electron or hole doping of the nanoribbons (Jung and MacDonald 2009, Sawada et al. 2009). High doping levels eventually suppress magnetism since the flat band shifts away from the Fermi level, thus eliminating the electronic instability associated with the presence of low-energy electrons (Jung and MacDonald 2009).

It is worth mentioning that at the time this review was written, no direct proof of edge magnetism in graphene has been reported. However, the presence of localized low-energy
states at zigzag edges of graphene has been verified by means of STM (cf figure 10) (Kobayashi et al 2005, 2006).

5.2. Possible applications in spintronics

It has been realized that the intriguing magnetic properties of graphene nanostructures may find applications in spintronics. The pioneering idea was introduced by Son et al who have predicted that external electric fields induce half-metallicity in zigzag graphene nanoribbons (Son et al 2006b). The half-metallicity refers to the coexistence of a metallic state for electrons with one spin orientation and an insulating state for electrons with the opposite spin orientation. An electric field is applied across the nanoribbon as shown in figure 11(a). At zero field the system is characterized by the energy gap ΔS for the spin-polarized states localized at both edges (figure 11(b)). An applied electric field breaks the symmetry and closes the gap for one of the spin directions selectively (figure 11(c)). The critical field required for inducing the half-metallicity is $3.0/w V$, where w is the nanoribbon width in angstrom. The direction of the applied electric field defines the spin channel with metallic conductivity. If realized in practice, this simple device would offer efficient electrical control of spin transport—a highly desirable component for spintronics.

In addition to the device described, several other approaches for controlling the spin transport in graphene nanostructures have been proposed. One of them exploits disorder for achieving the goal; an example from Wimmer et al (2008) is shown in figure 12. Electric current flowing along the edges of zigzag nanoribbon injects spin-polarized electrons into a graphene reservoir (figure 12(a)). However, the net spin polarization of the current is zero due to the antiferromagnetic coupling between the two equivalent edges. Then, an extended defect is introduced into one of the edges as shown in figure 12(b). The defect both quenches magnetic moments and scatters the carriers at the rough edge. However, conduction at the opposite edge remains unaffected, thus allowing for injecting a current with a net spin polarization. Other proposals based on defect
Figure 13. Scheme of magnetoresistive device based on zigzag graphene nanoribbon connecting two ferromagnetic contacts (Kim and Kim 2008). The low-resistance configuration (a) and the high-resistance configuration (b) of the device correspond to parallel and antiparallel orientations of the magnetic moments of the two ferromagnetic leads, respectively. Arrows denote the magnetic moments of both graphene edges and ferromagnetic leads.

Figure 14. All-graphene magnetoresistive device proposed in Muñoz-Rojas et al (2009). The device represents an armchair-zigzag-armchair nanoribbon junction. The high-resistance antiparallel configuration (a) switches into a low-resistance parallel configuration (b) in a strong enough applied magnetic field.

Impurity engineering of spin transport in graphene nanoribbons have been reported (Cantele et al 2009, Lakshmi et al 2009, Park et al 2009, Rocha et al 2009).

Magnetic graphene nanostructures were also proposed as components of magnetoresistive junctions. Such devices are currently used as magnetic field sensors, e.g. in the read heads of hard disk drives. Typical magnetoresistive junctions involve ferromagnetic metal layers separated by a non-magnetic spacer layers, e.g. Co layers separated by a non-magnetic Cu layer or bcc Fe layers separated by a few-nanometers thick layer of crystalline MgO. A crucial characteristic of such spintronic devices is their magnetoresistance ratio (MR) which shows the change in electric resistance as a function of the relative orientation of the magnetization of two ferromagnetic layers (Heiliger et al 2006). This quantity can be defined as

\[MR = \frac{R_{AP} - R^P}{\min(R^P, R_{AP})} \times 100\%, \]

where \(R^P \) and \(R_{AP} \) are the resistances for parallel and antiparallel relative orientations of the magnetic moments of the layers. Magnetoresistive devices with high magnitudes of MR are demanded by the future nanoscale electronics. It has been predicted that a zigzag graphene nanoribbon placed between two ferromagnetic contacts constitutes a magnetoresistive junction with very high values of MR (Kim and Kim 2008). The low-resistance state of the proposed device corresponds to the parallel configuration in which the magnetic moments at graphene edges are coupled ferromagnetically to each other. The ferromagnetic coupling is enforced by the strong interaction with the magnetic moments of ferromagnetic contacts (figure 13(a)). In the antiparallel configuration (figure 13(b)), the magnetic graphene nanoribbon develops a domain-wall arrangement of edge spins with high resistance. It is worth mentioning that spin-transport measurements in micrometer-scale lateral graphene devices contacted by ferromagnetic electrodes have been carried out experimentally (Hill et al 2006, Tombros et al 2007, 2008, Jozsa et al 2008). However, the magnetoresistance effect observed in these experiments is due to the long spin-diffusion lengths in graphene.

An all-graphene device based on the armchair-zigzag-armchair nanoribbon junction has also been predicted to show magnetoresistance effect (Muñoz-Rojas et al 2009). In zero applied magnetic field the magnetic coupling between the opposite zigzag edge segments is antiferromagnetic (figure 14(a)) and, hence, electric resistance is high due to the gapped electronic state. Sufficienly strong magnetic fields favor the parallel configuration (figure 14(b)) which shows a lower resistance due to the spin-polarized edge states crossing the Fermi level (figure 9(c)). This ultrasmall device thus acts as a magnetic field sensor capable of detecting magnetic fields from a few hundred Gauss to several tesla at low temperatures.

Epitaxial graphene and the isostructural hexagonal boron nitride (h-BN) have been proposed as efficient ultrathin non-magnetic spacers for traditional multilayer magnetoresistive junctions (Karpan et al 2007, 2008, Yazyev and Pasquarello 2009). Unlike in the device shown in figure 13, mono- or multilayers of graphene or h-BN are sandwiched between two ferromagnetic layers. The transport direction is orthogonal to the plane of spacer layers. The key to feasibility of such devices is the fact that the lattice constants of graphene and h-BN match closely those of Co and Ni. Moreover, in the case of multilayer graphene the momentum selection criteria allow efficient transport only for the minority-spin channel in the parallel configuration of the device. Very high MRs have been predicted for multilayer graphene used.
5.3. Magnetic ordering at finite temperatures

It has already been mentioned at the beginning that the Curie temperatures of ferromagnetic materials must be higher than the operation temperature of the device, which is typically supposed to be close to 300 K. When introducing the working principles of the proposed spintronic devices based on graphene edges, temperature-related limitations were not discussed. However, magnetic order in low-dimensional systems is particularly sensible to thermal fluctuations. In particular, the Mermin–Wagner theorem excludes long-range order in one-dimensional magnetic systems (such as the magnetic graphene edges) at any finite temperature (Mermin and Wagner 1966). The range of magnetic order is limited by the temperature-dependent spin correlation lengths $\xi^\alpha (\alpha = x, y, z)$ which define the decay law of the spin correlation

$$\langle \hat{s}^a_i \hat{s}^a_{i+1} \rangle = \langle \hat{s}^a_i \hat{s}^a_{i+1} \rangle \exp(-l/\xi^a),$$

(10)

where \hat{s}^a_i are the components of magnetic moment unit vector \hat{s}_i at site i. In principle, the spin correlation length imposes the limitations on the device dimensions. In order to establish this parameter one has to determine the energetics of the spin fluctuations contributing to the breakdown of the ordered ground-state configuration.

The energetics of the transverse and longitudinal spin excitations (figures 15(a) and (b)) have been explored using DFT calculations (Yazyev and Katsnelson 2008). The magnetic correlation parameters in the presence of spin-wave fluctuations, the dominant type of spin disorder in this case, were obtained with the help of one-dimensional Heisenberg model Hamiltonian

$$H = -a \sum_i \hat{s}_i \hat{s}_{i+1} - d \sum_i \hat{s}_i \hat{s}_{i+1},$$

(11)

where the Heisenberg coupling $a = 2\kappa / a_i^2 = 105$ meV corresponds to the spin-wave stiffness $\kappa = 320$ meV Å2 calculated from first principles. The estimated small anisotropy parameter $d/a \approx 10^{-4}$ originates from the weak spin-orbit interaction in carbon. This simple model Hamiltonian has known analytic solutions (Joyce 1967). Figure 15(c) shows the spin correlation lengths calculated for our particular case. Above the crossover temperature $T_x \approx 10^4$, weak magnetic anisotropy does not play any role and the spin correlation length $\xi \propto T^{-1}$. However, below T_x the spin correlation length grows exponentially with decreasing temperature. At $T = 300$ K the spin correlation length $\xi \approx 1$ nm.

From a practical point of view, this means that the dimensions of spintronic devices based on the magnetic zigzag edges of graphene and operating at normal temperature conditions are limited to several nanometers. At present, such dimensions are very difficult to achieve, which can be regarded as a pessimistic conclusion. Nevertheless, one has to keep in mind that the spin stiffness predicted for the magnetic graphene edges is still higher than the typical values for traditional magnetic materials. That is, graphene outperforms d-element based magnetic materials, and there is room for improvement. Achieving control over the magnetic anisotropy d/a could possibly raise the crossover temperature T_x above 300 K and thus significantly extend ξ. Possible approaches for reaching this goal include chemical functionalization of the edges with heavy-element functional groups or coupling graphene to a substrate.
6. Magnetism in graphene and graphite

6.1. Radiation damage and defects in carbon materials

Experimental observations of ferromagnetic ordering in irradiated graphite have already been mentioned in the introductory part of this review. These results are particularly exciting because of the fact that the induced magnetic ordering is stable at room temperature and well above. Let us now try to understand the origin of magnetism in irradiated graphite. The present section covers the cases of both graphene and graphite which has a three-dimensional crystalline lattice composed of weakly coupled graphene layers.

The basic picture of the radiation-damage process in carbon materials is relatively simple. Irradiation of graphite with high-energy particles (e.g. protons) produces several types of point defects. In carbon materials the defects are created as a result of so-called ‘knock-on collisions’ (Banhart 1999, Krasheninnikov and Banhart 2007). This process involves the direct transfer of kinetic energy from the high-energy incident particles to the individual atoms in the material’s lattice. If the transferred energy is larger than the displacement threshold T_d, the recoil atom may leave its equilibrium position leading to the formation of a pair of point defects—a vacancy defect and an interstitial. The structure of the vacancy defect in graphene and graphite is shown in figure 16(a). In graphene the interstitial defects have a bridge structure (Lehtinen et al 2003), while in graphite the stable configuration corresponds to a carbon atom trapped between the adjacent graphene layers (Telling et al 2003, Li et al 2005) as shown in figure 16(b). The displacement threshold T_d for carbon atoms in graphitic materials was found to be ~20 eV in a number of studies (Crespi et al 1996, Smith and Luzzi 2001, Yazyev et al 2007, Zobelli et al 2007). Creation of defects due to electron stopping, i.e. the process involving possible electronic excitations and ionization of individual atoms, is less important in carbon materials since electronic excitations in metals are delocalized and quench instantly (Banhart 1999, Krasheninnikov and Banhart 2007).

After slowing down, reactive particles may also produce chemisorption defects. In particular, protons are able to bind to individual carbon atoms in graphene lattice resulting in their rehybridization into the sp^3-state (figure 16(c)). Such defects are referred to as hydrogen chemisorption defects. From the point of view of one-orbital models that we use in our review, both vacancy and hydrogen chemisorption defects are equivalent. In both cases a defect removes one p_z-orbital from the π-system of graphene. In the first case, the p_z-orbital is eliminated together with the knocked-out carbon atom. The hydrogen chemisorption does not remove the carbon atom from the crystalline lattice, but once rehybridized the atom is unable to contribute its p_z-orbital to the π-electron system. These two types of defects are further referred to as p_z-vacancies. The defects described above are the primary defects in the radiation-damage process. More complex defects can be produced at later stages of the process. For instance, single-atom vacancies and interstitials may aggregate producing extended defects. Complexes involving two or more different defects can also be formed upon irradiation. Examples are complexes of hydrogen with vacancies and interstitials (Lehtinen et al 2004) and intimate Frenkel pairs (Ewels et al 2003, Yazyev et al 2007). Radiation damage in graphitic materials may also produce the Stone–Wales defects (Kaxiras and Pandey 1988, Stone and Wales 1986).

6.2. Defect-induced magnetism in graphene

The single-atom p_z-vacancies described above have a particularly profound effect on the electronic structure of ideal graphene. Let us consider a periodically repeated supercell of graphene composed of $2N$ ($N_A = N_B = N$) carbon atoms. Elimination of one atom from sublattice A introduces a zero-energy state in the complementary sublattice ($\alpha = N_B$; thus $\eta = 2N_B - ((N_A - 1) + N_B) = 1)$. Such zero-energy states extending over large distances are called quasi-localized states since they show a power-law decay (Pereira et al 2006, Huang et al 2009). The quasi-localized states have been observed in a large number of STM studies of graphite as triangular $\sqrt{3} \times \sqrt{3}R30^\circ$ superstructures extending over a few nanometers and localized around point defects (Mizies and Foster 1989, Kelly and Halas 1998, Ruffieux et al 2000). For the single-defect model we have adopted, Lieb’s theorem predicts a magnetic moment of $[1\mu_B per supercell$, that is, the presence of a defect induces ferromagnetic ordering.

This result has been widely confirmed using both first-principles (Duplock et al 2004, Lehtinen et al 2004, Yazyev and Helm 2007) and mean-field Hubbard-model (Kumazaki and Hirashima 2007, Palacios et al 2008) calculations. Figure 17(a) shows the spin-resolved density of states (DOS) plots for hydrogen chemisorption and vacancy defects obtained using first-principles calculations (Yazyev and Helm 2007). In the first case, the sharp peak close to the Fermi level corresponds to the quasi-localized state induced by the chemisorbed hydrogen atom. The peak is fully split by exchange and the system is characterized by a magnetic moment of $1\mu_B$ at any defect concentration. The distribution of spin density around the defective site clearly shows a $\sqrt{3} \times \sqrt{3}R30^\circ$ superstructure (figure 17(b)). The case of vacancy defect is somewhat more complicated. In addition to the quasi-localized state, there is also a localized...
non-bonding state due to the presence of a σ-symmetry dangling bond in this defect (figure 16(a)). The dangling-bond state shows a very strong exchange splitting and contributes 1μB to the total magnetic moment of the defect (figure 17(a)). However, the magnetic moment due to the quasi-localized state is partially suppressed in this case due to the self-doping effect related to the structural reconstruction of the vacancy (Yazyev and Helm 2007). The overall magnetic moment per vacancy defect varies from 1.12μB to 1.53μB for defect concentrations ranging from 20% to 0.5%.

Magnetic moments due to dangling bonds can also be contributed by other types of defects, e.g. the bridge-configuration interstitial defect in graphene (Lehtinen et al 2003). However, one has to keep in mind that magnetic ordering due to only localized magnetic moments in graphene-based system is improbable at high temperatures. The Ruderman–Kittel–Kasuya–Yoshida interaction is expected to be weak in this case due to the semi-metallic electronic structure of graphene (Vozmediano et al 2005, Dugaev et al 2006, Brey et al 2007, Saremi 2007). On the other hand, magnetic ordering due to the quasi-localized states can be considered as itinerant magnetism without excluding a possible contribution of dangling-bond magnetic moments to the net magnetic moment of a defective carbon system.

The system with one defect placed in a periodically repeated supercell is only a rough model of disordered graphene for two reasons. First, all defects are located in the same sublattice of the graphene layer. Second, the defects form an ordered periodic superlattice. A more realistic description of disorder can be achieved by constructing models with defects randomly distributed in a large enough supercell (Yazyev 2008b). Such models allow defects to occupy both sublattices at arbitrary concentrations and eliminate any short-range order in the spatial arrangement of defects. Larger supercells are needed for building the disordered models which makes first-principles calculations impractical. However, such system can still be treated using the mean-field Hubbard-model calculations.

Figure 18(a) shows the distribution of spin density in a selected region of a large supercell randomly populated by p zz-vacancies. Defects in different sublattices are shown as black triangles of different orientations. The resulting picture can be explained if one considers the following two arguments.
First, from Lieb’s theorem the total magnetic per supercell is \(M = |N_A - N_B| = |N_{A\text{d}} - N_{B\text{d}}| \), where \(N_{A\text{d}} \) and \(N_{B\text{d}} \) are the numbers of defects created in sublattices A and B, respectively. This means that electron spins populating the quasi-localized states in the same sublattice are oriented parallel to each other while the antiparallel arrangement is realized when electron spins populate different sublattices. This conclusion is qualitatively the same as the one we obtained when considering finite graphene nanofragments. Second, quasi-localized states populating complementary sublattices interact with each other (Kumazaki and Hirashima 2007, Palacios et al 2008). The interaction lifts the degeneracy leading to weakly bonding and anti-bonding states. This provides another mechanism for escaping the instability associated with the presence of low-energy electronic states. The interaction strength between two defects increases with decreasing distance between them. For very short distances, the gain in exchange energy does not compensate for the kinetic-energy penalty due to the splitting. This leads to quenching of the defect-induced magnetic moments (Boukhvalov et al 2008, Yazyev 2008b). The competition between these effects is demonstrated in figure 18(a).

More quantitative results are presented in figure 18(b) which shows the mean magnetic moment \(\langle M^A \rangle \) and \(\langle M^B \rangle \) per carbon atom in sublattice A and sublattice B as a function of defect concentration \(x \) (Yazyev 2008b). The resulting values have been averaged over many random placements of defects in the simulation supercell. The plot refers to the situation of defects equally distributed over the two sublattices \(N_{A\text{d}} = N_{B\text{d}} \) and to the situation when defects belong to sublattice B only \(N_{A\text{d}} = 0 \). In the first case, the magnetic moments in the two sublattices compensate each other. The overall magnetic ordering is of antiferromagnetic character. When defects populate only one sublattice the system exhibits ferromagnetic ordering. The net magnetic moment per carbon atom \(\langle M \rangle = (\langle M^A \rangle + \langle M^B \rangle)/2 \) scales linearly with the defect concentration. Both numerical results are in full agreement with Lieb’s theorem.

6.3. Magnetism in graphite and multilayer graphene

Experimental observations of ferromagnetism in irradiated graphite point to the conclusion that sublattices of individual graphene layers in bulk graphite are populated by defects differently; that is, there must be a mechanism which makes the sublattices of graphene inequivalent. Such an intrinsic discriminating mechanism was ascribed to the stacking order of graphite layers in bulk graphite (Yazyev 2008b). The lowest-energy ABA stacking order of individual graphene sheets in graphite breaks the equivalence of the two sublattices as shown in figure 19(a). In fact, only local ABA stacking order is required to discriminate between the two sublattices of the middle sheet. The mechanism can be demonstrated for the case of hydrogen chemisorption defects. First-principles calculations show that the configuration which involves hydrogen chemisorbed on sublattice B is 0.16 eV lower in energy than on sublattice A (see figures 19(b) and (c)). This energy difference is sufficient to trigger a considerable difference in equilibrium populations of the two sublattices.

The energy barrier for the hopping of chemisorbed hydrogen atoms is relatively small (\(\sim 1 \) eV) to allow for thermally activated diffusion at mild temperatures.

Similar discriminating mechanisms may also exist for the other types of defects created by irradiation, e.g. for vacancies. Cross-sections for momentum transfer during knock-on collisions with high-energy incident particles are likely to be very similar for both A and B carbon atoms in graphite. However, the stacking order may have a strong influence on the recombination of interstitial and vacancy defects close to equilibrium conditions. It was also shown that instantaneous recombination of low-energy recoil atoms in graphite is significantly more probable for atoms in position A (Yazyev et al 2007). That is, more vacancies in sublattice B are left assuming an equal number of knock-on collisions involving the atoms of both types. These results allow us to conclude that the most probable physical picture of magnetic order in irradiated graphite is ferrimagnetism. The magnetic moment induced by defects in sublattice A is larger than the one induced in sublattice B.

It is worth mentioning other possible scenarios for the onset of magnetism in graphene-related materials and nanostructures. It was shown that local negative Gauss curvatures in graphene layers also lead to localized magnetic moments (Park et al 2003). Coupling between the two graphene layers in a biased graphene bilayer introduces a pair of sharp van Hove singularities close to the Fermi level. It was shown theoretically that in a range of conditions biased bilayer graphene satisfies the Stoner criterion leading to a low-density ferromagnetic phase (Castro et al 2008).

The question of magnetic ordering in defective graphene and graphite at finite temperatures remains largely unaddressed. Similarly to the one-dimensional system discussed above, an isotropic two-dimensional system cannot develop long-range magnetic ordering at any finite temperature (Mermin and Wagner 1966). However, the introduction of a small magnetic anisotropy \(d/a \sim 10^{-3} \) already leads to very high transition temperatures (Barzola-Quiquia et al 2007). Weak magnetic coupling between the individual layers in graphite also produces a pronounced effect on the magnetic transition temperature (Pisani et al 2008).
7. Conclusions and perspectives

The review illustrated a rich variety of magnetism scenarios in graphene nanostructures and explained them in terms of simple physical models. Beyond these theoretical considerations the field of carbon-based magnetism faces a number of challenges. The most important problems are related to the experimental side of the field. In particular, the physics of magnetic graphene edges has already attracted a large number of computational and theoretical researchers. However, no direct experimental evidence has been reported at the time this review was written. Further progress in this field will also require novel manufacturing techniques which would allow control of the edge configuration with truly atomic precision. The area of defect-induced magnetism in graphite demands detailed studies of defects produced upon irradiation and their role in the onset of ferromagnetic ordering. The limits of saturation magnetization and Curie temperature in irradiated graphite have still to be established. On the theory side of this field, an understanding of magnetic phase transitions in graphite materials and nanostructures has to be developed. Other important directions of theoretical research include spin transport and magnetic anisotropy of carbon-based systems.

Acknowledgments

The author thanks J Fernández-Rossier, Y-W Son and D Strubbe for critical reading of the manuscript. This work was supported by the Swiss National Science Foundation (grant No PBELP2-123086).

References

Akola J, Heiskanen H P and Manninen M 2008 Phys. Rev. B 77 193410
Allemand P M, Khemani K C, Koch A, Wudl F, Holczer K, Donovan S, Gruner G and Thompson J D 1991 Science 253 301
Allinson G, Bushby R J, Paillaud J L and Thornton-Pett M 1995 J. Chem. Soc. Perkin Trans. I 385
Anderson P W 1950 Phys. Rev. 79 350
Awschalom D D and Flatte M E 2007 Phys. Rev. Lett. 99 177204
Bando F 1999 Phys. Soc. Jpn. 65 1920–23
Bantl J, Honecker A, Cabra D, Wessel S, Meng Z Y and Assaad F F 2009 arXiv:0910.5360
Bernández-Rossier J 2008 Phys. Rev. B 77 075430
Bernández-Rossier J and Palacios J I 2007 Phys. Rev. Lett. 99 177204
Fert A 2008 Rev. Mod. Phys. 80 1517
Heiligl Z, Zahn C and Mertzig I 2006 Mater. Today 9 46–54
Hill E W, Geim A K, Nahar U, Kitchin J R, Scheflin R and Blake P 2006 IEEE Trans. Magn. 42 2964–6
Huang M W, Yang J M and Lin H H 2009 Phys. Rev. B 80 121404
Inoue J, Fukui K, Kubo T, Nakazawa S, Sato K, Shioda M, Morita Y, Yamamoto K, Takui T and Nakasuji K 2001 J. Am. Chem. Soc. 123 12702
Jiao L, Zhang L, Wang X, Diankov G and Dai H 2009 Nature 458 877–80
Jia X et al 2009 Science 323 1701–5
Joyce G S 1967 Phys. Rev. Lett. 19 581
Jozsa C, Popinciuc M, Tombs N, Jonkman H T and van Wees B J 2008 Phys. Rev. Lett. 100 236603
Jung J and MacDonald A H 2009 Phys. Rev. B 79 235433
Jung J, Peng-Barnea T and MacDonald A H 2009 Phys. Rev. Lett. 102 227205
Karpan V M, Giovannetti G, Khomaykov P A, Talanana M, Starikov A A, Zwierzycki M, van den Brink J, Brooks G and Kelly P J 2007 Phys. Rev. Lett. 99 176602
Karpan V M, Khomaykov P A, Starikov A A, Giovannetti G, Zwierzycki M, Talanana M, Brooks G, van den Brink J and Kelly P J 2008 Phys. Rev. B 78 195419
Katsnelson M I 2007 Mater. Today 10 20
Kaxiras E and Pandey K C 1988 Phys. Rev. Lett. 61 2693
Kelly K F and Halas N J 1998 Surf. Sci. 416 L1085
Kim W Y and Kim K S 2008 Nature Nanotechnol. 3 408
Kobayashi Y, Fukui K i, Enoki T, Kusakabe K and Kaburagi Y 2005
Phys. Rev. B 71 193406
Kobayashi Y, Fukui K i, Enoki T and Kusakabe K 2006 Phys. Rev. B 73 125415
Koch W and Kotthaus M C 2002 A Chemist’s Guide to Density Functional Theory (Weinheim: Wiley-VCH)
Kopelevich Y, Esquinazi P, Torres J H S and Moebelecke S 2000
J. Low Temp. Phys. 119 691–702
Kosynskiy D V, Higginbotham A L, Sniittski A, Lomeida J R, Dimiev A, Price B K and Tour J M 2009
Nature 458 872–6
Kramers H A 1934 Phys. Rev. 45 1628
Kramers H A and Kohn W 1954 Phys. Rev. B 71 193110
Kubota S and Shikina H 1987 Phys. Rev. B 35 9380
Lakshmi S, Roche S and Cuniberti G 2009 Phys. Rev. B 80 193404
Lehtinen P, Foster A S, Ayuela A, Krasheninnikov A, Nordlund K and Nieminen R M 2003 Phys. Rev. Lett. 91 017202
Lehtinen P O, Foster A S, Ma Y, Krasheninnikov A and Nieminen R M 2004 Phys. Rev. Lett. 93 187202
Liew E H 1989 Phys. Rev. Lett. 62 1201
Li L, Reich S and Robertson J 2005
Phys. Rev. B 72 184109
Li X, Wang X, Zhang L, Lee S and Dai H 2008 Science 319 1229–32
Makarova T L, Sundqvist B, Hohne R, Esquinazi P, Kopelevich Y, Scharff P, Davydov V A, Kashevarova L S and
Rakhmanina A V 2001 Nature 413 716
Makarova T L, Sundqvist B, Hohne R, Esquinazi P, Kopelevich Y, Scharff P, Davydov V, Kashevarova L S and
Rakhmanina A V 2006 Nature 440 707
Makarova T and Palacio F 2006 Carbon Based Magnetism: An Overview of the Magnetism of Metal Free Carbon-based Compounds and Materials (Amsterdam: Elsevier)
Martin R M 2004 Electronic Structure: Basic Theory and Practical Methods (Cambridge: Cambridge University Press)
Marx D and Hutter J 2009 Ab Initio Molecular Dynamics: Basic Theory And Advanced Methods (Cambridge: Cambridge University Press)
Matte H S S R, Subrahmanyam K S and Rao C N R 2009 J. Phys. Chem. C 113 9908–5
Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133
Mizes H A and Foster J S 1989 Science 244 559
Mohn P 2003 Magnetism in the Solid State: An Introduction (Springer Series in Solid-State Sciences) (Berlin: Springer)
Muñoz-Rojas F, Fernández-Rossier J and Palacios J J 2009 Phys. Rev. Lett. 102 136810
Nakada K, Fujita M, Dresselhaus G and Dresselhaus M S 1996 Phys. Rev. B 54 17954
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva IV and Firsov A A 2004
Science 306 666
Ohldag H, Tyliszczak T, Höhne R, Spemann D, Esquinazi P, Ungureanu M and Butz T 2007 Phys. Rev. Lett. 98 187204
Oshima C and Nagashima A 1997 J. Phys.: Condens. Matter 9 1
Palacios J J, Fernández-Rossier J and Brey L 2008 Phys. Rev. B 77 195428
Park J, Yang H, Park K S and Lee E K 2009 J. Chem. Phys. 130 214103
Park N, Yoon M, Berber S, Ihm J, Osawa E and Tománek D 2003 Phys. Rev. Lett. 91 237204
Perea V M, Guinea F, Lopes dos Santos J M B, Peres N M R and Castro Neto A H 2006 Phys. Rev. Lett. 96 036801
Peres N M R, Castro Neto A H and Guinea F 2006 Phys. Rev. B 73 195411
Pisani L, Chan J A, Montanari B and Harrison N M 2007 Phys. Rev. B 75 064418
Pisani L, Montanari B and Harrison N M 2008 New J. Phys. 10 033002
Rader O, Varykhalov A, Sanchez-Barriga J, Marchenko D, Rybkin A and Shikin A M 2009 Phys. Rev. Lett. 102 057602
Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S and Kong J 2009 Nano Lett. 9 30–5
Rocha A R, Martins T B, Fazzio A and da Silva A J R 2009 arXiv:0907.5027
Ruffieux P, Grönig O, Schwaller P, Schlaphach B and Grönig P 2000 Phys. Rev. Lett. 84 4910
Sarem S 2007 Phys. Rev. B 76 184430
Sawada K, Ishii F, Saito M, Okada S and Kawai T 2009 Nano Lett. 9 269–72
Smith B W and Luzzi D E 2001 J. Appl. Phys. 90 3509
Son Y W, Cohen M L and Louie S G 2006a Phys. Rev. Lett. 97 216803
Son Y W, Cohen M L and Louie S G 2006b Nature 444 347
Sorella S and Tosatti E 1992 Europhys. Lett. 19 699
Stone A J and Wales D J 1986 Chem. Phys. Lett. 128 501
Szabo A and Ostlund N S 1982 Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (New York: Macmillian)
Takahashi M, Turek P, Nakazawa Y, Tamura M, Nozawa K, Shiomi D, Ishikawa M and Kinoshita M 1991 Phys. Rev. Lett. 67 746
Tamura M, Nakazawa Y, Shiomi D, Nozawa K, Hosokoshi Y, Ishikawa M, Takahashi M and Kinoshita M 1991 Chem. Phys. Lett. 186 401
Telling R H, Ewels C P, El-Barbary A A and Heggie M I 2003 Nature Mater. 2 333
Thomann H, Dalton L R, Grabowski M and Clarke T C 1985 Phys. Rev. B 31 3141
Tombrons N, Jozsa C, Popinciuc M, Jonkman H T and van Wees B J 2007 Nature 448 571–4
Tombrons N, Tanabe S, Veligura A, Jozsa C, Popinciuc M, Jonkman H T and van Wees B J 2008 Phys. Rev. Lett. 101 046601
Trauzettel B, Bulaev D V, Loss D and Burkard G 2007 Nature Phys. 3 192
Varykhalov A and Rader O 2009 Phys. Rev. B 80 035437
Varykhalov A, Sanchez-Barriga J, Shikin A M, Biswas C, Vescovo E, Rybkin A, Marchenko D and Rader O 2008 Phys. Rev. Lett. 101 157601
Vozmediano M A H, López-Sancho M P, Stauber T and Guinea F 2005 Phys. Rev. B 72 155121
Wang W L, Meng S and Kaxiras E 2008a Nano Lett. 8 241
Wang W L, Meng S and Kaxiras E 2008b Phys. Rev. Lett. 100 206803
Wang W L, Yazyev O V, Meng S and Kaxiras E 2009a Phys. Rev. Lett. 102 157201
Wang Y, Huang Y, Song Y, Zhang X, Ma Y, Liang J and Chen Y 2009 Nature Phys. 5 220–4
Wimmer M, Adagideli I, Berber S, Tomaneck D and Richter K 2008 Phys. Rev. Lett. 100 177207
Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnar S, Roukes M L, Chichkeladze A Y and
Treger D M 2001 Science 294 1488–95
Wu J, Pisula W and Mullern K 2007 Chem. Rev. 107 718–47
Xia H et al 2008 Adv. Mater. 20 4679–83
Yazyev O V 2008a Nano Lett. 8 1011
Yazyev O V 2008b Phys. Rev. Lett. 101 037203
Yazyev O V and Helm L 2007 Phys. Rev. B 75 125408
Yazyev O V and Katsnelson M I 2008 Phys. Rev. Lett. 100 047209
Yazyev O V and Pasquarello A 2009 Phys. Rev. B 80 035408
Yazyev O V, Tavernelli I, Helm L and Rothlisberger U 2005 Phys. Rev. B 71 115110
Yazyev O V, Tavernelli I, Rothlisberger U and Helm L 2007 Phys. Rev. B 75 115148
Yazyev O V, Wang W L, Meng S and Kaxiras E 2008 Nano Lett. 8 766
Zobelli A, Glerot A, Ewels C P, Seifert G and Colliex C 2007 Phys. Rev. B 75 245402