Association between variants of MTHFR genes and psychiatric disorders: A meta-analysis

Yu-Xin Zhang¹,²*, Lu-Ping Yang³, Cong Gai¹, Cui-Cui Cheng¹, Zhen-yu Guo¹, Hong-Mei Sun¹ and Die Hu¹*

¹Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China, ²Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China, ³School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China

Background: Psychiatric disorders have seriously affected human life, one of the risk genes related to psychosis is the methylenetetrahydrofolate reductase (MTHFR) gene. This gene has a potential role in psychiatric disorders. Therefore, a meta-analysis is conducted to investigate the correlations between two prevalent MTHFR single nucleotide polymorphisms (SNPs), MTHFR C677T, A1298C, severe psychological disorders (schizophrenia, major depression, bipolar disorder).

Methods: A total of 81 published studies were screened and selected by a search of electronic databases up to April 2022. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the association between MTHFR polymorphism and psychiatric disorders susceptibility by using random effect models.

Results: We found that MTHFR C677T polymorphism is significantly related to schizophrenia and major depression in the overall population. MTHFR C677T has been linked to an increased risk of bipolar disorder in the recessive model (TT vs. CT + CC). Ethnic subgroup analysis shows that schizophrenia and major depression significantly correlate with MTHFR C677T and A1298C in Asian populations but not Caucasians. Besides, schizophrenia is correlated substantially with MTHFR C677T in the African population. However, the MTHFR A1298C polymorphism is only marginally linked to major depression.

Conclusion: Findings of the current study revealed that MTHFR may contribute to the common pathogenesis of psychiatric diseases and that its variants may be essential in controlling the expression of psychosis-related genes. This study could help the researchers and health specialists in the early diagnosis and treatment of psychiatric disorders.

KEYWORDS
MTHFR C677T, MTHFR A1298C, disorders, meta-analysis, gene variants
Introduction

Mental disorders have seriously affected human life, causing considerable familial and social burden (1). They are among the leading causes of disability globally and have been related to an increase in premature mortality (2). Major psychiatric disorders include schizophrenia (SZ), major depression (MD), bipolar disorder (BPD), and others (3). These mental disorders are more likely to occur in families, suggesting that they are related to genetic factors (4, 5). Many susceptible genes have been found through unbiased genome-wide association studies (GWAS), a kind of analysis comparing allele frequencies of all available polymorphic markers with specific symptoms or disease states (6, 7). GWAS and many other follow-up replication studies have suggested that methylenetetrahydrofolatereductase (MTHFR) polymorphisms are associated with psychiatric disorders.

The MTHFR is a crucial enzyme in the one-carbon metabolism (OCM) process, which involves folate and homocysteine (Hcy) metabolisms. It transforms 5,10-methylenetetrahydrofolate (5,10-methylene THF) to 5-methyltetrahydrofolate (5-methyl THF), and it is involved in folate and homocysteine conversion, which is linked to DNA methylation (8–10). A number of mutations in the MTHFR gene have been found, and the most common mutations are C677T (rs1801133) and A1298C (rs1801131), which are correlated with enzyme deficiency (11–14). In addition, MTHFR polymorphism may significantly decrease MTHFR activity, affect the concentration of Hcy in plasma, and lead to a wide range of mental, neurological, and vascular dysfunction (15).

The human Methylenetetrahydrofolatereductase (MTHFR) gene is located in chromosomal region 1p36.3 (16). The MTHFR gene has 14 common or rare single nucleotide polymorphisms linked with enzyme defects, the most prevalent of which are C677T and A1298C. The C677T gene location is one of the most researched and clinically significant variants in exon 4. The variation in C677T is due to the replacement of thymine by thymine, which leads to the conversion of valine to alanine at codon 222 (11). The polymorphism of A1298C is due to the adenine substitution by cytosine, leading to the conversion of glutamic acid to alanine at residue 429 (10). The replacement of 677 and 1,298 nucleotides C-T and A-C in the MTHFR gene reduces enzyme activity, and this decrease in MTHFR activity may affect the OCM cycle (17). Abnormal OCM might impair cortical and hippocampal neurogenesis during development and affect brain maturation and function (18–20).

The association between MTHFR polymorphism and mental illnesses has already been explored, but the influence of MTHFR on psychiatric disorders is still disputed, and limited studies have been found (21–23). These inconsistencies might be attributed to limited sample sizes, ethnic heterogeneity, and differences in population substructure. So, in current study these limitations have been overcome and summarized the conflicting data. A meta-analysis is performed to explore the connection of MTHFR C677T and A1298C polymorphisms with major mental disorders (including SZ, MD, and BPD). We also assessed whether ethnicity would affect the results. Therefore, it will provide more powerful evidence of whether MTHFR variants influence psychiatric diseases.

Materials and methods

Search strategy

We initially searched PubMed, Embase, Proquest, Web of Science, CNKI (Chinese National Knowledge Infrastructure), VIP (Chinese) database, and Wanfang (Chinese) database for the following terms: MTHFR (methylenetetrahydrofolatereductase), gene (gene or genetic or polymorphism or variants or variation), and psychiatric disorders (psychiatry disorders or mental illness or mental disorders or psychosis). We discovered that most research concentrated on MTHFR C677T and MTHFR A1298C. The researchers investigated the relationships between MTHFR gene variants and susceptibility to mental diseases such as schizophrenia, bipolar disorder, and depression. To guarantee that we missed no studies, we searched these databases again using these gene terms (MTHFR C677T and A1298C) and major mental disorders such as “schizophrenia,” “bipolar disorder,” “depression,” and so on. All of the research was completed and published by April 2022. After that, we selected relevant papers and examined their bibliographies to find additional references.

Study selection

Selection of articles for analysis purposes was made based on the following criteria: (1) case-control studies; (2) giving comprehensive data of formally diagnosed patients with unrelated healthy control subjects for generating an odds ratio (OR) with a 95% confidence interval (CI); (3) Case status was classified as having a DSM-IV-diagnosed mental condition, with control patients having no history of psychiatric disorders or other neurological abnormalities; (4) the studies used samples that did not overlap with other studies; (5) the use of internationally recognized loci gene polymorphism detection techniques (such as polymerase chain reactionrestriction fragment length polymorphism, real-time quantitative polymerase chain reaction, or amplification block mutation system-polymerase
chain reaction); and (6) the demographic characteristics of the control group, such as gender and age, were comparable to those of the case group. In addition, articles were excluded if they (1) not reported the target genotype frequencies, (2) were reviews, letters, or commentaries, or (3) were duplicate reports.

Data extraction and management

Two reviewers independently extracted the following information from all eligible studies: author, year of publication, country, ethnicity (categorized as Asian, Caucasian, and African populations), and the number of distinct genotypes in cases and controls for C677T or A1298C genotype. In the case of a disagreement, a discussion was held, and if no agreement could be achieved, a third person was consulted for consensus.

Statistical analysis

We investigated the potential of conducting a meta-analysis of all eligible studies. The odds ratio (OR) and associated 95% confidence intervals (CIs) were used to examine the strength of the connection between MTHFR polymorphism and mental disorders: the allele model (T vs. C, C vs. A), the dominant model (TT + CT vs. CC, CC + AC vs. AA), the homozygote model (TT vs. CC, CC vs. AA) and the recessive model (TT vs. CT + CC, CC vs. AC + AA). The Chi-square test was used to analyze the genotype distribution in the control groups for Hardy Weinberg equilibrium (HWE). The Cochran’s (Q) X^2 test and I^2 statistic were used to assess the heterogeneity between individual studies (24). Considering the heterogeneity of studies, this meta-analysis adopted a random effect model (25). Subgroup analyses were performed using ethnicity stratification, and sensitivity analyses were undertaken.
TABLE 1 Overview of MTHFR C677T genotype distribution of psychosis patients and controls, with information about country, ethnicity, and disease.

References	Year	Country	Ethnicity	Case	Control	Case	Control	P_HWE
Schizophrenia								
Arinami et al. (27)	1997	Japanese	Asian	297	419	96	138	63
Kunugi et al. (28)	1998	Japanese	Asian	343	258	121	168	54
Virgos et al. (29)	1999	Spain	Caucasian	210	218	81	98	31
Joober et al. (30)	2000	Canada	Caucasian	105	90	30	52	23
Saci et al. (31)	2003	Turkey	Caucasian	130	226	59	49	22
Tan et al. (32)	2004	Singapore	Asian	236	120	136	84	16
Yu et al. (33)	2004	China	Asian	230	251	91	96	43
Yu et al. (33)	2005	Scotland	Caucasian	426	628	199	186	41
Saci et al. (34)	2005	Turkey	Asian	297	341	144	115	38
Vilella et al. (35)	2005	Spain	Caucasian	158	234	58	75	25
Kempisty et al. (36)	2006	Poland	Caucasian	200	300	113	68	19
Philibert et al. (37)	2006	United States	Caucasian	206	359	107	83	16
Lee et al. (38)	2006	South Korea	Caucasian	215	235	74	128	33
Yang et al. (39)	2007	China	Asian	100	100	33	51	16
Jonsson et al. (40)	2007	Denmark	Asian	419	1006	200	177	42
Jonsson et al. (40)	2008	Norway	Caucasian	163	177	75	70	18
Jonsson et al. (40)	2008	Sweden	Caucasian	258	293	137	104	17
Muntjewerff (41)	2008	Netherlands	Caucasian	252	405	110	111	31
Ruffman et al. (42)	2008	United States	Caucasian	130	208	81	98	31
Feng et al. (43)	2009	China	Asian	123	123	17	67	39
Betcheva et al. (44)	2009	Bulgaria	Caucasian	185	182	76	85	24
Garcia-Miss et al. (45)	2010	Mexico	Caucasian	105	108	29	45	31
Kang et al. (46)	2010	Korean	Asian	360	348	125	176	59
Ye et al. (47)	2010	China	Asian	104	56	12	58	34
Bouaziz et al. (48)	2010	Tunisia	African	25	25	18	4	3
Arrzaghi et al. (49)	2011	Iran	Asian	66	94	35	27	4
Kim et al. (50)	2011	Korea	Asian	201	350	62	101	38
Muntjewerff et al. (51)	2011	Netherlands	Caucasian	739	886	334	319	86
Tsutsumi et al. (52)	2011	Japan	Asian	413	385	160	184	69
Zhang et al. (53)	2012	China	Asian	235	102	96	113	26
Lochman et al. (54)	2013	Czechia	Caucasian	186	209	72	90	24
Zhang et al. (55)	2013	China	Asian	1002	1036	166	450	384
Kontis et al. (56)	2013	Greece	Caucasian	90	55	40	37	13
El-Hadidy et al. (57)	2014	Egypt	African	103	149	52	36	15
Her et al. (58)	2014	China	Asian	130	80	17	65	48
Nishi et al. (59)	2014	Japan	Asian	621	486	220	309	92
Nishi et al. (59)	2014	Japan	Asian	1,149	2,742	417	530	202
Foroughmand et al. (60)	2015	Iran	Asian	200	200	104	76	20
Misiaik et al. (61)	2016	Poland	Caucasian	135	146	64	52	16
Takano et al. (62)	2016	Japan	Asian	45	30	17	18	10
Wang et al. (63)	2017	China	Asian	254	339	79	129	46
Oniki et al. (64)	2017	Japan	Asian	256	194	89	135	32
Debost et al. (65)	2017	Denmark	Caucasian	1699	1681	839	704	156
Zhilyaeva et al. (66)	2018	Russia	Caucasian	500	499	245	212	43
Ota et al. (67)	2019	Japan	Asian	538	1263	181	255	102
Wan et al. (68)	2019	China	Asian	97	92	24	47	26
Wan, L (69)	2019	China	Asian	242	234	45	122	75
References	Year	Country	Ethnicity	Case Control	Case Control	P_{HWE}		
-----------------------------	------	----------------	-----------	--------------	--------------	-----------		
				CC CT TT	CC CT TT			
Major depression								
Arinami et al. (27)	1997	Japanese	Asian	32 419 9 14 9 154	214 51	0.074		
Kunugi et al. (28)	1998	Japanese	Asian	71 258 10 31 30 95	129 34	0.342		
Tan et al. (32)	2004	Singapore	Asian	88 120 49 34 5 80	33 7	0.165		
Kelly et al. (70)	2004	United Kingdom	Caucasian	100 89 30 56 14 40	37 12	0.467		
Reif et al. (71)	2005	Germany	Caucasian	46 176 23 17 6 75	80 21	0.962		
Yuan et al. (72)	2005	China	Asian	60 80 22 27 11 27	38 15	0.801		
Chen-Sheng et al. (73)	2005	China	Asian	39 20 22 15 2 11 9	0 0.194			
Yuan (74)	2007	China	Asian	60 80 22 27 11 27	38 15	0.801		
Silprien et al. (75)	2008	Poland	Caucasian	83 89 26 38 19 46	36 7	0.991		
Zhao (76)	2008	China	Asian	77 85 12 37 28 21	48 16	0.219		
Yuan et al. (77)	2008	China	Asian	116 80 46 48 22 27	38 15	0.801		
Hong et al. (78)	2009	China	Asian	178 85 75 84 19 32	44 9	0.28		
Kim et al. (79)	2009	China	Asian	63 458 16 28 19 84	248 126	0.63		
Pan et al. (80)	2009	United States	Caucasian	170 83 72 79 19 30	44 9	0.598		
Cao et al. (81)	2010	China	Asian	50 59 9 23 18 24	27 8	0.926		
Zeman et al. (82)	2010	Czechia	Caucasian	42 41 15 18 9 16	17 8	0.377		
Feng et al. (83)	2010	China	Asian	152 152 32 66 54 51	81 20	0.167		
Li et al. (84)	2010	China	Asian	402 600 132 192 78 156	343 101 <0.001*			
Song (85)	2010	China	Asian	156 123 33 68 55 35	74 14	0.008*		
Lizer et al. (96)	2011	United States	Caucasian	82 74 31 34 17 33	28 13	0.114		
Zhao et al. (87)	2011	China	Asian	94 98 24 43 27 36	45 17	0.651		
Chojnicka et al. (88)	2012	Poland	Caucasian	710 2547 342 300 68 1213	1081 253 0.593			
Evinova et al. (89)	2012	Slovak	Caucasian	134 143 70 54 10 58	73 12	0.1		
Qiao et al. (90)	2012	China	Asian	94 98 24 43 27 36	45 17	0.651		
Shen et al. (91)	2014	China	Asian	368 219 88 259 21 113	91 15	0.563		
Sayadi et al. (92)	2016	Tunisia	African	208 187 105 80 23 80	93 14	0.066		
Mei et al. (93)	2016	China	Asian	37 65 9 26 2 32	7 6	0.59		
Huang et al. (94)	2017	China	Asian	80 80 20 36 24 30	38 12	0.995		
Li et al. (95)	2017	China	Asian	218 582 97 93 28 461	89 32 <0.001*			
Mei et al. (96)	2018	China	Asian	106 175 25 75 6 90	73 12	0.59		
Saraswathy et al. (97)	2019	India	African	91 206 78 12 1 183	22 1	0.68		
Bipolar disorder								
Arinami et al. (27)	1997	Japanese	Asian	40 419 15 20 5 154	214 51	0.074		
Kunugi et al. (28)	1998	Japanese	Asian	143 258 41 74 28 95	129 34	0.342		
Tan et al. (32)	2004	Singapore	Asian	167 120 99 60 8 80	33 7	0.165		
Reif et al. (71)	2005	Germany	Caucasian	92 176 48 34 10 75	80 21	0.962		
Kempisty et al. (36)	2006	Poland	Caucasian	200 300 108 73 19 210	79 11	0.303		
Zhao et al. (98)	2008	China	Asian	61 73 12 28 21 18	40 15	0.404		
Ozbek et al. (99)	2008	Turkey	Caucasian	197 238 104 76 17 116	97 25	0.603		
Jonsson et al. (40)	2008	Norway	Caucasian	117 177 58 49 10 80	75 22	0.501		
Chen et al. (100)	2009	China	Asian	501 461 178 231	92 153 235	73 0.272		
Ezzafer et al. (101)	2011	Tunisia	African	92 170 41 40 11 94	62 14	0.411		
Arzaghi et al. (49)	2011	Iran	Asian	90 94 52 34 4 54	38 2	0.11		
El-Hadidy et al. (57)	2013	Egypt	African	134 149 46 70 18 114	30 5	0.239		
Permoda-Osip et al. (102)	2014	Poland	Caucasian	112 164 51 50 11 66	82 16	0.657		
Wang et al. (103)	2015	China	Asian	531 447 287 206 38 215	199 33	0.16		
Rahimi et al. (104)	2016	Iran	Caucasian	150 148 69 67 14 81	62 5	0.093		

*P < 0.05.
TABLE 2 Overview of MTHFR A1298C genotype distribution of psychosis patients and controls, with information about country, ethnicity, and disease.

First author	Year	Country	Ethnicity	Case AA	Case AC	Case CC	Control AA	Control AC	Control CC	PHWE		
Schizophrenia												
Sazci et al. (31)	2003	Turkey	Caucasian	130	226	57	59	14	114	93	19	0.996
Yu et al. (33)	2004	China	Asian	230	251	130	78	22	154	81	16	0.235
		Scotland	Caucasian	426	628	177	209	40	292	272	64	0.955
Sazci et al. (34)	2005	Turkey	Caucasian	297	341	130	129	38	159	155	27	0.201
Vilella et al. (35)	2005	Spain	Caucasian	158	234	76	68	14	124	97	13	0.286
Lee et al. (38)	2006	South Korea	Asian	235	236	157	7	71	145	14	77	<0.001*
Kempisty et al. (105)	2007	Poland	Caucasian	200	300	109	74	17	185	105	10	0.29
Jonsson et al. (40)	2008	Denmark	Caucasian	418	1004	184	186	48	462	419	123	0.052
		Norway	Caucasian	163	177	89	60	14	82	79	16	0.625
		Sweden	Caucasian	258	293	110	113	35	122	129	42	0.406
Betcheva et al. (44)	2009	Bulgaria	Caucasian	181	183	91	72	18	80	79	24	0.406
Kang et al. (46)	2010	Korea	Asian	360	348	248	105	7	239	100	9	0.703
Zhang et al. (106)	2010	China	Asian	379	380	230	127	22	260	108	12	0.848
Kim et al. (50)	2011	Korea	Asian	201	350	129	67	5	240	105	5	0.083
Zhang et al. (53)	2012	China	Asian	235	102	126	91	18	62	33	7	0.376
Foroughmand et al. (60)	2015	Iran	Asian	200	200	65	108	27	60	89	51	0.126
Misiak et al. (61)	2016	Poland	Caucasian	135	146	55	64	13	55	72	19	0.64
Takano et al. (62)	2016	Japan	Asian	45	30	34	8	3	21	9	0	0.2
Oniki et al. (64)	2017	Japan	Asian	256	194	173	75	8	124	65	5	0.597
Ota et al. (67)	2019	Japan	Asian	537	1262	358	163	16	820	395	47	0.947
Wan et al. (68)	2019	China	Asian	97	92	66	29	2	69	22	1	0.603
Wan et al. (69)	2019	China	Asian	242	234	174	63	5	171	58	5	0.975
Major depression												
Reif et al. (71)	2005	Germany	Caucasian	46	184	16	21	9	75	96	13	0.016*
Zeman et al. (82)	2010	Czechia	Caucasian	42	41	22	17	3	20	18	3	0.495
Feng et al. (83)	2010	China	Asian	152	152	122	28	2	115	35	2	0.716
Evinova et al. (89)	2012	Slovak	Caucasian	134	143	49	65	20	70	61	12	0.801
Li et al. (93)	2017	China	Asian	218	582	86	75	57	396	144	42	<0.001*
Bipolar disorder												
Reif et al. (71)	2005	Germany	Caucasian	92	184	30	47	15	75	96	13	0.016*
Kempisty et al. (105)	2007	Poland	Caucasian	200	300	99	78	23	185	105	10	0.29
Jonsson et al. (40)	2008	Norway	Caucasian	115	177	47	56	12	82	79	16	0.624
Ozbek et al. (99)	2008	Turkey	Caucasian	197	238	91	84	22	113	101	24	0.848
Permoda-Osip et al. (102)	2014	Poland	Caucasian	111	156	51	50	10	60	74	22	0.915

*P < 0.05.

by excluding papers from the meta-analysis that were not in HWE. The funnel plots were displayed and evaluated using Egger's linear regression test to control publication bias (26). Stata 14.0 was used to conduct all statistical analyses (StataCorp, College Station, TX, United States). A P-value of less than 0.05 was regarded as statistically significant. The article mainly showed the forest plots of T vs. C of MTHFR C677T and C vs. A of MTHFR A1298C; the other results were shown in the tables.

Results

Characteristics of eligible studies

Out of screened articles, 843 unduplicated association studies were found. Figure 1 depicts a flow chart of the research process, the eliminated studies, and the reasons for their exclusion. Following an initial literature search and further screening, 81 (27–106) publications were retrieved.
Our meta-analysis comprised 49,775 subjects (20,981 patients and 28,794 controls) with MTHFR C677T genotyping and 16,058 subjects (6,690 patients and 9,368 controls) with MTHFR A1298C genotyping. Detailed information (first author, year of publication, country, ethnicity, case/control, genotype, and \(P_{HWE}\)) of included articles are summarized in Tables 1, 2.

Methylenetetrahydrofolate reductase C677T/A1298C and psychiatric disorders

Association between the methylenetetrahydrofolate reductase C677T/A1298C polymorphisms and schizophrenia

Findings of the association and the heterogeneity test is shown in Table 3. MTHFR C677T polymorphism was shown to be highly associated with an increased risk of developing SZ in all statistical models (for T vs. C, OR = 1.16, 95% CI = 1.10–1.23, \(P < 0.001\); for TT + CT vs. CC: OR = 1.18, 95% CI = 1.10–1.27, \(P < 0.001\); for TT vs. CT + CC: OR = 1.25, 95% CI = 1.13–1.37, \(P < 0.001\); for TT vs. CC: OR = 1.35, 95% CI = 1.19–1.52, \(P < 0.001\)) (Figure 2 and Table 3).

An ethnic subgroup analysis revealed a substantial association between MTHFR C677T polymorphism and SZ among Asian populations (for T vs. C: OR = 1.19, 95% CI = 1.11–1.29, \(P < 0.001\); for TT + CT vs. CC: OR = 1.22, 95% CI = 1.10–1.35, \(P < 0.001\); for TT vs. CT + CC: OR = 1.31, 95% CI = 1.16–1.48, \(P < 0.001\); for TT vs. CC: OR = 1.46, 95% CI = 1.24–1.72, \(P < 0.001\)); in Caucasian populations, a significant association was found with the allele model (for T vs. C: OR = 1.09, 95% CI = 1.01–1.17, \(P = 0.036\)) and the dominant model (for TT + CT vs. CC: OR = 1.12, 95% CI = 1.06–1.18, \(P = 0.002\)); in African populations, there was a significant association with the allele model (for T vs. C: OR = 2.58, 95% CI = 1.45–4.57, \(P < 0.001\)).

TABLE 3 Odds ratios and heterogeneity results for the 4 genetic models of the MTHFR C677T and A1298C for SZ.

MTHFR	Comparison model	OR (95% CI)	\(P_{OR}\)	Heterogeneity		
	\(Q\) within	\(P\)-value	\(I^2\) (%)			
MTHFRC677T	All studies					
T vs. C	1.16(1.10–1.23)	<0.001	116.30	<0.001	60.4	
TT + CT vs. CC	1.18(1.10–1.27)	<0.001	93.38	<0.001	50.7	
TT vs. CT + CC	1.25(1.13–1.37)	<0.001	80.44	0.001	42.8	
TT vs. CC	1.35(1.19–1.52)	<0.001	103.78	<0.001	55.7	
Asian	T vs. C	1.19(1.11–1.29)	<0.001	56.46	0.001	57.5
TT + CT vs. CC	1.22(1.10–1.35)	<0.001	48.36	0.002	50.4	
TT vs. CT + CC	1.31(1.16–1.48)	<0.001	41.63	0.014	42.3	
TT vs. CC	1.46(1.24–1.72)	<0.001	57.48	<0.001	58.2	
Caucasian	T vs. C	1.09(1.01–1.17)	0.036	35.29	0.013	46.2
TT + CT vs. CC	1.11(1.01–1.21)	0.034	28.48	0.075	33.3	
TT vs. CT + CC	1.12(0.97–1.29)	0.132	27.66	0.088	31.6	
TT vs. CC	1.16(0.98–1.37)	0.082	32.08	0.031	40.8	
African	T vs. C	2.58(1.45–4.57)	0.001	1.36	0.243	26.6
TT + CT vs. CC	2.37(1.00–5.64)	0.050	1.84	0.175	45.6	
TT vs. CT + CC	4.59(1.77–11.92)	0.002	0.10	0.756	0	
TT vs. CC	5.81(1.20–15.32)	<0.001	0.31	<0.001	0	
MTHFRA1298C	All studies					
C vs. A	1.04(0.96–1.13)	0.305	33.40	0.042	37.1	
CC + AC vs. AA	1.06(0.98–1.15)	0.165	23.60	0.313	11.0	
CC vs. AC + AA	1.05(0.88–1.25)	0.622	31.24	0.07	32.8	
CC vs. AA	1.08(0.89–1.29)	0.438	31.32	0.069	32.9	
Caucasian	C vs. A	1.05(0.95–1.17)	0.327	14.04	0.121	35.9
CC + AC vs. AA	1.07(0.95–1.20)	0.289	11.04	0.273	18.5	
CC vs. AC + AA	1.09(0.87–1.37)	0.434	13.54	0.14	33.5	
CC vs. AA	1.12(0.88–1.44)	0.357	14.85	0.095	39.4	
Asian	C vs. A	1.03(0.92–1.16)	0.602	18.98	0.061	42.0
CC + AC vs. AA	1.05(0.94–1.18)	0.418	12.42	0.333	11.5	
CC vs. AC + AA	1.00(0.74–1.34)	0.981	16.80	0.114	34.5	
CC vs. AA	1.02(0.77–1.37)	0.870	15.70	0.153	29.9	
95% CI = 1.45–4.57, \(P = 0.001 \)), the recessive model (TT vs. CT + CC: OR = 4.59, 95% CI = 1.77–11.92, \(P = 0.002 \)) and the homozygote model (for TT vs. CC: OR = 5.81, 95% CI = 1.20–15.32, \(P < 0.001 \)). All these findings are summarized in Table 3. Subgroup analysis reveals that the association between MTHFR C677T polymorphism and SZ exists in Asian (all genetic models) and African populations (allele models, recessive models, and homozygous models) but not in Caucasian (only allele models and dominant models).

The MTHFR A1298C polymorphism was not statistically correlated with SZ in all models (Figure 3 and Table 3).

Moreover, subgroup analysis revealed no correlation between the MTHFR A1298C polymorphism and SZ in Asian or Caucasian populations (Figure 3 and Table 3). African populations were not included in the study because of the small number of studies.

There were two articles not in Hardy–Weinberg equilibrium (37, 38) (Tables 1, 2). Sensitivity analysis revealed that the overall association between MTHFR C677T polymorphism and SZ remained unchanged after omitting these two samples from the meta-analysis (for T vs. C: OR = 1.17, 95% CI = 1.10–1.24, \(P < 0.001 \), Supplementary Figure 6; for TT + CT vs. CT + CC: OR = 1.21, 95% CI = 1.14–1.28, \(P < 0.001 \).)
FIGURE 3
Forest plots for the associations between MTHFR A1298C polymorphisms and SZ for the allele model with random effect model.

Subgroup analysis by ethnicity revealed a substantial correlation between the MTHFR C677T polymorphism and MD in Asian populations (for T vs. C: OR = 1.46, 95% CI = 1.21–1.77, \(P < 0.001 \); for TT + CT vs. CC: OR = 1.52, 95% CI = 1.11–2.08, \(P = 0.009 \); for TT vs. CT + CC: OR = 1.75, 95% CI = 1.34–2.28, \(P < 0.001 \); for TT vs. CC: OR = 1.89, 95% CI = 1.40–2.57, \(P < 0.001 \)), but not in Caucasian and African populations (Figure 4 and Table 4).

The MTHFR A1298C polymorphism was found to be highly associated with MD in the recessive model (for CC vs. AC + AA: OR = 2.63, 95% CI: 1.49–4.65, \(P = 0.001 \)) and the homozygote model (for CC vs. AA: OR = 2.14, 95% CI = 1.23–3.71, \(P = 0.007 \); for CC vs. AA: OR = 2.36, 95% CI = 1.31–4.26, \(P = 0.004 \)) (Figure 5 and Table 4). Nonetheless, there was no statistical correlation

CC: OR = 1.18, 95% CI = 1.10–1.28, \(P < 0.001 \); for TT vs. CT + CC: OR = 1.25, 95% CI = 1.14–1.38, \(P < 0.001 \); for TT vs. CC: OR = 1.35, 95% CI = 1.20–1.53, \(P < 0.001 \). Sensitivity analysis for the MTHFR A1298C polymorphism revealed that excluding Lee et al. (38) had no impact on the conclusion of the meta-analysis (Supplementary Figure 7).

Association between the methylenetetrahydrofolate reductase C677T/A1298C polymorphisms and major depression

Table 4 shows the main results as well as the heterogeneity test. MTHFR C677T polymorphism was shown to be highly associated with an increased risk of developing MD in all statistical models (for T vs. C: OR = 1.33, 95% CI = 1.15–1.55, \(P < 0.001 \); for TT + CT vs. CC: OR = 1.35, 95% CI = 1.08–1.70, \(P = 0.009 \); for TT vs. CT + CC: OR = 1.58, 95% CI = 1.28–1.95, \(P < 0.001 \); for TT vs. CC: OR = 1.66, 95% CI = 1.31–2.11, \(P < 0.001 \)) (Figure 4 and Table 4).
between A1298C polymorphism and MD in Asian populations (Figure 5 and Table 4). Subgroup analysis shows that the correlation between MTHFR C677T polymorphism and MD exists in the Asian population (all genetic models) but not in Caucasian and African populations.

Four articles were not found in Hardy–Weinberg equilibrium (71, 84, 85, 95) (Tables 1, 2). Sensitivity analysis revealed that the overall correlation between MTHFR C677T polymorphism and MD remained unchanged after eliminating these data from the meta-analysis (Supplementary Figure 8). Sensitivity analyses for MTHFR A1298C polymorphism revealed that excluding Reif A. et al. (71) and Li et al. (95) resulted in a decreasing statistical correlation with MD; nonetheless, all statistical models revealed that MTHFR A1298C polymorphism was not significantly correlated with MD (Supplementary Figure 9).

Association between the methylenetetrahydrofolatereductase C677T/A1298C polymorphisms and bipolar disorder

Table 5 displays the main results and the heterogeneity test. There was a marginal correlation between the MTHFR C677T polymorphism and BPD in the recessive model (for TT vs. CT + CC: OR = 1.31, 95% CI: 1.03–1.67, \(P = 0.028\)) and the homozygote model (for TT vs. CC: OR = 1.40, 95% CI = 1.00–1.94, \(P = 0.049\)) (Table 5). Moreover, subgroup analysis indicated no statistical correlation between the MTHFR C677T polymorphism and BPD in Asian, African, or Caucasian populations (Figure 6 and Table 5). Additionally, all models revealed that the MTHFR A1298C polymorphism was not statistically correlated with BPD (Figure 7 and Table 5).

Only one study was not in Hardy–Weinberg equilibrium (71) (Table 2), and there was no statistical association between

Table 4 Odds ratios and heterogeneity results for the 4 genetic models of the MTHFR C677T and A1298C for MD.

MTHFR	Comparison model	OR (95% CI)	\(P_{OR}\)	Heterogeneity	Q within	\(P\)-value	\(I^2\) (%)
MTHFR C677T	All studies	T vs. C	1.33(1.15–1.55)	<0.001	159.05	<0.001	81.1
		TT + CT vs. CC	1.35(1.08–1.70)	0.009	183.95	<0.001	83.7
		TT vs. CT + CC	1.58(1.24–1.95)	<0.001	75.2	<0.001	60.1
		TT vs. CC	1.66(1.31–2.11)	<0.001	80.47	<0.001	62.7
	Asian	T vs. C	1.46(1.21–1.77)	<0.001	107.45	<0.001	81.4
		TT + CT vs. CC	1.52(1.11–2.08)	0.009	135.03	<0.001	85.2
		TT vs. CT + CC	1.75(1.34–2.28)	<0.001	54.54	<0.001	63.3
		TT vs. CC	1.89(1.40–2.57)	<0.001	56.63	<0.001	64.7
	Caucasian	T vs. C	1.09(0.88–1.34)	0.445	17.97	0.012	61.0
		TT + CT vs. CC	1.08(0.81–1.44)	0.616	18.02	0.012	61.2
		TT vs. CT + CC	1.07(0.86–1.34)	0.527	7.11	0.417	1.6
		TT vs. CC	1.20(0.83–1.73)	0.337	11.59	0.115	39.6
	African	T vs. C	0.98(0.72–1.32)	0.879	1.07	0.301	6.5
		TT + CT vs. CC	0.91(0.52–1.59)	0.735	1.95	0.162	48.8
		TT vs. CT + CC	1.57(0.80–3.09)	0.189	0.07	0.788	0
		TT vs. CC	1.30(0.65–2.63)	0.460	0.18	0.669	0
MTHFR A1298C	All studies	C vs. A	1.44(0.84–2.48)	0.191	35.80	<0.001	88.8
		CC + AC vs. AA	1.42(0.77–2.61)	0.263	26.32	<0.001	84.8
		CC vs. AC + AA	2.63(1.49–4.65)	0.001	7.55	0.109	47
		CC vs. AA	2.83(1.39–5.77)	0.004	10.27	0.036	61
	Caucasian	C vs. A	1.40(1.01–1.82)	0.011	1.83	0.4	0
		CC + AC vs. AA	1.39(0.97–1.98)	0.073	1.74	0.418	0
		CC vs. AC + AA	2.14(1.23–3.71)	0.007	1.68	0.433	0
		CC vs. AA	2.36(1.31–4.36)	0.004	1.58	0.454	0
	Asian	C vs. A	1.61(0.42–6.17)	0.484	23.67	<0.001	95.8
		CC + AC vs. AA	1.61(0.39–6.68)	0.513	20.23	<0.001	95.1
		CC vs. AC + AA	2.93(0.76–11.29)	0.118	2.16	0.142	53.7
		CC vs. AA	3.13(0.53–18.66)	0.210	3.34	0.068	70
A1298C polymorphism and BPD after removing this study (Supplementary Figure 10).

Association between the methylenetetrahydrofolatereductase C677T/A1298C polymorphisms and psychiatric disorders

Significant publication biases were found when all diseases were considered (Supplementary Figure 5 and Supplementary Table 2). Therefore, analyses between MTHFR C677T and mental disorders were unsuitable here. However, the main results and the heterogeneity tests between MTHFR C677T and mental disorders were shown in Supplementary Table 1. Furthermore, the forest plots indicated that MTHFR C677T was strongly associated with psychiatric disorders, and sensitivity analysis did not affect the results (Supplementary Figures 1, 2).

Most studies were not in Hardy–Weinberg equilibrium when all diseases were considered. Moreover, analysis between MTHFR A1298C and psychiatric disorders was also unsuitable. Significant correlations were detected between the MTHFR A1298C polymorphism and psychiatric disorders (Supplementary Figure 3). However, sensitivity analysis revealed that excluding did change the conclusion (Supplementary Figure 4).

Publication bias

In order to evaluate publication bias, we used formal statistical methods (Egger’s regression test). Table 6 and Figure 8 presented the funnel plots for the meta-analysis. We observed that for SZ, no publication bias could be observed except in the dominant model (TT + CT vs. CC, $P_{\text{Egger}} = 0.01$). The Egger’s test results for MD were substantial in two genetic models of overall populations (allele model: C vs. A, $P_{\text{Egger}} = 0.03$; homozygote model: CC vs. AA, $P_{\text{Egger}} = 0.02$). And there was
FIGURE 5
Forest plots for the associations between MTHFR A1298C polymorphisms and MD for the allele model with random effect model.

TABLE 5
Odds ratios and heterogeneity results for the 4 genetic models of the MTHFR C677T and A1298C for BPD.

MTHFR	Comparison model	OR (95% CI)	P < OR	Heterogeneity			
			Q within	P-value	I^2 (%)		
MTHFR C677T	All studies	T vs. C	1.20 (0.98–1.46)	0.073	76.32	-0.001	81.7
		TT vs. CT + CC	1.51 (0.93–1.57)	0.028	22.71	0.065	38.4
		TT vs. CT + CC	1.40 (1.01–1.94)	0.049	36.79	0.001	61.9
Asian	T vs. C	1.17 (0.91–1.49)	0.216	6.03	0.42	0.4	
	TT vs. CT + CC	1.23 (0.99–1.54)	0.063	4.61	0.60	0	
	TT vs. CT + CC	1.40 (1.01–1.94)	0.049	36.79	0.001	61.9	
	TT vs. CT + CC	1.50 (0.87–1.98)	0.048	11.67	0.04	57.2	
African	T vs. C	1.19 (0.65–2.18)	0.566	15.96	0.007	68.7	
	TT vs. CT + CC	3.09 (0.79–12.18)	0.106	14.15	<0.001	92.9	
	TT vs. CT + CC	2.50 (0.87–7.19)	0.09	2.59	0.107	61.4	
	TT vs. CT + CC	3.90 (0.81–18.69)	0.089	5.29	0.021	81.1	
MTHFRA1298C	All studies(Caucasian)	C vs. A	1.19 (0.91–1.56)	0.208	13.67	0.008	70.7
	CC + AC vs. AA	1.19 (0.91–1.56)	0.200	7.54	0.110	0.110	
	CC vs. AC + AA	1.50 (0.81–2.77)	0.200	13.66	0.008	70.7	
	CC vs. AA	1.58 (0.79–3.16)	0.200	15.85	0.003	74.8	
FIGURE 6
Forest plots for the associations between MTHFR C677T polymorphisms and BPD for the allele model with random effect model.

FIGURE 7
Forest plots for the associations between MTHFR A1298C polymorphisms and BPD for the allele model with random effect model.

NOTE: Weights are from random effects analysis.
TABLE 6 Publication bias risk in this meta-analysis.

Disease	MTHFR	P_{Egger}	95% CL
Schizophrenia C677T	T vs. C	0.05	0.02-2.10
	TT + CT vs. CC	0.01	0.27-2.08
	TT vs. CT + CC	0.24	−0.34-1.32
	TT vs. CC	0.06	−0.05-1.86
A1298C	C vs. A	0.73	−1.60-2.25
	CC + AC vs. AA	0.66	−2.03-1.31
	CC vs. AC + AA	0.09	−0.17-2.39
	CC vs. AA	0.14	−0.35-2.32
Major depression C677T	T vs. C	0.18	−0.64-3.33
	TT + CT vs. CC	0.35	−1.09-3.00
	TT vs. CT + CC	0.40	−0.80-1.97
	TT vs. CC	0.09	−0.21-2.52
A1298C	C vs. A	0.03	−12.82-1.28
	CC + AC vs. AA	0.08	−13.00-1.10
	CC vs. AC + AA	0.05	−4.48-0.02
	CC vs. AA	0.02	−4.78-0.81
Bipolar disorder C677T	T vs. C	0.19	−1.45-6.66
	TT + CT vs. CC	0.21	−1.62-6.66
	TT vs. CT + CC	0.31	−0.95-2.81
	TT vs. CC	0.18	−0.82-4.02
A1298C	C vs. A	0.54	−30.72-19.79
	CC + AC vs. AA	0.54	−17.02-10.90
	CC vs. AC + AA	0.75	−24.98-31.11
	CC vs. AA	0.82	−26.75-31.41

no publication bias for BPD. Publication bias may correlate to the editor’s decision for publication. However, it is common that only the positive results are published, and negative findings are unavailable. So, we could not exclude this kind of possibility.

Discussion

A mental disorder is a neurological disease with complicated etiology, which may be closely related to genetic factors. A great number of research on the susceptibility to mental illnesses (including SZ, MD, and BPD) have been undertaken using MTHFR gene polymorphism. Some studies supported the susceptibility variation of MTHFR in mental diseases (27, 31, 70, 96, 105, 69), whereas other studies showed a negative correlation (28, 29, 33, 46, 102, 46). These variations might be due to the type of disease, ethnicity, or sample size. Our meta-analysis incorporates all previous research and provides more reliable evidence for the association between mental illness and MTHFR SNPs.

For Sz, our meta-analysis found a substantial association between MTHFR C677T polymorphism and higher incidence of SZ, which is consistent with research by Hu et al. (22) and Peerbooms et al. (23). In addition, we found that MTHFR A1298C polymorphism was not correlated with increased SZ risk, which is consistent with Peerbooms et al. (23). However, Hu et al. (22) discovered a marginal correlation between the MTHFR A1298C polymorphism and SZ. The inconsistency may be mainly owing to the limited sample size in the previous meta-analyses. For MTHFR C677T and A1298C, the sensitivity analysis has no substantial change to the results. As a result, the study’s findings are relatively consistent.

For MD, our meta-analysis’s results showed a significant correlation between MTHFR C677T polymorphism and increased risk of MD. The meta-analysis of Wu et al. (107) supports our view, whereas Gaysina et al. (108) and Peerbooms et al. (23) discovered no association between the C677T and MD. These discrepancies might be due to ethnicity, sample size, and other factors. Sensitivity analysis showed no change in the overall correlation between C677T polymorphism and MD. Also, we found a correlation between the A1298C polymorphism and MD (in recessive models and homozygous models). However, after excluding two studies not in Hardy–Weinberg equilibrium (38, 95), we discovered that A1298C polymorphism was not correlated with depression. We suspect that the reason for this is the insufficient number of studies included.

For BPD, meta-analysis reveals that MTHFR C677T polymorphism is weakly related to the occurrence of diseases (in recessive models and homozygous models). The meta-analysis of Hu et al. (22) found a marginal connection of C677T with an elevated risk of BPD (the recessive model), but some studies (21, 109, 110) found no associations. Different numbers of studies included may cause the inconsistency. Our meta-analysis included all current research, providing more reliable evidence for the association between MTHFR C677T polymorphism and BPD. As for A1298C, we only found studies in Caucasian people, and we did not find any association in these studies. The sensitivity analysis has no change to the results. Therefore, the results of this study are generally robust.

Many researchers have discovered that MTHFR is closely related to cognitive function, such as verbal fluency, visual–motor coordination, attention selectivity, and distribution (111–113). MTHFR polymorphism may also cause central nerve injury and microvascular injury, affect the synthesis of central neurotransmitters and the methylation of central neural system amines and phospholipids, and eventually lead to various mental diseases (114). All these impairments are not specific to one disease; therefore, we guess MTHFR may work on the common pathogenesis of these psychiatric disorders.

Some limitations of this meta-analysis should be considered when interpreting the findings. Firstly, we can only search for English and Chinese articles with some language limitations. Second, publication bias cannot be ignored in the current study.
since Egger test findings are substantial in several SZ and MD genetic models. It may correlate to the editor’s decision for publication and so on. However, it is common that only the positive results are published, and negative findings are unavailable. And we could not exclude this kind of possibility. Furthermore, the number of articles on A1298C polymorphism with MD are insufficient to provide conclusive evidence. More original research is required to validate our results. Despite some limitations, our current research also has some value. First of all, our meta-analysis includes a large sample size, which can reduce errors. Secondly, we fully considered and analyzed the impact of race on the disease.
Conclusion

Our meta-analysis findings demonstrate that MTHFR C677T polymorphism increases the risk of schizophrenia and severe depression in the general population, and a marginal correlation of MTHFR C677T with a higher risk of bipolar disorder has also been reported for the recessive model. More original research and a bigger sample size are required to validate our results. Nevertheless, the findings of our meta-analysis imply that MTHFR may play a significant role in the common pathogenesis of mental illness and that its variation may be involved in controlling the expression of genes associated with it. It would help in the early diagnosis and treatment of related mental disorders. Moreover, studies on risk factor analysis could be performed on psychiatric disorders to better prevent these mental health problems.

Data availability statement

The original contributions presented in this study are included in the article/Supplementary material, further inquiries can be directed to the corresponding author.

Author contributions

Y-XZ: conceptualization, software, data curation, and writing – original draft preparation. DH: conceptualization, methodology, and funding acquisition. L-PY: data curation and validation. CG: visualization and investigation. C-CC: software and validation. Z-YG: writing – reviewing and editing. H-MS: project administration and supervision. All authors contributed to the article and approved the submitted version.

Funding

This study was supported by the National Natural Science Foundation of China (Grant No. 81803857) and Autonomous Subject of Beijing University of Chinese Medicine (Grant No. 2018-JYBZZ-XJSJ002).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpsyt.2022.976428/full#supplementary-material

References

1. Barnett R. Depression. Lancet (London, England). (2019) 393:2113. doi: 10.1016/s0140-6736(19)31151-1
2. Adorjan K, Falkai P. Premature mortality, causes of death, and mental disorders. Lancet (London, England). (2019) 394:1784–6. doi: 10.1016/s0140-6736(19)32521-8
3. Phillips ML, Drevets WC, Rauch SL, Lane R. Neurobiology of emotion perception II: Implications for major psychiatric disorders. Biol Psychiatry. (2003) 54:515–28. doi: 10.1016/s0006-3223(03)00171-9
4. Malhi GS, Mann JJ. Depression. Lancet (London, England). (2018) 392:2299–312. doi: 10.1016/s0140-6736(18)31948-2
5. Owen MJ, Sawa A, Mortensen PB. Schizophrenia. Lancet (London, England). (2016) 388:88–97. doi: 10.1016/s0140-6736(15)01211-6
6. Dennison CA, Legge SE, Pardinas AF, Walters JTR. Genome-wide association studies in schizophrenia: Recent advances, challenges, and future perspective. Schizophr Res. (2019) 217:4–12. doi: 10.1016/j.schres.2019.10.048
7. Schwab SG, Wilderauer DB. Genetics of psychiatric disorders in the GWAS era: An update on schizophrenia. Eur Arch Psychiatry Clin Neurosci. (2013) 263(Suppl. 2):S147–54. doi: 10.1007/s00406-013-0450-z
8. Bagley PJ, Selhub J. A common mutation in the methylenetetrahydrofolate reductase gene is associated with an accumulation of formylated tetrahydrofolates in red blood cells. Proc Natl Acad Sci U S A. (1998) 95:13217–20. doi: 10.1073/pnas.95.22.13217
9. Födinger M, Hörl WH, Sunder-Plassmann G. Molecular biology of 5,10-methylenetetrahydrofolate reductase. J Nephrol. (2000) 13:20–33.
10. Wan L, Li Y, Zhang Z, Sun Z, He Y, Li R. Methylenetetrahydrofolate reductase and psychiatric diseases. Transl Psychiatry. (2018) 8:242. doi: 10.1038/s41398-018-0276-6
11. Frost P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, et al. A candidate genetic risk factor for vascular disease: A common mutation in methylenetetrahydrofolate reductase. Nat Genet. (1995) 10:111–3. doi: 10.1038/ng0595-111
Lewin SJ, Lawlor DA, Smith GD, Araya R, Timpson N, Day INM, et al. The thermolabile variant of MTHFR is associated with depression in the British Women's heart and health study and a meta-analysis. Mol Psychiatry. (2006) 11:352–60. doi: 10.1038/sj.mp.4001790

Lewin SJ, Zammit S, Gunnell D, Smith GD. A meta-analysis of the MTHFR C677T polymorphism and schizophrenia risk. Am J Med Genet Part B, Neuropsychiatric Genet Off Publ Int Soc Psychiatric Genet. (2005) 135B:2–4. doi: 10.1002/ajmg.b.30170

van der Put NM, Gabreëls F, Stevens EM, Smeets JA, Trijbels FJ, Eske T, et al. A second common mutation in the methylenetetrahydrofolate reductase gene: An additional risk factor for neural-tube defects? Am J Hum Genet. (1998) 62:1044–51. doi: 10.1093/hmg/62.3.1044

Liew SC, Gupta ED. Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism: Epidemiology, metabolism and the associated diseases. Eur J Med Genet. (2015) 58:1–10. doi: 10.1016/j.ejmg.2014.10.004

Goyette P, Pai A, Milos R, Frost P, Tran P, Chen Z, et al. Gene structure of human and mouse methylenetetrahydrofolate reductase (MTHFR). Mammm Genome Off J Mammm Genome Soc. (1998) 3:952–6. doi: 10.1002/ijmg.3030990088

Krebs MO, Bellon A, Mainguy G, Jay TM, Frieling H. One-carbon metabolism and schizophrenia: Current challenges and future directions. Trends Mol Med. (2009) 15:562–70. doi: 10.1016/j.molmed.2009.10.001

Droe DK, Allen LH. Effect of vitamin B12 deficiency on neurodevelopment in infants: Current knowledge and possible mechanisms. Nutr Rev. (2008) 66:250–5. doi: 10.1111/j.1753-4887.2008.00031.x

Harrison PJ, Weinberger DR. Schizophrenia genes, gene expression, and neuropathology: On the matter of their convergence. Mol Psychiatry. (2005) 10:40–88. image 5. doi: 10.1038/sj.mp.4001558

Sun D, Stuart WG, Jenkinson M, Wood SJ, McGorry PD, Velakoulis D, et al. Brain surface contraction mapped in first-episode schizophrenia: A longitudinal magnetic resonance imaging study. Mol Psychiatry. (2009) 14:976–86. doi: 10.1038/mp.2008.34

Cohen-Woods S, Craig I, Gaymisina D, Gray J, Gunsingh C, Craddock N, et al. The bipolar association case-control study (BACCS) and meta-analysis: No association with the 5,10-methylenetetrahydrofolate reductase gene and bipolar disorder. Am J Med Genet Part B, Neuropsychiatric Genet Off Publ Int Soc Psychiatric Genet. (2010) 153B:1298–304. doi: 10.1002/ajmg.b.31101

Hu CY, Qian ZZ, Gong FF, Lu SS, Feng F, Wu YL, et al. Methylenetetrahydrofolate reductase (MTHFR) polymorphism susceptibility to schizophrenia and bipolar disorder: An updated meta-analysis. J Neural Transmission (Vienna, Austria) 1996. (2015) 122:307–20. doi: 10.1007/s00702-014-1261-8

Peerbooms OL, van Os J, Drukker M, Kenis G, Hoogvedl L, MTHFR in Psychiatry Group, et al. Meta-analysis of MTHFR gene variants in schizophrenia, bipolar disorder and unipolar depressive disorder: Evidence for a common genetic vulnerability? Brain Behav Immun. (2011) 25:1530–43. doi: 10.1016/j.bbi.2010.12.006

Melsen WG, Boostma MC, Rovers MM, Bonten MJ. The effects of clinical and statistical heterogeneity on the predictive values of results from meta-analyses. Clin Microbiol Infect Off Eur Soc Clin Microbiol Infect Dis. (2014) 20:123–34. doi: 10.1111/cimip.12149

DerSimonian R, Laird N. Meta-analysis in clinical trials revisited. Contemporary Clin Trials. (2015) 45(PA1):A13–49. doi: 10.1016/j.cct.2015.09.002

Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical Test. BMJ (Clin Res Ed). (1997) 315:629–34. doi: 10.1136/bmj.315.7090.629

Arinami T, Yamada N, Yamakawa-Kobayashi K, Hamaguchi H, Toru M. Methylenetetrahydrofolate reductase variant and schizophrenia/depression. Am J Med Genet. (1997) 74:526–8. doi: 10.1002/(SICI)1096-909X(19971001)74:5<3.C;2.-doi

Kunugi H, Fukuoka R, Hattori M, Taro T, Tatsuno M, Sakai T, et al. C677T polymorphism in the methylenetetrahydrofolate reductase gene and psychoses. Mol Psychiatry. (1998) 3:435–7. doi: 10.1038/sj.mp.4000390

Virgos C, Martorell I, Simó M, Valero J, Figuera I, Loven J, et al. Plasma homocysteine and the methylenetetrahydrofolate reductase C677T gene variant: Lack of association with schizophrenia. Neuropsychopharmacol. (1999) 10:2035–8. doi: 10.1016/S0893-133X(99)00080-X

Joober R, Benkelfat C, Lal S, Bloom D, Labelle A, Lalonde P, et al. Association of the C677T methylenetetrahydrofolate reductase (MTHFR) gene with bipolar disorder. Neuropsychopharmacol. (2000) 22:123–9. doi: 10.1016/S0893-133X(99)00031.x

Lee YS, Han DH, Jeon CM, Lyoo IK, Na C, Chae SL, et al. Serum homocysteine, folate level and methylenetetrahydrofolate reductase 677C>T polymorphism in Korean schizophrenic patients. Neuropsychopharmacol. (2000) 105:17573–8. doi: 10.1073/pnas.0803727105

Yang D-Y, Lu X-B, Li Y-H, Tong Z-S, Fu Y, Yang M-X, et al. The association of methylenetetrahydrofolate reductase gene polymorphism, plasma homocysteine level and first-episode schizophrenia [in Chinese]. Clin Behavioral Med Sci. (2007) 16:909–12. doi: 10.1016/j.cbms.2007.01.013

Jonsson EG, Larsson K, Yares M, Hansen T, Wang AG, Dyrasovic S, et al. Two methylenetetrahydrofolate reductase gene polymorphisms, schizophrenia and bipolar disorder: An association study. Am J Med Genet Part B, Neuropsychiatric Genet Off Publ Int Soc Psychiatric Genet. (2008) 148B:79–82. doi: 10.1002/ajmg.b.30671

Muntjewerff J-W. Meta-analysis of plasma homocysteine and methylenetetrahydrofolate reductase (MTHFR) polymorphisms in schizophrenia. Biol Psychiatry. (2008) 63:1345–S

Roelfs JL, Gelfh RL, Calhoun WD, Wassink TH, Weiss AP, Ho BC, et al. MTHFR 677C>T genotype disrupts prefrontal function in schizophrenia through an interaction with Comt 158Val→Met. Proc Natl Acad Sci U S A. (2008) 105:17573–8. doi: 10.1073/pnas.0803727105

Feng LG, Song ZW, Xin F, Hu J. Association of plasma homocysteine and methylenetetrahydrofolate reductase C677T polymorphism with schizophrenia [in Chinese]. Chin J Med Sci. (2004) 9:1063–5. doi: 10.1016/j.pnpbp.200412000-00012

Garcia-Mis MR, Perez-Mutul J, Lopez-Canela B, Solis-Rodriguez F, Puga-Machado L, Onte-Cabrera A, et al. Folate, homocysteine, interleukin-6, and tumor necrosis factor alfa levels, but not the methylenetetrahydrofolate reductase C677T polymorphism, are risk factors for schizophrenia. J Psychiatr Res. (2010) 44:441–6. doi: 10.1016/j.jpsychires.2009.11.011

Kang HI, Choi BM, Kim SH, Son SR, Lee KM, Kim BG, et al. No association between functional polymorphisms in COMT and MTHFR and schizophrenia risk in Korean population. Epidemiol Health. (2010) 32:e2010011. doi: 10.4178/epih/e2010011

Ye X, Zhang X, Wang H. Study of association of MTHFR C677T polymorphism and schizophrenia [in Chinese]. Heilongjiang Med J. (2010) 34:641–5.

Bouaziz N, Ayed I, Sidhoom O, Kallel A, Rafraf R, Jomaa R, et al. Plasma homocysteine in schizophrenia: Determinants and clinical correlations in tunisian patients free from antipsychotics. Psychiatr Res. (2010) 179:24–9. doi: 10.1016/j.psychres.2010.04.008

Arzaghi SM, Hossein-Nezhad A, Shariat SV, Ghodsipour A, Shams J, Larijani B. C677T methylenetetrahydrofolate reductase (MTHFR) gene polymorphism in schizophrenia and bipolar disorder: An association study in Iranian population. Iran J Psychiatry. (2011) 6:1–6.
50. Kim SG, Song JY, Joo EI, Jeong SH, Kim SH, Lee KY, et al. No Association of functional polymorphisms in methylenetetrahydrofolate reductase and the risk of and minor physical anomalies of schizophrenia in Korean population. J Korean Med Sci. (2011) 26:1356–63. doi: 10.3346/jkms.2011.26.10.1356

51. Muntjewerff JW, Ophoff RA, Buizer-Voskamp JE, Strengman E, den Heijer M, Consortium G. Effects of season of birth and a common MTHFR gene variant on the risk of schizophrenia. Eur Neuropsychopharmacol. (2011) 21:310–5. doi: 10.1016/j.eunet.2010.01.001

52. Tsutsumi A, Glatt SJ, Kanazawa T, Kawaihase S, Uemushi H, Hokyro A, et al. The genetic validation of heterogeneity in schizophrenia. Behav Brain Funct BBF. (2011) 7:43. doi: 10.1186/1744-9081-7-43

53. Zhang X, Liu T, Yang Y, Deng X, Yan X, Yang K, et al. Association analysis of methylenetetrahydrofolate reductase (MTHFR) gene polymorphism and treatment-resistant schizophrenia in [Chinese]. J Clin Psychiatry. (2012) 22:293–7.

54. Lochman I, Plesnik I, Janout V, Povova J, Milsek I, Dvorakova D, et al. Interactive effect of MTHFR and Adra2a gene polymorphisms on pathogenesis of schizophrenia. Neuro Endocrinol Lett. (2013) 34:792–7.

55. Zhang, Y, Yan H, Tian L, Wang F, Lu T, Wang L, et al. Association of MTHFR C677t polymorphism with schizophrenia and its effect on episodic memory and gray matter density in patients. Behav Brain Res. (2013) 243:146–52. doi: 10.1016/j.bbr.2012.12.061

56. Kontis D, Theochari E, Fyrrisira H, Klessa S, Sofocleous C, Andreopoulou A, et al. Comt and MTHFR polymorphisms interaction on cognition in schizophrenia: An exploratory study. Neurosci Lett. (2013) 537:17–22. doi: 10.1016/j.neulet.2013.01.012

57. El-Haddad MA, Abdeen HM, Abd El-Aziz SM, Al-Harass M. MTHFR gene polymorphism and age of onset of schizophrenia and bipolar disorder. BioMed Res Int. (2014) 2014:318483. doi: 10.1155/2014/318483

58. Hei G, Pang I, Chen X, Zhang W, Zhu Q, Lu L, et al. [Association of serum folate acid and homocysteine levels and 5, 10-methylenetetrahydrofolate reductase gene polymorphism with schizophrenia]. Zhongguo keyi yu chaoti. (2014) 94:2897–901

59. Nishi A, Numa S, Tajima A, Kinoshita M, Kikuchi K, Shimodera S, et al. Meta-analyses of blood homocysteine levels for gender and genetic association studies of the MTHFR C677t polymorphism in schizophrenia. Schizophrenia Bull. (2014) 40:1154–63. doi: 10.1093/schbul/sbt154

60. Foroughmard AM, Gahlethari H, Poorasvin A, Ajam T, Kazemi-Nezhad SR. Additive effect of MTHFR and GRIN1 genetic polymorphisms on the risk of schizophrenia. Med Biol Res Commun. (2015) 4(3):43–42.

61. Missiak B, Lacmanni L, Sokka NK, Srmida E, Piotrowski P, Loska O, et al. Metabolic dysregulation in first-episode schizophrenia patients with respect to genetic variation in one-carbon metabolism. Psychiatry Res. (2018) 238:60–7. doi: 10.1016/j.pscychresns.2016.01.077

62. Takano Y, Otsuki Y, Sekine M, Fuji Y, Watanabe T, Okayasu H, et al. Multi-ethnic analysis of methylenetetrahydrofolate reductase (MTHFR) gene polymorphism and depression in Japanese. Prog Neuropsychopharmacol Biol Psychiatry. (2013) 12:43–50. doi: 10.1016/j.pnpbp.2013.03.003

63. Wang W, Fan W, Shi B, Tong C, Wang X, Cai J, et al. Effect of MTHFR gene on the schizophrenia and its cognitive function [in Chinese]. Chin J Med Genet. (2013) 34:905–8.

64. Onuki K, Iishioka M, Osaki N, Sakamoto Y, Yoshimori Y, Tomita T, et al. Association between oxidative stress-related genes polymorphisms and metabolic abnormalities among schizophrenia patients. Clin Neuropsychopharmacol Ther. (2015) 8:25–37. doi: 10.5234/cnpt.8.25

65. Debost JC, Debost M, Grove J, Mors O, Hougaard DM, Borglum AD, et al. Comparative analysis of methylenetetrahydrofolate reductase C677T with schizophrenia in hospitalized patients in two populations. J Neuropsychiatry Clin Neurosci. (2008) 20:567–69. doi: 10.1177/0269881108320042

66. Zhao G-Q. Association of polymorphism of homocysteine and MTHFR gene C677T with severity of depression in the Chinese Population. Neuropsychiatric Disease Treatment. (2014) 10:251–9. doi: 10.2147/NDT.S55502

67. Hei G, Pang I, Chen X, Zhang W, Zhu Q, Lu L, et al. [Association of serum folate acid and homocysteine levels and 5, 10-methylenetetrahydrofolate reductase gene polymorphism with schizophrenia]. Zhongguo keyi yu chaoti. (2014) 94:2897–901

68. Feng L-G, Shao C, Liu Y, Tao Y, Hao X. The detection of gene polymorphisms of MTHFR C677t polymorphism with post-stroke depression [in Chinese]. Guangzhou Med J (2009) 30:264–7. doi: 10.1007/s10040-009-0053-7

69. Song Z-W. Association of Methylenetetrahydrofolate reductase gene polymorphism with depression and mild Alzheimer's disease [in Chinese]. Chin J Geriatr. (2007) 20:67–70.

70. Lizer MB, Bogdan RL, Kidd RS. Comparison of the frequency of the methylenetetrahydrofolate reductase C677T polymorphism in depressed versus nondepressed patients. J Psychiatr Pract. (2011) 17:404–9. doi: 10.1097/01.inp.0000407963.26981.a6

71. Zhao H-F, Quo J, Zhu X-H. The association study of MTHFR gene polymorphism with depression [in Chinese]. J Psychiatric Pract. (2011) 17:404–9. doi: 10.1097/01.inp.0000407963.26981.a6

72. Chojnacki I, Sobczyk-Kopciol A, Fudalæ J, Fudalæ S, Wojnar M, Waskawicz A, et al. No association between MTHFR C677T polymorphism and completed suicide. Gene. (2012) 511:118–21. doi: 10.1016/j.gene.2012.09.019

73. Evtimova A, Babušková E, Straka S, Ondrejka I, Lehotsky J. Analysis of genetic polymorphisms of brain-derived neurotrophic factor and
methylene tetrahydrofolate reductase in depressed patients in a slovak (Caucasian) population. *Gen Physiol Biophys.* (2012) 31:415–22. doi: 10.4109/gpb.2012.049

90. Qiao J, Zhao H-F, Zhu X-H, Geng D-Q. The study of MTHFR Gene Polymorphism in Depression [in Chinese]. *J Clin Psychiatry.* (2012) 22:92–4.

91. Shen X, Wu Y, Guan T, Wang X, Qian M, Lin M, et al. Association analysis of COMT/MTHFR polymorphisms and major depressive disorder in Chinese Han population. *J Affect Disord.* (2014) 161:73–8. doi: 10.1016/j.jad.2014.03.008

92. Sayadi MA, Achour O, Ezzahei A, Hellara I, Omezine A, Douski W, et al. Ct Genotype of 5,10-methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism is protector factor of major depressive disorder in the Tunisian Population: A case control study. *Ann Gen Psychiatry.* (2016) 15:18. doi: 10.1186/s12991-016-0103-5

93. Mei F, Wu Y, Ding G. Association analysis of the MTHFR polymorphism and post-stroke depression in the elderly [in Chinese]. *Geriatrics Health Care.* (2016) 22:363–59.

94. Huang Z-H, Zhou H-Y, Yu W-C, Cheng X-Y, Chen F. The correlation between MTHFR gene, Erygene Polymorphism and Postpartum Depression Susceptibility [in Chinese]. *J Med Theory Pract.* (2017) 30:1108–9+22.

95. Li Y, Yue H, Li H. Effect of folic acid intake during pregnancy and MTHFR polymorphism on postpartum depression [in Chinese]. *Chin J Woman Child Health Res.* (2017) 28:632–5. doi: 10.1038/cjc.2011.136

96. Mei F, Wu Y, Ding G, Pan F, Chen L, Wu J. Association of methylenetetrahydrofolate reductase Gene 677c-T polymorphism with post-stroke depression risk and antidepressant treatment response in Han Chinese. *JPMJ J Pakistan Med Assoc.* (2018) 68:888–92.

97. Saraswathy KN, Ansari SN, Kaur G, Joshi PC, Chandel S. Association of vitamin B12 mediated hyperhomocysteinemia with depression and anxiety disorder: A cross-sectional study among bhill indigenous population of India. *ClinNutr ESPEN.* (2019) 30:199–203. doi: 10.1016/j.clnesp.2019.01.009

98. Zhao G-Q, Jiao Z-A, Wang S-M, Liu X-Z, Shi H. An association analysis of methylenetetrahydrofolate dehydrogenase polymorphism, plasma homocysteine levels and bipolar affective disorder [in Chinese]. *J Psychiatry.* (2008) 21:130–2.

99. Ozbek Z, Kucukcali CL, Ozkok E, Orhan N, Aydin M, Kilic G, et al. Effect of the methylenetetrahydrofolate reductase gene polymorphisms on homocysteine, folate and vitamin B12 in patients with bipolar disorder and relatives. *Progr Neuro-Psychopharmacol Biol Psychiatry.* (2008) 32:1311–7. doi: 10.1016/j.pnpbp.2008.04.016

100. Chen Z, Liu Y, Zhang D, Liu Z, Wang P, Zhou D, et al. C677T methylenetetrahydrofolate reductase gene polymorphisms in bipolar disorder: An association study in the Chinese population and a meta-analysis of genetic association studies. *Neurosci Lett.* (2009) 449:48–51. doi: 10.1016/j.neulet.2008.10.077

101. Ezzahei A, Mohamede DH, Mechri A, Omezzine A, Nefiati F, Douski W, et al. Hyperhomocysteinemia in Tunisian Bipolar I patients. *Psychiatry Clin Neurosci.* (2011) 65:684–71. doi: 10.1111/j.1440-1819.2011.02284.x

102. Permoda-Osig A, Dmitrak-Weglarz M, Hauser J, Rybakowski JK. Are genes connected with homocysteine metabolism associated with bipolar disorder? *Neuropsychobiology.* (2014) 69:107–11. doi: 10.1159/000358091

103. Wang LJ, Lee SY, Chen SL, Chang YH, Chen PS, Huang SY, et al. A potential interaction between COMT and MTHFR genetic variants in Han Chinese patients with Bipolar II disorder. *Sci Rep.* (2015) 5:8813. doi: 10.1038/srep08813

104. Rahimi Z, Kakabaratee K, Garavand A, Rahimi Z. The T allele of MTHFR C.C677T and Its synergism with G (Val 158) allele of COMT C.G472a polymorphism are associated with the risk of Bipolar I disorder. *Genet Test Mol Biomarkers.* (2016) 20:510–5. doi: 10.1089/gtnb.2016.0061

105. Kempiuty B, Bober A, Luczak M, Czerski P, Szczepankiewicz A, Hauser J, et al. Distribution of 1298a-C polymorphism of methylenetetrahydrofolate reductase gene in patients with bipolar disorder and schizophrenia. *Eur Psychiatry* *J Assoc Eur Psychiatrists.* (2007) 22:39–43. doi: 10.1016/j.eurpsy.2006.11.003

106. Zhang C, Xie B, Du Y, Cheng W, Yang Y, Yu S. Further evidence that methylenetetrahydrofolate reductase A1298C polymorphism is a risk factor for schizophrenia. *J Neural Transm (Vienna).* (2010) 117:1115–7. doi: 10.1007/s00702-010-0442-3

107. Wu YL, Ding XX, Sun YH, Yang HY, Chen J, Zhao X, et al. Association between MTHFR C677T polymorphism and depression: An updated meta-analysis of 26 Studies. *Progr Neuro-Psychopharmacol Biol Psychiatry.* (2013) 46:78–85. doi: 10.1016/j.pnpbp.2013.06.015

108. Gaysina D, Cohen S, Craddock N, Farmer A, Hoda F, Korszun A, et al. No Association with the 5,10-methylenetetrahydrofolate reductase gene and major depressive disorder: Results of the Depression Case Control (DECC) study and a meta-analysis. *Am J Med Genet Part B Neuropsychiatric Genet Off Publ Int Soc Psychiatr Genet.* (2008) 147B:699–706. doi: 10.1002/ajmg.b.30665

109. Rai V. Evaluation of methylenetetrahydrofolate reductase gene variant (C677T) as risk factor for bipolar disorder. *Cell Mol Biol (Noisy-le-Grand, France).* (2011) 57:OL1558–66.

110. Zintzaras E. C677T and A1298C methylenetetrahydrofolate reductase gene polymorphisms in schizophrenia, bipolar disorder and depression: A meta-analysis of genetic association studies. *Psychiatric Genet.* (2006) 16:105–15. doi: 10.1097/01.ypg.0000194444.77291.e2

111. Roffman JL, Weiss AP, Deckerbach T, Freundrich O, Henderson DC, Purcell S, et al. Effects of the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism on executive function in schizophrenia. *Schizophr Res.* (2007) 92:181–8. doi: 10.1016/j.schres.2007.01.003

112. Wang X, Wang Z, Wu Y, Yuan Y, Hou Z, Hou G. Association analysis of the Catechol-O-Methyltransferase/methylenetetrahydrofolate reductase genes and cognition in late-onset depression. *Psychiatry Clin Neurosci.* (2014) 68:344–52. doi: 10.1111/j.1212-8275.2014.01133

113. Zhilyaeva TV, Sergeyeva AV, Kasimova LN, Blagonravova AS. Cognitive function dynamics during folate augmented therapy in patients with schizophrenia carrying MTHFR C677T gene polymorphism: A pilot study. *Sovremennye Tekhnologii Med.* (2015) 7:147–53. doi: 10.17691/stm.2015.7.4.20

114. Liu WW, Dong XZ, Liu P. Mftrf 677c/T polymorphism-new ideas about depressive disorder treatment. *Chin Pharmacol Bull.* (2015) 31:915–9. doi: 10.3969/j.issn.1001-1978.2015.07.006