Lack of Liver X Receptors Leads to Cell Proliferation in a Model of Mouse Dorsal Prostate Epithelial Cell

Julie Dufour1,2,3,4, Aurélien Pommier1,2,3,4, Georges Alves1,2,3,4, Hugues De Boussac1,2,3,4, Corinne Lours-Calet1,2,3,4, David H. Volle1,2,3,4, Jean-Marc A. Lobaccaro1,2,3,4, Silvère Baron1,2,3,4*

1 Clermont Université, Université Blaise Pascal, Génétique Reproduction et Développement (GReD), Clermont-Ferrand, France, 2 CNRS, UMR 6293, GReD, Aubiere, France, 3 INSERM, UMR 1103, GReD, Aubiere, France, 4 Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France

Abstract

Recent studies underline the implication of Liver X Receptors (LXRs) in several prostate diseases such as benign prostatic hyperplasia (BPH) and prostate cancer. In order to understand the molecular mechanisms involved, we derived epithelial cells from dorsal prostate (MPECs) of wild type (WT) or Lxra/−/− mice. In the WT MPECs, our results show that LXR activation reduces proliferation and correlates with the modification of the AKT-survival pathway. Moreover, LXRs regulate lipid homeostasis with the regulation of Abca1, Abcg1 and Idol, and, in a lesser extent, Srebp1, Fas and Acc. Conversely cells derived from Lxra/−/− mice show a higher basal phosphorylation and consequently activation of the survival/proliferation transduction pathways AKT and MAPK. Altogether, our data point out that the cell model we developed allows deciphering the molecular mechanisms inducing the cell cycle arrest. Besides, we show that activated LXRs regulate AKT and MAPK transduction pathways and demonstrate that LXRs could be good pharmacological targets in prostate disease such as cancer.

Introduction

Patient cohorts and human cancer cell lines give suitable biological samples to identify genetic defects correlated with disease but are still limited to investigate the molecular mechanisms involved. In vivo mouse models of prostate cancer represent a powerful tool to complement these human studies. A second advantage is that mice provide the possibility to derive long-term cell culture system genetically engineered. Hence, we have developed a useful cell culture system of prostatic epithelial cells (MPECs) from wild-type (WT) and transgenic mice with genetic ablation of both isoforms of the Liver X Receptor (Lxr). LXRα (NR1H3) and β (NR1H2) belong to the nuclear receptor superfamily and act as ligand-inducible transcription factors when heterodimerized with the Retinoid X Receptor (Rxr, NR2B1 to B3). LXRα are involved in numerous physiological regulations such as cholesterol, fatty acids and glucose homeostasis, steroidogenesis and immunity [1,2]. Various studies have highlighted the therapeutic potential of LXR agonists in the treatment of prostate diseases such as benign prostatic hyperplasia (BPH) [3,4] and prostate cancer [5,6]. Indeed, LXR agonists like T0901317 slow down proliferation of various prostate cancer cell lines and decrease growth of prostate cancer cells in xenografted nude mice [7–9]. This lower proliferation of human prostate cancer cell line LNCaP is characterized by a reduced amount of cells in S phase correlated with an accumulation of SKP2, a kinase involved in the degradation of cell cycle inhibitors. This cell cycle regulation was proposed to be connected with cholesterol homeostasis through LXR-regulated expression of the cholesterol transporter ABCA1 that supports cholesterol efflux [10]. Additionally, LXR activation by the synthetic ligand T0901317 results in a decrease of cell survival. The lowering of cellular cholesterol induced by the cholesterol transporter ABCG1 accumulation leads to a reduction in lipid raft size inactivating the AKT pathway and consequently limiting cell survival ability [9]. These previous studies demonstrated a putative combined anti-proliferative and pro-apoptotic effect of LXR activation in prostate cancer cell lines, suggesting a protective role of these nuclear receptors in this cancer via their effects on the cell cycle and apoptosis balance [11].

Even if prostate is anatomically different between human and mouse since the rodent prostate is divided into distinct lobes whereas three zones are found in human [12], transcriptional analyses linked the mouse dorsolateral lobe to the human peripheral zone which develops cancer [13]. Here, we present an original prostate epithelial cell model derived from the dorsal lobe of WT or Lxra/−/− mice. This new cell models allowed deciphering the role of LXRs on cell cycle regulation.
Materials and Methods

Mouse Prostate Epithelial Cells (MPECs) Establishment

Lxrα and Lxrβ double knockout mice (Lxrβ−/−) and their wild-type controls were maintained on a mixed strain background (C57BL/6:129Sv) and housed in a temperature-controlled room with 12-h light, 12-h dark cycles. They were fed ad libitum with water and Global-diet 2016S (Harlan, Gannat, France). This study was carried out in strict accordance with the recommendations of French national standards and policies (D 63 104 19). Mice were killed by cervical dislocation and prostates harvested during necropsy in order to use in cell culture systems. The protocol was approved by local ethic committee - Permit Number: CE21-11 / CE75-12 (CEMEEA - Comité d’Ethique en Matière d’Expérimentation Animale Auvergne, https://www1.clermont.inra.fr/cemeaa/). The culture procedure was derived from that one used to develop the mouse vas deferens epithelial cells [14]. Briefly, mouse prostate epithelial cells (MPECs) were harvested from the dorsal prostate lobes from 20 to 30 day old mice, wild type (WT) or lacking both LXRs (Lxrβ−/−), and transferred onto cell culture inserts (BD Falcon TM, Fontenay-sous-Bois, France) coated with a thin layer of extracellular matrix gel (Sigma Aldrich, L’isle d’Abeau, France). Cells were cultured in complete medium [Dulbecco’s modified Eagle’s medium (DMEM) /F12 (50:50; Invitrogen, Oslo, Norway) supplemented with 0.5% fetal bovine serum (FBS) (Biowest, Nuaillé, France), cholera toxin (10 ng/ml), epidermal growth factor (5 ng/ml), penicillin and streptomycin (100 μg/ml), insulin (5 μg/ml), transferrin (10 μg/ml), L-glutamine (2 mM), HEPES (20 mM), ethanolamine (0.6 μg/ml), cAMP (25 μg/ml), selenium (17.3 μg/ml) and hydrocortisone (10 nM)]

Figure 1. Establishment of WT and Lxrβ−/− MPECs from dorsal prostate. (A) Schematic mouse prostate lobe representation (left panel). Dissected prostate sample pictures during necropsy (middle panel) and explant migration/primer epithelial cell culture (right panel). (B) Schematic representation of Lxrα and Lxrβ wild type and recombined genomic loci. Primer aF3, aR3, NeoR2 and bF3, bR3, IMR04 respectively used to genotype Lxrα and Lxrβ are depicted (previously described [24], D.J. Mangelsdorf personal communication). PCR analysis of WT and Lxrβ−/− MPEC genomic DNA Lane 1: WT mouse embryonic fibroblasts (MEF); lane 2, WT MPECs; lane 3, Lxrβ−/− MPECs. (C) qPCR analysis of Lxrα (nr1h3) and Lxrβ (nr1h2) accumulation in MPECs and MEFs, (N.D. not detectable). *p<0.05, **p<0.01, ***p<0.001 in Student’s t test. Error bars represent mean ± SEM. (qPCR analysis results from 4 independant experiments and was normalized using 36b4 gene). doi:10.1371/journal.pone.0058876.g001
at 37°C in a humidified air 5% CO₂ incubator. The extracellular matrix gel was set by incubation at 37°C for 30 min. All the chemicals were from Sigma Aldrich unless indicated. Growth medium was changed every 2 days. Upon confluence, cells were re-plated in the same conditions at split ratio 1:2 until they survived senescence, typically after six passages. After this point, cells were transferred onto 100 mm culture dishes every 3-4 days at a 1:5 to 1:10 split ratio.

Genotyping

Lxr and Lxr β loci with the neo cassette as well as the location of the primers are indicated on Fig. 1B. Primers used (kind gift from D.J. Mangeldorf, Dallas, TX) are for Lxr forward primer 5F3:5'-ATGGAGAATGCCTAGCTAGG-3’ and two reverse primers, 9R3:5'-TCTCAGTCCTTACCTCCGG-3’ and NeoR2:5'-AAAGAATGCCTTAGCC-3’; for Lxr β two forward primers βF3:5'-CCTTTTCTCCTGGACACC-3’ and IMRO4:5'-AGGTGAGATGACAGGAGATC-3’ and a reverse primer βR3:5'-GCATCCATCTGGCAGGTTC-3’. An example of PCR genotyping is shown in Fig. 1C. Presence of Lxr and Lxr β wild-type loci is characterized by a fragment of 579 and 393 bp, respectively; recombined Lxr and Lxr β loci show a fragment of 1500 and 650 bp, respectively.

Reagents

22R)-hydroxycholesterol and GW3965 were purchased from Sigma-Aldrich and T090137 from Cayman Chemical (Montigny-le-Bretonneux, France). All ligands used in cell culture were diluted in DMEM. PD98059 (Eppendorf, LePecq, France) using MESA GREEN quantitative PCR masterMix Plus for SYBR (Eurogentec, Angers, France). E-cadherin, mTOR, Srebp1, and Idols were purchased from Enzo Life Sciences (Villeurbanne, France).

Cell Culture and Treatment

Mouse embryonic fibroblasts (MEFs) were cultured in DMEM supplemented with L-glutamine (2 mM) and penicillin streptomycin (100 μg/ml). MPECs were trypsinized and seeded at 3×10⁵ cells in 10 mm culture dishes. After 16h cells were starved for 24h in a minimal medium DMEM-F12 (50:50, Invitrogen) supplemented with L-glutamine (2 mM) and penicillin streptomycin (100 μg/ml) and then with the same medium containing DMEM, T090137, GW3965 or 22R)-hydroxycholesterol for 48h. Cells were harvested and protein or RNA extraction, or flow cytometry analyses were performed.

MTT Assay

MTT assay was performed according to manufacturer instructions (Sigma-Aldrich). Briefly, cells were washed in PBS. MTT reagent (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide, M 2128, Sigma Aldrich) was added and incubated at 37°C for 3 hrs. After MTT reagent removal, MTT solvent (10 % Triton 100X and 0.1 N HCl in anhydrous isopropanol) was added. Absorbance was determined in a Microwell plate reader (Model 680, Biorad, Marnes-La-Coquette, France).

Flow Cytometry Analysis

Cells were recovered and washed in PBS. Pellets were resuspended in RNase A (500 μg/ml), propidium iodide (50 μg/ml) solution and kept 1 h at 4°C in the dark. Cell suspensions were analyzed using a Beckman Coulter fluorescence-activated cell sorter. At least 15,000 events were measured for each sample.

Quantitative PCR

mRNA were extracted using the NucleoSpin RNAI kit (Machery Nagel EURL, Hoerde, France). cDNA was synthesized with 200U of Moloney murine leukemia virus-reverse transcriptase (Promega), 5 pmol of random primers (Promega), 40 U RNAsin (Promega) and 2.5 mM deoxynucleotide triphosphate. Quantitative PCR was performed on a Mastercycler ep Realplex (Eppendorf, LePecq, France) using MESA GREEN quantitative PCR mix. Genotyping was performed on a Mastercycler ep Realplex (Eppendorf, LePecq, France) using MESA GREEN quantitative PCR mix. Genotyping was performed on a Mastercycler ep Realplex (Eppendorf, LePecq, France) using MESA GREEN quantitative PCR mix.

Western Blot Protein Analysis

Proteins were extracted in Heps 20 mM, NaCl 0.42 M, MgCl₂ 1.5 mM, EDTA 0.2 mM and NP40 1% supplemented with PMSF 1 mM (Sigma-Aldrich), Complete 1X (Roche Diagnostics, Meylan, France), NaF 0.1 mM, Na₃VO₄ 0.1mM and 0.5 mM DTT (Sigma-Aldrich). Lysates were centrifuged at 4°C u C for 30 min. All the proteins were subjected to denaturing SDS-PAGE and transferred to nitrocellulose Hybond-ECL membrane (GE Healthcare Life Sciences, Velzly-Villacoulany, France). Membranes were incubated overnight at 4°C with primary polyclonal antibodies raised against either human ABCA1 (NB400-105, Santa-Cruz), p42/44 (MS670, Sigma-Aldrich), AKT (sc-9272, Cell Signaling), PhosphoBad (9559, Cell Signaling), Bad (9539, Cell Signaling), PhosphoGSK3β (9336, Cell Signaling), p21 (9933, Cell Signaling), p27 (9292, Cell Signaling), CyclinD1 (36b4, Cell Signaling), CyclinE (9292, Cell Signaling), and p27 (9559, Cell Signaling).

Flow Cytometry Analysis

Cells were recovered and washed in PBS. Pellets were resuspended in RNase A (500 μg/ml), propidium iodide (50 μg/ml) solution and kept 1 h at 4°C in the dark. Cell suspensions were analyzed using a Beckman Coulter fluorescence-activated cell sorter. At least 15,000 events were measured for each sample.

Flow Cytometry Analysis

Cells were recovered and washed in PBS. Pellets were resuspended in RNase A (500 μg/ml), propidium iodide (50 μg/ml) solution and kept 1 h at 4°C in the dark. Cell suspensions were analyzed using a Beckman Coulter fluorescence-activated cell sorter. At least 15,000 events were measured for each sample.
Cell Immunofluorescence

Cells were fixed in 4% paraformaldehyde and permeabilized in PBS Triton X-100 0.1%. Detections were performed using anti-CK8 (Covance, Princeton, NJ), anti-Ecadherin (Sigma Aldrich), anti-β-tubulin (BD Transduction Laboratories, Le Pont de Claix, France), anti-PhosphoS473-AKT (Epitomics) and revealed with Alexa 488-conjugated anti-rabbit and Alexa 555-conjugated anti-mouse immunoglobulins (Invitrogen). Slides were mounted with PBS/glycerol and were visualized with a Carl Zeiss Axiocam digital camera on a Zeiss Axioplan 2 microscope.

Lipid Analysis

After permeabilisation with triton-X100 10%, lipid staining was performed using Oil-Red-O (Sigma-Aldrich) as already described [15].

Statistical Analysis

Values are expressed as means ± SEM. Statistical comparisons were performed using a two-tailed Student’s t test. A p<0.05 was considered statistically significant.

Results

Establishment of MPECs from Mouse Dorsal Prostate Lobe Explant

To generate MPEC culture, dorsal prostate lobes were dissected from wild-type (WT) and Lxrβ-/- mice (Fig. 1A). Prostate samples were minced and seeded onto ECM-coated plates in epithelial specific defined-medium (procedure details were recapitulated in Methods section). Cells migrated from the explant and culture was maintained until auto-immortalization of epithelial cells. Upon immortalization, cell genotypes were checked by PCR (Fig. 1B), and Lxrα and Lxrβ transcript accumulations were determined and compared to WT MEFs (Fig. 1C). It appears that Lxrα slightly shows similar levels between MPECs and MEFs, while Lxrβ is more accumulated in MPECs than in MEFs. As expected, both messengers were undetectable in Lxrβ-/- MPECs.

Once cultured, MPECs formed islands and displayed typical cobblestone features of epithelial cells compared to spindle shape of MEFs (Fig. 2A). In order to check for contamination of the culture by stromal fibroblasts, stromal and epithelial differentiation markers were investigated. Absence of both Tenascin and Snail expressions avoid potential contamination by mesenchymal cells.

LXRs and Cell Cycle in Murine Epithelial Cells

Figure 2. Analysis of stromal and epithelial markers in WT or Lxrβ-/- MPECs. (A) WT and Lxrβ-/- MPECs and WT MEFs were immunostained using anti-E-cadherin (E-Cad), anti-CK8 (CK8) and anti-α2 Tubulin (Tub) antibodies. Scale bar 100 µm. (B) mRNA relative levels of Tenascin, Snail, Keratin 8 and E-cadh were measured in WT MEFs, WT (+/+) and Lxrβ-/- MPECs by qPCR. *p<0.05, **p<0.01, ***p<0.001 in Student’s t test. Error bars represent mean ± SEM. (qPCR analysis results from 3 independant experiments and was normalized using 36b4 gene) (C) Western blot analysis was performed on WT MEFs, WT (+/+) and Lxrβ-/- MPECs using CK8, Psca antibodies. βActin was used as a loading control. doi:10.1371/journal.pone.0058876.g002

Figure 3. LXRs are involved in the control of MPEC proliferation. (A) Percentage of WT MPECs in G0/G1 phase and S phase after DMSO (vehicle), 1 and 3 µM 22(R)-hydroxycholesterol (22(R)-OHC) or GW39695 treatments was quantified by flow cytometry. N = 3 (B) Percentage of WT (+/+) and Lxrβ-/- MPECs in G0/G1 and S phase after DMSO (vehicle) or T0901317 (3 µM) treatments was quantified by flow cytometry. (C) Percentage of WT (+/+) and Lxrβ-/- MPEC cell growth determined by MTT assay after DMSO (vehicle) or T0901317 1 and 3 µM treatments. *p<0.05, **p<0.01, ***p<0.001 in Student’s t test. Error bars represent mean ± SEM. N = 3 (D) Flow cytometry profile of WT (+/+) and Lxrβ-/- MPECs in basal condition. (E) Protein lysates from WT (+/+) and Lxrβ-/- MPECs incubated with DMSO or 1, 3 µM T0901317 for 48h were analyzed by western blot using antibodies raised against p21, p27, Cyclin D1, Cyclin E, Cdk2 and Cdk4. βActin was used as loading control. doi:10.1371/journal.pone.0058876.g003
Figure 4. LXRs control expression of genes involved in cholesterol homeostasis and fatty acid synthesis in MPECs. (A) qPCR analysis of Abca1, Abb1 and Idol levels in WT (+/+), Lxrα+/− (lxrα+/−) and Lxrα−/− (lxrα−/−) MPECs after DMSO (vehicle) or T0901317 stimulation (b) Effect of 9-cis retinoic acid and/or T0901317 stimulation on Abca1 accumulation levels in WT (+/+), Lxrα+/− (lxrα+/−) and Lxrα−/− (lxrα−/−) MPECs (c) qPCR analysis of Srebp1, Acc, and Fas levels in WT (+/+), Lxrα+/− (lxrα+/−) and Lxrα−/− (lxrα−/−) MPECs after DMSO (vehicle) or T0901317 stimulation. (qPCR analysis results from 4 independant experiments and was normalized using 36b4 gene). *p<0.05, **p<0.01, ***p<0.001 in Student’s t test. Error bars represent mean ± SEM. (D) Western blot analysis was performed on WT (+/+), Lxrα+/− (lxrα+/−) and Lxrα−/− (lxrα−/−) MPECs using Sreb1p1, Abb1 and β-Actin antibodies. (E) Oil-Red-O staining (ORO) and Normarski/Dapi of WT (+/+), Lxrα+/− (lxrα+/−) and Lxrα−/− (lxrα−/−) MPECs, or WT MEFs, treated for 48h with DMSO (vehicle) or T0901317 (1 μM). Head arrows indicate lipid droplets. Scale bars 100 μm.

doi:10.1371/journal.pone.0058876.g004

(Fig. 2B). Immunofluorescence and qPCR detection of specific markers E-cadherin and Cytokeratin 8 confirmed the epithelial origin of the culture (Fig. 2A, B), and as expected these markers were absent in MEFs. The epithelial characteristics of the MPECs were strengthened by accumulation of Ck18 and PSCA proteins (Fig. 2C). We concluded that MPECs could be considered as a good tool to study the physiological role of LXRs in epithelial cells from dorsal prostate.

LXRs Control Cell Proliferation in MPECs

LXR agonists have been previously described to exert anti-proliferative activities [16]. Thus, we investigated the effect of Lxr- ablation in MPECs. Treatments with various concentrations of 22R-hydroxycholesterol, a natural LXR-ligand, or GW3965, a synthetic LXR-ligand, on WT MPECs result in a dose-dependent accumulation of cells in G0/G1 phases and conversely a decrease of the percentage of cells in S phase (Fig. 3A). These observations show that the effect of the ligands on cell cycle is also visible in non-cancerous cells and is rather an intrinsic property of prostate epithelial cells. The effect of T0901317 (synthetic LXR ligand) was analyzed on Lxrα−/− MPECs and, as expected, had no effect on cell cycle (Fig. 3B) and proliferation (Fig. 3C). Interestingly, Lxrα+/− MPECs exhibit a higher basal proliferation (Fig. 3B and D). LXRα+ MPECs are thus regulators of cell cycle, which correlates with Cyclin D1 and Cdk2 protein accumulation (Fig. 3E). While GW3965 or T0901317 treatment decreases proliferation in WT MPECs, these ligands have no effect on Lxrα−/− MPECs (Fig. 3B). It could thus be concluded that GW3965 or T0901317 cell cycle inhibition is strictly LXR-dependent in MPECs, without potential interferences with other nuclear receptors. Interestingly, although T0901317 induction increased p21 cell-cycle inhibitor accumulation in WT MPECs that is consistent with proliferation decrease, Lxrα−/− MPECs reached a high and constitutive level of p21 that contrasts with the high proliferative rate (Fig. 3E). Paradoxically, p21 targets Cdk2/4, CyclinD1 and CyclinE were increased in Lxrα−/− MPECs indicating that driving forces leading to proliferation overcome p21 regulation. Concomitantly to p21 deregulation in Lxrα−/− MPECs, p27, initially identified as a downstream target of LXR activation in LNCaP cells [7], exhibit a strong accumulation as well. As observed in prostate cancer PTEN-null mouse model, we postulated that p21 and p27 accumulation level in Lxrα−/− MPECs could result from a defensive mechanism to counterbalance the proliferation increase due to the combined lack of Lxrα and Lxrβ [17].

LXRs and Lipid Homeostasis in MPECs

As LXRs are transcription factors involved in cholesterol and fatty acids metabolism regulation, we have analyzed the effects of LXRs on these metabolic pathways. WT and Lxrα−/− MPECs were treated with increasing amounts of T0901317 and expression of well-known LXR target genes was analyzed by qPCR. As expected, WT MPECs displayed increased accumulation of Abca1 and Abb1, encoding cholesterol transporters, after LXR activation (Fig. 4A, left). A higher basal level of Abb1 was observed in Lxrα−/− MPECs, as already described [18]. Conversely, no increased accumulation of Abca1 and Abb1 was seen in Lxrα−/− MPECs. Idol whose product controls the degradation of LDL-receptor (LDLR) is induced by T0901317 (Fig. 4A, right), indicating that the LXR target genes involved in cholesterol homeostasis are inducible in MPECs. Co-stimulation of LXR/RXR heterodimer by T0901317 and 9-cis retinoic acid reproduces the canonical synergistic transcriptional activation of Abca1 expression (Fig. 4B), thus demonstrating that LXR-signaling pathway is fully functional in immortalized MPECs. Interestingly, LXR-target genes involved in fatty acid synthesis such as Srebpl, Acc and Fas showed a modest but significant increase in their expression when LXRs are activated in WT MPECs (fold range induction x1.7 to x2.4) (Fig. 4C). These findings were correlated with western blot analyses in which WT MPECs displayed increased protein accumulation of ABCA1 and the non-cleaved form of SREBP1c in response to T0901317, conversely to what was observed in Lxrα−/− MPECs (Fig. 4D). Altogether, expression profiles of genes involved in lipogenesis postulate for a tenuous storage of triglycerides in MPECs in response to LXR activation. Oil red-O staining confirms that point since a few number of cells exhibits lipid droplets filling (Fig. 4E) in WT MPECs compared to MEFs treated with T0901317 (Fig. 4E). These results show that in WT MPECs, LXRs can be efficiently activated and subsequently reproduces canonical LXR-mediated lipid metabolism regulation.

LXRs are Connected to AKT and MAPK Transduction Pathways

Previous studies showed that LXR activation could impact transduction pathways such as PI3K/AKT signaling in human prostatic cancer cell lines [9]. To examine whether such regulation was still present in MPECs, we monitored various protein accumulations and/or phosphorylations involved in this transduction pathway. Both AKT phosphorylation of Serine 473 (pAKT S473) and Threonin 308 (pAKT T308) are sensitive to T0901317 or 22(R)-hydroxycholesterol treatment, as described in LNCaP cells (Fig. 5A,B). As expected this sensitivity was not seen in Lxrα-deficient cells (Fig. 5A,B). However it has been puzzling to observe that AKT phosphorylation level was basally found in Lxrα−/− (Fig. 5A,B). In order to investigate whether AKT phosphorylation modifications induced by LXR activation or alaton were relevant, we monitored phosphorylation levels of GSK3β and Bad, two known downstream targets of AKT. As expected, both proteins exhibited a decreased phosphorylation in WT MPECs treated with T0901317 or 22(R)-hydroxycholesterol and a strong increased of basal phosphorylation in Lxrα−/− MPECs (Fig. 5A). These results were paralleled by immunofluorescence detection of phosphorylated AKT. Indeed a similar membrane staining to those observed in LNCaP cells [9] could be seen. This signal was lost in WT MPECs incubated with T0901317, but remained persistent in Lxrα−/− MPECs.
whatever the conditions. Abnormal transduction signaling in Lxrβ−/− MPECs is not restricted to AKT pathway as phosphorylation forms of MAPK (pp42/44) were also basally highly accumulated in these cells (Fig. 5A,B). These observations on PI3K/AKT and MAPK transduction pathway deregulations suggest that they could sustain proliferation activity and act as mediators of the LXR effects. Indeed, incubation of WT and Lxrβ−/− MPECs in a medium supplemented with increasing amounts of pharmacological inhibitors of PI3-Kinase (LY-294002) or MEK (PD-98059) leads to a strong inhibition of cell growth. Consistent with the deregulated activity of AKT and MAPK in Lxrβ−/− compared to WT MPECs, Lxrβ−/− cells exhibit a higher sensitivity to both LY-294002 and PD-98059 treatments in MTT assays (Fig. 5D). Taken together, these results provide evidences that LXRs are important regulators of PI3K/AKT and MAPK transduction pathways, two central crossroads that mediate cell cycle control in MPECs.

Discussion

This study characterizes MPECs derived from WT and Lxrβ−/− mice. Our results indicate that LXRs are necessary to restrain cell cycle in non-cancerous prostate cells. Moreover, various LXR agonists, e.g. T0901317, GW3965 and 22R-hydroxycholesterol, clearly exert an anti-proliferative effect through LXRs, excluding the involvement of other nuclear receptors in the process we identified in MPECs. Molecular links between LXR target genes and proliferation process remains however to be elucidated. In the present study, we show that LXRs have a crucial role in the regulation of genes involved in cholesterol homeostasis and in a lesser extent in fatty acid synthesis in MPECs. Finally, we show that LXRs modulate AKT and MAPK phosphorylation accumulation, making them potential mediators of LXRs in the control of cell cycle.

LXRs were shown to modulate cell proliferation when they are activated by synthetic or natural ligands in prostate tumor cell lines [7]. Nevertheless, several studies questioned the specificity of the ligands used. Thus, some of these ligands have been proposed to interfere with distinct nuclear receptors [19]. In Lxrβ−/− MPECs, none of the tested LXR ligands (T0901317, GW3965 and 22(R)-hydroxycholesterol) were found up-regulated in WT MPECs, correlated the fact that induction of the fatty acid metabolism gene program is poorly sensitive to LXR regulation in MPECs (Fig. 5B) and suggested ABCA1 to be a key regulator of the cell cycle in response to LXR-activation in LNCaP cells [10] and suspected that cholesterol efflux is of major importance in this context. Consistent with these previous observations, LXR-target genes involved in cholesterol homeostasis (e.g. Acox1, Acox2 and Abcg1) were found up-regulated in WT MPECs in response to LXR ligands. These facts indicate that MPECs are responsive to cholesterol network homeostasis such as efflux/uptake activities. To date, various studies identified fatty acid metabolism as a crossing point in prostate tumor cell lines that is tightly associated to cell growth and proliferation [20–22]. Indeed, inhibition of acetyl CoA carboxylase (ACC) by Soraphen A efficiently blocks the proliferation of LNCaP cells, showing that tumor cell growth is dependent of fatty acid synthesis [23]. In MPECs, Srebpl, Fas and Acc display a significant but modest induction. Accordingly, the weak neutral lipid accumulation of MPECs [Fig. 5B] correlated the fact that induction of the fatty acid synthesis gene program is poorly sensitive to LXR regulation in these cells. Furthermore, the present work suggests that the capacity of LXRs to modulate cell cycle in MPECs is mostly dependent of their regulation of cholesterol homeostasis.

Unexpectedly, we observed a higher basal phosphorylation of AKT in MPECs lacking LXRs. It could be postulated that AKT signaling perturbation is a consequence of cholesterol metabolism alteration in Lxrβ−/− MPECs. This hypothesis is consistent with the previous study demonstrating that LXRs control AKT phosphorylation levels in a raft-dependent manner in LNCaP cells [9].

Altogether, we show that LXRs per se modulate cell cycle in non-cancerous epithelial cell model. Lxrβ−/− MPECs provide thus a powerful tool to investigate intrinsic connections between oxysterols, cholesterol metabolism and cell proliferation.

Acknowledgments

We warmly thank Dr. Michèle Manin (GReD) for her relevant advices and tremendous work on development of primary cell cultures over the years. C. Puchol and P. Mazuel for animal facilities. Pathology analysis was performed on the @nipath Clermont facility.

Author Contributions

Conceived and designed the experiments: JD AP DHV JMAL SB. Performed the experiments: JD AP GA HDB JMAL SB. Analyzed the data: JD AP GA HDB CL DHV JMAL SB. Wrote the paper: JD JMAL SB.

References

1. Faulds MH, Zhao C, Dahlman-Wright K (2010) Molecular biology and functional genomics of liver X receptors (LXR): in relationship to metabolic diseases. Curr Opin Pharmacol 10: 692–697. doi:10.1016/j.coph.2010.07.003.

2. Callin AC, Tontonoz P (2012) Transcriptional integration of metabolism by the nuclear steroid-activated receptors LXRx Fxr. Nat Rev Mol Cell Biol 13: 213–224. doi:10.1038/nrm3312.

3. Kim HJ, Anderson LC, Bontou D, Warner M, Gustafsson JA (2009) Stromal growth and epithelial cell proliferation in ventral prostates of liver X receptor knockout mice. Proc Natl Acad Sci U S A 106: 550–556.

4. Viennois E, Esposito T, Dutour J, Pommier A, Fabre S, et al. (2012) Lxr regulates the androgen response in prostate epithelium. Endocrinology 153: 3211–3223. doi:10.1210/en.2011-1996.

5. Chau CP, Kokontis JM, Hipakka RA, Liao S (2007) Modulation of liver X receptor signaling as novel therapy for prostate cancer. J Bioenerg Biomembr 39: 543–55.

6. Viennois E, Pommier AJ, Mouzat K, Oumeddarour A, El Hajaji FZ, et al. (2011) Targeting liver X receptors in human healthy: deadlock or promising trail? Expert Opin Ther Targets 15: 219–232. doi:10.1517/147282211.547853.
7. Fukuchi J, Kokontis JM, Hiipakka RA, Chu CP, Liao S (2004) Antiproliferative effect of liver X receptor agonists on LNCaP human prostate cancer cells. Cancer Res 64: 7686–7689.

8. Chu CP, Hiipakka RA, Kokontis JM, Fukuchi J, Chen RY, et al. (2006) Inhibition of tumor growth and progression of LNCAp prostate cancer cells in athymic mice by androgen and liver X receptor agonist. Cancer Res 66: 6482–6486.

9. Pommier AJ, Alves G, Viennois E, Bernard S, Communal Y, et al. (2010) Liver X Receptor activation downregulates AKT survival signaling in lipid rafts and induces apoptosis of prostate cancer cells. Oncogene 29: 2712–2723.

10. Fukuchi J, Hiipakka RA, Kokontis JM, Hsu S, Ko AL, et al. (2004) Androgenic suppression of ABCA1 expression in LNCaP human prostate cancer cells. Cancer Res 64: 7682–7685.

11. Dufour J, Viennois E, De Boussac H, Baron S, Lobaccaro J-M (2012) Oxysterol receptors, AKT and prostate cancer. Current opinion in pharmacology. 12(6): 724-8. doi: 10.1016/j.coph.2012.06.012.

12. Shappell SB, Thomas GV, Roberts RL, Herbert R, Ittmann MM, et al. (2004) Prostate pathology of genetically engineered mice: definitions and classification. The consensus report from the Bar Harbor meeting of the Mouse Models of Human Cancer Consortium Prostate Pathology Committee. Cancer Res 64: 2270–2305.

13. Berquin IM, Min Y, Wu R, Wu H, Chen YQ (2005) Expression signature of the mouse prostate. J Biol Chem 280: 36442–36451.

14. Manni M, Veysiere G, Chevallier D, Chevalier M, Lecher P, et al. (1992) In vitro androgenic induction of a major protein in epithelial cell subcultures from mouse vas deferens. Endocrinology 131: 2378–2386.

15. Cummins CL, Volle DH, Zhang Y, McDonald DJ, Seol B, et al. (2006) Liver X receptors regulate adrenal cholesterol balance. J Clin Invest 116: 1902–1912.

16. Viennois E, Mouazat K, Dufour J, Morel L, Lobaccaro J-M, et al. (2012) Selective liver X receptor modulators (SLIMs): what use in human health? Mol Cell Endocrinol 351: 129–141. doi:10.1016/j.mce.2011.08.036.

17. Ding Z, Wu C-J, Chu GC, Xiao Y, Hu D, et al. (2011) SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression. Nature 470: 269–273. doi:10.1038/nature09677.

18. Repa JJ, Turley SD, Lobaccaro JA, Medina J, Li L, et al. (2000) Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers. Science 290: 1524–1529.

19. Mitro N, Vargas I, Romeo R, Koder A, Saez E (2007) T0901317 is a potent PXR ligand: implications for the biology ascribed to LXR. FEBS Lett 581: 1721–1726.

20. Esqueret M, Swinnen JV, Heyns W, Verhoeven G (1996) Control of LNCaP proliferation and differentiation: actions and interactions of androgens, 1alpha,25-dihydroxycholecalciferol, all-trans retinoic acid, 9-cis retinoic acid, and phenylacetate. Prostate 28: 182–194.

21. Pizer ES, Fling BR, Roca GS, Han WF, Udan MS, et al. (2001) Increased fatty acid synthase as a therapeutic target in androgen-independent prostate cancer progression. Prostate 47: 102–110.

22. Ross S, Graner E, Fobo P, Weinstein L, Bhattacharyya N, et al. (2003) Fatty acid synthase expression defines distinct molecular signatures in prostate cancer. Mol Cancer Res 1: 707–715.

23. Beckers A, Organe S, Timmermans L, Scheys K, Peeters A, et al. (2007) Chemical inhibition of acetyl-CoA carboxylase induces growth arrest and cytotoxicity selectively in cancer cells. Cancer Res 67: 8189–8187.

24. Peet DJ, Turley SD, Ma W, Janowski BA, Lobaccaro JM, et al. (1998) Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell 93: 693–704.