EAACI POSITION PAPER

Management of anaphylaxis due to COVID-19 vaccines in the elderly

Jean Bousquet1,2,3 Ioana Agache4 Hubert Blain5 Marek Jutel6,7 Maria Teresa Ventura8 Margitta Worm1 Stefano Del Giacco9 Athanasios Benetos10 Beatrice Maria Bilo11,12 Wienczyslawa Czarlewski13 Amir Hamzah Abdul Latiff14 Mona Al-Ahmad15,16 Elizabeth Angier17 Isabella Annesi-Maesano18 Marina Atanaskovic-Markovic19 Claus Bachert20,21,22,23 Annick Barbaud24,25 Anna Bedbrook14 Kazi S. Bennoor26 Elena Camelia Berghea27,28 Carsten Bindslev-Jensen29 Sergio Bonini30 Sinthia Bosnic-Anticevich31,32 Knut Brockow33 Luisa Brussino34 Paulo Camargos35 G. Walter Canonica36,37 Victoria Cardona38,39 Pedro Carreiro-Martins40,41 Ana Carriazo42 Thomas Casale43 Jean-Christoph Cautet44 Lorenzo Cecchi45 Antonio Cherubini46 George Christoff47 Derek K. Chu48 Alvaro A. Cruz49 Dejan Dokić50 Yehia El-Gamal†51 Motohiro Ebisawa52 Bernadette Eberlein33 John Farrell53 Montserrat Fernandez-Rivas54 Wytske J. Fokkens55,56 Joao A. Fonseca57,58 Yadong Gao59 Gaëtan Gavazzi60 Radoslaw Gawlik61 Asli Gelincik62 Bilun Gemicioğlu63 Maia Gotua64 Olivier Guérin65 Tari Haahtela66 Karin Hoffmann-Sommergruber67 Hans Jürgen Hoffmann68,69 Maja Hofmann1 Martin Hrubisko70 Maddalena Illario71 Carla Irani72 Zhanat Ispayeva73 Juan Carlos Ivancevich74 Kaja Julge75 Igor Kaidashev76 Musa Khaitov77 Edward Knol78 Helga Kraxner79 Piotr Kuna80 Violeta Kvedariene81,82 Antti Laukka83 Lan T. Le84 Vincent Le Moing85 Michael Levin86 Renaud Louis87 Olga Lourenço88 Vera Mahler89 Finbarr C. Martin90 Andrea Matucci91 Branišlava Milenkovic92 Stéphanie Miot5 Emma Montella71 Mario Morais-Almeida93 Charlotte G. Mortz29 Joaquim Mullol94,95 Leyla Namazova-Baranova96 Hugo Neffen97 Kristof Nekam98 Marek Niedoszytko99 Mikaëla Odemyr100 Robyn E. O’Hehir101 Yoshitaka Okamoto102 Markus Ollert103,104 Oscar Palomares105 Nikolaos G. Papadopoulos106 Petr Panzner107 Giovanni Passalacqua108

Abbreviations: ACE inhibitors, angiotensin converting enzyme inhibitor; ABCDE, Airway, Breathing, Circulation, Disability, Exposure; ARIA, Allergic Rhinitis and its Impact on Asthma; AT-2-antagonists, Angiotensin II receptor type 2; EAACI, European Academy of Allergy and Clinical Immunology; EuGMS, European Geriatric Medicine Society; ICU, intensive care unit; IM, intramuscular; IV, intravenous.
Vincenzo Patella109 | Mirko Petrovic110 | Oliver Pfarr111 | Nhâm Pham-Thi112 | Davor Plavec113,114 | Todor A. Popov115 | Marysia T. Recto116 | Frederico S. Regateiro117,118,119 | Jacques Reynes85 | Regina E. Roller-Winsberger120 | Yves Rolland121 | Antonino Romano122,123 | Carmen Rondon124,125 | Menachem Rottem126,127 | Philip W. Rouadi128 | Nathalie Salles129 | Boleslaw Samolinski130 | Alexandra F. Santos131,132,133,134 | Faradiba S Sarquis135 | Joaquin Sastre136 | Jos M. G. A. Schols137 | Nicola Scichilone138 | Anna Sediva139 | Mohamed H. Shamji140,141 | Aziz Sheikh142 | Isabel Skypala143 | Sylwia Smolinska144,145 | Milena Sokolowska146 | Bernardo Sousa-Pinto57,58,147 | Milan Sova148 | Rafael Stelmach149 | Gunter Sturm150,151 | Charlotte Suppli Ulrik152 | Ana Maria Todo-Bom153 | Sanna Toppila-Salmi66 | Ioanna Tsiligianni154,155 | Maria Torres156 | Eva Untersmyr157 | Marilyn Urrutia Pereira158 | Arunas Valiulis159,160 | Joanna Vitte161,162 | Alessandra Vultaggio91 | Dana Wallace163 | Jolanta Walusiak-Skorupa164 | De-Yun Wang165 | Susan Waserman48 | Arzu Yorgancioglu166 | Osman M. Yusuf167 | Mario Zernotti168 | Mihaela Zidarn169 | Tomas Chivato170 | Cezmi A. Akdis171 | Torsten Zuberbier1 | Ludger Klimek172,173

1Department of Dermatology and Allergy, Comprehensive Allergy Center, Charité Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
2University Hospital Montpellier, France
3MACVIA-France, Montpellier, France
4Faculty of Medicine, Transylvania University, Brasov, Romania
5Department of Geriatrics, Montpellier University Hospital, Montpellier, France
6Department of Clinical Immunology, Wrocław Medical University, Wroclaw, Poland
7ALL-MED Medical Research Institute, Wroclaw, Poland
8University of Bari Medical School, Unit of Geriatric Immunoallergology, Bari, Italy
9Department of Medical Sciences and Public Health, Unit of Allergy and Clinical Immunology, University Hospital "Duilio Casula", University of Cagliari, Cagliari, Italy
10Department of Geriatrics, CHRU de Nancy and Inserm DCAC, Université de Lorraine, Nancy, France
11Allergy Unit, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
12Department of Internal Medicine, University Hospital, Ospedali Riuniti di Ancona, Ancona, Italy
13Medical Consulting Czarlewski, Levallois, France
14Department of Pediatrics, Allergy & Immunology Centre, Pantai Hospital, Universiti Putra Malaysia Teaching Hospital, Kuala Lumpur, Malaysia
15Microbiology Department, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
16Department of Allergy, Al-Rashed Allergy Center, Kuwait City, Kuwait
17Primary Care and Population Sciences, University of Southampton, Southampton, UK
18Institut Desbret d’Épidémiologie et Santé Publique (IDESP), INSERM et Université de Montpellier, Montpellier, France
19Faculty of Medicine, University Children’s Hospital, University of Belgrade, Belgrade, Serbia
20Upper Airways Research Laboratory, ENT Department, Ghent University Hospital, Ghent, Belgium
21International Airway Research Center, Sun Yat-sen University, First Affiliated Hospital Guangzhou, China
22Division of ENT Diseases, CLINTEC, Karolinska Institutet, Stockholm, Sweden
23Department of ENT Diseases, Karolinska University Hospital, Stockholm, Sweden
24Division of Service de Dermatologie et Allergologie, Hôpital Tenon, Paris, France
25Division of Equipe PEPITES, Sorbonne Université, Institut Pierre Louis d’Épidémiologie et de Santé Publique, Paris, France
26Department of Respiratory Medicine, National Institute of Diseases of the Chest and Hospital, Dhaka, Bangladesh
27Allergology and Clinical Immunology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
28Clinical Emergency Hospital for Children MS Curie, Bucharest, Romania
29Department of Dermatology and Allergy Centre, Odense University Hospital, Odense Research Center for Anaphylaxis (ORCA), Odense, Denmark
1 INTRODUCTION

Older adults (over 65 years of age), especially men and/or those with diabetes, hypertension, and/or obesity, are prone to severe COVID-19. In some countries, older adults, particularly those residing in nursing homes, have been prioritized to receive COVID-19 vaccines due to high risk of death. In very rare instances, the COVID-19 vaccines can induce anaphylaxis, and the management of anaphylaxis in older people should be considered carefully. An ARIA-EAACI-EuGMS (Allergic Rhinitis and its Impact on Asthma, European Academy of Allergy and Clinical Immunology, and European Geriatric Medicine Society) Working Group has proposed some recommendations for older adults receiving the COVID-19 vaccines. Anaphylaxis to COVID-19 vaccines is extremely rare (from 1 per 100,000 to 5 per million injections). Symptoms are similar in younger and older adults but they tend to be more severe in the older patients. Adrenaline is the mainstay treatment and should be readily available. A flowchart is proposed to manage anaphylaxis in the older patients.

KEYWORDS
adrenaline, anaphylaxis, COVID-19 vaccines, older (adults/people)

2 ANAPHYLAXIS TO COVID-19 VACCINES

Several adverse reactions are reported for the COVID-19 vaccines. They are classified into very common (≥1/10), common (≥1/100 to <1/10), uncommon (≥1/1000 to <1/100), rare (≥1/10,000 to <1/1000), very rare (<1/10,000), and not known (cannot be estimated from the available data). Currently, due to lack of sufficient confirmed data, anaphylaxis/hypersensitivity is included under the "not known" category.

Following the approval of the COVID-19 vaccine BNT162b2 (Pfizer-BioNTech), several severe anaphylaxis cases occurred within the first few days of public vaccination. A first analysis of the data reported in the Vaccine Adverse Events Reporting System (VAERS, https://vaers.hhs.gov) of the United States showed an incidence of 11.1 cases of anaphylaxis per million doses of the COVID-19 vaccine BNT162b2. The VAERS report of 18 January 2021 reports a rate of 5 anaphylaxis cases per million doses administered for the BNT162b2 and 2.8 per million for the Moderna vaccine. Polyethylene glycol (PEG) contained in PEGylated excipients has been proposed to be an
ALLERGIC REACTIONS OF COVID-19 VACCINES IN OLDER PEOPLE

Allergic reactions of COVID-19 vaccines are less frequent in older people compared to younger adults. Severe allergic reactions such as anaphylaxis are more common in older adults. However, the severity of anaphylaxis in older people is decreased compared to younger adults. Adrenalin was administered in 30% of older patients. Hospitalization was required in 60%, and 19% of older patients were treated in an intensive care unit (ICU).

The COVID-19 vaccines will be administered to billions of individuals worldwide and there are raised concerns that severe adverse reactions might sometimes occur. With the current information, the European Academy of Allergy and Clinical Immunology (EAACI) stated its position for preliminary recommendations that are to be revised as soon as more data emerge.

3 | SYMPTOMS OF ANAPHYLAXIS IN OLDER PEOPLE

The European Anaphylaxis Registry includes data from 1,123 patients over 65 years of age with anaphylactic reactions. These data are provided by tertiary referral centers specialized in allergology and/or dermatology in Austria, Bulgaria, France, Germany, Italy, Poland, Spain, and Switzerland. In the registry, anaphylactic symptoms were similar in younger adults and older people, but their frequency differed: cardiovascular symptoms occurred more frequently in older people (80% compared to 75% in adults). This confirmed previous observations that in patients presenting with anaphylaxis at the Emergency Department, an age of 65 or older was associated with an increased likelihood of cardiovascular symptoms. A major cardiovascular symptom was loss of consciousness (33%), while dizziness and tachycardia were more prevalent in younger adults. Cardiac arrest occurred in 3% of older persons and in 2% of younger adults. The skin was the most frequently involved organ system. Urticaria and angioedema are two clinical manifestations of anaphylaxis and usually appear before other symptoms. The severity of anaphylactic reactions in older patients without skin symptoms was increased in comparison to younger adults. Gastrointestinal symptoms occurred in a similar proportion in both groups. The respiratory system, especially dyspnea, was less frequently affected in older persons (63% compared to 70% in younger adults). However, cyanosis, syncope, and dizziness are highly predictive of shock development in older people. Severe anaphylactic reactions, including grade III (47%) and grade IV (4%) of the anaphylaxis Ring and Messmer classification, were more prevalent in people aged 65+.

This registry indicates that symptoms are similar in younger/middle-aged adults and older people but that they are more severe in the older age group (Figure 1). Adrenalin was administered in 30% of older patients. Hospitalization was required in 60%, and 19% of older patients were treated in an intensive care unit (ICU). Significantly more older people as compared to younger and middle-aged adults with grade II and III anaphylaxis needed hospitalization and ICU care (Figure 1 and Table 1). Considering different triggers of anaphylaxis, higher age has been consistently associated with increased rates of fatal drug anaphylaxis. This may be related to an increased prevalence of drug allergy following an increased drug exposure, and/or to an increased underlying cardiovascular vulnerability.

Anaphylaxis is usually graded according to Ring and Messmer (Table 1), although there are proposals for new grading systems. However, WHO and regulatory authorities recommend the use of the Brighton Collaboration Anaphylaxis Working Group for pharmacovigilance registers.

Classification according to the most severe symptom is mandatory.

4 | RISK FACTORS FOR SEVERITY OF ANAPHYLAXIS IN OLDER PEOPLE

4.1 | Comorbidity

In the European Anaphylaxis Registry, older age (excluding the confounding factor of concomitant cardiovascular or other diseases) and concomitant mastocytosis were the most important predictors for an increased risk of severe anaphylaxis. Hereditary alpha-tryptasemia is another risk factor. Anaphylaxis is more severe and has an increased risk of death in patients with coronary artery disease because both the number of mast cells and the production of their vasoactive mediators are increased in ischemic cardiomyopathy. In addition, atherosclerotic lesions make coronary arteries more susceptible to the effects of mast cell- and basophil-derived mediators, and individuals with an underlying vascular illness less tolerant to hypoxia and hypotension during anaphylaxis.
In older people from the registry, cardiovascular diseases, thyroid diseases, and cancer were more common than in younger adults.

4.2 Polypharmacy and medications used in older people

In the European Anaphylaxis Registry, medications associated with an increased risk of severe anaphylaxis risk cofactors—such as ACE inhibitors (angiotensin-converting enzyme inhibitor), AT-2-antagonists (Angiotensin II receptor type 2), β-blockers, acetylcholine, and proton pump inhibitors—were significantly more frequently prescribed in older people (57%) than in younger adults (18%).

Independent of the age of the patient, β-blockers and ACE inhibitors administered close to allergen immunotherapy increased the risk of developing severe anaphylaxis, while aspirin and AT-2 did not. However, a systematic review with low-quality evidence showed that β-blockers and ACE inhibitors increased the severity of anaphylaxis, due to differences in confounders, in particular, cardiovascular diseases.

It is important to highlight the significant number of older patients who are being treated with anxiolytics, antidepressants, hypnotics, and other drugs that can act on the central nervous system and alter the individual person’s recognition and perception of the symptoms and signs of anaphylaxis.

5 MANAGEMENT OF ANAPHYLAXIS IN OLDER PEOPLE

5.1 The ABCDE approach

The Airway, Breathing, Circulation, Disability, Exposure (ABCDE) algorithm is applicable in all clinical emergencies for immediate assessment and treatment (Figure 2). If anaphylaxis is suspected, every patient should receive rapid evaluation of vital functions via ABCDE, and problems should be addressed in a targeted manner.

The aims of the ABCDE approach are:

- To provide life-saving treatment.
- To break down complex clinical situations into more manageable parts.
- To serve as an assessment and treatment algorithm.
- To establish common situational awareness among all treatment providers.
- To buy time to establish a final diagnosis and treatment.

TABLE 1 Symptoms and anaphylaxis grades (from Ring and Messmer)

Grades	Skin	Abdomen	Airways	Cardiovascular system
I	Itch	Nausea	Rhinorrhea	Tachycardia (>120/min)
II	Flush	Cramps	Hoarseness	Hypotension (<90 mm Hg syst)
	Urticaria		Dyspnea	Arrhythmia
	Angioedema			
III	Vomiting	Laryngeal edema	Bronchospasm	Shock
	Defecation		Cyanosis	
IV			Respiratory arrest	Cardiac arrest

C: circulation

- Look, listen and feel
- Head tilt and chin lift

B: Breathing

- Heart rate
- Capillary refill time

D: Disability

- Alert
- Voice responsive
- Pain responsive
- Unresponsive

E: Exposure

- Remove clothing after adrenaline injection

FIGURE 2 The ABCDE approach in emergencies (from)
VACCINATION

observe at least 15 minutes
(monitor vital signs and observe at least 30 minutes in patients at high risk)

if patient develops the following symptoms

- Generalized hives, generalized pruritus, generalized flushing, face angioedema
- Shortness of breath, wheezing, stridor
- Syncope, incontinence, blood pressure drop
- Swollen tongue-uvula, Cramping abdominal-Vomiting, diarrhea

** Urgently**

Put the patient in the reclining position with legs up

Administer EPINEPHRINE (ADRENALINE)

0.3 mg in auto-injector
OR
0.5 mg per dose (of 1:1000 (1 mg/ml) of aqueous solution)
intramuscularly in the mid-outter thigh quadriceps muscle

AND

Antihistamines
oral/parenteral
Glucocorticoids
oral/parenteral
observation 4 hr

Secure intravenous accesses
and start infusion with 0.9% NaCl (10-20 ml/min)
Clear the airways
Administer Oxygen via facial mask (at least 10 liters/min)
Monitor vital signs

Discharge 4-8 hrs after full resolution
Refer to the allergy center for the workup

Resolved

CALL emergency assistance depending on your location (911, 112, ICU team)

Not resolved

Blood pressure drop

2000-3000 ml of 0.9% NaCl intravenously in 10-20 min

No improvement

in 5-10 min:

REPEAT EPINEPHRINE (ADRENALINE)
intramuscularly

Bronchospasm

Salbutamol
4-10 puffs via large volume spacer

Advise against second planned SARS-CoV-2 vaccination until clarified by the allergy centre
5.2 | Adrenaline in older people

Guidelines from EAACI43 and the World Allergy Organization44 recommend prompt intramuscular injection of adrenaline as first-line therapy for anaphylaxis. Adrenaline can counteract most severe symptoms of anaphylaxis in older people.22 Intramuscular administration of adrenaline, if possible using a ready-to-use preparation or auto-injector, is recommended. The initial dose is 0.3–0.5 ml of a 1:1000 dilution (1 mg/ml). The patient should then be monitored, and, if ineffective, the administration can be repeated after at least a 5-minute interval.22 The subcutaneous route should not be used because the vasoconstrictor effect of adrenaline injected into the subcutaneous tissue potentially delays adrenaline absorption.45 The intra-vascular route should be avoided since most cardiovascular adverse events of adrenaline appear to occur via this route.46 Intravenous continuous infusion should only be given to patients not responding to intramuscular injection under careful ECG monitoring.43

During an anaphylactic reaction occurring in patients with cardiovascular disease, the benefits versus the harms of adrenaline injection should be weighed carefully. The presence of cardiovascular disease does not exclude the use of adrenaline in anaphylaxis since no other medications have life-saving effects in this medical emergency.49 There are no absolute contraindications to the prescription of self-injectable adrenaline in older patients or in those with a cardiovascular disease who are at risk of anaphylaxis. Serious adverse effects, such as ventricular arrhythmias, hypertension, or myocardial ischemia, have not been reported following the use of adrenaline auto-injectors.47 However, older patients with anaphylaxis seem to be more likely to experience a cardiac adverse event after adrenaline injection, with those older than 80 years having the highest risk.48

5.3 | Other treatments

Regular intake of multiple medications is frequent in older patients (polypharmacy). Co-medication may modify the evolution of anaphylaxis, and also its management. The therapeutic effect of adrenaline may be blunted by β-blockers. In this situation, epinephrine is not effective, glucagon can be administered intravenously, as it has a mechanism of action independent of the β-receptors.49,50 Older patients may be using sedating or psychotropic drugs, and these could affect the recognition and perception of anaphylactic symptoms.51

5.4 | Equipment needed to perform vaccination safely in older people

- Vaccination should always be performed in a healthcare setting, which may be a mobile unit.
- All necessary aids and rescue drugs must be available in the vaccination setting.
- All medical personnel assigned should receive training and be able to immediately recognize and manage an emergency situation, including anaphylaxis.

6 | PRACTICAL PREVENTION AND MANAGEMENT OF AN ANAPHYLACTIC REACTION

As proposed in three ARIA-EAACI Position Papers on anaphylaxis to COVID-19 vaccines, recommendations have been adapted for older patients.21,28,29

- Patients with a history of allergic diseases should not be excluded from the vaccines as the exclusion of all these patients from vaccination may have a significant impact on reaching the goal of herd immunity. However, without any allergist advice, a previously known allergy to the substances contained in the vaccines presents a contraindication, as well as a reaction to the first dose of the COVID-19 vaccine, which presents a contraindication for administering the second dose. A previous severe anaphylactic reaction to other vaccines or drugs does not represent a contraindication. However, consultation with an allergist may be helpful to assess the individual situation.
- Healthcare practitioners vaccinating against COVID-19 are required to be sufficiently prepared to recognize and treat anaphylaxis properly, particularly since older patients tend to have more severe anaphylactic symptoms. If a severe reaction occurs, hospitalization may be considered more readily than for younger adults after first-aid action.
- After vaccine administration, a mandatory observation period of at least 15 minutes is necessary for all individuals. This should include the possibility to administer adrenaline intra-muscularly (IM) in a sufficient dose. The observation period should be extended to 30 minutes for patients deemed at putative risk for anaphylactic reaction.
- The person injecting the vaccine should be capable of managing an anaphylaxis reaction at first instance and should have all the relevant medication for management readily available.
- In the case of COVID-19 vaccines, there will be new procedures outside of the medical setting. Thus, it is imperative that the relevant emergency medication (adrenaline and saline) is readily available at the setting—particularly in nursing homes or vaccine caravans—and that training of the personnel has been accomplished.
- The EAACI recently published the practical management of anaphylaxis (Figure 3).29
KYomed-Innov, personal fees from Purina. VC reports personal fees from ALK, Allergy Therapeutics, LETI, Thermo Fisher, Merck, AstraZeneca, GSK. AC reports personal fees from BMS, MSD. ME reports personal fees from DBV Technologies, Mylan. MFR reports grants from ISCII (Spanish Government), Aimmune, Diater, personal fees from Aimmune, DBV, Novartis, SPRIM, ALK, Allergy Therapeutics, Diater, GSK, Thermo Fisher. BG reports grants from AstraZeneca, Novartis, MSD, Deva, Abdi Ibrahim, GSK. TH reports personal fees from GSK, Mundipharma, OrionPharma, Sanofi, LK reports grants and personal fees from Allergopharma, LETI Pharma, MEDA/Mylan, Sanofi, personal fees from HAL Allergy, Allergy Therapeut., Cassella med, grants from ALK Abelló, Stallergenes, Quintiles ASIT biotech, Lofarma, AstraZeneca, GSK, Immunotk, and Membership: AeDA, DGHNO, Deutsche Akademie für Allergologie und klinische Immunologie, HNO-BV, GPA, EAACI. PK reports personal fees from Adamed, AstraZeneca, Berlin Chemie, Boehringer Ingelheim, Hal Allergy, Lekam, Mylan, GSK, Novartis, Polpharma, Sanofi, from Teva. VK reports non-financial support from AstraZeneca, DIMUNA, BerlinChemieMenarini Baltic. RL reports grants from Astra Zeneca, Chiesi, GSK, other from Astra Zeneca, Novartis, GSK, Sanofi. JM reports personal fees and other from SANOFI GENZYM & REGENERON, NOVARTIS, ALLAKOS, and grants and personal fees from MYLAN Pharma, URIACH Group, personal fees from Mitsubishi-Tanabe, Menarini, UCB, AstraZeneca, GSK, MSD. MO reports grants from Astra Zeneca, Chiesi, GSK, DBV Technologies, Aimmune, Novartis, Pfizer, Regeneron, Sanofi, Boehringer Ingelheim; and volunteer President of the European Federation of Allergy and Airways Diseases Patients’ Associations EFA who receives unrestricted grants from pharmaceutical companies. Second Vice President of the Swedish Asthma and Allergy Association, who receives no income from companies. Takes part in Novartis Asthma Patient Advisory Committee, GSK Global Respiratory Patient Advisory Group and have participated/presented in AstraZeneca events. Whenever there was a honorarium, this went to EFA. OP reports research grants from Inmunotek S.L., Novartis, and MINECO, fees for giving scientific lectures or participation in Advisory Boards from Allergy Therapeutics, Amgen, AstraZeneca, Diater, GlaxoSmithKline, S.A, Inmunotek S.L, Novartis, Sanofi Genzyme and Stallergenes. NP reports personal fees from Novartis, Nutricia, HAL, MENARINI/FAES FARMA, SANOFI, MYLAN/ MEDIA, BIOMAY, AstraZeneca, GSK, MSD, ASIT BIOTECH, Boehringer Ingelheim, grants from Geroymatos International SA, Capricare. OP reports grants and personal fees from ALK-Abelló, Allergopharma, Stallergenes Greer, HAL Allergy Holding B.V./HAL Allergie GmbH, BencardAllergie GmbH/Allergy Therapeutics, Lofarma, ASIT Biotech Tools S.A., rom Laboratorios LETI/LETI Pharma, Anergis S.A., Glaxo Smith Kline, personal fees from Astellas Pharma Global, MEDA Pharma/MYLAN, EUFOREA, ROXALL Medizin, Novartis, Sanofi-Aventis, and Sanofi Genzyme, Med Update Europe GmbH, streamedup! GmbH, John Wiley and Sons, AS, Paul-Martini-Stiftung (PMS), Mobile Chamber Experts (a GA2LEN Partner), Indoor Biotechnologies grants from Pohl-Boskamp, Inmunotek S.L., Biomay, Circassia. DP reports grants and personal fees from GlaxoSmithKline, personal fees and non-financial support from Boehringer Ingelheim, personal fees from Belupo, AbbVie, MSD, Chiesi, Menarini, Pliva, Revenio, non-financial support from Philips. YR reports grants from BIOPHYTIS, NOVARTIS. BS reports personal fees from Allergopharma, Viatris, TEVA, ADAMED, patient ombudsman, Polish Allergy Society grants from AstraZeneca, National Health Program, and personal fees from Polpharma, AstraZeneca. AS reports grants and personal fees from Medical Research Council, Thermo Fisher, Buhlmann, Infomed, Nutricia and Nestle, Allergy Therapeutics, Novartis and Stallergenes, grants from Food Allergy Research and Education, Asthma UK, NIAID / Immune Tolerance Network, non-financial support from National Institute for Health Research, Thermo Fisher and Buhlmann. Dr. Serpa reports personal fees from Takeda, personal fees and other from Novartis, personal fees from Sanofi, personal fees from GSK, other from Astra Zeneca. JS reports grants and personal fees from SANOFI, personal fees from GSK, NOVARTIS, ASTRA ZENICA, MUNDIPHARMA, FAES FARMA. AS reports grants from HDRUK. MS reports grants from Swiss National Science Foundation (SNF), GlaxoSmithKline (GSK). RS reports grants from São Paulo Research Foundation, MSD, grants and personal fees from Novartis, grants, personal fees and non-financial support from AstraZeneca, grants, personal fees and non-financial support from Chiesi, personal fees and non-financial support from Boehringer Ingelheim. GS reports grants and personal fees from ALK-Abello, personal fees from Novartis, Bencard, Stallergens, HAL, Allergopharma, Mylan. AMTB reports grants and personal fees from Teva, AstraZeneca, GSK (GlaxoSmithKline), Sanofi, Mundipharma, personal fees from Bial, grants from Leti, Novartis. STS reports personal fees from AstraZeneca, ERT, Novartis, Sanofi Pharma, Roche Products, grants from GSK. MT reports grants from European Commission, SEAIC, ISCIII, personal fees from Diater laboratory, Leti laboratory, Aimmune Therapeutics. IT reports personal fees from Honoraria for educational activities, speaking engagements, advisory boards from Boehringer Ingelheim, Astra Zeneca, GSK, Novartis and grants from GSK Hellas and Elpen. CSU reports personal fees from Astra Zeneca, personal fees from Chiesi, grants and personal fees from Novartis, Boehringer Ingelheim, personal fees from ALK-Abello, TEVA, Orion Pharma, grants Sanofi Genzyme, personal fees and non-financial support from Boehringer Ingelheim, personal fees and non-financial support from Thermo Fisher, non-financial support from Beckman Coulter. DW reports other from Kaleo, Mylan, and on the AAAAI/ACAAI Joint Task Force on Practice Parameters updating the Anaphylaxis practice parameter. SW reports other from Pfizer, Kaleo, Bausch Lomb. MW reports other from Regeneron Pharmaceuticals, DBV Technologies S.A., Stallergenes GmbH, HAL Allergie GmbH, BencardAllergie GmbH, Allergopharma GmbH & Co. KG, ALK-AbellóArzneimittel GmbH, Mylan Germany GmbH, Leo Pharma GmbH, Sanofi-Aventis Deutschland GmbH, Aimmune Therapeutics UK Limited, Actelion Pharmaceuticals Deutschland GmbH, Novartis AG, Biotest AG, AbbVie Deutschland GmbH & Co. KG, Lilly Deutschland GmbH. TZ reports and Organizational affiliations: Committee member: WHO-Initiative
"Allergic Rhinitis and Its Impact on Asthma" (ARIA), Member of the Board; German Society for Allergy and Clinical Immunology (DGAKI), Board Chairman: European Centre for Allergy Research Foundation (ECARF). President: Global Allergy and Asthma European Network (GA²LEN); Member: Committee on Allergy Diagnosis and Molecular Allergology, World Allergy Organization (WAO).

ORCID

Jean Bouquet https://orcid.org/0000-0002-4061-4766

Ioana Agache https://orcid.org/0000-0001-7994-364X

Margitta Worm https://orcid.org/0000-0002-3449-1245

Mona Al-Ahmad https://orcid.org/0000-0003-3720-7032

Isabella Annesi-Maesano https://orcid.org/0000-0002-6340-9300

Marina Atanaskovic-Markovic https://orcid.org/0000-0003-1354-6072

Claus Bachert https://orcid.org/0000-0003-4742-1665

Sergio Bonini https://orcid.org/0000-0003-0079-3031

Knut Brockow https://orcid.org/0000-0002-2775-3681

Walter Canonica https://orcid.org/0000-0001-8467-2557

Victoria Cardona https://orcid.org/0000-0003-2197-9767

Pedro Carreiro-Martins https://orcid.org/0000-0002-4129-133X

Jean-Christoph Cabet https://orcid.org/0000-0001-5006-5724

Lorenzo Cecchi https://orcid.org/0000-0002-0658-2449

Alvaro A. Cruz https://orcid.org/0000-0002-7403-3871

Motohiro Ebisawa https://orcid.org/0000-0003-4117-558X

Asli Gelincik https://orcid.org/0000-0002-3524-9952

Maia Gotua https://orcid.org/0000-0003-2497-4128

Tara Haathela https://orcid.org/0000-0003-4757-2156

Musa Khaitov https://orcid.org/0000-0003-4961-9640

Michael Levin https://orcid.org/0000-0003-2439-7981

Olga Lourenco https://orcid.org/0000-0002-8401-5976

Mario Morais-Almeida https://orcid.org/0000-0003-1837-2980

Charlotte G. Mortz https://orcid.org/0000-0001-8710-0829

Marek Niedoszytko https://orcid.org/0000-0003-1089-1911

Robyn E. O’Hehir https://orcid.org/0000-0002-3489-7595

Oscar Palomares https://orcid.org/0000-0003-4516-0369

Nikolaos G. Papadopoulos https://orcid.org/0000-0002-4448-3468

Petr Panzner https://orcid.org/0000-0002-1291-450X

Giovanni Passalacqua https://orcid.org/0000-0002-5139-3604

Vincenzo Patella https://orcid.org/0000-0001-5640-6446

Oliver Pfarr https://orcid.org/0000-0003-4374-9639

Carmen Rondon https://orcid.org/0000-0003-0976-3402

Philip W. Rouad https://orcid.org/0000-0002-5365-9568

Alexandra F. Santos https://orcid.org/0000-0002-7805-1436

Joaquin Sastre https://orcid.org/0000-0003-4689-6837

Mohamed H. Shamji https://orcid.org/0000-0003-3425-3463

Isabel Skypepal https://orcid.org/0000-0003-3629-4293

Ana Maria Tato-Bom https://orcid.org/0000-0002-1850-6689

Ioanna Tsigianni https://orcid.org/0000-0001-7922-7491

Maria Torres https://orcid.org/0000-0001-5228-471X

Arunas Valiuolis https://orcid.org/0000-0002-0287-9915

Joana Vitte https://orcid.org/0000-0002-3344-9408

Tomas Chivato https://orcid.org/0000-0002-5403-0964

Cezmi A. Akdis https://orcid.org/0000-0001-8020-019X

Ludger Klimek https://orcid.org/0000-0002-2455-0192

REFERENCES

1. Esteve A, Permuyer I, Boertien D, Vaupel JW. National age and co-residence patterns shape COVID-19 vulnerability. Proc Natl Acad Sci U S A. 2020;117(28):16118-16120.
2. Giangreco G. Case fatality rate analysis of Italian COVID-19 outbreak. J Med Virol. 2020;92(7):919-923.
3. Mantovani A, Dalbeni A, Beatrice G. Coronavirus disease 2019 (COVID-19): we don’t leave women alone. Int J Public Health. 2020;65(3):235-236.
4. Iaccarino G, Grassi G, Borghi C, et al. Age and multimorbidity predict death among COVID-19 patients: results of the SARS-RAS study of the Italian Society of Hypertension. Hypertension 2020;76(2):366-372.
5. Finucane FM, Davenport C. Coronavirus and obesity; could insulin resistance mediate the severity of COVID-19 infection? Front Public Health. 2020;8:184.
6. Klein SL, Dhakal S, Ursin RL, Deshpande S, Sandberg K, Mauvais-Jarvis F. Biological sex impacts COVID-19 outcomes. PLoS Pathog. 2020;16(6):e1008570.
7. Gebhard C, Regitz-Zagrosek V, Neuhauser HK, Morgan R, Klein SL. Impact of sex and gender on COVID-19 outcomes in Europe. Biol Sex Differ. 2020;11(1):29.
8. Barek MA, Aziz MA, Islam MS. Impact of age, sex, comorbidities and clinical symptoms on the severity of COVID-19 cases: a meta-analysis with 55 studies and 10014 cases. Hellyon. 2020;6(12):e05684.
9. Scortichini M, Schneider Dos Santos R, De' Donato F, et al. Excess mortality during the COVID-19 outbreak in Italy: a two-stage interrupted time-series analysis. Int J Epidemiol. 2021;49(6):1909-1917.
10. Pranata R, Henriina J, Lim MA, et al. Clinical frailty scale and mortality in COVID-19: A systematic review and dose-response meta-analysis. Arch Gerontol Geriatr. 2020;93:10432.
11. Hewitt J, Carter B, Vilches-Moraga A, et al. The effect of frailty on survival in patients with COVID-19 (COPE): a multicentre, European, observational cohort study. Lancet Public Health. 2020;5(8):e444-e451.
12. McMichael TM, Currie DW, Clark S, et al. Epidemiology of COVID-19 in a long-term care facility in King County, Washington. N Engl J Med. 2020;382(21):2005–2011.
13. Blain H, Rolland Y, Tuillon E, et al. Efficacy of a test-retest strategy in residents and health care personnel of a nursing home facing a COVID-19 outbreak. J Am Med Dir Assoc. 2020;21(7):933-936.
14. Telford CT, Onwubiko U, Holland D, et al. Mass screening for SARS-CoV-2 infection among residents and staff in twenty-eight long-term care facilities in Fulton County, Georgia. medRxiv 2020. doi:10.1101/2020.07.01.20144162.
15. He M, Li Y, Fang F. Is there a link between nursing home reported quality and COVID-19 cases? Evidence from California skilled nursing facilities. J Am Med Dir Assoc. 2020;21(7):905-908.
16. Grabowski DC, Mor V. Nursing home care in crisis in the wake of COVID-19. JAMA 2020;324(1):23.
17. Gordon AL, Goodman C, Achterberg W, et al. Commentary: COVID in care-homes-challenges and dilemmas in healthcare delivery. Age Ageing 2020;49(5):701-705.
18. Blain H, Rolland Y, Schols J, et al. August 2020 interim EuGMS guidance to prepare European long-term care facilities for COVID-19. Eur Geriatr Med. 2020;11(6):899-913.
19. Banerji A, Wickner PG, Saff R, et al. mRNA vaccines to prevent COVID-19 disease and reported allergic reactions: current evidence and approach. J Allergy Clin Immunol Pract 2021;9(4):1423-1437.
26. Cabanillas B, Akdis C, Novak N. Allergic reactions to the first COVID-19 vaccine: is polyethylene glycol (PEG) the culprit? Br J Anaesth. 2021;126(3). https://doi.org/10.1016/j.bja.2020.12.020. [Epub ahead of print].

27. Klimek L, Jutel M, Akdis CA, et al. ARIA-EAACI statement on severe allergic reactions to COVID-19 vaccines - an EAACI-ARIA position paper. Allergy. 2021;76(6):1624-1628.

28. Klimek L, Novak N, Cabanillas B, Jutel M, Bousquet J, Akdis CA. Anaphylaxis and COVID-19 vaccine safety update. Advisory Committee on Immunization Practices (ACIP) January 27, 2021. National Center for Immunization and respiratory diseases CDC https://www.cdc.gov/vaccines/acip/meetings/downloads/slides-2021-01-06-COVID-Shimabukuro.pdf. 2021.

29. Sokolowska M, Eiwegger T, Ollert M, et al. EAACI statement on the possible involvement of polyethylene glycol and IgG-mediated complement activation. Allergy 2021; https://doi.org/10.1111/all.14794.

30. Aurich S, Dolle-Bierke S, Francuzik W, et al. Anaphylaxis in elderly patients-data from the European anaphylaxis registry. Front Immunol. 2019;10:750.

31. Campbell RL, Hagan JB, Li JT, et al. A Rapid review of advanced life support guidelines for cardiac arrest associated with anaphylaxis. Resuscitation 2021;78(8):2888-2890.

32. Rukma P. Glucagon for refractory anaphylaxis. Am J Ther. 2021;24(6):e755-e756.

33. Lieberman PL. Recognition and first-line treatment of anaphylaxis. Am J Med. 2014;127(1 Suppl):S6-11.