Discrete Double-Sided Quaternionic Fourier Transform and Application

Mawardi Bahria,1, Moh. Ivan Azisb, Firmanc, Chrisandi Landed

a,b,c Department of Mathematics, Hasanuddin University, Makassar 90245, Indonesia

E-mail: amawardibahri@gmail.com, bmohivanazis@yahoo.co.id, cfirman.math11@gmail.com

d Politeknik Ilmu Pelayaran Makassar, Makassar 90165, Indonesia

E-mail: dsandhylande@gmail.com

Abstract. In the present article, we first introduce the definition of the discrete double-sided quaternionic Fourier transform (DQFT) and obtain its inverse. We give examples how to compute the DQFT. We derive a discrete version of the duality property of the DQFT. We finally present an application of the DQFT to study the two-dimensional discrete linear time-varying systems.

1. Introduction

In the past few years, research on quaternionic Fourier transform has developed rapidly (see, e.g. [1, 2, 3, 4, 5, 6]). Basically, there are two kinds of the quaternionic Fourier transforms, namely the discrete quaternionic Fourier transform and continuous quaternionic Fourier transform [7, 8, 9, 10, 11, 12]. The discrete double-sided quaternionic Fourier transform is a generalization of the discrete Fourier transformation [13] in the setting of quaternion algebra. Since in some applications, we are always dealing with the discrete quaternionic Fourier transform [14, 15, 16], it is important to study the properties and its relation to the other general transform. Because the DQFT is a general form of the classical discrete Fourier transform (DFT), then several results of the DFT can be transferred in the DQFT domain.

In this article, we first provide the definition and inverse of the discrete double-sided quaternionic Fourier transform (DQFT). We give examples to compute the DQFT of an image and show that the original image can be obtained from its DQFT. We investigate in detail a discrete version of the duality property of the DQFT. We finally show that the DQFT can be used to studying the two-dimensional (2-D) discrete linear time-varying systems.

The remant of the present work has been structureed as follows. In Section 2 we recall basic results of the quaternions which will be needed later on. Section 3 provide definition and inverse of the DQFT and obtain theorem. In this section we also presents examples to compute the DQFT. Section 4 studies how to apply the DQFT for studying the 2-D discrete linear time-varying systems. In Section 5 we conclude the paper.

2. Notation

The quaternion algebra over real number \mathbb{R} is defined by

$$\mathbb{H} = \{s = s_a + is_b + js_c + ks_d \mid s_a, s_b, s_c, s_d \in \mathbb{R}\},$$

(1)

1 Corresponding Author.
which is an associative non-commutative four-dimensional algebra. The basic elements \(\{ i, i, i \} \) satisfy the rules:

\[
ij = -ji = k, \quad jk = -kj = i, \quad ki = -ik = j, \quad i^2 = j^2 = k^2 = ijk = -1. \tag{2}
\]

As in case of complex number, the conjugate of a quaternion \(z \) is defined by

\[
\bar{s} = s_a - is_b - js_c - ks_d,
\]
and it satisfies

\[
\overline{\bar{s}}z = z\bar{s}.
\]

From (3), we easily get

\[
|s| = \sqrt{s\bar{s}} = \sqrt{s_a^2 + s_b^2 + s_c^2 + s_d^2}. \tag{5}
\]

It is not difficult to see that

\[
|sz| = |s||z|, \quad \forall s, z \in \mathbb{H}. \tag{6}
\]

In view of (3) and (5), we can get the inverse of \(s \in \mathbb{H} \setminus \{0\} \) as

\[
s^{-1} = \frac{\bar{s}}{|s|^2}. \tag{7}
\]

For future use, we introduce a finite sequence of the quaternion numbers by

\[
\{ g(t, w), 0 \leq t \leq T, 0 \leq w \leq W \}. \tag{8}
\]

3. Discrete QFT and its Inverse

In analogy with the discrete Fourier transformation, the discrete quaternionic Fourier transform (DQFT) can be defined as

Definition 3.1. Given \(g(t, w) \in \mathbb{H}^{T \times W} \) of the two-dimensional discrete quaternion function. The DQFT of \(g(t, w) \) is given by

\[
Q_g(u, v) = \sum_{t=0}^{T-1} \sum_{w=0}^{W-1} e^{-\frac{2\pi i tu}{T}} g(t, w) e^{-\frac{2\pi j vw}{W}}. \tag{9}
\]

Observe now that according to equation (1), the above identity can be expressed as

\[
Q_g(u, v) = \sum_{t=0}^{T-1} \sum_{w=0}^{W-1} e^{-\frac{2\pi i tu}{T}} \left(g_a(t, w) + ig_b(t, w) + jg_c(t, w) + kg_d(t, w) \right) e^{-\frac{2\pi j vw}{W}}
\]

\[
= \sum_{t=0}^{T-1} \sum_{w=0}^{W-1} e^{-\frac{2\pi i tu}{T}} g_a(t, w) e^{-\frac{2\pi j vw}{W}} + i \sum_{t=0}^{T-1} \sum_{w=0}^{W-1} e^{-\frac{2\pi i tu}{T}} g_b(t, w) e^{-\frac{2\pi j vw}{W}}
\]

\[
+ \sum_{t=0}^{T-1} \sum_{w=0}^{W-1} e^{-\frac{2\pi i tu}{T}} g_c(t, w) e^{-\frac{2\pi j vw}{W}} j + i \sum_{t=0}^{T-1} \sum_{w=0}^{W-1} e^{-\frac{2\pi i tu}{T}} g_d(t, w) e^{-\frac{2\pi j vw}{W}} j. \tag{10}
\]
For the two-dimensional discrete real image g, equation (10) takes the form

$$Q_g(u, v) = \sum_{t=0}^{T-1} \sum_{w=0}^{W-1} e^{-\frac{2\pi i u t}{T}} g(t, w) e^{-\frac{2\pi j v w}{W}}. \quad (11)$$

For an illustration, let us consider how compute the DQFT of a simple image of size 2×2 pixels.

Example 3.1. Given an image $g = \begin{bmatrix} 26 & 20 \\ 10 & 5 \end{bmatrix}$. Then the DQFT of g is given by

$$Q_g = \begin{bmatrix} 61 & 11 \\ 31 & 1 \end{bmatrix}. \quad (12)$$

In view of equation (11) we can easily obtain

- $Q_g(0, 0) = 26 + 20 + 10 + 5 = 61$
- $Q_g(0, 1) = g(0, 0) + g(0, 1) e^{-\frac{2\pi i}{2}} + g(1, 0) + g(1, 1) e^{-\frac{2\pi i}{2}} = 26 - 20 + 10 - 5 = 11$
- $Q_g(1, 0) = g(0, 0) + g(0, 1) e^{-\frac{2\pi i}{2}} g(1, 0) + g(1, 1) e^{-\frac{2\pi i}{2}} g(1, 1) = 26 + 20 - 10 - 5 = 31$
- $Q_g(1, 1) = g(0, 0) + g(0, 1) e^{-\frac{2\pi i}{2}} + g(1, 0) + g(1, 1) e^{-\frac{2\pi i}{2}} = 26 - 20 - 10 + 5 = 1. \quad (13)$

Definition 3.2. The inverse two-dimensional discrete quaternion function (IDQFT) is defined by

$$(Q_g^{-1}g)(t, w) = \frac{1}{TW} \sum_{t=0}^{T-1} \sum_{w=0}^{W-1} e^{\frac{2\pi i u t}{T}} g(u, v) e^{\frac{2\pi j v w}{W}}. \quad (14)$$

Theorem 3.1. For a discrete quaternion function g we have

$$Q_g^{-1}(Q_g(u, v))(t, w) = g(t, w). \quad (15)$$

Proof. By using Theorem 3.1 we immediately obtain

$$Q^{-1}(Q(u, v))(t, w) = \frac{1}{TW} \sum_{t=0}^{T-1} \sum_{w=0}^{W-1} e^{\frac{2\pi i u t}{T}} Q(u, v) e^{\frac{2\pi j v w}{W}}$$

$$= \frac{1}{TW} \sum_{t=0}^{T-1} \sum_{w=0}^{W-1} \sum_{t=0}^{T-1} \sum_{w=0}^{W-1} e^{\frac{2\pi i u t}{T}} e^{-\frac{2\pi i u \ell}{T}} g(r, l) e^{-\frac{2\pi j v \ell}{W}} e^{\frac{2\pi j v w}{W}}$$

$$= \frac{1}{TW} \sum_{t=0}^{T-1} \sum_{w=0}^{W-1} \sum_{t=0}^{T-1} \sum_{w=0}^{W-1} e^{\frac{2\pi i ((u-\ell) w)}{T}} g(r, l) e^{\frac{2\pi j (v-\ell) w}{W}}. \quad (16)$$

It is obvious for $u = l$ and $v = r$ we obtain $e^{\frac{2\pi i (u-\ell) w}{T}} = 1$ and $e^{\frac{2\pi j (v-\ell) w}{W}} = 1$. This facts give

$$\sum_{t=0}^{T-1} \sum_{w=0}^{W-1} \sum_{t=0}^{T-1} \sum_{w=0}^{W-1} e^{\frac{2\pi i ((u-\ell) w)}{T}} e^{\frac{2\pi j (v-\ell) w}{W}} = TW \quad (17)$$
However, for \(u \neq l \) and \(v \neq r \) we obtain

\[
\sum_{t=0}^{T-1} \sum_{u=0}^{W-1} \sum_{l=0}^{T-1} \sum_{w=0}^{W-1} e^{2\pi i ((u-agl)-(u-agl))} e^{2\pi i (u-v)r/w} = 0. \tag{18}
\]

In accordance with (17) and (18) we finish the proof of the theorem.

The following examples describes that the original image can easily be obtained by taking inverse of the DQFT.

Example 3.2. Let be \(Q_g = \begin{bmatrix} 61 & 11 \\ 31 & 1 \end{bmatrix} \) be the DQFT of \(g \). By using the IDQFT we obtain the original image as \(g = \begin{bmatrix} 26 & 20 \\ 10 & 5 \end{bmatrix} \).

This can be obtained from

\[
g(0, 0) = \frac{1}{4} (61 + 11 + 31 + 1) = 61
\]

\[
g(0, 1) = \frac{1}{4} \left(Q_g(0, 0) + Q_g(0, 1) e^{2\pi i} + Q_g(1, 0) + Q_g(1, 1) e^{2\pi i/2} \right)
\]

\[
= \frac{1}{4} (61 - 11 + 31 - 1) = 20
\]

\[
g(1, 0) = \frac{1}{4} \left(Q_g(0, 0) + Q_g(0, 1) + e^{2\pi i/2} Q_g(1, 0) + e^{2\pi i} Q_g(1, 1) \right)
\]

\[
= \frac{1}{4} (61 + 11 - 31 - 1) = 10
\]

\[
g(1, 1) = \frac{1}{4} \left(Q_g(0, 0) + Q_g(0, 1) e^{2\pi i/2} + e^{2\pi i} Q_g(1, 0) + e^{-2\pi i} Q_g(1, 1) e^{2\pi i} \right)
\]

\[
= \frac{1}{4} (61 - 11 - 31 + 1) = 5. \tag{20}
\]

Now we are ready to state an important property of the DQFT (compare to [17]).

Theorem 3.2 (DQFT duality). Let \(Q_g(u, v) \) be a DQF of the discrete quaternion function \(g \). Then we have

\[
Q_g(Q_g(u, v))(l, r) = g(-l, -r). \tag{21}
\]

Proof. It directly follows from (9) that

\[
Q_g(Q_g(u, v))(l, r) = \sum_{t=0}^{T-1} \sum_{u=0}^{W-1} e^{-2\pi i t u} Q_g(u, v) e^{-2\pi i v w} \sum_{t=0}^{T-1} \sum_{u=0}^{W-1} \sum_{l=0}^{T-1} \sum_{w=0}^{W-1} e^{-2\pi i t l u} e^{-2\pi i t w} g(t, w) e^{-2\pi i r l v} e^{-2\pi i r w} \]

\[
= \sum_{t=0}^{T-1} \sum_{u=0}^{W-1} \sum_{l=0}^{T-1} \sum_{w=0}^{W-1} e^{-2\pi i t l} g(t, w) e^{-2\pi i r l v}. \tag{22}
\]
Notice first that if $l + t \neq 0$ and $r + w \neq 0$, then it holds
\[
\sum_{t=0}^{T-1} \sum_{w=0}^{W-1} e^{-2\pi i (l+t)t} e^{-2\pi j(r+w)w} = 0. \tag{23}
\]
This implies that $Q_g(Q_g(u,v))(l,r) = 0$. For $l + t = 0$ and $r + w = 0$ equation (22) becomes
\[
Q_g(Q_g(u,v))(l,r) = g(-l,-r). \tag{24}
\]
This is the desired result.

4. Application of DQFT

In what follows, we shall present a simple application of the DQFT for studying discrete version of linear time-varying systems. Let us now start by introducing the definition below.

Definition 4.1. Given a two-dimensional discrete linear TV system. Let $h_1(\cdot, \cdot)$ and $h_2(\cdot, \cdot)$ be the quaternion impulse response of the filters. We define the output $r(\cdot, \cdot)$ of the system to the input $f(\cdot, \cdot)$ as
\[
r(t, w) = \sum_{u=-\infty}^{\infty} \sum_{v=-\infty}^{\infty} h_1(t, t-u)f(u, v) h_2(w, w-v). \tag{25}
\]
Next, we define the quaternion transfer function of the linear time-varying systems filter h as
\[
R(t, w, \omega_1, \omega_2) = \sum_{t'=-\infty}^{\infty} \sum_{w'=-\infty}^{\infty} e^{-2\pi it'\omega_1} h(t, w, t', w') e^{-2\pi jw'\omega_2}. \tag{26}
\]
The following simple theorem relates the DQFT to the output of a discrete linear TV band-pass filter.

Theorem 4.1. Given a 2-D discrete linear time-varying system with the impulse response h determined by
\[
h_1(t, t')h_2(t, w') = e^{-2\pi i(t-t')t} e^{-2\pi j(w-w')w}, \quad \text{for } 0 \leq t \leq T-1, 0 \leq w \leq W-1. \tag{27}
\]
Suppose that the input to this system is the quaternion signal $g(u,v)$, then its output $r(\cdot, \cdot)$ is the DQFT of $g(u,v)$.

Proof. Applying (25) results in
\[
r(t, w) = \sum_{u=-\infty}^{\infty} \sum_{v=-\infty}^{\infty} h_1(t, t-u)g(u, v) h_2(w, w-v)
\]
\[
= \sum_{t=0}^{T-1} \sum_{w=0}^{W-1} e^{-2\pi i(t-(t-u))t} g(u, v) e^{-2\pi j(w-(w-v))w}
\]
\[
= \sum_{t=0}^{T-1} \sum_{w=0}^{W-1} e^{-2\pi iut} g(u, v) e^{-2\pi jwW}, \tag{28}
\]
which achieves the proof by the theorem. \qed
Now when impulse response h is described by

$$h_1(t, t')h_2(n, w') = \frac{1}{TW} e^{2\pi i (t - t')/T} e^{2\pi i j (w - w')/W},$$

(29)

thus from equation (25) we obtain

$$r_1(t, w) = \sum_{u=-\infty}^{\infty} \sum_{v=-\infty}^{\infty} h_1(t, t-u) Q_g(u, v) h(w, w-v)$$

$$= \frac{1}{TW} \sum_{t=0}^{T-1} \sum_{w=0}^{W-1} e^{2\pi i (t - (t-u))/T} Q_g(u, v) e^{2\pi i j (w - (w-v))/W}$$

$$= \frac{1}{TW} \sum_{t=0}^{T-1} \sum_{w=0}^{W-1} e^{2\pi i t/T} Q_g(u, v) e^{2\pi i j w/W}.$$

(30)

Here the input to the system is quaternion function $Q_g(u, v)$.

From (27), (29) we conclude the choice of the quaternionic impulse response gives output characteristics of the discrete linear time-varying systems.

5. Conclusion

In this work we have proposed the discrete double-sided quaternionic Fourier transform. We then have built a discrete version of the duality property of the DQFT. We finally discussed how to apply the DQFT for studying the 2-D discrete linear time-varying systems.

References

[1] Bayro-Corrochano E 2006 The theory and use of the quaternion wavelet transform Journal of Mathematical Imaging and Vision 26 (1) 5-18

[2] Bahri M and Ashino R 2017 A variation on uncertainty principle and logarithmic uncertainty principle for continuous quaternion wavelet transform Abstract and Applied Analysis 217 Article ID 3795120 11 pages

[3] M. Bahri M, Lawi A, Aris N, Saleh A F, and Nur M 2013 Relationships between convolution and correlation for Fourier transform and quaternion Fourier transform International Journal of Mathematical Analysis 7 (43) 2101–9

[4] Bahri M 2016 A modified uncertainty principle for two-sided quaternion Fourier transform Advances in Applied Clifford Algebras 26 (2) 513-27

[5] Bahri M 2014 On two-dimensional quaternion Wigner-Ville distribution Journal of Applied Mathematics 214 Article ID 139471 13 pages

[6] De Bie H, De Schepper N, Ell T A, Rubrecht K, and Sangwine S J 2015 Connecting Spatial and frequency domains for the quaternion Fourier transforms Applied Mathematics and Computation 271 581-93

[7] Hitzer E 2017 Quaternion Fourier transform on quaternion fields and generalizations Advances in Applied Clifford Algebras 17 (3) 497-517

[8] Hitzer E 2010 Directional uncertainty principle for quaternion Fourier transform Advances in Applied Clifford Algebras 20 (2) 271-84

[9] Hitzer E 2017 General two-sided quaternion Fourier transform, convolution and Mustard convolution Advances in Applied Clifford Algebras 27 (1) 381-95

[10] Hitzer E and Sangwine S J 2013 The orthogonal 2D planes split of quaternions and steerable quaternion Fourier transformations In: Hitzer E, Sangwine S J (eds.) Quaternion and Clifford Fourier transforms and wavelets, Trends in Mathematics Birkhäuser p 15-40

[11] Hitzer E 2017 Quaternionic Wiener-Khinchine theorems and spectral representation of convolution with steerable two-sided quaternion Fourier transform Advances in Applied Clifford Algebras 27 (2) 1313-28

[12] Bahri M, Ashino R, and Vaillancourt R 2012 Two-dimensional quaternion Fourier transform of type II and quaternion wavelet transform Proceedings of the 2012 International Conference on Wavelet Analysis and Pattern Recognition Xian China 2012 p 359-64

[13] Gröchenig K 2001 Foundation of Time-Frequency Analysis Birkhäuser Boston

[14] Ell T A and Sangwine S J 2007 Hypercomplex Fourier transform of color images IEEE Transactions on Signal Processing 16 (1) 22-35
[15] Reddy B D V and Prasad T J 2010 Frequency domain filtering of colour images using quaternion Fourier transforms *International Journal of Computer Science and Technology* **1** (2)

[16] Sangwine S J 1996 Fourier transforms of colour images using quaternion, or hypercomplex, numbers *Electronics Letters* **32** (21) 1979-80

[17] Bahri M and Ashino R 2018 Some useful results associated with right-sided quaternion Fourier transform *Proceedings of the 2018 International Conference on Wavelet Analysis and Pattern Recognition* Chengdu China 2018 p 161-67