Precision charmonium and D physics from lattice QCD and determination of the charm quark mass

Christine Davies
University of Glasgow, HPQCD collaboration

ICHEP08
Philadelphia, July 08
QCD is key part of SM but quark confinement tricky

Lattice QCD = full QCD effects

RECIPE

- Generate sets of gluon fields for Monte Carlo integrn of Path Integral (inc effect of sea quarks)
- Calculate averaged “hadron correlators” from valence q props.

\[\langle 0 | M^\dagger(0)M(t) | 0 \rangle \]

- Fit for masses and simple matrix elements
- Fix \(m_q \) and determine \(a \) to get physical results
HPQCD Priority PRECISION lattice QCD i.e. ~ 1%

- Allows non-trivial tests of QCD i.e. better than models.
- Allows accurate determn of SM parameters (inc CKM)
- Provides the underpinning for other calcs.

Possible for ‘gold-plated quantities’ i.e. stable hadron masses and weak/em decay rates to single hadron states

Statistical errors must be very good to test systematics.

Systematics from:

Expect an error budget

- disc. errors (need several a values)
- extrapoln to physical u/d masses $m_s/10 < m_u/d < m_s/2$
- finite volume
- errors in fixing QCD parameters. Use:

$\Upsilon(2S - 1S), m_\pi, m_K, m_{\eta_c}, m_\gamma$
2007 HPQCD/MILC/FNAL results

Analysis on MILC configs that include u,d, s improved staggered sea quarks - numerically fast

Recent highlight - very accurate charm physics
Charm quarks in lattice QCD - heavy or light?

Advantages of relativistic light quarks:

• \(E_{\text{sim}} = m \)
• PCAC relation (if enough chiral symmetry) gives \(Z = 1 \)
• same action as for u, d, s, so cancellation in ratios

Key issue is discretisation errors:

\[
m = m_{a=0}(1 + A(m_c a)^2 + B(m_c a)^4 + \ldots)
\]

\(m_c a \approx 0.4, (m_c a)^2 \approx 0.2, \alpha_s(m_c a)^2 \approx 0.06, (m_c a)^4 \approx 0.04 \)

for \(a \approx 0.1 \text{ fm} \)

Need to remove all of these errors for precision results

This is done in the Highly Improved Staggered Quark formalism, further improving Improved Staggered Quarks
Very precise D/Ds masses obtained

NO free parameters

charmonium masses, HISQ on fine MILC

D/Ds masses vs expt.

Fix m_c

lattice errors 6 MeV - a^2 extrap /error in a and em corrns

A key test of disc. errors since charmonium and D have different dynamics → stringent test of QCD.

E. Follana et al, 0706.1726[hep-lat]
Decay constants of $D/D_s/K/\pi$ to 2%.

$\text{Br}(H \rightarrow \mu\nu) \propto V_{ab}^2 f_H^2$

$f_H m_H = \langle 0 | \bar{\psi} \gamma_0 \gamma_5 \psi | H \rangle$

f is a property of the meson calculable in lattice QCD

Value can be extracted from expt if V_{ab} known

E. Follana et al, 0706.1726[hep-lat]
2008 Improved accuracy from CLEO-c
Leptonic rate \rightarrow decay constant using $V_{cs} = V_{ud}$, $V_{cd} = V_{us}$

$\begin{align*}
\hat{f}_{D} & \quad \hat{f}_{Ds} \\
\text{agree} & \quad 206(9) \quad 268(9) \\
\text{(exptl)} & \quad 3\sigma \\
207(4) & \quad 241(3) \\
\end{align*}$

$\text{Belle} \quad \text{EPS2007}$
$\text{BaBar} \quad \text{hep-ex/0607094}$
$\text{CLEO-c, 0806.2112, ICHEP08}$

$\text{HPQCD HISQ u,d,s sea} \quad \text{0706.1726[hep-lat]}$
$\text{FNAL/MILC u,d,s sea} \quad \text{LAT08 prelim.}$
$\text{ETMC u,d sea} \quad \text{LAT08 prelim.}$

$\text{First disagreement between lattice and expt. New physics?}$
Further checks of lattice QCD calcns important ...

1. Further masses of hadrons containing charm

Mass splitting V-PS accurately calculable

For staggered quarks there are different ‘tastes’

No dependence on m_u/d

Good agreement for all with expt. as $a \rightarrow 0$

New prelim. results on $a=0.06$fm lattices

Hyperfine splittings

$D_s^* - D_s$

$ψ - η_c$
2. Further decay constants of hadrons containing charm and strange

\[\Gamma_{e^+e^-} = \frac{4\pi}{3} \alpha_{QED}^2 e^2 Q f_V^2 m_V \]

\[f_V m_V = \langle 0 | J | V \rangle \]

Good agreement with expt for all tastes as \(a \to 0 \)

Need to complete with conserved vector current
3. Compare charmonium correlators to perturbation theory - allows accurate determn m_c, α_s

Small t correlators perturbative - take t moments

$$G_n = \sum_t (t/a)^n G(t)$$

$$\rightarrow \frac{\partial^n}{\partial E^n} \Pi(E = 0)$$

$$G_n = \frac{g_n(\alpha_{\overline{MS}}(\mu), \mu/m_c)}{(am_c(\mu))^{n-4}}$$

J. Kühn talk

QCD/Lattice

continuum pert. th.

(4-loop for low n)

I. Allison et al, 0805.2999[hep-lat]

HPQCD + Karlsruhe/Brookhaven

+ new results here
Gives 1% accurate value for m_c

Best lattice result from pseudoscalar

$m_c(3\text{GeV}) = 0.986(10)\text{GeV}$ \quad $m_c(m_c) = 1.267(9)\text{GeV}$

Contnm uses vector, $R(e^+ e^-) = 0.986(13)\text{ GeV}$

PRELIMINARY

4 different currents agree

Full error budget – biggest is determinn of a

$\mu = 3\text{GeV}$
\[\alpha_s \text{ determination} \]

\[\alpha_{\text{MSB}}(M_Z, n_f = 5) \]

\[\alpha_{\text{MS}}(M_Z) = 0.1183(7) \]

Reduction moments have less a dependence

New superflourine results

agrees with determn from Wilson loops (2008)

\[\alpha_{\text{MS}}(M_Z) = 0.1174(12) \]

Give \(m_c \)

Davies et al, 0807.1687

PRELIMINARY
Conclusions

- We now have lattice results in charm physics with accuracy (2%) similar to that for light hadrons.

- D_s decay constant is the *only* result (from ~ 15 quantities) that disagrees with experiment.

- Further tests this year confirm confidence in the lattice calculation must take this seriously.

Future:

- Need significantly improved experimental error on f_{D_s} - currently $3x$ lattice error.

- Further lattice calculations in other formalisms needed.

- Similarly accurate semileptonic form factors for $D/D_s/K$ need to be calculated.
Error budgets

Source	f_K/f_π	f_K	f_π	f_{Ds}/f_D	f_{Ds}	f_D	Δ_s/Δ_d
r_1 uncertainty	0.3	1.1	1.4	0.4	1.0	1.4	0.7
a^2 extrapol.	0.2	0.2	0.2	0.4	0.5	0.6	0.5
finite vol.	0.4	0.4	0.8	0.3	0.1	0.3	0.1
$m_{u/d}$ extrapol.	0.2	0.3	0.4	0.2	0.3	0.4	0.2
stat. errors	0.2	0.4	0.5	0.5	0.6	0.7	0.6
m_s evoln.	0.1	0.1	0.1	0.3	0.3	0.3	0.5
m_d, QED etc	0.0	0.0	0.0	0.1	0.0	0.1	0.5
Total %	0.6	1.3	1.7	0.9	1.3	1.8	1.2

$m_c(\mu)$

Source	R_6	R_8	R_4	R_6/R_8
a^2 extrapolation	0.3%	0.3%	0.4%	0.2%
perturbation theory	0.4	0.3	0.6	0.6
$\alpha_{\overline{MS}}$ uncertainty	0.3	0.4	0.0	0.0
$m_c(\mu)$ uncertainty	0.0	0.0	0.1	0.1
gluon condensate	0.3	0.0	0.4	0.7
statistical errors	0.1	0.0	0.2	0.1
m_{0c} errors from r_1/a	0.5	0.5	0.3	0.4
m_{0c} errors from r_1	0.6	0.6	0.1	0.1
$m_{u/d/s}$ extrapolation	0.2	0.2	0.1	0.2
finite volume	0.1	0.1	0.0	0.3
$\mu \to M_Z$ evolution	0.0	0.0	0.1	0.1
Total	1.0%	1.0%	1.0%	1.1%

Update of:

I.Allison et al,
0805.2999[hep-lat]
HPQCD + Karlsruhe/
Brookhaven