Production and decay of the heaviest odd-Z nuclei in the 249Bk + 48Ca reaction

Yu Ts Oganessian, F Sh Abdullin, C Alexander, J Binder, R A Boll, S N Dmitriev, J Ezold, K Felker, J M Gostic, R K Grzywacz, J H Hamilton, R A Henderson, M G Itkis, K Miernik, D Miller, K J Moody, A N Polyakov, A V Ramayya, J B Roberto, M A Ryabinin, K P Rykaczewski, R N Sagaidak, D A Shaughnessy, I V Shirokovsky, M V Shumeiko, M A Stoyer, N J Stoyer, V G Subbotin, A M Sukhov, Yu S Tsyganov, Yu S Tsyganov, V K Utyonkov, A A Voinov, and G K Vostokin

1Joint Institute for Nuclear Research, RU-141980 Dubna, Russian Federation
2Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
3Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
4University of Tennessee, Knoxville, TN 37996, USA
5Vanderbilt University, Nashville, TN 37235, USA
6Research Institute of Atomic Reactors, RU-433510 Dimitrovgrad, Russian Federation

Abstract. The reaction of 249Bk with 48Ca has been investigated with an aim of synthesizing and studying the decay properties of isotopes of the new element 117. The experiments were performed at five projectile energies (in two runs, in 2009-2010 and 2012) and with a total beam dose of 48Ca ions of about 9×10^{19}. The experiments yielded data on α-decay characteristics and excitation functions of the produced nuclei that establish these to be 293117 and 294117 – the products of the $4n$- and $3n$-evaporation channels, respectively. In total, we have observed 20 decay chains of $Z=117$ nuclides. The cross sections were measured to be 1.1 pb for the $3n$ and 2.4 pb for the $4n$-reaction channel. The new 289115 events, populated by α decay of 293117, demonstrate the same decay properties as those observed for 289115 produced in the 243Am(48Ca,$2n$) reaction thus providing cross-bombardment evidence. In addition, a single decay of 294118 was observed from the reaction with 249Cf – a result of the in-growth of 249Cf in the 249Bk target. The observed decay chain of 294118 is in good agreement with decay properties obtained in 2002-2005 in the experiments with the reaction 249Cf(48Ca,$3n$)294118. The energies and half-lives of the odd-Z isotopes observed in the 117 decay chains together with the results obtained for lower-Z superheavy nuclei demonstrate enhancement of nuclear stability with increasing neutron number towards the predicted new magic number $N=184$.

1. Introduction

After many unsuccessful attempts to reach the predicted “island of stability” of the superheavy elements (SHE) by means of different methods (see, e.g., Review [1] and references therein), including usage of kinematic separators of the fusion-evaporation reaction products [2], the work aimed at achieving this goal has been resumed in the Flerov Laboratory of Nuclear Reactions (JINR, Dubna).
For the first time, in complete-fusion reactions 242,244Pu, 245,248Cm, and 249Cf targets with 48Ca projectiles we have synthesized nine isotopes of even-Z nuclei of the new elements 114 (Fl), 116 (Lv) and 118 employing the Dubna gas-filled recoil separator (DGFRS) [3]. The production cross-sections and decay properties of the isotopes of $^{286-289}$114 and 292,293116 were recently confirmed in independent experiments performed at FLNR [4], LBNL [5,6], and GSI [7-9].

The next step towards the island of stability of the nuclei around $N=184$ and $Z=114$ (or 120-126) was the production of odd-Z nuclides in reactions with odd-Z targets (237Np, 243Am, and 249Bk). Studies of odd-Z nuclei provide even more detailed information about the structure of the heaviest nuclides than studies of even-Z nuclei because of the longer odd-Z decay chains; this results from strong fission hindrance caused by the unpaired nucleons. For the first time, the nuclei 287115 and 288115 and their decay products including 283113 and 284113 isotopes were observed in 2003 [10] in the 243Am+48Ca reaction; then new isotopes 289115 and 285113 were observed in 2010-2012 [11]. In 2006 a lighter isotope 282113 was synthesized in the 237Np(48Ca,3n) reaction [12]. In addition, three decay chains of the lightest isotope 278113 were observed in the reaction 209Bi(70Zn,n) in 2004, 2005, and 2012 [13].

The discovery of element 117 in the 249Bk+48Ca reaction has been reported in 2010 [14]. A relatively high stability of all these odd-Z nuclei is caused by the influence of presumably spherical nuclear shells at $Z=114–126$ and $N=184$. In 2012, we have performed a new series of experiments to obtain a more detailed information on the decay properties of odd-Z nuclei, to measure the excitation function of the 249Bk+48Ca reaction in a more extended range of projectile energies, and to make a cross-bombardment consistency check of the reported discoveries of elements 113, 115 and 117 [11,15].

2. Experiment

For the synthesis and identification of these odd-Z nuclei, we used the Dubna gas-filled recoil separator that selects evaporation products of complete-fusion reactions that are strongly forward peaked and suppresses the products of transfer reactions and reactions with emission of charged particles (pxn, αxn, etc.). The evaporation residues were separated in flight, then passed through a time-of-flight system and were implanted in a focal-plane silicon detector, with an estimated transmission efficiency of about 35% for $Z=117$ nuclei. Prior to 2011 in our work we used 4×12 cm2 Si-detector array with 12 vertical position-sensitive strips surrounded by eight 4×4 cm2 detectors without position sensitivity (see Refs. [3,10-12,14], and references therein). The detection system was calibrated by registering the recoil nuclei and decays (α or SF) of the known isotopes of No and Th and their descendants [16] produced in the reactions 208Pb(48Ca,2n) and 168Yb(48Ca,3-5n), respectively. In the above experiments, the full-width-at-half-maximum (FWHM) energy resolution of α particles implanted in the focal-plane detectors was 60–140 keV, depending on the strip and the position within the strip. The FWHM position resolutions of the signals of correlated decays of nuclei implanted in the detectors were 1.1–1.3 mm for ER-α signals and 0.4–0.8 mm for ER-SF signals [14].

In 2011, before performing the new run for additional study of the excitation function of the 249Bk+48Ca reaction and decay properties of $Z=117$ isotopes and descendant nuclei, the detection system was modified to increase the position granularity of the detectors, which reduces the probability of observing sequences of random events that mimic decay chains of synthesized nuclei. The new focal-plane detectors consisted of two 6×6 cm2 detectors each having 16 strips surrounded by six 6×6 cm2 side detectors. The appropriate multi-channel data acquisition system [17] was developed by the DGFRS research crew on the basis of POLON spectroscopic modules and products of TekhInvest Ltd. (Dubna, Russia). This allowed us to get for the focal-plane detector the FWHM energy resolution of 34–73 keV, while the sum signals recorded by the side and focal-plane detectors had an energy resolution of about 83 to 117 keV. The FWHM position resolutions of the implantation detector were 1.1–1.8 mm for ER-α signals and 0.5–1.2 mm for ER-SF signals [15]. Other experimental conditions were the same as in Refs. [3,10-12,14]. The summary conditions of the 249Bk+48Ca reaction studied at the DGFRS are shown in Table 1. In order to reduce the background rate in the detector, the beam was switched off (like it was implemented in all the previous
experiments) after a recoil signal was recorded being followed by an α-like signal in the focal-plane detector within energy and time intervals corresponding to decays of parent and/or daughter nuclei, in the same strip and in close position.

Table 1. The 249Bk target thickness a, lab-frame beam energies in the middle of the target layers, resulting excitation-energy intervals, total beam doses, and numbers of observed decay chains assigned to the parent nuclei 293117 ($4n$) and 294117 ($3n$) are listed.

Target thickness (mg/cm2)	E_{lab} (MeV)	E_{exc} (MeV)	Beam dose $\times 10^{18}$	Number of chains $4n / 3n$	Ref.
0.33	243.7	30.4–34.7	9.4	0 / 1	[15]
0.31	247.0	33.2–37.5	20.	0 / 1	[14]
0.33	246.8	32.8–37.5	5.4	0 / 2	[15]
0.31	251.7	37.2–41.4	24.	5 / 0	[14]
0.33	251.7	37.0–41.9	14.1	5 / 0	[15]
0.33	255.7	40.3–44.8	9.2	3 / 0	[15]
0.33	259.8	43.8–48.3	11.9	3 / 0	[15]

3. Results

In the experiments with the 243Am+48Ca reaction in 2010-2012, at the lowest excitation energies $E^*=31.1–36.4$ MeV four decay chains of the isotope 289115, the product of the $2n$ channel, were observed [11] (see Figure 1). Because of the mass difference between 243Am and 249Bk ($\alpha+2n$) and lower yields of the $1n$ and $5n$ channels compared with the $2-4n$ channels, one and the same isotope of element 115, 289115, can be produced only in the $2n$- and $4n$-evaporation channels of the 243Am+48Ca and 249Bk+48Ca reactions, respectively. Indeed, 16 decay chains of the parent isotope 293117 were observed in the 249Bk+48Ca reaction at higher excitation energies $E^*=37.0–48.3$ MeV. The radioactive decay properties of 289115 and all the descendant nuclei discovered in 2010 [14] were confirmed by registration of 11 new decay chains in this new series of experiments [15]. One can see in Figure 2 that decay characteristics of 289115, 285113, and 280Rg, α-decay products of 293117, in the five events observed in the first experiment [14] and four events originating from 289115 and produced in cross reaction with 251Am [11] are in good agreement with the recent data. Thus, the isotope 289115 was produced in two reactions with target nuclei 243Am and 249Bk that provide cross-bombardment evidence for the discovery of elements 117, 115, and 113.

The heaviest isotope 294117, product of the 249Bk(48Ca,$3n$) reaction, was synthesized at lower excitation energies of 30.4–37.5 MeV. The decay properties of all the nuclei determined in the four decay chains originating from parent nucleus 294117 are shown in Figure 3. The properties of the nuclei in the new decay chains point to the same activities

a As in [14], the 249Bk was produced at ORNL at the High Flux Isotope Reactor. The Bk fraction was chemically separated and purified at the Radiochemical Engineering Development Center at ORNL. Six arc-shaped targets were made at RIAR.
The maximum cross sections for the $3n$ and $4n$ evaporation channels, were measured to be $\sigma_{3n} = 1.1^{+0.6}_{-0.6}$ pb and $\sigma_{4n} = 2.4^{+3.3}_{-1.3}$ pb, at $E^* = 35$ and 43 MeV respectively (see Figure 1).

The target isotope 249Bk with a half-life of 330 d decays into 249Cf. During a long experiment, this creates an opportunity to produce $Z=118$ isotopes in the 249Cf+48Ca reaction [21]. Indeed, with 247-MeV 48Ca we observed one more decay chain of nuclei whose radioactive properties agree well with those determined for 294118 and its descendant nuclei 290Lv and 286Fl (fission branch of about 50%) [3,21] (see Figure 4b). Taking into account the buildup of 249Cf in the preceding [14] and present [15] experiments, the detected decay chain of 294118 corresponds to $0.3^{+0.5}_{-0.4}$ pb for the total excitation energy interval of 26.6–37.5 MeV of the compound nucleus 297118, in good agreement with cross sections already measured in this reaction [3,21].

Therefore, the discovery of the chemical elements with atomic numbers 113, 115, and 117 that were synthesized for the first time in 2003 [10] and 2010 [14] has now been corroborated through the observation of additional decay chains in the reaction 249Bk+48Ca. In total, 59 decay chains originating from odd-Z parent nuclei 282113 [12], $^{287-289}$115 [10,11], and 293,294117 [14,15] were observed and radioactive decay properties of 29 new isotopes were determined (see Figure 4a). The measured α-particle energies for all the isotopes of odd-Z elements produced in the reactions 243Am+48Ca and 249Bk+48Ca agree well with the systematics of the α-decay energies of the heavy nuclei and have intermediate values between

Figure 2. α-particle energy spectra registered by the focal-plane detector only or together with the side one (left-hand panel) and decay-time distributions on a logarithmic scale (right-hand panel) for isotopes originating from 293117. The events originating from 293117 observed in the first [14] and in the second experiment with 249Bk [15] and in the reaction with 243Am [11] are shown in the histograms by red (top), green (middle), and blue (bottom) lines, respectively.

Figure 3. The same as Figure 1 but for 294117. The vertical lines show the energies and decay times of the events obtained in the first experiment [14].
neighboring even-Z nuclei. The measured α-particle energies of the $Z=107$ and $Z=109$ isotopes as well as their behavior vs. neutron number are in full agreement with what is observed for the previously known neighboring lighter nuclei. Moreover, ^{268}Db, the descendant nucleus of $^{288}\text{115}$ and $^{284}\text{113}$, was identified in independent chemistry experiments [22,23].

The experimental half-lives of the isotopes of odd-Z elements are shown in Figure 5. The increase of neutron number in nuclei with $N\geq165$ results in considerable rise of their half-lives. An especially strong growth of lifetimes with increasing N is observed for the isotopes of elements 109, 111, and 113. The half-lives, as well as α-particle energies of the odd-Z isotopes observed in the $Z=117$ decay chains, together with the results obtained for lower-Z superheavy nuclei, demonstrate the decisive role of nuclear shell effects resulting in enhancement of stability with increasing neutron number towards the predicted new magic number $N=184$.

Experimental study of the properties of odd-Z nuclei was recently performed at the gas-filled recoil separator TASCA at GSI in fusion-evaporation reactions $^{243}\text{Am}+^{48}\text{Ca}$ [24] and $^{249}\text{Bk}+^{48}\text{Ca}$ [25]. Authors of Ref. [24] announced observation of 23 correlated α-decay chains starting from $^{287,288}\text{115}$ isotopes; their observed decay pattern and properties are in good agreement with the DGFRS data [10,11]. Two decay chains of $^{294}\text{117}$ and descendant nuclei observed in the $^{249}\text{Bk}+^{48}\text{Ca}$ reaction have been reported in [25]. The production cross

Figure 4. (a) Summary of the decay properties of the isotopes of elements 113, 115 and 117 observed for the first time among the reaction products of ^{48}Ca beam with ^{237}Np, ^{243}Am and ^{249}Bk targets. The number of the detected decay events of a given isotope is shown at the bottom of the chains. (b) Decay properties of $^{294,118-296}\text{Fl}$ measured in the $^{249}\text{Cr}{}^{48}\text{Ca},3\text{n}$ reaction [14].

Figure 5. Half-lives vs. neutron number for the isotopes of odd-Z elements (results from $^{249}\text{Bk}+^{48}\text{Ca}$ reactions are shown by full red diamonds).
section of $^{294}_{117}$ nucleus and decay properties of the observed descendant nuclei confirm previously reported DGFRS data [14,15].

Acknowledgments
We are grateful to the JINR directorate and U400 cyclotron and ion source crews for their continuous support of the experiments. We acknowledge the support of the RFBR Grants No. 13-02-12052 and 13-03-12205. Research at ORNL was supported by the U.S. DOE Office of Nuclear Physics under DOE Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. Research at LLNL was supported by LDRD Program Project No. 08-ERD-030, under DOE Contract No. DEAC52-07NA27344 with Lawrence Livermore National Security, LLC. This work was also supported by the U.S. DOE through a Grant No. DE-FG-05-88ER40407 (Vanderbilt University). These studies were performed in the framework of the Russian Federation/U.S. Joint Coordinating Committee for Research on Fundamental Properties of Matter.

References
[1] Flerov G N and Ter-Akopian 1983 Rep. Prog. Phys. 46, 817.
[2] Armbruster P et al. 1985 Phys. Rev. Lett. 54, 406.
[3] Oganessian Yu Ts 2007 J. Phys. G: Nucl. Part. Phys. 34, R165; 2011 Radiochim. Acta 99, 429.
[4] Eichler R et al. 2010 Radiochim. Acta 98, 133.
[5] Stavsetra L et al. 2009 Phys. Rev. Lett. 103, 132502.
[6] Ellison P A et al. 2010 Phys. Rev. Lett. 105, 182701.
[7] Hofmann S et al. 2007 Eur. Phys. J. A 32, 251.
[8] Düllmann Ch E et al. 2010 Phys. Rev. Lett. 104, 252701.
[9] Hofmann S et al. 2012 Eur. Phys. J. A 48, 62.
[10] Oganessian Yu Ts et al. 2004 Phys. Rev. C 69, 021601(R); 2005 Phys. Rev. C 72, 034611.
[11] Oganessian Yu Ts et al. 2012 Phys. Rev. Lett. 108, 022502; 2013 Phys. Rev. C 87, 014302.
[12] Oganessian Yu Ts et al. 2007 Phys. Rev. C 76, 011601(R).
[13] Morita K et al. 2004 J. Phys. Soc. Jpn. 73, 2593; 2007 ibid. 77, 045001; 2012 ibid. 81, 105201.
[14] Oganessian Yu Ts et al. 2010 Phys. Rev. Lett. 104, 142502; 2011 Phys. Rev. C 83, 054315.
[15] Oganessian Yu Ts et al. 2012 Phys. Rev. Lett. 109, 162501; 2013 Phys. Rev. C 87, 054621.
[16] Audi G et al. 2012 Chinese Phys. C 36, 1287.
[17] Tsyganov Yu S, Polyakov A N, Voionov A A, Shumeyko M V 2013 Proc. Int. Symp. on Nuclear Electronics and Computing (Varna, Bulgaria, 9-16 September 2013) (Dubna: Russian Federation/JINR) p 250.
[18] Schmidt K-H et al. 1984 Z. Phys. A 316, 19.
[19] Zagrebaev V and Greiner W 2008 Phys. Rev. C 78, 034610.
[20] Siwek-Wilczyńska K et al. 2012 Phys. Rev. C 86, 014611.
[21] Oganessian Yu Ts et al. 2006 Phys. Rev. C 74, 044602.
[22] Dmitriev S N et al. 2005 Mendeleev Commun. 15, 1.
[23] Stoyer N J et al. 2007 Nucl. Phys. A 787, 388c.
[24] Rudolph D et al. 2013 Phys. Rev. Lett. 111, 112502.
[25] Khuyagbaatar J et al. 2014 Phys. Rev. Lett. 112, 172501.