The Impact of the Associated Pathology in Acute Coronary Events

Sorption Nicolae Dinescu¹, Ramona Constantina Vasile¹, Maria Marilena Frunzulică², Venera Cristina Dinescu³, Emilia Burada⁴, Andreea Tănase⁴, Cătălina Elena Bica⁵, Victor Gheorman⁶, Ovidiu Ştefan Georgescu², Florin Marius Romanescu⁴

¹Epidemiology Department, University of Medicine and Pharmacy of Craiova, Romania
²PhD, University of Medicine and Pharmacy of Craiova, Romania
³Health Promotion Department, University of Medicine and Pharmacy of Craiova, Romania
⁴Physiology Department, University of Medicine and Pharmacy of Craiova, Romania
⁵Paediatrics Department, University of Medicine and Pharmacy of Craiova, Romania
⁶Psychiatry Department, University of Medicine and Pharmacy of Craiova, Romania

ABSTRACT: Acute coronary events (ACE) are one of the main concerns for both clinical medicine and prophylaxis. The study aims to follow the frequency of the pathology associated with ACE and to establish its association with the occurrence of ACE. The study included 865 adult participants between the ages of 19-86. Subjects completed a complex questionnaire that included questions about health status. The study was conducted by applying the subjects to an anonymous questionnaire, in three family medicine practices between November 2018 to May 2019 and targeted healthy people. The frequencies of the following types of associated pathologies were evaluated: high blood pressure (HBP), hypercholesterolemia, stroke, diabetes, depression, stress. In hypertensive patients the prevalence of ACE was 6.99% (N=11) and in those not diagnosed with HBP of only 0.29% (N=2). The risk of ACE was 20 times higher in those without HBP (RR=20.93; p<0.001). The prevalence of ACE was high among subjects with high cholesterol levels (21.43%) compared with those with normal values (3.03%; N=22), the risk of ACE being 7 times higher (RR=7.06; p<0.001). The prevalence of diabetes was more than four times higher in subjects with ACE (17.3%; N=9) compared with those without ACE (3.9%; N=32). Among those affected by diabetes, the prevalence of ACE was 21.95% (9/41), and risk of ACE in people with diabetes was four times higher (RR=4.21; p<0.001). Although cardiovascular disease is the most common pathology in the contemporary world, a number of comorbidities arise as ACE generators (hypertension, hypercholesterolemia, diabetes), along with psycho-emotional disorders such as depression, anxiety or stress, which outline, ensures, contributes or accelerates the progression to ACE.

KEYWORDS: Acute coronary event, high blood pressure, cholesterol level, stroke, diabetes, depression.

Introduction

There are a number of factors involved in the occurrence of acute coronary events (ACE) that have been the main purpose in developing many studies and hypotheses regarding their association and their decisive role in the precipitation and evolution of this pathology [1,2,3].

The risk profile for vascular comorbidities include their recurrent association with hypertension, diabetes, but also with other risk factors [4].

Half of the overall mortality is determined by a multitude of risk factors, the most common being the behavioral, metabolic, occupational and environmental [5].

Due to the recent increase in the incidence of diabetes and obesity among the population, the morbidity caused by ACE and the costs associated with it is a challenge for society [6].

The frequencies of the following types of associated pathologies were evaluated: high blood pressure (HBP) [2,3,4], hypercholesterolemia (HCOL) [7], stroke, diabetes [8,9], depression [10,11,12], stress [13,14].

They were included in the term of acute coronary events: angina and acute myocardial infarction (AMI) [15,16,17,18].

The study aims to monitor the frequency of pathology associated (HPB, HCOL, diabetes, stroke, depression, stress) with ACE and to establish its association with these events.
Methods and Material

The study was conducted by applying the subjects to a complex questionnaire, in three family medicine practices between November 2018 to May 2019 and targeted healthy people.

The study included 865 adult participants aged 19 to 86 years.

All subjects included in the study completed an anonymous, complex questionnaire that included health questions.

Informed consent was obtained from all subjects included in the study.

The present study was approved by the Ethics Committee of the University of Medicine and Pharmacy of Craiova.

The risk was calculated by using relative risk, accepting the statistical significance of the association between the variables for p-values, thus facilitating a 95% confidence level, established by the chi-square test, just below 0.05.

Results

The most known cause of ACE is accepted to be HBP which in the study population had a prevalence of 20.81% (N=180), but four times higher in subjects with ACE (73.1%; N=38) compared to those without ACE (17.5%; N=142) (Table 1).

Although only 13 subjects had a history of AMI (1.5%), most of them (N=11) had HBP in their history (84.6%) unlike those without AMI, at which the prevalence of HBP was 19.8% (Table 2).

Thus, in hypertensive patients the prevalence of ACE was 6.99% (N=11) and in those not diagnosed with HBP was only 0.29% (N=2).

In this context, of the very high prevalence of ACE among subjects with HBP, the risk of ACE was 20 times higher than in those without HBP, marking one of the strongest associations (RR=20.93; 95%CI 4.68-93.59; p<0.001), this being higher in women (RR=29.21; p=0.004) than in men (RR=9.1; p<0.001), in women, AMI in the absence of HBP being rare (0.26%) (Table 3).

% (N)	All (N=865)	ACE+(N=52)	ACE-(N=813)	AMI+(N=13)	AMI-(N=852)
HBP	20.81 (180)	73.1 (38)	17.5 (142)	84.6 (11)	19.8 (169)
HCOL	16.2 (140)	57.7 (30)	13.5 (110)	69.2 (9)	15.4 (131)
Diabetes	4.7 (41)	17.3 (9)	3.9 (32)	30.8 (4)	4.3 (37)
Stroke	0.81 (7)	1.9 (1)	0.7 (6)	7.7 (1)	0.7 (6)
Depression	1.50 (13)	3.8 (2)	1.4 (11)	7.7 (1)	1.4 (12)
Stress	8.6 (74)	11.5 (6)	8.36 (68)	0.0 (0)	8.69 (74)

High cholesterol levels were identified in more than half of the cases with ACE (57.7%; N=32) as opposed to subjects without ACE, where high cholesterol levels were only reported by 13.5% (N=102).

The impact of hypercholesterolemia is underlined by the high prevalence of ACE among subjects with high cholesterol levels (21.43%) compared with those with normal values (3.03%; N=22), the risk of ACE in those with hypercholesterolemia being 7 times higher (RR=7.06; 95%CI 4.2-11.87; p<0.001).

Furthermore, the risk of AMI was more than 10 times higher in subjects with HBP than in those without (RR=13.71; 95%CI 4.20-43.8; p<0.001).

The prevalence of diabetes in the whole group was 4.7% (N=31), being more than four times higher in subjects with ACE (17.3%; N=9) compared with those without ACE (3.9%; N=32). Among those affected by diabetes, the prevalence of ACE was 21.95% (9/41), the risk of ACE in people with diabetes being four times higher (RR=4.21; 95%CI 2.2-8.03; p<0.001) compared to those without a history of diabetes (3.9%; 32/813).

Women with diabetes had a higher prevalence of ACE (31.82%; N=7) than diabetic men (10.53%; N=2), although the prevalence of diabetes was similar in women (4.97%) and men (4.55%), which may suggest that women with diabetes are more likely to develop an ACE than men.

In the case of diabetes association, the risk in women was six times higher than in the absence of diabetes (RR=5.87; 95%CI 2.85-12.06; p<0.001), and to a lesser extent, in men only twice as high (RR=2.12; 95% CI 0.53-8.49; p=0.29).
The prevalence of stroke in all groups was 0.81% (N=7), among stroke subjects a case also presented AMI.

The prevalence of ACE was of 1.9% and of AMI of 7.7%.

Depression was recognized by only 13 surveyed subjects (1.5%), but a double prevalence was observed among those with history of ACE (3.8%; N=2) compared with those without history of ACE (1.4%; N=11).

Also, the risk of ACE in subjects with depression was more than 2 times higher compared to those without depression, without attaining statistical significance (RR=2.62; 95%CI 0.71-9.65; p=0.15), the frequency of ACE in depressed persons being of 15.38% (N=2), and for those without depression of 5.87% (N=50), but the differences were statistically insignificant (p=0.51).

Table 2. Prevalence of ACE and AMI in subject according with presence of associated disease. (+) - Presence of associated disease; (-) - Absence or unconfirmed associated disease.

	ACE percentage	AMI percentage
HBP+	21.11%	84.6%
HBP-	2.04%	19.8%
HCOL+	21.43%	69.2%
HCOL-	3.03%	15.4%
Diabetes+	21.95%	30.8%
Diabetes-	5.22%	4.3%
Stroke+	14.29%	7.7%
Stroke-	5.94%	0.7%
Depression+	15.38%	7.7%
Depression-	5.87%	1.4%
Stress+	8.11%	0.0%
Stress-	5.82%	8.7%

Table 3. Risk of ACE and AMI in subjects with various diseases.

	ACE RR	95%CI	p	AMI RR	95%CI	p	
HBP^{a,b}	10.33	5.72 - 18.64	<0.001		20.93	4.68 - 93.58	<0.001
Hypercholesterolemia	7.06	4.2 - 11.87	<0.001		13.71	4.29 - 43.8	<0.001
Diabetes^{a,b}	4.21	2.2 - 8.03	<0.001	8.93	2.87 - 27.79	<0.001	
Stroke^b	2.54	0.41 - 15.87	0.32	10.26	1.53 - 68.58	0.016	
Depression^{a,b}	2.62	0.71 - 9.65	0.15	5.96	1.03 - 42.83	0.046	
Stress^a	1.39	0.62 - 3.15	0.43	0.59	0.02 - 6.51	0.51	

^aACE p<0.001; ^bAMI p<0.001;

Of the subjects in this study, 8.6% (N=74865) declared themselves affected by stress, and in those with a history of ACE, stress was recognized by 11.5% (N=652) compared to 8.36% (N=68813) by those without a history of ACE (p=0.43).

Discussions

It is currently accepted that the most important association is between ACE and HBP, having in the studied population a prevalence four times higher in subjects with ACE compared to those without ACE.

The risk of ACE was 20 times higher than in those without HBP, and this was one of the strongest associations, the highest values being recorded for women [2,3,4].

The increased cholesterol level is directly involved in the vascular wall aggression process which leads to a complex cardiovascular pathology including HBP and coronary events [6].

Increased cholesterol accumulation in the arterial intima leads to increased oxidative stress, that through heat shock proteins lead to production of proatherogenic cytokines like interleukins IL-1, IL-6 and TNF-α, leading to an amplified inflammatory response and a reduction in the nitric oxide production, a biologically active dissolved gas that normally produces smooth muscle relaxation [19].

Overall, the risk of developing ACE in people with diabetes was four times higher compared to subjects without a history of diabetes [8].

It is important to monitor and control blood sugar levels in people with diabetes and acute coronary syndrome [9].

In fact, the risk for developing an ACE in the US population is 1.7 higher for the population with diabetes, compared to those without a diagnosed diabetes, and this risk increase ranges from 1-3 for men, and 2-5 in women [20].

People with depression are more likely to develop ACE than the general population, which
might be explained by several pathogenetic mechanisms.

Thus, a lower stress resistance might be associated with lower physical training and resistance, increased risk for addictions like smoking, alcohol and other drugs that can be themselves considered direct risk factors.

It is thus recommended that patients with depression and ACE apply a complex management of both physical and mental rehabilitation [10].

Although stress is invoked by numerous studies, but also by the general perception of being strongly associated with ACE, in reality intensity of stress leads to an over-evaluation or inadequate evaluation of its association with various pathologies [13].

Measuring the cardiovascular response to stressful situations that can cause disease can be considered an effective method of prophylaxis. Studies on cardiovascular reactivity to real-life stress as a predictor of cardiovascular disease are considered uncertain [14].

It is important to develop additional strategies that should address primary and secondary prevention modalities after ACE [21].

A particularly important strategy in the management of risk factors requires multidisciplinary involvement of all those who can contribute to reducing these risk factors [22].

Conclusions

Although cardiovascular disease is the most common pathology in the contemporary world, a number of comorbidities arise as ACE generators (hypertension, hypercholesterolemia, diabetes), along with psycho-emotional disorders such as depression, anxiety or stress, which outline, ensures, contributes or accelerates the progression to ACE.

Some of these associated diseases share common risk factors and mechanisms, which mean that controlling them, can achieve great benefits in reducing cardiovascular disease including ACE.

Abbreviations:

ACE-Acute coronary events
HBP-High blood pressure
HCOL-Hypercholesterolemia
AMI-Acute myocardial infarction

Acknowledgements

Sorin Nicolae Dinescu, Venera Cristina Dinescu and Maria Marilena Frunzulică share equal contributions to this work.

Conflict of interests

None to declare.

References

1. Doneen AL, Bale BF, Vigerust DJ, Leimgruber PP. Cardiovascular Prevention: Migrating From a Binary to a Ternary Classification. Front Cardiovasc Med. 2020, 7:92.

2. Balljupalli C, Bramlage P, Lösch C, Zemmrich C, Humphries KH, Moebus S. Prevalence and control of high blood pressure in primary care: results from the German Metabolic and Cardiovascular Risk Study (GEMCAS). Hypertens Res, 2014, 37(6):580-584.

3. Cifková R, Lánská V, Bruthans J, Mayer O Jr, Kotseva K, Wood D, Lovic D, De Sutter J, Reiner Z, Fras Z, Deckers J, Gotcheva N, Georgiev B, De Bacquer D, EUROASPIRE IV investigators. Blood pressure distribution and control in coronary patients from 24 European countries in the European Society of Cardiology EUROObservational Research Programme European survey of cardiovascular disease prevention and diabetes. EUROASPIRE IV Registry. J Hypertens, 2019, 37(10):2015-2023.

4. Pedrinelli R, Ballo P, Fiorentini C, Denti S, Galderisi M, Ganau A, Germanò G, Innelli P, Paini A, Perlisi S, Salvetti M, Zacà V, Gruppo di Studio Ipertensione e Cuore, Societa' Italiana di Cardiologia. Hypertension and acute myocardial infarction: an overview. J Cardiovasc Med (Hagerstown), 2012, 13(3):194-202.

5. GBD 2016 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet, 2017, 390(10100):1345-1422.

6. Arbab-Zadeh A, Nakano M, Vrmani R, and Fuster V. Acute Coronary Events Circulation. 2012, 125:1147-1156.

7. Goldstein JL, Brown MS. A century of cholesterol and coronaries: from plaques to genes to statins. Cell, 2015;161(1):161-172.

8. Wierzbicki AS. Further options for treating lipids in people with diabetes: targeting LDL-cholesterol and beyond. Diabet Med, 2018, 35(9).

9. Lan NSR, Fegan PG, Rankin JM, Bell DA, Watts GF, Yeapm BB. Implementing simple algorithms to improve glucose and lipid management in people with diabetes and acute coronary syndrome. Diabet Med. 2019, 36(12):1643-1651.

10. Hare D, Toukhatsi SR, Johannson P, Jaarasma T. Depression and cardiovascular disease: a clinical review. Eur Heart J. 2014, 35(21):1365-1372.

11. Smith NF, Lespérance F. Depression and other psychological risks following myocardial infarction. Arch Gen Psychiatry. 2003, 60(6):627-636.

12. Meinecke U, Hoff P. Psychiatric disorders following myocardial infarction. Med Klin (Munich) 2006, 101(5):373-377.
13. Gallagher S, Riordan AO, McMahon G, Creaven AM. Evaluating personality as a moderator of the association between life events stress and cardiovascular reactivity to acute stress. Int J Psychophysiol. 2018, 126:52-59.
14. Zanstra YJ, Johnston DW. Cardiovascular reactivity in real life settings: measurement, mechanisms and meaning. Biol Psychol. 2011, 86(2):98-105.
15. Wang Y, Jing Li, Zheng X, Jiang Z, Hu S, Wadhera RK, Bai X, Lu J, Wang Q, Li Y, Wu C, Xing C, Normand SL, Krumholz HM, Jiang L. Risk Factors Associated With Major Cardiovascular Events 1 Year After Acute Myocardial Infarction. JAMA Netw Open. 2018, 1(4):e181079.
16. Park HW, Kang MG, Kim K, Koh JS, Park JR, Jeong YH, Ahn JH, Jang JY, Kwak CH, Park Y, Jeong MH, Kim YJ, Cho MC, Kim CJ, Hwang JY, KAMIR-NIH registry. Long-term Prognosis and Clinical Characteristics of Patients with Newly Diagnosed Diabetes Mellitus Detected after First Acute Myocardial Infarction: from KAMIR-NIH Registry. Korean Circ J. 2018, 48(2):134-147.
17. Gheorman V, Dinescu VC, Schenker M, Malin DR, Stepan MD, Bica EC, Criciotoiu O, Stana D, Mita A, Dinescu SN, Dragomir MI, Tapu FC, Fortofoiu M, Romanescu FM, Bica M, Gheorman V. Assessing the Risk Factors of Patients with Non-ST-Segment Elevation Myocardial Infarction. Rev Chim. 2019, 70(6):2080-2086.
18. Rousan AT, Reji MP. Impact of diabetes mellitus on clinical characteristics, management, and inhospital outcomes in patients with acute myocardial infarction (from the NCDR). Am J Cardiol. 2014, 114(8):1136-1144.
19. Esper RJ, Nordaby RA, Vilarinho JO, Paragano A, Cacharrón JL, Machado RA. Endothelial dysfunction: a comprehensive appraisal. Cardiovasc Diabetol. 2006, 5:4.
20. Rivellese AA, Riccardi G, Vaccaro O. Cardiovascular risk in women with diabetes. Nutr Metab Cardiovasc Dis, 2010, 20:474-480.
21. Cottel D, Montanye M, Marécaux N, Amouyel P, Dallongeville J, Meirhaeghe A. Comparison of the rates of stroke and acute coronary events in northern France. Eur J PrevCardiol. 2018, 25(14):1534-1542.
22. Doehner W, Mazighi M, Hofmann BM, Lautsch D, Hindricks G, Bohula EA, Byrne RA, Camm AJ, Casadei B, Caso V, Cognard C, Diener HC, Endres M, Goldstein P, Halliday A, Hopewell JC, Jovanovic DR, Kobayashi A, Kostrubiec M, Krajina A, Landmesser U, Markus HS, Ntaigos G, Pezzella FR, Ribo M, Rosano GM, Rubiera M, Sharma M, Touyz RM, Widimsky P. Cardiovascular care of patients with stroke and high risk of stroke: The need for interdisciplinary action: A consensus report from the European Society of Cardiology Cardiovascular Round Table. Eur J PrevCardiol. 2020, 27(7):682-692.

Corresponding Author: Ovidiu Ștefan Georgescu, PhD, University of Medicine and Pharmacy of Craiova, 2 Petru Rareș Str., 200349, Craiova, e-mail: georgescuovi@yahoo.com