The role of Ca2+ signaling in Parkinson’s disease

Sofia V. Zaichick, Kaitlyn M. McGrath and Gabriela Caraveo*

ABSTRACT

Across all kingdoms in the tree of life, calcium (Ca2+) is an essential element used by cells to respond and adapt to constantly changing environments. In multicellular organisms, it plays fundamental roles during fertilization, development and adulthood. The inability of cells to regulate Ca2+ can lead to pathological conditions that ultimately culminate in cell death. One such pathological condition is manifested in Parkinson’s disease, the second most common neurological disorder in humans, which is characterized by the aggregation of the protein, \(\alpha\)-synuclein. This Review discusses current evidence that implicates Ca2+ in the pathogenesis of Parkinson’s disease. Understanding the mechanisms by which Ca2+ signaling contributes to the progression of this disease will be crucial for the development of effective therapies to combat this devastating neurological condition.

KEY WORDS: Calcium, \(\alpha\)-synuclein, Parkinson’s disease

Introduction

Parkinson’s disease (PD) is the second most common, multifactorial, progressive neurodegenerative disorder in humans after Alzheimer’s disease, affecting 6.3 million people worldwide (Marras and Tanner, 2004). Characterized by the aggregation of a small lipid-binding protein, \(\alpha\)-synuclein, PD belongs to a larger group of neurodegenerative diseases, collectively known as synucleinopathies. This group includes dementia with Lewy bodies (DLB), neurodegeneration with brain iron accumulation and multiple system atrophy (MSA) (Martí et al., 2003; Teive et al., 2004). Although the common theme amongst these synucleinopathies is \(\alpha\)-synuclein aggregation into structures called Lewy bodies, the pathological distinction between each disorder lies primarily in the cell type affected. In MSA and DLB, Lewy bodies are primarily found in oligodendrocytes and cortical neurons, respectively. In PD, Lewy bodies are detected primarily in dopaminergic (DA) neurons in a brain region called the substantia nigra pars compacta (SNc). Although it is true that the motor symptoms observed in PD, such as resting tremor, bradikinesia and postural rigidity, can be ascribed to the loss of DA neurons in the SNc, it is now very clear that there are many other brain regions with Lewy body pathology. In fact, many of these regions correspond to the non-motor symptoms that often precede the motor symptoms of PD, such as apathy, pain, sexual difficulties, constipation and sleep disorders, among others (Braak et al., 2004; Chaudhuri et al., 2006; Lees et al., 2009). The pathological overlap between different synucleinopathies suggests that these diseases might belong on a spectrum of the same disorder. Therefore, it is important to understand the consequences of \(\alpha\)-synuclein aggregation in different cell types to fully understand the scope of PD pathology.

Over the past 10 years, an explosion of research has identified over 30 genetic loci and genes responsible for PD, and the list is still growing (Table 1) (Chen et al., 2013; Ghanbari et al., 2016; Höglinger et al., 2011; Kumar et al., 2011; Lin and Farrer, 2014; Martin et al., 2011; Nalls et al., 2014; Shulman et al., 2011; Wissemann et al., 2013). Although genetic cases represent only 10% of PD, genome-wide association (GWA) studies are increasingly being used to elucidate novel risk loci for PD. These studies provide new insights into the complex interplay between genetics, epigenetics and environmental factors that contribute to PD pathology. Whether the cause of PD is genetic, environmental and/or sporadic, \(\alpha\)-synuclein aggregation is a key pathological hallmark of the disease. Point mutations, duplication and triplication of the \(\alpha\)-synuclein locus are known to cause the early onset of PD (Polymeropoulos et al., 1997; Simón-Sánchez et al., 2009; Singleton et al., 2003). Moreover, GWA studies have revealed that the \(\alpha\)-synuclein gene (SNCA) is a major risk factor that is linked to sporadic PD (Simón-Sánchez et al., 2009).

An emerging, key pathological feature caused by \(\alpha\)-synuclein aggregation is the disruption of calcium (Ca2+) homeostasis (Caraveo et al., 2014; Goldberg et al., 2012; Guzman et al., 2010; Hurley et al., 2013; Surmeier et al., 2010, 2016). Ca2+ is a universal and versatile second messenger that is present in all living organisms. Unlike Na+ and K+, which have \(\sim\) 10 to 30-fold differences in ion concentration across the plasma membrane, Ca2+ ions have a 20,000-fold lower concentration in the cytoplasm compared to in the extracellular space (Surmeier and Schumacker, 2013). These gradients allow cells to use Ca2+ as a potent intracellular signal to respond and adapt to fast-changing extracellular and intracellular environments. By controlling the amplitude and frequency of Ca2+ dynamics, cells can temporarily or permanently change a wide variety of physiological functions by activating and/or inhibiting Ca2+-dependent signal transduction pathways (Berridge, 2005; Berridge et al., 2003, 2000; Boorman, 2012; Burgoine, 2007; Carafoli, 2002; Clapham, 2007; Petersen et al., 2005; Rizzuto and Pozzan, 2006). In stimulated neurons, cytoplasmic Ca2+ can range from 100 nM up to 1-10 \(\mu\)M in selected microdomains, depending on the cell type. The polarized nature of neurons allows them to regulate specific processes that are generally not sensitive to bulk concentrations of Ca2+, such as neuronal development and synaptic plasticity (Augustine et al., 2003; Boorman et al., 2001; Carrasco and Hidalgo, 2006; Muller et al., 2005; Parekh, 2008). Because Ca2+ signaling affects all aspects of neuronal cell biology, cells must tightly regulate Ca2+ levels to avoid uncontrolled responses that could otherwise lead to pathological conditions and cell death (Rozkalne et al., 2011; White et al., 2000).

In this Review, we discuss the current evidence that implicates defective Ca2+ homeostasis in the pathogenesis of PD. Elucidating the role of \(\alpha\)-synuclein, and of other PD-associated proteins, in Ca2+...
Gene	Protein (full name)	Biological function	Pathological mechanism(s) linked to Ca²⁺ homeostasis
Mendelian genes associated with PD	**SNCA**	α-Synuclein Vesicle trafficking and dynamics, potential SNARE-complex chaperone	Ca²⁺ binding promotes α-synuclein aggregation (Follett et al., 2013; Nath et al., 2011); α-synuclein overexpression increases mitochondrial Ca²⁺ uptake and cell death (Cali et al., 2012b); α-synuclein overexpression increases cytosolic Ca²⁺ and causes cell death via calcineurin activation (Angelova et al., 2016; Caraveo et al., 2014); α-synuclein can form Ca²⁺-permeable pores at the plasma membrane (Danzer et al., 2007; Di Scala et al., 2016)
PRKN (PARK2)	Parkin	E3 ubiquitin ligase; mitochondrial fusion and fission	Protects mitochondria against Ca²⁺ cytotoxicity (Huang et al., 2016); promotes ER-mitochondria contacts and Ca²⁺ exchange (Cali et al., 2013)
DJ-1 (PARK7)	DJ-1, protein deglycase	Mitochondrial/oxidative stress	ROS scavenger – protects mitochondria from Ca²⁺ cytotoxicity (Zhang et al., 2005)
PINK1	PINK1 (PTEN-induced putative kinase 1)	Mitochondrial function/mitophagy	By regulating mitochondrial membrane potential, it protects against Ca²⁺ cytotoxicity (Heeman et al., 2011; Huang et al., 2016); transcriptional regulation of PINK1 is Ca²⁺ dependent (Gómez-Sánchez et al., 2014); regulation of mNCX, a mitochondrial Ca²⁺/Na⁺ exchanger (Gandhi et al., 2009)
LRRK2	LRRK2 (leucine-rich repeat kinase 2)	GTPase; kinase; synaptic function, autophagy and lysosomal degradation	Indirect modulator of lysosomal Ca²⁺ homeostasis (Gómez-Suaga and Hilfiker, 2012); involved in the transcriptional regulation the Na⁺/Ca²⁺ exchanger (Yan et al., 2015); can modulate Ca⁺,1.2 Ca²⁺ channels (Bedford et al., 2016)
PLA2G6	PLA2G6 (phospholipase A2, group VI)	Phospholipid remodeling; Fas-mediated apoptosis; transmembrane ion flux	Plays an important role in the activation of ER Ca²⁺ entry via its interaction with STIM1 (ER-resident Ca²⁺ sensor) (Oslowski et al., 2013; Smani et al., 2004; Zhou et al., 2016)
FBXO7	FBOX7 (F-box protein 7)	Ubiquitin ligase	None reported
VPS35	VPS35 (vacuolar protein sorting 35)	Retromer complex; retrograde transport from endosomes to Golgi	Involved in Ca²⁺ influx to the secretory pathway in yeast via a Ca²⁺ ATPase-independent delivery (Fokina et al., 2015)
ATP13A2	ATP13A2 (ATPase type 13A2)	ATPase cation metal transporter in lysosomes	Overexpression possibly involved in the reduction of basal intracellular Ca²⁺ levels (Ramonet et al., 2012)
ATP6AP2	(Pro)renin receptor	ATPase proton transporter in lysosomes	None reported
DNAJC6	Auxilin-1 [DnaJ (Hsp40) homolog, subfamily C]	Clathrin-mediated endocytosis in neurons	None reported
SYNJ1	Synaptotagin 1	Lipid phosphatase; clathrin-mediated endocytosis	Regulated by calcineurin (Lee et al., 2004); impacts Ca²⁺ homeostasis indirectly by regulating the turnover of the PIP3 precursor pool (Johening et al., 2004)
RAB39B	RAB39B, member of RAS oncogene family	Rab GTPase; endosome trafficking	Loss-of-function mutation prevents proper assembly of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPA) and steers it toward forming a Ca²⁺-permeable channel (Mignogna et al., 2015)
Potential Mendelian genes associated with PD	**TMEM230**	Trafficking and recycling of synaptic vesicles	None reported
DNAJC13	RME-8 [DnaJ (Hsp40) homolog, subfamily C, member 13]	Membrane trafficking through early endosomes	Interacts with calmodulin 1 in a Ca²⁺-dependent manner (Shen et al., 2005)
VPS13C	VPS13C (vacuolar protein sorting 13)	Membrane protein trafficking, endosomal sorting, mitophagy	Increase in intracellular free Ca²⁺ in Vps13c knockout mice (Mehta et al., 2016)
Risk genes associated with PD and PD-like disorders	**GBA**	GBA (glucosylceramidase) Lysosomal glycosylceramide enzyme	Defects in lysosomal function can lead to increase Ca²⁺ release from ER (Kilpatrick et al., 2016)
GBA	GBA (glucosylceramidase)	Lysosomal glycosylceramide enzyme	
Rab7-1	Rab-7-1, member of RAS oncogene family-like 1	Rab GTPase; lysosome-to-Golgi trafficking; endosome-lysosome trafficking	None reported
Auxilin-2	Auxilin-2 (cyclin-G-associated kinase)	Serine/threonine kinase; clathrin-mediated endocytosis	None reported
DGKQ	DGKQ (diacylglycerol kinase 6)	Regeneration of phosphatidlyinositol (Pl) from diacylglycerol	None reported
SCARB2	LIMP2 (lysosome membrane protein 2)	Chaperone for glucocerebrosidase trafficking	None reported
homeostasis could provide new opportunities for developing novel therapeutics to treat synucleinopathies.

PD and Ca\(^{2+}\) signaling at the plasma membrane

In neurons, the movement of Ca\(^{2+}\) can occur across the plasma membrane in response to electrical activity and/or through agonists. The electrical activity of neurons and other excitable cells relies on several different types of voltage- and ligand-gated ion channels that are permeable to inorganic ions, such as Na\(^+\), K\(^+\), Cl\(^-\) and Ca\(^{2+}\). L-type (also known as Ca\(_{\text{L}}\) family) voltage-gated Ca\(^{2+}\) channels, Ca\(_{1.2}\) and Ca\(_{1.3}\), have been implicated in PD (Cali et al., 2014; Hurley and Dexter, 2012; Ortner and Striessnig, 2016; Schapira, 2013; Surmeier et al., 2016; Zamponi, 2016). Although Ca\(_{1.2}\) is prevalent in juvenile SNc DA neurons, in aging SNc DA neurons,
Ca,1.3 is preferentially used for Ca\(^{2+}\) influx and support of rhythmic pace-making activity (Fig. 1) (Bean, 2007; Chan et al., 2007; Dragic et al., 2014; Drion et al., 2011; Goldberg et al., 2012; Khaliq and Bean, 2010; Puopolo et al., 2007; Surnieks et al., 2012; Wilson and Callaway, 2000). Such pace-making is essential for maintaining basal dopamine levels in the striatum (Surmeier and Schumacker, 2013). Unlike Ca,1.2, the Ca,1.3 operating range does not allow the Ca,1.3 channels to close fully during pace-making, which contributes to elevated intracellular Ca\(^{2+}\) levels (Puopolo et al., 2007; Wilson and Callaway, 2000). In adult mice, SNC DA neurons have an increased reliance on Ca,1.3 channels, as well as a decreased ability to deal with high Ca\(^{2+}\) levels (Chan et al., 2007; Hurley et al., 2013). Interestingly, the expression of Ca,1.3 is increased in the SNC DA neurons of deceased PD patients (Hurley et al., 2013). To test the importance of L-type channels in PD-like pathology, mice, midbrain slices or cultured neurons from mice were pretreated with Isradipine, an L-type Ca\(^{2+}\) channel blocker, and then exposed to \(\alpha\)-synuclein pre-formed fibrils (PFF), or to the toxic effects of environmental factors known to cause PD by interfering with the mitochondrial complex I, namely rotenone or 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP) (Brown et al., 2006; Chan et al., 2007; Dryanovski et al., 2013; Goldman, 2014; Ilijic et al., 2011; Van Maelle-Fabry et al., 2012). In these experiments, Isradipine confers strong protection in SNc DA neurons, indicating that Ca\(^{2+}\) flux through L-type channels is an important contributor to neuronal cell death. The importance of this finding is also supported by the fact that the neighboring ventral tegmental midbrain DA neurons, which do not express the Ca,1.3 channels, are less susceptible to cell death in PD (Hurley et al., 2013; Mouatt-Prigent et al., 1994; Neuhoff et al., 2002).

In the clinic, Isradipine and other L-type channel blockers have been widely used as anti-hypertensives to treat high blood pressure and other cardiovascular conditions. The proposed role of Ca\(^{2+}\) channels in neurodegeneration opens up the possibility of repurposing these drugs to treat PD. Several epidemiological studies suggest that there is indeed a reduced risk of developing PD in patients with long-term use of Isradipine (Becker et al., 2008; Lee et al., 2014; Pasternak et al., 2012; Ritz et al., 2010). A phase III clinical trial (NCT02168842; www.clinicaltrials.gov) to study the neuroprotective potential of Isradipine in early PD patients is currently ongoing and scheduled for completion in 2019 (Table 2). While the contribution of Ca,1.3 channels to PD is undeniable, it is important to point out that Isradipine has, in fact, a higher affinity for Ca,1.2 channels (Koschak et al., 2001; Lipscombe et al., 2004; Olson et al., 2005; Xu and Lipscombe, 2001). Ca,1.2 channels are expressed throughout the brain and play important roles in regulating neurotransmitter release, predominantly at presynaptic terminals (Berger and Bartsch, 2014; Striessnig et al., 2006). Given that the exact roles of Ca,1.2 channels in PD have not been fully elucidated, this should be an important consideration when interpreting the results of these clinical trials.

Additional evidence also suggests a pathological role for \(\alpha\)-synuclein in the increased influx of Ca\(^{2+}\) through the plasma membrane in PD. \(\alpha\)-Synuclein can directly control the influx of Ca\(^{2+}\) through the plasma membrane by forming a specific type of oligomer, which can form Ca\(^{2+}\)-permeable pores at the plasma membrane and induce cell death through Ca\(^{2+}\) (excitotoxicity) (Angelova et al., 2016; Danzer et al., 2007; Di Scala et al., 2016). Moreover, loss of function of Rab39B, a small GTPase that is involved in endosome trafficking and that is associated with early-onset PD, has recently been shown to alter the trafficking of an \(\alpha\)-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPA) subunit and to steer AMPAR toward forming a Ca\(^{2+}\)-permeable channel (Table 1) (Lesage et al., 2015; Mignogna et al., 2015).

Finally, monosialotetrahexosylganglioside (GM1), a member of the sialic acid-containing glycosphingolipids group that is highly expressed at the plasma membrane of neural cells, appears to have an important role in neuronal Ca\(^{2+}\) homestasis. GM1 can modulate several receptors and membrane channels, including Ca\(^{2+}\)-ATPase (PMCA), Na\(^{+}\)/Ca\(^{2+}\) exchanger (NCX), T-type Ca\(^{2+}\) channels at the plasma membrane, and sarco/endoplasmic reticulum Ca\(^{2+}\)-ATPase (SERCA) pumps, to reduce excitotoxicity and oxidative stress (Hatzifilippou et al., 2008; Ledeen and Wu, 2015; Svennerholm et al., 1994). GM1 is also neuroprotective in rodent models of PD (Figs 1 and 2) (Schneider, 1998). In support of its protective role against PD pathogenesis, a completed phase II clinical trial in which PD patients were treated with GM1 (NCT00037830; www.clinicaltrials.gov) reported an overall improvement in the patients’ motor symptoms and a delay in symptom progression during the two and a half-year trial period (Table 2) (Schneider et al., 2013, 2010).

Intracellular Ca\(^{2+}\) stores and their deregulation in PD

Although the above evidence suggests that increased Ca\(^{2+}\) influx at the plasma membrane significantly contributes to the pathogenesis of PD, other findings implicate another form of Ca\(^{2+}\) deregulation in PD pathology. These findings report defects in the regulation of Ca\(^{2+}\) that comes from a cell’s intracellular Ca\(^{2+}\) stores (Caraveo et al., 2014). The Ca\(^{2+}\) reservoir(s) responsible, as well as the mechanism behind this Ca\(^{2+}\) deregulation, have yet to be fully elucidated. Although the endoplasmic reticulum (ER), and to a lesser extent the mitochondria, are major intracellular Ca\(^{2+}\) stores, evidence suggests that other organelles, such as the lysosomes and Golgi, also act as important intracellular Ca\(^{2+}\) reservoirs (Kilpatrick et al., 2013; Patel and Docampo, 2010; Patel and Mualem, 2011). This is particularly relevant in the context of PD given that the malfunctioning of ER, mitochondria and, recently, lysosomes has been implicated in its etiology (Kilpatrick et al., 2016; Lloyd-Evans et al., 2008). Whether the deregulation of intracellular, store-derived Ca\(^{2+}\) plays a role in PD pathogenesis remains to be determined. One has to keep in mind that Ca\(^{2+}\)-harboring organelles are not isolated static units but rather that they are highly dynamic and connected through a continuum of Ca\(^{2+}\) signaling. For example, the ER network is highly connected with many organelles through Ca\(^{2+}\)-dependent pathways, including the plasma membrane, mitochondria, lysosomes and possibly other organelles (Bahar et al., 2016; Berridge et al., 2003; Bezprozvanny, 2010; Bootman, 2012; Cali et al., 2011; Carafoli, 2002; McBryer and Nixon, 2013; Phillips and Voelzt, 2016; Rivero-Rios et al., 2014; Wojda et al., 2008). Connections also exist between lysosomes and peroxisomes, as well as between lysosomes and mitochondria. These interconnections are particularly relevant in the context of PD because it might support the argument for a ‘domino’ effect rather than an independent collection of defects, that is, if the ER is the first malfunctioning organelle, the other organelles that the ER is connected to, such as mitochondria and/or peroxisomes, will secondarily be affected. These organelles will, in turn, affect others that they are connected to and so on.

Ca\(^{2+}\) storage in the ER

The ER is a major Ca\(^{2+}\) storage organelle in the cell and is responsible for protein biosynthesis and N-linked glycosylation. ER-derived Ca\(^{2+}\) plays crucial roles in cell signaling and also serves...
Fig. 1. See next page for legend.
as a protein quality control system in the ER lumen. For example, a drop in ER luminal Ca2+ caused by misfolded proteins, such as α-synuclein, can lead to ER stress by halting protein translation and initiating the unfolded protein response (Celardo et al., 2016; Lindholm et al., 2006; Omura et al., 2013; Tsuji et al., 2015). Although this is a part of the normal physiological response to stress, a chronic ER system overload – which is observed in PD – can lead to cell death due to severe problems in cytosolic Ca2+ homeostasis, in protein biosynthesis, in Ca2+-mediated signaling and in other organelle functions that are highly dependent on Ca2+ as a second messenger.

Fig. 1. Ca2+ signaling and homeostasis in a dopaminergic neuron.

A schematic of a dopamine (DA) neuron, illustrating several Ca2+-related proteins and pathways affected in Parkinson’s disease (PD). The proteins shown directly or indirectly participate in Ca2+ homeostasis. Ca\textsubscript{1,2}, Ca\textsubscript{1,3}, Orai1, Ca2+-permeable channels (T-channels, NCX, TRPC5, PMCA) regulated by GM1, and α-synuclein Ca2+-permeable pores allow Ca2+ to enter the cell. Calbindin-D28k and parvalbumin (PA) are protective due to their capacity to buffer cytosolic Ca2+. Increases in cytosolic Ca2+ activate diverse pathways involved in PD, including: (1) calmodulin (CaM) and calcineurin to modify their respective downstream targets NFAT, TORC2 and synaptophysin; (2) PLA2G6 (through SOCE); and (3) calpains. Increases in cytosolic Ca2+ also activate the lysosomal ion channels ATP13A2 and ATP6AP2. Lower right: A magnified pre-synaptic axonal terminal illustrates the role of RIT2, STX1B, α-synuclein and synaptophysin1 in vesicle recycling. The role of LRRK2 in pre-synaptic vesicle recycling is not fully known.

Hyperphosphorylation of Tau driven by CaMKII activation interferes with hyperphosphorylation of Tau driven by CaMKII activation interferes with hyperphosphorylation of Tau driven by CaMKII activation.

Table 2. Ca2+ and mitochondrial modulators tested in recent clinical trials

Drug	Target	Clinical trial stage	Clinical trial ID	Information provided by	Status/Comments
Isradipine	Ca2+ channels (Ca\textsubscript{1,2}, Ca\textsubscript{1,3})	Phase II/III	NCT02168842	University of Rochester and Parkinson’s Study Group	Completed/well tolerated, but no immediate effect; phase III is ongoing (Simuni, 2013)
Safinamide	Monoamine oxidase B; Na+ and Ca2+ channels	Phase II	NCT01211587	Newron	Completed/successful; approved in EU; waiting for approval in the USA (last update - May 2016)
GM1 ganglioside	Ca2+ and other channels	Phase II	NCT00037830	Thomas Jefferson University	Completed/successful (Schneider et al., 2013)
Other compounds					
MitoQ	Mitochondrion	Phase II	NCT00329056	Antipodean Pharmaceuticals, Inc	Completed/no effect (Snow et al., 2010)
Coenzyme Q10 (CoQ10)	Mitochondrion	Phase III	NCT00740714	Cornell University	Terminated (Beal et al., 2014)
Creatine (NET-PD LS-1)	Mitochondron	Phase III	NCT00449865	University of Rochester and National Institute of Neurological Disorders and Stroke	Terminated (Kieburtz et al., 2015)
Pioglitazone	Glucose metabolism; iron transport to mitochondria	Phase II	NCT01280123	University of Rochester and National Institute of Neurological Disorders and Stroke	Completed/no effect (Simuni et al., 2015)

Details of the clinical trials referenced can be found at www.clinicaltrials.gov.
Ca2+ storage in the mitochondria

Mitochondria can temporally and spatially regulate cytosolic Ca2+ concentrations in distinct locations in a neuron. Alterations in mitochondrial Ca2+ levels and in mitochondrial localization after organelle repositioning have been implicated in the pathogenesis of several neurodegenerative diseases, including PD (Fluegge et al., 2012; Rizzuto et al., 2012; Sheng and Cai, 2012). It is well established that mitochondrial Ca2+ overload can lead to oxidative stress – the increased production of reactive oxygen species (ROS) – and to changes in mitochondrial membrane permeability, both of which culminate in cell death (Krols et al., 2016; Lemasters et al., 2009; Marchi et al., 2014; McCormack and Denton, 1990). Indeed, defects in mitochondrial dynamics (fusion/fission and transport) and quality control are important contributors to PD pathology. Multiple PD-associated proteins [including \(\alpha\)-synuclein, PINK1, DJ-1, Parkin and leucine-rich repeat kinase 2 (LRRK2)] are directly involved in regulating mitochondrial function, fusion/fission and oxidative stress (Table 1, Fig. 2, and are described in detail in many recent reviews (Bose and Beal, 2016; Calli et al., 2011, 2012a; Exner et al., 2012; Hu and Wang, 2016; Perier and Vila, 2012; Pickrell and Youle, 2015; Ryan et al., 2015). Importantly, treatment with lisdipine reduces mitochondrial oxidation and decreases the production of ROS in the SNc DA neuron in the DJ-1 knockout mouse (Guzman et al., 2010). This finding strongly supports the argument that Ca2+ has a causal role in controlling ROS production, a key pathological feature of PD. Additionally, exposure of isolated mitochondria or cultured neuroblastoma cells to environmental insults such as MPTP and rotenone lead to a drop in mitochondrial Ca2+ influx and to a consequent increase in cytosolic Ca2+. Increased levels of mitochondrial Ca2+ can also lead to an increase in ROS and ultimately to cell death. Ca2+ is pumped out of mitochondria via Ca2+ exchange channels, such as the mitochondrial Na+/Ca2+ exchanger (mNCX), which is regulated by PINK1. DJ-1 is a ROS scavenger that protects cells from ROS-induced cell death. DJ-1, along with \(\alpha\)-synuclein, interacts with Grp75 and promotes the formation of ER-mitochondria contact sites. Abbreviations: BST1, bone marrow stromal cell antigen-1; Complex I, NADH coenzyme Q oxidoreductase; DJ1, protein deglycase; ER, endoplasmic reticulum; GM1, monosialotetrahexosylganglioside; Grp75, glucose-regulated protein 75; H+, hydrogen ion (protons); IP3R, inositol trisphosphate receptor; LRRK2, leucine-rich repeat kinase 2; MCU, mitochondrial Ca2+ uniporter; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; NAD+, oxidized form of nicotinamide adenine dinucleotide; NADH, reduced form of nicotinamide adenine dinucleotide; Parkin, ligase encoded by the PRKN (PARK2) gene; PD, Parkinson’s disease; PINK1, PTEN-induced putative kinase 1; ROS, reactive oxygen species; RyR, Ryanodine receptor; SERCA, sarco/endoplasmic reticulum Ca2+-ATPase; VDAC, voltage-dependent anion channel type 1.
As mentioned earlier, mitochondria Ca\(^{2+}\) levels are tightly controlled by the ER via MAMs. MAMs are enriched with the mitochondrial Ca\(^{2+}\) uniporter (MCU) complex in the inner mitochondrial membrane and with the inositol trisphosphate receptor (IP3R) on the ER. MCU and IP3R are coupled via the chaperone protein Grp75, which connects IP3R to the voltage-dependent anion channel type 1 (VDAC1) on the outer mitochondrial membrane (Fig. 2) (Krols et al., 2016; Rizzuto et al., 2009). These connections allow for Ca\(^{2+}\) exchange between ER and mitochondria, and tight regulation of mitochondrial luminal Ca\(^{2+}\) concentration. Mitochondrial luminal Ca\(^{2+}\) is essential for the Krebs cycle and for driving the electron transport chain through complexes III and V (Gellerich et al., 2013; Glancy and Balaban, 2012). Both biochemical processes are vital for maintaining the mitochondrial membrane potential and ATP levels. A cell needs sufficient energy to regulate Ca\(^{2+}\) owing to the high-energy demands of Ca\(^{2+}\) homeostasis. Mitochondria export Ca\(^{2+}\) via the H\(^{+}\)/Ca\(^{2+}\) exchanger (mHCX) and the Na\(^{+}\)/Ca\(^{2+}\) exchanger (mNCX), which are located on the inner mitochondrial membrane. Although the exact mechanism of action has yet to be established, two PD-associated proteins affect these mitochondrial Ca\(^{2+}\) import pathways: PINK1, by triggering the mNCX, and Parkin by stimulating VDAC1 (Table 1, Fig. 2) (Calí et al., 2013; Gandhi et al., 2009; Rizzuto et al., 2012). Moreover, \(\alpha\)-synuclein and DJ-1 have both been shown to interact with MAM via the chaperone Grp75 (Jin et al., 2007). These interactions promote MAM assembly and function by controlling ER-mitochondria Ca\(^{2+}\) and lipid homeostasis (Table 1, Fig. 2) (Calí et al., 2012b; Guardia-Lagurta et al., 2014; Ottolini et al., 2013). These data suggest that disruption of MAMs might also be an important contributor to the pathogenesis of PD.

Ca\(^{2+}\) storage in lysosomes and other acidic organelles

Lysosomes and autolysosomes are particularly important organelles for neuronal health given their long-lived nature and the high demand for constant nutrient turnover. Defects in autophagy and lysosomal function have both been observed in PD (Lynch-Day et al., 2012; Nixon, 2013; Xilouri et al., 2016). One of the strongest links between lysosomal function and PD is found with the enzyme \(\beta\)-glucocerebrosidase (GBA) (Table 1, Fig. 1). Autosomal recessive recessive forms of the gene encoding this enzyme, \(\alpha\)-synuclein, LRRK2, TMEM230, SYNJ1, RIT2, SYT11, etc. (Table 1). The third is a lysosomal protein, LRRK2, that is linked through an unknown mechanism to the regulation of Ca\(^{2+}\) homeostasis in this organelle (Table 1) (Funayama et al., 2002; Gómez-Suaga et al., 2012; Gómez-Suaga and Hilfiker, 2012; Hockey et al., 2015).

Vesicles, another type of acidic organelle, are also highly affected in PD. Proper trafficking and priming of vesicles is crucial for synaptic function. Genes that are often mutated in PD encode proteins that have important functions in synaptic vesicle recycling, such as \(\alpha\)-synuclein, LRRK2, TMEM230, SYNJ1, RIT2, SYT11, etc. (Table 1). So far, only a handful of these proteins are known to have a direct connection to Ca\(^{2+}\). \(\alpha\)-Synuclein by itself can alter vesicle fusion by changing membrane curvature (Jensen et al., 2011; Nuscher et al., 2004), and it can also affect fusion by affecting the recruitment of several soluble NSF attachment (SNARE) proteins (Burre et al., 2010; Choi et al., 2013). Other evidence suggests that Ca\(^{2+}\) binding at the \(\alpha\)-synuclein C-terminus can accelerate its aggregation, inhibiting its ability to bind to membranes and consequently promoting vesicle fusion (Table 1, Fig. 1) (Follett et al., 2013; Nath et al., 2011). Syntaxin 1B (STX1B) is an important member of the Ca\(^{2+}\)-dependent proteins that mediate vesicle fusion at the plasma membrane (Südhof, 2013). A genome-wide association study identified the STX1B rs4889603 variant as a sporadic PD susceptibility locus in the Chinese population (Wang et al., 2015). Ca\(^{2+}\) binding to STX1B is necessary for the oligomerization of this.
protein and for the proper regulation of vesicle docking from the readily releasable pool at the synapse, although the underlying mechanism for this binding remains unknown (Table 1, Fig. 1) (Milovanovic et al., 2016; Mishima et al., 2014).

Ca\(^2+\) storage in the Golgi

All lysosomal and secreted proteins are trafficked through the Golgi, the organelle responsible for the O-linked glycosylation of proteins and for the generation of endosomes for the secretory pathway. Although glycosylation enzymes inside the Golgi are highly dependent on internal Ca\(^2+\), the contribution of cytosolic Ca\(^2+\) to the Golgi has yet to be fully elucidated. Nevertheless, increases in cytosolic Ca\(^2+\) in neurons can lead to Golgi fragmentation, a reversible process mediated by CaMKII and/or CaMKIV (Thayer et al., 2013). Golgi fragmentation has been observed in cellular and animal models of PD, as well as in post-mortem brain samples from PD patients (Fujita et al., 2006; Gosavi et al., 2002; Lin et al., 2012; Rendón et al., 2013). Interestingly, two related Ca\(^2+\) channels, TRPV5 and TRPV6, can increase Ca\(^2+\) influx into the cytoplasm when glycosylated in *Xenopus laevis* oocytes (Jiang et al., 2008). Syntaxin 6 (STX6) inhibits TRPV channel glycosylation to allow their activation (Table 1). Although the role of STX6 in DA neurons is not known, the STX6 rs1411478 variant is associated with progressive supranuclear palsy (PSP), a neurodegenerative disease that shares some characteristics with PD (Höglinger et al., 2011). Another connection between the Golgi and PD comes from the discovery that the yeast Ca\(^2+\)/Mn\(^2+\) pump, PMR1 (homologous to the plasma membrane Ca\(^2+\)-/Mn\(^2+\) pump, PMR1) is a modifier of cytosolic Ca\(^2+\) and α-synuclein toxicity in yeast (Bütter et al., 2013; Cooper et al., 2006). The role of Golgi as Ca\(^2+\) reservoirs in PD pathology remains unclear at present.

Cytosolic Ca\(^2+\) signaling hubs and PD

Regardless of whether Ca\(^2+\) derives from the extracellular environment or from intracellular stores, what makes it such a powerful second messenger is its ability to affect protein conformation and ultimately protein function (Berridge et al., 2001; Clapham, 2007). An essential transducer of Ca\(^2+\) gradients into cellular responses is the highly evolutionary conserved protein calmodulin (CaM) (Fig. 1) (Chin and Means, 2000; Meador et al., 1992, 1993). CaM binds to Ca\(^2+\) via helix-loop-helix Ca\(^2+\)-binding motifs called EF-hands. Ca\(^2+\) binding causes a large conformation change in CaM that exposes a hydrophobic surface capable of binding a diverse array of proteins (Table 1) (Gifford et al., 2007; Grubarek, 2011; Kawasaki et al., 1998; Lewit-Bentley and Réty, 2000). Binding of CaM to α-synuclein accelerates α-synuclein fibril formation in vitro, potentially contributing to PD pathogenesis (Lee et al., 2002; Martinez et al., 2003). Interestingly, some of the proteins implicated in PD are directly regulated by CaM, although the functional significance of these interactions in the context of PD has not yet been established. These include: RT2 (Rin), a GTP-binding protein that is involved in DA neuronal function by regulating DAT trafficking and consequently extracellular dopamine concentrations (Table 1, Fig. 1) (Lee et al., 1996; Navaroli et al., 2011; Pankratz et al., 2012; Shi et al., 2005; Zhou et al., 2011); and DnaJ heat shock protein family member C13 (DNAJC13), which is involved in endocytosis and membrane trafficking through early endosomes (Table 1, Fig. 1) (Fujibayashi et al., 2008; Shen et al., 2005; Vilarino-Guell et al., 2014; Zhang et al., 2001).

Many CaM actions rely on activating and/or inhibiting downstream effectors that will, in turn, contribute to the pathogenesis of PD. One of the CaM-Ca\(^2+\) effectors is CaMKII, one of the most predominant protein kinases in the brain that is particularly important for synaptic function, learning and memory (Fig. 1) (Coultrap and Bayer, 2012; Hudmon and Schulman, 2002). Although the presynaptic role of CaMKII in PD is not fully understood, it has a role in both the initiation and prevention of dopamine release (Hoover et al., 2014; Michael et al., 2006; Wang, 2008). CaMKII also phosphorylates several microtubule-associated proteins, such as Tau, leading to defects in cytoskeleton dynamics and intracellular trafficking (Table 1, Fig. 1) (Baratier et al., 2006; Hashimoto et al., 2000; Johnson and Foley, 1993; Wang et al., 2007; Wei et al., 2015; Yamauchi and Fujisawa, 1983, 1984). The hyperphosphorylation of Tau contributes to its aggregation and thus to the consequent formation of neurofibrillary tangles, the pathological hallmark of tauopathies, such as Alzheimer’s disease (Wang et al., 2013a). Moreover, CaMKII and phosphorylated Tau are found in Lewy bodies, suggesting an important role for these proteins in the etiology of PD (Iwatsubo et al., 1991; McKee et al., 2011; Moussaoud et al., 2014). CaMKII also phosphorylates TH, the rate-limiting enzyme in the biosynthesis of catecholamines, such as dopamine, noradrenaline and adrenaline, and increases dopamine synthesis (Fitzpatrick, 1999; Albert et al., 1984; Lehmann et al., 2006). Abnormal increases in cytosolic dopamine are reportedly neurotoxic in cultured rat midbrain DA neurons. Importantly, reducing cytosolic Ca\(^2+\) significantly decreases cytosolic dopamine and prevents toxicity in DA neurons in the rat SNc (Mosharov et al., 2009).

Another essential transducer of Ca\(^2+\) signaling is the highly conserved Ca\(^2+\)-CaM-dependent serine/threonine phosphatase calcineurin. Calcineurin is an essential enzyme, which in the adult brain plays a key role in neurite extension, synaptic plasticity, memory and learning (Zeng et al., 2001), and is implicated as a key mediator of α-synuclein toxicity (Table 1) (Caraveo et al., 2014; Martin et al., 2012). Most importantly, our group has found that persistent and excessively high levels of calcineurin activity caused by α-synuclein drive dephosphorylation of target proteins, such as the nuclear factor of activated T cells (NFAT), setting up a program that leads to cell death (Fig. 1) (Caraveo et al., 2014; Luo et al., 2014). However, low levels of calcineurin activity, achieved with low doses of the calcineurin specific inhibitor (FK506) or by genetic means, lead to the dephosphorylation of a distinct subset of proteins, such as the target of rapamycin complex 2 (TORC2), which protects cells from the toxic effects of α-synuclein (Fig. 1). The complete inhibition of calcineurin with high doses of FK506 or deletion of the calcineurin gene eliminates its ability to dephosphorylate any target proteins, which also leads to cell death (Caraveo et al., 2014). We named this the ‘Goldilocks’ effect, where too much or no activity leads to cell death, but an intermediate level of activity is neuroprotective.

In addition to NFAT and TORC2, there are other calcineurin substrates implicated in PD. These include the transcription factor cAMP-responsive element binding (CREB), which has important roles in synaptic plasticity and long-term memory formation, and which is activated by phosphorylation and repressed in a calcineurin-dependent manner (Marambaud et al., 2009; Sakamoto et al., 2011). As a surrogate for high calcineurin activity, CREB has been found to be repressed in both primary mouse DA neurons treated with the neurotoxin 6-hydroxydopamine (6-OHDA) and in human PD brain samples (Chalovich et al., 2006; Sakamoto et al., 2011). Another calcineurin substrate is Synaptotagmin 1 (SYNJ1), a lipid phosphatase that, when dephosphorylated by calcineurin, enhances clathrin-mediated endocytosis (Table 1, Fig. 1). Mutations
in SYNJ1 that affect its phosphatase function are associated with early-onset progressive parkinsonism with generalized seizures (EOP) (Krebs et al., 2013; Lee et al., 2004). EIF2AK3, also known as protein kinase RNA-like endoplasmic reticulum kinase (PERK), couples ER stress to translation inhibition during protein misfolding (Table 1, Fig. 1) (Mercado et al., 2015). EIF2AK3 is a risk gene associated with progressive supranuclear palsy (PSP) (Höglinger et al., 2011). Although the effect of the single nucleotide polymorphism (SNP) associated with PSP is unknown, it is noteworthy that the interaction of calcineurin with PERK promotes PERK auto-phosphorylation, leading to translation inhibition (Bollo et al., 2010). In support of the role of PERK in the pathology of PD, phosphorylated PERK is found in SNC DA neurons from deceased PD patients, as well as in Lewy bodies (Hoozemans et al., 2007). In addition, another substrate of calcineurin, calnexin (CNX, an ER-resident chaperone), when dephosphorylated, releases the block caused by SERCA pumps and restores Ca\(^{2+}\) homeostasis in the ER (Bollo et al., 2010; Wang et al., 2013b). Although the ‘Goldlocks’ property of calcineurin has been demonstrated on just a handful of substrates, many other targets are likely to be involved with α-synuclein toxicity that remain to be discovered.

Another interesting Ca\(^{2+}\)-dependent group of enzymes implicated in PD are calpains. These cytosolic cysteine proteases are involved in the regulation of synaptic plasticity and long-term potentiation. Acute calpain activation is beneficial to neurons, whereas chronic activation induced by sustained cytosolic Ca\(^{2+}\) can lead to cell death. In support of a role for Ca\(^{2+}\) deregulation in PD, over-activated calpains have been detected in postmortem PD brains (Crocker et al., 2003; Mouatt-Prigent et al., 2000; Sambataray et al., 2008). Moreover, bioinformatic analysis has revealed two single SNPs in the gene encoding the only endogenous inhibitor of calpain, the calpastatin gene (CAST), which might predispose Caucasian individuals with European ancestry to idiopathic PD (Allen and Satten, 2009, 2010; Dauer and Przedborski, 2003). Some studies suggest that calpains have a protective role in PD through promotion of α-synuclein degradation via the modulation of the E3 ubiquitin ligase Parkin (Kim et al., 2003), whereas others point to their having two possible toxic roles. First, calpains can promote α-synuclein aggregation in vitro and in vivo by cleaving the α-synuclein C-terminal domain (Table 1, Fig. 1) (Diepenbroek et al., 2014; Dufty et al., 2007; Nuber and Selkoe, 2016; Xu et al., 2015). Second, calpains can cleave p35 (CDK5R1). The p35 activates Cdc5, a cyclin-dependent kinase that has a key role in neuronal development (Ko et al., 2001; Ohshima et al., 1996), axonal transport (Julien and Mushynski, 1998), synaptic activity (Rosales et al., 2000) and dopamine signaling (Chergui et al., 2004; Nishi et al., 2002). In MPTP-treated animals and in α-synuclein cell model systems, the activation of calpain leads to p35 being cleaved into its pathological form, p25, which results in the mislocalization and hyperactivation of Cdk5, and in DA neuronal loss in the mouse SNC (Czapski et al., 2013; Smith et al., 2006). p25 and overactive Cdk5 are detected in PD animal models (Qu et al., 2007; Smith et al., 2003) and in Lewy bodies from postmortem PD brains (Alvira et al., 2008; Takahashi et al., 2000). Importantly, the inhibition of calpains is effective at reducing overactive Cdk5 and p25, and is protective against toxicity in animal models of PD (Chagniel et al., 2012). In addition, the peptide TFP5, which is derived from p35, is reported to be neuroprotective in the MPTP-treated rat cortical neurons and a mouse model of PD (Binukumar and Pant, 2016; Binukumar et al., 2015; Zhang et al., 2012).

Box 1. Ca\(^{2+}\) signaling and other neurodegenerative diseases

Defects in Ca\(^{2+}\) homeostasis might also play a causal role in neurodegenerative disorders other than Parkinson’s disease, such as Alzheimer’s disease (AD). Oligomeric forms of the amyloid β (Aβ) peptide, the major component of amyloid plaques (a pathological hallmark of AD), can create pores at the plasma membrane and trigger Ca\(^{2+}\)-induced toxicity (Arispe et al., 1993), similar to α-synuclein oligomers. Presenilins are a family of related multi-pass ER transmembrane proteins that constitute the catalytic subunits of the γ-secretase intramembrane protease complex. Presenilins can modify lysosomal and ER Ca\(^{2+}\) channels (Kayala et al., 2012; Nelson et al., 2011) and have been implicated in familial forms of AD (Tolia and De Strooper, 2009). Mutations in the presenilins cause severe defects in ER Ca\(^{2+}\) homeostasis through a combination of mechanisms that involve an increase in SOCE, expression of RyR and IP3R, and inhibition of Ca\(^{2+}\) leakage from the ER, leading to ER Ca\(^{2+}\) overload and, consequently, to cell death (Brezovzanny, 2009). Decreased expression of Ca\(^{2+}\)-binding buffer proteins, such as calbindin, in the hippocampus has also been directly correlated with cognitive decline in the mouse AD model (Palop et al., 2003), reminiscent of the protective role of Ca\(^{2+}\) buffering in PD. The inhibition of calcineurin by FK506 reportedly restores memory, alters behavior and increases survival in mouse models of AD (Dineley et al., 2007; Mukherjee et al., 2010; Reese et al., 2008). Finally, the Ca\(^{2+}\) homeostasis modulator, CALHM1, is also reported to be a risk gene for AD (Dresses-Werringloer et al., 2008).

Amyotrophic lateral sclerosis (ALS) is characterized by selective degeneration of motor neurons. The most compelling evidence linking Ca\(^{2+}\) defects with cell death in ALS is excitotoxicity caused by glial cells (Sasabe et al., 2007). Huntington’s disease is a genetic disorder characterized by an increased number (over 40) of glutamine amino acids at the N-terminus of the huntingtin protein (Htt), which affect the medium spiny neurons. Expanded Htt binds to IP3R, which increases its sensitivity to IP3, thereby stimulating Ca\(^{2+}\) efflux from the ER (Chan et al., 2003; Tang et al., 2003).

Cytosolic Ca\(^{2+}\) buffering and PD

As we mentioned earlier, an important contributor to the vulnerability of SNC DA neurons in PD is their inability to buffer Ca\(^{2+}\), caused by decreased expression of Ca\(^{2+}\)-buffering proteins such as calbindins and parvalbumin. Calbindins, which include calbindin-D28k (encoded by CALB1) and calbindin-D9k (encoded by SL100G), are vitamin D-dependent Ca\(^{2+}\)-binding proteins. Calbindin-D9k is mostly known for buffering Ca\(^{2+}\) in erythrocytes, whereas calbindin-D28k buffers Ca\(^{2+}\) in the central nervous system where it participates in the blockade of multiple pro-apoptotic pathways (Baimbridge et al., 1992). Overexpression of calbindin-D28k in the midbrain ventral tegmental DA neurons is associated with reduced cell death in human PD samples and in mouse models of the disease, compared to the calbindin-D28k-negative more vulnerable SNC DA population (Damier et al., 1999; Lavoie and Parent, 1991). Reduced expression of Ca\(^{2+}\)-buffering proteins, as well as a chronic increase in intracellular Ca\(^{2+}\) in aging SNC DA neurons, are likely to be mechanisms that contribute to the mitochondrial and ER stress observed in PD. Mice overexpressing calbindin-D28k are resistant to the toxic effects of MPTP and to α-synuclein aggregation (Recom-H cheo-Gauthier et al., 2016; Yuan et al., 2013), establishing a causal link between buffering Ca\(^{2+}\) and protection against cell death. Interestingly, calbindin-D28k is also a reported risk factor for sporadic forms of PD in a Japanese population (Mizuta et al., 2008; Soto-Ortolaza et al., 2010). Parvalbumin (PA) is another Ca\(^{2+}\)-binding protein that is selectively expressed in a class of GABAergic interneurons of the dorsolateral prefrontal cortex (Benes and Berretta, 2001; Kretsinger...
and Nockolds, 1973), a region also affected in PD patients (Kikuchi et al., 2001). Altered PA levels are likely to contribute to the altered cortical excitability and oscillatory activity previously documented in PD (Lanoue et al., 2013). Moreover, loss of PA-positive neurons is reported in animal models of PD and in human PD brain samples (Fernández-Suárez et al., 2012). This suggests that decreased PA expression is associated with defects in Ca\(^{2+}\) buffering and cell death.

Discussion

Given the universal nature of Ca\(^{2+}\) signaling in biology, its involvement in the etiology of PD and other neurodegenerative disorders (Box 1) might not come as a surprise. Although it is now increasingly recognized that gradual Ca\(^{2+}\) dysregulation might be a key contributor for aging, what distinguishes its contribution to PD from that to normal aging and/or other neurological diseases is that many of the genes that give rise to PD have a known causal role in Ca\(^{2+}\) homeostasis. As we have described in this review, compelling evidence implicates the deregulation of Ca\(^{2+}\) flux both from the plasma membrane (through mechanisms involving Ca\(_{\alpha 1.3}\), α-synuclein pore formation, etc.) and from intracellular stores (through other mechanisms involving α-synuclein and GBA, among others). As such, understanding the mechanisms by which Ca\(^{2+}\) signaling contributes to the progression of PD is vitally important for developing effective therapies to treat this disease.

Most of the organelles affected in PD are major Ca\(^{2+}\) reservoirs. This suggests that Ca\(^{2+}\) could be a key player in coordinating complex organelle networks to ultimately achieve metabolic interactions, intracellular signaling, cellular maintenance and regulation of cell survival. Although neuronal cell culture models, in vivo rodent models and midbrain DA neurons derived from patient induced pluripotent stem cells (iPSCs) are vitally important tools for understanding the mechanisms underlying the pathology of PD, a significant investment of time and money is needed to make the most of these tools. Time is an issue when phenotypes are age dependent, as is the case for PD, and when the lifespan of rodents and/or primates is years. Even for iPSC-derived neurons, the time it takes in cell culture for any meaningful phenotype to appear can be up to a year. This, added to the high cost of performing mammalian-based experiments, makes these systems less than amenable for exploratory mechanistic research, despite the fact that they provide an essential validation tool for translation into the clinic. The use of model organisms such as yeast, flies and worms, can effectively circumvent these roadblocks. Indeed, these models have proven to be invaluable tools for uncovering conserved disease and cell biological processes that are affected in PD, which range from lipid biology, vesicular trafficking and function, lysosomal and peroxisomal function, autophagy, apoptosis, cell cycle, mitochondrial and oxidative stress, Ca\(^{2+}\) signaling, ion channels and transporters, and the protein folding, quality control and degradation pathways. Model organisms can provide an excellent means to understand the mechanisms of Ca\(^{2+}\) deregulation in PD and could also shed light on how organelle networks operate to achieve cellular plasticity by using Ca\(^{2+}\) as a messenger, ultimately leading to novel therapeutic alternatives for combating PD.

Competing interests

The authors declare no competing or financial interests.

Funding

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

References

Albert, K. A., Helmer-Matjyek, E., Nairn, A. C., Muller, T. H., Haycock, J. W., Greene, L. A., Goldstein, M. and Greengard, P. (1984). Calcium phospholipid-dependent protein kinase (protein kinase C) phosphorylates and activates tyrosine hydroxylase. Proc. Natl Acad. Sci. USA 81, 7713-7717.

Allen, A. S. and Satten, G. A. (2009). A novel haplotype-sharing approach for genome-wide case-control association studies implicates the calpastatin gene in Parkinson’s disease. Genet. Epidemiol. 33, 657-667.

Allen, A. S. and Satten, G. A. (2010). SNPs in CAST are associated with Parkinson disease: a confirmation study. Ann. Med. Genet. B Neuropsychiatr. Genet. 153B, 973-979.

Alvira, D., Ferrer, I., Gutierrez-Cuesta, J., Garcia-Castro, B., Pallás, M. and Camins, A. (2008). Activation of the calpain/cdk5/p25 pathway in the girus cinguli in Parkinson’s disease. Parkinsonism Relat. Disord. 14, 309-313.

Angelova, P. R., Ludtmann, M. H. R., Horrocks, M. H., Negoda, A., Cremades, N., Klenerman, D., Dobson, C. M., Wood, N. W., Pavlov, E. V., Gandhi, S. et al. (2016). Ca2+ is a key factor in alpha-synuclein-induced neurotoxicity. J. Cell Sci. 129, 1792-1801.

Arispe, N., Pollard, H. B. and Rojas, E. (1993). Giant multilevel cation channels formed by Alzheimer disease amyloid beta-protein [a beta P(1-40)] in bilayer membranes. Proc. Natl Acad. Sci. USA 90, 10573-10577.

Augustine, G. J., Santamaría, F. and Tanaka, K. (2003). Local calcium signaling in neurons. Neuron 40, 331-346.

Bahar, E., Kim, H. and Yoo, H. (2016). ER stress-mediated signaling: action potential and Ca(2+) as key players. Int. J. Mol. Sci. 17, 1558.

Baimbridge, K. G., Celio, M. R. and Rogers, J. H. (1992). Calcium-binding proteins in the nervous system. Trends Neurosci. 15, 303-308.

Baratier, J., Peris, L., Brocard, J., Gory-Faure, S., Dufour, F., Bosc, C., Fourest-Lieuvin, A., Blanchon, L., Salin, P., Job, D. et al. (2006). Phosphorylation of mitochondrial-associated protein STOP by calmodulin kinase II. J. Biol. Chem. 281, 19561-19569.

Beal, M. F., Oakes, D., Shoulson, I., Celio, M. R. and Rogers, J. H. (2003). Calcium-binding proteins in the nervous system. Trends Neurosci. 26, 476-476.

Beavan, M. S. and Schapira, A. H. (2013). Glucocerebrosidase mutations and the pathogenesis of Parkinson disease. Annu. Rev. Med. 64, 511-521.

Becker, C., Jick, S. S. and Meier, C. R. (2008). Use of antihypertensives and the risk of Parkinson disease. Neurology 70, 1438-1444.

Bedford, C., Sears, C., Perez-Carrion, M., Piccoli, G. and Condille, S. B. (2016). LRRK2 Regulates Voltage-Gated Calcium Channel Function. Front. Mol. Neurosci. 9, 35.

Benes, F. M. and Berretta, S. (2001). GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 25, 1-27.

Berger, S. M. and Bartsch, D. (2014). The role of L-type voltage-gated calcium channels Cav1.2 and Cav1.3 in normal and pathological brain function. Cell Tissue Res. 357, 463-476.

Berridge, M. J. (2005). Unlocking the secrets of cell signaling. Annu. Rev. Physiol. 67, 1-21.

Berridge, M. J., Lipp, P. and Bootman, M. D. (2000). The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1, 11-21.

Berridge, M. J., Bootman, M. D. and Rodrick, H. L. (2003). Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 4, 517-529.

Bezprozvanny, I. (2009). Calcium signaling and neurodegenerative diseases. Trends Mol. Med. 15, 89-100.

Bezprozvanny, I. B. (2010). Calcium signaling and neurodegeneration. Acta Naturae 2, 72-82.

Binukumar, B. K. and Pant, H. C. (2016). TFP5/TPS peptide provides neuroprotection in the MPTP model of Parkinson’s disease. Neuro Regen. Res. 11, 698-701.

Binukumar, B. K., Shukla, V., Amin, N. D., Grant, P., Bhaskar, M., Skuntz, S., Steiner, L. and Pant, H. C. (2015). Peptide TFP5/TPS derived from Cdk5 activator P35 provides neuroprotection in the MPTP model of Parkinson’s disease. Mol. Biol. Cell 26, 4478-4491.

Bollo, M., Paredes, R. M., Holstein, D., Zheleznova, N., Camacho, P. and Lechleiter, J. D. (2010). Calcineurin interacts with PERK and dephosphorylates calmodulin to relieve ER stress in mammals and frogs. PLoS ONE 5, e11925.

Boothman, M. D. (2012). Calcium signaling. Cold Spring Harb. Perspect. Biol. 4, a011171.
Carrasco, M. A. and Hidalgo, C. (2016). Mitochondrial dysfunction in Parkinson’s disease. J. Neurochem. 139, 1154-1164.

Braud, S., Kunert, S., Zocchi, E., De Flora, A. and Guse, A. H. (2010). Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329, 1683-1687.

Böttner, S., Faes, L., Reichelt, W. N., Breskamp, F., Habernig, L., Benke, S., Kolucli, I. R., Loj, S. H. Y. and Martins, L. M. (2016). Mitofusin-mediated ER stress triggers neurodegeneration in Ca(2+)-deficient neurons. Nat. Commun. 7, 2271.

Carafoli, E. (2002). Calcium signaling: a tale for all seasons. Proc. Natl. Acad. Sci. USA 99, 1115-1122.

Caraveo, G., Auluck, P. K., Whitesell, L., Chung, C. Y., Baru, V., Mosharov, E. V., Yan, X., Ben-Johny, M., Soste, M., Picotti, P. et al. (2014). Calcium-dependent autophagy responds to alpha-synuclein. Proc. Natl. Acad. Sci. USA 111, E3544-E3552.

Carrasco, M. A. and Hidalgo, C. (2006). NAADP mobilizes Ca(2+) from reserve granules, lysosome-related organelles, in sea urchin eggs. Cell 111, 703-708.

Chapman, D. E. (2007). Calcium signaling. Cell 131, 1047-1058.

Wheeler, S. A., Hager, K. A., Younes, J. A., Sinha, T., Fadnougui-Boyer, S., Hage, H. M., Ko, M. S., Vega, G. A., Gaensslen, E., Wilkaniec, A., Cieslak, M. and Adomyck, A. (2013). Extracellular alpha-synuclein induces calpain-dependent overactivation of Alzheimer beta-amyloid peptide and alpha-synuclein. Trends Cell Biol. 23, 561-567.

Cherfils, J., Letac, E., Schu, M., Faes, L., Reichelt, W. N., Broeskamp, F., Habernig, L., Benke, S., Kolucli, I. R., Loj, S. H. Y. and Martins, L. M. (2016). Mitofusin-mediated ER stress triggers neurodegeneration in Ca(2+)-deficient neurons. Nat. Commun. 7, 2271.

Chagrier, A., Rouille, C., Lebel, M. and Cyr, M. (2012). Striatal inhibition of calpains prevents levodopa-induced neurochemical changes and abnormal involuntary movements in the hemiparkinsonian rat model. Neurobiol. Dis. 45, 645-655.

Cholovitch, E. M., Zhou, J.-H., Caltagarone, J., Bowser, R. and Chu, C. T. (2006). Functional repression of cAMP response element in 6-hydroxydopamine-treated neurons of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. J. Neurosci. 26, 1437-1448.
Fluegge, D., Moeller, L. M., Cichy, A., Gorin, M., Weth, A., Veitinger, S., Cinararca, S., Lohmer, S., Corazza, S., Neuhauß, E. M. et al. (2012). Mitochondrial Ca2+ mobilization is a key element in oocyte signaling. Nat. Neurosci. 15, 754-762.

Fokin, A. V., Chechenova, M. B., Karginov, A. V., Ter-Avanesyan, M. D. and Agaphonov, M. O. (2015). Genetic evidence for the role of the vacuole in supplying secretory organelles with Ca2+ in Hansenula polymorpha. PLoS ONE 10, e0149515.

Follett, J., Darlow, B. W., Wong, M. B., Goodwin, D. L. (2013). Potassium repletion and mobilization induce alpha-synuclein aggregates. Neurotox. Res. 23, 378-392.

Frei, B. and Richter, C. (1988). N-methyl-4-phenylpyridine (MPP+) together with 6-hydroxydopamine or dopamine stimulates Ca2+ release from mitochondria. FEBS Lett. 198, 99-102.

Fujibayashi, A., Taguchi, T., Misaki, R., Ohtani, M., Dohmae, N., Takio, K., Hashimoto, R., Nakamura, Y., Komai, S., Kashiwagi, Y., Tamura, K., Goto, T., Guzman, J. N., Sanchez-Padilla, J., Wokosin, D., Kondapalli, J., Ilijic, E., Gosavi, N., Lee, H.-J., Lee, J. S., Patel, S. and Lee, S.-J. (2002). Golgi signalling.

Fujibayashi, A., Taguchi, T., Misaki, R., Ohtani, M., Dohmae, N., Takio, K., Hashimoto, R., Nakamura, Y., Komai, S., Kashiwagi, Y., Tamura, K., Goto, T., Guzman, J. N., Sanchez-Padilla, J., Wokosin, D., Kondapalli, J., Ilijic, E., Gosavi, N., Lee, H.-J., Lee, J. S., Patel, S. and Lee, S.-J. (2002). Golgi signalling.

Fujibayashi, A., Taguchi, T., Misaki, R., Ohtani, M., Dohmae, N., Takio, K., Hashimoto, R., Nakamura, Y., Komai, S., Kashiwagi, Y., Tamura, K., Goto, T., Guzman, J. N., Sanchez-Padilla, J., Wokosin, D., Kondapalli, J., Ilijic, E., Gosavi, N., Lee, H.-J., Lee, J. S., Patel, S. and Lee, S.-J. (2002). Golgi signalling.
(2015). Effect of creatine monohydrate on clinical progression in patients with Parkinson disease: a randomized clinical trial. JAMA 313, 584-593.

Kikuchi, A., Takeda, A., Kimpara, T., Nakagawa, M., Kawashima, R., Sugiuira, M., Kinomura, S., Fukuda, H., Chida, K., Okita, N. et al. (2001). Hyperperfusion in the supplementary motor area, dorsolateral prefrontal cortex and insular cortex in Parkinson’s disease. J. Neurosci. 19, 29-36.

Kilpatrick, B. S., Eden, E. R., Schapira, A. H., Futter, C. E. and Patel, S. (2013). Direct mobilisation of lysosomal Ca2+ triggers complex Ca2+ signals. J. Cell Sci. 126, 68-69.

Kilpatrick, B. S., Magalhaes, J., Beanov, M. S., McNeill, A., Gegg, M. E., Cleeter, M. W. J., Bloor-Young, D., Churchill, G. C., Duchen, M. R., Schapira, A. H. et al. (2016). Endoplasmic reticulum and lysosomal Ca(2+) stores are remodelled in GBA1-linked Parkinson disease patient fibroblasts. Cell Calcium 59, 12-20.

Kim, C. H., Kim, J. H., Lee, J., Hsu, C. Y. and Ahn, Y. S. (2003). Thioxioid reversal of cytotoxicity of the gliothione disulfide-induced reduced glycolytic activation pattern of Ap-1 and NF-kappaB. Biochim. Biophys. Acta 384, 143-150.

Klionsky, D. J., Codogno, P., Cuervo, A. M., Deretic, V., Elazar, Z., Fueyo-Lemasters, J. J., Theruvath, T. P., Zhong, Z. and Nieminen, A.-L. (2013). A comprehensive glossary of autophagy-related molecules and processes. Autophagy 6, 438-446.

Ko, J., Humbert, S., Bronson, R. T., Takahashi, S., Kulkarni, A. B., Li, E. and Tsai, L. H. (2001). p53 and p39 are essential for cyclin-dependent kinase 5 function during neurodevelopment. J. Neurosci. 21, 6758-6771.

Korvatska, O., Strand, N. S., Berndt, J. D., Strovas, T., Chen, D.-H., Levenez, J. E., Kilianitsa, I., I. F., Karakoc, E., Greenup, J. L. et al. (2013). Altered splicing of ATP6AP2 causes X-linked parkinsonism with spasticity (XPDS). Hum. Mol. Genet. 22, 3259-3268.

Koschak, A., Reimer, D., Huber, I., Grabner, M., Glossmann, H., Engel, J. and Strobl, G. (2001). alpha-Synuclein interacts with negative regulatory domains of the human tyrosine hydroxylase alpha-subunit. J. Biol. Chem. 276, 21204-21208.

Krebs, C. E., Karkheiran, S., Powell, J. C., Cao, M., Makarov, V., Darvish, H., Di Cosmo, G., Politis, E. and Pendergast, M. et al. (2014). Differential regulation of the human tyrosine hydroxylase isoforms in normal and parkinsonian monkeys. Brain Res. 1571, 124-132.

Krebs, C. E., Karkheiran, S., Powell, J. C., Cao, M., Makarov, V., Darvish, H., Di Paolo, G., Walker, R. H., Shahidi, G. A., Buxbaum, J. D. et al. (2013). The Sac1 domain of SYNJ1 identified mutated in a family with early-onset progressive Parkinsonism with generalized seizures. Hum. Mutat. 34, 1200-1207.

Kretzinger, R. and Nochokid, C. E. (1973). Cerebellar cortex: structure and determination general description. J. Biol. Chem. 248, 3313-3326.

Krois, M., Bulinyung, G. and Janssens, S. (2016). ER-Mitochondria contact sites: a new regulator of cellular calcium fluxes comes into play. J. Cell Biol. 214, 367-370.

Kumar, K. R., Djamarti-Westenerberg, A. and Groenewald, A. (2011). Genetics of Parkinson’s disease. Semin. Neurol. 31, 433-440.

Lanoue, A. C., Blatt, G. J. and Soghomian, J.-J. (2013). Decreased parvalbumin mRNA expression in dorsolateral prefrontal cortex in Parkinson’s disease. Brain Res. 1531, 37-47.

Lavoie, B. and Parent, A. (1991). Dopaminergic neurons expressing calbindin in normal and parkinsonian monkeys. Neuroreport 2, 601-604.

Ledeon, R. W. and Wu, G. (2015). The multi-tasked life of GM1 ganglioside, a true genetic disease. Curr. Opin. Struct. Biol. 38, 601-604.

Lee, C. H., Della, N. G., Chew, C. E. and Zack, D. J. (2000). EF-hand calcium-binding proteins. J. Biol. Chem. 275, 6210-6218.

Lee, J.-H., McBrayer, M. K., Wolfe, D. M., Haslett, L. J., Kumar, A., Sato, Y., Lie, T., Sato, F., Sato, S., Koike, M., Taruno, Y., Saiki, S., Funayama, M., Ito, M., Sato, H., Kanno, T., Taniguchi, Y., Uemura, N. et al. (2013). ATP13A2 deficiency induces a selective degeneration of dopaminergic neurons. J. Neurochem. 127, 214-226.

Lee, J.-H., McBrayer, M. K., Wolfe, D. M., Haslett, L. J., Kumar, A., Sato, Y., Lie, T., Sato, H., Kanno, T., Taniguchi, Y., Uemura, N. et al. (2013). Mitochondrial calcium and the permeability transition in cell death. Biochem. Biophys. Acta 1837, 461-469.

Marras, C. and Tanner, C. M. (2004). Epidemiology of Parkinson’s Disease. New York, NY: McGraw Hill.

Marti, M. J., Tolosa, E. and Campedelacruz, J. (2003). Clinical overview of the synucleinopathies. Mov. Disord. 18 Suppl. 6, 21-27.

Martin, I., Dawson, L. V. and Dawson, T. M. (2011). Recent advances in the genetics of Parkinson’s disease. Annu. Rev. Genomics Hum. Genet. 12, 301-325.

Martin, Z. S., Neugebauer, V., Dineley, K. T., Kayed, R., Zhang, W., Reese, L. C. and Taglialetela, G. (2012). alpha-Synuclein oligomers oppose long-term potentiation and impair memory through a calcineurin-dependent mechanism: relevance to human synucleopathic diseases. J. Neurochem. 120, 440-452.

Martinez, J., Moeller, I., Erdjument-Bromage, H., Tempst, P. and Lauring, B. (2003). Parkinson’s disease-associated alpha-synuclein is a calmodulin substrate. J. Biol. Chem. 278, 17379-17387.

Matsumi, H., Sato, F., Sato, S., Koike, M., Taruno, Y., Saiki, S., Funayama, M., Ito, H., Taniguchi, Y., Uemura, N. et al. (2013). ATP13A2 deficiency induces a decrease in caeathpsin D activity, fingerprint-like inclusion body formation, and selective degeneration of dopaminergic neurons. FEBS Lett. 587, 1316-1325.

Mckee, A. C., Kosik, K. S., Kennedy, M. B. and Kowall, N. W. (1990). Regulation of the human tyrosine hydroxylase isoforms in differentiated neuroblastoma cells: the role of maternally derived epigenetic modifications. J. Neurochem. 54, 1438-150.

Meyers, S. A., Margarini, S. and Pinton, P. (2014). The endoplasmic reticulum-mitochondria connection: one touch, multiple functions. Biochim. Biophys. Acta 1837, 461-469.

Meyer, W. E., Means, A. R. and Quichoio, F. A. (1992). Target enzyme recognition by calmodulin: 2.4 A structure of a calmodulin-peptide complex. Science 257, 1251-1255.

Meyer, W. E., Means, A. R. and Quichoio, F. A. (1993). Modulation of calmodulin activity in molecular recognition on the basis of x-ray structures. Science 262, 1718-1721.

Mehta, Z. B., Fine, N., Pullen, T. J., Cane, M. C., Hu, M., Chabosseau, P., Meur, G., Velayos-Baeza, A., Meric, P. C., Marselli, L. et al. (2016). Changes in the expression of the type 2 diabetes-associated gene VPS13C in the beta-cell are associated with glucose intolerance in humans and mice. Am. J. Physiol. Endocrinol. Metab. 311, E488-E507.

Mercado, G., Castillo, V., Vidal, R. and Heltz, C. (2015). ER proteostasis monitors changes in Parkinson disease. Front. Aging Neurosci. 7, 256.

Michael, D. J., Cai, H., Xiong, W., Ouyang, J. and Chow, R. H. (2006). Mechanisms of peptide hormone secretion. Trends Endocrinol. Metab. 17, 408-415.

Mignogna, M. L., Giannandrea, M., Gurgone, A., Fanelli, F., Raimondi, F., Marini, M., Van Assnani, S., Alessio, M. et al. (2015). The intellectual disability protein RAB39B selectively regulates GluA2 trafficking to determine synaptic AMPAR composition. Nat. Commun. 6, 6504.
Muller, A., Kukley, M., Stausberg, P., Beck, H., Muller, W. and Dietrich, D.

Nalls, M. A., Pankratz, N., Lill, C. M., Do, C. B., Hernandez, D. G., Saad, M., Mukherjee, A., Morales-Scheihing, D., Gonzalez-Romero, D., Green, K., Nishi, A., Bibb, J. A., Matsuyama, S., Hamada, M., Higashi, H., Nairn, A. C. and Mouatt-Prigent, A., Agid, Y. and Hirsch, E. C.

Neuhoff, H., Neu, A., Liss, B. and Roeper, J.

Mizuta, I., Tsunoda, T., Satake, W., Nakabayashi, Y., Watanabe, M., Takeda, A., Nuscher, B., Kamp, F., Mehnert, T., Odoy, S., Haass, C., Kahle, P. J. and Beyer, Nuber, S. and Selkoe, D. J.

Nixon, R. A.

Nelson, O., Supnet, C., Tolia, A., Horre, K., De Strooper, B. and Bezprozvanny, I.

Olah, J., Vincze, O., Virok, D., Simon, D., Bozzo, Z., Tokesi, N., Horvath, I., Hiavanda, E., Kovacs, J., Magyar, A. et al. (2011). Interactions of pathological hallmark proteins: tubulin polymerization promoting protein p25, beta-amyloid, and alpha-synuclein. J. Biol. Chem. 286, 34088-34100.

Olson, P. A., Tkatch, T., Hernandez-Lopez, S., Ulrich, S., Ilijic, E., Muguinai, E., Zhang, H., Bezprozvanny, I. and Surmeier, D. J. (2005). G-protein-coupled receptor modulation of striatal CaV1.3 L-type Ca2+ channels is dependent on a Shank-binding domain. J. Neurochem. 25, 1050-1062.

Ottolini, T., Kami, M., Okuma, Y., Matsubara, K. and Nomura, Y. (2013). Endoplasmic reticulum stress and Parkinson’s disease: the role of HRD1 in averting apoptosis in neurodegenerative disease. Oxd. Med. Cell Longev. 2013, 239854.

Ortner, N. J. and Striessnig, J. (2015). L-type calcium channels as drug targets in CNS. Annu. Rev. Neurosci. 38, 7-13.

Olsowski, C. M., Zhou, Q., Safer, C., Kirker, M. and Botolina, V. (2013). New causal relationship between PLA2g6, store-operated Ca2+ entry, refilling of Ca2+ stores and ER stress in mouse embryonic fibroblasts. FASEB J. 27 Suppl. 1198.2

Ottolini, D., Cali, T., Negro, A. and Brini, M. (2013). The Parkinson disease-related protein DJ-1 counteracts mitochondrial impairment induced by the tumour suppressor protein p53 by enhancing endoplasmic reticulum-mitochondria tethering. Hum. Mol. Genet. 22, 2152-2165.

Papol, J. J., Jones, B., Kekonius, L., Chin, J., Yu, G.-Q., Raber, J., Masliah, E. and Mucke, L. (2003). Neuronal depletion of calcium-dependent proteins in the dentate gyrus is tightly linked to Alzheimer’s disease-related cognitive deficits. Proc. Natl. Acad. Sci. USA 100, 9572-9577.

Pankratz, N., Beecham, G. W., DeStefano, A. L., Dawson, T. M., Doheny, K. F., Factor, S. A., Hamza, T. H., Hung, A. Y., Hyman, B. T., Ivison, A. J. et al. (2012). Meta-analysis of Parkinson’s disease: identification of a novel locus, RIT2. Ann. Neurol. 71, 370-384.

Parekh, A. B. (2008). Ca2+ microdomains near plasma membrane Ca2+ channels: impact on cell function. J. Physiol. 586, 215-236.

Park, J.-S., Mehta, P., Cooper, A. A., Veivers, D., Heimbach, A., Stiller, B., Kubisch, C., Fung, V. S., Krainc, D., Mackay-Sim, A. et al. (2011). Pathogenic effects of novel mutations in the P-type ATPase ATP13A2 (PARK9) causing Kufor-Rakeb syndrome, a form of early-onset parkinsonism. Hum. Mutat. 32, 955-964.

Pasternak, B., Svanstrom, H., Nielsen, N. M., Fugger, L., Melbye, M. and Hvid, A. (2012). Use of calcium channel blockers and Parkinson’s disease. Ann. J. Epidemiol. 175, 627-635.

PateL, S. and Docamro, R. (2010). Acidic calcium stores open for business: expanding the potential for intracellular Ca2+ signaling. Trends Cell Biol. 20, 277-286.

PateL, S. and Mualem, S. (2011). Acidic Ca2+ stores come to the fore. Cell Calcium 50, 109-112.

Pathak, T., Agrawal, T., Richhariya, S., Sadaf, S. and Hasgan, G. (2015). Store-operated calcium entry through orai is required for transcriptional maturation of the parkin promoter. J. Biol. Chem. 290, 3043-3054.

Perrier, C. and Vila, M. (2012). Mitochondrial biology and Parkinson’s disease. Cold Spring Harb. Perspect. Med. 2, a009332.

Petersen, O. H., Michalak, M. and Verkhratsky, A. (2005). Calcium signaling: past, present and future. Cell Calcium 38, 161-169.

Phillips, M. J. and Voeltz, G. K. (2016). Structure and function of ER membrane contact sites with other organelles. Nat Rev. Mol. Cell Biol. 17, 69-82.

Pickrell, A. M. and Youle, R. J. (2015). The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 85, 257-273.

Pitt, S. J., Funnell, T. M., Sitsapesan, M., Venturi, E., Rietdorf, K., Ruas, M., Ganesan, A., Gosain, R., Churchill, G. C., Zhu, M. X. et al. (2010). TPC2 is a novel NAADP-sensitive Ca2+ release channel, operating as a dual sensor of luminal pH and Ca2+. J. Biol. Chem. 285, 35039-35046.

Polymeropoulos, M. H., Lavedan, C., Leroy, E., Ide, S. E., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R. et al. (1997). Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276, 2045-2047.

Puopolo, M., Raviola, E. and Bean, B. P. (2007). Roles of subthreshold calcium current and sodium current in spontaneous firing of mouse midbrain dopamine neurons. J. Neurosci. 27, 645-656.

Qu, D., Rashidian, J., Mount, M. P., Aleyasin, H., ParsaNejad, M., Lira, A., Haque, E., Zhang, Y., Callaghan, S., Daigle, M. et al. (2007). Role of Cdk5-mediated phosphorylation of P2R2 in MPTP toxicity and Parkinson’s disease. Neuron 55, 57-52.

Ramirez, A., Heimbach, A., Gründemann, J., Stiller, B., Hampshire, D., Lid, L. P., Goebel, I., Mubaidin, A. F., Wirakat, A.-L., Roer, J. et al. (2006). Hereditary parkinsonism with dementia is caused by mutations in ATPL3A2, encoding a lysosomal type 5 P-type ATPase. Nat. Genet. 38, 1184-1191.

Ramsden, T. and Quaife, A., Stafa, K., Sonnay, S., Trancikova, A., Tsika, E., Taikka, E., Pletnikova, O., Troncoso, J. C., Glaser, L. and Moore, D. J. (2012). PARK9-associated ATP13A2 localizes to intracellular acidic vesicles and regulates cation homeostasis and neuronal integrity. Hum. Mol. Genet. 21, 1725-1743.

Rcom-Hcheo-Gauthier, A. N., Davis, A., Meedeniya, A. C. B. and Pountney, D. L. (2016). Alpha-synuclein are excluded from calbindin-D28k-positive neurons in dementia with Lewy bodies and a unilateral roteneone mouse model. Mol. Cell. Neurosci. 77, 65-75.
Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nat. Genet. 41, 1308-1312.

Simuni, T., and the Parkinson Study Group. (2013). Phase II safety, tolerability, and dose selection study of iripradone as a potential disease-modifying intervention in early Parkinson's disease (STEADY-PD). Mov. Disord. 28, 1823-1831.

Simuni, T., Kieburz, K., Tilley, B. J., Elm, J., Ravina, B., Babcock, D., Emborg, M., Hauser, R., Kamp, C., Morgan, J. C. et al. (2015). Pioglitazone in early Parkinson's disease: a phase 2, multicentre, double-blind, randomised trial. Lancet Neurol. 14, 795-803.

Singleton, A. B., Farrer, M., Johnson, J., Singleton, A., Hague, S., Kachergus, J., Hullihan, M., Peuralinna, T., Dutra, A., Nussbaum, R. et al. (2003). alpha-Synuclein locus triplication causes Parkinson's disease. Science 302, 841.

Smali, T., Zakhvoroba, S. I., Csutora, P., Leno, E., Trepkova, E. S. and Bolotina, V. V. (2000). A novel mechanism for the store-operated calcium influx pathway. Nat. Cell Biol. 6, 113-120.

Smith, P. D., Croocker, S. J., Jackson-Lewis, V., Jordan-Sclotto, K. L., Hayley, S., Mount, M. P., O’Hare, M. J., Callaghan, S., Slack, R. S., Przedborski, S. et al. (2003). Cyclin-dependent kinase 5 is a mediator of dopaminergic neuron loss in a mouse model of Parkinson's disease. Proc. Natl. Acad. Sci. USA 100, 13650-13655.

Smith, P. D., Mount, M. P., Shree, R., Callaghan, S., Slack, R. S., Anisman, H., Vincent, I., Wang, X., Mao, Z. and Park, D. S. (2006). Calpain-regulated p35/cdk5 plays a central role in dopaminergic neuron death through modulation of the transcription factor myocyte enhancer factor 2. J. Neurosci. 26, 440-447.

Snow, J. P., Rolfe, F. L., Lockhart, M. M., Fromm, C. M., O'Sullivan, J. D., Fung, V., Smith, R. A. J., Murphy, M. P. and Taylor, K. M. (2010). A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson's disease. Mov. Disord. 25, 1670-1674.

Soltoff, P. L., Alzu, A., Behrouz, B., Wider, C., Vilariño-Güell, C., Heckman, M. G., Asa1, J. O., Mark Gibson, J., Lynch, T., Jasinska-Miya, B., Krygowska-Wajs, A. et al. (2010). Cbln1-1 association and Parkinson's disease. Eur. J. Neurol. 17, 206-211.

Souza, S. C., Maciel, E. N., Vercesi, A. E. and Castillo, R. F. (2003). Ca2+-induced oxidative stress in brain mitochondria treated with the respiratory chain inhibitor rotenone. FEBS Lett. 543, 179-183.

Steinmetz, M. O., Plüss, C., Christen, U., Wolpensinger, B., Lustig, A., Werner, E. R., Wachter, H., Engel, A., Aebi, U., Pfefellschaft, J. et al. (1998). Rat GTP cyclohydrolase I is a homodimeric protein complex containing high-affinity calcium-binding sites. J. Mol. Biol. 279, 189-199.

Streissguth, J., Koschak, A., Sinnegger-Brauns, M. J., Hetzenauer, A., Nguyen, N. K., Busquet, P., Pelster, G. and Singewald, N. (2006). Role of voltage-gated L-type Ca2+ channel isoforms for brain function. Biochem. Soc. Trans. 34, 903-909.

Südhof, T. C. (2013). A molecular machine for neurotransmitter release: from synaptotagmin and beyond. Nat. Med. 19, 1227-1231.

Surmeier, D. J. and Schumacher, P. T. (2013). Calcium, bioenergetics, and neuronal vulnerability in Parkinson's disease. J. Biol. Chem. 288, 10736-10741.

Surmeier, D. J., Guzman, J. N., Sanchez-Padilla, J. and Goldberg, J. A. (2010). The origins of oxygen stress in Parkinson's disease and therapeutic strategies. Annu. Rev. Redox Signal. 14, 89-113.

Surmeier, D. J., Guzman, J. N., Sanchez, J. and Schumacker, P. T. (2012). Physiological phenotype and vulnerability in Parkinson's disease. Cold Spr. Harb. Perspect. Med. 2, a009290.

Surmeier, D. J., Schumacher, P. T., Guzman, J. D., Ilieje, Y., Yang, B. and Zamponi, G. W. (2016). Calcium and Parkinson's disease. Biochem. Biophys. Res. Commun. 483, 1013-1019.

Svennerholm, L., Böström, K., Jungblir, B. and Olsson, L. (1994). Membrane lipids of adult human brain: lipid composition of frontal and temporal lobe in subjects of age 20 to 100 years. J. Neurochem. 63, 1802-1811.

Taghibiglou, C., Martin, H. G. S., Lai, T. W., Cho, T., Prasad, S., Kojic, L., Lu, J., Liu, Y., Lo, E., Zhang, S. et al. (2009). Role of NMDA receptor-dependent activation of SREBP1 in excitotoxic and ischemic neuronal injuries. Nat. Med. 15, 1399-1406.

Takahashi, M., Iseki, E. and Kosaka, K. (2000). Cyclin-dependent kinase 5 (Cdks5) associated with Lewy bodies in diffuse Lewy body disease. Brain Res. 862, 253-256.

Tang, T.-S., Tu, H. P., Chan, E. Y. W., Maximov, A., Wang, Z. N., Wellington, C. L., Hayden, M. R. and Bezprozvanny, I. (2003). Huntingtonin and Huntington-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1,4,5)-trisphosphate receptor type 1. J. Neurosci. 23, 227-239.

Teive, H. A. G., Troiano, A. R., Germiniani, F. M. B. and Wernle, L. C. (2004). Fluorinarse and cinnarazine-induced parkinsonism: a historical and clinical analysis. Parkinsonism Relat. Disord. 10, 243-245.

Thayer, D. A., Jan, Y. N. and Jan, L. Y. (2013). Increased neuronal activity drives upregulation of the Golgi complex in the mouse. Nat. Neurosci. 16, 1148-1487.

Tolla, A. and De Strooper, B. (2009). Structure and function of gamma-secretase. Semin. Cell Dev. Biol. 20, 211-218.
Tomiyama, H., Yoshino, H., Ogaki, K., Li, L., Yamashita, C., Li, Y., Funayama, M., Sasaki, R., Kokubo, Y., Kuzuhara, S. et al. (2011). PLAX2G6 variant in Parkinson’s disease. J. Hum. Genet. 56, 401-403.

Tsujii, S., Ishisaka, M. and Hara, H. (2015). Modulation of endoplasmic reticulum stress in Parkinson’s disease. J. Neurol. Sci. 359-365.

Van Maele-Fabry, G., Hoet, P., Vilain, F. and Lison, D. (2012). Occupational exposure to pesticides and Parkinson’s disease: a systematic review and meta-analysis of cohort studies. Environ. Int. 46, 30-43.

Vance, J. E. (2014). MAM (mitochondria-associated membranes) in mammalian cell: loads and beyond. Biochim. Biophys. Acta 1841, 595-609.

Vilario-Guell, C., Rajput, A., Milnerwood, A. J., Shah, B., Szu-Tu, C., Trinh, J., Yu, I., Encarnacion, M., Munsie, L. N., Tapia, L. et al. (2014). DNAJC13 mutations in Parkinson disease. Hum. Mol. Genet. 23, 1794-1801.

von Poser, C., Ichtchenko, K., Shao, X., Rizo, J. and Sudhof, T. C. (1997). The evolution of calcium signaling in neurons. J. Biol. Chem. 272, 3781-3788.

Wang, Z.-W. (2005). Possible involvement of Ca2+ signaling in Alzheimer’s disease. J. Neuropathol. Exp. Neurol. 55, 954-963.

Xilouri, M., Brekk, O. R. and Stefani, L. (2016). Autophagy and alpha-synuclein: relevance to Parkinson’s disease and related synucleopathies. Mov. Disord. 31, 178-192.

Xu, W. and Lipscombe, D. (2001). Neuronal CaV1.3ahp1(L) type channels activate relatively hyperpolarized membrane potentials and are incompletely inhibited by dihydropyridines. J. Neurosci. 21, 5944-5951.

Xu, B., Liu, W., Deng, Y., Yang, T. Y., Feng, S. and Xu, Z. F. (2015). Inhibition of calpain prevents manganese-induced cell injury and alpha-synuclein oligomerization in organotypic brain slice cultures. PLoS ONE 10, e0119205.

Yamauchi, T., Yamauchi, E., Taniguchi, H., Ono, T. and Miyamoto, E. (2002). Phosphorylation of microtubule-associated protein tau by Ca2+/calmodulin-dependent protein kinase II in its tubulin binding sites. Arch. Biochem. Biophys. 408, 255-262.

Yamauchi, T. and Fujisawa, H. (1983). Disassembly of microtubules by the action of calmodulin-dependent protein kinase (Kinesin II) which occurs only in the brain tissues. Biochem. Biophys. Res. Commun. 110, 287-291.

Yamauchi, T. and Fujisawa, H. (1984). Calmodulin-dependent protein kinase (kinase II) which is involved in the activation of tryptophan 5-monooxygenase catalyzes phosphorylation of tubulin. Arch. Biochem. Biophys. 234, 89-96.

Yan, J., Almilaji, A., Schmid, E., Elvira, B., Shimshek, D. R., van der Putten, H., Wagner, C. A., Shumilina, E. and Lang, F. (2015). Leucine-rich repeat kinase 2-sensitive Na+/Ca2+ exchanger activity in dendritic cells. FASEB J. 29, 1701-1710.

Yuan, H.-K., Chen, R.-J., Zhu, Y.-H., Peng, C.-L. and Zhu, X.-R. (2013). The neuroprotective effect of overexpression of calbindin-D(28k) in an animal model of Parkinson’s disease. Mol. Neurobiol. 47, 117-122.

Zamponi, G. W. (2016). Targeting voltage-gated calcium channels in neurological and psychiatric diseases. Nat. Rev. Drug Discov. 15, 19-34.

Zhang, L., Yao, Y., Challert, S., Barbarosie, M., Rondi-Reig, L., Philpott, B. D., Miyakawa, T., Bear, M. F. and Tonegawa, S. (2001). Forebrain-specific calcineurin knockout selectively impairs bidirectional synaptic plasticity and working/episodic-like memory. Cell 107, 617-629.

Zhang, Y., Nijbroek, G., Sullivan, M. L., McCracken, A. A., Watkins, S. C., Mostoslavsky, G., Ikezu, T., Wolozin, B. et al. (2001). Hsp70 molecular chaperone facilitates endoplasmic reticulum-associated protein degradation of cystic fibrosis transmembrane conductance regulator in yeast. Mol. Biol. Cell 12, 1303-1314.

Zhang, L., Shiomi, M., Thomas, B., Moore, D. J., Yu, S. W., Marupidi, N. I., Torp, R., Torgren, I. A., Ottersen, O. P., Dawson, T. M. et al. (2005). Mitochondrial localization of the Parkinson’s disease related protein DJ-1: implications for pathogenesis. Hum. Mol. Genet. 14, 2063-2073.

Zhang, L., Liu, W., Szumlinski, K. K. and Lew, J. (2012). p10, the N-terminal domain of p35, protects against CDK5/p25-induced neurotoxicity. Proc. Natl. Acad. Sci. USA 109, 20041-20046.

Zhou, Q., Li, J., Wang, H., Yin, Y. and Zhou, J. (2011). Impairment of PARK14-associated protein degradation by cystic fibrosis transmembrane conductance regulator in yeast. Mol. Biol. Cell 12, 1303-1314.

Zhou, Q., Yan, A., Rymarczyk, G., Asai, H., Trengrove, C., Aziz, N., Kirber, M. T., Mostoslavsky, G., Ikezu, T., Wolozin, B. et al. (2016). Impairment of PARK14-dependent Ca2+ signalling is a novel determinant of Parkinson’s disease. Nat. Commun. 7, 10332.

Zhu, S., Gragg, B. C., Bai, Y., Tang, X. and Cavener, D. R. (2016). PERK regulates Gq protein-coupled intracellular Ca2+ dynamics in primary cortical neurons. Mol. Brain 9, 87.