SU(4) pure-gauge phase structure and string tensions*

Shigemi Ohtaa,b and Matthew Wingateb

aInstitute for Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki 305-0801, Japan
bRIKEN BNL Research Center, BNL, Upton, NY 11973-5000, USA

We present numerical evidence that the SU(4) pure-gauge dynamics has a finite-temperature first-order phase transition. For a 6×20^3 lattice, this transition occurs at the inverse-square coupling of $8/g^2 \sim 10.79$. Below this and above the known bulk phase transition at $8/g^2 \sim 10.2$ is a confined phase in which we find two different string tensions, one between the fundamental 4 and 4^* representations and the other between the self-dual diquark 6 representations. The ratio of these two is about 1.5. The correlation in the adjoint representation suggests no string forms between adjoint charges.

There are renewed interests in SU(N_c) pure Yang-Mills theory with large N_c:

1) Finite-temperature phase structure of quantum chromodynamics (QCD) would be easier to understand if the SU(N_c) pure Yang-Mills system has a second order phase transition for $N_c \geq 4$ \cite{1}. With standard large-N_c analysis where $N_c g^2$ is held fixed, the Z(N_c) deconfinement transition occurs at $T_d \sim O(1)$, separating confining phase with free energy $F \sim O(1)$ and deconfining phase with $F \sim O(N_c^2)$. The deconfining temperature $T_d \sim O(1)$ is not effected if N_f and $g^2 N_c$ are held fixed and $N_c \to \infty$. If the transition is first order, it is not effected either. So large N_c is not a reasonable guide for $T \neq 0$ QCD phase structure with Columbia phase diagram \cite{2}, unless SU(N_c) pure Yang-Mills dynamics has second order deconfining phase transition for all $N_c \geq 4$.

2) New developments in M/string theory \cite{3} predict such things as glueball spectrum at large N_c and large g^2 or ratio between different string tensions for $N_c \geq 4$ \cite{4}.

3) The dimensionless ratio $T_d/\sqrt{\sigma}$ of the deconfining temperature T_d and string tension σ is expected to be independent of N_c with a value $\sqrt{3/\pi(D-2)}$ with D being the space-time dimensions \cite{5}.

Here we report the results of our numerical investigation on the order of deconfining phase transition and the ratio of string tensions for $N_c = 4$ \cite{6}. We use single-plaquette action defined in the fundamental 4-representation of the SU(4) gauge group. Combinations of pseudo-heatbath or Metropolis and over-relaxation algorithms are used in updating $4, 6$ and $8 \times 8^3, 12^3, 16^3$ or 20^3 lattices. Various workstations are used for the numerical calculations, while migration to the RIKEN BNL QCDSF mother boards is planned. We look at the following observables: plaquette, Polyakov loops, $L(\vec{x}) = \langle (1/N_c) \text{tr} \prod_{t=1}^{L_t} U(\vec{x},t,t) \rangle$, in 4 (fundamental), 6 (antisymmetric diquark), 10 (symmetric diquark) and 15 (adjoint) representations, deconfinement fraction, and Polyakov loop correlation $\langle L(0) L(\vec{r})^* \rangle \sim r^{-1} \exp(-F(r)/T) \sim \exp(-L_d \sigma r - \ln r)$ in $4, 6, 10$ and 15 representations.

This SU(4) pure Yang-Mills system is known to have a bulk phase transition near $\beta = 8/g^2 \sim 10.2$, separating two confining phases \cite{7}: across this transition the plaquette jumps discontinuously but the average Polyakov line in the fundamental 4 representation remains zero on both sides. However if the lattice extent in temperature direction L_t is too small this bulk transition drives a first-order finite-temperature deconfining

*Talk presented by SO.
†The authors thank RIKEN, Brookhaven National Laboratory and the U.S. Department of Energy for providing the facilities essential for the completion of this work. SO thanks the RIKEN BNL Research Center for its hospitality.
Figure 1. Time histories of the fundamental Polyakov loop magnitude and argument (in units of π) from a 6×20^3 lattice at $\beta = 10.79$ (above) and magnitude histogram (below). Confined and deconfined phases coexist at this temperature suggesting a first-order deconfining phase transition.

As is shown in Figure 1 on a 6×20^3 lattice we confirmed coexistence of confined and deconfined phases at temperature $\beta=10.79$: This strongly suggests a first-order deconfining phase transition. Work in progress confirms this phase coexistence as we extend the simulation from the present 3500 evolution steps (1 evolution = 5 heat bath + 1 over relaxation steps) to 20000 steps. We plan further study with finite-size scaling.

Figure 2. Polyakov line correlation in 4 (+) and 6 (\times) representations on a 6×16^3 lattice at $\beta = 10.70$. From the slopes we find different string tensions for these representations. No signal was obtained for 10 and 15 representations, probably because the coupling is too strong.

String tensions in SU(N_c) pure Yang-Mills system is classified by its center $Z(N_c)$ N_c-ality. With $N_c = 4$, the fundamental (4) charge has 4-ality $k = 1$, the two diquark (6 and 10) charges $k = 2$, and adjoint (15) $k = 0$. The string tensions between these charges and their anticharges are predicted to behave as $\sigma_k \propto \min\{k,N_c-k\}$ by a standard strong-coupling analysis, $k(N_c-k)$ by another strong-coupling analysis [4], and $\sin\left(k\pi/N_c\right)$ by a SUSY strong coupling analysis [4]. Generally the ratio σ_k/σ_1 should fall in the interval $1 \leq \sigma_k/\sigma_1 \leq 2$ [3]. Note also that $N_c = 4$ is the first example with different string tensions: in SU(3) pure Yang-Mills system the fundamental (3) and the symmetric diquark (6) tensions are the same [10].

In our numerical calculation on a 6×16^3 lattice at $\beta = 10.70$ (see Figure 2): we find a clear difference between 4- and 6-Polyakov loop correlations. From fitting these data we have $\sigma_4 = 0.068(4)$ and $\sigma_6 = 0.108(17)$. At a stronger coupling of $\beta = 10.65$...
Figure 3. Polyakov line correlation in 4 (+), 6 (\times) and 15 ($*$) representations on a 8×12^3 lattice at $\beta=10.85$. The adjoint (15) signals now suggest there is no string for this representation. From the slopes of the former two lower-dimensional representations we confirm different string tensions for them, and by comparison there is no tension seen in the adjoint representation.

their values are $0.086(3)$ and $0.142(57)$ respectively. Thus their ratio σ_6/σ_4 does not show much temperature dependence and falls in the interval (1.2) as it should. We are yet to see any signal for 10 and 15 representations from this lattice, probably because of too strong couplings. On the other hand at a weaker coupling of $\beta=10.85$ using a $L_t=8$ lattice we now have rather good evidence that there exists no string in the adjoint (15) representation. We plan further investigation on larger and finer lattices, probably using smaller partitions of the QCDSF parallel supercomputer at RIKEN BNL Research Center.

REFERENCES

1. R.D. Pisarski and M. Tytgat, “Why the SU(∞) deconfining transition might be of second order,” Proc. XXV Hirshegg Workshop on “QCD Phase Transition,” Jan., '97, [hep-ph/9702340].
2. F.R. Brown et al, Phys. Rev. Lett. 65, 2491 (1990).
3. J. Maldacena, “The large N limit of superconformal field theories and supergravity,” [hep-th/9711200].
4. M.J. Strassler, in Proc. YKIS97, Kyoto, Japan; [hep-th/9803009].
5. R.D. Pisarski and O. Alvarez, Phys. Rev. D26, 3735 (1982).
6. Preliminary results from the same investigation was reported in S. Ohta and M. Wingate, Proc. Lattice 98, Boulder, Colorado, Nucl. Phys. B (Proc. Suppl.) 73, 435 (1999); [hep-lat/9808022].
7. D. Barkai, M. Creutz and K.J.M. Moriarty, Nucl. Phys. B225 [FS9], 156 (1983).
8. A. Gocksch and M. Okawa, Phys. Rev. Lett. 52, 1751 (1984); G.G. Batrouni and B. Svetitsky, Phys. Rev. Lett. 52, 2205 (1984); J.F. Wheater and M. Gross, Phys. Lett. 144B, 409 (1984).
9. M. Creutz, private communication.
10. S. Ohta, M. Fukugita and A. Ukawa, Phys. Lett. B173, 15 (1986).