Correction Notice: Single-step Precision Genome Editing in Yeast Using CRISPR-Cas9

Azat Akhmetov1,4, Jon M Laurent1,2, Jimmy Gollihar1, Elizabeth C Gardner1, Riddhiman K Garge1,4, Andrew D Ellington1,4, Aashiq H Kachroo1,3,* and Edward M Marcotte1,4,*

1Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
2Institute for Systems Genetics, Department of Biochemistry and Molecular Pharmacology, New York University Langone Health, New York, NY, USA
3The Department of Biology, Centre for Applied Synthetic Biology, Concordia University, Montreal, QC, Canada
4Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
*For correspondence: aashiq.kachroo@concordia.ca; marcotte@icmb.utexas.edu

After official publication of our protocol in bio-protocol (https://bio-protocol.org/e2765), we noted some errors in the protocol and wished to correct the protocol. The edits to be performed are as the following:

1. The original Figure 1 does not appropriately indicate the generation of the Cas9 transcription unit. The process of how to create a Cas9 transcription unit with suitable promoters, terminators, and connectors has now been included in the new Figure 1. All the transcription units were made in the pYTK095 background, which has also been edited.
Figure 1. Overview of the CRISPR/Cas9-gRNA expression vector construction process. In the first step Xs and Ys represent the gRNA sequence selected, and BsmBI recognition site is indicated in bold.

2. Table 2 now shows an additional reaction for generating the transcription unit for the Cas9, as shown in Figure 1. The new Table 2 is attached below.
Table 2. Golden Gate reaction for making Cas9 and gRNA transcription unit/cassette plasmids with appropriate connectors

Reagent	Amount	Reagent	Amount
Cas9 (pYTK036)	20 fmol	gRNA in pYTK050	20 fmol
ConLS (pYTK002)	20 fmol	ConL1 (pYTK003)	20 fmol
ConR1 (pYTK067)	20 fmol	ConRE (pYTK072)	20 fmol
AmpR-ColE1 (pYTK095)	20 fmol	AmpR-ColE1 (pYTK095)	20 fmol
NEB T4 ligase buffer (10X)	1.0 µl	NEB T4 ligase buffer (10X)	1.0 µl
NEB T7 ligase	0.5-1 µl	NEB T7 ligase	0.5-1 µl
NEB Bsai	0.5-1 µl	NEB Bsai	0.5-1 µl
Promoter and terminator cassettes	20 fmol	ddH2O to 10 µl	ddH2O to 10 µl

Table 3 has also been edited that includes the title and footnote edits. The edits are the following:

a. The correct cassette plasmids with connectors are indicated in the reagents section.
b. The volumes of ligase and enzymes have been edited from 0.5 µl to 0.5 - 1 µl.
c. The title shows that this plasmid now serves as an expression vector in a yeast cell.
d. The footnote for the table now indicates the End-On-Ligation step required at the end of the Golden Gate reaction cycle to generate a CEN6-URA-GFP vector.

Table 3. Golden Gate reaction for making Cas9 and gRNA yeast expression vector

Reagent	Amount
gRNA cassette with connectors	20 fmol
Cas9 transcription unit with connectors	20 fmol
CEN6-URA-GFP plasmid* (KanR)	20 fmol
NEB T4 ligase buffer (10X)	1.0 µl
NEB T7 ligase	0.5-1 µl
NEB Bsai	0.5-1 µl
ddH2O	to 10 µl

*Cen6-Ura is constructed by assembling YTK plasmids (008, 047, 073, 074, 081, and 084) using BsaI enzyme and End-On-Ligation step for the Golden Gate reaction.

References

Akhmetov, A., Laurent, J. M., Gollihar, J., Gardner, E. C., Garge, R. K., Ellington, A. D., Kachroo, A. H. and Marcotte, E. M. (2018). Single-step precision genome editing in yeast using CRISPR-Cas9, Bio-protocol 8(6): e2765.
