Effect of Salinity on Osmoregulation and Growth of Batik Lobster (Panulirus longipes)

Muhammad Haikal Abdurachman1, Yushinta Fujaya2 and Dody Dharmawan Trijuno3

1Program Studi Ilmu Perikanan, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10 Tamalanrea, Makassar 90245.

2Corresponding author, Fakultas Ilmu Kelautan dan Perikanan, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10 Tamalanrea, Makassar 90245

3Fakultas Ilmu Kelautan dan Perikanan, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10 Tamalanrea, Makassar 90245

Corresponding Email: muh.haikal.a@gmail.com

Received : 15 April 2020; Accepted: 28 Mei 2020

Abstract

Muhammad Haikal Abdurachman, Yushinta Fujaya and Dody Dharmawan Trijuno. 2020. Effect of Salinity on Osmoregulation and Growth of Batik Lobster (Panulirus longipes). Aquacultura Indonesiana, 21 (1): 14 - 23. Salinity is one of the environmental factors that influence the body's physiological processes primarily in the osmoregulation process and impacts on growth. The purpose of this study was to see the impact of salinity on osmoregulation and growth and to determine the optimum salinity for the maintenance of Panulirus longipes. This research was conducted in September 2019-January 2020, at Balai Udang Mata Seed City, Kendari City, Southeast Sulawesi, Indonesia. The salinity tested in this study were 28, 31, and 34 ppt. The results showed high salinity had an impact on the level of osmotic pressure which was higher, but the diameter of granulocytes and hyalinocytes was getting smaller. Male lobsters had better adaptability to salinity than females, where the salinity range of 28-34 ppt could still be tolerated and did not affect growth. Conversely, females were strongly affected by salinity and the optimal salinity to support growth was 31 ppt

Keywords: growth, hemocyte diameter, homeostatis, lobster, osmotic pressure, salinity

Background

Seawater lobster (Panulirus spp.) is one of Indonesia’s export commodities, but in recent years production has declined. Based on statistical data, there was a decrease in exports from 1,243 tons in 2018 to 713 tons in 2019. The decline in catch was due to overfishing ranging from seed size to consumption size, in addition to changes in its habitat and environment that also had an impact on the number of successful lobsters captured (Erlania et al., 2017 and Damora et al., 2018)). This can be seen from the decrease in the size and number of catches in several regions of Indonesia such as Yogyakarta (Larasati et al., 2018); Sukabumi (Rombe et al., 2018); Bali (Kembaren et al., 2015). This condition also happened to the undeveloped outdoor lobster farming in several regions of Indonesia (Erlania et al., 2017).

Lobster culture has now become a world trend in efforts to meet market demand. However, the potential for cultivation in some countries such as Indonesia had not fully developed yet (Erlania et al., 2017 and Shanks & Jones, 2010). Lobster culture systems that are often used are floating net cages, step net cages, and basic confinement (Shanks & Jones, 2010). The system often gets a large influence from changes in water quality in different seasons to ultimately affect the growth and number of lobster production (Jones, 2010 and Haikal et al., 2017). In contrast to the culture in indoor system where monitoring of various factors can be more intensively carried out, this is considered the best effort in lobster culture (Shanks & Jones, 2010).

Indoor scale lobster farming has been carried out by paying attention to various
quality factors such as salinity (Erlania et al., 2017). Salinity can influence the body's metabolism through osmoregulation mechanisms (Jones, 2009 & Vidya & Joseph, 2012). This condition is affected by several changes in osmotic pressure (Henry et al., 2012; Jiménez et al., 2012 and Bazer et al., 2016) and hemocyte size (Romano & Zeng, 2012). Other impacts can be seen from the activity of the Na⁺ enzymes, K⁺, and ATPase that cause changes in the body's energy allocation (Shock et al., 2009; Romano et al., 2014 and Romano & Zeng, 2012).

Salinity affects the body's metabolism through osmoregulation mechanisms that have a crucial impact on the body of a lobster (Shock et al., 2009; Jones, 2009 and Vidya & Joseph, 2012). High and low salinity can cause the use of energy for the body to be ineffective, this condition certainly has an impact on lobster growth and cultivation. The purpose of this study was to see the effect of salinity on osmoregulation and growth of P. longipes. The usefulness of this research is as a source of information in determining the optimum salinity as an effort in rearing lobster in indoor culture system.

Material and Method

Time and Place

This research was conducted from September 2019 to January 2020. The rearing of lobster was carried out at UPTD Balai Benih Udang Mata, Kendari City, Southeast Sulawesi, Indonesia (Figure 1). Cell diameter measurements were carried out at the Basic Biology Laboratory of Halu Oleo University, Kendari, while measurements of osmotic pressure were carried out at the Maros Freshwater Engineering Center

Test Animals

Test animals that used in this study were male and female batik lobster, weighing 240 ± 50 g, carapace length of 8.2 ± 1 mm, and carapace width of 4.73 ± 0.54 mm (Fig. 2). The lobsters were obtained from the catch of fishermen in the seawaters of North Buton, Southeast Sulawesi. The lobsters were then kept in a net of 90 x 90 x 120 cm and placed in a tub of 2 x 4 x 150 cm. Each net contained a pair of male and female lobsters with a total of 12 test animals/tanks. The feed given was brown sugar (Modiolus modulaides), while the feeding referred to research of Haikal et al., (2017) on ad libitum 3 times a day (06.00; 17.00 & 23.00 WITA).
The experimental design

The study used a factorial randomized block design (RBD), consisting of 2 factors: three levels of salinity (28, 31 and 34 ppt) and sex (male and female). Salinity treatment was obtained by diluting seawater with initial salinity of 36 ppt. Dilution of salinity used the following equation:

\[S_2 = \frac{a \times S_1}{n + a} \]

Note: \(S_2 \) = Target salinity (ppt); \(S_1 \) = Diluted Salinity (ppt)
\(a \) = Volume of diluted seawater (L); \(n \) = Freshwater volume (L)

Test Parameters

Variables observed in this study consisted of osmotic pressure rate, cell diameter (granulocytes and hyalinocytes) while growth parameters were absolute growth and specific growth rates.

Osmotic Pressure

Osmotic pressure rate was measured using Fiske Model 210 Micro-Osmometr, where the collection of hemolymph entered in appendorf tube of 1.5 ml and stored in cooling cabinets. The analysis begins with hemolymph centrifuge with a speed of 5000 rpm for 3 minutes which then forms a supernatant layer. The supernatant layer of hymolimph is then taken as much as 20 µl and put in a disposable osmometer for analysis. Whereas to find out the value of osmotic pressure rate an equation of Lignot et al., (1999) was used:

\[\text{Description: OP} = \text{Osmotic Pressure (mOsm.L}^{-1}) ; \text{OM} = \text{Media Osmolarity (mOsm.L}^{-1}) \]
\[\text{OH} = \text{Hemolymph Osmolarity (mOsm.L}^{-1}) \]

Hemocyte Cell diameter

Measurement of hemocyte cell diameter was performed on granulocytes and hyalinocytes by taking hemolymph using a 0.5 ml syringe between prosoma and lobster opisthosoma. The syringe contained a Na-citrate solution. The ratio between Na-citrate and hemolymph is 1:1. The hemocyte fluid was then dripped sufficiently on top of the glass preparations and flattened using other glass preparations. Glass preparations containing hemocytes were then soaked in methanol for 10 minutes, followed by gyns staining for 15 minutes and rinsed using distilled water. Differences in the shape of hemocyte cells referred to the explanation of Factor, (1995); Matozzo & Mrin, (2010) and Hong et al., (2013) that granulocytes have irregular shapes that have granular resembling bubbles at the edges of cells, whereas hyalinocytes have perfectly rounded shapes. Cell size was analyzed using the Image-J application according to the instructions of Rifano, (2014) and Adeogun et al., (2015). Cell diameter was measured using the equation:

\[\text{OP} = \text{OM} - \text{OH} \]
Effect of Salinity on Osmoregulation and Growth of Batik Lobster (Panulirus longipes) (Muhammad Haikal Abdhurachman et al.)

AQUACULTURA INDONESIANA
An International Journal of Indonesian Aquaculture Society (www.aquasiana.org)
© Copyright by Indonesian Aquaculture Society 2020

Effect of Salinity on Osmoregulation and Growth of Batik Lobster (Panulirus longipes) (Muhammad Haikal Abdhurachman et al.)

AQUACULTURA INDONESIANA
An International Journal of Indonesian Aquaculture Society (www.aquasiana.org)
© Copyright by Indonesian Aquaculture Society 2020

Effect of Salinity on Osmoregulation and Growth of Batik Lobster (Panulirus longipes) (Muhammad Haikal Abdhurachman et al.)

AQUACULTURA INDONESIANA
An International Journal of Indonesian Aquaculture Society (www.aquasiana.org)
© Copyright by Indonesian Aquaculture Society 2020

\[D = \frac{C}{\pi} \]

Description: \(D = \text{Diameter (µm)}; \ C = \text{cell area (µm)} \)
\(\pi = 3.14 \)

Growth

There are two growth categories measured, absolute growth and specific growth rate. Absolute growth is the difference between the final weight and the initial weight of lobsters. The absolute growth measured using the formula:

\[G = G_t - G_0 \]

Description: \(G = \text{Absolute Growth (g)}; \ G_t = \text{Final weight (g)}; \ G_0 = \text{Initial weight (g)} \)

Specific Growth Rate

Specific growth rate refers to the equation used by Cook et al., (2000):

\[SGR = \frac{\log W_t - \log W_0}{t} \times 100 \]

Description: \(SGR = \text{Specific growth rate (%) per day}; \ W_0 = \text{initial weight (g)} \)

Data Analysis

The effect of various salinity treatment levels on osmotic pressure, diameter of granulocytes, diameter of hyalinocytes and growth were analyzed using Multivariate Analysis of Variance (MANOVA) and followed by Duncan test using SPSS software version 23.0 to determine the best salinity.

Results

Osmotic Pressure

Osmotic pressure level of P. longipes those maintained at 28, 31, and 34 ppt show different values. The lowest value was at 28 ppt, both in the male range (813-869 mOsm.L\(^{-1}\)), and females (795-874 mOsm.L\(^{-1}\)). While the highest value was at 34 ppt, with the highest range dominated by female lobsters (1019-1348 mOsm.L\(^{-1}\)), followed by males in the range (1031-1206 mOsm.L\(^{-1}\)). Whereas at 31 ppt it shows in the range ± 900 mOsm.L\(^{-1}\) (Fig. 1 and 2).

![Figure 1. Level of osmotic pressure of P. longipes male in different salinity (28, 31 & 34 ppt) during experiment days (0, 30, 60 & 90) (P <0.05)](image-url)

Growth

There are two growth categories measured, absolute growth and specific growth rate. Absolute growth is the difference between the final weight and the initial weight of lobsters. The absolute growth measured using the formula:

\[G = G_t - G_0 \]

Description: \(G = \text{Absolute Growth (g)}; \ G_t = \text{Final weight (g)}; \ G_0 = \text{Initial weight (g)} \)

Specific Growth Rate

Specific growth rate refers to the equation used by Cook et al., (2000):

\[SGR = \frac{\log W_t - \log W_0}{t} \times 100 \]

Description: \(SGR = \text{Specific growth rate (%) per day}; \ W_0 = \text{initial weight (g)} \)
Hemocyte Cell Diameter

The hemocyte cell diameter observed consisted of granulocytes and hyalinocytes. The size of the diameter of the granulocytes at 28 ppt day 0 for males was 7.68 ± 1.53 µm and females 15.11 ± 0.98 µm. The size of the granulocytes increased proportional to the time of maintenance, on the 90th day: the size of the male granulocytes became 15.68 ± 0.23 µm, and the female 32.13 ± 5.67 µm. Whereas at 31 and 34 ppt it consists of cells of smaller size in both males and females. The smallest diameter of granulocytes were found at 34 ppt. On day 0 granulocytes of male was 3.07 ± 0.39 µm and female 4.07 ± 1.89 µm, then increased on the 30th day with male of 4.31 ± 0.28 µm and female of 6.14 ± 0.12 µm, but decreased on 90th day; 3.65 ± 0.43 µm for male and 5.67 ± 0.11 µm for female (Fig. 3).

The diameter size of hyalinocytes also increased with the length of rearing time like granulocytes. The diameter of hyalinocytes at 28 ppt is the largest, on day 0 the size of male hyalinocytes is 4.35 ± 0.25 µm and female 4.30 ± 0.23 µm, then on the 60th day the size of hyalinocytes was male 5.32 ± 2.04 µm and females 6.19 ± 0.37 µm. The size decreased on
the 90th day to $4.42 \pm 2.38 \mu m$ male and $5.96 \pm 0.58 \mu m$ female. Whereas at 31 and 34 ppt decreasing size until the end of the maintenance that is shown in Figure 4.

Hyalinocytes

![Hyalinocytes](image)

Figure 4. The diameter of the cells hyalinocytes of *P. longipes* male (M) and female (F) at different salinities (28, 31, & 34 ppt) during experiment days (0, 30, 60 & 90) (P <0.05)

Growth

The highest growth rate of male *P. longipes* at 34 ppt (36.17 ± 58.68 g) and lowest values on 31 ppt (25.17 ± 20.87 g). Like on growth, the specific rate growth have similar in the highest values at 34 ppt ($0.15 \pm 0.27 \%$ per day) and the lowest values at 31 ($0.11 \pm 0.09 \%$ per day) (Fig. 5).

![Growth](image)

Figure 5. Growth (g) and specific rate growth (\% per day) of male *P. longipes* at different salinity (28, 31 & 34 ppt) (P> 0.05)

Different with Male, the highest growth rate of female *P. longipes* at 31 ppt (50.08 ± 22.04 g) and lowest values at 34 ppt (0.70 ± 0.009 g). Like on growth, the specific rate growth have similar in the highest values at 31 ppt ($0.21 \pm 0.09 \%$ per day) and the lowest values at 34 ($0.009 \pm 0.15 \%$ per day) (Fig. 6).
Discussion

Lobsters are crustaceans with osmoconformer capabilities. This is evident from the research. Salinity is very influential on the osmoregulation mechanism of batik lobster (P. longipes). This is characterized by changes in osmotic hemolymph pressure and hemocyte diameter in response to changes in salinity. As stated by Fujaya & Sudaryono (2016), salinity is an environmental factor that plays a major role in osmoregulation where the osmoregulation process generally involves the activity of Na+, K+, and ATPase in the gills to regulate the body's ions to remain stable (homeostatic).

Salinity is the amount of salt that dissolves in a body of water. This is usually measured in g salt/kg of sea water or part per thousand (ppt). Increasing the salinity level will directly increase the level of osmotic pressure proportionally (Henry et al., 2012). Likewise, batik lobster (P. longipes) in this study (Fig. 1 and 2). Batik lobster has an osmotic pressure of around 869-873 mOsm.L-1, 956-981 mOsm.L-1, and 1205-1348 mOsm.L-1, respectively at 28 ppt, 31 ppt and 34 ppt. Similar to P. longipes, osmotic pressure from various types of lobster has also been reported by some previous researchers, such as P. elephas having 679 mOsm.L-1 at 27 ppt (Lucu et al., 2000), Homarus americanus has 900 mOsm.L-1 at 31 ppt (Charmantier et al., 1984), and P. argus has 1194-1212 mOsm.L-1 at 35 ppt (Jiménez et al., 2012).

Male and female lobsters had different responses to the salinity. Female lobsters generally have a range of osmotic levels greater (Fig. 2) than males at the same salinity level (Fig. 1). According to Charmantier et al., (2001); Jiménez et al., (2012); Romano & Zeng, (2012); Romano et al., (2014) and Bazer et al., (2016), the function and work of Na+, K+ and ATPase on the gills more stable in male lobster, it is affects the body's ability to carry out the process of maintain osmotic pressure with its environment. Evans (2008), also found that female lobster tends to require a longer adaptation time to changes in salinity, this condition is related to the complexity of the energy allocation mechanism used to survive, grow and ovarian maturation. This information is important in determining the location and management of water salinity in the cultivation.

Hemocytes are blood cells in lobster or other crustaceans and have the same function as blood cells in vertebrates as carriers of oxygen and nutrients needed for cell metabolism. Hemocyte size is strongly influenced by the body's osmotic pressure in response to salinity. Therefore, the size of the hemocytes is different between males and females at the same level of salinity as different body osmotic pressure responses.
Another study informs that the size hemocyte crustacea like as: Carcinus aestuarii, about 11.94 ± 1.43 µm in granulocytes and hyalinocytes 7.88 ± 1.6 µm (Matozzo & Mrin, 2010); E. sinensis have granulocytes sizes about 14.05 ± 2.60 µm and hyalinocytes 6.02 ± 0.88 µm (Hong et al., 2013); Callinectes amnicola have granulocytes cell about 19.37 ± 2.76 µm and hyalinocytes 8.95 ± 1.62 µm (Adeogun et al., 2015). Factor (1995) suggests that the size of the homarus hemocyte have a range of 15 µm for granulocytes, 11 µm for hyalinocytes and generally granulocytes is larger than hyalinocytes.

Changes in hemocyte size are an indicator of heavy performance in the osmoregulation process. If osmoregulation goes well, it is marked by no significant changes in the size of the hemocytes. Lobster hemocytes can respond to changes in water salinity, these conditions are closely related to changes in the level of osmotic pressure for to maintain body homeostasis (Jiménez et al., 2012; Fujaya & Sudaryono, 2016). According to Evans (2008) and Hong et al., (2013) in a hyperosmotic state, cells will experience degranulation and shrinkage due to the release of water through a diffusion process. Conversely in a hypoosmotic state, the cell will undergo lysis and detachment which results in excess water entering the cell and followed by the release of protein and amino acid components from the inside. Therefore, osmotic pressure can influence to change in the size of granulocytes and hyalinocytes, like in Eriocheir sinensis. Hong et al., (2013) argues that the high level of osmotic pressure in E. sinensis causes osmosis (diffusion) which results in the movement of water out of the cell so that the size of the cytoplasm is become smaller. Factor (1995), in contrast, the impact of low osmotic pressure on lobster causes absorption of water in cells is more dominant and can be influx lysis on cell. Evans (2008) also explain that, low salinity can cause an increase in cell size, even lysis or rupture of hemocytes due to the large volume of water entering the cell. Conversely, in high salinity can cause shrinkage of cell size due to high Na+ ions and K+ in hemocytes, resulting in shrinkage of the epidermis due to moisture content that disappears in the osmosis process. Changes of water transmission entering to the cell have influence on the activity of enzymes in the process of anabolism and catabolism in particular: asparagun, glutamine, proline, alanine, glycine, and serine. Osmolarity activity on the high salinity have effect to synthesis of free amino acids is high. While low salinity can reduce the cell osmolarity that triggers deliverance amino acids excreted to media through the posterior gills.

The results of this study indicate that high levels of osmotic pressure will have an impact on low growth in lobsters (Fig. 5 and 6). This condition is seen in male lobsters with relatively stable osmotic pressure so that the growth obtained is relatively higher and stable at all levels of salinity, this is inversely proportional to female lobster. As we know that the osmoregulation process requires metabolic energy to support ion transport in an effort to regulate the body's osmotics. Na+ regulation and chloride cell activation are known to require amino acids to maintain permeable stability in the osmoregulation process (Bazer et al., 2016 and Romano et al., 2014). Therefore, if the osmoregulation activity takes place high, it will affect the energy expenditure for activation of Na, K, and ATPase so that it affects the growth (Lucu et al., 2000; Jones, 2009; Henry et al., 2012 and Vidya & Joseph, 2012).

Conclusion

Salinity levels greatly affect the osmoregulation mechanism in batik lobsters. Osmoregulation performance is clearly seen in this study, through changes in osmotic pressure and hemocyte size directly. Indirectly, high osmotic pressure will have an impact on low growth in lobsters. One interesting thing from the results of this study is that there are differences in the adaptability of batik lobster to salinity based on gender. Adaptability to salinity is higher in male than in females. Optimum salinity for females is in the range at 31 ppt.

Bibliography

Adeogun, A. O., Salami, O. A., Chukwuka, A. V., & Alaka, O. O. (2015).
Haematological and serum biochemical profile of the blue crab, Callinectes amnicola from two tropical lagoon ecosystems. African Journal of Biomedical Research, 18(3), 233–247.

Bazer, C. E., Preston, R. L., & Perry, W. L. (2016). Increased salinity affects survival and osmotic response of rusty crayfish Orconectes rusticus Girard, 1852 and northern clearwater crayfish O. propinquus Girard, 1852 (Decapoda: Astacoidae: Cambaridae) as salinity increases: The potential for estuarine i. Journal of Crustacean Biology, 36(5), 607–614.

Charmantier, G., Charmantier-Daures, M., & Aiken, D. E. (1984). Neuroendocrine control of hydromineral regulation in the American lobster Homarus americanus H. Milne-Edwards, 1837 (Crustacea, Decapoda). 2. Larval and Postlarval Stages. General and Comparative Endocrinology, 54(1), 20–34.

Charmantier, Guy, Haond, C., Lignot, J. H., & Charmantier-Daures, M. (2001). Ecophysiological adaptation to salinity throughout a life cycle: A review in homarid lobsters. Journal of Experimental Biology, 204(5), 967–977.

Cook, J. T., McNiven, M. A., Richardson, G. F., & Sutterlin, A. M. (2000). Growth rate, body composition and feed digestibility/conversion of growth-enhanced transgenic Atlantic salmon (Salmo salar). Aquaculture, 188(1–2), 15–32.

Damora, A., Wardiatno, Y., & Adrianto, L. (2018). Hasil tangkapan per upaya dan parameter populasi lobster pasir (Panulirus homarus) di perairan Gunung Kidul Catch. Marine Fisheries: Journal of Marine Fisheries Technology and Management, 9(1), 11.

Erlania, E., Radiarta, I. N., & Haryadi, J. (2017). Status pengelolaan sumberdaya benih lobster untuk mendukung perikanan budidaya: studi kasus perairan Pulau Lombok. Jurnal Kebijakan Perikanan Indonesia, 8(2), 85.

Evans, D. (2008). and Ionic. In Osmotic and ionic regulation. CRC Press.

Fujaya, Y. & Sudaryono A (2016). Fisiologi Ikan dan aplikasinya pada perikanan. Pustaka Al Zikra. 309 hal

Factor, J. R. (1995). Biology of the lobster Homarus americanus. Academic Press Limited.

Haikal, M., Kurnia, A., & Muskita, W. H. (2017). Pengaruh kombinasi tepung Keong Bakau (Teleoscyopium telescopium) dan minyak kelapa tradisional dalam pakan buatan terhadap pertumbuhan lobster Mutiara (Panulirus ornatus). Media Akuatika, 2(3), 418–425.

Henry, R. P., Lucu, Č., Onken, H., & Weihrauch, D. (2012). Multiple functions of the crustacean gill: Osmotic/ionic regulation, acid-base balance, ammonia excretion, and bioaccumulation of toxic metals. Frontiers in Physiology, 3 NOV (November), 1–34.

Hong, Y., Yang, X., Cheng, Y., Liang, P., Zhang, J., Li, M., Shen, C., Yang, Z., & Wang, C. (2013). Effects of pH, temperature, and osmolarity on the morphology and survival rate of primary hemocyte cultures from the Mitten Crab, Eriocheir sinensis. In Vitro Cellular and Developmental Biology - Animal, 49(9), 716–727.

Jiménez, C. P., Huchin-Mian, J. P., Simões, N., Briones-Fourzán, P., Lozano-Álvarez, E., Sánchez-Arteaga, A., Pérez-Vega, J. A., Simá-Álvarez, R., Rosas Vazquez, C., & Rodríguez-Canul, R. (2012). Physiological and immunological characterization of Caribbean spiny lobsters Panulirus argus naturally infected with Panulirus argus Virus 1 (PaV1). Diseases of Aquatic Organisms, 100(2), 113–124.

Jones, C. M. (2009). Temperature and salinity tolerances of the tropical spiny lobster, Panulirus ornatus. Journal of the World Aquaculture Society, 40(6), 744–752.

Kembren, D. D., Lestari, P., & Ramadhani, R. (2015). Parameter biologi lobster pasir (Panulirus homarus) di perairan tabanan, Bali. Bawal Widya Riset Perikanan Tangkap, 7(1), 35.

Larasati, R. F., Suadi, & Setyobudi, E. (2018). Short communication: Population dynamics of double-spined rock lobster (Panulirus penicillatus olivier, 1791) in southern coast of Yogyakarta, Indonesia. Biodiversitas, 19(1), 337–342.
Lignot, J. H., Cochard, J. C., Soyez, C., Lemaire, P., & Charmantier, G. (1999). Osmoregulatory capacity according to nutritional status, molt stage and body weight in Penaeus stylirostris. Aquaculture, 170(1), 79–92.

Lucu, Č., Devescovi, M., Skaramuca, B., & Kožul, V. (2000). Gill Na,K-ATPase in the spiny lobster Palinurus elephas and other marine osmoconformers. Adaptiveness of enzymes from osmoconformity to hyperregulation. Journal of Experimental Marine Biology and Ecology, 246(2), 163–178.

Matozzo, V., & Mrin, M. G. (2010). First cytochemical study of haemocytes from the crab Carcinus a estuarii (Crustacea, Decapoda). European Journal of Histochemistry, 54(1), 44–49.

Rifano, R. (2014). Aplikasi image-j untuk menghitung perubahan luas inti eritrosit bebek akibat larutan hipotonis. Skripsi. Fakultas Kedokteran Hewan, Institut Pertanian Bogor.

Romano, N., Wu, X., Zeng, C., Genodepa, J., & Elliman, J. (2014). Growth, osmoregulatory responses and changes to the lipid and fatty acid composition of organs from the Mud Crab, Scylla serrata, over a broad salinity range. Marine Biology Research, 10(5), 460–471.

Romano, N., & Zeng, C. (2012). Osmoregulation in decapod crustaceans: Implications to aquaculture productivity, methods for potential improvement and interactions with elevated ammonia exposure. Aquaculture, 334–337(March), 12–23.

Rombe, K. H., Wardiatno, W., & Luky, A. (2018). Pengelolaan perikanan lobster dengan pendekatan eafm di teluk palabuhan Ratu. 9986(September), 231–242.

Shanks, S., & Jones, C. (2010). 5.13 Status of lobster hatchery technology development. Proceedings of the International Lobster Aquaculture Symposium Held in Lombok, Indonesia, 22–25 April 2014, 52(December), 304–315.

Shock, B. C., Stueckle, T. A., & Foran, C. M. (2009). Effects of Salinity Stress on Survival, Metabolism, Limb Regeneration, and Ecdysis in Uca Pugnavx. Journal of Crustacean Biology, 29(3), 293–301.

Simon, C. J., Fitzgibbon, Q. P., Battison, A., Carter, C. G., & Battaglene, S. C. (2015). Bioenergetics of nutrient reserves and metabolism in spiny lobster juveniles Sagmariasus verreauxi: Predicting nutritional condition from hemolymph biochemistry. Physiological and Biochemical Zoology, 88(3), 266–283.

Vidya, K., & Joseph, S. (2012). Effect of salinity on growth and survival of juvenile indian spiny lobster, Panulirus homarus (linnaeus). Indian Journal of Fisheries, 59(1), 113–118.