SPR-measured kinetics of PROTAC ternary complexes influence target degradation rate.

Michael J. Roy¹, Sandra Winkler², Scott J. Hughes¹, Claire Whitworth¹, Michael Galant², William Farnaby¹, Klaus Rumpel², and Alessio Ciulli¹,*

¹ Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee, DD1 5EH, United Kingdom.
² Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria.

Keywords: PROTACs; ternary complexes; surface plasmon resonance; kinetics; protein-protein interactions; cooperativity

ABSTRACT: Bifunctional degrader molecules, known as proteolysis-targeting chimeras (PROTACs), function by recruiting a target to an E3 ligase, via a target:PROTAC:ligase ternary complex. Despite the importance of this key intermediate species, no method to monitor ternary complex kinetics has been reported, and it remains to be addressed how this might impact on the kinetics of protein degradation. Here, we develop an SPR-based assay to quantify the stability of PROTAC-induced ternary complexes by measuring for the first time the kinetics of their formation and dissociation. We benchmark our assay using four PROTACs that target the bromodomains (BDs) of BET proteins Brd2, Brd3 and Brd4 to the E3 ligase VHL. We reveal marked differences in ternary complex off-rates for different PROTACs that form either cooperative or non-cooperative complexes. The positively cooperative degrader MZ1 forms comparatively stable and long-lived ternary complexes with either Brd4BD2 or Brd2BD2 and VHL. Equivalent complexes with Brd3BD2 are destabilized due to a single amino acid difference (Glu/Gly swap) present in the bromodomain. We observe that this difference in ternary complex dissociative half-life correlates to a greater initial rate of intracellular degradation of Brd2 and Brd4 relative to Brd3. These findings establish a novel assay to measure the kinetics of PROTAC ternary complexes and elucidate the important kinetic parameters that drive effective target degradation.
PROTACs are bivalent molecules consisting of ligands for each of a target protein and an E3 ligase, joined via a linker. PROTAC behaviour can be modelled by three-body binding equilibria. Formation of a target: PROTAC:ligase ternary complex triggers proximity-dependent target protein ubiquitylation and degradation via the ubiquitin-proteasome-system. PROTAC drug discovery is rapidly advancing in both academia and industry, fuelled by both improvement in drug-like properties and broader recognition of mechanistic advantages of degradation over inhibition. PROTACs offer potential for improved selectivity beyond that of the constituent target ligand, by harnessing additional stabilising or destabilising de novo protein-protein or protein-linker interactions formed via the ternary complex. Developing new tools to understand cooperativity/avidity effects in PROTAC design is thus of significant interest. Although functional degraders can be generated in the absence of positive cooperativity, mounting evidence suggests enhancing cooperativity could be an effective strategy in PROTAC design. Cooperativity is expected to counter the ‘hook effect’ often exhibited by bifunctional molecules, thereby widening the concentration window for PROTAC activity, and could enable use of weaker-affinity ligands. Despite a growing literature of methods to measure thermodynamics of PROTACs at steady-state, there is currently a dearth of methods to measure kinetics of formation and dissociation of PROTAC ternary complexes in real-time. We were thus interested in exploring surface plasmon resonance (SPR) as a suitable label-free technique to monitor the kinetics of PROTAC-induced ternary complexes, the required intermediate species in the mechanism. Herein we develop the first SPR-based assay to quantitatively measure the kinetics of complex formation and dissociation, which we use to characterise the lifetime of ternary complexes composed of bromodomain-containing target proteins, PROTACs, and the von Hippel-Lindau E3 ligase (VHL).

SPR has previously been utilised to characterise three-body binding systems (including complexes composed of protein, DNA and small-molecules), which can be experimentally involving due to the complex nature of the binding equilibria. We sought a general-purpose and conceptually-simple assay format to study PROTACs ternary complexes. Importantly, we recognised for bivalent molecules that the ‘hook effect’ would preclude use of saturating concentrations of PROTAC in the running buffer. We reasoned that by immobilising the E3 ligase, a single sensor surface might be utilised to measure diverse PROTAC/target combinations. To improve uniform presentation on the chip surface, we designed a VHL:ElonginB:ElonginC (VCB) construct harboring an AviTag sequence C-terminal to ElonginB for site-specific biotinylation (hereafter ‘biotin-VHL’).

Figure 1. Schematic of SPR approach (A-B) and representative binding data (C).
Using a Biacore T200 SPR instrument and streptavidin-immobilised biotin-VHL, we measured the kinetics and affinity of VHL binding for a concentration series of either PROTAC alone (to form binary complex with VHL, K_D^{binary}) or PROTAC pre-incubated with saturating concentrations of target protein (to form ternary complex with VHL, K_D^{ternary}) (Figure 1). Experiments were performed in either multi-cycle (binary) or single-cycle (ternary) format without regeneration, to ensure a maximally stable surface and reduce experimental run-times for PROTAC:BD complexes exhibiting slow dissociation kinetics. Doubly-referenced replicate data were fitted globally (over multiple surface densities where applicable) to a 1:1 Langmuir binding model incorporating a parameter for mass transfer effects, to determine kinetic constants (k_{on}, k_{off}) from which dissociation constants were calculated ($K_D = k_{off} / k_{on}$). Cooperativity (α) was calculated as the ratio $K_D^{\text{binary}}/K_D^{\text{ternary}}$.

To benchmark the assay, we utilised the PROTAC MZ1, which forms a highly cooperative ternary complex with VHL and Brd4$^{\text{BD2}}$ that we have previously characterised both biophysically and structurally. In addition to MZ1, we selected three other PROTACs with ITC-measured affinities for ternary complex formation with VHL/BET bromodomains (Chart 1). Combined, these encompass a range of both binary binding affinities and ternary complex cooperativities (both positive and negative). This set includes MZ1 and AT1, two positively-cooperative PROTACs based on a triazolodiazepine BET inhibitor JQ1 (Ligand A, Chart 1), as well as MZP55 and MZP61, two negatively-cooperative PROTACs based on a more potent tetrahydroisoquinolone BET inhibitor I-BET726 (ligand B, Chart 1).

Chart 1. PROTACs utilised in this study.

![Chart of PROTACs](image)

SPR binding studies were performed with MZ1, AT1, MZP55 and MZP61 alone (binary) or in complex with Brd4$^{\text{BD2}}$ as a representative BET bromodomain (ternary), and binding data compared to the ITC-obtained values (Table 1, Supplementary Table S1, Figure S1). For the panel of PROTACs evaluated, the measured K_D values for binary and ternary complexes, as well as the calculated values for the both cooperativity and change in complex stability ($\Delta\Delta G$), were remarkably comparable using either ITC or SPR (Table 1). For MZP61 and MZP55 some nonspecific effects were observed for binary binding to VHL (Supplementary Figure S1); in the case of MZP61 these effects were sufficiently pronounced as to preclude accurate kinetic fitting, so steady state fitting was used to measure K_D^{binary}.

Table 1: Binding of PROTACs or PROTAC:Brd4$^{\text{BD2}}$ complexes to immobilized VHL (SPR) and comparison to ITC data.

PROTAC	+ target	SPR (VHL)a	ITC (VHL)c,10					
		K_D (nM)	$t_{1/2}$ (s)	α	$\Delta\Delta G$ (kcal/mol)	K_D (nM)	α	$\Delta\Delta G$ (kcal/mol)
MZ1	binary	29	43	-	-	66d	-	-
	Brd$^{\text{BD2}}$	1	130	22	-1.8	3.7d	17.8d	-1.7
AT1	binary	110	17	-	-	335d	-	-
	Brd$^{\text{BD2}}$	24	-	4.7	-0.9	46d	7.3d	-1.2
MZP55	binary	69	48	-	-	109e	-	-
	Brd$^{\text{BD2}}$	185	1	0.4	+0.6	183e	0.6e	+0.3
MZP61	binary	104c	-	-	-	116c	-	-
	Brd$^{\text{BD2}}$	465	1	0.2	+0.9	781c	0.1c	+1.1

a Refer to Supplementary Table S1 for full details.

b Difference in Gibbs free energy of binding for ternary complex relative to binary.

c Fitting by steady state affinity. d Literature value (ref. 7). e Literature value (ref. 10).
Relative to the binary equilibria, the VHL: Miz1:Brd4BD2 ternary complex displayed both a faster k_{on} and slower k_{off}, leading to the tighter $K_{ternary}^{1/2}$ and significant positive cooperativity ($\alpha \approx 20$) (Figure 1C, Table 1, Supplementary Table S1). As anticipated, the VHL: AT1:Brd4BD2 ternary complex also exhibited positive cooperativity ($\alpha \approx 5$). In stark contrast, ternary complexes formed by either of MZP55 and MZP61 with Brd4BD2 had very fast dissociation kinetics (>80-fold faster than the VHL:Miz1:Brd4BD2 complex) reflecting overall negative cooperativity, with the most negatively-cooperative ternary complex being formed by MZP61 (Supplementary Table S1, Figure S1). Whilst we have shown that both the ITC and SPR approaches are complimentary and yield similar values, the notable advantages of our SPR method are increased throughput and yielding kinetic information, including estimates of the lifetime of the ternary complex. This information is invaluable to better understand PROTAC function and ternary complex stability in an enzymatic context,4 analogously to how quantification of inhibitor residence time has helped to understand pharmacological function in certain occupancy-driven small-molecule contexts.22

MZ1 has been shown to degrade Brd4 more potently than Brd2 or Brd3 (despite near equipotent binding of the constituent warhead ligand to all BET bromodomains),5, 10, 23 resulting from the high thermodynamic stability of the VCB:Miz1:Brd4BD2 complex.5 We sought to quantify the overall kinetics of VHL: PROTAC:BD ternary complexes for the different BET bromodomains (Figure 2, Supplementary Table S2, Figures S2, S3). Ternary complexes consisting of VHL, Miz1 and the first bromodomain (BD1) of either Brd2, Brd3, or Brd4 all displayed very fast dissociation kinetics ($t_{1/2} < 1$ sec), resolving overall in either low positive cooperativity or no cooperativity ($\alpha \approx 1$). In the case of the second bromodomains (BD2), we were struck by the significantly longer ternary half-life of the VCB:Miz1:BD ternary complexes with Brd2BD2 and Brd4BD2 ($t_{1/2} \approx 70$ and 130 sec respectively) relative to the more short-lived ternary complex with Brd3BD2 ($t_{1/2} \approx 6$ sec).

Overlay of crystal structures of either Brd2BD2 (PDB: 3ONI) or Brd3BD2 (PDB: 3S92) in complex with JQ1 and the VCB:Miz1:Brd4BD2 structure (PDB: 5T35),7 suggested that ternary complex formation could be influenced by a single amino acid residue difference (Glu344 within the ZA loop of Brd3BD2, which corresponds to Gly382 and Gly286 in Brd2BD2 and Brd4BD2) (Figure 3A). In an equivalent VCB:Miz1:Brd3BD2 complex, the side-chain of Glu344 would induce severe steric clash with the VHL:Miz1 portion of the complex, leading to destabilisation. We therefore generated reciprocal point mutant swaps and measured ternary complex formation by SPR with Miz1 or AT1. In all cases, the resulting SPR binding profiles reflected the effect predicted for the point mutation. The G-to-E point mutation in Brd4BD2 or G-to-D point mutation in Brd3BD2 shortened the ternary complex half-life, decreasing cooperativity and complex stability; whilst the reverse point mutation in Brd3BD2 extended the ternary half-life to resemble the profile for Brd4BD2 and correspondingly increased cooperativity and stability (Figure 3B, Supplementary Table S2, Figure S4). As a cross-validation, we evaluated these complexes in a competitive fluorescence polarization (FP) assay; measuring VHL binding of PROTAC or a PROTAC:BD binary complex, \textit{via} displacement of a fluorescent HIF-1\textalpha peptide probe (Supplementary Table S2, Figure S5). Good correlation was observed between SPR-fitted dissociation constants (K_{off}) and FP-derived inhibition constants (K_{i}) (Figure 4A). Cooperativity values were also comparable using either approach (Supplementary Table S2). Together, these results underscore the robustness of our SPR approach, and further support the conclusion that the described VCB:Miz1:Brd4BD2 structure (PDB: 5T35)7 reflects the predominant (long-lived) species present in solution.
Figure 3. A. Overlay of Brd2BD2 (PDB: 3ONI) and Brd3BD2 (PDB: 3S92) with the crystal structure of the VCB:MZ1:Brd4BD2 ternary complex (PDB: 5T35) suggests the VHL:MZ1:Brd3BD2 ternary complex could be destabilized by steric clash with VHL:MZ1 of a single amino acid within the ZA loop. B. Reciprocal exchange of this single Gly/Glu residue in Brd4BD2 (i, iii) or Brd3BD2 (ii, iv) yields a corresponding swap of the kinetic profile in the resulting VHL:MZ1:BD ternary complex SPR sensogram.

These SPR data illustrate kinetically a mechanistic difference between different PROTAC ‘architypes’. On the one hand, MZP55 and MZP61 are PROTACs with high binary target affinity (for Brd4), but low or negative cooperativity, thus likely forming highly-populated binary complexes but a very transient ternary complex. In contrast, MZ1 and AT1 exhibit weaker binary target affinity (for Brd4), but this is compensated for in the case of Brd4BD by significant positive cooperativity (to form stable ternary complexes). This latter case is predicted to fit a ‘rapid equilibrium’ kinetics model, where a rate-limiting ubiquitination step is dependent on the concentration of PROTAC-induced ternary complex. In this regime, an extension in ternary complex stability, and hence lifetime, would be expected to increase rates of target protein ubiquitination and degradation, particularly at early time points prior to countervailing factors such as protein resynthesis or feedback mechanisms.
We wished to examine this possibility in a cellular context, in light of the greater stability of ternary complexes of MZ1 with Brd2BD2 or Brd4BD2 and VHL, relative to the equivalent complex with Brd3BD2. Time-course studies were performed to measure initial rate of degradation of Brd4, Brd3, or Brd2 in response to treatment of HEK293 cells with MZ1 (Figure 4B). We observed rapid degradation of Brd2 and both isoforms of Brd4, whilst degradation of Brd3 was significantly slower (Figure 4B, Supplementary Table S3). Recent results by an independent group, published whilst this manuscript was under preparation, strongly support our conclusion.23 Consistent with our data, Riching et. al. observed more rapid initial rates of ubiquitination and degradation of Brd2 and Brd4 than Brd3 in response to MZ1 treatment.23 Together, these observations strongly suggest a mechanistic link between the relative half-life of a given target-PROTAC-E3 ligase ternary complex and initial rates of target degradation, which drives a faster and more profound target depletion in cells.

In conclusion, we demonstrate a simple and robust SPR-based method to quantify for the first time the stability of target-PROTAC-ligase ternary complexes by measuring the kinetics of their formation and dissociation. We demonstrate that our surface-based SPR method yields values for affinity, cooperativity (α) and complex stability comparable to ITC in solution,2,10 with increased throughput and yielding additional kinetic information not achievable using other assays described to date. We show by SPR that a single residue can impart significant changes in cooperativity, stability and dissociative half-lives of ternary complexes formed with different but highly conserved target proteins. Lastly, we observe that these kinetic differences of ternary complexes correlate to relative initial rates of target degradation. Together, these findings establish a new assay for PROTAC ternary complex kinetics and illuminate on ternary complex stability and dissociative half-lives as key optimization parameters for PROTAC design and discovery campaigns. We anticipate that our SPR kinetic assay will become an established tool to drive PROTAC development and to further elucidate dynamic processes governing their mode of action. Beyond PROTACs, this assay could be applied more broadly to study three-body binding equilibria induced by other classes of heterobivalent molecules.24

Figure 4. A. Correlation between binary (MZ1) and ternary (MZ1:BD complex) binding to VHL via SPR or FP (mean ± SD). B. Initial degradation profile for BET proteins in HEK293 cells in response to MZ1 treatment (333 nM), with initial degradation rates (λ) estimated from data fitting (mean ± SEM, N = 3) and SPR ternary half-lives for corresponding VHL:MZ1:BD2 complexes (mean ± SD for N=2).
ASSOCIATED CONTENT

Supporting Information. Supplementary results (Tables S1–S3 and Figures S1–S5); supplementary materials and methods sections; supplementary references.

AUTHOR INFORMATION

Corresponding Author

Corresponding Author:
Email: *a.ciulli@dundee.ac.uk
Homepage: http://www.lifesci.dundee.ac.uk/groups/alessio-ciulli/

ORCID IDs:
Michael Roy: 0000-0003-0198-9108
William Farnaby: 0000-0001-8610-932X
Alessio Ciulli: 0000-0002-8654-1670

Funding Sources

This project has received funding from the European Research Council (ERC) under the European Union’s Seventh Framework Programme (FP7/2007–2013) as a Starting Grant to A.C. (grant agreement no. ERC-2012-StG-311460 DrugE3CRls), and by Boehringer Ingelheim. Biophysics and drug discovery activities at Dundee were supported by Wellcome Trust strategic awards (100476/Z/12/Z and 094090/Z/10/Z, respectively) to the Division of Biological Chemistry and Drug Discovery.

Notes

The A.C. laboratory receives sponsored research support from Boehringer Ingelheim and Nurix, Inc. A.C. is a scientific founder, director and shareholder of Amphista Therapeutics, a company that is developing targeted protein degradation therapeutic platforms.

ACKNOWLEDGMENT

We thank chemists of the Ciulli group and at B.I. for the gifts of compounds; K. H. Chan for discussions; G. Glendinning and S. Mayer for compound logistics; the Dundee MRC PPU Reagents and Services facility (mrcppureagents.dundee.ac.uk) for the gift of the GST-BirA construct and for DNA sequencing services; and the Dundee Fingerprints Proteomics Facility (proteomics.lifesci.dundee.ac.uk) for ESI-MS of protein samples.

REFERENCES

1. Bondeson, D. P.; Crews, C. M., Targeted Protein Degradation by Small Molecules. *Annu Rev Pharmacol Toxicol* **2017**, *57*, 107-123.
2. Gadd, M. S.; Testa, A.; Lucas, X.; Chan, K. H.; Chen, W.; Lamont, D. J.; Zengerle, M.; Ciulli, A., Structural basis of PROTAC cooperative recognition for selective protein degradation. *Nat Chem Biol* **2017**, *13*(5), 514-521.
3. Douglass, E. F., Jr.; Miller, C. J.; Sparer, G.; Shapiro, H.; Spiegel, D. A., A comprehensive mathematical model for three-body binding equilibria. *J Am Chem Soc* **2013**, *135*(16), 6692-9.
4. Fisher, S. L.; Phillips, A. J., Targeted protein degradation and the enzymology of degraders. *Curr Opin Chem Biol* **2018**, *44*, 47-55.
5. Churche, I., Protac-Induced Protein Degradation in Drug Discovery: Breaking the Rules or Just Making New Ones? *J Med Chem* **2018**, *61*(2), 444-452.
6. Burslem, G. M.; Smith, B. E.; Lai, A. C.; Jaime-Figueroa, S.; McQuaid, D. C.; Bondeson, D. P.; Toure, M.; Dong, H.; Qian, Y.; Wang, J.; Crew, A. P.; Hines, J.; Crews, C. M., The Advantages of Targeted Protein Degradation Over Inhibition: An RTK Case Study. *Cell Chem Biol* **2018**, *25*(1), 67-77 e3.
7. Zengerle, M.; Chan, K. H.; Ciulli, A., Selective Small Molecule Induced Degradation of the BET Bromodomain Protein BRD4. *ACS Chem Biol* **2015**, *10*(8), 1770-7.
8. Nowak, R. P.; DeAngelio, S. L.; Buckley, D.; He, Z.; Donovan, K. A.; An, J.; Safaee, N.; Jedrychowski, M. P.; Ponthier, C. M.; Ishoey, M.; Zhang, T.; Mancis, J. D.; Gray, N. S.; Bradner, J. E.; Fischer, E. S., Plasticity in binding confers selectivity in ligand-induced protein degradation. *Nat Chem Biol* **2018**, *14*(7), 706-714.
9. Hughes, S. J.; Ciulli, A., Molecular recognition of ternary complexes: a new dimension in the structure-guided design of chemical degraders. *Essays Biochem* **2017**, *61*(5), 505-516.
10. Chan, K. H.; Zengerle, M.; Testa, A.; Ciulli, A., Impact of Target Warhead and Linkage Vector on Inducing Protein Degradation: Comparison of Bromodomain and Extra-Terminal (BET) Degraders Derived from Triazolodiazepine (JQ1) and Tetrahydroquinoline (1-BET726) BET Inhibitor Scaffolds. *J Med Chem* **2018**, *61*(2), 504-513.
11. Bondeson, D. P.; Smith, B. E.; Burslem, G. M.; Buhimschi, A. D.; Hines, J.; Jaime-Figueroa, S.; Wang, J.; Hamman, B. D.; Ishchenko, A.; Crews, C. M., Lessons in PROTAC Design from Selective Degradation with a Promiscuous Warhead. *Cell Chem Biol* **2018**, *25*(1), 78-87 e5.
12. Testa, A.; Lucas, X.; Castro, G. V.; Chan, K. H.; Wright, J. E.; Runcie, A. C.; Gadd, M. S.; Harrison, W. T. A.; Ko, E. J.; Fletcher, D.; Ciulli, A., 3-Fluoro-4-hydroxyprolines: Synthesis, Conformational Analysis, and Stereoselective Recognition by the VHL E3 Ubiquitin Ligase for Targeted Protein Degradation. *J Am Chem Soc* **2018**, *140*(29), 9299-9313.
13. Zorba, A.; Nguyen, C.; Xu, Y.; Starr, J.; Borzilleri, K.; Smith, J.; Zhu, H.; Farley, K. A.; Ding, W.; Schiemer, J.; Feng, X.; Chang, J. S.; Uccello, D. P.; Young, J. A.; Garcia-Irrizary, C. N.; Czabaniuk, L.; Schuff, B.; Oliver, R.; Montgomery, J.; Hayward, M. M.; Coe, J.; Chen, J;
Niosi, M.; Luthra, S.; Shah, J. C.; El-Kattan, A.; Qiu, X.; West, G. M.; Noe, M. C.; Shanmugasundaram, V.; Gilbert, A. M.; Brown, M. F.; Calabrese, M. F., Delineating the role of cooperativity in the design of potent PROTACs for BTK. Proc Natl Acad Sci U S A 2018, 115 (31), E7285-E7292.

14. Maniaci, C.; Hughes, S. J.; Testa, A.; Chen, W.; Lamont, D. J.; Rocha, S.; Alessi, D. R.; Romeo, R.; Ciulli, A., Homo-PROTACs: bivalent small-molecule dimerizers of the VHL E3 ubiquitin ligase to induce self-degradation. Nat Commun 2017, 8 (1), 830.

15. Banaszynski, L. A.; Liu, C. W.; Wandless, T. J., Characterization of the FKBP-rapamycin.FRB ternary complex. J Am Chem Soc 2005, 127 (13), 4715-21.

16. Andersen, P. S.; Schuck, P.; Sundberg, E. J.; Geisler, C.; Karjalainen, K.; Mariuzza, R. A., Quantifying the energetics of cooperativity in a ternary protein complex. Biochemistry 2002, 41 (16), 5177-84.

17. Palau, W.; Di Primo, C., Single-cycle kinetic analysis of ternary DNA complexes by surface plasmon resonance on a decaying surface. Biochimie 2012, 94 (9), 1891-9.

18. Domenici, F.; Frasconi, M.; Mazzei, F.; D’Orazi, G.; Bizzarri, A. R.; Cannistraro, S., Azurin modulates the association of Mdm2 with p53: SPR evidence from interaction of the full-length proteins. J Mol Recognit 2011, 24 (4), 707-14.

19. Fairhead, M.; Howarth, M., Site-specific biotinylation of purified proteins using BirA. Methods Mol Biol 2015, 1266, 171-84.

20. Beckett, D.; Kovaleva, E.; Schatz, P. J., A minimal peptide substrate in biotin holoenzyme synthetase-catalyzed biotinylation. Protein Sci 1999, 8 (4), 921-9.

21. Karlsson, R.; Katsamba, P. S.; Nordin, H.; Pol, E.; Myszka, D. G., Analyzing a kinetic titration series using affinity biosensors. Anal Biochem 2006, 349 (1), 136-47.

22. Copeland, R. A., The drug-target residence time model: a 10-year retrospective. Nat Rev Drug Discov 2016, 15 (2), 87-95.

23. Riching, K. M.; Mahan, S.; Corona, C. R.; McDougall, M.; Vasta, J. D.; Robers, M. B.; Uth, M.; Daniels, D. L., Quantitative Live-Cell Kinetic Degradation and Mechanistic Profiling of PROTAC Mode of Action. ACS Chem Biol 2018, 13 (9), 2758-2770.

24. Costales, M. G.; Matsumoto, Y.; Velagapudi, S. P.; Disney, M. D. Small Molecule Targeted Recruitment of a Nuclease to RNA. J Am Chem Soc 2018, 140 (22), 6741-6744.
Entry for the Table of Contents

PROTAC ↔ E3 ligase

binary complex kinetics

$K_D^{binary} = 29 \text{ nM}$

$t_{1/2} = 43 \text{ s}$

PROTAC:target ↔ E3 ligase

ternary complex kinetics

$K_D^{ternary} = 1 \text{ nM}$

$t_{1/2} = 130 \text{ s}$

$K_D^{ternary} = 8 \text{ nM}$

$t_{1/2} = 6 \text{ s}$

VS