Age-related and gender-stratified differences in the association between high triglyceride and risk of hyperuricemia

Lei Zhang†, Qilin Wan†, Yuemin Zhou‡, Jing Xu¹, Chengyun Yan¹, Yuanyuan Ma², Minglong Xu³, Ruili He¹, Yanming Li¹, Xiaoming Zhong¹, Guanchang Cheng¹* and Yuquan Lu²*

Abstract

Background: Elevated serum uric acid is commonly associated with high triglyceride. However, the relation of triglyceride and hyperuricemia in different gender and age groups is currently not well understood. This study aimed to evaluate age- and gender-related association of high triglyceride with hyperuricemia in a subgroup of Chinese population.

Methods: We retrospectively analyzed physical examination data of 24,438 subjects (12,557 men and 11,881 women) in Kaifeng, China. The alanine aminotransferase, γ-glutamyl transpeptidase, serum creatinine, blood urea nitrogen, total cholesterol, high-density lipoprotein cholesterol, triglyceride and serum uric acid were measured in all subjects. The triglyceride was categorized into < 1.21, 1.21 ~, 1.7 ~, 2.83 ~ and > 5.6 mmol/L subgroups, and odds ratio (OR) and 95% confidence interval (CI) of hyperuricemia were calculated by logistic regression analysis.

Results: Univariate and age-adjusted analyses showed that high triglyceride was positively associated with hyperuricemia (p < 0.01). Further age-stratified analysis showed that the positive association was significant in the 20 ~, 30 ~, 40 ~, 50 ~, 60 ~ and 80 ~ age groups in men. In women, no statistically significant was found in 60 ~ and 70 ~ age groups.

Conclusion: High triglyceride is positively associated with hyperuricemia in both men and women, and this association is age-related, especially in women.

Keywords: Hyperuricemia, Triglyceride, Risk, Age-related
age-groups. Therefore, this study aimed to investigate the association of high triglyceride with the risk of hyperuricemia in different genders and age-groups using physical examination data from a hospital-based physical examination center in Kaifeng, China.

Methods

Subjects
This study was approved by Ethics Committee of Huaihe Hospital of Henan University and all subjects provided written consent. The subjects were participants of physical examination at the Physical Examination Center of Huaihe Hospital of Henan University. Total number of the subjects were 38,475 consecutive participants from 2003 to 2017. After excluding subjects without available data on age, gender, total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), alanine aminotransferase (ALT), γ-glutamyl transpeptidase (γ-GT), blood urea nitrogen (BUN) and serum creatinine (SCr), a total of 24,438 eligible subjects (12,557 men and 11,881 women) were included in the final analysis (Fig. 1).

Serum uric acid and lipids measurements
Blood samples from participants undergoing an overnight fasting were collected in the morning and analyzed within an hour in hospital. Blood sample was tested using an autoanalyzer (Model 7600, HITACHI, Japan). Hyperuricemia was defined by the following criteria: men: serum uric acid ≥440 μmol/L, women: serum uric acid ≥360 μmol/L and categorized all the variables as follows: the plasma triglyceride were categorized into <1.21 (normal), 1.21~ (above normal), 1.7~ (slightly damaged), 2.83~(moderately damaged) and >5.6 mmol/L (severely damaged) subgroups, and we combined the slightly, moderately, and

Fig. 1 Flow chart of participants

Fig. 2 Changes of triglyceride levels with age in men
severely damaged TG into a Damaged TG group; age was categorized into <20, 20 ~, 30 ~, 40 ~, 50 ~, 60 ~, 70 ~, and 80 ~ years age subgroups; ALT was dichotomized into normal (≤40 U/L) and abnormal (>40 U/L) subgroups; γ-GT was categorized into low (<16 U/L), normal (16 ~ 73 U/L) and high (>73 U/L) subgroups; SCr was categorized into low (men: < 54 mmol/L, women: < 44 mmol/L), normal (men: 54 ~ 106 mmol/L, women: 44 ~ 97 mmol/L) and high (men: > 106 mmol/L, women: > 97 mmol/L) subgroups; BUN was categorized into low (<2.86 µmol/L), normal (2.86 ~ 7.14 µmol/L) and high (>7.14 µmol/L) subgroups; TC was categorized into low (<2.8 mmol/L), normal (2.8 ~ 5.17 mmol/L) and high subgroups (>5.17 mmol/L); plasma glucose was categorized into low FPG (<3.9 mmol/L), normal FPG (3.9 ~ mmol/L), impaired FPG (6.1 ~ mmol/L) and diabetic FPG (>7.0 mmol/L) subgroups; and HDL-C was categorized into low (<0.9 mmol/L), normal (0.9 ~ 2.19 mmol/L) and high (>2.19 mmol/L) subgroups.

Results

We observed an increasing trend in the proportion of the Damaged TG group when the age increased from 20 to 40 years; thereafter, the proportion of the Damaged TG group started to decrease with age in men (Fig. 2). There was a growing trend of the proportion of the Damaged TG group among women with a flat plateau from 60 years of age (Fig. 3).

In Table 1, the Damaged TG group (1.7 ~, 2.83 ~ and > 5.6 mmol/L subgroups) had a higher proportion to have high levels of serum ALT, γ-GT, TC and hyperuricemia (all \(p < 0.05 \)), but had a lower proportion to have high level of serum HDL-C (\(p < 0.001 \)) in both genders.

Univariate logistical regression analysis (Model 1) in men showed that the above normal, slightly damaged, moderately damaged and severely damaged TG subgroups had an OR of 1.61 (95% CI: 1.34 ~ 1.94), 2.37 (95% CI: 2.00 ~ 2.82), 4.35 (95% CI: 3.62 ~ 5.23), and 6.53 (95% CI: 4.96 ~ 8.59), respectively; age-adjusted logistical regression analysis (Model 2) and multivariate logistical regression model (Model 3) showed a similar trend (Table 2). In all three models, the OR of hyperuricemia was positively associated with an increase in TG (all \(p < 0.001 \)). In women, age-adjusted logistic regression analysis showed a similar trend to that of univariate logistic regression model, in accordance with the results in men. Moderately damaged and severely damaged TG subgroups in Model 3 showed an OR of 5.42 (95% CI: 4.03 ~ 7.28) and 4.01 (95% CI: 2.13 ~ 7.55), respectively. In women, all the three models showed that TG was positively associated with risk for hyperuricemia (all \(p < 0.001 \)).

Multivariate logistic regression model showed that the positive association between hyperuricemia and TG was significant in men of 20 ~, 30 ~, 40 ~, 50 ~, 60 ~ and 80 ~ age subgroups (\(p < 0.05 \), Table 3). Increase in hyperuricemia in the severely damaged TG group was more significant for the 60 ~ age subgroup (OR = 12.07; 95%
Table 1: Characteristics of the participants of physical examinations by fasting plasma triglyceride categories (mmol/L) in men and women

	Men, fasting plasma triglyceride (mmol/L)	Women, fasting plasma triglyceride (mmol/L)												
	No. of participants	< 1.21	1.21 ~ 1.7	1.7 ~ 2.83	> 2.83	P-value	No. of participants	< 1.21	1.21 ~ 1.7	1.7 ~ 2.83	> 2.83	P-value		
Age (years), n (%)														
< 20	43	33 (76.7)	4 (9.3)	5 (11.6)	0 (0.0)	1 (2.3)	< 0.001	22	17 (77.3)	3 (13.6)	2 (9.1)	0 (0.0)	0 (0.0)	< 0.001
20 ~	1325	609 (46.0)	324 (24.5)	244 (18.4)	125 (9.4)	23 (1.7)	1880	1335 (77.3)	324 (24.5)	244 (18.4)	125 (9.4)	23 (1.7)	10 (0.5)	
30 ~	2348	702 (29.9)	540 (23.0)	669 (28.5)	342 (14.6)	95 (4.1)	2485	1582 (63.7)	473 (19.0)	324 (13.0)	89 (3.6)	17 (0.7)		
40 ~	3133	858 (27.4)	704 (22.5)	938 (28.5)	505 (16.1)	128 (4.1)	2652	1496 (56.4)	578 (21.8)	436 (16.4)	128 (4.8)	10 (0.5)		
50 ~	2735	879 (32.1)	680 (24.9)	764 (27.9)	349 (12.8)	68 (2.3)	2492	904 (36.3)	679 (27.3)	654 (26.2)	224 (9.0)	31 (1.2)		
60 ~	1848	684 (37.0)	474 (25.7)	510 (27.6)	157 (8.5)	23 (1.2)	1509	424 (28.1)	441 (29.2)	480 (31.8)	146 (9.7)	18 (1.2)		
70 ~	848	386 (45.5)	233 (27.5)	166 (19.6)	56 (6.6)	7 (0.8)	679	214 (31.5)	172 (25.3)	222 (32.7)	64 (9.4)	7 (1.0)		
80 ~	277	142 (51.3)	81 (29.2)	39 (14.1)	12 (4.3)	3 (1.1)	162	51 (31.5)	51 (31.5)	45 (27.8)	15 (9.3)	0 (0.0)		

Alanine Aminotransferase (U/L), n (%)

	Men	Women					
<= 40	10,864	5856 (51.9)	2514 (22.3)	2172 (19.2)	661 (5.9)	86 (0.8)	< 0.001
> 40	1693	167 (28.2)	147 (24.8)	181 (30.6)	86 (14.5)	11 (1.9)	

γ-Glutamyl Transpeptidase (U/L), n (%)

	Men	Women					
< 16	1722	4088 (65.9)	1253 (20.2)	716 (11.5)	138 (2.2)	12 (0.2)	< 0.001
16 ~ 73	9724	1892 (34.5)	1364 (24.9)	1578 (28.8)	575 (10.5)	79 (1.4)	
> 73	1111	43 (23.1)	44 (23.7)	59 (31.7)	34 (18.3)	6 (3.2)	

Serum Creatinine (mmol/L), n (%)

	Men	Women					
Men < 54 or Women < 44	719	688 (49.8)	311 (22.5)	261 (18.9)	107 (7.7)	16 (1.2)	< 0.001
Men: 54~106 or Women: 44~97	11,715	5325 (50.9)	2339 (22.4)	2085 (19.9)	632 (6.0)	80 (0.8)	
Men > 106 or Women > 97	123	10 (27.0)	11 (29.7)	7 (18.9)	8 (21.6)	1 (2.7)	

Blood Urea Nitrogen (μmol/L), n (%)

	Men	Women					
< 2.86	101	5300 (57.4)	110 (210)	81 (15.5)	30 (5.7)	2 (0.4)	0.027
2.86 ~ 7.14	11,465	5570 (50.6)	2469 (22.4)	2196 (19.9)	690 (6.3)	91 (0.8)	
> 7.14	991	153 (44.7)	82 (24.0)	76 (22.2)	27 (7.9)	4 (1.2)	
Table 1 Characteristics of the participants of physical examinations by fasting plasma triglyceride categories (mmol/L) in men and women (Continued)

Fasting plasma triglyceride (mmol/L)	Men, No. of participants	Women, No. of participants	Total Cholesterol (mmol/L), n (%)	Fasting plasma glucose (mmol/L), n (%)	High Density Lipoprotein Cholesterol (mmol/L), n (%)	Hyperuricemia (men > 440 μmol/L or women > 360 μmol/L)
	< 1.21	1.21 ~	1.7 ~	2.83 ~	> 5.6	No
< 2.8	82	66 (80.5)	12 (14.6)	3 (3.7)	1 (1.2)	0 (0.0)
2.8 ~ 5.17	7665	3252 (42.4)	1878 (24.5)	1777 (23.2)	671 (88)	87 (1.1)
> 5.17	4810	975 (20.3)	1150 (23.9)	1555 (32.3)	874 (18.2)	256 (5.3)
						P-value
< 1.21	44	34 (77.3)	6 (13.6)	4 (9.1)	0 (0.0)	0 (0.0)
2.8 ~ 5.17	7273	4561 (62.7)	1425 (19.6)	970 (13.3)	287 (40)	30 (0.4)
> 5.17	4564	1428 (31.3)	1230 (27.0)	1379 (30.2)	460 (10.1)	67 (1.5)
< 3.9	20	9 (45.0)	6 (30.0)	2 (10.0)	3 (15.0)	0 (0.0)
3.9 ~ 6.1	9833	3591 (36.5)	2447 (24.9)	2521 (25.6)	1062 (108)	212 (2.2)
> 6.1	1370	368 (26.9)	309 (22.6)	416 (30.4)	218 (15.9)	59 (4.3)
> 7.0	1334	325 (24.4)	278 (20.8)	396 (29.7)	263 (19.7)	72 (5.4)
< 0.9	2274	371 (16.3)	465 (20.5)	775 (34.1)	502 (22.1)	161 (7.1)
0.9 ~ 2.19	10,262	3904 (38.0)	2573 (25.1)	2559 (24.9)	1044 (102)	182 (1.8)
> 2.19	21	18 (85.7)	2 (9.5)	1 (4.8)	0 (0.0)	0 (0.0)
No	11,305	4068 (36.0)	2791 (24.7)	2948 (26.1)	1246 (110)	252 (2.2)
Yes	1252	225 (18.0)	249 (19.9)	387 (30.9)	300 (24.0)	91 (7.3)
						P-value
Hyperuricemia						
No	4647	1246 (26.8)	1355 (29.3)	1059 (22.8)	514 (10.9)	102 (2.2)
Yes	1724	225 (13.1)	285 (16.6)	333 (19.4)	300 (17.5)	83 (4.8)

Zhang et al. Lipids in Health and Disease (2019) 18:147
Men, fasting plasma triglyceride (mmol/L)	Women, fasting plasma triglyceride (mmol/L)	P for trend of triglyceride	Model 1, OR (95% CI)	Model 2, OR (95% CI)	Model 3, OR (95% CI)
< 1.21	1.21–2.0	2.1–2.5	> 2.8	< 1.21	1.21–2.0
Table 3 Odds ratio of hyperuricemia among fasting plasma triglyceride (mmol/L) and age in men and women

Age Group	Men, fasting plasma triglyceride (mmol/L)	Women, fasting plasma triglyceride (mmol/L)												
	No. of participants	Case Rate (%)	No. of participants	Case Rate (%)										
	< 1.2	1.21 ~ 1.7	> 2.8	> 5.6	P for trendb	< 1.2	1.21 ~ 1.7	> 2.8	> 5.6	P for trendb				
< 20 yrs	43	10	23.3	1.00	(--)	22	3	13.6	1.00	(--)				
20~ yrs	1324	175	13.2	1.00	1.02 (0.63–1.64)	2485	107	4.31	1.00	3.01 (1.74–5.20)				
30~ yrs	2348	304	12.9	1.00	1.70 (1.11–2.59)	2652	74	2.81	1.00	3.48 (1.76–6.86)				
40~ yrs	3133	288	9.2	1.00	1.80 (1.10–2.93)	2492	159	6.41	1.00	1.58 (0.94–2.66)				
50~ yrs	2735	241	8.8	1.00	1.38 (0.88–2.15)	204	407	7.48	1.00	1.58 (0.94–2.66)				
60~ yrs	1848	123	6.7	1.00	2.20 (1.16–4.15)	417	543	12.07	1.00	1.00 (0.38–1.76)				
70~ yrs	848	81	9.6	1.00	1.12 (0.58–2.16)	1.07 (2.29–7.59)	1.48 (2.57–11.45)	4.64 (0.70–28.41)	0.96	679	78	11.5	1.00	1.53 (0.68–3.41)
80~ yrs	277	30	10.8	1.00	4.80 (1.58–14.56)	5.04 (1.26–20.19)	10.13 (1.58–64.80)	0.018	162	28	17.3	1.00	1.70 (0.32–8.87)	

aLogistic regression model adjusted with alanine aminotransferase (U/L), γ-glutamyl transpeptidase (U/L), serum creatinine (mmol/L), blood urea nitrogen (μmol/L), total cholesterol (mmol/L), plasma glucose (mmol/L), and high density lipoprotein cholesterol (mmol/L)

bContrasts of marginal linear predictions from 3.9~ though > 7.0 groups after logistic regression with Stata13

cHyperuricemia: (men > 440 μmol/L or women > 360 μmol/L)
in TG. These results suggest that TG levels independently affect the incidence of hyperuricemia. However, in multivariate logistic regression analysis, the positive association between hyperuricemia and TG showed a gender and age differences and the positive association was the lowest in the 50~ age group. Whether decreasing level of estrogen after menopause is responsible for the differences needs further studies.

Stelmach et al. investigated 607 Polish adults with hyperuricemia and demonstrated that the upper tertile of serum uric acid levels had higher TG values in males but not in females [19]. In contrast, Lippi et al. retrospectively enrolled a large cohort of unselected adult outpatients and showed that triglycerides were independently associated with serum UA in women but not in men [20]. Notably, in this study our data showed that high TG level was positively associated with the incidence of hyperuricemia in both men and women. This is consistent with a prospective study which demonstrated that hypertriglyceridemia in men might strengthen the effect of serum UA on the development of gout [21]. Chinese diet is characterized with a high-fat diet, particularly the overconsumption of cooking oil may be a significant risk factor for obesity [22, 23].

To investigate lipid abnormalities in acute myocardial infarction (AMI) patients, Wei et al. retrospectively analyzed 1213 AMI patients in East China and showed a significant difference in triglycerides for male but not for female AMI patients [24]. Xu et al. found that older Chinese people had moderate and high levels of unbalanced diets [25]. Significant differences were influenced by many factors, such as gender, marital status, work status, education levels. These findings highlight complex interaction between hyperuricemia and TG.

Table 4 Odds ratio of hyperuricemia among triglyceride-glucose index in men and women\(^a\)

	Men, triglyceride-glucose index (TyG)	Women, triglyceride-glucose index (TyG)	P for trend\(^b\)
0 ~	3165	3034	
1st quartile	3410	3057	
2nd quartile	3944	2701	
3rd quartile			
No. of cases			
Hyperuricemia			
Cases	103	67	
Rate (%)	4.7	1.7	
Model 1, OR (95% CI)	1.40 (1.10–1.79)	1.00 (1.64–3.33)	< 0.001
	2.16 (1.72–2.72)	4.53 (3.41–6.71)	
	3.72 (3.00–4.62)	9.41 (7.19–12.33)	
Model 2, OR (95% CI)	1.47 (1.15–1.88)	1.00 (1.61–2.98)	< 0.001
	2.26 (1.80–2.85)	4.39 (3.29–5.86)	
	3.90 (3.14–4.84)	9.08 (6.85–12.72)	
Model 3, OR (95% CI)	1.32 (1.03–1.72)	1.00 (1.39–2.61)	< 0.001
	1.85 (1.46–2.35)	1.90 (2.44–4.52)	
	2.68 (2.11–3.41)	3.32 (4.43–8.34)	

\(^a\)Logistic regression. Model 1, univariate; Model 2, adjusted with age; Model 3, adjusted with age, alanine aminotransferase (U/L), γ-glutamyl transpeptidase (U/L), serum creatinine (mmol/L), blood urea nitrogen (μmol/L), total cholesterol (mmol/L), and high density lipoprotein cholesterol (mmol/L). OR Odds ratio, CI Confidence interval

\(^b\)Contrasts of marginal linear predictions after logistic regression with Stata13

\(^c\)Hyperuricemia: men > 440 μmol/L, or women > 360 μmol/L
Table 5 Odds ratio of hyperuricemia among triglyceride-glucose index and age in men and women

Age group	No. of participants	No. of participants	Case Rate (%)	0 ~	1st quartile ~	2nd quartile ~	3rd quartile ~	P for trendb	No. of participants	No. of participants	Case Rate (%)	0 ~	1st quartile ~	2nd quartile ~	3rd quartile ~	P for trendb
< 20 yrs	43	10	23.3	1.00	4.98 (0.37–66.42)	73.31 (1.18–45.29.68)	7.78 (0.20–297.59)	0.135	22	3	13.6	1.00	(−)	(−)	(−)	(−)
20~ yrs	1325	175	13.2	1.00	1.19 (0.70–2.77)	1.29 (0.76–2.18)	2.44 (1.41–4.24)	0.002	1880	116	6.2	1.00	2.77 (1.50–5.97)	2.49 (1.23–5.23)	5.72 (2.82–11.61)	< 0.001
30~ yrs	2348	304	12.9	1.00	1.30 (0.77–2.21)	1.83 (1.11–3.32)	2.27 (1.36–3.78)	< 0.001	2485	107	4.3	1.00	1.89 (0.96–3.69)	4.15 (2.18–7.89)	5.95 (2.92–12.11)	< 0.000
40~ yrs	3133	288	9.2	1.00	0.98 (0.51–1.89)	2.03 (1.13–3.65)	3.77 (2.12–6.72)	< 0.001	2652	74	2.8	1.00	3.61 (1.29–13.86)	9.42 (3.42–25.97)	11.42 (3.87–33.73)	< 0.001
50~ yrs	2735	241	8.8	1.00	1.54 (0.81–2.93)	1.92 (1.04–3.54)	3.31 (1.80–6.75)	< 0.001	2492	159	6.4	1.00	0.91 (0.46–1.79)	1.64 (0.87–3.57)	2.86 (1.51–5.42)	0.002
60~ yrs	1848	123	6.7	1.00	3.17 (1.06–9.46)	4.90 (1.67–14.37)	6.46 (2.19–19.53)	< 0.001	1509	123	8.2	1.00	2.27 (0.62–8.31)	3.98 (1.18–13.47)	10.67 (3.17–35.98)	< 0.001
70~ yrs	848	81	9.6	1.00	1.48 (0.62–3.54)	1.35 (0.54–3.36)	1.34 (0.53–3.41)	0.600	679	78	11.5	1.00	0.97 (0.30–3.14)	1.60 (0.53–4.78)	2.25 (0.74–6.83)	0.198
80~ yrs	277	30	10.8	1.00	1.39 (0.29–6.72)	6.16 (1.51–25.72)	3.68 (0.72–18.71)	0.035	162	28	17.3	(−)	1.00	3.08 (0.67–14.27)	5.24 (1.10–24.87)	0.321

aLogistic regression model adjusted with alanine aminotransferase (U/L), γ-glutamyl transpeptidase (U/L), serum creatinine (mmol/L), blood urea nitrogen (μmol/L), total cholesterol (mmol/L), and high density lipoprotein cholesterol (mmol/L)

bContrasts of marginal linear predictions from 3.9~ though > 7.0 groups after logistic regression with Stata13

cHyperuricemia: men > 440 μmol/L or women > 360 μmol/L

Zhang et al. Lipids in Health and Disease (2019) 18:147
Page 9 of 11
Differences in dietary patterns such as the proportion of carbohydrate or fat may be responsible for the variability in the relationship between serum uric acid and triglyceridemia.

TyG index is proposed as a marker of moderate insulin resistance. Therefore, we analyzed the association of TyG with hyperuricemia. We found that TyG could be a better index of hyperuricemia in females than in males. However, a recent study indicated that TyG index presented the significant risks for chronic kidney disease in both men and women [26]. The reason for the disparities is unclear and need additional investigations.

Our study has two main limitations. First, our study was conducted in a special group, so the generalizability of our findings to other population needs confirmation in future studies. Second, confounding factors such as diet patterns and health concerns among people of different ages were not included in our analysis, which may have an impact on the results. Further studies are required to elucidate the association between triglyceride and hyperuricemia in different gender and age groups.

Conclusions

Our study demonstrated that high triglyceride was positively associated with hyperuricemia in both men and women, and this association was age-related, especially in women.

Abbreviations

ALT: Alanine aminotransferase; BUN: Blood urea nitrogen; HDL-C: High-density lipoprotein cholesterol; SCr: Serum creatinine; TC: Total cholesterol; ALT: Alanine aminotransferase; BUN: Blood urea nitrogen; HDL-C: High-density lipoprotein cholesterol; gamma-glutamyl transpeptidase

Acknowledgements

We thank all of participants in this study.

Authors’ contributions

GC and YL designed the study. LZ, QW, YZ, JX, CY, YM, MX, RH collected the data. VL and XZ analyzed the data. LZ and GC wrote the manuscript. All authors read and approved the final manuscript.

Funding

This work was supported by the Scientific and Technological Project of Henan Province (No. 201502017).

Availability of data and materials

All data and material are available upon request.

Ethics approval and consent to participate

This study was approved by Ethics Committee of Huaile Hospital of Henan University and all subjected provided written consent.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

1Department of Cardiology, Huaile Hospital of Henan University, No. 8 Baobei Road, Kaifeng 475000, China. 2International Joint Research Laboratory for Cell Medical Engineering of Henan, Huaile Hospital of Henan University, No. 115 Ximen Street, Kaifeng 475000, China. 3Department of Physical Examination Center, Huaile Hospital of Henan University, No. 8 Baobei Road, Kaifeng 475000, China.

Received: 14 February 2019 Accepted: 22 May 2019

Published online: 04 July 2019

References

1. Cicero AFG, Fogacci F, Giovannini M, Grandi E, D’Addato S, Borghi C. Brisighella heart study group. Interaction between low-density lipoprotein-cholesterolaemia, serum uric level and incident hypertension: data from the Brisighella heart study. J Hypertens. 2019;37:728–31.
2. Cicero AFG, Fogacci F, Giovannini M, Grandi E, Rosticci M, D’Addato S, Borghi C. Serum uric acid predicts incident metabolic syndrome in the elderly in an analysis of the Brisighella heart study. Sci Rep. 2018;8:11529.
3. Kim HJ, Kim JE, Jung JH, Kim ER, Hong SN, Chang DK, Son HJ, Ree PL, Kim JJ, Kim YH. Uric acid is a risk indicator for metabolic syndrome-related colorectal adenoma: results in a Korean population receiving screening colonoscopy. Korean J Gastroenterol. 2015;66:202–8.
4. Carminati SA, Barbosa MC, Fader CM. Platelet rich plasma (PRP) induces autophagy in osteoblast precursor 3T3-L1. BioCell. 2018;42:13–6.
5. Zhang X, Meng Q, Feng J, Liao H, Shi R, Shi D, Renqian L, Langtai Z, Xiao Y, Chen X. The prevalence of hyperuricemia and its correlates in Ganzi Tibetan Autonomous Prefecture, Sichuan Province, China. Lipids Health Dis. 2018;17:235.
6. Pinto X, Corbella E, Valdevielso P, Mostaza J. Prevalence of metabolic syndrome in hypertriglyceridaemic patients: higher than it may appear. Curr Med Res Opin. 2014;30:233–4.
7. Keenan T, Bhaha MJ, Nasir K, Silverman MG, Tota-Maharaj R, Carvalho JA, Conceicao RD, Blumenthal RS, Santos RD. Relation of uric acid to serum levels of high-sensitivity C-reactive protein, triglycerides, and high-density lipoprotein cholesterol and to hepatic steatosis. Am J Cardiol. 2012;110:1787–92.
8. Wang L, Lyu J, Guo Y, Bian Z, Yu C, Zhou H, Tan Y, Pei P, Chen J, Chen Z, Li L. Regional specific differences in prevalence of overweight/obesity in China: findings from China Kadoorie biobank study in 10 areas in China. Zhonghua Liu Xing Bing Xue Za Zhi. 2015;36:1190–4.
9. Di Angelantonio E, Sanwar N, Perry P, Kaptoge S, Thompson A, Wood AM, Lewington S, Sattar N, Packard CJ, Collins R, Thompson SG, Danesh J. Major lipids, apolipoproteins, and risk of vascular disease. JAMA. 2009;302:1993–2000.
10. Braga F, Pasqualetti S, Fenaro S, Panchetti M. Hyperuricemia as risk factor for coronary heart disease incidence and mortality in the general population: a systematic review and meta-analysis. Clin Chem Lab Med. 2016;54:7–15.
11. Gazi E, Temiz A, Altun B, Barutcu A, Bekler A, Gungor O, Yener AU, Kurt T, Ozcan S, Gazi S. The association between serum uric acid level and heart failure and mortality in the early period of ST-elevation acute myocardial infarction. Turk Kardiyol Dern Ars. 2014;42:501–8.
12. Gandhi PK, Gentry WM, Ma Q, Bottorff MB. Cost-effectiveness analysis of allopurinol versus febuxostat in chronic gout patients: a U.S. payer perspective. J Manag Care Spec Pharm. 2015;21:165–75.
13. Liou TL, Lin MW, Hsiao LC, Tsai TT, Chan WL, Ho LT, Hwu CM. Is hyperuricemia another facet of the metabolic syndrome? J Chin Med Assoc. 2006;69:104–9.
14. Ballarsingh S, Sharma N. Serum uric acid level is an indicator of total cholesterol and low density lipoprotein cholesterol in men below 45 years in age but not older males. Clin Lab. 2012;58:845–50.
15. Feldman EB, Wallace SL. Hyperuricemia in gout. Circulation. 1964;29:suppl:s1508–13.
16. Berkowitz D. Blood lipid and uric acid interrelationships. JAMA. 1964;189:856–8.
17. Conen D, Wettlisbach V, Bovet P, Shamlaye C, Riesen W, Paccaud F, Burnier M. Prevalence of hyperuricemia and relation of serum uric acid with cardiovascular risk factors in a developing country. BMC Public Health. 2004;4:9.
18. Al-Meshaweh AF, Jafar Y, Asem M, Akani AO. Determinants of blood uric acid levels in a dyslipidemic Arab population. Med Princ Pract. 2012;21:209–16.
19. Steimlich MJ, Wasilewska N, Willkomm-Liland IL, Wasilewska A. Blood lipid profile and BMI-Z-score in adolescents with hyperuricemia. J Med Sci. 2015;184:463–8.
20. Lippi G, Montagnana M, Luca Salvagno G, Targher G, Cesare Guidi G. Epidemiological association between uric acid concentration in plasma, lipoprotein(a), and the traditional lipid profile. Clin Cardiol. 2010;33:76–80.
21. Chen JH, Pan WH, Hsu CC, Yeh WT, Chuang SY, Chen PY, Chen HC, Chang CT, Huang WL. Impact of obesity and hypertriglyceridemia on gout development with or without hyperuricemia: a prospective study. Arthritis Care Res (Hoboken). 2013;65:133–40.

22. Astrup A, Dyerberg J, Selleck M, Stender S. Nutrition transition and its relationship to the development of obesity and related chronic diseases. Obes Rev. 2008;9(Suppl 1):48–52.

23. Hu G, Pekkarinen H, Hanninen O, Tian H, Jin R. Comparison of dietary and non-dietary risk factors in overweight and normal-weight Chinese adults. Br J Nutr. 2002;88:91–7.

24. Wei Y, Qi B, Xu J, Zhou G, Chen S, Ouyang P, Liu S. Age- and sex-related difference in lipid profiles of patients hospitalized with acute myocardial infarction in East China. J Clin Lipidol. 2014;8:562–7.

25. Xu X, Hall J, Byles J, Shi Z. Assessing dietary quality of older Chinese people using the Chinese diet balance index (DBI). PLoS One. 2015;10:e0121618.

26. Okamura T, Hashimoto Y, Hamaguchi M, Obora A, Kojima T, Fukui M. Triglyceride-glucose index is a predictor of incident chronic kidney disease: a population-based longitudinal study. Clin Exp Nephrol. 2019. https://doi.org/10.1007/s10157-019-01729-2 [Epub ahead of print]

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.