ON CATEGORIES OF O-MINIMAL STRUCTURES

RODRIGO FIGUEIREDO AND HUGO LUIZ MARIANO

Abstract. Our aim in this paper is to look at some transfer results in model theory (mainly in the context of o-minimal structures) from the category theory viewpoint.

Contents

1. Introduction
2. Preliminaries
3. A category of the first-order languages
4. Categories of o-minimal structures
5. Final remarks
References

1. INTRODUCTION

Our aim in this paper is to look at some transfer results in the context of o-minimal structures from the category theory viewpoint. Recall that an o-minimal structure \mathcal{M} is an expansion of an ordered set $(|\mathcal{M}|, \leq)$ such that every unary set definable in \mathcal{M} (with parameters in $|\mathcal{M}|$) is a finite union of open intervals and points. For a detailed exposition of this topic, see [2].

In [1] A. Berarducci and M. Otero point out some transfer results with respect to topological properties from one o-minimal structure to another. Specifically, if \mathcal{M} is an o-minimal expansion of an ordered field and φ is a first order formula in the language of the ordered rings, then the following statements concerning the definable subsets $\varphi^\mathcal{M}$ and $\varphi^\mathbb{R}$ hold: (1) $\varphi^\mathcal{M}$ is definably connected if and only if $\varphi^\mathbb{R}$ is connected; (2) $\varphi^\mathcal{M}$ is definably compact if and only if $\varphi^\mathbb{R}$ is compact; (3) there is a natural isomorphism between the homology groups $H^\text{def}_*(\varphi^\mathcal{M})$ and $H^\text{def}_*(\varphi^\mathbb{R})$.

2010 Mathematics Subject Classification. 03C64, 03C07, 03Cxx, 06A06, 18A15, 18Axx.

Key words and phrases. o-minimal structures, first order language, category theory.
there is a natural isomorphism between the fundamental groups \(\pi_*(\varphi^R) \); (4) there is a natural isomorphism between the fundamental groups \(\pi^\text{def} (\varphi^M, x_0) \cong \pi(\varphi^R, x_0) \); and assuming that \(\varphi^R \) is compact it follows that (5) if \(\varphi^M \) is a definable manifold, then \(\varphi^R \) is a (topological) manifold; and (6) if moreover \(\varphi^M \) is definably orientable, then \(\varphi^R \) is an orientable manifold.

In [4], C. Miller and S. Starchenko prove a dichotomy theorem on o-minimal expansions of ordered groups:

Fact 1 (Theorem A, [4]). Suppose that \(\mathcal{R} \) is an o-minimal expansion of an ordered group \((R, <, +)\). Then exactly one of the following holds: (a) \(\mathcal{R} \) is linearly bounded (that is, for each definable function \(f: R \to R \) there exists a definable endomorphism \(\lambda: R \to R \) such that \(|f(x)| \leq \lambda(x)\) for all sufficiently large positive arguments \(x \)); (b) \(\mathcal{R} \) defines a binary operation \(\cdot \) such that \((R, <, +, \cdot)\) is an ordered real closed field. If \(\mathcal{R} \) is linearly bounded, then for every definable \(f: R \to R \) there exists \(c \in R \) and a definable \(\lambda \in \{0\} \cup \text{Aut}(R, +) \) with \(\lim_{x \to +\infty} [f(x) - \lambda(x)] = c \).

Such a dichotomy on o-minimal expansions of ordered groups is the analogue of the subsequent dichotomy for o-minimal expansions of the real field \(\mathbb{R} \), due to C. Miller:

Fact 2 (Theorem and Proposition, [3]). Let \(\mathcal{R} \) be an o-minimal expansion of the ordered field of real numbers \((\mathbb{R}, <, +, \cdot, 0, 1)\). If \(\mathcal{R} \) is not polynomially bounded (that is, for every definable function \(f: \mathbb{R} \to \mathbb{R} \) there exists \(N \in \mathbb{N} \) such that \(|f(x)| \leq x^N \) for all sufficiently large positive \(x \)), then the exponential function is definable (without parameters) in \(\mathcal{R} \). If \(\mathcal{R} \) is polynomially bounded, then for every definable function \(f: \mathbb{R} \to \mathbb{R} \), with \(f \) not identically zero for all sufficiently large positive arguments, there exist \(c, r \in \mathbb{R} \) with \(c \neq 0 \) such that \(x \mapsto x^r: (0, +\infty) \to \mathbb{R} \) is definable in \(\mathcal{R} \) and \(\lim_{x \to +\infty} f(x)/x^r = c \).

Both Facts 1 and 2 can be viewed as implied transfer results of o-minimality property from one structure to another (see Section 4) and served as our main motivation for this work.

2. Preliminaries

Recall that a *signature* is a triple \(L := (\mathcal{F}, \mathcal{R}, \text{ar}) \), where \(\mathcal{F} \) and \(\mathcal{R} \) are disjoint sets whose members are called respectively function symbols and predicative symbols and \(\text{ar}: \mathcal{F} \cup \mathcal{R} \to \mathbb{N} \) is a function which assigns a nonnegative integer, called *arity*, to every function or predicative
symbol. A function or a predicative symbol is said to be \(n\)-ary if its arity is \(n\). A 0-ary function symbol is called a constant symbol.

The cardinality \(\text{card}(L)\) of a signature \(L = (\mathcal{F}, \mathcal{R}, \text{ar})\) is defined to be \(\text{card}((\mathcal{F}) + \text{card}(\mathcal{R})\).

The first-order language of a signature \(L\) is the set of all (well formed) terms and formulas arising from \(L\), and is denoted by \(\mathcal{L}\). If we denote by \(\text{Term}(L)\) the set of all \(L\)-terms, and by \(\text{Form}(L)\) the set of all \(L\)-formulas then \(\mathcal{L} = \text{Term}(L) \sqcup \text{Form}(L)\).

Let \(\mathcal{L}\) and \(\mathcal{L}'\) be two first-order languages. A language morphism from \(\mathcal{L}\) to \(\mathcal{L}'\) is a (set-theoretic) map \(H: \mathcal{L} \to \mathcal{L}'\) such that \(h\) maps terms from \(\mathcal{L}\) to terms from \(\mathcal{L}'\), and formulas from \(\mathcal{L}\) to formulas from \(\mathcal{L}'\).

3. A CATEGORY OF THE FIRST-ORDER LANGUAGES

Fix a countable set of variable symbols \(\text{Var} = \{x_i : i \in \mathbb{N}\}\).

In what follows we make a brief description of the category \(\text{FOL}\) of the first-order languages.

Let \(\text{Ob}(\text{FOL})\) denote the set of all first-order languages.

Given two languages \(\mathcal{L}, \mathcal{L}' \in \text{Ob}(\text{FOL})\), with underlying signatures \(L = (\cup_{n \geq 0} F_n, \cup_{n \geq 0} R_n)\) and \(L' = (\cup_{n \geq 0} F'_n, \cup_{n \geq 0} R'_n)\) respectively, the correspondence for each \(n \geq 0\)

(i) \(f \mapsto h(f)\), an \(\mathcal{L}'\)-term whose variable symbols occurring in it are precisely \(x_0, \ldots, x_{n-1}\), \(f \in F_n\);

(ii) \(R \mapsto h(R)\), an \(\mathcal{L}'\)-atomic formula whose variable symbols occurring in it are precisely \(x_0, \ldots, x_{n-1}\), \(R \in R_n\).

gives rise to a language morphism \(H: \mathcal{L} \to \mathcal{L}'\), where the restriction \(H(t)\) to \(\text{Term}(L)\) is given by

(iii) \(H(t) := x_i\), if \(t = x_i \in \text{Var}\);

(iv) \(H(t) = h(f)[H(t_0)/x_0, \ldots, H(t_{n-1})/x_{n-1}],\) if \(t = f(t_0, \ldots, t_{n-1})\) with \(f \in F_n\) and \(t_0, \ldots, t_{n-1} \in \text{Term}(L)\),

and the restriction \(H(\varphi)\) to \(\text{Form}(L)\) is defined to be

(v) \(H(\varphi) := (H(t) = H(s))\), if \(\varphi\) is the \(\mathcal{L}\)-atomic formula \((t = s)\) with \(s, t \in \text{Term}(L)\);

(vi) \(H(\varphi) := h(R)[H(t_0)/x_0, \ldots, H(t_{n-1})/x_{n-1}]\), if \(\varphi\) denotes the \(\mathcal{L}\)-atomic formula \(R(t_0, \ldots, t_{n-1})\) with \(R \in R_n\) and \(t_0, \ldots, t_{n-1} \in \text{Term}(L)\);

(vii) \(H(\varphi) := \neg H(\phi)\), if \(\varphi\) is the \(\mathcal{L}\)-formula \(\neg \phi\) with \(\phi \in \text{Form}(L)\);

(viii) \(H(\varphi) := H(\phi) \lor H(\psi)\), if \(\varphi\) is the \(\mathcal{L}\)-formula \(\phi \lor \psi\) with \(\phi, \psi \in \text{Form}(L)\);
(ix) $H(\varphi) := \exists x H(\phi)$, if φ is the \mathcal{L}-formula $\exists x \phi$ with $\phi \in \text{Form}(\mathcal{L})$ and x a variable symbol in Var.

Observe that $\text{FV}(\varphi) = \text{FV}(H(\varphi))$, where $\text{FV}(\varphi)$ denotes the set of all free variables occurring in φ.

The composition rule in FOL is given in the most natural way. Indeed, for any language morphisms $H: \mathcal{L} \to \mathcal{L}'$ and $H': \mathcal{L}' \to \mathcal{L}''$, the map $H' \circ H: \mathcal{L} \to \mathcal{L}''$ is the language morphism obtained by extending to \mathcal{L}, as above, the following associations: for all $n \geq 0$

- $f \mapsto H'(h(f))$, $f \in F_n$;
- $R \mapsto H'(h(R))$, $R \in R_n$,

where H' is the extension to \mathcal{L}' of h. The identity element with respect to \circ is the language morphism $1: \mathcal{L} \to \mathcal{L}$ obtained from the extension of the rules: for all $n \geq 0$

- $f \mapsto f(x_0, \ldots, x_{n-1})$, $f \in F_n$;
- $R \mapsto R(x_0, \ldots, x_{n-1})$, $R \in R_n$.

In other words, $1: \mathcal{L} \to \mathcal{L}$ is the map which associates each \mathcal{L}-term to itself, and each \mathcal{L}-formula to itself. It is not hard to see that \circ and 1 satisfy the associativity and identity laws. Therefore, FOL is indeed a category.

Note that FOL has a subcategory of “simple morphisms” given by

- $f \mapsto f'(x_0, \ldots, x_{n-1})$, $f' \in F'_n$ and $R \in R_n \mapsto R'(x_0, \ldots, x_{n-1})$, $R' \in R'_n$.

Here and throughout “language morphism” will mean “a morphism constructed in (i)-(ix)”, unless otherwise stated.

4. Categories of o-minimal structures

Throughout this section we fix an order relation symbol $<$. For each language \mathcal{L}, $\mathcal{L}_<$ stands for its extension $\text{Term}(\mathcal{L} \cup \{<\}) \sqcup \text{Form}(\mathcal{L} \cup \{<\})$, which is an object in FOL. Similarly, any morphism $H: \mathcal{L} \to \mathcal{L}'$ in FOL can be extended to a morphism $H_<: \mathcal{L}_< \to \mathcal{L}'_<$ in FOL as defined in the previous section. Such a morphism $H_<$ is the unique language morphism from $\mathcal{L}_<$ to $\mathcal{L}'_<$ satisfying the equality $H_<> \circ i = i' \circ H$, where $i: \mathcal{L} \to \mathcal{L}_<$ and $i': \mathcal{L}' \to \mathcal{L}'_<$ indicate the inclusion maps.

As usual we denote the category of all locally small categories by CAT. The category $\text{Str}(\mathcal{L})$ of all \mathcal{L}-structures whose morphisms are the homomorphisms between \mathcal{L}-structures is an object from CAT. A (non full) subcategory of $\text{Str}(\mathcal{L})$ is the category $\text{Str}_e(\mathcal{L})$ of all \mathcal{L}-structures whose morphisms are the elementary homomorphisms (hence
embeddings) between L-structures. We denote by $\text{Str}_{\text{omin}}(L_<)$ the full (small) subcategory of $\text{Str}(L_<)$ whose objects are the o-minimal $(L \cup \{<\})$-structures.

Definition 1 (Induced functor). In view of this discussion, we can form the following contravariant functor $\mathcal{E}: \text{FOL} \rightarrow \text{CAT}$:

$$\mathcal{L} \mapsto \text{Str}(\mathcal{L})$$

and

$$\mathcal{L} \xrightarrow{H} \mathcal{L}' \mapsto \text{Str}(\mathcal{L}) \xleftarrow{\mathcal{E}(H)} \text{Str}(\mathcal{L}')$$

where $\mathcal{E}(H)$ is the functor given by:

- $\mathcal{M}' \in \text{Ob}(\text{Str}(\mathcal{L}')) \mapsto \mathcal{M} := \mathcal{E}(H)(\mathcal{M}')$, with $|\mathcal{M}| := |\mathcal{M}'| := M'$, and for each $f \in F_n$ and each $R \in R_n$ we have $f^\mathcal{M} := H(f)^\mathcal{M}' : M^m \rightarrow M'$ (that is, $f^\mathcal{M}$ is the interpretation of the L'-term $H(f)$ in \mathcal{M}') and $R^\mathcal{M} := H(R)^\mathcal{M}' \subseteq M^m$ (that is, $R^\mathcal{M}$ is the interpretation of the atomic L'-formula $H(R)$ in \mathcal{M}'). Thus, for any L-formula $\varphi(x_0, \ldots, x_{n-1})$ and any valuation $\nu: \{x_0, \ldots, x_{n-1}\} \rightarrow M'$ we obtain

$$\left(\ast\right) \mathcal{M} \models_{\nu} \varphi(x_0, \ldots, x_{n-1}) \text{ if and only if } \mathcal{M}' \models_{\nu} H(\varphi)(x_0, \ldots, x_{n-1}),$$

by induction on the complexity of φ.

- $\alpha' \in \text{Hom}_{\text{Str}(\mathcal{L}')}((\mathcal{M}_1, \mathcal{M}_2)) \mapsto \mathcal{E}(H)(\alpha') := \alpha' \in \text{Hom}_{\text{Str}(\mathcal{L})}(\mathcal{M}_1, \mathcal{M}_2)$.

Remark 1. There are some variants of the functor \mathcal{E}, namely:

(a) the contravariant functor $\mathcal{E}_e: \text{FOL} \rightarrow \text{CAT}$ given by

$$\mathcal{L} \mapsto \text{Str}_e(\mathcal{L})$$

and

$$\mathcal{L} \xrightarrow{H} \mathcal{L}' \mapsto \text{Str}_e(\mathcal{L}) \xleftarrow{\mathcal{E}_e(H)} \text{Str}_e(\mathcal{L}')$$

where $\mathcal{E}_e(H)$ is defined the same way as above for the category $\text{Str}(\mathcal{L}')$. It is worth noticing that $\alpha' \in \text{Hom}_{\text{Str}_e(\mathcal{L}')}((\mathcal{M}_1, \mathcal{M}_2)) \mapsto \mathcal{E}_e(H)(\alpha') := \alpha' \in \text{Hom}_{\text{Str}_e(\mathcal{L})}(\mathcal{M}_1, \mathcal{M}_2)$ is well defined by virtue of $\left(\ast\right)$.

(b) the contravariant functor $\mathcal{E}_<: \text{FOL} \rightarrow \text{CAT}$ given by

$$\mathcal{L}_< \mapsto \text{Str}(\mathcal{L}_<)$$

and

$$\mathcal{L}_< \xrightarrow{H_<} \mathcal{L}_<' \mapsto \text{Str}(\mathcal{L}_<) \xleftarrow{\mathcal{E}_<(H_<)} \text{Str}(\mathcal{L}_<')$$

where $\mathcal{E}_<(H_<)$ is defined analogously to $\mathcal{E}(H)$.

\[1\] Clearly, other similar contravariant functors can be defined, corresponding to other kinds of morphisms between structures.
Theorem 1. The functor $E_<(H_<) : \text{Str}(\mathcal{L}'_<) \to \text{Str}(\mathcal{L}<)$ (see Remark 1(b)) maps o-minimal structures in the language $\mathcal{L}'_<$ to o-minimal structures in the language $\mathcal{L}<$, in other words, the following diagram commutes

$$
\begin{array}{ccc}
\text{Str}(\mathcal{L}'_<) & \xrightarrow{E_<(H_<)} & \text{Str}(\mathcal{L}<) \\
\uparrow & & \uparrow \\
\text{Str}_{omin}(\mathcal{L}'_<) & \xrightarrow{E_<(H_<)|} & \text{Str}_{omin}(\mathcal{L}<)
\end{array}
$$

where $E_<(H_<)|$ denotes the restriction of $E_<(H_<)$ to the subcategory $\text{Str}_{omin}(\mathcal{L}<)$.

Proof. It follows immediately from (\ast) and the fact $FV(\varphi) = FV(H_<(\varphi))$, for any first order formula φ in $\mathcal{L}<$. □

The dichotomy result stated in Fact 1 (see Section 1) can be translated in this section into diagrams of categories of o-minimal structures and functors induced by language morphisms:

![Diagram 1](image1.png)

Figure 1. Diagram in FOL

where \mathcal{L}_{or} is the language generated by the signature of the ordered rings L_{or}, \mathcal{L}_{og} is the language generated by the signature of the ordered groups L_{og} and $\tilde{\mathcal{L}}$ expands \mathcal{L}_{og} arbitrarily. Applying the functor $E_<$, we get

![Diagram 2](image2.png)

Figure 2. Diagram in CAT

where \tilde{R} is an o-minimal expansion of ordered group $(R, <, +)$.

Similarly, the dichotomy stated in Fact 2 in Section 1 can be read out of the following diagrams:
where L_{exp} is the language generated by the signature $L_{or} \cup \{\text{exp}\}$ and \tilde{L} expands L_{or} arbitrarily, and

\[
\begin{array}{c}
\tilde{R} \\
\text{Exp} \\
\rightarrow \text{CAT}
\end{array}
\]

where \mathbb{R} stands for the ordered field of real numbers, \mathbb{R}_{exp} is the exponential real field (\mathbb{R}, exp) and \tilde{R} is an o-minimal expansion of \mathbb{R}.

Observe that the dichotomy theorems in Facts 1 and 2 characterize the images of the induced functors as considered above (Definition 1).

The above remarks suggest that may be useful to consider the following notion:

Definition 2. We define the category STR of all structures by means of the Grothendieck construction as follows.

- $\text{Ob}(\text{STR})$: $(\mathcal{L}, \mathcal{M})$, where \mathcal{L} is a language and $\mathcal{M} \in \text{Str}(\mathcal{L})$;
- For any pair $(\mathcal{L}, \mathcal{M})$ and $(\mathcal{L}', \mathcal{N'})$, $\text{Hom}_{\text{STR}}((\mathcal{L}, \mathcal{M}), (\mathcal{L}', \mathcal{N'}))$ is the set of pairs (H, α) where $H: \mathcal{L} \to \mathcal{L}'$ is a language morphism and $\alpha: E(H)(\mathcal{N'}) \to \mathcal{M}$ is a morphism in $\text{Str}(\mathcal{L}')$;
- Composition: $(H', \alpha') * (H, \alpha) := (H' \circ H, \alpha \circ E(H)(\alpha'))$;
- Identities: $\text{id}_{(\mathcal{L}, \mathcal{M})} := (\text{id}_\mathcal{L}, \text{id}_\mathcal{M})$.

We have some variants of STR such as:

(a) STR_{e_1}, where α as in STR are taken to be elementary homomorphims;
(b) STR_{e_1}, where α as in STR preserve only the validity of first order unary formulas;
(c) $\text{STR}_{<}$ constructed analogously to STR for all language expansions $\mathcal{L}_{<}$;
(d) \(\text{STR}_{\text{o-min}} \) as \(\text{STR}_{<} \), with \(\mathcal{M} \in \text{Str}_{\text{o-min}}(\mathcal{L}_{<}) \).

Note that the dichotomy results expressed in Facts 1 and 2 can also be read in this global context, since the morphism from \((\mathcal{L}_{<}, \mathcal{M})\) to \((\mathcal{L}'_{<}, \mathcal{N}')\) is the pair \(H_{<}: \mathcal{L}_{<} \rightarrow \mathcal{L}'_{<} \) and \(\alpha: \mathcal{E}(H_{<})(\mathcal{N}') \rightarrow \mathcal{M} \) is the identity homomorphism, that is, \(\mathcal{E}(H_{<})(\mathcal{N}') = \mathcal{M} \) and \(\alpha = \text{id}_{\mathcal{M}} \).

On the other hand, a more general case in which the map \(\alpha \) is not necessarily the identity also occurs in the literature. For instance,

Fact 3 ([5]). If \(\mathcal{M} \) is any nonstandard model of PA, with \((\text{HF}^\mathcal{M}, \in^\mathcal{M})\) the corresponding nonstandard hereditary finite sets of \(\mathcal{M} \) (by Ackerman coding: the natural numbers of \(\text{HF}^\mathcal{M} \) are isomorphic to \(\mathcal{M} \)), then for any consistent computably axiomatized theory \(T \) extending ZF in the language of set theory, there is a submodel \(\mathcal{N}' \subseteq (\text{HF}^\mathcal{M}, \in^\mathcal{M}) \) such that \(\mathcal{N}' \models T \).

5. **Final remarks**

- It is natural to consider even more general forms of induced functors by changing of languages as in [6]: for instance, something in this direction already occurred in Facts 1 (and 2) since \(\cdot \) is \(\tilde{L} \) definable in \(\tilde{R} \). This would complete the picture of Facts 1, 2 (that is, it would name the dot arrows in the diagrams shown in Figures 1, 2, 3 and 4).

- Are there natural examples of the phenomenon appeared in Fact 3 in the setting of o-minimal structures? That is, a situation involving o-minimal structures and a morphism from \((\mathcal{L}_{<}, \mathcal{M})\) to \((\mathcal{L}'_{<}, \mathcal{N}')\), which is the \(H_{<}: \mathcal{L}_{<} \rightarrow \mathcal{L}'_{<} \) and \(\alpha: \mathcal{E}(H_{<})(\mathcal{N}') \rightarrow \mathcal{M} \), where \(\mathcal{E}(H_{<})(\mathcal{N}') \neq \mathcal{M} \) and/or \(\alpha \neq \text{id}_{\mathcal{M}} \). What about with \(\alpha \) being an embedding? Or an elementary embedding? Or an \(e_1 \)-elementary embedding, that is, an embedding which preserves formulas with one free variable?

References

[1] Alessandro Berarducci and Margarita Otero, Transfer methods for o-minimal topology. *J. Symbolic Logic*, v. 68, no. 3 (2003), pp. 785–794.

[2] Lou van den Dries, *Tame topology and o-minimal structures*. LMS Lecture Note Series, 248. Cambridge University Press, Cambridge, 1998.

[3] Chris Miller, Exponentiation is hard to avoid. *Proc. Amer. Math. Soc.*, v. 122, no. 1 (1994), pp. 257–259.

[4] Chris Miller and Sergei Starchenko, A growth dichotomy for o-minimal expansions of ordered groups. *Trans. Amer. Math. Soc.*, v. 350, no. 9 (1998), pp. 3505–3521.
[5] Jean-Pierre Ressayre, Introduction aux modèles récursivement saturés. In Séminaire Général de Logique 1983–1984 (Paris, 1983–1984), volume 27 of Publ. Math. Univ. Paris VII, pages 53–72. Univ. Paris VII, Paris, 1986.

[6] Albert Visser, Categories of Theories and Interpretations. In A. Enayat & I. Kalantari (Eds.), Logic in Tehran, Proceedings of the workshop and conference on Logic, Algebra and Arithmetic, held October 18–22, 2003 (pp. 77–136) (60 p.). Wellesley, Mass.: ASL, A.K. Peters.

Departamento de Matemática, Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, CEP 05508-090, São Paulo, SP, BRAZIL.

E-mail address: rodrigof@ime.usp.br

Departamento de Matemática, Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, CEP 05508-090, São Paulo, SP, BRAZIL.

E-mail address: hugomar@ime.usp.br