Some Types of Mappings in Bitopological Spaces

G. S. Ashaea
Y. Y. Yousif *

Department of Mathematics, College of Education for Pure Sciences (Ibn-Al-Haitham), University of Baghdad

*Corresponding author: voyayousif@yahoo.com, ghidaasadoo@gmail.com

Received 13/6/2019, Accepted 10/3/2020, Published Online First 6/12/2020, Published 1/3/2021

This work is licensed under a Creative Commons Attribution 4.0 International License.

Abstract:

This work introduces some concepts in bitopological spaces, which are nm-joω-converges to a subset, nm-joω-directed toward a set, nm-joω-closed mappings, nm-joω-rigid set, and nm-joω-continuous mappings. The mainline idea in this paper is nm-joω-perfect mappings in bitopological spaces such that n = 1, 2 and m = 1, 2 n ≠ m. Characterizations concerning these concepts and several theorems are studied, where j = θ, δ, α, pre, b, β.

Key words: Filter base, nm-joω-converges, nm-joω-closed mappings, j-ω-rigid a set, nm-joω-perfect mappings.

Introduction and Preliminaries:

In 1963 Kelly J. C. (1) introduced the definition, a set G with two topologies σ_1 and σ_2 is said to be bitopological space and denoted by (G, σ_1, σ_2) and a subset K ⊆ G. The closure and interior of K in (G, σ_i) is denoted by σ_i-cl(K) and σ_i-int(K), where i = 1, 2. A topological space (G, σ) and a point g in G is said to be condensation point of K ⊆ G if every open neighborhood S in σ with g ∈ S, the set K ∩ S is uncountable (2). In 1982 the ω-closed set was first exhibited by H. Z. Heib in (3) defined it as a subset K ⊆ G is called ω-closed if it incorporates each its condensation points, and the ω-open set is the complement of the ω-closed set and the ω-closed of the set K ⊆ G denoted by ω-cl(K). The ω-interior of the set K ⊆ G is defined as the union of all ω-open sets content in K and is denoted by intω(K). In (4) a point g ∈ G is said to be ω-cluster points of K ⊆ G if clω(S) ∩ K ≠ φ for each open set S of G contained g. Also in (4) the set of each ω-cluster points of K is called the ω-closure of K and is denoted by ω-cl(K). A subset K ⊆ G is called ω-closed (4) if K = ω-cl(K). The complement of ω-closed set is said to be ω-open. A point g ∈ G is said to be ω-cluster points of K ⊆ G if clω(S) ∩ K ≠ φ for each ω-open set S of G containing g. The set of each ω-cluster points of K is called the ω-closure of K and is denoted by ω-cl(K). A subset K ⊆ G is called ω-closed (4) if K = ω-cl(K). The complement of ω-closed set is said to be ω-open. A subset K ⊆ G is said to be ω-closed (5) if K = ω-cl(K) = {g ∈ G : int(ω-cl(S)) ∩ K ≠ φ, S ∈ τ and g ∈ S}. The complement of ω-closed is called ω-open set, and K is ω-ω-closed if K = ω-clω(K) = {g ∈ G : intω-cl(S)) ∩ K ≠ φ, S ∈ τ and g ∈ S}. For other notions or notations not defined here, R. Engling (6) should be followed closely. Several characterizations of ω-closed sets were provided in (4, 5, 8, 9, and 10). Some of the results in (11), (12), (13), (14) and (15) will be built.

Definition 1. (1) A nonempty family ℑ of nonempty subsets of G is called filter base if M_1, M_2 ∈ ℑ then M_3 ⊆ M_1 ∩ M_2 for some M_1 ∈ ℑ.

The filter generated by a filter base ℑ consists of all supersets of elements of ℑ. An open filter base on a space G is a filter base with open members.

The set N_γ of all neighborhoods (nbds) of g ∈ G is a filter on G, and any nb base at g is a filter base for N_γ. This filter called the nbd filter at g.

Definition 2. (1) Let ℑ and φ be filter bases on G. Then φ is called finer than ℑ (written as ℑ < φ) if for all M ∈ ℑ, there is G ∈ φ. G ⊆ M also, that ℑ meets φ if M ∩ G ≠ φ for all M ∈ ℑ also, G ∈ φ.

Notice, ℑ → g iff N_γ < ℑ.

Definition 3. (7) A subset K of a space G is called:
Theorem 1. Let G be an nm_j-open condensation point of a filter base \mathcal{F} on G, then every σ_j-open nbd S of g, the j-open closure of S contains a member of \mathcal{F} and thus contains a member of any filter base \mathcal{F}^* minutes than \mathcal{F}, so that $\mathcal{F}^* nm_j \to g$.

Proof: (\Rightarrow) Let g be an nm_j-open condensation point of a filter base \mathcal{F} on G, then every σ_j-open nbd S of g, the j-open closure of S contains a member of \mathcal{F} and thus contains a member of any filter base \mathcal{F}^* minutes than \mathcal{F}, so that $\mathcal{F}^* nm_j \to g$.

(\Leftarrow) Assume that g is not an nm_j-open condensation point of a filter base \mathcal{F} on G, then there existent an σ_j-open nbd S of g, such that j-open closure of S contains no member of \mathcal{F}, denote by \mathcal{F}^* the family of sets $M^* = M \cap (G - (cl_j^ω(S)))$ for $M \in \mathcal{F}$, then the sets M^* are nonempty. And \mathcal{F}^* is a filter base and indeed is minute than \mathcal{F}, since $M_1^* = M_1 \cap (G - cl_j^ω(S))$ and $M_2^* = M_2 \cap (G - cl_j^ω(S))$, so there is an $M_3 \subseteq M_1 \cap M_2$ and this lead to:

$M_3^* = M_3 \cap (G - (cl_j^ω(S))) \subseteq M_1 \cap M_2 \subseteq (G - (cl_j^ω(S)))

By construction \mathcal{F}^* not nm_j-convergent to g. This contradiction, and thus g is an nm_j-open condensation point of a filter base \mathcal{F} on G.

Definition 7. A filter base \mathcal{F} on a bitopological space (G, σ_1, σ_2) is said to be nm_j-open directed toward a set $K \subseteq G$ (written as $3nm_{j-\omega}$-dir-tow $\to K$) if for each filter base φ finer \mathcal{F} has an nm_j-open condensation point in K. i.e. $(nm_j$-open cod $\varphi) \cap

K \neq \varphi$. $3nm_{j-\omega}$-dir-tow $\to g$ used to mean $3nm_{j-\omega}$-dir-tow $\to \{g\}$, where $g \in G$, and $j = \theta, \delta, \alpha, \pre, b, \beta$.

Theorem 2. Let \mathcal{F} be a filter base on a bitopological space (G, σ_1, σ_2) and point $g \in G$, then \mathcal{F} $nm_j \to g$ if and only if $3nm_{j-\omega}$-dir-tow $\to g$, where $j = \theta, \delta, \alpha, \pre, b, \beta$.

Proof: (\Rightarrow) Clear.

(\Leftarrow) Assume that \mathcal{F} is not an nm_j-open convergence to g, there exists an σ_j-open nbd S of g, such that $M \subseteq cl_j^ω(S)$, for all $M \in \mathcal{F}$. Then $\varphi = \{(M \cap (G - (\sigma_j - cl_j^ω(S))) : M \subseteq \mathcal{F}\}$ is a filter base on G finer than \mathcal{F}, and consequently $g \notin nm_j$-open cod φ. So \mathcal{F} cannot be nm_j-open directed towards g.

Definition 8. A mapping $\lambda : (G, \sigma_1, \sigma_2) \to (H, \zeta_1, \zeta_2)$ is said to be nm_j-perfect if for every filter base \mathcal{F} on $\lambda(G)$, nm_j-open directed towards some subset L of $\lambda(G)$, the filter base $\lambda^{-1}(\mathcal{F})$ is nm_j-open directed towards $\lambda^{-1}(L)$ in G, where $j = \theta, \delta, \alpha, \pre, b, \beta$.
Theorem 4. Let \(\lambda : (G, \sigma_1, \sigma_2) \rightarrow (H, \zeta_1, \zeta_2) \) be a mapping. Then the following are equivalent:

(a) \(\lambda \) is \(nm-j-\omega \)-perfect.

(b) For every filter base \(\mathcal{F} \) on \(\lambda(G) \), which is \(nm-j-\omega \)-convergent to a point \(h \in H \), \(\lambda(\mathcal{F}) \) is \(nm-j-\omega \)-filter base on \(G \).

(c) For any filter base \(\mathcal{F} \) on \(G \), \(nm-j-\omega \)-cod \(\lambda(\mathcal{F}) \subset \mathcal{F} \), where \(j = \theta, \delta, \alpha \), pre, \(b, \beta \).

Proof: (a) \(\Rightarrow \) (b) Proof by Theorem (2).

(b) \(\Rightarrow \) (c) Let \(\mathcal{F} \) be \(nm-j-\omega \)-filter base on \(G \). Then \(\lambda(\mathcal{F}) \) is \(nm-j-\omega \)-filter base on \(\lambda(G) \).

(c) \(\Rightarrow \) (a) Suppose \(\mathcal{F} \) be a filter base on \(\lambda(G) \), it is \(nm-j-\omega \)-directed towards some subset \(L \) of \(\lambda(G) \). Let \(\mathcal{F} \) be a filter base on \(G \) finer than \(\lambda^{-1}(\mathcal{F}) \). Then, \(\lambda(\mathcal{F}) \) is \(nm-j-\omega \)-filter base on \(\lambda(G) \).

Definition 9. A mapping \(\lambda : (G, \sigma_1, \sigma_2) \rightarrow (H, \zeta_1, \zeta_2) \) is said to be \(nm-j-\omega \)-closed if the image of every \(nm-j-\omega \)-closed set in \(G \) is \(nm-j-\omega \)-closed in \(H \), where \(j = \theta, \delta, \alpha \), pre, \(b, \beta \).

Theorem 6. The \(nm-j-\omega \)-perfect mapping \(\lambda : (G, \sigma_1, \sigma_2) \rightarrow (H, \zeta_1, \zeta_2) \) is \(nm-j-\omega \)-closed, where \(j = \theta, \delta, \alpha \), pre, \(b, \beta \).

Proof: Follow from Theorem (5) and Theorem (3) (a) \(\Rightarrow \) (c) taking \(\mathcal{F} = \{K\} \).

Definition 10. A subset \(K \) of bitopological space \((G, \sigma_1, \sigma_2) \) is said to be \(nm-Supra-\omega \)-rigid (written as \(nm-j-\omega \)-rigid) in \(G \) if for every filter base \(\mathcal{F} \) on \(G \) with \((nm-j-\omega \)-cod \(\mathcal{F} \) \) \(\cap K = \phi \), there is \(S \in \sigma_1 \) and \(M \in \mathcal{F} \), such that \(K \subset S \) and \(cl^\omega(S) \cap M = \phi \), or equivalent, if for every filter base \(\mathcal{F} \) on \(G \) whenever,

\[
K \cap (nm-j-\omega \text{-cod } \mathcal{F}) = \phi,
\]
then for some \(M \in \mathcal{F} \),

\[
K \cap (nm-j-\omega \text{-cl } \mathcal{F}) = \phi,
\]
then \(j = \theta, \delta, \alpha \), pre, \(b, \beta \).

Theorem 7. If a mapping \(\lambda : (G, \sigma_1, \sigma_2) \rightarrow (H, \zeta_1, \zeta_2) \) is \(nm-j-\omega \)-closed such that for every \(h \in H \), \(\lambda^{-1}(h) \) is \(nm-j-\omega \)-rigid in \(G \), then \(\lambda \) is \(nm-j-\omega \)-perfect, where \(j = \theta, \delta, \alpha \), pre, \(b, \beta \).

Proof: Assume \(\mathcal{F} \) is a filter base on \(\lambda(G) \) such that \(\lambda^{-1}(\mathcal{F}) \) is \(nm-j-\omega \)-closed in \(H \), for some \(h \in H \). If \(\mathcal{F} \) is a filter base on \(G \) finer than the filter base on \(\lambda^{-1}(\mathcal{F}) \). Thus, \(\lambda(\mathcal{F}) \) is a filter base on \(\lambda(G) \), finer than \(\mathcal{F} \). Since \(\lambda^{-1}(\mathcal{F}) \) is \(nm-j-\omega \)-filter base on \(\lambda(G) \), \(\lambda(\mathcal{F}) \) is \(nm-j-\omega \)-filter base on \(\lambda(G) \).

Definition 11. A mapping \(\lambda : (G, \sigma_1, \sigma_2) \rightarrow (H, \zeta_1, \zeta_2) \) is said to be \(nm-Supra-\omega \)-continuous (written as \(nm-j-\omega \)-continuous) if for any \(\zeta_1 \)-open nbd \(T \) of \(\lambda(g) \), there exists a \(\sigma_1 \)-open nbd \(S \) of \(g \), \(\lambda(cl^\omega(S)) \subset cl^\omega(T) \), where \(j = \theta, \delta, \alpha \), pre, \(b, \beta \).

Definition 12. A mapping \(\lambda : (G, \sigma_1, \sigma_2) \rightarrow (H, \zeta_1, \zeta_2) \) is said to be weakly \(nm-j-\omega \)-continuous if for any \(\zeta_1 \)-open nbd \(T \) of \(\lambda(g) \), there exists a \(\sigma_1 \)-open nbd \(S \) of \(g \) such that \(\lambda(S) \subset cl^\omega(T) \), where \(j = \theta, \delta, \alpha \), pre, \(b, \beta \).

Definition 13. A mapping \(\lambda : (G, \sigma_1, \sigma_2) \rightarrow (H, \zeta_1, \zeta_2) \) is said to be strongly \(nm-j-\omega \)-continuous if for any \(\zeta_1 \)-open nbd \(T \) of \(\lambda(g) \), there exists a \(\sigma_1 \)-open nbd \(S \) of \(g \), \(\lambda(cl^\omega(S)) \subset cl^\omega(T) \), where \(j = \theta, \delta, \alpha \), pre, \(b, \beta \).

Definition 14. A mapping \(\lambda : (G, \sigma_1, \sigma_2) \rightarrow (H, \zeta_1, \zeta_2) \) is said to be super \(nm-j-\omega \)-continuous if for any \(\zeta_1 \)-open nbd \(T \) of \(\lambda(g) \), there exists a \(\sigma_1 \)-open nbd \(S \) of \(g \), \(\lambda(int^\omega_{\zeta_1}(cl^\omega(T))) \subset cl^\omega(T) \), for \(n, m \) = 1 and 2 such that \(n \neq m \), where \(j = \theta, \delta, \alpha \), pre, \(b, \beta \).

Definition 15. A mapping \(\lambda : (G, \sigma_1, \sigma_2) \rightarrow (H, \zeta_1, \zeta_2) \) is said to be almost \(nm-j-\omega \)-continuous if for any \(\zeta_1 \)-open nbd \(T \) of \(\lambda(g) \), there exists a \(\sigma_1 \)-open nbd \(S \) of \(g \), \(\lambda(S) \subset cl^\omega(T) \), for \(n, m \) = 1 and 2 such that \(n \neq m \), where \(j = \theta, \delta, \alpha \), pre, \(b, \beta \).
1 and 2 such that \((n \neq m)\), where \(j = \theta, \delta, \alpha, \text{pre}, b, \beta\).

The relation between weakly and strongly \(nm\)-\(j\)-\(o\)-continuous mappings are given by the following:

![Table 1. The relation between weakly and strongly \(nm\)-\(j\)-\(o\)-continuous mappings, where \(j = \theta, \delta, \alpha, \text{pre}, b, \beta\).]

Strongly \(nm\)-\(j\)-\(o\)-continuous mapping	\(\Rightarrow\)	\(nm\)-\(j\)-\(o\)-perfect mapping
Weakly \(nm\)-\(j\)-\(o\)-continuous mapping	\(\Rightarrow\)	\(nm\)-\(j\)-\(o\)-rigid mapping

In the higher figure the converses not be true such that the demonstrated by the following examples:

Example 1. Let \(A\) be the upper half of the plane and \(B\) be the x-axis. Let \(G = A \cup B\). If \(r_{\text{dis}}\) be the half disc topology on \(G\) and \(\tau\) be the relative topology that \(G\) inherits by virtue of being a subspace of \(\mathbb{R}^2\). The identity mapping \(\lambda : (G, \tau) \rightarrow (G, r_{\text{dis}})\). Then, \(\lambda\) is weakly \(nm\)-\(j\)-\(o\)-continuous mapping but it is not \(nm\)-\(j\)-\(o\)-continuous mapping.

Example 2. Let \(\lambda : (G, \sigma, \sigma) \rightarrow (G, \zeta, \zeta)\) be a mapping such that \(G = \{u, v, w\}\), and \(\sigma = \{G, \phi, \sigma_2 = \{G, \phi, \{u, v\}\}\). Such that \(\lambda(u) = \lambda(v) = \lambda(w) = u\). Then \(\lambda\) is almost \(nm\)-\(j\)-\(o\)-continuous mapping but it is not \(nm\)-\(j\)-\(o\)-continuous mapping.

Example 3. Let \(\lambda : (\mathbb{R}, \tau) \rightarrow (\mathbb{R}, \tau)\) be a mapping. Define by \(\lambda(g) = g\), and let \((\mathbb{R}, \tau)\) where \(\tau\) is the topology with basis members are of the form \((a, b)\) and \((a, b) - N\) such that \(N = \{1/n; n \in \mathbb{Z}^+\}\). Then \((\mathbb{R}, \tau)\) is Hausdorff but is not \(o\)-regular. Then \(\lambda\) is \(nm\)-\(j\)-\(o\)-continuous mapping but it is not strongly \(nm\)-\(j\)-\(o\)-continuous mapping.

Example 4. Let \(\lambda : (G, \sigma_1, \sigma_2) \rightarrow (G, \sigma_1, \sigma_2)\) be identity mapping, such that \(G = \{u, v, w\}\) and \(\sigma_1 = \{G, \phi, \{u, v\}\}\). Then \(\lambda\) is super \(nm\)-\(j\)-\(o\)-continuous mapping but it is not strongly \(nm\)-\(j\)-\(o\)-continuous mapping.

Theorem 8. If an \(nm\)-\(j\)-\(o\)-continuous mapping \(\lambda : (G, \sigma_1, \sigma_2) \rightarrow (H, \zeta, \zeta)\) is \(nm\)-\(j\)-\(o\)-perfect, then:

(a) \(\lambda\) is \(nm\)-\(j\)-\(o\)-closed.

(b) For every \(h \in H\), \(\lambda^{-1}(h)\) is \(nm\)-\(j\)-\(o\)-rigid in \(G\), where \(j = \theta, \delta, \alpha, \text{pre}, b, \beta\).

Proof: (a) By Theorem (6) \(\lambda\) an \(nm\)-\(j\)-\(o\)-perfect mapping is \(nm\)-\(j\)-\(o\)-closed.

(b) To prove \(\lambda^{-1}(h)\) is \(nm\)-\(j\)-\(o\)-rigid, let \(h \in H\), and assume that \(\mathcal{I}\) be a filter base on \(G\) such that \((nm\)-\(j\)-\(o\)-cod \(\mathcal{I}\) \(\cap\) \(\lambda^{-1}(h) = \emptyset\). Then \(h \notin \lambda(\text{nm\)-\(j\)-\(o\)-cod \(\mathcal{I}\))\), since \(\lambda\) is \(nm\)-\(j\)-\(o\)-perfect, by Theorem (3 (a) \(\Rightarrow\) (c)). Then, \(h \notin (nm\)-\(j\)-\(o\)-cod \(\lambda(\mathcal{I}))\), so there exists an \(M \in \mathcal{I}\) such that \(h \notin \text{nm\)-\(o\)-cl}_{\mu}(\lambda(M))\), yond exists an \(\zeta_m\)-open nbd \(T\) of \(h\) also, \(\zeta_m\)-\(cl\)\(^{\mu}\)(\(T\) \(\cap\) \(\lambda(M) = \emptyset\), since \(\lambda\) is \(nm\)-\(j\)-\(o\)-continuous, for every \(g \in \lambda^{-1}(h)\), then \(\sigma_o\)-open nbd \(S\) of \(g\) such that \(\lambda(\text{cl}\^{\mu}(S)) \subset \zeta_m\)-\(cl\)\(^{\mu}\)(\(T\) \(\subset\) \(H\)-\(\lambda(M)\)). Then \(\lambda(\text{cl}\^{\mu}(S)) \cap \lambda(M) = \emptyset\), so that \(\text{cl}\^{\mu}(S) \cap M = \emptyset\), then \(g \notin \text{nm\)-\(o\)-cl}\^{\mu}\)(\(M\)), for every \(g \in \lambda^{-1}(h)\), then \(\lambda^{-1}(h) \cap (\text{nm\)-\(o\)-cl}\^{\mu}\)(\(M\)) = \emptyset\), so \(\lambda^{-1}(h)\) is \(nm\)-\(j\)-\(o\)-rigid in \(G\), where \(j = \theta, \delta, \alpha, \text{pre}, b, \beta\).

Corollary 1. An \(nm\)-\(j\)-\(o\)-continuous mapping \(\lambda : (G, \sigma_1, \sigma_2) \rightarrow (H, \zeta_1, \zeta_2)\) is \(nm\)-\(j\)-\(o\)-perfect if \(\lambda\) is \(nm\)-\(j\)-\(o\)-closed and for every \(h \in H\), \(\lambda^{-1}(h)\) is \(nm\)-\(j\)-\(o\)-rigid in \(G\), where \(j = \theta, \delta, \alpha, \text{pre}, b, \beta\).

The results show that thereupon the higher theorem remainders aught if \(nm\)-\(j\)-\(o\)-closeness of \(\lambda\) is replaced by a strongly enfeeble condition which will be called as a weak \(nm\)-\(j\)-\(o\)-closeness and strong \(nm\)-\(j\)-\(o\)-closeness of \(\lambda\). Thus, these will be predefined as follows:

Definition 16. A mapping \(\lambda : (G, \sigma_1, \sigma_2) \rightarrow (H, \zeta_1, \zeta_2)\) is called weakly \(nm\)-\(j\)-\(o\)-closed if for every \(h \in \lambda(G)\), and each \(\sigma_o\)-open set \(S\) containing \(\lambda^{-1}(h)\) in \(G\), there exists a \(\zeta_m\)-open nbd \(T\) of \(h\), \(\lambda^{-1}(\zeta_m\)-\(cl\)\(^{\mu}\)(\(T\)) \(\subset\) \(\text{cl}\^{\mu}\)(\(S\)), for \(n, m = 1\) and 2 such that \((n \neq m)\), where \(j = \theta, \delta, \alpha, \text{pre}, b, \beta\).

Definition 17. A mapping \(\lambda : (G, \sigma_1, \sigma_2) \rightarrow (H, \zeta_1, \zeta_2)\) is said to be strongly \(nm\)-\(j\)-\(o\)-closed if for each \(h \in \lambda(G)\), and each \(\sigma_o\)-open set \(S\) containing \(\lambda^{-1}(h)\) in \(G\), there exists a \(\zeta_m\)-open nbd \(T\) of \(h\), \(\lambda^{-1}(\zeta_m\)-\(cl\)\(^{\mu}\)(\(T\)) \(\subset\) \(S\)), for \(n, m = 1\) and 2 such that \((n \neq m)\), where \(j = \theta, \delta, \alpha, \text{pre}, b, \beta\).

The relation between weakly and strongly \(nm\)-\(j\)-\(o\)-closed mappings are given by the following figure:

![Figure 2. The relation between weakly and strongly \(nm\)-\(j\)-\(o\)-continuous mappings, where \(j = \theta, \delta, \alpha, \text{pre}, b, \beta\).]

152
Theorem 9. An $nm-j$-ω-closed mapping $\lambda: (G, \sigma, j) \rightarrow (H, \zeta, j)$ is weakly nm-j-ω-closed, where $j = \theta, \delta, \alpha, \beta$, pre, b, β.

Proof: Assume that $h \in \lambda(G)$ also, let S be a σ-open set containing $\lambda^{-1}(h)$ in G, by Theorem (5) and λ is nm-j-ω-closed mapping, then $nm\text{-}cl_{G}^{j}(\lambda(G - cl_{j}^{\omega}(S)) \subset \lambda([\sigma \text{-} cl_{G}^{j}(G - cl_{j}^{\omega}(S)). Since h \notin \lambda([\sigma \text{-} cl_{G}^{j}(G - cl_{j}^{\omega}(S)), and h \notin nm\text{-}cl_{G}^{j}\lambda(G - cl_{j}^{\omega}(S)). Thus, there exists an ζ_{n}-open nbd T of h in H, $\zeta_{n}\text{-}cl_{G}^{j}(T) \cap \lambda(G - cl_{j}^{\omega}(S)) = \Phi$, then $\lambda^{-1}(\zeta_{n}\text{-}cl_{G}^{j}(T)) \cap \lambda(G - cl_{j}^{\omega}(S)) = \Phi$, i.e., $\lambda^{-1}(\zeta_{n}\text{-}cl_{G}^{j}(T)) \subset cl_{j}^{\omega}(S)$, then λ is weakly nm-j-ω-closed.

The inversion of the Theorem (9) is not be right, it will be shown by next example:

Example 5. Let $\lambda: (G, \sigma, j) \rightarrow (H, \zeta, j)$ be a constant mapping and σ, ζ and ζ_{2} be any topology, then λ is weakly nm-j-ω-closed for $n = m = 1$ and 2 such that $(n \neq m)$, let $G = H = \Phi$. If ζ_{2} or ζ_{2} is discrete topology on H, then $\lambda: (G, \sigma, j) \rightarrow (H, \zeta, j)$ given by $\lambda(g) = 0$, for every $g \in G$, is neither j-ω-closed nor $2j$-ω-closed, regardless of the topologies σ, σ also, ζ (or ζ), where $j = \theta, \delta, \alpha, \beta$.

Theorem 10. An strongly nm-j-ω-closed mapping $\lambda: (G, \sigma, j) \rightarrow (H, \zeta, j)$ is nm-j-ω-closed, where $j = \theta, \delta, \alpha, \beta$.

Theorem 11. If an nm-j-ω-continuous mapping $\lambda: (G, \sigma, j) \rightarrow (H, \zeta, j)$ is nm-j-ω-perfect, then:
(a) λ is strongly nm-j-ω-closed.
(b) for every $h \in H$, $\lambda^{-1}(h)$ is nm-j-ω-rigid in G, where $j = \theta, \delta, \alpha, \beta$.

Theorem 12. Let $\lambda: (G, \sigma, j) \rightarrow (H, \zeta, j)$ be nm-j-ω-continuous mapping. Then λ is nm-j-ω-perfect, if:
(a) λ is weakly nm-j-ω-closed.
(b) for every $h \in H$, $\lambda^{-1}(h)$ is nm-j-ω-rigid in G, where $j = \theta, \delta, \alpha, \beta$.

Proof: Assume that λ is nm-j-ω-continuous mapping then satisfying the condition for (a) and (b). To show that λ is nm-j-ω-perfect, Theorem (7) show that λ is nm-j-ω-closed, let $h \in nm\text{-}cl_{G}^{j}\lambda(K)$, for some non- null subset K of G. However $h \notin \lambda(nm\text{-}cl_{G}^{j}(K))$, so $\mathcal{L} = \{K\}$ is a filter base on G, also $\lambda^{-1}(h) = \Phi$, by nm-j-ω-rigidity of $\lambda^{-1}(h)$. There is σ-open set S containing $\lambda^{-1}(h)$ such that $cl_{j}^{\omega}(S) \cap K = \Phi$, and by a mapping λ is weakly nm-j-ω-closed, there exists an ζ_{n}-open nbd T of h, such that $\lambda^{-1}(\zeta_{n}\text{-}cl_{j}^{\omega}(T)) \subset cl_{j}^{\omega}(S)$. Then $\lambda^{-1}(\zeta_{n}\text{-}cl_{j}^{\omega}(T)) \cap K = \Phi$, i.e. $\lambda^{-1}(\zeta_{n}\text{-}cl_{j}^{\omega}(T)) \cap \lambda(K) = \Phi$, this is impossible because that $h \in nm\text{-}cl_{G}^{j}\lambda(K)$. So $h \in \lambda(\text{nm-$j$-$\omega$-cl}_{j}^{\omega}(K)). Then λ is nm-j-ω-closed.

Study on some Types of j-ω-perfect Mappings in Bitopological Spaces

In this section, nm-j-ω-perfect mappings are given and used the definitions of characterizations theorems for an nm-j-ω-continuous mapping and weakly nm-j-ω-continuous mapping and strongly nm-j-ω-continuous mapping and super nm-j-ω-continuous mapping and almost nm-j-ω-continuous mapping are indicated to this end, and $n, m = 1, 2$ where $j = \theta, \delta, \alpha, \beta$.

Theorem 13. A mapping $\lambda: (G, \sigma, j) \rightarrow (H, \zeta, j)$ is nm-j-ω-continuous if $\lambda(\text{nm-$j$-$\omega$-cl}_{j}^{\omega}(K)) \subset \text{nm-j-ω-cl}_{j}^{\omega}(K)$, for $n, m = 1$ and 2 such that $(n \neq m)$, and for every $K \subset G$, where $j = \theta, \delta, \alpha, \beta$.

Proof: (\Rightarrow) Assume that $h \in \text{nm-$j$-$\omega$-cl}_{j}^{\omega}(K)$ and T is ζ_{n} open nbd of $\lambda(g)$. Because of λ is nm-j-ω-continuous, there exists a σ-open nbd S of g such that $\lambda(\text{cl}_{j}^{\omega}(S)) \subset \text{cl}_{j}^{\omega}(T)$. Since, $\text{cl}_{j}^{\omega}(S) \cap K \neq \Phi$, then ζ_{n}-cl$_{j}^{\omega}(T) \cap \lambda(K) \neq \Phi$. Thus, $\lambda(g) \in \text{nm-$j$-$\omega$-cl}_{j}^{\omega}(K)$. This shows that $\lambda(\text{nm-$j$-$\omega$-cl}_{j}^{\omega}(K)) \subset \text{nm-j-ω-cl}_{j}^{\omega}(K)$ for $n, m = 1$ and 2 such that $(n \neq m)$.

\hfill (\Leftarrow) Clear.

Theorem 14. A mapping $\lambda: (G, \sigma, j) \rightarrow (H, \zeta, j)$ is weakly nm-j-ω-continuous if $\lambda(\text{nm-$j$-$\omega$-cl}_{j}^{\omega}(K)) \subset \text{nm-j-ω-cl}_{j}^{\omega}(K)$, for $n, m = 1$ and 2 such that $(n \neq m)$, and for every $K \subset G$, where $j = \theta, \delta, \alpha, \beta$.

Theorem 15. A mapping $\lambda: (G, \sigma, j) \rightarrow (H, \zeta, j)$ is strongly nm-j-ω-continuous if $\lambda(\text{nm-$j$-$\omega$-cl}_{j}^{\omega}(K)) \subset \text{nm-j-ω-cl}_{j}^{\omega}(K)$, for $n, m = 1$ and 2 such that $(n \neq m)$, and for every $K \subset G$, where $j = \theta, \delta, \alpha, \beta$.

Theorem 16. A mapping $\lambda: (G, \sigma, j) \rightarrow (H, \zeta, j)$ is super nm-j-ω-continuous if $\lambda(\text{nm-$j$-$\omega$-int-cl}_{j}^{\omega}(K)) \subset \text{nm-j-ω-int-cl}_{j}^{\omega}(K)$, for $n, m = 1$ and 2 such that $(n \neq m)$, and for every $K \subset G$, where $j = \theta, \delta, \alpha, \beta$.

Theorem 17. A mapping $\lambda: (G, \sigma, j) \rightarrow (H, \zeta, j)$ is almost nm-j-ω-continuous if $\lambda(\text{nm-$j$-$\omega$-cl}_{j}^{\omega}(K)) \subset \text{nm-j-ω-int-cl}_{j}^{\omega}(K)$, for $n, m = 1$ and 2 such that $(n \neq m)$, and for every $K \subset G$, where $j = \theta, \delta, \alpha, \beta$.
Theorem 18. A mapping $\lambda : (G, \sigma_1, \sigma_2) \rightarrow (H, \zeta_1, \zeta_2)$ be nm-j-ω-continuous and nm-j-ω-perfect, Then λ^{-1} preserves nm-j-ω-rigidity, where $j = \theta, \delta, \alpha$, pre, b, β.

Proof: Assume that L be an nm-j-ω-rigid set in H and suppose \mathcal{Z} be a filter base on G, then $\lambda^{-1}(L) \cap (nm$-j-ω-cod $\mathcal{Z}) = \phi$, since λ is nm-j-ω-perfect and $L \cap \lambda(nm$-j-ω-cod $\mathcal{Z}) = \phi$. By Theorem (3) (a) \Rightarrow (c) then $L \cap (nm$-j-ω-cod$\lambda(\mathcal{Z})) = \phi$, now L being an nm-j-ω-rigid set in H, there exists an $M \in \mathcal{Z}$ such that $L \cap (nm$-j-ω-$cl^\omega(M)) = \phi$, since λ is nm-j-ω-continuous, by Theorem (14) it follows that $L \cap \lambda(nm$-j-ω-$cl^\omega(M)) = \phi$. Then $\lambda^{-1}(L) \cap (nm$-j-ω-$cl^\omega(M)) = \phi$. This proves that $\lambda^{-1}(L)$ is nm-j-ω-rigid.

Definition 18. A subset K of a bitopological space (G, σ_1, σ_2) is said to be nm-j-ω-set in H if for every σ_n-open cover \mathcal{K} of K, there is a finite sub collection L of \mathcal{K} such that $K \subset \cup \{ cl^\omega_j(S); L \in L \}$, where $j = \theta, \delta, \alpha$, pre, b, β.

Theorem 19. Let (G, σ_1, σ_2) be a bitopological space, and a subset K of space for every filter base \mathcal{Z} on K such that $(nm$-j-ω-cod $\mathcal{Z}) \cap K \neq \phi$, is an nm-j-ω-set, where $j = \theta, \delta, \alpha$, pre, b, β.

Proof: Let \mathcal{K} be an σ_n-open cover of K, σ_n-j-ω-closed of union of any finite subcollection of \mathcal{K} is not cover K. So $\mathcal{Z} = \{K / cl^\omega_j(\cup \epsilon(S)); L \in L \}$ is finite subcollection of \mathcal{K}_j is a filter base on K and $(nm$-j-ω-cod $\mathcal{Z}) \cap K = \phi$, this contradiction yield that K is an nm-j-ω-set.

Theorem 20. If $\lambda : (G, \sigma_1, \sigma_2) \rightarrow (H, \zeta_1, \zeta_2)$ is nm-j-ω-perfect, and $L \subset H$ is nm-j-ω-set in H, then $\lambda^{-1}(L)$ is an nm-j-ω-set in G, for $n, m \in \mathbb{N}$ and such that $(n \neq m)$, and where $j = \theta, \delta, \alpha$, pre, b, β.

Proof: Assume that \mathcal{Z} is a filter base on $\lambda^{-1}(L)$, then $\lambda(\mathcal{Z})$ is a filter base on L. Because L is an nm-j-ω-set in H, such that $L \cap nm$-j-ω-cod $\lambda(\mathcal{Z}) \neq \phi$, by Theorem (12). By Theorem (3) (a) \Rightarrow (c), $L \cap \lambda(nm$-j-ω-cod $\mathcal{Z}) \neq \phi$, so $\lambda^{-1}(L) \cap nm$-j-ω-cod $\lambda(\mathcal{Z}) \neq \phi$. Therefore by Theorem (12), $\lambda^{-1}(L)$ is an nm-j-ω-set in G.

The inversion of the Theorem (20) is not right, as shown by the example following:

Example 6. Let $\lambda : (G, \sigma_1, \sigma_2) \rightarrow (H, \zeta_1, \zeta_2)$ be an identity mapping and σ_1, σ_2 be the cofinite and discrete topologies respectively on G, and ζ_1, ζ_2 respectively denote the indiscrete and usual topologies on H such that $G = H = \mathbb{R}$, then every subset of either of (G, σ_1, σ_2) and (H, ζ_1, ζ_2) is a 12-j-ω-set. Now, any nonvoid finite set $K \subset G$ is 12-j-ω-closed in G, but $\lambda(K)$ (i.e K) is not 12-j-ω-closed in H, (in fact, the only 12-j-ω-closed subset of H are H and ϕ), where $j = \theta, \delta, \alpha$, pre, b, β.

The Theorem (20) and the above Example (6) allude the definition of a strictly weaker transcription of nm-j-ω- perfect mapping as given below.

Definition 19. A mapping $\lambda : (G, \sigma_1, \sigma_2) \rightarrow (H, \zeta_1, \zeta_2)$ is said to almost nm-j-ω-perfect if for every nm-j-ω-set K in H, $\lambda^{-1}(K)$ is nm-j-ω-set in G, where $j = \theta, \delta, \alpha$, pre, b, β.

By analogy to Theorem (20), amnlest condition for a mapping to be almost nm-j-ω-perfect, is prove as follows.

Theorem 21. Let $\lambda : (G, \sigma_1, \sigma_2) \rightarrow (H, \zeta_1, \zeta_2)$ be any mapping such that

(a) $\lambda^{-1}(h)$ is nm-j-ω-rigid in G, such that for every $h \in H$

(b) λ is weakly nm-j-ω- closed.

Then λ is almost nm-j-ω-perfect, where $j = \theta, \delta, \alpha$, pre, b, β.

Proof: Assume that L be an nm-j-ω-set in H and let that \mathcal{Z} be a filter base on $\lambda^{-1}(L)$, then $\lambda(\mathcal{Z})$ is a filter base on L. Also, by Theorem (20), $(nm$-j-ω-cod $\mathcal{Z}) \cap L \neq \phi$, let $h \in [(nm$-j-ω-cod $\mathcal{Z})] \cap L$. Assume that \mathcal{Z} has no nm-j-ω- condensation point in $\lambda^{-1}(L)$, then $(nm$-j-ω-cod $\mathcal{Z}) \cap \lambda^{-1}(h) \neq \phi$. Because of $\lambda^{-1}(h)$ is nm-j-ω-rigid in G, there exists an $M \in \mathcal{Z}$ and a σ_n-open S containing $\lambda^{-1}(h)$, such that $M \cap \sigma_n$-$cl^\omega_j(S) = \phi$.

By λ is weakly nm-j-ω- closed, then there is a ζ_n - open nbd T of h, $\lambda^{-1}(\zeta_n - cl^\omega_j(T)) \subset \sigma_n$-$cl^\omega_j(S)$.

Therefore which implies that $\lambda^{-1}(\zeta_n - cl^\omega_j(T)) \cap M = \phi$, i.e., $\zeta_n - cl^\omega_j(T) \cap \lambda(M) = \phi$, which is a contradiction. Therefore by Theorem (20), $\lambda^{-1}(L)$ is an nm-j-ω-set in G. So λ is almost nm-j-ω-perfect.

Conclusion.

The main purpose of the present work is the starting point for some application of pairwise supra-ω-perfect mappings of abstract topological structures in filter base by using bitopological spaces. Definitions of characterizations theorems are used for an nm-j-ω-continuous mapping and weakly nm-j-ω-continuous mapping and strongly nm-j-ω-continuous mapping and super nm-j-ω-continuous mapping and almost nm-j-ω-continuous mapping.
بعض انواع التطبيقات في الفضاءات التبولوجية الثنائية

يوسف سعدون أشعي

قسم الرياضيات، كلية التربية للعلوم الصرفة (ابن الهيثم)، جامعة بغداد، بغداد، العراق

الخلاصة:
قدنا بعض المفاهيم في الفضاءات التبولوجية الثنائية وهي الاقتراب من المجموعة الجزئية من النمط، الاتجاه ωj، ωj، ωj، ωj، والخط الذي يربط القسم série من النمط. التطبيقات المستمرة من النمط ωj، والخط الرئيسي لهذا البحث هو التكاملات التامة من النمط ωj، والخط الذي يربط القسم série من النمط. التكاملات التامة من النمط ωj، والخط الرئيسي هذا البحث هو التكاملات التامة من النمط ωj، والخط الرئيسي هذا البحث هو التكاملات التامة من النمط ωj، والخط الرئيسي هذا البحث هو التكاملات التامة من النمط ωj، والخط الرئيسي هذا البحث هو التكاملات التامة من النمط ωj.

المفتاحيات: المراحل الأساسية، التقارب من النمط ωj، التكاملات التامة من النمط ωj، ωj، ωj، ωj، ωj.