Ginsenoside Rk1 bioactivity: A systematic review

Abdelrahman Elshafay 1, Ngo Xuan Tinh 2, Samar Salman 3, Yara Saber Shaheen 4, Eman Bashir Othman 5, Mohamed Tamer Elhady 6, Aswin Ratna Kansakar 7, Linh Tran 8, Le Van 2, Kenji Hirayama 9, Nguyen Tien Huy 10, 11

1 Faculty of Medicine, Al-Azhar University, Cairo, Egypt
2 Faculty of Pharmacy, University of Medicine and Pharmacy, Ho Chi Minh city, Vietnam
3 Tanta University Hospital, Tanta, Egypt
4 Faculty of Medicine, Cairo University, Cairo, Egypt
5 Department of Medicine, Tripoli Central Hospital, Tripoli, Libya
6 Department of Pediatrics, Zagazig University Hospitals, Sharkia, Egypt
7 Dirghayu Guru Hospital and Research Center, Kathmandu, Nepal
8 Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
9 Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
10 Evidence Based Medicine Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
11 Department of Clinical Product Development, Institute of Tropical Medicine (NEKKEN), Leading Graduate School Program, and Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan

Corresponding Author: Nguyen Tien Huy
Email address: nguyentienhuy@tdt.edu.vn

Ginsenoside Rk1 (G-Rk1) is a unique component created by processing Ginseng plant (mainly Sung Ginseng SG) at high temperatures. The aim of our study was to systematically review the pharmacological effects of G-Rk1. We utilized and manually searched eight databases to select in vivo and in vitro original studies that provided information about biological pharmaceutical effects of G-Rk1 and were published up to July 2017 with no restriction in language or study design. Out of the 156 papers identified we retrieved 28 eligible papers in the first skimming phase of research. Several articles largely described the G-Rk1 anti-cancer activity investigating “cell viability”, “cell proliferation inhibition”, “apoptotic activity”, and “effects of G-Rk1 on G1 phase and autophagy in tumor cells”, either alone or in combination with G-Rg5. Others proved that it has antiplatelet aggregation activities, anti-inflammatory effects, anti-insulin resistance, nephroprotective effect, antimicrobial effect, cognitive function enhancement, lipid accumulation reduction and prevents osteoporosis. In conclusion, G-Rk1 has a significant anti-tumor effect on liver cancer, melanoma, lung cancer, cervical cancer, colon cancer, pancreatic cancer, gastric cancer, and breast adenocarcinoma against in vitro cell lines. In vivo experiments are further warranted to confirm these effects.
Ginsenoside Rk1 bioactivity: A systematic review.

Running title: A systematic review of ginsenoside Rk1 bioactivity.

Abdelrahman Elshafay¹, Ngo Xuan Tinh², Samar Salman³, Yara Saber Shaheen⁴, Eman Bashir Othman⁵, Mohamed Tamer Elhady⁶, Aswin Ratna Kansakar⁷, Linh Tran⁸, Le Van², Kenji Hirayama⁹, Nguyen Tien Huy¹⁰,¹¹,*

¹Faculty of Medicine, Al-Azhar University, Cairo, Egypt
²Faculty of Pharmacy, University of Medicine and Pharmacy, Ho Chi Minh city, Viet Nam
³Tanta University Hospital, Tanta, Egypt
⁴Faculty of Medicine, Cairo University, Egypt
⁵Department of Medicine, Tripoli central Hospital, Tripoli, Libya
⁶Department of pediatrics, Zagazig University Hospitals, Sharkia, Egypt
⁷Dirghayu Guru Hospital and Research Center, Chabahil, Kathmandu, Nepal
⁸Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
⁹Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Japan
¹⁰Evidence Based Medicine Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
¹¹Department of Clinical Product Development, Institute of Tropical Medicine (NEKKEN), Leading Graduate School Program, and Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan

*Correspondence to:
Nguyen Tien Huy, Evidence Based Medicine Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
24 (E-Mail: nguentienhuy@tdt.edu.vn)

25 Emails:

26 Elshafay A: Abdelrahman.elshafay@azhar.edu.eg (ORCID: 0000-0002-6562-6341)

27 Tinh N X: tinhngo1209@gmail.com

28 Salman S: samarsalah21@yahoo.com

29 Shaheen Y S: Yara3009@gmail.com

30 Othman E B: eman85otman@Gmail.com

31 Elhady M T: Mtielhd@gmail.com

32 Kansaker A R: kan.aswin@gmail.com

33 Tran L: linh.bioinfo@gmail.com

34 Van L: levan@uphcm.edu.vn

35 Hirayama K: hiraken@nagasaki-u.ac.jp (ORCID: 0000-0001-9467-1777)

36 Huy N T: tienhuy@nagasaki-u.ac.jp (ORCID: 0000-0002-9543-9440)
Abstract

Ginsenoside Rk1 (G-Rk1) is a unique component created by processing Ginseng plant (mainly Sung Ginseng SG) at high temperatures. The aim of our study was to systematically review the pharmacological effects of G-Rk1. We utilized and manually searched eight databases to select in vivo and in vitro original studies that provided information about biological pharmaceutical effects of G-Rk1 and were published up to July 2017 with no restriction in language or study design. Out of the 156 papers identified we retrieved 28 eligible papers in the first skimming phase of research. Several articles largely described the G-Rk1 anti-cancer activity investigating “cell viability”, “cell proliferation inhibition”, “apoptotic activity”, and “effects of G-Rk1 on G1 phase and autophagy in tumor cells”, either alone or in combination with G-Rg5. Others proved that it has antiplatelet aggregation activities, anti-inflammatory effects, anti-insulin resistance, nephroprotective effect, antimicrobial effect, cognitive function enhancement, lipid accumulation reduction and prevents osteoporosis. In conclusion, G-Rk1 has a significant anti-tumor effect on liver cancer, melanoma, lung cancer, cervical cancer, colon cancer, pancreatic cancer, gastric cancer, and breast adenocarcinoma against in vitro cell lines. In vivo experiments are further warranted to confirm these effects.
Introduction

Ginseng is commonly known as a medicinal herb, that is obtained from the roots of genus *Panax* (Shin et al. 2015). Ginseng belongs to one of the most ancient herbs in traditional medicine and is still widely used today (Choi et al. 2013). Ginsenosides are classified based on the steroidal structure and the number of hydroxyl groups/sugar moieties attached to it, such as protopanaxadiol, protopanaxatriol, oleanolic acid (or aglycone oleanolic acid) and ocostillol (Nag et al. 2015). The protopanaxadiol group includes Rb1, Rb2, Rb3, Rc, Rd, Rg3, Rh2, Rs1 and Rk1. The protopanaxatriol group includes Re, Rf, Rg1, Rg2, and Rh1 (Kim et al. 2013b). Ro is classified as oleanolic acid group (Tachikawa et al. 1999). Details of types of ginsenosides are presented in Figure 1.

The quality and composition of ginsenosides in the Ginseng plant are affected by a range of factors such as species, age, part of the plant itself, method of cultivation, harvesting season and preservation methods (Lim et al. 2005; Schlag & McIntosh 2006). Some of the ginsenosides, e.g. Rk1, Rg3, Rg5, F4, are isolated from the heat-processed Ginseng, Sun Ginseng (SG), but are not detected in raw or air-dried ginseng (Kim et al. 2000).

Ginsenosides are widely known to have many pharmacological activities (Choi 2008; Ernst 2010) such as anti-tumor, anti-inflammatory (Chen et al. 2007), anti-fatigue (Tang et al. 2008) and analgesic effects (Nemmani & Ramarao 2003).

Ginseng plant is commonly harvested after four to six years of cultivation and is divided in three types based on the processing methods: (1) fresh ginseng which is less than four years old, (2) white ginseng from four to six years and is oven dried after peeling, (3) red ginseng which is six years and steamed before drying. These processing methods aim to improve the efficacy, safety, and preservation (Yun 2001). SG was recently developed by heat-treatment at
high temperature and pressure, which were higher than those applied to the conventional
preparation of red ginseng.

SG has showed higher concentrations of less polar ginsenosides, which were either
terribly absent or present in trace amounts in conventional red ginseng (Keum et al. 2000; Kwon
et al. 2001).

The ginsenoside Rk1 (G-Rk1) is one of the main elements of SG (Kim et al. 2008). Various studies confirmed the anti-cancer effects of G-Rk1 on several neoplastic such as
hepatocellular carcinoma and melanoma (Kim et al. 2012; Kim et al. 2008). In recent studies, G-Rk1 was confirmed as a new endothelial barrier enhancer, which is capable of preventing or even blocking the vascular endothelial growth factor (VEGF)-induced vasopermeability in the endothelial cells. This presents the potential of developing pharmaceuticals that may effectively control pathologic vascular leakages (Maeng et al. 2013). Therefore, we aimed to systematically review the bioactivities of G-Rk1 in both human and animals.

Methods
Protocol and registration

The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA)
Checklist (Moher et al. 2009) was followed in this systematic review. Our protocol was registered at PROSPERO CRD42016029129 in January 2016.

Eligibility criteria

We selected only original studies published up to July 2017 that provided information about the biological and pharmaceutical effects of G-Rk1. We included articles with G-Rk1 biological effects on human and animals either in vivo or in vitro with no restriction regarding publication language, publication date, or study design.

We excluded three main types of studies which are: 1-Studies with unreliable extracted
data or overlapping data set, 2- Studies with only abstract available or no full-text available, 3-
Books, reviews, meta-analysis studies, conference papers, and thesis. Any disagreement was
discussed carefully among three reviewers to get a final decision.

Information sources and search strategies

We conducted electronic searches using eight databases which include: PubMed, Scopus, ISI Web of Science, Google Scholar, SIGLE (System for Information on Grey Literature in Europe), Virtual Health Library (VHL), World Health Organization Global Health Library (GHL), and POPLINE. A Manual search using reference lists of studies was preformed to find more relevant studies. The search strategy was performed by (AE, NXT, SS, YSS, EBO, MTE, ARK) and more information on search strategy was provided in S1 Table.

Study selection

We selected articles in two phases: 1. Title and abstract screening of all searched articles, 2. Full-text screening. The articles which were not in agreement with our inclusion and exclusion criteria were excluded. Three independent reviewers completed these two selecting phases. When disagreement occurred, a consensus decision was made following a discussion with supervisor (NTH).

Data collection process and data items

We prepared our primary extraction form, extracted three papers with it one by one, modified our form after each paper extraction and finally developed the extraction sheet that we used on the remaining articles. Three independent reviewers extracted the data from each paper. A discussion among the three reviewers was held to reach a consensus whenever there was a disagreement in any information retrieved. If three reviewers could not come to an agreement, the supervisor (NTH) was consulted.

The extracted data items included the last name of the first author, year of publication,
year of subject recruitment, journal name, study design, country and city of origin of cell lines, the name of the plant, and method of extraction of our targeted material (G-Rk1). If the study included animals, we extracted their species, sex, age and weight. if it had been done in vivo, we extracted the name of the cell line, its origin, the main medium used in terms of either primary (isolated by authors) or commercial cell lines. Also, we extracted the name of the measured parameter, an assay for its measurement, time effect, administration time, active substance name, its concentration, mean, standard deviation, standard error, a P value of results and the statistical test. When the data was presented as graphs, we used Web blot digitizer software, and the average of the results from three reviewers was calculated to obtain one result.

Risk of bias in individual studies

Two independent reviewers assessed all of the selected studies according to the GRADE method (Guyatt et al. 2011) to judge the quality of evidence, and any disagreement was resolved by discussion between them. Items such as limitation, inconsistency, indirectness, imprecision, publication bias, and moderate or large effect size were to be scored as “1” if there is no serious limitation or “0” if there is a serious limitation that has been defined according to GRADE criteria. Then the overall quality was to be scored as “high”, “moderate”, “low”, or “very low” quality, according to their analysis of each study. The supervisor (NTH) was consulted when a disagreement occurs.

Summary measures

Inhibition of cell proliferation, apoptosis, and regulation of protein expression were the main evaluated outcomes.

Results

Study selection
We identified 317 citations using the search strategy. From these, we included 156 articles after removing the duplicates. After that, we examined the title, abstract and further excluded 107 articles. We retrieved and evaluated the full-text of the remaining 49 articles, of which 25 articles were excluded, leaving 24 articles that were eligible, in addition to four articles that were retrieved from manually searching the included references. A flowchart described in details the process of identification, inclusion, and exclusion of articles was presented in Figure 2.

Study characteristics

Out of the 28 studies included, 21 studies were related to the effectiveness of G-Rk1 only and seven studies were reported on the combined effects of G-Rk1 and G-Rg5. The most common study design was *in vitro* study with 22 studies (Ahn et al. 2016; Ju et al. 2012; Kang et al. 2007; Kang et al. 2006; Kim et al. 2012; Kim et al. 2009; Kim et al. 2008; Kim et al. 2013c; Ko et al. 2009; Kwak & Pyo 2016; Lee et al. 2009; Lee et al. 2010; Lee 2014; Lim et al. 2009; Liu et al. 2007; Park et al. 2002; Ponnuraj et al. 2014; Quan et al. 2015; Ryu et al. 2016; Siddiqi et al. 2014; Toh et al. 2011; Xue et al. 2017), while *in vivo* study was less common with only two studies (Jing et al. 2006; Kim et al. 2010). The remaining four articles were both *in vitro* and *in vivo* study (Bao et al. 2005; Hu et al. 2017; Maeng et al. 2013; Park et al. 2015). A summary of the included studies was presented in Table 1. For G-Rk1, bioactivities and mechanism of actions were summarized in Figure 3.

Risk of bias across studies

We used the GRADE method (Guyatt et al. 2011) to assess the quality of the included studies. Sixteen studies were categorized as high quality (Hu et al. 2017; Kang et al. 2006; Kim et al. 2009; Kim et al. 2008; Ko et al. 2009; Kwak & Pyo 2016; Lee et al. 2009; Lee 2014; Lim et al. 2009; Liu et al. 2007; Maeng et al. 2013; Park et al. 2002; Quan et al. 2015; Ryu et al. 2016; Siddiqi et al. 2014; Toh et al. 2011; Xue et al. 2017).
Twelve studies (Ahn et al. 2016; Bao et al. 2005; Jing et al. 2006; Ju et al. 2012; Kang et al. 2007; Kim et al. 2012; Kim et al. 2010; Kim et al. 2013c; Lee et al. 2010; Park et al. 2015; Ponnuraj et al. 2014; Siddiqi et al. 2014) were categorized as moderate quality. Seven of them (Ahn et al. 2016; Bao et al. 2005; Jing et al. 2006; Kim et al. 2013c; Park et al. 2015; Ponnuraj et al. 2014; Siddiqi et al. 2014) focused on the effectiveness of combined (G-Rk1, G-Rg5), thus, they were downgraded in indirectness item of GRADE factors. Three studies (Kang et al. 2007; Kim et al. 2010; Lee et al. 2010) were not completely pertained to our main outcome since they did not concern mainly with G-Rk1. Four studies (Kang et al. 2006; Lim et al. 2009; Liu et al. 2007; Park et al. 2002) were not downgraded in spite of having insufficient data regarding dose effect factor as this factor does not belong to the downgraded factors of GRADE method that include (limitation, inconsistency, indirectness, and Imprecision).

In contrast, one study (Lee et al. 2010) that was downgraded since it focused on combined (G-Rk1 and G-Rg5) not because of dose effect insufficient data. Another study (Kim et al. 2012) was downgraded because it was used to compare the anti-tumor activity of G-Rk1 versus G-Rk3. However, G-Rk3 has been proven to have a potential antitumor activity. One study (Ju et al. 2012) was downgraded as it has statistical typing mistake of one of its values (S2 Table).

Synthesis of results

Anti-cancer activity

Cell viability was measured by different assays through the studies including four studies used Cell Counting Kit-8 (CCK8) assay (Kim et al. 2012; Kim et al. 2008; Kim et al. 2013c; Ko et al. 2009), five studies used 3-(4,5-dimethyl-thiazol-2-yl) -2,5-diphenyl tetrazolium bromide (MTT) assay (Kwak & Pyo 2016; Lee et al. 2010; Park et al. 2002; Quan et al. 2015; Siddiqi et al. 2014), and one study that used WST-1 assay (Toh et al. 2011) while the final one used EZ-CytoTox cell assay kit (Park et al. 2015). (Table 2)
Liver cancer

Toh et al. in 2011, (Toh et al. 2011) evaluated the inhibitory effects of G-Rk1 (0.25µg/ml) on cell growth of liver cancer cell lines (human hepatocellular carcinoma cells (HepG2), SNU449, and SNU182). A significant reduction of cell viability caused by G-Rk1 at 0.25 mg/ml was recorded (p< 0.001). The inhibition concentration (IC$_{50}$) value of G-Rk1 for inhibiting growth in the SNU449 cell line for 48h was evaluated 0.08 mg/ml (100 µM) by using the WST-1 assay. These results indicated that G-Rk1 is one of the most anti-proliferative ginsenosides of raw and steamed P. notoginseng. Similarly, Quan et al., 2015 revealed that the HepG2 cell viability was reduced to 23% and 15% compared to the vehicle control when treated with G-Rk1 at 40 µM and 80 µM for 24h, respectively (Quan et al. 2015).

Ko et al. in 2009, (Ko et al. 2009) evaluated the effect of G-Rk1 on cell viability of HepG2 cells after 24h incubation in concentrations of 50, 75, 100 µM in the presence of 0.1 µM taxol which was used as a positive control. Compared with the vehicle control, G-Rk1 (at a dose of 100 µM) inhibited HepG2 cell proliferation by about 40%. When HepG2 cells were exposed to various concentrations of G-RK1 for 24h (from 50 to 100 µM), the inhibitory effect on growth rate raised significantly, from 8 to 37.5%, in a dose-dependent manner. In addition, the cell viability was also tested when bafilomycin A1 was added to G-Rk1 (100 µM) and then, three independent experiments showed that this co-treatment enhanced HepG2 cell death more than the cells that were treated with 100 µM of G-Rk1 alone. In this experiment, to verify the effects of this combination and exclude cytotoxicity of bafilomycin A1, cytotoxicity was measured after 24h and no cytotoxicity was detected.

In the study of Kim et al., in 2008, (Kim et al. 2008), they assessed the effects of G-Rk1 on cell viability of HepG2 cells. The concentrations of G-Rk1 ranging from 12.5 to 100 µM with 0.5 (v/v) dimethyl sulfoxide added as control and incubated the cells for 48 h were used in this
study. At 75 and 100 µM of G-Rk1, the effect of G-Rk1 induced cell death was maximized to 55% and 95% cell death respectively. In addition, the results revealed that the treatment of HepG2 cells with 100 µM G-Rk1, the fraction of early apoptotic cells increased from 0.46 to 16.23% and the underlying mechanism by which G-Rk1 induces the mitochondria-independent apoptosis can be through the activation of caspase-8, the signaling cascade of the one not associated with Fas-associated death domain expression.

To increase their cytotoxicity against Sk-Hep-1 hepatoma cancer cells, Park et al. in 2002, (Park et al. 2002) used steamed ginseng which was separated by HPLC and tested with MTT assay to produce many active ginsenosides including G-Rk1. In this study, they found that the isolated G-Rk1 was associated with an inhibitory effect on cell viability in Sk-Hep1 cells. The growth inhibition concentration of G-Rk1 was 13 µM.

Lung cancer

G-Rk1 was evaluated in human lung cancer A549, and cell viability (% to control) was assessed using MTT assay. At the concentration of 50 µM, there was a statistically significant difference between cisplatin treated cell lines and Rk1 treated cell lines. However, G-Rk1 showed approximately 2 times higher anticancer activity than Rg5 when treated at 100 µM. After 24h treatment, the IC50 values of G-Rk1 and cisplatin were 70, and 50 µM, respectively. Several proteins were found to be related to the apoptotic effect of G-Rk1 such as calmodulin-like protein, purine nucleoside phosphorylase, adaptor molecular crk, and transaldolase enzyme were increased while biliverdin reductase, aldehyde dehydrogenase, dihydropteridine reductase, and transactive response DNA binding protein-43 were decreased (Kwak & Pyo 2016). In another study, A549 cell viability was reduced to 47% and 3.6% compared to the vehicle control when treated with G-Rk1 at 40 µM and 80 µM for 24h, respectively (Quan et al. 2015).

Melanoma
To evaluate the inhibitory effect on cell viability of SK-Mel-2 human melanoma cells, Kim et al. in 2012, (Kim et al. 2012) incubated these cells with G-Rk1 for 24 and 48h at different concentrations (0, 10, 25, 50, 75, 100 µM) in a dose-dependent manner. Erb et al. (Erb et al. 2005) in 2005, provoked a controversy with the role of FAS and/or FASL in human malignant melanoma. Therefore, the effect of FAS and/or FASL on cell viability was evaluated by Kim et al. (Kim et al. 2012) by adding Fas/FasL antagonist Kp 7-6 of concentration 1mM and incubated it for 1h. Then, the cells were treated with various concentrations of G-Rk1 (1, 5, 10, 50 and 100 µM). The results showed that Kp 7-6 treatment alone did not induce cell death or cell proliferation. Therefore, they concluded that Kp 7-6 has no effect on cell viability when used alone. However, when the cells were treated by Kp7-6 followed by G-Rk1 (100 µM) treatment, the effect of G-Rk1 was reduced by 32 % compared to the control (no treatment of Kp7-6).

Moreover, they also assessed the induction of apoptosis by G-Rk1 in SK-MEL-2-Human Melanoma and their findings showed that when the concentration of G-Rk1 increased, the number of apoptotic cells also increased. More importantly, the cell lines responded in a dose-dependent manner.

Other types of cancer

Kim et al. (Kim et al. 2013c) evaluated the effect of the combination of G-Rg5/G-Rk1 on cell viability of gastric cancer cells. After treatment with this combination at different concentrations (12.5, 25, 50 and 100 µM) for 24h, the results showed an inhibitory effect on cell viability and proliferation of these cells in a dose-dependent manner (99, 93.5, 37.5, 3 %) respectively. In another study, cell viability was assessed using different cancer cell lines including human colon carcinoma (HCT-116), human cervical carcinoma (Hela), human breast adenocarcinoma (MCF-7), and human pancreatic cancer (PANC-1). When they were treated with 80 µM of G-Rk1, cell viability was reduced by 5.4%, 11%, 8.6%, and 9.9%, respectively.
Two studies evaluated the anti-aggregation effects of G-Rk1 both in vivo and in vitro (Ju et al. 2012; Lee et al. 2009) respectively. Ju et al. compared the antiplatelet aggregation activity of G-Rk1 and acetylsalicylic acid (ASA) (Ju et al. 2012). The results indicated that G-Rk1 exhibits a stronger antiplatelet aggregation activity than ASA in which the action of G-Rk1 in platelets might be related to arachidonic acid (AA) metabolism. In addition, the alteration of (S) hydroxyl eicosatetraenoic acids and thromboxane B2 levels were determined using an immunoassay kit and UPLC/Q-TOF MS system, respectively. The 12-hydroxyleicosatetraenoic acid level was remarkably decreased in the G-Rk1 group but increased in the ASA-treated group. The thromboxane B2 level in the washed platelets decreased significantly by 66% when treated with 100 μM ASA and 77% when treated with 10 μM G-Rk1 (Ju et al. 2012). They used the colorimetric COX inhibitor screening assay to measure the inhibitory effects of G-Rk1 on COX-1 and COX-2. It was found that G-Rk1 inhibits both COX-1 and COX-2 activities. However, at a concentration of 20 μM, G-Rk1-derived inhibition was higher on COX-2 than on COX-1 (Ju et al. 2012). Lee et al. explained in his study (Lee et al. 2009) that the effect of G-Rk1 on adenosine diphosphate (3-4 μM) induced platelet aggregation was monitored turbidimetrically by using ASA as a positive control. Both ASA and G-Rk1 showed the dose-dependent inhibitory effect on collagen, AA and U46619 (9,11-dideoxy-11a,9a-epoxymethanoprostaglandin F2a) (thromboxane A2 mimetic drug)-induced platelet aggregation. However, they showed a negligible effect on adenosine diphosphate-induced aggregation. G-Rk1 exhibited the strongest inhibitory effect on collagen, AA, and U46619-induced platelet aggregation. In particular, it presented a 22-fold activity of ASA on AA-induced aggregation (Lee et al. 2009). G-Rk1 was found to be a potent
inhibitor of AA and U46619-induced platelet aggregation. (Table 3)

Anti-inflammatory activity

G-Rk1 was found to have an anti-inflammatory effect by inhibit NF-κB levels in the *in vitro* models (Lee 2014). These results were assessed using luciferase assay. HepG2 cells were seeded at 1×10^5 cells/well in a 12-well plate and grown for 24h. While G-Rk1 was pretreated with dimethyl sulphoxide for 1h and then it was treated with tumor necrosis factor-α (10 ng/mL), the sulfasalazine was used as positive control. Their data demonstrated the strong inhibitory activity of G-Rk1 on NF-κB expression with 50% (IC50) value from 0.75 μM. However, the results revealed that G-Rk1 had cytotoxic effects, which occur in concentrations higher than 10 μM. Another evaluation of G-Rk1 anti-inflammatory activity (Kim et al. 2010), was its suppressing effect on 12-O-tetradecanoyl-phorbol-13-acetate (TPA) induced mouse ear edema. The right ear of ICR mouse was treated with red ginseng saponin extract, G-Rg3, G-Rg5, and G-Rk1 of 10, and 50 mg/kg and after 30 minutes, ear edema in both ears was induced by topical application of TPA, which is a potent inflammatory agent. They measured the extent of edema and noticed that the pretreatment with red ginseng saponin extract or G-Rk1 suppresses TPA-induced mouse ear edema, and when administering G-Rk1 orally, the formation of edema was blocked. Hu et al., in 2017, showed that in acetaminophen (APAP) induced liver injury in mice, G-Rk1 can be used as a protective agent, as it significantly reduced the levels of tumor necrosis factor (TNF-α) to 87 ng/L and when treated with 10 mg/kg G-Rk1 compared to 156 ng/L when treated with 250 mg/kg APAP. A significantly reduction of interleukin-1β (IL-1β) was observed with G-Rk1 (Hu et al. 2017). Atopic dermatitis in which keratinocytes and macrophages produce excess chemokines and cytokines, especially thymus and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22), as well as nitric oxide (NO), Ahn's results using G-Rg5/G-Rk1 on TNF-α/IFN-γ stimulated human keratinocytes cell
line (HaCaT cells) showed a significant reduction of TARC/CCL17 expression. Furthermore, using the same combination on the murine macrophage cell line RAW264.7, the secretion of lipopolysaccharide (LPS) mediated NO and reactive oxygen species were significantly reduced, suggesting G-Rg5/G-Rk1 as a promising natural therapy in the control of atopic dermatitis (Ahn et al. 2016). (Table 3)

Effect of G-Rk1 on vascular leakage

A study evaluated the G-Rk1 effect on VEGF (Maeng et al. 2013) by treating primary human retina microvascular endothelial cells with G-Rk1 at a concentration of (10 μg/ml) for 40 minutes then stimulating it with 20 μg/ml of VEGF to disrupt the cell membrane. Sucrose permeability assay was used to evaluate the endothelial permeability and the results showed that G-Rk1 inhibited VEGF-induced retinal endothelial permeability. They used reverse-transcription polymerase chain reaction (RT-PCR) and densitometric analysis was used to assess translocation of tight junctions (TJ) proteins, and immunostaining was used to evaluate disruption of TJ proteins after the cells were stained with anti-ZO-1, anti-ZO-2, and anti-occludin antibodies. The authors found that G-Rk1 inhibited VEGF effect on TJ protein localization but it did not affect the transcription of TJ proteins. (Table 3)

Effect of G-Rk1 on lipid accumulation

The Ginseng was known to have effects on obesity (Kim et al. 2009). In vitro treatment of mouse 3T3-L1 fibroblast cells with G-Rk1 resulted in reducing lipid accumulation, in which these cells differentiated into adipocytes after being treated with various G-Rk1 concentrations (10, 50, 100 μM) for 2h at 490 nm optical absorbance (Kim et al. 2009) (Table 3).

Neuroprotective effect of G-Rk1

The combination of G-Rg5/G-Rk1 had a pronounced effect on the excitotoxic and oxidative stress-induced neuronal cell damage that was tested in primary cultured rat cortical
cells (Bao et al. 2005). These cells were cultured in vitro for 12-20 days, then exposed to 100 μM glutamate or N-methyl-D-aspartate for 15 min in the absence or presence of G-Rg5/G-Rk1. The cell damage was assessed after 20-24h by measuring LDH activity in the culture media. Data was calculated from cells exposed to the respective excitotoxic insults without ginsenosides. Data presented that approximately 70-80% of the cells were damaged by glutamate or N-methyl-D-aspartate compared to vehicle-treated control cells. The excitotoxic effect was significantly inhibited by G-Rg5/G-Rk1 in a concentration-dependent manner, in which 50% inhibition was achieved at 14.7 μg/mL of G-Rg5/G-Rk1.

In previous work, Bao et al. (Bao et al. 2005) used a passive avoidance test to evaluate the effect of G-Rg5/G-Rk1. The latency in seconds was used to measure the cognitive performance of ethanol-induced amnesia in mice. The mice were orally treated with saline as vehicle and ratio of G-Rg5/G-Rk1 equal 1:1 with a concentration of 10 mg/kg once a day for 4 days. The latency period of the mice administrated with ethanol was 24.9% less than the 1 of control mice (without ethanol-treatment), but it was significantly enhanced by the oral administration of G-Rg5/G-Rk1 with 1.2-fold increase than that of the control. The same steps were done but this time after inducing amnesia with a single injection of scopolamine (3 mg/kg), also G-Rg5/G-Rk1 (10 mg/kg) provided the same enhancing significant result (p <0.01). In another work, Jing et al. (Jing et al. 2006) did the same tests of ethanol-induced amnesia in mice, which were given water as the control and ratio of G-Rg5/G-Rk1 equal 1:1 in the concentration of 10 mg/kg. They found that G-Rg5/G-Rk1 could significantly prolong the latency period by 2.97 folds more than that of the control. These two studies presented that G-Rg5/G-Rk1 would give beneficial results in the memory function of the normal, ethanol or scopolamine-induced amnesia in brains. G-Rk1 was reported to have a significant neurogenic activity in Epidermal growth factor-responsive neurosphere stem cells (erNSCs). However, this activity was less than...
G-Rg5 (Liu et al. 2007) (Table 3).

Nephroprotective effect of G-Rk1

Park *et al.* (Park et al. 2015) examined the effect of the G-Rg5/G-Rk1 combination on cisplatin-induced nephrotoxicity in mice at cisplatin concentration 25 µM and G-Rg5/G-Rk1 concentrations of (0, 50, 100, 250 µg/ml). Results with EZ-cytotoxic cell viability assay kit showed a significant reduction in cisplatin and induced a reduction in cell viability. This effect was higher than that of Epigallocatechin gallate at the same concentrations as G-Rk1 (Table 3).

Bone metabolism

Siddiqi *et al.* (Siddiqi et al. 2014) in 2014, evaluated the osteogenic activity of G-Rg5/G-Rk1. MC3T3-E1 cells were treated with differentiation medium (either with or without G-Rg5/G-Rk1) for 12 days at different concentrations in which different substances were added to the culture medium in order to evaluate various effects of G-Rg5/G-Rk1 on differentiated fibroblast. The extent of calcium deposition, which is an indicator of osteoblasts mineralization, was measured by MTT assay. Data were expressed as a percentage of control, which showed that G-Rg5/G-Rk1 protected the extracellular matrix mineralization from antimycin A devastating effects. Besides, it turned out that alkaline phosphatase (ALP) activity evaluated by Smart BCA protein assay kit, increased by two folds after treatment with G-Rg5/G-Rk1 (30–50 µg/mL).

The effect of G-Rg5/G-Rk1 on cellular collagen was measured using Sirius Red-based colorimetric assay. Results were similar to that of ALP activity in which cellular collagen was markedly increased. When glutathione contents of the cells were measured by glutathione assay kit after exposure to various concentrations of G-Rg5/G-Rk1, data showed that G-Rg5/G-Rk1 increase the level of glutathione in a dose-dependent manner. In order to evaluate gene expression levels, a total RNA was isolated from the cells, which were treated with G-Rg5/G-Rk1 and was amplified by RT-PCR. The results indicated that the maturation and the
differentiation of MC3T3-E1 cells were induced by G-Rg5/G-Rk1 mediated BMP-2/Runx2 and the level of expression of Runx2 increased by the action of G-Rg5/G-Rk1 (Table 3).

Anti-insulin resistance effect of G-Rk1

Ponnuraj *et al.*, in 2014, (Ponnuraj *et al.* 2014) assessed the effect G-Rk1 on insulin resistance. 3T3-L1 cells were treated with G-Rg5/G-Rk1 complex at different concentrations where tunicamycin was used to induce stress on the endoplasmic reticulum (ER). As for cell viability, measured with MTT assay, results showed that cells treated with G-Rg5/G-Rk1 complex had overcome the stress which induced by tunicamycin. Cells were made insulin resistant by immersing them into a medium that contains insulin and by treating them with dexamethasone, then with stress agent and G-Rg5/G-Rk1 complex and were analyzed by glucose oxidase reagent, while tunicamycin was used as a positive control. Results found that the amount of glucose left in the medium is high in the cells treated with tunicamycin and low in the cells treated with G-Rg5/G-Rk1 complex and this was achieved through C/EBP homologus protein-10 (CHOP)-mediated pathway and increase insulin-like growth factor receptor (IGF-2R) (Table 3).

Anti-oxidant effect of G-Rk1

Hydrothermal treatment of primary ginsenosides at 100 C transformed them into either deglycosylated and/or dehydrated ginsenoside. As the hypothermal reaction increase it yields more 20 (S)-Rg3, Rk1, and Rg5. In addition, when they compared the antioxidant activity between the hydrothermally processed samples at 100C and others processed by the steaming, they got results that showed that sun ginseng samples were higher in antioxidant activities. However, it results in fewer ginsenosides than those samples which reacted at 120 C (Ryu *et al.* 2016).

Antimicrobial effect of G-Rk1

Xue *et al.*, in 2017, (Xue *et al.* 2017) assessed the antimicrobial effect of G-Rk1
measured by the minimum inhibitory concentration (MIC) and minimum bacterial concentration (MBC). Compared to Erythrocin (positive control), G-Rk1 exhibited higher MIC and MBC against different bacterial strains compared to Erythrocin (positive control) with (MIC: 31.3 vs 8 µg/ml; MBC: 125.0 vs 16.0 µg/ml) against *Clostridium perfringens*, (MIC: 16.0 vs 8 µg/ml; MBC: 125.0 vs 31.3 µg/ml) against *Fusobacterium nucleatum*, and (MIC: 62.5 vs 16.0 µg/ml; MBC: 125.0 vs 62.5 µg/ml) against *Porphyromonas gingivalis*. Therefore, G-Rk1 can be a promising cure for halitosis.

Discussions

Ginsenosides are active compounds extracted from white or red ginseng (P. Ginseng Meyer). Ginsenosides have shown pharmacological effects on the cardiovascular system (Sun et al. 2016), the immune system (Song et al. 2009), and the central nervous system (Zhou et al. 2014), as well as anti-stress, antioxidant, and anti-cancer activities. Moreover, ginsenosides have shown good results in the treatment of diabetes disease by improving glucose and insulin control in type 2 diabetes in a clinical trial (Vuksan V et al. 2008). Antitumor inhibitory effects of ginsenosides have been demonstrated because of their cytotoxicities such as the suppression of tumor angiogenesis and metastasis by G-Rb2 (Sato et al. 1994) and the enhancement of apoptosis by G-Rg3 in various cancer cell lines such as breast cancer (Kim et al. 2013a). Although G-Rk1 has a similar structure to G-Rg3, G-Rk1 could be formed by processing ginseng at high temperature, but its antitumor activities would have been limited. Its pharmacological activity has been assessed on antitumor activity in human hepatocellular carcinoma cells (Kim et al. 2008). Apart from these activities, G-Rk1 has been demonstrated to ameliorate impaired memory function and prevent platelets aggregation (Lee et al. 2009). Furthermore, G-Rg3, G-Rk1, and G-Rg5 exhibited a potential effect in the management of human arthritis (Kim et al. 2010).
In this systematic review, we found that various pharmacological and therapeutic effects of G-Rk1 have been reported in the 28 included studies such as anti-cancer effects (Kim et al. 2008), antiplatelet aggregation activities (Ju et al. 2012; Lee et al. 2009), cognitive function enhancement (Bao et al. 2005), anti-inflammatory effects (Kim et al. 2010; Lee 2014), lipid accumulation reduction (Kim et al. 2009), antioxidant effects (Ryu et al. 2016), anti-insulin resistance (Ponnuraj et al. 2014), and protection against human arthritis and nephrotoxicity (Kim et al. 2010; Park et al. 2015).

Anti-cancer activity is one of the most common bioactivities of G-Rk1. By assessing such studies in “cell viability”/“cell proliferation inhibition” and “apoptotic activity”, these studies exhibited the anti-cancer effects of G-Rk1 in *in vitro* studies as well as the combined effect of G-Rg5/G-Rk1 (ratio equal 1:1). In terms of “cell viability”, the effects of G-Rk1 on cell viability of HepG2 cells, SNU449, SNU182, SK-Hep-1, SK-Mel-2, Hela, HCT-116, MCF-7, PANC-1, A549, and human malignant melanoma was found significantly in a dose-dependent manner (Kim et al. 2012; Kim et al. 2008; Ko et al. 2009; Kwak & Pyo 2016; Quan et al. 2015). The concentrations of G-Rk1 vary from 0 to 100 µM, and the cytotoxic effect was maximum at 75 and 100 µM (Kim et al. 2008). The effects of G-Rk1 were also evaluated in combination with other chemotherapeutics (Bafilomycin A1)(Ko et al. 2009).

It was found that the enhancement of HepG2 cell death was higher when applying G-Rg5/G-Rk1 combination than that of G Rk1 alone. Furthermore, we also found three relevant studies (Kim et al. 2013c; Park et al. 2015; Siddiqi et al. 2014) that evaluated the effects of G-Rg5/G-Rk1 co-treatment on cell viability of gastric cancer cells, mice, and MC3T3-E1 cells. The authors demonstrated that G-Rg5/G-Rk1 has potential effects on inhibiting cell viability and proliferation in a dose-dependent manner. The combination of G-Rg5/G-Rk1 with others chemotherapies (cisplatin (Park et al. 2015), antimycin A (Siddiqi et al. 2014)) has a greater
effect on cell death than using G-Rg5 or G-Rk1 alone. Besides, it was also proved that co-
administration of G-Rg5/G-Rk1 with a ratio 1:1 have various effects such as improving the
cognitive performance in ethanol-induced amnesia in mice (Bao et al. 2005; Jing et al. 2006),
inhibiting the exotoxic and oxidative stress-induced neuronal cell damage (Bao et al. 2005), and
stimulating the mineralization of the extracellular matrix of osteoblasts (Siddiqi et al. 2014).

In this systematic review, we found two studies presenting the antiplatelet aggregation
activities with the results indicating that G-Rk1 (10 µM) can be stronger than ASA (100 µM)
regarding the antiplatelet aggregation (Ju et al. 2012). Lee et al. in 2009, also showed that G-Rk1
inhibited the effects of collagen, AA, and U46619-induced platelet aggregation (Lee et al. 2009).
G-Rk1 was also indicated as one of the effective anti-inflammatory agents through the inhibition
of both COX1 and COX2 activities and NF-κB levels (Ju et al. 2012; Lee 2014).

Although, more than ten of our included studies reported that G-Rk1 has an anti-cancer
effect against different cancer cell lines, all of them were in vitro studies with no in vivo or
clinical studies. Unlikely, it was reported that G-Rg3 has anti-cancer effect in both in vitro and in
vivo (Shan et al. 2014). A recent meta-analysis of randomized clinical trials revealed that G-Rg3
combined with chemotherapy for non-small-cell lung cancer could enhance the overall survival
rate and alleviate the chemotherapy-induced side effects (Xu et al. 2016). The shortage of in vivo
or clinical studies to assess the G-Rk1 anti-cancer effect may raise many questions regarding the
effect of G-Rk1 in patients and will it differ from its in vitro action?. In addition, what alterations
that may occur in the patients. Therefore, there is a need for in vivo experiments to confirm the
G-Rk1 anti-cancer activity and its mechanism.

Regarding the methodological approaches several limitations were encountered. One of
them is that we could not find any clinical study that used G-Rk1 in patients or healthy people.
Out of 317 studies, we included 28 studies using our criteria they were in vitro studies and in
animals. Based on GRADE method, seven studies remained because of indirectness of
evidence (Ahn et al. 2016; Bao et al. 2005; Jing et al. 2006; Kim et al. 2013c; Park et al. 2015;
Ponnuraj et al. 2014; Siddiqi et al. 2014) and inability to explain heterogeneity in results (Bao et
al. 2005). To date, there is a shortage of literature regarding clinical studies and the clinical use
of G-Rk1 to treat some diseases in patients, and it consequently prohibits the clinical analysis.

Conclusions

In general, G-Rk1 has a significant anti-tumor effect on liver cancer, melanoma, lung
cancer, cervical cancer, colon cancer, pancreatic cancer, gastric cancer, and breast
adenocarcinoma against \textit{in vitro} cell lines. Furthermore, \textit{In vivo} experiments are necessary to
confirm these effects. Additionally, G-Rk1 has demonstrated several pharmacological effects
such as antiplatelet aggregation, anti-inflammatory, anti-oxidant, antimicrobial, anti-insulin
resistance, neuroprotective, nephroprotective, and anti-lipid accumulation effects. All these
results support the clinical effects of G-Rk1 and demonstrate the promising possibility to develop
the G-Rk1-based treatments, either alone or in combination with G-Rg5, for the previously
mentioned conditions.

References

Ahn S, Siddiqi MH, Aceituno VC, Simu SY, Zhang J, Perez ZE, Kim YJ, and Yang DC. 2016. Ginsenoside Rg5:Rk1
attenuates TNF-\(\alpha\)/IFN-\(\gamma\)-induced production of thymus- and activation-regulated chemokine
(TARC/CCL17) and LPS-induced NO production via downregulation of NF-\(\kappa\)B/p38 MAPK/STAT1
signaling in human keratinocytes and macrophages. \textit{In Vitro Cell Dev Biol Anim} 52:287-295.
Bao HY, Zhang J, Yeo SJ, Myung CS, Kim HM, Kim JM, Park JH, Cho J, and Kang JS. 2005. Memory Enhancing
and Neuroprotective Effects of Selected Ginsenosides. \textit{Arch Pharm Res} 28:335-342.
Chen LW, Wang YQ, Wei LC, Shi M, and Chan YS. 2007. Chinese herbs and herbal extracts for neuroprotection of
dopaminergic neurons and potential therapeutic treatment of Parkinson’s disease. \textit{CNS Neurol Disord Drug
Targets} 6:273-281.
Choi J, Kim TH, Choi TY, and Lee MS. 2013. Ginseng for health care: a systematic review of randomized controlled
trials in Korean literature. \textit{PLoS One} 8:e59978. 10.1371/journal.pone.0059978
Choi KT. 2008. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax
ginseng C A Meyer. Acta Pharmacol Sin 29:1109-1118. 10.1111/j.1745-7254.2008.00869.x

Erb P, Ji J, Wernli M, Kump E, Glaser A, and Buchner SA. 2005. Role of apoptosis in basal cell and squamous cell carcinoma formation. Immunol Lett 100:68-72.

Ernst E. 2010. Panax ginseng: An Overview of the Clinical Evidence. Journal of Ginseng Research 34:259-263. 10.5142/jgr.2010.34.4.259

Guyatt G, Oxman AD, Akl EA, Kunz R, Vist G, Brozek J, Norris S, Falck-Ytter Y, Glasziou P, DeBeer H, Jaeschke R, Rind D, Meerpohl J, Dahm P, and Schunemann HJ. 2011. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J Clin Epidemiol 64:383-394. 10.1016/j.jclinepi.2010.04.026

Hu JN, Xu XY, Li W, Wang YM, Liu Y, Wang Z, and Wang YP. 2017. Ginsenoside Rk1 ameliorates paracetamol-induced hepatotoxicity in mice through inhibition of inflammation, oxidative stress, nitrative stress and apoptosis. J Ginseng Res. https://doi.org/10.1016/j.jgr.2017.07.003

Jing Z, Shi-rong W, Quan-cheng C, Long PH, and Kang JS. 2006. Effects of Ginsenosides Rg3(R), Rg3(S)and Rg5/Rk1 on Memory Improvement of Ethanol Treated Mice. Journal of Jilin Agricultural University 28.

Ju HK, Lee JG, Park MK, Park SJ, Lee CH, Park JH, and Kwon SW. 2012. Metabolomic investigation of the anti-platelet aggregation activity of ginsenoside Rk(1) reveals attenuated 12-HETE production. J Proteome Res 11:4939-4946. 10.1021/pr300454f

Kang KS, Kim HY, Baek SH, Yoo HH, Park JH, and Yokozawa T. 2007. Study on the Hydroxyl Radical Scavenging Activity Changes of Ginseng and Ginsenoside-Rb2 by Heat Processing. Biol Pharm Bull 30:724-728.

Kang KS, Kim HY, Yamabe N, and Yokozawa T. 2006. Stereospecificity in hydroxyl radical scavenging activities of four ginsenosides produced by heat processing. Bioorg Med Chem Lett 16:5028-5031. 10.1016/j.bmcl.2006.07.071

Keum YS, Park KK, Lee JM, Chun KS, Park JH, Lee SK, Kown H, and Surh YJ. 2000. Antioxidant and anti-tumor promoting activities of the methanol extract of heat-processed ginseng. Cancer Letters 150:41-48.

Kim BM, Kim DH, Park JH, Na HK, and Surh YJ. 2013a. Ginsenoside Rg3 Induces Apoptosis of Human Breast Cancer (MDA-MB-231) Cells. J Cancer Prev 18:177-185.

Kim HJ, Kim P, and Shin CY. 2013b. A comprehensive review of the therapeutic and pharmacological effects of ginseng and ginsenosides in central nervous system. J Ginseng Res 37:8-29. 10.5142/jgr.2013.37.8

Kim JS, Joo EJ, Chun J, Ha YW, Lee JH, Han Y, and Kim YS. 2012. Induction of apoptosis by ginsenoside Rk1 in SK-MEL-2-human melanoma. Arch Pharm Res 35:717-722. 10.1007/s12272-012-0416-0

Kim KR, Chung TY, Shin H, Son SH, Park KK, Choi JH, and Chung WY. 2010. Red Ginseng Saponin Extract Attenuates Murine Collagen-Induced Arthritis by Reducing Pro-inflammatory Responses and Matrix Metalloproteinase-3 Expression. Biol Pharm Bull Biological & Pharmaceutical Bulletin 33:604-610.

Kim SN, Lee JH, Shin H, Son SH, and Kim YS. 2009. Effects of in vitro-digested ginsenosides on lipid accumulation in 3T3-L1 adipocytes. Planta Med 75:596-601. 10.1055/s-0029-1185358

Kim WY, Kim JM, Han SB, Lee SK, Kim ND, Park MK, Kim CK, and Park JH. 2000. Steaming of ginseng at high
temperature enhances biological activity. J Nat Prod 63:1702-1704.

Kim YJ, Kwon HC, Ko H, Park JH, Kim HY, Yoo JH, and Yang HO. 2008. Anti-tumor Activity of the Ginsenoside Rk1 in Human Hepatocellular Carcinoma Cells through Inhibition of Telomerase Activity and Induction of Apoptosis. Biol Pharm Bull Biological & Pharmaceutical Bulletin 31:826-830.

Kim YJ, Yamabe N, Choi P, Lee JW, Ham J, and Kang KS. 2013c. Efficient thermal deglycosylation of ginsenoside Rd and its contribution to the improved anticancer activity of ginseng. J Agric Food Chem 61:9185-9191. 10.1021/jf402774d

Ko H, Kim Y, Park J, Park JY, and Yang HO. 2009. Autophagy Inhibition Enhances Apoptosis Induced by Ginsenoside Rd in Hepatocellular Carcinoma Cells. Bioscience, Biotechnology, and Biochemistry 73:2183-2189. 10.1271/bbb.90250

Kwak JH, and Pyo JS. 2016. Characterization of Apoptosis Induced by Ginsenosides in Human Lung Cancer Cells. Analytical Letters 49:843-854.

Kwon SW, Han SB, Park IH, Kim JM, Park MK, and Park JH. 2001. Liquid chromatographic determination of less polar ginsenosides in processed ginseng. Journal of Chromatography A 921:335-339.

Lee JG, Lee YY, Kim SY, Pyo JS, Yun-choi HS, and Park JH. 2009. Platelet antiaggregating activity of ginsenosides isolated from processed ginseng. Pharmazie 64:602-604. 10.1691/ph.2009.9577

Lee S, Maharjan S, Kim K, Kim NJ, Choi HJ, Kwon YG, and Suh YG. 2010. Cholesterol-derived novel anti-apoptotic agents on the structural basis of ginsenoside Rk1. Bioorg Med Chem Lett 20:7102-7105. 10.1016/j.bmcl.2010.09.071

Lee SM. 2014. Anti-inflammatory effects of ginsenosides Rg5 , Rz1 , and Rk1 : inhibition of TNF-alpha-induced NF-kappaB, COX-2, and iNOS transcriptional expression. Phytother Res 28:1893-1896. 10.1002/ptr.5203

Lim SC, Maeng YS, Kwon JY, Kang MH, Hyang JH, Kim YH, Kwon YK, and Park YW. 2009. The effect of ginsenoside Rk1 in junctional protein of severe preeclamptic placenta. Korean Journal of Obstetrics and Gynecology 52:303-308.

Lim W, Mudge KW, and Vermeylen F. 2005. Effects of population, age, and cultivation methods on ginsenoside content of wild American ginseng (Panax quinquefolium). J Agric Food Chem 53:8498-8505. 10.1021/jf051070y

Liu JW, Tian SJ, Barry JD, and Luu B. 2007. Panaxadiol Glycosides that Induce Neuronal Differentiation in Neurosphere Stem Cells. J Nat Prod 70:1329-1334.

Maeng YS, Maharjan S, Kim JH, Park JH, Suk Yu Y, Kim YM, and Kwon YG. 2013. Rk1, a ginsenoside, is a new blocker of vascular leakage acting through actin structure remodeling. PLoS One 8:e68659. 10.1371/journal.pone.0068659

Moher D, A. L, J. T, and Altman DG. 2009. The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. BMJ 339. doi: 10.1136/bmj.b2535

Nag SA, Qin JJ, Wang W, Wang MH, Wang H, and Zhang R. 2015. Ginsenosides as Anticancer Agents: In vitro and in vivo Activities, Structure-Activity Relationships, and Molecular Mechanisms of Action. Front Pharmacol
Nemmani KV, and Ramarao P. 2003. Ginsenoside Rf potentiates U-50,488H-induced analgesia and inhibits tolerance to its analgesia in mice. *Life Sciences* 72:759-768.

Park IH, Piao LZ, Kown SW, Lee YJ, Cho SY, Park MK, and Park JH. 2002. Cytotoxic Dammarane Glycosides from Processed Ginseng. *Chem Pharm Bull* 50:538-540.

Park JY, Choi P, Kim T, Ko H, Kim HK, Kang KS, and Ham J. 2015. Protective Effects of Processed Ginseng and Its Active Ginsenosides on Cisplatin-Induced Nephrotoxicity: In Vitro and in Vivo Studies. *J Agric Food Chem* 63:5964-5969. 10.1021/acs.jafc.5b00782

Ponnuraj SP, Siraj F, Kang S, Noh HY, Min JW, Kim YJ, and Yang DC. 2014. Amelioration of insulin resistance by Rk1 + Rg5 complex under endoplasmic reticulum stress conditions. *Pharmacognosy Res* 6:292-296.

Quan K, Liu Q, Wan JY, Zhao YJ, Guo RZ, Alolga RN, Li P, and Qi LW. 2015. Rapid preparation of rare ginsenosides by acid transformation and their structure-activity relationships against cancer cells. *Sci Rep* 5:8598.

Ryu J, Lee HW, Yoon J, Seo B, Kwon DE, Shin UM, Choi KJ, and Lee YW. 2016. Effect of hydrothermal processing on ginseng extract. *J Ginseng Rev*. https://doi.org/10.1016/j.jgr.2016.12.002

Sato K, Mochizuki M, Saiki I, Yoo YC, Samukawa K, and Azuma I. 1994. Inhibition of tumor angiogenesis and metastasis by a saponin of Panax ginseng, ginsenoside-Rb2. *Biol Pharm Bull* 17:635-639.

Schlag EM, and McIntosh MS. 2006. Ginsenoside content and variation among and within American ginseng (Panax quinquefolius L.) populations. *Phytochemistry* 67:1510-1519. 10.1016/j.phytochem.2006.05.028

Shan X, Fu Y-S, Aziz F, Wang X-Q, Yan Q, and Liu J-W. 2014. Ginsenoside Rg3 Inhibits Melanoma Cell Proliferation through Down-Regulation of Histone Deacetylase 3 (HDAC3) and Increase of p53 Acetylation. *PLoS One* 9:e115401.

Shin BK, Kwon SW, and Park JH. 2015. Chemical diversity of ginseng saponins from Panax ginseng. *J Ginseng Res* 39:287-298. 10.1016/j.jgr.2014.12.005

Siddiqi MH, Siddiqi MZ, Ahn S, Kang S, Kim YJ, Veerappan K, Yang DU, and Yang DC. 2014. Stimulative Effect of Ginsenosides Rg5:Rk1 on Murine Osteoblastic MC3T3-E1 Cells. *Phytotherapy Research* 28:1447-1455. 10.1002/ptr.5146

Song X, Zang L, and Hu S. 2009. Amplified immune response by ginsenoside-based nanoparticles (ginsomes). *Vaccine* 27:2306-2311. 10.1016/j.vaccine.2009.02.040

Sun Y, Liu Y, and Chen K. 2016. Roles and mechanisms of ginsenoside in cardiovascular diseases: progress and perspectives. *Sci China Life Sci* 59:292-298. 10.1007/s11427-016-5007-8

Tachikawa E, Kudo K, Harada K, Kashimoto T, Miyate Y, Kakizaki A, and Takahashi E. 1999. Effects of ginseng saponins on responses induced by various receptor stimuli. *Eur J Pharmacol* 369:23-32.

Tang W, Zhang Y, Gao J, Ding X, and Gao S. 2008. The Anti-fatigue Effect of 20(R)-Ginsenoside Rg3 in Mice by Intranasally Administration. *Biol Pharm Bull* 31:2024-2027.

Toh D, Pate DN, Chan EC, Teo A, Neo SY, and Koh HL. 2011. Anti-proliferative effects of raw and steamed extracts of Panax notoginseng and its ginsenoside constituents on human liver cancer cells. *Chinese Medicine* 6.
Vuksan V, Sung MK, Sievenpiper JL, Stavro PM, Jenkins AL, Di Buono M, Lee KS, Leiter LA, Nam KY, Arnason JT, Choi M, and A. N. 2008. Korean red ginseng (Panax ginseng) improves glucose and insulin regulation in well-controlled, type 2 diabetes: results of a randomized, double-blind, placebo-controlled study of efficacy and safety. *Nutr Metab Cardiovasc Dis* 18:46-56. 10.1016/j.numecd.2006.04.003

Xu T, Jin Z, Yuan Y, Wei H, Xu X, He S, Chen S, Hou W, Guo Q, and Hua B. 2016. Ginsenoside Rg3 Serves as an Adjuvant Chemotherapeutic Agent and VEGF Inhibitor in the Treatment of Non-Small Cell Lung Cancer: A Meta-Analysis and Systematic Review. *Evid Based Complement Alternat Med.*

http://dx.doi.org/10.1155/2016/7826753

Xue P, Yao Y, Yang XS, Feng J, and Ren GX. 2017. Improved antimicrobial effect of ginseng extract by heat transformation. *J Ginseng Res* 41:180-187.

Yun TK. 2001. Panax ginseng—a non-organ-specific cancer preventive? *The Lancet Oncology* 2:49-55. 10.1016/s1470-2045(00)00196-0

Zhou J, Zhang HA, Lin Y, Liu HM, Cui YM, Xu Y, Zhao N, Ma JM, Fan K, and Jiang CL. 2014. Protective effect of ginsenoside against acute renal failure via reduction of renal oxidative stress and enhanced expression of ChAT in the proximal convoluted tubule and ERK1/2 in the paraventricular nuclei. *Physiol Res* 63:597-604.
Figure legends

Figure 1. Chemical structure of the ginsenosides types - (A) protopanaxadiol (PPD)-type ginsenosides including Rk1 represented in blue color, Rg5 represented in green color, and the rest of PPD-types are in violet, (B) protopanaxatriol (PPT)-type ginsenosides represented in brown color, (C) Ocotillol- type ginsenoside is represented in gray color, and (D) Oleanic acid-type ginsenosides are represented in red color. glc, b-D-glucose; rha, a-L-rhamnose; arap, a-L-arabinose (pyranose); araf, a-L-arabinose (furanose)

Figure 2. Flowchart of our systematic review - summary of how the systematic search was conducted and eligible studies was identified (PRISMA flow diagram). PRISMA = Preferred Reporting Items for Systematic reviews and Meta-Analyses.

Figure 3. Summary of G-Rk1 bioactivities and its mechanism of actions- ALP: alkaline phosphatase; Bax: BCL2-Associated X Protein; Bcl-2: B-cell lymphoma 2; BMP 2: bone morphogenetic protein-2; COX-2: Cyclooxygenase 2; CDK: cyclin-dependent kinase; erNSC: Epidermal growth factor-responsive neurosphere stem cells; GSH: Glutathione; GLUT-4: Glucose Transporter; IL: interleukin; iNOS: Inducible Nitric Oxide Synthase; IGF: insulin-like growth factor receptor; JNK: Jun N-terminal Kinase; MMP3: Matrix Metalloproteinase 3; NF-kB: Nuclear Factor Kappa B; PARP: Poly ADP (Adenosine Diphosphate)-Ribose Polymerase; TXB-2: Thromboxane B2; TNF-α: tumor necrosis factor. *The number in the small circle indicate the number of studies that report this bioactivity.
Figure 1. Chemical structure of the ginsenosides types

No.	Ginsenoside	R_1	R_2	R_3
1	Ginsenoside Ra1	glc^2-glc	O-glc^2-ara(p)^4-$\text{xy}l$	-CH$_3$
2	Ginsenoside Ra2	glc^2-glc	O-glc^2-ara(f)^2-$\text{xy}l$	-CH$_3$
3	Ginsenoside Rb1	glc^2-glc	O-glc^2-glc	-CH$_3$
4	Ginsenoside Rb2	glc^2-glc	O-glc^2-ara(p)	-CH$_3$
5	Ginsenoside Rb3	glc^2-glc	O-glc^2-$\text{xy}l$	-CH$_3$
6	Ginsenoside Rc	glc^2-glc	O-glc^2-ara(f)	-CH$_3$
7	Ginsenoside Rd	glc^2-glc	O-glc	-CH$_3$
8	20(S)-ginsenoside Rg3	glc^2-glc	O	-CH$_3$
8R	20(R)-ginsenoside Rg3	glc^2-glc		-OH
9	Ginsenoside Rh2	glc	-CH$_3$	-OH
10	Ginsenoside Ra3	glc^2-glc-Ae	O-glc^2-ara(p)	-CH$_3$
11	Ginsenoside Rs2	glc^2-glc-Ae	O-glc^2-ara(f)	-CH$_3$
12	Guiniquenoside R1	glc^2-glc-Ae	O-glc^2-glc	-CH$_3$
13	Compound K	H	O-glc	-CH$_3$
14	Chikusetsusaponin III	glc^2-glc-$\text{xy}l$	-OH	-CH$_3$
15	Ginsenoside Rk1	glc^2-glc	H	-CH$_3$
16	Ginsenoside Rg5	glc^2-glc	H	-CH$_3$

No.	Ginsenoside	R_1	R_2	R_3
17	Ginsenoside Re	glc^2-rha	O-glc	-CH$_3$
18	Ginsenoside Rf	glc^2-glc	OH	-CH$_3$
19	Ginsenoside Rg1	glc	O-glc	-CH$_3$
20	20(S)-ginsenoside Rg2	glc^2-rha	OH	-CH$_3$
20R	20(R)-ginsenoside Rg2	glc^2-rha		-CH$_3$
21	Ginsenoside Rh1	glc	OH	-CH$_3$
22	20-glucoginsenoside Rf	glc^2-glc	O-glc	-CH$_3$
23	Notoginsenoside R1	glc^2-$\text{xy}l$	O-glc	-CH$_3$
24	Notoginsenoside R2	glc^2-$\text{xy}l$		-OH
25	Majenoside R2	O-glc^2-$\text{xy}l$	-CH$_3$	
26	Ginsenoside Rn	O-glc^2-$\text{xy}l$	-CH$_3$	
27	Chikusetsusaponin IV	O-glc^2-ara(f)	-CH$_3$	
28	Chikusetsusaponin IVa	O-glc^2-$\text{xy}l$	-CH$_3$	
Figure 2. Flowchart of our systematic review

- Total number = 317
 - (1) Pubmed = 68
 - (4) Google Scholar = 20
 - (7) SIGLE = 0
 - (2) Virtual Health Library = 47
 - (5) Scopus = 78
 - (9) Pobline = 0
 - (3) WHO GHL = 50
 - (6) ISI = 54

- 161 papers were removed for being duplicated by EndNote
- 156 papers were included for title and abstract screening
- 107 papers were removed by screening
- 49 papers were included for full-text screening
- 4 papers by manual search
 - 25 papers were excluded:
 - Not Rk1 data = 17
 - Duplicated = 4
 - Meeting abstract = 4
- 28 papers were included for the final analysis
Figure 3. Summary of G-Rk1 bioactivities and its mechanism of actions
Table 1. Study characteristics of included articles.

Author and Year	Country	Study design	Cell lines	Parameter Assessed
Ko et al., 2009	South Korea	*In vitro*	HepG2	Cell viability, cell proliferation, inhibitory activity (IC50)
Lee et al., 2014	South Korea	*In vitro*	HepG2	Cell viability
Toh et al., 2011	Singapore	*In vitro*	SNU449 (CRL-2234), SNU182 (CRL-2235) and HepG2 (HB-8065)	Cell viability, cell proliferation
Kim et al., 2008	South Korea	*In vitro*	HepG2	Cell viability, telomerase activity
Park et al., 2002	South Korea	*In vitro*	SK-Hep-1 cells	Cell viability
Lim et al., 2009	South Korea	*In vitro*	Junctional proteins (zo-1, occludin and plakoglobin)	ND
Kim et al., 2009	South Korea	*In vitro*	3T3-L1 fibroblast cells	Cell viability, lipid accumulation
Kim et al., 2012	South Korea	*In vitro*	SK-MEL-2 human melanoma	Cell viability
Ju et al., 2012	South Korea	*In vitro*	Platelet	Antiplatelet aggregation activity
Author(s)	Country	Study Type	Model/Condition	Outcome
------------------	---------	----------------	---	---
Liu et al., 2007	France	*In vitro*	Embryonic neural stem cells (neurospheres)	Neurogenic activity
Lee et al., 2009	South Korea	*In vitro*	Platelet	Collagen (3-4 μg/L) induced platelet aggregation
Kim et al., 2010	South Korea	*In vivo*	ND	TPA-induced mouse ear edema
Maeng et al., 2013	South Korea	*In vitro and In vivo*	HREC cells	VEGF-induced retinal endothelial permeability, VEGF-induced destabilization of TJ protein ZO-1, ZO-2 and occludin in membrane and cytosol
Kang et al., 2007	Japan	*In vitro*	ND	The OH scavenging inhibition
Kang et al., 2006	Japan	*In vitro*	ND	The OH scavenging activities
Lee et al., 2010	South Korea	*In vitro*	HUVECs	Cell viability
Kim et al., 2013a	South Korea	*In vitro*	Gastric cancer AGS cell	Cell viability, the anticancer activity of ginsenosides after heat processing (IC50)
Study	Country	Study Type	Cell Type/Disease Model	Main Findings
-----------------------	-----------	------------	-------------------------	---
Bao et al., 2005	South Korea	*In vitro and In vivo*	Cortical cell cultures containing neuronal and non-neuronal cells	Cognitive performance, excitotoxicity induced by NMDA and glutamate
Park et al., 2015	South Korea	*In vitro and In vivo*	LLC-PK1 cells	Cell viability
Siddiqi et al., 2014	South Korea	*In vitro*	The murine cell line, MC3T3-E1	Cell viability, mineralization, ALP activity, collagen and glutathione
Jing et al., 2006	China	*In vivo*	ND	Cognitive performance
Ponnuraj et al., 2014	South Korea	*In vitro*	3T3-L1 cells	Cell viability, glucose utilization
Ahn et al., 2016	South Korea	*In vitro*	HaCaT/RAW 264.7	Anti-inflammation activity
Hu et al., 2017	China	*In vivo*	ND	Anti-inflammation activity
Kwak et al., 2016	South Korea	*In vitro*	A549 cell	Cell viability
Quan et al., 2015	China	*In vitro*	A549, HCT-116, HepG2, Hela, MCF-7, and PANC-1 cells	Cell viability
Xue et al., 2017	China	*In vitro*	ND	Antimicrobial activity
Ryu et al., 2017	South Korea	In vitro	ND	Anti-oxidant activity
----------------	-------------	----------	----	-----------------------
A549 cell: human lung carcinoma; AMA: antimycin A; ALP: alkaline phosphatase; HaCaT: human keratinocyte cell line; HCT-116: human colon carcinoma; Hela: human cervical carcinoma; HepG2: human hepatocellular carcinoma cells; HUVEC: human umbilical vein endothelial cell; HRECs: Primary human retina microvascular endothelial cells; LLC-PK1: (pig kidney epithelium, CL-101); MCF-7: human breast adenocarcinoma; NMDA: N-methyl-D-aspartate; ND: not defined; PANC-1: human pancreatic cancer; SNU449, SNU182: Human liver cancer cell lines; RAW 264.7: the murine macrophage cell line; VEGF: vascular endothelial growth factor; TPA: 12-O-Tetradecanoyl-phorbol-13-acetate; TJ: tight junctions.				
Table 2. Summary of anti-cancer activity of G-Rk1.

Author, Year	Cells origin	Methods/ Cell lines	Methods/ Assays	Methods/ Time effect	Positive control	Active compound	Conclusions					
Ko et al., 2009	South Korea	HepG2	CCK-8 assay	24h	Taxol 0.1 µM	G-Rk1 50, 75, 100 µM	Inhibition of cell viability in a dose dependent manner					
Toh et al., 2011	China	SNU449, SNU182, HepG2	WST-1, 48h (12h for HepG2)	ND ND ND	G-Rk1 250 µg/ml	17.5, 21.1, 18.9 at 24h for the cell lines respectively	Reduction of cell viability significantly					
Kim et al., 2008	South Korea	HepG2	CCK-8 assay	48h	Kit-supplied TSR8 and HeLa cell lysate ND	G-Rk1 25, 50, 75, 100 µM	The first identification of the biological activity of G-Rk1 against HepG2 cell growth					
Park et al., 2002	South Korea	SK-Hep-1 cells	MTT assay	ND	ND ND ND	G-Rk1 5, 10, 20, 50, 100 µM/ml	Inhibition of cell viability					
Author(s)	Country	Tumor Type	Cell Line	Assay	Time	Cell Viability (%)	Concentration (µM)	Inhibition				
----------------------	---------	------------	-----------	----------------	-------	-------------------	-------------------	---------------------------------				
Kim et al., 2012	South Korea	SK-MEL-2 human melanoma	Cell viability assay	12h	ND	ND	ND	G-Rk1	5, 10, 25, 50, 75, 100 µM	100, 96, 93.5, 80, 60.5, 18.2	Inhibition of cell viability of SK-Mel-2 human melanoma cells when they were incubated with G-Rk1 for 24 h and 48 h, at concentrations (0, 10, 25, 50, 75, 100 µM) in a dose dependent manner	
					48h	ND	ND	ND	G-Rk1	5, 10, 25, 50, 75, 100 µM	93.3, 90.5, 81, 65.5, 40.5, 8.8	
Lee et al., 2010	ND	HUVECs	MTT assay	24h	ND	ND	ND	ND	G-Rk1	10 µg/ml	86.29	Not related to G-Rk1 activity
	24h				ND	ND	ND	ND	G-Rg5/G-Rk1	0, 12.5, 25, 50, 100 µg/ml	100, 98.81, 93.57, 93.57, 37.55, 2.94	Inhibition of cell viability in a dose dependent manner
Kwak et al., 2016	South Korea	Gastric cancer	AGS cell	CCK-8 assay	24h	ND	ND	ND	G-Rk1	5, 10, 25, 50, 100 µM	87, 83, 83, 73, 18	Inhibition of cell viability in a dose dependent manner
					24h	ND	ND	ND	G-Rk1	5, 10, 25, 50, 100 µM	85, 111, 105, 23, 15	Reduction of cell viability
Quan et al. 2015	China	HepG2 cell	MTT assay	24h	ND	ND	ND	ND	G-Rk1	5, 10, 20, 40, 80 µM	97, 93, 110, 47, 3.6	
		A549 cell				ND	ND	ND	G-Rk1	5, 10, 20, 40, 80 µM	99, 103, 70,	
		HCT-116				ND	ND	ND	G-Rk1	5, 10, 20, 40, 80 µM	97, 93, 110, 47, 3.6	
Cell	Hala cell	6.5, 5.4										
------	-----------	---------										
	MCF-7 cell	113, 116, 119, 36, 11										
	PANC-1 cell	125, 127, 123, 84, 8.6										
		98, 115, 104, 24, 9.9										

Cell proliferation inhibition

Ko *et al.*, 2009	South Korea HepG2 CCK-8 assay	24h	Taxol 0.1 µM	100	G-Rk1 50, 75, 100 µM	8, 30, 37.5	G-Rk1 inhibits cell proliferation in the early stage of G-Rk1-induced apoptosis cell line.	
Toh *et al.*, 2011	China SNU449 WST-1.	48h	ND	ND	ND	G-Rk1 100 µM	50	G-Rk1 inhibit cell proliferation in the SNU449 cell line

Apoptotic activity

| Kim *et al.*, 2008 | South Korea HepG2 CCK-8 assay | 48h | ND | ND | ND | G-Rk1 100 µM | ND | G-Rk1 induced an increase in the fraction of early apoptotic cells from 0.46 to 16.23%. |
Author(s)	Country	Species	Model	Experimental Condition	Concentration	Results	Observations		
Kim et al., 2012	South Korea	SK-MEL-2 human melanoma	FAS/FAS L antagonist analysis	24h	1 mM	ND	G-Rk1 5, 10, 50, 100 µM	96, 93.5, 79.5, 18.7	The apoptotic effect of G-Rk1 might be influenced by other pathways
Hu et al., 2017	China	Mice	Expression	APAP 250 mg/kg	90.7	G-Rk1 + APAP 10, 20 mg/kg	25.5, 39.8	G-Rk1 has apoptotic effect by increasing Bax expression and decreasing Bcl-2	

APAP: acetaminophen; A549 cell: human lung carcinoma; Bax: BCL2-Associated X Protein; Bcl-2: B-cell lymphoma 2; CCK-8: Cell Counting Kit-8; HaCaT: human keratinocyte cell line; HCT-116: human colon carcinoma; Hela: human cervical carcinoma; HepG2: human hepatocellular carcinoma cells; HUVEC: human umbilical vein endothelial cell; LLC-PK1: (pig kidney epithelium, CL-101); MCF-7: human breast adenocarcinoma; MTT: 3-(4,5-dimethyl-thiazol-2-yl) -2,5-diphenyl tetrazolium bromide; MC3T3-E1: (RCB1126, an osteoblast-like cell line derived from C57BL/6 mouse calvarias); PANC-1: human pancreatic cancer; SNU449, SNU182: Human liver cancer cell lines; (a) measured by cell viability (%); (b) measured by cell proliferation inhibition (%).
Table 3. Summary of the effects of G-Rk1 on antiplatelet aggregation, anti-inflammatory, anti-vascular leakage, nephroprotective effect, neuroprotective effect, bone metabolism, anti-insulin resistance effect, and lipid accumulation.

Author, Year	Cells origin	Cell lines	Methods/ Assays	Time/ effect	Positive control Substance	Concentration	Activity	Active compound Substance	Concentration	Activity
Antiplatelet aggregation					ASA	50 µM	ND	G-Rk1	50 µM	ND
Ju et al., 2012	South Korea	Platelet	A, ND		ASA	50 µM	ND	G-Rk1	50 µM	ND
			UPLC/Q-TOF MS							
			system							
Lee et al., 2009	South Korea	Platelet	Turbidim, ND		ASA	66 µM	50	G-Rk1	3 µM	50
Anti-inflammatory activity										
Lee et al., 2014	South Korea	HepG2	NF-κB- luciferase, 1h		Sulfasalazine	0.54 µM	50	G-Rk1	0.75 µM	50

G-Rk1 strongly inhibited platelet aggregation at 50 µM compared with ASA.

G-Rk1 exhibited 22-fold inhibitory effect of that of ASA on AA-induced aggregation.

G-Rk1 exhibited the potentials as anti-
Name	Country	Cell Line	Assay Time	Assay	Test Substance	Concentration	Result	Notes		
Kim *et al.*, 2010	South Korea	Collagen-induced mouse arthritis model	4h	ND	ND	ND	G-Rk1	10, 50 mg/kg	9.09, 7.83	G-Rk1 exhibited anti-inflammatory activity on collagen-induced mouse arthritis model
Ahn *et al.*, 2016	South Korea	HaCaT/RAW 264.7	1h	TNF-α	10 ng/mL	157	G-Rg5/G-Rk1	1, 25, 50	118, 104, 95.4	The results suggesting G-Rg5/G-Rk1 as a promising natural therapy in the control of atopic dermatitis
Hu *et al.*	China	Expressio 1h	APAP 250 mg/kg	156	G-Rk1	10, 20 mg/kg	87, 96.7	G-Rk1 has a protective effect against APAP		
Study	Protocol	Control	Treatment	TNF-α	IL-1β	Induced Liver Injury				
---	----------	---------	-----------	-------	-------	---------------------				
Maeng et al., 2013			G-Rk1	114.72	1140	Decreasing the expression of TNF-α and IL-1β				

Anti-vascular leakage

Maeng et al., 2013

South Korea

HREC

Sucrose permeability assay

ND = Not determined

G-Rk1 exhibited an inhibitory effect of VEGF-induced vascular permeability in the mouse retina.

Effect of G-Rk1 on lipid accumulation

Kim et al., 2009

South Korea

3T3-L1 fibroblast staining

Oil red O

G-Rk1 showed inhibitory effect on lipid accumulation in 3T3-L1 adipocytes.

Nephroprotective effect

Park et al., 2015

South Korea

LLC-PK1

EZ-Cytox

G-Rg5/G-Rk1 showed

EGCG 0 μg/ml

99.58%

100.0%
Study	Country	Model	Assay	Duration	Compound	Concentration	Viability	Effect
Rk1 al., 2015 Korea	G-Rg5/G-Rk1	EGCG	0, 50, 100, 250 µg/ml		40.76, 46.34, 47.33, 38.65%		a protective effect against cisplatin-induced nephrotoxicity in cultured kidney cells and mice.	
Bone metabolism Siddiqi et al., 2014 South Korea	G-Rg5/G-Rk1	MTT	24h + 48h AMA	60 µg/ml	99.33%		G-Rg5/G-Rk1 enhances cell growth of MC3T3-E1 cells in a dose-dependent manner, also in presence of AMA.	
Neuroprotective effect Bao et al., 2005 Korea	G-Rg5/G-Rk1	Ethanol	3 g/kg		34.5, 44.22e		G-Rg5/G-G-Rk1 significantly reversed the memory dysfunction that...	
was induced by ethanol or scopolamine

Jing et al., 2006	China	Mice	ND	ND	Ethanol	ND	35, 62	G-Rg5/G-Rk1	44, 50/145,184	The results suggest that those compounds have the ability to improve the acquisition of ethanol-treated mice
Anti-insulin resistance effect										
Ponmuraj et al., 2014	South Korea	3T3-L1	MTT	24h	ND	ND	1.36	G-Rg5/G-Rk1	1.4, 1.36, 1.33, 1.31*	G-Rk1 increases the IGF-2R and glucose utilization in adipocytes.
			assay					25, 50, 75, 100 µg/ml		
			Tunicamy	2 µg/ml	0.73	G-Rg5/G-Rk1	1.4,			
			cin							
			(under)							
			Tunicamy							
			cin 2							

PeerJ reviewing PDF | (2017:05:17955:2:0:NEW 8 Oct 2017)
AA: arachidonic acid; AMA: antimycin A; ASA: acetylsalicylic acid; APAP: acetaminophen; A549 cell: human lung carcinoma; Bax: BCL2-Associated X Protein; Bcl-2: B-cell lymphoma 2; CCK-8: Cell Counting Kit-8; EGCG: Epigallocatechin gallate; HaCaT: human keratinocyte cell line; HCT-116: human colon carcinoma; Hela: human cervical carcinoma; HepG2: human hepatocellular carcinoma cells; HRECs: Primary human retina microvascular endothelial cells; IL-1β: interleukin-1β; LLC-PK1: (pig kidney epithelium, CL-101); MCF-7: human breast adenocarcinoma; MDC/CCL22: macrophage-derived chemokine; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide; MC3T3-E1: (RCB1126, an osteoblast-like cell line derived from C57BL/6 mouse calvarias); PANC-1: human pancreatic cancer; SNU449, SNU182: Human liver cancer cell lines; TNF-α: tumor necrosis factor-alpha; TARC/CCL17: thymus and activation-regulated chemokine; (a) 50% inhibition concentration (IC₅₀) values; (b) was indicated as the increase in weight of the right ear punch over that of the left (mg); (c) [³H] sucrose permeability (%); (d) measured by the optical absorbance at 490 nm; (e) Latency by seconds for learning and testing respectively; * Cell viability was measured based on absorbance values at 570 and 630 nm.