New γ-ray Transitions Observed in 19Ne with Implications for the 15O(α,γ)19Ne Reaction Rate

M.R. Hall,1 D.W. Bardayan,1 T. Baugher,2 A. Lepailleur,2 S.D. Pain,3 A. Ratkiewicz,2 S. Ahn,4 J.M. Allen,5 J.T. Anderson,5 A.D. Ayangeakaa,5 J.C. Blackmon,6 S. Burcher,7 M.P. Carpenter,7 S.M. Cha,8 K.Y. Chae,5 K.A. Chippas,3 J.A. Cizewski,2 M. Febbraro,3 O. Hall,1,9 J. Hu,1 C.L. Jiang,5 K.L. Jones,7 E.J. Lee,5 P.D. O’Malley,1 S. Ota,10 B.C. Rasco,6 D. Santigo-Gonzalez,6 D. Seweryniak,5 H. Sims,2,9 K. Smith,7 W.P. Tan,1 P. Thompson,3,7 C. Thornsberry,7 R.L. Varner,3 D. Walter,2 G.L. Wilson,6,11 and S. Zhu5

1Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
2Department of Physics and Astronomy, Rutgers University, New Brunswick, New Jersey 08903, USA
3Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
4National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
5Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
6Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
7Department of Physics, Sungkyunkwan University, Suwon 16419, South Korea
8Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
9Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94551, USA
10Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, Massachusetts 01854, USA

(Dated: April 2, 2019)

The 15O(α,γ)19Ne reaction is responsible for breakout from the hot CNO cycle in Type I x-ray bursts. Understanding the properties of resonances between $E_x = 4$ and 5 MeV in 19Ne is crucial in the calculation of this reaction rate. The spins and parities of these states are well known, with the exception of the 4.14- and 4.20-MeV states, which have adopted spin-parities of $9/2^-$ and $7/2^-$, respectively. Gamma-ray transitions from these states were studied using triton-γ-γ coincidences from the 19F(3He,$t\gamma$)19Ne reaction measured with GODDESS (Gammasphere ORRUBA Dual Detectors for Experimental Structure Studies) at Argonne National Laboratory. The observed transitions from the 4.14- and 4.20-MeV states provide strong evidence that the J^π values are actually $7/2^-$ and $9/2^-$, respectively. These assignments are consistent with the values in the 19F mirror nucleus and in contrast to previously accepted assignments.

I. INTRODUCTION

The 15O(α,γ)19Ne reaction is an important breakout reaction from the hot CNO cycle in explosive astrophysical environments such as Type I x-ray bursts (XRBs). Type I XRBs are thought to occur in close binary systems containing an accreting neutron star [1][2]. The hydrogen-rich material accreted onto the surface of the star provides the fuel for the hot CNO cycle, which can then break out into the rp-process, synthesizing isotopes up to $^{A=100}$ [2]. Knowledge of the 15O(α,γ)19Ne breakout reaction is therefore critical to our understanding of the nucleosynthesis occurring in this environment. It has been shown that this reaction rate has a large effect on the light curves observed from XRBs, and models do not even predict explosions if the rate is near the lower limit of its uncertainty [1][3]. The reaction can not be measured directly in the important astrophysical temperature range due to the currently insufficient intensity of radioactive 15O beams and small reaction cross section. Therefore, the rate must be estimated by measuring the properties of the important resonances in 19Ne.

The resonances in the reaction cross section correspond to the energy levels in 19Ne above the alpha separation threshold at $S_\alpha = 3.529$ MeV. Many of the resonances from energy levels between 4 and 5 MeV have been characterized in previous experiments [5][9]. However, the spins of two 19Ne states at 4.14 and 4.20 MeV remain in question.

Over 45 years ago [10], these two levels were proposed as members of the $K^\pi = 1/2^-$ rotational band, with negative parity, and the mirrors of the 3.998- and 4.032-MeV levels, which have J^π values of $7/2^-$ and $9/2^-$, respectively [11]. A study of the 16O(3He,$t\gamma$)19Ne reaction by Garrett et al. [10] first showed that the 4.14- and 4.20-MeV 19Ne states had spin-parities of $7/2^-$ or $9/2^-$ and suggested that their assignments were reversed from their order in the 19F mirror nucleus. Since that time, evidence supporting both spin-parity assignments for the 4.14- and 4.20-MeV states has been found; the adopted spin assignments remain uncertain.

Gamma rays from the decay of the 19Ne 4.14- and 4.20-MeV states were studied by Davidson et al. [12] using the 15O(3He,$n\gamma$)19Ne reaction, where they reported the observation of three transitions. For the 4.14-MeV state, a single transition to the 1.508-MeV state was observed, whereas for the 4.20-MeV state, transitions to the 0.238- and 1.508-MeV states were reported. Based on the (relatively weak) transition to the 0.238-MeV $5/2^-$ state, the 4.20-MeV state was assigned $J^\pi = 7/2^-$, consistent with the J^π assignment of the 3.998-MeV state and transi-

mhall12@alumni.nd.edu
tion to the 0.197-MeV state in the 19F mirror nucleus (see Fig. 1). The analysis of triton angular distributions from the 19F(3He,t)19Ne reaction study by Parikh et al. was also consistent with multi-step FRESCO calculations for a $9/2^-$ assignment for the 4.14-MeV state and a $7/2^-$ assignment for the 4.20-MeV state.

FIG. 1. (Color online) Partial level schemes of 19F and 19Ne highlighting two states near 4 MeV and showing mirror connections between levels (dashed lines); the mirror connections updated in this work are shown in blue. The 19F transitions, branching ratios (%), and energies (keV) are from Ref. [11]. The 19Ne 4.14- and 4.20-MeV state γ-ray transitions, branching ratios, and energies were determined in this work. The two red transitions were first observed in this measurement.

However, some evidence suggests that the spin assignments for the 4.14- and 4.20-MeV states could be reversed and, therefore, in the same order that they occur in 19F. The lifetimes and α-decay branching ratios of the states in 19Ne that are important in the 15O(α,γ)19Ne reaction were measured at the University of Notre Dame using the 17O(3He,α)19Ne and 19F(3He,t)19Ne reactions, respectively [7, 10, 12]. For the 4.14- and 4.20-MeV states, the lifetimes were measured to be 18$^{+2}_{-3}$ fs and 43$^{+12}_{-9}$ fs, respectively [7, 13]. A comparison with the measured lifetimes of the 3.998- ($\tau = 19\pm7$ fs) and 4.032-MeV ($\tau = 67\pm15$ fs) 19F states suggested that the spin-parities of the 4.14- and 4.20-MeV states in 19Ne should be $7/2^-$ and $9/2^-$, respectively, analogous to the 19F mirror nucleus. It was also noted by Ref. [7] that the resonance corresponding to the 4.14-MeV state may dominate the 15O(α,γ)19Ne reaction rate in a narrow temperature range around 0.8 GK if the state has a sufficient α-decay branching ratio.

In addition, in a study of the 15O(α,γ)19Ne reaction rate by Davids et al. [8], the reduced transition probabilities of the 4.14- and 4.20-MeV levels were calculated and compared with those found for the 3.998-MeV state in 19F. A transition to the 1.508-MeV ($J^\pi = 5/2^-$) state, to which both 19Ne levels primarily decay, will be either an M1 or E2 transition depending on the spin-parity. For the 19F states at 3.998- and 4.032-MeV, the $B(M1)$ and $B(E2)$ values are 0.0017$^{+0.0005}_{-0.0009}$ MeV fm2 and 90$^{+20}_{-10}$ MeV fm4, respectively. If the spin-parity of the 4.14-MeV state is assumed to be $7/2^-$, this yields $B(M1) = 0.0024^{+0.0010}_{-0.0009}$ MeV fm2, which is in good agreement with the 19F value. Similarly, if the 4.20-MeV state is assumed to be $9/2^-$ yields $B(E2) = 150^{+60}_{-50}$ MeV fm4, which is also in good agreement with 19F. The authors note that the reduced transition probabilities calculated with opposite spin assignments did not agree, but the measured γ-ray branching ratios still supported the tentative spin assignments adopted in Ref. [11].

II. EXPERIMENTAL SETUP AND ANALYSIS

To resolve these discrepancies of the J^π assignments of the 4.14- and 4.20-MeV levels in 19Ne, the 19F(3He,$t\gamma$)19Ne reaction was measured at Argonne National Laboratory using the coupling of the Compton-suppressed high-purity germanium (HPGe) detector array Gammasphere [15] with the silicon detector array ORRUBA (Oak Ridge Rutgers University Barrel Array) [16], called Gammasphere ORRUBA Dual Detectors for Experimental Structure Studies (GODDESS) [17, 19]. A 30-MeV 3He beam was delivered by the ATLAS accelerator onto a 938-μg/cm2 CaF$_2$ target at the GODDESS target position. A rendering of the GODDESS setup can be seen in Fig. 2, and a more in-depth description can be found in Ref. [20].

FIG. 2. (Color online) Rendering of the GODDESS setup showing the beam direction, target location, and ORRUBA in position inside Gammasphere [17].

The charged particles produced in the reaction were...
detected in ΔE-E telescopes in the downstream half of ORRUBA. In the barrel, the six telescopes consisted of a 65-μm-thick BB10 detector in front of a 1000-μm-thick Super X3 detector. Downstream of the ORRUBA barrel, an endcap of two QQQ5 telescopes, consisting of highly-segmented detectors with thicknesses of 100 and 1000 μm, was mounted. A 0.5-mm-thick aluminum plate was mounted in front of the QQQ5 detectors to stop the elastically-scattered 3He beam. On average, the plate reduced the triton energies in the endcap detectors by approximately 1/3, allowing the tritons from the population of the 19Ne ground state to stop in the QQQ5 telescopes. In total, ORRUBA covered laboratory angles ranging from approximately 18° to 162° (though, only laboratory angles less than 90° were considered during the analysis). The triton spectrum populating excitations in 19Ne can be seen in Fig. 3. This spectrum looks different than that of Ref. [14] due to the different bombarding energy, different angular coverage of the detectors, and the existence of the previously mentioned aluminum plate in front of the detectors.

Gamma rays from the decay of 19Ne were measured in Gammasphere, in coincidence with the tritons from the reaction between 19Ne excitation energies of 3.8 and 4.4 MeV, which were gated on to produce the results shown.

FIG. 3. Triton spectrum populating excitations in 19Ne at $\theta_{lab} = 20^\circ$. The shaded region corresponds to 19Ne excitation energies between 3.8 and 4.4 MeV, which were gated on to produce the results shown.

Since the lifetimes of the 4.14- and 4.20-MeV levels are very short, the decay of these states occurred when the 19Ne nuclei were in flight. Therefore, the γ rays from the de-excitation of these states were found to be Doppler broadened and a Doppler correction was applied to the Gammasphere spectra for the transitions depopulating the 4.14- and 4.20-MeV states. The angle and energy of the 19Ne nuclei were calculated for each event using the angle and energy of the triton detected in ORRUBA, and the values of β used for the correction ranged between 0.005 and 0.025. The correction was applied assuming the 19Ne nuclei did not lose any energy in the target before decaying, since this assumption produced γ-ray peaks with the best energy resolution and signal-to-noise ratio.

To further improve the signal-to-noise ratio, the differences between the recorded Gammasphere and ORRUBA time stamps for each event were used to reduce the random γ-ray background. True coincidences appear as a sharp peak in this time difference spectrum. Off-peak timing was used to estimate the random-coincident background present in the spectra. The random background generated using the timing was subtracted from the spectra to produce the results presented in the following section.

III. RESULTS

In total, four transitions from the 19Ne states at 4.14 and 4.20 MeV were identified in the data via triton-γ-γ coincidences. Using the transition energies, the levels were determined to have energies of 4141.8±0.7 keV and 4199.8±1.1 keV, which are in good agreement with previous measurements [11]. A comparison between the 19F and 19Ne partial level schemes and observed transitions is displayed in Fig. 1.

Figure 1 summarizes the justification for the placement of the transitions depopulating the 4141.8- and 4199.8-keV states. For the 4141.8-keV state, three transitions were observed in the triton-gated γ-ray spectra. Figure 3a shows the 2527.2(10)-keV γ ray from the de-excitation of the 4141.8-keV state, which was produced by gating on the γ rays from the de-excitation of the 1616-keV state. Figure 3b is gated on the two transitions that depopulate the 5/2$^-$ 1507-keV state; the two transitions observed depopulate the 4141.8- and 4199.8-keV levels. The γ-ray spectrum shown in Figure 3c is gated on the 238-keV 5/2$^+$ to ground state transition, confirming the 3897.5-keV transition depopulating the 4141.8-keV state. The branching ratios for the transitions from the 4141.8-keV state were determined to be 14(4)%, 68(4)%, and 18(4)%, respectively.

In contrast to Ref. [12], there is no evidence in the Fig. 3c spectrum of a 3962-keV de-excitation from the 4199.8-keV state to the 238-keV state. Since this spectrum was also gated on tritons corresponding to excitation energies between 3.8 and 4.4 MeV, if this transition did exist it
should have been visible in this spectrum. In Ref. [12], this transition is relatively weak in a spectrum only gated on neutrons, with no excitation energy gate and no γ-γ coincidences. Therefore, it is likely that the previously observed, weak transition was incorrectly placed as depopulating the 4199.8-keV state.

The de-excitations from the 4141.8-keV state to the 1507-keV 5/2− state were first observed in this work. The 3897.5-keV transition from the 4141.8-keV state is observed for the first time. The transitions labeled 4140 and 4364 keV are previously-observed transitions from the 4378- and 4602-keV levels. The binning of the histograms is 20 keV/bin, 8 keV/bin, and 16 keV/bin, respectively.

FIG. 4. Random-subtracted Gammasphere spectra generated by gating on tritons corresponding to 19Ne excitation energies between 3.8 and 4.4 MeV and γ-γ coincidences. (a) Gated on the 1340-, 1377- and 1616-keV transitions depopulating the 1616-keV 3/2− state. The 2527.2-keV transition from the 4141.8-keV state is observed for the first time. (b) Gated on the 1323- and 1269-keV transitions depopulating the 1507-keV 5/2− state. (c) Gated on the 238-keV 5/2− to ground-state transition. The 3897.5-keV transition from the 4141.8-keV state is observed for the first time. The transitions labeled 4140 and 4364 keV are previously-observed transitions from the 4378- and 4602-keV levels. The binning of the histograms is 20 keV/bin, 8 keV/bin, and 16 keV/bin, respectively.

The calculated fractional contributions assume α-decay branching ratios of $B(\alpha) = 1.2 \times 10^{-3}$, as found in Ref. [7]. From Fig. 5, it is clear that the 4.14-MeV state has less importance than considered previously with a spin of 7/2−, while the 4.20-MeV state is slightly more important.

FIG. 5. Fractional contributions to the 15O($\alpha,\gamma)^{19}$Ne reaction rate for the 4.14 and 4.20-MeV states assuming the two sets of spin-parity assignments and branching ratios of $B(\alpha) = 1.2 \times 10^{-3}$ [7].

IV. CONCLUSION

The 19F(3He,γ)19Ne reaction was measured with GODDESS to provide additional information on 19Ne excitations important in nucleosynthesis. The 4.14- and 4.20-MeV states in 19Ne could provide important resonances for the 15O($\alpha,\gamma)^{19}$Ne Ne breakout reaction in Type I x-ray bursts. However, conflicting information regarding the spin-parities of these states made their potential contributions uncertain. The 19F(3He,γ)19Ne reaction was studied using GODDESS to search for γ-ray transitions that could resolve this discrepancy.

Using triton-γ-γ coincidences, the two levels were confirmed at energies of 4141.8 and 4199.8 keV. Two new transitions were observed from the 4141.8-keV state to the 238- and 1616-keV states. In addition, two previously observed transitions were also found from the 4141.8- and 4199.8-keV states to the 1508-keV state. The decay scheme from these states matches well with the decay scheme previously observed for the two proposed mirror states in 19F. The present triton-gated γ-ray measurements and the results from Refs. [7] [8] suggest that the previously accepted spin-parities for these states should be reversed. Therefore, we assign spin-parities of 7/2− and 9/2− for the 4.14-MeV state compared to 18(4)%, 68(4)% for the 4.14-MeV state and 14(4)% for the 4141.8-keV 19Ne state.

FIG. 5. Fractional contributions to the 15O($\alpha,\gamma)^{19}$Ne reaction rate for the 4.14 and 4.20-MeV states assuming the two sets of spin-parity assignments and branching ratios of $B(\alpha) = 1.2 \times 10^{-3}$ [7].
and $9/2^-$ to the 4141.8- and 4199.8-keV states, respectively. It was noted in Ref. [7] that the 4141.8-keV state could have the largest contribution to the 15O(α,γ)19Ne reaction rate if it has a sufficient α-decay branching ratio. Further studies targeting this quantity are necessary to help constrain the rate further.

V. ACKNOWLEDGEMENTS

This research was supported in part by the National Science Foundation Grant Numbers PHY-1419765 (Notre Dame) and PHY-1404218 (Rutgers), the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Cooperative Agreement DE-NA0002132, and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (numbers NRF-2016R1A5A1013277 and NRF-2013M7A1A1075764). The authors also acknowledge support from the DOE Office of Science, Office of Nuclear Physics, under contract numbers DE-AC05-00OR22725, DE-FG02-96ER40963, DE-FG02-96ER40978, and DE-AC02-06CH11357. This research used resources of Argonne National Laboratorys ATLAS facility, which is a DOE Office of Science User Facility.

[1] S. E. Woosley and R. E. Taam, Nature (London) 263, 101 (1976).
[2] P. C. Joss, Nature (London) 270, 310 (1977).
[3] H. Schatz, A. Aprahamian, V. Barnard, L. Bildsten, A. Cumming, M. Ouellette, T. Rauscher, F.-K. Thielemann, and M. Wiescher, Phys. Rev. Lett. 86, 3471 (2001).
[4] J. L. Fisker, J. Görres, and M. Wiescher, Astrophys. J. 650, 332 (2006).
[5] R. H. Cyburt, A. M. Amthor, A. Heger, E. Johnson, L. Keek, Z. Meisel, H. Schatz, and K. Smith, Astrophys. J. 830, 55 (2016).
[6] S. Mythili, B. Davids, T. K. Alexander, G. C. Ball, M. Chicoine, R. S. Chakrawarthy, R. Churchman, J. S. Forster, S. Gujrathi, G. Hackman, et al., Phys. Rev. C 77, 035803 (2008).
[7] W. P. Tan, J. Görres, M. Beard, M. Couder, A. Couture, S. Falahat, J. L. Fisker, L. Lamm, P. J. LeBlanc, H. Y. Lee, S. O’Brien, A. Palumbo, E. Stech, E. Strandberg, and M. Wiescher, Phys. Rev. C 79, 055805 (2009).
[8] B. Davids, R. H. Cyburt, J. Josè, and S. Mythili, Astrophys. J. 735, 40 (2011).
[9] A. Parikh, A. M. Laird, N. de Séréville, K. Wimmer, T. Faestermann, R. Hertenberger, D. Sellier, H.-F. Wirth, P. Adsley, B. R. Fulton, et al., Phys. Rev. C 92, 055806 (2015).
[10] J. D. Garrett, H. G. Bingham, H. T. Fortune, and R. Middleton, Phys. Rev. C 5, 682 (1972).
[11] D. R. Tilley, H. R. Weller, C. M. Cheves, and R. M. Chasteler, Nucl. Phys. A 595, 1 (1995).
[12] J. M. Davidson and M. L. Roush, Nucl. Phys. A 213, 332 (1973).
[13] W. P. Tan, J. Görres, J. Daly, M. Couder, A. Couture, H. Y. Lee, E. Stech, S. E. C. Ugalde, and M. Wiescher, Phys. Rev. C 72, 041302(R) (2005).
[14] W. P. Tan, J. L. Fisker, J. Görres, M. Couder, and M. Wiescher, Phys. Rev. Lett. 98, 242503 (2007).
[15] I.-Y. Lee, Nucl. Phys. A 520, c641 (1990).
[16] S. D. Pain, J. A. Cizewski, R. Hatarik, K. L. Jones, J. S. Thomas, D. W. Bardayan, J. C. Blackmon, C. D. Nesaraja, M. S. Smith, R. L. Kozub, et al., Nucl. Instrum. Methods B 261, 1122 (2007).
[17] A. Ratkiewicz, S. D. Pain, J. A. Cizewski, D. W. Bardayan, J. C. Blackmon, K. A. Chipps, S. Hardy, K. L. Jones, R. L. Kozub, C. J. Lister, et al., AIP Conf. Proc. 1525, 487 (2013).
[18] S. D. Pain, AIP Adv. 4, 041015 (2014).
[19] S. D. Pain, A. Ratkiewicz, T. Baugher, M. Febraro, A. Lepaire, J. Allen, J. T. Anderson, D. W. Bardayan, J. C. Blackmon, R. Blanchard, et al., Phys. Proc. 90C, 455 (2017).
[20] M. R. Hall, Ph.D. thesis, University of Notre Dame (2019).