Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Generalized lattice graphs for 2D-visualization of biological information

H. González-Díaz, L.G. Pérez-Montoto, A. Duardo-Sanchez, E. Paniagua, S. Vázquez-Prieto, R. Vilas, M.A. Dea-Ayuela, F. Bolas-Fernández, C.R. Munteanu, J. Dorado, J. Costas, F.M. Ubeira

Article history:
Received 30 April 2009
Received in revised form 18 July 2009
Accepted 20 July 2009
Available online 29 July 2009

Keywords:
Graph theory
Complex networks
Proteomics
Mass spectrometry
Leishmaniosis
2D-electrophoresis
Parasite population polymorphism
Single nucleotide polymorphism
Schizophrenia
Microarray
Cancer
Patents and copyright studies

Abstract
Several graph representations have been introduced for different data in theoretical biology. For instance, complex networks based on Graph theory are used to represent the structure and/or dynamics of different large biological systems such as protein–protein interaction networks. In addition, Randic, Liao, Nandy, Basak, and many others developed some special types of graph-based representations. This special type of graph includes geometrical constrains to node positioning in space and adopts final geometrical shapes that resemble lattice-like patterns. Lattice networks have been used to visually depict DNA and protein sequences but they are very flexible. However, despite the proved efficacy of new lattice-like graph/networks to represent diverse systems, most works focus on only one specific type of biological data. This work proposes a generalized type of lattice and illustrates how to use it in order to represent and compare biological data from different sources. We exemplify the following cases: protein sequence; mass spectra (MS) of protein peptide mass fingerprints (PMF); molecular dynamic trajectory (MDTs) from structural studies; mRNA microarray data; single nucleotide polymorphisms (SNPs); 1D or 2D-Electrophoresis study of protein polymorphisms and protein-research patent and/or copyright information. We used data available from public sources for some examples but for other, we used experimental results reported herein for the first time. This work may break new ground for the application of Graph theory in theoretical biology and other areas of biomedical sciences.

1. Introduction

Several graph representations have been introduced for different data in theoretical biology. For instance, complex networks based on Graph theory are used to represent the structure and/or dynamics of different large biological systems such as protein–protein interaction networks. Complex networks are made up of nodes and edges/arcs (node–node connections or links). Drugs, genes, RNAs, proteins, organisms, brain cortex regions, diseases, patients or environmental systems may play the role of nodes. In general, the edges represent similarity/dissimilarity relationships between the nodes. In complex networks, both nodes and edges are placed generally in space without any geometrical constrains; nodes do not need spatial coordinates and edges have not a specific length or shape. Randic et al., 2007; Randic et al., 2008; Randic et al., 2009; Randić, 2006; Randic and Balaban, 2003; Ding, 2005; Liao et al., 2005; Liao et al., 2006; Liao et al., 2009; Huang et al., 2009; Liao, 2005; Liao and Wang, 2004; Liao and Ding, 2005; Liao et al., 2005; Liao et al., 2006; Liao et al., 2009; Novic and Randic, 2008; Randic, 2006; Randic and Balaban, 2003; Randic et al., 2007; Randic et al., 2008; Randic et al., 2009; Randić, 2002; Randić et al., 2005; Zhang et al., 2009).

Using graphical approaches to study biological problems can provide an intuitive picture or useful insights in order to support the analysis of complicated relations within these systems, as demonstrated by many previous studies on a series of important biological topics, such as enzyme-catalyzed reactions (Andraos, 2008; Cornish-Bowden, 1979; Chou, 1980; Chou, 1981; Chou, 1989; Chou and Forsen, 1980; Chou and Liu, 1981; Chou et al., 1979;
2. Methods

2.1. Generalized lattice graphs

Let there be a set of \(n \) elements or signals of a biological system, each identified by a label \(s_j \) and arranged in the form of a sequence of objects or numeric series. For instance, the one-letter code for all bases in a DNA sequence, amino acids in a protein sequence, gene in a chromosome, signals in a mass spectrum, values from the microarray data results, etc. First, we arrange all these elements \(s_j \) as a vector \(s = [s_1, s_2, s_3, \ldots, s_n] \). Next, we assign to each element \(a_i \) one or more up to \(m \) properties or weights \(w_{kj} \) arranged also as vectors: \(\mathbf{w} = [w_{11}, w_{12}, w_{13}, \ldots, w_{1m}, w_{21}, w_{22}, w_{23}, \ldots, w_{2m}, \ldots, w_{nj}, w_{n2}, w_{n1}, w_{n3}, \ldots, w_{nm}, \ldots, w_{nn}] \). In addition, we can group all the elements or signals of the biological system \(s_j \) into one or more classes \(q \) if they obey certain sets of conditions \(C_q \). These are usually simple or even composed logical conditions and we assign one letter symbol to all the elements of the same class. For instance, we can label as A, T, G, or C each nucleotide in a sequence if it belongs to the class of Adenine, Thymine, Guanine, or Cytosine. Another example is that we can label as H or L each signal \(s_j \) in an MS if the respective intensity value \(I_j \) is Higher (H) or Lower than the average of all intensities in the MS. Given all these starting facts, we deal here with the following question. How could we graphically visualize, in a simple way, all the information related to systems (sequences or numeric series), elements or signals, weights or properties, sets of conditions and classes if we have one or, even more complicated, up to \(i \)th systems or sequences altogether? Our method assigns each element/signal of one sequence as a point with the Cartesian coordinates \(r_j = (x, y) \) in a 2D Euclidean space. To this end, we star with the first node (it is not necessarily a data point) at the centre of the system placed at \(r_0 = (0, 0) \). The coordinates of the successive data points are calculated as follows in a similar manner to those for DNA spaces (Randic, 2004) but extended to multiple weight and condition sets for these weights or properties \(w_{kj} \) of the elements or signals \(s_j \).

(a) Increases in +1 the \(y \) axis if \(w_{kj} \) obey the set of conditions \(C_1 \) (upwards-step) or:

(b) Increases in +1 the \(x \) axis if \(w_{kj} \) obey the set of conditions \(C_2 \) but not \(C_1 \) (leftwards-step) or:

(c) Decreases in −1 the \(y \) axis if \(w_{kj} \) obey the set of conditions \(C_3 \) but not \(C_2 \) (rightwards-step) or:

(d) Decreases in −1 the \(x \) axis otherwise (downwards-step).

Once we have placed the first sequence or system using the following rules we can superpose over it the remnant \(q \) sequences. It allows us the display of large databases in a simple 2D picture. We can use colour-scales highlighting systems or sequences with a given property. For instance, use different colours for enzymes of different classes or for MS signals of the blood samples of healthy vs. cancer patients. This type of visual graphs may be interpreted as 2D overlapping or alignment maps. As follows, we give here below some examples to illustrate the high versatility of this approach.

3. Results and discussion

3.1. Classic lattices for protein and peptide sequences

Several authors have used pseudo-folding lattice hydrophobicity-polarity (HP) models to simulate polymer folding by optimizing the lattice structure and resembling the real folding (Berger and Leighton, 1998). However, we can choose notably simpler polymer chain pseudo-folding rules to avoid optimization procedures and speed up notably the construction of the lattice. In this sense, useful graph representations of DNA, RNA and/or protein sequences have been introduced by Gates (1986), Nandy (1996a), Leong and Morgenthaler (1995), Randic et al. (2001) based on 2D coordinate systems. We call these graph representations as polymer sequence pseudo-folding lattice networks because they look like lattice structures and in fact, we force a sequence to fold in a way that does not necessarily occur in nature. In this regard, a novel 2D lattice representation for protein sequence similar to the one proposed by Nandy for DNA sequences was introduced by our group in the study of protein sequences (Nandy, 1996b; Nandy, 2003; Roy et al., 1998). In this 2D graph, each of the four amino acid groups is assigned to each axis direction according to the physicochemical nature of the amino acids (non-polar and non-charged, polar but non-charged, positively charged, or negatively charged) (Aguero-Chapin et al., 2006). These four classes characterize the physicochemical nature of the amino acids as: polar, non-polar, acid, or basic.
Classification as positively or negatively charged prevails over polar/non-polar classification in such a way that the four classes do not overlap each other. In mathematical terms, it means that in this example, we used the vector $s = [s_0, s_1, s_2, \ldots, s_n]$ to list the labels for the n amino acids s_j, which are the elements of the system (protein sequence). Here we also used two vectors of weights to characterize numerically the system (protein sequence). Here we also used two vectors of weights to characterize numerically the system (protein sequence). Here we also used two vectors of weights to characterize numerically the system (protein sequence).

The reader must note that the new representation is very similar to the ones previously reported for DNA but it contains a protein sequence of 20 amino acid types instead a DNA sequence of 4 base types. The key of the method we propose to overcome the above-mentioned 10D-space bottleneck is the previous grouping of the 20 natural amino acids into only four groups. As an illustrative example, we have under study a protein that belongs to the family of dyneins. This protein has the accession number LmjF25.0980 in the public database GenDB related to the Sanger institute (http://www.genedb.org/genedb/) and it is expressed by the parasite Leishmania major. Leishmania spp. is required intracellular protozoa that exist in two forms, a promastigote form (elongated cells with a long flagellum) and an amastigote one (ovoid cells that have a very short flagellum). The flagellum is responsible for the motility of trypanosomatids and for their early interaction with the hosts, either by adhering to the insect digestive tract, or by initiating the contact with mammalian cells. Trypanosomatids depend on this adhesion to parasitize migration, invasion and persistence in host tissues. In this regard, some authors have applied lattice representations to study dyneins (Dea-Ayuela et al., 2008). Due to both the high interest of dyneins for the mechanism involved in protein–protein interaction or binding process, some authors have proposed experimental studies of peptide sets found in these proteins (Lajoix et al., 2004). Fig. 1(A) illustrates the isolated and overlapped lattice graphs only for the first two peptides found in this protein presented in Table 1. In this table we give the sequence of these peptides and other relevant information (see also next section). We used the first peptide (P01) with the sequences "vlmntlrdir" as example, where the vectors are:

\[\mathbf{w} = [w_0, w_1, w_2, \ldots, w_n] \] lists the electrostatic charge of each one of the n amino acids in the sequence of the protein or peptide.

\[\mathbf{d} = [d_0, d_1, d_2, \ldots, d_n] \] lists the dipolar moments of each amino acid. We also used herein the sets of conditions C_1, C_2, and C_3 that consist of two logic order operations. First, we place the node of the initial amino acid s_0 at the coordinates $(0, 0)$ in a Cartesian 2D space. The coordinates of the successive amino acids are calculated as follows in a similar manner to that for DNA spaces:

C_1: Increases in +1 the y axe if $q_j > 0$ (upwards-step) or:
C_2: Increases in +1 the x axe if $q_j = 0$ and $\mu_j \neq 0$ (rightwards-step) or:
C_3: Decreases in –1 the y axe if $q_j < 0$ (downwards-step) or:
C_4: Decreases in –1 the x axe otherwise (leftwards-step).

The 3D structure of the L. major dynein protein sequence represented in the previous example is unknown; which is the case for many other proteins nowadays. In this sense, and taking into consideration the issues discussed in the previous section, the study of the 3D structure of its component peptides is of major interest. Since the advent of MD in bioscience with the study carried out by McCammon et al. on the dynamics of the bovine pancreatic trypsin inhibitor, MD has become the by the foremost a well-established computational technique to investigate the 3D structure and function of peptides and proteins (Karplus and McCammon, 2002; McCammon et al., 1977). Consequently, MD studies of peptides of the template protein used in the previous example are also interesting. In general, the analysis of the MD-Trajectories (MDTs) resulting from the integration of the motion equations in MD remains, however, the greatest challenge and requires a great deal of insight, experience, and effort. In a recent and very important work, Hamacher (2007) has proposed a new, theoretical sound, and versatile analysis procedure that provides scientists with a semi-quantitative tool to compare various scenarios of their respective simulations. In this regard, we extended the lattice representations of proteins to allow easy comparison of MDTs. In Fig. 2 we illustrate an example that consists of the superposition or 2D-alignment of 18 lattices derived from 100-steps MDTs results. Each MDT was obtained after a Monte Carlo study of 18 peptides found on the PMF of a very important parasite protein. In Table 1 we summarize some details on the MD study used here as example. The key of the method we propose is the regrouping into four classes the energy values E_j obtained from different steps (s) of one MD trajectory.
obtained in peptide structure study with the Monte Carlo method. These four classes characterize the deviation of the energy value \(E_j \) from the average energy of the same MDT at different steps (MD-average); or the deviation from average energy values in the same step for other MDTs (step-average).

First, we place the values of energy for a MDT in a Cartesian 2D space starting with \(s_i \) at the coordinates \((0, 0)\). In this example, we used the vector \(s = [s_0, s_1, s_2, ..., s_{100}] \) to list the labels for optimization steps \(s_j \) in the MDT, which are the signals or elements of the system. Herein, we also used three vectors of weights to numerically characterize elements of the system. Herein, we also used three vectors of weights to numerically characterize \(s_i \). The first \(w = [E_0, E_1, E_2, ..., E_99, E_{100}] \) lists the energy values for each \(s_i \) in the MDT numerical sequence of (one peptide). The second vector \(w = [\bar{E}_0, \bar{E}_1, \bar{E}_2, ..., \bar{E}_99, \bar{E}_{100}] \) lists the average of \(E_j \) for each one of the \(i \)th steps of all MDT for all peptides. We also used the sets of \(E_j \) and \(\bar{E}_j \) that consist of two logical order \(\bar{w} \). The third vector \(w = [\bar{E}_0, \bar{E}_1, \bar{E}_2, ..., \bar{E}_99, \bar{E}_{100}] \) lists the average of \(E_j \) for each one of the \(i \)th steps of all MDT for all peptides. We also used the sets of conditions \(C_1 \), \(C_2 \), and \(C_3 \) that consist of two logical order operations. These operations perform the comparison (”>” or ”<”) with respect to the average values MDT-average and step-average:

\(C_1 \): Increases in +1 the y axe; if \(E_j > \bar{E}_j \) and \(E_j > \bar{E}_j \) (upwards-step) or.

\(C_2 \): Increases in +1 the x axe; if \(E_j > \bar{E}_j \) and \(E_j < \bar{E}_j \) (rightwards-step) or.

\(C_3 \): Decreases in –1 the y axe; if \(E_j < \bar{E}_j \) and \(E_j < \bar{E}_j \) (downwards-step) or.

\(C_4 \): Decreases in –1 the x axe; otherwise (leftwards-step).

In Fig. 1(B), we depict the 2D alignment for MD results obtained after the optimization of the structure of 18 peptides and successive Monte Carlo search of different conformations. Remarkably, the MDT lattice obtained for peptide P03 notably deviates from the other peptides while the graph for P15 lies in the middle of the rest of peptides. It may indicate that this type of lattice is useful to differentiate visually peptides with high initial energy after MD geometry optimization (\(E_1 \)) and not optimal MDT from the rest of peptides (see Table 1). The reader may note the differences between sequence and MD lattice graphs; which indicates that both types of graphs may be used as complementary information visualization techniques.

Table 1

Peptide	Sequence	AAs	\(E_0 \)	\(E_1 \)	\(E_{100} \)	ACCR	\(m/z \)
P01	vlmmldrdr	10	635.4	–175.49	–22.38	0.48	1246.67
P02	dqeht/sfx	10	264.1	–15.71	107.65	0.46	1279.71
P03	hqgimvqgmacq	13	1771.8	67.89	211.26	0.47	1336.60
P04	hqoqkivmgvsg	11	10779.3	–34.40	133.33	0.47	1370.73
P05	qvmeyerch	10	456.1	–75.29	75.14	0.47	1382.71
P06	mdsangitldalger	15	714.9	–84.51	65.21	0.48	1564.81
P07	mmpkaitpqpqr	14	153.81	–42.80	137.60	0.47	1593.84
P08	mmytianty	12	1670.4	–116.06	62.84	0.47	1597.85
P09	ltrtmgdqumlrp	14	14499.2	–145.61	26.08	0.47	1605.85
P10	ldfslslifadsvr	15	132586.3	–80.48	98.25	0.47	1667.86
P11	lrvhgmvqgmacq	16	18520.6	18.45	197.03	0.48	1740.96
P12	eavahdaavhagaseakk	19	1343.8	13.43	222.83	0.47	1793.03
P13	qvwnmvqydskgpvr	17	15611.8	–124.14	84.37	0.47	1935.04
P14	qvwnmvqydskgpvr	18	15565.5	–184.71	56.38	0.48	2091.14
P15	yqllsdtyfdvlyssnlqr	19	1532.4	–184.84	73.61	0.47	2325.15
P16	agkspwettatavltvsvk	20	433670	–104.21	167.46	0.47	2342.16
P17	ldfslslifadsvr	21	1.4 × 10^-7	–62.93	193.21	0.47	2393.28
P18	ivwtephsuvnsgigflqsikilnpqgik	31	1.5 × 10^-7	–66.01	298.05	0.47	3442.90

3.3. Lattices for MS of peptide mass fingerprints

The study of peptides found on the PMFs of new proteins may become an interesting source to discover new peptides with potential use as drug, in vaccine design, or as disease biomarkers. In particular, toxicity and inefficacy of actual organic drugs against Leishmaniosis justify research projects to find new drugs or drug molecular targets in Leishmania species including \(L. \) \(infrumentu \) and \(L. \) \(major \), both important pathogens (Chenik et al., 2006 ; Dea-Ayuela et al., 2008 ; Roldos et al., 2008 ; Sarciron et al., 2005). In the two previous examples, we used lattices to study the sequences and MD results of peptides found in a dynein of \(L. \) \(major \). In this example, we propose to construct PMF lattices, in analogy to sequences and MDTs lattices. To this end, we use a real experiment as example. We isolate all the peptides found on the PMF of a protein expressed on the parasite \(L. \) \(infrumentu \) with 2DE and characterize them with MALDI-TOF MS. After a MASCOT search of similar PMF-MS, we found that this new protein is similar to the protein of \(L. \) \(major \) studied in the previous examples. In Fig. 2(A), we illustrate the 2DE map experimentally obtained and highlight the position of the spot for the new protein. In Table 1 we give details on the \(m/z \) values for the peptides found on the PMF of the new protein. We report the experimental study of this protein for the first time but the method used is essentially the same we had used before for other dynein protein. That is why we omit the experimental details in this work and refer to the previous work (Dea-Ayuela et al., 2008).

Next, we report the generation of the 2D lattice graphs for large MS data generated in PMF experiments. The idea of using the graph to study MS is a promising field of research. Bartels proposed for the first time the application of Graph theory to MS for peptide sequencing (Bartels, 1990). The fundamental idea consists in transforming an MS into a graph called the spectrum graph, each peak in the experimental spectrum being represented as a graph node (or several nodes). Directed edges (or arc) connect between two vertices if the mass difference of the two vertices equals the mass of one or several amino acids. “SeqMS” (Fernandez-de-Cossio et al., 1995), “Lutefisk” (Taylor and Johnson, 1997), “Sherenga” (Dancik et al., 1999) and “PepNovo” (Frank and Pevzner, 2005) are the most popular algorithms that make...
use of spectrum graphs based on the basic idea proposed by Bartels.

In our lattice graph, MS signals are placed in a Cartesian 2D space starting with the first data point at the coordinate $r_2 = (0, 0)$. The coordinates of the successive data points are calculated as follows. In this example, we used the vector $s = [s_1, s_2, s_3, y, s_{68}]$ to list the labels for the 68 MS signals s_j of the new protein. We also used four vectors of weights; the first $w_1 = [1/(m/z)_1, 1/(m/z)_2, \ldots, 1/(m/z)_{68}]$ lists the mass/charge ratio values for each s_j. The other three vectors are: $w_2 = [1/(m/z)_1, 2/(m/z)_{62}, 2/(m/z)_{63}; w_3 = [1/(m/z)_1, 3/(m/z)_{62}, 3/(m/z)_{63}; w_4 = [1/(m/z)_1, 4/(m/z)_{62}, 4/(m/z)_{63}. These vectors list, in an increasing order, the $(m/z)_j$ values for s_j also present in the MS of the three most similar template proteins found after the MASCOT search. In order to generalize the procedure, we can refer to the vectors: $w_{k+1} = [1/(m/z)_1, 1/(m/z)_{62}, 1/(m/z)_{63}; w_{k+2} = [1/(m/z)_1, 2/(m/z)_{62}, 2/(m/z)_{63}; w_{k+3} = [1/(m/z)_1, 3/(m/z)_{62}, 3/(m/z)_{63}. These vectors list the $(m/z)_j$ values of the three proteins (kth-triad) placed at positions k,
k+1, and k+2 in the list of template proteins, found after the MASCOT search, ordered from higher to lower similarity to the query protein. Next, we can use a set of conditions C1, C2, and C3 to align many triads and detect the similarity patterns.

C1: Increases in +1 the y axe if $l(m/z)_i < w_i$ and $l(m/z)_j < w_j$ (upwards-step) or:
C2: Increases in +1 the x axe if $l(m/z)_i < w_i$ and $l(m/z)_j < w_j$ (rightwards-step) or:
C3: Decreases in −1 the y axe if $l(m/z)_i < w_i$ and $l(m/z)_j > w_j$ (downwards-step).
C4: Decreases in −1 the x axe if otherwise (leftwards-step).

In Fig. 1(C), we depict the alignment of these types of lattice graphs for the query protein vs. 17 triads found with MASCOT in the template database. It is relevant that the method perfectly discriminates the alignment (black colour) with the best triad (more similar proteins), with respect to triads formed by other less similar or dissimilar proteins (grey colour). Last, we can apply alternatively and somehow complementary operations *C1, *C2, *C3, and *C4 if our aim is the study of the sj in the query protein that does not match up with any template protein.

*C1: Increases in +1 the y axe if $l(m/z)_j > w_j$ (upwards-step) or:
*C2: Increases in +1 the x axe if $l(m/z)_j > w_j$ and w_i neither (rightwards-step) or:
*C3: Decreases in −1 the y axe if $l(m/z)_j > w_j$ and w_i neither (downwards-step).
*C4: Decreases in −1 the x axe if otherwise (leftwards-step).

Note that the first lattice graph based on C1, C2, C3 and C4 plots the MS signals present in both the query protein and at least one of the triad of template proteins selected. Consequently, this graph gives us a visual idea on how similar our query protein is with respect to the known template proteins (like in BLAST). Conversely, the second type of graph based on *C1, *C2, *C3 and *C4 plots precisely those MS signals that do not match up with MS signals found on the triad of template proteins. In consonance, this graph may give an idea on how dissimilar this protein is and then how useful it may be to decide an investigation of unknown peptides.

3.4. Lattices for mass spectra of proteins serum profiles (PSP-MS)

In the previous paragraphs, we have introduced 2D lattice graph representations for DNA/protein sequences, MDI results, and PMF-MS experiments. Now, we report the generation of the 2D lattice graphs for large MS data generated in PSP-MS experiments with blood samples. Blood proteome is continuously changing due to the effect of the drug-induced damage in the affected organ. After the separation of the small peptide fragments from the actual insult, the remaining mixture of peptides retains the specificity of the disease due to the specific biomarker amplification process in a unique tissue microenvironment in the organ where the toxicity occurs (Hu et al., 2006). Therefore, we can use the serum, the saliva, or the urine because they are protein-rich information reservoirs containing blood traces (Hu et al., 2006). In addition, it is well-known the optimal performance in the low mass range demonstrated by the mass spectroscopy (Kantor, 2002; McDonald and Yates, 2002) applied to proteomics by offering the great chance of discovering these early stage composition changes. The main problems in the identification of a single disease-related protein are the following: there are thousands of intact and cleaved proteins in the PSP that require the separation and identification of each protein biomarker and most toxicity biomarkers appear only when significant organ damage has occurred. Thus, the pattern identification in PSP-MS becomes a realistic complementary approach compared with the direct identification of a single marker candidate. Consequently, we can state that PSP-MS may allow detecting disease biomarkers at the first stages. In this regard, the development of new graph representations becomes significant to visually depict interesting similarity/dissimilarity patterns between PSP-MS of different groups of patients. In a recent work, we have introduced novel Randic’s spiral network representation of PSP-MS (Cruz-Monteagudo et al., 2008). Other example is the previous theoretical study of Human Prostate Cancer with new graph representations (Ferino et al., 2008). In previous works, our group has extended for the first time the spiral, star (Cruz-Monteagudo et al., 2008), and lattice (Petricoin et al., 2004) graphs to represent the PSP-MS with a very high number of intensity (l) signals and wide (m/z) bandwidth. As these types of graphs had been studied before, we do not depict a PSP-MS lattice here, by reasons of space. However, we give as follows a mathematical formalization of this type of graph in order to generalize them and show more possibilities to codify information in PSP-MS experiments. For it, each signal in the MS is placed in a Cartesian 2D space starting with the first data point at the coordinate $x_0 = (0, 0)$. The coordinates of the successive data points are calculated by using the following mathematical formalism. Although the binned process reduces efficiently the number of data points, it is still unmanageable for graph generation. Hence, the number of data points in the binned data files was condensed by taking the averaged $(m/z)_i$ and l_i values for consecutive regions containing a fixed number n of $(m/z)_i$ and l_i data points. The value $n°$ may be changed according to the interest of the research; in particular when we keep $n° = 1$ the number of averaged regions s_j is equal to the number of original signals s_j. In this example, we used the vector $s = [s_1, s_2, s_3, s_4, ..., s_{n°}]$ to list the labels for the MS signals s_j of the new protein. We also used two vectors of weights; the first $w = [\sqrt{(m/z)_i}] = [s_1, s_2, ..., (m/z)_n, (m/z)_{n+n°}]$ list the average mass/charge ratio values for each region s_j out of s_j altogether. The other vector lists in a similar way the average intensity values $w = [l_1, l_2, ..., l_{n°}]$. We also used the sets of conditions C1, C2, C3 and C4:

C1: Increases in +1 the y axe if $(m/z)_j > 0.5$ and $l_i > 0.5$ for s_j (upwards-step) or:
C2: Increases in +1 the x axe if $(m/z)_j > 0.5$ and $l_i < 0.5$ for s_j (rightwards-step) or:
C3: Decreases in −1 the y axe if $(m/z)_j < 0.5$ and $l_i > 0.5$ for s_j (downwards-step).
C4: Decreases in −1 the x axe if otherwise (leftwards-step).

3.5. Lattices of protein polymorphisms determined by electrophoresis

Different electrophoresis such as: immunofixation electrophoresis, capillary electrophoresis, 2D-gel electrophoresis or 2DE, are used to characterize protein polymorphism in populations (Alper and Johnson, 1969; Hadi et al., 1998; Kanamori-Kataoka and Seto, 2009; Lopez-Galvez et al., 1995). In fact, the amount of protein variation undetected by electrophoresis may be reasonably small and at the protein level, a typical sexually-reproducing organism may be heterozygous at 20 or more percent of the gene loci. Although the evidence is limited, it seems that at the level of the DNA nucleotide sequence every individual is heterozygous at every locus-if introns as well as exons are taken into account (Ayala, 1983). In the present example, we characterized experimentally for the first time the polymorphism for 17 enzymes in
three populations of *Fasciola hepatica* (*F. hepatica*). The parasite *F. hepatica* is the causal agent of fasciolosis, an important cause of lost productivity in livestock worldwide. Effective control of fasciolosis is difficult, especially in milking cows, which can only be treated during dry periods, a control strategy that has not been evaluated yet. Recently, our group has studied the effect of the type of flukicide treatment on the prevalence and intensity of infection in dairy cattle from Galicia, an area where fasciolosis is endemic and which is also the main milk-producing region in Spain (Mezo et al., 2008). In the present preliminary study, we found that 8 loci out of 17 studied presented polymorphisms expressing up to 3 different isoforms of the enzyme. The polymorphic enzymes were: Aconitase Hydratase or Aconitase (ACO), Adenilate Kynase (AK), Glutamate Oxaloacetate Transaminase (GOT), Hexokinase (HK), Isocitrate Dehydrogenase (IDH), Phosphogluconate Dehydrogenase (PGD), Phosphoglucomutase 1 (PGM1), and Phosphoglucomutase 2 (PGM2). Considering that: (1) heterozygous organisms are common, (2) each protein has one or even two loci, and (3) each locus may present one out of two or more alleles; we can construct large databases with the information obtained by electrophoresis for individuals in different populations. This situation determines the necessity of the use of computational techniques. Actually, the necessity of the use of computational techniques for phenotypic analysis in adults and eggs of *F. hepatica* has been recently proposed by Valero et al. (2005).

In this regard, the present type of data is another interesting candidate to be studied with lattice graphs. Consequently, in this example we need 1 lattice graph for each parasite individual with 8 enzymes. Altogether, each of the 6 enzymes is encoded by 1 gene; which presents 2 loci that may express 1 out of 3 possible isoforms of the enzyme. In addition, one of the enzymes PGM is codified by 2 different genes producing two different proteins, PGM1 and PGM2. We used the vectors $\mathbf{s}^s = [s_0, s_2, s_3, s_4, s_5, s_6, s_7, s_8]$ to list the labels for the 2 possible alleles s_0 and s_2 for two enzyme isoforms A and B codified by a gene. Commonly, we use the magnitude called Retention factor (R_f^j) to characterize each signal in 1D electrophoresis; which measures the chromatographic displacement distance (electrophoresis in this case) of the band from the point of application. In Fig. 2(B), we illustrate the 1D electrophoresis bands for one individual parasite experimentally characterized in this work. Herein, we used an integer-value scale for $R_f^j = 1, 2,$ or 3 for the bands with lower absolute displacement, second higher displacement, etc. Then, we also used two vectors of weights; the first $\mathbf{w} = [w_0, w_2, w_3, w_4, w_5, w_6, w_7, w_8]$ and the second $\mathbf{w}' = [w'_0, w'_2, w'_3, w'_4, w'_5, w'_6, w'_7, w'_8]$ list the labels for the two possible alleles s_0 and s_2 for two enzyme isoforms codified by a gene. In general, when $R_f^j \neq R_f^j$, the organism is heterozygote for this character (enzyme) it means that the two loci of the gene codify different alleles. In this case we assign the lower absolute value of retention factor ($R_f^j > R_f^j$) to the first vector s of the enzyme. Otherwise, $R_f^j = R_f^j$, the two alleles of the gene produce the same enzyme and the organism is homozygote for this character. We can use the following sets of conditions C_1, C_2, C_3, and C_4 to obtain the lattice graph for s or s' separately. In particular, C_4 refers to cases when the R_f could not be accurately determined and the genotypic information is not clear; the condition sets are as follows:

- **C** : Increases in +1 the y axe if $R_f^j = 1$ (upwards-step) or:
 - **C** : Increases in +1 the x axe if $R_f^j = 2$ (rightwards-step) or:
 - **C** : Decreases in −1 the y axe if $R_f^j = 3$ (downwards-step).
 - **C** : Decreases in −1 the x axe otherwise (leftwards-step).

However, both alleles are determinant in the polymorphism. Therefore, it is more interesting to generate graphical plots for one individual containing both alleles at the same time. In this regard, we extended our mathematical formalism as follows (see the previous example on SNPs). Let there be, $\mathbf{s} = \mathbf{s}^s \mathbf{s}^s = [s_0, s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_8, s_9]$ to list the labels of two possible alleles of n genes and $\mathbf{w} = [w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7, w_8, w_9]$ to list the labels and weights of two possible alleles of n genes. In terms of computational cost, both procedures are equivalent but, with respect to facilitating data input, the \mathbf{s} vectors are more user-friendly. In any case, it is important to note that, in general, the lattice graph is different for s and s' schemes; which may offer alternative solutions to the same problem. In Fig. 2(B), we also give examples of lattice graphs for one individual parasite using $\mathbf{s} = \mathbf{s}^s \mathbf{s}^s$ or $\mathbf{s} = \mathbf{s}^s \mathbf{s}^s$ as alternative schemes. On the other hand, if you are interested not in the characterization of the polymorphism of individuals within a population but in specific enzymes in different individuals you have to invert the previous approach using one vector of labels to list individuals and vectors of weights to characterize a haplotype of the specific a enzyme in different individuals.

Fig. 3. Parasite polymorphism lattices for different populations derived with 1D Electrophoresis results.

In this work, we used an integer-value scale for $R_f^j = 1, 2,$ or 3 for the bands with lower absolute displacement, second higher displacement, etc. Then, we also used two vectors of weights; the first $\mathbf{w} = [w_0, w_2, w_3, w_4, w_5, w_6, w_7, w_8]$ and the second $\mathbf{w}' = [w'_0, w'_2, w'_3, w'_4, w'_5, w'_6, w'_7, w'_8]$ list the labels for the two possible alleles s_0 and s_2 for two enzyme isoforms codified by a gene. In general, when $R_f^j \neq R_f^j$, the organism is heterozygote for this character (enzyme) it means that the two loci of the gene codify different alleles. In this case we assign the lower absolute value of retention factor ($R_f^j > R_f^j$) to the first vector s of the enzyme. Otherwise, $R_f^j = R_f^j$, the two alleles of the gene produce the same enzyme and the organism is homozygote for this character. We can use the following sets of conditions C_1, C_2, C_3, and C_4 to obtain the lattice graph for s or s' separately. In particular, C_4 refers to cases when the R_f could not be accurately determined and the genotypic information is not clear; the condition sets are as follows:

- **C** : Increases in +1 the y axe if $R_f^j = 1$ (upwards-step) or:
- **C** : Increases in +1 the x axe if $R_f^j = 2$ (rightwards-step) or:
- **C** : Decreases in −1 the y axe if $R_f^j = 3$ (downwards-step).
- **C** : Decreases in −1 the x axe otherwise (leftwards-step).

However, both alleles are determinant in the polymorphism. Therefore, it is more interesting to generate graphical plots for one individual containing both alleles at the same time. In this regard, we extended our mathematical formalism as follows (see the previous example on SNPs). Let there be, $\mathbf{s} = \mathbf{s}^s \mathbf{s}^s = [s_0, s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_8, s_9]$ to list the labels of two possible alleles of n genes and $\mathbf{w} = [w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7, w_8, w_9]$ to list the labels and weights of two possible alleles of n genes. In terms of computational cost, both procedures are equivalent but, with respect to facilitating data input, the \mathbf{s} vectors are more user-friendly. In any case, it is important to note that, in general, the lattice graph is different for s and s' schemes; which may offer alternative solutions to the same problem. In Fig. 2(B), we also give examples of lattice graphs for one individual parasite using $\mathbf{s} = \mathbf{s}^s \mathbf{s}^s$ or $\mathbf{s} = \mathbf{s}^s \mathbf{s}^s$ as alternative schemes. On the other hand, if you are interested not in the characterization of the polymorphism of individuals within a population but in specific enzymes in different individuals you have to invert the previous approach using one vector of labels to list individuals and vectors of weights to characterize a haplotype of the specific a enzyme in different individuals.
In these cases, we may use one label vector s, two weight vectors $w^1 = [M_j]$ and $w^2 = [p_j]$, and cut-off values δ_1 and δ_2, to define condition sets C_1, C_2, C_3, and C_4 similar to those used for PSP-MS above:

- **C_1:** Increases in $+1$ the y axe if $M_j > \delta_1$ and $p_j > \delta_2$ (upwards-step) or.
- **C_2:** Increases in $+1$ the x axe if $M_j > \delta_1$ and $p_j < \delta_2$ (rightwards-step) or.
- **C_3:** Decreases in -1 the y axe if $M_j < \delta_1$ and $p_j < \delta_2$ (downwards-step).
- **C_4:** Decreases in -1 the x axe otherwise (leftwards-step).

3.6. Lattices of single nucleotide polymorphisms (SNPs)

In the previous paragraphs, we have introduced 2D lattice graph representations for DNA/protein sequences, MDT results, and MS outcomes. Now we report the generation of 2D lattice graphs for large SNP of schizophrenia patients. The HTR2A and DRD3 genes codify protein receptors for the biogenic amine serotonin (5-HT) and dopamine (DA) neurotransmitter; which are the primary targets of the antipsychotic drugs in the schizophrenia treatment (Meltzer et al., 1989). The silent SNP T102C (rs6313) at HTR2A as well as the non-synonymous SNP Ser9Gly (rs6280) at DRD3 have been extensively analyzed in schizophrenia case-control studies (Abdolmaleky et al., 2004; Jonsson et al., 2003). In this example we aim to study a SNPs database based on the 17bp-long and 32bp-long SNPs of the DRD3 and HTR2A gene respectively, from 260 schizophrenic patients and 354 control subjects (Dominguez et al., 2007). These SNPs are codified with 2 (upwards-step) or: δ_1 and 3 (downwards-step).

We may apply these conditions to the vectors s^1 and w^1 in order to obtain a 2D alignment of all SNPs for all patients by using gene DRD3 or HTR2A separately. However, it has been admitted that both genes were involved in schizophrenia so the generation of graphical plots for both sets of SNPs is interesting. In this regard, we extended our mathematical formalism as follows. Let there be, $s = s_1, s_2, \ldots, s_n$, $w = w_1, w_2, \ldots, w_n$. We can refer to s and w as partial or total chromosome vectors if they incorporate all genes in the same chromosome or only some of them. We can refer to s and w as ordered if the order of union of vectors is the same as in the original chromosome. Last, s and w are mixed and/or disordered if they assemble vectors coming from different chromosomes and/or in another order, different from the one specific to natural chromosome order. Last, the vectors s and w generated with all the genes of an organism may be classified as hole-SNPs genome vectors. In this example we can construct the vectors: $s = s_1, s_2, \ldots, s_n$, and $w = w_1, w_2, \ldots, w_n$. We can list the labels and weights for SNPs of a patient and the two genes DRD3 and HTR2A at the same time.

Fig. 4. Examples of lattices for: (A) SNPs of schizophrenia patients, (B) microarray for cancer patients and (C) patents related to protein-research methods.
time. Fig. 4A depicts the 2D-alignment of all these vectors for all patients using the same above-mentioned rules C1, C2, C3 and C4. We can note that both groups overlap notably in the lattices of schizophrenia patients (in grey), by expanding leftwards to areas not covered by healthy patients, but there are no significant results because this region is the consequence of the unknown allele-type component \(1^{\text{h}} = 3\). The area with interesting overlap differences that can be used to perform further research to find SNPs biomarkers for schizophrenia is the upper part of the lattice that is generated by the homozygous allele \(1^{\text{h}} = 0\). The graph allowed us to depict visually \(17 \times 614+32 \times 614 = 10,438+19,648 = 30,086\) SNPs points for 614 healthy vs. schizophrenia patients in a single 2D graph.

3.7. Lattices for mRNA microarrays

In the previous sections, we have introduced 2D lattice graph representations for DNA/protein sequences, MDT results, MS outcomes, and SNPs. In this example, we introduce 2D lattice graphs for the results obtained in mRNA microarray experiments. Microarrays have been used to find gene expression patterns with special relevance as molecular biomarkers for different diseases including cancer. Specifically, human breast cancer (HBCa) is the most common neoplasia in women since approximately 211,000 women are diagnosed with it annually in the United States. In spite of earlier detection and improved treatment, it remains the second leading cause of cancer-related death in the United States and in other developed countries. The genetic background of patients and the tumor’s genetic and epigenetic anomalies create, in combination, molecularly distinct subtypes arising from distinct cell types within the ductal epithelium. This genetic complexity underlies the clinical heterogeneity of HBCas limiting a rational selection of treatment tailored to individual patient/tumor characteristics. In this regard, Modlich et al. (2005) published a very interesting study whose declared goal was to identify gene signatures predictive of response to preoperative systemic chemotherapy (PST) with epirubicin/cyclophosphamide in patients with primary HBCas. The authors obtained pretreatment needle biopsies from 83 patients with breast cancer and profiled mRNA on Affymetrix HG-U133A arrays. Response ranged from pathologically confirmed complete remission (pCR), to partial remission (PR), to stable or progressive disease, “No Change” (NC). A primary analysis was performed in breast tissue samples from 56 patients and 5 normal healthy individuals as a training cohort for predictive marker identification. The high complexity of this dataset makes these results another interesting candidate to be visually depicted with lattice graphs. In addition, the 2D alignment or superposition of all inputs may unravel hidden patterns of similarity/dissimilarity between all patients. In any case, we have not found a previous report using lattice graphs to represent and/or perform 2D alignment of mRNA microarray results in cancer patients or another disease.

In this example, values of mRNA levels for each patient obtained with Affymetrix HG-U133A arrays are directly transformed into one lattice graph using the following mathematical formalism. To this end, each value for one specific mRNA for one patient is placed as point (node) in a Cartesian 2D space starting with the first data point at the coordinate \(r_2 = (0, 0)\). We calculated the coordinates of the successive data points as follows. In this example, we used the vector \(s = [s_0, s_1, s_2, \ldots, s_{500}]\) to list the labels for different search terms \(s_j\) \((s_0 = \text{the word method}+20 \text{ additional terms})\). We also used two weighting vectors: the first \(w = [w_j] = [w_{f0}, w_{f1}, \ldots, w_{f500}]\) lists the frequency of each term \(s_j\) in the 500 patents studied. The other vector: \(w = [w_j] = [w_{d0}, w_{d1}, \ldots, w_{d500}]\) lists the values \(w_j\) if the term \(s_j\) is present in the field of the patent; \(w_j = 0\) otherwise. We also used the sets of conditions \(C_i, C_2, C_3, \text{ and } C_4\):

- **C1**: Increases in +1 the y axe if \(1^{\text{c1}} > 0\) \(\text{and } 1^{\text{c1}} > 0\) \(\text{(upwards-step)}\) or:
 - **C2**: Increases in +1 the x axe if \(1^{\text{c1}} > 0\) \(\text{and } 1^{\text{c1}} < 0\) \(\text{(rightwards-step)}\) or:
 - **C3**: Decreases in –1 the y axe if \(1^{\text{c1}} < 0\) \(\text{and } 1^{\text{c1}} < 0\) \(\text{(downwards-step)}\) or:
 - **C4**: Decreases in –1 the x axe if otherwise \(\text{leftwards-step)}\).

where \(0\) is the average of \(1^{\text{c1}}\) of the same mRNA value for all patients whereas \(0\) is the average of \(1^{\text{c1}}\) of mRNA value of all gen in a given patient. Fig. 4B depicts the 2D-alignment of all these vectors for a sub-set of patients using the same above-mentioned rules \(C_1, C_2, C_3 \text{ and } C_4\). In this graph, both NC and PR patients are displayed in black whereas pCR patients are coloured in grey. The lattice shows that in fact, both populations share common areas but NC and PR patients with no positive answer to drug treatment distribute downwards to regions not covered by lattices of healthy patients. In any case, this is only a technical-note illustrative example on how to carry out the construction of mRNA microarrays lattices and we need to perform further research with larger databases in order to draw more convincing conclusions.

3.8. Lattices for research trends, copyright and patent protection in biological research

In the previous sections, we have introduced 2D lattice graphs for different molecular experiments. However, the applications in proteome research of these lattices may have further implications. For instance, we can use these graphs to analyze the scientific production and copyright or patent protection of this scientific production. It may help proteome research scientists, development managers, and/or politicians to decide which directions on proteome H+D are promising for further investment in order to introduce final protected products in the market. It may help also to detect relevant communities, groups, and/or research networks in their respective areas of interest. The use of Graph theory to analyze scientific production trends is not new (Malin and Carley, 2007; Rosvall and Bergstrom, 2008). Thus, in this example we report for the first time the construction of 2D lattice graphs with this aim.

In this example, we get outputs of patent search including the last 500 inputs containing the word protein in the field title from the European Patent Office (EPO) web (http://ep.espacenet.com/). Now, we report the generation of the 2D lattice graphs for this dataset as a sort of illustrative example, more detailed research is expected to be used in other fields. The starting point has coordinates \(r_2 = (0, 0)\) placed at the centre of a Cartesian 2D space. The coordinates of the successive data points were calculated as follows. First, we assign to each patent a vector \(s = [s_0, s_1, s_2, \ldots, s_{500}]\) that lists the labels for different search terms \(s_j\) \((s_0 = \text{the word method}+20 \text{ additional terms})\). We also used two weighting vectors: the first \(w = [w_j] = [w_{f0}, w_{f1}, \ldots, w_{f500}]\) lists the frequency of each term \(s_j\) in the 500 patents studied. The other vector: \(w = [w_j] = [w_{d0}, w_{d1}, \ldots, w_{d500}]\) lists the values \(w_j\) if the term \(s_j\) is present in the field of the patent; \(w_j = 0\) otherwise. We also used the sets of conditions \(C_1, C_2, C_3, \text{ and } C_4\):

- **C1**: Increases in +1 the y axe if \(1^{\text{c1}} = 1 \text{ and } 1^{\text{c1}} = 1\) \(\text{(upwards-step)}\) or:
 - **C2**: Increases in +1 the x axe if \(1^{\text{c1}} = 0 \text{ and } 1^{\text{c1}} = 1\) \(\text{(rightwards-step)}\) or:
 - **C3**: Decreases in –1 the y axe if \(1^{\text{c1}} = 1 \text{ and } 1^{\text{c1}} = 1\) \(\text{(downwards-step)}\) or:
 - **C4**: Decreases in –1 the x axe if otherwise \(\text{leftwards-step)}\).
In Fig. 4C we depict the alignment of the 500 protein-research related patents studied here using these rules. For instance, in this case, we can note which areas are common to US, WO, or other patents and which are not, in order to profile patenting strategies in US.

4. Conclusions

The construction of 2D-generalized lattice graphs constrained into a Cartesian coordinate system is a useful technique for biological data visualization not necessarily limited to DNA sequences. For instance, we demonstrated how to extend it in order to depict protein sequences, SNPs, parasite enzyme polymorphisms, peptide MD, protein MS, PSp-MS, mRNA microarray outcomes and protein-research patent information. The present results break new ground in applying the Graph theory for knowledge discovery in proteome research as well as other areas of biological sciences.

Acknowledgments

We acknowledge the kind attention and useful comments of the editor and the referees. González-Díaz H., Vilas R. and Munteanu C.R. acknowledge the funding for a research position by Programme Isidro Parga Pondal, Xunta de Galicia. S. Vázquez-Prieto is grateful for the scholarship support from Maria Barbeito Programme, Xunta de Galicia. The authors thank for the partial financial support from project (AGL2006-13936-C01/CO2) Ministry of Education and Science, Spain, which is co-financed with European Union funds (FEDER) and for the grants 2007/127 and 2007/144 from the General Directorate of Scientific and Technologic Promotion of the Galician University System of the Xunta de Galicia.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.jtbi.2009.07.029.

References

Abdolmaleky, H.M., Farasne, S.V., Clatc, S.J., Tsuang, M.T., 2004. Meta-analysis of association between the T102C polymorphism of the 5HT2A receptor gene and schizophrenia. Schizophr. Res. 67, 53–62.
Aguedo-Chapin, G., Gonzalez-Diaz, H., Molina, R., Varano-Santoj, J., Uriarte, E., Gonzalez-Diaz, Y., 2006. Novel 2D maps and coupling numbers for protein sequences, the first QSAR study of polyglycaturonases; isolation and prediction of a novel sequence from Psidium guajava L. FEBS Lett. 580, 723–730.
Alper, C.A., Johnson, A.M., 1969. Immunofixation electrophoresis: a technique for the study of protein polymorphism. Vox Sang. 17, 445–452.
Althaus, I.W., Chou, J.J., Gonzales, A.J., LeMay, R.J., Deibel, M.R., Chou, K.C., Kezdy, F.J., Romero, D.L., Thomas, R.C., Arosti, P.A., Tarpel, W.G., Reuser, F., 1993a. Kinetic studies with the non-nucleoside human immunodeficiency virus type-1 reverse transcriptase inhibitor U-90152E. Biochem. Pharmacol. 47, 2017–2028.
Althaus, I.W., Chou, J.J., Gonzales, A.J., LeMay, R.J., Deibel, M.R., Chou, K.C., Kezdy, F.J., Romero, D.L., Thomas, R.C., Arosti, P.A., Tarpel, W.G., Reuser, F., 1994b. Steady-state kinetic studies with the polysulfonate U-8943, an HIV reverse transcriptase inhibitor. Experientia 50, 23–28.
Andraos, J., 2008. Kinetic plasticity and the determination of product ratios for kinetic schemes leading to multiple products without rate laws: new methods based on directed graphs. Can. J. Chem. 86, 342–357.
Ayala, F.J., 1983. Genetic polymorphism: from electrophoresis to DNA sequences. Experientia 39, 813–823.
Barabasi, A.L., Oltvai, Z.N., 2004. Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5, 101–113.
Bartels, C., 1990. Fast algorithm for peptide sequencing by mass spectroscopy. Biomed. Environ. Mass Spectrom. 19, 363–368.
Berger, B., Leighton, T., 1998. Protein folding in the hydrophobic–hydrophilic (HP) model is NP-complete. J. Comput. Biol. 5, 27–40.
Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.J., 2006. Complex networks: structure and dynamics. Phys. Rep. 424, 175–308.
Cornish-Bowden, A., 1979. Fundamentals of Enzyme Kinetics. Butterworths, London.
Cruz-Monteagudo, M., Munteanu, C.R., Borges, F., Cordeiro, M.N., Uriarte, E., Gonzalez-Diaz, H., 2008a. Quantitative proteome–property relationships (QPQPRs) part 1: finding biomarkers of organic drugs with mean Markov connectivity indices of spiral networks of blood mass spectra. Bioorg. Med. Chem. 16, 9684–9693.
Cruz-Monteagudo, M., Munteanu, C.R., Borges, F., Cordeiro, M.N., Uriarte, E., Chou, K.C., Gonzalez-Diaz, H., 2008b. Stochastic molecular descriptors for polymers, 4. study of complex mixtures with topological indices of mass spectra spiral and star networks: the blood proteome case. Polymer 49, 5575–5587.
Chen, W., Liao, B., Zhu, X., Wang, X., 2009. Multiple sequence alignment algorithm based on a dispersion graph and ant colony algorithm. J. Comput. 30 (13), 2031–2038.
Chenik, M., Chaabouni, N., Achour-Chenik, Y.B., Ouakad, M., Lakhal-Naouar, I., Louzir, H., Delli, 2006. Identification of a new developmentally regulated Leishmania major large RAB GTPase. BBRC 341, 541–548.
Chou, K.C., 1980. A new schematic method in enzyme kinetics. Eur. J. Biochem. 113, 195–198.
Chou, K.C., 1981. Two new schematic rules for rate laws of enzyme-catalyzed reactions. J. Theor. Biol. 89, 581–592.
Chou, K.C., 1989. Graphical rules in steady and non-steady enzyme kinetics. J. Biol. Chem. 264, 12074–12079.
Chou, K.C., 1990. Review: applications of graph theory to enzyme kinetics and protein folding kinetics, steady and non-steady state systems. Biophys. Chem. 35, 1–24.
Chou, K.C., Forsen, S., 1980. Graphical rules for enzyme-catalyzed rate laws. Biochem. 1, 87, 829–835.
Chou, K.C., Liu, W.M., 1981. Graphical rules for non-steady state enzyme kinetics. J. Theor. Biol. 91, 637–654.
Chou, K.C., Zhang, C.T., 1992. Diagrammatization of codon usage in 339 HIV strains and its biological implication. AIDS Res. Hum. Retroviruses 8, 1967–1976.
Chou, K.C., Shen, H.B., 2009. FoldRate: a web-server for predicting protein folding rates from primary sequence. Open Bioinformatics J. 3, 31–50.
Chou, K.C., Kezdy F.J., Reuser, F., 1994. Review: steady-state inhibition kinetics of processive nuclear acid polymerases and nucleases. Anal. Biochem. 221, 217–230.
Chou, K.C., Zhang, C.T., Elrod, D.W., 1996. Do antisense proteins exist? J. Protein Chem. 15, 59–61.
Chou, K.C., Jiang, S.P., Liu, W.M., Fee, C.H., 1979. Graph theory of enzyme kinetics: 1. Steady-state reaction system. Sci. Sin. 22, 341–358.
Dancik, V., Addona, T.A., Clauser, K.R., Vath, J.E., Pezner, P.A., 1999. De novo peptide sequencing via tandem mass spectrometry. J. Comput. Biol. 6, 327–342.
De-Ayuela, M.A., Bals-Fernández, F., 2005. Two-dimensional electrophoresis and mass spectrometry for the identification of species-specific Trichinella antigens. Vet Parasitol. 1, 49–59.
De-Ayuela, M.A., Perez-Castillo, Y., Meneses-Marchal, A., Ubele, F.M., Bolas-Fernandez, F., Chou, K.C., Gonzalez-Diaz, H., 2008, HP-Lattice QSAR for dynein proteins: experimental proteomics (2DElectrophoresis, mass spectrometry) and theoretical study of a Leishmania infantum sequence. Bioorg. Med. Chem. 16, 7770–7776.
Diao, Y., Li, M., Feng, Z., Yin, J., Pan, Y., 2007. The community structure of human cellular signaling network. J. Theor. Biol. 247, 608–615.
Domínguez, E., Loza, M.I., Padin, F., Gesteira, A., Paz, E., Paromo, M., Brenlla, J., Pumar, E., Iglesias, F., Cibeira, A., Castro, M., Caruncho, H., Carracedo, A., Costas, J., 2007. Extensive linkage disequilibrium mapping at HTR2A and DRD3 for schizophrenia susceptibility genes in the Galician population. Schizophr. Res. 90, 123–129.
Estrada, E., 2006. Protein bipartivity and essentiality in the yeast protein–protein interaction network. J. Proteome. Res. 5, 2177–2184.
Ferreira, Gonzalez-Diaz, H., Delogo, G., Podda, G., Uriarte, E., 2008. Using spectral moments of spiral networks based on PSA/mass spectra outcomes to derive quantitative proteome-disease relationships (QPDs) and predicting prostate cancer. Biochem. Biophys. Res. Commun. 372, 320–325.
Fernandez-de-Cossio, J., Gonzalez, J., Besada, V., 1995. A computer program to aid the sequencing of peptides in collision-activated decomposition experiments. Comput. Appl. Biosci. 11, 427–434.

Frank, A., Frenzler, F., 2005. PepNovo: De Novo peptide sequencing via probabilistic network modeling. J. Proteome Res. 77, 963–973.

Gao, L., Ding, Y.S., Dai, H., Shao, S.H., Huang, Z.D., Chou, K.C., 2006. A novel fingerprint map for detecting SARS-CoV. J. Pharm. Biomed. Anal. 41, 246–250.

Gates, M.A., 1986. A simple way to look at DNA. J. Theor. Biol. 119, 319–328.

Gonzalez-Diaz, H., 2008. Quantitative studies on structure-activity and structure-property relationships (QSAR/QSPR). Curr. Top. Med. Chem. 8 (18), 1554.

Gonzalez-Diaz, H., Prado-Prado, F., Ubeira, F.M., 2008a. Predicting antimicrobial drugs and targets with the MARCH-INSIDE approach. Curr. Top. Med. Chem. 8, 1290–1297.

Gonzalez-Diaz, H., Gonzalez-Diaz, Y., Santana, L., Ubeira, F.M., Uriarte, E., 2008b. Proteomics, networks and connectivity indices. Proteomics 8, 750–778.

Gonzalez-Diaz, H., Sanchez-Gonzalez, A., Gonzalez-Diaz, Y., 2008. 3D-QSAR study for the identification of novel lead compounds with a potential anti-tumor ATCUN-like motif. J. Inorg. Biochem. 100, 1290–1297.

Gonzalez-Diaz, H., Vilar, S., Santana, L., Uriarte, E., 2007a. Medicinal chemistry and bioinformatics—current trends in drugs discovery with networks topological indices. Curr. Top. Med. Chem. 7, 1025–1034.

Gonzalez-Diaz, H., Gonzalez-Diaz, Y., Santana, L., Ubeira, F.M., Uriarte, E., 2008b. Proteomics, networks and connectivity indices. 1615–9838/3 (8), pp. 750–778.

Gonzalez-Diaz, H., Bonet, I., Terin, C., de Cleyn, E., Bello, R., Garcia, M., Santana, L., Uriarte, E., 2007b. ANN-QSAR model for selection of anticancer lead from structurally heterogeneous series of compounds. Eur. J. Med. Chem. 42, 580–585.

Hadi, R.A., Mohran, Z.S., Hakam, A.A., Mourad, A., Oyoyo, B.A., 1998. Characterization of campylobacter spp. using restriction fragment length polymorphism and SDS-polyacrylamide gel electrophoresis. J. Egypt Public Health Assoc. 73, 1–10.

Hamacher, K., 2007. Information theoretical measures to analyze trajectories in rational molecular design. J. Comput. Chem. 28, 2576–2580.

Hu, S., Loo, J.A., Wong, D.T., 2006. Human body fluid proteome analysis. Proteomics, networks and connectivity indices. 1615–9838/3 (8), pp. 750–778.

Huang, C., Liao, B., Wang, T.M., 2004. New 2D graphical representation of DNA sequences. J. Comput. Chem. 25, 1364–1368.

Hu, S., Loo, J.A., Wong, D.T., 2006. Human body fluid proteome analysis. J. Biomed. Sci. Eng. 386, 468–471.

Inui, T., Jondoh, T., 2003. Sequence database searches via de novo peptide sequencing by tandem mass spectrometry. Rapid Commun. Mass Spectrom. 11, 267, 585–590.

Jordt, S.E., Szebeni, J., 2000. Proteomics, networks and connectivity indices. Curr. Top Med. Chem. 8, 750–778.

Jordt, S.E., Szebeni, J., 2005. Unified QSAR approach to antimicrobials. Part 3: first multi-tasking QSPR model for in vitro activity prediction, structural back-projection, and complex networks clustering of antimicrobial compounds. Bioorg. Med. Chem. 16, 5871–5880.

Qi, X.Q., Wen, Z., Qi, Z.H., 2007. New 3D graphical representation of DNA sequence based on dual nucleotides. J. Theor. Biol. 249, 681–690.

Randic, M., 2004. Graphical representations of DNA as 2-D map. Chem. Phys. Lett. 386, 468–471.

Randic, M., 2006. Quantitative characterizations of proteome: dependence on the number of proteins considered. J. Proteome Res. 5, 1575–1579.

Randic, M., Balaban, A.T., 2003. On a four-dimensional representation of DNA primary sequences. J. Chem. Inf. Model. Sci. 43, 532–539.

Randic, M., Guo, X., Basak, S.C., 2001. On the characterization of DNA primary sequences by triplet of nucleic acid bases. J. Chem. Inf. Model. Sci. 41, 619–626.

Randic, M., Zapan, J., Vici-Topic, D., 2007. On representation of proteins by star-like graphs. J. Mol. Graph Model. 26, 390–395.

Randic, M., Novic, M., Vracio, M., 2008. On novel representation of proteins based on amino acid adjacency matrix. SAR QSAR Environ. Res. 19, 339–349.

Randic, M., Mehulic, K., Vucetic, D., Pisanski, T., Vici-Topic, D., Plavcic, D., 2009. Graphical representation of proteins as four-color maps and their numerical characterization. J. Mol. Graph Model. 27, 637–641.

Randic, M., 2002. A graph theoretical characterization of proteomics maps. Int. J. Quantum. Chem. 90, 848–858.

Randic, M., Lers, N., Plavcic, D., Basak, S., Balaban, A.T., 2005. Four-color representation of DNA sequences and their numerical characterization. Chem. Phys. Lett. 407, 205–208.

Roldos, V., Nakayama, H., Rolon, M., Montero-Torres, A., Trucco, F., Torres, S., Vega, C., Marrero-Ponce, Y., Heguaburu, V., Valuff, G., Gomez-Barrionuevo, A., Solano, L., Ferreira, M., Pintado, M., Aparicio, A., 2008. Activity of hydroxybibenzyl bryophyte constituent against Leishmania spp. Trypanosoma cruzi: in silico, in vitro and in vivo activity studies. Eur. J. Med. Chem. 43, 1749–1757.

Rosvall, M., Bergstrom, C.T., 2008. Maps of random walk on complex networks reveal community structure. Proc. Natl. Acad. Sci. USA 105, 1118–1123.

Roy, A., Raychaudhuri, C., Nandy, A., 1998. Novel techniques of graphical representation and analysis of DNA sequences—a review. J. Biosci. 23, 55–71.

Saricirea, F., Terreux, R., Prieto, Y., Cortes, M., Cuellar, M.A., Tapia, R.A., Domard, A., Wilshofer, N., Petavy, A.F., 2005. Antileishmanial activity of polymeric derivatives. Parasite 12, 251–258.

Shen, H.B., Song, J.N., Chou, K.C., 2009. Prediction of protein folding rates from primary sequence by fusion of multiple sequence features. J. Mol. Biol. (JBiSE) 2, 136–143 (open accessible at http://www.srpublishing.org/journal/ jbiise/).

Taylor, J.A., Johnson, R.S., 1997. Sequence database searches via de novo peptide sequencing by tandem mass spectrometry. Rapid Commun. Mass Spectrom. 11, 1067–1075.

Valero, M.A., Panova, M., Cosma, S., 2005. Phenotypic analysis of adults and embryos of Fasciola hepatica by computer image analysis system. J. Helminthol. 79, 217–225.

Wang, M., Yao, J.S., Huang, Z.D., Xu, X.J., Li, C., Zhao, H.Y., Zhao, W.Y., Yang, J., Zhu, Y.S., Chou, K.C., 2005. A new nucleotide-composition based fingerprint of SARS-CoV with visualization analysis. Med. Chem. 1, 39–47.

Wolfram, S., 1984. Cellular automata as models of complexity. Nature 311, 419–424.

Wolfram, S., 2002. A New Kind of Science. Wolfram Media Inc, Champaign, IL.

Xiao, X., Chou, K.C., 2006a. A novel coding of amino acids based on hydrophobic index. Protein Pept. Lett. 13, 871–875.

Xiao, X., Shao, S.H., Chou, K.C., 2006a. A probability cellular automaton model for hepatitis B viral infections. Biochem. Biophys. Res. Commun. 342, 605–610.
Xiao, X., Wang, P., Chou, K.C., 2009. GPCR-CA: a cellular automaton image approach for predicting G-protein-coupled receptor functional classes. J. Comput. Chem. 30, 1414–1423.
Xiao, X., Shao, S., Ding, Y., Huang, Z., Chou, K.C., 2006b. Using cellular automata images and pseudo amino acid composition to predict protein subcellular location. Amino Acids 30, 49–54.
Xiao, X., Shao, S., Ding, Y., Huang, Z., Chen, X., Chou, K.C., 2005a. Using cellular automata to generate image representation for biological sequences. Amino Acids 28, 29–35.
Xiao, X., Shao, S., Ding, Y., Huang, Z., Chen, X., Chou, K.C., 2005b. An application of gene comparative image for predicting the effect on replication ratio by HBV virus gene missense mutation. J. Theor. Biol. 235, 555–565.

Zhang, C.T., Chou, K.C., 1993. Graphic analysis of codon usage strategy in 1490 human proteins. J. Protein Chem. 12, 329–335.
Zhang, C.T., Chou, K.C., 1994. Analysis of codon usage in 1562 E. coli protein coding sequences. J. Mol. Biol. 238, 1–8.
Zhang, L., Liao, B., Li, D., Zhu, W., 2009. A novel representation for apoptosis protein subcellular localization prediction using support vector machine. J. Theor. Biol. 259, 361–365.
Zhou, G.P., Deng, M.H., 1984. An extension of Chou’s graphical rules for deriving enzyme kinetic equations to system involving parallel reaction pathways. Biochem. J. 222, 169–176.