Metabolomics and breast cancer: scaling up for robust results

Steven C. Moore

Keywords: Metabolomics, Metabolism, Lipid, Breast cancer, Reproducibility

Background
Breast cancer is the most commonly diagnosed cancer among women, with more than 2 million new cases diagnosed in 2018 [1], and rapidly rising global incidence. Though breast cancer has been extensively studied, established risk factors explain only half of breast cancer incidence [2], and few are modifiable. Identifying further risk factors is urgently needed to inform cancer control strategies to slow the rise in the rate of breast cancer. New 'omics-based approaches to exposure measurement may enable hundreds to thousands of novel exposures to be evaluated simultaneously, often in pathways that would otherwise be unstudied.

Metabolism and risk of breast cancer
In a recent article, His et al. used metabolomics to examine levels of 127 circulating metabolites and their association with breast cancer risk [3]. Metabolomics involves measuring hundreds of metabolites from human metabolic processes, such as food digestion and energy homeostasis. Metabolism is a prime target for research since many aspects can be modified through diet, weight control, or physical activity. Strong evidence implicates obesity and physical inactivity in breast cancer risk [4].

His et al. found that levels of acylcarnitine C2 are positively associated with breast cancer risk, and levels of phosphatidylcholine (PC) ae C36:3 are inversely associated with risk in the overall population. The findings for acylcarnitine C2 are particularly intriguing. Acylcarnitine C2 facilitates the transport of fatty acids into the mitochondria. Higher levels are a marker for lipid oversupply and upregulated fatty acid oxidation [5]. In cancer cell biology, lipid oversupply is thought to enhance cancer cell proliferation by providing the raw materials needed to generate new cells [6]. Though speculative, it is suggested that chronic lipid oversupply increases breast cancer risk, perhaps by supplying energy and nutrients to growing tumors.

The inverse association between PC ae C36:3 and risk is more challenging to interpret. This measure is a sum of multiple phosphatidylcholines, and little is known about individual phosphatidylcholines and their relation to health. Another finding of His et al. was that metabolite associations with risk were greater in number and magnitude among non-hormone users (70% of the cases). As the authors note, this pattern echoes that of biomarker studies outside of the area of metabolomics. Non-hormone users may be a special population of interest for future metabolomics and breast cancer studies.

The findings of the study by His et al. are biologically intriguing and potentially important, but we must now acknowledge a complicating fact: their findings do not replicate those of preceding prospective studies on metabolomics and breast cancer [7–9] – and not likely because of deficient study design. With 1624 breast cancer cases, the study by His et al. is by far the largest on this topic (with 1000 more cases than the next largest study [9]) and the Biocrates assay was highly reliable. Statistical analysis was careful, and the authors conclusions were conservative. All things considered, the study by His et al. may, in fact, be the most methodologically sound study to date on this topic.

Heterogeneity among study results
The lack of replication, then, may reflect broader issues in metabolomics and breast cancer research. One pressing issue is that metabolomics platforms measure different sets of metabolites, which foils attempts to replicate results from study to study. For example, a prior...
The largest prospective study of metabolomics and cancer to date, His et al. make a key advance in the hunt for metabolic breast cancer risk factors. Their findings suggest new etiologic clues and provide a robust foundation upon which future studies can build. Going forward, researchers should consider with care how best to build upon this foundation.

Acknowledgements

Not applicable.

Authors’ contributions

SCM wrote the paper and read and approved the final version of the manuscript.

Funding

Not applicable.

Availability of data and materials

Not applicable.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The author declares that he has no competing interest.

Received: 10 December 2019 Accepted: 18 December 2019

Published online 31 January 2020

References

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

2. Collaborative Group on Hormonal Factors in Breast Cancer. Breast cancer and 96973 women without the disease. Lancet. 2002;360:187–95.

3. His M, Vaillou V, Dossus L, Gucquia A, Achatine D, Scalbert A, et al. Prospective analysis of circulating metabolites and breast cancer in EPIC. BMC Med. 2019;17:178.

4. World Cancer Research Fund, American Institute for Cancer Research. Diet, nutrition, physical activity and breast cancer: a global perspective. Continuous Update Project Expert Report 2018. https://www.wcrf.org/dietandcancer. Accessed 17 Dec 2019.

5. Bene J, Hadskev K, Melegh B. Role of carnitine and its derivatives in the development and management of type 2 diabetes. Nutr Diabetes. 2018;8:8.

6. Carracedo A, Cantley LC, Pandolfi PP. Cancer metabolism: fatty acid oxidation in the limelight. Nat Rev Cancer. 2013;13:227–32.

7. Kühn T, Floegel A, Sookthai D, Johnson T, Rolle-Kampczyk U, Otto W, et al. Lysophosphatidylcholine acyl C18:0 (lysoPC a C18:0) [7]. In His et al., though, the associations did not replicate, highlighting that initial studies perhaps needed to be larger to yield robust results.

8. Lécuyer L, Victor Bala A, Deschasaux M, Bouchemal N, Nawfal Triba M, Vasson MP, et al. NMR metabolomic signatures reveal predictive plasma metabolites associated with long-term risk of developing breast cancer. BMC Med. 2016;14:13.

9. Moore SC, Pladow MC, Sampson JN, Hoover RN, Trabert B, Matthews CE, et al. Metabolomics analysis of body mass index and postmenopausal breast cancer risk. J Natl Cancer Inst. 2018;110:588–97.

10. Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011;17:448–53.