On Solution of Second Order Complex Differential Equation

Dinesh Kumar, Sanjay Kumar and Manisha Saini

ABSTRACT. In this paper, we establish transcendental entire function $A(z)$ and polynomial $B(z)$ such that the differential equation $f'' + A(z)f' + B(z)f = 0$, has all non-trivial solution of infinite order. We use the notion of critical rays of the function $e^{P(z)}$, where $A(z) = d(z)e^{P(z)}$ with some restrictions.

1. Introduction

Consider a second order linear differential equation of the form

$$ f'' + A(z)f' + B(z)f = 0; \quad B(z) \neq 0 \quad (1) $$

where $A(z)$ and $B(z)$ are entire functions. It is well known that all solutions of the equation (1) are entire functions [9], [11]. For an entire function f, we define the order and lower order of f as follows

$$ \rho(f) = \limsup_{r \to \infty} \frac{\log^{+}\log^{+} M(r,f)}{\log r}, \quad \mu(f) = \liminf_{r \to \infty} \frac{\log^{+}\log^{+} M(r,f)}{\log r} $$

where $M(r,f) = \max_{|z|=r} |f(z)|$ is maximum modulus of f. Using Wiman-Valiron theory, it is proved that the equation (1) has all solutions of finite order if and only if $A(z)$ and $B(z)$ are polynomials [11]. Therefore, if either $A(z)$ or $B(z)$ is transcendental entire function then almost all solutions of equation (1) are of infinite order. Therefore, it is natural to find conditions on $A(z)$ and $B(z)$ such that all solutions of the equation (1) are of infinite order. Gundersen [5] proved the following result:

Theorem A. A necessary condition for equation (1) to have a non-trivial solution f of finite order is

$$ \rho(B) \leq \rho(A). \quad (2) $$

2010 Mathematics Subject Classification. 34M10, 30D35.

Key words and phrases. entire function, meromorphic function, order of growth, complex differential equation.

The research work of the last author is supported by research fellowship from University Grants Commission (UGC), New Delhi.
We illustrate it with some examples,

Example 1. \(f(z) = e^z \) satisfies \(f'' + e^zf' - (e^z + 1)f = 0 \), where \(\rho(A) = \rho(B) = 1 \).

Example 2. With \(A(z) = e^z \) and \(B(z) = -1 \) equation (1) has finite order solution \(f(z) = 1 - e^{-z} \), where \(\rho(B) < \rho(A) \).

Thus if \(\rho(A) < \rho(B) \) then all solutions of the equation (1) are of infinite order. However, given necessary condition is not sufficient, for example

Example 3. [7] If \(A(z) = P(z)e^z + Q(z)e^{-z} + R(z) \), where \(P, Q, R \) are polynomials and \(B(z) \) is an entire function with \(\rho(B) < 1 \) then \(\rho(f) \) is infinite; for all non-trivial solutions of the equation (1).

Frei [2] showed that the differential equation

\[
 f'' + e^{-z}f' + B(z)f = 0
\]

with \(B(z) \) a polynomial, then the equation (3) has a non-trivial solution \(f \) of finite order if and only if \(B(z) = -n^2, n \in \mathbb{N} \). Ozawa [16] proved that the equation (3) with \(B(z) = az + b, a \neq 0 \) has all solution of infinite order. Amemiya and Ozawa [1], and Gundersen [3] studied the equation (3) for \(B(z) \) being a particular polynomial. Langley [15], proved that this is true for any non-constant polynomial. Gundersen [5] proved the following result:

Theorem 4. Let \(f \) be a non-trivial solution of the equation (1) where either

(i) \(\rho(B) < \rho(A) < \frac{1}{2} \)

or

(ii) \(A(z) \) is transcendental entire function with \(\rho(A) = 0 \) and \(B(z) \) is a polynomial

then \(\rho(f) \) is infinite.

Hellerstein, Miles and Rossi [8] proved Theorem 4 for \(\rho(B) < \rho(A) = \frac{1}{2} \).

J.R. Long introduced the notion of the deficient value and Borel direction into the studies of the equation (1). For the definition of deficient value, Borel direction and function extremal for Yang’s inequality one may refer to [18].

In [14], J.R. Long proved that if \(A(z) \) is an entire function extremal for Yang’s inequality and \(B(z) \) a transcendental entire function with \(\rho(B) \neq \rho(A) \), then all solution of the equation (1) are of infinite order.
In [12], J.R. Long replaced the condition \(\rho(B) \neq \rho(A) \) with the condition that \(B(z) \) is an entire function with \textit{Fabry gaps}.

X.B.Wu [17] proved that if \(A(z) \) is a non-trivial solution of \(w'' + Q(z)w = 0 \), where \(Q(z) = b_m z^m + \ldots + b_0 \), \(b_m \neq 0 \) and \(B(z) \) be an entire function with \(\mu(B) < \frac{1}{2} + \frac{1}{2(m+1)} \), then all solutions of equation (1) are of infinite order. J.R. Long [12] replaced the condition \(\mu(B) < \frac{1}{2} + \frac{1}{2(m+1)} \) with \(B(z) \) being an entire function with \textit{Fabry gaps} such that \(\rho(B) \neq \rho(A) \).

Furthermore, J.R. Long [13] proved the following Theorem:

Theorem B. Let \(A(z) = d(z)e^{P(z)} \), where \(d(z)(\neq 0) \) is an entire function and \(P(z) = a_n z^n + \ldots + a_0 \) is a polynomial of degree \(n \) such that \(\rho(d) < n \). Let \(B(z) = b_n z^m + \ldots + b_0 \) be a non-constant polynomial of degree \(m \), then all non-trivial solutions of the equation (1) have infinite order if one of the following condition holds:

1. \(m + 2 < 2n \);
2. \(m + 2 > 2n \) and \(m + 2 \neq 2kn \) for all integers \(k \);
3. \(m + 2 = 2n \) and \(\frac{a_n^2}{b_m} \) is not a negative real.

Motivated by Theorem B, we consider entire functions \(A(z) \) and \(B(z) \) such that \(\rho(A) > n \) and \(B(z) \) a polynomial. To state and prove our theorem we give some definitions and notations below:

Definition 1. [13] Let \(P(z) = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_0, a_n \neq 0 \) and \(\delta(P, \theta) = \text{Re}(a_n e^{i n \theta}) \). A ray \(\gamma = r e^{i \theta} \) is called \textit{critical ray} of \(e^{P(z)} \) if \(\delta(P, \theta) = 0 \).

It can be easily seen that there are \(2n \) different critical rays of \(e^{P(z)} \) which divides the whole complex plane into \(2n \) distinct sectors of equal length \(\frac{\pi}{n} \). Also \(\delta(P, \theta) > 0 \) in \(n \) sectors and \(\delta(P, \theta) < 0 \) in remaining \(n \) sectors. We note that \(\delta(P, \theta) \) is alternatively positive and negative in the \(2n \) sectors.

We now fix some notations,

\[E^+ = \{ \theta \in [0, 2\pi] : \delta(P, \theta) \geq 0 \} \quad \text{and} \quad E^- = \{ \theta \in [0, 2\pi] : \delta(P, \theta) \leq 0 \}. \]

Let \(\alpha > 0 \) and \(\beta > 0 \) be such that \(0 \leq \alpha < \beta \leq 2\pi \) then

\[S(\alpha, \beta) = \{ z \in \mathbb{C} : \alpha < \arg z < \beta \} \]

We now recall the notion of an entire function to blow up and decay to zero exponentially [17].

Definition 2. Let \(A(z) \) be an entire function with order \(\rho(A) \in (0, \infty) \). Then \(A(z) \) is \textit{blows up exponentially} in \(S(\alpha, \beta) \) if for any \(\theta \in \)
$S(\alpha, \beta)$ we get,

$$\lim_{r \to \infty} \frac{\log \log |A(re^{\theta})|}{\log r} = \rho(A).$$

We say $A(z)$ decays to zero exponentially in $\bar{S}(\alpha, \beta)$ if for any $\theta \in S(\alpha, \beta)$

$$\lim_{r \to \infty} \frac{\log \log \left| \frac{1}{A(re^{\theta})} \right|}{\log r} = \rho(A).$$

We illustrate these notions with an example

Example 5. The function $f(z) = e^z$ has two critical rays namely $-\frac{\pi}{2}$ and $\frac{\pi}{2}$. It is easy to show that $f(z)$ blows up exponentially in $\bar{S}(-\frac{\pi}{2}, \frac{\pi}{2})$ and decays to zero exponentially in $\bar{S}(\frac{\pi}{2}, 3\frac{\pi}{2})$.

We are now able to state our main theorem:

Theorem 6. Consider a transcendental entire function $A(z) = d(z)e^{P(z)}$, where $P(z)$ is a non-constant polynomial of degree n and $\rho(d) > n$. Assume that $d(z)$ is bounded away from zero and exponentially blows up in E^+ and E^- respectively and let $B(z)$ be a polynomial. Then all non-trivial solutions of the equation (1) are of infinite order.

The paper is organised as follows: in Section 2, we have stated preliminary lemmas and proved some required results. In Section 3, we have proved Theorem 6.

2. Auxiliary Result

In this section, we present some known results. Next two lemmas are due to Gundersen which has been used extensively over the years.

Lemma 1. [4] Let f be a transcendental meromorphic function with finite order and (k, j) be a pair of integers that satisfies $k > j \geq 0$. Then for $\epsilon > 0$ there exists a set $E \subset [0, 2\pi]$ with linear measure zero such that for $\theta \in [0, 2\pi] \setminus E$ there exist $R(\theta) > 1$ such that

$$\left| \frac{f^{(k)}(z)}{f^{(j)}(z)} \right| \leq |z|^{(k-j)(\rho(f)-1+\epsilon)}$$

for $|z| > R(\theta)$ and $\arg z = \theta$.

Lemma 2. [5] Let f be analytic on a ray $\gamma = re^{\theta}$ and suppose that for some constant $\alpha > 1$ we have

$$\left| \frac{f'(z)}{f(z)} \right| = O(|z|^{-\alpha})$$
as $z \to \infty$ along $\arg z = \theta$. Then there exists a constant $c \neq 0$ such that $f(z) \to c$ as $z \to \infty$ along $\arg z = \theta$.
We now prove a result which would be required for proving Theorem 6.

Lemma 3. Let \(A(z) = d(z)e^{P(z)} \) be an entire function, where \(P(z) \) is a polynomial of degree \(n \) and \(d(z) \) satisfies the condition of Theorem 6. Then there exists a set \(E \subset [0, 2\pi] \) of linear measure zero such that for \(\epsilon > 0 \) the following holds:

(i) for \(\theta \in E^+ \setminus E \) there exists \(R(\theta) > 1 \) such that

\[
|A(re^{i\theta})| \geq \exp((1 - \epsilon)\delta(P, \theta)r^n)
\]

for \(r > R(\theta) \)

(ii) for \(\theta \in E^- \setminus E \) there exists \(R(\theta) > 1 \) such that

\[
|A(re^{i\theta})| \geq \exp((1 - \epsilon)\delta(P, \theta)r^n)
\]

for \(r > R(\theta) \).

Proof. Here \(A(z) = d(z)e^{P(z)} = h(z)e^{a_nz^n} \), where \(h(z) \) is also an entire function. Let \(E = \{ \theta \in [0, 2\pi] : \delta(P, \theta) = 0 \} \). This means that \(E \) is set of critical rays of \(e^{P(z)} \), which implies that \(E \) has linear measure zero. Let \(\epsilon > 0 \). Then

(i) for \(\delta(P, \theta) > 0 \), \(\exp(-\epsilon\delta(P, \theta)r^n) \to 0 \) as \(r \to \infty \). Thus there exists \(R(\theta) > 1 \) such that

\[
\exp(-\epsilon\delta(P, \theta)r^n) \leq |h(re^{i\theta})| \tag{5}
\]

for \(r > R(\theta) \). Now

\[
|\exp(a_n(re^{i\theta})^n)| = \exp(\delta(P, \theta)r^n) \tag{6}
\]

Thus using (5) and (6) we have

\[
|A(re^{i\theta})| = |h(re^{i\theta})||\exp(a_n(re^{i\theta})^n)| \geq \exp((1 - \epsilon)\delta(P, \theta)r^n)
\]

for \(\theta \in E^+ \setminus E \) and \(r > R(\theta) \).

(ii) Since \(d(z) \) blows up exponentially in \(E^- \) therefore, \(h(z) \) also blows up exponentially in \(E^- \). Let \(\epsilon > 0 \) and \(\delta(P, \theta) < 0 \). Then \(\rho(\exp(-\epsilon a_nz^n)) = n < \rho(h) \). Thus, using definition 2 for any \(\theta \in E^- \setminus E \) there exists \(R(\theta) > 1 \) such that

\[
|h(re^{i\theta})| \geq \exp(-\epsilon\delta(P, \theta)r^n) \tag{7}
\]

for \(r > R(\theta) \). Using equation (6) and (7) we obtain that

\[
|A(re^{i\theta})| \geq \exp((1 - \epsilon)\delta(P, \theta)r^n)
\]

for \(r > R(\theta) \) and \(\theta \in E^- \setminus E \).
3. Proof of Main Theorem

In this section we will establish Theorem 3 which is the main result of this paper.

Proof. If $\rho(A) = \infty$ then it is obvious that $\rho(f) = \infty$, for all non-trivial solution f of the equation (1). Therefore, let us suppose that $\rho(A) < \infty$ and there exists a non-trivial solution f of the equation (1) such that $\rho(f) < \infty$. Then from Lemma [1] we have that there exist $E_1 \subset [0, 2\pi]$ of linear measure zero and $m > 0$ such that,

$$\left| \frac{f''(re^{i\theta})}{f(re^{i\theta})} \right| \leq r^m$$

(8)

for $\theta \in [0, 2\pi] \setminus E_1$ and $r > R(\theta)$. From Lemma [3] part (i) we have,

$$|A(re^{i\theta})| \geq \exp \left(\frac{1}{2} \delta(P, \theta)r^n \right)$$

(9)

for $\theta \in E^+ \setminus E_2$ and $r > R'(\theta)$ where E_2 is set of critical rays of $e^{\rho(z)}$ of linear measure zero. Using equation (1), (8) and (9), for $\theta \in E^+ \setminus (E_1 \cup E_2)$ we get,

$$\left| \frac{f'(re^{i\theta})}{f(re^{i\theta})} \right| \to 0$$

as $r \to \infty$. This implies that for $\theta \in E^+ \setminus (E_1 \cup E_2)$

$$\left| \frac{f'(re^{i\theta})}{f(re^{i\theta})} \right| = O \left(\frac{1}{r^2} \right)$$

(10)

as $r \to \infty$. From Lemma [2]

$$f(re^{i\theta}) \to a$$

(11)

as $r \to \infty$, for $\theta \in E^+ \setminus (E_1 \cup E_2)$, where a is a non-zero finite constant. Applying Maximum Modulus principle for the function f over the domain E^+ this can be concluded that f is bounded over E^+. Now using Phragmén-Lindelöf principle,

$$f(re^{i\theta}) \to a$$

(12)

as $r \to \infty$, for $\theta \in E^+$.

Lemma [3] part (ii) implies that,

$$|A(re^{i\theta})| \geq \exp \left(-\frac{1}{2} \delta(P, \theta)r^n \right)$$

(13)

for $\theta \in E^- \setminus E_2$ and for $r > R''(\theta)$. Using equation (1), (8) and (13) we have,

$$\left| \frac{f'(re^{i\theta})}{f(re^{i\theta})} \right| \to 0$$

(14)

as $r \to \infty$, for $\theta \in E^- \setminus (E_1 \cup E_2)$. From here we can obtain equations (10) for $\theta \in E^- \setminus (E_1 \cup E_2)$. Again using Maximum Modulus principle.
ON SOLUTION OF

for function f over the domain E^{-} we get f is bounded over E^{-}. Which further using Phragmén-Lindelöf principle implies,

$$f(re^{\theta}) \to b$$

(15)

as $r \to \infty$, for $\theta \in E^{-}$, where b is a non-zero finite constant. Again using Phragmén-Lindelöf principle we get,

$$f(re^{\theta}) \to a$$

(16)

as $r \to \infty$, for all $\theta \in E^{+} \cup E^{-}$, which is a contradiction to the Liouville’s theorem. □

Acknowledgement: We are thankful to Professor Gundersen for reading the paper and suggesting many things. In fact, he has asked to construct an example in support of the main theorem. We are still working on construction of such type of example. We invite readers for their comments. Paper is not for publication in any academic journal as of now.

References

[1] I. Amemiya, M. Ozawa; Non-existence of finite order solutions of $w'' + e^{-z}w' + Q(z)w = 0$, Comment. Math. Helv., 36, 1-8, 1962.
[2] M. Frei; Über die subnormalen Lösungen der Differential Gleichung $w'' + e^{-z}w' + (\text{const.})w = 0$, Comment. Math. Helv., 36, 1-8, 1962.
[3] G. G. Gundersen; On the Question of whether $f'' + e^{-z}f' + B(z)f = 0$ can admit a solution $f \neq 0$ of finite order, Proc. R. S. E., 102A, 9-17, 1986.
[4] G. G. Gundersen; Estimates for the Logarithmic Derivative of a Meromorphic Function, J. London Math. Soc., 37, 17:1, 88-104, 1988.
[5] G. G. Gundersen; Finite Order Solution of Second Order Linear Differential Equations, Trans. Amer. Math. Soc., 305, 415-429, 1988.
[6] G. G. Gundersen; Research Questions on Meromorphic Functions and Complex Differential Equations, Comput. Methods Funct. Theory, 17, 195-209, 2017.
[7] J. Heittokangas, I. Laine, K. Tohge, Z. Wen; Completely Regular Growth Solutions of Second Order Complex Differential Equations, Ann. Acad. Sci. Fenn.-M., 43, 337-348, 2018.
[8] S. Hellerstein, J. Miles and J. Rossi, On the growth of solutions of $f'' + gf' + hf = 0$, Trans. Amer. Math. Soc., 324, 693-706, 1991.
[9] E. Hille; Lectures on Ordinary Differential Equations, A Wiley-Interscience Publication, London, 1969.
[10] A.S.B. Holland; Theory of Entire Function, Academic Press, New York, 1973.
[11] I. Laine; Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter, Berlin, New York, 1993.
[12] J. R. Long; Growth of solutions of second order complex Linear Differential Equations with entire coefficients, Filomat., 275-284, 2018.
[13] J.R. Long, L. Shi, X. Wu, S. Zhang; On a Question of Gundersen Concerning the Growth of Solutions of Linear Differential Equations, Ann. Acad. Sci. Fenn.-M., 43, 337-348, 2018.
[14] J.R. Long, P.C. Wu, Z. Zhang; On the growth of solutions of second order linear differential equations with extremal coefficients, Acta Math. Sinica (Engl. Ser.), 29(2), 365-372, 2013.
[15] J. K. Langley; *On Complex Oscillation and a Problem of Ozawa*, Kodai Math. J., 9, 430-439, 1986.

[16] M. Ozawa; *On a solution of w'' + e^{-z}w' + (az + b)w = 0*, Kodai Math. J., 3, 295-309, 1980.

[17] X.B. Wu, J. R. Long, J. Heittokangas, K. E. Qiu; *Second order complex linear differential equations with special functions or extremal functions as coefficients*, Electronic J. Differential Equations, **2015**:143, 1-15, 2015.

[18] L. Yang; *Value Distribution Theory*, Springer-Verlag, Berlin, 1993.

Department of Mathematics, Deen Dayal Upadhyaya College, University of Delhi, New Delhi–110 078, India

E-mail address: dinukumar680@gmail.com

Department of Mathematics, Deen Dayal Upadhyaya College, University of Delhi, New Delhi–110 078, India

E-mail address: sanjpant@gmail.com

Department of Mathematics, University of Delhi, Delhi–110 007, India

E-mail address: sainimanisha210@gmail.com