CHARACTERIZATION AND DEVELOPMENT OF EST-DERIVED SSR MARKERS IN *SINOWILSONIA HENRYI* (HAMAMELIDACEAE)

Zuo-Zhou Li², Hua Tian², and Jin-Ju Zhang²,³,⁴

²Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, People’s Republic of China; and ³School of Life Sciences, Central China Normal University, Wuhan 430079, People’s Republic of China

• **Premise of the study:** Polymorphic microsatellite markers were developed to reveal the genetic diversity of extant populations and the mating system of *Sinowilsonia henryi* (Hamamelidaceae).

• **Methods and Results:** In this study, nuclear simple sequence repeat (SSR) markers were developed using the Illumina high-throughput sequencing technique (RNA-Seq). The de novo–assembled transcriptome generated a total of 64,694 unique sequences with an average length of 601 bp. A total of 2941 microsatellite loci were detected. Of the 121 tested loci, 13 loci were polymorphic and eight were monomorphic among 72 individuals representing three natural populations of the species. The number of alleles per locus ranged from one to four, and the observed and expected heterozygosity at population level were 0.00–1.00 and 0.10–0.66, respectively.

• **Conclusions:** The developed expressed sequence tag (EST)–SSRs will be useful for studying genetic diversity of *S. henryi* as well as assessing the mating system among *Sinowilsonia* species.

Key words: Hamamelidaceae; microsatellite; RNA-Seq; *Sinowilsonia henryi*.

The tree genus *Sinowilsonia* Hemsl. is a member of the Hamamelidaceae family and comprises only one species, *S. henryi* Hemsl. This species is narrowly distributed in the mountains of central China at an elevation of 600–1400 m (Zhang et al., 2003). Currently, the natural habitats of this species are severely deteriorated and fragmented, with population sizes ranging from as few as five individuals to approximately 50 flowering plants (Zhou et al., 2014). Thus, *S. henryi* has been listed as an endangered plant species in the China Plant Red Data Book (Fu and Jin, 1992).

Knowledge of genetic diversity and genetic structure of extant populations is essential to the formulation of effective conservation and management strategies for threatened species (Frankham et al., 2002). Due to their codominance, hyper-variability, and reliable scorability, microsatellite markers have been widely used in population genetic studies (Selkoe and Toonen, 2006). However, microsatellite markers for *S. henryi* are currently not available. High-throughput RNA sequencing (RNA-Seq) is one of the most useful next-generation sequencing techniques for identifying microsatellites. In the current study, we developed and characterized 21 expressed sequence tag–simple sequence repeat (EST-SSR) markers for *S. henryi* using RNA-Seq.

METHODS AND RESULTS

Total RNAs were isolated from young leaves using a cetyltrimethylammonium bromide (CTAB) procedure (Chang et al., 1993). The poly(A)⁺ RNA (mRNA) was puriﬁed with the RNA Clean-up Kit (Invitrogen, Carlsbad, California, USA) according to the manufacturer’s instructions. The puriﬁed RNA was subsequently fragmented into small pieces (200 bp) by the fragmentation buffer. Then, the cleaved RNA fragments were used for ﬁrst-strand cDNA synthesis using reverse transcriptase (Invitrogen) with random hexamer primers. Subsequently, second-strand cDNA was synthesized using RNase H and DNA polymerase I (Tiangen, Beijing, China). Illumina paired-end sequencing adapters were then ligated to the ends of the 3′-adenylated cDNA fragments. The cDNA library was sequenced by Shanghai Haiyu Biotechnology Co. Ltd. on the Illumina HiSeq 2000 instrument (Illumina, San Diego, California, USA). Before assembly, raw reads were filtered to remove those containing adapter or low-quality reads (more than 20% of nucleotides with Q-value ≤ 10) and reads containing poly N (>10% ambiguous base calls). Transcriptome assembly was performed using the Trinity package (version 2013-02-25) with the default parameters (Grabherr et al., 2011).

A total of 28.7 million 300-bp, clean, paired-end reads were obtained. All clean reads are available from the National Center for Biotechnology Information (NCBI) Short Read Archive (SRA) database (Bioproject accession no. PRJNA394173). De novo assembly of clean reads resulted in 64,694 unique sequences with an average length of 601 bp and an N50 length of 999 bp. The MicroSatellite identification tool (MISA; Thiel et al., 2003) was used to screen for the presence of microsatellites. The parameters used to identify microsatellites were seven repeats for di-, five for tri- and tetra-, four for penta-, and three for hexanucleotide repeats. Subsequently, SSR primers were designed with minimum GC content of 40% and an expected product size ranging from 100 to 280 bp using Primer3 (Rozen and Skaltsky, 1999).

A total of 8892 SSRs containing repeats from di- to pentanucleotides were identified from 64,694 unique sequences. Dinucleotides were the most abundant repeat type (5232), followed by trinucleotides (2198), hexanucleotides (1035), pentanucleotides (259), and tetranucleotides (168). The dinucleotide repeat (AG/CT), (3646) was followed by (AT/AT), (1192), (AC/CT), (384), and (CG/CG), (11). Among the trinucleotide repeat motifs, the most frequent SSR motif was (CT)n (3646) was followed by (AT/AT)n (1192), (AC/GT)n (384), and (CG/CG)n (11).
PCR primers of SSR loci were used for validation of amplification and polymorphism; of these, 13 revealed microsatellite polymorphism. To the best of our knowledge, this is the first study to develop microsatellites for *S. henryi*. These EST-derived SSRs could provide valuable tools for studying genetic diversity and assessing the mating system among *Sinowilsonia* species. In addition, because EST-derived SSRs may be associated with functional genes, the remaining untested 2820 SSRs and 21 loci developed in the current study may be useful for examining adaptive variation using genome scan methods.

LITERATURE CITED

CHANG, S., J. PURVEY, AND J. CARNEY. 1993. A simple and efficient method for isolating RNA from pine trees. *Plant Molecular Biology Reporter* 11: 113–116.

DOYLE, J. J., AND J. L. DOYLE. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. *Phytochemical Bulletin* 19: 11–15.

FRANKHAM, R., J. D. BALLOU, AND D. A. BRISCOE. 2002. Introduction to conservation genetics. Cambridge University Press, Cambridge, United Kingdom.

FU, L., AND J. M. JIN. 1992. China plant red data book–rare and endangered plants. Science Press, Beijing, China.

GRABHERR, M. G., B. J. HAAS, M. YASSOUR, J. Z. LEVIN, D. A. THOMPSON, I. AMIT, X. ADICONIS, ET AL. 2011. Trinity: Reconstructing a full-length transcriptome without a genome from RNA-Seq data. *Nature Biotechnology* 29: 644–652.

MARSHALL, T. C., J. SLATE, L. E. B. KRUK, AND J. M. PEMBERTON. 1998. Statistical confidence for likelihood-based paternity inference in natural populations. *Molecular Ecology* 7: 639–655.

RAYMOND, M., AND F. ROUSSET. 1995. GENEPOP (Version 1.2): Population genetics software for exact tests and ecumenicism. *Journal of Heredity* 86: 248–249.

ROZEN, S., AND H. SKALETSKY. 1999. Primer3 on the WWW for general users and for biologist programmers. In S. MISER and S. A. KRAWZ [eds.], Methods in molecular biology, vol. 132: Bioinformatics: Methods and protocols, 365–386. Humana Press, Totowa, New Jersey, USA.

SEIKLE, K. A., AND R. J. TOOMIN. 2006. Microsatellites for ecologists: A practical guide to using and evaluating microsatellite markers. *Ecology Letters* 9: 615–629.

THIEL, T., W. MICHALEK, R. K. VARSHEM, AND A. GRANEK. 2003. Exploiting EST databases for the development and characterization of gene-derived microsatellites. *Applications in Plant Sciences* 2017 5(11): 1700080 doi:10.3732/apps.1700080

TABLE 1. Frequency of repeat motifs in nonredundant *Sinowilsonia henryi* ESTs.

SSR motifs	3	4	5	6	7	8	9	10	11	12	>12	Total
AC/GT	106	86	71	64	54	3	0	0	0	0	0	384
AG/CT	717	802	1268	742	111	6	0	0	0	0	0	3646
AT/TA	283	275	325	248	59	1	1	1192				
CG/GC	5	4	1	0	0	0	0	11				
AAC/GTT	59	17	13	6	0	0	0	95				
AGG/CTT	300	200	164	3	0	0	0	667				
AAT/ATT	147	103	61	3	0	0	0	314				
ACG/GGT	111	47	33	3	0	0	0	194				
ACG/CGT	35	14	10	4	0	0	1	63				
ACT/AGT	19	9	2	1	0	0	0	31				
AGC/CTG	139	94	64	4	0	0	0	301				
AGCC/CTT	81	44	32	7	0	0	0	164				
ATC/ATG	136	57	54	5	0	0	0	252				
CCG/CGG	73	31	9	4	0	0	0	117				
Tetra	146	22	0	0	0	0	0	168				
Penta	252	7	0	0	0	0	0	259				
Hexa	844	191	0	0	0	0	0	1035				

Note: — = number of repeats not calculated.
Table 2. Characterization of 21 EST-SSR primers developed in *Sinowilsonia henryi*.

Locus	Primer sequences (5′–3′)	Repeat motif	Allele size range (bp)	T_a (°C)	BLASTX top hit description	E-value	GenBank accession no.
SH01	F: TTTGACCCCGAAACACACC	(CAT)$_2$	209–213	58	—	—	MF503975
	R: TGATACGGCTCAAGTCTCC						
SH02	F: CATCACCTTCTGCTGAAAGC	(TC)$_10$	223–231	58	Hypothetical protein	3E-40	MF503976
	R: ACCCGGAGGATATATGACGC				EUGRSLZ_G03166		
SH03	F: CCACTCTGGTCTCTGCTTC	(ATC)$_7$	210–213	58	Phospho-N-acetyluramoyl-	2E-176	MF503977
	R: CCTGACGTTAAAGGAAACGC				pentapeptide-transferase		
SH04	F: GTAGTCGGAGGCTTTTGGG	(TTC)$_7$	258–275	60	NUDIX domain-containing	3E-165	MF503978
	R: GTCTTCGAGAACCTGAAAGG				protein		
SH05	F: TATGCTAGTGGTGTTCTGT	(GCA)$_7$	195–202	58	—	—	MF503979
	R: TAGCTCTGCGGCTCATAC						
SH06	F: ATGGAGGGCTTTTAGCTCGG	(GCC)$_7$	148–158	58	—	—	MF503980
	R: TGGCTTCCCCTCTCTTCTTT						
SH07	F: TGACATGGAGGGTGGTGGG	(ATG)$_7$	183–186	58	—	—	MF503981
	R: TACACTCTTCTATGGCTCTT						
SH08	F: GAAGCTGAGTTGGTTACCGG	(GTT)$_8$	214–225	58	—	—	MF503982
	R: CTTCGGGCCCTATAGTGGGT						
SH09	F: GGGGTGTTGCTCACGTCTTT	(ACC)$_7$	232–240	58	CBL-interacting protein	0	MF503983
	R: CCACAGTGTGTTGAGAGG				kinase 07		
SH10	F: AACCAACAGGGCTGCTCTTT	(AGC)$_7$	225–239	59	Pre-mRNA-splicing factor	0	MF503984
	R: CGGCTGCAGATAAGTTGGA				SYF1		
SH11	F: GGATGGCCTATCGGCTTTG	(TC)$_10$	209–215	58	Transmembrane protein 230	1E-61	MF503985
	R: AGCAAATTTGGCAGCTGGAG						
SH12	F: GGATCCACAGTGTGCTAGAG	(TC)$_10$	154–156	58	—	—	MF503986
	R: ACTCTCGGGGCTCATCTCT						
SH13	F: AAGGACGAGAGTGAAGG	(GCC)$_2$	265–268	56	—	—	MF503987
	R: CCCAATTCCCTCGAGAGT						
SH14	F: TCACCATCATACACACCTC	(TTG)$_7$	175	56	ABC transporter G family	0	MF501055
	R: AGGTCTGATGGTTACAGCT				member 5-like		
SH15	F: AGCAAGAGGAGCACACACTCT	(AAG)$_7$	200	58	—	—	MF501056
	R: TGCTGCTTTTACTCTTCTCT						
SH16	F: CCAAGAGCCCCACACACTA	(GCT)$_7$	256	56	—	—	MF501057
	R: AGACGTCTGAGTTCTTCTGT						
SH17	F: TGGCTTCCACACTCCTCAA	(ACA)$_8$	250	56	—	—	MF501058
	R: GGTGGGGAAGGAGAGAGGAGG						
SH18	F: ACCCGGCATACATGTGACA	(CTG)$_7$	165	56	DExH-box ATP-dependent	3E-35	MF501059
	R: GGGCCGTCATACCTGGCTCT				RNA helicase		
SH19	F: GAGCAACACACCAATCCACA	(GAG)$_7$	200	58	—	—	MF501052
	R: GCTGCCATGTTGAGAAACACA						
SH20	F: GGAGGCTGCTAGGCTACA	(CT)$_10$	200	56	NADP-dependent malic enzyme	0	MF501051
	R: AGAGGGAGAGGTCACACA						
SH21	F: CCAATCCTCCGCCGCAAATAG	(GGT)$_7$	275	58	Receptor-like protein 1,	2E-35	MF501052
	R: GCTCAATTTGGCTACTCTTGGGAG				putative isof orm 2		

Note: T_a = annealing temperature.

SSR-markers in barley (*Hordeum vulgare* L.). *Theoretical and Applied Genetics* 106: 411–422.

Zhang, Z., H. Zhang, and P. K. Endress. 2003. *Flora of China*, vol. 9. Science Press, Beijing, China, and Missouri Botanical Garden Press, St. Louis, Missouri, USA.
Table 3. Genetic diversity of 13 SSR loci in three populations of *Sinowilsonia henryi*.a

Locus	SNJ (N = 15)	FS (N = 25)	WD (N = 32)						
	A	H_e	H_o	A	H_e	H_o	A	H_e	H_o
SH01	2	0.18	0.13	2	0.30	0.28	3	0.47	0.41
SH02	3	0.56	0.88	3	0.52	0.24	3	0.59	0.63
SH03	2	0.50	0.50	1	0.00	0.00***	1	0.00	0.00***
SH04	2	0.31	0.38	3	0.63	0.32	3	0.48	0.38
SH05	3	0.60	1.00	3	0.25	0.28	3	0.42	0.41
SH06	3	0.51	0.75	3	0.37	0.32	3	0.41	0.38
SH07	1	0.00	0.00	2	0.42	0.20	1	0.00	0.00***
SH08	2	0.22	0.25	3	0.62	0.72	2	0.48	0.38
SH09	1	0.00	0.00***	2	0.08	0.08	1	0.00	0.00***
SH10	2	0.38	0.25	3	0.63	0.56	3	0.63	0.59
SH11	3	0.53	0.75	3	0.66	0.80	4	0.36	0.38
SH12	2	0.50	0.75	2	0.34	0.36	2	0.49	0.47
SH13	2	0.22	0.25	2	0.39	0.36	2	0.44	0.34
Average	2.15	0.35	0.45	2.46	0.40	0.35	2.31	0.37	0.44

Note: A = number of alleles; H_e = expected heterozygosity; H_o = observed heterozygosity; N = number of individuals sampled.

*** Denotes significant departure from Hardy–Weinberg equilibrium after Bonferroni correction ($P < 0.0006$).

Appendix 1. List of vouchers of *Sinowilsonia henryi* used in this study.

Population code	N	Location	Voucher no.	Geographic coordinates	Altitude (m)
SNJ	15	Shennongjia Mountain, Hubei Province	Q. G. Ye 1102	31°30’09”N, 110°24’03”E	1405
FS	25	Yangchashan, Fang County, Hubei Province	Q. G. Ye 1108	31°53’01”N, 110°27’53”E	1201
WD	32	Wudang Mountain, Hubei Province	Q. G. Ye 1109	32°40’59”N, 111°01’01”E	1035

Note: N = number of individuals sampled.

*All vouchers are deposited at the Wuhan Botanical Garden Herbarium (HIB), Wuhan, Hubei Province, China.