The first complete chloroplast genome of *Tetradium daniellii* (Benn.) T. G. Hartley

Mei Yua,c, Ke-xue Yua,c, Yong-jun Zhaob,c, Jian-quan Tangd, Yizeng Lub and Lei Wangb,c

aCollege of Food Science and Engineering, Shandong Agriculture and Engineering University, Jì’nan, P. R. China; bShandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, Shandong Province, P. R. China; cShandong Provincial Engineering Laboratory for Utilization of Woody Oil Resources, Jì’nan, P. R. China; dHunan University of Humanities and Science, Loudi, Hunan Province, P. R. China

ABSTRACT
Tetradium daniellii (Benn.) T. G. Hartley is an important medicinal, ornamental, and timber tree species and belongs to genus *Tetradium* in family Rutaceae. It is widely distributed in warm temperate deciduous broad-leaved forest areas in northern China, Korean Peninsula and Japan. In this study, we sequenced its sample and determined complete chloroplast genome. The CP genome of *T. daniellii* has a circle structure with the length of 158,446 bp, includes a small single copy region (17,972 bp), a large single copy (86,478 bp) and two inverted repeats (6,2998 bp). There were 131 genes, including 86 protein-coding genes, 8 rRNA and 37 tRNA, and overall GC content covered by 38.3%. The gene *trnK-UUU*, *rps16*, *trnG-UCC*, *atpB*, *rpoC1*, *trnL-UAA*, *trn-V-UAC*, *petB*, *petD*, *rpl16*, *rpl2*, *ndhB*, *trnL-GAU*, *trnA-UGC* and *ndhA* contained an intron; gene *clpP*, *ycf3* contained 2 introns. The phylogenetic result showed that *T. daniellii* had the closest relationship with *Tetradium ruticarpum* (NC_052830).

1.57 Gb clean sequence data was assembled by de novo assembler SPAdes v3.11.0 (Bankevich et al. 2012) with the reference genome *Phellodendron amurense* (NC_035551). Finally the complete chloroplast genome was annotated by PGA (Qu et al. 2019). We submitted the assembled genome DNA to GenBank under the accession number of MZ145060, and SRA submitted to NCBI under the BioProject No. PRJNA732282 and SRA number: SRR14663312

The chloroplast genome of *T. daniellii* has a circle structure with the size of 158,446 bp in length that contains a large single copy (LSC: 86,478 bp) region, a small single copy (SSC: 17,972 bp) and two inverted repeats (IRs: 26,998 bp) region. The overall GC content was 38.3%. There were 131 genes including 86 protein-coding genes, 37 tRNA and 8 rRNA. Each of *trnK-UUU*, *rps16*, *trnG-UCC*, *atpB*, *rpoC1*, *trnL-UAA*, *trn-V-UAC*, *petB*, *petD*, *rpl16*, *rpl2*, *ndhB*, *trnL-GAU*, *trnA-UGC* and *ndhA* contained one intron respectively, *clpP* and *ycf3* had two introns respectively. While *rps12* had Trans splicing.

To determine the phylogenetic position of *T. daniellii* in family Rutaceae, we selected 19 complete chloroplast genomes from NCBI and aligned with *T. daniellii* by using Mafft 7.473 (Katoh and Standley 2013) with strategy of FFT-NS-2. Then we used model finder to selecte TVM+F+I+G4 model (Subha et al. 2017) and constructed the phylogenomic tree (Figure 1) by IQtree 2.0 (Minh et al. 2020) with 1000
bootstrap and Maximum-likelihood method. During the ML tree construction, the complete chloroplast genomes of Murraya koenigii (MT806177) was used as outgroup. Then the result showed that T. daniellii had the closest relationship with Tetradium ruticarpum (NC_052830).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

The study was financially supported by Wild Plant Protection and Management Project of ‘Conservation of Germplasm Resources of Chinese Endemic Species of National Key Protected Wild Plants’ [2019073031]; ‘Collection, Conservation, and Accurate Identification of Forest Tree Germplasm Resources’ of Shandong Provincial Agricultural Elite Varieties Project [2019LZGC018].

ORCID

Yizeng Lu http://orcid.org/0000-0002-5198-0155

Data availability statement

The genome sequence data that support the findings of this study are openly available in GenBank of NCBI at [https://www.ncbi.nlm.nih.gov/] under the accession no. MZ145060. The associated BioProject, SRA, and Bio-Sample numbers are PRJNA732282, SRR14663312, and SAMN19316631 respectively.

References

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 19(5):455–477.

Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R. 2020. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 37(5):1530–1534.

Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull. 19:11–15.

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30(4):772–780.

Lee DG, Choi K, Lee SH. 2011. GC/MS analysis of volatile constituents from woody plants. Appl Biol Chem. 38(4):723–730.

Li W, Sun YN, Yan XT, Yang SY, Kim E-J, Kang HK, Kim YH. 2013. Coumarins and lignans from Zanthoxylum schinifolium and their anti-cancer activities. J Agric Food Chem. 61(45):10730–10740.

Qu X-J, Moore MJ, Li D-Z, Yi T-S. 2019. PGA: a software package for rapid, accurate, and flexible batch annotation of plastomes. Plant Methods. 15:50.

Subha K, Minh BQ, Wong TK, von Haeseler A, Jermiin LS. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 14(6):587–589.

Yoo SW, Kim JS, Kang SS, Son KH, Chang HW, Kim HP, Bae K, Lee CO. 2002. Constituents of the fruits and leaves of Evodia daniellii. Arch Pharmacal Res. 25(6):30–824.

Figure 1. Maximum-likelihood phylogenetic tree for T. daniellii based on 20 complete chloroplast genomes.