Physiological IgM Class Catalytic Antibodies Selective for Transthyretin Amyloid*

Stephanie A. Planque†, Yasuhiro Nishiyama‡, Mariko Hara‡, Sari Sonoda‡, Sarah K. Murphy‡, Kenji Watanabe‡, Yukie Mitsuda§, Eric L. Brown§, Richard J. Massey¶, Stanley R. Primmer§, Brian O’Nuallain** and Sudhir Paul††

From the †Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030, the ‡Center for Infectious Diseases, University of Texas School of Public Health, Houston, Texas 77030, the §Covalent Bioscience Inc., Houston, Texas 77054, the ¶Supercentenarian Research Foundation, Lauderhill, Florida 33319, and the **Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115

Background: Some antibodies express serine protease activity. Transthyretin misfolding causes accumulation of pathogenic amyloid.

Results: Constitutively produced IgM but not IgG class antibodies selectively hydrolyzed and dissolved misfolded transthyretin without hydrolyzing physiologically folded transthyretin. Some IgMs were oligoreactive with amyloids and superantigens.

Conclusion: Catalytic IgMs may clear misfolded TTR and delay amyloidosis.

Significance: The innate antibody repertoire is a source of selective catabodies to toxic proteins.

Peptide bond-hydrolyzing catalytic antibodies (catabodies) could degrade toxic proteins, but acquired immunity principles have not provided evidence for beneficial catabodies. Transthyretin (TTR) forms misfolded β-sheet aggregates responsible for age-associated amyloidosis. We describe nucleophilic catabodies from healthy humans without amyloidosis that degraded misfolded TTR (misTTR) without reactivity to the physiological tetrameric TTR (phyTTR). IgM class B cell receptors specifically recognized the electrophilic analog of misTTR but not phyTTR. IgM but not IgG class antibodies hydrolyzed the particulate and soluble misTTR species. No misTTR-IgM binding was detected. The IgMs accounted for essentially all of the misTTR hydrolytic activity of unfractionated human serum. The IgMs did not degrade non-amyloidogenic, non-superantigenic proteins. Individual monoclonal IgMs (mIgMs) expressed variable misTTR hydrolytic rates and differing oligoreactivity directed to amyloid β peptide and microbial superantigen proteins. A subset of the mIgMs was monoreactive for misTTR. Excess misTTR was dissolved by a hydrolytic mIgM. The studies reveal a novel antibody property, the innate ability of IgMs to selectively degrade and dissolve toxic misTTR species as a first line immune function.

Higher organisms possess a structurally diverse innate repertoire of antibody variable domains (V domains) that was shaped by evolutionary selection pressures imposed by foreign antigens and self-antigens over millions of years. The diversity is supplemented by somatic randomization of the V domains by acquired immunity processes, which enables selection of V domains with noncovalent antigen binding activity over a few weeks upon contact with an antigen. Catalytic antibodies (catabodies) with a promiscuous peptide bond hydrolytic activity, on the other hand, are produced as an innate property of B cells, requiring no exposure to the antigen (1, 2). The proteolytic activity was traced to serine protease-like sites in the germ line antibody V-regions, suggesting an ancient origin of the catabodies (3–6). Humans produce catabodies selective for amyloid β peptide (Aβ) (7). Immune tolerance mechanisms in fetal and adult life are thought to suppress synthesis of autoantibodies to essential self-proteins. When produced, subsets of autoantibodies express autoantigen-selective catalytic activities (8–10). Provided that catabodies discriminate between individual peptide antigens, they hold potential for specific and permanent destruction of toxic self-antigens.

Many proteins can misfold into the amyloid state (11). Soluble transthyretin (TTR) is found in large amounts in blood (~0.3 mg/ml) in its physiological, homotetrameric state (phyTTR) as a carrier protein for thyroid hormones and the retinol-retinol binding protein complex (12). Misfolded β-sheet-containing aggregates are generated from TTR (collectively designated misTTR states; Table 1), a process involving formation of a TTR monomer, destabilization of the phyTTR dimer-dimer interface, and growth of soluble misTTR oligo-
Transthyretin Amyloid-selective Catabodies

TABLE 1
Properties of phyTTR and misTTR

Property	phyTTR	misTTR
Solubility	Soluble	Particulate and soluble
Aggregate subunit composition	4-Mer	Variable (2 to millions)
Aggregate stability in boiling SDS	Dissociates into 1-mers	Dissociates into 1-mers
Aggregate stability in SDS without boiling	Remains as 4-mers*	Blood, tissue ISF*
Biological distribution	None	Cellular toxicity, anatomic disruption
Pathogenicity		

* Data from Refs. 30–32.

Wild type, purified TTR from human plasma (Cell Sciences, Canton, MA) was labeled with 125I (125I-TTR) using 1,3,4,6-tetrachloro-3-aminophenyl-2,4-diphenylglycouril (Thermo Fisher Scientific), followed by removal of free 125I by gel filtration (BioSpin-6 column; Bio-Rad). The TTR or 125I-TTR solutions were preaggregated in PBS containing 1 mM EDTA (0.4 mg of TTR/ml, 28.6 μM; molar TTR concentrations computed from the monomer TTR mass, 14 kDa) by acidification with an equal volume of 200 mM sodium acetate, pH 4.2, 100 mM KCl, 1 mM EDTA, followed by incubation for 5 days at 37 °C (15). After exchanging the buffer to PBS containing 0.1 mM CHAPS (PBS/CHAPS) with an Ultra-4 centrifugal filter (EMD Millipore; Auburn, CA); viability, 90–95%; >95% purity determined by staining with phycoerythrin-conjugated mouse antibody to human CD19 (BD Pharmingen) and flow cytometry.

Aggregated TTR—Wild type, purified TTR from human plasma (Cell Sciences, Canton, MA) was labeled with 125I (125I-TTR) using 1,3,4,6-tetrachloro-3-aminophenyl-2,4-diphenylglycouril (Thermo Fisher Scientific), followed by removal of free 125I by gel filtration (BioSpin-6 column; Bio-Rad). The TTR or 125I-TTR solutions were preaggregated in PBS containing 1 mM EDTA (0.4 mg of TTR/ml, 28.6 μM; molar TTR concentrations computed from the monomer TTR mass, 14 kDa) by acidification with an equal volume of 200 mM sodium acetate, pH 4.2, 100 mM KCl, 1 mM EDTA, followed by incubation for 5 days at 37 °C (15). After exchanging the buffer to PBS containing 0.1 mM CHAPS (PBS/CHAPS) with an Ultra-4 centrifugal filter (EMD Millipore, Billerica, MA), the aggregated TTR (~14 μM) was stored in aliquots at –80 °C. Non-aggregated TTR is composed of soluble physiological tetramers, and the aggregation reaction produces soluble and particulate misfolded TTR (13–15). Aggregation was monitored by turbidimetry at 400 nm (10-mm path length; Cary 50 spectrophotometer, Agilent, Santa Clara, CA). In addition, binding of TTR (100 μl, 0.1 mg/ml) to thioflavin T (ThT) was determined by mixing with ThT (2.5 μl, 0.6 mM in PBS containing 0.1 mM CHAPS and 12% dimethyl sulfoxide) and measurement of fluorescence emission ($\lambda_{ex} = 485$ nm, $\lambda_{em} = 440$ nm, 600-V photomultiplier voltage; Varian Cary Eclipse fluorimeter). The supernatant and pellet containing the soluble and particulate TTR species, respectively, were separated by centrifugation (17,000 × g, 20 min).

The phyTTR and misTTR states were dissociated into monomers (14 kDa) by boiling test samples (10 min) after mixing with a one-fifth volume of 10% SDS in electrophoresis...
The biotinylated, electrophilic analogs of misTTR (E-misTTR) and phyTTR (E-phyTTR) were prepared as described (33) (6.0 and 0.1 mol of phosphonate and biotin, respectively, per mol of misTTR; 3.9 and 1.5 mol of phosphonate groups and biotin, respectively, per mol of phyTTR). The starting material for E-misTTR preparation was the particulate misTTR in PBS/CHAPS recovered by centrifugation (30 min, 75,000 g).

Proteolysis—All tests were done in duplicate or as specified. Non-aggregated or preaggregated 125I-TTR (100 nm monomer equivalents) was incubated with purified antibodies in PBS/CHAPS (20 µl). The boiled or non-boiled reaction mixtures were analyzed by SDS-gel electrophoresis (8,930–17,110 cpmp/lane). Depletion of the 1-mer TTR band (14 kDa) and appearance of lower mass products were quantified by densitometry. Antibody (Ab) hydrolytic activity was computed in units of nM misTTR hydrolyzed/µg of antibody/h ((A nm × (1 – [14 kDaAb]/[14 kDaDil]))/µg of Ab in the reaction mixture/Ab treatment time in h), where A is the initial misTTR concentration (total TTR concentration × % misTTR content) if non-boiled samples were analyzed or the total TTR concentration (misTTR + phyTTR) if boiled samples were analyzed, and [14 kDaAb] and [14 kDaDil] are the 14 kDa band intensities after antibody and diluent treatment, respectively. For data reported in this format, variations of the misTTR hydrolysis rate up to 2.4-fold are predicted because of varying misTTR content in different preaggregated TTR preparations (29–70%).

Hydrolysis of non-radiolabeled TTR bands stained with silver was quantified similarly. Protease inhibitors were tested at concentrations sufficient for complete inhibition of metalloproteases (EDTA, 2 mM; 1,10-phenanthroline, 1 mM), cysteine proteases (iodoacetamide, 0.1 mM), acid proteases (pepsatin A, 1 µM), and serine proteases (phosphonate 1, 0.1 mM) (34). Phosphonate 1 ([diphenyl N-[6-(biotinamido)hexanoyl]amino(4-aminophenyl)methane phosphonate]) is an active site-directed inhibitor of nucophileic catabodies (35). Alkylation of the free -SH group in TTR was avoided by pretreating antibodies with iodoacetamide (60 min) and removing this reagent prior to the proteolysis assay (BioSpin-6 gel filtration column). Inhibition of antibody proteolysis by serum amyloid P component (SAP; Calbiochem, Billerica, MA) was tested under conditions reported to reduce TTR sensitivity to digestion by human matrix metalloproteinase-9 (MMP9 from human neutrophils (EMD Millipore); preaggregated 125I-TTR containing 1 µM misTTR pretreated with 0.55 µM SAP or control albumin for 2 h in 10 mM Tris-HCl, pH 8.0, 138 mM NaCl, 2 mM CaCl2) (36). MMP9 was activated by incubation for 3 h with 5 mM 4-amino-phenylmercuric acetate, and the enzyme was recovered by gel filtration for hydrolysis tests.

Hydrolysis of fluorogenic N-t-butoxycarbonyl-O-benzyl-Glu-Ala-Arg-7-amino-4-methylcoumarin (EAR-AMC) and amyloid β peptide 1–40 (Aβ40) was tested as described previously (7). 125I-Aβ 1–42 (Aβ42, 90 µg; EZBiolab (Carmel, IN)) was radiolabeled as described for TTR, and free 125I was removed using a Sep-Pak Vac C18 cartridge (37). The fibrillar Aβ42 substrate (2.3 × 107 cpm/µmol Aβ42) was prepared by co-aggregating 125I-Aβ42 (0.7 × 107 cpm in 1,1,1,3,3,3-hexafluoro-2-propanol, 0.1 ml) and Aβ42 (1 mg; 5 mM solution in dimethyl sulfoxide). The mixture was diluted to 50 µM Aβ42 with PBS and incubated for 92 h (37 °C), and the fibrillar 125I-Aβ42 was collected by centrifugation (17,000 × g, 20 min). Following digestion of fibrillar 125I-Aβ42 with antibodies (30,000 cpm, 16 h), the reaction mixtures were treated with formic acid (60%, v/v) and fractionated on a Superdex peptide gel filtration column (GE Healthcare) in 60% formic acid. Hydrolysis of these biotinylated proteins was measured by SDS-gel electrophoresis and staining with streptavidin-peroxidase as described (2) (molar biotin/protein ratio in parentheses): gp120 from HIV strain MN (1.6), Staphylococcus aureus Protein A (5.0), bovine serum albumin (9.0), extracellular domain of human epidermal growth factor receptor (2.3), bovine thyroglobulin (26.0), human transferrin (5.4), and ovalbumin (1.6).

Binding—Preaggregated 125I-TTR (25,000 cpm; 100 nm TTR, 60% misTTR content) was incubated (16 h) with or without IgMs (130 µg/ml) in 40 µl in PBS/CHAPS. The soluble and particulate fractions were separated by centrifugation (20 min, 17,000 × g), and the particulate fraction was resuspended in 40 µl of PBS/CHAPS and treated separately for 1 h with the immobilized anti-human IgM gel (50 µl settled gel), and the mixtures were centrifuged (5 min, 500 × g), the gel was washed with 250 µl of PBS/CHAPS, and radioactivity in supernatant (unbound 125I-TTR) and gel (bound 125I-TTR) was measured. The percentage of bound 125I-TTR was computed as 100 × (cpm total binding – cpm nonspecific binding)/(cpm 125I-TTR in the initial reaction mixture), where “total binding” refers to the binding in IgM-containing reaction mixtures, and “nonspecific binding” refers to binding in the reactions containing PBS/CHAPS instead of IgMs.

For cell binding studies, large E-misTTR particles were incubated with mouse serum (1% in PBS, 10 min) to saturate Fc receptors and with the Endogenous Avidin/Biotin Blocking kit to saturate cellular biotin as recommended by the manufacturer (Abcam, Cambridge, MA). The cells
(1.5 × 10^5) were incubated with E-phyTTR or E-misTTR (0.3 μM) in PBS for 1 h at 4 °C to minimize B cell receptor (BCR) internalization. Competition studies were done by preincubating B cells (1 h, 4 °C) with control diluent or non-biotinylated misTTR, phyTTR, or ovalbumin (3 μM). Bound biotinylated probes were detected with streptavidin conjugated to phycoerythrin-Cy7 (PECy7-SA; 8 μg/ml). IgM cells were identified with antibody to human IgM conjugated to FITC (2 μg/ml; BD Pharmingen). Flow cytometry was done using an LSRFortessa X-20 flow cytometer (BD Biosciences) and FlowJo software (about 10,000 cells/analysis). In control incubations, B cells were stained with FITC-labeled, isotype-matched antibody instead of the anti-IgM antibody or were treated with diluent instead of the biotinylated E-misTTR followed by staining with PECy7-SA. The E-misTTR binding cells were visualized by confocal microscopy as described (1) (multiple acquisitions, thickness 0.15 μm; deconvolution by 15 iterations; FITC, λ_ex = 488 nm, λ_em = 525 nm; 4,6-diamino-2-phenylindole, λ_ex = 350 nm, λ_em = 470 nm; PECy7, λ_ex = 488 nm, λ_em = 767 nm).

Amyloid Dissolution—Preaggregated non-radioactive TTR (7.1 μM, 100 μg/ml) was incubated in duplicate with diluent or mIgMs (120 μg/ml) in PBS containing 0.1 mM CHAPS at 37 °C. The dissolution reaction was monitored from turbidity or ThT binding measurements.

Statistical Analysis—Errors are S.D. values. p values were from the unpaired two-tailed Student’s t test. Correlations were determined by Pearson’s two-tailed test.

RESULTS

125I-TTR Substrate—Wild type human TTR radiolabeled with 125I(125I-TTR) was applied to determine hydrolysis of the phyTTR tetramers and misTTR aggregates. Non-aggregated 125I-TTR preparations behaved as predicted from studies on phyTTR tetramers (30–32). The non-aggregated 125I-TTR (a) did not bind appreciably to ThT (Fig. 1A), a probe for β-sheet structures; (b) formed minimal particulate aggregates detected by turbidimetry (Fig. 1B); and (c) dissociated from the 4-mer into the 1-mer state upon boiling in SDS (14 kDa band in Fig.

![Image](https://example.com/image.png)
C, lane 1; <1% tetramer content) but remained in the 4-mer 54-kDa state in non-boiled SDS solutions (Fig. 1C, lane 2; <1% 1-mer content). Incubation of 125I-TTR at acid pH generated misTTR aggregates that bound ThT and formed a turbid suspension (Fig. 1, A and B). Unlike the 4-mer phyTTR state, the misTTR aggregates were disassociated into 1-mers in SDS without prior boiling (Fig. 1C, compare lanes 2 and 4). The relative 4-mer/1-mer band intensity in non-boiled, preaggregated 125I-TTR, therefore, is an index of the phyTTR/misTTR ratio (misTTR content of six preaggregated 125I-TTR preparations from densitometry, 49% ± 15%). The particulate fraction recovered from a preaggregated 125I-TTR preparation (~50% of total radioactivity; Fig. 1D) was composed almost exclusively of misTTR species (>95% 1-mers in Fig. 1E, lane 2). The 1-mers were also present at low levels in the supernatant (soluble fraction) of preaggregated but not nonaggregated TTR (compare lane 3, Fig. 1E with lane 2, Fig. 1C), consistent with the existence of soluble misTTR states (38, 39). Small radioactivity amounts were found at positions corresponding to the TTR dimer (nominal mass 32 kDa) and unidentified impurities in the starting TTR (20 and 26 kDa). ThT fluorescence and turbidity measurements indicated comparable aggregation of 125I-TTR and non-radiolabeled TTR, suggesting unaltered aggregation properties of the radiolabeled protein. The results show that the phyTTR and misTTR states are distinguishable by electrophoresis.

Transthyretin Amyloid-selective Catabodies

FIGURE 2. Selective misTTR hydrolysis by polyclonal IgM. A, IgM class-restricted hydrolytic activity. Boiled reaction mixtures of preaggregated or non-aggregated 125I-TTR (red and blue bars, respectively; 100 nM; misTTR content, 40%) treated for 18 h with diluent or IgM, IgG, and IgA purified from human serum (130 μg/ml, pooled from sera of 12 healthy humans) were electrophoresed. Hydrolysis was determined from depletion of the 1-mer band intensity after antibody treatment relative to the band intensity after diluent treatment. Inset, electrophoresis lanes showing depletion of the 1-mer band in preaggregated 125I-TTR treated with IgM (lane 2) compared with diluent (lane 1). Products are visible as 13, 10, and 7 kDa bands. No 1-mer band depletion or products were evident in the plgM-treated, non-aggregated 125I-TTR (lane 4) compared with the diluent-treated substrate (lane 1). B, hydrolysis of non-radiolabeled, misTTR by polyclonal IgM. Silver-stained electrophoresis gel of preaggregated TTR (4.5 μM) treated for 52 h with diluent (lane 1) or pooled plgM (lane 2; 570 μg/ml). From densitometry, 85% of the 1-mer band derived from misTTR was depleted by plgM treatment. The 10- and 7-kDa product fragments are observed. The 13-kDa product is not visible because of poor silver stainability. C, hydrolysis of soluble and particulate misTTR species by plgM. The soluble and particulate fractions of preaggregated 125I-TTR (misTTR content, 37 and 95%, respectively) were treated for 18 h with diluent or polyclonal IgM (plgM) and IgG (plgG) purified from the same human serum pool (130 μg/ml). Non-boiled reaction mixtures were analyzed. D, misTTR selectivity. The 1-mer band (14 kDa) derived from misTTR but not the 4-mer phyTTR band (54 kDa) of preaggregated 125I-TTR (100 nM; misTTR content, 40%) was depleted as a function of time by treatment with pooled plgM (130 μg/ml). Inset, 4-mer, 1-mer, and 10 kDa band cut-outs from electrophoresis gels; non-boiled reaction mixtures. Error bars, S.D.
cating that the plgMs do not degrade phyTTR. Depletion of the 1-mer band in boiled reaction mixtures of the preaggregated substrate, therefore, measures misTTR hydrolysis without interference from phyTTR hydrolysis. The plgMs also degraded preaggregated TTR without the 125I label (Fig. 2B), eliminating radioactivity-related experimental artifacts. Selective recognition of soluble and particulate misTTR species by the IgM was confirmed in tests of non-boiled reaction mixtures. phyTTR does not dissociate into 1-mers without boiling, and the 1-mer band is derived exclusively from the misTTR species. The 1-mer band derived from misTTR but not the 4-mer phyTTR band was progressively depleted with increasing duration of plgM treatment (Fig. 2, C and D). Product fragments with mass smaller than the 1-mer TTR band were evident (13 and 10 kDa bands, along with the fainter 7 kDa band; Fig. 2A). Accumulation of the 10-kDa product in the initial reaction phase and its subsequent disappearance with further plgM treatment suggested reuse of this misTTR fragment for further digestion cycles (Fig. 2D). The appearance of three radioactive product fragments distributed into multiple products, the product bands are less intense than the intact TTR band. The assay method does not detect small products that migrate out of the gel or products that lack a radiolabeled Tyr residue.

Formation of IgM-misTTR immune complexes by the pooled plgM (130 μg/ml) was undetectable (binding of soluble and particulate misTTR species, respectively: 1.9 ± 2.4 and 0.7 ± 0.7%). At an equivalent concentration, the same plgM preparation hydrolyzed 45 ± 1% of soluble misTTR and 77 ± 1% of particulate misTTR, respectively. The results indicate hydrolysis of misTTR but not phyTTR by IgMs, the first class of antibodies produced by B cells. In contrast, the IgGs and IgAs usually associated with acquired immune responses were devoid of misTTR hydrolytic activity.

Polyclonal IgM Hydrolytic Properties—Mean misTTR hydrolysis by plgM preparations from humans >70 years in age was only slightly lower than the level from humans <35 years in age, and the difference did not reach statistical significance ($p = 0.101$; Fig. 3A). misTTR hydrolysis was detected at low plgM concentrations (10 μg of IgM/ml, ~200-fold lower than the blood IgM concentration). The plgM hydrolytic rate was comparable with MMP9 (Fig. 3B), an enzyme suggested to limit tissue deposition of TTR amyloid (36). The blood IgM concentration, however, exceeds that of MMP9 (3.2 nM) and other non-IgM proteases (<1 nM) by about 3 log orders (40, 41). misTTR is generated from wild type phyTTR slowly at physio-

TABLE 2

No. of IgMs	Hydrolytic activity					
	Tested	Positive	Range	Mean	S.D.	Median
Polyclonal IgM	12	12	0.40–1.64	0.93	0.39	0.98
Monoclonal IgM	16	12	0.16–2.98	1.51	1.07	1.47

The plgM catalyzed misTTR hydrolysis was inhibited by synthetic electrophilic phosphinate 1, a compound that binds covalently to the nucleophilic sites of serine proteases (Fig. 3E). Synthetic inhibitors of metalloproteases, acid proteases, and cysteine proteases were ineffective. The inhibitor profile is consistent with previous findings that catabodies use a nucleophilic proteolytic mechanism (1, 43). Non-antibody proteases are sensitive to endogenous enzyme inhibitors present in serum, and the enzymatic reaction may also be inhibited by amyloid binding proteins (e.g. SAP) (36). Including antibody-free human serum or purified SAP in the reaction mixtures did not reduce the misTTR hydrolytic activity of plgM (compare with control albumin treatment; Fig. 3E). Moreover, because misTTR was hydrolyzed by unfractionated IgMs without removal of any serum components, the IgMs are insensitive to serum protease inhibitors. We cannot exclude the possibility of a serum cofactor that enhances IgM catalysis, because the hydrolytic activity of unfractionated serum per unit IgM mass exceeded that of pure plgM from the same serum by 4.5-fold (7.2 and 1.6 nM/µg of IgM/h, respectively; this is a valid comparison because nearly all of the serum hydrolytic activity is due to the IgMs). Catabody-activating cofactors were described previously (44, 45). Alternatively, because catabodies are sensitive to conformational perturbations (29), the acid elution procedure employed for IgM purification may attenuate the hydrolytic activity.

The plgM hydrolytic activity was saturable with increasing misTTR concentration (Table 3). In addition to misTTR, the plgMs hydrolyzed small peptide substrates, a reaction that reports the catalytic subsite properties independent of noncovalent epitope binding (1, 46). The apparent K_m for misTTR was 92-fold lower than that of EAR-AMC, a small peptide hydrolyzed by IgMs at the Arg-AMC bond, suggesting selective IgM-misTTR recognition (K_m approximates K_p the equilibrium dissociation constant). Diffusional restrictions known to decelerate enzymatic conversion of particulate substrates compared with soluble substrates (47, 48) probably limit the rate of particulate misTTR hydrolysis by the IgMs. The plgM preparations are mixtures of individual IgM subsets, and misTTR is a mixture of multiple misTTR aggregation states. The apparent kinetic constants, therefore, are average values for hydrolysis of multiple misTTR species by multiple IgMs.

misTTR-directed B Cells and mlgMs—The reactivity of mlgMs expressed as BCRs in healthy humans often indicates initial antibody specificity prior to contact with external cellular antigens. The mlgMs could thus be expected to be engaged by soluble TTR species, as well as by TTR amyloid deposited in tissue. The mlgMs as a class showed hydrolytic activity that was comparable with that of the plgM preparations (Fig. 3F). The mlgMs were generally less active than the plgM preparations, a result not unexpected because the mlgMs could be derived not only from healthy donors but also from patients with amyloidosis and other pathologies. Close inspection of the hydrolytic activities of mlgMs (Fig. 3F) revealed that the mlgM from patient 1 (40) exceeded that of the IgM from healthy human donors by 4-fold and that of the IgM from patient 2 (41) exceeded that of healthy human donors by 6-fold. This activity is comparable with that of plgM preparations isolated from healthy human donors (Fig. 3E). Further investigation of the mlgMs will provide insight into their role in the pathogenesis of transthyretin amyloidosis.
immunogens. The E-misTTR analog contains electrophilic phosphonates that bind covalently to nucleophilic BCR sites responsible for catalysis, permitting identification of misTTR-selective B cells without loss of the bound probe due to peptide-bound hydrolysis. Flow cytometry identified a discrete IgM+ B cell population with saturable binding activity for E-misTTR that was inhibited by competitor misTTR but not the irrelevant protein ovalbumin (Fig. 4A). The intensity of E-misTTR staining differed over 2 log orders, suggesting the variable E-misTTR reactivity of individual B cells. Saturable E-phyTTR binding by the B cells was negligible, indicating selective recognition of the E-misTTR probe (Fig. 4B). Most of the E-misTTR binding sites were colocalized with cell surface IgM, consistent with BCR recognition of the misTTR (Fig. 4C, image 3 is a merged rendition).

A panel of mIgMs secreted by cancerous B cells from patients with Waldenström macroglobulinemia without TTR amyloidosis was applied as a model for individual IgMs present in

![Transthyretin Amyloid-selective Catabodies](image)

FIGURE 3. Characterization of polyclonal IgM hydrolytic activity. A, comparison of hydrolytic activity of individual pIgM preparations (90 μg/ml) from non-aged (<35 years, n = 12) and aged humans (>70 years, n = 20) determined by electrophoresis. Shown are the hydrolysis levels estimated using the preaggregated 125I-TTR substrate (160 nm; misTTR content, 60%; 18-h incubation) and non-boiled reaction mixtures. B, rates of preaggregated 125I-TTR hydrolysis by MMP9 and pIgM (left axis). MMP9 and pIgM concentrations were 133 nm. Other conditions were as in A. T50 (right axis) is the time required to hydrolyze 50% of 1 nm misTTR at the MMP9 or pIgM concentrations in blood (3.2 nm and 2.2 μM, respectively, computed from the equation, S = S0(1 − e−kt/τ), where S0 is substrate concentration at time 0, E0 is the enzyme concentration at time 0, k is the second order rate constant derived from the equilibrium binding and catalytic constants, and t is reaction time). Inset, SDS gel showing reduced 1-mer misTTR band following MMP9 treatment (lane 2) compared with diluted treatment (lane 1). C, pIgM immunoadsorption. misTTR hydrolysis by unfractionated human serum and Ab-free serum was measured as in A. The protein content of unfractionated serum (diluted 1:100) and the antibody-free serum was adjusted to be identical (1.14 mg/ml). IgM concentrations in hydrolysis assays using unfractionated serum and antibody-free serum were 20 and <0.01 μg/ml, respectively. Data are expressed as percentage depletion of the 1-mer misTTR band compared with the control substrate reaction mixture treated with diluent (100% value = 22.5 ± 5.6%)%.

TABLE 3 Apparent kinetic parameters for hydrolysis of preaggregated TTR by polyclonal IgM

Substrate	K_m (nM)	V_{max} (nM)
Preaggregated TTR	1.3 ± 0.3	269.3 ± 15.8
EAR-AMC	120 ± 11	44,352 ± 1,584

K_m is reported as μM substrate. V_{max} is reported as μM substrate hydrolyzed over 5 days (IgM half-life in blood) at the IgM concentration in blood (2 mg/ml). Values are from hydrolytic rates at increasing concentrations of preaggregated 125I-TTR fitted to the Michaelis-Menten equation (160 nm) to 144 μM, misTTR content 60%; r² = 0.94). IgM, 70 μg/ml.

MAY 9, 2014 • VOLUME 289 • NUMBER 19

JOURNAL OF BIOLOGICAL CHEMISTRY 13249

ASBMB

Transthyretin Amyloid-selective Catabodies
Transthyretin Amyloid-selective Catabodies

A	B	C	D
![Image 1](image1.png) | ![Image 2](image2.png) | ![Image 3](image3.png) | ![Image 4](image4.png)

FIGURE 4. Selective misTTR recognition by B cells and monoclonal IgMs. A, selective E-misTTR binding by human IgM B cells. Profile of PECy7-SA-stained IgM B cells treated with E-misTTR in diluent or excess non-biotinylated misTTR. The dotted area represents IgM B cells with saturable E-misTTR binding activity (45% of total IgM B cells). E-misTTR binding was not affected in the presence of excess ovalbumin (Ova). B, nearly equivalent binding of the cells to E-phyTTR was evident in diluent and in the presence of excess phyTTR, suggesting the absence of saturable E-phyTTR reactivity. C, E-misTTR binding to IgM B cells. Deconvoluted images show an IgM B cell stained with FITC-conjugated antibody to IgM (image 1, green), the cell stained with PECy7-SA to visualize E-misTTR binding (image 2, red), the merged rendition (image 3), and the reconstituted three-dimensional model suggesting E-misTTR binding to cell surface BCRs (image 4). Blue countstain, 4′,6-diamidino-2-phenylindole; magnification, ×60. D, misTTR hydrolysis by monoclonal IgM 1802. The reaction mixtures of preaggregated or non-aggregated 125I-TTR (100 nM) treated with diluent or hydrolytic mIgM 1802 (18 h, 60°C) were boiled, thereby dissociating both phyTTR and misTTR into 1-mers (14 kDa). IgM 1819 is one of four IgMs devoid of misTTR hydrolytic activity. Inset, electrophoresis gel showing preaggregated 125I-TTR treated with IgM 1802 (lane 2) or IgM 1819 (lane 2) and non-aggregated 125I-TTR treated with mlgM 1802 (lane 3) or mlgM 1819 (lane 4). Product profiles were similar to the polyclonal IgM digests. E, time-dependent misTTR hydrolysis. mlgM 1802 treatment (120 μg/ml) depleted the 1-mer band derived from misTTR but not the 4-mer phyTTR band visualized by electrophoresis (assay conditions as in A). Insets, electrophoresis gel cut-outs of the 4-mer phyTTR band and 1-mer misTTR band at the four time points tested (left to right: 0, 18, 54, and 154 h). Error bars, S.D.

the plgM preparations. Twelve of 16 mlgMs hydrolyzed preaggregated 125I-TTR (Table 2). The hydrolytic rates were highly variable (undetectable to 2.98 nM/h), consistent with the prediction of differing catalysis by individual cata-

From mutagenesis (43), epitope mapping (49), and protease inhibitor studies (50), we proposed the split site catalysis model (Fig. 5A), involving discrimination between structurally dis-

tent selectivity and product fragment profiles suggest a shared structural basis for mlgM and plgM catalysis.

The panel is assumed to be a random collection of mlgMs. There is no known relationship between B cell carcinogenicity and IgM catalytic activity or antigenic specificity. Studies to be published elsewhere confirmed secre-

The relationship between B cell carcinogenicity and IgM catalytic activity or antigenic specificity is unclear. Studies to be published elsewhere confirmed secretion of monoclonal IgMs by Epstein-Barr virus-transformed B cells from healthy humans with misTTR-hydrolyzing activity in a range similar to IgMs from Waldenström macroglobulinemia patients (S. A. Planque, S. K. Murphy, S. Sonoda, E. L. Brown, and S. Paul, manuscript in preparation).
hydrolysis by the catalytic subsite efficiency. Importantly, the concentration of misTTR required for detection of hydrolysis was ~3 log orders lower than the EAR-AMC substrate, consistent with selective misTTR recognition. Certain mIgMs with low EAR-AMC hydrolytic activity hydrolyzed misTTR robustly (e.g. IgMs 1811 and 1814 falling outside the regression confidence limits in Fig. 5C), suggesting that hydrolysis can be accelerated due to selective misTTR recognition.

Are the Catabodies Polyreactive? — The complementarity-determining regions (CDRs) of some polyreactive IgMs produced without immunogen stimulation can bind epitopes with no discernible structural similarity (51), a phenomenon that may originate from CDR flexibility and the induced fit binding mechanism. Consistent with previous reports (2, 7), the plgMs and mIgMs did not hydrolyze non-amyloidogenic, non-superantigen proteins from eukaryotic and prokaryotic organisms (Fig. 6A; no hydrolysis of albumin, extracellular epidermal growth factor receptor fragment, ovalbumin, transferrin, collagen adhesion protein, or LukS). Specific catalysis requires spatial coordination between the catabody noncovalent and catalytic subsites (2). The lack of indiscriminate plgM proteolysis may be explained by uncoordinated CDR-based, polyreactive binding activity and catalytic subsite activity.

The misTTR-hydrolyzing mIgM Yvo was reported to hydrolyze Aβ40 and Aβ42 peptides (7), a reactivity pattern reminiscent of antibodies that bind the β-strand conformational epitope of amyloids without dependence on the epitope sequence (52, 53). In contrast, the misTTR hydrolyzing mIgM 1802 did not hydrolyze preaggregated Aβ42 (Fig. 6B), suggesting sequence-selective misTTR recognition. Only 2 of 9 misTTR-hydrolyzing mIgMs tested hydrolyzed Aβ40 (Fig. 6C). Certain misTTR-hydrolyzing mIgMs also hydrolyzed HIV protein gp120, a B cell superantigen (2). Superantigens are recognized noncovalently at the framework regions of reversibly binding antibodies (54–56) and catabodies (57, 58), and the framework regions also play a direct role in peptide bond hydrolysis (43). We studied the correlations between hydrolysis of misTTR, gp120, and another superantigenic protein, S. aureus Protein A (56). A minority of misTTR-hydrolyzing mIgMs hydrolyzed Protein A (3 of 16 IgMs; Fig. 6D) and a majority hydrolyzed gp120 (13 of 16; Fig. 6E). There was no correlation between misTTR and gp120 or Protein A hydrolysis (p > 0.05). Two misTTR-hydrolyzing mIgMs did not hydrolyze Aβ, Protein A, or gp120 (IgM 1802 and 1814). misTTR hydrolysis by this mIgM was inhibited by the alternate substrate Aβ but not gp120 or Protein A (Fig. 6F), suggesting that occupancy of the superantigen-interacting sites does not impede misTTR hydrolysis. The studies indicated variable mIgM reactivity profiles, including mIgMs monoreactive for TTR and mIgMs with amyloid/superantigen-directed oligoreactivity.

misTTR Dissolution — Treatment of a 10-fold molar excess of preaggregated TTR with the hydrolytic mIgM 1802 but not non-hydrolytic IgM 1819 resulted in time-dependent reduction of turbidity to the nearly basal value of non-aggregated TTR (Fig. 7A). ThT binding by preaggregated TTR, an indicator of β-sheet content, was also reduced to the nearly basal value by the hydrolytic but not the non-hydrolytic mIgM (Fig. 7B). The observed dissolution rate is diffusion-restricted by the particulate substrate character, and the dissolution process probably proceeds through a series of hydrolytic reactions, eventually converting particulate misTTR to soluble products. The
Transferrin Amyloid-selective Catabodies

FIGURE 6. Monoreactive and oligoreactive misTTR hydrolyzing monoclonal IgMs. A. no hydrolysis of non-amyloid and non-superantigen proteins. Shown are SDS electrophoresis gels containing reaction mixtures of the following biotinylated proteins treated for 22 h with IgM (pooled from 12 humans) or IgM 1802 (130 μg/ml): extracellular domain of epidermal growth factor receptor (exEGFR), bovine serum albumin (BSA), ovalbumin (OVA), transferrin (Trans), and two S. aureus virulence factors, LukS and collagen adhesion protein CNA. IgM-P1, control reaction mixture containing IgM 1802 inhibited by electrophilic phosphonate 1. B–D, no fibrillar Aβ hydrolysis by IgM 1802. FPLC gel filtration profiles of formic acid-solubilized reaction mixtures containing fibrillar 125I-Aβ (30,000 cpm) treated for 16 h with diluent (B), monomolecular IgM 1802 (120 μg/ml) (C), or the Aβ-hydrolyzing immunoglobulin V domain fragment (IgV 2E6, 10 μg/ml) (D). No depletion of intact 125I-Aβ (computed mass 4,630 Da) or product appearance was evident by IgM treatment, whereas IgV 2E6 generated a radioactive fragment with a mass of 1654 Da corresponding to hydrolysis at the His14–Gln15 bond (29).

mlgMs (130 μg/ml) did not form detectable immune complexes (percentage of soluble and particulate 125I-misTTR binding: hydrolytic IgM 1802, 1.9 ± 1.6 and 0.3 ± 0.1%, respectively; non-hydrolytic IgM 1819, 1.0 ± 2.6 and 1.6 ± 1.6%, respectively). Because the hydrolytic IgM 1802 has no misTTR binding activity and, except for the V domains, is structurally identical to the non-hydrolytic IgM, the dissolution reaction must be due to misTTR digestion.

DISCUSSION

Small misTTR amounts are probably produced as normal byproducts of alternate TTR folding pathways. With advancing age, such misTTR species are thought to serve as seeds for pathological TTR amyloid formation. Our findings suggest physiological production of misTTR-selective IgM catabodies as a first line defense mechanism against TTR amyloidosis. The IgMs hydrolyzed soluble and particulate misTTR but not the non-pathogenic phyTTR tetramer found at micromolar concentrations in blood, suggesting selectivity for an aggregation-induced misTTR neoepitope that is absent in phyTTR. The IgMs, therefore, can degrade misTTR with no danger of saturation by produced misTTR neoepitope that is absent in phyTTR. The IgMs, therefore, can degrade misTTR with no danger of saturation by other mIgMs or microbial superantigens, and other mIgMs recognized these substrates at varying levels. Saturation of oligoreactive IgMs with irrelevant amyloids may limit the misTTR clearance capacity, but this is a threat only in patients with non-TTR amyloid disease. Likewise, superantigens accumulate only during microbial infections, and impairment of misTTR clearance...
is not predicted in the non-infected state. The selectivity properties, therefore, support a role for the IgMs in defense against TTR amyloidosis.

Further evidence for the beneficial IgM role includes the following: (a) preaggregated TTR was dissolved completely by a hydrolytic mIgM; (b) misTTR was degraded at IgM concentrations ~200-fold lower than the blood IgM concentration, and virtually the entire misTTR degradative capacity of serum was attributable to IgMs; (c) the blood IgM concentration exceeds that of non-antibody proteases by several log orders, and pIgMs hydrolyzed misTTR at a rate comparable with that of a non-antibody protease (MMP9); (d) the pIgM hydrolytic activity was refractory to serum inhibitors of non-antibody proteases; and (e) pIgM from different healthy adults hydrolyzed misTTR within a narrow rate range, suggesting stable maintenance of the misTTR hydrolytic activity under disease-free conditions. The beneficial IgM function may extend beyond clearance of blood-borne misTTR. IgMs permeate most anatomic blood-tissue barriers. Lymph from many tissues, a common surrogate for the tissue interstitial fluid, contains IgM in the mg/ml range (59–61), indicating the feasibility of tissue misTTR clearance.

According to the acquired immunity paradigm, IgGs with specific binding activity directed to individual target epitopes are produced within a few weeks by the immunogen-driven maturation of antibody light and heavy chain variable domain sequences (V\textsubscript{L} and V\textsubscript{H} domains, respectively). Acquired immunity rules did not yield catabodies capable of complex peptide bond hydrolytic reactions (70). Moreover, the rules provide no basis to anticipate the strict catabody selectivity for misTTR. Because misTTR-directed IgMs are produced by healthy humans without TTR amyloidosis, they are probably produced constitutively without a requirement for acquired immunity processes. Catabody synthesis can occur without immunogen-driven V domain maturation because the serine protease-like nucleophilic sites are encoded by heritable germ line V region.

FIGURE 7. Dissolution of preaggregated TTR by mIgM 1802. A, reduced turbidity. Preaggregated TTR (7.1 μM) was incubated in the presence of hydrolytic mIgM 1802 (120 μg/ml, 0.67 μM), an equivalent non-hydrolytic IgM 1819 concentration, or diluent. mIgM 1802 treatment reduced the turbidity to the basal value observed for control non-aggregated TTR treated with mIgM 1802. Inset, photograph showing turbid misTTR suspension (white precipitates against black background) following incubation in diluent and misTTR dissolution after treatment with the hydrolytic IgM. B, reduced ThT fluorescence. Shown are ThT fluorescence values after treating preaggregated TTR with hydrolytic mIgM 1802, non-hydrolytic mIgM, or diluent for 120 h as in A; mIgM 1802 treatment reduced the ThT fluorescence value to the basal value observed for non-aggregated TTR treated with diluent. Data are corrected for ThT fluorescence of IgMs alone without TTR substrate (64 ± 5 fluorescence units (FU)). Error bars, S.D.
genes (3–6). A germ line Vl gene residue is an essential constituent of the misTTR-hydrolyzing mlgM Yvo catalytic triad (Ser110, IMGT numbering), and the two remaining catalytic residues are evidently acquired during V-(D)-J gene recombination, which occurs prior to contact with the immunogen (Arg112 and Glu113 at the VL-J and VHD-J junctions, respectively (71)). Furthermore, the IgMs are the first antibody class produced by B cells, whereas IgGs generated at the terminal acquired immunity stage are poorly hydrolytic. The antibody C domain scaffold can influence antigen binding at the remote V domain (72). C domain swapping studies indicated loss of catalytic activity at the IgM → IgG class switch step due to the unfavorable effect of the IgG C domains on the V domain catalytic site (28). Detailed information about factors regulating IgM constitutive synthesis is not available. However, IgGs are synthesized at stable levels by germ-free animals (73), and their constitutive production may involve an autonomous B cell developmental program and BCR-independent lymphocyte growth stimulators (74).

In adult humans, IgGs are the dominant blood-borne antibodies, found at 5–6-fold greater concentrations than IgMs. Many IgGs express specific antigen binding activity, consistent with maturation of their V domains by an immunogen-driven somatic mutation process. Such antigen-specific IgGs are the basis of protective responses induced by microbes and vaccines, and numerous antigen-binding monoclonal IgGs are approved for therapeutic use (75). Catalytic IgG preparations from patients with autoimmune disease are reported to hydrolyze self-antigens (8, 76–78), but dysfunctional B cell reactivity in autoimmune disease may contribute to increased catalytic IgG synthesis (8), and the hydrolytic rate of the IgGs is usually lower than that of IgMs (79, 80). Monoclonal IgGs from routine immunization protocols display minimal or no catalytic activity, but their dissociated light subunit frequently hydrolyzes peptide bonds (81–83). Other IgGs generated by healthy humans express low affinities, polyreactive antigen binding profiles (often designated “natural” IgGs) that may originate from the occurrence of class switch recombination in bystander B cells without sufficient mutations in the V domains required to accomplish specific antigen binding (84, 85). The polyreactivity was suggested to contribute in the therapeutic effect of pooled IgGs from healthy humans in patients with bacterial infections and certain autoimmune diseases (commonly known as intra-venous immune globulin or IVIG preparations) (86). The catalytic activity of such IVIG preparations is marginal compared with IgMs (27). Also, the IgMs in the present study display catalytic specificities that are readily distinguishable from the polyreactive IgG binding pattern.

Protein-protein recognition is dictated by sequence-dependent chemical interactions, topographical shape complementarity, and local flexibility of the reacting sites. The amyloid-superantigen link is obvious from mlgMs with oligoreactivity for both protein classes (e.g. mlgM Yvo). Comparison of linear sequences did not indicate a homologous epitope that is shared by TTR, Aβ, Protein A, and gp120 (Fig. 84). Our innate catabody model conceives an initial selectivity-conferring binding step that places the substrate peptide backbone in spatial register with the catabody hydrolytic subsite (8, 43). The oligoreactivity may originate from substrate interactions at a single cross-reactive catabody site or multiple catabody sites with unique ligand preferences. Antibody V domains are described to express multiple ligand-interacting sites outside the classical CDR-based antigen binding pocket (87). For instance, the framework region-based Vl domain sites that recognize Protein A and gp120 are not identical (54, 55), and yet another Vl domain site recognizes the superantigen Protein L (88). Because misTTR hydrolysis by mlgM Yvo was not inhibited competitively by Protein A and gp120, non-identical sites are probably involved in hydrolysis of misTTR versus superantigens. In contrast, Aβ inhibited the hydrolysis of misTTR, suggesting amyloid substrate recognition at a shared IgM site. A precedent for the TTR/Aβ cross-reactive site is available; reversibly binding antibodies can recognize the β-strand conformational epitope found in amyloid proteins with differing sequence (52, 53).

Humans produce no more than 100,000 non-antibody proteins, including all known enzymes and receptors with specificity for a broad range of ligands. The recombined IgM repertoire derived from the germ line V, D, and J segment configurations is far larger (from germ line gene sequences available in IgBLAST, ~4 × 107 Vl-Vl-HV domain pairs derived by recombination of 152 Vl with 19 J genes and recombination of 273 VH genes with 34 D and 13 J genes; this estimate excludes further repertoire expansion occurring during the junctional diversification process). We suggest the human germ line IgM repertoire as a source of catabodies with functionally useful selectivity for individual substrates developed by Darwinian immune evolution (Fig. 8B). Like the misTTR-selective catabodies, the innate character of catabodies to Aβ is evident from superior Aβ hydrolysis by IgMs compared with IgGs and by production of Aβ binding and hydrolyzing antibodies by healthy humans without amyloidosis (7, 89). Jawed fish, the first extant organisms with an immune system orthologous to humans, produce TTR and Aβ with sequences similar to their human counterparts (Fig. 8C). Because tissue amyloid deposition has no known benefit in eukaryotes, the catabodies may have evolved to retard amyloidosis. Amyloids of 27 proteins can accumulate to pathogenic levels, causing premature senescence and disease (11). Proteins accumulate in the amyloid state within minutes to days in vitro, suggesting the existence of functionally important mechanisms that maintain amyloids at non-toxic levels in vivo. Amyloidosis occurring prior to reproduction will jeopardize survival of the species. Increased misfolded protein levels can be detected years prior to the appearance of disease symptoms (e.g. toxic Aβ oligomers in middle-aged humans (90) and particular Aβ deposits in reproducing monkeys (91)). Moreover, young humans are susceptible to amyloidosis in conjunction with cardiovascular disease, infections, cancer, and exposure to environmental toxins (92–94) (e.g. atrial natriuretic peptide amyloidosis in congestive heart failure (95)). These arguments support the potential role of innate amyloid-clearing catabodies in furnishing an evolutionary survival advantage. Catabodies to the superantigens HIV gp120 (2, 96), S. aureus Efb (97), and S. aureus Protein A (present report) may serve as innate defense mediators against microbes. Superantigens, however, down-regulate acquired B- and T-cell immunity, and the survival
advantage for the microbe gained by evading host acquired immunity (56) may trump the protective function of anti-superantigen catabodies.

In summary, our findings indicate the physiological production of misTTR-selective catabodies. Unlike other approaches to suppression of TTR amyloidosis, the catabodies remove misTTR without interfering in the essential functions of the properly folded TTR state. The misTTR-hydrolyzing IgMs, therefore, hold potential for developing a safe treatment for TTR amyloidosis. Several monoclonal IgMs have been approved in the United States for human tests, and pentamer IgM-containing polyclonal antibodies are approved for human therapy in Europe (98). Converting pentamer IgM to the monomer IgM state does not compromise the catalytic activity (1), and monomer IgMs can be considered as candidate therapeutic reagents. Small amounts of IgM monomers are found physiologically in humans (99), and lower organisms produce larger monomer IgM amounts (100). In addition, highly catalytic single VL domains and paired VL domains can be engineered (8, 29) as candidate drugs from the misTTR-hydrolyzing IgMs.

Acknowledgments—We thank Aubrey de Grey for comments and discussion and Heather Essigmann for assistance in sequence analysis. We thank Brian Poindexter for assistance in confocal microscopy studies. Flow cytometry was done at the Baylor College of Medicine Cytometry and Cell Sorting Core.

REFERENCES
1. Planque, S., Bangale, Y., Song, X. T., Karle, S., Taguchi, H., Poindexter, B., Bick, R., Edmundson, A., Nishiyama, Y., and Paul, S. (2004) Ontogeny of proteolytic immunity: IgM serine proteases. J. Biol. Chem. 279, 14024–14032
Transthyretin Amyloid-selective Catabodies

2. Paul, S., Karle, S., Plancque, S., Taguchi, H., Salas, M., Nishiyama, Y., Handy, B., Hunter, R., Edmundson, A., and Hanson, C. (2004) Naturally occurring proteolytic antibodies: selective immunoglobulin M-catalyzed hydrolysis of HIV gp120. *J. Biol. Chem.*, 279, 39611–39619

3. Goloblov, G., Sun, M., and Paul, S. (1999) Innate antibody catalysis. *Mol. Immunol.*, 36, 1215–1222

4. Sharma, V., Heriot, W., Trisler, K., and Smider, V. (2009) Human germ line antibody light chain with hydrolytic properties associated with multimerization status. *J. Biol. Chem.*, 284, 33079–33087

5. Hifumi, E., Honjo, E., Fujimoto, N., Arakawa, M., Nishizono, A., and Uda, T. (2012) Highly efficient method of preparing human catalytic antibody light chains and their biological characteristics. *FASEB J.*, 26, 1607–1615

6. Le Minoux, D., Mahendra, A., Kaveri, S., Linnios, N., Friboulet, A., Avalle, B., Boquet, D., Lacroix-Desmazes, S., and Padelleau-Lefèvre, S. (2012) A novel molecular analysis of genes encoding catalytic antibodies. *Mol. Immunol.*, 50, 160–168

7. Taguchi, H., Planque, S., Nishiyama, Y., Symersky, J., Boivin, S., Szabo, P., Friedland, R. P., Ramsland, P. A., Edmundson, A. B., Wexler, M. E., and Paul, S. (2008) Autoantibody-catalyzed hydrolysis of amyloid β peptide. *J. Biol. Chem.*, 283, 4714–4722

8. Paul, S., Planque, S. A., Nishiyama, Y., Hanson, C. V., and Massey, R. J. (2012) Nature and nurture of catalytic antibodies. *Adv. Exp. Med. Biol.*, 750, 56–75

9. Paul, S., Volle, D. J., Beach, C. M., Johnson, D. R., Powell, M. J., and Massey, R. J. (1989) Catalytic hydrolysis of vasoactive intestinal peptide by human antoantibody. *Science*, 244, 1158–1162

10. Shuster, A. M., Goloblov, G. V., Kvashuk, O. A., Bogomolova, A. E., Smirnov, I. V., and Gabibov, A. G. (1992) DNA hydrolyzing autoantibodies. *Science*, 256, 665–667

11. Buxbaum, J. N. (2003) Diseases of protein conformation: what do *in vitro* experiments tell us about *in vivo* diseases? *Trends Biochem. Sci.*, 28, 585–592

12. Buxbaum, J. N., and Reixach, N. (2009) Transthyretin: the servant of many masters. *Cell Mol. Life Sci.*, 66, 3095–3101

13. Takeuchi, M., Mizuguchi, M., Kouno, T., Shibahara, Y., Aizawa, T., De- mura, M., Mori, Y., Shinoda, H., and Kawano, K. (2007) Destabilization of transthyretin by pathogenic mutations in the DE loop. *Proteins*, 66, 716–725

14. Quintas, A., Vaz, D. C., Cardoso, I., Saraiva, M. J., and Brito, R. M. (2001) Tetramer dissociation and monomer partial unfolding precedes proti- bril formation in amyloidogenic transthyretin variants. *J. Biol. Chem.*, 276, 27207–27213

15. Hurshman, A. R., White, J. T., Powers, E. T., and Kelly, J. W. (2004) Transthyretin aggregation under partially denaturing conditions is a downhill polymerization. *Biochemistry*, 43, 7365–7381

16. Kingsbury, J. S., Laue, T. M., Chase, S. F., and Connors, L. H. (2012) Detecting of high-molecular-weight amyloid serum protein complexes using biological on-line tracer sedimentation. *Anal. Biochem.*, 425, 151–156

17. Sueyoshi, T., Ueda, M., Jono, H., Irie, H., Sehgal, A., Meyers, R. E., Chen, Q., Borland, T., Hutabarat, R. M., Clausen, V. A., Alvarez, R., Fitzgerald, K., Gamba-Vitalo, C., Nochur, S. V., Vaishnaw, A. K., Sah, D. W., Gollob, J. A., and Subh, O. B. (2013) Safety and efficacy of RNAi therapy for transthyretin amyloidosis. *N. Engl. J. Med.*, 369, 819–829

18. Coelho, T., Maia, L. F., Martins da Silva, A., Waddington Cruz, M., Planté-Bordeneuve, V., Lozeron, P., Suhr, O. B., Campistol, J. M., Con- ceição, I. M., Schmidt, H. H., Trigo, P., Kelly, J. W., Labaudinière, R., Chan, J., Packman, J., Wilson, A., and Grogan, D. R. (2012) Tafamidis for transthyretin familial amyloid polyneuropathy: a randomized, controlled trial. *Neurology*, 78, 795–792

19. Westermark, P., Bergstro¨m, J., Solomon, A., Murphy, C., and Sletten, K. (2008) Tabulation of human transthyretin (TTR) variants. *Amyloid*, 15, 104–184

20. Paul, S., Plancque, S., de Pedro, C., Watkins, K. L., Furumoto, T., Shono, M., Obayashi, K., Nakashima, T., Sugawara, K., and Ando, Y. (2012) Antibody therapy for familial amyloidotic polyneuropathy. *Amyloid*, 19, 45–46

21. Connors, L. H., Lim, A., Prokaeva, T., Roskens, V. A., and Costello, C. E. (2003) Tabulation of human transthyretin (TTR) variants. *Amyloid*, 10, 160–184

22. Coelho, T., Adams, D., Silva, A., Lozeron, P., Hawkins, P. N., Mant, T., Perez, J., Chiesa, J., Warrington, S., Tranter, E., Munisamy, M., Falzone, R., Harrop, J., Cebelski, J., Betencourt, B. R., Geissler, M., Butler, J. S., Sehgal, A., Meyers, R. E., Chen, Q., Borland, T., Hutabarat, R. M., Clausen, V. A., Alvarez, R., Fitzgerald, K., Gamba-Vitalo, C., Nochur,
Transthyretin Amyloid-selective Catabodies

(2011) Proteolytic antibodies activate factor IX in patients with acquired hemophilia. *Blood* **117**, 2257–2264

79. Andrievskaya, O. A., Buneva, V. N., Naumov, V. A., and Nevinsky, G. A. (2000) Catalytic heterogeneity of polyclonal RNA-hydrolyzing IgM from sera of patients with lupus erythematosus. *Med. Sci. Monit.* **6**, 460–470

80. Savleiev, A. N., Iven, D. R., Kulminskaya, A. A., Ershova, N. A., Kanyshkova, T. G., Buneva, V. N., Mogelnitskii, A. S., Doronin, B. M., Favorova, O. O., Nevinsky, G. A., and Neustroev, K. N. (2003) Amylolytic activity of IgM and IgG antibodies from patients with multiple sclerosis. *Immunol. Lett.* **86**, 291–297

81. Gao, Q. S., Sun, M., Tyutyulkova, S., Webster, D., Rees, A., Tramontano, A., Massey, R. J., and Paul, S. (1994) Molecular cloning of a proteolytic antibody light chain. *J. Biol. Chem.* **269**, 32389–32393

82. Uda, T., and Hifumi, E. (2004) Super catalytic antibody and antigenase. *J. Biosci. Bioeng.* **97**, 143–152

83. Hifumi, E., Morihara, F., Hatutchi, K., Okuda, T., Nishizono, A., and Uda, T. (2008) Catalytic features and eradication ability of antibody light chain UA15-L against *Helicobacter pylori*. *J. Biol. Chem.* **283**, 899–907

84. Coutinho, A., Kazatchkine, M. D., and Avrameas, S. (1995) Natural autoantibodies. *Curr. Opin. Immunol.* **7**, 812–818

85. Bayry, J., Misra, N., Dasgupta, S., Lacroix-Desmazes, S., Kazatchkine, M. D., and Kaveri, S. V. (2005) Natural autoantibodies: immune homeostasis and therapeutic intervention. *Expert Rev. Clin. Immunol.* **1**, 213–222

86. Kaveri, S. V. (2012) Intravenous immunoglobulin: exploiting the potential of natural antibodies. *Autoimmun. Rev.* **11**, 792–794

87. Kohler, H., and Paul, S. (1998) Superantibody activities: new players in innate and adaptive immune responses. *Immunol. Today* **19**, 221–227

88. Graille, M., Harrison, S., Crump, M. P., Findlow, S. C., Housden, N. G., Muller, B. H., Battail-Poirot, N., Sibaï, G., Sutton, B. J., Taussig, M. J., Jolivet-Reynaud, C., Gore, M. G., and Stura, E. A. (2002) Evidence for plasticity and structural mimicry at the immunoglobulin light chain-protein L interface. *J. Biol. Chem.* **277**, 47500–47506

89. Maftei, M., Thurm, F., Leiper, V. M., von Armin, C. A., Elbert, T., Przybylski, M., Kolassa, I. T., and Manea, M. (2012) Antigen-bound and free β-amyloid autoantibodies in serum of healthy adults. *PLoS One* **7**, e44516

90. Lesnö, S. E., Sherman, M. A., Grant, M., Kuskowski, M., Schneider, J. A., Bennett, D. A., and Ashe, K. H. (2013) Brain amyloid-β oligomers in ageing and Alzheimer’s disease. *Brain* **136**, 1383–1398

91. Kalinin, S., Willard, S. L., Shively, C. A., Kaplan, J. R., Register, T. C., Jorgensen, M. J., Polak, P. E., Rubinstein, I., and Feinstein, D. L. (2013) Development of amyloid burden in African Green monkeys. *Neurobiol. Aging* **34**, 2361–2369

92. Lane, T., Loeffler, J. M., Rowczynski, D. M., Gilbertson, J. A., Bybee, A., Russell, T. L., Gillmore, J. D., Wechalekar, A. D., Hawkins, P. N., and Lachmann, H. J. (2013) AA amyloidosis complicating the hereditary periodic fever syndromes. *Arthritis Rheum.* **65**, 1116–1121

93. Abdallah, E., and Waked, E. (2013) Incidence and clinical outcome of renal amyloidosis: a retrospective study. *Saudi J. Kidney Dis. Transpl.* **24**, 950–958

94. Calderón-Garciduenas, L., Franco-Lira, M., Mora-Tiscareño, A., Medina-Cortina, H., Torres-Jardón, R., and Kavanaugh, M. (2013) Early Alzheimer’s and Parkinson’s disease pathology in urban children: friend versus foe responses: it is time to face the evidence. *Biomed. Res. Int.* **2013**, 161687

95. Millucci, L., Ghezzi, L., Bernardini, G., Braconi, D., Tanganelli, P., and Santucci, A. (2012) Prevalence of isolated atrial amyloidosis in young patients affected by congestive heart failure. *Scientific World Journal* **2012**, 293863

96. Planque, S., Mitsuda, Y., Taguchi, H., Salas, M., Morris, M. K., Niehiyama, Y., Kyle, R., Okhuysen, P., Escobar, M., Hunter, R., Sheppard, H. W., Hanso, C., and Paul, S. (2007) Characterization of gp120 hydrolysis by IgA antibodies from humans without HIV infection. *AIDS Res. Hum. Retroviruses* **23**, 1541–1554

97. Brown, E. L., Nishiyama, Y., Dunkle, J. W., Aggarwal, S., Planque, S., Watanabe, K., Csencsits-Smith, K., Bowden, M. G., Kaplan, S. L., and Paul, S. (2012) Constitutive production of catalytic antibodies to a *Staphylococcus aureus* virulence factor and effect of infection. *J. Biol. Chem.* **287**, 9940–9951

98. Kreymann, K. G., de Heer, G., Nierhaus, A., and Kluge, S. (2007) Use of polyclonal immunoglobulins as adjunctive therapy for sepsis or septic shock. *Crit. Care Med.* **35**, 2677–2685

99. Xu, H. J., Umapathysivam, K., McNeilage, J., Gordon, T. P., and Roberts-Thomson, P. J. (1992) An enhanced chemiluminescence detection system combined with a modified immunoblot technique for the detection of low molecular weight IgM in sera from healthy adults and neonates. *J. Immunol. Methods* **146**, 241–247

100. Dooley, H., and Flajnik, M. F. (2006) Antibody repertoire development in cartilaginous fish. *Dev. Comp. Immunol.* **30**, 43–56