Crustacean Proteases and Their Application in Debridement

Authors:

Erick Perera, Leandro Rodriguez-Viera, Vivian Montero-Alejo and Rolando Perdomo-Morales

*Correspondence: erick.perera16@gmail.com; erick.perera@csic.es

DOI: https://doi.org/10.21315/tlsr2020.31.2.10

Highlights

- The potential of digestive proteases from tropical crustaceans in debridement is revisited.

- Digestive proteases from tropical crustaceans may have advantages over their cold-adapted counterparts for this and similar uses.

- More research on the biomedical application of digestive enzymes from tropical marine crustaceans is encouraged.
Crustacean Proteases and Their Application in Debridement

1Erick Perera*, 2Leandro Rodriguez-Viera, 3Vivian Montero-Alejo and 3Rolando Perdomo-Morales

1Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal, IATS-CSIC, Castellón, Valencia, Spain
2Center for Marine Research, University of Havana, Havana, Cuba
3Department of Biochemistry, Center for Pharmaceuticals Research and Development, Havana, Cuba

Publication date: 6 August 2020
To cite this article: Erick Perera, Leandro Rodriguez-Viera, Vivian Montero-Alejo and Rolando Perdomo-Morales. (2020). Crustacean proteases and their application in debridement. Tropical Life Sciences Research 31(2): 187–209. https://doi.org/10.21315/tlsr2020.31.2.10
To link to this article: https://doi.org/10.21315/tlsr2020.31.2.10

Abstract: Digestive proteases from marine organisms have been poorly applied to biomedicine. Exceptions are trypsin and other digestive proteases from a few cold-adapted or temperate fish and crustacean species. These enzymes are more efficient than enzymes from microorganism and higher vertebrates that have been used traditionally. However, the biomedical potential of digestive proteases from warm environment species has received less research attention. This review aims to provide an overview of this unrealised biomedical potential, using the debridement application as a paradigm. Debridement is intended to remove nonviable, necrotic and contaminated tissue, as well as fibrin clots, and is a key step in wound treatment. We discuss the physiological role of enzymes in wound healing, the use of exogenous enzymes in debridement, and the limitations of cold-adapted enzymes such as their poor thermal stability. We show that digestive proteases from tropical crustaceans may have advantages over their cold-adapted counterparts for this and similar uses. Differences in thermal stability, auto-proteolytic stability, and susceptibility to proteinase inhibitors are discussed. Furthermore, it is proposed that the feeding behaviour of the source organism may direct the evaluation of enzymes for particular applications, as digestive proteases have evolved to fill a wide variety of feeding habitats, natural substrates, and environmental conditions. We encourage more research on the biomedical application of digestive enzymes from tropical marine crustaceans.

Keywords: Crustaceans, Proteases, Thermal Stability, Tropical Species, Trypsin, Debridement

*Corresponding author: erick.perera@csic.es; erick.perera16@gmail.com

© Penerbit Universiti Sains Malaysia, 2020. This work is licensed under the terms of the Creative Commons Attribution (CC BY) (http://creativecommons.org/licenses/by/4.0/).
INTRODUCTION

Given their high enzyme diversity and the feasibility of large-scale fermentation, marine microorganisms are widely used in the exploration of enzyme resources for biotechnological applications (Wang et al. 2016; Lam et al. 2018) as well as in the food industry (Fernandes 2014; Maruthiah et al. 2016). In particular, microorganisms from extreme environments have been receiving increased attention because of the molecular features of their enzymes, which result in high catalytic activity around the boiling and freezing points of water and extreme pH values (Antranikian et al. 2005). Proteases are the largest group of industrial enzymes and have a variety of applications ranging from use in detergents, leather preparation and food processing. During the last decade, marine proteases of non-microbial origin have been assessed for different applications, such as the use of fish (Klomklao 2008; Shahidi & Kamil 2001; Jesus de la Cruz et al. 2018) and crustacean (Rossano et al. 2011) digestive proteases in the food industry. Conversely, digestive proteases from marine organisms have been less applied to the biomedical field.

Proteases in general are not ideal therapeutic agents; they must remain active under optimal conditions in the site of action for a period long enough to ensure adequate pharmacokinetics. Furthermore, proteases can denature, are prone to proteolytic processing, and are susceptible to inhibitors. Another drawback of proteases is their poor cell permeability, thus they cannot reach intracellular targets and are not suited for oral administration, unless intended to act on the gastro-intestinal tract (Aehle 2004). However, there are areas where the use of proteases can be employed successfully such as in topical treatments.

Proteases from a wide variety of marine organisms have been extensively studied in the context of digestion physiology, ecology and aquaculture. In contrast, only a few of these proteases have shown biomedical potential. Trypsin from Atlantic cod (Gadus morhua) has antipathogenic properties due to its ability to cleave proteins from viruses and bacteria and has proven to be effective in wound healing (Gudmundsdóttir et al. 2013; Jesus de la Cruz et al. 2018). Enzymes from some crustaceans have also been evaluated for wound healing (Glyantsev et al. 1997; Kristjansdottir & Gudmundsdottir 2000). Typically, these enzymes come from cold-adapted or temperate species and the biomedical potential of their counterparts from warm environments have received less research attention. Digestive proteases are extremely diverse in both herbivorous and carnivorous marine organisms, and have evolved to cope with a wide variety of dietary habits including detritus feeders and different kinds of scavengers. Therefore, there is still much to learn regarding the richness of digestive enzyme functionalities that occurs in marine organisms with wide-ranging feeding habits and temperature preferences.

This review aims to provide an overview of the unrealised biomedical potential of digestive proteases from marine tropical crustaceans using the debridement application as a paradigm. We discussed different approaches for debridement, the physiological role of enzymes in wound healing, the use of
exogenous enzymes in debridement, and current limitations in the use of cold-adapted enzymes. We show that digestive proteases from tropical crustaceans may have advantages over their cold-adapted and temperate counterparts for these processes and for other biomedical applications as well.

DEBRIDEMENT AS A CASE IN POINT

Debridement

Cutaneous wound healing has been a heated topic in recent decades and has prompted the development of various therapeutic approaches (Zeng et al. 2018). Clinical experience strongly supports that debridement is a necessary component of wound bed preparation in chronic or hard-to-heal wounds (McCallon et al. 2014). Debridement is a technique aimed at removing nonviable, necrotic and contaminated tissue, until surrounding healthy tissue is exposed. Debridement enables the true extent of the wound to be understood, allows drainage of exudates and removal of dead tissue, enables a deep swab to be taken for culture and in general, encourages healing (Edmonds & Foster 2000; McCallon et al. 2014). Others have suggested that the main reason for debriding a wound is to avoid substratum for bacterial growth (Nano et al. 1996). Different approaches are currently available for debridement such as autolysis, surgical intervention, mechanical methods, biosurgery and enzymatic approaches (Gottrup 2010; Ramundo & Gray 2008; Zeng et al. 2018).

The common practice in wound healing includes initial and ongoing surgical or sharp debridements to remove nonviable tissue, daily saline dressing changes, off loading of pressure and systematic control of infection (Eneroth & van Houtum 2008). Low-frequency ultrasound has been tested as an alternative to surgical wound debridement (Herberger et al. 2011). Another mechanical method is called “wet-to-dry” in which the wound is soaked in saline to moisten hard material before the application of a moist gauze pad over the affected area. When the dressing is changed, the attached devitalised tissue is pulled free. Unlike a cloth, some materials such as monofilament polyester fibres are able to integrate devitalised tissue and debris within their structure (Bahr et al. 2010). Both sharp and wet-to-dry debridements are inexpensive but may remove granulating tissue and are painful for the patient.

Nonsurgical methods of debridement have received attention during the recent, as they promote the body’s own immune system to break down and digest necrotic debris (i.e. autolytic debridement) (McCallon et al. 2014). These methods involve the use of moisture dressings. In general, wound dressing provides wound protection, remove excess exudates its may have anti-microbial properties, have high permeability to oxygen, and are easily removed from the wound site (Zeng et al. 2018). There have been some experiments with polysaccharide beads, which are highly hydrophilic and rapidly absorb exudate from the necrotic sloughy mass.
Hydrogels have proven to be more effective (Eneroth & van Houtum 2008; Edwards & Stapley 2010) and are now recognised as a standard treatment for necrotic wounds (Edwards 2010). Hydrogel compositions vary from sodium carboxymethylcellulose aqueous based-gel (D’Hemecourt 1998) and hydrogel wound dressings (Dumville et al. 2013) to immunomodulating hydrogel with bacteriostatic agents (Dumville et al. 2017). New materials for wound dressings are continuously being developed and include protein-based dressings (Vasconcelos & Cavaco-Paulo 2011), or the combination of natural origin components with nanostructured materials (Andreu et al. 2015). In general, all these are gentle debriders as they keep the affected area moist so that natural enzymatic reactions can take place (Edwards, 2010; Zeng et al. 2018) though they are slow, require multiple dressing applications, and may not be effective for patients with compromised immune system (McCallon et al. 2014).

Enzymes in Debridement

It is known that wound debridement requires multiple proteinase specificities to degrade the eschar and that these enzymes are supplied by inflammatory leucocytes infiltrating the eschar from the wound bed (Thomas et al. 1999). Re-epithelialisation is also dependent on the activity of different proteolytic enzymes. During the initial re-epithelialisation of cutaneous wounds, the migrating epidermis reaches the granulation tissue and then dissects the fibrin clot from viable tissue (Clark 1997; Kubo et al. 2001). This process is partially mediated by fibrinolytic activity necessary for the wound epidermis to cleave fibrin from its migratory pathway (Rømer et al. 1996) and metalloproteinases that are important for keratinocyte penetration under the fibrin clot (Saarialho-Kere et al. 1993: 1994). Trypsin activity is known to favour fibrocyte differentiation, while proteases with other specificities such as pepsin, endoprotease GluC, and chymotrypsin do not promote this process (White et al. 2013). Matrix metalloproteinases are also crucial in the synthesis, degradation, cross-linking, and reorientation (i.e. remodeling) of collagen during the last stages of healing (Satish & Kathju 2010; Robichaud et al. 2011). Thus, natural debridement and subsequent re-epithelialisation can be referred to as enzymatic processes.

One method of debridement is the use of the insect maggot (*Lucilia sericata*), referred to as larval therapy or biologic debridement. In this process, the maggot breaks down biofilms of various bacteria and their actions seem to be limited to the necrotic wound while sparing the healthy tissue, thus it is a selective method. This method was widely practiced in the past and is now gaining renewed attention (Eneroth & van Houtum 2008; Gottrup & Jørgensen 2011). There is now strong evidence for the biochemical mechanisms underlying the success of this method (Smith et al. 2006). Maggot excretions and secretions contain allantoin, sulfhydryl radicals, calcium, cysteine, glutathione, embryonic growth stimulating substance, growth stimulating factors for fibroblasts, carboxypeptidases A and B, leucine aminopeptidase, collagenase, and proteases (trypsin, chymotrypsin, metalloproteinase and aspartyl proteinase) (Gupta 2008).
These maggot proteinases hydrolyse fibrin clots, and its chymotrypsin-like fraction degrades extracellular matrix components such as fibronectin, laminin and acid-solubilised collagen types I and III (Chambers et al. 2003). Due to the relevance of chymotrypsin activity for maggot debridement, a chymotrypsin I from maggot was manufactured as a recombinant enzyme and proved to digest chronic wound eschar \textit{ex vivo} (Telford et al. 2011). Although this chymotrypsin was inhibited by alpha-2-macroglobulin, it was unaffected by main inhibitors in wound eschar (alpha-1-antichymotrypsin and alpha-1-antitrypsin), which is different from the effect of these inhibitors on the mammalian equivalent, alpha-chymotrypsin. Maggot chymotrypsin proved to cleave the major proteins from slough/eschar from venous leg ulcers better than chymotrypsins from human and bovine sources (Telford et al. 2010). Other reports support that maggot secretions also stimulate wound healing by promoting different cellular processes such as activation of fibroblast migration, angiogenesis, and production of growth factors within the wound (Nigam & Morgan 2016). The secretions of other insects have also been evaluated as debriders; secretions from the larvae of the blowfly \textit{Calliphora erythrocephala} digested experimental rat skin burn eschar \textit{in vivo} and \textit{in vitro}. Interestingly, there was no evidence of chymotrypsin, elastase, or collagenase in these secretions but enzymes with trypsin, leucine aminopeptidase, and carboxypeptidases A and B activities were found (Vistnes et al. 1981).

Some methods use enzymes directly over the wound and are known as enzymatic debridement (Carson et al. 2003; Hwang & Ivy 2006; Ramundo & Gray 2009). Although the clinical experience suggests that combined therapy (e.g. initial surgical debridement followed by serial enzymatic debridements) is effective for many patients with chronic, indolent, or nonhealing wounds, enzymes may be used as the primary technique in certain cases when surgical debridement is not a good option due to bleeding disorders (Ramundo & Gray 2008), diabetes mellitus (Edwards & Stapley 2010), or complicated anatomy in the case of deeply burned hands (Krieger et al. 2011). Enzymatic debridement such as collagenase ointment and papain-urea-based ointment are more effective for debridement of necrotic tissue from pressure ulcers, leg ulcers, and partial-thickness burn wounds, than standard methods (Marazzi et al. 2006, Ramundo & Gray 2009; Shi & Carson 2009; Shi et al. 2010; Patry & Blanchette 2017). Collagenase (i.e. \textit{Clostridium} collagenase) exhibits activity in the pH range found in most chronic wounds (Shi et al. 2011) and achieves selective debridement by digesting denatured collagen in eschar while sparing non-necrotic tissues (Shi & Carson 2009). Also, a formulation containing streptokinase and streptodornase digests fibrin, collagen and elastin, which are found in the necrotic exudates of wounds. Vibriolysin, a proteolytic enzyme secreted by the marine microorganism \textit{Vibrio proteolyticus} has been evaluated \textit{in vitro} as an enzymatic debridement agent to successfully hydrolyse proteinaceous components of eschar (e.g. fibrin, elastin, collagen) (Durham et al. 1993). Also, a bromelain-based preparation decreased the wound area and skin-graft use (Krieger et al. 2011) and accelerated re-epithelialisation as well (Singer et al. 2011). Bromelain is a mixture of enzymes such as phosphatase, glucosidase, peroxidase, cellulase and escharase, from the fruit or stem of pineapple (Pavan...
et al. 2012). In deep burned hands, the use of the bromelain-based NexoBrid® is promising regarding handling and duration of the treatment, efficiency and selectivity of debridement, healing potential and early rehabilitation (Schulz et al. 2017). Other enzyme formulations have also been applied commercially to the debridement of ulcers including bovine trypsin, bovine or human plasmin, and subtilisin (Aehle 2004; McCallon et al. 2014). Some of these enzymes have also been tested in combination with antimicrobial dressings (Shi et al. 2010). From these methods, collagenase treatment is one of the most commonly used method in clinical practice in conjunction with topical antibiotics. However, available clinical trials present a high risk of bias and more research and adequate reporting of adverse events has been warranted (Patry & Blanchette 2017).

CRUSTACEAN PROTEASES AND THEIR DEBRIDEMENT POTENTIAL

Proteases from Cold-adapted Crustacean Species

Marine enzymes evaluated for debridement applications are from cold-adapted species (Fornbacke & Clarsund 2013). Enzyme mixtures from krill (a small crustacean from cold waters) were tested and proved to be more active than other commonly available proteases used for wound debridement (Mekkes et al. 1997; Mekkes et al. 1998; Hellgren et al. 1986; Anheller et al. 1989; Campell et al. 1987; Westerhof et al. 1990; Hellgren et al. 1991). The predominant activity in the protease extract from krill is trypsin-like activity associated with three serine proteinases, in addition to two carboxypeptidases, A and B (Anheller et al. 1989). There are also some krill enzymes with wide specificity (crustacean serine collagenolytic enzymes or brachyurins Ia). Type Ia brachyurins possess trypsin-, chymotrypsin- and elastase-like activities in addition to their ability to hydrolyse collagen (Barret et al. 1998). These cold-adapted enzymes have low activation energy and high catalytic efficiency (kcat/Km). The structural features of trypsins and other enzymes from cold-adapted organisms, including non-crustacean species, determining their high catalytic efficiency have been discussed extensively (Adekoya et al. 2006; Papaleo et al. 2008). An increased structural flexibility is thought to reduce the activation energy necessary for generating reaction intermediates, resulting in a more efficient substrate turnover, although differences in catalytic efficiency between bovine and cold-adapted salmon trypsins are thought to result from differences in Km (Sekizaki et al. 2000), probably due to variation in the electrostatic potential of the S1-binding pocket (Gorfe et al. 2000). One of the krill enzymes, referred to as euphauserase, has been produced recombinantly in P. pastoris for use in debridement (Kristjansdottir & Gudmundsdottir 2000). Similar efforts were made with cold-adapted cod trypsin. A clinical study using an hydrogel formulation containing cod trypsin on pressure wounds revealed that it was of superior efficacy for wound healing compared to conventional treatments (Mangioli 2004).
In addition to its role in debridement, cod trypsin exhibits anti-pathogenic effects (Gudmundsdóttir et al. 2013).

However, one limitation for the use of cold-adapted enzymes is their poor thermal stability. The activity of cod trypsin is maintained for longer periods at 15°C than at higher temperatures (Stefansson et al. 2010). Another feature of this enzyme (and that from krill) is its susceptibility to autolysis, with several autolytic cleavage sites (Stefansson et al. 2010). It has been proposed that the thermal inactivation of cod trypsin, involving unfolding and autolysis, limits the lifespan of the enzyme in the wound bed, and may decrease the risk of harm the viable tissue (Gudmundsdóttir et al. 2013). However, efforts have been made to increase thermal stability of both cod trypsin (Gudmundsdóttir & Pálsdóttir 2005) and krill euphasierase (Benjamin et al. 2001; Gudmundsdóttir & Pálsdóttir 2005) by site directed mutagenesis, and by covalent chemical modification with oxidised sucrose polymer in the case of the cod enzyme (Venkatesh et al. 2005). However, thermal stability for the krill enzyme only increases from 35°C to 40°C after site directed mutagenesis (Benjamin et al. 2001). In spite of this, it was considered that the best resulting mutant was the one that combines a long lasting high proteolytic activity (one single mutation provided around 25 times more proteolytic stability) with thermal instability, because the latter allows a tighter control of the enzymatic activity during biomedical application (Olivera-Nappa et al. 2013). However, others have proposed that the thermal instability of cold-adapted trypsins represents a drawback for their practical use, taking also into consideration the prospects for its production (de la Cruz et al. 2018). In the case of the krill enzyme, an analysis of a structural model suggested that two residues of loop D (analogous to the autolysis loop of trypsins) might be targets for autolysis and thus, changes were incorporated at these positions; the mutant was more stable against autolysis than the wild-type form of the enzyme during the production of the recombinant (Gudmundsdóttir & Pálsdóttir 2005).

Wide specificity proteases from other crustaceans have been also evaluated as debrider agents. It was reported that the red king crab (Paralithodes camtschaticus) collagenase has higher proteolytic activity toward fibrin clot and necrotic eschar in vitro than four enzyme preparations (trypsin/chymotrypsin, and proteases isolated from Aspergillus terricola, Carica papaya and pseudomonodaceae), and it was tested successfully in a small clinical trial with patients with leg ulcers (Glyantsev et al. 1997). This enzyme is also cold-adapted, thus its stability is affected by high temperatures. In addition, many cold-adapted proteolytic enzymes are negatively affected in acid media (Gudmundsdóttir & Pálsdóttir 2005).

Proteases from Tropical versus Temperate Crustacean Species

Enzymes of organisms from warm environments are often more thermally resistant than cold-adapted enzymes (Table 1). This is thought to results from stronger hydrophobic interactions at the inner protein structure and, in some cases, because of differences in the number of disulfide bridges. Cold-zone fish trypsins
have lower thermal stabilities, in general less than 30°C–40°C, than temperate and tropical fish trypsins (Kishimura et al. 2010). Clear examples for this trend also arise when comparing enzymes from similar crustaceans, even from the same genus, but adapted to different environmental temperature. We have studied trypsins isoenzymes from the tropical lobster *Panulirus argus*. The molecular masses of lobster trypsins range from 35 to 36 kDa. All enzymes have restricted trypsin activity and show the distinctive trypsin preference for Arg over Lys in the P1 position. Optimal pH for most isoforms ranges from 7 to 8, although one trypsin exhibits maximum activity at pH 6–6.5, and this same isoenzyme has double the activity of the other isoforms at pH 5 (Perera et al. 2012). While all *P. argus* trypsins are less efficient than those present in some fish (e.g., *Engraulis japonicus*, Ahsan & Watabe 2001; *Oncorhynchus keta*, Toyota et al. 2007) and cold-adapted crustaceans (e.g., *Euphausia pacifica*, Wu et al. 2008), they are more efficient than bovine trypsin (Rascón et al. 2011). The tropical lobster trypsins were stable at 55°C for at least 60 min and the same was observed for chymotrypsin (Perera et al. 2012). Conversely, a chymotrypsin from the gastric juice of a temperate lobster from the same genus, *Panulirus interruptus*, is inactivated after 20 min at the same temperature (Bibo-Verdugo et al. 2015). The chymotrypsin from *P. interruptus* showed collagenase activity because it presents the same residues in the S1 binding pocket, as does the brachyurin from *Uca pugilator* (Bibo-Verdugo et al. 2015). The same is likely to be true for chymotrypsin from the tropical lobster *P. argus* although functional data are not available.

A trypsin-like enzyme from the blue swimmer crab (*Portunus pelagicus*), adapted to high temperatures, shows only 50% inactivation at 68°C (Dionysius et al. 1993). Conversely, in the temperate crab species *Cancer pagurus*, trypsin activity decreased to 30% at 50°C, losing the activity after 10 min at 60°C (Saborowski et al. 2004). Although chymotrypsin in this species was more heat resistant than trypsin, the activity decreased towards 60% of the initial value at 50°C (Saborowski et al. 2004). Trypsins from two hermit crabs, the temperate *Pagurus bernhardus* and the tropical *Clibanarius striolatus*, also differed in their thermal stability (Dittrich 1992). At 50°C, the protease from the tropical crab does not lose any activity after 120 min whereas after this period, only 9% residual activity was found for the enzyme from the temperate species (Dittrich 1992). At the same temperature, proteases from the gastric juice of another temperate crab, *Cancer pagurus*, show reduced activity by about 60% (trypsin) and 40% (chymotrypsin) in 60 min (Saborowski et al. 2004). Another study revealed that digestive alkaline proteases of two cold-water species, the Chilean rock crab (*Cancer edwardsii*) and the southern king crab (*Lithodes santolla*), completely lost their activity after 20 min at 60°C (Bañuelos-Vargas et al. 2018). Conversely, recent studies have shown that trypsin and chymotrypsin activities from a related species, the tropical king crab *Maguimithrax spinosissimus*, remain above 80% after 60 min at 40°C (Rodríguez-Viera et al. unpublished).
Table 1: Thermal properties of crustacean trypsins.

Species	Climate zones	Optimum temperature (°C)	Thermal stability (°C)	References
Panulirus argus (Lobster)	Tropical	60	55	Perera et al. (2012)
Thenus orientalis (Lobster)	–	–	–	Johnston et al. (1995)
Fenneropenaeus indicus	45	35–40		Honjo et al. (1990)
Litopenaeus vannamei (Shrimp)	60\(^a\)	60\(^b\)		\(^a\) Sainz et al. (2004)\(^b\) Senphan et al. (2015)
Penaeus monodon (Shrimp)	55–65	50		Jiang et al. (1991)
Callinectes bellicosus (Crab)	50	40–50		Diaz-Tenorio et al. (2006)
Callinectes arcuatus (Crab)	50	40–50		Diaz-Tenorio et al. (2006)
Callinectes sapidus (Crab)	70	50		Dendinger & O’Connor (1990)
Portunus pelagicus (Crab)	60	65		Dionysius et al. (1993)
Scylla serrata (Crab)	40	60		Serrano (2015)
Maguinithrax spinosissimus	60	40		Rodríguez-Viera et al. (unpublished)
(Crab)				
Clibanarius striolatus (Hermit crab)	50	50		Dittrich (1992)
Macrobrachium rosenbergii (Crayfish)	55	40		Sriket et al. (2012)
Macrobrachium amazonicum	65	55		da Silva Santos et al. (2014)
Tisbe biminiensis (Copepod)	55	50		França et al. (2010)
Farfantepenaeus paulensis	Subtropical	45	40	Buarque et al. (2009)
(Shrimp)				
Procambarus clarkia (Crayfish)	55\(^a\)	45\(^a\)		\(^a\) Kim et al. (1992)\(^b\) Guizani et al. (1992)
	45\(^b\)	45\(^b\)		

(continued on next page)
Studies have been also conducted on Penaeids shrimps because of their importance in aquaculture production worldwide. Each shrimp species has its own optimum temperature range in terms of maximum yield during culture. Trypsin from the tropical penaeid shrimp *Litopenaeus vannamei* is stable up to 60°C, with a residual activity of 95%–99% after 15 min (Senphan et al. 2015). Chymotrypsin from *L. vannamei* is also thermostable, retaining more than 80% of activity after 60 min at 50°C (Hernandez-Cortes et al. 1997). Conversely, the pink shrimp *Farfantepenaeus paulensis* is considered to be suited for culture in subtropical and temperate areas, and its trypsin activity is drastically reduced after 15 min at 45°C (Buarque et al. 2009). Chymotrypsin activity in this shrimp is also affected at 55°C (Buarque et al. 2009). A few other examples are shown in Table 1 with focus on trypsin enzymes. The high thermal stability of digestive proteases from tropical crustaceans would represent an advantage over their cold-adapted or temperate counterparts, as debridement and wound healing proceed better at body temperature in general. It is known that when the temperature of a wound falls below body temperature, healing can be significantly delayed. In fact, some authors have found that wound bed temperatures immediately drop below 33°C after dressing removal, which is the minimal temperature threshold for normal wound healing (McGuiness et al. 2004). On the other hand, tropical lobster (*P. argus*) trypsins are fairly resistant to auto-proteolysis (Perera et al. 2008). Auto-proteolytic stability is a feature shared by different crustaceans from both warm and cold environments (Sainz & Córdova-Murueta 2009; Hehemann et al. 2008). In shrimps, active trypsin can

Species	Climate zones	Optimum temperature (°C)	Thermal stability (°C)	References
Panulirus interruptus (total alkaline protease) (Lobster)	Subtropical/Temperate	50	40	Celis-Guerrero et al. (2004)
Pagurus bernhardus (Hermit crab)		45	40	Dittrich (1992)
Lithodes santolla (total alkaline protease) (Crab)		60	15	Bañuelos-Vargas et al. (2018)
Cancer edwardsii (Crab)		60	45	Bañuelos-Vargas et al. (2018)
Cyrtograpsus angulatus (Crab)	Temperate	45	–	Michiels et al. (2017)
Cancer pagurus (Crab)		–	30	Saborowski et al. (2004)
Paralithodes camtschaticus (Crab)	Temperate/Polar	55	–	Rudenskaya et al. (1998)
Euphausia pacifica (Krill) (Euphausid)	Polar	40–50	20–35	Wu et al. (2008)
be recovered from feces (Córdova-Murueta et al. 2003) and this is likely to be true in other crustaceans. The use of proteases that are both thermostable and resistant to proteolysis in debridement and related treatments is advisable in terms of prolonged therapeutic effects and the possibility of decreasing the frequency of dressing changes due to wound temperature stability considerations (McGuiness et al. 2004).

Another issue related with the use of proteases in debridement and similar applications is the occurrence of protease inhibitors in the intended place of action. In the cold-adapted hermit crab *P. bernhardus*, soybean trypsin inhibitor (SBTI) suppresses the activity to about 5%, whereas in the tropical hermit crabs *C. striolatus* only to 30% (Dittrich 1992). However, differences in the susceptibility to inhibitors between tropical versus temperate crustacean proteases are not clear (Perera et al. 2015). Inhibitor affinity is highly dependent on the structural feature of enzymes. Three-dimensional homology models developed for trypsins from the lobster *P. argus* anticipated structural differences among the iso-enzymes (Perera et al. 2010; 2015) and with trypsin from crayfish (Fodor et al. 2005) in important regions for inhibitor binding (Fodor et al. 2005; Molnár et al. 2013; Díaz-Mendoza et al. 2005). Indeed, the trypsins from *P. argus* differ in their susceptibility to SBTI, with inhibition ranging from 92% to 100% when the inhibitor was tested at a concentration similar to that of Human alpha-1 antitrypsin in human plasma (Perera et al. 2012).

It is known that alpha-1-antitrypsin is degraded and non-functional in chronic wounds but intact and functional in acute wounds, and that the inhibitor protects fibronectin (key component of the provisional matrix in skin wounds) from degradation by wound fluid enzymes (Rao et al. 1995) and improves healing (Rao et al. 1995; Cathomas et al. 2015). In fact, a treatment has been developed that uses alpha-1-antitrypsin for the preparation of a wound dressing composition for the treatment of chronic wounds (Grady et al. 2003). Also, it is known that non-healing leg ulcers have persistently elevated levels of proteases that prevent healing, which degrade growth factors and disrupt the balance between tissue breakdown and repair (McCarty & Percival 2013). For example, matrix metalloproteinase (MMP) activity was observed to be 30-fold higher in chronic wounds than in acute wounds (Trengove et al. 1999). Indeed, high levels of MMP activity and low levels of MMP inhibitor impair wound healing in chronic pressure ulcers (Ladwig et al. 2002). Similar results were reported for elastase activity (Yager et al. 1997). Accordingly, a protease-modulating matrix treatment, which removes proteases from the wound fluid, has been evaluated on venous leg ulcers, although its value is still unclear (Westby et al. 2016). Altogether, these results suggest that the effects of crustacean proteases should be different in chronic and acute wounds, or at different stages of healing, and this merits further examination. The ability of digestive proteases from tropical crustaceans to digest human fibronectin and growth factors also deserve investigation as part of the evaluation of their biomedical potential in wound healing.

To the best of our knowledge, no digestive protease from tropical crustaceans has been evaluated for debridement and wound healing despite the fact that chymotrypsin from the tropical shrimp *L. vannamei* is highly homologous
Type Ib brachyurins (crustacean chymotrypsins) share the specificity of type Ia brachyurins, but with a drastic reduction of trypsin activity. Also, collagenolytic serine proteases from *L. vannamei* are able to digest native porcine type I collagen (Burgos-Hernández *et al.* 2005) as reported for chymotrypsin from another shrimp species, *Penaeus californiensis* (Navarrete-del-Toro *et al.* 2015). Trypsins from the warm water shrimp *Penaeus monodon* also have collagenolytic activity in addition to the typical specificity of trypsin (Lu *et al.* 1990), although a further study suggested that this may occur by activation of procollagenase in the native collagen (Chen *et al.* 1991). Also, one trypsin-like protease from *P. argus* has amino acid substitutions in the vicinity of the active site that may impair the access of bulky residues to the S1 site and make the pocket more hydrophobic, which probably confers elastase-like activity to this enzyme (Perera *et al.* 2010). In addition, as prolonged inflammation characterises chronic wounds, and trypsin from fish are able to degrade inflammatory cytokines (Gudmundsdóttir *et al.* 2013), it is plausible that trypsins from tropical crustaceans may have a similar anti-inflammatory effects.

Altogether, these results indicate that we are far from understanding the true potential for biomedical applications of proteases from tropical crustaceans. In this regard, the identification of potentially useful enzymes according to the thermal habitat and feeding behaviour of the source may direct the discovery of enzymes with desired specificities and physical and chemical properties. For instance, digestive enzymes of tropical crustaceans cleaner organisms (and fish) that feed on dead skin of other fish in cleaning stations (Floeter *et al.* 2007) would be worthy to examine, given their preference for skin proteins as substrates. Examples of these organisms include cleaner shrimps (e.g. *Lysmata* spp., *Periclimenes* spp., *Stenopus* spp.) and fishes such as wrasses and gobies, but global cleaner diversity was recently estimated to be 208 fish species from 36 families and 106 genera, and 51 shrimp species from six families and 11 genera (Vaughan *et al.* 2017). Although not naturally feeding on skin, the use in spa skin treatments of fish such as the toothless *Garra rufa*, which feed on dead skin tissue under conditions of feed scarcity, is interesting (Schets *et al.* 2015). These organisms would be sources of enzymes with different biomedical applications and in particular with debridement and/or wound healing properties.

CONCLUSION AND OPEN ISSUES

Marine organisms contain a great variety of digestive enzymes that have evolved to fulfill their wide variation in feeding habitats, natural substrates in feed, and environmental conditions; thus, they have accumulated millions of years of sequence evolution and structural refinements to achieve this functionality. Unfortunately, few genomic resources are available for marine crustaceans, hindering the screening of enzymes for biomedical application. However, the examination of potentially useful enzymes according to feeding behaviour and thermal habitat of the source

(77%) to crab collagenase (Sellos & Van Wormhoudt 1992).
may direct the discovery of enzymes with desired specificities and physical and chemical properties. This pathway is far from being fully exploited.

The thermal instability of cold-adapted enzymes provides benefits for the food industry because they can be selectively inactivated by mild heat input, which results in the protection of the food being processed (Klomklao 2008; Kuddus 2018). However, this feature remains a drawback for their use in debridement and similar applications. Trypsin and other proteases from tropical crustaceans may have similar specificities to those exhibited by proteases from cold-adapted fish and crustaceans for which wound healing properties have been demonstrated. Moreover, tropical crustaceans have more thermally resistant proteases, and also exhibit autoproteolytic stability; thus, they may have advantages for applications such as debridement and other topical treatments. Also, there are possibilities to extract these enzymes in an environmentally friendly way from the many tons of fishery and aquaculture wastes from both fish and crustaceans. However, in the case of crustaceans, the extraction and applications of chitin, chitosan, and their derivatives in pharmaceuticals and biomedicines have received most of the attention (Nguyen et al. 2017) up to now. There is a potential for the biomedical use of proteases and other enzymes from tropical crustaceans, but most studies have been focused in cold-adapted and temperate species.

ACKNOWLEDGEMENTS

Most of the work performed on the biochemical characterisation of digestive proteases from tropical crustaceans was supported by the International Foundation for Science (No. A/4306-1 and No. A/4306-2) granted to EP, and other support to EP from the Agencia Española de Cooperación Internacional/Asociación Universitaria Iberoamericana de Postgrado (AUIP/AECI) from Spain.

REFERENCES

Adekoya O A, Helland R, Willassen N P and Sylte I. (2006). Comparative sequence and structure analysis reveal features of cold adaptation of an enzyme in the thermolysin family. Proteins 62(2): 435–449. https://doi.org/10.1002/prot.20773
Aehle W. (2004). Enzymes in industry. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.
Ahsan M M and Watabe S. (2001). Kinetic and structural properties of two isoforms of trypsin isolated from the viscera of Japanese anchovy, Engraulis japonicus. Journal of Protein Chemistry 20: 49–58. https://doi.org/10.1023/A:1011005104727
Andreu V, Mendoza G, Arruebo M and Irusta S. (2015). Smart dressings based on nanostructured fibers containing natural origin antimicrobial, anti-inflammatory, and regenerative compounds. Materials(Basel) 8(8): 5154–5193. https://doi.org/10.3390/ma8085154.
Anheller J E, Hellgren L, Karlstam B and Vincent J. (1989). Biochemical and biological profile of a new enzyme preparation from Antarctic krill (E. superba) suitable for debridement of ulcerative lesions. *Archives of Dermatological Research* 281: 105–110. https://doi.org/10.1007/BF00426587

Antranikian G, Vorgias C E and Bertoldo C. (2005). Extreme environments as a resource for microorganisms and novel biocatalysts. *Advanced in Biochemical Engineering/Biotechnology* 96: 219–262. https://doi.org/10.1007/b135786

Bahr S, Mustafi N, Hättig P, Piatkowski A, Mosti G, Reimann K, Abel M, Dini V et al. (2010). Clinical efficacy of a new monofilament fibre-containing wound debridement product. *Journal of Wound Care* 20(5): 242–248. https://doi.org/10.12968/jowc.2011.20.5.242

Bañuelos-Vargas I, Cárdenas-Chávez F, Paschke K, Román-Reyes JC, Salazar-Leyva JA and Martínez-Montaño E. (2018). Partial biochemical characterization of digestive proteases present in the gastric juices of two Chilean crustaceans, *Lithodes santolla* (Molina, 1782) and *Cancer edwardsii* (Bell, 1835). *Latin American Journal of Aquatic Research* 46(2): 289–300. https://doi.org/10.3856/vol46-issue2-fulltext-5

Barret A, Rawlings N and Woessner J. (1998). *Handbook of proteolytic enzymes* (2nd ed.). San Diego: Academic Press.

Benjamin D C, Kristjansdottir S and Gudmundsdottir A. (2001). Increasing the thermal stability of euphauserase. A cold-active and multifunctional serine protease from Antarctic krill. *European Journal of Biochemistry* 268(1): 127–131. https://doi.org/10.1046/j.1432-1327.2001.01857.x

Bibo-Verdugo B, Rojo-Arreola L, Navarrete-del-Toro M A and García-Carreño F. (2015). A chymotrypsin from the digestive tract of California spiny lobster, *Panulirus interruptus*: Purification and biochemical characterization. *Marine Biotechnology (NY)* 17: 416–427. https://doi.org/10.1007/s10126-015-9626-z.

Buarque D S, Castro P F, Santos F M S, Lemos D, Carvalho L B and Bezerra R S. (2009). Digestive peptidases and proteinases in the midgut gland of the pink shrimp *Farfantepenaeus paulensis* (Crustacea, Decapoda, Penaeidae). *Aquaculture Research* 40(7): 861–867. https://doi.org/10.1111/j.1365-2109.2009.02183.x

Burgos-Hernández A, Farias S I, Torres-Arreola W and Ezquerra-Brauer J M. (2005). *In vitro* studies of the effects of aflatoxin B₁ and fumonisin B₁ on trypsin-like and collagenase-like activity from the hepatopancreas of white shrimp (*Litopenaeus vannamei*). *Aquaculture* 250: 399–410. https://doi.org/10.1016/j.aquaculture.2005.05.024

Campell D, Hellgren L, Karlstam B and Vincent J. (1987). Debriding ability of a novel multi-enzyme preparation isolated from Antarctic krill (*Euphausia superba*). *Experientia* 43: 578–579. https://doi.org/10.1007/BF02143592

Carson S N, Wiggins C, Overall K and Hebert J. (2003). Using a castor oil-balsam of peru-trypsin ointment to assist in healing skin graft donor sites. *Ostomy Wound Manage* 49: 60–64.

Cathomas M, Schüller A, Candinas D and Inglis R. (2015). Severe postoperative wound healing disturbance in a patient with alpha-1-antitrypsin deficiency: The impact of augmentation therapy. *International Wound Journal* 12(5): 601–604. https://doi.org/10.1111/iwj.12419

Celis-Guerrero L E, García-Carreño F L and del Toro M A. (2004). Characterization of proteases in the digestive system of spiny lobster (Panulirus interruptus). *Marine Biotechnology (NY)* 6: 262–269. https://doi.org/10.1007/s10126-003-0032-6
Chambers L, Woodrow S, Brown A P, Harris P D, Phillips D, Hall M, Church J C and Pritchard D I. (2003). Degradation of extracellular matrix components by defined proteinases from the greenbottle larva *Lucilia sericata* used for the clinical debridement of non-healing wounds. *British Journal of Dermatology* 148(1): 14–23. https://doi.org/10.1046/j.1365-2133.2003.04935.x

Chen Y L, Lu P J and Tsai I H. (1991). Collagenolytic activity of crustacean midgut serine proteases: comparison with the bacterial and mammalian enzymes. *Comparative Biochemistry and Physiology* 100(4): 763–768. https://doi.org/10.1016/0305-0491(91)90287-N

Clark R A F. (1997). *Wound repair: Lessons for tissue engineering*. In: Lanza R P, Langer R and Chick W (Eds.). *Principles of tissue engineering*. San Diego: Academic Press, 737–768.

Córdova-Murueta J., García-Carreño F L and Navarrete del Toro M A. (2003). Digestive enzymes present in crustaceans feces as tool for biochemical, physiological, and ecological studies. *Journal of Experimental Marine Biology and Ecology* 297(1): 43–56. https://doi.org/10.1016/S0022-0981(03)00355-1

da Silva-Santos F M, Ribeiro K, Vasconcelos de Freitas A C, Bezerra de Carvalho L, Valenti W C and de Souza Bezerra R. (2014). Digestive proteases from wild and farmed male morphotypes of the Amazon River Prawn (*Macrobrachium amazonicum*). *Journal of Crustacean Biology* 34(2): 189–198. https://doi.org/10.1163/1937240X-00002215

de la Cruz K J, Álvarez-González C A, Peña E, Morales-Contreras J A and Ávila-Fernández Á. (2018). Fish trypsins: potential applications in biomedicine and prospects for production. *3 Biotech* 8:186. https://doi.org/10.1007/s13205-018-1208-0

Dendinger J E and O’Connor K L. (1990). Purification and characterization of a trypsin-like enzyme from the midgut gland of the Atlantic blue crab, *Callinectes sapidus*. *Comparative Biochemistry and Physiology* 95B: 525–530. https://doi.org/10.1016/0305-0491(90)90014-K

D’Hemecourt P A, Smiell J and Karim M R. (1998). Sodium carboxymethylcellulose aqueous-based gel vs. becaplermin gel in patients with nonhealing lower extremity diabetic ulcers. *Wounds* 10: 69–75.

Díaz-Mendoza M, Ortego F, García de Lacoba M, Magaña C, de la Poza M, Farínós G P, Cañetá P and Hernández-Crespo P. (2005). Diversity of trypsins in the Mediterranean corn borer *Sesamia nonagrioides* (Lepidoptera: Noctuidae), revealed by nucleic acid sequences and enzyme purification. *Insect Biochemistry and Molecular Biology* 35(9):1005–1020. https://doi.org/10.1016/j.ibmb.2005.04.003

Díaz-Tenorio L M, García-Carreño F L and Navarrete del Toro M A. (2006). Characterization and comparison of digestive proteinases of the Cortez swimming crab, *Callinectes bellicosus*, and the arched swimming crab, *Callinectes arcuatus*. *Invertebrate Biology* 125(2): 125–135. https://doi.org/10.1111/j.1744-7410.2006.00047.x

Dionysius D A, Hoek K S, Milne J M and Slaityer S L. (1993). Trypsin-like enzyme from sand crab (*Portunus pelagicus*): Purification and characterization. *Food Science* 58(4): 780–784. https://doi.org/10.1111/j.1365-2621.1993.tb09357.x

Dittrich B. (1992). Comparative studies on the thermal properties of a trypsin-like protease in two hermit crabs. *Helgolander Meeresunters* 46: 45–52. https://doi.org/10.1007/BF02366211
Dumville J C, Lipsky B A, Hoey C, Cruciani M, Fiscon M and Xia J. (2017). Topical antimicrobial agents for treating foot ulcers in people with diabetes. *Cochrane Database of Systematic Reviews* 6: CD011038. https://doi.org/10.1002/14651858.CD011038.pub2

Dumville J C, O’Meara S, Deshpande S and Speak K. (2013). Hydrogel dressings for healing diabetic foot ulcers. *Cochrane Database of Systematic Reviews* 12: CD009101. https://doi.org/10.1002/14651858.CD009101.pub3

Durham D R, Fortney D Z and Nanney L B. (1993). Preliminary evaluation of vibriolysin, a novel proteolytic enzyme composition suitable for the debridement of burn wound eschar. *Journal of Burn Care & Rehabilitation* 14(5): 544–551. https://doi.org/10.1097/00004630-199309000-00009

Edmonds M and Foster A. (2000). Stage 3. *The ulcerated foot. Managing the Diabetic Foot.* London: Blakewell Science, 45–76.

Edwards J. (2010). Hydrogels and their potential uses in burn wound management. *British Journal of Nursing* 19(11): S12, S14–S16. https://doi.org/10.12968/bjon.2010.19.Sup4.48419

Edwards J and Stapley S. (2010). Debridement of diabetic foot ulcers. *Cochrane Database of Systematic Reviews* 20: CD003556. https://doi.org/10.1002/14651858.CD003556.pub2

Eneroth M and van Houtum W H. (2008). The value of debridement and Vacuum-Assisted Closure (V.A.C.) therapy in diabetic foot ulcers. *Diabetes Metabolism Research and Reviews* 24(Suppl 1): S76–S80. https://doi.org/10.1002/dmrr.852

Fernandes P. (2014). Marine enzymes and food industry: insight on existing and potential interactions. *Frontiers in Marine Science* 1: 46. https://doi.org/10.3389/fmars.2014.00046

Floeter S R, Vázquez D P and Grutter A S. (2007). The macroecology of marine cleaning mutualisms. *Journal of Animal Ecology* 76(1): 105–111. https://doi.org/10.1111/j.1365-2656.2006.01178.x

Fodor K, Harmat V, Hetényi C, Kardos J, Antal J, Perczel A, Patthy A, et al. (2005). Extended intermolecular interactions in a serine protease-canonical inhibitor complex account for strong and highly specific inhibition. *Journal of Molecular Biology* 350(1): 156–169. https://doi.org/10.1016/j.jmb.2005.04.039

Fornbacke M and Clarsund M. (2013). Cold-adapted proteases as an emerging class of therapeutics. *Infectious Diseases and Therapy* 2: 15–26. https://doi.org/10.1007/s40121-013-0002-x

França R C P, Amaral I P G, Santana W M, Souza-Santos L P, Carvalho L B and Bezerra R S. (2010). Proteases from the harpacticoid copepod Tisbe biminiensis: comparative study with enzymes from farmed aquatic animals. *Journal of Crustacean Biology* 30: 122–128. https://doi.org/10.1651/08-3127.1

Glyantsev S P, Adamyan A A and Sakharov Y. (1997). Crab collagenase in wound debridement. *Journal of Wound Care* 6(1): 13–16. https://doi.org/10.12968/jwoc.1997.6.1.13

Gottrup F. (2010). Wound debridement. In: Cherry G W and Hughes M A (Eds.). *The second Oxford European wound healing course handbook.* Oxford, England: Pootif Press, 83–87.

Gottrup F and Jørgensen B. (2011). Maggot debridement: an alternative method for debridement. *ePlasty* 11: e33.
Grady M W, Bloor S and Doyle P J. (2003). Wound healing compositions containing alpha-1-antitrypsin. United States Patent US6638909B1.

Gudmundsdóttir A, Hilmarsson H and Stefansson B. (2013). Potential use of Atlantic cod trypsin in biomedicine. BioMed Research International 2013: 749078. https://doi.org/10.1155/2013/749078

Gudmundsdóttir A and Pálsdóttir H M. (2005). Atlantic cod trypsins: from basic research to practical applications. Marine Biotechnology (NY) 7: 77–88. https://doi.org/10.1007/s10126-004-0061-9

Guizani N, Marshall M R and Wei C I. (1992). Purification and characterization of a trypsin-like enzyme from the hepatopancreas of crayfish (Procambarus clarkii). Comparative Biochemistry and Physiology 103(4): 809–815. https://doi.org/10.1016/0305-0491(92)90197-Y

Gupta A. (2008). A review of the use of maggots in wound therapy. Annals of Plastic Surgery 60(2): 224–227. https://doi.org/10.1097/SAP.0b013e318053eb5e

Hehemann J H, Redecke L, Murugaiyan J, von Bergen M, Betzel C and Saborowski R. (2008). Autoproteolytic stability of a trypsin from the marine crab Cancer pagurus. Biochemical and Biophysical Research Communication 370(4): 566–571. https://doi.org/10.1016/j.bbrc.2008.03.128

Hellgren L, Karlstam B, Mohr V and Vincent J. (1991). Krill enzymes. A new concept for efficient debridement of necrotic ulcers. International Journal of Dermatology 30(2): 102–103. https://doi.org/10.1111/j.1365-4362.1991.tb04219.x

Hellgren L, Mohr V and Vincent J. (1986) Proteases of Antarctic krill; a new system for effective enzymatic debridement of necrotic ulcerations. Experientia 42: 403–404. https://doi.org/10.1007/BF02118628

Herberger K, Franzke N, Blome C, Kirsten N and Augustin M. (2011). Efficacy, tolerability and patient benefit of ultrasound-assisted wound treatment versus surgical debridement: a randomized clinical study. Dermatology 222(3): 244–249. https://doi.org/10.1159/000326116

Hernández-Cortés P, Whitaker J R and García-Carrero F L. (1997). Purification and characterization of chymotrypsin from Penaeus vannamei (Crustacea: Decapoda). Journal of Food Biochemistry 21(1): 497–514. https://doi.org/10.1111/j.1745-4514.1997.tb00202.x

Honjo I, Kimura S and Nonaka M. (1990). Purification and characterization of trypsin-like enzyme from shrimp Penaeus indicus. Nippon Suisan Gakkaishi 56: 1627–1634. https://doi.org/10.2331/suisan.56.1627

Hwang K and Ivy A C. (2006). A review of the literature on the potential therapeutic significance of papain. Annals of the New York Academy of Sciences 54(2): 161–207. https://doi.org/10.1111/j.1749-6632.1951.tb39914.x

Jiang S T, Moody M and Chen H C. (1991). Purification and characterization of proteases from digestive tract of grass shrimp (Penaeus monodon). Journal of Food Science 56(2): 322–326. https://doi.org/10.1111/j.1749-6632.1991.tb05271.x

Johnston D, Hermans J M and Yellowlees D. (1995). Isolation and characterization of a trypsin from the slipper lobster, Thenus orientalis (Lund). Archives of Biochemistry and Biophysics 324(1): 35–40. https://doi.org/10.1006/abbi.1995.9933

Kim H R, Meyers S P and Godber J S. (1992). Purification and characterization of anionic trypsins from the hepatopancreas of crayfish, Procambarus clarkii. Comparative Biochemistry and Physiology 103(2): 391–398. https://doi.org/10.1016/0305-0491(92)90310-N
Kishimura H, Klomklao S, Nalinanon S, Benjakul S, Chun B and Adachi K. (2010). Comparative study on thermal stability of trypsin from the pyloric ceca of threadfin hakeling (Laemonema longipes). Journal of Food Biochemistry 34(1): 50–65. https://doi.org/10.1111/j.1745-4514.2009.00263.x

Klomklao S. (2008). Digestive proteinases from marine organisms and their applications. Songklanakarin Journal of Science and Technology 30(1): 37–46.

Krieger Y, Bogdanov-Berezovsky A, Gurfinkel R, Silberstein E, Sagi A and Rosenberg L. (2011). Efficacy of enzymatic debridement of deeply burned hands. Burns 38(1):108–112. https://doi.org/10.1016/j.burns.2011.06.002

Kristjansdottir S and Gudmundsdottir A. (2000). Propeptide dependent activation of the Antarctic krill euphauserase precursor produced in yeast. European Journal of Biochemistry 267(1): 2632–2639. https://doi.org/10.1046/j.1432-1327.2000.01273.x

Kubo M, Van De Water L, Plantefaber L C, Mosesson M W, Simon M, Tonnesen M G, Taichman L and Clark R A F. (2001). Fibrinogen and fibrin are anti-adhesive for keratinocytes: A mechanism for fibrin eschar slough during wound repair. Journal of Investigative Dermatology 117(6):1369–1381. https://doi.org/10.1046/j.0022-202x.2001.01551.x

Kuddus M. (2018). Cold-active enzymes in food biotechnology: An updated mini review. Journal of Applied Biology & Biotechnology 6(3): 58–63. https://doi.org/10.7324/JABB.2018.60310

Ladwig G P, Robson M C, Liu R, Kuhn M A, Muir D F and Schultz G S. (2002). Ratios of activated matrix metalloproteinase-9 to tissue inhibitor of matrix metalloproteinase-1 in wound fluids are inversely correlated with healing of pressure ulcers. Wound Repair and Regeneration 10(1): 26–37. https://doi.org/10.1046/j.1524-475X.2002.10903.x

Lam M Q, Nik Mut N N, Thevarajoo S, Chen S J, Selvaratnam C, Hussin C, Jamaluddin H and Chong C S. (2018). Characterization of detergent compatible protease from halophilic Virgibacillus sp. CD6. 3 Biotech 8: 104. https://doi.org/10.1007/s13205-018-1133-2.

Lu P J, Liu H C and Tsai I H. (1990). The midgut trypsins of shrimp (Penaeus monodon). High efficiency toward native protein substrates including collagens. Biological Chemistry Hoppe-Seyler 371(2): 851–859. https://doi.org/10.1515/bchm3.1990.371.2.851

McCarty S M and Percival S L. (2013). Proteases and delayed wound healing. Advanced of Wound Care (New Rochelle) 2(8): 438–447. https://doi.org/10.1089/wound.2012.0370

Mangioli M. (2004). Evaluation of an enzyme extracted from fish for topical use in the treatment of pressure sores (unpublished doctoral dissertation), University of Malta, Msida, Malta.

Marazzi M, Stefani A, Chiaratti A, Ordanini M N, Falcone L and Rapisarda V. (2006). Effect of enzymatic debridement with collagenase on acute and chronic hard-to-heal wounds. Journal of Wound Care 15(5): 222–227. https://doi.org/10.12968/jowc.2006.15.5.26910

Maruthiah T, Somanath B, Jasmin J V, Immanuel G and Palavesam A. (2016). Production, purification and characterization of halophilic organic solvent tolerant protease from marine crustacean shell wastes and its efficacy on deproteinization. 3 Biotech 6: 157. https://doi.org/10.1007/s13205-016-0474-y
McCallon S K, Weir D and Lantis J C II. (2014). Optimizing wound bed preparation with collagenase enzymatic debridement. The Journal of the American College of Clinical Wound Specialists 6(1–2): 14–23. https://doi.org/10.1016/j.jccw.2015.08.003

McGuiness W, Vella E and Harrison D. (2004). Influence of dressing changes on wound temperature. Journal of Wound Care 13(9): 383–385. https://doi.org/10.12968/jowc.2004.13.9.26702

Mekkes J R, Le Poole I C, Das P K, Kammeyer A and Westerhof W. (1997). In vitro tissue-digesting properties of krill enzymes compared with fibrinolysin/DNAse, papain and placebo. International Journal of Biochemistry & Cell Biology 29(4): 703–706. https://doi.org/10.1016/S1357-2725(96)00168-9

Mekkes J R, Le Poole I C, Das P K, Bos J D and Westerhof W. (1998). Efficient debridement of necrotic wounds using proteolytic enzymes derived from Antarctic krill: A double-blind, placebo-controlled study in a standardized animal wound model. Wound Repair and Regeneration 6(1): 50–57. https://doi.org/10.1046/j.1524-475X.1998.60108.x

Michiels M S, Del Valle J C and López Mañanes A A. (2017). Trypsin and N-aminopeptidase (APN) activities in the hepatopancreas of an intertidal euryhaline crab: Biochemical characteristics and differential modulation by histamine and salinity. Comparative Biochemistry and Physiology 204A: 228–235. https://doi.org/10.1016/j.cbpa.2016.12.003

Molnár T, Vörös J, Szeder B, Takáts K, Kardos J, Katona G and Gráf L. (2013). Comparison of complexes formed by a crustacean and a vertebrate trypsin with bovine pancreatic trypsin inhibitor: The key to achieving extreme stability? FEBS Journal 280(22): 5750–5763. https://doi.org/10.1111/febs.12491

Nano M, Ricci E, Simone M and Lanzano G. (1996). Collagenase therapy in the treatment of decubitus ulcers. In: Abatangelo G, Donati L and Vanscheidt W. (Eds.). Proteolysis in wound repair. Berlin: Springer. https://doi.org/10.1007/978-3-642-61130-8_6

Navarrete-del-Toro M A, García-Carreño F L, Hernández-Cortés P, Molnár T and Gráf L. (2015). Biochemical characterisation of chymotrypsin from the midgut gland of yellowleg shrimp, Peneaus californiensis. Food Chemistry 173:147–155. https://doi.org/10.1016/j.foodchem.2014.09.160

Nguyen T T, Barber A R, Corbin K and Zhang W. (2017). Lobster processing by-products as valuable bioresource of marine functional ingredients, nutraceuticals, and pharmaceuticals. Bioresources and Bioprocessing 4: 27. https://doi.org/10.1186/s40643-017-0157-5

Nigam Y and Morgan C (2016) Does maggot therapy promote wound healing? The clinical and cellular evidence. Journal of the European Academy of Dermatology and Venereology 30(5): 776–782. https://doi.org/10.1111/jdv.13534

Olivera-Nappe A, Reyes F, Andrews B A and Asenjo J A. (2013). Cold adaptation, Ca2+ dependency and autolytic stability are related features in a highly active cold-adapted trypsin resistant to autoproteolysis engineered for biotechnological applications. PLoS ONE 8(8): e72355. https://doi.org/10.1371/journal.pone.0072355

Papaleo E, Pasi M, Riccardi L, Sambi I, Fantucci P and De Gioia L. (2008). Protein flexibility in psychrophilic and mesophilic trypsins. Evidence of evolutionary conservation of protein dynamics in trypsin-like serine-proteases. FEBS Letters 582(6): 1008–1018. https://doi.org/10.1016/j.febslet.2008.02.048
Patry J and Blanchette V. (2017). Enzymatic debridement with collagenase in wounds and ulcers: A systematic review and meta-analysis. *International Wound Journal* 14(6): 1055–1065. https://doi.org/10.1111/iwj.12760

Pavan R, Jain S, Shraddha and Kumar A. (2012). Properties and therapeutic application of bromelain: A review. *Biotechnology Research International* 2012: 976203. https://doi.org/10.1155/2012/976203

Perera E, Moyano F J, Díaz M, Perdomo-Morales R, Montero-Alejo V, Alonso-Jiménez E, Carrillo O and Galich G. (2008). Polymorphism and partial characterization of digestive enzymes in the spiny lobster *Panulirus argus*. *Comparative Biochemistry and Physiology* 150(3): 247–254. https://doi.org/10.1016/j.cbpb.2008.03.009

Perera E, Pons T, Hernández D, Moyano F J, Martínez-Rodríguez G and Mancera J M. (2010). New members of the brachyurins family in lobster include a trypsin-like enzyme with amino acid substitutions in the substrate-binding pocket. *FEBS Journal* 277(17): 3489–3501. https://doi.org/10.1111/j.1742-4658.2010.07751.x

Perera E, Rodríguez-Casariego J, Rodríguez-Viera L, Calero J, Perdomo-Morales R and Mancera J M. (2012). Lobster (*Panulirus argus*) hepatopancreatic trypsin isoforms and their digestion efficiency. *Biological Bulletin* 222(2): 158–170. https://doi.org/10.1086/BBLv222n2p158

Perera E, Rodríguez-Viera L, Perdomo-Morales R, Montero-Alejo V, Moyano FJ, Martínez-Rodríguez G and Mancera J M. (2015). Trypsin isoforms in the lobster *Panulirus argus* (Latreille, 1804): From molecules to physiology. *Journal of Comparative Physiology* B 185: 17–35. https://doi.org/10.1007/s00360-014-0851-y

Ramundo J and Gray M. (2008). Enzymatic wound debridement. *Journal of Wound Ostomy & Continence Nursing* 35(3): 273–280. https://doi.org/10.1097/01.WON.0000319125.21854.78

———. (2009). Collagenases for enzymatic debridement: A systematic review. *Journal of Wound Ostomy & Continence Nursing* 11: S4–S11. https://doi.org/10.1097/01.WON.0b013e3181bfdf83

Rao C N, Ladin D A, Liu Y Y, Chilukuri K, Hou Z Z and Woodley D T. (1995). Alpha 1-antitrypsin is degraded and non-functional in chronic wounds but intact and functional in acute wounds: The inhibitor protects fibronectin from degradation by chronic wound fluid enzymes. *Journal of Investigative Dermatology* 105(4): 572–578. https://doi.org/10.1111/1523-1747.ep12323503

Rascón A A, Gearin J, Isoe J and Miesfeld R L. (2011). *In vitro* activation and enzyme kinetic analysis of recombinant midgut serine proteases from the dengue vector mosquito *Aedes aegypti*. *BMC Biochemistry* 12: 43. https://doi.org/10.1186/1471-2091-12-43

Robichaud T K, Steffensen B and Fields G B. (2011). Exosite interactions impact matrix metalloproteinase collagen specificities. *Journal of Biological Chemistry* 286: 37535–37542. https://doi.org/10.1074/jbc.M111.273391

Rømer J, Bugge T H, Pyke C, Lund L R, Flick M J, Degen J L and Danú K. (1996). Impaired wound healing in mice with a disrupted plasminogen gene. *Nature Medicine* 2: 287–292. https://doi.org/10.1038/nm0396-287

Rossano R, Larocca M and Riccio P. (2011). Digestive enzymes of the crustaceans Munida and their application in cheese manufacturing: A review. *Mar Drugs* 9(7): 1220–1231. https://doi.org/10.3390/md9071220

Rudenskaya G, Isaev V A, Kalebina T S, Stepanov V M, Mal’tsev K V, Shvets S V, Luk’yanova N A, et al. (1998). Isolation and properties of trypsin PC from the king crab *Paralithodes camtschatica*. *Russian Journal of Bioorganic Chemistry* 24: 98–104.
Saarialho-Kere U K, Kovacs S O, Pentland A P, Olerud J E, Welgus H G and Parks W C. (1993). Cell-matrix interactions modulate interstitial collagenase expression by human keratinocytes actively involved in wound healing. Journal of Clinical Investigation 92: 2858–2866. https://doi.org/10.1172/JCI116906

Saarialho-Kere U K, Pentland A P, Birkedal-Hansen H, Parks W C and Welgus H G. (1994). Distinct populations of basal keratinocytes express stromelysin-1 and stromelysin-2 in chronic wounds. Journal of Clinical Investigation 94: 79–88. https://doi.org/10.1172/JCI117351

Saborowski R, Sahling G, Navarette del Toro M A, Walter I and García-Carreño F L. (2004). Stability and effects of organic solvents on endopeptidases from the gastric fluid of the marine crab Cancer pagurus. Journal of Molecular Catalysis B: Enzymatic 30(3–4): 109–118. https://doi.org/10.1016/j.molcatb.2004.04.002

Sainz J C and Córdova-Murueta J H. (2009). Activity of trypsin from Litopenaeus vannamei. Aquaculture 290(3–4): 190–195. https://doi.org/10.1016/j.aquaculture.2009.02.034

Sainz J C, García-Carreño F L and Hernandéz-Cortés P. (2004). Penaeus vannamei isotypstrpsins: Purification and characterization. Comparative Biochemistry and Physiology 138(2): 155–162. https://doi.org/10.1016/j.cbpc.2004.03.002

Satish L and Kathju S. (2010). Cellular and molecular characteristics of scarless versus fibrotic wound healing. Dermatology Research and Practice 2010: 790234. https://doi.org/10.1155/2010/790234

Schets F M, van den Berg H H, de Zwaan R, van Soolingen D and de Roda Husman A M. (2015). The microbiological quality of water in fish spas with Garra rufa fish, the Netherlands, October to November 2012. Euro Surveillance 20(19): 2–8. https://doi.org/10.2807/1560-7917.ES2015.20.19.21124

Schulz A, Perbix W, Shoham Y, Daali S, Charalampaki C, Fuchs PC and Schiefer J. (2017). Our initial learning curve in the enzymatic debridement of severely burned hands-Management and pit falls of initial treatments and our development of a post debridement wound treatment algorithm. Burns 43(2): 326–336. https://doi.org/10.1016/j.burns.2016.08.009

Sekizaki H, Itoh K, Murakami M, Toyota E and Tanizawa K. (2000). Anionic trypsin from chum salmon: Activity with p-amidinophenyl ester and comparison with bovine and Streptomyces griseus trypsins. Comparative Biochemistry and Physiology 127(3): 337–346. https://doi.org/10.1016/S0305-0491(00)00267-4

Sellos D and Van Wormhoudt A. (1992). Molecular cloning of a cDNA that encodes a serine protease with chymotryptic and collagenolytic activities in the hepatopancreas of the shrimp Penaeus vannamei (Crustacea, Decapoda). FEBS Letters 309: 219–224. https://doi.org/10.1016/0014-5793(92)80777-E

Senphan T, Benjakul S and Kishimura H. (2015). Purification and characterization of trypsin from hepatopancreas of Pacific White Shrimp. Journal of Food Chemistry 39(4): 388–397. https://doi.org/10.1111/jfbc.12147

Serrano A E. (2015). Trypsin-like activities in the mudcrab Scylla serrata, brine shrimp Artemia salina and rotifer Brachionus plicatilis. Der Pharma Chemica 7(9): 66–73.

Shahidi F and Kamil J Y V. (2001). Enzymes from fish and aquatic invertebrates and their application in the food industry. Trends in Food Science and Technology 12(12): 435–464. https://doi.org/10.1016/S0924-2244(02)00021-3

Shi L and Carson D. (2009). Collagenase santyl ointment: A selective agent for wound debridement. Journal of Wound Ostomy & Continence Nursing 36(6 Suppl): S12–S16. https://doi.org/10.1097/WON.0b013e3181bfdd1a
Shi L, Ermis R, Kiedaisch B and Carson D. (2010). The effect of various wound dressings on the activity of debriding enzymes. *Advanced in Skin & Wound Care* 23(10): 456–462. https://doi.org/10.1097/01.ASW.0000383224.64524.ae

Shi L, Ramsay S, Ermis R and Carson D. (2011). pH in the bacteria-contaminated wound and its impact on *Clostridium histolyticum* collagenase activity: Implications for the use of collagenase wound debridement agents. *Journal of Wound Ostomy & Continence Nursing* 38(5): 514–521. https://doi.org/10.1097/WON.0b013e31822ad034

Singer A J, Taira B R, Anderson R, McClain S A and Rosenberg L. (2011). Reepithelialization of mid-dermal porcine burns after rapid enzymatic debridement with Debrase®. *Journal of Burn Care Research* 32(6): 647–653. https://doi.org/10.1097/BCR.0b013e31822dc467

Smith A G, Powis R A, Pritchard D I and Britland S T. (2006). Greenbottle (*Lucilia sericata*) larval secretions delivered from a prototype hydrogel wound dressing accelerate the closure of model wounds. *Biotechnology Progress* 22(6): 1690–1696. https://doi.org/10.1021/bp0601600

Sriket C, Benjakul S, Visessanguan W, Hara K, Yoshida A and Liang X. (2012). Low molecular weight trypsin from hepatopancreas of freshwater prawn (*Macrobrachium rosenbergii*): Characteristics and biochemical properties. *Food Chemistry* 134(1): 351–358. https://doi.org/10.1016/j.foodchem.2012.02.173

Stefansson B, Helgadóttir L, Olafsdóttir S, Gudmundsdóttir A and Bjarnason J B. (2010). Characterization of cold-adapted Atlantic cod (*Gadus morhua*) trypsin I - kinetic parameters, autolysis and thermal stability. *Comparative Biochemistry and Physiology* 155B: 186–194. https://doi.org/10.1016/j.cbpb.2009.11.004

Telford G, Brown A P, Kind A, English J S and Pritchard D I. (2011). Maggot chymotrypsin I from *Lucilia sericata* is resistant to endogenous wound protease inhibitors. *British Journal of Dermatology* 164(1): 192–196. https://doi.org/10.1111/j.1365-2133.2010.10081.x

Telford G, Brown A P, Seabra R A, Horobin A J, Rich A, English J S and Pritchard D I. (2010). Degradation of eschar from venous leg ulcers using a recombinant chymotrypsin from *Lucilia sericata*. *British Journal of Dermatology* 163(3): 523–531. https://doi.org/10.1111/j.1365-2133.2010.09854.x

Thomas A M, Harding K G and Moore K. (1999). The structure and composition of chronic wound eschar. *Journal of Wound Care* 8(6): 285–287. https://doi.org/10.12968/jowc.1999.8.6.25881

Toyota E, Iyaguchi D, Sekizaki H, Itoh K and Tanizawa K. (2007). Kinetic properties of three isoforms of trypsin isolated from the pyloric caeca of chum salmon (*Oncorhynchus keta*). *Biological and Pharmaceutical Bulletin* 30(9): 1648–1652. https://doi.org/10.1248/bpb.30.1648

Trengove N J, Stacey M C, MacAuley S, Bennett N, Gibson J, Burslem F, Murphy G and Schultz G. (1999). Analysis of the acute and chronic wound environments: The role of proteases and their inhibitors. *Wound Repair & Regeneration* 7(6): 442–452. https://doi.org/10.1046/j.1524-475X.1999.00442.x

Vasconcelos A and Cavaco-Paulo A. (2011). Wound dressings for a proteolytic-rich environment. *Applied Microbiology and Biotechnology* 90: 445–460. https://doi.org/10.1007/s00253-011-3135-4

Vaughan D B, Grutter A S, Costello M J and Hutson K S. (2017). Cleaner fishes and shrimp diversity and a re-evaluation of cleaning symbioses. *Fish and Fisheries* 18: 698–716. https://doi.org/10.1111/faf.12198
Venkatesh R, Srimathi S, Yamuna A and Jayaraman G. (2005). Enhanced catalytic and conformational stability of Atlantic cod trypsin upon neoglycosylation. *Biochimica et Biophysica Acta* 1722(2): 113–115. https://doi.org/10.1016/j.bbagen.2004.11.015

Vistnes L M, Lee R and Ksander G A. (1981). Proteolytic activity of blowfly larvae secretions in experimental burns. *Surgery* 90: 835–841.

Wang Y, Song Q and Zhang X H. (2016). Marine microbiological enzymes: Studies with multiple strategies and prospects. *Marine Drugs* 14(10): 171. https://doi.org/10.3390/md14100171

Westby M J, Norman G, Dumville J C, Stubbs N and Cullum N. (2016). Protease-modulating matrix treatments for healing venous leg ulcers. *Cochrane Database of Systematic Reviews* 12: CD011918. https://doi.org/10.1002/14651858.CD011918.pub2

Westerhof W, van Ginkel C J, Cohen E B and Mekkes J R. (1990). Prospective randomized study comparing the debriding effect of krill enzymes and a non-enzymatic treatment in venous leg ulcers. *Dermatologica* 181: 293–297. https://doi.org/10.1159/000247828

White M J V, Glenn M and Gomer R H. (2013). Trypsin potentiates human fibrocyte differentiation. *PLoS ONE* 8(8): e70795. https://doi.org/10.1371/journal.pone.0070795

Wu Z, Jiang G, Xiang P and Xu H. (2008). Anionic trypsin from North Pacific krill (*Euphausia pacifica*): Purification and characterization. *International Journal of Peptide Research and Therapeutics* 14: 113–120. https://doi.org/10.1007/s10989-007-9119-7

Yager D R, Chen S M, Ward S I, Olutoye O O, Diegelmann R F and Kelman Cohen I. (1997). Ability of chronic wound fluids to degrade peptide growth factors is associated with increased levels of elastase activity and diminished levels of proteinase inhibitors. *Wound Repair & Regeneration* 5(1): 23–32. https://doi.org/10.1046/j.1524-475X.1997.50108.x

Zeng R, Lin C, Lin Z, Chen H, Lu W, Lin C and Li H. (2018). Approaches to cutaneous wound healing: Basics and future directions. *Cell Tissue Research* 374:21–232. https://doi.org/10.1007/s00441-018-2830-1