RESEARCH ARTICLE

Antibiotic Susceptibility of Biofilm Cells and Molecular Characterisation of Staphylococcus hominis Isolates from Blood

Soraya Mendoza-Olazarán1, Rayo Morfín-Otero2, Licet Villarreal-Treviño3, Eduardo Rodríguez-Noriega2, Jorge Llaca-Díaz4, Adrián Camacho-Ortiz5, Gloria M. González6, Néstor Casillas-Vega1, Elvira Garza-González1,4*

1 Servicio de Gastroenterología, Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México, 2 Hospital Civil de Guadalajara, Fray Antonio Alcalde, and Instituto de Patología Infecciosa y Experimental, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México, 3 Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México, 4 Departamento de Patología Clínica, Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México, 5 Servicio de Infectología, Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México, 6 Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México

* elvira_garza_gzz@yahoo.com

Abstract

Objectives

We aimed to characterise the staphylococcal cassette chromosome mec (SCCmec) type, genetic relatedness, biofilm formation and composition, icaADBC genes detection, icaD expression, and antibiotic susceptibility of planktonic and biofilm cells of Staphylococcus hominis isolates from blood.

Methods

The study included 67 S. hominis blood isolates. Methicillin resistance was evaluated with the cefoxitin disk test. mecA gene and SCCmec were detected by multiplex PCR. Genetic relatedness was determined by pulsed-field gel electrophoresis. Biofilm formation and composition were evaluated by staining with crystal violet and by detachment assay, respectively; and the biofilm index (BI) was determined. Detection and expression of icaADBC genes were performed by multiplex PCR and real-time PCR, respectively. Antibiotic susceptibilities of planktonic cells (minimum inhibitory concentration, MIC) and biofilm cells (minimum biofilm eradication concentration, MBEC) were determined by the broth dilution method.

Results

Eighty-five percent (57/67) of isolates were methicillin resistant and mecA positive. Of the mecA-positive isolates, 66.7% (38/57) carried a new putative SCCmec type. Four clones...
were detected, with two to five isolates each. Among all isolates, 91% (61/67) were category\-ised as strong biofilm producers. Biofilm biomass composition was heterogeneous (polysaccharides, proteins and DNA). All isolates presented the icaD gene, and 6.66% (1/15) isolates expressed icaD. This isolate presented the five genes of ica operon. Higher BI and MBEC values than the MIC values were observed for amikacin, vancomycin, linezolid, oxacillin, ciprofloxacin, and chloramphenicol.

**Conclusions**

*S. hominis* isolates were highly resistant to methicillin and other antimicrobials. Most of the detected SCCmec types were different than those described for *S. aureus*. Isolates indicated low clonality. The results indicate that *S. hominis* is a strong biofilm producer with an extracellular matrix with similar composition of proteins, DNA and N-acetylglucosamine; and presents high frequency and low expression of icaD gene. Biofilm production is associated with increased antibiotic resistance.

**Introduction**

*Staphylococcus hominis*, a coagu\-lase-negative staphyloco\-ccus (CoNS) species, is an opportunis\-tic pathogen that is one of the three most common isolates found in the blood of neonates and immunosuppressed patients.[1–3] In recent years, reports of *S. hominis* infection\-induced bacteraemia, septicaemia, endophthalmitis, and endocarditis have increased in frequency.[2–7] *S. hominis* infections are often highly resistant to antibiotics and thus, are difficult to treat. Resistance to linezolid and vancomycin has been reported in several isolates [8–10]. Furthermore, methicillin resistance, which is associated with the *mecA* gene, has been found in up to 80% *S. hominis* isolates [11–13]. The *mecA* gene resides within a mobile genetic element called the staphyloco\-cal cassette chromosome mec (SCCmec)[14] that was first described in *Staphylococ\-cus aureus*. This element is related to mec gene complex classes A–E and ccr gene complex classes 1–8. Eleven types of SCCmec have been described (http://www.sccmec.org/Pages/SCC_\_TypesEN.html); however, *S. hominis* is prone to carry novel SCCmec types because of the presence of high-frequency non-typeable and new combinations of mec and ccr gene complexes. [11, 13, 15]

Nosocomial infections by CoNS are primarily associated with the use of medical devices, likely because of biofilm formation [16–18]. A biofilm is a community of bacteria living in an organised structure as cellular clusters or microcolonies. The biofilm is encapsulated in a matrix composed of an extracellular polymeric substance that is separated by open water channels. The water channels act as a primitive circulatory system to deliver nutrients and remove metabolic waste products. The biofilm allows bacteria to adhere to inert materials and to experience increased antibiotic resistance.[19, 20] Several CoNS species are more resistant to antibiotics when in a biofilm than when they exist as free-swimming planktonic cells. Therefore, because they were designed for planktonic cells, antibiotic treatments based on the protocols provided by the Clinical and Laboratory Standards Institute (CLSI) may fail to clear biofilm\-related CoNS infections.[21]

A recent study described *S. hominis* biofilm production, their architecture and icaADBC frequency.[22] However, compared to other CoNS species, *S. hominis* is not categorised as a strong biofilm producer. Moreover, little information is available regarding the antibiotic
susceptibility of *S. hominis* cells in a biofilm. Therefore, we aimed to characterise the SCCmec type, genetic relatedness, and ability to form biofilms for 67 clinical isolates of *S. hominis* obtained from blood cultures. The antibiotic susceptibilities of planktonic and biofilm cells of these strains were also compared.

**Materials and Methods**

**Ethics statement**

This study was performed with approval from the Ethics Committee of the School of Medicine of the Universidad Autónoma de Nuevo León (approval no. GA14-009). Because patient information was anonymized, only microbiological data were analysed. Therefore, the local ethics committee did not require informed consent.

**Clinical isolates**

From January 2006 to December 2014, a total of 67 *S. hominis* clinical isolates from blood cultures were collected from two hospitals in Mexico: Hospital Civil Fray Antonio Alcalde (Guadalajara, Jalisco) and Hospital Universitario Dr José Eleuterio González (Monterrey, Nuevo León). All isolates were causative agents of laboratory-confirmed bloodstream infection according to criteria of the US Centers for Disease Control (http://www.cdc.gov/nhsn/pdfs/pscmanual/17pscnosinfdef_current.pdf). Isolates were kept at -70°C in *Brucella* broth containing 15% glycerol. Only one isolate per patient was used in the study.

**Isolate identification**

Isolates were identified at the species level by API Staph Galleries (bioMérieux, Inc., Durham, NC, USA), according to the manufacturer’s instructions. Species identification was confirmed by partial sequencing of the 16S rRNA, as previously described.[23] Sequencing was performed at the Instituto de Biotecnología, Universidad Nacional Autónoma de México. DNA sequences were compared to genes in the US National Center for Biotechnology Information (NCBI) GenBank by using the BLAST algorithm (http://www.ncbi.nlm.nih.gov/BLAST).

**Methicillin resistance, SCCmec typing, and genetic relatedness**

Methicillin resistance was evaluated by the cefoxitin disk test. The mecA gene was detected by polymerase chain reaction (PCR).[24] In the cefoxitin disk assay, results under 24 mm indicated resistant isolates, and results of 25 mm or greater indicated susceptible isolates.[25]

Identification of the SCCmec element type, according to the ccr class (AB1, AB2, AB3, or C) and mec class (A, B, or C), was performed as previously described.[24, 26] The ccrAB4 type was determined by the method used by Oliveira *et al.*[27] with the modifications proposed by Zhang *et al.*[12] All SCCmec typing experiments were performed in duplicate. SCCmec was considered ‘non-typeable’ when the ccr and/or the mec complex did not amplify by PCR with any of the primer pairs. SCCmec was classified as ‘new’ when isolates contained a different combination of ccr and mec complexes as those previously reported for *S. aureus* by the International Working Group on the Classification of Staphylococcal Cassette Chromosome Elements (http://www.sccmec.org/).

Pulsed-field gel electrophoresis was performed as described for *S. aureus* [28], including modifications in the restriction enzyme and running conditions as described by Bouchami *et al.*[11] Specifically, isolate samples were digested with *XhoI*, and bands were separated by a CHEF-DRIII instrument (Bio-Rad Laboratories). Banding patterns were analysed visually by counting the bands using Labworks 4.5 software with 1% tolerance and 0.5 optimization.
settings. Similarity coefficients were generated from a similarity matrix, which was calculated with the Jaccard coefficient in the SPSS 22.0 software package. To define a clone two criterion previously described were used: a similarity cut-off of 80% [29] and a difference of ≤ six bands [30].

Phenotypic biofilm assay

Semi-quantitative determination of biofilm formation was performed in duplicate by crystal violet staining as previously described [18, 31], with modifications to the normalisation approaches that compensate for growth rate differences [32, 33]. All isolates were tested in quadruplicate in two independent experiments. Polystyrene, 96-well, flat-bottom, non-treated plates with a low-evaporation lid were used for this assay.

The cut-offs proposed by Christensen et al. were used to classify the level of biofilm production [18]. Isolates with an OD of 0.25 or greater were considered to be strong biofilm producers, whereas isolates with ODs between 0.12 and 0.24 were considered to be weak biofilm producers. For quantitative analysis, the biofilm index (BI) was determined. For each experiment, the OD_{600} measurement for all cells (biofilm + planktonic cells OD_{600}) was divided by the mean biofilm OD_{570} measurement of three wells per isolate: BI = total cells OD_{600} / biofilm density OD_{570}. Staphylococcus saprophyticus ATCC 15305 (biofilm producer and ica operon-negative), Staphylococcus epidermidis ATCC 35984 (biofilm producer and ica operon-positive and S. hominis ATCC 27844 (biofilm non-producer and ica operon-negative) were used as control organisms.

Biofilm detachment assays

Detachment assays were performed using sodium _meta_-periodate (NaIO4) to degrade β-1,6-linked polysaccharides, proteinase K to degrade proteins and DNase I to degrade DNA as described previously. [16] Briefly, each mature biofilms cultivated in tryptic soy broth with glucose 1% (TSB_{glu1%}) were washed three times with PBS and were treated with (a) 40 mM NaIO4 in double-distilled H2O, (b) 0.1 mg/mL proteinase K (BIO-37037; Bioline) in 20 mM Tris-HCl (pH 7.5) with 100 mM NaCl or (c) 0.5 mg/ml DNase I (DN25; Sigma) in 5 mM MgCl2 for 24 h at 37°C. After, the biofilms were stained with crystal violet as described above. [18] Three wells containing uninoculated TSB_{glu1%} served as sterility control son each plate; the OD of these wells was used as spectrophotometric blanks. For each parallel run, the highest and the lowest OD values were removed to exclude outliers, and the remaining values were averaged. Percent detachment was calculated by the average difference between the treated wells and the untreated wells. The detachment results were classified as no detachment (<10%), intermediate detachment (10 to 50%), moderately strong (51–75%), and strong detachment (>75%) All isolates were tested in three parallel runs Staphylococcus epidermidis ATCC 35984 was included as a control (PIA as most abundant component).

_icaADBC_ operon detection and expression of the _icaD_

The _icaA_, _icaD_, _icaB_, _icaC_ and _icaR_ genes were detected by multiplex PCR.[34]. The _icaD_ gene expression was detected in 15 selected isolates. _Staphylococcus hominis_ cells were cultured in the same conditions used for biofilm formation (TSB_{glu1%} at 37°C) and harvested at mid-log phase (16 h). RNA was extracted using the High Pure RNA Isolation Kit (Roche, CA, USA) following the manufacturer’s instructions. The cDNA synthesis was performed using Transcriptor First Strand cDNA Synthesis Kit (Roche, CA, USA). Real-time PCR was performed using iQ SYBR Green Supermix with the primers previously reported [34] and the PCR conditions reported by Ciu et al [35]. _tuf_ gene was used as internal control for normalization gene for
expression of icaD. Amplification of icaD and tuf genes was detected by the presence of products of Tm of 81.12 and 72.14 in the melting curve, respectively. Amplification was confirmed by the presence of the corresponding PCR products on 2% agarose gel. icaD gene was considered as up-regulated if there was a relative change in expression higher than two (2^1) than the tuf gene.

**Minimal inhibitory concentration (MIC)**

Susceptibility testing was performed by using the broth microdilution method, as recommended by the CLSI.[25] The tested antibiotics included erythromycin, trimethoprim, amikacin, vancomycin, linezolid, oxacillin, ciprofloxacin, and chloramphenicol (Sigma Aldrich, Toluca, Mexico).

**Minimum biofilm eradication concentration (MBEC)**

The assay reported by Ceri, H et al.[36] was used to determine the antibiotic susceptibility of biofilm cells. Bacterial biofilms were grown on polystyrene pegs in the Calgary Biofilm Device by utilising a microtitre plate (the MBEC™-Physiology and Genetics assay, Innovotech, Edmonton, AB, Canada), and following the manufacturer’s instructions. To begin, a bacterial inoculum of 1.0 McFarland and diluted 1:50 (~ 10^8 CFU/mL) into TSBglu1%. To establish biofilm, 100 μL of the inoculum was added to each well of a 96-well microtiter plate. The peg lid was then fitted inside of this and the assembled device was placed on a gyrorotary shaker at ~150 revolutions per minute (rpm) in a humidified incubator for 18–24 h at 35°C. After incubation, pegs lid were rinsed twice with 100 μL PBS per peg to remove non-adherent cells and transfer the peg lid a new microtiter plate with 100 μL of twofold serial dilutions of antibiotics ranging from 1024 μg/mL to 0.06 μg/mL, in Mueller-Hinton broth (MHB) and MHB 1% NaCl (for oxacillin). Microtiter plates were then incubated at 35°C for 18 or 24 h, depending on the antibiotics tested. After antibiotic exposure, the peg lid was removed and rinsed twice with PBS and the biofilm disrupted by sonication for 8 s at 10% of the maximum amplitude (Branson 5800 Ultrasonic Cleaner) into MHB (recovery plate). The recovery plate was incubated for 24 h at 35°C. It was visually checked for turbidity in the wells and the MBEC was defined as minimum concentration of antimicrobial that eradicates the biofilm. Clear wells are evidence of eradication.

For the data analysis, it was considered as a difference significant when the isolates showed an increase > 2 fold for amikacin, ciprofloxacin, erythromycin, linezolid, oxacillin and trimethoprim, and an increase of > 3 fold for chloramphenicol in MBEC compared to MIC. This was established according at acceptable range of MIC for antibiotic quality control for *Staphylococcus aureus* ATCC 25913.

The MIC and MBEC were measured on three different occasions. In the case of non-concordance of the results, a fourth test was performed.

**Statistical analysis**

Analysis of variance (ANOVA) tests with the post-hoc Sidak correction were used to compare differences between MBEC, MIC, and BI values and averages (SPSS 20.0 software). A p-value of 0.05 or less was considered statistically significant.

**Results**

**Methicillin resistance, SCCmec typing, and genetic relatedness**

The cefoxitin disk test revealed that 85% (57/67) of isolates were resistant to methicillin and that all of these isolates tested positive for the mecA gene. Of the 57 mecA-positive isolates,
66.7% (38/57) had a new SCCmec complex. Of these isolates carrying new SCCmec complexes, 32 amplified mec complex A and ccrAB1 (New1), four isolates carried mec complex A, ccrAB1, and ccrC (New2), one isolate had mec complex A and ccrC (New3), and one isolate had mec complex A, ccrAB4, and ccrC (New4). Isolates with non-typeable SCCmec complexes represented 24.6% of the total (14/57). Of these, ten isolates had only mec class A (NT1) and four isolates did not have ccr or mec (NT2). Only 8.8% (5/57) of isolates carried a typeable SCCmec complex: three had type I, one had type III, and one had type VI SCCmec complexes.

Pulsed-field gel electrophoresis of S. hominis isolates revealed 62 different restriction patterns that had at least three band differences between each pattern. Four clones were detected (Fig 1). Clone A was represented by five isolates that were all recovered in November 2013 from the paediatric intensive care unit of Hospital Civil in Guadalajara, Mexico. Two isolates represented clones B, C, and D; each clone was isolated in the same month and from the same area and hospital.

Biofilm formation and icaADBC operon

Of the 67 S. hominis isolates, 91% were categorised as strong biofilm producers as defined by the cut-off values proposed by Christensen et al.[18] Five isolates (7.5%) were identified as weak biofilm producers and three isolates (1.5%) as non-producers. The average BI values were 0.181, 0.360, and 2.542 for non-weak, and strong biofilm production, respectively. NaIO4, proteinase K and DNase showed a similar effect on reduction biofilm biomass (Figs 1 and 2). The icaD gene was detected in all isolates (100%) and four (7.5%) isolates harboured all five ica genes. Expression of icaD gene was performed in 15 strong biofilm producers icaD positive isolates, from which, only 1/15 (6.66%) isolate (NL14-639) expressed icaD. This isolate expressed icaD more than two times than tuf gene that was used as internal control for normalization and presented the five genes of ica operon. We did not find an association between clone type and biofilm production, as all clones were strong biofilm producers (Fig 1).

MIC and MBEC

For almost all antibiotics tested, the resistance rate was significantly higher for biofilm cells than for planktonic cells (Table 1). The minimum concentrations that eradicated the biofilms of 50% and 90% of isolates (MBEC50 and MBEC90, respectively) were more than two-fold higher than the minimal concentrations that inhibited 50% and 90% of isolates in planktonic form (MIC50 and MIC90, respectively) for erythromycin, trimethoprim, amikacin, and vancomycin. This difference was also observed for oxacillin and ciprofloxacin, but only for MBEC50 compared to MIC50. For linezolid, the MBEC90 value was two-fold higher than the MIC90 value. We did not observe a significant difference between the MBEC and MIC values for chloramphenicol; however, the chloramphenicol resistance rate of biofilm cells was still two-fold higher than the resistance rate of planktonic cells. None of the 67 isolates tested in this study were resistant to vancomycin or linezolid as planktonic cells. However, 4.5% of isolates showed intermediate MIC values for vancomycin as biofilm cells, and 6% of the isolates were resistant to linezolid as biofilm cells.

Antibiotic susceptibility and biofilm index

We observed higher BI and MBEC values compared to the MIC values for the following antibiotics: amikacin (p < 0.0001), vancomycin (p < 0.0001), linezolid (p < 0.0001), oxacillin (p < 0.0001), ciprofloxacin (p = 0.0005), and chloramphenicol (p < 0.0001) (Fig 3). This analysis was not determined for erythromycin and trimethoprim because several isolates had values above the upper limit of detection (>1024 mg/L) in both planktonic and biofilm cells.
Fig 1. Pulsed-field gel electrophoresis dendrogram and biofilm production of *S. hominis* isolates.

| Isolate   | Biofilm^1 | ica locus^2 | NaIO₄, Prot K, DNase | PFGE | Biofilm detachment %^1 | % of similarity^4 |
|-----------|-----------|-------------|----------------------|------|------------------------|------------------|
| IC13-2357 | Strong    | all         | 88.5 21.4 27.3       | A    |                         |                  |
| IC13-2361 | Strong    | all         | 99.1 89.5 78.4       | A    |                         |                  |
| IC13-2350 | Strong    | all         | 88.9 90.5 90.2       | A    |                         |                  |
| IC13-2355 | Strong    | all         | 89.2 78.3 75.8       | A    |                         |                  |
| IC13-696  | Strong    | all         | 84.9 89.5 78.4       | A    |                         |                  |
| NL112099  | Strong    | all         | 90.0 24.1 10.6       | I    |                         |                  |
| IC13-2382 | Weak      | all         | 5.7 9.3 86.7         | J    |                         |                  |
| IC9989    | Strong    | all         | 90.1 90.6 91.5       | K    |                         |                  |
| NL12020   | Strong    | all         | 61.5 87.8 84.4       | B    |                         |                  |
| NL12039   | Strong    | all         | 88.5 90.5 90.9       | B    |                         |                  |
| NL12019   | Strong    | all         | 86.7 72.6 64.6       | N    |                         |                  |
| NL12019   | Strong    | all         | 59.1 87.3 80.1       | O    |                         |                  |
| IC12703   | Strong    | all         | 88.4 85.9 83.6       | P    |                         |                  |
| NL14142   | Strong    | all         | 91.2 76.6 75.2       | Q    |                         |                  |
| IC12706   | Strong    | all         | 86.1 56.1 50.3       | C    |                         |                  |
| IC12714   | Strong    | all         | 82.6 63.2 52.6       | C    |                         |                  |
| NL14104   | Strong    | all         | 92.0 89.2 57.7       | R    |                         |                  |
| IC12756   | Strong    | all         | 90.7 89.5 90.2       | T    |                         |                  |
| IC13-394  | Strong    | all         | 90.0 78.8 76.0       | U    |                         |                  |
| NL12903   | Strong    | all         | 89.3 90.1 76.8       | V    |                         |                  |
| IC12702   | Strong    | all         | 83.3 89.6 92.0       | W    |                         |                  |
| IC12703   | Strong    | all         | 72.2 79.1 74.6       | N    |                         |                  |
| IC9994    | Strong    | all         | 79.9 87.5 80.7       | Y    |                         |                  |
| IC11564   | Strong    | all         | 83.3 92.9 87.8       | Z    |                         |                  |
| IC14-422  | Strong    | all         | 84.7 89.3 76.4       | AA   |                         |                  |
| IC1825    | Strong    | all         | 80.9 77.4 78.9       | HH   |                         |                  |
| IC1817    | Strong    | all         | 89.4 64.1 75.3       | CC   |                         |                  |
| IC1829    | Strong    | all         | 46.5 78.7 77.2       | DD   |                         |                  |
| NL13485   | Neg       | all         | 86.7 74.0 86.7       | EE   |                         |                  |
| IC12716   | Strong    | all         | 87.0 90.0 88.3       | OO   |                         |                  |
| NL13-2118 | Strong    | all         | 78.4 80.6 76.8       | HH   |                         |                  |
| IC1812    | Strong    | all         | 56.7 85.5 77.4       | H    |                         |                  |
| IC144     | Strong    | all         | 82.9 72.6 80.6       | JJ   |                         |                  |
| NL13-600  | Strong    | all         | 66.0 79.9 71.7       | KK   |                         |                  |
| IC14-309  | Strong    | all         | 87.9 49.0 18.5       | LL   |                         |                  |
| IC13-438  | Neg       | all         | 82.0 85.5 89.7       | NN   |                         |                  |
| IC13-435  | Strong    | all         | 90.9 86.4 85.9       | OO   |                         |                  |
| IC14-309  | Strong    | all         | 86.7 89.5 88.7       | PP   |                         |                  |
| IC14572   | Strong    | all         | 67.9 76.7 56.7       | QQ   |                         |                  |
| IC11569   | Strong    | all         | 91.1 91.2 92.9       | RR   |                         |                  |
| IC13617   | Strong    | all         | 78.5 87.3 51.6       | SS   |                         |                  |
| NL11-559  | Strong    | all         | 44.9 88.0 88.0       | D    |                         |                  |
| IC11756   | Strong    | all         | 48.0 72.7 75.7       | D    |                         |                  |
| IC14260   | Strong    | all         | 75.9 82.5 78.1       | TT   |                         |                  |
| NL11-477  | Strong    | all         | 72.4 88.1 91.9       | UU   |                         |                  |
| IC11-375  | Strong    | all         | 80.7 81.9 72.4       | XV   |                         |                  |
| IC179     | Strong    | all         | 88.3 90.7 73.4       | WW   |                         |                  |
| IC13-387  | Neg       | all         | 84.9 90.0 89.9       | Y    |                         |                  |
| IC13-382  | Strong    | all         | 85.9 85.3 88.8       | ZZ   |                         |                  |
| IC11545   | Strong    | all         | 90.0 88.5 76.5       | AAA  |                         |                  |
| IC14518   | Weak      | all         | 47.3 86.3 57.3       | BBB  |                         |                  |
| IC31-222  | Weak      | all         | 87.8 66.2 75.7       | CCC  |                         |                  |
| IC989     | Strong    | all         | 77.2 88.1 78.6       | DDD  |                         |                  |
| IC984     | Strong    | all         | 86.8 87.3 80.9       | EEE  |                         |                  |
| IC1-341   | Weak      | all         | 98.8 87.7 60.5       | FFF  |                         |                  |
| NL13-2374 | Strong    | all         | 79.5 89.4 76.7       | GGG  |                         |                  |
| IC14570   | Weak      | all         | 43.2 83.5 77.2       | HHH  |                         |                  |

1 Biofilm production level: OD <0.12 negative, 0.12–0.24 weak and >0.25 strong. Neg: negative. 2 All: positive for icaR, icaA, icaD, icaB, and icaC. 3 ND non-determinate. 4 Similarity coefficients were generated from a similarity matrix calculated with the Jaccard coefficient using SPSS 22.0 software.

doi:10.1371/journal.pone.0144684.g001
Fig 2. Biofilm detachment with NaIO₄, proteinase K and DNase. Biofilm detachment level of 64 biofilm producers S. hominis isolates after treatment with NaIO₄, proteinase K and DNase.

doi:10.1371/journal.pone.0144684.g002

Table 1. Antibiotic resistance of biofilm and planktonic cells of the isolates.

| Antibiotic a | Cells    | MIC₅₀ (mg/L) | MBEC₅₀ (mg/L) | %R (n) c | %S (n) c |
|--------------|----------|--------------|---------------|----------|----------|
| ERY          | Planktonic | 256          | 512           | 77.6 (52) | 23.4 (15) |
|              | Biofilm   | >1024        | >1024         | 88.1 (59) | 11.9 (8)  |
| TMP          | Planktonic | 64           | 256           | 79.1 (53) | 20.9 (14) |
|              | Biofilm   | 512          | >1024         | 82.1 (55) | 17.9 (12) |
| AMK          | Planktonic | 1            | 2             | 3 (2)    | 97 (65)   |
|              | Biofilm   | 4            | 16            | 9 (6)    | 91 (61)   |
| VAN          | Planktonic | 0.5          | 1             | 0 (0)    | 100 (67)  |
|              | Biofilm   | 2            | 4             | 4.5 (3)* | 95.5 (64) |
| LZD          | Planktonic | 1            | 1             | 0 (0)    | 100 (67)  |
|              | Biofilm   | 2            | 4             | 6 (4)    | 94 (63)   |
| OXA          | Planktonic | 2            | 256           | 85 (57)  | 15 (10)   |
|              | Biofilm   | 8            | 512           | 92.5 (62)| 7.5 (5)   |
| CIP          | Planktonic | 8            | 64            | 58.2 (39)| 41.8 (28) |
|              | Biofilm   | 32           | 128           | 62.7 (42)| 37.3 (25) |
| CHL          | Planktonic | 8            | 64            | 22.4 (15)| 77.6 (52) |
|              | Biofilm   | 8            | 128           | 44.8 (30)| 55.2 (37)|

aERY: erythromycin; TMP: trimethoprim; AMK: amikacin; VAN: vancomycin; LZD: linezolid; OXA: oxacillin; CIP: ciprofloxacin; CHL: chloramphenicol.
bMIC₅₀ and MIC₉₀: minimal concentrations that inhibit 50% and 90% of isolates, respectively (planktonic cells). MBEC₅₀ and MBEC₉₀: minimum concentrations that eradicate the biofilm of 50% and 90% of isolates, respectively. Values in bold indicate a significant difference in MICs and MBECs between planktonic and biofilm cells;
c%R and %S: percentage of isolates resistant and susceptible, respectively. This classification was according to cut-offs of proposed by the CLSI.

*Value intermediate.

doi:10.1371/journal.pone.0144684.t001
Determinations at higher concentrations could not be performed because the antibiotic does not dilute at such concentration; therefore, we could not analyse the difference between MBEC and MIC values for these antibiotics.

Discussion

Understanding the relative pathogenicity and virulence of *S. hominis* is crucial, in light of the recent increase antibiotic-resistant *S. hominis* infections, particularly those resistant to vancomycin and linezolid and those carrying the SCCmec gene. [10, 37] Recent phenotypic and molecular characterisations of *S. hominis* clinical isolates have found that *S. hominis* has low clonality, high methicillin resistance, and variable biofilm production. These studies have shown that *S. hominis* isolates frequently carry the meca gene (likely as new SCCmec complex types), with a high prevalence of the ica*ABCD* gene. [11–13, 22, 38] Herein, we have demonstrated that clinical isolates of *S. hominis* are less susceptible to antibiotics as biofilm cells.

Some studies have shown that production of biofilm in *S. hominis* is likely ica-independent, such as has been reported for *S. epidermidis*, *S. haemolyticus*, *S. aureus* and *S. lugdunensis*. [16, 22, 39–41]. The *S. hominis* isolates included in this study were strong biofilm producers, had a high frequency of the icaD gene and a low expression of this gene (6.66%). Has been proposed that icaD has co-expression with the icaA gene, which is responsible for polysaccharide synthesis by the production of N-acetylglucosamine oligomers and complete transferring the growing sugar chain to the cell surface. [35, 42] In this study, the icaD expression was demonstrated only in one isolate and NaIO₄, proteinase K and DNase showed similar effect on reduction
biofilm biomass (Fig 2). Therefore, the N-acetylglucosamine is not the major component, but one of the components of biofilm in \textit{S. hominis}.

Biofilm production is an important virulence factor because biofilms facilitate bacterial adherence to biomedical surfaces (e.g. catheters, prosthetics, and cardiac valves) and entrance into the bloodstream.\cite{19} Notably, this species has not previously been categorised as a major biofilm producer. Two previous studies reported that less than half of the \textit{S. hominis} isolates were biofilm producers, or that the isolates were weak biofilm producers. However, these studies were performed on isolates obtained from surgical wounds, blood, catheters, or cerebrospinal fluid.\cite{17, 22, 43} The discrepancy in the ability of these isolates to produce biofilm compared to the isolates we examined may be explained by the origin of the specimens used. Our strains were causative agents of laboratory-confirmed bloodstream infections and exclusively isolated from blood; therefore, these strains likely produced biofilm as a way to get into the bloodstream.

We observed differences in susceptibility between planktonic and biofilm cells for all antibiotics tested. Overall, isolates were more resistant to antibiotics as biofilms (Table 1). Cells may be more resistant to antibiotics as biofilms because they have reduced metabolic and growth rates (particularly cells deep within the biofilm), or because the biofilm matrix may adsorb or react with the antibiotics, thereby reducing the amount of antibiotics available to interact with cells in the biofilm. Another possibility is that the biofilm cells may have antibiotic tolerance. As a result of these factors, cells in the biofilm may be physiologically distinct from planktonic cells and, thus, express specific protective factors.\cite{19, 20}

Antibiotic treatment protocols based on standard \textit{in vitro} susceptibility tests designed for planktonic bacteria may fail to eradicate biofilm-producing \textit{S. hominis} infections. This possibility is particularly concerning for monotherapies with vancomycin or linezolid, antibiotics to which \textit{S. hominis} biofilms were remarkably resistant. Given these data, it may be more useful to base \textit{S. hominis} treatment protocols on \textit{in vitro} antibiotic susceptibility tests on biofilm cells. Our results are in agreement with reports on other CoNS species.\cite{21} Caution should be taken before extrapolating these results to all CoNS species because of the high phenotypic and genetic variability in this species.

The BI value was associated with differences between the MBEC and MIC values. For example, with increasing BI values, we saw increasing differences between the MBEC and MIC values (Fig 3). This result suggests that the level of biofilm production may be proportional to the increase in antibiotic resistance. However, this possibility should be verified with more assays evaluating the biofilm structure and composition.

Planktonic cells were highly resistant to erythromycin, trimethoprim, oxacillin, and ciprofloxacin. Methicillin resistance and \textit{mecA} gene frequency were also high (85%). Most isolates carried a non-typeable SCC\textit{mec} complex, with a high percentage containing both \textit{mec} complex A and \textit{ccrAB1}. These results have been previously reported; however, it is important to continue monitoring the SCC\textit{mec} complex in \textit{S. hominis}, which often carries novel SCC\textit{mec} types.\cite{11–13} In this study, we detected a clone of 5 isolates that was strong biofilm producer, and isolates were collected from the paediatric intensive care unit. Several outbreaks of bloodstream infections among neonates and adults have been attributed to \textit{S. hominis} subsp. \textit{novobiosepticus}, which may account for the dissemination of these clones in the hospital environment. Additionally, \textit{S. hominis} colonisation is frequently detected on the hands of nurses with skin lesions.\cite{3, 44}

In conclusion, the \textit{S. hominis} isolates analysed in this study were highly resistant to methicillin and other antimicrobials. Most of the SCC\textit{mec} types detected were different from those described for \textit{S. aureus}. We detected four clones, but in general, the isolates showed low clonality. The results of this study indicate that \textit{S. hominis} is strong biofilm producer with an
extracellular matrix with similar composition of proteins, DNA and N-acetylglucosamine. In addition, this species presents a high frequency of icaD gene and low expression of icaD. The biofilm production level is associated with antibiotic resistance.

Supporting Information
S1 Table. Characteristics and Results.

Acknowledgments
We wish to thank the staff at the Bacteriology Laboratory of the Hospitals Universitario Dr. José E González and Civil de Guadalajara, Fray Antonio Alcalde, who helped to recover the isolates used in this study.

Author Contributions
Conceived and designed the experiments: SMO EGG. Performed the experiments: SMO EGG JLD ACO NCV. Analyzed the data: SMO EGG RMO LVT ACO NCV. Contributed reagents/materials/analysis tools: SMO EGG RMO ERN JLD. Wrote the paper: SMO EGG RMO LVT ERN ACO GMG.

References
1. Al Wohoush I, Rivera J, Cairo J, Hachem R, Raad I. Comparing clinical and microbiological methods for the diagnosis of true bacteremia among patients with multiple blood cultures positive for coagulase-negative staphylococci. Clin Microbiol Infect. 2011; 17(4):569–71. doi:10.1111/j.1469-0691.2010.03372.x PMID: 20854425
2. Chaves F, Garcia-Alvarez M, Sanz F, Alba C, Otero JR. Nosocomial spread of a Staphylococcus hominis subsp. novobiosepticus strain causing sepsis in a neonatal intensive care unit. J Clin Microbiol. 2005; 43(9):4877–9. PMID: 16145165
3. d’Azevedo PA, Trancesi R, Sales T, Monteiro J, Gales AC, Pignatari AC. Outbreak of Staphylococcus hominis subsp. novobiosepticus bloodstream infections in Sao Paulo city, Brazil. J Med Microbiol. 2008; 57(Pt 2):256–7. doi: 10.1099/jmm.0.47345-0 PMID: 18201999
4. Palazzo IC, d’Azevedo PA, Secchi C, Pignatari AC, Darini AL. Staphylococcus hominis subsp. novobiosepticus strains causing nosocomial bloodstream infection in Brazil. J Antimicrob Chemother. 2008; 62(6):1222–6. doi: 10.1093/jac/dkn375 PMID: 18775890
5. Sunbul M, Demirag MK, Yilmaz O, Yilmaz H, Ozturk R, Leblebicioglu H. Pacemaker lead endocarditis caused by Staphylococcus hominis. Pacing Clin Electrophysiol. 2006; 29(5):543–5. PMID: 16689853
6. Cunha BA, Esrick MD, Marusso M. Staphylococcus hominis native mitral valve bacterial endocarditis (SBE) in a patient with hypertrophic obstructive cardiomyopathy. Heart Lung. 2007; 36(5):380–2. PMID: 17845885
7. Sychev YV, Vemulakonda GA. Chronic Staphylococcus hominis endophthalmitis following injury with a retained intraocular foreign body. Eye (Lond). 2014; 28(12):1517.
8. Chamon RC, Iorio NL, Cavalcante FS, da Silva Teodoro CR, de Oliveira AP, Maia F, et al. Linezolid-resistant Staphylococcus haemolyticus and Staphylococcus hominis: single and double mutations at the domain V of 23S rRNA among isolates from a Rio de Janeiro hospital. Diagn Microbiol Infect Dis. 2014; 80(4):307–10. doi: 10.1016/j.diagmicrobio.2014.09.011 PMID: 25294302
9. de Almeida LM, de Araujo MR, Sacramento AG, Pavez M, de Souza AG, Rodrigues F, et al. Linezolid resistance in Brazilian Staphylococcus hominis strains is associated with L3 and 23S rRNA ribosomal mutations. Antimicrob Agents Chemother. 2013; 57(8):4082–3. doi: 10.1128/AAC.00437-13 PMID: 23689714
10. Won JY, Kim M. Vancomycin-resistant Staphylococcus hominis endophthalmitis following cataract surgery. Clin Ophthalmol. 2013; 7:1183–5. doi: 10.2147/OPTH.S46792 PMID: 23818754
11. Bouchami O, Ben Hassen A, de Lencastre H, Miragaia M. Molecular epidemiology of methicillin-resistant Staphylococcus hominis (MRSHo): low clonality and reservoirs of SCCmec structural elements. PLoS One. 2011; 6(7):e21940. doi: 10.1371/journal.pone.0021940 PMID: 21769926
12. Zhang L, Thomas JC, Miragaia M, Bouchami O, Chaves F, d’Azevedo PA, et al. Multilocus sequence typing and further genetic characterization of the enigmatic pathogen, Staphylococcus hominis. PLoS One. 2013; 8(6):e66496. doi: 10.1371/journal.pone.0066496 PMID: 23776678

13. Mendoza-Olazaran S, Morfin-Otero R, Rodriguez-Noriega E, Llaca-Diaz J, Flores-Trevino S, Gonzalez-Gonzalez GM, et al. Microbiological and molecular characterization of Staphylococcus hominis isolates from blood. PLoS One. 2013; 8(4):e61161. doi: 10.1371/journal.pone.0061161 PMID: 23585877

14. Katayama Y, Ito T, Hiramatsu K. A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother. 2000; 44(6):1549–55. PMID: 10817707

15. Garza-Gonzalez E, Morfin-Otero R, Rodriguez-Noriega E. Staphylococcal cassette chromosome mec (SCC mec) in methicillin-resistant coagulase-negative staphylococci. A review and the experience in a tertiary-care setting. Epidemiol Infect. 2010; 138(5):645–54. doi: 10.1017/S0950268809991361 PMID: 19961645

16. Fredheim EG, Klingenberg C, Rohde H, Frankenberger S, Flaegstad T, et al. Biofilm formation by Staphylococcus haemolyticus. J Clin Microbiol. 2009; 47(4):1172–80. doi: 10.1128/JCM.01891-08 PMID: 19144798

17. de Allori MC, Jure MA, Romero C, de Castillo ME. Antimicrobial resistance and production of biofilms in clinical isolates of coagulase-negative Staphylococcus strains. Biol Pharm Bull. 2006; 29(8):1592–6. PMID: 16880610

18. Christensen GD, Simpson WA, Younger JJ, Baddour LM, Barrett FF, Melton DM, et al. Adherence of coagulase-negative staphylococci to tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol. 1985; 22(6):996–1006. PMID: 3905855

19. Davies D. Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov. 2003; 2(2):114–22. PMID: 12563302

20. Hoiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents. 2010; 35(4):322–32. doi: 10.1016/j.ijantimicag.2009.12.011 PMID: 20149602

21. Qu Y, Daley AJ, Istivan TS, Garland SM, Deighton MA. Antibiotic susceptibility of coagulase-negative staphylococci isolated from very low birth weight babies: comprehensive comparisons of bacteria at different stages of biofilm formation. Ann Clin Microbiol Antimicrob. 2010; 9:16. doi: 10.1186/1476-0711-9-16 PMID: 20504376

22. Szczuka E, Telega K, Kaznowski A. Biofilm formation by Staphylococcus hominis strains isolated from human clinical specimens. Folia Microbiol (Praha). 2015; 60(1):1–5.

23. Heikens E, Fleer A, Paauw A, Florijn A, Fluit AC. Comparison of genotypic and phenotypic methods for species-level identification of clinical isolates of coagulase-negative staphylococci. J Clin Microbiol. 2005; 43(5):2286–90. PMID: 15872257

24. Zhang K, McClure JA, Elsayed S, Louie T, Conly JM. Novel multiplex PCR assay for characterization and concomitant subtyping of staphylococcal cassette chromosome mec types I to V in methicillin-resistant Staphylococcus aureus. J Clin Microbiol. 2005; 43(10):5026–33. PMID: 16207957

25. CLSI. (2015). Performance Standards for Antimicrobial Susceptibility Testing: Twenty-Five Informational Supplement M100-S25. Wayne, PA, USA., 2015.

26. Kondo Y, Ito T, Ma XX, Watanabe S, Kreiswirth BN, Etienne J, et al. Combination of multiplex PCRs for staphylococcal cassette chromosome mec type assignment: rapid identification system for mec, ccr, and major differences in junkyard regions. Antimicrob Agents Chemother. 2007; 51(4):264–7. PMID: 17043114

27. Oliveira DC, Milheirico C, de Lencastre H. Redefining a structural variant of staphylococcal cassette chromosome mec, SCCmec type VI. Antimicrob Agents Chemother. 2006; 50(10):3457–9. PMID: 17005831

28. Murchan S, Kaufmann ME, Deplano A, de Ryck R, Struelens M, Zinn CE, et al. Harmonization of pulsed-field gel electrophoresis protocols for epidemiological typing of strains of methicillin-resistant Staphylococcus aureus: a single approach developed by consensus in 10 European laboratories and its application for tracing the spread of related strains. J Clin Microbiol. 2003; 41(6):1549–85. PMID: 12682148

29. Struelens MJ, Deplano A, Godard C, Maes N, Serruys E. Epidemiologic typing and delineation of genetic relatedness of methicillin-resistant Staphylococcus aureus by macrorestriction analysis of genomic DNA by using pulsed-field gel electrophoresis. J Clin Microbiol. 1992; 30(10):2599–605. PMID: 1328279

30. Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol. 1995; 33(9):2233–9. PMID: 7494007
31. Klingenberg C, Aarag E, Ronnestad A, Solild JE, Abrahamsen TG, Kjelde S, et al. Coagulase-negative staphyloccocal sepsis in neonates. Association between antibiotic resistance, biofilm formation and the host inflammatory response. Pediatr Infect Dis J. 2005; 24(9):817–22. PMID: 16148849

32. Deighton M, Borland R. Regulation of slime production in Staphylococcus epidermidis by iron limitation. Infect Immun. 1993; 61(10):4473–9. PMID: 8406839

33. Frank KL, Reichert EJ, Pepper KE, Patel R. In vitro effects of antimicrobial agents on planktonic and biofilm forms of Staphylococcus lugdunensis clinical isolates. Antimicrob Agents Chemother. 2007; 51(3):888–95. PMID: 17158933

34. Ancioli CR, Gamberrini S, Campoccia D, Visai L, Speziale P, Baldassarri L, et al. A multiplex PCR method for the detection of all five individual genes of ica locus in Staphylococcus epidermidis. A survey on 400 clinical isolates from prosthesis-associated infections. J Biomed Mater Res A. 2005; 75(2):408–13. PMID: 16088896

35. Cui B, Smoker PM, Rouch DA, Deighton MA. Effects of erythromycin on the phenotypic and genotypic biofilm expression in two clinical Staphylococcus capitis subspecies and a functional analysis of Ica proteins in S. capitis. J Med Microbiol. 2015; 64(6):591–604. doi: 10.1099/jmm.0.000059 PMID: 25813821

36. Ceri H, Olson M, Morck D, Storey D, Read R, Buret A, et al. The MBEC Assay System: multiple equivalent biofilms for antibiotic and biocide susceptibility testing. Methods Enzymol. 2001; 337:377–85. PMID: 11398443

37. Ruiz de Gopegui E, Iuliana Marinescu C, Diaz P, Socias A, Garau M, Ayestarar J, et al. Nosocomial spread of linezolid-resistant Staphylococcus hominis in two hospitals in Majorca. Enferm Infecc Microbiol Clin. 2011; 29(5):339–44. doi: 10.1016/j.eimc.2011.02.001 PMID: 21435748

38. Szczuka E, Trawczynski K, Kaznowski A. Clonal analysis of Staphylococcus hominis strains isolated from hospitalized patients. Pol J Microbiol. 2014; 63(3):349–54. PMID: 25546946

39. Qin Z, Yang X, Yang L, Jiang J, Ou Y, Molin S, et al. Formation and properties of in vitro biofilms of ica-negative Staphylococcus epidermidis clinical isolates. J Med Microbiol. 2007; 56(Pt 1):83–93. PMID: 17172522

40. Fitzpatrick F, Humphreys H, O’Gara JP. Evidence for icaADBC-independent biofilm development mechanism in methicillin-resistant Staphylococcus aureus clinical isolates. J Clin Microbiol. 2005; 43(4):1973–6. PMID: 15815035

41. Frank KL, Patel R. Poly-N-acetylglucosamine is not a major component of the extracellular matrix in biofilms formed by icaADBC-positive Staphylococcus lugdunensis isolates. Infect Immun. 2007; 75(10):4726–42. PMID: 1763864

42. Vuong C, Kocianova S, Voyich JM, Yao Y, Fischer ER, DeLeo FR, et al. A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence. J Biol Chem. 2004; 279(52):54881–6. PMID: 15501828

43. Garza-Gonz Lez E, Morfin-Otero R, Mart Nez VZMA, González-Diaz E, Gonz Lez-Santiago O, Rodru Guez-Noriega E. Microbiological and molecular characterization of human isolates of Staphylococcus cohnii, Staphylococcus hominis, and Staphylococcus sciuri. Scand J Infect Dis. 2011; 43(11–12):930–6. doi: 10.3109/00365548.2011.598873 PMID: 21851333

44. Larson EL, Hughes CA, Pyrek JD, Sparks SM, Cagatay EU, Bartkus JM. Changes in bacterial flora associated with skin damage on hands of health care personnel. Am J Infect Control. 1998; 26(5):513–21. PMID: 9795681