Metabolic syndrome — a new definition and management guidelines

The joint position paper by Polish Society of Hypertension, Polish Society for the Treatment of Obesity, Polish Society for Lifestyle Medicine, Division of Prevention and Epidemiology Polish Cardiac Society, “Club 30” Polish Cardiac Society, and Division of Metabolic and Bariatric Surgery Society of Polish Surgeons

Piotr Dobrowolski1*, Aleksander Prejbiś2*, Alina Kuryłowicz2,3*, Alicja Baska1, Paweł Burchardt5, Krzysztof Chlebus6, Grzegorz Dźida7, Piotr Jankowski2,8, Jerzy Jaroszewicz2, Paweł Jaworski10, Karol Kamiński11, Agnieszka Kaplan-Cieślicka12, Marek Klocek13, Michał Kukla14, Artur Mamcarz15, Agnieszka Mastalerz-Migas16, Krzysztof NarkIEWICZ17, Lucyna Ostrowska18, Daniel Śliż15, Wiesław Tarnowski19, Jacek Wolf17, Mariusz Wyleżoł19, Tomasz Zdrojewski20, Maciej Banach21–23**, Andrzej Januszewicz21**, Paweł Bogdański24**

Reviewers: Agnieszka Olszanecka, Krzysztof J. Filipiak

1Department of Hypertension, National Institute of Cardiology, Warsaw, Poland
2Department of General Medicine and Geriatric Cardiology, Medical Centre of Postgraduate Education, Warsaw, Poland
3Department of Human Epigenetics, Mossakowski Medical Research Centre PAS, Warsaw, Poland
4Department of Lifestyle Medicine, School of Public Health, Centre for Postgraduate Medical Education, Warsaw, Poland
5Department of Hypertensiology, Angiology, and Internal Medicine, K. Marcinkowski Poznan University of Medical Science, Poznan, Poland
6Chair and Department of Cardiology, Medical University of Gdańsk, Poland
7Department of Epidemiology and Health Promotion, School of Public Health, Centre for Postgraduate Medical Education, Warsaw, Poland
8Department of Infectious Diseases and Hepatology, Medical University of Silesia in Katowice, Poland
9Department of General, Oncological and Bariatric Surgery, Medical Centre of Postgraduate Education, Warsaw, Poland
10Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Białystok, Poland
11Chair and Department of Cardiology, Medical University of Gdańsk, Poland
12Department of Cardiology, Interventional ElectrocadioLOGY and Arterial Hypertension, Jagiellonian University Medical College, Kraków, Poland
13Department of Internal Medicine and Geriatrics, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
14Department of Internal Diseases and Cardiovascular Diseases, Medical University of Białystok, Poland
15Department of Family Medicine, Wroclaw Medical University, Poland
16Department of Hypertension and Diabetology, Translational Medicine Centre, Medical University of Gdańsk, Poland
17Department of Dietetics and Nutrition, Medical University of Białystok, Białystok, Poland
18II Department of General, Vascular and Oncological Surgery, Warsaw Medical University, Poland
19Division of Preventive Medicine and Education, Department of Hypertension and Diabetology, Medical University of Gdańsk, Poland
20Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Lodz, Poland
21Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
22Department of Cardiology and Adult Congenital Heart Diseases, Polish Mother’s Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
23Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznan, Poland
**Co-first authorship
***Shared senior authorship

This article has been co-published in the Arterial Hypertension (Arterial Hypertens. 2022; 26(3): 99–122; doi: 10.5603/AH.a.2022.0012) and Archive of Medical Science AMs (Arch Med Sci. 2022; 18(5): 1133–1156. doi: 10.5114/ams.152921. eCollection 2022). All rights reserved. Copyright by PTNT, PTLO, PTL, PTH, PTMR, PTMSŻ, sPiE i Klub 30 PTK, sCMiB TChP.

The articles in Arterial Hypertension and AMs are identical except for minor stylistic and spelling differences in keeping with each journal’s style. Any citation can be used when citing this article.

Address for correspondence: Piotr Dobrowolski MD, PhD, Prof. NIC, Department of Hypertension National Institute of Cardiology, 42 Alpejska St., 04–628 Warsaw, Poland tel: +48 22 343 43 22, fax: +48 22 343 45 17; e-mail: pdobrowolski@ikard.pl

This article is available in open access under Creative Common Attribution-Non-Commercial-No Derivatives 4.0 International (CC BY-NC-ND 4.0) license, allowing to download articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially.

Published by Via Medica; ISSN 2449–6170, e-ISSN 2449–6162

www.ah.viamedica.pl
Metabolic syndrome — is it right to focus on it separately?

Metabolic syndrome (MetS), referred to as cluster of comorbid conditions including obesity, hypertension, as well as disordered carbohydrate and lipid metabolism, constitutes a significant health and social problem in Poland. The purpose of this paper is not to create a separate condition, but rather to emphasize that what we know as “metabolic syndrome” involves a combination of significant and modifiable cardiovascular (CV) risk factors.

Poland is classed as a high CV risk country [1]. Optimum management to reduce the CV risk should include not altering individual risk factors but rather a broader look and affecting the comorbid risk factors simultaneously, as there is often a cause-and-effect relationship between them, to achieve a significant CV risk reduction. Obesity does not only coexist with hypertension as well as disordered carbohydrate and lipid metabolism; if properly treated, it is also their reversible cause. The development of obesity, as well as progression of hypertension and increasing severity of metabolic disorder lead to the development of further conditions, which additionally increase the cardiovascular risk [2]. From that perspective, the concept of the “metabolic syndrome” seems accurate, as it enables a holistic approach to a person with obesity indicating the need to identify and modify the concomitant CV risk factors and to introduce their early prevention.

The 2022 metabolic syndrome definition

Considering the progress in understanding of individual components of MetS and the most current guidance on management of each individual condition, the authors propose that the definition of MetS encompass the presence of obesity and two of the three following criteria: hypertension, impaired glucose metabolism or elevated non-HDL cholesterol level (atherogenic dyslipidaemia). The MetS diagnostic criteria have been presented on Figures 1 and 2 and explained in the subsequent sections.

Furthermore, as shown in Figure 3, apart from the main components, the MetS also encompasses such additional conditions as: impaired kidney function, hepatic steatosis, obstructive sleep apnoea, heart failure with preserved ejection fraction, polycystic ovary syndrome, chronic inflammation, sympathetic activation and hyperuricaemia.

Metabolic syndrome epidemiology

The prevalence of MetS was assessed in Poland in at least four studies: NATPOL 2002 and 2011, WOBASZ (2003–2005) and WOBASZ II (2013–2014). These studies indicate that the prevalence of MetS has been on the rise in the 2000’s in Poland. The process is best described in the last publication comparing the WOBASZ study findings in the population aged 20–74. In 2014, the prevalence of MetS was 33% and 39% in women and men, respectively. That indicates an increase since 2003 by almost 3% and 9% in women and men, respectively. A particularly significant increase (from 43% to 57%) was seen in males aged 60–74, with increased prevalence of disordered carbohydrate metabolism, abdominal obesity and dyslipidaemia cited as the fundamental causes. Hypertension was the only MetS criterion to become slightly less prevalent over the study period [3].

In 2014, the most common feature of MetS in women (65%) was abdominal obesity as opposed to hypertension in men (62%). While the prevalence of MetS clearly increases with age, there are also sex-based differences. A significant sex-based difference in MetS prevalence was seen in two age groups: 20–39 years and 40–59 years (22% vs. 9% and 50% vs. 36% in men and women, respectively), which indicates earlier CV risk factor accumulation in men, potentially translating into their reduced life expectancy. These differences were not significant in the age group of 60–69 years (59.7% vs. 56.2% in women and men, respectively) [3].

Lifestyle as the leading cause of metabolic disorder

All components of MetS can be seen as the aftermath of an ‘unhealthy’ lifestyle (Patient Infographic #1). Effective lifestyle interventions are key for...
prevention and treatment of MetS and associated conditions. The interventions aimed at improving healthy eating, substance misuse, physical activity and sleep hygiene are particularly vital in the context of metabolic syndrome [4].

Diet

Weight loss is one of the primary interventions to positively affect all MetS conditions [4, 5]. The imbalance between energy intake and expenditure is the key cause of overweight and obesity which is a part of metabolic syndrome [6]. The problem affects almost 60% of the Polish population, and unhealthy diet is responsible for 20% of deaths in Poland [7]. The management of MetS should include the following dietary modifications [8]:

- reducing the intake of the trans-unsaturated fatty acids (present in highly processed foods, including commercial bakery products and some hydrogenated fats) and saturated fatty acids present in meat, dairy, coconut and palm oil [9] (the benefits include reducing triglyceride levels and increasing the HDL-C level);
- increasing the amount of dietary fibre, by eating e.g. pulses, vegetables, fruit and whole-grain products (the benefits include reducing triglyceride levels, increasing the HDL-C level, improved control of blood pressure, body weight and glycaemia) [10]. Vegetables are also a good source of potassium, which positively affects blood pressure regulation;
- increasing the intake of the omega-3 fatty acids, by eating e.g. fish (the benefits include reducing triglyceride levels);
- reducing the proportion of dietary carbohydrates (especially simple) to below 50% of all caloric intake, in particular by reducing the intake of sugary drinks (the benefits include reducing triglyceride levels);
- reducing salt intake (the benefits include decreasing blood pressure).

Lack of physical exercise

Although health benefits of physical activity are both clinically proven and commonly known, almost 70% of Polish men and over 60% of Polish women do not exercise regularly [7]. From the MetS perspective, the crucial effects of physical activity include increasing the HDL-C levels, reduction of triglyceride levels, improved glycaemic control due to increased tissue sensitivity to insulin, as well as blood pressure.
reduction. The newest guidance by the European Society of Cardiology [10], recommends that to reduce all-cause mortality, CV mortality, and morbidity, the physical activity of an adult per week should be at least (Patient Infographic # 1):

- 150–300 minutes of moderate-intensity aerobic physical activity (defined as a difficulty speaking in full sentences during the exercise);
- 75–150 minutes of vigorous-intensity aerobic physical activity (defined as an inability to speak during the exercise);
- or an equivalent combination of moderate- and vigorous-intensity activity. The guidelines indicate additional benefits of resistance exercise, recommending it in addition to aerobic activity on 2 or more days per week.

There is not a single recommended exercise type — the activities should be tailored to match a patient’s health status, skills and interests. Apart from organised activities, the patients should be encouraged to increase their daily physical activity outside workouts, such as walks, using stairs rather than lifts, doing daily chores etc.

The physical activity recommendations can be formulated as an “exercise prescription”, using the FITT principles, which helps to communicate the aspects of recommended activity in a simple way [11]:

- F (frequency) number of days per week that exercise is performed;
- I (intensity) the difficulty level of exercise performed [measured as maximal oxygen consumption (VO2 max) percentage, maximum heart rate, heart rate reserve, metabolic equivalent of task (MET) or Borg Rating of Perceived Exertion (RPE)];
- T (time) duration of a single workout/ activity;
- T (type) type of activity, e.g. a brisk walk, cycling.

Alcohol consumption

The mean alcohol consumption in Poland is approximately 10.6L/person/year. The large-scale populational studies show that “the safest level of drinking is none” [12], and that alcohol consumption increases the risk of not only cancer [13], depression and suicide [14], but also overweight, obesity and CV disease. The adverse effect of alcohol on body weight is due to its high caloric content with no nutrients. In the context of MetS, alcohol also increases blood levels of triglycerides and uric acid as well as blood pressure [10].
Alcohol intake should be ascertained as a part of medical history. The Alcohol Use Disorders Identification Test (AUDIT) should be administered [15], if a patient confirms using alcohol. They should also be encouraged to reduce their alcohol consumption or give it up completely. If alcohol addiction is identified, a patient should be signposted to specialist services. It is also recommended to administer depression and anxiety screening to patients who confirm using alcohol [16].

Sleep and circadian rhythm

Sufficient quantity and quality of sleep are crucial for maintaining optimum body weight. Impaired quantity and/or quality of sleep is associated with a risk of weight gain and numerous complications of MetS [17].

It is recommended to include questions about the quality of sleep as a part of medical history.

Apart from asking about the duration of sleep, its quality should also be ascertained (e.g. Do you wake up refreshed?) Below, we present main principles of sleep hygiene:

- one should have approximately 6 to 8 hours of sleep per night (1/3 to 1/4 of a day) with regular bedtime and wake-up times;
- the bedroom should be as dark as possible, with the bed used only for sex and sleep;
- the exposure to blue light from light-emitting electronic devices (e.g. smartphones, tablets) should be minimised at least 1 hour before planned bedtime;
- vigorous-intensity physical exercise should be avoided within at least 3 hours and meals within at least 4 hours before planned bedtime;
- alcohol should be avoided in the evening, to ensure optimum quality of sleep.
Obesity as a basic element of metabolic syndrome

Almost 60% of the Polish adults are overweight, this includes 85% of those at highest CV risk group [18]. One in five adults in Poland is obese. Obesity is a disorder of energy homeostasis which manifests as excessive adipose tissue accumulation. As there are no biological markers of obesity, it is diagnosed based on the body mass index (BMI) assuming that the values above 30 kg/m² confirm the diagnosis. The BMI, however, does not provide information on adipose tissue distribution (visceral or femoral gluteal), so waist circumference measurements (a midpoint between the iliac crest and the lowest rib along the midaxillary line defines the measurement level). According to the criteria of the International Diabetes Federation (IDF), central obesity is diagnosed in European adults based on the waist circumference of ≥ 80 cm and ≥ 94 cm in women and men, respectively. A significantly increased risk of metabolic complications is found in women with waist circumference of ≥ 88 cm and men with waist circumference of ≥ 102 cm.

Diagnosing obesity, or even overweight, must entail treatment commencement, as further progression increases the risk of premature death, as well as social exclusion and often also disability. Excessive accumulation of adipose tissue, in particular abdominal obesity, is a cause of over 200 complications, including type 2 diabetes mellitus, hypertension and dyslipidaemia — key components of MetS — as the most common ones [19].

The goal of obesity treatment is to stop its progression, that is, further body weight increase, and subsequently to lose weight. Even a modest weight loss of 5% to 10% of total body weight is likely to produce health benefits [19, 20].

Non-medical management of obesity

Non-medical management of obesity encompasses nutritional therapy, change of eating habits and increased volitional physical activity. Dietary guidance should be personalised to match individual energy demand, preferences and treatment goals of a patient. It should also ensure sufficient nutrition and be sustainable long-term. To lose approximately 0.5 kg a week, a well-balanced diet is recommended, which reduces a daily caloric intake by 500–600 kcal (Patient Infographic #2). In patients with obesity and pre-diabetes, the treatment goal should be a weight loss of at least 5–7%. In patients with obesity and diabetes, the treatment goal should be a weight loss of at least 7–15%. Alongside the dietary intervention, it is recommended to increase the physical activity. The prescribed physical activity should be described by type, intensity, frequency and duration. At least 150 minutes of moderate-intensity aerobic physical activity, such as brisk walk, swimming, cycling or water aerobics, are recommended. Cognitive-behavioural therapy including modification of eating behaviours and/or eating disorder should be delivered by a qualified psychologist/psychological therapist [20–22].

Medical management of obesity

Medical treatment is a part of a complex management strategy and is used when non-medical interventions prove ineffective. Failure to attempt to use the effective treatment approaches, including medical therapy, should be thought of as an act of omission, just as it is the case with the failure to use appropriate treatments in patients with hypertension, diabetes, hypercholesterolaemia and other chronic diseases [19].

Medical management should also be considered in all patients with BMI ≥ 30 kg/m² as well as those with BMI ≥ 27 kg/m² and at least one overweight-related disease. Thus, all patients with MetS should be considered a priori as potential clients for medical treatment. The medical management of obesity should be continued for at least 12 months, for as long as it is effective and well tolerated, as obesity is a chronic condition which does not tend to resolve spontaneously [22].

Currently, the following drugs are approved and available for the treatment of obesity in Poland:

- lipase inhibitor — orlistat;
- bupropion hydrochloride and naltrexone hydrochloride in a fixed-dose combination medication;
- glucagon like peptide 1 receptor agonists (GLP-1RA) — liraglutide (target dose of 3 mg), semaglutide (target dose of 2.4 mg).

GLP-1RA should be used as a drug of choice in patients with overweight and obesity with comorbid: MetS, pre-diabetes, type 2 diabetes mellitus, hypertension, atherosclerosis and its clinical sequelae such as obstructive sleep apnea (OSA), fatty liver disease and polycystic ovary syndrome. Liraglutide is the only drug the efficacy and safety of which have been proven in patients with obesity before or after bariatric surgery.

Naltrexone/bupropion in a fixed-dose combination medication should be primarily considered in patients with obesity comorbid with depression, those who decided to stop smoking and those whose body weight increased following smoking cessation. It should also be considered in patients whose obesity...
is secondary to snacking. Orlistat is recommended as the second or third choice therapy [19, 22].

Multidisciplinary approach to the management of obesity

The obesity management encompasses the cooperation between the patient and the multidisciplinary team of different healthcare professionals, including physicians representing various medical specialties, dieticians, psychologists and physiotherapists. This approach, which emphasizes the role of representatives of different healthcare professions in order to achieve the best possible treatment outcomes, is justified by the complexity of obesity and plethora of research supporting the need for the involvement of: a physician (diagnosis, planning the treatment strategy and its oversight), dietician (nutritional education), psychologist (improving patient's emotional state and supporting behavioural modification to aid treatment compliance) or physiotherapist (improving fitness and stamina) [19].

Surgical management of obesity

Bariatric surgery can lead to a complete, permanent weight loss and remission of obesity-related diseases, such as type 2 diabetes mellitus, hypertension, and dyslipidaemia — components of MetS. Based on their BMI levels, the following patients are eligible for bariatric surgery:

- those with BMI > 40 kg/m²;
- those with BMI of 35–39.9 kg/m² and ≥1 obesity-related disease (e.g. type 2 diabetes mellitus, hypertension, severe osteoarthritis, dyslipidaemia, severe OSA);
- those with BMI of 30–35 kg/m² and type 2 diabetes mellitus which remains uncontrolled despite appropriate medical treatment [23].

Pre-operative weight loss (5–10%) is indicated. However, even if a patient’s BMI after the pre-operative weight loss falls below the eligibility criteria, the surgery may still be performed provided that this criterion has been met and documented in the past.

The history of bariatric surgery dates back to the mid-twentieth century. All several dozen procedures available nowadays share one common element, that is, laparoscopic technique, considered the “gold standard” in bariatric surgery. The procedure should be decided upon on a case-to-case basis, considering the patient’s preferences, age or comorbidities. The available research confirms sustainable weight reduction effect and resolution of obesity complications as well as reducing the risk of death in long-term follow-up as compared to non-surgical treatment [24, 25].

Impaired glucose metabolism

The risk of developing type 2 diabetes mellitus is 3–5-fold higher in patients with MetS compared to the general population and it is proportionate to the number of components of metabolic syndrome [26]. Type 2 diabetes mellitus and MetS share common underlying mechanisms including insulin resistance and metabolic abnormalities linked to the excess adipose tissue and its dysfunction [27]. Hyperglycaemia and lipid abnormalities (mainly hypertriglyceridemia) develop as a result of impaired tissue sensitivity to insulin. Increased insulin release from islet β-cells gradually leads to their exhaustion, followed by pre-diabetes and diabetes. Hyperglycaemia, dyslipidaemia and hyperinsulinemia cause vascular endothelial dysfunction and vascular wall remodelling, thus accelerating the development of atherosclerosis and the onset of its clinical consequences [28].

Figure 4 shows the principles to guide the diagnostic assessment for diabetes and pre-diabetes. Table I lists symptoms of hyperglycaemia and high-risk groups for diabetes.

Management of pre-diabetes

The management of pre-diabetes primarily involves reducing insulin resistance, mainly through weight loss. Weight loss of 5% improves glycemic control, blood pressure and lipid profile, thus significantly reducing the risk of type 2 diabetes mellitus and its CV complications. The bigger the weight loss, the more significant the expected improvement of carbohydrate and lipid metabolism as well as blood pressure [29, 30]. All patients with pre-diabetes, regardless of their BMI, should be encouraged to implement lifestyle modifications (dietary changes and increased physical activity) [31]. Metformin should be considered to prevent the development of type 2 diabetes mellitus in following groups of patients with pre-diabetes: those aged < 60 with BMI ≥ 35 kg/m², and women with history of gestational diabetes [32, 33]. Furthermore, glucagon like peptide-1 receptor agonists (GLP-1RA) can be considered in patients with BMI ≥ 27 kg/m² to reduce the risk of progression of pre-diabetes to type 2 diabetes mellitus (liraglutide — target dose of 3 mg, semaglutide — target dose of 2.4 mg) [34]. The risk of MetS in patients with pre-diabetes (especially where abnormal fasting glycaemia is concomitant with impaired glucose tolerance) is comparable to that of patients newly diagnosed with type 2 diabetes mellitus [35, 36].

www.ah.viamedica.pl

105
The treatment goal in diabetes (regardless of its aetiology) is to reduce the risk of long-term complications, including CV risk. This can be done by attempting to achieve target glycemia, blood pressure, LDL and non-HDL cholesterol as well as body weight - basic components of MetS — and by using drugs with proven advantageous effect on cardiovascular risk and body weight. Multi-modal approach is needed, which encompasses abovementioned behavioural interventions, alongside medications, patient education and bariatric surgery in some cases. According to the guidelines of Polish Society of Diabetology, metformin is primarily used for medical management of type 2 diabetes mellitus. In cases with concomitant overweight/obesity, atherosclerotic cardiovascular disease, chronic kidney disease or very high cardiovascular risk, dual therapy involving metformin and another agent of proven effect on cardiovascular risk, GLP-IRA.
or sodium glucose co-transporter 2 inhibitor (SGLT2i). According to the American and European guidelines, GLP-1RA or SGLT2i monotherapy is possible in those patients with type 2 diabetes mellitus. Eligibility assessment for metabolic surgery is recommended in patients with type 2 diabetes mellitus and BMI ≥ 35 kg/m², as well as those with BMI ≥ 30 kg/m², in whom medical management fails to achieve optimum glycaemic control [33].

Dyslipidaemia

Atherogenic dyslipidaemia

Patients with MetS often have atherogenic dyslipidaemia which includes elevated triglyceride levels, low HDL levels and normal to elevated LDL levels, with predominance of small, dense low-density lipoprotein (sdLDL) which additionally increases the CV risk [37–39]. Most recent studies unequivocally indicate that the HDL cholesterol determination has no predictive role, supporting the replacement of triglyceride level determination with that of non-HDL cholesterol and/or apolipoprotein B [10]. Due to the limited availability of apolipoprotein B assay, the current document uses the non-HDL cholesterol level ≥ 130 mg/dL as a diagnostic criterion of metabolic syndrome. The most recent (2021) Polish guidelines on the management of dyslipidaemia recommend the determination of both LDL and non-HDL cholesterol in all patients [40] (Fig. 5).

The non-HDL cholesterol assay reflects the plasma concentration of all lipoproteins containing apolipoprotein B: LDL, VLDL, IDL, chylomicrons, chylomicron remnants, VLDL remnants and lipoprotein(a), involved in atherogenesis and plaque destabilisation [41] (Fig. 6). Non-HDL cholesterol level, as a marker of atherogenic lipoprotein concentration, is therefore crucial for CV risk assessment and should be a regular element in the lipid panel. It is of particular diagnostic value when LDL cholesterol level calculation offers a limited accuracy. The research shows that the non-HDL cholesterol level is a better predictor of CV risk than the LDL cholesterol level [40, 41].

Management of dyslipidaemia

Patients with MetS are considered to have at least high CV risk (Tab. 2). The non-HDL cholesterol level is a primary parameter in the lipid panel which determines the cardiovascular risk and targets of lipid-lowering therapy. The treatment goal in dys-

Figure 5. Changes in lipid levels in patients with atherogenic dyslipidaemia

- ↑ non-HDL-C
- ↑ apoB
- ↑ triglyceride-rich lipoproteins (TRL) (fasting and postprandial)
- ↑ large VLDL particles
- ↓ HDL-C
- ↓ small dense HDL cholesterol particles

 apoB — apoprotein B; HDL — high density lipoproteins; HDL-C — HDL cholesterol; LDL — low density lipoproteins; LDL-C — LDL cholesterol; VLDL — very low density lipoproteins
lipidaemia is to achieve the target LDL cholesterol levels and, secondarily, also target non-HDL cholesterol levels [1, 40]. Broad lifestyle modification is the key to non-medical management of MetS and dyslipidaemia. Diet and physical exercise (especially aiming at weight loss) may significantly (even by 20–25%) reduce the LDL cholesterol levels. Reducing alcohol consumption can also contribute to decreasing the triglyceride levels.

Medical management of dyslipidaemia in patients with MetS includes [1, 40]:

- high intensity statin therapy up to the maximum tolerated dose to achieve the target LDL cholesterol level for a given risk group;
- should that not be achieved with the maximum tolerated dose, ezetimibe can be prescribed as an add-on;
- for primary prevention, a PCSK9 (proprotein convertase subtilisin kexin 9) inhibitor can be considered in combination with maximum tolerated dose of a statin and ezetimibe, should the two latter alone fail to reduce the LDL cholesterol level to the target values;
- for secondary prevention, a PCSK9 inhibitor is recommended in combination with maximum tolerated dose of a statin and ezetimibe, should the two latter alone fail to reduce the LDL cholesterol level to the target values;

Table 2. Target levels of low-density lipoprotein (LDL) cholesterol and non high-density lipoprotein (non-HDL) cholesterol in patients with metabolic syndrome (MetS)

Factors associated with a given CV risk category	High CV risk	Very high CV risk
High risk as per SCORE2 or SCORE2-OP		
Chronic kidney disease (eGFR 30–60 mL/min/1.73 m²)		
< 70 mg/dL (1.8 mmol/L) compared to baseline		< 55 mg/dL (1.4 mmol/L) and reduction by ≥50% compared to baseline
< 100 mg/dL (2.6 mmol/L)		< 85 mg/dL (2.2 mmol/L)

CV — cardiovascular; eGFR — estimated glomerulur filtration rate; HDL — high-density lipoprotein; LDL — low-density lipoprotein

Figure 6. Triglyceride content in individual components of non-HDL cholesterol (non-HDL-C)
• after the LDL cholesterol level has been reduced to the target values, the attempt to reduce the non-HDL cholesterol to the target values can be considered (Tab. 3);
• the combination therapy using omega-3 fatty acids (PUFA, at 2–4g/day) and statin can be considered in patients with triglyceride concentrations above 2.3 mmol/L (200 mg/dL) despite statin treatment;
• the combination therapy using choline fenofibrate and statin can be considered as a part of primary prevention in patients with triglyceride concentrations above 2.3 mmol/L (200 mg/dL) whose LDL cholesterol levels have been reduced to the target values, especially where the HDL cholesterol levels are low;
• the combination therapy using choline fenofibrate and statin should be considered in high-risk patients with triglyceride concentrations above 2.3 mmol/L (200 mg/dL) whose LDL cholesterol levels have been reduced to the target values, especially where the HDL cholesterol levels are low;

Hypertension

Overweight and obesity are the reversible — if properly treated — causes of increased blood pressure and hypertension. There is a positive, linear correlation between the BMI and the risk of hypertension, observable as early as the first decades of life [42].

Blood pressure (BP) monitoring should be primarily based on “out-of-office” or ambulatory blood pressure measurements. Patients with high normal blood pressure values in “in-office” measurements should be requested to perform ambulatory blood pressure measurements. The diagnostic criteria of metabolic syndrome include systolic blood pressure (SBP) ≥ 130 mm Hg and/or diastolic blood pressure (DBP) ≥ 80 mm Hg obtained in ambulatory BP measurements (or a mean value of 24-hour ambulatory blood pressure monitoring). This is approximately in keeping with the upper limit of the high normal blood pressure (SBP ≥ 130 mm Hg and/or DBP ≥ 80 mm Hg) obtained in an in-office measurement, which is also the diagnostic criterion of metabolic syndrome [43–45].

To ensure reliability, ambulatory blood pressure measurements need to meet several criteria [43–45]: for the diagnosis of hypertension or ongoing monitoring, to assess treatment efficacy in patients on long-term treatment prior to a medical appointment, the measurements should be carried out over 7 consecutive days, two consecutive measurements at a time, both AM and PM (before a meal and medications); several extra measurements at random times should be carried out over the week/month, outside the above schedule — always two consecutive measurements at a time; ensuring the right size cuff is used — the large-sized (L) cuff (32–42 cm) or a combined medium-to-large-sized (M/L) cuff (22–42 cm) may be needed in patients with obesity.

According to current guidelines, anti-hypertensive treatment should be started in individuals with blood pressure ≥ 135/85 mm Hg assessed through ambulatory BP measurement (or the mean of the 24-hour ambulatory blood pressure monitoring) or ≥ 140/90 mm Hg assessed through in-office measurements. The target blood pressure values are < 130/80 mm Hg in in-office and ambulatory measurements (or the mean of the 24-hour ambulatory blood pressure monitoring) - in individuals under 70 years of age, as well as < 140/90 mm Hg in in-office measurements and ≤ 135/85 mm Hg in ambulatory measurements (or the mean of the 24-hour ambulatory blood pressure monitoring) in individuals over 70 years of age [43–45].

All patients with hypertension concomitant with metabolic syndrome should be offered

Kidney function assessment	Method	Diagnostic criteria
eGFR	Serum creatinine level and eGFR calculation (mL/min/1.73 m²)	G2 60–89 mild impairment
G3a 45–59 mild to moderate impairment		
G3b 30–44 moderate to severe impairment		
G4 15–29 severe impairment		
G5 < 15 kidney failure		
Urinary albumin	Assessment of albumin-to-creatinine ratio in a urine sample [mg/g]	A1: < 10 normal or 10–30 mildly elevated
A2: 30–300 moderately elevated
A3: > 300 albuminuria |

eGFR — estimated glomerular filtration rate

Table 3. Kidney function assessment in patients with metabolic syndrome (MetS) According to Kidney Disease: Improving Global Outcomes (KDIGO) 2012

Kidney function assessment	Method	Diagnostic criteria
eGFR	Serum creatinine level and eGFR calculation (mL/min/1.73 m²)	G2 60–89 mild impairment
G3a 45–59 mild to moderate impairment		
G3b 30–44 moderate to severe impairment		
G4 15–29 severe impairment		
G5 < 15 kidney failure		
Urinary albumin	Assessment of albumin-to-creatinine ratio in a urine sample [mg/g]	A1: < 10 normal or 10–30 mildly elevated
A2: 30–300 moderately elevated
A3: > 300 albuminuria |
non-medical management aiming at significant lifestyle modifications, to include in particular:

• weight loss;
• reduced salt intake;
• increased physical activity.

Where weight loss cannot be achieved through non-medical management, medical treatments (preferably with GLP1-RA due to its superior efficacy in inducing weight loss and therefore greater blood pressure reduction) or bariatric surgery should be considered [46].

Choosing anti-hypertensive drugs [43, 45]

The first-line treatment should involve a combination of an angiotensin-converting enzyme (ACE) inhibitor or angiotensin-II receptor blocker (ARB) with a dihydropyridine calcium-channel blocker or a thiazide/thiazide-like diuretic (preferably in a fixed dose combination).

Where the target blood pressure fails to be achieved, the third anti-hypertensive medication should be added after 6–8 weeks, for the treatment to involve a combination of ACE inhibitor or ARB with a dihydropyridine calcium-channel blocker and a thiazide/thiazide-like diuretic (preferably in a fixed dose combination);

Where the target blood pressure fails to be achieved, the following treatment options (add-ons) should be considered after 6–8 weeks:

• mineralocorticoid receptor antagonist (MCRA), which plays a role in limiting the adverse effect of obesity and hypertension on kidney damage [42], or
• beta-blocker (to inhibit sympathetic overactivity in patients with obesity, nebivolol or bisoprolol are preferred due to the metabolic profile) [47].

Subsequently, a centrally acting agent (clonidine) can be considered, especially in patients with adrenergic overactivity and/or mood disorders [48].

While obesity is one of the key predictors of refractory hypertension, multiple studies demonstrated that antihypertensive agents decreased blood pressure to a comparable degree in obese vs non-obese patients. The difficulties in managing hypertension may be due to its complex pathogenesis and the need to address its multiple mechanisms; hence the need for treatment regimens including four, five or more antihypertensive agents in some cases.

Whenever possible, fixed dose combinations (including two and three antihypertensive medications) should be used in the management of hypertension, to improve compliance. In patients with concomitant hypertension and hypercholesterolaemia, using a fixed dose combination of two antihypertensive agents with a statin, may improve compliance in the management of both hypertension and hypercholesterolaemia.

Other components of metabolic syndrome

Impaired kidney function

Increasing body weight initially causes increased sodium reabsorption within the renal tubules. This, in turn, leads to compensatory renal vessel dilatation and increased estimated glomerular filtration rate (eGFR). Glomerular hyperfiltration which is a consequence of increased body weight eventually subsides. Then, eGFR reduces gradually as a result of kidney damage and nephron loss. Increased albuminuria may precede the eGFR reduction even by many years. The obesity-related mechanisms of nephron damage are not fully known. The postulated mechanisms included a combination of haemodynamic, metabolic and inflammatory abnormalities. Sympathetic activation, activation of the renin–angiotensin–aldosterone system (RAAS) and physical compression may contribute to hypertension which, alongside metabolic disorders (e.g. diabetes), glomerular hyperfiltration and inflammation, may cause kidney injury [42, 49].

Kidney function, including eGFR and urinary albumin and creatinine, should be assessed in each patient with metabolic syndrome (Tab. 3) [50]. Current guidelines recommend the CKD-EPI equation for estimating glomerular filtration rate (GFR) from serum creatinine. While there is a significant correlation between albuminuria (however minor) and cardiovascular risk, the correlation between eGFR and cardiovascular risk is only significant for the eGFR values below approx. 60 mL/min/1.73 m². Weight loss, which translates into reduced albuminuria and an improved control of other components of metabolic syndrome, is the key for nephroprotection. The research has demonstrated a specific nephroprotective effect of ACE inhibitors, ARBs, aldosterone antagonists, SGLT2i and GLP1-AR, which both reduce the risk of kidney injury and, in cases of kidney injury, reduce its severity [43, 51, 52].

Metabolic-associated fatty liver disease

Metabolic-associated fatty liver disease (MAFLD) is an inflammatory liver disease which involves accumulation of lipid molecules in > 5% of hepatocytes, present in 25% of the world population and 15–49% of the European population [53, 54]. Its pathogenesis is moderated by such factors as insulin resistance, lipotoxicity, oxidative stress, genetic factors, adipose
MAFLD progression leads to non-alcoholic steatohepatitis (NASH). Fibrosis develops within 8–13 years in 50% of patients, leading to cirrhosis in 5–25% of cases [55]. Fibrosis is the primary prognostic factor affecting both complications and survival in MAFLD. MAFLD, regardless of its stage, carries a higher risk of hepatocellular carcinoma (HCC); it also doubles the risk of type 2 diabetes mellitus, cardiovascular disease, colorectal cancer and breast cancer. The risk of cardiovascular death is 60% higher in individuals with MAFLD [56, 57].

By definition, MAFLD is not equivalent to the diagnosis of non-alcoholic fatty liver disease (NAFLD). Metabolic-associated fatty liver disease is diagnosed based on the finding of hepatic steatosis (seen in diagnostic imaging, elastography or histology), as well as type 2 diabetes mellitus and/or overweight and/or obesity and/or hyperlipidaemia, regardless of alcohol consumption. Thus, any individual with MetS and hepatic steatosis will be diagnosed with MAFLD a priori [53]. Previously, non-alcoholic fatty liver disease could only be diagnosed after excessive alcohol consumption has been ruled out [58].

MAFLD affects 55–68% of patients with type 2 diabetes mellitus, which increases progression of fibrosis and the risk of HCC [59]. Each patient with type 2 diabetes mellitus or MetS needs to be assessed for MAFLD. Similarly, each patient with fatty liver needs to be assessed for type 2 diabetes mellitus and MetS (Tab. 4). Severity (i.e. the extent of fibrosis) assessment should be carried out in each patient with MAFLD using non-invasive biochemical methods [e.g. FIB-2 calculator, using serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and platelet levels; NAFLD-score using the FIB-2 parameters and serum albumin level] or physical methods (elastography, magnetic resonance imaging of the liver), plus liver biopsy in uncertain cases. We recommend using those methods in combination (e.g. FAST score based on AST levels and Fibroscan parameters) [60]. Normal ALT does not exclude advanced fibrosis even in 40% of cases.

The treatment of MAFLD primarily involves weight loss of 7–10% (0.5–1 kg per week) through reduced caloric intake (by 500–600 kcal/day) and ≥ 150 minutes of aerobic exercise per week [58]. In patients with extreme obesity, bariatric surgery offers the best outcomes. Medical management, including pioglitazone vitamin E supplementation, should only be offered to patients with ≥ grade 2 fibrosis or high risk of progression. It is vital to treat metabolic abnormalities and hypertension. MAFLD is also an indication (not a contraindication) for statin therapy (provided that ALT remains ≤ triple upper normal limit). Patients with decompensated cirrhosis should be assessed for liver transplant and be monitored by the oncologist.

Heart failure with preserved ejection fraction (HFpEF)

Heart failure with preserved ejection fraction (HFpEF) is a condition where the left ventricular dysfunction and increased left ventricular stiffness jointly increase the pressure in the left atrium and, through retrograde transmission, also in pulmonary circulation, causing typical symptoms of heart failure, e.g. exertional dyspnoea, fatigue, malaise, palpitations and oedema (Fig. 7). HFpEF is associated with an increased risk of death and hospital admission [61].

Metabolic syndrome is an important risk factor for HFpEF: hypertension causes concentric left ventricular hypertrophy (and increases its stiffness), whereas obesity and metabolic disorder further reduce left ventricular function through inflammation and impaired coronary microcirculation [62, 63]. Obesity and insulin resistance predict HFpEF better than HF with reduced EF (HFrEF), and this association is more pronounced in women [64]. This may explain a higher proportion of women in the population of patients with HFpEF compared to those

Table 4. Diagnostic assessment and diagnostic criteria of metabolic-associated fatty liver disease (MAFLD)

Diagnostic criteria	Evidence of hepatosteatosis in diagnostic imaging, elastography or histology and MetS
Severity criteria	Liver fibrosis (grade F0–F4)
Basic/screening investigations*	Abdominal ultrasound, Biochemistry panel, e.g. FIB-4/NAFLD-score
Specialist investigations	Elastography or liver biopsy
Non-medical management	Exercise (≥ 150 minutes/week), reduced caloric intake (500–600 kcal/day), dietary changes
Medical management	Vitamin E, pioglitazone after considering contra-indications, Treatment of impaired glucose regulation, dyslipidaemia and hypertension

MetS — metabolic syndrome; NAFLD — non-alcoholic fatty liver disease
with HFrEF [65]. Older age is another important risk factor for HFpEF, as the impaired left ventricular relaxation progresses with age. The mean age of patients with HFpEF is higher than of those with HFrEF [65]. However, HFpEF is a heterogeneous condition and its numerous phenotypes include the obesity-related, MetS-related, age-related, arterial stiffness-related, and CKD-related HFpEF, which can overlap [66]. Metabolic syndrome is associated with an increased risk of hospital admission due to HF exacerbation in patients with HFpEF [67].

HFpEF should be suspected in patients with impaired exercise tolerance and a typical clinical profile [older age, hypertension (in particular long-standing and poorly controlled), obesity, MetS, atrial fibrillation] [68]. HFpEF can only be diagnosed in a patient with exertional dyspnoea and EF ≥ 50% when additional investigations demonstrate the left ventricular diastolic dysfunction and/or elevated left ventricular filling pressure (e.g. elevated natriuretic peptide levels, concentric left ventricular hypertrophy and left ventricular diastolic dysfunction, left atrial enlargement, elevated pulmonary artery pressure) (Tab. 5) [69, 70]. Nevertheless, the natriuretic peptide levels can also be normal, particularly in obese patients with HFpEF. On the other hand, their elevated concentration can be found in the elderly, patients with atrial fibrillation or chronic kidney disease, without a concomitant HF [70].

Obstructive sleep apnoea

The estimated prevalence of OSA in Poland is approximately 28% [71]. Obesity is the main environmental risk factor for OSA, and the severity of OSA is linked to the amount of visceral fat [72]. Body weight changes affect the severity of OSA, which is best demonstrated with bariatric surgery (remission).

OSA is diagnosed 2.5-times more often in men than in women. This difference, however, disappears in the population above 50 years of age, where the percentages are comparable for both sexes. The reversible risk factors for OSA are impaired upper airway patency (allergies, nasal polyps, nasal septum deviation) and alcohol consumption. The symptoms are snoring, observable apnoea, nycturia (very strong association) and daytime sleepiness. The treatment involves weight loss, continuous positive airway pressure (CPAP), ENT surgery and treatment of allergies (Tab. 6) [73, 74].

OSA is the cause of secondary hypertension and organ damage (myocardial infarction and stroke). Effective treatment (by using CPAP every night) reduces the CV risk in patients with OSA through e.g. improved control of blood pressure and glycaemia, facilitating weight loss and other, complex mechanisms [43, 75, 76].

Polycystic ovary syndrome

Polycystic ovary syndrome (PCOS, see Tab. 7 for diagnostic criteria) is one of the most common endocrine abnormalities diagnosed in 6–10% of women at reproductive age [77]. Women with PCOS have 4-fold higher risk of type 2 diabetes mellitus and 2–3-fold higher risk of MetS, with insulin resistance, found in approximately 70% of women with PCOS.
regardless of their BMI, as the key underlying mechanism. Obesity exacerbates PCOS symptoms, as increasing insulin resistance promotes hyperinsulinemia which stimulates androgen production in ovaries. There is a correlation between hyperandrogenism and CV risk in PCOS, which is further increased by the presence of classic risk factors. That is why women with PCOS should be offered screening for obesity, dyslipidaemia, hypertension and diabetes and, if diagnosed, also appropriate treatment. Prevention of metabolic and CV disorder in all women with PCOS primarily involves lifestyle modification (just as in pre-diabetes), and treatment with metformin in those with insulin resistance. In overweight women, treatment with glucagon like peptide-1 receptor agonists (GLP-1RA) — liraglutide (target dose of 3 mg), semaglutide (target dose of 2.4 mg) — should be considered. In women with obesity,
treatment with GLP-1RA and/or metabolic surgery should be considered (Tab. 7) [78].

Hyperuricaemia

Experimental and clinical studies indicate the role of uric acid in the development of different components of metabolic syndrome: hypertension, diabetes, fatty liver disease, and chronic kidney disease. Uric acid has been postulated to irreversibly react with nitric oxide, causing endothelial dysfunction and development of hypertension. Nitric oxide deficiency leads to the reduced blood flow to insulin-sensitive tissues, which exacerbates insulin resistance. Patients with higher serum uric acid levels have higher cardiovascular morbidity and mortality than those with lower serum uric acid levels. However, there are no large prospective randomised clinical trials (RCTs) to demonstrate CV risk reduction with lowering serum uric acid levels [79, 80]. The ALL-HEART study, which aims to determine whether allopurinol improves cardiovascular outcomes in patients with ischaemic heart disease, is expected to be completed soon and the report to be published.

Hyperuricaemia is defined as an elevated serum uric acid level > 7 mg/dL (420 umol/L). The Polish Society of Hypertension guidelines, based on epidemiological studies, consider serum uric acid levels > 5–6 mg/dL in patients with high cardiovascular risk to be elevated [43]. Treatment of hyperuricaemia starts with dietary changes — reduced intake of fructose, purines and alcohol — and increased physical activity. Medical management of asymptomatic

Table 7. Diagnostic assessment, diagnostic criteria and treatment of polycystic ovaries syndrome (PCOS)

Diagnostic criteria	Rotterdam criteria (2 of 3)
	1. Oligoovulation or irregular menstrual cycles:
	- anovulation
	- < 10 cycles/year
	- cycle > 35 days
	2. Hyperandrogenism (HA):
	- clinical: hirsutism, acne, androgenic alopecia
	- biochemical: elevated serum androgen levels
	3. Polycystic ovaries (PCO) on ultrasound

Severity criteria	PCOS phenotypes:
	A — nieszulanie + HA + PCO = KLASYCZNY
	B — ovulatory dysfunction + HA
	C — ovulatory dysfunction + PCO
	D — HA + PCO
Phenotype A — highest cardiometabolic risk	
Phenotypes B, C and D — risk proportionate to androgen levels and BMI	

Basic/screening investigations	To be assessed at every appointment:
	body weight
	waist circumference
	blood pressure
	To be assessed once a year:
	lipid panel
	fasting blood glucose
	OGTT*

Specialist investigations	In selected cases:
	cardiac assessment
	assessing for other possible causes of hyperandrogenism
	infertility assessment

Non-medical management	Low glycaemic index (GI) diet with limited intake of saturated fats (just as in impaired glucose regulation)
	In overweight/obese patients, the recommended caloric deficit is 500–750 kcal
	Physical activity — minimum 150 minutes of aerobic activity per week; 200–300 minutes in patients with obesity
Psychological support	Smoking cessation

Medical management	Patients with insulin resistance: metformin
	In patients with BMI ≥ 27 kg/m² consider the GLP-1RA approved for the management of overweight and obesity

*In women with BMI > 30 kg/m² and all women > 40 years of age, history of gestational diabetes and/or family history of T2D. BMI — body mass index; GLP-1RA — glucagon-like peptide-1 receptor agonist; OGTT — oral glucose tolerance test; PCOS — polycystic ovaries syndrome
patients with hyperuricaemia remains controversial — while some experts do not recommend it, others clearly point to potential benefits of reducing serum uric acid level to < 5 mg/dL in patients with high cardiovascular risk [43, 82].

Sympathetic overdrive and tachycardia

High C-reactive protein (CRP) concentration and elevated white blood cell count, associated with increased inflammatory activity in insulin resistance, have been shown to correlate with tachycardia in patients with MetS [83]. This is explained by the autonomic imbalance, that is, impaired central regulation of sympathetic and parasympathetic activity, where the former is hyperactive [84]. Inflammation, on the other hand, plays the key role in pathogenesis and progression of atherosclerosis. Heart rate assessment in patients with obesity, hypertension, impaired glucose regulation and dyslipidaemia, should constitute an obligatory element of every medical appointment. Tachycardia is a cardiovascular risk factor [85] which is also an indication for a medical intervention in those patients. Resting HR > 80 bpm in a patient with MetS suggests a higher CV risk [43–45].

Inflammation

Obesity is a primary contributor to insulin resistance, which in turn leads to production of cytokines exerting the metabolic effect within the adipose tissue. These include e.g. adiponectin, leptin or resistin [86]. Higher levels of leptin correlate with atherogenesis and inflammation in obesity, through its effect on proinflammatory cytokine and fibrinogen release [86, 87]. CRP most likely interferes with the insulin-activated pathway, impairing its metabolic effect. A correlation has been reported between elevated CRP and coronary episodes, high BMI and insulin resistance. However, despite multiple reports, the role of CRP in pathogenesis of those conditions still remains unclear [87, 88]. Its elevated levels are also seen in smokers, patients with hypertriglyceridemia and hypertension. CRP is not only a risk marker, but also a prognostic marker in cardiovascular incidents [87, 88]. Elevated CRP levels help to identify the highest CV risk group patients, which makes this simple and readily available marker a useful diagnostic tool.

Summary

The key abnormality in MetS is overweight or obesity, particularly abdominal. Metabolic syndrome can be easily diagnosed based on medical history, physical examination, blood pressure measurement and a few simple laboratory tests available at each medical practice. The diagnostic algorithm for metabolic syndrome is shown in Figure 8.

Each patient with MetS should be advised to introduce lifestyle modifications and, in most cases, also offered medication to facilitate weight loss and control the main components of MetS - hypertension, atherogenic dyslipidaemia and impaired glycaemia. The treatment algorithm for metabolic syndrome is shown in Figure 9. Early diagnosis of MetS enables implementing a complex, multidisciplinary management strategy to control its individual risk factors, which prevents organ and CV complications. It is important to remember that MetS develops over years — initially with the onset of overweight and obesity, followed by individual components of MetS. The earlier the intervention, the earlier and more effective CV risk reduction (Fig. 10). Maximal attainable CV risk reduction in patients with MetS is possible through achieving all treatment targets.

Table 1: Metabolic Syndrome Diagnostic Criteria

Diagnosis of metabolic syndrome — Yes	Other Components of Metabolic Syndrome
Oral glucose tolerance test	Abdominal US, ALT, AST, PLT
Serum creatinine	Serum uric acid
Urinary albumin-to-creatinine ratio	

Figure 8. Metabolic syndrome (MetS) — the diagnostic algorithm
Figure 9. Metabolic syndrome (MetS) — the treatment algorithm

METABOLIC SYNDROME	Obesity	Impaired glucose regulation	Hypertension	Dyslipidaemia
Indications for medical management				
BMI ≥ 27 kg/m²	• diabetes	• SBP ≥ 140 mm Hg and/or DBP ≥ 90 mm Hg (in-office measurement)	LDL-C ≥ 70/55 mg/dL***	
Weight loss by 5–7%/7–15%**	• consider in patients with pre-diabetes	• SBP ≥ 133 mm Hg and/or DBP ≥ 85 mm Hg (ambulatory measurement)		
Treatment target				
GLP-1RA	Glycated hemoglobin < 7.0%, consider < 6.5%	BP in-office/ambulatory < 130/80 mm Hg****		
Metformin		LDL-C < 70/55 mg/dL*** & ≥ 50% non-HDL-C < 100/85 mg/dL***		
Step 1	GLP-1RA	ACE-I/ARB + CCB or TD	Statin*** at maximal tolerated dose	
	Metformin			
Step 2	GLP-1RA	ACE-I/ARB + CCB + TD		
• naltrexone/bupropion		+ ezetimibe		
• orlistat				
Step 3	Metabolic surgery	+ sodium-glucose cotransporter-2 inhibitor (SGLT2) + other medications	Triglycerides > 200 mg/dL	
		+ aldosterone antagonist + β-blocker	+ fenofibrate/omega-3 fatty acids	

* Should treatment target fail to be achieved, take the next step. ** In all patients and patients with diabetes, respectively. *** In high risk and very high risk groups, respectively. **** High-potency atorvastatin/rovusatin.

ACE-I — angiotensin-converting-enzyme inhibitors; ARB — angiotensin receptor blocker; BMI — body mass index; BP — blood pressure; CCB — calcium channel blocker; DBP — diastolic blood pressure; GLP-1RA — glucagon-like peptide-1 receptor agonist; LDL-C — LDL cholesterol; non-HDL-C — non-HDL cholesterol; SBP — systolic blood pressure; TD — thiazide-type diuretic.

© PTNT, PTLO, PTL, PTH, PTMSŻ, sPiE i Klub 30 PTK, sChMiB TChP

Figure 10. Development of obesity and components of metabolic syndrome (MetS), and increasing cardiovascular risk

Cardiovascular risk

Age [years]	Normal body weight	Overweight	Obesity	Chronic kidney disease (CKD)	Atherosclerosis	Fatty liver disease	Hyperuricaemia	Impaired kidney function	Heart failure with preserved ejection fraction (HFpEF)
10									
20									
30									
40									
50									

© PTNT, PTLO, PTL, PTH, PTMSŻ, sPiE i Klub 30 PTK, iChMiB TChP
References

1. Visscher FLJ, Mach F, Smulders YM, et al. ESC National Cardiac Societies, ESC Scientific Document Group. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2021; 42(34): 3227–3337, doi: 10.1093/eurheartj/ehab484, indexed in Pubmed: 34458905.

2. Grundy SM. Metabolic syndrome: a multiplex cardiovascular risk factor. J Clin Endocrinol Metab. 2007; 92(2): 399–404, doi: 10.1210/jc.2006-0513, indexed in Pubmed: 17284640.

3. Rajca A, Wojciechowska A, Smigielski W, et al. Increase in the prevalence of metabolic syndrome in Poland: comparison of the results of the WOBASZ (2003-2005) and WOBASZ II (2013-2014) studies. Pol Arch Intern Med. 2021; 131(6): 520–526, doi: 10.20452/pamw.15975, indexed in Pubmed: 33904291.

4. Baska A, Grudziąż-Sękowska J, Śliż D. Medycyna stylu życia, zdrowie publiczne i odpowiedzialność za zdrowie. In: Pinkas J. ed. Współczesne wyzwania zdrowia publicznego. PZWL. Wydawnictwo Lekarskie, Warszawa 2021: 89–108.

5. Grundy SM, Cleeman JI, Daniels SR, et al. American Heart Association, National Heart, Lung, and Blood Institute. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation. 2005; 112(17): 2735–2752, doi: 10.1161/CIRCULATIONAHA.105.169404, indexed in Pubmed: 16155765.

6. Tomiak E, Koziarska-Rościszewska ME, Mizgala E, et al. Zasady postępowania w nadwadze i otyłości w praktyce lekarza rodzinnego — Wytchnie Kolegium Lekarzy Rodzinnych w Polsce, Polskiego Towarzystwa Medycyny Rodzinnej oraz Polskiego Towarzystwa Badań nad Otyłością, Lekarz Rodzinny. 2017; 3: 1–64.

7. Warszawa: Narodowy Instytut Zdrowia Publicznego — Państwowy Zakład Higieny; 2020.

8. Miller S, Kaliszewska-ROsióczewska ME, Migiela E, et al. Zakład postępowania w nadwadze i otyłości w praktyce lekarza rodzinnego — Wytchnie Kolegium Lekarzy Rodzinnych w Polsce, Polskiego Towarzystwa Medycyny Rodzinnej oraz Polskiego Towarzystwa Badań nad Otyłością, Lekarz Rodzinny. 2017; 3: 1–64.

9. Warszawa: Narodowy Instytut Zdrowia Publicznego — Państwowy Zakład Higieny; 2020.

10. Visseren FLJ, MacF, Smulders YM, et al. ESC Scientific Document Group, ESC Scientific Document Group, ESC National Cardiac Societies, ESC Scientific Document Group. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2021; 42(34): 3227–3337, doi: 10.1093/eurheartj/ehab484, indexed in Pubmed: 34458905.

11. Mezez A, Pel M, Klünszewicz M, Zabolka-Leonowicz J, Procownik M. Aktywność w chorobach przewlekłych. Zalecenia, przeciwwskazania, zasady kwalifikacji. Ministerstwo Zdrowia, Warszawa 2018.

12. GB2 2016 Alcohol and Drug Use Collaborators, GB2 2016 Alcohol Collaborators. Alcohol use and burden for 195 countries and territories, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2018; 392(10152): 1015–1035, doi: 10.1016/S0140-6736(16)31310-2, indexed in Pubmed: 30146330.

13. Boffetta P, Hashibe M. Alcohol and cancer. Lancet Oncol. 2006; 7(2): 149–156, doi: 10.1016/s1470-2045(06)70577-0, indexed in Pubmed: 16654579.

14. Dhoosse DM. A review of postmortem alcohol detection as a diagnostic test for substance abuse disorders in suicides. Am J Foren-
an interdisciplinary expert consensus report. Pol Arch Intern Med. 2022; 11(2): 151–160, doi: 10.1053/j.sipl.2022.07.001, indexed in Pubmed: 33389368.

30. Diabetes Prevention Program Research Group. Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: the Diabetes Prevention Program Outcomes Study. Lancet Diabetes Endocrinol. 2019; 2(1): 41–52, doi: 10.1016/j Kanowski et al. 2022. Clinical Practice Guidelines for the Evaluation and Management of Renal and Vascular Complications of Diabetes. J Clin Endocrinol Metab. 2020; 105(5): 1953–2041, doi: 10.1210/jc.2019-8932, indexed in Pubmed: 32790063.

31. Diabetes Prevention Program Research Group. Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: the Diabetes Prevention Program Outcomes Study. Lancet Diabetes Endocrinol. 2019; 2(1): 41–52, doi: 10.1016/j Kanowski et al. 2022. Clinical Practice Guidelines for the Evaluation and Management of Renal and Vascular Complications of Diabetes. J Clin Endocrinol Metab. 2020; 105(5): 1953–2041, doi: 10.1210/jc.2019-8932, indexed in Pubmed: 32790063.

32. Diabetes Prevention Program Research Group. Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: the Diabetes Prevention Program Outcomes Study. Lancet Diabetes Endocrinol. 2019; 2(1): 41–52, doi: 10.1016/j Kanowski et al. 2022. Clinical Practice Guidelines for the Evaluation and Management of Renal and Vascular Complications of Diabetes. J Clin Endocrinol Metab. 2020; 105(5): 1953–2041, doi: 10.1210/jc.2019-8932, indexed in Pubmed: 32790063.

33. Diabetes Prevention Program Research Group. Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: the Diabetes Prevention Program Outcomes Study. Lancet Diabetes Endocrinol. 2019; 2(1): 41–52, doi: 10.1016/j Kanowski et al. 2022. Clinical Practice Guidelines for the Evaluation and Management of Renal and Vascular Complications of Diabetes. J Clin Endocrinol Metab. 2020; 105(5): 1953–2041, doi: 10.1210/jc.2019-8932, indexed in Pubmed: 32790063.

34. Diabetes Prevention Program Research Group. Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: the Diabetes Prevention Program Outcomes Study. Lancet Diabetes Endocrinol. 2019; 2(1): 41–52, doi: 10.1016/j Kanowski et al. 2022. Clinical Practice Guidelines for the Evaluation and Management of Renal and Vascular Complications of Diabetes. J Clin Endocrinol Metab. 2020; 105(5): 1953–2041, doi: 10.1210/jc.2019-8932, indexed in Pubmed: 32790063.
60. Newsome PN, Sasso M, Deeks JJ, et al. FibroScan-AST (FAST) score for the non-invasive identification of patients with non-alcoholic steatohepatitis with significant activity and fibrosis: a prospective derivation and global validation study. Lancet Gastroenterol Hepatol. 2020; 5(4): 362–373, doi: 10.1016/s2468-1253(19)30383-8, indexed in Pubmed: 32072587.

61. Okray AA, Rich JD, Shah SJ. The emerging epidemic of heart failure with preserved ejection fraction. Curr Heart Fail Rep. 2013; 10(4): 401–410, doi: 10.1007/s11897-013-0155-7, indexed in Pubmed: 24078336.

62. Patel RB, Lam CSP, Svedlund S, et al. Prevalence and correlates of coronary microvascular dysfunction in heart failure with preserved ejection fraction: PROMIS-HFpEF. Eur Heart J. 2018; 39(37): 3439–3450, doi: 10.1093/eurheartj/ehy531, indexed in Pubmed: 30165580.

63. Packer M, Lam CSP, Lund LH, et al. Characterization of the inflammatory-metabolic phenotype of heart failure with a preserved ejection fraction: a hypothesis to explain influence of sex on the evolution and potential treatment of the disease. Eur J Heart Fail. 2020; 22(9): 1551–1567, doi: 10.1002/ejhf.1902, indexed in Pubmed: 32441863.

64. Savji N, Meijers WC, Bartz TM, et al. The Association of Obesity and Cardiometabolic Traits With Incident HFpEF and HfPEF. JACC. Heart Fail. 2018; 6(8): 701–709, doi: 10.1016/j.jchf.2018.05.018, indexed in Pubmed: 30007554.

65. Kaplan-Cieślicka A, Benson L, Chioncel O, et al. on behalf of the Heart Failure Association (HFA) of the European Society of Cardiology (ESC) and the ESC Heart Failure Long-Term Registry Investigators. A comprehensive characterization of acute heart failure with preserved versus mildly reduced versus reduced ejection fraction - insights from the ESC-HFA EORP Heart Failure Long-Term Registry. Eur J Heart Fail, 2022; 26(2): 335–350, doi: 10.1002/ejhf.2408, indexed in Pubmed: 34962044.

66. Shah SJ, Katz DE, Selvaraj S, et al. Phenomapping for novel classification of heart failure with preserved ejection fraction. Circulation. 2015; 131(3): 269–279, doi: 10.1161/CIRCULATIONAHA.114.010637, indexed in Pubmed: 25398313.

67. Zhou Y, Fu L, Sun J, et al. Association Between Metabolic Syndrome and an Increased Risk of Hospitalization for Heart Failure in Population of HFpEF. J Clin Endocrinol Metab. 2010; 95(5): 2038–2049, doi: 10.1210/jc.2009-2724, indexed in Pubmed: 20375205.

68. Soltani Z, Rasheed K, Kapusta DR, et al. Potential role of uric acid in metabolic syndrome, hypertension, kidney injury, and cardiovascular diseases: is it time for reappraisal? Curr Hypertens Rep. 2013; 15(3): 175–181, doi: 10.1007/s11906-013-0444-5, indexed in Pubmed: 23588856.

69. Kanbay M, Jensen T, Solak Y, et al. Uric acid in metabolic syndrome. From an innocent bystander to a central player. Eur J Intern Med. 2016; 29: 3–8, doi: 10.1016/j.ejim.2015.11.026, indexed in Pubmed: 26703429.

70. Mackenzie IS, Ford I, Walker A, et al. ALL-HEART study group. Multicentre, prospective, randomised, open-label, blinded end point trial of the efficacy of allopurinol therapy in improving cardiovascular outcomes in patients with ischaemic heart disease: protocol of the ALL-HEART study. BMJ Open. 2016; 6(9): e013774, doi: 10.1136/bmjopen-2016-013774, indexed in Pubmed: 27609859.

71. Boghi C, Domienik-Karłowicz J, Tykarski A, et al. Expert consensus for the diagnosis and treatment of patient with hyperuricemia and high cardiovascular risk: 2021 update. Cardiol J. 2021; 28(1): 1–14, doi: 10.5603/CJ.a2021.0001, indexed in Pubmed: 33438380.

72. Inoue T, Iseki K, Iseki C, et al. Effect of heart rate on cardiovascular events in patients with the polycystic ovary syndrome: a consensus statement by the Japanese Society of Cardiology. Jpn Circ J. 2013; 77(7): 637–640, doi: 10.1253/jcj.77.637, indexed in Pubmed: 23533519.

73. Festa A, D’Agostino R, Howard G, et al. Chronic subclinical inflammation as part of the insulin resistance syndrome: the Insulin Resistance Atherosclerosis Study (IRAS). Circulation. 2000; 102(1): 42–47, doi: 10.1161/01.cir.102.1.42, indexed in Pubmed: 10880413.
Abdominal obesity

Causes
- Lack of physical exercise
- Caloric intake exceeding the energy expenditure
- Unhealthy diet rich in:
 - carbohydrates
 - animal fats
- Sedentary lifestyle
- Alcohol consumption
- Stress
- Poor quality and insufficient quantity of sleep
- Shift work pattern

Effects
- Kidney injury
- Fatty liver disease
- Heart failure
- Diabetes
- Obstructive sleep apnoea
- Dyslipidaemia
- Hypertension
- Polycystic ovary syndrome
- High heart rate
- Uric acid ↑
- Inflammation

What to do?

Be active
- **minimum 150-300 minutes** of moderate-intensity (defined as a difficulty speaking in full sentences during the exercise) aerobic physical activity per week; e.g.
 - cycling at < 16 km/h,
 - brisk walking at 5–6 km/h
 - stretching
- **minimum 75–150 minutes** of vigorous-intensity (defined as an inability to speak during the exercise) aerobic physical activity per week; e.g.
 - running ≥ 8 km/h,
 - swimming,
 - basketball.

Eat less
- **salt** – do not add it to meals and avoid highly-processed foods.
- **carbohydrates** (sweets, soft drinks, cereals).
- **animal fats**, choose plant-based fats (olive oil!) instead.

Stop smoking.

Make sure you sleep 7–8 hours every night.

If you are obese, please ask your doctor for weight loss support. The available options include the dietician, psychologist, medication or surgery.

If you have been prescribed medications for diabetes, hypertension or high cholesterol level, please continue taking them as prescribed and monitor with your doctor whether you have achieved your treatment targets.
1 1/3 slice of a large pizza
7 slices of wholegrain bread
9 slices of cheese
300 g of curd cheese
6 apples = 1 kg

2 pints of beer
13 table spoons of oats
3 portions of raw beef steak (1 portion = 100 g)
4 glasses of semi-skimmed milk
6 small bunches of grapes = 0.7 kg

2 doughnuts
2 1/2 handfuls of walnuts
6 eggs
15 tomatoes = 2.6 kg
3 portions of smoked salmon (1 portion = 100 g)

1 large burger with salad
7 slices of rye and wheat bread
7 portions of raw turkey breast steaks (1 portion = 100 g)
7 apples = 1.2 kg
2 pumpkins = 1.8 kg

1 full bar and a few pieces of milk chocolate (e.g. Cadbury Dairy Milk)
1 almost full cup of dry rice
almost 3 portions of raw trout fillet (1 portion = 100 g)
10 handfuls of olives
5 glasses of fresh apple juice

6 glasses of dry red wine
1 cup of dry buckwheat
4 cups of natural yoghurt
3 handfuls of pistachios
23 dried apple slices