IMTVault: Extracting and Enriching Low-resource Language Interlinear Glossed Text from Grammatical Descriptions and Typological Survey Articles

Sebastian Nordhoff, Thomas Krämer
Language Science Press, gesis
sebastian.nordhoff@langsci-press.org, thomas.kraemer@giesis.org

Abstract
Many NLP resources and programs focus on a handful of major languages. But there are thousands of languages with low or no resources available as structured data. This paper shows the extraction of 40k examples with interlinear morpheme translation in 280 different languages from BÍFX-based publications of the open access publisher Language Science Press. These examples are transformed into Linked Data. We use LIGT for modelling and enrich the data with Wikidata and Glottolog. The data is made available as HTML, JSON, JSON-LD and N-quads, and query facilities for humans (Elasticsearch) and machines (API) are provided.

Keywords: Interlinear Glossed Text, Extraction, Linked Data, Low-Resource Languages, FAIR, Linguistic Linked Open Data

1. Introduction
There are currently 7616 spoken languages on Earth.¹ Digital resources for these languages are in a very skewed distribution, as surveyed by (Joshi et al., 2020). English has good resources, a few additional languages have satisfactory resources and three other groups of languages can at least list some resources of a certain size or quality. These four groups arrive at 72 languages altogether. The great majority of languages, however, have only minimal resources in both extent and annotation depth, and many languages have no resources available for NLP at all. The latter two groups comprise 93.87% (2 413) of all languages investigated by (Joshi et al., 2020) (Table 1). Beyond that, there are another 5 000 languages which did not even make it into the (Joshi et al., 2020) survey. As we start the International Decade of Indigenous Languages² in 2022, this very skewed distribution is concerning.

2. Low Resource Languages and Diversity Linguistics
While the NLP community has not produced structured datasets for these low/no resource languages, structured data does indeed exist within the field of Diversity Linguistics. Diversity Linguistics is the field which concerns itself with the variety of languages spoken in the world. This concerns in-depth treatment of a particular language (grammatical description) as well as large-scale comparison of a given phenomenon (e.g. position of the verb before or after the object) in hundreds or thousands of languages. This comparative work can be found in articles in journals or edited volumes, in monographs, or also in databases.

We can name AUTOYP³ or the CLLD datasets (WALS,⁴ APiCS⁵), of which there are 19 as of 2022.

The academic inquiry is complemented by language archives where audiovisual data are stored, some of them transcribed, translated and glossed, in varying percentages. We can name ELAR,⁶ AILLA,⁷ TLA,⁸ Paradisec,⁹ See (Nordhoff, 2020a) for a breakdown of their accessible holdings.

These different data sources have been tapped into over time: academic books and articles ((Lewis and Xia, 2010; Xia et al., 2014)), typological databases ((Chiarcos and Ionov, 2019; Ionov, 2021)), and language archives ((Nordhoff, 2020a; Nordhoff, 2020b; von Prince and Nordhoff, 2020)), producing structured data which allows for programmatic and quantitative approaches.

3. The Example Sentence
While the field of Diversity Linguistics is actually quite far from NLP in its practices, it produces nevertheless semi-structured texts. This structure can be exploited to retrieve meaningful elements. The most common datatype is the linguistic example with interlinear morpheme translation (IMT). In this kind of element, we have part-whole relations between morphemes, words and sentences, and translational equivalence relations on the word level and the sentence level between the source language (white) and the translation (grey). This is shown in Figure 1. From examples like this, we can extract morpheme-to-morpheme translations, which can be used to populate

¹https://glottolog.org/glottolog/glottologinformation
²https://en.unesco.org/idil2022-2032
³https://github.com/autotyp/autotyp-data/tree/v1.0.0
⁴http://wals.info
⁵http://apics-online.info
⁶https://www.elararchive.org
⁷https://ailla.utexas.org
⁸https://archive.mpi.nl/TLA
⁹https://catalog.paradisec.org.au
Table 1: Joshi et al’s classes

Class	unlabeled data	labeled data	example	# lgs	%
5 winners	good	good	Spanish	7	0.28
4 underdogs	good	insufficient	Russian	18	1.07
3 rising stars	good	none	Indonesian	28	4.42
2 hopefuls	?	smallish sets	Zulu	19	0.36
1 scraping-bys	smallish	none	Fijian	222	5.49
0 left-behinds	none	none	Warlpiri	2191	88.38

The citrus fruits are sweet

4. Data Modelling

The interlinear sentence has received quite some theoretical treatment. The first technical approach was the implementation in the program Shoebox, which would later become Toolbox. The representation used therein was actually never intended to be used in a productive environment, but turned out to become the mainstay for language documenters for more than two decades. Shoebox/Toolbox was developed by SIL, who discontinued development in favour of FLEX, an XML based tool. In parallel, ELAN (Wittenburg et al., 2006) is another XML-based tool for the representation of correspondences and part-whole relations in glossed texts (Nordhoff, 2020a). While XML suggest a good perspectives for programmatic extraction of data, (Nordhoff, 2020a) reports that while syntactically valid XML, the ELAN files retrieved from language archives are semantically wildly heterogeneous, making a principled approach very difficult (also compare (Cimiano et al., 2020, 4)).

On a more theoretical level, (Drude, 2002) proposed a very elaborate model with a multiplicity of tiers. The XML Interlinear Glossed Text (XIGT, (Goodman et al., 2015)) format has a recursive structure instead, allowing for an arbitrary number of tiers (Xia et al., 2014). (Chiarcos and Ionov, 2019) and (Ionov, 2021) developed a Linked Data version of XIGT, called LIGT, also used in (Nordhoff, 2020a; Nordhoff, 2020b). For the purposes of this paper, a very simple data model distinguishing the tiers of “utterance” and “word”, with respective translations, is sufficient; the level of “morpheme” is disregarded. Basic storage is done in JSON, while transformations into JSON-LD, RDF, and CLDF are also made available. An additional morpheme tier could also have been made available, but it was determined that data consumers could easily create such more granular structures easily themselves should the need arise and that it was not necessary to provide an artificially inflated dataset.

5. Data Sources

Extraction of interlinear examples from documents has a comparatively long history. The ODIN project (Lewis and Xia, 2010; Xia et al., 2014) crawled the web for pdfs and tried to extract the examples. Copyright problems and the generally poor extraction facilities, however, posed great challenges for this endeavour. While ODIN is still up and running, it uses meanwhile outdated technology (eg HTML framesets), has encoding issues and does not provide dereferenceable URLs for the examples (Figure 2).

Another source for interlinearized texts are cross-linguistic databases. The Atlas of Pidgin and Creole
Figure 2: A screenshot of the ODIN website, showing an example of the Aari language. Note the URL, which does not give the ID, and the encoding problems. The example given has the "Verified" rating "highest". There is also "high", "auto" and "low", with presumably worse quality.

Language Structures (APiCS14, (Michaelis et al., 2013)) offers its example sentences for download in the CLDF format ((Forkel et al., 2018)). These examples were parsed by (Chiarcos and Ionov, 2019), who used them to develop the LIGT format. The APiCS data have the advantage of being available under a free license. (von Prince and Nordhoff, 2020) and (Nordhoff, 2020a; Nordhoff, 2020b) downloaded data from a variety of language archives, which store ELAN files. ELAN is an XML format with explicit correspondences between morphemes, words, and sentences. These ELAN files were then converted to the RDF LIGT format, drawing on previous work by (Nordhoff et al., 2016).

Published books, most databases and most of the language archives share the problem of unclear copyright status, which hinders dissemination and reuse. Enter Language Science Press.

6. Language Science Press

Language Science Press is an open-access publisher in linguistics which has published over 180 books (monographs and edited volumes) since 2014. All books are released under a CC-BY license, and the \textsc{BibTeX} source code is available on GitHub. The source code is structured in an identical manner for most books as far as naming conventions and directory structure are concerned, so that a given approach can nicely scale. This is different from, say, the ODIN project or the work on language archives, which had to deal with wildly divergent input data.

For the issue at hand, the task was to retrieve a maximum of interlinear example data from Language Science Press, analyze them, enrich them, and make them available for reuse.

7. Data Handling

7.1. Data Source Identification

For this task, we downloaded the source code of free Language Science Press books. LangSci books have an ID, which corresponds to a GitHub repo. For instance, the book \textit{Attributive constructions in North-Eastern Neo-Aramaic} with the catalog page https://langsci-press.org/catalog/book/123 has the GitHub repo https://github.com/langsci/123.

Not all IDs correspond to published books as some submitted books are rejected. Currently, there are 211 titles listed on the catalog page.

7.2. Data Extraction

The highest current ID is 349, so we iterated through the numbers from 1 to 349 and tried to clone the resulting GitHub address. This yielded 173 repositories with usable tex files. For these repositories, we retrieved 3 033 tex files with a total of 25 020 723 words. The content of these tex files was parsed for examples following the gb4e syntax.

This is illustrated in (1) from (Klamer et al., 2017).

\begin{verbatim}
\langinfo{Kamang}{Schapper, fieldnotes}
Muut=ak nung iduka.
citrus=DEF PL sweet
\gll
\textsc{def} iduka.
sweet
\glt
'\textit{The citrus fruits are sweet}.'
\end{verbatim}

The source code for this example is

\begin{verbatim}
\langinfo{Kamang}{Schapper, fieldnotes} \gll
Muut=ak nung iduka. \gll
citrus=DEF PL sweet \glt
'\textit{The citrus fruits are sweet}.'
\end{verbatim}

The \textsc{BibTeX} markup like \texttt{\langinfo}, \texttt{\gll} and \texttt{\glt} allow us to meaningfully identify the language name (first line), the source line (starting with \texttt{\gll}), the interlinear morpheme translation (following the source line), and the translation (following \texttt{\glt}). All examples must have the \texttt{\gll} and \texttt{\glt} parts; the \texttt{\langinfo} part is optional, as is citation information (not shown in the example).

The extraction is complicated by a variety of intervening \textsc{TeX} markup, such as \texttt{\textsc{texsc}{}{}} for small capitals and similar. The raw data for source line, interlinear line, and translation line have thus to be stripped of their \textsc{TeX} markup. After that, the words of the source and interlinear line can be tokenized and matched. Examples which differ in the number of words between the source line and the interlinear line are discarded. This yields 39,352 vanilla examples with a unified structure.
7.3. Data Linking

For the purposes of this paper, we distinguish a litg:Utterance, which contains a litg:WordTier, which in turn has a number of litg:Words. The relation between those items are given in Figure 3. For a more elaborate representation, see (Chiarcos and Ionov, 2019).

```
ligt:Utterance (sub nif:Sentence)
ligt:hasWords
ligt:WordTier
ligt:Word
rdfs:label
rdfs:label

"vernacular-word"@iso "glossed-word"@en-x-lgr
```

Figure 3: The relevant part of the LIGT model. Note that the predicate rdfs:label is assigned twice, but with different language tags. The vernacular label gets the ISO 639-3 code of the language under discussion, while the label containing the glosses gets an RFC 5646 label "en" with a private subtag "-x-lgr" for Leipzig Glossing Rules, following specifications in Section 2.2.7 of the RFC.

We link the extracted examples to Glottolog, the Leipzig Glossing Rules, and Wikidata

7.3.1. Glottolog

Glottolog\(^1\) ((Nordhoff and Hammarström, 2012; Hammarström and Forkel, 2021)) is a knowledge base which contains information about 8,155 languages, some with dialects, and the genealogical classification, amounting to a set of language family trees with more than 25,000 nodes. These nodes have a human readable label (such as "Kamang") and a so-called glottocode with a persistent URL (e.g. https://glottolog.org/resource/languoid/id/kama1365). We extracted all language names from the freely available Glottolog dataset (Hammarström et al., 2021). and matched the language names we retrieved from our examples to retrieve the corresponding Glottocode. In addition, all examples from books with the title “A grammar of X” were automatically assigned to the language X. If the language name retrieved for a given example could not be matched to a Glottocode in this way, we did a web lookup on glottolog.org with the partial name search. If the result set had the length 1, or if only one result was of type "language" (rather than "dialect" or "family"), this result was retained. Altogether, this yielded 17,425 examples with metadata on source language, for a total of 280 different languages. See Appendix A for a list.

7.3.2. Leipzig Glossing Rules

The Leipzig Glossing Rules are a list of standard abbreviations for grammatical categories such as nominative or accusative, which are followed by most publications in Diversity Linguistics. We extracted these from the interlinear line and linked them to https://www.eva.mpg.de/lingua/resources/glossing-rules.php#.

7.3.3. Named Entity Extraction

There are close to zero NLP tools available for the languages studied in the field of Diversity Linguistics. But fortunately, we have translational equivalents into English for our example sentences. A translation is a faithful rendering of the meaning of a sentence in a given language in another language. Therefore, we can actually use our English translation as a proxy for named entity extraction, as the entities/concepts should match between the source and the translation. We ran the translation sentences through https://cloud.science-miner.com/nerd/service/disambiguate. Upon inspection, a number of the concepts turned out to be misretrievals. For example, translations with “don’t” in them are linked to the Wikidata Q17646620, which is about an Ed Sheeran song with the same title. A blacklist was created for these cases.

In a second step, the base concepts were matched with their Wikidata superclasses using the predicates p31 ‘instanceOf’ and p279 ‘subclassOf’. This allows us to assert that a goat is a mammal is an animal is an organism, greatly enhancing the querying possibilities. This is relevant for instance when linguists want to test hypotheses about certain verbs being sensitive to [+animate]. Section 7.6 will discuss querying in more detail.

Unfortunately, Wikidata does not provide a very clean ontology. Five problems were discovered:

1. misunderstandings of the predicate subclassOf (sweat > excrement > biodegradable waste > waste > bad)
2. useless use of upper ontologies (all sounds are acoustic waves are elastic waves are mechanical waves are waves are oscillations are changes are occurrences are temporal entities are spatio-temporal entities are entities)
3. conjunct categories (“inflammable solid”) which needlessly inflate the category count. The categories “inflammable substance” and “solid substance” would have been sufficient.
4. Eurocentrism (housekeeping activities are “activities of households as employers; undifferenti-
ated goods- and services-producing activities of households for own use” (Q29584238) as part of the Statistical Classification of Economic Activities in the European Community). This is irrelevant in an African context.

5. Other regiocentrisms (all baked items are Bánh; all dairy produce is part of some Russian classification “dairy products and ice cream, as well as services” (Q27149326)).

A blacklist of nearly 1500 entries had to be created to weed out problems caused by the listed shortcomings. Taking into account this second blacklist, we arrive at an augmented count of 28,777 entity tokens (6,773 types). The most frequent concepts are: food (Q2095, 833 instances), organism (Q7239, 788 instances), animal (Q729, 486 instances).

7.4. Data Storage and representation
The extracted examples (see 7.2) are further processed in two forms. One leads to csvw17-based CLDF representation18, another pipeline feeds the IMTVault search and API available at https://imtvault.org.

For IMTVault, extracted examples are transformed into plain JSON as well as expanded JSON-LD 1.1.19 Following the w3c best practises20, we chose the expanded representation, as no explicit context reference is needed in downstream processing. Additionally, we use the robust titanium-json-ld library for JSON-based Serialization for Linked Data,21 which provides sound support for transformation from JSON to JSON-LD 1.1, and from JSON-LD to RDF N-Quads.

The plain JSON representation is also used to create a search index based on elasticsearch, which serves the faceted user interface for search available at https://imtvault.org/search. This allows us to present linguistic examples in a suitable way to query for both humans and machines (Figure 4) using either static, referable snapshots of the collection or dynamically via http based retrieval services.

7.5. Minting / URL Resolution
IMTVault has a built-in URL resolver to refer to books and examples, which can be prompted for various formats. The URL pattern includes two dynamic path elements, the book ID (taken over from Language Science Press) and a generated utterance ID.

Resolving utterances Utterances are identified by book ID and an example ID generated as the hexadecimal of hashing the sourceline with SHA-256, truncated to 10 digits. The resolver supports four representations: minimal html (appending .htm to the URL pattern), plain JSON (.json), expanded JSON-LD 1.1 (.jsonld) or RDF N-Quads Dataset 1.1 representation (.nq),22 leading to https://imtvault.org/b/80/ex/01-9383b907b9.htm, https://imtvault.org/b/80/ex/01-9383b907b9.json, https://imtvault.org/b/80/ex/01-9383b907b9.jsonld, and https://imtvault.org/b/80/ex/01-9383b907b9.nq, respectively.

Resolving books Without a file ending, the resolver will redirect to the original publication as landing page of a book at LangSciPress (https://imtvault.org/b/157). With the file endings .htm or .ld provided, the resolver will generate a list of all examples found in the respective book. https://imtvault.org/b/157.json will thus return a json list of all 99 examples from book 157, The Alor-Pantar languages: History and typology. Second edition.

7.6. Data Querying
Query search index The elasticsearch index can be queried programmatically. The following curl command executes a query for ‘banana’ to the IMTVault index of utterances. If not using an API tool such as postman23 or insomnia,24 the XSRF-TOKEN value needs to be obtained beforehand.

```
curl 'https://imtvault.org/express/iss/_search' -H 'Cookie: XSRF-TOKEN=XXXX' -d '{"query": { "multi_match": { "query": "banana" } }}'
```

The query can be adapted as required, following the elasticsearch query syntax.25 For users interested in running their queries locally, the CLDF data can be loaded into a SQLite database providing yet another query platform.

8. FAIR language examples
We applied the best practises known as the FAIR data principles26 in the implementation of IMTVault. Findability, accessibility, interoperability, and reusability of linguistic resources are achieved to varying degrees:

- F1. (Meta)data are assigned a globally unique and persistent identifier. See the patterns in Section 7.5. The identifiers are unique, and persistent.

17(Tennison, 2014)
18https://github.com/langsci/imtvault/tree/main/cldf
19https://www.w3.org/TR/json-ld11/
20https://w3c.github.io/json-ld-bp/#use-json
21https://github.com/filip26/titanium-json-ld
22https://www.w3.org/TR/n-quads/
\#n-quads-language
23https://www.postman.com
24https://insomnia.rest
25https://www.elastic.co/guide/en/elasticsearch/reference/6.8/full-text-queries.html
26https://www.go-fair.org/go-fair-initiative/
Figure 4: Querying facilities for humans. The screenshot shows a query for the topic "animal". The screenshot shows the result list including sentences with interlinear morpheme translation from Japhug and Rapa Nui, covering different kinds of animals (sheep, pig, dog, oxen, cattle).

- F2. Data are described with rich metadata (defined by R1 below): The utterances are described using the relevant metadata schemes and referencing the original publication.
- F3. Metadata clearly and explicitly include the identifier of the data they describe: An identifier for each utterance is generated by IMTVault.
- F4. (Meta)data are registered or indexed in a searchable resource: IMTVault provides a user interface for search for humans. The backing index can be queried (Section 7.6).
- A1.1 The protocol is open, free, and universally implementable: HTTP and Elasticsearch/Lucene query language are open standards.
- A1.2 The protocol allows for an authentication and authorisation procedure, where necessary: IMTVault implements authentication and authorisation. While currently all resources are available without restriction, IMTVault could handle embargoes or other types of access control if required.
- A2. Metadata are accessible, even when the data are no longer available: As data are embedded into the metadata, this does not apply.
- I1. (Meta)data use a formal, accessible, shared, and broadly applicable language for knowledge representation. JSON and JSON-LD are W3C recommendations.
- I2. (Meta)data use vocabularies that follow FAIR principles: The vocabularies used (RDF Schema, Dublin Core terms/elements, liodi/ligt) themselves comply with the FAIR principles.
- I3. (Meta)data include qualified references to other (meta)data: We reference Wikidata, Glottolog, and the Leipzig Glossing Rules in a qualified manner.
drawn, 16 were not good interlinear text and should have
been discarded. This had been done correctly for all of
them. Most often, the reason for this was a missing
translation. 84 should have been retained, but this was
only the case for 72 of them. 12 were missed, or one
in seven. The precision was thus 100% while the recall
was 85.7%, giving an aggregate F-score of 91.9%.

Turning to concepts, the sample was extremely sparse.
May sentences were of the type Why read the book?,
which is too short and bland to do meaningful Named
Entity Recognition. As such, only 6 concepts were
correctly attributed to examples of the sample, while
a further 6 were misattributions, often of pop songs
with banal titles such as Tender Years by George Jones
or Live Life by the Kinks. We conjecture that con-
cept retrieval might have a very skewed distribution:
grammatical descriptions in general have longer and
more colourful examples, which are better suited for
NER, while more theoretical works tend to have very
barren examples, which are boiled down to the mini-
mum, eg John sees Mary. If this is the case, we should
find more named entities in texts from endangered lan-
guage archives as well, cf. (Nordhoff, 2020b). Further
research will test this hypothesis.

10. Conclusion and Outlook

We started with the observation by (Joshi et al., 2020)
that over 90% of the world’s languages have no NLP re-
sources. We now provide 40,000 sentences in 280 lan-
guages, most of them no/low resource, as a structured
dataset under a free license for reuse. The dataset re-
spects the FAIR principles as well as the Linked Data
Principles. We have a clearly defined pipeline, a stor-
age format, a query/dissemination platform and con-
sumers downstream. Language Science Press will con-
tinue to produce about 30 books a year, but there
are other Open Access publishers whose publications
could also be crawled to extract interlinear examples.
An obvious candidate would be the Diamond-OA jour-
nal Glossa.27

This resource improves on ODIN or the interlin-
ear text extracted from language archives reported in
(Nordhoff, 2020a; Nordhoff, 2020b) in that the data are
available under an open license and good facilities for
querying and dereferencing are in place. As compared
to the APIcs set created by (Chiarcos and Ionov, 2019),
IMTVault has added about the double the amount of
sentences (40k as compared to 18.5k for APICS) and a
more extensive range of formats and querying possi-
bilities.

Integration of the APIcs data by (Chiarcos and Ionov,
2019) is a logical next step, as is the integration of data
from endangered language archives ((von Prince and
Nordhoff, 2020)), to the extent that the licenses em-
ployed there permit this. Further refinement of Named
Entity Recognition will be necessary, as well as better
algorithms for the identification of the language an ex-
ample is in based on the surrounding text.

27 https://www.glossa-journal.org
11. Bibliographical References

Chiarcos, C. and Ionov, M. (2019). Ligt: An LLOD-native vocabulary for representing interlinear glossed text as RDF. In Maria Eskevich, et al., editors, 2nd Conference on Language, Data and Knowledge (LDK 2019), number 70 in OpenAccess Series in Informatics (OASIcs), pages 3:1–3:15, Dagstuhl, Germany. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

Cimiano, P., Chiarcos, C., McCrae, J. P., and Gracia, J. (2020). Linguistic Linked Data: Representation, Generation and Applications. Springer, Cham.

Drude, S. (2002). Advanced glossing: A language documentation format and its implementation with Shoebox. In Peter Austin, et al., editors, Proceedings of the International LREC workshop on Resources and Tools in Field Linguistics.

Forkel, R., List, J.-M., Greenhill, S. J., Rzymski, C., Bank, S., Cysouw, M., Hammarström, H., Haspelmath, M., Kaiping, G. A., and Gray, R. D. (2018). Cross-linguistic data formats, advancing data sharing and re-use in comparative linguistics. Scientific Data, 5:180205.

Goodman, M. W., Crowgey, J., Xia, F., and Bender, E. M. (2015). Xigt: extensible interlinear glossed text for natural language processing. LREC, 49(2):455–485.

Hammarström, H. and Forkel, R. (2021). Glottocodes: Identifiers linking families, languages and dialects to comprehensive reference information. Semantic Web Journal.

Hammarström, H., Forkel, R., Haspelmath, M., and Bank, S. (2021). Glottolog 4.5. Max Planck Institute for Evolutionary Anthropology, Leipzig.

Ionov, M. (2021). ApICS-Ligt: Towards semantic enrichment of interlinear glossed text. In Dagmar Gromann, et al., editors, 3rd Conference on Language, Data and Knowledge (LDK 2021), volume 93 of Open Access Series in Informatics (OASIcs), pages 27:1–27:8, Dagstuhl, Germany. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

Joshi, P., Santy, S., Budhiraja, A., Bali, K., and Choudhury, M. (2020). The state and fate of linguistic diversity and inclusion in the NLP world. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, page 6282–6293.

Klamer, M., Schapper, A., and Corbett, G. (2017). Plural number words in the alor-pantar languages. In Marian Klamer, editor, The Alor Pantar languages, number 3 in Studies in Diversity Linguistics, page 365–403. Language Science Press, Berlin.

Lewis, W. D. and Xia, F. (2010). Developing ODIN: A multilingual repository of annotated language data for hundreds of the world’s languages. Journal of Literary and Linguistic Computing (LLC), 25(3):303–319.

Susanne Maria Michaelis, et al., editors. (2013). Atlas of Pidgin and Creole Language Structures Online.

Max Planck Institute for Evolutionary Anthropology, Leipzig. http://apics-online.info.

Nordhoff, S. and Hammarström, H. (2012). Glottolog/langdoc: Increasing the visibility of grey literature for low-density languages. In Proceedings of LREC 2012.

Nordhoff, S., Tuttle, S., and Lovick, O. (2016). The Alaskan Athabaskan Grammar Database. In Nicoletta Calzolari (Conference Chair), et al., editors, Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016), Paris, France, 5. European Language Resources Association (ELRA).

Nordhoff, S., Krämer, T., and Forkel, R. (2022). IMT Vault (v1.0). Data set.

Nordhoff, S. (2020a). From the attic to the cloud: mobilization of endangered language resources with linked data. In Proceedings of the Workshop about Language Resources for the SSH Cloud, pages 10–18, Marseille, France, May. European Language Resources Association.

Nordhoff, S. (2020b). Modelling and annotating interlinear glossed text from 280 different endangered languages as linked data with LIGT. In Proceedings of the 14th Linguistic Annotation Workshop, pages 93–104, Barcelona. Association for Computational Linguistics.

Tennison, J. (2014). a primer, CSV on the web. W3C working group note. Cambridge: W3C.

von Prince, K. and Nordhoff, S. (2020). An empirical evaluation of annotation practices in corpora from language documentation. In Proceedings of LREC 2020. LREC, Marseille.

Wittenburg, P., Hennie, B., Russel, A., Klassmann, A., and Sloetjes, H. (2006). ELAN: A Professional Framework for Multimodality Research.

Xia, F., Lewis, W. D., Goodman, M. W., Crowgey, J., and Bender, E. M. (2014). Enriching ODIN. In Proceedings of the 9th International Conference on Language Resources and Evaluation, number 2014.
A. Appendix

This is a list of languages and their glottocodes for which at least one interlinear example could be retrieved.

Language	Glottocode
Abai	abui1241
Abai	adan1251
Afrikaans	afr1274
Aguaruna	agra1253
Akan	alak1250
Akan	alam1246
Albanian	alba1267
Alem	alse1260
Amele	amel1241
Amis	amis1246
Ami	anti1246
Arabic	ar1239
Archi	arch1244
Assamese	asaa1263
Awadh	awad1243
Awjilah	awji1241
Awadhi	awad1243
Archi	arch1244
Amele	amis1246
Ami	anti1246
Arabic	ar1239
Archi	arch1244
Amele	amis1246
Ami	anti1246
Arabic	ar1239
Archi	arch1244
Amele	amis1246
Ami	anti1246
Arabic	ar1239
Archi	arch1244
Amele	amis1246
Ami	anti1246
Arabic	ar1239
Archi	arch1244
Amele	amis1246
Ami	anti1246
Arabic	ar1239
Archi	arch1244
Amele	amis1246
Ami	anti1246
Arabic	ar1239
Archi	arch1244
Amele	amis1246
Ami	anti1246
Arabic	ar1239
Archi	arch1244
Amele	amis1246
Ami	anti1246
Arabic	ar1239
Archi	arch1244
Amele	amis1246
Ami	anti1246
Arabic	ar1239
Archi	arch1244
Amele	amis1246
Ami	anti1246
Arabic	ar1239
Archi	arch1244
Amele	amis1246
Ami	anti1246
Arabic	ar1239
Archi	arch1244
Amele	amis1246
Ami	anti1246
Arabic	ar1239
Archi	arch1244
Amele	amis1246
Ami	anti1246
Arabic	ar1239
Archi	arch1244
Amele	amis1246
Ami	anti1246
Arabic	ar1239
Archi	arch1244
Amele	amis1246
Ami	anti1246
Arabic	ar1239
Archi	arch1244
Amele	amis1246
Ami	anti1246
Arabic	ar1239
Archi	arch1244
Amele	amis1246
Ami	anti1246
Arabic	ar1239
Archi	arch1244
Amele	amis1246
Ami	anti1246
Arabic	ar1239
Archi	arch1244
Amele	amis1246
Ami	anti1246
Arabic	ar1239
Archi	arch1244
Amele	amis1246
Ami	anti1246
Arabic	ar1239
Archi	arch1244
Amele	amis1246
Ami	anti1246
Arabic	ar1239
Archi	arch1244
Amele	amis1246
Ami	anti1246
Arabic	ar1239
Archi	arch1244
Amele	amis1246
Ami	anti1246
Arabic	ar1239
Archi	arch1244
Amele	amis1246
Ami	anti1246
Arabic	ar1239
Archi	arch1244
Amele	amis1246
Ami	anti1246
Arabic	ar1239
Archi	arch1244
Amele	amis1246
Ami	anti1246
Arabic	ar1239
Archi	arch1244
Amele	amis1246
Ami	anti1246
Arabic	ar1239
Archi	arch1244
Amele	amis1246
Ami	anti1246
Arabic	ar1239
Archi	arch1244
Amele	amis1246
Ami	anti1246
Arabic	ar1239
Archi	arch1244
Amele	amis1246
Ami	anti1246
Arabic	ar1239
Archi	arch1244
Amele	amis1246
Ami	anti1246
Arabic	ar1239
Archi	arch1244
Amele	amis1246
Ami	anti1246
Arabic	ar1239