\textbf{δ}_k-\textbf{SMALL SETS IN GRAPHS}

ASEN BOJILOV AND NEDYALKO NENOV

\textbf{Abstract.} Let \(G \) be a simple \(n \)-vertex graph and \(W \subseteq V(G) \). We say that \(W \) is a \(\delta_k \)-small set if
\[
\sqrt{\frac{\sum_{v \in W} d_k(v)}{|W|}} \leq n - |W|.
\]

Let \(\varphi_k(G) \) denote the smallest natural number \(r \) such that \(V(G) \) decomposes into \(r \) \(\delta_k \)-small sets, and let \(\alpha_k(G) \) denote the maximal number of vertices in a \(\delta_k \)-small set of \(G \). In this paper we obtain bounds for \(\alpha_k(G) \) and \(\varphi_k(G) \). Since \(\varphi_k(G) \leq \omega(G) \leq \chi(G) \) and \(\alpha(G) \leq \alpha_k(G) \), we obtain also bounds for the clique number \(\omega(G) \), the chromatic number \(\chi(G) \) and the independence number \(\alpha(G) \).

1. \textbf{Introduction}

We consider only finite, non-oriented graphs without loops and multiple edges. We shall use the following notations:
\(V(G) \) – the vertex set of \(G \);
\(e(G) \) – the number of edges of \(G \);
\(\omega(G) \) – the clique number of \(G \);
\(\chi(G) \) – the chromatic number of \(G \);
\(d(v) \) – the degree of a vertex \(v \);
\(\Delta(G) \) – the maximal degree of \(G \);
\(\delta(G) \) – the minimal degree of \(G \).
All undefined notation are from [8].

\textbf{Definition 1.} Let \(G \) be an \(n \)-vertex graph and \(W \subseteq V(G) \). We say that \(W \) is a \textit{small set} in the graph \(G \) if
\[
d(v) \leq n - |W|, \text{ for all } v \in W.
\]

With \(\varphi(G) \) we denote the smallest natural number \(r \) such that \(V(G) \) decomposes into \(r \) small sets.

\(\varphi(G) \) is defined for the first time in [6]. Some properties of \(\varphi(G) \) are proved in [6] and [2]. Further \(\varphi(G) \) is more thoroughly investigated in [1]. There an effective algorithm for the calculation of \(\varphi(G) \) is given. First of all let us note the following bounds for \(\varphi(G) \).

\textbf{2000 Mathematics Subject Classification.} Primary 05C35.
\textbf{Key words and phrases.} clique number,degree sequence.
This work was supported by the Scientific Research Fund of the St. Kliment Ohridski Sofia University 2013.
Proposition 1.1 (I).
\[
\frac{n}{n - d_1(G)} \leq \varphi(G) \leq \frac{n}{n - \Delta(G)},
\]
where $d_1(G)$ is the average degree of the graph G.

Let G be a graph and $W \subseteq V(G)$. We define
\[
d_k(W) = \sqrt[k]{\frac{\sum_{v \in W} d^k(v)}{|W|}}, \quad d_k(G) = d_k(V(G)).
\]

Definition 2. Let G be an n-vertex graph and $W \subseteq V(G)$. We say that W is a δ_k-small set of G if
\[
d_k(W) \leq n - |W|.
\]
With $\varphi^{(k)}(G)$ we denote the minimal number of δ_k-sets of G into which $V(G)$ decomposes.

Remark 1. δ_1-small sets are defined in [1] as β-small sets and $\varphi^{(1)}(G)$ is denoted by $\varphi^{\beta}(G)$. Also in [1] it is proven

Proposition 1.2 (I).
\[
\varphi^{(1)}(G) \geq \frac{n}{n - d_1(G)}.
\]

Further we shall need the following

Proposition 1.3. Let G be an n-vertex graph. Then
(i) Every small set of G is a δ_k-small set of G for all natural k.
(ii) Every δ_{k-1}-small set of G is a δ_k-small set of G.

Proof. Let W be a small set of G. Then $d(v) \leq n - |W|, \forall v \in W$. Therefore $d_k(W) \leq n - |W|$, i.e. W is a δ_k-small set.

The statement in (ii) follows from the inequality $d_{k-1}(W) \leq d_k(W)$ (cf. [1], [2]).

Let us note that if G is an r-regular graph then $d_k(W) = r$ for all natural k. So, in this case, every δ_k-set of G is a small set of G.

In this paper we shall prove that for a given graph G and for sufficiently large natural k every δ_k-small set of G is a small set of G (Theorem 2.1).

Proposition 1.4. Let G be a graph. Then
\[
\varphi^{(1)}(G) \leq \varphi^{(2)}(G) \leq \cdots \leq \varphi^{(k)}(G) \leq \cdots \leq \varphi(G) \leq \omega(G) \leq \chi(G).
\]

Proof. The inequality $\chi(G) \geq \omega(G)$ is obvious. The inequality $\varphi(G) \leq \omega(G)$ is proven in [6] (see also [1]). The inequality $\varphi^{(k)}(G) \leq \varphi(G)$ follows from Proposition 1.3 (i) and the inequality $\varphi^{(k-1)}(G) \leq \varphi^{(k)}(G)$ follows from Proposition 1.3 (ii).

According to Proposition 1.4 every lower bound for $\varphi^{(k)}(G)$ is a lower bound for $\varphi(G)$, $\omega(G)$ and $\chi(G)$. In this paper we shall obtain a lower bound for $\varphi^{(k)}(G)$ (Theorem 3.2) from which we shall derive new lower bounds for $\varphi(G)$, $\omega(G)$ and $\chi(G)$. As a corollary we shall get and some results for $\varphi(G)$, $\omega(G)$ and $\chi(G)$ already from [1] and [2].
Proposition 1.5.
\[\left\lfloor \frac{n}{n - d_1(G)} \right\rfloor \leq \varphi^{(k)}(G) \leq \left\lfloor \frac{n}{n - \Delta(G)} \right\rfloor. \]

Proof. The right inequality follows from Proposition 1.1 and Proposition 1.4. The left inequality follows from Proposition 1.2 and Proposition 1.4. \(\square\)

2. Strengthening Proposition 1.4

Theorem 2.1. Let \(G\) be a graph. There exists a natural \(k_0 = k_0(G)\) such that for all \(k \geq k_0\) we have

(i) Every \(\delta_k\)-small set of \(G\) is a small set of \(G\).
(ii) \(\varphi^{(1)}(G) \leq \cdots \leq \varphi^{(k_0)}(G) = \varphi^{(k_0 + 1)}(G) = \cdots = \varphi(G)\).

Proof. Fix a subset of \(V(G)\), say \(W\), and let \(\Delta(W) = \max\{d(v) \mid v \in W\}\). Then \(d_k(W) \leq \Delta(W)\) and \(\lim_{k \to \infty} d_k(W) = \Delta(W)\) (see [4]).

Therefore, since \(V(G)\) has only finitely many subsets, there exists \(k_0\) such that for arbitrary \(W \subseteq V(G)\)

\[\Delta(W) - \frac{1}{2} \leq d_k(W), \quad \text{if } k \geq k_0. \]

Let us suppose now that \(W\) is a \(\delta_k\)-small set of \(G\) and \(k \geq k_0\), i.e.

\[d_k(W) \leq n - |W|. \]

From (2.1) and (2.2) we have that

\[\Delta(W) - \frac{1}{2} \leq n - |W|. \]

Since \(\Delta(W)\) and \(n - |W|\) are integers, from the last inequality we derive that \(\Delta(W) \leq n - |W|\). From the definition of \(\Delta(W)\) it follows \(d(v) \leq n - |W|\) for all \(v \in W\), i.e. \(W\) is a small set. Therefore (i) is proven. The statement (ii) obviously follows from (i). \(\square\)

3. Lower bounds for \(d_k(G)\) and \(\varphi^{(k)}(G)\)

Lemma 3.1. Let \(\beta_1, \beta_2, \ldots, \beta_r \in [0, 1]\) and \(\beta_1 + \beta_2 + \cdots + \beta_r = r - 1\). Then for all natural \(k \leq r\) is held the inequality

\[\sum_{i=1}^{r} (1 - \beta_i) \beta_k^i \leq \left(\frac{r - 1}{r} \right)^k. \]

Proof. The case \(k = r\) is proven in [1]. That’s why we suppose that \(k \leq r - 1\). For all natural \(n\) we define

\[S_n = \beta_1^n + \beta_2^n + \cdots + \beta_r^n. \]

We can rewrite the inequality (3.1) in following way

\[S_k - S_{k+1} \leq \left(\frac{r - 1}{r} \right)^k. \]

Since

\[\frac{r - 1}{r} = \frac{S_1}{r} \leq \sqrt[k]{\frac{S_k}{r}} \leq \sqrt[k+1]{\frac{S_{k+1}}{r}} \quad \text{(cf. [2, 5])}, \]
we have
\[(3.3)\quad S_{k+1} \geq \frac{1}{\sqrt{r}}S_k^{\frac{k+1}{k}}\]
and
\[(3.4)\quad S_k \geq \frac{(r-1)^k}{r^{k-1}}.\]
From (3.3) we see that
\[(3.5)\quad S_k - S_{k+1} \leq S_k - \frac{1}{\sqrt{r}}S_k^{\frac{k+1}{k}}.\]
We consider the function
\[f(x) = x - \frac{1}{\sqrt{r}}x^{\frac{k+1}{k}}, \quad x > 0.\]
According to (3.2) and (3.5) it is sufficient to prove that
\[f(S_k) \leq \left(\frac{r-1}{r}\right)^k.\]
From \(f'(x) = 1 - \frac{k+1}{k}\sqrt{r}x^{\frac{k-1}{k}}\), it follows that \(f'(x)\) has unique positive root
\[x_0 = \frac{rk^k}{(k+1)^k}\]
and \(f(x)\) decreases in \([x_0, \infty)\). According to (3.4), \(S_k \geq \frac{(r-1)^k}{r^{k-1}}\). Since \(k \leq r - 1\), \(\frac{(r-1)^k}{r^{k-1}} \geq x_0\). Therefore
\[f(S_k) \leq f\left(\frac{(r-1)^k}{r^{k-1}}\right) = \left(\frac{r-1}{r}\right)^k.\quad \square\]

Theorem 3.2. Let \(G\) be an \(n\)-vertex graph and
\[V(G) = V_1 \cup V_2 \cup \cdots \cup V_r, \quad V_i \cap V_j = \emptyset, \quad i \neq j,\]
where \(V_i\) are \(\delta_k\)-small sets. Then for all natural \(k \leq r\) the following inequalities are satisfied

(i) \(d_k(G) \leq \frac{n(r-1)}{r};\)

(ii) \(r \geq \frac{n - d_k(G)}{n};\)

Proof. Let \(n_i = |V_i|, \quad i = 1, 2, \ldots, r.\) Then
\[\sum_{v \in V(G)} d^k(v) = \sum_{i=1}^r \sum_{v \in V_i} d^k(v) \leq \sum_{i=1}^r n_i(n - n_i)^k.\]
Let \(\beta_i = 1 - \frac{n_i}{n}, \quad i = 1, 2, \ldots, r.\) Then
\[\sum_{v \in V(G)} d^k(v) \leq n^{k+1} \sum_{i=1}^r \beta_i(1 - \beta_i)k, \quad k \geq r.\]
The inequality (i) follows from the last inequality and Lemma 3.1. Solving the inequality (i) for \(r \), we derive the inequality (ii). □

4. SOME COROLLARIES FROM THEOREM 3.2

Corollary 4.1. Let \(G \) be an \(n \)-vertex graph and let \(k \) and \(s \) be natural numbers such that \(k \leq \varphi^{(s)}(G) \). Then

\[
\begin{align*}
(i) \quad &d_k(G) \leq \frac{(\varphi^{(s)}(G) - 1)n}{\varphi^{(s)}(G)} \leq \frac{(\varphi(G) - 1)n}{\varphi(G)} \leq \frac{(\omega(G) - 1)n}{\omega(G)} \leq \frac{(\chi(G) - 1)n}{\chi(G)}; \\
(ii) \quad &\varphi^{(s)}(G) \geq \frac{n}{n - d_k(G)}.
\end{align*}
\]

Proof. Let \(\varphi^{(s)}(G) = r \) and \(V(G) = V_1 \cup V_2 \cup \cdots \cup V_r \), \(V_i \cap V_j = \emptyset \), where \(V_i \) are \(\delta_k \)-small sets. Then the left inequality in (i) follows from Theorem 3.2 (i). The other inequalities in (i) follow from the inequalities \(\varphi^{(s)}(G) \leq \varphi(G) \leq \omega(G) \leq \chi(G) \). The inequality (ii) follows from Theorem 3.2 (ii). □

Remark 2. In the case \(k = s = 1 \), Corollary 4.1 is proven in [1] (cf. Theorem 6.3 (i) and Theorem 6.2 (ii)).

Corollary 4.2. Let \(G \) be an \(n \)-vertex graph. Then for all natural \(s \geq 2 \),

\[\varphi^{(s)}(G) \geq \frac{n}{n - d_2(G)}. \]

Proof. If \(\varphi^{(2)}(G) = 1 \) then \(E(G) = \emptyset \), i.e. \(G = K_n \) and the inequality is obvious. If \(\varphi^{(2)}(G) \geq 2 \) then \(\varphi^{(s)}(G) \geq 2 \) because \(s \geq 2 \). Therefore Corollary 4.2 follows from Corollary 4.1 (ii). □

Corollary 4.3 ([2]). For every \(n \)-vertex graph

\[\varphi(G) \geq \frac{n}{n - d_2(G)}. \]

Proof. This inequality follows from Corollary 4.2 because \(\varphi^{(s)}(G) \leq \varphi(G) \). □

Corollary 4.4 ([1]). Let \(G \) be an \(n \)-vertex graph. Then for every natural \(k \leq \varphi(G) \)

\[\varphi(G) \geq \frac{n}{n - d_k(G)}. \]

Proof. According to Theorem 2.1 there exists a natural number \(s \) such that \(\varphi(G) = \varphi^{(s)}(G) \). Since \(k \leq \varphi^{(s)}(G) \) from Corollary 4.1 (ii) we derive

\[\varphi(G) = \varphi^{(s)}(G) \geq \frac{n}{n - d_k(G)}. \]

□

Corollary 4.5. Let \(G \) be an \(n \)-vertex graph. Then for every natural \(s \geq 3 \)

\[\varphi^{(s)}(G) \geq \frac{n}{n - d_3(G)}. \]
Proof. Since \(s \geq 3 \), \(\varphi(s)(G) \geq \varphi(3)(G) \). Therefore it is sufficient to prove the inequality

\[
\varphi(3)(G) \geq \frac{n}{n - d_3(G)}.
\]

If \(\varphi(3)(G) \geq 3 \) then \((\ref{eq:ineq1})\) follows from Corollary \((\ref{cor:ineq1})\)(ii). If \(\varphi(3)(G) = 1 \) then the inequality \((\ref{eq:ineq1})\) is obvious because \(d_3(G) = 0 \). Let \(\varphi(3)(G) = 2 \) and \(V(G) = V_1 \cup V_2 \), where \(V_i, i = 1, 2 \) are \(\delta_3 \)-small sets. Let \(n_i = |V_i|, i = 1, 2 \).

Then

\[
\sum_{v \in V(G)} d^3(v) = \sum_{v \in V_1} d^3(v) + \sum_{v \in V_2} d^3(v) \leq n_1(n - n_1)^3 + n_2(n - n_2)^3 = n_1n_2(n^2 - 2n_1n_2) \leq \frac{n^4}{8}.
\]

Therefore \(d_3(G) \leq \frac{n}{2} \) and we obtain

\[
\frac{n}{n - d_3(G)} \leq 2 = \varphi(3)(G).
\]

Since \(\varphi(G) \geq \varphi(3)(G) \) from Corollary \((\ref{cor:ineq1})\) we derive

Corollary 4.6. \((\ref{cor:ineq1}) \). For every \(n \)-vertex graph \(G \)

\[
\varphi(G) \geq \frac{n}{n - d_3(G)}.
\]

Corollary 4.7. Let \(G \) be an \(n \)-vertex graph and \(\varphi(4)(G) \neq 2 \). Then for every natural \(s \geq 4 \),

\[
\varphi(s)(G) \geq \frac{n}{n - d_4(G)}.
\]

Proof. Since \(\varphi(s)(G) \geq \varphi(4)(G) \) for \(s \geq 4 \), it sufficient to prove the inequality

\[
\varphi(4)(G) \geq \frac{n}{n - d_4(G)}.
\]

If \(\varphi(4)(G) \geq 4 \) the inequality \((\ref{eq:ineq1})\) follows from Corollary \((\ref{cor:ineq1})\)(ii). If \(\varphi(4)(G) = 1 \) the inequality \((\ref{eq:ineq1})\) is obvious because \(d_4(G) = 0 \). It remains to consider the case \(\varphi(4)(G) = 3 \). Let \(V(G) = V_1 \cup V_2 \cup V_3 \), where \(V_i \), are \(\delta_4 \)-small sets and let \(n_i = |V_i|, i = 1, 2, 3 \). Then

\[
\sum_{v \in V(G)} d^4(v) = \sum_{v \in V_1} d^4(v) + \sum_{v \in V_2} d^4(v) + \sum_{v \in V_3} d^4(v) \leq n_1(n - n_1)^4 + n_2(n - n_2)^4 + n_3(n - n_3)^4.
\]

Denoting \(\beta_i = 1 - \frac{n_i}{n}, i = 1, 2, 3 \) we receive

\[
\sum_{v \in V(G)} d^4(v) \leq n^4 \left(\sum_{i=1}^{3} (1 - \beta_i)^4 \right).
\]
Let α and Proposition 5.1. Let α. hence Theorem 5.2. For every graph $\{v_1, v_2, \ldots, v_n\}$ with $d(v_1) \leq d(v_2) \leq \cdots \leq d(v_n)$. Then

$$\alpha^{(k)}(G) = \max \{s \mid d_k(\{v_1, v_2, \ldots, v_s\}) \leq n - s\} = \max \{s \mid \{v_1, v_2, \ldots, v_s\} \text{ is } \delta_k\text{-small set in } G\}.$$

Proof. Let $s_0 = \max \{s \mid \{v_1, v_2, \ldots, v_s\} \text{ is } \delta_k\text{-small set in } G\}$. Then $s_0 \leq \alpha^{(k)}(G)$. Let $\alpha^{(k)}(G) = r$ and let $\{v_{i_1}, v_{i_2}, \ldots, v_{i_r}\}$ be a δ_k-small set. Since $d_k(\{v_1, v_2, \ldots, v_r\}) \leq d_k(\{v_{i_1}, v_{i_2}, \ldots, v_{i_r}\})$ it follows that $\{v_1, v_2, \ldots, v_r\}$ is δ_k-small set too. Therefore $\alpha^{(k)}(G) = r \leq s_0$.

Proposition 5.4. For every natural k are held the inequalities

$$n - \Delta(G) \leq \alpha^{(k)}(G) \leq n - \delta(G).$$

Proof. The left inequality follows from the inequality $S(G) \geq n - \Delta(G)$ from [1] and Proposition 5.1. Let $r = \alpha^{(k)}(G)$. According to Proposition 5.3 $\{v_1, v_2, \ldots, v_r\}$ is a δ_k-small set. So

$$\delta(G) = d(v_1) \leq d_k(\{v_1, v_2, \ldots, v_r\}) \leq n - r = n - \alpha^{(k)}(G),$$

hence $\alpha^{(k)}(G) \leq n - \delta(G)$.

Remark 5. The inequality $\alpha(G) \geq n - \Delta(G)$ is not always true. For example, $\alpha(C_5) < 5 - \Delta(C_5) = 3$.

Since $\sum_{i=1}^{3}(1 - \beta_i)\beta_i^4 \leq \frac{2}{3}$ (see the proof of Theorem 5.4 (iii) in [1]) we take

$$d_k(G) \leq \frac{2}{3} = \frac{\varphi^{(k)}(G) - 1}{\varphi^{(k)}(G)}.$$

Solving the last equation for $\varphi^{(k)}(G)$ we obtain (4.5).

Corollary 4.8. Let G be an n-vertex graph and $\varphi^{(k)}(G) \neq 2$. Then

$$(4.5) \quad \varphi(G) \geq \frac{n}{n - d_1(G)}.$$

Remark 3. In [1] it is proven that the inequality (4.5) is held if $\varphi(G) \neq 2$.

5. Maximal δ_k-sets

We denote the maximal number of vertices in a δ_k-set of G by $\alpha^{(k)}(G)$. $S(G)$ is the maximal number of vertices of small sets of G. From Proposition 1.3 is easy to see that the next proposition holds.

Proposition 5.1. For every graph G

$$\alpha^{(1)}(G) \geq \alpha^{(2)}(G) \geq \cdots \geq \alpha^{(k)}(G) \geq \cdots \geq S(G) \geq \alpha(G).$$

Remark 4. Note that $\alpha^{(1)}(G)$ is denoted in [1] by $S^{\alpha}(G)$.

From Theorem 2.1 we have

Theorem 5.2. For every graph G there exists an unique number $k_0 = k_0(G)$ such that

$$\alpha^{(1)}(G) \geq \alpha^{(2)}(G) \geq \cdots \geq \alpha^{(k_0)}(G) = \alpha^{(k_0+1)}(G) \cdots = S(G).$$

Proposition 5.3. Let $V(G) = \{v_1, v_2, \ldots, v_n\}$ and $d(v_1) \leq d(v_2) \leq \cdots \leq d(v_n)$. Then

$$\alpha^{(k)}(G) = \max \{s \mid d_k(\{v_1, v_2, \ldots, v_s\}) \leq n - s\} = \max \{s \mid \{v_1, v_2, \ldots, v_s\} \text{ is } \delta_k\text{-small set in } G\}.$$

Proof. Let $s_0 = \max \{s \mid \{v_1, v_2, \ldots, v_s\} \text{ is } \delta_k\text{-small set in } G\}$. Then $s_0 \leq \alpha^{(k)}(G)$. Let $\alpha^{(k)}(G) = r$ and let $\{v_{i_1}, v_{i_2}, \ldots, v_{i_r}\}$ be a δ_k-small set. Since $d_k(\{v_1, v_2, \ldots, v_r\}) \leq d_k(\{v_{i_1}, v_{i_2}, \ldots, v_{i_r}\})$ it follows that $\{v_1, v_2, \ldots, v_r\}$ is δ_k-small set too. Therefore $\alpha^{(k)}(G) = r \leq s_0$.

Proposition 5.4. For every natural k are held the inequalities

$$n - \Delta(G) \leq \alpha^{(k)}(G) \leq n - \delta(G).$$

Proof. The left inequality follows from the inequality $S(G) \geq n - \Delta(G)$ from [1] and Proposition 5.1. Let $r = \alpha^{(k)}(G)$. According to Proposition 5.3 $\{v_1, v_2, \ldots, v_r\}$ is a δ_k-small set. So

$$\delta(G) = d(v_1) \leq d_k(\{v_1, v_2, \ldots, v_r\}) \leq n - r = n - \alpha^{(k)}(G),$$

hence $\alpha^{(k)}(G) \leq n - \delta(G)$.

Remark 5. The inequality $\alpha(G) \geq n - \Delta(G)$ is not always true. For example, $\alpha(C_5) < 5 - \Delta(C_5) = 3$.

\[\delta_k\text{-SMALL SETS IN GRAPHS}\]
Theorem 5.5. Let $A \subseteq V(G)$ be a δ_1-small set of G and $s = d_1(V(G) \setminus A)$. Then

$$|A| \leq \left\lfloor \frac{n-s}{2} + \sqrt{\frac{(n-s)^2}{4} + ns - 2e(G)} \right\rfloor$$

Proof. Let $2e(G) = \sum_{v \in V(G)} d(v) = \sum_{v \in A} d(v) + \sum_{v \in V(G) \setminus A} d(v) \leq |A| (n - |A|) + s(n - |A|)$. Solving the derived quadric inequality for $|A|$ we obtain the inequality (5.1).

Corollary 5.6 ([1]). For every number k

$$\alpha^{(k)}(G) \leq \left\lfloor \frac{n - \Delta(G)}{2} + \sqrt{\frac{(n - \Delta(G))^2}{4} + n\Delta(G) - 2e(G)} \right\rfloor \leq \left\lfloor 1 + \sqrt{\frac{1}{4} + n^2 - n - 2e(G)} \right\rfloor.$$

Proof. According to Proposition 5.1 it is sufficient to prove (5.2) only in the case $k = 1$. Let A be a maximal δ_1-small set, i.e. $|A| = \alpha^{(1)}(G)$, and $s = d_1(V(G) \setminus A)$. According to Theorem 5.5 the inequality (5.1) holds. Since the right side of (5.1) is an increasing function for s and $s \leq \Delta(G) \leq n - 1$, the inequalities (5.2) follows from (5.1).

6. α-SMALL SETS

Definition 3 ([1]). Let G be an n-vertex graph and let $W \subseteq V(G)$. We say that W is an α-small set if

$$\sum_{v \in W} \frac{1}{n - d(v)} \leq 1.$$

We denote the smallest natural number r for which $V(G)$ decomposes into r α-small sets by $\varphi^\alpha(G)$.

The idea for α-small sets is coming from the following Caro-Wey inequality ([3] and [7])

$$\omega(G) \geq \sum_{v \in V(G)} \frac{1}{n - d(v)}.$$

We have the proposition

Proposition 6.1 ([1]).

$$\varphi^{(1)}(G) \leq \varphi^\alpha(G) \leq \varphi(G).$$

The following problem is inspired from Proposition 6.1 and Theorem 2.1

Problem. Is it true that for every graph G there exists natural number $k_0 = k_0(G)$ such that $\varphi^{(\alpha)}(G) = \varphi^{(k_0)}(G)$?
References

[1] A. Bojilov, Y. Caro, A. Hansberg, and N. Nenov, *Partitions of graphs into small and large sets*, 2012, arXiv:1205.1727.

[2] A. Bojilov and N. Nenov, *An inequality for generalized chromatic graphs*, Proceedings of the Forty First Spring Conference of Union of Bulgarian Mathematics (Borovets), Mathematics and education in mathematics, April 9–12 2012, pp. 143–147.

[3] Y. Caro, *New results on the independence number*, Tech. report, Tel-Aviv University, 1979.

[4] G. H. Hardy, J. F. Littlewood, and G. Polya, *Inequalities*, 1934.

[5] N. Khadzhiivanov, *Extremal theory of graphs*, Sofia University, Sofia, 1990, (in Bulgarian).

[6] N. Nenov, *Improvement of graph theory Wei’s inequality*, Proceedings of the Thirty Fifth Spring Conference of Union of Bulgarian Mathematics (Borovets), Mathematics and education in mathematics, April 5–8 2006, pp. 191–194.

[7] V. K. Wei, *A lower bound on the stability number of a simple graph*, Technical Memorandum 81–11217–9, Bell Laboratories, Murray Hill, NJ, 1981.

[8] D. B. West, *Introduction to graph theory*, second ed., Prentice Hall, Inc., Upper Saddle River, NJ, 2001, xx+588 pp.

Faculty of Mathematics and Informatics, University of Sofia, Bulgaria
E-mail address: bojilov@fmi.uni-sofia.bg

Faculty of Mathematics and Informatics, University of Sofia, Bulgaria
E-mail address: nenov@fmi.uni-sofia.bg