Dataset on some soil properties improvement by the addition of olive pomace

Adnan I. Khdair a, b, *, Sawsan I. Khdair c, Ghaida A. Abu-Rumman d

a Jordan University of Science and Technology (JUST), P.O.Box: 3030, Irbid 22110, Jordan
b King Abdulaziz University, College of Engineering, P.O.Box: 80204, Jeddah 21589, Saudi Arabia
c Faculty of Pharmacy, Al-Zaytoonah University of Jordan, 11733 Amman, Jordan
d Department of Civil Engineering, Isra University, 11622 Amman, Jordan

Article info
Article history:
Received 6 November 2018
Received in revised form 3 March 2019
Accepted 20 March 2019
Available online 28 March 2019

Abstract
Soil amendment with olive cake produced from olive mills waste (olive pomace/cake) is an ordinary practice in olive producing countries in the Middle East. It is used to improve soil physical and chemical properties as well as cheap waste management approach. But, the olive cake contains small percentage of residual oil which may affect water holding capacity of soil and penetration rate in agricultural lands. The data provided in this article shows the influence of adding olive pomace to clay and sand clay soils in terms of water holding capacity (WHC), penetration depth and accumulate intake.
© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Data

The soil water retention curves (SWR) are shown in Fig. 1 for clay soil (20% sand, 25% silt, 55% clay) and in Fig. 2 for sandy clay soil (55% sand, 5% silt, 40% clay) as affected by olive cake addition. The water
holding capacity (WHC) increased as olive cake application rates increased compared to the control in agreement with [4]. Clay soils hold more water at higher tensions compared to sandy soils because they have larger surface area. This in agreement with [5], who reviewed the effects of organic matter addition as soil amendment for many soils with different texture textures.

The penetration depths were read directly from the three transparent gradual scales cylinders (FEL5 Demonstration Infiltration Apparatus [2]). The penetration depths are shown in Table 1 for clay soil and Table 2 for sandy clay soil as affected by olive cake addition. The data shows that penetration depth increased as olive cake application rate increased. The addition of olive cake increased the soil organic content, which favor large soil aggregates formations, hence resulted in larger penetration depth [3,5].

The water accumulate intake (mL) is shown in Table 3 for clay soil and Table 4 for sandy clay soil as affected by addition of olive cake. The data shows that accumulate intake increased as olive pomace application rate increased, this in agreement with [3,4,6,7].

Normally, the clayey soil has less penetration and water intake than sandy clay soil as shown in Table 5, this in agreement with [5,8,9].

2. Experimental design, materials, and methods

Olive pomace addition on soil water holding capacity, penetration depth and accumulated intake were examined for clay and sandy clay Soils. The soils samples obtained from the top soils surfaces, crushed dried and passed through a 2 mm strainer to remove bulky fragments. The olive cake is shown in Fig. 3 which was obtained from a three phase olive mill, freeze-dried and ground to pass through a 1 mm sieve. Several tests were done for each soil at three olive cake application rates (3%, 6% and 9%) on dry weight basis in addition to 0% the control. For each test olive cake was added to the soil sample and

Specifications table

Subject area	Agricultural and Biological Sciences
More specific subject	Soil Science
Type of data	Table, graph, figure
How data was acquired	Laboratory measurements using pressure plate apparatus model number: 0750 SAIF [1] to draw soil water retention curves (SWR); The FELS Demonstration Infiltration Apparatus – Issue 1 was used for infiltration tests [2]
Data format	Raw, analyzed
Experimental factors	Soil samples were dried and screen through 2-mm strainer while the olive cake freeze dried and ground to pass through 1 mm sieve
Experimental features	The effect of olive cake addition on clay and sand clay soil were investigated. Soil parameter studied were soil water retention curves (SWR), infiltration and water holding capacity (WHC) at olive cake addition of 3%, 6% and 9% by weight. A pressure plate apparatus was used to obtain soil water retention curves at a pressure range from 0.30 (wilting) to 1500 kPa (Saturation). FELS Demonstration Infiltration Apparatus [2] with three gradual perspex cylinders were used for penetration depth measurements.
Data source location	Amman, Jordan, Latitude (' N) 29°33', Longitude ('E) 35°00', Elevation 772 m.
Related research article	Abu-Rumman Ghaida, Effect of Olive Mill Solid Waste on Soil Physical Properties. International Journal of Soil Science. 2016, 11(3): pp. 94–101. 10.3923/ijss.2016.94.101 [3]

Value of the data

- The data showed that the addition of olive cake to soil improves soil properties such as: water holding capacity (WHC) and accumulation intake important factors for plant growth [3,4].
- Clay soils have larger surface area compared to sandy soil; therefore holding more water at higher tensions near the wilting point.
- Soils in semi-arid and arid regions are poor in organic matter as a result of desertification; the addition of olive cake to soil will increase soil fertility and penetration depth.
- The addition of organic matter reduce soil bulk density as reported in literature [5] which might reduce soils erosion as a result of soil aggregation improvement.
- The dataset may serve as a benchmark for future studies on the effect of olive pomace addition as soil amendments on other soils properties.
Fig. 1. Soil-Water-retention curves for clay soil as affected by olive cake.

Fig. 2. Soil-Water-retention curves for sandy clay soil as affected by olive cake.
mixed thoroughly in plastic bag before used. The penetration depths were read directly from three transparent gradual scales cylinders (FEL5 Demonstration Infiltration Apparatus [2]).

The olive pomace physicochemical properties are show in Table 6, which include moisture content, pH, organic C, N—P—K, (C/N) and ash.

Soil-water-retention curves were obtained according to Ref. [1] by pressure plate apparatus from welting pressure 0.30 to saturation pressures 1500 kPa, using 70-mm diameter PVC rings. The soil samples were saturate by distilled water. The soil moisture contents were evaluated at different suction pressure 30–1500 kPa. The SWR curves constructed for each soil represent the averages of the pressure plate tests from all rings.

2.1. Infiltration (penetration depth)

FEL5 Demonstration Infiltration Apparatus – Issue 1 [2] used for infiltration measurements. Soil samples were mixed thoroughly and filled gradually to avoid segregation of soil particles in cylinders.

Table 1	Penetration depth (mm) as affected by olive pomace addition for clay soil.				
Time (min)	Pomace application rate (mm)	0%	3%	6%	9%
0	0	0	0	0	
2	25	30	35	40	
5	35	40	50	60	
7	55	60	70	75	
9	65	70	80	83	
12	80	85	100	105	
15	90	100	120	125	
20	115	130	145	150	
24	125	135	170	180	
34	135	150	183	195	
45	139	157	200	210	
50	145	165	210	223	
75	152	175	220	233	
100	154	180	225	240	
125	157	190	235	250	
150	160	200	250	265	
200	165	215	265	280	

Table 2	Penetration depth (mm) as affected by olive pomace addition for sandy clay soil.				
Time (min)	Pomace application rate (mm)	0%	3%	6%	9%
0	0	0	0	0	
3	10	11	50	50	
6	15	16	90	90	
9	30	32	130	125	
12	50	52	150	140	
15	70	73	175	160	
18	85	90	185	170	
21	105	110	200	185	
24	120	130	175	170	
34	128	140	200	210	
45	139	155	230	265	
50	150	160	250	240	
75	152	170	275	300	
100	154	175	305	320	
125	157	180			
150	160	187			
200	165	192			
Table 3
Accumulated intake (mL) as affected by olive pomace addition for clay soil.

Time (min)	0%	3%	6%	9%
0	0	0	0	0
2	15	10	12	14
4	30	20	23	26
6	35	27	29	31
10	40	33	35	37
12	45	38	49	43
15	50	45	47	49
22	57	50	53	55
25	62	53	57	60
35	63	60	65	70
40	64	65	70	75
50	65	73	80	85
75	65	82	90	95
100	65	93	99	105
150	65	100	107	112
200	65	100	105	110

Table 4
Accumulated intake (mL) as affected by olive pomace addition for sandy clay soil.

Time (min)	0%	3%	6%	9%
0	0	0	0	0
3	4	5	15	20
6	7	9	20	25
9	10	13	25	33
12	13	17	35	48
15	16	19	40	57
18	19	22	50	65
21	23	26	60	75
25	25	32	70	85
34	33	35	78	85
45	43	45	85	90
50	47	50	90	95
75	50	53	100	105
100	58	65	112	113
125	63	70	110	111
150	65	78	110	111
200	65	75	110	111

Table 5
Penetration depth and accumulated intake with (time).

	Clay	Sandy clay						
Penetration depth (mm)	0% (24 hr)	3% (24 hr)	6% (24 hr)	9% (24 hr)	0% (100 m)	3% (100 m)	6% (100 m)	9% (100 m)
160	210 (24 hr)	290 (24 hr)	300 (24 hr)	180 (24 hr)	280 (24 hr)	305 (100 m)	320 (100 m)	
160	210 (24 hr)	290 (24 hr)	300 (24 hr)	180 (24 hr)	280 (24 hr)	305 (100 m)	320 (100 m)	
69	95 (24 hr)	107 (150 m)	112 (150 m)	63 (24 hr)	78 (150 m)	112 (100 m)	113 (100 m)	
69	95 (24 hr)	107 (150 m)	112 (150 m)	63 (24 hr)	78 (150 m)	112 (100 m)	113 (100 m)	
Table 6
Physico-chemical properties of olive pomace.

Property	Value
Moisture content	60.90
pH	5.25
Organic C	620
Total N (g/kg)	2.4
Total P (g/kg)	0.65
Total K (g/kg)	1.05
Carbon/Nitrogen (C/N)	30.50
Ash (g/kg)	75.3

Fig. 3. Olive pomace/cake.
up to 380 mm mark in the apparatus. Water discharge was collected by 500 mL beakers placed below the three infiltration cylinders. The initial soil and water surfaces were marked. Each cylinder received equal head of water of 100 mL at the same time. As the wetting frontage advanced, the differences between water and soil surface level were recorded at time intervals of (1, 3, 5, 7, 9, 20, 35, 47, 60, 75, 90, 110, 170, 250 min and after 24 hr). The accumulated water intake in the soil was determined using the following relations:

\[I_D = I_W - I_S \] (1)

\[H_D = H_W - H_S \] (2)

\[A_I = I_D - H_D \] (3)

where \(I_0 \) is the initial depth, \(I_W \) and \(I_S \) are the initial water and soil surface heights, respectively, \(H_D \) is water depth as time elapsed and \(H_W \) and \(H_S \) are the heights of water and soil surface, receptively. \(A_I \) is the accumulated intake calculated from Eq. (3) after the data collected throughout the tests.

Transparency document

Transparency document associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2019.103878.

References

[1] ASTM D2325-68, Standard Test Method for Capillary-Moisture Relationships for Coarse- and Medium-Textured Soils by Porous-Plate Apparatus, 2000.

[2] Armfield Group, Armfield Technical Education Company FEL5 Demonstration Infiltration Apparatus – Issue 1, Armfield limited, Bridge House, West Street Ringwood, BH24 1DY, England, 2012.

[3] G. Abu-Rumman, Effect of olive mill solid waste on soil physical properties, Int. J. Soil Sci. 11 (3) (2016) 94–101, https://doi.org/10.3923/ijss.2016.94.101.

[4] M. Abu-Zreig, M. Al-Widyan, Influence of olive mills solid waste on soil hydraulic properties, Commun. Soil Sci. Plant Anal. 36 (2005) 1199–1212.

[5] R. Khaleel, K.R. Reddy, M.R. Overcash, Changes in soil physical properties due to organic waste applications: a review, J. Environ. Qual. 10 (1981) 133–141.

[6] R.M. El-Asswad, A.O. Said, M.T. Mornag, Effect of olive oil cake on water holding capacity of sandy soils in Libya, J. Arid Environ. 24 (4) (1993) 409–413, http://doi.org/10.1006/jare.1993.1034.

[7] M. Al-Widyan, N. Al-Abed, H. Al-Jaleel, Effect of composted olive cake on soil physical properties, Commun. Soil Sci. Plant Anal. 36 (2005) 1199–1212.

[8] C. Giovanna, L. Giovanni, C. Leonardo, Improvement of soil properties by application of olive oil waste, Agron. Sustain. Dev. 28 (2008) 521–526, https://doi.org/10.1051/agro:2008027.

[9] A.C. Barbera, C. Maucien, V. Cavallaro, A. Loppolo, G. Spagna, Effects of spreading olive mill wastewater on soil properties and crops, a review, Agric. Water Manag. 119 (2013) 43–53.