Hybrid scheme for modeling local field potentials from point-neuron networks

Espen Hagen1,2*, David Dahmen1, Maria Stavrinou2, Henrik Lindén3,4, Tom Tetzlaff1, Sacha van Albada1, Sonja Grün1,5, Markus Diesmann1,6,7, Gaute T Einevoll2,8

From 24th Annual Computational Neuroscience Meeting: CNS*2015
Prague, Czech Republic. 18-23 July 2015

Measurement of the local field potential (LFP) has become routine for assessment of neuronal activity in neuroscientific and clinical applications, but its interpretation remains nontrivial. Understanding the LFP requires accounting for both anatomical and electrophysiological features of neurons near the recording electrode as well as the entire large-scale neuronal circuitry generating synaptic input to these cells. The direct simulation of LFPs in biophysically detailed network models is computationally daunting. Here, we instead propose a hybrid modeling scheme combining the efficiency of simplified point-neuron network models (Fig. 1A) with the biophysical principles underlying LFP generation by multicompartment neurons [1] (Fig 1C). We apply this scheme to a model representing a full-scale cortical network under about 1 square millimeter surface of cat primary visual cortex [2] (Fig. 1A,B) with layer-specific connectivity [3] to predict laminar LFPs.
(Fig. 1D) for different network states, assess the relative contribution of local neuron populations to the LFP, investigate the role of input correlations and neuron density, and validate linear LFP predictions based on population firing rates. The hybrid scheme is accompanied by our open-source software, hybridLFPy (github.com/esphenhgn/hybridLFPy).

Acknowledgements
This research was partially funded by EU Grant 604102 (HBP), EU Grant 269921 (BrainScaleS), the Helmholtz portfolio theme SMHB, the Juelich Aachen Research Alliance (JARA), and the Research Council of Norway (NFR, through ISP, NOTUR -NN4661K).

Authors’ details
1Inst. of Neuroscience and Medicine (INM-6) and Inst. for Advanced Simulation (IAS-6), Jülich Research Center and JARA, Jülich, 52425, Germany. 2Dept. of Mathematical Sciences and Technology, Norwegian University of Life Sciences, As, 1432, Norway. 3Dept. of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, 2200, Denmark. 4Dept. of Computational Biology, Royal Institute of Technology (KTH), Stockholm, 10044, Sweden. 5Dept. of Biology, Theoretical Systems Neurobiology, RWTH Aachen University, Aachen, 52074, Germany. 6Dept. of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, 52074, Germany. 7Dept. of Physics, Faculty 1, RWTH Aachen University, Aachen, 52074, Germany. 8Dept. of Physics, University of Oslo, Oslo, 0316, Norway.

Published: 18 December 2015

References
1. Lindén H, Tetzlaff T, Potjans TC, Pettersen KH, Gruen S, Diesmann M, Einevoll GT: Modeling the spatial reach of the LFP. Neuron 2011, 72:859-872.
2. Potjans TC, Diesmann M: The Cell-Type Specific Cortical Microcircuit: Relating Structure and Activity in a Full-Scale Spiking Network Model. Cerebral Cortex 2014, 24(3):785-806.
3. Binzegger T, Douglas RJ, Martin KA: A quantitative map of the circuit of cat primary visual cortex. J Neurosci 2004, 24(39):8441-8453.

doi:10.1186/1471-2202-16-S1-P67
Cite this article as: Hagen et al.: Hybrid scheme for modeling local field potentials from point-neuron networks. BMC Neuroscience 2015 16(Suppl 1):P67.