Supporting Information

Testing the Limits of Radical-Anionic CH-Amination: a 10-Million-Fold Decrease in Basicity Opens a New Path to Hydroxyisoindolines via a Mixed C-N/C-O-Forming Cascade

Quintin Elliott, Gabriel dos Passos Gomes, Christopher J. Evoniuk, and Igor V. Alabugin

Table of Contents:

1. General Information S2
2. Thermodynamic Data S3
 a) Generation of DMF Radical S3
 b) Secondary Amide HAT S5
 c) Oxidation via TEMPO S6
 d) Formation of Ketone Intermediate S7
 e) Post Synthetic Modifications S8
3. Experimental details S9
 a) Hydroperoxide crude reaction mixture S9
 b) Procedures, spectral data and copies of NMR’s for amide precursors S10
 c) Procedures, spectral data and copies of NMR’s for amides S30
 d) Procedures, spectral data and copies of NMR’s for C(sp^3)-H amination products S89
 e) Crystal Structure for 1-phenyl-1H-benzo[d][1,2]oxazin-4(3H)-one (6a) S155
4. Computational Details S156
 a) Structures and energies for all species calculated at the (SMD+DMF)/UM06-2X(D3)/6-31+G(d,p) level of theory S156
5. References and Notes S222
1) General information

Unless otherwise noted, all 1H NMRs were run on BRUKER AV 400 MHz, BRUKER AV 500 MHz, or BRUKER AV 600 MHz spectrometer at 298 K. Proton chemical shifts are given relative to the residual proton signal of CDCl$_3$ (7.26 ppm), DMSO (2.50 ppm), CD$_3$CN (1.94 ppm), CD$_3$OD (4.78, 3.31 ppm), (CD$_3$)$_2$CO (2.05 ppm). Carbon chemical shifts were internally referenced to CDCl$_3$ (77.23 ppm), DMSO (39.51 ppm), CD$_3$CN (118.69, 1.39 ppm), CD$_3$OD (49.15 ppm), (CD$_3$)$_2$CO (206.26, 29.84 ppm) signal. Data are reported as follows: chemical shift in ppm (δ), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, and m = multiplet), coupling constant (Hz), and integration. High resolution mass spectra (HRMS) were obtained on an Agilent 6200 Series TOF.

Materials: Acetonitrile, benzene, diethyl-ether, dichloromethane, DMF, toluene and tetrahydrofuran (THF) were obtained from a SPS-4 Solvent Purification System. Hexanes for column chromatography and preparatory thin layer chromatography were distilled prior to use. All other solvents were used as purchased. Unless otherwise specified, all reagents were used as is from suppliers without further purification. Column chromatography was performed using silica gel (60 Å) and preparatory thin layer chromatography was performed using a 1000 μm glass backed plate containing UV dye. All TLC analysis was visualized by UV light (254 nm). AlCl$_3$ was purchased from AlfaAesar and freshly sublimed before use. Pd(PPh$_3$)$_4$ was purchased from SigmaAldrich and stored under Ar at -25°C.
2) Thermodynamic Data

2a) Generation of DMF radical

We suggest that the chemical species responsible for the formation of the bis-benzylic C-centered radical to be C(O)N(CH$_3$)$_2$ radical, which is generated from DMF. While we were unable to find the pKa of t-BuOH in DMF, literature reports1 the pKa 1-butanol in DMF to be 33.3. It is reasonable to estimate the pKa of t-BuOH in DMF to be ca. 34-35. The pKa of DMF in DMF was found to be 381, making DMF approximately 3-4 pKa units less acid than t-BuOH. Although this makes the initial deprotonation of H-C(O)NMe$_2$ uphill, a small amount of DMF anion can be formed at the equilibrium. Calculations show that, although the deprotonation is endergonic by 11.2 kcal/mol, the activation barrier for deprotonation of DMF is relatively low (12.6 kcal/mol, Scheme 9).

Drapeau and co-workers noted the formamide proton shift, via 1H and 13C NMR when t-BuOK was added to wet DMF-d_7.2 Their computational work additionally highlighted two interesting points regarding the impact of counter ions. First, the cation stabilizes the DMF anion, assisting in deprotonation. Second, a cation of a certain size (i.e., Li) can stabilize the DMF anion and increase the barrier for its oxidation to the DMF radical.2 Our experimental results also suggest that reaction is slow in the presence of Na and, to a greater extent, Li counterions (Table 1, Entry 1, 7-10).

Our calculations show that the oxidation of DMF anion by oxygen is slightly exergonic (with the inclusion of K$^+$). This makes the combined deprotonation and oxidation of DMF endergonic by ~10 kcal/mol, which would allow only small quantities of DMF radical to be present at a given time. If the propagation step of the cascade is fast, then the initial penalty of forming the DMF radical is a small price to pay when all sequential steps in the cascade reactions are favorable and efficient. Overall, the generation of DMF radical imposes a ~10 kcal/mol penalty needed to initiate an otherwise exergonic sequence. Interestingly, calculations suggest that the activation barrier for proton abstraction from DMF is almost entirely entropic (enthalpy of activation is only 2.2 kcal/mol). The TS Gibbs energy (12.6 kcal/mol) is only 1.4 kcal/mol higher than the Gibbs energy of the product, suggesting that the deprotonation should be rapidly reversible.
Scheme S1. Gibbs energy changes associated with the DMF and amide deprotonation, radical formation from DMF and with the C-N bond forming process; all energies in kcal/mol.
2b) Secondary amide HAT

Since we get back the unreacted starting material, the reaction is stalling out in the initial stages of the cascade. Yet our calculations find that each of the three initiation steps, i.e., the deprotonation (ΔG = -16.0), HAT (ΔG = -9.3), and the radical-anion cyclization (ΔG = -5.9), for 1r are thermodynamically favorable. Our analysis suggests that the barrier for the H-abstraction is about 1.2 kcal/mol higher for the secondary amides than it is for the primary amides. Such difference in the barrier should correspond to a ca. 10-fold rate decrease for this step, providing a possible explanation for the low reactivity of the secondary amide substrates under the reaction conditions.

Scheme S2. Thermodynamics for HAT of amide 1r. Numbers in parenthesis are for primary amide 1a. All energies reported in kcal/mol.
2c) Oxidation via TEMPO

While exploring the potential roles of TEMPO, we considered that it may be used as an oxidant. If the radical anion intermediate were to form \textit{in situ}, oxidation via TEMPO is possible ($\Delta G = -16.2 \text{ kcal/mol}$) according to the calculations.

\textbf{Scheme S3.} Thermodynamics for the oxidation of 1a via TEMPO into the initial cyclic intermediate. All energies reported in kcal/mol.
2d) Formation of a ketone intermediate

While exploring possible pathways for the formation of our cyclic product, we considered the formation of a ketone intermediate. Our calculations show that formation and cyclization of a ketone intermediate is favorable. However, an intramolecular cyclization followed by oxidation with O$_2$ will likely occur before an intermolecular addition of O$_2$.

Scheme S4. Thermodynamics of 1a for the formation of a ketone intermediate. All energies reported in kcal/mol.
2e) Post Synthetic Modifications

A variety of post-synthetic modifications of the core hydroxyisoindoline structure are possible including enantioselective transformations mediated by chiral phosphoric acids. Transition metal catalysis was also utilized for making chiral isoindolinones and spiroisoindolinones.

Scheme S5. Post-synthetic modifications for 3-hydroxyisoindolinone.
3) Experimental Details

3a) Hydroperoxide crude reaction mixture

Scheme S6. To a 10 mL round bottom flask charged was a stir bar was added 1p (20 mg, 0.0657 mmol), 4Å MS, DMF (2.6 mL), and tBuOK (3 eq). After 10 mins the reaction was quenched with NH₄Cl and worked up with EtOAc, the organic layers were collected and dried over Na₂SO₄. Top: Crude spectra with hydroperoxide signal at ~10.5ppm. Bottom: after addition of D₂O to the crude sample.
3b) Procedures, spectral data and copies of NMR’s for amide precursors

2-benzylbenzonitrile: To a flask charged with a stir bar and AlCl$_3$ (1.364 g, 10.2 mmol) in 12 mL of dry benzene was added 2-(bromomethyl)-1-benzonitrile (1 g, 5.1 mmol) in an ice bath. The reaction mixture was warmed to room temp and then heated to reflux for 45 mins. When all the starting material were consumed as monitored by TLC, the rxn mixture was cooled to room temp and poured into ice and then acidified with 1 N HCl. The organic materials were extracted with CH$_2$Cl$_2$. The combined organic extracts were washed with H$_2$O then brine and dried over MgSO$_4$. The solvents were removed under reduced pressure and purified by column chromatography (10% EtOAc/90% Hex) to afford the desired product (553 mg, 2.86 mmol) in 71% yield.1 1H NMR (400 MHz, Chloroform-d) δ 7.50 (d, $J = 7.7$ Hz, 1H), 7.37 (t, $J = 7.7$ Hz, 1H), 7.24 – 7.19 (m, 2H), 7.18 (d, $J = 3.0$ Hz, 1H), 7.15 (d, $J = 7.0$ Hz, 4H), 4.09 (s, 2H). 13C NMR (101 MHz, Chloroform-d) δ 144.93, 138.83, 132.95, 132.89, 130.07, 128.99, 128.75, 128.36, 126.84, 126.74, 118.25, 112.51, 40.18. Spectra data matched those previously reported.6

General Procedure 1:

To a two-neck round bottom flask equipped with a magnetic stirring bar and reflux condenser was charged with 2-(bromomethyl)benzonitrile (150 mg, 765 mmol), aryl boronic acid (1.5 eq), K$_2$CO$_3$ (4 eq), toluene (5 mL), EtOH (2 mL), H$_2$O (1 mL). The solution was allowed to stir during outgassing with argon for 30 mins. The outlet needle was removed and the solution was kept under inert atmosphere for the remainder of the reaction. Pd(PPh$_3$_4) (4 mol %) was then added to the solution and the reaction was allowed to stir at reflux for 8 hours. Upon completion, the mixture was diluted with ethyl acetate (10 mL) and H$_2$O (5 mL) and added to a separatory funnel. The aqueous solution was extracted with EtOAc (1 x 15 mL). The organic layer was collected and washed with...
H$_2$O (2 x 10 mL) and brine (1 x 20 mL). The organic layer was collected and dried with MgSO$_4$ and concentrated under reduced pressure. The crude product was then subjected to column chromatography, with hexanes as the eluent, to afford the desired product.

2-(4-(tert-butyl)Benzyl)benzonitrile: Following general procedure 1 with 2-(Bromomethyl)benzonitrile and (4-(tert-butyl)phenyl)boronic acid provided the desired compound in 190 mg (yield 99%): 1H NMR (400 MHz, Chloroform-d) δ 7.64 (d, $J = 7.7$ Hz, 1H), 7.52 (t, $J = 8.3$ Hz, 1H), 7.40 (d, $J = 8.3$ Hz, 2H), 7.32 (dd, $J = 17.5$, 7.7 Hz, 2H), 7.25 (d, $J = 8.2$ Hz, 2H), 4.23 (s, 2H), 1.37 (s, 9H). 13C NMR (101 MHz, Chloroform-d) δ 149.50, 145.19, 135.80, 132.93, 132.85, 130.10, 128.64, 126.76, 125.65, 118.30, 112.51, 39.72, 34.43, 31.40. Spectra matches those previously reported.

2-((thiophene-2-ylmethyl)benzonitrile: Following general procedure 1 with 2-(Bromomethyl)benzonitrile and 2-thienylboronic acid provided the desired compound in 145 mg (yield 95%): 1H NMR (400 MHz, Chloroform-d) δ 7.63 (d, $J = 8.9$ Hz, 1H), 7.53 (t, $J = 7.7$ Hz, 1H), 7.37 (d, $J = 7.4$ Hz, 1H), 7.33 (t, $J = 7.6$ Hz, 1H), 7.18 (d, $J = 6.4$ Hz, 1H), 6.95 (dd, $J = 5.1$, 3.5 Hz, 1H), 6.92 (d, $J = 3.4$ Hz, 1H), 4.39 (s, 2H). 13C NMR (101 MHz, Chloroform-d) δ 144.12, 141.07, 133.12, 132.93, 132.90, 129.80, 127.23, 127.10, 126.16, 124.69, 117.88, 112.26, 34.40. [M+H] 200.0456, found 200.0528.

2-(4-methoxybenzyl)benzonitrile: Following general procedure 1 with 2-(Bromomethyl)benzonitrile and (4-methoxyphenol)boronic acid provided the desired compound in 182 mg (yield 99%): 1H NMR (400 MHz, Chloroform-d) δ 7.61 (d, $J = 7.8$ Hz, 1H), 7.49 (t, $J = 8.3$ Hz, 1H), 7.30 – 7.24 (m, 1H), 7.18 (d, $J = 8.7$ Hz, 2H), 6.86 (d, $J = 8.7$ Hz, 2H), 4.14 (s, 2H), 3.77 (s, 2H). 13C NMR (101 MHz, Chloroform-d) δ 158.41, 145.47, 132.97, 132.90, 130.93, 130.01, 129.97, 126.76, 118.31, 114.14, 112.38, 55.24, 39.37. Spectra matched those previously reported.

2-(4-methylbenzyl)benzonitrile: Following general procedure 1 with 2-(Bromomethyl)benzonitrile and (4-methylphenol)boronic acid provided the desired compound in 279 mg (yield 98%): 1H NMR (600 MHz, Chloroform-d) δ 7.63 (d, $J = 7.0$ Hz, 1H), 7.48 (s, 1H), 7.32 – 7.24 (m, 2H), 7.12 (s, 4H), 4.17 (s, 2H), 2.32 (s, 3H). 13C NMR (151 MHz, Chloroform-d) δ 145.32, 136.31, 135.78, 132.90, 132.87, 130.00, 129.42, 128.88, 126.71, 118.23, 112.53, 39.81, 21.04. Spectra matched those previously reported.
4-bromo-2-(bromomethyl)benzonitrile: To a dry solution of 4-bromo-2-methylbenzonitrile (2g, 10.2 mmol) in CHCl₃ (11 mL) under argon NBS (2.180 g, 12.24 mmol) and benzoyl peroxide (100mg, 1 mmol) were added. The reaction mixture was stirred at 85°C for 24 hours. After that, the reaction mixture was cooled to room temp and the precipitate was filtered off and washed with EtOAc. The solvent was evaporated and the residue purified by column chromatography and recrystallized from cyclohexane. ¹H NMR (400 MHz, Chloroform-d) δ 7.72 (d, J = 1.8 Hz, 1H), 7.57 (dd, J = 8.3, 1.8 Hz, 1H), 7.52 (d, J = 8.3 Hz, 1H), 4.57 (s, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 143.01, 134.41, 133.89, 132.53, 128.34, 116.33, 111.42, 28.41. Spectra matched those previously reported.

4’-(trifluoromethyl)-3-(4-trifluoromethyl)benzyl-[1,1’-biphenyl]-4-carbonitrile: Following general procedure 1. 4-bromo-2-(bromomethyl)benzonitrile and 4-(trifluoromethyl)phenyl boronic acid were coupled together to give the desired product in 175 mg (yield 79%). ¹H NMR (400 MHz, Chloroform-d) δ 7.78 (d, J = 8.0 Hz, 1H), 7.74 (d, J = 8.4 Hz, 2H), 7.68 (d, J = 8.3 Hz, 2H), 7.62 – 7.57 (m, 3H), 7.56 (d, J = 1.5 Hz, 1H), 7.43 (d, J = 8.1 Hz, 2H), 4.36 (s, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 144.71, 144.65, 142.74 (d, J = 2.5 Hz), 133.86, 130.99, 130.67, 129.53, 129.40, 129.21, 129.06, 126.33, 126.18 (q, J = 3.7 Hz), 125.92 (q, J = 3.8 Hz), 125.65, 125.53, 122.95, 122.83, 120.24, 120.13, 117.99, 112.44, 40.21. ¹⁹F NMR (376 MHz, Chloroform-d) δ -62.45, -62.60. [M+H] 406.0952, found 406.1673.

2-ethylbenzonitrile: 1-bromo-2-ethylbenzene (555 mg, 3 mmol) and CuCN (672 mg, 7.5 mmol) were added to a two-neck round bottom flask equipped with a stir bar and a water condenser. NMP (4 mL) was added and the solution was left to mix at 195°C for 20 mins. Upon consumption of starting material the reaction vessel was brought to room temp and worked up with NH₄OH 10% and CHCl₃. The organic layers were collected and condensed under reduced pressure and after purifying via column chromatography on silica gel with EtOAc: Hex (5:95) as an eluent yielded the desired product in 64% yield (253.4 mg). ¹H NMR (500 MHz, Chloroform-d) δ 7.62 (d, J = 7.8 Hz, 1H), 7.55 (td, J = 7.6, 1.4 Hz, 1H), 7.37 (dd, J = 8.0, 1.2 Hz, 1H), 7.31 (td, J = 7.6, 1.2 Hz, 1H), 2.90 (q, J = 7.6 Hz, 2H), 1.33 (t, J = 7.6 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-d) δ 148.01, 132.93, 132.73, 128.84, 126.38, 118.08, 111.99, 27.74, 15.06. Spectra matches those previously reported.
3b Procedures, spectral data and copies of NMR’s for amides

General Procedure 2

![Chemical Structure]

In a round bottom flask equipped with a stir bar and a condenser was added benzonitrile and enough tBuOH to make a 1 mM solution. To this stirred solution was added finely ground KOH (3.7 eq). The reaction was left to reflux for 30 minutes, cooled to room temp, and poured into a brine solution and extracted with CHCl₃. The collected organic layers were dried, concentrated under reduced pressure, and purified via column chromatography on silica gel.⁹

General Procedure 3

![Chemical Structure]

In an oven dried screw-cap vial equipped with a magnetic stir bar, benzamide (1 eq) was dissolved in dioxane (2 mM) under argon. Followed by the addition of CsCO₃ (1.2 eq), benzyl bromide (1 eq), Pd(OAc)₂ (5 mol %), and PPh₃ (10 mol %). The resulting reaction mixture was heated at 110°C for 18 hours. The reaction mixture was cooled to room temp and extracted with ethyl acetate. The organic...
layers were combined, dried with MgSO₄, concentrated under reduced pressure, and purified by column chromatography on silica gel (1.5 EA : 3.5 Hex) to give the desired product.¹⁰

See reference 7 for a more detailed descriptions of side product yields and isolation

General Procedure 4

General Procedure 4 A: In a round bottom flask equipped with a stir bar was added 2-benzylbenzoic acid (500 mg, 2.3) dissolved in dry DCM (8 mL) under Ar. 1 drop of DMF (cat.) was added at 0°C, followed by the dropwise addition of Oxalyl chloride (404 μL, 4.71 mmol). Upon complete addition of oxalyl chloride, the reaction was brought to room temperature and allowed to stir for 4 hours. Upon completion the reaction was concentrated under reduced pressure and the crude acyl chloride was dissolved in the minimal amount of dry inert DCM needed. The solution was cooled to 0°C and the corresponding amine (2.6 mmol), TEA (5.2 mmol), and 1 mL of dry inert DCM were added to an addition funnel and added dropwise to the stirred chilled solution. Upon complete addition the reaction was allowed to stir at room temperature overnight and then washed with 1M NaOH and extracted with DCM, concentrated under reduced pressure, and purified by column chromatography on silica gel to give the desired secondary benzamide.¹¹

General Procedure 4 B: To a solution of 2-benzylbenzoic acid (43 mg, 0.203 mmol) in dry DCM at 0°C under Ar was added dropwise oxalyl chloride followed by a catalytic amount of dry DMF (1 drop). The reaction was allowed to mix for 4 hr and the solvent then removed to afford crude acyl chloride. The crude solvent was then dissolved in the minimal amount of EtoAc which was then added dropwise into a solution of methoxyaminde hydrochloride (20 mg, 243 mmol) and K₂CO₃ (56 mg, 0.405 mmol) dissolved in EtoAc (1 mL) and water (0.5 mL) at 0°C. The reaction was allowed to mix overnight and then the phases separated and the aqueous layer extracted with EtoAc. The collected organic layers were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. Purified on silica gel with by eluting with a 25:75:1 mixture of EtoAc:Hex:TEA.¹²
2-benzylbenzamide: following **general procedure 2** with 2-benzylbenzonitrile (92 mg, 0.5 mmol) and after purification via column chromatography yielded the desired product in 71% yield (75 mg, 0.355 mmol). 1H NMR (400 MHz, Chloroform-d) δ 7.49 (dd, $J = 7.5$, 1.5 Hz, 1H), 7.37 (td, $J = 7.5$, 1.5 Hz, 1H), 7.30 – 7.27 (m, 2H), 7.26 – 7.22 (m, 2H), 7.21 – 7.15 (m, 3H), 5.58 (s, 2H), 4.25 (s, 2H). 13C NMR (101 MHz, Chloroform-d) δ 171.96, 140.76, 139.01, 135.41, 131.18, 130.46, 128.98, 128.52, 127.39, 126.38, 126.17, 38.79. Spectra matched those previously reported.

2-(3,5-dimethylbenzyl)benzamide: following **general procedure 3** with benzamide (199 mg, 1 mmol) and 3,5-dimethylbenzyl bromide (121 mg, 1 mmol) and after purification via column chromatography yielded the desired product in 31% yield (73 mg, 0.301 mmol). 1H NMR (400 MHz, Chloroform-d) δ 7.50 (dd, $J = 7.6$, 1.5 Hz, 1H), 7.37 (td, $J = 7.5$, 1.5 Hz, 1H), 7.29 – 7.25 (m, 1H), 7.25 – 7.20 (m, 1H), 6.86 – 6.73 (m, 3H), 5.79 (d, $J = 76.3$ Hz, 2H), 4.17 (s, 2H), 2.26 (d, $J = 0.7$ Hz, 6H). 13C NMR (101 MHz, Chloroform-d) δ 171.92, 140.58, 138.95, 138.05, 135.38, 131.20, 130.44, 127.88, 127.48, 126.72, 126.29, 38.62, 21.31. [M+H]$^+$ 240.1310, found 240.1410.

2-(4-(tert-butyl)benzyl)benzamide: following **general procedure 2** with 2-(4-(tert-butyl)benzyl)benzonitrile (51 mg, 0.2 mmol) and after purification via column chromatography yielded the desired product in 73% yield (39 mg, 0.146 mmol). 1H NMR (400 MHz, Chloroform-d) δ 7.47 (dd, $J = 7.9$, 1.5 Hz, 1H), 7.36 (td, $J = 7.4$, 1.5 Hz, 1H), 7.32 – 7.28 (m, 2H), 7.24 (dd, $J = 7.9$, 6.3 Hz, 2H), 7.14 – 7.09 (m, 2H), 6.15 (d, $J = 259.5$ Hz, 2H), 4.21 (s, 2H), 1.30 (s, 9H). 13C NMR (101 MHz, Chloroform-d) δ 172.57, 149.10, 139.12, 137.79, 135.68, 131.27, 130.51, 128.68, 127.60, 126.43, 125.59, 38.38, 34.51, 31.53. [M+H]$^+$ 268.1628, found 268.1183.

2-(4-(methoxyl)benzyl)benzamide: following **general procedure 2** with 2-(4-(methoxy)benzylbenzonitrile (103 mg, 0.461 mmol) and after purification via column chromatography yielded the desired product in 50% yield (56 mg, 0.232 mmol). 1H NMR (400 MHz, Chloroform-d) δ 7.46 (d, $J = 7.6$ Hz, 1H), 7.36 (td, $J = 7.5$, 1.2 Hz, 1H), 7.25 (d, $J = 8.6$ Hz, 1H), 7.21 (d, $J = 8.0$ Hz, 1H), 7.10 (d, $J = 8.6$ Hz, 2H), 6.81 (d, $J = 8.6$ Hz, 2H), 5.90 (d, $J = 139.6$ Hz, 2H), 4.17 (s, 2H), 3.76 (s, 3H). 13C NMR (151 MHz, Chloroform-d) δ 172.31, 158.17, 139.59, 135.56, 133.01, 131.19, 130.58, 130.11, 127.57, 126.46, 114.11, 55.41, 38.11. [M+H]$^+$ 242.1103, found 242.1232.
2-(thiophen-2-ylmethyl)benzamide: following **General Procedure 2** with 2-(thiophen-2-ylmethyl)benzonitrile (60 mg, 0.301 mmol) and after purification via column chromatography yielded the desired product in 32% yield (21 mg). 1H NMR (400 MHz, Chloroform-d) δ 7.49 (d, $J = 7.5$ Hz, 1H), 7.44 – 7.36 (m, 1H), 7.35 – 7.28 (m, 2H), 7.17 – 7.12 (m, 1H), 6.90 (dd, $J = 5.0$, 3.4 Hz, 1H), 6.81 – 6.77 (m, 2H), 5.83 (d, $J = 54.1$ Hz, 2H), 4.42 (s, 2H). 13C NMR (126 MHz, Chloroform-d) δ 171.68, 143.78, 138.62, 130.86, 130.75, 127.57, 126.88, 126.84, 125.52, 124.22, 33.29. [M+H] 218.0561, found 218.0654.

2-(napthalen-2-ylmethyl)benzamide: following **general procedure 3** with benzamide (221 mg, 1 mmol) and 2 bromomethylnapthelene (121 mg, 1 mmol) and after purification via column chromatography yielded the desired product in 15 % yield (39 mg). 1H NMR (400 MHz, Chloroform-d) δ 7.77 (dd, $J = 16.5$, 8.8 Hz, 3H), 7.59 (s, 1H), 7.50 – 7.40 (m, 3H), 7.36 (q, $J = 7.9$ Hz, 2H), 7.28 – 7.23 (m, 2H), 5.95 (d, $J = 160.9$ Hz, 2H), 4.40 (s, 2H). 13C NMR (101 MHz, Chloroform-d) δ 172.36, 139.08, 138.50, 135.67, 133.73, 132.24, 131.39, 130.63, 128.30, 127.82, 127.77, 127.58, 127.36, 126.60, 126.19, 125.62, 39.10. [M+H] 262.1154, found 262.1248.

2-(2-bromobenzyl)benzamide: following **general procedure 3** with benzamide (400 mg, 3.3 mmol) and 2 bromobenzylbromide (825 mg, 3.3 mmol) after purification via column chromatography yielded the desired product in 19 % yield (181 mg) 1H NMR (400 MHz, Chloroform-d) δ 7.56 (dd, $J = 8.4$, 1.4 Hz, 1H), 7.50 (dd, $J = 7.5$, 1.6 Hz, 1H), 7.34 (td, $J = 7.5$, 1.6 Hz, 1H), 7.30 – 7.25 (m, 1H), 7.25 – 7.18 (m, 1H), 7.11 – 7.03 (m, 3H), 6.04 (d, $J = 155.1$ Hz, 2H), 4.35 (s, 2H). 13C NMR (101 MHz, Chloroform-d) δ 172.16, 140.20, 137.89, 135.71, 133.04, 131.37, 130.76, 130.68, 128.19, 127.74, 127.44, 126.67, 125.21, 39.15. [M+H] 290.0102, found 290.0186.

2,6-bis(2-bromobenzyl)benzamide: following **general procedure 3** with benzamide (400 mg, 3.3 mmol) and 2 bromobenzylbromide (825 mg, 3.3 mmol) after purification via column chromatography yielded the desired product in 6 % yield (29 mg). See reference 3 for additional detail on product isolation. 1H NMR (400 MHz, Chloroform-d) δ 7.57 (dd, $J = 8.4$, 1.4 Hz, 2H), 7.23 (td, $J = 7.5$, 1.3 Hz, 2H), 7.18 (t, $J = 7.7$ Hz, 1H), 7.13 – 7.06 (m, 4H), 6.87 (d, $J = 7.7$ Hz, 2H), 6.01 (d, $J = 231.7$ Hz, 2H), 4.22 (s, 4H). [M+H] 457.9677, found 457.9707
2-((6-bromobenzo[d][1,3]dioxol-5-yl)methyl)benzamide: following general procedure 3 with benzamide (400 mg, 3.3 mmol) and 5-bromo-6-(bromomethyl)benzo[d][1,3]dioxole (971 mg, 3.3 mmol) after purification by column chromatography yielded the product in 9% yield (101 mg). **1H NMR (400 MHz, Chloroform-d) δ 7.50 (dd, J = 7.6, 1.6 Hz, 1H), 7.38 – 7.33 (m, 1H), 7.28 (dd, J = 7.6, 1.4 Hz, 1H), 7.12 – 7.08 (m, 1H), 7.02 (s, 1H), 5.93 (s, 2H), 4.25 (s, 2H).** **13C NMR (101 MHz, Chloroform-d) δ 171.88, 147.68, 147.12, 138.28, 135.48, 133.29, 130.80, 130.73, 127.42, 126.71, 115.20, 112.92, 111.00, 101.85, 38.84.** Spectra matched previously reported data.

5-methyl-2-(3-trifluoromethyl)benzyl)benzamide: following general procedure 3 with 3-methylbenzamide (400 mg, 2.96 mmol) and 1-(bromomethyl)-3-(trifluoromethyl)benzene (707 mg, 2.96 mmol). After purification the desired product was yielded in 23% yield (204 mg). **1H NMR (400 MHz, Chloroform-d) δ 7.45 – 7.41 (m, 2H), 7.39 – 7.32 (m, 2H), 7.29 (d, J = 1.9 Hz, 1H), 7.19 (dd, J = 8.0, 1.9 Hz, 1H), 7.10 (d, J = 7.8 Hz, 1H), 5.78 (s, 2H), 4.25 (s, 2H), 2.34 (s, 3H).** **13C NMR (101 MHz, Chloroform-d) δ 172.04, 142.25, 136.68, 135.67, 135.15, 132.67, 131.64, 131.32, 129.00, 128.14, 125.79, 125.76, 123.14, 123.10, 38.34, 21.09.** **19F NMR (376 MHz, Chloroform-d) δ -62.49.** Spectra matched previously reported data.

3,4,5-trimethoxy-2(3-trifluoromethyl)benzyl)benzamide: following general procedure 3 with 3,4,5-trimethoxybenzamide (500 mg, 2.36 mmol) and 1-(bromomethyl)-3-(trifluoromethyl)benzene (564 mg, 2.36 mmol) after purification via column chromatography (60 EtOAc : 40 Hex) yielded the product in 12% yield (104 mg). **1H NMR (400 MHz, Chloroform-d) δ 7.47 (d, J = 1.8 Hz, 1H), 7.42 – 7.38 (m, 2H), 7.36 – 7.31 (m, 1H), 6.82 (s, 1H), 5.82 (d, J = 145.6 Hz, 2H), 4.21 (s, 2H), 3.87 (s, 3H), 3.68 (s, 3H).** **13C NMR (151 MHz, Chloroform-d) δ 171.90, 152.94, 152.58, 144.36, 142.80, 132.30, 131.52, 130.61, 128.93, 125.64, 125.62, 125.01, 122.95, 122.93, 106.84, 61.02, 56.40, 32.50.** **19F NMR (376 MHz, Chloroform-d) δ -62.45.** Spectra matched previously reported data.

2-(3-methoxybenzyl)-5-(trifluoromethyl)benzamide: following general procedure 3 with 3-(trifluoromethoxy)benzamide (400 mg, 2.12 mmol) and 1-(bromomethyl)-3-methoxybenzene (425 mg, 2.12 mmol) after purification via column chromatography yielded the desired product in 21% yield (136 mg). **1H NMR (400 MHz, Chloroform-d) δ 7.73 (d, J = 2.0 Hz, 1H), 7.63 – 7.58 (m, 1H), 7.35 (d, J = 8.1 Hz, 1H), 7.20 (t, J = 7.9 Hz, 1H), 6.78 – 6.69 (m, 3H), 6.03 (d, J = 175.1 Hz, 2H), 4.24 (s, 2H), 3.76 (s,
4-chloro-2-(4-fluorobenzyl)benzamide: Following **general procedure 3** with 4-chlorobenzamide (450 mg, 2.892 mmol) and 1-(bromomethyl)-4-fluorobenzene (545 mg, 2.892 mmol). After purification via column chromatography yielded the desired product in 0.5% yield (37 mg). \(^1\)H NMR (400 MHz, Chloroform-\(d\)) \(\delta\) 7.39 (d, \(J = 8.1\) Hz, 1H), 7.22 (dd, \(J = 8.2, 2.1\) Hz, 1H), 7.17 (d, \(J = 2.1\) Hz, 1H), 7.16 – 7.11 (m, 2H), 6.99 – 6.93 (m, 2H), 5.93 (d, \(J = 154.2\) Hz, 3H), 4.16 (s, 2H). \(^{13}\)C NMR (101 MHz, Chloroform-\(d\)) \(\delta\) 171.17, 162.94, 160.51, 141.66, 136.66, 135.70, 135.67, 133.71, 131.17, 130.72, 130.64, 128.87, 126.83, 115.71, 115.50, 37.93. \(^{19}\)F NMR (376 MHz, Chloroform-\(d\)) \(\delta\) -116.57 (ddd, \(J = 14.1, 8.9, 5.4\) Hz). [M+H] 264.0513, found 264.0598.

5-methoxy-2-(2-(trifluoromethyl)benzyl)benzamide: following **general procedure 3** with 3-methoxybenzamide (632 mg, 2.646 mmol) and 1-methyl-2-(trifluoromethyl)benzene (400 mg, 2.646 mmol) and after purification via column chromatography yielded the desired product in 13% yield (107 mg). \(^1\)H NMR (400 MHz, Chloroform-\(d\)) \(\delta\) 7.39 (d, \(J = 27.1\) Hz, 4H), 7.17 – 6.86 (m, 3H), 5.90 (d, \(J = 141.4\) Hz, 2H), 4.21 (s, 2H), 3.80 (s, 3H). \(^{13}\)C NMR (126 MHz, Chloroform-\(d\)) \(\delta\) 171.61, 158.07, 142.24, 136.16, 132.41 (d, \(J = 1.2\) Hz), 132.34, 130.76, 130.51, 130.26, 128.85, 125.53 (d, \(J = 3.9\) Hz), 122.95 (d, \(J = 3.7\) Hz), 116.02, 113.05, 55.48, 37.77. \(^{19}\)F NMR (376 MHz, Chloroform-\(d\)) \(\delta\) -62.48. [M+H] 310.0977, found 210.1079.

4’-(trifluoromethyl)-3-(4-trifluoromethyl)benzyl-[1, 1’-biphenyl]-4-carboxamide: following **general procedure 2** with 4’-(trifluoromethyl)-3-(4-trifluoromethyl)benzyl-[1,1’-biphenyl]-4-carbonitrile (104 mg, 0.260 mmol after purification in DCM:MeOH (97:3)) yielded the desired product in 88% yield (97 mg). \(^1\)H NMR (400 MHz, Chloroform-\(d\)) \(\delta\) 7.70 (d, \(J = 8.3\) Hz, 2H), 7.67 – 7.58 (m, 3H), 7.56 – 7.49 (m, 3H), 7.45 (d, \(J = 1.8\) Hz, 1H), 7.35 (d, \(J = 8.0\) Hz, 2H), 5.72 (s, 2H), 4.39 (s, 2H). \(^{13}\)C NMR (151 MHz, Acetone-\(d_6\)) \(\delta\) 171.68, 146.02, 143.77, 140.82, 139.56, 136.00, 129.73, 129.62, 129.20, 128.99, 128.59, 127.65, 125.78 (q, \(J = 3.8\) Hz), 125.51, 125.39, 125.16, 125.07 (q, \(J = 3.9\) Hz), 38.02. [M+H] 424.1058, found 424.0944.
2-(2-bromobenzyl)-5-methylbenzamide: following general procedure 3 with 3-methylbenzamide (5.00 g, 37 mmol) and 2 bromobenzylbromide (9.25 g, 37 mmol) after purification via column chromatography yielded the desired product in 23.3 % yield (2.62 g). 1H NMR (500 MHz, Chloroform-d) δ 7.57 (dd, $J = 7.9, 1.3$ Hz, 1H), 7.34 (d, $J = 1.9$ Hz, 1H), 7.21 (td, $J = 7.5, 1.3$ Hz, 1H), 7.18 – 7.14 (m, 1H), 7.11 – 7.04 (m, 2H), 6.97 (d, $J = 7.9$ Hz, 1H), 5.66 (d, $J = 44.6$ Hz, 2H), 4.30 (s, 2H), 2.35 (s, 3H). 13C NMR (151 MHz, Chloroform-d) δ 171.88, 140.28, 136.25, 135.36, 134.53, 132.66, 131.27, 131.06, 130.63, 127.97, 127.93, 127.54, 125.01, 38.65, 20.90. Spectra matched those previously reported. 10

2-(4-methylbenzyl)benzamide: following general procedure 2. with 2-(4-methylbenzyl)benzonitrile (201 mg, 0.97 mmol) and after purification via column chromatography yielded the desired product in 96% yield (209 mg, 0.93 mmol). 1H NMR (400 MHz, Chloroform-d) δ 7.47 (dd, $J = 7.5, 1.5$ Hz, 1H), 7.38 - 7.33 (m, 1H), 7.22 (t, $J = 8.0$ Hz, 2H), 7.07 (s, 4H), 5.87 (d, $J = 115.4$ Hz, 2H), 4.19 (s, 2H), 2.30 (s, 3H). 13C NMR (126 MHz, Chloroform-d) δ 172.39, 139.19, 137.72, 135.70, 135.52, 131.10, 130.44, 129.28, 128.87, 127.46, 126.33, 38.39, 21.06. [M+H] 226.1154, found 226.1154.

2-benzyl-N-methoxybenzamide following general procedure 4 B 2-benzylbenzoicacid and methoxyamine hydrochloride. Yielded the desired product was yielded in 56% yield (26 mg). 1H NMR (400 MHz, Chloroform-d) δ 8.62 (s, 1H), 7.38 – 7.30 (m, 2H), 7.27 – 7.17 (m, 5H), 7.17 – 7.10 (m, 3H), 4.16 (s, 2H), 3.65 (s, 3H). 13C NMR (151 MHz, Chloroform-d) δ 167.70, 140.64, 140.03, 132.87, 131.22, 130.86, 129.21, 128.59, 127.83, 126.42, 126.31, 64.42, 38.83. Spectra matched those previously reported. 13

2-benzyl-N-methylbenzamide following general procedure 4 B with 2-benzylbenzoicacid (28 mg, 0.132 mmol) and methyl amine (4.9 mg, 0.158 mmol). Yielded the desired product in 84% yield (25 mg). 1H NMR (400 MHz, Chloroform-d) δ 7.32 (ddt, $J = 7.2, 5.9, 1.4$ Hz, 2H), 7.28 – 7.24 (m, 1H), 7.24 – 7.18 (m, 3H), 7.18 – 7.14 (m, 3H), 5.75 (s, 1H), 4.15 (s, 2H), 2.82 (dd, $J = 4.9, 1.6$ Hz, 3H). 13C NMR (126 MHz, Chloroform-d) δ 170.78, 140.90, 138.87, 136.82, 130.96, 129.98, 128.97, 128.45, 127.12, 126.40, 126.14, 38.98, 26.58. [M+H] 226.1154, found 226.1243.
2-benzyl-N-butylbenzamide: following **general procedure 4 A** with 2-benzylbenzoic acid (250 mg, 1.18 mmol) and n-butylamine (95 mg, 1.3 mmol) after purification (20:80:1 EtOAc:Hex:TEA) yielded the desired product in 96% yield (304 mg). 1H NMR (400 MHz, Chloroform-d) δ 7.37 – 7.29 (m, 2H), 7.26 (dd, $J = 8.2, 6.4$ Hz, 2H), 7.23 – 7.19 (m, 2H), 7.19 – 7.14 (m, 3H), 6.03 (s, 1H), 4.17 (s, 2H), 3.27 (td, $J = 7.1, 5.7$ Hz, 2H), 1.46 – 1.37 (m, 2H), 1.36 – 1.15 (m, 2H), 0.91 (t, $J = 7.3$ Hz, 3H). 13C NMR (151 MHz, Chloroform-d) δ 170.01, 140.94, 138.72, 137.07, 130.90, 129.80, 128.97, 128.42, 127.22, 126.29, 126.07, 39.54, 38.84, 31.47, 20.10, 13.80. [M+H] 268.1058, found 268.1716.

2-benzyl-N-(tert-butyl)benzamide: following **general procedure 4 A** with 2-benzylbenzoic acid (250 mg, 1.18 mmol) and tert-butylamine (95 mg, 1.3 mmol) after purification (20:80:1 EtOAc:Hex:TEA) yielded the desired product in 85% yield (278 mg). 1H NMR (400 MHz, Chloroform-d) δ 7.36 (dd, $J = 7.5, 1.5$ Hz, 1H), 7.31 (dd, $J = 7.5, 1.6$ Hz, 1H), 7.27 – 7.22 (m, 2H), 7.22 – 7.18 (m, 1H), 7.18 – 7.15 (m, 2H), 7.15 – 7.13 (m, 1H), 5.43 (s, 1H), 4.19 (s, 2H), 1.29 (s, 8H). 13C NMR (151 MHz, Chloroform-d) δ 169.48, 141.08, 138.14, 138.00, 131.00, 129.58, 128.90, 128.52, 127.33, 126.37, 126.11, 51.58, 38.79, 28.65. Spectra matched those previously reported. 14

2-benzyl-N-(4-(tert-butyl)phenyl)benzamide: following **general procedure 4 A** with with 2-benzylbenzoic acid (250 mg, 1.18 mmol) and 4-tert-butylaniline (194 mg, 1.3 mmol) after purification (20:80:1 EtOAc:Hex:TEA) yielded the desired product in 68% yield (276 mg). 1H NMR (400 MHz, Chloroform-d) δ 7.49 – 7.44 (m, 1H), 7.38 – 7.31 (m, 2H), 7.29 (s, 4H), 7.25 – 7.19 (m, 4H), 7.18 – 7.11 (m, 3H), 4.18 (s, 2H), 1.28 (s, 9H). 13C NMR (101 MHz, Chloroform-d) δ 167.88, 147.53, 140.66, 138.60, 136.94, 135.14, 131.22, 130.37, 128.92, 128.67, 127.49, 126.62, 126.31, 125.83, 119.78, 38.95, 34.43, 31.40. [M+H] 344.1936, found 344.2034

2-ethylbenzamide: following **general procedure 2** with 2-ethylbenzonitrile (107 mg, 0.82 mmol) yielded the desired product in >99% yield (122 mg) after purification via column chromatography DMC:MeOH (97:3). 1H NMR (500 MHz, Chloroform-d) δ 7.43 (dd, $J = 7.6, 1.4$ Hz, 1H), 7.38 (td, $J = 7.5, 1.4$ Hz, 1H), 7.30 (ddd, $J = 8.9, 1.6, 0.9$ Hz, 1H), 7.23 (td, $J = 7.5, 1.3$ Hz, 1H), 6.08 (d, $J = 198.6$ Hz, 2H), 2.87 (q, $J = 7.5$ Hz, 2H), 1.27 (t, $J = 7.6$ Hz, 3H). 13C NMR (126 MHz, Chloroform-d) δ 172.59, 142.50, 135.11, 130.36, 129.62, 126.92, 26.37, 15.95. [M+H] 150.0841, found 150.0926.
Proton NMR spectrum of the amide with chemical shifts at 0.0 ppm to 8.5 ppm.
2d) Procedures, spectral data and copies of NMR’s for C(sp³)-H amination products

General procedure 5

To a 20 mL scintillation vial equipped with a magnetic stir bar was added 4Å-molecular sieves (3x mass of starting amide), primary amide (1.0 eq) and DMF (concentration from 0.025M). The flask was then purged with O₂ and fitted with a balloon of O₂ for the duration of the reaction. To this mixture was then added t-BuOK (3.0 equivalents) at room temperature and the mixture was allowed to stir vigorously. Upon completion of the reaction (monitored by TLC), the mixture was transferred to a separatory funnel and diluted with EtOAc. The resulting mixture was washed with ammonium chloride (6 x 15 mL) to remove DMF. The solvent was removed under reduced pressure and purified by silica gel chromatography (DCM: MeOH 98:2) to afford the desired product.

General procedure 6

To a 20 mL scintillation vial equipped with a magnetic stir bar was added 4Å-molecular sieves (3x mass of starting amide), primary amide (1.0 eq), Tempo (1.0 eq) and DMF (concentration from 0.025M). The flask was then purged with O₂ and fitted with a balloon of O₂ for the duration of the reaction. To this mixture was then added t-BuOK (3.0 equivalents) at room temperature and the mixture was allowed to stir vigorously. Upon completion of the reaction (monitored by TLC), the mixture was transferred to a separatory funnel and diluted with EtOAc. The resulting mixture was washed with ammonium chloride (6 x 15 mL) to remove DMF. The solvent was removed under reduced pressure and purified by silica gel chromatography (DCM: MeOH 98:2) to afford the desired product.
3-hydroxy-3-phenylisooindolin-1-one: following general procedure 5 with 2-benzylbenzamide (37 mg, 0.175 mmol) yielded the desired product in 87% yield (34 mg). 1H NMR (400 MHz, Chloroform-d) δ 7.60 (dt, $J = 7.5, 1.0$ Hz, 1H), 7.56 – 7.50 (m, 2H), 7.48 (dd, $J = 7.5, 1.2$ Hz, 1H), 7.40 (dt, $J = 7.5, 0.9$ Hz, 1H), 7.37 – 7.30 (m, 4H), 7.26 (s, 1H), 7.01 (s, 1H), 4.44 (s, 1H). 13C NMR (151 MHz, Chloroform-d) δ 169.97, 150.15, 140.00, 133.46, 129.77, 129.62, 128.86, 128.84, 125.72, 123.89, 123.12, 88.39. Matched previously reported spectra.\(^\text{15}\)

3-(3,5-dimethylphenyl)-3-hydroxyisooindolin-1-one: following general procedure 5 with 2-(3,5-dimethylbenzyl)benzamide (35 mg, 0.146 mmol) yielded the desired product in 64% yield (24 mg). 1H NMR (400 MHz, Chloroform-d) δ 7.66 (dd, $J = 7.4, 1.1$ Hz, 1H), 7.51 (td, $J = 7.5, 1.2$ Hz, 1H), 7.42 (td, $J = 7.5, 1.1$ Hz, 1H), 7.37 (dd, $J = 7.5, 1.0$ Hz, 1H), 7.16 (d, $J = 1.6$ Hz, 2H), 6.94 (s, 1H), 6.71 (s, 1H), 3.99 (s, 1H), 2.28 (s, 6H). 13C NMR (151 MHz, Chloroform-d) δ 169.80, 150.22, 139.83, 138.59, 133.44, 130.53, 129.73, 129.63, 123.37, 123.10, 88.32, 21.58. Spectra matched those previously reported.\(^\text{16}\)

3-(4-(tert-butyl)phenyl)-3-hydroxyisooindolin-1-one: following general procedure 5 with 3-(4-(tert-butyl)benzyl)benzamide (35 mg, 0.131 mmol) yielded the desired product in 84% yield (31 mg) 1H NMR (400 MHz, Chloroform-d) δ 7.58 – 7.52 (m, 1H), 7.52 – 7.45 (m, 3H), 7.39 – 7.33 (m, 4H), 7.17 (s, 1H), 4.78 (d, $J = 41.1$ Hz, 1H), 1.30 (s, 9H). 13C NMR (101 MHz, Chloroform-d) δ 170.16, 151.77, 150.26, 137.11, 133.27, 129.63, 129.51, 125.74, 125.43, 123.76, 123.13, 88.43, 34.74, 31.46. Spectra matched those previously reported.\(^\text{16}\)

3-hydroxy-3-(4-methoxyphenyl)isooindolin-1-one: following general procedure 5 with 2-(4-methoxybenzyl)benzamide (30 mg, 0.124 mmol) yielded the desired product in 39% yield (14 mg). 1H NMR (500 MHz, Chloroform-d) δ 7.62 (d, $J = 7.5$ Hz, 1H), 7.50 (td, $J = 7.5, 1.2$ Hz, 1Hz), 7.45 (d, $J = 8.9$ Hz, 2H), 7.39 (td, $J = 7.5, 1.1$ Hz, 1H), 7.33 (d, $J = 7.6$ Hz, 1H), 6.92 (s, 1H), 6.85 (d, $J = 8.8$ Hz, 2H), 4.15 (s, 1H), 3.78 (s, 3H). 13C NMR (126 MHz, Chloroform-d) δ 169.66, 159.77, 150.08, 133.20, 129.44, 129.31, 126.80, 123.61, 122.76, 113.92, 88.06, 55.27. Matched previously reported spectra.\(^\text{17}\)
3-hydroxy-3-(thiophen-2-yl)isoindolin-1-one: following general procedure 5 with 2-(thiophen-2-ylmethyl)benzamide (25 mg, 0.115 mmol) yielded the desired product in 85% yield (23 mg). 1H NMR (500 MHz, Chloroform-d) δ 7.61 – 7.53 (m, 3H), 7.51 (s, 1H), 7.45 – 7.40 (m, 1H), 7.33 – 7.28 (m, 1H), 7.08 (d, $J = 3.5$ Hz, 1H), 6.98 – 6.93 (m, 1H), 5.15 (s, 1H).13C NMR (126 MHz, Chloroform-d) δ 169.60, 149.05, 144.11, 133.20, 129.67, 128.90, 127.05, 126.12, 124.79, 123.66, 122.80, 86.87. Matched previously reported spectra.¹⁵

3-hydroxy-3-(naphthalen-2-yl)isoindolin-1-one: Following general procedure 5 with 2-(napthalen-2-ylmethyl)benzamide (18 mg, 0.069 mmol) yielded the desired product in 70% yield (12.6 mg). 1H NMR (400 MHz, Acetone-d_6) δ 8.29 (s, 1H), 8.27 (d, $J = 1.8$ Hz, 1H), 8.00 – 7.95 (m, 1H), 7.89 (t, $J = 8.6$ Hz, 2H), 7.77 – 7.69 (m, 1H), 7.61 – 7.46 (m, 5H), 7.42 (d, $J = 7.4$ Hz, 1H), 6.03 (s, 1H).13C NMR (151 MHz, Acetone-d_6) δ 168.35, 150.84, 139.40, 133.23, 133.14, 132.46, 130.94, 129.10, 128.26, 128.01, 127.49, 126.23, 124.44, 123.97, 122.97, 122.81, 87.66. Spectra matched those previously reported.¹⁸

3-(2-bromophenyl)-3-hydroxyisoindolin-1-one: Following general procedure 5 with 2-(2-bromobenzyl)benzamide (33 mg, 0.114 mmol) yielded the desired product in 81% yield (27 mg). 1H NMR (400 MHz, Acetonitrile-d_3) δ 8.25 (dd, $J = 8.0, 1.8$ Hz, 1H), 7.73 – 7.62 (m, 1H), 7.57 – 7.51 (m, 3H), 7.50 – 7.45 (m, 1H), 7.28 (s, 1H), 7.25 (td, $J = 7.6, 1.8$ Hz, 1H), 7.18 – 7.13 (m, 1H), 4.84 (s, 1H).13C NMR (151 MHz, Acetonitrile-d_3) δ 169.58, 148.88, 137.95, 134.89, 132.14, 130.4, 129.72, 129.54, 127.58, 122.71, 122.44, 120.58, 86.72. [M+H$^+$] 303.9895, found 303.9968.

3-(6-bromobenzo[1,3]dioxol-5-yl)-3-hydroxyisoindolin-1-one: Following general procedure 5 with 2-((6-bromobenzo[1,3]dioxol-5-yl)methyl)benzamide (32 mg, 0.096 mmol) yielded the desired product in 75% yield (24 mg). 1H NMR (600 MHz, Acetonitrile-d_3) δ 7.96 (s, 1H), 7.86 (s, 1H), 7.70 – 7.65 (m, 1H), 7.54 (dtd, $J = 28.2, 7.4, 1.2$ Hz, 2H), 7.24 (dt, $J = 7.5, 0.9$ Hz, 1H), 7.02 (s, 1H), 6.13 (q, $J = 1.0$ Hz, 2H), 5.97 (s, 1H).13C NMR (151 MHz, Acetonitrile-d_3) δ 169.07, 149.36, 148.39, 147.43, 133.11, 132.71, 132.62, 130.32, 129.72, 129.54, 127.58, 122.71, 122.44, 120.58, 86.72. [M+H$^+$] 347.9793, found 347.9878.
3-hydroxy-6-methyl-3-(3-trifluoromethyl)phenyl)isoindolin-1-one: Following general procedure 5 with 5-methyl-2-(3-(trifluoromethyl)benzyl)benzamide (25 mg, 0.085 mmol) yielded the desired product in 79% yield (21 mg). 1H NMR (400 MHz, Acetonitrile-d_3) δ 7.88 (tt, $J = 1.8, 0.8$ Hz, 1H), 7.73 (dt, $J = 7.8, 1.7$ Hz, 1H), 7.65 (ddt, $J = 7.8, 1.8, 1.0$ Hz, 1H), 7.59 – 7.51 (m, 2H), 7.43 (s, 2H), 7.38 (ddd, $J = 7.8, 1.6, 0.8$ Hz, 2H), 7.20 (d, $J = 7.8$ Hz, 1H), 4.90 (s, 1H), 2.42 (d, $J = 0.9$ Hz, 3H).

13C NMR (151 MHz, Acetonitrile-d_3) δ 168.74, 147.05, 143.01, 140.15, 133.78, 130.42, 130.14, 129.58, 129.44, 125.00, 124.97, 123.41, 123.22, 122.51, 122.22, 122.19, 87.00, 20.33. 19F NMR (376 MHz, Acetonitrile-d_6) δ -63.03. [M+H$^+$] 308.0820, found 308.0916.

3-hydroxy-4,5,6-trimethoxy-3-(3-trifluoromethyl)phenyl)isoindolin-1-one: Following general procedure 5 with 3,4,5-trimethoxy-2-(3-(trifluoromethyl)benzyl)benzamide (31.2 mg, 0.084 mmol) yielded the desired product in 90% yield (28 mg). 1H NMR (400 MHz, Chloroform-d) δ 7.92 (d, $J = 1.9$ Hz, 1H), 7.61 (d, $J = 7.9$ Hz, 1H), 7.53 (dd, $J = 14.5, 3.9$ Hz, 2H), 7.40 (t, $J = 7.8$ Hz, 1H), 6.88 (d, $J = 2.7$ Hz, 1H), 5.13 (s, 1H), 3.83 – 3.81 (m, 3H), 3.81 (d, $J = 0.9$ Hz, 3H), 3.44 (d, $J = 0.8$ Hz, 3H). 13C NMR (151 MHz, Acetonitrile-d_3) δ 173.57, 161.60, 153.92, 151.65, 147.95, 139.47, 135.16, 134.88, 134.31, 131.39, 130.65, 130.02, 128.85, 128.25, 107.03, 91.65, 65.66, 65.51, 61.41. 19F NMR (376 MHz, Chloroform-d) δ -57.69. [M+H$^+$] 384.0981, found 384.1048.

3-hydroxy-3-(3-methoxyphenyl)-6-(trifluoromethyl)isoindolin-1-one: Following general procedure 5 with 2-(3-methoxbenzyl)-5-trifluoromethyl)benzamide (50 mg, 0.162 mmol) yielded the desired product in 90% yield (47 mg). 1H NMR (400 MHz, Chloroform-d) δ 7.79 (s, 1H), 7.71 (d, $J = 8.0$ Hz, 2H), 7.45 (d, $J = 7.9$ Hz, 1H), 7.23 (t, $J = 8.0$ Hz, 1H), 7.12 (t, $J = 2.1$ Hz, 1H), 7.03 (d, $J = 7.7$ Hz, 1H), 6.83 (dd, $J = 8.3, 2.5$ Hz, 1H), 5.09 (s, 1H), 3.76 (s, 3H). 13C NMR (101 MHz, Acetone-d_6) δ 167.74, 160.87, 155.13, 143.36, 132.54, 132.04, 131.72, 130.46, 126.29, 124.93, 123.59, 120.74, 118.67, 114.41, 112.48, 88.42, 55.56. 19F NMR (376 MHz, Chloroform-d) δ -62.54. [M+H$^+$] 324.0769, found 324.0548.
3-hydroxy-3,5-bis(4-(trifluoromethyl)phenyl)isoindolin-1-one: Following general procedure 5 with 4’-(trifluoromethyl)-3-(4-(trifluoromethyl)benzyl)-[1,1’-biphenyl]-4-carboxamide (50 mg, 0.118 mmol) yielded the desired product in 60% yield (31 mg).1H NMR (400 MHz, Acetone-d_6) δ 8.53 (s, 1H), 7.90 (d, $J = 1.6$ Hz, 1H), 7.88 (d, $J = 1.4$ Hz, 2H), 7.85 (d, $J = 5.1$ Hz, 2H), 7.81 (d, $J = 8.8$ Hz, 2H), 7.78 (s, 1H), 7.75 – 7.72 (m, 3H), 6.37 (s, 1H).13C NMR (101 MHz, Acetone-d_6) δ 169.28, 152.55, 147.74, 145.34, 145.09, 132.01, 130.11, 129.39, 128.07, 127.19, 126.71, 125.15, 123.04, 88.67. 19F NMR (376 MHz, Chloroform-d) δ -62.63, -62.72. [M+H] 438.0850, found 438.0895.

5-chloro-3-(4-fluorophenyl)-3-hydroxyisoindolin-1-one: Following general procedure 5 with 4-chloro-2-(fluorobenzyl)benzamide (25 mg, 0.095 mmol) yielded the desired product in 68% yield (18 mg)1H NMR (400 MHz, Acetone-d_6) δ 8.40 (s, 1H), 7.70 (d, $J = 8.1$ Hz, 1H), 7.68 – 7.63 (m, 2H), 7.55 (dd, $J = 8.0$, 1.8 Hz, 1H), 7.39 (d, $J = 1.8$ Hz, 1H), 7.19 – 7.11 (m, 2H), 6.14 (s, 1H).13C NMR (101 MHz, Acetone-d_6) δ 167.15, 163.86, 161.43, 152.54, 138.02, 129.58, 129.37, 127.94, 127.85, 124.63, 123.06, 115.14, 114.93, 86.89. 19F NMR (376 MHz, Chloroform-d) δ -112.69 (tt, $J = 8.7$, 5.2 Hz). [M+H] 278.0306, found 278.0814.

7-(2-bromobenzyl)-3-(2-bromophenyl)-3-hydroxyisoindolin-1-one: Following general procedure 5 with 2,6-bis (2-bromobenzyl)benzamide (20 mg, 0.0436 mmol) yielded the desired product in 78% yield (16.3 mg) 1H NMR (500 MHz, Chloroform-d) δ 8.00 (dd, $J = 8.0, 1.7$ Hz, 1H), 7.56 (ddd, $J = 7.8$, 6.2, 1.3 Hz, 2H), 7.43 (t, $J = 7.6$ Hz, 1H), 7.36 (td, $J = 7.6$, 1.3 Hz, 1H), 7.23 – 7.19 (m, 2H), 7.19 – 7.14 (m, 2H), 7.12 – 7.10 (m, 1H), 7.08 (ddd, $J = 8.0$, 6.9, 2.1 Hz, 1H), 6.75 (s, 1H), 4.57 (dd, $J = 133.0$, 16.1 Hz, 2H), 3.99 (s, 1H).13C NMR (126 MHz, Chloroform-d) δ 170.54, 148.85, 139.71, 139.69, 137.32, 135.15, 133.07, 132.93, 131.51, 130.85, 130.38, 129.40, 128.16, 128.06, 127.55, 127.51, 125.04, 121.38, 121.01, 86.67, 35.83. [M+H] 471.9470, found 471.9265.
3-hydroxy-6-methoxy-3-2-(trilfluoromethyl)phenylisoindolin-1-one: Following general procedure 5 with 5-methoxy-2-(2-trifluoromethyl)benzyl)benzamide (25 mg, 0.081 mmol) yielded the 1H NMR (400 MHz, Chloroform-d) δ 7.89 (s, 1H), 7.63 (dd, $J = 25.8, 7.8$ Hz, 2H), 7.47 (t, $J = 7.8$ Hz, 1H), 7.25 – 7.20 (m, 2H), 7.08 (dd, $J = 8.4, 2.5$ Hz, 1H), 6.59 (s, 1H), 3.86 (s, 3H), 3.30 (s, 1H). 13C NMR (151 MHz, Acetone-d$_6$) δ 168.08, 161.14, 143.95, 142.29, 132.46, 130.09, 129.88, 129.74, 129.33, 125.32, 124.84 – 124.49 (m), 123.88, 123.52, 122.26 (q, $J = 3.9$ Hz), 119.64, 106.48, 86.91, 55.23. 19F NMR (376 MHz, Chloroform-d) δ -62.57. $[^{M+H}]$ 324.0769, found 324.0545.

3-(2-bromophenyl)-3-hydroxy-6-methylisoindolin-1-one: Following general procedure 5 with 2-(2-bromobenzyl)-5-methylbenzamide (20 mg, 0.066 mmol) yielded the desired product in 86% yield (18 mg). 1H NMR (400 MHz, Chloroform-d) δ 8.01 (dd, $J = 8.0, 1.7$ Hz, 1H), 7.57 (dd, $J = 7.9, 1.4$ Hz, 1H), 7.48 (dd, $J = 1.8, 0.9$ Hz, 1H), 7.37 (ddd, $J = 9.4, 7.1, 1.3$ Hz, 2H), 7.26 – 7.18 (m, 2H), 6.88 (s, 1H), 4.35 (s, 1H), 2.42 (s, 3H). 13C NMR (151 MHz, Chloroform-d) δ 170.17, 145.50, 140.10, 137.35, 135.10, 133.86, 131.61, 130.26, 129.31, 127.41, 123.99, 122.88, 121.01, 87.57, 21.43. $[^{M+H}]$ 318.0051, found 318.0143.

3-hydroxy-2-methoxy-3-phenylisoindolin-1-one: Following general procedure 6 with 2-benzyl-N-methoxybenzamide (22.8 mg, 0.0945 mmol) yielded the desired product in 31% yield (7.48 mg) 1H NMR (500 MHz, Chloroform-d) δ 7.83 – 7.77 (m, 1H), 7.54 (td, $J = 7.5$, 1.2 Hz, 1H), 7.51 – 7.46 (m, 3H), 7.39 – 7.34 (m, 3H), 7.29 (d, $J = 7.5$ Hz, 1H), 3.62 (s, 1H), 2.62 (s, 3H). 13C NMR (101 MHz, Chloroform-d) δ 168.12, 149.17, 138.20, 132.72, 130.24, 129.48, 128.80, 128.59, 126.13, 123.27, 122.94, 91.23, 24.08. Spectra Matched those previously published.

3-hydroxy-2-methyl-3-phenylisoindolin-1-one: Following general procedure 6 with 2-benzyl-N-methylbenzamide (30 mg, 0.013 mmol) yielded the desired product in (74% 22 mg) 1H NMR (400 MHz, Chloroform-d) δ 7.54 (d, $J = 7.4$ Hz, 1H), 7.46 (t, $J = 7.4$ Hz, 1H), 7.34 (ddd, $J = 11.4, 5.3, 2.8$ Hz, 7H), 3.62 (s, 1H), 2.62 (s, 3H). 13C NMR (101 MHz, Chloroform-d) δ 168.12, 149.17, 138.20, 132.72, 130.24, 129.48, 128.80, 128.59, 126.13, 123.27, 122.94, 91.23, 24.08. Spectra Matched those previously published.
2-butyl-3-hydroxy-3-phenylisoindolin-1-one: Following **general procedure 6** with 2-benzyl-N-butylbenzamide (50 mg, 0.187 mmol) yielded the desired product in 87% yield (46 mg). 1H NMR (500 MHz, Chloroform-d) δ 7.56 (d, $J = 7.5$ Hz, 1H), 7.43 (td, $J = 7.5$, 1.2 Hz, 1H), 7.39 – 7.34 (m, 3H), 7.33 – 7.28 (m, 3H), 7.27 – 7.22 (m, 1H), 4.53 (s, 1H), 3.35 – 3.23 (m, 1H), 2.87 (ddd, $J = 14.0$, 9.7, 5.9 Hz, 1H), 1.45 – 1.30 (m, 1H), 1.22 – 1.07 (m, 3H), 0.75 (t, $J = 7.1$ Hz, 3H). 13C NMR (126 MHz, Chloroform-d) δ 168.00, 149.20, 138.89, 132.48, 130.56, 129.29, 128.41, 126.26, 123.12, 122.73, 91.37, 39.35, 30.64, 20.44, 13.65. Spectra Matched those previously reported.

2-(tert-butyl)-3-hydroxy-3-phenylisoindolin-1-one: Following **general procedure 6** with 2-benzyl-N-(tert-butyl)benzamide (50 mg, 0.187 mmol) yielded the desired product in 54% yield (28.4 mg) 1H NMR (500 MHz, Chloroform-d) δ 7.78 (d, $J = 7.5$ Hz, 2H), 7.67 – 7.61 (m, 1H), 7.58 – 7.49 (m, 3H), 7.45 – 7.40 (m, 3H), 5.73 (s, 1H), 1.16 (s, 9H). 13C NMR (126 MHz, Chloroform-d) δ 197.92, 167.06, 138.79, 137.15 (d, $J = 14.0$ Hz), 133.39, 130.24, 130.21, 129.89, 128.55, 128.46, 127.48, 51.91, 28.23. [M+H] 282.1416, found 282.1371.

2-(4-(tert-butyl)phenyl)-3-hydroxy-3-phenylisoindolin-1-one: Following **general procedure 6** 2-benzyl-N-(4-(tert-butyl)phenyl)benzamide (50 mg, 0.146 mmol) yielded the desired product in 55% yield (29 mg). 1H NMR (400 MHz, Chloroform-d) δ 7.63 (d, $J = 7.7$ Hz, 1H), 7.50 – 7.41 (m, 3H), 7.36 (d, $J = 8.7$ Hz, 2H), 7.32 – 7.26 (m, 5H), 7.22 (d, $J = 8.8$ Hz, 2H), 4.61 (s, 1H), 1.30 (s, 9H). 13C NMR (101 MHz, Chloroform-d) δ 167.63, 148.70 (d, $J = 6.5$ Hz), 139.08, 133.08, 133.00, 129.70, 129.46, 128.44, 128.19, 126.12, 125.41, 124.69, 123.78, 122.59, 93.05, 34.39, 31.31. [M+H] 358.1279, found 358.1560.

3-(2-bromophenyl)-3-hydroperoxy-6-methylisoindolin-1-one: Following an adapted procedure 20 in which a round bottom flask charged with a stir bar was added 3-(2-bromophenyl)-3-hydroxy-6-methylisoindolin-1-one (106 mg, 0.3 mmol) and 2 mL of diethyl ether. Then in succession 10M H$_2$SO$_4$ (0.123 mL) and 30% H$_2$O$_2$ (0.093 mL, 3 mmol) was added and the reaction was allowed to mix for 4 hours at room temperature. The reaction was then diluted with ethyl acetate, washed with saturated K$_2$CO$_3$, and concentrated down. The crude mixture was purified by silica gel chromatography (DCM:MeOH, 97:3). Desired product obtained in 68% (68.5 mg) yield. 1H NMR (400 MHz, Chloroform-d) δ 9.82 (s, 1H), 7.89 (dd, $J = 7.9$, 1.7 Hz, 1H), 7.63 – 7.58 (m, 2H), 7.42 – 7.29 (m, 4H), 7.24 (td, $J = 7.6$, 1.7 Hz, 1H), 2.46 (s, 3H). 13C NMR (151 MHz, Chloroform-d) δ
171.73, 140.95, 140.71, 135.35, 134.63, 133.74, 132.32, 130.54, 130.03, 127.48, 124.27, 123.35, 121.29, 96.53, 21.46. [M+H] 334.0001, found 334.0075.

4-phenyl-1,4-dihydro-2H-benzo[d][1,3]oxazin-2-one: Following general procedure 5 with 2-benzylbenzonitrile (20mg, 0.103 mmol) yielded the desired product in 12% yield (2.5 mg). ¹H NMR (400 MHz, Chloroform-d) δ 7.98 (s, 1H), 7.43 – 7.38 (m, 3H), 7.38 – 7.33 (m, 2H), 7.32 – 7.27 (m, 1H), 7.03 (td, J = 7.6, 1.1 Hz, 1H), 6.87 (dd, J = 7.9, 1.1 Hz, 2H), 6.38 (s, 1H). ¹³C NMR (151 MHz, Chloroform-d) δ 137.56, 135.46, 129.68, 129.42, 129.02, 127.95, 126.22, 123.64, 121.35, 114.33, 81.44. Spectra Matched those previously reported.²¹

1-phenyl-1H-benzo[d][1,2]oxazin-4(3H)-one: Following general procedure 5 with 2-benzylbenzonitrile (20mg, 0.103 mmol) yielded the desired product in 11% yield (2.4 mg). ¹H NMR (400 MHz, Chloroform-d) δ 8.68 (s, 1H), 8.22 – 8.13 (m, 1H), 7.58 – 7.48 (m, 2H), 7.43 (dd, J = 5.0, 1.8 Hz, 3H), 7.39 – 7.33 (m, 2H), 6.93 – 6.85 (m, 1H), 6.16 (d, J = 0.0 Hz, 1H). ¹³C NMR (151 MHz, Chloroform-d) δ 166.62, 140.20, 136.48, 133.35, 129.63, 129.18, 128.94, 128.66, 127.66, 126.30, 125.52, 83.15. [M+H] = 226.0863, found 226.0864.
qde_2018_13C.4.fid
carbon

![Chemical Structure Image]
Scheme S7: Crystal Structure of 1-phenyl-1H-benzo[d][1,2]oxazin-4(3H)-one (6a). Carbon = grey, Oxygen = red, Nitrogen = Blue.
4) Computational Details

DFT calculations were carried with the Gaussian 09 software package,22 using the (U)M06-2X DFT functional23 (with an ultrafine integration grid of 99,590 points) with the 6-311++G(d,p) basis set for all atoms. A broken-spin approach was used when necessary. Grimme’s D3 version (zero damping) for empirical dispersion24 was also included. Frequency calculations were conducted for all structures, confirming if a structure is either a minimum or a TS. The self-consistent reaction field (SCRF) correction was applied through the SMD25 solvent model for N,N-dimethyl-formamide (DMF) to evaluate solvent effects. Natural Bond Orbital26 (NBO) analysis was performed on key structures. Unless otherwise noted, all results presented are at the (SMD=DMF)/UM06-2X/6-31+G(d,p)/int=ultrafine level of theory. The Gibbs Free energy values are reported at 298 K, unless noted otherwise. Three-dimensional structures and orbital plots were produced with CYLView 1.0.1,27 and Chemcraft 1.728. Geometries, energies and frequencies presented in this SI were organized with ESIgen.29

4a) Structures and energies for all species calculated at the (SMD=DMF)/UM06-2X(D3)/6-31+G(d,p) level of theory

Calculated geometries (in cartesian coordinates) with their respective energies (in hartree), charge, multiplicity and stoichiometry.

\begin{verbatim}
of imaginary frequencies: 0
E = -788.756905881
symmetry c1
C -0.648983000 3.231020000 -0.119462000
C -1.103236000 1.911436000 -0.068278000
C -0.210716000 0.841015000 0.039596000
C 1.172257000 1.117471000 0.092190000
C 1.617612000 2.442209000 0.046804000
\end{verbatim}
C 0.714894000 3.501245000 -0.057477000
H -1.365540000 4.042964000 -0.203341000
H -2.171425000 1.718272000 -0.107086000
H 2.685873000 2.639941000 0.089983000
H 1.077243000 4.524278000 -0.092119000
C 2.171495000 0.012667000 0.201216000
C 2.817957000 0.236473000 1.415373000
C 2.491420000 -0.776971000 -0.924304000
C 3.756231000 -1.259624000 1.546434000
H 2.568561000 0.385280000 2.272171000
C 3.434155000 -1.808622000 -0.787207000
C 4.056647000 -2.047321000 0.433668000
H 4.243180000 -1.438182000 2.499756000
H 3.675864000 -2.416117000 -1.656005000
H 4.784626000 -2.849865000 0.512344000
C -0.680555000 -0.604553000 0.124003000
H -0.247647000 -1.158767000 -0.717620000
H -0.261302000 -1.047748000 1.035406000
C -2.177849000 -0.783024000 0.124112000
C -2.874400000 -0.963379000 -1.075426000
C -2.901448000 -0.737796000 1.320838000
C -4.263823000 -1.092005000 -1.081717000
H -2.321044000 -1.007500000 -2.011425000
C -4.290474000 -0.866269000 1.320207000
H -2.369533000 -0.598030000 2.259622000
C -4.976178000 -1.042770000 0.117239000
H -4.789271000 -1.232688000 -2.022020000
H -4.836907000 -0.830480000 2.258356000
H -6.057411000 -1.144686000 0.114787000
N 1.844450000 -0.577532000 -2.141322000
H 1.504417000 0.363851000 -2.303496000
H 2.339133000 -0.944095000 2.946144000
t-BuO anion

of imaginary frequencies: 0

E = -233.055756257

Symmetry c1

Atom	X	Y	Z
C	0.000140000	0.000017000	0.136547000
C	-0.784690000	1.210640000	-0.432298000
H	-0.333223000	2.142407000	-0.068447000
H	-0.806349000	1.245168000	-1.531063000
H	-1.819874000	1.178271000	-0.069358000
C	1.441056000	0.074027000	-0.432482000
H	1.931495000	0.986202000	-0.069456000
H	2.021922000	-0.783259000	-0.068996000
H	1.481832000	0.075688000	-1.531242000
C	-0.656497000	-1.284498000	-0.432500000
H	-0.112220000	-2.165546000	-0.069212000
H	-1.689457000	-1.358293000	-0.069200000
H	-0.674979000	-1.320526000	-1.531253000
O	0.000100000	-0.000153000	1.496578000

O₂ triplet

of imaginary frequencies: 0

E = -150.274457668

Symmetry c1

Atom	X	Y	Z
O	0.000000000	0.000000000	0.598885000
O	0.000000000	0.000000000	-0.598885000

O₂ radical-anion

of imaginary frequencies: 0

E = -150.386381107
symmetry c1
O 0.000000000 0.000000000 0.661784000
O 0.000000000 0.000000000 -0.661784000

of imaginary frequencies: 0
E = -0.495993926274

symmetry oh
H 0.000000000 0.000000000 0.000000000

DMF-radical
of imaginary frequencies: 0
E = -247.761752075

symmetry c1
C -0.868488000 -0.646799000 0.000011000
O -1.990011000 -0.196560000 -0.000015000
N 0.311877000 -0.049109000 0.000048000
C 0.443469000 1.408266000 -0.000007000
H 0.991623000 1.726723000 -0.891448000
H 0.992133000 1.726561000 -0.891448000
H -0.548089000 1.860223000 -0.890733000
C 1.546174000 -0.820305000 -0.000013000
H 1.304749000 -1.883716000 -0.000039000
H 2.134768000 -0.580231000 -0.890787000
H 2.134835000 -0.580288000 0.890733000
DMF

of imaginary frequencies: 0
E = -248.421191015
symmetry c1
C -0.859139000 -0.642000000 0.000046000
H -0.768332000 -1.740442000 0.000047000
O -1.955090000 -0.083857000 -0.000082000
N 0.335459000 -0.022644000 0.000253000
C 0.439027000 1.424287000 -0.000012000
H 0.982410000 1.761194000 0.889230000
H 0.980740000 1.761053000 -0.890343000
H -0.562184000 1.854030000 0.000792000
C 1.579335000 -0.768929000 -0.000087000
H 1.367223000 -1.839913000 -0.889973000
H 2.168460000 -0.523299000 0.889564000
H 2.168848000 -0.523412000 0.889564000

of imaginary frequencies: 0
E = -787.600489204
symmetry c1
C 0.041646000 3.574976000 -0.083229000
C 0.738189000 2.386542000 -0.269356000
C 0.082429000 1.134655000 -0.254557000
C -1.329691000 1.108431000 -0.049379000
C -2.005973000 2.318993000 0.131350000
C -1.339118000 3.545992000 0.118738000
H 0.573135000 4.521775000 -0.112400000
H 1.801732000 2.426889000 -0.482589000
H -3.080223000 2.294589000 0.297951000
H -1.893932000 4.468274000 0.264330000
C -2.101115000 -0.163861000 -0.043576000
C -3.107242000 -0.335690000 -0.995975000
C -1.861896000 -1.170472000 0.970031000
C -3.905898000 -1.482350000 -1.057811000
H -3.258011000 0.458396000 -1.726737000
C -2.694487000 -2.339574000 0.863855000
C -3.672839000 -2.486088000 -0.106624000
H -4.670301000 -1.590590000 -1.820355000
H -2.542897000 -3.130692000 1.597394000
H -4.267971000 -3.397476000 -0.123075000
C 0.777477000 -0.095170000 -0.536817000
C 0.173739000 -0.904372000 -0.940005000
C 2.166726000 -0.394426000 -0.331886000
C 3.012985000 0.336840000 0.537962000
C 2.719535000 -1.528541000 -0.978413000
C 4.341597000 -0.030718000 0.716875000
H 2.612483000 1.171032000 1.104605000
C 4.049015000 -1.885344000 -0.800191000
H 2.081211000 -2.119840000 -1.630462000
C 4.874116000 -1.134188000 0.043940000
C 4.965728000 -0.541457000 1.397506000
H 4.446640000 -2.754570000 -1.316322000
H 5.913310000 -1.414188000 0.186729000
N -0.944115000 -0.988874000 1.930560000
H -0.958573000 -1.808598000 2.539900000
of imaginary frequencies: 0
E = -787.619560133
symmetry c1
C -0.35088800 3.42108800 -0.07041400
C -0.86759500 2.11559100 0.10182300
C -0.03935200 1.00930000 0.14688200
C 1.38739900 1.14398200 0.00654300
C 1.89406100 2.48079100 -0.13674100
C 1.04234200 3.57361600 -0.17592200
H -1.01452000 4.27890500 -0.10482800
H -1.94080400 1.97921000 0.22074300
H 2.96329300 2.64348900 -0.23959100
H 1.46683400 4.56846300 -0.29772200
C 2.22085800 -0.01789900 0.03631400
C 3.65015000 0.00771100 0.12668900
C 1.61687100 -1.31620900 -0.10062700
C 4.40551600 -1.16157100 0.09802700
H 4.16085600 0.96058300 0.23370700
C 2.38078400 -2.47102300 -0.11487000
C 3.79289100 -2.41444700 -0.02194100
H 5.48874900 -1.09426400 0.17462600
H 1.87516100 3.42983100 -0.21986500
H 4.37995400 -3.32724900 -0.04191400
C 0.54899800 0.32641100 0.47928400
H -0.37366300 0.55181400 1.55853000
C -2.02591200 0.57673100 0.22041300
C -2.51248100 0.67314600 -1.08884800
Charge 0
Multiplicity 1
Stoichiometry C14H13NO
Electronic Energy (Eh) -671.095843776
Number of Imaginary Frequencies 0

Molecular Geometry in Cartesian Coordinates

C -2.927953000 -0.636578000 1.284364000
C -3.877589000 -0.825115000 -1.326368000
H -1.814377000 -0.626867000 -1.920629000
C -4.297475000 -0.782565000 1.049966000
H -2.555551000 -0.564804000 2.303805000
C -4.774815000 -0.877752000 -0.256553000
H -4.243339000 -0.899282000 -2.346549000
H -4.987750000 -0.824799000 1.887560000
H -5.838585000 -0.994043000 -0.442359000
N 0.224202000 -1.359539000 -0.304460000
H -0.142551000 -2.300041000 -0.182415000

C 2.892342 -1.210623 -1.171683
C 1.689006 -1.118378 -0.468020
C 1.552618 -0.222783 0.597718
C 2.645697 0.585210 0.936816
C 3.847482 0.494721 0.237043
C 3.975544 -0.406349 -0.822064
H 2.978305 -1.912206 -1.996470
H 0.852781 -1.748910 -0.758214
H 4.682135 1.132155 0.514470
Charge 0
Multiplicity 1
Stoichiometry C14H11NO
Electronic Energy (Eh) -669.897532149
Number of Imaginary Frequencies 0
Molecular Geometry in Cartesian Coordinates

Atom	X	Y	Z
C	3.719273	-0.742142	-0.500963
C	2.486278	-0.477352	-1.100892
C	1.492854	0.205254	-0.397389
C	1.741905	0.625915	0.912856
C	2.973160	0.366100	1.510297
C	4.487377	-1.271504	-1.057057
H	2.295623	-0.799554	-2.121814
H	3.160323	0.698106	2.527262
H	4.924661	-0.520468	1.271385
C	0.138058	0.439576	-1.041202
H	0.233187	0.300501	-2.125075
C	-0.940322	-0.476214	-0.491638
C	-0.987094	-1.864837	-0.453419
C	-1.976960	0.284885	0.039062
C	-2.108606	-2.464209	0.124531
H	-0.178250	-2.467957	-0.857239
C	-3.097511	-0.301219	0.618222
C	-3.153192	-1.694126	0.654483
H	-2.172465	-3.547495	0.166261
H	-3.897735	0.308893	1.027170
H	-4.010809	-2.189974	1.098457
H	0.970037	1.160227	1.462190
C	-1.644216	1.728416	-0.134451
N	-0.427407	1.749777	-0.745475
O	-2.313375	2.700949	0.194992
H	0.036060	2.613782	-0.998031

S165
Charge 0
Multiplicity 2
Stoichiometry C14H12NO
Electronic Energy (Eh) -670.452844506
Number of Imaginary Frequencies 0

Molecular Geometry in Cartesian Coordinates

	X	Y	Z
C	3.574266	-0.988448	-0.827554
C	2.211543	-0.804779	-0.627574
C	1.734987	0.240465	0.201765
C	2.695288	1.104593	0.785392
C	4.054736	0.910631	0.585402
C	4.505231	-0.142407	-0.217651
H	3.914812	-1.791958	-1.474187
H	1.508708	-1.450396	-1.143844
H	4.768741	1.582451	1.052809
H	5.568360	-0.293549	-0.377407
C	0.344899	0.513045	0.433123
H	0.122066	1.496983	0.836251
C	-0.776305	-0.374630	0.223520
C	-0.635183	-1.777664	0.342732
C	-2.087951	0.130675	0.008650
C	-1.725760	-2.630171	0.240149
H	0.340054	-2.193066	0.573341
C	-3.178062	-0.736052	-0.068528
C	-3.007277	-2.114777	0.031404
H	-1.578729	-3.700925	0.345724
H	-4.167536	-0.315788	-0.222060
Charge: 0
Multiplicity: 1
Stoichiometry: C9H11NO
Electronic Energy (Eh): -479.417331875
Number of Imaginary Frequencies: 0

Molecular Geometry in Cartesian Coordinates

Atom	x	y	z
C	-0.540262	1.798947	0.688423
H	-0.121025	2.296858	1.569977
H	-1.520598	1.412825	0.979121
C	0.387680	0.665005	0.306304
C	1.766463	0.921036	0.259985
C	-0.045727	-0.640948	0.023599
C	2.684663	-0.072531	-0.063779
H	2.118732	1.922890	0.496124
C	0.880656	-1.649091	-0.274564
C	2.240964	-1.369179	-0.332461
H	3.745221	0.159722	-0.093943
H	0.519452	-2.655419	-0.467440
Charge: 0
Multiplicity: 2
Stoichiometry: C9H10NO
Electronic Energy (Eh): -478.768607869
Number of Imaginary Frequencies: 0

Molecular Geometry in Cartesian Coordinates

C	0.717967	1.752113	-0.189065
H	0.213732	2.279795	-0.356549
C	-0.685546	0.339205	-0.033761
C	-1.899068	-0.399129	0.054818
C	0.530153	-0.414355	-0.021699
C	-1.907628	-1.782786	0.128036
H	-2.842592	0.137283	0.048210
C	0.500254	-1.805447	0.022140
C	-0.706828	-2.500904	0.104225
Charge: 0
Multiplicity: 1
Stoichiometry: C9H11NO
Electronic Energy (Eh): -479.421009786
Number of Imaginary Frequencies: 0

Molecular Geometry in Cartesian Coordinates

C 0.146308 -2.068247 -0.285881
H 0.865774 -2.505852 -0.983000
H -0.854324 -2.245616 -0.682218
C 0.428593 -0.597383 -0.092085
C 1.768696 -0.161201 -0.007939
C -0.594842 0.362748 -0.022308
Molecular Geometry in Cartesian Coordinates

Element	X	Y	Z
C	0.170128	-2.021323	-0.319393
H	-0.836259	-2.387538	-0.475163
C	0.435728	-0.653270	-0.100332
Charge: 0
Multiplicity: 1
Stoichiometry: C15H13NO3
Electronic Energy (Eh): -859.509647817
Number of Imaginary Frequencies: 0

Molecular Geometry in Cartesian Coordinates

C 3.552357 0.141129 -1.527621
Element	X	Y	Z
C	2.294079	-0.149110	-1.002349
C	1.996860	0.185920	0.324254
C	2.966428	0.809227	1.120315
C	4.226774	1.080545	0.598716
C	4.519370	0.748410	-0.726886
H	3.776744	-0.108332	-2.559967
H	1.542296	-0.618810	-1.630080
H	4.981384	1.551442	1.221133
H	5.502256	0.964927	-1.134890
C	-0.225148	-1.134628	0.325035
C	0.313043	-2.406525	0.102425
C	-1.600005	-0.923463	0.133241
C	-0.508379	-3.460332	-0.291689
H	1.373420	-2.577048	0.266167
C	-2.416637	-1.981690	-0.266097
C	-1.873777	-3.247650	-0.477684
H	-0.082451	-4.446246	-0.448874
H	-3.477649	-1.806116	-0.417998
H	-2.516094	-4.065200	-0.789716
H	2.722411	1.069011	2.145968
C	-2.253127	0.420511	0.324581
O	-3.212314	0.589662	1.063865
N	-1.746049	1.389991	-0.478544
H	-0.896836	1.275286	-1.022845
C	-3.214507	3.042390	-1.117834
H	-2.927312	2.947813	-2.169834
H	-4.079205	2.409431	-0.900403
H	-3.444993	4.083512	-0.885948
O	-2.116300	2.695992	-0.267410
C	0.641564	-0.051591	0.904169
O	0.232988	0.608288	1.846250
Charge 0
Multiplicity 1
Stoichiometry C15H13NO3
Electronic Energy (Eh) -859.520983928
Number of Imaginary Frequencies 0

Molecular Geometry in Cartesian Coordinates

Atom	X	Y	Z
C	2.933080	-0.646089	-1.691072
C	1.717727	-0.190662	-1.188211
C	1.429436	-0.312319	0.175697
C	2.361803	-0.906175	1.026738
C	3.582617	-1.359957	0.520924
C	3.870838	-1.230366	-0.835615
H	3.150595	-0.543192	-2.749952
H	0.989931	0.268919	-1.852461
H	4.304878	-1.815692	1.191587
H	4.820142	-1.582797	-1.227739
C	-1.073028	-0.771044	0.301866
C	-1.178236	-2.147414	0.429569
C	-2.110083	-0.015830	-0.237408
C	-2.369987	-2.746744	0.010733
H	-0.366697	-2.740512	0.842198
C	-3.296007	-0.601974	-0.662152
C	-3.414918	-1.986162	-0.528267
H	-2.487882	-3.822110	0.103212
H	-4.098193	-0.003073	-1.082701
H	-4.326132	-2.482104	-0.847629
H 2.136941 -1.017855 2.082592
C -1.706477 1.416672 -0.240303
O -2.365517 2.406882 -0.488195
N -0.357964 1.398359 0.082837
C 0.998082 3.218623 -0.368640
H 1.850141 2.604850 -0.672793
H 0.383602 3.476879 -1.234831
H 1.347634 4.126253 0.125789
O 0.206404 2.536481 0.614291
C 0.074708 0.138440 0.708182
O 0.060625 0.258346 2.106697
H 0.671365 0.974249 2.348289

of imaginary frequencies: 0
E = -233.583655796
symmetry c1
C 0.007620000 0.000000000 0.015772000
C -0.665552000 1.256740000 -0.532878000
H -0.189344000 2.153030000 -0.122641000
H -0.594001000 1.292787000 -1.624735000
H -1.728143000 1.273724000 -0.262904000
C 1.496263000 -0.000089000 -0.303042000
H 1.976583000 0.888745000 0.118553000
H 1.976491000 -0.888931000 0.118638000
H 1.655544000 -0.000151000 -1.385672000
C -0.665705000 -1.256660000 -0.532880000
H -0.189576000 -2.153011000 -0.122684000
H -1.728285000 -1.273537000 -0.262862000
H -0.594205000 -1.292689000 -1.624741000
O -0.076089000 0.000005000 1.449110000
Charge -1
Multiplicity 1
Stoichiometry C14H12NO(-1)
Electronic Energy (Eh) -670.594658717
Number of Imaginary Frequencies 0

Molecular Geometry in Cartesian Coordinates

H	-1.012106000	0.000049000	1.694340000

Charge -1
Multiplicity 2
Stoichiometry C14H11NO(-1)
Electronic Energy (Eh) -669.952241577
Number of Imaginary Frequencies 0

Molecular Geometry in Cartesian Coordinates

C	-4.019175	-0.975531	-0.525965
C	-2.653702	-1.178353	-0.669684
C	-1.710587	-0.255904	-0.149421
C	-2.216754	0.859066	0.563962
C	-3.585686	1.051658	0.710027
C	-4.497447	0.146499	0.159302
	X	Y	Z
---	--------	--------	--------
H	-4.716681	-1.694815	-0.945611
H	-2.288137	-2.054758	-1.199296
H	-3.945955	1.910408	1.269439
H	-5.565219	0.305355	0.274752
C	-0.312698	-0.539677	-0.319097
H	-0.071923	-1.567711	-0.573192
C	0.804231	0.362229	-0.186304
C	0.672385	1.760004	-0.364025
C	2.109465	-0.162805	0.030596
C	1.771101	2.607509	-0.287501
H	-0.297987	2.177602	-0.611877
C	3.200228	0.702696	0.092051
C	3.043271	2.083462	-0.048225
H	1.637028	3.675622	-0.432497
H	4.189012	0.283669	0.258103
H	3.905801	2.740422	0.013901
H	-1.531715	1.553763	1.038224
C	2.328375	-1.651715	0.255656
O	1.663453	-2.191379	1.184741
N	3.214266	-2.208516	-0.551157
H	3.280235	-3.193734	-0.280011

Diagram

Charge: -1
Multiplicity: 2
Stoichiometry: C14H11NO(-1)
Electronic Energy (Eh): -669.960117547
Number of Imaginary Frequencies: 0
Molecular Geometry in Cartesian Coordinates

Atom	X	Y	Z
C	3.615721	-0.958634	-0.282323
C	2.426207	-0.735955	-0.978344
C	1.449718	0.122290	-0.465185
C	1.686708	0.765258	0.755673
C	2.873855	0.544212	1.452682
C	3.842295	-0.319574	0.936578
H	4.366889	-1.625227	-0.696480
H	2.254686	-1.230538	-1.932013
H	3.044233	1.048822	2.399558
C	0.135393	0.309920	-1.209164
C	0.296274	0.019872	-2.254676
C	-0.977304	-0.517249	-0.573812
C	-1.139244	-1.878339	-0.533258
C	-1.877234	0.379367	0.080943
C	-2.244624	-2.423345	0.189886
H	-0.432056	-2.537034	-1.035608
C	-2.979374	-0.168199	0.817053
C	-3.131993	-1.547458	0.851365
H	-2.397970	-3.496800	0.232084
H	-3.679440	0.483230	1.333533
H	-3.968069	-1.969937	1.406295
H	0.938026	1.440501	1.164190
C	-1.493084	1.720783	-0.191449
N	-0.405746	1.670596	-1.119049
O	-1.968532	2.810850	0.205128
H	0.275436	2.415598	-1.007014
Charge: -1
Multiplicity: 1
Stoichiometry: C14H10NO(-1)
Electronic Energy (Eh): -669.398080987
Number of Imaginary Frequencies: 0

Molecular Geometry in Cartesian Coordinates:

	X	Y	Z
C	3.697	-0.736	-0.509
C	2.464	-0.460	-1.105
C	1.476	0.241	-0.408
C	1.745	0.668	0.898
C	2.974	0.395	1.494
C	3.956	-0.309	0.792
H	4.457	-1.278	-1.066
H	2.267	-0.789	-2.122
H	3.169	0.733	2.509
H	4.916	-0.518	1.256
C	0.115	0.495	-1.038
H	0.225	0.326	-2.120
C	-0.931	-0.467	-0.491
C	-0.975	-1.856	-0.435
C	-1.965	0.305	0.023
C	-2.098	-2.455	0.147
H	-0.164	-2.466	-0.829
C	-3.085	-0.281	0.605
C	-3.143	-1.677	0.662
Charge -1
Multiplicity 2
Stoichiometry C14H9NO(-1)
Electronic Energy (Eh) -668.788434504
Number of Imaginary Frequencies 0

Molecular Geometry in Cartesian Coordinates

H	-2.160216	-3.538355	0.203230
H	-3.889427	0.331539	1.004345
H	-4.002793	-2.166834	1.110161
H	0.983223	1.221993	1.440950
C	-1.596272	1.755930	-0.185325
N	-0.406988	1.834094	-0.781709
O	-2.344857	2.698819	0.172480
C	3.405418	-1.409047	0.405250
C	2.044309	-1.114597	0.437011
C	1.566716	0.146654	0.029587
C	2.512227	1.105047	-0.390639
C	3.870355	0.806811	-0.419895
C	4.327819	-0.454331	-0.027022
H	3.747728	-2.387138	0.731733
H	1.352634	-1.858908	0.816644
H	4.577417	1.560592	-0.755283
H	5.388264	-0.686587	-0.051346
C	0.146492	0.484443	0.056232
C	-0.986923	-0.425938	-0.009444

S179
C -1.153918 -1.814256 -0.170483
C -2.131537 0.405857 0.046900
C -2.445642 -2.328208 -0.232730
H -0.308795 -2.488746 -0.262529
C -3.422718 -0.114621 -0.014241
C -3.577205 -1.492705 -0.147054
H -2.584491 -3.398728 -0.356394
H -4.286823 0.543798 0.032270
H -4.570639 -1.928696 -0.197237
H 2.161357 2.083350 -0.704265
C -1.639159 1.796706 0.135394
N -0.261168 1.770126 0.125603
O -2.343235 2.827413 0.209250

HO$_2$ radical
of imaginary frequencies: 0
E = -150.860925779
symmetry cs
O 0.055418000 0.709676000 0.000000000
O 0.055418000 -0.600185000 0.000000000
H -0.886686000 -0.875921000 0.000000000

Charge -1
Multiplicity 1

S180
Stoichiometry C14H10NO3(-1)
Electronic Energy (Eh) \(-819.7134128459999\)
Number of Imaginary Frequencies 0

Molecular Geometry in Cartesian Coordinates

	X	Y	Z
C	3.372476	-1.291661	-0.077698
C	2.175281	-0.830875	-0.624577
C	1.395471	0.113540	0.056193
C	1.833624	0.580914	1.297036
C	3.027669	0.114621	1.849645
C	3.802241	-0.820714	1.163923
H	3.967980	-2.019762	-0.620971
H	1.842967	-1.211404	-1.587852
H	3.54626	0.487798	2.816062
H	4.733632	-1.179416	1.591998
C	0.060127	0.573953	-0.529002
C	-1.045496	-0.456742	-0.287133
C	-1.138824	-1.807719	-0.594010
C	-2.076215	0.213010	0.354584
C	-2.313325	-2.477781	-0.228872
H	-0.335110	-2.338711	-1.097352
C	-3.244154	-0.441988	0.722573
C	-3.352717	-1.804593	0.422935
H	-2.419105	-3.535365	-0.453028
H	-4.047119	0.089228	1.226707
H	-4.251373	-2.349595	0.697844
H	1.233333	1.315694	1.823998
C	-1.640012	1.655547	0.514441
N	-0.412678	1.815216	0.011677
O	-2.365890	2.516400	1.054952
O	0.167062	0.592356	-1.977283
O	1.161296	1.531751	-2.372954
Charge 0
Multiplicity 2
Stoichiometry C17H19N2O2
Electronic Energy (Eh) -918.842500867
Number of Imaginary Frequencies 1

Molecular Geometry in Cartesian Coordinates

	x	y	z
C	1.326162	-3.028000	1.561011
C	0.536327	-1.947088	1.167422
C	0.666458	-1.397065	-0.117378
C	1.607927	-1.965236	-0.995269
C	2.396583	-3.040730	-0.599870
C	2.261338	-3.577242	0.684040
H	1.207374	-3.442018	2.558263
H	-0.187140	-1.531853	1.863624
H	3.118526	-3.463000	-1.293052
H	2.875941	-4.417050	0.993647
C	-0.096748	-0.209436	-0.571420
H	0.791092	0.766926	-0.641013
H	-0.359670	-0.267664	-1.630211
C	-1.181340	0.354921	0.284315
C -0.832224 1.095630 1.425211
C -2.547344 0.245509 -0.039018
C -1.797733 1.701439 2.223085
H 0.220993 1.206397 1.675456
C -3.513629 0.881957 0.747753
C -3.147411 1.599799 1.881548
H -1.496552 2.264872 3.101204
H -4.558704 0.796518 0.464534
H -3.906804 2.078647 2.491827
H 1.716906 -1.547938 -1.994232
C 1.578498 1.898409 -0.944358
O 1.171876 2.612202 -1.839822
N 2.692163 2.019953 -0.221163
C 3.051412 1.082635 0.831559
H 3.994290 0.584601 0.582563
H 3.173169 1.619907 1.777462
H 2.271651 0.329834 0.947579
C 3.637752 3.104160 -0.471009
H 3.768520 3.694657 0.440960
H 4.605613 2.687426 -0.767153
H 3.254147 3.741132 -1.267091
C -3.060061 -0.542301 -1.216399
O -3.923037 -0.081914 -1.961790
N -2.549365 -1.782468 -1.373599
H -2.886133 -2.362340 -2.131392
H -1.909327 -2.187920 -0.704085
Charge: -1
Multiplicity: 2
Stoichiometry: C17H18N2O2(-1)
Electronic Energy (Eh): -918.340155694
Number of Imaginary Frequencies: 1

Molecular Geometry in Cartesian Coordinates

	X	Y	Z
C	-1.767120	2.933987	1.503289
C	-0.842949	1.953068	1.141245
C	-0.835557	1.418618	-0.156637
C	-1.781556	1.903304	-1.078772
C	-2.704495	2.879412	-0.716457
C	-2.704736	3.399163	0.581302
H	-1.750781	3.337433	2.511932
H	-0.117373	1.607648	1.872049
H	-3.425008	3.237277	-1.446580
H	-3.423565	4.161280	0.866825
C	0.076244	0.329934	-0.586618
H	-0.688446	-0.727976	-0.717465
H	0.398921	0.454984	-1.621906
C	1.166053	-0.143950	0.313494
C	0.823702	-0.868003	1.469072
C	2.528054	0.033753	0.004647
C	1.796346	-1.386437	2.318403
H	-0.229489	-1.030298	1.694311
C	3.498744	-0.517875	0.850704
C	3.146366	-1.209533	2.006745
H	1.504275	-1.936355	3.208429
H	4.546198	-0.391205	0.589679
H	3.916776	-1.615227	2.656343
H	-1.785808	1.500893	-2.089772
C	-1.238735	-2.020076	-0.977772
Charge -1
Multiplicity 2
Stoichiometry C14H11NO(-1)
Electronic Energy (Eh) -669.923449958
Number of Imaginary Frequencies 1

Molecular Geometry in Cartesian Coordinates

O	-0.640273	-2.706151	-1.783403
N	-2.324336	-2.333889	-0.267592
C	-2.938611	-1.410550	0.672095
H	-3.977746	-1.222930	0.382653
H	-2.925132	-1.838634	1.679927
H	-2.395370	-0.465098	0.677911
C	-2.947588	-3.648266	-0.384895
H	-2.896092	-4.170199	0.576210
H	-3.997654	-3.533104	-0.670796
H	-2.423534	-4.228026	-1.144119
C	3.009918	0.798099	-1.220492
O	3.818196	0.191245	-1.979079
N	2.548904	2.031278	-1.330520
H	2.969998	2.429181	-2.175120

Charge

Multiplicity

Stoichiometry

Electronic Energy (Eh)

Number of Imaginary Frequencies

Molecular Geometry in Cartesian Coordinates
C	4.063984	-0.459393	0.816985
H	2.901666	-1.132138	2.514454
H	0.721420	-0.748596	1.472965
H	4.887963	0.308023	-1.038783
H	5.026695	-0.627088	1.288782
C	0.262222	0.309478	-1.028132
H	0.310976	0.498357	-2.101038
C	-0.984459	-0.400582	-0.581051
C	-1.211231	-1.771452	-0.712527
C	-1.961296	0.402382	0.014708
C	-2.417727	-2.314279	-0.264198
H	-0.453834	-2.411215	-1.159173
C	-3.162450	-0.132706	0.472460
C	-3.392541	-1.500329	0.323347
H	-2.598526	-3.380300	-0.368892
H	-3.900209	0.515150	0.938160
H	-4.325207	-1.937158	0.668219
H	2.715675	0.698817	-2.105727
C	-1.523688	1.832535	0.149402
N	-0.393557	1.973957	-0.543387
O	-2.144435	2.673426	0.828375
H	0.154706	2.819045	-0.398270
Number of Imaginary Frequencies 1

Molecular Geometry in Cartesian Coordinates

Atoms	X	Y	Z
C	3.657153	0.628460	-1.189482
C	2.304273	0.566006	-0.861974
C	1.853157	-0.264854	0.175590
C	2.797643	-1.011474	0.891619
C	4.153389	-0.946042	0.566505
C	4.589195	-0.129635	-0.477065
H	3.985851	1.277548	-1.996357
H	1.593565	1.185345	-1.401852
H	4.870269	-1.536423	1.130646
H	5.644271	-0.078227	-0.729622
C	0.390288	-0.341086	0.508749
H	0.064859	0.876219	0.573092
C	-0.539963	-0.881989	-0.544473
C	-0.686576	-0.635921	-1.909390
C	-1.428931	-1.727805	0.120492
C	-1.737300	-1.265471	-2.584885
H	-0.013059	0.023192	-2.449850
C	-2.478403	-2.352583	-0.543931
C	-2.626912	-2.114230	-1.912813
H	-1.867664	-1.090755	-3.649295
H	-3.164222	-3.004366	-0.008437
H	-3.436249	-2.585649	-2.463002
H	2.455988	-1.646496	1.702778
C	-1.026760	-1.749653	1.570678
N	0.050882	-0.967344	1.742374
O	-1.638196	-2.409450	2.442663
C	-0.302123	2.377234	0.442276
O	0.566602	3.191446	0.193990
N	-1.625302	2.558725	0.418638
Charge: 0
Multiplicity: 1
Stoichiometry: C14H9NO
Electronic Energy (Eh): -668.661461561
Number of Imaginary Frequencies: 0

Molecular Geometry in Cartesian Coordinates:

C	-2.552059	1.511949	0.819673
H	-3.280286	1.928366	1.522607
H	-3.087809	1.112087	-0.049118
H	-2.007322	0.709705	1.318949
C	-2.212358	3.833469	0.017560
H	-2.967803	3.657597	-0.754478
H	-2.688911	4.317004	0.876739
H	-1.430075	4.480969	-0.377879

C	3.365457	-1.354999	0.567712
C	2.008947	-1.038638	0.581964
C	1.567332	0.170852	0.027825
C	2.495653	1.057297	-0.539037
C	3.846019	0.727467	-0.566815
C	4.282390	-0.478507	-0.012620
H	3.705767	-2.285160	1.011715
H	1.305146	-1.712866	1.058668
H	4.559532	1.409591	-1.018459
H	5.337964	-0.732659	-0.030766
C	0.148183	0.544663	0.062065
C -1.004685 -0.411659 -0.027711
C -1.107056 -1.779695 -0.227865
C -2.146731 0.384307 0.060845
C -2.398011 -2.327521 -0.297933
H -0.237998 -2.418028 -0.344448
C -3.422347 -0.139916 -0.011713
C -3.534955 -1.527875 -0.185060
H -2.511175 -3.396340 -0.450234
H -4.302005 0.493316 0.054239
H -4.518024 -1.984028 -0.244943
H 2.145326 1.991961 -0.966143
C -1.658274 1.795477 0.177123
N -0.227933 1.782716 0.160901
O -2.317566 2.803460 0.268925

of imaginary frequencies: 0
E = -786.446242950
symmetry c1
C 0.017613000 3.488678000 -0.322312000
C 0.671132000 2.267874000 -0.290329000
C -0.030948000 1.043199000 -0.084443000
C -1.461381000 1.119213000 -0.000125000
C -2.092689000 2.369276000 -0.033050000
C -1.373304000 3.556141000 -0.171803000
H 0.593572000 4.396989000 -0.480245000
H 1.742428000 2.249113000 -0.452074000
H -3.174535000 2.425881000 0.036940000
H -1.889394000 4.510950000 -0.191034000
C -2.214266000 -0.140440000 0.078074000
C -3.610413000 -0.203960000 0.200883000
C -1.464974000 -1.356276000 -0.010732000
C -4.295224000 -1.416960000 0.217052000
H -4.185288000 0.713585000 0.286396000
C -2.189974000 -2.584770000 -0.009821000
C -3.567230000 -2.613436000 0.102047000
H -5.376089000 -1.433359000 0.315684000
H -1.618277000 -3.506270000 -0.088939000
H -4.087339000 -3.568167000 0.106393000
C 0.603167000 -0.245038000 -0.038617000
C 2.063021000 -0.420088000 0.002967000
C 2.924680000 0.427981000 0.734671000
C 2.656494000 -1.531014000 -0.639228000
C 4.296169000 0.196414000 0.792146000
H 2.509954000 1.256878000 1.300314000
C 4.028609000 -1.756853000 -0.585524000
H 2.017959000 -2.212965000 -1.191926000
C 4.865586000 -0.892386000 0.125510000
H 4.923839000 0.863981000 1.376820000
H 4.449408000 -2.614235000 -1.104742000
H 5.935930000 -1.069666000 0.169420000
N -0.114084000 -1.408294000 -0.069628000

of imaginary frequencies: 0
E = -786.3641596
C	0.118194000	3.433733000	-0.286055000
C	0.729352000	2.201614000	-0.225860000
C	0.038223000	1.026186000	-0.071666000
C	1.448043000	1.117154000	-0.019426000
C	2.049917000	2.391718000	-0.073044000
C	1.280345000	3.527427000	-0.196411000
H	-0.714581000	4.329958000	-0.409461000
H	-1.805922000	2.134467000	-0.313397000
H	3.127064000	2.487634000	-0.030320000
H	1.759537000	4.498745000	-0.240147000
C	2.214015000	-0.113321000	0.051618000
C	3.622620000	-0.158065000	0.115231000
C	1.501126000	-1.330977000	0.037216000
C	4.289206000	-1.364041000	0.151672000
H	4.196249000	0.759848000	0.136110000
C	2.198962000	-2.556195000	0.071484000
C	3.573863000	-2.574530000	0.126178000
H	5.371890000	-1.378204000	0.200037000
H	1.620413000	-3.473133000	0.058421000
H	4.106014000	-3.518230000	0.153810000
C	-0.570168000	-0.293794000	-0.011972000
C	-2.053070000	-0.458670000	0.013344000
C	-2.661679000	-1.318751000	-0.903483000
C	-2.837021000	0.183455000	0.975468000
C	-4.037261000	-1.522559000	-0.869090000
H	-2.052074000	-1.821786000	-1.645876000
C	-4.210716000	-0.033501000	1.018073900
H	-2.370311000	0.839985000	1.701986000
C	-4.814189000	-0.881482000	0.092659000
H	-4.501673000	-2.184211000	-1.591414000
H	-4.808823000	0.459122000	1.776135000
H	-5.885483000	-1.044601000	0.123030000
N 0.121381000 -1.391729000 0.015062000

Charge 0
Multiplicity 1
Stoichiometry C4H9KO
Electronic Energy (Eh) -832.891286275
Number of Imaginary Frequencies 0

Molecular Geometry in Cartesian Coordinates

C -1.100135 0.000040 0.000150
C -1.647186 -1.292465 0.643791
H -1.281551 -1.374161 1.674812
H -2.744637 -1.332002 0.663463
H -1.281289 -2.164613 0.088038
C -1.648198 1.203763 0.796617
H -1.283670 1.159071 1.830276
H -1.282077 2.137302 0.351859
H -2.745671 1.240276 0.819560
C -1.646785 0.088025 -1.441102
H -1.281733 1.005675 -1.918594
H -1.280116 -0.763894 -2.026896
H -2.744239 0.089586 -1.485392
O 0.272007 0.000883 0.000680
K 2.631724 -0.000025 0.000037
Charge 0
Multiplicity 2
Stoichiometry C14H9KNO
Electronic Energy (Eh) -1268.61654961
Number of Imaginary Frequencies 0

Molecular Geometry in Cartesian Coordinates

Atoms	X	Y	Z
C	3.874735	0.503561	0.502599
C	2.493203	0.663231	0.490059
C	1.650760	-0.354716	0.000296
C	2.248978	-1.529992	-0.492988
C	3.632984	-1.685424	-0.478758
C	4.454331	-0.673970	0.022402
H	4.503509	1.298637	0.893482
H	2.046982	1.574729	0.875811
H	4.072216	-2.597778	-0.871984
H	5.532871	-0.798822	0.033735
C	0.203947	-0.164309	-0.007993
C	-0.833533	-1.182445	0.017732
C	-0.851629	-2.585376	0.116790
C	-2.059059	-0.473401	-0.000948
C	-2.082234	-3.232963	0.153726
H	0.061107	-3.168685	0.180446
C	-3.289890	-1.126987	0.035278
C	-3.295311	-2.517395	0.104635
H	-2.108645	-4.316391	0.228917
H	-4.218773	-0.562659	0.017940
Charge: 0
Multiplicity: 2
Stoichiometry: C14H9KNO3
Electronic Energy (Eh): -1418.9003511300002
Number of Imaginary Frequencies: 0

Molecular Geometry in Cartesian Coordinates

H -4.236740 -3.057825 0.133634
H 1.632981 -2.310997 -0.925980
C -1.708688 0.953619 -0.026640
N -0.338068 1.074930 -0.018445
O -2.498355 1.935143 -0.055444
K -0.608619 3.756502 -0.137393

C -2.678618 -2.441111 0.267086
C -1.636956 -1.653011 0.754019
C -1.051016 -0.676576 -0.060574
C -1.515336 -0.511453 -1.369648
C -2.559403 -1.300922 -1.854948
C -3.145097 -2.265688 -1.036518
H -3.128812 -3.191121 0.910483
H -1.288425 -1.797834 1.772041
H -2.911422 -1.160032 -2.872487
H -3.959422 -2.878459 -1.411253
C 0.120575 0.170133 0.416506
C 1.479522 -0.494431 0.268619
Carbon 1.942711 -1.747428 0.642289
Carbon 2.298956 0.430541 -0.361020
Carbon 3.281099 -2.048554 0.360881
Hydrogen 1.299290 -2.474792 1.130691
Carbon 3.625608 0.140992 -0.646355
Carbon 4.110530 -1.118249 -0.275137
Hydrogen 3.681190 -3.019646 0.636883
Hydrogen 4.264014 0.866763 -1.142495
Hydrogen 5.143087 -1.381731 -0.484771
Carbon 1.463050 1.666429 -0.618303
Nitrogen 0.204399 1.456331 -0.178991
Oxygen 1.904226 2.684345 -1.168542
Oxygen -0.030764 0.324640 1.922534
Oxygen -1.102109 0.981621 2.239076
Potassium -2.319282 2.304227 0.097736

Charge 0
Multiplicity 1
Stoichiometry C14H10KNO3
Electronic Energy (Eh) -1419.54079777
Number of Imaginary Frequencies 0

Molecular Geometry in Cartesian Coordinates

Carbon -2.455630 -2.721594 0.178331
Carbon -1.471511 -1.864617 0.667657

S195
C -1.020029 -0.785326 -0.103472
C -1.566080 -0.584927 -1.373508
C -2.549412 -1.446037 -1.865986
C -2.998664 -2.514180 -1.091335
H -2.799129 -3.551341 0.789210
H -1.051450 -2.035126 -1.656241
H -2.963936 -1.278515 -2.855874
H -3.765957 -3.181527 -1.472285
C 0.077502 0.134903 0.428157
C 1.473409 -0.471526 -0.307054
C 1.999557 -1.677820 0.748827
C 2.248099 -0.450077 -0.382191
C 3.347118 -1.937134 0.470413
H 1.396966 -2.403115 1.289119
C 3.584243 0.201241 -0.665286
C 4.129336 -1.011189 -0.228976
H 3.792221 -2.871278 0.800307
H 4.184816 0.926009 -1.208268
H 5.170922 -1.240683 -0.434414
H -1.210287 0.244440 -1.977885
C 1.364018 1.638734 -0.693143
N 0.127010 1.408485 -0.230475
O 1.770853 2.647554 -1.296867
O -0.095928 0.282140 1.866352
O -1.361968 0.896188 2.110025
H -1.919199 0.132250 2.343479
K -2.168391 2.648885 0.150966

Charge -1

S196
Element	X	Y	Z
C	-2.664571	-2.358196	0.243733
C	-1.720734	-1.480738	0.776303
C	-0.990814	-0.626797	-0.058901
C	-1.229327	-0.666588	-1.436155
C	-2.174842	-1.545450	-1.973157
C	-2.895825	-2.394167	-1.134225
H	-3.229053	-3.010388	0.904862
H	-1.551167	-1.418481	1.845873
H	-2.345767	-1.564263	-3.046031
H	-3.634049	-3.075343	-1.547814
C	0.090940	0.291530	0.536045
C	1.456832	-0.383084	0.416700
C	1.934650	-1.579829	0.934942
C	2.262019	0.439774	-0.356435
C	3.259777	-1.933293	0.651639
H	1.305172	-2.227959	1.540179
C	3.577446	0.097900	-0.647464
C	4.072329	-1.105488	-0.132817
H	3.664090	-2.862941	1.042492
H	4.201255	0.748052	-1.255721
H	5.095853	-1.404440	-0.341255
H	-0.670404	-0.003175	-2.091380
C	1.432322	1.647691	-0.739448
N	0.208730	1.536459	-0.225959
O	1.896343	2.574990	-1.445098
O	-0.123146	0.477610	1.914799
Charge -1
Multiplicity 1
Stoichiometry C14H10NO3(-1)
Electronic Energy (Eh) -819.708193378
Number of Imaginary Frequencies 0

Molecular Geometry in Cartesian Coordinates

C	3.597346	-0.883212	-0.393914
C	2.414264	-0.312062	-0.861856
C	1.430153	0.107126	0.036129
C	1.641319	-0.056403	1.406948
C	2.824816	-0.628622	1.877375
C	3.806522	-1.044145	0.977656
H	4.360730	-1.198119	-1.100041
H	2.244327	-0.159455	-1.922386
H	2.978407	-0.749059	2.946074
H	4.728814	-1.487529	1.341743
C	0.100447	0.639759	-0.501820
C	-0.993150	-0.417816	-0.409317
C	-1.035601	-1.692230	-0.958494
C	-2.053297	0.068952	0.347797
C	-2.181822	-2.461268	-0.734678
H	-0.207336	-2.083369	-1.543506
C	-3.195268	-0.687515	0.581519
C	-3.248566	-1.968074	0.027450
S199

Charge 0
Multiplicity 2
Stoichiometry C14H10NO3
Electronic Energy (Eh) -819.563269559
Number of Imaginary Frequencies 0

Molecular Geometry in Cartesian Coordinates

1	2	3	
C	3.516509	-1.144904	-0.208873
C	2.301352	-0.720847	-0.743199
C	1.453362	0.094849	0.012499
C	1.823800	0.472775	1.304914
C	3.040787	0.045805	1.835199
C	3.889648	-0.762083	1.079832
H	4.172414	-1.773473	-0.803332
H	2.022765	-1.023965	-1.747715
H	3.323588	0.347805	2.838952
H	4.838121	-1.092043	1.492605
C	0.094474	0.501540	-0.523961
Element	x-coord	y-coord	z-coord
---------	----------	----------	----------
C	-1.026255	-0.487715	-0.259885
C	-1.094065	-1.841300	-0.551035
C	-2.083373	0.177587	0.349711
C	-2.271924	-2.512814	-0.207331
H	-0.267656	-2.365030	-1.021397
C	-3.254237	-0.480481	0.698935
C	-3.335796	-1.844348	0.409114
H	-2.360635	-3.573901	-0.418727
H	-4.072839	0.046162	1.179901
H	-4.233947	-2.396340	0.667651
H	1.163133	1.097913	1.898532
C	-1.696799	1.607195	0.534223
N	-0.428089	1.716267	0.012620
O	-2.336338	2.505508	1.048506
H	0.119186	2.566722	0.080337
O	0.166217	0.603138	-2.004675
O	0.938571	1.581628	-2.373333

Charge: 0
Multiplicity: 1
Stoichiometry: C14H11NO3
Electronic Energy (Eh): -820.208434809
Number of Imaginary Frequencies: 0

Molecular Geometry in Cartesian Coordinates

Element	x-coord	y-coord	z-coord
C	3.436559	-1.257715	-0.138671
C	2.232816	-0.808326	-0.678844
C	1.419587	0.068757	0.047634
Atom	X	Y	Z
------	------	------	------
C	1.816379	0.481177	1.321046
C	3.019547	0.026041	1.860964
C	3.832793	-0.841320	1.132749
H	4.063486	-1.933643	-0.712230
H	1.926247	-1.144561	-1.666368
H	3.320667	0.353533	2.851463
H	4.770660	-1.191449	1.553097
C	0.084969	0.508269	-0.538926
C	-1.048014	-0.477198	-0.287240
C	-1.133197	-1.822689	-0.612528
C	-2.092773	0.179345	0.352403
C	-2.311571	-2.494391	-0.271449
H	-0.319565	-2.343507	-1.108821
C	-3.264558	-0.479230	0.699232
C	-3.362189	-1.834375	0.376286
H	-2.411684	-3.548683	-0.510524
H	-4.072915	0.042193	1.202976
H	-4.261828	-2.385585	0.631610
H	1.186343	1.155435	1.893453
C	-1.699030	1.604148	0.564627
N	-0.437000	1.717327	0.048559
O	-2.344709	2.492777	1.095696
H	0.090950	2.581258	0.082867
O	0.166240	0.614641	-1.964179
O	1.084989	1.655815	-2.275457
H	1.926582	1.172896	-2.369607

Charge 0

Charge 0

S201
Multiplicity 1
Stoichiometry C15H15NO
Electronic Energy (Eh) -710.385249935
Number of Imaginary Frequencies 0

Molecular Geometry in Cartesian Coordinates

\[
\begin{array}{ccc}
\text{C} & 2.812404 & -1.643430 \quad -1.096008 \\
\text{C} & 1.611500 & -1.550309 \quad -0.389907 \\
\text{C} & 1.460339 & -0.617779 \quad 0.641946 \\
\text{C} & 2.535669 & 0.227015 \quad 0.943686 \\
\text{C} & 3.736195 & 0.136857 \quad 0.240016 \\
\text{C} & 3.879100 & -0.801044 \quad -0.783948 \\
\text{H} & 2.910706 & -2.374219 \quad -1.893626 \\
\text{H} & 0.786554 & -2.208894 \quad -0.649520 \\
\text{H} & 4.557225 & 0.803810 \quad 0.487173 \\
\text{H} & 4.811564 & -0.870852 \quad -1.336060 \\
\text{C} & 0.173099 & -0.509581 \quad 1.444095 \\
\text{H} & 0.208307 & -1.248965 \quad 2.253120 \\
\text{H} & 0.144385 & 0.474742 \quad 1.922360 \\
\text{C} & -1.098160 & -0.745097 \quad 0.653553 \\
\text{C} & -1.657031 & -2.029162 \quad 0.624393 \\
\text{C} & -1.770817 & 0.284330 \quad -0.028212 \\
\text{C} & -2.834987 & -2.294744 \quad -0.070303 \\
\text{H} & -1.158140 & -2.829417 \quad 1.166083 \\
\text{C} & -2.968948 & 0.023833 \quad -0.700965 \\
\text{C} & -3.496844 & -1.263546 \quad -0.737021 \\
\text{H} & -3.240942 & -3.301936 \quad -0.080020 \\
\text{H} & -3.482465 & 0.841347 \quad -1.199335 \\
\text{H} & -4.420623 & -1.458437 \quad -1.273080 \\
\text{H} & 2.424175 & 0.969547 \quad 1.731088 \\
\text{C} & -1.285700 & 1.711006 \quad -0.021597 \\
\text{O} & -2.006029 & 2.632182 \quad 0.369071
\end{array}
\]
Charge -1
Multiplicity 1
Stoichiometry C15H14NO(1)
Electronic Energy (Eh) -709.882095233
Number of Imaginary Frequencies 0

Molecular Geometry in Cartesian Coordinates

Element	X	Y	Z
N	-0.036798	1.913612	-0.479922
H	0.490738	1.129854	-0.841866
C	0.578383	3.227018	-0.467361
H	0.032410	3.923444	-1.110528
H	0.595197	3.632790	0.548524
H	1.601514	3.132238	-0.831635
C	-3.251990	-0.398583	-0.171080
C	-2.101767	-0.321923	0.616859
C	-1.347806	0.855732	0.667025
C	-1.771064	1.956435	-0.088882
C	-2.920291	1.884291	-0.875066
C	-3.665381	0.703715	-0.919176
H	-3.823867	-1.322169	-0.200703
H	-1.764937	-1.184061	1.188398
H	-3.235915	2.749286	-1.451665
H	-4.560934	0.645554	-1.530913
C	-0.082283	0.939905	1.499612
H	0.070490	1.894461	2.036295
H	0.078228	0.126281	2.227935
Charge: -1
Multiplicity: 2
Stoichiometry: C15H13NO(-1)
Electronic Energy (Eh): -709.237638929
Number of Imaginary Frequencies: 0

Molecular Geometry in Cartesian Coordinates

C -4.043849 -1.477046 -0.508454
Element	X-Coordinate	Y-Coordinate	Z-Coordinate
C	-2.661439	-1.435497	-0.624285
C	-1.910389	-0.339346	-0.128937
C	-2.623726	0.691986	0.531114
C	-4.007864	0.639934	0.649681
C	-4.730408	-0.434609	0.123405
H	-4.591473	-2.325829	-0.908033
H	-2.133310	-2.250919	-1.112405
H	-4.528155	1.440017	1.168616
H	-5.811507	-0.466711	0.217345
C	-0.481071	-0.374119	-0.270246
H	-0.057306	-1.351977	-0.480049
C	0.457285	0.714244	-0.164030
C	0.084212	2.062578	-0.379077
C	1.834206	0.429697	0.063175
C	1.018610	3.090151	-0.328101
H	-0.942935	2.298948	-0.636453
C	2.756160	1.474185	0.102760
C	2.361614	2.802254	-0.075966
H	0.701268	4.114330	-0.502102
H	3.802247	1.240179	0.282057
H	3.096571	3.600745	-0.032355
H	-2.085449	1.515765	0.987209
C	2.304882	-0.990995	0.322269
O	1.776018	-1.609716	1.291687
N	3.238867	-1.421572	-0.502488
C	3.682149	-2.774989	-0.212735
H	4.425105	-3.085206	-0.955213
H	4.144504	-2.865095	0.783373
H	2.857994	-3.505555	-0.231509
Charge -1
Multiplicity 2
Stoichiometry C15H13NO(-1)
Electronic Energy (Eh) -709.248901614
Number of Imaginary Frequencies 0

Molecular Geometry in Cartesian Coordinates

	X	Y	Z
C	3.643411	-1.053241	-0.420278
C	2.465129	-0.667070	-1.065547
C	1.428261	-0.063723	-0.352112
C	1.589494	0.160822	1.021084
C	2.764825	-0.216071	1.665881
C	3.796039	-0.827881	0.946320
H	4.441018	-1.523902	-0.988063
H	2.350010	-0.837161	-2.133923
H	2.879393	-0.033466	2.730584
H	4.712178	-1.121829	1.450069
C	0.125960	0.308181	-1.050238
H	0.298810	0.240100	-2.134061
C	-1.020641	-0.585676	-0.597784
C	-1.204141	-1.931251	-0.786299
C	-1.931854	0.210381	0.166298
C	-2.346739	-2.565413	-0.206071
H	-0.486636	-2.512611	-1.364198
C	-3.077552	-0.425588	0.749817
C	-3.252012	-1.787039	0.551626
H	-2.516150	-3.628263	-0.344594
Charge -1
Multiplicity 2
Stoichiometry C15H13NO(-1)
Electronic Energy (Eh) -709.215365339
Number of Imaginary Frequencies 1

Molecular Geometry in Cartesian Coordinates

\begin{align*}
\text{C} & : 2.723110 \quad -1.052997 \quad 1.547678 \\
\text{C} & : 1.509111 \quad -0.792259 \quad 0.932012 \\
\text{C} & : 1.449139 \quad -0.338046 \quad -0.433098 \\
\text{C} & : 2.709570 \quad -0.124246 \quad -1.087197 \\
\text{C} & : 3.908598 \quad -0.391802 \quad -0.457573 \\
\text{C} & : 3.945327 \quad -0.869831 \quad 0.875071 \\
\text{H} & : 2.726597 \quad -1.404756 \quad 2.577743 \\
\text{H} & : 0.584056 \quad -0.940490 \quad 1.485326
\end{align*}
of imaginary frequencies: 1
E = -481.469626540
symmetry c1
C -1.265781000 -0.724962000 0.391509000
Atom	X	Y	Z
H	0.05197	-0.2945	0.8078
O	-1.6178	-1.9101	0.1898
N	-2.1735	0.2789	0.0915
C	-3.4909	0.0316	-0.4557
H	-4.2757	0.4063	0.2157
H	-3.6131	0.5309	-1.4266
H	-3.6150	-1.0444	-0.5867
C	-1.8254	1.6645	0.3089
H	-0.8172	1.7127	0.7282
H	-1.8475	2.2355	-0.6307
H	-2.5256	2.1447	1.0071
O	1.1557	0.0781	1.1043
C	1.9919	0.0445	-0.0140
C	2.0927	-1.3892	-0.5658
H	1.0973	-1.7569	-0.8397
H	2.7422	-1.4490	-1.4480
H	2.4967	-2.0556	0.2057
C	3.3881	0.5229	0.3973
H	4.0911	0.5137	-0.4454
H	3.3344	1.5447	0.7907
H	3.7880	-0.1231	1.1872
C	1.4541	0.9699	-1.1234
H	1.3806	1.9983	-0.7499
H	2.1037	0.9711	-2.0078
H	0.4522	0.6509	-1.4361

DMF-anion

of imaginary frequencies: 0

E = -247.873748625
symmetry c1
C -0.870759000 -0.826288000 0.000031000
O -1.935167000 -0.159377000 -0.000030000
N 0.311799000 -0.065930000 0.000056000
C 0.339626000 1.382942000 0.000000000
H 0.858977000 1.773222000 0.887076000
H 0.858847000 1.773166000 -0.887186000
H -0.690988000 1.743566000 0.000070000
C 1.602082000 -0.706269000 -0.000025000
H 1.459441000 -1.790704000 -0.000346000
H 2.193431000 -0.432530000 -0.886648000
H 2.193338000 -0.432786000 0.886842000

DMF-K
of imaginary frequencies: 0
E = -847.703955297
symmetry c1
C 0.118616000 -0.113606000 -0.054277000
O -0.425173000 1.035060000 -0.050920000
N 1.497501000 -0.126002000 -0.015465000
C 2.317824000 1.070699000 0.042909000
H 2.894416000 1.106842000 0.977216000
H 3.029643000 1.096554000 -0.792353000
H 1.664860000 1.942616000 -0.009555000
C 2.225344000 -1.373325000 0.000763000
H 1.512847000 -2.200360000 -0.043913000
H 2.907849000 -1.447451000 -0.856960000
H 2.825450000 -1.473069000 0.915943000
K -2.625626000 -0.206642000 0.020466000
KO₂ radical

of imaginary frequencies: 0
E = -750.216537034

symmetry c2v

	X	Y	Z
O	0.0000000000	0.662500000	-1.334483000
O	0.0000000000	-0.662500000	-1.334483000
K	0.0000000000	0.0000000000	1.123776000

of imaginary frequencies: 0
E = -1081.32876519

symmetry c1

	X	Y	Z
C	2.304643000	-0.705036000	0.011095000
C	3.242341000	-0.697398000	-1.215488000
H	3.808095000	0.242172000	-1.239827000
H	3.957777000	-1.530876000	-1.215786000
H	2.645362000	-0.754874000	-2.133997000
C	3.176704000	-0.636278000	1.283422000
H	3.740484000	0.304766000	1.292187000
H	2.532732000	-0.651674000	2.171342000
H	3.891310000	-1.466901000	1.360820000
C	1.542910000	-2.048433000	0.024080000
H	0.874460000	-2.085879000	0.893826000
H	0.926565000	-2.132098000	-0.880116000
H	2.210281000	-2.919716000	0.066125000
of imaginary frequencies: 1
E = -1081.30814840
symmetry c1

C 1.424647000 0.310829000 -0.127355000
H -0.003134000 0.005738000 -0.454281000
O 1.720991000 1.494597000 0.212269000
N 2.410583000 -0.635269000 -0.071551000
C 3.770119000 -0.357389000 0.352426000
H 4.033619000 -0.959379000 1.231332000
H 4.480814000 -0.596234000 -0.448717000
H 3.848837000 0.700834000 0.602197000
C 2.137836000 -2.001155000 -0.461250000
H	1.100493000	-2.077209000	-0.794868000
H	2.795147000	-2.312395000	-1.283516000
H	2.294434000	-2.692190000	0.377665000
O	-1.144837000	0.093899000	-0.645253000
C	-1.938869000	-0.829203000	0.064862000
C	-1.276570000	-1.193416000	1.402410000
H	-1.089170000	-0.287820000	1.992773000
H	-1.916888000	-1.859500000	1.991955000
H	-0.316546000	-1.697832000	1.241602000
C	-2.137817000	-2.098881000	-0.771882000
H	-2.770324000	-2.830898000	-0.255982000
H	-2.609117000	-1.846315000	-1.728129000
H	-1.170671000	-2.569080000	-0.982500000
C	-3.298357000	-0.177754000	0.333753000
H	-3.763884000	0.124311000	-0.610947000
H	-3.980116000	-0.862337000	0.851641000
H	-3.175567000	0.715942000	0.958181000
K	-0.596166000	2.571850000	-0.183234000

Charge 0

Multiplicity 2

Stoichiometry C18H21N2O2

Electronic Energy (Eh) -958.131447002

Number of Imaginary Frequencies 1
Molecular Geometry in Cartesian Coordinates

Element	X	Y	Z
C	-0.964916	2.973196	1.921073
C	-0.401615	1.783655	1.457411
C	-0.520361	1.414556	0.108291
C	-1.215950	2.275342	-0.760798
C	-1.779134	3.459330	-0.296038
C	-1.658592	3.813944	1.050978
H	-0.858453	3.242890	2.967985
H	0.136146	1.141208	2.149234
H	-2.313244	4.108313	-0.984172
H	-2.097198	4.737921	1.415364
C	0.003445	0.136273	-0.430503
H	-1.061695	-0.599741	-0.692805
H	0.385722	0.242070	-1.448869
C	0.838238	-0.751512	0.430561
C	0.218310	-1.503542	1.441529
C	2.219893	-0.926315	0.227537
C	0.939986	-2.396747	2.227353
H	-0.853056	-1.389910	1.597558
C	2.936797	-1.847049	0.999180
C	2.306419	-2.575418	2.003045
H	0.434433	-2.963249	3.003738
H	3.998529	-1.976756	0.809899
H	2.874649	-3.278517	2.604115
H	-1.314128	2.000808	-1.809131
C	-2.020657	-1.512760	-1.181807
O	-1.660778	-2.235018	-2.090441
N	-3.216183	-1.442142	-0.596003
C	-3.497030	-0.539637	0.509432
H	-4.291951	0.158582	0.228027
H	-3.823382	-1.115310	1.381663
H	-2.602234	0.025340	0.771603
Charge -1
Multiplicity 2
Stoichiometry C18H20N2O2(-1)
Electronic Energy (Eh) -957.6256069339998
Number of Imaginary Frequencies 1

Molecular Geometry in Cartesian Coordinates

C -1.333931 2.950890 1.853150
C -0.621576 1.825179 1.437613
Atoms	x	y	z
C	-0.644853	1.417141	0.095245
C	-1.403038	2.175144	-0.816078
C	-2.115495	3.295774	-0.400775
C	-2.087315	3.689155	0.940414
H	-1.296632	3.252049	2.896349
H	-0.037430	1.264605	2.161858
H	-2.694081	3.864785	-1.123137
H	-2.642202	4.563570	1.266818
C	0.033516	0.19286	3
H	-0.944398	-0.629952	0.940414
H	0.456977	0.335993	-1.394076
C	0.914318	-0.604103	0.502502
C	0.332103	-1.335625	1.552546
C	2.301388	-0.715148	0.286252
C	1.096764	-2.148023	2.384530
H	-0.744076	-1.269220	1.706598
C	3.055780	-1.559765	1.110530
C	2.470696	-2.262944	2.160481
H	0.622586	-2.698391	3.192058
H	4.121740	-1.653597	0.919465
H	3.078829	-2.899935	2.796621
H	-1.430007	1.870562	-1.860525
C	-1.828680	-1.630072	-1.196222
O	-1.402567	-2.313491	-2.107047
N	-3.033331	-1.674443	-0.622389
C	-3.410158	-0.804372	0.479916
H	-4.268340	-0.187629	0.192666
H	-3.684887	-1.408153	1.351184
H	-2.577826	-0.153068	0.746311
C	-4.051545	-2.615746	-1.078896
H	-4.321554	-3.294048	-0.263230
H	-4.944370	-2.066633	-1.394125
H	-3.660050	-3.190321	-1.917726
Charge -1
Multiplicity 2
Stoichiometry C14H11NO3(-1)
Electronic Energy (Eh) -820.260286021
Number of Imaginary Frequencies 0

Molecular Geometry in Cartesian Coordinates

C 3.028623 0.037354 -0.815446
O 3.716205 -0.652142 -1.624823
N 2.885411 1.347362 -0.784707
C 3.608237 2.031530 -1.842906
H 3.458678 3.112710 -1.751465
H 4.692295 1.836197 -1.815712
H 3.272086 1.729709 -2.848157
C 0.746173 0.495432 -0.003012
C 0.293115 1.794873 0.252239
C 2.126005 0.261615 -0.168794
C 1.182730 2.865098 0.329475
H -0.768599 1.978678 0.386234
C 3.007843 1.341681 -0.059398
C 2.548319 2.636250 0.173258
H 0.808761 3.867262 0.516119
H 4.071742 1.149563 -0.163590
H 3.253248 3.460471 0.235192
H -1.986990 -0.188636 2.021567
C 2.747987 -1.105769 -0.448526
O 3.732376 -1.422518 0.274624
N 2.212035 -1.777954 -1.450286
H 2.744926 -2.647106 -1.542663
H 0.043902 -1.326471 -0.881491
O 0.048566 -1.448266 1.164062
O -0.478061 -2.635821 1.106618

Charge -1
Multiplicity 1
Stoichiometry C14H10NO2(-1)
Electronic Energy (Eh) -744.5946426380001
Number of Imaginary Frequencies 0

Molecular Geometry in Cartesian Coordinates
C	-4.047540	-0.172812	-0.345514
C	-2.821994	-0.325118	-0.988058
C	-1.635195	0.016749	-0.330540
C	-1.685839	0.514384	0.976043
C	-2.912706	0.663722	1.620099
C	-4.093840	0.321640	0.960083
H	-4.966309	-0.437457	-0.860272
H	-2.770950	-0.709215	-2.002266
H	-2.946738	1.044520	2.636270
H	-5.049574	0.439904	1.462340
C	-0.332832	-0.154068	-1.051921
C	0.908345	0.463672	-0.455402
C	1.048390	1.847174	-0.613578
C	1.932982	-0.287806	0.137089
C	2.209596	2.493815	-0.194297
H	0.245466	2.418058	-1.075157
C	3.098958	0.373557	0.536625
C	3.240804	1.750905	0.381254
H	2.308671	3.567649	-0.322147
H	3.894244	-0.220225	0.976893
H	4.151337	2.244275	0.709004
H	-0.767029	0.773347	1.494739
C	1.816431	-1.785299	0.390998
O	2.894099	-2.442448	0.429634
N	0.580905	-2.211755	0.570582
H	0.632150	-3.221033	0.732021
O	-0.287968	-0.650130	-2.164983
Charge: -1
Multiplicity: 1
Stoichiometry: C14H10NO2(-1)
Electronic Energy (Eh): -744.588985631
Number of Imaginary Frequencies: 1

Molecular Geometry in Cartesian Coordinates

Atom	X	Y	Z
C	-3.903949	-0.171472	0.155959
C	-2.731724	-0.136231	0.910108
C	-1.482397	-0.204335	0.287711
C	-1.423696	-0.327666	-1.104644
C	-2.595461	-0.370916	-1.860728
C	-3.839748	-0.289478	-1.233723
H	-4.868542	-0.110789	0.652347
H	-2.768101	-0.056839	1.992546
H	-2.535693	-0.469554	-2.940954
H	-4.751635	-0.321789	-1.822874
C	-0.236950	-0.173512	1.168687
C	1.076286	-0.514396	0.479706
C	1.544156	-1.826523	0.430755
C	1.817025	0.512404	-0.105878
C	2.748893	-2.102747	-0.221051
H	0.970807	-2.628144	0.890119
C	3.015857	0.241424	-0.760109
C	3.482550	-1.073088	-0.817305
H	3.116068	-3.124124	-0.265565
H	3.573618	1.057381	-1.211572
H	4.418116	-1.297483	-1.321517
H	-0.461191	-0.388110	-1.606306
C	1.205457	1.883311	0.040354
O	1.677088	2.875159	-0.560792
N	0.164489	1.795596	0.854397
Charge -1
Multiplicity 1
Stoichiometry C14H10NO2(-1)
Electronic Energy (Eh) -744.600519096
Number of Imaginary Frequencies 0

Molecular Geometry in Cartesian Coordinates

C	-3.798651	-0.546502	0.325086
C	-2.597899	-0.240689	0.973028
C	-1.475140	0.152434	0.246489
C	-1.569017	0.229970	-1.149162
C	-2.762022	-0.075836	-1.801483
C	-3.884214	-0.465978	-1.064065
H	-4.666508	-0.847945	0.905930
H	-2.502078	-0.292869	2.053577
H	-2.819511	-0.009466	-2.884625
H	-4.814962	-0.703574	-1.571419
C	-0.155930	0.456712	1.014031
C	0.965856	-0.449004	0.453386
C	1.102617	-1.826602	0.580361
C	1.941316	0.290539	-0.207675
C 2.233838 -2.437733 0.030896
H 0.349450 -2.417580 1.096684
C 3.072523 -0.301635 -0.759717
C 3.210934 -1.685445 -0.635021
H 2.360323 -3.513301 0.119927
H 3.822393 0.296138 -1.271040
H 4.079753 -2.184248 -1.054049
H -0.701626 0.536800 -1.731050
C 1.553795 1.736938 -0.176974
O 2.203702 2.680006 -0.639011
N -0.367253 1.783438 0.454752
H -0.081913 2.660509 0.689195
O -0.281717 0.441051 2.325077

References:

1 Nanni Jr., E. J.; Stallings, M. D.; Sawyer, D. T. Does Superoxide Ion Oxidize Catechol, α-Tocopherol, and Ascorbic acid by Direct Electron Transfer? J. Am. Chem. Soc., 1980, 102, 4481-4485.

2 Pichette Drapeau, M.; Fabre, I.; Grimaud, L.; Ciofini, I.; Ollevier, T.; Taillefer, M. Transition-Metal-Free α-Arylation of Enolizable Aryl Ketones and Mechanistic Evidence for a Radical Process. Angew. Chem., Int. Ed., 2015, 54, 10587-10591.

3 Chen, M.-W.; Chen, Q.-A.; Duan, Y.; Ye, Z.-S.; Zhou, Y.-G. Chem. Comm., 2012, 48, 1698-1700.

4 Kang, Z.; Zhang, D.; Shou, J.; Hu, W. Org. Lett., 2018, 20, 983-986.

5 (a) Nishimura, T.; Nagamoto, M.; Ebe, Y.; Hayashi, T. Chem. Sci., 2013, 4, 4499-4504. (b) Sharma, S.; Oh, Y.; Mishra, N.K.; De, U.; Jo, H.; Sachan, R.; Kim, H.S.; Jung, Y.H.; Kim, I.S. J. Org. Chem., 2017, 82, 3359–3367. (c) Nagamoto, M.; Nishimura, T. Chem. Comm., 2014, 50, 6274 - 6277. (d) Nishimura, T.; Noishiki, A.; Ebe, Y.; Hayashi, T. Angew. Chem. Int. Ed., 2013, 52, 1777-1780.
6 Zhang, L.; Ang, G.Y.; Chiba, S. Copper-Catalyzed Benzylic C-H Oxygenation Under an Oxygen Atmosphere via N-H Imines as an Intramolecular Directing Group. Org.Lett., 2011, 13, 1622-1625.

7 Nakajima, K.; Nojima, S.; Sakata, K.; Nishibayashi, Y. Visible-Light-Mediated Aromatic Substitution Reactions of Cyanoarenes with 4-Alkyl-1,4-dihydropyridines through Double Carbon-Carbon Bond Cleavage. Chem. Cat. Chem., 2016, 6, 1028-1032.

8 Hall, J.H.; Gisler, M. A Simple Method for Convertiving Nitriles to Amides. Hydrolysis with Potassium Hydroxide in Tert-butyl Alcohol. J.Org. Chem., 1976, 41, 3769-3770.

9 Laha, J.K.; Shah, P.U.; Jethava, K.P. Palladium-catalyzed Region- and Chemoselective Ortho-benzylation of C-H Bond Using a Functionalizable Primary Amide Directing Group: A Concise Synthesis of Dibenzo[b,e]azepin-6-ones. Chem. Comm., 2013, 49, 7623-7625.

10 Alhalib, A.; Kamouka, S.; Moran, W.J. Iodoarene-Catalyzed Cyclizations of Unsaturated Amides. Org. Lett., 2015, 17, 1453-1456.

11 Zhu, C.; Liang, Y.; Houng, X.; Sun, H.; Sun, W-Y.; Hounk, K.N. Iodoarene-Catalyzed Stereospecific Intramolecular sp^3 C-H Amination: Reaction Development and Mechanistic Insights. J. Am. Chem. Soc., 2015, 137, 7564-7567.

12 Maeda, H.; Matsudea, S.; Mizuno, K. Intramolecular Photocycloaddition Reactions of Arylcyclopropane Tethered 1-Cyanonaphthalenes. J. Org. Chem., 2016, 81, 8544-8551.

13 Nishimura, T.; Noishiki, A.; Ebe, Y.; Hayashi, T. Hydroxorhodium/Chiral Diene Complexes as Effective Catalysts for the Asymmetric Arylation of 3-Aryl-3-hydroxyisoindolin-1-ones. Angew. Chem. Int. Ed., 2013, 52, 1777-1780.

14 Unhale, R.A.; Sadhu, M.M.; Ray, S.K.; Biswas, R.G.; Singh, V.K. A Chiral Bronsted Acid-catalyzed Highly enantioselective Mannich-Type Reaction of α-diazo Esters with in situ Generated N-acyl Ketimines. Chem. Comm., 2018, 54, 3516-3519.

15 Suć, J.; Dokli, I.; Gredičak, M. Chiral Bronsted Acid-Catalysed Enantioselective Synthesis of Isoindolinone-Derived N(acyl),S-acetals. Chem. Comm., 2016, 52, 2071-2074.

16 Zhang, Y.; He, Li.; Shi, L. Asymmetric Hydrogenolysis of racemic 3-substituted-3-hydroxy-isoindolin-1-ones Employing SPINOL-Derived Chiral Phosphoric Acid. Tetrahedron Lett., 2018, 59, 1592-1595.
17 Li, Z.; Wang, Q.; Zhu, J. Copper-Catalyzed Arylation of Remote C(sp³)-H Bonds in Carboxamides and Sulfonamides. *Angew. Chem. Int. Ed.*, 2018, 57, 13288-13292.

18 Yu, Q.; Zhang, N.; Huang, J.; Lu, S.; Zhu, Y.; Yu, X.; Zhao, K. Efficient Synthesis of Hydroxyl Isoindolones by a Pd-Mediated C-H Activation/Annulation Reaction. *Chem. Eur. J.*, 2013, 19, 11184-11188.

19 Shen J.; You, Q.; Fu, Q.; Kuai, C.; Hyang, H.; Zhao, L.; Zhuang, Z. Base-Promoted Cascade C-C Coupling/N-α-sp³C-H Hydroxylation for the Regiospecific Synthesis of 3-Hydroxyisoindolinones. *Org. Lett.*, 2017, 19, 5170-5173.

20 Praske, E.; Otkjær, R. V.; Crounse, J.D.; Hethcox, J.C.; Stoltz, B.M.; Kjaergaard, H.G.; Wennberg, P.O. Intramolecular Hydrogen Shift Chemistry of Hydroperoxy-Substituted Peroxy Radicals. *J. Phys. Chem. A.*, 2019, 123, 2, 590-600.

21 Zhao, Y.; Huang, B.; Yang, C.; Chen, Q.; Xia, W.; Sunlight-Driven Forgin of Amide/Ester Bonds from Three Independent Components: An Approach to Carbamates. *Org. Lett.*, 2016, 18, 5572-5575.

22 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, M. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.

23 (a) Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. *Theor. Chem. Acc.*, 2008, 120, 215. (b) Zhao, Y.; Truhlar, D. G. Density Functionals with Broad Applicability in Chemistry. *Acc. Chem. Res.*, 2008, 41, 157.

24 Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate *ab initio* parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *J. Chem. Phys.*, 2010, 132, 154104.

25 Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. *J. Phys. Chem. B*, 2009, 113, 6378.
(a) Weinhold, F.; Landis, C. R.; Glendening, E. D. What is NBO analysis and how is it useful? *International Reviews in Physical Chemistry* **2016**, *35*, 1. Reed, A. E.; Weinhold, F. J. Natural localized molecular orbitals. *Chem. Phys.*, **1985**, *83*, 1736. (b) Reed, A. E.; Weinhold, F. *Isr. J. Chem.*, **1991**, *31*, 277. (c) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. *Chem. Rev.*, **1988**, *88*, 899. (d) Weinhold F. in Schleyer P.v.R. *Encyclopedia of Computational Chemistry*: Wiley: New-York, **1998**, *3*, 1792.

CYLview, 1.0b; Legault, C. Y., Université de Sherbrooke, 2009 (http://www.cylview.org).

ChemCraft 1.7, build number 405; http://www.chemcraftprog. com (accessed February 2015).

Rodríguez-Guerra Pedregal, J.; Gómez-Orellana, P.; Maréchal, J.-D. *J. Chem. Inf. Model.* **2018**, *58*, 561–564.