Biological: Review

Visualization of yeast cells by electron microscopy

Masako Osumi\textsuperscript{1,2,*}

\textsuperscript{1}Laboratory of Electron Microscopy/Bio-imaging Center, Japan Women’s University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan and \textsuperscript{2}NPO: Integrated Imaging Research Support, 1-7-5-103, Hirakawa-cho, Chiyoda-ku, Tokyo 102-0093, Japan

*To whom correspondence should be addressed. E-mail: osumi@fc.jwu.ac.jp

Abstract

In the 1970s, hydrocarbon or methanol utilizable yeasts were considered as a material for foods and ethanol production. During the course of studies into the physiology of yeasts, we found that these systems provide a suitable model for the biogenesis and ultrastructure research of microbodies (peroxisomes). Microbodies of hydrocarbon utilizing \textit{Candida tropicalis} multiply profusely from the preexisting microbody. $\beta$ oxidation enzymes in the microbody were determined by means of immunoelectron microscopy. We examined the ultrastructure of \textit{Candida boidinii} microbodies grown on methanol, and found a composite crystalloid of two enzymes, alcohol oxidase and catalase, by analyzing using the optical diffraction and filtering technique and computer simulation. We established methods for preparing the protoplasts of \textit{Schizosaccharomyces pombe} and conditions for the complete regeneration of the cell wall. The dynamic process of cell wall formation was clarified through our study of the protoplasts, using an improved ultra high resolution (UHR) FESEM S-900 and an S-900LV. It was found that $\beta$-1,3-glucan, $\beta$-1,6-glucan and $\alpha$-1,3-glucan, as well as $\alpha$-galactomannan, are ingredients of the cell wall. The process of septum formation during cell division was examined after cryo-fixation by high pressure freezing (HPF). It was also found that $\alpha$-1,3- and $\beta$-1,3-glucans were located in the invaginating nascent septum, and later, highly branched $\beta$-1,6-glucan also appeared on the second septum. The micro-sampling method, using a focused ion beam (FIB), has been applied to our yeast cell wall research. A combination of FIB and scanning transmission electron microscopy is useful in constructing 3D images and analyzing the molecular architecture of cells, as well as for electron tomography of thick sections of biological specimens.

Keywords

yeast, microbody (peroxisome), cell wall formation, \textit{Schizosaccharomyces pombe}, ultra-low temperature/low-voltage scanning electron microscopy (ULT/LVSEM), FIB-STEM

Received

4 October 2012, accepted 9 November 2012; online 10 December 2012

Introduction

Yeasts are unicellular eukaryotes, and have fundamentally the same subcellular structure as higher animal and plant cells, and are used widely as a model system in basic and applied fields of life science, medicine and biotechnology. The National Institutes of Health, USA, designates yeasts as one of model organisms for biomedical research.

The ultrastructure of yeast cells was first studied by transmission electron microscopy (TEM) using thin sections in 1957 [1], and the freeze-etching replica method was introduced in 1969; at that
point the fine structure of yeast cells was obtained [2]. During the next 50 years, techniques for analyzing ultrastructure of yeasts advanced greatly. Here, I will review the development of fixation methods, rapid-freeze techniques and instruments for studying yeasts by use of electron microscopy (EM). Our discovery of fine structure and of enzymes of microbodies is shown, and the process and mechanism of septum formation as well as the ultrastructure, components and mechanism of formation of cell wall, will be described in this review. Finally, I will introduce a perspective on yeast ultrastructure research in the 21st century.

General features of yeast cells and the development of their fixing techniques

The yeast is classified into the budding yeast and the fission yeast. The budding yeast (Fig. 1a) has an ellipsoidal shape (6 × 5 μm), and divides by budding. On the other hand, fission yeast (Fig. 1c) has a cylindrical rod-shape (7–8 × 2.5 μm), and divides by medial fission. Although yeasts have these two types of cell proliferation, the cellular structures are basically the same as each other: nucleus with nuclear pores, mitochondria, microbodies, vacuoles, endoplasmic reticulum, and so on. Golgi apparatus is rarely observed as a ‘fence’ in budding yeast, but its stacks appear usually in fission yeast (Fig. 1b and d).

At the late 1950s, I began to develop the technique of fixation of yeast cells for the study by use of EM, because yeasts have a thick cell wall composed of an inner network of glucans and an outer layer of mannoproteins, which is a barrier to penetration of osmium tetroxide (OsO₄) solution, which is widely used as a fixative for many organisms. Figure 2 shows the progress of fixation methods and corresponding TEM images of yeasts from 1957 to 1985. Yeast cells were fixed solely with potassium permanganate (KMnO₄) and EM photographs were taken by me in the early 1960s (Fig. 2a and b) [3]. More fine EM images that were obtained by using double fixation with and KMnO₄ (Fig. 2c) made us able to study the ultrastructure in relation to cellular function [4]. To remove the yeast cell wall, we digested cells with Zymolyase (β-1,3-glucanase) [5], and obtained complete protoplasts. In the middle of the 1970s, our research team succeeded in obtaining a good EM image of the spheroplast or protoplast fixed with glutaraldehyde (GA) and OsO₄ (Fig. 2d) [6].

However, the information on the cell wall was lost using this method. Then, the rapid freezing of yeast cells using a sandwich method was achieved [7], and finally we were able to realize the whole cell image of yeast cells with natural cell wall (Fig. 2e). Thus, we could now easily analyze images of the same specimen by use of both TEM and scanning electron microscopy (SEM), and hence we started studies on morphology of the yeast cell by high resolution (HR) and low voltage (LV) SEM [8].

To get a large quantity of frozen yeast cells for diversified analyses, we developed the HPF method [9–14]. Then, freeze-etching method and micro-sampling methods, using focused ion beam [FIB, see FIB-scanning transmission electron microscopy (STEM) is useful for cell biology Section] as well as thin sectioning, can be applied for both budding and fission yeast cells, for observation with TEM and SEM, the same as other organisms. Figure 3 shows the progress of model image of yeast cell ultrastructure, and changes in fixation methods during the last 30 years [9]. KMnO₄ fixation is still useful for visualizing cell walls, in order to examine mating and germination processes [15].

Fine structure and biogenesis of microbodies (peroxisomes) in hydrocarbon utilizable yeast, Candida tropicalis, grown under different carbon sources

Fine structure of microbody

In the early stages of biotechnology, hydrocarbon or methanol utilizable yeasts were considered as a material for foods and ethanol production. Although the metabolism and fermentation of hydrocarbons producing useful substances have been extensively studied in this period, only few reports have been published about the relation between ultrastructure and metabolism [16,17]. During the course of studies of the physiology of hydrocarbon-utilizing yeasts, we found that microbodies that have a homogeneous matrix and are surrounded by single unit membranes appeared profusely in various strains of Candida tropicalis.
Fig. 1. General features of yeast cells. Budding yeast, *Saccharomyces cerevisiae* (a) and *Candida albicans* (b), and fission yeast, *Schizosaccharomyces pombe* (c and d). (a and c) SEM images. (b and d) TEM images [9]. BS, bud scar; Bir S, birth scar; CM, cell membrane; CMI, invagination of cell membrane; CW, cell wall; DS, division scar; ER, endoplasmic reticulum; G, Golgi apparatus; M, mitochondrion; Mb, microbody; N, nucleus NP, nuclear pore; NE, nuclear envelope; V, vacuole; VM, vacuole membrane. (Reproduced with permission from Elsevier).
Fig. 2. Development of fixation methods of yeast. Images of KMnO₄ fixation taken in 1960 (a) and on 12 February 1967 (b), double fixation with GA and KMnO₄ on 17 November 1967 (c), GA-OsO₄ fixation of spheroplast in 1974 (d) and rapid freezing (sandwich method) and freeze substitution on 3 February 1985 (e) [9,66]. Nu, nucleolus; Ves, vesicle; R, ribosome. (Reproduced with permission from Elsevier).
yeasts grown in \(n\)-alkanes [18]. Such microbodies in mammalian and plant cells have been identified as 'peroxisome' and/or 'glyoxysome', and catalase has been confirmed as the specific marker enzyme [19,20]. In the case of \textit{Candida} yeasts growing in \(n\)-alkane as a sole carbon source, we found that the catalase activity is significantly higher than that growing in the usual carbon source, glucose, especially at the exponentially growing stage [21].

During the basic studies of the relationship between the appearance of microbodies and high catalase activity in \textit{Candida} yeasts grown on \(n\)-alkanes, we established the isolation method of microbodies from the cells to investigate their ultrastructure [6].

The catalase activity in cells of various strains of \textit{Candida} yeasts grown in \(n\)-alkane was markedly higher than that in the cells growing on glucose, ethanol or acetate. EM images revealed an abundant appearance of microbodies in the cells, and EM cytochemistry using 3,3-diaminobenzidine reagents confirmed the localization of catalase activity in the microbodies, as well as mitochondria [22–24].

\textit{Candida tropicalis} cells, precultured on malt extract, contained microbodies scarcely, and showed very low levels of catalase activity. When the precultured cells were transferred to an \(n\)-alkane medium and incubated with shaking, the cell shape changed to the filamentous form over 16 h (Fig. 4a and b), and concomitantly the number and volume of microbodies and the catalase activity increased [22].

In the 1970s we wondered why microbodies gathered or aggregated with each other even there was enough space in the cytoplasm (Fig. 4a–d) [22]. In connection with this, a distinct structure was observed in the area where two microbodies touched each other, which we termed a 'zipper-like structure' (Fig. 4f–h). The presence of this structure was also confirmed by the freeze-fracture technique (see Supplementary data) [25]. This structure may cause aggregation of microbodies at the early stage of biogenesis, and may be concerned with the physiological stability of organelles or the efficiency of metabolism. Recently, the coiled-coil protein VIG1 has become to be essential for tethering vacuoles to mitochondria during vacuole inheritance of \textit{Cyanidioschyzon merolae} [26]. Similar molecules to VIG1 may concern in association of microbodies.

Fig. 3. Progress of ultrastructure model of yeast cell according to the development of the fixation method. (a) \(\text{KMnO}_4\) fixation. (b) Double fixation with GA and \(\text{OsO}_4\) fixation. (c) Rapid freezing and freeze substitution fixation with \(\text{OsO}_4\). \(\text{KMnO}_4\) destroys ribosomes and cytoskeletons. By digesting the cell wall, \(\text{OsO}_4\) is able to penetrate into the cytoplasm and preserves the intracellular organelles, including ribosomes and cytoskeleton. Cells fixed by freeze substitution are spherical and all intracellular organelles are easily recognized. The surface of the cell wall is covered with a brush-like structure of the polysaccharides [9]. D, dictyosome (Golgi apparatus); eR, rough endoplasmic reticulum; sER, smooth endoplasmic reticulum; SPB, spindle pole body; MT, microtubule; P, polyphosphate; L, lipid; Gly, glycogen; F, actin fibril. (Reproduced with permission from Elsevier).
Fig. 4. Microbodies of *C. tropicalis*. Cells grown in hydrocarbon as a sole carbon source change to a filamentous shape and microbodies appear profusely. GA-KMnO$_4$ (a) and GA-OsO$_4$ (b) fixed cells. Localization of T-I (c), and T-I and T-III (d) by IEM. Small and large colloidal gold particles indicate T-I and T-III, respectively. (e) Dumbbell-shaped microbodies. (f) Joined microbodies. Zipper-like structure (arrow) observed by a thin section (g) and a freeze fracture replica (h). P indicates peroxisome (h, see Supplementary data).
the new function of peroxisome participating in the Woronin body formation has been reported [27].

**Biogenesis of microbody**

There are several hypotheses about the origin of microbodies. De Duve proposed that these organelles are derived from a dilated region of ER [28], although many of the published micrographs failed to demonstrate a direct continuity between the membrane of the nascent microbodies and the ER membrane. Our observation in the 1970s suggested it seems most likely that yeast microbodies would originate from preexisting microbodies. This assumption may be supported by the fact that microbodies exist as aggregations in cells incubated for 6–8 h on the n-alkane medium, and in 46 h-old cells the cytoplasm is filled with the organelles [22]. In contrast, ER does not arise in cells during the early incubation period with the n-alkane medium. Recently, dumbbell-shaped microbodies were observed which had electron dense particles inside a constricted area (10 nm φ, arrows in Fig. 4e) in 2.5 h-cultured cells. It is possible that these particles are involved in the control of the division of microbodies [29,30]. Furthermore it has been shown that two daughter microbodies arise by binary fission of the preexisting microbody in alga *Cyanidioschyzon*, which contains one microbody per cell [31].

On the other hand, in yeast *Saccharomyces cerevisiae*, peroxisome fuses distinct vesicles derived from the ER [32], indicating that research of peroxisome biogenesis now reopens the discussion of the participation of ER [33,34]. In near future the process of multiplication, segregation and breakdown of peroxisome will be elucidated by means of the latest visualization techniques: UHR EM and super resolution fluorescence microscopy.

**Enzymes in microbodies of Candida tropicalis**

We determined by immunoelectron microscopy (IEM) that the microbodies of *C. tropicalis* cells grown in n-alkane included thiolase, acetyl CoA (T-I) and 3-ketoacetyl CoA thiolase (T-III), which are enzymes for β-oxidation of fatty acid. The T-III locates specifically in the microbodies, whereas T-I was detected both in the cytoplasm and microbodies (Fig. 4c and d). These results were consistent with the biochemical data based on subcellular fractionation, indicating that the yeast β-oxidation system operates efficiently only in the microbody. Other peroxisomal enzymes, acetyl-CoA oxidase, catalase, carnitine acetyltransferase, isocitrate lyase (ICL) and malate synthase, were also detected in microbodies [35,36].

The ICL gene of n-alkane utilizable yeast *C. tropicalis* could be expressed in *S. cerevisiae* MT8-1 cells grown on an oleic acid medium, and the enzyme proteins transported into the microbody. To identify the signal sequence responsible for the proper subcellular location of *C. tropicalis* ICL (CT-ICL) in *S. cerevisiae*, the localization of truncated mutants of CT-ICL were examined by IEM. Three amino acids residues at the C-terminal end were not an essential sequence for the location in the peroxisomes. In cells expressing the internal region of the CT-ICL gene, the expressed polypeptides did not transport to the peroxisomes; rather, the polypeptides were mis-targeted to mitochondria or formed a protein aggregate body (PAB) in the cytoplasm [37]. PAB is now generally termed ‘aggresome’.

**Composite crystalloid in the microbody of methanol utilizeable yeast Candida boidinii**

In the course of the studies of the physiology of methanol utilizing yeasts, *Kloeckera* sp. no 2201 (also known as *C. boidinii*), microbodies of small size, were found in cells grown in a glucose medium, transferred into methanol medium and then incubated for 2 h. After 4 h of cultivation, 5–6 microbodies were observed on the section of the cell (Fig. 5a). Although the number did not change during prolonged cultivation, their size increased with the passage of cultivation time. The microbodies were successfully isolated by means of sucrose gradient centrifugations from the methanol-grown cells [38], and microbody-specific enzyme activities were detected in the fraction by biochemical techniques. The activity of catalase and alcohol oxidase, the key enzymes of methanol oxidation, was also found in the fraction throughout the cultivation period [39].

The ultrastructure of microbodies in methanol-grown cells differed from that of hydrocarbon utilizing cells, and they have a lattice structure (Fig. 5b). The use of a cryo-sectioning technique, together
Fig. 5. Microbodies of *C. bodinii*. (a) The cell grown in methanol as a sole carbon source has few microbodies containing crystalloid inside. (b) Lattice structure of crystalloid. (c) Microbody crystalloid. (c–i) Negative staining image with uranium acetate. (c–ii) Optical diffraction. (c–iii) Electron diffraction. (c–iv) Malt-81 times superimposed images showing four sub-units (circle) in the large particle. (c–v) Optical filtering image showing four sub-units in the large particle and two sub-units in the small particle (red). (d, i1–i3) Three tilting images of crystalloid. (d, ii1–ii3) Optical diffraction. (d, iii1–iii3) Electron diffraction. (e) Reconstructed images. (f) 3D model of crystalloid [41–47]. Reproduction from references [42,44]. Cry, crystalloid. (Reproduced with permission from American Society for Microbiology).
with electron diffraction, optical diffraction and filtering and computer simulation, determined the intrinsic structure of the crystalloid. The activity of alcohol oxidase and catalase was found uniformly in the crystalloid, using electron probe microanalysis [40] of cryo-sections, as well as by EM cytochemistry [41–47].

Profiles of the microbody crystalloid in the cryo-sections with negative staining, which was a popular technique for detecting the finest structure at that time, were classified into three types: tetragonal, hexagonal and rectangular lattice (Fig. 5d, i1–i3). When a figure of Fig. 5c–i was superimposed 81 times (which was the old analytical method), large and small particles were found (yellow arrow and arrowhead, respectively in Fig. 5c–iv). The large particle was composed of 4 subunits. However, the number of subunits in small particles was impossible to determine by this method. Then, the particle was analyzed by an optical filtering technique [48], which was the most advanced technique at that time, and two small subunits were found in the small particles (Fig. 5c–v, red).

Their optical diffraction (Fig. 5d, ii1–ii3) and also electron diffractions (Fig. 5d, iii1–iii3) revealed that the crystalloid has a cubic structure. By tilting experiments, one of the three profiles of the lattice was converted to another (Fig. 5d, i1–i3). Optical diffraction images (Fig. 5d, i1–i3) clearly showed that the lattice was composed of two types of particles, with different diameters of 10 and 7 nm, which were arranged alternately. Computer simulations of tilting images of the crystalloid conclusively showed that the crystalloid comprises composite crystals of two particles, and that large and small particles were composed of eight (blue) and four (red) subunits, respectively (Fig. 5e–iii). Large particles seemed to consist of alcohol oxidase molecules, while the small particles were presumably made up of catalase according to their molecular weight. We proposed the 3D model of the microbody crystalloid (Fig. 5f) [45]. The distance between particles was 11 nm with a unit cell length of 22 nm, and the shortest distance between two large (or small) particles measured 15.6 nm. They located alternately to make up the composite crystals, the same as the structure of rock salt. These composite crystals can participate most effectively in methanol oxidation in the cell.

**Mechanism of cell wall formation**

Since the protoplasts of *Schizosaccharomyces pombe* can completely regenerate cell walls to revert to normal cells in liquid media, the regenerating process is a good model system to examine a *de novo* process for cell wall synthesis: (i) initiation of the cell wall, (ii) formation of microfibrils, (iii) deposition of an amorphous wall substances and (iv) involvement of the actin cytoskeleton.

**Summary of the cytoskeletal changes during cytokinesis of Schizosaccharomyces pombe**

Fission yeasts are useful model organisms for research into the cell division cycle [4,49,50]. In the 1980 and 1990 s, the behavior of the cytoskeleton during the yeast cell cycle was intensively studied in many laboratories, including the author’s [51–59].

We proposed that the actin cytoskeleton plays a leading role in the formation of the cell wall through studies, starting in 1989, of cell wall formation and the behavior of filasomes [60,61] using a fluorescence microscopy. We also found that prior to septum formation, actin localized as if to lead invagination of the cell membrane, and formed an actin ring with the progress of septum expansion [14,62,63]. The actin cytoskeleton may play the role of conductor in the cytokinesis [64–67]. Figure 6 summarizes the cytoskeletal changes through the cell division cycle in *S. pombe* [51–59,68,69].

**Development of UHR-LVSEM**

To visualize details of a regenerating cell wall, we developed an improved UHR FESEM S-900LV, collaborating with Hitachi Co., which gives us better resolution at low beam energy (∼5 kV or below) with small aberrations of the objective lens and a shorter working distance [70,71]. This modified in-lens FESEM S-900, referred to here as S-900LV (commercial model SEM S-900H), is a type of UHR LVSEM, which enables us to observe directly the surface topographs of uncoated biological samples with maximum fidelity (Fig. 7) [72].
Using a UHR LVSEM S-900 LV and S-900, we can study the ultrastructure of regenerating cell walls of *S. pombe* protoplasts with uncoated or slightly coated [73] surfaces, respectively. Just after digesting the cell wall of the cylindrical *S. pombe* cells with Novozyme 234, no cell wall material was seen on the surface of the round shaped protoplast (Fig. 8a). The absence of staining with calcofluor confirmed that the surface of freshly prepared protoplasts was free from cell wall materials, glucans and α-garactomannan [59]. TEM images of thin sections also confirmed the absence of the remnants of old wall materials on the surface [74]. Many invaginations of the cell membrane, which is unique to *S. pombe*, were found on the surface.

After 10 min incubation, a portion of the surface accumulated invaginations (Fig. 8b, →), and at 1.5 h...
fibrous materials appeared at the area (Fig. 8c, ——). After 5 h, fibrous network covered the whole surface of the protoplast, and the shape of the protoplast changed to the elongated form (Fig. 8e). The microfibrils twisted around each other and developed into thick fibrils forming flat bundles.

Fig. 8. Regeneration processes of reverting protoplast. The specimens were slightly coated with a <2 nm layer of platinum-carbon at $2 \times 10^{-7}$ Pa and 10°C in a Balzers 500 K with the electron gun. (a) Protoplast. Cell wall regeneration process after 10 min (b), 1.5 h (c), 3 h (d), 5 h (e), 10 h (f) and 12 h (g and h). (i), Architecture of fibrous network (uncoated specimen). (j) Detection of α-galactomannan using lectin-conjugated gold particles (40 nm, coated with carbon). See references [72,73,75,79].
Intrafibrillar spaces were gradually filled with particles (Fig. 8d, arrowhead). After 10 h, the granular materials filled up intrafibrillar spaces on the surface (Fig. 8f). Finally, after 12 h the complete cell wall was regenerated (Fig. 8g and h) [75].

In the cell-free system using isolated cell membrane of C. albicans and the negative staining method, secreted particles (2 nm φ) subsequently converted to microfibrils ~4 nm thick [76]. Uncoated UHR LVSEM images of the regenerating protoplast showed scattered particles, ~3 nm φ (arrowhead) and 2 nm thick (①) microfibrils on the cell surface (Fig. 8i). These microfibrils may be joined end to end, twisted around each other, attached side-by-side to 8 nm thick (②) fibrils, and then developed to a ribbon shaped network ~16 nm thick 16 nm thick (③). The ribbon shaped structures further contacted side by side and finally formed diversified structures with various width and length, up to 200 nm wide and 1 μm long (arrow) [72]. SEM images of microfibrils and ribbon shaped structures shown here were similar to TEM images of a negatively stained specimen of the reverting protoplast for 3 h (Fig. 10a) [9,72,75].

Identification of cell wall components

Bundles formed on the surface of reverting protoplasts were cleaved into small pieces when the protoplasts were treated with β-1,3-glucanase for 2 h (Fig. 10a and b) [9,72] and completely digested with longer treatment. Furthermore, fibrous networks are not formed on the protoplasts in the presence of aculeacin A, an antifungal antibiotic and a potent inhibitor of β-1, 3-glucan synthesis [76–78]. Immunogold signals against for β-1,3-glucan were detected on IEM (Fig. 10d and e arrows). Thus, fibrous structures are composed of microfibrils of β-1,3-glucan as in a budding yeast cell wall [76,78]. By using gold-labeled lectin, α-galactomannan was detected on particles locating in the intrafibrillar space of the reverting protoplast for 3 h (arrowhead in Fig. 8d, f and j) [79]. The intrafibrillar spaces were filled with the particles after 12 h (Fig. 8g) indicating α-galactomannan was also an ingredient of the cell wall.

In addition to β-1,3-glucan, it was found by NMR spectroscopy [80] and IEM using an antibody against α-1,3-glucan that the S. pombe cell wall included α-1,3-glucan. Most of all, the α-1,3-glucan...
distributed just outside the cell membrane, supporting previous reports that the α-glucan is synthesized on the cell membrane [81]. Recently we also detected Mok 1p, the protein of α-1,3-glucan synthetase, locating on the cell membrane. Mok 1p moves from the cell tip to the medial region during the cell cycle [14]. These results show that α-1,3-glucan is required for the primary step of glucan bundle formation in new cell wall synthesis during vegetative growth.

Based on the experiment using anti-β-1,6 glucan antibodies, we proposed that β-1,6 glucan in a highly branched form is also an ingredient of the cell wall. However, such β-1,6 glucan was not recognized on the Golgi body [66,82]; rather, they existed in the cytoplasm and beneath of the cell membrane. From these results and the fact that the low molecular α-1,3-glucan was transported through the secretory pathway to the cell membrane where the synthase located, and then synthesized into higher molecules, it was speculated that linear β-1,6 glucan was synthesized in the endoplasmic reticulum-Golgi system, and that highly branched structures were formed on the cell membrane (Fig. 9) [66,67,82]. Thus β-1,6-glucan, as well as α-1,3-glucan and β-1,3-glucan, is an ingredient of the cell wall of S. pombe. Those glucans and α-galactomannan are characteristic components of this yeast [83]. Throughout these experiments, we used antibodies against α-1,3-glucan, and highly branched β-1,6-glucan that we had prepared [80].

Treatment with ruthenium tetroxide (RuO₄) [84–86] after conventional fixation provides clear TEM images of glucan fibrils and the outer surface of the cell membrane with high electron density [61]. Also, filasomes (Fig. 10i), Golgi apparatus and secretory vesicles are clearly visible in the cytoplasm. The regenerated fibrils stained with RuO₄ show the twisted (Fig. 10f), separated (Fig. 10g), anchored (Fig. 10h) and ring- or canal-shaped forms (Fig. 10c and d) [9]. The finest regenerating glucan fibril is 1.0–1.5 nm in diameter (Fig. 10a arrow, Fig. 10c, →→→), which is slightly less than that of the SEM image.

Just beneath the cell membrane filasomes are easily identified (Fig. 10i) by heavy staining with RuO₄ [61]. They are 100–300 nm in diameter and consist of one microvesicle (35–70 nm in diameter) and fine filaments surrounding the vesicle [65]. The location of filasomes in reverting protoplasts coincides with the site where F-actin patches exist [65]. It seems that filasomes may contribute to transporting the cell wall materials from the cytoplasm to underneath the cell membrane.

**Mechanism of cell wall formation and 3D images of intracellular structure during regeneration of the protoplast**

The cell wall and septum are abnormal in actin point mutant cps8, and the distribution pattern of the actin cytoskeleton differs from wild-type [87,88]. In the mutant cells, the development of crosslinks between β-1,3-glucan fibrils was defective, and the infrabifibrillar space on the reverting protoplast surface was not filled with amorphous particles composed of α-galactomannan [89]. In the wild type cells, formation of the fibril network was completely inhibited in the presence of 40 μg ml⁻¹ cytochalasin D, and this inhibition was reversible [59]. These results suggest that the actin cytoskeleton may control secretion of cell wall materials such as α-galactomannan. In addition, the actin cytoskeleton requires localization of α-1,3-glucan.
synthase to the site of growth and plays an essential role in cell morphogenesis [90].

Protoplast treated with periodic acid-thiocarbohydrazide-silver protein staining for polysaccharides (PATAg) shows a higher electron density of Golgi bodies [74]. The intracellular secretion machinery, especially the Golgi apparatus and secretory vesicles, was analyzed by 3D reconstruction from 40 to 80
serial sections of protoplasts stained with PATAg at five distinct reverting stages (Fig. 11). The total volume of reverting protoplast increased by 3.8 and 4.3 times at 3 and 5 h, respectively, and the volume of Golgi apparatus at the corresponding stages increased 2.3- and 2.5-fold, respectively. The number of secretory vesicles also increased markedly by 3.4 and 5.8 times, respectively. Filasomes may correlate with this secretory system.

Combined data, obtained by using UHR LVSEM and TEM techniques, suggest the mechanism of cell wall formation in yeast as shown in Fig. 12 [9]. In addition, our data together with other studies [83,91–97] proposes the composition and structure of the cell wall of S. pombe (Fig. 13) [9,98].
Significance of the HPF technique in structural biology – with reference to a study of septum formation in fission yeast

HPF was first used as an alternative method of cryo-fixation in the 1960s, and has advanced since then. The commercially available unit is reliable with respect to its physical performance in yeast cells as well as plant tissues [99]. Cells of *S. pombe* were cryo-fixed by HPF using HPM 010 (BAL-TEC AG, Liechtenstein) under 210 MPa. They were observed at −140°C by Philips XL30 FEG and Hitachi S-4700 SEM, using the cryo-system Alto 2500 (Oxford), after cryo-cutting at −175 to −185°C.

![ULT-LVSEM images of *S. pombe* cells cryo-fixed by HPF. (a) An outside image of a single cell showing PF face of the cell membrane. (b) An inside image of a cell. (c) An image of a cell cut in the central plane along with the longitudinal axis. (d) TEM image of a thin section [68].](https://example.com/ult-lvsem_images.png)
and magnetron spatter coating with platinum (2 mm). The high quality image by ultra-low temperature (ULT)-LVSEM showed an ultrastructure corresponding to the thin section of the same specimen, and 3D vision could be observed from the outside and inside of the cell, allowing the stereo view of initial septum formation [68].

Figure 14a and b show a fracture image of an outer side and the inside of a cell, respectively. A fracture image of a central plane along the longitudinal axis of a cell (Fig. 14c), closely resembles the thin-section image of the same HPF specimens (Fig. 14d). On the PF face of the cell membrane, invaginations found on the protoplast surface (Fig. 8a) are also observed (Fig. 14a). Fracture images of S. pombe cells forming septum during cytokinesis are shown on Fig. 15. Newly formed primary septum keeps expanding and is lined with secondary septum until the cytoplasm separates (see Fig. 6).

Throughout the septum formation, the immunogold-labeled \( \alpha \)-1,3-glucan molecules were observed on the expanding incomplete septum [14,68,69]. The \( \alpha \)-1,3-glucan synthase Mok 1p is an essential enzyme for the synthesis of \( \alpha \)-1,3-glucan. To analyze the behavior of Mok 1p during septum formation, frozen cells by HPF were prepared by freeze-fracture replica after SDS treatment and then labeled with antibodies (SDS-FRL) [100]. The immunogold-labeled Mok 1p molecules (arrowhead) accumulated on the cell membrane around the region where the septum was formed (Fig. 16a, arrow). Mok 1p were also localized on the membrane beneath complete septum (Fig. 16b,

---

**Fig. 15.** ULT-LVSM images of the septum in dividing S. pombe cells. (a and b) The incomplete septum. (c) The PF face of the incomplete septum. (d) The PF face of the almost completed septum. Both sides of the PF face of the septum can be seen. (e) Bipolar growing cells (double arrows). There is no invagination on either side of the medial region (arrow) of the cell [4,68].

**Fig. 16.** SDS-FRL images of HPF S. pombe cells labeled with an anti-Mok1p antibody. (a) Mok1p (arrowhead) appears on the PF face of the cell membrane at the septum (arrow). (b) Mok1p also appears on the septum plane when its formation is complete. (c) Mok1p is localized on the tip of the swollen daughter cell (the new end) [68]. See Fig. 6. Cyt, cytoplasm.
After daughter cells separated, Mok 1p was observed on their swollen tip (Fig. 16c, arrowhead). We now know the in situ localization and behavior of glucans, α-1,3-glucan, β-1,3-glucan, and highly branched β-1,6-glucan, during septum formation as well as in the cell wall of *S. pombe* [14,66,81].

Cryo-fixed specimens by HPF were also available for conventional TEM and IEM. The thin sections of cells showed a superior image of the fine structure of all subcellular organelles. The IEM images displayed in situ localization of glucans in *S. pombe* cells [66–69]. During septum formation β-1,3- and α-1,3-glucans were located in the invaginating primary septum, providing the first morphological evidence at the initial stage of septum formation. At this time, highly branched β-1,6-glucan was not detected, whereas other glucans were observed. Later, highly branched β-1,6-glucan also appeared on the secondary septum. Throughout the septum formation, actin was located just beneath the invaginated cell membrane and also accumulated at the medial region of the cell [63,64,67]. From these facts it is concluded that the actin cytoskeleton governs septum formation.

Very recently we found the essential function of α-1,3-glucan in the septation and cell separation during cell division [101].

**FIB-scanning transmission electron microscopy (STEM) is useful for cell biology**

To analyze the molecular architecture of cells, micro-sampling methods using an FIB, which are the main techniques for semiconductor device analysis, have been applied to yeast cells. This is the first case of applying FIB to the biological specimen [102].

The 0.3 μm thick specimen was obtained by milling with FIB, and the dark field image was observed by scanning transmission electron microscopy (STEM) (Fig. 17). Then, 3D images were constructed from 50 views taken by tilting 5° on a STEM. Six images are picked up and shown in Fig. 17a–c, and a clear image at high magnification in Fig. 17d [103–106]. On the outer surface of the cell wall, brush-like structures were recognized, clearly consisting of the presence of mannnoproteins (See Fig. 13), and fibrous structures were observed near the cell membrane side of the cell wall, consisting of glucan networks.

We tried to examine in more detail the cell wall architecture. The cell wall of *S. cerevisiae* was treated with acid after solubilizing the cytoplasm and prepared by FIB micro-sampling, and then the stereo images by STEM were taken at an original magnification of ×250,000. Fine fibrils were recognized inside the cell wall (circles in Fig. 18e and f) [98,105,106]. In addition, STEM is also useful for electron tomography of thick sections of biological specimens [107–109]. We succeeded determining the polarity of actin cytoskeleton modified with heavy meromyosin in cells of *S. pombe* that had been quite difficult to detect by usual IEM (Fig. 19) [98].

**Future directions**

I have reached the conclusion, from my long experience, that it is important to use the most suitable model system for each study. For example, I used
hydrocarbon- or methanol-utilizable yeasts to study the biogenesis of microbodies, and the regeneration system of protoplast was used to resolve the mechanism of cell wall formation. I found the best condition for conversion of the intact cells to protoplast at 100% yield even in a liquid medium, and could establish the system during the work. I also established some methods of analysis such as: (i) development of fixation, (ii) adoption of image reconstruction and analysis, even at the early period of EM, (iii) conception of rapid freezing by the sandwich method for yeasts, (iv) development of UHR LVSEM, by which uncoated biological specimens can be observed under LV and (v) establishment of the ULT/LVSEM method.

The studies by means of EM will continue as important and powerful techniques for obtaining extensive information on biological structure in the 21st century, since the study of 3D will become subjective. The identification of the gene expression and proteins will become possible by the established cryo-technique, especially freeze replica combined with SDS-FRL and STEM of the same specimen. The juncture of CEMOVIS [110] with IEM will be the key to the resolution of research in cell biology. Furthermore, the integration of live cell imaging and super resolution fluorescence microscopy, which has been developed by a new theory, will be anticipated as a new method for resolving the movement of functional molecules in cells the near future.

In the past, we constructed 3D images by successive serial sectioning of the biological specimen [65, 74]. In contrast, the methods for reconstructing 3D images by FIB SEM [111] or SBF SEM are powerful and quick techniques. Recently, we have been able automatically to obtain 600 serial images from a whole S. pombe cells for only 20 h by FIB SEM [112]. This makes us able to analyze the 3D architecture of the cell.

Thus the techniques for observing and analyzing ultrastructures of molecules as well as intracellular organelles have developed significantly, and now it is possible to obtain image information with high quality. However, to understand the meaning of
observations, it is necessary to accumulate basic knowledge of morphology rather than to rely upon the technique.

Supplementary data
Supplementary data are available at http://jmicro.oxfordjournals.org/.

Funding
The work was supported by grant-in-aid for scientific research from the Ministry of Education, Culture, Sport, Science and Technology of Japan (No. 11640668, 13640670, 15570053) and the Open Research Center (013019, 010013) and the Bio-imaging Center (S0991025) of JWU established in private universities in Japan with the support of the Ministry of Education, Culture, Sports Science and Technology.

Acknowledgements
My works hitherto are largely due to the kind leadership of the following scholars: the late Professor S. Fukui, Professor A. Tanaka and M. Ueda of the Kyoto University for research of microbody, Professor M. Yanagida of the Kyoto University for the optical diffraction and filtering, Professor N. Baba of Kogakuin University for image reconstruction and analysis, and Professor H. Ohno of Tokyo Phar. University for the analysis of the cell wall of *S. pombe*. I would like to express my sincere thanks to them. I also express my great thanks to JEOL Ltd., Hitachi High-Technologies Corporation, FEI Company and Ratoc System Engineering Co Ltd. for the use of the companies’ most modern EM equipment. My large gratitude is also due to Ms N. Yamada, Dr M. Sato, Dr S. Ishijima, Ms Y. Kondo, Ms Y. Tsukamoto, N. Moritoki, A. Takahashi and S. Matumoto of the Electron Microscopic Laboratory of the Japan Women’s University, and Professor H. Kobori, Dr M. Baba, Dr N. Kamasawa, Ms H. Kokuba, Dr M. Konomi, Dr T. Takagi, Dr T. Kamasaki, Ms Y. Sibasaki, Ms T. Sugahara, Ms Y. Ikeda and Ms K. Ajima, Ms E. Tao of Professor Osumi Laboratory in the graduate school of Japan Women’s University for their useful help in my research. Finally I must express my sincere thanks to Professor M. Sameshima of Hirosaki University, for his large endeavor to examine my draft of the present paper thoroughly.

References
1. Agar H D and Douglas H C (1957) Studies on the cytological structure of yeast: electron microscopy of thin sections. *J. Bacteriol.* 73: 365–375.
2. Matile P, Moor H, and Robinow C F (1969) Yeast cytology. In: Rose A H and Harrison J S (eds.), *The Yeasts*, pp 219–302 (Academic Press, New York).
3. Osumi M (1965) Electron-microscopical observations on the formation of yeast-mitochondria. *Bot. Mag. (Tokyo)* 78: 231–239.
4. Osumi M and Sando N (1969) Division of yeast mitochondria in synchronous culture. *J. Electron Microsc.* 18: 47–56.
5. Kitamura K, Kanelo T, and Yamamoto Y (1971) Lysis of viable yeast cells by enzymes of *Arthrobacter luteus*. *Arch. Biochem. Biophys.* 145: 402–405.
6. Osumi M, Imai M, Imai M, Sato H, and Yanaguchi H (1976a) Isolation and characterization of microbodies from *Candida tropicalis* plK233 cells grown on normal alkanes. *J. Gen. Appl. Microbiol.* 21: 375–387.
7. Baba M and Osumi M (1987) Transmission and scanning electron microscopic examination of intracellular organelles in freeze-substituted *Kloeckera* and *Saccharomyces cerevisiae* yeast cells. *J. Electron Microsc. Tech.* 5: 249–261.
8. Osumi M, Baba M, Naito N, Taki A, Yamada N, and Nagatani T (1988) High-resolution low voltage scanning electron microscopy of uncoated yeast cells fixed by the freeze-substitution method. *J. Electron Microsc.* 37: 17–30.
9. Osumi M (1998a) The ultrastructure of yeast: cell wall structure and formation. *Microcon* 29: 207–233.
10. Murai T, Ueda M, Yamamura M, Atomi H, Shibasaki Y, Kamasawa N, Osumi M, Amachi T, and Tanaka A (1997a) Construction of a starch-utilizing yeast by cell surface engineering. *Appl. Environ. Microbiol.* 63: 1362–1366.
11. Murai T, Ueda M, Atomi H, Shibasaki Y, Kamasawa N, Osumi M, Kawaguchi T, Arai M, and Tanaka A (1997b) Genetic immobilization of cellulase on the cell surface of *Saccharomyces cerevisiae*. *Appl. Microbiol. Biotechnol.* 48: 499–503.
12. Kamasawa N, Yoshida T, Ueda M, Tanaka A, and Osumi M (1999) Three-dimensional analysis of protein aggregate body in *Saccharomyces cerevisiae* cells. *J. Electron Microsc.* 48: 173–176.
13. Hungel B M, Konomi M, Takagi T, Kamasawa N, Ishijima S A, and Osumi M (2001) *In situ* localization of beta-glucans in the cell wall of *Schizosaccharomyces pombe*. *Yeast* 18: 433–444.
14. Konomi M, Fujimoto K, Toda T, and Osumi M (2003) Characterization and behavior of alpha-glucan synthase in *Schizosaccharomyces pombe* as revealed by electron microscopy. *Yeast* 20: 427–438.
15. Osumi M, Shimoda C, and Yanagishima N (1974) Mating reaction in *Saccharomyces cerevisiae*: Changes in the fine structure during the mating reaction. *Arch. Microbiol.* 97: 27–38.
16. Ludvik J, Munk V, and Dostálek M (1968) Ultrastructural changes in the yeast *Candida lipolytica* caused by penetration of hydrocarbons into the cell. *Experientia* 24: 1066–1068.
17. Messel M N, Medvedeva G A, Kozlova T M, Pomoshnikova N A, Zaikina A I, and Fedoseeva G E (1975) Regularities of penetration into yeast cells of higher fatty acids and hydrocarbons, their intracellular migration and concentration. In: Proc. 3rd Internatl. Symp. Yeasts, pp 149–168 (Otaniem, Helsinki, Finland).
18. Fukui S and Osumi M (1973) Some specific features of the ultrastructure of Candida yeast cells growing on hydrocarbons. In: Proc. 3rd Symp. Technical Microbiol., pp 375–384 (Berlin).
19. Hruban Z and Rechcigl M Jr (1969) *Microorganisms and Related Particles* (Morphology, Biochemistry, and Physiology), (Academic Press, New York).
20. Tolbert N E (1971) Microbes and peroxisomes and glyoxysomes. *Ann. Rev. Plant Physiol.* 22: 45–74.
21. Osumi M, Miwa N, Teranishi Y, Tanaka A, and Fukui S (1974) Ultrastructure of Candida yeasts grown on n-alkanes: appearance of microbodies and its relationship to high catalase activity. *Arch. Microbiol.* 99: 181–201.
22. Osumi M, Fukuzumi F, Teranishi Y, Tanaka A, and Fukui S (1975) Development of microbodies in *Candida tropicalis* during incubation in an n-alkane medium. *Arch. Microbiol.* 103: 1–11.
23. Teranishi Y, Tanaka A, Osumi M, and Fukui S (1974) Catalase activities of hydrocarbon-utilizing *Candida yeasts*. *Agr. Biol. Chem.* 38: 1213–1220.
24. Teranishi Y, Kawamoto S, Tanaka A, Osumi M, and Fukui S (1974) Induction of catalase activity by hydrocarbons in *Candida tropicalis* pK 233. *Agr. Biol. Chem.* 38: 1221–1225.
364 JOURNAL OF ELECTRON MICROSCOPY, Vol. 61, No. 6, 2012

63 Kamasaki T, Osumi M, and Mabuchi I (2007) Three-dimensional arrangement of F-actin in the contractile ring of fission yeast. J. Cell. Biol. 178: 765–771.

64 Takagi T (2003) Ultrastructure Analysis of the Actin Cytoskeleton in Fission Yeast. Doctor Thesis of Japan Women’s University, pp 102 (in Japanese).

65 Takagi T, Ishijima S A, Ochi H, and Osumi M (2003) Ultrastructure and behavior of actin cytoskeleton during cell wall formation in the fission yeast Schizosaccharomyces pombe. J. Electron Microsc. 52: 161–174.

66 Osumi M (2002) On the ultrastructure of yeast cells. Plant Morphol. 14: 54–67. (in Japanese)

67 Osumi M (2002) The significance of high pressure freezing technique in structural biology. With reference to a study of cell wall formation in fission yeast. J. Japan Woman’s Univ. Faculty of Science. 10: 43–63. (in Japanese).

68 Osumi M, Konomi M, Sugawara T, Takagi T, and Baba M (2006) High-pressure freezing is a powerful tool for visualization of Schizosaccharomyces pombe cells: ultra-low temperature and low-voltage scanning electron microscopy and immuno-electron microscopy. J. Electron Microsc. 55: 75–88.

69 Konomi M (2005) Ultrastructural studies on cell wall and septum formation in fission yeast. Plant Morphol. 17: 35–44 (in Japanese).

70 Sato M, Otsuka S, Miyamoto R, and Osumi M (1989) Development of low-voltage and high resolution SEM. I. Instrumentation. Biomed. SEM 18: 1–3. (in Japanese).

71 Nagatani T, Sato M, and Osumi M (1990) Development of an ultra-high-resolution low voltage (LV) SEM with an optimized ‘in-lens’ design. In: Proc. 12th Int. Congr. Electron Microsc., pp 388–389 (Seattle).

72 Osumi M, Yamada N, Yaguchi H, Kobori H, Nagatani T, and Sato M (1995) Ultra-high-resolution low-voltage SEM reveals ultrastructure of the glucan network formation fission yeast protoplast. J. Electron Microsc. 44: 198–206.

73 Osumi M (2011) Coating method for ultra-high vacuum and ultra-low temperature. In: Kanto Branch of Jap. Soc. Microscopy (ed.), SHIN-SOSA DENSHI KENBIKO, pp 182 (Kyoritsu-Shuppan Co. Ltd., Tokyo). (in Japanese).

74 Osumi M, Sato M, Ishijima S A, Konomi M, Takagi T, and Yaguchi H (1998c) Dynamics of cell wall formation in fission yeast, Schizosaccharomyces pombe. Fungal Genet. Biol. 24: 178–206.

75 Osumi M, Yamada N, Kobori H, Taki A, Naito N, Baba M, and Nagatani T (1998b) Cell wall formation in regenerating protoplast of Schizosaccharomyces pombe: study by high-resolution low-voltage scanning electron microscopy. J. Electron Microsc. 38: 457–468.

76 Osumi M, Baba M, and Yamaguchi Y (1984) Electron microscopical study on the biosynthesis and assembly of yeast cell wall components. In: Nombe C (ed.), Cell Wall Synthesis and Autolysis, pp 137–142 (Elsevier Science, Amsterdam).

77 Yamaguchi H, Hiratani T, Baba M, and Osumi M (1985) Effect of aculeacin A, a wall-active antibiotic, on synthesis of the yeast cell wall. Microbiol. Immunol. 29: 609–623.

78 Yamaguchi H, Hiratani T, Baba M, and Osumi M (1987f) Effect of aculeacin A on reversion protoplasts of Candida albicans. Microbiol. Immunol. 31: 625–638.

79 Osumi M, Yamada N, Kobori H, and Yamaguchi Y (1992) Observation of colloidal gold particles on the surface of yeast protoplasts with UHR-LVSEM. J. Electron Microsc. 41: 392–396.

80 Sugawara T, Takahashi S, Osumi M, and Ohno N (2004) Refinement of the structure of cell wall glucans of Schizosaccharomyces pombe by chemical modification and NMR spectroscopy. Carbohydr. Res. 339: 2255–2265.

81 Sugawara T, Sato M, Takagi T, Kamasaki T, Ohno N, and Osumi M (2003) In situ localization of cell wall 1,3-glucan in the fission yeast Schizosaccharomyces pombe. J. Electron Microsc. 52: 237–242.

82 Sugawara T, Takagi T, Sato M, Ohno N, and Osumi M (2001) Architecture and localization of the cell wall glucans of the fission yeast, Schizosaccharomyces pombe. In: Proc. Mol. Mechanisms of Fungal Cell Wall Biogenesis, pp 61 (Ascona, Switzerland).

83 Manners D J, Masson A J, and Patterson J C (1973) The structure of a β-(1, 3)-D-glucan from yeast cell walls. Biochem. J. 135: 19–30.

84 Ranvier L (1887) De l’emploi de l’acide perruthénique dans les recherches histologiques, et de l’application de ce réactif à l’étude des vacuoles des cellules calciformes. C.R. Heb. Seances Acad. Sci. 105: 145.

85 Carpenter D C and Nebel B R (1931) Ruthenium tetroxide as a fixative in cytology. Science 74: 154–155.

86 Bahr G F (1954) Osmium tetroxide and ruthenium tetroxide and their reactions with biologically important substances. Exp. Cell Res. 7: 457–479.

87 Ishiguro J and Kobayashi W (1996) An actin point-mutation neighboring the ‘hydrophobic plug’ causes defects in the maintenance of cell polarity and septum organization in the fission yeast Schizosaccharomyces pombe. FEBS Lett. 392: 237–241.

88 Ishijima S A, Konomi M, Takagi T, Sato M, Ishiguro J, and Osumi M (1999) Ultrastructure of cell wall of the cpsi8 actin mutant cell in Schizosaccharomyces pombe. FEMS Microbiol. Lett. 180: 31–37.

89 Konomi M, Ishiguro J, and Osumi M (2000) Abnormal formation of the glucan network from regenerating protoplasts in Schizosaccharomyces pombe cpsi8 actin point mutant. J. Electron Microsc. 49: 569–578.

90 Kitayama S, Hirata D, Arellano M, Pérez P, and Toda T (1999) Fission yeast a-glucan synthase mo1k requires the actin cytoskeleton to localize the site of growth and plays an essential role in cell morphogenesis downstream of protein kinase C function. J. Cell Biol. 144: 1173–1186.

91 Kls F M (1994) Review: cell wall assembly in yeast. Yeast 10: 851–869.

92 Kls F M, Boosma A, and Groote P W (2006) Cell wall construction in Saccharomyces cerevisiae. Yeast 23: 185–202.

93 de Nobel H and Lipkó P N (1994) Is there a role for GPIs in yeast cell-wall assembly? Trends Cell Biol. 4: 42–45.

94 Lipkó P N and Ovalle R (1998) Cell wall architecture in yeast: new structure and new challenges. J. Bacteriol. 180: 3753–3740.

95 Kapteyn J C, Montijn R C, Vink E, de la Cruz J, Liébault A, Douwes J E, Shimoi H, Lipkó P N, and Kls F M (1996) Retention of Saccharomyces cerevisiae cell wall proteins through a phosphodiester-linked β(1,3)/β(1,6)-glucan heteropolymer. Glycobiology 6: 337–345.

96 Schreuder M P, Brekelmans S, Van den Ende H, and Kls F M (1993) Targeting of a heterologous protein to the cell wall of Saccharomyces cerevisiae. Yeast 9: 399–409.

97 Aimananda V, Claraud C, Sinensel C, Fontaine T, and Delpeyrier M (2000) Cell wall β-(1,6)-glucan of Saccharomyces cerevisiae: Structural characterization and in situ synthesis. J. Biol. Chem. 15: 13401–13412.

98 Osumi M (2000) Research into yeasts focusing on its cell wall formation. J. SJWS. 10: 17–40. (in Japanese).

99 Sluder D and Muller M M (1989) High pressure freezing comes of age. Scanning Microsc. Suppl. 3: 253–269.

100 Fujimoto K (1995) Freeze-fracture replica electron microscopy combined with SDS digestion for cytochemical labeling of intercellular membrane proteins. Application to the immunogold labeling of intercellular junctional complexes. J. Cell Sci. 108: 3443–3449.

101 Cortes J C G, Sato M, Munoz J, Moreno M B, Clemente-Ramos J A, Romas M, Okada H, Osumi M, Duran A, and Ribas J C (2012)
Fission yeast Ags1 confers the essential septum strength needed for safe gradual cell abscission. *J. Cell Biol.* **198**: 637–656.

102 Kamino T, Yaguchi T, Ohnishi T, Ishitani T, and Osumi M (2004) Application of a FIB-STEM for 3D observation of a resin-embedded yeast cell. *J. Electron Microsc.* **53**: 563–566.

103 Osumi M, Kamino T, Yaguchi T, Sano T, Ohnishi T, and Ishitani T (2006) A new application of the FIB-STEM system for the 3D observation of yeast cells. In: Proc. 16th Int. Microsc. Congress, pp 435 (Sapporo).

104 Kamino T, Yaguchi N, Sato T, and Onishi T (2006) Application of FIB technique to 3D observation of resin embedded biological tissues. In: Proc. Microsc. Microanal., pp 1232–1233 (Chicago).

105 Osumi M, Eguchi T, Yaguchi T, Sato T, and Okada H (2010) Three-dimensional observation of yeast cells and baculovirus pioneered by FIB-micro sampling. *J. Bacteriol.* **65**: 225.

106 Yaguchi N, Sto T, Eguchi T, Okada H, and Osumi M (2010) Visualization of specific yeast cell wall by FIB-STEM. *J. Bacteriol.* **65**: 108.

107 Aoyama K, Takagi T, Inoke K, Mabuchi I, and Osumi M (2006) Multi-section electron tomography. In: Proc. 16th Int. Microsc. Congress, pp 710 (Sapporo).

108 Aoyama K, Takagi T, Hirase A, and Miyazawa A (2006) STEM tomography for thick biological specimens. *Ultramicroscopy* **109**: 70–80.

109 Aoyama K, Takagi T, Noda T, and Morone N (2008) Electron tomography for thick biological specimens by using scanning transmission technique. In: Proc. 9th Asia Pacific Microsc. Conf., pp 960–961 (Chejudo).

110 Pierson J, Vos M, McIntosh J R, and Peters P J (2011) Perspectives on electron cryo-tomography of vitreous cryo-sections. *J. Electron Microsc.* **60**: S93–S100.

111 Wei D, Jacobs S, Modla S, Zhang S, Young C L, Cirino R, Caplan J, and Czymmek K (2012) High-resolution three-dimensional reconstruction of a whole yeast cell using focused-ion beam scanning electron microscopy. *Biotechniques* **53**: 41–48.

112 Osumi M, Nakano K, and Okada H. Three-dimensional reconstruction of synchronous cultured *S. pombe* cells using FIB-SEM. (in preparation).