On isometric minimal immersion of a singular non-CSC extremal Kähler metric into 3-dimensional space forms

Zhiqiang Wei, Yingyi Wu

Abstract

On any compact Riemann surface there always exists a singular non-CSC (constant scalar curvature) extremal Kähler metric which is called a non-CSC HCMU (the Hessian of the Curvature of the Metric is Umbilical) metric. In this paper, by moving frames, we show that any non-CSC HCMU metric cannot be isometrically minimal immersed into 3-dimensional real space forms even locally. In general, any non-CSC HCMU metric cannot be isometrically immersed into 3-dimensional real space forms with constant mean curvature (CMC).

1 Introduction

Since Calabi proposed the famous Calabi conjecture, Kähler-Einstein metric is one of the hot topics in geometry. For the existence of Kähler-Einstein metrics, one can refer to [15, 16, 17]. In 1982, Calabi [1] replaced Kähler-Einstein metric with extremal Kähler metric. In a fixed Kähler class, an extremal Kähler metric is the critical point of the following Calabi energy functional

$$C(g) = \int_M R^2 dg,$$

where R is the scalar curvature of the metric g in the given Kähler class. The Euler-Lagrange equations of $C(g)$ are $R_{\alpha\beta} = 0$ for all indices α, β, where $R_{\alpha\beta}$ is the second-order $(0, 2)$ covariant derivative of R. When M is a compact Riemann surface, Calabi in [1] proved that an extremal Kähler metric is a CSC (constant scalar curvature) metric.

A natural question is whether or not an extremal Kähler metric with singularities on a compact Riemann surface is still a CSC metric. In [3], X.X.Chen first gave an example of a non-CSC extremal Kähler metric with singularities. We often call a non-CSC extremal Kähler metric with finite singularities on a compact Riemann surface a non-CSC HCMU (the Hessian of the Curvature of the Metric is Umbilical) metric. In [7, 8], Q.Chen, B.Xu and Y.Y.Wu reduced the existence of a non-CSC HCMU metric to the existence of a meromorphic 1-form on the underlying Riemann surface. It is interesting that on any compact Riemann surface there always exists a non-CSC HCMU metric. For more properties of non-CSC HCMU metrics, one can refer to [4, 5, 6, 9, 12, 13] and the references cited in these papers.

Recently, isometric immersions of a non-CSC HCMU metric into some “good” higher dimensional spaces have been studied. In [10], C.K.Peng and Y.Y.Wu proved that any non-CSC HCMU metric can be locally isometric immersed into 3-dimension Euclidean space \mathbb{R}^3. They got a one-parameter family of isometric immersions from a compact Riemann surface with a singular non-CSC extremal Kähler metric to \mathbb{R}^3, each of whom is a Weingarten surface. In [14], we...
proved that any non-CSC HCMU metric can be locally isometric immersed into 3-dimensional space forms. As an application, we proved that any non-CSC HCMU metric can be locally isometric immersed into complex projective space \(\mathbb{C}P^n(n \geq 3) \) with Fubini-Study metric.

In this manuscript, we consider the following question: Suppose \(g \) is a non-CSC HCMU metric on a compact Riemann surface \(M \); For any point \(P \in M \), whether or not there exist an open neighborhood \(U \) of \(P \) and an isometric minimal immersion \(F : U \rightarrow \mathbb{Q}_c^3 \), where \(\mathbb{Q}_c^3 \) denotes the 3-dimensional space form with section curvature \(c \). The following theorem is our main result.

Theorem 1.1. Let \(g \) be a non-CSC HCMU metric on a compact Riemann surface \(M \) with the character 1-form \(\omega \). Denote \(M^* = M \setminus \{ \text{zeros and poles of } \omega \} \). Then for any point \(P \in M^* \), and any open neighborhood \(U \subseteq M^* \) of \(P \), there doesn’t exist an isometric minimal immersion \(F : U \rightarrow \mathbb{Q}_c^3 \).

Furthermore, we can prove the following theorem in a similar way.

Theorem 1.2. Let \(g \) be a non-CSC HCMU metric on a compact Riemann surface \(M \) with the character 1-form \(\omega \). Denote \(M^* = M \setminus \{ \text{zeros and poles of } \omega \} \). Then for any point \(P \in M^* \), and any open neighborhood \(U \subseteq M^* \) of \(P \), there doesn’t exist an isometric immersion \(F : U \rightarrow \mathbb{Q}_c^3 \) of constant mean curvature.

2 Preliminaries

2.1 Non-CSC HCMU metric

Definition 2.1 ([11]). Let \(M \) be a Riemann surface, \(P \in M \). A conformal metric \(g \) on \(M \) is said to have a conical singularity at \(P \) with the singular angle \(2\pi \alpha(\alpha > 0, \alpha \neq 1) \) if in a neighborhood of \(P \)

\[
g = e^{2\varphi}|dz|^2, \tag{1}
\]

where \(z \) is a local complex coordinate defined in the neighborhood of \(P \) with \(z(P) = 0 \) and

\[
\varphi - (\alpha - 1) \ln |z|
\]

is continuous at 0.

Definition 2.2 ([8]). Let \(M \) be a Riemann surface, \(P \in M \). A conformal metric \(g \) on \(M \) is said to have a cusp singularity at \(P \) if in a neighborhood of \(P \)

\[
g = e^{2\varphi}|dz|^2, \tag{2}
\]

where \(z \) is a local complex coordinate defined in the neighborhood of \(P \) with \(z(P) = 0 \) and

\[
\lim_{z \to 0} \frac{\varphi + \ln |z|}{\ln |z|} = 0.
\]

Definition 2.3 ([4]). Let \(M \) be a compact Riemann surface and \(P_1, \ldots, P_N \) be \(N \) points on \(M \). Denote \(M \setminus \{ P_1, \ldots, P_N \} \) by \(M^* \). Let \(g \) be a conformal metric on \(M^* \). If \(g \) satisfies

\[
K_{,zz} = 0, \tag{3}
\]

where \(K \) is the Gauss curvature of \(g \), we call \(g \) an HCMU metric on \(M \).
In this paper, we always consider non-CSC HCMU metrics with finite area and finite Calabi energy, that is,
\[\int_{M^*} dg < +\infty, \quad \int_{M^*} K^2 dg < +\infty. \] (4)

From [2], [9], [12], we know that each singularity of a non-CS C HCMU metric is conical or cusp if it has finite area and finite Calabi energy.

We now list some results of non-CSC HCMU metrics, which will be used in this paper. For more results one can refer to [5], [8] and the references cited in it.

First the equation (3) is equivalent to
\[\nabla K = \sqrt{-1} e^{-2\tau} K \frac{\partial}{\partial z}, \]
which is a holomorphic vector field on \(M^* \). In [4], [9], the authors proved that the curvature \(K \) can be continuously extended to \(M \) and there are finite smooth extremal points of \(K \) on \(M^* \).

In [5], [8], the authors proved the following fact: each smooth extremal point of \(K \) is either the maximum point of \(K \) or the minimum point of \(K \), and if we denote the maximum of \(K \) by \(K_1 \) and the minimum of \(K \) by \(K_2 \) then if all the singularities of \(g \) are conical singularities,
\[K_1 > 0, \quad K_1 > K_2 > -(K_1 + K_2); \]
if there exist cusps in the singularities,
\[K_1 > 0, \quad K_2 = -\frac{1}{2} K_1. \]

In [9], C.S.Lin and X.H.Zhu proved that \(\nabla K \) is actually a meromorphic vector field on \(M^* \). In [7], Q.Chen and the second author defined the dual 1-form of \(\nabla K \) by \(\omega(\nabla K) = \frac{\sqrt{-1}}{4} \). They call \(\omega \) the character 1-form of the metric. Denote \(M^* \{ \text{smooth extremal points of } K \} \) by \(M' \).

Then on \(M' \)
\[\begin{align*}
\frac{dK}{3(K - K_1)(K - K_2)(K + K_1 + K_2)} &= \omega + \bar{\omega}, \\
g &= -\frac{4}{3}(K - K_1)(K - K_2)(K + K_1 + K_2)\omega\bar{\omega}.
\end{align*} \] (5)

By (5), some properties of \(\omega \) are got in [7]:

- \(\omega \) only has simple poles,
- at each pole, the residue of \(\omega \) is a non-zero real number,
- \(\omega + \bar{\omega} \) is exact on \(M \setminus \{ \text{poles of } \omega \} \).

Conversely, if a meromorphic 1-form \(\omega \) on \(M \) which satisfies the properties above, then we pick two real numbers \(K_1, K_2 \) such that \(K_1 > 0, K_1 > K_2 > -(K_1 + K_2) \) or \(K_1 > 0, K_2 = -\frac{1}{2} K_1 \), and consider the following equation on \(M \setminus \{ \text{poles of } \omega \} \)
\[\begin{align*}
\frac{dK}{3(K - K_1)(K - K_2)(K + K_1 + K_2)} &= \omega + \bar{\omega}, \\
K(P_0) &= K_0,
\end{align*} \] (6)
where \(P_0 \in M \setminus \{ \text{poles of } \omega \} \) and \(K_2 < K_0 < K_1 \). We get that (6) has a unique solution \(K \) on \(M \setminus \{ \text{poles of } \omega \} \) and \(K \) can be continuously extended to \(M \). Furthermore, we define a metric \(g \) on \(M \setminus \{ \text{poles of } \omega \} \) by
\[g = -\frac{4}{3}(K - K_1)(K - K_2)(K + K_1 + K_2)\omega\bar{\omega}, \]
where K is the solution of (6). Then it can be proved that g is a non-CSC HCMU metric, K is the Gauss curvature of g and ω is the character 1-form of g.

It is interesting that on any compact Riemann surface there always exists a meromorphic 1-form satisfying the properties (see [5]). So there always exists a non-CSC HCMU metric on a compact Riemann surface.

2.2 Riemannian submanifolds

In this section, we recall some facts of Riemannian submanifolds. For more results, one may consult [18] and references cited in it.

Let $F : M^n \to M^n+p$ be an immersion of a smooth manifold M of dimension n into a smooth manifold \overline{M} of dimension $n + p$. The number p is called the codimension of F. If $\langle \cdot, \cdot \rangle_{M}$ is a Riemannian metric on M, for every point $P \in M$ and any $X, Y \in T_PM$, define $\langle X, Y \rangle_{M} = \langle F^*X, F^*Y \rangle_{\overline{M}}$. Then $\langle \cdot, \cdot \rangle_{M}$ is a Riemannian metric on M. In this case, F becomes an isometric immersion of M into \overline{M}. We will often drop the subscript and denote a Riemannian metric simply by $\langle \cdot, \cdot \rangle$, assuming that the underlying manifold will be clear from the context.

Let $F : M^n \to M^n+p$ be an isometric immersion. Since F is an immersion, then, for each point $P \in M$, there exists a neighborhood $U \subseteq M$ of P such that $F : U \to \overline{M}$ is an imbedding. Therefore, we may identity U with $F(U)$. Hence, the tangent space of M at P is a subspace of \overline{M} at P. Then we have

$$T_PM = T_PM \oplus T^\perp_PM,$$

where T^\perp_PM is the orthogonal complement of T_PM in T_PM. In this way, we obtain a vector bundle

$$T^\perp M = \bigcup_{P \in M} T^\perp_PM,$$

which is called the normal bundle of M.

Let $\nabla, \overline{\nabla}$ be the Levi-Civita connections of M, \overline{M}, respectively. Denote the sets of smooth vector fields and smooth normal vector fields on M by $\chi(M), \chi^\perp(M)$, respectively. Then for any two smooth vector fields $X, Y \in \chi(M)$, by (7), we obtain the Gauss formula

$$\overline{\nabla}_XY = \nabla_XY + B(X, Y),$$

where $B : TM \times TM \to T^\perp M$ is called the second fundamental form of F.

Similarly, for any $X \in \chi(M), \xi \in \chi^\perp(M)$, by (7), we obtain the Weingarten formula

$$\nabla_X\xi = -A_\xi X + \nabla^\perp_X\xi,$$

where $A_\xi : TM \to TM$ is called the shape operator of f with respect to ξ, and ∇^\perp is called the normal connection of F. By the Gauss and Weingaren formulas, B and A_ξ satisfy

$$\langle A_\xi X, Y \rangle = \langle B(X, Y), \xi \rangle.$$ (8)

If the codimension $p = 1$, we call the isometric immersion $F : M^n \to \overline{M}^{n+1}$ is a hypersurface of \overline{M}. Let $F : M^n \to \overline{M}^{n+1}$ be an orientable hypersurface. Choosing a local smooth unit normal vector field ξ along F and a local smooth orthonormal tangential frame e_1, \ldots, e_n, then the mean curvature vector H of F is defined by

$$H = \frac{1}{n} \sum_{i=1}^{n} B(e_i, e_i).$$
Denote $A = A_\xi$, then, by (3),
\[
H = \frac{1}{n} \left(\sum_{i=1}^{n} < Ae_i, e_i > \right) \xi.
\]

If $H \equiv 0$, the isometric immersion F is called a minimal immersion. Generally, F is called a constant mean curvature immersion if $\|H\|$ is a constant.

2.2.1 Basic equations

Using the Gauss and Weingarten formulas, the basic equations of isometric immersion $F : M^n \to \overline{M}^{n+p}$ can be written as follows.

Gauss-equation
\[
R(X, Y, Z, W) = \overline{R}(X, Y, Z, W) + < B(X, Z), B(Y, W) > - < B(X, W), B(Y, Z) >;
\]

Codazzi-equation
\[
(\overline{R}(X, Y)Z) = (\nabla^{\perp} X)B(Y, Z) - (\nabla^{\perp} Y)B(X, Z);
\]

Ricci-equation
\[
(\overline{R}(X, Y)\xi) = R^{\perp}(X, Y)\xi + B(A_\xi X, Y) - B(X, A_\xi Y),
\]

where $X, Y, Z, W \in \chi(M), \xi \in \chi^{\perp}(M), R^{\perp}$ denotes the curvature tensor of the normal bundle $T^{\perp}M$ and \overline{R}, $\overline{\overline{R}}$ are Riemannian curvature tensors of M, \overline{M}, respectively.

In particular, if $\overline{K}(X, Y) = \overline{R}(X, Y, X, Y)$ and $K(X, Y) = R(X, Y, X, Y)$ denote the sectional curvatures in \overline{M} and M of the plane generated by the orthonormal vectors $X, Y \in T_P M$, the Gauss-equation becomes
\[
K(X, Y) = \overline{K}(X, Y) + < B(X, X), B(Y, Y) > - < B(X, W), B(Y, Z) >.
\]

In the case of a hypersurface $F : M^n \to \overline{M}^{n+1}$, the Gauss-equation can be written as
\[
R(X, Y, Z, W) = \overline{R}(X, Y, Z, W) - < AX, W > < AY, Z > + < AX, Z > < AY, W >.
\]

The Codazzi-equation becomes
\[
(\overline{R}(X, Y)\xi) = (\nabla^{\perp} A)(X) - (\nabla^{\perp} A)Y,
\]

where
\[
(\nabla^{\perp} A)X = \nabla^{\perp} AX - A\nabla^{\perp} X.
\]

Moreover, if $\overline{\overline{M}}^{n+1}$ has constant section curvature c, then the basic equations reduce, respectively, to

Gauss-equation
\[
R(X, Y)Z = c(X \wedge Y)Z + (AX \wedge AY)Z,
\]

where $(X \wedge Y)Z = < Y, Z > < X, Z > < Y$.

Codazzi-equation
\[
(\nabla^{\perp} A)X = (\nabla A)Y.
\]

Remark 2.1. In the case of hypersurfaces, the Ricci-equation is identity.
We now, using moving frames, give the basic equations of the hypersurface \(F : M^n \to \overline{M}^{n+1} \). We will make use of the following convention on the ranges of indices:

\[
1 \leq A, B, C, \ldots \leq n + 1,
\]

\[
1 \leq i, j, k, \ldots \leq n,
\]

and we shall agree that repeated indices are summed over the respective.

Let \(e_1, \ldots, e_n, e_{n+1} \) be a local orthonormal frame of \(M \), such that \(e_1, \ldots, e_n \) are tangential to \(M \), then \(e_{n+1} \) is perpendicular to \(M \). Let \(\theta^1, \ldots, \theta^n, \theta^{n+1} \) be its dual coframe. Then the structure equations of \(M \) can be written as follows:

\[
\begin{aligned}
\{ d\theta^A &= -\theta^A_B \wedge \theta^B + \theta^A_C \Phi^A = 0, \\
\{ d\theta^A_B &= -\theta^A_C \wedge \theta^C_B + \Phi^A_B, \Phi^A = \frac{1}{2} \overline{R}^{A}_{BCD} \theta^C \wedge \theta^D,
\end{aligned}
\]

where \(\theta^A_B \) and \(\Phi^A_B \) are connection forms and curvature forms of \(M \).

Set \(F^* \theta^A = \omega^A, F^* \theta^A_B = \omega^A_B \), then the structure equations of \(M \) are

\[
\begin{aligned}
\{ d\omega^i &= -\omega^i_j \wedge \omega^j, \omega^i_j + \omega^j_i = 0, \\
\{ d\omega^i_j &= -\omega^i_k \wedge \omega^j_k + \Omega^i_j, \Omega^i_j = \frac{1}{2} R^i_{jkl} \omega^j \wedge \omega^l.
\end{aligned}
\]

The basic equations are

\[
\text{(Gauss-equation)} \quad R^i_{jkl} = \overline{R}^i_{jkl} + (h^{n+1}_{ik} h^{n+1}_{jl} - h^{n+1}_{il} h^{n+1}_{jk}),
\]

\[
\text{(Codazzi-equation)} \quad \overline{R}^n_{ijk} = h^{n+1}_{ijk} - h^{n+1}_{ijk},
\]

where \(\omega^i_{n+1} = h^{n+1}_{ij} \omega^j, h^{n+1}_{ij} = h^{n+1}_{ji}, h^{n+1}_{ij} \omega^k = dh^{n+1}_{ij} - h^{n+1}_{ik} \omega^j - h^{n+1}_{kj} \omega^i \). In fact, by \(\frac{8}{8} \), we have

\[
A(e_i) = \sum_{j=1}^{n} h^{n+1}_{ij} e_j.
\]

If the section curvature of \(M \) is a constant \(c \), then the basic equations become

\[
\begin{aligned}
\{ R_{ijkl} &= c(\delta_{ik} \delta_{jl} - \delta_{il} \delta_{jk}) + h_{ik} h_{jl} - h_{il} h_{jk} \quad \text{(Gauss-equation)}, \\
h_{ikj} &= h_{ijk} \quad \text{(Codazzi-equation)},
\end{aligned}
\]

(9)

where \(h_{ij} = h^{n+1}_{ij} \).

2.2.2 The Fundamental Theorem of Hypersurfaces

From now on, let \(\overline{M}^{n+1} = \mathbb{Q}_c^{n+1} \), where \(\mathbb{Q}_c^{n+1} \) denotes \((n+1)-dimension space form with constant sectional curvature \(c \). Then the fundamental theorem of hypersurfaces can be written as follows.

Theorem 2.1 \([18]\). Let \(M^n \) be a simply connected Riemannian manifold, and let \(A \) be a symmetric section of \(\text{End}(TM) \) satisfying the Gauss and Codazzi equations. Then there exist an isometric immersion \(F : M^n \to \mathbb{Q}_c^{n+1} \) and a unit normal vector field \(\xi \) such that \(A \) coincides with the shape operator \(A_\xi \) of \(F \) with respect to \(\xi \).
3 Proof of Theorem 1.1

3.1 Reduce the existence of the isometric minimal immersion $F: U \to \mathbb{Q}_c^3$ to the existence of some kind of 1-forms

By the theorem 2.1 and the basic equations (9), one can easily prove the following lemma.

Lemma 3.1. Let M be a simply connected Riemann surface. Let $g = (\omega^1)^2 + (\omega^2)^2$ be a Riemannian metric of M, and ω^1_2 be the connection form of g, then there exists an isometric minimal immersion $F: M \to \mathbb{Q}_c^3$ if and only if there exist two 1-forms

$$\begin{align*}
\omega^3_1 &= h_{11}\omega^1 + h_{12}\omega^2, \\
\omega^3_2 &= h_{21}\omega^1 + h_{22}\omega^2,
\end{align*}$$

which satisfy

$$\begin{align*}
h_{11} &= -h_{22}, \\
h_{12} &= h_{21},
\end{align*}$$

and

$$\begin{align*}
d\omega^1_1 &= -\omega^3_1 \wedge \omega^3_2 - \omega^1 \wedge \omega^2 \quad \text{(Gauss-equation)}, \\
d\omega^1_2 &= \omega^1_2 \wedge \omega^3_2 \quad \text{(Codazzi-equation)}, \\
d\omega^1_3 &= -\omega^2_2 \wedge \omega^3_1 \quad \text{(Codazzi-equation)}.
\end{align*}$$

3.2 Proof of Theorem 1.1

Lemma 3.2. Let M be a compact Riemann surface, and g be a non-CSC HCMU metric on M. Suppose ω and K are the character 1-form and the Gauss curvature of g. Suppose the maximum and the minimum of K are K_1, K_2 respectively. Denote $M \ {\text{zeros and poles of } \omega}$ by $M^*, \sqrt{-\frac{4}{3}(K - K_1)(K - K_2)(K + K_1 + K_2)}$ by $\mu = \mu(K)$. If for any point $P \in M^*$, there exist an open neighborhood $P \in U \subseteq M^*$ and an isometric minimal immersion $F: U \to \mathbb{Q}_c^3$, then there is a complex value function h such that

$$\begin{align*}
K &= c - \frac{4|h|^2}{\mu^2}, \\
b &= -\frac{\mu'h}{4}, \\
a &= \frac{\mu'h}{4} + \frac{\mu^2}{4(K-\mu)}.
\end{align*}$$

where $dh = a\omega + b\overline{\omega}$.

Proof. Set

$$\begin{align*}
\omega^1 &= \frac{\omega + \overline{\omega}}{2} - \mu, \\
\omega^2 &= \frac{\omega - \overline{\omega}}{2\sqrt{-1}} - \mu.
\end{align*}$$

Then, by (5),

$$g = \mu^2\omega \overline{\omega} = (\omega^1)^2 + (\omega^2)^2,$$

and

$$dK = \frac{\mu^2}{4}(\omega + \overline{\omega}).$$

Since

$$d\omega^1 = \mu'(K)dK \wedge \frac{\omega + \overline{\omega}}{2} = 0,$$
\[d\omega^2 = \mu' dK \wedge \frac{\omega - \overline{\omega}}{2\sqrt{-1}} = \frac{\mu'}{2} \omega^1 \wedge \omega^2, \]
then the connection 1-form of \(g \) is
\[\omega_1^2 = \frac{\mu'}{2} \omega^2. \]

By Lemma 3.1, there exist two 1-forms
\[\begin{cases} \omega_1^3 = h_{11} \omega^1 + h_{12} \omega^2, \\ \omega_2^3 = h_{21} \omega^1 + h_{22} \omega^2, \end{cases} \]
satisfying
\[\begin{cases} h_{11} = -h_{22}, \\ h_{12} = h_{21}, \end{cases} \quad (10) \]
and
\[\begin{cases} d\omega_1^2 = -\omega_1^3 \wedge \omega_2^3 - \omega_1^1 \wedge \omega^2 \text{(Gauss-equation)}, \\ d\omega_1^3 = \omega_1^2 \wedge \omega_2^3 \text{(Codazzi-equation)}, \\ d\omega_2^3 = -\omega_1^2 \wedge \omega_1^3 \text{(Codazzi-equation)}. \]

Assume
\[\begin{cases} \omega_1^3 = f \omega + \overline{f} \omega, \\ \omega_2^3 = h \omega + \overline{h} \omega. \end{cases} \]

Then
\[h_{11} = \frac{f + \overline{f}}{\mu}, h_{12} = \frac{\sqrt{-1}(f - \overline{f})}{\mu}, h_{21} = \frac{h + \overline{h}}{\mu}, h_{22} = \frac{\sqrt{-1}(h - \overline{h})}{\mu}. \]

So, by (10),
\[f = -\sqrt{-1} h. \]

Therefore,
\[\begin{cases} \omega_1^3 = -\sqrt{-1}(h \omega - \overline{h} \omega), \\ \omega_2^3 = h \omega + \overline{h} \omega. \end{cases} \]

Since
\[\begin{cases} d\omega_1^2 = -K \omega_1^1 \wedge \omega^2, \\ \omega_1^1 \wedge \omega_2^3 = \frac{-4|h|^2}{\mu^2} \omega^1 \wedge \omega^2, \end{cases} \]
then the Gauss-equation becomes
\[K = c - \frac{4|h|^2}{\mu^2}. \]

Let \(dh = a \omega + b \overline{\omega} \), then \(d\overline{h} = \overline{a} \omega + b \overline{\omega} \), and
\[\begin{cases} d\omega_1^3 = \sqrt{-1} (b + \overline{b}) \omega \wedge \overline{\omega}, \\ d\omega_2^3 = (\overline{b} - b) \omega \wedge \overline{\omega}. \end{cases} \]

Since
\[\begin{cases} \omega_1^2 \wedge \omega_2^3 = \frac{\mu'}{4\sqrt{-1}} (h + \overline{h}) \omega \wedge \overline{\omega}, \\ \omega_1^3 \wedge \omega_2^3 = \frac{-\mu'}{4} (h - \overline{h}) \omega \wedge \overline{\omega}, \end{cases} \]
then the Codazzi-equation becomes
\[\begin{cases} b + \overline{b} = \frac{-\mu'}{4} (h + \overline{h}), \\ b - \overline{b} = \frac{-\mu'}{4} (h - \overline{h}), \end{cases} \]
i.e.,

\[b = -\frac{\mu' \mu}{4} h. \]

To sum up, we get

\[
\begin{aligned}
K &= c - \frac{4h^2}{\mu^2} \quad \text{(Gauss-equation)}, \\
b &= -\frac{\mu' \mu h}{4} \quad \text{(Codazzi-equation)}.
\end{aligned}
\]

Differentiating two sides of the Gauss-equation, we get

\[a h + bh = -\frac{\mu^2[2\mu' \mu (K - c) + \mu^2]}{16}. \]

Since \(b = -\frac{\mu' \mu}{4} h \), then

\[a = -\frac{\mu^2[3\mu' \mu (K - c) + \mu^2]}{16h} = \frac{3\mu' \mu h}{4} + \frac{\mu^2 h}{4(K - c)}. \]

Lemma 3.3. There does not exist a function \(h \) satisfying the conditions in Lemma 3.2.

Proof. Since \(dh = a \omega + b \overline{\omega} \), so

\[d^2h = d(a \omega + b \overline{\omega}) = da \wedge \omega + db \wedge \overline{\omega} = 0. \]

Since

\[
\begin{aligned}
da &\equiv \frac{\mu^3 h}{16} [3\mu'' + \frac{\mu'}{K - c} - \frac{\mu}{(K - c)^2}] \overline{\omega} \quad \text{(mod } \omega), \\
db &\equiv -\frac{\mu^2 h}{16} [\mu'' \mu + 4(\mu')^2 + \frac{\mu' \mu}{K - c}] \omega \quad \text{(mod } \overline{\omega}), \\
da \wedge \omega &\equiv \frac{\mu^3 h}{16} [3\mu'' + \frac{\mu'}{K - c} - \frac{\mu}{(K - c)^2}] \overline{\omega} \wedge \omega, \\
db \wedge \overline{\omega} &\equiv \frac{\mu^2 h}{16} [\mu'' \mu + 4(\mu')^2 + \frac{\mu' \mu}{K - c}] \overline{\omega} \wedge \omega,
\end{aligned}
\]

so

\[da \wedge \omega + db \wedge \overline{\omega} = \frac{\mu^2 h}{16(K - c)^2} [4\mu'' \mu (K - c)^2 + 4(\mu')^2 (K - c)^2 + 2\mu' \mu (K - c) - \mu^2] \overline{\omega} \wedge \omega = 0. \]

Thus

\[4\mu'' \mu (K - c)^2 + 4(\mu')^2 (K - c)^2 + 2\mu' \mu (K - c) - \mu^2 = 0. \] \hspace{1cm} (11)

Suppose

\[\mu = \sqrt{-\frac{4}{3}(K - K_1)(K - K_2)(K + K_1 + K_2)} = (-\frac{4}{3}K^3 + \lambda_1 K + \lambda_2)^{1/2}, \]

where \(\lambda_1 = \frac{4}{9}(K_1^2 + K_2^2 + K_1 K_2), \lambda_2 = \frac{4}{9}K_1 K_2(K_1 + K_2) \), then

\[\mu' = \frac{1}{2}(-\frac{4}{3}K^3 + \lambda_1 K + \lambda_2)^{-1/2}(-4K^2 + \lambda_1), \]

\[\mu'' = -\frac{1}{4}(-\frac{4}{3}K^3 + \lambda_1 K + \lambda_2)^{-3/2}(-4K^2 + \lambda_1)^2 - 4K(-\frac{4}{3}K^3 + \lambda_1 K + \lambda_2)^{-1/2}, \]
\[
\begin{align*}
\mu \mu'' &= -\frac{1}{4}(-\frac{4}{3}K^3 + \lambda_1 K + \lambda_2)^{-1}(-4K^2 + \lambda_1)^2 - 4K, \\
(\mu')^2 &= \frac{1}{4}(-\frac{4}{3}K^3 + \lambda_1 K + \lambda_2)^{-1}(-4K^2 + \lambda_1)^2, \\
\mu \mu' &= \frac{1}{2}(-4K^2 + \lambda_1), \\
\mu \mu'' + (\mu')^2 &= -4K,
\end{align*}
\]

So
\[
4\mu''\mu(K-c)^2 + 4(\mu')^2(K-c)^2 \neq \mu^2 - 2\mu'\mu(K-c),
\]
that is the identity (11) is not true.

The proof of Theorem 1.1 obtains from Lemmas 3.2, 3.3.

References

[1] E. Calabi, “Extremal Kähler metrics” in Seminar on Differential Geometry, Ann. of Math. Stud. 102, Princeton Univ. Press, Princeton, 259-290 (1982)

[2] X.X. Chen, Weak limits of Riemannian metrics in surfaces with integral curvature bound, Calc. Var. 6, 189-226 (1998)

[3] X.X. Chen, Extremal Hermitian metrics on Riemann surfaces, Calc. Var. Partial Differential Equations 8, no. 3, 191-232 (1999)

[4] X.X. Chen, Obstruction to the Existence of Metric whose Curvature has Umbilical Hessian in a K-Surface, Comm. Anal. Geom. 8, no. 2, 267-299 (2000)

[5] Q. Chen, X.X. Chen and Y.Y. Wu, The Structure of HCMU Metric in a K-Surface, Int. Math. Res. Not. 2005, no. 16, 941-958 (2005)

[6] Q. Chen and Y.Y. Wu, Existences and Explicit Constructions of HCMU metrics on \(S^2\) and \(T^2\), Pac. J. Math. 240, no. 2, 267-288 (2009)

[7] Q. Chen and Y.Y. Wu, Character 1-form and the existence of an HCMU metric, Math. Ann. 351, no. 2, 327-345 (2011)

[8] Q. Chen, Y.Y. Wu and B. Xu, On One-dimensional and singular calabi’s extremal metrics whose gauss curvatures have nonzero umbilical Hessians, Isr. J. Math. 208, 385-412 (2015)

[9] C.S. Lin and X.H. Zhu, Explicit construction of extremal Hermitian metric with finite conical singularities on \(S^2\), Comm. Anal. Geom. 10, no. 1, 177-216 (2002)

[10] C.K. Peng, Y.Y. Wu, A one-dimensional singular non-CSC extremal Kähler metric can be imbedded into \(\mathbb{R}^3\) as a Weingarten surface. Results Math. 75, 133 (2020)

[11] M. Troyanov, Prescribing curvature on compact surface with conical singularities. Tran. Am. Math. Soc. 324(2), 793-821 (1991)

[12] G.F. Wang and X.H. Zhu, Extremal Hermitian metrics on Riemann surfaces with singularities, Duke Math. J. 104, 181-210 (2000)
[13] Z.Q.Wei and Y.Y.Wu, Multi-valued holomorphic functions and non-CSC extremal Kähler metrics with singularities on compact Riemann surfaces, Differ. Geom. Appl. 60(10), 66-79 (2018)

[14] Z.Q.Wei and Y.Y.Wu, Local isometric imbedding of a compact Riemann surface with a singular non-CSC extremal Kähler metric into 3-dimension space forms, J.Geom.Anal 32,27 (2022)

[15] S.T.Yau, Calabi’s conjecture and some new results in algebraic,Proceedings of the National Academy of science of the united states of America, 74(5):1798-1799(1977)

[16] S.T.Yau, On the Ricci Curvature of a compact Kähler manifold and the complex Monge-Ampère equation I, Communications on Pure and Applied Mathematics, 31(3): 339-411(1978)

[17] T.Aubin, Nonlinear Analysis on Manifolds, Monge Ampère Equations, Grundlehren der Mathematicschen Wissenchaften, 252. Spring-Verlag, New York, 1982

[18] Marcos Dajczer, Submanifolds and Isometric Immersions, Houston,Texas, (1990) Addison-Wesley, 1957

Zhiqiang Wei
School of Mathematical and Statistics
Henan University
Kaifeng 475004 P.R. China
weizhiqiang15@mails.ucas.ac.cn

Yingyi Wu
School of Mathematical Sciences
University of Chinese Academy of Sciences
Beijing 100049 P.R. China
wuyy@ucas.ac.cn