Enteropeptidase inhibitor SCO-792 effectively prevents kidney function decline and fibrosis in a rat model of chronic kidney disease

Yuko Katayama, Jun Sugama, Tomohisa Suzuki, Yoshimasa Ishimura, Akihiro Kobayashi, Yusuke Moritoh, Masanori Watanabe

SCOHIA PHARMA, Inc., Kanagawa, Japan

Correspondence to:

Yusuke Moritoh

E-mail: yusuke.moritoh@scohia.com

© The Author(s) 2019. Published by Oxford University Press on behalf of ERA-EDTA.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
ABSTRACT

Background. Inhibiting enteropeptidase, a gut serine protease regulating protein digestion, suppresses food intake and ameliorates obesity and diabetes in mice. However, the effects of enteropeptidase inhibition on the kidney parameters are largely unknown. Here, we evaluated the chronic effects of an enteropeptidase inhibitor, SCO-792, on kidney function, albuminuria, and kidney pathology in spontaneously hypercholesterolaemic (SHC) rats, a rat chronic kidney disease (CKD) model.

Methods. SCO-792, an orally available enteropeptidase inhibitor, was administered (0.03% and 0.06% (w/w) in the diet) for five weeks to 20-week-old SHC rats showing albuminuria and progressive decline in glomerular filtration rate (GFR). The effects of SCO-792 and the contribution of amino acids to these effects were evaluated.

Results. SCO-792 increased the faecal protein content, indicating that SCO-792 inhibited enteropeptidase in SHC rats. Chronic treatment with SCO-792 prevented GFR decline and suppressed albuminuria. Moreover, SCO-792 improved glomerulosclerosis and kidney fibrosis. Pair feeding with SCO-792 (0.06%) was less effective in preventing GFR decline, albuminuria, and renal histological damage than SCO-792 treatment, indicating the enteropeptidase-inhibition-dependent therapeutic effects of SCO-792. SCO-792 did not affect the renal plasma flow, suggesting that its effect on GFR was mediated by an improvement in filtration fraction. Moreover, SCO-792 increased hydrogen sulphide production capacity, which has a role in tissue protection. Finally, methionine and cysteine supplementation to the diet abrogated SCO-792-induced therapeutic effects on albuminuria.

Conclusions. SCO-792-mediated inhibition of enteropeptidase potently prevented GFR decline, albuminuria, and kidney fibrosis; hence, it may have therapeutic potential against...
CKD.

Keywords: albuminuria, chronic kidney disease, enteropeptidase, fibrosis, glomerular filtration rate

KEY LEARNING POINTS

What is already known about this subject?

Increased protein intake and circulating amino acid levels are suggested to be deleterious to the kidney functions in CKD. However, the therapeutic effects of pharmacological interventions on these events are largely unknown. We evaluated the effects of inhibiting gut enteropeptidase, the most upstream enzyme regulating protein digestion, in CKD rats.

What this study adds?

We administered SCO-792, an enteropeptidase inhibitor under clinical evaluation, to CKD rats. SCO-792 treatment prevented GFR decline, improved albuminuria, ameliorated glomerulosclerosis, and alleviated kidney fibrosis in CKD rats. These findings suggest that enteropeptidase inhibition is likely effective in improving kidney functions in CKD.

What impact this may have on practice or policy?

Inhibitors of the renin–angiotensin system and sodium-glucose co-transporter 2 show substantial renoprotective effects in patients with CKD. However, new treatment options are necessary owing to the fact that many patients with CKD progress to end-stage renal disease. Our study provides a new renoprotective strategy for patients with CKD.
INTRODUCTION

Chronic kidney disease (CKD) is characterised by a gradual loss of kidney functions, leading to end-stage renal disease (ESRD) that requires haemodialysis, peritoneal dialysis, or renal transplantation [1]. Furthermore, CKD is a well-known risk factor for cardiovascular diseases [2]. Hence, preventing CKD progression will help maintain renal functions and improve the quality of life. Although inhibitors of the renin–angiotensin system and sodium-glucose co-transporter 2 show significant renoprotective effects [3, 4], many patients with CKD progress to ESRD. Thus, there is a need for therapeutic agents for CKD.

Glomerular hyperfiltration, which occurs in various clinical conditions such as kidney disease, hypertension, and diabetes [5], contributes to glomerular injury including glomerulosclerosis in the remaining functional nephrons of patients with CKD [5-7]. It is induced by a high-protein diet or amino acid infusion, in both animal models and human subjects [8, 9]. In contrast to a high-fat or high-carbohydrate diet, a high-protein diet increases the glomerular filtration rate (GFR) by modulating renal haemodynamics and elevating intraglomerular pressure for efficient excretion of protein-derived nitrogenous waste products [10]. Along with an increase in albuminuria, high-protein-diet-associated glomerular hyperfiltration may have deleterious, long-term consequences on various organs [10].

Enteropeptidase is a transmembrane serine protease that is localised to the brush border of the duodenal and jejunal mucosae, which are involved in the digestion of proteins in mammals [11-13]. It converts inactive trypsinogen into its active form, trypsin, resulting
in the activation of digestive enzyme precursors produced in the pancreas (e.g. chymotrypsinogen, proelastase, and procarboxypeptidases A and B). These activated enzymes facilitate protein breakdown, resulting in amino acid absorption in the gut [11-13]. Thus, enteropeptidase is an important upstream enzyme for protein digestion.

As amino acids are known to cause hyperfiltration, which is a risk factor for CKD, investigating the effects of pharmacological interventions to decrease amino acid intake is of interest. Hence, here, we aimed to evaluate the therapeutic effects of chronic enteropeptidase inhibition on kidney parameters in a rat CKD model. SCO-792, an orally available enteropeptidase inhibitor, is under clinical evaluation for diabetes, obesity, and diabetic kidney disease [14]. Therefore, we first evaluated SCO-792-mediated in vivo enteropeptidase inhibition before examining its effects on kidney functions, albuminuria, and pathology. We then investigated the role of amino acids in SCO-792-induced effects in the rat CKD model.

MATERIALS AND METHODS

Reagents

All reagents were purchased from FUJIFILM Wako Pure Chemical Corporation (Osaka, Japan) or Sigma-Aldrich (St. Louis, MO, USA), unless otherwise indicated. SCO-792 was synthesised by Takeda Pharmaceutical Company Limited (Tokyo, Japan).

Animals

Spontaneously hypercholesterolaemic (SHC) male rats were obtained from RABICS, LTD. (Kanagawa, Japan) and normal male Sprague–Dawley (SD) rats from CLEA Japan.
SHC rats were established as a model of spontaneous hyperlipidaemia with albuminuria and histological changes mimicking focal segmental glomerulosclerosis on the genetic background of the SD rats [15]. All rats were housed in a room with controlled temperature (23 °C), humidity (55%), and lighting (lights remained on between 7:00 a.m. and 7:00 p.m.). All rats had free access to a standard laboratory chow diet (CE-2, CLEA Japan, Inc., Tokyo, Japan) and tap water. The care of rats and use of the experimental protocols were approved by the Institutional Animal Care and Use Committee in Shonan Health Innovation Park accredited by the American Association for Accreditation of Laboratory Animal Care. SHC rats show albuminuria and hyperlipidaemia by 8 weeks of age, and their renal functions start to decline around 16 weeks of age with the histological changes of glomerulosclerosis and tubular dilatation, which are major histological features of patients with CKD [16]. Thus, SHC rats are considered a good model for investigating the effects on kidney functions, severe albuminuria, and pathology in CKD [17].

Experimental design

All rats were housed individually in standard animal cages and used in the study after one week of acclimation. Twenty-week-old male SHC rats, which showed a progressive decline in the kidney function, were allocated to four groups (n = 10) based on their GFR, urine albumin-to-creatinine ratio (UACR), plasma creatinine (pCre), blood urea nitrogen (BUN), and body weight. SD rats of the same age were used as the normal control (n = 6).

Main study

The SHC rats in each group had free access to either diet alone (vehicle and pair-fed) or
diet containing 0.03% (w/w) or 0.06% (w/w) SCO-792. Pair-fed SHC rats received the same amount of diet as the 0.06% SCO-792-treated rats but without the drug. Normal rats had free access to diet alone. We determined the doses of SCO-792 based on our previous study using a rat model with diabetic kidney disease [18]. The first treatment day was designated as day 0. After treatment initiation, body weight and food intake changes were monitored twice a week for 4 weeks. On days 14 and 28, GFR, pCre, and BUN were measured. Renal plasma flow was measured on day 28. Faeces were collected on day 21 for 24 h to determine faecal protein concentrations. To measure urinary albumin excretion, urine was collected on day 30 for 24 h. On day 36, the rats were anaesthetised with sodium pentobarbital (50 mg/kg i.p.) and sacrificed; then, peripheral blood was sampled and the left kidney was harvested, weighed, and processed for the subsequent assays. Plasma branched-chain amino acids (BCAAs), triglyceride (TG), and total cholesterol (TC) were measured. The ratio of cortex and medulla in the renal tissues sampled reflected that of the entire kidney. The samples were immediately immersed in liquid nitrogen and stored at -80 °C for the analysis of gene expression and measurement of kidney collagen content and hydrogen sulphide production capacity.

Additional experiment
This experiment was conducted to investigate the contribution of the reduction in methionine and cysteine (Met/Cys) intake by SCO-792 to the therapeutic efficacy of SCO-792. Each group of SHC rats receiving the drug treatments had free access to CE-2 powder chow containing 0.06% SCO-792 or CE-2 powder chow containing 0.06% SCO-792 supplemented with Met/Cys. Methionine and cysteine were used at the concentrations of 0.65% (w/w) and 0.58% (w/w) to supplement the diet of the SCO-792 + low-Met/Cys-treated group and at the concentrations of 1.9% (w/w) and 1.7% (w/w) to
supplement the diet of the SCO-792 + high-Met/Cys-treated group, respectively. To measure UACR, urine was collected on day 22. On day 24, the rats were anaesthetised with pentobarbital and sacrificed; then, the left kidney was harvested and weighed. Some pieces of the kidney were immediately immersed in liquid nitrogen and stored at -80 °C for the gene expression analysis described below.

Faecal protein content

The collected faeces samples were lyophilised and powdered; the powder samples were homogenised in 0.5 N NaOH solution. The homogenates were centrifuged, and the concentration of proteins in the supernatants was determined using the DC Protein Assay Kit (Bio-Rad Laboratories, Inc., Hercules, CA, USA). Faecal protein content was calculated as protein content per gram of faeces.

Glomerular filtration rate and renal plasma flow

GFR and renal plasma flow were measured using inulin–FITC (Sigma-Aldrich) and 10% (w/v) sodium para-aminohippurate injection (PAH, Daiichi Sankyo Company, Limited, Tokyo, Japan), respectively. Inulin–FITC was dissolved in saline to prepare a 5% (w/v) solution. To measure GFR, 5% inulin–FITC solution was injected into the tail vein at 0.8 mL/kg. At 20, 40, 60, and 80 min after injection, blood was collected from the tail vein to measure the inulin–FITC concentration. To measure GFR and renal plasma flow, 5% inulin–FITC solution and 10% PAH were mixed at a ratio of 8:3, and the mixed solution was injected into the tail vein at 1.1 mL/kg. At 5, 10, 15, 20, 40, 60, and 80 min after injection, blood was collected from the tail vein. GFR and renal plasma flow were calculated from inulin–FITC clearance and PAH clearance, respectively [19]. The
filtration fraction was calculated by dividing the GFR by renal plasma flow.

Biochemical parameters

Plasma parameters (pCre, BUN, TG, TC, and albumin) and urine parameters (albumin and creatinine) were measured using the Hitachi 7180 Chemistry Analyzer (Hitachi, Ltd., Tokyo, Japan). Creatinine, BUN, TG, and TC were measured using enzymatic methods [20-23] and albumin was measured using the immunonephelometry method. Plasma BCAAs were measured using an LC–MS/MS system (Xevo TQ-S micro, Waters, Milford, MA, USA).

Histological evaluation

Formalin-fixed, paraffin-embedded kidney tissues were sectioned to 4 μm thickness at the midhorizontal plane for light microscopic examination. The specimens were stained with haematoxylin and eosin (HE), Sirius red (SR), and Masson's trichrome (MT) stains. The stained sections were digitised using the NanoZoomer digital slide scanner (Hamamatsu Photonics K.K., Hamamatsu, Japan) with a 40× optical lens. Dilatation of tubules and tubular basophilia were assessed using the HE-stained specimens, interstitial fibrosis was assessed using the SR-stained specimens, and glomerulosclerosis was assessed using the MT-stained specimens. They were semi-quantitatively graded from 0 to 4 (0, not remarkable; 1, minimal; 2, mild; 3, moderate; 4, marked). These specimens were evaluated using a light microscope by a pathologist and assessed under blind conditions.
Kidney collagen content

The kidney tissue samples were incubated in 6 N HCl at 95 °C for 20 h to hydrolyse collagen to hydroxyproline. After centrifugation, hydroxyproline content in the supernatants was quantified using the Total Collagen Assay Kit (QuickZyme Biosciences, Leiden, Netherlands). The kidney collagen content was calculated as the total content of collagen in the left kidney.

Hydrogen sulphide production capacity

Hydrogen sulphide production capacity was measured using the lead sulphide method [24]. Each kidney tissue sample was homogenised in passive lysis buffer (Promega Corporation, Madison, WI, USA). An equal volume of a mixture containing PBS, 1 mM pyridoxal 5′-phosphate, and 10 mM cysteine was added to the homogenate. Lead acetate indicator paper (Whatman, Sigma-Aldrich) was placed above the liquid phase and incubated for 5.5 h at 37 °C until the paper darkened due to the formation of lead sulphide. The indicator papers were photographed using a digital camera, and the obtained images were analysed using ImageJ software (National Institutes of Health, Bethesda, MD, USA) to measure the area and density of the dark-coloured areas of the indicator papers. Hydrogen sulphide production capacity was calculated as the capacity per tissue weight.

Statistical analysis

Statistical significance was first analysed using Bartlett's test for homogeneity of variances, followed by Williams' test (P ≥ 0.05) or Shirley–Williams test (P < 0.05) for dose-dependent studies. Alternatively, statistical significance between two groups was analysed using the F-test for homogeneity of variances, followed by Student's t-test (P ≥
Williams' and Shirley–Williams tests were conducted using a one-tailed significance level of 2.5% (0.025). Other tests were conducted using a two-tailed significance level of 5% (0.05). All data are presented as mean ± standard deviation (S.D.).

Methods for gene expression analysis is provided in the supplementary methods.

RESULTS

SCO-792 inhibited enteropeptidase

The average dose of SCO-792 for the rats in the SCO-792 (0.03%) and SCO-792 (0.06%) groups was 14.9 ± 1.2 and 26.0 ± 1.9 mg/kg/day, respectively. We found that SCO-792 increased faecal protein content, which indicated the inhibition of protein digestion in the gut (Fig. 1A). We measured plasma BCAA concentrations as a representative of amino acids on day 36. SCO-792 dose-dependently decreased plasma BCAA concentration (Fig. 1B). SCO-792 dose-dependently decreased food intake and body weight compared with those of the vehicle-treated SHC rats (Fig. 1C, D). In the pair-fed group, the faecal protein levels were unchanged, and plasma BCAA concentrations tended to decrease compared with those in the vehicle-treated SHC rats (Fig. 1A, B). The plasma TG and TC levels increased in the SHC rats compared with those in the normal rats (Supplementary Fig. 1A, B). SCO-792 did not affect the plasma TG level and slightly decreased plasma TC to the same level as pair-fed treatment (Supplementary Fig. 1A, B). Throughout the study, there were no abnormal findings in the SCO-792-treated SHC rats.

SCO-792 improved the kidney function

Treatment with SCO-792 was started at 20 weeks of age. At the start, the GFR of the SHC
rats was 6.17 ± 0.78 mL/min/kg, which was significantly lower than that of normal rats (7.34 ± 0.69 mL/min/kg). During the 4-week treatment period, although the GFR was maintained in normal rats, it declined with age in the SHC rats (Fig. 2A). At 4 weeks, the SHC rats showed decreased GFR, renal plasma flow, and filtration fraction compared with those in the normal rats (Fig. 2A-C). SCO-792 dose-dependently prevented the decline in GFR and suppressed any increase in the plasma creatinine level (Fig. 2A, D). At 4 weeks, the GFR of the vehicle-, SCO-792 (0.03% and 0.06%)-, and pair-fed-treated SHC rats was 2.53 ± 1.06, 4.43 ± 1.25, 5.53 ± 0.59, and 3.72 ± 1.37 mL/min/kg, respectively (Fig. 2A). Although SCO-792 did not change the renal plasma flow, it improved filtration fraction (Fig. 2B, C). The SHC rats exhibited pronounced albuminuria compared with normal rats (Fig. 2E). SCO-792 dose-dependently suppressed albuminuria in the SHC rats (Fig. 2E). The plasma albumin level was not changed by SCO-792 treatment (Supplementary Fig. 1C). Pair feeding with SCO-792 (0.06%) slightly improved the GFR, but the improvement with SCO-792 (0.06%) was more than that with pair feeding. Pair feeding did not alter the filtration fraction, plasma creatinine, and albuminuria compared with vehicle treatment (Fig. 2A, C, D, E).

SCO-792 ameliorated renal histological damage

At the end of the study, the kidney of rats was histologically evaluated. Glomerulosclerosis, dilatation of tubules, tubular basophilia, and interstitial fibrosis, all of which are major histological features of CKD, were observed in the SHC rats (Fig. 3A-G). Five-weeks of SCO-792 (0.06%) treatment improved glomerulosclerosis and tubular damage, including dilatation of tubules, and tubular basophilia (Fig. 3A, B, D-F). Moreover, SCO-792 dose-dependently decreased fibrosis (Fig. 3C, G). It suppressed the
mRNA expression of fibrosis-related genes such as \textit{Col1a1}, \textit{Tgfb1}, and \textit{Fn1}, and collagen content in the kidney compared with vehicle treatment (Fig. 3H-K). Pair feeding with SCO-792 (0.06%) did not affect the scores for glomerulosclerosis, dilatation of tubules, tubular basophilia, and fibrosis, but partially suppressed the mRNA levels of fibrosis-related genes and collagen content compared with vehicle treatment (Fig. 3). SCO-792 potently reduced the fibrosis score and \textit{Col1a1} mRNA level in comparison with those in the pair-fed rats (Fig. 3G, H).

SCO-792 increased hydrogen sulphide production capacity

The restriction of sulphur-containing amino acids, such as methionine and cysteine, increases hydrogen sulphide production capacity, which induces a protective effect on tissues [24]. As enteropeptidase inhibition decreases amino acid uptake into the circulation, we measured the hydrogen sulphide production capacity in the kidney of the rats. Both mRNA level of \textit{Cth}, which encodes a hydrogen sulphide-producing enzyme, and hydrogen sulphide production capacity in the kidney were decreased in the SHC rats compared with those in the normal rats (Fig. 4). Interestingly, SCO-792 upregulated the mRNA levels of \textit{Cth} and hydrogen sulphide production capacity in the kidney of SHC rats (Fig. 4). Although the pair-fed rats with SCO-792 (0.06%) showed elevated mRNA levels of \textit{Cth} and hydrogen sulphide production capacity, the effects were more evident in the SCO-792-treated rats (Fig. 4).

Methionine and cysteine supplementation alleviated albuminuria-suppressive effect of SCO-792

We evaluated the contribution of sulphur-containing amino acids on the therapeutic
efficacy of SCO-792. Three weeks of Met/Cys supplementation in the diet suppressed the increase in the Cth mRNA level in the kidney by SCO-792 treatment (Fig. 5A). Moreover, Met/Cys supplementation almost alleviated the reduction in UACR induced by SCO-792 treatment (Fig. 5B).

DISCUSSION

Enteropeptidase is a key enzyme that regulates protein breakdown in the gut. Here, we evaluated the effect of SCO-792, an enteropeptidase inhibitor, in a rat model of CKD. This study is the first to reveal the therapeutic potential of enteropeptidase inhibition in CKD. SCO-792 inhibited GFR decline probably by improving the renal filtration fraction and suppressed albuminuria. Moreover, SCO-792 improved glomerulosclerosis and interstitial fibrosis in the kidney. Additionally, increased hydrogen sulphide production capacity induced by the reduction in the intake of methionine and cysteine may play a role in the therapeutic effect of SCO-792 on albuminuria.

The primary endpoint for patients with CKD in clinical trials is the composite outcome of time to doubling of the baseline serum creatinine level or the development of ESRD that requires renal replacement therapy due to GFR reduction [25]. Therefore, preclinical models that mimic clinical CKD pathology along with a decrease in the GFR over a short period are useful to evaluate anti-CKD drugs. Nevertheless, the development of a preclinical model that simulates the clinical CKD situation is difficult; this has hindered the discovery and development of anti-CKD drugs [26, 27]. Here, the SHC rats showed a decrease in the GFR accompanied by glomerulosclerosis and fibrosis with age. Hence, SHC rats are considered a useful preclinical model to evaluate the therapeutic efficacy of
test drugs in CKD. Here, 20-week-old SHC rats showed lower GFR than that of normal rats before the study. SCO-792-mediated enteropeptidase inhibition potently prevented any GFR decline, whereas GFR declined progressively in the vehicle-treated SHC rats during the study. Moreover, interstitial fibrosis, which is the final common pathway to end-stage renal failure, was suppressed by SCO-792. These data suggest that SCO-792 may be a novel and promising treatment option for patients with CKD.

In a 5-week study of SHC rats, SCO-792 decreased food intake and exhibited potent renoprotective effects. Reports suggest that restricting calorie intake may be beneficial for kidney protection [28, 29]. Hence, we employed a pair-fed group to examine the contribution of SCO-792-induced food intake reduction on renoprotective effects. SCO-792 potently suppressed GFR decline, albuminuria, and kidney damage compared with those in the pair-fed group. Considering that pair feeding may be partially responsible for the observed therapeutic effects of SCO-792, it is likely that the therapeutic efficacy of SCO-792 may be associated with mechanisms that are dependent and independent of food intake reduction.

Amino acids are known to cause hyperfiltration in both healthy subjects and patients with CKD [8, 30]. Consistently, studies using rodent models suggest the beneficial effects of a low-protein diet on renal functions [31, 32]. Moreover, a low-protein diet reduces the introduction of renal replacement therapy and mortality in patients with CKD [33]. Thus, SCO-792 might have protected renal functions by decreasing amino acid intake into the circulation in SHC rats in the present study.
The restricted intake of specific amino acids, particularly methionine, has been demonstrated to protect the kidney [34]. Additionally, the restricted intake of sulphur-containing amino acids increases hydrogen sulphide production capacity, which has anti-inflammatory, antioxidant, and antifibrotic effects on tissues [24, 35]. Here, SCO-792 administration for 5 weeks increased the mRNA levels of Cth, a hydrogen sulphide-producing enzyme, and elevated hydrogen sulphide production capacity in the kidney. Considering the role of enteropeptidase in protein digestion, SCO-792 may restrict the generation of sulphur-containing amino acids, and thereby increase Cth mRNA and hydrogen sulphide production capacity. Dietary supplementation of methionine and cysteine, which likely bypasses the effects of enteropeptidase inhibition, alleviated the reduction in albuminuria in the SCO-792-treated SHC rats. Thus, SCO-792-induced improvement in albuminuria may be a result of decreased intake of methionine and cysteine.

Although we demonstrated that SCO-792 treatment is highly effective in improving kidney parameters in a rat model of CKD, the precise biological mechanisms by which SCO-792 induces these therapeutic effects remain unclear. Thus, further studies are required to understand how enteropeptidase inhibition results in potent kidney protection effects.

This is the first study to show that enteropeptidase inhibition improved kidney function, albuminuria, and renal pathology in a rat CKD model. Our findings suggest that SCO-792-mediated inhibition of enteropeptidase may have therapeutic potential in patients with CKD.
ACKNOWLEDGEMENTS
We thank Yoshitaka Yasuhara for support.

CONFLICT OF INTEREST STATEMENT
Y.K., J.S., Y.I., A.K., Y.M., and M.W. are employees of SCOHIA PHARMA, Inc.

AUTHORS’ CONTRIBUTIONS
The research study was designed by all authors. Experiments were conducted by Y. K. Data were analysed and interpreted by all authors. The manuscript was written by Y. K. and Y. M., and important intellectual content of the manuscript was reviewed and revised by all authors. All authors have agreed to be accountable for all aspects of the work, ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

FUNDING
This study was supported by SCOHIA PHARMA, Inc.

REFERENCES
1. Eckardt KU, Coresh J, Devuyst O, et al. Evolving importance of kidney disease: from subspecialty to global health burden. Lancet 2013;382(9887):158-169
2. Gansevoort RT, Correa-Rotter R, Hemmelgarn BR, et al. Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet 2013;382(9889):339-352
3. Brenner BM, Cooper ME, de Zeeuw D, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 2001;345(12):861-869
4. Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N Engl J Med 2019;380(24):2295-2306
5. Helal I, Fick-Brosnahan GM, Reed-Gitomer B, et al. Glomerular hyperfiltration: definitions, mechanisms and clinical implications. Nat Rev Nephrol 2012;8(5):293-300
6. Brenner BM. Nephron adaptation to renal injury or ablation. Am J Physiol 1985;249(3 Pt 2):F324-337
7. Tonneijck L, Muskiet MH, Smits MM, et al. Glomerular Hyperfiltration in Diabetes: Mechanisms, Clinical Significance, and Treatment. J Am Soc Nephrol 2017;28(4):1023-1039
8. Bankir L, Roussel R, Bouby N. Protein- and diabetes-induced glomerular hyperfiltration: role of glucagon, vasopressin, and urea. Am J Physiol Renal Physiol 2015;309(1):F2-23
9. Brenner BM, Meyer TW, Hostetter TH. Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease. N Engl J Med 1982;307(11):652-659
10. Ko GJ, Obi Y, Tortorici AR, et al. Dietary protein intake and chronic kidney disease. Curr Opin Clin Nutr Metab Care 2017;20(1):77-85
11. Mann NS, Mann SK. Enterokinase. Proc Soc Exp Biol Med 1994;206(2):114-118
12. Zheng XL, Kitamoto Y, Sadler JE. Enteropeptidase, a type II transmembrane serine protease. Front Biosci (Elite Ed) 2009;1:242-249
13. Light A, Janska H. Enterokinase (enteropeptidase): comparative aspects. Trends Biochem Sci 1989;14(3):110-112
14. Sasaki M, Miyahisa I, Itono S, et al. Discovery and characterization of a small-molecule enteropeptidase inhibitor, SCO-792. Pharmacol Res Perspect 2019;7(5):e00517
15. Imai Y, Matsumura H, Miyajima H, et al. Serum and tissue lipids and glomerulonephritis in the spontaneously hypercholesterolemic (SHC) rat, with a note on the effects of gonadectomy. Atherosclerosis 1977;27(2):165-178
16. Kondo S, Yoshizawa N, Wakabayashi K. Natural history of renal lesions in spontaneously hypercholesterolemic (SHC) male rats. Nihon Jinzo Gakkai Shi 1995;37(2):91-99
17. Kushiyama T, Oda T, Yamamoto K, et al. Protective effects of Rho kinase inhibitor fasudil on rats with chronic kidney disease. Am J Physiol Renal Physiol 2013;304(11):F1325-1334
18. Sugama J, Katayama Y, Moritho Y, et al. Enteropeptidase inhibition improves kidney function in a rat model of diabetic disease. Diabetes Obes Metab 2020, doi: 10.1111/dom.14190
19. Isaka Y, Fujiwara Y, Yamamoto S, et al. Modified plasma clearance technique using nonradioactive iothalamate for measuring GFR. Kidney Int 1992;42(4):1006-1011
20. Suzuki M, Yoshida M. Clinical Chemistry Symposium 1976, 220.
21. Kaltwasser H, Schlegel HG. NADH-Dependent coupled enzyme assay for urease and other ammonia-producing systems. Anal Biochem 1966;16(1):132-138
22. Spayd RW, Bruschi B, Burdick BA, et al. Multilayer film elements for clinical analysis: applications to representative chemical determinations. Clin Chem 1978;24(8):1343-1350
23. Allain CC, Poon LS, Chan CS, et al. Enzymatic determination of total serum cholesterol. Clin Chem 1974;20(4):470-475
24. Hine C, Harputlugil E, Zhang Y, et al. Endogenous hydrogen sulfide production is essential for dietary restriction benefits. Cell 2015;160(1-2):132-144
25. Group KDIGO. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int Suppl 2013;3(1):1-163
26. Becker GJ, Hewitson TD. Animal models of chronic kidney disease: useful but not perfect. Nephrol Dial Transplant 2013;28(10):2432-2438
27. Nogueira A, Pires MJ, Oliveira PA. Pathophysiological Mechanisms of Renal Fibrosis: A Review of Animal Models and Therapeutic Strategies. In Vivo 2017;31(1):1-22
28. Nangaku M, Izuhara Y, Usuda N, et al. In a type 2 diabetic nephropathy rat model, the improvement of obesity by a low calorie diet reduces oxidative/carbonyl stress and prevents diabetic nephropathy. Nephrol Dial Transplant 2005;20(12):2661-2669
29. Xu XM, Cai GY, Bu R, et al. Beneficial Effects of Caloric Restriction on Chronic Kidney Disease in Rodent Models: A Meta-Analysis and Systematic Review. PLoS One 2015;10(12):e0144442
30. Tuttle KR, Bruton JL, Perusek MC, et al. Effect of strict glycemic control on renal hemodynamic response to amino acids and renal enlargement in insulin-dependent diabetes mellitus. N Engl J Med 1991;324(23):1626-1632
31. Kitada M, Ogura Y, Monno I, et al. A Low-Protein Diet for Diabetic Kidney Disease: Its Effect and Molecular Mechanism, an Approach from Animal Studies. Nutrients 2018;10(5)
32. Gao X, Huang L, Grosjean F, et al. Low-protein diet supplemented with ketoacids reduces the severity of renal disease in 5/6 nephrectomized rats: a role for KLF15. Kidney Int 2011;79(9):987-996
33. Levey AS, Greene T, Beck GJ, et al. Dietary protein restriction and the progression of chronic renal disease: what have all of the results of the MDRD study shown? Modification of Diet in Renal Disease Study group. J Am Soc Nephrol 1999;10(11):2426-2439
34. Kitada M, Ogura Y, Monno I, et al. Methionine abrogates the renoprotective effect of a low-protein diet against diabetic kidney disease in obese rats with type 2 diabetes. Aging (Albany NY) 2020;12(5):4489-4505
35. Jung KJ, Jang HS, Kim JI, et al. Involvement of hydrogen sulfide and homocysteine transsulfuration pathway in the progression of kidney fibrosis after ureteral obstruction. Biochim Biophys Acta 2013;1832(12):1989-1997

FIGURE 1: Effects of SCO-792 on faecal protein, plasma branched-chain amino acids (BCAAs), average food intake, and body weight in spontaneously hypercholesterolaemic (SHC) rats. SHC rats were treated with SCO-792 (0.03% or 0.06% added to the diet) for 5 weeks. (A) Faecal protein levels were measured on day 21. (B) Plasma branched-chain amino acids (BCAAs) were measured on day 36. Food intake and body weight were monitored during the study; (D) average food intake was calculated; and (E) body weight was measured on day 28. SHC, SHC rats; Normal, normal rats; Veh, vehicle; Pair-fed, the group fed the same amount of food as the SCO-792 (0.06%) group. The values are expressed as mean ± standard deviation (S.D.) (n = 9–10 for SHC rats and 6 for normal rats). † P < 0.025 vs vehicle-treated SHC rats using Williams’ test. ‡ P < 0.025 vs vehicle-treated SHC rats using Shirley–Williams’ test. §§ P < 0.01 vs vehicle-treated SHC rats using Aspin–Welch test.
FIGURE 2: Effects of SCO-792 on the glomerular filtration rate, renal plasma flow, filtration fraction, plasma creatinine, and urinary albumin excretion in spontaneously hypercholesterolaemic (SHC) rats. SHC rats were treated with SCO-792 (0.03% or 0.06% added to the diet) for 5 weeks. (A) Glomerular filtration rate was measured before the study and on days 14 and 28. (B) Renal plasma flow and (C) filtration fraction were examined on day 28. (D) Plasma creatinine was measured before the study and on days 14 and 28. (E) Urinary albumin excretion for 24 h was measured on day 30. Filtration fraction was calculated by dividing glomerular filtration rate with renal plasma flow. SHC, SHC rats; Normal, normal rats; Veh, vehicle; Pair-fed, the group fed the same amount of food as the SCO-792 (0.06%) group. The values are expressed as mean ± standard deviation (S.D.) (n = 7–10 for SHC rats and 5–6 for normal rat). † P < 0.025 vs vehicle-treated SHC rats using Williams’ test. ‡ P < 0.025 vs vehicle-treated SHC rats using Shirley–Williams’ test. ** P < 0.01 vs SCO-792 (0.06%) using Student’s t-test. ## P < 0.01 vs SCO-792 (0.06%) using Aspin–Welch test. ¶ P < 0.05 vs vehicle-treated SHC rats using Student’s t-test.

FIGURE 3: Effects of SCO-792 on renal histological damage in spontaneously hypercholesterolaemic (SHC) rats. SHC rats were treated with SCO-792 (0.03% or 0.06% added to the diet) for 5 weeks. Representative microphotographs of the renal cortex stained with (A) haematoxylin–eosin (HE), (B) Masson's trichrome (MT), or (C) Sirius red (SR) stains are shown. (D) Glomerulosclerosis was assessed using the MT-stained specimens, (E) dilatation of tubules and (F) tubular basophilia were assessed using the HE-stained specimens, and (G) interstitial fibrosis was assessed using the SR-stained specimens; they were semi-quantitatively graded from 0 to 4 (0, not remarkable; 1, minimal; 2, mild; 3, moderate; 4, marked). mRNA levels of (H) Col1a1, (I) Tgfb1, and (J) Fn1, and (K) content of total collagen in the kidney were examined. Scale bar = 500 μm for A and C, and 100 μm for B. SHC, SHC rats; Normal, normal rats; Veh, vehicle; Pair-fed, the group fed the same amount of food as the SCO-792 (0.06%) group. The values are expressed as mean ± standard deviation (S.D.) (n = 10 for SHC rat and 6 for normal rat). † P < 0.025 vs vehicle-treated SHC rats using Williams’ test. ‡ P < 0.025 vs vehicle-treated SHC rats using Shirley–Williams test. ** P < 0.01 vs SCO-792 (0.06%)
using Student's t-test. ## $P < 0.01$ vs SCO-792 (0.06%) using Aspin–Welch test. ¶ P < 0.05 and ¶¶ P < 0.01 vs vehicle-treated SHC rats using Student's t-test. § P < 0.05 vs vehicle-treated SHC rats using Aspin–Welch test.

FIGURE 4: Effects of SCO-792 on the Cth mRNA levels and hydrogen sulphide production capacity in spontaneously hypercholesterolaemic (SHC) rats. SHC rats were treated with SCO-792 (0.03% or 0.06% added to the diet) for 5 weeks. (A) Cystathionine gamma-lyase (Cth) mRNA level in the kidney was analysed. (B) Hydrogen sulphide production capacity in the kidney was detected as brown-black colouration of lead sulphide paper and (C) quantitatively analysed. SHC, SHC rats; Normal, normal rats; Veh, vehicle; Pair-fed, the group fed the same amount of food as the SCO-792 (0.06%) group. The values are expressed as mean ± standard deviation (S.D.) (n = 10 for SHC rat and 6 for normal rat). † P < 0.025 vs vehicle-treated SHC rats using Williams’ test. ‡ P < 0.025 vs vehicle-treated SHC rats using Shirley–Williams’ test. * P < 0.05 vs SCO-792 (0.06%) using Student’s t-test. ## P < 0.01 vs SCO-792 (0.06%) using Aspin–Welch test. ¶¶ P < 0.01 vs vehicle-treated SHC rats using Student’s t-test. § P < 0.05 vs vehicle-treated SHC rats using Aspin–Welch test.

FIGURE 5: Effects of methionine and cysteine supplementation on SCO-792-induced kidney protection in spontaneously hypercholesterolaemic (SHC) rats. SHC rats were treated with SCO-792 (0.06% added to the diet) or methionine and cysteine supplementation to SCO-792-(0.06%)-containing diet for 3 weeks. (A) Cystathionine gamma-lyase (Cth) mRNA level in the kidney and (B) urine albumin-to-creatinine ratio (UACR) were examined. L_M/C: 0.66% methionine and 0.59% cysteine were added to the diet. H_M/C: 2.0% methionine and 1.8% cysteine were added to the diet. SHC, SHC rats; Normal, normal rats; Veh, vehicle; SCO-792, SCO-792 (0.06%). The values are expressed as mean ± standard deviation (S.D.) (n = 10 for SHC rat and 6 for normal rat). ## P < 0.01 vs vehicle-treated SHC rats using Aspin–Welch test. † P < 0.025 vs SCO-792-treated group using Williams’ test. ‡ P < 0.025 vs SCO-792-treated group using Shirley–Williams’ test.
A Cth

B SHC

C Hydrogen sulphide production capacity

Relative mRNA expression (fold increase vs normal rat)

Veh 0.03% 0.06% Pair-fed Veh

SCO-792 (0.03%) SCO-792 (0.06%) Normal Negative control

Downloaded from https://academic.oup.com/ndt/advance-article/doi/10.1093/ndt/gfaa349/6044202 by guest on 26 December 2020
Relative mRNA expression (fold increase vs normal rat)

A. Cth

B. UA CR

mg/mg Cre

mg/mg Cre

Downloaded from https://academic.oup.com/ndt/advance-article/doi/10.1093/ndt/gfaa349/6044202 by guest on 26 December 2020