Complete mitochondrial genome of the *Pasiphila chloerata* (Lepidoptera: Geometridae) and its phylogenetic implications

Lu Song*, Yu-Xia Shi*, Jun-Hao Li, Hong-Fei Zhang, Wei-Li Ding, Jin Li and Ming-Sheng Yang

College of Life Science and Agronomy, Zoukou Normal University, Zoukou, PR China

ABSTRACT

In this study, the complete mitochondrial genome of *Pasiphila chloerata* (Mabille) was sequenced and its phylogenetic implications were investigated. The *P. chloerata* mitogenome is a circular, double-stranded molecule, with 15,602 bp in length. The typical 37 mitochondrial genes (13 protein-coding genes (PCGs), 22 tRNAs, and 2 rRNAs) plus an A + T-rich region are included. Gene content and arrangement are highly conserved and typical of Lepidoptera. Phylogenetic analyses based on the combined 37 mitochondrial genes consistently recovered the Larentiinae and Ennominae involved are reciprocally monophyletic with the highest supports. The *P. chloerata* was clustered with other two members of the Larentiinae, reinforcing that of previous morphological studies.

The Geometridae, with more than 26,000 described species, is one of the most speciose groups in Lepidoptera (van Nieukerken et al. 2011; Liu et al. 2014). However, mitochondrial genomes (mitogenomes) of only 12 geometrid species have been reported and 10 of them were from the Ennominae. Mitogenome sequences contain high genetic information (Timmermans et al. 2014) and more taxa with mitogenomes sequenced would effectively facilitate evolutionary studies on this group. In this study, the complete mitogenome of an additional geometrid species were sequenced using next-generation sequencing. The *Pasiphila chloerata* (Mabille, 1870), belonging to the Larentiinae, is widely distributed in the Palearctic region. Adult specimens were collected from Mountain Jigongshan (114°06′ 56″E, 31°49′25″N) of Henan Province, China. After species identification and the extraction of genomic DNA, one library was constructed, and an Illumina Miseq platform (Illumina, San Diego, CA) was used for sequencing with the strategy of 250 paired-ends. Voucher specimens are deposited in the Biology Laboratory of Zoukou Normal University (accession number: 2018JGSA6 and 2018JGSA14), China.

The *P. chloerata* mitogenome (GenBank accession number: MN598218) is a circular, double-stranded molecule, with 15,602 bp in length, and includes typical 37 mitochondrial genes (13 PCGs, 22 tRNAs, and 2 rRNAs) plus an A + T-rich region. Gene content and arrangement are highly conserved and typical of Lepidoptera. The nucleotide composition is A 40.11%, G 7.79%, C 11.57, and T 40.53, showing a highly A/T bias as commonly present in insects (Boore 1999).

The total length of 13 protein-coding gene (PCGs) of *P. chloerata* is 11,197 bp, encoding 3731 amino acids. Most PCGs use the conventional ATN as start codon, with an exception being CGA for the *cox1*. TAA is routinely used as stop codon, whereas the incomplete termination codon T is recognized in *cox1, cox2, nad5*, and *nad4*. Typically, 22 tRNAs are recognized. All tRNAs exhibit typical clover-leaf secondary structure, but *trnS1* (AGN) lacks the DHU arm, which is common in Lepidoptera insects (Garey and Wolstenholme 1989). Two rRNA genes, *rrnS* and *rrnL* were recognized. The lengths are 781 bp and 1381 bp, respectively. There are ten overlapping regions ranging from 1 to 8 bp. A large intergenic region (50 bp) between *trnQ* and *nad2* was recognized and this sequence even is regarded as an autapomorphy of Lepidoptera (Cao et al. 2014). Besides, the intergenic region (18 bp) between *trnS2* and *nad1* was also recognized as characterized by the presence of the ‘ATACTAA.’ As the largest non-coding region, the A + T-rich region contains typical conserved sequence elements such as the motif ‘ATAGA’ and subsequent poly-T structure.

Phylogenetic trees were constructed based on a dataset including all 37 mitochondrial genes of the *P. chloerata* sequenced herein together with all other 12 geometrid species and one epicephalid species in Geometroidea. Both maximum likelihood and Bayesian inference analyses (Figure 1) consistently recovered the Larentiinae and Ennominae involved were reciprocally monophyletic with the highest supports. The *P. chloerata* was clustered with other two members of the Larentiinae, reinforcing that of previous morphological studies.

ARTICLE HISTORY

Received 26 October 2019
Accepted 9 November 2019

KEYWORDS
Geometroidae; mitochondrial genome; moths; phylogeny
Disclosure statement
No potential conflict of interest was reported by the authors.

Funding
This work was funded by the National Natural Science Foundation of China [31702046], the Key Scientific Research Projects of Higher Education Institutions of Henan Province [No. 18A180036] and the Project of Scientific Research Innovation Fund for College Student [ZKNUD2019019 and ZKNUD2019076].

References
Boore JL. 1999. Animal mitochondrial genomes. Nucleic Acids Res. 27(8):1767–1780.

Cao SS, Yu WW, Sun M, Du YZ. 2014. Characterization of the complete mitochondrial genome of Tryporyza incertulas, in comparison with seven other Pyraloidea moths. Gene. 533:356–365.

Garey JR, Wolstenholme DR. 1989. Platyhelminth mitochondrial DNA: evidence for early evolutionary origin of a tRNA(AserAGN) that contains a dihydrouridine arm replacement loop, and of serine-specifying AGA and AGG codons. J Mol Evol. 28(5):374–387.

Liu S, Xue D, Cheng R, Han H. 2014. The complete mitogenome of Apocheima cinerarius (Lepidoptera: Geometridae: Ennominae) and comparison with that of other lepidopteran insects. Mitochondrial DNA B. 4:2211–2212.

Timmermans M, Lees DC, Simonsen TJ. 2014. Towards a mitogenomic phylogeny of Lepidoptera. Mol Phylogenet Evol. 79:169–178.

van Nieukerken EJ, Kaila L, Kitching IJ, Kristensen NP, Lees DC, Minet J, Mitter C, Mutanen M, Regier JC, Simonsen TJ, et al. 2011. Order Lepidoptera Linnaeus, 1758. Zootaxa. 3148(1):212–221.