Impact picture for the analyzing power A_N in very forward pp elastic scattering
Claude Bourrely, Jacques Soffer, Tai Tsun Wu

To cite this version:
Claude Bourrely, Jacques Soffer, Tai Tsun Wu. Impact picture for the analyzing power A_N in very forward pp elastic scattering. Physical Review D, 2007, 76, pp.053002. hal-00154373

HAL Id: hal-00154373
https://hal.science/hal-00154373
Submitted on 13 Jun 2007

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Impact picture for the analyzing power A_N in very forward pp elastic scattering

Claude Bourrely

Centre de Physique Théorique, CNRS Luminy case 907, F-13288 Marseille Cedex 09, France

Jacques Soffer

Department of Physics, Temple University, Philadelphia, PA 19122-6082, USA

Tai Tsun Wu

Harvard University, Cambridge, MA 02138, USA and Theoretical Physics Division, CERN, 1211 Geneva 23, Switzerland

In the framework of the impact picture we compute the analyzing power A_N for pp elastic scattering at high energy and in the very forward direction. We consider the full set of Coulomb amplitudes and show that the interference between the hadronic non-flip amplitude and the single-flip Coulomb amplitude is sufficient to obtain a good agreement with the present experimental data. This leads us to conclude that the single-flip hadronic amplitude is small in this low momentum transfer region and it strongly suggests that this process can be used as an absolute polarimeter at the BNL-RHIC pp collider.

PACS numbers: 13.40.-f, 13.85.Dz, 13.88.+e

I. INTRODUCTION

The measurement of spin observables in hadronic exclusive processes is the only way to obtain the full knowledge on the corresponding set of scattering amplitudes, and in particular, their relative size and phase difference. Taking the specific case of proton-proton elastic scattering, a reconstruction of the five amplitudes has been worked out in the low-energy domain [1]. This situation is very different at high energy: due to the lack of data, in the range $p_{lab} \approx 100-300$ GeV, besides the non-flip hadronic amplitude h_1^h, only the hadronic helicity-flip amplitude h_5^h is known and to a rather poor level of accuracy. The advent of the BNL-RHIC pp collider, where the two proton beams can be polarized, longitudinally and transversely, up to an energy $\sqrt{s} = 500$ GeV, offers a unique opportunity to measure single- and double-spin observables, and thus to provide the determination of the spin-dependent amplitudes, which remain unknown so far.

For instance, for an elastic collision of transversely polarized protons, the differential cross section as a function of the momentum transfer t and the azimuthal angle ϕ, reads

$$2\pi \frac{d^2\sigma}{dt d\phi} = \frac{d\sigma}{dt} [1 + (P_B + P_Y)A_N \cos \phi + P_B P_Y (A_{NN} \cos^2 \phi + A_{SS} \sin^2 \phi)] ,$$

where P_B and P_Y are the beam polarizations, A_N the analyzing power and A_{NN}, A_{SS} are double spin asymmetries (see Ref. [2] for definitions). In this expression, the values of the beam polarizations have to be known accurately in order to reduce the errors on the spin asymmetries. So new measurements are indeed required to achieve an amplitude analysis of pp elastic scattering at high energy, and the success of the vast BNL-RHIC spin programme [3] also relies heavily on the precise determination of the beam...
polarimeter1 is provided by the measurement of the analyzing power A_N, in the very forward $|t|$ region, where significant Coulomb nuclear interference (CNI) occurs [5–7].

In the calculation of the analyzing power an important question arises: is the interference fully dominated by the hadronic non-flip amplitude with the one-photon exchange helicity-flip amplitude or must one also take into account the contribution of the hadronic helicity-flip amplitude ϕ_3^h, mentioned above? Several arguments concerning the magnitude and phase of ϕ_3^h in the small t-region, have been discussed in great detail in Ref. [6] and it was concluded that the measurement of A_N in the CNI region was badly needed to get the answer. The purpose of this paper is to study this problem in the framework of the impact picture developed almost three decades ago [8], which has led to a very successful phenomenology, repeatedly verified by high-energy experiments, including near the forward direction.\footnote{Proton-Helium elastic scattering has been also considered as a possible high-energy polarimeter [4].}

II. THE IMPACT-PICTURE APPROACH

In the impact picture, the spin-independent hadronic amplitude $\phi_1^h = \phi_3^h$ for pp and $\bar{p}p$ elastic scattering reads as [8]

$$\phi_{1,3}^h(s,t) = \frac{is}{2\pi} \int e^{-iq\cdot b} (1 - e^{-\Omega_0(s,b)})db, \quad (2)$$

where q is the momentum transfer ($t = -q^2$) and $\Omega_0(s,b)$ is the opaqueness at impact parameter b and at a given energy s. We take

$$\Omega_0(s,b) = S_0(s)F(b^2) + R_0(s,b). \quad (3)$$

Here the first term is associated with the Pomeron exchange, which generates the diffractive component of the scattering and the second term is the Regge background. The Pomeron energy dependence is given by the crossing symmetric expression [10, 11]

$$S_0(s) = \frac{s^2}{(\ln s)c^2} + \frac{u^c}{(\ln u)c}, \quad (4)$$

where u is the third Mandelstam variable. The choice one makes for $F(b^2)$ is crucial and, as explained in Ref. [8], we take the Bessel transform of

$$\tilde{F}(t) = f[G(t)]^2 \frac{a^2 + t}{a^2 - t}. \quad (5)$$

Here $G(t)$ stands for the proton electromagnetic form factor, parametrized as

$$G(t) = \frac{1}{(1 - t/m_0^2)(1 - t/m_1^2)}. \quad (6)$$

The slowly varying function occurring in Eq. (5) reflects the approximate proportionality between the charge density and the hadronic matter distribution inside a proton [12]. So the Pomeron part of the amplitude depends on only six parameters c, c', m_1, m_2, f, and a. The asymptotic energy regime of hadronic interactions are controlled by c and c', which will be kept, for all elastic reactions, at the values obtained in 1984 [13], namely

$$c = 0.167 \quad \text{and} \quad c' = 0.748. \quad (7)$$

The remaining four parameters are related, more specifically to the reaction pp ($\bar{p}p$) and they have been fitted in [14] by the use of a large set of elastic data.

We now turn to the Regge background. A generic Regge exchange amplitude has an expression of the form

$$\tilde{R}_i(s,t) = C_i e^{ht} \left[1 \pm e^{-i\alpha(s)} \right] \frac{s}{80} \alpha(s), \quad (8)$$

where $C_i e^{ht}$ is the Regge residue, \pm refers to an even- or odd-signature exchange, $\alpha(t) = \alpha_0 + \alpha'_t t$, is a standard linear Regge trajectory and $s_0 = 1$ GeV2. If $R_0(s,t) = \sum_i \tilde{R}_i(s,t)$ is the sum over all the allowed Regge trajectories, the Regge background $R_0(s,b)$ in Eq. (3) is the Bessel transform of $\tilde{R}_0(s,t)$. In pp ($\bar{p}p$) elastic scattering, the allowed Regge exchanges are
A_2, ρ, ω, so the Regge background involves several additional parameters, which are given in Ref. [14].

In earlier work, spin-dependent hadronic amplitudes were implemented [8, 15, 16], using the notion of rotating matter inside the proton, which allowed us to describe the polarizations and spin correlation parameters, but for the present purpose hadronic spin-dependent amplitudes will be ignored. In order to describe the very small t-region we are interested in, one adds to the hadronic amplitude considered above, the full set of Coulomb amplitudes $\phi_i^C(s, t)$, whose expressions are given in Ref. [17] and the Coulomb phase in Ref. [18].

The two observables of interest are the unpolarized cross section $d\sigma/dt$ and the analyzing power A_N, whose expressions in terms of the hadronic and Coulomb amplitudes are respectively

$$
\frac{d\sigma(s, t)}{dt} = \frac{\pi}{s^2} \sum_{i=1, \ldots, 5} |\phi_i^h(s, t) + \phi_i^C(s, t)|^2 \quad (9)
$$

and

$$
A_N(s, t) = \frac{4\text{Im}((\phi_1^h(s, t))^* \phi_5^C(s, t))}{\sum_{i=1, \ldots, 5} |\phi_i^h(s, t) + \phi_i^C(s, t)|^2}. \quad (10)
$$

The numerator of this last expression is not fully general because we have assumed that $\phi_1^h = \phi_3^h$ and $\phi_2^h, 4, 5 = 0$.

III. NUMERICAL RESULTS

The analyzing power A_N has been measured at high energy for $\sqrt{s} = 13.7, 19.4, 200$ GeV, but before turning to the calculation of this quantity, it is necessary to look at the predictions for the differential cross section, at the corresponding energies. They are given in the upper plot in Fig. 1 and compared with the available experimental results at $\sqrt{s} = 13.7$ and 19.4 GeV. We underestimate a bit the data for high t-values, at $\sqrt{s} = 13.7$ GeV, which might indicate the presence of a small hadronic spin-dependent amplitude. However, this is not the case at $\sqrt{s} = 44$ GeV, where the agreement is excellent, as shown in the lower plot in Fig. 1.

Note that the momentum transfer runs over four decades and the cross section over eleven orders of magnitude, which is a good illustration of the validity of the impact picture. Concerning the energy $\sqrt{s} = 200$ GeV, we cannot make a detailed comparison with the data. The pp2pp experiment [25] has only determined the slope of the cross section for $0.01 < |t| < 0.019$ GeV2, which is $b = 16.3 \pm 1.6(\text{stat.}) \pm 0.9(\text{syst.})$ GeV$^{-2}$, consistent with the average value obtained in the impact picture, namely $b = 16.25$ GeV$^{-2}$.

In Fig. 2, we compare the predictions with the data, for A_N in the CNI region versus $|t|$.

FIG. 1: The differential cross section versus the momentum transfer t for different energies. Data from Refs. [19–24].

FIG. 2: The analyzing power A_N in the CNI region versus $|t|$. Data from Refs. [19–24].
FIG. 2: The analyzing power A_N versus the momentum transfer t for different energies. Data from Refs. [26–28].

for three different energies and let us make the following remarks. First, there is almost no energy dependence between $\sqrt{s} = 13.7$ and 19.4 GeV, but the curve has a slightly different shape at $\sqrt{s} = 200$ GeV. Second, although this is not obvious from the plot, A_N does not vanish for $|t| > 0.1$ GeV2 and we would like to stress that for pp elastic scattering at high energy, in the dip region, the hadronic and the Coulomb amplitudes are of the same order of magnitude [29], so the behavior of spin observables is sensitive to this interference. Finally, indeed the predictions agree well with the present experimental data. This shows that the hadronic spin-flip amplitude is not necessary to describe the analyzing power, at least when compared with the data with the present day accuracy. A similar conclusion was obtained in Ref. [26], which contains the best data sample so far. Note that their analysis, based on Ref. [6], was done using a simple model for ϕ_h^1 and they did not introduce the full expressions for the Coulomb amplitudes ϕ_C^1, as we do here for consistency.

IV. CONCLUSION

We have shown, in the context of the impact picture, that the analyzing power A_N can be described in the CNI region by the interference between the non-flip hadronic amplitude and the single-flip Coulomb amplitude. Unfortunately the data set at $\sqrt{s} = 200$ GeV is too limited to confirm the predicted trend. It should be extended to make sure this method is a reliable high-energy polarimeter. The RHIC machine offers a unique opportunity to measure single- and double-spin observables, with both longitudinal and transverse spin directions, and we believe it worthwhile to improve such measurements, in particular in the small momentum transfer region [30], as discussed in Ref. [6]. It is a trivial statement to say that at the moment we know almost nothing on the pp spin-flip amplitudes at high energy, due to the scarcity of previous experiments performed at CERN and Fermilab. They do not allow us to make a reliable amplitude analysis, which requires these new measured observables, in a significant range of mo-
mentum transfer. This will be important for our understanding of spin-dependent scattering dynamics.

Acknowledgments

We are grateful to Margaret Owens for a careful reading of the manuscript. J.S. is glad to thank G. Bunce, N. Saito and H. Okada for useful discussions at Brookhaven National Laboratory. The work of one of us (T.T.W.) was supported in part by the US Department of Energy under Grant DE-FG02-84ER40158; he is also grateful for hospitality at the CERN Theoretical Physics Division.

[1] For a review see, C. Lechanoine-LeLuc and F. Lehar, Rev. Mod. Phys. 65, 47 (1993).
[2] For a review see, C. Bourrely, E. Leader and J. Soffer, Phys. Rep. C 59, 95 (1980) (Appendix 3).
[3] G. Bunce, N. Saito, J. Soffer and W. Vogelsang, Annu. Rev. Nucl. Part. Sci. 50, 525 (2000).
[4] C. Bourrely and J. Soffer, Phys. Lett. B 442, 479 (1998).
[5] C. Bourrely and J. Soffer, 12th International Symposium on High Energy Spin Physics, Amsterdam, September 1996. C.W. de Jager et al. (Eds) p. 825, (World Scientific 1997).
[6] N.H. Buttimore, B. Kopeliovich, E. Leader, J. Soffer and T.L. Trueman, Phys. Rev. D 59, 114010 (1999).
[7] N.H. Buttimore, E. Leader and T.L. Trueman, Phys. Rev. D 64, 094021 (2001).
[8] C. Bourrely, J. Soffer and T.T. Wu, Phys. Rev. D 19 3249 (1979).
[9] C. Bourrely, N. N. Khuri, A. Martin, J. Soffer and T. T. Wu, Proceedings of the XIth Int. Conf. on Elastic and Diffractive Scattering, Blois May 2005, The Gioi Publishers, Vietnam, p. 41 (2006).
[10] H. Cheng and T.T. Wu, Phys. Rev. Lett. 24, 1456 (1970).
[11] H. Cheng and T.T. Wu, “Expanding Protons: Scattering at High Energies”, M.I.T. Press, Cambridge, MA (1987).
[12] H. Cheng and T.T. Wu, Phys. Rev. D 184, 1868 (1969).
[13] C. Bourrely, J. Soffer and T.T. Wu, Nucl. Phys. B 247, 15 (1984).
[14] C. Bourrely, J. Soffer and T.T. Wu, Eur. Phys. J. C 28, 97 (2003).
[15] C. Bourrely, H. Neal, H. Ogren, J. Soffer and T.T. Wu, Phys. Rev. D 26, 1781 (1982).
[16] C. Bourrely, J. de Physique 46 , C2-221 (1985).
[17] L.I. Lapidus, Nucl. and Part. Phys. 9, 84 (1978); N.H. Buttimore, E. Costman and E. Leader, Phys. Rev. D 18, 694 (1978).
[18] G. B. West and D.R. Yennie, Phys. Rev. 172, 1413 (1968); V. Kundrát and M. Lokajček, Phys. Lett. B 611, 102 (2005).
[19] V. Bartenev et al., Phys. Rev. Lett. 29, 1755 (1972).
[20] A. Schiz et al., Phys. Rev. D 24, 26 (1981).
[21] J.P. Burq et al., Nucl. Phys. B 217, 285 (1983).
[22] L. A. Fajardo et al., Phys. Rev. D 24, 46 (1981); L.A. Fajardo-Paz, PhD Thesis, Yale University (1980).
[23] D. Gross et al., Phys. Rev. Lett. 41, 217 (1978).
[24] U. Amaldi et al., Nucl. Phys. B 166, 301 (1979).
[25] S. Bültmann et al., Phys. Lett. B 579, 245 (2004).
[26] H. Okada et al., Phys. Lett. B 638, 450 (2006).
[27] N. Akchurin et al., Phys. Rev. D 48, 3026 (1993).
[28] S. Bültmann et al., Phys. Lett. B 632, 167 (2006).
[29] C. Bourrely and J. Soffer, Lettere al Nuovo Cimento, 19 569 (1977).
[30] S. Bültmann et al., Phys. Lett. B 647, 98 (2007).