Research Article

Activity of Ceftaroline against Aerobic Gram-Positive and Gram-Negative Pathogens: Effect of Test Method Variability

Diane M. Citron,¹ Yumi A. Warren,¹ Kerin L. Tyrrell,¹ and Ellie J. C. Goldstein¹,²

¹R.M. Alden Research Laboratory, Culver City, CA 90230, USA
²Department of Medicine, David Geffen School of Medicine, Los Angeles, CA 90095, USA

Correspondence should be addressed to Ellie J. C. Goldstein, ejcgmd@aol.com

Received 23 August 2011; Accepted 28 September 2011

Academic Editor: P. D. Ghiringhelli

Copyright © 2011 Diane M. Citron et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Ceftaroline is a new cephalosporin with bactericidal activity against methicillin-resistant S. aureus (MRSA) as well as gram-negative pathogens. Variations of in vitro test conditions were found to affect ceftaroline activity, with 5% NaCl inhibiting growth and/or reducing the minimum inhibitory concentrations (MICs) for E. coli, K. pneumoniae, M. catarrhalis, H. influenzae, and streptococci, while an inoculum of 10⁶ CFU/mL raised MICs of some E. coli, K. pneumoniae, and M. catarrhalis strains.

1. Introduction

The emergence of MRSA has spurred the development of alternative therapies such as daptomycin, linezolid, and quinupristin-dalfopristin, which are not active against gram-negative pathogens and require combination therapy. Ceftaroline is a new, parenteral, broad-spectrum cephalosporin with bactericidal activity against MRSA, including vancomycin-intermediate (VISA) strains, and multidrug-resistant Streptococcus pneumoniae (MDRSP); it is also active against common gram-negative pathogens and can therefore be used as monotherapy for mixed infections [1–6]. Since alterations of in vitro test conditions can potentially affect susceptibility results, we evaluated the effects of 15 variations to the standard test conditions as specified by the Clinical and Laboratory Standards Institute (CLSI) guidelines [7, 8] on the minimum inhibitory concentrations (MICs) of ceftaroline against 30 isolates representing 10 species of clinically important, commonly encountered organisms.

2. Materials and Methods

2.1. Standard Method. The CLSI reference broth microdilution method (CLSI 2006, 2009) uses cation-adjusted Mueller Hinton broth (CAMHB) (Difco, BD; Sparks, Md, USA), which has a calcium concentration of 25 mg/L, a magnesium concentration of 12.5 mg/L, and a pH of 7.3 ± 0.1. The standard inoculum is 5 × 10⁵ colony-forming units (CFUs)/mL for broth microdilution testing and 10⁴ CFU/spot for agar dilution tests.

2.2. Test Variables. Modifications of standard test conditions included adjusting the Ca²⁺ content of CAMHB to 50 mg/L Ca, addition of NaCl to 5%, adjusting the broth to pH 6 and pH 8, and using inocula of 10⁴ and 10⁶ colony-forming units (CFUs)/mL. Other variations to the standard medium were the addition of 10% and 50% pooled human serum (Sigma; St. Louis, Mo, USA), the addition of lysed horse blood to 2.5% (LHB) (Hardy Diagnostics, Inc. Santa Maria, Calif, USA), and using Haemophilus test medium (HTM) broth. While MIC panels were incubated at 35°C in ambient conditions, for comparative purposes, additional tests in CAMHB were incubated in the anaerobic chamber or in 5% CO₂.

2.3. MIC Test Panel Preparation. Ninety-six-well panels were prepared with twice the final concentration of ceftaroline (50 μL/well) using the Quick-Spense Ile apparatus (Sandy Springs Instruments; Germantown, Md, USA) and stored at −70°C until used. Addition of 50 μL of the organism inocula to the wells reduced the final ceftaroline concentration to
Table 1: List of organisms used in the study.

Organism	RMA number	Specimen source	Date isolated	Comments
E. coli	19090	Blood	3/7/2007	Ampicillin = 4 μg/mL
	19091	Primary infection site	3/1/2007	Ampicillin ≥32 μg/mL
K. pneumoniae	19092	Blood	6/6/2007	Ampicillin = 16 μg/mL
	19093	Blood	6/29/2007	Ampicillin = 32 μg/mL
H. influenzae	16081	Respiratory-sinus	12/31/2003	β-Lactamase-negative
	18520	Respiratory-sinus	12/23/2005	β-Lactamase-positive
M. catarrhalis	11940	Respiratory-sinus	6/14/2000	
	14032	Respiratory-sinus	5/22/2002	
	18861	Respiratory-sputum	1/31/2007	
S. aureus	18488	Chest infection site	2/11/2005	Methicillin-S
	18401	Blood	8/16/2005	Methicillin-S
	18483	Head abscess	10/15/2005	Methicillin-R
	18504	Primary infection site	11/18/2005	Methicillin-R
	18526	Blood	10/24/2005	Methicillin-R
E. faecalis	18284	Foot infection site	3/24/2005	
	18877	Blood	4/10/2007	
S. pyogenes	17018	Diabetic foot infection site	1/22/2003	
	17019	Diabetic foot infection site	10/22/2002	
	19047	Abdominal lesion	10/26/2007	Clindamycin-R
S. pneumoniae	19094	Ear	10/29/2007	Penicillin-S
	19095	Eye	1/9/2007	Penicillin-S
	13345	Nasopharynx	11/14/2001	Penicillin = 8 μg/mL
	13385	Nasopharynx	12/4/2001	Penicillin = 8 μg/mL
	18876	Eye	1/2/2007	Penicillin = 8 μg/mL

RMA: R.M. Alden (culture collection).
ATCC: American Type Culture Collection.

the desired level of 0.008 to 8 μg/mL. Some of the organisms did not achieve a ceftaroline MIC endpoint, and further dilutions were prepared to 0.001 μg/mL for retesting some of those isolates.

2.4. Agar Dilution Test Media. Agar dilution MICs were determined on unsupplemented Mueller Hinton agar (MHA) (Difco), with 5% LHB, and on HTM with 1.5% agar (HTMA). Serial twofold dilutions of ceftaroline were added to molten agar deeps to prepare the plates for use on the same day. Concentrations of ceftaroline ranged from 0.008 to 8 μg/mL. Drug-free growth control plates were included (CLSI, 2006).

2.5. Test Organisms. All 30 strains tested were recent clinical isolates and American Type Culture Collection (ATCC) quality control (QC) strains, which included *Escherichia coli* ATCC 25922, *Staphylococcus aureus* ATCC 29213, *Enterococcus faecalis* ATCC 29212, *Streptococcus pneumoniae* ATCC 49619, and *Haemophilus influenzae* ATCC 49247. Details about the clinical isolates are listed in Table 1. Clinical isolates were selected based on previously demonstrated resistance patterns. The isolates were stored in 20% skim milk at −70°C and were taken from frozen stock and transferred twice on blood or chocolate agar (Hardy Diagnostics Inc.) before testing.

2.6. Inoculum Preparation for Microbroth Dilution Tests. Standard inocula were prepared by suspending colonies from overnight cultures in 0.85% saline to equal the turbidity of the 0.5 McFarland standard and diluting it in CAMHB with the various additives at twice their final concentration, which upon addition of 50 μL of inoculum to the test panel were diluted 1:2. The 10^4 and 10^6 cfu/mL inocula were prepared by diluting the saline suspension either 10-fold more (for 10^4 cfu/mL) or 10-fold less (for 10^6 cfu/mL). The trays were inoculated with 50 μL of cell suspension for a final inoculum of ~5 × 10^8 CFU/mL which was validated by
Table 2: Ceftaroline MICs (μg/mL) in the cation-adjusted Mueller-Hinton broth with test variables and agar dilution MICs.

Organism	RMA number	REF	50 mg/L	5	6	8	10	10^4	10	50	LHB	MHA	HTM	CO₂	Anaerobic			
E. coli	ATCC 25922	0.06	0.06	≤0.008	0.125	0.06	0.06	0.125	0.06	0.125	0.125	0.125	0.03	0.06	0.125	0.25	0.25	
H. influenzae	ATCC 49247	0.015	0.015	ng	ng	0.06	0.06	0.06	0.06	0.06	n/t	0.06	0.03	ng	0.06	0.125		
M. catarrhalis	ATCC 11940	0.125	0.06	ng	ng	0.125	0.03	2	0.06	0.125	0.125	0.125	0.125	0.03	ng	0.06	0.03	n.g.
S. aureus -MSSA	ATCC 29213	0.125	0.125	0.125	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.5
S. aureus -MRSA	ATCC 18483	0.25	0.5	0.25	0.5	0.5	0.25	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	1
E. faecalis	ATCC 29212	0.5	0.5	1	0.5	1	0.5	1	0.5	1	0.5	0.5	0.5	0.5	0.5	2	0.5	2
S. pyogenes	ATCC 17018	0.002	0.002	ng	0.002	0.002	0.002	0.004	0.004	0.002	n/t	0.004	0.004	0.004	≤0.008	≤0.008	0.015	
S. pneumoniae	ATCC 49619	0.015	0.015	ng	0.015	0.008	0.008	0.015	0.015	0.008	n/t	0.015	0.015	0.015	≤0.008	0.015	≤0.008	

ATCC: American Type Culture Collection; CFUs: colony-forming units; HTM: *Haemophilus* test medium; HTMA: HTM with 1.5% agar; LHB: laked horse blood; MHA: Mueller Hinton agar; MIC: minimum inhibitory concentration; MRSA: methicillin-resistant *Staphylococcus aureus*; MSSA: methicillin-susceptible *Staphylococcus aureus*; ng: no growth; nt: not tested; REF: reference method; RMA: R.M. Alden (culture collection).

All *H. influenzae* were tested in HTM; all streptococci were tested with 2.5% LHB supplementation.
quantitative subculture from the growth control well. Inoculum preparation and all testing were performed in duplicate.

2.7. Agar Dilution Testing. For agar dilution tests, the cell suspensions prepared as above were diluted 1:10 in CAMHB and applied to the agar plates using a Steers replicator device that delivered a final inoculum of 10⁶ CFU/spot.

2.8. MIC Determinations. After overnight incubation, the broth microdilution trays were examined for growth. The MIC was the lowest drug concentration that completely inhibited growth [7]. For agar dilution, the plates were incubated at 35°C overnight. The MIC was the lowest concentration that completely inhibited growth or resulted in a marked reduction of growth as compared with the drug-free control [7].

3. Results

We obtained MICs from duplicate tests under the variations shown in Table 2. In cases of discrepancy, the higher value was recorded. The ceftaroline MICs for the QC isolates (tested with the reference microbroth methods according to CLSI guidelines) were all within their acceptable ranges. Effects of variables in testing were noted where 5% NaCl inhibited growth and/or reduced MICs for E. coli and K. pneumoniae and completely inhibited the growth of M. catarrhalis, H. influenzae, and all streptococci. Using an increased inoculum of 10⁶ cfu/mL increased the MIC 5-fold for 1 of 3 E. coli strains that was also resistant to ampicillin (MIC >32 μg/mL) and 1 of 3 K. pneumoniae strains that did not appear to have any unusual resistance pattern (ampicillin MIC 32 μg/mL, ceftriaxone 0.25 μg/mL). This K. pneumoniae isolate produced the same result when retested. The higher inoculum also increased MICs 3- to 5-fold for M. catarrhalis. The addition of blood or serum to the medium enhanced M. catarrhalis growth without changing the MICs. Testing on agar, especially HTMA, produced MICs that were 1–3 dilutions lower. E. coli, K. pneumoniae, M. catarrhalis, H. influenzae, and S. pyogenes grew poorly with NaCl supplementation and at pH 6.0. An inoculum of 10⁶ CFU/mL also increased the MICs four- to six-fold for all three M. catarrhalis strains tested.

5. Conclusion

The in vitro antibacterial activity of ceftaroline was adversely affected by 5% NaCl which inhibited growth and/or reduced MICs for E. coli, K. pneumoniae, M. catarrhalis, H. influenzae, and streptococci, while an inoculum of 10⁶ CFU/mL raised MICs of some E. coli, K. pneumoniae, and M. catarrhalis strains. The other modifications tested did not adversely affect MIC results. Organisms with special growth requirements can be tested for ceftaroline susceptibility with reasonable assurance that test conditions will not affect the MIC results.

Acknowledgment

This study was supported by a grant from the Forest Laboratories, Inc.

References

[1] C. Jacqueline, J. Caillon, V. Le Mabecque et al., “In vivo efficacy of ceftaroline (PPI-0903), a new broad-spectrum cephalosporin, compared with linezolid and vancomycin against methicillin-resistant and vancomycin-intermediate Staphylococcus aureus in a rabbit endocarditis model,” Antimicrobial Agents and Chemotherapy, vol. 51, no. 9, pp. 3397–3400, 2007.
[2] S. Mushtaq, M. Warner, Y. Ge, K. Kaniga, and D. M. Livermore, “In vitro activity of ceftaroline (PPI-0903M, T-91825) against bacteria with defined resistance mechanisms and phenotypes,” Journal of Antimicrobial Chemotherapy, vol. 60, no. 2, pp. 300–311, 2007.
[3] D. Parish and N. Scheinfeld, “Ceftaroline fosamil, a cephalosporin derivative for the potential treatment of MRSA infection,” Current Opinion in Investigational Drugs, vol. 9, no. 2, pp. 201–209, 2008.
[4] H. S. Sader, T. R. Fritsche, K. Kaniga, Y. Ge, and R. N. Jones, “Antimicrobial activity and spectrum of PPI-0903M (T-91825), a novel cephalosporin, tested against a worldwide collection of clinical strains,” Antimicrobial Agents and Chemotherapy, vol. 49, no. 8, pp. 3501–3512, 2005.
[5] H. S. Sader, T. R. Fritsche, and R. N. Jones, “Antimicrobial activities of ceftaroline and ME1036 tested against clinical
strains of community-acquired methicillin-resistant *Staphylococcus aureus,* Antimicrobial Agents and Chemotherapy, vol. 52, no. 3, pp. 1153–1155, 2008.

[6] G. H. Talbot, D. Thye, A. Das, and Y. Ge, “Phase 2 study of ceftaroline versus standard therapy in treatment of complicated skin and skin structure infections,” Antimicrobial Agents and Chemotherapy, vol. 51, no. 10, pp. 3612–3616, 2007.

[7] Clinical and Laboratory Standards Institute, “Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard-sixth edition,” Clinical and Laboratory Standards Institute Document M7-A6, Clinical and Laboratory Standards Institute, Wayne, Pa, USA, 2006.

[8] Clinical and Laboratory Standards Institute, “Performance standards for antimicrobial susceptibility testing; 19th informational supplement,” document M100-S19, Clinical and Laboratory Standards Institute, Wayne, Pa, USA, 2009.

[9] R. N. Jones, T. R. Fritsche, Y. Ge, K. Kaniga, and H. S. Sader, “Evaluation of PPI-0903M (T91825), a novel cephalosporin: bactericidal activity, effects of modifying in vitro testing parameters and optimization of disc diffusion tests,” Journal of Antimicrobial Chemotherapy, vol. 56, no. 6, pp. 1047–1052, 2005.
