Development of aminoethylpyridine based N,N,N,O-donor fluorescent probes for the detection of Fe$^{3+}$ and Hg$^{2+}$ in aqueous media

Durgesh Singh1,2, Neha Thakur1, Krishna K. Raj2 and Rampal Pandey*

1Department of Chemistry, National Institute of Technology Uttarakhand-246174, INDIA
2Department of Chemistry, Dr. Harisingh Gour Central Uiversity, Sagar, 470003 (MP), INDIA
Email: rppandeysu@gmail.com

Abstract. A couple of 2-aminoethylpyridine based fluorescent compounds (E)-1-((2-(5-nitropyridin-2-ylamino)ethylimino)methyl)naphthalen-2-ol (1) and (E)-4-nitro-2-((2-(5-nitropyridin-2-ylamino)ethylimino)methyl)phenol (2) have been designed and synthesized by setting up reactions of N-(2-aminoethyl)-5-nitropyridin-2-amine with 2-hydroxy-1-naphthaldehyde and 2-hydroxy-5-nitrobenzaldehyde, respectively. Both the probes have been characterized by elemental analyses, FTIR, 1H & 13C NMR, UV/vis and fluorescence spectral techniques. Furthermore the sensing behavior of 1 and 2 towards various metal ions were examined via UV/vis and fluorescence studies. The fluorescence of 1 and 2 enhanced upon interaction with Fe$^{3+}$ ion whereas Hg$^{2+}$ induced small fluorescence quenching of 1 and enhancement of fluorescence in 2. The selectivity and sensitivity assay ensured by 2 remains unaltered in presence of interfering metal ions. Hence, among these two chemo sensors only 2 may be useful for practical application of detection and estimation of trace Fe$^{3+}$ and Hg$^{2+}$ in real water samples and/or in biological systems.

Keywords. Heavy metal ions (HTMs), Aminoethylpyridine, N,N,N,O-donor, Fluorescent probes, Fluorescent quenching, Fluorescent Enhancement

1. Introduction

Heavy transition metal ions (HTMs) are essential elements both in the environmental and biological processes. These are considered indispensable owing to their involvement in various functions, such as electron transport, metabolism and catalysis. Therefore, it is of growing interest to design and develop novel, synthetically feasible, selective and sensitive fluorescent sensors for heavy metal ions (HTMs). Iron (Fe) is an essential trace element in living organisms (i.e. plants and animals) and plays a vital role in the life process, for instance, in enzyme catalysis, cellular metabolism, biological activities of organisms i.e. muscle contraction, nerve conduction, DNA/RNA synthesis and repair, electron transfer and enzymatic reactions, along with oxygen carrier in haemoglobin. The intake of excessive quantity of iron is detrimental or sometimes incurable to the body of the living organism whereas its deficiency causes diabetes, anemia, heart disease, cancer, and Parkinson’s disease along with organ dysfunction i.e. liver, heart and pancreas. In addition, accumulation of ferric ion (Fe$^{3+}$) causes oxidative stress, Alzheimer’s disease, and...
neurodegenerative diseases. Therefore, the development of the fluorescence sensor for selective detection of Fe$^{3+}$ in feasible medium is highly sought and quite important.

On the other hand, Mercury (Hg$^{2+}$) is a powerful neurotoxin in fishes, humans and wild species and it is widely distributed through the anthropogenic sources, barometers, thermometers, caustic soda, mercury lamps, food chain and natural environmental activities. The mercury intake in living organisms as well as in human beings through contaminated water is a growing issue, therefore its detection in water necessitates precise, ultra-sensitive, prompt and cost effective analytical methods. Furthermore, Hg$^{2+}$ exposure can lead to brain damage, heart failure, anaemia, pinks disease, and Minamata disease, along with and nervous system disorders.

Through this report, we develop the design and synthesis of aminoethylpyridine based N, N, N, O-donor fluorescent chemosensors 1 and 2 (Figure 1) for selective and sensitive detection of Hg$^{2+}$ and Fe$^{3+}$ in aqueous media (H$_2$O: EtOH, 6: 4). Notably, 1 could not function as efficient chemosensor for Hg$^{2+}$ and Fe$^{3+}$ whereas 2 serves as highly selective fluorescent ‘turn-on’ probe for these cations. Through this study, it can be claimed that probe 2 can be used as potential chemosensor for Hg$^{2+}$ and Fe$^{3+}$ ions in living biological systems / real water samples.

![Figure 1 Chemical structure of 1 and 2.](image)

2. Experimental

2.1. Materials and Methods

All reagents (N-(2-aminoethyl)-5-nitropyridin-2-amine, 2-hydroxynaphthalene-1-carbaldehyde and 2-hydroxy-5-nitrobenzaldehyde) were purchased from Sigma Aldrich Chemical Co., USA. Unless otherwise stated. All the metal salts (Ag$^+$, Cd$^{2+}$, Cu$^{2+}$, Mn$^{2+}$, Fe$^{3+}$, Co$^{2+}$, Ni$^{2+}$, Zn$^{2+}$, Hg$^{2+}$ and Pb$^{2+}$), other commonly usable reagents and solvents were purchased from HiMedia Laboratories Pvt. Ltd., India and solvents were dried and distilled prior to their use. The reagents were purchased from commercial sources and used after purification. Solvents were dried and distilled following standard literature procedures. UV-vis spectra and FT-IR spectra were recorded at room temperature using UV-1700 Pharma Spec, Shimadzu and PerkinElmer spectrometer (Spectrum two, UK), respectively. For FT-IR studies KBr pellets and for UV-vis studies aqueous colloid of the respective materials are used. Fluorescence measurements were done on a RF-5301 Fluorescence Spectrometer with excitation and emission slit widths of 10.0 nm, respectively, whereas 1H- and 13C-NMR spectroscopy was performed in d$_6$-DMSO using JEOL AL 500 FT-NMR machine at an operating frequency of 500 MHz (1H) and 125 MHz (13C). Chemical shifts (δ) are specified in parts per million (ppm) DMSO-d$_6$ as a solvent and tertiarmethylsilane (TMS) as an internal reference material and splitting patterns are labelled in terms of s (singlet), d (doublet) and t (triplet).

2.2. Synthetic procedure of probes

2.2.1. Common synthetic procedure for 1 and 2

Equimolar amount of N-(2-aminoethyl)-5-nitropyridin-2-amine and aldehyde in MeOH was refluxed for 4-6 h. The volume of resulting solution mixture was reduced to half under vacuum and left for slow evaporation. The precipitate thus obtained was filtered off and washed with methanol followed by diethyl ether, dried under vacuum and recrystallized using absolute alcohol.
2.2.1.1. Synthesis of (E)-1-((2-(5-nitropyridin-2-ylamino) ethylimino) methyl) naphthalen-2-ol; (I).

Yield (89 %); was confirmed by FTIR, 1H NMR, 13C NMR and elemental analyses; Analytical data: Anal. Calc. for C$_{18}$H$_{16}$N$_4$O$_3$ (336.34): C, 64.28; H, 4.79; N, 16.66; O, 14.27 Found: C, 64.61; H, 4.82; N, 16.68; O, 14.29 FT -IR (KBr; cm$^{-1}$): 3329 (w) (–OH stretch due to intermolecular hydrogen bonding,), 3059 (m), 2392 (m), 1653 (vs)(–C=N stretch),1636 (vs), 1613 (s), 1559 (s) (–C–H stretch), 1544 (s), 1506 (s), 1495 (s), 1490 (m), 1472 (s), 1363 (vs), 1208 (s) 1180(s), 1077(s), 832(s), 748(vs), 465(w).

1H NMR (d$_6$-DMSO) δ (ppm): 9.18 (s, 1H, Ar), 8.46 (s, H, Ar), 8.12 (s, H), 7.93 (s, 1H, Ar), 7.77 (s, 1H, Ar), 7.73 (s, 1H, Ar), 7.46(s, 1H, Ar), 6.78(s, 1H, Ar), 5.18(s, 1H, –OH), 4.43 (s, 1H, –NH), 3.97(s, 2H), 3.56(s, 2H).

13C NMR (d$_6$-DMSO) δ (ppm): 165.36, 161.16, 158.31, 145.71, 136.15, 133.54, 133.36, 132.82, 130.32, 129.01, 127.77, 126.48, 124.43, 119.73, 114.40, 111.41, 56.48, 53.91.

2.2.1.2. Synthesis of (E)-4-nitro-2-((2-(5-nitropyridin-2-ylamino) ethylimino) methyl) phenol; (2)

Yield (86%); was confirmed by FTIR, 1H NMR, 13C NMR and elemental analyses; Anal. Calc. for C$_{14}$H$_{13}$N$_5$O$_5$ (331.09): C, 50.76; H, 3.96; N, 21.14; O, 24.15 Found: C, 50.78; H, 4.00; N, 21.16; O, 24.19 FT-IR (KBr; cm$^{-1}$): 3343 (w) (–O-H stretching), 2962 (m) (–C–H Stretch aliphatic) 1654 (vs)(–C=N stretch), 1607 (s) (–C–H stretch), 1540 (s), 1534 (s), 1499 (s), 1471 (s), 1452 (m), 1433 (s), 1343 (vs), 1306 (s) 1298 (w)1275(s), 1244(vs), 1214(s), 1176(s), 1110(vs), 1003(w), 903(s), 846(s), 832(s), 692(s),; 1H NMR (d$_6$-DMSO) δ (ppm): 9.12 (s, 1H, Ar), 8.42 (d, 1H, Ar), 8.23(s, 1H), 8.12(s, 1H,Ar), 7.26(s, 1H), 6.99(s, 1H, Ar), 5.12 (s, 1H, OH), 4.12 (s, 1H, Amine), 3.84 (s, 2H), 3.53(s, 2H), 13C-NMR (d$_6$-DMSO) δ (ppm): 168.25, 163.16, 161.31, 143.55, 133.34, 132.82, 130.32, 129.01, 127.77, 126.48, 124.43, 119.73, 114.40, 111.41, 56.48, 53.91.

3. FTIR studies of probes 1 and 2 and their complexes with Fe(III) and Hg(II) metal ions.

The effect of cation binding on 1 and 2 was further investigated through FTIR analysis. The characteristic of azomethine (–C=N-) stretching vibrations frequencies of 1 and 2 appeared at 1653 and 1654 cm$^{-1}$ respectively. However, in 1, the binding of Fe$^{3+}$ and Hg$^{2+}$ could not cause significant shift in the vibrations due to 1 whereas in 2, the binding of Fe$^{3+}$ and Hg$^{2+}$ cations lead to the lowering of -C=N- stretching vibrations with appearance of strong bands at 1616 cm$^{-1}$ and at 1619 cm$^{-1}$ respectively. The shifting in the -C=N- frequencies after metalation strongly suggested that 2 formed the complexes by detection of these cations.

4. Result and Discussion

4.1. Preparation of stock solution for cation detection studies

The stock solutions of probe 1 and 2 (10 μm) were prepared in aqueous medium with distilled water (pH = 7.2) at r.t. The stock solutions (10 mM) of nitrate salts of Na$^+$, K$^+$, Mg$^{2+}$, Ca$^{2+}$, Mn$^{2+}$, Fe$^{2+}$, Fe$^{3+}$, Co$^{2+}$, Ni$^{2+}$, Cu$^{+}$, Zn$^{2+}$, Ag$^+$, Cd$^{2+}$, Hg$^{2+}$ and Pb$^{2+}$; 10 mM in water were also prepared separately.

4.2. UV/vis spectral analysis of 1 and 2

The UV/vis spectrum of 1 demonstrates absorption bands at 369 and 240 nm while 2 shows bands at 355 nm and 239 nm (Figure 3a and 3b). The low energy (LE) bands are attributed to the n–π^* and high energy (HE) bands possibly will be ascribed to the π–π^* transitions. Further, to examine the binding effect of the cation on absorption behaviour of 1 and 2, the solution of above mentioned various cations (1 equiv.) were added to the solutions of probes. Among tested cations, only Fe$^{3+}$ and Hg$^{2+}$ induced significant changes in the spectral feature of probes 1 and 2. Addition of Fe$^{3+}$ (5 μL) to the solution of 1 causes large hyperchromic shifts both in the HE and LE bands along with significant blue shift which led to the absorption maximum at 323 nm. Likewise, addition of Fe$^{3+}$ to the solution
of 2 exhibits large hyperchromic shifts both in the LE and HE as well as noteworthy blue shift in LE band leading to the emergence of a new band at 302 nm.

![Figure 2 FT-IR spectrum of 1 and 2 in KBr pallets.](image)

Scheme 1 Synthetic route of probes 1 and 2.

4.3. UV/vis titration study of 1 and 2

Considering substantial changes in the presence of Fe$^{3+}$ and Hg$^{2+}$ as well as to have deep insight about probe-cation binding, UV/vis titration experiment were performed (Figure 4). Gradual addition of Fe$^{3+}$ (0.5 µl, 0.1 equiv.) to a solution of 1 leads to ratiometric hyperchromic shift along with blue shift in the LE band to have band maxima at 343 nm (Figure 4a). Further additions of Fe$^{3+}$ (0.5-5.0 µl) lead to the incessant hyperchromic shift at 343 nm and at 240 nm. The large change in the LE band relative to that of HE band clearly suggests that Fe$^{3+}$ binding with 1 influence n–π* transition which is indicative of probe interaction through heteroatoms. Similarly, aliquot addition of Hg$^{2+}$ (0.5-5.0 µl) causes changes in LE band relatively small to that Fe$^{3+}$ with blue shift having absorption maxima at 352 nm thereby pointing towards Hg$^{2+}$ binding with 1 (Figure 4b). Besides, addition of Fe$^{3+}$ (0.5 µl,
0.1 equiv.) to the solution of 2 leads to the remarkable ratiometric change through hyperchromic shift and blue shift in the LE absorption band to appear band maxima at 332 nm whereas HE band exhibits only hyperchromic shift and without any wavelength shift (Figure 4c). Further additions of Fe$^{3+}$ (1.0-5.0 μl) caused further blue shift to appear band maxima at 308 nm along with continuous hyperchromic shift. Likewise, addition of Hg$^{2+}$ (0.5-5.0 μl) to the solution of 2 exhibited noticeable ratiometric change with blue shift to emerge band maxima 337 nm (Figure 4d) in the LE absorption band as well as hyperchromic shift in the HE band.

4.4. Fluorescence spectral analysis of 1 and 2

Fluorescence bands for 1 and 2 are 440 nm and 441 nm upon excitation at its LE band (λ_{ex}, 369 nm) and (λ_{ex}, 355 nm), respectively. The metal ion detection ability of 1 was examined in presence of aforesaid metal ions wherein only Fe$^{3+}$ and Hg$^{2+}$ induced minuscule fluorescence quenching (Figure 5a). The high spin paramagnetic Fe$^{3+}$ (d^5) stimulate charge/electron transfer procedure which leads to the quenching in the fluorescence. Likewise, 1 displays minute fluorescence quenching upon addition of Hg$^{2+}$ ion which pointed towards that interaction of 1 with Hg$^{2+}$ is too weak to persuade complex formation significantly. On the other hand, 2 exhibits noteworthy fluorescence enhancement after addition of Fe$^{3+}$ and Hg$^{2+}$ ions (Figure 5b).

Figure 3 UV/vis spectra of 1 (a) and 2 (b) (10 μM) in presence of various metal ions in aqueous solution (H$_2$O: EtOH, 6 : 4; pH = 7.2).

4.5. Fluorescence titration study of 1 and 2

Considering small fluorescence quenching both in presence of Fe$^{3+}$ and Hg$^{2+}$ ions in 1, the fluorescence titration experiments could not be performed (Figure 5a). However, in case of 2, Fe$^{3+}$ and Hg$^{3+}$ persuades ‘turn-on’ fluorescence and therefore the fluorescence titration studies were performed to have better insights into probe-cation binding by addition of Fe$^{3+}$ and Hg$^{2+}$ independently to the solution of 2 (Figure 6). Aliquot superfluities of Fe$^{3+}$ (0.5–5.0 μl) exhibited approximately ‘turn-on’ fluorescence (~37%) deprived of any significant blue shift in emission maxima (Figure 6a). Likewise, gradual introduction of Hg$^{2+}$ (0.5–5.0 μl) also displayed ‘turn-on’ fluorescence (~44%) with inconsequential hypsochromic shift in the fluorescence maxima (Figure 6b). The analogous fluorescence ‘turn-on’ response and spectral feature in the presence of both Fe$^{3+}$ and Hg$^{2+}$ suggests 2 may be intermingling through these cations through similar binding site. Moreover, the ‘turn-on’ fluorescence of 2 upon binding with Fe$^{3+}$ and Hg$^{2+}$ may be attributed to the suppression of PET upon binding through N,N,N,O-donor sites of 2 which is known as chelation enhanced fluorescence.
The Job's plot analysis revealed 1:1 stoichiometry both for Fe$^{3+}$ and Hg$^{2+}$.

The binding/association constants (K_a) for Fe$^{3+}$ and Hg$^{2+}$ in 1:1 molar ratio have been determined to be 1.02×10^5 M$^{-1}$ and 1.23×10^6 M$^{-1}$, respectively by using Benesi–Hildebrand equation ($\Delta F_{\text{max}} / \Delta F = 1 + (1 / K_{BH}[M])$, K_{BH} is the complexation binding constant and [M] is the variant’s concentration. A plot of $\Delta F_{\text{max}} / \Delta F$ vs. $1 / [M]$ will give straight line with slope $1 / K_{BH}$. Binding constant was determined by inverse of slope. Here the intercept should be 1.) Furthermore, the selectivity ensured by fluorescent probe can only be claimed provided none of the competing analytes can interfere the detection of targeted cations. With this objective, numerous cations were added separately to the solution encompassing Fe$^{3+}$ and Hg$^{2+}$ wherein none of the added cation could influence the fluorescence intensity ensured by Hg$^{2+}$. On the other hand, the fluorescence intensity of Fe$^{3+}$ was slightly enhanced upon addition of Hg$^{2+}$ ion which suggests better selectivity of Fe$^{3+}$ toward Hg$^{2+}$ over Fe$^{3+}$ ion.

Figure 4 UV/vis titration spectra of 1(a), (b) and 2(c), (d) in presence of (a, c) Fe$^{3+}$ and (b, d) Hg$^{2+}$ ions aqueous media (H$_2$O: EtOH; 6 : 4; pH = 7.2).
Figure 5 Fluorescence spectra of 1(a) and 2(b) (10 μM) in presence of various metal ions in aqueous solution (H₂O: EtOH; 6 : 4; pH = 7.2) upon excitation at 369 and 355 nm, respectively.

Figure 6 Fluorescence titration spectra of 1(a) and 2(b) in presence of Fe³⁺ and Hg²⁺ ions aqueous media (H₂O: EtOH; 6 : 4; pH = 7.2) upon excitation at 369 and 355 nm, respectively.
5. Conclusion

In summary, a couple of aminoethyl-pyridine based novel fluorescent probes 1 and 2 have been developed wherein only 2 demonstrated high selectivity for the reaction of N-(2-aminoethyl)-5-nitropyridin-2-amine and 2-hydroxynaphthalene-1-carbaldehyde leads to the formation of 1 while reaction of N-(2-aminoethyl)-5-nitropyridin-2-amine and 2-hydroxy-5-nitrobenzaldehyde afforded 2. Both the compounds have been characterized by elemental analyses, FTIR, 1H NMR, 13C NMR, UV/vis and Fluorescence spectral techniques. Furthermore the metal ion sensing behaviour of probes 1 and 2 has been examined via UV/vis and fluorescence spectral analyses. Probe 1 and 2 exhibit change in their UV/vis spectral pattern selectively for Hg$^{2+}$ and Fe$^{3+}$ whereas only 2 displays highly selective fluorescence ‘turn-on’ response for Hg$^{2+}$ and Fe$^{3+}$.

6. Acknowledgment

Authors acknowledge Department of Science and Technology (DST), New Delhi to provided financial assistance over and done with DST Inspire Faculty grant (IFA12-CH-66) and UGC, MHRD-Research fellowship.
7. References

[1] De Acha N, Elosúa C, Corres J M, Arregui F J 2019 Fluorescent sensors for the detection of heavy metal ions in aqueous media, *Sensors (Switzerland)* 19(3). doi:10.3390/s19030599

[2] Tchounwou P B, Yedjou CG, Patlolla A K, Sutton D J 2012 Molecular, Clinical and Environmental Toxicicology Volume 3: *Environmental Toxicology* Vol 101.; doi:10.1007/978-3-7643-8340-4

[3] Tchounwou P B, Yedjou C G, Patlolla A K, Sutton D J. 2012 Heavy metal toxicity and the environment, *EXS* 101 133-164. doi:10.1007/978-3-7643-8340-4_6

[4] Xu N, Yuan Y, Lan C, Wei W, Meng L, Fan L. 2018 A novel dual-emission fluorescent nanohybrid containing silica nanoparticles and gold nanoclusters for ratiometric determination of cysteine based on turn-on fluorescence strategy, *New J Chem*, 42(12) 10092-10099. doi:10.1039/c8nj01528g

[5] Papanikolaou G, Pantopoulos K. Iron metabolism and toxicity 2005. *Toxicol Appl Pharmacol*, 202(2) 199-211. doi:10.1016/j.taap.2004.06.021

[6] Yao J, Dou W, Qin W, Liu W 2009 A new coumarin-based chemosensor for Fe$^{3+}$ in water, *Inorg Chem Commun*, 12(2) 116-118. doi:10.1016/j.inoche.2008.11.012

[7] Yu Y, Cheng X, Liu H, et al. 2015.Highly sensitive fluorescent polyamide for detection of Hg$^{2+}$, Hg$^{+}$, Fe$^{3+}$, and Fe$^{2+}$ ions, *J Polym Sci Part A Polym Chem*, 53(5):615-621. doi:10.1002/pola.27489

[8] Carter K P, Young A M, Palmer A E. 2014 Fluorescent sensors for measuring metal ions in living systems, *Chem Rev* 114(8):4564-4601. doi:10.1021/cr400546e

[9] Li M, Gou H, Al-Ogaidi I, Wu N. 2013 Nanostructured Sensors for Detection of Heavy Metals: A Review, *ACS Sustain Chem Eng* 1(7):713-723. doi:10.1021/sc400019a

[10] Wang X, Sun J, Tong J, Guan X, Bian C, Xia S. 2018 Paper-based sensor chip for heavy metal ion detection by SWSV, *Micromachines*, 9(4) 1-11. doi:10.3390/mi9040150

[11] Kumar R, Kachwaha M, Verma S, Patidar D. 2019 Quick detection of iron in contaminated water before feeding to RO membranes, *SN Appl Sci* 1(5) 1-6. doi:10.1007/s42452-019-0379-6

[12] Cheng X, Yu Y, Jia Y, Duan L. 2016 Fluorescent PU films for detection and removal of Hg$^{2+}$, Cr$^{3+}$ and Fe$^{3+}$ ions, *Mater Des* 95 133-140. doi:10.1016/j.matdes.2016.01.103

[13] Liu X, Li N, Xu MM, et al. 2018 Dual sensing performance of 1,2-squaraine for the colorimetric detection of Fe$^{3+}$ and Hg$^{2+}$ ions, *Materials (Basel)* 11(10) 1-16. doi:10.3390/ma11101998

[14] Zhang L, Wang J, Fan J, Guo K, Peng X. 2011 A highly selective, fluorescent chemosensor for bioimaging of Fe$^{3+}$, *Bioorganic Med Chem Lett* 21(18):5413-5416. doi:10.1016/j.bmcl.2011.07.001

[15] Liu S Di, Zhang L W, Liu X. 2013 A highly sensitive and selective fluorescent probe for Fe$^{3+}$ based on 2-(2-hydroxyphenyl)benzothiazole, *New J Chem* 37(3) 821-826. doi:10.1039/c2nj40978j
[16] Fan L J, Jones W E 2006 A highly selective and sensitive inorganic/organic hybrid polymer fluorescence “turn-on” chemosensory system for iron cations, *J Am Chem Soc* **128**(21) 6784-6785. doi:10.1021/ja0612697

[17] Srivastava S, Thakur N, Singh A, et al. 2019 Development of a fused imidazo[1,2- a]pyridine based fluorescent probe for Fe$^{3+}$ and Hg$^{2+}$ in aqueous media and HeLa cells, *RSC Adv.* **9**(51) 29856-29863. doi:10.1039/c9ra04743c

[18] Xiang Y, Tong A 2006 A New Rhodamine-Based Chemosensor Exhibiting Selective FeIII - Amplified Fluorescence, *Org Lett* **8**(8) 1549-1552. doi:10.1021/ol060001h

[19] Maity P, Naskar B, Goswami S, et al. 2018 Pyrrolo[3,4- c]pyridine-Based Fluorescent Chemosensor for Fe$^{3+}$/Fe$^{2+}$ Sensitivity and Their Application in Living HepG2 Cells. *ACS Omega*, 3(12) 18646-18655. doi:10.1021/acsomega.8b02110

[20] Beard J L 2001 Iron Biology in Immune Function, Muscle Metabolism and Neuronal Functioning, *J Nutr* **131**(2):568S-580S. doi:10.1093/jn/131.2.568S

[21] Levi S, Taveggia C. 2014 Iron homeostasis in peripheral nervous system, still a black box, *Antioxidants Redox Signal* **21**(4):634-648. doi:10.1089/ars.2013.5813

[22] Crichton R. 2009 The Importance of Iron for Biological Systems, *Iron Metabolism* 17-58. doi:10.1002/9780470010303.ch2

[23] Puig S, Ramos-Alonso L, Romero A M, Martínez-Pastor M T 2017 The elemental role of iron in DNA synthesis and repair, *Metallomics*, **9**(11) 1483-1500. doi:10.1039/c7mt00116a

[24] Kadner R J. 2005 Regulation by iron: RNA rules the rust, *J Bacteriol* **187**(20) 6870-6873. doi:10.1128/JB.187.20.6870-6873.2005

[25] Brzóska K, Meczyńska S, Kruszewski M. 2006 Iron-sulfur cluster proteins: electron transfer and beyond, *Acta Biochim Pol* **53**(4):685-691.http://www.ncbi.nlm.nih.gov/pubmed/17143336. Accessed November 5, 2019.

[26] Durham B, Millett F S. 2011 Iron: Heme Proteins & Electron Transport. In: *Encyclopedia of Inorganic and Bioinorganic Chemistry*. Chichester, UK: John Wiley & Sons, Ltd. doi:10.1002/9781119951438.eibc0098

[27] Solomon E I, Decker A, Lehnhert N. 2003 Non-heme iron enzymes: Contrasts to heme catalysis, *Proc Natl Acad Sci U S A* **100**(7) 3589-3594. doi:10.1073/pnas.0336792100

[28] Sono M, Roach M P, Coulter E D 1996 Dawson JH. Heme-containing oxygenases, *Chem Rev* **96**(7) 2841-2887. doi:10.1021/cr9500500

[29] Abbaspour N, Hurrell R, Kelishadi R. 2014 Review on iron and its importance for human health, *J Res Med Sci*, **19**(2):164-174.

[30] Swaminathan S, Fonseca V A, Alam M G, Shah S V 2007 The role of iron in diabetes and its complications, *Diabetes Care* **30**(7) 1926-1933. doi:10.2337/dc06-2625

[31] Fernández-Real J M, Penarroja G, Castro A, García-Bragado F, López-Bermejo A, Ricart W 2002 Blood letting in high-ferritin type 2 diabetes: Effects on vascular reactivity, *Diabetes Care* **25**(12) 2249-2255. doi:10.2337/diacare.25.12.2249
[32] Li P, Wang Y 2017 A new fluorescent sensor containing glutamic acid for Fe$^{3+}$ and its resulting complex as a secondary sensor for PPI in purely aqueous solution, *New J Chem* 41(10) 4234-4240. doi:10.1039/c7nj00913e

[33] Li Z X, Zhang L F, Zhao W Y, et al. 2011 Fluoranthene-based pyridine as fluorescent chemosensor for Fe$^{3+}$, *Inorg Chem Commun* 14(10) 1656-1658. doi:10.1016/j.inoche.2011.06.032

[34] Bhatta S R, Bheemireddy V, Vijaykumar G, Debnath S, Thakur A 2017 An efficient molecular tool with ferrocene backbone: Discriminating Fe$^{3+}$ from Fe$^{2+}$ in Aqueous Media, *Organometallics*, 36(11) 2141-2152. doi:10.1021/acs.organomet.7b00199

[35] Rice K M, Walker E M, Wu M, Gillette C, Blough E R 2014 Environmental mercury and its toxic effects, *J Prev Med Public Heal* 47(2) 74-83. doi:10.3961/jpmph.2014.47.2.74

[36] He C, Zhu W, Xu Y, Chen T, Qian X 2009 Trace mercury (II) detection and separation in serum and water samples using a reusable bifunctional fluorescent sensor, *Anal Chim Acta* 651(2) 227-233. doi:10.1016/j.aca.2009.09.006

[37] Kim H N, Ren W X, Kim J S, Yoon J 2012 Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions, *Chem Soc Rev* 41(8) 3210-3244. doi:10.1039/c1cs15245a

[38] Mohammad H, Islam A S M, Prodhans, Ali M A 2019 fluorescein-based chemosensor for “turn-on” detection of Hg$^{2+}$ and the resultant complex as a fluorescent sensor for S$^{2-}$ in semi-aqueous medium with cell-imaging application: experimental and computational studies, *New J Chem*, 43(14) 5297-5307. doi:10.1039/c8nj05418e

[39] Shandley K, Austin D W 2011 Ancestry of pink disease (infantile acrodynia) identified as a risk factor for autism spectrum disorders, *J Toxicol Environ Heal - Part A Curr Issues* 74(18) 1185-1194. doi:10.1080/15287394.2011.590097

[40] Fujiki M, Tajima S. 1992 The pollution of Minamata Bay by mercury, In: *Water Science and Technology*. 26:133-140. doi:10.2166/wst.1992.0284

[41] Harada M 1995 Minamata disease: Methylmercury poisoning in Japan caused by environmental pollution, *Crit Rev Toxicol* 25(1) 1-24. doi:10.3109/10408449509089885

[42] Chang L W, Opitz J M, Pallister P D, Gilbert E F, Viseskul C. 1973 Minamata disease - A case report and a comparative study, *Acta Neuropathol* 26(4) 275-284. doi:10.1007/BF00688076

[43] Eto K 1997 Review Article: Pathology of Minamata Disease, *Toxicol Pathol* 25(6) 614-623. doi:10.1177/019266729702500612

[44] Kaur N, Jindal G, Sukhvinder, Kumar S 2019 Cascade recognition of Hg$^{2+}$ and cysteine using a naphthalene based ESIPT sensor and its application in a set/reset memorized device, *New J Chem* 43(1) 436-443. doi:10.1039/c8nj03909g

[45] Ncube P, Krause R W M, Ndinteh D T, Mamba B B 2014 Fluorescent sensing and determination of mercury (II) ions in water, *Water SA*, 40(1):175-182. doi:10.4314/wsa.v40i1.21

[46] Kudo A, Fujikawa Y, Miyahara S, et al. 1998 Lessons from Minamata mercury pollution, Japan - after a continuous 22 years of observation, *Water Sci Technol* 38(7) 187-193. doi:10.2166/wst.1998.0292
[47] Bruice P Y 2011 Beauchamp Spectroscopy Tables 1, *Org Chem*, 2620 A-16-A17. http://www.cpp.edu/~psbeauchamp/pdf/spec_ir_nmr_spectra_tables.pdf.

[48] (a) Tang C Y, Kwon Y N, Leckie J O. 2009 Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes. I. FTIR and XPS characterization of polyamide and coating layer chemistry, *Desalination* 242(1-3) 149-167. doi:10.1016/j.desal.2008.04.003. (b) Ferreira P J, Gamelas J A, Moutinho I M, et al. 2009 Application of FT-IR-ATR Spectroscopy to Evaluate the Penetration of Surface Sizing Agents into the Paper Structure, *Ind Eng Chem Res* (8) 3867-3872. doi:10.1021/ie801765c. (c) Dorado J, Almendros G, Field J A, Sierra-Alvarez R. 2001 Infrared spectroscopy analysis of hemp (Cannabis sativa) after selective delignification by Bjerkandera sp. at different nitrogen levels, *Enzyme Microb Technol* 28(6) 550-559. doi:10.1016/S0141-0229(00)00363-X (d) Sigma-Aldrich. IR Spectrum Table & Chart Sigma-Aldrich. https://www.sigmaaldrich.com / technical-documents / articles / biology / ir- spectrum- table.html. Published 2018. Accessed November 5, 2019.

[49] Jenisha, Theodore David S, Priyadharsini J 2015 Schiff Base Ligand Its Complexes and Their Ft-Ir Spectroscopy Studies, *Int J Appl Bio-Engineering* 9(1) 1-4. doi:10.18000/ijabeg.10124

[50] Pandey R, Yadav M, Shahid M, Misra A, Pandey D S 2012 Design and synthesis of fluorescent 6-aryl[1,2-c]quinazolines serving as selective and sensitive on-off chemosensor for Hg²⁺ in aqueous media, *Tetrahedron Lett* 53(28) 3550-3555. doi:10.1016/j.tetlet.2012.04.128

[51] Pandey R, Mêhes G, Kumar A, Gupta R K, Adachi C, Pandey D S. 2014 Structural and mechanistic insights into an Fe³⁺-triggered quinazoline based molecular rotor, *Chem Commun* 50(59) 8032-8035. doi:10.1039/c4cc01917b

[52] Sarkar A, Bhattacharyya S, Mukherjee A. 2016 Colorimetric detection of fluoride ions by anthraimidazoledione based sensors in the presence of Cu(II) ions, *Dalton Trans* 45(3) 1166-1175. doi:10.1039/c5dt03209a

[53] Kumari N, Jha S, Bhattacharya S 2011 Colorimetric Probes Based on Anthraimidazolediones for Selective Sensing of Fluoride and Cyanide Ion via Intramolecular Charge Transfer, *J Org Chem* 76(20) 8215-8222. doi:10.1021/jo201290a

[54] Marín-Hernández C, Santos-Figueroa L E, Moragues M E, et al. 2014 Imidazoanthraquinone Derivatives for the Chromofluorogenic Sensing of Basic Anions and Trivalent Metal Cations, *J Org Chem*, 79(22) 10752-10761. doi:10.1021/jo501515e

[55] Bobe S R, Bhosale S V., Jones L, Puyad A L, Raynor A M, Bhosale S V 2015 A near-infrared fluoride sensor based on a substituted naphthalenediimide-anthraquinone conjugate, *Tetrahedron Lett* 56(33) 4762-4766. doi:10.1016/j.tetlet.2015.06.050

[56] Ghosh A, Jose D A, Kaushik R. 2016 Anthraquinones as versatile colorimetric reagent for anions, *Sensors Actuators, B Chem* 229 545-560. doi:10.1016/j.snb.2016.01.140

[57] Martínez-Máñez R, Sancenón F 2003 Fluorogenic and chromogenic chemosensors and reagents for anions, *Chem Rev* 103(11) 4419-4476. doi:10.1021/cr010421e

[58] (a) Batista R M F, Oliveira E, Costa S P G, Lodeiro C, Raposo M M M 2014 Cyanide and fluoride colorimetric sensing by novel imidazo-anthraquinones functionalised with indole and carbazole, *Supramol Chem* 26(2) 71-80. doi:10.1080/10610278.2013.824082 (b) Jeong Ho Chang; Young Muk Choi; Shin, Y. K. A Significant Fluorescence Quenching of
Anthrylaminobenzocrown Ethers by Paramagnetic Metal Cations. Bull. Korean Chem. Soc. 2001, 22 (5), 527–530

[59] (a) Lee, S. H.; Parthasarathy, A.; Schanze, K. S. A Sensitive and Selective Mercury(II) Sensor Based on Amplified Fluorescence Quenching in a Conjugated Polyelectrolyte/Spiro-Cyclic Rhodamine System. Macromol. Rapid Commun. 2013, 34 (9), 791–795. (b) Nandhini T, Kaleeswaran P, Pitchumani K 2016 A highly selective, sensitive and “turn-on” fluorescent sensor for the paramagnetic Fe$^{3+}$ ion, Sensors Actuators, B Chem, 230 199-205. doi:10.1016/j.snb.2016.02.054

[60] Pandey R, Kumar P, Singh A K, et al. 2011 Fluorescent Zinc(II) Complex Exhibiting “ On-Off-On” Switching Toward Cu$^{2+}$ and Ag$^+$ Ions, Inorg Chem, 50(8) 3189-3197. doi:10.1021/ic1018086

[61] (a) S. H. Lee, A. Parthasarathy and K. S. Schanze, Macromol. Rapid Commun., 2013, 34, 791–795. (b) De Silva S A, Zavaleta A, Baron DE, et al. 1997 A fluorescent photoinduced electron transfer sensor for cations with an off-on-off proton switch, Tetrahedron Lett 38(13) 2237-2240. doi:10.1016/S0040-4039(97)00332-8

[62] Puthiyedath T, Bahulayan D. 2018 A click derived triazole-coumarin derivative as fluorescence on-off PET based sensor for Ca$^{2+}$and Fe$^{3+}$ ions, Sensors Actuators, B Chem 272 110-117. doi:10.1016/j.snb.2018.05.126

[63] Fabbrizzi L, Licchelli M, Pallavicini P, Perotti A, Taglietti A, Sacchi D 1996 Fluorescent sensors for transition metals based on electron-transfer and energy-transfer mechanisms. Chem - A Eur J, 2(1) 75-82. doi:10.1002/chem.19960020114

[64] Bissell RA, Calle E, de Silva AP, et al. 1992 Luminescence and charge transfer. Part 2. Aminomethyl anthracene derivatives as fluorescent PET (photoinduced electron transfer) sensors for protons. J Chem Soc Perkin Trans, 2(9):1559. doi:10.1039/p29920001559

[65] Wan CF, Chang YJ, Chien CY, Sie YW, Hu CH, Wu AT 2016 A new multifunctional Schiff base as a fluorescence sensor for Fe$^{2+}$ and F$^-$ ions, and a colorimetric sensor for Fe$^{3+}$, J Lumin, 178 115-120. doi:10.1016/j.jlumin.2016.05.039

[66] Dey N, Kumari N, Biswakarma D, Jha S, Bhattacharya S 2019 Colorimetric indicators for specific recognition of Cu$^{2+}$ and Hg$^{2+}$ in physiological media: Effect of variations of signaling unit on optical response, Inorganica Chim Acta 487 50-57. doi:10.1016/j.ica.2018.09.074

[67] Liu H, Tan Y, Dai Q, et al. 2018 A simple amide fluorescent sensor based on quinoline for selective and sensitive recognition of zinc(II) ions and bioimaging in living cells, Dye Pigment, 158 312-318. doi:10.1016/j.dyepig.2018.05.026

[68] Bissell R.A. et al. 1993 Fluorescent PET (photoinduced electron transfer) sensors. In: Mattay J. (eds) Photoinduced Electron Transfer V. Topics in Current Chemistry, Springer, Berlin, Heidelberg 168 223-264. doi: https://doi.org/10.1007/3-540-56746-1_12 (b) De Silva A P , Moody T S, Wright G D 2009 Fluorescent PET (Photoinduced Electron Transfer) sensors as potent analytical tools. Analyst, 134, 2385–2393.

[69] Ackermann T. K. A. Connors: Binding constants - the measurement of molecular complex stability. 1987, John Wiley & Sons, New York, Chichester, Brisbane, Toronto, Singapore. 411 Seiten, Preis: £ 64.15 . Berichte der Bunsengesellschaft für Phys Chemie. 1987;91(12):1398-1398. doi:10.1002/bbpc.19870911223
[70] Mashraqui SH, Khan T, Sundaram S, Betkar R, Chandiramani M 2007 A new intramolecular charge transfer receptor as a selective ratiometric “off-on” sensor for Zn\(^{2+}\), *Tetrahedron Lett.*, **48**(48) 8487-8490. doi:10.1016/j.tetlet.2007.09.163

[71] Kuntz ID, Gasparro FP, Johnston MD, Taylor RP 1968 Molecular interactions and the Benesi-Hildebrand equation, *J Am Chem Soc.*, **90**(18) 4778-4781. doi:10.1021/ja01020a004

[72] Gnaim S, Scomparin A, Eldar-Boock A, Bauer CR, Satchi-Fainaro R, Shabat D 2019 Light emission enhancement by supramolecular complexation of chemiluminescence probes designed for bioimaging, *Chem Sci.*, **10**(10) 2945-2955. doi:10.1039/c8sc05174g

[73] Kou S-B, Lou Y-Y, Zhou K-L, Wang B-L, Lin Z-Y, Shi J-H. 2019 In vitro exploration of interaction behavior between calf thymus DNA and fenhexamid with the help of multi-spectroscopic methods and molecular dynamics simulations, *J Mol Liq.* 112067. doi:10.1016/j.molliq.2019.112067

[74] Rajbanshi B, Dutta A, Mahato B, et al. 2019 Study to explore host guest inclusion complexes of vitamin B1 with CD molecules for enhancing stability and innovative application in biological system, *J Mol Liq.*, 111952. doi:10.1016/j.molliq.2019.111952

[75] Fang G, Bian Z, Liu D, et al. 2019 Water-soluble diboronic acid-based fluorescent sensors recognizing d-sorbitol, *New J Chem.* **43**(35) 13802-13809. doi:10.1039/c9nj02636c