Heterogeneity of Breast Cancer Associations with Five Susceptibility Loci by Clinical and Pathological Characteristics

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation
Garcia-Closas, Montserrat, Per Hall, Heli Nevanlinna, Karen Pooley, Jonathan Morrison, Douglas A. Richesson, Stig E. Bojesen, et al. 2008. “Heterogeneity of Breast Cancer Associations with Five Susceptibility Loci by Clinical and Pathological Characteristics.” Edited by Suzanne M. Leal. PLoS Genetics 4 (4): e1000054. https://doi.org/10.1371/journal.pgen.1000054.

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:41426764

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Heterogeneity of Breast Cancer Associations with Five Susceptibility Loci by Clinical and Pathological Characteristics

Montserrat Garcia-Closas1, Per Hall2, Heli Nevanlinna3, Karen Pooley4, Jonathan Morrison4, Douglas A. Richesson5, Stig E. Bojesen5,6, Børge G. Nordestgaard5, Christen K. Axelsson7, Jose I. Arias8,9, Roger L. Milne8, GloriaRibas8, Anna González-Neira8, Javier Benítez8, Pilar Zamora10, Hilfrud Brauch11, Christina Justenhoven11, Ute Hamann12, Yon-Dschun Ko13, Thomas Bruning14, Susanne Haas15, Thilo Dörk16, Peter Schürmann16, Peter Hillelmanns16, Natalia Bogdanova16,17, Michael Bremer17, Johann Hinrich Karstens17, Rainer Fagerholm3, Kirsimari Aaltonen3,18, Kristiina Aittomäki19, Karl von Smitten20, Carl Blomqvist18, Arto Mannermaa21,22, Matti Uusitupa23, Matti Eskelinen24, Maria Tengström25,26, Veli-Matti Kosma21,22, Vesa Kataja25,26, Georgia Chenevix-Trench27, Amanda B. Spurdele27, Jonathan Beesley27, Xiaqing Chen27, Australian Ovarian Cancer Management Group27,28, The Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer28, Peter Devilee29, Christi J. van Asperen30, Catharina E. Jacobi31, Rob A. E. M. Tollenaar32, Petra E.A. Huijts33, Jan G. M. Klijn33, Jenny Chang-Claude34, Silke Kropp34, Tracy Slanger34, Dieter Flesch-Janys35, Elke Mutschelknauss35, Ramona Salazar36, Shan Wang-Gohrk33, Fergus Couch38, Ellen L. Goode39, Janet E. Olson38, Celine Vachon38, Zachary S. Frederiksen38, Graham G. Giles39, Laura Baglietto39, Gianluca Severi39, John L. Hopper40, Dallas R. English40, Melissa C. Southey41, Christopher A. Haiman42, Brian E. Henderson42, Laurence N. Kolonel43, Loic Le Marchand43, Daniel O. Strom44, David J. Hunter45,46, Susan E. Hankinson46, David G. Cox46,47, Rulla Tamimi46, Peter Kraft47, Mark E. Sherman47, Stephen J. Chanock48, Jolanta Lissowska49, Louise A. Brinton50, Beata Peplonska50, Jan G. M. Klijn51, Maartje J. Hooning51, Han Meijers-Heijboer52, J. Margriet Collee52, Ans van den Ouweland52, Andre G. Uitterlinden53, Jianjun Liu54, Low Yen Lin54, Li Yuqing54, Keith Humphreys55, Kamila Czene56, Angela Cox55, Sabapathy P. Balasubramanian56, Simon S. Cross57, Malcolm W. R. Reed56, Fiona Blows4, Kristy Driver4, Alison Dunning4, Jonathan Tyrer4, Bruce A. J. Ponder58, Suleeporn Sangrajrang59, Paul Brennan60, James McKay60, Fabrice Odefrey60, Valerie Gabrieau60, Alice Sigurdson61, Michele Doody61, Jeffrey P. Struwing61, Bruce Alexander62, Douglas F. Easton63, Paul D. Pharaoh64

1 Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, United States of America, 2 Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden, 3 Department of Obstetrics and Gynaecology, Helsinki University Central Hospital, Helsinki, Finland, 4 Department of Oncology, University of Cambridge, Cambridge, United Kingdom, 5 Department of Clinical Biochemistry, Herlev and Bispebjerg University Hospitals, University of Copenhagen, Denmark, 6 Department of Biobank, Institute of Clinical Medicine, University of Bergen, Norway, 7 Department of Health Care Ethics, Institute of Social Medicine, University of Copenhagen, Denmark, 8 Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America, 9 Epidemiology Program, Cancer Research Center of Hawaii, University of Hawaii, Honolulu, Hawaii, United States of America, 10 Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America, 45 Program in Molecular and Genetic Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America, 46 Channing Laboratory, Brigham and Women's
A three-stage genome-wide association study recently identified single nucleotide polymorphisms (SNPs) in five loci (fibroblast growth receptor 2 (FGFR2), trinucleotide repeat containing 9 (TNRC9), mitogen-activated protein kinase 3 K1 (MAP3K1), 8q24, and lymphocyte-specific protein 1 (LSP1)) associated with breast cancer risk. We investigated whether the associations between these SNPs and breast cancer risk varied by clinically important tumor characteristics in up to 23,039 invasive breast cancer cases and 26,273 controls from 20 studies. We also evaluated their influence on overall survival in 13,527 cases from 13 studies. All were participants of European or Asian origin. rs2981582 in FGFR2 was more strongly related to ER-positive (per-allele OR (95%CI) = 1.31 (1.27–1.36)) than ER-negative (1.08 (1.03–1.14)) disease (P for heterogeneity = 10^-13). This SNP was also more strongly related to PR-positive, low grade and node positive tumors (P = 10^-8, 10^-6, 0.013, respectively). The association for rs13281615 in 8q24 was stronger for ER-positive, PR-positive, and low grade tumors (P = 0.001, 0.011 and 10^-4, respectively). The differences in the associations between SNPs in FGFR2 and 8q24 and risk by ER and grade remained significant after permutation adjustment for multiple comparisons and after adjustment for other tumor characteristics. Three SNPs (rs2981582, rs3803662, and rs889312) showed weak but significant associations with ER-negative disease, the strongest association being for rs3803662 in TNRC9 (1.14 (1.09–1.21)). rs13281615 in 8q24 was associated with an improvement in survival after diagnosis (per-allele HR = 0.90 (0.83–0.97)). The association was attenuated and non-significant after adjusting for known prognostic factors. Our findings show that common genetic variants influence the pathologic subtype of breast cancer and provide further support for the hypothesis that ER-positive and ER-negative disease are biologically distinct. Understanding the etiologic heterogeneity of breast cancer may ultimately result in improvements in prevention, early detection, and treatment.

Citation: Garcia-Closas M, Hall P, Nevanlinna H, Pooley K, Morrison J, et al. (2008) Heterogeneity of Breast Cancer Associations with Five Susceptibility Loci by Tumor Characteristics. PLoS Genetics 4(4): e1000054. doi:10.1371/journal.pgen.1000054

Editor: Suzanne M. Leal, Baylor College of Medicine, United States of America

Received August 16, 2007; Accepted March 18, 2008; Published April 25, 2008

This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.

Funding: This work was funded by The Copenhagen Breast Cancer Study and The Copenhagen General Population Study were supported by Chief Physician Johan Boserup and Lise Boserup Fund, the Danish Medical Research Council, Copenhagen County and Herlev University Hospital. The CNIO Spanish Breast Cancer Study was supported by the Genome Spain Foundation and the Marato Foundation. The GENICA study was supported by the German Human Genome Project and funded by the Federal Ministry of Education and Research (BMBF) Germany grants 01WK975/5, 01WK975/6, 01WK977/0 and 01WK0114. Genotyping analyses were supported by Robert Bosch Foundation of Medical Research, Stuttgart, Germany. The Mayo Breast Cancer Study is supported by NIH/NCI Breast Cancer SPORE PS0 CA116201, NIH R01 CA122340 and the American Medical Research and Matriel Breast Cancer Idea award W81XWH-04-1-0588. The KConFab Clinical Follow Up Study is funded by NHMRC grants 145684 and 288704. KConFab is supported by grants from the National Breast Cancer Foundation, the National Health and Medical Research Council (NHMRC) and by the Queensland Cancer Fund. The Cancer Councils of New South Wales, Victoria, Tasmania and South Australia, and the Cancer Foundation of Western Australia, GCT and ABS are NHMRC Senior Principal Research Fellow and Career Award Development awardees respectively. The Sheffield Breast Cancer Study was supported by Yorkshire Cancer Research and the Breast Cancer Campaign. The RBCC was supported by the Dutch Cancer Genomics Center (CGC). The MARIE study is supported by the Deutsche Krebshilfe e.V. (Project number 70-2892-Bf I). Ellen L. Goode was supported by a Fraternal Order of Eagles Cancer Research Fellowship. The Singapore and Swedish Breast Cancer Study (SASBAC) was supported by funding from the Agency for Science, Technology and Research of Singapore (A*STAR), the US National Institute of Health (NIH) and the Susan G. Komen Breast Cancer Foundation. KBP is supported by grants from EVO funds of Kuopio University Hospital and the Finnish Cancer Foundation. The USRT study was supported by Intramural Research Funds from the Division of Cancer Epidemiology and Genetics, NCI, NIH, DHHS. The Polish Breast Cancer Study was funded by Intramural Research Funds of the US National Cancer Institute. HEBCS was supported by the Academy of Finland (401063), Finnish Cancer Society, Helsinki University Central Hospital Research Fund, and the Sigurd Juselius Fund. Genotyping for BCAC funded by Cancer Research UK, SEARCH is funded by a programme grant from CR-UK, PDPP is a Senior Clinical Research Fellow and DFE is Principal Research Fellow of CR-UK.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: montse@nih.gov

Introduction

Breast cancers vary greatly in clinical behavior, morphological appearance, and molecular alterations. Accumulating epidemiologic data also suggest that different types of breast cancers have different risk factor profiles and thus might result from different etiologic pathways (which might be shared by different tumor types or be type specific). Notably, age-specific incidence rates [1] and the strength of the associations with known risk factors for breast cancer [2–4] differ by clinically important tumor characteristics. Evidence that genetic factors can also influence tumor type is provided by the fact that carriers of highly penetrant mutations in BRCA1 are more likely to be diagnosed with basal breast tumors which are estrogen receptor (ER) negative, progesterone receptor (PR) negative and HER2 negative [5]. This raises the possibility that other
This report from the Breast Cancer Association Consortium evaluates whether common variants in five recently identified breast cancer susceptibility loci (FGFR2, TNRC9, MAP3K1, 8q24, and LSP1) influence the clinical presentation of breast cancer and survival after diagnosis. We studied these susceptibility loci in relation to clinically important tumor characteristics in up to 23,039 invasive breast cancer cases and 26,273 controls of European or Asian origin from 20 studies. The association, with overall survival, was evaluated in 13,527 cases from 13 studies. The most notable findings were that the genetic variants in the fibroblast growth factor receptor 2 (FGFR2) gene and the 8q24 region were more strongly related to ER-positive than ER-negative disease, and to low rather than high grade tumors. The loci did not significantly influence survival after accounting for known prognostic factors. Analyses indicated that common genetic variants influence the pathological subtype of breast cancer and provide further support for the hypothesis that ER-positive and ER-negative diseases are biologically distinct cancers. Understanding the etiologic heterogeneity of breast cancer may ultimately result in improvements in prevention, early detection, and treatment.

susceptibility loci may also be associated with specific subtypes of breast cancer.

We recently performed a two-stage genome-wide association study (GWAS) in 4,396 breast cancer cases and 4,316 controls, followed by a third stage in 21,860 cases and 22,578 controls from 22 studies, identifying single nucleotide polymorphisms (SNPs) in 3 loci associated with breast cancer risk [6]. Of the five loci identified, 4 were within genes or linkage disequilibrium (LD) blocks containing genes, including: 1) rs2981582 in the FGFR2 gene coding for a receptor tyrosine kinase that plays an important role in mammary gland development [7], has been implicated in carcinogenesis [8], and is amplified [9–11] or over-expressed [12] in up to 10% of breast tumors; 2) rs8033662 in a LD block containing TNRC9 (also known TOX3) and the hypothetical gene LOC645714; 3) rs889312 in a LD block containing MAP3K1 and two hypothetical genes (MGC3364 and mesoderm induction early response 1, family member 3 (MIER3)); and 4) rs317198 in the LSP1 gene. The fifth SNP (rs13281615) lies on a region of 8q24 that does not contain known genes, but has multiple independent variants associated with prostate [13,14] and colorectal [15–18] cancer risk. Two additional genome-wide association studies also recently identified SNPs in FGFR2 [19] and TNRC9 [20] as breast cancer susceptibility loci.

We used the large data resource provided by the Breast Cancer Association Consortium (BCAC) to evaluate the hypothesis that tumor characteristics modify the association between breast cancer risk and the low penetrant susceptibility loci recently identified [6]. Determining whether breast cancer risk factors are linked to tumors with specific clinical presentations, pathologic characteristics or mechanisms of development may provide a gateway for developing tailored prevention and early detection strategies. In addition, we evaluated whether these genetic factors affect overall survival after diagnosis of breast cancer, either independently or through their association with tumor characteristics of clinical importance.

Materials and Methods

Study Populations

Cases and controls were identified through 21 case-control studies in Europe, North America, South-East Asia and Australia, participating in the BCAC (see Table S1 for description of study populations). All of these studies, except for two German studies (Mammary Carcinoma Risk Factor Investigation (MARIE), Genetic Epidemiology Study of Breast Cancer by Age 50 (GESBC), were included in our previous publication [6] (the ORIGO study was previously referred to as LUMCBCS), and provided information on disease status, age at diagnosis/enrollment, ethnic group (European, Asian, other), first degree family history of breast cancer and bilaterality of breast cancer. Twenty studies with a total of 23,839 invasive breast cancer cases and 26,928 controls also provided data on tumor characteristics (i.e. histopathologic subtype, ER and PR receptor status, tumor size, grade, nodal involvement or stage; see Table S2 for data sources). Of these, 800 cases and 655 controls were excluded from analyses because of failures in genotyping quality control (see details under Genotyping) or because they belonged to “other” ethnic groups with few subjects. Data on survival after diagnosis was available for 13,527 cases participating in 13 studies (after excluding failures in genotype QC and “other” ethnicities), including the USRT study, which lacked data on tumor characteristics (Table S4). Overall, 95.6% of cases and 97.6% of controls were of European origin. The mean ages were 56 years for cases and 57 years for controls.

The distribution of tumor characteristics by study among the 23,039 (+ 23839-800) cases from 20 studies with pathology information is shown in Table S4. Data pertaining to the first tumor detected were used for women with bilateral disease. Data related to histological subtype was available for 86% of the cases (18 studies), ER status for 74% (20 studies), PR status for 62% (18 studies), tumor grade of differentiation for 70% (17 studies), nodal involvement for 63% (17 studies), tumor size for 35% (9 studies), and stage at diagnosis for 68% (11 studies). A total of 1,487 of the 23,039 cases were excluded because they had missing information on all tumor characteristics, leaving 21,552 cases and 26,273 controls of European or Asian origin available for analyses by tumor characteristics. The actual number of cases and controls included in each analysis, after excluding missing genotype data, is shown in the tables.

Genotyping

Genotyping procedures have previously been described [6]. All studies genotyped for the five SNPs with the exception of rs30863662 that was not genotyped in the KConFab study, and rs13281615 that was not genotyped in KConFab and MARIE studies. Any sample that could not be scored on 20 percent of the SNPs attempted was excluded from analysis. We also removed data for any center/SNP combination for which the call rate was less than 90 percent. In any instances where the call rate was 90–95 percent, the clustering of genotype calls was re-evaluated by an independent observer to determine whether the clustering was sufficiently clear for inclusion. We also eliminated all of the data for a given SNP/center where the reproducibility in duplicate samples was <97 percent, or where there was marked deviation from Hardy-Weinberg equilibrium in the controls (p<.00001).

Statistical Analyses

Polytomous logistic regression was used to estimate adjusted odds ratios (OR) and associated 95 percent confidence intervals (CI) as measures of association between genotypes and risk of breast cancer subtypes (comparing case subtypes to all controls). All models included terms for study (dummy variables). Further adjustment for age at diagnosis/enrollment did not substantially influence OR estimates (data not shown). We estimated the association for each SNP in terms of genotype-specific ORs and...
per-allele ORs (assuming a log-additive model). Heterogeneity between genotype odds ratios for different tumor subtypes was assessed using logistic regression analyses restricted to cases (case-only analyses) with the tumor characteristic as the outcome variable. For tumor subtypes with more than two levels (i.e. grade, size, stage), we used a polychotomous logistic regression model constraining the effect size to increase linearly across levels (e.g. the parameter for grade 3 vs grade1 = 2*grade2 vs grade1). To evaluate which of several correlated tumor features was most important in determining genotype associations, we fitted logistic regression models with one of the tumor features as the outcome and the genotype and other tumor features as explanatory variables.

Survival analyses were based on 13,527 breast cancer cases from 13 studies with available follow-up data. Univariate analyses for each SNP were carried out by estimating Kaplan-Meier survival curves stratified by genotypes, and by fitting Cox proportional hazards regression models adjusting for study and left-truncating at date of blood draw to allow for inclusion of prevalent cases. This provides an unbiased estimate of the hazard ratio provided that the proportional hazards assumption holds. The assumption of proportional hazards was tested by visual inspection of standard log-log plots and analytically using Schoenfeld residuals. Time at risk was calculated from the date of blood sample draw to date of death or last follow-up, whichever date came first. Follow-up for all cases was censored at 10 years after the initial diagnosis because the number of cases with longer time of follow-up was relatively small, and they are likely to be a selected group of patients due to lost to follow up. A total of 1,584 deaths occurred during eligible follow-up. We also carried out analyses adjusting for other determinants of survival (age at diagnosis (continuous), ER and PR status (each dichotomous), grade (ordinal), tumor size (continuous) and nodal involvement (dichotomous)). Survival analyses were conducted for all cases combined, and separately for ER-positive and ER-negative cases. Data were analyzed using STATA v.9. for Windows (College Station, TX).

The main conclusions from our analyses are based on comparisons of five SNPs with seven correlated tumor characteristics (i.e. ER, PR, grade, nodes, size, histology and stage at diagnosis) and survival after diagnosis. We have used a permutation adjustment procedure [21] to correct P values for these 40 hypothesis tests. The tumor characteristics were permuted in a group with respect to the SNPs. In this procedure, the outcomes (i.e. tumor characteristics) were randomly assigned against the SNPs while retaining the correlation structure of the outcomes. We performed 1000 permutations to obtain the empirical distribution of P values under the null hypothesis of no association. Multiple-comparisons-permutation-adjusted P values for each of the 40 tests were calculated as the proportion of P values equal or smaller than the observed P value.

Entrez Gene Accession Numbers

Locus	Accession num.
FGFR2	2263
TNRC9	27324
MAP3K1	4214
MIER3	166968
LSP1	4046
v-myc myelocytomatosis viral oncogene homolog (avian) (MYC)	4609

Table 1. Per-allele odds ratios for breast cancer risk by estrogen receptor status.

Locus	ER-positive cases	ER-negative cases	Observed P***	Adjusted P***				
SNP	Genotype	Controls	N	OR*	95% CI			
FGFR2	GG	10,056	4,043	1.00	1.378	1.00		
rs2981582	AG	12,255	6,390	1.28	1.22–1.35	1,828	1.08	1.00–1.16
	AA	3,747	2,636	1.74	1.63–1.85	607	1.18	1.06–1.30
	per allele	1.31	1.27–1.36	1.08	1.03–1.14	10^-13	<0.001	
TNRC9	GG	13,295	5,970	1.00	1.789	1.00		
rs3803662	AG	9,705	5,553	1.25	1.19–1.31	1,579	1.16	1.08–1.25
	AA	2,026	1,451	1.48	1.37–1.60	397	1.28	1.13–1.45
	per allele	1.23	1.19–1.27	1.14	1.09–1.21	0.015	0.43	
MAP3K1	TT	13,447	6,352	1.00	1.912	1.00		
rs889312	GT	10,480	5,474	1.12	1.07–1.17	1,539	1.03	0.96–1.11
	GG	2,154	1,271	1.26	1.17–1.36	370	1.20	1.06–1.36
	per allele	1.12	1.09–1.16	1.07	1.01–1.13	0.11	0.99	
8q24	AA	7,650	3,721	1.00	1,158	1.00		
rs13281615	AG	10,682	5,681	1.11	1.06–1.17	1,603	0.99	0.91–1.07
	GG	3,773	2,298	1.29	1.21–1.38	623	1.09	0.98–1.21
	per allele	1.13	1.10–1.17	1.03	0.98–1.09	0.001	0.038	
LSP1	AA	12,695	6,304	1.00	1,867	1.00		
rs381798	AG	10,995	5,485	1.04	0.99–1.09	1,587	1.01	0.94–1.09
	GG	2,322	1,281	1.19	1.10–1.28	363	1.13	1.00–1.27
	per allele	1.07	1.04–1.11	1.04	0.99–1.10	0.31	1.00	

*ORs adjusted for study.
**P for heterogeneity calculated from case-only analyses adjusted for study.
***Permutation adjusted P for heterogeneity.

doi:10.1371/journal.pgen.1000054.0001
Results

Association between SNPs and Breast Cancer Risk by Tumor Subtypes

Minor allele frequencies and estimates for the association between the five SNPs evaluated and overall breast cancer risk are shown in Table S5. Stratification of tumors by ER status indicated that rs2981582 in FGFR2 had a stronger association with ER-positive (per-allele OR (95% CI) = 1.31 (1.27–1.36)) than ER-negative tumors (1.08 (1.03–1.14); P for heterogeneity of ORs = 10^{-13}; Table 1; Figure 1 panel A; see Table S6 for estimates by ethnicity). Women with the homozygous variant genotype (present in 14% of controls) had a risk of ER-positive tumors 1.74 (95% CI = 1.63–1.85) times higher than those with the common homozygous genotype (present in 39% of controls) (Table 1). The difference in ORs between ER-positive and ER-negative tumors is consistent across studies (Figure 1 panel A), and it is highly significant even after permutation adjustment for multiple comparisons (P < 0.001). The rs2981582 association was also stronger for other tumor characteristics associated with ER status, i.e. PR expression (P = 10^{-5}) and lower grade (P = 10^{-6}; Table 2; Tables S7, S8). The associations of rs2981582 with ER, PR and grade were significant after permutation adjustment for multiple comparisons (P < 0.001). The modification by ER status remained statistically significant after adjustment for PR status and grade (P = 0.002) based on data from those studies with information on all three tumor characteristics (16 studies including 10,951 cases).

On the other hand, the evidence for associations with PR status became non-significant after adjustment for ER status (P = 0.45). The association with grade (Table 2) remained statistically significant after adjustment by ER status (P = 0.003), and after further adjustment for PR status (P = 0.050). Grouping tumors as ER and PR negative versus ER and/or PR positive tumors did not result in further discrimination of risks (data not shown).

The association of rs2981582 with breast cancer risk tended to be stronger for patients with positive (per-allele OR (95% CI) = 1.33 (1.27–1.39)) compared to negative (1.25 (1.20–1.29)) nodal involvement (P = 0.013; Table 3; see Table S9 for estimates by ethnicity). Although differences were small and not significant after permutation adjustment for multiple comparisons (P = 0.41), they were consistent across studies (Figure 1, panel B). Nodal involvement was correlated with tumor grade and size, and the association between nodal involvement and rs2981582 among cases remained significant (P = 0.010) after adjustment for these.
these differences were not significant after permutation adjustment (P = 0.015; Table 1)) and grade (P = 0.018; Table 2). However, ER adjustment (P = 0.31). The association of rs3803662 in and grade), while the association with PR was not significant after comparisons (P = 0.037, 0.016, 0.35, respectively). The association of rs13281615 with ER and grade, but not with PR, were significant after permutation adjustment for multiple comparisons (P = 0.42 for ER, 0.50 for grade), or when adjusted for each other in 16 studies with 13,075 cases with data on ER and grade (P = 0.11 for ER adjusted by grade, and P = 0.37 for grade adjusted by ER).

Three SNPs (rs2981582 in FGFR2, rs3803662 in TNRC9 and rs889312 in MAP3K1) were associated with significant increases in risk of ER-negative tumors (Table 1), although to a lesser extent than ER-positive tumors. Of these SNPs, rs3803662 showed the strongest association with ER-negative tumors: women with the homozygous variant genotype (present in 8% of controls) had a 1.28 (95%CI = 1.13–1.45) higher risk of developing ER-negative disease than women with the common homozygous genotype (present in 53% of controls) (Table 1).

No significant modification of the ORs was observed for stage at initial diagnosis for any of the 5 loci (Table S13). Of note, rs889312 in MAP3K1 and rs3817198 in LSP1 were not associated with any of the tumor characteristics (Tables S6, S7, S8, S9 and S10). Modification of ORs by tumor characteristics generally followed similar patterns for Europeans and Asians, although the number of Asians was substantially smaller, and thus most differences by tumor type were not statistically significant. An exception was the presence of stronger associations with larger tumors for rs889312 in MAP3K1 (P = 0.015; Table S11) in Asian but not in European populations.

Survival Analyses

The average time at risk (i.e. date of blood sample draw to date of death, last follow-up or censored time, whichever date came for multiple comparisons (P = 0.022; P = 0.75 after adjusting for multiple testing). rs2981582 showed the strongest association with node positive ER-negative tumors (10% of all tumors; 1.18 (1.09–1.29) (Table S10). No increase in risk was observed for node negative ER-negative tumors (13% of tumors; 1.05 (0.97–1.13).

The association of rs13281615 in 8q24 with risk was also stronger for ER-positive compared to ER-negative tumors (P = 0.001; Table 1; Figure S1). This SNP also showed a stronger association with PR-positive than negative tumors (P = 0.011; Table S7) and lower tumor grade (P = 10^-8; Table S8). Only the associations of rs13281615 with ER and grade, but not with PR, were significant after permutation adjustment for lower tumor grade (P = 10^-8; Table S8). Only the associations of rs13281615 with ER and grade, but not with PR, were significant after permutation adjustment for lower tumor grade (P = 10^-8; Table S8). Only the associations of rs13281615 with ER and grade, but not with PR, were significant after permutation adjustment for lower tumor grade (P = 10^-8; Table S8).
Table 3. Odds ratios for breast cancer risk by lymph node involvement*.

Locus	SNP	Genotype	Controls	Cases with negative nodes	Cases with positive nodes	Observed	Adjusted
			N	OR** 95% CI	N OR** 95% CI	P***	P****
FGFR2	GG	7494	3031	1.00	1663	1.00	
rs2981582	AG	9021	4539	1.23 (1.16–1.30)	2753	1.32	1.23–1.42
	AA	2746	1734	1.56 (1.44–1.68)	1104	1.77	1.61–1.94
	per allele	1.25	1.20–1.29	1.33	1.27–1.39	0.013	0.41
8q24	GG	9762	4234	1.00	2470	1.00	
rs3803662	AG	7180	3930	1.22 (1.16–1.29)	2391	1.26	1.18–1.34
	AA	1551	1028	1.36 (1.24–1.49)	639	1.35	1.21–1.51
	per allele	1.19	1.14–1.24	1.20	1.14–1.26	0.78	1.00
MAP3K1	TT	9867	4547	1.00	2707	1.00	
rs889312	GT	7753	3864	1.11 (1.05–1.17)	2291	1.11	1.04–1.19
	GG	1656	919	1.23 (1.12–1.35)	572	1.32	1.18–1.48
	per allele	1.11	1.06–1.15	1.14	1.08–1.19	0.31	1.00
8q24	AA	5257	2607	1.00	1634	1.00	
rs13281615	AG	7316	3921	1.11 (1.04–1.18)	2372	1.08	1.00–1.17
	GG	2741	1635	1.23 (1.13–1.33)	961	1.22	1.11–1.35
	per allele	1.11	1.07–1.15	1.10	1.05–1.16	0.95	1.00
LSP1	AA	9357	4531	1.00	2708	1.00	
rs381798	AG	8148	3917	1.03 (0.98–1.09)	2318	1.05	0.98–1.12
	GG	1749	866	1.11 (1.02–1.22)	534	1.20	1.07–1.34
	per allele	1.05	1.01–1.09	1.08	1.03–1.13	0.38	1.00

*Per-allele OR adjusted for study.
**P value for heterogeneity of ORs from case-only analyses adjusted by study.
***Permutation adjusted P for heterogeneity.
****Permutation adjusted P for heterogeneity.

doi:10.1371/journal.pgen.1000054.t003

Discussion

This report has demonstrated that common genetic variants that predispose to breast cancer may also be linked to clinically important characteristics of tumors, including size, grade, ER and PR status, and nodal involvement. A major strength of our study is the large sample size after pooling data from multiple studies with information on tumor characteristics, which allowed for precise estimates of relative risk by most tumor subtypes.

The most notable finding was for rs2981582 located in FGFR2, which showed a stronger association with ER-positive than ER-negative tumors \(P = 10^{-13} \), with lower than higher grade tumors \(P = 10^{-8} \) and with node positive than negative tumors \(P = 0.013 \). This SNP was significantly associated only with ER-negative tumors that involved lymph nodes. rs2981582 also showed stronger associations with PR-positive tumors but this association was not independent of ER status. The stronger association with ER-positive tumors is supported by previous observations indicating that FGFR2 is involved in estrogen-related breast carcinogenesis [22–25], and that levels of expression of the receptor are higher in ER-positive than ER-negative cell lines [26] and tumors [27].

We have shown previously that the causative variant in FGFR2 is likely to be one of six variants correlated with rs2981582 in a region of intron 2 containing multiple transcription factor binding sites. This suggests that the association with breast cancer risk may be mediated through differential levels of FGFR2 expression [6]. In addition, as FGFR2 has been shown to be overexpressed or amplified only in a small percentage of breast cancers [9,10,24], it is possible that the association with breast cancer risk could be stronger and more clinically relevant for the small subset of tumors that express high levels of the receptor. Epidemiological studies stratifying by levels of tumor expression of FGFR2, its ligands or co-factors may clarify the role of FGFR2 variation in breast cancer risk.

rs13281615 in 8q24 was also more strongly associated with ER-positive and lower grade tumors, although differences were smaller than for rs2981582 in FGFR2. Other independent variants in the 8q24 region which do not contain known genes, have been associated with prostate cancer risk [11,13,14]; however, the...
mechanisms for the associations with these cancers are unknown. A recent GWAS comprising five studies with 4,533 cases and 17,513 controls (including samples from the MEC study in this report) showed the risk from rs2981582, rs889312, rs13281615, rs381798, respectively.

The P values for the interaction between ER status and genotype adjusted for study, grade and age at diagnosis are: 0.60, 0.15, 0.29, 0.45, 0.38 for rs2981582, rs3803662, rs381798, respectively.

Analyses by ER status included data from 12 studies with information on vital status and ER status (CGPS, CNIO-BCS, HABCS, HEBCS, KBCP, kConFab, LUMBCS, MCCS, PBCS, SASBCS, SBCS, SEARCH). Per-allele hazard ratios (HR) and observed P values are adjusted for study. Allele changes are (common→rare based on frequencies in European populations): G→A for rs2981582; A→G for rs889312; T→G for rs13281615. The P values for the interaction between ER status and genotype adjusted for study, grade and age at diagnosis are: 0.60, 0.15, 0.29, 0.45, 0.38 for rs2981582, rs3803662, rs381798, rs889312, rs13281615, rs381798, respectively.

doi:10.1371/journal.pgen.1000054.t004

Table 4. Multivariate Cox proportional hazards analysis of genetic polymorphisms in relation to overall survival following breast cancer diagnosis, by ER status.

Locus	SNP	HR**	95% CI	Obs P	Adj P***	HR**	95% CI	Obs P
All tumors								
FGFR2	rs2981582	0.98	0.91–1.05	0.56	1.00	1.01	0.92–1.11	0.82
TNRC9	rs8030662	1.05	0.96–1.15	0.26	1.00	1.06	0.95–1.19	0.31
MAP3K1	rs889312	1.02	0.95–1.11	0.54	1.00	1.03	0.93–1.15	0.52
8q24	rs13281615	0.90	0.83–0.97	0.009	0.32	0.92	0.83–1.01	0.084
LSP1	rs381798	0.99	0.92–1.07	0.88	1.00	1.03	0.93–1.14	0.55
ER positive tumors								
FGFR2	rs2981582	1.00	0.90–1.11	0.98	1.03	1.02	0.92–1.16	0.62
TNRC9	rs8030662	1.02	0.89–1.16	0.82	1.00	1.06	0.86–1.15	0.97
MAP3K1	rs889312	0.99	0.88–1.11	0.82	0.99	0.97	0.87–1.13	0.91
8q24	rs13281615	0.88	0.78–0.99	0.039	0.89	0.78	1.01	0.068
LSP1	rs381798	1.09	0.98–1.23	0.12	1.07	0.94	1.21	0.32
ER negative tumors								
FGFR2	rs2981582	0.99	0.85–1.15	0.87	0.98	0.84	1.14	0.78
TNRC9	rs8030662	1.19	0.99–1.43	0.071	1.19	0.98	1.44	0.076
MAP3K1	rs889312	1.15	0.98–1.35	0.08	1.11	0.94	1.32	0.22
8q24	rs13281615	0.95	0.81–1.11	0.48	0.96	0.82	1.13	0.64
LSP1	rs381798	0.95	0.81–1.11	0.49	0.97	0.82	1.15	0.74

*Analyses by ER status included data from 12 studies with information on vital status and ER status (CGPS, CNIO-BCS, HABCS, HEBCS, KBCP, kConFab, LUMBCS, MCCS, PBCS, SASBCS, SBCS, SEARCH).
**Per-allele hazard ratios (HR) and observed P values are adjusted for study. Allele changes are (common→rare based on frequencies in European populations): G→A for rs2981582; A→G for rs889312; T→G for rs13281615. The P values for the interaction between ER status and genotype adjusted for study, grade and age at diagnosis are: 0.60, 0.15, 0.29, 0.45, 0.38 for rs2981582, rs3803662, rs381798, rs889312, rs13281615, rs381798, respectively.
***Per-allele hazard ratios (HR) and observed P values are adjusted for study. Allele changes are (common→rare based on frequencies in European populations): G→A for rs2981582; A→G for rs889312; T→G for rs13281615. Analyses limited to 11 studies with ER and grade information (CGPS, CNIO-BCS, HABCS, HEBCS, KBCP, LUMBCS, MCCS, PBCS, SASBCS, SBCS, SEARCH).
****Per-allele hazard ratios (HR) and observed P values are adjusted for study, age at diagnosis (continuous), ER status and grade (continuous). Analyses limited to 11 studies with ER and grade information (CGPS, CNIO-BCS, HABCS, HEBCS, KBCP, LUMBCS, MCCS, PBCS, SASBCS, SBCS, SEARCH).
analyses is that relapse or disease-specific mortality data were not available for most studies and use of all cause mortality as the end point may further reduce power. Finally, any impact of SNPs on survival may interact with treatment, particularly adjuvant chemotherapy, or other determinants of survival such as obesity. However, this could not be evaluated since information on treatment or other factors affecting survival was not available.

We have shown that there is heterogeneity in the risk of different tumor types for common breast cancer susceptibility alleles, with the clearest difference being in the relative risk of ER-positive and ER-negative tumors for the variant in FGFR2. Other differences were observed, however, the weight of evidence was weaker and needs further confirmation in additional studies. These findings provide further support for the notion that ER-negative and ER-positive tumors result from different etiologic pathways, rather than different stages of tumor evolution within a common carcinogenic pathway [30]. The magnitude of the observed differences is small, and by themselves these findings are unlikely to have any immediate clinical implications. However, the observed differences provide clues to the biological mechanisms that underpin tumor heterogeneity, which may ultimately lead to improved treatment and prevention.

Supporting Information

Figure S1 Per-allele odds ratios (ORs) and 95% confidence intervals (CIs) for the association between SNPs and breast cancer by study, stratified by ER status. Studies are weighted and ranked according to the inverse of the variance of the log OR estimate for ER-positive tumors. P for study heterogeneity for the association with ER-positive/ER-negative disease, respectively, were 0.77/0.99 for rs3803662; 0.72/0.29 rs889312; 0.55/0.31 for rs13281615; and 0.55/0.46 for rs3817198. See Table S1 for description of the studies and acronyms.
Found at: doi:10.1371/journal.pgen.1000054.s001 (0.30 MB DOC)

Figure S2 Kaplan-Meier plot showing survival after stratifying for estrogen and progesterone receptor status, histological grade, tumor size, nodal status, and histopathology.
Found at: doi:10.1371/journal.pgen.1000054.s002 (0.15 MB DOC)

Figure S3 Kaplan-Meier plots showing survival in different genotypes of (A) rs3803662 in TNRC9 and (B) rs13281615 in 8q24 among cases diagnosed with ER-positive and ER-negative tumors.
Found at: doi:10.1371/journal.pgen.1000054.s003 (0.14 MB DOC)

Table S1 Summary of the 21 breast cancer case studies used in the analyses for tumor characteristics and survival.
Found at: doi:10.1371/journal.pgen.1000054.s004 (0.13 MB DOC)

Table S2 Information content, sources of information for tumor characteristics and survival data, and relevant publications for the 21 participating studies.
Found at: doi:10.1371/journal.pgen.1000054.s005 (0.08 MB DOC)

Table S3 Number of cases, person-years at risk, number of deaths, mortality rate (MR), and 95 percent confidence intervals (95%CI) in the 13 studies with follow-up information.
Found at: doi:10.1371/journal.pgen.1000054.s006 (0.05 MB DOC)

Table S4 Distribution of tumor characteristics among 23,039 invasive breast cancer cases in the 20 participating studies with information on tumor.
Found at: doi:10.1371/journal.pgen.1000054.s007 (0.03 MB DOC)

Table S5 Per-allele odds ratios for the association between SNPs and invasive breast cancer risk in 20 studies included in the assessment of tumor characteristics in this report.
Found at: doi:10.1371/journal.pgen.1000054.s008 (0.05 MB DOC)

Table S6 Per-allele odds ratios for breast cancer risk by estrogen receptor status, stratified by ethnicity.
Found at: doi:10.1371/journal.pgen.1000054.s009 (0.07 MB DOC)

Table S7 Per-allele odds ratios for breast cancer risk by progesterone receptor status, stratified by ethnicity.
Found at: doi:10.1371/journal.pgen.1000054.s010 (0.07 MB DOC)

Table S8 Per-allele odds ratios for breast cancer risk by grade, stratified by ethnicity.
Found at: doi:10.1371/journal.pgen.1000054.s011 (0.07 MB DOC)

Table S9 Per-allele odds ratios for breast cancer risk by nodal status, stratified by ethnicity.
Found at: doi:10.1371/journal.pgen.1000054.s012 (0.07 MB DOC)

Table S10 Per-allele odds ratios for the association between FGFR2 rs2981582 and breast cancer risk by ER and nodal status.
Found at: doi:10.1371/journal.pgen.1000054.s013 (0.03 MB DOC)

Table S11 Per-allele odds ratios for breast cancer risk by tumor size, stratified by ethnicity.
Found at: doi:10.1371/journal.pgen.1000054.s014 (0.09 MB DOC)

Table S12 Per-allele odds ratios for breast cancer risk by histopathologic subtypes, stratified by ethnicity.
Found at: doi:10.1371/journal.pgen.1000054.s015 (0.06 MB DOC)

Table S13 Per-allele odds ratios for breast cancer risk by stage at diagnosis, stratified by ethnicity.
Found at: doi:10.1371/journal.pgen.1000054.s016 (0.08 MB DOC)

Acknowledgments

We would like to thank to Guillermo Pita, JM San Roman and the Instituto Palacios for their contributions to this study. We thank Marcia Brumm and Kathleen Merkle for sample and data collection. We wish to thank Heather Thorne, Eveline Niedermayer, all the kConFab research nurses and staff, the heads and staff of the Family Cancer Clinics, and the Clinical Follow Up Study for their contributions to this resource, and the many families who contribute to kConFab. For Australian Breast Cancer Family Study control data, we thank John Hopper, Margaret McCredie, Graham Giles and Melissa Southey, and for Australian Ovarian Cancer Study control data, we thank the AOCS Management group of David Bowtell, Adele Green, Penny Webb, Dorota Gertig, and Anna deFazio. We would like to thank Helen Camp, Sue Higham, Dan Connelly, Ian Brock, Gordon Macpherson and Mark Moulth for their contributions to this study. The ORIGO team wishes to thank E. Krol-Warmerdam and J. Blom for data-management and patient-inclusion. We thank Ursula Eilber and Belinda Kaspereit for excellent technical support. We wish to thank patients participating in this study, and Drs. Hannaleena Eerola and Päivi Heikkila.
for their help in sample and data collection. We are thankful to Helena Kemiläinen, Aija Parkinnen and Kais Alasalo for their contribution to Kuopio Breast Cancer Project. The authors thank N. Szeszenia-Dabrowska of the Nofer Institute of Occupational Medicine and W. Zatonski of the Department of Cancer Epidemiology in Warsaw, Poland for their contribution to the Polish Breast Cancer Study. Finnish Cancer Registry is gratefully acknowledged for cancer data. Apart from the general thanking of all study participants, we thank the SEARCH team and the Eastern Registration and Cancer Intelligence Unit. We thank William Anderson from the Division of Cancer Epidemiology and Genetics, National Cancer Institute, USA, for his comments to the paper.

Author Contributions
Conceived and designed the experiments: M. García-Closas, P. Hall, S. Bojesen, B. Nordstogaard, C. Axelson, T. Dork, J. Chang-Claude, D. Flinch-Jansy, D. Hunter, S. Hankinson, D. Cox, R. Taminini, P. Krafi, P. Brennan, J. McKay, D. Easton, P. Pharoah. Performed the experiments: K. Pooley, R. Milne, G. Ribas, A. González-Neira, J. Benítez, H. Braucht, C. Juntenhoven, T. Dork, P. Schuurmann, N. Bogdanova, A. Mannermaa, J. Bęley, N. Chaves-Claude, R. Salazar, S. Wang-Gohrke, F. Couch, M. Southey, D. Hunter, D. Cox, S. Chancok, J. Liu, A. Dunning, F. Otlefry, J. Struweng. Analyzed the data: M. García-Closas, D. Richesson, T. Dork, M. Tengström, V. Kataja, P. Huijts, S. Kropp, D. Flinch-Jansy, P. Krafi, V. Gabrieau. Contributed reagents/materials/analysis tools: M. García-Closas, P. Hall, H. Nevanlinna, K. Pooley, J. Morrison, S. Bojesen, B. Nordstogaard, C. Axelson, H. Braucht, P. Hillelmanns, M. Bremer, J. Karstens, R. Fagerholm, K. Aaltenon, K. Aitomäki, K. von Smitten, C. Blomqvist, M. Uusitupa, M. Eskelinen, V. Kosma, G. Chenevix-Trench, A. Spurdle, Australian Ovarian Cancer Management Group, The Kathleen Cunningham Foundation Consortium for Research into Familial Breast Cancer, P. Devilee, C. van Asperen, R. Tollenara, J. Chang-Claude, D. Flinch-Jansy, C. Couch, J. Olson, S. Jharglez, P. Kraft, C. Kaiman, B. Henderson, L. Kolonel, L. Marchaud, D. Strum, H. Sankinsha, R. Taminini, M. Sherman, D. Lissoweksa, L. Brinton, B. Beplonska, J. Klimin, M. Honging, H. Meijers-Heijbroek, J. Collee, A. Oweendel, J. Liu, L. Lin, L. Yasing, A. Cox, S. Balsalabramanian, M. Reed, F. Blows, K. Driver, A. Dunning, B. Ponder, S. Sangrajang, A. Sigurdson, D. Woody, B. Alexander, D. Easton, P. Pharoah. Pathology review: J. Arias, P. Zamora, S. Haas, M. Bremer, V. Kosma, M. Sherman, S. Cross, F. Blows, K. Driver.

References
1. Anderson WF, Jatoi I, DeVesa SS (2005) Distinct breast cancer incidence and prognostic patterns in the NCI’s SEER program: suggesting a possible link between etiology and outcome. Breast Cancer Res 9: 127–137.
2. Ma H, Bernstein L, Pike MC, Ursin G (2006) Reproductive factors and breast cancer risk according to joint estrogen and progesterone receptor status: a meta-analysis of epidemiological studies. Breast Cancer Res 8: R43.
3. Reeves GK, Green J, Gathani T, Bull D (2006) Hormonal therapy for menopause and breast-cancer risk by histological type: a cohort study and meta-analysis. Lancet Oncol 7: 910–918.
4. Alhuis MD, Ferengbaum JH, García-Closas M, Brenton LA, Madigan MP, et al. (2004) Endocrine hormone receptor-defined breast cancer: a systematic review of the literature. Cancer Epidemiol Biomarkers Prev 13: 1536–1560.
5. Sotile T, Tshilibrani R, Parker J, Hastie T, Marron JS, et al. (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100: 4140–4143.
6. Eeckhoudt DF, Poe M, Dunning AM, Pharoah PD, Thompson D, et al. (2006) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447: 1087–1093.
7. Dillon C, Spencer-Dene B, Dickson C (2004) A crucial role for fibroblast growth factor signalization in embryonic mammary gland development. J Mammary Gland Biol Neoplasia 9: 207–215.
8. Grose R, Dickson C (2005) Fibroblast growth factor signaling in tumorigenesis. Cytokine Growth Factor Rev 16: 179–186.
9. Heikinheimo M, Kononen J, Barlund M, Torhorst J, Sauter G, et al. (2001) CGH, cDNA and tissue microarray analyses implicate FGR2 amplification in a small subset of breast tumors. Anal Cell Pathol 22: 229–234.
10. Adriani J, Gaudry P, Donnet CA, Crumley G, Jeye M, et al. (1991) BEK and FLG, two receptors to members of the FGF family, are amplified in subsets of human breast cancers. Oncogene 6: 659–663.
11. Gudmundsson J, Sulem P, Manolescu A, Dunning AM, Pharoah PD, Thompson D, et al. (2007) Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24.21. Nat Genet 39: 984–988.
12. Gruber SB, Mooreno V, Rozek LS, Rennert HS, Løjbjerg F, et al. (2007) Genetic Variation in 8q24 Associated with Risk of Colorectal Cancer. Cancer Biol Ther 6.
13. Hunter DJ, Krafi P, Jacobs KB, Cox DG, Yeager M, et al. (2007) A genome-wide association study identifies alleles in FGR2 associated with risk of sporadic colorectal cancer. Nat Genet 39: 870–874.
14. Stacey SN, Manolescu A, Sulem P, Rafnar T, Gudmundsson J, et al. (2007) Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor-positive breast cancer. Nat Genet 39: 865–869.
15. Westfall P, Young S (1993) Resampling based multiple testing. New York (NY): John Wiley & Sons, Inc.
16. Zhang Y, Sugimoto Y, Kulp SK, Farrar WB, Bruegge Meyer, et al. (1998) Estrogen-induced keratinocyte growth factor mRNA expression in normal and cancerous human breast cells. Oncol Rep 5: 377–383.
17. Zhang Y, Kulp SK, Sugimoto Y, Farrar WB, Bruegge Meyer, et al. (1998) Keratinocyte growth factor (KGF) induces aromatase activity in cultured MCF-7 human breast cancer cells. Anticancer Res 18: 2541–2546.
18. Suzuki Y, Hishikawa Y, Ejima K, Hayashi T, Koji T (2004) Expression of keratinocyte growth factor (KGF) and its receptor in human breast cancer: its inhibitory role in the induction of apoptosis possibly through the overexpression of Bcl-2. Arch Histol Cytol 67: 453–464.
19. Tannir N, Hishikawa Y, Ejima K, Nagase N, Inoue S, et al. (2004) Estrogen receptor-associated expression of keratinocyte growth factor and its possible role in the inhibition of apoptosis in human breast cancer. Lab Invest 84: 1460–1471.
20. Zhang XP, Pente JP (2006) Keratinocyte growth factor-induced motility of breast cancer cells. Clin Exp Metastasis 18: 573–580.
21. Laugmani YA, Graham M, Coombes RC (1992) Expression of basic fibroblast growth factor, FGR1 and FGR2 in normal and malignant human breast, and comparison with other normal tissues. Br J Cancer 66: 273–280.
22. Nordio T, Persu CM, Tibsilaerin R, Aas T, Girdler S, et al. (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98: 10689–10674.
23. van der Vleer IJ, Dai H, van der Vlejer HJ, He YD, Hart AA, et al. (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415: 530–536.
24. Alford DC, Breson P, Medina D (2004) The origins of estrogen receptor alpha-positive and estrogen receptor alpha-negative human breast cancer. Breast Cancer Res 6: 240–247.