Helicobacter pylori recurrence after eradication in Latin America: Implications for gastric cancer prevention

Juan E Corral, Robertino Mera, Corey W Dye, Douglas R Morgan

Abstract

AIM
To estimate Helicobacter pylori (H. pylori) recurrence rate in Latin America, a region with a significant H. pylori prevalence and gastric cancer burden.

METHODS
PubMed, LILACS, SciELO, Cochrane databases and abstracts from relevant meetings were reviewed. Information collected included: Participants’ characteristics, recruitment strategy, diagnostic modality, treatment arms, follow-up and recurrence rates. Recurrence was calculated using 100-patients-year rates, and data were pooled using a random effects model. The I² statistic assessed between study heterogeneity. Meta-regression analyses evaluated for effect modifying variables.

RESULTS
Literature search yielded 163 articles. Twelve studies involving 4848 patients from 9 countries met inclusion criteria. Four hundred and thirty-two reinfections were recorded in 5487 person-years of follow-up. Pooled analysis showed a recurrence rate of 7.9 cases per 100 person-years (95%CI: 5.3-10.5). Meta-regression revealed that neither the antibiotic schema, a second antibiotic course, nor the diagnostic modality had an impact on the observed risk of recurrence. The recurrence rate in the first year after treatment, predominantly recrudescence,
was 11.2 (6.1-16.4) per 100 patient years. Recurrence in subsequent years, was only 6.2 (3.8-8.7).

CONCLUSION

H. pylori recurrence rates in Latin America are significant, and with geographic variability, yet are acceptable based upon the current literature for consideration of large scale intervention trials. Further research in Latin America is warranted to evaluate the efficacy, cost-effectiveness, and potential adverse outcomes of proposed eradication programs.

Key words: Gastric cancer; Reinfection; Hispanic; *Helicobacter pylori*; Latin America

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Latin America has a high burden of gastric cancer mortality, with significant geographic variability, which offers the opportunity for prevention trials and interventions. Recent trials and meta-analysis show that *Helicobacter pylori* (*H. pylori*) eradication reduces the risk of gastric adenocarcinoma. *H. pylori* reinfection rates in Latin America are similar to those seen in Asian trials. Recurrent cases occur mostly within the first year suggesting treatment failure (re-growth), not reinfection. These findings were not significantly modified by diagnostic modality, the antibiotics selected, retreatment, or the time check for eradication success. Eradication programs are a potentially attractive strategy for gastric cancer prevention in Latin America.

Corral JE, Mera R, Dye CW, Morgan DR. *Helicobacter pylori* recurrence after eradication in Latin America: Implications for gastric cancer prevention. *World J Gastrointest Oncol* 2017; 9(4): 184-193 Available from: URL: http://www.wjgnet.com/1948-5204/full/v9/i4/184.htm DOI: http://dx.doi.org/10.4251/wjg.v9.i4.184

INTRODUCTION

Gastric cancer is the third most common cause of cancer mortality globally, and the leading infection-associated cancer[1-2]. Of the 989000 gastric cancer cases in the world in 2008, 78% (770000) were estimated to be attributed to *Helicobacter pylori* (*H. pylori*) chronic infection[3]. Gastric cancer has a marked geographic variability[4,5]. Latin America has a particularly high burden of prevalent *H. pylori* infection and gastric cancer incidence and mortality[6-8]. Estimated age-standardized mortality rates for males per 100000 are elevated in Honduras (22.3), Costa Rica (16.8), Peru (18.2), Chile (15.0), and Ecuador (20.7)[5,9]. A concentration of incident gastric cancer is observed in the mountainous regions along the Pacific littoral, including in lower incidence countries (e.g., Mexico), which may offer the opportunity for focused prevention trials and interventions[5].

Recent trials and a meta-analysis suggest that screening and eradication of *H. pylori* can reduce the risk of gastric cancer[10,11]. The Shangdong Intervention Trial, the largest randomized clinical trial to date, had a 53% *H. pylori* cumulative recurrence rate at 7 years, yet demonstrated a significant reduction in gastric cancer at 14.8 years (OR = 0.6, 95%CI: 0.4-0.9)[10]. Trial participants were principally middle-aged Asian adults, and the generalizability of results to other populations is uncertain[12]. Two subsequent meta-analyses confirmed the findings, while noting that the results were primarily driven by trials conducted in Asia[11,13]. The International Agency for Cancer Research (IARC) has recently called for the design and study of large scale interventions for gastric cancer prevention in high incidence regions of the world, including Latin America[12].

The *H. pylori* infection recurrence rate after eradication therapy is the critical determinant of the efficacy of an *H. pylori* eradication program designed to reduce the burden of gastric cancer: This review aims to estimate the reinfection rate of *H. pylori* after completion of antibiotic treatment in Latin America based upon existing literature. We present overall recurrence rates which includes both recrudescence (also called re-growth: Same strain, dominant in the first year after eradication) and reinfection (new strain, dominant in subsequent years), as the majority of studies do not genotype *H. pylori* strains.

MATERIALS AND METHODS

Review methods and reporting were performed according to the PRISMA guidelines[14]. Literature databases PubMed (United States National Library of Medicine), LILACS (Latin America and the Caribbean Literature on Health Sciences), SciELO (Scientific Electronic Library Online) and Cochrane (the Cochrane Collaboration) were included as well as the abstracts from three major gastroenterology and infectious disease meetings [Digestive Disease Week (DDW), American College of Gastroenterology Scientific Meeting (ACG), and ID Week (IDW)]. Studies evaluating *H. pylori* reinfection in the 20 countries comprising Latin America, as defined by the United Nations Educational, Scientific and Cultural Organization[15], published in any language up to November 1st 2014 were included.

The search was performed in PubMed using the following sequence: *H. pylori* (MeSH term) AND [Recurrence (MeSH) or Recrudescence (MeSH) or Reinfection (not MeSH term)] AND (MeSH terms Latin America or Central America or South America or Argentina or Bolivia or Brazil or Colombia or Costa Rica or Cuba or Chile or Dominican Republic or Ecuador or El Salvador or Guatemala or Honduras or Mexico or Nicaragua or Panama or Paraguay or Peru or Puerto Rico or Uruguay or Venezuela). No other filters or limits were used. Analogous strategies were used to search the other two databases and the meetings’ abstracts. Three additional meta-analyses relevant to the study were reviewed for further references[16-19].

Information coding

Three investigators (Juan E Corral, Corey W Dye and
Douglas R Morgan) independently reviewed titles and abstracts for selection of potentially relevant articles. For journal manuscripts, full text articles were retrieved for further review. Titles that could not be associated with an abstract were excluded from review. A priori, studies with a sample smaller than 50 patient-years (PYs) and studies reporting same populations as other previously registered were excluded from meta-analysis. Citations of retrieved articles were reviewed for studies that may have been missed or were absent from our database queries. Authors were not contacted to provide additional information.

The following information was abstracted from each article: Year of publication, first author, country, information regarding participants (age, recruitment strategy), treatment arms (number of arms, medications used and duration in each arm), follow-up details (duration, intervals of appointment), diagnostic modality and recurrence rates. The interval of possible recurrence started with the last day of antibiotic regimen treatment, and ended with the day of follow-up H. pylori diagnostic testing; the last day of treatment was chosen to optimally account for eradication regimens of varying duration. In a given study, if there was more than one follow-up H. pylori diagnostic test for recurrence, each testing result was documented independently. The earliest time interval to consider infection recurrence and to be included in the review was 6 mo.

The quality of data (risk of bias) was assessed recording 5 variables, using the same methodology as Camargo et al. Antibiotic strategy was recorded in detail (medications and length of treatment) and was also scored as an ordinal variable [0 = only one antibiotic without a proton pump inhibitor (PPI), ranitidine or bismuth; 1 = either one antibiotic and a PPI or two antibiotics but no PPI (ranitidine or bismuth allowed); 2 = includes two antibiotics and a PPI (regardless of scheme, for example, triple, quadruple, sequential)].

Statistical analysis

All treatment arms in each study were reviewed individually. Cases were allocated in two groups: The patients that received antibiotics and those that received either placebo or an antacid medication (PPI, H2 blocker or bismuth) but without antibiotics. Only antibiotic arms were included in meta-analysis. The number of patients with a negative test immediately after treatment (range 4-8 wk after antibiotic course) were recorded for the intention to eradicate analysis. The patients compliant with subsequent H. pylori testing were analyzed for our main analysis, and per our protocol, in this group, the patients lost to follow-up between eradication test (post antibiotics) and subsequent testing were not included. We also documented whether a second antibiotic course was offered for those patients with persistent infection or not.

We used a random-effects model to summarize recurrence rates. Summary reinfection rates and corresponding 95%CIs were calculated using the Poisson distribution. Forest plot graphs were created with 95%CIs. Given the relevance of differentiating between recrudescence (regrowth) and reinfection, subgroup analysis was performed for studies that looked for H. pylori recurrence at one year or less (<53 wk cutoff) and those with longer follow-up. Pooled recurrence rates were calculated for different points in time for Latin America, starting at the first six months after completing antibiotics and for all subsequent years where data was available.

A secondary analysis was conducted with four additional comparisons: Recurrence 3 years after eradication, recurrence in studies enrolling children compared to studies restricted to adults, antibiotics regimens with high (>75%) or low (≤75%) eradication success, and studies that assessed recurrence with endoscopy and biopsy compared to other diagnostic methods.

Meta-regression analyses were performed to evaluate for five effect modifying variables: Study population (community volunteers, patients with duodenal ulcers, dyspepsia, or intestinal metaplasia), H. pylori diagnostic modality (with or without urea breath test), quality of antibiotic treatment (0 to 2 points), possibility of a second antibiotic course, and length of follow-up (in years).

RESULTS

The literature search resulted in 164 articles from the following sources: PubMed (104), LILACS (40), SciELO (20), and Cochrane (0) (Figure 1). Four abstracts were considered relevant from our review of conference reports (ACG 1, DDW 3, IDW 0). Two additional articles were identified after screening the references of manuscripts found in first review. After excluding 139 irrelevant or duplicate publications, 25 full text articles were retrieved for further evaluation, of which 7 were excluded because of incomplete data or duplicate samples and six additional per protocol for their small sample size (<50 person-years of follow-up).

In summary, 12 studies from 9 countries met criteria for inclusion, which were published between 1991 and 2014 (Table 1). Ten studies included only adults, and an additional 2 studies included both adults and children. Eleven manuscripts were written in English and one in Spanish. Time to evaluate H. pylori eradication success ranged from 4 to 13 wk after last day of antibiotics (3 studies reported percentage of successful treatment “after randomization” without further details). Follow-up ranged from 6 mo to 16 years. These twelve studies encompassed 4848 patients [4685 patients received a treatment regimen that included antibiotics, 163 were
assigned to a placebo group or other treatment arm without antibiotics (only anti-acids). In these studies, the mean eradication rate after initial treatment was 72.2%, with a range of 30.2% to 100%. Reinfection rates ranged from 1.8% to 85.4%. In total, there were 432 reinfection events recorded in 5487 PYs follow-up in patients with sufficient data to calculate recurrence rates. Of the 4848 patients, 2172 (44.8%) did not complete follow-up diagnostic testing (Table 2).

Pooled analysis showed an overall recurrence rate of 7.9 cases per 100 PYs (95%CI: 5.3-10.5) (Figure 2). Analysis on an intention to eradicate basis (those with a negative test immediately after treatment) had a recurrence rate of 7.1 (4.7-9.6) per 100 PYs. The recurrence rate in the first year after treatment, postulated to be predominantly recrudescence, was 11.2 (6.1-16.4) per 100 PYs (all 12 studies included), while recurrence in subsequent years, an estimate of reinfection, was 6.2 (3.8-8.7) per 100 PYs. The cumulative reinfection rate at the 5 and 7 year time points were 36.2 and 48.6 per 100 PYs, respectively. Recurrence rates from different countries were combined for the first 6 years, 12 and 16 years (only one study had follow-up beyond 5 years\(^{12}\)). Recurrence rate were higher in the first six months and decreased afterwards. Data from year 4 and 5 were combined as they had few PPI follow-up (132 and 98, respectively). After the first year, reinfection rates ranged from 3.4 per 100 PYs in year 2 to 6.3 per 100 PYs in the combined 4-5 year period (Figure 3).

In a secondary analysis, the reinfection rate was lower when using a 3-year time cutoff; with an estimated rate of 3.8 (95%CI: 1.6-6.1) cases per 100 PYs. Recurrence rates were two times higher in studies that enrolled children compared to those that only enrolled adults 12.3 (95%CI: 9.6-14.9) vs 6.9 (95%CI: 4.2-9.6) cases per 100 PYs. There was no significant difference in recurrence rates among trials with high or low initial eradication success [7.8 (95%CI: 3.4-12.3) vs 8.4 (95%CI: 4.6-12.1), respectively]. Recurrence rates were higher in studies that evaluated eradication by endoscopy, 11.6 (95%CI: 9.9-13.3), compared to those that used non-invasive diagnostic methods, 6.6 (95%CI: 4.0-9.1).

Meta-regression

In the meta-regression, neither the study population, the method used to detect *H. pylori*, the initial antibiotic

Figure 1 Latin America *Helicobacter pylori* recurrence: Study selection flow diagram (PRISMA 2009). DDW: Digestive Disease Week; ACG: American College of Gastroenterology Scientific Meeting; IDW: ID Week.
strategy, the use of a second antibiotic course, nor the length of follow up had a significant impact on the observed risk of reinfection. As anticipated, the recurrence rates decreased after the first year by 40%, but this was not statistically significant after including all five variables ($P = 0.6$).

Assessment of bias and heterogeneity

Risk of bias according to Camargo scale ranged from 2 to 5 points. Even though reviewed studies used various methods to assess $H. pylori$ recurrence, 10 (83%) used at least two different methods, including 9 (75%) that used urea breath tests. Most studies lost points because of sampling techniques or because they failed to describe salient patient characteristics. The I^2 for the model was 90% and adjusted R^2 was -38.8%. Funnel plot showed asymmetry towards higher recurrence rates, with a lack of missing studies with low sample size (high SD) where the rates are lower. The top of the funnel plot demonstrated a low risk for publication bias.

Table 1 Characteristics of eradication trials included in Latin America

Ref.	Year	Country	Patients enrolled or randomized	Mean age ± SD (age range)	Patient population	Treatment arm(s)	Antibiotic duration (d)	Second antibiotic treatment	Eradication success rate (%)	Waiting time (wk)	Diagnostic method(s)	Follow-up yr	Study design quality
Morgan et al[19]	2013	6 countries'	1463 (21-65)	Community populations	3 options: PPI + A + C + M	Variable: PPI + M + Bis + Tetra†	14	Total	77.4%	6-8	13C, CagA IgG + H2	1	5
Silva et al[20]	2010	Brazil	150 (16-85)	Duodenal ulcer	PPI + A + C	H2 + Bis + C	14	NA	100%	13	14C, H (RUT, PCR)	5	3
Mesquita et al[21]	2005	Brazil	50 (18-21)	Duodenal ulcer	PPI + A + C	H2 + Bis + C	14	NA	60.4%	8.5	14C, H (RUT, PCR)	1	5
Coelho et al[22]	2001	Brazil	48 (18-55)	Duodenal ulcer	PPI + A + C	H2 + A + M + Furaz	2 options: H2 + A + M + C + M + Furaz	Cross-over	75.7%	4-6	14C, H (RUT, PCR)	3	3
Rollan et al[23]	1996	Chile	57 (16-65)	Duodenal ulcer	PPI + A + C + M + Bis	PPI + A + C + M + Bis	28	NA	80.70%	4	14C, H (RUT, PCR)	1	5
Figueroa et al[24]	2014	Peru	140 (18-85)	Duodenal ulcer	PPI + A + C	H2 + A + C	14	NA	72.10%	4	14C, H (RUT, PCR)	2	3
Novoa-Salas et al[25]	2003	Peru	235 (18-55)	Non-ulcer dispesia	PPI + A + C	H2 + A + C	14	NA	85.50%	4	14C, H (Warthin-S, CagA IgG)	1.5	5
Soto et al[26]	2003	Mexico	467 (> 5)	Non-ulcer dispesia	PPI + A + C	H2 + A + C	14	NA	30.20%	4-6	14C, H (Warthin-S, CagA IgG)	1	5
Leal-Herrera et al[27]	2002	Mexico	131 (> 40)	Healthy volunteers	PPI + A + C	H2 + A + C	7	NA	76.30%	6	14C, H (Giems, CagA IgG)	3	4
Mohar et al[28]	2014	Bolivia	848 (> 6 mo)†	Community populations	PPI + A + C	H2 + A + C	10	NA	64.00%	6	14C, H (CagA IgG)	1	3
Sivapa et al[29,30]	2005	Colombia	976 (29-69)	Intestinal metaplasia	Variable (the majority A + M + Bis)	14	NA	51.60%	156	13C, H (H and E, Steiner)	16	5	

†Six countries were Colombia, Costa Rica, Nicaragua, Chile, Honduras, and 2 sites in Mexico (Sonora and Chiapas); ‡Voluntary treatment; ‡Sixty-six years old; ‡41.2% were > 15 years old. PPI: Proton pump inhibitor; A: Amoxicillin; C: Clarithromycin; H2: H2 Blockers; B: Bismuth; Furaz: Furazolidone; C: Urea breath test; H: Histology; RUT: Rapid urea test; Clt: Culture.

Urea breath test; H: Histology; RUT: Rapid urea test; Clt: Culture.
DISCUSSION

H. pylori recurrence after eradication is a critical determinant of the efficacy of potential gastric cancer prevention programs utilizing antibiotic treatment. This measure may be more important than the choice of initial antibiotic regimen and bacterial resistance rates, and is likely to differ by global region\cite{19,21}. Latin America populations have high colonization rates of H. pylori, as well as a significant burden of gastric adenocarcinoma. Our meta-analysis estimates a recurrence rate of 7.9 cases per 100 PYs in Latin America, 11.2 in year-one and 6.2 in subsequent years. This overall rate is higher than the estimated global recurrence rate of 4.5 (95%CI: 4.2-4.8), but significantly lower than that reported for resource-limited nations 8.7 (7.8-9.6) and 13.0 (6.0-21.0) observed in two independent meta-analysis\cite{16,18}.

Is there a maximum H. pylori infection recurrence threshold for potential intervention programs? In the Shangdong trial reported by Ma et al\cite{10} with healthy volunteers in East Asia, H. pylori eradication significantly reduced incident gastric cancer compared to placebo after 14.8 years of follow up [OR 0.6 (0.4-0.9), \(P = 0.3\)]. These results have been supported by recent
Corral JE et al. *H. pylori* recurrence in Latin America

Table 2 Estimated *Helicobacter pylori* recurrence rates in Latin America studies

Ref.	Patients that received antibiotics	Patients present at f/u appointment	Recurrent cases total	Crude reinfection rate\(^1\)	Follow-up (yr)	Year patients (present at f-u appointment)	Recurrence rate per 100 PY (95%CI)
Morgan et al\(^{[22]}\)	1133	1091	125	11.46	1	1091	11.46 (9.54-13.65)
Silva et al\(^{[4]}\)	147	112	10	8.98	5	557	1.80 (0.86-3.30)
Mesquita et al\(^{[4]}\)	50	50	6	12.00	3	150	4.00 (1.47-8.71)
Coelho et al\(^{[4]}\)	29	43	6	13.95	1.5	64.5	9.30 (3.41-20.25)
Rollan et al\(^{[4]}\)	84	96	12	12.50	3	260	4.62 (2.39-8.06)
Figueroa et al\(^{[4]}\)	47	53	1	1.89	1	53	1.89 (0.05-10.52)
Novoa-Reyes et al\(^{[4]}\)	101	65	5	7.69	2	130	3.85 (1.25-8.98)
Soto et al\(^{[4]}\)	201	216	44	20.37	1.5	324	13.58 (9.87-18.23)
Leal-Herrera et al\(^{[4]}\)	141	131	32	24.43	2	262	12.21 (8.35-17.24)
Mohar et al\(^{[4]}\)	183	109	26	23.85	1	109	23.85 (15.58-34.95)
Sivapalasingam et al\(^{[4]}\)	543	462	57	12.34	1	462	12.34 (9.34-15.98)
Mera et al\(^{[4]}\)	679	126	108	85.37	16	2024	5.34 (4.38-6.44)
Total	3338	2554	432	16.92		5487	7.89 (5.27-10.51)

\(^1\)Crude reinfection rate: Recurrent cases total/Patients present at follow-up appointment.

Table 3 Implementation of *Helicobacter pylori* eradication programs for gastric cancer prevention in Latin America

Components	Challenges and considerations	Implementation approaches
Public policy	Lack of awareness among the Ministries of Health, stakeholders, and the public	Large scale education campaigns for cancer and gastric cancer
Economic investment	Cost of *H. pylori* eradication program	Joint initiatives with international stakeholders: WHO, IARC, PAHO, UICC, NCI, and CDC
Program design	Economics of growing gastric cancer burden	Conduct CEAs at the country and regional level. The CEAs may differ for HICs and LMICs
Appropriate technologies	Uncertainties and regional variation for target age, screening approach, treatment regimen, and follow-up	Pilot-test eradication campaigns and perform community implementation trials
Appropriate technologies	Technical difficulties in *H. pylori* testing	Adapt evidence from cost-effectiveness models and available epidemiologic data.
Appropriate technologies	Consistent eradication confirmation norms	Incorporate screening into existing public health practices (e.g., cervical cancer)
Appropriate technologies	Management of high risk patients	Develop economic, point-of-care *H. pylori* testing
Adherence measures	Poor compliance with *H. pylori* eradication regimen, leading to treatment failure and increased infection recurrence	Coordinate endoscopy protocols for high risk patients (e.g., premalignant lesions)
H. pylori recurrence	Elevated reinfection rate may affect program efficacy and feasibility	Implement information networks to coordinate eradication programs, health centers, and endoscopy centers
Potential overall program risks and unknowns	Alteration of the human microbiome	Consider the family or the village as the intervention target
Potential overall program risks and unknowns	Induction of antibiotic resistance	Consider medication side effect profiles
Potential overall program risks and unknowns	Potential increased risk for certain diseases (e.g., allergic diseases, esophageal cancers)	Pre-regimen counseling for common side effects
Potential overall program risks and unknowns	Unknown role(s) of *H. pylori* as a component of the human microbiome: Commensal and pathogen, which may be strain and/or age dependent	Consider adherence measures, usual (e.g., direct observed therapy), or novel (e.g., cell phone contact)
Parallel research agendas	Incorporate evolving approaches and technologies	Develop eradication programs for gastric cancer prevention in Latin America
H. pylori Vaccination	Unknown long-term effectiveness and side effects	Improve existing conditions to reduce potential environmental sources of reinfection
H. pylori Vaccination	Lack of data showing impact in clinical outcomes	Consider the family or the village as the intervention target

WHO: World Health Organization; IARC: International Agency for Research on Cancer; PAHO: Pan American Health Organization; UICC: Union for International Cancer Control; NCI: National Cancer Institute; CDC: Centers for Disease Control and Prevention; HIC: High income country; LMIC: Low/ middle income country; OTC: Over the counter; CEAs: Cost-effectiveness analyses; *H. pylori*: *Helicobacter pylori*.

WJGO | www.wjgnet.com | 190 | April 15, 2017 | Volume 9 | Issue 4 |
meta-analyses. In the Shangdong study, omeprazole and amoxicillin comprised both the treatment and the retreatment regimen, and only 47% of subjects were *H. pylori* negative at the 7-year post-eradication point. In general terms, this may suggest a 50% threshold at the 5 to 7 year time point as a minimum eradication efficacy target. Our estimated 5-year and 7-year reinfection rates in the current meta-analysis are lower or at least similar to the 7-year reinfection rate observed in the Shangdong study: 36.2% and 48.6%, vs 53%, respectively. Thus, *H. pylori* screening and eradication in asymptomatic populations may be an attractive strategy for gastric cancer prevention in Latin America. Further research to evaluate feasibility, cost-effectiveness, acceptance, and adverse consequences of eradication programs in the region is needed. For example, the 1-year recurrence analysis in the large 6-country *H. pylori* eradication trial in Latin America suggested that potential programs may need to be tailored based upon region, gender and age of the participants.

Uncertainties about *H. pylori* screening and treatment have to be answered and significant challenges are foreseen before such programs can be implemented at a population level (Table 3).

H. pylori infection recurrence represents the combination of recrudescence and reinfection, and different strategies may be required to effectively reduce these component rates. Recrudescence or re-growth, usually occurs during the first year after treatment at a rate primarily driven by antibiotic treatment failure, in the setting of a false negative test immediately after treatment. This common scenario may be difficult to distinguish from reinfection with the same strain from a family member in the same household. Reinfection, is the principal component of recurrence after the first year, and persists at a lower but steady state. Molecular analysis comparing pre- and post-treatment strains of patients have shown that 80% of recurrent cases are genetically identical, whereas differing strains were found in only a minority of the cases. This suggests that the majority of initial recurrent cases are a product of treatment failure, or reinfection with a strain common to close contacts or family members. In this meta-analysis, recurrence rates significantly decreased after the first year and remained stable in subsequent intervals, ranging from 3.4% to 5.8% per 100 PYs.

Strategies aiming to reduce these two types of recurrence should be different. The first scenario requires a clinical approach where cost-effective antibiotic selection and medication compliance measures are crucial, whereas the second involves a broader public health strategy. Reducing reinfection rate is complex as it involves improving living conditions and reducing potential environmental sources of reinfection, including consideration of interventions at the family or the village levels, and possibly vaccination. In this approach, children become a challenging target group with higher therapeutic failure and higher reinfection as seen in most studies (including this meta-analysis).

Our results are significantly influenced by two trials: The study by Morgan et al. as the largest trial with 1463 PYs follow up, and the study by Mera et al. as the cohort with the longest follow-up time. The Mera study was the only cohort followed for more than 5 years; subjects with preneoplastic gastric lesions were enrolled from a geographically circumscribed region of Colombia, and thus, the results may not be generalizable to the remainder of Latin America. Of note, the Caribbean was not represented, where the higher African ancestry, different diets and other environmental exposures may affect generalization. In this review, we observed geographic variability in *H. pylori* recurrence rates, as had been previously described. This likely represented both regional *H. pylori* ecology differences, as well as socioeconomic differences in the study populations. Improved socioeconomic status in subsequent birth cohorts may help explain lower acquisition rates. For example, Chile and Peru are countries with divergent development rates, yet similar ethnography and comparable *H. pylori* prevalence rates-lower reinfection rates are observed in Chile. One likely explanation is that in Chile, the generation 40 years who contracted *H. pylori* in their childhood and remains colonized, coexists with younger generations that have grown in improved living conditions with reduced *H. pylori* prevalence. This paradox of high prevalence but low reinfection rates has been previously described in Japanese patients with peptic ulcer disease.

In our meta-regression analysis, the findings were not significantly modified by any of the evaluated factors: Study population, *H. pylori* diagnostic modality, the antibiotic strategy selected, retreatment (a second antibiotic course), or the time interval to check for *H. pylori* eradication success. Antibiotic selection varied among different studies, but half of them used the standard triple therapy regimen. This 14-d regimen has been proven to be superior to sequential and concomitant therapy in Latin America post-eradication time, but not at the 1-year time point. Diagnostic modalities were appropriate, and 8 out of 12 studies used two methods to diagnose *H. pylori*, wherein one of them was the urea breath test. Studies that used endoscopy-based diagnostic methods noted higher recurrence rates, which may be an incidental finding, related to occasional iatrogenic infection, or reflect the improved sensitivity of this approach. One limitation of this analysis was the study designs which were not able to differentiate whether cases were secondary to reinfection or recrudescence by molecular fingerprinting. Finally, heterogeneity was significant and there is a possibility of publication bias. The Forrest plot suggested missing studies with low sample size (wide standard deviation) wherein the recurrence rates may be lower, with the exception of the Peru study, but this is attributed to the inclusion criteria of at least 50 PYs of follow-up.

Conclusion

The meta-analysis of studies in Latin America suggests that the *H. pylori* recurrence rate in the first year is
11.2 (95%CI: 6.1-16.4) per 100 person-years, and 6.2 (95%CI: 3.8-8.7) per 100 person-years in subsequent years, or approximately 50% at 7 years. Overall, the recurrence rates are lower than initially reported, making H. pylori screening and eradication a reasonable strategy for gastric cancer prevention programs in Latin America, within the context of well-designed clinical trials. Further research is needed to evaluate the feasibility, cost-effectiveness, and the potential adverse outcomes (e.g., microbiome effects, antibiotic resistance) of eradication programs, while in parallel, to explore novel biomarkers and eradication strategies.

ACKNOWLEDGMENTS

Authors would like to thank Leonardo J Tamariz for assisting with statistical analysis.

REFERENCES

1. de Martel C, Ferlay J, Franceschi S, Vignat J, Bray F, Forman D, Plummer M. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol 2012; 13: 607-615 [PMID: 22575588 DOI: 10.1016/S1470-2045(12)70317-7 7S1470-2045(12)70137-7]

2. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008. GLOBOCAN 2008. Int J Cancer 2010; 127: 2893-2917 [PMID: 21351269 DOI: 10.1002/ijc.25516]

3. Plummer M, Franceschi S, Vignat J, Forman D, de Martel C. Global burden of gastric cancer attributable to Helicobacter pylori. Int J Cancer 2015; 136: 487-490 [PMID: 24889903 DOI: 10.1002/ijc.28999]

4. International Agency of Cancer Research SoCI. GLOBOCAN 2008 Fact Sheet. Available from: URL: http://globocan.iarc.fr/factsheet.asp

5. Torres J, Correa P, Ferreccio C, Hernandez-Suarez G, Herrero R, Cavaza-Porro M, Dominguez R, Morgan D. Gastric cancer incidence and mortality is associated with altitude in the mountainous regions of Pacific Latin America. Cancer Causes Control 2013; 24: 249-256 [PMID: 23224271 DOI: 10.1007/s10552-012-0114-8]

6. Cuello LG, Leon-Barraza R, Quigley EM. Latin-American Consensus Conference on Helicobacter pylori infection. Latin-American National Gastroenterological Societies affiliated with the Inter-American Association of Gastroenterology (AIAGE). Am J Gastroenterol 2000; 95: 2688-2691 [PMID: 11051336 DOI: 10.1111/j.1572-0241.2000.03174.x]

7. Parkin DM. The global health burden of infection-associated cancers in the year 2002. Int J Cancer 2006; 118: 3003-3044 [PMID: 16404738 DOI: 10.1002/ijc.21731]

8. Gissot P, Lee BL, Badovinac-Crnjevic T, Strasser-Weippel K, Chavarri-Guerra Y, St Louis J, Villarreal-Garza C, Unger-Saldaña K, Ferreyya M, Debiasia M, Lisdek PE, Touya D, Werutsky G, Higgins M, Fan L, Vascunccles C, Cazap E, Vallejo C, Mohar A, Knauf F, Arecola H, Baturu R, Luciani S, Sullivan R, Finnkelttein D, Simon S, Barrios C, Kightlinger T, Gehrd A, Bychkovsky L, Vopes G, Stefani S, Blaya M, Souza FH, Santos FS, Kaemmerer A, de Azambuja E, Zorilla AF, Murillo R, Jeronimo J, Tsu V, Carvalho A, Gil C, Sternberg C, Duchas-Gonzalez A, Sgroi D, Cuiller M, Frasco R, Reis RM, Masera G, Gabus R, Ribeiro R, Knust R, Ismael G, Rosenblat E, Roth B, Villa L, Solares AL, Leon MX, Torres-Vigil I, Covarrubias-Gomez A, Hernandez A, Bertolino M, Schwartzmann G, Santillana S, Esteva F, Fein L, Mano M, Gomez H, Hurlburt M, Durstine A, Azhena G. Planning cancer control in Latin America and the Caribbean. Lancet Oncol 2013; 14: 391-436 [PMID: 23628188 DOI: 10.1016/S1470-2045(13)70084-2]

9. Corral JE, Delgado Hurtado JJ, Dominguez LR, Valdez de Cuellar M, Balmore Cruz C, Morgan DR. The descriptive epidemiology of gastric cancer in Central America and comparison with United States Hispanic populations. J Gastrointest Cancer 2015; 46: 21-28 [PMID: 25412859 DOI: 10.1007/s12029-014-9672-1]

10. Ma J, Zhang L, Brown LM, Li JY, Shen L, Pan KF, Liu WD, Hu Y, Han ZX, Crystal-Mansour S, Pee D, Blot WJ, Fraumeni JF, You WC, Gail MH. Fifteen-year effects of Helicobacter pylori, garlic, and vitamin treatments on gastric cancer incidence and mortality. J Natl Cancer Inst 2012; 104: 488-492 [PMID: 22271764 DOI: 10.1093/jnci/djs003]

11. Ford AC, Forman D, Hunt RH, Yuan Y, Moayyedi P. Helicobacter pylori eradication therapy to prevent gastric cancer in healthy asymptomatic infected individuals: systematic review and meta-analysis of randomised controlled trials. BMJ 2014; 348: g3174 [PMID: 24846275 DOI: 10.1136/bmj.g3174]

12. Herrero R, Parsonnet J, Greenberg ER. Prevention of gastric cancer. JAMA 2014; 312: 1197-1198 [PMID: 25247512 DOI: 10.1001/jama.2014.10498]

13. Ford AC, Forman D, Hunt R, Yuan Y, Moayyedi P. Helicobacter pylori eradication for the prevention of gastric neoplasia. Cochrane Database Syst Rev 2015; 7: CD005583 [PMID: 26198377 DOI: 10.1002/14651858.CD005583.pub2]

14. Mohr D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 2009; 339: b2535 [PMID: 19622551 DOI: 10.1136/bmj.b2535]

15. The State of Education in Latin America and the Caribbean Guaranteeing Quality Education for All. France: United Nations Educational, Scientific and Cultural Organization, 2007

16. Gishert JP. The recurrence of Helicobacter pylori infection: incidence and variables influencing it. A critical review. Am J Gastroenterol 2005; 100: 2083-2099 [PMID: 16128956 DOI: 10.1111/j.1572-0241.2005.00403.x]

17. Camargo MC, Garcia A, Riquelme A, Otero W, Camargo CA, Hernandez-Garcia T, Cauda R, Bruce MG, Rabkin CS. The problem of Helicobacter pylori resistance to antibiotics: a systematic review in Latin America. Am J Gastroenterol 2014; 109: 485-495 [PMID: 24589670 DOI: 10.1038/gast.2014.24]

18. Niv Y, Hazazi R. Helicobacter pylori recurrence in developing and developing countries: meta-analysis of 13C-urea breath test follow-up after eradication. Helicobacter 2008; 13: 56-61 [PMID: 18205667 DOI: 10.1111/j.1523-5378.2008.00571.x]
April 15, 2017

19 Mera RM, Piazzuelo MB, Bravo LE, Camargo CA, Bravo JC, Delgado AG, Romero-Gallo J, Vepey MC, Realpe JL, Mora Y, G. SB, Morgan DR, Peck RM, Wilson KT, Correa P. The gastric precancerous cascade A 16-year follow-up of a cohort of Colombian subjects with gastric precancerous lesions. Digestive Disease Weekly - DDW 2014. Chicago: American Gastroenterology Association - AGA, 2014

20 Hopkins RJ, Girardi LS, Turney EA. Relationship between Helicobacter pylori eradication and reduced duodenal and gastric ulcer recurrence: a review. Gastroenterology 1996; 110: 1244-1252 [PMID: 86613015]

21 Fischbach W, Goebeler-Kolve ME, Dragosics B, Kreiner A, Stolte M. Long term outcome of patients with gastric marginal zone B cell lymphoma of mucosa associated lymphoid tissue (MALT) following exclusive Helicobacter pylori eradication therapy: experience from a large prospective series. Gut 2004; 53: 34-37 [PMID: 14684573]

22 Morgan DR, Torres J, Sexton R, Herrero R, Salazar-Martinez E, Greenberg ER, Bravo LE, Dominguez RL, Ferreccio C, Lazzano-Ponce EC, Meza-Montenegro MM, Peña EM, Peña R, Correa P, Martinez ME, Chey WD, Valdivieso M, Anderson GL, Goodman GE, Crowley JJ, Baker LH. Risk of recurrent Helicobacter pylori infection 1 year after initial eradication therapy in 7 Latin American communities. JAMA 2013; 308: 578-586 [PMID: 23403682 DOI: 10.1001/jama.2013.311]

23 Peitz U, Hackelsberger A, Malfertheiner P. A practical approach to patients with refractory Helicobacter pylori infection, or who are re-infected after standard therapy. Drugs 1999; 57: 905-920 [PMID: 10400040]

24 Zeng M, Mao XH, Li JX, Tong WD, Wang B, Zhang YJ, Guo G, Zhao ZJ, Li L, Wu DL, Lu DS, Tan ZM, Liang HY, Wu C, Li DH, Luo P, Zeng H, Zhang WJ, Zhang JY, Guo BT, Zha FC, Zou QM. Efficacy, safety, and immunogenicity of an oral recombinant Helicobacter pylori vaccine in children in China: a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2015; 386: 1457-1464 [PMID: 26142048 DOI: 10.1016/ S0140-6736(15)60310-5]

25 Rowland M, Kumar D, Daly L, O'Connor P, Vaughan D, Drumm B. Low rates of Helicobacter pylori reinfection in children. Gastroenterology 1999; 117: 336-341 [PMID: 10419914]

26 Kato S, Abukawa D, Furuyama N, Iinuma K. Helicobacter pylori reinfection rates in children after eradication therapy. J Pediatr Gastroenterol Nutr 1998; 27: 543-546 [PMID: 9822320]

27 Alarcón T, José-Martínez-Gómez M, Urruzuno P. Helicobacter pylori in pediatrics. Helicobacter 2013; 18 Suppl 1: 52-57 [PMID: 24011246 DOI: 10.1111/j.1572-0241.2012.00602.x]

28 Khalfa MM, Sharif RA, Aziz RK. Helicobacter pylori: a poor man's gut pathogen? Gut Pathog 2010; 2: 2 [PMID: 20536368 DOI: 10.1186/1757-4749-2-2]

29 Adachi M, Mizzuno M, Yokota K, Miyoshi M, Nagahara Y, Maga T, Ishiki K, Inaba T, Okada H, Oguma K, Tsuji T. Reinfection rate following effective therapy against Helicobacter pylori infection in Japan. J Gastroenterol Hepatol 2002; 17: 27-31 [PMID: 11978263]

30 Greenberg ER, Anderson GL, Morgan DR, Torres J, Chey WD, Bravo LE, Dominguez RL, Ferreccio C, Herrero R, Lazzano-Ponce EC, Meza-Montenegro MM, Peña R, Peña EM, Salazar-Martinez E, Correa P, Martinez ME, Valdivieso M, Goodman GE, Crowley JJ, Baker LH. 14-day triple, 5-day concomitant, and 10-day sequential therapies for Helicobacter pylori infection in seven Latin American sites: a randomised trial. Lancet 2011; 378: 507-514 [PMID: 21777974 DOI: 10.1016/S0140-6736(11)60823-8]

31 Neil GA, Suchower LJ, Ronca PD, Skoglund ML. Time of Helicobacter pylori eradication assessment following treatment. Helicobacter 1997; 2: 13-20 [PMID: 9432316]

32 Tytgat GN. Endoscopic transmission of Helicobacter pylori. Aliment Pharmacol Ther 1995; 9 Suppl 2: 105-110 [PMID: 8547522]

33 Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003; 327: 557-560 [PMID: 12958120 DOI: 10.1136/bmj.327.7414.557]

34 Silva FM, Navarro-Rodríguez T, Barburi RC, Mattar R, Hashimoto CL, Eissi JN. Helicobacter pylori reinfection in Brazilian patients with peptic ulcer disease: a 5-year follow-up. Helicobacter 2010; 15: 46-52 [PMID: 20302589 DOI: 10.1111/j.1523-5378.2009.00734.x]

35 Mesquita MA, Lorena SL, Zeutme JN, Montes CG, Guerazzi F, Santos JO, Carvalho AF, Almeida JR. Recurrence of Helicobacter pylori infection after eradication therapy in Brazilian patients with peptic ulcer. J Clin Gastroenterol 2005; 39: 447 [PMID: 15815218]

36 Coelho LG, Passos MC, Chausson Y, Costa EL, Maia AF, Brandao MJ, Rodrigues DC, Castro LP. Duodenal ulcer and eradication of Helicobacter pylori in a developing country. An 18-month follow-up study. Scand J Gastroenterol 1992; 27: 362-366 [PMID: 1529269]

37 Rollan A, Giansaspero R, Fuster F, Acevedo C, Figueras C, Hola K, Schulz M, Duarte I. The long-term reinfection rate and the course of duodenal ulcer disease after eradication of Helicobacter pylori in a developing country. Am J Gastroenterol 2000; 95: 50-56 [PMID: 10638558 DOI: 10.1111/j.1572-0241.2000.01700.x]

38 Figueras G, Acuña R, Troncoso M, Portell DP, Toledo MS, Albornoz V, Vigneaux J. Low. H pylori reinfection rate after triple therapy in Chilean duodenal ulcer patients. Am J Gastroenterol 1996; 91: 1395-1399 [PMID: 8678002]

39 Nova Reyes I, Caravedo Martinez M, Huerta-Mercado Tenorio J, De los Rios Sennamache R, Pinto Valdivia J, Bussalleu Rivera A. [Recurrence rate of Helicobacter pylori infection two years after successful eradication in Peruvian patients presenting with postendoscopic distress syndrome]. Rev Gastroenterol Peru 2010; 24: 15-21 [PMID: 24721953]

40 Soto G, Bautista CT, Ruth DE, Gilman RH, Velapatio B, Oguna M, Dailide G, Razuri M, Meza R, Katu U, Monath TP, Berg DE, Taylor DN. Helicobacter pylori infection after eradication is common in Peruvian adults after antibiotic eradication therapy. J Infect Dis 2003; 189: 1266-1275 [PMID: 14593583 DOI: 10.1086/379046]

41 Leal-Herrera Y, Torres J, Monath TP, Ramos I, Gomez A, Madrazo-de la Garza A, Dehesa-Violante M, Muñoz O. High rates of recurrence and of transient reinfections of Helicobacter pylori in a population with high prevalence of infection. Am J Gastroenterol 2003; 98: 2395-2402 [PMID: 14638339 DOI: 10.1111/j.1572-0241.2003.00778.x]

42 Mohar A, Ley C, Guermer J, Herrera-Goepfert R, Figueras LS, Halperin D, Parsons M. Eradication rate of Helicobacter pylori in a Mexican population at high risk for gastric cancer and use of serology to assess cure. Am J Gastroenterol 2002; 97: 2530-2535 [PMID: 12385434 DOI: 10.1111/j.1572-0241.2002.06035.x]

43 Sivapalasingam S, Rajasingham A, Mccy JT, Friedman CR, Hoeckstra RM, Ayers T, Gold B, Quick RE. Recurrence of Helicobacter pylori infection in bolivian children and adults two a population-based “screen and treat” strategy. Helicobacter 2014; 19: 343-348 [PMID: 24830916 DOI: 10.1111/hel.12137]

44 Mera R, Fontham ET, Bravo LE, Bravo JC, Piazzue MB, Camargo MC, Correa P. Long term follow up of patients treated for Helicobacter pylori infection. Gut 2005; 54: 1536-1540 [PMID: 15985559 DOI: 10.1136/gut.2005.072009]
