the mathematics of taffy pullers

Jean-Luc Thiffeault

Department of Mathematics
University of Wisconsin – Madison

Why Math Matters
Dept. of Mathematics, University of Wisconsin
Madison, WI, 21 October 2016

Supported by NSF grant CMMI-1233935
the taffy puller

Taffy is a type of candy.

Needs to be **pulled**: this aerates it and makes it lighter and chewier.

We can assign a **growth**: length multiplier per period.

[movie by M. D. Finn]
four-pronged taffy puller

http://www.youtube.com/watch?v=Y7tlHDsquVM

[MacKay (2001); Halbert & Yorke (2014)]
a simple taffy puller

Count alternating left/right folds. 1, 1, 2, 3, 5, 8, 13, 21, 34, …
Let’s count alternating left/right folds. The sequence is

\[\#\text{folds} = 1, 1, 2, 3, 5, 8, 13, 21, 34, \ldots \]

What is the rule?

\[\#\text{folds}_n = \#\text{folds}_{n-1} + \#\text{folds}_{n-2} \]

This is the famous Fibonacci sequence, \(F_n \).
how fast does the taffy grow?

It is well-known that for large n,

$$ \frac{F_n}{F_{n-1}} \rightarrow \phi = \frac{1 + \sqrt{5}}{2} = 1.6180 \ldots $$

where ϕ is the **Golden Ratio**, also called the **Golden Mean**.

So the ratio of lengths of the taffy between two successive steps is ϕ^2, where the squared is due to the left/right alternation.

Hence, the **growth factor** for this taffy puller is

$$ \phi^2 = \phi + 1 = 2.6180 \ldots $$

The standard taffy pullers have the lesser-known **Silver Ratio** $(1 + \sqrt{2})$ as their growth factor.
maps on the torus (donut)

There is a deep mathematical connection between taffy pullers and transformations (maps) of the torus:
A modern ‘taffy puller’ is the mixograph, a device for measuring the properties of dough:

[Department of Food Science, University of Wisconsin. Photos by J-LT.]
The mixograph measures the resistance of the dough to the pin motion.

This is graphed to determine properties of the dough, such as water absorption and ‘peak time.’
taffy pullers and mixing

[Boyland, P. L., Aref, H., & Stremler, M. A. (2000). *J. Fluid Mech.* **403**, 277–304; Simulations by M. D. Finn, S. E. Tumasz, and J-LT.]
building a mixing device out of Legos
let’s try our hand at this

Six-rod design with undergrad Alex Flanagan:

The software tools allow us to rapidly try designs. This one is simple and has huge growth (13.9 vs 5.8 for the standard pullers).
making taffy is hard

Early efforts yielded mixed results: \[\ldots \] but eventually we got better at it

(BTW: The physics of candy making is fascinating. \ldots)
six-pronged puller: mathematical construction

\[\phi(x) = \begin{pmatrix} -1 & -1 \\ -2 & -3 \end{pmatrix} \cdot x \]
My real interest is in fluid mixing, in particular of viscous substances. Mixing is very important in many industries, including pharmaceuticals. Mixing is a combinatorial process, akin to shuffling. The taffy designs also pop up in ‘serious’ chemical mixers. The ‘topological dynamics’ approach pioneered by mathematicians allows us to understand these rod motions in great detail, and to design better devices. Pinnacle of my math career: reported on in the Food Network.
Bestvina, M. & Handel, M. (1995). *Topology*, 34 (1), 109–140.
Boyland, P. L., Aref, H., & Stremler, M. A. (2000). *J. Fluid Mech.* 403, 277–304.
Boyland, P. L. & Harrington, J. (2011). *Algeb. Geom. Topology*, 11 (4), 2265–2296.
Finn, M. D. & Thiffeault, J.-L. (2011). *SIAM Rev.* 53 (4), 723–743.
Halbert, J. T. & Yorke, J. A. (2014). *Topology Proceedings*, 44, 257–284.
MacKay, R. S. (2001). *Phil. Trans. R. Soc. Lond. A*, 359, 1479–1496.