Prospective identification and causality evaluation of suspected adverse drug reactions in neonates

Eve K. Roberts1 | Daniel B. Hawcutt1,2 | Mark A. Turner1,3

1Department of Women’s and Children’s Health, Institute of Lifecourse and Medical Science, University of Liverpool, Liverpool Health Partners, Liverpool, UK
2NIHR Alder Hey Clinical Research Facility, Alder Hey Children’s Hospital, Liverpool, UK
3Liverpool Women’s NHS Foundation Trust, Liverpool, UK

Correspondence
Dr Eve Roberts, Department of Women’s and Children’s Health, Institute of Lifecourse and Medical Science, University of Liverpool, Liverpool Health Partners, First Floor, Liverpool Women’s Hospital, Crown Street, Liverpool L8 7SS, UK.
Email: everoberts@doctors.org.uk

Neonates experience adverse drug reactions (ADRs), but under-reporting of suspected ADRs to national spontaneous reporting schemes in this population is particularly high. A prospective observational study collected suspected neonatal ADRs at a tertiary neonatal unit. Cases were analysed for causality by six assessors using three existing methods. Sixty-three suspected ADR cases were identified in 35/193 neonates (18.1%). The proportion of suspected ADRs where the drug was prescribed “off-label” was 30/68 (44.1%). When 34 cases were assessed for causality using three methods, global kappa scores of less than 0.3 for each tool suggested only “fair” inter-rater reliability. Neonatal ADRs can be captured and occur from a variety of drugs affecting many organ systems. The current tools for assessing causality need to be adapted before they can reliably assess neonatal ADRs.

KEYWORDS
adverse drug reactions, clinical pharmacology, neonatology, paediatrics, pharmacovigilance

1 | INTRODUCTION

Globally, approximately 15 million babies are born premature each year.1 Many of these babies will be prescribed medicines, and yet most previous pharmacovigilance studies have omitted part or all of the inpatient neonatal population from their work. An adverse drug reaction (ADR) is defined by the World Health Organisation as “a response to a drug which is noxious and unintended, and which occurs at doses normally used in man.”2 Recent studies into ADRs in children have indicated a considerable health risk for this population, with incidence rates ranging from 0.4% to 10.3% for paediatric hospital admissions related to ADRs and 0.6% to 16.8% for the proportion of children experiencing an ADR during their admission.3

Neonates are subject to different ADR profiles in comparison to older children and adults.4,5 The development of a child from conception to adulthood is dynamic, and changes in organ function and body composition affect pharmacodynamics and pharmacokinetics.6 Neonates born preterm are subject to further variation in drug absorption, distribution, metabolism and excretion. A study conducted in a neonatal intensive care unit reported that 29.6% of neonates received more than four medications and 7.6% received 10 or more.7 Further studies show that up to 90% of inpatient neonates receive off-label or unlicensed medications, a considerable risk factor for developing an ADR.7,8 Some medications are uniquely harmful to neonates.5 ADR reporting rates to spontaneous reporting schemes for children are low and neonates are particularly poorly represented.9,10 However, the historical lack of inclusion of neonates in drug trials means that it is particularly important to generate pharmacovigilance data in this population.5

Evaluation of ADR reports is also very important. Evaluating the severity of an ADR assesses the importance of an ADR in a clinical context, and a neonatal adverse event severity scale has recently been developed through a Delphi consensus approach.11 Causality assessment tools enable structured assessment of the likelihood of drug reaction accountability and could help to reduce disagreements.
between clinicians, thus increasing ADR reporting. Such tools are used by regulatory agencies for the evaluation of ADR reports.12

The Naranjo algorithm is a widely used causality assessment method.13 However, a large-scale observational study into ADRs in children concluded that the Naranjo algorithm was not suitable to assess paediatric ADRs.12 Consequently, a new tool was developed for children and showed greater inter-rater reliability.12 The resulting "Liverpool ADR Causality Assessment Tool" (LCAT) has not been validated in neonates. A neonatal modification of the Naranjo algorithm was developed recently in one centre, but this has not been validated in another site.14

This study aims to compare methods for evaluating ADRs in neonates in order to determine which method, if any, is reliable to use for ADR evaluation in this population.

2 | METHODS

2.1 | Study design and participants

A prospective observational study, the Adverse Drug Reactions in Neonates (ADRIN) study, was undertaken at a tertiary neonatal centre in the UK. All neonatal inpatients, including those neonates who were not receiving drug therapy, were monitored daily for 9 weeks through ward rounds and review of clinical notes. Neonates were reviewed daily, beginning the next working day following admission, and up to 28 days post-term (corrected gestational age). Suspected neonatal ADR cases were identified by medical or nursing teams or by the researcher, a 5th-year medical student. The review process is outlined in the daily structured clinical review guidance found in Appendix 2 c. All suspected ADRs were discussed with, and approved for inclusion by, the principal investigator, a consultant neonatologist.

2.2 | ADR case causality assessment

Figure 1 outlines case selection for causality assessment. ADRs suspected to be caused by drugs used by parents (i.e. by mother in labour) were excluded as the causality assessment tools used were not designed for assessing this subtype of ADR. Six assessors (Table S1) were asked to complete three known causality assessments for each case; the Karch and Lasagna method, the New Adverse Drug Reactions algorithm for Infants in the Neonatal Intensive Care Unit (the Du Lehr method) and the Liverpool ADR Causality Assessment Tool, copies of which can be found in Appendix 4 of the Supporting Information.12,14,15

2.3 | Statistical analysis of ADR reports

Neonatal ADR data was summarised (Tables S2–6 in the Supporting Information). All suspected ADR cases were included in the ADR case analysis.

3 | RESULTS

Over the data collection period, a total of 193 neonates were inpatients on the neonatal unit. Sixty-three reports detailing suspected

What is already known about this subject

- Neonates experience adverse drug reactions (ADRs), but there has been little prospective evaluation of the drugs suspected, or the causality.
- Relatively few spontaneous reports of suspected ADRs relate to neonates, hindering pharmacovigilance in this population.
- Several methods are currently available for assessing causality of suspected ADRs in neonates, but comparative data are limited.

What this study adds

- Suspected ADRs were observed to affect 18% of neonatal inpatients, affecting most neonatal organ systems.
- A wide range of drugs were suspected to cause ADRs, with gentamicin, morphine and dopamine being most frequently implicated.
- Current adverse drug reaction causality assessment methods exhibit low inter-rater reliability, and further development of these methodologies in this population is required.

2.4 | Statistical analysis of causality assessments

2.4.1 | Inter-rater reliability

Inter-rater reliability was calculated using non-weighted, weighted and global kappa scores. Percentage exact agreement and percentage extreme disagreement were also calculated to show the level of concordance between pairs of assessors.

2.4.2 | Inter-tool reliability

Inter-tool reliability was calculated using kappa scores to measure agreement between the ratings for the same cases assessed by the same assessor using two different tools.

The level of kappa acceptability for both inter-rater and inter-tool reliability was chosen to match that used in the "Adverse Drug Reactions in Children" (ADRIC) research programme: <0.2 = poor, 0.21–0.40 = fair, 0.41–0.60 = moderate, 0.61–0.80 = good, 0.81–1.00 = very good.12,16
ADRs were recorded during the data collection period. Fifty-six reports were ascribed to drugs prescribed for the neonate, and seven from maternal drugs.

3.1 Neonatal characteristics

The gestational ages of the neonates at birth ranged from 23 + 6 weeks to 40 + 4 weeks. The neonates’ corrected gestational ages at time of suspected ADR reporting ranged from 26 + 1 weeks to 40 + 5 weeks (median 33 + 4 weeks). The birth weights of the neonates ranged from 570 g to 3,990 g, with a mean birth weight of 1,874 g. The neonates’ working weights at time of suspected ADR reporting ranged from 580 g to 3,990 g (mean 1,390 g).

3.2 Adverse drug reactions identified

Thirty-five of the 193 neonates reviewed (18.1%) were suspected to have experienced one or more ADRs. Of these neonates, 28 (80%) were affected by drugs prescribed to the neonate, and seven (20%) by maternal drugs. The number of suspected ADR reports per neonate ranged from 1 to 6 (median 1 report). Table 1 summarises the medications most commonly reported, and reactions suspected.

Table S2 summarises the suspected ADR reports captured. The number of suspected ADRs exceeds the number of reports as some reports detailed more than one reaction. Thirty-six reports contained only one suspected medication, 18 reports listed two medications, while two reports contained three suspected medications. Overall, 31 different drugs were suspected to have caused neonatal ADRs.
The most commonly reported suspected ADRs were pyrexia (n = 4), tachycardia (4), thrombocytopaenia (3), altered consciousness (3) and renal impairment (3). A complete list of the suspected ADRs identified is shown in Table S3 in the Supporting Information. The most common drug groups (by Anatomical Therapeutic Chemical (ATC) classification) suspected of causing ADRs (not including those ADRs suspected to be from maternal drugs) were those drugs in the cardiovascular system group (28), the anti-infectives for systemic use group (22) and the nervous system group (9) (Table S4 in the Supporting Information). Thirty suspected ADR reports contained medications that had been prescribed to the neonate off-label (Table S5 in the Supporting Information).

Seven reports were from medications administered to the mother, either during pregnancy or labour, identifying seven suspected ADRs. The reports detailed a total of 11 suspected drugs, nine prescribed to the mother in pregnancy, two prescribed to the mother in labour and one report of illicit drug use (Table S6 in the Supporting Information).

3.3 Causality assessments

Six assessors undertook each of the three assessments on 34 different cases, resulting in 612 total assessments (Table S7 in the Supporting Information). A chi-squared test showed that the excess of definite ratings using the Du Lehr method was highly statistically significant, P-value < 0.001.

3.4 Inter-rater reliability

Pair-wise kappa scores were measured between all six assessors using each of the three tools (Tables S8–10 in the Supporting Information). Weighted kappa scores ranged from 0.148 to 0.454 for the Karch and Lasagna algorithm, 0.114 to 0.483 for the Du Lehr and 0.121 to 0.428 for the LCAT. Most weighted kappa scores for each pair-wise comparison for each tool corresponded to “fair” inter-rater reliability (Tables S8–S10 in the Supporting Information). Percentage exact agreement between the ratings given to each case by each of two assessors ranged from 14.7% to 41.2% for the Karch and Lasagna algorithm, 38.2% to 58.8% for the Du Lehr tool and 26.5% to 61.8% for the LCAT. Extreme disagreement ranged from 8.82% to 35.3% for the Karch and Lasagna algorithm, 11.8% to 38.2% for the Du Lehr tool and 0% to 17.6% for the LCAT (Tables S8–S10 in the Supporting Information).

Global kappa scores were measured to outline the inter-rater agreement between all six assessors. These were 0.157 (CI = 0.074–0.239) for the Karch and Lasagna algorithm, 0.254 (CI = 0.139–0.369) for the Du Lehr tool and 0.209 (CI = 0.121–0.297) for the LCAT.

3.5 Inter-tool reliability

Kappa scores were also calculated to measure inter-tool reliability, the agreement when each assessor used different tools to assess the

Table 1 Drugs suspected of causing ADRs and the reaction types identified

Drug suspected of causing ADR (number of reports)	ADRs identified (number of reactions)
Gentamicin (8)	Renal impairment (4)
	Loose stoma output (2)
	Thrombocytopaenia (2)
Morphine (6)^a	Altered consciousness (4)
	Respiratory depression (1)
	Altered consciousness and respiratory depression (1)
Dopamine (5)^a	Tachycardia (2)
	Hypertension (1)
	Hypertension and increased urine output (1)
	Hypertension and pulmonary haemorrhage (1)
Benzylpenicillin (4)	Thrombocytopaenia (1)
	Thrombocytopaenia and leucopaenia (2)
	Renal impairment (1)
Cyclopentolate eye drops (4)^a	Tachycardia (1)
	Apnoea (1)
	Vomit (1)
	Desaturation and bradycardia (1)
Dobutamine (4)	Tachycardia (2)
	Cerebral haemorrhage (1)
	Hypertension and large urine output (1)
Prostin (4)	Pyrexia (3)
	Apnoea, desaturations and bradycardia (1)
Aciclovir (3)	Extravasation reaction (1)
	Pyrexia (1)
	Diarrhoea (1)
Furosemide (3)^a	Electrolyte disturbance (2)
	Raised creatinine and electrolyte disturbance (1)
Hydrocortisone (4)^a	Bloody gastrointestinal aspirates (1)
	Hyperglycaemia (1)
	Hypertension (1)
	Tachycardia (1)
Hydrochlorothiazide (3)^a	Hyponatraemia (1)
	Electrolyte disturbance (1)
	Neutropaenia (1)
Midazolam (3)	Urinary retention (3)
Spironolactone (3)^a	Hyponatraemia (1)
	Electrolyte disturbance (1)
	Neutropaenia (1)

^a Drugs prescribed to the neonate off-label.
of which are used on neonatal units. In total, 22 of the 78 reported drugs in this study are A-PINCH listed drugs.18,19

In recent years, it has become apparent that many pre-existing ADR assessment tools are inappropriate for assessing paediatric ADRs. The results of evaluating the three causality assessment methods to determine their appropriateness for assessing neonatal ADRs show no clear optimum method. The highest kappa scores demonstrated inter-rater reliability of less than 50%, suggesting that even the best performing tool could not yet have a useful clinical implementation.

The highest inter-tool reliability was observed between the Karch and Lasagna algorithm and the LCAT (Table 2). However, this only shows that these tools most often lead the user to the same outcome, regardless of whether this outcome is an accurate assessment of causality. This suggests that it is important to be consistent in causality assessment methodology within pharmacovigilance studies, whilst consistent methods of causality assessment across pharmacovigilance studies would facilitate comparison between results. Previously published studies of ADRs have only reported on those deemed probable or definite using varying causality assessment methods, demonstrating that the method of causality assessment used affects the incidence rates and results reported, and thus the interpretations made.

Some assessors demonstrated moderate and good intra-rater reliability; however, their inter-rater reliability scores were below average. This suggests that the assessors with good intra-rater reliability were consistent in their reasoning, but they may have been evaluating different concepts to other reviewers. Further definition of terms within tools and guidance on their use may help to avoid this.

This study demonstrates that neonatal ADRs can be captured, but that more work is needed to design reliable causality assessment tools. The improvement in inter-rater reliability seen when using a neonate-specific method suggests that a population-specific method could be advantageous. A full evaluation of such ADRs will also require severity and avoidability assessments, and future research

Table 2

Inter-tool reliability: Red shading, "poor" inter-tool reliability; orange shading, "fair" inter-tool reliability; green shading, "moderate" inter-tool reliability; dark green shading, "good" inter-tool reliability

Assessor	Karch and Lasagna and Du Lehr	Karch and Lasagna and LCAT	Du Lehr and LCAT
Assessor 1	Kappa score (95\% CI): 0.218 (0.087 to 0.350)	0.580 (0.386 to 0.774)	0.319 (0.183 to 0.454)
	Weighted kappa score: 0.460	0.712	0.616
Assessor 2	Kappa score (95\% CI): 0.257 (0.109 to 0.405)	0.261 (0.037 to 0.485)	0.255 (0.094 to 0.415)
	Weighted kappa score: 0.383	0.434	0.538
Assessor 3	Kappa score (95\% CI): -0.022 (-0.157 to 0.112)	0.102 (-0.118 to 0.321)	0.058 (-0.108 to 0.223)
	Weighted kappa score: 0.145	0.236	0.298
Assessor 4	Kappa score (95\% CI): 0.109 (-0.037 to 0.255)	0.183 (-0.043 to 0.409)	0.030 (-0.071 to 0.130)
	Weighted kappa score: 0.246	0.360	0.239
Assessor 5	Kappa score (95\% CI): 0.067 (-0.072 to 0.206)	0.409 (0.184 to 0.635)	0.071 (-0.100 to 0.242)
	Weighted kappa score: 0.227	0.533	0.285
Assessor 6	Kappa score (95\% CI): 0.194 (0.021 to 0.367)	0.455 (0.234 to 0.676)	0.165 (0.004 to 0.325)
	Weighted kappa score: 0.348	0.591	0.338
focusing on these areas will help to bring pharmacovigilance in neonates in line with that of older populations.

ACKNOWLEDGEMENTS
The authors would like to thank all the neonatal unit staff who contributed to the results of the study, Dr Jamie Kirkham for his help with the statistical analysis, and all the patients and parents who were resident on the unit throughout the study period.

This is a summary of independent research funded by University of Liverpool and carried out at the National Institute for Health Research (NIHR) Alder Hey Clinical Research Facility. The views expressed are those of the author(s) and not necessarily those of the University of Liverpool, NHS, the NIHR or the Department of Health.

COMPETING INTERESTS
There are no competing interests to declare.

CONTRIBUTORS
Eve. K Roberts is first author. Daniel B. Hawcutt and Mark A. Turner contributed equally to this manuscript.

ORCID
Eve K. Roberts https://orcid.org/0000-0002-4852-6832
Daniel B. Hawcutt https://orcid.org/0000-0002-8120-6507
Mark A. Turner https://orcid.org/0000-0002-5299-8656

REFERENCES
1. Bliss. The global picture. https://www.bliss.org.uk/research-campaigns/neonatal-care-statistics/the-global-picture. Accessed July 27, 2020.
2. World Health Organisation. Safety of Medicines—A Guide to Detecting and Reporting Adverse Drug Reactions—Why Health Professionals Need to Take Action; 2002. https://apps.who.int/iris/handle/10665/67378. Accessed July 27, 2020.
3. Smyth RMD, Gargon E, Kirkham J, et al. Adverse drug reactions in children—a systematic review. PLoS One. 2012;7(3):e24061. https://doi.org/10.1371/journal.pone.0024061
4. Yaffe SJ, Estabrook RW. Rational Therapeutics for Infants and Children: Workshop Summary. Washington, DC: National Academies Press; 2000.
5. Hawcutt DB, O’Connor O, Turner MA. Adverse drug reactions in neonates: could we be documenting more? Expert Rev Clin Pharmacol. 2014;7(6):807-820. https://doi.org/10.1586/17512433.2014.956090
6. Mahmood, I. Developmental pharmacology: impact on pharmacokinetics and pharmacodynamics of drugs. In: Mahmood I, Burckart G, eds., Fundamentals of Pediatric Drug Dosing. Cham: Springer; 2016: 23–44.
7. Aranda JV, Cohen S, Neims AH. Drug utilization in a newborn intensive care unit. J Pediatr. 1976;89(2):315-317. https://doi.org/10.1016/S0022-3476(76)80478-7
8. Turner S, Nunn AJ, Fielding K, Choounara I. Adverse drug reactions to unlicensed and off-label drugs on paediatric wards: a prospective study. Acta Paediatr Int J Paediatr. 1999;88(9):965-968. https://doi.org/10.1111/0803-5259.158469
9. Hawcutt DB, Mainie P, Riordan A, Smyth RL, Pirtohimed M. Reported paediatric adverse drug reactions in the UK 2000–2009. Br J Clin Pharmacol. 2012;73(3):437-446. https://doi.org/10.1111/j.1365-2125.2011.04113.x
10. Hawcutt DB, Russell N-J, Maqsood H, et al. Spontaneous adverse drug reaction reports for neonates and infants in the UK 2001–2010: content and utility analysis. Br J Clin Pharmacol. 2016;82(6):1601-1612. https://doi.org/10.1111/bcp.13067
11. Salaets T, Turner MA, Short M, et al. Development of a neonatal adverse event severity scale through a Delphi consensus approach. Arch Dis Child. 2019;104(12):1167-1173.
12. Gallagher RM, Kirkham JJ, Mason JR, et al. Development and inter-rater reliability of the Liverpool adverse drug reaction causality assessment tool. PLoS One. 2011;6(12):e28096. https://doi.org/10.1371/journal.pone.0028096
13. Naranjo CA, Busto U, Sellers EM. A method for estimating the probability of adverse drug reactions. Clin Pharmacol Ther. 1981;30(2):239-245.
14. Du W, Lehr VT, Lieh-Lai M, et al. An algorithm to detect adverse drug reactions in the neonatal intensive care unit. J Clin Pharmacol. 2013;53(1):87-95. https://doi.org/10.1177/0091270011433327
15. Karch FE, Lasagna L. Toward the operational identification of adverse drug reactions. Clin Pharmacol Ther. 1977;21(3):247-254. https://doi.org/10.1002/cpt.1977213247
16. Altman DG. Practical Statistics for Medical Research. New York, NY: Chapman and Hall; 1991.
17. Belén Rivas A, Arruza L, Pacheco E, Portoles A, Diz J, Vargas E. Adverse drug reactions in neonates: could we be documenting more? Expert Rev Clin Pharmacol. 2014;7(6):807-820. https://doi.org/10.1586/17512433.2014.956090
18. Kruźzińska N, Pawłowska I, Bajorek B. Review of drug utilization patterns in NICUs worldwide. J Clin Pharm Ther. 2016;41(6):612-620. https://doi.org/10.1111/jcpt.12440
19. South Australia Health. Medicines and drugs: high risk medicines. https://www.sahealth.sa.gov.au/wps/wcm/connect/public%2Bcontent/sa%2BHealth%2BIternet/clinical%2Bresources/clinical%2Bprograms%2Band%2Bpractice%2Bguidelines/medicines%2Band%2Bdrugs/high%2Brisk%2Bmedicines. Accessed July 27, 2020.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Roberts EK, Hawcutt DB, Turner MA. Prospective identification and causality evaluation of suspected adverse drug reactions in neonates. Br J Clin Pharmacol. 2021;87:1541–1546. https://doi.org/10.1111/bcp.14485