Review

Opportunities and Challenges to Understand Host-Pathogen Interactions and Management of *Verticillium dahliae* on Tomato

Bhupendra Acharya¹, Thomas Ingram¹, YeonYee Oh¹, Tika B. Adhikari¹, Ralph Dean¹, and Frank J. Louws¹,²

¹Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, and ¹,²Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695

Abstract

Tomato (*Solanum lycopersicum* L.) is a valuable horticultural crop grown and consumed worldwide. Optimum production is hindered by several factors of which *Verticillium dahliae*, the cause of Verticillium wilt, is one of the major biological constraints in temperate production regions. *V. dahliae* is difficult to manage because it is a vascular pathogen, has a broad host range and worldwide distribution, and can persist in soil for years. Understanding the pathogen virulence and genetic diversity, host resistance, and plant-pathogen interactions can ultimately inform the development of integrated strategies to manage the disease. In recent years, considerable research has focused on providing new insight into these processes as well as the development and integration of environment-friendly management approaches. In this review, we discuss and summarize the recent findings on the race and population structure of *V. dahliae*; pathogenicity factors; host genes, proteins, and enzymes involved in defense; the emergent management strategies, and recent approaches to managing Verticillium wilt in tomatoes.

keywords: Tomato; *Solanum Lycopersicon* L.; *Verticillium dahliae*; plant-pathogen interactions; disease resistance; integrated disease management

1. Introduction

1.1. Tomato

Tomato (*Solanum lycopersicum* L.) is an important fruiting vegetable grown around the world with Asia producing more than 50% of the total production (Fig. 1A). In 2018, 182.3 million tons of tomatoes were produced from 4.8 million ha of land worldwide (FAOSTAT, accessed Jun 2, 2020). Mainland China ranked
first in tomato production with approximately three times the production of the second-largest producer, India (Fig. 1B). The 3rd largest producer, with 12.6 Mt., is the U.S. Depending on the part of the world where tomato is grown, major constraints in tomato production include lack of quality seeds, labor, and knowledge in optimum agronomic practices; high cost of agricultural inputs, and price fluctuations; Weather constraints; and the serious problem of insect pests and diseases [1-5]. Among the diseases, Verticillium wilt is one of the major constraints of tomato production.

Figure 1. Tomato production by region, A, and top 10 tomato-producing countries in the world, 2018, B (Source: FAOSTAT, accessed Jun 02, 2020).

1.2. Verticillium Wilt: Economic Importance

Verticillium dahliae is a hemibiotrophic fungal pathogen [6] and has a worldwide distribution (Fig. 2) that causes Verticillium wilt in tomatoes and many other crops [7]. The disease cycle starts with microsclerotia (MS), a resting structure in soil or crop debris that is capable of surviving without a plant host for more than a decade [7,8]. Disease severity is linked to MS density (MS/g soil) and incidence on propagative (e.g. seed) material that can be quantified using several techniques [9-13], but the methods have not been refined for routine use in commercial labs to reliably guide disease management decisions. Inoculum density as low as 0.1 microsclerotia (MS)/g of soil is sufficient to infect tomato plants but even levels of 9 MS/g of soil do not always yield visible symptoms [14]. Moreover, the level of infection from the same amount of inoculum
depends on environmental conditions. This complicates the determination of economic thresholds for this pathogen as a basis for the application of integrated disease management approaches.

Figure 2. Worldwide distribution of *Verticillium dahliae*. Circles represent the locations (states and provinces) from where *V. dahliae* was reported.

The microsclerotia germinate in the presence of root exudates [15] and mycelium infect roots through root tips or sites of lateral root formation [16,17]. The typical symptoms of *V. dahliae* in susceptible tomato cultivars start on the lower leaves with chlorosis and V-shaped necrotic lesions at the edges of the leaves with yellow halos that expand to cause browning or purpling of veins and death of leaves [18,19]. The pathogen spreads acropetally through the vascular tissue of the plant, where brown discoloration is visible when incised [18], producing conidia that continue the cycle of germination, infection, and colonization resulting in wilting of branches and/or the entire plant [17]. Prolific conidiation has been correlated with the aggressiveness of the strains [16]. The wilting symptoms in a susceptible tomato cultivar may start at 21 days post-infection (dpi) which is correlated with the accumulation of drought-stress proteins [20].
The broad host range, which includes annuals, perennials, and woody species, of more than 200 plant species and expanding [7,21] and its ability to persist in soil for a long period renders V. dahliae an important and widely studied pathogen. Currently, several studies focused on V. dahliae biology, host-pathogen interactions, and contemporary approaches to managing the disease are reported.

2. Current knowledge on Verticillium dahliae and host interaction

2.1. Race structure in Verticillium dahliae

2.1.1. Verticillium dahliae race 1 infecting tomato

The first reported resistance to Verticillium was in 1951 [22] conferred by a single dominant gene designated Ve [23]. Resistant isolates were discovered within a few years after the deployment of this source of resistance [23-27]. In 1984, Bender and Shoemaker surveyed 96 V. dahliae isolates, 89 were designated as race 1, and seven were non-race 1 using differential tomato lines with and without the Ve gene [24]. The gene responsible for race 1 resistance in tomatoes, and other hosts, designated as the Ve1 gene, was described using a combination of whole-genome comparison and gene expression analyses [28]. The Ve1 gene codes for a cell surface-like receptor which recognizes the Ave1 effector of the pathogen during the infection process [28,29]. Homologs to Ave1 exist in Colletotrichum, Fusarium, and Cercospora [28]. Ve1 can also activate the immune response against Xanthomonas axonopodis which causes citrus canker [28]. Interestingly, Ave1 can also induce defense gene expression in the absence of the Ve1 [30] which suggested other defense responses independent of Ve1 may also be operating.

2.1.2. Verticillium dahliae “race 2” infecting tomato

Isolates pathogenic on race 1 resistant plants are present on every continent on earth, except Antarctica [24,25,31-35]; these have been classified as “race 2” in the past; however, it is actually “non-race 1” and comprise race mixtures. In 2017, the cultivars ‘Aibou’ and ‘Ganbarune-Karis’ were shown to be resistant to some non-race 1 strains of V. dahliae [35]. ‘Aibou’ and ‘Ganbarune-Karis’ are F1 hybrids. F2 progeny of these lines segregated into a 3:1 resistant to susceptible ratio suggesting the presence of a single dominant resistance gene. Isolates non-pathogenic on ‘Aibou’ and ‘Ganbarune-Karis’ were termed race 2, while isolates pathogenic on these cultivars were termed race 3 [35]. Further research has shown that knocking out the race 1 effector in isolate Vdp4 (a race 1 strain of V. dahliae) was pathogenic on ‘Aibou’, which contains both race 1 and race 2 resistance [36]. Kano and Usami [33,34] also showed that one isolate (Vdp4) was
pathogenic on race 1 resistant plants, but not on tomatoes containing just the race 2 resistance gene. Furthermore, they demonstrated that some race 1 isolates were non-pathogenic on the cultivar that was susceptible to race 1 but resistant to race 2, suggesting that some race 1 isolates also contains the race 2 effector present. Ingram et al. (unpublished data) showed that race 2 and race 3 isolates were present in the USA in isolates from tomatoes in North Carolina and California (Supplementary Table 1). An analysis of the genomes of Japanese and USA races 1, 2, and 3 isolates showed that there were 3 candidate secreted effectors that may be responsible for the race 2 phenotype [37], demonstrated that one of these secreted effectors was responsible for the race 2 phenotype. The race 2 secreted effector was introduced into race 3 strains, which then exhibited the race 2 phenotype when inoculated onto tomato lines containing the V2 locus [37]. The host resistance gene responsible for the race 2 resistance phenotype is currently unknown.

2.2. Influence of genetics on *V. dahliae* pathogenicity

2.2.1. Defoliating (DF) vs. non-defoliating (NDF) strains on Tomato

In cotton, there are two radically different pathotypes of *V. dahliae*, NDF and DF strains [38,39]. DF strains of *V. dahliae* cause a massive amount of damage to cotton plants [40]. While primers exist to differentiate these pathotypes, some strains that are PCR positive (such as VdLs17) for DF do not have the DF phenotype [40]. The DF strains, however, do not increase pathogenicity on tomatoes [41]. The DF phenotype is caused by the presence of a *VdDf5* and *VdDf6* genes which are contained in a lineage-specific region that was horizontally transferred from *Fusarium oxysporum* f. sp. *vasinfectum* to *V. dahliae* [41].

2.2.2. Vegetative compatibility of *V. dahliae* isolates

Verticillium dahliae is an asexually reproducing haploid ascomycete fungus in the class sordariomycetes, which is a class that contains many plant pathogenic fungi [6,42,43]. Despite the presence of two mating types (MAT1-1 and MAT1-2), there is very little evidence of recombination [44,45]. However, there are vegetative compatibility groups (VCGs) which may allow for some parasexual exchange of genetic material [46,47]. Because of the highly clonal nature of *V. dahliae*, VCGs were used in the past to differentiate isolates, although it is unclear whether there are any direct links to pathogenicity [46,48]. In 2017, isolates from strawberry containing the race 1 effector Ave1 were grouped into two different VCGs, and these two race 1 VCG groups were also phylogenetically different from each other [49]. Overall, there is very little information to suggest *V. dahliae* isolates exchange any genetic material at all, claims of VCGs affecting pathogenicity should be examined on a case by case basis.
2.2.3. Chromosomal rearrangement and its influence on pathogenicity in *V. dahliae*.

To date, considerable variation in pathogenicity of *V. dahliae* isolates has been attributed to either chromosomal rearrangement or horizontal gene transfer events from other organisms [50-52]. The absence of Ave1 in non-race 1 strains of *V. dahliae* is due to the absence of a large region on the chromosome where the effector is located [51]. Ave1 is homologous to plant natriuretic peptides (PNPs) which are secreted peptides that regulate abiotic stress in plants [51,52]. Similarly, the absence of the Av2 locus in race 3 is the result of a large deletion on chromosome 5 (JR2 reference genome) [37]. A large number of insertions and deletions in the *V. dahliae* have led to the hypothesis of a two-speed genome, where vital genes are kept in specific regions, while pathogenicity related genes are located on more flexible regions with transposable elements (TEs) [53-55]. Genomic plasticity appears to be a major force driving the host-pathogen evolution of *V. dahliae* and other fungal pathogens [54-56].

2.2.4. Phylogenetic analysis of *V. dahliae* isolates

Microsatellite data and whole-genome sequencing have been effective ways to differentiate *V. dahliae* populations [6,42,45]. The largest most comprehensive phylogenetic analysis of *V. dahliae* isolates to date was conducted by Short et al. [57] on 1100 *V. dahliae* isolates from a wide range of hosts and continents using microsatellite genotyping. The study indicated that there are 7 distinct clusters, and isolates from tomato were present in clusters 1, 2, and 7 [57] which included the sequenced tomato *V. dahliae* isolates, Le1811 and Le1087, and the lettuce isolate VdLs17 (alternatively labeled as PD322). In 2020, Ingram et al. (unpublished data) have circumscribed at least two supergroups, and 4 sub-groups of *V. dahliae* isolates infecting tomato. Whole-genome analysis has yielded a great deal of information into this pathogen evolution [41,42,57].

Phylogenetic analysis is complicated by the existence of a diploid hybrid, *Verticillium longisporum*, a long-spore hybrid between *V. dahliae* and a cryptic *Verticillium* species (A1) [58-60]. The merging of *V. dahliae* and the cryptic *Verticillium* appears to be associated with three independent events[59]. Each of these three lineages (termed A1/D1, A1/D2, A1/D3) are genetically distinct, and some isolates showed reduced pathogenicity on tomatoes compared to *V. dahliae* isolates [61].
2.3. Molecular insights into *Verticillium dahliae* pathogenicity

Molecular genetics and other “omics” technologies have been widely used to uncover the molecular basis of pathogenicity in *V. dahliae* in recent years. *V. dahliae* is phylogenetically closely related to other foliar and soilborne pathogens. Consequently, homology-based approaches have been exploited in several instances to identify and characterize genes and pathways, known to be involved in development and pathogenicity in other pathogens. For example, hydrophobin, a small secreted hydrophobic protein is known to be essential for fungal development and pathogenicity [62]. The study of the *V. dahliae* homolog (VDH1) showed that hydrophobin is essential for microsclerotia formation, but is not required for host colonization and pathogenicity [63].

Several proteins involved in core fungal processes such as cell wall modification play crucial roles in cell wall integrity and pathogenicity. Mannoproteins, which are rich in fungal cell walls (in the range of 30-50% in yeast cell walls), are connected to the cell wall via either non-covalent connections or covalent linkages to β-1,6-glucans. Alpha-1,6-mannosyltransferase (OCH1) is required for the production of yeast mannoproteins [64]. In *V. dahliae*, an OCH1 homolog is required for both microsclerotia formation and pathogenicity [65].

Genes for energy metabolism have been characterized in *V. dahliae* and in some instances play a role in pathogenicity. The enzyme alpha-oxoglutarate dehydrogenase (OGDH) catalyzes the oxidative decarboxylation of alpha-ketoglutarate to succinyl-CoA in the tricarboxylic acid (TCA) cycle. VdOGDH in *V. dahliae* is not only involved in energy metabolism but also affects the expression of melanin biosynthesis and is required for full virulence [66].

2.3.1. Signal transduction pathways

Signaling pathways play multiple roles in fungal development and pathogenicity. G-protein regulated cyclic AMP signaling pathway, MAP Kinase cascades, and Ca2+/Calmodulin signaling pathways are highly conserved in phytopathogenic fungi and have been studied in *V. dahliae* in recent years. In the G-protein coupled cyclic AMP signaling pathway, extracellular signals are transmitted via membrane binding G-protein coupled receptors (GPCRs). G protein-mediated signaling is involved in virulence, development, and hormone production of *V. dahliae* [67,68]. Gene knock out of the G protein β subunit gene (VGB) resulted in reduced virulence, increased microsclerotia formation and conidiation, and decreased ethylene production [67]. Mutants lacking *VdPKAC1*, the catalytic subunit of the cAMP-dependent protein kinase are unable to form microsclerotia, produced high amounts of ethylene, and exhibited reduced virulence towards tomato...
Both VGB and VdPKAC1 regulate other signal pathway genes including the MAP kinase, VMK11, and hydrophobin, VDH1 [67].

The mitogen-activated protein (MAP) kinase signaling pathway plays a major role in transducing external signals into the cell to invoke biological responses. In budding yeast, *Saccharomyces cerevisiae*, distinct MAP kinase pathways are required for mating, morphological changes, osmoregulation, and cell wall integrity [69,70]. In fungal pathogens, MAP kinase signal pathways are also involved in fungal pathogenicity [71,72]. Functional studies of the components of different MAP kinase pathways have confirmed the role of these proteins in the pathogenesis in *V. dahliae* including a surface sensor (VdMsb) [73], an osmosensor (VdSho1) in the high osmolarity glycerol (HOG)-MAP kinase signaling pathway [74,75], a Hog1 MAP kinase (VdHog1) [76], VdPbs2, an upstream component of VdHog1 [77], Verticillium MAP Kinase 1 (Vmk1) [78] and MAPKKKs (VdSsk1, VdSsk2, and VdSte11) [79,80]. The deletion of these genes has shown that these MAP kinase cascades are involved in stress adaptation, plant root penetration, and microsclerotia formation in *V. dahliae*.

The Ca$^{2+}$-calcineurin signaling pathway is conserved in eukaryotes and is involved in several biological processes including Ca$^{2+}$ homeostasis and stress responses. In pathogenic fungi, the Ca$^{2+}$-calcineurin signaling cascades are involved in host and environment adaptation, infectious structure formation, virulence, and antifungal drug resistance [81]. In response to external or internal signals, intracellular calcium concentrations increase, and calcium ions bind to the calcium-binding protein calmodulin, which in turn binds to and activates calcineurin, a serine-threonine phosphatase. Activated calcineurin dephosphorylates various target proteins, including a transcription factor Crz1 [81]. The Crz1 homolog in *V. dahliae*, VdCrz1 is required for cell wall integrity, microsclerotia development, and full virulence [82]. It has also been shown that reactive oxygen species (ROS) production elevates intracellular Ca$^{2+}$ levels in specialized hyphal branch cells (hyphopodia) and activates VdCrz1, which induces penetration peg formation during early colonization in cotton roots [83].

The “target of rapamycin” (TOR) signaling pathway is also evolutionarily conserved in eukaryotes and regulates cell growth, proliferation, and metabolism from yeasts to humans [84]. The putative components of TOR signaling pathways in *V. dahliae* (VdTOR) were recently identified [85]. When mycelia were treated with the TOR inhibitor, rapamycin, growth, and pathogenicity were significantly reduced and genes involved in various cellular processes, including ribosome biogenesis and cell wall degrading enzymes (CWDEs) were
differentially downregulated. This suggests that VdTOR plays an essential role in hyphal growth, development, and pathogenicity [85].

During growth, development, and host infection in *V. dahliae*, these signaling pathways are under the control of complex regulatory networks that are governed by central transcriptional regulators. To date few are known in *V. dahliae*, however, Vst1 is involved in sporulation, melanin biosynthesis, and microsclerotia formation [86].

2.3.2. Secondary metabolism and melanin biosynthesis

Fungi produce an extensive array of secondary metabolites (SM) derived from several biochemical pathways including the polyketides, non-ribosomal peptides, terpenes, and indole alkaloids. These metabolites are mediated by the core enzymes named polyketide synthases (PKSs), non-ribosomal peptide synthetases (NRPSs), terpene cyclases, and prenylation synthetases, respectively [87]. Also, Polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) hybrid enzymes have been identified and can be linked to the structurally diverse and complex SMs and further to their diverse biological activities in fungi [88]. Typically, genes involved in SM biosynthesis are clustered together [87]. In *V. dahliae*, 25 potential secondary metabolite gene clusters were identified and 36% of those clusters were located in sub-telomeric regions close to the chromosomal end [89]. The phylogenetic and comparative genomic analysis suggested clusters in *V. dahliae* are linked to the biosynthesis of two putative siderophores, ferricrocin and triacetylfusarinine C (TAFC), 1,8-dihydroxynaphthalene (DHN)-melanin and fujikurin [89]. Melanin, a polyketide is one of the most thoroughly studied SMs because it is directly linked to fungal cell wall stability and pathogenicity [74,80,90-92]. In *V. dahliae*, black melanin granules are heavily deposited in the cell wall of the survival structure, microsclerotia [93]. Many of the genes in a melanin biosynthesis gene cluster are highly induced during microsclerotia formation [94]. Functional analyses of these genes showed that both the central polyketide synthase VdPKS1 (VDAG_00190) gene and a transcription factor VdCmr1 (VDAG_00194) are required for melanin biosynthesis with VdCmr1 being involved in the regulation of gene expression of VdPKS1 [90,91]. VdPKS1 is involved in *V. dahliae* virulence, conidiation, and ethylene production even though microsclerotia production itself is not affected in VdPKS1 mutant strain [91]. VdPKS1 is also regulated by MADS-Box transcription factor VdMcm1 (VDAG_01770), which is a key regulator in *V. dahliae* and is involved in melanin biosynthesis, conidiation, microsclerotia formation and virulence [95]. VdMcm1 also controls PKS/NRPs hybrid-cluster gene expression. Deletion of Nag-1 in this cluster results in defects in
growth, virulence and melanin biosynthesis [96]. Vayg1 gene, a homolog of Aayg1 from Aspergillus fumigatus (Aayg1) is also required for melanin production and microsclerotia formation in V. dahliae [92].

2.3.3. Cell wall degrading enzymes, carbohydrate modifying enzymes

Comparative genomics studies revealed that V. dahliae has developed enhanced carbohydrate degrading machinery of potential value for weakening plant cell walls [42]. Polysaccharide lyase (PL) families including PL1, PL3, PL4, and PL11 directly target different forms of pectins. Also, glycoside hydrolase (GH) families hydrolyze the glycosidic bond between carbohydrate compounds generated by PL are significantly enriched in V. dahliae compared to other ascomycete fungi. Besides, V. dahliae has 30 proteins that contain the conserved carbohydrate-binding module 1 (CBM1), generally known as a fungal specific cellulose-binding domain. CBM1 is widespread in fungal enzymes including PL proteins. V. dahliae has 3 CBM1-containing PL proteins [42]. Pectin degrading enzymes, which are highly secreted during fungal infection play a key role in pathogenesis. Gene knock-out mutants lacking pectin lyase genes, VdPL3.1, and VdPL3.3 were unable to develop wilting symptoms in cotton [97]. High levels of pectin lyase activity occurred during the compatible interaction between tomato and Verticillium spp. before disease symptoms appeared [98]. Furthermore, VdPEL1 triggered plant immunity responses and was involved in V. dahliae virulence. This implies that during infection, the pectin hydrolysis products may function as damage-associated molecular patterns (DAMPs) to elicit plant defense response [99]. Similarly, V. dahliae cutinase, VdCUT11, acts as a virulence factor and can induce plant defense responses mediated by the leucine-rich repeat (LRR)-RLP/SOBIR1/BAK1 receptor complex in tobacco [100]. This response can be further suppressed by VdCBM1, a member of the carbohydrate-binding module family 1 (CBM1) in V. dahliae [100,101].

2.3.4. Effector proteins in V. dahliae

Fungal effector proteins are typically secreted proteins that are involved in host determination and colonization of the host plants [102]. In V. dahliae, about 700 proteins contain a signal peptide that guides the protein into the extracellular plant spaces. Typically, known effector proteins are small with a high cysteine content in addition to a signal peptide. Studies have suggested V. dahliae contains ~ 150 small secreted effector proteins that are less than 400 aa with more than 4% cysteine content [42]. Recently, combining SignalP and EffectorP effector searching tools, we have predicted about 200 core effector proteins among 19 sequenced V. dahliae genomes (unpublished data). Also, V. dahliae isolates possess lineage-specific (LS) regions that contain predicted effectors, in many cases, such regions contain avirulence or virulence factors [73,77,102-104] including currently known two avirulence factors, VdAve1 and VdAv2. These LS
effectors are surrounded by transposable elements such as LTR type transposons, which has been suggested to provide opportunities for rearrangement and possibly originate through horizontal gene transfer from other organisms including plants, bacteria, and fungi [50,89,105].

The Ve1 gene-mediated resistance against V. dahliae had been employed for many years in tomato breeding programs but elucidating the corresponding avirulence factor was only possible after the advent of modern molecular technologies, whole-genome sequencing, and transcriptome analysis. Using a whole-genome comparison between avirulent (race1) and virulent (non-race1) V. dahliae isolates against Ve1 tomato lines, a 50kb of race 1 lineage-specific region was identified. Further gene expression profiling and transgenic expression led to the identity of the small secreted effector VdAve1 [51]. Recently, a similar approach was applied to identity another avirulence factor VdAv2, which governs resistance to tomato lines which contain the V2 resistance locus [37]. Both VdAve1 and VdAV2 fall into the typical effector category; small cysteine-rich effector protein located in lineage-specific chromosomal regions that are highly expressed during host colonization [106]. These characteristics could be particularly useful for the future discovery of new avirulence factors. In both cases, loss of recognition of these effectors by the host occurred through the deletion of DNA segments rather than single nucleotide polymorphisms (SNPs) [37,51].

Chitin is a major structural component of the fungal cell wall. When a host plant is attacked by a fungal pathogen, chitin-degrading enzymes are released by the host into apoplastic space to release chitin oligomers which activate pattern triggered immunity (PTI). These fungal chitin oligomers are recognized by lysin motif (LysM)-containing receptors in the plant membrane. LysM effectors that also contain chitin-binding motifs are ubiquitously found in phytopathogenic fungi and mammalian fungi. These effectors function by sequestering fungal chitin fragments and prevent their recognition by host LysM receptors blocking the chitin triggered plant immunity. In V. dahliae, the family of LysM effectors has expanded to contain six to seven LysM effectors [42]. Functional analysis of three core LysM effectors showed that they are not expressed during host colonization nor are they involved in pathogenicity or fungal development. In contrast, a lineage-specific LysM effector (Vd2LysM) in the strain VdLs17 functions as a virulence factor [107,108]. Similar to LysM effectors, a secreted polysaccharide deacetylase (PDA1) in V. dahliae targets fungal chitin oligomers for the successful fungal colonization. Rather than physically sequestering chitin, VdPDA1 converts chitin oligomers into chitosan and prevents activation of chitin triggered immunity. VdPDA1 does not inhibit host chitinases activity nor is it involved in fungal development [109].

2.3.5. Genome-wide analysis of host-pathogen interaction with Verticillium dahliae
The development of large-scale transcriptomic, proteomic and metabolomic technologies and availability of functional databases such as Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and Plant Resistance Genes database (PRGdb), are providing opportunities to gain more detailed insight into pathogenicity and host defense responses.

In *V. dahliae*, genome-wide RNA-sequencing (RNA-seq) expression analyses have revealed important biological pathways during microsclerotia formation including ubiquitin-mediated protein degradation and melanin biosynthesis [94,110]. Gene expression is regulated not only at the mRNA level but also alternative splicing based on the fact that about 50% of intron-containing genes were possibly regulated by alternative splicing [111]. Other gene expression studies showed that *V. dahliae* responded more strongly to root exudates from a susceptible cultivar than tolerant and resistant cultivars as evidenced by increased gene expression for hydrolase activity; particularly genes involved in hydrolyzing O-glycosyl compounds at early stages of the interaction [112]. Differential root exudate profiles were also associated with tomato rootstock, grafted to eggplant scions, compared to non-grafted eggplants and this was associated with suppression of mycelial growth and enhancement of mycelial growth, respectively [113]. Suppression of mycelial growth was associated with delayed onset of *V. dahliae* colonization and symptom development.

Defense-related gene expression responses are activated by various abiotic and biotic stresses in plants. In tomato, physical wounding induced defense-related genes including the *Ve1* gene in both susceptible and resistance lines [114]. During the compatible interaction between tomato and *V. dahliae*, compared to the non-inoculated control plant, 1,953 significantly differentially expressed genes (DEGs) were identified in the root samples two days after inoculation. Most of the DEGs were associated with phenylpropanoid metabolism and plant-pathogen interaction pathways [103]. Comparative proteomic and metabolomics of compatible and incompatible interactions with *V. dahliae* provided differential profiles in tomato stem tissues. During the incompatible interaction between Beefsteak (Ve+) tomato and Le1087 (race 1) *V. dahliae*, higher levels of phenolic compounds responsible for plant defense mechanisms and enzymes involved in plant defense responses including phenylalanine ammonia-lyase (PAL) and lignin biosynthesis were significantly induced [115]. These resistance related responses were consistent across the entire host plant because similar groups of genes were found to be induced in the *V. dahliae*-inoculated root tissues during incompatible interactions in a separate study [116]. Similarly, transcriptional profiles of sunflower infected with *V. dahliae* revealed that a large group of genes responsible for plant defense was induced in both resistant and susceptible hosts with higher induction in resistant host lines compared to susceptible ones. Genes involved
in hypersensitive response and the salicylic and jasmonic acid-mediated signaling pathways were linked to
V. dahliae resistance [117].

RNA-seq analyses upon V. dahliae infection have confirmed previously known common resistance-associated biological pathways in host plants. Temporal transcriptional analysis from V. dahliae inoculated Arabidopsis thaliana revealed 13,916 differentially expresses genes (DEGs) including 401 transcription factors compared to mock-treated plants [103]. Gene ontology (GO) functional classification of DEGs identified a total of 2,308 genes involved in the stress response which were subcategorized to 453 DEGs associated with defense response, 369 with the regulation of the plant-type hypersensitive response, and 358 with the defense response to fungi. Pathway analysis of DEGs showed that the genes involved in the biosynthesis of secondary metabolism are greatly enriched and a group of genes related to plant-pathogen interaction, plant hormone signal transduction, phenylalanine metabolism, flavonoid biosynthesis was highly enriched. Genes (413) involved in the SA hormone signaling pathway and 404 genes involved in JA signaling were differentially expressed during the infection process [103]. Similar gene expression patterns were exhibited during the interaction between the wild type resistant eggplant and V. dahliae: 17,645 DEGs were identified and genes involved in the phenylpropanoid pathway, lignin biosynthesis, and plant hormone signal transduction and genes encoding pathogenesis-related proteins (PRs) and transcription factors were induced during this incompatible interaction [118].

Currently, cross talk analysis between V. dahliae and tomato gene expression remains challenging because the majority of the transcripts from infected tissue samples are mapped to the host genome; less than 1% of the reads mapped to fungal genomes [119]. Likewise, only a few proteins from infected plant tissue have been mapped to V. dahliae proteome [115]. This lack of fungal information greatly impedes attempts to link fungal gene/protein patterns with corresponding host responses.

3. Current measures and limitations of Verticillium wilt management

3.1. The genetic basis of plant disease resistance

Broadly, the interactions between tomato and V. dahliae resulted in three states: (i) susceptibility (compatible interaction), (ii) resistance (incompatible interaction), and (iii) tolerance (intermediate interaction). In susceptibility, the fungus proliferates systematically throughout the plant leading to symptom expression and disease development. Disease resistance is further grouped into qualitative and quantitative resistance.
3.1.1. **Qualitative disease resistance.** As detailed above, resistance to *V. dahliae* (race 1) is conferred by a single dominant *Ve* locus and incorporated into a tomato breeding programs [22]. The *Ve* locus contains two closely linked inversely oriented genes, *Ve1* and *Ve2*, and are mapped on tomato chromosome 9 [29]. Intriguingly, only *Ve1*, but not *Ve2*, conferred resistance to *V. dahliae* in tomatoes [120]. The interfamily transfer of *Ve1* to *Arabidopsis thaliana* provided fully functional *Verticillium* wilt resistance [121]. Comparative genomic analysis of race 1 identified an effector, Ave1, which was a small secreted protein with four cysteines that contributed to virulence in tomato plants lacking *Ve1* [50]. The *Ve* locus encodes the extracellular leucine-rich repeat receptor-like protein class of *R* protein and triggers effector-triggered immunity in the host [29].

3.1.2. **Quantitative disease resistance (QDR).** QDR is conditioned by multiple genes or quantitative trait loci (QTL) of small effects and may interact with the environment [122]. Generally, QDR is race non-specific and provides partial resistance, which reduces pathogen multiplication, plant colonization, and disease severity [123]. The effects of QDR are often additive and more durable than *R* gene-mediated resistance [123]. We have found variation in the level of resistance to *V. dahliae* races 2 and 3 in the tomato germplasm, however, the biological and molecular basis of resistance to these races in tomatoes is still unclear and needs further research.

3.1.3. **Plant tolerance.** Hosts that are tolerant reduce levels of symptoms and produce higher yields compared to susceptible ones [124,125]. Host tolerance can be quantified using pathogen biomass, disease severity, and yield impacts in the host cultivar [125]. In *V. dahliae*, hyphae colonize internal tissues and rapidly spread systemically [124]. Vascular wilt severity is often assessed using a disease index [126,127] or percentage of chlorosis and necrosis of leaves [124] while plant growth is quantified by measuring stem height [124][127] or by fresh weight [126]. Although host tolerance to *V. dahliae* was controlled by polygenes in cotton and potato [128,129], a single dominant gene, *VET* was found to enhance tolerance in *Arabidopsis thaliana* L. [127]. The use of tolerant cultivars as rootstocks or source of resistance in breeding programs may be a productive pursuit as a component of an IPM strategy to manage *Verticillium* wilt.

3.2. **Grafting as a measure to combat *Verticillium* wilt**

Grafting tomato has been documented as a tool to manage important soilborne diseases [130,131]. However, durable success has not been found using a diversity of rootstocks to manage *Verticillium* wilt of tomato. As expected, *V. dahliae* race 1 resistance provides a high degree of protection to susceptible
scions in the regions where race 1 predominates [130-134]. Likewise, it is reasonable to anticipate race 2 resistance would protect susceptible scions in the field where race 2 predominates; currently, there is only lab and greenhouse evidence that race 2 resistance protects tomato plants [35,36]. Since pathogen races can only be discerned as resistance genes are deployed, the durability of any single gene is uncertain. For example, the discovery of “race 2” resistance enabled elucidation that “race 3” (non-race 1 and non-race 2 isolates) is widespread throughout Japan and North America, [35][unpublished]. The long-term success of any given rootstock with race-specific resistance will rely on widespread pathogen screening in regions where those rootstocks are deployed.

Varieties developed from interspecific hybrids between Solanum lycopersicum and S. hirsutum may protect the wilting symptoms of V. dahliae [134]. The interspecific tomato hybrid rootstock “Beaufort” reduced disease in eggplant scions in field trials [130] although the reduction in disease and subsequent yield increases may simply be the result of higher vigor [134,135], possibly a form of tolerance as discussed above. Future studies will need to address whether increases in plant health from rootstocks are due to resistance or vigor.

3.3. Chemicals in use for Verticillium wilt management

With the phase-out of methyl bromide due to environmental concerns, exploration for effective alternate soil fumigants and other chemicals, and biologically based methods to manage V. dahlia has been implemented. Even though some alternative biological methods have been identified (see below), no new fungicide chemistry is available for use against V. dahliae. The most common fumigants: 1,3-dichloropropene (1,3-D), trichloronitromethane (chloropicrin), 3,5-dimethyl-(2H)-tetrahydro-1,3,5-thiadiazine-2-thione (dazomet), dimethyl disulfide (DMDS), sodium and potassium- N-methylthiocarbamate (metam sodium, metam potassium) and their combinations have been widely evaluated for their efficacy to manage soilborne pathogens including V. dahliae [136-138]. These fumigants, singly (not 1,3-D) or in combination, are effective in reducing wilt incidence and V. dahliae microsclerotia in soil [137,139,140]. In an experiment using bell pepper, the use of chloropicrin at 30 and 40 g m⁻², applied by drip irrigation reduced verticillium wilt disease incidence significantly and reduction in disease progress rate was better than dazomet at 40 g m⁻² [141] while the systemic fungicide, thiophanate-methyl, was found to be effective against V. dahliae in potato but only partially and when disease pressure was not high [142]. In another experiment with Chrysanthemum, DMDS, chloropicrin,
and metam sodium had similar effects in significantly reducing Verticillium wilt incidence compared to the control [137]. When fumigants (DMDS, chloropicrin, 1,3-D) were used alone, a higher dosage was required for *V. dahliae* and *Meloidogyne incognita* suppression but when any two of these fumigants were combined, the lower dosage was effective [143]. Dazomet was also reported to promote phosphorus mineralization and allowed crops to absorb and use phosphorus [144].

Fumigants have sometimes been integrated with non-chemical approaches such as using resistant rootstocks and bio fumigants to improve disease control, reduce the use of chemicals, and protect the soil environment. When chloropicrin was alternated with bio-fumigation (fresh chicken manure + wheat straw), the nutrient availability in soil was improved and increased the strawberry marketable yield and microbe genetic diversity in the soil [145].

However, soil treated with some of these fumigants was reported to have a detrimental effect on the soil biochemical properties and microbiome. For instance: Chloropicrin inhibited conversion of ammonia to nitrite in five different soil types [146], chloropicrin and dazomet treatments lowered microbial activities and soil microbiome biomass, decreased alkaline phosphatase harboring microbes, and also resulted in different microbiomes as compared to those of anaerobic soil disinfestation (ASD) treatments [136,144,147]. However, a study with metam-sodium showed a mixed effect where it inhibited substrate-induced respiration, microbial biomass nitrogen, and accumulated ammonium ion in the soil in short term, but reduced the population of bacteria and fungi in the soil and shifted soil bacterial population to plant growth-promoting bacteria and biodegrading bacteria [148]. The negative impact of these chemical fumigants on the soil physicochemical properties and microbiome has provided an impetus to advance the science of non-chemical alternatives to manage *V. dahliae*.

3.4. Biocontrol agents and biologicals to manage Verticillium wilt

Biocontrol agents (BCAs) are microorganisms that are used to manage several pests including insects and plant pathogens of agriculturally important crops either by reducing pathogen inoculum or its ability to cause disease [149] while biologicals are products obtained from living organisms. Biocontrol is a tool in an integrated management strategy that is environmentally friendly and is viewed as a potential alternative to chemical pesticides to prevent their side effects [149]. Parasitism, competition for nutrients and space, antibiosis, and induction of systemic resistance (ISR) are major mechanisms of biocontrol [149,150]. The desirable traits of BCAs and their uses against Verticillium wilt are discussed elsewhere.
However, several recent studies have broadened the scope of BCAs with some new candidates within the well-established genus of Bacillus, Pseudomonas, and Trichoderma and beyond (Supplementary Table 2). Currently, studies involving BCAs do not only look for organisms with antagonistic properties, using the available genetic tools, their mode of action, genes, proteins, and metabolites involved has also been characterized. For instance: In Bacillus velezensis AL7, a biocontrol agent isolated from cotton soil that synthesizes antifungal antibiotics, 3,706 protein-coding genes, 86 tRNAs, and 27 rRNAs were predicted which can help identify the candidate genes involved; transcriptomic analysis of Trichoderma atroviridae T11 identified cpa1 gene, whose increased level of expression and protease activity was associated with higher antifungal activity against V. dahliae V-138I [152,153]. These findings open avenues for further understanding of these BCAs to increase their efficacy for commercialization.

In some cases, mixing different BCAs or their extracts among themselves or with organic amendments have provided better management of V. dahliae [149,154,155] since mixing increased the biological activities of microbes and/ or their extracts. Little information is available regarding the use of biologicals to manage V. dahliae but oils, derivatives, and extracts from medicinally important plants and some algae are being tested and with encouraging results [156,157], however, more research is required to explore new sources and mechanisms of action before further use. Even though studies on the potential use of BCAs against V. dahliae have increased, the majority of the research on BCAs are conducted in vitro or greenhouses under controlled conditions. A major problem in the widespread use of BCAs is their inconsistent efficacy when tested under field conditions. However, some BCAs have shown promising results when experimented in the fields against V. dahliae with olives [158] and cotton [159], and combining BCAs with different modes of action has offered some efficacy [149,160]. Ensuring the long-term viability of BCAs and biologicals for storage is another problem that needs to be taken into consideration for commercialization and their practical application in the fields.

3.5. Organic amendments

For soilborne pathogens such as V. dahliae, chemical-based suppression has not proven sustainable and the use of organic amendments (OAs) has been explored to design suppressive conditions to limit pathogen infestation levels or onset of disease. OAs include materials that are worked into the soil or applied on the surface to improve the physical properties of the soil and by fostering living microorganisms that are present in the soil to directly or indirectly impact disease incidence [149]. Some
examples of OAs used to manage *V. dahliae* in various crops comprise of plant and animal-based composts and manures; green manure/cover crop; and other industrial co/by-product wastes (Supplementary Table 3).

Composts not only add organic matter to the soil but also serve as the reservoir to foster a microbiome that can protect crops through increased soil microbial activities against soil-borne pathogens [161]. Compared to animal-based amendments (dairy and horse manure), plant-based amendments can impact pathogen success due to deleterious chemicals introduced from the plants, in addition to beneficial microbial activities [162]. Cover/Green manure crops are rotated with main crops to cover the soil surface that improves the physical, chemical, and biological properties of soil [163]. Furthermore, they can be incorporated into the soil to suppress soil-borne pathogens [164]. Crops in the Brassicaceae family are a good example of green manure often used in crop rotation to reduce soil-borne pests and pathogens. They are rich in glucosinolates, the precursors of isothiocyanates that produce volatile sulfur compounds, known for fungicidal, nematocidal, and allelopathic properties through bio-fumigation [164]. When green manures were polyethylene-covered, the toxic effects on pathogens were greater compared to their application in open soil.

As with biocontrol agents, single OA may not provide sufficient pathogen suppression, hence, when applied as a mix of OAs or with biocontrol agents efficacy was better [149,165,166]. However, factors such as the type of amendments; the lack of standardization of application rates; the inconsistency in their efficacy; and phytotoxic effects of released toxic compounds on crops limit the practical applications and widespread use of OAs for disease control [167] and requires further attention.

3.6. Anaerobic soil disinfestation (ASD)

Anaerobic soil disinfestation (also known as reductive soil disinfestation or biological soil disinfestation) is an organic amendment-based pre-plant soil-borne disease management tool [168,169]. For ASD, the soil is first amended with a carbon source, irrigated to field capacity to fill soil pore spaces with water, and covered with an impermeable plastic tarp, or surface-sealed using other methods, to limit gas exchange for several weeks to complete the ASD treatment [170,171]. Some examples of carbon sources from recent studies of ASD used in various crops include rice-bran, molasses, ethanol, and others (Supplementary Table 4).
ASD has proven effective against a wide range of soil-borne pathogens in many different cropping systems, however, the efficacy against a target pathogen depends on the carbon-source used, tarp type, soil type, soil microbiome, and soil temperature retained during ASD [169,171]. Ebihaha and Uematsu [172] tested the survival of three strawberry pathogens under anaerobic conditions and found that *V. dahliae* could not grow under anaerobic conditions at 22.5°C, indicating that anaerobic conditions obtained during ASD can have a fungistatic effect on *V. dahliae*. ASD treatments also induced changes in soil microbial communities and increased the soil microbial activity and the populations of Bacteroidales, Clostridiales, Selenomonadales, Enterobacteriales, Sphingobacteriales, Bacillales, and Burkholderiales that antagonize plant pathogens [136,168,173]. The change in the bacterial communities and composition increased denitrification, nitrogen fixation, and produced organic acids that influenced disease suppressiveness [174]. Optimizing the carbon source for ASD can improve the effectiveness of ASD and affordability for growers [168]. An economic analysis of ASD for open-field fresh-market tomato production using molasses and composted poultry litter showed that ASD requires higher labor costs for land preparation and treatment application but the yield increase from ASD treatment was enough to cover the increased labor cost [175]. Similarly, in the studies with strawberry, where different carbon sources of ASD were compared to chemical treatment (PicChlor 60), the net return and marketable yield were either similar or increased due to ASD (e.g. Rice bran) [139,176]. Even though the issues related to efficacy, cost, and standardized application rates of a carbon source need attention [168,169,171], the results obtained from ASD studies are encouraging and is gaining popularity.

Most of the current studies on utilizing non-chemical-based approaches to manage *V. dahliae* have focused on cotton, olive, and eggplant, and little information is available using tomatoes. Hence, experimenting with the potential BCAs, OAs, and carbon sources from other crops with the tomato-*Verticillium dahliae* pathosystem could help identify the candidates that may benefit tomato growers.

4. Novel approaches and Future Directions

4.1. Advances in plant microbiomes: applications to *Verticillium dahliae* system

Microbiomes are composed of numerous individuals (e.g., bacteria, fungi, actinomycetes, virus, and protists) of diverse species [177]. All tissues of a plant harbor microbiomes including roots, leaves, shoots, flowers, and seeds. Based on the association with habitats in the host plants, microbiomes are classified as the rhizosphere, phyllosphere, and endosphere microbiomes [178]. The rhizosphere is a rich and soil-derived microbial diversity zone, which is influenced by plant roots through the
Rhizodeposition of exudates, and mucilages [179]. Although some work is available elucidating rhizosphere microbiomes with antagonistic activity towards *V. dahliae* in cotton, oilseed rape, potato, and strawberry [180,181], it is not known how these microbes play beneficial roles in tomato-microbiome interactions. Phyllosphere microbes residing on the leaf surface are mainly epiphytes and are influenced by leaf structures such as veins, hairs, and stomata [182]. Tomato rootstocks have differential impacts on tomato scion phylospheres [183], but again, to our knowledge, there are no published reports on tomato × Verticillium interactions. Endosphere microbiomes reside within the intracellular apoplast and in the xylem vessels, which may enter through natural breaks in root and root tips and translocate to the aerial parts of the plant [178]. Endosphere microbes are typically latent and non-pathogenic and can influence host metabolism and plant immunity [184]. The antagonistic activity of *B. amyloliquefaciens* from different cultivars and regions against the olive-pathogenic *V. dahliae* also showed a close functional relationship [185]. Interestingly, an endophytic, non-pathogenic *Fusarium solani* (strain CEF559) also conferred protection against *V. dahliae* [159].

To date, microbiomes of tomato plants growing under field conditions remain poorly characterized and many of the roles and interactions of diverse disease-resistant rootstocks and the field environments remain to be elucidated. We hypothesize that many of the benefits of rootstocks are mediated by soil and rhizosphere microbiomes and that intra- and inter-specific genetic variation can impact the structure and composition of the microbial community and suppress *V. dahliae* and enhance plant health. Moreover, plant root exudates may contain signal molecules that may influence species composition in the rhizosphere. Increasing evidence supports the hypothesis that the association between grafted tomato rootstocks and rhizosphere microbiomes can improve plant growth and inhibit *V. dahliae* pathogen [186]. Beneficial microbiomes also activated immune systems such as induced systemic resistance (ISR) [187] and systemic acquired resistance (SAR) to plant pathogens [188]. To this end, mapping populations and innovative grafting experiments can be conducted to test ecological hypotheses and devise prescriptive approaches to manage microbiomes to suppress Verticillium wilt problems in tomato.

4.2. Exploiting knowledge of microbiomes – *Verticillium dahliae* interactions to enhance plant health

To date, microbiomes of tomato plants growing under field conditions remain poorly characterized and many of the roles and interactions of diverse disease-resistant rootstocks and the field environments remain to be elucidated. We hypothesize that many of the benefits of rootstocks are mediated by soil
and rhizosphere microbiomes and that intra- and inter-specific genetic variation can impact the structure and composition of the microbial community and suppress *V. dahliae* and enhance plant health. Moreover, plant root exudates may contain signal molecules that may influence species composition in the rhizosphere. Increasing evidence supports the hypothesis that the association between grafted tomato rootstocks and rhizosphere microbiomes can improve plant growth and inhibit *V. dahliae* pathogen [186]. Beneficial microbiomes also activated immune systems such as induced systemic resistance (ISR) [187] and systemic acquired resistance (SAR) to plant pathogens [188]. To this end, mapping populations and resistant scion onto resistant rootstocks can be used to test the ecological hypotheses and for the discovery of new molecules or compounds in the rhizosphere and phyllosphere microbiomes using new approaches (Fig. 3).

Figure 3. A proposed schematic illustration of the plant microbiome impact on *Verticillium dahliae* protection and crop productivity crop yield [180,181].
4.3. Novel molecular and genomic approaches to enhance Verticillium wilt resistance

Although conventional breeding plays an important role in developing and testing several tomato lines in the field, traditional improvement methods are time-consuming and troublesome. However, breeding efforts to exploit the genetic variability in the cultivated and wild relatives of tomato and utilize resistance to *V. dahliae* and other pathogens in tomato breeding programs have been achieved with some successes. For example, wild tomato relatives such as *L. pimpinellifolium*, *L. peruvianum*, and *L. hirsutum* have been utilized as sources of resistance to develop segregating breeding populations to test against *V. dahliae* and other pathogens [189]. Other populations developed are recombinant inbred lines (RILs), near-isogenic lines (NILs), and multiparent advanced generation inter-cross (MAGIC) populations [189,190]. Although conventional breeding has been successfully used to improve yield and quality and meet consumer requirements, the introgression of *R* genes or QTL and examination of large populations is time-consuming and labor-intensive [191]. Molecular markers such as cleavage-based cleaved amplified polymorphic sequences (CAPS), kompetitive allele-specific PCR (KASP), simple sequence repeats (SSR), single nucleotide polymorphisms (SNPs), and InDels [192] have been developed and used to locate and tag genes or QTLs for disease resistance and other traits in tomato via marker-assisted selection (MAS) [193-195]. Whole-genome resequencing approaches such as QTL-seq [196], genetic mapping and mutant identification (MutMap) [197] and bulked-segregant analysis based on RNA-seq (BSR-seq) [198] and specific locus amplified fragment sequencing (SLAF-seq) [199], and genome-wide association studies (GWAS) [200] have also been utilized to identify candidate genes or markers linked to the gene of interests in tomato.

Plants have developed sophisticated defense mechanisms to fight pathogen attacks [201]. Plasma membrane-bound and intracellular immune receptors initiate innate defense responses upon the perception of pathogens either directly interacting with pathogen-derived immunogens or indirectly by monitoring modifications of host targets incurred by pathogens [201,202]. Plant-derived antimicrobial peptides and other compounds such as *FLS2*, *LecRK-VI.2*, *EFR*, *CERK1*, *Ve1*, and *PERPs* all belong to Receptor-like Kinases (RLKs) [203] that inhibit pathogen virulence [204,205]. On the other hand, plant pathogens have evolved some strategies to overcome the defense responses of their hosts. These offensive weapons include cell-wall degrading enzymes (CWDEs) that degrade the plant cell wall for successful infection [206] or secretion systems to deliver effectors into the host cytoplasm to suppress host defense and promote colonization [207,208]. The recent advances in biotechnological innovations
and the rapid development of high-throughput sequencing technologies, and some aspects of host-microbe provide opportunities to greatly enhance functional investigations and deployment of useful disease resistance genes [209] portends a promising future toward managing Verticillium wilt of tomato.

4.4. Identifying quantitative disease resistance (QDR) and pyramiding for broad-spectrum and durable resistance

Durable disease resistance refers to the resistance that remains effective over a prolonged period [210]. A deeper understanding of pathogen biology, population structure, epidemiology, and mechanism of genetic variation help predict the durability of disease resistance [211]. To develop broad-spectrum and durable resistance, gene pyramiding (also known as gene stacking) strategy has been used to deploy multiple \(R \) genes into a single cultivar simultaneously [212]. For instance, resistance to multiple races of rice blast and bacterial blight was achieved by stacking genes using MAS [213,214]. Similarly, broad-spectrum resistance to late blight pathogen was achieved by molecular stacking of three \(R \) genes in two separate occasions, (\(R_{pi-sto1} \), \(R_{pi-vnt1.1} \), and \(R_{pi-blb3} \)) [215] and (\(R_{B} \), \(R_{pi-blb2} \), and \(R_{pi-vnt1.1} \)) [216], at a single genetic locus in potato using \textit{Agrobacterium} transformation [217]. Hence, these new advancements offer an opportunity to rapidly identify several small effect alleles through genomics-enabled newer breeding approaches [122,209], and stacking them for broad-spectrum resistance to \(V. dahliae \) in tomato (Fig. 4).
4.5. Exploring and exploiting the intracellular immune receptors

Resistance gene enrichment sequencing (Ren-Seq) [218,219] has been used to identify regulatory elements and nucleotide-binding leucine-rich repeat (NRL) family proteins from uncharacterized germplasms [50]. Recently, Ren-Seq with single-molecule real-time (SMRT) has been successfully utilized to rapidly identify and clone anti-potato late blight NLR genes from wild potato [220], and four stem rust (Sr) genes for resistance to *Puccinia graminis* f. sp. *tritici* from wild accessions (*Aegilops tauschii* spp. *strangulata*) [221]. Besides, two stem rust NLR genes, *Sr22* and *Sr45* from hexaploid bread
wheat have been discovered and these genes conferred resistance to multiple races of stem rust pathogen [222]. Potentially, Ren-Seq can be a powerful tool to rapidly uncover novel \textit{NLR} genes for resistance to races 2 and 3 of \textit{V. dahliae} from wild tomato species and utilize them in breeding programs.

4.6. Modulating microRNAs and improving plant disease resistance

Plants carry two major classes of small RNAs, namely microRNA (miRNA) and small interfering RNA (siRNA), which are endogenous, single-stranded non-coding RNAs molecules (21-24 nucleotides in length) that bind to partially complementary sequences in target messenger RNAs (mRNAs) [223]. RNA interference (RNAi) technique has been used to suppress the expression of a gene by the host- or the pathogen-induced gene [224]. Extensive studies have demonstrated that miRNAs play important roles in plant growth and development, and tolerance to abiotic and biotic stresses [225,226]. Available evidence suggests that miRNAs also play critical roles in plant immune systems [227-229]. For example, the miR393 has been implicated in pathogen-associated molecular pattern-triggered immunity (PTI) [229]. miRNAs are considered master regulators of the \textit{NLR} defense gene family [230-232]. Importantly, miR482-mediated silencing cascade in \textit{Arabidopsis}, cotton, potato, and eggplant enhanced plant defense against \textit{V. dahliae} [232-234]. Two \textit{V. dahliae} genes, \textit{CIP-1} (encodes a Ca2+-dependent cysteine protease) and \textit{HiC-15} (encodes an isorichodermin C-15 hydroxylase) were targeted by miR166 and miR159, respectively, and silencing of these two fungal virulence genes conferred resistance to \textit{V. dahliae} [235]. In this scenario, the modulation of miRNAs by RNA silencing [236] offers a powerful strategy to improve our understanding of tomato - \textit{V. dahliae} interactions and to enhance plant defense.

4.7. Harnessing gene-editing technologies

More recently, genome-editing based on CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) technologies have revealed a breakthrough for miRNA fine-tuning [237]. In this process, Cas9 protein (an RNA-guided nuclease) can be cleaved at a specific desired sequence on the substrate viral DNA or RNA, generating DNA double-strand breaks that usually result in gene silence due to their degradation [238]. CRISPR–Cas9 and -Cas13a mediated single or multiple protein-coding gene knockouts have been successfully developed in several crops and utilized to engineer resistance to DNA or RNA plant virus diseases [202]. The CRISPR/Cas9 genome-editing platform has also been used to enhance resistance to \textit{V. dahliae} in cotton. The indels of the \textit{Gh14-3-3d} gene (signaling receptor proteins) were generated in the At and Dt sub-genomes of tetraploid cotton
(Gossypium hirsutrum) and transgene-clean edited T2 plants showed enhanced plant defense against V. dahliae [239]. Using the CRISPR–Cas9 system, multiple genes, lig1, ms26, and ms45 were stacked in a single chromosomal location in corn [240]. Other major genome editing and new plant breeding techniques (NPBTs) developed are homologous recombination (HR), meganucleases (MNs), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), pentatricopeptide repeat proteins (PPRs), Oligonucleotide directed mutagenesis (ODM) cisgenesis, and intragenesis [209,241]. Besides, RNA-directed DNA methylation (RdDM), reverse breeding, grafting on genetically modified rootstock, agro-infiltration, and synthetic genomics have been employed to develop desirable plant material for sustainable food production [209,241-244]. Although these techniques have been applied for altering important phenotypic traits, their utilization to ensure resistance to V. dahliae in tomatoes needs to be explored.

5. Concluding remarks

Recently, numerous studies have emerged relating to the biology of V. dahliae and its management in different crop systems. This indicates that V. dahliae is a notorious pathogen and management of this pathogen is complicated. This review sought to provide recent information and discussions on V. dahliae, its importance in tomato production, molecular mechanisms involved to make it a successful pathogen, and an overview of current management tactics. The recent reports of the discovery of race 3 of V. dahliae, prediction of about 200 core effector proteins, and others in lineage-specific regions has opened up a lot of opportunities for downstream research and to elucidate the mechanisms and genes involved. For Verticillium wilt management, several non-chemical methods are being explored. This could be due to the reduction in the number of available chemical alternatives and their harmful impacts on the environment and human health. More recently, studies involving biocontrol agents, organic amendments, and anaerobic soil disinfestation to manage V. dahliae has increased substantially, however, their efficacy for use in the field needs additional optimization. Recent advances in molecular and sequencing technologies are providing a better understanding of the mechanisms for disease suppression conferred by these tactics informing the future prescriptive implementation of these methods. For genetic resistance, the Ve1 gene had been identified and deployed in tomatoes to manage race 1 in the early 1950s but was defeated in a few years by the resident or evolved non-race 1 strains. A recent study suggests that resistance to race 2 in tomato is conferred by a single gene as well. However, the presence of partial resistance and tolerance to V. dahliae is predicted in tomatoes as variation in the level of
resistance to race 2 and 3 have been observed in tomato germplasm, when tested under lab, greenhouse, and field conditions. The mechanism of resistance and the genes involved in this type of resistance is still to be explored. In addition to these methods, recent studies suggest the utilization of microbiomes present in crop organelles can enhance resistance and protect the crop from pathogens. Microbiomes associated with tomato-\textit{V. dahliae} pathosystem has not been characterized and needs attention in this new area of research. Furthermore, in the era of “omics”, there are several molecular and genomic breeding as well as genome editing tools available for a rapid and in-depth understanding of the mechanisms of resistance to \textit{Verticillium} wilt in tomato, as discussed in this review, that can lead to a fast-pace development of resistant cultivars.

Author contributions

All the authors conceptualized this review manuscript; B. A., T. I., Y. O., and T. B. A. contributed equally in writing different sections of the original draft of the manuscript; all the authors contributed to the reviewing and editing; R. D. and F. J. L. provided the oversight in preparing this manuscript.

Funding

This research was funded by a USDA-NIFA Specialty Crop Research Initiative (SCRI) under award number 2016-51181-25404. Additional funding and resources for this project were supplied by the NC Agricultural Foundation, Inc., North Carolina, USA.

Conflict of interest

The authors declare no conflict of interest.
Literature Cited

1. Kushwaha, R.K.; Sharma, N.P.; Baldodiya, V.K. Profitability of tomato (Lycopersicon esculentum) production in some selected areas in Panna district of Madhya Pradesh. Int. J. Curr. Microbiol. App. Sci. 2018, 6, 2117-2124.

2. Ochilo, W.N.; Nyamasyo, G.N.; Kilalo, D.; Otieno, W.; Otipa, M.; Chege, F.; Karanja, T.; Lingeera, E.K. Characteristics and production constraints of smallholder tomato production in Kenya. Sci. Afr. 2019, 2, e00014, doi:https://doi.org/10.1016/j.sciaf.2018.e00014.

3. Pervaiz, U.; Salam, A.; Jan, D.; Khan, A.; Iqbal, M. Adoption constraints of improved technologies regarding tomato cultivation in district mardan, KP. Sarhad J. Agric. 2018, 34, 428-434.

4. Tijani, A.A.; Ayanwale, A.O.S.; Baruwa, O.I. Profitability and constraints of tomato production under tropical conditions. Int. J. Veg. Sci. 2010, 16, 128-133, doi:10.1080/19315260903309763.

5. Heuvelink, E. Tomatoes; CABI: Glassglow, UK, 2018; Vol. 27.

6. Klosterman, S.J.; Atallah, Z.K.; Vallad, G.E.; Subbarao, K.V. Diversity, pathogenicity, and management of verticillium species. Annu. Rev. Phytopathol. 2009, 47, 39-62, doi:10.1146/annurev-phyto-080508-081748.

7. Inderbitzin, P.; Subbarao, K.V. Verticillium Systematics and Evolution: How confusion impedes Verticillium wilt management and how to resolve it. Phytopathology 2014, 104, 564-574, doi:10.1094/phyto-11-13-0315-ia.

8. Wilhelm, S. Longevity of the Verticillium wilt fungus in the laboratory and field. Phytopathology 1955, 45, 180-181.

9. Duressa, D.; Rauscher, G.; Koike, S.T.; Mou, B.; Hayes, R.J.; Maruthachalam, K.; Subbarao, K.V.; Klosterman, S.J. A real-time PCR assay for detection and quantification of Verticillium dahliae in spinach seed. Phytopathology 2012, 102, 443-451, doi:10.1094/phyt-10-11-0280.

10. Goud, J.C.; Termorshuizen, A.J. Quality of methods to quantify microsclerotia of Verticillium dahliae in soil. Eur. J. Plant Pathol. 2003, 109, 523–534.

11. Lievens, B.; Brouwer, M.; Vanachter, A.C.R.C.; Cammue, B.P.A.; Thomma, B.P.H.J. Real-time PCR for detection and quantification of fungal and oomycete tomato pathogens in plant and soil samples. Plant Sci. 2006, 171, 155-165, doi:https://doi.org/10.1016/j.plantsci.2006.03.009.

12. Mahuku, G.S.; Platt, H.W. Quantifying Verticillium dahliae in soils collected from potato fields using a competitive PCR assay. Am J. Potato Res. 2002, 79, 107-117, doi:10.1007/BF02881519.

13. Tzelepis, G.; Bejai, S.; Sattar, M.N.; Schwelm, A.; Ilbäck, J.; Fogelqvist, J.; Dixelius, C. Detection of Verticillium species in Swedish soils using real-time PCR. Arch. Microbiol. 2017, 199, 1383-1389, doi:10.1007/s00203-017-1412-z.

14. Ashworth, L.J.J.; Huisman, O.C.; Harper, D.M.; Stromberg, L.K. Verticillium wilt disease of tomato: Influence of inoculum density and root extension upon disease severity. Phytopathology 1979, 69, 490-492.

15. Mol, L. Effect of plant roots on the germination of microsclerotia of Verticillium dahliae. Eu. J. Plant Pathol. 1995, 101, 679-685, doi:10.1007/BF01874872.

16. de Sain, M.; Rep, M. The role of pathogen-secreted proteins in fungal vascular wilt diseases. Int. J. Mol. Sci. 2015, 16, 23970-23993, doi:10.3390/ijms161023970.

17. Häffner, E.; Diederichsen, E. Belowground Defence Strategies Against Verticillium Pathogens. In Belowground Defence Strategies in Plants, Springer International Publishing: Cham, 2016; pp. 119-150.
18. Fradin, E.F.; Thomma, B.P.H.J. Physiology and molecular aspects of Verticillium wilt diseases caused by *V. dahliae* and *V. albo-atrum*. *Mol. Plant Pathol.* **2006**, *7*, 71-86, doi:10.1111/j.1364-3703.2006.00323.x.

19. Jones, J.B.; Zitter, T.A.; Momol, T.M.; Miller, S.A. *Compendium of Tomato Diseases and Pests, Second Edition*; The American Phytopathological Society: 2016; doi:10.1094/9780890544341pp. - 1.

20. Witzel, K.; Buhtz, A.; Grosch, R. Temporal impact of the vascular wilt pathogen *Verticillium dahliae* on tomato root proteome. *J. Proteomics* **2017**, *169*, 215-224, doi:10.1016/j.jprot.2017.04.008.

21. Song, R.; Li, J.; Xie, C.; Jian, W.; Yang, X. An Overview of the molecular genetics of plant resistance to the Verticillium wilt pathogen *Verticillium dahliae*. *Int. J. Mol. Sci.* **2020**, *21*, doi:10.3390/ijms21031120.

22. Schaible, L.; Cannon, O.S.; Waddoups, V. Inheritance of resistance to Verticillium wilt in a tomato cross. *Phytopathology* **1951**, *41*, 986-999.

23. Robinson, D.B. Verticillium wilt of potato in relation to symptoms, epidemiology and variability of the pathogen. University of Wisconsin-Madison, 1957.

24. Bender, C.G.; Shoemaker, P.B. Prevalence of Verticillium wilt of tomato and virulence of *Verticillium dahliae* race 1 and race 2 isolates in Western North Carolina. *Plant Dis.* **1984**, *68*, 305-309.

25. Dobinson, K.F.; Tenuta, G.K.; Lazarovits, G. Occurrence of race 2 of *Verticillium dahliae* processing tomato fields in southwestern Ontario. *Can. J. Plant Pathol.* **1996**, *18*, 55-58, doi:10.1080/07060669609500655.

26. Alexander, L.J. Susceptibility of certain Verticillium-resistant tomato varieties to an Ohio isolate of the pathogen. *Phytopathology* **1962**, *52*, 998-1000.

27. Grogan, R.G.; Ioannou, N.; Schneider, R.W.; Sall, M.A.; Kimble, K.A. Verticillium wilt on resistant tomato cultivars in California: Virulence of isolates from plants and soil and relationship of inoculum density to disease incidence. *Phytopathology* **1979**, *69*, 1176-1180.

28. de Jonge, R.; van Esse, H.P.; Maruthachalam, K.; Bolton, M.D.; Santhanam, P.; Saber, M.K.; Zhang, Z.; Usami, T.; Lievens, B.; Subbarao, K.V., et al. Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing. *Proc Natl Acad Sci U S A* **2012**, *109*, 5110-5115, doi:10.1073/pnas.1119623109.

29. Kawchuk, L.M.; Hachey, J.; Lynch, D.R.; Kulcsar, F.; Rooijen, G.v.; Waterer, D.R.; Robertson, A.; Kokko, E.; Byers, R.; Howard, R.J., et al. Tomato Ve disease resistance genes encode cell surface-like receptors. *PNAS* **2001**, *98*, 6511-6515.

30. Castroverde, C.D.M.; Nazar, R.N.; Robb, J. Verticillium Ave1 effector induces tomato defense gene expression independent of Ve1 protein. *Plant Signal. Behav.* **2016**, *11*, e1245254, doi:10.1080/15592324.2016.1245254.

31. Ligoxigakis, E.; Vakalounakis, D. Occurrence of race 2 of *Verticillium dahliae* on tomatoes in Crete. *Plant Pathol.* **1992**, *41*, 774-776.

32. O’Garro, L.; Clarkson, J. Pathogenicity of race-1 and race-2 tomato wilt isolates of *Verticillium dahliae* from different geographical origins. *J. Phytopathol.* **1988**, *123*, 297-303.

33. Ferreira, J.; Van der Merwe, P.; Naude, S. First report of race 2 of *Verticillium dahliae* on tomatoes in South Africa. *Plant Dis.* **1990**, *74*, 530.
34. Daami-Remadi, M.; Jabnoun-Khiareddine, H.; Barbara, D.J.; Ayed, F.; Mahjoub, M.E. First report of *Verticillium dahliae* race 2 in Tunisia. *Plant Pathol.* **2006**, *55*, 816.

35. Usami, T.; Momma, N.; Kikuchi, S.; Watanabe, H.; Hayashi, A.; Mizukawa, M.; Yoshino, K.; Ohmori, Y. Race 2 of *Verticillium dahliae* infecting tomato in Japan can be split into two races with differential pathogenicity on resistant rootstocks. *Plant Pathol.* **2017**, *66*, 230-238, doi:10.1111/ppa.12576.

36. Kano, K.; Usami, T. Race 3 tomato Verticillium wilt pathogen potentially derives from race 1 isolate. *Soil Microorg.* **2019**, *73*, 71-78.

37. Chavarro-Carrero, E.A.; Vermeulen, J.P.; Torres, D.E.; Usami, T.; Schouten, H.J.; Bai, Y.; Seidl, M.F.; Thomma, B.P.H.J. Comparative genomics of *Verticillium dahliae* isolates reveals the in planta-secreted effector protein recognized in V2 tomato plants. In *bioRxiv*, Cold Spring Harbor Laboratory: 2020, doi:10.1101/2020.06.16.154641

38. Friebertshauser, G.; DeVay, J. Differential effects of the defoliating and nondefoliating pathotypes of *Verticillium dahliae* upon the growth and development of *Gossypium hirsutum*. *Phytopathology* **1982**, *72*, 872-877.

39. Schnathorst, W.; Mathre, D. Host range and differentiation of a severe form of *Verticillium albo-atrum* in cotton. *Phytopathology* **1966**, *56*, 1155-1161.

40. Hu, X.P.; Gurung, S.; Short, D.P.G.; Sandoya, G.V.; Shang, W.J.; Hayes, R.J.; Davis, R.M.; Subbarao, K.V. Nondefoliating and defoliating strains from cotton correlate with races 1 and 2 of *Verticillium dahliae*. *Plant Dis.* **2015**, *99*, 1713-1720, doi:10.1094/PDIS-03-15-0261-RE.

41. Zhang, D.-D.; Wang, J.; Wang, D.; Kong, Z.-Q.; Zhou, L.; Zhang, G.-Y.; Gui, Y.-J.; Li, J.-J.; Huang, J.-Q.; Wang, B.-L., et al. Population genomics demystifies the defoliation phenotype in the plant pathogen *Verticillium dahliae*. *New Phytol.* **2019**, *222*, 1012-1029, doi:10.1111/nph.15672.

42. Klosterman, S.J.; Subbarao, K.V.; Kang, S.; Veronese, P.; Gold, S.E.; Thomma, B.P.H.J.; Chen, Z.; Henrissat, B.; Lee, Y.-H.; Park, J., et al. Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens. *PLOS Pathog.* **2011**, *7*, e1002137, doi:10.1371/journal.ppat.1002137.

43. Pegg, G.F.; Brady, B.L. Verticillium wilts. *CABI* **2002**.

44. Milgroom, M.G.; Jiménez-Gasco, M.d.M.; Olivares Garcia, C.; Drott, M.T.; Jiménez-Díaz, R.M. Recombination between clonal lineages of the asexual fungus *Verticillium dahliae* detected by genotyping by sequencing. *PLoS One* **2014**, *9*, e106740, doi:10.1371/journal.pone.0106740.

45. Atallah, Z.K.; Maruthachalam, K.; Toit, L.; Koike, S.T.; Michael Davis, R.; Klosterman, S.J.; Hayes, R.J.; Subbarao, K.V. Population analyses of the vascular plant pathogen *Verticillium dahliae* detect recombination and transcontinental gene flow. *Fungal Genet. Biol.* **2010**, *47*, 416-422, doi:https://doi.org/10.1016/j.fgb.2010.02.003.

46. Puhalla, J.; Hummel, M. Vegetative compatibility groups within *Verticillium dahliae*. *Phytopathology* **1983**, *73*, 1305-1308.

47. Joaquim, T.R.; Rowe, R.C. Reassessment of vegetative compatibility relationships among strains of *Verticillium dahliae* using nitrate-nonutilizing mutants. *Reactions* **1990**, *4*, 41.

48. Daigle, P.D.; Kirkby, K.; Collins, D.; Cuddy, W.; Lonergan, P.; Roser, S.; Chowdhury, P.R.; Labbate, M.; Chapman, T.A. Virulence not linked with vegetative compatibility groups in Australian cotton *Verticillium dahliae* isolates. *Aus. J. Crop Sci.* **2020**, *14*, 633-640, doi:10.21475/aacs.20.14.04.p2208.

49. Fan, R.; Cockerton, H.M.; Armitage, A.D.; Bates, H.; Cascant-Lopez, E.; Antanaviciute, L.; Xu, X.; Hu, X.; Harrison, R.J. Vegetative compatibility groups partition variation in the virulence of *Verticillium dahliae* on strawberry. *PLoS One* **2018**, *13*, e0191824, doi:10.1371/journal.pone.0191824.
50. Chen, J.Y.; Liu, C.; Gui, Y.J.; Si, K.W.; Zhang, D.D.; Wang, J.; Short, D.P.G.; Huang, J.Q.; Li, N.Y.;
 Liang, Y., et al. Comparative genomics reveals cotton-specific virulence factors in flexible genomic
 regions in *Verticillium dahliae* and evidence of horizontal gene transfer from Fusarium. *New Phytol.*
 2018, 217, 756-770, doi:10.1111/nph.14861.

51. de Jonge, R.; Bolton, M.D.; Kombrink, A.; van den Berg, G.C.; Yadeta, K.A.; Thomma, B.P.
 Extensive chromosomal reshuffling drives evolution of virulence in an asexual pathogen. *Genome Res.*
 2013, 23, 1271-1282, doi:10.1101/gr.152660.112.

52. Wang, Y.H.; Donaldson, L.; Gehring, C.; Irving, H.R. Plant natriuretic peptides. *Plant Signal.
 Behav.* 2011, 6, 1606-1608, doi:10.4161/psb.6.10.17304.

53. Shi-Kunne, X.; Faino, L.; van den Berg, G.C.M.; Thomma, B.P.H.J.; Seidl, M.F. Evolution within the
 fungal genus *Verticillium* is characterized by chromosomal rearrangement and gene loss. *Environ.
 Microbiol.* 2018, 20, 1362-1373, doi:10.1111/1462-2920.14037.

54. Thomma, B.P.H.J.; Faino, L.; Li, J.; Shi-Kunne, X.; Depoetter, J.R.L.; Kramer, H.M.; Berg-Velthuis,
 G.C.M.v.d.; Cook iii, D.; Rövenich, H.J.; Seidl, M.F. The two-speed genome of *Verticillium dahliae*
 mediates emergence of potent virulence factors. In Proceedings of Book of Abstracts 29th Fungal
 Genetics Conference Asilomar 17, Pacific Grove, CA, USA 14-19 March 2017; pp. 4-4.

55. Faino, L.; Seidl, M.F.; Shi-Kunne, X.; Pauper, M.; van den Berg, G.C.; Wittenberg, A.H.; Thomma,
 B.P. Transposons passively and actively contribute to evolution of the two-speed genome of a
 fungal pathogen. *Genome Res.* 2016, 26, 1091-1100, doi:10.1101/gr.204974.116.

56. Laurent, B.; Palaiokostas, C.; Spataro, C.; Moinard, M.; Zehraoui, E.; Houston, R.D.; Foulounge-Oriol,
 M. High-resolution mapping of the recombination landscape of the phytopathogen *Fusarium
 graminearum* suggests two-speed genome evolution. *Mol. Plant Pathol.* 2018, 19, 341-354,
 doi:10.1111/mpp.12524.

57. Short, D.P.; Gurung, S.; Gladieux, P.; Inderbitzin, P.; Atallah, Z.K.; Nigro, F.; Li, G.; Benlioglu, S.;
 Subbarao, K.V. Globally invading populations of the fungal plant pathogen *Verticillium dahliae*
 are dominated by multiple divergent lineages. *Environ. Microbiol.* 2015, 17, 2824-2840,
 doi:10.1111/1462-2920.12789.

58. Karapapa, V.K.; Bainbridge, B.W.; Heale, J.B. Morphological and molecular characterization of
 Verticillium longisporum comb, nov., pathogenic to oilseed rape. *Mycol. Res.* 1997, 101, 1281-
 1294, doi:10.1017/s0953756297003985.

59. Inderbitzin, P.; Davis, R.M.; Bostock, R.M.; Subbarao, K.V. The ascomycete *Verticillium
 longisporum* is a hybrid and a plant pathogen with an expanded host range. *PLoS One* 2011, 6,
 e18260, doi:10.1371/journal.pone.0018260.

60. Inderbitzin, P.; Davis, R.M.; Bostock, R.M.; Subbarao, K.V. Identification and differentiation of
 Verticillium species and *Verticillium longisporum* lineages by simplex and multiplex PCR assays.
 PLoS One 2013, 8, e65990, doi:10.1371/journal.pone.0065990.

61. Novakazi, F.; Inderbitzin, P.; Sandoya, G.; Hayes, R.J.; von Tiedemann, A.; Subbarao, K.V. The
 Three lineages of the diploid hybrid *Verticillium longisporum* differ in virulence and pathogenicity.
 Phytopathology 2015, 105, 662-673, doi:10.1094/PHYTO-10-14-0265-R.

62. Kershaw, M.J.; Talbot, N.J. Hydrophobins and repellents: Proteins with fundamental roles in fungal
 morphogenesis. *Fungal Genet. Biol.* 1998, 23, 18-33.

63. Klimes, A.; Dobinson, K.F. A hydrophobin gene, VDH1, is involved in microsclerotial development
 and spore viability in the plant pathogen *Verticillium dahliae*. *Fungal Genet. Biol.*, 2006, 43,
 283-294.

64. Romero, P.A.; Herscovics, A. Glycoprotein biosynthesis in *Saccharomyces cerevisiae*.
 Characterization of alpha-1,6-mannosyltransferase which initiates outer chain formation. *J. Biol.
 Chem.*, 1989, 264, 1946-1950.
65. Zhang, J.; Zhang, Y.; Yang, J.; Kang, L.; EloRM, A.M.; Zhou, H.; Zhao, J. The α-1,6-mannosyltransferase VdOCH1 plays a major role in microsclerotium formation and virulence in the soil-borne pathogen *Verticillium dahliae*. *Fungal Biol.* 2019, 123, 539-546.

66. Li, X.; Su, X.; Lu, G.; Sun, G.; Zhang, Z.; Guo, H.; Guo, N.; Cheng, H. VdOGDH is involved in energy metabolism and required for virulence of *Verticillium dahliae*. *Curr. Genet.* 2020, 66, 345-359.

67. Tzima, A.K.; Paplomatas, E.J.; Tsitsigiannis, D.I.; Kang, S. The G protein beta subunit controls virulence and multiple growth- and development-related traits in *Verticillium dahliae*. *Fungal Genet. Biol.* 2012, 49, 271-283.

68. Tzima, A.; Paplomatas, E.J.; Rauyaree, P.; Kang, S. Roles of the catalytic subunit of cAMP-dependent protein kinase A in virulence and development of the soilborne plant pathogen *Verticillium dahliae*. *Fungal Genet. Biol.* 2010, 47, 406-415.

69. Lewis, T.S.; Shapiro, P.S.; Ahn, N.G. Signal transduction through MAP kinase cascades. In *Adv. Cancer Res.*, 1998, 74, 49-139.

70. Schwartz, M.A.; Madhani, H.D. Principles of MAP kinase signaling specificity in *Saccharomyces cerevisiae*. *Annu. Rev. Genet.* 2004, 38, 725-748.

71. Xu, J.R. Map kinases in fungal pathogens. *Fungal Genet. Biol.* 2000, 31, 137-152.

72. Jiang, C.; Zhang, X.; Liu, H.; Xu, J.-R. Mitogen-activated protein kinase signaling in plant pathogenic fungi. *PLoS Pathog.* 2018, 14, e1006875-e1006875.

73. Tian, L.; Xu, J.; Zhou, L.; Guo, W. VdMsb regulates virulence and microsclerotia production in the fungal plant pathogen *Verticillium dahliae*. *Gene* 2014, 550, 238-244.

74. Li, J.-J.; Zhou, L.; Yin, C.-M.; Zhang, D.-D.; Klosterman, S.J.; Wang, B.-L.; Song, J.; Wang, D.; Hu, X.-P.; Subbarao, K.V., et al. The *Verticillium dahliae* Sho1-MAPK pathway regulates melanin biosynthesis and is required for cotton infection. *Environ. Microbiol.* 2019, 21, 4852-4874.

75. Qi, X.; Zhou, S.; Shang, X.; Wang, X. VdSho1 regulates growth, oxidant adaptation and virulence in *Verticillium dahliae*. *J. Phytopathol.* 2016, 164, 1064-1074.

76. Wang, Y.; Tian, L.; Xiong, D.; Klosterman, S.J.; Xiao, S.; Tian, C. The mitogen-activated protein kinase gene, VdHog1, regulates osmotic stress response, microsclerotia formation and virulence in *Verticillium dahliae*. *Fungal Genet. Biol.* 2016, 88, 13-23.

77. Tian, L.; Wang, Y.; Yu, J.; Xiong, D.; Zhao, H.; Tian, C. The mitogen-activated protein kinase VdPbs2 of *Verticillium dahliae* regulates microsclerotia formation, stress response, and plant infection. *Front. Microbiol.* 2016, 7, 1532.

78. Rauyaree, P.; Ospina-Giraldo, M.D.; Kang, S.; Bhat, R.G.; Subbarao, K.V.; Grant, S.J.; Dobinson, K.F. Mutations in VMK1, a mitogen-activated protein kinase gene, affect microsclerotia formation and pathogenicity in *Verticillium dahliae*. *Curr. Genet.* 2005, 48, 109-116.

79. Yu, J.; Li, T.; Tian, L.; Tang, C.; Klosterman, S.J.; Tian, C.; Wang, Y. Two *Verticillium dahliae* MAPKKks, VdSsk2 and VdSte11, have distinct roles in pathogenicity, microsclerotal formation, and stress adaptation. *mSphere* 2019, 4, e00426-19.

80. Zheng, J.; Tang, C.; Deng, C.; Wang, Y. Involvement of a response regulator VdSsk1 in stress response, melanin biosynthesis and full virulence in *Verticillium dahliae*. *Front. Microbiol.* 2019, 10, 606.

81. Park, H.-S.; Lee, S.C.; Cardenas, M.E.; Heitman, J. Calcium-Calmodulin-Calcineurin Signaling: A globally conserved virulence cascade in eukaryotic microbial pathogens. *Cell Host Microbe* 2019, 26, 453-462.

82. Xiong, D.; Wang, Y.; Tang, C.; Fang, Y.; Zou, J.; Tian, C. VdCrz1 is involved in microsclerotia formation and required for full virulence in *Verticillium dahliae*. *Fungal Genet. Biol.*, 2015, 82, 201-212.
83. Zhao, Y.-L.; Zhou, T.-T.; Guo, H.-S. Hyphopodium-specific VdNoxB/VdPls1-dependent ROS-Ca2+ signaling is required for plant infection by *Verticillium dahliae*. *PLoS Pathog.* 2016, 12, e1005793. https://doi.org/10.1371/journal.ppat.1005793.
84. Saxton, R.; Sabatini, D. mTOR signaling in growth, metabolism, and disease. *Cell* 2017, 168, 960-976.
85. Li, L.; Zhu, T.; Song, Y.; Luo, X.; Feng, L.; Zhuo, F.; Li, F.; Ren, M. Functional characterization of target of rapamycin signaling in *Verticillium dahliae*. *Front. Microbiol.* 2019, 10, 501.
86. Sarmiento-Villamil, J.L.; García-Pedrajas, N.E.; Baeza-Montañez, L.; García-Pedrajas, M.D. The APSES transcription factor Vst1 is a key regulator of development in microsclerotium- and resting mycelium-producing *Verticillium* species. *Mol. Plant Pathol.* 2018, 19, 59-76.
87. Keller, N.P.; Turner, G.; Bennett, J.W. Fungal secondary metabolism — from biochemistry to genomics. *Nat. Rev. Microbiol.* 2005, 3, 937-947.
88. Boettger, D.; Hertweck, C. Molecular diversity sculpted by fungal PKS-NRPS hybrids. *Chembiochem* 2013, 14, 28-42.
89. Shi-Kunne, X.; Jové, R.d.P.; Depotter, J.R.L.; Ebert, M.K.; Seidl, M.F.; Thomma, B.P.H.J. In silico prediction and characterisation of secondary metabolite clusters in the plant pathogenic fungus *Verticillium dahliae*. *FEMS Microbiol. Lett.* 2019, 366, fnz081, https://doi.org/10.1093/femsle/fnz081.
90. Wang, Y.; Hu, X.; Fang, Y.; Anchieta, A.; Goldman, P.H.; Hernandez, G.; Klosterman, S.J. Transcription factor VdCmr1 is required for pigment production, protection from UV irradiation, and regulates expression of melanin biosynthetic genes in *Verticillium dahliae*. *Microbiology* 2018, 164, 685-696.
91. Zhang, T.; Zhang, B.; Hua, C.; Meng, P.; Wang, S.; Chen, Z.; Du, Y.; Gao, F.; Huang, J. VdPKS1 is required for melanin formation and virulence in a cotton wilt pathogen *Verticillium dahliae*. *Sci. China* 2017, 60, 868-879.
92. Fan, R.; Klosterman, S.J.; Wang, C.; Subbarao, K.V.; Xu, X.; Shang, W.; Hu, X. Vayg1 is required for microsclerotium formation and melanin production in *Verticillium dahliae*. *Fungal Genet. Biol.* 2017, 98, 1-11.
93. Perry, J.W.; Evert, R.F. Structure of microsclerotia of *Verticillium dahliae* in roots of Russet Burbank potatoes. *Can. J. Bot.* 1984, 62, 396-401.
94. Duressa, D.; Anchieta, A.; Chen, D.; Klimes, A.; Garcia-Pedrajas, M.D.; Dobinson, K.F.; Klosterman, S.J. RNA-seq analyses of gene expression in the microsclerotia of *Verticillium dahliae*. *BMC Genomics* 2013, 14, 607.
95. Xiong, D.; Wang, Y.; Tian, L.; Tian, C. MADS-Box transcription factor VdMcm1 regulates conidiation, microsclerotia formation, pathogenicity, and secondary metabolism of *Verticillium dahliae*. *Front. Microbiol.* 2016, 7, 1192.
96. Xiong, D.; Wang, Y.; Tian, C. A novel gene from a secondary metabolism gene cluster is required for microsclerotia formation and virulence in *Verticillium dahliae*. *Phytopathol. Res.* 2019, 1, 31.
97. Chen, J.-Y.; Xiao, H.-L.; Gui, Y.-J.; Zhang, D.-D.; Li, L.; Bao, Y.-M.; Dai, X.-F. Characterization of the *Verticillium dahliae* exoproteome involves in pathogenicity from cotton-containing medium. *Front. Microbiol.* 2016, 7, 1709.
98. Cooper, R.M.; Wood, R.K.S. Cell wall degrading enzymes of vascular wilt fungi. III. Possible involvement of endo-pectin lyase in Verticillium wilt of tomato. *Physiol. Plant Pathol.* 1980, 16, 285-300.
99. Yang, Y.; Zhang, Y.; Li, B.; Yang, X.; Dong, Y.; Qiu, D. A *Verticillium dahliae* pectate lyase induces plant immune responses and contributes to virulence. *Front. Plant Sci.* 2018, 9, 1271.
100. Gui, Y.-J.; Zhang, W.-Q.; Zhang, D.-D.; Zhou, L.; Short, D.P.G.; Wang, J.; Ma, X.-F.; Li, T.-G.; Kong, Z.-Q.; Wang, B.-L., et al. *Verticillium dahliae* extracellular cutinase modulates plant immune responses. *Mol. Plant Microbe Interact.* 2018, 31, 260-273.

101. Gui, Y.-J.; Chen, J.-Y.; Zhang, D.-D.; Li, N.-Y.; Li, T.-G.; Zhang, W.-Q.; Wang, X.-Y.; Short, D.P.G.; Li, L.; Guo, W., et al. *Verticillium dahliae* manipulates plant immunity by glycoside hydrolase 12 proteins in conjunction with carbohydrate-binding module 1. *Environ. Microbiol.* 2017, 19, 1914-1932.

102. Stergiopoulos, I.; de Wit, P.J.G.M. Fungal effector proteins. *Annu. Rev. Phytopathol.* 2009, 47, 233-263.

103. Su, X.; Lu, G.; Guo, H.; Zhang, K.; Li, X.; Cheng, H. The dynamic transcriptome and metabolomics profiling in *Verticillium dahliae* inoculated *Arabidopsis thaliana*. *Sci. Rep.* 2018, 8, 15404, https://doi.org/10.1038/s41598-018-33743-x.

104. Tan, G.; Liu, K.; Kang, J.; Xu, K.; Zhang, Y.; Hu, L.; Zhang, J.; Li, C. Transcriptome analysis of the compatible interaction of tomato with *Verticillium dahliae* using RNA-sequencing. *Front. Plant Sci.* 2015, 6, 428, doi:10.3389/fpls.2015.00428.

105. Snelders, N.C.; Rovenich, H.; Petti, G.C.; Rocafort, M.; Vorholt, J.A.; Mesters, J.R.; Seidl, M.F.; Nijland, R.; Thomma, B.P.H.J. A plant pathogen utilizes effector proteins for microbiome manipulation. In *bioRxiv*, 2020, https://doi.org/10.1101/2020.01.30.926725.

106. de Jonge, R.; Bolton, M.D.; Kombrink, A.; van den Berg, G.C.; Yadeta, K.A.; Thomma, B.P. Extensive chromosomal reshuffling drives evolution of virulence in an asexual pathogen. *Genome Res.* 2013, 23, 1271-1282, doi:10.1101/gr.152660.112.

107. Kombrink, A.; Thomma, B.P. LysM effectors: secreted proteins supporting fungal life. *PLoS Pathog.* 2013, 9, e1003769, doi:10.1371/journal.ppat.1003769.

108. Kombrink, A.; Rovenich, H.; Shi-Kunne, X.; Rojas-Padilla, E.; van den Berg, G.C.; Domazakis, E.; de Jonge, R.; Valkenburg, D.J.; Sanchez-Vallet, A.; Seidl, M.F., et al. *Verticillium dahliae* LysM effectors differentially contribute to virulence on plant hosts. *Mol. Plant Pathol.* 2017, 18, 596-608, doi:10.1111/mpp.12520.

109. Gao, F.; Zhang, B.S.; Zhao, J.H.; Huang, J.F.; Jia, P.S.; Wang, S.; Zhang, J.; Zhou, J.M.; Guo, H.S. Deacetylation of chitin oligomers increases virulence in soil-borne fungal pathogens. *Nat. Plants* 2019, 5, 1167-1176, doi:10.1038/s41477-019-0527-4.

110. Xiong, D.; Wang, Y.; Ma, J.; Klosterman, S.J.; Xiao, S.; Tian, C. Deep mRNA sequencing reveals stage-specific transcriptome alterations during microsclerotia development in the smoke tree vascular wilt pathogen, *Verticillium dahliae*. *BMC Genomics* 2014, 15, 324.

111. Jin, L.; Li, G.; Yu, D.; Huang, W.; Cheng, C.; Liao, S.; Wu, Q.; Zhang, Y. Transcriptome analysis reveals the complexity of alternative splicing regulation in the fungus *Verticillium dahliae*. *BMC Genomics* 2017, 18, 130.

112. Zhang, X.; Cheng, W.; Feng, Z.; Zhu, Q.; Sun, Y.; Li, Y.; Sun, J. Transcriptomic analysis of gene expression of *Verticillium dahliae* upon treatment of the cotton root exudates. *BMC Genomics* 2020, 21, 155.

113. Liu, N.; Zhou, B.; Zhao, X.; Lu, B.; Li, Y.; Hao, J. Grafting eggplant onto tomato rootstock to suppress *Verticillium dahliae* infection: The effect of root exudates. *HortScience* 2009; 44, 2058-2062.

114. Nazar, R.N.; Castroverde, C.D.M.; Xu, X.; Kurosky, A.; Robb, J. Wounding induces tomato Ve1 R-gene expression. *Planta* 2019, 249, 1779-1797, doi:10.1007/s00425-019-03121-6.

115. Hu, X.; Puri, K.D.; Gurung, S.; Klosterman, S.J.; Wallis, C.M.; Britton, M.; Durbin-Johnson, B.; Phinney, B.; Salemi, M.; Short, D.P.G., et al. Proteome and metabolome analyses reveal
differential responses in tomato - *Verticillium dahliae*-interactions. J. Proteomics 2019, 207, 103449, doi:10.1016/j.jprot.2019.103449.

116. Gayoso, C.; Pomar, F.; Novo-Uzal, E.; Merino, F.; de Ilarduya, O. The Ve-mediated resistance response of the tomato to *Verticillium dahliae* involves H2O2, peroxidase and lignins and drives PAL gene expression. BMC Plant Biol. 2010, 10, 232.

117. Guo, S.; Zuo, Y.; Zhang, Y.; Wu, C.; Su, W.; Jin, W.; Yu, H.; An, Y.; Li, Q. Large-scale transcriptome comparison of sunflower genes responsive to *Verticillium dahliae*. BMC Genomics 2017, 18, 42.

118. Wu, L.; Du, G.; Bao, R.; Li, Z.; Gong, Y.; Liu, F. De novo assembly and discovery of genes involved in the response of *Solanum sisymbriifolium* to *Verticillium dahlia*. Physiol. Mol. Biol. Pla. 2019, 25, 1009-1027.

119. Faino, L.; de Jonge, R.; Thomma, B.P.H.J. The transcriptome of *Verticillium dahliae*-infected *Nicotiana benthamiana* determined by deep RNA sequencing. Plant Signal. Behav. 2012, 7, 1065-1069.

120. Fradin, E.F.; Zhang, Z.; Juarez Ayala, J.C.; Castroverde, C.D.; Nazar, R.N.; Robb, J.; Liu, C.M.; Thomma, B.P. Genetic dissection of Verticillium wilt resistance mediated by tomato Ve1. Plant Physiol. 2009, 150, 320-332, doi:10.1104/pp.109.136762.

121. Fradin, E.F.; Abd-El-Haliem, A.; Masini, L.; van den Berg, G.C.; Joosten, M.H.; Thomma, B.P. Interfamily transfer of tomato Ve1 mediates Verticillium resistance in Arabidopsis. Plant Physiol. 2011, 156, 2255-2265, doi:10.1104/pp.111.180067.

122. Poland, J.; Rutkoski, J. Advances and challenges in genomic selection for disease resistance. Annu. Rev. Phytopathol. 2016, 54, 79-98, doi:10.1146/annurev-phyto-080615-100056.

123. Parlevliet, J.E. Durability of resistance against fungal, bacterial and viral pathogens; present situation. Euphytica 2002, 124, 147-157.

124. Robb, J. Verticillium tolerance: resistance, susceptibility, or mutualism? Can. J. Bot. 2007, 85, 903-910, doi:10.1139/b07-093.

125. Schafer, J.F. Tolerance to plant disease. Annu. Rev. Phytopathol. 1971, 9, 235-252.

126. Robison, M.M.; Shah, S.; Tamot, B.; Pauls, K.P.; Moffatt, B.A.; Glick, B.R. Reduced symptoms of Verticillium wilt in transgenic tomato expressing a bacterial ACC deaminase. Mol. Plant Pathol. 2001, 2, 135-145.

127. Veronese, P.; Narasimhan, M.L.; Stevenson, R.A.; Zhu, J.K.; Weller, S.C.; Subbarao, K.V.; Bressan, R.A. Identification of a locus controlling Verticillium disease symptom response in *Arabidopsis thaliana*. Plant J. 2003, 35, 574-587, doi:10.1046/j.1365-313x.2003.01830.x.

128. Bolek, Y.; El-Zik, K.M.; Pepper, A.E.; Bell, A.A.; Magill, C.W.; Thaxton, P.M.; Reddy, O.U.K. Mapping of verticillium wilt resistance genes in cotton. Plant Sci. 2005, 168, 1581-1590, doi:https://doi.org/10.1016/j.plantsci.2005.02.008.

129. Simko, I.; Costanzo, S.; Haynes, K.G.; Christ, B.J.; Jones, R.W. Linkage disequilibrium mapping of a *Verticillium dahliae* resistance quantitative trait locus in tetraploid potato (*Solanum tuberosum*) through a candidate gene approach. Theor. Appl. Genet. 2004, 108, 217-224, doi:10.1007/s00122-003-1431-9.

130. Louws, F.J.; Rivard, C.L.; Kubota, C. Grafting fruiting vegetables to manage soilborne pathogens, foliar pathogens, arthropods and weeds. Sci. Hort. 2010, 127, 127-146, doi:https://doi.org/10.1016/j.scienta.2010.09.023.

131. Rivard, C.L.; Louws, F.J. Grafting to manage soilborne diseases in heirloom tomato production. 2008, 43, 2104, doi:10.21273/hortsci.43.7.2104.
132. Paplomatas, E.J.; Elena, K.; Tsagkarakou, A.; Perdikaris, A. Control of Verticillium wilt of tomato and cucurbits through grafting of commercial varieties on resistant rootstocks. *Acta Hortic.* 2002, 579, 445-449, https://doi.org/10.17660/ActaHortic.2002.579.77

133. Miles, C.; Wimer, J.; Inglis, D. Grafting eggplant and tomato for Verticillium wilt resistance. *Acta Hortic.* 2015, 1086, 113-118, doi:10.17660/ActaHortic.2015.1086.13.

134. Johnson, S.; Inglis, D.; Miles, C. Grafting Effects on eggplant growth, yield, and Verticillium wilt incidence. *Int. J. Veg. Sci.* 2014, 20, 3-20, doi:10.1080/19315260.2012.751473.

135. Rouphael, Y.; Schwarz, D.; Krumbein, A.; Colla, G. Impact of grafting on product quality of fruit vegetables. *Sci. Hort.* 2010, 127, 172-179, doi:10.1016/j.scienta.2010.09.001.

136. Zhao, J.; Zhou, X.; Jiang, A.; Fan, J.; Lan, T.; Zhang, J.; Cai, Z. Distinct impacts of reductive soil disinfestation and chemical soil disinfestation on soil fungal communities and memberships. *Appl. Microbiol. Biotechnol.* 2018, 102, 7623-7634, doi:10.1007/s00253-018-9107-1.

137. Pecchia, S.; Franceschini, A.; Santori, A.; Vannacci, G.; Myrta, A. Efficacy of dimethyl disulfide (DMDS) for the control of *Chrysanthemum* Verticillium wilt in Italy. *Crop Prot.* 2017, 93, 28-32, doi:https://doi.org/10.1016/j.cropro.2016.11.019.

138. Martin, F.N. Development of alternative strategies for management of soilborne pathogens currently controlled with methyl bromide. *Annu. Rev. Phytopathol.* 2003, 41, 325-350, doi:10.1146/annurev.phyto.41.052002.095514.

139. Shennan, C.; Muramoto, J.; Kóike, S.; Baird, G.; Fennimore, S.; Samtani, J.; Bolda, M.; Dara, S.; Daugovish, O.; Lazarovits, G., et al. Anaerobic soil disinfestation is an alternative to soil fumigation for control of some soilborne pathogens in strawberry production. *Plant Pathol.* 2018, 67, 51-66, doi:10.1111/ppa.12721.

140. Louws, F.J.; Suchoff, D.; Kressin, J.; Panthee, D.; Driver, J.; Gunter, C. Integrating grafting and emerging products to manage soilborne diseases of tomato. *Acta Hortic.* 2018, 1207, 249-254, https://doi.org/10.17660/ActaHortic.2018.1207.34.

141. Ślusarski, C.; Spotti, C.A. Efficacy of chloropicrin application by drip irrigation in controlling the soil-borne diseases of greenhouse pepper on commercial farms in Poland. *Crop Prot.* 2016, 89, 216-222, doi:https://doi.org/10.1016/j.cropro.2016.07.024.

142. Bubici, G.; Marsico, A.D.; Gaber, L.; Tsror, L. Evaluation of thiophanate-methyl in controlling Verticillium wilt of potato and artichoke. *Crop Prot.* 2019, 119, 1-8, doi:https://doi.org/10.1016/j.cropro.2019.01.012.

143. Gilardi, G.; Gullino, M.L.; Garibaldi, A.; Baudino, M. Effectiveness of fumigants alone and in combination with grafting to control Verticillium wilt and root-knot nematodes in eggplant and tomato brown root rot caused by *Colletotrichum coccodes*. *Acta Hortic.* 2010, 883, 181-186, doi: 10.17660/ActaHortic.2010.883.21

144. Huang, B.; Yan, D.; Wang, Q.; Fang, W.; Song, Z.; Cheng, H.; Li, Y.; Ouyang, C.; Han, Q.; Jin, X., et al. Effects of dazomet fumigation on soil phosphorus and the composition of phoD-harboring microbial communities. *J. Agric. Food Chem.* 2020, 68, 5049-5058, doi:10.1021/acs.jafc.9b08033.

145. Zhang, D.; Yan, D.; Fang, W.; Huang, B.; Wang, X.; Wang, X.; Zhu, J.; Liu, J.; Ouyang, C.; Li, Y., et al. Chloropicrin alternated with biofumigation increases crop yield and modifies soil bacterial and fungal communities in strawberry production. *Sci. Total Environ.* 2019, 675, 615-622, doi:https://doi.org/10.1016/j.scitotenv.2019.04.222.

146. Yan, D.; Wang, Q.; Li, Y.; Ouyang, C.; Guo, M.; Cao, A. Analysis of the inhibitory effects of chloropicrin fumigation on nitrification in various soil types. *Chemosphere* 2017, 175, 459-464, doi:https://doi.org/10.1016/j.chemosphere.2017.02.075.
147. Guo, H.; Zhao, X.; Rosskopf, E.N.; Di Gioia, F.; Hong, J.C.; McNear, D.H. Impacts of anaerobic soil disinfestation and chemical fumigation on soil microbial communities in field tomato production system. **Appl. Soil Ecol.** **2018**, *126*, 165-173, doi:https://doi.org/10.1016/j.apsoil.2017.12.018.

148. Li, J.; Huang, B.; Wang, Q.; Li, Y.; Fang, W.; Han, D.; Yan, D.; Guo, M.; Cao, A. Effects of fumigation with metam-sodium on soil microbial biomass, respiration, nitrogen transformation, bacterial community diversity and genes encoding key enzymes involved in nitrogen cycling. **Sci. Total Environ.** **2017**, *598*, 1027-1036, doi:https://doi.org/10.1016/j.scitotenv.2017.02.058.

149. Ruano-Rosa, D.; Mercado-Blanco, J. Combining biocontrol agents and organic amendments to manage soil-borne phytopathogens. In *Organic Amendments and Soil Suppressiveness in Plant Disease Management*, Meghvansi, M.K., Varma, A., Eds. Springer International Publishing: Cham, **2015**, 457-478.

150. Glick, B.R. Biocontrol Mechanisms. In *Beneficial Plant-Bacterial Interactions*, Springer International Publishing: Cham, **2015**, 123-157.

151. Deketelaere, S.; Tyvaert, L.; França, S.C.; Höfte, M. Desirable traits of a good biocontrol agent against Verticillium wilt. **Front. Microbiol.** **2017**, *8*, doi:10.3389/fmicb.2017.01186.

152. Liu, H.; Zeng, Q.; Wang, W.; Zhang, R.; Yao, J. Complete genome sequence of *Bacillus velezensis* strain AL7, a biocontrol agent for suppression of cotton *Verticillium* wilt. **Microbiol. Resour. Announc.** **2020**, *9*, e01595-01519, doi:10.1128/MRA.01595-19.

153. Morán-Diez, M.E.; Carrero-Carrón, I.; Rubio, M.B.; Jiménez-Díaz, R.M.; Monte, E.; Hermosa, R. Transcriptomic analysis of *Trichoderma atroviride* overgrowing plant-wilting *Verticillium dahliae* reveals the role of a new M14 Metallo-carboxypeptidase CPA1 in biocontrol. **Front. Microbiol.** **2019**, *10*, doi:10.3389/fmicb.2019.01120.

154. Cheng, F.; Li, G.; Peng, Y.; Wang, A.; Zhu, J. Mixed bacterial fermentation can control the growth and development of *Verticillium dahliae*. **Biotechnol. Biotechnol. Equip.** **2020**, *34*, 58-69, doi:10.1080/13102818.2020.1713023.

155. Mulero-Aparicio, A.; Varo, A.; Agustí-Brisach, C.; López-Escudero, F.J.; Trapero, A. Biological control of *Verticillium* wilt of olive in the field. **Crop Prot.** **2020**, *128*, 104993, doi:https://doi.org/10.1016/j.cropro.2019.104993.

156. Varo, A.; Mulero-Aparicio, A.; Adem, M.; Roca, L.F.; Raya-Ortega, M.C.; López-Escudero, F.J.; Trapero, A. Screening water extracts and essential oils from Mediterranean plants against *Verticillium dahliae* in olive. **Crop Prot.** **2017**, *92*, 168-175, doi:https://doi.org/10.1016/j.cropro.2016.10.018.

157. Smallii, A.; Mazoir, N.; Rifai, L.A.; Koussa, T.; Makroum, K.; Kabil, E.M.; Benharref, A.; Faize, M. Triterpene derivatives from Euphorbia enhance resistance against *Verticillium* wilt of tomato. **Phytochemistry** **2017**, *135*, 169-180, doi:10.1016/j.phytochem.2016.12.017.

158. Cheffi Azabou, M.; Gerharbi, Y.; Medhioub, I.; Ehnouri, K.; Barham, H.; Tounsi, S.; Triki, M.A. The endophytic strain Bacillus velezensis OE1: An efficient biocontrol agent against *Verticillium* wilt of olive and a potential plant growth promoting bacteria. **Biol. Control** **2020**, *142*, 104168, doi:https://doi.org/10.1016/j.biocontrol.2019.104168.

159. Wei, F.; Zhang, Y.; Shi, Y.; Feng, H.; Zhao, L.; Feng, Z.; Zhu, H. Evaluation of the biocontrol potential of endophytic fungus *Fusarium solani* CEF559 against *Verticillium dahliae* in cotton plant. **BioMed Res. Int.** **2019**, *2019*, 3187943, doi:10.1155/2019/3187943.

160. Kefalogianni, I.; Gkizi, D.; Pappa, E.; Dulaj, L.; Tijamos, S.E.; Chatzipavlidi, I. Combined use of biocontrol agents and zeolite as a management strategy against *Fusarium* and *Verticillium* wilt. **BioControl** **2017**, *62*, 139-150, doi:10.1007/s10526-016-9778-4.
161. Antoniou, A.; Tsolakidou, M.-D.; Stringlis, I.A.; Pantelides, I.S. Rhizosphere microbiome recruited from a suppressive compost improves plant fitness and increases protection against vascular wilt pathogens of tomato. *Front. Plant Sci.* 2017, 8, doi:10.3389/fpls.2017.02022.

162. Tubelleh, A.M.; Stephenson, G.T. Soil amendment by composted plant wastes reduces the *Verticillium dahliae* abundance and changes soil chemical properties in a bell pepper cropping system. *Curr. Plant Biol.* 2020, 22, 100148, doi:https://doi.org/10.1016/j.cpb.2020.100148.

163. Reddy, P.P. Cover/Green Manure Cropping. In *Agro-ecological Approaches to Pest Management for Sustainable Agriculture*, Reddy, P.P., Ed. Springer Singapore: Singapore, 2017; pp. 91-107.

164. Grantina-Ievina, L.; Nikolajeva, V.; Rostoks, N.; Skrabule, I.; Zarina, L.; Pogulis, A.; Ievinsh, G. Impact of green manure and vermicompost on soil suppressiveness, soil microbial populations, and plant growth in conditions of organic agriculture of Northern temperate climate. In *Organic Amendments and Soil Suppressiveness in Plant Disease Management*, Meghvansi, M.K., Varma, A., Eds. Springer International Publishing: Cham, 2015; pp. 381-399.

165. De Corato, U.; Salimbeni, R.; De Pretis, A.; Patruno, L.; Avella, N.; Lacolla, G.; Cucci, G. Microbiota from ‘next-generation green compost’ improves suppressiveness of composted Municipal-Solid-Waste to soil-borne plant pathogens. *Biol. Control* 2018, 124, 1-17, doi:https://doi.org/10.1016/j.biocontrol.2018.05.020.

166. Ojinaga, M.; Gandariasbeitia, M.; Orbegozo, E.; Ortiz, A.; Guerrero, M.M.; Lacasa, C.M.; Arizmendi, J.; Otaño, A.; Camino, C.; Enbeita, G., et al. Biodisinfestation for *Meloidogyne* and *Verticillium* control in commercial protected crops in the Basque Country Atlantic area (northern Spain). *Acta Hortic.* 2020, 1270, 327-336.

167. Pugliese, M.; Gilardi, G.; Garibaldi, A.; Gullino, M.L. Organic amendments and soil suppressiveness: Results with vegetable and ornamental crops. In *Organic Amendments and Soil Suppressiveness in Plant Disease Management*, Meghvansi, M.K., Varma, A., Eds. Springer International Publishing: Cham, 2015; pp. 495-509.

168. Poret-Peterson, A.T.; Albu, S.; McClean, A.E.; Kluepfel, D.A. Shifts in soil bacterial communities as a function of carbon source used during anaerobic soil disinfestation. *Front. Environ. Sci.* 2019, 6, doi:10.3389/fenvs.2018.00160.

169. Rosskopf, E.N.; Serrano-Pérez, P.; Hong, J.; Shrestha, U.; Rodríguez-Molina, M.d.C.; Martin, K.; Kokalis-Burelle, N.; Shennan, C.; Muramoto, J.; Butler, D. Anaerobic soil disinfestation and soilborne pest management. In *Organic Amendments and Soil Suppressiveness in Plant Disease Management*, Meghvansi, M.K., Varma, A., Eds. Springer International Publishing: Cham, 2015; pp. 277-305.

170. Shennan, C.; Muramoto, J.; Lamers, J.; Mazzola, M.; Rosskopf, E.N.; Kokalis-Burelle, N.; Momma, N.; Butler, D.M.; Kobara, Y. Anaerobic soil disinfestation for soil borne disease control in strawberry and vegetable systems: Current knowledge and future directions. *Acta Hortic.* 2014, 1044, 165-175, doi: 10.17660/ActaHortic.2014.1044.20

171. Strauss, S.L.; Kluepfel, D.A. Anaerobic soil disinfestation: A chemical-independent approach to pre-plant control of plant pathogens. *J. Integr. Agric.* 2015, 14, 2309-2318, doi:https://doi.org/10.1016/S2095-3119(15)61118-2.

172. Ebihara, Y.; Uematsu, S. Survival of strawberry-pathogenic fungi *Fusarium oxysporum* f. sp. *fragariae*, *Phytophthora cactorum* and *Verticillium dahliae* under anaerobic conditions. *J. Gen. Plant Pathol.* 2014, 80, 50-58, doi:10.1007/s10327-013-0476-0.

173. Huang, X.; Liu, L.; Zhao, J.; Zhang, J.; Cai, Z. The families *Ruminococcaceae*, *Lachnospiraceae*, and *Clostridiaceae* are the dominant bacterial groups during reductive soil disinfestation with incorporated plant residues. *Appl. Soil Ecol.* 2019, 135, 65-72, doi:https://doi.org/10.1016/j.apsoil.2018.11.011.
174. Poret-Peterson, A.T.; Sayed, N.; Glyzewski, N.; Forbes, H.; González-Orta, E.T.; Kluepfel, D.A. Temporal responses of microbial communities to anaerobic soil disinfestation. *Microb. Ecol.* 2019, doi:10.1007/s00248-019-01477-6.

175. Shi, L.; Wang, J.; Gao, Z.; Zhao, X.; Gioia, F.D.; Guo, H.; Hong, J.; Ozores-Hampton, M.; Rosskopf, E. Economic analysis of anaerobic soil disinfestation for open-field fresh-market tomato production in Southwest and North Florida. *Horttechnology* 2019, 29, 777-787, doi:10.21273/HORTTECH04332-19.

176. Mazzola, M.; Muramoto, J.; Shennan, C. Anaerobic disinfestation induced changes to the soil microbiome, disease incidence and strawberry fruit yields in California field trials. *Appl. Soil Ecol.* 2018, 127, 74-86, doi:https://doi.org/10.1016/j.apsoil.2018.03.009.

177. Gopal, M.; Gupta, A. Microbiome selection could spur next-generation plant breeding strategies. *Front. Microbiol.* 2016, 7, 1971, doi:10.3389/fmicb.2016.01971.

178. Turner, T.R.; James, E.K.; Poole, P.S. The plant microbiome. *Genome Biol.* 2013, 14, 209.

179. Uren, N.C. Types, amounts and possible functions of compounds released into the rhizosphere by soil-grown plants. In *The rhizosphere: Biochemistry and organic substances at the soil-plant interface*, Pinton, R., Varanini, Z., Nannipieri, P., Eds. Marcel Dekker: New York, 2001; pp. 19-40.

180. Berg, G.; Zachow, C.; Lottmann, J.; Gotz, M.; Costa, R.; Smalla, K. Impact of plant species and site on rhizosphere-associated fungi antagonistic to Verticillium dahliae kleb. *Appl. Environ. Microbiol.* 2005, 71, 4203-4213, doi:10.1128/AEM.71.8.4203-4213.2005.

181. Berg, G.; Opelt, K.; Zachow, C.; Lottmann, J.; Gotz, M.; Costa, R.; Smalla, K. The rhizosphere effect on bacteria antagonistic towards the pathogenic fungus Verticillium differs depending on plant species and site. *FEMS Microbiol. Ecol.* 2006, 56, 250-261, doi:10.1111/j.1574-6941.2005.00025.x.

182. Lindow, S.E.; Brandl, M.T. Microbiology of the phyllosphere. *Appl. Environ. Microbiol.* 2003, 69, 1875, doi:10.1128/AEM.69.4.1875-1883.2003.

183. Toju, H.; Okayasu, K.; Notaguchi, M. Leaf-associated microbiomes of grafted tomato plants. *Sci. Rep.* 2019, 9, 1787, doi:10.1038/s41598-018-38344-2.

184. Lundberg, D.S.; Lebeis, S.L.; Paredes, S.H.; Yourstone, S.; Gehring, J.; Malfatti, S.; Tremblay, J.; Engelbrektson, A.; Kunin, V.; Rio, T.G.d., et al. Defining the core *Arabidopsis thaliana* root microbiome. *Nature* 2012, 488, 86-90.

185. Muller, H.; Berg, C.; Landa, B.B.; Auerbach, A.; Moissl-Eichinger, C.; Berg, G. Plant genotype-specific archaeal and bacterial endophytes but similar *Bacillus* antagonists colonize Mediterranean olive trees. *Front. Microbiol.* 2015, 6, 138, doi:10.3389/fmicb.2015.00138.

186. Poudel, R.; Jumpponen, A.; Kennelly, M.M.; Rivard, C.L.; Gomez-Montano, L.; Garrett, K.A. Rootstocks shape the rhizobiome: Rhizosphere and endosphere bacterial communities in the grafted tomato system. *Appl. Environ. Microbiol.* 2019, 85, e01765-18, doi:10.1128/AEM.01765-18.

187. Biere, A.; Goverse, A. Plant-mediated systemic interactions between pathogens, parasitic nematodes, and herbivores above- and belowground. *Annu. Rev. Phytopathol.* 2016, 54, 499-527, doi:10.1146/annurev-phyto-080615-100245.

188. Cecchini, N.M.; Steffes, K.; Schläppi, M.R.; Gifford, A.N.; Greenberg, J.T. Arabidopsis AZI1 family proteins mediate signal mobilization for systemic defence priming. *Nat. Commun.* 2015, 6, 7658, doi:10.1038/ncomms8658.

189. Foolad, M.R. Genome mapping and molecular breeding of tomato. *Int. J. Plant Genomics* 2007, 2007, 64358, doi:10.1155/2007/64358.

190. Pascual, L.; Desplat, N.; Huang, B.E.; Desgroux, A.; Bruguier, L.; Bouchet, J.P.; Le, Q.H.; Chauchard, B.; Verschave, P.; Causse, M. Potential of a tomato MAGIC population to decipher the
genetic control of quantitative traits and detect causal variants in the resequencing era. *Plant Biotechnol. J.* **2015**, 13, 565-577, doi:10.1111/pbi.12282.

191. Gao, L.; Gonda, I.; Sun, H.; Ma, Q.; Bao, K.; Tieman, D.M.; Burzynski-Chang, E.A.; Fish, T.L.; Stromberg, K.A.; Sacks, G.L., et al. The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. *Nat. Genet.* **2019**, 51, 1044-1051, doi:10.1038/s41588-019-0410-2.

192. Cambiaso, V.; Pratta, G.R.; Pereira da Costa, J.H.; Zorzoli, R.; Francis, D.M.; Rodríguez, G.R. Whole genome re-sequencing analysis of two tomato genotypes for polymorphism insight in cloned genes and a genetic map construction. *Sci. Hort.* **2019**, 247, 58-66, doi:10.1016/j.scienta.2018.12.001.

193. Foolad, M.R.; Panthee, D.R. Marker-assisted selection in tomato breeding. *Crit. Rev. Plant Sci.* **2012**, 31, 93-123, doi:10.1080/07352689.2011.616057.

194. Martin, G.B.; Brommonschenkel, S.H.; Chunwongse, J.; Frary, A.; Ganal, M.W.; Spivey, R.; Wu, T.; Earle, E.D.; Tanksley, S.D. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. *Science* **1993**, 262, 1432, doi:10.1126/science.7902614.

195. Tanksley, S.D.; Ganal, M.W.; Prince, J.P.; de Vicente, M.C.; Bonierbale, M.W.; Broun, P.; Fulton, T.M.; Giovannoni, J.J.; Grandillo, S.; Martin, G.B. High density molecular linkage maps of the tomato and potato genomes. *Genetics* **1992**, 132, 1141.

196. Takagi, H.; Abe, A.; Yoshida, K.; Kosugi, S.; Natsume, S.; Mitsuoka, C.; Uemura, A.; Utsushi, H.; Tamiru, M.; Takuno, S., et al. QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. *Plant J.* **2013**, 74, 174-183, doi:10.1111/tpj.12105.

197. Abe, A.; Kosugi, S.; Yoshida, K.; Natsume, S.; Takagi, H.; Kanzaki, H.; Matsumura, H.; Yoshida, K.; Mitsuoka, C.; Tamiru, M., et al. Genome sequencing reveals agronomically important loci in rice using MutMap. *Nat. Biotechnol.* **2012**, 30, 174-178, doi:10.1038/nbt.2095.

198. Liu, S.; Yeh, C.T.; Tang, H.M.; Nettleton, D.; Schnable, P.S. Gene mapping via bulked segregant RNA-Seq (BSR-Seq). *PLoS One* **2012**, 7, e36406, doi:10.1371/journal.pone.0036406.

199. Sun, X.; Liu, D.; Zhang, X.; Li, W.; Liu, H.; Hong, W.; Jiang, C.; Guan, N.; Ma, C.; Zeng, H., et al. SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. *PLoS One* **2013**, 8, e58700, doi:10.1371/journal.pone.0058700.

200. Saidou, A.-A.; Thuillet, A.-C.; Couderc, M.; Mariac, C.; Vigouroux, Y. Association studies including genotype by environment interactions: prospects and limits. *BMC Genet.* **2014**, 15, doi: https://doi.org/10.1186/1471-2156-15-3.

201. Jones, J.D.G.; Dangl, J.L. The plant immune system. *Nature* **2006**, 444, 323-329, doi:10.1038/nature05286.

202. Dong, O.X.; Ronald, P.C. Genetic engineering for disease resistance in plants: Recent progress and future perspectives. *Plant Physiol.* **2019**, 180, 26-38, doi:10.1104/pp.18.01224.

203. Tang, D.; Wang, G.; Zhou, J.M. Receptor kinases in plant-pathogen interactions: More than pattern recognition. *Plant Cell* **2017**, 29, 618-637, doi:10.1105/tpc.16.00891.

204. Thomma, B.P.; Cammue, B.P.; Thevissen, K. Plant defensins. *Planta* **2002**, 216, 193-202, doi:10.1007/s00425-002-0902-6.

205. Ahuja, I.; Kissen, R.; Bones, A.M. Phytoalexins in defense against pathogens. *Trends Plant Sci.* **2012**, 17, 73-90, doi:10.1016/j.tplants.2011.11.002.

206. Kubicek, C.P.; Starr, T.L.; Glass, N.L. Plant cell wall--degrading enzymes and their secretion in plant-pathogenic fungi. *Annu. Rev. Phytopathol.* **2014**, 52, 427-451, doi:10.1146/annurev-phyto-102313-045831.

207. Asai, S.; Shirasu, K. Plant cells under siege: plant immune system versus pathogen effectors. *Curr. Opin. Plant Biol.* **2015**, 28, 1-8, doi:10.1016/j.pbi.2015.08.008.
208. Macho, A.P.; Zipfel, C. Plant PRRs and the activation of innate immune signaling. *Mol. Cell* 2014, 54, 263-272, doi:10.1016/j.molcel.2014.03.028.

209. Nelson, R.; Wiesner-Hanks, T.; Wisser, R.; Balint-Kurti, P. Navigating complexity to breed disease-resistant crops. *Nat. Rev. Genet.* 2018, 19, 21-33, doi:10.1038/nrg.2017.82.

210. Johnson, R. A critical analysis of durable resistance. *Ann. Rev. Phytopathol.* 1984, 22, 309-330.

211. French, E.; Kim, B.S.; Iyer-Pascuzzi, A.S. Mechanisms of quantitative disease resistance in plants. *Semin. Cell Dev. Biol.* 2016, 56, 201-208, doi:10.1016/j.semcdb.2016.05.015.

212. Mundt, C.C. Pyramiding for resistance durability: Theory and practice. *Phytopathology* 2018, 108, 792-802, doi:10.1094/phyto-12-17-0426-rvw.

213. Fukuoka, S.; Saka, N.; Mizukami, Y.; Koga, H.; Yamanouchi, U.; Yoshioka, Y.; Hayashi, N.; Ebana, K.; Mizobuchi, R.; Yano, M. Gene pyramiding enhances durable blast disease resistance in rice. *Sci. Rep.* 2015, 5, 7773, doi:10.1038/srep07773.

214. Pradhan, S.K.; Nayak, D.K.; Mohanty, S.; Behera, L.; Barik, S.R.; Pandit, E.; Lenka, S.; Anandan, A. Pyramiding of three bacterial blight resistance genes for broad-spectrum resistance in deepwater rice variety, Jalmagna. *Rice* 2015, 8, doi:10.1186/s12284-015-0051-8.

215. Zhu, S.; Li, Y.; Vossen, J.H.; Visser, R.G.; Jacobsen, E. Functional stacking of three resistance genes against *Phytophthora infestans* in potato. *Transgenic Res.* 2012, 21, 89-99, doi:10.1007/s11248-011-9510-1.

216. Ghislain, M.; Byarugaba, A.A.; Magembe, E.; Njoroge, A.; Rivera, C.; Román, M.L.; Tovar, J.C.; Gamboa, S.; Forbes, G.A.; Kreuze, J.F., et al. Stacking three late blight resistance genes from wild species directly into African highland potato varieties confers complete field resistance to local blight races. *Plant Biotechnol. J.* 2019, 17, 1119-1129, doi:10.1111/pbi.13042.

217. Que, Q.; Chilton, M.-D.; Fontes, C.; He, C.; Nuccio, M.; Zhu, T.; Wu, Y.; Chen, J.; Shi, L. Trait stacking in transgenic crops: Challenges and opportunities. *GM Crops* 2010, 1, 220-229, doi:10.4161/gmcr.1.4.13439.

218. Jupe, F.; Witek, K.; Verweij, W.; Sliwka, J.; Pritchard, L.; Etherington, G.; Leggett, R.M.; Bryan, G.J., et al. Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations. *Plant J.* 2013, 76, 530-544, doi:10.1111/tpj.12307.

219. Jupe, F.; Chen, X.; Verweij, W.; Witek, K.; Jones, J.D.; Hein, I. Genomic DNA library preparation for resistance gene enrichment and sequencing (RenSeq) in plants. *Methods Mol. Biol.* 2014, 1127, 291-303, doi:10.1007/978-1-62703-986-4_22.

220. Witek, K.; Jupe, F.; Steuernagel, B.; Baker, D.; Clark, M.D.; Jones, J.D. Accelerated cloning of a potato late blight-resistance gene using RenSeq and SMRT sequencing. *Nat. Biotechnol.* 2016, 34, 656-660, doi:10.1038/nbt.3540.

221. Arora, S.; Steuernagel, B.; Gaurav, K.; Chandramohan, S.; Long, Y.; Matny, O.; Johnson, R.; Enk, J.; Periyannan, S.; Singh, N., et al. Resistance gene cloning from a wild crop relative by sequence capture and association genetics. *Nat. Biotechnol.* 2019, 37, 139-143, doi:10.1038/s41587-018-0007-9.

222. Steuernagel, B.; Periyannan, S.K.; Hernández-Pinzón, L.; Witek, K.; Rouse, M.N.; Yu, G.; Hatta, A.; Ayliffe, M.; Bariana, H.; Jones, J.D.G., et al. Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. *Nat. Biotechnol.* 2016, 34, 652-655, doi:10.1038/nbt.3543.

223. Felekkis, K.; Touvana, E.; Stefanou, C.; Deltas, C. microRNAs: a newly described class of encoded molecules that play a role in health and disease. *Hippokratia* 2010, 14, 236-240.

224. Baulcombe, D. RNA silencing. *Trends Biochem. Sci.* 2005, 30, 290-293, doi:10.1016/j.tibs.2005.04.012.
225. Basso, M.F.; Ferreira, P.C.G.; Kobayashi, A.K.; Harmon, F.G.; Nepomuceno, A.L.; Molinari, H.B.C.; Grossi-de-Sa, M.F. MicroRNAs and new biotechnological tools for its modulation and improving stress tolerance in plants. *Plant Biotechnol. J.* 2019, 17, 1482-1500, doi:10.1111/pbi.13116.

226. Yang, L.; Huang, H. Roles of small RNAs in plant disease resistance. *J. Integr. Plant. Biol.* 2014, 56, 962-970, doi:10.1111/jipb.12200.

227. Katiyar-Agarwal, S.; Morgan, R.; Dahlbeck, D.; Borsani, O.; Villegas, A.; Zhu, J.-K.; Staskawicz, B.J.; Jin, H. A pathogen-inducible endogenous siRNA in plant immunity. *Proc. Natl. Acad. Sci.* 2006, 103, 18002, doi:10.1073/pnas.0608258103.

228. Tang, J.; Chu, C. MicroRNAs in crop improvement: fine-tuners for complex traits. *Nat. Plants* 2017, 3, 17077, doi:10.1038/nplants.2017.77.

229. Navarro, L.; Jay, F.; Nomura, K.; He, S.Y.; Voinnet, O. Suppression of the microRNA pathway by bacterial effector proteins. *Science* 2008, 321, 964-967, doi:10.1126/science.1159505.

230. Li, T.; Liu, B.; Spalding, M.H.; Weeks, D.P.; Yang, B. High-efficiency TALEN-based gene editing produces disease-resistant rice. *Nat. Biotechnol.* 2012, 30, 390-392, doi:10.1038/nbt.2199.

231. Shivaprasad, P.V.; Chen, H.M.; Patel, K.; Bond, D.M.; Santos, B.A.; Baulcombe, D.C. A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs. *Plant Cell* 2012, 24, 859-874, doi:10.1105/tpc.111.095380.

232. Zhu, Q.-H.; Fan, L.; Liu, Y.; Xu, H.; Llewellyn, D.; Wilson, I. miR482 regulation of NBS-LRR defense genes during fungal pathogen infection in cotton. *PLoS One* 2014, 8, e84390, doi:10.1371/journal.pone.0084390.

233. Yin, Z.; Li, Y.; Han, X.; Shen, F. Genome-wide profiling of miRNAs and other small non-coding RNAs in the *Verticillium dahliae*-inoculated cotton roots. *PLoS One* 2012, 7, e35765, doi:10.1371/journal.pone.0035765.

234. Yang, L.; Jue, D.; Li, W.; Zhang, R.; Chen, M.; Yang, Q. Identification of MiRNA from eggplant (*Solanum melongena* L.) by small RNA deep sequencing and their response to *Verticillium dahliae* infection. *PLoS One* 2013, 8, e72840, doi:10.1371/journal.pone.0072840.

235. Zhang, T.; Zhao, Y.L.; Zhao, J.H.; Wang, S.; Jin, Y.; Chen, Z.Q.; Fang, Y.Y.; Hua, C.L.; Ding, S.W.; Guo, H.S. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. *Nat. Plants* 2016, 2, 16153, doi:10.1038/nplants.2016.153.

236. Ellendorff, U.; Fradin, E.F.; de Jonge, R.; Thomma, B.P.H.J. RNA silencing is required for Arabidopsis defence against Verticillium wilt disease. *J. Exp. Bot.* 2009, 60, 591-602, doi:10.1093/jxb/ern306.

237. Shan, Q.; Wang, Y.; Li, J.; Zhang, Y.; Chen, K.; Liang, Z.; Zhang, K.; Liu, J.; Xi, J.J.; Qiu, J.-L., et al. Targeted genome modification of crop plants using a CRISPR-Cas system. *Nat. Biotechnol.* 2013, 31, 686-688, doi:10.1038/nbt.2650.

238. Wright, Addison V.; Nuñez, James K.; Doudna, Jennifer A. Biology and applications of CRISPR systems: Harnessing nature’s toolbox for genome engineering. *Cell* 2016, 164, 29-44, doi:https://doi.org/10.1016/j.cell.2015.12.035.

239. Zhang, Z.; Ge, X.; Luo, X.; Wang, P.; Fan, Q.; Hu, G.; Xiao, J.; Li, F.; Wu, J. Simultaneous editing of two copies of Gh14-3-3d confers enhanced transgene-clean plant defense against *Verticillium dahliae* in allotetraploid upland cotton. *Front. Plant Sci.* 2018, 9, 842, doi:10.3389/fpls.2018.00842.

240. Svitashhev, S.; Young, J.K.; Schwartz, C.; Gao, H.; Falco, S.C.; Cigan, A.M. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. *Plant Physiol.* 2015, 169, 931, doi:10.1104/pp.15.00793.
241. Schaart, J.G.; van de Wiel, C.C.M.; Lotz, L.A.P.; Smulders, M.J.M. Opportunities for products of new plant breeding techniques. *Trends Plant Sci.* 2016, 21, 438-449, doi:10.1016/j.tplants.2015.11.006.

242. Ahmad, S.; Wei, X.; Sheng, Z.; Hu, P.; Tang, S. CRISPR/Cas9 for development of disease resistance in plants: recent progress, limitations and future prospects. *Brief. Funct. Genom.* 2020, 19, 26-39, doi:10.1093/bfgp/elz041.

243. Kakar, K.U.; Nawaz, Z.; Cui, Z.; Ahemd, N.; Ren, X. Molecular breeding approaches for production of disease-resilient commercially important tobacco. *Brief Funct. Genom.* 2020, 19, 10-25, doi:10.1093/bfgp/elz038.

244. Zaidi, S.S.-e.-A.; Mukhtar, M.S.; Mansoor, S. Genome editing: Targeting susceptibility genes for plant disease resistance. *Trends Biotechnol.* 2018, 36, 898-906, doi:https://doi.org/10.1016/j.tibtech.2018.04.005.

245. Safdarpour, F.; Khodakaramian, G. Assessment of antagonistic and plant growth promoting activities of tomato endophytic bacteria in challenging with *Verticillium dahliae* under *in-vitro* and *in-vivo* conditions. *Biol. J. Microorg.* 2019, 7, 77-90.

246. Zeng, H.; Chen, R.; Luo, X.; Tian, J. Isolation and anti-*Verticillium dahliae* activity from *Bacillus axarquiensis* TUBP1 protein. *Process Biochem.* 2016, 51, 1691-1698, doi:https://doi.org/10.1016/j.procbio.2016.06.014.

247. Hollensteiner, J.; Wemheuer, F.; Harting, R.; Kolarzyk, A.M.; Diaz Valerio, S.M.; Poehlein, A.; Brzuszkiewicz, E.B.; Nesemann, K.; Braus-Stromeyer, S.A.; Braus, G.H., et al. *Bacillus thuringiensis* and *Bacillus weihenstephanensis* inhibit the growth of phytopathogenic *Verticillium* species. *Front. Microbiol.* 2017, 7, doi:10.3389/fmicb.2016.02171.

248. Dhouib, H.; Zouari, I.; Ben Abdallah, D.; Belbahri, L.; Taktak, W.; Triki, M.A.; Tounsi, S. Potential of a novel endophytic *Bacillus velezensis* in tomato growth promotion and protection against *Verticillium* wilt disease. *Biol. Control* 2019, 139, doi:10.1016/j.biocontrol.2019.104092.

249. Elshafie, H.S.; Sakr, S.; Bufo, S.A.; Camele, I. An attempt of biocontrol the tomato-wilt disease caused by *Verticillium dahliae* using *Burkholderia gladioli* pv. *agaricicola* and its bioactive secondary metabolites. *Int. J. Plant Biol.* 2017, 8, doi:10.4081/pb.2017.7263.

250. Zhang, Y.; Yang, N.; Zhao, L.; Zhu, H.; Tang, C. Transcriptome analysis reveals the defense mechanism of cotton against *Verticillium dahliae* in the presence of the biocontrol fungus *Chaetomium globosum* CEF-082. *BMC Plant Biol.* 2020, 20, 89, doi:10.1186/s12870-019-2221-0.

251. Esserti, S.; Smaili, A.; Rifai, L.A.; Koussa, T.; Makroum, K.; Belfaiza, M.; Kabil, E.M.; Faize, L.; Burgos, L.; Alburquerque, N., et al. Protective effect of three brown seaweed extracts against fungal and bacterial diseases of tomato. *J. Appl. Phycol.* 2017, 29, 1081-1093, doi:http://dx.doi.org/10.1007/s10811-016-0996-z.

252. Lozano-Tovar, M.D.; Garrido-Jurado, I.; Quesada-Moraga, E.; Raya-Ortega, M.C.; Traperio-Casas, A. *Metarhizium brunneum* and *Beauveria bassiana* release secondary metabolites with antagonistic activity against *Verticillium dahliae* and *Phytophthora megasperma* olive pathogens. *Crop Prot.* 2017, 100, 186-195, doi:https://doi.org/10.1016/j.cropro.2017.06.026.

253. Zhang, F.; Li, X.-L.; Zhu, S.-J.; Ojaghian, M.R.; Zhang, J.-Z. Biocontrol potential of *Paenibacillus polymyxa* against *Verticillium dahliae* infecting cotton plants. *Biol. Control* 2018, 127, 70-77, doi:https://doi.org/10.1016/j.biocontrol.2018.08.021.

254. Gómez-Lama Cabanás, C.; Legarda, G.; Ruano-Rosa, D.; Pizarro-Tobias, P.; Valverde-Corredor, A.; Niqui, J.L.; Triviño, J.C.; Roca, A.; Mercado-Blanco, J. Indigenous *Pseudomonas* spp. strains from the Olive (*Olea europaea L.*) rhizosphere as effective biocontrol agents against *Verticillium dahliae*: From the host roots to the bacterial genomes. *Front. Microbiol.* 2018, 9, doi:10.3389/fmicb.2018.00277.
255. Lan, X.; Zhang, J.; Zong, Z.; Ma, Q.; Wang, Y. Evaluation of the biocontrol potential of *Purpureocillium lilacinum* QLP12 against *Verticillium dahliae* in eggplant. *BioMed Res. Int.* 2017, 2017, 4101357, doi:10.1155/2017/4101357.

256. Fotoohiyan, Z.; Rezaee, S.; Bonjar, G.H.S.; Mohammadi, A.H.; Moradi, M. Biocontrol potential of *Trichoderma harzianum* in controlling wilt disease of pistachio caused by *Verticillium dahliae*. *J. Plant Prot. Res.* 2017, 57, 185-193, doi: https://doi.org/10.1515/jppr-2017-0025.

257. Varo-Suárez, A.; Raya-Ortega, M.C.; Agustí-Brisach, C.; García-Ortiz-Civantos, C.; Fernández-Hernández, A.; Mulero-Aparicio, A.; Trapero, A. Evaluation of organic amendments from agro-industry waste for the control of verticillium wilt of olive. *Plant Pathol.* 2018, 67, 860-870, doi:10.1111/ppa.12798.

258. Avilés, M.; Borrero, C. Identifying characteristics of Verticillium wilt suppressiveness in olive mill composts. *Plant Dis.* 2017, 101, 1568-1577, doi:10.1094/pdis-08-16-1172-re.

259. Ikeda, K.; Banno, S.; Furusawa, A.; Shibata, S.; Nakaho, K.; Fujimura, M. Crop rotation with broccoli suppresses Verticillium wilt of eggplant. *J. Gen. Plant Pathol.* 2015, 81, 77-82, doi:10.1007/s10327-014-0559-6.

260. Li, X.; Wang, X.; Shi, X.; Wang, Q.; Li, X.; Zhang, S. Compost tea-mediated induction of resistance in biocontrol of strawberry Verticillium wilt. *J. Plant Dis. Protect.* 2020, 127, 257-268, doi:10.1007/s41348-019-00290-0.

261. Mulero-Aparicio, A.; Trapero, A.; López-Escudero, F.J. A non-pathogenic strain of *Fusarium oxysporum* and grape marc compost control Verticillium wilt of olive. *Phytopathol. Mediterr.* 2020, 59, 159-167.

262. Kadoglidou, K.; Chatzopoulou, P.; Maloupa, E.; Kalaitzidis, A.; Ghoghoberidze, S.; Katsantonis, D. Mentha and oregano soil amendment induces enhancement of tomato tolerance against soilborne diseases, yield and quality. *Agronomy* 2020, 10, 406.

263. De Corato, U.; Patruno, L.; Avella, N.; Lacolla, G.; Cucci, G. Composts from green sources show an increased suppressiveness to soilborne plant pathogenic fungi: Relationships between physicochemical properties, disease suppression, and the microbiome. *Crop Prot.* 2019, 124, 104870, doi:https://doi.org/10.1016/j.cropro.2019.104870.

264. Kanaan, H.; Hadar, Y.; Medina, S.; Krasnovsky, A.; Mordechai-Lebiush, S.; Tsror, L.; Katan, J.; Raviv, M. Effect of compost properties on progress rate of *Verticillium dahliae* attack on eggplant (Solanum melongena L.). *Compost Sci. Util.* 2018, 26, 71-78, doi:10.1080/1065657X.2017.1366375.

265. Markakis, E.A.; Fountoulakis, M.S.; Daskalakis, G.C.; Kokkinis, M.; Ligoxigakis, E.K. The suppressive effect of compost amendments on *Fusarium oxysporum* f.sp. radicis-cucumerinum in cucumber and *Verticillium dahliae* in eggplant. *Crop Prot.* 2016, 79, 70-79, doi:https://doi.org/10.1016/j.cropro.2015.10.015.

266. Huang, X.; Liu, L.; Wen, T.; Zhang, J.; Wang, F.; Cai, Z. Changes in the soil microbial community after reductive soil disinfestation and cucumber seedling cultivation. *Appl. Microbiol. Biotechnol.* 2016, 100, 5581-5593, doi:10.1007/s00253-016-7362-6.

267. Muramoto, J.; Shennan, C.; Mazzola, M.; Wood, T.; Miethke, E.; Resultay, E.; Zavatta, M.; Koike, S.T. Use of a summer cover crop as a partial carbon source for anaerobic soil disinfestation in coastal California. *Acta Hortic.* 2020, 1270, 37-44, doi:https://doi.org/10.17660/ActaHortic.2020.1270.4

268. Horita, M.; Kitamoto, H.K. Biological soil disinfestation using bioethanol fermentation products: role of residual organic substances. *J. Gen. Plant Pathol.* 2015, 81, 304-314, doi:10.1007/s10327-015-0595-x.
269. Testen, A.L.; Miller, S.A. Carbon source and soil origin shape soil microbiomes and tomato soilborne pathogen populations during anaerobic soil disinfestation. *Phytobiomes* 2018, 2, 138-150.

270. Achmon, Y.; Harrold, D.R.; Claypool, J.T.; Stapleton, J.J.; VanderGheynst, J.S.; Simmons, C.W. Assessment of tomato and wine processing solid wastes as soil amendments for biosolarization. *Waste Manage.* 2016, 48, 156-164, doi:https://doi.org/10.1016/j.wasman.2015.10.022.

271. Testen, A.L.; Miller, S.A. Anaerobic soil disinfestation to manage soilborne diseases in muck soil vegetable production systems. *Plant Dis.* 2019, 103, 1757-1762, doi:10.1094/PDIS-09-18-1578-RE.

272. Francesco Di, G.; Monica, O.-H.; Jason, H.; Nancy, K.-B.; Joseph, A.; Xin, Z.; Zack, B.; Zhifeng, G.; Chris, W.; John, T., et al. The effects of anaerobic soil disinfestation on weed and nematode control, fruit yield, and quality of Florida fresh-market tomato. *HortScience* 2016, 51, 703-711, doi:10.21273/HORTSCI.51.6.703.