SELF-DUAL POLYHEDRA OF GIVEN DEGREE SEQUENCE

Riccardo W. Maffucci*

Abstract

Given vertex valencies admissible for a self-dual polyhedral graph, we describe an algorithm to explicitly construct such a polyhedron. Inputting in the algorithm permutations of the degree sequence can give rise to non-isomorphic graphs.

As an application, we find as a function of \(n \geq 3 \) the minimal number of vertices for a self-dual polyhedron with at least one vertex of degree \(i \) for each \(3 \leq i \leq n \), and construct such polyhedra. Moreover, we find a construction for non-self-dual polyhedral graphs of minimal order with at least one vertex of degree \(i \) and at least one \(i \)-gonal face for each \(3 \leq i \leq n \).

Keywords: Algorithm, planar graph, degree sequence, polyhedron, self-dual, quadrangulation, radial graph, valency.

MSC(2010): 05C85, 05C07, 05C35, 05C10, 52B05, 52B10.

1 Introduction

1.1 Results

This paper is about topological properties of polyhedra, namely the number of edges incident to a given vertex (degrees or valencies of vertices), and the number of faces adjacent to a given face (‘degrees’ or valencies of faces).

The 1-skeleton of a polyhedron is a planar, 3-connected graph – the Rademacher-Steinitz Theorem. These graphs are embeddable in a sphere in a unique way (an observation due to Whitney). We will call them polyhedral graphs, or polyhedra for short. The dual graph of a polyhedron is a polyhedron. Vertex and face valencies swap in the dual. We call a

*EPFL, MA SB BATIMENT 8, LAUSANNE, SWITZERLAND. riccardo.maffucci@epfl.ch.
polyhedron self-dual if it is isomorphic to its dual. A self-dual polyhedron on p vertices has p faces and $2p - 2$ edges (straightforward consequence of Euler’s formula).

In [6] we considered the problem of minimising the number of vertices of a polyhedron containing at least one vertex of valency i, for each $3 \leq i \leq n$. We established, among other results, that the minimal order (i.e. number of vertices) for such graphs is

$$\left\lfloor \frac{n^2 - 11n + 62}{4} \right\rfloor, \quad n \geq 14.$$

The dual problem, that has therefore the same answer, is about imposing instead that there is at least one i-gonal face, for each $3 \leq i \leq n$. In this paper, we assume both conditions.

Definition 1. We say that a polyhedron G has the property S_n if it comprises at least one vertex of degree i for every $3 \leq i \leq n$, and at least one i-gonal face for every $3 \leq i \leq n$.

Our first consideration is that if we ask instead for the minimal number of faces, and assume we have such a graph G, then its dual G^* also satisfies S_n, and has minimal vertices. Thereby, the answer to both questions must be the same. Moreover, it is natural to also seek self-dual solutions.

Theorem 2. Let $n \geq 3$ and G be a polyhedral graph satisfying S_n. Then the minimal number of vertices of G is

$$\frac{n^2 - 5n + 14}{2}, \quad \forall n \geq 3. \quad (1.1)$$

Moreover, Algorithm 3 constructs for each $n \geq 6$ a non-self-dual polyhedron H_n of order (1.1) satisfying S_n, whereas Algorithm 9 constructs for each $n \geq 3$ a self-dual polyhedron G_n of order (1.1) satisfying S_n. The speed of the said algorithms is quadratic in n, i.e., linear in the graph order.

Theorem 2 will be proven in section 2. The construction of the self-dual solutions is a special case of the following more general result, to be proven in section 3.

Theorem 3. Let $k \geq 0$ and

$$t_1, t_2, \ldots, t_k, 3^m \quad (1.2)$$

be given, where the integers t_i are not necessarily distinct, each $t_i \geq 4$, and

$$m = 4 + \sum_{i=1}^{k} (t_i - 4). \quad (1.3)$$

Then Algorithm 9 constructs a self-dual polyhedral graph of degree sequence (1.2). Inputting in Algorithm 9 a permutation of the t_i produces, in general, non-isomorphic graphs. The speed of the algorithm is linear in the graph order.

1The notation 3^m indicates that the number 3 is repeated m times.
Remark 4. For fixed t_1, \ldots, t_k, we need equality (1.3) to hold in order for (1.2) to be the degree sequence of a self-dual polyhedron. Indeed, we have

$$
\sum_{i=1}^{k} t_i + 3m = 2q = 2(2p - 2) = 4(k + m) - 4
$$

by the handshaking lemma and self-duality. Algorithm 3 thereby constructs a self-dual polyhedral graph for any given admissible degree sequence.

1.2 Discussion and related work

Theorem 2 solves a natural modification of the questions investigated in [6], as mentioned in section 1.1. The method is to establish a lower bound on the minimal order of graphs satisfying the property S_n, and then to explicitly construct, for each n, solutions of such order via an algorithm. Here the expression for the minimal order (1.1) is cleaner, and the constructions more straightforward than in [6]. Theorem 2 will be proven in section 2. The self-dual construction of Theorem 2 is an application of Theorem 3.

Theorem 3 is about constructing self-dual polyhedra for any admissible degree sequence. The notions of duality and self-duality have been investigated since antiquity, with the Platonic solids. However, it was only relatively recently that the cornerstone achievement of generating all self-dual polyhedra was carried out [1]. This was done by constructing all their radial graphs, to be defined in section 3. Indeed, there is a one-to-one correspondence between self-dual polyhedra and their radial graphs.

Their radial graphs are certain 3-connected quadrangulations of the sphere (i.e. polyhedra where all faces are cycles of length 4), namely, those with no separating 4-cycles (i.e. all 4-cycles are faces). Self-duals and these quadrangulations are thereby intimately related (there is a caveat, a 3-connected quadrangulation of this type is not necessarily the radial of a self-dual polyhedron). Now, the generation of all quadrangulations of the sphere is another cornerstone result in graph theory [3, 2]. Equipped with this knowledge, we will prove Theorem 3 (section 3.2).

Notation. We will usually denote vertex and edge sets of a graph G by $V(G)$ and $E(G)$, and their cardinality by $p = |V(G)|$ (order) and $q = |E(G)|$ (size). We will work with simple graphs (no loops or multiple edges). For $p \geq 4$, we call W_p the $p - 1$-gonal pyramid (or wheel graph), of p vertices.

Let \mathcal{P} be an operation on a graph G, that modifies a given subgraph H of G. The notation $\mathcal{P}(G)$ is not well-defined as G may contain no subgraph isomorphic to H, or may be ambiguous when the choice of H is not unique. Given the graphs G, G', we will write $\mathcal{P}[G] \cong G'$ when there exists a subgraph H of G such that the graph obtained from G on applying \mathcal{P} to H is isomorphic to G'.
Acknowledgements. The author was supported by Swiss National Science Foundation project 200021_184927.

2 Proof of Theorem 2

Lower bound. Let the graph G satisfy property S_n. In particular, G has at least one vertex of valency i for every $3 \leq i \leq n$. As shown in [6, proof of Lemma 7], we then have a lower bound on the edges $q = |E(G)|$,

$$2q \geq \frac{(n-2)(n-3)}{2} + 3p.$$

On the other hand, imposing that G has at least one i-gonal face for all $4 \leq i \leq n$ yields

$$2q \leq 6p - 12 - 2 \sum_{i=4}^{n} (i - 3) = 6p - 12 - (n - 3)(n - 2).$$

Combining the two inequalities yields the lower bound in Theorem 2

$$p \geq \frac{n^2 - 5n + 14}{2}, \quad \forall n \geq 3.$$

Construction. We now turn to actually constructing 3-polytopes of such order. Consulting [5, Table I], we find that entries 1 (tetrahedron), 2 (square pyramid) and 34 (Figure 1a) are the unique polyhedra of minimal order satisfying S_3, S_4, and S_5 respectively. These are all self-dual. Next, we construct for each $n \geq 6$ a non-self-dual polyhedron of minimal order satisfying S_n.

Figure 1

Algorithm 5.

Input. A natural number $N \geq 6$.

(a) The only polyhedron $H_5 = G_5$ of minimal order satisfying S_5.

(b) The polyhedron H_7 constructed in Algorithm 5.
Output. For each $6 \leq n \leq N$, a non-self-dual polyhedron H_n of minimal order satisfying S_n.

Description. We start by considering the graph H_5 in Figure 1a with its attached vertex labelling, by setting the integer $n := 6$, and the set of $n-3$ triples

$$S := \{(v_1, v_4, v_6), (v_5, v_1, v_7), (v_6, v_1, v_5)\}.$$

At each step, given H_{n-1}, we perform the operation depicted in Figure 2, 'edge splitting', to each vertex triple of S in turn, taking for u_1, u_2, u_3 the entries of the triple in order. We label successively v_8, v_9, \ldots the newly inserted vertices via the edge splitting. This yields the graph H_n. The graph H_7 is illustrated in Figure 1b. At the same time, we modify S in the following way. Upon applying edge splitting to (a, b, c), say, we replace it by the new triple (a, b, v), where v is the new vertex introduced by the splitting. Lastly, calling a' the first vertex of the last triple in S, we insert the further triple $(v_{|V(H)_{n-1}|+1}, v_1, a')$, and increase n by 1. The algorithm stops as soon as $n = N + 1$.

![Figure 2: Edge splitting operation on the vertices (u_1, u_2, u_3), consecutive on the boundary of a face.](image)

Remark 6. Edge splitting has the effect of raising by one the valencies of the vertex u_1 and of the face containing u_2, u_3 but not u_1. It also introduces the new vertex u_4 of degree 3, and the new triangular face u_1, u_2, u_4.

It is straightforward to check by induction, with base case $n = 6$, that the H_n of Algorithm 5 indeed satisfy the sought properties of Theorem 2. First, edge splitting is well-defined, as it is always performed on a triple of vertices forming a triangular face. Indeed, once we replace (u_1, u_2, u_3) of Figure 2 with (u_1, u_2, u_4) as in the algorithm, the latter triple forms a face. As for the last triple inserted at each step, note that it is simply

$$(v_{|V(H)_{n-1}|+1}, v_1, v_{|V(H)_{n-2}|+1}).$$

The vertices $u_1 = v_{|V(H)|+1} = v_6$, $u_2 = v_1$, $u_3 = v_{|V(H)|+1} = v_5$ form a triangle in H_5. Therefore, after edge splitting, u_1, u_2, and $u_4 = v_{|V(H)|+1} = v_8$ are the vertices of a triangle in H_6, and so forth in this fashion.

Second, for the graph order (1.1), each step adds $n-3$ vertices, and we have by induction

$$\frac{(n - 1)^2 - 5(n - 1) + 14}{2} + n - 3 = \frac{n^2 - 5n + 14}{2}.$$
Third, to obtain H_n from H_{n-1}, we perform $n - 3$ edge splittings. These transform a vertex of degree i into one of degree $i + 1$, for $3 \leq i \leq n - 1$ respectively. Moreover, at the same time an i-gon gets replaced by an $i + 1$-gon: indeed, in Figure 2 the face different containing u_2, u_3 but not u_1 loses the edge u_2u_3 and acquires u_2u_4, u_4u_3. We conclude that H_n satisfies S_n.

Fourth, we show that H_n is not self-dual for any $n \geq 6$. On one hand, $\deg_{H_n}(v_1) = n$, $\deg_{H_n}(v_5) = n - 1$, and $v_1v_5 \notin E(H_n)$. On the other hand, in H_n the n-gon and the $n - 1$-gon share the edge v_2v_3.

Lastly we note that Algorithm 5 may be implemented in linear time in the graph order (quadratic in n).

Remark 7. There are several other constructions, similar to Algorithm 5, yielding polyhedra of minimal order satisfying S_n, e.g. the duals H_n^*. The idea is to apply $n - 3$ edge splittings at each step, where each simultaneously increases by 1 the valency of a vertex and of a face.

The self-dual case, assuming Theorem 3. For the last part of Theorem 2 we require the further condition of self-duality. However, constructions with edge splitting in general do not preserve the self-duality of H_5 in the new graphs obtained from it. In the next section we will present Algorithm 9 that produces a self-dual polyhedron for any given admissible degree sequence, as stated in Theorem 3. The self-dual polyhedra of Theorem 2 may be constructed independently of the arguments of section 3, although possibly in a less intuitive fashion. Here we complete the proof of Theorem 2 assuming Theorem 3. To obtain G_n we simply input the tuple $(4, 5, \ldots, n)$, i.e. the sequence

$$n, n - 1, \ldots, 4, 3^{(n^2 - 7n + 20)/2},$$

into Algorithm 9.

3 Generating self-dual polyhedra

3.1 Radial graphs and quadrangulations

The radial, or vertex-face graph R_G of a plane graph G is obtained by taking $V(R_G)$ to be the set of vertices and regions of G. We have an edge between two vertices u, v of R_G whenever u is a vertex of G, and v a region of G, such that u lies on the boundary of v in G [7] section 2.8].

If the plane graph G is 2-connected, the newly constructed R_G is a quadrangulation of the sphere, i.e. each region is delimited by a 4-cycle [7] section 2.8]. If G is a polyhedron then
so is RG [1] Lemma 2.1]. Moreover, G is a polyhedron if and only if RG has no separating 4-cycles (i.e. 4-cycles that are not faces, so that removing the cycle disconnects the graph) [7 Lemma 2.8.2].

The radial graph of the tetrahedron is the cube, and more generally the radial graph of the pyramid (or wheel) W_p, $p \geq 4$ is the so-called ‘pseudo double wheel’ PDW_{2p} (of $2p$ vertices), i.e. the dual graph of the $p - 1$-gonal antiprism. As established in [3 Theorem 3], and initially stated in [2], all polyhedral quadrangulations of the sphere are obtained from the cube by applying three transformations P_1, P_2, P_3, sketched in [3 Figure 3] and [2 Figure 3]. We introduce the notation $C(\mathcal{G}, \mathcal{P})$ for the set of all graphs that may be obtained from an initial set of graphs \mathcal{G} by applying the set of transformations \mathcal{P}. Under this notation, the previous statement may be rephrased as,

$$C(\{PDW_8\}, \{P_1, P_2, P_3\})$$

is the set of 3-connected quadrangulations of the sphere.

Moreover,

$$C(\{PDW_2p : p \geq 4\}, \{P_1\})$$

is the set of all polyhedral quadrangulations without separating 4-cycles [3 Theorem 4]. It follows that

$$C(\{PDW_2p : p \geq 4\}, \{P_1\}) \text{ is the set of radial graphs of polyhedra.}$$

We note that the transformation P_2 replaces a subgraph of G that is isomorphic to $PDW_8 - v$ with a copy of $PDW_{10} - v$. In particular, $P_2[PDW_{2p}] \cong PDW_{2p+2}$. Therefore, we have

$$C(\{PDW_2p : p \geq 4\}, \{P_1\}) \subseteq C(\{PDW_8\}, \{P_1, P_2\}).$$

For G a self-dual polyhedron, we have in particular $|V(R_G)| = 2|V(G)|$ and $|E(R_G)| = 2|E(G)| = 2|V(R_G^*)|$. Furthermore, we can recover G from RG by noting that the latter is always bipartite, and taking for G all of the vertices in either part of RG, together with edges for G between pairs of vertices belonging to the same face in RG. The above considerations have the following consequence.

Proposition 8. The radial graph of any polyhedron G may be obtained from the cube via the transformations P_1, P_2 of [3 Figure 3]. Moreover, the number of applications of P_1 to generate self-duals is even.

Proof. By the arguments of the present section, it suffices to prove that when G is self-dual, the number of applications of P_1 on the cube to obtain RG is indeed even. From [3 Figure 3], we observe that P_1 has the effect of adding an edge to G, and a vertex and an edge to G^*. As opposed to this, P_2 adds one vertex and one edge to both G, G^*. We have thus obtained our parity argument.

In the next section we prove Theorem [3 putting it in the context of the above literature.
3.2 The proof of Theorem 3

As it turns out, for any \(n \geq 3 \), generating a self-dual polyhedron \(G \) of minimal order satisfying \(S_n \) may be done by applying only a transformation \(\mathcal{P} \) (to be defined below, and similar to \(\mathcal{P}_2 \) of [3, 2]) to the cube in order to construct \(R_G \), and then passing to \(G \). This generalises readily to Theorem 3 as we will now prove.

We begin by defining a function \(f \), that maps a tuple \(T = (t_1, t_2, \ldots, t_k), k \geq 0 \), of integers \(\geq 4 \) to the degree sequence (1.2)

\[
f(T) = t_1, t_2, \ldots, t_k, 3^m,
\]

where \(m \) is given by (1.3).

Algorithm 9.

Input. A \(k \)-tuple of integers \(T = (t_1, t_2, \ldots, t_k) \), with \(t_i \geq 4 \) for each \(i \).

Output. A self-dual polyhedron \(G(T) \) of degree sequence \(f(T) \).

Description. We will construct the radial graph \(R_{G(T)} \), and then pass to \(G(T) \) as explained in section 3.1. We begin by setting \(R_{G(T)} \) to be the cube \(PDW_8 \), radial graph of the tetrahedron. We also consider a subgraph \(H \) of \(R_{G(T)} \) with the vertex labelling of Figure 3a. We define the transformation \(\mathcal{P} \) that modifies a subgraph \(H \) of a graph \(G \) as shown in Figure 3b. We stop when \(T \) is empty. Each step entails \(t_i - 3 \) successive applications of \(\mathcal{P} \) to \(R_{G(T)} \). Before each subsequent application, we apply to \(H \) a graph isomorphism \(\varphi \) such that

\[
\varphi(a) = a, \quad \varphi(b) = c, \quad \varphi(c) = d, \\
\varphi(A) = A, \quad \varphi(B) = C, \quad \varphi(C) = D.
\]

as labelled in Figure 3c. Following all the \(t_i - 3 \) operations, we instead apply to \(H \) the graph isomorphism \(\psi \) satisfying

\[
\psi(a) = c, \quad \psi(b) = a, \quad \psi(c) = d, \\
\psi(A) = C, \quad \psi(B) = A, \quad \psi(C) = D.
\]

then we delete \(t_i \) from \(T \), and proceed to the next step.

Remark 10. There are in general several polyhedra for a given degree sequence (1.2). Algorithm 9 does not construct them all. On the other hand, in many cases permutations of the \(t_i \)'s give rise to non-isomorphic solutions, as may be observed via direct computation.

Remark 11. It follows from Theorem 3 that the set

\[
\mathcal{C} \{ \{PDW_8\}, \{\mathcal{P}\} \}
\]
Table 1: For given graph size q, the number of radial graphs R_G of self-dual polyhedra G with size q that belong to $C(\{PDW_8\}, \{P\})$, compared to the total. For values in the last row, refer e.g. to [4].

Remark 12. The transformation \mathcal{P} is similar to \mathcal{P}_2 of [3, 2]. More precisely, \mathcal{P}_2 is applicable if and only if, \mathcal{P} may be applied and moreover either a, b or A, B belong to the same face in R_G (referring to the labelling of Figure 3).

Remark 13. Applying \mathcal{P} to R_G has the same effect on G and G^* as applying the edge splitting of Figure 2 to them, where $u_1 = a$, $u_2 = b$, $u_3 = c$, and $u_4 = d$ (and analogously for vertices A, B, C, D of G^*).

Let us now complete the proof of Theorem 3. We start by justifying applicability of the transformation \mathcal{P}. The initial cube clearly has a subgraph isomorphic to H in Figure 3a. Furthermore, the graph in Figure 3b also has a subgraph isomorphic to H, where the isomorphism is $\varphi \ (3.1)$. The same statement remains true for $\psi \ (3.2)$.

Starting with the cube $R_G((3,3,3,3))$, each operation \mathcal{P} clearly yields another 3-connected quadrangulation of the sphere. We now check that self-duality of G is preserved by the algorithm. Each operation \mathcal{P} on $R_{G(T)}$ transforms $G(T)$ and $G^*(T)$ in the same way (Remark 13). As the initial $G((3,3,3,3))$ (tetrahedron) is self-dual, then so will all the successive $G(T)$’s be. Further, the following considerations for lower-case labels a, b, c, d apply verbatim to the upper-case ones by duality.
We now analyse how each step affects the degrees of the vertices in G. First, the degree of a vertex in G is the number of faces that the corresponding vertex lies on in R_G, i.e., $\deg_G(v) = \deg_{R_G}(v)$ for each v by the definition of radial graph. Now, each application of \mathcal{P} adds 1 to the degree of a (and A of G^*), introduces the new vertex d (and D of G^*), of degree 3, and leaves other valencies unchanged. When we update H via φ (3.1), a is mapped to itself. Therefore, step $i = 1, \ldots, k$ has the effect of increasing by $t_i - 3$ the degree of a (and A).

Second, we claim that the algorithm step i increases by $t_i - 4$ the number of vertices of valency 3 in G. By the considerations above, the first application of \mathcal{P} increases one valency of G from 3 to 4, and adds a new vertex of degree 3. Hence the first application of each step leaves the number of vertices of valency 3 in $G(T)$ unchanged. Each subsequent application of \mathcal{P} increases their total by 1. Now step i entails $t_i - 3$ operations of type \mathcal{P}, hence the number of vertices of degree 3 increases by $(t_i - 3) - 1$ as claimed.

Third, we claim that, at the beginning of each algorithm step, in $G(T)$ with its attached labelling one has $$\deg(a) = \deg(A) = 3.$$ We show this claim by induction. In the initial cube all vertices are of valency 3. When we apply ψ (3.2) to H, a is mapped to c, and $\deg(c) = 3$ since \mathcal{P} does not modify its degree.

Putting everything together, after k algorithm steps the degree sequence of $G(T)$ will be $$t_1, t_2, \ldots, t_k, 3^4 + \sum_{i=1}^{k} (t_k-4)$$ i.e., at the end of the algorithm the resulting sequence will be $[1.2]$ as desired.

As for algorithm speed, the total number of operations to obtain $G(T)$ is proportional to the sum of the t_i’s, i.e. to the graph size q, that is to say, to its order p since $q = 2p - 2$. The proof of Theorem 3 is complete.

Future work. Our investigation generates a portion of the self-dual polyhedra (recall Table 1), starting from the tetrahedron, by applying \mathcal{P} to its radial graph (Figure 3). This portion includes at least one such graph for every admissible degree sequence. It would be of interest to further analyse the set $\mathcal{C}(\{PDW_8\}, \{\mathcal{P}\})$ and its properties.
REFERENCES

[1] Dan Archdeacon and R Bruce Richter. The construction and classification of self-dual spherical polyhedra. *Journal of Combinatorial Theory, Series B*, 54(1):37–63, 1992.

[2] Vladimir Batagelj. An inductive definition of the class of 3-connected quadrangulations of the plane. *Discrete mathematics*, 78(1-2):45–53, 1989.

[3] Gunnar Brinkmann, Sam Greenberg, Catherine Greenhill, Brendan D McKay, Robin Thomas, and Paul Wollan. Generation of simple quadrangulations of the sphere. *Discrete mathematics*, 305(1-3):33–54, 2005.

[4] Michael B Dillencourt. Polyhedra of small order and their hamiltonian properties. *Journal of Combinatorial Theory, Series B*, 66(1):87–122, 1996.

[5] PJ Federico. Polyhedra with 4 to 8 faces. *Geometriae Dedicata*, 3(4):469–481, 1975.

[6] Riccardo W Maffucci. Constructing certain families of 3-polytopal graphs. *arXiv preprint arXiv:2105.00022*, 2021.

[7] Bojan Mohar and Carsten Thomassen. *Graphs on surfaces*, volume 16. Johns Hopkins University Press Baltimore, 2001.