General decay for weak viscoelastic equation of Kirchhoff type containing Balakrishnan–Taylor damping with nonlinear delay and acoustic boundary conditions

Min Yoon¹, Mi Jin Lee² and Jum-Ran Kang¹*

¹Correspondence: pointegg@hanmail.net
²Department of Applied Mathematics, Pukyong National University, Busan 48513, South Korea

Full list of author information is available at the end of the article

Abstract
In this paper, we consider the general decay of solutions for the weak viscoelastic equation of Kirchhoff type containing Balakrishnan–Taylor damping with nonlinear delay and acoustic boundary conditions. By using suitable energy and Lyapunov functionals, we prove the general decay for the energy, which depends on the behavior of both σ and k.

MSC: 35L70; 35B40; 35B35

Keywords: Weak viscoelastic equation; Balakrishnan–Taylor damping; Acoustic boundary conditions; Nonlinear delay; General decay rate

1 Introduction
The objective of this work is to study the general decay of solutions for the weak viscoelastic equation of Kirchhoff type containing Balakrishnan–Taylor damping with nonlinear delay and acoustic boundary conditions

\[|w_t|^p w_{tt} - (a_0 + b_0 \| \nabla w \|^2 + b_1 (\nabla w, \nabla w_t)) \Delta w - \Delta w_{tt} + \sigma(t) \int_0^t k(t-s) \Delta w(s) \, ds \]
\[= |w|^{p-2} w \quad \text{in } \Omega \times \mathbb{R}^+, \]
\[w = 0 \quad \text{on } \Gamma_0 \times \mathbb{R}^+, \]
\[(a_0 + b_0 \| \nabla w \|^2 + b_1 (\nabla w, \nabla w_t)) \frac{\partial w}{\partial v} + \frac{\partial w_{tt}}{\partial v} - \sigma(t) \int_0^t k(t-s) \frac{\partial w(s)}{\partial v} \, ds \]
\[+ \mu_1 |w_t(x,t)|^{q-1} w_t(x,t) + \mu_2 |w_t(x,t-\tau)|^{q-1} w_t(x,t-\tau) \]
\[= m(x) u_t \quad \text{on } \Gamma_1 \times \mathbb{R}^+, \]
\[w_t + g(x) u_t + h(x) u = 0 \quad \text{on } \Gamma_1 \times \mathbb{R}^+, \]
\[w(x,0) = w_0(x), \quad w_t(x,0) = w_1(x) \quad \text{in } \Omega, \]
\[u(x, 0) = u_0(x) \quad \text{on } \Gamma_1, \]
\[w_t(x, t - \tau) = f_0(x, t - \tau) \quad \text{on } \Gamma_1, 0 < t < \tau, \]
(1.6)
(1.7)

where \(\Omega \) is a bounded domain of \(\mathbb{R}^n \) (\(n \geq 1 \)) with a smooth boundary \(\Gamma = \Gamma_0 \cup \Gamma_1 \). Here, \(\Gamma_0 \) and \(\Gamma_1 \) are closed and disjoint and \(v \) is the unit outward normal to \(\Gamma \). \(w_0, w_1, u_0, \) and \(f_0 \) are given functions. All the parameters \(a_0, b_0, b_1, p, q, \mu_1, \) and \(\mu_2 \) are positive constants, the functions \(m, g, h : \Gamma_1 \rightarrow \mathbb{R} \) are essentially bounded. Moreover, \(k \) represents the kernel of the memory term and \(\tau > 0 \) represents the time delay.

The equation (1.1) with \(b_0 = b_1 = 0 \) and \(a_0 = \sigma(t) = 1 \),

\[|w_t|^p w_{tt} - \Delta w - \Delta w_{tt} + \int_0^t k(t - s)\Delta w(s) \, ds = |w|^p w \quad \text{in } \Omega \times \mathbb{R}_+, w = 0 \text{ on } \Gamma, \]
(1.8)

has been studied by Messaoudi and Tatar [16]. The case of \(\rho = 1 \) and \(b_1 = \sigma(t) = 0 \) in the absence of the dispersion term, the equation (1.1) reduces to the well-known Kirchhoff equation that has been introduced in [8] in order to describe the nonlinear vibrations of an elastic string.

The model with Balakrishnan–Taylor damping \((b_1 > 0) \) and \(k = 0 \), was initially proposed by Balakrishnan and Taylor in [2]. Several authors have studied the asymptotic behavior of the solution for the nonlinear viscoelastic Kirchhoff equations with Balakrishnan–Taylor damping (see [17, 22, 24] and references and therein). Recently, Al-Gharabli et al. [1] considered the following Balakrishnan–Taylor viscoelastic equation with a logarithmic source term

\[|w_t|^p w_{tt} - (a_0 + b_0 \| \nabla w \|^2 + b_1 (\nabla w, \nabla w_t)) \Delta w - \Delta w_{tt} + \int_0^t k(t - s)\Delta w(s) \, ds + h(w_t) = kw \ln |w| \quad \text{in } \Omega \times \mathbb{R}_+, w = 0 \text{ on } \Gamma. \]
(1.9)

They proved the general decay rates, using the multiplier method and some properties of the convex functions. Lian and Xu [11] investigated the problem (1.9) with weak and strong damping terms and \(\rho = b_0 = b_1 = k = 0 \).

For \(\sigma(t) > 0 \), Messaoudi [15] studied the following viscoelastic wave equation

\[w_{tt} - \Delta w + \sigma(t) \int_0^t k(t - s)\Delta w(s) \, ds = 0 \quad \text{in } \Omega \times \mathbb{R}_+. \]

The author obtained the general decay result that depends on the behavior of both \(\sigma \) and \(k \). For other related works, we refer the readers to [3, 13, 14].

Since most phenomena naturally depend not only on the present state but also on some past occurrences, in recent years, there has been published much work concerning the wave equation with delay effects that often appear in many practical problems [18–21]. Feng and Li [7] proved the general energy decay for a viscoelastic Kirchhoff plate equation with a time delay. Lee et al. [9] showed the general energy decay of solutions for system (1.1)–(1.7) with \(\sigma(t) = 1 \) and \(q = 1 \).

Motivated by previous work, we study the general energy decay of solutions for the system (1.1)–(1.7) that depends on the behavior of the potential \(\sigma \) and the relaxation function
k satisfying the suitable conditions. The acoustic boundary condition (1.4) and the coupled impenetrability boundary condition (1.3) were proposed by Beale and Rosencrans [5]. For physical application of acoustic boundary conditions, we refer to [4, 6]. The stability of various models with acoustic boundary conditions has been discussed by many researchers [10, 12, 14, 23]. The outline of this paper is as follows. In Sect. 2, we present some preparations and hypotheses for our main result. In Sect. 3, we obtain the general energy decay of the system (1.1)–(1.7) by using the energy-perturbation method.

2 Preliminary

In this section, we present some material that we shall use in order to prove our result. We denote by

$$
V = \{ w \in H^1(\Omega) : w = 0 \text{ on } \Gamma_0 \}.
$$

The Poincaré inequality holds in V, i.e., there exists a constant C_* such that

$$
\|w\|_r \leq C_* \|\nabla w\|, \quad 2 \leq r \leq \frac{2n}{n-2}, \forall w \in V,
$$

and there exists a constant \tilde{C}_* such that

$$
\|w\|_{r, \Gamma_1} \leq \tilde{C}_* \|\nabla w\|, \quad \forall w \in V.
$$

For our study of problem (1.1)–(1.7), we will need the following assumptions.

(H1) The constants ρ and q satisfy

$$
0 < \rho, q \leq \frac{2}{n-2} \quad \text{if } n \geq 3, \quad \rho, q > 0 \quad \text{if } n = 1, 2,
$$

and p satisfies

$$
0 < p \leq \frac{4}{n-2} \quad \text{if } n \geq 3, \quad p > 2 \quad \text{if } n = 1, 2.
$$

For the relaxation function k and potential σ, as in [15], we assume that

(H2) $k, \sigma : \mathbb{R} \rightarrow \mathbb{R}$, are nonincreasing differentiable functions such that k is a C^2 function and σ is a C^1 function satisfying

$$
k(0) > 0, \quad \int_0^\infty k(s) \, ds = k_0 < \infty, \quad \sigma(t) > 0,
$$

$$
a_0 - \sigma(t) \int_0^t k(s) \, ds \geq l > 0, \quad \forall t \geq 0,
$$

$$
\left(\sigma(t) \int_0^t k(s) \, ds \right)' \geq 0, \quad \forall t \in [0, t_0],
$$

where l and t_0 are suitable positive constants. There exists a nonincreasing differentiable function $\xi : \mathbb{R}^+ \rightarrow \mathbb{R}^+$ with

$$
\xi(t) > 0, \quad k'(t) \leq -\xi(t)k(t), \quad \forall t \geq 0, \quad \lim_{t \rightarrow \infty} -\xi(t)k(t) = 0.
$$
Remark 2.1 ([15]) 1. Note that (2.7) implies that \(\lim_{t \to \infty} \frac{-\sigma'(t)}{\sigma(t)} = 0 \).

2. Examples of functions \(k \) and \(\sigma \) satisfying (H2) are

\[
\sigma(t) = \frac{1}{1 + t}, \quad k(t) = ae^{-b(1+c)t}, \quad 0 < c \leq 1,
\]

for \(a, b > 0 \), to be chosen properly.

As in [19], let us introduce the function

\[
z(x, \delta, t) = w_t(x, t - \tau \delta), \quad x \in \Omega, \delta \in (0, 1), \forall t > 0.
\]

Then, problem (1.1)–(1.7) is equivalent to

\[
\begin{aligned}
|w_t|^p w_{tt} - (a_0 + b_0 \| \nabla w \|^2 + b_1 (\nabla w, \nabla w_t)) \Delta w - \Delta w_{tt} + \sigma(t) \int_0^t k(t-s) \Delta w(s) \, ds \\
= |w|^{p-2} w \quad \text{in } \Omega \times \mathbb{R}^+,
\end{aligned}
\]

\[
w = 0 \quad \text{on } \Gamma_0 \times \mathbb{R}^+,
\]

\[
\begin{aligned}
(a_0 + b_0 \| \nabla w \|^2 + b_1 (\nabla w, \nabla w_t)) \frac{\partial w}{\partial \nu} + \frac{\partial w_{tt}}{\partial \nu} - \sigma(t) \int_0^t k(t-s) \frac{\partial w(s)}{\partial \nu} \, ds \\
+ \mu_1 |w_t(x, t)|^{q-1} w_t(x, t) + \mu_2 |z(x, 1, t)|^{q-1} z(x, 1, t)
\end{aligned}
\]

\[
= m(x)u_2 \quad \text{on } \Gamma_1 \times (0, 1) \times \mathbb{R}^+,
\]

\[
\tau z_2(x, \delta, t) + z_2(x, \delta, t) = 0 \quad \text{on } \Gamma_1 \times (0, 1) \times \mathbb{R}^+,
\]

\[
w_t + g(x)u_t + h(x)u = 0 \quad \text{on } \Gamma_1 \times \mathbb{R}^+,
\]

\[
w(x, 0) = w_0(x), \quad w_t(x, 0) = w_1(x) \quad \text{in } \Omega,
\]

\[
u(x, 0) = u_0(x) \quad \text{on } \Gamma_1,
\]

\[
z(x, \delta, 0) = f_0(x, -\tau \delta) \quad \text{on } \Gamma_1 \times (0, 1).
\]

By combining with the argument of [5], we now state the local existence result of problem (2.10), which can be obtained.

Theorem 2.1 Suppose that (H1)–(H4) hold and that \((w_0, w_1) \in (H^2(\Omega) \cap V) \times V, u_0 \in L^2(\Gamma_1) \) and \(f_0 \in L^2(\Gamma_1 \times (0, 1)) \). Then, for any \(T > 0 \), there exists a unique solution \((w, u, z)\) of problem (2.10) on \([0, T]\) such that

\[
w \in L^\infty(0, T; H^2(\Omega) \cap V), \quad w_t \in L^\infty(0, T; V) \cap L^{q+1}(\Gamma_1 \times (0, T)),
\]

\[
m^{1/2}u \in L^\infty(0, T; L^2(\Gamma_1)), \quad m^{1/2}u_t \in L^2(0, T; L^2(\Gamma_1)).
\]

3 Main result

In this section, we state and show our main result. For this purpose, we define

\[
J(t) = \frac{1}{2} \left(a_0 - \sigma(t) \int_0^t k(s) \, ds \right) \| \nabla w(t) \|^2 + \frac{b_0}{4} \| \nabla w(t) \|^4
\]
where \((k \circ w)(t) = \int_{s=0}^{t} k(t - s)\|w(t) - w(s)\|^2 ds \).

From direct calculation, we find that

\[
\sigma(t)(k \ast w, w_t)
= -\frac{\sigma(t)}{2} k(t)\|w(t)\|^2 - \frac{d}{dt} \left[\frac{\sigma(t)}{2} (k \circ w)(t) - \frac{\sigma(t)}{2} (\int_{s=0}^{t} k(s) ds)\|w(t)\|^2 \right]
+ \frac{\sigma(t)}{2} (k' \circ w)(t) + \frac{\sigma'(t)}{2} (k \circ w)(t) - \frac{\sigma'(t)}{2} (\int_{s=0}^{t} k(s) ds)\|w(t)\|^2.
\]

and

\[
(k \ast w, w) \leq \left(\int_{s=0}^{t} k(s) ds \right)\|w(t)\|^2 + \frac{1}{4}(k \circ w)(t),
\]

where \((k \ast w)(t) = \int_{s=0}^{t} k(t - s)w(s) ds \).

Now, we denote the modified energy functional \(E(t) \) associated with problem (2.10) by

\[
E(t) = \frac{1}{\rho + 2} \|w_t(t)\|^2 + \frac{1}{2} \sigma(t)(k \circ \nabla w)(t)
+ \frac{\xi}{2} \int_{\Gamma_1} \int_{0}^{1} \|z(\delta, t)\|^q d\delta d\Gamma + \frac{1}{2} \int_{\Gamma_1} h(x) m(x) u^2(t) d\Gamma - \frac{1}{p} \|w(t)\|^p
\]

\[
= \frac{1}{\rho + 2} \|w_t(t)\|^2 + \frac{1}{2} \sigma(t)(k \circ \nabla w)(t) + \frac{1}{2} \int_{\Gamma_1} h(x) m(x) u^2(t) d\Gamma - \frac{1}{p} \|w(t)\|^p
+ \frac{\xi}{2} \int_{\Gamma_1} \int_{0}^{1} \|z(\delta, t)\|^q d\delta d\Gamma + \frac{1}{2} \int_{\Gamma_1} h(x) m(x) u^2(t) d\Gamma - \frac{1}{p} \|w(t)\|^p
\]

where \(\xi \) is a positive constant such that

\[
\frac{2\tau \mu_2 q}{q + 1} < \xi < \frac{2\tau \mu_1 (q + 1) - 2\tau \mu_2}{q + 1}.
\]

Note that this choice of \(\xi \) is possible from assumption (H4).
Lemma 3.1 Assume that (H2) and (H4) hold. Then, for the solution of problem (2.10), the energy functional $E(t)$ satisfies

$$
E'(t) \leq -C_1 \| w_t(t) \|^2_\Omega + C_2 \int_{\Gamma_1} |z(x, 1, t)|^{q+1} \mathrm{d}t - b_1 \left(\frac{1}{2} \| \nabla w(t) \|^2 \right) \\
- \frac{\sigma(t) k(t)}{2} \| \nabla w(t) \|^2 - \frac{\sigma'(t)}{2} \left(\int_0^t k(s) \mathrm{d}s \right) \| \nabla w(t) \|^2 + \frac{\sigma'(t)}{2} (k \circ \nabla w(t)) \\
+ \frac{\sigma(t)}{2} (k' \circ \nabla w(t)) - \int_{\Gamma_1} m(x) g(x) u^2(t) \mathrm{d}t \leq 0, \quad \forall t \in [0, t_0],
$$

where C_1 and C_2 are some positive constants.

Proof Multiplying in the first equation of (2.10) by w_t and integrating over Ω, using (3.3), we have

$$
d\left[\frac{1}{\rho + 2} \| w_t(t) \|^{\rho+2} + \frac{1}{2} \left(a_0 - \sigma(t) \int_0^t k(s) \mathrm{d}s \right) \| \nabla w(t) \|^2 \right] \\
+ \frac{b_0}{4} \| \nabla w(t) \|^4 + \frac{1}{2} \| \nabla w_t(t) \|^2 \\
+ \frac{1}{\rho} \| \nabla w(t) \|^{\rho} + \frac{1}{2} \int_{\Gamma_1} h(x) m(x) u^2(t) \mathrm{d}t \right]\]

$$
= -\mu_1 \| w_t(t) \|^q + \mu_2 \int_{\Gamma_1} |z(x, 1, t)|^{q+1} z(x, 1, t) w_t(t) \mathrm{d}t - b_1 \left(\frac{1}{2} \| \nabla w(t) \|^2 \right) \\
- \frac{\sigma(t)}{2} k(t) \| \nabla w(t) \|^2 - \frac{\sigma'(t)}{2} \left(\int_0^t k(s) \mathrm{d}s \right) \| \nabla w(t) \|^2 + \frac{\sigma'(t)}{2} (k \circ \nabla w(t)) \\
+ \frac{\sigma(t)}{2} (k' \circ \nabla w(t)) - \int_{\Gamma_1} m(x) g(x) u^2(t) \mathrm{d}t.
$$

(3.7)

Multiplying the equation in the fourth equation of (2.10) by $\xi |z|^{q+1}$ and integrating the result over $\Gamma_1 \times (0, 1)$, we obtain

$$
\frac{\xi}{2} \frac{d}{dt} \int_{\Gamma_1} \int_0^1 |z(x, \delta, t)|^{q+1} \mathrm{d} \delta \mathrm{d}t \\
= -\frac{\xi}{2 \tau} \int_{\Gamma_1} \int_0^1 \frac{\partial}{\partial \delta} |z(x, \delta, t)|^{q+1} \mathrm{d} \delta \mathrm{d}t \\
= -\frac{\xi}{2 \tau} \int_{\Gamma_1} |z(x, 1, t)|^{q+1} \mathrm{d}t + \frac{\xi}{2 \tau} \int_{\Gamma_1} |w_t(t)|^{q+1} \mathrm{d}t.
$$

(3.9)

By using Young’s inequality, we obtain

$$
\left| \mu_2 \int_{\Gamma_1} |z(x, 1, t)|^{q+1} z(x, 1, t) w_t(t) \mathrm{d}t \right| \\
\leq \frac{\mu_2 q}{q + 1} \int_{\Gamma_1} |z(x, 1, t)|^{q+1} \mathrm{d}t + \frac{\mu_2}{q + 1} \int_{\Gamma_1} |w_t(t)|^{q+1} \mathrm{d}t.
$$

(3.10)
Thus, from (3.8)–(3.10) and the definition of E(t), we have

\[
E'(t) \leq - \left(\mu_1 - \frac{\xi}{2\tau} - \frac{\mu_2}{q+1} \right) \| w_t(t) \|_{q+1, \Gamma_1}^{q+1} - \left(\frac{\xi}{2\tau} - \frac{\mu_2q}{q+1} \right) \int_{\Gamma_1} |z(x,1,t)|^{q+1} d\Gamma \\
- b_1 \left(\frac{1}{2} \frac{d}{dt} \| w_t(t) \|^2 \right)^2 - \frac{(t)}{2} \| \nabla w(t) \|^2 - \frac{(t)}{2} \left(\int_0^t k(s) ds \right) \| \nabla w(t) \|^2 \\
+ \frac{(t)}{2} (k \circ \nabla w)(t) + \frac{(t)}{2} (k' \circ \nabla w)(t) - \int_{\Gamma_1} m(x)g(x)u^2(t) d\Gamma.
\]

Using (3.6), we take \(C_1 = \mu_1 - \frac{\xi}{2\tau} - \frac{\mu_2}{q+1} > 0 \) and \(C_2 = \frac{\xi}{2\tau} - \frac{\mu_2q}{q+1} > 0 \). From (2.6), we obtain the desired inequality (3.7).

Lemma 3.2 Suppose that (H1) and (H2) hold. Let \((w, u, z)\) be the solution of problem (2.10). Assume that \(I(0) > 0 \) and

\[
\alpha = \frac{C^p}{l} \left(\frac{2pE(0)}{l(p-2)} \right)^{\frac{p-2}{2}} < 1. \tag{3.11}
\]

Then, \(I(t) > 0 \) for \(t \in [0, T]\), where \(I(t) \) is defined in (3.2).

Proof Since \(I(0) > 0 \) and continuity of \(w(t) \), then there exists \(t_1 < T \) such that

\[
I(t) \geq 0, \quad \forall t \in [0, t_1]. \tag{3.12}
\]

From (2.5), (3.1), (3.2), and (3.12), we obtain

\[
J(t) = \frac{P-2}{2p} \left[\left(a_0 - \sigma(t) \int_0^t k(s) ds \right) \| \nabla w(t) \|^2 \right] + \frac{b_0}{2} \| \nabla w(t) \|^4 \\
+ \| \nabla w_t(t) \|^2 + \sigma(t)(k \circ \nabla w)(t) \\
+ \xi \left(\int_{\Gamma_1} \int_0^1 |z(x,\delta,t)|^{q+1} d\delta d\Gamma + \int_{\Gamma_1} h(x) m(x) u^2(t) d\Gamma \right) + \frac{1}{p} I(t) \\
\geq \frac{P-2}{2p} \| \nabla w(t) \|^2, \quad \forall t \in [0, t_1]. \tag{3.13}
\]

Using (3.5), (3.7), and (3.13), we obtain

\[
l \| \nabla w(t) \|^2 \leq \frac{2p}{p-2} j(t) \leq \frac{2p}{p-2} E(t) \leq \frac{2p}{p-2} E(0), \quad \forall t \in [0, T^*], \tag{3.14}
\]

where \(T^* = \min\{t_0, t_1\} \). Applying (2.1), (2.5), (3.11), and (3.14), we have

\[
\| w(t) \|_p \leq C \| \nabla w(t) \|^p \\
\leq \alpha l \| \nabla w(t) \|^2 \leq \left(a_0 - \sigma(t) \int_0^t k(s) ds \right) \| \nabla w(t) \|^2, \quad \forall t \in [0, T^*].
\]

Consequently, we arrive at

\[
J(t) = \left(a_0 - \sigma(t) \int_0^t k(s) ds \right) \| \nabla w(t) \|^2 + \frac{b_0}{2} \| \nabla w(t) \|^4 + \| \nabla w_t(t) \|^2 + \sigma(t)(k \circ \nabla w)(t)
\]
where bounded and global in time

Before we show our main result, we need the following lemmas.

Lemma 3.3 Let $w \in L^\infty([0,T];H^1_0(\Omega))$, then we have

$$\int_\Omega \left(\sigma(t) \int_0^t k(t-s)(w(t) - w(s)) \, ds \right)^{p+2} \, dx \leq (a_0 - \beta)^{p+1} \alpha_1 \sigma(t) (k \circ \nabla w)(t),$$

(3.18)

where $\alpha_1 = C_+^{p+2} \left(\frac{2pE_0}{2(p-2)} \right)^\frac{2}{p-2}$.

Proof From (2.1), (2.5), (3.14), and Hölder’s inequality, we obtain

$$\int_\Omega \left(\sigma(t) \int_0^t k(t-s)(w(t) - w(s)) \, ds \right)^{p+2} \, dx$$
Lemma 3.4 Let \((w, u, z)\) be the solution of (2.10) and suppose that \((H1)\)–\((H3)\) hold, then there exist two positive constants \(\beta_1\) and \(\beta_2\) such that

\[\beta_1 E(t) \leq \Xi(t) \leq \beta_2 E(t), \quad \forall t \geq 0.\] (3.19)

Proof Using (2.1), (2.2), (2.8), (3.14), and Young’s inequality, we obtain

\[
\left| \frac{1}{\rho + 1} \int_{\Omega} \left| w_t(t) \right|^\rho w_t(t) w(t) \, dx \right|
\leq \frac{1}{\rho + 2} \left\| w_t(t) \right\|_{\rho + 2}^\rho + \frac{\alpha_1}{(\rho + 2)(\rho + 1)} \left\| \nabla w(t) \right\|^2,
\] (3.20)

\[
\int_{\Omega} \nabla w(t) \nabla w(t) \, dx \leq \frac{1}{2} \left\| \nabla w(t) \right\|^2 + \frac{1}{2} \left\| \nabla w(t) \right\|^2,
\] (3.21)

\[
\int_{\Gamma_1} m(x) w(t) u(t) \, d\Gamma \leq \frac{\|m\|_{\infty}}{2\lambda_1} \int_{\Gamma_1} h(x) m(x) \nabla^2(t) \, d\Gamma + \frac{c_2}{2} \left\| \nabla w(t) \right\|^2.
\] (3.22)

Similarly, using (2.1), (2.5), (3.18), and Young’s inequality, we see that

\[
\left| \frac{1}{\rho + 1} \int_{\Omega} \sigma(t) \left| w_t(t) \right|^\rho w_t(t) \int_0^t k(t-s) (w(t) - w(s)) \, ds \, dx \right|
\leq \frac{\sigma(t)}{\rho + 2} \left\| w_t(t) \right\|_{\rho + 2}^\rho + \frac{(a_0 - l)^{\rho + 1} \alpha_1}{(\rho + 2)(\rho + 1)} \sigma(t) \left(k \circ \nabla w(t) \right),
\] (3.23)

and

\[
\left| - \int_{\Omega} \sigma(t) \nabla w_t(t) \int_0^t k(t-s) (\nabla w(t) - \nabla w(s)) \, ds \, dx \right|
\leq \frac{\sigma(t)}{2} \left\| \nabla w_t(t) \right\|^2 + \frac{k_0}{2} \sigma(t) \left(k \circ \nabla w(t) \right).
\] (3.24)

Combining (3.15)–(3.17), (3.20)–(3.24), and using (H2), we obtain

\[
\left| \Xi(t) - ME(t) \right|
\leq \varepsilon \sigma(t) \left| \Phi_1(t) \right| + \sigma(t) \left| \Phi_2(t) \right|
\leq \frac{\sigma(t)(\varepsilon + 1)}{\rho + 2} \left\| w_t(t) \right\|_{\rho + 2}^\rho + \frac{\sigma(t)(\varepsilon + 1)}{2} \left\| \nabla w_t(t) \right\|^2
\]
\[+ \varepsilon \sigma(t) \left(\frac{\alpha_1}{(\rho + 2)(\rho + 1)} + \frac{C^2}{2} + \frac{1}{2} \right) \left\| \nabla w(t) \right\|^2
\]
\[+ \left(\frac{(a_0 - l)^{\rho + 1} \alpha_1}{(\rho + 2)(\rho + 1)} + \frac{k_0}{2} \right) \sigma(t) \left(k \circ \nabla w(t) \right).\]
\begin{align*}
\eta \text{ inequality, for any } \forall \text{ we will estimate the right-hand side of (3.26). By using (2.2), (2.5), (2.8), (3.14), and Young’s inequality, we have }
\end{align*}

\begin{align*}
\leq CE(t),
\end{align*}

where \(C \) is some positive constant. Choosing \(M > 0 \) sufficiently large and \(\epsilon \) small, we obtain (3.19).

The following theorem is our main result.

Theorem 3.2 Suppose that \((H1)–(H4)\) and (3.6) hold. If \((w_0, w_1) \in (H^2(\Omega) \cap V) \times V, u_0 \in L^2(\Gamma_1), f_0 \in L^2(\Gamma_1 \times (0,1))\) and satisfying (3.11). Then, for any \(t > t_0^* \), there exist positive constants \(K \) and \(\kappa \) such that the energy of the solution for problem (2.10) satisfies

\begin{align}
E(t) = Ke^{-\int_0^t \sigma(s) \, ds}, \quad \forall t \geq t_0^*.
\end{align}

Proof From Lemma 3.4, it suffices to prove that we obtain the estimate of \(\exists(t) \). For this purpose, first we estimate \(\Phi_1(t) \). It follows from (2.10) and (3.16) that

\begin{align}
\Phi_1'(t) &= -(a_0 + b_0 \| \nabla w(t) \|^2) \int_\Omega \| \nabla w(t) \|^2 \, dx + \int_\Omega \nabla w(t) \sigma(t) \int_0^t k(t-s) \nabla w(s) \, ds \, dx
\end{align}

\begin{align}
&- \mu_1 \int_{\Gamma_1} |w_t(t)|^{-1} w_t(t) w(t) \, d\Gamma - \mu_2 \int_{\Gamma_1} |z(x,1,t)|^{-1} z(x,1,t) w(t) \, d\Gamma
\end{align}

\begin{align}
+ \frac{1}{\rho + 1} \| w_t(t) \|^{\rho+2}
\end{align}

\begin{align}
+ 2 \int_{\Gamma_1} m(x) w(t) u_t(t) \, d\Gamma - \int_{\Gamma_1} h(x) m(x) u^2(t) \, d\Gamma + \int_\Omega \| \nabla w(t) \|^2 \, dx
\end{align}

\begin{align}
+ \int_\Omega |w(t)|^p \, dx.
\end{align}

We will estimate the right-hand side of (3.26). By using (2.2), (2.5), (2.8), (3.14), and Young’s inequality, for any \(\eta > 0 \), we have

\begin{align}
\left| \int_\Omega \nabla w(t) \sigma(t) \int_0^t k(t-s) \nabla w(s) \, ds \, dx \right|
\end{align}

\begin{align}
\leq \left| \int_\Omega \nabla w(t) \sigma(t) \int_0^t k(t-s)(\nabla w(s) - \nabla w(t)) \, ds \, dx \right|
\end{align}

\begin{align}
+ \sigma(t) \int_0^t k(s) \, ds \int_\Omega |\nabla w(t)|^2 \, dx
\end{align}

\begin{align}
\leq (1 + \eta)(a_0 - \lambda) \| \nabla w(t) \|^2 + \frac{\sigma(t)}{4\eta}(k \circ \nabla)(t),
\end{align}

\begin{align}
\left| \mu_1 \int_{\Gamma_1} |w_t(t)|^{-1} w_t(t) w(t) \, d\Gamma \right|
\end{align}

\begin{align}
\leq \mu_1 \eta \alpha_2 \| \nabla w(t) \|^2 + \mu_1 C_\eta \| w_t(t) \|_{q+1,\Gamma_1}^{q+1}
\end{align}

\begin{align}
\left| \mu_2 \int_{\Gamma_1} |z(x,1,t)|^{-1} z(x,1,t) u(t) \, d\Gamma \right|
\end{align}

\begin{align}
\leq \mu_2 \eta \alpha_2 \| \nabla w(t) \|^2 + \mu_2 C_\eta \| z(x,1,t) \|_{q+1,\Gamma_1}^{q+1}
\end{align}
where \(\alpha_2 = \hat{C}_q \left(\frac{2pE(0)}{\eta_0 g_1} \right)^{\frac{q+1}{q}} \). Choosing \(\eta \) small enough such that

\[
\eta(a_0 - l + \hat{C}_q + \mu_1 \alpha_2 + \mu_2 \alpha_2) \leq \frac{l}{2}
\]

and substituting of (3.27)–(3.30) into (3.26), we obtain

\[
\Phi'_1(t) \leq -\frac{l}{2} \left[\|\nabla w(t)\|_2^2 - b_0 \|\nabla w(t)\|_2^4 + \frac{1}{\rho + 1} \|w(t)\|_{\rho+2}^p + \|\nabla w(t)\|_2^2 + \|w(t)\|_p^p \right.
\]

\[
+ \frac{\sigma(t)}{4\eta}(k \circ \nabla w(t) + \mu_1 C_\eta \|w(t)\|_{q+1, \Gamma_1}^{q+1} + \mu_2 C_\eta \|z(x, 1, t)\|_{q+1, \Gamma_1}^{q+1})
\]

\[
+ \frac{m\|m\|_{\infty}}{\eta g_1} \int_{\Gamma_1} m(x)g(x)u_2^2(t) d\Gamma - \int_{\Gamma_1} h(x)m(x)u_2^2(t) d\Gamma.
\]

Next, we would like to estimate \(\Phi'_2(t) \). Taking the derivative of \(\Phi_2(t) \) in (3.17) and using (2.10), we obtain

\[
\Phi'_2(t) = (a_0 + b_0 \|\nabla w(t)\|_2^2) \int_{\Omega} \nabla w(t) \int_0^t k(t-s)(\nabla w(t) - \nabla w(s)) \, ds \, dx
\]

\[
+ b_1 \int_{\Omega} \nabla w(t) \nabla w(t) \, dx \int_{\Omega} \nabla w(t) \int_0^t k(t-s)(\nabla w(t) - \nabla w(s)) \, ds \, dx
\]

\[
- \int_{\Omega} \sigma(t) \int_0^t k(t-s) \nabla w(s) \, ds \int_0^t k(t-s)(\nabla w(t) - \nabla w(s)) \, ds \, dx
\]

\[
- \int_{\Omega} |w(t)|_{\rho+2} w(t) \int_0^t k(t-s)(w(t) - w(s)) \, ds \, dx
\]

\[
- \int_{\Omega} \nabla w(t) \int_0^t k'(t-s)(\nabla w(t) - \nabla w(s)) \, ds \, dx
\]

\[
- \frac{1}{\rho + 1} \int_{\Omega} |w(t)|^\rho w(t) \int_0^t k'(t-s)(w(t) - w(s)) \, ds \, dx
\]

\[
- \int_{\Gamma_1} m(x)u_1(t) \int_0^t k(t-s)(w(t) - w(s)) \, ds \, d\Gamma
\]

\[
+ \mu_2 \int_{\Gamma_1} |z(x, 1, t)|^{q-1} z(x, 1, t) \int_0^t k(t-s)(w(t) - w(s)) \, ds \, d\Gamma
\]

\[
+ \mu_1 \int_{\Gamma_1} |w_x(x,t)|^{q-1} w_x(x, t) \int_0^t k(t-s)(w(t) - w(s)) \, ds \, d\Gamma
\]

\[
- \left(\int_0^t k(s) \, ds \right) \|\nabla w(t)\|_2^2 - \frac{1}{\rho + 1} \left(\int_0^t k(s) \, ds \right) \|w_1(t)\|_{\rho+2}^{\rho+2}
\]

\[
:= E_1 + E_2 + \cdots + E_9 - \left(\int_0^t k(s) \, ds \right) \|\nabla w(t)\|_2^2
\]

\[
- \frac{1}{\rho + 1} \left(\int_0^t k(s) \, ds \right) \|w_1(t)\|_{\rho+2}^{\rho+2}.
\]

(3.32)
Now, we will estimate the right-hand side of (3.32). By (2.1), (2.2), (2.5), (2.8), (3.7), (3.13), (3.14), and Young’s inequality, for any $\gamma > 0$, we derive the following inequalities

\[
|E_1| \leq \left| \int_\Omega \left(a_0 + \frac{2b_0 pE(0)}{l(p-2)} \right) \nabla w(t) \int_0^t k(t-s)(\nabla w(t) - \nabla w(s)) \, ds \, dx \right|
\]

\[
\leq \gamma \|\nabla w(t)\|^2 + \frac{k_0}{4\gamma} \left(a_0 + \frac{2b_0 pE(0)}{l(p-2)} \right)^2 (k \circ \nabla w)(t),
\]

\[
|E_2| \leq \gamma b_1^2 \left(\int_\Omega \nabla w(t) \nabla w_t(t) \, dx \right)^2 \|\nabla w(t)\|^2
\]

\[
+ \frac{1}{4\gamma} \int_\Omega \left(\int_0^t \left(\int_0^t (k(t-s)(\nabla w(t) - \nabla w(s)) \, ds \right)^2 \right) \, dx
\]

\[
\leq -\frac{2\gamma b_1^2 pE(0)}{l(p-2)} E'(t) + \frac{k_0}{4\gamma} (k \circ \nabla w)(t),
\]

\[
|E_3| \leq \gamma \int_\Omega |\nabla w(t)(t)\|^{2(p-1)} \, dx + C_2^2 k_0 \gamma \|\nabla w(t)\|
\]

\[
\leq \gamma \alpha_3 \|\nabla w(t)\|^2 + \frac{C_2^2 k_0}{4\gamma} (k \circ \nabla w)(t),
\]

\[
|E_4| \leq \gamma \int_\Omega \left| w(t) \right|^{2(p-1)} \, dx + \frac{C_2^2 k_0}{4\gamma} (k \circ \nabla \nabla w)(t),
\]

\[
|E_5| \leq \gamma \|\nabla w_t(t)\|^2 - \frac{k(0)}{q(p+1)} (k \circ \nabla \nabla w)(t),
\]

\[
|E_6| \leq \frac{\gamma \alpha_4}{q(p+1)} \|\nabla w_t(t)\|^2 - \frac{k(0)C_2^2}{4\gamma(q(p+1))} (k \circ \nabla \nabla w)(t),
\]

\[
|E_7| \leq \frac{\gamma \|m\|_{q+1}}{\|\nabla \nabla w(t)\|_{q+1, \Gamma_1}} \int_{\Gamma_1} m(x)g(x)u_{2t}(t) \, d\Gamma + \frac{C_2^2 k_0}{4\gamma} (k \circ \nabla \nabla w)(t),
\]

\[
|E_8| \leq \gamma \mu_2 \|z(x,1,t)\|_{q+1, \Gamma_1}^{q+1} + \mu_2 C_\gamma k_0 \alpha_2 (k \circ \nabla \nabla w)(t),
\]

and

\[
|E_9| \leq \gamma \mu_1 \alpha_5 \|\nabla w_t(t)\|^2 + \frac{\mu_1 C_2^2 k_0}{4\gamma} (k \circ \nabla \nabla w)(t),
\]

where $\alpha_3 = C_2^2 \frac{2\gamma \alpha(0)}{4\gamma(p-2)}, \alpha_4 = C_2^2 \frac{2\gamma \alpha(1)}{4\gamma(p-2)},$ and $\alpha_5 = C_2^2 \frac{2\gamma \alpha(p-1)}{4\gamma(p-2)}.$ Thus, from (3.32)–(3.41), we conclude that

\[
\Phi_2(t) \leq -\frac{1}{p+1} \left(\int_0^t k(s) \, ds \right) \|w_t(t)\|_{p+2}^{p+2}
\]

\[
- \left(\int_0^t k(s) \, ds - \gamma \left(1 + \mu_1 \alpha_5 + \frac{\alpha_4}{p+1} \right) \right) \|\nabla w_t(t)\|^2
\]
where $C_3 = \frac{1}{2}(k_0(a_0 + 2\eta_0)) + (8\gamma^2 + 1)(a_0 - l) + k_0(1 + C_2^2 + \tilde{C}_2^2) + 4\gamma\mu_2 C_\gamma k_0^2\alpha_2)$. Similarly to Lemma 3.4, for any $\lambda > 0$, we obtain

\[
\sigma'(t)\Phi_1(t) \leq -\frac{\sigma'(t)}{\rho + 2} \| w_t(t) \|_{\rho^2}^2 - C_4\sigma'(t)\| \nabla w(t) \|_2^2 - \frac{\sigma'(t)}{2} \| \nabla w_t(t) \|_2^2
\]

\[
- \frac{\sigma'(t)b_1}{4} \| \nabla w(t) \|^4
\]

\[
- \frac{\sigma'(t)(\| m \|_{\infty} + \| g \|_{\infty})}{2h_1} \int_{\Gamma_1} h(x)m(x)u^2(t)\,d\Gamma
\]

(3.43)

and

\[
\sigma'(t)\Phi_2(t) \leq -\frac{\lambda\sigma'(t)}{\rho + 2} \| w_t(t) \|_{\rho^2}^2 - \lambda\sigma'(t)\| \nabla w(t) \|_2^2 - C_5\sigma'(t)(k \circ \nabla w)(t),
\]

(3.44)

where $C_4 = \frac{1}{2} + \frac{C_2^2}{2} + \frac{\alpha_1}{(\rho + 2)^2(\rho + 1)}$ and $C_5 = \frac{C_4\rho^2 + \alpha_1}{(\rho + 2)^2(\rho + 1)} + \frac{k_0^2}{\rho^2}$. Since k is positive, we have, for any $t^*_0 > 0$, $\int_0^{t^*_0} k(s)\,ds \geq \int_0^0 k(s)\,ds := k_1 > 0$, for all $t \geq t^*_0$. Applying (3.7), (3.31), and (3.42)–(3.44), we find that for any $t \geq t^*_0$,

\[
\Xi'(t) = ME'(t) + \varepsilon\sigma'(t)\Phi_1(t) + \varepsilon\sigma(t)\Phi_1'(t) + \sigma'(t)\Phi_2(t) + \sigma(t)\Phi_2'(t)
\]

\[
\leq -\sigma(t)\left(\frac{k_1 - \varepsilon}{\rho + 1} + \frac{(\varepsilon + \lambda)\sigma'(t)}{(\rho + 2)\sigma(t)}\| w_t(t) \|_{\rho^2}^2 - \sigma(t)\left(\frac{b_0\varepsilon + \varepsilon b_1\sigma'(t)}{4\sigma(t)}\right)\| \nabla w(t) \|_2^2
\]

\[
- \frac{\sigma'(t)}{2}\left(\frac{k(t)}{2} + \frac{\sigma'(t)}{2\sigma(t)}\int_0^t k(s)\,ds\right)M
\]

\[
+ \frac{\varepsilon C_4\sigma'(t)}{\sigma(t)} + \frac{\varepsilon l}{2} - \varepsilon \left(1 + 2(a_0 - l)k_0 + \alpha_3\right)\| \nabla w(t) \|_2^2
\]

\[
- \sigma(t)\left(k_1 - \gamma \left(1 + \mu_1\alpha_5 + \frac{\alpha_4}{\alpha_2} \right) - \varepsilon + \frac{(\varepsilon + 2\lambda)\sigma'(t)}{2\sigma(t)}\right)\| \nabla w(t) \|_2^2
\]

\[
+ \varepsilon\sigma(t)\| w(t) \|_p^p
\]

\[
+ \sigma(t)\left(\frac{M\sigma'(t)}{2\sigma(t)} + \frac{\varepsilon\sigma(t)}{4\eta} - \frac{C_5\sigma'(t)}{\sigma(t)} + C_3\right)(k \circ \nabla w)(t)
\]

\[
- \sigma(t)\left(\frac{C_1M}{\sigma(t)} - \varepsilon\mu_1C_\eta\right)\| w_t(t) \|_{q^1}^q_{G_1}
\]

\[
- \sigma(t)\left(\frac{C_1M}{\sigma(t)} - \varepsilon\mu_2C_\eta - \gamma\mu_2\right)\| z(x, 1, t) \|_{q^1}^q_{G_1}
\]

\[
+ \sigma(t)\left(\frac{M}{2} - \frac{k(0)}{4\gamma} \left(1 + \frac{C_2^2}{\rho + 1}\right)\right)(k' \circ \nabla w)(t)
\]

\[
- \sigma(t)\left(\frac{\varepsilon\sigma'(t)(\| m \|_{\infty} + \| g \|_{\infty})}{2h_1\sigma(t)}\right)\int_{\Gamma_1} h(x)m(x)u^2(t)\,d\Gamma
\]
Since \(\lim_{t \to \infty} \frac{\zeta'(t)}{\zeta(t)} = 0\) we choose \(t_0^* > 0\) sufficiently large. At this point, we pick \(\varepsilon > 0\) and \(\gamma > 0\) sufficiently small and we take \(M\) sufficiently large such that for \(t \geq t_0^*\),

\[
M_1 = \frac{k_1 - \varepsilon}{\rho + 1} + \frac{(\varepsilon + \lambda_{s})\sigma'(t)}{(\rho + 2)\sigma(t)} > 0,
\]

\[
M_2 = \left(\frac{k(t)}{2} + \frac{\sigma'(t)}{2\sigma(t)} \int_{0}^{t} k(s)\,ds\right) M + \frac{\varepsilon C_{1}\sigma'(t)}{\sigma(t)} + \frac{\varepsilon l}{2} - \gamma \left(1 + 2(a_0 - 1)k_0 + \alpha_3\right) > 0,
\]

\[
M_3 = k_1 - \gamma \left(1 + \mu_1\alpha_5 + \frac{\alpha_6}{q + 1}\right) - \varepsilon + \frac{(\varepsilon + 2\lambda_{s})\sigma'(t)}{2\sigma(t)} > 0,
\]

\[
M_4 = \frac{M_{1}\sigma'(t)}{2\sigma(t)} + \frac{\varepsilon \sigma(t)}{4\eta} - \frac{C_2\sigma'(t)}{\sigma(t)} + C_3 > 0, \quad M_5 = \frac{C_1 M}{\sigma(t)} - \varepsilon \mu_1 C_{q} > 0,
\]

\[
M_6 = \frac{C_3 M_{1}}{\sigma(t)} - \varepsilon \mu_2 C_{q} - \gamma \mu_2 > 0, \quad M_7 = \frac{M}{2} - \frac{g(0)}{4\gamma} \left(1 + \frac{C_2}{\rho + 1}\right) > 0,
\]

and

\[
M_8 = \frac{M}{\sigma(t)} - \frac{\varepsilon \|m\|_{\infty}}{\eta g_1} - \frac{\gamma \|m\|_{\infty}}{g_1} > 0.
\]

Then, for any \(t \geq t_0^*\), using (3.5) and (3.45), we deduce that

\[
\Xi'(t) \leq -M_{9}\sigma(t)E(t) + M_{10}\sigma(t)(k \circ \nabla w)(t) - M_{11}\sigma(t)E'(t),
\]

(3.46)

where \(M_9\) and \(M_{10}\) are some positive constants and \(M_{11} = \frac{2\gamma b_{t}^{2}E(0)}{l(p - 2)}\). Multiplying (3.46) by \(\zeta(t)\) and using (2.7) and (3.7), we obtain for any \(t \geq t_0^*\),

\[
\zeta(t)\Xi'(t) \leq -M_{9}\sigma(t)E(t) - M_{10}\sigma(t)(k' \circ \nabla w)(t) - M_{11}\sigma(t)\zeta(t)E'(t)
\]

\[
\leq -M_{9}\sigma(t)\zeta(t)E(t) - (2M_{10} + M_{11}\sigma(t)\zeta(t))E'(t).
\]

(3.47)

Now, we define

\[
G(t) = \zeta(t)\Xi(t) + (2M_{10} + M_{11}\sigma(t)\zeta(t))E(t).
\]

Using the fact that \(\zeta\) and \(\sigma\) are nonincreasing positive functions and \(\zeta'(t) \leq 0\) and \(\sigma'(t) \leq 0\), (3.47) implies that

\[
G'(t) \leq -M_{9}\sigma(t)\zeta(t)E(t) \leq -\kappa\sigma(t)\zeta(t)G(t),
\]

(3.48)

where \(\kappa\) is a positive constant. Integrating (3.48) between \(t_0^*\) and \(t\) gives the following estimation for the function \(G(t)\)

\[
G(t) \leq G(t_0^*) e^{-\kappa \int_{t_0^*}^{t} \sigma(s)\zeta(s)\,ds}, \quad \forall t \geq t_0^*.
\]
Again, employing that $G(t)$ is equivalent to $E(t)$, we deduce
\[
E(t) \leq Ke^{-\int_0^t G(s)ds}, \quad \forall t \geq t_0,
\]
where K is a positive constant. Thus, the proof of Theorem 3.2 is completed. □

Acknowledgements
The authors would like to thank the handling editor and the referees for their relevant remarks and corrections in order to improve the final version.

Funding
The first author was supported by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2017R1E1A1A03070473). The third author was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R1I1A3042239).

Abbreviations
Not applicable.

Availability of data and materials
Not applicable.

Declarations
Competing interests
The authors declare that they have no competing interests.

Author contribution
The authors declare that the study was realized in collaboration with the same responsibility. All authors read and approved the final manuscript.

Author details
1Department of Applied Mathematics, Pukyong National University, Busan 48513, South Korea. 2Department of Mathematics, Pusan National University, Busan 46241, South Korea.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 3 December 2021 Accepted: 17 July 2022 Published online: 30 July 2022

References
1. Al-Gharabli, M., Balegh, M., Feng, B., Hajjej, Z., Messaoudi, S.A.: Existence and general decay of Balakrishnan–Taylor viscoelastic equation with nonlinear frictional damping and logarithmic source term. Evol. Equ. Control Theory 11(4), 1149–1173 (2022)
2. Balakrishnan, A.V., Taylor, L.W.: Distributed parameter nonlinear damping models for flight structures, “Damping 89”. Flight Dynamics Lab and Air Force Wright Aeronautical Labs, WPAFB (1989)
3. Bathory, M., Bulíček, M., Málek, J.: Large data existence theory for three-dimensional unsteady flows of rate-type viscoelastic fluids with stress diffusion. Adv. Nonlinear Anal. 10(1), 501–521 (2021)
4. Beale, J.T., Rosencrans, S.I.: Acoustic boundary conditions. Bull. Am. Math. Soc. 80, 1276–1278 (1974)
5. Bucci, F., Lasiecka, I.: Exponential decay rates for structural acoustic model with an over damping on the interface and boundary layer dissipation. Appl. Anal. 81(4), 977–999 (2002)
6. Feng, B., Li, H.: Energy decay for a viscoelastic Kirchhoff plate equation with a delay term. Bound. Value Probl. 2016, 174 (2016)
7. Kirchhoff, G.: Vorlesungen über Mechanik. Tauber, Leipzig (1883)
8. Lee, M.J., Kim, D.W., Park, J.Y.: General decay of solutions for Kirchhoff type containing Balakrishnan–Taylor damping with a delay and acoustic boundary conditions. Bound. Value Probl. 2016, 173 (2016)
9. Lee, M.J., Park, J.Y., Park, S.H.: General decay of solutions of quasilinear wave equation with time-varying delay in the boundary feedback and acoustic boundary conditions. Math. Methods Appl. Sci. 40, 4560–4576 (2017)
10. Liu, W.: General decay rate estimate for the energy of a weak viscoelastic equation with internal time-varying delay term. Taiwan. J. Math. 17(6), 2101–2115 (2013)
11. Liu, W., Sun, Y.: General decay of solutions for a weak viscoelastic equation with acoustic boundary conditions. Z. Angew. Math. Phys. 65, 125–134 (2014)
12. Liu, W., Xue, R.: Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term. Adv. Nonlinear Anal. 9(1), 613–632 (2020)
13. Liu, W.: An arbitrary decay of solutions for a viscoelastic equation with acoustic boundary conditions. Appl. Math. Lett. 38, 155–161 (2014)
14. Liu, W.: General decay of solutions for a weak viscoelastic equation with acoustic boundary conditions. Z. Angew. Math. Phys. 65, 125–134 (2014)
15. Messaoudi, S.A.: General decay of solutions of a weak viscoelastic equation. Arab. J. Sci. Eng. 36, 1569–1579 (2011)
16. Messaoudi, S.A., Tatar, N.E.: Global existence and uniform stability of solutions for a quasilinear viscoelastic problem. Nonlinear Anal. 68, 785–793 (2008)
17. Mu, C., Ma, J.: On a system of nonlinear wave equations with Balakrishnan–Taylor damping. Z. Angew. Math. Phys. 65, 91–113 (2014)
18. Mustafa, M.I.: Asymptotic behavior of second sound thermoelasticity with internal time-varying delay. Z. Angew. Math. Phys. 64, 1353–1362 (2013)
19. Nicaise, S., Pignotti, C.: Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks. SIAM J. Control Optim. 45, 1561–1585 (2006)
20. Nicaise, S., Pignotti, C.: Stability of the wave equation with boundary or internal distributed delay. Differ. Integral Equ. 21, 935–958 (2008)
21. Nicaise, S., Pignotti, C.: Interior feedback stabilization of wave equations with time dependent delay. Electron. J. Differ. Equ. 2011, 41 (2011)
22. Tatar, N., Zarai, A.: Exponential stability and blow up for a problem with Balakrishnan–Taylor damping. Demonstr. Math. 44, 67–90 (2011)
23. Vicente, A.: Wave equation with acoustic/memory boundary conditions. Bol. Soc. Parana. Mat. 27, 29–39 (2009)
24. Zarai, A., Tatar, N.: Global existence and polynomial decay for a problem with Balakrishnan–Taylor damping. Arch. Math. 46, 157–176 (2010)