Enabling and Emerging Sensing Technologies for Crowd Avoidance in Public Transportation: A Review

Donatella Darsena 1, Giacinto Gelli 1, Ivan Iudice 2,2,2,2,2, and Francesco Verde 1

1Affiliation not available
2CIRA - Italian Aerospace Research Centre

November 8, 2023

Abstract

Avoidance of crowding situations in public transportation (PT) systems is crucial to foster sustainable mobility, by increasing the user’s comfort and satisfaction during normal operation, as well as to manage emergency situations, such as pandemic crises as recently experienced with COVID-19 limitations. This paper presents a comprehensive review of several crowd detection techniques based on Internet of Things (IoT) technologies, which can be adopted to avoid crowding in various segments of the PT system (buses/trams/trains, railway/subway stations, and bus stops). To discuss such techniques in a clear systematic perspective, we introduce a reference framework called SALUTARY (Safe and Reliable Public Transportation System), which in our vision employs modern information and communication technologies (ICT) in order to: (i) monitor and predict crowding events; (ii) adapt in real-time PT system operations, i.e., by modifying service frequency, timetables, routes, and so on; (iii) inform the users of crowding events by electronic displays installed in correspondence of the bus stops/stations and/or by mobile transport applications. It is envisioned that the new anti-crowding functionalities can be incrementally implemented as an addon to the intelligent transportation system (ITS) platform, which is already in use by major PT companies operating in urban areas. Moreover, it is argued that in this new framework, additional services can be delivered, such as, e.g., online ticketing, vehicle access control and reservation in severely crowded situations, and evolved crowd-aware route planning.
Sensing Technologies for Crowd Management, Adaptation, and Information Dissemination in Public Transportation Systems: A Review

Donatella Darsena, Senior Member, IEEE, Giacinto Gelli, Senior Member, IEEE, Ivan Iudice, and Francesco Verde, Senior Member, IEEE

Abstract—Management of crowd information in public transportation (PT) systems is crucial, both to foster sustainable mobility, by increasing the user’s comfort and satisfaction during normal operation, as well as to cope with emergency situations, such as pandemic crises, as recently experienced with COVID-19 limitations. This paper presents a taxonomy and review of sensing technologies based on Internet of Things (IoT) for real-time crowd analysis, which can be adopted in the different segments of the PT system (buses/trams/trains, railway/metro stations, and bus/tram stops). To discuss such technologies in a clear systematic perspective, we introduce a reference architecture for crowd management, which employs modern information and communication technologies (ICT) in order to: (i) monitor and predict crowding events; (ii) implement crowd-aware policies for real-time and adaptive operation control in intelligent transportation systems (ITSs); (iii) inform in real-time the users of the crowding status of the PT system, by means of electronic displays installed inside vehicles or at bus/tram stops/stations, and/or by mobile transport applications. It is envisioned that the innovative crowd management functionalities enabled by ICT/IoT sensing technologies can be incrementally implemented as an add-on to state-of-the-art ITS platforms, which are already in use by major PT companies operating in urban areas. Moreover, it is argued that, in this new framework, additional services can be delivered to the passengers, such as, e.g., on-line ticketing, vehicle access control and reservation in severely crowded situations, and evolved crowd-aware route planning.

Index Terms—Adaptive systems, COVID-19, communication systems, crowd management, intelligent transportation system (ITS), Internet of Things (IoT), public transportation (PT) systems, sensing technologies, sustainable mobility, smart cities.

I. INTRODUCTION

SINCE 2002, the European Commission has promoted across Europe and beyond a campaign supporting the use of public transportation (PT) systems as “a safe, efficient, affordable, and low-emission mobility solution for everyone” [1]. To cope particularly with PT limitations in urban areas, a key role is expected to be played by intelligent transportation systems (ITSs) [2], which leverage information and communication technologies (ICT) to enable automated collection of transportation data, used to make transport safer, more efficient, more reliable, and more sustainable.

Manuscript received December 1, 2021; revised April 30, 2022, September 17, 2022, and October 21, 2022; accepted November 14, 2022. The editor coordinating the review of this manuscript and approving it for publication was Dr. Prosanta Gope.

D. Darsena is with the Department of Engineering, Parthenope University, Naples I-80143, Italy (e-mail: darsena@uniparthenope.it). I. Iudice is with Italian Aerospace Research Centre (CIRA), Capua I-81043, Italy (e-mail: i.iudice@cira.it). G. Gelli and F. Verde are both with the Department of Electrical Engineering and Information Technology, University Federico II, Naples I-80125, Italy (e-mail: (gelli,f.verde)@unina.it).

D. Darsena, G. Gelli, and F. Verde are also with National Inter-University Consortium for Telecommunications (CNIT).

Two different classes of spatio-temporal data are available in state-of-the-art ITSs for PT: (i) vehicle data, such as location and speed, which are obtained (usually in real-time) by means of automated vehicle location (AVL) [3] systems, mainly based on satellite localization techniques; and (ii) passenger data, such as the number of passengers boarding a bus/train or entering a station, which can be obtained by means of automatic passenger counting (APC) [4] or automatic fare collection (AFC) systems [5]. Such data are commonly used as inputs for optimization and planning strategies for PT systems, which are surveyed in [6] at four different levels: strategic, tactical, operational, and real-time. In particular, it is observed in [6] that lack of passenger arrival information, especially in real-time, is a limiting factor for accurate studies. In many ITSs, indeed, real-time location data are available only for vehicles, which are used both to provide trip information systems (ITSs) [2], which leverage information and communication technologies (ICT) to enable automated collection of transportation data, used to make transport safer, more efficient, more reliable, and more sustainable.
to passengers and for medium-to-long term management and monitoring of the service.

With the advent of Internet of Things (IoT) technologies, fine-grained and real-time passenger data collection is becoming a feasible task, especially in smart cities [7]. Indeed, the pervasive use of mobile and portable devices, equipped with different sensors, allows one to gather huge quantities of data in urban scenarios [8, 9, 10, 11], which can be used for different applications and tasks [12]. In particular, the fifth generation (5G) of cellular networks is potentially able to support massive IoT connections [13], where billions of smart devices are connected to the Internet and can be easily located and tracked; these features will be further extended by forthcoming sixth generation (6G) networks [14].

Recently, some researchers have argued that the quality of service (QoS) perceived by PT users, as well as their travel satisfaction/quality of experience (QoE), are seriously affected by crowding [15, 16, 17]. To cope with this issue, it is required to acquire in real-time reliable and capillary information about the crowding status of PT rail or road vehicles (e.g., buses, trams, and trains) and the related access infrastructures (e.g., bus/tram stops and metro/railway stations). Indeed, it is stated in [18] that “the availability of real-time passenger demand data can significantly improve the performance of control models in case of overcrowding”.

Motivated by the previous needs, new modeling, planning and management strategies that collect real-time crowding data and use them to improve QoS/QoE in PT systems are appearing in the literature [17, 19, 20, 21, 22], and will be referred in the following as crowd management [23, 24]. Crowd management systems are composed [24] by crowd analysis/monitoring and crowd control components: the former includes a network of physical sensors aimed at detecting crowds and estimating their parameters, whereas the latter includes prediction, decision making and control strategies aimed at managing the crowd events. Crowd management should not be confused with crowdsourcing/crowdsensing [25]. In PT systems, crowdsourcing (also referred to as “sensing by the crowd” approach) is based on reporting activities by which passengers provide their suggestions and feedback, as well as announce problems to a PT company or, even, provide a resource or create a product, e.g., peer-to-peer services. Relying on crowdsourced data, PT companies work together with passengers to solve a problem or jointly plan public transit by finding and developing solutions aligned with PT user preferences. Crowd management is instead based on the different principle of “sensing the crowd”, according to which environmental data collected through networks of IoT sensor devices and/or user terminals are shared with PT companies, which analyze such data for forecasting, choosing among several possible alternative options, as well as ensuring robust and safe operation of PT systems.

The problem of crowd management in PT systems has emerged dramatically during coronavirus disease (COVID-19) pandemic, which have first spurred our interest to this topic (see Section II for a discussion). During the acute outbreak phase, overcrowding of buses and trains needed to be strictly avoided to protect people from contagion, which required emergency measures, such as, e.g., limiting to 50% the service capacity. These measures are generally not sustainable in the long-term, since they shift a significant portion of passengers to private transportation. Moreover, the problem of overcrowding in PT systems must be tackled in a smarter and more structural way, since many experts predict that, in the future, recurrent waves of pandemic outbreaks could become the norm rather than the exception.

Although state-of-the-art AVL/APC/AFC systems collect a large amount of data about vehicles and passengers in ITS systems, often they are not suitable to perform real-time crowd monitoring and control. However, many ICT/IoT sensing technologies for crowd monitoring are already available or will be available soon in smart cities [7]. A recent special issue of this journal [26] reports the cutting-edge advances and ICT technologies pertaining to the seamless integration of sensors with the transportation infrastructure. The main focus of the contributions in [26] is on sensing technologies for private transportation systems, oriented to autonomous driving [27, 28], intelligent fault detection [29, 30], electric charging optimization [31], road condition monitoring [32, 33], precise fleet management [34], speed detection and accident avoidance [35, 36]: in the same issue, less attention is dedicated to the integration of sensing technologies within PT systems. Moreover, sensing techniques for crowd monitoring are not specifically discussed.

A. Contribution

In this paper, we argue that, although many sensing technologies for crowd monitoring are already available, the diffusion of crowd management techniques in modern PT systems is hindered by the lack of a structured framework and reference architecture. Motivated by this observation, we pursue three main goals in this paper: (i) to present a survey and taxonomy of crowd monitoring technologies for PT systems based on ICT/IoT technologies; (ii) to discuss their adoption into a reference architecture, aimed at integrating state-of-the-art ITSs (already available in many PT systems in urban areas) with the new crowd management functionalities; (iii) to highlight a series of challenges opened up by the proposed reference architecture that need to be investigated, by also indicating what could be the best way to address them. Although some reviews regarding techniques for crowd monitoring inside PT vehicles exist (see [4, 37]), to the best of our knowledge, this is the first review addressing sensing technologies for crowd management in all the different segments of the PT systems. In this respect, Table I enlists all the related surveys in crowd management in PT systems, by comparing them with the review paper at hand.

In our vision, the crowd management functionalities are built upon a distributed IoT subsystem, composed by a capillary network of heterogenous active/passive sensors, aimed at monitoring passenger crowding inside buses, trams, and trains, at bus/tram stops, and in railway/metro stations. By means of a communication infrastructure, the acquired measures are transmitted in real-time to a smart subsystem, which performs crowd control functionalities. Crowding information can also
be reported (in aggregated or anonymized form, for privacy concerns) to PT users, by means of displays installed inside vehicles or at stations/bus stops, or through mobile transport apps (e.g., Moovit or proprietary operator applications). In the proposed reference architecture, real-time knowledge of crowding data can be used by PT operators for fast or even proactive adaptation of some service features (e.g., vehicle holding, stop-skipping, overtaking, limited boarding, speed changing, short turning), in order to cope with spatially and/or temporally localized crowding situations, which cannot be tackled by conventional (statistical) tools used in transportation system design, such as, e.g., origin-destination (O-D) flow analysis. The new crowd management functionalities essentially achieve two scopes: (i) to improve the QoS/QoE of passengers, thereby fostering PT system usage; (ii) to allow for safe PT usage during exceptional events like a pandemic outbreak, such as COVID-19.

B. Paper organization

Section II highlights the adverse impact of COVID-19 pandemic outbreak on sustainable mobility and PT systems. In Section III, the main aspects of crowd management in PT systems are discussed. In Section IV, a crowd management reference architecture is proposed. A taxonomy and review of the sensing solutions for crowd management and their application in different PT scenarios is presented in Section V. Innovations and advantages provided by the adoption of the new crowd management functionalities are highlighted in Section VI. The main challenges and gaps related to the introduction of crowd monitoring management in ITS systems are discussed in Section VII. Finally, conclusions are drawn in Section VIII.

II. SUSTAINABLE MOBILITY IN THE COVID-19 ERA

During the last years, the transport sector and mobility – in particular PT systems in urban areas – have been seriously affected by COVID-19 pandemic. A survey [44] carried out in China in 2020 estimated that, as a consequence of the outbreak, the use of private cars will be roughly doubled, increasing from 34% to 66%, whereas the use of public transports (buses/metros) will be more than halved, dropping down from 56% to 24%. Furthermore, due to the lack of trust in PT systems, more than 70% of the surveyed people not owning a car declared their intention to buy a new one, with negative consequences on the environment (landscape and air pollution) in urban areas. Other recent studies (see, e.g., [45, 46]) have highlighted that COVID-19 pandemic has seriously discouraged the use of PT systems.

To counteract the shift to private car usage during COVID-19 pandemic, national governments have implemented different strategies. A widespread measure [47] has been to favor the use of individual sustainable mobility and micromobility means, such as bikes, electrical scooters, and segways, by deploying the related infrastructures (bike lanes) or empowering

Ref.	Reference architecture	Considered aspects	Scenarios	Sensing technologies
[4]	No	Crowd analysis	Passenger counting inside PT vehicles	Infrared sensors, treadle mat sensors, and weigh-in-motion systems
[10]	Yes	Crowd analysis	PT systems are mentioned but no scenario is discussed	Call detail records, origin-destination matrices, GPS, Bluetooth, WiFi, RFID, video, social networks, activity trackers, satellite, UAV, and census data
[16]	No	Crowd control	Inside buses and trains, inside stations	Physical sensing is not discussed
[21]	No	Crowd management	Inside buses	WiFi, GPS, and cellular system (3G)
[24]	Yes	Crowd management	Related to PT systems but no scenario is discussed	CCTV systems, presence sensors, RFID, tracking mobile devices, and smartphones
[37]	No	Crowd analysis	Passenger counting Inside PT vehicles	Optical sensors, pressure sensors, computer vision, and WiFi
[38]	No	Crowd analysis and prediction	PT systems are mentioned but no scenario is discussed	WiFi, cellular systems (4G/5G), social media, cameras, and taxi trajectories
[39]	Yes	Crowd prediction	Prediction of the urban flow (e.g. the traffic of crowds, vehicles, and bikes)	Physical sensing is not discussed
[40]	Yes	Crowd management	PT systems are mentioned but no scenario is discussed in detail	Physical sensing is not discussed
[41]	Yes	Crowd analysis	PT systems are mentioned but no scenario is discussed	Physical sensing is not discussed
[42]	Yes	Crowd analysis	PT systems are mentioned but no scenario is discussed	Physical sensing is not discussed
[43]	No	Crowd control	Bus and tram stops	Physical sensing is not discussed
This paper	Yes	Crowd management	Train and bus/tram vehicles, railway/metro stations, and bus stops	Infrared sensors, pressure/load sensors, optical and thermal cameras, LiDAR, acoustic/ultrasound sensors, RFID and NFC devices, Bluetooth, WiFi, and cellular systems (4G/5G)
vehicle sharing services, which can shift to this transport mode a certain percentage of short and medium-distance trips.

However, owing to the large number of passengers carried by PT systems in urban areas, it is of utmost importance to adopt measures aimed at safe and reliable PT usage in such a scenario. During the acute phase of the outbreak, severe anti-COVID-19 measures were adopted [48] to minimize the contagion risk, such as back-door boarding, cashless operations, frequent sanitization of vehicles and stations, enforcing social distances, limiting the service capacity, and requiring the passengers to wear face masks. Other anti-COVID-19 measures were applied [48, 49] to PT system operations, such as modifying timetables, frequencies, paths, leveraging modal integration, and so on. Unlike other countries, the Land Transport Authority (LTA) of Singapore has made adjustments to train frequencies to reduce crowding on commuters’ lines, increasing the peak-period frequency for trains from once every five minutes to once every three minutes [50]. Some of these measures, like increasing PT service frequency or introducing extraordinary trips to compensate for the reduced vehicle capacity, are seen by PT companies as effective, but not sustainable in the long term, due to the limited number of drivers and vehicles and the increased operational costs [51].

Generally speaking, the COVID-19 pandemic has pushed towards a critical rethinking of many economical, social, and cultural habits, not only those related to sustainable mobility. A plethora of innovative solutions have been proposed to cope with this new challenge, many of them employing ICT/IoT technologies. In [52], the use of new technologies, such as IoT, unmanned aerial vehicles (UAVs), artificial intelligence (AI), blockchain, and 5G, has been considered for managing the impact of COVID-19 in health applications. In [53, 54] a review of technologies for social distancing has been provided, with emphasis on wireless technologies for positioning, including crowd detection and people density estimation.

As far as sustainable mobility is concerned, a review of the PT planning literature can be found in [49] from the perspective of the changes in demand patterns and limited capacity requirements associated with the COVID-19 pandemic crisis. It is evidenced that, besides reducing the service capacity to adhere to physical distancing measures, PT service providers worldwide have resorted to limiting service span in order to reduce operational costs as a consequence of the reduction in catchment area, by canceling certain services or closing some stations. Moreover, it is pointed out the importance to develop and deploy methods that are able to maintain the functionality of PT systems, while minimizing the public health risks; it is suggested that some changes in service provision can be made at the tactical planning phase, by modifying timetables and/or service frequencies.

Some recent studies have explored the possibility to rely on ICT to organize and facilitate human mobility during the pandemic. In [55], the Authors propose to use a machine-learning (ML) based approach to trace daily train travelers in different age cohorts of 16–59 years (i.e., the less vulnerable age-group) and over 60 (i.e., the more vulnerable age-group) in order to recommend certain times and routes for safe traveling. In this work, many ICT technologies, such as WiFi, Radio-Frequency IDentification (RFID), Bluetooth, and Ultra WideBand (UWB), are employed. Using a dataset of the London underground and overground network, different ML algorithms are compared in [55] to properly classify different age group travelers, showing that the Support Vector Machine (SVM) approach performs better to predict the mobility of travelers and achieves high accuracy (more than 80%).

In [56], a comprehensive review on human mobility research using big data is carried out: big data collected thanks to the pervasive use of ICT/IoT can help, indeed, to discover the relationships between human mobility and resource use, thus entailing great opportunities for smart city development. In [57], instead, the Authors pursue the objective of identifying data sources and ML approaches to properly estimate the impact of COVID-19 on human mobility reduction. In particular, the consequences of the pandemic on mobility patterns of urban populations are investigated in [57], by quantifying even the impact of mobility reduction on improving air quality in urban areas.

III. CROWD MANAGEMENT IN PT SYSTEMS

The main architecture of a crowd management system for PT applications is schematically depicted in Fig. 1. A certain number of physical sensors S_1, S_2, \ldots, S_n are used to collect all the relevant information regarding crowd events. After a suitable pre-processing of the collected information (e.g., dimensionality reduction, normalization, interpolation, denoising, and so forth), the output data are processed by the data-fusion system. Data-fusion can conceptually be divided into three layers [58]: sensor fusion, feature-based data fusion, and decision fusion. Sensor fusion includes data classification, object refinement (e.g., spatio-temporal information alignment, correlation, clustering, grouping, state estimation, error elimination, and reduction), positioning, and recognition. The output of the sensor-function layer has a consistent data structure. Data feature fusion helps to reduce the requirements of application services for system storage resources and computing performance, and it can provide additional complete and in-depth features. Decision-level fusion is aimed at detecting crowds and estimating their parameters in real-time. Prediction of crowd events and their manage is obtained by elaborating not only the output data of the decision-fusion layer, but also other information arising from the Internet and historical databases. Control actions are finally implemented through a certain number of actuators A_1, A_2, \ldots, A_m.

A general introduction to crowd management in transport systems is provided in [24], where some limitations of state-of-the-art ITSs are highlighted, and the potentials of the new approach are discussed, together with a brief introduction to crowd analysis/monitoring techniques. In [16], different aspects of passenger crowding in PT systems are discussed, related to demand, supply, and operations, including effects on route and bus choice, as well as passengers’ wellbeing. Table II subsumes some relevant works on crowd management discussed in the following, focusing in particular to those reporting numerical performance achievements in realistic scenarios.
The benefits of real-time crowding information (RTCI) dissemination on passenger travel choices have been discussed and assessed by simulations in [17, 59, 60]. In particular, it is shown in [59, 60] that providing RTCI at bus stops might help reduce the deleterious “bus bunching” effect [61]. In [17] a complete framework for RTCI modeling in PT systems is introduced, which incorporates RTCI in a dynamic path choice model: the new methodology is tested on a simplified model of the urban PT system of Kraków, Poland, showing that RTCI dissemination contributes to a more efficient distribution of passenger loads in the PT network, improving travel comfort and reducing waiting time by about 30%.

A field application of crowd management strategies to PT systems is considered in [19, 21]. The proposed solution, tested in the municipal bus infrastructure of Madrid, Spain, estimates the current number of passengers in a bus by exploiting the properties of the existing WiFi connections (see Section V-H) and incorporates such information in a bus navigation system, which is capable of giving crowd-aware route recommendations. Well before the COVID-19 outbreak, the LTA in Singapore has been collecting AFC data [62] to help identify commuter hotspots, which enables them to better manage bus fleets and commuter demand, achieving remarkable service improvements, such as 92% reduction in the number of bus services with crowding issues, and 3- to 7-minute reduction in the average waiting time on popular bus services [63]. It is worth noting that recently also Google started acquiring and disseminating crowding information to the users [64, 65, 66].

A. Crowd prediction

Estimating and predicting (in space and/or time) some features of a human “crowd” in indoor and outdoor locations is an active research topic, with many applications, including surveillance and security, situation awareness, emergencies, and crowd management [38]. In transport applications, the feature of interest is the number of components of the crowd and/or its density.

Crowd prediction algorithms for transport applications can be classified on the basis of the prediction horizon into short-term (less than 60 minutes) and long-term ones [69]. Moreover, they can be classified, on the basis of the prediction methodology, into model-based methods or data-driven ones.

Model-based methods include time-series analysis, regression modeling, hidden Markov models [73], and Kalman filtering models [74]. Due to highly nonlinear and random nature of crowds, data-driven approaches have recently gained significant attention, including ML and deep learning (DL) techniques. Several works consider ML-based approaches for crowd management (see, for example, [39, 75]). In [40] the authors provide a thorough survey on ML techniques for intelligent transportation systems.

Although ML-based approaches can achieve good results in crowd flow prediction, several reasons pushed researchers to adopt DL-based methods, such as, above all, the ability to automatically extract relevant patterns from unstructured and heterogeneous data. Differently from ML ones, indeed, DL approaches do not require manually extracted or handcrafted features, but can automatically extract the relevant features from the raw data collected by the sensors, process them and make the subsequent decision. In [41] the reference structure of a crowd counting technique based on a convolutional neural network (CNN) is reported, whereas in [42] crowd counting techniques are classified, according to the network property, into basic, scale aware models, context aware models, and multitask models. In some cases, simulation tools to predict traffic flow, like BusMezzo [76] or SUMO [77], have been considered as well.
Real-time crowd estimation in [67] is based on load sensors (e.g., the service-wide EWT is reduced from 1.13 to 0.75 mins during off-peak hours and by 9.5 % during peak hours). A remarkable service-wide EWT improvement is demonstrated on data of the Bejing Metro, showing that the PWT under the optimized timetable is reduced at best by 17.18 % in off-peak hour and by 3.22 % in peak hour in comparison with the standard timetable. Moreover, the method is tested by simulation on data of Stockholm bus service, with reference to a figure of merit called EWT (Excess Waiting Time). Due to the schedule changes, the operational performance of bus services demonstrated a remarkable service-wide EWT improvement (e.g., the service-wide EWT is reduced from 1.13 to 0.75 mins for the line 1).

In [69] a timetable optimization method aimed at reducing the passenger waiting time (PWT) in metro scenarios is proposed, employing a Genetic Algorithm (GA) integrated with the Interior-Point Algorithm (IPA). The proposed method is tested by simulation on data of the Beijing Metro, showing that the PWT under the optimized timetable is reduced at best by 17.18 % in off-peak hour and by 3.22 % in peak hour in comparison with the standard timetable. Moreover, the method reduces the peak number of passengers on platforms by 44.5 % (off-peak hours) and 9.5 % (peak hours) of the number of passengers on platforms by 44.5 % (off-peak hours) and 9.5 % (peak hours).

Although crowd/traffic prediction and mobility forecasting are considered in several papers, mostly devoted to road congestion management in urban transportation, their application to PT systems is a relatively new topic: some recent studies are [74, 78, 70, 67, 68]. In [70], a predictive model for bus crowding is proposed and tested on a AVL/APC dataset taken from the Pittsburgh-area bus using ML techniques. In [67] a data-driven approach is considered to perform car-specific, metro, and train crowding prediction, aimed at providing accurate in-vehicle or station RTCI.

Real-time crowd estimation in [67] is based on load sensors (see Section V-B), which are used, together with historical data, to perform crowd prediction, whose accuracy is tested with data gathered on a metro line in Stockholm, Sweden. It is shown that real-time load data significantly improve prediction accuracy (from between 70% to 90% to between 80% to 95%). In [68] a framework for personalized (i.e., user-specific) crowd prediction is proposed, which takes into account not only loading data, but also other parameters that affect user comfort, such as seat availability, expected travel time standing, and excess perceived travel time (compared to uncrowded conditions). In [79] a system providing real-time short-term crowd predictions on trains and platforms is proposed, which uses both real-time AFC and O-D historical data.

B. Crowd control

Crowd information can be incorporated in PT design, optimization, and control at different levels. Besides some approaches showing the benefits of RTCI dissemination to the passengers [17, 59, 60, 67], operator-based crowd control in PT systems is still at an early stage of development. Crowding data can be used at the strategic and tactical planning level in several fields, such as increased services, vehicle capacities, networks expansion, headway and timetable optimization (see e.g. [80, 71] for solutions applied to the metro/subway scenario). In [81] a sequential heuristic method is introduced for re-scheduling the timetables of demand-responsive public transport modes in near-real time. The approach was tested on data of Stockholm bus service, with reference to a figure of merit called EWT (Excess Waiting Time). Due to the schedule changes, the operational performance of bus services demonstrated a remarkable service-wide EWT improvement (e.g., the service-wide EWT is reduced from 1.13 to 0.75 mins for the line 1).

In [69] a timetable optimization method aimed at reducing the passenger waiting time (PWT) in metro scenarios is proposed, employing a Genetic Algorithm (GA) integrated with the Interior-Point Algorithm (IPA). The proposed method is tested by simulation on data of the Beijing Metro, showing that the PWT under the optimized timetable is reduced at best by 17.18 % in off-peak hour and by 3.22 % in peak hour in comparison with the standard timetable. Moreover, the method reduces the peak number of passengers on platforms by 44.5 % during off-peak hours and by 9.5 % during peak hours.

In many studies, the effects of crowding are represented by an additional in-vehicle travel time multiplier, so-called *crowding penalty* [16], which is typically estimated from historical data. A recent discussion of crowd-related studies in...
PT railway systems is provided in [72], which also proposes a control model for joint optimization of train scheduling and passenger routes taking into account in-vehicle crowding on the basis of O-D data. Real-time crowd control techniques are less explored, mainly due to the lack of availability of fine-grained crowding data. Common measures to cope with service irregularities in scheduled PT systems are vehicle holding, stop-skipping, overtaking, limited boarding, speed changing and short turning [82, 43]. All these strategies can further benefit from the availability of real-time crowding information, both inside vehicles and at the access infrastructure (e.g., bus/tram stops and railway/metro stations).

IV. A REFERENCE ARCHITECTURE FOR CROWD MANAGEMENT

From the previous discussion, it is apparent that integration of ICT/IoT sensing technologies into PT systems for crowd management is fragmentary and their potentials are not fully exploited to date. To bring together these technologies in a systematic and common scenario, we introduce a crowd management reference architecture for ITS, whose scope is to integrate/augment the ITS system already available in an urban PT system with the new crowd management functionalities, aimed at smart and proactive control and reduction of passenger crowding.

The key idea is to integrate heterogenous sensing and communication technologies, in dependence on the operation scenario and the ICT infrastructure available in the urban area where the system must be implemented. To achieve such a goal in practice, strong interdisciplinary design skills are needed, including transportation engineering, telecommunications, computer science, electronics, data analysis, and AI.

In our vision, the reference architecture encompasses (Fig. 2) three subsystems:

1) the sensing and actuator subsystem (SASS);
2) the communication subsystem (CSS);
3) the monitoring, prediction and control subsystem (MPCSS).

The architecture involves new data flows (marked as green arrows in Fig. 2) for crowd management, in addition to existing data exchanges (red arrows) commonly used in state-of-the-art ITS systems for PT services. The core and most innovative part of the system is the SASS, with particular reference to sensors for crowd monitoring: in Section V, we provide a taxonomy and discussion of the different sensing technologies than can be utilized to this aim. The actuator component mainly encompasses two crowd-related flows of information: (i) toward the users, carried out by audio speakers, variable-message panels, or displays, which are typically already present in the PT system, or can be readily installed at the bus/tram stops as well as in railway/metro stations, and also inside vehicles; (ii) toward the PT operators (drivers and staff), e.g., by means of evolved driver displays that communicate to the drivers decisions regarding PT adjustments (e.g., holding, stop-skipping, or even route changing) to be carried out in real-time. It is worthwhile to note that, with the advent of autonomous vehicle PT systems [83] (based on driverless buses or metro trains), the actuators can directly modify the vehicle behavior, without the need for human intervention.

As regards the CSS, its characteristics are strongly dependent on the communications infrastructure available in the urban area. In general, this subsystem might encompass public wireless networks (such as cellular networks) and/or private wired and/or wireless networks owned by the operator, such as, e.g., Global System for Mobile Railway (GSM-R) or Long Term Evolution for Railway (LTE-R). To cope with this heterogeneity, it is envisioned that, at the protocol level stack, the CSS can be readily interfaced with the other subsystems by means of standard or open interfaces and/or using simple adaptation layers.

The MPCSS performs data collection and real-time crowd prediction, possibly employing AI and ML/DL techniques. Based on such predictions, modifications to the transport services can be implemented in real-time (e.g., vehicle holding, stop-skipping, overtaking, limited boarding, speed changing, short turning) as well as at the strategical/tactical planning level (e.g., optimization of timetables and routes). The related control data are sent to service operators (drivers, supervisors, etc.), whereas service information, including RTCI, is sent to the passengers by means of displays and/or mobile transport apps. This information could be notified by the same applications to all the users of the PT, so as to discourage the access to overcrowded stations and/or bus/tram stops, and propose alternative travel solutions. The MPCSS can be strongly integrated (and typically colocated) with the ITS control system of the PT service operator.

V. SENSING TECHNOLOGIES FOR CROWD MANAGEMENT

From the transportation perspective, our taxonomy of sensing technologies for PT systems considers (see also Fig. 2) the following scenarios:

1) train and bus/tram vehicles (indoor scenarios);
2) railway/metro stations (indoor/outdoor scenarios);
3) bus/tram stops (mainly outdoor scenarios).

The sensing solutions to be adopted in these scenarios belong to the crowd analysis/monitoring [84] family. Detecting and estimating some features of a “crowd” in indoor and outdoor locations is an active research topic, with many applications, including surveillance and security, situational awareness, and emergencies (for a recent review, see [85] and references therein). In PT applications, the feature of interest is the number of components of the crowd (i.e., crowd counting) and/or its density (i.e., crowd density estimation); moreover, tracking of individuals in a crowd could be needed to build O-D matrices, useful for long-term planning. A review of crowd analysis techniques for urban applications, including transportation systems, is provided in [10], where approaches based on different data sources, including information fusion techniques, are discussed and compared.

Sensing technologies for crowd analysis can be classified [86] as visual-based (VB) solutions, based on still or moving images/videos mainly acquired by optical, thermal, or laser cameras, or non-visual based (NVB) ones, which do not rely on images to estimate crowd parameters, but resort to other
physical quantities or features that can be related to crowd parameters, such as, e.g., those of radio signals, temperature, or sound.

To perform crowd analysis, VB techniques resort to sophisticated image processing, pattern recognition, or computer vision techniques [84, 87, 88]. Indeed, thanks to recent advances in AI, traditional camera sensors are becoming “smart” and can detect, recognize, and even identify persons. VB technologies perform passive sensing, relying on a network of dedicated sensors, without requiring active cooperation/participation of the users. However, VB data are subject to stringent protection regulations enforced by international data privacy laws, such as, e.g., general data protection regulation (GDPR) [89] in the European Union.

Among NVB technologies (see [90] for a recent review), sensing solutions based on mobile RF devices represent an interesting approach, due to the diffusion of smartphones and other portable/wearable devices, such as, e.g., pedometers, smart watches, or biometrical sensors. This approach to sensing is known as mobile sensing [91], opportunistic sensing [92] or participatory sensing [93]. Data collected by means of such device-aided NVB systems can be used not only to count people in a crowd, but also to gather additional information about individuals (e.g., planned routes, O-D flows, passengers using off-peak hours group ticket, and so on).

However, a problem inherent to device-aided systems is that they usually require user cooperation/participation. Another important aspect of NVB systems is that they potentially collect sensitive data pertaining to individuals, such as, e.g., daily movements as well as home and work locations. To motivate participation, it is sometimes needed to introduce incentive or reward mechanisms, or apply radical modifications to the procedures to access the PT service, such as an authentication phase to use the service. Although this issue could enhance the aforementioned privacy concerns, it could also be useful as a means to increase the overall safety of the PT systems during a pandemic outbreak, by reducing the risk that infected people can access the system.

When device-aided NVB techniques cannot be used for crowd characterization, due to, e.g., lack of user cooperation and/or security/privacy issues, RF-based non-device aided or device-free approaches can be pursued, which operate by analyzing the propagation channel variations of wireless signals induced by the people present in a given spatial area. In limited cases, NVB sensing techniques relying on physical properties different from those of RF signals (such as audio or ultrasound signals) can also be employed. From the user point of view, information collected through device-free solutions is less critical, as it may not affect users’ privacy.

The main sensing technologies for crowd management in PT systems are summarized in Table III and will be discussed in the forthcoming subsections. Table III also provides a preliminary classification of sensing technologies on the basis of their degree of privacy. We defer to Section VII for a more detailed discussion about privacy issues.

A. Infrared sensors

Infrared sensors (IR) are commonly used in traditional APC systems for counting the number of passengers boarding or alighting a vehicle (usually a bus or a tram). Commercially-available solutions employ a couple of IR sensors (acting as a transmitter/receiver) forming a “light barrier” aimed at detecting the passage of people at the input/output gates of the vehicle. In alternative, a single pyroelectric IR (PIR) sensor can be used, which detects the IR radiation emitted by the human body in the wavelength range $2–14 \mu m$. To enhance reliability, combined installation of IR/PIR sensors can also be conceived. Although IR sensors are very frequently used in PT systems, with counting accuracy generally well above 90% [94], their performances worsen when multiple people board through the same door simultaneously [95, 96]. Moreover, installation could be expensive, since typically more than one barrier per door is needed to detect the passenger flow.

B. Pressure/load sensors

Another solution commonly employed in traditional APC systems counts the number of passengers boarding or alighting buses or trams by means of pressure-sensitive switches (“treadle mats”) placed on the vehicle steps, which are activated under the effect of the passenger weight. These solutions are
simple, accurate (above 95%) and rugged, ensuring long operational life: installation of multiple treadle mats over different steps allows one to discriminate between infeed/outfeed motion [4]. An innovative pressure sensor is the Velostat/Linqstat one, which is a carbon-impregnated conductive polymeric foil that can be used as a low-power inexpensive pressure sensor. Such a sensor has been adopted in [97] to implement a system aimed at monitoring seat occupancy in a bus.

Another application of pressure/load sensors, placed on the ground or on the suspensions, is in weigh-in-motion (WIM) systems, which estimate the number of passengers by the loading of the vehicle detected before and after the stops. Since most of the modern trains are equipped with electronic weighing sensors providing information to the braking system, a WIM solution exploiting such sensors has been proposed and implemented in the Copenhagen metro system [98]. In [99] two algorithms for passenger counting are proposed, which estimate the passenger load on the basis of the pressure variations of vehicle air ride suspensions, which are commonly employed in almost all modern transit buses. WIM systems represent a convenient solution to measure crowdedness inside vehicles, even though it can be difficult to infer the actual number of passengers boarding or alighting [4].

C. Optical cameras

Optical cameras are widely used in private and public spaces for surveillance and security, like in closed circuit television (CCTV) systems, and are routinely installed inside PT vehicles and stations to this aim. Since often they can support crowd monitoring functions with firmware/software upgrades, optical cameras are among the most versatile and used techniques for crowd analysis [87, 100]. Most works on crowd counting and detection based on optical cameras rely on computer-vision technologies [95, 101, 102], wherein crowds are detected using specific features, e.g., facial recognition or motion tracking, extracted from images/videos. Moreover, the majority of recent works employ AI or ML/DL algorithms [103].

Camera-based solutions can be applied in all transportation scenarios, both indoor and outdoor ones. Video cameras mounted inside road or rail vehicles can be used to estimate the number of passengers and their flow (i.e., whether they are boarding or alighting) [104, 95, 105, 106]. An image-processing technique based on a modified Hough transform is proposed in [104], aimed at detecting the contour features of heads and estimating accordingly the number of passengers and their flow in a bus. Many recent approaches are based on CNNs, such as the passenger counting system proposed

TABLE III

Technology	Frequency	Max range	Power consumpt.	User cooper.	Accuracy	Processing complexity	Cost	Privacy issues	Scenario
Visual-based	Optical	Visible	100 m	Low	No	High	High	Critical	Railway/metro station, bus/tram stop
	Thermal	Infrared	500 m	Low	No	High	High	Moderate	Railway/metro station, bus/tram stop
	LiDAR	Ultraviolet, Infrared, Near infrared	1 km	Medium-high	No	Medium-high	Medium	Moderate	Railway/metro station, bus/tram stop
	SAR	Ku/Ka band	10 m	Very high	No	High	High	Moderate	Bus/tram stop
	IR/PIR	Infrared	10 m	Very low	No	High	Low	Medium	Bus/tram
	Pressure	Mechanical	Contact	Very low	No	High	Low	Medium	Train and bus/tram
	Acoustic	0.01–100 kHz	20 m	Low	No	Low	Low	Moderate	Train and bus/tram, railway/metro station
	IR-UWB	3.1–10.6 GHz	100 m	Low	No	High	Low	Medium	Railway/metro station, bus/tram stop
	RSSI/CSI	Various	Variable	Very low	No	Medium-high	High	Low	Railway/metro station, bus/tram stop
	RFID	13.56 MHz	10 cm	Very low	Yes	High	Low	Medium	Train and bus/tram, railway/metro station
	NFC	13.56 MHz	10 cm	Very low	Yes	High	Low	Medium	Train and bus/tram, railway/metro station
	Bluetooth	2.4 GHz	50 m	Very low	Yes	Medium	Low	Critical	Railway/metro station, bus/tram stop
	WiFi	2.4/5 GHz	100 m	Medium	Yes	Low	Medium	Low	Railway/metro station, bus/tram stop
	LTE	800/1800/2600 MHz	10 km	High	Yes	Low	High	Medium	Railway/metro station, bus/tram stop
	5G	Sub-6 GHz	10 km	High	Yes	Low	Low	Medium	Railway/metro station, bus/tram stop
	5G	MMW band	1 km	High	Yes	Medium	Low	Medium	Railway/metro station, bus/tram stop

* Power consumption refers to a single sensor.
in [107], which also exploits the spatio-temporal properties of video sequences acquired on a PT bus in China, or the solution proposed in [108], where crowd density inside a bus is detected and classified in 5 different levels (from very low to very high), to be displayed by LCD screens installed at the bus stops. A deep-recursion CNN-based solution is proposed in [109] and tested on a dataset of images taken at the Bus Rapid Transit (BRT) in Beijing, China. A neural-network based crowd density estimation algorithm is described in [110], targeted at underground station platforms, which has been experimentally tested on a sequence of CCTV images acquired at a metro station in Hong Kong. Finally, VB techniques for counting people at bus stops are proposed in [111, 112], based on computer-vision techniques, which process measurements of foreground areas corrected by suitable perspective transformations.

In summary, crowd analysis based on optical sensors is versatile and powerful, but has several limitations: camera sensors, indeed, are expensive, and each camera can only cover a small area, resulting in high deployment costs in complex and/or large environments. In some scenarios, optical camera-based systems do not allow to estimate the number of people with sufficient accuracy, due to possible obstructions, clutter, and poor light/weather conditions. Moreover, crowd analysis techniques based on images require a high computing power. Finally, management of optical camera-based systems might be cumbersome, due to privacy-related restrictions.

D. Thermal cameras

Thermal cameras can detect people in low-light environments, complete darkness, or other challenging conditions, such as smoke-filled and dusty environments [113]. Thermal imaging cameras are currently used in some countries to prevent accidents and infrastructure damage in PT systems, detecting, for example, people walking on the tracks or fire events. This technology, however, can be employed also to monitor crowding situations both in indoor and outdoor scenarios.

Some people counters based on thermal cameras are proposed in [114, 115, 116]. Different from optical cameras, people counters based on thermal cameras are less sensitive to the level of ambient lighting or background colour contrasts, but their performance can be adversely affected by heat sources and weather conditions. In addition, real-time image processing can be computationally intensive. The high costs of instrumentation still limit the widespread use of thermography for crowd monitoring.

Recently, hybrid approaches, combining thermal and optical imaging sensors, and intelligent processing (based on DL and CNNs), have been implemented to improve the accuracy and real-time processing of camera-based systems [117, 118]. In [119], a people counting algorithm is developed, which uses low-resolution thermal images and employs small-size CNNs, being able to run on a limited-memory and low-power platform.

E. LiDAR

Another option to detect and track persons is represented by light detection and ranging (LiDAR) sensors, especially in environments where there are several interacting people [120]. A LiDAR sensor is a distance-measuring system that works by illuminating the target with a laser beam and sensing the reflected laser light. There are different implementations of LiDAR sensors based on their coverage area and wavelengths.

Compared to traditional VB approaches, LiDAR is less sensitive to varying lighting conditions and requires, in general, lower data-processing times. Thanks to these features, LiDAR-based counting systems are suitable to all transportation scenarios, both indoor and outdoor.

A real-time 2D LiDAR monitoring system for people counting is proposed in [121], which turns out to be useful in monitoring wide areas and dense groups of persons. The solution proposed in [122], instead, employs two LiDAR sensors set at different heights, aimed at detecting people’s heads and knees, to improve tracking performance. To increase system accuracy, other solutions use three-dimensional (3D) LiDARs: in [123], for example, a technique for people counting is presented, which works well even if two or three persons pass at the same time. However, an important limitation of 3D LiDAR is represented by its computational cost, which can be even higher than optical camera-based solutions.

F. Acoustic/ultrasound sensors

Acoustic sensor-based approaches perform people counting by relying on audio signals transmitted by smartphones or produced by speaking people [90]. A crowd counting solution based on audio tones is presented in [124], leveraging the microphones and speaker phones available in most mobile phones. Effectiveness is proven through several experiments at bus stops or aboard, which show, however, that counting latency can significantly grow as the number of devices increases; as a consequence, this technique may be appropriate only for low-density scenarios.

Despite their simplicity, applicability of purely acoustic-based solutions in crowd counting is largely limited by their high sensitivity to environmental noise level. For this reason, hybrid solutions, employing not only acoustic sensors, have been proposed. In [125], for example, a multimodal sensor network is built, which exploits sound intensity in conjunction with additional information sources, like carbon-dioxide level and RF link strength, in order to increase estimation accuracy. Another hybrid solution is presented in [126], which proposes an opportunistic collaborative sensing system, based on acoustic and motion sensors integrated in smartphones.

A different option to count people is represented by acoustic-based solutions using ultrasound sensors, which perform well for indoor spaces and small crowds [90]. When the reverberation of the transmitted waves is received, the number of people can be estimated by exploiting information from the receive time or the signal decay. Based on this approach, an ultrasonic sensing technique for estimating the number of people is presented in [127], which exhibits satisfactory performance when the occupancy of the space does not reach its maximum.
G. Device-free RF sensing

Device-free crowd analysis based on RF signals is an emerging technique, which does not require installation of expensive cameras nor it suffers from privacy related concerns. It exploits the impact of the monitored crowd on RF communications to infer information regarding the size and/or density of the crowd, either using traditional radar methodologies (range and Doppler analysis) [128, 129, 130], mainly with impulse-radio (IR) ultrawideband (UWB) signals [96, 131], or by analyzing features extracted by channel quality measurements, such as received signal strength indicator (RSSI) [132, 133, 134] or channel state information (CSI) [135, 136, 137].

People counting using RF signals can be used in dimly lit places, and in smoky and dusty environments: hence, it represents an interesting solution for metro/subway stations and/or at bus/tram stops. In [96] a people counting algorithm using a couple of IR-UWB radar sensors is proposed, which was tested in a subway platform in Seoul, South Korea, showing accuracy values higher than 90%. A solution to count the people in a queue, based on RSSI measurements carried out by Bluetooth low-energy (BLE)\(^1\) devices, is described in [138]: the system is completely passive and estimates the number of persons in the queue by analyzing the mean and variance of the RSSI values between a BLE beacon and a receiver covering a certain area.

In general, RSSI-based approaches for crowd analysis exhibit good performances in small monitored environments, where the propagation channel variations are dominated by the attenuation caused by the people actually present in the environment. On the other hand, in a rich scattering environment, crowd analysis approaches based on CSI provide a more reliable people counting, but are considerably more complex. Belonging to this class, in [139] and [136] the received WiFi and LTE downlink control signals are processed, respectively, to extract the changes of the propagation channel induced by the presence of different number of people: the related counting algorithms exhibit variable levels of accuracy in different scenarios.

Finally, more sophisticated microwave SAR tomography techniques [56, 140] can also be used, which provide specific RF images from which more detailed crowd information can be extracted, by using complex image classification algorithms (i.e., count, distribution, mobility, etc.). Modeling issues induced by the intrinsic near-field scenario (e.g., typical for bus/tram stops) could be overcome using specialized algorithms [141].

In summary, excluding SAR-based techniques, device-free RF sensing is a moderate-complexity crowd analysis technique with low installation costs. Moreover, RF signals can penetrate obstacles to a certain extent and are not affected by weather/illumination. A moderate accuracy (around 80% for RSSI-based techniques, up to 90% and larger for CSI-based ones) can be expected in simple scenarios, but it is questionable whether this approach can be scalable to large crowds, especially in complex propagation scenarios [90]. Moreover, counting algorithms based on this approach usually require a site-specific training phase, which complicates practical installation and maintenance.

H. Device-aided RF sensing

In device-aided approaches for crowd analysis, users are expected to carry RF devices, which must be switched on to enable people counting. Since modern smartphones are ubiquitous and, moreover, are equipped with several sensors and multiple RF interfaces, device-aided solutions are commonly used to gather different types of information for many different purposes and applications (see [90] for a recent review).

1) RFID and NFC: RFID-based solutions require that the passengers carry passive RFID tags, whose presence can be detected by a reader. The Authors in [142] propose an APC system for bus vehicles employing commercial EPC Gen2 tags, which are recognized by a reader located in correspondence of the bus gate. A similar short-range communication system is Near Field Communication (NFC) [143] technology, which is currently supported by many modern smartphones and tablets. When a device with NFC functionalities appears in the reader’s working range, which can be placed at the station gates or at any other fixed access point, it “wakes up” and sends a signal containing encoded data. Finally, it should be observed that RFID and NFC technologies are used in traditional and emerging AFC systems for electronic ticketing, such as MIFARE contactless cards or mobile-based payment systems [144], which can also be employed for passenger counting. For these applications, privacy is characterized by the ability of unauthorized users to trace RFID and NFC devices using their responses to readers’ interrogations. Since RFID and NFC devices are typically not tamper-resistant, an adversary can capture them and expose their secret parameters.

2) Bluetooth: Bluetooth is a consolidated short-range RF technology, supported by almost all smartphones on the market: crowd monitoring algorithms using Bluetooth have been proposed in several papers (see e.g. [145] and references therein). An algorithm based on off-the-shelf Bluetooth hardware for counting bus passengers has been proposed in [146] and tested in the city of Funchal, Portugal. The system consists of a Bluetooth scanner mounted on the bus ceiling, which periodically scans for discoverable Bluetooth devices in its range, and is aimed at discovering O-D relations by post-processing data and correlating them with information related to bus location and tickets issued by fare machines.

Bluetooth can also represent an efficient solution for crowd counting at bus/tram stops. A crowd analysis solution based on BLE is proposed in [147], where a large population carry BLE proximity tags, acting as beacons, whose presence is sensed by smartphone carried by few volunteers. A reciprocal solution can be used at bus stops, where BLE beacons are installed at the bus stations, and are detected by passenger smartphones in close proximity of the stops.\(^2\)

\(^1\)BLE is a low-energy consumption version of Bluetooth standard, which assures better communication performances with a limited power consumption.

\(^2\)This solution relies on the same technology introduced by Google and Apple in the most recent versions of their smartphone operating systems, and is used by many national contact-tracing apps (e.g., Immuni for Italy [148]).
Compared to WiFi-based sensing (discussed later), Bluetooth devices are cheaper, less power-hungry and are characterized by increased flexibility and simplified installation.

3) WiFi: Many crowd analysis solutions exploit the characteristics of the IEEE 802.11 (WiFi) protocol, which is widely used by passengers during their trips. The technique adopted in [19, 21] estimates the current number of passengers in a bus by counting the number of probe requests, i.e., medium access control (MAC) addresses, sent by WiFi-equipped devices in the vehicle. A similar approach is followed in [149], where a de-randomization mechanism is introduced to counteract software randomization of MAC addresses, recently introduced in many operating systems.

One of the problem inherent to the use of WiFi-based techniques for crowd counting inside vehicles is the ability to distinguish between people outside the vehicle and actual passengers. This issue was tackled in [19, 21] by filtering the probes with a sliding window, aimed at removing MAC addresses that were not detected over a longer period of time. In addition, in [149] the received power is also used to discriminate devices that are likely to be outside the bus. The system in [19, 21] was able to detect only around 20% of the passengers in a real setting, since several users may have turned off the WiFi interface. Underestimation of the number of passengers is a common problem for these techniques, which can be compensated by a proper calibration of the procedure in each scenario of interest.

The main advantage of WiFi-based techniques is that they allow to track passengers also when they alight the bus, allowing to estimate O-D flows. WiFi-based counting can also be employed in metro/railway stations, since access points are typically available in such scenarios.

4) Cellular: Similarly to WiFi, cellular signals such as LTE and 5G ones can be used for device-aided crowd counting, thanks to their ubiquitous availability and good penetration in indoor environments. Cellular signals could be available in areas where the WiFi coverage is not present, such as bus/tram stops, remote and small railways/metro stations. A cellular-based crowd density estimation method is proposed in [150], which measures the signal strength emitted in uplink by the smartphones of the crowd components, and classifies the crowd density in different levels using DL techniques, with an accuracy of 78% when three levels are considered.

In principle, the position of users in a cellular network can be obtained with satisfactory precision by combining knowledge of the serving base station, RSSI values, and triangulation principles [151], which can be at the basis for large-scale crowd analysis. However, this approach is difficult to be used in real-time, whereas it is more suited for long-term travel demand estimation [152]. Real-time passenger counting using cellular data is rarely performed, due to several drawbacks: (i) it requires gathering data from different mobile operators; (ii) it raises significant privacy concerns; (iii) it does not allow one to precisely discriminate passengers from general public in open areas. A breakthrough could be the planned introduction in 5G systems of the millimeter-wave (MMW) band, which will require very small cells: from the viewpoint of crowd analysis, the placement of small cells allows one to more precisely monitor spatially limited areas, like bus/tram stops.

I. Discussion

In this Section, we provide a discussion regarding the applications of the above-mentioned sensing techniques in the different transportation scenarios.

1) Trains/buses/trams: Such vehicular scenarios are characterized by a well-delimited indoor space with a limited number of accesses (gates). Traditional APC systems [4, 37, 149] count the number of passengers inside vehicles on the basis of various onboard sensors, mainly IR or pressure-sensitive ones. The number of passengers can also be estimated by the number of validated/issued tickets, as in AFC systems, which however requires user cooperation and can provide underestimated results in case of diffuse fare evasion.

Although solutions based on sensors installed on the vehicles are simple, they require a large initial investment. Therefore, the diffusion of portable and mobile devices between passengers have pushed many researchers to study solutions based on RF techniques (both device-aided and device-free). Summarizing, as also indicated in Table III, even though more sophisticated VB/NVB sensing technologies may be used as well, their usage is not expected to lead to significant innovations in this scenario, compared to traditional solutions adopted in commercial APC systems.

2) Railway/metro stations: Many crowd monitoring options are available in this scenario, since the access to the stations occurs through a limited number of gates. Moreover, CCTVs surveillance systems are typically present inside stations and can be used for VB crowd analysis. The access to train platforms is usually governed by turnstiles where tickets/passes must necessarily be validated: thus, IR-based APC or AFC systems could be a reasonable option to count passengers in this scenario. However, this solution only counts people trying to access the platforms, disregarding other people which could walk inside the station for different purposes (e.g., for shopping or leisure). RF-based techniques could suffer from coverage problems, especially within metro/subway stations.

3) Bus/tram stops: This scenario is by far the most difficult to manage, since bus/tram stops are usually located in outdoor spaces, not well delimited by fixed gates. In this case, both VB and NBV sensing technologies can be used, but it is imperative to adopt cost-effective, rugged, and low-power solutions, in order to reduce the maintenance cost. Moreover, solutions that do not require significant infrastructures are preferred, since in many cases the stops are not equipped with shelters and are indicated by simple poles.

VI. MAIN INNOVATIONS AND ADVANTAGES

The crowd management functionalities of the new framework can provide several innovations and advantages that are not present in state-of-the-art ITSs:

3For a review and discussion of some industrial solutions employing some of these technologies for people counting in PT systems, see [90].
1) **Proactive control of station access:** In railway/metro applications, on the basis of the knowledge of the number of passengers aboard the arriving trains and the prediction of those alighting at the station, it will be possible to predict the number of accesses to stations/platforms with a low error margin and in real-time, so as to avoid crowding. This number can be communicated to the users (by displays at the station gates or by the mobile transport apps) and can be used by the security operators to filter passengers at the turnstiles. Priority policies can be envisioned, such as taking into account the time already spent in queue, or the trip motivations (e.g., a priority could be assured to health workers, disabled or elder users, law enforcement operators, and teachers/students).

2) **Vehicle access reservation:** In bus/tram trips, a vehicle access reservation system can be implemented. A sensor at the bus/tram stop detects the user presence and exchanges information with his/her device (i.e., the smartphone), so as to grant him/her the access to board the first arriving vehicle (a virtual queuing system) or putting him/her in an overbooking list (with priority) to allow him/her to board the first arriving vehicle (a virtual queuing system) or putting him/her in an overbooking list (with priority) to allow him/her to board the first arriving vehicle. The application can generate an e-ticket with the access grant (e.g., a QR-code) that can be validated on board at the ticket machine.

3) **Crowding information dissemination:** Users receive real-time information related to available capacity (in terms of number of seats or in percentage) of the bus/trams/this train in arrival and/or crowding at the stops/stations, so as to avoid unnecessary waiting or crowding, and possibly reschedule their trips. Such RTCI can be provided by means of displays installed in correspondence of the stops or at the entrance of the stations, or by messages/alerts issued by mobile transport apps.

4) **Crowd-based route planning:** Users can plan their trips on the mobile transport app, by taking into account not only geographical information and traveling times (static data), but also traffic and crowding information about vehicles and stops/stations during the trip (dynamic data). The app may not necessarily suggest the shortest route, but the least crowded one, taking into account also crowding levels measured during the trip. Such a feature not only helps reduce crowds (and the consequent infection risk in case of a pandemic), but also improves the passenger QoE, by distributing more efficiently the load on the transportation network.

5) **Crowd-aware real-time control:** Some of the typical functions of PT planning and operations can benefit from the availability of the new crowd information. At the strategic and tactical levels, average long-term crowding data can be used to plan the services. At the real-time and operational level, critical situations (service disruptions, unusual crowding) or even random spatio-temporal demand variations can be tackled by implementing crowd-aware rescheduling solutions, such as holding, stop-skipping, or similar ones, which can be communicated to the drivers and staff in real-time, as well as to the passengers via displays and/or alerts.

The main advantages of the crowd management framework are summarized in Table IV. Compared to static methods, like traditional survey-based compilation of O-D matrix flows, more efficient planning and real-time control of the operation of the PT system is allowed. The large amount of generated data can be used by AI and ML/DL algorithms to better understand and plan a series of aspects generally associated with improvements of the quality of life in urban areas and smart cities.

Table IV

Actor	Advantages
PT service operator (planner, manager)	Having real-time crowding data of the different segments of the PT system allows one to plan services more efficiently and to quickly readapt them to tackle critical situations, localized in space and time
PT operators (drivers, supervisors, staff)	Knowing in advance crowding situations at the stops or stations allows one to tackle in real-time critical situations (e.g., implementing holding or stop-skipping strategies, or following alternative routes)
PT users	Knowing crowding situations allows one to use alternative transportation modes or make the trip in another hours, if not strictly necessary; by the reservation system, if available, the users can access vehicles without unnecessary crowding at the stops or stations
Police forces	Knowing in real-time and/or predicting possible crowds - potentially dangerous for public health and/or for public order - allows a more timely and targeted intervention
Sanitary system	Smart reduction of crowding resulting from an agile management of the PT system allows one to reduce the diffusion of infection and prevent further outbreaks
General population	An improved QoE of the PT system entails a reduction of private car usage and of pollution in urban areas, with benefits on energy consumption and climate change

Compared to the other anti-COVID-19 solutions discussed in Section II, the new framework is not aimed at enforcing social distancing measures only. Its scope is wider, since it tries to incorporate crowding information to adaptively optimize the overall performance of the PT system. As a by-product, it also allows to partially recover the drawbacks and inefficiencies of PT systems due to the adoption of rigid social distancing.
measures during both pandemic and post-pandemic phases.

VII. MAIN CHALLENGES

In this Section, in relation to the proposed reference architecture, we enlighten some of the main challenges to be addressed for the introduction of crowd management functionalities in existing or forthcoming ITS systems. The impact of such challenges on the subsystems of the introduced reference architecture is summarized in Table V.

1) Cooperative sensing: In NVB cooperative sensing approaches, a large number of users must be engaged to obtain significant amounts of data. Several works [153, 154] have proposed to introduce incentive mechanisms aimed at stimulating user motivation and encouraging participation. A common solution is to let participants earn credits in exchange of their data. However, such a strategy might present some privacy risks, by exposing sensitive data and linking them to users’ identities. Several efforts have been made to propose privacy-preserving cooperative sensing approaches (based, for example, on data anonymization, randomisation, and aggregation). An interesting solution is discussed in [155], where a rewarding platform based on a voucher exchange system is proposed, which decouples mobile crowd sensing instruments from participation incentives. Each voucher is produced as a compensation for user’s participation, and it is designed to be fully anonymous and not exclusive.

2) Security: As an ICT-based evolution of the state-of-the-art ITSs, the proposed reference architecture strictly relies on ICT infrastructures too, i.e., most of the functions accomplished by the MPCSS subsystem could be implemented using modern cloud technologies. Since every ICT infrastructure can be prone to well-known cyber-attacks, security issues are particularly serious in all portions of our reference architecture, mainly due to the large volume of data exchanged among subsystems. A malicious user, for example, could launch a man-in-the-middle attack to the system, by intercepting and altering the content of the exchanged messages between crowd monitoring tools and vehicles, which could entail catastrophic effects in the decision-making phase, especially when self-driving vehicles are involved. Furthermore, denial-of-service attacks could be used to saturate the resources of the infrastructure to completely interrupt the decision-making process.

Security issues related to the IoT paradigm are well-known in the literature, but there are some aspects peculiar to ITSs [156]. In particular, one of the most limiting factor is represented by the scarce computational resources of many sensing devices used in ITSs, which may render the commonly used countermeasures (i.e., cryptography and authentication schemes) infeasible for providing secure communications. The proposed architecture, indeed, is based on a plethora of heterogeneous sensors and devices, which are required to be inexpensive, low-energy, and, in some cases, have small form-factor. However, energy-constrained sensors are resource-limited in terms of memory, computational capabilities, and communication range. Such constraints greatly limit the use of complex algorithms, useful even to guarantee security and privacy. Therefore, it becomes paramount to adopt energy-aware solutions to prolong the lifetime of the sensing subsystem. In this sense, a promising solution can be ambient backscattering [157], where small passive devices are able to transmit data by reflecting electromagnetic waves transmitted by existing RF transmitters.

3) Data fusion: The availability of large amounts of data acquired by heterogeneous sensors can pose a challenging problem for crowd monitoring, prediction, and control tools. In the proposed architecture, indeed, the MPCSS subsystem must analyze in real-time a large amount of multi-source and multi-modal data, which are characterized by different levels of resolution, accuracy, reliability, and redundancy. Various data fusion (DF) algorithms, aimed at associating, correlating, and combining information from multiple sensors, are commonly adopted to provide accurate and timely decision-making support. Among the commonly adopted approaches (i.e., statistical, probabilistic, and data-driven ones [58]), probabilistic-based methods seem to be more suitable in our scenario. In particular, Bayesian approaches, maximum likelihood methods, and Kalman filter-based DF techniques can be utilised for multi-sensor data fusion [158].

4) Privacy: Privacy is one of the major issues related to sensing technologies for crowd management. In what follows, VB and NVB techniques are discussed separately, since they involve different privacy concerns that can be overcome by resorting to radically different technical solutions.

VB solutions must be designed to implement data protection principles, collectively referred to as privacy-by-design, set out in international data privacy laws. For crowd counting and crowd density estimation, identification is not necessary. Therefore, for such applications, privacy-by-design can be achieved by suitably choosing resolution and other modifiable factors of VB devices to ensure that no recognizable facial images are captured. In addition to privacy-by-design, some data privacy laws also mandate privacy-by-default. Under such an obligation, personal data collected through VB approaches must be used only for the specific purpose of crowd management. This means that the minimum required amount of personal data should be collected, their processing should be minimized, and their storage and accessibility should be controlled. A viable approach to ensure privacy-by-default consists of turning VB feeds featuring individuals into numbers and heatmaps in such a manner that the data subject is not or no longer identifiable. Within the European Community, such countermeasures allow VB solutions to comply with the GDPR, which is one of the most restrictive legislations in the world in terms of safeguarding citizens’ privacy.

Regarding NVB solutions, sensing solutions based on mobile RF devices pose important privacy issues, especially for device-aided crowd monitoring. Apart from the issues regarding participatory sensing, which have been discussed previously, many device-aided RF-based NVB techniques basically perform monitoring of over-the-air beacon signals sent by individuals’ smartphones when they connect to a network or install an application. In this case, to extract relevant features for crowding information, processing of devices’ IDs is required, e.g., MAC addresses in WiFi networks. Most
RFID tags emit unique identifiers when they respond to reader interrogation, even tags that protect data with cryptographic algorithm [159]. A similar problem arises for Bluetooth-enabled wireless devices [160], as well as for the NFC protocol that is based on the transfer of an ID for anti-collision during the process of contactless reading of transponders [161]. Although cryptographic techniques can be used to transform ID data to preserve privacy, thereby complying with the GDPR, they are computationally-intensive and require the generation and maintenance of multiple keys, which also leads to higher energy consumption. Alternatively, devices’ IDs can be aggregated or perturbed in such a way that individual data privacy is preserved but, at the same time, useful information for crowding management is not destroyed. In the case of WiFi networks, a viable solution is represented by MAC address randomization [162], which is an available option in different operating systems, such as iOS, Android, and Windows. However, although it is compliant with the GDPR, some crowd counting methods are adversely affected by MAC address randomization.

A cutting-edge future research direction might be exploiting the mathematical concept of differential privacy [163], which addresses the challenging goal of learning nothing about an individual while learning useful information about a population. This is in accordance with existing data protection laws, including the GDPR. However, the feasibility of applying differential privacy approaches to crowd management remains an open topic of research. Device-free NVB solutions, both based on RF or other physical properties (such as audio or ultrasound signals), are less harmful to an individual’s privacy since they do not require processing of devices’ IDs and, thus, according to the GDPR, they do not collect personally identifiable information that could potentially be used to identify a particular person during people counting activities. This pushes towards emerging NVB techniques using reflected-power approaches [164], also referred to as passive NVB solutions, which reuse existing over-the-air signals to count people or estimate their flow, by viewing the signals as power carriers rather than information ones.

5) Communications: A constant stream of up-to-the-minute data can help PT system operators stay one step ahead of crowd situations. However, with limited budgets and compressed time frames, implementing a state-of-the-art CSS can present fundamental challenges. There are three basic challenges regarding ITs based upon acquisition and processing of large amounts of sensor data: bandwidth, latency, and heterogeneity of data and infrastructures.

A first critical issue is represented by the significant bandwidth demand to connect thousands of devices and support hundreds of real-time video feeds, along with data gathered from ubiquitous sensors. A potential approach to fulfill such a bandwidth demand is offered by the unlicensed band technology, which has attracted significant effort during the last decade. In particular, the new radio unlicensed (NR-U) technology appears to be particularly suited for ITS applications [165], since it considers multiple bands and other deployment scenarios, such as dual connectivity and standalone operation in unlicensed bands.

In addition to bandwidth, since some crowd management decisions are time-sensitive in nature, latency is another key performance indicator of the CSS. Cloud computing at the edge of the network [166], namely, close to railway/metro stations, bus stops, and ITS sensors, can provide a solution for satisfying latency and bandwidth constraints, thus avoiding unacceptable upload delays as well as energy consumption of IoT sensors. In those scenarios, when there is no edge server nearby that can offload the tasks, employing UAVs is a promising solution by serving as computing-communications edge server for resource-constrained IoT devices [167]. One can imagine a hybrid communication architecture for future ITSs where edge nodes locally process the time-critical raw sensed data, while non-time-sensitive data are transmitted to the cloud.

From a communication viewpoint, an ITS is a heterogeneous network, where a huge number of devices are connected to global networks using multiple technologies and platforms (i.e., cloud, edge, wireless, etc.), with various intelligence levels. Traditionally, communication between different wireless technologies is achieved indirectly via gateways equipped with multiple radio interfaces, which will become a bottleneck when many heterogeneous IoT devices are deployed. Cross-technology communications (CTC) opens a new direction of
direct communication among different wireless technologies, when they operate in the same spectrum band [168]. These technologies are purely a software-based solution, requiring no hardware modification.

6) Crowd control: A significant research effort is studying how to optimally employ (possible heterogeneous) crowding data to optimize (at the various levels) the PT system behavior. Suitable performance metrics must be defined, as well as optimization methodologies, especially when applied to large-scale complex PT networks involving thousands of vehicles and stations/stops. Indeed, in many papers crowd control strategies are localized, i.e., they are applied only to single lines or to a small portion of the network, whereas obviously crowd control must be applied holistically to the whole PT network. As an example, stop-skipping can solve the problem of a single vehicle overcrowding, but can negatively affect crowding at the stops or metro platforms. To perform complex system-wide optimization, it seems difficult to apply model-based approaches. Thus, the preferred choice should be resorting to techniques such as data mining, AI, or ML/DL, along the vision of data-driven PT systems [169]. An interesting issue is to assess the impact of inaccurate crowd monitoring/prediction measurements due to sensing on optimization strategies, in order to devise robust techniques. Another interesting development is how to incorporate crowding data in existing simulation tools for transportation planning, like BusMezzo [76] or SUMO [77].

VIII. CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK

A clean, smart, and resilient PT system is at the core of worldwide economies and is central to people’s lives: this is why there has been an increased number of research articles that discuss the feasibility of integrating ICT/IoT sensing solutions in ITSs. In this paper, we have reviewed the main ICT/IoT sensing technologies for crowd analysis, showing also how they can be adopted in a reference architecture aimed at introducing innovative crowd management functionalities in legacy ITS systems. The new framework is based on some basic components and subsystems, which can be used as building blocks to implement an evolved ITS, capable of real-time monitoring and predicting crowd situations, as well as disseminating useful information to users at the bus stops/stations and/or through mobile transport apps. A series of challenges arise from the proposed reference architecture, such as incentive mechanisms for user cooperation, data fusion and processing of heterogeneous data, security, privacy, broadband and ultra-low latency communications, system-wide optimization of crowd control strategies.

Some features of the new framework are similar to those of a contact tracing system, which can be implemented more easily by resorting to user cooperation. In this sense, the crowd detection functionalities can be incorporated in a more complex system, which can implement, besides the typical mobile transport app functionalities (like Moovit), also the possibility to buy tickets and/or to reserve the access to the vehicles, in conditions of particular crowding. This could represent a decisive incentive to the use of a PT system. However, the more appropriate crowd monitoring solution must be singled out case-by-case, in dependence on the scenario, the ICT infrastructure owned or leased by the PT operator, the socioeconomic context, and the cost-benefits ratio. The potentials of crowd management go beyond the scope of dealing with typical social distancing problems, by also allowing real-time optimization and adaptive management of PT systems.

Finally, the study of the open literature makes it clear that an in-depth performance analysis of the sensing techniques for PT systems reported in Table III has not yet been carried out in each considered scenario. Therefore, a first interesting research development consists of performing a comparative statistical performance evaluation (numerical and/or experimental) of such sensing techniques for each outlined indoor/outdoor scenarios. An additional research issue is to carry out a performance analysis of the DF algorithms for associating, correlating, and combining information from different sensors, whose accuracy is crucial to provide effective actions.

ACKNOWLEDGMENT

The authors would like to thank the IEEE ComSoc/VTS Italian Chapter for supporting this work, by awarding the first prize to the SALUTARY (Safe and Reliable Public Transportation System) system concept within the call for ideas in response to COVID-19 outbreak in Italy.

REFERENCES

[1] European Commission, EUROPEAN MOBILITY WEEK 2021: Safe and healthy with sustainable mobility, 2021. [Online]. Available: https://mobilityweek.eu.
[2] G. Dimitrakopoulos, L. Uden, and I. Varlamis, The Future of Intelligent Transport Systems, G. Dimitrakopoulos, L. Uden, and I. Varlamis, Eds. Elsevier, 2020.
[3] N. B. Hounsell, B. P. Shrestha, and A. Wong, “Data management and applications in a world-leading bus fleet,” Transportation Research Part C: Emerging Technologies, vol. 22, pp. 76–87, 2012.
[4] I. Pinna, B. Dalla Chiara, and F. P. Deflorio, “Automatic passenger counting and vehicle load monitoring,” Ingegneria Ferroviaria, vol. 65, no. 2, pp. 101–138, 2010.
[5] C. N. Opurum, Automated Fare Collection System & Urban Public Transportation: An Economic & Management Approach to Urban Transit Systems, Trafford Publishing, 2012.
[6] C. Iliopoulou and K. Kepaptsoglou, “Combining ITS and optimization in public transportation planning: State of the art and future research paths,” European Transport Research Review, vol. 11, no. 1, p. 27, May 2019.
[7] H. Habibzadeh, Z. Qin, T. Soyata, and B. Kantarcı, “Large-scale distributed dedicated- and non-dedicated smart city sensing systems,” IEEE Sensors Journal, vol. 17, no. 23, pp. 7649–7658, 2017.
[8] G. Cardone, A. Cirri, A. Corradi, L. Foschini, R. Ianniello, and R. Montanari, “Crowdsensing in urban areas for city-scale mass gathering management: Geofencing and activity recognition,” IEEE Sensors Journal, vol. 14, no. 12, pp. 4185–4195, 2014.

[9] D. S. Gallo, C. Cardonha, P. Avegliano, and T. C. Carvalho, “Taxonomy of citizen sensing for intelligent urban infrastructures,” IEEE Sensors Journal, vol. 14, no. 12, pp. 4154–4164, 2014.

[10] M. S. Kaiser et al., “Advances in crowd analysis for urban applications through urban event detection,” IEEE Transactions on Intelligent Transportation Systems, vol. 19, no. 10, pp. 3092–3112, 2018.

[11] K. Abualsaud et al., “A Survey on Mobile Crowd-Sensing and Its Applications in the IoT Era,” IEEE Access, vol. 7, pp. 3855–3881, 2019.

[12] X. Sheng, J. Tang, X. Xiao, and G. Xue, “Sensing as a service: Challenges, solutions and future directions,” IEEE Sensors Journal, vol. 13, no. 10, pp. 3733–3741, 2013.

[13] M. R. Palattella et al., “Internet of Things in the 5G era: Enablers, architecture, and business models,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 3, pp. 510–527, 2016.

[14] F. Guo, F. R. Yu, H. Zhang, X. Li, H. Ji, and V. C. M. Leung, “Enabling massive IoT toward 6G: A comprehensive survey,” IEEE Internet of Things Journal, vol. 8, no. 15, pp. 11 911–11 915, 2021.

[15] M. Cantwell, B. Caulfield, and M. O’Mahony, “Examining the factors that impact upon public transport commuting stress,” Journal of Public Transportation, vol. 12, no. 2, pp. 1–21, 2009.

[16] A. Tirachini, D. A. Hensher, and J. M. Rose, “Crowding in public transport systems: Effects on users, operation and implications for the estimation of demand,” Transportation Research Part A: Policy and Practice, vol. 53, pp. 36–52, 2013.

[17] A. Drabicki, O. Cats, and R. Kucharzki, “The potential of real-time crowding information in reducing bus bunching under different network saturation levels,” in 2021 7th International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), 2021, pp. 1–6.

[18] G. E. Sánchez-Martínez, H. N. Koutsopoulos, and N. H. M. Wilson, “Real-time holding control for high-frequency transit with dynamics,” Transportation Research Part B: Methodological, vol. 83, pp. 1–19, 2016.

[19] M. Handte et al., “Crowd density estimation for public transport vehicles,” in Proceedings of the Workshops of the EDBT/ICDT 2014 Joint Conference (EDBT/ICDT 2014), Athens, Greece, March 28, 2014, vol. 1133, 2014, pp. 315–322.

[20] K. Farkas, G. Feher, A. Benczur, and C. Sidlo, “Crowdsending based public transport information service in smart cities,” IEEE Communications Magazine, vol. 53, pp. 158–165, Aug. 2015.

[21] M. Handte, S. Foell, S. Wagner, G. Kortuem, and P. J. Marrón, “An Internet-of-Things enabled connected navigation system for urban bus riders,” IEEE Internet of Things Journal, vol. 3, no. 5, pp. 735–744, Oct. 2016.

[22] P. Wang, X. Chen, Y. Zheng, L. Cheng, Y. Wang, and D. Lei, “Providing real-time bus crowding information for passengers: A novel policy to promote high-frequency transit performance,” Transportation Research Part A: Policy and Practice, vol. 148, pp. 316–329, 2021.

[23] T. Franke, P. Lukowicz, and U. Blanke, “Smart crowds in smart cities: Real life, city scale deployments of a smartphone based participatory crowd management platform,” Journal of Internet Services and Applications, vol. 6, no. 1, p. 27, 2015.

[24] A. Boukerche and R. W. L. Coutinho, “Crowd management: The overlooked component of smart transportation systems,” IEEE Communications Magazine, vol. 57, no. 4, pp. 48–53, 2019.

[25] A. Nash, “Crowdsourcing techniques for transport planning and operations,” in Proceedings of 7th Transport Research Arena TRA 2018, April 16-19, 2018, Vienna, Austria, Zenodo, Apr. 2018. [Online]. Available: https://doi.org/10.5281/zenodo.1435672.

[26] A. Jolfaei, V. G. Menon, C. Lv, A. K. Bashir, Y. K. Tan, and K. Kant, “Guest editorial advanced sensing and sensor fusion for intelligent transportation systems,” IEEE Sensors Journal, vol. 21, no. 14, pp. 15 425–15 426, 2021.

[27] H. Lian, X. Pei, and X. Guo, “A local environment model based on multi-sensor perception for intelligent vehicles,” IEEE Sensors Journal, vol. 21, no. 14, pp. 15 427–15 436, 2021.

[28] L. Yang et al., “A refined non-driving activity classification using a two-stream convolutional neural network,” IEEE Sensors Journal, vol. 21, no. 14, pp. 15 574–15 583, 2021.

[29] V. Singh and N. K. Verma, “Intelligent condition-based monitoring techniques for bearing fault diagnosis,” IEEE Sensors Journal, vol. 21, no. 14, pp. 15 504–15 514, 2021.

[30] Y. Yan, H. Ma, M. Wen, S. Dang, and H. Xu, “Multi-feature fusion-based mechanical fault diagnosis for on-load tap changers in smart grid with electric vehicles,” IEEE Sensors Journal, vol. 21, no. 14, pp. 15 696–15 708, 2021.

[31] W. Ejaz et al., “IoV-based deployment and scheduling of charging infrastructure in intelligent transportation systems,” IEEE Sensors Journal, vol. 21, no. 14, pp. 15 504–15 514, 2021.

[32] F. Kortmann et al., “Modeling the quarter-vehicle: Use of passive sensor data for road condition monitoring,” IEEE Sensors Journal, vol. 21, no. 14, pp. 15 535–15 543, 2021.

[33] R. Mishra, H. P. Gupta, and T. Dutta, “A road health monitoring system using sensors in optimal deep neu-
ral network,” IEEE Sensors Journal, vol. 21, no. 14, pp. 15 527–15 534, 2021.

[34] C. Chen, Y. Zhang, M. R. Khosravi, Q. Pei, and S. Wan, “An intelligent platooning algorithm for sustainable transportation systems in smart cities,” IEEE Sensors Journal, vol. 21, no. 14, pp. 15 437–15 447, 2021.

[35] H. Peng, Y. Wang, Z. Chen, and Z. Lv, “Dynamic sensor speed measurement algorithm and influencing factors of traffic safety with wireless sensor network nodes and RFID,” IEEE Sensors Journal, vol. 21, no. 14, pp. 15 679–15 686, 2021.

[36] R. Wang, F. Xie, J. Zhao, B. Zhang, R. Sun, and J. Yang, “Smartphone sensors-based abnormal driving behaviors detection: Serial-feature network,” IEEE Sensors Journal, vol. 21, no. 14, pp. 15 719–15 728, 2021.

[37] I. Grgurević, K. Juršić, and V. Rajič, “Review of automatic passenger counting systems in public urban transport,” in 5th EAI International Conference on Management of Manufacturing Systems, L. Knapčíková, D. Peraković, A. Behňová, and M. Periša, Eds., Cham: Springer International Publishing, 2022, pp. 1–15.

[38] A. Cecaj, M. Lippi, M. Mamei, and F. Zambonelli, “Sensing and forecasting crowd distribution in smart cities: Potentials and approaches,” IoT, vol. 2, no. 1, pp. 33–49, 2021.

[39] P. Xie, T. Li, J. Liu, S. Du, X. Yang, and J. Zhang, “Urban flow prediction from spatiotemporal data using machine learning: A survey,” Information Fusion, vol. 59, pp. 1–12, 2020.

[40] T. Yuan, W. Da Rocha Neto, C. E. Rothenberg, K. Obrazcza, C. Barakat, and T. Turletti, “Machine learning for next-generation intelligent transportation systems: A survey,” Transactions on Emerging Telecommunications Technologies, vol. 33, no. 4, e4427, 2022.

[41] B. Tyagi, S. Nigam, and R. Singh, “A review of deep learning techniques for crowd behavior analysis,” Archives of Computational Methods in Engineering, 2022.

[42] G. Gao, J. Gao, Q. Liu, Q. Wang, and Y. Wang, “CNN-based density estimation and crowd counting: A survey,” ArXiv, vol. abs/2003.12783, 2020.

[43] K. Gkiotsalitis and O. Cats, “At-stop control measures in public transport: Literature review and research agenda,” Transportation Research Part E: Logistics and Transportation Review, vol. 145, p. 102 176, 2021.

[44] Ipsos, Impact of coronavirus to new car purchase in China, Mar. 2020. [Online]. Available: https://www.ipsos.com/en/impact-coronavirus-new-car-purchase-china.

[45] A. Gutiérrez, D. Miravet, and A. Domènech, “COVID-19 and urban public transport services: Emerging challenges and research agenda,” Cities & Health, pp. 1–4, 2020.

[46] A. Aloi et al., “Effects of the COVID-19 lockdown on urban mobility: Empirical evidence from the city of Santander (Spain),” Sustainability, vol. 12, no. 9, p. 3870, 2020.

[47] T. Campisi, S. Basbas, A. Skoufas, N. Akgün, D. Ticali, and G. Tesoriere, “The impact of COVID-19 pandemic on the resilience of sustainable mobility in Sicily,” Sustainability, vol. 12, no. 21, 2020.

[48] A. Tirachini and O. Cats, “COVID-19 and public transportation: Current assessment, prospects, and research needs,” Journal of Public Transportation, vol. 1, no. 22, pp. 1–21, 2020.

[49] K. Gkiotsalitis and O. Cats, “Public transport planning adaption under the COVID-19 pandemic crisis: Literature review of research needs and directions,” Transport Reviews, vol. 41, no. 3, pp. 374–392, 2021.

[50] Yahoo News, LTA readjusts train frequencies after crowds form during peak hours, 2020. [Online]. Available: https://in.news.yahoo.com/covid-19-lta-readjusts-train-frequencies-after-crowds-form-during-peakhours-023753593.html.

[51] P. Coppola and F. De Fabisi, “Evolution of mobility sector during and beyond Covid-19 emergency: A viewpoint of industry consultancies and public transport companies,” TeMA - Journal of Land Use, Mobility and Environment, pp. 81–90, Jun. 2020.

[52] V. Chamola, V. Hassija, V. Gupta, and M. Guizani, “A comprehensive review of the COVID-19 pandemic and the role of IoT, drones, AI, blockchain, and 5G in managing its impact,” IEEE Access, vol. 8, pp. 90 225–90 265, 2020.

[53] C. T. Nguyen et al., “A comprehensive survey of enabling and emerging technologies for social distancing—Part I: Fundamentals and enabling technologies,” IEEE Access, vol. 8, pp. 153 479–153 507, 2020.

[54] C. T. Nguyen et al., “A comprehensive survey of enabling and emerging technologies for social distancing — Part II: Emerging technologies and open issues,” IEEE Access, vol. 8, pp. 154 209–154 236, 2020.

[55] S. M. Asad, K. Dashtipour, S. Hussain, Q. H. Abbasi, and M. A. Imran, “Travelers-tracing and mobility profiling using machine learning in railway systems,” in 2020 International Conference on UK-China Emerging Technologies (UCET), 2020, pp. 1–4.

[56] A. Reiger, E. Alivizatos, A. Potis, and A. Moreira, “Extended wavenumber-domain synthetic aperture radar focusing with integrated motion compensation,” IEEE Proceedings - Radar, Sonar and Navigation, vol. 153, no. 3, pp. 298–307, 2006.

[57] M. M. Rahman, K. C. Paul, M. A. Hossain, G. G. M. N. Ali, M. S. Rahman, and J.-C. Thill, “Machine learning on the COVID-19 pandemic, human mobility and air quality: A review,” IEEE Access, vol. 9, pp. 72 420–72 450, 2021.

[58] X. Li et al., “Data fusion for intelligent crowd monitoring and management systems: A survey,” IEEE Access, vol. 9, pp. 47 069–47 083, 2021.

[59] A. Drabicki, R. Kucharski, O. Cats, and A. Fonzzone, “Simulating the effects of real-time crowding information in public transport networks,” in 2017 5th IEEE
International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), 2017, pp. 675–680.

[60] A. Drabicki, R. Kucharski, and O. Cats, “Mitigating bus bunching with real-time crowding information,” Transportation, 2022.

[61] G. Belleri and K. Gkoumas, “Transit vehicles’ headway distribution and service irregularity,” Public Transport, vol. 2, no. 4, pp. 269–289, 2010.

[62] Smart Nation Singapore, Open data & analytics for urban transportation – enhancing public transport using data, 2019. [Online]. Available: https://www.smartnation.gov.sg/initiatives/transport/open-data-analytics.

[63] Land Transport Authority (LTA), Less crowding, shorter peak hour waiting times - higher capacity and better connectivity island-wide, Oct. 2014. [Online]. Available: https://www.lta.gov.sg/content/ltagov/en/newsroom/2014/10/2/less-crowding-shorter-peak-hour-waiting-times---higher-capacity-and-better-connectivity-island-wide.html.

[64] T. Hasaballah, Transit crowding trends from around the world, according to Google Maps, Jun. 2019. [Online]. Available: https://blog.google/products/maps/transit-crowdedness-trends-around/.

[65] T. Hasaballah and A. Bertuca, Grab a seat and be on time with new transit updates on Google Maps, Jun. 2019. [Online]. Available: https://blog.google/products/maps/grab-seat-and-be-time-new-transit-updates-google-maps/.

[66] E. Jenelius, Navigate new normals with Google Maps, Jul. 2021. [Online]. Available: https://blog.google/products/maps/new-normals-with-google-maps/.

[67] E. Jenelius, “Data-driven metro train crowding prediction based on real-time load data,” IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 6, pp. 2254–2265, 2020.

[68] E. Jenelius, “Personalized predictive public transport crowding information with automated data sources,” Transportation Research Part C: Emerging Technologies, vol. 117, p. 102647, 2020.

[69] Y. Bai, Q. Hu, T. K. Ho, H. Guo, and B. Mao, “Timetable optimization for metro lines connecting to intercity railway stations to minimize passenger waiting time,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 1, pp. 79–90, 2021.

[70] T. Arabghalizi and A. Labrinidis, “Data-driven bus crowding prediction models using context-specific features,” ACM/IMS Trans. Data Sci., vol. 1, no. 3, Sep. 2020.

[71] J. C. Muñoz, J. Soza-Parra, A. Didier, and C. Silva, “Alleviating a subway bottleneck through a platform gate,” Transportation Research Part A: Policy and Practice, vol. 116, pp. 446–455, 2018.

[72] X. Luan and F. Corman, “Passenger-oriented traffic control for rail networks: An optimization model considering crowding effects on passenger choices and train operations,” Transportation Research Part B: Methodological, vol. 158, pp. 239–272, 2022.

[73] S.-H. Fang, L. Lin, Y.-T. Yang, X. Yu, and Z. Xu, “CityTracker: Citywide individual and crowd trajectory analysis using Hidden Markov Model,” IEEE Sensors Journal, vol. 19, no. 17, pp. 7693–7701, 2019.

[74] J. Zhang et al., “A real-time passenger flow estimation and prediction method for urban bus transit systems,” IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 11, pp. 3168–3178, 2017.

[75] M. Luca, G. Barlacchi, B. Lepri, and L. Pappalardo, “A survey on deep learning for human mobility,” ACM Comput. Surv., vol. 55, no. 1, Nov. 2021.

[76] T. Toledo, O. Cats, W. Burghout, and H. N. Koutsopoulos, “Mesoscopic simulation for transit operations,” Transportation Research Part C: Emerging Technologies, vol. 18, no. 6, pp. 896–908, 2010, Special issue on Transportation Simulation Advances in Air Transportation Research.

[77] P. A. Lopez et al., “Microscopic traffic simulation using SUMO,” in The 21st IEEE International Conference on Intelligent Transportation Systems, IEEE, Nov. 2018, pp. 2575–2582.

[78] A. Nuzzolo, U. Crisalli, A. Comi, and L. Rosati, “A mesoscopic transit assignment model including real-time predictive information on crowding,” Journal of Intelligent Transportation Systems, vol. 20, no. 4, pp. 316–333, 2016.

[79] P. Noursalehi, H. N. Koutsopoulos, and J. Zhao, “Predictive decision support platform and its application in crowding prediction and passenger information generation,” Transportation Research Part C: Emerging Technologies, vol. 129, p. 103 139, 2021.

[80] K. Sohn, “Optimizing train-stop positions along a platform to distribute the passenger load more evenly across individual cars,” IEEE Transactions on Intelligent Transportation Systems, vol. 14, no. 2, pp. 994–1002, 2013.

[81] K. Gkiotsalitis and A. Stathopoulos, “Demand-responsive public transportation re-scheduling for adjusting to the joint leisure activity demand,” International Journal of Transportation Science and Technology, vol. 5, no. 2, pp. 68–82, 2016.

[82] Z. Cao, A. Ceder, and S. Zhang, “Real-time schedule adjustments for autonomous public transport vehicles,” Transportation Research Part C: Emerging Technologies, vol. 109, pp. 60–78, 2019.

[83] A. Y. S. Lam, Y.-W. Leung, and X. Chu, “Autonomous-vehicle public transportation system: Scheduling and admission control,” IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 5, pp. 1210–1226, 2016.

[84] B. Zhan, D. N. Monekosso, P. Remagnino, S. A. Velastin, and L.-Q. Xu, “Crowd analysis: A survey,” Machine Vision and Applications, vol. 19, no. 5-6, pp. 345–357, 2008.

[85] M. Bendali-Braham, J. Weber, G. Forestier, L. Idoumghar, and P.-A. Muller, “Recent trends in crowd...
analysis: A review,” Machine Learning with Applications, vol. 4, p. 100023, 2021.

[86] M. Irfan, L. Marcenaro, and L. Tokarchuk, “Crowd analysis using visual and non-visual sensors, a survey,” in 2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP), IEEE, 2016, pp. 1249–1254.

[87] J. C. Silveira Jacques Junior, S. R. Musse, and C. R. Jung, “Crowd analysis using computer vision techniques,” IEEE Signal Processing Magazine, vol. 27, no. 5, pp. 66–77, 2010.

[88] T. Li, H. Chang, M. Wang, B. Ni, R. Hong, and S. Yan, “Crowded scene analysis: A survey,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 25, no. 3, pp. 367–386, 2015.

[89] Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation), Apr. 2016. [Online]. Available: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32016R0679.

[90] S. T. Kouyoumdjieva, P. Daniëls, and G. Karlsson, “Survey of non-image-based approaches for counting people,” IEEE Communications Surveys Tutorials, vol. 22, no. 2, pp. 1305–1336, 2020.

[91] R. K. Ganti, F. Ye, and H. Lei, “Mobile crowdsensing: Current state and future challenges,” IEEE Communications Magazine, vol. 49, no. 11, pp. 32–39, 2011.

[92] N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T. Campbell, “A survey of mobile phone sensing,” IEEE Communications Magazine, vol. 48, no. 9, pp. 140–150, 2010.

[93] J. A. Burke et al., “Participatory sensing,” in Proceedings of the World Sensor Web Workshop, in Conjunction with ACM SenSys 2006, Boulder, CO, Oct. 2006.

[94] A. Olivo, G. Matermini, and B. Barabino, “Empirical study on the accuracy and precision of Automatic Passenger Counting in european bus services,” The Open Transportation Journal, vol. 13, pp. 250–260, 2019.

[95] C.-H. Chen, Y.-C. Chang, T.-Y. Chen, and D.-J. Wang, “People counting system for getting in/out of a bus based on video processing,” in 2008 Eighth International Conference on Intelligent Systems Design and Applications, vol. 3, 2008, pp. 565–569.

[96] J. W. Choi, X. Quan, and S. H. Cho, “Bi-directional passing people counting system based on IR-UWB radar sensors,” IEEE Internet of Things Journal, vol. 5, no. 2, pp. 512–522, 2018.

[97] S. Vidyasagarasan, S. R. Devi, A. Varma, A. Rajesh, and H. Charan, “A low cost IoT based crowd management system for public transport,” in 2017 International Conference on Inventive Computing and Informatics (ICICI), 2017, pp. 222–225.

[98] B. F. Nielsen, L. Frølich, O. A. Nielsen, and D. Filges, “Estimating passenger numbers in trains using existing weighing capabilities,” Transportmetrica A: Transport Science, vol. 10, no. 6, pp. 502–517, 2014.

[99] A. J. Kotz, D. B. Kittelson, and W. F. Northrop, “Novel vehicle mass-based automated passenger counter for transit applications,” Transportation Research Record, vol. 2563, no. 1, pp. 37–43, 2016.

[100] D.-Y. Chen and P.-C. Huang, “Visual-based human crowds behavior analysis based on graph modeling and matching,” IEEE Sensors Journal, vol. 13, no. 6, pp. 2129–2138, 2013.

[101] P. Chato, D. J. M. Chipantansi, N. Velasco, S. Rea, V. Hallo, and P. Constante, “Image processing and artificial neural network for counting people inside public transport,” in 2018 IEEE Third Ecuador Technical Chapters Meeting (ETCM), 2018, pp. 1–5.

[102] J. Zhang, J. Liu, and Z. Wang, “Convolutional neural network for crowd counting on metro platforms,” Symmetry, vol. 13, no. 4, 2021.

[103] M. Abdou and A. Erradi, “Crowd counting: A survey of machine learning approaches,” in 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), 2020, pp. 48–54.

[104] H. Yu, Z. He, and J. Liu, “A vision-based method to estimate passenger flow in bus,” in 2007 International Symposium on Intelligent Signal Processing and Communication Systems, 2007, pp. 654–657.

[105] T. Yang, Y. Zhang, D. Shao, and Y. Li, “Clustering method for counting passengers getting in a bus with single camera,” Optical Engineering, vol. 49, no. 3, pp. 1–10, 2010.

[106] S. Sun, N. Akhtar, H. Song, C. Zhang, J. Li, and A. Mian, “Benchmark data and method for real-time people counting in cluttered scenes using depth sensors,” IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 10, pp. 3599–3612, 2019.

[107] G. Liu, Z. Yin, Y. Jia, and Y. Xie, “Passenger flow estimation based on convolutional neural network in public transportation system,” Knowledge-Based Systems, vol. 123, pp. 102–115, 2017.

[108] A. V. Meghana, V. Sarode, D. Tambade, A. Marathe, and N. Charniya, “Automated crowd management in bus transport service,” in 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC), 2020, pp. 104–109.

[109] X. Ding, Z. Lin, F. He, Y. Wang, and Y. Huang, “A deeply-recursive convolutional network for crowd counting,” in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018, pp. 1942–1946.

[110] S.-Y. Cho, T. W. S. Chow, and C.-T. Leung, “A neural-based crowd estimation by hybrid global learning algorithm,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 29, no. 4, pp. 535–541, 1999.

[111] G. García-Bunster and M. Torres-Torriti, “A density-based approach for effective pedestrian counting at bus stops,” in 2009 IEEE International Conference on Systems, Man and Cybernetics, 2009, pp. 3434–3439.
[112] G. Garcia-Bunster, M. Torres-Torriti, and C. Oberli, “Crowded pedestrian counting at bus stops from perspective transformations of foreground areas,” IET Computer Vision, vol. 6, no. 4, pp. 296–305, 2012.

[113] M. Andersson, J. Rydell, and J. Ahlberg, “Estimation of crowd behavior using sensor networks and sensor fusion,” in 2009 12th International Conference on Information Fusion, 2009, pp. 396–403.

[114] W.-C. Lin, W. K. G. Seah, and W. Li, “Exploiting radio irregularity in the Internet of Things for automated people counting,” in 2011 IEEE 22nd International Symposium on Personal, Indoor and Mobile Radio Communications, 2011, pp. 1015–1019.

[115] T. Tikkonen, “People detection and tracking using a network of low-cost depth cameras,” Ph.D. dissertation, Jan. 2014.

[116] A. Tyndall, R. Cardell-Oliver, and A. Keating, “Occupancy estimation using a low-pixel count thermal imager,” IEEE Sensors Journal, vol. 16, no. 10, pp. 3784–3791, 2016.

[117] I. Amin, A. J. Taylor, F. Junejo, A. Al-Habaibeh, and R. Parkin, “Automated people-counting by using low-resolution infrared and visual cameras,” Measurement, vol. 41, pp. 589–599, Jul. 2008.

[118] S. Yaseen, A. Al-Habaibeh, D. Su, and F. Otham, “Real-time crowd density mapping using a novel sensory fusion model of infrared and visual systems,” Safety Science, vol. 57, pp. 313–325, 2013.

[119] A. Gomez, F. Conti, and L. Benini, “Thermal image-based CNN’s for ultra-low power people recognition,” in Proceedings of the 15th ACM International Conference on Computing Frontiers, ser. CF ’18, Ischia, Italy: Association for Computing Machinery, 2018, pp. 326–331.

[120] Y. Jiang, Y. Miao, B. Alzahrani, A. Barnawi, R. Alotaibi, and L. Hu, “Ultra large-scale crowd monitoring system architecture and design issues,” IEEE Internet of Things Journal, vol. 8, no. 13, pp. 10356–10366, 2021.

[121] A. Lesani, E. Nateghinia, and L. F. Miranda-Moreno, “Development and evaluation of a real-time pedestrian counting system for high-volume conditions based on 2D LiDAR,” Transportation Research Part C: Emerging Technologies, vol. 114, pp. 20–35, 2020.

[122] M. Hashimoto, A. Tsuji, A. Nishio, and K. Takahashi, “Laser-based tracking of groups of people with sudden changes in motion,” in 2015 IEEE International Conference on Industrial Technology (ICIT), 2015, pp. 315–320.

[123] S.-i. Akamatsu, N. Shimaji, and T. Tomizawa, “Development of a person counting system using a 3D laser scanner,” in 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014), 2014, pp. 1983–1988.

[124] P. G. Kannan, S. P. Venkatagiri, M. C. Chan, A. L. Ananda, and L.-S. Peh, “Low cost crowd counting using audio tones,” in Proceedings of the 10th ACM Conference on Embedded Network Sensor Systems, Toronto, Ontario, Canada: Association for Computing Machinery, 2012, pp. 155–168.

[125] R. Agarwal, S. Kumar, and R. M. Hegde, “Algorithms for crowd surveillance using passive acoustic sensors over a multimodal sensor network,” IEEE Sensors Journal, vol. 15, no. 3, pp. 1920–1930, 2015.

[126] M. A. Al Hafiz Khan, H. M. S. Hosssain, and N. Roy, “SensePresence: infrastructure-less occupancy detection for opportunistic sensing applications,” in 2015 16th IEEE International Conference on Mobile Data Management, vol. 2, 2015, pp. 56–61.

[127] O. Shih and A. Rowe, “Occupancy estimation using ultrasonic chirps,” in Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems, ser. ICCPS ’15, Seattle, Washington: Association for Computing Machinery, 2015, pp. 149–158.

[128] S. Di Domenico, G. Pecoraro, E. Cianca, and M. De Sanctis, “Trained-once device-free crowd counting and occupancy estimation using WiFi: A Doppler spectrum based approach,” in 2016 IEEE 12th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), 2016, pp. 1–8.

[129] S. Bartoletti, A. Conti, and M. Z. Win, “Device-free counting via wideband signals,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 5, pp. 1163–1174, 2017.

[130] R. F. Brena, E. Escudero, C. Vargas-Rosas, C. E. Galvan-Tejada, and D. Munoz, “Device-free crowd counting using multi-link Wi-Fi CSI descriptors in Doppler spectrum,” Electronics, vol. 10, no. 3, 2021.

[131] J.-H. Choi, J.-E. Kim, and K.-T. Kim, “People counting using IR-UWB radar sensor in a wide area,” IEEE Internet of Things Journal, vol. 8, no. 7, pp. 5806–5821, 2021.

[132] Y. Yuan, J. Zhao, C. Qiu, and W. Xi, “Estimating crowd density in an RF-based dynamic environment,” IEEE Sensors Journal, vol. 13, no. 10, pp. 3837–3845, 2013.

[133] S. Depatla, A. Muralidharan, and Y. Mostofi, “Occupancy Estimation Using Only WiFi Power Measurements,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 7, pp. 1381–1393, 2015.

[134] O. T. Ibrahim, W. Gomaa, and M. Youssef, “CrossCount: A Deep Learning System for Device-Free Human Counting Using WiFi,” IEEE Sensors Journal, vol. 19, no. 21, pp. 9921–9928, 2019.

[135] W. Xi et al., “Electronic frog eye: Counting crowd using WiFi,” in IEEE INFOCOM 2014 - IEEE Conference on Computer Communications, 2014, pp. 361–369.

[136] M. De Sanctis, T. Rossi, S. Di Domenico, E. Cianca, G. Ligresti, and M. Ruggeri, “LTE signals for device-free crowd density estimation through CSI secant set and SVD,” IEEE Access, vol. 7, pp. 159943–159951, 2019.

[137] O. Oshiga, H. U. Suleiman, S. Thomas, P. Nzerem, L. Farouk, and S. Adeshina, “Human detection for crowd count estimation using CSI of WiFi signals,”
in 2019 15th International Conference on Electronics, Computer and Computation (ICECCO), 2019, pp. 1–6.

[138] F. Brockmann, M. Handte, and P. J. Marrón, “Cutique: people counting in waiting lines using Bluetooth low energy based passive presence detection,” in 2018 14th International Conference on Intelligent Environments (IE), 2018, pp. 1–8.

[139] I. Sobron, J. Del Ser, I. Eizmendi, and M. Vélez, “Device-free people counting in IoT environments: New insights, results, and open challenges,” IEEE Internet of Things Journal, vol. 5, no. 6, pp. 4396–4408, 2018.

[140] A. Capozzoli et al., “SAR tomography with optimized constellation and its application to forested scenes,” Fondazione Giorgio Ronchi, vol. LXV, no. 3, pp. 367–375, 2010.

[141] A. Capozzoli, C. Curcio, I. Judice, A. Liseno, and S. Savarese, “Fast imaging of vegetation on GPUs based on non-uniform FFTs,” in 2011 International Conference on Electromagnetics in Advanced Applications, 2011, pp. 1205–1208.

[142] C. Oberli, M. Torres-Torriti, and D. Landau, “Performance evaluation of UHF RFID technologies for real-time passenger recognition in intelligent public transportation systems,” IEEE Transactions on Intelligent Transportation Systems, vol. 11, no. 3, pp. 748–753, 2010.

[143] R. Want, “Near field communication,” IEEE Pervasive Computing, vol. 10, no. 3, pp. 4–7, 2011.

[144] U. Demir Alan and D. Birant, “Server-based intelligent public transportation system with NFC,” IEEE Intelligent Transportation Systems Magazine, vol. 10, no. 1, pp. 30–46, 2018.

[145] D. Hahn, A. Munir, and V. Behzadan, “Security and privacy issues in Intelligent Transportation Systems: Classification and challenges,” IEEE Intelligent Transportation Systems Magazine, vol. 13, no. 1, pp. 181–196, 2021.

[146] J. Martin et al., “Incentives for mobile crowd sensing: A survey,” IEEE Communications Surveys Tutorials, vol. 18, no. 1, pp. 54–67, 2016.

[147] A. Basalamah, “Sensing the crowds using Bluetooth Low Energy tags,” IEEE Access, vol. 4, pp. 4225–4233, 2016.

[148] “Immuni documentation,” Tech. Rep. [Online]. Available: https://www.immuni.italia.it/.

[149] M. Nitti, F. Pinna, L. Pintor, V. Pilloni, and B. Barabino, “iABACUS: A Wi-Fi-based automatic bus passenger counting system,” Energies, vol. 13, no. 6, 2020.

[150] K. Shibata and H. Yamamoto, “People crowd density estimation system using deep learning for radio wave sensing of cellular communication,” in 2019 International Conference on Artificial Intelligence in Information and Communication (ICAICC), 2019, pp. 143–148.

[151] J. A. del Peral-Rosado, R. Raulefs, J. A. López-Salcedo, and G. Seco-Granados, “Survey of cellular mobile radio localization methods: From 1G to 5G,” IEEE Communications Surveys Tutorials, vol. 20, no. 2, pp. 1124–1148, 2018.

[152] M. G. Demissie, S. Phithakkitnukoon, T. Sukhivibul, F. Antunes, R. Gomes, and C. Bento, “Inferring passenger travel demand to improve urban mobility in developing countries using cell phone data: A case study of Senegal,” IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 9, pp. 2466–2478, 2016.

[153] X. Zhang et al., “Incentives for mobile crowd sensing: A survey,” IEEE Communications Surveys Tutorials, vol. 18, no. 1, pp. 54–67, 2016.

[154] L. G. Jaimes, I. J. Vergara-Laurens, and A. Raij, “A survey of incentive techniques for mobile crowd sensing,” IEEE Internet of Things Journal, vol. 2, no. 5, pp. 370–380, 2015.

[155] L. C. Klopfenstein, S. Delpriori, A. Aldini, and A. Bogliolo, “Introducing a flexible rewarding platform for mobile crowd-sensing applications,” in 2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), 2018, pp. 728–733.

[156] A. Capozzoli et al., “People crowd density estimation system using deep learning for radio wave sensing of cellular communication,” in 2019 International Conference on Artificial Intelligence in Information and Communication (ICAICC), 2019, pp. 143–148.
[165] R. Bajracharya, R. Shrestha, S. A. Hassan, K. Konstantin, and H. Jung, “Dynamic pricing for Intelligent Transportation System in the 6G unlicensed band,” *IEEE Transactions on Intelligent Transportation Systems*, pp. 1–16, 2021.

[166] P. Arthurs, L. Gillam, P. Krause, N. Wang, K. Halder, and A. Mouzakitis, “A taxonomy and survey of edge cloud computing for Intelligent Transportation Systems and connected vehicles,” *IEEE Transactions on Intelligent Transportation Systems*, pp. 1–16, 2021.

[167] R. Liu, A. Liu, Z. Qu, and N. N. Xiong, “An UAV-enabled intelligent connected transportation system with 6G communications for Internet of Vehicles,” *IEEE Transactions on Intelligent Transportation Systems*, pp. 1–15, 2021.

[168] D. Gao, L. Wang, and B. Hu, “Spectrum efficient communication for heterogeneous IoT networks,” *IEEE Transactions on Network Science and Engineering*, pp. 1–1, 2022.

[169] J. Zhang, F.-Y. Wang, K. Wang, W.-H. Lin, X. Xu, and C. Chen, “Data-driven Intelligent Transportation Systems: A survey,” *IEEE Transactions on Intelligent Transportation Systems*, vol. 12, no. 4, pp. 1624–1639, 2011.

Donatella Darsena (M’06-SM’16) received the Dr. Eng. degree *summa cum laude* in telecommunications engineering in 2001, and the Ph.D. degree in electronic and telecommunications engineering in 2005, both from the University of Napoli Federico II, Italy. From 2001 to 2002, she worked as embedded system designer in the Telecommunications, Peripherals and Automotive Group, STMicroelectronics, Milano, Italy. Since March 2005, she has been with the University of Napoli Parthenope, Italy. She first served as an Assistant Professor of probability theory and, since January 2022, she has served as an Associate Professor of telecommunications with the Department of Engineering.

Her research interests are in the broad area of signal processing for communications, with current emphasis on backscattering communications, space-time techniques for cooperative and cognitive networks, green communications for IoT. Dr. Darsena was an Associate Editor for the *IEEE COMMUNICATIONS LETTERS* from December 2016 to July 2019. She has served as Associate Editor for *IEEE ACCESS* since October 2018. Area Editor for *IEEE COMMUNICATIONS LETTERS* since August 2019, and Associate Editor for *IEEE SIGNAL PROCESSING LETTERS* since 2020.

Giacinto Gelli (M’18-SM’20) was born in Napoli, Italy, on July 29, 1964. He received the Dr. Eng. degree *summa cum laude* in electronic engineering in 1990, and the Ph.D. degree in computer science and electronic engineering in 1994, both from the University of Napoli Federico II.

From 1994 to 1998, he was an Assistant Professor with the Department of Information Engineering, Second University of Napoli. Since 1998 he has been with the Department of Electrical Engineering and Information Technology, University of Napoli Federico II, first as an Associate Professor, and since November 2006 as a Full Professor of telecommunications. He also held teaching positions at the University of Napoli Parthenope. His research interests are in the broad area of signal and array processing for communications, with current emphasis on reflected-power communication systems, multicarrier modulation systems, and space-time techniques for cooperative and cognitive communications systems.

Ivan Judice was born in Livorno, Italy, on November 23, 1986. He received the B.S. and M.S. degrees in telecommunications engineering in 2008 and 2010, respectively, and the Ph.D. degree in information technology and electrical engineering in 2017, all from University of Napoli Federico II, Italy.

Since 2011, he has been with the Italian Aerospace Research Centre (CIRA), Capua, Italy. He first served as part of the Electronics and Communications laboratory and, since November 2020, he has served as part of the Security of Systems and Infrastructures laboratory. His research activities lie in the area of signal and array processing for communications, with current interests focused on physical-layer cyber security and space-time techniques for cooperative communications systems.

Francesco Verde (M’10-SM’14) was born in Santa Maria Capua Vetere, Italy, on June 12, 1974. He received the Dr. Eng. degree *summa cum laude* in electronic engineering from the Second University of Napoli, Italy, in 1998, and the Ph.D. degree in information engineering from the University of Napoli Federico II, in 2002. Since December 2002, he has been with the University of Napoli Federico II, Italy. He first served as an Assistant Professor of signal theory and mobile communications and, since December 2011, he has served as an Associate Professor of telecommunications with the Department of Electrical Engineering and Information Technology. His research activities include reflected-power communications, orthogonal/non-orthogonal multiple-access techniques, wireless systems optimization, and physical-layer security.

Prof. Verde has been involved in several technical program committees of major IEEE conferences in signal processing and wireless communications. He has served as Associate Editor for IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY since 2022 and Senior Area Editor of the IEEE SIGNAL PROCESSING LETTERS since 2018. He was an Associate Editor of the IEEE TRANSACTIONS ON SIGNAL PROCESSING (from 2010 to 2014), IEEE SIGNAL PROCESSING LETTERS (from 2014 to 2018), and IEEE TRANSACTIONS ON COMMUNICATIONS (from 2017 to 2022), as well as Guest Editor of the EURASIP Journal on Advances in Signal Processing in 2016 and SENSORS MDPI in 2018-2022.