Mixed Convective Magnetohydrodynamic Heat Transfer Flow of Williamson Fluid Over a Porous Wedge

Amina Panezai¹, Abdul Rehman¹, Naveed Sheikh¹, Saleem Iqbal¹, Israr Ahmed¹, Manzoor Iqbal², Muhammad Zulfiqar³

¹Department of Mathematics, University of Balochistan, Quetta, Pakistan
²Department of Chemistry, University of Balochistan, Quetta, Pakistan
³Department of Mathematics, Government College University Lahore, Pakistan

Email address:
panezaiamina@gmail.com (A. Panezai), abdul_maths@yahoo.com (A. Rehman), naveed_maths@hotmail.com (N. Sheikh), sailcmiqbal81@yahoo.com (S. Iqbal), Israrsud95@gmail.com (I. Ahmed), manzoor_iqbal@yahoo.com (M. Iqbal), mzu1fiqu3r@hotmail.com (M. Zulfiqar)

To cite this article:
Amina Panezai, Abdul Rehman, Naveed Sheikh, Saleem Iqbal, Israr Ahmed, Manzoor Iqbal, Muhammad Zulfiqar. Mixed Convective Magnetohydrodynamic Heat Transfer Flow of Williamson Fluid Over a Porous Wedge. American Journal of Mathematical and Computer Modelling. Vol. 4, No. 3, 2019, pp. 66-73. doi: 10.11648/j.ajmcm.20190403.13

Received: July 9, 2019; Accepted: August 4, 2019; Published: August 29, 2019

Abstract: The present article examines the influence of thermal radiation on two-dimensional incompressible magnetohydrodynamic (MHD) mixed convective heat transfer flow of Williamson fluid flowing past a porous wedge. An adequate similarity transformation is adopted to reduce the fundamental boundary layer partial differential equations of Williamson fluid model into a set of nonlinear ordinary differential equations. The solutions of the resulting nonlinear system are obtained numerically using the fifth order numerical scheme the Runge-Kutta-Fehlberg method. The effects of different pertinent physical parameter such as magnetic parameter, Williamson parameter, radiation parameter and Prandtl number on temperature and velocity distributions are observed through graph.

Keywords: Williamson Fluid, Boundary Layer Flow, Mixed Convection Heat Transfer, Runge-Kutta-Fehlberg Technique

1. Introduction

The theory of non-Newtonian fluids has attracted several researchers owing to its enormous applications in engineering and industrial sector. In Non-Newtonian fluids, the most frequently encountered fluids are pseudoplastic fluids, and Navier-Stokes equations alone are insufficient to describe the rheological properties of these fluids, therefore, to overcome this defect, several rheological model like Ellis model, Power law model, Carreau model and Cross model are presented, but little attention has been compensated to the Williamson fluid model and estimated to explain the rheological properties of pseudoplastic fluids. In this model both maximum viscosity μ_{∞} (viscosity as shear rate tends to infinity) and minimum viscosity μ_0 (viscosity as shear rate tends to zero) are to be taken. Williamson analyzed the flow of pseudoplastic materials and presented model to described the behavior of pseudoplastic material and explain convenient importance of plastic flows, and also recognized that viscous flows are very varied from plastic flows [1]. Nadeem et al. performed an investigation on flow of Williamson fluid in a stretching sheet [2], Hayat et al. showed combine influence of magnetic and electric fields and thermal radiation influence over the flow pattern of two dimensional boundary layer flow of Williamson fluid past a porous stretching surface [3]. Nadeem et al. investigated flow of Williamson fluid in an inclined channel due to long wavelength assumptions [4]. Krishnamurthy et al. considered steady flow of Williamson fluid in a horizontal linearly stretching sheet with simultaneous impact of chemical reaction & melting heat transfer and by considering nanoparticle [5]. Dapra and Scarpi elaborated the perturbation solution for pulsatile motion of Williamson fluid in a rock fracture [6]. Hayat et al. attained both numerical and analytical solutions of Williamson fluid transport through stretching surface subject to joule heating, and they observed that both methods have great argument with all parameters of flow [7]. Peristaltic motion of Williamson fluid through a channel enclosed by permeable wall is significant in Biology and medicine; in this regard Vajravelu et al. studied the
peristaltic motion of non-Newtonian fluid through asymmetric channels along porous wall by means of various phase and amplitude, and also studied the manipulation of different wave structures on the fluid flow model [8]. By considering the approximation of long wave length and small Reynolds number the peristaltic pumping of Williamson fluid in a planar channel was investigated by Vasudev et al. and they studied the flow in wave framework which is moving with speed of wave [9]. Nadeem et al. developed a model for the transport of Williamson fluid in an annular region [10]. Khan et al. found numerically convergent solutions of two dimensional flows of non-Newtonian fluids along chemically reactive species [11]. Khan and Sultan calculated the influence of anisotropic slip [12]. Malik et al. studied Williamson fluid model over a stretching cylinder with homogeneous-heterogeneous reactions, and work out the problem numerically by using Keller box method [13]. In another study, Malik et al. discussed numerical solutions of Williamson fluid flow through stretching cylinder with variable fluid properties [14]. Malik et al. examined three dimensional transport of non-Newtonian fluid caused owing to stretching surface, and observed that fluid velocity decreases by increasing Williamson parameter [15]. Vital et al. reported the MHD stagnation point flow and heat transfer of Williamson fluid over exponential stretching surface in existence of radiation [16]. Monica et al. designed an analysis for stagnation point flow of non-Newtonian fluids to stretching sheet [17]. Nagaraja and Reddy proposed the modeling of two dimensional Williamson fluids past a circular cylinder [18]. Siddiqui et al. found analytical solution of Blade coating investigation of a Williamson fluid by employing adomian decomposition method [19].

MHD is very useful to analyze the interaction of electrically directing fluids. Electrically directing fluid flow has received the concentration of researchers due to its several applications in technology and science like MHD pumps, MHD power generators and purification of crude oil. Hayat et al. examined MHD motion of nanofluid owing to rotating disk with partial slip [20]. Azimi et al. analytically discussed MHD flow of viscous fluid through Stretching sheet using DTM–pade approach to solve boundary layer equations of given flow problem [21]. Jabar addressed the influence of viscous dissipation and joule heating on MHD flow through a stratified sheet subjected to power Law Heat Flux having heat source [22]. Reddy discussed unsteady MHD transport of rotating fluid past a permeable surface confined by infinite vertical permeable plate and concluded that by increasing rotating parameter the velocity field is also increased [23]. Misra & Sinha observed the impact of radiation on magnetohydrodynamic flow of blood and heat transfer in a porous medium [24]. Shateyi found numerical solutions for the problem of MHD flow of Maxwell fluid past a vertical sheet owing to radiation, thermophoresis and chemical reaction [25]. El-Kabeir et al. explore the chemical reaction and heat absorption impact on nonlinear magnetohydrodynamic flow with heat and mass transfer characteristics of an incompressible, electrically directing fluid on a cone surface [26]. Ghara et al. have studied the radiation effects on MHD flow over vertical plate along ramped wall temperature and gain two different results for fluid velocity [27]. Rasekh et al. obtained analytical solution of MHD stagnation point flow towards permeable stretching surface in existence of chemical reaction [28]. Nadeem et al. analyzed hydromagnetic motion of a micropolar nanofluid between parallel plates [29]. Ibrahim and Suneetha investigated the effects of heat generation and thermal radiation on steady hydrodynamic flow along porous medium in presence of variable thermal conductivity and concluded that governing equations are greatly affected by involved Prandtl number [30]. Jiankai et al. proposed a mathematical model for MHD flow of incompressible fluid over a Darcy-Forchheimer stratified medium [31]. Koriko et al. presented series solution for an electrically directing transport of micropolar fluid in a vertical stratified surface [32].

Mixed convection is a coupled phantasm of two heat transfer mechanisms force convection and natural convection that act simultaneously to transfer heat in a fluid flow. It play significant role in field of technology. Srinivasacharya et al. analyzed mixed convection flow with irregular fluid properties through a vertical wavy plate [33]. Merkin et al. studied both forced and natural convection boundary layer transport by perpendicular surface in a stratified medium along connective boundary conditions [34]. Xu and Chen proposed two-layer model to simulate mixed convection flow in a room [35]. By utilizing Keller box technique numerical solutions of problem of mixed convection axisymmetric flow of air with variable physical properties was obtained by Ramarozara [36]. Bau investigated the thermal convection in a saturated stratified medium bounded between two parallel eccentric cylinders with the help of a regular perturbation expansion along Daarcy-Rayleigh number; it was observed that the appropriate preference of eccentricity values can maximize the heat transfer inside annulus of various thermal insulators [37]. Jackson et al. discussed combine convection in vertical tubes by using constant wall temperature and constant wall heat flux conditions [38]. Fu et al. investigated flow reversal of mixed convection in a three dimensional channel and concluded that an increase in Richardson number, natural convection dominates the flow and thermal field of combine convection [39]. Kaya found nonsimilar solutions of steady laminar mixed convection heat transfer flow from a perpendicular cone in a porous medium with influence of radiation, conduction, interaction and having high porosity [40]. Jafari et al. studied unsteady combined convection flow in a cavity in presence of nanofluid [41]. Bég et al. outlined mixed convection boundary layer flow influenced by thermo-diffusion [42]. Chaudhary and Jain studied the impact of mass transfer, radiation and hall on MHD mixed convection flow of viscoelastic fluid in an infinite plate [43]. Ferdows & Liu obtained the similarity solutions of mixed convection heat convez in parallel surface with internal heat production [44]. Malleswaran & Sivasankaran carried an analysis for mixed convection flow and noticed that the average heat transfer decreases with an increase in Richardson number but in general heat transfer is better at force convection mode than free convection mode.
The main aim of the present paper is to elaborate electrically conducting fluid flow of Williamson fluid over a permeable wedge with thermal radiation. Similarity transformation is used to convert governing partial differential equations of the said phenomenon to couple nonlinear ordinary differential equations. The resulting non-dimensional equations are solved numerically using the Runge-Kutta-Fehlberg method. The effects of involved parameters on flow are discussed graphically.

Formulation

Consider two dimensional steady incompressible MHD mixed convective heat transfer and electrically direct ing Williamson fluid past a porous wedge. The Cartesian coordinate plot is assumed to be help out the solution wherein the x-axis & y-axis are together and normal to the wedge. The non-uniform magnetic field \(B(x) = B_0x^{-(n-1)} \)

\[
m(f'^2\eta - 1) - \frac{m+1}{2}f(\eta)f''(\eta) - f'''(\eta) + M(f'(\eta) - 1) - \lambda f''(\eta)f'''(\eta) = 0,
\]

\[
(1 + N_\nu)\theta''(\eta) + P_r\left(\frac{m+1}{2}f(\eta)\theta'(\eta) - mf'(\eta)\theta(\eta)\right) = 0
\]

\[
M(\eta) = \frac{\omega_0}{\alpha_p}
\]

Williamson parameter, \(\nu_c = \frac{16\nu\tilde{T}_a^3}{\kappa \alpha_c^4} \) is the thermal radiation parameter and \(Pr = \frac{\mu C_p}{K} \) is the prandtl number. The associated boundary conditions become:

\[
f(w) = f_u, f'(0) = 0, \theta(0) = 1
\]

\[
f'(\infty) = 1, \theta(\infty) = 0
\]

Where \(f_u \) is injection/suction parameter.

applied to flow and perpendicular to y-axis, the induced magnetic field of flow are supposed to be negligible. It is assumed that the fluid velocity from wedge is \(U_e(x) = ax^m \).

Where \(a \) and \(m \) are constants. The governing partial differential equations of continuity, momentum and energy for the Williamson fluid flow using Boussinesq’s and boundary layer assumptions are:

\[
u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = \frac{\partial^2 u}{\partial y^2} + \sqrt{2} \frac{\partial u}{\partial y} \frac{\partial^2 u}{\partial y^2} - \frac{\partial^2 u}{\partial x^2} (u - U_e) \]

\[
u \frac{\partial \tau}{\partial x} + v \frac{\partial \tau}{\partial y} = \alpha \frac{\partial^2 \tau}{\partial y^2} - \frac{1}{\rho c_p} \frac{\partial q_x}{\partial y} \]

where \(u \) and \(v \) are velocity components in \(x \) and \(y \) directions respectively, \(\rho \) is the density, \(v \) is Kinematic viscosity, \(\sigma \) is electric conductivity, \(T \) is the temperature of the fluid, \(\alpha \) is thermal diffusivity, \(q_x \) is heat flux and \(C_p \) is specific heat.

The boundary conditions associated with the problem are at

\[
y = 0, u = 0, v = v_w, T = T_w(x)
\]

as

\[
y \to \infty u = u_e(x) \frac{\partial u}{\partial y} = 0, T = T_\infty
\]

The assumed wedge surface temperature is \(T_w(x) = T_\infty + kx^m \), where \(k \) is constant and \(T_\infty \) is temperature of the moving fluid. The total wedge angle is equal to \(\theta = \frac{\beta}{m+1} \) is wedge angle parameter. The non-dimensional form of the given system of partial differential equations is obtained by introducing the following stream function and the similarity variables [76].

\[
\eta = \sqrt{\frac{u_e(x)}{v_x}}, \psi = \sqrt{\frac{v}{v_x}u_e(x)} f(\eta), \theta(\eta) = \frac{T - T_{\infty}}{T_w - T_{\infty}}
\]

Where in terms of stream function \(\frac{\partial \psi}{\partial x} = u, -\frac{\partial \psi}{\partial y} = v \)

Using Eqs. (6) in Eqs. 1-3, we obtain the following nonlinear system of ordinary differential equations:

\[
m(\eta'^2 - 1) - \frac{m+1}{2}f(\eta)f''(\eta) - f'''(\eta) + M(f'(\eta) - 1) - \lambda f''(\eta)f'''(\eta) = 0,
\]

2. Solution of the Problem

The system of ordinary differential equations (7) and (8) subject to the boundary conditions (9) and (10) is first reduced to a system of first order ordinary differential equations using the substitutions \(f' = Q, u' = R, \theta' = t \). This gives

\[
m(Q^2(\eta) - 1) - \frac{m+1}{2} f(\eta)R(\eta) - R'(\eta) + M(u(\eta) - 1) - \lambda R(\eta)R'(\eta) = 0
\]

\[
(1 + N_\nu)R'(\eta) + P_r\left(\frac{m+1}{2}f(\eta)t(\eta) - mu(\eta)\theta(\eta)\right) = 0
\]
With the boundary conditions

\[f(0) = f_w, u(0) = 0, \theta(0) = 1, u(\infty) = 1, \theta(\infty) = 0 \]

(13)

The resulting system in Eq. (11-13) is solved numerically with the help of 5th order Runge-Kutta-Fehlberg method. Further details about the obtained numerical solutions are presented in the next section.

Table 1. Comparison of \(f''(0) \) for \(M=0, \lambda = 0 \) and \(\beta = 1 \).

\(f_w \)	Ishak et al. [78]	Yih [79]	Rashidi et al. [76]	Current result
-1	0.7566	0.75658	0.75658018	0.75659
-0.5	0.9692	0.96923	0.96922982	0.96927
0	1.2326	1.23259	1.23259365	1.23251
0.5	1.5418	1.541745	1.54175172	1.54163
1	1.8893	1.88931	1.88931809	1.88937

3. Results and Discussion

Figure 1. Variation of wedge angle parameter on velocity profile.

Figure 2. Variation of magnetic parameter \(M \) on velocity profile.

Figure 3. Variation of Williamson parameter \(\lambda \) on velocity profile.

Figure 4. Variation of Williamson parameter \(\lambda \) on temperature profile.

The transformed governing equations (11-12) subjected to boundary conditions (13) are solved numerically by employing the fifth order Runge-Kutta-Fehlberg method. The influence of all pertinent parameters on flow and heat transfer are graphed and discussed in Figures (1-8). To examine accuracy of our work a comparison has been made with the available works of Ishak et al. [78], Yih [79] and Rashidi et al. [76] in Table. 1. The agreement of our work with the prior results is stable. Figures (1-2) illustrate the influence of wedge angle parameter \(\beta \) with on velocity and temperature profile. It is observed that velocity increases by increasing the wedge angle parameter \(\beta \), but the thermal boundary layer thickness is decreased. Since the wedge angle parameter \(\beta \) is a dependent over the pressure gradient, and its values may be positive or negative.
Figures 4-5 represent velocity and temperature profile for various values of Williamson parameter. It is apparent that a raise in Williamson parameter λ decreases velocity of the fluid flow. Furthermore an increase in λ may cause increase in temperature of flow. Figure 6 drafts the non-dimensional velocity f' for different values of suction parameter f_w. From figure it is observed that an increase in the value of f_w, results in an increase in velocity. Figures 7-8 illustrate the behavior of thermal radiation and Prandtl number on fluid flow region with $M = f_w = \lambda = \beta = 1$. It is clear from graph that an increase in thermal radiation parameter leads to increase in temperature and thermal boundary layer thickness. The influence of thermal radiation is to enhance the amount of heat, while in other hand an increase in values of Prandtl number causes to decline the temperature distribution. Because the prandtl number is the relation of momentum diffusivity to thermal diffusivity, when it increases then it decreases the thermal boundary layer thickness and temperature but increases thermal capacity of fluid. Generally prandtl number is applicable in heat transform problem in order to decrease the thickness of the boundary layer and momentum.

4. Conclusion

The steady, incompressible two dimensional boundary layer flow of Williamson fluid past a porous wedge is analyzed numerically using the 5th order Fehlberg technique. The important conclusions of the analysis are

1. The non-dimensional velocity profile increases by increasing the wedge angle parameter β.
2. The non-dimensional temperature profile decreases by increasing the wedge angle parameter β.
3. The non-dimensional velocity profile decreases by increasing the magnetic parameter M.
4. The non-dimensional velocity profile decreases by increasing the Williamson parameter λ.
5. The non-dimensional temperature profile increases by increasing the Williamson parameter λ.

References

[1] Williamson, R. V. The flow of pseudoplastic materials. Ind. & Eng. Chem. 1929, 21 (11), 1108-1111.
[2] Nadeem, S.; Hussain, S. T.; Lee, C. Flow of a Williamson fluid over a stretching sheet. Brazilian j. of Chem. Eng. 2013, 30 (3), 619-625.
[3] Hayat, T.; Shafiq, A.; Alsaedi, A. Hydromagnetic boundary layer flow of Williamson fluid in the presence of thermal radiation and ohmic dissipation. Alex. Eng. J. 2016, 55 (3), 2229-2240.
[4] Nadeem, S.; Akram, S.; Akbar, N. S. Simulation of heat and chemical reactions on peristaltic flow of a Williamson fluid in an inclined asymmetric channel. Iranian J. of Chem. and Chemical Eng. 2013, 32 (2), 93-107.
[5] Krishnamurthy, M. R.; Prasannakumara, B. C.; Gireesha, B. J.; Gorla, R. S. R. Effect of chemical reaction on MHD boundary layer flow and melting heat transfer of Williamson nanofluid in porous medium. Eng. Sci. and Tech., an Int. J. 2016, 19 (1), 53-61.
[6] Dapra, I.; Scarpi, G. Perturbation solution for pulsatile flow of a non-Newtonian Williamson fluid in a rock fracture. Int. J. of Rock Mech. and Mining Sci. 2007, 44 (2), 271-278.

[7] Hayat, T.; Shafiq, A.; Farooq, M. A.; Alsuaimi, H. H.; Shehzad, S. A. Newtonian and Joule Heating Effects in Two-Dimensional Flow of Williamson Fluid. J. of Appl. Fluid Mech. 2016, 9 (4).

[8] Vajravelu, K.; Sreenadh, S.; Rajanikanth, K.; Lee, C. Peristaltic transport of a Williamson fluid in asymmetric channels with permeable walls. nonlinear Anal. Real World Appls. 2012, 13 (6), 2804-2822.

[9] Vasudev, C.; Rao, U. R.; Reddy, M. S.; Rao, G. P. Peristaltic pumping of Williamson fluid through a porous medium in a horizontal channel with heat transfer. American J. of Scientific and Ind. Research. 2010, 1 (3), 656-666.

[10] Nadeem, S.; Ashiq, S.; Ali, M. Williamson fluid model for the peristaltic flow of chyme in small intestine. Mathematical Problems in Eng. 2012, 2012.

[11] Khan, N. A.; Khan, S.; Riaz, F. Boundary layer flow of Williamson fluid with chemically reactive species using scaling transformation and homotopy analysis method. Int. J. of Mathematical Sci. 2014, 3 (3), 199-205.

[12] Khan, N. A.; Sultan, F. Dufour and Soret effects on MHD flow of Williamson fluid over an infinite rotating disk with anisotropic slip. arXiv preprint arXiv. 2016, 1610.07889.

[13] Malik, M. Y.; Salahuddin, T.; Hussain, A.; Bilal, S.; Awais, M. Homogeneous-heterogeneous reactions in Williamson fluid model over a stretching cylinder by using Keller box method. AIP Adv. 2015, 5 (10), 1.

[14] Malik, M. Y.; Bibi, M.; Khan, F.; Salahuddin, T. Numerical solution of Williamson fluid flow past a stretching cylinder and heat transfer with variable thermal conductivity and heat generation/absorption. AIP Adv. 2016, 6 (307227-12), 035101.

[15] Malik, M. Y.; Bilal, S.; Salahuddin, T.; Rehman, K. U. Three dimensional Williamson fluid flow over a linear stretching surface. Int. J. of Mathematical Sci. 2017, 6 (1), 53-61.

[16] Vittal, C.; Reddy; M. C. K.; Vijayalaxmi, T. MHD Stagnation Point Flow and Heat Transfer of Williamson Fluid over Exponential Stretching Sheet Embedded in a Thermally Stratified Medium. Global J. of Pure and Appl. Math. 2017 13 (6), 2033-2056.

[17] Monica, M.; Sucharitha, J.; Kumar, C. K. Stagnation Point Flow of a Williamson Fluid over a Nonlinearly Stretching Sheet with Thermal Radiation, American Chem. Sci. J. 2016, 13 (4), 1-8.

[18] Nagaraja, L.; Reddy, M. S. Heat transfer of non-Newtonian Williamson fluid flow past a circular cylinder with suction and injection. Int. j. of Innovative Research in Sci. & Tech. 2017, 6 (13), 48-54.

[19] Siddiqui, A. M.; Bhatti, S.; Rana, M. A.; Zahid, M. Blade coating analysis of a Williamson fluid. Results in Phys. 2017, 7, 2845-2850.

[20] Hayat, T.; Rashid, M.; Imtiaz, M.; Alsaedi, A. Magnetohydrodynamic (MHD) flow of Cu-water nanofluid due to a rotating disk with partial slip. AIP Adv. 2015, 5 (6), 067169.

[21] Azimi, M.; Ganji, D. D.; Abbassi, F. Study on MHD viscous flow over a stretching sheet using DTM-Pade"Technique. Modern mechs. Eng. 2012, 2 (4), 126-129.

[22] Jaber, K. K. Joule Heating and Viscous Dissipation on Effects on MHD Flow over a Stretaching Porous Sheet Subjected to Power Law Heat Flux in Presence of Heat Source. Open J. of Fluid Dynamics. 2016, 6 (3), 156-163.

[23] Reddy, G. MHD boundary layer flow of a rotating fluid past a porous plate. Int. j. of comput. and appl. Maths. 2017, 12 (2), 579-593.

[24] Misra, J. C.; Sinha, A. Effect of thermal radiation on MHD flow of blood and heat transfer in a permeable capillary in stretching motion. Heat and Mass Transfer. 2013, 49 (5), 617-628.

[25] Shateyi, S. A new numerical approach to MHD flow of a Maxwell fluid past a vertical stretching sheet in the presence of thermophoresis and chemical reaction. Boundary Value Problems. 2013, 2013 (1), 196.

[26] El-Kabeir, S. M. M.; Modather, M.; Abdou, M. Chemical reaction, heat and mass transfer on MHD flow over a vertical isothermal cone surface in micropolar fluids with heat generation/absorption. Appl. Math. Sci. 2007, 1 (34), 1663-1674.

[27] Ghara, N.; Das, S.; Maji, S. L.; Jana, R. N. Effect of radiation on MHD free convection flow past an impulsively moving vertical plate with ramped wall temperature. American J. of Sci. & Ind. Research. 2012, 3 (6), 376-386.

[28] Rasekh, A.; Farzaneh-Gord, M.; Varedi, S. R.; Ganji, D. D. Analytical solution for magnetohydrodynamic stagnation point flow and heat transfer over a permeable stretching sheet with chemical reaction. J. of Theoratical and Appl. Mechs. 2013, 20143, 51 (3), 675-686.

[29] Nadeem, S.; Masood, S.; Mehmood, R.; Sadiq, M. A Optimal and numerical solutions for an MHD micropolar nanofluid between rotating horizontal parallel plates. PloS one J. 2015, 10 (6), e0124016.

[30] Ibrahima, S. M.; Suneethaa, K. Effects of heat generation and thermal radiation on steady MHD flow near a stagnation point on a linear stretching sheet in porous medium and presence of variable thermal conductivity and mass transfer. J of Comput. Appl. Research. Mech. Eng. 2015, 4, 133-144.

[31] Jhankal, A. K.; Jat, R. N.; Kumar, D. Magnetohydrodynamics (MHD) Forced Convective Flow and Heat Transfer Over a Porous Plate in a Darcy-Forchheimer Porous Medium in Presence of Radiation. Int. J. of Current Research. & Review. 2017, 9 (11), 1663-1674.

[32] Koriko, O. K.; Oreyeni, T.; Omonwa, A. J.; Aminasa, I. L. Homotopy analysis of MHD free convective micropolar fluid flow along a vertical surface embedded in non-darcian thermally-stratified medium. Open J. of Fluid Dynamics. 2016, 6 (3), 198-221.

[33] Srinivasacharya, D.; Mallikarjunu, B.; Bhuvanavijaya, R. Radiation effect on mixed convection over a vertical wavy surface in Darcy porous medium with variable properties. J. of Appl. Sci. 2015, 18 (3), 265-274.

[34] Merkin, J. H.; Lok, Y. Y.; Pop, I. Mixed convection boundary-layer flow on a vertical surface in a porous medium with a constant convective boundary condition. Transport in porous media. 2013, 99 (2), 413-425.
[35] Xu, W.; Chen, Q. Simulation of mixed convection flow in a room with a two-layer turbulence model. Indoor air. 2000, 10 (4), 306-314.

[36] Ramarozara, M. Mixed Convection of an Axisymmetric Flow of Air with Variable Physical Properties. 2007, No. HEP-MAD. 2007, 310).

[37] Bau, H. H. (1984). Thermal convection in a horizontal, eccentric annulus containing a saturated porous medium an extended perturbation expansion. Int. j. of heat and mass transfer. 1984, 27 (12), 2277-2287.

[38] Jackson, J. D.; Cotton, M. A.; Axcell, B. P. Studies of mixed convection in vertical tubes. Int. j. of heat and fluid flow. 1989, 10 (1), 2-15.

[39] Fu, W. S.; Lai, Y. C.; Huang, Y.; Liu, K. L. An investigation of flow reversal of mixed convection in a three dimensional rectangular channel with a finite length. Int. J. of Heat and Mass Transfer. 2013, 64, 636-646.

[40] Kaya, A. Effects of radiation--conduction interaction on mixed convection from a vertical cone embedded in a porous media with high porosity. Turkish J. of Eng. and Environmental Sci. 2014, 38 (1), 51-63.

[41] Jafari, A.; Rahimian, M. H., Saeedmanesh, A. An unsteady mixed convection in a driven cavity filled with nanofluids using an externally oscillating lid. J. of Electronics Cooling and Thermal Control. 2013, 3 (2), 58-73.

[42] Bég, O. A.; Bakier, A.; Prasad, R.; Ghosh, S. K. Numerical modelling of non-similar mixed convection heat and species transfer along an inclined solar energy collector surface with cross diffusion effects. World j. of Mechs. 2011, 1 (4), 185-196.

[43] Chaudhary, R. C.; Jain, P. Hall effect on MHD mixed convection flow of a viscoelastic fluid past an infinite vertical porous plate with mass transfer and radiation. Theoretically and Appl. Mechs. 2006, 33 (4), 281-309.

[44] Ferdows, M.; Liu, D. Similarity solutions on mixed convection heat transfer from a horizontal surface saturated in a porous medium with internal generator. Int. J. of Appl. Mechs and Eng. 2017, 22 (1), 253-263.

[45] Balleswaran, A.;ivasankaran, S. A Numerical Simulation on MHD Mixed Convection in a Lid-driven Cavity with Corner Heaters. J. of Appl. Fluid Mechs. 2016, 9 (1), 311-319.

[46] S. Nadeem, Abdul Rehman, K. Vajravelu, Jinho Lee, Changhoon Lee, Axisymmetric stagnation flow of a micropolar nanofluid in a moving cylinder, Mathematical Problems in Engineering, Volume 2012, Article ID 378259.

[47] Abdul Rehman, S. Nadeem, Mixed convection heat transfer in micropolar nanofluid over a vertical slender cylinder, Chin. Phy. Lett. 29 (12) (2012) 124701-5.

[48] S. Nadeem, Abdul Rehman, Changhoon Lee, Jinho Lee, Boundary layer flow of second grade fluid in a cylinder with heat transfer, Mathematical Problems in Engineering, Volume 2012, Article ID 640289.

[49] S. Nadeem, Abdul Rehman, Mohamed Ali, The boundary layer flow and heat transfer of a nanofluid over a vertical slender cylinder, J. NanoEngineering and NanoSystems (2012) 1-9.

[50] S. Nadeem, Abdul Rehman, Axisymmetric stagnation flow of a nanofluid in a moving cylinder, Comp. Math. Mod. 24 (2) (2015) 293-306.

[51] Abdul Rehman, S. Nadeem, M. Y. Malik, Stagnation flow of couple stress nanofluid over an exponentially stretching sheet through a porous medium, J. Power Tech. 93 (2) (2013) 122-132.

[52] Abdul Rehman, S. Nadeem, M. Y. Malik, Boundary layer stagnation-point flow of a third grade fluid over an exponentially stretching sheet, Braz. J. Che. Eng. 30 (3) (2013) 611-618.

[53] Abdul Rehman, S. Nadeem, Heat transfer analysis of the boundary layer flow over a vertical exponentially stretching cylinder, Global J. Sci. Pron. Res. 13 (11) (2013) 73-85.

[54] M. Y. Malik, M. Naseer, S. Nadeem, Abdul Rehman, The boundary layer flow of Casson nanofluid over a vertical exponentially stretching cylinder, Appl. NanoSci. DOI: 10.1007/s13204-012-0267-0.

[55] Abdul Rehman, S. Nadeem, S. Iqbal, M. Y. Malik, M. Naseer, Nanoparticle effect over the boundary layer flow over an exponentially stretching cylinder, J. NanoEngineering and NanoSystems (2014) 1-6.

[56] M. Y. Malik, M. Naseer, S. Nadeem, Abdul Rehman, The boundary layer flow of hyperbolic tangent fluid over a vertical exponentially stretching cylinder, Alexandria Eng. J., 53 (2014) 747-750.

[57] M. Y. Malik, M. Naseer, Abdul Rehman, Numerical study of convective heat transfer on the Power Law fluid over a vertical exponentially stretching cylinder, App Comp Math, 4 (5), (2015) 346-350.

[58] Abdul Rehman, R. Bazai, S. Achakzai, S. Iqbal, M. Naseer, Boundary Layer Flow and Heat Transfer of Micropolar Fluid over a Vertical Exponentially Stretched Cylinder, App Comp Math, 4 (6) (2015) 424-430.

[59] Abdul Rehman, G. Faroq, I. Ahmed, M. Naseer, M. Zulfiquar, Boundary Layer Stagnation-Point Flow of Second Grade Fluid over an Exponentially Stretching Sheet, American J App Math Stat, 3 (6) (2015) 211-219.

[60] Abdul Rehmana, S. Achakzai, S. Nadeem, S. Iqbal, Stagnation point flow of Eyring Powell fluid in a vertical cylinder with heat transfer, Journal of Power Technologies 96 (1) (2016) 57–62.

[61] Abdul Rehman, Saleem Iqbal, Syed Mohsin Raza, Axisymmetric Stagnation Flow of a Micropolar Fluid in a Moving Cylinder: An Analytical Solution, Fluid Mechanics, 2 (1) (2016) 1-7.

[62] Naheeda Iftikhar, Abdul Rehman, Peristaltic flow of an Eyring Prandtl fluid in a diverging tube with heat and mass transfer, International Journal of Heat and Mass Transfer 111 (2017) 667–676.

[63] Abdul Rehman, Naveed Sheikh, Boundary Layer Stagnation-Point Flow of Micropolar Fluid over an Exponentially Stretching Sheet, International Journal of Fluid Mechanics & Thermal Sciences, 2017; 3 (3): 25-31.

[64] Haroon Rasheed, Abdul Rehman, Naveed Sheikh, Saleem Iqbal, MHD Boundary Layer Flow of Nanofluid over a Continuously Moving Stretching Surface, Applied and Computational Mathematics, 2017; 6 (6): 265-270.
[65] Najeeb Alam Khan, Umair Bin Saeed, Faqih Sultan, Saif Ullah, and Abdul Rehman, Study of velocity and temperature distributions in boundary layer flow of fourth grade fluid over an exponential stretching sheet, AIP ADVANCES 8, 025011 (2018).

[66] Naheeda Iftikhar, Abdul Rehman, Hina Sadaf, Muhammad Najam Khan, Impact of wall properties on the peristaltic flow of Cu-water nano fluid in a non-uniform inclined tube, International Journal of Heat and Mass Transfer 125 (2018) 772–779.

[67] Naheeda Iftikhar, Abdul Rehman and Muhammad Najam Khan, Features of Convective heat transfer on MHD peristaltic movement of Williamson fluid with the presence of Joule heating, IOP Conf. Series: Materials Science and Engineering 414 (2018) 012010.

[68] Naheeda Iftikhar, Abdul Rehman, Hina Sadaf, Saleem Iqbal, Study of (Al2O3 & copper)/ water nanoparticles shape, slip effects and heat transfer on steady physiological delivery of MHD hybrid nanofluid. Canadian Journal of Physics, https://doi.org/10.1139/cjp-2018-0551.

[69] Ashraf, M.; Narahari, M.; Muthuvalu, M. S. Mixed convection flow over a stretching porous wedge with Newtonian heating in the presence of heat generation or absorption. In AIP Conference Proceedings. 2016, 1787 (1), 020004.

[70] Deka, R. K.; Sharma, S. Magnetohydrodynamic mixed convection flow past a wedge under variable temperature and chemical reaction. American J. of Comput. and Appl. Maths. 2013, 20 3 (2), 74-80.

[71] Mukhopadhyay, S. Effects of radiation and variable fluid viscosity on flow and heat transfer along a symmetric wedge. J. of Appl. Fluid Mechs. 2009, 2 (2), 29-34.

[72] Mukhopadhyay, S.; Mandal, I. C. Boundary layer flow and heat transfer of a Casson fluid past a symmetric porous wedge with surface heat flux. Chinese Phys. B. 2014, 23 (4), 044702.

[73] Hossain, M. A.; Bhowmick, S.; Gorla, RS. R. Unsteady mixed-convection boundary layer flow along a symmetric wedge with variable surface temperature. Int. J. of Eng. Sci. 2006, 44 (10), 607-620.

[74] Dalir, N. Second Law Analysis of Flow, Heat and Mass Transfer Past a Nonlinearly Stretching Permeable Wedge with Temperature Jump and Chemical Reaction. Archive of Mech. Eng. 2016, 63 (4), 565-587.

[75] Rostami, B., Rashidi, M. M., Rostami, P., Momoniat, E., & Freidoonimehr, N. (2014). Analytical investigation of laminar viscoelastic fluid flow over a wedge in the presence of buoyancy force effects. In Abstract and Appl. Anal. 2014.

[76] Rashidi, M. M.; Ali, M.; Freidoonimehr, N.; Rostami, B.; Hossain, M. A. Mixed convective heat transfer for MHD viscoelastic fluid flow over a porous wedge with thermal radiation. Adv. in Mech. Eng. 2014, 6, 735939.

[77] Rosseland S. Astrophysik und atom-theoretische grundlagen. Springer, Berlin. 1931, 41-44.

[78] Ishak, A.; Nazar, R; Pop, I. Falkner-Skan equation for flow past a moving wedge with suction or injection. J. of Appl. Maths and Comput. 2007, 25 (1-2), 67–83.

[79] Yih, K. A Uniform suction/blowing effect on forced convection about a wedge: uniform heat flux. Acta Mechanica. 1998, 128 (3-4), 173-181.