Commensal *Enterobacteriaceae* as reservoirs of extended-spectrum beta-lactamases, integrons, and *sul* genes in Portugal

Elisabete Machado1,2*, Teresa M. Coque3, Rafael Cantón3, João C. Sousa2 and Luísa Peixe1*

1 REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
2 CEBIMED, Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Porto, Portugal
3 Serviço de Microbiologia, Hospital Universitário Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain

Correspondence: Elisabete Machado, Faculdade de Ciências da Saúde, Universidade Fernando Pessoa Rua Carlos da Maia, 296, 4200-150 Porto, Portugal. e-mail: emachado@ufp.edu.pt

Keywords: ESBLs, CTX-M-14, TEM-153, class 1 and 2 integrons, healthy volunteers

INTRODUCTION

Antimicrobial resistance has become a global public health problem, compromising the treatment of several infectious diseases. Acquisition of integrons and beta-lactamase genes by *Enterobacteriaceae* is increasingly recognized, being associated with resistance to multiple antibiotics (Machado et al., 2007; Coque et al., 2008; Bush, 2010; Pitout, 2010). The production of extended-spectrum beta-lactamases (ESBLs) constitutes one of the currently most spread and relevant antibiotic resistance mechanisms, compromising the use of several beta-lactams. Portugal is one of the European countries with higher rates of ESBL producers in the clinical setting, with a shift from TEM or SHV variants to CTX-M—types noticed since 2003 (Machado et al., 2007; ECDC, 2011).

Bacteria colonizing the human intestine have a relevant role in the spread of antimicrobial resistance. We investigated the faecal carriage of extended-spectrum beta-lactamase (ESBL)-producing *Enterobacteriaceae* in healthy humans from Portugal and analyzed the distribution of *sul* genes and class 1 and 2 integrons. Faecal samples (*n* = 113) were recovered from healthy persons (North/Centre of Portugal, 2001–2004) and plated on MacConkey agar with and without ceftazidime (1 mg/L) or cefotaxime (1 mg/L). Isolates representing different morphotypes/plate and antibiotic susceptibility patterns (*n* = 201) were selected. Isolates resistant to sulfonamides and/or streptomycin, gentamicin, and trimethoprim were screened (PCR and sequencing) for *sul* genes (*sul*1, *sul*2, *sul*3) and class 1 and 2 integrons. Presence of ESBLs was inferred using the double disk synergy test (DDST) and further confirmed by PCR and sequencing. ESBL producers were selected for clonal analysis, plasmid characterization and conjugation assays by standard methods. ESBL-producing isolates were found in 1.8% (2/113) of samples, corresponding to *Escherichia coli* of phylogroups A (*n* = 1) and B1 (*n* = 1) carrying transferable *bla*CTX-M-14 and the new *bla*TEM-153, respectively. A 80kb IncK plasmid bearing *bla*CTX-M-14 was found, being highly related to that widely spread among CTX-M-14 producers of humans and animals from Portugal and other European countries. *sul* genes were found in 88% (22/25; *sul*2-60%, *sul*1-48%, *sul*3-4%) of the sulfonamide resistant isolates. Class 1 integrons were more frequently found than class 2 (7%, 14/201 vs. 3%, 6/201). Interestingly, gene cassette arrangements within these platforms were identical to those commonly observed among *Enterobacteriaceae* from Portuguese food-producing animals, although *aadA13* is here firstly described in *Morganella morganii*. These results reinforce the relevance of human commensal flora as reservoir of clinically relevant antibiotic resistance genes including *bla*ESBLs, and highly transferable genetic platforms as IncK epidemic plasmids.
the epidemiology of multidrug resistant Enterobacteriaceae in Portugal and the contribution of different settings to the burden of infections with antibiotic resistant bacteria, we investigated, during the initial spread period of CTX-M enzymes, the faecal carriage of ESBL-producing Enterobacteriaceae, class 1 and class 2 integrons, and sul genes in Portuguese healthy humans.

MATERIALS AND METHODS

BACTERIAL ISOLATES

From January 2001 to February 2004, a total of 113 nonduplicate faecal samples were recovered from randomly selected healthy humans [53% females; age ranging from 5 to 59 (n = 99) and 60 to 76 (n = 14) years old] living in the North and Centre of Portugal. Samples were from persons without previous exposure to antibiotic therapy, hospitals, or long-term care facilities at least in the 3-month period before sampling. Rectal swabs were immersed in transport medium, faeces suspended in 1 mL of saline, and aliquots of 200 μL seeded in MacConkey agar with and without ceftazidime (1 mg/L) or cefotaxime (1 mg/L). Presumptive Enterobacteriaceae (oxidase-negative facultative aerobic Gram negative rods) were selected for further studies. Enterobacteriaceae isolates recovered in the same time period from Portuguese hospitals (n = 4; 2003–2004) or marine coastal waters (n = 1; 2003) close to clandestine discharge points of water streams contaminated with faecal coliforms, and producing ESBL-types similar to the ones identified in this study, were also included for clonal investigation and/or plasmid relationships analysis (Machado et al., 2007, 2009).

ESBL DETECTION AND ANTIMICROBIAL SUSCEPTIBILITY

Each different morphotype growing on MacConkey agar with ceftazidime or cefotaxime was screened for ESBL production by the double disk synergy test (DDST) (Jarlier et al., 1988), and susceptibility testing to non-beta-lactam antibiotics (aminoglycosides, quinolones, sulfonamides, trimethoprim, tetracyclines, chloramphenicol) was carried out in positive isolates using the standard disk diffusion method (CLSI, 2007). Morphotypes corresponding to non-ESBL producers recovered from MacConkey agar with and without antibiotics were tested to streptomycin, gentamicin, trimethoprim and sulfonamides (CLSI, 2007).

ESBL CHARACTERIZATION AND EPIDEMIOLOGICAL FEATURES

Characterization of ESBLs was performed by amplification of blα genes and sequencing (Table 1), and ESBL-producing isolates were further identified by API ID 32GN (bioMérieux, Marcy l’Etoile, France). Clonal relatedness of ESBL producers was investigated by pulsed-field gel electrophoresis (PFGE), randomly amplified polymorphic DNA (RAPD) (Machado et al., 2005, 2008), and multilocus sequence typing (MLST) (http://mlst.ucc.ie/mlst/dbs/Ecoli). E. coli phylogenetic groups were identified by a multiplex PCR (Clermont et al., 2000).

The transferability of ESBL genes was assessed by filter mating assays with E. coli BM21R (nalidixic acid- and rifampicin resistant, lactose fermentation positive and plasmid-free) (Machado et al., 2008), and ESBL-encoding plasmids were identified by PCR-based replicon typing and further hybridization (bla_{ESBL}, rep probes), as previously described (Novais et al., 2010). Plasmid relationships were established by comparison of restriction fragment length polymorphism (RFLP) patterns obtained after digestion with EcoRI, PstI, and HpaI restriction enzymes (Valverde et al., 2009).

CHARACTERIZATION OF INTEGRONS AND sul GENES

Isolates representing different morphotypes and resistance patterns to streptomycin, gentamicin, trimethoprim and/or sulfonamides were selected for screening of class 1 and class 2 integrons by PCR (Table 1), as these phenotypes are commonly associated with these genetic structures (Machado et al., 2005). Class 1 and class 2 integrons were further characterized by RFLP-typing and sequencing, as described (Machado et al., 2005). Integrons were designated by roman numbers and a subindex indicates the class to which each integron belongs, as previously described (Machado et al., 2005). Isolates resistant to sulfonamides were also screened for the presence of sulfonamide resistance genes (sul1, sul2, sul3) by PCR (Table 1).

RESULTS

EPIDEMIOLOGICAL BACKGROUND

A total of 201 Enterobacteriaceae isolates representing different colony morphotypes and antibiotic susceptibility patterns were obtained. Resistance to at least one antibiotic was observed in 79 isolates, and the resistance rates were higher for streptomycin (36%, 73/201) than for trimethoprim (15%, 31/201), sulfonamides (12%, 25/201), and gentamicin (4%, 9/201).

The proportion of faecal carriage of ESBL-producing Enterobacteriaceae was 1.8% (2 of 113 samples), corresponding to samples recovered in 2003 from two females, aged 21 and 76 years, respectively.

ESBL CHARACTERIZATION

We identified Escherichia coli isolates producing CTX-M-14 (phylogroup A, ST665) or TEM-153 (phylogroup B1), a novel TEM-type enzyme differing from TEM-1 by three amino acid changes (E104K, M182T, and G267V) (GenBank accession number KC149518). TEM-1 enzyme was also identified in the CTX-M-14 producer. The CTX-M-14-producing E. coli isolate showed a phenotype of resistance against streptomycin, sulfonamides, trimethoprim, tetracyclines, chloramphenicol, nalidixic acid, and ciprofloxacin, while the TEM-153 producer was only resistant to nalidixic acid, ciprofloxacin, and neomycin.

Both ESBLs were successfully transferred by conjugation, and resistance to streptomycin was co-transferred with the bla_{CTX-M-14} gene. A clonal relationship was not established between CTX-M-14-producing E. coli recovered from healthy volunteers and from Portuguese hospitalized patients or marine coastal waters (Machado et al., 2007, 2009). However, the plasmid containing bla_{CTX-M-14} (a 80kb IncK-bla_{CTX-M-14} plasmid, was similar to that of hospitalized patients from Portugal and other European countries (Valverde et al., 2009; Cottell et al., 2011; data not shown).

ANALYSIS OF INTEGRONS

Class 1 and/or class 2 integrons were detected in 9% (19/201) of the isolates, being class 1 integrons more frequently found than...
Table 1 | Primers used in this study.

Primer	Oligonucleotide sequence (5′–3′)	Gene	Reference	
TEM-F	ATG AGT ATT CAA CAT TTC CG	blaTEM	Rasheed et al., 1997	
TEM-R	CTG ACA GAA ACC AAT GCT TA			
SHV-1	GGC TTA TTC TTA TTT GTC GC	blaSHV	Rasheed et al., 1997	
SHV-2	TTA GGC TTG CCA GTC CTC			
CTX-M1-F	TTT GGC ATG TGC AGT ACC AGT AA	blaCTXM	Edelstein et al., 2003	
CTX-M1-R	CTA TAT CTG TGG TGC TGC CAT A			
CTXM1-F	GAC GAT GTC ACT GGC TGA GC	blaCTXM (group I)	Pitout et al., 2004	
CTXM1-R	AGC CGA CGA CGC TAC A			
Toho1-F	GCC ACC TGG TTA ACT ACA ATC C	blaCTXM (group II)	Pitout et al., 2004	
Toho1-R	CGG TAG TAT TGC CCT TAA GCC			
CTXM825F	GGC TTT GCC ATG TGC AGC ACC	blaCTXM (group III)	Pitout et al., 2004	
CTXM825R	GCT CAG TAT GCA GCC			
CTXM924F	GCT GGA GAA AAG CAG CGG AG	blaCTXM (group IV)	Pitout et al., 2004	
CTXM924R	GTA AGC TGA CGC AAC GTC TG			
CTXM-9-F	GTG ACA AAG AGA GTG CAA CGG			
CTXM-9-D	ATG ATT CTC GGC GCT GAA GCC			
IntI1-F	GGT CAA GGA TCT GGA TTT CG	intI1	Mazel et al., 2000	
IntI1-R	ACA TGG GTG TGA TAC ATC ATC TGC			
5’CS	GGC ATC CAA GCA GCA AG		Class 1 integron variable region	Levesque et al., 1995
3’CS	AAG CAG ACT TGA CCT GA			
IntI2-F	GGA GCC ATC GAC TAT TTG TA	intI2	Mazel et al., 2000	
IntI2-R	GTA GCA AAC GAG TGA CGA AAT G			
orbitX-R	GAT GCC ATC GCA AGC AG			
Sul1-F	CGCCGTTGGCTACCTCAAGC	sul1	Kerrn et al., 2002	
Sul1-B	GCCATCCGGTGTTCCCG			
Sul2-F	GGCCTCAAGCGAGATGGCATATT	sul2	Kerrn et al., 2002	
Sul2-B	GGCGTTGATACCCGCGGACC			
sul3F	GAGCAAGATTGGATACG	sul3	Perreten and Boerlin, 2003	
sul3R	CATCTGCAGCTAACCTAGGCTGTAGG			

Table 2 | Class 1 and class 2 integron types found among Enterobacteriaceae recovered from faecal samples of Portuguese healthy humans.

RFLP type	Length of variable region (bp)	Gene cassettes and order	Resistance phenotypea	No. of isolates	Isolation date
CLASS 1 INTEGRONS					
I1	1000	aadA1	Sm, Sp	2	2001
I1	1500	dfrA1-aadA1	Tp, Sm, Sp	3b	2003/2004
III1	1800	dfrA12-orfX-aadA1	Tp, Sm, Sp	1	2001
VI1	1500	dfrA17-aadA5	Tp, Sm, Sp	3	2001/2003
XXIV1	1400	aadA13	Sm, Sp	3	2001
CLASS 2 INTEGRONS					
I2	1900	dfrA1-sat2-aadA1-orfX	Tp, Str, Sm, Sp	4	2001/2004
III2	2300	estX-sat2-aadA1-orfX	Str, Sm, Sp	1	2004

aSm, streptomycin; Sp, spectinomycin; Str, streptothricin; Tp, trimethoprim.
b(*) One isolate corresponded to the CTX-M-14-producing E. coli.

class 2 integrons [7% (14/201) vs. 3% (6/201)]. Simultaneous presence of class 1 and class 2 integrons was found in one isolate. A low diversity of integrons and of their gene cassettes was observed (Table 2). Five different class 1 integron types were identified, with types I1 (dfrA1-aadA1, n = 3), VI1 (dfrA17-aadA5, n = 3) and XXIV1 (aadA13, n = 3) corresponding to the most prevalent. Among ESBL-producing isolates, class 1 integrons were only identified in the CTX-M-14 producer, with the integron (type I1, dfrA1-aadA1) and the blaESBL gene being co-transferred by conjugation. Two class 2 integron types were observed: type I2
The occurrence of sul genes was similar to that reported in other studies, with sul2 being more commonly found than sul1, and sul3 being scarcely observed (Enne et al., 2001; Grape et al., 2003; Infante et al., 2005; Hammerum et al., 2006; Trobos et al., 2008; Bailey et al., 2010). These high rates of sul genes are identical to those detected among food-producing animals which are highly exposed to sulfonamides, and hence an involvement of the food chain cannot be discarded (Perreten and Boerlin, 2003; Infante et al., 2005; Hammerum et al., 2006; Trobos et al., 2008; Bailey et al., 2010). The observation of sul3 in one isolate harboring intI1 but lacking sul1 suggests a replacement of sul1 by sul3, as previously reported in similar structures of Salmonella and E. coli isolates (Antunes et al., 2007; Curião et al., 2011). Although sul genes were not observed in some sulfonamide resistant isolates, we could not discard the presence of other resistance mechanisms, as mutations at the chromosomal gene (folP) for dihydropyroate synthase (DHPS) (Sköld, 2001) or acquisition of unknown genes.

Prevalence data on intestinal carriage of relevant antibiotic resistance genes and/or structures promoting gene expression
in different time periods are important to identify sources and hotspots of antibiotic resistance with relevance for the human health. In summary, data from this retrospective study reinforce the relevance of human commensal flora as reservoirs of clinically relevant antibiotic resistance genes (blaCTX-M-14 or blaTEM153; sul1)-genetic platforms (integrons and IncK plasmids). These findings impose future extensive follow-up evaluations in order to understand the trends of the antibiotic resistance genes epidemiology in the community and clinical settings over the time, and eventually anticipate the detection of microorganisms with the potential to cause pandemics in the future.

ACKNOWLEDGMENTS
We are very grateful to all persons who took part in this investigation, either as sample providers or recruiters.

FUNDING
The present work was supported by Fundação para a Ciência e Tecnologia, which belongs to the Ministry of Science, Technology and Innovation of Portugal (through grant no. PEst-C/EQB/LA0006/2011). Work in TMC lab is supported by grants in the EU (BIOHYPO 2008-227258). Elisabete Machado was supported by a fellowship from Fundação para a Ciência e a Tecnologia de Portugal (SFRH/BD/11304/2002).

REFERENCES
Antunes, P., Machado, J., and Peixe, L. (2007). Dissemination of sul1-containing elements linked to class 1 integrons with an unusual 3’ conserved sequence region among Salmonella isolates. Antimicrob. Agents Chemother. 51, 1545–1548.
Antunes, P., Machado, J., Sousa, J. C., and Peixe, L. (2005). Dissemination of sulfonamide resistance genes (sul1, sul2, and sul3) in Portuguese Salmonella enterica strains and relation with integrons. Antimicrob. Agents Chemother. 49, 836–839.
Bailey, J. K., Pinyon, J. L., Anantham, S., and Hall, R. M. (2010). Commensal Escherichia coli of healthy humans: a reservoir for antibiotic-resistance determinants. J. Med. Microbiol. 59(Pt 11), 1331–1339.
Ben Salem, R., Ben Slama, K., Estepa, V., Jouini, A., Gharsa, H., Klibi, N., et al. (2012). Prevalence and characterization of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli isolates in healthy volunteers in Tunisia. Eur. J. Clin. Microbiol. Infect. Dis. 31, 1511–1516.
Biskri, L., and Mazel, D. (2003). Erythromycin esterase gene ere(A) is located in a functional gene cassette in an unusual class 2 integron. Antimicrob. Agents Chemother. 47, 3326–3331.
Bríñas, L., Zaraza, M., Sáenz, Y., Ruiz-Larrea, E., and Torres, C. (2002). Beta-lactamases in ampicillin-resistant Escherichia coli isolates from foods, humans, and healthy animals. Antimicrob. Agents Chemother. 46, 3156–3163.
Bruinisma, N., Stobberingh, E., de Smet, P., and Van Den Broeck, A. (2003). Antibiotic use and the prevalence of antibiotic resistance in bacteria from healthy volunteers in the Dutch community. Infection 31, 9–14.
Bush, K. (2010). Alarming β-lactamase-mediated resistance in multidrug-resistant Enterobacteriaceae. Curr. Opin. Microbiol. 13, 558–564.
Clermont, O., Bonacorsi, S., and Bingen, E. (2000). Rapid and simple determination of the Escherichia coli phylogenetic group. Appl. Environ. Microbiol. 66, 4555–4558.
Clinical and Laboratory Standards Institute (CLSI). (2007). Performance Standards for Antimicrobial Susceptibility Testing: Seventeenth Informational Supplement M100-S17. Wayne, PA: CLSI.
Cooke, N. M., Smith, S. G., Kelleher, M., and Rogers, T. R. (2010). Major differences exist in frequencies of virulence factors and multidrug resistance between community and nosocomial Escherichia coli bloodstream isolates. J. Clin. Microbiol. 48, 1099–1104.
Coque, T. M., Baquero, F., and Cantón, R. (2008). Increasing prevalence of ESBL-producing Enterobacteriaceae in Europe. Euro Surveill. 13, pii: 19044.
Cottell, J. L., Webber, M. A., Coldham, N. G., Taylor, D. L., Cerdeño-Tarraga, A. M., Hauser, H., et al. (2011). Complete sequence and molecular epidemiology of IncK epidemic plasmid encoding blaCTX-M-14. Emerg. Infect. Dis. 17, 645–652.
Curáio, T., Cantón, R., García-Bacía, M. P., de la Cruz, F., Baquero, F., and Coque, T. M. (2011). Association of composite IS26-sul3 elements with highly transmissible IncI1 plasmids in extended-spectrum-beta-lactamase-producing Escherichia coli clones from humans. Antimicrob. Agents Chemother. 55, 2451–2457.
Edelstein, M., Pinkin, M., Palagin, I., Edelstein, I., and Stratchoulski, L. (2003). Prevalence and molecular epidemiology of CTX-M extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in Russian Hospitals. Antimicrob. Agents Chemother. 47, 3724–3732.
Enne, V. I., Livermore, D. M., Stephens, P., and Hall, L. M. C. (2001). Persistence of sulfonamide resistance in Escherichia coli in the UK despite national prescribing restriction. Lancet 357, 1325–1328.
European Centre for Disease Prevention and Control (ECDC). (2011). “Antimicrobial resistance surveillance in Europe 2010,” Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). Stockholm: ECDC.
Geser, N., Stephan, R., Korczak, B. M., Beutin, L., and Hächler, H. (2012). Molecular identification of extended-spectrum-β-lactamase genes from Enterobacteriaceae isolated from healthy human carriers in Switzerland. Antimicrob. Agents Chemother. 56, 1609–1612.
Grape, M., Sundstrom, L., and Kronvall, G. (2003). Sulphonamide resistance gene sul3 found in Escherichia coli isolates from human sources. J. Antimicrob. Chemother. 52, 1022–1024.
Guimaraes, B., Barreto, A., Radhouani, H., Figueiredo, N., Gaspar, E., Rodrigues, J., et al. (2009). Genetic detection of extended-spectrum beta-lactamase-containing Escherichia coli isolates and vancomycin-resistant enterococci in fecal samples of healthy children. Microb. Drug Resit. 15, 211–216.
Hammerum, A. M., Sandvang, D., Andersen, S. R., Seyfarth, A. M., Porsbo, L. J., Frimodt-Møller, N., et al. (2006). Detection of sul1, sul2 and sul3 in sulfonamide resistant Escherichia coli isolates obtained from healthy humans, pork and pigs in Denmark. Int. J. Food Microbiol. 106, 235–237.
Infante, B., Grape, M., Larsson, M., Kristansson, C., Pallecchi, L., Rossolini, G. M., et al. (2005). Acquired sulfonamide resistance genes in faecal Escherichia coli from healthy children in Bolivia and Peru. Int. J. Antimicrob. Agents 25, 308–312.
Jarlier, V., Nicolas, M. H., Fournier, G., and Philippin, A. (1988). Extended broad-spectrum β-lactamases conferring transferable resistance to newer β-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Rev. Infect. Dis. 10, 867–878.
Johnson, J. R., and Stell, A. L. (2000). Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. J. Infect. Dis. 181, 261–272.
Kang, H. Y., Jeong, T. S., Oh, J. Y., Tae, S. H., Choi, C. H., Moon, D. C., et al. (2005). Characterization of antimicrobial resistance and class 1 integrons found in Escherichia coli isolates from humans and animals in Korea. J. Antimicrob. Chemother. 55, 639–644.
Kerr, M. B., Klemmensen, T., Frimodt-Møller, N., and Espersen, F. (2002). Susceptibility of Danish Escherichia coli strains isolated from urinary tract infections and bacteraemia, and distribution of sul genes conferring sulphonamide resistance. J. Antimicrob. Chemother. 50, 513–516.
Leflon-Guibout, V., Heym, B., and Nicolas-Chanoine, M. H. (2000). Updated sequence information and proposed nomenclature for blabCTX-M and their promoters. Antimicrob. Agents Chemother. 44, 3232–3234.
Levesque, C., Piche, L., Larose, C., and Roy, P. H. (1995). PCR mapping of integrons reveals several novel combinations of resistance genes. Antimicrob. Agents Chemother. 39, 185–195.

www.frontiersin.org
April 2013 | Volume 4 | Article 80 | 5
Mazel, D., Meex, C., Gangué-Ritouje, B., Boreux, R., Assoumour, M. C., Melin, P., et al. (2012). Proportion of extended-spectrum β-lactamase-producing Enterobacteriaceae in community setting in Ngaoindere, Cameroon. BMC Infect. Dis. 12:53. doi: 10.1186/1471-2334-12-53

London, N., Nijsten, R., van der Graag, A., and Stoberbing, E. (1994). Carriage of antibiotic-resistant Escherichia coli by healthy volunteers during a 15-week period. Infection 22, 187–192.

Machado, E., Cantón, R., Baquero, F., Galán, J. C., Rollán, A., Peixe, L., et al. (2005). Integron content of extended-spectrum-β-lactamase-producing Escherichia coli strains over 12 years in a single hospital in Madrid, Spain. Antimicrob. Agents Chemother. 49, 1823–1829.

Machado, E., Coque, T. M., Cantón, R., Novais, A., Sousa, J. C., Baquero, F., et al. (2007). High diversity of extended-spectrum beta-lactamases (ESBL) among clinical isolates of Enterobacteriaceae from Portugal. J. Antimicrob. Chemother. 60, 1370–1374.

Machado, E., Coque, T. M., Cantón, R., Sousa, J. C., and Peixe, L. (2008). Antibiotic resistance integrons and extended-spectrum beta-lactamases among Enterobacteriaceae isolates recovered from chickens and swine in Portugal. J. Antimicrob. Chemother. 62, 296–302.

Machado, E., Coque, T. M., Cantón, R., Sousa, J. C., Silva, D., Ramos, M., et al. (2009). Leakage into Portuguese aquatic environments of extended-spectrum-beta-lactamase-producing Enterobacteriaceae. J. Antimicrob. Chemother. 63, 616–618.

Mazel, D., Dychinco, B., Webb, V. A., and Davies, J. (2000). Antibiotic resistance in the ECOR collection: integrons and identification of a novel aad gene. Antimicrob. Agents Chemother. 44, 1568–1574.

Mendoza, N., Leitão, J., Manager, V., Ferreira, E., and Caníca, M. (2007). Spread of extended-spectrum beta-lactamase CTX-M-producing Escherichia coli clinical isolates in community and nosocomial environments in Portugal. Antimicrob. Agents Chemother. 51, 1946–1955.

Moreno, E., Prats, G., Planes, L., Planes, A. M., Pizé, T., and Andreu, A. (2006). Characterization of Escherichia coli isolates derived from phylogenetic groups A and B1 causing extraintestinal infection. Enferm. Infect. Microbiol. Clin. 24, 483–489.

Moubareck, C., Daoud, Z., Hakimé, N. I., Hamzé, M., Mangeney, N., Matta, H., et al. (2005). Countrywide spread of community- and hospital-acquired extended-spectrum beta-lactamase (CTX-M-15)-producing Enterobacteriaceae in Lebanon. J. Clin. Microbiol. 43, 3309–3313.

Novais, A., Baquero, F., Machado, E., Cantón, R., Peixe, L., and Coque, T. M. (2010). International spread and persistence of TEM-24 is caused by the confluence of highly penetrating Enterobacteriaceae clones and an IncA/C plasmid containing Tn1696::Tn1 and IS5075-Tn21. Antimicrob. Agents Chemother. 54, 825–834.

Nys, S., Okeke, I. N., Kariuki, S., Dinant, G. J., Driessen, C., and Stoberbing, E. H. (2004). Antibiotic resistance of faecal Escherichia coli from healthy volunteers from eight developing countries. J. Antimicrob. Chemother. 54, 952–955.

Pallecchi, L., Bartoloni, A., Fiorelli, C., Maniella, A., Di Maggio, T., Gamboa, H., et al. (2007). Rapid dissemination and diversity of CTX-M-extended-spectrum beta-lactamase genes in commensal Escherichia coli isolates from healthy children from low-resource settings in Latin America. Antimicrob. Agents Chemother. 51, 2702–2725.

Pena, A., Serrano, C., Rúa, C., Baeta, L., Calderón, V., Silvéira, I., et al. (2004). Antibiotic residues in edible tissues and antibiotic resistance of faecal Escherichia coli in pigs from Portugal. Food Addit. Contam. 21, 749–755.

Perreten, V., and Boerlin, P. (2003). A new sulfonamide resistance gene (sul3) in Escherichia coli is widespread in the pig population of Switzerland. Antimicrob. Agents Chemother. 47, 1169–1172.

Pitout, J. D. (2010). Infections with extended-spectrum beta-lactamase-producing Enterobacteriaceae: changing epidemiology and drug treatment choices. Drugs 70, 313–333.

Pitout, J. D., Hossain, A., and Hanson, N. D. (2004). Phenotypic and molecular detection of CTX-M-beta-lactamases produced by Escherichia coli and Klebsiella spp. J. Clin. Microbiol. 42, 5715–5721.

Rasheed, J. K., Jay, C., Metchock, B., Berkowitz, F., Weigel, L., Crennell, J., et al. (1997). Evolution of extended-spectrum beta-lactam resistance (SHV-8) in a strain of Escherichia coli during multiple episodes of bacteremia. Antimicrob. Agents Chemother. 41, 647–653.

Rodrigues, C., Shukla, U., Jos, S., and Mehta, A. (2005). Extended-spectrum β-lactamase-producing flora in healthy persons. Emerg. Infect. Dis. 11, 981–982.

Rodriguez-Baño, J., López-Cerero, L., Navarro, M. D., Díaz de Alba, P., and Pascual, A. (2008). Faecal carriage of extended-spectrum beta-lactamase-producing Enterobacteriaceae during nonoutbreak situations in Spain. J. Clin. Microbiol. 42, 5204–5212.

Valverde, A., Coque, T. M., Sanchez-Moreno, M. P., Rollán, A., Baquero, F., and Cantón, R. (2004). Dramatic increase in prevalence of fecal carriage of extended-spectrum β-lactamase-producing Enterobacteriaceae during nonoutbreak situations in Spain. J. Clin. Microbiol. 42, 4769–4775.

Valverde, A., Grill, E., Coque, T. M., Pintado, V., Baquero, F., Cantón, R., et al. (2008). High rate of intestinal colonization with extended-spectrum-beta-lactamase-producing organisms in household contacts of infected community patients. J. Clin. Microbiol. 46, 2796–2799.

van de Mortel, H. J., Jansen, E. J., Dinant, G. J., London, N., Palacios Prú, E., and Stoberbingh, E. H. (1998). The prevalence of antibiotic-resistant faecal Escherichia coli in healthy volunteers in Venezuela. Infection 26, 292–297.

Vinué, L., Sáenz, Y., Martínez, S., Somalo, S., Moreno, M. A., Torres, C., et al. (2009). Prevalence and diversity of extended-spectrum beta-lactamases in faecal Escherichia coli isolates from healthy humans in Spain. Clin. Microbiol. Infect. 15, 954–957.

Vinué, L., Sáenz, Y., Somalo, S., Escudero, E., Moreno, M. A., Ruiz-Larrea, E., et al. (2008). Prevalence and diversity of integrons and associated resistance genes in faecal Escherichia coli isolates of healthy humans in Spain. J. Antimicrob. Chemother. 62, 934–937.

Woerther, P. L., Angebault, C., Lescat, M., Ruppré, E., Skurnik, D., Mniai, A. E., et al. (2010). Emergence and dissemination of extended-spectrum beta-lactamase-producing Escherichia coli in the community. Frontiers in Microbiology | Antimicrobials, Resistance and Chemotherapy April 2013 | Volume 4 | Article 80 | 6
Community: lessons from the study of a remote and controlled population. *J. Infect. Dis.* 202, 515–523.

Zhang, X. L., Wang, F., Zhu, D. M., Wu, S., Wu, P. C., Chen, Y. D., et al. (1998). The carriage of *Escherichia coli* resistant to antibiotics in healthy populations in Shanghai. *Biomed. Environ. Sci.* 11, 314–320.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 17 December 2012; paper pending published: 27 January 2013; accepted: 20 March 2013; published online: 08 April 2013.