Effects of a high-intensity pulmonary rehabilitation program on the minute ventilation/carbon dioxide output slope during exercise in a cohort of patients with COPD undergoing lung resection for non-small cell lung cancer

Fabio Perrotta1,a, Antonio Cennamo2,b, Francesco Saverio Cerqua2,c, Francesco Stefanelli2,d, Andrea Bianco2,e, Salvatore Musella3,f, Marco Rispoli4,g, Rosario Salvi5,h, Ilemando Meoli3,i

ABSTRACT

Objective: Preoperative functional evaluation is central to optimizing the identification of patients with non-small cell lung cancer (NSCLC) who are candidates for surgery. The minute ventilation/carbon dioxide output (V_{E}/V_{CO2}) slope has proven to be a predictor of surgical complications and mortality. Pulmonary rehabilitation programs (PRPs) could influence short-term outcomes in patients with COPD undergoing lung resection. Our objective was to evaluate the effects of a PRP on the V_{E}/V_{CO2} slope in a cohort of patients with COPD undergoing lung resection for NSCLC. Methods: We retrospectively evaluated 25 consecutive patients with COPD participating in a three-week high-intensity PRP prior to undergoing lung surgery for NSCLC, between December of 2015 and January of 2017. Patients underwent complete functional assessment, including spirometry, DLCO measurement, and cardiopulmonary exercise testing. Results: There were no significant differences between the mean pre- and post-PRP values (% of predicted) for FEV\(_1\) (61.5 ± 22.0% vs. 62.0 ± 21.1%) and DLCO (67.2 ± 18.1% vs. 67.5 ± 13.2%). Conversely, there were significant improvements in the mean peak oxygen uptake (from 14.7 ± 2.5 to 18.2 ± 2.7 mL/kg per min; \(p < 0.001\)) and V_{E}/V_{CO2} slope (from 32.0 ± 2.8 to 30.1 ± 4.0; \(p < 0.01\)). Conclusions: Our results indicate that a high-intensity PRP can improve ventilatory efficiency in patients with COPD undergoing lung resection for NSCLC. Further comprehensive prospective studies are required to corroborate these preliminary results. Keywords: Carcinoma, non-small-cell lung; Pulmonary disease, chronic obstructive/rehabilitation; Carbon dioxide/metabolism; Oxygen consumption/physiology; Risk assessment.

INTRODUCTION

Risk stratification has always been considered crucial in patients with non-small cell lung cancer (NSCLC) undergoing lung resection. The decline in the respiratory function after surgery remains a noteworthy drawback despite the advances in surgical techniques and perioperative care. The current guidelines of the European Respiratory Society and the European Society of Thoracic Surgery(1) strongly suggest the assessment of patients’ physical performance by a functional-based algorithm. Peak oxygen uptake (VO_{2peak}) has shown to be the best independent predictor of surgical complication rates(2-7) and, for this reason, cardiopulmonary exercise testing (CPET) is recommended when preoperative FEV\(_1\) and/or DLCO are < 80% of the predicted values.(5) Therefore, preoperative evaluation of respiratory function is one of the most important factors to determine operability, especially in patients with COPD.(1,3-8) Although VO_{2peak} is certainly the most widely used variable, CPET provides various other direct and indirect indicators that change in response to incremental workloads. Consistent data are emerging about the relationship between minute ventilation (V_{E}) and carbon dioxide output (V_{CO2}), also called the ventilatory efficiency slope. Patients with lung disease have increased ventilatory requirements for a given level of exercise.(9) In two independent studies that involved patients undergoing lung resections, a higher V_{E}/V_{CO2} slope showed to be a predictor of surgical complications and increased mortality.(3,8) A few studies reported the impact of preoperative pulmonary rehabilitation programs (PRPs) on exerctional parameters in cohorts of NSCLC patients undergoing radical surgery.(10-12) Therefore, the

Correspondence to: Fabio Perrotta. Dipartimento di Medicina e Scienze della Salute V. Tiberio, Università degli Studi del Molise, Via Francesco De Sanctis, 1, 86100, Campobasso, Italia. Tel.: 39 81 70642541; Fax: 39 81 7062365; E-mail: fabio.perrotta@unimol.it

Financial support: None.
aim of the present study was to evaluate the effects of a preoperative high-intensity PRP on the \(V_{E}/V_{CO_2} \) slope in a cohort of patients with COPD undergoing lung resection for NSCLC.

METHODS

Patients

We retrospectively evaluated the electronic medical records of 32 consecutive COPD patients attending a preoperative high-intensity PRP prior to undergoing lung surgery for NSCLC, between December of 2015 and January of 2017. Inclusion criteria were having been previously diagnosed with clinical stage I-IIIa NSCLC; being deemed fit for surgery according to the European Respiratory Society/European Society of Thoracic Surgery guidelines; being < 80 years of age; having a body mass index of 18-34 kg/m\(^2\); and presenting with a postbronchodilator fixed FEV1/FVC ratio < 0.70. Exclusion criteria were contraindications to surgery based on baseline CPET; cardiovascular or musculoskeletal disorders limiting training; use of oxygen therapy or noninvasive ventilation for chronic lung failure; cognitive impairment or psychiatric disorders; and pregnancy. The PRP was offered to patients with COPD who had a \(VO_2_{peak} \) ≤ 15.0 mL/kg per min or an FEV1 ≤ 50% of the predicted value and were awaiting surgical resection. The inclusion of patients in the PRP was not a reason for postponing surgical resection in any case. Patients who were deemed fit for surgery underwent open thoracotomy or video-assisted lobectomy three weeks after the beginning of PRP. COPD treatment was not modified during the observation period. Complete functional assessment, including spirometry, DLCO measurement, and CPET, was carried out, in accordance with our routine practice, before and after the PRP, both prior to surgery.

CPET and evaluation of dyspnea

Before and after the PRP, CPET was performed using a ramp protocol and breath-by-breath measurements on a cycle ergometer (Ergoline Ergoselect; SensorMedics, Milan, Italy) connected to computerized analyzer (Vmax encore 29C; SensorMedics). Hemodynamic and respiratory parameters were monitored during the test, including blood pressure, \(SpO_2 \), heart rate (HR), electrocardiogram, exhaled \(O_2 \), and exhaled \(CO_2 \).

The test started with a 2-min evaluation of the patient at rest, followed by a 2-min warm-up period during which the patient cycled freely. Exercise intensity was gradually increased based on the predicted workload for each patient. The test was interrupted when the patient reached the maximum predicted HR or whether other limitations occurred. At the end of the CPET, the reasons for exercise limitation and the perception of dyspnea, determined by the Borg scale, were registered.

PRP

A PRP, in daily 3-h sessions from Monday to Friday, was carried out for 3 consecutive weeks. In brief, the program consisted of respiratory exercises on a bench, on a mattress pad, and using wall bars. Subsequently, high-intensity training for the upper limbs (on a rowing ergometer) and the lower limbs (on a treadmill or cycle ergometer) were carried out. For rowing and walking, training was conducted at a perceived exertion rating of 15-17 (hard to very hard) on the Borg Rating of Perceived Exertion scale. For cycling, the exercise workload was set according to CPET results for each patient, starting with 70% of the maximum score reached in CPET and increased by 10 W when the patient was able to tolerate that workload for 30 min. High-intensity exercises lasted for 10-15 min. In the presence of physical exhaustion or severe dyspnea, the exercise was prematurely interrupted. The training sessions were supervised by an experienced physical therapist.

Statistical analysis

Data are reported as frequencies, means, and standard deviations; for respiratory parameters, absolute and percentage of the predicted values were considered. Intragroup analysis was performed using a t-test for dependent variables. The level of significance was set at 5%.

RESULTS

Of the 32 patients evaluated, 7 were excluded because of incomplete PRP or lack of post-PRP assessment: 5 patients (15.6%) underwent surgery at other hospitals; and 2 (6.2%) abandoned the PRP after less than one week. Therefore, the sample comprised 25 patients (17 males and 8 females) diagnosed with resectable NSCLC (stage I-IIIA). The mean age was 62.3 ± 6.0 years. The baseline characteristics of the patients are summarized in Table 1, whereas Table 2 shows the comparison of characteristics between included and excluded patients. All of the patients had a baseline \(VO_2_{peak} \) ranging from 10 to 20 mL/kg per min (mean, 14.7 ± 2.5 mL/kg per min). Three patients (12%) had a previous diagnosis of chronic heart failure, and 16 (64%) had systemic hypertension. Table 3 compares spirometry and CPET parameters before and after the 3-week PRP. As expected, the major spirometry variables showed no significant differences between the pre- and post-PRP values. Conversely, the \(VO_2_{peak} \) improved significantly after the PRP (14.7 ± 2.5 mL/kg per min vs. 18.2 ± 2.7 mL/kg per min; \(p < 0.001 \)), as did the \(V_{E}/V_{CO_2} \) slope (32.0 ± 2.8 vs. 30.1 ± 4.0; \(p < 0.01 \)).

DISCUSSION

In the present study, we found that a high-intensity PRP in patients with COPD undergoing lung resection for NSCLC might influence exertional parameters by increasing \(VO_2_{peak} \) and reducing the \(V_{E}/V_{CO_2} \) slope. The risk of lung cancer is approximately five times greater in patients with COPD than in smokers without COPD, regardless of age and smoking history. In patients in the early stages of NSCLC, the
Despite the small number of patients, our study offers novel insights in this field of research. However, the present study has some limitations. First, because of the retrospective design of the study, we were unable to report the 1-year survival rate of the patients studied, which would be an interesting long-term observation. Second, the number of patients who were unable to complete the postoperative training, are also under investigation in two clinical trials (NCT00363428 and NCT02887521). The effects of pulmonary rehabilitation in COPD patients undergoing NSCLC surgery are currently under investigation in two clinical trials (NCT00363428 and NCT02887521). The effects of a longer PRP, including preoperative and postoperative PRPs, the few such studies having produced inconsistent results. The effects of pulmonary rehabilitation in COPD patients undergoing NSCLC surgery has yet to be clarified. Mainini et al., (26) in an elegant systematic review, emphasized that PRPs should be better studied due to the scarcity of randomized clinical trials regarding preoperative and postoperative PRPs, the few such studies having produced inconsistent results. The effects of pulmonary rehabilitation in COPD patients undergoing NSCLC surgery are currently under investigation in two clinical trials (NCT00363428 and NCT02887521). The effects of a longer PRP, including preoperative and postoperative training, are also under investigation (NCT02405273).

Table 1. Baseline characteristics of the patients (N = 25).*

Characteristic	Result
Age, years	62.3 ± 6.0
Gender, male	17 (68)
Smoking history, pack-years	37.2 ± 8.0
BMI, kg/m²	26.1 ± 3.4
FEV₁, L	1.67 ± 0.7
FEV₁, % predicted	61.5 ± 22.0
FEV₁/FVC	54.1 ± 13.1
TLC, % predicted	108.7 ± 28.6
IC, % predicted	84.4 ± 14.3
IC/TLC	38.5 ± 12.1
RV, % predicted	130.0 ± 39.4
DLCO, % predicted	67.2 ± 18.1
VO₂peak, mL/kg per min	14.7 ± 2.5
VO₂peak, % predicted	64.1 ± 19.2
COPD staging	
I	4 (16)
II	9 (36)
III/IV	12 (48)
COPD treatment	
LAMA	3 (12)
LABA	1 (4)
LABA/LAMA	16 (64)
LABA/LAMA/ICS	5 (20)
TNM staging	
Ia	6 (24)
Ib	8 (32)
Iia	7 (28)
Iib	4 (16)

BMI: body mass index; IC: inspiratory capacity; VO₂peak: peak oxygen uptake; LABA: long-acting β₂ agonists; LAMA: long-acting muscarinic antagonists; ICS: inhaled corticosteroids; and TNM: tumor-lymph node-metastasis. *Values expressed as n (%) or mean ± SD.
Effects of a high-intensity pulmonary rehabilitation program on the minute ventilation/carbon dioxide output slope during exercise in a cohort of patients with COPD undergoing lung resection for non-small cell lung cancer

In conclusion, our results underscore the influence of a high-intensity PRP on ventilation efficiency. Further comprehensive prospective studies are required in order to corroborate these preliminary results.

REFERENCES

1. Brunelli A, Charloux A, Bolliger CT, Rocco G, Varela G, Sculier JP, et al. ERS/ESTS clinical guidelines on fitness for radical therapy in lung cancer patients (surgery and chemo-radiotherapy). Eur Respir J. 2009;34(1):17-41. https://doi.org/10.1183/09031936.00184308

2. Jones LW, Eves ND, Haykovsky M, Joy AA, Douglas PS. Cardiorespiratory exercise testing in clinical oncology research: systematic review and practice recommendations. Lancet Oncol. 2008;9(8):757-65. https://doi.org/10.1016/S1470-2045(08)70195-6

3. Brunelli A, Belardinelli R, Pomplii C, Xiumé F, Refai M, Salati M, Sabbatini A. Minute ventilation-to-carbon dioxide output (VE/VD) slope is the strongest predictor of respiratory complications and death after pulmonary resection. Ann Thorac Surg. 2012;93(6):1802-6. https://doi.org/10.1016/j.athoracsur.2012.03.022

4. Kasikcioglu E, Toker A, Tanju S, Azuman P, Kayserilioglu A, Dilege S, et al. Oxygen uptake kinetics during cardiopulmonary exercise testing and postoperative complications in patients with lung cancer undergoing lung resection. J Bras Pneumol. 2019;45(6):e201801324/5

Table 2. Spirometry and cardiopulmonary exercise test parameters before and after the three-week pulmonary rehabilitation program.

Parameter	Before	After	p
FEV1, % predicted	61.5 ± 22.0	61.9 ± 21.1	ns
VC, % predicted	81.1 ± 19.0	82.0 ± 17.8	ns
FEV1/VC	54.1 ± 13.1	54.5 ± 14.1	ns
DLCO, % predicted	67.2 ± 18.1	67.5 ± 13.2	ns
VO2peak mL/kg per min	14.7 ± 2.5	18.2 ± 2.7	< 0.001
VO2peak % predicted	64.0 ± 19.2	81.1 ± 18.0	< 0.001
VE/VCO2 slope	32.0 ± 2.8	30.1 ± 4.0	< 0.01
Peak HR, % predicted	92.1 ± 1.8	92.3 ± 2.0	ns
Peak RER	1.2 ± 0.3	1.3 ± 0.2	ns
Breathing reserve, %	24.3 ± 6.1	24.7 ± 6.4	ns

ns: not significant; VO2peak: peak oxygen uptake; VE: minute ventilation; VCO2: carbon dioxide output; and RER: respiratory exchange ratio.

Table 3. Baseline characteristics of included and excluded patients.

Characteristic	Included patients	Excluded patients	p
Age, years	62.3 ± 6.0	60.4 ± 5.1	0.45
Gender			
Male	17 (68.0)	5 (71.4)	0.94
Female	8 (32.0)	2 (28.6)	0.90
Smoking history, pack-years	37.2 ± 8.0	32.2 ± 9.1	0.16
BMI, kg/m²	26.1 ± 3.4	27.5 ± 2.9	0.33
FEV1, L	1.67 ± 0.70	1.84 ± 0.60	0.56
FEV1, % predicted	61.5 ± 22.0	63.4 ± 26.2	0.84
FEV1/FVC	54.1 ± 13.1	59.1 ± 10.1	0.36
TLC, % predicted	108.7 ± 28.6	111.1 ± 27.2	0.83
IC, % predicted	84.4 ± 14.3	87.1 ± 12.9	0.64
IC/TLC	38.5 ± 12.1	35.4 ± 15.9	0.64
RV, % predicted	130.0 ± 39.4	124.5 ± 42.1	0.76
DLCO, % predicted	67.2 ± 18.1	71.0 ± 16.5	0.60
VO2peak mL/kg per min	14.7 ± 2.5	15.1 ± 2.8	0.73
VO2peak % predicted	64.1 ± 19.2	67.8 ± 21.1	0.68
COPD staging			
I/II	13 (52.0)	3 (42.8)	0.80
III/IV	12 (48.0)	4 (57.2)	0.81
TNM staging			
Ia-b	14 (56.0)	4 (57.1)	0.98
Ila-b	11 (44.0)	3 (42.9)	0.97

BMI: body mass index; IC: inspiratory capacity; VO2peak: peak oxygen uptake; and TNM: tumor-lymph node-metastasis. *Values expressed as n (%) or mean ± SD.

the PRP and were therefore excluded from the final analysis represents a potential limitation of the study. However, no differences were found between the two groups at baseline.

In conclusion, our results underscore the influence of a high-intensity PRP on ventilation efficiency. Further comprehensive prospective studies are required in order to corroborate these preliminary results.
5. Shafiek H, Valera JL, Toegores B, Torrecilla JA, Sauleda J, Cosio BG. Risk of postoperative complications in chronic obstructive lung diseases patients considered fit for lung cancer surgery: beyond oxygen consumption. Eur J Cardiothorac Surg. 2016;50(4):772-779. doi.org/10.1093/ejcts/ezw104

6. Campione A, Terzi A, Bobbio M, Rosso GL, Scardovi AB, Feola M. Oxygen pulse as a predictor of cardiopulmonary events in lung resection. Asian Cardiovasc Thorac Ann. 2010;18(2):147-52. https://doi.org/10.1111/j.1746-5932.2010.01179.x

7. Wang JS, Aboud RT, Evans KG, Finley RJ, Graham BL. Role of CO diffusing capacity during exercise in the preoperative evaluation for lung resection. Am J Respir Crit Care Med. 2009;180(4 Pt 1):1435-44. doi.org/10.1164/rccm.2009-02031j

8. Torchio R, Guglielmio M, Giardino R, Ardissone F, Cicco C, Gulotta C, et al. Exercise ventilatory inefficiency and mortality in patients with chronic obstructive pulmonary disease undergoing surgery for non-small-cell lung cancer. Eur J Cardiothorac Surg. 2010;38(1):14-9. https://doi.org/10.1093/ejcts/ezw104

9. Brunelli A. Ventilatory efficiency slope: an additional prognosticator after lung cancer surgery. Eur J Cardiothorac Surg. 2016;50(4):780-781. doi.org/10.1093/ejcts/ezw127

10. Stefanelli F, Meoli I, Cobuccio R, Cucio C, Amore D, Casazza D, et al. High-intensity training and cardiopulmonary exercise testing in patients with chronic obstructive pulmonary disease and non-small-cell lung cancer undergoing lobectomy. Eur J Cardiothorac Surg. 2013;44(4):e260-5. doi.org/10.1093/ejcts/ezt375

11. Licker M, Karenovics W, Diaper J, Freizard, Triponez F, Ellenberger C, et al. Short-term Preoperative High-Intensity Interval Training in Patients Awaiting Lung Cancer Surgery: A Randomized Controlled Trial. J Thorac Oncol. 2017;12(2):323-333. https://doi.org/10.1092/jto.2016.09.125

12. Salvi R, Meoli I, Cennamo A, Perrotta F, Saverio Cerqua F, Montesano R, et al. Preoperative high-intensity training in frail old patients undergoing pulmonary resection for NSCLC. Open Med (Wars). 2016;11(1):443-448. doi.org/10.1515/med-2016-0079

13. Hwang CL, Yu CJ, Shih JY, Yang PC, Wu YT. Effects of exercise training on exercise capacity in patients with non-small cell lung cancer receiving targeted therapy. Support Care Cancer. 2012;20(12):3169-77. https://doi.org/10.1007/s00520-012-1452-5

14. Young RP, Hopkins RJ, Christmas T, Black PN, Metcalfe P, Gamble GD. COPD prevalence is increased in lung cancer, independent of age, sex and smoking history. Eur Respir J. 2009;34(2):380-6. https://doi.org/10.1183/09031936.00144208

15. Mayne ST, Buenconsejo J, Janerich DT. Previous lung disease and risk of lung cancer among men and women nonsmokers. Am J Epidemiol. 1999;149(1):13-20. https://doi.org/10.1093/oxfordjournals.aje.a009722

16. Turner MC, Chen Y, Krewski D, Calle EE, Thun MJ. Chronic obstructive pulmonary disease is associated with lung cancer mortality in a prospective study of never smokers. Am J Respir Crit Care Med. 2007;176(3):285-90. doi.org/10.1164/rccm.200612-1752OC

17. Adcock IM, Caramori G, Barnes PJ. Chronic obstructive pulmonary disease and lung cancer: new molecular insights. Respiration. 2011;81(4):265-84. https://doi.org/10.1159/000324601

18. Perrotta F, Mazzleo F, Cerqua FS. Which treatment for obstructive airway disease: The inhaled bronchodilators. Pulm Pharmacol Ther. 2015;45:57-59. https://doi.org/10.1016/j.pupt.2015.01.003

19. Lee SJ, Lee J, Park YS, Lee CH, Lee SM, Yi MJ, et al. Impact of chronic obstructive pulmonary disease on the mortality of patients with non-small-cell lung cancer. J Thorac Oncol. 2014;9(6):812-7. https://doi.org/10.1097/JTO.0000000000000158

20. Mina N, Soubani AO, Cote ML, Suvan T, Wentzaf AS, Jhajhria S, et al. The relationship between chronic obstructive pulmonary disease and lung cancer in African American patients. Clin Lung Cancer. 2012;13(2):149-56. https://doi.org/10.1016/j.cllc.2011.09.006

21. Bobbio A, Chetta A, Ampollini L, Primomo GL, Internullo E, Carbognani P, et al. Preoperative pulmonary rehabilitation in patients undergoing lung resection for non-small cell lung cancer. Eur J Cardiothorac Surg. 2009;33(1):95-8. https://doi.org/10.1016/j.ejcts.2007.10.003

22. Ramponi S, Zani P, Aiello M, Marangio E, Cini E, Chetta A. Pulmonary rehabilitation improves cardiovascular response to exercise in COPD. Respiration. 2013;86(1):17-24. https://doi.org/10.1159/000348726

23. Corrà U, Mezzani A, Bosimini E, Giannuzzi P. Cardiopulmonary exercise testing and prognosis in chronic heart failure: a prognosticating algorithm for the individual patient. Chest. 2004;126(3):942-50. https://doi.org/10.1378/chest.126.3.942

24. Neder JA, Bertom DC, Arbex FF, Alencar MC, Rocha A, Sperandio M. Oxygen pulse as a predictor of cardiopulmonary events in lung cancer. Lung Cancer. 2009;66(1):85-8. https://doi.org/10.1016/j.lungcan.2008.12.024

25. Perrotta F, Cennamo A, Cerqua FS, Stefanelli F, Bianco A, Musella S, Rispoli M, Salvi R, Meoli I.