Gapped topological kink states and topological corner states in honeycomb lattice

Yuting Yanga, Ziyuan Jiaa, Yijia Wub, Rui-Chun Xiaoa, Zhi Hong Hanga,c,*, Hua Jianga,c,*, X.C. Xieb,d,e

aSchool of Physical Science and Technology, Soochow University, Suzhou 215006, China
bInternational Center for Quantum Materials, Peking University, Beijing 100871, China
cInstitute for Advanced Study, Soochow University, Suzhou 215006, China
dBeijing Academy of Quantum Information Sciences, Beijing 100193, China
eCAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China

A R T I C L E I N F O

Article history:
Received 9 November 2019
Received in revised form 30 December 2019
Accepted 15 January 2020
Available online 28 January 2020

Keywords:
Topological corner states
Topological kink states
Topological quantum dot
Honeycomb photonic crystal
Domain-wall-induced topological states

A B S T R A C T

Based on the tight-binding calculations on honeycomb lattice and photonic experimental visualization on artificial graphene (AG), we report the domain-wall-induced gapped topological kink states and topological corner states. In honeycomb lattice, domain walls (DWs) with gapless topological kink states could be induced either by sublattice symmetry breaking or by lattice deformation. We find that the coexistence of these two mechanisms will induce DWs with gapless topological kink states. Significantly, the intersection of these two types of DWs gives rise to topological corner state localized at the crossing point. Through the manipulation of the DWs, we show AG with honeycomb lattice structure not only a versatile platform supporting multiple topological corner modes in a controlled manner, but also possessing promising applications such as fabricating topological quantum dots composed of gapless topological kink states and topological corner states.

© 2020 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.

1. Introduction

The gapless topological kink states have been widely investigated in the domain walls (DWs) of graphene-type electronic and classical wave systems [1–9]. Generally, there are two different mechanisms for the formation of DWs. The first one is through sublattice symmetry breaking. For example, a DW separating two graphene sheets with oppositely staggered AB sublattice potential (AB-BA DW) hosts gapless topological kink states [1–4], which has been experimentally demonstrated in graphene [10–12], sonic and photonic graphene, etc. [13–19]. The second mechanism is lattice deformation, where gapless topological kink states localized along the interface between two sheets of graphene-type material with reversed $\sqrt{3} \times \sqrt{3}$ lattice deformation ($\sqrt{3} \times \sqrt{3}$ DW) [5]. Such a mechanism has also been experimentally visualized in various classical wave graphene-type systems [20–23]. Nevertheless, the topological states in the coexistence of these two mechanisms still remain unexplored.

Higher-order topological insulators (HOTIs) [24–40] have been attracting intensive attentions for its unique bulk-boundary corresponspendence. The non-trivial gapped edge states and corner states in two-dimensional (2D) HOTIs are protected by the bulk gap, which have been experimentally observed in various classical wave systems with square or kagome lattices [24,30–40]. It is natural to ask that whether these topological states can also be realized in graphene-type materials. Considering the manipulability of both the AB-BA and the $\sqrt{3} \times \sqrt{3}$ DWs and the rich topological phase diagram, graphene-type materials may open a new way integrating multiple topological states on a single chip.

In this paper, through theoretical analysis and photonic crystal (PC) experiments, we study the DW-induced topological states in artificial graphene (AG, an artificial honeycomb lattice structure) in the coexistence of sublattice symmetry breaking and lattice deformation. Introducing lattice deformation to the AB-BA DW (red lines in Fig. 1a, b) or breaking sublattice symmetry of a $\sqrt{3} \times \sqrt{3}$ DW (blue lines in Fig. 1a, b) will both induce gapped topological kink states. Significantly, the intersection of the AB-BA and the $\sqrt{3} \times \sqrt{3}$ DWs (Fig. 1a) gives rise to topological corner states (black dot in Fig. 1b) localized at the crossing point (Fig. 1c). Moreover, we show the manipulability of the DWs, thus demonstrating AG a versatile platform supporting multiple topological corner states with tunable interactions. Finally, we propose a scheme fabricating topological quantum dots (TQDs) possessing topological
corner states, gapless and gapped topological kink states, implying promising applications in mesoscopic physics.

2. Theoretical model

As shown in Fig. 2a, we begin with a modified honeycomb tight-binding model $H = -\sum_{i<j} t_{ij} c_i^\dagger c_j + \sum_i U_i c_i^\dagger c_i$, where c_i^\dagger is the creation operator on site i. The $\sqrt{3} \times \sqrt{3}$ lattice deformation is considered by modulating the intra (inter)-unit-cell hopping strength t_i as $t_1 = t + \delta t$ ($t_2 = t - \delta t$). Noticing that the enlarged new primitive unit cell contains six sites. The sublattice symmetry breaking is included by adding staggered potential $U_i = \Delta (-\Delta)$ on the A (B) sublattice. When t_1 and t_2 are exchanged (reversed δt) across a line, a $\sqrt{3} \times \sqrt{3}$ DW is formed. Similarly, an AB-BA DW is formed when Δ changes its sign [2].

We first study the relationship between topological states in these two types of DWs. Fig. 2b plots the 1D energy spectrum for the $\sqrt{3} \times \sqrt{3}$ DW. Counter-propagating gapless states inside the bulk gap [41] are similar to the topological kink states in the AB-BA DW [2, 8, 42]. The low-energy effective Hamiltonian of H following Refs. [41, 43] is derived as

$$H_{\text{eff}}(k) = \begin{pmatrix}
 t_1 - t_2 & -i\Delta & 0 \\
 -i\Delta_{+} & t_2 - t_1 & \Delta \\
 0 & -i\Delta_{+} & t_1 - t_2
\end{pmatrix},$$

where $k_i = k_i \pm ik_i$ and v denotes the Fermi velocity (detailed derivation can be referred to the Supplementary materials). Eq. (1) with $\Delta = 0$ is analogous to the Hamiltonian of a sublattice-symmetry-breaking honeycomb lattice ($\Delta \neq 0, \delta t = 0$) in the basis of $\{k, k'\} \otimes \{A, B\}$. They are topologically equivalent to each other for $t_1 - t_2$ playing the role of Δ. Notably, the C_3 crystalline symmetry is indispensable for the unitary transformation Eq. (S3) (online) relating the basis in Eq. (1) and the basis of $\{k, k'\} \otimes \{A, B\}$. Therefore, the gapless states in the $\sqrt{3} \times \sqrt{3}$ DW and the AB-BA DW have the same topological origin, where $t_1 - t_2$ and Δ play the role of the mass term, respectively. The sign change of the mass term across the DW leads to the bulk band inversion, which protects the gapless topological kink states. Formally, the gapless state in the AB-BA DW is related to the topological invariant as the valley Chern number difference across the AB-BA DW [44, 45]. For the $\sqrt{3} \times \sqrt{3}$ DW, in parallel, a “pseudospin” Chern number difference protecting the gapless kink state could be defined in another Hamiltonian basis obtained through a unitary transformation (see the Supplementary materials).

However, $t_1 - t_2$ and Δ possess different positions in Eq. (1), and the bulk gap $E_g = 2\sqrt{(t_1 - t_2)^2 + \Delta^2}$. These observations manifest that the mass terms $t_1 - t_2$ and Δ are orthogonal to each other. It indicates that even though one mass term changes its sign across the DW, the topological kink state is still gapped due to the presence of the other mass term. As plotted in Fig. 2c (2d), there is a $2|\Delta| (2|t_1 - t_2|)$ gap in the topological kink state of the $\sqrt{3} \times \sqrt{3}$ (AB-BA) DW by introducing lattice deformation (sublattice symmetry breaking).

We further study the intersection of these two types of DWs. For convenience, the AB-BA ($\sqrt{3} \times \sqrt{3}$) DW is assumed along the y (x) direction (Fig. 1a). In both the left and the right sides of the AB-BA DW, the gapped topological kink state can be described as $h v k_0 \sigma_x + m_i \sigma_z$, where $m_i = t_1 - t_2$ is the mass term induced by lattice deformation. However, m_i changes its sign due to the $\sqrt{3} \times \sqrt{3}$ DW, leading to a 1D band inversion. Consequently, a topological corner state emerges around the crossing point. Such topological corner state is mathematically related to the winding number of the 1D gapped topological kink state. Fig. 1b exhibits its eigen-energy spectrum, and a nearly-zero-energy state inside the gap of the topological kink states is observed only in the presence of the intersection of the AB-BA and $\sqrt{3} \times \sqrt{3}$ DWs, indicating the existence of the topological corner state.

3. Experimental observation

An AG can be experimentally realized through PCs, as hexagonal array of alumina Al_2O_3 cylinders with relative permittivity $\epsilon = 7.5$ (Fig. 2e). The hexagonal unit cell (honeycomb sublattice) is indicated in red (blue). The hopping strength $t_1 (t_2)$ in the tight-binding model is controlled by the intra (inter)-unit-cell separation between neighbouring cylinders $h_1 (h_2)$ [22]. The sublattice potential Δ is modulated by the diameters of the cylinder.
We firstly calculate the phase diagram with respect to parameters h_1, h_2, d_0 and Δd (Fig. 2f). Here d_0 is set as 5.5 mm and lattice constant $a = 2h_1 + h_2 = 17\sqrt{3}$ mm. The dipole (quadruple)-like mode is a photonic analogue of the p (d)-electron orbit. As shown in Fig. 2g, with the increase of the ratio h_1/h_2, the frequency of the dipole-like modes (blue triangles) exceeds the quadruple-like one (red circles), indicating the band inversion induced by the lattice deformation. Their frequency difference (in unit of GHz) is shown by the color in Fig. 2f. When the cylinder diameter changes (Fig. 2h), the eigen-frequency of the counter-clockwise magnetic field exceeds the clockwise counterpart, indicating 1D phase transition by staggered A/B sublattice [17]. Therefore the phase diagram can be separated into four quadrants in the coexistence of two different 1D phase transitions.

We choose one set of parameters from each quadrant (denoted by arrows in Fig. 2f) to construct the intersection of the two types of DWs. The photograph of the experimental setup is shown in Fig. 1a, where the blue line denotes the $\sqrt{3} \times \sqrt{3}$ DW with $h_1 = 19/\sqrt{3}$ mm ($h_1 = 13.5/\sqrt{3}$ mm) on its left (right) side. Cylinders with 5 mm (6 mm) in diameter are assembled at sites A (B) where they are swapped across the AB-BA DW (red line in Fig. 1a). The polarization of the electric field is parallel to the cylinders. In principle, there could be four different DWs while in order to facilitate the sample preparation, the parameters we choose give...
rise to three regions (Fig. 1a) and their energy spectra by tight-binding calculations are shown in Fig. 3a. Though the gapped topological kink state exists in all three regions I, II and III, their energy gaps are different. The local density of states (LDOS) distributions at typical Fermi energy E obtained by lattice Green’s function are plotted in Fig. 3b–d [46], where three patterns of gapped topological kink states are shown with the increase of E.

Excited by a monopole antenna (denoted by star in Fig. 1a), time-harmonic electric field distributions of photonic AG can be measured (Fig. 3e–h). In case of the frequency \(f = 7.1545 \) GHz slightly higher than the top of the bulk photonic bands (Fig. 3b), measured electric field is localized around all DWs, indicating topological kink states in all regions I, II, and III (Fig. 3e). At a higher \(f = 7.1895 \) GHz, only the states near region II and III (Fig. 3f) are excited. Such observations are consistent with the LDOS distributions in Fig. 3c where the Fermi energy only crosses the topological kink bands in region II and III, showing a strong evidence for the existence of gapped topological kink states in region I. When the frequency is increased to \(f = 7.2005 \) GHz, the gapped topological kink states in region I and II (Fig. 3d, g) are manifested. Significantly, at frequency \(f = 7.3590 \) GHz, only the states around \(x = y = 0 \) are excited (Fig. 1c). The spatial exponential decay of the corresponding electric field intensity (see the Supplementary materials for detailed analysis) clearly characterizes the topological corner modes. In addition, we note that the topological corner state is robust against disorder as for random dislocations of \(\text{Al}_2\text{O}_3 \) cylinders (Fig. 3h). Moreover, the gapped topological kink states and topological corner states are also quite robust against the variance of the crossing angle between the two types of DWs (detailed numerical results in tight-binding model, electromagnetic numerical simulation and microwave experimental setup are referred in the Supplementary materials). Though each of the four different domains in this honeycomb lattice possesses crystalline symmetry as \(C_3 \) or \(C_4 \), that specific crystalline symmetry is not required for the spatial arrangement of these two DWs. The robustness originates from the fact that the valley Chern number difference plays a similar role as the Chern number difference [47]. Finally, though the experiments here carried out are in the microwave regime, by fabricating honeycomb PC with much smaller sizes, we expect all these results can also be reproduced in the optical frequencies [19,48,49].

4. Applications

In addition to the simple HOTI possessing single topological corner mode, one can create a number of topological corner modes and manipulate their interactions by arranging the spatial positions of these DWs. A device with three topological corner modes is illustrated in Fig. 4a, which can be described by Hamiltonian \(\mathcal{H}_1 = -t_1a_1^\dagger a_2 - t_2a_2^\dagger a_3 + h.c. \). Its electric field distributions at frequencies \(f = 7.246 \) and \(7.260 \) GHz are measured. In Fig. 4c, three peaks of the electric field are observed, corresponding to the eigen-vector \(\frac{1}{\sqrt{2}} \left[-1, 0, 1 \right]^T \) for the lowest eigen-energy of \(\mathcal{H}_1 \). Conversely, the eigen-vector at medium eigen-energy is \(\frac{1}{\sqrt{2}} \left[1, 0, -1 \right]^T \), therefore the electric field vanishes in the central region as confirmed in Fig. 4d. Due to the leakage from excitation antenna (dashed circle in Fig. 4d), the field near the leftmost corner mode is excessively strong. One can also periodically arrange the DWs to construct a Su–Schrieffer–Heeger (SSH) chain [50] by topological corner modes (Fig. 4b). There are two topological corner modes with bond length \(l_1 \) and \(l_2 \) in a unit cell. Fig. 4e, f show simulated energy spectra. Increasing \(l_1 \) and \(l_2 \) simultaneously will decrease both the inter- and intra-unit-cell coupling strength, therefore the band width also decreases (Fig. 4e). When \(l_1 > l_2 \), the inter-unit-cell coupling strength is stronger than the intra-unit-cell one. A band gap emerges and increases with the difference between \(l_1 \) and \(l_2 \) (Fig. 4f). Since topological corner modes can be used to construct different tight-binding models with tunable parameters, such platform bears similarities to the optical lattice in cold atom [51] and is much more convenient in sample fabrication and measurement.

The coexistence of multiple kinds of topological states in AGs, especially the PC-based AG, provides the possibility of fabricating unique topological devices. We propose two TQDs as illustrated in Fig. 5a, b by combining different topological states. For both two devices, an AB-BA DW is formed across the dashed line, while

Fig. 3. (Color online) (a) Energy spectrum for the device with DWs I, II, and III. The parameters of the four quadrants are \((\delta, \gamma) = (0.0675\gamma, 0.09\gamma), (0.06\gamma, 0.09\gamma), (-0.06\gamma, -0.09\gamma), \) and \((0.0675\gamma, -0.09\gamma) \), respectively. (b)–(d) LDOS distributions at energies (b) \(E = -0.14 \), (c) \(E = -0.12 \), (d) \(E = -0.10 \). (e)–(h) Experimentally measured electric field distributions at frequencies \(f = 7.1545, 7.1895, 7.2005, \) and \(7.4115 \) GHz, respectively. (h) Topological corner mode survives in the presence of disorders.
the $\sqrt{3} \times \sqrt{3}$ lattice deformation is presented only in the filled region (Fig. 5a, b). The gapped topological kink states exist in such regions, acting as two barriers separating the central region from the two leads with gapless topological kink states. The finite-size confinement introduce the bound states in the central region [52]. Fig. 5c, d show the conductance G versus Fermi energy E for these two TQDs. The key feature is that G shows resonant tunneling behavior when E approaches the energy of the bound state e [53]. For a very small L (Fig. 5c), the device is similar to the system in Fig. 1a. A sharp peak of G emerges around $E = 0$ only for the device in Fig. 5b. These results agree with Fig. 1b, where zero-energy topological corner state is localized at the crossing of the

Fig. 4. (Color online) (a) Schematic diagram of the alignment of DWs with three topological corner modes. (b) Illustration of an SSH chain. For each unit, there are two topological corner modes with bond length l_1, l_2. (c), (d) Experimentally measured field distributions with topological corner modes coupling at $f = 7.246$, and 7.260 GHz, respectively. (e), (f) Energy spectra for (b) in the presence of different l_1, l_2's ($\Delta = 0.18t$, $\delta t = 0.06t$).

Fig. 5. (Color online) (a), (b) Illustration of the TQD devices, which includes QD (region with length L), barriers (region with length l) and semi-infinite leads (here $l = 1$, $L = 2$, and $N = 4$). The $\sqrt{3} \times \sqrt{3}$ DW is absent (presented) in (a) ((b)). (c), (d) Conductance G vs. Fermi energy E. The blue (red) lines represent the device in (a) ((b)). In both two leads and the QD, $(\delta t, \Delta) = (0, 0.09t)$. In two barriers, $(\delta t, \Delta) = (0.06t, 0.09t)$. The other parameters are (c) $L = 2$, and (d) $L = 40$.

The gapped topological kink states exist in such regions, acting as two barriers separating the central region from the two leads with gapless topological kink states. The finite-size confinement introduce the bound states in the central region [52].
AB-BA and the $\sqrt{3} \times \sqrt{3}$ DWs. In case of large L, a half-period shift of G peaks between two devices is observed, because the $\sqrt{3} \times \sqrt{3}$ DW induces a special boundary condition and changes the bound

equation from $e^{i\theta} = \frac{e^{i\sqrt{3}m_{1}^2-2}}{e^{i\sqrt{3}m_{1}^2-2}}$ (Fig. 5a) to $e^{i(\theta+\pi)} = \frac{e^{i\sqrt{3}m_{1}^2-2}}{e^{i\sqrt{3}m_{1}^2-2}}$ (Fig. 5b). Since $\varepsilon = 0$ is always the solution of the latter equation, such topological corner states are examples of the celebrated Jackiw-Rebbi zero-mode [54]. The detailed derivations of ε for the two TQDs and the comparison to the normal QDs are summarized in the Supplementary materials. Considering the key role that QD plays in mesoscopic device, this proposal may open up a new path simulating mesoscopic physics in PCs.

5. Discussion and conclusion

Though our experimental demonstrations are performed in PCs, all these non-trivial topological states are independent of the specific physical platform. In other words, both the gapped topological kink states and the topological corner states can be realized in a variety of condensed matter systems. For example, antidot lattice in 2D electron gas, in which graphene-type band structure has been experimentally realized [55,56] and both the AB-BA and the $\sqrt{3} \times \sqrt{3}$ DWs can be presented [57]. Molecular graphene on metallic surface could be an additional example [58], if lattice deformation and sublattice symmetry breaking are introduced [59]. Such an advantage may imply possible applications in a number of research fields. Moreover, we also notice some very recent theoretical proposals for the realization of topological corner states in graphene-like systems [60-62].

In summary, DW-induced gapped topological kink states and topological corner states are theoretically predicted and experimentally observed in AG. The gapped topological kink states in DWs are protected by the orthogonality between the two mass terms induced by sublattice symmetry breaking and lattice deformation, while the topological corner states emerge in the presence of the intersection between these two types of DWs. Furthermore, through manipulating the DWs, we also illuminate two applications by integrating multiple topological states in a single device. A versatile platform is proposed where the number of topological corner modes and their interactions are tunable. The advantages of applying mesoscopic physics concepts in PC-based AG are also demonstrated by constructing TQDs where gapped topological kink states and topological corner states coexist.

Conflict of interest

The authors declare that they have no conflict of interest.

Acknowledgments

This work was supported by the National Basic Research Program of China (2019YFA0308403), the National Natural Science Foundation of China (11534001, 11822407 and 11874274), Natural Science Foundation of Jiangsu Province (BK20170058) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). We are grateful to H. M. Weng and H. W. Liu for helpful discussion.

Author contributions

Hua Jiang and Zhi Hong Hang conceived the idea and supervised the project. Hua Jiang did the theoretical analysis with the input from YiJia Wu. Yuting Yang, Ziyuan Jia and Zhi Hong Hang did the experiments. Rui-Chun Xiao did DFT simulations. Yuting Yang, Yijia Wu, Zhi Hong Hang, Hua Jiang and X. C. Xie analyzed the data and wrote the manuscript. All authors contributed to scientific discussion of the manuscript.

Appendix A. Supplementary materials

Supplementary materials to this article can be found online at https://doi.org/10.1016/j.scib.2020.01.024.

References

[1] Martin I, Blanter YM, Morpurgo AF. Topological confinement in bilayer graphene. Phys Rev Lett 2018;100:036804.
[2] Semenoff GW, Semenoff V, Zhou F. Domain walls in gapped graphene. Phys Rev Lett 2018;101:087204.
[3] Zhang F, MacDonald AH, Mele EJ. Valley Chern numbers and boundary modes in gapped bilayer graphene. Proc Natl Acad Sci USA 2013;110:10546.
[4] Vaezi A, Liang YF, Ngai DH, et al. Topological edge states at a tilt boundary in gated multilayer graphene. Phys Rev X 2013;3:021018.
[5] Wu LH, Hu X. Scheme for achieving a topological photonic crystal by using dielectric material. Phys Rev Lett 2015;114:223901.
[6] Qiao ZH, Jung J, Niu Q, et al. Electronic highways in bilayer graphene. Nano Lett 2011;11:3453.
[7] Qiao ZH, Jung J, Lin CW, et al. Current partition at topological channel intersections. Phys Rev Lett 2014;112:206601.
[8] Cheng SG, Liu HW, Jiang H, et al. Manipulation and characterization of the valley-polarized topological kink states in graphene-based interferometers. Phys Rev Lett 2018;121:156801.
[9] Li J, Zhang R, Yin Z, et al. A valley valve and electron beam splitter. Science 2018;362:11410.
[10] Ju L, Shi Z, Nair N, et al. Topological valley transport at bilayer graphene domain walls. Nature 2015;520:650.
[11] Liu, Wang K, McFaul KJ, et al. Gate-controlled topological conducting channels in bilayer graphene. Nat Nanotechnol 2016;11:1060.
[12] Yin LJ, Jiang H, Qiao JB, et al. Direct imaging of topological edge states at a bilayer graphene domain wall. Nat Commun 2017;6:17176.
[13] Li J, Qiu C, Ye L, et al. Observation of topological valley transport of sound in sonic crystals. Nat Phys 2017;13:369.
[14] Dong JW, Chen XD, Zhu HY, et al. Valley photonic crystals for control of spin and topology. Nat Mater 2017;16:298.
[15] Ye L, Yang Y, Hang ZH, et al. Observation of valley-selective microwave transport in photonic crystals. Appl Phys Lett 2017;111:251107.
[16] Gao F, Xue H, Yang Z, et al. Topologically protected refraction of robust kink states in valley photonic crystals. Nat Phys 2018;14:140.
[17] Yang Y, Jiang H, Hang ZH. Topological valley transport in two-dimensional honeycomb photonic crystals. Sci Rep 2018;8:1522.
[18] Noh J, Huang S, Chen KP, et al. Observation of photonic topological valley Hall edge states. Nat Phys 2018;10:063002.
[19] Anderson PD, Subramaniam G. Unidirectional edge states in topological honeycomb-lattice membrane photonic crystals. Opt Express 2017;25:23293.
[20] He C, Ni X, Ge H, et al. Acoustic topological insulator and robust one-way wave transport. Nat Phys 2016;12:1124.
[21] Zhang ZW, Wei Q, Cheng Y, et al. Topological creation of acoustic pseudospin multipole in a flow-free symmetry-broken metamaterial lattice. Phys Rev Lett 2017;118:084303.
[22] Yang Y, Xu YF, Xu T, et al. Visualization of a unidirectional electromagnetic waveguide using topological photonic crystals made of dielectric materials. Phys Rev Lett 2018;120:217401.
[23] Li Y, Sun Y, Zhu W, et al. Topological LC-circuits based on microstrip and observation of electromagnetic modes with orbital angular momentum. Nat Commun 2018;9:4598.
[24] Benalcazar WA, Bernevig BA, Hughes TL. Quantized electric multipole insulators. Science 2017;357:561.
[25] Langbehn J, Peng Y, Trifunovic L, et al. Reflection-symmetric second-order topological insulators and superconductors. Phys Rev Lett 2017;119:246401.
[26] Song Z, Fang Z, Fang C. d-2 dimensional edge states of rotation symmetry protected topological states. Phys Rev Lett 2018;120:246402.
[27] Schindler F, Wang Z, Vergniory MG, et al. Higher-order topology in bismuth. Nat Phys 2018;14:918.
[28] Ezawa M. Topological switch between second-order topological insulators and topological crystalline line insulators. Phys Rev Lett 2018;121:116801.
[29] Ezawa M. Minimal models for Wannier-type higher-order topological insulators and phosphorene. Phys Rev B 2018;98:045125.
[30] Serra-Garcia M, Peri V, Siistrunk R, et al. Observation of a phononic quadrupole topological insulator. Nature 2018;555:342.
[31] Peterson GW, Benalcazar WA, Hughes TL, et al. A quantized microwave quadrupole insulator with topologically protected corner states. Nature 2018;555:346.
[32] Imhof S, Berger C, Bayer F, et al. Topological-circuit realization of topological corner modes. Nat Phys 2018;14:925.
[33] Noh J, Benalcazar WA, Huang S, et al. Topological protection of phononic mid-gap defect modes. Nat Photonics 2018;12:408.
Yuting Yang obtained her Ph.D. degree from Soochow University in 2019. During 2018–2019, she worked as a visiting Ph.D. student at Nanyang Technological University. She is an associate professor in China University of Mining and Technology now. Her current research interest focuses on topological properties and transport of two-dimensional photonic crystals.

Zhi Hong Hang obtained his M.Phil. and Ph.D. degrees in Physics from Hong Kong University and Science and Technology in 2004 and 2008 respectively. He joined Soochow University in 2012 and he holds the position of Professor in School of Physical Science and Technology and Institute for Advanced Study now. His current research focuses on designing microstructures (meta-materials and photonic crystals) to control light propagation.

Hua Jiang obtained his Ph.D. degree in Physics from Institute of Physics, Chinese Academy of Sciences in 2010. After working as a postdoctoral fellow at Peking University, he joined Soochow University in 2013 and becomes a Professor in School of Physical Science and Technology and Institute for Advanced Study now. His current research interest is theoretical study of topological states and quantum transport properties in condensed matter systems.