The Monday Effect in the Dow Jones Industrial Average and Its Component Stocks: A Three Period Comparative Analysis from 1962 to 2012

Peter J. Bush and Seyed Mehdian

A B S T R A C T

This article examines the Monday effect in the Dow Jones Industrial Average (DJIA) and each of its component stocks for the periods of 1962 to 1982, 2003 to 2008, and 2009 to 2012. We extend our investigation over multiple time periods to explore whether individual component securities behave in the same way as the broader index to which they are linked over time. The results provide evidence to support the presence of the Monday effect in the DJIA and its component stocks during the early period of 1962 to 1982 while no statistically significant Monday effect is found in the latter periods of 2003 to 2008 and 2009 to 2012. These findings suggest that a transformation has occurred in U.S. equity markets such that the Monday effect has reduced or disappeared in both the market-wide index and its component stocks. We conclude that this transformation is perhaps due to the faster speed of dissemination of information domestically or globally; consequently, no trading rule that is based on daily anomalies can be exploited to generate an abnormal return.

Keywords: Monday Effect, Dow Jones Industrial Average, Dissemination of Information, Efficient Market Hypothesis

I. Introduction

The efficient market hypothesis (EMH) proposed by Fama in the early 1960s is one of the most fundamental, important and debated financial hypotheses. The EMH states that markets adjust efficiently and accurately as information becomes available to market participants—reaching equilibrium instantaneously and eliminating possibilities for arbitrage and earning above-average market returns. Thus, it is theoretically impossible to outperform the market using any information that is already available except through sheer luck. It follows that, for example, no daily anomalies can be utilized to generate abnormal returns. Since its introduction, the EMH has encountered serious challenges on theoretical and empirical grounds. On empirical grounds, a variety of anomalies have been discovered in stock returns related to days of the week, months of the year, or other seasonality. The Monday effect, discovered through empirical research, is an important anomaly that challenges the EMH. Past studies have examined the Monday effect by using different market indices, but no study has tested the presence of the-day-of-the-week effect in individual stocks. We believe that examining the Monday effect at different levels of a market (i.e. index and individual security) is a superior approach to test the validity and the basis for the existence of a Monday effect and other market anomalies. This article uses standard regression analysis to examine the Monday effect in the Dow Jones Industrial Average
(DJIA) and its components over a 50-year period consisting of several market crashes. More specifically, the purpose of this article is to revisit the Monday effect to examine 1) statistical evidence to support the existence of the Monday effect in the base index over time, 2) statistical evidence to support the existence of the Monday effect in the component stocks of the base index, and 3) differences in the Monday effect between the base index and its components. We decompose the market indices into their components to discover which components are responsible for returns’ daily anomalies, and we partition the timeframe into three periods: 1962 to 2012. The results provide a better understanding of the total scope of the Monday effect and whether the index components behave in the same manner as the index as a whole in the case of seasonality. While there is statistically significant evidence of the Monday effect in the first subsample (1962 to 1982), this effect fades away in the latter periods of the study suggesting that the Monday effect has evolved over time in both the DJIA and its component stocks.

The rest of this article is organized as follows: Section II presents a brief overview of literature on the Monday effect. Section III describes the data set and methodology utilized in this study. Section IV reports the empirical results, and Section V concludes the paper.

II. Background and Literature Review

The Monday effect has been extensively investigated in U.S. equity markets. As early as the 1920s, practitioners identify the Monday effect prior to studies using market-return data. In 1930, Kelly cites a three-year statistical analysis that identifies Monday as the worst day to buy stocks. He specifically refers to one of the factors of the effect to be the weekend decision-making occurring in individual investor ranks. In another study, Fields (1931) examines conventional market wisdom and looks for a low-Saturday-return effect in the DJIA. Fields’ findings are consistent with the Monday effect in that Saturday’s average closings are higher than the adjacent Friday and Monday closings. Later, Merrill (1966) reports that for the period from 1952 through 1965, Monday returns are up 43% while returns on the other trading days of the week increase over 50%. Similarly, Cross (1973) conducts a statistical test of the Monday effect and reports that the proportion of increases in returns on Monday is significantly lower than the proportion of increases on Friday.

In market return data, French (1980) studies the Standard and Poor (S&P) 500 Index from 1953 through 1977 finding a statistically significant difference in returns across weekdays with a significantly negative return on Monday. Gibbons and Hess (1981) examine the S&P 500 Index and equally weighted indices for the New York Stock Exchange (NYSE) and American Stock Exchange (AMEX) from 1962 through 1978 and find evidence of the Monday effect. Likewise, Keim and Stambaugh (1984) investigate the weekday seasonality in the S&P 500 Index and actively traded over-the-counter (OTC) securities and observe evidence of the Monday effect.

Bessembinder and Hertzel (1993) extend the investigation of the Monday effect into an earlier and longer period than previous studies from 1885 through 1989. They show consistent outcomes across the period and in each of the 10 sub-periods studied. Siegel (1998) studies the Monday effect over the period from 1885 through 1997 and provides evidence of the Monday effect over this period. Siegel notes that if the Monday returns were on the average positive over the entire period instead of negative, the cumulative effect would have been a substantially positive impact on the DJIA’s closing level actually attained in 1997.

As researchers investigate the Monday effect further, questions arise regarding whether this effect is persistent and consistent over time within the same market. For instance, Connolly (1989) examines the weekday effect from 1963 through 1983 using the standard weekday methodology. He reports clear evidence of Monday effect and other weekday effects before 1971; however, these effects largely disappear in the post-1974 data although Monday returns remain negative. In 1993, Chang, Pinegar, and Ravichandran, confirm the results of the Connolly study. Kamara (1997) also examines the weekday effect from 1963 through 1983 as did Connolly but focuses on both the large cap and small cap stocks that are part of the S&P 500 Index to explore whether the changes that are observed in the two previous studies are consistent across various types of equity securities. Kamara provides strong evidence that the Monday effect changes over time not by happenstance but rather likely under the influence of specific changes in equity market trading driven by regulatory changes.

Mehdian and Perry (2001) examine weekday returns from 1964 to 1998 and observe instability in weekday returns in both the large-firm and small-firm indices. They note that the large-firm indices display a reversal of the previous Monday effect while the small-firm data produces consistent returns with the traditional Monday effect. In support of Mehdian and Perry finding’s in the post-1987 data, Brusa, Liu, and Schulman (2000) document the same phenomenon.
of a reverse Monday effect in large-firm indices from 1990 through 1994. Gondhalekar and Mehdian (2003) maintain that the Monday effect is related to pessimism and the gloomy mood of the investors who are more willing to sell than to buy stocks on Mondays compared to the other days of the week. Finally, Kohers et al. (2003), in support of Mehdian and Perry finding’s, document that the day-of-the-week effect was clearly evident in the vast majority of developed markets during the 1980’s, but appears to have faded away in the 1990’s.

III. Data and Methodology

The data sets for this study consist of daily closing values of DJIA and its components that cover a 50-year period from 1962 to 2012.

The daily returns of both the index and the underlying component are calculated as

\[R_{it} = \left(\frac{I_{it} - I_{i(t-1)}}{I_{i(t-1)}} \right) \times 100 \]

where \(R_{it} \) is the daily percentage return of the index/component \(i \) on day \(t \); \(I_{it} \) and \(I_{i(t-1)} \) are closing values of the index/component \(i \) on days \(t \) and \(t-1 \) respectively.

Each stock/index is tested for the presence of the Monday effect using the following regression equation:

\[
R_t = \sum_{j=1}^{5} \beta_j D_{jt} + \epsilon_t = \beta_1 D_{1t} + \beta_2 D_{2t} + \beta_3 D_{3t} + \beta_4 D_{4t} + \epsilon_t \\
+ \beta_5 D_{5t} + \beta_6 D_{4t} + \beta_7 D_{3t} + \beta_8 D_{2t} + \beta_9 D_{1t} + \epsilon_t \tag{2}
\]

where \(R_t \) is the daily return of the index; \(D_{1t}, D_{2t}, D_{3t}, D_{4t}, \) and \(D_{5t} \) are dummy variables for Monday to Friday (that is if \(t \) is a Monday, \(D_{jt}=1 \) otherwise zero, etc). The estimated coefficient \(\beta_j \) will be significantly negative for those securities and index that exhibit a traditional Monday effect. The \(\epsilon_t \) is the random error term. We test for the stationarity of the returns series at index and components, and the result of augmented Dickey-Fuller (ADF) tests indicates that all series are stationary at their first difference.

IV. Empirical Results

Equation (2) is estimated for the DJIA and each component stock using Ordinary Least Squares, or standard regression analysis, with five dummy variables and no constant term. This regression provides average returns and \(t \)-statistics for each day of the week that can be used for various levels of comparison. The results of this analysis are presented in Table 1, which contains the estimated coefficients and corresponding statistics from the estimation using the data from the 1962 to 1982 sub-period. As shown, the average Monday return of the DJIA and 14 of the 19 component stocks is negative and statistically significant at the 10% level or better compared with the other days of the week. The DJIA has a negative average return during this period with a statistically significantly \(t \)-statistic of -5.465. These findings are consistent with prior literature studying the DJIA during this period which shows that a negative Monday effect exists in U.S. equity markets.

In addition to supporting prior literature on DJIA returns, the analysis also adds to the research in this area by providing insight into the behavior of the component stocks of the index. An important aspect of the Monday effect is that it is expected to be consistent in nature crossing companies, indices, and markets. The results of this analysis provide the insight that the Monday effect does appear to impact not only the aggregate index but also the component stocks of that index, which do cross many industries. Table 1 also provides evidence to support the postulation that the Monday effect, if evident in the market index, is also present in the majority of the component stocks of the index in the same time period. One of the most surprising findings of the analysis is exactly how pervasive the Monday effect is across the tested data with 14 of the stocks showing a statistically significant negative Monday return through the tested period, which equates to 74% of the tested component stocks. It is important to note that every tested component stock in the sample that returned a statistically significant result had a negative average Monday return. The component stock returns over this period show consistently negative returns with statistical significance supported by \(t \)-statistics that range between -2.0078 and -5.9278. By way of comparison, the analysis returned 29 other statistically significant results for the component stocks during the other days of the week (Tuesday through Friday) with 27 of the 29 component stocks providing positive average returns for that stock on that respective day of the week. The \(t \)-statistics for the component stock return results for the other, non-Monday days range between 1.6636 and 3.5207. In short, for the time period between 1962 and 1982, statistically significant evidence of a negative Monday effect is apparent for the DJIA and a majority of its component stocks.
TABLE 1: Regression Results - DJIA and 19 Component Stocks (1962 - 1982)

Panel A: DJIA Base Index

	Monday	Tuesday	Wednesday	Thursday	Friday	Adj R-squared	Sample Size
DJIA	-0.001431311	8.64201E-05	0.000703503	2.733840713	0.00079205	0.007887892	5184
	-5.465339213	0.337760817	1.77066745	0.000229822	1.2207082	1.359963105	

Panel B: DJIA Component Stocks

Stock	Monday	Tuesday	Wednesday	Thursday	Friday	Adj R-squared	Sample Size
Allied Chemical	-0.000217709	0.000044007	0.00009307	-6.47643E-05	0.000820182	0.003337285	5183
ALCOA	-0.00087638	0.000193473	0.000082583	1.501417006	0.252070113	2.507975020	
American Can	-0.002320438	-0.000503703	0.000891729	0.000857402	0.00101327	0.009420293	5182
DuPont	-1.623318226	0.000092626	0.005534614	0.000908044	0.0078028	0.00409251	5182
Eastman Kodak	-0.000228192	0.006050807	0.000922153	0.000115462	0.00784959	0.00568888	5182
G	-0.000118292	-0.000398633	0.000896335	0.002049871	0.00470299	0.80501989	5182
General Foods	-0.000121837	1.048131387	1.097619892	0.247366489	2.59196939	1.59916939	5182
GM	-0.001275239	-0.0001911	0.000935297	0.000918674	0.007902	0.00357107	5182
Goodyear	-3.011740086	-0.082742908	2.244702026	2.203490003	2.34069946		
Goodyear	-2.254245908	1.001561517	1.054194631	0.826932112	2.75440971		
Internationl Harvester	-0.000175459	-0.001271841	0.001248014	-0.000395516	0.00630239	0.00401324	5182
International Paper Co	-0.000498609	0.001233123	0.000452697	0.004426234	2.29496E-05	2.797541185	5182
Johns-Manville	0.001965112	-0.00028351	0.000395151	0.000117187	0.00112141	0.00160618	5181
Owens-Illinois Glass	-0.001383421	-0.001157147	0.001735488	0.000634398	0.00861662	0.00761207	5181
P&G	-3.042385048	-0.0988195	0.000727787	0.000634398	0.00861662	0.00859	5181
Sears	1.537099835	0.452732889	2.895263168	1.75326996	1.27454341	5181	
Standard of CA	-0.000109392	0.000044846	0.000813323	0.000195459	0.00310859	2.91571851	5181
Union Carbide	-2.341555611	-0.032951575	1.138714933	0.42579373	2.832246221	5181	
Westinghouse Electric	-0.001185117	0.000342665	0.00162446	0.00115304	0.00684783	0.00164541	5181
Woolworth	-0.00017246	-0.000262285	0.000301224	0.000959102	0.00938666	0.00246128	5181

Note: Bold t-statistics indicate statistical significance at the 10% level or better.
Table 2: Regression Results - DJIA and 24 Component Stocks (2003 - 2008)

Panel A: DJIA Base Index

	Monday	Tuesday	Wednesday	Thursday	Friday	Adj R-squared	Sample Size
DJIA	0.000391	0.000244	0.000382	0.000160	-0.000218	-0.000075	1410
	0.735010	1.560418	1.591756	-0.426218	-0.000328	-0.106828	1410

Panel B: DJIA Component Stocks

Stock	Monday	Tuesday	Wednesday	Thursday	Friday	Adj R-squared	Sample Size
3M	0.000274	0.445264	0.350139	0.839370	0.229118	-0.000007	1410
ALCOA	-0.000542	-0.000442	0.3977107	0.399886	0.380848	-0.280320	1410
American Express	-0.000532	0.005932	0.000593	-0.000593	-0.000337	-0.114383	1410
Boeing	-0.000114	-0.125132	0.775152	0.002847	0.000153	0.000094	1410
Caterpillar	0.001344	0.001732	0.003366	0.002502	-0.000422	0.000201	1410
Citigroup	1.311815	1.774259	1.345058	2.406518	-0.430255	0.207324	1410
Coca Cola	-0.001078	-0.000976	0.000660	0.000620	-0.000201	-0.000297	1410
DuPont	-0.000469	-0.001127	0.000524	0.000324	-0.000021	-0.000315	1410
Exxon Mobil	0.591965	-0.159015	1.957281	-0.199501	0.325906	-0.000572	1410
GM	0.001029	0.001034	0.001117	0.000027	0.000152	0.000811	1410
Hewlett Packard	0.000519	0.312480	0.118911	0.270194	0.332228	-0.090688	1410
Home Depot	0.000120	0.000186	0.000867	0.000242	-0.000217	-0.000212	1410
Intel	0.002441	0.454442	0.597224	1.073102	-0.116139	-1.125882	1410
IBM	0.001330	0.123787	0.103943	-0.076937	0.640284	1.548338	1410
Johnson & Johnson	0.000715	0.985623	2.934148	1.199042	-0.690957	-1.438303	1410
JP Morgan	-0.000323	-0.000608	0.000730	0.000264	0.000048	0.000048	1410
McDonald’s	-0.204350	-0.000372	0.000353	0.000044	0.000074	0.002374	1410
Merck & Co	0.000166	1.854779	0.563550	0.207781	1.899836	2.443046	1410
Microsoft	0.000051	-0.125342	0.286906	1.192046	-1.043785	-0.033554	1410
P&G	0.000650	0.000212	0.001171	0.000165	0.000317	0.000317	1410
United Technologies	0.000624	0.801965	0.974062	1.453351	-0.469029	1.929299	1410
Wal-Mart	0.000142	0.000176	0.000340	0.000218	-0.000057	-0.000057	1410
Walt Disney	0.000100	2.552358	0.483309	0.300667	0.000218	-0.000057	1410

Note: Bold T-statistics indicate statistical significance at the 10% level or higher.
TABLE 3: Regression Results - DJIA and 30 Component Stocks (2009 - 2012)
Panel A: DJIA Base Index
Monday

DJIA Coefficients
ML
ALLCOA
American Express
AT&T
Bank of America
Boeing
Caterpillar
Chevron
Citgo
Coca-Cola
Coors
DuPont
Exxo Mobil
GE
Home Depot
Hewlett Packard
IBM
Intel
Johnson & Johnson
JP Morgan
Kraft
McDonald’s
Merk & Co
Merck
P&G
Pfizer
Travelers
United Technologies
Verizon
Wal-Mart
Walt Disney

Note: Bold T-statistics indicate statistical significance at the 10% level or higher.
Table 2 contains the estimated coefficients and corresponding statistics from the estimation of equation (2) using the data from the 2003 to 2008 sub-period. The results do not provide a great deal of insight into the Monday effect during this period in terms of a stand-alone analysis. Over the tested period, the DJIA does not provide any statistically significant average return for any days of the week with t-statistics ranging from -0.4262 to 1.5918. When shifting the focus of the analysis specifically on the Monday regression results, the data do not provide any further insight into the daily results. Of the DJIA and the 24 component stocks tested for the Monday effect during the 2003 to 2008 time period, only one stock, McDonald’s, provides a statistically significant (at 10% or higher) Monday return with a t-statistic of 1.8548. In total, of the 125 total average returns tested (i.e. the DJIA and each of the 24 component stocks for each day of the week), only 15% of the average returns are statistically significant at the 10% level or better.

Table 3 contains the estimated coefficients and corresponding statistics from equation (2) using the data from the 2009 to 2012 sub-period to represent a post-financial crisis area. The findings do not provide any essential insight into the Monday effect during this period in terms of a stand-alone analysis. Over this period, the DJIA does not provide a statistically significant average return for any of the days of the week with t-statistics ranging from -0.3986 to 1.3136. When shifting the focus specifically on the Monday regression results, we do see further insight into the daily results. Of the DJIA and the 24 component stocks tested for the Monday effect during the 2009 to 2012 sub-period, only six of the component stocks provide a statistically significant (at 10% or higher) positive return Monday rather than a negative return. In total, of the 155 total average returns tested (i.e. the DJIA and each of the 30 component stocks for each day of the week), only 11% of the average returns were statistically significant at the 10% level or higher.

To summarize, the data for three time periods are individually tested by conducting a regression analysis on each as separate datasets with the intent of providing insight into the research hypothesis that no difference exists between the DJIA and the stocks that comprise the DJIA as far as the Monday effect is concerned. The results for the first time period, from 1962 to 1982, are conclusive in that the DJIA showed a consistent and strongly negative Monday return. The Monday return of the DJIA during this period is the only day of the week that reports a negative return on average. The results demonstrate a strong correlation between individual stocks that are part of the DJIA with the average itself where 14 of the 19 component stocks are negative and statistically significant. They also provide statistically significant support for Wednesday and Friday returns of the DJIA being positive on average. The results of the regression analysis for the second and third time periods, 2003 to 2008 and 2009 to 2012, are not consistent with the first time period. More specifically, our findings for the DJIA and its components support earlier research where Monday average returns are no longer statistically significant negative.

V. Summary and Concluding Remarks

We use daily closing values of the DJIA and its components during three time periods of 1962 to 1982, 2003 to 2008, and 2009 to 2012 to investigate the presence of Monday effect in the index and its components. The results of a standard regression analysis for the first time period, from 1962 to 1982, are conclusive. We find strongly negative Monday mean returns for the DJIA during this period. Monday is the only day of the week for which the returns on average are negative. The results for individual stocks that are components of the DJIA are very consistent with those found for the DJIA. Specifically, 14 of the 19 component stocks exhibit negative and statistically significant Monday mean return. The results of the regression analysis for the second and third time periods, from 2003 to 2008 and 2009 to 2012, are not consistent with the first period, and the results are not as clearly overwhelming where Monday average returns are no longer negative at a statistically significant level.

The key findings of this article support prior research of U.S. equity markets which has provided growing evidence to support the possible evolution of the Monday effect. More specifically, this study provides evidence that the Monday effect is disappearing in latter time periods of U.S. equity markets, especially in the case of large cap stocks.

The analysis of the three distinct time periods in the DJIA and its component stocks demonstrates that the Monday effect is no longer significantly present in either a frequently cited market index or a majority of its component stocks. Perhaps, a cautious conclusion of this finding is that the U.S. equity markets are becoming at least weakly efficient.
References

Bessembinder, H., & Hertzel, M. (1993). Return autocorrelations around nontrading days. Review of Financial Studies, 6(1), 155-189.

Brusa, J., Liu, P., & Schulman, C. (2000). The weekend effect, “reverse” weekend effect, and firm size. Journal of Business Finance & Accounting, 27(5-6), 555-574.

Chang, E., Pinegar, J., & Ravichandran, R. (1993). International evidence on the robustness of the day-of-the-week effect. Journal of Financial and Quantitative Analysis, 28(4), 497-513.

Connolly, R.A. (1989). An examination of the robustness of the weekend effect. Journal of Financial and Quantitative Analysis, 24(2), 133-169.

Cross, F. (1973). The behavior of stock prices on Fridays and Mondays. Financial Analysis Journal, 29(6), 67-69.

Fields, M. (1931). Stock prices: A problem with verification. Journal of Business, 4(4), 415-418.

French, K. (1980). Stock returns and the weekend effect. Journal of Financial Economics, 8, 55-69.

Gibbons, M., & Hess, P. (1981). Day of the week effects and asset returns. Journal of Business, 54(4), 579-596.

Gondhalekar, V., & Mehdian, S. (2003). The blue-Monday hypothesis: Evidence based on NASDAQ stocks, 1971-2001. Quarterly Journal of Business and Economics, 42, 73-89.

Kamara, A. (1997). New evidence on the Monday seasonal in stock returns. Journal of Business, 70(1), 63-84.

Kelly, F. (1930). Why you win or lose: The psychology of speculation. Boston, MA: Houghton Mifflin.

Keim, D., & Stambaugh, R. (1984). A further investigation of the weekend effect in stock returns. Journal of Finance, 39(3), 819-835.

Kohers, K., Vivek, P., Kohers, N., & Kohers, T. (2003). The Fading Day-of-the-Week Effect in Developed Equity Markets. Journal of International Business Research, 2(2), 71-83.

Mehdian, S., & Perry, M. (2001). The reversal of the Monday effect: New evidence from U.S. equity markets. Journal of Business Finance & Accounting, 28(7-8), 1043-1065.

Merrill, A. (1966). The behavior of prices on Wall Street. Chappaqua, NY: Analysis Press.

Siegel, J. (1998). Stocks for the long run. New York, NY: McGraw Hill.