INTRODUCTION

Animals have five different types of taste receptors including bitter, sour, salty, sweet, and umami (O’Mahony & Ishii, 1986). These taste receptors are located on the tongue and in the oral cavity and pharynx. Molecules bind to taste receptors when food or drink is consumed thereby transmitting information from these receptors to the cerebral cortex in the brain, facilitating the sensation of taste. Bitter and sour tastes are generally perceived as unpleasant and often represent low quality or dangerous food and liquids. Food or drink with a salty, sweet, or umami taste in usually perceived as pleasant. It is well known that the consumption of substances with a pleasant taste results in positive emotional sensations. This leads to the activation of positive reinforcement mechanisms including the release of beta-endorphin in the ventral tegmental area, removal of GABA inhibitory effects on dopamine neurons, and the release of dopamine from the terminals located in different limbic and cortical structures (Arnt & Scheel-Krüger, 1979; Heffner, Hartman, & Seiden, 1980; Jain, Mukherjee, & Singh, 2004; Maracle, Normandeau, Dumont, & Olmstead, 2019; Xenakis & Sclafani, 1982). The stimulation of the positive reinforcement system can lead to the formation of psychological and physical dependence associated with significant changes in the endogenous opioid system in particular (Wise & Bozarth, 1985). The constant use of sucrose,
2 | MATERIALS AND METHODS

The experiment was performed according to the method described by Calautti et al. (2002) on 120 Wistar male rats weighing approximately 200–220 g. (8). Rats were housed in individual ventilated cages (Tecniplast). Solutions of NaCl, glucose, or MSG were administered daily in the light phase of a 24-hr light/dark cycle. Water and laboratory chow (Profgryzun, Russia, 3 kcal/g, the content of sodium ions—0.2%) were available ad libitum. The rats in the experimental groups were maintained on a daily cycle of laboratory chow and 1,390 mM (25%) aqueous glucose (n = 10), 30 mM (0.17%) (n = 10), or 120 mM (0.701%) (n = 10) of sodium chloride; or 30 mM (0.55%) (n = 10), 60 mM (1.1%) (n = 10), or 120 mM (2.2%) (n = 10) MSG available for 12 hr each day beginning four hours after the onset of the dark period. They were also deprived of food for the other 12 hr each day. The control group received water and chow ad libitum.

We used the same concentration of glucose solution as Colantuoni et al. (2002). Three different concentrations of sodium chloride were chosen as rats under normal conditions prefer hypotonic to normotonic sodium chloride solutions (Greenwood, Greenwood, Paton, & Murphy, 2014; Oumans et al., 2016). Solutions of MSG were isomolar compared to solutions of sodium chloride. In addition, rats are reported to prefer such solutions to water (Stange & Yellon, 2000).

Rats were maintained on cyclic glucose, NaCl, or MSG and chow for 8 days, and control rats received ad libitum chow. On day 7, after the usual 12-hr deprivation period, instead of receiving glucose, NaCl, or MSG and chow, the rats were deprived of food for the other 12 hr each day. The control group received water and chow ad libitum.

TABLE 1

Dynamics of solution consumption of substances during day time hr (8.00–20.00) for 8 days of the experiment and the coefficient of preferences on the 8th day of the experiment

N	1 day	2 day	3 day	4 day	5 day	6 day	7 day	8 day	coefficient of preferences
1	Water	15.9 ± 1.8	21.4 ± 1.3	23.6 ± 1.6	22.6 ± 1.1	23.9 ± 1.3	22.4 ± 1.4	25.2 ± 1.9	25.8 ± 1.4
2	Glucose 1,390 mM	44.0 ± 2.4*	50.3 ± 3.3*	64.4 ± 5.6*	63.2 ± 5.4*	60.4 ± 2.5*	64.5 ± 3.4*	92.0 ± 6.0*	99.5 ± 5.7*
3	Sodium chloride 30 mM	22.7 ± 1.3	26.0 ± 1.7	29.8 ± 2.1	29.9 ± 2.2	32.4 ± 2.2	29.2 ± 2.5	32.2 ± 2.5	34.3 ± 1.9
4	Sodium chloride 60 mM	32.4 ± 2.9*	36.0 ± 3.1*	35.2 ± 2.4*	37.6 ± 2.8*	39.7 ± 2.1*	35.2 ± 2.9*	42.4 ± 2.8*	56.6 ± 2.6*
5	Sodium chloride 120 mM	44.4 ± 4.5*	48.3 ± 4.9*	47.4 ± 4.5*	44.1 ± 4.3*	50.8 ± 4.7*	53.4 ± 4.3*	55.6 ± 4.4*	51.2 ± 4.5*
6	MSG 30 mM	19.6 ± 1.1	21.5 ± 1.6	24.2 ± 1.0	17.5 ± 1.6	18.9 ± 1.7	22.7 ± 2.0	24.6 ± 1.8	28.5 ± 1.4
7	MSG 60 mM	20.4 ± 1.7	21.4 ± 1.4	23.9 ± 1.0	20.3 ± 1.2	19.1 ± 1.2	21.2 ± 1.6	25.4 ± 1.2	27.3 ± 1.3
8	MSG 120 mM	20.9 ± 1.4	19.8 ± 1.3	17.7 ± 1.2	17.8 ± 1.6	18.9 ± 1.1	22.3 ± 1.4	23.7 ± 1.3	24.7 ± 1.5

*p < .05 compared with water-drinking animals.
the baseline frequency of rearing, grooming, cage crossing, teeth chattering, head shaking, forepaw tremors, and wet dog shakes. The general withdrawal index was calculated as the sum of all indicated signs. Motor activity was also documented. Thirty minutes before the test, 10 rats from the control group and 10 rats from each of the other groups received NaCl solutions, administered by saline [1 ml/kg IP], and all other rats were injected by naloxone [20 mg/kg IP in 1 ml/kg of saline]. Control rats in the ad libitum chow group were also food-deprived for 12 hr. The 12-hr period of food deprivation in the control group was included to exclude the possibility that acute food deprivation resulted in the observed effects.

Statistical analysis was performed by two-way ANOVA followed by post hoc Bonferroni test.

3 | RESULTS

Wistar rats were shown to prefer sucrose, sodium chloride, and MSG compared to water. Most of the rats preferred the 1390 mM glucose solution, followed by the 120 mM and 60 mM sodium chloride solutions (Table 1). The weight of the animals in the groups did not differ throughout the duration of the experiment (Figure 1).

Control animals that consumed only water after intraperitoneal administration of an isotonic solution of sodium chloride showed only teeth chattering and shaking of the head. After the administration of naloxone, rats showed teeth chattering, head shaking, and "wet dog" shaking (Table 2). However, the total "withdrawal" index in control animals, administered with naloxone and sodium chloride solution, did not differ (Table 2).

Animals that consumed glucose for 12 hr a day after the naloxone injection showed significant withdrawal signs of endogenous opioid dependence (Table 2).

However, the latent period of the first movement in the open field, the general motor activity, and the number of rears in animals that consumed glucose did not differ significantly from the control group (Figure 2 and 3).

Animals that consumed sodium chloride solutions also showed significant signs of withdrawal. Moreover, the higher the concentration of sodium chloride solution consumed, the higher the total withdrawal index (Table 2).

In this group, the largest number of "wet dog shakes" was observed (Table 2). The motor activity of animals that consumed sodium chloride solutions was reduced compared to the controls. The latent period of the first movement was significantly longer in the groups that consumed 0.375% and 0.71% solutions of sodium chloride (Figure 2 and 3).

After drinking sodium chloride solutions, animals demonstrated withdrawal signs even without precipitation by naloxone, but the withdrawal index was significantly lower compared to naloxone-injected animals (Table 2). Motor activity of those animals did not differ from the controls, although the latent period of the first movement was increased (Figure 2 and 3).

Animals that consumed MSG also showed more pronounced signs of withdrawal than the rats in the control group (Table 2). The greater the concentration of MSG consumed by the animals, the bigger the withdrawal index. However, significant differences in the total index were not found between animals that consumed MSG solutions of different concentrations. Animals in these groups had the greatest number of head shakings, and teeth chattering was also observed. The latent period until the first movement in the open field in rats that consumed 30 mM solution of MSG was significantly longer than in control animals. An increasing concentration of MSG was associated with shortening of the latent period. Animals that consumed 120 mm of MSG did not differ from the controls (Figure 2). Also rats that consumed the 30 mM solution of MSG demonstrated an increased number of rears (Figure 3). Total motor activity in animals that consumed MSG did not differ from controls (Figure 3).

4 | DISCUSSION

It is known that rats prefer sweet and salty solutions to water. Moreover, the preference depends on the concentration of such solutions. Animals prefer hypotonic and normotonic, rather than hypertonic solutions of sodium chloride (De Luca, Pereira-Derderian, Vendramini, David, & Menani, 2010; Greenwood et al., 2014). Rats no longer prefer solutions containing more than 300 mM of MSG. The preference for sugar solutions is not so dependent on their concentration (Inui-Yamamoto et al., 2017).

Our study showed that the preferred solution for Wistar rats was glucose. The preference ratio, which is the ratio of the solution consumed to the total amount of liquid consumed, in rats that consumed glucose solution on the eighth day was higher than that seen in animals from the other groups. We identified signs of opiate-like withdrawal syndrome in animals that consumed glucose solution. However, similar earlier studies (Colantuoni et al., 2002) have shown a much more pronounced withdrawal syndrome with a large number of observed signs. Firstly, the differences may be related to genetic factors, as we used Wistar rats in our study rather than Sprague–Dawley rats. In addition, the rats in our study were likely younger than those used in previous studies, the latter estimated on the basis

![FIGURE 1](image) Weight gain of treated rats (grams). First day (light bars) and 8 day (dark bars)
It is possible that young animals develop opiate dependence more slowly, and manifestations of the withdrawal syndrome are significantly less.

Administration of naloxone dramatically increased withdrawal after the consumption of sodium chloride solution; however, signs of withdrawal were also observed without naloxone precipitation. This suggests that opioid mechanisms form the basis of the observed withdrawal syndrome.

Despite having the highest preference ratio, the withdrawal index in animals that consumed glucose solution was significantly lower than in rats that consumed 120 mM sodium chloride solution. In addition, we found no significant correlations between the coefficient of preference and the severity of the withdrawal syndrome.
syndrome in any of the experimental groups. This suggests that the development of dependence is not related to the taste preferences and the amount of the preferred solution drunk. The severity of sodium chloride or glucose dependence likely relates to their biological role, sodium ions being a substrate for excitable tissues, and glucose being an energy substrate. It is possible the need for sodium ions is more significant. The need for glutamate however is not critical; therefore, the withdrawal syndrome after consumption of sodium glutamate solutions may be associated with the presence of sodium ions in the MSG molecule. However, the development of endogenous opioid dependence on MSH requires further study. It remains inexplicable that the highest concentration of MSH, in contrast to the isomolar concentration of sodium chloride, causes the smallest effect on the latent period of the first movement. Moreover, our unpublished data suggest that the use of MSH for 28 days according to the method described in this article may cause the formation of psychological dependence. This does not happen when rats use isomolar solutions of sodium chloride.

There are some limitations to this study. Firstly, the dose of naloxone used was too high. We chose the same dose of naloxone as was used in the Colantuoni study (2002). We did not try further doses, but certain groups of animals that were drinking sodium chloride solution demonstrated signs of endogenous opiate dependence even without naloxone precipitation. Secondly, the withdrawal syndrome observed in our study was weak and incomplete compared to the withdrawal syndrome in exogenous opiate-dependent rats. In our study, we did not observe convulsions, diarrhea, rhinorrhea, and posture disturbances. These symptoms are often observed during withdrawal in opiate dependence.

In conclusion, the intermittent use of essential substances with a pleasant taste like glucose and sodium chloride leads to rapid development of endogenous opioid dependence. Whether endogenous opioid dependence develops when glutamate is consumed is an open question and requires further study.

ETHICAL APPROVAL

The authors confirm the absence of any conflicts of interest. Study’s protocols and procedures were ethically reviewed and approved by P.K. Anokhin Research Institute of Normal Physiology Animal Care and Use Committee (Permission number 231) and conform to Directive 2010/63/EU. Human testing is unnecessary in this study.

ORCID

Sergey K. Sudakov https://orcid.org/0000-0002-9485-3439

REFERENCES

Arnt, J., & Scheel-Krüger, J. (1979). GABA in the ventral tegmental area: Differential regional effects on locomotion, aggression and food intake after microinjection of GABA agonists and antagonists. Life Sciences, 25, 1351-1360. https://doi.org/10.1016/0024-3205(79)90402-8

Avena, N. M., Bocarsly, M. E., Rada, P., Kim, A., & Hoebel, B. G. (2008). After daily binging on a sucrose solution, food deprivation induces anxiety and accumbens dopamine/acetylcholine imbalance. Physiology & Behavior, 94, 309-315. https://doi.org/10.1016/j.physbeh.2008.01.008

Colantuoni, C., Rada, P., McCarthy, J., Patten, C., Avena, N. M., Chadeayne, A., & Hoebel, B. G. (2002). Evidence that intermittent, excessive sugar intake causes endogenous opioid dependence. Obesity Research, 10, 478-488. https://doi.org/10.1038/oby.2002.66

De Luca, L. A., Pereira-Derderian, D. T. B., Vendramini, R. C., David, R. B., & Menani, J. V. (2010). Water deprivation-induced sodium appetite. Physiology & Behavior, 100, 535–544. https://doi.org/10.1016/j.physbeh.2010.02.028

DuBois, G. E. (2016). Molecular mechanism of sweetness sensation. Physiology & Behavior, 164, 453–463. https://doi.org/10.1016/j.physbeh.2016.03.015

Greenwood, M. P., Greenwood, M., Paton, J. F. R., & Murphy, D. (2014). Salt appetite is reduced by a single experience of drinking hypertonic saline in the adult rat. PLoS ONE, 9, e104802. https://doi.org/10.1371/journal.pone.0104802

Heffner, T. G., Hartman, J. A., & Seiden, L. S. (1980). Feeding increases dopamine metabolism in the rat brain. Science, 208, 1168–1170. https://doi.org/10.1126/science.7375926

Inui-Yamamoto, C., Yamamoto, T., Ueda, K., Nakatsuka, M., Kumbae, S., Inui, T., & Iwai, Y. (2017). Taste preference changes throughout different life stages in male rats. PLoS ONE, 12, e0181650. https://doi.org/10.1371/journal.pone.0181650

Jain, R., Mukherjee, K., & Singh, R. (2004). Influence of sweet tasting solutions on opioid withdrawal. Brain Research Bulletin, 64, 319–322. https://doi.org/10.1016/j.brainresbull.2004.08.003

Maracle, A. C., Normandue, C. P., Dumont, É. C., & Olmstead, M. C. (2019). Dopamine in the oval bed nucleus of the stria terminals contributes to compulsive responding for sucrose in rats. Neuropsychopharmacology, 44, 381–389. https://doi.org/10.1038/s41386-018-0149-y

O’Mahony, M., & Ishii, R. A. (1986). Comparison of English and Japanese taste languages: Taste descriptive methodology, codability and the umami taste. British Journal of Psychology, 77, 161-174.

Omomue, S. T., Lemamy, G. J., Kiki-Mvouaka, S., Ferrette, B., Falconetti, C., Ndeboko, B., ... Thornton, S. N. (2016). Fluid deprivation increases isotonic NaCl intake, but not hypertonic salt intake, under normal and heated conditions in obese Zucker rats. Appetite, 97, 111-119. https://doi.org/10.1016/j.appet.2015.11.022

Smitiga, M., & Torii, K. (2000). Preferable monosodium glutamate and sodium chloride solutions do not affect diurnal norepinephrine release in the rat lateral hypothalamus. Nutritional Neuroscience, 3, 367–372. https://doi.org/10.1080/1028415X.2000.11747334

Tordoff, M. G., Alarcón, L. K., & Lawler, M. P. (2008). Preferences of 17 taste compounds. Physiology & Behavior, 95, 308–332. https://doi.org/10.1016/j.physbeh.2008.06.010

Wise, R. A., & Bozarth, M. A. (1985). Brain mechanisms of drug reward and euphoria. Psychiatric Medicine, 3, 445-460.

Xenakis, S., & Sclafani, A. (1982). The dopaminergic mediation of a sweet reward in normal and VMH hyperphagic rats. Pharmacology, Biochemistry, and Behavior, 16, 293–302. https://doi.org/10.1016/0091-3057(82)90163-0

How to cite this article: Sudakov SK, Bogdanova NG, Alekseeva EV, Nazarova GA. Endogenous opioid dependence after intermittent use of glucose, sodium chloride, and monosodium glutamate solutions. Food Sci Nutr. 2019;7:2842–2846. https://doi.org/10.1002/fsn3.1120