Evidence for $D^0 - \bar{D}^0$ Mixing Using the CDF II Detector

T. Aaltonen,23 J. Adelman,13 T. Akimoto,54 M.G. Albrow,17 B. Álvarez González,11 S. Amerio,42 D. Amidei,34 A. Anastassov,51 A. Annowi,19 J. Anton,14 M. Aoki,24 G. Apollinari,17 A. Apresyan,47 T. Arisawa,36 A. Artikov,15 W. Ashmanskas,17 A. Attal,3 A. Aurisano,52 F. Azfar,41 P. Azzi-Bacchetta,42 P. Azzurri,45 N. Bacchetta,52 W. Badgett,17 A. Barbaro-Galtieri,29 V.E. Barnes,47 B.A. Barnett,25 S. Baroian,7 V. Bartsch,30 G. Bauer,32 P.-H. Beauchemin,33 F. Bedeschì,45 P. Bednar,14 S. Behari,29 G. Bellantini,45 J. Bellinger,58 A. Belloni,22 D. Benjamin,16 A. Beretvas,17 J. Beringer,28 T. Berry,29 A. Bhatti,49 M. Binkley,17 D. Bisello,42 I. Bizjak,30 R.E. Blair,2 C. Blocher,6 B. Blumenfeld,45 A. Bocci,16 A. Bodek,48 V. Boisvert,18 G. Bolla,47 A. Bolshov,32 D. Bortoletto,47 J. Boudreau,46 A. Boveia,10 B. Brau,10 A. Bridgeman,24 L. Brigliadori,5 C. Bromberg,35 E. Brubaker,13 J. Budagov,15 H.S. Budd,48 S. Budd,24 K. Burkett,17 G. Busetto,12 P. Bussey,21 A. Buzatu,33 K. L. Byrum,2 S. Cabrera,16 M. Campanelli,35 M. Campbell,34 F. Caneali,17 A. Canepa,44 D. Carlsmith,58 R. Carosi,45 S. Carrillo,18 S. Carron,33 B. Casali,11 M. Casarsa,17 A. Castro,5 P. Catastini,45 D. Cauz,53 M. Cavalli-Sforza,3 A. Cerri,28 L. Cerri²,30 S.H. Chang,27 Y.C. Chen,1 M. Chertok,7 G. Chiarelli,45 G. Chlachidez,17 F. Chlebana,17 K. Cho,27 D. Chokheli,15 J.P. Chou,22 G. Choudalakis,32 S.H. Chuang,51 K. Chung,14 W.H. Chung,7 Y.S. Chung,17 C.I. Ciobanu,24 M.A. Ciocci,45 A. Clark,20 D. Clark,6 G. Compostella,42 M.E. Conver,17 M. Conway,7 B. Cooper,24 K. Copie,34 M. Cordellii,19 G. Cortiana,42 F. Crescioli,43 C. Cuenca Almenar,7 J. Cuevas,11 R. Culbertson,17 J.C. Cully,34 D. Dagenhart,17 M. Datta,17 T. Davies,21 P. de Barbaro,48 S. De Cecco,50 A. Deisher,28 G. De Lentdecker,48 G. De Lorenzo,3 M. Dell’Orso,45 L. Demortier,49 J. Deng,16 M. Deninno,5 D. De Pedis,50 P.F. Derwent,17 G.P. Di Giovanni,43 C. Dionisi,50 B. Di Ruzza,53 J.R. Dittmann,4 M. D’Onofrio,32 P. Dong,8 J. Donati,24 T. Dorigo,42 S. Dube,51 J. Efron,38 R. Erbacher,7 D. Errede,24 S. Errede,24 R. Eusebi,17 H.C. Fang,28 S. Farrington,29 W.T. Fedorko,13 R.G. Feild,59 M. Feindt,27 J.P. Fernandez,31 C. Ferrazza,45 R. Field,18 G. Flanagan,47 R. Forrest,7 S. Forrester,7 M. Franklin,22 J.C. Freeman,28 I. Furic,18 M. Gallinaro,49 J. Galayrat,12 F. Garberson,10 J.E. Garcia,45 A.F. Garfinkel,47 H. Gerberich,24 D. Gerdes,34 S. Giagu,50 V. Giakounopoulos,45 P. Giannetti,45 K. Given,46 J.L. Gimbel,48 C.M. Ginsburg,17 N. Giokaris,15 M. Giordani,15 P. Giromini,39 M. Giunta,45 V. Glagolov,15 D. Giesen,17 M. Gold,36 N. Goldschmidt,18 A. Golossanov,17 G. Gomez,11 G. Gomez-Ceballos,32 M. Gouncharov,52 O. González,31 I. Gorelov,36 A.T. Goshaw,16 K. Goulianos,49 A. Gresele,7 S. Grinstein,22 C. Grosso-Pilcher,13 R.C. Group,17 U. Grundler,24 J. Guimaraes da Costa,22 Z. Gunay-Unalan,35 C. Haber,28 K. Hahn,32 S.R. Hahn,17 E. Halkiadakis,51 A. Hamilton,20 B.-Y. Han,48 J.Y. Han,48 R. Handler,58 F. Happacher,19 K. Hara,54 D. Hare,51 M. Hare,55 S. Harp,41 R.F. Harr,57 R.M. Harris,17 M. Hartz,46 K. Hatakeyama,49 J. Hauser,8 C. Hays,41 M. Heck,26 A. Heijboer,44 B. Heinemann,28 J. Heinrich,44 C. Henderson,32 M. Herndon,58 J. Heusler,26 S. Hewamanage,4 D. Hidas,16 C.S. Hill,10 D. Hirschbuehl,26 A. Hocker,17 S. Hou,1 M. Houlden,29 S.-C. Hsu,9 B.T. Huffman,41 R.E. Hughes,38 U. Husemann,59 J. Huston,45 J. Incandela,49 O. Introzzi,45 M. Iori,50 A. Ivanov,7 B. Iyutin,12 E. James,17 B. Jayatilaka,16 D. Jeans,50 E.J. Jeon,27 S. Jindariani,18 W. Johnson,7 M. Jones,47 K.K. Ju,27 S.Y. Jun,12 J.E. Jung,27 T.R. Junk,24 T. Kamon,52 D. Kar,18 P.E. Karchin,57 Y. Kato,40 R. Keplar,17 U. Kerzel,26 V. Khotilovich,52 B. Kilminster,38 D.H. Kim,27 H.S. Kim,27 J.E. Kim,27 M.J. Kim,17 S.B. Kim,27 S.H. Kim,54 Y.K. Kim,13 N. Kinuma,54 L. Kirsh,6 S. Klimenko,18 M. Klute,32 B. Knutesen,32 B.R. Ko,16 S.A. Koay,10 K. Kondo,56 D.J. Kong,27 J. Konigsberg,18 A. Korytov,18 A.V. Kotwal,16 J. Kraus,24 M. Kreps,26 J. Kroll,34 N. Krumnaek,4 M. Krutevych,16 V. Krutelyov,10 T. Kubo,54 S.E. Kuhlmann,2 T. Kuhn,26 N.P. Kulkarni,57 Y. Kusakabe,56 S. Kwang,13 A.T. LaRocca,47 S.L. Lai,33 S. Lami,45 S. Lammel,17 M. Lancaster,30 R.L. Lander,7 K. Lammon,38 A. Lath,51 G. Latino,45 I. Lazzara,42 T. LeCompte,2 J. Lee,48 J. Lee,27 Y.J. Lee,27 S.W. Lee,59 R. Lefèvre,20 N. Leonard,32 S. Leone,45 S. Levy,13 J.D. Lewis,17 C. Lin,59 C.S. Lin,28 J. Linacre,41 M. Lindgren,17 E. Lipeles,9 A. Lister,7 D.O. Litvintsev,17 T. Liu,17 N.S. Lockyer,44 A. Logino,59 M. Loreti,42 L. Lovas,14 R.-S. Lu,3 D. Lucchesi,42 J. Lueck,26 C. Luchi,50 P. Lujan,29 P. Lukens,29 T. Lyons,41 J. Lys,28 R. Lyssak,14 E. Lyuket,47 P. Mack,26 D. MacQueen,33 R. Madrak,37 K. Maeshima,17 K. Makhlouk,32 T. Maki,23 P. Maksimovic,25 S. Malde,41 S. Malik,30 G. Manca,29 A. Manousakis,15 F. Margaroli,37 C. Marino,26 C.P. Marino,24 A. Martin,59 M. Martin,25 V. Martin,21 M. Martinez,3 R. Martinez-Ballarin,31 T. Maruyama,54 P. Mastrandrea,50 T. Masubuchi,54 M.E. Mattson,57 P. Mazzanti,5 K.S. McFarland,46 P. McIntyre,52 R. McNulty,49 A. Mehta,29 P. Mehtala,23 S. Menzemer,9 A. Menzione,45 P. Merkel,47 C. Mesropian,49 A. Messina,35 T. Miao,17 N. Miladinovic,6 J. Miles,52 R. Miller,35 C. Mills,22 M. Milnik,26 A. Mitra,1 G. Mitselmakher,18 H. Miyake,54 S. Moed,42 N. Moffeg,5 C.S. Moon,37 R. Moore,17 M. Morrello,45 P. Movilla Fernandez,28 J. Mülmenstädt,28
We measure the time dependence of the ratio of decay rates for the rare decay $D^0 \to K^+\pi^-$ to the Cabibbo-favored decay $D^0 \to K^-\pi^+$. We use a signal of 12.7×10^3 $D^0 \to K^+\pi^-$ decays with proper decay times between 0.75 and 10 mean D^0 lifetimes. The data sample was recorded with the CDF II detector at the Fermilab Tevatron and corresponds to an integrated luminosity of 1.5 fb$^{-1}$ for $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV. We search for $D^0 - \bar{D}^0$ mixing and measure the mixing parameters to be $R_D = (3.04 \pm 0.55) \times 10^{-3}$, $y' = (8.5 \pm 7.6) \times 10^{-3}$, and $x^2 = (-0.12 \pm 0.35) \times 10^{-3}$. We report Bayesian probability contours in the $x^2 - y'$ plane and find that the data are inconsistent with the no-mixing hypothesis with a probability equivalent to 3.8 Gaussian standard deviations.

PACS numbers: 13.20.Fc, 13.25.Ft, 14.40.Lb
Since the discovery of the charm quark in 1974 [1, 2], physicists have been searching for the oscillation of neutral charm mesons between particle and anti-particle states. Such behavior is referred to as “mixing”, as first explained in 1955 [3] for the K^0 meson in terms of quantum-mechanical mixed states. Mixing was next studied for B^0 mesons in 1987 [4, 5]. The years 2006 and 2007 have seen landmark new results on mixing: first time-dependent observation of B_s mixing from the CDF experiment [6] and evidence for D^0 mixing from the BABAR [7] and Belle [8] experiments.

The recent evidence for D^0 mixing comes from two different types of measurements. The Belle Collaboration found direct evidence for a longer and shorter lived D^0 meson, in analogy to the well-known case for K^0 mesons. They found significantly different decay time distributions for D^0 decays to the CP-eigenstates K^+K^- and $\pi^+\pi^-$ compared to that for the CP-mixed state $K^-\pi^+$. (In this Letter, reference to a specific decay chain implicitly includes the charge-conjugate decay.) No other experiment has confirmed the evidence for lifetime differences among these decays [9]. The evidence for D^0 mixing found in the BABAR experiment is a difference in decay time distribution for $D^0 \rightarrow K^+\pi^-$ compared to that for the Cabibbo-favored (CF) decay $D^0 \rightarrow K^-\pi^+$. Such a difference depends on the combined effects of differences in the masses and lifetimes of the D^0 meson weak eigenstates. This same measurement was made in the Belle experiment [10], but evidence for mixing was not seen. In this Letter, we present a new measurement of the same D^0 mixing process as used by BABAR for their evidence.

In the standard model, the decay $D^0 \rightarrow K^+\pi^-$ proceeds through a doubly Cabibbo-suppressed (DCS) “tree” diagram, and may also result from a mixing process ($D^0 \rightarrow D^0$), if it exists, followed by a CF decay ($D^0 \rightarrow K^-\pi^+$). The DCS decay rate depends on Cabibbo-Kobayashi-Maskawa quark-mixing matrix elements and on the magnitude of SU(3) flavor symmetry violation [11]. Mixing may occur through two distinct types of second-order weak processes. In the first, the D^0 evolves into a virtual (‘long-range’) intermediate state such as $\pi^+\pi^-$, which subsequently evolves to a D^0. The magnitude of the amplitude for long-range mixing has been estimated using strong interaction models [12], but has not been determined using a QCD calculation from first principles. The second type of second-order weak process is short-range [13], with either a “box” or “penguin” topology. Short-range mixing is negligible in the standard model. However, exotic weakly interacting particles could enhance the short-range mixing and provide a signature of new physics [14–16].

The ratio R of $D^0 \rightarrow K^+\pi^-$ to $D^0 \rightarrow K^-\pi^+$ decay rates can be approximated [17, 18] as a simple quadratic function of t/τ, where t is the proper decay time and τ is the mean D^0 lifetime.

$$R(t/\tau) = R_D + \sqrt{R_D y'} (t/\tau) + \frac{x'^2 + y'^2}{4} (t/\tau)^2,$$ (1)

where R_D is the squared modulus of the ratio of DCS to CF amplitudes. The parameters x' and y' are linear combinations of x and y according to the relations

$$x' = x \cos \delta + y \sin \delta \quad \text{and} \quad y' = -x \sin \delta + y \cos \delta,$$

where δ is the strong interaction phase difference between the DCS and CF amplitudes. In the absence of mixing, $x' = y' = 0$ and $R(t/\tau) = R_D$.

Our measurement uses data collected by the CDF II detector at the Fermilab Tevatron collider, from February 2002 to January 2007, corresponding to an integrated luminosity of $\approx 1.5 \text{ fb}^{-1}$ for $p\bar{p}$ collisions at $\sqrt{s} = 1.96 \text{ TeV}$. CDF II [19] is a multi-purpose detector with a magnetic spectrometer surrounded by a calorimeter and a muon detector. The detector components pertinent to this analysis are the silicon microstrip vertex detector, the multi-wire drift chamber (COT), and the 1.4 T magnet which together measure the trajectories and momenta of charged particles. The COT measures ionization energy loss for a charged particle, which is used for particle identification (PID).

Events are selected in real time with a trigger system developed for a broad class of heavy flavor decays. The trigger requirements used here are the same as those described for our previous measurement of the time-integrated value of R [20], which used a smaller data sample. The trigger selects events with a pair of oppositely charged particles that are consistent with originating from a secondary decay vertex separated from the beamline.

In the off-line analysis, we reconstruct the “right-sign” (RS) CF decay chain $D^{*-} \rightarrow \pi^+D^0$, $D^0 \rightarrow K^-\pi^+$, and the “wrong-sign” (WS) decay chain $D^{*-} \rightarrow \pi^+D^0$, $D^0 \rightarrow K^-\pi^+$. The relative charges of the pions determine whether the decay chain is RS (like charge) or WS.
(opposite charge). The reconstruction method is similar to that used for our previous time-independent measurement. The RS and WS \(D^0 \) decays have the same kinematics, and differ only in decay time distributions. To reduce systematic uncertainties, we use the same selection criteria (cuts) for both the RS and WS decay modes. Analysis cuts were optimized before the WS candidates were revealed, and were chosen to maximize the expected WS signal significance.

The \(D^0 \) candidate reconstruction starts with a pair of tracks from oppositely charged particles that satisfy the trigger requirements. The tracks are considered with both \(K^-\pi^+ \) and \(\pi^-K^+ \) interpretations. A third “tagging” track, required to have \(p_T \geq 0.3 \) GeV/c, is used to form a \(D^* \) candidate when considered as a pion and combined with the \(D^0 \) candidate.

We apply two cuts to reduce the background to the WS signal from RS decays where the \(D^0 \) decay tracks are misidentified because the kaon and pion assignments are mistakenly interchanged. As determined from the data, 96.4\% of \(D^0 \) decays with correct mass assignment are reconstructed with \(K\pi \) invariant mass \(m_{K\pi} \) within 20 MeV/c^2 of the \(D^0 \) mass. The \(m_{K\pi} \) distribution for misidentified \(D^0 \) decays is much broader, and has only 22\% of the events within the same mass range. We remove WS candidates that have a RS mass within that range. This cut excludes 96.4\% of RS decays and retains 78\% of the WS signal. We also impose a cut based on PID which is used to distinguish pions from kaons for all three tracks in the decay chain. This cut, described in Ref. [20], further helps to reject misidentified decays.

We use a series of cuts based on the decay topology of signal events in which a \(D^* \) is produced at the primary vertex, the tagging pion also originates from the primary vertex, and the \(D^0 \) travels a measurable distance before decay. The vertex-based cuts reduce combinatoric background from improper combinations involving one or more tracks that do not originate from the \(D^* \) decay chain of interest. We require the transverse decay length significance \(L_{xy}/\sigma_{xy} \) to be greater than 4, where \(L_{xy} = \vec{r} \cdot \vec{p}_T/|\vec{p}_T|, \vec{r} \) is the distance between the primary and \(D^0 \) decay vertices, \(\vec{p}_T \) is the transverse component of the momentum of the \(D^0 \) candidate with respect to the beamline, and \(\sigma_{xy} \) is the uncertainty on \(L_{xy} \). The tagging pion track must have \(d_0 < 500 \) \(\mu \)m, where the transverse impact parameter \(d_0 \) is the distance of closest approach between a track and the primary vertex in the plane transverse to the beamline. The tagging pion must also have a point of closest approach to the primary vertex less than 1.5 cm along the beamline.

The ratio \(t/\tau \) is determined for each \(D^0 \) candidate by \(t/\tau = m_{D^0} L_{xy}/(p_T \tau) \), where \(m_{D^0} = 1.8648 \) GeV/c^2 and \(\tau = 410.1 \) fs are the world average values for the \(D^0 \) invariant mass and lifetime, respectively [21]. To study \(R(t/\tau) \), we divide the data into 20 bins of \(t/\tau \) ranging from 0.75 to 10.0, choosing bins of increasing size from 0.25 to 2.0 to reduce statistical uncertainty at larger times. The bin sizes are larger than the \(t/\tau \) resolution of \(\approx 0.16 \).

After RS and WS candidates are separately divided into \(t/\tau \) bins, they are further divided into bins of mass difference \(\Delta m \equiv m_{K\pi\pi} - m_{K\pi} - m_{\pi} \). For each \(\Delta m \) bin, we perform a binned maximum likelihood fit of the corresponding \(m_{K\pi} \) distribution to determine the \(D^0 \) signal yield. The distribution of \(D^0 \) signal yield versus \(\Delta m \) is fit using a least-squares method to get the \(D^* \) signal for each time bin. The \(D^* \) fit procedure is illustrated by the time-integrated WS \(\Delta m \) distribution shown in Fig. 1.

The signal shapes for the individual \(m_{K\pi} \) and \(\Delta m \) distributions are fixed from the RS time-integrated fits. For each \(m_{K\pi} \) distribution, a parabola with floating parameters is used to fit the background. The background shapes for all the \(\Delta m \) WS (RS) distributions are fixed to the shape determined for the time-integrated WS (RS) distribution. The amplitudes of the signal and background shapes are determined independently for all \(m_{K\pi} \) and \(\Delta m \) fits. The RS distributions have similar amounts of background as the WS distributions, but the RS signal is about 250 times larger.

The \(D^* \) mesons that originate from beauty hadron (\(B \)) decays must be treated as background to avoid the complication of measuring the \(D^0 \) decay length from the \(B \) decay point instead of the primary vertex. The \(D^* \) mesons produced promptly at the primary vertex have a narrow \(d_0 \) distribution for their daughter \(D^0 \) mesons, with a shape independent of \(t/\tau \). The background from non-prompt \(D^* \) mesons from the decay chain \(B \rightarrow D^* \rightarrow D^0 \) have a broad \(d_0 \) distribution, due to the decay length of the \(B \) hadrons. The width of the broad distribution increases with increasing \(t/\tau \). An example \(d_0 \) distribution is shown in Fig. 2. The shapes of the prompt and

![Image of the distribution](image-url)
broad distributions are determined from RS data. The WS shapes are the same as the RS shapes. For each of the 20 $t/τ$ bins, the prompt WS (RS) signal is determined from the number of WS (RS) D^* mesons and the shapes of the d_0 distributions. The ratio of non-prompt to prompt signal is $≈ 0.02$ at $t/τ = 2$ and increases with increasing $t/τ$ due to the faster exponential fall-off with $t/τ$ for D^0 compared to B. At $t/τ = 7$, the ratio is $≈ 1$.

The time-integrated prompt D^* signals are $(12.7 ± 0.3) \times 10^3$ WS events and $(3.044 ± 0.002) \times 10^3$ RS events. The ratios of prompt WS to RS signal for the 20 $t/τ$ bins are shown in Fig. 3. The uncertainties for each bin include statistical and systematic contributions. The significant systematic uncertainties are due to the background shapes for the $m_{Kπ}$, $Δm$, and d_0 distributions, which are described by parameters that are allowed to vary in the fitting procedure. We used simulation to confirm that our choice of decay time bins does not systematically affect the result. The detector acceptances for RS and WS decays are nearly identical, and their difference contributes a negligible systematic uncertainty in the ratio R. The large uncertainty in the first $t/τ$ bin is due to low signal statistics caused by the trigger turn-on at small $t/τ$. In the last two bins, the uncertainties are large because the exponential fall-off of the WS signal with $t/τ$ results in smaller numbers of signal events.

A least-squares parabolic fit of the data in Fig. 3 to Eq. (1) determines the values and uncertainties for the parameters R_D, y', and x'^2, which are listed in Table I. Since the value of x'^2 is unphysical (less than zero), but consistent with zero, we also fit the data with the constraint $x'^2 = 0$. The values of R_D and y' are consistent with and without the constraint. The values and precision of the parameters measured by CDF are comparable to those from the best previous measurements, as shown in Table II.

To determine the consistency of our data with the no-mixing hypothesis, we compute Bayesian contours containing the region with the highest posterior probability. The probability density is calculated as the product of the likelihood L and a prior, divided by a normalization factor. The likelihood is $L = \exp(-χ^2/2)$, where $χ^2$ is computed from the data in Fig. 3 for a particular set of in Table II.

Fit type	$R_D(10^{-3})$	$y'(10^{-3})$	$x'^2(10^{-3})$	$χ^2$/d.o.f.
Unconstrained	$3.04 ± 0.55$	$8.5 ± 7.6$	$-0.12 ± 0.35$	$19.2 / 17$
Physically allowed	$3.22 ± 0.23$	$6.0 ± 1.4$	0	$19.3 / 18$
No mixing	$4.15 ± 0.10$	0	0	$36.8 / 19$

TABLE II: Comparison of the CDF result with recent measurements. All results use $D^0 \rightarrow K^+π^−$ decays and fits assuming no CP violation. The uncertainties include statistical and systematic components. The significance for no mixing is given in terms of the equivalent number of Gaussian standard deviations.
We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucléaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Comisión Interministerial de Ciencia y Tecnología, Spain; the European Community’s Human Potential Programme; the Slovak R&D Agency; and the Academy of Finland.

[1] J.J. Aubert et al., Phys. Rev. Lett. 33, 1404 (1974).
[2] M. Gell-Mann and A. Pais, Phys. Rev. 97, 1387 (1955).
[3] E. Golowich, S. Pakvasa and A. A. Petrov, Phys. Rev. Lett. 98, 211802 (2007).
[4] A. Abulencia et al. (CDF Collaboration), Phys. Rev. D 71, 032001 (2005).
[5] A. Abulencia et al. (CDF Collaboration), Phys. Rev. D 74, 031109(R) (2006).
[6] W.-M. Yao et al. (Particle Data Group), J. Phys. G 33, 1 (2006).