Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Validation and application of a high-fidelity, computational model of acute respiratory distress syndrome to the examination of the indices of oxygenation at constant lung-state

R. A. McCahon¹, M. O. Columb², R. P. Mahajan¹ and J. G. Hardman¹*

¹University Department of Anaesthesia, Queen’s Medical Centre, Nottingham NG7 2UH, UK.
²Intensive Care Unit, Wythenshawe Hospital, Manchester M23 9LT, UK
*Corresponding author. E-mail: j.hardman@nottingham.ac.uk

Background. Calculated venous admixture (Qs/Qt) is considered the best index of oxygenation; surrogates have been developed (Pao₂/FIO₂, respiratory index, and arterioalveolar P O₂ difference), but these vary with FIO₂, falsely indicating a change in lung-state. Using a novel model, we aimed to quantify the behaviour of the indices of oxygenation listed above during physiological and treatment factor variation. The study is the first step in developing an accurate and non-invasive tool to quantify oxygenation defects.

Methods. We present the static and dynamic validation of a novel computational model of gas exchange in acute respiratory distress syndrome (ARDS) based upon the Nottingham Physiology Simulator. Arterial gas tension predictions were compared with data derived from ARDS patients. The subsequent study examined the indices’ susceptibility to variation induced by independent changes in FIO₂ (0.3–1.0), haemoglobin concentration (Hb: 6–14 g dl⁻¹), oxygen consumption (VO₂: 250–350 ml min⁻¹), and Paco₂ (4–8 kPa).

Results. Static validation produced a mean error of −0.3%, a 10-fold improvement over previous models. Dynamic validation produced a mean prediction error of −0.05 kPa for Pao₂ and 0.09 kPa for Paco₂. Every parameter, especially FIO₂, induced variation in all indices. The least FIO₂-dependent index was Qs/Qt (variation: 5.1%). In contrast, Pao₂/FIO₂ varied by 77% through the range of FIO₂.

Conclusions. We have improved simulation of gas exchange in ARDS by using a sophisticated respiratory model. Using the validated model, we have demonstrated that the current indices of oxygenation vary with alteration in Hb, Paco₂, and VO₂ in addition to their previously well-documented dependence on FIO₂.

Br J Anaesth 2008; 101: 358–65

Keywords: lung, respiratory distress syndrome; measurement techniques, gas exchange; measurement techniques, lung shunting; model, computer simulation; model, respiratory failure

Accepted for publication: May 2, 2008

On a daily basis, clinicians use patients’ arterial gas tensions to communicate and interpret the severity of gas exchange defects; however, these values are dependent upon factors outside the patient’s lungs, such as inspired oxygen fraction (FIO₂), minute ventilation, and oxygen consumption, meaning that arterial gas tensions must be viewed in the context of other physiological values and the treatment provided. For many years, clinicians have sought to describe patients’ oxygenation without reliance on such contextual descriptors. Fortunately, the complexity of the human lung’s ventilation–perfusion (VQ) and the behaviour of whole blood, all integrated with a dynamic and autoregulating cardiovascular system, cannot easily be described. Thus, the tension-based indices of oxygenation (i.e. Pao₂/FIO₂, respiratory index, and arterioalveolar P O₂ difference) are not as reliable as the gold standard, content-based venous admixture (Qs/Qt). In particular, the tension-based indices vary as factors outside the patient’s pathophysiology change, falsely implying a change in the patient’s lung-state.
This has far-reaching implications as the indices of oxygenation are used for communicating and monitoring a patient’s illness severity, assessing the efficacy of interventions, stratification for research purposes, resource allocation, and determination of clinical management pathways. However, the continued popularity of the tension-based indices must be due, in part, to the fact that \(Q_s/Q_t \) calculation requires mixed venous blood sampling via a pulmonary artery catheter, which is not without risk.\(^{13} \) Therefore, there is a need for an accurate, clinically useful, and non-invasive tool to quantify patients’ lung-states.

The use of simulated acute respiratory distress syndrome (ARDS) lung provides opportunities for research unavailable using standard clinical approaches. In 2001, Hahn\(^{14} \) called for a detailed investigation of this issue using sophisticated modelling; in particular, hypoxic pulmonary vasoconstriction (HPV) and tidal ventilation were regarded as essential but, at the time, missing. The Nottingham Physiology Simulator (NPS) is a sophisticated computational multi-compartmental lung model that incorporates tidal ventilation, pulsatile pulmonary blood flow, HPV, and a realistic and validated oxygen–haemoglobin model.\(^{15–17} \)

Our intention was to validate and apply an NPS ARDS lung model to an assessment of the behaviour of the current indices of oxygenation during variation in diverse physiological factors within the model; these included haemoglobin concentration, oxygen consumption, inspired oxygen concentration, and arterial CO\(_2\) tension. The study represents the first step in a programme of work intended to produce a robust index of oxygenation whose calculation does not require mixed-venous blood sampling.

Methods

The Nottingham Physiology Simulator

The NPS has been validated in a number of situations and configurations.\(^{15–20} \) The principles underlying the modelling are summarized in the appendix (see Supplementary material at British Journal of Anaesthesia online).

NPS version 060406 was used in this investigation and it is available for download via the corresponding author.

Model calibration

A detailed description of the model configuration and validation exercise is available in the appendix (see Supplementary material at British Journal of Anaesthesia online).

The ARDS VQ defect was calibrated in the NPS using data published by Nirmalan and colleagues\(^7 \) in 2001; in this investigation, the authors measured arterial and mixed venous gas tensions, haemoglobin concentration, and cardiac output in 10 patients known to have ARDS. The NPS ARDS model VQ defect was configured using the 10 data sets from Patients 3 and 4. These patients were randomly selected and subsequently excluded from the validation investigation. The data set from two patients was considered adequate to configure the model VQ defect; this allowed validation against the remaining eight patients’ data.

Model validation

In brief, a static validation of the configured NPS model was performed using the remaining 45 data sets (Patients 1, 2, 5, 6, 7, 8, 9, and 10) from Nirmalan’s study. Within-subject and whole-group \(P_aO_2 \) prediction errors were calculated.

Subsequently, a dynamic validation of the configured NPS model was performed using published data on ARDS patient responses to changing \(F_{io2} \), respiratory rate (RR), and tidal volume (Tv).\(^{15} \) For the purposes of validation, the quality of matching was judged by the error in predicting the resulting \(P_aO_2 \) and \(P_aCO_2 \).

Evaluation of indices of oxygenation

The values of tidal volume, RR, PEEP, and inspiratory to expiratory ratio were chosen to represent typical ARDS patients.\(^7 \)\(^{13} \)\(^{21} \) HPV and dynamic oxygen–haemoglobin association–dissociation were enabled within the model.

The following indices of oxygenation were evaluated in this investigation: calculated shunt fraction (\(Q_s/Q_t \)), alveolar–arterial oxygen tension gradient (\(P_{aO_2} - a_{O_2} \)), respiratory index (\(P_{aO_2} - a_{O_2} / P_aO_2 \)), and PF ratio (\(P_{aO_2}/F_{io2} \)).

Each index was recorded in a virtual patient with the configured VQ defect held constant (Table 1). The inspired oxygen concentration (\(F_{io2} \)), haemoglobin concentration (Hb), arterial carbon dioxide tension (\(P_aCO_2 \)), and oxygen consumption (\(V_O_2 \)) were varied in isolation, whereas the other variables were clamped (held constant) at baseline (Table 2). Alveolar oxygen tension (\(P_aO_2 \)) was calculated using the alveolar gas equation and arterial oxygen tension (\(P_{aO_2} \)) and mixed venous oxygen tension (\(P_{vO_2} \)) were recorded.

Tidal volume (Vt) and RR were constant throughout the investigation (Table 1), thus keeping lung-state constant. Respiratory exchange ratio (RER) was kept constant except to induce change in (or maintain) \(P_{aCO_2} \) while \(V_O_2 \) was altered.

Weight	70 kg
Inspired gas	Warmed and humidified
Inspiratory flow pattern	Constant flow
Tidal volume	6 ml kg\(^{-1} \)
Respiratory rate	15 bpm
PEEP	9.5 cm H\(_2\)O
Inspiratory to expiratory ratio	1:2
Respiratory exchange ratio	0.8
Cardiac output	9.5 litre min\(^{-1} \)
Base excess	0 mmol litre\(^{-1} \)

Table 1 NPS configuration for the virtual patient used in this investigation. RER varied between 0.47 and 1.03 to maintain \(P_{aCO_2} \) during variation in \(V_O_2 \) or alteration of \(P_{aCO_2} \) independent of other variables.
Comparison was made between the NPS model and the simpler pulmonary model of Nirmalan and colleagues. Model performances were assessed by comparing the predicted estimates with the measured P_{aO_2} (kPa) values using within-subject Pearson correlation (r) and agreement was quantified using intraclass correlation (ri). Biases (predicted–measured) for actual and proportional errors in P_{aO_2} data were estimated with 95% confidence intervals (CI) and within-subject 95% limits of agreement (LA). Error biases (proportional differences or prediction errors) were calculated as: (predicted value–measured value)/measured value. In addition, the data were subjected to regression analysis to estimate the within-subject 95% prediction intervals across the range of P_{aO_2} values used in the validations. Analyses were carried out using Excel 2000 (Microsoft Inc., Redmond, WA, USA), Number Cruncher Statistical Software (NCSS 2004, Inc., Kaysville, UT, USA), and GraphPad Prism 4.03 (GraphPad Software Inc., San Diego, CA, USA).

Results

Model calibration

The NPS ARDS VQ defect was configured by setting bronchial resistance vertical slider-1 to 400/2500 and vascular resistance vertical slider-5 to 16/2500. Sliders 1–5 on each scale represent the anatomical progression from lung apex to base, respectively. The resulting configuration of the NPS ARDS lung model incorporated a substantial

Table 2

Variable	Baseline	Examined range	Increment
F_{IO_2} (%)	50	30–100	10
Haemoglobin (g dl$^{-1}$)	8	6–14	2
P_{aCO_2} (kPa)	6	4–8	2
V_{O_2} (ml min$^{-1}$)	300	250–350	50

Fig 1 Induced variation in alveolar, arterial, and mixed-venous oxygen tensions.
VQ defect and an absolute shunt of 40% of cardiac output. All other sliders stayed at their default settings of 1. This resulted in an average P_{aO_2} prediction error against the calibration data set of 1.48% (SD 14.0%).

Static validation

Within-subject correlation coefficients (r) for measured and predicted P_{aO_2} were 0.897 for the Nirmalan model and 0.903 for the NPS model. Overall agreements, as assessed by intra-class correlation coefficients (r_i) were 0.968 and 0.975, respectively, showing further improvements in model fit with the NPS model. The predicted–measured biases with 95% CI and within-subject 95% LA were -0.58 kPa (95% CI -1.57 to 0.41, 95% LA -2.89 to 1.73) and -0.20 kPa (95% CI -1.13 to 0.73, 95% LA -2.38 to 1.98) for the models, respectively. These represent error biases of -3.0% (95% CI -9.3 to 3.39; 95% LA -17.7 to 11.7) and -0.3% (95% CI -5.7 to 5.1; 95% LA -12.8 to 12.2), respectively, in favour of the NPS model. The within-subject SD of residuals of 1.11 and 1.07 kPa (representing the corresponding 95% prediction intervals of 2.18 and 2.10 kPa) for the models, respectively, show that differences in predicted and measured estimates are not clinically important.

Dynamic validation

The settings for extrapulmonary shunt and physiological dead space used to match the NPS ARDS model to patients before intervention are given in the appendix (Supplementary Table 3a). The post-intervention P_{aO_2} and P_{aCO_2} predicted by the NPS ARDS model are given in the appendix (Supplementary Table 2a). The mean magnitude of change observed in patients’ P_{aO_2} after intervention was 6.05 kPa; the 95% CI of the error in predicting P_{aO_2} was -0.53 to 0.43 kPa (error bias -0.05 kPa). The mean magnitude of change observed in patients’ P_{aCO_2} after intervention was 0.94 kPa; the 95% CI of the error in predicting P_{aCO_2} was -0.10 to 0.27 kPa (error bias 0.09 kPa).

Evaluation of indices of oxygenation

Variations in P_{aO_2}, P_{aCO_2}, and P_{vO_2} induced by changing Hb, F_{IO2}, P_{aCO_2}, and V_{O2} are presented in Figure 1. Variations in P_{aO_2}/F_{IO2}, Qs/Qt, $P_{A−aO_2}$, and $P_{A−aO_2}/P_{\text{aO}_2}$ induced by changing Hb, F_{IO2}, P_{aCO_2}, and V_{O2} are presented in Figures 2–5, respectively. Maximal variation in each index is presented in Table 3.

Variation in F_{IO2} caused the largest variation in each index; Qs/Qt had the smallest F_{IO2}-induced variability of 5.1%,

![Graph](image1)

![Graph](image2)

![Graph](image3)

![Graph](image4)

Fig 2 Induced variation in the PF ratio (P_{aO_2}/F_{IO2}) with constant pulmonary VQ configuration.
whereas $\text{PaO}_2/\text{FiO}_2$ varied by 77%. $\text{PaO}_2/\text{FiO}_2$ was also susceptible to variation induced by changing VO_2, Hb, and PaCO_2.

Induced changes were linear except in $\text{PaO}_2/\text{FiO}_2$ and $\text{PA}-\text{aO}_2/\text{PaO}_2$ during FiO_2 variation. Each of these indices was less prone to FiO_2-induced variation between FiO_2 0.6 and 1.0; in this range, $\text{PaO}_2/\text{FiO}_2$ varied by 12.3% and $\text{PA}-\text{aO}_2/\text{PaO}_2$ varied by 16.3%.

Discussion

The two validation exercises generated a credible, high-fidelity model that can be applied reliably to the clinical context of ARDS throughout the relevant ranges of treatment and pathophysiological variation. The increased sophistication of the NPS model most likely explains its improved performance over that of Nirmalan and colleagues. The addition of HPV, tidal ventilation, pulsatile pulmonary blood flow, and dynamic oxygen–haemoglobin binding may reasonably be expected to make the model more credible and more life-like than earlier, simple models.

Using the validated NPS ARDS model, the current indices of oxygenation showed significant variability without a change in lung-state (Table 3), generating false impressions of the patient’s disease. Overall, the content-based Qs/Qt varied the least, with $\text{PaO}_2/\text{FiO}_2$ performing the best among the less reliable tension-based indices. In particular, $\text{PaO}_2/\text{FiO}_2$ varied little within the ARDS-relevant range of FiO_2 60–100%, which is in agreement with previous studies.

Previous modelling studies have indicated that Hb does not influence gas exchange in ARDS. However, in those investigations, PaO_2 and PV_2 were held unrealistically constant. In this study, a reduction in Hb decreased PV_2 in the shunt-rich NPS ARDS model. It is apparent that for a given PA_2, reduced PV_2 may induce diffusion-limitation of oxygen transfer, thereby reducing PaO_2. Therefore, haemoglobin concentration has a predictable effect on the calculated tension-based indices (Table 3) via this mechanism. In the same way, alterations in VO_2 caused changes in PV_2, and thus PaO_2. Although there was small variation in PA_2, the gradient of the line (Fig. 1) was almost identical to that of PaO_2, generating little variation in $\text{PA}-\text{aO}_2$.

Indices that incorporate PA_2 assume the equality of Paco_2 and PA_2, that is, Paco_2 is easily measurable and acts as a surrogate for PA_2 in the alveolar gas equation.
This assumption may not be appropriate within the ARDS lung. Indeed, unique values for $P_{A\text{O}_2}$ and $P_{A\text{CO}_2}$ do not exist; such averaged values inadequately represent areas of the lung that are poorly ventilated, perfused, or both. The variation of $P_{A\text{O}_2}$ with $P_{A\text{CO}_2}$ is explained by the NPS ARDS model’s dynamic oxygen–haemoglobin dissociation model; both Haldane and Bohr effects may be observed within the NPS. The incorporation into our ARDS model of a high-fidelity model of the dynamic relationship between oxygen and haemoglobin is crucially important, and represents an advance over previous investigations in this field.

In this investigation, we used a shunt-rich model of ARDS lung-state. However, in disease states with less absolute shunt (where perfused alveoli receive zero ventilation) and more venous admixture (where perfused alveoli receive inadequate but non-zero ventilation), both content- and tension-based indices are likely to behave quite differently from that observed in this study. Previous clinical and modelling investigations have shown a variable effect of FIO_2 on Qs/Qt. Plausible explanations for the apparent contradictions include blunting of HPV, absorption atelectasis, and the diversity of VQ distributions. Furthermore, previous studies have found that in the presence of smaller shunts and lower FIO_2, $P_{a\text{CO}_2}/FIO_2$ was dependent on FIO_2, thus rendering it misleading in clinical practice. This could be explained by the different responsiveness of $P_{a\text{O}_2}$ to changing FIO_2 in the presence of poorly ventilated compared with unventilated alveoli.

Despite the improvements over previous models of respiratory pathophysiology, the current study is limited in that the results are representative of a single virtual patient rather than a heterogeneous patient population. While our virtual patient subject is broadly representative of the ARDS population, compliant, impervious to harm, and free of ethical constraint, it is a single subject, and does not represent every lung-state; future modelling studies should aim to create virtual populations to allow the broader applicability of findings and a greater demonstration of model robustness.

In conclusion, we have improved simulation of gas exchange in ARDS by using a sophisticated non-linear respiratory model based upon the NPS. The increased sophistication of the NPS ARDS model has permitted physiological clamping, that is, the ability to hold a physiological parameter constant. Thus, we have shown that the indices of oxygenation also vary with alteration in Hb, $P_{a\text{CO}_2}$, and V_O_2 in addition to their well-documented
dependence on \(F_{\text{IO}_2}\); such dependence causes apparent changes in lung-state during alterations in physiological and treatment factors when no change in lung-state has occurred. Future work should examine the robustness of these indices in other pulmonary disease states and in the population variation seen within disease states. The factors that vary with external variation should now be isolated and mathematically ‘clamped’ so that we may develop new, independent indices of gas exchange and, in particular, oxygenation.

Supplementary material
Supplementary material is available at British Journal of Anaesthesia online.

Funding
This work was supported in part by a grant from the European Society of Anesthesiology.

References
1 Filley GF, Bigelow DB, Olson DE, Lacquet LM. Pulmonary gas transport. A mathematical model of the lung. Am Rev Respir Dis 1968; 98: 480–9
2 Riley RL. Analysis of factors affecting partial pressures of \(\text{O}_2\) and \(\text{CO}_2\) in gas and blood of lungs. Methods. J Appl Physiol 1951; 4: 102–20
3 West JB. Effects of ventilation–perfusion inequality on overall gas exchange studied in computer models of the lung. J Appl Physiol 1969; 202: 116
4 Cane RD, Shapiro BA, Templin R, Walther K. Unreliability of oxygen tension-based indices in reflecting intrapulmonary shunting in critically ill patients. Crit Care Med 1988; 16: 1243–5
5 Fletcher R. Relationship between alveolar deadspace and arterial oxygenation in children with congenital cardiac disease. Br J Anaesth 1989; 62: 168–76
6 Gowda MS, Klocke RA. Variability of indices of hypoxemia in adult respiratory distress syndrome. Crit Care Med 1997; 25: 41–5
7 Nirman M, Willard T, Columb MO, Nightingale P. Effects of changes in arterial mixed venous oxygen content difference

Table 3 Maximal induced variation, expressed as a percentage of the smallest observed value

Parameter	\(PaO_2/\text{FIO}_2\)	\(Qs/Qt\)	\(P_a-a_o\)	\(P_a-a_o/\text{PaCO}_2\)
Haemoglobin	34.6	0.9	6.8	45.7
\(V_o\)	23.6	1.0	0.7	24.1
\(P_a-o\)	22.0	1.0	11.5	36.0
\(F_{\text{IO}_2}\)	77.0	5.1	405	165

Fig 5 Induced variation in the respiratory index \((P_a-a_o)/P_aO_2)\) with constant pulmonary VQ configuration.
(C(a-v)O₂) on indices of pulmonary oxygen transfer in a model ARDS lung. Br J Anaesth 2001; 86: 477–85
8 Gilbert R. Arterial–alveolar oxygen partial pressure ratio. Crit Care Med 1987; 15: 540–1
9 Gilbert R, Auchincloss JH, Jr, Kuppinger M, Thomas MV. Stability of the arterial/alveolar oxygen partial pressure ratio. Effects of low ventilation/perfusion regions. Crit Care Med 1979; 7: 267–72
10 Sganga G, Siegel JH, Coleman B, Giovannini I, Boldrini G, Pittiruti M. The physiologic meaning of the respiratory index in various types of critical illness. Circ Shock 1985; 17: 179–93
11 Zetterstrom H. Assessment of the efficiency of pulmonary oxygenation. The choice of oxygenation index. Acta Anesthesiol Scand 1998; 32: 579–84
12 Rasanen J, Downs JB, Malec DJ, Oates K. Oxygen tensions and oxyhaemoglobin saturations in the assessment of pulmonary gas exchange. Crit Care Med 1987; 15: 1058–61
13 Wheeler AP, Bernard GR, Thompson BT, et al. National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Pulmonary-artery versus central venous catheter to guide treatment of acute lung injury. N Engl J Med 2006; 354: 2213–24
14 Hahn CEW. Editorial 1; KISS and indices of pulmonary oxygenation. Br J Anaesth 2001; 86: 465–7
15 Hardman JG, Bedforth NM, Ahmed AB, Mahajan RP, Aitkenhead AR. A physiology simulator: validation of its respiratory components and its ability to predict the patient’s response to changes in mechanical ventilation. Br J Anaesth 1998; 81: 327–32
16 Hardman JG, Wills JS, Aitkenhead AR. Investigating hypoxaemia during apnoea: validation of a set of physiological models. Anesth Analg 2000; 90: 614–8
17 Wills JS, Hardman JG. The development of hypoxaemia during apnoea in children: a computational modelling investigation. Br J Anaesth 2006; 97: 564–70
18 Hardman JG, Aitkenhead AR. Validation of an original mathematical model of CO₂ elimination and dead space ventilation. Anesth Analg 2003; 97: 1840–5
19 Hardman JG, Wills JS, Aitkenhead AR. Factors determining the onset and course of hypoxaemia during apnoea; an investigation using physiological modelling. Anesth Analg 2000; 90: 619–24
20 McNamara MJ, Hardman JG. Hypoxaemia during open-airway apnoea: a computational modelling analysis. Anaesthesia 2005; 60: 741–6
21 Brower RG, Matthy MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000; 342: 1301–8
22 Ingram K, Hardman JG. The variability of indices of oxygenation. Eur J Anaesthesiol 2005; 22: A232
23 Wagner PD. Influence of mixed venous PO₂ on diffusion of O₂ across the pulmonary blood-gas barrier. Clin Physiol 1982; 2: 105–15
24 Rossaint R, Hahn SM, Pappert D, Falk KJ, Radermacher P. Influence of mixed venous PO₂ and inspired O₂ fraction on intrapulmonary shunt in patients with severe ARDS. J Appl Physiol 1995; 78: 1531–6
25 Douglas ME, Downs JB, Dannemiller FJ, Hodges MR, Munson ES. Change in pulmonary venous admixture with varying inspired oxygen. Anesth Analg 1976; 55: 688–95
26 Quan SF, Kronberg GM, Schlobohm RM, Feeley TW, Don HF, Lister G. Changes in venous admixture with alterations of inspired oxygen concentration. Anesthesiology 1980; 52: 477–82
27 Santos C, Ferrer M, Roca J, Torres A, Hernandez C, Rodriguez-Roisin R. Pulmonary gas exchange response to oxygen breathing in acute lung injury. Am J Respir Crit Care Med 2000; 161: 26–31
28 Whiteley JP, Gavaghan DJ, Hahn CEW. Variation of venous admixture, SF6 shunt, Pao₂, and the PaO₂/FiO₂ ratio with FiO₂. Br J Anaesth 2002; 88: 771–8