CONSTRUCTION OF THE TYPE 2 DEGENERATE MULTI-POLY-EULER POLYNOMIALS AND NUMBERS

WASEEM AHMAD KHAN, MEHMET ACIKGOZ, AND UGUR DURAN

Abstract. In this paper, we consider a new class of polynomials which is called the multi-poly-Euler polynomials. Then, we investigate their some properties and relations. We provide that the type 2 degenerate multi-poly-Euler polynomials equals a linear combination of the degenerate Euler polynomials of higher order and the degenerate Stirling numbers of the first kind. Moreover, we provide an addition formula and a derivative formula. Furthermore, in a special case, we acquire a correlation between the type 2 degenerate multi-poly-Euler polynomials and degenerate Whitney numbers.

1. Introduction and Preliminaries

Special functions has recently been applied in numerous fields of applied and pure mathematics besides in such other disciplines as physics, economics, statistics, probability theory, biology, and engineering, cf. [1-24] and see also the references cited therein. One of the most important families of special functions is the family of special polynomials, cf. [1,3,8,10,21,23,24]. Intense research activities in such an area as the family of special polynomials are principally motivated by their importance in both pure and applied mathematics and other disciplines. The degenerate forms of special polynomials is firstly considered by Leonard Carlitz [2] by defining the degenerate forms of the Bernoulli, Stirling and Eulerian numbers. In spite of their being more than sixty years old, these studies are still hot topic and today enveloped in an aura of mystery within the scientific community. Now, the degenerate forms of special polynomials are considered and studied intensively by several mathematicians, cf. [6,8,14,21,23]. For instance, Duran and Acikgoz [6] considered the degenerate truncated exponential polynomials and gave their several properties. After that, degenerate truncated forms of various special polynomials including Genocchi, Bell, Bernstein, Fubini, Euler and Bernoulli polynomials were introduced via the degenerate truncated exponential polynomials and their various properties and relationships by using the series manipulation method and diverse special proof techniques were derived in [6]. Duran and Sadjang [8] considered the fully degenerate Gould-Hopper polynomials with a q parameter and the Gould-Hopper-based fully degenerate poly-Bernoulli polynomials with a q parameter and then gave some of their properties including not only difference rule, inversion formula and addition formula but also multifarious correlations and implicit summation formulas. Kim et al. [14] introduced degenerate polyexponential functions and the degenerate type 2 poly-Bernoulli polynomials, and also provided some explicit expressions and various identities. Kim and Kim [15] considered degenerate poly-Bernoulli polynomials by means of the degenerate polylogarithm function, and investigated several properties and relations. Kim et al. [16] defined a new type of the degenerate poly-Genocchi polynomials and numbers constructed from the modified polyexponential function and the degenerate unipoly Genocchi polynomials, and derived several combinatorial identities and some explicit expressions. Kim [17] introduced a degenerate form of the Stirling polynomials of the second kind and proved some novel relations and identities for these polynomials. Kim and Kim [18] considered a new type degenerate Bell polynomials via degenerate polyexponential functions and then gave some of their properties. Kim et al. [20] introduced degenerate multiple polyexponential

1991 Mathematics Subject Classification. Primary 11B73, Secondary 11B83, 05A19.

Key words and phrases. Euler polynomials; Degenerate multi-polyexponential functions; Degenerate multi-poly-Euler polynomials; Degenerate Stirling numbers; Degenerate Whitney numbers.
function which is multiple version of the degenerate modified polyexponential function and also, by means of this function, considered the degenerate multi-poly-Genocchi polynomials. Moreover, multifarious explicit expressions and some properties were investigated and studied in [20]. Lee et al. [23] studied a new type of the type 2 poly-Euler polynomials and a new type of the type 2 degenerate poly-Euler polynomials by utilizing the modified polyexponential function. Thereafter, several expressions and identities for these polynomials were shown in [23].

In this paper, we introduce a novel class of degenerate multi-poly-Euler polynomials and numbers by means of the degenerate multi-polyexponential function and studied their main explicit relations and identities. This work is organized as follows:

- Section 2 includes several known definitions and notations.
- In Section 3, we consider a novel class of degenerate multi-poly-Euler polynomials and numbers and investigate their diverse properties and relations.
- The last section outlines finding gains and the conclusions in this work and mentions recommendations for future studies.

2. Definitions

Let \(\mathbb{Z} \) denotes the set of all integers, \(\mathbb{R} \) denotes the set of all real numbers and \(\mathbb{C} \) denotes the set of all complex numbers. Let \(\lambda \in \mathbb{R} \setminus \{ 0 \} \) (or \(\mathbb{C} \setminus \{ 0 \} \)). The degenerate exponential function \(e_\lambda^x(t) \) is defined as follows

\[
e_\lambda^x(t) := (1 + \lambda t)^x = \sum_{n=0}^{\infty} (x)_n \lambda^n \frac{t^n}{n!},
\]

where \((x)_0, = 1 \) and \((x)_n, = x(x - \lambda) \cdots (x - (n - 1)\lambda) \) for \(n \geq 1 \), cf. [1,2,6-8,14-23] and see also the references cited therein.

It is easily observed that \(\lim_{\lambda \to 0} e_\lambda^x(t) = e^{xt} \). Notice that \(e_1^x(t) := e^x(t) \).

The usual Bernoulli \(B_n(x) \) and Euler \(E_n(x) \) polynomials (cf. [3]), and the degenerate Bernoulli \(B_{n,\lambda}(x) \) and Euler \(E_{n,\lambda}(x) \) (cf. [1,6,8,14-21,23]) polynomials are defined by the following generating functions:

\[
\sum_{n=0}^{\infty} B_n(x) \frac{t^n}{n!} = \frac{t}{e^t - 1} \quad \text{and} \quad \sum_{n=0}^{\infty} B_{n,\lambda}(x) \frac{t^n}{n!} = \frac{t}{e_\lambda(t) - 1} \quad \text{e}_\lambda^x(t)
\]

and

\[
\sum_{n=0}^{\infty} E_n(x) \frac{t^n}{n!} = \frac{2t}{e^t + 1} \quad \text{and} \quad \sum_{n=0}^{\infty} E_{n,\lambda}(x) \frac{t^n}{n!} = \frac{2t}{e_\lambda(t) + 1} e_\lambda^x(t).
\]

The polyexponential function \(E_{i,k}(x) \) is defined by (cf. [13])

\[
E_{i,k}(x) = \sum_{n=1}^{\infty} \frac{x^n}{(n-1)!n^k}, \quad (k \in \mathbb{Z}).
\]

For \(k = 1 \) in (2.4), it yields \(E_{1,1}(x) = e^x - 1 \).

The modified degenerate polyexponential function \(E_{i,k,\lambda}(x) \) is defined by (cf. [14])

\[
E_{i,k,\lambda}(x) = \sum_{n=1}^{\infty} \frac{(1)_{n,\lambda}}{(n-1)!n^k} x^n.
\]

It is note that for \(k = 1 \), \(E_{1,1,\lambda}(x) = e_\lambda(x) - 1 \).

Let \(k \in \mathbb{Z} \) and \(\lambda \in \mathbb{R} \). The degenerate version of the logarithm function \(\log_\lambda(1 + t) \) given by (cf. [15])

\[
\log_\lambda(1 + t) = \sum_{n=1}^{\infty} \lambda^{n-1} (1)_{n,1/\lambda} \frac{t^n}{n!},
\]

which is also the inverse function of the degenerate exponential function \(e_\lambda(t) \) as shown below

\[
e_\lambda(\log_\lambda(1 + t)) = \log_\lambda(e_\lambda(1 + t)) = 1 + t.
\]
In [23], the type 2 poly-Euler polynomials $E_n^{(k)}(x)$ and the type 2 degenerate poly-Euler polynomials $E_{n,\lambda}^{(k)}(x)$ are introduced by means of the following generating functions to be
\[
\sum_{n=0}^{\infty} E_n^{(k)}(x) \frac{t^n}{n!} = \frac{E_k(t)(1 + 2t)}{(e^t + 1)} - e^{xt} \quad \text{and} \quad \sum_{n=0}^{\infty} E_{n,\lambda}^{(k)}(x) \frac{t^n}{n!} = \frac{E_k(t,\lambda)(1 + 2t)}{(t(1 + e^{-\lambda}) + 1)} e^{\lambda t}. \tag{2.6}
\]

Multifarious relations and identities for these polynomials are investigated intensely in [23].

The degenerate Stirling numbers of the first kind (cf. [15, 16]) and second kind (cf. [1,6,8,15-21,24]) are defined, respectively, by
\[
\sum_{n=k}^{\infty} S_{1,\lambda}(n, k) \frac{t^n}{n!} = \frac{(\log(1 + t))^k}{k!} \quad (k \geq 0) \tag{2.7}
\]
and
\[
\sum_{n=k}^{\infty} S_{2,\lambda}(n, k) \frac{t^n}{n!} = \frac{(e^t - 1)^k}{k!} \quad (k \geq 0). \tag{2.8}
\]
Noting here that as $\lambda \to 0$, the degenerate Stirling numbers of the first kind $S_{1,\lambda}(n, k)$ and second kind $S_{2,\lambda}(n, k)$ reduce to the usual Stirling numbers of the first kind $S_1(n, k)$ and second kind $S_2(n, k)$ as follows (cf. [1,6,8,15-21,23,24])
\[
\sum_{n=k}^{\infty} S_1(n, k) \frac{t^n}{n!} = \frac{(\log(1 + t))^k}{k!} \quad (k \geq 0),
\]
and
\[
\sum_{n=k}^{\infty} S_2(n, k) \frac{t^n}{n!} = \frac{(e^t - 1)^k}{k!} \quad (k \geq 0).
\]

3. Type 2 Degenerate Multi-Poly-Euler Polynomials

Let $k_1, k_2, \cdots, k_r \in \mathbb{Z}$. The degenerate multi-poly-exponential function is given by, (cf. [20])
\[
E_{k_1, k_2, \cdots, k_r, \lambda}(x) = \sum_{0 < n_1 < n_2 < \cdots < n_r} \frac{(1)_{n_1, \lambda} \cdots (1)_{n_r, \lambda}}{(n_1 - 1)! \cdots (n_r - 1)! n_1^{k_1} \cdots n_r^{k_r}} x^{n_r}, \tag{3.1}
\]
where the sum is over all integers n_1, n_2, \cdots, n_r satisfying $0 < n_1 < n_2 < \cdots < n_r$. By means of this function, Kim et al. [20] defined and investigated the degenerate multi-poly-Genocchi polynomials $g_{n,\lambda}^{(k_1, k_2, \cdots, k_r)}(x)$ given by the following generating function to be
\[
\sum_{n=0}^{\infty} g_{n,\lambda}^{(k_1, k_2, \cdots, k_r)}(x) \frac{t^n}{n!} = \frac{r!E_{k_1, k_2, \cdots, k_r, \lambda}(\log(1 + t))}{(e^t + 1)^r} e^{\lambda t}. \tag{3.2}
\]
Motivated by the definition of degenerate multi-poly-Genocchi polynomials, utilizing the degenerate multipoly-exponential function (3.1), we consider the following definition.

Definition 1. Let $k \in \mathbb{Z}$. Type 2 degenerate multi-poly-Euler polynomials $E_{n,\lambda}^{(k_1, k_2, \cdots, k_r)}(x)$ are defined by the following Taylor expansion about $t = 0$:
\[
\sum_{n=0}^{\infty} E_{n,\lambda}^{(k_1, k_2, \cdots, k_r)}(x) \frac{t^n}{n!} = \frac{E_{k_1, k_2, \cdots, k_r, \lambda}(\log(1 + 2t))}{t^r(e^t + 1)^r} e^{\lambda t}. \tag{3.3}
\]
In the case when $x = 0$ in (3.3), the type 2 degenerate multi-poly-Euler polynomials $E_{n,\lambda}^{(k_1, k_2, \cdots, k_r)}(x)$ reduce to the corresponding numbers, that is the type 2 degenerate multi-poly-Euler numbers denoted by $E_{n,\lambda}^{(k_1, k_2, \cdots, k_r)}$.
Remark 1. Letting $\lambda \to 0$, the type 2 degenerate multi-poly-Euler polynomials $E_{n,\lambda}^{(k_1,k_2,\cdots,k_r)}(x)$ reduce to a new type multi-poly-Euler polynomials which we denote $E_{n}^{(k_1,k_2,\cdots,k_r)}(x)$, which are different from the polynomials $E_{n}^{(k_1,k_2,\cdots,k_r)}(x)$ introduced by Jolany et al. [10], as follows:
\[
\sum_{n=0}^{\infty} E_{n}^{(k_1,k_2,\cdots,k_r)}(x) \frac{t^n}{n!} = \frac{E_{1}^{(k_1,k_2,\cdots,k_r)}(\log(1+2t))}{t'(e^t+1)^r} e^x t.
\]

Remark 2. In the case when $r = 1$, the type 2 degenerate multi-poly-Euler polynomials reduce to a new type degenerate poly-Euler polynomials that we denote $E_{n,\lambda}^{(k)}(x)$, which are different from the polynomials $E_{n,\lambda}^{(k)}(x)$ in (2.6) defined by Lee et al. [23], as follows:
\[
\sum_{n=0}^{\infty} E_{n,\lambda}^{(k)}(x) \frac{t^n}{n!} = \frac{E_{1,\lambda}^{(k)}(\log(1+2t))}{t'(e^t+1)^r} e^x t.
\]

Also, when $x = 0$ in (3.4), these new type degenerate poly-Euler polynomials $E_{n,\lambda}^{(k)}(x)$ reduce to the corresponding numbers $E_{n,\lambda}^{(k)}$, that is, $E_{n,\lambda}^{(k)}(0) := E_{n,\lambda}^{(k)}$.

Now, we investigate some properties of the type 2 degenerate multi-poly-Euler polynomials. From Definition 1, we observe that
\[
\sum_{n=0}^{\infty} E_{n,\lambda}^{(k_1,k_2,\cdots,k_r)}(x) \frac{t^n}{n!} = \frac{E_{1,\lambda}^{(k_1,k_2,\cdots,k_r)}(\log(1+2t))}{t'(e^t+1)^r} e^x t.
\]

which gives the following theorem.

Theorem 1. The following relation
\[
E_{n,\lambda}^{(k_1,k_2,\cdots,k_r)}(x) = \sum_{m=0}^{n} \binom{n}{m} E_{n-m,\lambda}^{(k_1,k_2,\cdots,k_r)}(x)m^r
\]
holds true for $n \geq 0$.

Remark 3. When λ approaches to 0, we get the following known relation for the multi-poly-Euler polynomials (cf. [4, 10])
\[
E_{n}^{(k_1,k_2,\cdots,k_r)}(x) = \sum_{m=0}^{n} \binom{n}{m} E_{n-m}^{(k_1,k_2,\cdots,k_r)}x^m.
\]

The degenerate Euler polynomials of higher order are given by the following Maclaurin series:
\[
\sum_{n=0}^{\infty} E_{n}^{(r)}(x;\lambda) \frac{t^n}{n!} = \left(\frac{2}{e^t+1}\right)^r e^x t,
\]

cf. [1, 6, 23] and also see the references cited therein. We also notice that when $r = 1$, the degenerate Euler polynomials of higher order reduce to the degenerate Euler polynomials in (2.3), namely, $E_{n}^{(1)}(x;\lambda) := E_{n,\lambda}(x)$.
From Definition 1 and (3.1), we see that

\[
\sum_{n=0}^{\infty} e_{n,\lambda}^{(k_1,k_2,\ldots,k_r)}(x) \frac{t^n}{n!} = \frac{e_{\lambda}^{(r)}(t)}{(e_{\lambda}(t) + 1)^r} \sum_{0 < n_1 < n_2 < \cdots < n_r} \frac{(1)_{n_1,\lambda} \cdots (1)_{n_r,\lambda}(\log_{\lambda}(1 + 2t))^{n_r}}{(n_1 - 1)! \cdots (n_r - 1)! n_1^{k_1} \cdots n_r^{k_r}}
\]

\[
= \frac{e_{\lambda}^{(r)}(t)}{(e_{\lambda}(t) + 1)^r} \sum_{0 < n_1 < n_2 < \cdots < n_r} \frac{(1)_{n_1,\lambda} \cdots (1)_{n_r,\lambda} n_r!}{(n_1 - 1)! \cdots (n_r - 1)! n_1^{k_1} \cdots n_r^{k_r}} \sum_{m=n_r}^{\infty} S_{1,\lambda}(m, n_r) 2^m m!
\]

\[
= \frac{1}{2^r} \sum_{t=0}^{\infty} E_n^{(r)}(x; \lambda) \frac{t^n}{n!} \sum_{m=n_r}^{\infty} \left(\sum_{0 < n_1 < n_2 < \cdots < n_r} \frac{(1)_{n_1,\lambda} \cdots (1)_{n_r,\lambda} S_{1,\lambda}(m, n_r) n_r!}{(n_1 - 1)! \cdots (n_r - 1)! n_r^{k_r}} 2^m m! \right)
\]

\[
= \sum_{n=0}^{\infty} \sum_{m=0}^{n} \sum_{0 < n_1 < n_2 < \cdots < n_r} \frac{(n_m) n_r!(1)_{n_1,\lambda} \cdots (1)_{n_r,\lambda} E_{n-m}^{(r)}(x; \lambda) S_{1,\lambda}(n - m, n_r) 2^m m!}{(n_1 - 1)! \cdots (n_r - 1)! n_1^{k_1} \cdots n_r^{k_r}}
\]

which implies the following theorem.

Theorem 2. For \(k_1, k_2, \ldots, k_r \in \mathbb{Z}\), and \(n, r \in \mathbb{N}\) with \(n \geq r\), we have

\[
e_{n,\lambda}^{(k_1,k_2,\ldots,k_r)}(x) = \sum_{m=0}^{n+r} n! E_{n+r-m}^{(r)}(x; \lambda) \frac{t^n}{(n + r - m)! m!} \sum_{0 < n_1 < n_2 < \cdots < n_r} \frac{n_r!(1)_{n_1,\lambda} \cdots (1)_{n_r,\lambda} S_{1,\lambda}(n + r - m, n_r) 2^m m!}{(n_1 - 1)! \cdots (n_r - 1)! n_1^{k_1} \cdots n_r^{k_r}}
\]

Remark 4. When \(r = 1\), we have

\[
e_{n,\lambda}^{(k)}(x) = n! \sum_{m=0}^{n+1} \sum_{l=1}^{k} \frac{(1)_{l,\lambda}}{(n + 1 - m)! m!} \sum_{k=1}^{2^m-1} T_{k+1-m,\lambda}(x) S_{1,\lambda}(n + 1 - m, l),
\]

which is a new relation including a new type degenerate poly-Euler polynomials (3.4), degenerate Euler polynomials (2.3) and degenerate Stirling numbers of the first kind (2.7).

In view of Definition 1, we see that

\[
\sum_{n=0}^{\infty} e_{n,\lambda}^{(k_1,k_2,\ldots,k_r)}(x+y) \frac{t^n}{n!} = \frac{E_{n}^{(r)}(x+y; \lambda)}{(e_{\lambda}(t) + 1)^r} \frac{e_{\lambda}^{(r)}(t)}{e_{\lambda}(t) + 1}
\]

\[
= \sum_{n=0}^{\infty} e_{n,\lambda}^{(k_1,k_2,\ldots,k_r)}(x) \frac{t^n}{n!} \sum_{m=0}^{\infty} \frac{(y)_{m,\lambda}}{m!} \sum_{n=0}^{\infty} \frac{(n)_{m,\lambda}}{m!} \sum_{m=0}^{\infty} \frac{(y)_{m,\lambda}}{m!} \sum_{n=0}^{\infty} \frac{(n)_{m,\lambda}}{m!}
\]

which implies the following theorem includes the addition formula for the type 2 degenerate multi-poly-Euler polynomials.

Theorem 3. The following addition formula

\[
e_{n,\lambda}^{(k_1,k_2,\ldots,k_r)}(x+y) = \sum_{m=0}^{n} \frac{(n)_{m,\lambda}}{m!} e_{n-m,\lambda}^{(k_1,k_2,\ldots,k_r)}(x)
\]

is valid for \(k_1, k_2, \ldots, k_r \in \mathbb{Z}\) and \(n \geq 0\).
To investigate the derivative property of the type 2 degenerate multi-poly-Euler polynomials, we now consider that

\[
\sum_{n=0}^{\infty} \frac{d}{dx} e^{(k_1,k_2,\ldots,k_r)}_{n,\lambda}(x) \frac{t^n}{n!} = \frac{Ei_{k_1,k_2,\ldots,k_r,\lambda}(\log_{\lambda}(1+2t))}{t^{r}(e_{\lambda}(t) + 1)^{r}} e_{\lambda}^{r}(t)
\]

which provides the following theorem.

Theorem 4. The following relation

\[
\frac{d}{dx} e^{(k_1,k_2,\ldots,k_r)}_{n,\lambda}(x) = n! \sum_{l=1}^{\infty} e^{(k_1,k_2,\ldots,k_r)}_{n-l,\lambda}(x) \frac{(-1)^{l+1}}{(n-l)!l!} \lambda^{l-1}
\]

(3.5)

is valid for \(k_1, k_2, \ldots, k_r \in \mathbb{Z}\) and \(n \geq 0\).

Remark 5. Upon setting \(r = 1\), we acquire

\[
\frac{d}{dx} e^{(k)}_{n,\lambda}(x) = n! \sum_{l=1}^{\infty} e^{(k)}_{n-l,\lambda}(x) \frac{(-1)^{l+1}}{(n-l)!l!} \lambda^{l-1},
\]

which is the derivative formula for the new type degenerate poly-Euler polynomials (3.4).

Remark 6. Taking \(r = k = 1\), we attain

\[
\frac{d}{dx} E_{n,\lambda}(x) = n! \sum_{l=1}^{\infty} E_{n-l,\lambda}(x) \frac{(-1)^{l+1}}{(n-l)!l!} \lambda^{l-1},
\]

which is the derivative formula for the degenerate Euler polynomials, cf. [6].

By means of Definition 1, we attain that

\[
\sum_{n=0}^{\infty} e^{(k_1,k_2,\ldots,k_r)}_{n,\lambda}(x) \frac{t^n}{n!} = \frac{Ei_{k_1,k_2,\ldots,k_r,\lambda}(\log_{\lambda}(1+2t))}{t^{r}(e_{\lambda}(t) + 1)^{r}} e_{\lambda}^{r}(t)
\]

where the notation \((x)_0 = 1\) and \((x)_n = x(x-1)\cdots(x-(n-1))\) for \(n \geq 1\), cf. [1, 2, 6, 7, 8, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]. Therefore, we arrive at the following theorem.
Theorem 5. The following correlation
\[
\mathcal{E}_{m,\lambda}^{(k_1, k_2, \cdots, k_r)}(x) = \sum_{m=0}^{n} \sum_{l=0}^{m} \binom{n}{m} S_{2,\lambda}(m, l) \mathcal{E}_{n-m,\lambda}^{(k_1, k_2, \cdots, k_r)}.
\]
is valid for \(k_1, k_2, \cdots, k_r \in \mathbb{Z}\) and \(n \geq 0\).

Remark 7. In the case when \(r = 1\), we acquire
\[
\mathcal{E}_{n,\lambda}^{(k)}(x) = \sum_{m=0}^{n} \sum_{l=0}^{m} \binom{n}{m} S_{2,\lambda}(m, l) \mathcal{E}_{n-m,\lambda}^{(k)};
\]
which is a relation for the new type degenerate poly-Euler polynomials (3.4) and the degenerate Stirling numbers of the second kind (2.8).

Kim [17] introduced the degenerate Whitney numbers which are defined by the generating function to be
\[
\frac{(e^{t\alpha}(t) - 1)^k}{m^k k!} e_{\lambda}^{(n)}(t) = \sum_{n=k}^{\infty} W_{m,\alpha}(n, k \mid \lambda) \frac{t^n}{n!}, \quad (k \geq 0).
\]

Remark 8. In the special case \(m = 1\) and \(\alpha = 0\), the degenerate Whitney numbers \(W_{m,\alpha}(n, k \mid \lambda)\) reduce to the degenerate Stirling numbers \(S_{2,\lambda}(n, k)\) of the second kind in (2.8), that is, \(W_{1,0}(n, k \mid \lambda) := S_{2,\lambda}(n, k)\).

Utilizing Definition 1, we attain that
\[
\sum_{n=0}^{\infty} \mathcal{E}_{n,\lambda}^{(k_1, k_2, \cdots, k_r)}(xu + \alpha) \frac{t^n}{n!} = \frac{E_{k_1, k_2, \cdots, k_r, \lambda}(\log_{\lambda}(1 + 2t))}{t^r(e_{\lambda}(t) + 1)^r} e_{\lambda}^{(n)}(t) e_{\lambda}^{(n)}(t - 1)^r
\]
\[
= \frac{E_{k_1, k_2, \cdots, k_r, \lambda}(\log_{\lambda}(1 + 2t))}{t^r(e_{\lambda}(t) + 1)^r} e_{\lambda}^{(n)}(t) \sum_{l=0}^{\infty} \binom{x}{l} (e_{\lambda}^{(n)}(t) - 1)^l
\]
\[
= \frac{E_{k_1, k_2, \cdots, k_r, \lambda}(\log_{\lambda}(1 + 2t))}{t^r(e_{\lambda}(t) + 1)^r} \sum_{l=0}^{\infty} u'_{l}(x) \frac{(e_{\lambda}^{(n)}(t) - 1)^l}{l! u'_{l}} e_{\lambda}^{(n)}(t)
\]
\[
= \sum_{n=0}^{\infty} \mathcal{E}_{n,\lambda}^{(k_1, k_2, \cdots, k_r)}(xu + \alpha) \frac{t^n}{n!} \sum_{l=0}^{n} \sum_{n=0}^{m} \binom{n}{m} u'_{l}(x) W_{u,\alpha}(m, l \mid \lambda) \mathcal{E}_{n-m,\lambda}^{(k_1, k_2, \cdots, k_r)}
\]
\[
= \sum_{n=0}^{\infty} \left(\sum_{m=0}^{n} \sum_{l=0}^{m} \binom{n}{m} u'_{l}(x) W_{u,\alpha}(m, l \mid \lambda) \mathcal{E}_{n-m,\lambda}^{(k_1, k_2, \cdots, k_r)}(xu + \alpha) \right) \frac{t^n}{n!},
\]
which provides our last theorem as follows.

Theorem 6. For \(k_1, k_2, \cdots k_r \in \mathbb{Z}\) and \(n \geq 0\), we have
\[
\mathcal{E}_{n,\lambda}^{(k_1, k_2, \cdots, k_r)}(xu + \alpha) = \sum_{m=0}^{n} \sum_{l=0}^{m} \binom{n}{m} u'_{l}(x) W_{u,\alpha}(m, l \mid \lambda) \mathcal{E}_{n-m,\lambda}^{(k_1, k_2, \cdots, k_r)}.
\]

Remark 9. Upon setting \(r = 1\), we get
\[
\mathcal{E}_{n,\lambda}^{(k)}(xu + \alpha) = \sum_{m=0}^{n} \sum_{l=0}^{m} \binom{n}{m} u'_{l}(x) W_{u,\alpha}(m, l \mid \lambda) \mathcal{E}_{n-m,\lambda}^{(k)},
\]
which is a relation between the degenerate Whitney numbers and the new type degenerate poly-Euler polynomials (3.4).
4. Conclusions

As is known, for \(k \in \mathbb{Z} \), the polylogarithm function is defined by (cf. [4, 10])
\[
\text{Li}_k(x) = \sum_{0 < n} \frac{x^n}{n^k}.
\]
It is easily seen that \(\text{Li}_1(x) = -\log(1 - x) \).

For \(k_1, k_2, \ldots k_r \in \mathbb{Z} \), the multiple polylogarithm function [4, 10, 19] is given by
\[
\text{Li}_{k_1, k_2, \ldots, k_r}(x) = \sum_{0 < n_1 < n_2 < \cdots < n_r} \frac{x^{n_r}}{n_1^{k_1} n_2^{k_2} \cdots n_r^{k_r}},
\]
where the sum is over all integers \(n_1, n_2, \ldots, n_r \) satisfying \(0 < n_1 < n_2 < \cdots < n_r \).

By means of the multiple polylogarithm function, the degenerate multi-poly-Bernoulli polynomials are introduced (cf. [4, 10, 19]) as follows
\[
\sum_{n=0}^{\infty} B_{n,\lambda}^{(k_1, k_2, \ldots, k_r)}(x) \frac{t^n}{n!} = \frac{r! \text{Li}_{k_1, k_2, \ldots, k_r}(1 - e^{-t})}{(e_{\lambda}(t) - 1)^r} e_{\lambda}(t).
\]
(4.1)

Then, several properties for those polynomials are investigated.

A slightly different version of the polylogarithm function, the polyexponential function \(\text{Ei}_{k}(x) \) are defined as an inverse to polylogarithm function as follows (cf. [13])
\[
\text{Ei}_{k}(x) = \sum_{n=1}^{\infty} \frac{x^n}{(n - 1)! n^k}, \quad (k \in \mathbb{Z}).
\]
For \(k = 1 \) in (2.4), it yields \(\text{Ei}_{1}(x) = e^x - 1 \).

The modified degenerate polyexponential function \(\text{Ei}_{k, \lambda}(x) \) are defined by (cf. [14])
\[
\text{Ei}_{k, \lambda}(x) = \sum_{n=1}^{\infty} \frac{(1)_{n, \lambda}}{(n - 1)! n^k} x^n.
\]

It is note that for \(k = 1 \), \(\text{Ei}_{1, \lambda}(x) = e_{\lambda}(x) - 1 \).

Let \(k_1, k_2, \ldots, k_r \in \mathbb{Z} \). The degenerate multi-polyexponential function is given by, (cf. [20])
\[
\text{Ei}_{k_1, k_2, \ldots, k_r, \lambda}(x) = \sum_{0 < n_1 < n_2 < \cdots < n_r} \frac{(1)_{n_1, \lambda} \cdots (1)_{n_r, \lambda} x^{n_r}}{(n_1 - 1)! \cdots (n_r - 1)! n_1^{k_1} \cdots n_r^{k_r}},
\]
where the sum is over all integers \(n_1, n_2, \ldots, n_r \) satisfying \(0 < n_1 < n_2 < \cdots < n_r \). By means of this function, Kim et al. [20] defined and investigated the degenerate multi-poly-Genocchi polynomials \(g_{n, \lambda}^{(k_1, k_2, \ldots, k_r)}(x) \) given by the following generating function to be
\[
\sum_{n=0}^{\infty} g_{n, \lambda}^{(k_1, k_2, \ldots, k_r)}(x) \frac{t^n}{n!} = \frac{r! \text{Ei}_{k_1, k_2, \ldots, k_r, \lambda}(\log_{\lambda}(1 + t))}{(e_{\lambda}(t) + 1)^r} e_{\lambda}(t).
\]

Motivated and inspired by the definitions of the degenerate multi-poly-Bernoulli polynomials and the degenerate multi-poly-Genocchi polynomials introduced by Kim et al. [20], in this paper, we have introduced new generating function for the degenerate multi-poly-Euler polynomials, called the type 2 degenerate multi-poly-Euler polynomials, by means of the degenerate multi-polyexponential function as follows:
\[
\sum_{n=0}^{\infty} \text{e}_{n, \lambda}^{(k_1, k_2, \ldots, k_r)}(x) \frac{t^n}{n!} = \frac{\text{Ei}_{k_1, k_2, \ldots, k_r, \lambda}(\log_{\lambda}(1 + 2t))}{t^r (e_{\lambda}(t) + 1)^r} e_{\lambda}(t).
\]

Then, we have derived some useful relations and properties. In a special case, we have investigated a correlation including the type 2 degenerate multi-poly-Euler polynomials and numbers, and degenerate Whitney numbers. We have also analyzed several special circumstances of the results derived in this paper.
In the future plans, we will continue to study degenerate versions of certain special polynomials and numbers and their applications to probability, physics, and engineering in addition to mathematics.

4.1. **Acknowledgements.** Not applicable.

4.2. **Funding.** This research received no external funding.

4.3. **Availability of data and materials.** Not applicable.

4.4. **Author Contributions.** All authors contributed equally to the manuscript and typed, read, and approved final manuscript.

4.5. **Conflict of Interest.** The authors declare no conflict of interests.

References

[1] Carlitz, L. Degenerate Stirling, Bernoulli and Eulerian numbers. Utilitas Math. 1979, 15, 51-88.
[2] Carlitz, L. A degenerate Staudt-Clausen theorem, Arch. Math. (Basel) 1956, 7, 28-33.
[3] Cheon, G.-S. A note on the Bernoulli and Euler polynomials, Appl. Math. Lett., 16 (3) (2003), pp. 365-368.
[4] Corcino R.B. Multi poly-Bernoulli and multi poly-Euler polynomials, 2020, In: Dutta H., Peters J. (eds) Applied Mathematical Analysis: Theory, Methods, and Applications. Studies in Systems, Decision and Control, vol 177. Springer, Cham.
[5] Duran, U.; Acikgoz, M.; Araci, S. Construction of the type 2 poly-Frobenius-Genocchi polynomials with their certain applications, Advances in Difference Equations, 2020, 432 (2020).
[6] Duran, U.; Acikgoz, M. On degenerate truncated special polynomials. Mathematics 2020, 8, 144.
[7] Duran, U.; Acikgoz, M. A new approach to the Poisson distribution: Degenerate Poisson distribution, Journal of Inequalities and Special Functions, 11(1), 2020, 1-11.
[8] Duran, U.; Sadjang, P.N. On Gould-Hopper-based fully degenerate poly-Bernoulli polynomials with a q-parameter. Mathematics 2019, 7, 121.
[9] Eastham, M.S.P. On polylogarithms. Proc. Glasgow Math. Assoc. 6, 1964, 169-171.
[10] Jolany, H.; Corcino, R.B.; Komatsu, T. More properties on multi-poly-Euler polynomials, Bol. Soc. Mat. Mex. 21, 149-162 (2015).
[11] Hamahata, Y. Poly-Euler polynomials and Arakawa-Kaneko type zeta functions, Funct. Approx. Comment. Math., 51(1), 2014, 7-22.
[12] Khan, W.A.; Ghayasuddin, M.; Shadab, M. Multiple poly-Bernoulli polynomials of the second kind associated with Hermite polynomials. Fasciculi Mathematici. 2017, 58, 97-112.
[13] Kim, D.S.; Kim, T. A note on polyexponential and unipoly functions. Russ. J. Math. Phys. 2019, 26(1), 40-49.
[14] Kim, T.; Kim, D.S.; Kwon, J.; Lee, H. Degenerate polyexponential functions and type 2 degenerate poly-Bernoulli numbers and polynomials, Adv. Differ. Equ., 2020, 168 (2020).
[15] Kim, D.S.; Kim, T. A note on a new type of degenerate Bernoulli numbers. Russ. J. Math. Phys. 2020, 27(2), 227-235.
[16] Kim, T.; Kim, D.S.; Kwon, J.; Kim, H.Y. A note on degenerate Genocchi and poly-Genocchi numbers and polynomials. J. Ineq. Appl. 2020, 2020:110, 13pp.
[17] Kim, T. A note on degenerate Stirling polynomials of the second kind. Proc. Jangjeon Math. Soc. 2017, 20(3), 319-331.
[18] Kim, T.; Kim, D.S. Degenerate polyexponential functions and degenerate Bell polynomials. J. Math. Anal. Appl. 2020, 487(2), 124017.
[19] Kim, T.; Kim, D.S.; A note on degenerate multi-poly-Bernoulli numbers and polynomials. arXiv:2005.07319v1[math. NT] 15 May 2020.
[20] Kim, T.; Kim, D.S.; Kim, H.-Y.; Kwon, J. A note on degenerate multi-poly-Genocchi polynomials. Adv. Stud. Contemp. Math. (Kyungshang). 2020, 30(3), 447-454.
[21] Kim, T.; Khan, W.A.; Sharma, S.K.; Ghayasuddin, M. A note on parametric kinds of the degenerate poly-Bernoulli and poly-Genocchi polynomials. Symmetry. 2020, 12(4), Article ID 614.,
[22] Kim, T.; Kim, D.S. Degenerate Laplace transform and degenerate gamma function. Russ. J. Math. Phys. 2017, 24(2), 241-248.
[23] Lee, D.S.; Kim, H.-Y.; Jang, L.-C. Type 2 degenerate poly-Euler polynomials. Symmetry. 2020, 12(6), 1011.
[24] Qi, F.; Kim, D.S.; Kim, T. Multiple poly-Bernoulli polynomials of the second kind. Adv. Stud. Contemp. Math. (Kyungshang). 2015, 25, 1-7.
DEPARTMENT OF MATHEMATICS AND NATURAL SCIENCES, PRINCE MOHAMMAD BIN FAHD UNIVERSITY, P.O BOX 1664, AL KHOBAR 31952, SAUDI ARABIA
E-mail address: wkhan1@pmu.edu.sa

DEPARTMENT OF MATHEMATICS, FACULTY OF ARTS AND SCIENCES, UNIVERSITY OF GAZIANTEP, TR-27310 GAZIANTEP, TURKEY
E-mail address: acikgoz@gantep.edu.tr

DEPARTMENT OF THE BASIC CONCEPTS OF ENGINEERING, FACULTY OF ENGINEERING AND NATURAL SCIENCES, ISKENDERUN TECHNICAL UNIVERSITY, TR-31200 HATAY, TURKEY
E-mail address: mtdrnugur@gmail.com & ugur.duran@iste.edu.tr