Metal Exposure and SNCA rs356219 Polymorphism Associated With Parkinson Disease and Parkinsonism

Roberto G. Lucchini1,2, Stefano Guazzetti3, Stefano Renzetti2*, Karin Broberg4,5, Margherita Caci2, Loredana Covolo2, Patrizia Crippa6, Umberto Gelatti2, Dana Hashim7, Manuela Oppini8, Fulvio Pepe8, Andrea Pilotto8,9, Chiara Passeri3, Donatella Placidi2, Maira Cristina Rizzetti10, Marinella Turla11, Karin Wahlberg4 and Alessandro Padovani9

1 Robert Stempel College of Public Health, Florida International University, Miami, FL, United States, 2 Department of Medical Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy, 3 Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy, 4 Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden, 5 Institute of Environmental Medicine, Karolinska Institutet, Soina, Sweden, 6 Ancelle Della Carità, Brescia, Italy, 7 Hematology & Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States, 8 Neurology, Poliambulanza Foundation, Brescia, Italy, 9 Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy, 10 Parkinson Rehabilitation Center, Ospedale S. Isidoro - FERB Onlus, Trescore Balneario, Bergamo, Italy, 11 Esine Hospital of Valcamonica, Brescia, Italy

Objective: In the province of Brescia, Italy, historical neurotoxic metal exposure has occurred for several decades. This study aimed to explore the role of metal exposure and genetics on Parkinson’s Disease (PD) and Parkinsonism.

Methods: Cases were enrolled from four local clinics for movement disorders. Randomly selected controls non-affected by neurological or psychiatric conditions were enrolled from the same health centers keeping a similar gender ratio and age distribution as for cases. Data on sociodemographic variables, clinical onset and life habits were collected besides accurate occupational and residential history. Blood samples were collected from all participants for genotyping of target polymorphisms in genes linked to PD and/or metal transport.

Results: A total number of 432 cases and 444 controls were enrolled in the study, with average age of 71 years (72.2 for cases and 70 for controls). The average age at diagnosis was 65.9 years (SD 9.9). Among the potential risk factors, family history of PD or Parkinsonism showed the strongest association with the diseases (OR = 4.2, 95% CI 2.3, 7.6 on PD; OR = 4.3, 95% CI 1.9, 9.5 for Parkinsonism), followed by polymorphism rs356219 in the alpha-synuclein (SNCA) gene (OR = 2.03, 95% CI 1.3, 3.3 for CC vs. TT on PD; OR = 2.5, 95% CI 1.1, 5.3 for CC vs. TT on Parkinsonism), exposure to metals (OR = 2.4, 95% CI 1.3, 4.2 on PD), being born in a farm (OR = 1.8; 95% CI 1.1, 2.8 on PD; OR = 2.6; 95% CI 1.4, 4.9 on Parkinsonism) and being born in the province of Brescia (OR = 1.7; 95% CI 1.0, 2.9 on PD). Conditional OR of having PD depending by SNCA polymorphism and metal exposure highlights higher risk of PD among CC SNCA carriers and being exposed to metals. However, the interaction term was not statistically significant.
INTRODUCTION

The province of Brescia, northern Italy, was characterized by an historical metallurgic and ferromanganese industrial activities. A higher prevalence of Parkinsonism has been observed among municipalities closer to ferromanganese plants (492/100,000) compared to other province municipalities (321/100,000) (1). A significant association between the Bayesian Standardized Morbidity Ratios (SMRs) for Parkinsonism and dust manganese (Mn) concentrations was also found (1). A case-control study in the same area showed higher levels of blood Mn, copper (Cu) and zinc (Zn) among the cases residing around the ferroalloy plants of Valcamonica (2–4). Studies from our group have shown high levels of Mn, arsenic (As), cadmium (Cd), chromium (Cr), Cu, iron (Fe), lead (Pb), nickel (Ni), Zn (5–9) in environmental media including airborne particles (5, 10–13), indoor and outdoor deposited dust (7), attic dust (6), soil (8, 14), and locally grown produce (9). This exposure to metals has been associated with biomarkers (15) and neurobehavioral outcomes in children (16–19), workers (20–22), and elderly (23, 24) residing in the area, indicating adverse health outcomes of the metal exposure. Further, genetic susceptibility for some of the metal-associated effects have been observed (25–29). Essential metals including Zn, Cu, Mn, and Fe play critical roles in the pathophysiology of neurodegenerative diseases including PD (30), also by inducing alpha-synuclein modifications (31–34).

Gene-environment interactions have been identified in association with PD (35), particularly for metal exposures (36). Measuring genetic susceptibility markers in metal exposed populations (37) becomes critical to identify susceptible groups to Parkinsonian disturbances and preventing disease onset and progression. In a case-control study of 874 individuals we aimed to assess whether PD is associated with metal exposure, mainly assessed through job exposure, and examine the associations between PD- and metal-associated single nucleotide polymorphisms (SNPs) and its interaction with metal exposure.

METHODS

Case Definition and Enrollment

The case definition was not restricted to the diagnostic criteria of IPD, but extended to the broader classification of Parkinsonism (i.e., Parkinsonism and/or PD). This was defined by the presence of at least two of the cardinal features: (i) bradykinesia/akinesia; (ii) rigidity; (iii) tremor; (iv) postural instability (38), and with the exclusion of cases based on vascular, iatrogenic, and traumatic origin. Four centers followed a common case definition and diagnostic protocol and prevalent cases were recruited and reviewed by a single neurologist from any one of the centers specialized in movement disorders located in the Province of Brescia at the following Institutions: ASST-Spedali Civili of Brescia, Esine Hospital of Valcamonica, Poliambulanza Foundation, Ancelle Domus Salutis. Each patient was evaluated by the neurologists attending in each center: authors AP, MCR, AP at Spedali civili, FP at Poliambulanza Foundation, MT at Esine Hospital, PC at Ancelle Brescia. Diagnosis of PD and atypical parkinsonism was performed according to clinical criteria (39). Non-Parkinsonian/PD controls were recruited from the clinics of Dermatology, Orthopedics, Ophthalmology and Otorhinolaryngology of the same hospitals, in order to provide a similar geographic distribution of the residencies of the cases.

All subjects underwent blood sampling for DNA analyses at enrollment.

Standard Protocol Approvals, Registrations, and Patient Consents

The study design and consent were approved by the Ethical Committee of the Department of Health, Brescia, and each participant was consented after receiving written and oral explanation about the study aims and methodology. Exclusion criteria were any neurological or psychiatric condition other than parkinsonian disorders.

Questionnaires

Data on demographics, lifestyle habits, family history of Parkinsonism/PD (if either the mother or the father had Parkinsonism or PD; only parents were considered to decrease the potential recall bias) and, for the cases, clinical diagnosis, age at onset and clinical data were collected through questionnaires. An exposure questionnaire was administered to cases and controls to gain information about their occupational and residential history. Self-reported occupational exposures to specific neurotoxic metals (aluminum, antimony, As, beryllium, Cd, Cu, Cr, gallium, magnesium, Mn, mercury, Ni, Pb) were recorded. Because of the low frequencies of the exposure to the single metals, an overall exposure measure was considered in the study identifying those subjects with at least one occupational exposure to metals in their job life (before diagnosis for the cases).

Participants were also asked to report job titles, tasks, industries, starting dates and duration (in years) of each job.

Genotyping

Polymorphisms known to be associated with Parkinsonism and/or PD and/or with handling (e.g., uptake and transport)
of metals in the body were measured: (i) solute carrier family 30 member 10 (SLC30A10: rs2275707, rs12064812, rs1776029) (27); (ii) solute carrier family 39 member 8 (SLC39A8/ZIP8: rs13107325) (28); (iii) PARK9-associated cation-transporting ATPase 13A2 (ATP13A2: rs4920608 and rs2871776) (40); (iv) synuclein alpha (SNCA: rs356219) (41); (v) divalent metal transporter 1 (DMT1: IVS4+44G/T, rs224589) (42).

DNA was extracted from 0.2 ml of peripheral whole blood samples using the QIAamp DNA Blood Mini kit (Qiagen, Hilden, Germany). Genotyping was performed with TaqMan real time PCR for rs2275707, rs12064812 and rs13107325 (Thermo Scientific assays), as previously described (26, 27); and for rs4920608, rs2871776, rs224589, and rs356219 (Life Technologies assays). Rs1776029 is situated in the middle of an Alu-repeat region of approximately 300 bp in length, and a satisfactory TaqMan SNP assay with respect to specificity and amplicon length could not be designed for this SNP. Therefore, rs1776029 was instead genotyped by pyrosequencing as previously described (26). Generation of PCR products and pyrosequencing was performed using the PyroMark reagents and PSQ HS96 Pyrosequencing System (Qiagen) according to manufacturer’s instructions. For quality control of genotyping data, >5% of samples were re-analyzed for all SNPs in a separate round of experiment with a 100% agreement between duplicate.

Statistical Analyses

Hardy-Weinberg equilibrium (HWE) analysis was undertaken to determine deviation from genotype frequencies using the conventional χ²-test. The association of exposure to metals and each SNP with Parkinsonism and PD was assessed using multinomial regression setting controls as the reference category. For metals exposure, categories were defined as “Ever been exposed” vs. “Never exposed to.” For SNPs both χ²-test and multivariate (adjusted for all terms) odds ratios (ORs) were obtained as a measure of association between the genetic polymorphisms and the disease. The effects of the genetic polymorphisms were modeled assuming a co-dominant model, by considering the major homozygous as the reference level, the heterozygous as intermediate and the minor homozygous as the highest risk class (i.e., for the SNCA rs356219, creating an ordinal variable with three levels: TT, TC, CC, with the homozygote TT set as reference level).

Candidate variables were chosen based on the knowledge/hypotheses of risk factors and confounders for PD. The final adjusted model included variables for age, gender (male vs. female), smoking habits (ever/never), positive family history for PD or tremors, being born in a farm and being born in the province of Brescia (vs. outside the province of Brescia).

Age categories were defined as quartiles: (65,72], (72,78], (78,97], with reference quartile [40, 65]. We did not categorize age in decades because only 25 subjects were in the reference 40–50 class, and therefore the estimates of the contrasts with the baseline with other strata would have resulted less accurate.

Kaplan Meier estimates and log-rank test were used to study the age at PD onset for the various SNCA rs356219 genotypes. Analyses were performed using the R 3.6.1 (R Foundation for Statistical Computing).

RESULTS

Demographic characteristics and results from the interviews are displayed in Table 1. The number of enrolled cases and controls were, respectively, 432 and 444, yielding a total population of 876 subjects with participation rates of 75% for cases and 60% for controls. Most subjects were able to participate in the interviews alone, whereas 173 subjects (20% of the total), including 132 cases and 41 controls, participated with some degree of assistance by a caregiver. The overall mean age of subjects was 71 years (71.5 for cases with PD, 74.3 for cases with Parkinsonism and 70 for controls, p < 0.001). More than 10% of the cases were younger than 60 at visit day while mean age at diagnosis of PD and Parkinsonism was 65.9 (SD 9.9), and 7.5% were younger than 50 and still actively employed. Ten cases were employed in job sectors with potential exposure to neurotoxic agents such as metallurgy, agriculture and constructions, at the time of diagnosis (data not shown). The diagnosis included Idiopathic PD in 334 cases (77.3%, with average age at onset of 65.2 years), and Parkinsonism in 98 cases (22.7%, with average age at diagnosis of 68.3 years; Parkinsonism subgroups are reported in Table 1).

Regarding the subtypes of motor symptoms, 173 subjects (40% of cases) presented with the akinetic-rigid form of PD, 233 (53.9%) presented with the tremor-dominant PD, and 26 cases presented with a mixed phenotype.

Family history for PD or tremor, metal exposure, being born in a farmhouse and in the province of Brescia were more predominant among cases (both PD and Parkinsonism) than controls (all P < 0.01). Prevalence of subjects who ever smoked was higher among controls, confirming previous observations (43) but not statistically significant (P = 0.198).

We did not find deviations of Hardy-Weinberg equilibrium for any of the SNP studied here. Genotype frequencies of SNPs among cases and controls are reported in Table 2. Only SNCA rs356219 showed a marginally significant difference in genotype frequencies between PD, Parkinsonism cases and controls with higher frequencies of the rare allele (C) among cases. Also, in the multinomial regression, when adjusting for all covariates, the only significant SNP associated with PD and Parkinsonism was SNCA rs356219 (Table 3). Moreover, rs356219 CC carriers developed PD and Parkinsonism earlier when compared with the other subjects. The median age at the onset of PD and Parkinsonism was 64 years for the CC carriers and 68 for both the TC and TT (p at the Log-rank test 0.048) (Supplementary Figure 1).

Results from multinomial regression analyses of risk factors vs. PD and Parkinsonism when considering SNCA rs356219 are reported in Table 4. We observed a significantly increased odds ratios for PD and Parkinsonism with family history of PD or tremor (OR = 4.23; OR = 4.3 respectively), SNCA...
TABLE 1 | Socio-demographics, lifestyle habits and exposures.

	Controls (N = 444)	PD (N = 334)	Parkinsonism (N = 98)	Total (N = 876)	P-value
Sex					0.906
F	174 (39.2%)	126 (37.7%)	37 (37.8%)	337 (38.5%)	
M	270 (60.8%)	208 (62.3%)	61 (62.2%)	539 (61.5%)	
Age					<0.001
Mean (SD)	70.0 (9.8)	71.5 (9.9)	74.3 (7.5)	71.1 (9.7)	
Age at diagnosis					
Mean (SD)	65.2 (10.2)	68.3 (8.5)	65.9 (9.9)		
Age < 50 at diagnosis					
No	294 (91.0%)	87 (97.8%)	381 (92.5%)		
Yes	29 (9.0%)	2 (2.2%)	31 (7.5%)		
Familiarity for PD or tremors					<0.001
No	393 (95.9%)	246 (83.4%)	73 (84.9%)	712 (90.0%)	
Yes	17 (4.1%)	49 (16.6%)	13 (15.1%)	79 (10.0%)	
Smoking habits					0.198
Ever	204 (46.2%)	133 (39.9%)	40 (40.8%)	377 (43.2%)	
Never	238 (53.8%)	200 (60.1%)	58 (59.2%)	496 (56.8%)	
Exposure to metals					0.001
No	404 (94.0%)	283 (86.0%)	87 (90.6%)	774 (90.5%)	
Yes	26 (6.0%)	46 (14.0%)	9 (9.4%)	81 (9.5%)	
Born in the province of Brescia					0.001
No	68 (15.5%)	29 (8.8%)	5 (5.1%)	102 (11.8%)	
Yes	370 (84.5%)	302 (91.2%)	93 (94.9%)	765 (88.2%)	
Born in a farmhouse					0.003
No	386 (88.3%)	267 (80.7%)	76 (77.6%)	729 (84.2%)	
Yes	51 (11.7%)	64 (19.3%)	22 (22.4%)	137 (15.8%)	

Parkinsonisms

- Parkinson’s disease dementia
 - Controls: 35 (35.7%)
 - PD: 35 (35.7%)
- Cortico Basal Syndrome
 - Controls: 12 (12.3%)
 - PD: 12 (12.3%)
- Dementia with Lewy bodies
 - Controls: 11 (11.2%)
 - PD: 11 (11.2%)
- Progressive Supranuclear Palsy
 - Controls: 9 (9.2%)
 - PD: 9 (9.2%)
- Multiple-system atrophy parkinsonian
 - Controls: 5 (5.1%)
 - PD: 5 (5.1%)
- Multiple-system atrophy cerebellar dysfunction
 - Controls: 1 (1.0%)
 - PD: 1 (1.0%)
- Unknown type
 - Controls: 25 (25.5%)
 - PD: 25 (25.5%)

ANOVA and chi-squared test p-values are reported for continuous and categorical variable respectively.

rs356219 (OR = 2.03 CC vs. TT for PD; OR = 2.48 CC vs. TT; OR = 1.85 TC vs. TT for Parkinsonism), being exposed to metals (OR = 2.37 for PD), being born in a farm (OR = 1.77; OR = 2.63 for PD and Parkinsonism respectively) and being born in the province of Brescia (OR = 1.7 for PD). An interaction term between SNCA gene and metal exposure was added only when considering PD cases since we had too few observations in each category for Parkinsonism (among subjects with Parkinsonism and exposed to metals there were one CC, three TC and 5 TT SNCA carriers, respectively). Results showed there were increased OR for TC and CC carriers exposed to metals (Table 4). Figure 1 shows the conditional OR of having PD depending by SNCA polymorphism and metal exposure fixing the other covariates values at reference value highlighting higher risk of PD among CC SNCA carriers and being exposed to metals. However, the interaction term was not statistically significant.

DISCUSSION

This study highlights the increased risk of PD in relation to exposure to metals and increased risk of Parkinsonism and PD in relation to a SCNA polymorphism. The role of genetics is further stressed by the significant effect of positive family history: among the putative risk factors, family history showed the strongest association with Parkinsonism and PD.

This study is consistent with earlier studies about exposure to metals and risk of Parkinsonism and PD where increased risk of PD have been associated with occupational exposure to Mn, Pb, Cu, and Fe (44) and Fe intake (45) (the first study recruited a total of 608 patients while the second study was a meta-analysis on a total of 126,507 subjects). Further, in the province of Brescia, exposure to Mn has been shown as potentially related to the increased risk of Parkinsonism and PD.
TABLE 2 | SNP frequency among cases and controls.

Variables	Controls (N = 444)	PD (N = 334)	Parkinsonism (N = 98)	Total (N = 876)	P-value
SNCA rs356219					0.054
TT	181 (42.6%)	111 (34.5%)	30 (32.6%)	322 (38.4%)	
TC	190 (44.7%)	150 (46.6%)	46 (50.0%)	386 (46.0%)	
CC	54 (12.7%)	61 (18.9%)	16 (17.4%)	131 (15.6%)	
SLC39A8 rs13107325					0.989
CC	359 (85.1%)	276 (85.7%)	76 (85.4%)	711 (85.4%)	
CT	60 (14.2%)	44 (13.7%)	12 (13.5%)	116 (13.9%)	
TT	3 (0.7%)	2 (0.6%)	1 (1.1%)	6 (0.7%)	
SLC30A10 rs12064812					0.849
TT	206 (48.7%)	155 (48.1%)	105 (13.5%)	405 (48.6%)	
CT	172 (40.7%)	133 (41.3%)	76 (13.5%)	342 (41.2%)	
CC	45 (10.6%)	34 (10.6%)	7 (6.7%)	85 (10.2%)	
SLC30A10 rs22757007					0.796
AA	236 (54.5%)	178 (55.5%)	50 (56.2%)	468 (55.0%)	
AC	166 (36.9%)	117 (34.6%)	34 (38.2%)	317 (38.1%)	
CC	26 (6.2%)	26 (8.1%)	5 (5.6%)	57 (6.9%)	
SLC30A10 rs1776029					0.907
GG	257 (60.8%)	191 (59.3%)	75 (70.7%)	502 (58.2%)	
GA	143 (33.8%)	109 (33.9%)	31 (34.8%)	283 (33.9%)	
AA	23 (5.4%)	22 (6.8%)	4 (4.5%)	49 (5.9%)	
ATP13A2 rs4920608					0.114
TT	48 (33.6%)	52 (39.4%)	9 (22.0%)	107 (34.5%)	
TC	67 (48.9%)	66 (50.0%)	22 (53.7%)	155 (50.0%)	
CC	24 (17.5%)	14 (10.6%)	10 (24.4%)	48 (15.5%)	
ATP13A2 rs2871776					0.168
GG	122 (28.8%)	85 (26.0%)	37 (38.5%)	244 (28.8%)	
AG	206 (48.6%)	159 (48.6%)	42 (43.8%)	407 (48.1%)	
AA	96 (22.6%)	83 (25.4%)	17 (17.7%)	193 (21.6%)	
DMT1 rs224589					0.861
CC	248 (58.5%)	192 (58.7%)	51 (53.7%)	491 (58.0%)	
CA	142 (33.5%)	113 (34.6%)	36 (37.9%)	291 (34.4%)	
AA	34 (8.0%)	22 (6.7%)	8 (8.4%)	64 (7.6%)	

Chi-squared test p-values are reported.

TABLE 3 | Results of multinomial regression analysis to test for the association between each polymorphism and PD and Parkinsonism adjusting for all the risk factors (age, gender, smoking status, PD or tremor familiarity, being born in a farm, being exposed to metals and being born in the province of Brescia).

Variables	PD OR 95% CI	P-value
SNCA rs356219		
TC vs. TT	1.24 0.87–1.78	0.230
CC vs. TT	2.03 1.25–3.30	0.004
SLC39A8 rs13107325		
CT vs. CC	1.01 0.64–1.61	0.956
TT vs. CC	0.53 0.05–5.47	0.594
SLC30A10 rs12064812		
CT vs. TT	1.09 0.77–1.54	0.762
CC vs. TT	0.93 0.54–1.60	0.797
SLC30A10 rs22757007		
AA vs. AA	0.93 0.66–1.31	0.957
SLC30A10 rs1776029		
AA vs. GG	1.05 0.74–1.49	0.991
AA vs. GG	1.00 0.50–2.00	0.991
ATP13A2 rs4920608		
TC vs. TT	0.91 0.50–1.67	0.884
CC vs. TT	0.45 0.18–1.13	0.088
ATP13A2 rs2871776		
AG vs. GG	1.14 0.77–1.67	0.378
AA vs. GG	1.18 0.76–1.86	0.125
DMT1 rs224589		
CA vs. CC	1.05 0.74–1.49	0.609
AA vs. CC	0.96 0.52–1.79	0.568

Adjusted regression odds ratios, 95% CI, and their p-values are shown. For SLC39A8 rs13107325 only the association with PD is shown since carriers for the TT genotype were too few for Parkinsonism. p-values below 0.05 are shown in bold.

Based on ecological observation (1). We were not able to consider exposure to single metals since for each element we had too few observations for cases and controls. However, this association was mainly driven by the exposure to Pb which was the most frequent element to which the subjects were exposed to and it is also known as the most dangerous for PD among all metals (46). Our results are also consistent with previous studies on the increased risk of PD and Parkinsonism due to pesticide exposure (47–50) that we identified through the fact of being born in a farm.

Discovery of mutations in genes causing inherited forms of PD and epidemiological, in vitro, and in vivo evidence of environmental risk factors have improved the knowledge of mechanisms underlying PD. Most cases are likely due to different combinations of environmental exposures and genetic susceptibility (35).

SNCA is a key gene in the pathophysiology of Parkinsonism/PD and was the first autosomal dominant gene to be identified. Rare missense mutations as well as gene triplications in SNCA have been identified as causes for rare familial forms of PD, mediating disease through changes in protein fibrillation or higher expression of the protein, alpha-synuclein (51–53). These mutations account for only a small proportion of PD cases. More common genetic variants, although neither necessary nor sufficient to lead to disease, also have a modest effect on increasing the transcription of SNCA. Genome-wide association studies have demonstrated association between SNCA common variants and susceptibility to sporadic PD disease (54). In line with our findings, a recent meta-analysis showed that rs356219 is associated with increased risk of PD (55) (see ref in the comment field), while a recent study found that SNCA can modulate the PD age at onset (56).

Interactions between Mn and SNCA has been studied extensively in in vivo and in vitro studies (32). The neurotoxicity
of SNCA and the role of Mn seem to be intensity and time
depending (31, 32). SNCA may be involved in the regulation
of neuronal manganese and actually be neuroprotective against
acute manganese exposure (33). Chronic manganese exposure
has been shown to promote alpha-Synuclein aggregation and
toxicity in dopaminergic cells (34, 57, 58).

We only observed a marginally significant influence (but
with high uncertainty due to the wide CI) from polymorphism
in ATP13A2 (also known as PARK9) rs4920608 on the risk of
developing PD and Parkinsonism. The same polymorphisms that
were assessed here have shown gene-environment interactions
with Mn on Parkinsonism in other studies (25). A recessive
mutation in the ATP13A2 encoding for the lysosomal P-
type ATPase "PARK9" causes the inherited parkinsonian
syndromes 'Parkinson's disease 9' (or Kufor-Rakeb syndrome,
PARK9, #606693). Loss of ATP13A2 function in mice causes
sensorimotor deficits, increased sensitivity to manganese and
accumulation of alpha-synuclein (35).

No associations were observed between polymorphisms in
SLC30A10 or SLC39A8 and PD or Parkinsonism in this study.
SLC30A10 and SLC39A8 are both involved in Mn transport
(59, 60) and polymorphisms in these genes have been associated
with blood Mn concentrations (27, 60, 61) and linked to
neurological outcomes (27, 62, 63) but so far not to PD. Lack
of evidence of statistical interaction in this, as well as other
studies, may be due to the low frequencies of subjects exposed
to metals and in each polymorphism variant and does not
rule out biological interaction (64). One should also be aware
that statistical interaction depends upon the statistical model
used to represent the relationships between the risk factors and
the disease and that its representation is scale-dependent. In
a generalized linear model interaction is defined as a deviation
from additivity of the effects of the risk factors, measured in
the scale of the linear predictor. According to an inherently
multiplicative model, as the logistic regression model is, the
contemporaneous presence of genetic and environmental risk
factors produces a multiplication of the risk, calculated on an
OR scale. Furthermore, as this is a case-control study, this
study has the disadvantage of recall bias. While case-control
studies are ideal to study disease with a long latency period,
such as Parkinsonism/PD, participants in this study may have
been subjected to recall bias when asked about metal exposure.
We enrolled considerable number of subjects who participated
with the assistance of a caregiver especially among cases (30.5%
while 9.2% among controls), however only 5.3% cases and
1.6% controls needed full caregivers’ assistance. To minimize
the recall bias, we conducted direct face-to-face interviews in
the participating hospitals. In addition, the measurement for
metal exposure was a crude yes or no. Lack of a precise
measurement among participants may have resulted in non-
differential misclassification of exposure, which could have biased
the results toward the null. In addition, there may be other
biological factors that are playing a role in the interaction between
genetics and the outcome of Parkinsonism and PD that are not
yet identified. The strength of this study is the homogeneity
of the study population as well as the completion of data on a large
set of known risk factors for a uniquely susceptible population
with a rare exposure.

Through this work we were able to assess that lifetime
exposure to metals and genetic predisposition in SNCA

TABLE 4 | Results of multinomial and logistic regression analysis to test for the
association between risk factors (age, gender, smoking status, PD or tremor
familiarity, SNCA rs356219, being born in a farm, being exposed to metals
and being born in the BS Province) and PD and Parkinsonism.

Variables	Multinomial regression	Logistic regression
	OR 95% CI P	OR 95% CI P
PD		
Age (q.les) [65, 72] vs. [40, 65]	1.18 0.76–1.83 0.452	1.22 0.78–1.89 0.381
Age (q.les) [72, 78] vs. [40, 65]	1.45 0.92–2.30 0.112	1.45 0.91–2.30 0.118
Age (q.les) [78, 97] vs. [40, 65]	1.83 1.14–2.93 0.012	1.84 1.14–2.96 0.012
Gender (M vs. F)	1.03 0.72–1.46 0.882	1.03 0.72–1.46 0.891
Smoking (ever vs. never)	0.73 0.52–1.03 0.076	0.70 0.50–1.00 0.051
Familiarity for PD or tremor	4.23 2.34–7.65 <0.001	4.26 2.34–7.75 <0.001
Born in the BS Province	1.70 1.00–2.87 0.048	1.71 1.01–2.89 0.047
Being exposed to metals	1.77 1.10–2.85 0.018	1.79 1.11–2.89 0.017
SNCA rs356219 (TC vs. TT)	1.24 0.87–1.78 0.230	1.20 0.82–1.74 0.347
SNCA rs356219 (CC vs. TT)	2.03 1.25–3.30 0.004	1.93 1.15–3.21 0.012
Exposed to metals*	1.39 0.40–4.85 0.603	1.63 0.29–9.03 0.575

*represents the product between metal exposure
SNCA and the role of Mn seem to be intensity and time
depending (31, 32). SNCA may be involved in the regulation
of neuronal manganese and actually be neuroprotective against
acute manganese exposure (33). Chronic manganese exposure
has been shown to promote alpha-Synuclein aggregation and
toxicity in dopaminergic cells (34, 57, 58).
are determinants of PD and parkinsonism in the highly industrialized area of Brescia, Italy.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and approved by Ethical Committee of the Spedali Civili, Brescia. The patients/participants provided their written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

RL: overall coordination. SG, SR, and DH: statistical analysis. KB, LC, CP, and KW: genetic measurement/interpretation. MC, PC, MO, FP, MR, and MT: data collection. UG: epidemiological study design. DH, API, and APA: paper revision/interpretation. DP: occupational history coding and study coordinator. All authors contributed to the article and approved the submitted version.
ACKNOWLEDGMENTS

We would like to thank Ilaria Zerbini and Gaia C. V. Viola from the University of Brescia for their work on genetic assessment.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fneur.2020.556337/full#supplementary-material

REFERENCES

1. Lucchini RG, Albini E, Benedetti L, Borghesi S, Coccaglio R, Malara EC, et al. Metal contamination of home garden soils and cultivated vegetables in an area with a historical ferromanganese emission. J Environ Res. (2015) 138:279–90. doi: 10.1016/j.envres.2015.01.019

2. Ferri R, Donna F, Smith DR, Guazzetti S, Donato A, Peli M, et al. Neurobehavioral effects of manganese in workers from a ferroalloy plant after temporary cessation of exposure. Scand J Work Environ Health. (1995) 21:143–9. doi: 10.5271/sjwh.1369

3. Lucchini R, Apostoli P, Perrone C, Placidi D, Albini E, Migliorati P, et al. Long-term exposure to low levels of manganese oxides and neurofunctional changes in ferroalloy workers. Neurotoxicology. (1999) 20:287–97.

4. Lucchini R, Albini E, Placidi D, Lucchini R, Migliorati P, et al. Metal fractionation in soils and assessment of environmental contamination in Valcamonica, Italy. Environ Sci Pollut Res Int. (2013) 20:5067–75. doi: 10.1007/s11356-013-1473-8

5. Pavilonis BT, Lato PJ, Guazzetti S, Bostick BC, Donna F, Peli M, et al. Manganese concentrations in soil and settled dust in an area with historic ferroalloy production. J Expo Sci Environ Epidemiol. (2015) 25:445–50. doi: 10.1038/jes.2014.70

6. Bilo F, Borgese L, Wambui A, Assi A, Zacco A, Federici S, et al. Comparison of multiple X-ray fluorescence techniques for elemental analysis of particulate matter collected on air filters. J Aerosol Sci. (2018) 122:1–10. doi: 10.1016/j.jaerosci.2018.05.033

7. Borgese L, Salimistraro G, Gianoncelli A, Zacco A, Lucchini R, Zimmerman N, et al. Airborne particulate matter (PM) filter analysis and modeling by total reflection X-ray fluorescence (TXRF) and X-ray standing wave (XSW). Talanta. (2012) 89:99–104. doi: 10.1016/j.talanta.2011.11.073

8. Borgese L, Zacco A, Bontempi E, Colonbi P, Bertuzzi R, Ferretti E, et al. Total reflection of X-ray fluorescence (TXRF): a mature technique for environmental chemical nanoscale metrology. Meas Sci Technol. (2009) 20. doi: 10.1088/0957-0233/20/8/084027

9. Bilo F, Zacco A, Salimistraro G, Gianoncelli A, Zacco A, Lucchini R, Zimmerman N, et al. Metal contamination of garden home soils and cultivated vegetables in the province of Brescia, Italy: implications for human exposure. Sci Total Environ. (2015) 518–519:507–17. doi: 10.1016/j.scitotenv.2015.02.072

10. Bilo F, Borgese L, Wambui A, Assi A, Zacco A, Federici S, et al. Manganese exposures as a determinant of Parkinsonian damage. Cell Biol Toxicol. (2008) 24:445–8. doi: 10.1007/s12017-008-0883-0

11. Ferri R, Donna F, Smith DR, Guazzetti S, Donato A, Peli M, et al. Impact of ferromanganese alloy plants on household dust manganese levels: implications for childhood exposure. Environ Res. (2015) 138:279–90. doi: 10.1016/j.envres.2015.01.019

12. Ferri R, Donna F, Smith DR, Guazzetti S, Zacco A, Rizzo L, et al. Heavy metals in soil and salid in the proximity of historical ferroalloy emission. J Environ Prot. (2012) 3:374–80. doi: 10.4236/ep.2012.35047

13. Ferri R, Hashim D, Smith DR, Guazzetti S, Donna F, Ferretti E, et al. Metal contamination of home garden soils and cultivated vegetables in the province of Brescia, Italy: implications for human exposure. Sci Total Environ. (2015) 518–519:507–17. doi: 10.1016/j.scitotenv.2015.02.072

14. Zacco A, Resola S, Lucchini R, Albini E, Zimmerman N, Guazzetti S, et al. Analysis of settled dust with X-ray fluorescence for exposure assessment of metals in the province of Brescia, Italy. J Environ Monit. (2009) 11:1579–85. doi: 10.1039/b906403c

15. Butler RN, Sprott R, Warner H, Bland J, Feuers R, Forster M, et al. Biomarkers of aging: from primitive organisms to humans. J Gerontol A Biol Sci Med Sci. (2004) 59:B560–7. doi: 10.1093/gerona/59.6.B560

16. Lucchini RG, Guazzetti S, Zoni S, Donna F, Peter S, Zacco A, et al. Tremor, olfactory and motor changes in Italian adolescents exposed to historical ferro-manganese emission. Neurotoxicology. (2012) 33:687–96. doi: 10.1016/j.neuro.2012.01.005

17. Iannilli E, Gasparotti R, Hummel T, Zoni S, Benedetti C, Fedriggi C, et al. Effects of manganese exposure on olfactory functions in teenagers: a pilot study. PLoS ONE. (2016) 11:e0144783. doi: 10.1371/journal.pone.0144783

18. Bauer JA, Claus Henn B, Austin C, Zoni S, Fedriggi C, Cagna G, et al. Manganese in teeth and neurobehavior: Sex-specific windows of susceptibility. Environ Int. (2017) 108:299–308. doi: 10.1016/j.envint.2017.08.013

19. Chiu YM, Claus Henn B, Hsu HL, Pendo MP, Coull BA, Austin C, et al. Sex differences in sensitivity to prenatal and early childhood manganese exposure on neuromotor function in adolescents. Environ Res. (2017) 159:458–65. doi: 10.1016/j.envres.2017.08.035

20. Lucchini R, Selis L, Folli D, Apostoli P, Mutti A, Vanoni O, et al. Neurobehavioral effects of manganese in workers from a ferroalloy plant after temporary cessation of exposure. Scand J Work Environ Health. (1995) 21:143–9. doi: 10.5271/sjwh.1369

21. Lucchini R, Apostoli P, Perrone C, Placidi D, Albini E, Migliorati P, et al. Long-term exposure to low levels of manganese oxides and neurofunctional changes in ferroalloy workers. Neurotoxicology. (1999) 20:287–97.

22. Lucchini R, Albini E, Placidi D, Gasparotti R, Pigozzi MG, Montani G, et al. Brain magnetic resonance imaging and manganese exposure. Neurotoxicology. (2000) 21:769–75. doi: 10.1016/S0094-8910(00)008005

23. Zoni S, Bonetti G, Lucchini R. Olfactory functions at the intersection between environmental exposure to manganese and Parkinsonism. J Trace Elem Med Biol. (2012) 26:179–82. doi: 10.1016/j.jtemb.2012.04.023

24. Lucchini RG, Guazzetti S, Zoni S, Benedetti C, Fedriggi C, Peli M, et al. Neurofunctional dopaminergic impairment in elderly after lifetime exposure to manganese. Neurotoxicology. (2014) 45:309–17. doi: 10.1016/j.neuro.2014.05.006

25. Rentschler G, Covolo L, Haddad A, Lucchini R, Zoni S, Broberg K. ATP1A2 (PARK9) polymorphisms influence the neurotoxic effects of manganese. Neurotoxicology. (2012) 33:697–702. doi: 10.1016/j.neuro.2012.01.007

26. Wahlberg K, Arora M, Curtin A, Curtin P, Wright RO, Smith DR, et al. Polymorphisms in manganese transporters show developmental stage and sex specific associations with manganese concentrations in primary teeth. Neurotoxicology. (2018) 64:103–9. doi: 10.1016/j.neuro.2017.09.003

27. Wahlberg K, Kippler M, Alhamdow A, Rahman SM, Smith DR, Vahter M, et al. Common polymorphisms in the solute carrier SLC30A10 are associated with manganese concentrations in primary teeth. J Trace Elem Med Biol. (2014) 45:309–17. doi: 10.1016/j.jtemb.2014.05.006

28. Wahlberg KE, Guazzetti S, Pineda D, Larsson SC, Fedriggi C, Cagna G, et al. Polymorphisms in manganese transporters. Front Genet. (2018) 9:664. doi: 10.3389/fgene.2018.00664
29. Broberg K, Taj T, Guazzetti S, Peli M, Cagna G, Pineda D, et al. Manganese transporter genetics and sex modify the association between environmental manganese exposure and neurobehavioral outcomes in children. Environ Int. (2019) 130:104908. doi: 10.1016/j.envint.2019.104908

30. Mezzaroba L, Alferri DE, Colado Simão AN, Vissoci Reiche EM. The role of zinc, copper, manganese and iron in neurodegenerative diseases. Neurotoxicology. (2019) 74:230–41. doi: 10.1016/j.neurotox.2019.07.007

31. Peres TV, Schettinger MR, Chen P, Carvalho F, Avila DS, Bowman AB, et al. Manganese-induced neurotoxicity: a review of its behavioral consequences and neuroprotective strategies. BMC Pharmacol Toxicol. (2016). 17:57. doi: 10.1186/s40360-016-0099-0

32. Peres TV, Parmalee NL, Martinez-Finley El, Aschner M. Untangling the manganese-α-synuclein web. Front Neurosci. (2016) 10:364. doi: 10.3389/fnins.2016.00364

33. Duñez T, Carboni E, Lai B, Chen S, Michalke B, Lázaro DF, et al. Alpha-synuclein regulates neuronal levels of manganese and calcium. ACS Chem Neurosci. (2015) 6:1769–79. doi: 10.1021/acscnuro.5b00093

34. Harischandra DS, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. α-Synuclein protects against manganese neurotoxic insult during the early stages of exposure in a dopaminergic cell model of Parkinson’s disease. Toxicol Sci. (2015). 143:454–68. doi: 10.1093/toxsci/kfu247

35. Fleming SM. Mechanisms of gene-environment interactions in Parkinson’s disease. Curr Environ Health Rep. (2017) 4:192–9. doi: 10.1007/s40572-017-0143-2

36. Cicero CE, Mostile G, Vasta R, Rapisarda V, Signorelli SS, Ferrante M, et al. Smoking and Parkinson disease: evidence for gene-by-smoking interactions. J Neurochem. (2015) 137:892–9. doi: 10.1111/jnc.13408

37. Vlaar T, Kab S, Schwaab Y, Frery N, Elbaz A, Moisan F. Association of Parkinson’s disease with industry sectors: a French nationwide incidence study. Eur J Epidemiol. (2018) 33:1101–11. doi: 10.1007/s10654-018-0399-3

38. Williams DR, Litvan I. Parkinsonian syndromes. Continuum. (2013) 19:1189–212. doi: 10.1212/01.COLN.0000436615.24038.e6

39. Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord. (2015) 30:1591–601. doi: 10.1002/mds.26424

40. Suleiman J, El-Hattab AW. ATP13A2-related juvenile-onset Parkinson disease. Brain Dev. (2019) 41:223. doi: 10.1016/j.braindev.2018.08.002

41. Zhang Y, Shu L, Sun Q, Pan H, Guo J, Tang B. A comprehensive analysis of the association between Front Mol Neurosci. (2018) 11:391. doi: 10.3389/fnmol.2018.00391

42. Fan Q, Zhou Y, Yu C, Chen J, Shi X, Zhang Y, et al. Cross-sectional study of expression of divergent metal transporter-1, transferrin, and hepcidin in blood of smelters who are occupationally exposed to manganese. PeerJ. (2016) 4:e2413. doi: 10.7717/peerj.2413

43. Lee PC, Ahmadi I, Loris MA, Mullet C, Paul KC, Bronstein JM, et al. Smoking and Parkinson disease: evidence for gene-by-smoking interactions. Neurology. (2018) 90:e583–92. doi: 10.1212/WNL.0000000000004953

44. Girelli JM, Johnson CC, Rybicki BA, Peterson EL, Kortsha GX, Brown GG, et al. Occupational exposures to metals as risk factors for Parkinson’s disease. Neurotoxicology. (2015) 43:219–209. doi: 10.1016/j.neurotox.2014.12.002

45. Cheng P, Yu J, Huang W, Bai S, Zhu X, Qi Z, et al. Dietary intake of iron, zinc, copper, and risk of Parkinson’s disease: a meta-analysis. Nutr Neurosci. (2015) 18:1086–8. doi: 10.1080/12041748.2014.951277

46. Marras C, Canning CG, Goldman SM. Environment, lifestyle, and Parkinson’s disease: implications for prevention in the next decade. Mov Disord. (2019) 34:801–11. doi: 10.1002/mds.27720

47. Krüger R, Kuhn W, Müller T, Wotildall D, Graeber M, Kösler S, et al. Ala3Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet. (1998) 18:106–8. doi: 10.1038/ng299-106

48. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science. (1997) 276:2045–7. doi: 10.1126/science.276.5321.2045

49. Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, et al. alpha-Synuclein locus triplication causes Parkinson’s disease. Science. (2003) 302:841. doi: 10.1126/science.1090278

50. Nalls MA, Pankratz N, Lill CM, Do CB, Hernandez DG, Saad M, et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet. (2014) 46:989–93. doi: 10.1038/ng.3043

51. Hou B, Zhang X, Liu Z, Wang X, Jie A. Association of rs356219 and rs382086 polymorphisms with the risk of Parkinson’s disease: a meta-analysis. Neurosci Lett. (2019) 709:134380. doi: 10.1016/j.neulet.2019.134380

52. Langley MR, Ghaisas S, Ay M, Luo J, Palanisamy BN, Jin H, et al. Manganese exposure exacerbates progressive motor deficits and neurodegeneration in the MitoPark mouse model of Parkinson’s disease: relevance to gene and environment interactions in metal neurotoxicity. Neurotoxicology. (2018) 64:240–55. doi: 10.1016/j.neurotox.2017.06.002

53. Leyva-Illdes D, Chen P, Zogzas CE, Hutchens S, Mercado JM, Swain CD, et al. SLC20A10 is a cell surface-localized manganese efflux transporter, and parkinsonism-causing mutations block its intracellular trafficking and efflux activity. J Neurosci. (2014) 34:14079–95. doi: 10.1523/JNEUROSCI.2329-14.2014

54. Park JH, Hogrebe M, Grüneberg M, Duchsches I, von der Heiden AL, Reunert J, et al. SLC39A8 Deficiency: a disorder of manganese transport and glycosylation. Am J Hum Genet. (2015) 97:894–903. doi: 10.1016/j.ajhg.2015.11.003

55. Ng E, Lind PM, Lindgren C, Ingelsson E, Mahajan A, Morris A, et al. Genome-wide association study of toxic metals and trace elements reveals novel associations. Hum Mol Genet. (2015) 24:4739–45. doi: 10.1093/hmg/ddv190

56. Carrera N, Arrojo M, Sanjuán J, Ramos-Ríos R, Paz E, Suarez-Rama JL, et al. Association study of nonsynonymous single nucleotide polymorphisms in schizophrenia. Biol Psychiatry. (2012) 71:169–77. doi: 10.1016/j.biopsych.2011.09.032

57. Bruening D, White MJ, Young RM, Voisey J. Subclinical psychotic experiences in healthy young adults: associations with stress and genetic predisposition. Genet Test Mol Biomarkers. (2014) 18:683–9. doi: 10.1089/gtmb.2014.0111

58. Rothman KJ, Greenland S. Modern Epidemiology. 2nd ed. Philadelphia, PA: Lippincott Williams & Wilkins (1998).

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Lucchini, Guazzetti, Renzetti, Broberg, Caci, Covolo, Crippa, Gelatti, Hashim, Oppini, Pepe, Piloto, Passeri, Placidi, Rizzetti, Turla, Wahlberg and Padovani. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.