Liver diseases in pregnancy: Diseases unique to pregnancy

Khulood T Ahmed, Ashraf A Almashhrawi, Rubayat N Rahman, Ghassan M Hammoud, Jamal A Ibdah

Division of Gastroenterology and Hepatology, University of Missouri-Columbia, Columbia, MO 65212, United States

Author contributions: Ahmed KT wrote and revised the manuscript; Almashhrawi AA, Rahman RN, and Hammoud GM were involved in reviewing the literature and collecting data; and Ibdah JA conceived the topic, contributed to the writing, analyzed and edited the manuscript, and provided overall intellectual input into the design and execution of the manuscript.

Correspondence to: Jamal A Ibdah, MD, PhD, Professor, Director, Division of Gastroenterology and Hepatology, University of Missouri-Columbia, 319 Jesse Hall, Columbia, MO 65212, United States. ibdahj@health.missouri.edu

Telephone: +1-573-8827349 Fax: +1-573-8844595

Received: June 10, 2013 Revised: August 5, 2013 Accepted: September 4, 2013 Published online: November 21, 2013

Abstract

Pregnancy is a special clinical state with several normal physiological changes that influence body organs including the liver. Liver disease can cause significant morbidity and mortality in both pregnant women and their infants. This review summarizes liver diseases that are unique to pregnancy. We discuss clinical conditions that are seen only in pregnant women and involve the liver; from Hyperemesis Gravidarum that happens in 1 out of 200 pregnancies and Intrahepatic Cholestasis of Pregnancy (0.5%-1.5% prevalence), to the more frequent condition of Preeclampsia (10% prevalence) and its severe form; Hemolysis, Elevated Liver Enzymes, and Low Platelet Count Syndrome (12% of pregnancies with preeclampsia), to the rare entity of Acute Fatty Liver of Pregnancy (incidence of 1 per 7270 to 13000 deliveries). Although pathogeneses behind the development of these ailments are not fully understood, theories have been proposed. Some propose the special physiological changes that accompany pregnancy as a precipitant. Others suggest a constellation of factors including both the mother and her fetus that come together to trigger those unique conditions. Reaching a timely and accurate diagnosis of such conditions can be challenging. The timing of the condition in relation toward which trimester it starts at is a key. Accurate diagnosis can be made using specific clinical findings and blood tests. Some entities have well-defined criteria that help not only in making the diagnosis, but also in classifying the disease according to its severity. Management of these conditions range from simple medical reme- dies to measures such as immediate termination of the pregnancy. In specific conditions, it is prudent to have expert obstetric and medical specialists teaming up to help improve the outcomes.

© 2013 Baishideng Publishing Group Co., Limited. All rights reserved.

Key words: Liver; Pregnancy; Hyperemesis gravidarum; Intrahepatic cholestasis; Hemolysis, elevated liver enzymes, and a low platelet count; Preeclampsia; Eclampsia; Acute fatty liver

Core tip: Pregnancy is a special clinical state with several normal physiological changes that influence body organs including the liver. Liver disease can cause significant morbidity and mortality in both pregnant women and their infants. Challenges involve making the diagnosis and the methods of treatment and their safety for both the mother and the baby. This review summarizes liver diseases that are unique to pregnancy.

Ahmed KT, Almashhrawi AA, Rahman RN, Hammoud GM, Ibdah JA. Liver diseases in pregnancy: Diseases unique to pregnancy. World J Gastroenterol 2013; 19(43): 7639-7646 Available from: URL: http://www.wjgnet.com/1007-9327/full/v19/i43/7639.htm DOI: http://dx.doi.org/10.3748/wjg.v19.i43.7639

HYPEREMESIS GRAVIDARUM

Although nausea and vomiting of pregnancy affect up to 90% of pregnancies, hyperemesis gravidarum (HG) oc-
curs in approximately 1 out of every 200 pregnancies\(^6\). Women with HG present with severe and persistent vomiting in the first trimester that can cause dehydration, metabolic disturbances, and nutritional deficiencies. HG may result in weight loss and ketonuria. Risk factors for HG include multiple gestations, molar pregnancies, fetal anomalies such as hydrops fetalis and trisomy 21\(^{[2,3,4,5]}\). Not all women with HG develop liver disease. Half of the patients who require hospitalization for HG suffer from liver disease\(^4\). HG was the cause in up to 94% of pregnant women with elevated liver transaminases in their first trimester in one series\(^9\). Veenendaal et al\(^{[8,9]}\) conducted a meta-analysis that showed women with HG are more likely to have low birthweight < 2500 kg (OR = 1.42; 95%CI: 1.27-1.58), small for gestational age (OR = 1.28; 95%CI: 1.02-1.60), and premature delivery (OR = 1.32; 95%CI: 1.04-1.68) than those with no HG. On the other hand, no correlations with Apgar scores, congenital anomalies or perinatal death were identified. Some of those poor outcomes were more likely in pregnant women with low gestational weight gain (< 7 kg)\(^7\).

Pathogenesis

Despite several hypotheses, the pathogenesis of liver disease in HG is not well understood and likely multifactorial. Starvation injury was proposed as an etiology since 1968\(^{[6,8]}\). Over expression of cytokine-producing cells was implicated as a potential cause for pregnancy-related liver diseases such as preeclampsia and HG. Other hypotheses predicted damage to the liver resulting from impaired maternal or fetal mitochondrial fatty acid oxidation, implicating deficiency in long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) as a reason for accumulation of fatty acids in the placenta and eventually causing liver damage\(^{[9]}\). Other report linked fetal deficiency of hepatic carnitine palmitoyltransferase I, the enzyme responsible for transporting long chain fatty acids from the cytoplasm of cells across the outer mitochondrial membrane, to HG\(^{[10-16]}\).

Clinical presentation

The clinical presentation of HG with liver disease can range from mild aminotransferase elevation to rarely severe elevation. No fulminant hepatic failure has been reported with HG\(^{[17,18]}\). Patients usually are acutely ill with signs of dehydration. Rarely, it can present with jaundice and electrolyte disturbances such as hypokalemia and hyponatremia as well as metabolic alkalosis and erythrocytosis. It seems that the severity of nausea and vomiting correlates well with the degree of liver enzymes elevation\(^{[19]}\). No specific abdominal ultrasound findings are associated with HG. Liver biopsy may show necrosis, steatosis or bile plugs\(^{[19,20]}\), and usually is not indicated.

Management

Patients with HG usually require hospitalization for intravenous fluid replacement, anti-emetics, bowel rest, and possible parenteral nutrition.

Prognosis

Hyperemesis gravidarum is usually a reversible condition with no permanent damage to the liver and almost never fatal.

INTRAHEPATIC CHOLESTASIS OF PREGNANCY

Intrahepatic cholestasis of pregnancy (ICP) is a reversible condition of cholestasis that happens usually in the third trimester. Findings such as pruritus, high serum bile acids levels, and abnormal liver function tests usually resolve after delivery. ICP is more prevalent in Scandinavian and South American countries\(^{[21,22]}\). Prevalence in Europe, United States, Canada and Australia is 0.1% to 1.5%\(^{[23]}\). In a recent review, although no causality effect can be claimed, ICP was associated with an increase in the risk of developing hepatobiliary diseases later in life, such as hepatitis C, cirrhosis, and gallstones. Having underlying chronic liver disease (hepatitis C or chronic hepatitis) increased the odds of developing ICP\(^{[24]}\).

Pathogenesis

Genetic predisposition and hormonal factors have been implicated in the pathogenesis of ICP. The familial tendency and the observation of clustering of ICP in families led to the belief that genetics play a role in its development. Although some studies revealed results connecting MDR3 (ABCB4) gene with ICP, several other studies failed to demonstrate such relation\(^{[25-29]}\). Other genes such as ABCB11 and ATP8B1 were examined but showed weaker linkage to ICP\(^{[30-32]}\). Explaining ICP on a molecular basis in relation to sex hormones has gained interest\(^{[33]}\). The facts that ICP happens late in pregnancy and has a higher incidence in multiple gestation pregnancies, and that it resolves after delivery when sex hormones levels fall, make a logical connection between sex hormones and ICP. The estrogen metabolite estradiol-17β-glucuronide and differences in progesterone metabolites between pregnant women with and without ICP were also implicated\(^{[34-38]}\).

Clinical presentation

ICP usually commences in the third trimester although earlier start in the second trimester has been reported\(^{[39]}\). The most common symptom is pruritus. Severity of pruritus increases at night and can involve the palms and soles. Other symptoms include steatorrhea, malabsorption of fat-soluble vitamins, and weight loss. ICP seems also to increase the incidence of gallstones and cholelithiasis\(^{[40]}\). ICP tends to return in subsequent pregnancies with variable severity\(^{[41]}\). Elevated fasting serum bile acids level (> 10 μmol/L) confirms the diagnosis. Aminotransferases can be elevated as well up to 2-10 folds\(^{[42]}\). Alkaline phosphatase levels might not be helpful due to higher physiological levels in late pregnancy. Clinical jaundice is detected in 10%-15% of the cases only and bilirubin levels rarely exceed 100 μmol/L\(^{[23,43]}\). As in all
cholestatic patients, women with ICP tend to have higher low-density lipoprotein cholesterol and triglycerides. Liver biopsy can reveal bland cholestasis (intrahepatic cholestasis without parenchymal inflammation). Liver biopsy is usually not indicated.

Management

Bile acids sequestrants such as cholestyramine, antihistamines and opioid antagonists have been used to alleviate the pruritus. Cholestyramine is an exchange resin that binds bile acids and other anions in the intestine and increases their fecal excretion. Cholestyramine does not improve biochemical parameters or fetal outcomes in ICP\(^{[45]}\). \(\beta\)-adenosyl-methionine has shown limited efficacy in ICP\(^{[46,47]}\). Ursodeoxycholic acid (UDCA) is the first line therapy for ICP. UDCA has shown significant decrease in serum bile acids, serum aspartate aminotransferase and alanine aminotransferase, serum bilirubin, and was effective for pruritus\(^{[48-50]}\). Weekly non-stress testing did not prove to make a difference in ICP-related fetal deaths\(^{[51]}\). Some studies suggested 40 \(\mu\)mol/L as a cutoff level of bile acids, after that fetal complications may happen\(^{[52,53]}\). Others did not observe such correlation until bile acids are > 100 \(\mu\)mol/L\(^{[54]}\). No evidence is strong enough to recommend early delivery (at 37 wk of gestation) for mothers with high bile acids levels, although this strategy is still used in some practices\(^{[55]}\).

Prognosis

Although ICP is a benign condition for the mother, poor fetal outcomes can occur. In some studies ICP resulted in premature births up to 60%. Other complications such as fetal distress and intrauterine fetal death were reported at 61% and 1.6% respectively\(^{[56,57]}\). The onset of pruritus and higher maternal fasting serum bile acids were associated with higher risk for premature delivery\(^{[58]}\).

ACUTE FATTY LIVER OF PREGNANCY

Acute fatty liver of pregnancy (AFLP) is a rare but a serious condition that is unique to pregnancy and happens in the third trimester. AFLP can lead to significant maternal and fetal morbidity and mortality\(^{[59,60]}\). Although rare, incidence of 1 per 7270 to 13000 deliveries, outcomes can be grave with acute liver failure and death\(^{[60,61]}\).

Pathogenesis

Until recently the pathogenesis of AFLP was unknown and still has not been fully elucidated. However, molecular advances over the past decade suggest that AFLP may result from mitochondrial dysfunction. Defects in fetal mitochondrial fatty acid \(\beta\)-oxidation have been linked to development of maternal AFLP, particularly fetal defects in LCHAD, which is part of the mitochondrial trifunctional protein (MTP) complex\(^{[62-64]}\). In a retrospective study, Ibdah et al\(^{[65]}\) examined the association between MTP defects in children and liver disease in their mothers during pregnancy in 24 families with documented pediatric defects in MTP. Fifteen of 24 women (62%) were diagnosed to have had maternal liver disease consistent with AFLP, although in two cases a clear distinction between AFLP and hemolysis, elevated liver enzymes, and a low platelet count (HELLP) syndrome was not possible. Nine of the 24 women had normal pregnancies. All 15 pregnancies with maternal liver disease were associated with fetal LCHAD deficiency. Molecular analysis revealed a common LCHAD mutation, G1528C in the offspring of women who developed AFLP. The results from this study show that when carrying a fetus that is LCHAD deficient, the mother has a high risk of developing AFLP. In a subsequent study, Ibdah et al evaluated fetal genotypes and pregnancy outcomes in 83 pregnancies in 35 families with documented pediatric MTP defects\(^{[66]}\). This study provided further evidence that carrying a fetus with LCHAD deficiency is associated with a high risk for developing AFLP. With the growing evidence suggesting that carrying an LCHAD-deficient fetus is associated with AFLP, it was recommended that neonates born to pregnancies complicated by AFLP be tested for the common G1528C mutation and that this testing when done early after birth can be lifesaving as it may identify LCHAD-deficient children before they manifest the disease allowing early dietary intervention by institution of a diet low in fat, high in carbohydrate, and by substitution of the long chain fatty acids with medium chain fatty acids (for complete review on the association between AFLP and pediatric LCHAD deficiency\(^{[67]}\)).

The precise mechanism by which an LCHAD deficient fetus causes AFLP in a heterozygote mother is still unclear. However, several factors appear to contribute to this fetal-maternal interaction. First, the heterozygosity of the mother for an MTP defect reduces her capacity to oxidize long chain fatty acids. Second, third trimester is accompanied by changes in metabolism, an increased lipolysis, and a reduction in mitochondrial fatty acid oxidation, all increase the susceptibility of the mother who carries a fetus with LCHAD deficiency. Thus it has been speculated that potentially hepatotoxic long-chain 3-hydroxyacyl fatty acid metabolites, produced by the affected fetus or placenta, accumulate in the maternal circulation\(^{[68]}\).

Clinical presentation

Although there were few reports of AFLP starting in the second trimester, it usually presents in the third trimester between the 30th and 38th week of gestation\(^{[69,70]}\). It is more frequent in primiparous women and can return in subsequent pregnancies\(^{[61,62]}\). Non-specific symptoms such as nausea, vomiting, headache, and fatigue can be the initial presentation. Right upper quadrant pain or epigastric pain can occur. Jaundice common and early jaundice may indicate severe disease\(^{[71]}\). Other features such as hypoglycemia, renal failure, coagulopathy, ascites, and encephalopathy were reported frequently. AFLP can result in maternal and fetal demise\(^{[72]}\). Although hypertension can be present, severe hypertension is likely
secondary to the reduction in peripheral vascular resistance associated with liver failure. AFLP is a medical and obstetric emergency and diagnosis relying on clinical and laboratory findings should be prompt. Liver biopsy can be helpful in early and mild cases of AFLP especially if diagnosis is not clear[74]. Liver biopsy is not necessarily needed and should be avoided in more severe cases were the risk of bleeding is high and prompt therapeutic intervention is needed. Although elevated aminotransferases is expected, the severity of liver dysfunction is not always reflected by the degree of elevation. Alkaline phosphatase is usually elevated. Other findings such as leukocytosis, thrombocytopenia, disseminated intravascular coagulopathy (DIC), abnormal prothrombin time, partial thromboplastin time, and normal fibrinogen can occur[74,75]. Ketonuria and proteinuria can be present. Elevated blood urea nitrogen and creatinine indicate renal insufficiency. Low serum albumin and hypoglycemia can occur. Uric acid and ammonia levels can be increased. Hyperuricemia can be an early indicator and develop before hyperbilirubinemia[77,78]. In comparison with diffuse or microvesicular steatosis, Swansea criteria had a sensitivity of 100% (95%CI: 77-100) and specificity of 57% (95%CI: 20-88), with positive and negative predictive values of 85% and 100% in one report (Table 1)[79,81]. Chng et al[82] proposed a set of clinical findings, known as Swansea criteria, to help reach the diagnosis of AFLP. Those diagnostic criteria have not been validated in different populations. Liver biopsy usually displays microvesicular steatosis[83]. Electron microscopy can show mitochondrial disruption. Imaging studies can be useful to exclude other pathologies; but have limited utility in the diagnosis of AFLP.

Management

Stabilization of the mother and early recognition and delivery are the keys for successful management. Close monitoring and management of associated complications is necessary to improve outcomes. Plasmapheresis was used in few series in severe cases with reported success[83,84].

Prognosis

AFLP is severe disease with high maternal (18%) and fetal (23%) mortality. Prenatal diagnosis can provide benefit for both the mother and her fetus in subsequent pregnancies.

PREECLAMPSIA/ECLAMPSIA AND HELLP SYNDROME

Preeclampsia is a syndrome that is unique to pregnancy. Manifestations include hypertension and proteinuria, and can result in fetal growth retardation. By far, pre-eclampsia is the most common serious medical disorder in pregnancy with prevalence up to 10%. It is associated with up to 20% of maternal mortality in developed countries[85,86]. Organ involvement such as liver, brain and kidneys signifies severe disease. Elevated aminotransferases occurs up to 10% of severe preeclampsia cases[86,87]. Although preeclampsia can start as early as the second trimester, liver involvement is mainly seen in the third trimester. Severe preeclampsia can be life threatening to the mother and can result in fetal morbidity and mortality. Eclampsia usually refers to preeclampsia with seizures. HELLP syndrome is a variant of severe preeclampsia that happens in up to 12% of patients with preeclampsia, and entails constellation of findings including hemolysis, elevated liver aminotransferases of and low platelet counts. Table 2 shows the diagnostic criteria of HELLP syndrome.

Pathogenesis

In reviewing liver biopsies and autopsies of cases with preeclampsia, eclampsia and unclassified toxemia, from the Armed Forces Institute of Pathology between 1920 and 1984, Rolfs et al[88] reported that despite that large cerebral and midbrain hemorrhages, extensive thrombosis and infarction as well as cerebral edema with herniation were the major causes of deaths, liver disease contributed to 17 deaths out of the 102 cases reviewed. Extensive periporal lesions producing widespread parenchymal hemorrhage and necrosis were described. Large areas of infarction, wide bands of fibrin replacing liver cells, extravasation of red blood cells, and capillary

Table 1 Proposed (Swansea) diagnostic criteria for acute fatty liver of pregnancy

Vomiting	Abdominal pain
Polydipsia/polyuria	Encephalopathy
Elevated bilirubin	Hypoglycaemia
Elevated uric acid	Leucocytosis
Asceres or bright liver on US	Elevated transaminases
Elevated ammonia	Renal impairment
Coagulopathy	Microvesicular steatosis on liver biopsy

To meet the criteria the patient should have 6 or more of these clinical findings. Source: Ref. [80], with permission; US: Ultrasound scan.

Table 2 Hemolysis, elevated liver function tests, and low platelet counts syndrome diagnostic criteria

HELLP classification	Tennessee classification	Mississippi classification			
1	Platelets ≤ 100 × 10^9/L	Platelets ≤ 50 × 10^9/L	AST ≥ 70 IU/L	AST or ALT ≥ 70 IU/L	AST or ALT ≥ 70 IU/L
	LDH ≥ 600 IU/L	LDH ≥ 600 IU/L			
2	Platelets ≤ 100 × 10^9/L, ≥ 50 × 10^9/L	AST or ALT ≥ 70 IU/L	AST or ALT ≥ 70 IU/L	AST or ALT ≥ 40 IU/L	LDH ≥ 600 IU/L
3	Platelets ≤ 150 × 10^9/L, ≥ 100 × 10^9/L	AST or ALT ≥ 40 IU/L	LDH ≥ 600 IU/L		

AST: Aspartate aminotransferase; Source: Haram et al. BMC Pregnancy and Childbirth 2009 9:8 doi:10.1186/1471-2393-9:8; ALT: Alanine aminotransferase; HELLP: Hemolysis, elevated liver function tests, and low platelet counts; LDH: Lactate dehydrogenase.

Ahmed KT et al. Liver diseases unique to pregnancy
HELLP syndrome presents a comparison between the three preeclampsia-associated liver diseases in pregnancy.

Table 3 Preeclampsia associated liver diseases

Severe preeclampsia and eclampsia	HELLP syndrome	Acute fatty liver of pregnancy
Time	Late second trimester to early postpartum	Third trimester
Prevalence	0.10%	Increases in male fetus, multiple gestations, primiparous women (0.01%)
Findings	Abdominal pain, nausea/vomiting, overlap with findings in preeclampsia	Abdominal pain, nausea/vomiting, jaundice, hypoglycemia and hepatic failure
Tests	Low platelets; hemolysis; elevated liver enzymes; prothrombin time may remain normal; normal fibrinogen	Platelets < 10000; AST and ALT 300-1000 U/L; low antithrombin III, high prothrombin time; low fibrinogen; high bilirubin; DIC
Management	Prompt delivery	Prompt delivery; liver transplant
Outcome	5% maternal death 1% hepatic rupture	≤ 10% maternal death
	1%-30% fetal death	Up to 45% fetal death

HELLP: Hemolysis, elevated liver function tests, and low platelet counts; DIC: disseminated intravascular coagulation; AST: Aspartate aminotransferase; ALT: Alanine aminotransferase.

Table 4 Complications of preeclampsia/hemolysis, elevated liver function tests, and low platelet counts syndrome

Maternal complications	Neonatal complications	Labor complications
Eclampsia	Fetal death	Preterm labor
HELLP syndrome	Prematurity	
Hepatic subcapsular	IUGR	
hematoma, infarction		
or rupture		
Acute renal failure	Respiratory distress	
Stroke, cerebral	syndrome	
hemorrhage, edema and	Intraventricular	
hemiation	hemorrhage	
Pulmonary edema and	Sepsis	
acute respiratory		
distress syndrome		
Laryngeal edema		
Retinal detachment		

HELLP: Hemolysis, elevated liver function tests, and low platelet counts; IUGR: Intrauterine growth retardation.

Studies can have a role in diagnosing complications such as liver infarcts, hematomas, and liver rupture. Table 3 presents a comparison between the three preeclampsia-associated liver diseases in pregnancy.

Management

Successful management strategies rely on early diagnosis and prompt intervention. Women with severe preeclampsia or HELLP syndrome should be hospitalized and closely monitored in labor and delivery units, and placed on bed rest with good blood pressure control (systolic blood pressure < 155 and diastolic blood pressure < 100). The use of intravenous magnesium sulfate to prevent seizures is recommended. Close monitoring of mental status and appropriate use of imaging studies as indicated can help in identifying complications early. Prompt delivery can be the only effective therapy. Timing of delivery should be based on gestational age (reflecting the degree of fetal maturity) and the severity of the disease (maternal morbidity and mortality). Prompt delivery is indicated if the syndrome develops after 34 wk of gestation or earlier if complications occur, such as multi-organ dysfunction, liver infarction or hemorrhage, DIC, renal failure, suspected abruptio placentae, or fetal compromise. Fetal lung maturity is not achieved before 34 wk of gestation. Therefore making a determination about terminating the pregnancy before 34 wk of gestation can be difficult. Although a favorable effect on the platelet count and the aminotransferases levels has been observed, it's not clear if corticosteroids alter the course of the disease, and therefore their use remains controversial. Betamethasone 12 mg intramuscularly every 24 h twice or four doses of intramuscular dexamethasone 6 mg every 12 h is recommended for enhancing fetal maturity. Femoral and maternal complications are listed in Table 4.

Prognosis

Although not very common, preeclampsia and HELLP syndrome remain a significant cause of morbidity and mortality for both pregnant women and their fetuses. With a maternal mortality of 1% in severe preeclampsia...
sia, up to 5% in HELLP syndrome, and up to 30% fetal death rate, early diagnosis and prompt delivery remain the only effective treatment strategy.

REFERENCES

1. Weigel MM, Weigel RM. Nausea and vomiting of early pregnancy and pregnancy outcome. An epidemiological study. Br J Obstet Gynaecol 1989; 96: 1304-1311 [PMID: 2611169]
2. Philip B. Hyperemesis gravidarum: literature review. WMJ 2003; 102: 46-51 [PMID: 12822290]
3. Koch KL, Frissora CL. Nausea and vomiting during pregnancy. Gastroenterol Clin North Am 2003; 32: 201-234, vi [PMID: 1263417]
4. Abell TL, Riely CA. Hyperemesis gravidarum. Gastroenterol Clin North Am 1992; 21: 835-849 [PMID: 1478739]
5. Wong HY, Tan JY, Lim CC. Abnormal liver function tests in women with hyperemesis gravidarum. Obstet Gynecol 1995; 85: 1-6 [PMID: 7683593]
6. Veenendaal MV, van Abeelen AF, Painter RC, van der Post JA, Roseboom TJ. Consequences of hyperemesis gravidarum for offspring: a systematic review and meta-analysis. BJOG 2011; 118: 1302-1313 [PMID: 21749625 DOI: 10.1111/j.1471-0528.2011.03023.x]
7. Dodd I, Fell DB, Joseph KS, Allen VM, Butler B. Outcomes of pregnancies complicated by hyperemesis gravidarum. Obstet Gynecol 2006; 107: 285-292 [PMID: 16449113 DOI: 10.1097/01.ogv.0000231663.09209.95]
8. Morali GA, Braverman DZ. Abnormal liver enzymes and ketonuria in hyperemesis gravidarum. A retrospective review of 80 patients. J Clin Gastroenterol 1990; 12: 303-305 [PMID: 2362099]
9. Adams RH, Gordon J, Combis B. Hyperemesis gravidarum. I. Evidence of hepatic dysfunction. Obstet Gynecol 1968; 31: 659-664 [PMID: 5646397]
10. Outlaw WM, Ibdah JA. Impaired fatty acid oxidation as a cause of liver disease associated with hyperemesis gravidarum. Med Hypotheses 2005; 65: 1150-1153 [PMID: 16040200 DOI: 10.1016/j.mehy.2005.05.035]
11. Ibdah JA, Yang Z, Bennett MJ. Liver disease in pregnancy and fetal fatty acid oxidation defects. Mol Genet Metab 2000; 71: 182-189 [PMID: 11001809 DOI: 10.1006/mgen.2000.3065]
12. Schoeman NM, Batge RG, Wilcken B. Recurrent fatty liver disease of pregnancy associated with a fatty-acid oxidation defect in the offspring. Gastroenterology 1999; 110: 544-548 [PMID: 1985050]
13. Tyni T, Ekholm E, Pihko H. Pregnancy complications are frequent in long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency. Am J Obstet Gynecol 1998; 178: 603-608 [PMID: 9595353]
14. Ibdah JA, Bennett MJ, Rinaldo P, Zhao Y, Gibson B, Sims HF, Strauss AW. A fetal fatty-acid oxidation disorder as a cause of liver disease in pregnant women. N Engl J Med 1999; 340: 1723-1731 [PMID: 10352164 DOI: 10.1056/nejm199906303402302]
15. Innes AM, Sargeant LE, Balachandra K, Roe CR, Wanders RJ, Ruiter JP, Caspero O, Grewar DA, Greenberg CR. Hepatic carnitine palmitoyltransferase I deficiency presenting as maternal illness in pregnancy. Pediatr Res 2000; 47: 43-45 [PMID: 10628081]
16. Shekhawat P, Bennett MJ, Sadovsky Y, Nelson DM, Rakheja D, Strauss AW. Human placenta metabolizes fatty acids; implications for fetal fatty acid oxidation disorders and maternal liver diseases. Am J Physiol Endocrinol Metab 2003; 284: E1098-E1105 [PMID: 12582009 DOI: 10.1152/ajpendo.00481.2002]
17. Conchillo JM, Koek GH. Hyperemesis gravidarum and severe liver enzyme elevation. J Hepatol 2002; 37: 162-163 [PMID: 12076879]
18. Orazi G, Dufour PH, Puech F. Jaundice induced by hyperemesis gravidarum. Int J Gynaecol Obstet 1999; 61: 181-183 [PMID: 9639224]
19. Larrey D, Ruffe B, Feldmann G, Degott C, Danan G, Benhamou JP. Recurrent jaundice caused by recurrent hyperemesis gravidarum. Gut 1984; 25: 1414-1415 [PMID: 6510771]
20. Knox TA, Olans LB. Liver disease in pregnancy. N Engl J Med 1996; 335: 559-576 [PMID: 8678935 DOI: 10.1056/nejm199608223350807]
21. Reyes H, Gonzalez MC, Ribalta J, Abruto H, Matus C, Schramm G, Katz R, Medina E. Prevalence of intrahepatic cholestasis of pregnancy in Chile. Am Intern Med 1978; 88: 487-493 [PMID: 637428]
22. Reyes H, Taboada G, Ribalta J. Prevalence of intrahepatic cholestasis of pregnancy in La Paz, Bolivia. J Chronic Dis 1979; 32: 499-504 [PMID: 457835]
23. Geenes V, Williamson C. Intrahepatic cholestasis of pregnancy. World J Gastroenterol 2009; 15: 2049-2066 [PMID: 19145576]
24. Marschall HU, Wilkström Shemer E, Ludvigsson JF, Stephanson O. Intrahepatic cholestasis of pregnancy and associated hepatobiliary disease: A population-based cohort study. Hepatology 2013; 58: 1385-1391 [PMID: 23564650 DOI: 10.1002/hep.26444]
25. Savander M, Ropponen A, Avela K, Weerasekera N, Cormard B, Hirvioja ML, Rilikonén S, Ylikorkala O, Lehesjoki AE, Williamson C, Aittomäki K. Genetic evidence of heterogeneity in intrahepatic cholestasis of pregnancy. Gut 2003; 52: 1025-1029 [PMID: 12801861]
26. Müllenbach R, Linton KJ, Wiltshire S, Weerasekera N, Chambers J, Elias I, Higgins CF, Johnston DG, McCarthy MJ, Williamson C. ABCB4 gene sequence variation in women with intrahepatic cholestasis of pregnancy. J Med Genet 2003; 40: e70 [PMID: 12624161]
27. Gendrot C, Baqc Y, Brechot MC, Lansac J, Andres C. A second heterozygous MDR3 nonsense mutation associated with intrahepatic cholestasis of pregnancy. J Med Genet 2003; 40: e32 [PMID: 12624161]
28. Dixon PH, Weerasekera N, Linton KJ, Donaldson O, Chambers J, Egginton E, Weaver J, Nelson-Piercy C, de Swiet M, Warness G, Elias I, Higgins CF, Johnston DG, McCarthy MJ, Williamson C. Heterozygous MDR3 missense mutation associated with intrahepatic cholestasis of pregnancy: evidence for a defect in protein trafficking. Hum Mol Genet 2000; 9: 1209-1217 [PMID: 10767346]
29. Baqc Y, Gendrot C, Perrotin F, Lefrou L, Chretien S, Vie-Buret V, Brechot MC, Andres CR. ABCB4 gene mutations and single-nucleotide polymorphisms in women with intrahepatic cholestasis of pregnancy. J Med Genet 2009; 46: 711-715 [PMID: 19584064 DOI: 10.1136/jmg.2009.067937]
30. Dixon PH, van Mil SW, Chambers J, Strautnieks S, Thompson RJ, Lammert F, Kubitza R, Keitel V, Glantz A, Mattsson LA, Marschall HU, Molokhia M, Moore GE, Linton KJ, Williamson C. Contribution of variant alleles of ABCB11 to susceptibility to intrahepatic cholestasis of pregnancy. Gut 2009; 58: 537-544 [PMID: 18987030 DOI: 10.1136/gut.2008.159541]
31. Müllenbach R, Bennett A, Tetlow N, Patel N, Hamilton G, Cheng F, Chambers J, Howard R, Taylor-Forbes RD, Williams J, McCarthy CM. ATP8B1 mutations in British cases with intrahepatic cholestasis of pregnancy. Gut 2005; 54: 829-834 [PMID: 15889793 DOI: 10.1136/gut.2004.058115]
32. Painter JN, Savander M, Ropponen A, Nuppenen N, Rilikon S, Ylikorkala O, Lehesjoki AE, Aittomäki K. Sequence variation in the ATP8B1 gene and intrahepatic cholestasis of pregnancy. Eur J Hum Genet 2005; 13: 435-439 [PMID: 15657619 DOI: 10.1038/sj.ejhg.5201355]
33. Kreek MJ. Female sex steroids and cholestasis. Semin Liver Dis 1987; 7: 8-23 [PMID: 3296217 DOI: 10.1055/s-2008-1040559]
Ahmed KT et al. Liver diseases unique to pregnancy

comparing dexamethasone and ursodeoxycholic acid. Hepatology 2005; 42: 1399-1405 [PMID: 16317669 DOI: 10.1002/hep.20922]

Glantz A, Marschall HU, Mattsson LA. Intrahepatic cholestasis of pregnancy: Relationships between bile acid levels and fetal complication rates. Hepatology 2004; 40: 467-474 [PMID: 15368452 DOI: 10.1002/hep.20336]

Rook M, Vargas J, Caughey A, Bachetti P, Rosenthal P, Bull L. Fetal outcomes in pregnancies complicated by intrahepatic cholestasis of pregnancy in a Northern California cohort. PLoS One 2012; 7: e28343 [PMID: 22403655 DOI: 10.1371/journal.pone.0028343]

Royal College of Obstetricians and Gynaecologists. Obstetric cholestasis. London (UK): RCOG Green-top Guideline 2011, No. 43: 7

Joshi D, James A, Quaglia A, Westbrook RH, Heneghan MA. Liver disease in pregnancy. Lancet 2010; 375: 594-605 [PMID: 20159295 DOI: 10.1016/s0140-6736(09)61495-1]

Kondrackiene J, Beuers U, Zalinkevicius R, Tauschel HD, Gintautas V, Kupcinskas L. Predictors of premature delivery in patients with intrahepatic cholestasis of pregnancy. World J Gastroenterol 2007; 13: 6226-6230 [PMID: 18069764]

Riely CA. Acute fatty liver of pregnancy. SeminLiverDis1987; 7: 47-54 [PMID:3262615 DOI:10.1055/s-2008-1040563]

Pockros PJ, Peters RL, Reynolds TB. Idiopathic fatty liver of pregnancy: findings in ten cases. Medicine (Baltimore) 1984; 63: 1-11 [PMID:6840883]

Castro MA, Goodwin TM, Shaw KJ, Ouzounian JJ, McGhee WG. Disseminated intravascular coagulation and antithrombin III depression in acute fatty liver of pregnancy. Am J Obstet Gynecol 1996; 174: 211-216 [PMID:8572009]

Ibdah JA. Acute fatty liver of pregnancy: an update on pathogenesis and clinical implications. World J Gastroenterol 2006;12:7397-7404 [PMID:17167825]

Sims HF, Brackett JC, Powell CK, Treem WR, Hale DE, Bennett MJ, Gibson B, Shapiro S, Strauss AW. The molecular basis of pediatric long chain 3-hydroxyacyl-CoA dehydrogenase deficiency associated with maternal acute fatty liver of pregnancy. Proc Natl Acad Sci USA 1995;92:841-845 [PMID:7846063]

Treem WR, Shoup ME, Hale DE, Bennett MJ, Rinaldo P, Millington DS, Stanley CA, Riely CA, Hyams JS. Acute fatty liver of pregnancy: hemolysis, elevated liver enzymes, and low platelets syndrome, and long chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency. Am J Gastroenterol 1996;91:2293-2300 [PMID:8931405]

Treem WR, Rinaldo P, Hale DE, Stanley CA, Millington DS, Hyams JS, Jackson S, Turnbull DM. Acute fatty liver of pregnancy and long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Proc Natl Acad Sci USA 1995;92:841-845 [PMID:7846063]

Isaacs JD, Sims HF, Powell CK, Bennett MJ, Hale DE, Treem WR, Strauss AW. Maternal acute fatty liver of pregnancy associated with fetal trifunctional protein deficiency: molecular characterization of a novel maternal mutant allele. Pediatr Res 1996;40:393-398 [PMID:8665274 DOI:10.1203/00006560-199609000-00005]

Yang Z, Zhao Y, Bennett MJ, Strauss AW, Ibdah JA. Fetal genotypes and pregnancy outcomes in 35 families with mitochondrial trifunctional protein mutations. Am J Obstet Gynecol 2002; 187: 715-720 [PMID:12237653]

Buytaert IM, Elewaut GP, Van Kets HE. Early occurrence of acute fatty liver in pregnancy. Am J Gastroenterol 1996; 91: 603-604 [PMID:8633521]

Monga M, Katz AR. Acute fatty liver in the second trimester of pregnancy. Pan Creas Update OB Gyns 1998; 5: 191 [PMID:10838361]

Monga M, Katz AR. Acute fatty liver in the second trimester. Obstet Gynecol 1999; 93: 811-813 [PMID:10912403]

Suzuki S, Watanabe S, Araki T. Acute fatty liver of pregnancy at 23 weeks of gestation. BJOG 2001; 108: 223-224 [PMID:
Ahmed KT et al. Liver diseases unique to pregnancy

71 Wilcken B, Leung KC, Hammond J, Kamath R, Leonard JV. Pregnancy and fetal long-chain 3-hydroxacyl coenzyme A dehydrogenase deficiency. Lancet 1991; 341: 407-408 [PMID: 8094173]

72 Majed H, Charra B, Hamoudi D, Noun M, Barrou L. Acute fatty liver of pregnancy. Arch Gynecol Obstet 2006; 274: 349-353 [PMID: 16868757 DOI: 10.1007/s00404-006-0203-6]

73 Vigil-de Gracia P, Montufar-Rueda C. Acute fatty liver of pregnancy: diagnosis, treatment, and outcome based on 35 consecutive cases. J Matern Fetal Neonatal Med 2011; 24: 1143-1146 [PMID: 21668524 DOI: 10.3109/14767058.2010.531325]

74 Holzbach RT. Acute fatty liver of pregnancy with disseminated intravascular coagulation. Obstet Gynecol 1974; 43: 740-744 [PMID: 4545029]

75 Burroughs AK, Seong NH, Dojcinov DM, Scheuer PJ, Sherlock SV. Idiopathic severe acute fatty liver of pregnancy in 12 patients. Q J Med 1982; 51: 481-497 [PMID: 7156326]

76 Cano RI, Delman MR, Pitchumoni CS, Lev R, Rosenthal WS. Acute fatty liver of pregnancy. Complication by disseminated intravascular coagulation. JAMA 1975; 235: 159-161 [PMID: 1172681]

77 Kuehe YK, Wang TL, Yeo TC, Guan R. A non-fatal case report of acute fatty liver of pregnancy. Ann Acad Med Singapore 1991; 20: 789-791 [PMID: 1803970]

78 Hsiung R, Hassellman M, Lutun P, Gordji M. Acute fatty liver of pregnancy. Diagnostic value of hyperuricemia in the pre-jaundice stage. J Gynecol Obstet Biol Reprod (Paris) 1988; 17: 901-905 [PMID: 3221052]

79 Knight M, Nelson-Piercy C, Kirczucz J, Spark P, Brocklehurst P. A prospective national study of acute fatty liver of pregnancy in the UK. Gut 2008; 57: 951-956 [PMID: 18332072 DOI: 10.1136/gut.2008.148676]

80 Chi’ng CL, Morgan M, Hainsworth I, Kingham JG. Prospective study of liver dysfunction in pregnancy in Southwest Wales. Gut 2002; 51: 876-880 [PMID: 12427795]

81 Goel A, Ramakrishna B, Zachariah U, Ramachandran J, Eappen CE, Kurian G, Chandy G. How accurate are the Swansone criteria to diagnose acute fatty liver of pregnancy in predicting hepatic microvesicular steatosis? Gut 2011; 60: 138-139; author reply 139-140 [PMID: 20938054 DOI: 10.1136/gut.2009.198465]

82 Minakami H, Takahashi T, Tamada T. Should routine liver biopsy be done for the definite diagnosis of acute fatty liver of pregnancy? Am J Obstet Gynecol 1991; 164: 1040-1046 [PMID: 16370212]

83 Seyed Majidi MR, Vafaeeinahesh J. Plasmapheresis in acute Fatty liver of pregnancy: an effective treatment. Case Rep Obstet Gynecol 2013; 2013: 615975 [PMID: 23424692 DOI: 10.1155/2013/615975]

84 Dovlatian AA, Bentsianov VA. Plasmapheresis in the treatment of complicated forms of acute suppurative pyelonephritis in pregnant women. Urol Nefrol (Mosc) 1995; (1): 22-25 [PMID: 7732626]

85 National High Blood Pressure Education Program Working Group Report on High Blood Pressure in Pregnancy. Am J Obstet Gynecol 1990; 163: 1691-1712 [PMID: 2104525]

86 Report of the National High Blood Pressure Education Program Working Group on High Blood Pressure in Pregnancy. Am J Obstet Gynecol 2000; 183: 51-82 [PMID: 10920546]

87 Sibai BM, Mercer B, Saringolu C. Severe preeclampsia in the second trimester: recurrence risk and long-term prognosis. Am J Obstet Gynecol 1991; 165: 1408-1412 [PMID: 1958780]

88 Rolffes DB, Ishak KG. Liver disease in toxemia of pregnancy. Am J Gastroenterol 1986; 81: 1138-1144 [PMID: 3788923]

89 Arias F, Mancilla-Jimenez R. Hepatic fibrinogen deposits in pre-eclampsia. Immunofluorescent evidence. N Engl J Med 1976; 295: 578-582 [PMID: 950973 DOI: 10.1056/nejm197609092951102]

90 Zhou Y, McMaster M, Woo K, Janatpour M, Perry J, Karpanen T, Attilio K, Damsky C, Fisher SJ. Vascular endothelial growth factor ligands and receptors that regulate human cytotrophoblast survival are dysregulated in severe preeclampsia and hemolysis, elevated liver enzymes, and low platelets syndrome. Am J Pathol 2002; 160: 1405-1423 [PMID: 11943725 DOI: 10.1016/s0002-9440(10)62567-9]

91 Dekker GA, Robillard PY, Hulsce T. Immune maladaptation in the etiology of preeclampsia: a review of corroboration epidemiologic studies. Obstet Gynecol Surv 1998; 53: 377-382 [PMID: 9618714]

92 Pollitt RJ. Disorders of mitochondrial long-chain fatty acid oxidation. J Inherit Metab Dis 1995; 18: 473-490 [PMID: 7494405]

93 Barton JR, Sibai BM. Hepatic imaging in HELLP syndrome (hemolysis, elevated liver enzymes, and low platelet count). Am J Obstet Gynecol 1996; 174: 1820-1825; discussion 1825-1827 [PMID: 8678146]

94 Barton JR, Sibai BM. Gastrointestinal complications of pre-eclampsia. Semin Perinatol 2009; 33: 179-188 [PMID: 19464509 DOI: 10.1053/j.semperi.2009.02.006]

95 Sibai BM, Ramadan MK, Usta I, Salama M, Mercer BM, Friedman SA. Maternal morbidity and mortality in 442 pregnancies with hemolysis, elevated liver enzymes, and low platelets (HELLP syndrome). Am J Obstet Gynecol 1993; 169: 1000-1006 [PMID: 8238109]

96 Sibai BM. Diagnosis, controversies, and management of the syndrome of hemolysis, elevated liver enzymes, and low platelet count. Obstet Gynecol 2004; 103: 981-991 [PMID: 15121574 DOI: 10.1097/00006245.35811.2a]

97 Haddad B, Barton JR, Livingston JH, Chahine R, Sibai BM. Risk factors for adverse maternal outcomes among women with HELLP (hemolysis, elevated liver enzymes, and low platelet count) syndrome. Am J Obstet Gynecol 2000; 183: 444-448 [PMID: 10942484 DOI: 10.1067/mob.2000.105915]

98 MacKenna J, Dover NL, Brame RG. Plasmapheresis associated with hemolysis, elevated liver enzymes, and low platelets- an obstetric emergency? Obstet Gynecol 1983; 62: 751-754 [PMID: 6634002]

99 Heller CS, Elliott JP. High-order multiple pregnancies complicated by HELLP syndrome. A report of four cases with corticosteroid therapy to prolong gestation. J Reprod Med 1997; 42: 743-746 [PMID: 9408876]

100 Martin JN, Blake PG, Perry KG, McCaul JF, Hess LW, Martin RW. The natural history of HELLP syndrome: patterns of disease progression and regression. Am J Obstet Gynecol 1991; 164: 1500-1509; discussion 1509-1513 [PMID: 2048596]

101 Effect of corticosteroids for fetal maturation on perinatal outcomes. NIH Consensus Development Panel on the Effect of Corticosteroids for Fetal Maturation on Perinatal Outcomes. JAMA 1995; 273: 413-418 [PMID: 7823388]

102 Heyborne KD. Burke MS, Porreco RP. Prolongation of pre-mature gestation in women with hemolysis, elevated liver enzymes and low platelets. A report of five cases. J Reprod Med 1990; 35: 53-57 [PMID: 2299613]

103 Tomplkin M, Thiagarajah S. HELLP (hemolysis, elevated liver enzymes, and low platelet count) syndrome: the benefit of corticosteroids. Am J Obstet Gynecol 1999; 181: 304-309 [PMID: 10456703]

104 Varsel F, Aydin T, Gücer F. HELLP syndrome and postpartum corticosteroids. Int J Gynaecol Obstet 2001; 73: 157-159 [PMID: 11336737]

P- Reviewers: AssNy N, Iwasaki Y, ManesekK
S- Editor: Gou SX L- Editor: A E- Editor: Wang CH
