Application of non-bijective transformations to various potentials

Maurice KIBLER

Institut de Physique Nucléaire (et IN2P3)
Université Claude Bernard Lyon-1
43, Bd du 11 Novembre 1918
69622 Villeurbanne Cedex
France

Paper presented at the XVIth International Colloquium on Group Theoretical Methods in Physics (Varna, Bulgaria, 15-20 June 1987) and published in “Group Theoretical Methods in Physics”, edited by H.-D. Doebner, J.-D. Hennig and T.D. Palev (Springer-Verlag, Berlin, 1988): Lecture Notes in Physics 313, 238 (1988).
Application of non-bijective transformations to various potentials

M. KIBLER
Institut de Physique Nucléaire (et IN2P3)
Université Claude Bernard Lyon-1
69622 Villeurbanne Cedex
France

ABSTRACT

Some results about non-bijective quadratic transformations generalizing the Kustaanheimo-Stiefel and the Levi-Civita transformations are reviewed in §1. The three remaining sections are devoted to new results: §2 deals with the Lie algebras under constraints associated to some Hurwitz transformations; §3 and §4 are concerned with several applications of some Hurwitz transformations to wave equations for various potentials in R^3 and R^5.

1. Non-bijective canonical transformations

We start with a $2m$-dimensional ($2m = 2, 4, 8, \ldots$) Cayley-Dickson algebra $A(c)$ where c stands for a p-uple (c_1, c_2, \ldots, c_p) such that $c_i = \pm 1$ for $i = 1, 2, \ldots, p$ and $2^p = 2m$. (Remember that $A(-1)$, $A(-1, -1)$ and $A(-1, -1, -1)$ are nothing but the algebras of complex numbers, usual quaternions and usual octonions, respectively.) Let $u = u_0 + \sum_{i=1}^{2m-1} u_i e_i$ be an element of $A(c)$ where $u_0, u_1, \ldots, u_{2m-1}$ are the components of u and $\{e_1, e_2, \ldots, e_{2m-1}\}$ is a system of generators for $A(c)$. We associate to the hypercomplex number u the element \hat{u} of $A(c)$ defined by $\hat{u} = u_0 + \sum_{i=1}^{2m-1} \epsilon_i u_i e_i$ where $\epsilon_i = \pm 1$ for $i = 1, 2, \ldots, 2m - 1$. Let us consider the right (or left) application $A(c) \rightarrow A(c) : u \mapsto x = uu$ (or $\hat{u}u$).

Three cases can occur according to the form taken by \hat{u}.

A. For $\hat{u} = u$: The (right = left) application $u \mapsto x = u^2$ defines a map $R^{2m} \rightarrow R^{2m}$ which constitutes an extension of the Levi-Civita map [1] corresponding to $2m = 2$ and $c_1 = -1$ and of the map introduced in [2] and corresponding to $2m = 4$ and $c_1 = c_2 = -1$. The maps $R^{2m} \rightarrow R^{2m}$ for $2m = 2, 4, 8, \ldots$ correspond to the quasiHurwitz transformations of [3]. From a geometrical viewpoint, the map $R^{2m} \rightarrow R^{2m}$ for fixed $2m$ is associated to a fibration on spheres with discrete fiber in the compact case where $c_i = -1$ ($i = 1, 2, \ldots, p$) and to a fibration on
hyperboloids with discrete fiber in the remaining non-compact cases.

B. For \(\hat{u} = j(u) \): By \(j(u) \) we mean that the coefficients \(\epsilon_i \) \((i = 1, 2, \ldots, 2m-1)\) are such that the application \(j : A(c) \to A(c) : u \mapsto \hat{u} = j(u) \) defines an anti-involution of the algebra \(A(c) \). Then, the right (or left) application \(u \mapsto x = uj(u) \) (or \(j(u)u \)) defines a map \(R^{2m} \to R^{2m-n} \) with \(n = m - 1 + \delta(m, 1) \) or \(2m - 1 \) being the number of zero components of \(x \). The latter map constitutes an extension of the Kustaanheimo-Stiefel map [4] which corresponds to \(2m = 4, n = 1, c_1 = c_2 = -1 \) and, for example, \(\epsilon_1 = -\epsilon_2 = -\epsilon_3 = -1 \). The map introduced by Iwai [5] is obtained when \(2m = 4, n = 1, c_1 = -c_2 = -1 \) and, for example, \(\epsilon_1 = -\epsilon_2 = -\epsilon_3 = -1 \). The maps \(R^{2m} \to R^{2m-n} \) for \(2m = 2, 4, 8, \ldots \) correspond to the Hurwitz transformations of [3]. From a geometrical viewpoint, the maps \(R^{2m} \to R^{2m-n} \) for \(2m = 2, 4, 8 \) and 16 are associated to the classical Hopf fibrations on spheres with compact fiber in the compact cases and to fibrations on hyperboloids with either compact or non-compact fiber in the non-compact cases.

C. For \(\hat{u} \neq u \) or \(j(u) \): This case does not lead to new transformations for \(2m = 2 \) and 4. Some new transformations, referred to as pseudoHurwitz transformations in [3], arise for \(2m \geq 8 \). In particular for \(2m = 8 \) and \(\sum_{i=1}^{7} \epsilon_i = -3 \) or 5, the application \(u \mapsto uu \) (or \(uu \)) defines a map \(R^8 \to R^7 \). Such a map is associated to a Hopf fibration on spheres with compact fiber for \((c_1, c_2, c_3) = (-1, -1, -1) \) and to fibrations on hyperboloids with either compact or non-compact fiber for \((c_1, c_2, c_3) \neq (-1, -1, -1) \).

The various transformations mentioned above may be presented in matrix form. (A detailed presentation can be found in [3].) Let us define the \(2m \times 2m \) matrix \(\epsilon = \text{diag}(1, \epsilon_1, \epsilon_2, \ldots, \epsilon_{2m-1}) \) and let \(u \) and \(x \) be the \(2m \times 1 \) column-vectors whose entries are the components of the hypercomplex numbers \(u \) and \(x \), respectively. Then, the \(R^{2m} \to R^{2m-p} \) transformation defined by \(u \mapsto x = uu \) (where \(p = 0 \) and \(2m = 2, 4, 8, \ldots \) for quasiHurwitz transformations, \(p = m - 1 + \delta(m, 1) \) or \(2m - 1 \) and \(2m = 2, 4, 8, \ldots \) for Hurwitz transformations, and \(p \geq 1 \) and \(2m \geq 8 \) for pseudoHurwitz transformations) can be described by \(x = A(u) \epsilon u \) where \(A(u) \) is a \(2m \times 2m \) matrix. For \(2m = 2, 4 \) or 8, the matrix \(A(u) \) may be written in terms of Clifford matrices and constitutes an extension of the Hurwitz matrices occurring in the Hurwitz factorization theorem (see [3]). Note that there are \(p \) zero entries in the \(2m \times 1 \) column-vector \(x \) with, in particular, \(p = 2m - 1 \) or \(m - 1 + \delta(m, 1) \) for Hurwitz transformations.

2. Lie algebras under constraints
In this section, we shall restrict ourselves to the Hurwitz transformations for $2m = 2, 4$ and 8 and, more specifically, to the $R^{2m} \to R^{2m-n}$ transformations with $n = m - 1 + \delta(m, 1)$. These transformations are clearly non-bijective and this fact may be transcribed as follows. Let us consider the $2m \times 1$ column-vector $2A(u) \epsilon du$ where du is the differential of the $2m \times 1$ column-vector u. It can be seen that $2m - n$ components of $2A(u) \epsilon du$ may be integrated to give the $2m - n$ non-zero components of $x = A(u) \epsilon u$. Further, the remaining n components of $2A(u) \epsilon du$ are one-forms $\omega_1, \omega_2, \ldots, \omega_n$ which are not total differentials. In view of the non-bijective character of the map $R^{2m} \to R^{2m-n}$, we can assume that $\omega_i = 0$ for $i = 1, 2, \ldots, n$. To each one-form ω_i, we may associate a vector field X_i which is a bilinear form in the u_α and $p_\alpha = \partial/\partial_\alpha$ for $\alpha = 0, 1, \ldots, 2m - 1$. An important property, for what follows, of the latter vector fields is that $X_i \psi = 0$ ($i = 1, 2, \ldots, n$) for any function ψ of class $C^1(R^{2m-n})$ and $C^1(R^{2m})$ in the variables of type x and u, respectively. In addition, it can be verified that the n operators X_i ($i = 1, 2, \ldots, n$) span a Lie algebra. We denote L_0 this algebra and refer it to as the constraint Lie algebra associated to the $R^{2m} \to R^{2m-n}$ Hurwitz transformation.

Now, it is well known that the $2m(4m + 1)$ bilinear forms $u_\alpha u_\beta$, $u_\alpha p_\beta$ and $p_\alpha p_\beta$ for $\alpha, \beta = 0, 1, \ldots, 2m - 1$ span the real symplectic Lie algebra $sp(4m, R)$ of rank $2m$. We may then ask the question: what remains of the Lie algebra $sp(4m, R)$ when we introduce the n constraint(s) $X_i = 0$ ($i = 1, 2, \ldots, n$) into $sp(4m, R)$. (It should be noted that each constraint $X_i = 0$ may be regarded as a primary constraint in the sense of Dirac, cf. [6,7].) This amounts in last analysis to look for the centralizer of L_0 in $L = sp(4m, R)$ [8]. The resulting Lie algebra $L_1 = cent_L L_0 / L_0$ is referred to as the Lie algebra under constraints associated to the $R^{2m} \to R^{2m-n}$ Hurwitz transformation. An important result is the following.

Result 1. For fixed $2m$, the constraint Lie algebra L_0 and the Lie algebra under constraints L_1 are characterized by the (compact or non-compact) nature of the fiber of the fibration associated to the $R^{2m} \to R^{2m-n}$ Hurwitz transformation. The determination of L_1 has been achieved, in partial form, for one of the cases $(2m, 2m - n) = (4, 3)$ in [9] and, in complete form, for all the cases $(2m, 2m - n) = (2, 1), (4, 3)$ and $(8, 5)$ in [8].

3. **Generalized Coulomb potentials in R^3 and R^5**

Let us begin with the “Coulomb” potential ($-Ze^2$ is a coupling constant):

$$V_5 = -Ze^2/(x_0^2 - c_2x_2^2 + c_1c_2x_3^2 - c_3x_4^2 + c_1c_3x_5^2)^{1/2}$$

in R^5 equipped with the metric $\eta_5 = diag(1, -c_2, c_1c_2, -c_3, c_1c_3)$ and consider
the Schrödinger equation for this potential and this metric. (The corresponding
generalized Laplace operator is $\tilde{\nabla} \eta \nabla$ in the variables $(x_0, x_2, x_3, x_4, x_5)$.) We
now apply a $R^8 \to R^5$ Hurwitz transformation to the considered problem. The
knowledge of the transformation properties of the generalized Laplace operators
under the $R^8 \to R^5$ Hurwitz transformations leads to the following result.

Result 2. The Schrödinger equation for the potential V_5 in R^5 with the
metric η_5 and the energy E is equivalent to a set consisting of (i) one Schrödinger
equation for the harmonic oscillator potential

$$V_8 = -4E(u_0^2 - c_1u_1^2 - c_2u_2^2 + c_1c_2u_3^2 - c_3u_4^2 + c_1c_3u_5^2 + c_2c_3u_6^2 - c_1c_2c_3u_7^2)$$

in R^8 with the metric $\eta_8 = diag(1, -c_1, -c_2, c_1c_2, -c_3, c_1c_3, c_2c_3, -c_1c_2c_3)$ and the
energy $4Ze^2$ and (ii) three first-order differential equations associated to the $n = 3$
constraints of the $R^8 \to R^5$ Hurwitz transformations.

A similar result is obtained under the evident replacements: $V_5 \to V_3 =
-Ze^2/(x_0^2 - c_2x_2^2 + c_1c_2x_3^2)^{1/2}$, $\eta_5 \to \eta_3 = diag(1, -c_2, c_1c_2)$, $V_8 \to V_4 = -4E(u_0^2 -
c_1u_1^2 - c_2u_2^2 + c_1c_2u_3^2)$, $\eta_8 \to \eta_4 = diag(1, -c_1, -c_2, c_1c_2)$ and $n = 3 \to n = 1$. The
so-obtained result for the generalized Coulomb potential V_3 in R_3 equipped with
the metric η_3 thus corresponds to $c_3 = 0$. Note that the usual Coulomb potential
$-Ze^2/(x_0^2 + x_2^2 + x_3^2)^{1/2}$ corresponds to $c_3 = 0$ and $c_1 = c_2 = -1$. (The case of
V_3 with $c_1 = c_2 = -1$ has been investigated in [10,11,12] and the case of V_5 with
$c_1 = c_2 = c_3 = -1$ has been recently considered in [3,12,13].)

As a corollary, information on the spectrum of the hydrogen atom in R^5 (R^3)
with the metric η_5 (η_3) can be deduced from the knowledge of the spectrum of the
harmonic oscillator in R^8 (R^4) with the metric η_8 (η_4). By way of illustration, we
shall continue with $c_1 = c_2 = c_3 = -1$ (i.e., the case of a Coulomb potential in R^5
with unit metric), on the one hand, and with $c_1 = c_2 = c_3 = -1$ (i.e., the case of
the usual Coulomb potential), on the other hand. The non-invariance dynamical
algebras for the corresponding isotropic harmonic oscillators in R^8 and R^4 are
clearly $sp(16, R)$ and $sp(8, R)$, respectively. Then, the non-invariance dynamical
algebras for the corresponding hydrogen atoms in R^5 and R^3 are nothing but
the Lie algebras under constraints L_1 associated to the $R^8 \to R^5$ and $R^4 \to R^3$
compact Hurwitz transformations, respectively. The results for L_1 of [8,9] yield
the non-invariance dynamical algebras $L_1 = so(6, 2)$ and $so(4, 2)$ for the hydrogen
atoms in R^5 and R^3, respectively.

To close this section, let us show how to obtain the discrete spectra for
the R^5 and R^3 hydrogen atoms under consideration. A careful examination of
the hydrogen-oscillator connection shows that energies and coupling constants are
exchanged in such a connection. As a matter of fact, we have

\[(1/2)\mu(2\pi\nu)^2 = -4E \quad h\nu(\sum_{\alpha=0}^{2m-1} n_\alpha + m) = 4Ze^2 \quad n_\alpha \in N \quad 2m = 8 \text{ or } 4\]

where \(\mu(2\pi\nu)^2\) is the coupling constant for the oscillator (whose mass \(\mu\) is the reduced mass of the Coulomb system) and \(n_\alpha\) for \(\alpha = 0, 1, \ldots, 2m - 1\) are the (Cartesian) quantum numbers for the isotropic harmonic oscillator in \(R^{2m}\) (\(2m = 8\) or \(4\)). Furthermore, the \(n\) constraint(s) associated to the \(R^{2m} \rightarrow R^{2m-n}\) Hurwitz transformations for \(2m = 8\) and \(4\) yield \(\sum_{\alpha=0}^{2m-1} n_\alpha + 2 = 2k\) where \(k\) (\(= 1, 2, 3, \ldots\)) plays the role of a principal quantum number (cf. [11]). By eliminating the frequency \(\nu\) from the formulas connecting coupling constants and energies, we end up with

\[E = E_0/(k + m/2 - 1)^2 \quad E_0 = -\mu Z^2 e^4/(2\hbar^2) \quad k = 1, 2, 3, \ldots\]

where \(m/2 = 1\) and \(2\) for the \(R^3\) and \(R^5\) hydrogen atoms, respectively, in agreement with the Bohr-Balmer formula in arbitrary dimension (see, for example, [7,14]).

4. Axial potentials in \(R^3\)

A. Generalized Hartmann potential in \(R^3\). Let us consider the potential

\[W_3 = -\eta\sigma^2/r + (1/2)q\eta^2\sigma^2/\rho^2\]

in \(R^3\) equipped with the metric \(\eta_3\). The variables \(r\) and \(\rho\) are “distances” in \(R^3\) and \(R^2\) given by \(r = (x_0^2 - c_2 x_2^2 + c_1 c_2 x_3^2)^{1/2}\) and \(\rho = (-c_2 x_2^2 + c_1 c_2 x_3^2)^{1/2}\), respectively. The parameters \(\eta\) and \(\sigma\) are positive and the parameter \(q\) is such that \(0 \leq q \leq 1\). The potential \(W_3\) is an extension of the so-called Hartmann potential which is of interest in the quantum chemistry of ring-shaped molecules. Indeed, the Hartmann potential corresponds to \(c_1 = c_2 = -1\) and \(q = 1\) (cf. [15]). The potential \(W_3\) for \(q = 1\) and \((c_1, c_2)\) arbitrary shall be called generalized Hartmann potential. It is to be observed that for \(q = 0\) and \(\eta\sigma^2 = Ze^2\), the potential \(W_3\) identifies to the (generalized) Coulomb potential \(V_3\) in \(R^3\) equipped with the metric \(\eta_3\). (The parameter \(q\) is thus simply a distinguishing parameter which, for \(0 \leq q \leq 1\), may be restricted to take the values \(0\) or \(1\).)

It is possible to find an \(R^4 \rightarrow R^3\) Hurwitz transformation to transform the \(R^3\) Schrödinger equation, with the metric \(\eta_3\), for the generalized Hartmann potential into an \(R^4\) Schrödinger equation, with the metric \(\eta_4\), for a non-harmonic oscillator plus a constraint equation. Each of the two obtained equations can
be separated into two R^2 equations. This leads to the following result where E denotes the energy of a particle of (reduced) mass μ in the potential W_3. Such a result generalizes the one derived in [15] for the special case $c_1 = c_2 = -1$.

Result 3. The R^3 Schrödinger equation, with the metric η_3, for the generalized Hartmann potential W_3 is equivalent to a set comprising (i) two coupled R^2 Schrödinger equations for two two-dimensional oscillators with mass μ, one with the metric $\text{diag}(1, -c_1)$ and the potential $V_{01} = -4E(u_0^2 - c_1 u_1^2) + (1/2)q\eta^2\sigma^2/(u_0^2 - c_1 u_1^2)$, the other with the metric $\text{diag}(-c_2, c_1 c_2)$ and the potential $V_{23} = -4E(-c_2 u_2^2 + c_1 c_2 u_3^2) + (1/2)q\eta^2\sigma^2/(-c_2 u_2^2 + c_1 c_2 u_3^2)$, and (ii) two coupled R^2 constraint equations.

B. Generalized Coulomb + Aharonov-Bohm potential in R^3. Let us consider

$$X_3 = Ze'e''/r + (2\mu \rho^2)^{-1}[A + iB(x_2 \partial/\partial x_3 + c_1 x_3 \partial/\partial x_2)]$$

in R^3 equipped with the metric η_3. Here again, we have $r = (x_0^2 - c_2 x_2^2 + c_1 c_2 x_3^2)^{1/2}$ and $\rho = (-c_2 x_2^2 + c_1 c_2 x_3^2)^{1/2}$. The generalized Hartmann potential W_3 can be obtained as a special case of X_3: when $Ze'e'' = -\eta\sigma^2$, $A/\mu = q\eta^2\sigma^2$ and $B = 0$, the potential (energy) X_3 identifies to W_3. In the (compact) case $c_1 = c_2 = -1$ and for $A = (e'/f)/c^2$ and $B = 2e'\hbar f/c$ with $f = F/(2\pi)$, the (velocity-dependent) operator X_3 describes the interaction of a particle of charge e' and (reduced) mass μ with a potential (A, V), where the scalar potential $V = Ze''/(x_0^2 + x_2^2 + x_3^2)^{1/2}$ is of the Coulomb type and the vector potential $A = (A_{x_2} = -[x_2/(x_2^2 + x_3^2)]f, A_{x_3} = [x_2/(x_2^2 + x_3^2)]f, A_{x_0} = 0)$ is of the Aharonov-Bohm type (cf. [16]). We are now in a position to list the following result which generalizes the one obtained in [16] for the special case $c_1 = c_2 = -1$.

Result 4. It is possible to find a Hurwitz transformation to convert the R^3 Schrödinger equation, with the metric η_3, for X_3 into an R^4 Schrödinger equation, with the metric η_4, accompanied by a constraint condition. The separation of variables from R^4 to $R^2 \times R^2$ is possible here again and this leads to a result similar to Result 3 with the replacements $V_{01} \rightarrow -4E(u_0^2 - c_1 u_1^2) + (A - mB)/[2\mu(u_0^2 - c_1 u_1^2)]$ and $V_{23} \rightarrow -4E(-c_2 u_2^2 + c_1 c_2 u_3^2) + (A - mB)/[2\mu(-c_2 u_2^2 + c_1 c_2 u_3^2)]$, with im being a separation constant.

C. Coulomb + Sommerfeld + Aharonov-Bohm + Dirac potential in R^3. We close this paper with a brief study of the potential (energy):

$$Y_3 = Ze'e''/r + s/r^2 + (2\mu \rho^2)^{-1}[\alpha(x) + i\beta(x)(x_2 \partial/\partial x_3 - x_3 \partial/\partial x_2)]$$

in R^3 equipped with the unit metric. The distances r and ρ are given here by $r = (x_0^2 + x_2^2 + x_3^2)^{1/2}$ and $\rho = (x_2^2 + x_3^2)^{1/2}$. The potential Y_3 includes a Coulomb
term $Ze'e''/r$ and a Sommerfeld term s/r^2. Further, we take $\alpha(x) = [e'/c] f(x)^2$ and $\beta(x) = (2e'h/c)f(x)$ with $f(x) = F/(2\pi) + g(1-x_0/r)$ so that the two other terms in Y_3 describe the interaction of a particle of charge e' and (reduced) mass μ with the vector potential $A = (-[x_3/(x^2_2+x^2_3)]f(x), [x_2/(x^2_2+x^2_3)]f(x), 0)$ where F refers to an Aharonov-Bohm potential and g to a Dirac monopole potential. (The vector potential A corresponds to the magnetic field $B = gr/r^3$). It is to be noted that the potential Y_3 with $s = g = 0$ yields the potential X_3 with $c_1 = c_2 = -1$.

We can apply a compact Hurwitz transformation to the R^3 Schrödinger equation for the potential Y_3. This leads to a system comprizing an R^4 Schrödinger equation and a constraint equation. The latter system is not always separable from R^4 to $R^2 \times R^2$. Separability is obtained for $2\mu s = (e'g/c)^2$. This may be precised with the following preliminary result to be developed elsewhere.

Result 5. The R^3 Schrödinger equation, with the usual metric $\text{diag}(1,1,1)$, for the potential Y_3 with $2\mu s = (e'g/c)^2$ is equivalent to a set comprizing (i) two coupled R^2 Schrödinger equations for two two-dimensional isotropic oscillators involving each a centrifugal term and (ii) two coupled R^2 constraint equations.

References

[1] Levi-Civita, T., Opere Matematiche 2 (1906); Acta. Math. 42, 99 (1920).
[2] Kibler, M. and Négadi, T., Croat. Chem. Acta, CCACAA, 57, 1509 (1984).
[3] Lambert, D. and Kibler, M., Preprint Lycen 8642 (IPN de Lyon, 1986).
[4] Kustaanheimo, P. and Stiefel, E., J. reine angew. Math. 218, 204 (1965).
[5] Iwai, T., J. Math. Phys. 26, 885 (1985).
[6] Dirac, P.A.M., *Lectures on Quantum Mechanics* (Yeshiva University: New York, 1964).
[7] Todorov, I.T., Ann. Inst. Henri Poincaré, Sect. A, 28, 207 (1978).
[8] Kibler, M. and Winternitz, P., Preprint Lycen 8755 (IPN de Lyon, 1987).
[9] Kibler, M. and Négadi, T., Lett. Nuovo Cimento 37, 225 (1983); J. Phys. A: Math. Gen. 16, 4265 (1983); Phys. Rev. A 29, 2891 (1984).
[10] Boiteux, M., C. R. Acad. Sci. (Paris), Ser. B, 274, 867 (1972).
[11] Kibler, M. and Négadi, T., Lett. Nuovo Cimento 39, 319 (1984); Theoret. Chim. Acta 66, 31 (1984). In these papers, the (uncorrect) relation $n_1 + n_2 = n_3 + n_4$ should be replaced by $n_1 + n_2 + n_3 + n_4 + 2 = 2k$ ($k = 1, 2, 3, \ldots$).
[12] Kibler, M., Ronveaux, A. and Négadi, T., J. Math. Phys. 27, 1541 (1986).
[13] Davtyan, L.S., Mardoyan, L.G., Pogossyan, G.S., Sissakyan, A.N. and Ter-Antonyan, V.M., Preprint P5-87-211 (JINR: Dubna, 1987).
[14] Mladenov, I.M. and Tsanov, V.V., C. R. Acad. bulgare Sci. (Sofia) 39, 35 (1986); J. Geom. and Phys. 2, 17 (1985).
[15] Kibler, M. and Négadi, T., Int. J. Quantum Chem. 26, 405 (1984); Kibler, M. and Winternitz, P., J. Phys. A: Math. Gen. 20, 4097 (1987).
[16] Kibler, M. and Négadi, T., Phys. Lett. A 124, 42 (1987).