Impacts of a Post-Transport/Pre-Processing Rest Period on the Growth Performance and Serum Metabolites of Cattle Entering a Feedlot

P. L. Dahmer
Kansas State University, dahmerp@k-state.edu

Z. T. Buessing
Kansas State University, ztbuessing@ksu.edu

N. B. Stafford
Kansas State University, nbstaff@k-state.edu

Follow this and additional works at: https://newprairiepress.org/kaesrr

Recommended Citation

Dahmer, P. L.; Buessing, Z. T.; Stafford, N. B.; Reeb, M. E.; Zumbaugh, C. A.; Tarpoff, A. J.; Odde, K. G.; Drouillard, J. S.; Theurer, M.; Jones, T.; and Jones, C. K. (2022) "Impacts of a Post-Transport/Pre-Processing Rest Period on the Growth Performance and Serum Metabolites of Cattle Entering a Feedlot," *Kansas Agricultural Experiment Station Research Reports*: Vol. 8: Iss. 1. https://doi.org/10.4148/2378-5977.8230

This report is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Kansas Agricultural Experiment Station Research Reports by an authorized administrator of New Prairie Press. Copyright 2022 Kansas State University Agricultural Experiment Station and Cooperative Extension Service. Contents of this publication may be freely reproduced for educational purposes. All other rights reserved. Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned. K-State Research and Extension is an equal opportunity provider and employer.
Impacts of a Post-Transport/Pre-Processing Rest Period on the Growth Performance and Serum Metabolites of Cattle Entering a Feedlot

Abstract

Objective: The objective of this study was to evaluate the impact of a post-transport rest period on receiving calf growth performance and blood serum metabolites as indicators of immune function.

Study Description: Eighty heifers were purchased from a sale barn and transported 6 hours to the Kansas State University Beef Cattle Research Center where they were processed at one of four times: immediately upon arrival or after a 6-, 24-, or 48-hour rest period. Cattle were then fed for 35 days with growth performance data collected weekly. Blood samples were also collected and analyzed for serum infectious bovine rhinotracheitis (IBR) titer and biochemical parameters.

Results: Processing time did not impact \((P > 0.05)\) heifer average daily gain. Overall, dry matter intake (DMI) decreased linearly \((P = 0.027)\) as the rest time increased. The number of days for heifers to reach a targeted DMI of 2.5% body weight was linearly increased \((P = 0.023)\) as time of rest increased. Serum IBR titer for heifers processed at either 0 or 6 hours upon arrival was higher \((P < 0.01)\) on day 35 compared to day 0. This response was expected, as these cattle were vaccinated immediately or shortly after arrival. Interestingly, no difference in IBR titer was observed \((P > 0.05)\) between day 0 and day 35 for heifers processed at either 24 or 48 hours upon arrival, indicating potential seroconversion of IBR antibodies before vaccination.

The Bottom Line: These results indicate that rest time after arrival and prior to processing may not affect calf growth performance, but there is evidence that a 6-hour rest period could maximize DMI upon arrival to a feedlot. Additional research with greater replication and more industry-standard experimental conditions should be conducted to further evaluate these parameters.

Keywords
anthelmintic efficacy, growth performance, receiving calf

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 License.

Cover Page Footnote
The authors appreciate Hy-Plains Feedyard, LLC for their financial contributions to this research.

Authors
P. L. Dahmer, Z. T. Buessing, N. B. Stafford, M. E. Reeb, C. A. Zumbaugh, A. J. Tarpoff, K. G. Odde, J. S. Drouillard, M. Theurer, T. Jones, and C. K. Jones

This beef cattle management is available in Kansas Agricultural Experiment Station Research Reports: https://newprairiepress.org/kaesrr/vol8/iss1/11
Impacts of a Post-Transport/Pre-Processing Rest Period on the Growth Performance and Serum Metabolites of Cattle Entering a Feedlot

P.L. Dahmer, Z.T. Buessing, N.B. Stafford, M.E. Reeb, C.A. Zumbaugh, A.J. Tarpoò, K.G. Odde, J.S. Drouillard, M. Theurer, T. Jones, and C.K. Jones

Abstract
A total of 80 crossbred, high-risk heifers [initial body weight (BW) = 551 ± 9.3 lb] were transported from an Oklahoma City, OK, sale barn to the Kansas State University Beef Cattle Research Center. Upon arrival, heifers were placed into one of four pens in a completely randomized design. Each pen of heifers was then randomly assigned to one of four rest times before processing: 1) immediately upon arrival (0); 2) after a 6-hour rest period (6); 3) after a 24-hour rest period (24); and 4) after a 48-hour period (48). Heifers were weighed individually on days 0, 7, 14, 21, 28, and 35 to calculate average daily gain (ADG). Feed added and refusals were measured daily to determine dry matter intake (DMI). Blood samples were analyzed for infectious bovine rhinotracheitis (IBR) titer and serum chemistry. Processing time did not impact ($P > 0.05$) heifer BW or ADG. Overall, DMI decreased linearly ($P = 0.027$) as rest time increased. The number of days for heifers to reach a targeted DMI of 2.5% BW was linearly increased ($P = 0.023$) as rest time increased. Serum IBR titer for heifers processed at either 0 or 6 hours upon arrival was higher ($P < 0.01$) on day 35 compared to day 0. In summary, rest time prior to processing did not impact receiving calf growth performance; however, a 6-hour rest period upon arrival appeared to be most beneficial to DMI.

Introduction
Stress from transportation and processing is unavoidable in the beef industry; however, management of cattle upon receiving to a feedlot plays an integral role in their health and performance thereafter. Appropriately vaccinating, deworming, and treatment with antibiotics is part of a successful receiving protocol. Additionally, rest time during long transport of cattle has been studied, but data are variable regarding its benefits to animal stress levels and performance upon receiving (Melendez et al., 2021; Cooke et al., 2013; Marti et al., 2017). Delaying processing upon arrival to a feedlot is an area of interest to counteract the stress associated with transport. A general rule of thumb is that cattle should receive one hour of rest for every hour they were transported; however, few studies have evaluated different rest times under controlled conditions. Thus, our objectives were to evaluate the impact a post-transport rest period had on calf growth
performance. Additionally, we also aimed to determine any effects on calf blood serum metabolites as indicators of immune function.

Experimental Procedures
A total of 80 crossbred heifers (initial body weight (BW) = 551 ± 9.4 lb) were transported from an Oklahoma City, OK, sale barn to the Kansas State University Beef Cattle Research Center. Heifers were considered high-risk and originated from a geographic area high in parasites. Upon arrival, heifers were unloaded and placed into one of four receiving pens. Each pen of heifers (n = 20) was then randomly assigned to one of four treatments of varying rest times before processing: 1) immediately upon arrival (0); 2) after a 6-hour rest period (6); 3) after a 24-hour rest period (24); and 4) after a 48-hour period (48). At processing, all heifers were tagged, weighed, and subcutaneously injected with moxidectin and orally dosed with oxendazole. Heifers were also subcutaneously injected with tulathromycin, a recombinant *Mannheimia haemolytica* leukotoxoid vaccine, and a modified-live virus vaccine containing infectious bovine rhinotracheitis (IBR), bovine viral diarrhea (types 1 and 2), bovine respiratory syncytial virus, and parainfluenza 3. After processing, cattle were returned to their receiving pen until all cattle had been processed at 48-hour after arrival to the facility. Heifers were then placed into individual pens, each containing an automatic waterer and feed bunk to provide *ad libitum* access to feed and water. Heifers were weighed individually on days 0, 7, 14, 21, 28, and 35 to calculate average daily gain (ADG). Feed was individually weighed and delivered to each heifer daily, with refusals collected and weighed daily to determine dry matter intake (DMI). On days 0 and 35, blood samples were collected via the coccygeal vein from each heifer and submitted to the Kansas State University Veterinary Diagnostic Laboratory for analysis of IBR titer and serum chemistries. All data were analyzed as a completely randomized design using the GLIMMIX procedure of SAS (v. 9.4, SAS Inst., Cary, NC) with individual animal as the experimental unit. The statistical model included the random effects of ‘barn’ and ‘location within barn’. For blood metabolite data, the model included the main effects of treatment and sampling day, as well as their interaction. Results were considered significant if $P < 0.05$ and marginally significant if $0.05 < P < 0.10$.

Results and Discussion
Growth performance data are presented in Table 1. Processing time did not impact ($P > 0.05$) heifer ADG. Overall, DMI decreased linearly ($P = 0.027$) as the rest time increased. The number of days for heifers to reach a targeted DMI of 2.5% BW was linearly increased ($P = 0.023$) as time of rest increased. The main effect of rest time impacted ($P = 0.038$) the percentage of heifers that reached a DMI of 2.5% BW by day 14 of the experiment, where 25.0, 60.0, 52.6, and 23.5% of cattle reached this parameter after 0, 6, 24, and 48 hours of rest prior to processing, respectively. While morbidity did not differ between treatments ($P > 0.10$), mortality increased linearly ($P = 0.026$) as the time of rest increased.

Serum metabolite data are presented in Table 2. While a significant processing time × day interaction was observed for nearly all parameters ($P < 0.05$), only a few differences were biologically significant. Serum IBR titer for heifers processed at either 0 or 6 hours upon arrival was significantly higher ($P < 0.01$) on day 35 compared to day 0. This response was expected, as these cattle were vaccinated immediately or shortly after arrival. Interestingly, no difference in IBR titer was observed ($P > 0.05$) between day 0
and day 35 for heifers processed at either 24 or 48 hours upon arrival, indicating that these cattle may have been exposed to virus during transport or the rest period and had time to seroconvert antibodies to the virus before vaccination.

Implications

These results indicate that rest time after arrival and prior to processing may not affect calf growth performance, but there is evidence that a 6-hour rest period could maximize DMI upon arrival to a feedlot. Additional research with greater replication and more industry-standard experimental conditions should be conducted to further evaluate these parameters.

Acknowledgments

The authors appreciate Hy-Plains Feedyard, LLC for their financial contributions to this research.

References

Cooke, R.F., T.A. Guarnieri-Filho, B.I. Cappellozza, and D.W. Bohnert. 2013. Rest stops during road transport: impacts on performance and acute-phase protein responses of feeder cattle. J. Anim. Sci. 91(11):5448-5454. doi:10.2527/jas.2013-6357.

Marti, S., R.E. Wilde, D. Moya, C.E.M. Heuston, F. Brown, K.S. Schwartzkopf-Genswein. 2017. Effect of rest stop duration during long-distance transport on welfare indicators in recently weaned beef calves. J. Anim. Sci. 95(2):636-644. doi: 10.2527/jas.2016.0739.

Melendez, D.M., S. Marti, D.B. Haley, T.D. Schwingamer, and K.S. Schwartzkopf-Genswein. 2021. Effects of conditioning, source, and rest on indicators of stress in beef cattle transported by road. PLOS ONE. 16(1): e0244854. doi:10.1371/journal.pone.0244854.
Table 1. Impact of time of processing on feedlot heifer growth performance, mortality, and morbidity¹

Item	Processing time after arrival, hour²	SEM³	P =					
	0	6	24	48	Treatment	Linear	Quadratic	
Weight, lb								
Day 0	551	556	542	556	3.70	0.858	0.980	0.473
Day 14	593	595	586	597	3.02	0.949	0.896	0.654
Day 35	664	675	661	668	2.91	0.902	0.992	0.835
ADG,⁴ lb/day								
Days 0 to 14	2.9	2.9	3.3	2.9	0.33	0.879	0.750	0.493
Days 14 to 35	3.3	3.7	3.5	3.3	0.33	0.624	0.693	0.509
Days 0 to 35	3.3	3.3	3.3	3.3	0.18	0.678	0.945	0.311
DMI,⁵ lb/day								
Days 0 to 14	11.5^b	11.9^a	11.2^{ab}	10.8^b	1.4	0.031	0.012	0.635
Days 14 to 35	19.8	20.7	19.2	18.7	3.1	0.150	0.072	0.937
Days 0 to 35	16.3	17.2	15.4	15.4	2.1	0.057	0.027	0.956
DMI, % of BW⁶								
Days 0 to 14	2.11	2.16	2.09	1.93	0.15	0.091	0.020	0.344
Days 14 to 35	3.37	3.50	3.29	3.15	0.28	0.239	0.075	0.782
Days 0 to 35	2.98	3.10	2.97	2.80	0.22	0.183	0.061	0.426
Gain:feed								
Days 0 to 14	0.25	0.24	0.29	0.26	0.030	0.645	0.507	0.368
Days 14 to 35	0.17	0.18	0.18	0.18	0.015	0.891	0.626	0.936
Days 0 to 35	0.20	0.20	0.21	0.21	0.010	0.703	0.375	0.471
Days to 2.5% BW DMI	18^b	15^b	18^b	20^c	1.3	0.030	0.023	0.393
Prevalence, %								
Mortality	0.0	0.0	0.0	10.5	3.57	0.096	0.026	0.236
Morbidity	0.0	0.0	5.3	0.0	2.60	0.382	0.806	0.113
Cattle to 2.5% BW by day 14	25.0	60.0	52.6	23.5	11.56	0.038	0.354	0.025

¹Means within a row that do not share a common superscript differ P < 0.05.
²A total of 80 mixed-breed, high-risk heifers were used in a 35-day experiment with one heifer per pen and 20 replicates per treatment.
³Cattle were processed at either 0, 6, 24, or 48 hours after their arrival to the research facility.
⁴SEM = standard error of the mean.
⁵ADG = average daily gain.
⁶DMI = dry matter intake.
⁷BW = body weight.
Table 2. Impact of processing time after arrival on IBR titer and serum biochemical parameters

Blood parameter	Processing time after arrival, hour	SEM	Treatment × day, P =
IBR titer, 1:X³			
Day 0	8^b	15.2	0.0006
Day 35	64^a		
Glucose, mg/dL		7.3	0.0002
Day 0	82^{bc}		
Day 35	83^{bc}		
Urea nitrogen, mg/dL		0.9	< 0.0001
Day 0	12^b		
Day 35	9^b		
Creatinine, mg/dL		0.10	0.0008
Day 0	1.2^{ab}		
Day 35	0.9^b		
Total protein, g/dL		0.15	< 0.0001
Day 0	7.4^a		
Day 35	6.7^c		
Globulin, g/dL		0.15	< 0.0001
Day 0	4.1^a		
Day 35	3.4^d		
Bicarbonate, mmol/L		1.1	0.0008
Day 0	19^b		
Day 35	22^{ab}		
Anion gap, mmol/L		1.2	< 0.0001
Day 0	29^{bc}		
Day 35	30^{bc}		
Sodium:potassium ratio		0.7	< 0.0001
Day 0	26^a		
Day 35	26^a		
Alkaline phosphatase, U/L		17.5	< 0.0001
Day 0	112^c		
Day 35	208^a		
Sorbitol dehydrogenase, U/L		2.18	< 0.0001
Day 0	6.5^b		
Day 35	20.9^a		

^aMeans within the same row that do not share a common superscript differ, P < 0.05.
¹A total of 80 mixed-breed, high-risk heifers were used in a 35-day experiment with one heifer per pen and 20 replicates per treatment.
²Cattle were processed at either 0, 6, 24, or 48 hours after their arrival to the research facility.
³Serum samples were analyzed for infectious bovine rhinotracheitis (IBR) titer via serum neutralization antibody test with the means displayed as the ratio of serum:dilutant where no antibodies remained detectable within the sample.