Stellenwert des hochsensitiven C-reaktiven Proteins (hs-CRP) als Marker für Herzinfarktgefährdung

Prognostic value, clinical effectiveness and cost-effectiveness of high sensitivity C-reactive protein as a marker in primary prevention of major cardiac events

Abstract

Background

In a substantial portion of patients (≈ 25%) with coronary heart disease (CHD), a myocardial infarction or sudden cardiac death without prior symptoms is the first manifestation of disease. The use of new risk predictors for CHD such as the high-sensitivity C-reactive Protein (hs-CRP) in addition to established risk factors could improve prediction of CHD. As a consequence of the altered risk assessment, modified preventive actions could reduce the number of cardiac death and non-fatal myocardial infarction.

Research question

Does the additional information gained through the measurement of hs-CRP in asymptomatic patients lead to a clinically relevant improvement in risk prediction as compared to risk prediction based on traditional risk factors and is this cost-effective?

Methods

A literature search of the electronic databases of the German Institute of Medical Documentation and Information (DIMDI) was conducted. Selection, data extraction, assessment of the study quality and synthesis of information was conducted according to the methods of evidence-based medicine.

Results

Eight publications about predictive value, one publication on the clinical efficacy and three health-economic evaluations were included. In the seven study populations of the prediction studies, elevated CRP levels were almost always associated with a higher risk of cardiovascular events and non-fatal myocardial infarctions or cardiac death and severe cardiovascular events. The effect estimates (odds ratio (OR), relative risk (RR), hazard ratio (HR)), once adjusted for traditional risk factors, demonstrated a moderate, independent association between hs-CRP and cardiac and cardiovascular events that fell in the range of 0.7 to 2.47. In six of the seven studies, a moderate increase in the area under the curve (AUC) could be detected by adding hs-CRP as a predictor to regression models in addition to established risk factors though in three cases this was not statistically significant. The difference [in the AUC] between the models with and without hs-CRP fell between 0.00 and 0.023 with a median of 0.003. A decision-analytic modeling study reported a gain in life-expectancy for those using statin therapy for populations with elevated hs-CRP levels and normal lipid levels as compared to statin therapy for those with elevated lipid levels (approximately 6.6
months gain in life-expectancy for 58 year olds). Two decision-analytic models (three publications) on cost-effectiveness reported incremental cost-effectiveness ratios between Euro 8,700 and 50,000 per life year gained for the German context and between 52,000 and 708,000 for the US context. The empirical input data for the model is highly uncertain.

Conclusion

No sufficient evidence is available to support the notion that hs-CRP-values should be measured during the global risk assessment for CAD or cardiovascular disease in addition to the traditional risk factors. The additional measurement of the hs-CRP-level increases the incremental predictive value of the risk prediction. It has not yet been clarified whether this increase is clinically relevant resulting in reduction of cardiovascular morbidity and mortality.

For people with medium cardiovascular risk (5 to 20% in ten years) additional measurement of hs-CRP seems most likely to be clinical relevant to support the decision as to whether or not additional statin therapy should be initiated for primary prevention.

Statin therapy can reduce the occurrence of cardiovascular events for asymptomatic individuals with normal lipid and elevated hs-CRP levels. However, this is not enough to provide evidence for a clinical benefit of hs-CRP-screening. The cost-effectiveness of general hs-CRP-screening as well as screening among only those with normal lipid levels remains unknown at present.

Zusammenfassung

Hintergrund

Bei einem erheblichen Anteil der Patienten (= 25%) mit koronarer Herzkrankheit (KHK) stellt ein Herzinfarkt oder der plötzliche Herztod ohne vorausgehende Symptome die Erstmanifestation der Erkrankung dar. Eine Verwendung von neuen Risikomarkern für die KHK wie die des hochsensitiven C-reaktiven Proteins (hs-CRP) zusätzlich zu den bekannten Risikofaktoren könnte eine bessere Vorhersage der KHK ermöglichen. In Folge der veränderten Risikoeinschätzung könnten modifizierte Präventionsmaßnahmen zu einer Verminderung von kardialen Todesfällen und nichttödlichen Herzinfarkten führen.

Fragestellung

Führt die zusätzliche Information durch die Messung des hs-CRP bei asymptomatischen Personen zu einer klinisch bedeutsamen Verbesserung der Risikoprädiktion gegenüber der Risikoprädiktion mit den traditionellen Risikofaktoren und ist der Einsatz von hs-CRP kosteneffektiv?

Methodik

Es wurde eine systematische Literaturrecherche in den elektronischen Datenbanken des Deutschen Instituts für Medizinische Dokumentation und Information (DIMDI) durchgeführt. Die Selektion, Datenextraktion, Bewertung der Studienqualität und die Informationssynthese der identifizierten Literatur wurde nach den Methoden der evidenzbasierten Medizin durchgeführt.
Ergebnisse

Es wurden acht Publikationen zur prädiktiven Wertigkeit, eine Publikation zur klinischen Effektivität und drei gesundheitsökonomische Modellierungen eingeschlossen. In den sieben Studienpopulationen der Prädiktionsstudien waren erhöhte hs-CRP-Spiegel fast durchgängig mit einem erhöhten Risiko für ein kardiovaskuläres Ereignis bzw. für einen nichttödlichen Myokardinfarkt oder einen kardialen Tod bzw. schweren kardiovaskulären Ereignissen assoziiert. Die gegenüber den traditionellen Risikofaktoren adjustierten Effektschätzer zeigten eine moderate unabhängige Assoziation zwischen hs-CRP und kardialen bzw. kardiovaskulären Erignissen mit Effektschätzern (Odds ratio (OR), relativem Risiko (RR) oder Hazard ratio (HR)) zwischen 0,7 und 2,47. Bei sechs von sieben Studien war durch das Hinzufügen von hs-CRP als Prädiktor zu den Regressionsmodellen zusätzlich zu den etablierten Risikofaktoren in geringem Ausmaß ein Anstieg der Area under the Curve (AUC) zu beobachten, in drei Fällen ohne statistische Signifikanz. Die Differenzen der Modelle mit und ohne hs-CRP lagen zwischen 0,00 und 0,027 mit einem Median von 0,003. Eine entscheidungsanalytische Modellierung ergab einen vergleichbaren Gewinn an Lebenserwartung nach einer Statintherapie bei erhöhtem hs-CRP- und normalem Lipidspiegel wie bei einer Statintherapie nach erhöhtem Lipidspiegel (ca. 6,6 Monate bei 58-Jährigen). Zwei entscheidungsanalytische Modelle (drei Publikationen) berechneten inkrementelle Kosten-Effektivitäts-Relationen zwischen 8.700 und 50.000 Euro pro gewonnenem Lebensjahr (deutscher Kontext) und zwischen 52.000 bis 708.000 Euro pro gewonnenem Lebensjahr (US-amerikanischer Kontext). Die empirische Datenbasis der Modelle ist mit großer Unsicherheit behaftet.

Schlussfolgerungen

Es liegt derzeit keine ausreichende Evidenz dafür vor, dass bei der globalen Risikobestimmung für eine KHK zusätzlich zu den traditionellen Risikofaktoren der hs-CRP-Wert bestimmt werden sollte. Eine zusätzliche Bestimmung des hs-CRP-Wertes erhöht die inkrementelle prädiktive Wertigkeit der Risikovorhersage. Ob diese Erhöhung klinisch relevant ist, so dass daraus eine Verminderung der kardialen Morbidität und Mortalität resultiert, ist nicht abschließend geklärt. Der Nachweis allein, dass eine Statintherapie bei asymptomatischen Personen mit normalen Lipid-, aber erhöhten hs-CRP-Spiegeln das Auftreten kardiovaskulärer Ereignisse reduzieren kann, ist nicht ausreichend, um einen zusätzlichen klinischen Nutzen eines hs-CRP-Screenings zu belegen. Bei Personen mit mittlerem kardiovaskulärem Risiko (5 bis 20% in zehn Jahren) erscheint eine zusätzliche Bestimmung des hs-CRP-Wertes zur Unterstützung der Entscheidung, ob eine zusätzliche Statintherapie zur Primärprävention durchgeführt werden soll oder nicht, am ehesten klinisch relevant. Die Frage der Kosten-Effektivität eines generellen oder auch auf die Personen mit normalen Lipidspiegeln begrenzten hs-CRP-Screenings ist derzeit ungeklärt.

Schlüsselwörter: koronare Herzkrankheit, systematischer Review, Health Technology Assessment, hoch-sensitives C-reaktives Protein, Risiko prädiktion, area under curve, receiver operating characteristics, inkrementelle prädiktive Wertigkeit, Kosteneffektivität, gesundheitsökonomische Evaluation
Executive Summary

1. Background

Ischemic heart diseases remain one of the most frequent causes of morbidity and mortality in Germany and throughout the developed world. In a substantial portion of patients (= 25%) with coronary heart disease (CHD), a myocardial infarction or sudden cardiac death without prior symptoms is the first manifestation of the disease. The risk of CHD can be lowered by changing behaviour alone or in conjunction with medical therapy. The choice of preventive action depends on an estimation of the long-term risk of suffering a serious cardiovascular event (e. g. death, myocardial infarction). For the prediction of these events, well-known risk factors for CHD such as age, sex, smoking, hypertension, increased blood lipid level and co-morbidities such as diabetes mellitus are used. The question arises as to whether additional risk factors should be used in order to better predict the occurrence of CHD and stratify risk groups. In the pathogenesis of arteriosclerosis a central role is assigned to inflammatory processes. The high-sensitivity C-reactive Protein (hs-CRP) is a biomarker that indicates systemic inflammation processes. Hs-CRP-assays have been proven to be appropriate in practice because of sufficient stability, precision and availability of standards for calibration. Therefore, hs-CRP can be considered a potential candidate. Does the additional information gained through the measurement of hs-CRP lead to a clinically relevant improvement in risk prediction as compared to risk prediction based on traditional risk factors that are more easily measured and economically attractive? It would be clinically relevant if the prevention strategies changed for a portion of people and hence ultimately the cardiovascular mortality or burden of disease in general could be decreased or quality of life increased.

Apart from its medical use, the economic implications of a test procedure are also important. It is of interest to better characterize the relationship between the additional overall gain associated with use of hs-CRP and the additional costs as compared to risk assessment using traditional factors.

2. Research questions

The aim of the HTA report was to evaluate the available evidence in order to address the following questions:

- Does use of hs-CRP-tests contribute to better risk prediction of cardiovascular events in asymptomatic patients as compared to previously established prediction models (risk scores)?
- How does accuracy criteria of the hs-CRP-test compare to accuracy criteria of the previously established risk scores?
- If hs-CRP improves prediction, is this improvement clinically relevant? i. e. would prevention strategies change for a portion of people and as a result could cardiovascular mortality or burden of disease generally be decreased or quality of life increased?
- Is the use of hs-CRP as a screening test in addition to the common risk scores cost-effective, i. e. what is the relationship between the additional costs and the additional overall gain as compared to risk assessment based only on traditional risk factors?

3. Methods

3.1 Inclusion criteria

Prognostic studies were included in the review in cases for which the study population was asymptomatic and the study itself involved a prospective population-based observation of cardiovascular events. The C-reactive Protein in the serum had to be measured using a high-sensitive assay and the prediction model with hs-CRP had to be compared to a prediction model using traditional risk factors such as age, sex, smoking, cholesterol, glucose metabolism, and blood pressure.

In addition, for the comparison of prediction models with and without hs-CRP an effect measure had to be reported for the test accuracy (e. g. sensitivity, specificity, ROC, area under curve (AUC) and C-statistics, respectively) and clinical endpoints used in the prediction models had to contain cardiac death, non-fatal myocardial infarction separately or in combination. Intervention studies with hs-CRP-Screening were limited to randomized clinical trials, non-randomized controlled studies with parallel group comparisons and decision-analytic modelling studies. All systematic reviews, meta-analyses and HTA reports that referenced primary prediction studies examining the risk for incident CHD or CVD on the basis of hs-CRP measurements, involving study populations, technologies and outcomes as specified above, were included in the literature screening.

In addition all health-economic study types (cost studies, cost-minimization analyses, cost-consequence analyses, cost-effectiveness analyses, cost-efficacy analyses and cost-benefit analyses) which fulfilled the above specified criteria regarding study population, comparative technologies, outcomes and epidemiological study type were enclosed for intervention studies of hs-CRP-Screening. No restrictions were made regarding the perspective and time horizon of the studies.

3.2 Literature search

The literature search was completed by searching 26 electronic databases of the German Institute for Documentation and Information (DIMDI). The search period used was from 1995 to January, 2007. HTA reports, systematic reviews, and health-economic evaluations were searched without temporal restriction in the databases of the Cochrane LIBRARY CDSR, NHS CRD DARE, the International Agency for Health Technology Assessment NHS CRD HTA, the National Health Service of the United Kingdom NHS-EED, the HTA database of
the German Agency for Health Technology Assessment of the DIMDI, and the INAHTA database.

3.3 Selection, validity assessment and data abstraction

The aforementioned inclusion and exclusion criteria were used to pre-select articles thematically on the basis of their titles and abstracts in order to retrieve potentially relevant articles in full-text version. At least two authors judged independently the full-text literature with respect to whether it would fulfil the inclusion criteria. All selection steps were recorded in the reference lists and retained within DIMDI. Reasons for exclusion of literature obtained in full text were indicated. The evaluation of the enclosed articles took place on the basis of standardized check lists, the extraction on the basis of extraction tables and forms that were developed prior to the evaluation.

3.4 Data synthesis

The qualitative characteristics and quantitative parameters of all included studies were arranged and described systematically in evidence tables. For cost data utilized in the studies, currency conversions were performed by using purchasing power parities of the OECD and adjustment for inflation was performed to the year 2006.

4. Results

4.1 Results of the literature search

The literature search of the DIMDI databases, the manual search of the CRD HTA databases, and the inspection of bibliographies from secondary publications resulted in the identification of 1,577 references after the exclusion of duplicates. After consideration of title, author and abstract, 315 articles among these were obtained in full text. After application of inclusion and exclusion criteria, nine publications were included in the medical evaluation and three in the economic evaluation. Seven studies (eight publications) investigated the incremental prediction of hs-CRP for myocardial infarction and cardiac-related death, one study assessed the effectiveness of hs-CRP as a screening test for prevention of cardiovascular events, and three studies examined health-economic aspects of the hs-CRP-test.

4.2 Results of the clinical evaluation

Within the seven identified studies (eight publications), there were four cohort studies and three nested case-control studies that included data from a total of 46,458 people. The study quality was partially ambiguous with respect to the representativeness of the study population and the definition of risk factors for cardiovascular events. Outcomes measurement primarily took place in a non-blinded fashion but the proportion of the observed subjects was typically below 80% due to the long observation period or was unclear. The applied model-building methods and presentation of results were adequate. Only one of the models had been validated in another study population.

Does the use of hs-CRP add to existing prediction for risk prediction of cardiac events in asymptomatic persons?

This question can be answered affirmatively. In six of the seven studies, crude and adjusted association measures such as odds ratio (OR), relative risk (RR) or hazard ratio (HR) of the hs-CRP-value and the later occurrence of cardiovascular events were reported. Adjustment for traditional risk factors was performed. The unadjusted values for the OR, RR or HR, which typically compared the stratum with the highest hs-CRP-value to that with the lowest, fell between 1.2 and 4.5, the adjusted values between 0.7 and 2.47. Only in two of the eight publications were the adjusted association measures slightly above 2, while other values fell between 0.7 and 1.4. In three of the studies, the association measures were no longer statistically significant for hs-CRP. The comparability of the absolute values of the association measures between the studies was limited due to the variation in the categorization of the hs-CRP-value, the slightly different clinical events that were considered as outcomes, and the various risk factors that were included in the adjustment. The tendency for adjustment of the association to result in a weakened predictive value was uniform across all studies.

How does accuracy of the hs-CRP-test compare with accuracy of the commonly used risk scores?

The accuracy data, at least on the basis of the AUC, generally improved marginally, though this improvement was not statistically significant in some cases. All seven studies estimated the incremental predictive value of the hs-CRP-value for cardiovascular events using regression models which contained only the traditional risk factors of age, sex, smoking, cholesterol, glucose metabolism, blood pressure as predictors as compared to regression models which additionally contained the hs-CRP level as predictor. The gain in prognostic value of the risk models was examined by means of the discrimination of the models on the basis of the area under the Receiver Operator Characteristic curve (AUC). The values of AUC for the models that contained the traditional risk factors without the CRP value as a predictor fell between 0.64 and 0.813, while the AUC values of the models that also used the CRP value as a predictor fell between 0.65 and 0.815; the differences between both models were between 0.00 and 0.027. Only in four of the seven studies was the difference in the AUC statistically significant. Since only one of the prediction models was validated in another study population, it is possible that the predictive value and discrimination of the models were over-estimated.
Can high or low hs-CRP test results modify the overall risk for cardiovascular events as predicted using previous risk factors in a manner that would result in altered actions, including either additional or omission of a preventive measure?

This question cannot ultimately be clarified since the clinical relevance of the above-mentioned increase in the AUC was examined only rudimentarily in one of the studies by means of a reclassification analysis. In this study, the study population was dispersed into four risk categories on the basis of the prediction model without CRP according to cardiovascular prevention guidelines: 10-year risk for experiencing a cardiovascular event of greater than 20%, 10 to 20%, 5 to 10%, less than 5%. The proportions of the study population in these categories were 0.8%, 3.0%, 8.4% and 87.9% respectively. The study population was reclassified after reassessing the risk using the model with CRP. Among the high risk study population (14.4%) and the two middle risk categories (18.7% and 21.3%, respectively), 15% were reclassified into a higher risk category whereas for the majority of women with low risk, only 2.1% were reclassified. The actions implied by this reclassification were not investigated.

Does a decrease in hs-CRP-level or a change in strategy as introduced by the hs-CRP-test, lead to a reduction in myocardial infarctions and cardiac deaths?

This question cannot be answered since neither randomized nor non-randomized trials comparing the effectiveness of preventive actions introduced on the basis of a risk assessment using only traditional risk factors to the effectiveness of preventive actions introduced on the basis of a risk assessment using traditional risk factors and hs-CRP-level could be identified. One decision-analytic modelling study used a Markov model to compare the increase in life expectancy by statin therapy in three groups of persons: persons without hyperlipidemia but elevated hs-CRP-levels (group 1), persons with elevated cholesterol levels requiring treatment (group 2) and persons with normal cholesterol and hs-CRP levels (group 3). The gain in life expectancy was comparable for 58 year old persons with elevated hs-CRP but normal LDL values and for persons with cholesterol levels requiring treatment (6.6 months vs. 6.7 for men, 6.4 vs. 6.6 for women), whereas persons without elevated cholesterol and hs-CRP-levels did not benefit considerably (0.6 months for men and women). In sensitivity analyses, the assumptions regarding the rate of myocardial infarctions and the efficacy of statin therapy with regard to the prevention of myocardial infarctions influenced the results most. They varied between 2.5 and 18 months of gained lifetime.

4.3 Results for the economic evaluation of hs-CRP

The question as to whether CRP screening is a cost-effective action cannot be answered, both because the effectiveness of an additional CRP screening has not yet been sufficiently proven and because there are no reliable cost data for the German context. Regarding the question of cost-effectiveness of hs-CRP-screenings, three publications including two decision-analytic modelling studies were found for primary prevention with statins after stratifying the populations based on the results of a CRP test. In the first model, the assumption regarding the intervention strategy was such that all asymptomatic persons 35 years and older were tested with hs-CRP and statin therapy was started for elevated hs-CRP- and borderline lipid levels. This situation was compared to no hs-CRP-screening and statin therapy according to guideline recommendations. In the model, the cost-effectiveness was estimated for various age groups in five different European countries including Germany using a 5-year time horizon and adopting a societal perspective. For Germany, the additional cost of the hs-CRP-screening strategy in comparison to standard therapy according to guidelines for the different age groups fell between Euro 49,800 (35 to 44 years) and Euro 8,700 (55 to 64 years) per lifetime gained. The calculated cost-effectiveness ratio for the higher age groups fell in a range that is usually regarded as cost-effective. The second model examined the outcomes of two groups of patients in a US health care context: those with hyperlipidemia who underwent hs-CRP-screening and were given statin therapy in the case of high hs-CRP levels and those who did not undergo CRP testing and were not given statin therapy. Cost-effectiveness- and cost-utility-analyses were conducted using a lifetime horizon and adopting a societal perspective and resulted in estimated additional costs for 58 year old men of Euro 52,000 per lifetime gained and per quality-adjusted life year (QALY), respectively, and for 58 year old women, Euro 96,800 per life year and Euro 102,000 per QALY, respectively. The sensitivity analyses demonstrated screening is increasingly cost-effective for men and women if the 10-year risk of coronary artery disease (CAD) increases, the costs of the statin therapy decrease or the efficacy of statin therapy increases.

5. Discussion

The additional contribution of CRP screening to the risk prediction of cardiovascular events, adequate parameters for its assessment, and the clinical relevance of the results.

In a majority of the studies included in this report, statistically significant associations between hs-CRP and cardiovascular events were best-proved with a risk estimate of less than 2.0 after controlling for well-known risk factors. A statistically significant increase in the AUC was reported in only three studies and in these cases the increase appeared to be small. A majority of the authors concluded that hs-CRP is not a clinically relevant predictor. However, no reference values exist regarding at what point the clinical increase can be considered relevant. Other authors argue that the AUC is not a suitable measure for selecting variables for a risk prediction model because other established risk factors such as low density lipoprotein (LDL) also did not cause a stron-
G. increase in the AUC when added to the risk model and more generally because the assessment of the model fit is too narrow if only made on the basis of its discrimination. In one study, several different goodness-of-fit criteria were used for further assessment of the model fit, however, it remains unclear how the quantitative changes after adding hs-CRP as a predictor to the model are to be interpreted. The clinical importance of these changes is also unclear. If a new model can more accurately stratify individuals into higher and lower risk categories than a prior model, the risk prediction is considered improved. Therefore, the approach which is most likely to offer an indication of the clinical importance of the use of hs-CRP as an additional predictor is the reclassification into different risk categories as was accomplished in one of the previous studies. However, this study did not examine how the resulting decisions with regard to treatment would differ. Because clinical intervention studies describing the effect of hs-CRP-screening, the potential reclassification of individuals based on this screening and associated measures to prevent cardiovascular events are lacking, it is not possible to make statements regarding the clinical relevance of hs-CRP-screening.

The effectiveness of CRP as a screening test for the avoidance of cardiovascular events

A decision-analytic model examined the effect of statin therapy on the life expectancy of asymptomatic individuals with elevated CRP- and normal LDL cholesterol levels in comparison to other subgroups who received statin therapy. The gain in life expectancy attributable to statin therapy in this group was comparable to the gain in persons with elevated LDL cholesterol levels. This decision-analytic model relied on a single post-hoc analysis of a randomized clinical trial with regard to the increase in risk for persons with increased CRP values and the risk reduction resulting from statin therapy. Consequently, the results were highly uncertain and the modelling can only offer a first hint that the introduction of additional primary preventive actions such as statin therapy could be reasonable; the question has to be addressed as to whether additional CRP-screening of all asymptomatic persons or only of certain risk groups would be beneficial using modeling and most importantly randomized clinical studies.

The in November 2008 published JUPITER trial provided evidence that statin therapy can reduce the occurrence of cardiovascular events for symptomatic individuals with normal lipid and elevated hs-CRP levels. However, a direct assessment of the clinical value of universal hs-CRP-testing is still lacking and it should be noted that this trial does not yield a predictive value of hs-CRP, and therefore, was not included in our systematic assessment.

Economic evaluation

No economic evaluation studies could be identified that directly collected data on health outcomes and costs of hs-CRP-screening.

The three studies included are decision-analytic models that utilized data from various sources about the costs and effects of screening, the primary efficacy and costs of statin therapy initiation and the rate of subsequent cardiovascular events. The quality of the results of the model estimations thus essentially depends on the validity of the sources used and the adequacy of the assumptions. A central question related to the effectiveness and cost-effectiveness of CRP screening is whether therapy exists for patients identified by the screening process that can reduce patient illness or death. The post-hoc analysis of hs-CRP of the Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TexCAPS Study) was used in only one of the decision-analytic models, while in the other models there were no adequate data at that time point. The cost data used for the cost-effectiveness analysis either did not refer to the German health care context or were intransparent, incomplete or outdated. New data regarding the efficacy of statin therapy administered in the case of increased CRP values are published since November 2008 by the JUPITER trial. Therefore the assumed treatment efficacy by statins in this population seems to be confirmed. Cost data for the resulting events and diagnostic or therapeutic actions resulting from screening in Germany would have to be collected.

6. Conclusion

No sufficient evidence is available to support the notion that hs-CRP-values should be measured during the global risk assessment for CAD or cardiovascular disease in addition to the traditional risk factors of age, sex, smoking, cholesterol, glucose metabolism, and blood pressure.

The additional measurement of the hs-CRP-level increases the incremental predictive value of the risk prediction. It has not yet been clarified whether this increase is clinically relevant and results in a reduction of cardiovascular morbidity and mortality. An altered assessment of the cardiovascular risk by hs-CRP-testing would result in a different decision as to whether additional statin therapy should be initiated for primary prevention, most likely affecting those who fall in an intermediate cardiovascular risk group. Statin therapy can reduce the occurrence of cardiovascular events for asymptomatic individuals with normal lipid and elevated hs-CRP levels. However, this is not enough to provide evidence for a clinical benefit of hs-CRP-screening.

The cost-effectiveness of general hs-CRP-screening as well as screening among only those with normal lipid levels remains unknown at present due to the fact that the question of efficacy of screening-tests has not yet been definitely clarified and sufficiently up-to-date cost data for Germany are lacking.

In order to determine cost-effectiveness, it is essential to assess how many people would be affected by such a screening; that is, data regarding distribution of CRP- and lipid level in the German population would have to be collected or published in the event that this has already been done in previous population-based German observation studies of CAD risk factors.
Kurzfassung

1. Hintergrund

Die ischämischen Herzkrankheiten sind in Deutschland und anderen Industrienationen nach wie vor die häufigste Ursache für Todesfälle und Morbidität. Bei einem erheblichen Anteil der Patienten (= 25 %) mit koronarer Herzkrankheit (KHK) stellen ein Herzinfarkt oder der plötzliche Herztod ohne vorausgehende Symptome die Erstmanifestation der Erkrankung dar.

Das Risiko für die Entstehung von KHK kann durch Verhaltensänderungen allein oder begleitet durch medikamentöse Therapien gesenkt werden. Die Wahl der präventiven Maßnahmen hängt davon ab, als wie hoch das langfristige Risiko, ein schwerwiegendes kardiovaskuläres Ereignis (z. B. Tod, Herzinfarkt) zu erleiden, eingeschätzt wird. Zur Vorhersage (Prädiktion) dieser Ereignisse werden bekannte Risikofaktoren für KHK wie Alter, Geschlecht, Rauchen, Bluthochdruck, erhöhte Blutfettwerte und Diabetes mellitus verwendet. Es stellt sich die Frage, ob zusätzliche neue Risikofaktoren verwendet werden sollten, um das Auftreten der KHK besser vorherzusagen und Risikogruppen zu stratifizieren. In der Pathogenese der Artherosklerose wird entzündlichen Prozessen eine zentrale Rolle zugewiesen. Das hochsensitive C-reactive Protein (hs-CRP) ist ein Biomarker, der systemische Entzündungsprozesse anzeigt. Hs-CRP-Assays haben sich in der Prädiktion derartiger Ereignisse wie Herzinfarkt oder plötzlicher Herztod überzeugend bewährt und werden sowohl in der Klinik als auch in der Vorbeugung eingesetzt. Durch die Messung des hs-CRP kann das Risikoprädictionsmodell gegenüber den traditionellen Risikoscores verfeinert werden, was zu einer Verbesserung der klinischen Prädiktion und einer Reduktion von Komplikationen und Letalität führen kann.

2. Fragestellung

Ziel des Health Technology Assessment (HTA)-Berichts war es, die vorliegende Evidenz zu folgenden Fragestellungen zu bewerten:

- Leistet der Einsatz von hs-CRP-Tests einen zusätzlichen Beitrag zu bereits etablierten Prädiktionsmodellen (Risikoscores) zur Risikoprädiktion kardialer Ereignisse bei asymptomatischen Personen?
- Wie sind die Testgütekriterien des hs-CRP-Tests im Vergleich zu den Testgütekriterien der bisher verwendeten Risikoscores?
- Falls hs-CRP die Risikoprädiktion verbessert, ist diese Verbesserung klinisch bedeutsam? D. h. würden sich die Präventionsstrategien für einen Teil der Personen ändern und könnten damit letztlich die kardiovaskuläre Sterblichkeit oder Krankheitlast insgesamt verringert oder die Lebensqualität erhöht werden?
- Ist der Einsatz von hs-CRP als zusätzlichem Screening-Test zu den üblichen Risikoscores kosteneffektiv, d. h. in welchem Verhältnis stehen die zusätzlichen Kosten zum zusätzlichen Gesamtnutzen im Vergleich zur Risikobestimmung mit Risikoscores nur mit traditionellen Risikofaktoren?

3. Methoden

3.1 Einschlusskriterien

Prognosestudien wurden in den Review eingeschlossen, wenn die Studienpopulation asymptomatisch war und es sich um populationsbasierte Beobachtungsstudien mit prospektiver Erhebung der KHK-Ereignisse handelte. Das C-reactive Protein (CRP) im Serum musste mit einem hochsensitiven Assay bestimmt und das Risikoprädiktionsmodell mit hs-CRP mit einem Prä diktionsmodell verglichen worden sein, das die traditionellen Risikofaktoren Alter, Geschlecht, Rauchen, Cholesterin-, Glukosestoffwechsel, und Blutdruck enthielt. Beim Vergleich der Prä diktionsmodelle mit und ohne hs-CRP als Prädiktor musste auch ein Effektmäß für die Testgüte (z. B. Sensitivität, Spezifität, Receiver operating characteristic (ROC), Area under the curve (AUC) bzw. c-Statistik) berichtet worden und als klinische Endpunkte für die Prä diktionsmodelle mussten kardialer Tod, nichttödliche Myokardinfarkte einzeln oder in Kombination enthalten sein. Für Interventionssstudien mit hs-CRP-Screening waren die einzuschließenden Studientypen auf randomisierte klinische Studien, nicht-randomisierte kontrollierte Studien mit zeitlich parallelen Vergleichsgruppen und entscheidungsanalytische Modellierungen beschränkt.

Alle systematischen Übersichtsarbeiten, Metaanalysen und HTA-Berichte, die Primärstudien zur Prädiktion inkreterter kardialer oder kardiovaskulärer Ereignisse mittels der Messung von hs-CRP der oben spezifizierten Studienpopulation, Technologien und Zielgrößen enthalten, wurden zum Literaturscreening zur Identifikation weiterer Primärstudien eingeschlossen. Außerdem wurden alle gesundheitsökonomischen Studientypen (Kostenstudien, Kosten-Minimierungs-, Kosten-Konsequenzen-, Kosten-Effektivitäts-, Kosten-Nutzwert- und Kosten-Nutzen-Analysen) eingeschlossen, für die die oben genannten Kriterien bezüglich Studienpopulation, verglichener Technologien, Zielgrößen und epidemiologische Studientypen für Interventionssstudien zum hs-CRP-Screening erfüllt waren. Für Perspektive und Zeithorizont der Analyse wurden keine Einschränkungen gemacht.
3.2 Literaturrecherche

Die Literaturrecherche wurde durch eine Abfrage in 26 elektronischen Datenbanken des Deutschen Instituts für Medizinische Dokumentation und Information (DIMDI) durchgeführt. Der Recherchezeitraum reichte von 1995 bis einschließlich Januar 2007. Nach HTA-Berichten, systematischen Reviews und gesundheitsökonomischen Evaluationen wurde in den Datenbanken der Cochrane-Library CDSR, NHS- CRD-DARE, der International Agency for Health Technology Assessment NHS-CRD-HTA, des National Health Service in Großbritannien NHS-EED, der HTA-Datenbank der Deutschen Agentur für Health Technology Assessment des DIMDI und der INHTA-Datenbank ohne zeitliche Beschränkung gesucht.

3.3 Auswahl, Bewertung und Extraktion der Literatur

Die o. g. Ein- und Ausschlusskriterien wurden verwendet, um die Artikel anhand ihrer Titel und Zusammenfassungen primär thematisch vorzuselektieren sowie für potenziell in Frage kommende Artikel eine Volltextversion zu bestellen. Mindestens zwei Mitarbeiter beurteilten die im Volltext bestellten Literaturstellen unabhängig voneinander daraufhin, ob sie die Einschlusskriterien erfüllten. Alle Selektionsschritte wurden in Form der Referenzlisten beim DIMDI hinterlegt. Ausschlussgründe für die im Volltext bestellte Literatur wurden angegeben. Die Bewertung der eingeschlossenen Artikel erfolgte anhand von standardisierten Checklisten, die Extraktion anhand von vor der Auswertung entwickelten Extraktions­ tabellen und -formularen.

3.4 Informationssynthese

Die qualitativen Studienmerkmale und die quantitativen Ergebnisparameter aller eingeschlossenen Studien wurden systematisch in Evidenztabellen zusammengestellt und beschrieben. Für die wesentlichen Kostenangaben aus den Studien wurden Währungskonversionen mit Kaufkraftparitäten der Organisation für wirtschaftliche Zusammenarbeit und Entwicklung (OECD) und eine Inflationsbereinigung bis zum Jahr 2006 durchgeführt.

4. Ergebnisse

4.1 Ergebnisse der Literaturrecherche

Die Literaturrecherche des DIMDI in den Literaturdatenbanken, eine Handsuche der CRD HTA-Datenbanken und die die Sichtung der Literaturlisten der Sekundärpublikationen identifizierten nach Ausschluss von Duplikaten 1.577 Referenzen. Davon wurden nach Sichtung von Titel, Autor und Zusammenfassung (Abstract) 315 Volltexte bestellt. Nach Anwendung der Ein- und Ausschlusskriterien konnten für die medizinische neun und für die ökonomische Bewertung drei Publikationen eingeschlossen werden. Sieben Studien (acht Publikationen) untersuchten die inkrementelle Prädiktion des hs-CRP für Myokardfarkt und kardialen Tod, eine Studie die Effektivität des hs-CRP als Screening­ test und zur Vermeidung kardiovaskulärer Ereignisse und drei Studien gesundheitsökonomische Aspekte des hs-CRP­ Tests.

4.2 Ergebnisse zur Bewertung der medizinischen Effektivität

Bei den sieben identifizierten Studien (acht Publikationen) handelte es sich um vier Kohorten- und drei eingebettete Fall-Kontrollstudien, die insgesamt Daten von 46.458 Personen umfassten. Die Studienqualität wies zum Teil Unklarheiten bei der Repräsentativität der Studienpopulation und der Definition der Risikofaktoren für kardiovaskuläre Ereignisse auf, die Outcomemessung erfolgte größtenteils nicht verblindet und aufgrund der langen Nachbeobachtungszeiten lag der Anteil der Nachverfolgten überwiegend unter 80% bzw. war unklar. Das Vorgehen bei der Modellbildung und Ergebnispräsentation erschien sachgerecht. Nur eines der Modelle war anhand einer weiteren Studienpopulation validiert worden.

Leist der Einsatz des hs-CRP einen zusätzlichen Beitrag zu bereits etablierten Prädiktionsmodellen zur Risikoprädiktion kardialer Ereignisse bei asymptomatischen Personen? Diese Frage kann bejaht werden.

In sechs der sieben Studien wurden Assoziationsmaße (Odds ratios (OR), relative Risiken (RR) oder Hazard ratios (HR)) zwischen dem hs-CRP-Wert und dem späteren Auftreten von kardiovaskulären Ereignissen roh und adjustiert gegenüber den traditionellen Risikofaktoren berichtet. Die unadjustierten Werte für die OR, RR oder HR, die in der Regel das Stratum mit dem höchsten hs-CRP-Wert mit dem niedrigsten verglichen, lagen zwischen 1,2 und 4,5, die adjustierten Werte zwischen 0,7 und 2,47. Nur in zwei der acht Publikationen lagen die adjustierten Assoziationsmaße etwas oberhalb von 2, in den anderen bewegten sich die Werte zwischen 0,7 und 1,4. In drei der Studien waren die adjustierten Assoziationsmaße für hs-CRP nicht mehr statistisch signifikant. Die Vergleichbarkeit der absoluten Werte der Assoziationsmaße zwischen den Studien ist durch die unterschiedliche Kategorisierung des hs-CRP-Wertes, der teils unterschiedlichen klinischen Ereignisse, die in die Zielgrößen einbezogen worden waren und der unterschiedlichen in die Adjustierung einbezogenen Risikofaktoren eingeschränkt. Der Trend, dass durch die Adjustierung die Assoziation deutlich auf Maße mit geringerer prädiktiver Wertigkeit abgeschwächt wird, ist jedoch einheitlich.

Wie sind die Testgütekriterien des hs-CRP-Tests im Vergleich zu den Testgütekriterien der bisher verwendeten Risikoscores? Die Testgütekriterien, bestimmt anhand der AUC, verbesserten sich überwiegend geringfügig, zum Teil war diese Verbesserung statistisch jedoch nicht signifikant. Alle sieben Studien bestimmten die inkrementelle prädiktive Wertigkeit des hs-CRP-Wertes für kardiovaskuläre Ereignisse, indem Regressionsmodelle, die nur die tradi-
tionellen Risikofaktoren Alter, Geschlecht, Rauchen, Cholesterinstoffwechsel, Glukosestoffwechsel, Blutdruck als Prädiktoren enthielten mit Regressionsmodellen verglichen wurden, die zusätzlich den hs-CRP-Spiegel als Prädiktor enthielten. Der Gewinn der prognostischen Wertigkeit der Risikomodelle wurde mittels der Diskriminanzanalyse anhand der Fläche unter der ROC-Kurve (AUC) der Modelle untersucht. Die Werte für AUC für die Modelle, die die traditionellen Risikofaktoren ohne den hs-CRP-Wert als Prädiktor enthielten, lagen zwischen 0,64 und 0,813, die AUC-Werte der Modelle, die zusätzlich den hs-CRP-Wert als Prädiktor verwendeten, lagen zwischen 0,65 und 0,815, die Differenzen zwischen den Modellen zwischen 0,00 und 0,027. Nur bei vier der sieben Studien war die Differenz der AUC statistisch signifikant. Da nur eines der Prädiktionsmodelle anhand einer weiteren Studienpopulation validiert wurde, ist eine Überschätzung der prädiktiven Wertigkeit und Diskriminanzfähigkeit der Modelle möglich.

Können hohe oder niedrige hs-CRP-Testergebnisse, das aufgrund von bisher verwendeten Risikoprädiktoren prognostizierte Gesamtrisiko für kardiovaskuläre Ereignisse handlungsrelevant (zusätzliche Durchführung oder Unterlassung einer Präventionsmaßnahme) modifizieren?

Diese Frage kann nicht abschließend geklärt werden, da die klinische Relevanz des o. g. geringfügigen Anstiegs der AUC nur ansatzweise in einer der Studien mittels einer Reklassifikationsanalyse untersucht wurde. In dieser Studie wurde die Studienpopulation anhand des Prädiktionsmodells ohne CRP in vier Risikokategorien entsprechend von Leitlinien zur kardiovaskulären Risikoprävention eingeteilt: 10-Jahres-Risiko für das Eintreten eines kardiovaskulären Ereignisses größer 20 %, 10 bis 20 %, 5 bis 10 % und kleiner 5 %. Der Anteil der Studienpopulation in diesen Kategorien lag bei 0,8 %; 3 %; 8,4 % bzw. 87,9 %. Sie wurde dann anhand der mit dem Modell mit CRP neuberechneten Risiken neu eingeteilt. In der Studienpopulation mit hohem Risiko wurden 14,4 %, in den beiden mittleren Risikokategorien 18,7 % bzw. 21,3 % der Teilnehmer reklassifiziert. Hierzu 15 % in eine höhere Risikokategorie, während sich für die größte Gruppe der Frauen mit niedrigem Risiko fast nichts veränderte (2,1 % reklassifiziert). Zu welchen unterschiedlichen Maßnahmen die Reklassifizierung führen würde, wurde nicht untersucht.

Führt die Absenkung der hs-CRP-Werte oder die Veränderung der Handlungsstrategie, die durch den hs-CRP-Test eingeleitet wurde, beispielsweise durch präventive oder therapeutische Maßnahmen zur Reduktion von Myokardinfarkten und kardialem Todesfallen?

Diese Frage kann nicht beantwortet werden, da weder randomisierte noch nicht-randomisierte Interventionsstudien identifiziert werden konnten, die die Effektivität von Präventionsmaßnahmen, die anhand einer Risikobestimmung allein mit traditionellen Risikofaktoren eingeleitet wurden mit der Effektivität von Präventionsmaßnahmen verglichen, die anhand einer Risikobestimmung mit traditionellen Risikofaktoren und hs-CRP-Wert eingeleitet wurden. Eine entscheidungsanalytische Modellierung untersuchte mittels eines Markov-Modells jedoch die Fragestellung, welchen Zuwachs an Lebenserwartung die folgenden drei Personengruppen vergleichsweise durch eine Statintherapie zu erwarten haben: Personen ohne Hyperlipidämie, aber mit erhöhten hs-CRP-Werten (Gruppe 1), Personen mit erhöhten, behandlungsbedürftigen Cholesterinwerten (Gruppe 2) und Personen ohne auffällige Cholesterin- und hs-CRP-Spiegel (Gruppe 3). Der Zugewinn an Lebenserwartung war bei 58-jährigen Personen mit erhöhtem hs-CRP-, aber normalen Low density lipoprotein (LDL)-Werten und bei Personen mit behandlungsbedürftigen Cholesterinwerten vergleichbar (6,6 Monate vs. 6,7 bei Männern, 6,4 vs. 6,6 bei Frauen), während Personen ohne erhöhte Cholesterin- und hs-CRP-Werte nicht nennenswert profitierten (0,6 Monate bei Männern und Frauen). In Sensitivitätsanalysen hatten die Annahmen zur Häufigkeit von Myokardinfarkten und zur Wirksamkeit der Statintherapie zu der Vermeidung von Myokardinfarkten den größten Einfluss auf die Ergebnisse. Sie varierten zwischen 2,5 und 18 Monaten an gewonnener Lebenszeit.

4.3 Ergebnisse zur ökonomischen Bewertung des Einsatzes von hs-CRP

Die Frage, ob ein CRP-Screening eine kosteneffektive Maßnahme ist, kann nicht beantwortet werden, da zum einen die Effektivität eines zusätzlichen CRP-Screenings noch nicht ausreichend nachgewiesen ist und zum anderen für den deutschen Kontext keinerlei belastbare Kosten-Daten vorliegen. Zur Frage der Kosten-Effektivität eines hs-CRP-Screenings wurden drei Publikationen mit zwei entscheidungsanalytischen Modellierungen zur Primärprävention mit Statinen nach Stratifizierung der Population anhand eines CRP-Tests gefunden. Im ersten Modell wurde bei der Interventionsstrategie die Annahme getroffen, dass alle asymptomatischen Personen ab 35 Jahren mit hs-CRP getestet würden und bei erhöhtem hs-CRP- und grenzwertigem Lipidspiegel eine Statintherapie eingelegt wurde. Verglichen wurde mit der Situation ohne hs-CRP-Screening und Statintherapie gemäß der Leitlinienermächtigung. Mit dem Modell wurde die Kosten-Effektivität in fünf verschiedenen europäischen Ländern, darunter Deutschland für verschiedene Altersgruppen mit 5-Jahres-Zeithorizont aus gesellschaftlicher Perspektive berechnet. Für Deutschland betrugen die zusätzlichen Kosten für die hs-CRP-Screeningstrategie im Vergleich zum Leitlinienstandard für die verschiedenen Altersgruppen zwischen 49.800 Euro (35 bis 44 Jahre) und 8.700 Euro (55 bis 64 Jahre) pro gewonnenem Lebensjahr. Das errechnete Kosten-Effektivitäts-Verhältnis für die höheren Altersgruppen liegt in einem in der Regel als kosteneffektiv betrachteten Bereich. Das zweite Modell verglich ein hs-CRP-Screening bei Personen ohne Hyperlipidämie und Stagingabe im Fall eines erhöhten hs-CRP-Werts mit der Strategie ohne CRP-Test und ohne Statintherapie im Kontext des US-amerikanischen Gesundheitssystems. Eine Kosten-Effektivitäts-
und eine Kosten-Nutzwert-Analyse mit lebenslangem Zeithorizont aus gesellschaftlicher Perspektive berechneten zusätzlichen Kosten von 52.000 Euro pro gewonnenem Lebensjahr bzw. pro gewonnenen qualitätsadjustierten Lebensjahr (QALY) für 58-jährige Männer und 96.766 pro Lebensjahr bzw. 102.064 Euro pro QALY für 58-jährige Frauen. Die Sensitivitätsanalysen zeigten, dass sich Screening als zunehmend kosteneffektiv für Männer und Frauen erweist, wenn das 10-Jahres-Risiko für KHK ansteigt, die Kosten der Statintherapie sinken oder sich die Effektivität der Statintherapie erhöht.

5. Diskussion

Der zusätzliche Beitrag von hs-CRP zur Risikoprädiktion kardialer Ereignisse, adäquate Parameter zu deren Messung und die klinische Relevanz der Ergebnisse. In den meisten der in diesen Bericht eingeschlossenen Studien waren nach Kontrolle mit den bekannten Risikofaktoren statistisch signifikante Assoziationen zwischen hs-CRP und den kardialen Ereignissen meistens mit einem Risikoschätzer unter 2,0 nachweisbar. Ein statistisch signifikanter Anstieg der AUC wurde nur in drei Studien berichtet, wobei das Ausmaß des Anstiegs gering zu sein schien. Ein Großteil der Autoren schloss daraus, dass hs-CRP kein klinisch relevanter zusätzlicher Prädiktor sein könne. Es existieren jedoch keine Richtwerte, wann es sich um einen klinisch bedeutsamen Anstieg handelt. Andere Autoren argumentieren hingegen, dass die AUC kein geeignetes Maß sei, um Variablen für Risikoprädiktionsmodelle zu selektieren, weil zur einen anerkannten Risikofaktoren wie LDL bei Hinzufügen zum Risikomodell auch keinen stärkeren Anstieg der AUC vorweisen könnten und generell die Beurteilung der Anpassungsgüte eines Modells nur anhand der Diskriminationsfähigkeit zu kurz greife.

In einer Studie wurde eine Reihe verschiedener anderer Gütemaße für die Modellanpassung verwendet, wobei hier jedoch ebenso unklar ist, wie nun die quantitativen Unterschiede nach dem Hinzufügen von hs-CRP als Prädiktor zum Modell zu bewerten sind. Ob diese Veränderungen klinisch bedeutsam sind, ist unklar. Wenn ein neues Modell die Personen genauer als das vorausgegangene in hohe und niedrige Risikokategorien stratifizieren kann, wird die Risikoprädiktion verbessert. Der Ansatz, der am ehesten eine Vorstellung von der klinischen Bedeutung der Verwendung von hs-CRP als zusätzlichen Prädiktor geben kann, ist deshalb die Reklassifizierung in verschiedene Risikokategorien wie es in einer der Studien getan wurde. Zu welchen unterschiedlichen Maßnahmen die Reklassifizierung führen würde, wurde jedoch nicht untersucht. Da klinische Interventionsstudien fehlen, die die Auswirkung eines hs-CRP-Screenings, der resulternden Umklassifizierungen und der damit verbundenen Präventionsmaßnahmen auf das Eintreten kardialer Ereignisse untersuchen, können keine Aussagen über die tatsächliche klinische Relevanz getroffen werden.

Die Effektivität von hs-CRP als Screenings test zur Vermeidung kardiovaskulärer Ereignisse

Eine entscheidungsanalytische Studie untersuchte die Auswirkung einer Statintherapie auf die Lebenserwartung speziell für asymptomatische Personen mit erhöhtem CRP-, aber normalem LDL-Cholesterinspiegel im Vergleich mit anderen Subgruppen, die eine Statintherapie erhielten. Der Gewinn an Lebenserwartung dieser Gruppe war vergleichbar mit dem Zugewinn durch die Statintherapie bei Personen mit erhöhtem LDL-Cholesterin. Diese entscheidungsanalytische Modellierung basierte hinsichtlich der Risikoerhöhung für Personen mit erhöhtem CRP-Wert und der Risikoreduktion durch die Statintherapie auf einer einzigen post-hoc-Analyse einer randomisierten klinischen Studie. Dementsprechend sind diese Ergebnisse mit hoher Unsicherheit behaftet und die Modellierung kann nur ein Hinweis darauf sein, dass die Einleitung zusätzlicher Primärpräventionsmaßnahmen wie der einer Statintherapie sinnvoll sein könnte und die Frage, ob ein zusätzliches CRP-Screening aller asymptomatischen Personen oder nur bestimmter Risikogruppen von Vorteil sein könnte, ist sowohl durch entsprechende Modellierungen vor allem aber in randomisierten klinischen Studien zu untersuchen. Die im November 2008 veröffentlichte JUPITER-Studie konnte zwar zeigen, dass eine Statintherapie auch bei asymptomatischen Personen mit normalen LDL und erhöhten hs-CRP-Werten das Auftreten kardiovaskulärer Ereignisse reduzieren kann, eine direkte Untersuchung der klinischen Bedeutung eines zusätzlichen universellen hs-CRP-Screenings fehlt jedoch. Diese Studie erlaubt keine Berechnung des prädictiven Wertes und wurde deshalb nicht in den vorliegenden Bericht eingeschlossen.

Ökonomische Bewertung

Es konnten keine gesundheitsökonomischen Studien identifiziert werden, die unmittelbar Daten zu Gesundheitsefekten und Kosten eines hs-CRP-Screenings erhoben haben. Bei den drei eingeschlossenen Studien handelt es sich um entscheidungsanalytische Modellierungen, in denen Daten zu den Effekten und Kosten des Screenings bzw. hauptsächlich der anschließend eingeleiteten Statintherapie und zu den Häufigkeiten kardiovaskulärer Ereignisse im Anschluss aus verschiedensten Quellen zugrunde gelegt werden. Die Qualität der Ergebnisse der Modellierungen hängen damit entscheidend von der Validität der verwendeten Quellen und der Adäquatheit der getroffenen Annahmen ab. Ein zentraler Punkt in der Frage der Effektivität bzw. Kosten-Effektivität eines hs-CRP-Screenings ist, ob überhaupt eine Therapie für die durch das Screening identifizierten Personen vorhan- den ist, die die patientenrelevanten Erkrankungs- oder Todesfälle reduzieren kann. Nur in einer der entscheidungsanalytischen Modelle wurde die post-hoc-Analyse zu hs-CRP der Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TexCAPS-Studie) verwendet, das andere Modell benutzte weniger adäquate Daten. Die Kostendaten, die zur Analyse der Kosten-Effektivität herangezogen wurden, bezogen sich entweder nicht auf den Kontext des deutschen Gesundheitssystems oder waren intratransparent, unvollständig und veraltet.
Effektdaten zur Wirksamkeit der Statintherapie bei erhöhten hs-CRP-Werten liegen seit November 2008 durch die JUPITER-Studie vor. Deshalb kann der angenommene Behandlungseffekt durch Statine in dieser Population als bestätigt angesehen werden. Kostendaten für die auftretenden Ereignisse und diagnostischen sowie therapeutischen Maßnahmen, die bei einem Screening in Deutschland anfallen würden, müssten erhoben werden.

6. Schlussfolgerung

Es liegt keine ausreichende Evidenz dafür vor, dass bei der globalen Risikobestimmung für eine KHK oder kardiovaskuläre Erkrankung zusätzlich zu den traditionellen Risikofaktoren Alter, Geschlecht, Rauchen, Cholesterin-, Glukosestoffwechsel, Blutdruck eine Bestimmung der hs-CRP-Werte vorgenommen werden sollte. Eine zusätzliche Bestimmung des hs-CRP-Wertes erhöht die inkrementelle prädiktive Wertigkeit der Risikoverorschätzung. Ob diese Erhöhung klinisch relevant ist, so dass daraus eine Verminderung der kardialen Morbidität und Mortalität resultiert, ist nicht abschließend geklärt. Eine Unterstützung der Entscheidung, ob eine zusätzliche Statintherapie zur Primärprävention durchgeführt werden soll, durch eine Bestimmung des hs-CRP-Wertes erscheint grundsätzlich am ehesten bei Personen mit mittlerem kardiovaskulärem Risiko (5 bis 20 % in zehn Jahren) klinisch relevant. Der Nachweis allein, dass eine Statintherapie bei asymptomatischen Personen mit normalen Lipid-, aber erhöhten hs-CRP-Spiegeln das Auftreten kardiovaskulärer Ereignisse reduzieren kann, ist nicht ausreichend, um einen zusätzlichen klinischen Nutzen eines hs-CRP-Screenings zu belegen.

Die Frage der Kosten-Effektivität eines generellen oder auch auf die Personen mit normalen Lipidspiegeln begrenzten hs-CRP-Screenings ist derzeit ungeklärt. Zum einen ist die zusätzliche Effektivität des Screenings selbst noch nicht abschließend geklärt, zum anderen aber fehlen hinreichend aktuell erhobene Kostendaten für Deutschland. Um die Frage der Kosten-Effektivität zu klären, muss auch untersucht werden, wie viele Personen von einem solchen Screening betroffen wären, d. h. Daten zur Verteilung von hs-CRP- und Lipidspiegeln in der deutschen Bevölkerung müssten erhoben, bzw. soweit dies bereits in populationsbezogenen deutschen Beobachtungsstudien zu Risikofaktoren für die KHK geschehen ist, publiziert werden.

Korrespondenzadresse:
Dr. Petra Schnell-Inderst
Lehrstuhl für Medizinmanagement, Universität Duisburg, Campus Essen, Essen, Deutschland
petra.schnell-inderst@medman.uni-due.de

Bitte zitieren als
Schnell-Inderst P, Schwarzer R, Göhler A, Grandi N, Grabein K, Stollenwerk B, klausb V, wasem J, siebert U. Stellenwert des hochsensitiven C-reaktiven Proteins (hs-CRP) als Marker für Herzinfarktgefährdung. GMS Health Technol Assess. 2009;5:Doc06.

Artikel online frei zugänglich unter
http://www.egms.de/en/journals/hta/2009-5/hta000068.shtml

Der vollständige HTA-Bericht steht zum kostenlosen Download zur Verfügung unter:
http://portal.dimdi.de/de/hta/hta_berichte/hta216_bericht_de.pdf

Copyright
©2009 Schnell-Inderst et al. Dieser Artikel ist ein Open Access-Artikel und steht unter den Creative Commons Lizenzbedingungen (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.de). Er darf vervielfältigt, verbreitet und öffentlich zugänglich gemacht werden, vorausgesetzt dass Autor und Quelle genannt werden.