Teaching Case

Microcystic Adnexal Carcinoma of the Face Treated With Definitive Chemoradiation: A Case Report and Review of the Literature

Daniel W. Kim, MD, MBA,a,b Grace Lee, BS,a,b Miranda B. Lam, MD, MBA,a,b Ethan J. Harris, BS,c Allen C. Lam, MD,d Tom Thomas, MD, MPH,e,f Nicole G. Chau, MD,b,e,1 and Roy B. Tishler, MD, PhD,b,e,*,1

aDepartment of Radiation Oncology Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Boston, Massachusetts; bHarvard Medical School, Boston, Massachusetts; cUniversity of Illinois College of Medicine, Chicago, Illinois; dDepartment of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts; eHead and Neck Oncology, Brigham and Women’s Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts; fHead and Neck Reconstructive Surgery and Transoral Robotic Surgery, Atlantic Center for Head and Neck Surgery, Carol G. Simon Cancer Center, Morristown, New Jersey

Received 22 July 2019; revised 29 October 2019; accepted 14 November 2019

Introduction

Microcystic adnexal carcinoma (MAC) is a rare, indolent, low-grade, malignant cutaneous neoplasm believed to arise from the sweat glands most commonly seen in the head and neck area.1,2 Since MAC was first described as a distinct histologic entity in 1982,3 less than 700 cases have been reported worldwide. MAC typically affects middle aged to elderly whites. MAC lesions usually present as a solitary, slow-growing 1- to 3-cm white yellowish papule or plaque located primarily over the face.1,4,6 Patients are generally asymptomatic and may present years after initial development of the skin lesion.7,8 Some develop ulceration or paresthesia if there is perineural invasion (PNI).5,9 Despite its subtle clinical appearance, MAC is a locally aggressive and infiltrative tumor and commonly presents with extensive subclinical involvement and PNI,4,6,10 although lymph node involvement and distant metastasis are rare.2 Given its rarity, research on MAC management is limited to case reports and small retrospective studies. MAC is routinely treated surgically by wide local excision and Mohs micrographic surgery.11 However, owing to its deeply invasive nature, MAC often requires extensive surgical resection resulting in large anatomic defects in the head and neck region.12,13 For patients with large lesions, PNI, and extension to muscle and bone, obtaining clear margins may not be technically feasible or patients may not want to undergo the poor cosmetic and functional consequences. In these cases, there are reports outlining a potential role for radiation (RT) in the adjuvant and definitive setting.1,5,7,8,10,12,14-30

Sources of support: No external funding was received for this manuscript.

Disclosures: Dr Tishler has received personal fees from Regeneron (Advisory Board), PSI Oragenics (Data Safety Monitoring Board), and EMD Serrono (Advisory Board). All other authors have indicated they have no financial relationships relevant to this article to disclose. All authors have indicated they have no potential conflicts of interest to disclose.

* Corresponding author: Roy B. Tishler, MD, PhD; E-mail: roy_tishler@dfci.harvard.edu

1 N.G.C. and R.B.T contributed equally to this work.

https://doi.org/10.1016/j.adro.2019.11.008
2452-1094/© 2019 Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
is necessary. To our knowledge, the use of definitive concurrent chemoradiation (chemoRT) as the initial treatment has not been reported. In this case report, we will share our experience treating one patient with an extensive MAC lesion using weekly chemotherapy with concomitant RT.

Case Presentation

A 73-year-old man with a 12-year history of a biopsy-proven MAC nodule on his philtrum presented with worsening upper lip numbness, midfacial swelling, and nose firmness over 1 year. He had previously declined surgical resection at his local hospital for this nodule. On our initial examination, he was noted to have a 1 cm exophytic smooth nodule on the philtrum with induration and deformity of upper lip and anterior dorsal nose extending to bilateral cheeks (Fig. 1 A). Biopsy of the upper lip lesion confirmed MAC without any PNI or lymphovascular invasion. Positron emission tomography/computed tomography (PET/CT) and magnetic resonance imaging (MRI) demonstrated 2 fluorodeoxyglucose- (FDG) avid lesions: a 5.5-cm soft tissue thickening extending from the upper frenulum to the nose and a 2.5-cm submandibular mass (Fig. 2A). There was no bony involvement or distant metastasis. Biopsy of the submandibular mass revealed a low-grade oncocytic neoplasm with hyalinization. The patient declined surgery and his multidisciplinary care team agreed that surgery would result in significant cosmetic and functional deficits given his extensive MAC involvement. Given the long untreated history of this nodule, we recommended definitive RT to the primary site and nodal area with concurrent chemotherapy as a potential radiosensitizer to enhance the efficacy of the treatment in the setting of a 12-year history of an untreated MAC. Throughout 7 weeks of treatment, he received 70 Gy of intensity modulated RT over 35 fractions to the primary site and 4 cycles of concomitant weekly carboplatin (area under the curve 1.5) and paclitaxel (30 mg/m²; Fig. 3). Carboplatin/paclitaxel have activity in the metastatic setting and also act as a radiosensitizer in head and neck cancers. In addition, the patient was not a good candidate for cisplatin given his history of bilateral sensorineural hearing loss requiring hearing aids. The facial lymphatic regions were treated to 63 Gy, and bilateral levels I to II lymph nodes were treated to 56 Gy. Taxol was withheld during the last 2 weeks of treatment owing to severe mucositis and pain. There were no radiation treatment breaks.

Clinical response of MAC was observed as early as the second week of chemoRT where he was noted to have reduced facial firmness and deformity. At his 3-month visit, PET/CT showed interval decrease in the FDG-avidity and size of the nasal and upper lip lesion, with a focal intense uptake in upper lip correlating with superficial ulceration noted on physical examination likely representing treatment effect (Fig. 2 B). MRI showed a slight reduction in tumor thickness. Follow-up scans 6 months after treatment demonstrated a continued decrease in FDG-avidity (Fig. 2 C). One year after chemoRT, firmness in his philtrum was confined to 1 × 1 cm at midline (Fig. 1 B), and PET/CT did not demonstrate any FDG avidity or lesions at the site of the primary (Fig. 2 D). MRI showed stable soft tissue thickening of the upper frenulum and nose. The patient remains asymptomatic and progression-free 6 years from the completion of his treatment.

Discussion

MAC is typically treated surgically by wide local excision or Mohs micrographic surgery. However, definitive surgery is not an option for patients who refuse it or are poor surgical candidates for reasons including competing comorbidities, large expected surgical defects, and inability to achieve negative margins owing to tumor location, PNI, and deep infiltration. In such cases, adjuvant or definitive RT have been used and demonstrated

Figure 1 Microcystic adnexal carcinoma: (A) Before chemoradiotherapy. One cm nodule on the philtrum with midfacial induration of the lower two-thirds of the nose, philtrum, entire upper lip, and lateral cheeks secondary to microcystic adnexal carcinoma infiltration. (B) One-year after chemoradiotherapy. Excellent tumor response with reduction of previously extensive midfacial induration to 1 × 1 cm area of the philtrum.
ef
cacy (Table 1).5,7,8,10,12,14,15,17-25,27,29,30 Chemo-
therapy has been used in only 4 reported cases showing
mixed outcomes.17,21,25,30 Here, we report a case of an
extensive, locally advanced MAC treated by de-
finitive chemoradiotherapy resulting in an excellent tumor response and
durable disease control.

Our experience builds on previous data showing the
efficacy of RT in MAC. In Table 1,1,5,7,8,10,12,14-30 we
summarize cases of MAC treated by definitive or adjuvant
RT. Although interpretation of these studies is limited by
the varying clinical situations and heterogeneous RT
regimens used, most suggest that RT is effective among
cases with high-risk features and may be beneficial even
in the definitive setting as a surgical alternative. In a
retrospective study by Baxi et al.10 14 cases treated with
local excision and adjuvant RT (median 55 Gy) achieved

Figure 2 Fluorodeoxyglucose-positron emission tomography (PET), computed tomography (CT), and fused PET/CT scans showing
microcystic adnexal carcinoma lesion of the nose and philtrum at (A) 1 month before chemoradiotherapy and response to treatment at
(B) 3 months, (C) 6 months, and (D) 1 year after chemoradiotherapy. A fused PET-CT image was not available for the pretreatment
scan.

efficacy (Table 1).5,7,8,10,12,14,15,17-25,27,29,30 Chemo-
therapy has been used in only 4 reported cases showing
mixed outcomes.17,21,25,30 Here, we report a case of an
extensive, locally advanced MAC treated by definitive
cemoRT resulting in an excellent tumor response and
durable disease control.

Our experience builds on previous data showing the
efficacy of RT in MAC. In Table 1,1,5,7,8,10,12,14-30 we
summarize cases of MAC treated by definitive or adjuvant
RT. Although interpretation of these studies is limited by
the varying clinical situations and heterogeneous RT
regimens used, most suggest that RT is effective among
cases with high-risk features and may be beneficial even
in the definitive setting as a surgical alternative. In a
retrospective study by Baxi et al.10 14 cases treated with
local excision and adjuvant RT (median 55 Gy) achieved
a 93% crude local control rate despite 56% and 69% having had positive margins and PNI, respectively. Among 5 case reports\(^8,14,15\) using upfront definitive RT as a surgical alternative, 3 described positive clinical outcomes.\(^8,14,15\) Pugh et al\(^8\) used RT (63.6 Gy) as an initial monotherapy for an upper lip MAC lesion and achieved complete remission lasting at least 40 months. At 48 months post-RT, there was recurrence in the treatment area which was reirradiated, resulting in remission. Another case by Gulmen and Pullon\(^14\) using RT (60 Gy) to a lower lip lesion and one suspicious submental lymph node (50 Gy) demonstrated a complete response, although follow-up was only 6 months. Schipper et al\(^15\) reported a case of a tongue tumor in a patient who declined surgery which was treated with RT and resulted in no clinical progression at 21 months. Poor outcomes were observed in 2 cases using upfront RT. Chen et al\(^17\) reported a case of a left thumb nodule initially treated by RT but the patient developed distant metastases involving the lymph nodes, liver, spleen, and lung 36 months later. Stein et al\(^16\) observed recurrence within 6 months after RT (58 Gy) to the nasal dorsum, with a clinically more extensive and aggressive tumor notable for histopathologic dedifferentiation. The paucity and heterogeneity of cases using RT in MAC make the exact role of RT in treating MAC challenging to interpret.

The role of chemotherapy in MAC is even less clear as there are only 4 reported cases\(^17,21,25,30\) of chemotherapy used to treat it (Table 2). Bier-Laning et al\(^25\) used a single course of cisplatin and 5-fluorouracil for a recurrent metastatic disease which was resistant to multiple surgical resections and RT. Chemotherapy failed to eradicate the tumor and the patient required salvage surgery and RT within 8 months. Chaudhari et al\(^21\) reported a case of MAC in a 14-year-old adolescent who received chemoRT for lymph node involvement after undergoing surgical resection of the primary lip lesion; details regarding chemoRT and clinical outcomes were not reported. For the first time, Chen et al\(^17\) reported a case of an objective partial response confirmed by PET/CT 1 month after 4 cycles of paclitaxel/carboplatin in a widely metastatic MAC which had relapsed 36 months after initial RT to a thumb nodule. Unfortunately, progression was noted 2 months later with new metastases in the bone and liver.

Figure 3 Radiation plan for treatment of microcystic adnexal carcinoma primary tumor and elective regional nodes in (A) axial, (B) sagittal, and (C) coronal view. **Abbreviation:** PTV = planning target volume, defined as 5 mm expansion of clinical target volume (CTV). Computed tomography simulation performed with tongue immobilizer. Daily cone beam computed tomography used for imaging guidance; 0.5 cm bolus used daily.
Location	Planning objectives	Achieved objectives		
Brachial plexus, left	Max	<60 Gy	Max	35.2 Gy
Brachial plexus, right	Max	<60 Gy	Max	40.3 Gy
Brain stem	Max	<54 Gy	Max	25.8 Gy
Chiasm	Max	<54 Gy	Max	29.7 Gy
Cochlea, left	Max	<30 Gy	Max	21.5 Gy
Cochlea, right	Max	<30 Gy	Max	20.7 Gy
Constrictors	Mean	<40 Gy	Mean	32.1 Gy
Cord	Max	<45 Gy	Max	32.8 Gy
Esophagus	Mean	<30 Gy	Mean	1.1 Gy
Eye, left	Max	<45 Gy	Max	41.6 Gy
Eye, right	Max	<45 Gy	Max	39.8 Gy
Lacrimal, left	Max	<30 Gy	Max	17.9 Gy
Lacrimal, right	Max	<30 Gy	Max	18.8 Gy
Larynx	Mean	<40 Gy	Mean	20.1 Gy
Optic nerve, left	Max	<54 Gy	Max	27.8 Gy
Optic nerve, right	Max	<54 Gy	Max	35 Gy
Mandible	Max	<50 Gy	Max	72.7 Gy
Parotid, left	V30	<50%	V30	13.10%
	Mean	<26 Gy	Mean	17.3 Gy
Parotid, right	V30	<50%	V30	23.40%
	Mean	<26 Gy	Mean	23.4 Gy
Post cricoid	Mean	<40 Gy	Mean	5 Gy
PTV 56 Gy	Min	V54.9	97.30%	
	V100% prescription dose	V56	95.20%	
	>95%			
PTV 63 Gy	Min	V61.7	96.40%	
	V100% prescription dose	V63	93.20%	
	>95%			
PTV 70 Gy	Min	V68.6	98.20%	
	V100% prescription dose	V70	93%	
	>95%			
Submandibular gland, left	Mean	<39 Gy	Mean	61.7 Gy
Submandibular gland, right	Mean	<39 Gy	Mean	61.5 Gy

Figure 3 (continued)
Author	Age/sex	Primary tumor site	Initial treatment	TTR (mo)	Site of recurrence	Salvage treatment	Outcome	
Definitive RT								
Gulmen and Pullon (1976)	35/F	Left lower lip + palpable submental LN	RT to primary (60 Gy) + LN (50 Gy)	n/a	n/a	n/a	NED at 6 mo	
Schipper et al (1995)	65/M	Tongue	RT (NS); declined surgery	n/a	n/a	n/a	No change in tumor size. No tumor progression at 21 mo	
Stein et al (2003)	76/F	Right nasal dorsum	RT (58 Gy)	6	Primary site + left nasal dorsum + right medial cheek	SE	Recurrent tumor notable for dedifferentiation. NED at 14 mo	
Pugh et al (2012)	53/F	Upper lip	RT (63.6 Gy)	48	Primary site	RT (64 Gy)	NED at 15 mo	
Chen et al (2017)	68/M	Left thumb nodule	RT (NS)	36	Left axillary/ supraclavicular LNs + liver, spleen, and lung	Chemo	Objective partial response after 1 mo of chemo followed by new bony and hepatic lesions at 3 mo.	
Adjuvant RT								
Birkby et al (1989)	51/M	Left lower lip	SE with positive margins + RT (57.5 Gy)	36	Primary site + left mandible invasion	MMS + SE + RT (61.2 Gy)	NED at 18 mo	
Yuh et al (1991)	51/M	Left lower lip	SE with positive margins + RT (57.5 Gy)	36	Primary site with invasion of mandible	SE + RT	NED at 18 mo	
Kirkland et al (1997)	55/F	Nasal septum	SE with positive margins + RT (55 Gy)	n/a	n/a	n/a	NED at 6 mo	
Ong et al (2004)	89/F	Right eyebrow	SE + RT	n/a	n/a	n/a	NED at 6 mo	
Baxi et al (2010)	14 pts, median age 71 y	Head and neck region	SE (with 56% PNI + 69% positive margins) + RT (median 55 Gy)	Median follow up of 5.4 y. Crude local control rate of 93%. One pt with local recurrence involving CN V salvaged with RT but progressed after 2 y. One pt with ipsilateral cervical nodal recurrence 18 months after RT. Both salvaged with SE followed by RT with NED.	n/a	n/a	n/a	NED at 26 mo

(continued on next page)
Author	Age/sex	Primary tumor site	Initial treatment	TTR (mo)	Site of recurrence	Salvage treatment	Outcome
Pugh et al (2012)	60/F	Chin	MMS with muscle and PNI → SE + RT (66 Gy)	n/a	n/a	n/a	NED at 30 mo
Kim et al (2014)	56/F	Scalp	SE with positive margins, PNI, and perioisteal involvement → SE + RT (NS)	n/a	n/a	n/a	NED at 3 y
Chaudhari et al (2015)	14/M	Right medial upper lip + submandibular LN	SE + SLNB with LN involvement → RT + chemo (NS)	n/a	n/a	n/a	NED
Waqas et al (2017)	59/F	Scalp	SE with positive margins + RT (45 Gy)	n/a	n/a	n/a	NED at 36 mo
Waqas et al (2017)	53/M	Left temporal scalp	SE with positive margins + RT (45 Gy)	n/a	n/a	n/a	NED at 36 mo
Wong et al (2018)	15/F	Right nipple	SE with positive margin and PNI + RT SE with positive margin + RT	n/a	n/a	n/a	NED at 17 mo
Brent et al (2018)	NS	Orbit					NED
Bier-Laning et al (1995)	46	Right cheek	SE	96	Primary site	RT (60 Gy)	Field edge recurrence at 18 mo treated with reirradiation (45 Gy). Recurrence at 19 mo requiring multiple reirradiation + resections + chemo. Remained with suspicious lesion on lip.
Bier-Laning et al (1995)	85	Right cheek	Several SEs	NS	Primary site + right CN Vb	MMS with positive margin → SE	Right lower eyelid involvement at 13 mo salvaged with RT (60 Gy). NED at 7 mo.
Bier-Laning et al (1995)	55	Left posterior scalp	Several SEs	10	Primary site extending to dura	MMS + SE	Progression at 46 mo. Debulking only + RT (54 Gy). NED at 10 mo.
Carroll et al (2000)	86/M	Left upper forehead	MMS	5	3 new distant nodules in scalp	MMS	3 months later developed 5 more small nodules on scalp. Received RT
Author	Age/sex	Primary tumor site	Initial treatment	TTR (mo)	Site of recurrence	Salvage treatment	Outcome
------------------------	---------	--------------------	-------------------	----------	--------------------	-------------------	---
Sebastien et al (1993)	57/F	Chin	MMS	60	Primary site	MMS	(60 Gy, 6 megavolt scalp) but developed nodal recurrence 3 mo later. Underwent MMS but found to have LN infiltration. Expired shortly after from metastatic small cell lymphoma. MMS + adjuvant RT (55 Gy) for local recurrence 48 mo later. NED at 16 mo. Controlled at 47 mo.
Clement et al (2005)	83/M	Right canthus	SE	7	Upper eye lid	SEs with positive margin + RT (60 Gy)	Recurrence at 4 mo → MMS, SEs + RT (57.6 Gy). Third recurrence in left cheek treated with RT (45 Gy). Controlled at 71 mo. Exenteration for local recurrence 24 mo after RT. Developed brain stem and cavernous sinus metastases 21 mo later. Managed with supportive care. SE + RT (58 Gy). NED at 18 mo
Clement et al (2005)	59/M	Left temporal	SE with positive margin and PNI	8	Primary site	MMS	Recurrence at 4 mo → MMS, SEs + RT (57.6 Gy). Third recurrence in left cheek treated with RT (45 Gy). Controlled at 71 mo. Exenteration for local recurrence 24 mo after RT. Developed brain stem and cavernous sinus metastases 21 mo later. Managed with supportive care. SE + RT (58 Gy). NED at 18 mo
Gomez-Maestra (2009)	75/F	Right eyebrow	MMS	24	Right supraorbital nerve	SE + RT (61.2 Gy)	Recurrence at 4 mo → MMS, SEs + RT (57.6 Gy). Third recurrence in left cheek treated with RT (45 Gy). Controlled at 71 mo. Exenteration for local recurrence 24 mo after RT. Developed brain stem and cavernous sinus metastases 21 mo later. Managed with supportive care. SE + RT (58 Gy). NED at 18 mo
Mamic et al (2018)	74/F	Left upper lip	SE	36	Primary site	SE with positive margin	SE + RT (58 Gy). NED at 18 mo
King et al (2018)	3 pts	NS	SE	NS	NS	SE + RT	2 had progressive disease with 1 developing fatal metastases to skin, LN, and lung.
Haga et al (2019)	78/F	Philtrum	SE	Unknown Primary site	RT (60 Gy)	Recurrence at primary site and ala of the nose < 2 y after RT. Chemo at 6 y for recurrence. Under control at 15 mo.	

Abbreviations: CN = cranial nerve; F = female; LN = lymph node; M = male; MMS = Mohs micrographic surgery; n/a = not applicable; NED = no evidence of disease; NS = not specified; PNI = perineural invasion; pt = patient; RT = radiation therapy; SE = surgical excision; TTR = time to recurrence.
S-1 is a combination drug including tegafur/gimeracil/oteracil. Chaudhari et al (2015) recently reported a case using a combination chemotherapy S-1 (tegafur/gimeracil/oteracil) for a locally invasive recurrent tumor of the philtrum previously treated by resection and RT (60 Gy). Objective partial response of the tumor was seen at 8 weeks and the tumor was controlled at 15-month follow-up.

To our knowledge, this is the first case of a patient with MAC treated without surgery with definitive chemorT. Although prophylactic regional nodal irradiation is not standard treatment given its toxicity and rare nodal metastasis of MAC, regional nodes were irradiated in this case to maximize locoregional control given the unresectable disease and that chemotherapy could potentially act as a radiosensitizer to improve local control. Using RT with 70 Gy and concomitant paclitaxel/carboplatin, clinical improvement, and radiographic partial response was achieved within 2 weeks and 3 months of chemorT, respectively. The patient remains asymptomatic and progression free for about 6 years, which is the longest follow-up reported on MAC tumor control achieved with either RT or chemotherapy. Although our patient did experience significant mucositis and was transiently G-tube dependent, he recovered within 1 month after completion of his treatment and the toxicities are consistent with those expected for a patient treated with chemorT for a head and neck cancer. Overall, he had an excellent cosmetic result and was able to avoid surgery. Given the retrospective review of our case, it is uncertain whether his tumor would have responded to monotherapy with RT or chemotherapy alone. However, our experience suggests that chemorT is a tolerable and potentially effective therapeutic modality for locally advanced MAC. ChemorT in the definitive setting could be considered for patients with inoperable MAC lesions.

References
1. King BJ, Tolkachjov SN, Winchester DS, et al. Demographics and outcomes of microcystic adnexal carcinoma. J Am Acad Dermatol. 2018;79:756-758.
2. Yu JB, Blitzblau RC, Patel SC, Decker RH, Wilson LD. Surveillance, Epidemiology, and End Results (SEER) database analysis of microcystic adnexal carcinoma (sclerosing sweat duct carcinoma) of the skin. Am J Clin Oncol. 2010;33:125-127.
3. Goldstein DJ, Barr RJ, Cruz DJS. Microcystic adnexal carcinoma: A distinct clinicopathologic entity. Cancer. 1982;50:566-572.
4. Chiller K, Passaro D, Scheuller M, Singer M, McCalmont T, Grekin RC. Microcystic adnexal carcinoma: Forty-eight cases, their treatment, and their outcome. Arch Dermatol. 2000;136:1355-1359.
5. Sebastien TS, Nelson BR, Lowe L, Baker S, Johnson TM. Microcystic adnexal carcinoma. J Am Acad Dermatol. 1993;29:840-845.
6. Leibovitch I, Huiqol SC, Selva D, Lun K, Richards S, Paver R. Microcystic adnexal carcinoma: Successful management of a large scalp lesion. J Plast Surg Hand Surg. 2014;48:158-160.
7. Kim LHC, Teston L, Sasani S, Henderson C. Microcystic adnexal carcinoma of the face treated with radiation therapy: A case report and review of the literature. Head Neck. 2012;34:1045-1050.
9. Friedman PM, Friedman RH, Jiang SB, Nouri K, Amonette R, Robins P. Microcystic adnexal carcinoma: Collaborative series review and update. J Am Acad Dermatol. 1999;41(2 Pt 1):225-231.

10. Baxi S, Deb S, Weedon D, Baumann K, Poulsen M. Microcystic adnexal carcinoma of the skin: The role of adjuvant radiotherapy: Adjuvant radiotherapy for microcystic adnexal carcinoma. J Med Imaging Radiat Oncol. 2010;54:477-482.

11. Chaudhari SP, Mortazie MB, Blattner CM, et al. Treatments for microcystic adnexal carcinoma: A review. J Dermatol Treat. 2016;27:278-284.

12. Kirkland PM, Solomons NB, Ratcliffe NA. Microcystic adnexal carcinoma. J Laryngol Otol. 1997;111:674-675.

13. Lopez M, Cole EL. Microcystic adnexal carcinoma: Reconstruction of a large centrofacial defect. Plast Reconstr Surg Glob Open. 2014;2:e254.

14. Gulmen S, Pullon PA. Sweat gland carcinoma of the lips. Oral Surg Oral Med Oral Pathol. 1976;41:643-649.

15. Schipper JH, Holecek BU, Sievers KW. A tumour derived from Ebner’s glands: Microcystic adnexal carcinoma of the tongue. J Laryngol Otol. 1995;109:1211-1214.

16. Stein JM, Ormsby A, Esclamado R, Bailin P. The effect of radiation therapy on microcystic adnexal carcinoma: A case report. Head Neck. 2003;25:251-254.

17. Chen M-B, Laber DA. Metastatic microcystic adnexal carcinoma with DNA sequencing results and response to systemic antineoplastic chemotherapy. Anticancer Res. 2017;37:5109-5111.

18. Birkby CS, Argenyi ZB, Whitaker DC. Microcystic adnexal carcinoma with mandibular invasion and bone marrow replacement. J Dermatol Surg Oncol. 1989;15:308-312.

19. Yuh WTC, Whitaker DC, Engelken JD, Dolan KD. Bone marrow invasion of microcystic adnexal carcinoma. Ann Otol Rhinol Laryngol. 1991;100:601-603.

20. Ong T, Liew SH, Mulholland B, Davis P, Calonje E. Microcystic adnexal carcinoma of the eyebrow. Ophthalmic Plast Reconstr Surg. 2004;20:122-125.

21. Chaudhari S, Blanchard L, Chaudhari PJ, Lythgoe T. The first reported case of metastatic microcystic adnexal carcinoma in an adolescent. Dermatol Surg. 2015;41:286-288.

22. Waqas O, Faisal M, Haider I, Amjad A, Jamshed A, Hussain R. Retrospective study of rare cutaneous malignant adnexal tumors of the head and neck in a tertiary care cancer hospital: A case series. J Med Case Rep. 2017;11.

23. Wong LK, Kereke AR, Wright AE, Vyas KS. Microcystic adnexal carcinoma of the nipple. Wounds. 2018;30:E65-E67.

24. Brent AJ, Deol SS, Vaidhyanath R, Saldanha G, Sampath R. A case and literature review of orbital microcystic adnexal carcinoma. Orbit. 2018;1-4.

25. Bier-Laning CM, Horn DB, Gapany M, Duvall AJ, Manivel JC. Microcystic adnexal carcinoma: Management options based on long-term follow-up. Laryngoscope. 1995;105:1197-1201.

26. Carroll P, Goldstein GD, Brown CW. Metastatic microcystic adnexal carcinoma in an immunocompromised patient. Dermatol Surg. 2000;26:531-534.

27. Clement CI, Genge J, O’Donnell BA, Lochhead AGB. Orbital and peri-orbital microcystic adnexal carcinoma. Ophthalmology. 2019;9:1258-1262.

28. Mamic M, Manojlovic L, Suton P, Luksic L. Microcystic adnexal carcinoma—Diagnostic criteria and therapeutic methods: Case report and review of the literature. Int J Oral Maxillofac Surg. 2018;47:1258-1262.

29. Semrau R, Temming S, Preuss SF, et al. Definitive radiochemotherapy of advanced head and neck cancer with carboplatin and paclitaxel: A phase II study. Int J Radiat Oncol Biol Phys. 2012;82:645-650.

30. Vlacich G, Diaz R, Thorpe SW, et al. Intensity modulated radiation therapy with concurrent carboplatin and paclitaxel for locally advanced head and neck cancer: Toxicities and efficacy. Oncologist. 2012;17:673-681.

31. Suntharalingam M, Kwok Y, Goloubeva O, et al. Phase II study evaluating the addition of cetuximab to the concurrent delivery of weekly carboplatin, paclitaxel, and daily radiotherapy for patients with locally advanced squamous cell carcinomas of the head and neck. Int J Radiat Oncol Biol Phys. 2012;82:1845-1850.