Stage-specific fluorescence intensity of GFP and mCherry during sporulation In Bacillus Subtilis

Geoff P Doherty, Kirra Bailey, Peter J Lewis*

Abstract

Background: Fluorescent proteins are powerful molecular biology tools that have been used to study the subcellular dynamics of proteins within live cells for well over a decade. Two fluorescent proteins commonly used to enable dual protein labelling are GFP (green) and mCherry (red). Sporulation in the Gram positive bacterium Bacillus subtilis has been studied for many years as a paradigm for understanding the molecular basis for differential gene expression. As sporulation initiates, cells undergo an asymmetric division leading to differential gene expression in the small prespore and large mother cell compartments. Use of two fluorescent protein reporters permits time resolved examination of differential gene expression either in the same compartments or between compartments. Due to the spectral properties of GFP and mCherry, they are considered an ideal combination for co-localisation and co-expression experiments. They can also be used in combination with fluorescent DNA stains such as DAPI to correlate protein localisation patterns with the developmental stage of sporulation which can be linked to well characterised changes in DNA staining patterns.

Findings: While observing the recruitment of the transcription machinery into the forespore of sporulating Bacillus subtilis, we noticed the occurrence of stage-specific fluorescence intensity differences between GFP and mCherry. During vegetative growth and the initial stages of sporulation, fluorescence from both GFP and mCherry fusions behaved similarly. During stage II-III of sporulation we found that mCherry fluorescence was considerably diminished, whilst GFP signals remained clearly visible. This fluorescence pattern reversed during the final stage of sporulation with strong mCherry and low GFP fluorescence. These trends were observed in reciprocal tagging experiments indicating a direct effect of sporulation on fluorescent protein fluorophores.

Conclusions: Great care should be taken when interpreting the results of protein localisation and quantitative gene expression patterns using fluorescent proteins in experiments involving intracellular physiological change. We believe changes in the subcellular environment of the sporulating cell leads to conditions that differently alter the spectral properties of GFP and mCherry making an accurate interpretation of expression profiles technically challenging.

Background

Various Gram positive bacteria can form structures called endospores, which are highly resistant to environmental stress and can remain dormant for thousands of years. The sporulation process can be crudely divided into five stages; Initiation, septation, engulfment, spore and cortex formation and finally maturation and endospore release (Reviewed in [1]). This process is triggered by a stress response such as starvation and results in the expression and repression of a cascade of genes in a tightly controlled temporal manner over several hours in order to form the mature endospore as outlined in Figure 1. After the decision to sporulate has occurred, the rod-shaped cell asymmetrically divides to form a prespore and a much larger mother cell. The mother cell then engulfs the prespore, after which the cortex and the spore coat form. Finally, the mother cell undergoes programmed cell death and the mature endospore is released. This entire process has served as a paradigm for gene regulation and expression and has been extensively studied for over two decades.

We decided to study the recruitment of the transcriptional machinery into the spore during this process...
using both GFPmut3 and mCherry. The spectral properties of these proteins allows the study of two proteins within the same cell with very little crossover into the other channel [2,3]. During these studies we noticed a trend in fluorescence that was attributable to the fluorescent protein rather than the protein of interest. In this work we present data on the changes in fluorescence emission of GFP and mCherry during the sporulation process, which has wide ramifications on both past and future studies of gene expression and regulation during the sporulation process in *B. subtilis*.

Materials and methods

Strain construction growth conditions and image analysis

All plasmids and strains used in this work are detailed in Table 1. GFP cloning was performed by ligation independent cloning (LIC) as detailed in [4] using primers in Table 2. The *mCherry* gene fusions were created by PCR amplifying the 3' end of the respective genes using primers in Table 2, and digesting them with the appropriate restriction enzymes, before ligating them into similarly cut pNG621. Transformation of *B. subtilis* was carried out as per [5]. *B. subtilis* cells were induced to sporulate by the resuspension method of [6] as modified by [7]. Image acquisition and analysis was performed as described by [8].

Overproduction and purification of GFP and mCherry

GFPmut3 was overproduced and purified as detailed in [8]. The gene encoding *mCherry* was PCR amplified off pNG621 using pETmCherryF and pETmCherryR (Table 2) and cloned into pETMCIII using *NdeI* and *EcoRI* to give rise to pNG735 (Table 1). Overproduction, purification and quantification of the purified mCherry protein was carried out as per GFPmut3 as detailed in [8].

Determining the pH-dependent emission of GFP and mCherry

The pH of potassium phosphate buffers (20 mM KH₂PO₄, 200 mM NaCl, 10% glycerol) were adjusted using either 5 M KOH or 5 M HCl to yield twelve buffers with a pH of 4.4, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 7.75, 8.0, 8.25, 8.5 and 9.1. Purified GFPmut3 and mCherry were both added to a final concentration of 1 μM in each of the buffers. 100 μl aliquots of these were then transferred to a 96 well microplate (NUNC), and then placed in a FLUOR-Ostar Optima (BMG LabTech) where the GFP (excitation 480/10 nm; emission 520/10 nm) and mCherry (excitation 570/10 nm; emission 620/10 nm) signals were read before being processed in Microsoft Excel.

Results and Discussion

In this work we set out to study the recruitment of transcriptional machinery into the spore during sporulation using mCherry labelled RNA polymerase (RNAP; in-frame fusion to the β’ subunit, Table 1) and GFP labelled transcription factor NusA, along with small auxiliary RNAP subunits δ, Ω and YkzG (Table 1). A trend was noticed that showed very little RNAP-mCherry fluorescence, but a high amount of GFP fluorescence of tagged NusA during stages III to V (refer to Figure 1) of sporulation. This was followed by a complete reversal of fluorescence in the final stages when the spore became phase bright, with high RNAP-mCherry, and almost undetectable NusA-GFP signals. Similar results were obtained when co-localising mCherry labelled...
RNAP (β' subunit) with GFP tagged RpoE (RNAP δ subunit), YloH (RNAP α subunit) and YkzG (uncharacterised RNAP subunit).

To further investigate this, we labelled RNAP with both mCherry and GFP to determine if the spectral properties of GFP and mCherry were affected at the different stages of sporulation. Prokaryotic RNAPs are highly conserved comprising four essential subunits; two α subunits, a β and a β'. We created EU156 (Table 1), which is a strain containing a GFP fusion to the β

Table 1 Plasmids and strains used in this work

Plasmid	Genotype	Source/Construction
pYG1	Pspac -LIC-gfpmut3-erm	[8]
pEU2	Pspac -rpo8-gfpmut3-erm	This work
pETMCSIII	bla Pspac -10-6HisT	[17]
pEU13	Pspac -yloH-gfpmut3-erm	This work
pEU14	Pspac -ykzG-gfpmut3-erm	[8]
pEU16	Pspac -rpoE-gfpmut3-erm	[8]
pEU21	Pspac -rpoC-gfpmut3-erm	[8]
pEU37	Pspac -nusA-gfpmut3-erm	This work
pNG583	bla Pspac -10-gfpmut3-6HisT	[8]
pNG621	Pspac -MCS-mCherry-cat	[8]
pNG622	Pspac -rpoC-mCherry-cat	This work
pNG670	Pspac -nusA-mCherry-cat	This work
pNG677	Pspac -ykzG-mCherry-cat	This work
pNG735	bla Pspac -10-mCherry-6HisT	This work

Plasmid	Genotype	Source/Construction
pETMCSIII	bla Pspac -10-6HisT	[8]
pEU21	Pspac -rpoC-gfpmut3-erm	This work
pEU13	Pspac -ygpmut3-erm	This work
pEU14	Pspac -ykzG-gfpmut3-erm	[8]
pEU16	Pspac -rpoE-gfpmut3-erm	[8]
pEU21	Pspac -rpoC-gfpmut3-erm	[8]
pEU37	Pspac -nusA-gfpmut3-erm	This work
pNG583	bla Pspac -10-gfpmut3-6HisT	[8]
pNG621	Pspac -MCS-mCherry-cat	[8]
pNG622	Pspac -rpoC-mCherry-cat	This work
pNG670	Pspac -nusA-mCherry-cat	This work
pNG677	Pspac -ykzG-mCherry-cat	This work
pNG735	bla Pspac -10-mCherry-6HisT	This work

Strain	Genotype	Source/Construction	
E. coli	BL21(DE3)	λ DE3 pLysS, F-ompT lon hsdB (rB– mB-)	[18]
	DH5α	F- endA1 supE44 thi-1 Δ (lacZY A- argF) U169 F80 Δ (lacZΔM15)	Gibco BRL

Strain	Genotype	Source/Construction	
	EU1	168trp+ tprC2 chr.tpr	[4]
	EU16	168trp+ chr.erm Pspac rpo8-gfp Pspac rpo8	This work: 168trp+ transformed with pEU2
	EU17	168trp+ chr.erm Pspac yloH-gfp Pspac yloH	This work: 168trp+ transformed with pEU13
	EU19	168trp+ chr.erm Pspac ykzG-gfp Pspac ykzG	This work: 168trp+ transformed with pEU14
	EU44	168trp+ chr.erm Pspac rpoC-gfp Pspac rpoC	This work: 168trp+ transformed with pEU16
	EU49	168trp+ chr.erm Pspac nusA-gfp Pspac nusA	This work: 168trp+ transformed with pEU37
	EU128	168trp+ chr.erm Pspac rpoC-mCherry Pspac rpoC	This work: 168trp+ transformed with pNG621
	EU131	168trp+ chr.erm Pspac ykzG-mCherry Pspac ykzG	This work: 168trp+ transformed with pNG677
	EU142	168trp+ chr.erm Pspac nusA-mCherry Pspac nusA	This work: 168trp+ transformed with pNG670
	EU156	168trp+ chr.erm Pspac rpoC-mCherry Pspac rpoC	This work: 168trp+ transformed with pEU2
	EU163	168trp+ chr.erm Pspac rpoC-mCherry Pspac yloH	This work: 168trp+ transformed with pEU13
	EU164	168trp+ chr.erm Pspac rpoC-mCherry Pspac ykzG	This work: 168trp+ transformed with pEU14
	EU166	168trp+ chr.erm Pspac rpoC-mCherry Pspac rpoE	This work: 168trp+ transformed with pEU16
	EU183	168trp+ chr.erm Pspac rpoC-mCherry Pspac nusA	This work: 168trp+ transformed with pEU37
	EU186	168trp+ chr.erm Pspac rpoC-mCherry Pspac nusA	This work: 168trp+ transformed with pEU37
	EU224	168trp+ chr.erm Pspac ykzG-mCherry Pspac ykzG	This work: EU131 transformed with pEU37
	EU230	168trp+ chr.erm Pspac ykzG-mCherry Pspac ykzG	This work: EU131 transformed with pEU21
subunit and an mCherry fusion to the β’ subunit and observed the localisation patterns during sporulation. Results are presented in Figure 2, showing phase contrast (top panels), DNA (blue), β’-mCherry (red), β-GFP (green), an image overlay of the β’-mCherry and β-GFP signals and a linescan taken through the image overlay. Images were taken every two hours from vegetative growth (T0) through to stage V-VI of sporulation (T6).

It is clear from the linescan during vegetative growth that the fluorescence of both β-GFP and β’-mCherry are equal and consistent with what would be expected when subunits of equal stoichiometry are labelled (Figure 2F). Because the sporulating culture was asynchronous and not all cells go on to sporulate, the T2 images show cells that are stage 0 or I (the two cells on the left), and those in stage II (the two cells on the right). Although the GFP and mCherry fluorescence is quite similar between cells at T2, a slight drop in mCherry fluorescence can be seen in one of the developing forespores (arrows in Figure 2I-L), which by reference to the DAPI fluorescence can be seen in one of the developing forespores between cells at T2, a slight drop in mCherry fluorescence is quite similar to those in stage II (the two cells on the right). Although cells that are stage 0 or I (the two cells on the left), and not all cells go on to sporulate, the T2 images show that the fluorescence of both

Because the sporulating culture was asynchronous and subunits of equal stoichiometry are labelled (Figure 2F).

It was previously shown that pH fluctuations occur during sporulation of yeast and Bacillus sp. with vegetative cells and the mother cell generally having a pH of around 8, while the dormant spore has a pH of around 6 [9-11]. A study monitoring the internal pH changes during sporulation of B. megaterium has shown that the pH in the spore remains constant for the first four hours, probably to around late stage III or stage IV, before rapidly dropping over the following two hours [11]. To investigate whether local changes in pH during sporulation could account for the altered intensity profiles of GFP and mCherry, the pH-dependent emission profiles of these fluorescent proteins were determined and are shown in Figure 4. These profiles suggest that

Table 2 Primers used in this work

Plasmid	Primer Sequence (5'→3')	
pEU12	rpoB F GGGTTCTGGCGCGAGCTGTAAGAAGGCTGCAAGATTTG	rpoB R TGGCGCTGGCGCGAGCACTACTCACATCATCATCACATGCC
	CATATGGTGAGCAAGGCGAGG	
pEU13	YhiF F GGGTTCTGGCGCGAGCTGTAAGAAGGCTGCAAGATTTG	YhiF R TGGCGCTGGCGCGAGCACTACTCACATCATCATCACATGCC
pEU14	YkgF F GGGTTCTGGCGCGAGCTGTAAGAAGGCTGCAAGATTTG	YkgF R TGGCGCTGGCGCGAGCACTACTCACATCATCATCACATGCC
pEU16	RpoE F GGGTTCTGGCGCGAGCTGTAAGAAGGCTGCAAGATTTG	RpoE R TGGCGCTGGCGCGAGCACTACTCACATCATCATCACATGCC
	YloH F GGGTTCTGGCGCGAGCTGTAAGAAGGCTGCAAGATTTG	YloH R TGGCGCTGGCGCGAGCACTACTCACATCATCATCACATGCC
	pEU16 RpoE F GGGTTCTGGCGCGAGCTGTAAGAAGGCTGCAAGATTTG	pEU16 RpoE R TGGCGCTGGCGCGAGCACTACTCACATCATCATCACATGCC
	pEU21 RpoC F GGGTTCTGGCGCGAGCTGTAAGAAGGCTGCAAGATTTG	pEU21 RpoC R TGGCGCTGGCGCGAGCACTACTCACATCATCATCACATGCC
	NusA R GGGTTCTGGCGCGAGCTGTAAGAAGGCTGCAAGATTTG	NusA R GGGTTCTGGCGCGAGCTGTAAGAAGGCTGCAAGATTTG
pNG670	pETmCherry F TTTTTT	pETmCherry R TTTTTT
	YkzG mCherry F TTTTTT	YkzG mCherry R TTTTTT
	NusA mCherry F TTTTTT	NusA mCherry R TTTTTT
	NusA F GGGTTCTGGCGCGAGCTGTAAGAAGGCTGCAAGATTTG	NusA R GGGTTCTGGCGCGAGCTGTAAGAAGGCTGCAAGATTTG
pNG677	pETmCherry R TTTTTT	pETmCherry R TTTTTT
	YkzG mCherry F TTTTTT	YkzG mCherry R TTTTTT
	YkzG mCherry R TTTTTT	YkzG mCherry R TTTTTT

Restriction sites underlined

http://www.biomedcentral.com/1756-0500/3/303
Figure 2 Stage-specific fluorescence of GFP and mCherry. The stage-specific fluorescence of RNA polymerase subunits β and β' during sporulation. Panels A, G, M and S are phase contrast images, Panels B, H, N and T are DAPI stained DNA images, Panels C, I, O and U are the β-GFP images, Panels D, J, P and V are the β'-mCherry images, Panels E, K, Q and W represent image overlays of the respective β-GFP and β'-mCherry images, and Panels F, L, R and X are linescans taken through the respective image overlays with green lines representing β-GFP and red lines representing β'-mCherry. The linescan in panel L is taken through the two asymmetrically dividing cells on the right of panel K. The lane scan in panel X is taken through the two cells with phase bright spores in panel W. The white arrows in the micrographs correspond to the black arrow in the respective linescan. The asterisks in the T6 micrographs are discussed in detail in the text. Fluorescence is in arbitrary units. Scale bar is 2 μm.
the fluorophore of mCherry is more tolerant to a drop in pH when compared to GFP. Indeed an internal pH of below 6.5 in the phase bright spore could very well explain the fluorescence pattern seen in Figure 2 for phase bright spores (Figure 2S-X). However, nowhere in the intensity profile is there a pH where the mCherry emission is adversely effected while GFP emission is unaffected.

Both GFPmut3 and mCherry have similar maturation times (around 30 minutes for GFPmut3 [2] and between 15 and 40 minutes reported for mCherry [12,13], so a slower maturation time of mCherry is unlikely to explain the reduced fluorescence observed during the early stages of sporulation. One of the major differences in the maturation process is the need for two moles of molecular oxygen to form a mature mCherry chromophore, compared to the one mole required for GFP [3,14]. It is feasible that a reduction in oxygen availability could account for these emission differences during sporulation, although it was recently found that mCherry maturation was unimpeded under hypoxic conditions when expressed in *Mycobacterium tuberculosis* [15].

We believe the results presented here have far reaching implications on the use of fluorescent proteins to quantitatively study gene regulation during live cell imaging involving intracellular physiological changes, or even between intracellular compartments in ‘steady state’ eukaryotic cells. Indeed a very recent publication on gene expression using GFP and mCherry reporter fusions appeared to identify exactly this phenomenon. The expression of *kinA*, an important kinase involved in the phosphorelay pathway during sporulation was found to be expressed much earlier, with a larger peak when the *kinA* promoter was fused to *gfp* when compared to the promoter fusion to *mCherry* [16]. The authors suggested this could be due to a slower maturation time of mCherry compared to GFP, however, as mentioned above the documented maturation times for these

Figure 3 Autofluorescence during sporulation Autofluorescence is very low during sporulation. Fluorescence emission signals for wild type (left) and fluorescent fusion strains (right) are shown for the GFP and mCherry channels at the time (hours) after resuspension into sporulation medium. The images have been equalised so that the fluorescence through the GFP channels is identical for the wild type and fluorescent fusion strain, and likewise in the mCherry channel. The cells for the GFP and mCherry fluorescent fusions are the same as those shown in Figure 2 for reference.
fluorescent proteins are similar, and is therefore unlikely to explain the results observed during that work.

In summary, we have identified artefacts that may arise when quantitatively using GFP and mCherry during sporulation. It appears that the emission profile of GFP is not substantially affected during early sporulation, and is probably the most effective fluorescent protein for this phase in sporulation before the pH drops at around stage IV-V of sporulation. Conversely, this period appears to adversely affect mCherry emission, but it recovers in the final stages of sporulation. Considering sporulation is a paradigm in which to study gene regulation and expression, we urge caution when interpreting fluorescent protein reporter results. As Remington pointed out in a review in 2007, “the lack of understanding of the maturation, photochemistry and photophysics of fluorescent proteins can lead to significant pitfalls in everyday applications” [14].

Acknowledgements

The work presented in this publication was supported by funding through the NHMRC grant 455646 (PL) and EU 6th framework grant LSHG-CT-2006-037469 (PL).

Authors’ contributions

PL and GD designed experiments. GD and KB performed experiments. GD and PL interpreted results and prepared manuscript for publication. All authors read and approved the final draft.

Competing interests

The authors declare that they have no competing interests.

Received: 19 August 2010 Accepted: 14 November 2010

Published: 14 November 2010

References

1. Errington J: From spores to antibiotics via the cell cycle. Microbiology 2010, 156:1-13.
2. Cormack BP, Valdivia RH, Falkow S: FACS-optimized mutants of the green fluorescent protein (GFP). Gene 1996, 173:33-38.
3. Shu X, Shaner NC, Yarbrough CA, Tsien RY, Remington SJ: Novel chromophores and buried charges control color in mFruits. Biochemistry 2006, 45:9639-9647.
4. Botrella E, Fogg MJ, Jules M, Piersma S, Doherty GP, Hansen A, Denham EL, Le Chat L, Veiga P, Bailey K, Lewis PJ, van Dijl JM, Aymerich S, Wilkinson AJ, Devine KM: pBaSysBioII: an integrative plasmid generating gfp transcriptional fusions for high-throughput analysis of gene expression in Bacillus subtilis. Microbiology 2010, 156:1600-1608.
5. Kunst F, Rapport G: Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis. J Bacteriol 1995, 177:2403-2407.
6. Sterlini JM, Mandelstam J: Commitment to sporulation in Bacillus subtilis and its relationship to development of actinomycin resistance. Biochem J 1969, 113:29-37.
7. Partridge SR, Errington J: The importance of morphological events and intercellular interactions in the regulation of prespore-specific gene expression during sporulation in Bacillus subtilis. Mol Microbiol 1993, 8:945-955.
8. Doherty GP, Fogg MJ, Wilkinson AJ, Lewis PJ: Small subunits of RNA polymerase: localisation, levels and implications for core enzyme composition. Microbiology 2010, 156:3552-3563.
9. Barton JK, den Hollander JA, Lee TM, MacLaughlin A, Shulman RG: Measurement of the internal pH of yeast spores by 31P nuclear magnetic resonance. Proc Natl Acad Sci USA 1980, 77:2470-2473.
10. Setlow R, Setlow P: Measurement of the pH within dormant and germinated bacterial spores. Proc Natl Acad Sci USA 1980, 77:2474-2476.
11. Magill NG, Cowan AE, Kappel DE, Setlow P: The internal pH of the forespore compartment of Bacillus megaterium decreases by about 1 pH unit during sporulation. J Bacteriol 1994, 176:2252-2258.
12. Shaner NC, Steinbach PA, Tsien RY: A guide to choosing fluorescent proteins. Nature Methods 2005, 2:905-909.
13. Merzlyak EM, Goedhart J, Scherbo D, Bulina ME, Shcheglov AS, Fradkov AF, Gaintzeva A, Lukyanov KA, Lukyanov S, Gardella TW, Chudakov DV: Bright monomeric red fluorescent protein with an extended fluorescence lifetime. Nat Methods 2007, 4:555-557.
14. Remington SJ. Fluorescent proteins: maturation, photochemistry and Photophysics. Curr Opin Struct Biol 2006, 16:714-721.
15. Carroll P, Schreuder LJ, Muwanguzi-Karugaba J, Wiles S, Robertson BD, Ripoll J, Ward TH, Bancroft GJ, Schaible UE, Parish T. Sensitive detection of gene expression in mycobacteria under replicating and non-replicating conditions using optimized far-red reporters. PLoS One 2010, 5:e9823.
16. de Jong IG, Veening JW, Kupers OP. Heterochronic phosphorelay gene expression as a source of heterogeneity in Bacillus subtilis spor formation. J Bacteriol 2010, 192:2053-2067.
17. Neylon C, Brown SE, Kralicek AV, Hill TM, Dixon NE. Interaction of the Escherichia coli replication terminator protein (Tus) with DNA: a model derived from DNA-binding studies of mutant proteins by surface plasmon resonance. Biochemistry 2000, 39:11989-11999.
18. Studier FW, Moffatt BA. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 1986, 189:113-130.

doi:10.1186/1756-0500-3-303
Cite this article as: Doherty et al.: Stage-specific fluorescence intensity of GFP and mCherry during sporulation in Bacillus Subtilis. BMC Research Notes 2010 3:303.