Familial hypercholesterolemia (FH) is the most common monogenic disorder. Due to the marked elevation of cardiovascular risk, the early detection, diagnosis, and proper management of this disorder are critical. Herein, the 2022 Korean guidance on this disease is presented. Clinical features include severely elevated low-density lipoprotein cholesterol (LDL-C) levels, tendon xanthomas, and premature coronary artery disease. Clinical diagnostic criteria include clinical findings, family history, or pathogenic mutations in the \textit{LDLR}, \textit{APOB}, or \textit{PCSK9}. Proper suspicion of individuals with typical characteristics is essential for screening. Cascade screening is known to be the most efficient diagnostic approach. Early initiation of lipid-lowering therapy and the control of other risk factors are important. The first-line pharmacological treatment is statins, followed by ezetimibe, and \textit{PCSK9} inhibitors.
합의안 요약

특징
- 가족성 고콜레스테롤혈증(familial hypercholesterolemia, FH) 환자에서는 총콜레스테롤과 저밀도 지단백 콜레스테롤(low-density lipoprotein-cholesterol, LDL-C) 수치가 심하게 올라간다. 하지만 특징적 신체 소견은 일부 환자에서만 나타난다.

위험도
- FH 환자는 심혈관 위험도가 높다.
- FH 환자에서 통상적인 심혈관 위험도 계산식 사용은 적절치 않다.

진단
- FH 진단 전에 다른 이차성과 일차성 원인이 배제되어야 한다.
- 성인에서 LDL-C ≥ 190 mg/dL이거나 조기 발병 관상동맥 질환가족력이 있는 경우 FH 진단을 위해 Dutch와 Simon Broome 진단기준을 사용한다. 현재로서는 이 두 가지 진단기준을 쓰는 것이 제일 합리적이다.
- 진단 목적에 따라 진단의 세부 기준(definite, probable, possible)을 사용하는 것이 적절하다.
- 유전 검사는 LDLR, APOB, PCSK9 세 가지 유전자를 포함한다. 하지만 병인성 변이가 없다고 해서 FH 진단을 배제할 수는 없다.
- 유전 검사는 성인을 기준으로 LDL-C > 190 mg/dL이면서 FH에 합당한 가족력이 있을 때 권고할 수 있다.

선별 검사
- LDL-C 수치를 측정하는 것이 FH를 조기에 진단하고 치료하는 데 매우 중요하다.
- 다음 조건이 있으면 FH 환자인지 의심한다: 조기 발병 관상동맥 질환(남자 < 55세, 여자 < 60세), 혹은 심한 LDL-C 상승(성인 ≥ 190 mg/dL, 소아 ≥ 150 mg/dL), 혹은 환자 본인이나 가족 중의 황색종 혹은 관상동맥 질환가족력.
- 가족 중 첫 번째 환자가 진단되면 다른 가족과 친척에 대한 연쇄 선별 검사를 하는 것이 새로운 FH환자를 조기 진단하는 데 제일 효율적인 방법이다.

치료
- FH로 진단되면 일찍 지질강하 치료를 하는 것이 중요하다.
- 다른 심혈관 위험요인을 동시에 조절하는 것이 필수적이다.
- 생활습관 교정을 동시에 한다.
- 일반약제는 스타틴이며, 대개 고강도로 투여한다. 이차약제로 에제티미브가 추가될 수 있다. 최대 용량 스타틴과 에제티미브 병용은 LDL-C 목표치에 도달하지 못하는 경우 PCSK9 억제제를 투여할 수 있다.
- 관상동맥경화성 심혈관 질환이나 주요 위험요인이 있는 FH 환자에서 이상적인 LDL-C 목표치는 기저치 대비 50% 경감에 더하여 < 55 mg/dL이며, 그렇지 않은 FH 환자에서는 < 70 mg/dL이다. 그러나 차선책으로 덜 엄격한 목표치를 권고하기도 한다.

동행접합
- 유일 진단기준은 DNA 돌연변이가 LDL-C 상승(> 500 mg/dL), 소아 때부터 있는 경우가 있다.
- 지질 강하 치료를 일찍 시작하고 공격적으로 하는 것이 매우 중요하다.
- 임신 또는 수유 전 여자 환자에서는 생활습관 교정을 유지하면서, 유지하면 지질강하 약제는 중단한다.
- 임신한 여자 FH 환자에서 고콜레스테롤혈증이 심한 경우, 담즙산 결합수지나 LDL 혈장교환술을 고려할 수 있다.

Keywords: Genetics; Atherosclerosis; Risk factors; Lipid metabolism; Hyperlipoproteinemia type II

as required. The ideal treatment targets are 50% reduction and < 70 or < 55 mg/dL (in the presence of vascular disease) of LDL-C, although less strict targets are frequently used. Homozygous FH is characterized by untreated LDL-C > 500 mg/dL, xanthoma since childhood, and family history. In children, the diagnosis is made with criteria, including items largely similar to those of adults. In women, lipid-lowering agents need to be discontinued before conception. (Korean J Med 2022;97:339-352)
서 론

가족성 고콜레스테롤혈증(familial hypercholesterolemia, FH; 본 논문에서는 다른 언급이 없으면 이형접합 형태를 지칭한다)은 상염색체 우성인 단일유전자 유전 질환 중 제일 흔하다. 인구 200-500명당 한 명꼴로 보고되지만[1,2], 지역적인 편차가 있을 수 있다. 다른 나라와 비슷할 것으로 추정되지만, 한국에서 정확한 유병률은 잘 알려지지 않았다. 한국에서 1980년대부터 FH 환자 사례가 보고되었다[3,4].

병인성 변이가 발견되는 대표적 유전자는 LDLR, APOB, PCSK9인데, 각 유전자에 생기는 변이가 다양하다. 드물게 다른 유전자에 희귀한 병인성 변이가 보고되기도 한다. 한편 FH에 맞는 표현형이 있는 환자 중 상당수에서 병인성 변이가 발견되지 않는다. 따라서 이 질환의 유전성임에도 불구하고, 진단을 하는데는 임상진단기준이 중요하다. 세계적으로 통일된 진단기준은 없으며, 나라마다 몇 가지 다른 기준을 쓴다. 심혈관 위험도는 최고 10배까지 높아질 수 있는데, 환자들 중 많은 환자들에 비해 조기에 생긴다[5]. 그러므로 FH 환자 진단을 위한 적절적인 선별 검사가 매우 중요하다. 한국인 저밀도 지단백 콜레스테롤(low-density lipoprotein-cholesterol, LDL-C) 수치 분포를 생각해보면, 지금 동통되는 주요 외국 진단기준의 기준치를 사용할 때 많은 사람이 FH로 진단될 것으로 예상할 수 있다. 그러나 한국인 환자에 대한 자료는 적고 의료계 종사자들도 FH에 대해 잘 알지 못하며, 일반인의 이해도는 극히 낮다. 그래서 본고는 현재 한국의 FH 자료를 소개하여 관심을 갖게 하고, 이 질환의 조기 진단 촉진에 도움이 되게 하는 것이 목적이이다. 또한 전문가 합의안을 정리하여 FH 환자에 대한 적절한 치료에 대해 안내하고자 한다.

본 론

FH의 임상적 유전학적 특성

전병력적인 신체 소견은 건의 황색종(Fig. 1A)과 조기 발생 각막환이다. 그렇지만 이 소견의 민감도는 낮고 환자 다수에서 나타나지 않는다. 또한 발목 측면 X레이 촬영에서 아킬레스건이 두꺼운 것이 확인되기도 한다(Fig. 1B). 다리 하부 근위부와 발바닥을 90도로 되게 하고, 촬영 거리는 120 cm 정도로 하며, 50 kV와 5.0 mAs 조건 하에 촬영한다[6]. 아킬레스건 두께와 폭은 초음파로 검사하는 것으로 가능하다(Fig. 1C). 발목을 90도로 하고, 영상은 횡단과 종단으로 얻는다. 한국 FH

Figure 1. (A) Lateral picture of Achilles tendon xanthoma. (B) Lateral ankle X-ray showing thickened Achilles tendon. (C) Ultrasonographic findings of thickened Achilles tendon (double arrow) with horizontal (left) and sagittal (right) views.
등록사업 2020에서는 임상진단된 FH 환자의 총콜레스테롤과 LDL-C 중간값이 각각 306과 221 mg/dL였으며, 건 항생증, 관상동맥 질환 유병률이 20%, 19%였다. 등록된 환자 중 60%, 36%, 3%에서 중증 고콜레스테롤혈증, 조기 발병 관상동맥 질환, 건 항생증의 가족력이 각각 있었다[7].

이 연구에서 환자 296명 중 104명(35.1%)에서 병인성 변이가 있었다. 과오 변이(missense variant), 유전자복제수 변이(copy number variation), 틀이동 변이(frameshift variant) 순서대로 혼합하였다(Fig. 2A). LDLR 변이 중 제일 흔한 위치는 p.P685L이었다(Fig. 2B) [7].

FH의 심혈관 위험도

치료하지 않으면 이형질환 FH (heterozygous FH, HeFH) 환자는 55세(남자) 혹은 60세(여자) 이전에 관상동맥 질환 위험도가 최대 10배까지 높을 수 있으며, 특히 definite나 probable형에서 그러하다[5]. 한국지질동맥경화학회에서 지원된 한 연구에서 230만 명 정도의 국내 코호트를 분석하였는데, 중간값 6.1년간 추적한 결과 LDL-C 190-224, 225-259, ≥ 260 mg/dL인 환자군에서 심혈관 위험도(심근경색증, 관상동맥 재개통, 혈청성 뇌졸중)가 LDL-C < 160 mg/dL인 군에 비해 최대 2.4배 높았다. LDL-C ≥ 190 mg/dL인 환자에서 총사망률은 최대 2.3배였다[8].

FH 환자에서 잘 알려진 계산식을 통해 심혈관 위험도를 산출하는 것은 부적절하다. FH에서는 LDL-C 수치가 어릴 때부터 높아지는 것이기 때문에, 이런 계산식이 위험도를 과소평가할 수 있기 때문이다[9]. 따라서 지질건강 치료를 위한 미국 지침에서는 LDL-C ≥ 190 mg/dL인 사람들을 심혈관 위험도가 약물 치료를 받을 정도로 높은, 소위 스타틴 치료 이득군으로 분류한다[10]. 2019년 유럽지침은 FH 환자를 다른 위험요인 유무에 따라 초고위험군 혹은 고위험군으로 분류하였 다[5]. 여기서 다른 위험요인은 전통적 요인을 일컫는데 나이, 남자, 고혈압, 흡연, LDL-C, 관상동맥경화증 심혈관 질환, 체질량지수를 포함한다[11]. 한국지질동맥경화학회에서 지원한 한국 등록사업에서는 FH 환자에서 고혈압과 낮은 고밀도 지단백 콜레스테롤(high-density lipoprotein-cholesterol,

Figure 2. (A) Frequency of pathogenic variant types in familial hypercholesterolemia-associated genes in Korean patients. (B) Location and characteristics of pathogenic variants presented on each gene [7]. CNV, copy number variation; EGF, epidermal growth factor.
FH, familial hypercholesterolemia; LDL-C, low-density lipoprotein cholesterol; CAD, coronary artery disease.

Table 1. Dutch Lipid Clinic Network diagnostic criteria for FH [5]

Criteria	Points
1) Family history	
1st-degree relative with known premature (men < 55 years; women < 60 years) coronary or vascular disease, or 1st-degree relative with known LDL-C > 95th percentile	1
1st-degree relative with tendoninous xanthoma and/or arcus cornealis, or children < 18 years with LDL-C > 95th percentile	2
2) Clinical history	
Patient with premature CAD	2
Patient with premature cerebral or peripheral vascular disease	1
3) Physical examination	
Tendon xanthoma	6
Arcus cornealis at age < 45 years	4
4) LDL-C (without treatment)	
≥ 8.5 mmol/L (325 mg/dL)	8
6.5-8.4 mmol/L (251-325 mg/dL)	5
5.0-6.4 mmol/L (191-250 mg/dL)	3
4.0-4.9 mmol/L (155-190 mg/dL)	1
5) DNA analysis	
Functional mutation in the LDLR, APOB, or PCSK9 genes	8

Choose only one score per group, the highest applicable, diagnosis is based on the total number of points
‘definite’ FH: ≥ 9 points
‘probable’ FH: 6-8 points
‘possible’ FH: 3-5 points

Table 2. Simon Broome diagnostic criteria for FH [13]

Definite FH	Possible FH
If they have a cholesterol level as defined below and tendon xanthomas, or these signs in 1st- or 2nd-degree relatives or DNA-based evidence of LDLR, APOB, or PCSK9 mutation	If they have a cholesterol level as defined below and at least one of the following: Family history of MI: at age < 50 years in 2nd-degree relative or at age < 60 years in 1st-degree relative Family history of high TC: > 7.5 mmol/L (290 mg/dL) in adult 1st- or 2nd-degree relative or > 6.7 mmol/L (260 mg/dL) in child, brother or sister aged < 16 years

Cholesterol level	TC	LDL-C
Child	> 6.7 mmol/L (260 mg/dL)	> 4.0 mmol/L (155 mg/dL)
Adult	> 7.5 mmol/L (290 mg/dL)	> 4.9 mmol/L (190 mg/dL)

FH, familial hypercholesterolemia; MI, myocardial infarction; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol.
기준을 만들었다[14,15]. 한국 FH 등록사업 2020에서 Dutch나 Simon Broome 기준으로 definite나 probable 형으로 분류된 환자에서는 병인성 변이 보유자가 50-64%였다[7]. 당연한 얘기지만, 사용하는 기준에 따라 민감도와 특이도는 역상관관계가 있다. 그러므로 definite 형을 위한 진단기준을 사용하면 환자를 발굴할 때에는 효과적이지 않으며, 연쇄 선별 검사를 하는 경우에는 특이도가 높은 기준을 쓰는 것이 적절할 것이다[16]. 진단 목적에 따라 진단기준을 고르는 것이 도움이 된다[16]. 진단 목적에 따라 진단기준을 고르는 것이 도움 이 된다는 의미이다.

지금 FH 진단기준을 독자적으로 만들 만한 한국 자료는 충분치 않다. 그러나 한국 FH 등록사업 2020에서는 일반인과 FH 환자에서 LDL-C 수치 분포를 분석하였으며, 총콜레스테롤 250 mg/dL와 LDL-C 177 mg/dL를 경계값으로 제시하였다(Fig. 3A). 한편, 병인성 변이 보유에 대한 경계값은 총콜레스테롤과 LDL-C 수치 325 mg/dL와 225 mg/dL로 나타났다(Fig. 3B) [7]. 따라서 한국인에서 FH 선별 검사나 가족 내 연쇄 선별 검사를 할 때 이 수치들을 참고할 수 있을 것이다.

유전 진단

FH가 유전 질환기는 하지만 유전 검사는 FH가 의심되는 사람 중 일부에서만 하고 있다. 유전 검사는 1) 확실한 진단, 2) 세밀한 위험도 평가와 이에 따른 치료 적용, 3) 연쇄 선별 검사 효율화[17]에 도움이 된다. 최근 연구에 따르면 신체 소견이 비슷한 경우, 병인성 변이가 있는 환자가 없는 환자에 비해 심혈관 위험도가 3배 높다고 한다[18]. 언급하였듯이, 임상진단 시 진단형(예, definite, probable, possible)에 따라 병인성 변이 보유 비율은 다를 수 있다. FH에 맞는 표현형과 가족력이 있다면, 유전 검사에서 병인성 변이가 나오지 않아도 FH 진단을 배제할 수 없다. 이런 사례들은 다유전자성(polygenic)이거나, 기슬적인 문제거나, LDLRAP1 유전자 상염색체 연쇄성 변이어나, 새로운 유전자변이에 기인한 경우일 수 있다.

Figure 3. (A) Distribution of blood cholesterol levels in the general population and individuals with familial hypercholesterolemia (FH). (B) Receiver operating characteristic curves for total and low-density lipoprotein cholesterol (LDL-C) and the presence of pathogenic variants [7]. AUC, area under the curve.
FH 유전 검사에서 표적 유전자는 \textit{LDLR}, \textit{APOB}, \textit{PCSK9}이다. 비용이 점점 낮아짐에 따라 최근 많은 기관에서 차세대 염기서열 분석(next generation sequencing)에 결손/중복 (deletion/duplication) 분석을 더해 이 세 가지 유전자를 검사 한다. 외국 자료와 비슷하게 한국 환자에서도 병인성 변이 보유자 중 10% 정도에서 유전자폭우변이(copy number variation)가 발견되는데, 이 종류의 변이는 결과 검증을 위해 다중 결합의존 프로브 증폭(multiplex ligation-dependent probe amplification)이나 TaqMan 방법이 필요하다[7]. 병인성 변이 로 의심되는 변이가 발견되는 경우에는 이것이 원인 변이인 지 옵마르게 해석하는 것이 매우 중요하다. \textit{LDLR} 변이에 대한 데이터베이스는 세계적으로 몇 개가 있다. FH 관련 유전자의 병인성은 American College of Medical Genetics and Genomics와 Association of Molecular Pathology 지침에 따라 분류한다[19]. 그렇지만 발견되는 변이 중 많은 수가 의미 가 불확실한 변이(variant of uncertain significance)로 해석될 뿐[20]. 이런 경우 변이의 가능성은 가족 내 공통 분리 (co-segregation)를 통해 확인할 수 있다(Fig. 4) [21].

유전 검사를 할 대상은 혼히 성인에서 LDL-C ≥ 190 mg/dL 이면서 다른 비조건 원인이 없을 때, 소아나 청소년에서 LDL-C ≥ 160 mg/dL이면서 조기 발병 관상동맥 질환이나 중 증 고콜레스테롤혈증 가족력이 있는 경우이다. 국내에서 유 전 검사 비용을 건강보험에서 부분적으로 지원하고 있으므 로, 의료계 종사자들이 FH에 대해 더 잘 알게 되면 환자에 대한 임상적, 유전학적 진단율이 올라갈 듯하다.

\textbf{Figure 4.} A Pedigree analysis of a patient with \textit{LDLR} p.D834Rfs/- mutation. (A) A simplified pedigree of the P05 family. The upper right arrow indicates the proband; squares indicate males, and circles indicate females. Open and filled symbols indicate unaffected and affected individuals, respectively. Asterisks indicate family members who underwent clinical examinations and molecular analyses. (B) Clinical examination data and sequencing chromatograms. Vertical arrows indicate mutation site [21]. WT, wild-type; TC, total cholesterol; TG, triglyceride; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol.
감별 진단

다른 이상성, 일차성 고콜레스테롤혈증이 배제되어야 한다. 이차성 원인에는 감상선기능 저하증, 신종후군, 담즙 장재, 급성 간염성 포르페린혈증, 약제에 (thiazide, cyclosporine) 등이 있다[22]. 다른 일차성 원인으로는 시토스텔혈증, 가족성 복합 고지혈증 등이 있다. 시토스텔혈증은 휘귀 유전 질환으로 ABCG5/8의 기능상실 돌연변이에 기인하는데, 혈증 식물성 스테롤 농도가 높다. 20만 명 중 한 명꼴로 발생한다. LDL-C 수치는 다양하지만 소아 등 일부 환자에서는 매우 높으며, 자녀에서는 매우 높으며, 정의의 영향을 받을 수 있다. 확진은 병인성 돌연변이가 확인되어야 하는데, 시토스텔 혈증과 유전 검사를 할 수 없는 기관이 많은 것이 진단의 결림이 다[23]. 가족성 복합 고지혈증 환자는 조절없도 지단백 농도와 LDL-C 수치가 높고, HDL-C 수치가 낮다. 유병률은 100-200당 한 명꼴이며, 조기 발생 관상동맥 질환에 대한 주요 원인 중 하나이다. 분자적 배경은 다르지만 다유전자 성 원인으로 설명되기도 하며, 이차성 요인들은 표현형에 영향을 줄 수 있다. 환자들은 전형적으로 총 콜레스테롤 수치가 200-400 mg/dL, 중증지방 200-600 mg/dL, HDL-C < 40-50 mg/dL이며, 가족력이 있다. 이 질환에 대해 지각과 표준화 된 정의가 없지만, apoB (> 120 mg/dL)와 중증지방은 133 mg/dL이 동시에 높은 것이 제일 혼란된 단서이다[24].

FH의 선별 검사

여러 나라에서 FH 유병률은 기존에 보고된 자료보다 높을 가능성이 있는데, 이는 FH의 임상적 중요성에 대한 인식이 부족해서 진단이 미치기 때문이 다. FH에 대한 지식과 검사의 중요성을 인식하고 있다[6,17,25,26]. 또한 각 국가의 상황과 합의안에 맞게 선별검사를 하는 것이 제안한다. FH 환자는 이중성당맥경화성 심혈관 질환이 생기기 전까지는 대개 증상이 없기 때문에 LDL-C 수치를 측정하는 것은 조기 진단과 치료를 위해 매우 중요하다. 2018년 한국 이상지질혈증 지침은 21세 이상 성인 혹은 더 어리더라도 다른 위험요인(예, 심혈관 질환이나 중증 이상지질혈증 가족력)이 있는 경우 4-6년에 한 번 이상지질혈증에 대한 선별검사를 할 것을 권고하고 있다[27]. 관상동맥 질환이 55세(남자) 혹은 60세(여자)에 생겼을 때 혹은 LDL-C 수치가 심하게 높을 때(성인에서 >190 mg/dL 혹은 소아에서 ≥150 mg/dL), 혹은 환자 자신 혹은 가족 중 3회 이상 혈색조 검안 가족력이 있을 때 혹은 조기 발생 심혈관 질환 가족력이 있을 때 FH를 의심해야 한다[5,27]. 피부 혈색 조기 발병, xanthelasmas, 조기 발생 약약짓고 FH 선별 검사를 위한 고려사항이다. 그러나 많은 FH 환자가 이 질환으로 의심되기 전에 지질강하 약제를 이미 시작하기 쉬우며, 이 때문에 진단이 지연되는 경향이 있다. 그래서 FH에 맞는 임상 소견과 가족력을 확인할 수 있게 의료계 종사자 사이에 FH 인지도를 개선하는 것이 매우 중요하다.

가족 내에 처음 진단된 index 환자의 가족에 대한 연체 선별 검사는 새로운 FH 환자를 조기에 진단, 치료하기 위한 효율과 가성가 제일 좋은 방법으로 잘 알려져 있다. 연체 선별 검사는 일차적 가족, 천착에 대한 지질 수치와 유전 검사를 포함한다. 잘 구성된 선별 검사 프로그램이 FH의 예후를 개선할 수 있으므로 많은 나라에서 자국에 적절한 프로그램을 도입하고 있다. 일반(universal) 선별 검사는 FH 환자 발굴을 위한 방법 중 하나인데, 일부 국가에서 시행되고 있다[13].

FH의 치료

FH가 진단되면 지질강하 치료를 되도록 빠리 시작하는 것이 매우 중요하다. 다른 심혈관 위험 요인이 있다면 동시에 조절하는 것도 필수적인데, 이는 FH 치료 목적이 심혈관 증상도 막는 것과 심혈관 질환 예방에 있어 기반이다. 식사 조절이나 운동같은 비약물 치료는 이상지질혈증에 대한 다른 지침과 대동소이하다. FH 환자가 이 질환으로 의심된다면, 식사 조절이나 운동은 비약물 치료는 이상지질혈증에 대한 다른 지침과 대동소이하다[13,27]. 간락히 말하면 총 지방, 포화지방, 트랜스지방, 콜레스테롤, 탄수화물, 단백, 음료를 섭취하는 것이 제한하며, 이들의 상한선을 제시하고 있다. 한편, 심유소가 부정부트 음식, 통곡, 다양한 곡류, 아재, 생선, 신선한 과일을 적극적으로 먹을 것을 권장한다. 유산소 운동, 저항성 운동을 규칙적으로 하는 것이 추천되는데[27]. 중간 강도 유산소 운동을 일주일에 4-6회, 30분 이상 하며, 일주일에 2회 이상 저항성 운동을 하는 것을 권고하고 있다.

일차적인 치료약제는 스타틴이며, 대개 고강도로 투여하게 된다. 많은 FH 환자가 스타틴 단독요법으로 LDL-C 목표치에 도달하지 못할 수도 있으며, 이차 약제로 에체타미브가 추가될 수 있다. 투여할 수 있는 최대용량 스타틴을 투여하고 에체타미브가 추가된 뒤에도 목표치에 도달하지 못하면, PCSK9 억제제를 추가할 수 있다(Table 3) [5,15,28,29]. 한국 저질병성경화학회에서 지원한 한 연구에 따르면 한국인 FH
환자에서 최대용량 스타틴/에제티미브 병합요법을 한 뒤에 LDL-C < 100 mg/dL나 LDL-C 50% 감소를 달성한 비율은 높지 않았다[30]. 지질강하 치료에 대한 효과가 FH 환자의 유전형의 영향을 받을 수 있다[31].

스타틴: 대부분의 국제적 지침이 현재 FH 환자에 대한 약제로 권고하는 최대 용량 스타틴을 권고한다(Table 3) [5,29]. FH 환자에서 스타틴에 대한 무작위 배정 임상시험은 수행된 적이 없다. 하지만 네덜란드에서 수행된 코호트 연구에서 최신 지침보다 낮은 용량 스타틴을 사용하였는데도 FH 환자에서 관상동맥성 심장 질환 위험도가 76% 낮다고 보고하였다[32]. 또한 네덜란드에서 이루어진 후향적 연구에서 중간 강도-고강도 스타틴 치료 이후 관상동맥 질환 발생과 사망률이 50% 감소됨을 확인하였다[33]. 메타분석 연구에서도 고강도 스타틴 치료가 유익함을 알 수 있다[34].

에제티미브: 대부분의 최근 지침에서 에제티미브는 지질 강하 치료의 이차 약제로 권고된다(Table 3). 콜레스테롤 혼합 수 약제로서 중간 강도 스타틴과 병합하였을 때 심혈관 사 건 발생을 감소하는 것이 알려져 있다[35]. 다른 연구는 스타틴과 에제티미브 병합요법이 스타틴 단독요법과 비교할 때 경화반을 퇴행시킨다고 보고하였다[36]. 스타틴/에제티미브 병합요법은 LDL-C 강하효과가 강하며(기저 수치로부터 ≥ 50%) 비교적 안전한 지질강하 치료이다[37].

PCSK9 억제제-단클론 항체: 이 약제는 심혈관 위험도가 매우 높은 FH 환자에서 전달 수 있는 최대용량 스타틴/에제티미브 사용한 뒤에도 LDL-C 목표치에 달하지 못한 경우 권고된다(Table 3). FOURIER [38]와 ODYSSEY-OUTCOMES 연구[39]가 이 계열 약제인 evolocumab과 alirocumab의 심혈관 이득을 각각 증명하였는데, 이것은 FH 환자에서 향-PCSK9 항체 사용에 대한 과학적 근거를 마련하였다. 이들 약제에 의해 LDL-C 강하 정도는 FH가 없는 환자에서보다 작지 않다[5],

| Table 3. Recommendation of drugs for lipid-lowering therapy [5,29] |
|---------------------|-------------------|--------|--------|--------|
| **Drugs** | **Recommendation** | **2019** | **2018** | **2018** |
| | | **European** | **American** | **Korean** |
| Statins | Up to maximal tolerable dose to reach LDL-C target. | I | I | I |
| Ezetimibe | Combine with a statin when the LDL-C target is not reached. | I | IIa | IIa |
| In the case of statin intolerance. | IIa | Ia |
| PCSK9 inhibitors | In secondary prevention with very high-risk* when high LDL-C persists despite maximal tolerable dose statin/ezetimibe. | I | IIa | IIb |
| In primary prevention with FH & very high-risk* when high LDL-C persists despite maximal tolerable dose statin/ezetimibe. | I | IIb |
| In the case of statin intolerance. | IIb |
| Bile acid-binding resin | Combine with a statin when the LDL-C target is not reached. | IIb | IIb | IIb |
| In the case of statin intolerance. | IIb | IIa |

Class I recommendation means “is recommended or is indicated” and defined when evidence and/or general agreement that a given treatment is beneficial. Class II recommendation is defined when conflicting evidence and/or divergence of opinion about the efficacy of the given treatment. Class IIa means “should be considered” and is defined when weight of evidence/opinion is in favor of efficacy. Class IIb means “may be considered” and defined when efficacy is less well established by evidence.

LDL-C, low-density lipoprotein cholesterol; PCSK9, proprotein convertase subtilisin/kexin type 9; FH, familial hypercholesterolemia.

*In European guidelines, very high-risk group is defined as documented atherosclerotic cardiovascular disease (ASCVD), diabetes mellitus (DM) with target organ damage or ≥ 3 major risk factor, type 1 DM of long duration, severe chronic kidney disease (estimated glomerular filtration rate [eGFR] < 30 mL/min/1.73 m²), calculated SCORE (risk assessment model to estimate 10-year risk of cardiovascular disease in Europe) ≥ 10%, or FH with ASCVD or major risk factors. In American guidelines, very high-risk of future ASCVD events is defined as multiple major ASCVD events or one major event and multiple high-risk conditions as follows. Major ASCVD events include recent acute coronary syndrome, history of myocardial infarction or ischemic stroke, and symptomatic peripheral artery disease. High-risk conditions include age 65 years, heterozygous FH, history of coronary revascularization, DM, hypertension, chronic kidney disease (eGFR 15 to 59 mL/min/1.73 m²), current smoking, persistently elevated LDL-C ≥ 100 mg/dL despite maximal tolerable dose statin and ezetimibe, and history of congestive heart failure. In Korean guidelines, very high-risk group is defined as coronary artery disease, atherosclerotic ischemic stroke and transient ischemic attack, and peripheral artery disease.
이 약체들은 스타틴 부작용을 겪은 환자들에게도 고려된다. 그러나 다른 경우 약체보다 비싼 비용으로부터, 따라서 특정 위험군에서 가성비를 고려하여 항 PCSK9 항체를 시험할 적절한 LDL-C를 정하는 것은 어려우면서도 중요한 문제이다(29,40,41).

담즙산 결합수지: 중증 고콜레스테롤혈증에서 이 약체 주가를 고려할 수 있다(Table 3). 담즙산 결합수지는 LDL-C 강하 효과가 있지만, 임상 경과를 본 연구가 없기 때문에 사용 권고는 비교적 제한적이다.

기타 치료와 새로운 치료: mipomersen은 울리고뉘클레오티드 유도체이며, apoB mRNA와 결합하여 모든 apoB 함유 지단백 생산을 억제한다. 이 약체의 환성은 LDLR 발현에 비유의존적인데, 특히 동형접합 FH (homozygous FH, HoFH) 환자로 보를 위한 보조 약제로서 개발되었다. 이 환자에서 mipomersen은 LDL-C 수치를 21% 강하시켰다. 부작용은 주사 부위 반응, 간 효소수치 상승, 간 지방증 증가 등이다(42). 현재 이 약체는 국내에서 유통되지 않는다. Lomitapide는 microsomal triglyceride transfer protein 약제제이며, 골지체에서 apoB 함유 지단백의 조립과 분비를 줄인다. 이 약체는 HoFH 환자에서 LDL-C 수치를 38-50% 강하시킨다(43). Lomitapide 또한 LDLR에 비유의존적으로 LDL-C 수치를 강하시는데, 간에 중성지방 축적, 지방간염 hepatosteatosis, 간 효소 수치 상승을 초래할 수 있다. 이 약체도 국내에서 유통되지 않는다. Inclisiran은 합성 small interfering RNA이며, PCSK9 합성을 억제하고 LDL-C 수치를 낮추는데 매우 효과적이다. HeFH 환자에서 수행한 임상시험에서 위약에 비해 LDL-C 수치를 48% 강하시켰으나, 부작용 정도는 비슷하였다(44). 투여 간격이 길어서 환자 순응도가 좋지 않으므로 기대된다. 이 약체는 심혈관 치명률과 이환율에 대한 대규모 임상시험 진행 중이며, 2021년에 미국에서 승인되었으나 아직 국내에는 도입되지 않았다. Angiopoietin-like 3 (ANGPTL3)은 lipoprotein lipase와 endothelial lipase를 억제하는 단백질이다. Evinacumab은 ANGPTL3에 대한 항체이며, HeFH [45]와 HoFH 환자에서 각각 수행된 2상, 3상 임상시험에서 LDL-C와 중성지방 수치를 최대 56% 강하시켰다.

지단백 혈장교환율은 혈액으로부터 지단백을 제거하는 방법으로서, 약물 치료에 대한 지질강하 반응을 충분히 없을 때 쓰기도 한다. 이 방법은 HoFH나 중증 HeFH 환자에서 가끔 사용된다. 이 방법은 LDL-C 수치를 50-70% 강하시킨다. 그렇지만 침습적인 방법이기 때문에 환자의 삶의 질에 부정적 영향이 있을 수 있다(5).

LDL-C 목표치: 이상적인 LDL-C 목표치는 족상동맥경화심 혈관 질환이나 주요 위험요인이 있을 때 기저치 대비 50% 경감에 대하여 < 55 mg/dL, 두 가지 모두 없을 때 < 70 mg/dL이다(5). 하지만 3가지 지질강하 약제를 병합하더라도 많은 FH 환자에서 이 목표치에 도달하는 것이 어려울 수 있기 때문에(47), 전자에서 LDL-C 50% 강하시며 < 70 mg/dL, 후자에서 < 100 mg/dL가 많은 치료로서 현실적인 치선책으로 거론된다(6,28,48). 한국질환경화학회에서 지원한 한 연구에서 중증 고콜레스테롤혈증 환자를 분석한 결과, 심혈관 질환이 없는 환자에서 스타틴 치료 후 LDL-C < 100 mg/dL에 도달한 환자에서 도달하지 않은 환자보다 심혈관 사지 발생이 적은 것을 알 수 있었다(8).

HoFH

HoFH는 최저치지만 치명적인 질환이다. 유병률은 100만 명당 1명 정도지만, 최근 연구에서는 16-30만 명당 1명이라고 보고되기도 한다(9). HoFH보다 HeFH 환자에서 혈관이 질환에 대해 노출되는 정도가 더 심하기 때문에, 20세 이전에 관상동맥 질환이 발생하는 데 도움이 된다.

임상적으로 괴멸적인 환자중, 매우 조기에 발생하고 진행하는 심혈관 질환, 치료 전 LDL-C 수치 > 500 mg/dL 혹은 치료 후 LDL-C 수치 ≥ 300 mg/dL가 특징이다. 상당수 환자 가 20세 이전에 관상동맥 질환과 대동맥 판막 협착증이 생기고, 30세 이전에 사망할 수 있다. 소아에서는 초기 증상과 정

Table 4. EAS diagnostic criteria for HoFH [25]

| 1) Genetic confirmation of two mutant alleles at LDLR, APOB, PCSK9, or LDLRAP1 or |
| 2) An untreated LDL-C > 13 mmol/L (500 mg/dL) or treated LDL-C > 8 mmol/L (300 mg/dL)² with either: |
| Cutaneous or tendon xanthoma at age < 10 years or |
| Untreated elevated LDL-C consistent with HeFH in both parents |

EAS, European Atherosclerosis Society; HoFH, homozygous familial hypercholesterolemia; LDL-C, low-density lipoprotein cholesterol; HeFH, heterozygous familial hypercholesterolemia.

²These LDL-C are only indicative, and lower levels, especially in children or in treated patients, do not exclude HoFH.
후로서 관해 콜레스테롤 높이 측정에 기인한 대동맥 관류량증과 폐쇄부전이 나타날 수 있다[25].

전문: HoFH에 대해 케일 양 알려진 진단기준은 2014년 유럽 동맥경화학회 FH 항의 멘탈에서 나온 것이다[25]. 이 기준은 DNA 돌연변이, LDL-C 수치, 신체 소견, 가족력 및 혈청지단백 혈중량이 포함한다(Table 4). 그러나 유전진단기준을 너무 엄격하게 적용하면 약물 치료에 대한 보험 적용 등에 영향을 줄 수 있다. 유전 분석은 임상진단을 확인하고 환자 가족에 대한 검사를 추적하며, 임상 양상이 HoFH와 HeFH의 경계선에 있을 때 진단을 드리기 위해 고려된다[25,249].

감사: HoFH가 의심되는 환자는 종합적인 치료를 위해 전문가에게 의뢰할 필요가 있다. 관상동맥 질환이나 대동맥관 막질환이 대한 정기적 선별검사가 권고된다. 환자는 진단 시에 심혈관 평가를 받고 이후 매년 심장초음파, 부상 검사를 하며, 가능한 경우 컴퓨터단층촬영관상동맥조영술을 매 5년마다 하는 것이 권장된다. 응급상황에 대한 교육이 필요하고, 매 6개월마다 임상적 평가를 하며 진단을 권장한다.

치료: HoFH는 소아기에 일찍 발견하는 것이 매우 중요하다. HoFH에서 치료 목표는 지결강하 치료를 최대한 일찍 시작하며, 콜레스테롤 수치를 최대한 낮추는 것이다. LDL-C 목표치는 성인, 소아, 십상동맥경화성 심혈관 질환 환자에서 각각 100, 135, 70 mg/dL이다. 생활습관 교정, 스타틴내제제, 베타블렌, 지단백 혈장환산수치를 할 수 있는 경우로 치료에 필수적이 다. 지단백 혈장환산수치는 5세 혹은 8세에서 시작할 것이 권고된다. PCSK9 억제제, lomitapide, mipomersen 같은 새로운 치료재가 추가될 수 있다. 한국에서 mipomersen과 lomitapide는 유효되지 않고, PCSK9 억제제 중 evolocumab은 HoFH에서 승인되었다. 형 ANGPTL3 억제제인 evinacumab도 일부 국가에서 HoFH 환자에게 승인되었다. 다른 심혈관 위험 요인 조절도 중요하며, 아스피린도 고려할 필요가 있다.

특수 집단의 FH

소아

진단: 소아에서 FH는 높은 LDL-C에 동반된 조기 발병 관상동맥 질환이나 관상동맥 질환 혹은 높은 LDL-C 혹은 유전 검사 양성의 가족력이 있는 소아에서 진단할 수 있다[50]. 위와 같은 가족력이 있는 소아에서 찾아보인다. 동반되는 기준 LDL-C 수치는 ≤ 160 mg/dL이다. 탄일 부모 중 한쪽이 유전 검사와 양성 소견이 있다면, 자녀에서 진단을 위한 LDL-C 수치는 더 낮게 잡을 수도 있다. FH의 검사는 소아 5세에서 시작할 수 있으며, 치료는 저용량 스타틴을 선호한다[12]. 다른 치료는 evolocumab, mipomersen, lomitapide 등이 있다[249]. 어머니나 아버지에서 FH가 있는 경우 더욱 주의가 필요하다[249].

CONFLICTS OF INTEREST

No potential conflict of interest relevant to this article was reported.

FUNDING

This work was supported by the Korean Society of Lipid and Atherosclerosis. The funder had no role in study design, data.
collection and analysis, decision to publish, or preparation of the manuscript.

AUTHOR CONTRIBUTIONS

CJL, MY, HJK, BJK, SHC, IKJ, and SHL contributed to drafting and revising the manuscript. All authors reviewed and approved the manuscript.

ACKNOWLEDGMENTS

None.

REFERENCES

1. Austin MA, Hutter CM, Zimmern RL, Humphries SE. Genetic causes of monogenic heterozygous familial hypercholesterolemia: a HuGE prevalence review. Am J Epidemiol 2004;160:407-420.
2. Benn M, Watts GF, Tybjaerg-Hansen A, Nordestgaard BG. Mutations causative of familial hypercholesterolaemia: screening of 98,098 individuals from the Copenhagen General Population Study estimated a prevalence of 1 in 217. Eur Heart J 2016;37:1384-1394.
3. Lee SJ, Kwark JK, Koh KA, Choi WH, Park WK, Kim SW. A case of familial hypercholesterolemia combined with diabetes mellitus. Korean J Med 1989;37:558-565.
4. You JH, Kil HR, Seo JJ, Chung YH. A case of familial hypercholesterolemia. J Korean Pediatr Soc 1989;32:1288-1294.
5. Authors/Task Force Members; ESC Committee for Practice Guidelines (CPG); ESC National Cardiac Societies. 2019 ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Atherosclerosis 2019;290:140-205.
6. Harada-Shiba M, Arai H, Ishigaki Y, et al. Guidelines for diagnosis and treatment of familial hypercholesterolemia 2017. J Atheroscler Thromb 2018;25:751-770.
7. Kim H, Lee CJ, Kim SH, et al. Phenotypic and genetic analyses of Korean patients with familial hypercholesterolemia: results from the KFH Registry 2020. J Atheroscler Thromb 2022;29:1176-1187.
8. Lee CJ, Park S, Han K, Lee SH. Cardiovascular risk and treatment outcomes in severe hypercholesterolemia: a nationwide cohort study. J Am Heart Assoc 2022;11:e024379.
9. Nordestgaard BG, Chapman MJ, Humphries SE, et al. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society. Eur Heart J 2013;34:3478-3490.
10. Stone NI, Robinson JG, Lichtenstein AH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2014;63(25 Pt B):2889-2934.
11. Perez de Isla L, Alonso R, Mata N, et al. Predicting cardiovascular events in familial hypercholesterolaemia: the SAFEHEART Registry (Spanish Familial Hypercholesterolemia Cohort Study). Circulation 2017;135:2133-2144.
12. Shin DG, Han SM, Kim DI, et al. Clinical features of familial hypercholesterolemia in Korea: predictors of pathogenic mutations and coronary artery disease: a study supported by the Korean Society of Lipidology and Atherosclerosis. Atherosclerosis 2015;243:53-58.
13. Schmidt EB, Hedegaard BS, Retterstol K. Familial hypercholesterolaemia: history, diagnosis, screening, management and challenges. Heart 2020;106:1940-1946.
14. Harada-Shiba M, Arai H, Okamura T, et al. Multicenter study to determine the diagnosis criteria of heterozygous familial hypercholesterolemia in Japan. J Atheroscler Thromb 2012;19:1019-1026.
15. Brunham LR, Ruel I, Aljenedil S, et al. Canadian Cardiovascular Society position statement on familial hypercholesterolemia: update 2018. Can J Cardiol 2018;34:1553-1563.
16. Starr B, Hadfield SG, Hutten BA, et al. Development of sensitive and specific age- and gender-specific low-density lipoprotein cholesterol cutoffs for diagnosis of first-degree relatives with familial hypercholesterolaemia in cascade testing. Clin Chem Lab Med 2008;46:791-803.
17. Sturm AC, Knowles JW, Gidding SS, et al. Clinical genetic testing for familial hypercholesterolemia: JACC Scientific Expert Panel. J Am Coll Cardiol 2018;72:662-680.
18. Tada H, Kawashiri MA, Nohara A, Inazu A, Mabuchi H, Yamagishi M. Impact of clinical signs and genetic diagnosis of familial hypercholesterolaemia on the prevalence of coronary artery disease in patients with severe hypercholesterolemia. Eur Heart J 2017;38:1573-1579.
19. Chora JR, Iacocca MA, Tichy L, et al. The Clinical Genome Resource (ClinGen) Familial Hypercholesterolemia Variant Curation Expert Panel consensus guidelines for LDLR variant classification. Genet Med 2022;24:293-306.
20. Iacocca MA, Chora JR, Carrie A, et al. ClinVar database of global familial hypercholesterolemia-associated DNA variants. Hum Mutat 2018;39:1631-1640.
21. Han SM, Hwang B, Park TG, et al. Genetic testing of Korean familial hypercholesterolemia using whole-exome sequencing. PLoS One 2015;10:e0126706.

22. Rader DJ, Kathiresan S. Disorders of lipoprotein metabolism. In: Jameson JL, Kasper DL, Longo DL, eds. Harrison’s Principles of Internal Medicine. 20th ed. New York (NY): McGraw-Hill Education LLC, 2018 [cited 2022 Jul 15]. Available from: https://accessmedicine.mhmedical.com/content.aspx?bookid=2129§ionid=192288734.

23. Tada H, Nomura A, Ogura M, et al. Diagnosis and management of sitosterolemia 2021. J Atheroscler Thromb 2021;28:791-801.

24. Brahm AJ, Hegele RA. Combined hyperlipidemia: familial but not (usually) monogenic. Curr Opin Lipidol 2016;27:131-140.

25. Cuchel M, Bruckert E, Ginsberg HN, et al. Homozygous familial hypercholesterolaemia: new insights and guidance for clinicians to improve detection and clinical management: a position paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society. Eur Heart J 2014;35:2146-2157.

26. Representatives of the Global Familial Hypercholesterolaemia Community, Wilemon KA, Patel J, et al. Reducing the clinical and public health burden of familial hypercholesterolemia: a global call to action. JAMA Cardiol 2020;5:217-229.

27. Rhee EJ, Kim HC, Kim JH, et al. 2018 Guidelines for the management of dyslipidemia in Korea. J Lipid Atheroscler 2019;8:78-131.

28. Raal FJ, Hovingh GK, Catapano AL. Familial hypercholesterolemia treatments: guidelines and new therapies. Atherosclerosis 2018;277:483-492.

29. Grundy SM, Stone NJ, Bailey AL, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPAC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol 2019;73:e285-e350.

30. Oh J, Lee CJ, Kim DI, et al. Target achievement with maximal statin-based lipid-lowering therapy in Korean patients with familial hypercholesterolemia: a study supported by the Korean Society of Lipid and Atherosclerosis. Clin Cardiol 2017;40:1291-1296.

31. Kim H, Lee CJ, Pak H, et al. GENetic characteristics and REsponse to lipid-lowering therapy in familial hypercholesterolemia: GENRE-FH study. Sci Rep 2020;10:19336.

32. Versmisseen J, Oosterveer DM, Yazdanpanah M, et al. Efficacy of statins in familial hypercholesterolaemia: a long term cohort study. BMJ 2008;337:a2423.

33. Besseling J, Hovingh GK, Huijgen R, Kastelein JJ, Hutton BA. Statins in familial hypercholesterolemia: consequences for coronary artery disease and all-cause mortality. J Am Coll Cardiol 2016;68:252-260.

34. Cholesterol Treatment Trialists’ (CTT) Collaboration, Baigent C, Blackwell L, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 2010;376:1670-1681.

35. Cannon CP, Blazing MA, Giugliano RP, et al. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med 2015;372:2387-2397.

36. Tsujita K, Sugiyama S, Sumida H, et al. Impact of dual lipid-lowering strategy with ezetimibe and atorvastatin on coronary plaque regression in patients with percutaneous coronary intervention: the multicenter randomized controlled PRECISE-IVUS trial. J Am Coll Cardiol 2015;66:495-507.

37. Kim K, Bang WD, Han K, Kim B, Lee JM, Chung H. Comparison of the effects of high-intensity statin therapy with moderate-intensity statin and ezetimibe combination therapy on major adverse cardiovascular events in patients with acute myocardial infarction: a nationwide cohort study. J Lipid Atheroscler 2021;10:291-302.

38. Sabatine MS, Giugliano RP, Kecht AC, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med 2017;376:1713-1722.

39. Schwartz GG, Steg PG, Szarek M, et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med 2018;379:2097-2107.

40. Landmesser U, Chapman MJ, Stock JK, et al. 2017 Update of ESC/EAS Task Force on practical clinical guidance for proprotein convertase subtilisin/kexin type 9 inhibitor in patients with atherosclerotic cardiovascular disease or in familial hypercholesterolaemia. Eur Heart J 2018;39:1131-1143.

41. Nohara A, Ohmura H, Okazaki H, et al. Statement for appropriate clinical use of PCSK9 inhibitors. J Atheroscler Thromb 2018;25:747-750.

42. Raal FJ, Santos RD, Blom DJ, et al. Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet 2010;375:998-1006.

43. Cuchel M, Meagher EA, du Toit Theron H, et al. Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: a single-arm, open-label, phase 3 study. Lancet 2013;381:40-46.

44. Raal FJ, Kallend D, Ray KK, et al. Inclisiran for the treatment of heterozygous familial hypercholesterolemia. N Engl J Med 2020;382:1520-1530.

45. Rosenson RS, Burgess LJ, Ebenbichler CF, et al. Evinacumab in patients with refractory hypercholesterolemia. N Engl J Med 2021;384:1548-1560.
46. Raal FJ, Rosenson RS, Reeskamp LF, et al. Evinacumab for homozygous familial hypercholesterolemia. N Engl J Med 2020;383:711-720.

47. EAS Familial Hypercholesterolaemia Studies Collaboration (FHSC). Global perspective of familial hypercholesterolaemia: a cross-sectional study from the EAS Familial Hypercholesterolaemia Studies Collaboration (FHSC). Lancet 2021;398: 1713-1725.

48. Santos RD, Gidding SS, Hegele RA, et al. Defining severe familial hypercholesterolaemia and the implications for clinical management: a consensus statement from the International Atherosclerosis Society Severe Familial Hypercholesterolemia Panel. Lancet Diabetes Endocrinol 2016;4:850-861.

49. Gidding SS, Champagne MA, de Ferranti SD, et al. The agenda for familial hypercholesterolemia: a scientific statement from the American Heart Association. Circulation 2015;132:2167-2192.

50. Wiegman A, Gidding SS, Watts GF, et al. Familial hypercholesterolaemia in children and adolescents: gaining decades of life by optimizing detection and treatment. Eur Heart J 2015;36:2425-2437.

51. Santos RD, Ruzza A, Hovingh GK, et al. Evolocumab in pediatric heterozygous familial hypercholesterolemia. N Engl J Med 2020;383:1317-1327.

52. Graham DF, Raal FJ. Management of familial hypercholesterolemia in pregnancy. Curr Opin Lipidol 2021;32: 370-377.