Effectiveness of oral administration of peppermint and coriander extracts on cognition in Scopolamine induced rat model of amnesia

Jasira Sirajudheen¹, Sai Sailesh Kumar Goothy²,³, Mukkadan J K³

¹Department of Physiology, PK Das Institute of Medical Sciences, Palakkad, Kerala, India
²Department of Physiology, R D Gardi Medical College, Ujjain, Madhya Pradesh, India
³Little Flower Medical Research Centre, Angamaly, Kerala, India

ABSTRACT

Herbs and spices have been shown to be very effective in the management of the neurological disorders. They have neuroprotective actions that prevent the deterioration of the memory and other cognitive functions in the neurological diseases. Peppermint (mentha piperita, also known as M. balsamea wild) is a hybrid mint, a cross between water mint and spearmint. Peppermint consists of several medicinal components and research was testified safety of consumption of the peppermint. The study compared the memory-boosting and regaining effects of oral administration of peppermint and coriander extracts. 36 male and female Wistar albino rats were assigned into three groups randomly that is control, coriander and peppermint groups, respectively. A control group (n=6) received neither peppermint nor coriander administered (milk was administered). Peppermint group (n=6) received peppermint extract. Coriander group (n=6) received coriander extract. Amnesia rat model was prepared by the administration of an intraperitoneal injection of scopolamine. The R-maze and T-maze tasks was conducted as mentioned in the literature. Mean trials of acquisition is significantly less (P<0.01) in the peppermint group. The number of mean trials of retention is significantly less (P<0.01) in the peppermint group. The mean trials for retention of the coriander group is significantly (P<0.05) less than the peppermint group. The study results support a positive impact of coriander and peppermint on cognition. The study recommends further detailed studies to support the administration of these extracts in the management of neurological diseases that deteriorates cognition.

INTRODUCTION

Herbs and spices have been shown to be very effective in the management of the neurological disorders. They have neuroprotective actions that prevent the deterioration of the memory and other cognitive functions in the neurological diseases (Morinushi et al., 2000). Peppermint (mentha x piperita, also known as M. balsamea wild) is a hybrid mint, a cross between water mint and spearmint. Peppermint consists of several medicinal components and research was testified safety of consumption of the peppermint. Several studies support the positive impact of peppermint on the cognitive functions (Johnson et al., 2011; Smith et al., 2012; John-
Pharmacological studies in animals have shown that coriander has multiple beneficial effects. Coriander sativum have been used as a drug for indigestion, against worms, rheumatism and pain in the joint. The oil produced from this plant was effective against the bacteria. It also have a reversal of memory deficits. The leaf extract of the plant exerted an anti-anxiety effect on mice in the elevated plus-maze and open field tests. The plant leaves was found to be effective in preventing the effects of the lead (Moattar and Takhesh, 2011; Chithra and Leelamma, 2000). Though the studies exist that observed the memory-enhancing effects of peppermint and coriander separately, the comparative studies were scanty. Hence, the study recommends further detailed studies to support the administration of these extracts in the management of neurological diseases that deteriorates cognition.

METHODOLOGY

Animals

36 male and female Wistar albino rats were randomly assigned into three groups.

A control group (n=6)

Neither peppermint nor coriander administered (milk was administered)

Peppermint group (n=6)

Peppermint extract was administered for (Jasira et al., 2013).

Coriander group (n=6)

Coriander extract was administered for (Jasira et al., 2013).

Amnesia rat model

Amnesia rat model was prepared by the administration of an intraperitoneal injection at a dose of 1 mg / Kg of scopolamine (Buscopan® tablets powdered and mixed with 50 ml sterile 0.9% normal saline) (Jasira et al., 2013).

T-maze

The T-maze task was conducted as mentioned in the literature (Jasira et al., 2013).

Radial arm maze

The T-maze task was conducted as mentioned in the literature (Jasira et al., 2013).

Ethical Consideration

The study protocol was approved by the Ethical Committee of Little Flower Medical Research Centre, Angamaly, Kerala, India. All the study procedures were as per the guidelines of CPCSEA.

Statistical analysis

Data was analyzed using SPSS 16.0 version. Student T-Test and One Way Anova Test are used for the data analysis. A p-value less than 0.05 was considered as significant.

RESULTS

Mean trials of acquisition is significantly less (P<0.01) in the peppermint group. The number of mean trials of retention is significantly less (P<0.01) in the peppermint group (Table 1). The number of mean trials acquisition is not significantly different between the coriander and peppermint groups. The mean trials for retention of the coriander group is significantly (P<0.05) less than the peppermint group (Table 2). The number of trials for the acquisition of groups were compared by one way ANOVA. The significant difference was observed (p<0.001). Then the number of trials for retention of these three groups indicates a significantly different with (p<0.001) between the groups (Table 3). The number of trials for the acquisition of groups were significantly different (p<0.001). Then the number of trials for retention of these three groups was significantly different (p<0.001) between the groups (Table 4). The number of trials for the acquisition of groups were significantly different (p<0.001). Then the number of trials for retention of these three groups was significantly different (p<0.001) between the groups (Table 5). Then the number of trials for retention of these three groups was significantly different (p<0.001) between the groups (Table 6).

DISCUSSION

Though the studies exist that observed the memory-enhancing effects of peppermint and coriander separately, the comparative studies were scanty. Hence, the study recommends further detailed studies to support the administration of these extracts in the management of neurological diseases that deteriorates cognition. There exists plenty of literature that supports the memory-enhancing effects of the peppermint (Akben and Coskun, 2019; Nandy et al., 2018). Further, peppermint has several benefits like antiseptic, antimicrobial properties, etc. It also has an influence on the secretion of hormones (Eccles, 1994; Gustafson, 2015; Robbers and Tyler, 1998). The underlying mechanism in improving cognition may be acting on the neuronal level, which has to
Table 1: R-maze task- comparison of the number of trials

Task	Coriander group	Peppermint group	P-value
Acquisition	28.17±5.12	18.67±2.16	0.002**
Retention	19.17±4.54	11.83±2.14	0.005**

(**P<0.01 is significant)

Table 2: T-maze task- Comparison of the number of trials

Task	Coriander group	Peppermint group	P-value
Acquisition	7.83±1.33	12.17±2.32	0.097
Retention	5.50±0.84	6.83±1.47	0.016*

(**P<0.05 is significant)

Table 3: R maze task- Comparison of memory-boosting effects ANOVA

	Sum of Squares	df	ANOVA Mean Square	F	P-value
acq Between Groups	741.444	2	370.722	36.827	<.001***
Within Groups	151.000	15	10.067		
Total	892.444	17			
retention Between Groups	318.111	2	159.056	25.839	<.001***
Within Groups	92.333	15	6.156		
Total	410.444	17			

(****P<0.001 is significant)

Table 4: R maze task- Comparison of memory regaining effects

	Sum of Squares	df	ANOVA Mean Square	F	P-value
acq Between Groups	1484.111	2	742.056	64.340	<.001
Within Groups	173.000	15	11.533		
Total	1657.111	17			
retention Between Groups	261.333	2	130.667	13.690	<.001
Within Groups	143.167	15	9.544		
Total	404.500	17			

Table 5: T maze task- Comparison of memory-boosting effects

	Sum of Squares	df	ANOVA Mean Square	F	P-value
acq Between Groups	160.333	2	80.167	18.312	<.001
Within Groups	65.667	15	4.378		
Total	226.000	17			
retention Between Groups	70.778	2	35.389	13.670	<.001
Within Groups	38.833	15	2.589		
Total	109.611	17			
Table 6: T maze task- Comparison of memory regaining effects

	Sum Squares	df	ANOVA Mean Square	F	P-value	
acq	Between Groups	2	560.778	280.389	47.975	<.001
	Within Groups	15	87.667	5.844		
	Total	17	648.444			
retention	Between Groups	2	104.333	52.167	16.416	<.001
	Within Groups	15	47.667	3.178		
	Total	17	152.000			

be further explored with detailed studies in this area. The other possible mechanism is improving the blood supply to the brain, which makes the brain to function better (Raudenbush et al., 2009). Coriander sativam leaves were found to be effective in preventing the scopolamine-induced changes in memory. The mechanism may be by inhibiting the acetylcholine esterase activity. Long-term administration of coriander leaves was found to be effective in the management of Alzheimer’s disease. The present study results are in the same line as earlier studies, as we have observed a positive impact on cognition followed by the oral administration of coriander extract. When coriander and peppermint groups are compared, the memory-boosting and regaining effects of peppermint are significant in R-maze, whereas memory boosting and regaining effects of coriander are significant in T-maze.

CONCLUSIONS

The study results support memory boosting and regaining effects of coriander and peppermint. The study recommends further detailed studies to support the administration of these extracts in the management of neurological diseases that deteriorates cognition.

Funding Support

None.

Conflict of Interest

None.

REFERENCES

Akben, C., Coskun, H. 2019. Reintroduction of Odor Combined with Cognitive Stimulation Supports Creative Ideation via Memory Retrieval Mechanisms. *Creativity Research Journal*, 31(3):309–319.

Chithra, V., Leelamma, S. 2000. Coriandrum sativum — effect on lipid metabolism in 1,2-dimethyl hydrazine induced colon cancer. *Journal of Ethnopharmacology*, 71(3):457–463.

Eccles, R. 1994. Menthol and Related Cooling Compounds. *Journal of Pharmacy and Pharmacology*, 46(8):618–630.

Gustafson, C. 2015. Mark Blumenthal: Effects of peppermint Medicines. *Integr Med (Encinitas)*, 14(4):54–59.

Jasira, M., Sai-Sailesh, K., Mukkadan, J. K. 2013. Oral administration of peppermint in Wistar albino rats: Memory boosting and regaining. *Indones. J. Biomed. Sci*, 7:23–26.

Johnson, A. J., Jenks, R., Miles, C., Albert, M., Cox, M. 2011. Chewing gum moderates multi-task induced shifts in stress, mood, and alertness. A re-examination. *Appetite*, 56(2):408–411.

Johnson, A. J., Muneem, M., Miles, C. 2013. Chewing gum benefits sustained attention in the absence of task degradation. *Nutritional Neuroscience*, 16(4):153–159.

Moattar, F., Takhesh, A. A. 2011. The effect of coriander herb and seeds extract on learning and memory in rats. 14th Iranian congress of physiology and pharmacology. *Conference Proc. 1999:530*.

Morinushi, T., Masumoto, Y., Kawasaki, H., Takigawa, M. 2000. Effect on electroencephalogram of chewing flavored gum. *Psychiatry and Clinical Neurosciences*, 54(6):645–651.

Nandy, S., Bhattacharyya, R., Mukherjee, A., Pandey, D. K., Dey, A. 2018. Anti-insomniac Botanicals and Natural Products: Pre-clinical and Clinical Evidences. *Journal of Biologically Active Products from...*
Nature, 8(5):295–311.

Raudenbush, B., Grayhem, R., Sears, T., Wilson, I. 2009. Effects of peppermint and cinnamon odor administration on simulated driving alertness, mood and workload. North American Journal of Psychology, (2):245–256.

Robbers, J. E., Tyler, V. E. 1998. Tyler’s Herbs of choice: the therapeutic use of phytomedicinals. New York. Haworth Herbal Press.

Smith, A. P., Chaplin, K., Wadsworth, E. 2012. Chewing gum, occupational stress, work performance and wellbeing. An intervention study. Appetite, 58(3):1083–1086.