VEST is $W[2]$-hard *

Michael Skotnica

Department of Applied Mathematics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic

Abstract

In this short note, we show that the problem of VEST is $W[2]$-hard for parameter k. This strengthens a result of Matoušek, who showed $W[1]$-hardness of that problem. The consequence of this result is that computing the k-th homotopy group of a d-dimensional space for $d > 3$ is $W[2]$-hard for parameter k.

1 Introduction

The homotopy groups π_k, for $k = 1, 2, \ldots$ are important invariants of topological spaces. The most intuitive of them is the group π_1 which is often called fundamental group.

Many topological spaces can be described by finite structures, e.g. by abstract simplicial complexes. Such structure can be used as an input for a computer and therefore, it is natural to ask how hard is to compute these homotopy groups of a given topological space represented by an abstract simplicial complex.

Novikov in 1955 (see [Nov55]) and independently Boone in 1959 (see [Boo59]) showed undecidability of the word problem for groups. Their result also implies undecidability of computing the fundamental group. (Even determining whether the fundamental group of a given topological space is trivial is undecidable.)

On the other hand, it is known that for greater k, the corresponding homotopy group π_k is a finitely generated abelian group which is always isomorphic to a group of the form

$$\mathbb{Z}^n \oplus \mathbb{Z}_{p_1} \oplus \mathbb{Z}_{p_2} \oplus \cdots \oplus \mathbb{Z}_{p_m}$$

where p_1, \ldots, p_m are powers of prime numbers. An algorithm for computing π_k, where $k > 1$, was first introduced by Brown in 1957 (see [Bro57]).

In 1989, Annick (see [Ani89]) proved that computing rank of π_k, that is the number of direct summands isomorphic to \mathbb{Z} (represented by n in the expression above) is $\#P$-hard for 4-dimensional 1-connected spaces. Another computational problem called VEST, which we define below, was used in Annick’s proof as an intermediate step. Briefly said, $\#P$-hardness of the problem of VEST implies $\#P$-hardness of computing rank of π_k.

*The author acknowledges support by the project “Grant Schemes at CU” (reg. no. CZ.02.2.69/0.0/0.0/19_073/(0016935)).

1Note that \mathbb{Z}^n is a direct sum of n copies of \mathbb{Z} while \mathbb{Z}_{p_i} is a finite cyclic group of order p_i.
Vector evaluated after a sequence of transformations (VEST). The input of this problem defined by Anick in [Ani89] is a vector \(v \in \mathbb{Q}^d \), a list of \((T_1,\ldots,T_m)\) of rational \(d \times d \) matrices and a rational matrix \(S \in \mathbb{Q}^{h \times d} \) for \(d,m,h \in \mathbb{N} \).

For an instance of a VEST let \(M\text{-sequence} \) be a sequence of integers \(M_1,M_2,M_3,\ldots \), where

\[M_k := \{ (i_1,\ldots,i_k) ; ST_i \cdots T_i v = 0 \} \]

Given an instance of a VEST and \(k \in \mathbb{N} \), the goal is to compute \(M_k \). Note, that instead of rational setting we can assume integral setting.

From an instance of a VEST, it is possible to construct a corresponding algebraic structure called 123\(H \)-algebra in polynomial time whose Tor-sequence is equal to the \(M \)-sequence of the original instance of a VEST. This is stated in [Ani89] Theorem 3.4 and it follows from [Ani85] Theorem 1.3 and [Ani87] Theorem 7.6.

Given a presentation of a 123\(H \)-algebra, one can construct a corresponding 4-dimensional simplicial complex in polynomial time whose sequence of ranks \((\text{rk}_2,\text{rk}_3,\ldots)\) is related to the Tor-sequence of the 123\(H \)-algebra. In particular, it is possible to compute that Tor-sequence from the sequence of ranks using an \(\text{FPT} \) algorithm. (Which is defined in the next paragraph).

Parameterized complexity and \(W \) hierarchy It is also possible to look at the problem of computing \(\pi_k \) from the viewpoint of parameterized complexity which classifies decision computational problems with respect to a given parameter(s). For instance, one can ask if there exists an independent set of size \(k \) in a given graph, where \(k \) is the parameter.

In our case, the number \(k \) of the homotopy group \(\pi_k \) plays the role of such parameter. Since we assume only decision problems, we only ask whether the rank of \(\pi_k(X) \) of a space \(X \) is nonzero (or equal to a particular number). In 2014 Čadek et al. (see [ˇCKM+14b]) proved that this problem is in \(\text{XP} \) in the parameter \(k \). In other words, there is an algorithm solving this problem in time \(cn^{f(k)} \), where \(c \) is a constant, \(n \) is the size of input and \(f(k) \) is a computable function of the parameter \(k \).

A lower bound for the complexity from the parameterized viewpoint was obtained by Matoušek in 2013 (see [Mat13]). He proved that computing \(M_k \) of a VEST is \(W[1] \)-hard. This also implies \(W[1] \)-hardness for the original problem of computing higher homotopy groups \(\pi_k \) (for 4-dimensional 1-connected spaces) for parameter \(k \). Matoušek’s proof also works as a proof for \#P-hardness and it is shorter and much more easier than the original proof of Annick in [Ani89].

The class \(W[1] \) is a member of the following \(W \) hierarchy, which we briefly define.

\[\text{FPT} \subseteq W[1] \subseteq W[2] \subseteq \cdots \subseteq W[P] \subseteq \text{XP} \]

We have already defined the class \(\text{XP} \) above. The class \(\text{FPT} \) consists of decision problems solvable in time \(f(k)n^{O(1)} \), where \(f(k) \) is a computable function of the parameter \(k \) and \(n \) is the size of input. It is only known that \(\text{FPT} \subseteq \text{XP} \) (see [FG04]). The class \(W[1] \) then consists of all problems which can be reduced by an \(\text{FPT} \) algorithm to a boolean circuit of a constant depth with AND, OR and NOT gates such that there is at most 1 gate of higher input size than 2 on each path from the input gate to the final output gate (this number of larger gates is called \(\text{weft} \)) such that the parameter \(k \) from the original problem is translated to setting \(g(k) \) input gates to TRUE. See Figure [1]. It is strongly believed that \(\text{FPT} \subseteq W[1] \). Therefore, one cannot expect existence of an algorithm solving a \(W[1] \)-hard problem in time \(f(k)n^c \) where \(f(k) \) is a computable function of \(k \) and \(c \) is a constant.

2
The class $W[i]$ consists of problems FPT-reducible to a boolean circuit of a constant depth and weft at most i.

The class $W[P]$ can be defined as a class of problems which can be solved by non-deterministic Turing machine which can make at most $O(g(k) \log n)$ non-deterministic choices and which works in time $f(k) n^{O(1)}$. See [FG04].

According to this definition, it is easy to see that the problem of VEST is in $W[P]$.

Observation 1. Computing M_k of a VEST for parameter k is in $W[P]$.

Proof. Let n be the size of the input and m the number of the matrices in the collection. In particular, $m \leq n$.

We can guess which k matrices we choose from the collection. Each matrix can be represented by an integer $\leq m$ which can be described by $\log m$ bits. Therefore, we need at most $k \log m \leq k \log n$ non-deterministic choices.

Then, we need to multiply $k + 1$ matrices together with 1 vector. This can be easily done in time $(k+2)n^3$. \qed

In this note, we strengthen the result of Matoušek and show that the problem of VEST is $W[2]$-hard. Our proof is even simpler than the proof of $W[1]$-hardness.

Theorem 2. Computing M_k of a VEST is $W[2]$-hard for parameter k.

Theorem 2 together with the result of Anick (see [Ani89]) implies the following.

Corollary 3. Computing k-th homotopy groups of d-dimensional space for $d > 3$ is $W[2]$-hard in the parameter k.

2 The proof

Note that the current complexity of the problem of VEST is a self-contained problem. Our reduction will use only 0,1 matrices and the initial vector v. Moreover, each matrix will have at most one 1 in each line. Therefore, such construction also shows $W[2]$-hardness of a VEST for \mathbb{Z}_2 setting.
Figure 2: The submatrix realizing the procedure which assures that no matrix can repeat. The first line corresponds to the coordinate \(u_2 \), the second to \(u_3 \) and the third to \(c \).

\[
\begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{pmatrix}
\]

W[2]-complete problem. Our reduction is from well-known problem of existence of a dominating set of size \(k \) which is known to be W[2]-complete and which we define in this paragraph. See [FG04].

For a graph \(G(V,E) \) and its vertex \(v \in V \) let \(N[v] \) denote the closed neighborhood of a vertex \(v \). That is, \(N[v] := \{u \in V; \{u, v\} \in E\} \cup \{v\} \).

A **dominating set** of a graph \(G(V,E) \) is a set \(U \subseteq V \) such that for each \(v \) there is \(u \in U \) such that \(v \in N[u] \).

Proof of Theorem 2. We show an FPT reduction from the problem of existence of a dominating set of size \(k \) to a VEST.

Let \(G(V,E) \) be a graph and let \(n = |V| \). We start with a description of our vector space. It is of dimension \(3n + 1 \). For each \(u \in V \) we have 3 dimensions \(u_1, u_2, u_3 \). Then there is one extra dimension \(c \). In the beginning, the corresponding coordinates of the vector \(v \) are set as follows: \(u_1 = 1 \) and \(u_2 = u_3 = 0 \). The coordinate corresponding to \(c \) will be set to 1 during the whole computations. The described coordinates will simulate a data structure during the computation which will correspond to matrix multiplication.

For each \(u \in V \) we create a matrix \(M_u \) as follows. This matrix nullifies the coordinate \(w_1 \) for each \(w \in N[u] \) which corresponds to a domination of vertices in \(N[u] \) by the vertex \(u \). The matrix \(M_u \) also set \(u_2 \) to \(u_3 \) and \(u_3 \) to 1. This can be done by the coordinate \(c \). See Figure 2.

It is similar to the procedure from [Mat13] and it assures that each matrix can be chosen only once, but comparing to that procedure used by Matoušek it also works in \(\mathbb{Z}_2 \) setting; note that in the beginning or after one multiplication by matrix \(M_u \) the coordinate \(u_2 = 0 \) while after two or more multiplications it is 1.

The matrix \(S \) then chooses the coordinates \(u_1 \) and \(u_2 \) for each vector \(u \). The coordinate \(u_1 = 1 \) if and only if corresponding vertex is not dominated. As it was discussed in the previous paragraph \(u_2 = 0 \) if and only if the corresponding matrix was not chosen or was chosen only once.

Therefore, \(M_k = k!D_k \) where \(D_k \) is the number of dominating sets of size \(k \) of graph \(G \).

Note that the reduction is FPT. Indeed, we do not use the parameter \(k \) during it and it is polynomial in the size of input. \(\square \)

References

[Ani85] David J. Anick. Diophantine equations, Hilbert series, and undecidable spaces. *Annals of Mathematics*, 122:87–112, 1985.

[Ani87] David J. Anick. Generic algebras and CW complexes. *Algebraic topology and algebraic K-theory*, pages 247–321, 1987.

[Ani89] David J. Anick. The computation of rational homotopy groups is \#\$\$-hard. Computers in geometry and topology, Proc. Conf., Chicago/Ill. 1986, Lect. Notes Pure Appl. Math. 114. pages 1–56, 1989.
[Boo59] William W. Boone. The word problem. *Annals of mathematics*, 70:207–265, 1959.

[Bro57] Edgar H. Brown. Finite computability of Postnikov complexes. *Annals of Mathematics*, 65:1, 1957.

[ˇCKM+14a] Martin Čadek, Marek Krčál, Jiří Matoušek, Lukáš Vokřínek, and Uli Wagner. Extendability of continuous maps is undecidable. *Discrete & Computational Geometry*, 51(1):24–66, 2014.

[ˇCKM+14b] Martin Čadek, Marek Krčál, Jiří Matoušek, Lukáš Vokřínek, and Uli Wagner. Polynomial-time computation of homotopy groups and Postnikov systems in fixed dimension. *SIAM Journal on Computing*, 43(5):1728–1780, 2014.

[FG04] Jörg Flum and Martin Grohe. *Parameterized Complexity Theory*. Springer, 2004.

[Mat13] Jiří Matoušek. Computing higher homotopy groups is W[1]-hard. *arXiv preprint arXiv:1304.7705*, 2013.

[Nov55] Pyotr S. Novikov. On the algorithmic unsolvability of the word problem in group theory. *Trudy Mat. Inst. Steklov*, 44:1–143, 1955. (in Russian).

[Roo79] Jan-Erik Roos. Relations between the poincaré-betti series of loop spaces and of local rings. In *Séminaire d’Algèbre Paul Dubreil*, pages 285–322. Springer, 1979.