Infinite generation of non-cocompact lattices on right-angled buildings

ANN THOMAS
KEVIN WORTMAN

Let Γ be a non-cocompact lattice on a locally finite regular right-angled building X. We prove that if Γ has a strict fundamental domain then Γ is not finitely generated. We use the separation properties of subcomplexes of X called tree-walls.

20F05; 20E42, 51E24, 57M07

Tree lattices have been well-studied (see [BL]). Less understood are lattices on higher-dimensional CAT(0) complexes. In this paper, we consider lattices on X a locally finite, regular right-angled building (see Davis [D] and Section 1 below). Examples of such X include products of locally finite regular or biregular trees, or Bourdon’s building $I_{p,q}$ [B], which has apartments hyperbolic planes tessellated by right-angled p–gons and all vertex links the complete bipartite graph $K_{q,q}$.

Let G be a closed, cocompact group of type-preserving automorphisms of X, equipped with the compact-open topology, and let Γ be a lattice in G. That is, Γ is discrete and the series $\sum |\text{Stab}_\Gamma(\phi)|^{-1}$ converges, where the sum is over the set of chambers ϕ of a fundamental domain for Γ. The lattice Γ is cocompact in G if and only if the quotient $\Gamma \backslash X$ is compact.

If there is a subcomplex $Y \subset X$ containing exactly one point from each Γ–orbit on X, then Y is called a strict fundamental domain for Γ. Equivalently, Γ has a strict fundamental domain if $\Gamma \backslash X$ may be embedded in X.

Any cocompact lattice in G is finitely generated. We prove:

Theorem 1 Let Γ be a non-cocompact lattice in G. If Γ has a strict fundamental domain, then Γ is not finitely generated.

We note that Theorem 1 contrasts with the finite generation of lattices on many buildings whose chambers are simplices. Results of, for example, Ballmann–Świątkowski [BS], Dymara–Januszkiewicz [DJ], and Zuk [Z], establish that all lattices on many such buildings have Kazhdan’s Property (T). Hence by a well-known result due to Kazhdan [K], these lattices are finitely generated.
Our proof of Theorem 1, in Section 3 below, uses the separation properties of subcomplexes of X which we call tree-walls. These generalize the tree-walls (in French, arbre-murs) of $I_{p,q}$, which were introduced by Bourdon in [B]. We define tree-walls and establish their properties in Section 2 below.

The following examples of non-cocompact lattices on right-angled buildings are known to us.

1. For $i = 1, 2$, let G_i be a rank one Lie group over a nonarchimedean locally compact field whose Bruhat–Tits building is the locally finite regular or biregular tree T_i. Then any irreducible lattice in $G = G_1 \times G_2$ is finitely generated (Raghunathan [Ra]). Hence by Theorem 1 above, such lattices on $X = T_1 \times T_2$ cannot have strict fundamental domain.

2. Let Λ be a minimal Kac–Moody group over a finite field \mathbb{F}_q with right-angled Weyl group W. Then Λ has locally finite, regular right-angled twin buildings $X_+ \cong X_-$, and Λ acts diagonally on the product $X_+ \times X_-$. For q large enough:

 a. By Theorem 0.2 of Carbone–Garland [CG] or Theorem 1(i) of Rémy [Ré], the stabilizer in Λ of a point in X_- is a non-cocompact lattice in $\text{Aut}(X_+)$. Any such lattice is contained in a negative maximal spherical parabolic subgroup of Λ, which has strict fundamental domain a sector in X_+, and so any such lattice has strict fundamental domain.

 b. By Theorem 1(ii) of Rémy [Ré], the group Λ is itself a non-cocompact lattice in $\text{Aut}(X_+) \times \text{Aut}(X_-)$. Since Λ is finitely generated, Theorem 1 above implies that Λ does not have strict fundamental domain in $X = X_+ \times X_-.$

 c. By Section 7.3 of Gramlich–Horn–Mühlherr [GHM], the fixed set G_θ of certain involutions θ of Λ is a lattice in $\text{Aut}(X_+)$, which is sometimes cocompact and sometimes non-cocompact. Moreover, by [GHM, Remark 7.13], there exists θ such that G_θ is not finitely generated.

3. In [T], the first author constructed a functor from graphs of groups to complexes of groups, which extends the corresponding tree lattice to a lattice in $\text{Aut}(X)$ where X is a regular right-angled building. The resulting lattice in $\text{Aut}(X)$ has strict fundamental domain if and only if the original tree lattice has strict fundamental domain.
Acknowledgements

The first author was supported in part by NSF Grant No. DMS-0805206 and in part by EPSRC Grant No. EP/D073626/2, and is currently supported by ARC Grant No. DP110100440. The second author is supported in part by NSF Grant No. DMS-0905891. We thank Martin Bridson and Pierre-Emmanuel Caprace for helpful conversations.

1 Right-angled buildings

In this section we recall the basic definitions and some examples for right-angled buildings. We mostly follow Davis [D], in particular Section 12.2 and Example 18.1.10. See also [KT, Sections 1.2–1.4].

Let (W, S) be a right-angled Coxeter system. That is,

$$W = \langle S \mid (st)^{m_{st}} = 1 \rangle$$

where $m_{ss} = 1$ for all $s \in S$, and $m_{st} \in \{2, \infty\}$ for all $s, t \in S$ with $s \neq t$. We will discuss the following examples:

- $W_1 = \langle s, t \mid s^2 = t^2 = 1 \rangle \cong D_\infty$, the infinite dihedral group;
- $W_2 = \langle r, s, t \mid r^2 = s^2 = t^2 = (rs)^2 = 1 \rangle \cong (C_2 \times C_2) * C_2$, where C_2 is the cyclic group of order 2; and
- The Coxeter group W_3 generated by the set of reflections S in the sides of a right-angled hyperbolic p–gon, $p \geq 5$. That is,

$$W_3 = \langle s_1, \ldots, s_p \mid s_i^2 = (s_is_{i+1})^2 = 1 \rangle$$

with cyclic indexing.

Fix $(q_s)_{s \in S}$ a family of integers with $q_s \geq 2$. Given any family of groups $(H_s)_{s \in S}$ with $|H_s| = q_s$, let H be the quotient of the free product of the $(H_s)_{s \in S}$ by the normal subgroup generated by the commutators $\{[h_s, h_t] : h_s \in H_s, h_t \in H_t, m_{st} = 2\}$.

Now let X be the piecewise Euclidean CAT(0) geometric realization of the chamber system $\Phi = \Phi(H, \{1\}, (H_s)_{s \in S})$. Then X is a locally finite, regular right-angled building, with chamber set $\text{Ch}(X)$ in bijection with the elements of the group H. Let $\delta_W : \text{Ch}(X) \times \text{Ch}(X) \to W$ be the W–valued distance function and let $l_S : W \to \mathbb{N}$ be word length with respect to the generating set S. Denote by $d_W : \text{Ch}(X) \times \text{Ch}(X) \to \mathbb{N}$
the gallery distance $l_S \circ \delta_W$. That is, for two chambers ϕ and ϕ' of X, $d_W(\phi, \phi')$ is the length of a minimal gallery from ϕ to ϕ'.

Suppose that ϕ and ϕ' are s–adjacent chambers, for some $s \in S$. That is, $\delta_W(\phi, \phi') = s$. The intersection $\phi \cap \phi'$ is called an s–panel. By definition, since X is regular, each s–panel is contained in q_s distinct chambers. For distinct $s, t \in S$, the s–panel and t–panel of any chamber ϕ of X have nonempty intersection if and only if $m_{st} = 2$. Each s–panel of X is reduced to a vertex if and only if $m_{st} = \infty$ for all $t \in S - \{s\}$.

For the examples W_1, W_2, and W_3 above, respectively:

- The building X_1 is a tree with each chamber an edge, each s–panel a vertex of valence q_s, and each t–panel a vertex of valence q_t. That is, X_1 is the (q_s, q_t)–biregular tree. The apartments of X_1 are bi-infinite rays in this tree.

- The building X_2 has chambers and apartments as shown in Figure 1 below. The r– and s–panels are 1–dimensional and the t–panels are vertices.

![Figure 1: A chamber (on the left) and part of an apartment (on the right) for the building X_2.](image)

- The building X_3 has chambers p–gons and s–panels the edges of these p–gons. If $q_s = q \geq 2$ for all $s \in S$, then each s–panel is contained in q chambers, and X_3, equipped with the obvious piecewise hyperbolic metric, is Bourdon’s building $I_{p,q}$.
2 Tree-walls

We now generalize the notion of tree-wall due to Bourdon [B]. We will use basic facts about buildings, found in, for example, Davis [D]. Our main results concerning tree-walls are Corollary 3 below, which describes three possibilities for tree-walls, and Proposition 6 below, which generalizes the separation property 2.4.A(ii) of [B].

Let X be as in Section 1 above and let $s \in S$. As in [B, Section 2.4.A], we define two s–panels of X to be equivalent if they are contained in a common wall of type s in some apartment of X. A tree-wall of type s is then an equivalence class under this relation. We note that in order for walls and thus tree-walls to have a well-defined type, it is necessary only that all finite m_{st}, for $s \neq t$, be even. Tree-walls could thus be defined for buildings of type any even Coxeter system, and they would have properties similar to those below. We will however only explicitly consider the right-angled case.

Let T be a tree-wall of X, of type s. We define a chamber ψ of X to be epicormic at T if the s–panel of ψ is contained in T, and we say that a gallery $\alpha = (\psi_0, \ldots, \psi_n)$ crosses T if, for some $0 \leq i < n$, the chambers ψ_i and ψ_{i+1} are epicormic at T.

By the definition of tree-wall, if $\psi \in \text{Ch}(X)$ is epicormic at T and $\psi' \in \text{Ch}(X)$ is t–adjacent to ψ with $t \neq s$, then ψ' is epicormic at T if and only if $m_{st} = 2$. Let $s^\perp := \{t \in S \mid m_{st} = 2\}$ and denote by $\langle s^\perp \rangle$ the subgroup of W generated by the elements of s^\perp. If s^\perp is empty then by convention, $\langle s^\perp \rangle$ is trivial. For the examples in Section 1 above:

- in W_1, both $\langle s^\perp \rangle$ and $\langle t^\perp \rangle$ are trivial;
- in W_2, $\langle r^\perp \rangle = \langle s \rangle \cong C_2$ and $\langle s^\perp \rangle = \langle r \rangle \cong C_2$, while $\langle t^\perp \rangle$ is trivial; and
- in W_3, $\langle s^\perp_i \rangle = \langle s_{i-1}, s_{i+1} \rangle \cong D_{\infty}$ for each $1 \leq i \leq p$.

Lemma 2 Let T be a tree-wall of X of type s. Let ϕ be a chamber which is epicormic at T and let A be any apartment containing ϕ.

1. The intersection $T \cap A$ is a wall of A, hence separates A.
2. There is a bijection between the elements of the group $\langle s^\perp \rangle$ and the set of chambers of A which are epicormic at T and in the same component of $A - T \cap A$ as ϕ.

Proof Part (1) is immediate from the definition of tree-wall. For Part (2), let $w \in \langle s^\perp \rangle$ and let $\psi = \psi_w$ be the unique chamber of A such that $\delta_w(\phi, \psi) = w$. We claim that ψ is epicormic at T and in the same component of $A - T \cap A$ as ϕ.
For this, let \(s_1 \cdots s_n \) be a reduced expression for \(w \) and let \(\alpha = (\phi_0, \ldots, \phi_n) \) be the minimal gallery from \(\phi = \phi_0 \) to \(\psi = \phi_n \) of type \((s_1, \ldots, s_n)\). Since \(w \) is in \(\langle s^\perp \rangle \), we have \(m_{s_is} = 2 \) for \(1 \leq i \leq n \). Hence by induction each \(\phi_i \) is epicormic at \(\mathcal{T} \), and so \(\psi = \phi_n \) is epicormic at \(\mathcal{T} \). Moreover, since none of the \(s_i \) are equal to \(s \), the gallery \(\alpha \) does not cross \(\mathcal{T} \). Thus \(\psi = \psi_w \) is in the same component of \(A - \mathcal{T} \cap A \) as \(\phi \).

It follows that \(w \mapsto \psi_w \) is a well-defined, injective map from \(\langle s^\perp \rangle \) to the set of chambers of \(A \) which are epicormic at \(\mathcal{T} \) and in the same component of \(A - \mathcal{T} \cap A \) as \(\phi \). To complete the proof, we will show that this map is surjective. So let \(\psi \) be a chamber of \(A \) which is epicormic at \(\mathcal{T} \) and in the same component of \(A - \mathcal{T} \cap A \) as \(\phi \), and let \(w = \delta_{\mathcal{W}}(\phi, \psi) \).

If \(\langle s^\perp \rangle \) is trivial then \(\psi = \phi \) and \(w = 1 \), and we are done. Next suppose that the chambers \(\phi \) and \(\psi \) are \(t \)-adjacent, for some \(t \in S \). Since both \(\phi \) and \(\psi \) are epicormic at \(\mathcal{T} \), either \(t = s \) or \(m_{st} = 2 \). But \(\psi \) is in the same component of \(A - \mathcal{T} \cap A \) as \(\phi \), so \(t \neq s \), hence \(w = t \) is in \(\langle s^\perp \rangle \) as required. If \(\langle s^\perp \rangle \) is finite, then finitely many applications of this argument will finish the proof. If \(\langle s^\perp \rangle \) is infinite, we have established the base case of an induction on \(n = I_5(w) \).

For the inductive step, let \(s_1 \cdots s_n \) be a reduced expression for \(w \) and let \(\alpha = (\phi_0, \ldots, \phi_n) \) be the minimal gallery from \(\phi = \phi_0 \) to \(\psi = \phi_n \) of type \((s_1, \ldots, s_n)\). Since \(\phi \) and \(\psi \) are in the same component of \(A - \mathcal{T} \cap A \) and \(\alpha \) is minimal, the gallery \(\alpha \) does not cross \(\mathcal{T} \). We claim that \(s_n \) is in \(s^\perp \). First note that \(s_n \neq s \) since \(\alpha \) does not cross \(\mathcal{T} \) and \(\psi = \phi_n \) is epicormic at \(\mathcal{T} \). Now denote by \(\mathcal{T}_n \) the tree-wall of \(X \) containing the \(s_n \)-panel \(\phi_{n-1} \cap \phi_n \). Since \(\alpha \) is minimal and crosses \(\mathcal{T}_n \), the chambers \(\phi = \phi_0 \) and \(\psi = \phi_n \) are separated by the wall \(\mathcal{T}_n \cap A \). Thus the \(s \)-panel of \(\phi \) and the \(s \)-panel of \(\psi \) are separated by \(\mathcal{T}_n \cap A \). As the \(s \)-panels of both \(\phi \) and \(\psi \) are in the wall \(\mathcal{T} \cap A \), it follows that the walls \(\mathcal{T}_n \cap A \) and \(\mathcal{T} \cap A \) intersect. Hence \(m_{s_n,s} = 2 \), as claimed.

Now let \(w' = w_{s_n} = s_1 \cdots s_{n-1} \) and let \(\psi' \) be the unique chamber of \(A \) such that \(\delta_{\mathcal{W}}(\phi, \psi') = w' \). Since \(s_n \) is in \(s^\perp \) and \(\psi' \) is \(s_n \)-adjacent to \(\psi \), the chamber \(\psi' \) is epicormic at \(\mathcal{T} \) and in the same component of \(A - \mathcal{T} \cap A \) as \(\phi \). Moreover \(s_1 \cdots s_{n-1} \) is a reduced expression for \(w' \), so \(I_5(w') = n - 1 \). Hence by the inductive assumption, \(w' \) is in \(\langle s^\perp \rangle \). Therefore \(w = w's_n \) is in \(\langle s^\perp \rangle \), which completes the proof.

Corollary 3 The following possibilities for tree-walls in \(X \) may occur.

1. Every tree-wall of type \(s \) is reduced to a vertex if and only if \(\langle s^\perp \rangle \) is trivial.
2. Every tree-wall of type \(s \) is finite but not reduced to a vertex if and only if \(\langle s^\perp \rangle \) is finite but nontrivial.
Every tree-wall of type s is infinite if and only if $\langle s^\perp \rangle$ is infinite.

Proof Let \mathcal{T}, ϕ, and A be as in Lemma 2 above. The set of s–panels in the wall $\mathcal{T} \cap A$ is in bijection with the set of chambers of A which are epicormic at \mathcal{T} and in the same component of $A - \mathcal{T} \cap A$ as ϕ. □

For the examples in Section 1 above:

- in X_1, every tree-wall of type s and of type t is a vertex;
- in X_2, the tree-walls of types both r and s are finite and 1–dimensional, while every tree-wall of type t is a vertex; and
- in X_3, all tree-walls are infinite, and are 1–dimensional.

Corollary 4 Let \mathcal{T}, ϕ, and A be as in Lemma 2 above and let

$$\rho = \rho_{\phi, A} : X \to A$$

be the retraction onto A centered at ϕ. Then $\rho^{-1}(\mathcal{T} \cap A) = \mathcal{T}$. □

Proof Let ψ be any chamber of A which is epicormic at \mathcal{T} and is in the same component of $A - \mathcal{T} \cap A$ as ϕ. Then by the proof of Lemma 2 above, $w := \delta_W(\phi, \psi)$ is in $\langle s^\perp \rangle$. Let ψ' be a chamber in the preimage $\rho^{-1}(\psi)$ and let A' be an apartment containing both ϕ and ψ'. Since the retraction ρ preserves W–distances from ϕ, we have that $\delta_W(\phi, \psi') = w$ is in $\langle s^\perp \rangle$. Again by the proof of Lemma 2, it follows that the chamber ψ' is epicormic at \mathcal{T}. But the image under ρ of the s–panel of ψ' is the s–panel of ψ. Thus $\rho^{-1}(\mathcal{T} \cap A) = \mathcal{T}$, as required. □

Lemma 5 Let \mathcal{T} be a tree-wall and let ϕ and ϕ' be two chambers of X. Let α be a minimal gallery from ϕ to ϕ' and let β be any gallery from ϕ to ϕ'. If α crosses \mathcal{T} then β crosses \mathcal{T}.

Proof Suppose that α crosses \mathcal{T}. Since α is minimal, there is an apartment A of X which contains α, and hence the wall $\mathcal{T} \cap A$ separates ϕ from ϕ' . Choose a chamber ϕ_0 of A which is epicormic at \mathcal{T} and consider the retraction $\rho = \rho_{\phi_0, A}$ onto A centered at ϕ_0. Since ϕ and ϕ' are in A, ρ fixes ϕ and ϕ'. Hence $\rho(\beta)$ is a gallery in A from ϕ to ϕ', and so $\rho(\beta)$ crosses $\mathcal{T} \cap A$. By Corollary 4 above, $\rho^{-1}(\mathcal{T} \cap A) = \mathcal{T}$. Therefore β crosses \mathcal{T}. □

Proposition 6 Let \mathcal{T} be a tree-wall of type s. Then \mathcal{T} separates X into q_s gallery-connected components.
Proof} Fix an \(s\)-panel in \(\mathcal{T}\) and let \(\phi_1, \ldots, \phi_q\) be the \(q\) chambers containing this panel. Then for all \(1 \leq i < j \leq q\), the minimal gallery from \(\phi_i\) to \(\phi_j\) is just \((\phi_i, \phi_j)\), and hence crosses \(\mathcal{T}\). Thus by Lemma 5 above, any gallery from \(\phi_i\) to \(\phi_j\) crosses \(\mathcal{T}\). So the \(q\) chambers \(\phi_1, \ldots, \phi_q\) lie in \(q\) distinct components of \(X - \mathcal{T}\).

To complete the proof, we show that \(\mathcal{T}\) separates \(X\) into at most \(q\) components. Let \(\phi\) be any chamber of \(X\). Then among the chambers \(\phi_1, \ldots, \phi_q\), there is a unique chamber, say \(\phi_1\), at minimal gallery distance from \(\phi\). It suffices to show that \(\phi\) and \(\phi_1\) are in the same component of \(X - \mathcal{T}\).

Let \(\alpha\) be a minimal gallery from \(\phi\) to \(\phi_1\) and let \(A\) be an apartment containing \(\alpha\). Then there is a unique chamber of \(A\) which is \(s\)-adjacent to \(\phi_1\). Hence \(A\) contains \(\phi_i\) for some \(i > 1\), and the wall \(\mathcal{T} \cap A\) separates \(\phi_1\) from \(\phi_i\). Since \(\alpha\) is minimal and \(d_W(\phi, \phi_1) < d_W(\phi, \phi_i)\), the Exchange Condition (see [D, page 35]) implies that a minimal gallery from \(\phi\) to \(\phi_i\) may be obtained by concatenating \(\alpha\) with the gallery \((\phi_1, \phi_i)\). Since a minimal gallery can cross \(\mathcal{T} \cap A\) at most once, \(\alpha\) does not cross \(\mathcal{T} \cap A\). Thus \(\phi\) and \(\phi_1\) are in the same component of \(X - \mathcal{T}\), as required. \(\square\)

3 Proof of Theorem

Let \(G\) be as in the introduction and let \(\Gamma\) be a non-cocompact lattice in \(G\) with strict fundamental domain. Fix a chamber \(\phi_0\) of \(X\). For each integer \(n \geq 0\) define

\[
D(n) := \{ \phi \in \text{Ch}(X) \mid d_W(\phi, \Gamma \phi_0) \leq n \}.
\]

Then \(D(0) = \Gamma \phi_0\), and for every \(n > 0\) every connected component of \(D(n)\) contains a chamber in \(\Gamma \phi_0\). To prove Theorem 1, we will show that there is no \(n > 0\) such that \(D(n)\) is connected.

Let \(Y\) be a strict fundamental domain for \(\Gamma\) which contains \(\phi_0\). For each chamber \(\phi\) of \(X\), denote by \(\phi_Y\) the representative of \(\phi\) in \(Y\).

Lemma 7 Let \(\phi\) and \(\phi'\) be \(t\)-adjacent chambers in \(X\), for \(t \in S\). Then either \(\phi_Y = \phi'_Y\), or \(\phi_Y\) and \(\phi'_Y\) are \(t\)-adjacent.

Proof It suffices to show that the \(t\)-panel of \(\phi_Y\) is the \(t\)-panel of \(\phi'_Y\). Since \(Y\) is a subcomplex of \(X\), the \(t\)-panel of \(\phi_Y\) is contained in \(Y\). By definition of a strict fundamental domain, there is exactly one representative in \(Y\) of the \(t\)-panel of \(\phi\). Hence the unique representative in \(Y\) of the \(t\)-panel of \(\phi\) is the \(t\)-panel of \(\phi_Y\). Similarly, the unique representative in \(Y\) of the \(t\)-panel of \(\phi'\) is the \(t\)-panel of \(\phi'_Y\). But \(\phi\) and \(\phi'\) are
Infinite generation for right-angled buildings

9

t−adjacent, hence have the same t−panel, and so it follows that \(\phi_Y \) and \(\phi'_Y \) have the same t−panel.

Corollary 8 The fundamental domain \(Y \) is gallery-connected.

Lemma 9 For all \(n > 0 \), the fundamental domain \(Y \) contains a pair of adjacent chambers \(\phi_n \) and \(\phi'_n \) such that, if \(T_n \) denotes the tree-wall separating \(\phi_n \) from \(\phi'_n \):

1. the chambers \(\phi_0 \) and \(\phi_n \) are in the same gallery-connected component of \(Y − T_n \cap Y \);
2. \(\min \{ d_W(\phi_0, \phi) \mid \phi \in \text{Ch}(X) \text{ is epicormic at } T_n \} > n \); and
3. there is a \(\gamma \in \text{Stab}_\Gamma(\phi'_n) \) which does not fix \(\phi_n \).

Proof Fix \(n > 0 \). Since \(\Gamma \) is not cocompact, \(Y \) is not compact. Thus there exists a tree-wall \(T_n \) with \(T_n \cap Y \) nonempty such that for every \(\phi \in \text{Ch}(X) \) which is epicormic at \(T_n \), \(d_W(\phi_0, \phi) > n \). Let \(s_n \) be the type of the tree-wall \(T_n \). Then by Corollary 8 above, there is a chamber \(\phi_n \) of \(Y \) which is epicormic at \(T_n \) and in the same gallery-connected component of \(Y − T_n \cap Y \) as \(\phi_0 \), such that for some chamber \(\phi'_n \) which is \(s_n \)-adjacent to \(\phi_n \), \(\phi'_n \) is also in \(Y \). Now, as \(\Gamma \) is a non-cocompact lattice, the orders of the \(\Gamma \)-stabilizers of the chambers in \(Y \) are unbounded. Hence the tree-wall \(T_n \) and chambers \(\phi_n \) and \(\phi'_n \) may be chosen so that \(|\text{Stab}_\Gamma(\phi_n)| < |\text{Stab}_\Gamma(\phi'_n)| \).

Let \(\phi_n \), \(\phi'_n \), \(T_n \), and \(\gamma \) be as in Lemma 9 above and let \(s = s_n \) be the type of the tree-wall \(T_n \). Let \(\alpha \) be a gallery in \(Y − T_n \cap Y \) from \(\phi_0 \) to \(\phi_n \). The chambers \(\phi_n \) and \(\gamma \cdot \phi_n \) are in two distinct components of \(X − T_n \), since they both contain the \(s \)-panel \(\phi_n \cap \phi'_n \subseteq T_n \), which is fixed by \(\gamma \). Hence the galleries \(\alpha \) and \(\gamma \cdot \alpha \) are in two distinct components of \(X − T_n \), and so the chambers \(\phi_0 \) and \(\gamma \cdot \phi_0 \) are in two distinct components of \(X − T_n \). Denote by \(X_0 \) the component of \(X − T_n \) which contains \(\phi_0 \), and put \(Y_0 = Y \cap X_0 \).

Lemma 10 Let \(\phi \) be a chamber in \(X_0 \) that is epicormic at \(T_n \). Then \(\phi_Y \) is in \(Y_0 \) and is epicormic at \(T_n \cap Y \).

Proof We consider three cases, corresponding to the possibilities for tree-walls in Corollary 3 above.

1. If \(T_n \) is reduced to a vertex, there is only one chamber in \(X_0 \) which is epicormic at \(T_n \), namely \(\phi_n \). Thus \(\phi = \phi_n = \phi_Y \) and we are done.
(2) If \mathcal{T}_n is finite but not reduced to a vertex, the result follows by finitely many applications of Lemma 7 above.

(3) If \mathcal{T}_n is infinite, the result follows by induction, using Lemma 7 above, on

$$k := \min\{d_W(\phi, \psi) \mid \psi \text{ is a chamber of } Y_0 \text{ epicormic at } \mathcal{T}_n \cap Y\}.$$

\[\square\]

Lemma 11 For all $n > 0$, the complex $D(n)$ is not connected.

Proof Fix $n > 0$, and let α be a gallery in X between a chamber in $X_0 \cap \Gamma \phi_0$ and some chamber ϕ in X_0 that is epicormic at \mathcal{T}_n. Let m be the length of α.

By Lemma 7 and Lemma 10 above, the gallery α projects to a gallery β in Y between ϕ_0 and a chamber ϕ_Y that is epicormic at $\mathcal{T}_n \cap Y$. The gallery β in Y has length at most m.

It follows from (2) of Lemma 9 above that the gallery β in Y has length greater than n. Therefore $m > n$. Hence the gallery-connected component of $D(n)$ that contains ϕ_0 is contained in X_0. As the chamber $\gamma \cdot \phi_0$ is not in X_0, it follows that the complex $D(n)$ is not connected.

This completes the proof, as Γ is finitely generated if and only if $D(n)$ is connected for some n.

References

[B´S] W. Ballmann and J. Świątkowski, On L^2–cohomology and property (T) for automorphism groups of polyhedral cell complexes, Geom. Funct. Anal. 7 (1997), 615–645.

[BL] H. Bass and A. Lubotzky, Tree Lattices. Prog. in Math., 176, Birkhäuser.

[B] M. Bourdon, Immeubles hyperboliques, dimension conforme et rigidité de Mostow, Geom. Funct. Anal. 7 (1997), 245–268.

[CG] L. Carbone and H. Garland, Existence of lattices in Kac–Moody groups over finite fields, Commun. Contemp. Math. 5 (2003), 813–867.

[D] M. Davis, The Geometry and Topology of Coxeter Groups, LMS Monographs, Princeton University Press, 2008.

[DJ] J. Dymara and T. Januszkiewicz, Cohomology of buildings and their automorphism groups, Invent. Math. 150 (2002), 579–627.

[GHM] R. Gramlich, M. Horn and B. Mühlherr, Abstract involutions of algebraic groups and of Kac-Moody groups, to appear in J. Group Theory.
Infinite generation for right-angled buildings

[K] D. Kazhdan, *Connection of the dual space of a group with the structure of its closed subgroups*, Funct. Anal. Appl. 1 (1967), 63–65.

[KT] A. Kubena and A. Thomas, *Density of commensurators for uniform lattices of right-angled buildings*. Preprint.

[Ra] M.S. Raghunathan, *Discrete subgroups of algebraic groups over local fields of positive characteristics*, Proc. Indian Acad. Sci. Math. Sci. 99 (1989), 127–146.

[Ré] B. Rémý, *Constructions de réseaux en theorie de Kac–Moody*, C. R. Acad. Sci. Paris 329 (1999), 475–478.

[T] A. Thomas, *Lattices acting on right-angled buildings*, Algebr. Geom. Topol. 6 (2006), 1215–1238.

[Zu] A. Zuk, *La propriété (T) de Kazhdan pour les groupes agissant sur les polyèdres*, C. R. Acad. Sci. Paris Sér. I Math. 323 (1996), 453–458.

School of Mathematics and Statistics, University of Sydney
Department of Mathematics, University of Utah

athomas@maths.usyd.edu.au, wortman@math.utah.edu