\(\Lambda_c(2910) \) and \(\Lambda_c(2940) \) as the conventional baryons dressed with the \(D^+N \) channel

Zi-Le Zhang, 1, 2 Zhan-Wei Liu, 1, 2, 3, * Si-Qiang Luo, 1, 2, 3, † Fu-Lai Wang, 1, 2, 3, ‡ Bo Wang 4, 5, 6, § and Hao Xu 7, 8, ¶

1 School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
2 Research Center for Hadron and CSR Physics, Lanzhou University and Institute of Modern Physics of CAS, Lanzhou 730000, China
3 Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, and Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
4 School of Physical Science and Technology, Hebei University, Baoding 071002, China
5 Key Laboratory of High-precision Computation and Application of Quantum Field Theory of Hebei Province, Baoding 071002, China
6 Institute of Theoretical Physics, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
7 Lanzhou Center for Theoretical Physics, Lanzhou University, Lanzhou 730000, China
8 Lanzhou Center for Theoretical Physics, Lanzhou University, Lanzhou 730000, China

In this work, we treat \(\Lambda_c(2910)^+ \) and \(\Lambda_c(2940)^+ \) as the conventional \(udc \) cores dressed with the \(D^+N \) channel. We provide a possible interpretation to both \(\Lambda_c(2910)^+ \) and \(\Lambda_c(2940)^+ \) within the same framework. In the study, we consider not only the effects between the conventional triquark core and the \(D^+N \) channel but also the \(D^+N-D^+N \) interactions. The mass of \(\Lambda_c \) state with \(J^P = 1/2^- \) is larger than that with \(J^P = 3/2^- \) in this unquenched picture, which is very different from the prediction of the conventional quenched quark model. Based on the mass spectrum, the spin-parity of \(\Lambda_c(2940)^+ \) is more likely to be \(1/2^- \) while \(\Lambda_c(2910)^+ \) prefers \(3/2^- \). We look forward to the future experiments can test our results with more precise experimental data.

I. INTRODUCTION

Until now, a growing number of charmed baryons have been reported with the accumulation of experimental data [1]. Many of them can properly fit into the conventional charmed baryon spectrum [2–8], such as \(\Lambda_c(2286)^0 \), \(\Lambda_c(2595)^+ \), \(\Lambda_c(2625)^+ \), \(\Lambda_c(2760)^0 \), \(\Lambda_c(2860)^0 \), \(\Sigma_c(2455)^0, \Sigma_c(2520)^0, \Sigma_c(2880)^0, \) and so on. The advanced experimental progress have motivated theorists to explore their properties in many theoretical methods [9–15]. We believe the studies of the charmed baryons can deepen our understanding of the nonperturbative behavior of the quantum chromodynamics (QCD) in the low energy regions.

Months ago, the Belle Collaboration reported a new structure called \(\Lambda_c(2910)^+ \), via the \(B^0 \rightarrow \Sigma_c(2455)\pi\bar{p} \) decay process [16]. Its mass and width are measured to be 2913.8±5.6±3.8 MeV and 51.8±20.0±18.8 MeV, respectively. In fact, the observed \(\Lambda_c(2910)^+ \) is a continuation of the experimental studies of \(\Lambda_c \) baryons in the past. In 2006, the \(\text{BABAR} \) Collaboration released the observation of \(\Lambda_c(2940)^+ \) in the \(D^0p \) invariant mass spectrum [17]. Later, Belle confirmed \(\Lambda_c(2940)^+ \) in the decay mode \(\Lambda_c(2940)^+ \rightarrow \Sigma_c(2455)^0, \Sigma_c(2455)^+ \) [18]. In 2017, the LHCb collaboration also observed it [19], and preferred its possible assignment with \(J^P = 3/2^- \). Till now, Particle Data Group (PDG) [1] lists its mass and width as \(M = 2939.6^{+1.3}_{-1.5} \) MeV and \(\Gamma = 20^{+6}_{-5} \) MeV, respectively.

In theory, the newly observed \(\Lambda_c(2910)^+ \) is studied in several works. \(\Lambda_c(2910)^+ \) was interpreted as \(\Lambda_c(2P, 1/2^-) \) with the QCD sum rule [20]. In Ref. [21], they treated \(\Lambda_c(2910)^+ \) as a good candidate of \(\Lambda_c(2910)^+ \) by investigating the strong decay of the low-lying \(1P \)-wave of the \(\rho \) mode excitation, however the \(\Lambda_c(2910)^+ \) prefers the \(1P \) assignments cannot be excluded. The authors in Ref. [22] arranged the \(\Lambda_c(2910)^+ \) as the \(2P \)-wave of the \(\Delta \) mode excitation with \(J^P = 1/2^- \) or \(3/2^- \) by examining its strong decay.

In the past, the charmed baryons \(\Lambda_c(2P, 1/2^-) \) and \(\Lambda_c(2P, 3/2^-) \) have already been studied in the quenched quark model [2–8], while the strong decays of \(\Lambda_c(2P, 1/2^-) \) and \(\Lambda_c(2P, 3/2^-) \) were also studied in Refs. [22–28]. It is hard to explain \(\Lambda_c(2940)^+ \) with simple bare \(udc \) structure, because its experimental mass is usually about 100 MeV smaller than the theoretical expectations [2–4]. Thus, it has stimulated great interest of theorists in studying the inner structure of \(\Lambda_c(2940)^+ \).

An important fact is that \(\Lambda_c(2940)^+ \) locates below the \(D^+N \) threshold about 6 MeV, so several theoretical groups treat \(\Lambda_c(2940)^+ \) as a \(D^+N \) molecular state [29–38]. For example, within the on-mass-exchange model, \(\Lambda_c(2940)^+ \) was treated as the \(D^+N \) molecular state with \(I(J^P) = 0(1/2^-) \) or \(0(3/2^-) \) [39]. The \(D^+N \) bound state was also found in \([D^0N]^{1/2}_{J=3/2} \) channel within other models, such as the QCD sum rule, constituent quark model, and chiral quark model [40–43]. In Refs. [44, 45], the chiral effective field theory was applied to the \(D^+N \) interaction and two bound solutions were found with a little mass gap for the isospin \(I = 0 \) channels, which shows the \(\Lambda_c(2940)^+ \) could be either \([D^0N]^{1/2}_{J=1/2} \) or \([D^0N]^{1/2}_{J=3/2} \). Thus, the interaction between \(D^+N \) plays a key role in forming this physical state.

Therefore we conclude that the bare triquark states and the \(D^+N \) channel should be equally important for \(\Lambda_c(2940)^+ \) and \(\Lambda_c(2910)^+ \). Under an unquenched quark model, the authors in Ref. [46] studied \(\Lambda_c(2P, 1/2^-) \) and \(\Lambda_c(2P, 3/2^-) \) considering the coupling to the \(D^+N \) channel. They conclude that the mass in spin-\(1/2 \) becomes larger than that in spin-\(3/2 \) in the unquenched picture, so that the mass relation is reversed compared to the quenched picture (see Fig. 1).
II. FRAMEWORK

If we consider the mixing between the bare state |Ψ₀⟩ and |BC, p⟩ channel, the physical state [64, 70–80] can be represented by

\[|Ψ⟩ = c₀|Ψ₀⟩ + \int d^3p \, χ_{BC}(p) |BC, p⟩. \]

(2.1)

Here, \(c₀ \) is the possible amplitude to discover the bare state |Ψ₀⟩ in the physical state |Ψ⟩. \(χ_{BC}(p) \) denotes the relative wave function in the hadron-hadron channel |BC, p⟩, and the normalizing condition is given by

\[|c₀|^2 + \int |χ_{BC}(p)|^2 d^3p = 1. \]

(2.2)

Then the full coupled-channel equation can be formally expressed as

\[
\begin{pmatrix}
\hat{H}_0 \\
\hat{H}_I
\end{pmatrix}
\begin{pmatrix}
|Ψ₀⟩ \\
|Ψ_{BC}⟩
\end{pmatrix} = M
\begin{pmatrix}
c₀|Ψ₀⟩ \\
χ_{BC}(p)|BC, p⟩
\end{pmatrix}.
\]

(2.3)

By expanding Eq. (2.3), one obtains

\[
\hat{H}_0|Ψ₀⟩ + \hat{H}_Iχ_{BC}(p)|BC, p⟩ = M|Ψ₀⟩ \]

(2.4)

and

\[
\hat{H}_Ic₀|Ψ₀⟩ + \hat{H}_{BC}χ_{BC}(p)|BC, p⟩ = Mχ_{BC}(p)|BC, p⟩. \]

(2.5)

Here, \(\hat{H}_0 \) only works on the bare state |Ψ₀⟩, i.e.,

\[
\hat{H}_0|Ψ₀⟩ = M₀|Ψ₀⟩. \]

(2.6)

where \(M₀ \) is the bare mass, which can be well determined by the traditional potential models, such as non-relativistic three quark model [46, 81–84], quark-diquark model [2, 3, 13], Capstick-Isgur model [4], and so on. For the most low-lying singly charmed baryons, these traditional potential models have good predictive powers in studying the mass spectra. \(\hat{H}_0 \) is usually written as a sum of two parts, i.e.,

\[
\hat{H}_0 = \sum_i E_i + \sum_{i,j} V_{ij},
\]

(2.7)

where \(E_i \) is free energy for \(i \)-th constituent quark, and the \(V_{ij} \) is the effective potential between two quarks where the form depends on specific potential models.

In addition, \(\hat{H}_I \) in Eq. (2.3) represents the transition Hamiltonian between the bare state and the intermediate \(BC \) channel. \(\hat{H}_{BC} \) is the Hamiltonian describing \(BC \)-\(BC \) interaction. With the above definitions, multiplying |Ψ₀⟩ on each side in Eq. (2.4), one obtains

\[
M₀c₀ + \int χ_{BC}(p)H_{V₀→BC}^*(p)d^3p = M₀c₀. \]

(2.8)

Then \(c₀ \) can be obtained

\[
c₀ = \frac{\int χ_{BC}(p)H_{V₀→BC}^*(p)d^3p}{M - M₀}.
\]

(2.9)
On the other hand, multiplying $\langle BC, p' \rvert$ on each side of Eq. (2.5), we have
\[c_0 H_{\Psi_0 \rightarrow BC}(p') + \int \langle BC, p' \rvert \hat{H}_{BC}(p') \rvert BC, p \rangle d^3 p = M \chi_{BC}(p'). \] (2.10)

The \hat{H}_{BC} is the Hamiltonian of the intermediate BC channel, which includes two parts, i.e., the free and inner interactions. Explicitly, the matrix element sandwiching the \hat{H}_{BC} can be expressed as
\[\int \langle BC, p' \rvert \hat{H}_{BC}(p) \rvert BC, p \rangle d^3 p = \int \langle BC, p' \rvert E_{BC}(p) \rvert BC, p \rangle d^3 p + \int \langle BC, p' \rvert \chi_{BC}(p) \rvert BC, p \rangle d^3 p = E_{BC}(p') - \int \chi_{BC}(p) V_{BC}(p, p') d^3 p. \] (2.11)

where $E_{BC}(p') = m_B + m_C + \frac{p^2}{2m_C} + \frac{p^2}{2m_C}$ is the free energy of the intermediate BC channel and $V_{BC}(p, p')$ is the hadron-hadron interaction in the momentum space. With Eqs. (2.9)-(2.11), we can obtain the following coupled-channel equation
\[E_{BC}(p') \chi_{BC}(p') + H_{\Psi_0 \rightarrow BC}(p') + \int \frac{\chi_{BC}(p) H_{\Psi_0 \rightarrow BC}(p)}{M - M_0} d^3 p + \int \chi_{BC}(p) V_{BC}(p, p') d^3 p = M \chi_{BC}(p'). \] (2.12)

It is equivalent to the following expression
\[\int \left(\frac{H_{\Psi_0 \rightarrow BC}(p) H_{\Psi_0 \rightarrow BC}(p')}{M - M_0} + V_{BC}(p, p') \right) \chi_{BC}(p) d^3 p + E_{BC}(p') \chi_{BC}(p') = M \chi_{BC}(p'). \] (2.13)

Thus, the final χ_{BC}-coupled-channel equation (2.13) contains the interaction between hadron B and C. By solving Eq. (2.13), we can get the physical mass that includes the contribution of both the hadron BC channel and the bare state. The two terms inside the parenthesis of Eq. (2.13) are responsible for the mass shift.

For obtaining the solution of Eq. (2.13), we use a set of complete base expansion method, where the complete basis can be chosen as the Harmonic oscillator basis, the Gaussian basis, and so on. For example, we use the Gaussian basis to replace the $\chi_{BC}(p)$ in the Eq. (2.13) [85, 86]
\[\chi_{BC}(p) = \sum_{i=1}^{N_{max}} C_i \phi_{nlm}(p), \] (2.14)

where C_i is the coefficient of the corresponding basis, and $\phi_{nlm}(p)$ is the Gaussian basis. In the coordinate space,
\[\phi_{nlm}(v_n, r) = N_{nl} r^l e^{-\nu r^2} Y_{lm}(\hat{r}), \] (2.15)

where N_{nl} is normalization constant. By the Fourier transform, the Gaussian basis in momentum space can be written as
\[\phi_{nlm}(v_n, p) = (-i)^l \phi_{nlm} \left(\frac{1}{4\nu} p \right). \] (2.16)

In Eqs. (2.15) and (2.16), v_n is the Gaussian ranges, i.e.,
\[v_n = 1/r_n^2, \quad r_n = r_n a^{n+1} \quad (n = 1, 2 \ldots N_{max}). \] (2.17)

With the above Gaussian basis, all the Hamilton matrix elements can be expressed in simple forms. We define
\[T_{fi} = \int d^3 p' \phi_{nlm}^* (v_f, p') E_{BC}(p') \phi_{nlm} (v_i, p'), \] \[M_{fi} = \int d^3 p' d^3 p H_{\Psi_0 \rightarrow BC}(p) H_{\Psi_0 \rightarrow BC}(p') \times \phi_{nlm}^* (v_f, p') \phi_{nlm} (v_i, p), \] \[V_{fi} = \int d^3 p' d^3 p \phi_{nlm}^* (v_f, p') V_{BC}(p, p') \phi_{nlm} (v_i, p), \] \[N_{ij} = \int d^3 r' \phi_{nlm}^* (v_f, r') \phi_{nlm} (v_i, r'). \] (2.18)

With the above matrix elements, Eq. (2.13) is equivalent to following general eigenvalue equation
\[\sum_{i=1}^{N_{max}} C_{i} T_{fi} + M_{fi} + V_{fi} = M \sum_{i=1}^{N_{max}} C_{i} N_{fi}. \] (2.19)

Here the coefficient C_{i} can be solved by the Rayleigh-Ritz variational principle. Because both sides of Eq. (2.19) depend on M, we are dealing with a special eigenvalue equation. First we replace M with M_E on the right side. Then we scan all possible M on the left side of the new equation in a reasonable range and obtain the eigenvalues M_E. At last, the solution comes as M equals to M_E.

If the interaction $V_{BC}(p, p')$ of the direct hadron-hadron channel is neglected, we can extract the approximate mass M
\[M = M_0 + \int \frac{|H_{\Psi_0 \rightarrow BC}(p)|^2}{M - E_{BC}(p)} d^3 p, \] (2.20)

and obtain approximate wave function $\chi_{BC}(p)$
\[\chi_{BC}(p) = \frac{H_{\Psi_0 \rightarrow BC}(p)}{M - E_{BC}(p)} C_0. \] (2.21)

III. DETAILED INTERACTIONS

In this section, we provide the $D'N$ interaction in Sec. III A and the coupling between the bare state and the $D'N$ in Sec. III B. These determine the coupled-channel effects of $\Lambda_c(2940)^+$ and $\Lambda_c(2910)^+$.
A. D^*N INTERACTION

Firstly, we focus on the detailed potential $V_{BC \rightarrow BC}$ for the S wave D^*N interaction, and we employ the chiral effective field theory, which is a powerful instrument to study the hadron-nucleon interaction [45, 87–95]. In the heavy flavor hadron systems, the application of the chiral effective field theory has led to some achievements for predicting the bound states of $B^o \pi^o, D^o, D^{o*}, \Sigma, \Sigma^o$, and so on [45, 96–105]. With the experience in these works, the D^*N interaction can also be studied within the chiral effective field theory.

We will investigate four channels in the D^*N system, i.e., isospin $I = 0, 1$ and spin $J = 1/2, 3/2$. Therefore, we consider the following flavor wave functions

$$
|1, 1\rangle = |pD^{*+}\rangle,
|1, 0\rangle = \frac{1}{\sqrt{2}} \left(|pD^0\rangle + |nD^{*+}\rangle\right),
|1, -1\rangle = |nD^0\rangle,
|0, 0\rangle = \frac{1}{\sqrt{2}} \left(|pD^0\rangle - |nD^{*+}\rangle\right).
$$

In the following, we first give the chiral Lagrangians and Feynman diagrams including tree and one-loop diagrams of the D^*N system. Then, we provide the D^*N effective potentials in momentum space at the next-to-leading order $O(\epsilon^2)$. They include the contact term, one-pion-exchange, and two-pion-exchange contributions, which approximately corresponds to the short-range, long-range, and middle-range interactions, respectively. In addition, we also consider the $\Delta(1232)$ contribution. Through the Fourier transformation, we also obtain the effective potentials in coordinate space.

The leading order πN Lagrangian [106–108] is given by

$$
\mathcal{L}_{\pi N} = 2\bar{a}\mathcal{N}(\gamma\cdot D + 2g_s S \cdot a)\mathcal{N},
$$

(3.22)

where $\mathcal{N} = (p, n)^T$ denotes the large component of the nucleon field under the nonrelativistic reduction, $v = (1, 0, 0, 0)$ stands for the four-velocity of the nucleon. $D_\mu = \partial_\mu + \Gamma_\mu$ is covariant derivative, g_s is the axial-vector coupling constant, and $S^\mu = \gamma_5 \sigma^{\mu\nu} v_\nu$ denotes the Pauli-Lubanski spin vector. The chiral connection Γ_μ and axial-vector current u_μ are expressed as

$$
\Gamma_\mu \equiv \frac{1}{2} \left[\xi^\mu, \partial_\mu \xi \right] \equiv \tau^i \Gamma^i_\mu, \quad u_\mu \equiv \frac{i}{2} \left[\xi^\mu, \partial_\mu \xi \right] \equiv \tau^i \omega^i_\mu,
$$

(3.23)

where τ^i is a 2-component Pauli matrix in the isospin space, i.e.,

$$
\xi^2 = \mathbb{I} = \exp \left(\frac{i\phi}{f_\pi} \right), \quad \phi = \left(\frac{\pi^0}{\sqrt{2} \pi^-}, -\frac{\pi^+}{\sqrt{2} \pi^0} \right),
$$

(3.24)

and f_π is the pion decay constant.

The $D^*\pi$ Lagrangian at the leading order is given by [109–112]

$$
\mathcal{L}_{\pi N} = i\langle \mathcal{H} \cdot D\mathcal{H} \rangle - \frac{1}{8} \delta_\mu \langle \mathcal{H} \gamma^\mu \gamma_5 \mathcal{H} \rangle + g \langle \mathcal{H} \gamma_5 \mathcal{H} \rangle,
$$

(3.25)

where $\langle \cdots \rangle$ denotes the trace in the spinor space, δ_μ is mass shift between D^* and D, i.e., $\delta_\mu = m_D - m_{D^*}$, and it does not disappear in the chiral limit. g stands for the axial coupling constant. The \mathcal{H} represents the super-field for the charged mesons, which reads

$$
\mathcal{H} = \frac{1 + \gamma^5}{2} \left(P_\mu \gamma^\mu + i p \gamma_5 \right),
$$

$$
\mathcal{H} = \gamma^5 H^\dagger H^0 \left(P_\mu \gamma^\mu + i p \gamma_5 \right) \frac{1 + \gamma^5}{2}.
$$

(3.26)

with $P = (D^0, D^+)^T$ and $P^* = (D^{*0}, D^{*+})^T$.

The leading order contact Lagrangian describes the short distance interaction between the nucleon and charm meson [44], which can be written as

$$
\mathcal{L}_{N\pi} = \bar{D}_a \mathcal{N} \langle \mathcal{H} \mathcal{H} \rangle + \bar{D}_b \mathcal{N}_T \langle \mathcal{H} \mathcal{H} \rangle + E_0 \mathcal{N}_T \langle \mathcal{H} \mathcal{H} \rangle + E_0 \mathcal{N}_T \langle \mathcal{H} \mathcal{H} \rangle,
$$

(3.27)

where D_a, D_b, E_a, and E_b are four low energy constants (LECs).

Finally, considering the strong coupling between $\Delta(1232)$ and πN [113–117], the Lagrangian of the $\Delta N - \pi$ coupling [118] is given by

$$
\mathcal{L}_{\Delta N\pi} = \bar{D}_a \mathcal{N}_T \langle \mathcal{H} \mathcal{H} \rangle + \bar{D}_b \mathcal{N}_T \langle \mathcal{H} \mathcal{H} \rangle + E_0 \mathcal{N}_T \langle \mathcal{H} \mathcal{H} \rangle + E_0 \mathcal{N}_T \langle \mathcal{H} \mathcal{H} \rangle,
$$

(3.26)

where $\Delta_0 = m_\Delta - m_N$ and $g_1 = \frac{3}{2} g_s$. g_5 is the coupling constant for $\Delta N \pi$ vertex. The matrix form of T^{μ}_i reads

$$
T^{1}_\mu = \frac{1}{\sqrt{2}} \left(\frac{\Delta^{+0} - \frac{1}{\sqrt{3}} \Delta^0}{\Delta^{+0} - \Delta^{0}} \right)_\mu,
$$

$$
T^{2}_\mu = \frac{i}{\sqrt{2}} \left(\frac{\Delta^{+0} + \frac{1}{\sqrt{3}} \Delta^0}{\Delta^{+0} - \Delta^{0}} \right)_\mu,
$$

$$
T^{3}_\mu = -\sqrt{\frac{2}{3}} \left(\frac{\Delta^+}{\Delta^0} \right)_\mu.
$$

(3.30)

Here, T^{μ}_i denotes the spin-3/2 and isospin-3/2 field $\Delta(1232)$ in the non-relativistic reduction.

In the framework of the heavy hadron chiral perturbation theory, the scattering amplitudes of the D^*N system can be expanded order by order in powers of a small quantity $\epsilon = q/\Lambda_\tau \sim 1$ GeV, where q is either the momentum of Goldstone bosons or the residual momentum of heavy flavor hadrons, and Λ_τ represents either the chiral breaking scale or the mass of a heavy hadron. The expansion respects the power counting rule [106, 107]. The Feynman diagrams of $O(\epsilon^0)$ contact term, $O(\epsilon^1)$ one-pion-exchange, and $O(\epsilon^2)$ two-pion-exchange are illustrated in Fig. 2.

With the chiral Lagrangians and these Feynman diagrams, we can obtain their Feynman amplitudes M. Then we use the Breit approximation $V = -M/(1, 2m_i, 2m_j)^{1/2}$ to relate the scattering amplitude M to the effective potential V [44], where m_i and m_j are the masses of the initial and final states,
respectively. These effective potentials of the Feynman diagrams in Fig. 2 consist of following parts

$$V_{\text{total}} = V_{\text{LO}} + V_{\text{LO}}^{0\pi} + V_{\text{LO}}^{\pi\pi},$$ \hspace{1cm} (3.31)

where V_{LO}, $V_{\text{LO}}^{0\pi}$, and $V_{\text{LO}}^{\pi\pi}$ denote $O(\epsilon^0)$ contact term, $O(\epsilon^1)$ one-pion-exchange, and $O(\epsilon^2)$ two-pion-exchange potentials, respectively.

The $V_{\text{LO}}^{\pi\pi}$ is the sum of the football diagram, triangle diagram, crossed box diagram, and exchanged box diagram potentials in Fig. 2, i.e., $V_{\text{LO}}^{\pi\pi} = V_{\text{football}} + V_{\text{triangle}} + V_{\text{box}} + V_{\text{crossed-box}}$. These two-pion-exchange diagrams need some loop functions $J_{\pi}^{f, t}$, $J_{\pi}^{0, t}$, and $J_{\pi}^{0, t}$, which can be found in Refs. [96–98, 102, 105]. In order to obtain the effective potentials, the two-particle-reducible (2PR) contribution should be subtracted from these crossed box diagrams by the principal value integral method in the Appendix B of Ref. [102]. Additionally, the divergent parts in two-pion-exchange diagrams can be absorbed by unrenormalized LECs in Ref. [44]. In this work, all the parameters for the D^*N interaction are from Ref. [44].

In Fig. 3, we give the D^*N effective potential in momentum space, which can help us to understand the D^*N interaction clearer. For the D^*N channel in Fig. 3 (a), the $O(\epsilon^0)$ one-pion-exchange potential and $O(\epsilon^2)$ two-pion-exchange potential are both repulsive. But their repulsive interaction is rather weak. The attractive interaction is dominantly provided by the $O(\epsilon^0)$ contact interaction. In Fig. 3 (b), the $O(\epsilon^0)$ one-pion-exchange potential is attractive and the $O(\epsilon^2)$ two-pion-exchange potential is repulsive, but both of them are rather weak. However, the potential of $O(\epsilon^0)$ contact term has strong attractive interaction. For the D^*N channel in Fig. 3 (c), the potential of $O(\epsilon^0)$ contact term and $O(\epsilon^2)$ two-pion-exchange are both repulsive, but the $O(\epsilon^0)$ one-pion-exchange is attractive. The total potential has rather weak attraction. From Fig. 3 (d), the total potential are not attractive enough. Therefore, the two isoscalar channels $I(J^P) = 0(1/2^-)$ and $I(J^P) = 0(3/2^-)$ provide the stronger attractive interaction in momentum space, and we identify the attraction in two $I = 1$ channels is weak. In the following parts, we mainly consider the two isospin $I = 0$ channels. Furthermore, the $\Delta(1232)$ plays a particular role in the D^*N interaction because the coupling between $\Delta(1232)$ and πN system is very strong. The total potential is sensitive to $\Delta(1232)$, which determines its importance in the D^*N interaction.

Based on the obtained effective potential in momentum space $V(q)$, the effective potential in coordinate space $V(r)$ can be obtained by the following Fourier transformation

$$V_{BC\rightarrow BC}(r) = \int \frac{d^3q}{(2\pi)^3} e^{iq\cdot r} V(q) F(q).$$ \hspace{1cm} (3.32)

Here, $F(q) = e^{-q^2/\Lambda^2}$ is the form factor with Gauss form to suppress the high momentum and renormalize the potential [44, 97].

When we employ the chiral effective field theory and use some approximation, such as the transferred energy q^0 between D^* and N, and the residual energies of N and D^* are all set to zero, then the effective potential of D^*N will have the simple form of $V_{BC\rightarrow BC}(p' - p)$. Thus, the $V_{BC\rightarrow BC}(p', p)$ in Eq. (2.11) can be defined as

$$V_{BC\rightarrow BC}(p', p) = \frac{1}{(2\pi)^3} \int V_{BC\rightarrow BC}(r) e^{i(p' - p)\cdot r} d^3r.$$ \hspace{1cm} (3.33)

In this scheme, the matrix element V_{fi} in Eq. (2.18) can be conveniently calculated by

$$V_{fi} = \int d^3r \phi_{f,i}^*(\nu_f, r) V_{BC\rightarrow BC}(r) \phi_{i,m}^0(\nu_i, r).$$ \hspace{1cm} (3.33)

B. Interaction between the bare state and D^*N channel

For the interaction Hamiltonian \hat{H}_I between the bare state and D^*N in Eq. (2.3), we employ the quark-pair-creation model [119, 120], which has the expression

$$\hat{H}_I = g \int d^3x \bar{q}(x) \gamma \psi(x).$$ \hspace{1cm} (3.34)

Here, $g = 2m_q \gamma_m$ is the mass of the creation quark, and the dimensionless parameter γ describes the strength of the quark and antiquark pair creation from the vacuum, which can be
determined phenomenologically by the Okubo-Zweig-Iizuka (OZI) allowed decay widths of charmonia.

In the non-relativistic limit, \(\hat{H}_I \) is equivalent to [13]

\[
\hat{H}_I = -3\gamma \sum_{m} (1, m; 1, -m)(0, 0) \int d^3p_\mu d^3p_\nu A(p_\mu + p_\nu) \\
\times y^m_1 \left(\frac{p_\mu - p_\nu}{2} \right) \omega^{(\mu, \nu)}(\mu, \nu) \chi^{(-m)}(p_\mu) b_\nu^\dagger(p_\nu) d_\mu^\dagger(p_\mu). \tag{3.35}
\]

Here, \(\omega, \phi, \chi \), and \(Y^m_1 \) describe the color, flavor, spin, and orbital angular momentum functions of the quark pair, respectively. \(b_\nu^\dagger \) and \(d_\mu^\dagger \) are quark and antiquark creation operators, respectively. In this work, we fit the dimensionless parameter \(\gamma \) as 9.45 from the total decay width of \(\Sigma_c(2520) \) [1].

The masses of bare \(\Lambda_c(2P, 1/2^-) \) and \(\Lambda_c(2P, 3/2^-) \) can be obtained by the traditional quark potential models combined with the Gaussian expansion method by solving Eqs. (2.6) and (2.7). In this work, we use different bare masses as input and collect them in Table I. In addition, \(H_{q_{BC}^\text{bare}}(p) \) in Eq. (2.13) can be obtained by calculating the transition amplitude \(H_{\Lambda_{\text{bare}}(2P, 1/2^-) \to D^*N}(p) = \langle D^*N, p|\hat{H}_I|\Lambda_{\text{bare}}(2P, 1/2^-) \rangle \) and \(H_{\Lambda_{\text{bare}}(2P, 3/2^-) \to D^*N}(p) = \langle D^*N, p|\hat{H}_I|\Lambda_{\text{bare}}(2P, 3/2^-) \rangle \) with the quark-pair-creation model.

![Diagram](image)

FIG. 3: (color online) The \(D^*N \) interaction potential in momentum space with the cutoff parameter \(\Lambda = 0.4 \) GeV, and \(q = |q| \) is the transfer momentum between \(D^* \) and \(N \). Here, the green dot, blue dot, and red dot lines describe the contact term potential at \(O(\epsilon^6) \), one-pion-exchange potential at \(O(\epsilon^6) \), and two-pion-exchange potential at \(O(\epsilon^5) \), respectively, while the black solid line denotes the total potential.

TABLE I: The mass of bare \(udc \) core in \(\Lambda_c(2P, 1/2^-) \) and \(\Lambda_c(2P, 3/2^-) \) in the different potential models. The masses are in units of MeV.

\(J^p(nL) \)	Ref. [3]	Ref. [13]	Ref. [2]	Ref. [46]	Ref. [4]
1/2^- (2P)	2989	2980	2983	2996	3030
3/2^- (2P)	3000	3004	3005	3012	3035

IV. RESULTS AND DISCUSSIONS

Using the formalism described in Sec. II and the detailed interaction in Sec. III, we can now study the dynamical coupling between the \(S \)-wave \(D^*N \) channel and bare charmed baryon core \(\Lambda_c(2P) \). In the quenched quark model, the charmed baryons are simply treated as the three-quark \(udc \) baryons [2–4, 13, 46]. In the unquenched picture, the physical states \(\Lambda_c(2940)^+ \) and \(\Lambda_c(2910)^+ \) consist of both \(udc \) core and the \(S \)-wave \(D^*N \) component. In the former works, the authors of Ref. [46] considered the coupling between \(udc \) and \(D^*N \) but did not involve the \(D^*N \) interaction, while this work contains
them both. We list the results of the three approaches in Table II.

From the left column in Table II, the masses of the \(\Lambda_c(2P,1/2^-) \) and \(\Lambda_c(2P,3/2^-) \) from quenched quark model are much larger than those of \(\Lambda_c(2940)^+ \) and \(\Lambda_c(2910)^+ \). From the middle columns in Table II, the theoretical masses decrease due to the coupling between the \(udc \) core and \(D^*N \), but neither can reach the mass of lower state \(\Lambda_c(2910)^+ \) [46]. Among them, we can see the coupled-channel effects between the \(\Lambda_c(2P,1/2^+) \) and \(S \)-wave \([D^*N]_{J=1/2} \) channel is relatively weak, and thus the mass is only suppressed by about 20 MeV and is still above the \(D^*N \) threshold. Neither \(\Lambda_c(2940)^+ \) nor \(\Lambda_c(2910)^+ \) can match it. Meanwhile, the coupled effects between \(\Lambda_c(2P,3/2^-) \) and \(S \)-wave \([D^*N]_{J=3/2} \) channel is strong, the mass decreases by about 70 MeV and locates below \(D^*N \) threshold.

From the right columns in Table II, the \(D^*N \) interaction further lowers the theoretical masses of the \(\Lambda_c(2P,1/2^-) \) and \(\Lambda_c(2P,3/2^-) \) which now become very close to those of \(\Lambda_c(2940)^+ \) and \(\Lambda_c(2910)^+ \) respectively. Thus we assign \(\Lambda_c(2910)^+ \) with \(J^P = 3/2^- \) and \(\Lambda_c(2940)^+ \) with \(J^P = 1/2^- \). As we can see, the attractive \(D^*N \) interaction plays a crucial role to reproduce the experimental \(\Lambda_c(2940)^+ \) and \(\Lambda_c(2910)^+ \).

In the unquenched pictures with or without \(D^*N \) interaction, the mass for \(J^P = 1/2^- \) is larger than that for \(3/2^- \), which is different from the quenched case. Such mass-inversion phenomenon also happens in the \(N(1535)-N(1440) \) case [58, 59]. The mass inversion phenomenon comes from the two factors in this work: (1) under the chiral effective field theory [44], the energy level in \(S \)-wave \([D^*N]_{J=1/2} \) channel is larger than that in the \([D^*N]_{J=3/2} \) channel; (2) the coupling between \(\Lambda_c(2P,3/2^-) \) and \([D^*N]_{J=3/2} \) is stronger than that between \(\Lambda_c(2P,1/2^-) \) and \([D^*N]_{J=3/2} \) [46]. These lead to the mass inversion between \(\Lambda_c(2P,1/2^-) \) and \(\Lambda_c(2P,3/2^-) \).

In Fig. 4, we present the physical mass \(M \) dependence on the bare mass \(M_0 \) in \(\Lambda_c(2P,1/2^-) \) and \(\Lambda_c(2P,3/2^-) \). One can notice that the physical masses increase as the bare masses. There are differences between the vertical axis and horizontal axis values of points in the curves, which shows that the bare \(udc \) core has a significant mass shift due to the effects of \(S \)-wave \(D^*N \) channel.

By solving Eq. (2.13), one can obtain the radial wave function of \(D^*N \) channel and the probability amplitude of bare \(udc \) core, which can help us to reveal the role of \(D^*N \) channel and bare \(udc \) core in physical state \(\Lambda_c(2940)^+ \) and \(\Lambda_c(2910)^+ \). In Table II, we also provide the root-mean-square radius of \(D^*N \) component and the probability of bare \(udc \) core in the bound state, and we can see the \(3/2^- \) state is a little thinner and contains more bare \(udc \) core than the \(1/2^- \) one.

If neglecting the triquark core, the pure \(D^*N \) can also form bound states with masses around 2940 MeV with \(J^P = 1/2^- \) and \(3/2^- \) [44]. But such assumptions make us difficult to place the bare \(2P \ udc \) states. In Fig. 5, we present the \(D^*N \) radial wave functions for the three circumstances: the pure \(D^*N \) molecule, the \(udc \) core dressed by \(D^*N \) without considering \(D^*N \) interaction, and the dressed state with \(D^*N \) interaction. From Fig. 5, we can find that the existence of bare state can make the \(D^*N \) bind more tightly. These wave functions can be used to analyze other properties of charmed baryons, and it can help us to distinguish which model is better in future.

As mentioned earlier, the \(\Delta(1232) \) plays an important role in these two physical states. If ignoring the contribution of \(\Delta(1232) \), the two-pion-exchange potential becomes smaller. We list the results in Table III if turning off \(\Delta(1232) \). From the table, the masses of dressed states decrease by about 10 MeV. In two isoscalar states \([D^*N]_{J=1/2} \) and \([D^*N]_{J=3/2} \), the total potentials become more attractive, which bring these two states thinner.

How to get rid of the cutoff dependence in nonperturbative calculations is still an outstanding problem both in hadron physics and nuclear physics. In order to investigate the cutoff dependence of our results, we list the charmed baryon masses with two different cutoffs in Table IV. One can see that the unquenched masses all become lower with the cutoff becomes larger, and the results at \(\Lambda = 0.4 \text{ GeV} \) are more in line with the experimental data. Currently, we can only provide reasonable results in a very narrow range of cutoff due to the restriction of the validity region of the chiral effective field theory.

Moreover, \(\Lambda_c(2910)^+ \) and \(\Lambda_c(2940)^+ \) have small decay widths [1, 16–19]. In our unquenched calculation, the \(\Lambda_c(2910)^+ \) and \(\Lambda_c(2940)^+ \) lie below the \(D^*N \) threshold (see Fig. 1). Thus, the decays to \(D^*N \) channel are kinematically forbidden, which may result in small decay widths of these two states. The strong decay widths of \(\Lambda_c(2P,1/2^-) \) and \(\Lambda_c(2P,3/2^-) \) have been studied in Ref. [22], and the results are consistent with our assignment, i.e., \(\Lambda_c(2910)^+ \) with spin-3/2 and \(\Lambda_c(2940)^+ \) with spin-1/2.

In our calculation, we gave the possible interpretation that the \(J^P \) for \(\Lambda_c(2940) \) is \(1/2^- \), which is in clear conflict with the preferred \(3/2^- \) assignment from the LHCb experiment [19]. However, our results cannot be completely ruled out by the current experiment, and some other articles also agree with the \(J^P = 1/2^- \) assignment [2, 7, 29, 34, 37, 38, 44]. Moreover, the LHCb Collaboration concludes that the other solutions with spins 1/2 to 7/2 cannot be excluded [19].

The \(D^*p \) mass region in the amplitude fit is \(2.8 \sim 3.0 \text{ GeV} \) in Ref. [19], but only \(\Lambda_c(2940) \) was included. Two resonances \(\Lambda_c(2940) \) and \(\Lambda_c(2910) \) should be taken into account at the same time, and the conclusion may be changed from the new fit in experiment. The \(J^P \) assignment for \(\Lambda_c(2940) \) should further be measured by other way like the partial wave analysis. Our results should also be further checked by analyzing their other properties in theory.

V. SUMMARY

With the accumulation of experimental data, a series of charmed baryons have been reported in the past decades. However, some cannot be fitted into the charmed baryon family very well. Inspired by the reported \(\Lambda_c(2910)^+ \) and \(\Lambda_c(2940)^+ \) [1, 16–19], we use an unquenched picture to study them by considering \(S \)-wave \(D^*N \) channel coupled with the bare \(udc \) core \((\Lambda_c(2P)) \), which gives a unified description of \(\Lambda_c(2910)^+ \) and \(\Lambda_c(2940)^+ \).
TABLE II: Comparison among the results from quenched quark model [2–4, 13, 46], unquenched picture without D^*N interaction [46], and unquenched picture with D^*N interaction in this work. Here, r_{RMS} refers to the root-mean-square radius of the D^*N component, and $P(udc) = c_0^2$ represents the probability of bare udc core in the bound state.

Cases	Quenched picture	Unquenched picture without D^*N interaction	Unquenched picture with D^*N interaction
J^p	M_0 (MeV)	M (MeV) r_{RMS} (fm) $P(udc)$ (%)	M (MeV) r_{RMS} (fm) $P(udc)$ (%)
$1/2^-$	2989	2974 \times \times	2936 1.93 16.2
			2908 1.31 29.4
$3/2^-$	3000	2935 1.67 39.7	2934 1.83 21.9
			2909 1.31 27.9
$1/2^-$	2980	2955 \times \times	2935 1.74 37.0
	3004	2935 1.74 36.3	2909 1.32 27.5
$3/2^-$	2983	2962 \times \times	2935 1.76 36.3
	3005	2935 1.76 36.3	2909 1.32 27.5
$1/2^-$	2996	2985 \times \times	2937 2.00 13.4
	3012	2937 1.95 31.4	2911 1.33 25.2
$3/2^-$	3030	3036 \times \times	2940 2.32 5.08
	3035	2943 2.93 15.8	2916 1.38 18.7

FIG. 4: The physical mass M dependence on the bare mass M_0 in $\Lambda_c(2910)^+$ and $\Lambda_c(2940)^+$, respectively.

TABLE III: The results with $\Delta(1232)$ turned off.

J^p (MeV)	M_0 (MeV)	M (MeV)	r_{RMS} (fm)	$P(udc)$ (%)
$1/2^-$	2937	2924	1.67	12.7
$3/2^-$	2911	2869	1.26	22.4

We take into account of two important factors in this work, i.e., the D^*N interaction and the triquark-D^*N coupling. In our unquenched picture, we reproduce the masses of $\Lambda_c(2910)^+$ and $\Lambda_c(2940)^+$ and assign $\Lambda_c(2910)^+$ to $J^p = 3/2^-$ and $\Lambda_c(2940)^+$ to $1/2^-$. The results show the unquenched effects lead to the mass inversion phenomenon in the two states, and the D^*N channel is important.

In the present work, we find the D^*N interaction is crucial in forming the physical states. Let us look at Fig. 1 again. There are large gaps between the quenched quark model results and the experimental masses. The $3/2^-$ mass is pulled...
down more than the 1/2− one by the coupling between the triquark core and the D∗N, which causes the mass inversion phenomenon. The mass spectrum moves down further after considering the attractive D∗N interaction, and eventually consistent with the experiments.

From our obtained results, we see Λc(2910)+ and Λc(2940)+ contain a significant D∗N component, and the bare state can cause the D∗N binding more compactly. In addition, we also study the influence of Δ(1232) in the D∗N interaction. If neglecting Δ(1232), the dressed masses would be about 10 MeV smaller than before.

Revealing the mixed structure of Λc(2910)+ and Λc(2940)+ in the unquenched picture, we expect it can be further verified by other theoretical approaches like lattice QCD simulations. In addition to mass, other properties of these two states should also be analyzed within this picture in future. More importantly, we strongly suggest experiment to give a further study in future, which can provide more hints to uncover the nature of Λc(2910)+ and Λc(2940)+.

ACKNOWLEDGMENTS

This project is supported by the National Natural Science Foundation of China under Grants No. 12175091, No. 11965016, No. 12047501, No. 12105072, No. 12005168, and CAS Interdisciplinary Innovation Team. B.W is also supported by the Youth Funds of Hebei Province (No. A2021201027) and the Start-up Funds for Young Talents of Hebei University (No. 521100221021). H. X. also acknowledges the Natural Science Foundation of Gansu province under Grant No. 22JR5RA171.

[1] R. L. Workman et al. [Particle Data Group], Review of Particle Physics, PTEP 2022 (2022), 083C01.
[2] D. Ebert, R. N. Faustov and V. O. Galkin, Spectroscopy and Regge trajectories of heavy baryons in the relativistic quark-diquark picture, Phys. Rev. D 84, 014025 (2011).
[3] B. Chen, K. W. Wei and A. Zhang, Assignments of ΛQ and ΣQ baryons in the heavy quark-light diquark picture, Eur. Phys. J. A 51, 82 (2015).
[4] S. Capstick and N. Isgur, Baryons in a relativized quark model with chromodynamics, Phys. Rev. D 34 no.9, 2809 (1986).
[5] H. Y. Cheng, Charmed baryon physics circa 2021, Chin. J. Phys. 78, 324-362 (2022).
[6] H. Garcilazo, J. Vijande and A. Valcarce, Faddeev study of heavy baryon spectroscopy, J. Phys. G 34, 961-976 (2007).
[7] G. L. Yu, Z. Y. Li, Z. G. Wang, J. Lu and M. Yan, Systematic analysis of single heavy baryons ΛQ, ΣQ and ΩQ, arXiv:2206.08128.
[8] Y. Kim, Y. R. Liu, M. Oka and K. Suzuki, Heavy baryon spectrum with chiral multiplets of scalar and vector diquarks, Phys. Rev. D 104, no.5, 054012 (2021).
[9] H. X. Chen, W. Chen, X. Liu, Y. R. Liu and S. L. Zhu, A review of the open charm and open bottom systems, Rept. Prog. Phys. 80, no.7, 076201 (2017).
[10] V. Crede and W. Roberts, Progress towards understanding baryon resonances, Rept. Prog. Phys. 76, 076301 (2013).
[11] H. X. Chen, W. Chen, X. Liu, Y. R. Liu and S. L. Zhu, An updated review of the new hadron states, arXiv:2204.02649.
[12] Y. Kato and T. Iijima, Open charm hadron spectroscopy at B-factories, Prog. Part. Nucl. Phys. 105, 61-81 (2019).
[13] B. Chen, K. W. Wei, X. Liu and T. Matsuki, Low-lying charmed and charmed-strange baryon states, Eur. Phys. J. C 77 no.3, 154 (2017).
[14] H. X. Chen, W. Chen, X. Liu and S. L. Zhu, The hidden-charm pentaquark and tetraquark states, Phys. Rept. 639, 1-121 (2016).
[15] Y. R. Liu, H. X. Chen, W. Chen, X. Liu and S. L. Zhu, Pen-
taquark and Tetraquark States, Prog. Part. Nucl. Phys. 107, 237-320 (2019).

[16] Belle Collaborate, Evidence of a new excited charmed baryon decaying to Σ(2455)π−π+, arXiv:2206.08822.

[17] B. Aubert et al. (BaBar Collaboration), Observation of a charmed baryon decaying to D′p at a mass near 2.94 GeV/c², Phys. Rev. Lett. 98, 012001 (2007).

[18] K. Abe et al. (Belle Collaboration), Experimental constraints on the possible J′ quantum numbers of the Λc(2880)+, Phys. Rev. Lett. 98, 082001 (2007).

[19] R. Aaij et al. (LHCb Collaboration), Study of the D′p amplitude in Λc0→D′0p decays, JHEP 05, 030 (2017).

[20] A. Faessler, T. Gutsche, S. Kumano and K. Nakayama, Observation of the X(3872) as a molecular state, Phys. Rev. D 55, 2910 (1997).

[21] Y. Dong, A. Faessler, T. Gutsche, S. Kumano and K. Nakayama, Observation of the X(3872) as a molecular state, Phys. Rev. D 55, 2910 (1997).

[22] D. Zhang, Y. Dong, X. F. Wang and K. Nakayama, Possible S-wave D′N and B′N bound states in a chiral quark model, arXiv:1903.01207.

[23] B. Wang, L. Meng and S. L. Zhu, D′3N interaction and the structure of Σ(2800) and Λc(2940) in charmed baryon spectra, Phys. Rev. D 101, no.9, 094035 (2020).

[24] L. Meng, B. Wang, G. J. Wang and S. L. Zhu, Chiral perturbation theory for heavy hadrons and open heavy baryon spectra, Phys. Rev. D 101, no.9, 094035 (2020).

[25] A. Faessler, T. Gutsche, S. Kumano and K. Nakayama, Observation of the X(3872) as a molecular state, Phys. Rev. D 55, 2910 (1997).

[26] Y. Dong, A. Faessler, T. Gutsche, S. Kumano and K. Nakayama, Observation of the X(3872) as a molecular state, Phys. Rev. D 55, 2910 (1997).

[27] D. Zhang, Y. Dong, X. F. Wang and K. Nakayama, Possible S-wave D′N and B′N bound states in a chiral quark model, arXiv:1903.01207.

[28] B. Wang, L. Meng and S. L. Zhu, D′3N interaction and the structure of Σ(2800) and Λc(2940) in charmed baryon spectra, Phys. Rev. D 101, no.9, 094035 (2020).

[29] L. Meng, B. Wang, G. J. Wang and S. L. Zhu, Chiral perturbation theory for heavy hadrons and open heavy baryon spectra, Phys. Rev. D 101, no.9, 094035 (2020).

[30] A. Faessler, T. Gutsche, S. Kumano and K. Nakayama, Observation of the X(3872) as a molecular state, Phys. Rev. D 55, 2910 (1997).

[31] D. Zhang, Y. Dong, X. F. Wang and K. Nakayama, Possible S-wave D′N and B′N bound states in a chiral quark model, arXiv:1903.01207.

[32] B. Wang, L. Meng and S. L. Zhu, D′3N interaction and the structure of Σ(2800) and Λc(2940) in charmed baryon spectra, Phys. Rev. D 101, no.9, 094035 (2020).

[33] L. Meng, B. Wang, G. J. Wang and S. L. Zhu, Chiral perturbation theory for heavy hadrons and open heavy baryon spectra, Phys. Rev. D 101, no.9, 094035 (2020).

[34] A. Faessler, T. Gutsche, S. Kumano and K. Nakayama, Observation of the X(3872) as a molecular state, Phys. Rev. D 55, 2910 (1997).

[35] D. Zhang, Y. Dong, X. F. Wang and K. Nakayama, Possible S-wave D′N and B′N bound states in a chiral quark model, arXiv:1903.01207.

[36] B. Wang, L. Meng and S. L. Zhu, D′3N interaction and the structure of Σ(2800) and Λc(2940) in charmed baryon spectra, Phys. Rev. D 101, no.9, 094035 (2020).

[37] L. Meng, B. Wang, G. J. Wang and S. L. Zhu, Chiral perturbation theory for heavy hadrons and open heavy baryon spectra, Phys. Rev. D 101, no.9, 094035 (2020).

[38] A. Faessler, T. Gutsche, S. Kumano and K. Nakayama, Observation of the X(3872) as a molecular state, Phys. Rev. D 55, 2910 (1997).

[39] D. Zhang, Y. Dong, X. F. Wang and K. Nakayama, Possible S-wave D′N and B′N bound states in a chiral quark model, arXiv:1903.01207.
I. V. Danilkin and Y. A. Simonov, Channel coupling in heavy

Y. Lu, M. N. Anwar and B. S. Zou, How large is the contribu-

M. N. Anwar, Y. Lu and B. S. Zou,

P. G. Ortega, J. Segovia, D. R. Entem and F. Fernandez, Molecular structures in charmonium spectrum: the XYZ puzzle, J. Phys. G 40, 065107 (2013).

P. G. Ortega, J. Segovia, D. R. Entem and F. Fernandez, Coupled channel approach to the structure of the X(3872), Phys. Rev. D 81, 054023 (2010).

S. Q. Luo, B. Chen, X. Liu and T. Matsuki, Predicting a new resonance as charmed-strange baryonic analog of D_s^*(2317), Phys. Rev. D 103, no.7, 074027 (2021).

D. S. Hwang and D. W. Kim, Mass of D_s^*(2317) and coupled-channel effect, Phys. Lett. B 601, 137-143 (2004).

E. van Beveren and G. Rupp, Observed D_s^*(2317) and Tentative D(2100 – 2300) as the Charmed Cousins of the Light Scalar Nonet, Phys. Rev. Lett. 91, 012003 (2003).

Y. Tan and J. Ping, D_s^*(2317) and D_s(2460) in an unquenched quark model, arXiv:2111.04677.

Z. Yang, G. J. Wang, J. J. Wu, S. L. Zhu, Novel Coupled Channel Framework Connecting the Quark Model and Lattice QCD for the Near-threshold D_s States, Phys. Rev. Lett. 128 no.11, 11 (2022).

S. Weinberg, Evidence That the Deuteron Is Not An Elementary Particle, Phys. Rev. 137, B672-B678 (1965).

F. K. Guo, C. Hanhart, U. G. Meißner, Q. Wang, Q. Zhao and N. A. Tornqvist, Understanding the scalar meson nonet, Z. Phys. C 68, 647-660 (1995).

E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane and T. M. Yan, Charmonium: The model, Phys. Rev. D 17, 3090 (1978).

I. V. Danilkin and Y. A. Simonov, Channel coupling in heavy quarkonia: Energy levels, mixing, widths and new states, Phys. Rev. D 81, 074027 (2010).

Y. Lu, M. N. Anwar and B. S. Zou, How large is the contribution of excited mesons in coupled-channel effects?, Phys. Rev. D 95, no.3, 034018 (2017).

M. N. Anwar, Y. Lu and B. S. Zou, \(\chi_s (3P) \) multiplet revisited: Hyperfine mass splitting and radiative transitions, Phys. Rev. D 99, no.9, 094005 (2019).

P. G. Ortega, J. Segovia, D. R. Entem and F. Fernandez, The \(D_{s0}(2590) \) as the dressed \(c \bar{c} 2S_0 \) meson in a coupled-channels calculation, Phys. Lett. B 827, 136998 (2022).

P. G. Ortega, D. R. Entem and F. Fernandez, Does the \(J^{PC} = 1^{++} \) counterpart of the \(X(3872) \) exist? Phys. Lett. B 829, 137083 (2022).

P. G. Ortega, J. Segovia, D. R. Entem and F. Fernandez, Threshold effects in \(P \)-wave bottom-strange mesons, Phys. Rev. D 95, no.3, 034010 (2017).

T. Yoshida, E. Hiyama, A. Hosaka, M. Oka and K. Sadato, Spectrum of heavy baryons in the quark model, Phys. Rev. D 92, no.11, 114029 (2015).

W. Roberts and M. Pervin, Heavy baryons in a quark model, Int. J. Mod. Phys. A 23, 2817-2860 (2008).

N. Isgur and G. Karl, \(P \)-wave baryons in the quark model, Phys. Rev. D 18, 4187 (1978).

N. Isgur and G. Karl, Positive parity excited baryons in a quark model with hyperfine interactions, Phys. Rev. D 19, 2653 (1979) [erratum: Phys. Rev. D 23, 817 (1981)].

E. Hiyama, Y. Kino and M. Kamimura, Gaussian expansion method for few-body systems, Prog. Part. Nucl. Phys. 51, 223-307 (2003).

E. Hiyama, Gaussian expansion method for few-body systems and its applications to atomic and nuclear physics, PTEP 2012, 01A204 (2012).

S. Weinberg, Phenomenological Lagrangians, Physica A 96, no.1-2, 327-340 (1979).

J. Gasser and H. Leutwyler, Chiral perturbation theory to one loop, Annals Phys. 158, 142 (1984).

S. Scherer and M. R. Schindler, A Primer for Chiral Perturbation Theory, Lect. Notes Phys. 830, pp.1-338 (2012).

X. W. Kang, J. Haidenbauer and U. G. Meiñner, Antinucleon-nucleon interaction in chiral effective field theory, JHEP 02, 113 (2014).

V. Bernard, N. Kaiser and U. G. Meiñner, Chiral dynamics in nucleons and nuclei, Int. J. Mod. Phys. E 4, 193-346 (1995).

E. Epelbaum, H. W. Hammer and U. G. Meiñner, Modern theory of nuclear forces, Rev. Mod. Phys. 81, 1773-1825 (2009).

U. G. Meiñner, A new tool in nuclear physics: Nuclear lattice simulations, Nucl. Phys. News. 24, no.4, 11-15 (2014).

U. G. Meiñner, The long and winding road from chiral effective Lagrangians to nuclear structure, Phys. Scripta 91, no.3, 033005 (2016).

R. Machleidt and F. Sammarruca, Can chiral EFT give us satisfaction?, arXiv:2001.05615.

Z. W. Liu, N. Li and S. L. Zhu, Chiral perturbation theory and the \(BB \) strong interaction, Phys. Rev. D 89, no.7, 074015 (2014).

H. Xu, B. Wang, Z. W. Liu and X. Liu, \(DD^* \) potentials in chiral perturbation theory and possible molecular states, Phys. Rev. D 99, no.1, 014027 (2019).

B. Wang, Z. W. Liu and X. Liu, \(BB^* \bar{B} \bar{B} \) interactions in chiral effective field theory, Phys. Rev. D 99, no.3, 036007 (2019).

H. Xu, Study of the hidden charm \(DD^* \) interactions in chiral effective field theory, Phys. Rev. D 105, no.3, 034013 (2022).

L. Meng, B. Wang, G. J. Wang and S. L. Zhu, Hidden charm pentaquark states and \(\Sigma_c \bar{D}^* \) interaction in chiral perturbation theory, arXiv:1911.09250.

L. Meng, B. Wang and S. L. Zhu, \(\Sigma \bar{N} \) interaction in chiral effective field theory, Phys. Rev. C 101, no.6, 064002 (2020).

B. Wang, L. Meng and S. L. Zhu, Hidden-charm and hidden-bottom molecular pentaquarks in chiral effective field theory, JHEP 11, 108 (2019).

B. Wang, L. Meng and S. L. Zhu, Spectrum of the strange hidden charm molecular pentaquarks in chiral effective field theory, Phys. Rev. D 101, no.3, 034018 (2020).

K. Chen, B. L. Huang, B. Wang and S. L. Zhu, \(\Sigma \bar{N} \) interactions in chiral effective field theory, arXiv:2204.13316.

L. Meng, B. Wang, G. J. Wang and S. L. Zhu, The hidden charm pentaquark states and \(\Sigma_c \bar{D} \bar{D} \) interaction in chiral perturbation theory, Phys. Rev. D 100, no.1, 014031 (2019).

S. Weinberg, Nuclear forces from chiral Lagrangians, Phys. Lett. B 251, 288-292 (1990).

S. Weinberg, Effective chiral Lagrangians for nucleon-pion interactions and nuclear forces, Nucl. Phys. B 363, 3-18 (1991).

V. Bernard, N. Kaiser, J. Kambor and U. G. Meiñner, Chiral structure of the nucleon, Nucl. Phys. B 388, 315-345 (1992).
[109] M. B. Wise, Chiral perturbation theory for hadrons containing a heavy quark, Phys. Rev. D 45, no.7, R2188 (1992).
[110] G. Burdman and J. F. Donoghue, Union of chiral and heavy quark symmetries, Phys. Lett. B 280, 287-291 (1992).
[111] T. M. Yan, H. Y. Cheng, C. Y. Cheung, G. L. Lin, Y. C. Lin and H. L. Yu, Heavy quark symmetry and chiral dynamics, Phys. Rev. D 46, 1148-1164 (1992), erratum:Phys. Rev. D 55, 5851 (1997).
[112] A. V. Manohar and M. B. Wise, Heavy quark physics, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 10, 1-191 (2000).
[113] R. Machleidt, K. Holinde and C. Elster, The bonn meson exchange model for the nucleon nucleon interaction, Phys. Rept. 149, 1-89 (1987).
[114] K. Holinde and R. Machleidt, Effect of the Δ(1236) resonance on NN scattering, nuclear matter and neutron matter, Nucl. Phys. A 280, 429-466 (1977).
[115] H. Krebs, E. Epelbaum and U. G. Meissner, Nuclear forces with Δ excitations up to next-to-next-to-leading order, part I: Peripheral nucleon-nucleon waves, Eur. Phys. J. A 32, 127-137 (2007).
[116] E. Epelbaum, H. Krebs and U. G. Meissner, Δ excitations and the three-nucleon force, Nucl. Phys. A 806, 65-78 (2008).
[117] N. Kaiser, S. Gerstendorfer and W. Weise, Peripheral NN scattering: Role of delta excitation, correlated two-pion and vector meson exchange, Nucl. Phys. A 637, 395-420 (1998).
[118] T. R. Hemmert, B. R. Holstein and J. Kambor, Chiral Lagrangians and Δ(1232) interactions: Formalism, J. Phys. G 24, 1831-1859 (1998).
[119] L. Micu, Decay rates of meson resonances in a quark model, Nucl. Phys. B 10, 521-526 (1969).
[120] A. Le Yaouanc, L. Oliver, O. Pene and J. C. Raynal, Naive quark pair creation model of strong interaction vertices, Phys. Rev. D 8, 2223-2234 (1973).