IDENTITIES OF SYMMETRY FOR \((h, q)\)–EXTENSION OF HIGHER-ORDER EULER POLYNOMIALS

DAE SAN KIM, TAEKYUN KIM, JONG JIN SEO

Abstract. In this paper, we study some symmetric properties of the multiple \(q\)–Euler zeta function. From these properties, we derive several identities of symmetry for the \((h, q)\)–extension of higher-order Euler polynomials, which is an answer to a part of open question in [7].

1. Introduction

Let \(\mathbb{C}\) be the complex number field. We assume that \(q \in \mathbb{C}\) with \(|q| < 1\) and the \(q\)–number is defined by \([x]_q = \frac{1-q^x}{1-q}\). Note that \(\lim_{q \to 1} [x]_q = x\). As is well known, the higher-order Euler polynomials \(E_n^{(r)}(x)\) are defined by the generating function to be

\[
F^{(r)}(x, t) = \left(\frac{2}{e^t + 1} \right)^r e^{xt} = \sum_{n=0}^{\infty} E_n^{(r)}(x) \frac{t^n}{n!} , \quad \text{(see [4], [16])},
\]

where \(|t| < \pi\).

When \(x = 0, E_n^{(r)} = E_n^{(r)}(0)\) are called the Euler numbers of order \(r\). Recently, the second author defined the \((h, q)\)–extension of higher-order Euler polynomials, which is given by the generating function to be

\[
F^{(h,r)}_q(x, t) = \sum_{m_1, \ldots, m_r = 0}^{\infty} \sum_{j=1}^{r} (h-j+1) m_j \frac{(1)}{[m_1 + \cdots + m_r + x]_q} t^n,
\]

(see [6], [8]),

\[
F^{(h,r)}_q(t, x) = \sum_{m}^{\infty} E_n^{(h,r)}(x) \frac{t^n}{n!}, \quad \text{see [6], [8]),}
\]

where \(h \in \mathbb{Z}\) and \(r \in \mathbb{Z}_{\geq 0}\). Note that \(\lim_{q \to 1} F^{(h,r)}_q(x, t) = \left(\frac{2}{e^t + 1} \right)^r e^{xt} = \sum_{n=0}^{\infty} E_n^{(r)}(x) \frac{t^n}{n!}.

By (1.2), we get

\[
F^{(h,r)}_q(t, x) = \left[\frac{2}{e^t + 1} \right]^r e^{xt} = \sum_{n=0}^{\infty} E_n^{(r)}(x) \frac{t^n}{n!}.
\]

\[
F^{(h,r)}(t, x) = \left[\frac{2}{e^t + 1} \right]^r e^{xt} = \sum_{n=0}^{\infty} E_n^{(h,r)}(x) \frac{t^n}{n!} , \quad \text{(see [6], [8])},
\]
where \((x)_m^q = \frac{[x]_1[x-1]_1[x-2]_1\cdots[x-m+1]_1}{[m]_q!}\).

From (1.3), we can derive the following equation:

\[
E_{n,q}^{(h,r)}(x) = \frac{[2]^r_q}{(1 - q)^n} \sum_{l=0}^{n} \binom{n}{l} (-q^x)^l (-q^{h+r+l+1} ; q)_r,
\]

\[
= [2]^r_q \sum_{m=0}^{\infty} \binom{m + r - 1}{m} (-q^{h+r+1})^m [m + x]_q^n, \quad \text{(see [6])},
\]

where \((x : q)_n = (1 - x)(1 - qx) \cdots (1 - qx^{n-1})\).

In [6] and [8], the second author constructed the multiple \(q\)-Euler zeta function which interpolates the \((h, q)\)-extension of higher-order Euler polynomials at negative integers as follows:

\[
\zeta_{q,r}^{(h)}(s, x) = \frac{1}{\Gamma(s)} \int_0^{\infty} E_{q}^{(h,r)}(x,t) t^{s-1} dt
\]

\[
= [2]^r_q \sum_{m_1, \cdots, m_r = 0}^{\infty} \frac{(-1)^{m_1 + \cdots + m_r} q^{\sum_{j=1}^{r} (h-j+1)m_j}}{[m_1 + \cdots + m_r + x]_q^r}, \quad \text{(see [6])},
\]

where \(h, s \in \mathbb{C}, x \in \mathbb{R}\) with \(x \neq 0, -1, -2, \cdots\).

From (1.5), we have

\[
\zeta_{q,r}^{(h)}(-n, x) = E_{n,q}^{(h,r)}(x), \quad \text{(see [6], [8])}.
\]

Using the Cauchy residue theorem and Laurent series in (1.5), we obtain the following lemma.

Lemma 1.1. For \(n \in \mathbb{Z}_{\geq 0}\) and \(h \in \mathbb{Z}\), we have

\[
\zeta_{q,r}^{(h)}(-n, x) = E_{n,q}^{(h,r)}(0), \quad \text{(see [6], [8])}.
\]

In [7], the second author introduced many identities of symmetry for Euler and Bernoulli polynomials which are derived from the \(p\)-adic integral expression of the generating function and suggested an open problem about finding identities of symmetry for the Carlitz’s type \(q\)-Euler numbers and polynomials.

When \(x = 0\), \(E_{n,q}^{(h,r)} = E_{n,q}^{(h,r)}(0)\) are called the \((h, q)\)-Euler numbers of order \(r\).

From (1.3) and (1.4), we can derive the following equation:

\[
E_{n,q}^{(h,r)}(x) = (q^x E_{q}^{(h,r)} + [x]_q^n) = \sum_{l=0}^{n} \binom{n}{l} q^{lx} E_{q}^{(h,r)} [x]_q^{n-l},
\]

with the usual convention about replacing \((E_{q}^{(h,r)})^n\) by \(E_{n,q}^{(h,r)}\).

Recently, Y. Simsek introduced recurrence symmetric identities for \((h, q)\)-Euler polynomials and alternating sums of powers of consecutive \((h, q)\)-integers (see [16]).

In this paper, we investigate some symmetric properties of the multiple \(q\)-Euler zeta function. From our investigation, we give some new identities of symmetry for the \((h, q)\)-extension of higher-order Euler polynomials, which is an answer to a part of open question in [7].
2. Identities for \((h, q)\)-extension of higher-order Euler Polynomials

In this section, we assume that \(h \in \mathbb{Z}\) and \(a, b \in \mathbb{N}\) with \(a \equiv 1\) (mod 2) and \(b \equiv 1\) (mod 2). Now, we observe that

\[
\frac{1}{[2]^q} \zeta_{q^a,r}^{(h)}(s, bx + \frac{b(j_1 + \cdots + j_r)}{a}) = \sum_{m_1, \ldots, m_r=0}^{\infty} \frac{(-1)^{m_1 + \cdots + m_r} q^a \sum_{j_i=1}^{r} (h-j+1) m_j}{[m_1 + \cdots + m_r + bx + \frac{b(j_1 + \cdots + j_r)}{a}]_q}.
\]

Thus, by (2.1), we get

\[
[a]_q^a \sum_{m_1, \ldots, m_r=0}^{\infty} \frac{(-1)^{m_1 + \cdots + m_r} q^a \sum_{j_i=1}^{r} (h-j+1) m_j}{[m_1 + \cdots + m_r + bx + \frac{b(j_1 + \cdots + j_r)}{a}]_q} \equiv \prod_{i=1}^{r} \frac{1}{\sum_{j_i=1}^{r} (h-j+1) m_j} + \sum_{i=1}^{r} (h-j+1) m_i a q^a.
\]

By the same method as (2.2), we see that

\[
[a]_q^a \sum_{m_1, \ldots, m_r=0}^{\infty} \frac{(-1)^{m_1 + \cdots + m_r} q^a \sum_{j_i=1}^{r} (h-j+1) m_j}{[m_1 + \cdots + m_r + bx + \frac{b(j_1 + \cdots + j_r)}{a}]_q} \equiv \prod_{i=1}^{r} \frac{1}{\sum_{j_i=1}^{r} (h-j+1) m_j} + \sum_{i=1}^{r} (h-j+1) m_i a q^a.
\]

Therefore, by (2.2) and (2.3), we obtain the following theorem.

Theorem 2.1. For \(a, b \in \mathbb{N}\), with \(a \equiv 1\) (mod 2) and \(b \equiv 1\) (mod 2), we have

\[
[a]_q^a \sum_{m_1, \ldots, m_r=0}^{\infty} \frac{(-1)^{m_1 + \cdots + m_r} q^a \sum_{j_i=1}^{r} (h-j+1) m_j}{[m_1 + \cdots + m_r + bx + \frac{b(j_1 + \cdots + j_r)}{a}]_q} \equiv \prod_{i=1}^{r} \frac{1}{\sum_{j_i=1}^{r} (h-j+1) m_j} + \sum_{i=1}^{r} (h-j+1) m_i a q^a.
\]

From Lemma 1.1 and Theorem 2.1, we can derive the following theorem.
Theorem 2.2. For \(n \in \mathbb{Z}_{\geq 0} \) and \(a, b \in \mathbb{N} \), with \(a \equiv 1(\text{mod } 2) \) and \(b \equiv 1(\text{mod } 2) \), we have

\[
[2]_{q^n}^{r}[a]^{n}_{q} \sum_{j_1, \ldots, j_r=0}^{a-1} (-1)^{j_1 + \cdots + j_r} q^{b \sum_{i=1}^{r} (h-l+1) j_i} E_{n, q^n}^{(h, r)} \left(bx + \frac{b(j_1 + \cdots + j_r)}{a} \right) = [2]_{q^n}^{r}[b]^{n}_{q} \sum_{j_1, \ldots, j_r=0}^{a-1} (-1)^{j_1 + \cdots + j_r} q^{a \sum_{i=1}^{r} (h-l+1) j_i} E_{n, q^n}^{(h, r)} \left(ax + \frac{a(j_1 + \cdots + j_r)}{b} \right).
\]

By (1.4), we easily see that

\[
E_{n, q}^{(h, k)}(x + y) = (q^{x+y} E_{q}^{(h, k)} + [x + y]_q)^n = (q^{x+y} E_{q}^{(h, k)} + q^x [y]_q + [x]_q)^n = \sum_{i=0}^{n} \binom{n}{i} q^{ix} E_{i, q}^{(h, k)}(y)[x]_{q}^{n-i}. \tag{2.4}
\]

Therefore, by (2.4), we obtain the following proposition.

Proposition 2.3. For \(n \geq 0 \), we have

\[
E_{n, q}^{(h, k)}(x + y) = \sum_{i=0}^{n} \binom{n}{i} q^{ix} E_{i, q}^{(h, k)}(y)[x]_{q}^{n-i} = \sum_{i=0}^{n} \binom{n}{i} q^{(n-i)x} E_{n-i, q}^{(h, k)}(y)[x]_{q}^{i}.
\]

From Proposition 2.3, we note that

\[
\sum_{j_1, \ldots, j_r=0}^{a-1} (-1)^{j_1 + \cdots + j_r} q^{b \sum_{i=1}^{r} (h-l+1) j_i} E_{n, q^n}^{(h, r)} \left(bx + \frac{b(j_1 + \cdots + j_r)}{a} \right) \times \left[\frac{b(j_1 + \cdots + j_r)}{a} \right]^{n-i} q^{a} = \sum_{j_1, \ldots, j_r=0}^{a-1} (-1)^{j_1 + \cdots + j_r} q^{b \sum_{i=1}^{r} (h-l+1) j_i} \sum_{i=0}^{n} \binom{n}{i} q^{(n-i)b(j_1 + \cdots + j_r)} E_{n-i, q^n}^{(h, r)}(bx) \times \left[\frac{b(j_1 + \cdots + j_r)}{a} \right]^{i} q^{a} = \sum_{i=0}^{n} \binom{n}{i} \left[\frac{[b]_{q}}{[a]_{q}} \right]^{i} E_{n-i, q^n}^{(h, r)}(bx) \sum_{j_1, \ldots, j_r=0}^{a-1} (-1)^{j_1 + \cdots + j_r} q^{b \sum_{i=1}^{r} (h+n-l-i+1) j_i} [j_1 + \cdots + j_r]_{q}^{i} = \sum_{i=0}^{n} \binom{n}{i} \left[\frac{[b]_{q}}{[a]_{q}} \right]^{i} E_{n-i, q^n}^{(h, r)}(bx) S_{n-i, q^n}^{(h, r)}(a),
\]

where \(S_{n-i, q^n}^{(h, r)}(a) = \sum_{j_1, \ldots, j_r=0}^{a-1} (-1)^{j_1 + \cdots + j_r} q^{b \sum_{i=1}^{r} (h+n-l-i+1) j_i} [j_1 + \cdots + j_r]_{q}^{i}. \tag{2.5} \)
By (2.5), we get

\[
\sum_{i=0}^{a-1} (-1)^{j_1 + \cdots + j_r} q^{\sum_{l=1}^{r} (h-l+l) j_l} E_{n,q^{a}}^{(h,r)} \left(bx + \frac{b(j_1 + \cdots + j_r)}{a} \right) = 0
\]

(2.7)

By the same method as (2.7), we see that

\[
\sum_{i=0}^{n} \binom{n}{i} [a]_q^{n-i} [b]_q^{i} E_{n-i,q^{a}}^{(h,r)} (bx) S_{n,i,q^{a}}^{(h,r)}(a).
\]

(2.8)

Therefore, by (2.7) and (2.8), we obtain the following theorem.

Theorem 2.4. For \(a, b \in \mathbb{N}\) with \(a \equiv 1 \text{(mod 2)}\) and \(b \equiv 1 \text{(mod 2)}\), \(n \in \mathbb{Z}_{>0}\),

let

\[
S_{n,i,q^{a}}^{(h,r)}(a) = \sum_{j_1, \cdots, j_r=0}^{a-1} (-1)^{j_1 + \cdots + j_r} q^{\sum_{l=1}^{r} (h-n-l+i+1) j_l} \left[j_1 + \cdots + j_r \right]_q^i.
\]

Then we have

\[
\sum_{i=0}^{n} \binom{n}{i} [a]_q^{n-i} [b]_q^{i} E_{n-i,q^{a}}^{(h,r)} (ax) S_{n,i,q^{a}}^{(h,r)}(a) = \sum_{i=0}^{n} \binom{n}{i} [b]_q^{n-i} [a]_q^{i} E_{n-i,q^{a}}^{(h,r)} (ax) S_{n,i,q^{a}}^{(h,r)}(b).
\]

It is not difficult to show that

\[
[x + y + m]_q (u + v) - [x]_q v = [x]_q u + q^r [y + m]_q (u + v).
\]

(2.9)

From (2.9), we note that

\[
e^{[x]_q u} \sum_{m_1, \cdots, m_r=0}^{\infty} q^{\sum_{j=1}^{r} (h-j+1)m_j} \left[(-1)^{\sum_{j=1}^{r} m_j} e^{[x+y+m_1+\cdots+m_r+y]_q (u+v)} \right]
\]

\[
e^{-[x]_q u} \sum_{m_1, \cdots, m_r=0}^{\infty} q^{\sum_{j=1}^{r} (h-j+1)m_j} \left[(-1)^{\sum_{j=1}^{r} m_j} e^{[x+y+m_1+\cdots+m_r+y]_q (u+v)} \right].
\]

(2.10)
The left hand side of (2.10) multiplied by \([2]^p_q\) is given by

\[
[2]^p_q e^{[x]_q u} \sum_{m_1, \ldots, m_r = 0}^\infty q^{\sum_{j=1}^r (h-j+1)m_j} (-1)^{\sum_{j=1}^r m_j} e^{[m_1 + \cdots + m_r + y]_q u} (u+v)
\]

\[
e^{[x]_q u} \sum_{n=0}^\infty q^{nx} E_{n,q}^{(h,r)} (y) \frac{1}{n!} (u+v)^n
\]

\[
= \left(\sum_{l=0}^\infty [x]_q^{l} t^l \right) \left(\sum_{n=0}^\infty q^{nx} E_{n,q}^{(h,r)} (y) \sum_{k=0}^{n} \frac{y^k}{k!(n-k)!} v^{n-k} \right)
\]

\[
= \left(\sum_{l=0}^\infty [x]_q^{l} t^l \right) \left(\sum_{n=0}^\infty \sum_{k=0}^{n} q^{(n+k)x} E_{n+k,q}^{(h,r)} (y) \frac{y^k v^n}{k! n!} \right)
\]

\[
= \sum_{m=0}^\infty \sum_{n=0}^\infty \sum_{k=0}^{m} \left(\frac{m}{k} \right) q^{(n+k)x} E_{n+k,q}^{(h,r)} (y) \frac{y^k v^n}{m! n!}
\]

The right hand side of (2.10) multiplied by \([2]^p_q\) is given by

\[
[2]^p_q e^{-[x]_q u} \sum_{m_1, \ldots, m_r = 0}^\infty q^{\sum_{j=1}^r (h-j+1)m_j} (-1)^{\sum_{j=1}^r m_j} e^{[x+y+m_1 + \cdots + m_r]_q u} (u+v)
\]

\[
e^{-[x]_q u} \sum_{n=0}^\infty q^{nx} E_{n,q}^{(h,r)} (x+y) \frac{1}{n!} (u+v)^n
\]

\[
= \left(\sum_{l=0}^\infty (-[x]_q)^l t^l \right) \left(\sum_{n=0}^\infty \sum_{m=0}^\infty E_{m+k,q}^{(h,r)} (x+y) \frac{y^m v^n}{m! k!} \right)
\]

\[
= \sum_{n=0}^\infty \sum_{m=0}^\infty \sum_{k=0}^{n} \left(\frac{n}{k} \right) E_{m+k,q}^{(h,r)} (x+y) \frac{y^m v^n}{m! k!}
\]

\[
= \sum_{n=0}^\infty \sum_{m=0}^\infty \sum_{k=0}^{n} \left(\frac{n}{k} \right) \frac{E_{m+k,q}^{(h,r)} (x+y) q^{(n+k)x} [-x]_q^{n-k}}{m! n!}
\]

Therefore, by (2.10), (2.11) and (2.12), we obtain the following theorem.

Theorem 2.5. For \(m, n \geq 0\) we have

\[
\sum_{k=0}^{m} \left(\frac{m}{k} \right) q^{(n+k)x} E_{n+k,q}^{(h,r)} (y) [-x]_q^{m-k} = \sum_{k=0}^{n} \left(\frac{n}{k} \right) E_{m+k,q}^{(h,r)} (x+y) q^{(n-k)x} [-x]_q^{n-k}
\]

Remark. Recently, several authors have studied \((h, q)\)–extension of Bernoulli and Euler polynomials (see[1]-[5], [9]-[17]).

References

1. S. Araci, J. Seo, D. Erdal, *New construction weighted \((h, q)\)–Genocchi numbers and polynomials related to zeta type functions*, Discrete Dyn. Nat. Soc. (2011), Art. ID 487490, 7 pp.
2. I. N. Cangul, H. Ozden, Y. Simsek, *Generating functions of the \((h, q)\)– extension of twisted Euler polynomials and numbers*, Acta Math. Hungar. 120 (2008), no. 3, 281-299.
3. M. Cenkci, *The \(p\)–adic generalized twisted \((h, q)\)–Euler-l-function and its applications*, Adv. Stud. Contemp. Math. 15 (2007), no. 1, 37-47.
4. D. V. Dolgy, D. J. Kang, T. Kim, B. Lee, Some new identities on the twisted \((h, q)\)-Euler numbers and \(q\)-Bernstein polynomials, J. Comput. Anal. Appl. 14(2012), no. 5, 974-984.

5. D. S. Kim, N. Lee, J. Na, K. H. Park, Identities of symmetry for higher-order Euler polynomials in three variables (II), J. Math. Anal. Appl. 379 (2011), no. 1, 388-400.

6. T. Kim, New approach to \(q\)-Euler polynomials of higher order, Russ. J. Math. Phys. 17 (2010), no. 2, 218-225.

7. T. Kim, Symmetry \(p\)-adic invariant integral on \(\mathbb{Z}_p\) for Bernoulli and Euler polynomials, J. Difference Eq. Appl. 14 (2008), no. 12, 1267-1277.

8. T. Kim, \(q\)-Euler numbers and polynomials associated with \(p\)-adic \(q\)-integrals, J. Nonlinear Math. Phys. 14 (2007), no. 1, 15-27.

9. T. Kim, A family of \((h, q)\)-zeta function associated with \((h, q)\)-Bernoulli numbers and polynomials, J. Comput. Anal. Appl. 14 (2012), no. 3, 402-409.

10. T. Mansour, A. Sh. Shabani, Generalization of some inequalities for the \((q_1, \cdots, q_s)\)-gamma function, Matematiche (Catania) 67 (2012), no. 2, 119-130.

11. B. Kurt, Some formulas for the multiple twisted \((h, q)\)-Euler polynomials and numbers, Appl. Math. Sci. (Ruse) 5 (2011), no. 25-28, 1263-1270.

12. H. Ozden, Y. Simsek, Interpolation function of the \((h, q)\)-extension of twisted Euler numbers, Comput. Math. Appl. 56 (2008), no. 4, 898-908.

13. H. Ozden, I. H. Cangul, Y. Simsek, Remarks on sums of products of \((h, q)\)-twisted Euler polynomials and numbers, J. Inequal. Appl. (2008). Art. ID 816129, 8 pp.

14. K. H. Park, On interpolation functions of the generalized twisted \((h, q)\)-Euler polynomials, J. Inequal. Appl. (2009). Art. ID 946569,17 pp.

15. S.-H. Rim, S.-J. Lee, Some identities on the twisted \((h, q)\)-Genocchi numbers and polynomials associated with \(q\)-Bernstein polynomials, Int. J. Math. Math. Sci. (2011), Art. ID 482840, 8 pp.

16. Y. Simsek, Complete sum of products of \((h, q)\)-extension of Euler polynomials and numbers, J. Difference Equ. Appl. 16 (2010), no. 11, 1331-1348.

17. Y. Simsek, Twisted \((h, q)\)-Bernoulli numbers and polynomials related to twisted \((h, q)\)-zeta function and \(L\)-function, J. Math. Anal. Appl. 324 (2006), no.2, 790-804.

1. Department of Mathematics, Sogang University, Seoul 121-742, Republic of Korea
E-mail address: dskim@sogang.ac.kr

2. Department of Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea
E-mail address: ttkim@kw.ac.kr

3. Department of Applied Mathematics, Pukyong National University, Busan 608-737, Republic of Korea
E-mail address: seo2011@pknu.ac.kr