Contact sensitizations to disinfectants containing alcohols or quaternary ammonium compounds are rarely of clinical relevance

Katharina Kreipe | Susann Forkel | Kim-Elisabeth Heinemann
Katharina Amschler | Thomas Fuchs | Johannes Geier | Timo Buhl

1Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
2Pharmacy, University Medical Center Göttingen, Göttingen, Germany
3Lower Saxony Institute of Occupational Dermatology, University Medical Center Göttingen, Göttingen, Germany
4Information Network of Departments of Dermatology (IVDK), Institute at the University Medical Center Göttingen, Göttingen, Germany

Correspondence
Dr Katharina Kreipe, Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany. Email: katharina.kreipe@med.uni-goettingen.de

Abstract
Background: The use of disinfectants is part of the everyday life of people, especially in the medical profession. During the coronavirus disease 2019 (COVID-19) pandemic, the use of disinfectants continues to increase and is of fundamental importance in infection control.

Objectives: To determine the frequency of sensitization and the value of patch testing to didecyldimethylammonium chloride (DDAC) and the alcohols ethanol, 1-propanol, and isopropanol.

Methods: Clinical patch test data of 145 patients with suspected contact allergy to disinfectants were retrospective analysed.

Results: Among the 145 patients patch tested with the different alcohols, only one nurse was detected with a possible allergy to 1-propanol. Additional patch testing in 84 patients with DDAC 0.05% resulted in five patients with weakly positive reactions only, without clinical relevance. Patch testing with DDAC 0.03% showed no positive reactions at all on day 3 readings.

Conclusions: DDAC and alcohols are rarely responsible for allergic contact dermatitis. The accused products of the patients should be checked for other allergens and further additives with skin-irritating properties. Individual susceptibility and mishandling of the disinfectants should be considered.

Keywords
1-propanol, 2-propanol, CAS no. 7173-51-5, didecyldimethylammonium chloride, disinfectant, ethanol, isopropanol, isopropyl alcohol

1 | INTRODUCTION

Disinfectants are widely used in hospitals and nursing homes for cleaning of surfaces, instruments, and skin disinfection. In the current coronavirus disease 2019 (COVID-19) pandemic, they gained high importance also in the everyday use in private households. Rare cases of allergic contact dermatitis to didecyldimethylammonium chloride (DDAC) have been published earlier.1-4 DDAC (CAS no. 7173-51-5) is a quaternary ammonium compound widely used for disinfection of surfaces and instruments mainly in hospitals and nursing homes, as
well as in industrial sites and agricultural processes. We previously reported on patch testing with DDAC and suggested novel patch test concentrations. Here, we present (a) patch test experiences with these new patch test preparations, and (b) patch test results with three alcohols widely used for disinfection. Ethanol (CAS no. 64-17-5), 1-propanol (CAS no. 71-23-8), and isopropanol (synonyms: 2-propanol, isopropyl alcohol; CAS no. 67-63-0) are monohydric alcohols with various applications. In medicine and beyond, they are used for disinfection of the skin and mucosae, as well as surfaces and instruments due to their bactericidal, fungicidal, and limited virucidal properties. With regard to efficiency and possibility of local production, the World Health Organization (WHO) recommends using alcohol-based handrub formulations (containing 80% ethanol or 75% isopropanol) especially during the COVID-19 pandemic.

2 | PATIENTS AND METHODS

We retrospectively analysed data of 145 patients with suspected contact sensitization to ingredients of occupationally used disinfectants, who underwent patch tests with ethanol 70% in water (aqua [aq.]), isopropanol 10% aq., and 1-propanol 10% aq. from 2014 to 2019. Of these, 85 patients received an additional patch test with DDAC at concentrations of 0.03% in petrolatum (pet.) and 0.05% pet. between 2017 and 2019. As no clinically validated DDAC patch test preparation is commercially available, this compound is not being tested routinely, and the best patch test concentration and vehicle have not yet been established. In our opinion, a pet.-based patch test preparation is preferable, as it is easier to handle and may be less irritating than DDAC in water. Patch test preparations were made by our in-house pharmacy. DDAC was purchased from Merck (Darmstadt, Germany), ethanol from Dr. Hetterich (Köln, Germany), isopropanol from Caelo (Hilden, Germany), and 1-propanol from CHEMSOLUTE (Renningen, Germany). Patch tests were exposed for 48 hours using Finn Chambers (inner diameter 8 mm) on Scanpor tape (Smart-Practice, Greven, Germany). Reading of results was performed on day (D) 2 and D3 according to the current guidelines of the German Contact Dermatitis Research Group.

3 | RESULTS

Patch test results are presented in Tables 1 and 2. Altogether, eight patients reacted positively to at least one of the allergen preparations

Table 1

Patch test results on day 3 of patients tested with didecyldimethylammonium chloride (DDAC) 0.03%, DDAC 0.05%, isopropanol 10%, 1-propanol 10%, and ethanol 70%

Substance	Tested patients, n	Negative	?+	+	++	+++	Irritant	Positive, %
DDAC 0.03% pet.	85	83	2	0	0	0	0	0.0
DDAC 0.05% pet.	84	75	4	5	0	0	0	6.0
Ethanol 70% aq.	144	141	2	1	0	0	0	0.7
Isopropanol 10% aq.	144	142	1	1	0	0	0	0.7
1-Propanol 10% aq.	145	139	3	3	0	0	0	2.1

Abbreviations: aq., aqua; DDAC, didecyldimethylammonium chloride; pet., petrolatum.

Patient no.	Substance	D2	D3	D7	ROAT with accused product
1	1-Propanol 10% aq.	?+	+	?+	Positive
2	1-Propanol 10% aq.	–	+	–	Negative
3	1-Propanol 10% aq.	?+	+	–	Negative
4	DDAC 0.05% pet.	–	+	–	–
5	DDAC 0.05% pet.	?+	+	?+	Negative
6	DDAC 0.05% pet.	?+	+	–	–
7	DDAC 0.05% pet.	+	+	?+	–
8	DDAC 0.05% pet.	–	+	–	–

Abbreviations: aq., aqua; DDAC, didecyldimethylammonium chloride; pet., petrolatum; ROAT, repetitive open application test.

Table 2

Detailed presentation of positive patch test results to the different disinfectants. ROATs were performed two times daily over 7 days with the individual hand and skin disinfectant containing the component in question.
tested. No strong positive reactions such as ++ or +++ occurred. All patch test reactions had subsided or even cleared at D7.

Five patients reacted to DDAC 0.05% pet. at D3, and only one of these (patient number 7 in Table 2) had a positive reaction at D2 to the lower test concentration, with a decrescendo pattern (D2: +; D3: −). No positive reactions to DDAC 0.03% pet. were observed at D3. None of the positive DDAC patch tests was regarded clinically relevant. There were no concomitant positive reactions to benzalkonium chloride (CAS no. 8001-54-5) 0.1% pet. in the DDAC-positive patients.

Regarding the alcohols, we found three positive tests with 1-propanol, one with ethanol, and one with isopropanol. No positive reaction occurred on D2 or D7 (Table 2). Clinical relevance of positive patch test results to alcohol-based disinfection was controlled by repetitive open application tests (ROATs), which were performed two times daily over 7 days with the individual hand and skin disinfectant containing the component in question. Only one nurse with a positive result for 1-propanol had positive result in ROAT as well. Although this patient did not show positive patch test reactions in other regular patch test series, she was lost to a second ROAT with the suspected 1-propanol alone.

4 | DISCUSSION

In our previous study, we assumed that a DDAC test concentration of 0.01% pet. was too low, resulting in negative reactions only.5 Furthermore, the concentration of DDAC 0.1% appeared to be too high, resulting in a high proportion of nonrelevant, presumably false-positive reactions.5 In this study, we faced the dilemma that no patient had a clinically relevant allergy to DDAC. Because DDAC 0.05% pet. resulted in weak positive reactions in five individuals, none of whom reacted to DDAC 0.03% pet., patch testing with DDAC at 0.05% pet. might be the best option. Still, we cannot rule out the possibility of false positive reactions. Clinically relevant sensitization to DDAC therefore seems to remain very rare.12,5 However, the significance of this conclusion is limited due to the small sample size of our study group (n = 84).

Very few more or less convincing cases of contact sensitization to ethanol, 1-propanol, and isopropanol have been reported.9,11 In a larger series, 1450 patients underwent patch testing with isopropanol (“as is”), and 44 patients demonstrated a positive patch test result.10 A total of 37 of them were considered clinically relevant. However, these results did not remain unchanged.14 It was argued that isopropanol was patch tested “as is,” and thus irritant reactions seemed possible. Furthermore, it was discussed whether patients with positive patch test reactions to isopropanol at higher concentrations might have a malfunction of the enzyme alcohol dehydrogenase (ADH), resulting in an accumulation of toxic metabolites, such as acetone.14 Remarkably, this exact mechanism was recently observed in a nurse with a “positive” patch test reaction to isopropanol.15 She had a heterozygous mutation of the ADH1B gene, causing an increased ADH activity, which leads to an accumulation of (toxic) acetone, causing a false-positive patch test reaction. In our study group, we found only one nurse with a possibly relevant allergic contact dermatitis to 1-propanol. In the literature, two cases with contact allergy to 1-propanol have been described.9,12 However, in none of these cases, enzyme activity was measured or genetic analyses were performed. In another small study, 10 volunteers were tested with 1-propanol 10%, 25%, and 50% with negative results, and thus an irritant reaction was ruled out.7 We may conclude that contact sensitization to alcohols in disinfectants seems to be very rare. The skin-irritating character of the disinfectants can be mitigated by the addition of moisturizers.16 Our results indicate that patch tests alone cannot establish contact allergy to disinfectants due to their irritant properties. For a reliable relevance assessment, a ROAT should be performed. However, even ROATs may display irritant skin reactions, thus interpretation of ROATs with disinfectants remains a clinical challenge.17,18

Thus, testing all other ingredients of the disinfectants such as fragrances, emollients may be another suitable diagnostic approach, as well as semi-open tests. This should be considered in the allergological work-up. This topic might be even of higher importance in the present COVID-19 pandemic, where the use of disinfectants is ubiquitously enforced.

CONFLICT OF INTERESTS

None of the authors have a conflict of interest in relation to this work. The authors have no ethical conflicts to disclose.

CONSENT FOR PUBLICATION

All authors reviewed the final manuscript version and consented to its submission.

AUTHOR CONTRIBUTIONS

Katharina Kreipe: Conceptualization; data curation; formal analysis; writing-original draft. Susann Forkel: Conceptualization; data curation; formal analysis; methodology; writing-original draft. Kim-Elisabeth Heinemann: Methodology; resources; writing-review & editing. Katharina Amschler: Conceptualization; validation; writing-review & editing. Thomas Fuchs: Data curation; investigation; methodology; writing-review & editing. Johannes Geier: Conceptualization; data curation; investigation; methodology; software; writing-review & editing. Timo Buhl: Conceptualization; methodology; project administration; writing-review & editing.

DATA AVAILABILITY STATEMENT

Data available at the authors on request.

ORCID

Susann Forkel https://orcid.org/0000-0002-1106-2464

Johannes Geier https://orcid.org/0000-0002-5047-8948

Timo Buhl https://orcid.org/0000-0002-3139-129X

REFERENCES

1. Mowitz M, Pontén A. Foot dermatitis caused by didecyldimethylammonium chloride in a shoe refresher spray. Contact Dermatitis. 2015;73(6):374-376.

2. Dibo M, Brasch J. Occupational allergic contact dermatitis from N,N-bis(3-aminopropyl)dodecylamine and dimethyldidecylammonium chloride in 2 hospital staff. Contact Dermatitis. 2001;45(1):40.
3. Dejobert Y, Martin P, Plette F, Thomas P, Bergoend H. Contact dermatitis from didecyldimethylammonium chloride and bis-(aminopropyl)-lauryl amine in a detergent-disinfectant used in hospital. Contact Dermatitis. 1997;37(2):95-96.
4. Geier J, Lessmann H, Krautheim A, Fuchs T. Airborne allergic contact dermatitis caused by didecyldimethylammonium chloride in a geriatric nurse. Contact Dermatitis. 2013;68(2):123-125.
5. Geier J, Lessmann H, Cevik N, Fuchs T, Buhl T. Patch testing with didecyldimethylammonium chloride. Contact Dermatitis. 2016;74(6):374-376.
6. Noorimotlagh Z, Mirzaee SA, Jaafarzadeh N, Maleki M, Kalvandi G, Karami C. A systematic review of emerging human coronavirus (SARS-CoV-2) outbreak: focus on disinfection methods, environmental survival, and control and prevention strategies. Environ Sci Pollut Res Int. 2021;28(1):1-15.
7. Mahler V, Nast A, Bauer A, et al. S3 guidelines: epicutaneous patch testing with contact allergens and drugs – short version, part 2. J Dtsch Dermatol Ges. 2019;17(11):1187-1207.
8. Mahler V, Nast A, Bauer A, et al. S3 guidelines: epicutaneous patch testing with contact allergens and drugs - short version, part 1. J Dtsch Dermatol Ges. 2019;17(10):1076-1093.
9. Bosker HM, Politiek K, Urgert MC, Flach PA, Coenraads PJ, Schutteelaar ML. Occupational allergic contact dermatitis caused by 1-propanol in a hand disinfectant. Contact Dermatitis. 2017;76(4):241-243.
10. García-Gavín J, Lissens R, Timmermans A, Goossens A. Allergic contact dermatitis caused by isopropyl alcohol: a missed allergen? Contact Dermatitis. 2011;65(2):101-106.
11. Okazawa H, Althara M, Nagatani T, Nakajima H. Allergic contact dermatitis due to ethyl alcohol. Contact Dermatitis. 1998;38(4):233.
12. Ludwig E, Hausen BM. Sensitivity to isopropyl alcohol. Contact Dermatitis. 1977;3(5):240-244.
13. Ophaswongse S, Maibach HI. Alcohol dermatitis: allergic contact dermatitis and contact urticaria syndrome. A review. Contact Dermatitis. 1994;30(1):1-6.
14. Löfler H, Kampf G, Lachenmeier D, Diepgen TL, John SM. Allergic or irritant contact dermatitis after patch testing with alcohol— that is the point. Contact Dermatitis. 2012;67(6):386-387.
15. Galli-Novak E, Wiflinger D, Takacs S, Riesenhuber G, Aberer W. Occupational contact dermatitis caused by isopropanol-containing disinfectant based on a genetic defect. Contact Dermatitis. 2019;80(5):316-318.
16. Tasar R, Wiegand C, Elsner P. How irritant are n-propanol and isopropanol? - a systematic review. Contact Dermatitis. 2021;84(1):1-14.
17. Schwindt DA, Wilhelm KP, Miller DL, Maibach HI. Cumulative irritation in older and younger skin: a comparison. Acta Derm Venereol. 1998;78(4):279-283.
18. Schliemann S, Schmidt C, Elsner P. Tandem repeated application of organic solvents and sodium lauryl sulphate enhances cumulative skin irritation. Skin Pharmacol Physiol. 2014;27(3):158-163.

How to cite this article: Kreipe K, Forkel S, Heinemann K-E, et al. Contact sensitizations to disinfectants containing alcohols or quaternary ammonium compounds are rarely of clinical relevance. Contact Dermatitis. 2021;85:211–214. https://doi.org/10.1111/cod.13844