The geometrical properties of parity and time reversal operators in two dimensional spaces

Minyi Huang ¹, Yu Yang ², Junde Wu ¹, Minhyung Cho ³ †

¹ School of Mathematical Science, Zhejiang University, Hangzhou 310027, People’s Republic of China
² Department of Mathematics, National University of Singapore, Singapore 119076, Republic of Singapore
³ Department of Applied Mathematics, Kumoh National Institute of Technology, Kyungbuk, 730-701, Korea

Abstract

The parity operator \(P \) and time reversal operator \(T \) are two important operators in the quantum theory, in particular, in the \(PT \)-symmetric quantum theory. By using the concrete forms of \(P \) and \(T \), we discuss their geometrical properties in two dimensional spaces. It is showed that if \(T \) is given, then all \(P \) links with the quadric surfaces; if \(P \) is given, then all \(T \) links with the quadric curves. Moreover, we give out the generalized unbroken \(PT \)-symmetric condition of an operator. The unbroken \(PT \)-symmetry of a Hermitian operator is also showed in this way.

1 Introduction

Quantum theory is one of the most important theories in physics. It is a fundamental axiom in quantum mechanics that the Hamiltonians should be Hermitian, which implies that the values of energy are real numbers. However, non-Hermitian Hamiltonians are also studied in physics. One of the attempts is Bender’s \(PT \)-symmetric theory [1]. In this theory, Bender and his colleagues attributed the reality of the energies to the \(PT \)-symmetric property, where \(P \) is a parity operator and \(T \) is a time reversal operator. Since then, many physicists discussed the properties of \(PT \)-symmetric quantum systems [2]. It also has theoretical applications in quantum optics,

*This project is supported by Research Fund, Kumoh National Institute of Technology.
†Corresponding author. E-mail: mignon@kumoh.ac.kr
quantum statistics and quantum field theory. Recently, Bender, Brody and Muller constructed a Hamiltonian operator H with the property that if its eigenfunctions obey a suitable boundary condition, then the associated eigenvalues correspond to the nontrivial zeros of the Riemann zeta function, where H is not Hermitian in the conventional sense, while iH has a broken \mathcal{PT}-symmetry. This result may shed light on the new application of \mathcal{PT}-symmetric theory in discussing the Riemann hypothesis. It was discovered by Mostafazadeh that the \mathcal{PT}-symmetric case can be generalized to a more general pseudo-Hermitian quantum theory, and the generalized \mathcal{PT}-symmetry was also discussed. Smith studied the time reversal operator T satisfying that $T^2 = -I$ and the corresponding \mathcal{PT}-symmetric quantum theory.

In this paper, by using the concrete forms of \mathcal{P} and \mathcal{T} in two dimensional spaces, we discuss their geometry properties. It is showed that if \mathcal{T} is given, then all \mathcal{P} links with the quadric surfaces; if \mathcal{P} is given, then all \mathcal{T} links with the quadric curves. Moreover, we give out the generalized unbroken \mathcal{PT}-symmetric condition of an operator H. The unbroken \mathcal{PT}-symmetry of a Hermitian operator is also showed in this way.

2 Preliminaries

In this paper, we only consider two dimensional complex Hilbert space \mathbb{C}^2. Let $L(\mathbb{C}^2)$ be the complex vector space of all linear operators on \mathbb{C}^2, I be the identity operator on \mathbb{C}^2, \bar{z} be the complex conjugation of complex number z.

An operator T on \mathbb{C}^2 is said to be anti-linear if $T(sx_1 + tx_2) = \bar{s}T(x_1) + \bar{t}T(x_2)$. It is obvious that the composition of two anti-linear operators is a linear operator and the composition of an anti-linear operator and a linear operator is still anti-linear. Similar to linear operators, anti-linear operators can also correspond to a matrix with slightly different laws of operation.

A time reversal operator T is an anti-linear operator which satisfies $T^2 = I$ or $T^2 = -I$. A parity operator P is a linear operator which satisfies $P^2 = I$.

The Pauli operators will be used frequently in our discussions. Given the basis $\{e_i\}_{i=1}^2$ of \mathbb{C}^2, they are usually defined as follows:

\begin{align}
\sigma_1(x_1e_1 + x_2e_2) &= x_2e_1 + x_1e_2, \\
\sigma_2(x_1e_1 + x_2e_2) &= -ix_2e_1 + ix_1e_2, \\
\sigma_3(x_1e_1 + x_2e_2) &= x_1e_1 - x_2e_2.
\end{align}

To put it another way, the representation matrices of σ_1, σ_2 and σ_3 are:

\[
\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}, \quad
\begin{pmatrix}
0 & -i \\
i & 0
\end{pmatrix}, \quad
\begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix}.
\]
Pauli operators have the following useful properties \[12\]:

\[
\sigma_i \sigma_j = -\sigma_j \sigma_i = i \epsilon_{ijk} \sigma_k, \quad i \neq j, \\
\sigma_i^2 = I,
\]

where \(i, j, k \in \{1, 2, 3\}\), \(\epsilon_{ijk}\) is the Levi-Civita symbol:

\[
\epsilon_{ijk} = \begin{cases}
\epsilon_{123} = \epsilon_{231} = \epsilon_{312} = 1, \\
\epsilon_{132} = \epsilon_{213} = \epsilon_{321} = -1, \\
0, \text{ otherwise.}
\end{cases}
\]

The well known commutation and anti-commutation relations are:

\[
\sigma_i \sigma_j - \sigma_j \sigma_i = 2 i \epsilon_{ijk} \sigma_k, \\
\sigma_i \sigma_j + \sigma_j \sigma_i = 2 \delta_{ij} I,
\]

where \(i, j, k \in \{1, 2, 3\}\) and \(\delta_{ij}\) is the Kronecker symbol.

Denote \(I\) by \(\sigma_0\), then \(\{\sigma_0, \sigma_1, \sigma_2, \sigma_3\}\) is a basis of \(L(\mathbb{C}^2)\). Moreover, an operator \(\sigma = t \sigma_0 + x \sigma_1 + y \sigma_2 + z \sigma_3 \in L(\mathbb{C}^2)\) is Hermitian if and only if the coefficients \(\{t, x, y, z\}\) are real numbers.

Given the basis \(\{e_i\}_{i=1}^2\) of \(\mathbb{C}^2\) and any vector \(x = \sum x_i e_i\), one can define an important anti-linear operator, namely the conjugation operator \(T_0\), by \(T_0(x) = \sum \overline{x_i} e_i\).

Similar to \(T_0\), one can define another important anti-linear operator \(\tau_0\) by

\[
\tau_0(x_1 e_1 + x_2 e_2) = -\overline{x_2} e_1 + \overline{x_1} e_2.
\]

Furthermore, define \(\tau_1 = \tau_0 \sigma_1, \tau_2 = \tau_0 \sigma_2, \tau_3 = \tau_0 \sigma_3\), that is, \(\tau_i\) is defined to be the composition of \(\tau_0\) and \(\sigma_i\). The anti-linear operators \(\{\tau_0, \tau_1, \tau_2, \tau_3\}\) forms a basis of the anti-linear operator space of \(\mathbb{C}^2\). This basis has the following properties \[10\]:

\[
\tau_0^2 = -I, \\
\tau_0 \sigma_i = -\sigma_i \tau_0 = \tau_i, \\
\tau_i \tau_0 = -\tau_0 \tau_i = \sigma_i, \\
\tau_i \tau_j = \sigma_i \sigma_j = i \epsilon_{ijk} \sigma_k \quad (i \neq j), \\
\tau_i \tau_j - \tau_j \tau_i = 2 i \epsilon_{ijk} \sigma_k,
\]

where \(i, j \in \{1, 2, 3\}\).

All the equations above can be verified by the using the definitions of Pauli operators and \(\tau_0\). However, for further use, we show that \(\tau_0 \sigma_i = -\sigma_i \tau_0 = \tau_i\) in detail. Consider \(\tau_2 = \tau_0 \sigma_2\). By \eqref{2.2}...
and (2.6), we have

\[
\begin{align*}
\tau_0 \sigma_2 (x_1 e_1 + x_2 e_2) &= ix_1 e_1 + ix_2 e_2, \\
\sigma_2 \tau_0 (x_1 e_1 + x_2 e_2) &= -ix_1 e_1 - ix_2 e_2.
\end{align*}
\]

Thus, \(\tau_0 \sigma_2 = -\sigma_2 \tau_0 = \tau_2 \). Along similar lines, one can verify that \(\tau_0 \sigma_i = -\sigma_i \tau_0 = \tau_i \) is also valid for \(\sigma_1 \) and \(\sigma_3 \).

Moreover, it follows from \(\tau_0 \sigma_i = -\sigma_i \tau_0 = \tau_i \) that \(\sigma_j \tau_i = \sigma_j \tau_0 \sigma_i = -\tau_0 \sigma_j \sigma_i \). Combining with (2.4) and (2.5), one can further obtain the following relations:

\[
\begin{align*}
\sigma_j \tau_i &= \tau_i \sigma_j = -ie_{ijk} \tau_k, \quad i \neq j, \quad (2.7) \\
\tau_i \sigma_i &= -\sigma_i \tau_i = \tau_0, \quad (2.8)
\end{align*}
\]

where \(i, j, k \in \{1, 2, 3\} \).

With the help of \(\{\sigma_i\} \) and \(\{\tau_i\} \), ones can determine the concrete forms of \(P \) and \(T \):

Lemma 2.1. Let \(P \) be a parity operator and \(T \) be a time reversal operator on \(\mathbb{C}^2 \). Then

(i). Either \(P = \pm I \) or \(P = \sum_{i=1}^{3} a_i \sigma_i \), where \(a_i \) satisfying \(\sum_{i=1}^{3} a_i^2 = 1 \). The latter case is referred to as the nontrivial \(P \). A nontrivial \(P \) has the following matrix representation:

\[
P = \begin{pmatrix}
a_3 & a_1 - ia_2 \\
a_1 + ia_2 & -a_3
\end{pmatrix}, \quad (2.9)
\]

(ii). \(T = e \sum_{i=0}^{3} c_i \tau_i \), where \(c_i \) are real numbers, if \(T^2 = I \), then \(c_1^2 + c_2^2 + c_3^2 - c_0^2 = 1 \); if \(T^2 = -I \), then \(c_1^2 + c_2^2 + c_3^2 - c_0^2 = -1 \), \(e \) is a unimodular complex number \([10] \).

Proof. (i). Suppose \(P = \sum_{i=0}^{3} a_i \sigma_i \). According to the properties of Pauli operators, we have \(I = P^2 = (\sum_{i=0}^{3} a_i^2) I + 2a_0(a_1 \sigma_1 + a_2 \sigma_2 + a_3 \sigma_3) \). Note that \(\{\sigma_0, \sigma_1, \sigma_2, \sigma_3\} \) is a basis of \(L(\mathbb{C}^2) \), we conclude that \(\sum_{i=0}^{3} a_i^2 = 1 \) and \(a_0 a_1 = a_0 a_2 = a_0 a_3 = 0 \). If \(a_0 \neq 0 \), then \(a_1 = a_2 = a_3 = 0 \), which implies that \(P = \pm I \). If \(a_0 = 0 \), then the only constraint is \(\sum_{i=1}^{3} a_i^2 = 1 \) and the matrix takes the form in (2.9).

(ii). The proof can be found in \([10] \). \(\square \)
Example 1. In (2.9), if we take $a_2 = 0$, a_1, a_3 are real numbers satisfying that $a_1^2 + a_3^2 = 1$, and denote a_1 by $\sin \alpha$, a_3 by $\cos \alpha$, then P has the matrix representation $$
abla \begin{pmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$ Thus P is composed of a reflection and a rotation.

Example 2. In (2.9), if $a_1 = a_2 = 0$, $a_3 = 1$, then $P = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. If $a_2 = a_3 = 0$, $a_1 = 1$, then $P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. These two parity operators were widely used in [2].

3 The existence of P commuting with T

In physics, it is demanded that P and T are commutative, that is, $PT = TP$. In finite dimensional spaces case, by using the canonical forms of matrices, one can show that if $T^2 = I$, then such P always exists. In two dimensional case, we can prove it by utilizing Pauli operators.

Theorem 3.1. For each time reversal operator T, if $T^2 = I$, then there exists a nontrivial parity operator P such that $PT = TP$. If $T^2 = -I$, then there is no P commuting with T except $P = \pm I$.

Proof. We will use the following well known equation frequently,

$$(\sigma \cdot A)(\sigma \cdot B) = (A \cdot B)I + i\sigma \cdot (A \times B), \quad (3.1)$$

where A and B are two vectors in \mathbb{C}^3 and $\sigma = (\sigma_1, \sigma_2, \sigma_3)$. The symbols \cdot and \times represent the dot and cross product of vectors, respectively.

(i). When $T^2 = I$.

Let $T = e^{\sum_{i=0}^3 c_i \tau_i}$ and $P = \sum_{i=1}^3 a_i \sigma_i$, as was given in Lemma 2.1

According to (2.7) and (2.8), $TP = PT$ is equivalent to

$$(-c_0 \sigma_0 + \sum_{j=1}^3 c_j \sigma_j)(\sum_{i=1}^3 a_i \sigma_i)\tau_0 = (\sum_{i=1}^3 a_i \sigma_i)(c_0 \sigma_0 - \sum_{j=1}^3 c_j \sigma_j)\tau_0. $$

Denote $f_i = Re(a_i)$, $b_i = Im(a_i)$, $\vec{f} = (f_1, f_2, f_3)$, $\vec{b} = (b_1, b_2, b_3)$ and $\vec{c} = (c_1, c_2, c_3)$. Utilizing (3.1) to expand the equation above, we have

$$(\vec{f} \cdot \vec{c})\sigma_0 - \sigma \cdot [\vec{b} \times \vec{c} + c_0 \vec{f}] = 0. \quad (3.2)$$
It follows that $\mathcal{T}\mathcal{P} = \mathcal{P}\mathcal{T}$ is equivalent to
\begin{align}
c_0\tilde{f} + \tilde{b} \times \tilde{c} &= 0, \quad (3.3) \\
\tilde{f} \cdot \tilde{c} &= 0. \quad (3.4)
\end{align}

Similarly, by utilizing (3.1) and Lemma 2.1, the contraints $\mathcal{P}^2 = I$ and $\mathcal{T}^2 = I$ can be reduced to the equations as follows,
\begin{align}
\tilde{f} \cdot \tilde{b} &= 0, \quad (3.5) \\
\|\tilde{f}\|^2 - \|\tilde{b}\|^2 &= 1, \quad (3.6) \\
\|\tilde{c}\|^2 - c_0^2 &= 1. \quad (3.7)
\end{align}

Thus, the problem of finding a parity operator \mathcal{P} commuting with \mathcal{T} reduces to finding the vectors \tilde{f} and \tilde{b} satisfying (3.3) – (3.6).

If $c_0 = 0$, then we can choose $\tilde{b} = 0$ and a unit vector \tilde{f} orthogonal to \tilde{c}. Thus all the conditions (3.3) – (3.6) are satisfied.

If $c_0 \neq 0$. Let \tilde{b} be a vector such that \tilde{b} is orthogonal to \tilde{c} and $\|\tilde{b}\| = |c_0|$. Moreover, take $\tilde{f} = \frac{1}{c_0}(\tilde{c} \times \tilde{b})$. Direct calculations show that such vectors \tilde{f} and \tilde{b} satisfy (3.3) – (3.6), which completes the proof of the existence of \mathcal{P}.

(ii). When $\mathcal{T}^2 = -I$.

The equation (3.7) is replaced by the following:
\[\|\tilde{c}\|^2 - c_0^2 = -1. \quad (3.8)\]

Thus $c_0 \neq 0$. On the other hand, it follows from (3.3) that
\[\tilde{f} = \frac{1}{c_0}(\tilde{c} \times \tilde{b}). \quad (3.9)\]

Substituting (3.8) and (3.9) into (3.6), we have $\|\tilde{f}\|^2 - \|\tilde{b}\|^2 = 1 < -\frac{1}{c_0^2}\|\tilde{b}\|^2$, which is a contradiction. Thus, when $\mathcal{T}^2 = -I$, there is no \mathcal{P} commuting with \mathcal{T} except $\mathcal{P} = \pm I$.

\[\square\]

Remark 3.1. When the space is \mathbb{C}^4, although $\mathcal{T}^2 = -I$, one can find nontrivial \mathcal{P} commuting with \mathcal{T} [6].
4 The geometrical properties of \mathcal{P} and \mathcal{T}

Theorem 4.1. Let \mathcal{T} be a time reversal operator satisfying $\mathcal{T}^2 = I$. The set of parity operators \mathcal{P} commuting with \mathcal{T} correspond uniquely to a hyperboloid in \mathbb{R}^3.

Proof. As was mentioned above, the determination of \mathcal{P} is equivalent to finding out \tilde{f} and \tilde{b} satisfying $(3.3) - (3.6)$. Now consider $\tilde{m} = \tilde{f} + \tilde{b}$. We shall prove that all the \tilde{m} form a hyperboloid.

To this end, construct a new coordinate system by taking the direction of \tilde{c} as that of the X' axis. The $Y' - Z'$ plane is perpendicular to \tilde{c} and contains the origin point of \mathbb{R}^3. Assume that $\tilde{m} = (x', y', z')$ in the new $X'Y'Z'$ coordinate system.

(i). If $c_0 = 0$, then it follows from $(3.3) - (3.5)$ that \tilde{b} is proportional to \tilde{c} and that \tilde{f} is orthogonal to both \tilde{c} and \tilde{b}. Thus, in the new $X'Y'Z'$ coordinate system,

$$\tilde{b} = (x',0,0),$$

$$\tilde{f} = (0,y',z').$$

On the other hand, equation (3.6), namely $\|\tilde{f}\|^2 - \|\tilde{b}\|^2 = 1$, implies that

$$y'^2 + z'^2 - x'^2 = 1. \hspace{1cm} (4.1)$$

It is apparent that one pair of \tilde{f} and \tilde{b} correspond to one point $\tilde{m} = (x', y', z')$, and vice versa. In addition, (4.1) represents a hyperboloid in \mathbb{R}^3.

(ii). If $c_0 \neq 0$, then it follows from (3.7) that $\tilde{c} = (\sqrt{1 + c_0^2}, 0, 0)$ in the $X'Y'Z'$ coordinate system. In addition, suppose $\tilde{b} = (x_0, y_0, z_0)$ in the $X'Y'Z'$ coordinate system. By (3.9), we have

$$\tilde{f} = \frac{1}{c_0}(\tilde{c} \times \tilde{b}) = \frac{\sqrt{1 + c_0^2}}{c_0}(0, -z_0, y_0).$$

Substituting \tilde{b} and \tilde{f} into (3.6), we have

$$\frac{1}{c_0^2}(y_0^2 + z_0^2) - x_0^2 = 1. \hspace{1cm} (4.2)$$

Note that $x_0 = x', y_0 = \frac{\lambda x' + y'}{1 + \lambda^2}, z_0 = \frac{z' - \lambda y'}{1 + \lambda^2}$, where $\lambda = \frac{\sqrt{1 + c_0^2}}{c_0}$. Thus, one pair of \tilde{f} and \tilde{b} correspond to one point $\tilde{m} = (x', y', z')$, and vice versa. Moreover, it follows from (4.2) that

$$\frac{1}{1 + 2c_0^2}(y'^2 + z'^2) - x'^2 = 1. \hspace{1cm} (4.3)$$

That is, all the \tilde{m} form a hyperboloid.

\[\Box\]

Theorem 4.2. Let \mathcal{P} be a nontrivial parity operator and let us consider the time reversal operators of the form $\mathcal{T} = \sum_{i=0}^{3} c_i \tau_i$ commuting with \mathcal{P}. All the points $\tilde{c} = (c_1, c_2, c_3)$ form an ellipse. The length of the semi-major axis is $\|\tilde{f}\|$ and the length of the semi-minor axis is 1.
Proof. By (3.4) and (3.5), we know that both \tilde{b} and \bar{c} are orthogonal to \tilde{f}.

Construct a new $X'Y'Z'$ coordinate system by taking the direction of \tilde{f} as that of the Z' axis and the direction of \tilde{b} as that of the X' axis (If $\tilde{b} = 0$, take any vector orthogonal to \tilde{f} as the direction vector of the X' axis). Then we have $\tilde{b} = (x, 0, 0)$, $\tilde{f} = (0, 0, z)$ and $\bar{c} = (c'_1, c'_2, c'_3)$ in the $X'Y'Z'$ coordinate system. Now the conditions (3.3) \(\rightarrow\) (3.7) will reduce to

\[
\begin{align*}
x c'_3 &= 0, \quad \text{(4.4)} \\
x c'_2 + c_0 z &= 0, \quad \text{(4.5)} \\
z c'_3 &= 0, \quad \text{(4.6)} \\
z^2 - x^2 &= 1, \quad \text{(4.7)} \\
(c'_1)^2 + (c'_2)^2 + (c'_3)^2 - (c_0)^2 &= 1. \quad \text{(4.8)}
\end{align*}
\]

Note that (4.7) ensures that $z \neq 0$. Thus, (4.4) and (4.6) imply that $c'_3 = 0$, $\bar{c} = (c'_1, c'_2, 0)$. In addition, it follows from (4.5) that $c_0 = -\frac{x}{z} c'_2$. Substituting $c'_3 = 0$, $c_0 = -\frac{x}{z} c'_2$ and (4.7) into (4.8), we have

\[
(c'_1)^2 + \left(\frac{c'_2}{z}\right)^2 = 1. \quad \text{(4.9)}
\]

This is an equation of ellipse. Moreover, since $|z| = \|\tilde{f}\| > 1$, the length of the semi-major axis is $\|\tilde{f}\|$ and the length of the semi-minor axis is 1.

\[\square\]

In the following theorem, we only consider the T with real coefficients.

Theorem 4.3. Let T_1, T_2 be two time reversal operators, $T_1 \neq \pm T_2$. If there exist two nontrivial parity operators P_1 and P_2 such that P_i commutes with T_1 and T_2 simultaneously, then $P_1 = \pm P_2$.

Proof. Let $T_1 = \sum_{i=0}^{3} c_i^{(1)} T_i$, $T_2 = \sum_{i=0}^{3} c_i^{(2)} T_i$. Denote $\tilde{c}^{(1)} = (c_1^{(1)}, c_2^{(1)}, c_3^{(1)})$ and $\tilde{c}^{(2)} = (c_1^{(2)}, c_2^{(2)}, c_3^{(2)})$.

(i) If $c_0^{(1)} \neq 0$ and $c_0^{(2)} = 0$.

Suppose that P commute with T_i simultaneously. By (3.3), we have $\tilde{c}^{(2)} \times \tilde{b} = 0$. It follows that $\tilde{b} = mt \tilde{c}^{(2)}$. On the other hand, (3.3) implies that $\tilde{f} = \frac{1}{c_0^{(1)}} (\tilde{c}^{(1)} \times \tilde{b})$. Thus, $\tilde{f} = \frac{m}{c_0^{(1)}} (\tilde{c}^{(1)} \times \tilde{c}^{(2)})$.

Substituting \tilde{f} and \tilde{b} into (3.6), then we have

\[
m^2 \left(\frac{1}{c_0^{(1)}} \tilde{c}^{(1)} \times \tilde{c}^{(2)} \right)^2 - \|\tilde{c}^{(2)}\|^2 = 1.
\]

The equation has at most two real roots, which are opposite to each other. Thus, there exist at most two parity operators P and $-P$ commuting with T_i simultaneously.
Thus, we have \mathcal{C}_k, hence t where

If P_T respectively. Moreover, suppose that both operators only have two directions, which are opposite to each other. Thus, there exist at most two parity operators P and $-P$ commuting with T_i simultaneously.

(v). If $c_i^{(1)} \neq 0$, $c_i^{(2)} \neq 0$ and $\tilde{c}^{(1)} \neq t\tilde{c}^{(2)}$.

Let P_1 and P_2 be two parity operators, which are determined by $(f^{(1)}, \tilde{b}^{(1)})$ and $(f^{(2)}, \tilde{b}^{(2)})$ respectively. Moreover, suppose that both P_1 and P_2 commute with T_i simultaneously.

By (3.3), we have $\tilde{c}^{(1)} \times \tilde{b} = \tilde{c}^{(2)} \times \tilde{b} = 0$. However, since $\tilde{c}^{(1)} \neq t\tilde{c}^{(2)}$, we have $\tilde{b} = 0$. Thus (3.6) implies that $\|\tilde{f}\| = 1$. Moreover, (3.4) implies that \tilde{f} is orthogonal to both $\tilde{c}^{(1)}$ and $\tilde{c}^{(2)}$. So \tilde{f} can only have two directions, which are opposite to each other. Thus, there exist at most two parity operators P and $-P$ commuting with T_i simultaneously.

Note that (i) – (v) contain all the situations, which completes the proof. \[\square\]

If we denote $\text{com}(T) = \{P|P T = T P, P^2 = I\}$, then the following corollary can be obtained.

Corollary 4.1. If $\mathcal{T}_1 = \sum_{i=0}^{3} c_i^{(1)} \tau_i$, $\mathcal{T}_2 = \sum_{i=0}^{3} c_i^{(2)} \tau_i$ are two time reversal operators, $T_{ij}^2 = I, j = 1, 2$. Then $\text{com}(\mathcal{T}_1) = \text{com}(\mathcal{T}_2)$ if and only if for each i, $c_i^{(1)} = e \epsilon c_i^{(2)}$, where e is a unimodular coefficient.
5 \(PT \)-symmetric operators and unbroken \(PT \)-symmetric condition

A linear operator \(H \) is said to be \(PT \)-symmetric if \(HPT = PT H \). As is known, in standard quantum mechanics, the Hamiltonians are assumed to be Hermitian such that all the eigenvalues are real and the evolution is unitary. In the \(PT \)-symmetric quantum theory, Bender replaced the Hermiticity of the Hamiltonians with \(PT \)-symmetry. However, the \(PT \)-symmetry of a linear operator does not imply that its eigenvalues must be real. Thus, Bender introduced the unbroken \(PT \)-symmetric condition. The Hamiltonian \(H \) is said to be unbroken \(PT \)-symmetric if there exists a collection of eigenvectors \(\Psi_i \) of \(H \) such that they span the whole space and \(PTP_i = \Psi_i \).

It was shown that for a \(PT \)-symmetric Hamiltonian \(H \), its eigenvalues are all real if and only if \(H \) is unbroken \(PT \)-symmetric \(^2\). In two dimensional space case, this condition has a much simpler description and an important illustrative example. That is, if \(P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \), \(T = \tau_0 \), \(H = \begin{pmatrix} re^{i\theta} & s \\ s & re^{-i\theta} \end{pmatrix} \), then \(H \) is unbroken \(PT \)-symmetric if \(s^2 \geq r^2 \sin^2 \theta \) \(^2\).

In the following part, we shall give the unbroken \(PT \)-symmetry condition for general \(PT \)-symmetric operators. To this end, we need the following proposition.

Proposition 5.1. If \(H \) is a \(PT \)-symmetric operator, then it has four real parameters. Moreover, if \(H = h_0\sigma_0 + h_1\sigma_1 + h_2\sigma_2 + h_3\sigma_3 \) is written in terms of Pauli operators, then

\[
\begin{align*}
\text{Im}(h_0) &= 0, \quad (5.1) \\
\text{Re}(h_1)\text{Im}(h_1) + \text{Re}(h_2)\text{Im}(h_2) + \text{Re}(h_3)\text{Im}(h_3) &= 0. \quad (5.2)
\end{align*}
\]

Proof. It is apparent that \(PT \) is also a time reversal operator. Thus we can assume that \(PT = \sum_{j=0}^3 c_j\tau_j \). Now the condition \(PT H = HPT \) is equivalent to

\[
\left(\sum_{j=0}^3 c_j\tau_0\sigma_j \right) \left(\sum_{i=0}^3 h_i\sigma_i \right) = \left(\sum_{i=0}^3 h_i\sigma_i \right) \left(\sum_{j=0}^3 c_j\tau_0\sigma_j \right).
\]

According to (3.1), this equation can be reduced to

\[
c_0(h_0 - h_0) + \sum_{i=1}^3 c_i(h_0 - \overline{h}_0)\sigma_i + \sum_{i=1}^3 c_i(h_i + \overline{h}_i) + i\sigma \cdot \left[\overline{\sigma} \times (\overline{h} - \overline{h}) \right] - \sum_{i=1}^3 c_i(h_i + \overline{h}_i)\sigma_i = 0,
\]

where \(\overline{h} = (h_1, h_2, h_3) \) and \(\overline{h} = (\overline{h}_1, \overline{h}_2, \overline{h}_3) \).
The equation above is equivalent to

\[\text{Im}(h_0) = 0, \quad (5.3) \]
\[\sum_{i=1}^{3} c_i \text{Re}(h_i) = 0, \quad (5.4) \]
\[\bar{c} \times \text{Im}(h) - c_0 \text{Re}(h) = 0, \quad (5.5) \]

where \(\text{Re}(h) = (\text{Re}(h_1), \text{Re}(h_2), \text{Re}(h_3)) \) and \(\text{Im}(h) = (\text{Im}(h_1), \text{Im}(h_2), \text{Im}(h_3)) \).

(i). When \(c_0 \neq 0 \). It follows (5.5) that \(\text{Re}(h) = \frac{1}{c_0}(\bar{c}\times \text{Im}(h)) \). Thus, the four parameters \(\text{Im}(h)_1, \text{Im}(h)_2, \text{Im}(h)_3 \) and \(\text{Re}(h_0) \) determine \(H \).

Note that (5.1) is the same as (5.3). On the other hand, \(\text{Re}(h) = \frac{1}{c_0}(\bar{c}\times \text{Im}(h)) \) implies that \(\text{Re}(h) \cdot \text{Im}(h) = 0 \). Thus, (5.2) is also valid.

(ii). When \(c_0 = 0 \). (5.5) implies that \(\text{Im}(h) = t\bar{c} \). Thus, we only need one real parameter \(t \) to determine \(\text{Im}(h) \). (5.4) implies that \(\text{Re}(h) \) should be orthogonal to \(\bar{c} \). Hence two parameters are needed. With \(\text{Re}(h_0) \), we have four parameters altogether.

In this case, (5.2) follows from the fact \(\text{Im}(h) = t\bar{c} \) and the equation (5.4).

\[\square \]

Theorem 5.1. If \(H \) is a \(\mathcal{PT} \)-symmetric operator and \(\begin{pmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{pmatrix} \) is the representation matrix of \(H \), then \(H \) is unbroken if and only if

\[(\text{Re}(h_{11} + h_{22}))^2 - 4\text{Re}(h_{11}h_{22} - h_{12}h_{21}) \geq 0. \]

Proof. Let \(\begin{pmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{pmatrix} \) be the matrix of \(H \), \(\lambda \) be an eigenvalue of \(H \), then

\[\lambda^2 - (h_{11} + h_{22})\lambda + h_{11}h_{22} - h_{12}h_{21} = 0. \quad (5.6) \]

On the other hand, rewrite \(H = h_0 \sigma_0 + h_1 \sigma_1 + h_2 \sigma_2 + h_3 \sigma_3 \). It follows from (5.1) and (5.2) that

\[\text{Im}(h_{11} + h_{22}) = 2\text{Im}(h_0) = 0, \]
\[\text{Im}(h_{11}h_{22} - h_{12}h_{21}) = -\text{Re}(h_1)\text{Im}(h_1) - \text{Re}(h_2)\text{Im}(h_2) - \text{Re}(h_3)\text{Im}(h_3) = 0. \]

The two equations above imply that

\[-\text{Im}(h_{11} + h_{22})\lambda + \text{Im}(h_{11}h_{22} - h_{12}h_{21}) = 0. \quad (5.7) \]

Substitute (5.7) into (5.6). Now the equation (5.6) reduces to

\[\lambda^2 - \text{Re}(h_{11} + h_{22})\lambda + \text{Re}(h_{11}h_{22} - h_{12}h_{21}) = 0, \quad (5.8) \]
According to (5.8), \(\lambda \) is a real number, that is, \(H \) is unbroken \(\mathcal{PT} \)-symmetric, if and only if
\[
(\text{Re}(h_{11} + h_{22}))^2 - 4\text{Re}(h_{11}h_{22} - h_{12}h_{21}) \geq 0.
\] (5.9)

Remark 5.1. Note that when the equality is valid in (5.9), \(H \) may be non-diagonalisable in general. In this case, the space \(\mathbb{C}^2 \) is actually spanned an eigenvector \(\psi_1 \) satisfying \((H - \lambda_0 I)\psi_1 = 0 \) and a generalized eigenvector \(\psi_2 \) satisfying \((H - \lambda_0 I)^2\psi_2 = 0 \), where \(\lambda_0 = \frac{1}{2}\text{Re}(h_{11} + h_{22}) \) is the eigenvalue.

Remark 5.2. Note that Bender’s unbroken \(\mathcal{PT} \)-symmetric condition in [2] is a special case of (5.9). To see this, let \(H = \begin{pmatrix} r e^{i\theta} & s \\ s & r e^{-i\theta} \end{pmatrix} \), we have
\[
\text{Re}(h_{11}) = \text{Re}(h_{22}) = r \cos \theta,
\]
\[
\text{Re}(h_{11}h_{22} - h_{12}h_{21}) = r^2 - s^2.
\]
Then (5.9) holds iff \(s^2 \geq r^2 \sin^2 \theta \).

Remark 5.3. If \(H \) is a Hermitian operator, then it is also unbroken \(\mathcal{PT} \)-symmetric. Usually, this can be shown by using canonical forms. However, in \(\mathbb{C}^2 \), it also follows from direct calculation.

In fact, since \(H = h_0\sigma_0 + h_1\sigma_1 + h_2\sigma_2 + h_3\sigma_3 \) is Hermitian, each \(h_i \) is a real number. Now we only need to find real coefficients \(c_0, c_1, c_2 \) and \(c_3 \) such that \(c_0^2 + c_1^2 + c_2^2 - c_3^2 = 1 \) and equations (5.3) – (5.5) hold. Take \(c_0 = 0 \) and \(c_1, c_2, c_3 \) are such real numbers that \(c_1\text{Re}(h_1) + c_2\text{Re}(h_2) + c_3\text{Re}(h_3) = 0 \) and \(c_1^2 + c_2^2 + c_3^2 = 1 \). Let \(\mathcal{PT} = \sum_{i=0}^{3} c_i \tau_i \). It is apparent that \((\mathcal{PT})^2 = I \) and \(H \) is \(\mathcal{PT} \)-symmetric. Moreover, if we rewrite the Hermitian matrix as \(H = \begin{pmatrix} a & b \\ b & a \end{pmatrix} \), then \(\text{Re}(h_{11} + h_{22})^2 - 4\text{Re}(h_{11}h_{22} - h_{12}h_{21}) = 4a^2 - 4(a^2 - |b|^2) = 4|b|^2 \geq 0 \) holds, so \(H \) is also unbroken.

References

[1] C. M. Bender and S. Boettcher. Real spectra in non-Hermitian hamiltonians having \(\mathcal{PT} \) symmetry. *Phys. Rev. Lett.*, 80(1998), 5243

[2] C. M. Bender. Making sense of non-Hermitian hamiltonians. *Reports on Progress in Physics, 70*(6)(2007), 947
[3] C. E. Rüter, K. G. Makris, R. E. Ganainy, D. N. Christodoulides, M. Segev, and D. Kip. Observation of parity-time symmetry in optics. *Nature Physics*, 6(3)(2010), 192

[4] Long Chang, Xiaoshun Jiang, Shiyue Hua, Chao Yang, Jianming Wen, Liang Jiang, Guanyu Li, Guanzhong Wang, and Min Xiao. Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators. *Nature Photonics*, 8(7)(2014), 524

[5] S. Deffner and A. Saxena. Jarzynski equality in \mathcal{PT}-symmetric quantum mechanics. *Phys. Rev. lett*, 114(2015), 150601

[6] K. J. Smith. *Non-Hermitian quantum mechanics*. PhD thesis, Case Western Reserve University, (2010).

[7] C. M. Bender, D. C. Brody, M. P. Muller. Hamiltonian for the Zeros of the Riemann Zeta Function. *Phys. Rev. Lett.*, 118(2017), 130201

[8] A. Mostafazadeh. Pseudo-Hermitian representation of quantum mechanics. *International Journal of Geometric Methods in Modern Physics*, 7, 1191 (2010).

[9] J. W. Deng, Uwe Guenther, and Q. H. Wang. General \mathcal{PT}-symmetric matrices. *arXiv preprint arXiv:1212.1861* (2012)

[10] A. Uhlmann. *Anti-(conjugate) linearity*. *Science China Physics, Mechanics and Astronomy*, 59(3)(2016), 630301

[11] E. Wigner. *Group theory: and its application to the quantum mechanics of atomic spectra*, Elsevier, (2012)

[12] W. Greiner. *Quantum mechanics: an introduction*, Springer Science and Business Media, (2011).