On Black Hole Scalar Hair in Asymptotically Anti de Sitter Spacetimes

Daniel Sudarsky\(^1,2,\)\(^*\) and José Antonio González\(^1,\)\(^†\)

\(^1\) Instituto de Ciencias Nucleares
Universidad Nacional Autónoma de México
A. Postal 70-543, México D.F. 04510, México.
\(^2\) Center for Gravitational Physics and Geometry,
Department of Physics, Penn State University,
University Park, PA 16802, USA.

Abstract

The unexpected discovery of hairy black hole solutions in theories with scalar fields simply by considering asymptotically Anti de-Sitter, rather than asymptotically flat, boundary conditions is analyzed in a way that exhibits in a clear manner the differences between the two situations. It is shown that the trivial Schwarzschild Anti de Sitter becomes unstable in some of these situations, and the possible relevance of this fact for the ADS/CFT conjecture is pointed out.

Key words: Black Holes, Hair, Anti de Sitter
I. INTRODUCTION

The falsehood of the no-hair conjecture for stationary black holes is hardly even disputed these days as the list of counterexamples becomes ever larger: Einstein-Yang-Mills\(^1\), Einstein-Skyrme\(^2\), Einstein-Yang-Mills-dilaton\(^4\), Einstein-Yang-Mills-Higgs\(^3\), and Einstein-non-abelian-Procca\(^3\) fields. In some sub-communities the idea seems to be holding out that a modified version that applies only to stable black holes, could remain valid, despite the fact that for some of the examples above some claims of stable non-trivial solutions exist in the literature.

One place where it seemed for a while that there was hope for a restricted form of the conjecture was the scalar field arena. Here we had the original no hair theorems of Bekenstein\(^5\) covering the case of minimally coupled scalar fields with convex potentials, other theorems dealing with the case of minimally coupled fields with arbitrary potentials were obtained in\(^6\) and\(^7\). The so called Bronnikov-Melnikov-Bocharova-Bekenstein (BMBB) black hole “solution”\(^8\) which corresponds to a spherical symmetric extremal black hole with a scalar field conformally coupled to gravity seemed to represent a discrete example of scalar hair, as it was shown\(^9\) that there are no other static spherically symmetric Black Hole solutions in this theory. Later on, it was shown that this configuration, which presents a divergence of the scalar field at the horizon, cannot be considered as a regular black hole solution because the energy momentum tensor is ill-defined at the horizon\(^10\). Finally it has been shown that if one demands that the scalar field be bounded throughout the static region then, there are no solutions at all.\(^11\).

For more general cases of non minimal coupling there are results\(^12\) showing that under the assumption that certain “conformal factor” doesn’t vanish or blow up, there are no nontrivial black hole solutions. Next, there is a result by\(^13\) that does not rely on such assumption, and which considers the existence of static, spherically symmetric black hole solutions in theories in which the sign of the non-minimal coupling constant is negative (the only case not covered by other theorems) case. There it is shown that under certain suppositions about the form of the energy-momentum flux, there are no nontrivial solutions. In\(^14\) it is argued that these suppositions are not fully justifiable and numerical evidence is given against the existence of such black hole that doesn’t rely
on these assumptions.

It is therefore a rather unexpected development that hairy black hole solutions have now been found in both theories with minimal \[15\] as well as non-minimal \[16\] coupled scalar fields simply by considering asymptotically anti de-Sitter, rather than asymptotically flat, boundary conditions. Moreover these papers have strong indications that, under certain conditions, the new solutions are stable.

The purpose of this paper is to analyze the situation regarding the asymptotically anti de Sitter case, in light of existing results for the asymptotically flat case, discuss the points where the differences are relevant and give a simple explanation of some of the features of the new solutions and point to some surprising conjectures that can be directly infer from this understanding. The method used in this part is a generalization of one that was successfully employed in deriving a general characterization of hairy black holes in a wide range of theories \[17\].

An added reason for interest in the asymptotically Anti-de-Sitter case, and one we briefly touch in this paper is the important place such spacetimes have acquired in view of the AdS/CFT conjecture. In fact we will argue that the results and conjectures that are pointed to in this work, indicate a difficulty for the notion that the ADF/CFT idea can have as general a validity as is normally deem to have.

II. SCALAR HAIR AND ASYMPTOTIC CONDITIONS

We will restrict consideration to the minimally coupled case as the emergence of hair doesn’t rely at all on the more complicated non-minimal couplings. Thus we will consider a theory given by the action:

\[
S = \int \sqrt{-g} d^4x \left[\frac{1}{16\pi} (R - 2\Lambda) - \frac{1}{2} (\nabla \phi)^2 - V(\phi) \right]
\]

where ϕ is a scalar field and V its potential, R is the scalar curvature, and Λ is the true cosmological constant (by which we mean that the minimum of the scalar potential has been set to 0, and any nonzero part has been absorbed into Λ). Now we restrict attention to static spherically symmetric regular black holes whose exterior we parameterize as...
where \(\mu \) and \(\delta \) are functions of \(r \). Note that \(\delta \) can be taught of as representing an additional red-shift, beyond the one that could be inferred from the geometry of the static hypersurfaces (i.e. those that are normal to the Killing Field). The condition for a presence of a regular horizon at \(r_H \) requires the vanishing of \(\mu \) there. It is customary to parameterize \(\mu \) as

\[
\mu(r) = 1 - \frac{2m(r)}{r} + \lambda r^2
\]

(3)

where the asymptotic geometry is controlled by the parameter \(\lambda \) (i.e \(\lambda = 0 \) for the asymptotically flat case, \(\lambda > 0 \) for the asymptotically Anti de Sitter case, and \(\lambda < 0 \) for the asymptotically de Sitter case). Einstein’s equations give in this case

\[
\mu' = 8 \pi r T^t_t + \frac{1 - \mu}{r}, \quad \delta' = \frac{4 \pi r}{\mu} (T^t_t - T^r_r),
\]

(4)

where prime stands for differentiation with respect to \(r \). The scalar field equation can be written as;

\[
\mu \phi'' + [(1/r)(\mu + 1) + 4\pi r (T^t_t + T^r_r)] \phi' - \frac{\partial V}{\partial \phi} = 0
\]

(5)

We must point out that in the above formulas refer to the “total energy momentum” tensor \(T_{\mu\nu} \) which is related to the energy momentum of the scalar field \(T_{\mu\nu}(\phi) \) as \(T_{\mu\nu} = T_{\mu\nu}(\phi) - g_{\mu\nu}\Lambda/(8\pi) \).

The main tool of our analysis is simply the conservation for the \(r \) component of the total energy momentum tensor \(T^\mu_{r\mu} = 0 \), which, through the use of Einstein’s equations can be written as [17]:

\[
e^\delta (e^{-\delta} T^r_r)' = \frac{1}{2\mu r} \left[(T^t_t - T^r_r) + \mu(2T - 3T^t_t - 5T^r_r) \right],
\]

(6)

where \(T \) stands for the trace of the stress energy tensor.

The energy momentum tensor of the scalar field by itself satisfies then:

\[
e^\delta (e^{-\delta} T(\phi)^r_r)' = \frac{1}{2\mu r} \left[(1 + r^2(-\Lambda))T(\phi)^t_t - T(\phi)^r_r + \mu(2T(\phi) - 3T(\phi)^t_t - 5T(\phi)^r_r) \right]
\]

(7)

Here we can review the reasons behind the fact that there is no nontrivial scalar field in the exterior of such black holes in the asymptotically flat case with \(\Lambda = 0 \). First the regularity at the horizon requires that mixed components \(T(\phi)^t_r \) must be thought that the
horizon since the scalar $T(\phi)_{\mu}^\nu T(\phi)^{\nu\mu}$ is in this case a sum of non-negative terms. Next we note that the vanishing of μ at the horizon indicates that on the horizon $T(\phi)^{r}_r = T(\phi)^{t}_t$, which is negative definite as follows from the Weak Energy Condition (WEC) which is satisfied in particular by minimally coupled scalar fields (in fact, in our case we have $T(\phi)^{r}_r = 1/2\mu(\phi')^2 - V$ and $T(\phi)^{t}_t = T(\phi)^{\xi}_\xi = T(\phi)^{\phi}_\phi = -1/2\mu(\phi')^2 - V$). Next, it follows from the WEC that $(T^t_t - T^r_r) < 0$ and from fact that for the situation at hand the combination $(2T(\phi) - 3T(\phi)^t_t - 5T(\phi)^r_r)$ is $-3\mu(\phi')^2$ and thus non-positive, that the left hand side of eq. (7) is non positive, and thus that $e^{-\delta T^r_r(\phi)}$ is a decreasing function of r. It is thus impossible for this function to approach zero as it would be required from asymptotic flatness, the boundary condition that is relevant in this case. The point is that if we consider now asymptotically Anti de Sitter boundary conditions, and a negative cosmological constant two aspects of the above discussion remain unchanged: $e^{-\delta T(\phi)^{r}_r}$ is negative definite at the horizon, and it is a decreasing function of r. Thus the reasons behind the possibility of scalar black hole hair in such case is the fact that in the Anti de Sitter case one can allow $T(\phi)^r_r$ to go to a finite (and negative) constant value at infinity which results in an effective cosmological constant which differs from the true cosmological constant of the theory. In fact we can now restate the result of the above analysis for the asymptotically Anti de Sitter case as follows:

Theorem. There are no nontrivial static and spherically symmetric black hole solutions in asymptotically Anti-de-Sitter case in which the asymptotic behavior corresponds to the Anti-de-Sitter spacetime with the true cosmological constant.

In other words, the asymptotically Anti de Sitter region correspond to one where the effective cosmological constant is:

$$\Lambda_{\text{eff}} = \Lambda + 8\pi V(\phi_\infty)$$

(8)

This is in fact in essence the difference between the asymptotically flat, $\Lambda = 0$ case vs. the asymptotically Anti de Sitter, $\Lambda \neq 0$ case, i.e. the fact that in the former case we must require V to go to 0 at infinity, while in the latter case any nonzero asymptotic value of V can be absorbed into the effective cosmological constant. The theorem above in fact ensures that such asymptotic value is in fact nonzero and that such absorption can not be done without. Note that for a nontrivial black hole $V(\phi_\infty) > V(\phi_{\text{hor}}) > 0$, thus
$\Lambda_{eff} > \Lambda$ and the asymptotic behavior of the spacetime in then less "Anti de Sitter like" than would have been expected from the actual value of the true cosmological constant.

Moreover, as one is interested in situations in which the scalar field converges to a finite value at infinity we can look at the scalar field equations and note that a necessary condition for such behavior is that the field should go to an extremum of the potential at infinity. Thus our general result, that $T(\phi)^r_r$ must be a decreasing function, together with the fact that in this regime it coincides with V, suggests that the extremum of V must be approached from below at infinity, and thus, that such extremum must be a maxima. In fact, assuming that the scalar field converges to a finite limit ϕ_∞ at infinity, and that at this point the potential takes a finite value, and we write the asymptotic solution as $\phi = \phi_\infty + f(r)$, with $f \to 0$ at ∞. The asymptotic form of the scalar field equation is

$$\lambda r^2 f'' + 4\lambda rf' - \frac{\partial V}{\partial \phi}_{\phi_\infty} - \frac{\partial^2 V}{\partial \phi^2}_{\phi_\infty} f = 0 \tag{9}$$

From here we see that $\frac{\partial V}{\partial \phi}_{\phi_\infty} = 0$. The solution of this equation that goes to zero at infinity is of the form $f = 1/r^\beta$ with $\beta > 0$. Substituting in eq. (9) one concludes that

$$\beta = \frac{3}{2} \pm \sqrt{\frac{9}{4} + \frac{1}{\lambda} \frac{\partial^2 V}{\partial \phi^2}_{\phi_\infty}} \tag{10}$$

On the other hand, from the Einstein equations we have that $m' \sim r^4 f'^2$ so the convergence of m requires that $\Re(\beta) > 3/2$ and thus the type of oscillating behavior suggested in (10) can not occur.

If $\frac{\partial^2 V}{\partial \phi^2}_{\phi_\infty} > 0$ one of the roots in (10) makes ϕ divergent, requiring a fine-tuning to avoid this divergence. So, although it is not possible to rule out a solution in this case, we are going to consider the case in which the scalar field goes to a local maximum at infinity, i.e. $0 > \frac{\partial^2 V}{\partial \phi^2}_{\phi_\infty} > -\frac{9}{4} \lambda$; which are in fact the cases in which solutions have been found.

There are several interesting points that come out of this analysis: First we note that we can chose the cosmological constant to be such that the effective cosmological constant vanishes, leading to scalar field hair for black holes in the asymptotically flat context! (the price paid for this possibility is the introduction of a fine tuned cosmological constant). The next point concerns the issue of stability. This, as already mentioned, has been another interesting and very open point in this kind of scenarios.
The point is that in these theories the Schwarzschild-Anti de Sitter black holes are also trivial solutions, and thus, one could hope that if, as indicated by the available evidence (See [15]), the new, nontrivial black hole solutions are stable, there would seem be a clear violation of even the weakened version (i.e. the version dealing solely with stable black holes) of the no hair conjecture. The first issue that comes to mind is what is the meaning of stability in the asymptotically Anti-de-Sitter context. Normally, what one means by stability in principle, is the following: Given initial data corresponding to the configuration in question, are there small perturbations of these, that grow without bounds with evolution in time?. The point is that, as the Anti de Sitter spacetime is not globally hyperbolic (i.e. has no Cauchy hypersurfaces) there is in principle no well posed initial value formulation that would allow one to investigate such question so there is no possible meaningful answer to it, and thus no meaning to the question. The only way to go around this problem seems to be to fix “boundary conditions at infinity” throughout the time of evolution so as to obtain a well posed initial value problem. Then the issue of stability relates to situations in which we consider small perturbations as in the previous discussion but keep among other things the value of the scalar field fixed at infinity. It is in this regard that the new black hole solutions could possibly be stable. We will assume from here on that such stability is in fact verified for these solutions. Now let us ask ourselves whether such stability is indeed surprising or not. The first thing we note is that, as mentioned before, at infinity the scalar field is sitting at a local maximum of the potential, and thus, that the stability is intimately connected with the fact that we are dealing with a problem of evolution with fixed conditions at infinity, for otherwise our intuition tell us that under perturbations the field would tend to roll down the potential.

What lies behind the stability of the new stable configurations ought to be then, that they represent the configurations of “minimal mass” (See [21] and references therein for a formal definition of mass in this context and comparison with alternative ones) among those that have a given black hole area\(^1\) and fixed value of the scalar field at infinity. Assuming that this is the case, the following conjecture naturally follows: For such situations in which the nontrivial black hole is stable, the trivial solution with similar

\(^1\) We are assuming a generalization of the ideas presented in [18].
boundary condition i.e. the standard Schwarzschild Anti-de-Sitter solution with the same boundary conditions (with the scalar field frozen at the top of the potential throughout spacetime) should be unstable. In particular we can consider the situation in which a fine tuning has made the effective cosmological constant equal to zero, and then, the plain old Schwarzschild solution should be unstable. This situation is analogous to the case of the magnetically charged Reisner Nostrom Solution which is stable within Einstein Maxwell Theory, but is unstable within Einstein Yang Mills Theory [19].

Finally, we note that in [15], stable as well as unstable nontrivial solutions were found. What lies behind the difference in these situations? It is natural to assume it has to do with a change in the sign of the mass difference between the two solutions with the same horizon area and asymptotic value of the scalar field. We note that in the situation at hand such difference can have either sign depending on the details of the scalar potential. In fact let’s compare \(M_2(r_H) \), the mass of a nontrivial static black hole of radius \(r_H \) with \(M_1(r_H) \) the mass of the corresponding Schwarzschild -Anti de Sitter black hole of the same radius (by black hole radius we mean \(r_H = \sqrt{A/4\pi} \) where \(A \) is the horizon area. And by mass we mean the Hamiltonian mass as defined in [21], which in the present situation can be evaluated simply by \(M = \lim_{r \to \infty} m(r) \)).

In the latter case the solution is just given by setting \(\phi \equiv \phi_\infty, \delta \equiv 0 \) and \(\mu(r) = 1 - 2M_1/r + \lambda r^2 \) with \(M_1 \) the corresponding mass of the black hole of radius \(r_H \) so

\[
M_1(r_H) = \frac{r_H}{2} (1 + \lambda r_H^2)
\] (11)

In the case of the nontrivial black hole the mass is obtained from the equation for \(m' \) that follows from eqs. (4) and (3):

\[
m' = -4\pi r^2 T_t^t + (3/2)\lambda r^2 = (r^2/2)[(3\lambda + \Lambda) + 8\pi V(\phi) + 4\pi \mu(\phi')^2]
\] (12)

First, we note that the requirement that \(m' \to 0 \) at \(\infty \) implies that

\[
\lambda = -(1/3)[\Lambda + 8\pi V(\phi_\infty)] = -1/3 \Lambda_{\text{eff}}.
\] (13)

Next the vanishing of \(\mu \) at the horizon requires that \(m(r_H) = r_H/2(1 + \lambda r_H^2) = M_1(r_H) \), so we can write, using eq. (13) the mass of the nontrivial black hole as:

\[
M_2 = m(r_H) + 4\pi \int_{r_H}^\infty r^2[V(\phi) - V(\phi_\infty)] + (1/2)\mu(\phi')^2 dr.
\] (14)
Thus the sign of $M_2 - M_1$ depends on the integral which could have either sign depending on the details of the potential and the horizon radius. Note that this is in contrast with the situation that arises, say, in Einstein Yang Mills Theory and its hairy black holes in the asymptotically flat context, where the mass of the nontrivial black hole is

$$M_2 = m(r_H) + 4\pi \int_{r_H}^{\infty} r^2 [\frac{1}{r^2} V(w) + \frac{1}{2} \mu'(w^2)] dr$$ \hspace{1cm} (15)$$

where w parameterizes the Yang Mills field (as in [1]) and the term $V(w) = \frac{1}{2} (1 - w^2)^2$ which arises from the self interaction of the non-abelian fields plays a role of an effective – and non-negative– potential in this situation). It is clear that in this case the mass of the hairy black hole is larger than that of the Schwarzschild solution with the same horizon area. In fact it should be quite easy to numerically test whether the change in stability is associated with the change in the sign of this integral and we expect to do this in the near future.

Finally a note regarding the No Hair Conjecture and the nature of the counterexample obtained in [15]. The standard understanding is that one says that there are hairy black holes, if within a specific theory, the boundary conditions and charges at infinity are not sufficient to uniquely specify a stationary black hole solution. If one were to take the position (not advocated by these authors, but apparently advocated by the authors of [15]) that one only considers stable black holes in this context, then in order to say that one has found hair it is not enough to show that the new solutions are stable, one must also ensure that the trivial solution remains stable as well. In fact using the result of the analysis of [22], we can easily prove that for certain values of the parameters the Schwarzschild Anti de Sitter solution will be unstable in this context, and thus the issue of the violation of the weakened version of the No Hair Conjecture in the scalar field arena, would be far from settled.

The perturbations around the Schwarzschild Anti de Sitter black hole with $\phi \equiv \phi_\infty$ are described by:

$$\mu(t, r) = \mu_0(r) + \epsilon \mu_1(t, r)$$
$$\delta(t, r) = \epsilon \delta_1(t, r)$$
$$\phi(t, r) = \phi_\infty + \epsilon \phi_1(t, r)$$
$$\begin{align*}
\frac{\partial \phi}{\partial r} &= -\epsilon \phi_1(t, r) \alpha^2
\end{align*}$$ \hspace{1cm} (16)$$
where \(\alpha^2 = -\frac{\partial^2 V}{\partial \phi^2} |_{\phi=\infty} \) and \(\mu_0(r) = 1 - \frac{2M}{r} + \lambda r^2 \). The first order perturbated equation for the scalar field is:

\[
\ddot{\phi}_1 = \mu_0 \left[\mu_0 \phi''_1 + \left(\frac{2}{r} \mu_0 + \mu_0' \right) \phi'_1 + \alpha^2 \phi_1 \right]
\]

(17)

and the first order perturbed Einstein equations are identically satisfied by \(\delta_1 = 0 \) and \(\mu_1 = 0 \).

Equation (17) can be written as \(\ddot{\phi}_1 = -A \phi_1 \) where

\[
A = -D^a D_a + V
\]

and \(D_a \) is the covariant derivative associated with the auxiliary spatial metric

\[
(3) ds^2 = dx^2 + r(x)^2 (d\theta^2 + \sin^2 \theta d\varphi^2)
\]

(18)

where

\[
x(r) = \int_r^\infty dr' \left(1 - \frac{2m}{r'} + \lambda r'^2 \right)^{-1}.
\]

(19)

Note that when \(r \to \infty \), \(x \) converges to a finite constant that we denote by \(c \). In this way we can write:

\[
D^a D_a = \frac{d^2}{dx^2} + \frac{2\mu_0(x)}{r(x)} \frac{d}{dx}.
\]

(20)

As mentioned in [22], if \(\psi \) is a vector of the Hilbert space \(L^2 \) with inner product

\[
\langle \psi_1, \psi_2 \rangle = \int_0^{2\pi} \int_0^{2\pi} \int_0^c r^2 \psi_1 \psi_2 \sin \theta dx d\theta d\varphi
\]

(21)

such that \(\langle \psi, A\psi \rangle < 0 \) then, the configuration is unstable.

If we choose \(\psi = \frac{P(x)}{r(x)} \) with \(P(x) \) any (finite order) polynomial and \(n \geq 1 \) we obtain a finite norm element of \(L^2 \). If we take for instance \(n = 1 \) then

\[
\langle \psi, A\psi \rangle = -4\pi \int_0^c dx P(x) \left[\frac{d^2 P(x)}{dx^2} + \mu_0 P(x) \left(\alpha^2 - \frac{2M}{r^3} - 2\lambda \right) \right]
\]

(22)

thus, if \(\alpha^2 > \frac{2M}{r_H^3} + 2\lambda \), and we take \(P \) to be any polynomial on \(x \) which is positive definite and has positive definite second derivative in the interval \((0, c) \), then \(\langle \psi, A\psi \rangle \leq 0 \) showing that the configuration is unstable.

III. CONCLUSION

We have carefully analyzed the reasons behind the possibility of scalar hair in the asymptotically Anti de Sitter case comparing with the situation in the asymptotically
flat case. We have discussed also the issue of stability and found a very simple explanation which in fact points to the instability within these theories and boundary conditions of the usual Schwarzschild Anti de Sitter solution. This work has dealt with the minimal coupled case, its extension to the non-minimal coupled case is trivial if we can perform a conformal transformation (i.e. if the required conformal factor can be shown to be nowhere vanishing), in the nontrivial cases it is hindered by the fact that in such case the control provided by the WEC over the signs of the various terms in eq. (7) is lost. We now briefly note [20] that according to the conjecture of ADS/CFT correspondence the Schwarzschild Anti de Sitter solution of the theory in the bulk should correspond to a thermal state of the conformal theory in the Anti de Sitter “boundary”. But, as the black hole solution is unstable, so should be the corresponding thermal state, and it seems very difficult to envision what possibly could it be meant by a thermal state (by definition an equilibrium state involving fluctuations) that is unstable. Needless is to say that such issues should be further investigated and our point in mentioning them here is to note how the study of hairy black holes can have implications in other, apparently disconnected subjects.

IV. ACKNOWLEDGMENTS

D.S. wishes to thank A. Ashtekar, A, Sen and U. Nucamendi for helpful discussions. This work was in part supported by DGAPA-UNAM Grant No. IN 112401 and by CONACyT grant 32272-E. J.A.G. acknowledges support by CONACyT PhD. fellowship 149945. D.S acknowledges partial support by the Eberly Endowment and thanks Penn State University for its hospitality.

[1] P. Bizon, Phys. Rev Lett., 64 2844 (1990); M. S. Volkov and D. V. Gal’tsov, Sov. J. Nucl. Phys., 51 1171 (1990); H. P. Kunzle and A. K. M. Masood-ul-Alam, J. Math. Phys., 31, 928 (1990).

[2] P. Bizon and T. Chamj, Phys. Lett. B 297, 55, (1992); M. Heusler, S. Droz, and N. Straumann, Phys. Lett. B268, 371, (1991); B271, 61, (1991); B258, 21, (1992);
[3] B. R. Greene, S. D. Mathur, C. M. O’Neill, Phys. Rev. D 47, 2242 (1993).
[4] G. Lavrelashvili and D. Maison, Nucl. Phys. B 410, 407 (1993).
[5] J.D. Bekenstein. Ann. Phys. (NY), 82: 535, (1974)
[6] M. Heusler, J. Math. Phys. 33, 3497, (1992)
[7] D. Sudarsky, Class. Quantum Grav., 12, 579 (1995).
[8] J.D.Bekenstein Ann.Phys.(N.Y) 82, 535 (1974); N. Bocharova, K. Bronikov and V. Melnikov, Vestn. Mosk. Univ. Fiz. Astron. 6, 706, (1970).
[9] B. C. Xanthopoulos and T. Zannias J.Math.Phys.32,1875,(1991)
[10] D. Sudarsky and T. Zannias. Phys. Rev. D 58, 087502-1 (1998).
[11] T. Zannias J. Math. Phys. 36, 6970 (1995)
[12] A. Saa. J. Math. Phys., 37, 2346,(1996).
[13] A. E. Mayo and J. D. Bekenstein, Phys. Rev. D 54, 5059 (1996).
[14] I. Peña and D. Sudarsky. Class. Quantum Grav, 14, 3131 (1997)
[15] T. Torii, K. Maeda, and M. Narita, Phys. Rev. D 64, 044007 (2001).
[16] E. Wisttanley, gr-qc/ 0205092
[17] D. Núñez, H. Quevedo, and D. Sudarsky, Phys. Rev. Lett. 76, 571 (1996).
[18] D. Sudarsky and R.M. Wald, Phys. Rev. D 46, 1453 (1992).
[19] K. Lee, V. P. Nair and E. Weinberg, Phys. Rev. Lett. 68, 1100 (1992).
[20] A. Ashtekar and A. Sen, private Communication
[21] P. Chrûsciel and W. Simon, gr-qc/0004032
[22] R. M. Wald, J. Math. Phys. 33, 1 (1992).