ALPPS Procedure. The New Frontier in Advanced Liver Surgery. Single Centre Experience and Literature Review

Adrian Hotineanu, Serghei Burgoci*, Eduard Bortă

Department of Surgery No. 2, Nicolae Testemitanu State University of Medicine and Pharmacy, Chișinău, Republic of Moldova

Rezumat

Prezentarea primei experienţe a unui centru de chirurgie hepatică în aplicarea unei proceduri inovatoare – ALPPS (Associating Liver Partition and Portal vein ligation for Staged hepatectomy – asocierea partiţiei hepatice şi ligaturarea venei portă pentru hepatectomie stadializată) pentru tumori hepatice masive. Această metodă a fost efectuată în clinica chirurgie 2 din 2018 la pacienţi cu tumori hepatice primare sau metastatice masive, al căror volum al viitorului ficat rezidual este considerat prea mic, pentru a efectua rezection hepatică curativă în condiţii de siguranţă. Până nu de mult condiţiile acestea repartizează tumoarele voluminoase, ce ocupau mai mult de 75-90% de ficat, în grupa tumoralor nerezecabile. În mod prospectiv procedura ALPPS a fost evaluată pentru a efectua conversia tumoralor hepatice nerezecabile, din cauza volumului mic de ficat rezidual, în cele rezecabile. Datele literaturii au fost revizuite sistematic folosind PubMed, Scopus, Google Scholar.

Volumul ficatului rezidual a fost calculat pe angiografie CT folosind programul inclus în soft-ul aparatului Siemens® şi a fost de 252 ± 115 ml (19,4 ± 6,2%) înainte de ALPPS-1 şi 542 ± 165 ml (30,7 ± 6,5%) înainte de ALLPS-2 (P<0,001). Creşterea volumului ficatului rezidual între cele două proceduri a fost de 60,4 ± 38%
Concluzie: Tehnica ALPPS ne permite să mărim rata rezecabilității la pacienți cu tumori hepatice inițial nerezecabile, cu rezultate postoperatorii favorabile. Selectia atentă a pacienților pentru o intervenție de complexitate majoră, cum este ALPPS, ne-a permis să evităm mortalitate post-operatorie. Ciroză hepatică, colestază și hemoragia intraoperatorie sunt factori principali pentru dezvoltarea morbidității postoperatorii.

Cuvinte cheie: tumori hepatice nerezecabile, volum ficat rezidual, volumetria hepatică, resecție hepatică, ligaturarea ramului drept a venei portă, insuficiență hepatică posthepatectomie

Abstract

Introduction: Presentation of the first experience of a liver surgery center in applying an innovative procedure - ALPPS (Associating Liver Partition and Portal vein ligation for Staged hepatectomy) for massive liver tumors. This method has been performed in the surgery clinic since 2018 in patients with massive primary or metastatic liver tumors, whose future residual liver volume is considered too small to perform curative liver resection safely. Until recently, these conditions assigned large tumors occupying more than 75-90% of the liver to the group of unresectable tumors. Prospectively, the ALPPS procedure was evaluated to convert unresectable liver tumors due to the small residual liver volume into resectable ones. Literature data were systematically reviewed using PubMed, Scopus, Google Scholar.

Materials and methods: Since June 2018, 18 ALPPS procedures were performed in patients aged 62±8 years. Indications for surgical resection were liver metastases of colorectal cancer in 7 cases, perihilar cholangiocarcinoma in 4 cases, hepatocellular carcinoma in 6 cases, and GIST metastases 1 case. From the literature data we analyzed articles from 2014 to 2019.

Results: Residual liver volume was calculated on CT angiography using the program included in the Siemens® machine software and was 252 ± 115 ml (19.4 ± 6.2%) before ALPPS-1 and 542 ± 165 ml (30.7 ± 6.5%) before ALPPS-2 (P < 0.001). The increase in residual liver volume between the two procedures was 60.4 ± 38% (range: 31-110%, P<0.001). The mean time between the first and second procedure was 9.4 ± 2.3 days. Average hospital stay was 28.4 ± 9.2 days. Postoperative morbidity 34.8%, mortality 0. Survival at 18 months was 100%.

Conclusion: The ALPPS technique allows us to increase the resectability rate in patients with initially unresectable liver tumors with favorable postoperative outcomes. Careful selection of patients for a major complex procedure such as ALPPS allowed us to avoid postoperative mortality. Liver cirrhosis, cholestasis, and intraoperative hemorrhage are major factors for the development of postoperative morbidity.

Key words: unresectable liver tumors, residual liver volume, liver volumetry, liver resection, right portal vein ligation, post-hepatectomy liver failure

Introduction

Surgical resection of bulky liver tumors is the only method with a potentially curative effect in primary and metastatic liver tumors. A residual liver volume (RLV) less than 25-30% should be avoided in morphologically normal liver, 35-40% in liver after chemotherapy, 40-45% in liver fibrosis, and 45-50% in a cirrhotic liver to exclude post-hepatectomy liver failure caused by a small functional liver volume (Figs. 1,2) (1). Over the years, different
strategies have been developed to increase the resectability of advanced tumors to be resected, leaving sufficient VRL. Preoperative embolization of the portal branch of the portal vein (EVP) or intraoperative ligation of the right portal branch of the portal vein (LVP) is based on occlusion of flow in one of the main branches of the portal vein which induces atrophy of the ipsilateral liver lobe and subsequent hypertrophy of the contralateral lobe (residual future lobe); usually the right branch of the portal vein is occluded, due to the larger volume of the right liver to increase the volume of the left hemifield. This maneuver induces compensatory left lobe hypertrophy, which averages 40% in about 4-8 weeks (2). Although the described method has developed considerably and favorable results have been obtained in rapidly growing tumors, the time required to achieve the necessary compensatory hypertrophy is often too long to ensure tumor operability, and the degree of compensatory hypertrophy is often less than expected (3). To address such problems, recently, a new liver resection technique has been described, which is performed in two stages · called Associating Liver Partition and Portal vein ligation for Staged hepatectomy (ALPPS). ALPPS is an innovative surgical technique, which allows to extend the indication of hepatectomy to liver tumors considered unresectable by other techniques due to insufficient liver parenchyma · volumetrically and functionally. The first stage of this procedure associates intraoperative ligation of the right portal branch and division of the liver, usually following the scheme of an extended straight hepatectomy. Unlike a classic hepatectomy, the diseased part of the liver (tumor-bearing) is left in situ and remains vascularized only by the right hepatic artery, again drainage through the right bile duct and hepatic veins are preserved (4).

In the second stage of the procedure, which is usually performed within 7-14 days of the first, the diseased part of the liver is removed by sectioning the right hepatic artery, right hepatic duct, and systemic venous pedicles. This innovative procedure allows for rapid and significant hypertrophy of the VRL, thus ensuring greater operability than previous techniques.

ALPPS is touted as one of the most revolutionary surgical procedures in liver surgery in the last decade and has generated tremendous interest in recent years for the worldwide HPB community reflected in consensus, debates, and medical publications.

**Surgical Technique**

For a better understanding of this surgical

---

**Figure 1.** CT abdominal. Residual liver volume 21%

**Figure 2.** CT abdominal. Residual liver volume 18%
technique, performed in two stages with an interval between them, it is important to define some terms: "diseased hemiliver (DH)" is the part of the liver with tumor burden that will be removed in that second step; "VRL - volume of residual liver" is the hemiliver comprising the liver segments (without tumor burden) that will remain after both procedures; "clean-up" is the resection of all tumor lesions in the VRL during the first step of this technique.

**Stage 1.**

A bilateral subcostal laparotomy is preferred. To exclude some extrahepatic lesions not detected preoperatively, a thorough exploration of the organs of the abdominal cavity should be performed. Intraoperative ultrasonography (USIO) is mandatory and is performed accurately to assess the number, location, and relationship of tumor lesions to vascular structures. The first surgical gesture consists of perihilar lymph node highlighting not only for oncological reasons, but also for better identification of the anatomical structures of the hepatic pedicle. The lymph nodes are investigated by extemporaneous histopathological examination.

Identification of the elements of the hepatoduodenal ligament: portal vein, right branch of the portal vein and branch of segment 4 (or branch of segments 5, 8 in case of left trisectionectomy) of the portal vein, right and left hepatic artery, choledochus and common hepatic duct. After ligation and protection of all hilar structures a complete "clean-up" of the tumors in the VRL will be performed. Subsequently, the portal branch of the diseased hemisfield and the portal branch for segment 4 (or branch of segments 5, 8 in case of left trisectionectomy) is sectioned and sutured (Fig. 3). The affected hemisfield is mobilized from its ligaments (right coronary ligament, right triangular), dividing the accessory hepatic veins to the necessary posterior limit. After completion of mobilization, we routinely perform an open cystic duct cholecystectomy for a transcystic test and subsequent transcystic hydraulic test and intraoperative cholangiography. Total or almost total partition (division) of the liver up to the level of the inferior vena cava. Thus, right hepatectomy or right trisectionectomy (segments 4-8 ± segment 1) or left trisectionectomy (segments 1-5 + segment 8) is performed, depending on the patient and the local extension of the disease (Fig. 4). For liver transection, we prefer the CUSA (Cavitron Ultrasonic Surgical Aspirator) device. Hanging maneuver is used on a case-by-case basis. It is important to avoid any damage to the right hepatic artery during the parenchymal transition, as this is the only source of vascular flow to this hemisfield and therefore essential to avoid liver

![Figure 3.](image1.png)  After complete resection of the tumor nodule in the residual future liver. The right branch of the portal vein sectioned. Cholecystectomy

![Figure 4.](image2.png)  Catheterized cystic duct to perform hydraulic test and intraoperative cholangiography
necrosis. A complete hemostasis and biliostasis of both liver surfaces is a prerequisite in liver resections. After performing the hydraulic test and repairing the biliary fistula, the hepatic artery, cystic duct, and hepatic vein of the diseased hemificator are marked with black thread or vascular loop to facilitate their identification in the second stage. The diseased hemifield is wrapped with a plastic bag to facilitate the second procedure by minimizing postoperative adhesions and avoiding biliary peritonitis (Fig. 3). Drains are placed in the right subphrenic space and the other between the liver surfaces.

When a hilar cholangiocarcinoma is operated on and a right trisectionectomy is to be performed, the common bile duct and left bile duct are transected with R0 surgical margins to be removed en-bloc with the liver parenchyma during completion surgery. Biliodigestive anastomosis should be performed in the first stage immediately after liver division to achieve optimal positioning of the hepaticojejunal digestive anastomosis (Fig. 9) (5).

**Stage 2.**

On 6–7th postoperative day CT or MRI was performed with assessment of the degree of hypertrophy and absence of tumor in the future residual liver. If sufficient volume is demonstrated and the patient does not represent contraindications for surgery the 2nd stage of ALPPS will be performed the following day (Figs. 7, 8, 9).
Relaparotomy will be performed through the anterior incision, after viscerolysis, the bag will be evacuated from the peritoneal cavity. The hepatic artery, and the bile duct should be carefully highlighted due to hypertrophy of the caudate lobe the anatomy of these anatomical structures is altered. USIO is also mandatory at the 2nd stage to identify the presence or absence of tumors in the residual liver, determining the vascular structures - hepatic artery, left, hepatic veins, after they are sectioned using the vascular stapler (Fig. 10). The cystic duct is carefully identified, which is cannulated and intraoperative cholangiography is performed, this gesture is extremely important as the intrahepatic biliary anatomy is diverse and requires particular accuracy in identification and sectioning. The affected liver is removed from the abdominal cavity, which in turn is retracted (Fig. 11).

*Pathophysiology of Liver Regeneration*

The liver has an intense regenerative capacity, which is achieved by both hyperplasia and cellular hypertrophy. As early as 12 hours after surgery, the intensity of liver regeneration reaches its maximum through substantial changes in gene expression (6). The type of regeneration largely depends on the volume of liver resection. In 1/3 liver resections, cellular hypertrophy is induced, in 2/3 liver resections, cellular hypertrophy is induced hepatic hyperplasia, in resections greater than 80% the mechanism of dedifferentiation of biliary epithelial cells (BECs) into hepatic progenitor cells (HPCs) is triggered and repopulates the liver (Fig. 12) (7). Studies have shown that liver cell replication after heptectomy is mediated by hepatocyte growth factor (HGF), tumor necrosis factor (TNF), interleukin-6, transforming growth factors (TGF), epidermal growth factors (EGF) (8). ALPPS is associated with more accelerated increase in residual liver volume along with all markers of hepatocyte proliferation compared with portal vein ligation (9). Several data may elucidate the mechanisms that generate the accelerated and remarkable hypertrophy observed during ALPPS. Among the mechanisms that trigger and support liver regeneration, it is the redistribution of portal blood flow and hepatotrophic factors to the residual liver induced by portal vein ligation that plays the most important role (10): arterialization of the diseased hemifield acts as an auxiliary liver which allows the residual liver to tolerate portal hyperinflux by modulating double vascular flow (11). An important role is also played by liver partitioning, which disrupts intrahepatic portal collaterals (12) and may induce an inflammatory response with the release of growth factors, which is itself a stimulus for

![Figure 10. End of the second stage. Vascular structures sectioned using the vascular stapler.](image1)

![Figure 11. Final aspect](image2)
regeneration (9). Another study compared histological findings in the future residual liver in ALPPS with those in hepatectomy after portal vein embolization and it was determined that hepatocyte density is higher with smaller sizes after ALPPS than after portal vein embolization. They also confirmed that residual liver hepatocytes in ALPPS are more immature than in portal vein embolization (13).

**Experimental Models**

The ALPPS technique induces a rapid increase in VRL four times faster than embolization or portal vein ligation strategies. For a better understanding of the basic principles of ALPPS -triggered regeneration, some experimental animal models have been developed in recent years. Schlegel et al. (9) described the first model of ALPPS in mice. The result confirmed much faster regeneration of the VRL in the ALPPS group compared with the group in which only portal branch ligation was performed and provides evidence suggesting that the ability of accelerated VRL regeneration is due to increased afferent venous circulation with the interruption of afferent and intra-hepatic venous circulation between the affected hemifield and the residual hemifield after liver transection. Markers of hepatocyte proliferation were tenfold higher after ALPPS compared with control groups (14-16). Recently, a porcine model for ALPPS has also been introduced, with kinetic growth rates similar to those seen in humans (17). Histological studies and molecular models in animals are a valuable tool to explain many of these mechanisms involved in the physiology of this complex surgical procedure. However, human patients undergoing the ALPPS procedure are complex patients with advanced cancer disease and prolonged chemotherapy, such situations are difficult to reproduce in animal models.

**Liver Volumetry**

Future residual liver volume (FRV%) is estimated as the ratio of FRV to total functional liver volume (excluding tumor volume). We performed liver volumetry in patients scheduled for surgery for primary and metastatic liver tumors. We used a CT-3D liver reconstruction method with calculation of each section using Siemens SOMATOM® Definition 128 multislice CT in angiography mode (Fig. 12).
Preoperative management includes appropriate liver CT or MRI evaluation with volumetric determination, determination of liver functional reserve, especially in patients with cirrhosis, cholestasis, in case of cholangiocarcinoma, and patients after chemotherapy. Postoperative management, after the first and second stage, becomes essential as many of these patients are nutritionally deficient, with expressed catabolism, high tumor burden, have undergone chemotherapy, suffer from cholestasis or postoperative infectious complications. In the interval between both stages, antibiotic prophylaxis is maintained due to the presence of an ischemic liver fragment and that foreign body in the abdomen. Also, from the first postoperative day sequential parenteral-ental nutrition is initiated and maintained during the first postoperative period to ensure satisfactory metabolism of the organ and also of the future residual liver during this crucial week of regeneration. After the second procedure, parenteral nutrition is discontinued to avoid metabolic overload for the remaining liver. Similarly, a daily assessment of liver function, occurrence of complications and their treatment is strictly necessary (18).

### Perioperative Management

Accurate knowledge of liver functional reserve is essential, as post-hepatectomy liver failure is an important cause of mortality after major liver resection (19). The majority of deaths and the development of post-hepatectomy liver failure in ALPPS occurs after stage 2 complete hepatectomy (20). Therefore, the interval between both surgical stages is essential. Liver volume does not always correlate with functionality. Some previous studies have shown discrepancies between volumetric assessment, liver functional tests (21). The liver volume required for safe liver resection varies from patient to patient. The following liver volumetric values have been accepted to perform the 2nd stage: residual liver volume 30% or a ratio of VRL to body weight (VRL/GC) · 0.5% in a patient with a morphologically normal liver, VRL 40% or VRL/GC · 0.8% in a liver with moderate steatosis (20-50%) or post-chemotherapy and a VRL 50% or a VRL/GC index · 1% in a patient with liver cirrhosis (22). Regarding the safety of the ALPPS procedure, the quality of the liver parenchyma and its function are the main directions of evaluation to improve patient selection, as well as the timing of the second

### Interval Between the First and Second Surgical Stage

Accurate knowledge of liver functional reserve is essential, as post-hepatectomy liver failure is an important cause of mortality after major liver resection (19). The majority of deaths and the development of post-hepatectomy liver failure in ALPPS occurs after stage 2 complete hepatectomy (20). Therefore, the interval between both surgical stages is essential. Liver volume does not always correlate with functionality. Some previous studies have shown discrepancies between volumetric assessment, liver functional tests (21). The liver volume required for safe liver resection varies from patient to patient. The following liver volumetric values have been accepted to perform the 2nd stage: residual liver volume 30% or a ratio of VRL to body weight (VRL/GC) · 0.5% in a patient with a morphologically normal liver, VRL 40% or VRL/GC · 0.8% in a liver with moderate steatosis (20-50%) or post-chemotherapy and a VRL 50% or a VRL/GC index · 1% in a patient with liver cirrhosis (22). Regarding the safety of the ALPPS procedure, the quality of the liver parenchyma and its function are the main directions of evaluation to improve patient selection, as well as the timing of the second surgical stage.

![Total liver volume (VTF - 1761 cm³). Volumetry protocol](image)

| VOI                  | Value     |
|---------------------|-----------|
| Volume (cm³)        | 1761.13   |
| Height (cm)         | 18.45     |
| Mean (HU)           | 95.7      |
| SD (HU)             | 36.2      |
| L Threshold (HU)    | ...       |
| U Threshold (HU)    | ...       |
| L Eval Limit (HU)   | 10        |
| U Eval Limit (HU)   | 190       |

\[
VFR (\%) = 100 \times \frac{VRL (cm^3)}{\text{Total liver volume (cm}^3\text{)} - \text{Tumor volume (cm}^3\text{)}}
\]
stage, both of which are determinants of outcome (23). Experts recommend that the first CT scan after the 1st stage should be performed on day 7 and repeated weekly for 4 weeks if VRL is insufficient (22). The international ALPPS registry demonstrated that the majority of patients (86%) tolerate rapid hypertrophy without developing liver dysfunction after stage 1. Using the liver function criteria proposed by the International Study Group for Liver Surgery (ISGLS) (24) defined liver failure on day 5 after stage 1 and MELD score at least 10 points immediately before stage 2 as independent predictors of unfavorable outcome after ALPPS stage-2 (25).

This technique was initially associated with high perioperative morbidity in up to 68% of patients, with varying degrees of complications and a 90-day mortality rate of 12% (26). To improve these outcomes, the classical technique has been continuously modified. ALPPS has now evolved into various forms designed by different surgeons around the world. To date, there is a large number of technical modifications of the ALPPS procedure.

**ALPPS performed for right adjusted hepatectomy**

It has been used at early stages with favorable results. After the resection line was extended from the Cantle line (right adjusted hepatectomy including bisectionectomy or resection of segments 5, 6, 7, 8) to the round-phallicform ligament to perform trisectionectomy (resection of segments 4, 5, 6, 7, 8) (Fig. 1A)(27).

**Laparoscopic ALPPS**

At the initial stage it was proposed to perform the first stage ALPPS by laparoscopic approach to avoid excisional trauma and excessive adhesion formation, allowing to perform the second stage more easily (28). In the following years, ALPPS was performed totally laparoscopically in different institutions (29). Recently, a modified form of laparoscopic ALPPS has been described, called laparoscopic microwave ablation and portal vein ligation for staged hepatectomy (LAPS). LAPS has 2 stages: in stage 1 laparoscopic right vein occlusion and microwave ablation of tumors is performed in the bolical hemifield and, if tumors are present in the RVF, stage 2 consists of a laparoscopic total right trisectionomy (30). In addition, the first fully robotic ALPPS procedure has been reported in Spain (31). The results of these studies indicate that ALPPS can be performed safely with minimal invasiveness. However, most of these studies were only single case reports with a lower level of evidence, and advanced laparoscopic skills are required to perform the procedure.

**Left ALPPS**

Extended left S 5.8 left adjusted hepatectomy (or left trisectionectomy) includes ligation of the left portal branch and right anterior sectional branch and liver transection along the main portal fissure (Fig. 1B). Salvage ALPPS - is performed classic method in patients in whom portal vein embolization has been performed, but no necessary hypertrophy has occurred. Right ALPPS - ligate the right posteriolarateral branch of the portal vein and transect the liver along the main portal fissure (Fig. 1B) (32).

**ALTPS - associating liver tourniquet and portal ligation for staged hepatectomy**

It is a modification of the ALPPS procedure - associating liver tourniquet and right portal ligation for staged hepatectomy. Instead of liver transection a tourniquet is placed on the umbilical ligament (in case of right trisectionectomy).
tionectomy) or on the Cantle line (right staged hepatectomy), further it is pulled between the left hepatic vein and the middle hepatic vein continuing through the Rex recess to the pedicle of the left portal vein branch where it is rolled using the extraglionic approach. The distal ends of the tourniquet are swollen, thereby compressing the tributary vessels of segments 2, 3, and 4 (Figs. 17, 18). This approach allows to decrease intraoperative bleeding (33). Similarly, there is also the sequential ALTPS method, which involves only placement of the tourniquet without ligation of the portal branch, which is embolized on postoperative day 4. This modification is indicated in perihilar tumors to perform "non-touch" approach to liver tumor (Staged liver resection for perihilar liver tumors using a tourniquet in the umbilical fissure and sequential portal vein embolization on the fourth postoperative day (a modified ALTPS) (35).

**ALPPS by previous approach**

Liver transection performed in the first stage is performed without prior mobilization of the right hemiphysis or visualization of the vena cava. This approach is usually used in massive right lobe tumors. This technique is widely used, and analysis of the worldwide ALPPS
Hybrid ALPPS

Li et al. (36) described a new approach to ALPPS. The main goal of this technique is "non-touch" tumor to increase the oncological efficacy of surgical treatment, especially, it is the method of choice in tumors with infiltration of the right portal branch or biliary bifurcation. Hybrid ALPPS consists of 3 stages: surgical exploration and in situ division of the liver via an "anterior approach", right portal branch embolization on 1 postoperative day, and complete hepatectomy in the 2nd stage. This modified approach was termed "hybrid ALPPS" or "Non-touch ALPPS" (parenchymal transection in the first stage and portal vein embolization 1 day later). This hybrid ALPPS could improve oncological outcomes (37).

Mini-ALPPS

This method is similar to the Hybrid technique, the only difference is the intraoperative embolization of the right branch of the portal vein (38). The same has been proposed and described by performing this method by laparoscopic approach - Laparoscopic Mini-ALPPS (39).

Partial ALPPS

In 2015, Petrowsky et al. (40) described their experience with a modified form of ALPPS which they named partial ALPPS (p-ALPPS). Partial (50-80%) but not complete liver splitting was performed. The initial objective was to expose at least 50% of the liver parenchyma along the transection line. An attempt was made to preserve the mid hepatic vein during stage 1, thus the location of the hepatic vein or tumor determined the extent of partial transection ranging from 50% to 80%. The data obtained indicated that p-ALPPS is associated not only with zero mortality but also with a more favorable postoperative complication profile, especially after stage 1 surgery (40). Subsequently, objective boundaries for the classification of liver transection were provided: partial division is defined as transection to the middle hepatic vein, whereas total transection is dissection to the inferior vena cava.

Radio-frequency assisted liver partition with portal vein ligation - RALPP

After ligation of the right portal branch, the radiofrequency ablation probe is applied into the liver parenchyma along the line of demarcation with the aim of producing avascular necrosis. This technique stops the blood flow from the future residual liver to the diseased hemifield without a physical division of the liver parenchyma, which will be performed in stage 2 (33, 41).

Laparoscopic microwave ablation and portal vein ligation for staged hepatectomy (LAPS)

Similar to the previous modification, but laparoscopically applied microwave energy is used (33, 42).

Advantages of the ALPPS Procedure

The biggest advantage and most important moment is the rapid hypertrophy in a short time of the future residual liver, therefore, ALPPS allows surgical resection of liver lesions that were initially considered unresectable. According to the literature, ALPPS results in an increase in VRL from 47% to 93% within 7 to 14 days, which is an impressive result, as other methods of converting initially
unresectable tumors to resectable ones (two-stage hepatectomy TSH) require a median of 99 days (range: 32-210 days) to induce sufficient hypertrophy before the second operation. (43) The reason for this rapid hypertrophy is still debated. Although key factors that initiate liver regeneration include 2 major factors: after partial hepatectomy, a stress signal is generated due to increased energy requirement per unit liver volume and the second factor is altered hemodynamics. Although there is a clear correlation between blood flow and liver regeneration, the specific role of blood flow in liver regeneration remains unclear. In addition, cytokines and growth factors also play a triggering role. Another important advantage is the feasibility and resection of R0. It has been determined that ALPPS is a highly feasible method of treatment in initially unresectable liver tumors (44). It has been reported that ALPPS has a 97% feasibility compared to TSH, which in turn has a feasibility of only 77%. The short interval between the first and second stage of surgery does not allow for progression of the cancerous disease. After all, the ultimate goal of liver resection is R0 resection. The aggressive tactics of the ALPPS procedure allow to achieve an R0 resection rate at 83%-100% (45).

Disadvantages

Certainly, the highly aggressive approach to liver tumors using ALPPS cannot be considered safe. Morbidity and mortality rates are very high compared with other liver resection methods. The main argument against this approach at the initial stage was 68% morbidity and 12% mortality. However, ALPPS has not been abandoned, and its disadvantages have led to refinement of the operative technique. There are already publications with a 36% complication rate and 0% mortality rate (46,47). Another disadvantage of the ALPPS procedure, perhaps the most important one, is that ALPPS is likely to promote tumor growth. A recent study by Oldhafer et al. (48) found that 6 out of 7 patients experience tumor recurrence within a median of 8 months after ALPPS. A previous study noted increased proliferative activity in colorectal cancer liver metastases (a Ki-67 labeling index) after portal branch embolization of the embolized and unembolized lobe. (49) However, Shindoh reported that patients with colorectal cancer liver metastases who were appropriately selected based on oncologic tumor activity and underwent portal branch embolization had overall and recurrence-free survival rates equivalent to those of patients who did not undergo embolization (50). Fukami (51) presented further evidence for ALPPS, biopsied from the same liver metastasis immediately after the first and second laparotomies. The Ki-67 labeling index for tumor cells was 60% during the first operation, but increased to 80% during the second operation. Unfortunately, this evidence is insufficient as it comes from a small series. The mechanism by which ALPPSS stimulates tumor growth is still unclear and different tumors have different characteristics. Better designed studies are needed for a single tumor type to determine whether there is any relationship between ALPSS and early tumor recurrence.

The aim of the study: is to describe our first experience in the treatment of massive liver tumors, applying the procedure of extended staged hepatectomy - ALPPS, we also performed systematic review of literature data to highlight the operative indications, surgical techniques.

Literature study. Relevant articles were searched in PubMed, Medline, Google Scholar databases from January 2007 to November 2019. The search was limited to articles published in English and Romanian languages.

Material and methods: From June 2018 to June 2021, we performed 18 ALPPS surgeries in the 2nd IP surgery clinic of Nicolae Testemitanu USMF. All patients were evaluated by a multidisciplinary team which included surgeons, radiologists, gastroenterologists, oncologists. VRL evaluation is mandatory in all patients requiring right hepatectomy and right hepatectomy extended to s IV. Over the years VRL ≤30%
is considered to be insufficient to perform liver resection safely, therefore these patients were initially considered unresectable and ligation of the right branch of the portal vein was performed, subsequently, after 4-6 weeks, they were evaluated on CT volumetry if they achieved hypertrophy of the VRL. Patients who did not develop sufficient hypertrophy or suffered from disease progression during this rather long period were considered as absolutely unresectable patients. To overcome these limits, since June 2018, all patients with a VRL ≤30% were evaluated for the ALPPS procedure. To achieve success in the immediate and late post-operative period, but especially in the initiation period of this innovative procedure, patient selection is a prerequisite. Exclusion criteria are: age >75 years, extrahepatic spread of disease, portal hypertension, subcompensated and decompensated liver cirrhosis, hepatic steatosis >50%, decompensated associated diseases. Data from patients undergoing ALPPS were collected prospectively.

**Results**

Indications for surgical resection were liver metastases of colorectal cancer in 7 cases, perihilar cholangiocarcinoma in 4 cases, hepatocellular carcinoma in 6 cases, and GIST metastases in 1 case. All patients with cholangiocarcinoma were diagnosed with IIIA tumor according to Bismuth-Corlette classification, likewise in all of them, endobiliary stents were placed. All 7 patients with liver metastases of colorectal cancer had metachronous metastases, all 6 patients with HCC suffered from Child A stage liver cirrhosis, the patient with metachronous GIST metastases had undergone gastrectomy for gastric GIST in the past. The mean age of the patients was 62±8, female/ male ratio 6/12. No patient suffered from decompensated comorbid conditions having good performance status. Four patients underwent neoadjuvant chemotherapy. Liver function tests were within normal limits.

In all cases we performed volumetric measurements using liver CT angiography on the same device before the 1st stage and 2nd stage with determination of total liver volume (THV) and future residual liver volume (FRV). Residual liver volume was calculated on CT in angiography mode using the program included in the Siemens® device software and was 252 ± 115 cm³ (19.4 ± 6.2%) before ALPPS-1, and 642 ± 165 cm³ (38.7 ± 6.5%) before ALPPS-2 (P < 0.001). The increase in VRL between the two procedures was 60.4 ± 28% (range: 31-110%, P <0.001). The mean time between the first and second procedure was 9.4 ± 1.3 days (Table 1).

The average duration of the first stage was 360 minutes (310-410 min), and 130 minutes (100-350 min) for the second stage. Mean intraoperative hemorrhage 850±150 (400-2500 ml) in the first stage, and 350±70 (200-1000 ml) (Table 2). Resection of another organ was not performed in any patient, need for hemotransfusion 66%.

In 8 cases we performed classical ALPPS,

| Table 1. Liver volumetry in pre- and post 1 stage ALPPS patients |
|------------------|------------------|------------------|
| Pre-operative volumetry |  |  |
| VTH (cm³) | 1672±240 (1284-1942) | <0.001 |
| VRL (cm³) | 252±115 (214-364) | 0.0002 |
| VRL/VTH % VRL/VTH | 19.4%±6.2% | <0.001 |
| Volume between 2 stages |  |  |
| VRL (cm³) | 642±165 (390-792) | <0.001 |
| Volume rate obtained % | 60.4±28% | <0.001 |
| VRL/VTH % VRL/VTH | 38.7 ± 6.5% | <0.001 |
| Time between volumes (days) | 9.4±1.3 | <0.001 |
| Time between operations | 10.2±2.3 (390-792) | <0.001 |

| Table 2. Intraoperative data |
|------------------|------------------|------------------|
| First stage ALPPS | Second stage ALPPS |  |
| Average duration of operation (min) | 360±60 (310-410) | 130±20 (100-350) | < 0.0001 |
| Intraoperative hemorrhage (ml) | 850±150 (400-2500) | 350±70 (200-1000) | < 0.0001 |
| Need for hemotransfusion n (%) | 5 (55%) | 1 (11%) | 0.4629 |
in 4 cases classical ALPPS was completed with Roux-en-Y hepaticojejunostomy, in 4 cases we performed anterior approach ALPPS, and in 2 cases partial ALPPS (Table 3).

Right trisectionectomy was performed on 8 patients, right trisectionectomy extended to S I - 6 patients, right hepatectomy extended to S IV - 4 patients. Roux-en-Y hepaticojejunostomy performed in patients with perihilar carcinoma during the first stage.

Histopathological analysis in all cases confirmed preoperative diagnosis (HCC, MHCCR, perihilar cholangiocarcinoma, GIST). R0 margin obtained in 100% of cases.

Postoperative period. Postoperative morbidity

In 14 patients 22 complications occurred of which 6 were grade 3 and higher after Clavien-Dindo. Posthepatectomy liver failure was confirmed in 2 patients on the 5th day after the second stage, treated in the intensive care unit with favorable outcome. Biliary fistula after stage 1 was present in 8 patients and in 4 patients after stage 2. All were treated conservatively by longer exposure of drain tubes. Transient ascites was present in 4 cases (Table 4). Four patients had pulmonary complications (pleural effusion). No patient died postoperatively.

Conclusions

Safely performed liver resections of large liver tumors remain a major challenge for liver surgeons. However, current preoperative examinations accurately estimate tumor resectability and VRL volume. In fact, liver surgery changes the oncological paradigm and the resectability of liver tumors does not depend on what was resected, but rather on what will remain after resection. This shift has generated increased attention to VRL, giving rise to new treatment tactics and techniques.

Even though there is limited clinical experience with ALPPS, this revolutionary (two-stage) surgical procedure has attracted the attention of many surgical leaders and cancer centers around the world. This method prevents post-hepatectomy liver failure and allows for a complete resection (R0) during one hospitalization in patients with a locally advanced liver tumor previously declared unresectable. This strategy has been shown to be feasible and safely performed by experienced hepatobiliary surgeons in high-volume liver surgery centers.

In the history of liver resection, ALPPS is like a child. It still needs enough time to grow and mature. Although ALPPS has been reported as a novel approach with high morbidity and mortality rates, this technique offers a chance to cure malignant liver disease that could not be resected with other techniques. Modifications to the ALPPS technique have allowed us to decrease morbidity and mortality rates. The advantages of ALPPS are rapid VRL hypertrophy, feasibility and a high R0 resection rate.

Conflict of Interest Declaration

The authors declare no conflict of interest, financial or non-financial, associated with this work.

| Table 3. ALPPS method performed |
|-------------------------------|
| Classic ALPPS                  | 8 |
| Classic ALPPS + hepaticojejunostomy | 4 |
| ALPPS by previous approach     | 4 |
| Partial ALPPS                  | 2 |

| Table 4. Postoperative period |
|------------------------------|
| Patients with complications  | 14 (77%) |
| Biliary fistula              | 12 (66%) |
| Ascites                      | 4 (22%)  |
| Long complications           | 4 (22%)  |
| Liver failure                | 2 (11%)  |
| Clavien-Dindo classification  | 1 8 2 4 3 4 4 2 5 0 |
| Postoperative mortality      | 0 |

A. Hotineanu et al
References

1. Ray S, Mehta NN, Gohar A, Nundy S. Post hepatectomy leakage failure - A comprehensive review of current concepts and controversies. Ann Med Surg (Lond). 2018;34:4-10.

2. Shibata Y, Takemura S, Tanaka S, Kubo S. Portal Vein Emobilization: History and Current Insights. Vsc Med. 2017;33(6):414-17.

3. Fernandez BL, Adam C, Philippe & Papadopoulos J, Bruno P, Chichie LL. Hepatic and portal vein emobilization before major hepatectomy: An increase of 80% in future liver remnant Background; Epub 2019.

4. Au KP, Chan ACY. Current status of associating liver partition with portal vein ligation for staged hepatectomy: Comparison with two-stage hepatectomy and strategies for better outcomes. World J Gastroenterol. 2019; 25(43):6373-6385.

5. Alvarez FA, Ardisle V. Sanchez Cria R, Pekojlo J, de Santibanes E. Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS): tips and tricks. J Gastrointest Surg. 2013;17(14):841-4. Epub 2012 Nov 27.

6. Riehl J, Dan YY, Campbell JS, Fausto N. New concepts in liver reoperation. J Gastrointest Hepatol. 2011;26(Suppl 1):203-212.

7. Gilgenkrantz H, Collin de l’Hortet A. Understanding liver regeneration: from mechanisms to regenerative medicine. Am J Pathol. Published online 2018 Apr 16.

8. Michalopoulos GK, DeFilantes MC. Liver regeneration. Science. 1997; 276:60-66.

9. Schlegel A, Lesurtel M, Lekkou E, Limani P, Tscharc G, Graf R, et al. ALPPS: from aspiring multimodality: novel insights into mechanisms of liver regeneration. Ann Surg. 2014;260(5):839-46. [discussion 846-7]

10. Yokoyama Y, Nagino M, Nimura Y. Mechanisms of Hepatic Regeneration Following Portal Vein Embolization and Partial Hepatectomy: A Review. World J Surg. 2007;31:367-374.

11. Alvaro FA, Ardisle V, De Santbias E’s M, Pekojlo J, de Santbias E’s E. Associating liver partition and portal vein ligation for staged hepatectomy offers high oncological feasibility with adequate patient safety: a prospective study at a single center. Ann Surg. 2015;261(4):723-32.

12. Nadioll S, Capobianco L, Li J, Girotti P, Koninsegare J, Koninsegare A. Indications and limits for associating liver partition and portal vein ligation for staged hepatectomy (ALPPS). Lessons learned from 15 cases at a single center. Z Gastroenterol. 2014;52:35-42.

13. Matsuo K, Murakami Y, Kawaguchi D, Hiroshima Y, Koda K, Yamazaki K et al. Histologic features after surgery combining liver partition and portal vein ligation for staged hepatectomy versus those after hepatectomy with portal vein embolization. Surgery. 2016;159(6):1298-1302.

14. Shi H, Yang G, Zheng T, Wang J, Li L, Liang Y, et al. A preliminary study of ALPPS procedure in a rat model. Sci Rep. 2015;3(5):17567.

15. Almeida Treadde HM, Moulin LE, Padin J, Stringa GE, Barros Schelotto P. Development of an experimental model of portal vein ligation associated with parenchymal transection (ALPPS) in rats. Cirr Esp. 2014;92(10):1371-8.

16. Yao L, Li C, Ge X, Wang H, Xu K, Zhang A, Dong J. Establishment of a rat model of portal vein ligation combined with in situ splitting. PLoS One. 2014;9(8):105511.

17. Croome KP, Mao SA, Girosio JM, Krishna M, Nyberg SL, Nagorney DM. Characterization of a porcine model for associating liver partition and portal vein ligation for a staged hepatectomy. HPB (Oxford). 2015;17(12):1130-1136.

18. de Santibañes E, Boccalatte L, de Santibañes E. A literature review of associating liver partition and portal vein ligation for staged hepatectomy (ALPPS): comparison of liver regeneration between human and mice highlighting accelerated and novel mechanisms of liver regeneration. Ann Surg. 2014;260(5):839-46. [discussion 846-7]

19. Neuba T, Thelen A, Jonas S, Puhl G, Denecke T, Velte-Schleier W, et al. Oncological superiority of hilar en bloc resection for the treatment of hilar cholangiocarcinoma. Ann Surg Oncol. 2012;19(Suppl 6):S602-3. Epub 2012 Oct 1.

20. De Santibañes E, Alvarez A, Ardisle V, de Santibañes P, Mel J. Inverting the ALPPS paradigm by minimizing first stage impact: the mini-ALPPS technique. Langenbecks Arch Surg. 2016;416(1):557-63.

21. Pekojlo J, Alvarez FA, Bajajola D, Villegas L, Ardisle V, de Santibañes E. Totally Laparoscopic Mini-ALPPS Using a Novel Approach of Laparoscopic-Assisted Transsegmental Portal Embolization. Ann Surg Tech. 2018;2(11):1229-1233.

22. Petrinos H, Giynt G, de Oliveira M, Lesurtel M, Clavien PA. Is totally-partial ALPPS safer than ALPPS? A single-center experience. Ann Surg. 2015;261(4):e96-2.

23. Gall TM, Sodemang MH, Frampton AE, Rani F, Spalding DR, Habb NA, et al. Radiofrequency-assisted Liver Partition with Portal vein ligation (RAlPPS) for liver regeneration. Ann Surg. 2015;261(2):445-6.

24. Cillo U, Gringeri E, Feltraco P, Bassi D, Ardisle E, Polacco M, et al. Totally Laparoscopic Microwave Ablation and Portal Vein Ligation for Staged Hepatectomy. Ann Surg Oncol. 2015;22(6):2787-9.

25. Chu A, Laiw A, Chu F, Morris DL. Summary outcomes of two-stage resection for advanced colorectal liver metastases. J Surg Oncol. 2013;107:211-6.

26. Schindtbaumer AA, Lang SA, Geissmann H, Nadim S, Baugmynt J, Faraks SA, et al. Right portal vein ligation combined with in situ splitting induces rapid left lateral liver lobe hypertrophy enabling 2-stage extended right hepatectomy in small-for-size settings. Ann Surg. 2012;255(3):405-14.

27. Santibañe E, Alvarez FA, Ardisle V. How to avoid postoperative liver failure: a novel method. World J Surg. 2012;36:129-8.

28. Machado MA, Madsdts FF, Surjan RC. ALPPS procedure with the use of pneumoperitoneum. Ann Surg Oncol. 2013;20:1491-3.

29. Xiao L, Li JW, Zhong SG. Totally laparoscopic ALPPS in the treatment of cirrhotic hepatocellular carcinoma. Surg Endosc. 2015;29:2800-1.

30. Gringeri E, Brokko D, Ardisle E, Bassi D, Ulkioo A, Laparoscopic microwave ablation and portal vein ligation for staged hepatectomy (ALPPS): a minimally invasive first-step approach. Ann Surg. 2015;262(2):e42-3.

31. Vicente E, Quijano Y, Ielpo B, Fabra I. First ALPPS procedure using a total robotic approach. Surg Oncol 2015;pi: 0960-7404(15)00311-3.

32. Tosi TV, Heumam A, Vashit YK, Ibsbro JR. How do we do it: double in situ split for staged mesohepatectomy in patients with advanced gallbladder cancer and marginal future liver remnant. Langenbecks Arch Surg 2016; 401:565-71.

33. Popescu GA, Alexandrescu ST, Giricte RT, Stoica L, Apavacalao CA, Hirenhet D. GOOD TO KNOW: The ALPPS Procedure - Embracing a New Technique. Chirurgia (Buc). 2011;12(3):332-341.

34. Robinson CA, Miranda CA, Toneo D, Ardisle E, Pekojlo J, de Santibana E. Prediction of Mortality After ALPPS Stage-1: An Analysis of 320 Patients From the Group of Liver Surgery (ISGLS). Surgery. 2011;149:713-724.

35. Saric M, Markovic D, Djordjevic K, Crisci M, Aspinali M, et al. ALPPS: Lessons from a single institution. Chirurgia 2016;401:540-548.

36. Good TO KNOW: The ALPPS Procedure - Embracing a New Technique. Chirurgia (Buc). 2011;12(3):332-341.

37. Tosi TV, Heumam A, Vashit YK, Ibsbro JR. How do we do it: double in situ split for staged mesohepatectomy in patients with advanced gallbladder cancer and marginal future liver remnant. Langenbecks Arch Surg 2016; 401:565-71.

38. Popescu GA, Alexandrescu ST, Giricte RT, Stoica L, Apavacalao CA, Hirenhet D. GOOD TO KNOW: The ALPPS Procedure - Embracing a New Technique. Chirurgia (Buc). 2011;12(3):332-341.

39. Robinson CA, Miranda CA, Toneo D, Ardisle E, Pekojlo J, de Santibana E. Prediction of Mortality After ALPPS Stage-1: An Analysis of 320 Patients From the Group of Liver Surgery (ISGLS). Surgery. 2011;149:713-724.

40. Saric M, Markovic D, Djordjevic K, Crisci M, Aspinali M, et al. ALPPS: Lessons from a single institution. Chirurgia 2016;401:540-548.

41. Good TO KNOW: The ALPPS Procedure - Embracing a New Technique. Chirurgia (Buc). 2011;12(3):332-341.