Spatial Modeling of PM$_{10}$ and NO$_2$ in the Continental United States, 1985–2000

Jaime E. Hart,1,2,3 Jeff D. Yanosky,1 Robin C. Puett,1,4,5,6 Louise Ryan,7 Douglas W. Dockery,1,3 Thomas J. Smith,1 Eric Garshick,4,8 and Francine Laden1,2,3

1Exposure, Epidemiology and Risk Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA; 2Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA; 3Department of Epidemiology, Harvard School of Public Health, Harvard School of Public Health, Boston, Massachusetts, USA; 4South Carolina Cancer Prevention and Control Program, University of South Carolina, Columbia, South Carolina, USA; 5Department of Environmental Health Sciences, and 6Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA; 7Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA; 8Pulmonary and Critical Care Medicine Section, Medical Service, VA Boston Healthcare System, Boston, Massachusetts, USA

Background: Epidemiologic studies of air pollution have demonstrated a link between long-term air pollution exposure and mortality. However, many have been limited to city-specific average pollution measures or spatial land-use regression exposure models in small geographic areas.

Objectives: Our objective was to develop nationwide models of annual exposure to particulate matter < 10 µm in diameter (PM$_{10}$) and nitrogen dioxide during 1985–2000.

Methods: We used generalized additive models (GAMs) to predict annual levels of the pollutants using smooth spatial surfaces of available monitoring data and geographic information system-derived covariates. Model performance was determined using a cross-validation (CV) procedure with 10% of the data. We also compared the results of these models with a commonly used spatial interpolation, inverse distance weighting.

Results: For PM$_{10}$, distance to road, elevation, proportion of low-intensity residential, high-intensity residential, and industrial, commercial, or transportation land use within 1 km were all statistically significant predictors of measured PM$_{10}$ (model $R^2 = 0.49$, CV $R^2 = 0.55$). Distance to road, population density, elevation, land use, and distance to and emissions of the nearest nitrogen oxides–emitting power plant were all statistically significant predictors of measured NO$_2$ (model $R^2 = 0.88$, CV $R^2 = 0.90$). The GAMs performed better overall than the inverse distance models, with higher CV R^2 and higher precision.

Conclusions: These models provide reasonably accurate and unbiased estimates of annual exposures for PM$_{10}$ and NO$_2$. This approach provides the spatial and temporal variability necessary to describe exposure in studies assessing the health effects of chronic air pollution.

Keywords: GIS, nitrogen dioxide, outdoor air pollution, particulate matter. Environ Health Perspect 117:1690–1696 (2009). doi:10.1289/ehp.0900840 available via http://dx.doi.org/ [Online 29 June 2009]

Acute exposures to particulate and gaseous air pollutants have been associated with morbidity and mortality in a large number of time-series studies [Pope and Dockery 2006; U.S. Environmental Protection Agency (EPA) 1993, 2004]. There are fewer cohort studies where it has been possible to examine the association of long-term exposures and mortality (Dockery et al. 1993; Finkelstein et al. 2003; Hoek et al. 2002; Jerrett et al. 2005b, 2005c; Laden et al. 2006; Lipfert et al. 2006; Miller et al. 2007; Nafstad et al. 2004; Nyberg et al. 2000; Pope et al. 1995, 2004; Rosenlund et al. 2006). In most long-term studies, exposure assessment has been limited mainly to city-specific average pollution measures or spatial or geographic information system (GIS)–based exposure models in small geographic areas (Adar and Kaufman 2007; Brauer et al. 2003; Briggs et al. 2000; Jerrett et al. 2005a; Liao et al. 2006; Ryan and LeMasters 2007; Su et al. 2008; Wheeler et al. 2008; Wong et al. 2004). One recent study has described a monthly spatiotemporal exposure model for the northeastern United States using a combination of spatial and GIS-derived covariates that outperformed models with spatial smoothing alone (Yanosky et al. 2008, 2009). Another recent report has detailed the use of universal kriging to predict pollution levels for the European Union (Beelen et al. 2009). The purpose of this analysis is to develop nationwide models of annual exposure to particulate matter < 10 µm in diameter (PM$_{10}$) and nitrogen dioxide, using a combination of spatial smoothing and regression of GIS-derived covariates. To date, few countrywide models have been available for these pollutants over our time scale of interest (1985–2000). We apply the model to the addresses of the workers in the Trucking Industry Particle Study (Garshick et al. 2008; Laden et al. 2007), a retrospective cohort study of male U.S. unionized trucking company workers, to illustrate its potential use in exposure assessment for long-term epidemiologic studies with members spread over the continental United States.

Methods

The Trucking Industry Particle Study. Details of the Trucking Industry Particle Study (TrIPS) are provided elsewhere (Garshick et al. 2008; Laden et al. 2007). Briefly, using personnel records from four large companies we identified 54,973 males with at least 1 day of work in 1985. Information was available on demographic variables, daily job and work location, and residential home address. Using an outside vendor (TeleAtlas, Lebanon, NH), we geocoded the last known residential addresses of 53,822 members living within the continental United States to at least the ZIP code level.

Pollutant data. We obtained information on annual average PM$_{10}$ (parameter codes 81102 and 85101) and NO$_2$ from the U.S. EPA Air Quality System (AQS). The U.S. EPA provided these annual averages on a set of DVDs compiled in 2004 for U.S. EPA Science to Achieve Results program grant 830545010. Data from 1985–2000 were used for this study if an annual mean was reported, regardless of the primary monitoring objective of the monitor. All monitors in the continental United States were included, because excluding monitors such as those located near point or mobile sources would prevent us from incorporating all sources of spatial variability represented in the monitoring network. Latitude and longitude of each monitor were obtained from the AQS database and used to map the monitor locations using ArcGIS (version 9.2; ESRI, Redlands, CA). All monitors were checked for latitude/longitude accuracy and precision to the county level before inclusion.

Modeling approach. We used generalized additive models (GAMs) to predict annual outdoor levels of PM$_{10}$ and NO$_2$ using smooth spatial surfaces and GIS-derived covariates. GAMs use semiparametric methods to model
Each potential covariate (or groups of covariates for distance to road, land use, and power plant distance/emissions) was first considered separately in models that included the bivariate spline for the 1985–2000 spatial surface and the indicator variables for calendar year. We constructed multivariate models including all covariates that were statistically significant ($p < 0.05$) and led to a higher adjusted model R^2. If covariates were no longer significant when included in the multivariate model, we omitted them unless they led to better model fit as determined by Akaike's information criterion (AIC) and cross-validation testing.

To assess annual differences from the long-term spatial patterns of pollution, we first calculated the residuals from the final long-term multivariate GAM models. Then, for each calendar year, we created a bivariate smooth of the residuals using a two-dimensional thin-plate spline. Therefore, the annual average pollution at any location was predicted using the sum of the prediction from the long-term average surface/GIS-derived covariates and the prediction from the calendar-year specific residual spatial variability surface.

To perform cross-validation, we used regression parameters from the final models and the annual spatial surfaces to predict annual pollutant levels at the 10% of monitoring locations that were held out from the original models. We assessed the potential bias of each final model by calculating the prediction error as the difference between the observed and predicted values at each cross-validation monitoring location. We also assessed bias in the models by examining the intercept and slopes from linear regression of the predicted values on the measured values. The precision of the model was estimated by taking the square root of the mean of the squared prediction errors (RMSPE). In addition, a cross-validation R^2 was obtained using the squared Pearson correlation between the measured values at the held-out observations and the model predictions.

For comparison, we also predicted exposures using a simpler spatial interpolation method, inverse distance weighting (IDW), which had been frequently used in the air pollution literature. For the IDW models, the annual predictions for any given location (cross-validation monitor location or cohort member address) were calculated by taking the average of the measured value at each monitor location times the inverse of the squared distance between each location and each monitor. IDW modeling was performed in ArcGIS (Johnston et al. 2004). The bias and precision of this simpler exposure modeling method was determined using cross-validation.

After the final GAM models were determined and cross-validated, the regression parameters were used to predict annual pollutant levels at the 53,822 residential addresses of the TIPS cohort members. For comparison, IDW was also used to predict annual pollutant levels at the residential addresses. Statistical analyses were performed in PC SAS version 9.1 (SAS Institute Inc. 2006) and Unix R 2.7.0 (R Development Core Team 2006).

Results

The number of monitors used in the models and annual distributions of pollutant levels are shown in Table 1. The levels of both pollutants decreased over time. The median value of PM$_{10}$ in 1985 was 38.2 μg/m3, and it fell to 23.0 μg/m3 by 2000 (a 40% decrease). The median NO$_2$ level decreased 23% over the same period, from 19.0 ppb to 14.6 ppb. The distributions of the GIS-derived covariates at the monitor locations considered in the GAM

Year	PM$_{10}$ (µg/m3)	NO$_2$ (ppb)
	No. 5th 25th 50th 75th 95th	No. 5th 25th 50th 75th 95th
1985	369 18.0 36.1 46.9 84.4	320 3.3 11.1 19.0 24.9 39.2
1986	356 20.6 37.5 45.6 72.9	310 3.3 10.1 18.3 24.6 35.2
1987	381 19.2 28.1 42.1 71.5	280 3.4 11.9 19.3 26.2 39.3
1988	386 27.8 32.0 45.7 61.2	259 3.0 10.1 18.9 26.1 39.1
1989	1,127 25.8 30.9 37.5 57.1	308 3.1 12.0 19.6 26.2 38.9
1990	1,319 23.3 34.0 48.3	326 3.7 10.1 17.4 23.4 35.4
1991	1,379 22.9 33.7 47.9	325 3.3 9.8 16.2 23.8 34.5
1992	1,509 20.9 25.3 31.0 43.5	339 3.4 10.1 16.3 22.8 35.0
1993	1,513 20.1 24.9 29.6 42.1	357 3.7 9.1 15.9 22.2 33.9
1994	1,595 20.4 24.7 30.0 42.4	363 3.7 9.4 16.4 23.5 34.7
1995	1,841 19.1 24.0 28.6 42.5	373 3.8 9.5 16.0 21.8 33.0
1996	1,659 20.1 19.3 23.3 47.1	380 3.8 9.2 15.8 21.3 35.5
1997	1,737 19.2 24.0 27.0 43.2	385 4.0 9.2 14.7 20.0 32.4
1998	2,722 18.4 25.3 28.3 41.8	400 3.7 8.9 14.5 20.4 32.5
1999	2,419 18.9 23.7 29.0 50.6	400 3.8 9.5 15.8 21.8 32.5
2000	2,133 18.5 23.0 26.5 48.2	392 3.6 9.2 14.8 20.2 30.4
ALL	23,565 12.3 20.4 25.3 48.9	5,544 3.5 9.7 16.5 23.0 34.9
models are shown in Table 2. The covariate distributions were quite similar for both sets of monitors. As shown in Figure 1, the cohort participants are located throughout the continental U.S., and most live close to the monitoring locations. Specifically, the cohort members lived a median distance of 10.2 km from PM$_{10}$ monitoring sites and 16.6 km from NO$_2$ sites. Seventy-five percent of the cohort was no more than 21.1 km from a PM$_{10}$ monitor included in the model and 35.6 km from an NO$_2$ monitor included in the model.

PM$_{10}$. The model with only the spatial spline and calendar year indicator variables had a model R^2 of 0.48. Region of the country, distance to all three census classes of road, block group population density, elevation, proportion of low-intensity residential, high-intensity residential, and industrial, commercial, or transportation land use within 1 km were all statistically significant independent predictors of measured PM$_{10}$ concentrations in univariate models. In a multivariate model, all predictors except population density ($p = 0.15$) remained statistically significant predictors of measured PM$_{10}$ annual concentrations (Table 3). Population density was removed from the final model, because it did not increase the cross-validation R^2 or model fit as determined by AIC. The final model had an R^2 of 0.49.

Increases in the proportion of surrounding land use for high-intensity residential or for industrial, commercial, or transportation uses were associated with increases in measured PM$_{10}$ levels. Increases in all other covariates were associated with decreases in measured PM$_{10}$. The cross-validation R^2 of the final model was 0.55. The median [and

Covariate	5th	25th	50th	75th	95th	5th	25th	50th	75th	95th
Block group population density (people/km2)	2	203	1,643	3,917	9,343	5	132	2,139	4,919	14,790
Elevation (meters above sea level)	4	84	214	684	1,836	4	28	150	275	1,314
Land use within 1 km (%)	0.0	4.6	19.2	36.9	61.9	0.0	2.5	17.6	35.0	63.3
Low-intensity residential	0.0	0.0	3.4	17.7	45.0	0.0	0.0	3.3	18.0	47.6
High-intensity residential	0.0	5.0	15.8	30.9	59.1	0.0	3.2	12.5	26.0	57.4
Industrial, commercial, transportation	0.13	0.8	2.5	11.4	75.6	0.16	0.7	2.0	5.3	43.0
Distance to nearest road (km)	0.06	0.4	1.7	6.4	34.9	0.09	0.7	2.6	7.2	30.6
A2 road	0.04	0.4	1.2	3.0	13.2	0.05	0.4	1.4	3.5	13.1
A3 road	1.42	3.7	8.39	17.7	39.8	0.9	24.1	113.6	693.8	12275.4

Table 3. Summary of the GIS-derived covariates for the PM$_{10}$ and NO$_2$ monitors evaluated in exposure models, by percentile.

Abbreviations: ICT, percentage of land used for industrial, commercial, or transportation; IQR, interquartile range; different p-values for those $< 2 \times 10^{-16}$; *R does not provide exact p-values for those $< 2 \times 10^{-16}$; *Regression slope is linear regression of observed measurements at the hold-out locations on model predictions at those locations. Negative or positive. *Distance to and NO$_2$ from the nearest power plant were not considered for PM$_{10}$.

Figure 1. TrIPS cohort members and monitoring locations for PM$_{10}$ and NO$_2$.

[Image of the United States map with TrIPS cohort members and monitoring locations indicated.]
Spatial modeling of PM$_{10}$ and NO$_2$

interquartile range (IQR) prediction error of the final model was 0.24 (7.0) µg/m3. The intercept and slope from the regression of observed and predicted values were 1.49 and 0.94, respectively, and the RMSPE was 9.1 µg/m3. A plot of the observed versus expected values from the cross-validation is presented in Supplemental Material, available online (doi:10.1289/ehp.0900840.S1 via http://dx.doi.org/).

NO$_2$. The model with only the spatial spline and calendar year indicators had a model R^2 of 0.73. Region of the country, distance to road, block group population density, elevation, surrounding land use, distance to nearest NO$_2$-emitting power plant, and the level of emissions from that power plant were all statistically significant predictors of measured NO$_2$ concentrations in univariate models. In a multivariate model, all predictors remained statistically significant predictors of measured NO$_2$ annual concentrations (Table 3). The final multivariate model had an R^2 of 0.88. Increases in the block group population density, NO$_2$ emissions of the nearest power plant, and the proportion of surrounding land use used for low- or high-intensity residential or for industrial, commercial, or transportation uses were associated with increases in measured NO$_2$ levels. Increases in all other covariates were associated with decreases in measured NO$_2$. The cross-validation R^2 of the final model was 0.90. The median (and IQR) prediction error of the final model was 0.10 (3.7) ppb, the intercept and slope of the regression of observed and predicted measurements were 0.00 and 1.04, and the RMSPE was 3.5 ppb. A plot of the observed versus expected values from the cross-validation is presented in Supplemental Material (doi:10.1289/ehp.0900840.S1).

Comparison with IDW. A summary of the cross-validation parameters for the IDW exposure models is presented in Table 4. For both pollutants, the cross-validation R^2 of the IDW model ($R^2 = 0.44$ for PM$_{10}$ and 0.67 for NO$_2$) was lower than those from the GAMs ($R^2 = 0.55$ for PM$_{10}$ and 0.90 for NO$_2$). For PM$_{10}$, the slope from regression for the IDW model was 0.76 and the slope for the GAM was 0.94, indicating greater accuracy. The median prediction error for the IDW model was almost half that of the GAM, also indicating greater accuracy, but the RMSPE was higher, indicating lower precision. In contrast, for NO$_2$ the IDW prediction error was 10-fold higher than the GAM, and the RMSPE was almost twice as large.

Table 4. Comparison of the predictive performance of general additive generalized additive models (GAM) and inverse distance weighted exposure models.

Exposure model	PM$_{10}$ (µg/m3)	NO$_2$ (ppb)		
	GAM	IDW	GAM	IDW
Cross-validation R^2	0.95	0.44	0.90	0.67
Regression intercept and slope	1.49, 0.94	6.44, 0.76	0.00, 1.04	0.00, 1.00
Median (IQR) prediction error	0.24 (7.0)	0.11 (6.1)	0.10 (3.7)	1.00 (7.5)
RMSPE	9.1	10.6	3.5	6.5

Regression slope is linear regression of observed measurements at the hold-out locations on model predictions at those locations.

Table 5. Summary of GIS-derived covariates, by percentile, for TriPS cohort member residential addresses.

Covariate	5th	25th	50th	75th	95th
Block group population density (people/km2)	42	300	1,686	4,382	10,162
Elevation (m above sea level)	14	125	209	294	1,126
Land use within 1 km (%)	0.0	6.2	23.7	41.8	66.5
High intensity residential	0.0	0.0	3.2	15.0	48.2
Industrial, commercial, transportation	0.0	1.0	4.6	11.7	28.3
Distance to nearest road (km)	0.3	1.3	3.1	7.1	23.5
A1 road	0.2	1.0	2.8	7.1	17.6
A3 road	0.1	0.6	1.7	6.3	8.1
Distance to nearest power plant (km)	2.8	6.8	11.7	19.4	39.9
NO$_2$ emissions of nearest power plant (tons)	0.3	7.9	76.0	720.5	8,934.5

Figure 2. Distribution of annual GAM-predicted PM$_{10}$ (A) and NO$_2$ (B) values (by percentile) at the TriPS cohort addresses.
distributions of the predictions for both PM_{10} and NO_{2} are shown in Figure 3. At all three time points shown, PM_{10} values are higher in the western half of the United States than in the east. For NO_{2}, however, the levels in all time periods are highest in major cities. To compare the two prediction methods, Figure 4 shows the cohort predictions for PM_{10} at baseline (1985), midpoint (1993), and last year of follow-up (2000). There is moderate correlation between the results of the GAM and IDW PM_{10} models, although the IDW models tend to be lower than the predictions of the GAMs (thus their lower slope of 0.76 vs. 0.94 for the GAM when both are compared with measured concentrations). The Spearman correlations between the two prediction types were 0.66 for 1985, 0.64 for 1993, and 0.77 for 2000. As shown in Figure 4, there is also moderate correlation between the GAM and IDW NO_{2} models. Specifically, the Spearman correlation is 0.63 for 1985, 0.53 for 1993, and 0.51 for 2000. Overall, the IDW models tend to be lower than the GAM predictions and tend to have less variance (heterogeneity).

Discussion

Our results show that GAMs with a combination of spatial smoothing and GIS-derived covariates are a practical method for predicting annual outdoor air pollution values for a cohort dispersed across the continental United States. The PM_{10} and NO_{2} GAM models were reasonably accurate and precise. The final model for NO_{2} had a model R^2 of 0.88 and a cross-validation R^2 of 0.90, whereas the final model R^2 for PM_{10} was 0.49 and the cross-validation R^2 was 0.55. Overall, the GAMs for both PM_{10} and NO_{2} outperformed the simpler IDW models, although there was a greater difference in the performance of the two modeling approaches for NO_{2}.

As expected, based on the growing literature of land-use regression models, many GIS-derived predictors were important in the pollution models. Distance to the nearest road of each road class, distance to and emissions from the nearest power plant, and land-use terms defining the surrounding area, variables previously shown to represent major sources of ambient NO_{2} in the United States (U.S. EPA 2007b), were all statistically significant predictors of NO_{2}. In PM_{10} models, distance to the nearest road of each road class was the most important class of predictors, likely representing traffic, an important local source of particulate matter (U.S. EPA 2004). These covariates did not improve the model R^2 as much for PM_{10} as they did for NO_{2}. It is possible that there are other important sources of PM_{10} that we have not included (e.g., sea salt, crustal materials) that would improve the model R^2 more.

A growing number of studies have used spatial smoothing methods or models based on GIS-derived variables to predict ambient air pollution levels for use in epidemiologic studies (Adar and Kaufman 2007; Jerrett et al. 2005a; Ryan and LeMasters 2007). Many of these studies have relied on proximity to specific pollution sources or monitoring locations to assign exposures. Others have focused on characterizing pollution from a specific source, typically on-road vehicles (Hoek et al. 2001). The most commonly used GIS-based methods have used information on traffic volume and distance to roadways as surrogates of exposure (Adar and Kaufman 2007; Bayer-Oglesby et al. 2006; Forastiere and Galassi 2005; Garshick et al. 2003; Kan et al. 2007; Nitta et al. 1993; Oosterlee et al. 1996; Venn et al. 2005). In many of these studies, distance to road is divided into categories, or individuals are classified as exposed or not exposed, based on an a priori chosen distance. This method likely leads to exposure misclassification in many of these studies and is likely also quite sensitive to the buffer or category size selected.

Another popular GIS-based exposure method is land use regression (Briggs et al. 1997; Hoek et al. 2001; Ryan and LeMasters 2007; Ryan et al. 2007; Su et al. 2008). This approach is typically used in smaller areas to model local spatial variability, and roadway networks and traffic are often inputs to these models, although some also include information on surrounding land use, meteorology, and ambient air pollution monitoring locations. Other studies have used spatial smoothing techniques of the ambient measurements in single cities or counties (Jerrett et al. 2005b; Meng et al. 2007). Although direct comparisons are not appropriate, our NO_{2} model R^2 of 0.88 is higher than those observed in many land-use regression models (0.52–0.76) (Briggs et al. 2000; Cyrys et al. 2005; Gilbert et al. 2005; Rosenlund et al. 2008) or in an EU-wide model based on ordinary kriging (Beelen et al. 2009).

On a larger spatial scale, in an exposure assessment for the Women’s Health Initiative,
In this study, spatial smoothing was used to generate daily \(PM_{2.5} \) and \(PM_{10} \) estimates for the entire continental United States for the year 2000 (Liao et al. 2006; Szpiro et al. 2007). For \(PM_{10} \), the authors report a median prediction error of 0.04 \(\mu g/m^3 \) and an RMSPE of 19.48 \(\mu g/m^3 \). In a recent exposure assessment for the Nurses’ Health Study, a combination of spatial smoothing and GIS-derived covariates was used to produce monthly predictions of \(PM_{10} \) 1988–2002 for residences in the northeastern United States (Yanosky et al. 2008). This model has a mean prediction error of –0.4 \(\mu g/m^3 \) and an RMSPE of 6.4 \(\mu g/m^3 \) across the entire region, with no discernable differences by state or level of urbanization.

Our models are similar to this modeling approach: Both include spatial smoothing and GIS-based covariates to generate predictions. The Yanosky model allows the generation of monthly estimates of \(PM_{10} \) through a complex spatiotemporal model and allows the inclusion of time-varying covariates and control for seasonality. In contrast, although the model presented here also uses spatial smoothing and GIS-based covariates, it is more appropriate for annual means and is less computationally intensive. Therefore, for \(PM_{10} \), the amount of bias (measured by average (mean or median) prediction error) and precision (measured by RMSPE) in our final model are comparable to that of other studies in the United States.

Our exposure model has several important limitations. We rely on air pollution data from existing networks that are not uniformly distributed across the continental United States. However, the measures of precision and accuracy determined by cross-validation for the held-out monitoring locations indicated good predictive performance of the models. Additionally, most of the members of the specific cohort we are using in this analysis live close to monitoring locations, so the mismatch between monitor and subject locations is unlikely to be a large source of error in exposure for our chosen application. For studies where the cohort is located much further from monitoring locations, this would likely be a larger source of error. In focusing our modeling on annual means, we are likely missing important seasonal and temporal variability occurring within each year. In years with fewer monitoring locations, it is possible that our model is underpowered to detect annual differences from the long-term spatial trends; however, in later years, only 20–40 degrees of freedom were needed to fit these surfaces, so this may not be a large issue. Our model also does not include information on time-varying covariates (such as point-source pollution or weather, especially wind direction and speed, mixing height, and precipitation) or interactions between our chosen covariates and calendar year. It is likely that information on these factors would improve the predictive ability of our model; however, it would require a different modeling approach than the one we have chosen. By treating population density, distance from road, and land use as time invariant, we are assuming that these did not vary during the study period. This is not likely to be true and will lead to increased error in areas with rapidly changing infrastructure during this time period. Finally, we are using a spatial smoothing model for the entire continental United States. It has been suggested that regional models may be more appropriate for the continental United States (Szpiro et al. 2007); however, it has been shown that for daily predictions, regional models do not substantially outperform a single countrywide model (Liao et al. 2006). Our models are adjusted for region of the country (using indicator variables), and although including region did improve the fit of the models, the regional terms themselves were not significant.

Conclusions

In conclusion, our air pollution exposure model combining spatial smoothing techniques and GIS-based predictors is a useful way to provide estimates of U.S.-wide annual exposures for \(PM_{10} \) and \(NO_2 \). These models can be used to produce reasonably accurate and precise measures of pollution at the residential addresses of participants in epidemiologic studies focusing on the adverse effects of constituents of air pollution as far back as 1985.

REFERENCES

Adar SD, Kaufman JD. 2007. Cardiovascular disease and air pollutants: evaluating and improving epidemiological data implicating traffic exposure. Inhal Toxicol 19(suppl 1):125–149.

Bayer-Digebey L, Schindler C, Hazenkamp-von Arx ME, Braun-Fahrlander C, Keidel D, Rapp R, et al. 2006. Living near main streets and respiratory symptoms in adults: the Swiss Cohort Study on Air Pollution and Lung Diseases in Adults. Am J Epidemiol 164(10):1190–1198.

Beelen R, Hoek G, Pekelis E, Vienneau D, de Hoogh K, Briggs DJ. 2009. Mapping of background air pollution at a fine spatial scale across the European Union. Sci Total Environ 407(6):1852–1867.

Brauer M, Hoek G, van Vliet P, Mielkeffe K, Fischer P, Gehring U, et al. 2003. Estimating long-term average particulate air pollution concentrations: application of traffic indicators and geographic information systems. Epidemiology 14(2):228–239.

Briggs DJ, Collins S, Elliott P, Fischer P, Kingham S, Lebret E. 1997. Mapping urban air pollution GIS: a regression-based approach. Int J Geogr Inf Sci 11(7):899–918.

Figure 4. Comparisons of the distribution of GAM- and IDW-predicted values for \(PM_{10} \) (A) and \(NO_2 \) (B) at TriPS cohort residential addresses at the beginning (1985), middle (1993), and end (2000) of follow-up.
