Study on the Amino Acids in different Varieties of Osmanthus Fragrans Using Grey Pattern Recognition and Grey Hierarchical Clustering Analysis

Libing Zhou

Guangxi Science & Technology Normal University, Laibin 546119, Guangxi, China
e-mail: zhanyou159@126.com

Abstract. The research aimed to comprehensively evaluate 17 kinds of amino acids in different varieties of Osmanthus fragrans. The grey pattern recognition and grey hierarchical clustering analysis methods were used to analyze the data of amino acids and find out the relationship among 17 kinds of themselves including aspartic acid, threonine, serine, glutamic acid, proline, glycine, alanine, cystine, valine, methionine, isoleucine, leucine, tyrosine, phenylalanine, histidine, lysine, and arginine. Combined with MATLAB2013 and SPSS softwares, the gray metrology methods were made on the amino acids of Osmanthus fragrans and the efficacy of traditional Chinese medicine. The first gray correlation coefficient factor had greater grey correlation coefficient on the indexes of X_1, X_2, X_5, X_6, X_7, X_8, X_9, X_{10}, X_{11}, X_{12}, X_{13}, X_{14}, X_{15}, X_{16}, and the second gray correlation coefficient factor had greater grey correlation coefficient on the indexes of X_4, X_{15}, and the third gray correlation coefficient factor had greater grey correlation coefficient on the index of X_8. 17 kinds of amino acids in Osmanthus fragrans in the order were Gold Osmanthus fragrans > Silver Osmanthus fragrans > the Four Seasons Osmanthus fragrans > Dan Osmanthus fragrans. Based on grey pattern recognition and grey hierarchical clustering analysis, a recognition model for evaluating traditional Chinese medicine quality was constructed. These studies provided the scientific base and theoretical foundation for the future large-scale rational relation development of Osmanthus fragrans resources as well as the relationship between the amino acids and traditional Chinese medicine efficacy for the human.

1. Introduction

Osmanthus (Osmanthus fragrans LOUT.) was one of the ten traditional flowers in China, mainly divided into four varieties including Gold Osmanthus fragrans, Silver Osmanthus fragrans, Dan Osmanthus fragrans and the Four Seasons Osmanthus fragrans, native to Asia, mostly in China and Japan, while China was in the majority, especially in Guangxi, Hubei, Guizhou, Jiangsu, Zhejiang, Anhui and other places. The resources of Osmanthus fragrans in China are rich, which contains rich amino acids, especially 8 kinds of amino acids necessary for human body. Proteins were the material basis of life, life was a form of existence of proteins. Amino acids were the basic units of proteins, basic materials to repair tissue and construct the cells, the most basic materials composed of biological proteins and related to the life activities. The lack of any kind of essential amino acids in human body would lead to abnormal physiological function, affect the metabolism of antibody, eventually leading
to disease. Therefore, the research[1-3] on the relationship between human health and amino acids in Osmanthus fragrans was of great significance.

2. Materials and methods

2.1 Materials
This paper selected 17 kinds of amino acids including aspartic acid X_1, serine X_2, glutamic acid X_3, glycine X_4, histidine X_5, arginine X_6, alanine X_7, proline acid X_8, cystine X_9, tyrosine X_{10}, threonine X_{11}, valine X_{12}, methionine X_{13}, methionine X_{14}, isoleucine X_{15}, leucine X_{16}, phenylalanine X_{17} in four varieties of Osmanthus fragrans including Gold Osmanthus fragrans, Silver Osmanthus fragrans, Dan Osmanthus fragrans and the Four Seasons Osmanthus fragrans as an analysis sample, the original data from the literature[4].

2.2 Methods

2.2.1 Grey pattern recognition
Grey pattern recognition was one of the most commonly used grey metrology methods for each scheme and the correlation coefficient of the ideal scheme consisting of the best indicators. The grey correlation degree was obtained by the correlation coefficient, then according to the size of the correlation degree to sort, analyze to come to the conclusion. This method was superior to the classical mathematical method, through the intention, views and requirements of conceptualization, model, so that the study of the grey system from structure, model, relationship gradually changed from black to white, made uncertain factors gradually clear.

Grey pattern recognition analysis provided us with a way to analyze the relationship between the analytical factors, the sample size and the number of samples with and without rules were equally applicable, data and samples might not have statistical significance, which would make up for the use of mathematical statistical methods (principal component analysis, factor analysis, etc.) as a result of the analysis system defects, and the amount of calculation was small, very convenient.

2.2.2 Grey system clustering analysis
Grey system clustering analysis was to classify the research object, put all the case classification in different classes, so that individuals of the same class had greater similarity, individuals of different categories had greater differences.

3. Results and discussion

3.1 Grey pattern recognition process

3.1.1 Select reference sequence
With n samples, each sample had m evaluation indexes, which was composed of the evaluation unit sequence $\{X_{ij}\}$, $i=1,2,\ldots,n$; $j=1,2,\ldots,m$. Using Grey pattern recognition method the reference sequence was firstly selected as the evaluation measure. The optimal reference sequence was $\{X_{sj}\}$, each index of the optimal reference sequence was the optimal value or maximum of n samples corresponding indicators.

3.1.2 The original data normalization processing
Usually evaluation index to measure was not uniform, therefore, it is necessary to normalize the raw data: $Y_{ij}=x_{ij}/\bar{x}_j$, where Y_{ij} was normalized data after treatment, x_{ij} for the original data, \bar{x}_j for the mean value of the j-th index for n samples. After normalizing the data, the data were shown in table 1.
Table 1: The data after the normalization of raw data

Amino Acids	Gold Osmanthus Fragrans	Silver Osmanthus Fragrans	Dan Osmanthus Fragrans	Four Seasons Osmanthus Fragrans
Aspartic Acid X1	1.0970	0.9556	1.0905	0.8569
Serine X2	1.3267	1.1287	0.6832	0.8713
Glutamic Acid X3	0.8367	1.0408	0.9388	1.1633
Glycine X4	0.6667	1.3333	0.6667	1.0000
Histidine X5	1.8065	0.1398	0.8387	1.2043
Arginine X6	1.7183	1.4225	0.7606	0.0845
Alanine X7	1.7549	1.2647	0.4314	0.5490
Proline Acid X8	1.4812	0.9850	0.5865	0.9398
Cystine X9	1.4865	0.8919	0.6486	0.9595
Tyrosine X10	1.6727	0.5636	1.2906	0.4727
Threonine X11	1.2061	1.0303	0.8424	0.9091
Valine X12	1.0720	0.9920	0.9360	0.9840
Methionine X13	1.6857	1.1333	0.8190	0.3524
Phenylalanine X14	1.0945	0.9685	0.9843	0.9528
Isoleucine X15	1.0276	1.0994	0.7956	1.0718
Leucine X16	1.4179	0.9851	0.7015	0.8657
Phenylalanine X17	1.4400	0.9133	0.9000	0.7533

3.1.3 Calculation of correlation coefficient
Relative to the optimal reference sequence, the correlation coefficient:

$$\xi_{i(s)} = \frac{\Delta_{\min} + \rho \Delta_{\max}}{Y_{ij} - Y_{ij}} + \rho \Delta_{\max}$$

$$\Delta_{\min} = \min \left| Y_{ij} - Y_{ij} \right|, \Delta_{\max} = \max \left| Y_{ij} - Y_{ij} \right|$$

(i=1,2,…,n;j=1,2,…,m),\(\rho\) was resolution ratio, Value of 0.5.

3.1.4 Calculation of correlation degree
Relative to the optimal reference sequence, the correlation degree

$$R_i(s) = \frac{1}{m} \sum_{j=1}^{m} \xi_{i,j(s)}$$

Ranking of each evaluation unit could be given according to the correlation degree of the evaluation sequence relative to the reference sequence. The greater \(R_i(s)\) was, the more the correlation degree would become between the correlation evaluation unit sequence and the optimal reference sequence, the better evaluation unit. The correlation degree of a sequence to be evaluated was greater than the correlation degree of the reference sequence, it showed that the sequence and the reference sequence would be the most similar to the quality of the best sequence, namely the optimal quality was the quality of the best, so that the quality of Chinese herbal medicine could ultimately be comprehensive evaluation results[5-10].

According to the grey pattern recognition methods, the grey correlation coefficient and correlation degree were calculated by using the grey measurement methods[11-17] and the MATLAB2013 and SPSS softwares. Correlation coefficient, correlation degree and ranking with relative to the reference sequence of different varieties of Osmanthus fragrans were listed in Table 2.
Table 2: Correlation coefficient, correlation degree and ranking with relative to the reference sequence of different varieties of Osmanthus fragrans

projects	Gold Osmanthus fragrans	Silver Osmanthus fragrans	Dan Osmanthus fragrans	the Four Seasons Osmanthus fragrans	
Correlation coefficient	aspartic acid X₁	1.0000	0.8549	0.9923	0.7763
	serine X₂	1.0000	0.8080	0.5643	0.6466
	glutamic acid X₃	0.7184	0.8718	0.7878	1.0000
	glycine X₄	0.5556	1.0000	0.5556	0.7143
	histidine X₅	1.0000	0.3333	0.4627	0.5805
	arginine X₆	1.0000	0.7380	0.4653	0.3378
	alanine X₇	1.0000	0.6296	0.3864	0.4087
	proline acid X₈	1.0000	0.6268	0.4822	0.6062
	cystine X₉	1.0000	0.5836	0.4986	0.6126
	tyrosine X₁₀	1.0000	0.4290	0.6858	0.4098
	threonine X₁₁	1.0000	0.8258	0.6962	0.7372
	valine X₁₂	1.0000	0.9124	0.8597	0.9045
	methionine X₁₃	1.0000	0.6014	0.4902	0.3846
	methionine X₁₄	1.0000	0.8687	0.8832	0.8547
	isoleucine X₁₅	0.9207	1.0000	0.7328	0.9679
	leucine X₁₆	1.0000	0.6582	0.5377	0.6015
	phenylalanine X₁₇	1.0000	0.6127	0.6068	0.5482
correlation degree Ri(s)	0.9526	0.7267	0.6287	0.6524	
ranking	1	2	4	3	

The first gray correlation coefficient factor had greater grey correlation coefficient on the indexes of X₁, X₂, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₆, X₁₇, as shown in table 2. X₁ had a protective effect on the muscle, a protective effect against myocardial infarction and could increase the flavor and promote appetite. X₂ was a component of the serine phospholipids in the brain and other tissues that could treat lung disease. X₅ could be involved in blood cell protein synthesis, promote the generation of blood, produce ammonia, promote dilation of blood vessels, increase the permeability of the vascular wall and glandular secretion that had the effect on allergic disease: cure stomach and duodenum effects in treating heart function, angina pectoris, lower blood pressure, which had the effect of asthma and rheumatoid arthritis. X₈ could reduce blood ammonia, increase muscle activity, maintain sexual function, had certain effect to the treatment of sperm. X₉ could promote the metabolism of alcohol in the blood, had hepatoprotective effect. X₁₀ could increase appetite, promote metabolism, prevent and cure Alzheimer's disease and there was remarkable effect on chronic diseases such as treatment of neurogenic inflammation, ulcer and stunting. X₁₁ had the function of transforming certain amino acids to balance, lack of it would cause weight loss, make people thin, and even death. X₁₂ could promote nervous system function normal, if the lack of it, would cause the tactile sensitivity improved, muscle ataxia disorders. X₁₃ involved in the synthesis of choline could participate in the formation of hemoglobin, tissue and serum, promote the function of the pancreas, spleen and lymph, promote the synthesis of skin protein and insulin, improve the activity of muscle, had the function of fat to the prevention and treatment of atherosclerosis of the hyperlipemia. X₁₄ was the composition of the liver and gallbladder, could promote brain development, fat metabolism and the pepsin secretion, regulate the pineal gland, mammary gland, corpus luteum and ovarian to prevent degeneration of the cells, enhance immunity and improve growth retardation and calcium absorption to promote bone growth. Tips could be from Osmanthus fragrans in continuous uptake of amino acids. X₁₆ could promote skin, wound and bone healing and had certain
effect on reducing blood sugar levels in the treatment of dizziness, if the lack of it, would stop the growth, weight loss.

X_{17} could be converted to tyrosine in the body, promote the synthesis of thyroid hormone and adrenaline, participate in the elimination of loss of kidney and bladder function. Table 2 showed, the second gray correlation coefficient factor had greater gray correlation coefficient on the indexes of X_4, X_{15}. X_4 could reduce the blood sugar levels and cholesterol levels in the blood, prevent and treat diabetes, blood clots, blood clots, high blood pressure, excessive gastric acid, improve muscle vitality. X_{15} could maintain the balance of the body, promote the increase of appetite and anemia and treatment of mental disorders, also to participate in the spleen, brain and thymus gland metabolism and regulation, if the lack of it, there would be physical failure, coma and other symptoms. The third gray correlation coefficient factor had greater grey correlation coefficient on the index of X_3, as shown in table 2. X_3 that had curative and therapeutic effect on acid poisoning, epilepsy and mental schizophrenia, neurasthenia treatment, etc. could protect the skin moist, prevent chapped, improve the central nervous system activity, promote oxidation, participate in brain protein and glucose metabolism, maintain and promote brain cell function, promote the increase of intelligence, boost the body's immune function[24-28].

From table 2 showed, different varieties of Osmanthus fragrans including Gold Osmanthus fragrans, Silver Osmanthus fragrans, Dan Osmanthus fragrans and the Four Seasons Osmanthus fragrans contained the contents of 17 kinds of amino acids in the order from high to low: Gold Osmanthus fragrans > Silver Osmanthus fragrans > the Four Seasons Osmanthus fragrans > Dan Osmanthus fragrans. In terms of content of amino acids, the best quality Gold Osmanthus fragrans medicinal materials, followed by Silver Osmanthus fragrans medicinal materials, Dan Osmanthus fragrans medicinal materials worst.

3.2 Grey system clustering analysis
Grey system clustering analysis was a method of mathematical statistics, the original data were normalized, and then 17 kinds of amino acids including aspartic acid, threonine, serine, glutamic acid, proline, glycine, alanine, cystine, valine, methionine, isoleucine, leucine, tyrosine, phenylalanine, histidine, lysine, arginine of different cultivars of Osmanthus fragrans in China were evaluated and classified by the methods of quantitative analysis of the gray factors in grey system clustering analysis. Using MATLAB2013 and SPSS softwares the data were used to analyze by grey system clustering analysis. After extracting the gray factors, the gray factor data were analyzed using hierarchical clustering method of grey system clustering analysis. Based on the gray factor clustering analysis, each two samples with Average linkage linked with the method of euclidean distance measurement, the sequence was plotted in figure 1. The tree graph of grey system clustering analysis was shown in figure 1.

![Fig. 1: Tree diagram of grey system clustering analysis](image)

Figure 1 showed that according to the results of grey system clustering analysis four main varieties of Osmanthus fragrans including Gold Osmanthus fragrans, Silver Osmanthus fragrans, Dan Osmanthus fragrans and the Four Seasons Osmanthus fragrans were divided into two categories, a
class of Gold Osmanthus fragrans, another kind of Silver Osmanthus fragrans, Dan Osmanthus fragrans and the Four Seasons Osmanthus fragrans, indicating that Gold Osmanthus fragrans and other Osmanthus fragrans in nature existed obvious differences, which indicated that Osmanthus fragrans as medicinal plants in China, in terms of content of amino acids, the best quality Gold Osmanthus fragrans, followed by Silver Osmanthus fragrans. Through the grey system clustering analysis, Figure 1 showed similar extent and nature of the genetic relationship of the different varieties of Osmanthus fragrans would be found out, which would help us study them.

Figure 1 showed amino acids in Osmanthus fragrans there were similarity and provided the basis for further pharmacological study of Osmanthus fragrans medicinal materials in China. On the basis of grey pattern recognition, it was feasible to classify the different varieties of Osmanthus fragrans in grey system, and the result was the same with the grey pattern recognition analysis. The conclusion was objective, credible and persuasive[29-32].

4. Conclusions
From grey pattern recognition and grey system clustering analysis, the results showed that the contents of amino acids in Gold Osmanthus fragrans were the highest, which indicated that Gold Osmanthus fragrans as traditional Chinese medicinal materials, the best quality Gold Osmanthus fragrans, followed by Silver Osmanthus fragrans, the Four Seasons Osmanthus fragrans, Dan Osmanthus fragrans worst.

In this paper, the content of 17 kinds of amino acids in the four main varieties of Osmanthus fragrans was elucidated from two aspects of high and low by means of grey pattern recognition and grey system cluster analysis, so as to reflect the quality of corresponding medicinal materials, to dig out the implied relationship between amino acids and traditional Chinese medicine of Osmanthus fragrans, to make up for gaps in previous studies of Osmanthus fragrans medicinal materials in this field.

Using the world's most advanced MATLAB and SPSS softwares, gray metrology methods of grey pattern recognition and grey system clustering analysis method on China's four main varieties of Osmanthus fragrans including Gold Osmanthus fragrans, Silver Osmanthus fragrans, Dan Osmanthus fragrans and the Four Seasons Osmanthus fragrans were used to comprehensively analyze the data of amino acids and evaluate 17 kinds of themselves and find out the relationship among the 17 kinds of themselves including aspartic acid, threonine, serine, glutamic acid, proline, glycine, alanine, cystine, valine, methionine, isoleucine, leucine, tyrosine, phenylalanine, histidine, lysine, arginine of different cultivars of Osmanthus fragrans in China, which dig out hidden information between the amino acids of Osmanthus fragrans resource and traditional Chinese medicine efficacy. 17 kinds of amino acids in Osmanthus fragrans in the order were Gold Osmanthus fragrans > Silver Osmanthus fragrans > the Four Seasons Osmanthus fragrans > Dan Osmanthus fragrans. These studies provided the scientific base and theoretical foundation for the future large-scale rational relation development of Osmanthus fragrans resources as well as the relationship between the amino acids and traditional Chinese medicine efficacy for the human.

References
[1] Docyong Kima, Jaehyun Leea, Sunjae Leea1, Junseok Parka, Doheon Leeb, Predicting unintended effects of drugs based on off-target tissue effects, Biochemical and Biophysical Research Communications 469 (2016) 399–404.
[2] Deepti Singha, Surender Rawata, Mohd. Waseemb, Sunita Guptab, Andrew Lynnb, Mukesh Nitinc, Nirala Ramchiaryc, Krishna Kant Sharmaa, Molecular modeling and simulation studies of recombinant laccase from Yersinia enterocolitica suggests significant role in the biotransformation of non-steroidal anti-inflammatory drugs, Biochemical and Biophysical Research Communications 469 (2016) 306-312.
[3] Shao J, Tanner SW, Thompson N, Cheatham TE. Clustering molecular dynamics trajectories: 1. Characterizing the performance of different clustering algorithms. J Chem Theory Comput 3 (2007)2312–2334.

[4] Cheng Ye, Lin Zhang, Peng Wang, Yin zhu Shang, Li mei Wang, Comparative Study on Contents of Amino Acids and Trace Elements of 4 Osmanthus fragrans Varieties, The Food Industry 34 (2013)203-205.

[5] Md. Kawser Ahmeda, Nazma Shaheenb, Md. Saiful Islamc, Md. Habibullah-Al-Mamun, Saiful Islamb, Monirul Islamde, Goutam Kumar Kundud, Lalita Bhattacha rjeef, A comprehensive assessment of arsenic in commonly consumed foodstuffs to evaluate the potential health risk in Bangladesh, Science of the Total Environment 544(2016) 125-133.

[6] Emileh A, Abrams CF. A mechanism by which binding of the broadly neutralizing antibody b12 unfolds the inner domain α1 helix in an engineered HIV-1 gp120. Proteins 79 (2011)537–546.

[7] Hou T, Wang J, Li Y, Wang W. Assessing the performance of the MM/PBSA and MM/GBSA methods: I. The accuracy of binding free energy calculations based on molecular dynamics simulations, J Chem Inf Model 51 (2011)69–82.

[8] Raju RK, Burton NA, Hillier IH. Modelling the binding of HIVReverse transcriptase and nevirapine: an assessment of quantum mechanical and force field approaches and predictions of the effect of mutations on binding, Phys Chem Chem Phys 12 (2010):7117–7125

[9] Wang J, Morin P, Wang W, Kollman PA. Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA, J Am Chem Soc 123 (2001)5221–5230.

[10] Kukic P, Nielsen JE. Electrostatics in proteins and protein–ligand complexes, Future Med Chem 2 (2010)647–666.

[11] Grantz, D.A., Garner, J.H.B., Johnson, D.W., Ecological effects of particulate matter, Environ. Int. 29 (2003) 213–239.

[12] Isidora Deljanin, Davor Antanasijević, Andelika Bjelajac, Mira Aničić Urošević, Miroslav Nikolić, Aleksandra Perić-Gruijić, Mirjana Ristić, Chemometrics in biomonitoring: Distribution and correlation of trace elements in tree leaves, Science of the Total Environment 545–546 (2016) 361–371.

[13] Filzmoser, P., Hron, K., Reimann, C., Principal component analysis for compositional data with outliers, Environmetrics 20 (2009) 621–632.

[14] Gandois, L., Probst, A., Localisation and mobility of trace metal in silver fir needles, Chemosphere 87 (2012)204–210.

[15] Herngren, L., Goonetilleke, A., Ayoko, G.A., Analysis of heavy metals in roaddeposited sediments, Anal. Chim. Acta 571 (2006)270–278.

[16] Herva, M., Roca, E., Ranking municipal solid waste treatment alternatives based on ecological footprint and multi-criteria analysis, Ecol. Indic. 25 (2013) 77–84.

[17] Hovmand, M.F., Nielsen, S.P., Johnsen, I., Root uptake of lead by Norway spruce grown on 210Pb spiked soils, Environ. Pollut. 157 (2009) 404–409.

[18] A. Feklistov, S.A. Darst, Structural basis for promoter-10 element recognition by the bacterial RNA polymerase sigma subunit, Cell 147 (2011) 1257-1269.

[19] M. Tomsic, L. Tsujikawa, G. Panaghie, Y. Wang, J. Azok, P.L. de Haseth, Different roles for basic and aromatic amino acids in conserved region 2 of Escherichia coli sigma(70) in the nucleation and maintenance of the single-stranded DNA bubble in open RNA polymerase-promoter complexes, J. Biol. Chem. 276(2001) 31891-31896.

[20] A. Feklistov, N. Barinova, A. Sevostyanova, E. Heyduk, I. Bass, I. Vvedenskaya, K. Kuznetedov, E. Merkiene, E. Stavrovskaya, S. Klimasauskas, V. Nikiforov, T. Heyduk, K. Severinov, A. Kulbachinskiy, A basal promoter element recognized by free RNA polymerase sigma subunit
determines promoter recognition by RNA polymerase holoenzyme, Mol. Cell 23 (2006) 97-107.

[21] G. Panaghie, S.E. Aiyar, K.L. Bobb, R.S. Hayward, P.L. de Haseth, Aromatic amino acids in region 2.3 of Escherichia coli sigma 70 participate collectively in the formation of an RNA polymerase-promoter open complex, J. Mol. Biol. 299(2000) 1217-1230.

[22] Jie Lua, Yanyan Shib, Shuhong Wange, Hao Chena, Shuhui Caia, Jianghua Fenga, NMR-based metabolomic analysis of Haliotis diversicolor exposed to thermal and hypoxic stresses, Science of the Total Environment545-546(2016)280-288.

[23] Kim, J.W., Isobe, T., Chang, K.H., Amano, A., Maneja, R.H., Zamora, P.B., Siringan, F.P., Tanabe, S., Levels and distribution of organophosphorus flame retardants and plasticizers in fishes from Manila Bay, the Philippines. Environ. Pollut. 159(2011),3653–3659.

[24] R. Ni, L. Du, Y. Wu, X. P. Hu, J. Zou, Y. Sheng, A. Arie, Y. Zhang, and S. N. Zhu, Nonlinear Cherenkov difference-frequency generation exploiting birefringence of KTP, Applied Physics Letters108(2016) 031104.

[25] Duyang Zang, Zhen Chen, and Xingguo Geng, Sectorial oscillation of acoustically levitated nanoparticle-coated droplet, Applied Physics Letters108(2016) 031603.

[26] Zheng, X., Xu, F., Chen, K., Zeng, Y., Luo, X., Chen, S., Mai, B., Covaci, A., Flame retardants and organochlorines in indoor dust from several e-waste recycling sites in South China: composition variations and implications for human exposure, Environ. Int. 78(2015) 1–7.

[27] Wei, G.L., Li, D.Q., Zhuo, M.N., Liao, Y.S., Xie, Z.Y., Guo, T.L., Li, J.J., Zhang, S.Y., Liang, Z.Q., Organophosphorus flame retardants and plasticizers: sources, occurrence, toxicity, and human exposure. Environ. Pollut. 196(2015)29–46.

[28] Pan Xiao, Zhitao Kang, Alexandr A. Bansiliev, Jennifer Breidenich, David A. Scripka, James M. Christensen, Christopher J. Summers, Dana D. Diott, Naresh N. Thadhani, and Min Zhou, Laser-excited optical emission response of Cd Te quantum dot/polymer nanocomposite under shock compression, Applied Physics Letters108(2016)011908.

[29] G. C. Dyer, X. Shi, B. V. Olson, S. D. Hawkins, J. F. Klem, E. A. Shaner, and W. Pan, Far infrared edge photoresponse and persistent edge transport in an inverted InAs/GaSb heterostructure, Applied Physics Letters108(2016)013106.

[30] Ting Si, Chuansheng Yin, Peng Gao, Guangbin Li, Hang Ding, Xiaoming He, Bin Xie, and Ronald X. Xu, Steady cone-jet mode in compound-fluidic electro-flow focusing for fabricating multicompart microcapsules, Applied Physics Letters108(2016)021601.

[31] Robert G. Aykroyda, Stuart Barber, Luke R. Miller, Classification of multiple time signals using localized frequency characteristics applied to industrial process monitoring, Computational Statistics and Data Analysis 94 (2016) 351–362.

[32] Rob J. Hyndmana, Alan J. Lee b, Earo Wanga, Fast computation of reconciled forecasts for hierarchical and grouped time series, Computational Statistics and Data Analysis 97 (2016) 16–32.