Mounting evidence supports the concept of a microbiota–gut–brain axis and suggests that this axis is perturbed in neuropsychiatric disorders. The gut microbiota regulates host exposure to its products by modulating gut epithelial and blood–brain permeability, both of which are altered in patients with major depressive disorder. In addition, patients with major depressive disorder have shown substantial shifts in both the relative abundance of taxa and the neuroactive metabolic potential of the gut microbiota, compared with healthy controls.

Because of this compelling preclinical data, interventions affecting the microbiota–gut–brain axis are a potential treatment modality for depressive symptoms. Multiple systematic reviews have been conducted to assess the effect of microbiota-targeting interventions on depressive symptoms, but they include diverse populations and different study designs, include different subsets of the interventions targeting the gut microbiota and, not surprisingly, report conflicting findings. The objective of this study is to summarize the effect of microbiome-targeting interventions on depressive symptoms.
Search strategy
On July 3, 2019, we searched MEDLINE, Embase, PsycINFO, the Database of Abstracts of Reviews of Effects, Cochrane Database of Systematic Reviews and the Cochrane Controlled Register of Trials from inception; we updated our search on Mar. 5, 2021. We used search terms for gut microbiota-targeting interventions and depression, such as “probiotics” and “depression.” Search terms were intentionally broad, to avoid excluding relevant interventions or outcomes at this stage. We searched Medical Subject Headings (MeSH), text words and keywords (Appendix 1, Section 2). A research librarian developed the search strategy, which underwent Peer Review of Electronic Search Strategies (PRESS) review.18

We filtered search results to exclude studies published in a language other than English or French, those using animal models, and commentaries, editorials, letters and case reports. One author hand-searched reference lists of identified systematic reviews.

Study selection
Eight authors (M.H., J.L., L.E.D., B.F., L.M., O.E., R.D., N.C.A.C.) screened titles and abstracts independently and in duplicate. During title and abstract screening, we refined inclusion criteria in consultation with domain experts. To ensure that all abstract reviewers shared an understanding of the review objective, reviewers and domain experts calibrated with batches of 100 abstracts until 100% agreement was reached, before proceeding to review all remaining abstracts independently and in duplicate. We used the same procedure at full-text assessment, with batches of 10 full-texts assessed by the same 8 authors (M.H., J.L., L.E.D., B.F., L.M., O.E., R.D., N.C.A.C.). Any citation included by either reviewer proceeded to full-text review, which was also conducted independently and in duplicate. Reviewers discussed disagreements until consensus was reached.

We included randomized controlled trials that evaluated microbiome-targeting interventions (i.e., probiotic, prebiotic, symbiotic, paraprobiotic or fecal microbiota transplant) in adults aged 18 and older, that measured depressive symptoms with a validated scale and used a placebo or control comparator in which the active substance in the intervention (labeled as gut) activity of gut microbiota) was not administered (Table 1). We considered any study participant populations with a diagnosis of depression at baseline separately from participant populations where the presence of depression at baseline was not specified. In a sensitivity analysis, we removed studies deemed high risk of bias from estimates of effect. We visually inspected funnel plots for publication bias, and supplemented with trim and fill analysis.24

Table 1: Study inclusion criteria
Criterion
Population
Intervention
Comparator
Outcome
Design

Data extraction and quality assessment
In addition to assessing study quality, 8 authors (M.H., J.L., L.E.D., B.F., L.M., O.E., R.D., N.C.A.C.) used standardized forms to extract author, year, study design, population inclusion and exclusion criteria, follow-up, sample size, intervention(s), dose, additional supplements, depressive symptom outcome(s), independently and in duplicate. They also assessed study quality with the Cochrane Risk of Bias 2.0 tool.20 We used a hierarchy developed by an expert psychiatrist a priori to select an outcome from each study for inclusion in meta-analysis20 when the same mental health outcome was measured with more than 1 validated tool, whereby we prioritized observer-rated tools above self-rated tools, commonly used tools over less commonly used tools, and tools measuring specific symptoms over those measuring mixed symptoms.

Statistical analysis
We used random effects models with methods described by DerSimonian and Laird,21 as specified for meta-analysis a priori. We summarized effect size with the standardized mean difference of change scores after treatment, which expresses difference in effects between interventions in units of standard deviations. In accordance with the Cochrane Collaboration’s recommendations for best practice, we used Hedges’ g to correct for bias, often encountered in studies of small sample size.22 Where only pre- and post-treatment scores were provided, we used the conservative correlation coefficient of 0.5 to estimate change scores.21 We summarized heterogeneity quantitatively with I^2.

We conducted the meta-analysis and generated forest plots with the “metafor” package for R statistical software, and generated figures with the “ggplot2” package. We considered participant populations with a diagnosis of depression at baseline separately from participant populations where the presence of depression at baseline was not specified. In a sensitivity analysis, we removed studies deemed high risk of bias from estimates of effect. We visually inspected funnel plots for publication bias, and supplemented with trim and fill analysis.24

Ethics approval
Because this analysis uses only previously published data, ethics approval was not required.

Results
We identified 33 757 unique records. After abstract review, we assessed 231 full texts for eligibility, including 17 records identified through hand-searching. Of the full texts, we excluded
169 for the following reasons: not adult population \((n = 7)\), intervention or comparator not of interest \((n = 11)\), outcome not of interest \((n = 76)\), study design not of interest \((n = 53)\), abstract only or conference proceeding \((n = 10)\), duplicate \((n = 11)\) and not available in English or French \((n = 1)\) (Figure 1). Reasons for full text exclusion are in Appendix 1, Section 4. The final data set included 62 studies with 5059 patients.

Study characteristics

Characteristics of included studies can be found in Appendix 1, Section 5. The most common intervention type was probiotics \((n = 51)\),35-77 followed by synbiotics \((n = 7)\),64,72,76-80 prebiotics \((n = 7)\),31,64,73,81-84 paraprobiotics \((n = 1)\)85 and fecal microbiota transplant \((n = 1\) study).86 Four studies included more than 1 active intervention, with each intervention included separately in our meta-analysis.31,64,72,73 Sixteen distinct tools were used to evaluate depressive symptoms. The most used tools were the Hospital Anxiety and Depression Scale — Depression score \((n = 18)\) and the Beck Depression Inventory \((n = 16)\).

We excluded 2 studies from the meta-analysis, given the lack of studies with the same intervention or population with which to pool effect sizes.76,86 Of the 50 studies included in the meta-analysis, the intervention was a probiotic in 44 studies \((n = 9\) in populations with depression, \(n = 35\) in populations without depression), a prebiotic in 5 studies \((n = 3\) in populations with depression, \(n = 2\) in populations without depression) and a synbiotic in 6 studies (all in populations without depression).

One study evaluated synbiotics in a population with depression,76 and another evaluated fecal microbiota transplant in a population without depression;86 neither of these had other studies with which to pool effect estimates. These 2 studies presented sufficient information for meta-analysis and are therefore included in Figure 2.
Figure 2: Forest plot of (A) probiotic interventions in populations without depression, (B) probiotic interventions in populations with depression, prebiotic interventions in populations with and without depression, synbiotic interventions in populations with and without depression, and fecal microbiota transplant interventions in populations without depression. Note: BDI = Beck Depression Inventory, CAD = coronary artery disease, CES-D = Centre for Epidemiological Studies Depression Scale, CHD = coronary heart disease, CI = confidence interval, DASS21-D = Depression Anxiety Stress Scales – 21 Items, Depression Scale, DASS42-D = Depression Anxiety Stress Scales – 42 Items, Depression Scale, DM = diabetes mellitus, EPDS = Edinburgh Postnatal Depression Scale, GDS-K = Geriatric Depression Scale – Korean Version, GDS-SF = Geriatric Depression Scale – Short Form, HADS-D = Hospital Anxiety and Depression Scale — Depression score, HAM-D = Hamilton Depression Rating Scale, IBS = irritable bowel syndrome, MADRS = Montgomery–Åsberg Depression Rating Scale, MDD = major depressive disorder, MI = myocardial infarction, MS = multiple sclerosis, PCOS = polycystic ovary syndrome, PHQ-9 = Patient Health Questionnaire – 9, SMD = standardized mean difference, TRD = treatment-resistant depression, Zung-SDS = Zung Self-Rating Depression Scale.

A

Study

Probiotic interventions without depression
Study
Population
Assessment tool
Duration, wk
Risk of bias
No. of participants Placebo Intervention
SMD (95% CI)

Study

Probiotic interventions with depression
Study
Population
Assessment tool
Duration, wk
Risk of bias
No. of participants Placebo Intervention
SMD (95% CI)

Study

Prebiotic interventions in populations without depression
Study
Population
Assessment tool
Duration, wk
Risk of bias
No. of participants Placebo Intervention
SMD (95% CI)

Study

Prebiotic interventions in populations with depression
Study
Population
Assessment tool
Duration, wk
Risk of bias
No. of participants Placebo Intervention
SMD (95% CI)

Study

Synbiotic interventions in populations without depression
Study
Population
Assessment tool
Duration, wk
Risk of bias
No. of participants Placebo Intervention
SMD (95% CI)

Study

Synbiotic interventions in populations with depression
Study
Population
Assessment tool
Duration, wk
Risk of bias
No. of participants Placebo Intervention
SMD (95% CI)

Study

Fecal microbiota transplant interventions in populations without depression
Study
Population
Assessment tool
Duration, wk
Risk of bias
No. of participants Placebo Intervention
SMD (95% CI)

Study

Fecal microbiota transplant interventions in populations with depression
Study
Population
Assessment tool
Duration, wk
Risk of bias
No. of participants Placebo Intervention
SMD (95% CI)

Notes:

- Some concerns refer to methodological concerns that may affect the validity of the study.
- Risk of bias is assessed using the Cochrane Risk of Bias tool.
- SMD (standardized mean difference) is used as the effect size measure.
- CI (confidence interval) is provided for SMD values.

Figure Legend:

- **Favours comparator:** Indicates statistically significant differences between the intervention and placebo groups.
- **Favours intervention:** Indicates statistically significant improvements in the intervention group compared to the placebo group.
- **Standardized mean difference:** Represents the average standardized mean difference across studies.

Tables:

- **Table A:** Summary of probiotic interventions across populations with and without depression.
- **Table B:** Summary of prebiotic interventions across populations with and without depression.
- **Table C:** Summary of synbiotic interventions across populations with and without depression.
- **Table D:** Summary of fecal microbiota transplant interventions across populations without depression.
- **Table E:** Summary of fecal microbiota transplant interventions across populations with depression.
The remaining 10 studies failed to present necessary information for inclusion in meta-analysis. Of these 10 studies, 7 studies evaluated a probiotic, 2 studies evaluated a prebiotic and 1 study evaluated a paraprobiotic (Appendix 1, Section 6). None of the studies that had insufficient information for meta-analysis reported statistically significant differences from interventions.

Probiotic interventions

Among studies with probiotic interventions, defined as consumption of live microorganisms, the most common genera of bacteria administered were *Lactobacillus* \((n = 41) \) and *Bifidobacterium* \((n = 29) \). Other genera administered were *Bacillus*, *Clostridium*, *Lactococcus*, *Streptococcus*, *Weisella* and *Lacticaseibacillus*. Twenty-four studies administered probiotics from more than 1 genus. Among 9 studies with participants with depression, probiotic interventions offered statistically significant benefits (Hedges’ \(g = 0.78 \), 95% confidence interval [CI] 0.19 to 1.37, \(\tau^2 = 0.67 \), \(I^2 = 89.9\%)\) (Figure 2). One study, a visual outlier in Figure 2, was unique in the administration of *Clostridium*.\(^{39}\) This study by Miyaoka and colleagues\(^{39}\) was also unique in the requirement that participants with treatment-resistant depression be on a stable dose of selective serotonin reuptake inhibitor or serotonin–noradrenalin reuptake inhibitor for at least 1 month before enrolment. Exclusion of the visual outlier resulted in an effect size of 0.41 (95% CI 0.17 to 0.65, \(\tau^2 = 0.05 \), \(F = 42.9\%)\), with markedly reduced heterogeneity and between-study variance.

In 35 studies that enrolled participants without depression, probiotics also offered statistically significant benefits (Hedges’ \(g = 0.31 \), 95% CI 0.15 to 0.46, \(\tau^2 = 0.15 \), \(F = 74.4\%)\) (Figure 2).

Prebiotic interventions

We identified 7 studies evaluating the effect of prebiotic interventions, or compounds in food that induce growth or activity of gut microbiota.\(^{64,71,81-84,87}\) Three studies with prebiotic interventions enrolled participants with depression, with statistically significant benefits (Hedges’ \(g = 0.39 \), 95% CI 0.04 to 0.73, \(\tau^2 = 0.20 \), \(F = 26.6\%)\) (Figure 2). Among 2 studies enrolling participants without depression, we did not observe any statistically significant effects (Hedges’ \(g = 0.13 \), 95% CI –0.23 to 0.48, \(\tau^2 = 0.00 \), \(F = 0.00\%)\) (Figure 2).

Synbiotic interventions

Seven studies evaluated the effects of synbiotics, or combinations of prebiotics and probiotics.\(^{64,72,76-80}\) In the meta-analysis of 6 study populations without depression, synbiotic interventions offered statistically significant benefit (Hedges’ \(g = 0.68 \), 95% CI 0.36 to 1.00, \(\tau^2 = 0.07 \), \(F = 44.0\%)\). The seventh study,\(^{76}\) conducted in participants with depression, did not find a significant effect (standardized mean difference 0.63, 95% CI –0.002 to 1.27) (Figure 2).

Paraprobiotics

One trial evaluated the effect of paraprobiotics, or sterilized bacteria, and reported no statistically significant effect of intervention when measured with the Hospital Anxiety and Depression Scale — Depression score.\(^{85}\)

Figure 3: Risk of bias for included studies, assessed with the Cochrane Risk of Bias tool, version 2.0.\(^{19}\)
Fecal microbiota transplant

We identified 1 trial that evaluated the effect of fecal microbiota transplant. In this study, patients with irritable bowel syndrome were randomized to autologous or allogenic fecal microbiota transplant via colonoscopy. There were no differences in depressive symptoms, as measured with the Beck Depression Inventory, when compared with baseline or between groups at any time point (Figure 2).

Risk of bias

Although many studies were deemed low risk of bias in multiple domains, only 5 trials were deemed low risk of bias overall (Figure 3) (Appendix 1, Section 7). Most studies were low risk of bias for their approach to measurement, but the study by Miyaoka and colleagues was deemed high risk of bias in this domain given the lack of blinding.

Sensitivity analysis

After removing studies deemed “high” risk of bias from meta-analysis, estimates of effect for probiotics in populations without depression and for prebiotics in populations with depression were similar to base case estimates. The magnitude of effect for probiotics in populations with depression was markedly smaller, with reduced between-study variance and heterogeneity. The magnitude of effect for synbiotics in populations without depression was larger than base case estimates, with reduced between-study variance and heterogeneity. Notably, we observed a statistically significant benefit in all analyses involving participants with depression (Table 2).

All 4 funnel plots show that few studies found intervention benefits with small standard error, suggesting the presence of publication bias (Figure 4). In our trim and fill analysis, excluding the study by Miyaoka and colleagues, 2 missing studies are estimated on the left side of the funnel plot, with an effect estimate of 0.31 (95% CI 0.08–0.55, $\tau^2 = 0.07$, $I^2 = 50.4\%$) in

Table 2: Summary of analyses
Variable
Probiotic interventions
Participants with depression
Participants without depression
Prebiotic interventions
Participants with depression
Participants without depression
Synbiotic interventions
Participants without depression

Note: CI = confidence interval, NA = not applicable.
participants with depression (Figure 4B). In our trim and fill analysis of synbiotic interventions in populations without depression, 1 missing study is estimated on the right side of the funnel plot, with an effect estimate of 0.77 (95% CI 0.43 to 1.11, $\tau^2 = 0.11$, $I^2 = 54.1\%$). For other meta-analyses, there were insufficient studies to generate meaningful funnel plots.

Interpretation

This meta-analysis suggests a statistically significant benefit of probiotic, prebiotic and synbiotic interventions for depressive symptoms in study populations, both with and without depression. None of the studies excluded from the meta-analysis for lack of required information showed statistically significant evidence of benefit. In the single studies evaluating fecal microbiota transplant and paraprobiotic interventions, the interventions did not show statistically significant benefits. The body of evidence included in this systematic review is hindered by heterogeneous study quality and the likely presence of publication bias.

The lack of statistically significant evidence of benefit in many single studies may be from the measurement of depressive symptoms as a secondary outcome. Studies are rarely powered for measurement of secondary outcomes and, in the case of a small-to-medium effect size, they are underpowered to detect differences. If this is the case for studies examining paraprobiotic interventions or fecal microbiota transplants, further study and additional meta-analysis will be useful to improve precision in estimates of effect.

Effect sizes for synbiotic interventions were larger than for prebiotic or probiotic interventions, suggesting that the combination of interventions holds greater promise than solely prebiotic or probiotic interventions. Although complicated by risk of bias in included studies and the likely presence of publication bias, the magnitude of effect for synbiotic interventions in participants without depression is nearly the sum of prebiotic and probiotic interventions. Unfortunately, too few studies existed for meta-analysis of effects in participants with depression.

![Funnel plots](image-url)

Figure 4: Funnel plots from trim and fill analysis of probiotic interventions in populations with depression, with (A) and without (B) study by Miyaoka et al. and of (C) probiotic and (D) synbiotic interventions in populations without depression.
The effect of the probiotic intervention reported by Miyaoka and colleagues was an outlier. This was the only study administering adjunctive Clostridium to patients already being treated with antidepressant medications, for which change in depressive symptoms was a primary outcome. When this study was excluded, estimated effect sizes between groups with or without depression were of similar magnitude, with confidence intervals that overlap almost entirely. Bifidobacterium- and Lactobacillus-containing probiotics are produced commercially, are widely available and were used as the probiotic interventions in most included studies. The effect size estimated when excluding the study by Miyaoka and colleagues may better reflect those achievable with commercially available products.

Although many studies evaluated effect sizes for similar species of bacteria, the 1 study that used Clostridium showed a far greater effect, raising questions about why the body of literature is fixated on the same bacteria. Rather than focusing on interventions with limited potential for patient benefit, this would suggest broadening the scope of study to first identify the types of interventions most likely to produce positive effects. Caution is warranted in interpreting the magnitude of effect estimates, given their susceptibility to publication bias. Our objective was to summarize the effects of interventions targeting gut microbiota on depressive symptoms. The primary limitation of this work is likely the high-level evidence synthesis. The standardized mean difference assumes that the same outcome is measured in each study. Many of the tools used to evaluate depressive symptoms assess slightly different facets of the same phenomenon, with substantial overlap. Definitive estimates of efficacy are hindered by heterogeneity of treatment, dosage, study populations and risk of bias. However, a strength of this review is that the tools used to measure outcomes were not part of inclusion criteria; therefore, we captured all validated tools measuring depressive symptoms.

We limited searches to English and French to reduce the number of records screened. Although this strategy may have removed relevant articles in other languages, evidence suggests that language bias does not systematically affect meta-analysis findings beyond reduced precision. Because our objective was to summarize evidence, we elected to stay within the confines of published literature. Therefore, we did not contact authors for studies not presenting sufficient information for inclusion in meta-analysis.

Limitations

The primary limitation of this work is likely the high-level evidence synthesis. The standardized mean difference assumes that the same outcome is measured in each study. Many of the tools used to evaluate depressive symptoms assess slightly different facets of the same phenomenon, with substantial overlap. Definitive estimates of efficacy are hindered by heterogeneity of treatment, dosage, study populations and risk of bias. However, a strength of this review is that the tools used to measure outcomes were not part of inclusion criteria; therefore, we captured all validated tools measuring depressive symptoms.

We limited searches to English and French to reduce the number of records screened. Although this strategy may have removed relevant articles in other languages, evidence suggests that language bias does not systematically affect meta-analysis findings beyond reduced precision. Because our objective was to summarize evidence, we elected to stay within the confines of published literature. Therefore, we did not contact authors for studies not presenting sufficient information for inclusion in meta-analysis.

Conclusion

Our objective was to summarize the effects of interventions targeting gut microbiota on depressive symptoms. This body of evidence is hindered by heterogeneous study quality and the likely presence of publication bias. Although findings are promising, there is not yet strong enough evidence to favour inclusion of these interventions in treatment guidelines for depression. Critical questions about species administered, dosage and timing relative to other antidepressant medications remain to be answered.

References

1. Branstine V, Al-Assmak M, Kowal C, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med 2014;6:263ra158.
2. Powell N, Walker MM, Talley NJ. The mucosal immune system: master regulator of bidirectional gut-brain communications. Nat Rev Gastroenterol Hepatol 2017;14:143-59.
3. Najar S, Pearlman DM, Devinsky O, et al. Neurovascular unit dysfunction with blood-brain barrier hyperpermeability contributes to major depressive disorder: a review of clinical and experimental evidence. J Neuroinflammation 2013;10:142.
4. Najjar S, Pearlman DM, Hirsch S, et al. Brain biopsy findings link major depressive disorder to neuroinflammation, oxidative stress, and neurovascular dysfunction: a case report. Biol Psychiatry 2014;75:27-32.
5. Maes M, Kubera M, Lemus JC. The gut-brain barrier in major depression: intestinal mucosal dysfunction with an increased translocation of LPS from gram negative enterobacteria (leaky gut) plays a role in the inflammatory pathophysiology of depression. Neuropeptides 2008;29:117-24.
6. Maes M, Kubera M, Leunis JC, et al. Increased IgA and IgM responses against gut commensals in chronic depression: further evidence for increased bacterial translocation or leaky gut. J Affect Disord 2012;141:55-62.
7. Jiang H, Liang Z, Zhang Y, et al. Altered fecal microbiota composition in humans with major depressive disorder. Brain Behav Immun 2015;48:186-94.
8. Nasrallahrousie A, Hestad K, Avershina E, et al. Correlation between the human fecal microbiota and depression. Neurogastroenterol Motil 2014;26:e1155-62.
9. Talley NJ, Zhang Y, Stanghellini V, et al. The gut microbiota in gastrointestinal disease. Clin Gastroenterol Hepatol 2017;15:163-4.
10. Madan A, Thompson D, Fowler JC, et al. The gut microbiota is associated with psychiatric symptom severity and treatment outcome among individuals with serious mental illness. J Affect Disord 2020;264:98-106.
11. Steenberge BT, Roelse B, Thagard J, et al. Depression phenotype identified by using single nucleotide exact amplion sequence variants of the human gut microbiome. Mol Psychiatry 2021;26:4277-87.
12. Wallace CJK, Miley R. The effects of probiotics on depressive symptoms in humans with major depressive disorder. Brain Behav Immun 2017;66:1-6.
13. Nikolova V, Zaidi SY, Young AH, et al. Gut feeling: randomized controlled trials of probiotics for the treatment of depression: systematic review and meta-analysis. Ther Adv Psychopharmacol 2019;9:2045123319859963.
14. Liu RF, Walsh RFL, Sheehan AE. Probiotics and probiotics for depression and anxiety: a systematic review and meta-analysis of controlled clinical trials. Neurosci Biobehav Rev 2019;102:13-23.
15. Moher D, Liberati A, Tetzlaff J, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 2009;151:264-9.
16. Higgins J, Thomas J, Chandler J, et al., editors. Cochrane Handbook for Systematic Reviews of Interventions. Version 6.2. London (UK): Cochrane; updated February 2021.
17. McGowan J, Sampson M, Salzwedel DM, et al. PRESS peer review of electronic search strategies: 2015 Guideline explanation and elaboration (PRESS E&E). Ottawa: Canadian Agency for Drugs and Technologies in Health; 2016. Available: https://www.cadth.ca/sites/default/files/pdf/CP0015_PRESS_Update_Report_2016.pdf (accessed 2019 July 30).
18. Higgins JPT, Savovic J, Page MJ, et al., editors. Preferred reporting items for systematic reviews and meta-analysis. BMJ 2012;345:e5036.
19. Watt JA, Goodarzi Z, Veroniki AA, et al. Comparative efficacy of interventions for reducing symptoms of depression in people with dementia: systematic review and network meta-analysis. BMJ 2021;372:n136.
20. De Simonean R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986;7:177-88.
21. The standardized mean difference. In: Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1.0. London (UK): Cochrane; 2011. Available: https://handbook-5-1.cochrane.org/chapter_9/9_2_3_2_the_standardized_mean_difference.htm (accessed 2020 Jan 6).
22. Follmann D, Elliott P, Suh I, et al. Variance imputation for overviews of clinical trials with continuous response. J Clin Epidemiol 1992;45:769-73.
23. Trim and fill. In: Cochrane Handbook for Systematic Reviews of Interventions, Version 5.1.0. London (UK): Cochrane; 2011. Available: https://handbook-5-1.cochrane.org/chapter_9/9_2_3_2_the_standardized_mean_difference.htm (accessed 2020 Jan 6).
24. Follmann D, Elliott P, Suh I, et al. Variance imputation for overviews of clinical trials with continuous response. J Clin Epidemiol 1992;45:769-73.
25. Trim and fill. In: Cochrane Handbook for Systematic Reviews of Interventions, Version 5.1.0. London (UK): Cochrane; 2011. Available: https://handbook-5-1.cochrane.org/chapter_9/9_2_3_2_the_standardized_mean_difference.htm (accessed 2020 Jan 6).
26. Follmann D, Elliott P, Suh I, et al. Variance imputation for overviews of clinical trials with continuous response. J Clin Epidemiol 1992;45:769-73.
27. Follmann D, Elliott P, Suh I, et al. Variance imputation for overviews of clinical trials with continuous response. J Clin Epidemiol 1992;45:769-73.
28. Follmann D, Elliott P, Suh I, et al. Variance imputation for overviews of clinical trials with continuous response. J Clin Epidemiol 1992;45:769-73.
29. Follmann D, Elliott P, Suh I, et al. Variance imputation for overviews of clinical trials with continuous response. J Clin Epidemiol 1992;45:769-73.
 alleviates stress and anxiety in adults: a randomised, double-blind, placebo-controlled clinical trial. J Nutr Health 2019;10:355-62.
28. Chung Y-C, Jin H-M, Cui Y, et al. Fermented milk of Lactobacillus helveticus IDCC3801 improves cognitive functioning during cognitive fatigue tests in healthy older adults. J Funct Foods 2014;10:965-74.
29. Incioglu T, Kobayashi T, Mori N, et al. Effect of combined bifidobacteria supplementation and resistance training on cognitive function, body composition and bowel habits of elderly subjects. Benef Microbes 2018;9:843-53.
30. Jamilian M, Mansury S, Bahmani F, et al. The effects of probiotic and selenium co-supplementation on parameters of mental health, hormonal profiles, and biomarkers of inflammation and oxidative stress in women with polycystic ovary syndrome. J Ovarian Res 2018;11:80.
31. Kazemi A, Noorbala AA, Azam K, et al. Effect of probiotic and prebiotic vs placebo on psychosomatic outcomes in patients with major depressive disorder: a randomized clinical trial. Clin Nutr 2019;38:522-8.
32. Kelly JR, Allen AP, Temko A, et al. Lost in translation? The potential psychobiotic Lactobacillus rhamnosus (BB­1) fails to modulate stress or cognitive performance in healthy male subjects. Brain Behav Immun 2017;63:50-9.
33. Kouchaki E, Tamtaj OR, Salami M, et al. Clinical and metabolic response to probiotic supplementation in patients with multiple sclerosis, a randomized, double-blind, placebo-controlled trial. Clin Nutr 2017;36:1245-9.
34. Antunes J, Cordeiro S, Ferreira S, et al. Effect of the probiotic Bacillus coagulans CNCM I­5856 for the management of major depression with irritable bowel syndrome. Benef Microbes 2016;7:153-6.
35. Lee D-S, Kim M, Nam S-H, et al. Effects of oral probiotics on subjective hallucinosis, oral health, and psychosocial health of college students: a randomized, double-blind, placebo-controlled study. Int J Environ Res Public Health 2018;15:11843.
36. Moloney GM, Long-Smith CM, Murphy A, et al. Improvements in sleep indices during exam stress due to consumption of a Bifidobacterium longum. Aust N Z J Psychiatry 2019;53:278-84.
37. Moludi J, Khedmatgozar H, Nachvak SM, et al. The effects of probiotic supplementation in patients with mental health or anxiety disorders. J Funct Foods 2018;43:604–13.
38. Saccarello A, Montarsolo P, Massardo I, et al. Oral administration of S­Ade­somaticum (S­Somat) reduces depression scores and alters brain activity: a pilot study. J Neuropsychiatric Treat 2019;7:153-6.
39. Saccarello A, Montarsolo P, Massardo I, et al. Oral administration of S­Adenosylmethionine (S­Ado) improves psychological and markers of stress in healthy adults: a randomized, double-blind, placebo-controlled trial. Prog Neuropsychopharmacol Biol Psychiatry 2018;84:50-5.
40. Roman P, Estevez AF, Miras A, et al. A pilot randomized controlled trial to explore cognitive and emotional effects of probiotics in fibromyalgia. Sci Rep 2018;8:10965.
41. Roman P, Estevez AF, Ramis A, et al. A pilot randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain Behav Immun 2015;48:258-64.
42. Papalini S, Michels F, Kohn N, et al. Stress matters: a randomised, double-blind, placebo-controlled trial on the effect of probiotics on neurocognition. Nutr J 2015;14:80.
43. Papalini S, Michels F, Kohn N, et al. Randomized, double-blind, placebo-controlled trial on the effect of probiotics on neurocognition. Nutr J 2015;14:80.
44. Raygan F, Ostadmohammadi V, Bahmani F, et al. The effects of vitamin D and probiotic co-supplementation in patients with multiple sclerosis: a randomized, double-blind, placebo-controlled trial. J Neurogastroenterol Motil 2019;25:1300-7.
45. Romijn AR, Rucklidge JJ, Kuijer RG, et al. A double-blind, randomized, placebo-controlled trial to explore cognitive and emotional effects of probiotics in fibromyalgia. Sci Rep 2015;5:18873.
46. Salami M, Kouchaki E, Asemi Z, et al. How probiotic bacteria influence the motor and mental behaviors as well as immunological and oxidative biomarkers in multiple sclerosis? a double blind clinical trial. J Funct Foods 2019;52:8-13.
47. Sawada D, Kawai T, Nishida K, et al. Daily intake of Lactobacillus gasseri CP305 improves mental, physical, and sleep quality among Japanese medical students enrolled in a cadaver dissection course. J Funct Foods 2017;31:188-97.
48. Sawada D, Kiewano Y, Tanaka H, et al. Daily intake of Lactobacillus gasseri CP305 relieves fatigue and stress-related symptoms in male university Faculty members: a randomized, double-blind, placebo-controlled clinical trial. J Funct Foods 2019;57:465-76.
49. Simrén M, Ohlman L, Olsson J, et al. Clinical trial: the effect of a fermented milk containing three probiotic bacteria in patients with irritable bowel syndrome (IBS): a randomized, double-blind, controlled study. Aliment Pharmacol Ther 2010;31:218-27.
50. Sierykman RF, Hood F, Wicksens K, et al. Effect of Lactobacillus rhamnosus HH001 in pregnancy on postpartum symptoms of depression and anxiety: a randomized, double-blind, placebo-controlled trial. BMJ Open 2017;7:159-65.
51. Steenbergen L, Sellaro R, van Hemert S, et al. A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain Behav Immun 2015;48:258-64.
52. Teshnehlabi M, Guglielmetti M, Gargani G, et al. Effect of Lactobacillus paracasei CNCM I-1572 on symptoms, gut microbiota, short chain fatty acids, and immune activation in patients with irritable bowel syndrome: a pilot randomized clinical trial. United European Gastroenterol J 2018;6:604-13.
53. Tischler K, Labus J, Kilpatrick L, et al. Consumption of fermented milk product with probiotic and prebiotic in emotional symptoms of chronic fatigue syndrome. Gut Pathog 2009;1:6.
54. Torshizi K, Labus J, Kilpatrick L, et al. Consumption of fermented milk product with probiotic and prebiotic in emotional symptoms of chronic fatigue syndrome. Gut Pathog 2009;1:6.
55. Woorwell AJ, Priller L, Morel J, et al. Efficacy of an encapsulated probiotic Bifidobacterium infantis 35624 in women with irritable bowel syndrome. Am J Gastroenterol 2006;101:1381-90.
56. Rao AV, Bested AC, Beaulne TM, et al. Fermented milk containing Lactobacillus casei strain Shirota prevents the onset of physical symptoms in medical students under academic examination stress. Benef Microbes 2016;7:153-6.
57. Tischler K, Labus J, Kilpatrick L, et al. Consumption of fermented milk product with probiotic and prebiotic in emotional symptoms of chronic fatigue syndrome. Gut Pathog 2009;1:6.
58. Worrall AJ, Priller L, Morel J, et al. Efficacy of an encapsulated probiotic Bifidobacterium infantis 35624 in women with irritable bowel syndrome. Am J Gastroenterol 2006;101:1381-90.
59. Worrall AJ, Priller L, Morel J, et al. Efficacy of an encapsulated probiotic Bifidobacterium infantis 35624 in women with irritable bowel syndrome. Am J Gastroenterol 2006;101:1381-90.
severance co-supplementation on mental health parameters and metabolic profiles in type 2 diabetic patients with coronary heart disease: a randomized, double-blind, placebo-controlled trial. *Clin Nutr* 2019;18:1594-8.

76. Ghorbani Z, Nazari S, Etesam F, et al. The effect of probiotic as an adjvant therapy to fluoxetine in moderate depression: a randomized multicenter trial. *Arch Neuropsychiatry* 2018;5:e00507.

77. Sanchez M, Darimont C, Panahi S, et al. Effects of a diet-based weight-reducing program with probiotic supplementation on satiety efficiency, eating behaviour traits, and psychosocial behaviours in obese individuals. *Nutrients* 2017;9:284.

78. Smith-Ryan AE, Mock MG, Trexler ET, et al. Influence of a multistrain probiotic on body composition and mood in female occupational shift workers. *Appl Physiol Nutr Metab* 2019;44:765-73.

79. Vidot H, Cvejic E, Finegan LJ, et al. Supplementation with synbiotics and/or branched chain amino acids in hepatic encephalopathy: a pilot randomised placebo-controlled clinical study. *Nutrients* 2019;11:1810.

80. Hadi A, Sepandi M, Marx W, et al. Clinical and psychological responses to probiotic supplementation in obese or overweight adults: a randomized clinical trial. *Complement Ther Med* 2019;47:102216.

81. Azpiroz F, Dubray C, Bernailler-Donadille A, et al. Effects of scFOS on the composition of fecal microbiota and anxiety in patients with irritable bowel syndrome: a randomized, double blind, placebo controlled study. *Neurogastroenterol Motil* 2020;32:e1444.

82. Silk DBA, Davis A, Valevle J, et al. Clinical trial: the effects of a transgalactooligosaccharide prebiotic on faecal microbiota and symptoms in irritable bowel syndrome. *Aliment Pharmacol Ther* 2009;29:508-18.

83. Smith AP. The concept of well-being: relevance to nutrition research. *Br J Nutr* 2005;93:S1-5.

84. Vaghef-Mehrabany E, Ranjbar F, Asghari-Jafarabadi M, et al. Calorie restriction in combination with prebiotic supplementation in obese women with depression: effects on metabolic and clinical response. *Nutr Neurosci* 2021;24:339-53.

85. Nishida K, Sawada D, Kawai T, et al. Para-psychobiotic *Lactobacillus gasseri* CP 2305 ameliorates stress-related symptoms and sleep quality. *J Appl Microbiol* 2017;123:1561-70.

86. Lahinen P, Jalanka J, Hartikainen A, et al. Randomised clinical trial: faecal microbiota transplantation versus autologous placebo administered via colonoscopy in irritable bowel syndrome. *Aliment Pharmacol Ther* 2020;51:1321-31.

87. Kazemi A, Noorbala AA, Azam K, et al. Effect of probiotic and prebiotic supplementation on circulating pro-inflammatory cytokines and urinary cortisol levels in patients with major depressive disorder: a double-blind, placebo-controlled randomized clinical trial. *J Funct Foods* 2019;52:596-602.

88. Morrison A, Polisena J, Husereau D, et al. The effect of English-language restriction on systematic review-based meta-analyses: a systematic review of empirical studies. *Int J Technol Assess Health Care* 2012;28:138-44.

Affiliations: Department of Community Health Sciences (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and O'Brien Institute for Public Health (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and Departments of Psychiatry (Patten, Taylor) and Biochemistry and Molecular Biology (Cooke), Teaching Research and Wellness Building, University of Calgary, Calgary, Alta.

Contributors: Mark Hofmeister, Fiona Clement, Scott Patten, Laura Dowsett and Valerie Taylor contributed to the conception and design of the work. Mark Hofmeister, Fiona Clement, Joyce Li, Laura Dowsett, Brenelea Farkas, Liza Mastikhina, Oluwaseun Egunsola, Ruth Diaz and Noah Cooke contributed to the acquisition, analysis and interpretation of data. All of the authors drafted the manuscript, revised it critically for important intellectual content, gave final approval of the version to be published and agreed to be accountable for all aspects of the work.

Funding: This work was supported by an Alberta Addiction and Mental Health Research Hub's Depression Knowledge Translation Research Priority Grant. Scott Patten is supported by the Cuthbertson and Fisher Chair in Pediatric Mental Health. Funders were not involved in design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Content licence: This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY-NC-ND 4.0) licence, which permits use, distribution and reproduction in any medium, provided that the original publication is properly cited, the use is noncommercial (i.e., research or educational use), and no modifications or adaptations are made. See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

Data sharing: The present study used aggregate, published data that are publicly available. No additional data are available for sharing.

Supplemental information: For reviewer comments and the original submission of this manuscript, please see www.cmajopen.ca/content/9/4/E1195/suppl/DC1.