Aging and the intestine

Laurie Drozdowski, Alan BR Thomson

Abstract

Over the lifetime of the animal, there are many changes in the function of the body's organ systems. In the gastrointestinal tract there is a general modest decline in the function of the esophagus, stomach, colon, pancreas and liver. In the small intestine, there may be subtle alterations in the intestinal morphology, as well as a decline in the uptake of fatty acids and sugars. The malabsorption may be partially reversed by aging glucagon-like peptide 2 (GLP2) or dexamethasone. Modifications in the type of lipids in the diet will influence the intestinal absorption of nutrients: for example, in mature rats a diet enriched with saturated as compared with polysaturated fatty acids will enhance lipid and sugar uptake, whereas in older animals the opposite effect is observed. Thus, the results of studies of the intestinal adaptation performed in mature rats does not necessarily apply in older animals. The age-associated malabsorption of nutrients that occurs with aging may be one of the several factors which contribute to the malnutrition that occurs with aging.

© 2006 The WJG Press. All rights reserved.

Key words: Aging; Gastrointestinal tract; Intestine; Absorption; Malnutrition

THEORIES OF AGING

A number of theories have been proposed to describe the process of aging. Longevity genes have been identified in many species, suggesting that aging may be at least partially under genetic control. In yeast, overproduction of the enzyme Sir2 prolongs the life of yeast grown under normal nutrient conditions[3]. It has been suggested that increases in Sir2 (seen in response to caloric restriction or resveratrol, a polyphenol found in red wine) may increase gene silencing, and thereby result in greater genomic stability.[2] Research undertaken in Drosophila has identified single gene mutations that extend life span. These include the gene Methuselah (mth), a secretion-type receptor that provides resistance to stress[5], and Indy.
(I'm Not Dead Yet), whose gene product is homologous to Kreb's cycle intermediates[^15]. In humans, a genetic component to aging has also been suggested. Werner's syndrome, a disorder characterized by an apparent accelerated senescence, has been associated with a single gene locus on chromosome 6[^6]. On the other hand, a genome wide scan of elderly subjects suggested that there is a locus on chromosome 4 which influences a person's genetic susceptibility to age well and to achieve exceptional longevity[^7].

Cellular theories emphasize that the environment as well as intrinsic properties of the cell, often referred to as a "cellular clock", may limit survival. Pivotal research by Hayflick and Moorhead[^8] found that normal human fetal cell strains were limited to 40-60 doublings before they entered senescence. From this finding, they developed the concept of the "Hayflick limit" to explain determination of longevity. From this early work, the concept of telomere shortening was then established as another mechanism of longevity determination. These repetitive DNA sequences found at the end of chromosomes are progressively depleted with age, and may represent a method by which cells enter senescence. However, this theory is not universally accepted, largely due to a lack of correlation between telomere length and life span in many animal species[^9].

Aging may be the consequence of oxidative damage. Oxidative damage to DNA, protein, carbohydrates and lipids contribute to degenerative diseases in aging, due to a disruption in cellular homeostasis. The activation of specific stress signalling pathways results in alterations in gene expression mediated by a variety of transcription factors including NF-κB, p53, and heat shock transcription factor 1 (HSF1)[^10]. While levels of antioxidants correlate with longevity in primates[^11,12], there is no evidence that antioxidant supplementation affects life span. It has been suggested, but not proven conclusively, that the success of calorie restricted diets in extending the lifespan of rodents is related to a reduction in free radical formation[^13-15].

The role of insulin/IGF-1 signalling in the regulation of lifespan has been studied. The gene daf-2, an insulin/IGF-1 receptor homolog has been shown to affect the lifespan of C. elegans[^16]. Similarly, a related tyrosine kinase receptor, InR, regulates lifespan in Drosophila[^17]. Holzenberger et al[^18] demonstrated the importance of this pathway in mammals. In this study, heterozygous knockout mice (lgf1r^-/-) were used, as null mutants were not viable. These lgf1r^-/- mice had IGF-1 receptor levels that were half of those seen in wild-type animals. These mice lived an average of 26% longer than did their wild-type littermates, without developing dwarfism, or showing adverse changes in physical activity, fertility or metabolism. This suggests, but not proven conclusively, that the success of calorie restricted diets in extending the lifespan of rodents is related to a reduction in free radical formation[^13-15].

Overexpression of FOXO extends life span[^19]. Insulin/IGF-1 receptor binding, and subsequent activation of the PI3K/Akt pathway, results in the phosphorylation of Akt, which inactivates FOXO by sequestering it in the cytoplasm[^20]. This alters the effects of FOXO on resistance to stress, apoptosis and longevity, and provides another potential link between insulin/IGF-1 and aging.

Other theories of aging focus on neuro-endocrine changes, including reductions in the levels of the steroid hormone dehydroepiandrosterone (DHEA). Both animal and human studies have demonstrated that oral replacement of DHEA may prevent or reduce age-associated events such as cancer and cardiovascular disease, and may stimulate immune function[^21-23].

A SOCIETAL PERSPECTIVE

Seniors constitute the fastest growing segment of Canada's population. In fact, the proportion of seniors has risen from one in twenty in 1921, to one in eight in 2001. Within this group, the number of Canadians aged 85 or more is anticipated to increase substantially, up to 4% of the total population by the year 2041 (Health Canada, 2002). Women make up the majority of seniors, with gender differences becoming more pronounced in the oldest age groups.

The aging of the population may be thought of as a modern day success story. For the first time in history human beings have been afforded the opportunity to live an unprecedented number of years, with a reasonable quality of life. This accomplishment is not without challenges, however, as society struggles to adapt to a changing demographic, with a unique set of physiological, psychological, and social needs of the elderly themselves as well as their caregivers.

Several non-genetic factors may influence life expectancy, including improvements in sanitation and nutrition, as well as reductions in maternal mortality and the rates of infectious diseases (An Aging World: 2001, U.S. Census Bureau). These changes, coupled with lower fertility rates, result in a changing demographic that presents society with the challenges of providing quality health care to an aging population, and facilitating the social, economic and community involvement of seniors.

Although most seniors rate their health as "good" or "very good", seniors are more likely to visit health care professionals, to take medication, and to be hospitalized when compared to their younger counterparts. Therefore, increases in this population and the associated increased health care utilization may place a burden on the system. Indeed, health expenditures for seniors in 2000-2001 represented 43% of total health care expenditures (Health Canada, 2002). Of course we recognize that these persons have contributed greatly to our society, and it is our responsibility to provide ready access to quality of healthcare for these special persons, who must be treated with respect and allowed to age with dignity.

MALNUTRITION IN THE ELDERLY

The elderly are at a high risk for malnutrition, yet
THE AGING PROCESSES AND THE GASTROINTESTINAL TRACT

The aging of the population, coupled with the potential impact on the health care system, has focused attention on the physiological processes associated with aging. Only with an increased understanding of the aging process can we work towards improving the quality of life for the elderly, and reducing disease morbidity in this population.

There are age-related alterations in the gastrointestinal tract but the difficulty lies in excluding concomitant pathological factors as the cause of these changes. Certainly with aging, conditions such as diabetes, pancreatic or liver disease, cancer, or drug-induced enteropathy will have potential adverse effects on the form and function of the intestine. It is necessary to exclude these pathological factors, to consider the physiological changes that occur in the healthy elderly, and to understand how these factors influence the nutritional status of this population.

Dysphagia is more common in the elderly than in younger persons. Selective neurodegeneration may occur in the aging enteric nervous system (reviewed in Saffrey), and may contribute to gastrointestinal symptoms such as dysphagia, gastrointestinal reflux and constipation. Interestingly, caloric restriction in rodents can prevent the neuronal losses that occur with aging, suggesting that diet may influence gastrointestinal aging. Alterations in esophageal motility may be due to reductions in the number of neurons in the myenteric plexus of the elderly. While gastric motility may be impaired with aging, small intestinal motility is unaffected. Aging may affect the signal transduction pathways and cellular mechanisms controlling smooth muscle contraction, which may influence colonic motility and thereby contribute to the development of constipation (reviewed in Bitar and Patil).

The data regarding aging and gastric acid secretion is inconclusive, as early studies were likely confounded by the presence of Helicobacter pylori in some persons. Achlorhydria or hypochlorhydria may result from atrophic gastritis, as a result of the use of medications such as proton pump inhibitors, or as a result of H pylori infection. This reduction in gastric acidity may increase the risk of small bowel bacterial overgrowth, potentially leading to malabsorption. For example, McEvoy et al found that 71% of patients in a general geriatric ward had bacterial overgrowth of the small intestine, while 11% were found to be malnourished. Indeed, bacterial overgrowth in older adults is associated with reduced body weight, which is paralleled by reduced intake of several micronutrients.

Although structural changes in the pancreas are seen with aging, no functional age-related alterations are seen using the fluorescein dilaurate test. Some studies demonstrate reduced secretagogue-stimulated lipase, chymotrypsin and bicarbonate concentrations in pancreatic juice with aging. Other research suggests that there is little evidence of reduced pancreatic secretions with age, independent of other factors including the presence of disease and the effect of drugs.

There are age-related reductions in liver mass and blood flow, yet microscopic changes are subtle. While structural and functional changes do not correlate well, there is evidence that liver function declines with age. For example, Cao et al used microarrays to show that aging in mice is accompanied by changes in the expression of genes in the liver involved in inflammation, cellular stress and fibrosis, all of which are linked to age-related liver pathologies. Interestingly, caloric restriction in mice starting at weaning reversed the majority of the age-related changes, once again emphasizing the ability of the diet to influence the aging process.

Holt et al looked at age-related changes in the intestinal morphology of Fischer 344 rats. Increases in villous width were noted throughout the small intestine, while increases in villous height were limited to the ileum. Other studies in rats have shown age-related losses in villous and enterocyte heights. Age-related declines in mucosal surface area have also been reported in rabbit jejenum. Human studies generally show no changes in intestinal morphology, as determined from measurements of villous height, crypt depth, crypt-to-villus ratios and enterocyte size. Warren et al showed a decrease in villous height with age. Martin et al described histological changes that occur in aging mice: when old mice were compared to young mice, there were larger villi, a reduced number of crypts, and fewer villi and crypts per mm along the small intestine. These changes were most pronounced in the distal, as opposed to the proximal small intestine. However, even if there are minor age-associated alterations in intestinal morphology with aging, there is not a clear association between intestinal morphology and nutrient...
uptake with aging. For example, despite reductions in mucosal surface area, aged rats demonstrated increases in the jejunal uptake of saturated fatty acids\(^\text{[60]}\). So, while it remains controversial as to whether or not aging is associated with morphological changes, even if such changes were to occur, the impact on nutrient uptake may not be clinically relevant.

Ciccozioppo et al.\(^\text{[63]}\) suggested that intestinal architecture is maintained with aging by increases in proliferation and differentiation rates. This agrees with work done by Corazza et al.\(^\text{[64]}\) that showed increased expression of proliferating cell nuclear antigen (PCNA) in older subjects when compared to their younger counterparts.

NUTRIENT DIGESTION AND ABSORPTION

Age-related alterations in the abundance of brush border malease (BBM) enzymes may also impact upon the digestion and subsequent absorption of nutrients. BBM lactase phlorizin hydrolase (LPH) and sucrase-isomaltase (SI) activities fall with age in rats\(^\text{[65]}\). Bacterial overgrowth, which is common in the elderly, may also negatively impact upon disaccharidase activity, and thereby possibly reduce carbohydrate absorption\(^\text{[66]}\).

Hollander and colleagues demonstrated that intestinal permeability to medium sized probes (mannitol, polyethylene glycol) increased in 28-month old rats when compared to 3-month old rats\(^\text{[67]}\). However, the lactulose:mannitol (LTM) ratio was not different between young and old subjects, indicating that intestinal permeability to these sugars does not change significantly with age in humans\(^\text{[68]}\). A study using breath hydrogen analysis following a carbohydrate meal showed evidence of malabsorption with aging. Elderly patients (ranging from 65-89 years, mean age, 79 years) were compared to control subjects (ranging from 20-64, mean age, 35 years). Significantly more subjects in the elderly group (7 out of 21) excreted excess H\(_2\) when compared to controls (0 out of 19)\(^\text{[69]}\). This suggests that there may be malabsorption of carbohydrates in the elderly. In *in vitro* transport experiments using BBM vesicles also demonstrated a reduction in Na\(^+\)-dependent D-glucose uptake in patients over the age of 70\(^\text{[70]}\). In contrast, Wallis and co-workers\(^\text{[71]}\) did not find changes in Na\(^+\)-dependent glucose transport in BBM vesicles isolated from duodenal biopsies from patients whose ages ranged from 55 to 91 years.

Experiments using rodent models of aging also demonstrate conflicting results. Several studies show reductions in D-glucose absorption in aged rats\(^\text{[72-74]}\). Depending upon the intestinal site studied, a normal or increased absorptive capacity was also found in a study using everted intestinal segments from old versus young rats\(^\text{[63]}\). Results from studies in mice also do not offer conclusive results on the effect of aging on nutrient absorption. Ferraris et al.\(^\text{[75]}\) showed in aged mice a reduction in uptake and site density of the Na\(^+\)-dependent glucose transport in the BBM, SGLT1. This is in contrast to the findings of Thompson et al.\(^\text{[76]}\) who showed an increase in intestinal glucose uptake in aged mice. Our lab has recently investigated the effect of age on intestinal glucose uptake in Fischer 344 rats using the *in vitro* intestinal sheet method\(^\text{[77]}\). Glucose uptake was reduced in 9 mo old and 24 mo old rats when compared to 1 mo old animals. When changes in mucosal surface area were accounted for, only ileal glucose uptake was reduced in the older animals. These age-associated changes in glucose uptake were not explained by alterations in the abundance of SGLT1, GLUT2 or Na\(^+\)K\(^+\)-ATPase.

The variations in the results from human, rat and mouse studies may be due to the differences in the methodologies that were used. While some investigators studied uptake using BBM vesicles\(^\text{[70-74]}\), others used everted intestinal rings\(^\text{[75,77,79]}\) or intestinal sheets\(^\text{[78]}\). As well, the method of expressing results may influence qualitative differences between studies. Uptake is often expressed on the basis of intestinal weight, and does not take into account any potential age-associated changes in mucosal weight or surface area. The strain and ages of the animals, and the site of the intestine used also differ between studies, and may explain the variability in the results.

The uptake of fructose has been studied in aging mice. Ferraris and Vinnekota\(^\text{[79]}\) showed that D-fructose uptake per milligram of tissue was higher in the jejunum of young as compared to old animals. Adaptive increases in uptake, in response to increases in carbohydrate levels, were blunted in these mice, and were restricted to more proximal regions of the small intestine.

While it is reasonable to speculate that the complexity of lipid absorption may make it susceptible to the effects of aging, experimental findings do not consistently support this notion. While a number of animal studies demonstrate reduced *in vitro* lipid absorption with aging\(^\text{[80,81]}\), others have shown increases in lipid absorption in aged rats using an *in vivo* perfusion model\(^\text{[82]}\). Aging is associated with a decrease in the thickness and resistance of the unstirred water layer\(^\text{[83]}\), which could partially explain the finding of increased absorption with aging in the *in vivo* model.

Early work using human subjects demonstrated reductions in lipid absorption with age\(^\text{[83]}\). There also appears to be reduced intestinal absorption of bile acids with age\(^\text{[84]}\), although it is not clear if this negatively impacts lipid absorption in the elderly. When healthy elderly human subjects were studied, however, no correlation between age and 72 h fecal fat excretion was found\(^\text{[85]}\).

More recently, a study by Woudstra et al.\(^\text{[86]}\) showed that the ileal uptake of several fatty acids including 16:0, 18:0, 18:1 and 18:2, was reduced in 24 mo old rats, when compared to 1 mo old animals. However, when mucosal surface area was considered these differences disappeared, suggesting that the age-related changes in lipid uptake were largely due to non-specific reductions in intestinal surface area. After considering the results of all of these studies, Holt\(^\text{[87]}\) suggested that no important changes in lipid absorption with aging have been described.

MODIFICATION OF AGE-ASSOCIATED DECLINES IN INTESTINAL ABSORPTIVE FUNCTION

Holt et al.\(^\text{[88]}\) have shown that the intestine of elder rats is capable of adopting its function in response to changes
REFERENCES

1 Rowe JW, Kahn RL. Successful aging. Gerontology 1997; 37: 433-440
2 Lin SJ, Defossez PA, Guarente L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 2000; 289: 2126-2128
3 Lin YJ, Seroude L, Benzer S. Extended life-span and stress resistance in the Drosophila mutant methuselah. Science 1998; 282: 943-946
4 Helfand SL, Rogina B. Molecular genetics of aging in the fly: is this the end of the beginning? Bioessays 2003; 25: 134-141
5 Marden JH, Rogina B, Montooth KL, Helfand SL. Conditional tradeoffs between aging and organismal performance of Indy long-lived mutant flies. Proc Natl Acad Sci USA 2003; 100: 3369-3373
6 Yu CE, Oshima J, Fu YH, Wijsman EM, Hisama F, Alish R, Matthews S, Nakura J, Miki T, Osais S, Martin GM, Mulligan J, Schellenberg GD. Positional cloning of the Werner's syndrome gene. Science 1996; 272: 258-262
7 Puca AA, Daly MJ, Brewster SJ, Matise TC, Barrett J, Shea-Drinker M, Kang S, Joyce E, Nicoll J, Benson E, Kunkel LM, Perls T. A genome-wide scan for linkage to human exceptional longevity identifies a locus on chromosome 4. Proc Natl Acad Sci USA 2001; 98: 10505-10508
8 Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res 1961; 25: 585-621
9 Campisi J. From cells to organisms: can we learn about aging by dehydroepiandrosterone in age-advanced men. J Clin Endocrinol Metab 1999; 84: M440-M445
10 Payette H, Coulombe C, Bouter V, Gray-Donald K. Weight loss and mortality among free-living frail elders: a prospective study. J Gerontol A Biol Sci Med Sci 1999; 54: M440-M445
11 Saffrey MJ. Ageing of the enteric nervous system. Mech Ageing Dev 2004; 125: 899-906
12 Cowen T, Johnson RJ, Soubeyron V, Santer RM. Restricted diet rescues rat enteric motor neurons from age related cell death. Gut 2000; 47: 653-660
13 Santer RM. Baker DG. Enteric neuron numbers and sizes in Auerbach's plexus in the small and large intestine of adult and aged rats. J Neurogastroenterol Motil 1988; 25: 39-67
14 Moore LJ, Tweedy C, Christian PE, Datz FL. Effect of age on gastric emptying of liquid-solid meals in man. Dig Dis Sci 1983; 28: 340-344
15 Wegener M, Borsch G, Schafstein J, Lüth I, Rickels R, Ricken D. Effect of ageing on the gastrointestinal transit of a lactulose-supplemented mixed solid-liquid meal in humans. Digestion 1988; 39: 40-46
16 Fich A, Camilleri M, Phillips SF. Effect of age on human gastric and small bowel motility. J Clin Gastroenterol 1989; 11:

in dietary protein levels. In adult rats, a diet enriched with saturated fatty acids (SFA) results in increased intestinal glucose uptake when compared to an isocaloric diet enriched with polyunsaturated fatty acids (PUFA). Similarly, Vine et al.3 studied the effect of various fatty acids on the passive and active transport properties of rat jejunal mucosa, and found that an SFA diet increased Na+-dependent glucose uptake when compared to a diet enriched with n6 PUFA. Of importance, Woudstra et al.3 showed that the intestinal response to dietary lipids may differ with age. In this study, in contrast to what is seen in younger animals, feeding a PUFA diet increased lipid uptake when compared to feeding a SFA diet. Drozdowski et al. (unpublished observations) have also shown that PUFA rather than SFA increases intestinal glucose uptake in older rats. The mechanism responsible for the age-related alteration in adaptation to daily lipids is not known. But clearly, the results of adoptive studies in young rats do not necessarily apply to older animals. Other factors which may enhance the reduced uptake of sugars that occurs in older animals indicates glucagon-like peptide 2 (GLP2) at the glucocorticosteroid, dexamethasone (Drozdowski et al., unpublished observations, 2006).
expression is increased in small bowel epithelium in the elderly. Mech Ageing Dev 1998; 104: 1-9

Lee MF, Russell RM, Montgomery RK, Krassinski SD. Total intestinal lactase and sucrase activities are reduced in aged rats. J Nutr 1997; 127: 1382-1387

Riepe SP, Goldstein J, Alpers DH. Effect of secreted Bacteroides proteases on human intestinal brush border hydrolases. J Clin Invest 1980; 66: 314-322

Ma TY, Hollander D, Dadufalza V, Kruglik P. Effect of aging and caloric restriction on intestinal permeability. Exp Gerontol 1992; 27: 321-333

Saltzman JR, Kowdley KV, Perrone G, Russell RM. Changes in small-intestine permeability with aging. J Am Geriatr Soc 1995; 43: 160-164

Feibus JH, Holt PR. Impaired absorptive capacity for carbohydrate in the aging human. Dig Dis Sci 1982; 27: 1095-1100

Vincenzini MT, Iantomasi T, Stio M, Favilli F, Vanni P, Tonelli F, Treves C. Glucose transport during aging by human intestinal brush-border membrane vesicles. Mech Ageing Dev 1989; 48: 33-41

Wallis JL, Lipski PS, Mathers JC, James OF, Hirst BH. Duodenal brush-border mucosal glucose transport and enzyme activities in aging man and effect of bacterial contamination of the small intestine. Dig Dis Sci 1993; 38: 403-409

Doubek WG, Armbrrecht HJ. Changes in intestinal glucose transport over the lifespan of the rat. Mech Ageing Dev 1987; 39: 91-102

Freeman HJ, Quamme GA. Age-related changes in sodium-dependent glucose transport in rat small intestine. Am J Physiol 1986; 251: G208-G217

Lindi C, Marciani P, Faellli A, Esposito G. Intestinal sugar transport during aging. Biochim Biophys Acta 1985; 816: 411-414

Darmenton P, Raul F, Doffoel M, Wessely JY. Age influence on sucrose hydrolysis and on monosaccharide absorption along the small intestine of rat. Mech Ageing Dev 1989; 50: 49-55

Ferraris RP, Hsiao J, Hernandez R, Hirayama B. Site density of mouse intestinal glucose transporters declines with age. Am J Physiol 1993; 264: G285-G293

Thompson JS, Crouse DA, Mann SL, Saxena SK, Sharp JG. Intestinal glucose uptake is increased in aged mice. Mech Ageing Dev 1988; 46: 135-143

Drozdowski L, Woudstra T, Wild G, Clandinin MT, Thomson AB. The age-associated decline in the intestinal uptake of glucose is not accompanied by changes in the mRNA or protein abundance of SGLT1. Mech Ageing Dev 2003; 124: 1035-1045

Ferraris RP, Vinnakota RR. Regulation of intestinal nutrient transport is impaired in aged mice. J Nutr 1993; 123: 502-511

Thomson AB. Effect of age on uptake of homologous series of saturated fatty acids into rabbit jejenum. Am J Physiol 1980; 239: C363-C371

Flores CA, Hing SA, Wells MA, Koldovsky O. Rates of triolein absorption in sucking and adult rats. Am J Physiol 1989; 257: G823-G829

Hollander D, Dadufalza V. Increased intestinal absorption of oleic acid with aging in the rat. Exp Gerontol 1983; 18: 287-292

BECKER GH, MEYER J, NECHELES H. Fat absorption in young and old age. Gastroenterology 1950; 14: 80-92

Salemens JM, Naogast FM, Tangerman A, van Schaik A, Hopman WP, de Haan AF, Jansen JB. Effect of aging on postprandial conjugated and unconjugated serum bile acid levels in healthy subjects. Eur J Clin Invest 1993; 23: 192-198

Arora S, Kassarianz J, Krassinski SD, Croffey B, Kaplan MM, Russell RM. Effect of age on tests of intestinal and hepatic function in healthy humans. Gastroenterology 1989; 96: 1560-1565

Woudstra TD, Drozdowski LA, Wild GE, Clandinin MT, Agellon LB, Thomson AB. An isocaloric PUFA diet enhances lipid uptake and weight gain in aging rats. Lipids 2004; 39: 343-354

Holt PR. Diarrhea and malabsorption in the elderly.
88 Thomson AB, Keelan M, Clandinin MT, Walker K. A high linoleic acid diet diminishes enhanced intestinal uptake of sugars in diabetic rats. *Am J Physiol* 1987; **252**: G262-G271

89 Thomson AB, Keelan M, Clandinin MT, Rajotte RV, Cheeseman C, Walker K. Use of polyunsaturated fatty acid diet to treat the enhanced intestinal uptake of lipids in streptozotocin diabetic rats. *Clin Invest Med* 1988; **11**: 57-61

90 Thomson AB, Keelan M, Clandinin MT. Feeding rats a diet enriched with saturated fatty acids prevents the inhibitory effects of acute and chronic ethanol exposure on the in vitro uptake of hexoses and lipids. *Biochim Biophys Acta* 1991; **1084**: 122-128

91 Thiesen AL, Tappenden KA, McBurney MI, Clandinin MT, Keelan M, Thomson BK, Wild GE, Thomson AB. Dietary lipids alter the effect of steroids on the transport of glucose after intestinal resection: Part I. Phenotypic changes and expression of transporters. *J Pediatr Surg* 2003; **38**: 150-160

92 Vine DF, Charman SA, Gibson PR, Sinclair AJ, Porter CJ. Effect of dietary fatty acids on the intestinal permeability of marker drug compounds in excised rat jejunum. *J Pharm Pharmacol* 2002; **54**: 809-819

93 Woudstra TD, Drozdowski LA, Wild GE, Clandinin MT, Agellon LB, Thomson AB. The age-related decline in intestinal lipid uptake is associated with a reduced abundance of fatty acid-binding protein. *Lipids* 2004; **39**: 603-610