REMARKS ON EIGENSPECTRA OF ISOLATED SINGULARITIES

BEN CASTOR, HAOHUA DENG, MATT KERR, AND GREGOR Y PEARLSTEIN

Abstract. We introduce a simple calculus, extending a variant of the Steenbrink spectrum, for describing Hodge-theoretic invariants of (smoothings of) isolated singularities with (relative) automorphisms. After computing these “eigenspectra” in the quasi-homogeneous case, we give three applications to singularity bounding and monodromy of VHS.

INTRODUCTION

Recent work of the third author and R. Laza on the Hodge theory of degenerations [KL1, KL2] re-examined the mixed Hodge theory of the Clemens-Schmid and vanishing-cycle sequences, with an emphasis on applications to limits of period maps and compactifications of moduli. When a degenerating family of varieties has a finite group G acting on its fibers, these become exact sequences in the category of mixed Hodge structures with $G \times \mu_k$-action, where k is the order of T_{ss} (the semisimple part of monodromy). These kinds of situations often show up in generalized Prym or cyclic-cover constructions; for instance, instead of using the period map attached to a family of varieties, one may want to use the “exotic” period map arising from a cyclic cover branched along the family.

In this note we explain how to encode the contributions of isolated singularities with G-action to the vanishing cohomology in terms of G-spectra. These are formal sums (with positive integer coefficients) of triples in $\mathbb{Z} \times \mathbb{Q} \times \mathfrak{R}$, where \mathfrak{R} is the set of irreducible representations of G. The term eigenspectrum refers to the specific case of a cyclic group $\langle g \rangle$ with fixed generator. In §A this formalism emerges naturally from the general setting of a proper morphism of 1-parameter degenerations over a disk, by specializing the morphism to an automorphism $g \in \text{Aut}(\mathcal{X}/\Delta)$ fixing a singularity $x \in X_0$. The eigenspectrum $\sigma_{p,x}^g$ simply records the dimensions of simultaneous eigenspaces of g^* and T_{ss} in the (p, q)-subspaces of V_x (Defn. A.12). We give a general computation in

2000 Mathematics Subject Classification. 14D06, 14D07, 14J17, 32S25, 32S35.
In the case of a quasi-homogeneous singularity, in terms of a monomial basis for the associated Jacobian ring (Cor. B.7).

In the remaining sections, we give three applications. The first, in §C, is to bounding the number of nodes on Calabi-Yau hypersurfaces in weighted projective spaces (Thm. C.6) by passing to cyclic covers. In particular, this simplifies the proof for Varchenko’s bound of 135 for quintic hypersurfaces in \mathbb{P}^3. We also obtain the curious result that a CY hypersurface in \mathbb{P}^{n+1} with isolated singularities and symmetric under \mathfrak{S}_{n+2} cannot contain a node whose \mathfrak{S}_{n+2}-orbit has cardinality $(n + 2)!$ (Thm. C.11).

The other two applications concern codimension-one monodromy phenomena for VHSs over moduli of configurations of points and hyperplanes. In §D, the moduli space is $M_{0,2n}$, with the VHS arising from cyclic covers of \mathbb{P}^1 branched along the $2m$ ordered points. Propositions D.5-D.6 describe the eigenspectra for boundary strata of certain compactifications $\overline{M}^{H}_{0,2n}$ due to Hassett [Ha], also closely related to work of Deligne and Mostow [DM]; this generalizes a computation of [GKS].

Our other main example, treated in §E, is the VHS $\mathcal{H} \to S$ on the moduli space of general configurations of $(2n + 2)$ hyperplanes in \mathbb{P}^n, arising from the middle (intersection) cohomology of a 2:1 cover $X \to \mathbb{P}^n$ branched along these hyperplanes. By passing to a smooth complete intersection 2^{2n}-cover of X and applying the Cayley trick, we replace X by a smooth hypersurface $Y \subset \mathbb{P}(\mathcal{O}_{\mathbb{P}^{2n+1}}(2)^{\oplus(n+1)})$ with automorphisms by a group of order 2^{2n}. In codimension-one in moduli, Y acquires nodes, and a variant of Schoen’s result in [Sc] ensures that these produce nontrivial symplectic transvections for \mathcal{H} when n is odd. This gives an easy proof that the geometric monodromy group of \mathcal{H} is maximal (for all n), and the period map “non-classical”, a fact first proved by [GSVZ] for $n = 3$ and by [SXZ] in general.

Notation. In this paper “MHS” stands for \mathbb{Q}-mixed Hodge structure. We shall make frequent use of the Deligne bigrading on a MHS V [De1]. This is (by definition) the unique decomposition $V_C = \bigoplus_{p,q \in \mathbb{Z}} V^{p,q}$ with the properties that $F^k V_C = \bigoplus_{p,q \geq k} V^{p,q}$, $W^\ell V_C = \bigoplus_{p,q \leq \ell} V^{p,q}$, and $V^{q,p} \equiv V^{p,q} \mod \bigoplus_{b<q} V^{a,b}$. We shall make free use of standard multi-index notation (for n-tuples of variables or field-elements) to simplify formulas, viz. $\mathbf{z} = (z_1, \ldots, z_n)$, $\mathbb{C}[\mathbf{z}] = \mathbb{C}[z_1, \ldots, z_n]$, $\mathbf{z}^m = \Pi_i z_i^m$, $\mathbf{m} \cdot \mathbf{w} = \sum_i m_i w_i$, $|\mathbf{m}| = \sum_i m_i$, $e^{(i)} = i^{th}$ standard basis vector, etc.

Acknowledgments. We thank P. Gallardo and R. Laza for valuable discussions related to this paper. This work was partially supported by Simons Collaboration Grant 634268 and NSF Grant DMS-2101482.
A. G-spectra and eigenspectra

We begin in the general setting of a proper morphism

\[Y \xrightarrow{\pi} X \]

of complex analytic spaces over a disk, which we assume is the restriction to \(\Delta \) of a proper morphism of quasi-projective varieties over an algebraic curve. (In particular, at the level of fibers we have that \(\pi_t: Y_t \to X_t \) is a proper algebraic morphism of quasi-projective varieties.) Let \(K^\bullet \in D^b\text{MHM}(X) \) and \(L^\bullet \in D^b\text{MHM}(Y) \) be given, with a morphism \(\rho: K^\bullet \to R\pi^*L^\bullet \). Writing \(i: X_0 \hookrightarrow X \) for the inclusion, the vanishing cycle triangle

\[\begin{array}{c}
 i^* \xrightarrow{sp} \psi_f \xrightarrow{can} \phi_f \xrightarrow{[+1]} \\
 \downarrow \rho \quad \downarrow \rho \quad \downarrow \rho \\
 i^* \xrightarrow{sp} \psi_{f'} \xrightarrow{can} \phi_{f'} \xrightarrow{[+1]}
\end{array} \]

consists of functors from \(D^b\text{MHM}(X) \) to \(D^b\text{MHM}(X_0) \), with natural transformations between them; moreover, monodromy \(T = T_{ss} e^N \) induces natural automorphisms of \(\psi_f \) and \(\phi_f \). By proper base-change and faithfulness of \(\text{rat}: D^b\text{MHM}(X_0) \to D^b\text{MHM}(X) \), \(R\pi_*: D^b\text{MHM}(Y_0) \to D^b\text{MHM}(X_0) \) intertwines the corresponding triangle (and monodromy actions) for \((Y, f') \). Taking hypercohomology on \(X_0 \) yields:

A.3. Proposition. We have the commutative diagram

\[\begin{array}{c}
 H(X_0, i^*K^\bullet) \xrightarrow{sp} H(X_0, \psi_f K^\bullet) \xrightarrow{can} H(X_0, \phi_f K^\bullet) \xrightarrow{\delta} H(X_0, i^*K^\bullet) \\
 \downarrow \rho \quad \downarrow \rho \quad \downarrow \rho \\
 H(Y_0, i^*L^\bullet) \xrightarrow{sp} H(Y_0, \psi_{f'} L^\bullet) \xrightarrow{can} H(Y_0, \phi_{f'} L^\bullet) \xrightarrow{\delta} H(Y_0, i^*L^\bullet)
\end{array} \]

with rows the vanishing-cycle (long-exact) sequences, in which all arrows are morphisms of MHS. Moreover, the diagram intertwines the actions of \(T_{ss} \) (by automorphisms of MHS) and \(N \) (by nilpotent \((-1, -1)\)-endomorphisms of MHS), which are trivial (Id resp. 0) on the end terms.
A.4. Remark. If f, f' are themselves projective (hence proper), and K^\bullet, L^\bullet semisimple with respect to the perverse t-structure (e.g. $K^\bullet = IC^\bullet_{\mathcal{X}}, L^\bullet = IC^\bullet_{\mathcal{Y}}$), then the Decomposition Theorem applies, yielding Clemens-Schmid sequences (cf. [KL1, §5]) which are then automatically compatible under ρ. The main consequence is that the local invariant cycle theorem holds, i.e. sp surjects onto the T-invariants.

Next, assume $\mathcal{X}, \mathcal{Y}, \{X_t\}_{t \neq 0}$, and $\{Y_t\}_{t \neq 0}$ are smooth, and take $L^\bullet = \mathbb{Q}_Y$ and $K^\bullet = \mathbb{Q}_X$; then the diagram in Prop. A.3 becomes

\begin{equation}
(A.5) \quad H^k(X_0) \xrightarrow{sp} H^k_{\lim}(X_t) \xrightarrow{can} H^k_{\text{van}}(X_t) \xrightarrow{\delta} H^{k+1}(X_0) \xrightarrow{} \\
\downarrow \pi^* \quad \quad \downarrow \pi^* \quad \quad \downarrow \pi^* \quad \quad \downarrow \pi^* \\
H^k(Y_0) \xrightarrow{sp} H^k_{\lim}(Y_t) \xrightarrow{can} H^k_{\text{van}}(Y_t) \xrightarrow{\delta} H^{k+1}(Y_0) \xrightarrow{} .
\end{equation}

Now if $n = \dim X_0$ and $\Sigma := \text{sing}(X_0)$ is finite, then $H^k_{\text{van}}(X_t) = \{0\}$ for $k \neq n$ and, defining $V_x := H^0_{\text{ss}} \phi f^* \mathbb{Q}_X[n]$, $H^n_{\text{van}}(X_t) \cong \bigoplus_{x \in \Sigma} V_x$

as MHS. We have of course $\pi^{-1}(\Sigma) \subset \tilde{\Sigma} := \text{sing}(Y_0)$, and if $\dim Y_0 = n$ and $|\tilde{\Sigma}| < \infty$ then, writing $\tilde{V}_y := H^0_{\text{ss}} \phi f^* \mathbb{Q}_Y[n]$ $(y \in \tilde{\Sigma})$, π^* restricts to morphisms

\begin{equation}
(A.7) \quad [\pi^*]_x: V_x \rightarrow \bigoplus_{y \in \pi^{-1}(x)} \tilde{V}_y
\end{equation}

of T-MHS — i.e. morphisms of MHS intertwining T (hence T_{ss} and N). These are local invariants.

Recall that T_{ss} acts through finite cyclic groups on each V_x (and \tilde{V}_y), and let κ be the lcm of their orders. Write $\zeta_{\kappa} := e^{2\pi i/\kappa}$ and $V_{p,q}^{x,\kappa} = \mathbb{C}$ for the $e^{2\pi i/\kappa}$-eigenspace of T_{ss} in $V_{p,q}^x \subset V_{x,\mathbb{C}}$. The explicit choice of $\zeta_{\kappa} \in \mathbb{C}$ is needed to make the following

A.8. Definition. The mixed spectrum $\sigma_{f,x}$ of the isolated singularity $x \in \Sigma$ is the element $\sum_{\alpha, w} m_{\alpha, w} f_{\alpha, w}(\alpha, w)$ of the free abelian group $\mathbb{Z}(\mathbb{Q} \times \mathbb{Z})$, where $m_{\alpha, w} = \dim(V_{x,\mathbb{C}}^{e(\alpha), w-\{\alpha\}})$.

Evidently (A.7) must be compatible with the decompositions recorded by the mixed spectra.

Now let $G \leq \text{Aut}(\mathcal{X}/\Delta)$, with \mathcal{X} and $\{X_t\}_{t \neq 0}$ smooth and $|\Sigma| < \infty$. Applying the foregoing results with $\mathcal{Y} = \mathcal{X}$, $f = f'$, and $\pi := g \in G$, together with [KL1] Prop. 5.5(i), yields

\footnote{Here $\lfloor \cdot \rfloor$ is the greatest integer (floor) function; note also that $e(\alpha)$ is equivalent to taking the fractional part $\{\alpha\} := \alpha - \lfloor \alpha \rfloor$ of α.}
A.9. **Corollary.** The vanishing-cycle sequence

\[(A.10) \quad 0 \to H^n(X_0) \xrightarrow{sp} H^n_{\lim}(X_t) \xrightarrow{\text{can}} \bigoplus_{x \in \Sigma} V_x \xrightarrow{\delta} H^{n+1}_{\text{ph}}(X_0) \to 0 \]

is an exact sequence of $G \times \mu_\kappa$-MHS\(^2\) where the $\langle T_{ss} \rangle \cong \mu_\kappa$-action on the end terms is trivial. If \mathcal{X}/Δ is proper, then $H^{n+1}_{\text{ph}}(X_0) := \ker(\text{sp}) \subseteq H^{n+1}(X_0)$ is pure of weight $n + 1$.

The decomposition of terms in \[(A.10)\] into irreps for $G \times \mu_\kappa$ only becomes useful if we understand the action on the vanishing cohomology $\bigoplus_{x \in \Sigma} V_x$ for a given collection of singularities. In particular, if $gx = x$ then we need to further refine the spectrum under the resulting automorphism $g^*: V_x \to V_x$ of T-MHS.

A.11. **Definition.** Write $G \leq \text{stab}(x) \leq \mathcal{G}$, and \mathcal{R}_G for the set of complex irreducible representations of G. The G-spectrum $\sigma^G_{f,x}$ of x is the element $\sum_{(\alpha, w, U)} m^{f, x, G}_{\alpha, w, U}(\alpha, w, U)$ of the free abelian group $\mathbb{Z}(\mathbb{Q} \times \mathbb{Z} \times \mathcal{R}_G)$, where (for each (α, w)) $V^{[\alpha], w-\lceil \alpha \rceil}_{x, e(\alpha)} \cong \bigoplus_{U \in \mathcal{R}_G} U^{\oplus m^{f, x, G}_{\alpha, w, U}}$ as G-representations.

In the special case where $G = \langle g \rangle \cong \mu_\ell$ is cyclic, the \mathbb{C}-irreps are characters indexed by the power $\zeta^e_\ell = e^{2\pi i \ell}$ of ζ_ℓ to which g is sent.

A.12. **Definition.** The eigenspectrum of an isolated singularity x with automorphism g is the element

$$\sigma^g_{f,x} = \sum_{(\alpha, w, \gamma)} m^{f, x, g}_{\alpha, w, \gamma}(\alpha, w, \gamma) \in \mathbb{Z}(\mathbb{Q} \times \mathbb{Z} \times \mathbb{Q}/\mathbb{Z}),$$

where $m^{f, x, g}_{\alpha, w, \gamma}$ is the dimension of the eigenspace $(V^{[\alpha], w-\lceil \alpha \rceil}_{x, e(\alpha)})^{e(\gamma)} \subseteq V^{[\alpha], w-\lceil \alpha \rceil}_{x, e(\alpha)}$ for g^* with eigenvalue $e(\gamma) = e^{2\pi i \gamma}$.

A.13. **Remark.** For \mathcal{X}/Δ proper (with hypotheses as in Cor. [A.9]), $H^n(X_t)$ is a VHS on Δ^* whose automorphism group contains \mathcal{G}. For any field extension K/\mathbb{Q}, this decomposes as K-VHS into a direct sum of G-isotypical components, corresponding to K-irreps of \mathcal{G}. The \mathcal{G}-action on and decomposition of $H^n_{\lim}(X_t)$ obtained by taking limits are the same as those arising from the \mathcal{G}-MHS structure on $H^n_{\lim}(X_t)$ in Cor. [A.9].

We now turn to the explicit computation of these eigenspectra in the simplest case.
B. Quasihomogeneous singularities with automorphism

Let \(F \in \mathbb{C}[z_1, \ldots, z_{n+1}] \) (with \(n > 0 \)) be a quasi-homogeneous polynomial with an isolated singularity at the origin \(0 \). That is, choosing a weight vector \(\underline{w} = (w_1, \ldots, w_{n+1}) \in \mathbb{Q}_{>0}^{n+1} \) and setting \(M_{\underline{w}} := \{ m \in \mathbb{Z}_{\geq 0}^{n+1} \mid m \cdot \underline{w} = 1 \} \), we have

\[
F = \sum_{m \in M_{\underline{w}}} a_m z^m
\]

for some \(a_m \in \mathbb{C} \). We recall that the degree \(\kappa_F \) of \(F \) is the least integer such that \(\kappa_F w_i \in \mathbb{N} \) for \(i = 1, \ldots, n+1 \); define \(w_i := \kappa_F w_i \) and set \(\underline{\kappa} := (\kappa_1, \ldots, \kappa_{n+1}) \).

Next recall the setting of Defn. A.8, where \(f: X \to \Delta \) is a holomorphic map with quasi-projective fibers and smooth total space, with \(X_t \) smooth for \(t \neq 0 \) and \(\text{sing}(X_0) =: \Sigma \) finite. A singularity \(x \in \Sigma \subset X_0 \) is quasi-homogeneous if \(f \) can be locally analytically identified with (B.1) for some \(\underline{w} \). In that case, \(V_x \) and \(\sigma_{f,x} \) identify with the vanishing cohomology

\[
V_F := H^0_{\underline{0}} \phi_F \mathbb{Q}_{\mathbb{C}^{n+1}}
\]

of \(F: \mathbb{C}^{n+1} \to \mathbb{C} \) at \(\underline{0} \), and its mixed spectrum \(\sigma_F \). These were first computed by Steenbrink in [St], and we briefly review the treatment from [KL2 §2] before passing to eigenspectra.

Writing \(J_F := (\frac{\partial F}{\partial z_1}, \ldots, \frac{\partial F}{\partial z_{n+1}}) \subset \mathbb{C}[\underline{z}] \) for the Jacobian ideal, let \(B \subset \mathbb{Z}_{\geq 0}^{n+1} \) be chosen so that the monomials \(\{z^{\beta}\}_{\beta \in B} \) provide a basis of \(\mathbb{C}[\underline{z}]/J_F \). Write \(\mu_F := |B| \) for the Milnor number of \(F \), and \(\ell(\underline{\beta}) := \frac{1}{\kappa_F} \sum_{i=1}^{n+1} \kappa_i (\beta_i + 1) = \sum_{i=1}^{n+1} w_i (\beta_i + 1) \).

B.3. Proposition. We have \(\mu_F = \dim V_F \) for the Milnor number and

\[
\sigma_F = \sum_{\beta \in B} (\alpha(\underline{\beta}), w(\underline{\beta})) \in \mathbb{Z}(\mathbb{Q} \times \mathbb{Z})
\]

for the mixed spectrum, where \(\alpha(\underline{\beta}) := n+1 - \ell(\underline{\beta}) \) and \(w(\underline{\beta}) := n \) [resp. \(n+1 \)] if \(\alpha(\underline{\beta}) \notin \mathbb{Z} \) [resp. \(\in \mathbb{Z} \)].

Sketch. Perform a base-change followed by weighted blow-up at \(0 \)

\[
\begin{array}{ccc}
\mathbb{C}^{n+1} & \xrightarrow{\mathbb{X}} & \mathbb{Y} \\
F \downarrow & & \downarrow F \\
C & \xrightarrow{\Delta} & \mathbb{F} \\
\end{array}
\]

\[
t^F \quad \xrightarrow{t}
\]
with exceptional divisor $E = \{ T^{\kappa_F} = F(Z) \} \subset \mathbb{WP}[1:K] =: P$ (in weighted homogeneous coordinates T, Z_1, \ldots, Z_{n+1}). The singular fiber $\mathcal{Y}_0 := \hat{E}^{-1}(0)$ is the union of E and the proper transform \hat{X}_0 of $X_0 := F^{-1}(0) = \hat{F}^{-1}(0)$, meeting in

$$E := \mathcal{E} \cap \hat{X}_0 = \{ F(Z) = 0 \} \subset H := \{ T = 0 \} (\cong \mathbb{WP}[K]) \subset P.$$

The claim is then that $V_F \cong H^n(\mathcal{E} \setminus E)$, which can be checked using (A.5) with $\pi = Bl_x$. Since E [resp. \hat{E}] is a deformation retract of \mathcal{Y}_0 [resp. X_0], while $\mathcal{Y}_t = X_t$ for $t \neq 0$, and $\phi_{F Q} : Q \simeq t^E Q_E(-1)[−1]$ (cf. [KL1, 6.3 and 8.3-4]), the diagram becomes

$$0 \longrightarrow H^n_{\lim}(X_t) \xrightarrow{\cong} V_F \xrightarrow{\|} 0$$

$$H^{n-2}(E)(−1) \xrightarrow{H^n} H^n(\mathcal{E}) \xrightarrow{H^n_{\lim}} H^{n-1}(\mathcal{Y}_t) \xrightarrow{H^{n-1}(E)(−1)} H^{n+1}(\mathcal{E})$$

whence the result.

Next, one constructs a basis of $H^n(\mathcal{E} \setminus E)$ from B, using residue theory. Writing (with $T := Z_0$)

$$\Omega_P = \sum_{j=0}^{n+1} (-1)^j Z_j dZ_0 \wedge \cdots \wedge dZ_j \wedge \cdots \wedge dZ_{n+1},$$

for each $\beta \in B$ we set (with $Z^\beta = Z_1^{\beta_1} \cdots Z_{n+1}^{\beta_{n+1}}$)

$$\Omega_\beta := \frac{T^{\kappa_F} Z^\beta \Omega_P}{T(F(Z) − T^{\kappa_F})^{\lfloor \ell(\beta) \rfloor}} \in \Omega^{n+1}(P \setminus \mathcal{E} \cap H) \tag{B.5}$$

and $\omega_\beta := \text{Res}_{\mathcal{E} \setminus E}(\Omega_\beta) \in H^n(\mathcal{E} \setminus E)$. We refer to [KL2, Thm. 2.2] for the proof that this has (p, q)-type $(|\alpha(\beta)|, |\ell(\beta)|)$, and [St] Thm. 1 for the assertion that the $\{\omega_\beta\}$ give a basis. Note that $|\alpha(\beta)| + |\ell(\beta)| = w(\beta)$.

Finally, the action of T_{ss} is computed by $T \mapsto \zeta^{\kappa_F} T$, or equivalently (in weighted projective coordinates) by $Z_i \mapsto \zeta^{−\kappa_i} Z_i = e^{−2\pi i w_i} Z_i$. Clearly the effect of this on (B.5) is to multiply it by $e^{2\pi i \sum w_i (\beta_i + 1)} = e^{2\pi i \alpha(\beta)}$, as desired. \hfill \square

Now given a finite group $G \leq \text{Aut}(\mathcal{X}/\Delta)$ fixing $x \in \Sigma$, we can always choose local holomorphic coordinates on which the action is linear [Ca]. So for a given $g \in G$, we can choose coordinates to make the action diagonal, through roots of unity. Accordingly, we shall compute the eigenspectrum in the case where $g \in \text{Aut}(\mathbb{C}^{n+1}, \Omega)$ is given by

$$g(z_1, \ldots, z_{n+1}) := (\zeta^{c_1}_\ell z_1, \ldots, \zeta^{c_{n+1}}_\ell z_{n+1}) \tag{B.6}$$
and $F \in \mathbb{C}[z]^{(g)}$ is a g-invariant quasi-homogeneous polynomial. In fact, taking $\mathcal{B} \subset \mathbb{Z}_{\geq 0}^{n+1}$ as above, we have the

B.7. Corollary. The eigenspectrum $\sigma_{\mathcal{F}}^g$ is given by

$$
\sum_{\beta \in \mathcal{B}} (\alpha(\beta), w(\beta), \gamma(\beta)) \in \mathbb{Z}(\mathbb{Q} \times \mathbb{Z} \times \mathbb{Q}/\mathbb{Z}),
$$

where $\gamma(\beta) := \frac{1}{\ell} \sum_{i=1}^{n+1} c_i(\beta_i + 1)$.

Proof. We only need to compute the action of g^* on ω_{β}, which is to say the effect of $Z_i \mapsto \zeta_i^\ell Z_i$ on $\mathbb{Z}[\Omega]$. Clearly this is just multiplication by $\zeta_\ell^{c_i(\beta_i + 1)} = e^{2\pi i \gamma(\beta)}$. \hfill \square

B.8. Example. For a Brieskorn-Pham singularity $F = \sum_{i=1}^{n+1} z_i^{\lambda_i}$ ($\lambda_i = \frac{1}{w_i} = \frac{m_i}{n_i}$), we have $\mathcal{B} = \times_{i=1}^{n+1} \{Z_i \cap [0, d_i - 2]\}$. Hence, writing $\Gamma_m = \sum_{j=1}^{m-1} (\frac{j}{m})$ in the group ring $\mathbb{Z}[(\mathbb{Q})]$ (with product $*$), we have $\sum_{\beta \in \mathcal{B}} [\alpha(\beta)] = \Gamma_{\lambda_1} * \cdots * \Gamma_{\lambda_{n+1}}$. This extends to $\sum_{\beta \in \mathcal{B}} [\alpha(\beta), \gamma(\beta)] = \tilde{\Gamma}_{\lambda_1}(\frac{\ell}{\ell}) * \cdots * \tilde{\Gamma}_{\lambda_{n+1}}(\frac{\ell}{\ell})$ in the group ring $\mathbb{Z}[\mathbb{Q} \times (\mathbb{Q}/\mathbb{Z})]$ if we write $\tilde{\Gamma}_m(\frac{\ell}{\ell}) = \sum_{j=1}^{m-1} [(\frac{m-j}{m}, \frac{j}{m})]$.\hfill \square

B.9. Remark. The eigenspectrum of a μ-constant (semi-quasi-homogeneous) deformation of (\mathcal{F}, γ) remains constant. Even in the more general case of [KL2] §5.2, one can in principle still use the action of γ^* on the (local) Jacobian ring $\mathcal{O}_{n+1}/J_{\mathcal{F}}$ to refine $\sigma_{\mathcal{F}}$ to $\sigma_{\mathcal{F}}^g$. But Corollary B.7 (and quasi-homogeneous deformations of Example B.8) will suffice for our purposes below.

C. Bounding nodes on Calabi-Yau hypersurfaces

Let $\mathbb{W} = \mathbb{W} \mathbb{P}[e_0 : \cdots : e_{n+1}]$ be a weighted projective $(n + 1)$-space with finitely many singularities.\footnote{We may assume (without loss of generality) that no $n + 1$ of the e_i have a common factor.} Suppose we want to bound (numbers and types of) singularities on a hypersurface $X_0 = \{F_0(\mathbb{W}) = 0\} \subset \mathbb{W}$ of degree d, where a smooth such hypersurface would have Hodge numbers $h = (h^{0,0}, h^{n-1,1}, \ldots, h^{0,n})$. Write $d_i = \frac{d}{e_i}$ for $i = 0, \ldots, n + 1$.

We shall assume that the singularities of X_0 are all isolated. Taking a general deformation $F_t = F_0 + tG$ to produce a family of $f : \mathcal{X} \to \Delta$ with smooth total space, the vanishing-cycle sequence

$$(C.1) \quad 0 \to H^n(X_0) \to H^n_{\lim}(X_t) \to \bigoplus_{x \in \Sigma} V_x \to H_{ph}^{n+1}(X_0) \to 0$$
of nodes on a quartic surface (cf. Example C.8).

Moreover, the mixed spectrum \(\sigma \) \cite{Do}, a basis for the automorphism. By Dolgachev's extension of Griffiths's residue theory giving one for odd \(n \), \(\sum_{i=1}^{d}(\frac{n}{2}+1) \) in \(\Gamma_{d_{n+1}} \) as a bound, which while better than nothing is rather weak.

C.4. Example. The simplest nontrivial case is \(W = \mathbb{P}^{3} \) \((n = 2) \) and \((d_{0} = d_{1} = d_{2} = d_{3} = d) = 4 \), where \(\Gamma_{n}^{4} = (\lfloor \frac{1}{1} \rfloor + \lfloor \frac{1}{2} \rfloor + \lfloor \frac{3}{4} \rfloor)^{4} \).

\[\text{(C.5) } [1] + 4[\frac{1}{2}] + 10[\frac{3}{4}] + 16[\frac{5}{8}] + 19[2] + 16[\frac{7}{8}] + 10[\frac{9}{16}] + 4[\frac{11}{16}] + [3] \]

correctly gives \(19 = h_{pr}^{1,3}(X_{t}) \). This is also a poor bound for the number of nodes on a quartic surface (cf. Example C.8).

However, there is a simple trick which improves the bound while also giving one for odd \(n \):

C.6. Theorem. The number of nodes on \(X_{0} \) is bounded by the coefficient, in \(\Gamma_{d_{0}} * \Gamma_{d_{1}} * \cdots * \Gamma_{d_{n+1}} \), of \(\lfloor \frac{n+1}{2} \rfloor + \lfloor \frac{1}{d} \rfloor \) if \(n \) is even and \(d \) is odd, or of \(\lfloor \frac{n+1}{2} \rfloor + \frac{1}{d} \) otherwise.

Prove. Let \(Y_{t} = \{ F_{t}(W) + W_{n+2}^{d} = 0 \} \subset \mathbb{WP}[e] \): \(\tilde{W} \) be the cyclic \(d;1 \)-cover of \(W \) branched over \(X_{t} \), with \(g: W_{n+2} \mapsto \zeta_{d}W_{n+2} \) the cyclic automorphism. By Dolgachev's extension of Griffiths's residue theory \cite{Do}, a basis for the \(g^{*} \)-eigenspace \(H^{3-n,q+1,q}(Y_{t})C^{j}_{d_{t}} \) \((t \neq 0, 0 \leq j < d) \) is given by the Poincaré residue classes

\[\text{Res}_{Y_{t}} \left(\frac{W^{k_{i}}W_{n+2}^{-d-j-1} \Omega_{\tilde{W}}}{(F_{t} + W_{n+2}^{d})^{q+1}} \right) \]

with \(k_{i} \in \mathbb{Z} \cap (0, d_{i}) \) \((i = 0, \ldots, n+1) \) and weights of numerator and denominator equal: that is, \(\sum_{i=0}^{n+1} e_{i}k_{i}+(d-j) = (q+1)d \), or equivalently

\[\text{Res}_{Y_{t}} \left(\frac{W^{k_{i}}W_{n+2}^{-d-j-1} \Omega_{\tilde{W}}}{(F_{t} + W_{n+2}^{d})^{q+1}} \right) \]

for the same residue theory as used in the proof of Theorem C.6 below. The notation '*' is from Example B.8.

4This is by the same residue theory as used in the proof of Theorem C.6 below. The notation '*' is from Example B.8.
which case the middle entry is n_{168}. If h that nodes. The bounds here are the coefficients of n and q nodes, applying (C.1)-(C.2) to Y and refining by g^*-eigenspaces therefore yields $h^{p_j,q_j}(Y)_{\tilde{\sigma}} \geq r$ (for $0 < j < d$), where $p_j = \lceil \frac{n+1}{2} + \frac{j}{d} \rceil$ and $q_j = n + 1 - p_j$. Taking $j = 1$ if n is odd and $j = \lceil \frac{d+1}{2} \rceil$ if n is even (so that $p_j = \frac{n+1}{2} \text{ resp. } \frac{n+1}{2}+1$) yields $q_j + \frac{j}{d} = \frac{n+1}{2} + \frac{1}{d} \text{ resp. } \frac{n}{2} + \frac{1}{d} \lceil \frac{d+1}{2} \rceil$, hence the claimed bound. □

C.7. Remark. When $\mathcal{W} = \mathbb{P}^{n+1}$, this recovers the bound conjectured by Arnol’d [Ar] and proved by Varchenko by applying his semicontinuity theorem to the Bruce deformation (see also [vS2]), While Varchenko also uses the “cyclic-cover trick”, our approach avoids the use of deformations and semicontinuity.

C.8. Example. For CY hypersurfaces on \mathbb{P}^{n+1} ($d = n+2$), Thm. C.6 yields the bounds 3, 16, 135, 1506, and 20993 for $n = 1, 2, 3, 4, 5$, the first two of which are sharp. (This is also better than what (C.3) yields for $n = 2$ and 4, namely 19 and 1751.) It is still not known whether 135 is sharp for quintic 3-folds. The well-known Fermat pencil has fiber $W^5_0 + \cdots + W^5_4 = 5W_0 \cdots W_4$, with 125 $= |(\mathbb{Z}/5\mathbb{Z})^5|$ nodes, while the example of van Straten [vS1] with 130 nodes remains the record.

C.9. Remark. For $n = 2$, the following bound by Miyaoka [Mi] sometimes yields better results. If X is any smooth projective surface which is smooth except at r nodes, and K_X is nef, then $r \leq 8\chi(\mathcal{O}_X) - \frac{2}{3}K_X^2$.

(a) For $X \subset \mathbb{P}^2$ a surface of degree d, this yields the bound $\frac{2}{3}(d-1)(d-2)(d-3) + 8 - \frac{8}{9}d(d-2)^2 = \frac{4}{9}d(d-1)^2$, which is better than Thm. C.6 for $d \geq 6$ even or $d \geq 15$ odd. A case in point is $d = 6$, where (C.3) gives 85, the Theorem 68, and Miyaoka 66; this was further reduced to 65 (which is sharp) by a clever use of coding theory [JR]. Another is $d = 8$, where we get $r \leq 174$.

(b) As a weighted projective example, one can consider surfaces X of degree 10 in $\mathbb{P}\mathbb{P}[1:1:1:2]$. We have $\chi(\mathcal{O}_X) = 1 + h^2(\mathcal{O}_X) = 35$ and $(K_X \cdot K_X)_X = (X \cdot (X + K_W)^2)_W = \frac{100(10-5)^2}{1+1+1+2} = 125$, hence $r \leq \lfloor \frac{1520}{9} \rfloor = 168$.

5The union of 3 lines in \mathbb{P}^2 has 3 nodes, and a Kummer quartic $K3$ in \mathbb{P}^4 has 16 nodes. The bounds here are the coefficients of $\lfloor \frac{n+1}{2} + \frac{1}{n+2} \rfloor$ in $\Gamma_{n+2}^{(n+2)}$; e.g., 16 is the coefficient of $\left[\frac{2}{7} \right]$ in (C.6).
C.10. Examples. We consider some CY 3-fold hypersurfaces with r nodes in weighted projective 4-folds.

(i) $X_0 \subset WP[1:1:1:2]$ of degree 6: the Theorem yields $r \leq 137$, while the “Fermat pencil” type example $W^6_0 + \cdots + W^3_2 + W^4_4 = 3 \cdot 2^4 W_0 \cdots W_4$ has $|((Z/6Z)^3 \times Z/3Z)/(Z/6Z)| = 108$ nodes.

(ii) $X_0 \subset WP[1:1:1:4]$ of degree 8: the Theorem yields $r \leq 180$, while $W^8_0 + \cdots + W^3_3 + W^4_4 = 4W_0 \cdots W_4$ has $|((Z/8Z)^3 \times Z/2Z)/(Z/8Z)| = 128$ nodes. Here we can improve both the bound and example, since X_0 is (by the quadratic formula) a double-cover of \mathbb{P}^3 branched along an r-nodal octic surface. So Rem. \textit{C.9(a)} gives $r \leq 174$, while Endraß’s example \textit{[En]} has $r = 168$.

(iii) $X_0 \subset WP[1:1:2:5]$ of degree $d = 10$: the Theorem yields $r \leq 169$, but because these are double covers of $WP[1:1:1:2]$ branched along an r-nodal dectic surface, Rem. \textit{C.9(b)} reduces the bound to 168. The standard example is $W^{10}_0 + W^{10}_1 + W^{10}_2 + W^5_3 + W^2_4 = 2^4 \cdot 5^4 W_0 \cdots W_4$, but this has only 100 nodes. One can do somewhat better by taking the preimage of a Togliatti quintic $\textit{[Be]}$ (with 31 nodes avoiding the coordinate axes) under $WP[1:1:1:2] \overset{1:2}{\rightarrow} WP[1:1:2:2] \overset{1:2}{\rightarrow} WP[1:2:2:2] \cong \mathbb{P}^3$, to get $4 \cdot 31 = 124$.

In the case of a symmetric hypersurface $X_0 \subset \mathbb{P}^{n+1}$, cut out by $F_0 \in \mathbb{C}[W]^{G_{n+2}}$ (homogeneous of degree d), one can consider the family $\mathcal{Y} \to \Delta$ of d-fold cyclic covers branched along an G_{n+2}-invariant smoothing $\mathcal{X} \to \Delta$. A full accounting of this story gets into G-spectra ($G \cong \mu_d \times \text{stab}_{G_{n+2}}(x)$) of the resulting A_{d-1} singularities of Y_0. This leads to constraints, via character theory of G_{n+2}, on how Σ can be built out of G_{n+2}-orbits. (However, it does not, for example, rule out the possibility of 135 nodes on an G_{5}-symmetric quintic threefold.) Here we shall only give the simplest result in this direction:

C.11. Theorem. A symmetric CY hypersurface in \mathbb{P}^{n+1} (of degree $d = n + 2$) with isolated singularities cannot contain a node with trivial stabilizer in G_{n+2}.

Proof. Suppose otherwise; then Y_0 has a set of $(n + 2)!$ A_{n+1} singularities with eigenspectra $\sum_{j=1}^{n+1} (\frac{n+1}{2} + \frac{1}{n+2}, n+1, \frac{j}{n+2})$. This contributes a subspace V of dimension $(n+2)!$ to the g^*-eigenspace $H^{n+1}_{\text{can}}(Y_t)_{\mathfrak{C}_{n+2}}$. It is closed under the action of G_{n+2}, and the triviality of the stabilizers of these A_{n+1} singularities means that the trace of any $\sigma \in G_{n+2} \setminus \{1\}$ is zero. So V is a copy of the regular representation of G_{n+2}, which

\text{As before, $g: W_{n+2} \mapsto \zeta_{n+2} W_{n+2}$ denotes the cyclic automorphism of Y_t.}
belongs to \(\ker(\delta) \subseteq H^{n+1}_{\text{van}}(Y)_{c_n+2} \). By the compatibility of the vanishing-cycle sequence for \(Y \) with \(g^* \) and \(S_{n+2} \), this forces a copy of the regular representation in \(H^{n+1}_{\text{lim}}(Y)_{c_n+2} \), hence \(H^{n+1}_{\text{lim}}(Y)_{c_n+2} \) for \(t \neq 0 \) (as \(S_{n+2} \) acts on the VHS, compatibly with taking limits, cf. Remark A.13).

Now \(U := H^{n+1}_{\text{lim}}(Y)_{c_n+2} \) has a basis of the form

\[\eta_k := \text{Res}_{Y_t} \left(\frac{W_k - 1}{(F_0(W) + W_{n+2}^{n+2})^{n+3/2}} \right), \]

where \(0 < k_i < n + 2 \) (for \(i = 0, \ldots, n + 1 \)) and (for equality of weights of numerator and denominator) \((\sum_{i=0}^{n+1} k_i) + 1 = \frac{n+3}{2}(n+2) \). Here \(S_{n+2} \) acts trivially on the denominator, through the sign representation \(\chi \) on \(\Omega_{p_{n+2}} \), and by permutations of the \(W_i \) on \(W_k^{n+1} \). We claim that \(U \) contains no copy of the trivial representation, a fortiori of the regular representation, furnishing the desired contradiction.

Clearly it is equivalent to show that the representation of \(S_{n+2} \) on the \(\mathbb{C} \)-span \(\bar{U} (\cong U \otimes \chi) \) of the monomials \(\{W_k^{n+1}\}_{k \text{ as above}} \) contains no copy of \(\chi \). Let \(o := S_{n+2} \cdot W_k \) be an orbit and \(\bar{U}_o \subseteq \bar{U} \) its span. By Burnside’s Lemma, \(\frac{1}{(n+2)!} \sum_{g \in S_{n+2}} |o^g| = 1 \). On the other hand, \(k = (k_0, \ldots, k_{n+1}) \) contains a repeated entry since there are only \(n + 1 \) choices for each \(k_i \); hence for some transposition \(\tau \), \(|o^\tau| \neq 0 \). Since \(\text{sgn}(\tau) = -1 \), this forces \(\frac{1}{(n+2)!} \sum_{g \in S_{n+2}} \text{sgn}(g) |o^g| \), which computes the number of copies of \(\chi \) in \(\bar{U}_o \), to be zero. □

For \(n = 1 \) or \(2 \) this result is obvious (since \(6 > 3 \) and \(24 > 16 \)), but for \(n = 3, 4, \) or \(5 \) it is less so (as \(120 < 135, 720 < 1506, \) and \(5040 < 20993 \)). In particular, since the examples of quintic 3-folds with 125 and 130 nodes are \(S_5 \)-symmetric, and the latter has a 60-node orbit, it is interesting that a 120-node orbit is impossible.

D. Cyclic covers of \(\mathbb{P}^1 \)

In the final two sections we turn to “codimension-one” monodromy phenomena for period maps arising from cyclic covers. We begin with a story that generalizes elliptic curves and goes back to Deligne and Mostow [DM]. Given distinct points \(t_1, \ldots, t_{2m} \in \mathbb{P}^1 \) (with projective coordinates \([S_i : T_i] \)), define

\[C_{\omega} := \{ [Z_0 : Z_1 : Z_2] \in \mathbb{P}[1:1:2] \mid Z_2^m = \prod_{i=1}^{2m} (S_i Z_1 - T_i Z_0) \}, \]

This is nothing but Cor. A.9 with \(G = \langle g \rangle \times S_{n+2} \).
with automorphism $g([Z_0:Z_1:Z_2]) := [Z_0:Z_1:z_mZ_2]$. For $m = 2, 3, 4,$ or $6,$ the sum of g^*-eigenspaces $H^1(C)\mathbf{C}^m \oplus H^1(C)\mathbf{C}^m$ produces a \$\Xi\$-VHS over $M_{0,2m}$, hence a period map to a ball quotient $\Gamma\backslash \mathbb{B}_{2m-3}$. This turns out to be injective\footnote{Recall that $M_{0,n}$ parametrizes ordered n-tuples of distinct points on \mathbb{P}^1 modulo the action of $\text{PSL}_2(\mathbb{C})$.} and extend to an isomorphism between GIT resp. Hassett/KSBA compactifications of $M_{0,2m}$ and Baily-Borel resp. toroidal compactifications of the ball quotient \cite{DM, GKS}.

Here we will not be concerned with the ball quotient or even the period map \textit{per se}, but only with

- the \$\Xi\$-VHS \mathcal{V} over $M_{0,2m}$ arising from $H^1(C)$,
- its sub-\mathcal{C}-VHSs $\mathcal{V}^\mathcal{C}_m := \ker(g^* - \zeta^j_m \mathbb{I})$ ($1 \leq j \leq m-1$), and
- their limiting behavior along the boundary of the Hassett compactifications $\overline{\mathcal{M}}_{0,1}$.\cite{Ha}

The point is that \textit{these can be considered for all $m \geq 2$, not just $m = 2, 3, 4,$ and 6.}

To begin with, in affine coordinates $x = \frac{Z_0}{Z_2},$ $y = \frac{Z_1}{Z_2},$ C takes the form $y^m = f(x) := \prod_{i=1}^{2m} (x-t_i)$ [resp. $\prod_{j \neq i} (x-t_i)$, if $t_j = \infty$]. While there are three possibilities for the Newton polytope Δ, they all have the same interior integer points

$$(\Delta \setminus \partial \Delta) \cap \mathbb{Z}^2 = \{(i,j) \mid 1 \leq j \leq m-1, \ 1 \leq i \leq 2(m-j) - 1\},$$

which provide a basis of $\Omega^1(C)$ via

$$\omega_{(i,j)} := \text{Res}_{C} \left(\frac{x^{i-1} y^{j-1} dx \wedge dy}{y^m - f(x)} \right).$$

Since $g^* \omega_{(i,j)} = \zeta^j_m \omega_{(i,j)},$ we find that

\begin{equation}
\text{rk}(\mathcal{V}^\mathcal{C}_m)^{1,0} = 2(m-j) - 1, \quad \text{rk}(\mathcal{V}^\mathcal{C}_m)^{0,1} = 2j - 1
\end{equation}

\begin{equation}
\text{rk}\mathcal{V}^\mathcal{C}_m = 2m - 2, \quad \text{and} \quad \text{rk}\mathcal{V} = (m-1)^2.
\end{equation}

Next, we need the following:

D.2. Definition (\cite{Ha}). A \textit{weighted stable rational curve} for the weight $\mu := (\mu_1, \ldots, \mu_n) \in \{(0,1) \cap \mathbb{Q}\}^n$ is a pair $\mathcal{C} \ (\sum \mu_i p_i)$ with:

- \mathcal{C} a nodal connected projective curve of arithmetic genus 0;
- each p_i a smooth point of \mathcal{C};
- if $p_{i_1} = \cdots = p_{i_r}$, then $\mu_{i_1} + \cdots + \mu_{i_r} \leq 1$; and
- the \mathbb{Q}-divisor $K_C + \sum \mu_i p_i$ is ample (i.e. on each irreducible component, the sum of weights plus number of nodes is > 2).

\footnote{\textit{For $m = 6$ one has to quotient $M_{0,12}$ by \mathfrak{S}_{12}; see \cite{GKS}.}}

\footnote{\textit{Despite the sum notation, the order of points with equal weights is retained.}}
We will write \((\mu, \ldots, \mu) =: [\mu]_n\) for repeated weights.

D.3. **Theorem** ([Ha]). (i) There exists a smooth projective fine moduli space \(\overline{M}_{0,\mu}\) parametrizing \(\mu\)-weighted stable rational curves, and containing \(\overline{M}_{0,n}\) as a Zariski-open subset.

(ii) Given weights \(\mu = (\mu_1, \ldots, \mu_n)\) and \(\tilde{\mu} = (\tilde{\mu}_1, \ldots, \tilde{\mu}_n)\) with \(\mu_i \leq \tilde{\mu}_i\) \((\forall i)\), there exists a birational reduction morphism \(\pi_{\tilde{\mu},\mu}: \overline{M}_{0,\tilde{\mu}} \to \overline{M}_{0,\mu}\) contracting all components which violate the ampleness property in (D.2) for the weight \(\tilde{\mu}\).

D.4. **Remark.**

(a) \(\overline{M}_{0,[1]}_n\) reproduces the Deligne-Mumford-Knudsen compactification \(\overline{M}_{0,n}\).

(b) Although the ampleness property forces \(\sum \mu_i > 2\), if for \(|\mu| = 2\) we define \(\overline{M}_{0,\mu}\) to be the GIT quotient \((\mathbb{P}^1)^n \sslash_{\mu} \text{SL}_2\), then (D.3)(ii) extends to this case; and if we take \(\tilde{\mu}_i = \mu_i + \epsilon\) \((\epsilon \in \mathbb{Q}, 0 < \epsilon \ll 1)\) then \(\pi_{\tilde{\mu},\mu}\) is Kirwan’s partial desingularization.

Our interest henceforth is in the equal-weight Hassett compactification \(\overline{M}_{0,2m}^H := \overline{M}_{0,[1_m]_{2m}}\) and its morphism \(\pi\) to \(\overline{M}_{0,2m}^{\text{GIT}} := \overline{M}_{0,[1_m]_{2m}}\).

As the reader may easily check, the irreducible components of \(\overline{M}_{0,2m}^H \setminus \overline{M}_{0,2m}\) are of two types, parametrizing \(^1\) stable weighted curves as shown (up to reordering of the \(\{p_i\}\)):

![Diagram](image)

It is also clear that \(\pi\) preserves the type (A) strata whilst contracting the type (B) ones to a (strictly semistable) point parametrizing the object

\[p_1 = \ldots = p_m \quad p_{m+1} = \ldots = p_{2m} \]

\(^1\)More precisely, it is a dense open subset of each component that parametrizes the displayed objects.
The \mathbb{C}-VHSs $\mathcal{V}^{e,j}_m$ admit canonical extensions across the smooth part of $\overline{M}_{0,2m} \setminus M_{0,2m}$, and we shall now compute the LMHS types there.

D.5. Proposition. Along type (A) strata:

- $\mathcal{V}^{e,j}_m$ is pure of weight 1, with $h^{1,0} = 2m - 2j - 1$ and $h^{0,1} = 2j - 1$, unless $j = \frac{m}{2}$;
- if $j = \frac{m}{2}$, then $h^{1,1} = h^{0,0} = 1$, $h^{1,0} = h^{0,1} = m - 1$, and $T = e^N$ (with N an isomorphism from the $(1,1)$ to $(0,0)$ part); and
- if $j > \frac{m}{2}$ [resp. $< \frac{m}{2}$], then we have the decomposition $\mathcal{V}^{e,j}_m = \mathcal{V}^{e,j}_{m,1} \oplus \mathcal{V}^{e,j}_{m,2j}$ into $T = T_{ss}$-eigenspaces, where $\mathcal{V}^{e,j}_{m,2j}$ is 1-dimensional of type $(0,1)$ [resp. $(1,0)$].

Proof. Begin by locally modeling (the effect on $C\ell$ of) the collision of two points by $y^m + z^2 = s$, as $s \to 0$. This has eigenspectrum

$$\sum_{j=1}^{m-1} \left(\frac{3}{2} - \frac{j}{m}, w(j), \frac{j}{m} \right),$$

where $w(j) = 2$ if $j = \frac{m}{2}$ and 1 otherwise. Next, we apply the vanishing-cycle sequence (with $H^2_{ph} = \{0\}$ since the degenerate curve remains irreducible) to compute the LMHS. Finally, we perform a base-change by $s \mapsto s^2$ to preserve ordering of points, which squares the eigenvalues of the T_{ss}-action; in other words, we replace $\frac{3}{2} - \frac{j}{m}$ by $\{2(\frac{3}{2} - \frac{j}{m})\} + [\frac{3}{2} - \frac{j}{m}]$ ($\{\cdot\}$ denoting the fractional part), which gives the result. \(\square\)

D.6. Proposition. Along the type (B) strata, for each $1 \leq j \leq m - 1$, $\mathcal{V}^{e,j}_m$ has Hodge numbers $h^{1,1} = h^{0,0} = 1$, $h^{1,0} = 2m - 2j - 2$, and $h^{0,1} = 2j - 2$; N is an isomorphism from the $(1,1)$ to $(0,0)$ part, and $T = e^N$ is unipotent.

Proof. In the GIT compactification for unordered points, the degeneration is locally modeled by two copies of $y^m + x^m = s$, each with eigenspectrum

$$\sum_{j=1}^{m-1} (1, 2, \frac{j}{m}) + \sum_{j=2}^{m-1} \sum_{k=1}^{j-1} (\frac{k+m-j}{m}, 1, \frac{j}{m}) + \sum_{j=1}^{m-2} \sum_{k=j+1}^{m-1} (\frac{k+m-j}{m}, 1, \frac{j}{m}).$$

At this point one applies the vanishing-cycle sequence to deduce the form of the LMHS, noting that the degenerate curve is a union of m \mathbb{P}^1s and $H^2_{ph} \cong \mathbb{Q}(-1)^{\oplus m-1}$. For $\overline{M}^H_{0,2m}$, one then applies the base-change by $s \mapsto s^m$, which trivializes T_{ss}, allowing the extension class to vary along the type (B) stratum. \(\square\)

D.7. Example. Combining \([D.1]\) with the two Propositions, $\mathcal{V}^{e,m}$ has Hodge-Deligne diagrams
\[T_{ss} = \zeta_m^2 \subset 1 \]

\[\text{type (A)} \quad \lim \quad \text{type (B)} \]

For \(m = 4 \) resp. 6, the monodromy in type (A) is thus given by a complex reflection resp. “triflection”.

D.8. Remark. For any \(m \), \(V_{\overline{\zeta}_m} (\oplus V_{\zeta_m}) \) induces a map from the universal cover \(\tilde{M}_{0,2m} \) to a ball \(B_{2m-3} \). Moreover, both LMHS types have \(2m-4 \) complex moduli. However, for \(m \) different from 2, 3, 4, or 6, this does not lead to a tidy extended period map: as the projection of the monodromy to \(U(1, 2m-3) \) is not discrete [Mo], the quotient of \(B_{2m-3} \) by this is not Hausdorff. To circumvent this problem, we must replace \(B_{2m-3} \) by its product with other (non-ball) symmetric domains, which receives the image of the period map for the \(\mathbb{Q} \)-VHS \(\oplus_{(j,m)=1} V_{\zeta_j^m} \).

E. Hyperplane configurations and Dolgachev’s conjecture

Let \(L_0, \ldots, L_{2n+1} \subset \mathbb{P}^n \) be hyperplanes defined by linear forms \(\ell_i \), in general position in the sense that \(\cup L_i \) is a normal crossing divisor. Consider the 2:1 cover \(X \rightarrow \mathbb{P}^n \) branched along \(\cup L_i \), and the rank-1 \(\mathbb{Q} \)-local system \(L \) on \(U = \mathbb{P}^n \setminus (\cup L_i) \xrightarrow{j} \mathbb{P}^n \) with monodromy \(-1 \) about each \(L_i \). Since \(X \) has finite quotient singularities, we have \(\text{IC}_X^* = \mathbb{Q}_X[n] \) and

\[
H := H^n_{\text{pr}}(X) := \frac{H^n(X)}{\pi^* H^n(\mathbb{P}^n)} \cong H^n(\mathbb{P}^n, j_* L) \cong \text{IH}^n(\mathbb{P}^n, L)
\]

is a pure HS of weight \(n \). By [DK] Lemma 8.2, it has Hodge numbers

\[
h^{p,n-p}_{\text{pr}}(X) = \binom{n}{p}^2 \implies h^{n}_{\text{pr}}(X) = \binom{2n}{n}.
\]

It is polarized by the intersection form \(Q \), which presents no difficulties as \(X \) has a smooth finite cover.

Taking \(\mathcal{S} \subset (\mathbb{P}^n)^{2n+2} / \text{PGL}_{n+1}(\mathbb{C}) =: \overline{\mathcal{S}} \) to be the \((n^2\text{-dimensional})\) moduli space of \(2n + 2 \) ordered hyperplanes in \(\mathbb{P}^n \) in general position, this construction yields a \(\mathbb{Z} \)-PVHS \(\mathcal{H} \rightarrow \mathcal{S} \) of CY-\(n \) type with \(H \) as reference fiber. Let \(\rho: \pi_1(\mathcal{S}) \rightarrow \text{Aut}(H, Q)^\circ =: \text{M}_{\text{max}} \) be the monodromy.

\[12\text{See [HTT] Prop. 8.2.30] for the statement that } \text{IC}_{\mathbb{P}^n}^* L = j_* L[n].\]
representation of \mathcal{H} its geometric monodromy group, and M its Hodge (special Mumford-Tate) group. Here Π is the identity connected component of $\tilde{\Pi} := \overline{\rho(\pi_1(S))}^{\text{Q-Zar}}$, and $\Pi \leq M \leq M_{\text{max}}$. A conjecture attributed by [SXZ] to Dolgachev states that the period map for \mathcal{H} factors through a locally symmetric variety (also n^2-dimensional) of type $I_{n,n}$ which would imply that $m_\mathbb{R} \cong \mathfrak{su}(n,n)$. This is equivalent to saying that,

\[
\text{(E.3) \quad \mathcal{H} \text{ is the } n^{th} \text{ wedge power of a VHS of weight 1 and rank } 2n.}
\]

The conjecture does hold for $n = 1$ and $n = 2$, but this merely reflects exceptional isomorphisms of Lie groups in low rank, namely $\text{SU}(1,1) \cong \text{SL}_2(\mathbb{R})$ and $\text{SU}(2,2) \cong \text{Spin}(2,4)^+$. That is, in both of these cases we also have $\Pi \cong M_{\text{max}}$ (= SL$_2$ resp. SO(2,4)). For $n \geq 3$, in contrast, the conjecture would have $\Pi < M_{\text{max}}$ a proper algebraic subgroup. In [op. cit.] (and earlier works [GSVZ, GSZ, GSZ2]), it was shown via quite computationally involved differential methods that in fact the monodromy is maximal for all n, and the conjecture fails for $n \geq 3$:

E.4. Theorem. $\Pi = M = M_{\text{max}} \forall n \geq 1$.

In the remainder of this section, we explain how asymptotic methods provide a much simpler approach to these results. First we will give a careful argument disproving the conjecture for $n \geq 3$ odd, which \textit{a priori} is a weaker statement than the Theorem in that case. (The relation to the main theme of his paper — specifically, to the setting of Cor. A.9 — enters when we pass to the smooth finite cover \tilde{X} of X.) Then we sketch a proof of Theorem E.4 using a more topological and monodromy-theoretic approach.

Disproof of (E.3) for n odd. Most of the analysis that follows works for all n, though the last step is inconclusive for even n.

To begin, consider a pencil $\mathbb{P}^1 \xrightarrow{\varepsilon} \mathfrak{S}$ of hyperplane configurations given by fixing L_0, \ldots, L_{2n} (in general position) and letting $L_{2n+1} := L_s$ vary along a line in \mathbb{P}^{2n} (chosen to avoid linear spans of any $n-2$ L_i in \mathbb{P}^{2n}).\footnote{Here $(\cdot)^\circ$ means the identity component as algebraic group (i.e. SO(H) instead of O(H) if n is even).} Writing $\Sigma = \varepsilon^{-1}(\mathfrak{S}\setminus\mathcal{S})$, we have $|\Sigma| = \binom{2n+1}{n}$; and degenerations.

\footnote{Note that the “tautological VHS” over $I_{n,n}$ is already geometrically realized by the n^{th} primitive cohomology of a universal family of Weil abelian $2n$-folds.}

\footnote{It already follows from Zariski’s theorem [Vo, Thm. 3.22] that $\rho(\pi_1(\mathbb{P}^1 \setminus \Sigma)) = \rho(\pi_1(S))$, but we won’t need this.}
\(\mathcal{X}_\sigma \rightarrow \Delta_\sigma \) of our double-covers at \(\sigma \in \Sigma \) are locally modeled (with \(t = s - \sigma \)) by

\[
(E.5) \quad w^2 = x_1 \cdots x_n(t - x_1 - \cdots - x_n)
\]

after a \(\text{PGL}_{n+1}(\mathbb{C}) \)-action. Accordingly, writing \(X_0, \ldots, X_n \) for projective coordinates on \(\mathbb{P}^n \), we take \(\ell_i = X_i \) for \(0 \leq i \leq n \) and \(\ell_{2n+1} = tX_0 - \sum_{i=1}^n X_i \), and \(\ell_{n+1}, \ldots, \ell_{2n} \) “general”.

Let \(\mathbb{P}^n \hookrightarrow \mathbb{P}^{2n+1} \) denote the linear embedding \([X_0: \cdots : X_n] \mapsto [\ell_0(X): \cdots : \ell_{2n+1}(X)] \), and \(\phi : \mathbb{P}^{2n+1} \rightarrow \mathbb{P}^{2n+1} \) denote the map sending \([Z_0: \cdots : Z_{2n+1}] \mapsto [Z_0^2: \cdots : Z_{2n+1}^2] \). Then \(\hat{X} := \phi^{-1}(\mathbb{P}^n) \subset \mathbb{P}^{2n+1} \) is a smooth complete intersection on which \([E.10] \ A := (\mathbb{Z}/2\mathbb{Z})^{2n+2}/\Delta(\mathbb{Z}/2\mathbb{Z}) \) acts via \(\xi \mapsto \{Z_i \mapsto -Z_i \} \), with quotient \(\mathbb{P}^n \); explicitly, we have

\[
(E.6) \quad \hat{X} = \cap_{k=0}^n \{0 = F_k(Z) := -Z_{n+k+1}^2 + \ell_{n+k+1}(Z_0^2, \ldots, Z_n^2) \}.
\]

Write \(\chi \in X^*(A) \) for the character sending each \(\xi \mapsto -1 \), \(A^c := \ker(\chi) \leq A \), and \(\eta : \hat{X} \rightarrow X \) for the quotient by \(A^c \); then \(H \cong q^*H^*_p(X) \cong H^n(\hat{X})^\chi \). Since \(F_0(Z) = tZ_0^2 - \sum_{i=1}^{n+1} Z_i^2 \), we have thus replaced our original non-isolated degeneration \((E.5) \) by a nodal one.

Next, we use the “Cayley trick” to replace the complete intersection \(\hat{X} \) by a hypersurface

\[
(E.7) \quad Y := \{0 = F := \sum_{k=0}^n Y_k F_k(Z) \} \subset \mathbb{P}((\mathbb{P}^{2n+1}(2)^{\oplus n+1}) =: P
\]

of dimension 3n. We have an \(A \)-equivariant isomorphism \(H^{3n}(Y)(n) \cong H^n(\hat{X}) \) of HSs, so that \(H \cong H^{3n}(Y)^\chi(n) \). Notice that in affine coordinates \((z_1, \ldots, z_{2n+1}; y_1, \ldots, y_n) \), \(F = 0 \) becomes\(^{16}\)

\[
(E.8) \quad 0 = -t + z_1^2 - \cdots - z_{2n+1}^2 + \sum_{k=1}^n y_k (b_k - z_{n+k+1})(b_k + z_{n+k+1}) + \text{h.o.t.}
\]

where \(b_k := \sqrt{F_k(1,0,\ldots,0)} \). So at \(t = 0 \), the singular fiber \(Y_\sigma \) has 2\(n \) nodes at \((Z_0; Z_1; \ldots; Z_{n+1}; Z_{n+2}; \cdots, Z_{2n+1}; Y_0; Y_1; \ldots, Y_n) = (1; 0, \ldots, 0; (-1)^n b_1, \ldots, (-1)^n b_n; 1; 0, \ldots, 0) \), \(\mathfrak{a} \in (\mathbb{Z}/2\mathbb{Z})^n \), and the degeneration \(\mathcal{Y}_\sigma \rightarrow \Delta_\sigma \) has smooth total space. The mixed spectrum of each node is \(\left[(\frac{3n+1}{2}, 3n + 1) \right] \) for \(n \) odd and \(\left[(\frac{3n+1}{2}, 3n) \right] \) for \(n \) even; so \(T_\sigma \) acts through multiplication by \((-1)^{n+1} \) on

\[
(E.9) \quad H_{\text{van}}^{3n}(Y_\sigma) \cong \mathbb{Q}((-\frac{3n+1}{2})^{\oplus 2n}).
\]

Moreover, since the summands of \((E.10) \) are represented by \(\eta_\mathfrak{a} = (-1)^{\mathfrak{a}}(dz_1 \wedge \cdots \wedge dz_{2n+1} \wedge dy_1 \wedge \cdots \wedge dy_n)/F^{\left[\frac{3n+1}{2}\right]} \) near the nodes \((E.9) \)

\(^{16}\)Here \(\Delta \) denotes the diagonal embedding.

\(^{17}\)Here “h.o.t.” means terms vanishing to order 3 at the nodes.
(in the sense of [KL2, §2]), it has a 1-dimensional subspace (generated by $\eta := \sum (-1)^{|a|} \eta_a$) on which A acts through χ.

Taking χ-eigenspaces of the vanishing-cycle sequence for $Y_\sigma \to \Delta_\sigma$ and twisting by $Q(n)$ now yields

(E.11)

$$0 \to H^3(Y_\sigma)^\chi(n) \xrightarrow{sp^X} H^3_{\text{lim}}(Y_t)^\chi(n) \xrightarrow{\text{can}^X} \mathbb{Q}(-\lfloor \frac{a+1}{2} \rfloor) \xrightarrow{\delta^X} H^{3n+1}_{\text{ph}}(Y_\sigma)^\chi(n) \to 0$$

We claim that $\delta = 0$. For n even, this is clear, since T_σ acts trivially on $H^{3n+1}_{\text{ph}}(Y_\sigma)$ and by -1 on $\mathbb{Q}(-\lfloor \frac{a+1}{2} \rfloor)$. So we conclude that T_σ acts on H_{lim} via an orthogonal reflection. This doesn’t factor through \wedge^n of any automorphism of \mathbb{C}^{2n}, but because it is finite (of order 2), this does not (yet) disprove the conjecture.

On the other hand, for n odd, it is not automatic that $\delta = 0$. (This is a well-known problem with nodal degenerations in odd dimensions, cf. [KL2, §2.2]; and as we saw in the proof of Lemma E.5, our degenerations are finite quotients of nodal ones.) But if we can show $\delta = 0$, then the conjecture is immediately disproved (for odd $n \geq 3$). Here is why: by (E.6), H_{lim} then has a class of type $(n+1,n+1)$, which must go to an (n,n) class by N_σ, forcing $\text{rk}(N_\sigma) = 1$ (rather than 0). (In different terms, each T_σ is a nontrivial symplectic transvection.) But this is impossible for \wedge^n of a nilpotent endomorphism of \mathbb{C}^{2n}.

To complete the (dis)proof, then, we apply [KL2, Thm. 2.9]: for a nodal degeneration $Y \rightsquigarrow Y_\sigma$ of an odd-dimensional hypersurface of a smooth projective variety P satisfying Bott vanishing, the rank of δ is the number m of nodes minus the rank of the map

$$\text{ev}: H^0(P, K_P(\frac{3n+1}{2}Y_\sigma)) \to \mathbb{C}^m$$

given by evaluation at the nodes. The proof in [loc. cit.] is equivariant in A, and so we find that $\delta^X = 0 \iff \text{ev}$ is nonzero on $H^0(P, K_P(\frac{3n+1}{2}Y_\sigma))^\chi$, which can be checked at any node. Writing $\vec{e}_1 := \sum_{i=0}^n Y_i \frac{\partial}{\partial Y_i}$, $\vec{e}_2 := \sum_{j=0}^{2n+1} Z_j \frac{\partial}{\partial Z_j} - 2\vec{e}_1$, and $\Omega := \langle \vec{e}_2, \langle \vec{e}_1, dZ \wedge dY \rangle \rangle$, ...
one checks that
\[(E.12) \quad Y_0Z^2_0\Omega/(F_{t=0})^{3n+1}
\]
is a well-defined section of \(K_F(3n+1)Y_\sigma\), (cf. [Kh §4.5]); and evidently \(A\) acts on it through \(\chi\).\(^\text{18}\) Clearly, it is nonzero on the fiber of \(K_F(3n+1)Y_\sigma\) at any of the nodes \((E.9)\).

Sketch of proof of Theorem E.4. Returning to the local picture \((E.5)\), we now seek a more concrete topological description of the orthogonal reflections \((n\ \text{even})\) and symplectic transvections \((n\ \text{odd})\) through which \(T_\sigma\) acts on \(H\). So let \(U_0 \subset \mathbb{A}^n\) be the complement of the hyperplanes \(x_1 = 0, \ldots, x_n = 0\) and \(x_1 + \cdots + x_n = 1\), and \(\mathbb{L}_0\) the rank-1 local system on \(U_0\) with monodromies \(-1\) about each of them. While the singularity \(x_\sigma \mapsto X_\sigma\) “at \(0\)” in \((E.5)\) isn’t isolated, the vanishing-cycle complex \(\phi_!\mathbb{Q}_X\) is nothing but \(\zeta V[-n]\), where \(V := IH^n(\mathbb{A}^n, \mathbb{L}_0)\) (as MHS). We begin with a local analogue of the covering argument just seen.

E.13. Lemma. (i) \(IH^n(\mathbb{A}^n, \mathbb{L}_0) \cong \mathbb{Q}(-\lfloor \frac{n+1}{2} \rfloor)\).

(ii) Local monodromy \(T_\sigma\) acts on \(V\) through multiplication by \((-1)^{n+1}\).

(iii) The canonical map \(\pi_0 : H_\lim \to V\) is onto.

Proof. Define maps
- \(f_0 : \mathbb{A}^n \hookrightarrow \mathbb{A}^{n+1}\) by \(x \mapsto (x, 1 - \sum_{i=1}^n x_i)\), and
- \(\phi_0 : \mathbb{A}^{n+1} \to \mathbb{A}^{n+1}\) by squaring all coordinates \(z_i\);

then \(\hat{X}_0 := \phi_0^{-1}(f_0(\mathbb{A}^n)) \subset \mathbb{A}^{n+1}\) is the quadric hypersurface \(\sum_{i=1}^{n+1} z_i^2 = 1\). The group \(A_0 := (\mathbb{Z}/2\mathbb{Z})^{n+1}/\Delta(\mathbb{Z}/2\mathbb{Z})\) acts on \(\hat{X}_0\) (multiplying coordinates by \(\pm 1\)), with quotient \(\mathbb{A}^n\). The quotient \(q_0 : \hat{X}_0 \to X_0\) by the augmentation subgroup \(A_0^0\) yields the obvious 2:1 branched cover of \(\mathbb{A}^n\), with \(H^n(X_0) \cong IH^n(\mathbb{A}^n, \mathbb{L}_0)\).

By the localization sequence for \(\hat{X}_0\) (relative to its closure \(\overline{\hat{X}_0} \subset \mathbb{P}^{n+1}\)) and weak Lefschetz, one easily shows that \(H^j(\hat{X}_0) = 0\) for \(j \neq n\)\(^\text{18}\) and \(H^n(\hat{X}_0) \cong \mathbb{Q}(-\lfloor \frac{n+1}{2} \rfloor)\). (Writing \(\partial \hat{X}_0 = \hat{X}_0 \setminus \hat{X}_0\), this is \(H^n(\hat{X}_0)/H^{n-2}(\partial \hat{X}_0)(-1)\) for \(n\) even, and \(\ker(H^{n-1}(\partial \hat{X}_0)(-1) \to H^{n+1}(\hat{X}_0))\) for \(n\) odd.) A generator for the dual group \(H^n_c(\hat{X}_0)\) is given by the real (vanishing) \(n\)-sphere \(S^n_1 := \{\sum z_i^2 = 1\} \cap \mathbb{R}^{n+1}\), whose class is invariant under \(A_0^0\) hence comes from \(H^n_c(X_0)\). This gives (i).

The degeneration is modeled by replacing \(\sum z_i^2 = 1\) by \(\sum z_i^2 = t\); as the spectrum of \(\sum z_i^2\) is \([\frac{n+1}{2}]\), the monodromy is as described in (ii).
Finally, (iii) follows from the last subsection since can\(\sigma\) identifies with can\(x\) in (E.11).

The vanishing sphere \(S^n\) := \(\{\sum z_i^2 = t\}\) \(\cap \mathbb{R}^{n+1}\) in \(\hat{X}_0\) has image in \(X_0\) (by \(q_0\)) given by the double cover of \((\cap_{i=1}^n\{x_i \geq 0\}) \cap \{\sum x_i \leq t\}\). Let its image in \(X\) (essentially via can\(x\)) : \(H^n_\chi(X_0) \to H^n(X)\) be denoted by \(\nu_\sigma\); this is the vanishing cycle at \(\sigma\), a “double simplex” branched along \(\mathcal{H}_s\) and \(n\) additional hyperplanes. It follows from (iii) that \(T_\sigma\) is a transvection/reflection in \(\nu_\sigma\). More precisely, rescaling \(Q\) to have

\[
Q(\nu_\sigma, \nu_\sigma) = \frac{1+(-1)^n}{2},
\]

(E.14)

\[
T_\sigma(u) = u - 2Q(u, \nu_\sigma)\nu_\sigma
\]

for \(u \in H\).

Now consider the general setting where \(L_{2n+1} = L_s, L_0 = \{X_0 = 0\}\), and the remaining \(L_i\) are in general position. An easy extension of (E.11) gives \(H \cong \Pi^n_0(\mathbb{A}^n, \mathbb{L}) \cong H^n_\pi(X \setminus L_0)\), whence \(H^n_\pi(X)\) is spanned by double simplices branched along \(n + 1\) of the \(L_i\geq 0\). Obviously all of these can be rewritten as \(\mathbb{Z}\)-linear combinations of double simplices branched along \(L_s\) and \(n\) of the \(\{L_i\}_{1 \leq i \leq 2n}\); call these \(\nu_I\), where \(I \subset \{1, \ldots, 2n\}\) with \(|I| = n\). Since \(\text{rk}H = \binom{2n}{n}\) and there are \(\binom{2n}{n}\) of these vanishing cycles, they form a \(\mathbb{Q}\)-basis of \(H = H^n_\pi(X)\). Write \(T_I\) for the corresponding monodromies, and \(\Gamma \leq \text{Aut}(H, Q)\) for the smallest \(\mathbb{C}\)-algebraic group containing them; clearly \(\Gamma \leq \tilde{\Pi}_\mathbb{C}\). Moreover, we note that if \(|I \cap I'| = n - 1\), then \(Q(\nu_I, \nu_{I'}) = \pm 1\) (rescaling as above, compatibly with (E.14)).

Suppose then that \(|I \cap I'| = n - 1\). If \(n\) is odd, then \(T_I(\nu_{I'}) = \nu_I \pm \nu_{I'} = \pm T_{I'}^{-1}(\nu_I)\), whence \(\nu_{I'}\) is in the \(\Gamma\)-orbit of \(\nu_I\); so all the \(\nu_I\) are in the \(\Gamma\)-orbit of \(\nu_I\). If \(n\) is even, then reasoning as in [De2, §4.4] [19] \(T_I T_{I'}^{-1}\) is a transvection and its Zariski closure a \(G_a\) including transformations which send \(\nu_I \mapsto \nu_{I'}\) and vice-versa; once again, all the \(\nu_I\) are in the \(\Gamma\)-orbit of a single \(\nu_I\).

Let \(R := \Gamma.\nu_I\) denote this orbit. Obviously it spans \(H_\mathbb{C}\). Furthermore, for any \(\delta \in R, \Gamma\) contains the transvection/reflection \(T_\delta\): writing \(\delta = \gamma.\nu_I\ (\gamma \in \Gamma)\), we have \(T_\delta = T_{\gamma.\nu_I} = \gamma T_I \gamma^{-1} \in \Gamma\). So \(\Gamma\) is in fact the \(\mathbb{C}\)-algebraic closure of the \(\{T_\delta\}_{\delta \in R}\), and we are exactly in the situation of [De2, Lemme 4.4.2]. Conclude that \(\Gamma = \text{Aut}(H, Q)\), hence \(\tilde{\Pi} = \text{Aut}(H, Q)\), and thus \(\Pi = \text{Aut}(H, Q)^o\).

E.15. Remark. After writing this paper we encountered the article by [Xu] which treats the more general setting of \(r\)-covers of \(\mathbb{P}^n\) branched along hyperplanes by considering local monodromies (as we have just

[19]See the paragraph after Lemme 4.4.3°.
done). The argument is necessarily more complicated and technical than ours. However, in the case \(r = 2 \) (i.e., our setting) it appears to be incomplete.

If \(r = 2 \) and \(n \) is odd, [Xu, Prop. 3.4] does not actually establish that \(\epsilon(1) \) (in the notation of [loc. cit.]) is nonzero; this is exactly the issue regarding possible nonvanishing of \(\delta \) dealt with above. One could read [Xu, Prop. 4.2] as confirming this in retrospect, but this makes the argument quite convoluted.

If \(r = 2 \) and \(n \) is even, the proof of [Xu, Prop. 4.2] is wrong, as it makes use of the (false) statement that \(\text{Sp}_{2n}(\mathbb{R}) \) “does not admit any nontrivial one-dimensional invariant subspace” in its action on \(\Lambda^n \mathbb{R}^{2n} \).

References

[Ar] V. Arnol’d, Some problems in singularity theory, Proc. Indian Acad. of Science 90 (1981), No. 1, 1-9.

[Be] A. Beauville, Sur le nombre maximum de points doubles d’une surface dans \(\mathbb{P}^3 \) (\(\mu(5) = 31 \)), Journées de Géometrie Algébrique d’Angers, Sijthoff & Noordhoff, 1980, pp. 207-215.

[Ca] H. Cartan, Quotient d’une variété analytique par un groupe discret d’automorphismes, Séminaire Henri Cartan 6 (1953-4), Exposé No. 12, 1-13.

[Cs] B. Castor, Bounding projective hypersurface singularities, Washington University Ph.D. thesis, 2021.

[De1] P. Deligne, Théorie de Hodge II, Publ. IHES 40 (1971), 5-57.

[De2] ———, La conjecture de Weil II, Publ. IHES 52 (1980), 137-252.

[DM] P. Deligne and G. Mostow, Monodromy of hypergeometric functions and nonlattice integral monodromy, Publ. IHES 63 (1986), 5-89.

[Do] I. Dolgachev, Weighted projective varieties, in “Group actions and fields (Vancouver, B.C., 1981)”, 34-71, Lecture Notes in Math. 956, Springer, Berlin, 1982.

[DK] I. Dolgachev and S. Kondo, Moduli of K3 surfaces and complex ball quotients, in “Arithmetic and geometry around hypergeometric functions”, 43-100, Progress in Math. 260, Birkhäuser, Basel, 2007.

[En] S. Endraß, A projective surface of degree eight with 168 nodes, J. Alg. Geom. 6 (1997), no. 2, 325-334.

[GKS] P. Gallardo, M. Kerr, and L. Schaffler, Geometric interpretation of toroidal compactifications of moduli of points in the line and cubic surfaces, Adv. Math. 381 (2021), Paper No. 107632, 48 pp.

[GSZ] R. Gerkmann, M. Sheng, and K. Zuo, Disproof of modularity of the moduli space of CY 3-folds of double covers of \(\mathbb{P}^3 \) ramified along 8 planes in general position, arXiv:0709.1051

[GSZ2] ———, Computational details of the disproof of modularity, arXiv:0709.1054

[GSVZ] R. Gerkmann, M. Sheng, D. van Straten, and K. Zuo, On the monodromy of the moduli space of Calabi-Yau threefolds coming from eight planes in \(\mathbb{P}^3 \), Math. Ann. 348 (2010), no. 1, 211-236.
REMARKS ON EIGENSPECTRA OF ISOLATED SINGULARITIES

[Ha] B. Hassett, *Moduli spaces of weighted pointed stable curves*, Adv. Math. 173 (2003), no. 2, 316-352.

[HTT] R. Hotta, K. Takeuchi and T. Tanizaki, “D-modules, perverse sheaves, and representation theory” (trans. Takeuchi), Progress in Math. 236, Birkhäuser Boston, Inc., Boston, 2008.

[JR] D. Jaffe and D. Ruberman, *A sextic surface cannot have 66 nodes*, J. Alg. Geom. 6 (1997), no. 1, 151-168.

[Ke] M. Kerr, “Geometric construction of regulator currents with applications to algebraic cycles”, Princeton University Ph.D. thesis, 2003.

[KL1] M. Kerr and R. Laza, *Hodge theory of degenerations, (I): consequences of the decomposition theorem*, with an appendix by M. Saito, Selecta Math. 27 (2021), no. 4, Paper No. 71, 48 pp.

[KL2] M. Kerr and R. Laza, *Hodge theory of degenerations, (II): vanishing cohomology and geometric applications*, preprint, 2020, arXiv:2006.03953.

[Mi] Y. Miyaoka, *The maximal number of quotient singularities on surfaces with given numerical invariants*, Math. Ann. 268 (1984), 159-171.

[Mo] G. Mostow, *On discontinuous action of monodromy group on the complex n-ball*, J. Amer. Math. Soc. 1 (1988), no. 3, 555-586.

[Sa] M. Saito, *Mixed Hodge modules*, Publ. Res. Inst. Math. Sci. 26 (1990), 221-333.

[Sc] C. Schoen, *Algebraic cycles on certain desingularized nodal hypersurfaces*, Math. Ann. 270 (1985), no. 1, 17-27.

[SXZ] M. Sheng, J. Xu and K. Zuo, *The monodromy groups of Dolgachev’s moduli spaces are Zariski dense*, Adv. Math. 272 (2015), 699-742.

[St] J. Steenbrink, *Intersection form for quasi-homogeneous singularities*, Compos. Math. 34 (1977), no. 2, 211-223.

[vS1] D. van Straten, *A quintic hypersurface in \mathbb{P}^4 with 130 nodes*, Topology 32 (1993), no. 4, 857-864.

[vS2] ———, *The spectrum of hypersurface singularities*, arXiv:2003.00519.

[Va] A. Varchenko, *On the semicontinuity of the singularity spectrum and an upper bound for the number of singular points in projective hypersurfaces*, Doklady Ak. Nauk 270 (1983), no. 6, 1294-1297.

[Vo] C. Voisin, “Hodge theory and complex algebraic geometry II” (translated by L. Schneps), Cambridge Univ. Press, Cambridge, 2003.

[Xu] J. Xu, *Zariski density of monodromy groups via Picard-Lefschetz type formula*, IMRN 2018 (2018), 3556-3586.

DEPARTMENT OF MATHEMATICS, KENYON COLLEGE, Gambier, OH
Email address: castor1@kenyon.edu

MATHEMATICS DEPARTMENT, DUKE UNIVERSITY, Durham, NC
Email address: haohua.deng@duke.edu

WASHINGTON UNIVERSITY IN ST. LOUIS, DEPARTMENT OF MATHEMATICS AND STATISTICS, ST. LOUIS, MO
Email address: matkerr@wustl.edu

DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ DI PISA, PISA, ITALY
Email address: greg.pearlstein@unipi.it