Convolutions on Spherical Images

Marc Eder and Jan-Michael Frahm

Department of Computer Science, University of North Carolina at Chapel Hill

2019 SUMO Workshop: 360° Indoor Scene Understanding and Modeling

CVPR 2019, Long Beach, CA

June 17, 2019
Image representation matters!

Simply resampling the image to a different representation significantly improves accuracy for predictions tasks with convolutional neural networks.
Why does image representation matter?

Gauss's Theorema Egregium:

Gaussian curvature of a surface is invariant under local isometry

Far reaching implications, but particularly relevant to cartography: All planar projections of a sphere have distortions

Spherical Earth Model

A Distorted Map Projection

Carl Friedrich Gauss
All 360° image representations are distorted

Cubemap

Gnomonic (rectilinear) projection
- Popular graphics format
- Projects a sphere onto the faces of an inscribing cube
- Distorts most severely in corners of faces

Equirectangular image

Equirectangular projection
- Simple transformation from sphere to projection
- Indexes image grid with spherical coordinates
- Distorts most severely near poles
So what?

Why do we care about spherical distortion when using CNNs?
Distortion and convolution

1D Discrete Convolution

\[(f \ast g)[n] = \sum_{m=-\left\lfloor \frac{K}{2} \right\rfloor}^{\left\lfloor \frac{K}{2} \right\rfloor} f[m]g[n - m]\]

Separating the sampling operation from the weighted summation

\[= \sum_{m=-\left\lfloor \frac{K}{2} \right\rfloor}^{\left\lfloor \frac{K}{2} \right\rfloor} f[m] \left(\sum_{l=-\infty}^{\infty} g[l] \delta[l - n + m] \right)\]
Distortion and convolution

\[(f * g)[n] = \sum_{m=-\lfloor \frac{K}{2} \rfloor}^{\lfloor \frac{K}{2} \rfloor} f[m] \left(\sum_{l=-\infty}^{\infty} g[l] \delta[l - n + m] \right)\]

Sampling represented by the Dirac delta function

Dirac delta function:
\[\delta[x] = \begin{cases} 1 & x = 0 \\ 0 & o.w. \end{cases}\]

Alternatively:
(in continuous form)
\[\delta(x) = \lim_{\sigma \to 0} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}\]

(area = 1)
Distortion and convolution

\[
(f * g)[n] = \sum_{m=-\lfloor \frac{K}{2} \rfloor}^{\lfloor \frac{K}{2} \rfloor} f[m] \left(\sum_{l=-\infty}^{\infty} g[l] \delta[l - n + m] \right)
\]

Key observation: Translational equivariance implicitly assumes all sampled data contribute equal information.

Spherical distortion violates this assumption

E.g. Pixel redundancy at poles in equirectangular image.
How can we fix this?

Let’s look at what cartographers do...
The imperfect map

Cropped from https://xkcd.com/977/
Analyzing spherical distortion

- **Equidistant**
 - Preserves distances between points
 - (Equirectangular)

- **Conformal**
 - Preserves local angles
 - (Mercator)

- **Equal Area**
 - Preserves relative sizes of objects
 - (Gall-Peters)
Analyzing spherical distortion

Tissot’s Indicatrix: An infinitely small circle on the Earth (A) appears as an ellipse on a typical map (B)

Recall modeling convolution’s sampling function as the limit of a Gaussian as $\sigma \to 0$

2D Gaussian as $\sigma \to 0$

Tissot figure from Snyder, John Parr. *Map projections--A working manual*. Vol. 1395. US Government Printing Office, 1987.
Analyzing spherical distortion

Equidistant
Preserves distances between points
(Equirectangular)

Conformal
Preserves local angles
(Mercator)

Equal Area
Preserves relative sizes of objects
(Gall-Peters)
Back to spherical images

Let’s take another look at those two common spherical image formats...
Distortion in 360° image representations

Cubemap

Gnomonic (rectilinear) projection
- Popular graphics format
- Projects a sphere onto the faces of an inscribing cube
- **Distorts most severely in corners of faces**

Equirectangular image

Equirectangular projection
- Simple transformation from sphere to projection
- Indexes image grid with spherical coordinates
- **Distorts most severely near poles**
Quick summary of spherical distortion

1. Mathematically impossible to remove

2. Disrupts *translational equivariance* critical to CNN function

3. Spreads and deforms content (information) in images
Two solutions

Accumulate deformed content

Pros:
- Works with any image representation

Cons:
- Very inefficient (possibly >100’s of pixels per sample)
- GPU implementation difficult

Use a compromise projection

Pros:
- Efficient sampling (just a single pixel)
- Can use standard grid convolution with limited modifications to implementation

Cons:
- Some distortion remains
ISEA and the icosphere

Our compromise projection: Icosahedral Snyder equal area (ISEA) projection [3]

Projects image onto surface of icosphere, a recursively subdivided regular icosahedron

One of least distorted compromise projections [2]
ISEA and the icosphere
Evaluation

Semantic segmentation improves 12.6% simply due to change of image representation
Semantic segmentation

Train a network with each representation using SUMO dataset [5]

Simple encoder-decoder

(#, #, [2x]) = (input channels, output channels, kernel size, [up/downsampling])
All filters utilize ‘same’ padding
Results

Evaluate mIOU on 15 most frequent semantic classes

Representation	Floor	Ceiling	Wall	Door	Cabinet	Rug	Window	Curtain
Equirectangular (Gnom. Kernel) [1, 3]	0.9315	**0.9710**	0.8597	0.6466	0.6376	**0.7284**	0.7012	0.4703
Icosphere (ours)	**0.9352**	0.9703	**0.8797**	**0.6890**	**0.7037**	0.6970	**0.7562**	**0.5744**

Representation	Sofa	Partition	Bed	Chair	Table	Shelving	Chandelier	All Classes
Equirectangular (Gnom. Kernel) [1, 3]	0.7114	0.4172	0.7133	0.4219	0.4587	0.3278	**0.4491**	0.5904
Icosphere (ours)	**0.7374**	**0.4683**	**0.7776**	**0.4375**	**0.5018**	**0.3733**	0.4472	**0.6639**

ISEA projection gives a 12.6% improvement over state-of-the-art methods that use equirectangular images!
Other applications and future work

Not limited to CNNs

Normalized correlation metrics suffer from same issues with spherical images (e.g. stereo depth)

Image filtering uses convolution too -- 360° panos are a growing social media commodity (e.g. Instagram filters)

Need to build large-scale *realistic* spherical image dataset
Thank you!

Any questions?

For more conversation, come to our poster today or contact Marc Eder at meder@cs.unc.edu.
References

Images:

- Equirectangular Earth image, used with permission from http://planetpixelemporium.com/earth8081.html
- Gauss, slide 3, from https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss#/media/File:Carl_Friedrich_Gauss_1840_by_lensen.jpg (public domain)
- Map projection comic, slide 10, from https://xkcd.com/977/ (creative commons license)
- Tissot indicatrix, slide 12, from Snyder, John Parr. Map projections--A working manual. Vol. 1395. US Government Printing Office, 1987.
- SUMO dataset images [5]

Citations:

[1] Coors, Benjamin, Alexandru Paul Condurache, and Andreas Geiger. "Spherenet: Learning spherical representations for detection and classification in omnidirectional images." Proceedings of the European Conference on Computer Vision (ECCV). 2018.
[2] Kimerling, Jon A., et al. "Comparing geometrical properties of global grids." Cartography and Geographic Information Science 26.4 (1999): 271-288.
[3] Snyder, John P. "An equal-area map projection for polyhedral globes." Cartographica: The International Journal for Geographic Information and Geovisualization 29.1 (1992): 10-21.
[4] Tateno, Keisuke, Nassir Navab, and Federico Tombari. "Distortion-aware convolutional filters for dense prediction in panoramic images." Proceedings of the European Conference on Computer Vision (ECCV). 2018.
[5] Tchapmi, Lyne and Daniel Huber. The sumo challenge