NEW GENERALIZED APOSTOL-FROBENIUS-EULER POLYNOMIALS AND THEIR MATRIX APPROACH

MARÍA JOSÉ ORTEGA, WILLIAM RAMÍREZ, AND ALEJANDRO URIELES

Abstract. In this paper, we introduce a new extension of the generalized Apostol-Frobenius-Euler polynomials $H_{[m−1,α]}(x; c, a; λ; u)$. We give some algebraic and differential properties, as well as, relationships between this polynomials class with other polynomials and numbers. We also, introduce the generalized Apostol-Frobenius-Euler polynomials matrix $U_{[m−1,α]}(x; c, a; λ; u)$ and the new generalized Apostol-Frobenius-Euler matrix $U_{[m−1,α]}(c, a; λ; u)$, we deduce a product formula for $U_{[m−1,α]}(x; c, a; λ; u)$ and provide some factorizations of the Apostol-Frobenius-Euler polynomial matrix $U_{[m−1,α]}(x; c, a; λ; u)$, which involving the generalized Pascal matrix.

1. Introduction

It is well-known that generalized Frobenius-Euler polynomial $H^{(α)}_n(x; u)$ of order $α$ is defined by means of the following generating function

\[
\left(\frac{1−u}{e^z−u}\right)^α e^{xz} = \sum_{n=0}^{∞} H^{(α)}_n(x; u) \frac{z^n}{n!},
\]

where $u \in \mathbb{C}$ and $α \in \mathbb{Z}$. Observe that $H_n^{(1)}(x; u) = H_n(x; u)$ denotes the classical Frobenius-Euler polynomials and $H_n^{(α)}(0; u) = H_n^{(α)}(u)$ denotes the Frobenius-Euler numbers of order $α$. $H_n(x; −1) = E_n(x)$ denotes the Euler polynomials (see [2,7]).

For parameters $λ, u \in \mathbb{C}$ and $a, b, c \in \mathbb{R}^+$, the Apostol type Frobenius-Euler polynomials $H_n(x; λ; u)$ and the generalized Apostol-type Frobenius-Euler polynomials are
defined by means of the following generating functions (see \[8\]):

\[
\begin{align*}
(1 - u) e^{xz} &= \sum_{n=0}^{\infty} H_n(x; \lambda; u) \frac{z^n}{n!}, \\
\left(a^z - u \right)^{\alpha} c^{xz} &= \sum_{n=0}^{\infty} H_n^{(\alpha)}(x; a, b, c; \lambda; u) \frac{z^n}{n!}.
\end{align*}
\]

If we set \(x = 0 \) and \(\alpha = 1 \) in (1.3), we get

\[
\frac{a^z - u}{\lambda b^z - u} = \sum_{n=0}^{\infty} H_n(a, b, c; \lambda; u) \frac{z^n}{n!},
\]

\(H_n(a, b, c; u; \lambda) \) denotes the generalized Apostol-type Frobenius-Euler numbers (see \[8\]).

In the present paper, we introduce a new class of Frobenius-Euler polynomials considering the work of \[8\], we give relationships between this polynomials with other polynomials and numbers, as well as the generalized Apostol-Frobenius-Euler polynomials matrix.

The paper is organized as follows. Section 2 contains the definitions of Apostol-type Frobenius-Euler and generalized Apostol-Frobenius-Euler polynomials and some auxiliary results. In Section 3, we define the generalized Apostol-type Frobenius-Euler polynomials and prove some algebraic and differential properties of them, as well as their relation with the Stirling numbers of second kind. Finally, in Section 4 we introduce the generalized Apostol-type Frobenius-Euler polynomial matrix, derive a product formula for it and give some factorizations for such a matrix, which involve summation matrices and the generalized Pascal matrix of first kind in base \(c \), respectively.

2. Previous Definitions and Notations

Throughout this paper, we use the following standard notions: \(\mathbb{N} = \{1, 2, \ldots\} \), \(\mathbb{N}_0 = \{0, 1, 2, \ldots\} \), \(\mathbb{Z} \) denotes the set of integers, \(\mathbb{R} \) denotes the set of real numbers and \(\mathbb{C} \) denotes the set of complex numbers. Furthermore, \((\lambda)_0 = 1 \) and

\[
(\lambda)_k = \lambda(\lambda + 1)(\lambda + 2) \cdots (\lambda + k - 1),
\]

where \(k \in \mathbb{N} \), \(\lambda \in \mathbb{C} \). For the complex logarithm, we consider the principal branch. All matrices are in \(M_{n+1}(\mathbb{K}) \), the set of all \((n+1) \times (n+1) \) matrices over the field \(\mathbb{K} \), with \(\mathbb{K} = \mathbb{R} \) or \(\mathbb{C} \). Also, for \(i, j \) any nonnegative integers we adopt the following convention

\[
\binom{i}{j} = 0, \quad \text{whenever} \quad j > i.
\]

Now, let us give some properties of the generalized Apostol-type Frobenius-Euler polynomials and generalized Apostol-type Frobenius-Euler polynomials with parameters \(\lambda, a, c \), order \(\alpha \) (see \[4, 8, 11\]).
Proposition 2.1. For a \(m \in \mathbb{N} \), let \(\{H^{(α)}(x; u)\}_{n≥0} \) and \(\{H_n(x; λ; u)\}_{n≥0} \) be the sequences of generalized Apostol-type Frobenius-Euler polynomials, generalized Frobenius-Euler polynomials respectively. Then the following statements hold.

(a) Special values: for \(n \in \mathbb{N}_0 \),

\[
H^{(0)}_n(x; u) = x^n.
\]

(b) Summation formulas:

\[
H^{(α)}_n(x; u; a, b, c; λ) = \sum_{k=0}^{n} \binom{n}{k} H^{(α)}_k(x; u; a, b, c; λ)(x \ln c)^{n-k},
\]

\[
H^{(α+β)}_n(x + y; u; a, b, c; λ) = \sum_{k=0}^{n} \binom{n}{k} H^{(α)}_k(x; u; a, b, c; λ)H^{(β)}_{n-k}(y; u; a, b, c; λ),
\]

\[
((x + y) \ln c)^n = H^{(α)}_{n-k}(y; u; a, b, c; λ)H^{(-α)}_{k}(x; u; a, b, c; λ),
\]

\[
H^{(-α)}_n(x; \alpha^2; a^2, b^2, c^2; \lambda^2) = \sum_{k=0}^{n} \binom{n}{k} H^{(-α)}_k(x; u; a, b, c; λ)H^{(-α)}_{n-k}(x; -u; a, b, c; λ).
\]

Definition 2.1. ([5, p. 207]). For \(n \in \mathbb{N}_0 \) and \(x \in \mathbb{C} \), the Stirling numbers of second kind \(S(n, k) \) are defined by means of the following expansion

\[
x^n = \sum_{k=0}^{n} \binom{n}{k} k! S(n, k).
\]

The Jacobi polynomials of the degree \(n \) y orde \((α, β) \), with \(α, β > -1 \), the \(n \)-th Jacobi polynomial \(P_n^{(α, β)}(x) \) may be defined through Rodrigues’ formula

\[
P_n^{(α, β)}(x) = (1 - x)^{-α}(1 + x)^{-β}\frac{(-1)^n}{2^n n!} \frac{d^n}{dx^n} \left\{ (1 - x)^{n+α} (1 + x)^{n+β} \right\}
\]

and the values in the end points of the interval \([-1, 1]\) is given by

\[
P_n^{(α, β)}(1) = \binom{n + α}{n}, \quad P_n^{(α, β)}(-1) = (-1)^n \binom{n + β}{n}.
\]

The relationship between the \(n \)-th monomial \(x^n \) and the \(n \)-th Jacobi polynomial \(P_n^{(α, β)}(x) \) may be written as

\[
x^n = n! \sum_{k=0}^{n} \binom{n + α}{n - k} (-1)^k \frac{(1 + α + β + 2k)}{(1 + α + β + k)^{n+1}} P_k^{(α, β)}(1 - 2x).
\]

Proposition 2.2. For \(λ \in \mathbb{C} \) and \(m \in \mathbb{N} \), let \(\{B_n^{[m-1]}(x)\}_{n≥0} \), \(\{G_n(x)\}_{n≥0} \) and \(\{E_n(x; λ)\}_{n≥0} \) be the sequences of generalized Bernoulli polynomials of level \(m \), Genocchi polynomials and Apostol-Euler polynomials, respectively, we have the relationships:

(a) [12, Equation (4)]

\[
x^n = \sum_{k=0}^{n} \binom{n}{k} \frac{k!}{(k + m)!} B_{n-k}^{[m-1]}(x);
\]
(b) [9, Remark 7]
\[x^n = \frac{1}{2(n+1)} \left[\sum_{k=0}^{n+1} \binom{n+1}{k} G_k(x) + G_{n+1}(x) \right] ; \]

(c) [10, Equation (32)]
\[x^n = \frac{1}{2} \left[\lambda \sum_{k=0}^{n} \binom{n}{k} \mathcal{E}_k(x; \lambda) + \mathcal{E}_n(x; \lambda) \right]. \]

Definition 2.2. Let \(x \) be any nonzero real number. For \(c \in \mathbb{R}^+ \), the generalized Pascal matrix of first kind in base \(c \) \(P_c[x] \) is an \((n+1) \times (n+1)\) matrix whose entries are given by (see [13,14])
\[
p_{i,j,c}(x) := \begin{cases}
(i \ln c)^{i-j}, & i \geq j, \\
0, & \text{otherwise}
\end{cases}
\]

When \(c = e \), the matrix \(P_e[x] \) coincides with the generalized Pascal matrix of first kind \(P[x] \). Furthermore, if we adopt the convention \(0^0 = 1 \), then \(P_c[0] = I_{n+1} \), with \(I_{n+1} = \text{diag}(1,1,\ldots,1) \).

An immediate consequence of the remarks above is the following proposition.

Proposition 2.3 (Addition Theorem of the argument). For \(x, y \in \mathbb{R} \) is fulfilled
\[P_c[x + y] = P_c[x]P_c[y]. \]

Proposition 2.4. For \(c \in \mathbb{R}^+ \), let \(P_c[x] \) be the generalized Pascal matrix of first kind in base \(c \) and order \(n+1 \). Then the following statements hold.

(a) \(P_c[x] \) is an invertible matrix and its inverse is given by
\[P_c^{-1}[x] := (P_c[x])^{-1} = P_c[-x]. \]

(e) The matrix \(P_c[x] \) can be factorized as follows
\[P_c[x] = G_{n,c}[x]G_{n-1,c}[x] \cdots G_{1,c}[x], \]
where \(G_{k,c}[x] \) is the \((n+1) \times (n+1)\) summation matrix given by
\[
G_{k,c}[x] = \begin{cases}
I_{n-k} & k = 1, \ldots, n-1, \\
0 & k = n,
\end{cases}
\]

being \(S_{k,c}[x] \) the \((k+1) \times (k+1)\) matrix whose entries \(S_{k,c}(x; i, j) \) are given by
\[
S_{k,c}(x; i, j, c) := \begin{cases}
(x \ln c)^{i-j}, & i \geq j, \\
0, & j > i,
\end{cases} \quad 0 \leq i, j \leq k.
\]
NEW GENERALIZED APOSTOL-FROBENIUS-EULER POLYNOMIALS

3. Generalized Apostol-Frobenius-Euler Polynomials

\[\mathcal{H}_{n}^{[m-1,\alpha]}(x; c, a; \lambda; u) \]

Definition 3.1. For \(m \in \mathbb{N}, \alpha, \lambda, u \in \mathbb{C} \) and \(c, a \in \mathbb{R}^+ \), the generalized Apostol-type Frobenius-Euler polynomials in the variable \(x \), parameters \(c, a, \lambda \), order \(\alpha \) and level \(m \), are defined through the following generating function

\[
\left(\frac{m-1}{h!} \frac{z \ln a}{\lambda e^z - u} \right)^\alpha e^{xz} = \sum_{n=0}^{\infty} \mathcal{H}_{n}^{[m-1,\alpha]}(x; c; a; \lambda; u) \frac{z^n}{n!},
\]

where \(|z| < \left| \frac{\ln(u^m)}{\ln(c)} - \frac{\ln(\lambda)}{\ln(c)} \right| \).

For \(x = 0 \) we obtain, the generalized Apostol-Frobenius-Euler numbers of parameters \(\lambda \in \mathbb{C}, a, c \in \mathbb{R}^+ \), order \(\alpha \in \mathbb{C} \) and level \(m \in \mathbb{N} \)

\[\mathcal{H}_{n}^{[m-1,\alpha]}(c, a; \lambda; u) := \mathcal{H}_{n}^{[m-1,\alpha]}(0; c, a; \lambda; u). \]

According to the Definition 3.1, with \(e = \exp(1) \), we have (1.1) and (1.2)

\[
\mathcal{H}_{n}^{[0,\alpha]}(x; e, 1; 1; u) = H_n^{(\alpha)}(x; \lambda; u),
\]

\[
\mathcal{H}_{n}^{[0,1]}(x; e, 1; 1; u) = H_n^{(1)}(x; \lambda; u).
\]

Example 3.1. For any \(\lambda \in \mathbb{C}, m = 2, c = 2, a = 3, \alpha = \frac{1}{2} \) and \(u = 2 \) the first the generalized Apostol-type Frobenius-Euler polynomials in the variable \(x \), parameters \(c, a, \lambda \), order \(\alpha \) and level \(m \) are:

\[
\mathcal{H}_{0}^{[1,\frac{1}{2}]}(x; 2, 3; \lambda; 2) = \sqrt{\frac{3}{\lambda - 4}},
\]

\[
\mathcal{H}_{1}^{[1,\frac{1}{2}]}(x; 2, 3; \lambda; 2) = \sqrt{-\frac{3}{\lambda - 4}} x \left[\frac{1}{2} \left(\frac{\ln 3}{\lambda - 4} + \frac{3\lambda \ln 2}{(\lambda - 4)^2} \right) + x \ln 4 \right],
\]

\[
\mathcal{H}_{2}^{[1,\frac{1}{2}]}(x; 2, 3; \lambda; 2) = \frac{1}{2} x^2 \left[\left(-\frac{3}{4} \sqrt{-\frac{3}{\lambda - 4}} \left(\frac{\ln 3}{\lambda - 4} + \frac{3\lambda \ln 2}{(\lambda - 4)^2} \right) \right)^2 + \frac{1}{2} \sqrt{-\frac{3}{\lambda - 4}} \left(\frac{\ln 3}{\lambda - 4} + \frac{3\lambda \ln 2}{(\lambda - 4)^2} \right) + x \ln 2 \sqrt{-\frac{3}{\lambda - 4}} \left(\frac{\ln 3}{\lambda - 4} + \frac{3\lambda \ln 2}{(\lambda - 4)^2} \right) + x^2 \ln 4 \sqrt{-\frac{3}{\lambda - 4}} \right].
\]

Example 3.2. For any \(\lambda \in \mathbb{C}, m = 4, c = 2, a = 3, \alpha = 1 \) and \(u = 2 \) the first the generalized Apostol-type Frobenius-Euler polynomials in the variable \(x \), parameters \(c, a, \lambda \), order \(\alpha \) and level \(m \) are:

\[
\mathcal{H}_{0}^{[3,1]}(x; 2, 3; \lambda; 2) = \frac{-15}{\lambda - 16}.
\]
\[
\mathcal{H}_1^{[3,1]}(x; 2, 3; \lambda; 2) = x \left[\frac{\ln 3}{\lambda - 16} + \frac{\lambda 15 \ln 2}{(\lambda - 16)^2} - \frac{x 15 \ln 2}{\lambda - 16} \right],
\]
\[
\mathcal{H}_2^{[3,1]}(x; 2, 3; \lambda; 2) = \frac{1}{2} x^2 \left[\frac{\ln 9}{\lambda - 16} - \lambda \frac{2 \ln 3 \ln 2}{(\lambda - 16)^2} + \frac{2 \ln 3 \ln 2}{\lambda - 16} - \lambda^2 \frac{30 \ln 4}{(\lambda - 16)^3} + x \frac{30 \lambda \ln 4}{(\lambda - 16)^2} + \lambda \frac{15 \ln 4}{(\lambda - 16)^2} - x^2 \frac{2 \text{ln} 15}{\lambda - 16} \right].
\]

Example 3.3. For any \(\lambda \in \mathbb{C} \), \(m = 2 \), \(c = 3 \), \(a = e \), \(\alpha = \frac{1}{3} \), and \(u = 5 \) the first the generalized Apostol-type Frobenius-Euler polynomials in the variable \(x \), parameters \(c, a, \lambda, \) order \(\alpha \) and level \(m \) are:

\[
\mathcal{H}_0^{[1,\frac{1}{3}]}(x; 3, e; \lambda; 5) = \sqrt[3]{\frac{-24}{\lambda - 25}},
\]
\[
\mathcal{H}_1^{[1,\frac{1}{3}]}(x; 3, e; \lambda; 5) = x \left[\frac{1}{3} \sqrt{\frac{\lambda - 25}{-24}} \left(\frac{\omega}{\lambda - 25} + \frac{24 \ln 3}{(\lambda - 25)^2} \right) \right] + x \ln 3 \sqrt[3]{\frac{-24}{\lambda - 25}},
\]
\[
\mathcal{H}_2^{[1,\frac{1}{3}]}(x; 3, e; \lambda; 5) = \frac{1}{2} x^2 \left[\left(\frac{\lambda - 25}{-24} \right)^{\frac{2}{3}} \left(\frac{\omega}{\lambda - 25} + \frac{24 \ln 3}{(\lambda - 25)^2} \right) \right] + \frac{2}{3} x \sqrt{\frac{\lambda - 25}{-24}} \ln 3 \left(\frac{\omega}{\lambda - 25} + \frac{24 \ln 3}{(\lambda - 25)^2} \right) + \frac{1}{3} \sqrt[3]{\frac{\lambda - 25}{-24}} \left(-2 \ln 3 \frac{\omega}{(\lambda - 25)} - \lambda^2 \frac{-48 \ln 9}{(\lambda - 25)^3} + \lambda \frac{24 \ln 9}{(\lambda - 25)^2} \right) + x^2 \ln 9 \sqrt[3]{\frac{-24}{\lambda - 25}},
\]

where \(\omega = \ln \left(\frac{3060513329434037}{1125899906842624} \right) \).

Theorem 3.1. For \(m \in \mathbb{N} \), let \(\{\mathcal{H}_n^{[m-1,\alpha]}(x; c; a; \lambda; u)\}_{n \geq 0} \) be the sequence of generalized Apostol-type Frobenius-Euler polynomials, with parameters \(\lambda, u \in \mathbb{C} \) and \(a, c \in \mathbb{R}^+ \), order \(\alpha \in \mathbb{C} \) and level \(m \). Then the following statements hold.

(a) For every \(\alpha = 0 \) and \(n \in \mathbb{N}_0 \)

\(\mathcal{H}_n^{[m-1,0]}(x; c; a; \lambda; u) = (x \ln c)^n. \)

(b) For \(\alpha, \lambda \in \mathbb{C} \) and \(n, k \in \mathbb{N}_0 \), we have the relationship

\(\mathcal{H}_n^{[m-1,\alpha]}(x; c; a; \lambda; u) = \sum_{k=0}^{n} \binom{n}{k} \mathcal{H}_{n-k}^{[m-1,\alpha]}(c; a; \lambda; u)(x \ln c)^k \).
Making an adequate modification

(c) Differential relations. For \(m \in \mathbb{N} \) and \(n, j \in \mathbb{N}_0 \) with \(0 \leq j \leq n \), we have

\[
[\mathcal{H}_n^{[m-1,\alpha]}(x; c; a; \lambda; u)]^{(j)} = \frac{n!}{(n-j)!} (\ln c)^j \mathcal{H}_n^{[m-1,\alpha]}(x; c; a; \lambda; u).
\]

(d) Integral formulas. For \(m \in \mathbb{N} \), is fulfilled

\[
\int_{x_0}^{x_1} \mathcal{H}_n^{[m-1,\alpha]}(x; c; a; \lambda; u) \, dx = \frac{\ln c}{n+1} \left[\mathcal{H}_n^{[m-1,\alpha]}(x_1; c; a; \lambda; u) - \mathcal{H}_n^{[m-1,\alpha]}(x_0; c; a; \lambda; u) \right].
\]

(e) Addition theorem of the argument.

\[
\mathcal{H}_n^{[m-1,\alpha+\beta]}(x+y; c; a; \lambda; u) = \sum_{k=0}^{n} \binom{n}{k} \mathcal{H}_k^{[m-1,\alpha]}(x; c; a; \lambda; u) \mathcal{H}_n^{[m-1,\beta]}(y; c; a; \lambda; u),
\]

\[
\mathcal{H}_n^{[m-1,\alpha]}(x+y; c; a; \lambda; u) = \sum_{k=0}^{n} \binom{n}{k} \mathcal{H}_n^{[m-1,\alpha]}(y; c; a; \lambda; u)(x \ln c)^k,
\]

\[
((x+y) \log c)^n = \sum_{k=0}^{n} \binom{n}{k} \mathcal{H}_n^{[m-1,\alpha]}(y; c; a; \lambda; u) \mathcal{H}_n^{[m-1,-\alpha]}(x; c; a; \lambda; u).
\]

Proof. (3.2) From Definition 3.1, we have

\[
\sum_{n=0}^{\infty} \mathcal{H}_n^{[m-1,\alpha+\beta]}(x+y; c; a; \lambda; u) \frac{t^n}{n!} = \left[\sum_{h=0}^{m-1} \frac{(\ln a)^h}{h!} - u^m \right]^{(\alpha+\beta)} \lambda^{cz} - u^m \cdot c^{(x+y)z}
\]

\[
= \left[\sum_{h=0}^{m-1} \frac{(\ln a)^h}{h!} - u^m \right]^{\alpha} \lambda^{cz} - u^m \cdot c^{yz} \left(\sum_{h=0}^{m-1} \frac{(\ln a)^h}{h!} - u^m \right)^{\beta} = \sum_{n=0}^{\infty} \mathcal{H}_n^{[m-1,\alpha]}(x; c; a; \lambda; u) z^n \frac{n!}{n!} \sum_{n=0}^{\infty} \mathcal{H}_n^{[m-1,\beta]}(y; c; a; \lambda; u) z^n \frac{n!}{n!}.
\]

Proof. (3.4) Making an adequate modification \(\beta = -\alpha \) and apply (3.2)

\[
\sum_{n=0}^{\infty} \mathcal{H}_n^{[m-1,\alpha+\beta]}(x+y; c; a; \lambda; u) \frac{z^n}{n!},
\]
Theorem 3.2. Therefore, (3.4) holds.

From (2.1) and Proposition 2.2 we deduce some algebraic relations connecting the polynomials $\mathcal{H}^{[m-1,\alpha]}_n(x;c,a;\lambda;u)$ with other families of polynomials.

Theorem 3.2. For $m \in \mathbb{N}$, the generalized Apostol-type Frobenius-Euler polynomials of level m $\mathcal{H}^{[m-1,\alpha]}_n(x;c,a;\lambda;u)$, are related with the Jacobi polynomials $P_n^{(\alpha,\beta)}(x)$, by means of the identity.

\begin{equation}
\mathcal{H}^{[m-1,\alpha]}_n(x+y,c,a;\lambda;u) = \sum_{k=0}^{n-j} \binom{n}{j,k} \mathcal{H}^{[m-1,\alpha]}_j(y,c,a;\lambda;\mu) P_k^{(\alpha,\beta)}(1-2x).
\end{equation}

Proof. By substituting (2.1) into the right-hand side of (3.3) and using appropriate binomial coefficient identities (see, for instance [1,5,6]), we see that

\begin{align*}
\mathcal{H}^{[m-1,\alpha]}_n(x+y,c,a;\lambda;u) &= \sum_{j=0}^{n} \binom{n}{j} \mathcal{H}^{[m-1,\alpha]}_j(y,c,a;\lambda;u)(n-j)!(\ln c)^{n-j} \sum_{k=0}^{n-j} (-1)^k \binom{n}{n-j+k} (1 + \alpha + \beta + 2k) \mathcal{H}^{[m-1,\alpha]}_{n-j}(y,c,a;\lambda;\mu) P_k^{(\alpha,\beta)}(1-2x) \\
&= \sum_{j=0}^{n} \sum_{k=0}^{n-j} \binom{n}{j,k} \mathcal{H}^{[m-1,\alpha]}_j(y,c,a;\lambda;u)(n-j)!(\ln c)^{n-j} (-1)^k \binom{n-j+k}{n-j-k} (1 + \alpha + \beta + 2k) \mathcal{H}^{[m-1,\alpha]}_{n-j}(y,c,a;\lambda;\mu) P_k^{(\alpha,\beta)}(1-2x).
\end{align*}
Therefore, (3.5) holds. □

Theorem 3.3. For \(m \in \mathbb{N} \), the generalized Apostol-type Frobenius-Euler polynomials of level \(m \) \(\mathcal{H}_{n}^{[m-1,a]}(x; c, a; \lambda; u) \), are related with the generalized Bernoulli polynomials of level \(m \) \(B_{n}^{[m-1]}(x) \), by means of the following identity

\[
\mathcal{H}_{n}^{[m-1,a]}(x + y; c, a; \lambda; u) = \sum_{k=0}^{n} \binom{n}{k} k!(\ln c)^{j} \binom{j}{k} \mathcal{H}_{n-k}^{[m-1,a]}(y; c, a; \lambda; u)(\ln c)^{j-k} G_{k+1}(x).
\]

Proof. By substituting (2.2) into the right-hand side of (3.3), it suffices to follow the proof given in Theorem 3.2, making the corresponding modifications. □

Theorem 3.4. For \(m \in \mathbb{N} \), the generalized Apostol-type Frobenius-Euler polynomials of level \(m \) \(\mathcal{H}_{n}^{[m-1,a]}(x; c, a; \lambda; u) \), are related with the Genocchi polynomials \(G_{n}(x) \), by means of

\[
\mathcal{H}_{n}^{[m-1,a]}(x; c, a; \lambda; u)
\]

(3.6)

\[
= \sum_{j=0}^{n} \binom{n}{j} \mathcal{H}_{j}^{[m-1,a]}(y; c, a; \lambda; u) \frac{(\ln c)^{n-j}}{2(n-j+1)} \left[\sum_{k=0}^{n-j} \binom{n-j+1}{k+1} G_{k+1}(x) + G_{n-j+1}(x) \right]
\]

Proof. By substituting (2.3) into the right-hand side of (3.3), we see that

\[
\mathcal{H}_{n}^{[m-1,a]}(x; c, a; \lambda; u)
\]

(3.6)

\[
= \sum_{j=0}^{n} \binom{n}{j} \mathcal{H}_{j}^{[m-1,a]}(y; c, a; \lambda; u) \frac{(\ln c)^{n-j}}{2(n-j+1)} \left[\sum_{k=0}^{n-j} \binom{n-j+1}{k+1} G_{k+1}(x) + G_{n-j+1}(x) \right]
\]

Then, using appropriate combinatorial identities and summations (see, for instance [1, 5, 6]), we obtain

\[
\mathcal{H}_{n}^{[m-1,a]}(x; c, a; \lambda; u)
\]
by means of the following identity

Theorem 3.5. For \(m \in \mathbb{N} \), the generalized Apostol-type Frobenius-Euler polynomials of level \(m \) \(\mathcal{H}_n^{[m-1,\alpha]}(x; c, a; \lambda; u) \), are related with the Apostol-Euler polynomials \(\mathcal{E}_n(x; \lambda) \), by means of the following identity

\[
\mathcal{H}_n^{[m-1,\alpha]}(x + y; c, a; \lambda; u) = \frac{1}{2} \sum_{j=0}^{n} \binom{n}{j} \mathcal{H}_j^{[m-1,\alpha]}(y; c, a; \lambda; u)(\ln c)^{n-j} \left(\frac{1}{2} \right) \mathcal{E}_j(x; \lambda) + \mathcal{E}_{n-j}(x; \lambda).
\]

Proof. By substituting (2.4) into the right-hand side of (3.3), we can see that

\[
\mathcal{H}_n^{[m-1,\alpha]}(x + y; c, a; \lambda; u) = \sum_{k=0}^{n} \binom{n}{k} \mathcal{H}_k^{[m-1,\alpha]}(y; c, a; \lambda; u)(\ln c)^{n-k} \left(\frac{1}{2} \right) \sum_{j=0}^{n-k} \binom{n-k}{j} \mathcal{E}_j(x; \lambda) + \mathcal{E}_{n-k}(x; \lambda).
\]

The first sum in (3.8) becomes

\[
\sum_{k=0}^{n} \binom{n}{k} \mathcal{H}_k^{[m-1,\alpha]}(y; c, a; \lambda; u)(\ln c)^{n-k} \left(\frac{1}{2} \right) \sum_{j=0}^{n-k} \binom{n-k}{j} \mathcal{E}_j(x; \lambda) = \sum_{j=0}^{n} \binom{n}{j} \left(\frac{1}{2} \right) \mathcal{E}_j(x; \lambda) \sum_{k=0}^{n-j} \binom{n-j}{k} \mathcal{H}_k^{[m-1,\alpha]}(y; c, a; \lambda; u)
\]

\[
= \sum_{j=0}^{n} \left(\frac{1}{2} \right) \mathcal{E}_j(x; \lambda) \sum_{k=0}^{n-j} \binom{n-j}{k} \mathcal{H}_k^{[m-1,\alpha]}(y; c, a; \lambda; u)(\ln c)^{n-k}
\]

\[
= \sum_{j=0}^{n} \left(\frac{1}{2} \right) \mathcal{E}_j(x; \lambda) \mathcal{H}_j^{[m-1,\alpha]}(y + 1; c, a; \lambda; u).
\]

For the second sum in (3.8), we obtain

\[
\sum_{k=0}^{n} \binom{n}{k} \mathcal{H}_k^{[m-1,\alpha]}(y; c, a; \lambda; u)(\ln c)^{n-k} \left(\frac{1}{2} \right) \mathcal{E}_{n-k}(x; \lambda) = \frac{1}{2} \sum_{k=0}^{n} \binom{n}{k} \mathcal{H}_k^{[m-1,\alpha]}(y; c, a; \lambda; u)(\ln c)^k \mathcal{E}_k(x; \lambda).
\]
Combining (3.9) and (3.10) we get
\[
\mathcal{H}_n^{[m-1,\alpha]}(x + y; c, a; \lambda; u) = \left(\frac{\lambda}{2}\right)^n \sum_{j=0}^{n} \binom{n}{j} \mathcal{E}_j(x; \lambda) \mathcal{H}_n^{[m-1,\alpha]}(y + 1; c, a; \lambda; u)
\]
\[
+ \frac{1}{2} \sum_{j=0}^{n} \binom{n}{j} \mathcal{H}_n^{[m-1,\alpha]}(y; c, a; \lambda; u)(\ln c)^j \mathcal{E}_j(x; \lambda)
\]
\[
= \frac{1}{2} \sum_{j=0}^{n} \binom{n}{j} \left[\lambda \mathcal{H}_n^{[m-1,\alpha]}(y + 1; c, a; \lambda; u) + (\ln c)^j \mathcal{H}_n^{[m-1,\alpha]}(y; c, a; \lambda; u) \right] \mathcal{E}_{n-j}(x; \lambda).
\]

Therefore, (3.7) holds.

\[
\text{Proposition 3.1. For } m \in \mathbb{N}, \alpha, \lambda, u \in \mathbb{C}, a, c \in \mathbb{R}^+ \text{ and } n \in \mathbb{N}_0, \text{ we have}
\]
\[
\mathcal{H}_n^{[m-1,\alpha]}(x + y; c, a; \lambda; u) = \sum_{k=0}^{n} k! \binom{x}{k} \sum_{j=0}^{n-k} \binom{n}{j} \mathcal{H}_j^{[m-1,\alpha]}(y; c, a; \lambda; u)(\ln c)^{n-j} S(n - j, k)
\]
\[
= \sum_{k=0}^{n} k! \binom{x}{k} \sum_{j=k}^{n} \binom{n}{j} \mathcal{H}_{n-j}^{[m-1,\alpha]}(y; c, a; \lambda; u)(\ln c)^{j} S(j, k).
\]

4. THE GENERALIZED APOSTOL-FROBENIUS-EULER POLYNOMIALS MATRIX

\[
\text{Definition 4.1. The generalized } (n+1) \times (n+1) \text{ Apostol-Frobenius-Euler polynomials matrix } \mathcal{U}^{[m-1,\alpha]}(x; c, a; \lambda; u) \text{ with } m \in \mathbb{N}, \alpha, \lambda, u \in \mathbb{C} \text{ and } a, c \text{ positive real numbers is defined by}
\]
\[
\mathcal{U}^{[m-1,\alpha]}(x; c, a; \lambda; u) = \left\{ \begin{array}{ll}
\binom{i}{j} \mathcal{H}_i^{[m-1,\alpha]}(x; c, a; \lambda; u), & i \geq j, \\
0, & \text{otherwise.}
\end{array} \right.
\]

While, the matrices
\[
\mathcal{U}^{[m-1]}(x; c, a; \lambda; u) := \mathcal{U}^{[m-1,\alpha]}(x; c, a; \lambda; u),
\]
\[
\mathcal{U}^{[m-1]}(c, a; \lambda; u) := \mathcal{U}^{[m-1]}(0; c, a; \lambda; u)
\]
are called the Apostol-Frobenius-Euler polynomial matrix and the Apostol-Frobenius-Euler matrix, respectively.

Since \(\mathcal{H}_n^{[m-1,0]}(x; c, a; \lambda; u) = (x \ln(c))^n \), we have \(\mathcal{U}^{[m-1,0]}(x; c, a; \lambda; u) = P_c[x] \). It is clear that (3.3) yields the following matrix identity:
\[
\mathcal{U}^{[m-1,\alpha]}(x + y; c, a; \lambda; u) = \mathcal{U}^{[m-1,\alpha]}(y; c, a; \lambda; u)P_c[x].
\]

\[
\text{Theorem 4.1. For a fixed } m \in \mathbb{N}, \text{ let } \{\mathcal{H}_n^{[m-1,\alpha]}(x; c, a; \lambda; u)\}_{n \geq 0} \text{ and } \{\mathcal{H}_n^{[m-1,\beta]}(x; c, a; \lambda; u)\}_{n \geq 0} \text{ be the sequences of generalized Apostol-type Frobenius-Euler}
\]
polynomials in the variable x, parameters $\lambda, u \in \mathbb{C}$, $a, c \in \mathbb{R}^+$, order $\alpha \in \mathbb{C}$ and level m. Then satisfies the following product formula:

\[
(4.1) \quad U^{[m-1,\alpha+\beta]}(x + y; c, a; \lambda; u) = U^{[m-1,\alpha]}(x; c, a; \lambda; u) U^{[m-1,\beta]}(y; c, a; \lambda; u)
= U^{[m-1,\beta]}(x; c, a; \lambda; u) U^{[m-1,\alpha]}(y; c, a; \lambda; u)
= U^{[m-1,\beta]}(y; c, a; \lambda; u) U^{[m-1,\alpha]}(x; c, a; \lambda; u).
\]

Proof. Let $B^{[m-1,\alpha,\beta]}_{i,j,c}(a; \lambda; u)(x, y)$ be the (i, j)-th entry of the matrix product $U^{[m-1,\alpha]}(x; c, a; \lambda; u) U^{[m-1,\beta]}(y; c, a; \lambda; u)$, then by the addition formula (3.2) we have

\[
B^{[m-1,\alpha,\beta]}_{i,j,c}(a; \lambda; u)(x, y) = \sum_{k=0}^{n} \binom{i}{k} \mathcal{H}^{[m-1,\alpha]}(x; c, a; \lambda; u) \binom{j}{k} \mathcal{H}^{[m-1,\beta]}(y; c, a; \lambda; u)
= \sum_{k=0}^{n} \binom{i}{k} \mathcal{H}^{[m-1,\alpha]}(x; c, a; \lambda; u) \binom{j}{k} \mathcal{H}^{[m-1,\beta]}(y; c, a; \lambda; u)
= \binom{i}{j} \mathcal{H}^{[m-1,\alpha]}(x; c, a; \lambda; u) \mathcal{H}^{[m-1,\beta]}(y; c, a; \lambda; u)
= \binom{i}{j} \mathcal{H}^{[m-1,\alpha,\beta]}_{i,j,c}(x + y; c, a; \lambda; u),
\]

which implies the first equality of the theorem. The second and third equalities of can be derived in a similar way. \hfill \square

Corollary 4.1. For a fixed $m \in \mathbb{N}$, let $\{\mathcal{H}^{[m-1,\alpha]}(x; c, a; \lambda; u)\}_{n \geq 0}$ and $\{\mathcal{H}^{[m-1,\beta]}(x; c, a; \lambda; u)\}_{n \geq 0}$ be the sequences of generalized Apostol-type Frobenius-Euler polynomials in the variable x, parameters $\lambda, u \in \mathbb{C}$, $a, c \in \mathbb{R}^+$, order $\alpha \in \mathbb{C}$ and level m and $P_c[x]$ the generalized Pascal matrix of first kind in base c. Then

\[
U^{[m-1,\alpha]}(x + y; c, a; \lambda; u) = U^{[m-1,\alpha]}(x; c, a; \lambda; u) P_c[y]
= P_c[x] U^{[m-1,\alpha]}(y; c, a; \lambda; u)
= U^{[m-1,\beta]}(y; c, a; \lambda; u) P_c[x].
\]

In particular,

\[
U^{[m-1]}(x + y; c, a; \lambda; u) = P_c[x] U^{[m-1]}(y; c, a; \lambda; u)
= P_c[y] U^{[m-1]}(x; c, a; \lambda; u).
\]

Proof. The substitution $\beta = 0$ into (4.1) yields

\[
U^{[m-1,\alpha]}(x + y; c, a; \lambda; u) = U^{[m-1,\alpha]}(x; c, a; \lambda; u) U^{[m-1,0]}(y; c, a; \lambda; u).
\]

Since $U^{[m-1,0]}(y; c, a; \lambda; u) = P_c[y]$, we obtain

\[
(4.2) \quad U^{[m-1,\alpha]}(x + y; c, a; \lambda; u) = U^{[m-1,\alpha]}(x; c, a; \lambda; u) P_c[y].
\]
A similar argument allows to show that

\[
U^{[m-1,\alpha]}(x + y; c, a; \lambda; u) = P_c[x]U^{[m-1,\alpha]}(y; c, a; \lambda; u) = U^{[m-1,\alpha]}(y; c, a; \lambda; u)P_c[x].
\]

Finally, the substitution \(\alpha = 1 \) into (4.2) and its combination with the previous equations completes the proof. \(\square \)

Using the relation (2.5) and Corollary 4.1 we obtain the following factorization for \(U^{[m-1,\alpha]}(x + y; c, a; \lambda; u) \) in terms of summation matrices.

\[
U^{[m-1,\alpha]}(x + y; c, a; \lambda; u) = U^{[m-1,\alpha]}(x; c, a; \lambda; u)G_{n,c}[y]G_{n-1,c}[y] \cdots G_{1,c}[y].
\]

Under the appropriate choice on the parameters, level and order, it is possible to provide some illustrative examples of the generalized Apostol-Frobenius-Euler polynomials matrices.

Example 4.1. For \(m = 1, c = a = e = \exp(1), \alpha = 1, \lambda = -1 \), The first four polynomials \(\mathcal{H}^{[1-1,1]}(x; e, e; 1; u) \), \(k = 0, 1, 2, 3 \) are

\[
\begin{align*}
\mathcal{H}^{[1-1,1]}_0(x; e, e; 1; u) &= 1, \\
\mathcal{H}^{[1-1,1]}_1(x; e, e; 1; u) &= x - \frac{1}{1 - u}, \\
\mathcal{H}^{[1-1,1]}_2(x; e, e; 1; u) &= x^2 - \frac{2}{1 - u}x + \frac{1 + u}{(1 - u)^2}, \\
\mathcal{H}^{[1-1,1]}_3(x; e, e; 1; u) &= x^3 - \frac{3}{1 - u}x^2 + \frac{3(1 + u)}{(1 - u)^2}x - \frac{u^2 + 4u + 1}{(1 - u)^3}.
\end{align*}
\]

Hence, for \(n = 3 \), we have

\[
U^{[m-1,1]}(x; e, e; 1; u) = \begin{bmatrix}
1 & 0 & 0 & 0 \\
u_{10} & 1 & 0 & 0 \\
u_{20} & u_{21} & 1 & 0 \\
u_{30} & u_{31} & u_{32} & 1
\end{bmatrix},
\]

where

\[
\begin{align*}
u_{10} &= u_{21} = u_{32} = \mathcal{H}^{[1-1,1]}_1(x; e, e; 1; u), \\
u_{20} &= u_{31} = \mathcal{H}^{[1-1,1]}_2(x; e, e; 1; u), \\
u_{30} &= \mathcal{H}^{[1-1,1]}_3(x; e, e; 1; u).
\end{align*}
\]
Example 4.2. For $m = 1$, $c = a = e = \exp(1)$, $\lambda = 1$ and $u = -1$, the first four polynomials $\mathcal{H}_k^{[1,1,a]}(x; e,e; 1; -1)$, $k = 0, 1, 2, 3$, are

\[
\begin{align*}
\mathcal{H}_0^{[1,1,a]}(x; e,e; 1; -1) &= 1, \\
\mathcal{H}_1^{[1,1,a]}(x; e,e; 1; -1) &= x - \frac{\alpha}{2}, \\
\mathcal{H}_2^{[1,1,a]}(x; e,e; 1; -1) &= x^2 - \alpha x + \frac{\alpha(\alpha - 1)}{4}, \\
\mathcal{H}_3^{[1,1,a]}(x; e,e; 1; -1) &= x^3 - \frac{3\alpha}{2} x^2 + \frac{3\alpha(\alpha - 1)}{4} x - \frac{3\alpha^2(\alpha - 1)}{8}.
\end{align*}
\]

Then, for $n = 3$, we have

\[
\mathcal{U}^{[m-1,a]}(x; e,e; 1; -1) = \begin{bmatrix}
1 & 0 & 0 & 0 \\
u_{10} & 1 & 0 & 0 \\
u_{20} & 2u_{21} & 1 & 0 \\
u_{30} & 3u_{31} & 3u_{32} & 1 \\
\end{bmatrix},
\]

where

\[
\begin{align*}
u_{10} &= u_{21} = u_{32} = \mathcal{H}_1^{[1,1,a]}(x; e,e; 1; -1), \\
u_{20} &= u_{31} = \mathcal{H}_2^{[1,1,a]}(x; e,e; 1; -1), \\
u_{30} &= \mathcal{H}_3^{[1,1,a]}(x; e,e; 1; -1).
\end{align*}
\]

Example 4.3. For $\lambda \in \mathbb{C}$, $m = c = 2$, $a = 3$, $\alpha = \frac{1}{2}$, $u = 2$, we have the Example 3.1. Therefore,

\[
\mathcal{U}^{[1,\frac{1}{2}]}(x; 2, 3; \lambda; 2) = \begin{bmatrix}
\mathcal{H}_1^{[1,\frac{1}{2}]}(x; 2, 3; \lambda; 2) & \sqrt{\frac{3}{\lambda-4}} & 0 & 0 \\
\mathcal{H}_2^{[1,\frac{1}{2}]}(x; 2, 3; \lambda; 2) & \sqrt{\frac{3}{\lambda-4}} & 0 & 0 \\
\mathcal{H}_3^{[1,\frac{1}{2}]}(x; 2, 3; \lambda; 2) & 2\mathcal{H}_1^{[1,\frac{1}{2}]}(x; 2, 3; \lambda; 2) & \sqrt{\frac{3}{\lambda-4}} & 0 \\
\end{bmatrix}.
\]

References

[1] R. Askey, Orthogonal Polynomials and Special Functions, Regional Conference Series in Applied Mathematics, SIAM. J. W. Arrowsmith Ltd., Bristol, England, 1975.
[2] L. Carlitz, Eulerian Numbers and Polynomials, Math. Mag. 32 (1959), 247–260.
[3] G. Call and D. J. Velleman, Pascal’s matrices, Amer. Math. Monthly 100 (1993), 372–376.
[4] L. Castilla, W. Ramírez and A. Urielles, An extended generalized q-extensions for the Apostol type polynomials, Abstr. Appl. Anal. 2018 (2018), 1–13.
[5] L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, Reidel, Dordrecht, Boston, 1974.
[6] R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, New York, 1994.
[7] L. Hernández, Y. Quintana and A. Urielles, About extensions of generalized Apostol-type polynomials, Results Math. 68 (2015), 203–225.
[8] B. Kurt and Y. Simsek, *On the generalized Apostol-type Frobenius-Euler polynomials*, Adv. Difference Equ. **2013** (2013), 1–9.

[9] Q. M. Luo, *Extensions of the Genocchi polynomials and its Fourier expansions and integral representations*, Osaka J. Math. **48** (2011), 291–309.

[10] Q. M. Luo and H. M. Srivastava, *Some relationships between the Apostol-Bernoulli and Apostol-Euler polynomials*, Comput. Math. Appl. **51** (2006), 631–642.

[11] P. Natalini and A. Bernardini, *A generalization of the Bernoulli polynomials*, J. Appl. Math. **3** (2003), 155–163.

[12] Y. Quintana, W. Ramírez and A. Urieles, *On an operational matrix method based on generalized Bernoulli polynomials of level m*, Calcolo **55** (2018), 23–40.

[13] Y. Quintana, W. Ramírez and A. Urieles, *Generalized Apostol-type polynomial matrix and its algebraic properties*, Math. Repor. **21**(2) (2019).

[14] Z. Zhang and J. Wang, *Bernoulli matrix and its algebraic properties*, Discrete Appl. Math. **154** (2006), 1622–1632.

1Department of Mathematics, Universidad del Atlántico, Km 7 vía Pto. Barranquilla-Colombia

Email address: mortega22@cuc.edu.co

Email address: wramirez4@cuc.edu.co

2Department of Mathematics, Universidad de la Costa, Barranquilla-Colombia

Email address: alejandbourieles@mail.uniatlantico.edu.co