Internal doses in experimental mice and rats following exposure to neutron-activated 56MnO$_2$ powder: results of an international, multicenter study

Valeriy Stepanenko1 · Andrey Kaprin2 · Sergey Ivanov1 · Peter Shegay2 · Kassym Zhumadilov3 · Aleksey Petukhov1 · Timofey Kolyzhnenkov1 · Viktoria Bogacheva1 · Elena Zharova2 · Elena Iaskova1 · Nailya Chaizhunusova4 · Dariya Shabadaryeva4 · Gaukhar Amantayeva4 · Araiym Baurzhan4 · Bakhyt Ruslanova4 · Zhaslan Abishev4 · Madina Apbassova4 · Ynkar Kairkhanova4 · Darkhan Uzbekov4 · Zaituna Khismetova4 · Yersin Zhunussov4 · Noriyuki Kawano10 · Megu Ohtaki5 · Keiko Otani10 · Satoru Endo11 · Masayoshi Yamamoto12 · Masaharu Hoshi10

Received: 21 March 2020 / Accepted: 31 August 2020 / Published online: 29 September 2020 © The Author(s) 2020

Abstract
The experiment was performed in support of a Japanese initiative to investigate the biological effects of irradiation from residual neutron-activated radioactivity that resulted from the A-bombing. Radionuclide 56Mn ($T_{1/2} = 2.58$ h) is one of the main neutron-activated emitters during the first hours after neutron activation of soil dust particles. In our previous studies (2016–2017) related to irradiation of male Wistar rats after dispersion of 56MnO$_2$ powder, the internal doses in rats were found to be very inhomogeneous: distribution of doses among different organs ranged from 1.3 Gy in small intestine to less than 0.0015 Gy in some of the other organs. Internal doses in the lungs ranged from 0.03 to 0.1 Gy. The essential pathological changes were found in lung tissue of rats despite a low level of irradiation. In the present study, the dosimetry investigations were extended: internal radiation doses in experimental mice and rats were estimated for various activity levels of dispersed neutron-activated 56MnO$_2$ powder. The following findings were noted: (a) internal radiation doses in mice were several times higher in comparison with rats under similar conditions of exposure to 56MnO$_2$ powder. (b) When 2.74×10^8 Bq of 56MnO$_2$ powder was dispersed over mice, doses of internal irradiation ranged from 0.81 to 4.5 Gy in the gastrointestinal tract (small intestine, stomach, large intestine), from 0.096 to 0.14 Gy in lungs, and doses in skin and eyes ranged from 0.29 to 0.42 Gy and from 0.12 to 0.16 Gy, respectively. Internal radiation doses in other organs of mice were much lower. (c) Internal radiation doses were significantly lower in organs of rats with the same activity of exposure to 56MnO$_2$ powder (2.74×10^8 Bq): 0.09, 0.17, 0.29, and 0.025 Gy in stomach, small intestine, large intestine, and lungs, respectively. (d) Doses of internal irradiation in organs of rats and mice were two to four times higher when they were exposed to 8.0×10^8 Bq of 56MnO$_2$ (in comparison with exposure to 2.74×10^8 Bq of 56MnO$_2$). (e) Internal radiation doses in organs of mice were 7–14 times lower with the lowest 56MnO$_2$ amount (8.0×10^7 Bq) in comparison with the highest amount, 8.0×10^8 Bq, of dispersed 56MnO$_2$ powder. The data obtained will be used for interpretation of biological effects in experimental mice and rats that result from dispersion of various levels of neutron-activated 56MnO$_2$ powder, which is the subject of separate studies.

Keywords 56Mn · Neutron activation · Dispersion of radioactivity · Radioactive dust · Internal irradiation · Experimental mice and rats

Introduction
Our experiments were performed in support of a Japanese initiative to investigate the biological effects of irradiation from residual neutron-activated radioactivity that resulted from the A-bombing (Hoshi 2020). During nuclear
explosions that take place in the atmosphere, neutron-activated radionuclides are distributed in surface layers of the soil, contributing to the beta and gamma irradiation that results from residual radioactivity. The main radionuclides are ^{24}Na, ^{28}Al, ^{31}Si, ^{32}P, ^{33}Cl, ^{42}Ca, ^{46}Sc, ^{56}Mn, ^{59}Fe, ^{60}Co, and ^{134}Cs (Weitz 2014). Radionuclide ^{56}Mn ($T_{1/2} = 2.58$ h) is one of the main neutron-activated emitters during the first hours after neutron activation of soil dust particles (Tanaka et al. 2008; Weitz 2014). The purpose of this international multicenter study was to extend our previous work (Shichijo et al. 2017; Stepanenko et al. 2017) to estimate internal doses for laboratory animals (mice and rats) with different exposures to $^{56}\text{MnO}_2$ in the form of dispersed powder. The results of the internal dose assessments will be used to investigate the biological effects that result from this type of exposure, which will be the subject of future publications.

Materials and methods

Table 1 gives details of the laboratory mice and rats used in the experiments and also the initial ^{56}Mn activity (100 mg $^{56}\text{MnO}_2$ powder sprayed over the animals while they were in their cages).

The total numbers of mice and rats targeted for dosimetry only were 24 and 9, respectively. Along with the animals scheduled for dosimetry, animals that were intended for subsequent biological studies were additionally placed in the same cages. As a result, the total number of animals in each cage for each irradiation was different, from 6 to 9 rats and from 3 to 10 mice per cage.

All experimental work was performed during 2018–2019 at research reactor IVG.1 (“Baikal-1”) located in the territory of the Semipatinsk nuclear test site (Lanin 2013), Republic of Kazakhstan. Details of neutron activation of MnO_2 powder (Rare Metallic Co., Ltd) and exposure of animals to dispersed $^{56}\text{MnO}_2$ particles were presented in our previous paper (Stepanenko et al. 2017). Briefly, experimental animals were placed in special boxes for exposure to $^{56}\text{MnO}_2$ powder (Fig. 1). One hundred milligrams of activated powder was used for each $^{56}\text{MnO}_2$ exposure. Statistical distribution of MnO_2 particle sizes is presented in Fig. 2. Animals were exposed

![Fig. 1 Schematic view of the box where neutron-activated radioactive $^{56}\text{MnO}_2$ powder was dispersed on experimental animals. 1-Pneumatic tube for dispersion of radioactive ^{56}Mn powder; 2-air filter; 3-plastic wall of the box; 4-plastic floor of the box with holes, where experimental animals were placed; 5-tubes for forced ventilation](image)

Date of exposure	Laboratory animals	Initial ^{56}Mn activity in 100 mg $^{56}\text{MnO}_2$ powder used for spraying over the animals in each cage***)
17.08.2018	CD-1 mice, 11-week-old male	2.74×10^8 Bq
17.08.2018	Wistar rats, 11-week-old male	2.74×10^8 Bq
18.08.2018	Wistar rats, 11-week-old male	5.5×10^8 Bq
18.08.2018	Wistar rats, 11-week-old male	8.0×10^8 Bq
22.04.2019	C57BL mice, 10-week-old male	8.0×10^8 Bq
22.04.2019	C57BL mice, 10-week-old male	2.74×10^8 Bq
23.04.2019	C57BL mice, 10-week-old male	8.0×10^8 Bq
17.06.2019	C57BL mice, 10-week-old male	2.74×10^8 Bq
17.06.2019	BALB/C mice, 10-week-old male	2.74×10^8 Bq
18.06.2019	C57BL mice, 10-week-old male	8.0×10^8 Bq
18.06.2019	BALB/C mice, 10-week-old male	8.0×10^8 Bq

As a result of irradiation of 100 mg MnO_2 by thermal neutrons with fluence $F=1.2 \times 10^{14}$ neutron/cm2, the yield of ^{56}Mn activity (Ao) is equal to 8×10^7 Bq. The ratio Ao/F is equal to 6.7×10^{-7} Bq per thermal neutron/cm2.

Numbers of animals in each cage for each irradiation were different—from 6 to 9 (rats) and from 3 to 10 (mice) animals per cage.
for 1 h. Exposed animals were removed from cages and euthanized by injection of an excessive dose of pentobarbital. All work with experimental animals was approved by the ethics committee of Semey State Medical University, Kazakhstan, according to directive 2010/63/EU of the European Parliament and the Council of the Office on protection of animals used for scientific purposes of 22 September 2010 (Directive 2010/63/EU 2010). The following organs and tissues were surgically extracted from experimental animals: lungs, heart, small intestine, large intestine, stomach, esophagus, liver, spleen, kidney, trachea, skin, eyes, and blood. To measure specific activity of ^{56}Mn, small pieces (about 1 ml) of each organ were weighed and subjected to gamma-spectrometry by an AMPTEC, Inc., Gamma-Rad5 spectrometer with an NaI(Tl) detector. Details of measurement conditions and calibration of the spectrometer were presented in our previous paper (Stepanenko et al. 2017). A description of internal dose estimations according to the Medical Internal Radiation Dose methodology (Bolch et al. 2009) was presented in the same paper. According to MIRD methodology, internal radiation doses were assessed by taking into account accumulated activity of ^{56}Mn in all studied organs (which are listed above), self-irradiation of these organs, and their irradiation by all other sampled organs and tissues. Calculation of absorbed fractions of energy in studied organs from beta and gamma irradiation of ^{56}Mn was performed using the Monte-Carlo method (Briemeister 2000) and age-dependent mathematical phantoms of rats and mice (Stepanenko et al. 2015). The spectrum of ^{56}Mn beta particles (Stabin et al. 2001) was accounted for internal dose calculations. Gamma irradiation from ^{56}Mn (Be et al. 2013) was accounted for as well.

Results

Each extracted sample of organs (lungs, heart, small intestine, large intestine, stomach, esophagus, liver, spleen, kidney, trachea, skin, eyes, and blood) from all investigated laboratory animals was subjected to gamma spectrometry in a well-shielded room. Volumes of extracted samples were small enough (about 1 ml) to consider them as radiating point sources in comparison with distance to and size of the spectrometer’s detector. The highest ^{56}Mn specific activities were found in large and small intestine, stomach, lungs, and skin, which corresponds to our previous results obtained from similar experiments on
rats (Stepanenko et al. 2017). A typical gamma spectra of 56Mn measured by a gamma-spectrometer are presented in Figs. 3 and 4. In both examples with measured gamma spectrum of 56Mn in biological samples, the amount of 56MnO$_2$ powder dispersed over the experimental animals was equal. The background gamma spectrum measured in a well-shielded room inside the reactor building is presented in Fig. 5.

Examples of calculated specific absorbed fractions (SAF—absorbed fraction of emitted energy per unit of organ’s mass) for gammas and electrons as a function of energy are shown in Figs. 6, 7, 8, 9.
Accumulated doses of internal irradiation were estimated from the beginning of exposure until infinity. It was assumed that physical decay of 56Mn was essentially faster than biological redistribution of MnO_2 powder in the experimental animals. Results of internal dose estimations are presented in Tables 2 and 3.

Fig. 5 Background gamma spectrum measured in a well-shielded “measuring lab” without any radioactive samples

Fig. 6 Self-irradiation of lungs by electrons as a function of energy, MeV. Left panel: mouse, right panel: rat. Whole body weight of mouse (a): 30 g; whole body weight of rat (b): 270 g. SAF, g$^{-1}$: specific absorbed fraction of electron energy
Fig. 7 Self-irradiation of lungs by gammas as a function of energy, MeV. Left panel: mouse, right panel: rat. Whole body weight of mouse (a): 30 g; whole body weight of rat (b): 270 g; SAF, g\(^{-1}\): specific absorbed fraction of gamma energy

Fig. 8 Small intestine irradiating large intestine with electrons as a function of energy, MeV. Left panel: mouse; right panel: rat. Whole body weight of a mouse (a): 30 g; whole body weight of a rat (b): 270 g; SAF, g\(^{-1}\): specific absorbed fraction of electron energy

Fig. 9 Small intestine irradiating large intestine with gammas as function of energy, MeV. Left panel: mouse, right panel: rat. Whole body weight of a mouse (a): 30 g; whole body weight of a rat (b): 270 g; SAF, g\(^{-1}\): specific absorbed fraction of gamma energy
Discussion

In the present study, we found that under similar exposure conditions to 56MnO$_2$ powder, the internal doses in mice were several times higher in comparison with rats. This can, perhaps, be explained by the following: higher breathing rate in mice versus rats and, lower organ weight in mice compared with rats (Besyadovsky et al. 1978). It should be noted that the latter circumstance leads to the fact that the specific absorbed fraction of energy (that is, fraction of absorbed energy per unit mass of the organ) is essentially higher in mice than in rats (see Figs. 6, 7, 8, 9). Difference in doses of internal irradiation

Organs of Wistar rats	Initial activity of 100 mg dispersed 56MnO$_2$: 2.74×108 Bq	Initial activity of 100 mg dispersed 56MnO$_2$: 5.5×108 Bq	Initial activity of 100 mg dispersed 56MnO$_2$: 8.0×108 Bq
Lungs	0.025±0.004	0.048±0.011	0.065±0.013
Heart	0.0011±0.0002	0.0039±0.0012	0.0083±0.0012
Small intestine	0.17±0.02	0.42±0.07	0.61±0.14
Large intestine	0.29±0.06	0.52±0.11	0.76±0.17
Stomach	0.09±0.01	0.21±0.02	0.30±0.05
Esophagus	0.0069±0.0012	0.016±0.002	0.025±0.006
Liver	0.0015±0.0003	0.0045±0.0012	0.0071±0.0016
Spleen	0.00028±0.00007	0.00050±0.00011	0.00083±0.00019
Kidney	0.00027±0.00006	0.00064±0.00012	0.00098±0.00018
Trachea	0.0058±0.0011	0.0120±0.0024	0.019±0.004
Skin	0.071±0.021	0.110±0.023	0.142±0.028
Eyes	0.019±0.004	0.041±0.008	0.062±0.012

Numbers of rats in each cage for each irradiation were different, that is, from 6 to 9 (rats) per cage

Organs of mice	Initial activity of 100 mg dispersed 56MnO$_2$: 8×107 Bq	Initial activity of 100 mg dispersed 56MnO$_2$: 2.74×108 Bq	Initial activity of 100 mg dispersed 56MnO$_2$: 2.74×108 Bq
Lungs	0.026±0.005	0.096±0.013	0.14±0.02
Heart	0.021±0.005	0.056±0.011	0.07±0.01
Small intestine	0.25±0.09	0.91±0.15	1.1±0.2
Large intestine	1.2±0.16	4.2±0.5	4.5±0.5
Stomach	0.27±0.08	0.98±0.16	1.2±0.2
Esophagus-Gas	0.032±0.005	0.087±0.013	0.079±0.013
Liver	0.0018±0.0007	0.0066±0.0011	0.0086±0.0014
Spleen	0.0006±0.0001	0.0025±0.0007	0.0028±0.0006
Kidney	0.007±0.0001	0.0228±0.0008	0.0221±0.0006
Trachea	0.015±0.004	0.039±0.003	0.047±0.008
Skin	0.12±0.03	0.29±0.05	0.34±0.06
Eyes	0.041±0.009	0.14±0.05	0.13±0.02

Numbers of mice in each cage for each irradiation were different, that is, from 3 to 10 animals per cage
of mice with the same activity of 56MnO$_2$ powder dispersed over the experimental animals can be explained by the fact that the number of mice per cage was different during different irradiation sessions (see Table 3 with corresponding note). This can also explain the absence of a simple proportionality between the internal radiation doses and the dispersed activity of 56MnO$_2$ (Tables 2 and 3). The increased doses in the lungs are explained by the fact that this organ is critical when inhaling small radioactive particles of 56MnO$_2$, which leads to an increased accumulation of activity in this organ. High doses of irradiation of the gastrointestinal tract can be explained by the fact that in the process of cleaning and grooming, experimental animals swallowed radioactive particles retained by their hair, which led to a high accumulation of activity in the stomach and intestines during exposure (1 h), as it was noted in Stepanenko et al. (2017), Shichijo et al. (2017). The retention of radioactive particles by animal hair leads to an increase in skin radiation dose.

Conclusion

This study aimed to estimate internal doses in laboratory animals (mice and rats) that had been exposed to various levels of 56MnO$_2$ in the form of dispersed powder. The experiment was performed in support of the Japanese initiative to investigate the biological effects of irradiation from residual neutron-activated radioactivity that resulted from the A-bombing (Hoshi 2020; Roesch 1987; Imanaka et al. 2012; Kerr et al. 2013, 2015; Ohtaki et al. 2014). Radionuclide 56Mn ($T_{1/2}=2.58$ h) is one of the main neutron-activated emitters during the first hours after neutron activation of soil dust particles.

In our previous studies (Stepanenko et al. 2017; Shichijo et al. 2017) related to irradiation of male Wistar rats after dispersion of 56MnO$_2$ powder, the internal doses in rats were found to be very inhomogeneous: distribution of doses among different organs ranged from 1.3 Gy in small intestine to less than 0.0015 Gy in some of the other organs. Internal doses in the lungs ranged from 0.03 to 0.1 Gy. The essential pathological changes were found in lung tissue of rats despite a low level of irradiation.

In the present study, the dosimetry investigations were extended: internal doses in experimental mice and rats were estimated for various activity levels of dispersed neutron-activated 56MnO$_2$ powder.

The following findings were noted:

(a) Internal radiation doses in mice were several times higher in comparison with rats under similar conditions of exposure to 56MnO$_2$ powder.

(b) When 2.74×10^8 Bq of 56MnO$_2$ powder was dispersed over mice, doses of internal irradiation ranged from 0.81 to 4.5 Gy in the gastrointestinal tract (small intestine, stomach, large intestine), from 0.096 to 0.14 Gy in lungs, and doses in skin and eyes ranged from 0.29 to 0.42 Gy and from 0.12 to 0.16 Gy, respectively. Internal radiation doses in other organs of mice were much lower.

(c) Internal radiation doses were significantly lower in organs of rats with the same activity of exposure to 56MnO$_2$ powder (2.74×10^8 Bq): 0.09, 0.17, 0.29, and 0.025 Gy in stomach, small intestine, large intestine, and lungs, respectively.

(d) Doses of internal irradiation in organs of rats and mice were two to four times higher when they were exposed to 8.0×10^8 Bq of 56MnO$_2$ (in comparison with exposure to 2.74×10^8 Bq of 56MnO$_2$).

(e) Internal radiation doses in organs of mice were 7–14 times lower with the lowest 56MnO$_2$ amount (8.0×10^7 Bq) in comparison with the highest amount, 8.0×10^8 Bq, of dispersed 56MnO$_2$ powder.

The data obtained will be used for interpretation of biological effects in experimental mice and rats that result from dispersion of various levels of neutron-activated 56MnO$_2$ powder, which is the subject of separate studies.

Acknowledgements In Japan, this research was supported by JSPS KAKENHI Grants nos. 26257501 (April 2014–March 2018), 19H01149 (April 2019–March 2023), and 19KK0266, Japan. In Kazakhstan, this research was supported by Semey State Medical University, Republic of Kazakhstan. A. Tsymb Medical Radiological Research Center–National Medical Research Center of Radiology, Ministry of Health of Russian Federation supported the research by providing gamma spectrometry and internal dose estimations.

Compliance with ethical standards

Conflicts of interest The authors of this paper have no conflicts of interest according to their disclosure forms.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Be M-M, Chiste V, Dulieu C, Mougeot X, Browne E, Baglin C, Chechnev VP, Egorov A, Kuzmenko NK, Sergeev VO, Kondiev FG, Luca A, Galan M, Huang X, Wang B, Helmer RG, Schonfeld E,
Affiliations

Valeriy Stepanenko1 · Andrey Kaprin2 · Sergey Ivanov1 · Peter Shegay2 · Kassym Zhumadilov3 · Aleksey Petukhov1 · Timofey Kolyzhenkov1 · Viktoria Bogacheva1 · Elena Zharova2 · Elena Iaskova1 · Nailya Chaizhunusova4 · Dariya Shabdarbayeva4 · Gaukhar Amantayeva4 · Araiylm Baurzhan4 · Bakhyt Ruslanova4 · Zhaslan Abishev4 · Madina Abspassova4 · Ynkar Kairkhanova4 · Darkhan Uzbekov4 · Zaituna Khismetova4 · Yersin Zhunussov4 · Nariaki Fujimoto5 · Hitoshi Sato6 · Kazuko Shichijo7 · Masahiro Nakashima7 · Aya Sakaguchi8 · Shin Toyoda9 · Noriyuki Kawano10 · Megu Ohtaki5 · Keiko Otani10 · Satoru Endo11 · Masayoshi Yamamoto12 · Masaharu Hoshi10

1 Medical Radiological Research Center named after A.F. Tsyb-branch of “National Medical Research Center of Radiology” Ministry of Health of the Russian Federation, Koroleva Str. 4, Obninsk 249036, Kaluga, Russian Federation
2 National Medical Research Center of Radiology, Ministry of Health of the Russian Federation, Koroleva Str. 4, Obninsk 249036, Kaluga, Russian Federation
3 Eurasian National University named after L.N. Gumilyov, Astana, 2 Satpayev Str., Nur-Sultan 010000, Republic of Kazakhstan
4 Semey Medical University, 103 Abay Str., Semey 071400, Republic of Kazakhstan
5 Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8551, Japan
6 Ibaraki Prefectural University of Health Sciences, 4669-2 Ami-choy Ami, Inashiki-gun, Ibaraki 300-0394, Japan
7 Atomic Bomb Disease, Institute, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8102, Japan
8 Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tsukuba-shi Tennodai, Ibaraki 305-8571, Japan
9 Department of Applied Physics, Okayama University of Science, 1-1 Ridai, Kita-ku, Okayama 700-0005, Japan
10 The Center for Peace, Hiroshima University, Higashisenda-machi 1-1-89, Naka-ku, Hiroshima 730-0053, Japan
11 Graduate School of Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi, Hiroshima 739-8527, Japan
12 Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-Chō, Kanazawa 920-1192, Japan