Efficient synthesis of diversely substituted pyrazolo[1,5-a]pyrimidine derivatives promoted by ultrasound irradiation in water and their antibacterial activities

Susma Das 1, Shilpika Khanikar 1, Shunan Kaping 1, Jayanti Datta Roy 2, Arnab Sen 2, Philippe Helissey 3 and Jai Narain Vishwakarma 1

1 Organic Research Laboratory, Department of Chemical Science, Assam Don Bosco University, Tapesia Gardens, Sonapur 782402, Assam, India
2 Indian Council of Agricultural Research Complex for North Eastern Hill Region, Umiam 793103, Meghalaya, India
3 Laboratoire de Chimie Thérapeutique, UMR CNRS 8638, Faculté des Sciences Pharmaceutiques, Université Paris Descartes, Sorbonne Paris Cité 4 avenue de l’Observatoire, 75270 Paris Cedex 06, France

ABSTRACT

A green synthetic route leading to the discovery of a series of diversely substituted pyrazolo[1,5-a]pyrimidines, having CO2Et group embedded at position-2 has been unraveled in this article. A series of formulated active proton compounds that were chosen to react with a carboxylate substituted-3-aminoypyrazole under ultrasonic irradiation in the presence of a mild acid as a catalyst and aqueous ethanol medium afforded the desired products. The molecular structures of all these synthesized compounds were established by their spectral and analytical data. A model molecule 3d, subjected to single crystal X-ray crystallography analysis further confirms their molecular structure. The crystal crystallized to a monoclinic cell with P21/c space group, \(a = 7.468, b = 27.908, c = 7.232 \) \(\AA \), \(\beta = 104.291^\circ \), \(V = 1460.7\, \text{Å}^3 \), \(Z = 4 \), \(\mu \text{MoK} \alpha = 0.096 \text{mm}^{-1} \), \(D_{\text{calc}} = 1.352 \, \text{Mg/m}^3 \), which were used in all calculations. The final \(R_1 \) was 0.0750 (I > 2\(\sigma(I) \)) and \(wR_2 = 0.2226 \) (all data). These compounds were further explored for their antibacterial potential, and a few of them have exhibited encouraging results.

KEYWORDS

Enaminone, Single crystal, 3-Aminopyrazole, Ultrasonic irradiation, X-ray crystallography, Antibacterial properties

1. Introduction

Synthesis of pyrazolo[1,5-a]pyrimidines has always been a hotbed for organic and pharmacological studies due to its analogy to purine and thus has occupied a unique position in the design and synthesis of biologically active agents, thereby providing a very interesting core for drug developments [1-3]. The drugs like Zaleplon (1) and Indiplon (2) which are very effectively used for the treatment of sleep disorders or Ocinaplon (3) used as anxiolytic agents, all contain pyrazolo[1,5-a]pyrimidine as their structural core. They have been reported to have the advantages of rapid absorption, rapid onset, adequate duration of action, and no residual effect on daytime performance [4-8]. Inspired by this, our group has reported various pyrazolo[1,5-a]pyrimidine hybrids (4a-b, 5, 6, 7, 8(a-c)) all of which exhibit various bio-efficiencies [9-13]. Motivated by this notable significance of pyrazol[1,5-a]pyrimidine and in continuation with our research activities, we settled to further add on to this class of compounds.

We settled to synthesize pyrazolo[1,5-a]pyrimidines with a carboxethoxy group (CO2Et) in position 2 of the pyrazolo[1,5-a]pyrimidine ring system. Our group anticipated that the presence of CO2Et group could act as a bridge or connectors to various other nucleophilic molecules, which themselves have significant biological implications. This alteration could bulge on to novel compounds with unique properties or can supplement to the individual parent properties.

In this article, we have reported a successful synthesis of pyrazolo[1,5-a]pyrimidines with the desired CO2Et group at position 2. The novel pyrazolo[1,5-a]pyrimidine derivatives and some known pyrazolo[1,5-a]pyrimidine analogues were accomplished using one of our previously reported methods
wherein we have used ultrasonic irradiation in aqueous media assisted by a mild acid [10]. Some of the compounds although already reported in the literature [14-18], our method has the preference of relatively lower reaction time and higher yield using eco-friendly solvents compared to those used in literature. Thus, our method is extrapolated in synthesizing a quite different range of azolopyrimidine derivatives adding to its other advantages of being a green, short reaction time, use of aqueous media and high yield synthetic route.

Enaminones are an important class of synthons for the synthesis of pyrimidine rings from aminopyrazoles. A wide range of precursor enaminones required were synthesized via the reported procedure from our laboratory [19]. These active methylene compounds were then irradiated with 3-amino-pyrazole as mentioned above, yielding a series of target pyrazolo[1,5-a]pyrimidines analogues. Furthermore, these compounds were screened for their antibacterial activities.

2. Experimental

2.1. Instrumentations

The melting points of each of the compounds were recorded by the open capillary method and are uncorrected. 1H and 13C NMR spectra were recorded on a Bruker AV-II 400 and 300 MHz, using (CH3)4Si as the internal standard in CDCl3. In the NMR spectral data, the abbreviations s, d, dd, t, and m stand for singlet, doublet, double-doublet, triplet, and multiplet, respectively. Chemical shift (δ, ppm) and coupling constant (Hz) are reported in a standard fashion. The electron spray mass spectra were recorded on a THERMO Finnigan LCQ Advantage max ion trap mass spectrometer. The FT-IR spectra were recorded on a Perkin-Elmer Spectrum Two spectrometer. The X-ray diffraction data were collected at 293 K with MoKα radiation (λ = 0.71073 Å) using a Bruker APEX-II CCD (Charge Coupled Device) [20] diffractometer equipped with a graphite monochromator. The structures were solved using SHELXT [21] and refined with SHELXL [22] by full-matrix least-squares based on F2. All non-H-atoms were refined in the anisotropic approximation: H-atoms were located at the calculated positions. The details of the structure of compound 3d have been deposited with the Cambridge Crystallographic Data Centre No. CCDC-1886698.
The resulting mixture was then subjected to ultrasound irradiation at room temperature (60-65 °C for 24 h). The progress of the reaction was monitored by thin-layer chromatography and on completion (6-12 minutes), the reaction mixture was cooled to room temperature and the precipitated product was collected by filtration, washed repeatedly with water to ensure complete removal of the acid and finally dried.

Further purification of the products was achieved by column chromatography (silica gel, 20% Ethyl acetate:Hexane).

Ethyl 7-(4-chlorophenyl)pyrazolo[1,5-a]pyrimidine-3-carboxylate (3a): Color: Milky white crystals. Yield: 95%. M.p.: 133-134 °C (FT-IR (KBr, cm⁻¹)): 1677 (C=O) (ester), 1617 (C=C) (aromatic). ¹H NMR (400 MHz, CDCl₃, 0 ppm): 1.43 (t, J = 7.2 Hz, 3H, CH₃), 4.46 (q, J = 7.2 Hz, 2H, CH₂), 7.08 (d, J = 4.4 Hz, 1H, C-H₃), 7.57-7.60 (m, 3H, aromatic), 7.99-801 (m, 2H, aromatic), 8.60 (s, 1H, C=H), 8.81 (d, J = 4.4 Hz, 1H, C-H₃). ¹³C NMR (100 MHz, CDCl₃, δ ppm): 14.7, 60.5, 103.1, 108.8, 127.4, 129.5, 129.6, 142.3, 152.4, 162.6.

Ethyl 7-(phenyl)pyrazolo[1,5-a]pyrimidine-3-carboxylate (3b): Color: White solid. Yield: 87%. M.p.: 159-160 °C (FT-IR (KBr, cm⁻¹)): 1720 (C=O) (ester), 1617 (C=C) (aromatic). ¹H NMR (400 MHz, CDCl₃, 0 ppm): 1.43 (t, J = 7.2 Hz, 3H, CH₃), 4.46 (q, J = 7.2 Hz, 2H, CH₂), 7.07 (d, J = 4.4 Hz, C-H₃), 7.56-7.59 (m, 3H, aromatic), 7.79-801 (m, 2H, aromatic), 8.60 (s, 1H, C=H), 8.81 (d, J = 4.4 Hz, 1H, C-H₃). ¹³C NMR (100 MHz, CDCl₃, δ ppm): 14.7, 60.6, 103.5, 109.0, 128.7, 129.3, 129.8, 130.1, 138.1, 146.9, 147.6, 149.1, 152.4, 162.6. MS (El m/z (%)): 268 [MH⁺].

Ethyl 7-(4-fluorophenyl)pyrazolo[1,5-a]pyrimidine-3-carboxylate (3c): Color: White solid. Yield: 94%. M.p.: 115 °C (112-114 °C) (FT-IR (KBr, cm⁻¹)): 1689 (C=O) (ester), 1608 (C=C) (aromatic). ¹H NMR (400 MHz, CDCl₃, δ ppm): 1.43 (t, J = 7.2 Hz, 3H, CH₃), 2.46 (s, 3H, CH₃), 4.46 (q, 2H, J = 4.4 Hz, 1H, C-H₃), 7.06 (d, J = 4.4 Hz, 1H, C-H₃), 7.39 (d, J = 8.0 Hz, 2H, aromatic), 7.91 (d, J = 8.0 Hz, 2H, aromatic), 8.59 (s, 1H, C=H), 8.79 (d, J = 4.4 Hz, 1H, C-H₃). ¹³C NMR (100 MHz, CDCl₃, δ ppm): 14.7, 61.5, 103.1, 108.8, 127.4, 129.5, 129.6, 142.3, 147.5, 148.2, 149.1, 152.4, 162.7. MS (El m/z (%)): 282 [MH⁺].

Ethyl 7-(4-methylphenyl)pyrazolo[1,5-a]pyrimidine-3-carboxylate (3d): Color: Milky white solid. Yield: 94%. M.p.: 115 °C (112-114 °C) (FT-IR (KBr, cm⁻¹)): 1689 (C=O) (ester), 1608 (C=C) (aromatic). ¹H NMR (400 MHz, CDCl₃, δ ppm): 1.43 (t, J = 7.2 Hz, 3H, CH₃), 2.46 (s, 3H, CH₃), 4.46 (q, 2H, J = 4.4 Hz, 1H, C-H₃), 7.06 (d, J = 4.4 Hz, 1H, C-H₃), 7.39 (d, J = 8.0 Hz, 2H, aromatic), 7.91 (d, J = 8.0 Hz, 2H, aromatic), 8.59 (s, 1H, C=H), 8.79 (d, J = 4.4 Hz, 1H, C-H₃). ¹³C NMR (100 MHz, CDCl₃, δ ppm): 14.7, 61.5, 103.1, 108.8, 127.4, 129.5, 129.6, 142.3, 147.5, 148.2, 149.1, 152.4, 162.7. MS (El m/z (%)): 282 [MH⁺].
3H, CH3), 4.43 (q, $J = 6.8$ Hz, 2H, CH$_2$), 7.48-7.49 (m, 1H, aromatic), 7.80 (d, $J = 13.6$ Hz, 1H, C$_5$H$_2$), 14.1 (s, 1H, C$_5$H$_2$), 15.2, 147.9, 149.1, 150.0, 152.0. MS (EI, m/z (%)): 248 (MH)$^+$.

2.2.2. Synthesis of ethyl 7-methylpyrazolo[1,5-a]pyrimidine-3-carboxylate (3j-l)

To a solution of ethyl-3-amino-1H-pyrazole-4-carboxylate (1) (0.5 mmol) and enamines (2j-I) (0.5 mmol) in 2 mL ethanol was added KHSO$_4$ (1 mmol) dissolved in 2 mL of water. The mixture obtained was irradiated in an ultrasonic bath at 60-65 °C for compounds 2j and 2l. On completion of the reaction (12-18 minutes, monitored by TLC), the reaction mixture was stirred for 1 hour. The precipitated product was collected by filtration, washed repeatedly with water to remove traces of acid, and finally dried to give analytically pure product 3j-l in 83-96 % yields (Scheme 3). The products were further purified by column chromatography (silica gel, 20 % ethyl acetate/hexane) to give analytically pure products by column chromatography.

Ethyl 7-(pyridin-2-yl)pyrazolo[1,5-a]pyrimidine-3-carboxylate (3j)

Color: White solid. Yield: 60 %. M.p.: 154-155 °C. FT-IR (KBr, cm$^{-1}$): 1688 (C=O) (ester). 1H NMR (400 MHz, CDCl$_3$, 6 ppm): 1.29 (s, 6H, 2CH$_3$), 2.61 (s, 2H, cyclic H), 2.52 (s, 2H, cyclic H), 4.31 (m, 1H, aliphatic H), 8.65 (s, 1H, C$_5$H$_2$), 9.30 (s, 1H, C$_5$H$_2$). 13C NMR (100 MHz, CDCl$_3$, 8 ppm): 14.4, 28.5, 29.6, 32.7, 37.3, 50.8, 60.7, 105.1, 114.1, 148.4, 149.4, 150.1, 1530, 1619, 194.0. MS (EI, m/z (%)): 288 (MH)$^+$. Ethyl 7-(pyridin-2-yl)pyrazolo[1,5-a]pyrimidine-3,6-dicarboxylate (3k)

Color: Milky white solid. Yield: 76 %. M.p.: 140-141 °C. FT-IR (KBr, cm$^{-1}$): 1730 (C=O) (ester), 1610 (C=C) (aromatic). 1H NMR (400 MHz, CDCl$_3$, 6 ppm): 1.40-1.46 (m, 6H, 2CH$_3$), 2.31 (s, 3H, CH$_3$), 4.41-4.48 (m, 4H, 2CH$_2$), 8.63 (s, 1H, C$_5$H$_2$), 9.18 (s, 1H, C$_5$H$_2$). 13C NMR (100 MHz, CDCl$_3$, 8 ppm): 14.2, 14.4, 15.1, 60.5, 61.9, 104.1, 112.5, 147.9, 148.6, 152.3, 152.9, 162.1, 164.0. MS (EI, m/z (%)): 279 (MH)$^+$. Ethyl 7-methylpyrazolo[1,5-a]pyrimidine-3,6-dicarboxylate (3l)

Color: Milky white crystals. Yield: 84 %. M.p.: 131-132 °C. FT-IR (KBr, cm$^{-1}$): 1726 (C=O) (ester), 1706 (C=O) (ester). 1H NMR (400 MHz, CDCl$_3$, 8 ppm): 1.41 (t, $J = 6.4$ Hz, 3H, CH$_3$), 3.23 (s, 3H, CH$_3$), 3.99 (s, 3H, OCH$_3$), 4.43 (q, $J = 6.4$ Hz, 2H, CH$_2$), 8.62 (s, 1H, C$_5$H$_2$), 9.17 (s, 1H, C$_5$H$_2$). 13C NMR (100 MHz, CDCl$_3$, 8 ppm): 14.4, 15.2, 52.7, 60.5, 104.2, 112.2, 147.9, 148.7, 152.5, 152.8, 162.0, 164.4. MS (EI, m/z (%)): 264 (MH)$^+$. 2.2.3. Attempted synthesis of ethyl 8,8-dimethyl-6-oxo-6,7,8,9-tetrahydropyrazolo[1,5-a]quinazolino-3-carboxylate (3m)

A mixture of 0.5 mmol of dimedone and 1 mmol of N,N-dimethylaniline in dry benzene was microwaved for 10 minutes to obtain title products. The mixture was dissolved in 2 mL ethanol. The solvents were distilled under reduced pressure to give a viscous mass. To this flask was added ethyl 3-amino-1H-pyrazole-4-carboxylate (1) (0.5 mmol) and the mixture was stirred for 12 minutes. The precipitated product was collected by filtration, washed repeatedly with water to remove traces of acid, and finally dried to give analytically pure product 3m in 60 % and 23 % yields (Scheme 4). The spectrul and analytical data of compounds 3m and 3mm are presented here.

Ethyl 8, 8-dimethyl-6-oxo-6, 7, 8, 9-tetrahydropyrazolo[1, 5-a]quinazolino-3-carboxylate (3m): Color: Milky white crystals. Yield: 60 %. M.p.: 154-155 °C. FT-IR (KBr, cm$^{-1}$): 1688 (C=O) (ester), 1610 (C=C) (aromatic). 1H NMR (400 MHz, CDCl$_3$, 8 ppm): 1.23 (s, 6H, 2CH$_3$), 1.41 (t, $J = 6.8$ Hz, 2H, CH$_2$), 2.61 (s, 2H, cyclic CH), 3.39 (s, 2H, cyclic CH). 4.43 (q, $J = 6.8$ Hz, 2H, CH$_2$), 8.65 (s, 1H, C$_5$H$_2$), 9.20 (s, 1H, C$_5$H$_2$). 13C NMR (100 MHz, CDCl$_3$, 8 ppm): 14.4, 28.5, 29.6, 32.7, 37.3, 50.8, 60.7, 105.1, 114.1, 148.4, 149.4, 150.1, 1530, 1619, 194.0. MS (EI, m/z (%)): 288 (MH)$^+$. Ethyl 3-{{[4, 4-dimethyl-2, 6-dioxocyclohexene(1, 5)-methylene]-1-(naphthalen-2-yl)a-ino}-1H-pyrazole-4-carboxylate (3mm): Color: White solid. Yield: 23 %. M.p.: 163-164 °C. FT-IR (KBr, cm$^{-1}$): 3205 (N-H), 1743 (C=O) (ester), 1690 (C=O) (ketone). 1H NMR (400 MHz, CDCl$_3$, 8 ppm): 1.25 (s, 6H, 2CH$_3$), 1.37 (t, $J = 6.8$ Hz, 3H, CH$_3$), 2.48 (s, 2H, cyclic H), 2.52 (s, 2H, cyclic H), 4.31 (m, 1H, aliphatic NH), 4.47 (q, $J = 6.8$ Hz, 2H, CH$_2$), 8.09 (s, 1H, C$_5$H$_2$), 9.09 (d, $J = 13.6$ Hz, 1H, aliphatic NCH), 13.86 (d, $J = 13.6$ Hz, 1H, aromatic NH). 13C NMR (100 MHz, CDCl$_3$, 8 ppm): 144, 28.5, 31.1, 37.4, 51.6, 51.7, 60.9, 102.9, 109.6, 133.2, 148.1, 149.3, 162.9, 198.1, 199.9. MS (EI, m/z (%)): 306 (MH)$^+$. 2.2.4. Synthesis of ethyl 7-(naphthalen-2-yl)pyrazolo[1,5-a]pyrimidine-3-carboxylate (3n)

Firstly, the (E)-3-(dimethylamino)-1-(naphthalen-2-yl)prop-2-en-1-one (2n) was obtained by reacting 2-acetyl naphthalene (0.5 mmol) with DMF-DMA (1 mmol) in a round bottom flask under microwave irradiation for 9 minutes.
The flask was sucked dry under reduced pressure to give a brown product 2n. To this flask was added compound 1 (0.5 mmol) and the mixture was dissolved in 2 mL water. Subsequently, KHSO₄ (1 mmol) dissolved in 2 mL water was added and the resulting mixture was heated in an ultrasonic bath at 60-65 °C. At the end of the reaction (18 minutes), the product precipitated out which was collected by filtration, washed repeatedly with cold water to remove traces of acid, and finally dried to give a crude mass. The product was further purified by column chromatography (silica gel column, 30 % ethyl acetate:hexane) to obtain the analytically pure product 3n (Scheme 5).

Ethyl 7-(naphthalen-2-yl)pyrazolo[1,5-a]pyrimidine-3-carboxylate (3n): Color: Brown crystals. Yield: 87 %. M.p.: 134-135 °C. FT-IR (KBr, ν, cm⁻¹): 1717 (C=O) (ester), 1612 (C=C) (aromatic). ¹H NMR (400 MHz, CDCl₃, δ, ppm): 1.45 (t, 3J = 6.8 Hz, 2H, CH₂), 7.19 (s, 1H, C₆-H) 7.59-7.62 (m, 2H, aromatic), 7.88-8.03 (m, 4H, aromatic), 8.57 (s, 1H, aromatic). ¹³C NMR (100 MHz, CDCl₃, δ, ppm): 14.5, 60.4, 103.1, 109.3, 125.4, 127.0, 127.5, 127.8, 128.2, 128.5, 130.1, 130.3, 132.7, 134.5, 147.4, 147.9, 149.0, 152.3, 162.6. MS (EI, m/z): 318 (MH⁺).

2.3. Antibacterial assay

The antibacterial activity of the synthesized compounds was studied by 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl tetrazolium chloride (p-INT) dye assay followed by well-diffusion assay. The standard strain of bacteria (two Gram-positive and two Gram-negative) was used for the study viz Escherichia coli (ATCC 25922), Klebsiella pneumoniae (ATCC 25923), Staphylococcus aureus (ATCC 25923) and one laboratory isolate of Listeria monocytogenes and maintained in the laboratory of Animal Health Division, ICAR-RC for NEH region, Umiam, Meghalaya, India. All bacterial cultures were revived on nutrient agar and checked for their purity by Gram staining and identified after revival in the automated Integrated DNA Technologies (IDT) and antibiotic susceptibility testing (AST) system (BD Phoenix 100) for proper identification. Initially, evaluation of the synthetic compounds for antibacterial activity was done by p-INT dye assay. The bacteria were inoculated in nutrient broth and kept overnight at 37 °C. On the subsequent day, the compounds were diluted two-fold from the stock solution of 2000 μg/mL and a concentration of 15.6 to 1000 μg/mL was used. For comparison, non-culture control and non-compound control were also taken. The compounds were compared with the standard drug, Ampicillin (39-5000 μg/mL). The plates were incubated at 37 °C for 8 hours and bacterial growth of the compounds was assessed in which p-INT changed from yellow to purple where the bacterial growth occurred (Figure 2). The minimum inhibition concentration (MIC) was also noted [23]. In order to further observe the bacterial growth at the concentration which was showing prominent antibacterial activity, 10 µL of samples from the well were further pipetted on nutrient agar by spot inoculation and kept for 24 hours at 37 °C. The concentrations of compounds exhibiting prominent antibacterial activity were punched with a sterile cork borer of 4 mm size and 100 µL of each sample was pipetted in the wells. The plates were incubated at 37 °C for 24 hours and the diameter of growth inhibition zone around the wells was measured [24]. The following control agents were used: positive control agent: Ampicillin (100 mg/mL) and negative control agent: 5 % DMSO.

3. Results and discussion

3.1. Chemistry

Sequentially, to synthesize the class of pyrazolo[1,5-a]pyrimidines (3a-n) with CO₂Et functionality, readily available ethyl 3-amino-1H-pyrazole-4-carboxylate (1) was chosen and reacted with a series of formylated active proton compounds (2a-n). The structural configurations of all these compounds were confirmed by their spectral and analytical data and compared with those already reported [14-18].

Firstly, to optimize the reaction conditions and to obtain the best reaction strategy, an equimolar mixture of 3-amino-pyrazole 1 was reacted with enamino 2a derived from acetophenone in the presence of two equivalents of KHSO₄.

![Scheme 4. Synthesis of compounds 3m and 3mm.](image)

![Scheme 5. Synthesis of compound 3n.](image)
The reaction was carried out in different solvent systems and reaction conditions. It was found that ethanol:water (1:1, v/v) combination at room temperature under ultrasonic irradiation gave the best outcome in terms of yield and reaction rate. Towards the end of the reaction, as monitored by thin layer chromatography (TLC), the product precipitated out and was isolated in 95 % yield. The structure of the product was assigned to be ethyl 7-phenylpyrazolo[1,5-a]pyrimidine-3-carboxylate (3a, Scheme 1) on the basis of its spectral and analytical data. The detailed optimization results are presented in Table 1.

Encouraged by the above results, this reaction condition was adopted and extrapolated to achieve the desired pyrazolo[1,5-a]pyrimidines series 3b–ii. The reaction of 3-aminopyrazole (1) with enaminones 2b–i, under the established reaction conditions occurred effortlessly with an overall yield of 78-97 % yields in 5-12 minutes. However, the reaction of compound 1 with compound 2i yielded two regioisomeric products 3i and 3ii, whose structures are confirmed by their spectral and analytical data (Scheme 2).

After satisfactory results obtained in the first few reactions, it was decided to expand the series. For this, formylated active methylene compounds 2j–i were chosen (prepared in situ by reacting the active proton compound with DMF-DMA as reported in [11,12]) and irradiated with 1 under similar conditions as mentioned in Scheme 3 to obtain the products 3j–l in 76-84 % yields in 6-12 minutes. The structures of compounds 3j–l have been confirmed by their spectral and analytical data.

Furthermore, when 2-(((dimethylamino)methylene)-5,5-dimethylcyclohexane-1,3-dione (2m) derived from dimedone was reacted with compound 1 under irradiation in an ultrasonic bath at 60-65 °C for 10 minutes, two products were isolated in 60 and 23 % yields (Scheme 4). The structures of these compounds were established to be compounds 3m (cyclized) and 3mm (uncyclized) on the basis of their spectral and analytical data.

At last, when (E)-3-((dimethylamino)-1-(naphthalen-2-yl)prop-2-en-1-one (2n) was reacted with compound 1 following the same methodology, product 3n precipitated in 87 % yield (Scheme 5). Its structure has also been confirmed by its spectral and analytical data.

All products along with their reaction conditions, yields, melting point, and reaction time are summarized in Table 2.

The structures of the above compounds were confirmed by their spectral and analytical data (1H NMR, 13C NMR, FT-IR, and Mass spectrometry).

Table 1. Reaction optimization under various conditions

No	Reaction condition	Solvent	Yield (%)	Reaction time	Melting point (°C)
1	Room temperature	H₂O	60	7h (incomplete)	133-134
2	Room temperature	H₂O:EtOH (1:1, v/v)	72	7h (incomplete)	133-134
3	Conventional heating at 60 °C	H₂O	63	2.5 h	133-134
4	Conventional heating at 60 °C	H₂O:EtOH (1:1, v/v)	73	2 h	133-134
5	US at room temperature	H₂O	71	9 min	134-135
6	US at room temperature	H₂O:EtOH (1:1, v/v)	94	6 min	133-134
7	US at 60 °C	H₂O	71	9 min	133-134
8	US at 60 °C	H₂O:EtOH (1:1, v/v)	90	6 min	134-135

Table 2. Summary of all synthesized pyrazolo[1,5-a]pyrimidine derivatives.

Product	Reaction condition	Yield (%)	Reaction time (min)	Melting point (°C)
2a	60-65 °C	95	6	134-135 (133-134)
2b	60-65 °C	87	5	158-159 (158.5-160)
2c	60-65 °C	94	9	115-116 (112-114)
2d	Room temperature	93	8	133-134 (131-133)
2e	Room temperature	79	8	162-163 (162-162.5)
2f	Room temperature	78	10	172-174
2g	60-65 °C	91	12	162-163
2h	60-65 °C	82	10	190-192 (177-178)
2i	60-65 °C	31	8	139-140
2j	60-65 °C	66	8	143-144 (145)
2k	Room temperature	78	10	147-149
2l	Room temperature	76	6	140-141
2m	60-65 °C	84	12	131-132
2n	60-65 °C	60	10	154-155
2o	60-65 °C	23	10	163-164
2p	60-65 °C	87	12	134-135

Figure 2. Microtitre plate showing the effect of compounds 3a–e at 8 hours and 18 hours against the standard culture of *Escherichia coli* (ATCC 25922) in p-INT dye and well diffusion assays (Amp: Ampicillin).
Table 3. Crystal data and structure refinement for compound 3d.

Parameters	Obtained specification
CCDC No.	1886698
Empirical formula	C_{16}H_{15}NO_{5}
Formulae weight	297.31
Temperature (K)	296 (2)
Crystal system	Monoclinic
Space group	P2_1/c
a (Å)	7.468 (5)
b (Å)	27.908 (17)
c (Å)	7.232 (4)
β (°)	104.291 (7)
Volume (Å³)	1460.7 (15)
Z	4
μ (mm⁻¹)	0.096
F (000)	6240
Radiation	MoKα (λ = 0.71073 Å)
λ (Å)	5.63 to 37.37
Index range	-10h to 10k, -36k to 37k, -9k to 9

For further confirmation of their structures, the selected compound was subjected to X-ray crystallography. Thus, in the ¹H NMR spectra, the CH₃ and CH₂ protons of the CO₂Et group of compounds 3a-d, 3f-i, 3j resonated as triplets at δ 1.40-1.43 ppm and as quartets at δ 4.43-4.47 ppm, respectively, with a coupling constant of 7.2 Hz, whereas, in the case of compound 3k, the signals of the two methyl groups merged to give a multiplet in the range δ 1.40-1.46 ppm. The CH₃ and CH₂ protons of CO₂Et group of compounds 3e, 3i, 3m, 3mm, and 3n gave a triplet close to δ 1.43 ppm and a quartet at around δ 4.44 ppm, respectively, with a coupling constant at around 6.4 Hz. Furthermore, the spectra of compound 3i showed a multiplet at δ 4.41-4.48 ppm due to the two methylene groups of the two diethyl groups. The C=H and C-H protons of compounds 3a-d and 3f-h gave doublets at around δ 7.14 and 8.81 ppm, respectively, with a coupling constant of around 4.4 Hz. In compound 3e, the C=H and C-H protons showed singlets at δ 7.08 and 8.82 ppm, respectively. The structure confirmations of the compounds were also supported by X-ray crystallography. Ethyl 7-[(4-methoxyphenyl)pyrazolo[1,5-a]pyrimidine-3-carboxylate (3d), taken as a model was analyzed for its crystal structure. X-ray data of the crystal 3d were recorded using a Bruker APEX-II CCD area detector diffractometer. Cosco colored needle-shaped crystals of the compound were obtained by dissolving the compound in a mixture of 1/4 hexane:dichloromethane and then leaving undisturbed to recrystallize slowly. The compound 3d (C_{16}H_{15}NO_{5}, D₈ = 1.352 mg m⁻³) crystallized in a monoclinic cell (space group P2₁/c) with MoKa radiation, λ = 0.71073 Å, measured, 3720 independent, 1681 observed reflection, R = 0.097, phi and omega scans, refinement on F², R[F²>2σ(F²)] = 0.077, wR(F²) = 0.208, 202 parameters, 0 restraints, Δρ max = 0.63A³, Δρ min = -0.42 A³ (Table 3). The molecular graphic was performed using ORTEP-3 and displacement ellipsoids are drawn at 50 % probability level (Figure 3). Short contacts or hydrogen bonds were absent in this molecule (Figure 4).

3.2. X-ray crystallography of compound 3d

The selected bond lengths and bond angles of the crystal structures are mentioned in Tables 4 and 5, respectively. The C=C bond distance in the phenyl ring and pyrazolopyrimidine ring ranged between 1.376-1.387 and 1.369-1.399 Å, respectively. The single bond lengths between C13-C12, C10-C9, N3-N1, C11-N2, and N1-C8 are almost equivalent to those of supposedly double bonds C12-C11, N2-C10, C9-C8, and C13-N3 [26]. This may be due to the delocalization in the ring system.

3.3. Biological activities

The activities of these compounds were studied as a zone of inhibition in millimeters. Ampicillin (39-5000 µg/mL) was used as an agent for positive control and 5 % DMSO was used as the negative control. Among all 15 compounds, compounds 3a-e was found to be the most effective against Escherichia coli (ATCC 25922) and least active against other standard cultures. In the p-INT dye assay test (Figure 5), compounds 3a-e exhibited prominent antibacterial activity as there was no appearance of color from 15.6-1000 µg/mL, 7-8 hours. When the plates were further incubated for 18 hrs and then the dye added, the appearance of dye color was observed, thereby confirming the growth of the bacteria.
Table 4. Selected bond length of compound 3d.

Atom	Atom	Length (Å)	Atom	Atom	Length (Å)
N1	C8	1.370(4)	C5	C4	1.388(4)
N1	N3	1.375(3)	C5	C8	1.479(4)
N1	C11	1.393(4)	C7	C2	1.378(4)
O3	C2	1.372(4)	C7	C6	1.385(4)
O3	C1	1.424(4)	C11	C12	1.389(4)
N3	C13	1.327(4)	C8	C9	1.369(4)
N2	C10	1.317(4)	C2	C3	1.387(4)
N2	C11	1.352(4)	C12	C13	1.399(4)
O1	C14	1.218(4)	C12	C14	1.455(5)
O2	C15	1.523(5)	C15	C16	1.401(6)
C5	C6	1.383(4)			

Table 5. Selected bond angle of compound 3d.

Atom	Atom	Atom	Angle (°)	Atom	Atom	Atom	Angle (°)
C8	N1	N3	124.7(2)	N1	C8	C5	120.7(3)
C8	N1	C11	122.9(2)	C5	C6	C7	121.4(3)
N3	N1	C11	112.4(2)	O3	C2	C7	124.6(3)
C2	O3	C1	117.5(3)	O3	C2	C3	115.3(3)
C13	N1	N1	103.3(2)	C7	C2	C3	120.0(3)
C10	N2	C11	115.9(3)	C12	C12	C13	104.9(3)
C12	O2	C15	151.6(3)	C12	C12	C14	123.9(3)
C6	C5	C4	118.6(3)	C3	C4	C5	120.3(3)
C6	C5	C8	122.1(3)	C8	C9	C10	120.6(3)
C4	C5	C8	119.2(3)	N2	C10	C9	124.6(3)
C2	C7	C6	119.3(3)	N3	C13	C12	114.0(3)
C6	C5	C8	114.7(3)	C4	C3	C2	120.2(3)
C9	C8	N1	121.4(3)	O1	C14	O2	124.1(3)
C12	C11	N1	115.6(3)	O1	C14	C12	122.9(4)
C9	C8	C5	124.6(3)	C16	C15	O2	104.5(4)

Figure 3. ORTEP diagram of the single crystal structure of compound 3d as determined by X-ray crystallography.

Figure 4. Packing diagram of compound 3d.

Furthermore, the well content showed antibacterial activity within 7-8 hrs, when inoculated on nutrient agar plate exhibited growth on the agar plates on incubation for 24 hrs. Thus, the findings clearly indicate that the compounds 3a-e have bacteriostatic effect but not bactericidal property. Likewise, the well diffusion assay also showed zone of inhibition of compounds 3a: 12.33 mm, 3b: 11.33 mm, 3c: 11.33 mm, 3d: 11.33 mm, 3e: 10.66 mm) against E. coli (Table 6, Figure 6). The rest of the compounds failed to show any effect against E. coli. The test compounds 3a-e were found to be unproductive against Klebsiella pneumoniae which is a multidrug-resistant standard strain and hence the compounds may not be able to work against the multidrug resistant mechanism of the isolate.
Table 6. Minimum inhibitory concentrations of pyrazolo[1,5-a]pyrimidine compounds (3a-3n) and standard drug against Escherichia coli (ATCC 25922) in pINT dye and well diffusion assays.

Compound	MIC values (µg/mL) (pINT dye assay)	Diameter (mm) (well diffusion assay)			
	2000 µg/mL	1000 µg/mL	500 µg/mL	250 µg/mL	125 µg/mL
3a	12.33±0.623	10.33±0.577	<10 mm	<10 mm	<10 mm
3b	11.33±0.235	10.66±0.471	<10 mm	<10 mm	<10 mm
3c	11.33±0.471	11.00±0.408	<10 mm	<10 mm	<10 mm
3d	10.66±0.471	11.00±0.408	<10 mm	<10 mm	<10 mm
3f	>2000	-	-	-	-
3g	>2000	-	-	-	-
3h	>2000	-	-	-	-
3i	>2000	-	-	-	-
3ii	>2000	-	-	-	-
3j	>2000	-	-	-	-
3k	>2000	-	-	-	-
3l	>2000	-	-	-	-
3m	>2000	-	-	-	-
3n	>2000	-	-	-	-
Ampicillin	15.62±3.285	-	-	-	-

Figure 5. Minimum Inhibitory Concentration (MIC) of the investigated compounds against Escherichia coli.

Figure 6. Zones of inhibition (mm) showing the antimicrobial activity of the investigated compounds against Escherichia coli.

All compounds were also found to be ineffective against gram-positive organisms which may be explained by the fact that the nature of the cell wall is different for Gram-positive as compared to Gram-negative. In all studies, the effect was compared with the standard drug ampicillin. Similar studies were carried out by Omasa et al. [27] in which forty-eight compounds belonging to anthraquinones, naphthoquinones, benzoquinones, flavonoids (chalcones and polymethoxylated flavones) and diterpenoids (gerodanes and kauranes) were tested for antimicrobial potential against a panel of sensitive and multi-drug resistant bacteria. Tsoungue et al. [28] reported the antimicrobial activity of a synthesized novel trisazo dye from 3-amino-4H-thieno[3,4-c][1]benzopyran-4-one and Bin et al. [29] reported the antimicrobial activity of indole diketopiperazine alkaloids. Pyrazolo[1,5-a]pyrimidine derivatives are widely known to be used as antibacterial, antifungal and antiviral agents in biological systems [30,31]. Pyrimidine based systems have been also found to be active surface antimicrobial agents [32].

4. Conclusion

In this article, we have reported the synthesis of a few known and a few novel pyrazolopyrimidine derivatives using an efficient, eco-friendly, rapid, high yielding method. This general method can be applied to further expand the library of pyrazolo[1,5-a]pyrimidines. The most important aspect of the reported procedure lies in the fact that the products precipitate out and could be isolated by simple filtration in a practically pure state. There has been no ambiguity in structural assignment and was additionally supported by the X-ray crystallographic studies of one of the synthesized compounds. Compounds 3a-e showed antibacterial activities against Escherichia coli (ATCC 25922) in p-INT dye and well diffusion...
assays. However, these compounds were found to be bacteriostatic in nature and hence they can play a role in controlling the growth of bacteria in the biological system and can also act as surface cleaning agents.

Acknowledgements

We thank Rev. Fr. Dr. Stephen Mavely, Vice-Chancellor and Rev. Fr. Joseph Nellanatt, Assam Don Bosco University for providing infrastructure for the execution of this work. We also wish to express our gratitude to Sophisticated Analytical Instrument Facility-Central Drug Research Institute (SAIF-CDRI), Lucknow, Sophisticated Analytical Instrumentation Centre (SAIC), Tezpur University, Tezpur for providing spectral and analytical data, X-ray analysis data and biological analysis of our compounds. We are thankful to Farlando Dendiog, Asst. Prof., St. Anthony’s College, Shillong for helping us in solving the X-ray structure of the crystals. We are also grateful to the Department of Biotechnology (DBT), Ministry of Science and Technology, Government of India, New Delhi and Indian Council of Agricultural Research (ICAR)-Barapani, Shillong for a research grant.

Supporting information

CCDC-1886698 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/, or by e-mailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44(0)1223-336033.

Disclosure statement

Conflict of interest: The authors declare that they have no conflict of interest. Author contributions: All authors contributed equally to this work. Ethical approval: All ethical guidelines have been adhered. Sample availability: Samples of the compounds are available from the author.

Funding

Department of Biotechnology, Ministry of Science and Technology, Government of India, New Delhi-110 003, India and Indian Council of Agricultural Research (ICAR)-Barapani, Shillong, India.

ORCID

Susma Das http://orcid.org/0000-0002-2391-8792
Shilpika Khanikar http://orcid.org/0000-0001-9845-2002
Shunan Kaping http://orcid.org/0000-0001-7998-5039
Jayanti Datta Roy http://orcid.org/0000-0002-7240-7606

References

[1] Elgennie, G. H.; Ali, H. A. Synth. Commun. 2002, 32, 253-264.
[2] Gavrin, L. K.; Lee, A.; Provencher, B. A.; Masserefi, W. W.; Huhn, S. D.; Ciszewski, G. M.; Cole, D. C.; McKew, J. C. J. Org. Chem. 2007, 72, 1043-1046.
[3] Meng, W.; Brigance, R. P.; Zahler, R.; Hamann, L. G.; Fura, A.; Harrity, T.; Wang, A.; Kirby, M. S. Biorg. Med. Chem. Lett. 2010, 20, 4395-4398.
[4] Petrovska, R. E.; Pomeroy, J. E.; Das, R.; Bowman, H.; Yang, W.; Chen, A. P.; Foster, A. C. J. Pharmaco. Exp. Ther. 2006, 317-369.
[5] George, C. P. F. Lancer 2001, 357, 1623.
[6] Drover, D.; Lemmeni, H.; Naidi, S.; Cevallos, W.; Darwin, M.; Stanski, D. Clin. Ther. 2002, 22, 1443-1461.
[7] Westeel, K. W.; Wickman, M. J.; Augustin, S. G.; Strom, J. G. Clin. Ther. 2000, 22, 1254-1267.
[8] Castillo, J. C.; Rosero, H. A.; Portilla, J. RSC Adv. 2017, 7, 28483-28488.
[9] Devi, A. S.; Kaping, S.; Vishwakarma, J. N. Mol. Divers. 2015, 19, 759-771.
[10] Kalita, U.; Kaping, S.; Nellanatt, J.; Helissey, P.; Vishwakarma, J. N. Heteroletters 2014, 4, 137-145.
[11] Kaping, S.; Bois, I.; Singha, L. I.; Helissey, P.; Vishwakarma, J. N. Mol. Divers. 2015, 20, 379-390.
[12] Kaping, S.; Kalita, U.; Sunn, M.; Singha, L. I.; Vishwakarma, J. N. Monatsh. Chem. 2016, 147, 1257-1270.
[13] Kaping, S.; Sunn, M.; Singha, L.; Vishwakarma, J. Eur. J. Chem. 2020, 11(1), 68-79.
[14] Ming, L.; Shouwen, W.; Lirong, W.; Huazheng, Y.; Xiulin, Z. J. Heterocycl. Chem. 2005, 42, 925-930.
[15] Bruni, F.; Chimichi, S.; Cosimelli, B.; Costanzo, A.; Guerrieri, G.; Selleri, S. Heterocycles 1990, 31, 1141-1149.
[16] Barali, F. G.; Fruttarolo, F.; Cabral, M. A.; Romagnoli, R.; Preti, D.; Ongini, E.; El-Kabeshi, H.; Carrion, M. D.; Borea, P. A.; J. Heterocycl. Chem. 2007, 44, 355-361.
[17] Bruni, F.; Selleri, S.; Costanzo, A.; Guerrieri, G.; Castelli, M. J. Heterocycl. Chem. 1995, 32, 291-298.
[18] Mikami, M.; Kawasaki, M.; Lleda, S.; Negoro, N.; Nakamura, S.; Nomura, I.; Ashizawa, T.; Kohubu, H.; Hoffman, L. D.; Zou, H.; Oki, H.; Vichiya, N.; Hira, Y.; Miyamoto, M.; Hou, Y.; Nakashima, M.; Iwashita, H.; Taniguchi, T. Chem. Pharm. Bull. 2017, 65, 1058-1077.
[19] Devi, S.; Helissey, P.; Nongchhaw, R. L.; Vishwakarma, J. N. Synth. Commun. 2013, 43, 1653-1660.
[20] Bruker APEX II Bruker AXS Inc., Madison, WI, USA, 2004.
[21] Sheidrick, G. M. Acta Crystal. A 2015, 71, 3-8.
[22] Sheidrick, G. M. Acta Crystal. C 2015, 71, 3-8.
[23] Souza, S. M.; Delle-Monica, F.; Smnia, J. A. l. Natur. Chem. 2005, 60, 693-701.
[24] Sen, S.; Bara, A. Int. J. Pharm. Res. 2012, 4, 67-73.
[25] Radl, S.; Blahovcova, M.; Tkadbceova, M.; Havlince, Heterocycles 2010, 80, 1359-1379.
[26] Nongrum, S.; Das, D.; Khanikar, S.; Vishwakarma, J. Eur. J. Chem. 2019, 10(4), 381-385.
[27] Nomura, I.; Midiwio, J. D.; Naheg, A. T.; Tankoe, S. B.; Sepleak, J. A.; Voukeng, I. K.; Dzotam, J. K.; Isenki, J.; Derese, S.; Ommolle, R. A.; Effertth, F.; Kunte, V.; Springerplus 2016, 5, 901.
[28] Tsmeunige, J.; Fondo, E. S.; Tamolou, J-de-D.; Rohand, T.; Njengong, A. D.; Kuate, J. R.; Sondjengam, B. L. Int. J. Med. Chem. 2018, 2018, Article ID 9197821.
[29] Jia, B.; Ma, Y. M.; Liu, B.; Chen, P.; Hu, Y.; Zhang, R. Front. Chem. 2019, 7, Article ID837, 1-13.
[30] Fouda, A. M.; Abbaz, A. H. A.; Ahmed, E. H.; Shati, A. A.; Alfaifi, M. Y.; Elbhairi, S. E. I. Molecules 2015, 24, 1080-1109.
[31] Abdallah, A. M.; Elgennie, G. H.; Drug Des Devel Ther 2018, 12, 1785-1798.
[32] Althagafi, I.; El-Sayed, R. J. Heterocycl. Chem. 2018, 55(3), 660-669.