Hospital-acquired infections caused by enterococci: a systematic review and meta-analysis, WHO European Region, 1 January 2010 to 4 February 2020

Simon Brinkwirth¹, Olaniyi Ayobami¹, Tim Eckmanns¹, Robby Markwart¹,²
1. Unit 37: Nosocomial Infections, Surveillance of Antimicrobial Resistance and Consumption, Robert Koch Institute, Berlin, Germany
2. Jena University Hospital, Institute of General Practice and Family Medicine, Jena, Germany
* These authors contributed equally to this article and share last authorship
Correspondence: Robby Markwart (robby.markwart@med.uni-jena.de)

Citation style for this article:
Brinkwirth Simon, Ayobami Olaniyi, Eckmanns Tim, Markwart Robby. Hospital-acquired infections caused by enterococci: a systematic review and meta-analysis, WHO European Region, 1 January 2010 to 4 February 2020. Euro Surveill. 2021;26(45):pii=2001628. https://doi.org/10.2807/1560-7917.ES.2021.26.45.2001628

Article submitted on 01 Sep 2020 / accepted on 17 May 2021 / published on 11 Nov 2021

Background: Hospital-acquired infections (HAI) caused by Enterococcus spp., especially vancomycin-resistant Enterococccus spp. (VRE), are of rising concern. Aim: We summarised data on incidence, mortality and proportion of HAI caused by enterococci in the World Health Organization European Region. Methods: We searched Medline and Embase for articles published between 1 January 2010 and 4 February 2020. Random-effects meta-analyses were performed to obtain pooled estimates. Results: We included 75 studies. Enterococcus spp. and VRE accounted for 10.9% (95% confidence interval (CI): 8.7–13.4; range: 6.1–17.5) and 1.1% (95% CI: 0.21–2.7; range: 0.39–2.0) of all pathogens isolated from patients with HAI. Hospital wide, the pooled incidence of HAI caused by Enterococcus spp. ranged between 0.7 and 24.8 cases per 1,000 patients (pooled estimate: 6.9; 95% CI: 0.76–19.0). In intensive care units (ICU), pooled incidence of HAI caused by Enterococcus spp. and VRE was 9.6 (95% CI: 6.3–13.5; range: 0.39–36.0) and 2.6 (95% CI: 0.53–5.8; range: 0–9.7). Hospital wide, the pooled vancomycin resistance proportion among Enterococcus spp. HAI isolates was 7.3% (95% CI: 1.5–16.3; range: 2.6–11.5). In ICU, this proportion was 11.5% (95% CI: 4.7–20.1; range: 0–40.0). Among patients with hospital-acquired bloodstream infections with Enterococcus spp., pooled all-cause mortality was 21.9% (95% CI: 15.7–28.9; range: 14.3–32.3); whereas all-cause mortality attributable to VRE was 33.5% (95% CI: 13.0–57.3; range: 14.3–41.3). Conclusions: Infections caused by Enterococcus spp. are frequently identified among hospital patients and associated with high mortality.

Introduction
Enterococcus spp. is a genus of Gram-positive, facultative anaerobic, catalase-negative bacteria that commonly inhabit the intestinal tracts of healthy humans and animals [1]. In addition to their role as commensals, enterococci are known for being associated with hospital-acquired infections. They can cause a wide range of infections, including infections of the urinary tract, bloodstream, and endocardium [2]. Enterococci, particularly E. faecalis and E. faecium, are among the most frequently isolated pathogens from patients with hospital-acquired infections (HAI) [1,3,4]. Hospital-acquired infections with enterococci are associated with considerable mortality [5-7], morbidity [8,9] and economic burden [10]. The clinical relevance of Enterococcus spp. is emphasised by their intrinsically low susceptibility to a wide range of antimicrobial drugs, including aminoglycosides, cephalosporins and sulphonamides and in the case of E. faecium, low-dose penicillin and ampicillin [11,12]. In view of the dwindling number of treatment options, vancomycin is commonly used to treat enterococcal infections, especially E. faecium. After the introduction of vancomycin in 1958 [13], a profound increase in prescriptions was recorded in the early 1980s [14]. Consequently, the first vancomycin resistance in clinical Enterococcus spp. isolates was observed in 1988 in London, United Kingdom [15]. Since then, vancomycin-resistant Enterococcus spp. (VRE) has spread and been detected in healthcare facilities across the world [16]. A rise of vancomycin resistance has been observed in clinical Enterococcus spp. isolates (especially in E. faecium) in many European countries in the last decade.
in particular [17,18]. A population-based study showed that there were ca 16,000 nosocomial VRE infections with 1,065 attributable deaths in the European Union/European Economic Area in 2015, nearly twice as many as reported in 2007 [19]. Aggregated data show that up to 55% of all HAI could be prevented by implementing multilevel infection prevention and control measures [20], potentially supporting a substantial reduction of the prevalence and mortality of enterococcal HAI. However, to our knowledge, no systematic review on the burden of HAI with Enterococcus spp., including vancomycin-resistant strains, in Europe has been published yet.

Systematic data on the epidemiology of enterococcal HAI are needed to fully estimate and understand the epidemiology of Enterococcus spp. infections. We therefore conducted a systematic review and meta-analysis to determine the prevalence, incidence and mortality as well as vancomycin resistance proportions of hospital-acquired Enterococcus spp. infections in the World Health Organization (WHO) European Region.

Study outcomes

The primary outcomes of this review are the prevalence, incidence and incidence density of hospital-acquired Enterococcus spp. / E. faecium and VRE / vancomycin-resistant E. faecium (VREF) infections among hospitalised patients and at the population level. Incidence density is defined as new cases per 1,000 patient hospitalisation days. The mortality of patients with HAI caused by Enterococcus spp. / E. faecium and VRE / VREF was additionally studied as a primary outcome. Secondary outcomes are (i) the proportion of vancomycin resistance among all Enterococcus spp. / E. faecium HAI isolates and; (ii) the proportion of HAI with Enterococcus spp. / E. faecium and VRE / VREF among all identified microorganisms from patients with HAI. In our review, cases of HAI caused by Enterococcus spp. / E. faecium include both vancomycin-resistant and sensitive strains.

Search strategy, study selection criteria and data extraction

We searched Medline and Embase for epidemiological and surveillance studies reporting data on HAI. The search was carried out for studies published between 1 January 2010 and 4 February 2020 without any language restrictions. This timeframe was chosen because we aimed to summarise recent data on the epidemiology of hospital-acquired Enterococcus spp., especially given the rise of vancomycin resistance in Europe in the last decade. The detailed search strategy, including search strings, is provided in Supplementary Material. Title, abstract and full-text screening were
independently performed by three authors (SB, OA, RM) using Covidence, a screening and data extraction tool recommended by the Cochrane Community [22]. All disagreements were discussed for consensus or resolved by a third reviewer.

The study selection criteria are presented in Box 1.

The data of all eligible studies were independently extracted by three authors (SB, OA and RM). All disagreements were resolved through discussion. The data extraction included the primary and secondary outcomes and the following study characteristics: authors, year of publication, study period, country, study design, setting (e.g. hospital, intensive care unit (ICU), etc.), age groups, patient inclusion criteria and the HAI infection type (i.e. total HAI and HA-BSI). We contacted study authors via email where details regarding outcomes and reporting were needed.

Risk of bias assessment and statistical analysis

The risk of bias for individual studies was assessed by two authors (SB and RM) using the risk of bias tool developed by Hoy et al. [23]. For data analysis and presentation, studies were grouped into hospital-wide, ICU-based, neonatal ICU-based studies, and other hospital units/wards (e.g. internal medicine, surgical units, etc.) as well as by HAI types (i.e. total HAI and HA-BSI). All statistical analyses were performed using R version 3.6.1 and the R package meta version 4.9.7 (R Foundation, Vienna, Austria) [24]. Pooled estimates were calculated using random-effects models with a Tukey Double Arcsine transformation [25] of the raw proportions. The DerSimonian-Laird estimator was used to define τ^2 (between-study variance). The I^2 statistics quantified the statistical heterogeneity of the selected studies.

Results

In total, we identified 6,069 unique records. After title and abstract screening, 362 studies were assessed in full-text review and 75 [6,7,26-98] met all inclusion criteria (Figure 1).

Study characteristics

The characteristics and individual study estimates are summarised in Supplementary Material, Table S1-S7. Among the 75 included studies, 28 [7,26-52]
Table

Summary of all primary outcomes on hospital-acquired infections caused by enterococci stratified by study setting, WHO European Region, 1 January 2010–4 February 2020

Study setting	Infection type	Pathogen	Number of studies	Pooled estimate (95% CI)	Inter-study heterogeneity (I² statistics)	Range of individual study estimates	
Point prevalence (cases per 1,000 patients)							
Hospital patients	All HAI	Enterococcus spp.a	5 [29,33,39,44,48]	4.6 (2.96–7.7)	48%	2.0–12.5	
	VRE			NA			
	HA-BSI	Enterococcus spp.a	3 [29,44,48]	0.63 (0.00–2.1)	27%	0–2.5	
	VRE			NA			
ICU patients	All HAI	Enterococcus spp.a	1 [81]	48.78 (22.91–83.1)	NA		
	VRE			NA			
HA-BSI	Enterococcus spp.a	3 [63,69,81]	5.5 (1.6–11.1)	15%	3.1–14.6		
	VRE			9.8 (0.15–29.2)	NA		
Incidence (new cases per 1,000 patients)							
Hospital patients	All HAI	Enterococcus spp.a	5 [28,32,41,65,51]	6.9 (0.76–19.0)	100%	0.71–24.8	
	VRE			2 [45,51]	1.8 (1.6–2.1)	0%	2.0–2.9
	HA-BSI	Enterococcus spp.a	6 [7,30,37,41,46,54]	0.62 (0.34–0.99)	97%	0.18–1.1	
	VRE			1 [7]	0.37 (0.31–0.43)	NA	
ICU patients	All HAI	Enterococcus spp.a	14 [6,55,57,61,64,70,71,77,83,85-87,102]	9.6 (6.3–13.5)	96%	0.39–36.0	
	VRE			9 [6,53,63,69,75,77,83,84]	2.6 (0.53–5.8)	89%	0–9.7
	HA-BSI	Enterococcus spp.a	12 [62,71,73,75,77,83,84,86,87,102]	6.1 (1.9–12.3)	97%	0–24.7	
	VRE			8 [62,73,75,86,84,87,102]	0.06 (0.00–2.10)	79%	0–9.9
Neonatal ICU	All HAI	Enterococcus spp.a	5 [89-93]	2.0 (0.05–5.7)	71%	0–15.9	
	VRE			4 [89-92]	0 (0.00–0.32)	0%	0
HA-BSI	Enterococcus spp.a	6 [46,88-90,92,94]	2.3 (0.95–4.1)	61%	0–5.1		
	VRE			4 [89-92]	0 (0.00–0.32)	0%	0
Incidence density (cases per 1,000 patient days)							
Hospital patients	All HAI	Enterococcus spp.a	3 [28,41,43]	0.34 (0.08–0.78)	93%	0.14–0.92	
	VRE			1 [43]	0.02	NA	
	HA-BSI	Enterococcus spp.a	5 [31,38,40,41,49,54]	0.08 (0.05–0.12)	99%	0.03–0.14	
	VRE			3 [31,40,49]	0.02 (0.00–0.06)	99%	0–0.12
ICU patients	All HAI	Enterococcus spp.a	9 [6,55,64,70,71,77,85,87,102]	0.92 (0.41–1.60)	93%	0.05–2.57	
	VRE			6 [6,55,71,77,85,102]	0.16 (0.03–0.37)	75%	0–0.62
	HA-BSI	Enterococcus spp.a	8 [71,73,75,77,83,84,87,102]	0.61 (0.08–1.6)	96%	0–3.0	
	VRE			5 [71,73,84,87,102]	0.01 (0.00–0.12)	70%	0–0.76
Neonatal ICU	All HAI	Enterococcus spp.a	4 [89-92]	0.15 (0–0.54)	84%	0–1.5	
	VRE			4 [89-92]	0 (0.00–0.01)	0%	0
HA-BSI	Enterococcus spp.a	3 [89,90,94]	0.11 (0.01–0.29)	84%	0.02–0.24		
	VRE			3 [89-91]	0 (0.000.01)	0%	0
All-cause mortality among patients with enterococcal HAI							
Hospital patients	HA-BSI	Enterococcus spp.a	5 [37,42,47,50,103]	21.9 (15.7–28.9)	85%	14.3–32.3	
	VRE			2 [42,49]	33.5 (13.0–57.3)	45%	14.3–41.3
ICU patients	All HAI	Enterococcus spp.a	1 [6]	31.0%	NA		
	VRE			2 [6,80]	33.0 (11.9–57.7)	0%	27.3–42.9
Neonatal ICU	HA-BSI	Enterococcus spp.	1 [64]	0%	NA		

CI: confidence interval; HAI: hospital-acquired infections; HA-BSI: hospital-acquired bloodstream infections; ICU: intensive care units; NA: not applicable; VRE: vancomycin-resistant *Enterococcus* spp.; WHO: World Health Organization.

a Including vancomycin-sensitive and resistant strains.
were conducted hospital wide, 34 [6,53-85] in ICU, nine [44,86-93] in neonatal ICU and five studies [94-98] were performed in other settings, such as internal medicine and surgical units. The studies were distributed across the WHO European Region (Supplementary Material, Figure S1). Geographical distribution of the included studies across the WHO European Region; studies from Turkey (n = 20), Italy (n = 10) and Poland (n = 9) were overrepresented. In total, nine studies were point prevalence studies, while the remaining 66 studies were incidence studies.

The results specifically for *E. faecium* and VREF are not presented in the main text of this study but are instead described in the Supplementary Material.

Risk of bias assessment

The risk of bias for the representativeness of the studied hospital population was assessed as high in the majority of studies (69/75) (Supplementary Material, Table S8. Risk of bias assessment of included studies). Since these studies were single centre studies and/or included data from patients treated in academic medical centres, the representativeness of the included patients for the general hospital population in a given region or country was therefore unclear or low in these studies. Six studies [33,36,37,40,46,61] included nationally representative hospital populations. The risk of bias for the applied case definitions (i.e. hospital-acquired infections) was judged as low for most studies, since the majority of the studies (55/75) used HAI definitions based on the United States (US) Centers for Disease Control and Prevention criteria and the National Healthcare Safety Network criteria [99,100]. These validated definitions are widely used in the surveillance of HAI. More than half (46/75) of the studies did not report the used pathogen identification and/or antimicrobial susceptibility testing method and/or interpretation guideline (e.g. The European Committee on Antimicrobial Susceptibility Testing, Clinical and Laboratory Standards Institute). For this reason, the risk of bias with regards to the validity and reliability of the methodology used in these studies to identify enterococci and vancomycin-resistant strains was considered high (item 7, Supplementary Material, Table S8). In epidemiological surveys, HAI are typically defined as infections that occur 48 h after admission. That means that only patients with a hospital stay longer than 48 h in these studies are at risk of developing HAI and hence represent the appropriate denominator population for the parameters of interest (i.e. prevalence, incidence and mortality). Consequently, only studies including patients with a hospital stay longer than 48 h are judged as low risk of bias for item 10

Prevalence and incidence of hospital-acquired infections caused by *Enterococcus* spp. and vancomycin-resistant *Enterococcus* spp.

Five point prevalence studies [27,31,37,42,46] reported hospital-wide prevalence between 2.0 and 12.5 cases of *Enterococcus* spp. (including vancomycin-sensitive and -resistant strains) HAI per 1,000 hospital patients (pooled estimate: 4.6; 95% confidence interval (CI): 2.9–6.7) (Table). Similarly, based on five incidence studies, the pooled hospital-wide incidence of *Enterococcus* spp. HAI was 6.9 (95% CI: 0.76–19.0; range: 0.71–24.8) cases per 1,000 hospital patients (Figure 2A; Table). Two hospital-wide incidence studies reported 2.9 and 2.0 cases per 1,000 patients for HAI caused by VRE. For HA-BSI caused by *Enterococcus* spp., the hospital incidence ranged between 0.18 and 1.1 cases per 1,000 patients (pooled estimate: 0.62; 95% CI: 0.34–0.99, six studies) (Table).

Fourteen studies reported [6,53,55,59,62,63,68,69,72,75,81,82,84,85] data on the incidence of HAI caused by *Enterococcus* spp. in ICU. The individual study estimates ranged between 0.39 and 36.0 cases per 1,000 ICU patients (pooled estimate: 9.6; 95% CI: 6.3–13.5) (Figure 2B; Table). For HA caused by VRE, the pooled estimate was 2.6 (95% CI: 0.5–5.8) cases per 1,000 ICU patients, with individual studies ranging from 0 to 9.7 cases per 1,000 patients. For HA-BSI, 12 studies reported ICU incidences between 0 and 24.7 *Enterococcus* spp. cases per 1,000 ICU patients (pooled estimate: 6.1; 95% CI: 1.9–12.3) (Table). Notably, two of eight studies identified cases of HA-BSI with VRE (range: 2.3–9.9). Data on the incidence and incidence density of HAI and HA-BSI caused by *Enterococcus* spp. in neonatal ICU are summarised in Table.

One study reported data on the population-based incidence or prevalence of enterococcal HAI. In this population-based study from Denmark [45], the incidence of monomicrobial enterococcal HA-BSI caused by *Enterococcus* spp. and VRE was 7.1 per 100,000 person-years and 0.1 per 100,000 person-years.

Incidence density of hospital-acquired infections caused by *Enterococcus* spp. and vancomycin-resistant *Enterococcus* spp.

As shown by three studies [26,39,41], the hospital incidence density of HAI caused by *Enterococcus* spp. varied between 0.14 and 0.92 cases per 1,000 hospital patient days (pooled estimate: 0.34; 95% CI: 0.08–0.78) (Table). The ICU incidence density of hospital-acquired *Enterococcus* spp. ranged between 0.05 and 2.6 cases per 1,000 ICU patient days (pooled estimate: 0.92; 95% CI: 0.41–1.6, nine studies) (Table). For HA caused by VRE, the pooled ICU incidence density was 0.16 (95% CI: 0.03–0.37), with an individual study range of 0 to 0.62 cases per 1,000 ICU patient days.

For HA-BSI caused by *Enterococcus* spp., five studies reported [29,36,38,39,52] incidence densities between 0.03 and 0.14 cases per 1,000 hospital patient days (pooled estimate: 0.08; 95% CI: 0.05–0.12) (Table). In ICU, the pooled incidence density for *Enterococcus* spp. HA-BSI was 0.61 (95% CI: 0.08–1.6) cases per 1,000 patient ICU days (eight studies, range: 0–3.0) (Table).
Figure 2
Incidence of hospital-acquired infections caused by *Enterococcus* spp. and vancomycin-resistant *Enterococcus* spp., WHO European Region, 1 January 2010–4 February 2020

A. Hospital-wide incidence of HAI caused by *Enterococcus* spp. and VRE

Study	Country	Setting	HAI cases per 1,000 hospital patients	95% CI
Enterococcus spp.				
Avci et al. 2012 [26]	Turkey	Hospital	1.22	(0.96; 1.52)
Cardoso et al. 2013 [30]	Portugal	Hospital	4.55	(2.62; 7.00)
Kolpa et al. 2018b [39]	Poland	Hospital	0.71	(0.59; 0.85)
Ott et al. 2013 [43]	Germany	Hospital	24.83	(16.19; 35.21)
Salmanov et al. 2019a [49]	Ukraine	Hospital	18.11	(17.25; 18.96)
Random effects model			6.94	(0.76; 18.99)
Heterogeneity: $I^2 = 100\%$, $\tau^2 = 0.0038$, $p = 0$				

Vancomycin-resistant *Enterococcus* spp.

Study	Country	Setting	HAI cases per 1,000 hospital patients	95% CI
Ott et al. 2013 [43]	Germany	Hospital	2.87	(0.35; 7.25)
Salmanov et al. 2019a [49]	Ukraine	Hospital	2.04	(1.77; 2.34)
Random effects model			1.83	(1.56; 2.12)
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $p = 0.43$				

B. Incidence of HAI caused by *Enterococcus* spp. and VRE in ICU

Study	Country	Setting	HAI cases per 1,000 ICU patients	95% CI
Enterococcus spp.				
Alci et al. 2016 [53]	Turkey	Paediatric ICU	7.94	(6.30; 13.49)
Boncagni et al. 2015 [6]	Italy	Mixed adult medical-surgical ICU	35.98	(24.13; 50.04)
Bonsel et al. 2019 [65]	France	Mixed ICU	2.68	(2.35; 3.04)
Celiloglu et al. 2017 [85]	Turkey	Paediatric ICU	0.39	(0.00; 1.69)
Custoči et al. 2014 [59]	Bosnia Herzegovina	Clinic of Anesthesiology and Reanimation	1.17	(0.00; 5.02)
Djordjević et al. 2012 [62]	Serbia	Neurological ICU, adults	5.59	(0.00; 14.12)
Erayman et al. 2016 [63]	Turkey	Neurosurgical ICU, adults	6.10	(1.70; 12.82)
Kolpa et al. 2018a [68]	Poland	General ICU, adults	17.33	(11.83; 23.82)
Kostakoglou et al. 2016 [69]	Turkey	Mixed adult ICU	33.57	(20.14; 50.16)
Öncül et al. 2014 [72]	Turkey	Burn ICU, all ages	6.08	(1.29; 13.79)
Salmanov et al. 2016b [75]	Ukraine	Mixed adults, paediatric and neonatal ICU	31.15	(18.97; 46.14)
Viderman et al. 2018 [81]	Kazakhstan	Mixed ICU	28.25	(18.08; 35.88)
Walaszek et al. 2018a [83]	Poland	General adult ICU	10.60	(6.06; 14.98)
Yekin et al. 2018 [84]	Turkey	Mixed adult and paediatric ICU	1.62	(1.28; 2.00)
Random effects model			9.57	(6.30; 13.46)
Heterogeneity: $I^2 = 96\%$, $\tau^2 = 0.0010$, $p < 0.01$				

Vancomycin-resistant *Enterococcus* spp.

Study	Country	Setting	HAI cases per 1,000 ICU patients	95% CI
Alci et al. 2016 [53]	Turkey	Paediatric ICU	2.98	(0.36; 7.54)
Boncagni et al. 2015 [6]	Italy	Mixed medical-surgical ICU	8.68	(3.25; 10.47)
Erayman et al. 2016 [63]	Turkey	Neurosurgical ICU, adults	2.44	(0.04; 7.34)
Kostakoglou et al. 2016 [69]	Turkey	Mixed adult ICU	1.77	(0.00; 7.57)
Öncül et al. 2014 [72]	Turkey	Burn ICU, all ages	0.00	(0.00; 2.61)
Salmanov et al. 2016b [75]	Ukraine	Mixed adults, paediatric and neonatal ICU	6.23	(1.32; 14.13)
Sutcu et al. 2016 [78]	Turkey	Paediatric ICU	9.70	(4.71; 16.36)
Walaszek et al. 2018a [83]	Poland	General adult ICU	0.79	(0.01; 2.37)
Yekin et al. 2018 [84]	Turkey	Mixed adult and paediatric ICU	0.25	(0.13; 0.41)
Random effects model			2.59	(0.53; 5.83)
Heterogeneity: $I^2 = 89\%$, $\tau^2 = 0.0011$, $p < 0.01$				

CI: confidence interval; HAI: hospital-acquired infections; ICU: intensive care units; WHO: World Health Organization.

The incidence of HAI caused by *Enterococcus* spp. and vancomycin-resistant *Enterococcus* spp. as cases per 1,000 patients. Cases of HAI caused by *Enterococcus* spp. include vancomycin-resistant and -sensitive strains. Pooled estimates were calculated using random-effects models with a Tukey Double Arcsine transformation of the raw proportions. The DerSimonian-Laird estimator was used to define τ^2 (between-study variance).
The all-cause mortality recorded among patients with HA-BSI caused by Enterococcus spp. ranged between 14.3% and 32.3% (pooled estimate: 21.9%; 95% CI: 15.7–28.9, five studies) (Figure 3; Table). Based on two studies [40,47], the pooled all-cause mortality of patients with HA-BSI caused by VRE was 33.5% (95% CI: 13.0–57.3; range: 19.1–41.3). Importantly, Brady et al. 2017 [7] provided data on the attributable mortality of HA-BSI with enterococci. For Enterococcus spp. (including vancomycin-susceptible and -resistant strains) and VRE, this study reported an attributable mortality of 17.7% and 19.1%, respectively. This study also showed that the mortality of patients with HA-BSIs caused by vancomycin-resistant Enterococcus spp. (19.1%) was similar to the mortality of HA-BSI patients with vancomycin-sensitive Enterococcus spp. (17.0%).

Proportion of Enterococcus spp. and vancomycin-resistant Enterococcus spp. among all pathogens isolated from patient with HAI

As reported by 11 hospital-wide studies, the proportion of Enterococcus spp. among all microorganisms isolated from HA-BSI patients varied between 6.1% and 17.5% (pooled estimate: 10.9%; 95% CI: 8.7–13.4) (Figure 4A; Supplementary Material, Table S6). Based on three studies [41,49,101], VRE isolates accounted for 0.39% to 2.0% (pooled estimate: 1.1%; 95% CI: 0.21–2.7) of all HA-BSI pathogens. Compared with hospital-wide estimates, substantially lower Enterococcus spp. proportions were observed in HA-BSI isolates from patients treated in ICU. Only 3.8% (95% CI: 2.9–4.8) of all isolated HAI microorganisms were identified as Enterococcus spp. (range: 0.73–7.6, 17 studies) (Figure 4B; Supplementary Material, Table S6) in ICU. As reported by nine ICU studies [6,8,53,63,65,72,75,82,84], the proportion of VRE ranged between 0% and 1.8% (pooled estimate: 0.55%; 95% CI: 0.20–1.0).

In HA-BSI at the hospital level, the proportion of Enterococcus spp. among HA-BSI isolates ranged between 0% and 19.6% (pooled estimate: 9.2%; 95% CI: 6.9–11.7, 17 studies), while the proportion of VRE varied between 0% and 1.9% (Supplementary Material, Table S6). Compared with the hospital-wide estimates, similar proportions of Enterococcus spp. in HA-BSI isolates were observed in ICU (pooled estimate: 9.2%; 95% CI: 6.7–11.8; range: 0–28.6, 21 studies) (Supplementary Material, Table S6). In ICU, the proportion of VRE among all isolates from HA-BSI patients varied between 0% and 10.1% (pooled estimate: 1.3%; 95% CI: 0.16–3.2, 11 studies). In four of 11 studies, no VRE were found in isolates from ICU patients with HA-BSI.
A. Proportion of Enterococcus spp. and VRE among all patients

Study	Country	Setting	Proportion among all HAI microorganisms (%)	95% CI	
Enterococcus spp.	Avci et al. 2012 [26]	Turkey	Hospital	8.42	(6.67; 10.35)
	Barbatsi et al. 2019 [27]	Italy	Hospital	8.00	(3.80; 13.49)
	Cardoso et al. 2013 [30]	Portugal	Hospital	6.44	(3.76; 9.75)
	Cift diğil Atil et al. 2012 [31]	Italy	Children's hospital	6.12	(0.79; 14.94)
	Hopmans et al. 2020 [37]	Netherlands	Hospital	11.96	(10.59; 13.40)
	Kojda et al. 2018a [38]	Poland	Hospital	8.74	(7.26; 10.34)
	Mancini et al. 2016 [41]	Italy	Hospital	15.01	(13.11; 17.01)
	Marani et al. 2016 [42]	Italy	Hospital	12.26	(8.62; 19.27)
	Ott et al. 2013 [43]	Germany	Hospital	17.45	(11.74; 23.99)
	Raka et al. 2019 [46]	Kosovo*	Hospital	9.09	(1.21; 21.77)
	Salmanov et al. 2019a [49]	Ukraine	Hospital	15.70	(13.03; 16.38)
Random effects model				10.92	(8.65; 13.40)

Heterogeneity: I² = 92%, φ = 0.0029, p < 0.01

Vancomycin-resistant Enterococcus spp.

Study	Country	Setting	Proportion among all HAI microorganisms (%)	95% CI	
Mancini et al. 2016 [41]	Italy	Hospital	0.39	(0.11; 0.82)	
Ott et al. 2013 [43]	Germany	Hospital	2.01	(0.25; 5.04)	
Salmanov et al. 2019a [49]	Ukraine	Hospital	1.77	(1.54; 2.02)	
Random effects model				1.14	(0.21; 2.67)

Heterogeneity: I² = 91%, φ = 0.0019, p < 0.01

B. Proportion of Enterococcus spp. and VRE among ICU patients

Study	Country	Setting	Proportion among all HAI microorganisms in ICU (%)	95% CI	
Enterococcus spp.	Alci et al. 2016 [53]	Turkey	Paediatric ICU	3.69	(1.52; 6.67)
	Bocagin et al. 2015 [8]	Italy	Mixed adult medical-surgical ICU	6.07	(4.09; 8.40)
	Bonme et al. 2019 [56]	France	Mixed ICUs	2.80	(2.46; 3.16)
	Cardu et al. 2017 [65]	Turkey	Paediatric ICU	1.67	(0.60; 3.02)
	Custovic et al. 2014 [59]	Bosnia Herzegovina	Clinic of Anaesthesiology and Reanimation	0.95	(0.05; 4.04)
	Djordjevic et al. 2012 [66]	Serbia	Neurological ICU adults	2.36	(0.29; 5.90)
	Erayman et al. 2015 [63]	Turkey	Neurosurgical ICU, adults	4.46	(1.27; 9.22)
	Inan et al. 2012 [65]	Turkey	Medical-surgical ICU	2.76	(1.14; 5.01)
	Iordanou et al. 2017 [66]	Cyprus	Mixed adult ICU	4.65	(0.08; 13.51)
	Kojda et al. 2018a [68]	Poland	General ICU, adults	6.64	(4.67; 9.05)
	Kostalikoglu et al. 2016 [69]	Turkey	Mixed adult ICU	6.74	(3.46; 9.83)
	Öncü et al. 2014 [72]	Turkey	Burn ICU, all ages	0.73	(0.15; 1.66)
	Salmanov et al. 2019b [70]	Ukraine	Mixed adults, paediatric and neonatal ICU	7.63	(4.70; 11.19)
	Tomaszewski et al. 2019 [79]	Poland	Mixed ICUs, adults + children	5.88	(2.77; 9.99)
	Viderman et al. 2018 [81]	Kazakhstan	Mixed ICU	4.82	(2.46; 7.87)
	Walaszek et al. 2018a [82]	Poland	General adult ICU	5.48	(3.83; 7.67)
	Yetkin et al. 2018 [84]	Turkey	Mixed adult and paediatric ICU	2.56	(2.03; 3.16)
Random effects model				3.77	(2.86; 4.79)

Heterogeneity: I² = 80%, φ = 0.0016, p < 0.01

Vancomycin-resistant Enterococcus spp.

Study	Country	Setting	Proportion among all HAI microorganisms in ICU (%)	95% CI	
Alci et al. 2016 [53]	Turkey	Paediatric ICU	1.38	[0.17; 3.48]	
Bocagin et al. 2015 [8]	Italy	Mixed medical-surgical ICU	1.46	[0.55; 2.77]	
Erayman et al. 2016 [63]	Turkey	Neurosurgical ICU, adults	1.79	[0.03; 3.51]	
Inan et al. 2012 [65]	Turkey	Medical-surgical ICU	0.34	[0.00; 1.48]	
Kostalikoglu et al. 2016 [69]	Turkey	Mixed adult ICU	0.30	[0.00; 1.29]	
Öncü et al. 2014 [72]	Turkey	Burn ICU, all ages	0.00	[0.00; 0.31]	
Salmanov et al. 2019b [70]	Ukraine	Mixed adults, paediatric and neonatal ICU	1.53	[0.33; 3.40]	
Walaszek et al. 2018a [82]	Poland	General adult ICU	0.41	[0.01; 1.22]	
Yetkin et al. 2018 [84]	Turkey	Mixed adult and paediatric ICU	0.59	[0.20; 0.98]	
Random effects model				0.55	[0.20; 1.03]

Heterogeneity: I² = 61%, φ = 0.0008, p < 0.01

Proportion among all HAI microorganisms in ICU (%)
A. Patients with HAI

Study	Country	Setting	VR proportion in Enterococcus spp. HAI isolates (%)	95% CI
ICU				
Atici et al. 2016	Turkey	Paediatric ICU	37.50	(6.72; 74.11)
Boncogi et al. 2015	Italy	Mixed adult medical-surgical ICU	24.14	(10.03; 41.60)
Erayman et al. 2016	Turkey	Neurosurgical ICU adults	40.00	(1.85; 86.22)
Inan et al. 2012	Turkey	Medical-surgical ICU	12.50	(0.00; 46.21)
Kostakoglu et al. 2016	Turkey	Mixed adult ICUs	5.26	(0.00; 21.22)
Oncul et al. 2014	Turkey	Burn ICU, all ages	0.00	(0.00; 38.85)
Salmanov et al. 2019a	Ukraine	Mixed adults, paediatric and neonatal ICU	20.00	(4.87; 40.79)
Viderman et al. 2019	Kazakhstan	Mixed ICU, adults	0.00	(0.00; 7.04)
Weiszaicz et al. 2019b	Poland	General adult ICU	7.41	(0.14; 21.05)
Yelkin et al. 2018	Turkey	Mixed adult and paediatric ICU	15.38	(8.12; 24.34)

B. Patients with HA-BSI

Study	Country	Setting	VR proportion in Enterococcus spp. HA-BSI isolates (%)	95% CI
ICU				
Atilla et al. 2017	Turkey	Mixed ICU, adults	9.52	(0.19; 26.61)
Culshaw et al. 2014	United Kingdom	Mixed ICU, adults	20.51	(0.09; 34.89)
De Santis et al. 2015	United Kingdom	Mixed adult ICU	33.33	(0.00; 94.11)
Djunic et al. 2019	Serbia	Trauma-surgical ICU, adults	66.67	(33.64; 98.70)
Kouni et al. 2019	Greece	Paediatric and neonatal ICU, paediatric oncology unit	25.00	(0.78; 81.53)
Ong et al. 2015	Netherlands	Mixed ICU, adults	0.00	(0.00; 2.25)
Ong et al. 2015	Italy	General ICU	0.00	(0.00; 16.52)
Tomaszewski et al. 2019	Poland	Mixed ICU, adults + children	66.67	(5.89; 100.00)
Wieliczak et al. 2019b	Poland	General adult ICU	12.57	(5.72; 31.53)

Heterogeneity: $\chi^2 = 0.27$, $p = 0.000$, $I^2 = 0.0122$, $p = 0.01$

Heterogeneity: $\chi^2 = 0.62$, $p = 0.000$, $I^2 = 0.0068$, $p = 0.01$

CI: confidence interval; HAI: hospital-acquired infections; HA-BSI: hospital-acquired bloodstream infections; ICU: intensive care unit; WHO: World Health Organization.

Pooled estimates were calculated using random-effects models with a Tukey Double Arcsine transformation of the raw proportions. The DerSimonian-Laird estimator was used to define τ^2 (between-study variance).
Proportion of vancomycin resistance among *Enterococcus* spp. isolates from patients with hospital-acquired infections

Thirteen studies [6,41,43,49,53,65,69,72,75,80,82,84] provided data on vancomycin resistance proportion among all *Enterococcus* spp. isolates from patients with HAI in hospitals and ICUs. The VRE proportions ranged between 0% and 40% (pooled hospital-wide estimate: 7.3%; 95% CI: 4.7–20.1) (Figure 5A; Supplementary Material, Table S7). Notably, while seven studies reported relatively low VRE proportions in HA-BSI (0–9.2%), two studies from Ireland [7] and Poland [33] reported high proportions of 33%. With the exception of three studies that found no vancomycin resistance, higher VRE proportions (range: 9.5–66.7, six studies) were found in HA-BSI *Enterococcus* spp. isolates from patients treated in ICU (Figure 5B; Supplementary Material, Table S7).

Discussion

In view of limited treatment options, HAI with *Enterococcus* spp. are a serious health issue in the WHO European Region, particularly in light of increasing vancomycin resistance. This study is, to the best of our knowledge, the first systematic review to provide a comprehensive summary of data on the epidemiology of hospital-acquired infections caused by *Enterococcus* spp. and VRE in Europe.

The identified studies reported a hospital-wide point prevalence of HAI caused by *Enterococcus* spp. between 3.3 and 12.5 cases per 1,000 hospital patients, which is similar to Australia (8.0 cases per 1,000 patients) [102] and Latin America (4.0 cases per 1,000 patients) [103]. In contrast, lower prevalences of *Enterococcus* spp. HAI were observed in the US [104] and China [105], 1.9 and 1.3 cases per 1,000 hospital patients, respectively, which might be explained by generally lower hospital point prevalence of HAI in the US 3.2% [106] and in China 3.1% [107] compared with Europe 5.5% [4]. Another explanation might be broader screening practices and the implementation of contact precaution measures within the US healthcare system, particularly to control meticillin-resistant *Staphylococcus aureus* (MRSA) and VRE [108].

Our study emphasises the importance of *Enterococcus* spp. as a nosocomial pathogen, since it accounts for 6.1% to 17.5% of all pathogens isolated from patients with HAI. *Enterococcus* spp. usually remains among the top five most frequent nosocomial pathogens in Europe, despite the variation in species distribution across hospitals and regions [101,109-111]. In comparison, *Enterococcus* spp. is less frequently found in isolates from patients with HAI in the US [104] and China [105], 5% and 3.1% of all HAI pathogens, respectively. Our data show that VRE was found in 1.1% (range: 0.4–2.0) of all pathogens isolated from HAI patients, which is lower than the mean proportion of MRSA (ca 5%) observed in Europe [112]. However, in Germany [101] and Greece [109] VRE and MRSA are equally often found in HAI patients and in studies from Italy [110] and Ukraine [49], VRE is even more frequently isolated than MRSA, underlining the local heterogeneous distribution of nosocomial antibiotic-resistant pathogens. Interestingly, we found that *Enterococcus* spp. is less frequently isolated from HAI patients in ICU compared with patients treated hospital wide (10.9% vs 3.8%). However, the reasons for this observation are unclear.

Our study shows that the pooled vancomycin resistance proportions among HAI *Enterococcus* spp. were 7.3% hospital wide and 11.5% in isolates from patients in ICU, although individual study estimates varied somewhat. These pooled estimates are similar to the European Centre for Disease Prevention and Control data from the European Point Prevalence Survey [113,114]. In comparison to these European data, vancomycin resistance proportions are substantially lower in China [115,116] and Japan [117], where VRE proportions lower than 2% were observed. Interestingly, other countries in eastern Asia observed much higher VRE proportions, such as in South Korea (33.4%) [118] and Taiwan (40%) [119]. Compared with the European estimates, VRE proportions in the US are also generally higher (>20%) [120,121], which might be explained by the widespread use of vancomycin in US hospitals, which increased by more than 30% between 2006 and 2012 [122].

For patients with HA-BSI caused by *Enterococcus* spp., all-cause mortality estimates ranged between 14.3% and 32.3% (pooled estimate: 21.1%). These are higher [35,38,40] or similar [7,48] to the all-cause mortality rates observed for *S. aureus* and generally higher than those reported for *E. coli* [7,35,38,40], which are often encountered nosocomial pathogens. Substantial attention is paid to infection prevention and control (IPC) measures to address VRE, but our results show that enterococcal HAI as a whole are associated with a high incidence and mortality in Europe and should therefore receive more attention in IPC strategies.

An important observation of our study is that there is a large variation between individual study estimates of incidences/prevalences of HAI caused by *Enterococcus* spp. as well as for VRE proportions. This finding is similar to other systematic reviews around the world that also found large inter-study variations in the frequency of HAI [123-125]. Some of this heterogeneity might be explained by different methodological approaches, including different inclusion/exclusion criteria and microbiological sampling routines. In many published studies, data on the causative pathogen are not available for a substantial proportion of HAI.
episodes (>40%) because of the lack of microbiological samples taken or incomplete data. This would ultimately lead to a substantial underestimation of the frequency of HAI caused by Enterococcus spp. To avoid this source of bias, we only included studies where pathogen identification results were reported for almost all HAI episodes. In addition to methodological differences, the large variation between individual study estimates also reflects true differences in the occurrence of nosocomial pathogens, including Enterococcus spp., between countries, regions and individual hospitals. For example, in a large multicentre study from Ukraine [49], Escherichia coli, Staphylococcus aureus and Enterococcus spp. were the predominant pathogens isolated from patients with HAI, while in a multicentre study from Greece, Klebsiella spp., Pseudomonas aeruginosa and Acinetobacter spp. were the most frequently identified nosocomial pathogens [126]. Furthermore, there is great variation in IPC policies and resources across Europe [127], which also explains the observed variations of HAI caused by Enterococcus spp. and VRE.

Since vancomycin resistance is predominantly found in E. faecium and less in E. faecalis and/or other enterococci species [7,18,75,118], vancomycin resistance proportions in Enterococcus spp. HAI isolates are also largely influenced by the proportion of E. faecium among all Enterococcus spp. isolates. Moreover, vancomycin resistance proportions in E. faecium differ across countries [18] and even within countries [17], which also explains the observed variation in VRE proportion described in our study. Moreover, nosocomial outbreaks and local spread of E. faecium genotypes associated with vancomycin resistance especially VanA and VanB in Europe [128] and increased virulence such as the esp and hyl genes can result in a higher VRE incidence in certain regions and hospitals. Another explanation for the observed inter-study variations in HAI caused by VRE are the profound differences in the consumption of glycopeptides/vancomycin, fluoroquinolones and third generation cephalosporins in Europe [129,130], whose usage is associated with vancomycin resistance especially VanA and VanB in Europe [128] and increased virulence associated with vancomycin resistance especially VanA and VanB in Europe [128] and increased virulence.

This systematic review is a comprehensive summary of recent data on the epidemiology of Enterococcus spp. and VRE in the WHO European Region, including 75 studies with data on over 8.5 million hospitalised patients with 154,000 HAI episodes. The majority of studies were based on routine HAI surveillance systems, including data from unselected patient cohorts. However, because of language restrictions in the literature selection, potentially relevant studies might have been excluded, for example from eastern European countries. Also, the majority of the included studies were conducted in academic medical centres and/or tertiary care hospitals and the representativeness of hospitalised patients and external validity of the study results might therefore be limited. Despite unclear representativeness of most studies, the overall quality of the studies and thus the quality of evidence was moderate to high. Another limitation is that many studies did not report vancomycin resistance profiles of Enterococcus spp. and data on the epidemiology of VRE are therefore limited. Importantly, since enterococci frequently colonise healthy people and are often detected in mixed infections, they may not be the causative microorganism in all HAI reported by the included studies. Especially in intra-abdominal, pelvic and soft tissue infections, the clinical relevance of Enterococcus spp. is debated [136]. Although the included studies were conducted in 21 different countries in the WHO European Region, the studies were not evenly distributed across Europe, which might lead to a geographical bias. For example, ICU-based studies were predominantly from studies in eastern and southern Europe and none was conducted in Scandinavia. Notably, studies from Turkey were overrepresented within the study set reporting VRE data. However, Turkish data did not systematically differ to data from other European countries. More nationally representative studies with complete microbiological and antimicrobial resistance profiles, including populations-based data, are needed in order to fully understand the epidemiology of HAI caused by Enterococcus spp. and VRE. In most analyses, a large statistical heterogeneity was observed (I²>80%) and the pooled estimates should be interpreted with caution. We therefore also provided the range of individual study estimates for all outcomes.

Conclusions
Our data show that HAI caused by Enterococcus spp. and VRE are frequently identified among hospital patients and associated with high mortality in the WHO European Region. Continuous monitoring and the improved implementation of infection prevention and control programs as well as antibiotic stewardship measures are essential to reduce the burden of HAI caused by enterococci.

*Note
This designation is without prejudice to positions on status, and is in line with UNSCR 1244/99 and the ICJ Opinion on the Kosovo declaration of independence.

Acknowledgements
We thank our colleague Angelina Taylor at the Robert Koch Institute (RKI) for her contribution (proofreading and editing assistance) to this study.

Funding: This work was supported by internal funding of the RKI.

Conflict of Interest
None declared.
Authors’ contributions
SB, TE and RM designed the study. SB, OA and performed literature screening, study selection and data extraction. SB and RM assessed the risk of bias. RM conducted the statistical analyses. SB and RM led the writing of the manuscript. All authors revised the manuscript for important intellectual content.

References
1. Fisher K, Phillips C. The ecology, epidemiology and virulence of Enterococcus. Microbiology (Reading). 2009;155(Pt 6):1749-57. https://doi.org/10.1099/mic.0.26385-0 PMID: 1938684
2. Arias CA, Murray BE. The rise of the Enterococcus: beyond vancomycin resistance. Nat Rev Microbiol. 2012;10(4):266-78. https://doi.org/10.1038/nrmicro2761 PMID: 22421879
3. Weiner LM, Webb AK, Limbago B, Dudgeon MA, Patel J, Kallen AI, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the national healthcare safety network at the centers for disease control and prevention, 2011-2014. Infect Control Hosp Epidemiol. 2016;37(11):1288-301. https://doi.org/10.1017/ice.2016.174 PMID: 27573801
4. Suetens C, Latour K, Kærkær C, De Belie R, Zanetti M, Picq JL, et al. The importance of adjusting for enterococcus species when assessing the burden of vancomycin resistance: an analysis of prevalence data from 11 European countries. Microbiol Res. 2020;235:104148. https://doi.org/10.1016/j.micres.2020.104148 PMID: 33095059
5. Pinholt M, Ostergaard C, Arpi M, Bruun NE, Schønheyder HC, Gradel KO, et al. Incidence, clinical characteristics and 30-day mortality of enterococcal bacteremia in Denmark 2006-2009: a population-based cohort study. Clin Microbiol Infect. 2012;18(11):1485-91. https://doi.org/10.1111/j.1469-0691.2012.23647880
6. Boncagni F, Francolini R, Nataloni S, Skrami E, Gesuita R, et al. Prevalence of healthcare-associated infections, estimated incidence and composite antimicrobial resistance index in acute care hospitals and long-term care facilities: results from two European point prevalence surveys, 2015 to 2017. Euro Surveill. 2018;23(6):1800516. https://doi.org/10.2807/1560-7917.ES.2018.23.6.1800516 PMID: 30458912
7. Brady M, Oza A, Cumrey R, Burns K. Attributable mortality and duration of hospital stay associated with enterococcal bacteremia. Clin Infect Dis. 2001;32(4):587-94. https://doi.org/10.1086/318717 PMID: 11181122
8. Blackburn RM, Henderson KL, Minaji M, Muller-Pebody B, Schutte J, Johnson PL, et al. Prevalence and antibiotic resistance of enterococci at a large teaching hospital in Rome, a 6-year experience of an Italian ICU. Minerva Anestesiol. 2015;81(7):765-75. PMID: 25528669
9. Ciofi Degli Atti ML, Cuttini M, Ravà L, Ceradini J, Paolini V, Milegria G, et al. Prevalence survey of healthcare-associated infections in a large teaching hospital. Ann Agricol. 2019;74(9):423-35. https://doi.org/10.1007/s10096-019-3150-1 PMID: 30405423
10. Markwart R, Willrich N, Haller S, Noll J, Koppe U, Werner G, et al. The rise in vancomycin-resistant Enterococcus faecium in Germany: data from the German Antimicrobial Resistance Surveillance (ARS). Antimicrob Resist Infect Control. 2019;8(1):174. https://doi.org/10.1186/s13756-019-0594-3 PMID: 31485325
11. Malgor M, Puchter L, Chaberny IF, Schwab F, Vonberg RP, Bange FC, et al. Prevalence of healthcare-associated infections 2005-2016: Systematic review and meta-analysis. Infect Control Hosp Epidemiol. 2018;39(11):1277-95. https://doi.org/10.1017/ice.2018.183 PMID: 30234463
12. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097 PMID: 19621072
13. Cochrane Community. Cochrane. [Accessed: 26 Oct 2021]. Available from: https://community.cochrane.org/help/tools-and-software/covidence
14. Hoy D, Brooks P, Woolf A, Blyth F, March L, Bain C, et al. Assessing risk of bias in prevalence studies: modification of an existing tool and evidence of interrater agreement. J Clin Epidemiol. 2012;65(9):934-9. https://doi.org/10.1016/j.jclinepi.2011.11.014 PMID: 22742910
15. Barbado D, Castellani F, Angelozzi A, Isonne C, Baccolini V, Migliara G, et al. Prevalence survey of healthcare-associated infections in a large teaching hospital. Ann Agricol. 2019;74(9):423-35. https://doi.org/10.1007/s10096-019-3150-1 PMID: 30405423
16. Blackburn RM, Henderson KL, Minaji M, Muller-Pebody B, Johnson AP, Sharland M. Exploring the epidemiology of hospital-acquired bloodstream infections in children in England (January 2000-March 2010) by linkage of national hospital admissions and microbiological databases. J Pediatric Infect Dis Soc. 2012;1(4):284-92. https://doi.org/10.1093/jpids/pis084 PMID: 22619421
17. Ciofi Degli Atti ML, Cuttini M, Ravà L, Ceradini J, Paolini V, Milegria G, et al. Prevalence survey of healthcare-associated infections in a large teaching hospital. Ann Agricol. 2019;74(9):423-35. https://doi.org/10.1007/s10096-019-3150-1 PMID: 30405423
18. Cioffi Degli Atti ML, Cuttini M, Ravà L, Ceradini J, Paolini V, Cilento G, et al. Trend of healthcare-associated infections in children: annual prevalence surveys in a research hospital in Italy, 2007-2010. J Hosp Infect. 2012;80(5):6-12. https://doi.org/10.1016/j.jhin.2011.07.014 PMID: 22133986
19. De Angelis G, Fiori B, Menichelli G, D’Inzeo T, Liotti FM, Morandotti GA, et al. Incidence and antibiotic resistance trends in bloodstream infections caused by ESKAPE and Escherichia coli at a large teaching hospital in Rome, a 9-year analysis (2007-2015). Eur J Clin Microbiol Infect Dis. 2018;37(9):1627-36. https://doi.org/10.1007/s10096-018-3282-9 PMID: 29948360
20. Deptula A, Trejnowska E, Dubiel G, Wanke-Rytt M, Deptula E, Hrynieciewicz W. Healthcare associated bloodstream infections in Polish hospitals: prevalence, epidemiology and microbiology-summary data from the ECDC Point Prevalence Survey of Healthcare Associated Infections 2012-2015. Eur J Clin Microbiol Infect Dis. 2018;37(10):1321-5. https://doi.org/10.1007/s10096-017-3150-1 PMID: 29889881
34. Erdem D, Akan B, Kanyilmaz D, Demirelli G, Eisingen S, Ornek D, et al. The association between total parenteral nutrition and central line-associated bloodstream infection. Acta Med-icon. 2019;3:37-42. https://doi.org/10.1080/19470594.2018.8.01 PMID: 30266540

35. Venturini E, Montagnani C, Benni A, Becciani S, Biermann KP, De Masi S, et al. Central-line associated bloodstream infections in a tertiary children’s hospital: a prospective study. BMC Infect Dis. 2016;16(1):75. https://doi.org/10.1186/s12879-016-2061-6 PMID: 27903240

36. Saliba P, Hornero A, Cuervo G, Grau I, Jimenez E, Garcia D, et al. Prevalence of healthcare-associated infections and antimicrobial use in hospitals in the Netherlands: 10 years of national point-prevalence surveys. J Hosp Infect. 2020;104(2):17-24. PMID: 30518735

37. Cevik S, Bosnak V, Namiduru M, Karaoglan I, Mete A. Invasive device-associated nosocomial infections caused by acinetobacter baumannii. Med arztebl. 2014.2106 PMID: 27479763

38. Bukumiric Z. Hospital infections in a neurological intensive care unit: incidence, causative agents and risk factors. J Infect Dev Ctries. 2014;8(1):33-8. https://doi.org/10.3855/jidc.7517 PMID: 2590722

39. Eisingen S, Ornek D, et al. Point prevalence surveys on healthcare acquired infections in Poland 2012-2014. New Microbiol. 2016;39(3):197-205. PMID: 27284985

40. Bukumiric Z. Hospital infections in a neurological intensive care unit: incidence, causative agents and risk factors. J Infect Dev Ctries. 2014;8(1):33-8. https://doi.org/10.3855/jidc.7517 PMID: 2590722

41. Arzate J, Torelli A, Marín G, Palma J, García I, et al. Surveillance of device associated infections and mortality in a tertiary children’s hospital: a prospective study. BMC Infect Dis. 2016;16(1):75. https://doi.org/10.1186/s12879-016-2061-6 PMID: 27903240

42. Atici S, Soysal A, Kepenekli Kadayifci E, Karaaslan A, Akkoç G, Yakut N, et al. Healthcare-associated infections in a newly opened pediatriic intensive care unit: Results of a four-year surveillance. J Infect Dev Ctries. 2016;10:254-9. https://doi.org/10.3855/jidc.7517 PMID: 27931457

43. Sante L, Aguirre-Jaime A, Miguel MA, Ramos MJ, Pedroso Y, Lecuoia E. Epidemiological study of secondary bloodstream infections in children. J Infect Public Health. 2019;12(1):37-42. https://doi.org/10.1016/j.jiph.2018.08.011 PMID: 30266540

44. Venturini E, Montagnani C, Benni A, Becciani S, Biermann KP, De Masi S, et al. Central-line associated bloodstream infections in a tertiary children’s hospital: a prospective study. BMC Infect Dis. 2016;16(1):75. https://doi.org/10.1186/s12879-016-2061-6 PMID: 27903240

45. Antunes A, Doğanay Z, Kefeli Celik H, Demirag MD, S Kiliç S, et al. Central line-associated blood stream infections: characteristics and risk factors for mortality over a 5.5-year period. Turk J Med Sci. 2017;47(2):66-52. https://doi.org/10.3906/sag-1511-29 PMID: 28420161

46. Bonnet V, Dupont H, Glorion S, Auerph M, Kipnis E, Gerard J, et al. Influence of bacterial resistance on mortality in intensive care units: a registry study from 2000 to 2013 (ICU Study). J Hosp Infect. 2019;102(3):317-24. https://doi.org/10.1016/j.jhin.2019.03.005 PMID: 30699869

47. Cevik S, Bosnak V, Namiduru M, Karaoglan I, Mete A. Invasive device-associated hospital infection rates, etiological agents, and their antibiotic susceptibilities in the medical intensive care unit of a university hospital in Turkey. Turk J Med Sci. 2013;43(1):33-8.

48. Cevik S, Bosnak V, Namiduru M, Karaoglan I, Mete A. Invasive device-associated hospital infection rates, etiological agents, and their antibiotic susceptibilities in the medical intensive care unit of a university hospital in Turkey. Turk J Med Sci. 2013;43(1):33-8.

49. Cevik S, Bosnak V, Namiduru M, Karaoglan I, Mete A. Invasive device-associated hospital infection rates, etiological agents, and their antibiotic susceptibilities in the medical intensive care unit of a university hospital in Turkey. Turk J Med Sci. 2013;43(1):33-8.

50. Cevik S, Bosnak V, Namiduru M, Karaoglan I, Mete A. Invasive device-associated hospital infection rates, etiological agents, and their antibiotic susceptibilities in the medical intensive care unit of a university hospital in Turkey. Turk J Med Sci. 2013;43(1):33-8.

51. Conto KSK, Sköberg K, Ollgren J, Järvinen A. Lyytikäinen M. The outcome and timing of death of 17,767 nosocomial bloodstream infections in acute care hospitals in Finland during 1999-2014. Eur J Clin Microbiol Infect Dis. 2018;37(5):945-52. https://doi.org/10.1007/s10096-018-3211-0 PMID: 2945272

52. Conto KSK, Sköberg K, Ollgren J, Järvinen A. Lyytikäinen M. The outcome and timing of death of 17,767 nosocomial bloodstream infections in acute care hospitals in Finland during 1999-2014. Eur J Clin Microbiol Infect Dis. 2018;37(5):945-52. https://doi.org/10.1007/s10096-018-3211-0 PMID: 2945272
hospital. Clin Microbiol Infect. 2008;14(8):747-54. https://doi.org/10.1111/j.1469-0691.2008.02026.x PMID: 18727798

135. Remschmidt C, Behnke M, Kola A, Peña Diaz LA, Rohde AM, Gastmeier P, et al. The effect of antibiotic use on prevalence of nosocomial vancomycin-resistant enterococci - an ecologic study. Antimicrob Resist Infect Control. 2017;6(1):95. https://doi.org/10.1186/s13756-017-0253-5 PMID: 28924472

136. Agudelo Higuita NI, Huycke MM. Enterococcal disease, epidemiology, and implications for treatment. Boston: Massachusetts Eye and Ear Infirmary; 2014. Available from: https://www.ncbi.nlm.nih.gov/books/NBK190429

License, supplementary material and copyright

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0) Licence. You may share and adapt the material, but must give appropriate credit to the source, provide a link to the licence and indicate if changes were made.

Any supplementary material referenced in the article can be found in the online version.

This article is copyright of the authors or their affiliated institutions, 2021.