THE MAGNETIC FIELD STRUCTURE OF THE LMC 2 SUPERSHELL: NGC 2100

John P. Wisniewski, Karen S. Bjorkman, Antonio M. Magalhães, and Antonio Pereyra

Received 2006 November 27; accepted 2007 April 24

ABSTRACT

We present UBVRI imaging polarimetry of NGC 2100 and its surrounding environment, which comprise a part of the LMC 2 supershell. The morphology of the observed position angle distribution provides a tracer of the projected magnetic field in this environment. Our polarization maps detail regions exhibiting similarly aligned polarization position angles, as well as more complex position angle patterns. We observe regions of coherent fields on spatial scales of 42 × 24 to 104 × 83 pc, and infer projected field strengths of ~14–30 μG. We propose that the superposition of global outflows from the LMC 2 environment, as well as outflows created within NGC 2100, produce the unique field geometry in the region.

Subject headings: ISM: bubbles — ISM: magnetic fields — Magellanic Clouds — open clusters and associations: individual (NGC 2100) — techniques: polarimetric

1. INTRODUCTION

Magnetic fields are known to align dust grains, and hence influence astrophysical processes, in a wide variety of environments (see, e.g., Goodman 1996; Lazarian 2003). The alignment of grains in the diffuse interstellar medium (ISM) of the Milky Way (Mathewson & Ford 1970a) and the Magellanic Clouds (Mathewson & Ford 1970b) has long been known from linear polarization studies, which measure the dichroic absorption of starlight. Similarly, polarimetric observations indicate grains may also be aligned in environments such as dark clouds (Lazarian et al. 1997; Hildebrand et al. 1999), and the circumstellar environments of young (Aitken et al. 1993; Tamura et al. 1999) and old (Aitken et al. 1995) stars. As reviewed within Lazarian (2003) a number of alignment mechanisms have been proposed over the past 60 years, and it is likely that the local conditions of each astrophysical environment will dictate the relative importance of each of these proposed alignment mechanisms. Characterizing the typical polarimetric behavior in each of these environments offers one avenue to constrain the relative importance of these mechanisms in each environment.

Massive stars in OB associations provide a rich source of outflows from stellar winds and supernovae explosions; the interaction of such outflows with the surrounding ISM is known to create large supershells. Observations suggest that some of these shells may be magnetized, with typical field strengths of at least several to tens of microgauss (Vallee 1993, 1994; Pereyra 2004). These shells may be magnetized, with typical field strengths of at least several to tens of microgauss (Vallee 1993, 1994; Pereyra 2004). These shells may be magnetized, with typical field strengths of at least several to tens of microgauss (Vallee 1993, 1994; Pereyra 2004).

In this paper, we present detailed polarization maps of NGC 2100 and its surrounding environment, which reveal evidence of a complex magnetic field morphology. These data provide diagnostics of the grain alignment mechanisms that likely dominate in such dynamic astrophysical environments. In § 2 we describe our polarimetric observations. Polarization maps and estimates of projected magnetic field strengths are presented in § 3. In § 4 we present a discussion of these results and the clues they may offer toward understanding the formation and evolution of the LMC 2 supershell.

2. OBSERVATIONS

Imaging polarimetry of NGC 2100 and its surrounding field were obtained at the CTIO 1.5 m telescope, as summarized in Table 1. We used the F/7.5 secondary configuration, yielding a 15.0′ field of view and a 0.44″ pixel−1 scale. Data were recorded with the telescope’s standard Cassegrain focus CCD (CFCCD), a 2048 × 2048 CCD that was read out in dual-amplifier mode. The standard telescope configuration was modified by the addition of a rotatable half-wave plate, followed by a dual calcite
A small imperfection in the calcite block was masked as well as atmospheric transparency effects (Magalhães et al. 1996). A small imperfection in the calcite block was masked out, shrinking the effective field of view of the instrument by 2.0′–3.0′ in the southeast corner of the CCD and by ~1.5′ in the northeast and northwest corners of the chip. Standard Johnson $U, B, V, R,$ and I filters were housed in the second filter wheel. Images were taken at eight wave plate positions, each separated by 22.5′, allowing us to derive full linear polarization measurements for NGC 2100. Additional information regarding this instrument can be found in Magalhães et al. (1996), Melgarejo et al. (2001), and Pereyra & Magalhães (2002).

Basic image processing was done in IRAF using standard techniques. After deriving aperture photometry for our images, the least-squares solution of the eight wave plate positions, calculated with the PCCDPACK polarimetric reduction package (Pereyra 2000), yielded linear polarization measurements. The residuals at each wave plate position, ψ, with respect to the expected $\cos 4\psi$ curve constitute the uncertainties in our data; these are consistent with the theoretically expected photon noise errors (Magalhães et al. 1984).

Instrumental polarization effects were determined from observations of polarized and unpolarized standard stars, obtained nightly during our 10 day observing run in 2001. These data are self-consistent and agree with observations obtained in a subsequent 11 day observing run in 2002 (Wisniewski et al. 2003) using the same instrument, illustrating its excellent stability. The instrumental polarization was measured to be within 0.03% (I filter) to 0.07% (B filter); thus, no correction was applied to our data. Note that, due to a lack of known faint unpolarized standard stars, we used the M star HIP 21556 as an unpolarized standard star for the $B, V, R,$ and I filters. Given its nearby location ($d = 11$ pc) and spectral type, one would not expect such an object to exhibit significant polarization (Timbergren 1982). Indeed, observations of this target during our 2001 and 2003 observing runs showed it to be unpolarized.

3. RESULTS

The polarization data we discuss represent the superposition of two components of distinctly different origins, namely interstellar and intrinsic polarization. Intrinsic polarization can arise from a variety of scattering mechanisms within the circumstellar environment of a host star, while interstellar polarization results from dichroic absorption of starlight by aligned interstellar dust grains located along the line of sight. Most of our targets should be normal main-sequence stars that are not characterized by the presence of an extended (or asymmetrical) circumstellar envelope; hence, they will exhibit no intrinsic polarization at the precision level of our measurements. The statistical analysis of the total polarization observed for each of our targets should thus provide an accurate diagnostic of the interstellar polarization along the line of sight (McLean & Clarke 1979; Pereyra & Magalhães 2002; Wisniewski et al. 2003, 2007). Furthermore, given the LMC’s large distance of 50 kpc (Feast 1991), any spatial variability we detect in this interstellar polarization component must be the result of a change in the magnetic field or interstellar dust grain properties within the LMC, rather than a projection of Galactic ISM properties.

3.1. Polarization Maps

In Figures 1–5 we present the polarization in the $U, B, V, R,$ and I filters for NGC 2100 and its surrounding field. Polarization vectors are overplotted on Digitized Sky Survey2 (DSS2) red ($V, R,$ and I filters) and blue (U and B filters) images, which span 0.5 deg2, allowing one to place the polarization of NGC 2100 in the context of the LMC 2 supershell. A more detailed image of LMC 2’s nebulosity, including identification of the major OB associations in the area, can be seen in Figure 1c of Points et al. (1999). To exclude likely spurious detections, we have only plotted objects with the following properties: 0.1% $< \text{polarization} < 3.0\%$ and $p/\sigma_p > 3.0$.

Numerous trends in the morphology of the polarization vectors in each of the filters can immediately be seen. The magnitude of a typical polarization vector is ~1.5%, which is significantly higher than the average polarization observed throughout the LMC (Wisniewski 2005; Wisniewski et al. 2007). While polarization position angles (P.A.s) tend to be coherent on small spatial scales,

TABLE 1

Filter	Observation Date	Exposure Time
U	Nov 24	1200
B	Nov 23	240
V	Nov 23	180
R	Nov 24	180
I	Nov 23	180

Note:—Note that the listed exposure times correspond to the total integration at each of eight wave plate positions.

6 IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.
large-scale variability across the field of view of the data set is immediately apparent. The patterns traced by this large-scale variability are consistent across every filter, indicating the phenomena represent real features.

To further explore these large-scale P.A. trends, we divided our field of view into five smaller spatial scales, which each seemed to possess one unique, average P.A. We assign the arbitrary labels A–E to these fields and show these fields in the R filter in Figures 6–10. Note that we have only plotted all objects with $0.1\% < \text{polarization} < 3.0\%$ and $p/\sigma_p > 3.0$ in these figures. The mean P.A., FHWM of Gaussian fits to the samples, standard deviation (in radians) of objects within the Gaussian fit for each area, and spatial extent of each area, assuming a distance of 50 kpc, are tabulated in Table 2. The polarization P.A. histograms used to derive these parameters are also given in Figures 6–10.

The P.A. rotation to the north, west, and south of NGC 2100, apparent by casual inspection of Figures 1–5, is indeed real as we measure the mean P.A. to vary from 76° to 122° to 94° in Figures 7–9, respectively. Figure 10 depicts spatial area E,
immediately west of NGC 2100, showing P.A. alignment at 167°. The dramatic curvature in the field pattern traced out in areas B–E in the area west of NGC 2100 qualitatively matches a similar “bubble-like” pattern seen in the Hα image of the LMC 2 region of Points et al. (1999), e.g., their Figure 1a.

Systematic alignment in the eastern portion of our field of view is less dramatic, as seen in Figure 6, which depicts area A. We find P.A.s in area A tend to be < 90°, and find suggestive evidence that the P.A. distribution in this spatial region may be fit by two Gaussians at 29° (FWHM = 25°) and 64° (FWHM = 22°), respectively. The constituents of these two possible Gaussian distributions occupy no unique spatial regions: it is possible that the observed distributions originate at slightly different distances within the LMC 2 neighborhood, projecting themselves onto common spatial regions. Alternatively, it is possible that large-scale LMC-2 flows to the west of NGC 2100 are interacting.

Fig. 6.—Section A of our field of view, showing the polarization of 105 objects with 0.1% < p < 3.0% and p/σp > 3. We find the P.A.s in this region are concentrated at angles < 90°, possibly following a bimodal distribution with centers at 29° and 64°.

Fig. 7.—Section B of our field of view, showing the polarization of 110 objects with 0.1% < p < 3.0% and p/σp > 3. The mean polarization P.A. of these stars, determined by a Gaussian fit, is 76°.
with velocity fields from within NGC 2100 to produce the observed apparent superposition effects.

The projected spatial extent of regions with definitive, coherent P.A. alignment varies from 42 × 24 pc, associated with region E, to 104 × 83 pc, associated with region B. We note the suggestive presence of smaller alignment trends within and outside of some of these designated areas. Due to small-number statistics, it is unclear whether such features are real, hence illustrating common alignment on finer scales, or whether they are the result of small intrinsic polarization components adding small scatter to the data set. Deeper polarimetric mapping of the region would clarify the presence of small-scale alignment by providing a larger statistical database. If our polarization maps are indeed tracing some of the larger structures in the Hα maps.

Fig. 8.—Section C of our field of view, showing the polarization of 88 objects with 0.1% < p < 3.0% and p/σp > 3. The mean polarization P.A. of this region was determined to be 122°.

Fig. 9.—Section D of our field of view, showing the polarization of 56 objects with 0.1% < p < 3.0% and p/σp > 3. The mean polarization P.A. of this region was determined to be 94°.
of Points et al. (1999), then we would expect deeper polarization maps to trace many of the finer nebulosity seen in such images.

3.2. Estimating B Fields

A formalism for estimating magnetic field strengths from polarimetric observations was developed by Chandrasekhar & Fermi (1953; C-F technique) and has been since modified to account for various inadequacies (see, e.g., Goodman 1996; Zweibel 1996; Heitsch et al. 2001; Crutcher 2004). As summarized by Heitsch et al. (2001), Henning et al. (2001), and Pereyra & Magalhães (2007), while the C-F method is a commonly used technique to estimate magnetic field strengths, its use is dubious in cases of, among other factors, large polarization P.A. dispersions and large turbulent velocity dispersions. We have used the description provided by equation (7) of Heitsch et al. (2001),

\[
B = \frac{1}{2} \sqrt{4\pi \rho \left(\frac{\sigma(v_{\text{los}})^2}{\sigma(\tan \delta)^2} \right)},
\]

where \(\rho\) is the mean density, \(\sigma(v_{\text{los}})\) is the dispersion in the line-of-sight velocity, and \(\sigma(\tan \delta)\) is the dispersion in polarization P.A.s, i.e., the difference, within the distribution, between the P.A. of a given object and the average P.A. This description was used as it eliminates the small angle approximation present in the original formalism; furthermore, it includes a factor of 1/2 to account for the field overestimation provided by the classical C-F method (Crutcher 2004).

We were able to measure P.A. dispersions for regions B–E of our data set using PCCDPACK and tabulate the standard deviation of these values, \(\sigma(\tan \delta)\), in Table 2. Points et al. (1999) reported a H I number density of 3–4 cm\(^{-3}\); we assumed a number density of 4 cm\(^{-3}\) in our calculations. We estimated the line-of-sight velocity for our regions from the H I velocities reported by Meaburn et al. (1987) for their region 43, corresponding to the approximate location of NGC 2100. This dispersion is consistent with the FWHM of H\(\alpha\) velocities reported by Points et al. (1999) across their E–I spectroscopic cut. The resulting magnetic field strengths for our fields range from 14 to 30 \(\mu\)G, as tabulated in Table 2. We stress that these field values should only be considered crude estimates: detailed measurements of the gas velocity dispersions and densities corresponding to the specific spatial regions in which we observed polarization P.A. dispersions are needed to further refine these field estimates. Nevertheless, our derived range of field strengths are consistent with the strength of random field fluctuations in the LMC reported by Gaensler et al. (2005), especially those located nearby supernova remnants and wind bubbles, which were quoted to be ~8 \(\mu\)G by these authors.

TABLE 2

SUMMARY OF MAGNETIC FIELD PROPERTIES BY REGION

Region	Number of Stars	Spatial Extent (pc)	Mean P.A. (deg)	FWHM (deg)	\(\sigma(\tan \delta)\) (rad)	\(B\) (\(\mu\)G)
A......	105	73 \times 177	0–90
B......	110	104 \times 83	76	24	0.24	25
C......	88	63 \times 75	122	37	0.26	23
D......	56	104 \times 63	94	22	0.20	30
E......	56	42 \times 24	167	46	0.44	14

Note: Summary of the polarization P.A. variability across our field of view.

Fig. 10.— Same as Fig. 9, but for section E of our field of view. The mean polarization P.A. of this region was determined to be 167°.
4. DISCUSSION

We now explore some of the implications of the polarization maps presented in § 3.1. Our polarization maps of NGC 2100 and its nearby environment indicate the presence of a sizable magnitude of interstellar polarization, ~1.5%, which experiences systematic P.A. changes. We attribute this P.A. variability to changes in the orientation of the projected magnetic field. It is equally likely that the third dimension of this field also varies. The only effect such a variation would have on our data set would be additional dispersion in the distribution of polarization levels. While a wide distribution is observed, other factors such as the presence of small intrinsic polarization components in objects, small variability in the distance of objects within our field of view, and changes in the polarizing properties of the grains across the field of view, i.e., changes in grain size, shape, or composition, also likely serve to broaden the observed distribution. Additional observational tools, such as that provided by atomic alignment (Yan & Lazarian 2006), could be used to provide an independent measure of the localized three-dimensional magnetic field.

4.1. Origin of Position Angle Variations

We consider the origin of the P.A. variability detailed in § 3.1. Given the dynamic nature of the region, it seems plausible to expect the complex field patterns, which align grains to produce the observed polarization, to be driven by the various outflows present. Such a scenario is supported by the possible tracing of large $H\alpha$ features by our data, as noted in § 3.1. The morphological details of Figures 1–5 suggest that the field patterns are not solely guided by the stellar outflows and supernovae remnants of NGC 2100. Studies of the interstellar polarization surrounding other young LMC clusters and OB associations with similar hot star contents do not illustrate these types of complex field patterns (Wisniewski 2005; Wisniewski et al. 2007). Within the LMC 2 environment, the western side of NGC 2100 shows complex field patterns, while the eastern side of the cluster only displays moderate evidence of cohesive field alignment. No asymmetry in the distribution of massive stars or their remnants in this cluster has been observed; thus, we do not expect winds or outflows from NGC 2100’s massive star population to be responsible for producing these field patterns. Rather, we speculate that other large-scale flows might play a major role in twisting field lines in the observed patterns.

Points et al. (1999) suggest that rather than being a cohesively expanding shell, the geometry of LMC 2 is that of two $H\alpha$ sheets enclosing a region of hotter gas. They suggest both cavity material and the surface of the $H\alpha$ sheets are being swept eastward across the complex by the outflows of material located on the western edge of the region. We speculate that such general, large-scale flows, carrying with them local magnetic field lines, might move past the northern and southern boundaries of NGC 2100 and be impeded by the cluster itself. Such a scenario could account for the coherent P.A. patterns located to the north and south of NGC 2100, as well as the dramatic turnaround in the field immediately west of the cluster. As the neighborhood due east of NGC 2100 would be partially shielded from such flows, one would expect less coherent field patterns in this environment, as is observed to the east of NGC 2100. The 30 Dor complex, a rich site of powerful stellar outflows, is located to the west of NGC 2100. From polarization measurements, Mathewson & Ford (1970b) noted strong magnetic focusing in the 30 Dor region. Thus, we suggest 30 Dor should be considered as a possible source of outflows that influence LMC 2 and shape the projected magnetic field patterns we observe.

A number of grain alignment mechanisms have been postulated, and as summarized in the review paper of Lazarian (2003), it is likely that different mechanisms may dominate in different astrophysical environments, depending on the local conditions present. Some of the proposed mechanisms include the Davis-Greenstein process, in which paramagnetic dissipation by rotating grains leads to alignment (Davis & Greenstein 1951), the Gold process, in which grains are mechanically aligned via collisional interactions with a supersonic gas flow (Gold 1952; Lazarian 1994, 1997), and radiative torques, in which alignment is achieved via the spin-up of irregularly shaped grains, which scatter left- and right-hand polarized light in a different way (Dolginov & Mytrophanov 1976; Drake & Weingartner 1996, 1997). The LMC-2 supershell itself, if it is assumed to be a cohesively expanding body (e.g., Caulet et al. 1982), is only characterized by an expansion velocity of ~30 km s$^{-1}$ (Caulet et al. 1982), which is well below the supersonic gas velocity required for the Gold mechanical alignment mechanism. However, NGC 2100’s proximity to both the 30 Dor region and the winds of massive stars within NGC 2100 suggest that local grains might interact with a more dynamic gas flow than that which characterizes the much larger LMC-2 region. As such, we suggest that mechanical alignment might indeed play a partial role in constructing the observed morphology of aligned grains in the NGC 2100 region; clearly detailed modeling of the system would be advantageous to quantitatively constrain the various grain alignment mechanisms that could be operating in this dynamic environment.

4.2. Location of Polarizing Region

While we have interpreted the bulk of the magnetic field variability implied by our observations to be tied to the dynamics of the inner layer of LMC 2, we now consider the possible influence of the $H\alpha$ sheets that encompass this layer in the proposed three-dimensional picture of Points et al. (1999). Based on the derived total line-of-sight reddening for NGC 2100, $E_{B-V} = 0.24$ (Keller et al. 2000), the standard relationship between polarization and extinction presented in Serkowski et al. (1975), $P_{max} < 0.9 E_{B-V}$, predicts an interstellar polarization of <2.2%, in agreement with the average magnitude observed in our data set, ~1.5%. Points et al. (1999) report that the thin (80–100 pc) $H\alpha$ sheets have column densities of $\sim 1 \times 10^{21}$ cm$^{-2}$. This column density implies a reddening value similar to that of Keller et al. (2000), and hence a similar predicted maximum magnitude of interstellar polarization, based on the relation $N_{H}/E_{B-V} = 5 \times 10^{21}$ atoms cm$^{-2}$ mag$^{-1}$ (Savage & Jenkins 1972). Thus, it appears that enough dichroic absorption by interstellar dust grains could occur within the thin $H\alpha$ sheet positioned in front of NGC 2100 to produce the level of observed polarization.

4.3. Summary

We have presented polarization maps for a subsection of the LMC 2 supershell, namely NGC 2100 and its surrounding field. These maps show regions of aligned position angles on scales of 42 \times 24 to 104 \times 83 pc, attributable to absorption by interstellar dust grains aligned by projected magnetic fields. We estimate these projected fields to have strengths of 8–17 μG, and stress that more accurate field estimates may be achieved by incorporating measurements that better reflect the ISM properties corresponding to our survey area. A plausible explanation for the observed complex field patterns is that outflows present within LMC 2, modified by velocity fields from NGC 2100, combine to produce the observed field patterns. The observed
asymmetrical field morphology suggests the stellar sources in NGC 2100 are not the primary source of outflows shaping the observed fields. Rather, we speculate that NGC 2100 may serve to disrupt the path of large-scale flows moving eastward across LMC 2. We suggest that the 30 Dor region, observed to be a source of both massive outflows and strong magnetic fields, may be the source powering the observed field patterns in LMC 2.

Finally, we considered a proposed three-dimensional picture of LMC 2 in which two H i shells confine a region of hotter gas. We find the magnitude of observed polarization could be produced by aligned dust grains within one of these H i shells, noting that some mechanism must then impart the complex field geometry produced within the inner gas layer to this thin outer shell.

We thank the anonymous referee, whose comments helped to improve this paper. This research was supported by the NASA Postdoctoral Program (NPP) and Graduate Student Researchers Program (GSRP) fellowships to J. P. W. (NNH 06CC03B and NGT5-50469), a NASA Long Term Space Astrophysics (LTSA) grant (NAGS-8054) and a Research Corporation Cottrell Scholar award to K. S. B., and a Fundação de Amaro à Pesquisa do Estado de São Paulo (FAPESP) grant (02/12880-0) to A. P. A. M. also acknowledges support from the Brazilian agencies FAPESP and Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq). Polariometry at the University of São Paulo (USP) is supported by FAPESP. This research has made use of NASA’s Skyview virtual observatory, NASA ADS, and the SIMBAD database.

REFERENCES

Aitken, D. K., Smith, C. H., Moore, T. J. T., & Roche, P. F. 1995, MNRAS, 273, 359
Aitken, D. K., Wright, C. M., Smith, C. H., & Roche, P. F. 1993, MNRAS, 262, 456
Ambroce-Cruz, P., et al. 2004, AJ, 127, 2145
Cassatella, A., Barbero, J., Brocato, E., Catellani, V., & Geyer, E. H. 1996, A&A, 306, 125
Cault, A., Deharveng, L., Georgelin, Y. P., & Georgelin, Y. M. 1982, A&A, 110, 185
Chandrasekhar, S., & Fermi, E. 1953, ApJ, 118, 113
Crutcher, R. M. 2004, in The Magnetized Intergalactic Medium, ed. B. Uyaniker, W. Reich, & R. Wielebinski (Katlenburg-Lindau: Copernicus), 123
Davis, L., & Greenstein, J. L. 1951, ApJ, 114, 206
Dolginov, A. Z., & Mytrophanov, I. G. 1976, Ap&SS, 43, 291
Draine, B. T., & Weingartner, J. C. 1996, ApJ, 470, 551
Feast, M. W. 1991, in IAU Symp. 148, The Magellanic Clouds, ed. R. Haynes & D. Milne (Dordrecht: Kluwer), 1
Gaensler, B. M., Haverkorn, M., Staveley-Smith, L., Dickey, J. M., McClure-Griffiths, N. M., Dickel, J. R., & Wolfeben, M. 2005, Science, 307, 1610
Gold, T. 1952, MNRAS, 252, 591
Goodman, A. A. 1996, in ASP Conf. Ser. 97, Polarimetry of the Interstellar Medium, ed. W. G. Roberge & D. C. B. Whittet (San Francisco: ASP), 325
Heitsch, F., Zweibel, E. G., Mac Low, M.-M., Li, P., & Norman, M. L. 2001, ApJ, 561, 800
Henning, Th., Wolf, S., Launhardt, R., & Waters, R. 2001, ApJ, 561, 871
Hildebrand, R. H., Dotson, J. L., Dowell, C. D., Schlicke, D. A., & Vaillancourt, J. E. 1999, ApJ, 516, 384
Hodge, P. W., & Wright, F. W. 1967, The Large Magellanic Cloud, Smithsonian Publ. 4699 (Washington: Smithsonian Press)
Keller, S. C., Bessell, M. S., & Da Costa, G. S. 2000, AJ, 119, 1748
Lazarian, A. 1994, MNRAS, 268, 713
———. 1997, ApJ, 483, 296
———. 2003, J. Quant. Spectrosc. Radiat. Transfer, 79, 881

Lazarian, A., Goodman, A. A., & Myers, P. C. 1997, ApJ, 490, 273
Magalhães, A. M., Benedetti, E., & Roland, E. 1984, PASP, 96, 383
Magalhães, A. M., Rodrigues, C. V., Margeonier, V. E., Pereyra, A., & Heathcote, S. 1996, in ASP Conf. Ser. 97, Polarimetry of the Interstellar Medium, ed. W. G. Roberge & D. C. B. Whittet (San Francisco: ASP), 118
Mathewson, D. S., & Ford, V. L. 1970a, MmRAS, 74, 139
———. 1970b, ApJ, 160, L43
McLean, I. S., & Clarke, D. 1979, MNRAS, 186, 245
Meaburn, J. 1980, MNRAS, 192, 365
Meaburn, J., Marston, A. P., McGee, R. X., & Newton, L. M. 1987, MNRAS, 225, 591
Melgarejo, R., Magalhães, A. M., Carciofo, A. C., & Rodrigues, C. V. 2001, A&A, 377, 581
Mineshige, S., Shibata, K., & Shapiro, P. R. 1993, ApJ, 409, 663
Pereyra, A. 2000, Ph.D. thesis, Univ. São Paulo
Pereyra, A., & Magalhães, A. M. 2002, ApIS, 41, 469
———. 2007, ApJ, 662, 1014
Points, S. D., et al. 1999, ApJ, 518, 298
Savage, B. D., & Jenkins, E. B. 1972, ApJ, 172, 491
Serkowski, K., Mathewson, D. S., & Ford, V. L. 1975, ApJ, 196, 261
Tamura, M., Hough, J. H., Greaves, J. S., Morino, J.-I., Chrysostomou, A., Holland, W. S., & Momose, M. 1999, ApJ, 525, 832
Timbergen, J. 1982, A&A, 105, 53
Tomisaka, K. 1998, MNRAS, 298, 797
Vallee, J. P. 1993, ApJ, 419, 670
———. 1994, Ap&SS, 220, 289
Wang, Q., & Helfand, D. J. 1991, ApJ, 379, 327
Wisniewski, J. P. 2005, Ph.D. thesis, Univ. Toledo
Wisniewski, J. P., Bjorkman, K. S., & Magalhães, A. M. 2003, ApJ, 598, L43
Wisniewski, J. P., Bjorkman, K. S., Magalhães, A. M., Meade, M. R., & Pereyra, A. 2007, ApJ, submitted
Yan, H., & Lazarian, A. 2006, ApJ, 653, 1292
Zweibel, E. G. 1996, in ASP Conf. Ser. 97, Polarimetry of the Interstellar Medium, ed. W. G. Roberge & D. C. B. Whittet (San Francisco: ASP), 486