New insights into signalling-pathway alterations in rhabdomyosarcoma

B Zhu and J K Davie*

1Department of Biochemistry and Molecular Biology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA

Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma in children and young adults. Several recent studies have shed new light on the alterations in signalling pathways and the downstream effects of these pathway alterations in RMS. Many of these effects converge on the fibroblast growth factor and insulin-like growth-factor pathways. These new findings improve the current understanding of RMS, thus offering novel potential therapeutic targets and strategies that may improve the outcome for patients with RMS.

Rhabdomyosarcoma (RMS) is a highly malignant cancer that is relatively rare, but is the most common form of soft-tissue tumours in children and young adults. The annual incidence is ~350 cases in the USA. Rhabdomyosarcoma can arise as a consequence of myogenic precursors failing to differentiate into normal muscle, but it is also possible that the tumour cell of origin may be a non-myogenic cell (reviewed in Keller and Guttridge (2013)). Rhabdomyosarcoma is characterised by two major subtypes, embryonal RMS (ERMS) and alveolar RMS (ARMS). Embryonal RMS is the most common form of the disease and has a more favourable prognosis than ARMS. A wide range of genetic aberrations have been described in ERMS including a loss of heterozygosity at the 11p15 locus and chromosome gains including chr. 2, 8, 12, and 13 (reviewed in Wang (2012)). Alveolar RMS is the most aggressive form of RMS with a poorer prognosis and a higher rate of metastasis. Alveolar RMS is characterised by t(2;13)(q35;q14) or t(1;13)(q36;q14) translocations, which fuse the 5′ portion of the paired box proteins 3 or 7 (PAX3 or PAX7), including an intact DNA-binding domain, to the transactivation domain of a forkhead transcription factor (FOXO1), creating novel PAX3-FOXO1 (t(2;13)(q35;q14)) or PAX7-FOXO1 (t(1;13)(q36;q14)) fusion proteins (reviewed in Wang (2012)). The presence of the fusion protein in ARMS has led to the designation of fusion-positive vs fusion-negative RMS. Many studies have highlighted the importance of the PAX-FOXO1 fusion in RMS biology (reviewed in Marshall and Grosveld (2012)). This is further supported by a recent study which showed that PAX3-FOXO1 is dynamically expressed throughout the cell cycle and that the higher expression of PAX3-FOXO1 during G2 is permissive for G2/M checkpoint adaptation, which allows a cell to divide and survive following a sustained checkpoint arrest despite the presence of unrepairable DNA breaks such as would be induced following radiation or DNA break inducing chemotherapy, thus suggesting that PAX3-FOXO1 may enhance the survival of tumour cells in response to chemotherapy and may allow disease progression and relapse in ARMS (Kikuchi et al., 2014).

In addition to the PAX-FOXO1 fusions found in ARMS, both ERMS and ARMS cells express PAX3/7 together with the myogenic regulatory factors (MRFs) that drive myogenesis. PAX3 and PAX7 are normally expressed in muscle progenitor cells. During normal myogenesis, the PAX genes are downregulated concomitant with an upregulation of the MRFs, a group of four highly related bHLH transcription factors composed of Myf5, MyoD, Myf6, and myogenin that are required for myogenesis (reviewed in Kablar and Rudnicki (2000)). MyoD and myogenin are expressed in almost all RMS tumours including both major histological subtypes and are thus used as diagnostic markers for RMS. However, the MRFs are unable to promote differentiation and the multiple mechanisms responsible for the impaired differentiation of RMS cells have been recently reviewed (Keller and Guttridge, 2013). We have also recently identified a downregulation of MEF2D, a member of the myocyte enhancer factor family, which function synergistically with the MRFs in skeletal muscle differentiation, in RMS (Zhang et al., 2013).
A hallmark of cancer cells is a self-sufficiency of growth signals. Rhabdomyosarcoma cells display many defects in cell-cycle checkpoints and growth-factor signalling pathways that lead to accelerated proliferation. Several deregulated signalling pathways enhance cell growth by modulating cell-cycle regulatory factors in RMS. The most frequently affected signalling pathways include the insulin-like growth factor (IGF), fibroblast growth factor (FGF), hepatocyte growth factor, and platelet-derived growth factor (reviewed in Wang, 2012). In ARMS, PAX-FOXO1 activates these pathways by transcriptional activation of receptor genes including IGFRI, FGFRI, MET (c-Met), and PDGFRα.

The impact of signalling-pathway alterations in RMS was recently reinforced in a genome-wide study, which characterised the profile of somatic alterations in 147 RMS tumour samples. This study showed that the overall burden of somatic mutation is low, especially in fusion-positive tumours (Shern et al, 2014). The authors also found that alteration of the receptor tyrosine kinase/ RAS/phosphoinositide 3-kinase (PI3K) axis affected 93% of RMS cases and that alterations in this axis appeared to hinge on the FGF and IGF receptor pathways. These data strongly suggest that the receptor tyrosine kinase/RAS/PI3K axis may represent a novel therapeutic target and that continued biological investigation and pharmacological targeting of this axis may expand available therapeutic options. The study also revealed two additional novel recurrent mutations in F-Box and WD repeat domain containing 7 (FBXW7) and BCL6 co-repressor (BCOR) genes, in addition to previously identified mutations in the RAS, FGFRI, PI3KCA, and CTNNB1 genes. PI3KCA encodes a catalytic p110 subunit of the PI3K and CTNNB1 encodes β-catenin.

In another recent large scale study, a chemical screen for novel drugs which suppress cell growth and self-renewal was performed in ERMS cells. Six major classes of drugs were identified that included inhibitors of glycogen synthase kinase 3 (GSK3), Raf/MEK protein kinase, PI3-kinase/AKT protein kinase, Hedgehog pathway, histone deacetylases (HDACs), and also included DNA damaging agents (Chen et al, 2014). Glycogen synthase kinase 3 inhibitors were found to function through the activation of the WNT/β-catenin pathway as both treatment with recombinant WNT3A and expression of a constitutively active form of β-catenin induced differentiation of ERMS cells. Intriguingly, GSK3 has also recently been shown to directly phosphorylate myogenin and repress its activity (Dionysiou et al, 2014). In this work, the authors also found that expression of the PAX3-FOXO1 fusion found in ARMS enhances the activity of GSK3. Thus, the presence of enhanced GSK3 activity in ARMS acts to repress the activity of myogenin, which is required for terminal differentiation.

Fibroblast growth factors are highly overexpressed in RMS and function to drive proliferation. Fibroblast growth factors play a fundamental role in embryonic development including a key role in normal skeletal muscle development. Fibroblast growth factors and their receptors (FGFRs) are essential regulators of cell proliferation, survival, migration, and differentiation. Fibroblast growth factor encompasses a large family of 18 ligands that bind to four homologous high-affinity FGFRs (FGFR1–FGFR4). Rhabdomyosarcoma cells express FGFs and the receptor tyrosine kinase FGFR4 is highly expressed in human RMS tumours and correlates with advanced stage, poor differentiation, and reduced survival of cancer patients (reviewed in Wescie et al (2011)). FGFR4 is a transcriptional target of PAX3 and the PAX3-FOXO1 fusion protein found in ARMS. Fibroblast growth factor signalling through their receptors activates multiple key downstream pathways including: RAS–RAF–MAPK, PI3K–AKT, and phospholipase Cγ (PLCγ). Since FGF signalling is known to influence a multitude of cellular functions including proliferation and survival, aberrantly high FGF signalling may mediate the response to RMS therapy. Recent work has shown that FGF signalling can rescue a subset of ARMS cells from apoptosis induced by compounds targeting the IGF1–R–PI3K–mTOR pathway (Wachtel et al, 2014). The different behaviours of the ARMS subsets in this study were found to be based on differences both in the pro-apoptotic machinery and FGF4R activated signalling. Importantly, this work not only revealed the presence of tumour heterogeneity in the response to potential chemotherapeutic approaches due to alterations in signalling pathways and the cellular machinery, but also implicated FGF signalling in the escape from apoptosis induced by therapeutic agents. The work suggests that inhibition of FGF signalling may offer a new approach to enhance the efficiency of RMS treatments.

Insulin-like growth factor is required for RMS cell growth and IGF2 is expressed in an autocrine manner by the tumour cells (reviewed in Rikhof et al (2009)). Insulin-like growth factor is necessary for FGF-induced proliferation in other cells (Arsenijevic et al, 2001), suggesting that the signalling pathways may be interconnected in RMS cells as well. In normal skeletal muscle, IGF has both a pro-proliferative and pro-differentiation effect on cells (Mourkioti and Rosenthal, 2005), which suggests that the pro-differentiation function of IGF is blocked in RMS cells. The precise role of IGF in RMS cells is unclear, but IGF clearly promotes the proliferation of RMS cells and blocks IGF signalling suppress the growth of RMS cells in vivo. The IGF2 locus shows a loss of imprinting in both ERMS and ARMS tumours and expression of PAX3-FOXO1 can induce the upregulation of IGF2, thus enhancing the activation of IGF signalling pathway in ARMS (reviewed in Marshall and Grosveld (2012)). The expression of the IGF receptor, IGF-1R, is indicated in the pathogenesis of RMS as well as several other types of sarcoma (reviewed in Maki (2010)). Intriguingly, IGF-1R localises to both the cell surface and nucleus of ARMS cells and cells with high nuclear IGF-1R expression established tumours more efficiently in vivo (Aslam et al, 2013). Other studies have shown that nuclear IGF-1R localises to the nucleus of human tumour cells where it associates with the chromatin, suggesting a biological function in transcription regulation (Aleksic et al, 2010). Drugs that inhibit IGF signalling are in clinical trials for RMS, but mouse models suggest that drug resistance is easily achieved (Abraham et al, 2011). A recent clinical trial with antibodies against IGF-1R in sarcoma patients showed that some RMS patients initially responded to therapy, but the patients usually progressed rapidly despite the therapy (Pappo et al, 2014). Clearly, targeting the IGF pathway is an important strategy in treating RMS, but more needs to be understood about the regulation and function of IGF and its receptor, IGF-1R, in RMS cells in order to develop effective therapies.

Many of the cell signalling pathways such as FGF and IGF converge on cell-cycle regulators such as the cell-cycle regulator cyclin-dependent kinase (Cdk) inhibitor p21WAF1/CIP1 (CDKN1A), hence referred to as p21, and the cell-cycle regulator p14ARF (human) or p19ARF (murine; CDKN2A). An understanding of the signalling pathways and factors that regulate p21 and p14/19ARF is essential for understanding RMS progression and for designing potential strategies to inhibit tumour growth. In normal muscle cells, p21 is induced early in myoblast differentiation and functions to block cell-cycle progression (reviewed in Wei and Paterson (2001)). p21 is regulated by MyoD and myogenin in normal muscle cells and the inactivation of these factors in RMS cells contributes to the silencing of p21 in RMS cells (Otten et al, 1997). The MEK/ERK signalling pathway contributes to the activation of p21 expression in RMS cells and is correlated with growth arrest and differentiation of RD cells (Ciccarelli et al, 2005), p14/19ARF is a well known tumour suppressor and copy number deletions in CDKN2A were present in 2% of the RMS tumours characterised in the recent genome-wide study described above (Shern et al, 2014).
A summary of the known signalling-pathway alterations and effects of the PAX3-FOXO1 fusion present in ARMS is shown in Figure 1.

Oncogenic Role and Potential Regulation of TBX2 in RMS

Understanding the downstream effects of signalling-pathway alterations is central to understanding the pathology of RMS and improving therapeutic strategies for patients. We have recently found that a T-box gene family member, TBX2, is highly overexpressed in both ERMS and ARMS cells (Zhu et al., 2014). The regulation of TBX2 is uncharacterised in RMS cells, but is likely to link TBX2 expression to the known deregulation of signalling pathways in RMS. In melanoma cells, TBX2 is regulated by PAX3 (Liu et al., 2013) and PI3K signalling is required for PAX3 expression (Bonvin et al., 2012), which strongly suggests that the expression of TBX2 may be a downstream effect of PI3K signalling in RMS cells. In embryonic lung fibroblasts, TBX2 has also been shown to be regulated by the PLCγ-activated protein kinase C (PKC, reviewed in Abrahams et al., 2010), which represents a large multigene family of serine/threonine kinases. One isoform, PKCγ, is upregulated in RMS and contributes to tumour growth (Kikuchi et al., 2012). Taken together, the data strongly support further characterisation of the regulation of TBX2 in RMS.

The T-box gene family of transcription factors play a critical role in embryonic development and contains the well known developmental regulator brachyury along with 18 different T-box genes with diverse regulatory functions in development and disease. TBX2 and TBX3 function as transcriptional repressors and both have been shown to inhibit myogenesis (Carlson et al., 2013). Abnormal expression of TBX2 has been shown to directly activate IGF and FGF signalling pathways as well as the expression of additional oncogenes such as NMYC and GSK3 to drive tumour cell proliferation and tumourigenesis. Many additional components of each pathway were omitted for clarity.

![Figure 1. Model of the signalling pathways implicated in fusion-positive ARMS progression.](image)

The fusion protein PAX3/FOXO1 functions to directly activate IGF and FGF signalling pathways as well as the expression of additional oncogenes such as NMYC and GSK3 to drive tumour cell proliferation and tumourigenesis. Many additional components of each pathway were omitted for clarity.
a component of the PRC2 complex, which is important in recruiting PRC2 to target genes, has been found to be a direct target of PAX3-FOXO1 (Walters et al, 2014). Connecting signalling pathways and epigenetic modifications that regulate cell proliferation, survival, and myogenic differentiation will be key in fully understanding the cell biology of RMS, which will provide the foundation for developing novel therapeutic strategies for RMS treatment.

CONCLUSIONS

Recent studies have shed exciting new light on the signalling-pathway alterations that drive RMS cell growth and this insight offers new potential therapeutic targets. Taken together, these studies suggest novel connections on known alterations in RMS such as FGF signalling and p21 suppression and provide a new molecular understanding of how drugs can target these changes. The identification of new protein factors, which mediate cell growth in RMS, such as TBX2, may connect the deregulation of the PI3K pathway with histone deacetylase, HDAC1, to target gene promoters to inhibit muscle-specific gene expression and to repress myoblast differentiation. TBX2 also represses cell-cycle regulatory factors, such as p21 and p14ARF, to drive tumour cell proliferation and tumourigenesis.

ACKNOWLEDGEMENTS

We thank Rod Weilbaecher and Priya Londhe for their helpful comments on the manuscript. We apologize to our many colleagues whose excellent work could not be directly cited due to space limitations.

REFERENCES

Abraham J, Prajapati SI, Nishijo K, Schaffer BS, Taniguchi E, Kilcoyne A, McCleish AT, Nelson LD, Giles FG, Estefatadias A, LeGallo RD, Nowak BM, Rubin BP, Malempati S, Keller C (2011) Evasion mechanisms to Igf1r inhibition in rhabdomyosarcoma. Mol Cancer Ther 10: 697–707.

Abrahams A, Parker MI, Prince S (2010) The T-box transcription factor Tbx2: its role in development and possible implication in cancer. IUBMB Life 62: 92–102.

Aleksić T, Chitnis MM, Perestenko OV, Gao S, Thomas PH, Turner GD. Protheroe AS, Howarth M, Macaulay VM (2010) Type 1 insulin-like growth factor receptor translocates to the nucleus of human tumor cells. Cancer Res 70: 6412–6419.

Arnesenjiev Y, Weiss S, Schneider B, Aebersicher P (2001) Insulin-like growth factor-I is necessary for neural stem cell proliferation and demonstrates distinct actions of epidermal growth factor and fibroblast growth factor-2. J Neurosci 21: 7194–7202.

Aslam MI, Hettmer S, Abraham J, Latocha D, Soundararajan A, Huang ET, Goros MW, Michaelje JE, Wang S, Mansoor A, Druker BJ, Wagers AJ, Tyner JW, Keller C (2013) Dynamic and nuclear expression of PDGFRAlpha and IGF-1R in alveolar rhabdomyosarcoma. Mol Cancer Res 11: 1303–1313.

Bonvin E, Falletta P, Shaw H, Delmas V, Goding CR (2012) A phosphatidylinositol 3-kinase-Pax3 axis regulates Brn-2 expression in melanoma. Mol Cell Biol 32: 4674–4683.

Carlson H, Ota S, Song Y, Chen Y, Hurlin P (2002) Tbx3 impinges on the p53 pathway to suppress apoptosis, facilitate cell transformation and block myogenic differentiation. Oncogene 21: 3827–3835.

Chen EY, Deran MT, Ignatius MS, Grandinetti KB, Slagg R, McCarthy KM, Lobhardt RM, Brockmann J, Keller C, Wu X, Langenau DM (2014) Glycogen synthase kinase 3 inhibitors induce the canonical WNT/β-catenin pathway to suppress growth and self-renewal in embryonal rhabdomyosarcoma. Proc Natl Acad Sci USA 111: 5349–5354.

Ciarapica R, De Salvo M, Caracino E, Braclagia G, Adesso L, Leoncini PP, Dall’agpese A, Walters ZS, Verginelli F, De Sio L, Boldrini R, Inserna A, Bisogno G, Rosolen A, Alaggio R, Ferrari A, Collini P, Locatelli M, Stifani S, Srepani I, Rutella S, Yu Q, Marquez VE, Shippey J, Valente S, Mai A, Miele L, Puri PL, Locatelli F, Palacios D, Rota R (2014) The Polycomb group (PcG) protein EZH2 supports the survival of PAX3-FOXO1 alveolar rhabdomyosarcoma by repressing FBXO32 (Atrogin1/MAFbx). Oncogene 33: 4173–4184.

Ciccarelli C, Marzamon F, Scaglio A, Mauro A, Giacinti C, De Cesari P, Zani BM (2005) p21WAF1 expression induced by MEK/ERK pathway activation or inhibition correlates with growth arrest, myogenic differentiation and onco-phenotype reversal in rhabdomyosarcoma cells. Mol Cancer 4: 41.

D’Costa ZC, Higgins C, Ong CW, Irwin GW, Boyle D, McDermott JC (2014) A model for the function of TBX2 in RMS. Tbx2 interacts with the myogenic regulatory factors (MRFs) and represses MRF transcriptional activities through recruitment of the histone deacetylase, HDAC1, to target gene promoters to inhibit muscle-specific gene expression and to repress myoblast differentiation. TBX2 also represses cell-cycle regulatory factors, such as p21 and p14ARF, to drive tumour cell proliferation and tumourigenesis.

Dionyssiou MG, Ehyai S, Avrutin E, Connor MK, McDermott JC (2014) Glycogen synthase kinase 3 inhibitors induce the canonical WNT/β-catenin pathway to suppress growth and self-renewal in embryonal rhabdomyosarcoma. Proc Natl Acad Sci USA 111: 5349–5354.

Ehrya S, Connor MK, McDermott JC (2014) Glycogen synthase kinase 3β represses MYOGENIN function in alveolar rhabdomyosarcoma. Cell Death Dis 5: e1094.

Kablar B, Rudnicki MA (2000) Skeletal muscle development in the mouse embryo. Histol Histopathol 15: 649–656.

Keller C, Guttridge DC (2013) Mechanisms of impaired differentiation in rhabdomyosarcoma. FEBS J 280: 4323–4334.

Kikuchi K, Soundarajan A, Zarzabal LA, Weems CR, Nelson LD, Hampton ST, Michaelje JE, Rubin BP, Fields AP, Keller C (2012) Protein kinase C iota as a therapeutic target in alveolar rhabdomyosarcoma. Mol Cancer 11: 280: e1094.

Kikuchi K, Soundarajan A, Zarzabal LA, Weems CR, Nelson LD, Hampton ST, Michaelje JE, Rubin BP, Fields AP, Keller C (2012) Protein kinase C iota as a therapeutic target in alveolar rhabdomyosarcoma. Mol Cancer 11: 280: e1094.

Kikuchi K, Soundarajan A, Zarzabal LA, Weems CR, Nelson LD, Hampton ST, Michaelje JE, Rubin BP, Fields AP, Keller C (2012) Protein kinase C iota as a therapeutic target in alveolar rhabdomyosarcoma. Mol Cancer 11: 280: e1094.
Liu F, Cao J, Lv J, Dong L, Pier E, Xu GX, Wang RA, Xu Z, Goding C, Cui R (2013) TBX2 expression is regulated by PAX3 in the melanocyte lineage. Pigment Cell Melanoma Res 26: 67–77.

Maki RG (2010) Small is beautiful: insulin-like growth factors and their role in growth, development, and cancer. J Clin Oncol 28: 4985–4995.

Marshall AD, Grosveld GC (2012) Alveolar rhabdomyosarcoma—the molecular drivers of PAX3/FOXO1-induced tumorigenesis. Skelet Muscle 2: 25.

Mourkioti F, Rosenthal N (2005) IGF-1, inflammation and stem cells: interactions during muscle regeneration. Trends Immunol 26: 535–542.

Otten AD, Firpo EI, Gerber AN, Brody LL, Roberts JM, Tapscott SJ (1997) Inactivation of MyoD-mediated expression of p21 in tumor cell lines. Cell Growth Differ 8: 1151–1160.

Pappo AS, Vassal G, Crowley JJ, Bolejack V, Hogendoorn PC, Chugh R, Ladanyi M, Grippo JF, Dall G, Staddon AP, Chawla SP, Maki RG, Araujo DM, Geoerger B, Ganjoo K, Marina N, Blay JY, Schuetze SM, Chow WA, Helman LJ (2014) A phase 2 trial of R1507, a monoclonal antibody to the insulin-like growth factor-1 receptor (IGF-1R), in patients with recurrent or refractory rhabdomyosarcoma cells. Int J Cancer 135: 1543–1552.

Wachte M, Rakic J, Okoniewski M, Bode P, Niggli F, Schafer BW (2014) FGFR4 signaling couples to Bim and not Bmf to discriminate subsets of alveolar rhabdomyosarcoma cells. Int J Cancer 135: 2770–2779.

Walters ZS, Villarejo-Balcells B, Olmos D, Buist TW, Missiaglia E, Allen R, Al-Lazikani B, Garrett MD, Blagg J, Shipley J (2014) JARID2 is a direct target of the PAX3-FOXO1 fusion protein and inhibits myogenic differentiation of rhabdomyosarcoma cells. Oncogene 33: 1148–1157.

Wang C (2012) Childhood rhabdomyosarcoma: recent advances and prospective views. J Dent Res 91: 341–350.

Wei Q, Paterson BM (2001) Regulation of MyoD function in the dividing myoblast. FEMS Lett 490: 171–178.

Wesche J, Haglund K, Haugsten EM (2011) Fibroblast growth factors and their receptors in cancer. Biochem J 437: 199–213.

Zacksenhaus E, Jiang Z, Chung D, Marth JD, Phillips RA, Gallie BL (1996) pRb controls proliferation, differentiation, and death of skeletal muscle cells and other lineages during embryogenesis. Genes Dev 10: 3051–3064.

Zhang M, Truscott J, Davie J (2013) Loss of MEF2D expression inhibits differentiation and contributes to oncogenesis in rhabdomyosarcoma cells. Mol Cancer 12: 150.

Zhu B, Zhang M, Byrum SD, Tackett AJ, Davie JK (2014) TBX2 blocks myogenesis and promotes proliferation in rhabdomyosarcoma cells. Int J Cancer 135: 785–797.

This work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/