A Construction of Rational Seifert Surface in Lens Space

Han Zhang

November 8, 2022

Abstract

In this note, we give a method to construct rational Seifert surface for those smooth or piece-wise linear oriented knots in Lens space $L(p, q)$. We assume that the oriented knot has a regular projection on Heegaard torus and then construct rational Seifert surface on twist toroidal diagram.

1 Introduction

The existence of Seifert surface of a null-homologous knot or link is a very interesting problem in topology. In chapter 5.A.4 [1], Rolfsen showed us a direct way to constructing Seifert surface by regular projection of a smooth or piece-wise linear knot. It’s a natural question whether we can generalize Seifert surface of a link. In section 1 of [2], Kenneth Baker and John Etnyre defined rational Seifert surface for a knot which represents a torsion element in homology group H_1. Especially, $H_1(L(p, q)) = \mathbb{Z}_p$. Thus, every knot represents a torsion element in homology group. We give a construction of rational Seifert surface for arbitrary smooth knot when it has a regular projection on Heegaard torus of $L(p, q)$. We assume that all knots mentioned in this note are smooth or piece-wise linear.

2 Representation of a smooth knot in $L(p, q)$

Let $V_i (i = 1, 2)$ be two solid torus $D^2 \times S^1$. Its meridian and longitude is denoted by (μ_i, λ_i). Then, in the sense of Heegaard decomposition, a lens space $L(p, q)$ can be described by $V_1 \cup_\phi V_2$ where the gluing map $\phi : \partial V_2 \rightarrow V_1$ is an orientation-reversing diffeomorphism given in standard longitude-meridian coordinates on the torus by the matrix

$$
\begin{pmatrix}
-q & q' \\
p & -p'
\end{pmatrix} \in -SL_2(\mathbb{Z})
$$

In particular, $\phi(\mu_2) = -q \mu_1 + p \lambda_1$. This fact concludes that $H_1(L(p, q)) = \langle \lambda_1 \mid p \lambda_1 = 1 \rangle$.

Let K be a knot in Lens space $L(p, q)$. Of course, after a small perturbation, it can be disjoint from the core $C_i = 0 \times S^1 \subset D^2 \times S^1$ of two solid torus at the same time. Please notice that $V_i \setminus C_i$ deformation retracts to its boundary ∂V_i. Thus, the deformation retraction $P : L(p, q) \setminus V_1 \cup V_2 \rightarrow \partial V_1$ projects K onto Heegaard torus ∂V_1

Definition 1. (see chapter 3.E of [1])

Assume K is a smooth knot. The deformation retraction P is said to be regular for K iff:

$\forall x \in \partial V_1, \ |P^{-1}(x)| = 0, 1, 2$ and if 2, $P(K)$ intersects itself transversely at x

Remark 1. if P is not regular for K, then, after a small perturbation of K, P is regular. From now on, We assume K is in the interior of thickened torus $\partial V_1 \times [-1, 1]$ and the natural projection $\partial V_1 \times [-1, 1] \rightarrow \partial V_1$ is regular for K. We regard $L(p, q)$ is obtained from $\partial V_1 \times [-1, 1]$ gluing V_1 to the lower boundary of this thickened torus and V_2 to the upper boundary.

PKU; 190110026@pku.edu.cn
After above discussions, the reader can realize that such a knot K can be drawn on a fundamental domain of torus \(\partial V_1 \). Notice that \(\partial V_1 = T^2 = \mathbb{R}^2 / \mathbb{Z}^2 \). The usual choice of fundamental domain of this torus is a square \([0, 1] \times [0, 1] \subset \mathbb{R}^2\). In this square, \([0, 1] \times \{0\}\) represents \(\mu_1 \) while \(\{0\} \times [0, 1] \) represents \(\lambda_1 \).

Definition 2. (see Def 2.1 of [3])
The twist toroidal diagram of \(\partial V_1 \subset L(p, q) \) is a fundamental domain in \(\mathbb{R}^2 \) bounded by four straight lines:

\[
\begin{aligned}
&x = 0 \\
x = 1 \\
y = -\frac{q}{p} x \\
y = -\frac{q}{p} (x - 1)
\end{aligned}
\]

Remark 2. In twist toroidal diagram, it’s also holds that \((0, 1)(0, 0)(1, 0)\) represent a same point in \(\partial V_1 \). The straight line \(y = -\frac{q}{p} x \) has same direction as \(\mu_2 \).

3 Construction of rational Seifert surface

3.1 Basic Idea

By remark 1, we can draw \(K \) on the twist toroidal diagram of \(\partial V_1 \). We want to find a "cobordism" surface (inside of \(\partial V_1 \times [-1, 1] \)) from \(rK \) to a link \(L' \) which is the union of several \((\pm \mu_2) - \text{knot in } \partial V_1 \times \{1\}\) and \((\pm \mu_1) - \text{knot in } \partial V_1 \times \{-1\}\). Then we attach several meridian discs of \(V_1 \) to this "cobordism", this so called "cobordism" should be a real rational Seifert surface of \(K \). We will see later that \(L' \) may contain several null-homologous component on the upper boundary of \(\partial V_1 \times [-1, 1] \).

3.2 Details of the construction

The construction is divided into following steps:

1. Replace crossings of \(P(K) \) by short-cut arcs on the twist toroidal diagram. Or equivalently, cut the crossing point \(A \) into two points \(A_{0,1} \). Then, we get a torus link \(L \subset \partial V_1 \times \{0\} \)

 ![Make a crossing apart](image)

 Figure 1: Make a crossing apart

2. Computations:

 Compute \([K] = [L] \in H_1(\partial V_1)\) in coordinate \((\mu_1, \lambda_1)\). Assume that \([L] = n(a \mu_1 + b \lambda_1)\) where \(n, a, b \in \mathbb{Z}, g.c.d.(a, b) = 1 \). The coefficient \(na(nb) \) and can be obtained by counting the algebraic intersection numbers of \(L \) and \(\lambda_1(\mu_1)\)-curve.

 Also, Compute order \(r \) of \([K] = [L] \in H_1(L(p, q)) = (\lambda_1|p\lambda_1)\).

 \[
r = \frac{p}{g.c.d.(p, nb)}
 \]
Then,
\[r[L] = r n a \mu_1 + r n b \lambda_1 = r n a \mu_1 + \frac{r n b}{p} (p \lambda_1) = r n a \mu_1 + \frac{r n b}{p} (q \mu_1 + \mu_2) = (r n a + \frac{r n b q}{p}) \mu_1 + \frac{r n b}{p} \mu_2 \]

3. Construct "cobordism" from link \(L \) to \(L' \) noticed above.

(a) draw torus link \((r n a + \frac{r n b q}{p}) \mu_1\) on \(\partial V_1 \times \{-1\}\) (denoted by \(L^- \)) and \(-(r n a + \frac{r n b q}{p}) \mu_1\) on \(\partial V_1 \times \{1\}\) s.t both torus link avoid a connected neighborhood of each crossing of \(P(K) \) in the diagram where the crossing is now replaced by short-cut arcs.

![Diagram](image1)

Figure 2: Here is a knot \(K \) in \(L(3,1) \), \([L] = 2 \lambda_1, r = 3, r[L] = 2 \mu_1 + 2 \mu_2\). The blue line \(L^- a \)

For convenient, \(-(r n a + \frac{r n b q}{p}) \mu_1\) on \(\partial V_1 \times \{1\}\) should be drawn a little bit above the \((r n a + \frac{r n b q}{p}) \mu_1\) on the diagram.

![Diagram](image2)

Figure 3: the red line of homotopy type \(-2 \mu_1\) is not far away from the blue.

(b) draw torus link \(rL \) on \(\partial V_1 \times \{1\}\). Here, \(rL \) is \(r \) parallel copies of \(L \). For convenience, one shouldn’t draw \(rL \) too far away from \(L \).

![Diagram](image3)

Figure 4: the red line \(rL \) is far from \(L \) in the diagram we draw on.

(c) At each intersection of \(-(r n a + \frac{r n b q}{p}) \mu_1\) and \(rL \) on \(\partial V_1 \times \{1\}\), replace intersection by smooth arc shown by the graph below.
Then, we get a link L^+ on $\partial V_1 \times \{1\}$ with homology class $[L^+] = r[L] - (rna + \frac{rn_b q}{p})\mu_1 = \frac{rn_b}{p}\mu_2$. Therefore, its components is torus knot of $\pm \mu_2$ type or null-homologous (simple closed curve on torus). L' is the union of L^+ and L^-.

(d) The "cobordism" of L is actually bounded by L and L'. Near the intersection of L and $(rna + \frac{rn_b q}{p})\mu_1$ link on the diagram, the "cobordism" is glued by the bands below. Outside the neighborhood, the "cobordism" is obtained by gluing r bands along L.

(e) For a very special case when $[L] = 0 \in H_1(\partial V_1)$, $L' = \emptyset$ and L consists of $m(m \geq 0)$ non-trivial torus knots of type $a\mu_1 + b\lambda_1$, m torus knots of type $-(a\mu_1 + b\lambda_1)$ and several null-homologous knots on torus. We construct disjoint m bands (i.e $S^1 \times I$) and several discs bounded by null-homologous components of L.

4. Construct r-cover half-twist band as follow. Let $I \times I \times \{1, 2, \ldots, r\}$ be k-copies of a square. Define equivalent relationship \sim by: $(x, 0, 1) \sim (x, 0, k)$ and $(x, 1, 1) \sim (x, 1, k)$.
Then do a half-twist along straight line $I \times \{ \frac{1}{2} \} \times \{0\}$ on the quotient space $I \times I \times \{1, 2, \ldots, r\}/ \sim$, the construction of r-cover half-twist band is done. Name arc $\{i\} \times I \times \{k\}$ by c^k_i where $i = 0, 1; k = 1, 2, \ldots, r$.

5. In the first step, we cut apart the crossings (denoted by A) of $P(K)$ into two points $A_{0,1}$.

Now we cut off a 3-ball B_i of a very small radius centered at each $A_{i=0,1}$ from the "cobordism"
constructed above. The boundary of 3-ball ∂B_i intersects the cobordism at r arcs with same
endpoints. These arcs is denoted by γ^k_i where $i = 0, 1; k = 1, 2, \ldots, r$.

![Figure 11: γ^k_i is marked in the figure](image)

Now we attach r-cover half-twist band to the punctured cobordism described above by regarding
γ^0_i as c^0_i and γ^k_i as $-c^k_i$, $k = 1, 2, \ldots, r$. One should take care that the type of r-cover half-twist
band to be glued is depended on the writhe of this crossing. Then we get the cobordism from
rK to L'.

6. Now we get the cobordism from rK to L'. We gluing meridian discs of V_1 along L^-, and meridian
discs of V_2 along the $\pm\mu_2$-type component of L^+. For those null-homologous component of L^+,
we glue the discs bounded by them, probably with a little push off the diagram s.t. the discs are
disjoint.

Now we get a rational Seifert surface of K. It’s not hard to compute its Euler characteristic. Also, we
can find out how it wraps on K. See corollary below

Corollary 1. Let K be a knot in the interior of $\partial V_1 \times I$ with homotopy type $[K] = n(\mu_1 + b\lambda_1)$ where
$n, a, b \in \mathbb{Z}, \text{g.c.d.}(a, b) = 1$. Let NK be a tubular neighborhood of K with framing (μ_{NK}, λ_{NK}). Choose
the longitude λ_{NK} of NK to be the one induced from the push-off of K along the positive direction of
I. Then, the rational Seifert surface of K intersects ∂NK at a torus link with homology type:

$$r\lambda_{NK} - (rn^2(a + \frac{bq}{p})b + r\text{writhe}(K))\mu_{NK}$$

where the writhe of K is the sum of index defined in the graph of the first step.

Proof. The proof is not difficult noticing that the construction of cobordism of L devotes

$$-rn^2(a + \frac{bq}{p})b\mu_{NK}$$

and the attachment of r-cover half-twist bands devotes

$$-r\text{writhe}(K)\mu_{NK}.$$

4 **Acknowledgement**

I would like to thank YouLin Li from SJTU. Without his help, I would not complete this thesis.
References

[1] Dale Rolfsen. Knots and Links, AMS CHELESA PUBLISHING, 2000.

[2] Kenneth Baker and John Etnyre. Rational Linking and Contact Geometry. Perspectives in Analysis, Geometry, and Topology, Progr. Math. 296 (Birkhäuser, Basel, 2012), 19–37.

[3] Kenneth L. Baker, J. Elisenda Grigsby, and Matthew Hedden. Grid diagrams for lens spaces and combinatorial knot Floer homology. math.GT/0710.0359, 2007.