SYMPLECTIC SURGERY AND THE SPINc-DIRAC OPERATOR

ECKHARD MEINRENKEN

Abstract. Let G be a compact connected Lie group, and (M, ω) a compact Hamiltonian G-space, with moment map $J : M \to \mathfrak{g}^*$. Under the assumption that these data are pre-quantizable, one can construct an associated Spinc-Dirac operator $\hat{\theta}_C$, whose equivariant index yields a virtual representation of G. We prove a conjecture of Guillemin and Sternberg that if 0 is a regular value of J, the multiplicity $N(0)$ of the trivial representation in the index space $\text{ind}(\hat{\theta}_C)$, is equal to the index of the Spinc-Dirac operator for the symplectic quotient $M_0 = J^{-1}(0)/G$. This generalizes previous results for the case that $G = T$ is abelian, i.e. a torus.

Contents

1. Introduction 1
2. Orbifolds 4
3. Riemann-Roch Theorems for Orbifolds 6
4. Symplectic Surgery 10
5. Multiple Cutting 15
5.1. Cutting with respect to polytopes 15
5.2. The abelian gluing formula 18
6. Nonabelian Cutting 21
7. Quantization 24
8. Appendix: A Short Proof for $G = SU(2)$ 27
References 29

1. Introduction

Let (M, ω) be a compact symplectic manifold, with integral symplectic form $[\omega] \in H^2(M, \mathbb{Z})$, and $L \to M$ a Hermitian line bundle whose first Chern class is $c_1(L) = [\omega]$. It is then possible to choose a Hermitian connection ∇ on L with curvature $F(L) = 2\pi i \omega$. Choose an ω-compatible, positive almost complex structure on M, and let

$$\Lambda^* T^* M \otimes \mathbb{C} = \bigoplus_{i,j} \Lambda^{i,j} T^* M$$

be the associated bigrading of the bundle of forms. Using a Hermitian connection on the canonical bundle, one has the twisted Spinc-Dirac operator

$$\hat{\theta}_C : \mathcal{A}^{0,\text{even}}(M, L) \to \mathcal{A}^{0,\text{odd}}(M, L)$$
where

\[\mathcal{A}^{i,j}(M, L) = C^\infty(M, \Lambda^{i,j} T^*M \otimes L) \]

is the space of \(L\)-valued forms of type \((i, j)\). The Riemann-Roch number of \(L \to M\) is defined to be the dimension of the virtual vector space

\[\text{ind}(\partial_C) = [\ker(\partial_C)] - [\ker(\partial_C^*)]. \]

By the index theorem of Atiyah-Singer,

\[\text{RR}(M, L) = \int_M \text{Td}(M) \text{Ch}(L), \]

where \(\text{Td}(M)\) and \(\text{Ch}(L)\) are the Todd class of \(M\) and Chern character of \(L\), respectively. Since \(\text{Ch}(L) = e^\omega\), and since any two compatible almost complex structures are homotopic, \(\text{RR}(M, L)\) is a symplectic invariant of \(M\).

If \(M\) is in fact Kähler, \(L\) a holomorphic Hermitian line bundle, and \(\nabla\) its canonical connection, then \(\partial_C\) is the Dirac operator \(\sqrt{2(\bar{\partial} + \partial^*)}\) associated to the twisted Dolbeault complex. If \(L\) is moreover sufficiently positive, \(\text{RR}(M, L)\) is simply the dimension of the space of holomorphic sections. This happens for instance for coadjoint orbits \(O = G.\lambda\) of compact Lie groups \(G\), where \(\lambda\) is a dominant weight. Here \(\omega\) is the canonical invariant Kähler form on \(O\), and \(L\) the pre-quantum line bundle. By the Borel-Weil-Bott theorem, the space of holomorphic sections of \(L\) is just the irreducible representation space with highest weight \(\lambda\).

Suppose now that a compact Lie group \(G\) acts on \(M\) in a Hamiltonian fashion, with equivariant moment map \(J : M \to \mathfrak{g}^*\). That is,

\[\iota(\xi_M)\omega = d\langle J, \xi \rangle \]

for all \(\xi \in \mathfrak{g}\) where \(\xi_M\) is the fundamental vector field. Assume also that the action lifts to an action on \(L\), in such a way that the fundamental vector fields on \(m\) and \(L\) are related by Kostant’s formula

\[\xi_L = \text{Lift}(\xi_M) + 2\pi\langle J, \xi \rangle \frac{\partial}{\partial \phi}, \]

where “Lift” is the horizontal lift with respect to the connection and \(\frac{\partial}{\partial \phi}\) the generating vector field for the scalar \(S^1\)-action on \(L\). By making the above choices \(G\)-invariant, we obtain \(G\)-representations on \(\ker(\partial_C)\) and \(\ker(\partial_C^*)\), hence a virtual representation on \(\text{ind}(\partial_C)\). The character \(\text{RR}(M, L) = \chi \in R(G)\) of this representation is called the equivariant Riemann-Roch number, and the equivariant index theorem of Atiyah-Segal-Singer expresses \(\chi(g)\) as an integral of characteristic classes over the fixed point manifold \(M^g\). Consider the decomposition of \(\chi\) into irreducible characters \(\rho_\mu\) for \(G\),

\[\chi = \sum_{\mu \in \hat{G}} N(\mu) \rho_\mu, \quad N(\mu) \in \mathbb{Z}. \]

Let \(T\) be the maximal torus of \(G\), \(\mathfrak{g} = \mathfrak{t} \oplus [\mathfrak{t}, \mathfrak{g}]\) the corresponding decomposition of the Lie algebra, and \(\Lambda \subset \mathfrak{t}\) the integral lattice. Let \(\mathfrak{t}_+^* \subset \mathfrak{g}^*\) be some choice of a positive Weyl chamber, \(\mathcal{R}_+\) the associated system of positive roots, and label the irreducible representations by the set of dominant weights \(\Lambda_+^* = \Lambda \cap \mathfrak{t}_+^*\). If 0 is a regular value of \(J\), the action of \(G\) on \(J^{-1}(0)\) is locally free, and therefore the symplectically reduced space \(M_{\text{red}} = J^{-1}(0)/G\) is a symplectic orbifold. Moreover, \(L_{\text{red}} := (L|J^{-1}(0))/G\) is a pre-quantum orbifold-line bundle. One has an associated
Spinc-Dirac operator, with index $\text{RR}(M_{\text{red}}, L_{\text{red}})$ given by the orbifold-index theorem of Kawasaki [24]. This paper will be concerned with the proof of a conjecture of Guillemin and Sternberg [14], that the multiplicity $N(0) =: \text{RR}(M, L)^G$ of the trivial representation is exactly the Riemann-Roch number $\text{RR}(M_{\text{red}}, L_{\text{red}})$.

Since orbifolds will play an essential role in this paper, we will allow that M itself is an orbifold, and prove the following:

Theorem 1.1. Let G be a compact connected Lie group, and (M, ω) a quantizable Hamiltonian G-orbifold, with moment map $J : M \to \mathfrak{g}^*$. If 0 is a regular value of J, the multiplicity of the trivial representation is given by

$$\text{RR}(M, L)^G = \text{RR}(M_{\text{red}}, L_{\text{red}}).$$

If a compact, connected Lie group H acts on $L \to M$, such that the action commutes with the action of G, this equality holds as an equality of virtual characters for H.

By the “shifting-trick”, one has pre-quantum orbifold-bundles L_μ for all reduced spaces $M_\mu = J^{-1}(\mu)/G_\mu$, whenever $\mu \in \Lambda^*_+ \cap \mathfrak{t}^*$ is a regular value of J, and obtains the following

Corollary 1.2. If $\mu \in \Lambda^*_+$ is a regular value of J, $N(\mu) = \text{RR}(M_\mu, L_\mu)$. In particular, the support of the multiplicity function is contained in the moment polytope $\Delta = J(M) \cap \mathfrak{t}^*$.

For the Kähler case, a variant of Theorem 1.1 was proved by Guillemin and Sternberg in their 1982 paper [16]. For the case that G is abelian, but M not necessarily Kähler, Theorem 1.1 was proved by Guillemin [13] under some additional assumptions and by Vergne [33] and Meinrenken [29] in general. For G nonabelian, it was shown in [29] that Theorem 1.1 is true if one replaces L by a suitable high tensor power, L^m. This was deduced from a simple stationary phase argument, for which it is in fact irrelevant that L is a pre-quantum line bundle or that M is symplectic. For $G = SU(2)$ and under an additional condition on the moment map, Theorem 1.1 was proved in Jeffrey-Kirwan [21]. We will show in this paper that neither this extra condition nor taking tensor powers is necessary, and that Theorem 1.1 holds for any compact group G, without additional hypotheses besides 0 being a regular value.

Our approach is based on the symplectic cutting technique of E. Lerman [26], which was already used in [10] to simplify the proof for the abelian case. The first step will be to cut M into smaller pieces, and to prove a gluing formula which expresses the Riemann-Roch number of M in terms of the Riemann-Roch number of the cut spaces. (Indeed, these gluing formulas are valid for arbitrary Hermitian vector bundles, not only pre-quantum line bundles.) By combining this result with a “cross section theorem”, we prove the excision property of $N(0)$, i.e. that $N(0)$ depends only on local data near $J^{-1}(0)$. This allows us to replace M by a new quantizable space M_{cut}, such that M_{cut} is isomorphic to M near $J^{-1}(0)$, and such that the moment polytope of M_{cut} is contained in a small neighborhood of zero. It can be arranged that M_{cut} has has very few T-fixed point manifolds. By explicitly writing down the fixed point formula for $\text{RR}(M_{\text{cut}}, L_{\text{cut}})$, we can compute the multiplicity of 0 for M_{cut}, and find that it is equal to $\text{RR}(M_{\text{red}}, L_{\text{red}})$.

For the group $G = SU(2)$, an alternative and much easier proof of Theorem 1.1 is available. We sketch this proof in the appendix, which is independent of the rest of the paper.
If 0 is not a regular value of the moment map, the reduced space $M_0 = \Phi^{-1}(0)/G$ is in general not an orbifold, but has more serious singularities. The extension of Theorem 1.1 to this case will be discussed in a separate paper with Reyer Sjamaar.

Acknowledgments. I would like thank E. Lerman for explaining to me his unpublished $SU(2)$-version of symplectic cutting, and H. Duistermaat, R. Sjamaar, C. Woodward and M. Vergne for helpful comments on an earlier version of this paper. This work was supported by a Feodor-Lynen fellowship from the Humboldt foundation.

2. Orbifolds

In this section, we review some background material on orbifolds, and describe the orbifold version of the Berline-Vergne localization formula. Let us briefly recall some basic definitions (for details, see Satake [31] or Kawasaki [23, 24]).

Let M be a paracompact Hausdorff topological space. An orbifold chart for M is a triple (U, V, H) consisting of an open subset U of M, a finite group H, an open subset V of some manifold, and a homeomorphism $U = V/H$. An orbifold structure on M is a collection of orbifold charts $\{(U_i, V_i, H_i)\}$, such that the U_i cover M and are subject to appropriate compatibility conditions. In particular, one assumes that for any two orbifold charts (U_i, V_i, H_i) and $x \in U_1 \cap U_2$, there exists an open neighborhood $U \subset U_1 \cap U_2$ of x and an orbifold chart (U, V, H), together with injections $\rho_i : H \to H_i$ and ρ_i-equivariant embeddings $\phi_i : V \to V_i$, with the following property:

$$h_i, \phi_i(V) \cap \phi_i(V) \neq \emptyset \Rightarrow h_i \in \rho_i(H).$$

Our definition differs slightly from [23], in that we do not assume that the actions of the H_i are effective. The compatibility conditions ensure that on each connected component of M, the generic stabilizers $H_{i,*}$ for the H_i-actions are isomorphic. Their order therefore defines a locally constant function on M, which is called the multiplicity function $d_M : M \to \mathbb{N}$.

For all $x \in M$, there is a compatible orbifold chart (U_x, V_x, H_x) such that the preimage of x in V_x is a fixed point. The corresponding H_x is uniquely determined up to isomorphism, and is called the isotropy group of x. Given any finite group H, the connected components of the set of all x such that $H_x \sim H$ are smooth manifolds. In this way, one obtains a decomposition $M = \cup M_i$, such that M_i is a connected manifold and consists of points of a fixed isotropy group, H_i. Moreover, for all $i \neq j$, M_i meets the closure of M_j only if H_j is an (abstract) subgroup of H_i.

On each connected component of M, there is unique open, dense, connected stratum (called principal stratum) M_* on which the corresponding isotropy group H_* is minimal, i.e. $\#H_* = d_M$.

If G is a compact Lie group and $G \times P \to P$ a locally free action on a manifold P, the orbit space $M = P/G$ is an orbifold\(^1\). Indeed, by the slice theorem a neighborhood of any orbit $G.p = x$ is equivariantly diffeomorphic to a neighborhood of the zero section of the associated bundle $G \times_{G_p} N_p$, where $N_p \subset T^*_p P$ is the conormal space to $G.p$. Therefore, for some open neighborhood V_p of $0 \in N_p$,

\(^1\)In fact, any orbifold is of this form; for example one can take P to be the $O(n)$ frame bundle with respect to some Riemannian metric on M, and $H = O(n)$.

one has a homeomorphism $V_p/G_p \cong U_p$ onto some neighborhood of x in M. The multiplicity of M is simply the rank of a generic stabilizer for the G-action.

Given any orbifold M, orbifold fiber bundles $\pi : E \to M$ are defined by H-equivariant fiber bundles $Z \to E_V \to V$ in orbifold charts (U, H, V), together with suitable compatibility conditions. Notice that the fibers $\pi^{-1}(x)$ are in general not diffeomorphic to Z, but only to some quotient of Z by the action of the isotropy group H_x. For example, the tangent bundle of M is an orbifold vector bundle, with fiber at $x \in M$ equal to $T_x V_x/H_x$, where H_x is the isotropy group and (U_x, V_x, H_x) an orbifold chart around x. Sections of an orbifold vector bundle E are defined by H-invariant sections in orbifold charts. It is not true that any orbifold mapping $\sigma : M \to E$ with $\pi \circ \sigma = \text{id}_M$ gives rise to a section of E. For example, $\mathbb{C}/\mathbb{Z}_2 \to \text{pt}$ does not have any non-vanishing sections.

Continuing in this fashion, almost all constructions for manifolds can be generalized to orbifolds, by taking the corresponding H-equivariant version in local orbifold charts. One thus defines suborbifolds, orbifold-principal bundles, de Rham theory, characteristic classes, Riemannian (complex, symplectic, Spin) structures, and so on. An orbifold principal bundle $H \to P \to M$ over M is an orbifold P, together with a locally free action of some Lie group H, such that $M = P/H$. If X is any H-space, one can form an associated bundle $\pi \bigoplus H X = (P \times X)/H$. If only some finite cover $\tilde{H} \to H$ acts on X, one can still form the associated bundle, by merely regarding P as a \tilde{H}-orbifold principal bundle. Notice that if H is connected, this does not depend on the choice of the cover.

Suppose a compact, connected Lie group G acts on M, in other words, $G \times M \to M$ is an orbifold mapping. Since G is connected, the components F of the fixed point set M^G are suborbifolds of M. If G is abelian the normal bundle ν_P is even dimensional, and admits an invariant Hermitian structure (see e.g. [6], p. 217). If M is oriented, any choice of such a Hermitian structure equips F with an orientation.

Consider an orbifold chart (U_x, H_x, V_x) around a point $x \in F$. It is not always true that the G-action on U_x lifts to V_x, but some finite covering $\tilde{G} \to G$ does. In particular, the weights for the action on $\nu_F(x)$ are weights for \tilde{G}, but not necessarily for G. In [27], these are called “orbi-weights” of G.

Let $\mathcal{A}_G(M)$ be the space of equivariant differential forms, i.e. polynomial G-equivariant mappings $\alpha : \mathfrak{g} \to \mathcal{A}(M)$. Let $\partial_\mathfrak{g}$ be the equivariant differential

$$d_\mathfrak{g} : \mathcal{A}_G(M) \to \mathcal{A}_G(M), \quad d_\mathfrak{g}(\alpha)(\xi) = d\alpha(\xi) - 2\pi i \alpha(\xi_M)\alpha(\xi),$$

where ξ_M is the fundamental vector field corresponding to ξ. Since $\partial_\mathfrak{g}^2 = 0$, $(\mathcal{A}_G(M), d_\mathfrak{g})$ is a complex, and its cohomology $H^*_G(M)$ is called the equivariant cohomology of M. More generally, one can consider the complex $\mathcal{A}_G^\ast(M)$ of equivariant differential forms α which are defined and analytic around $0 \in \mathfrak{g}$, and define its cohomology $H^*_G(M)$.

An example for an equivariantly closed form is the equivariant Euler form of the normal bundle ν_F. Suppose $G = T$ is abelian. If ν_F splits into a direct sum of invariant orbifold-line bundles L_j, with Chern classes c_j and orbi-weights α_j, one defines

$$\text{Eul}_i(\nu_F, \xi) = \prod_j (c_j + 2\pi i \langle \alpha_j, \xi \rangle).$$

In the general case, this equation defines $\text{Eul}_i(\nu_F, \cdot)$ by means of the splitting principle.
Suppose now that M is compact, connected, and oriented, and consider the integration mapping $\int : \mathcal{A}_c^\omega(G(M)) \to \mathcal{A}_c^\omega(pt)$. Since $\int \circ d_g = 0$, this descends to a mapping on $H_c^\omega(G(M))$. Let $\iota_F : F \to M$ be the embedding of the fixed point orbifolds.

Theorem 2.1. (Orbifold version of the Berline-Vergne Localization Formula.) Suppose $G = T$ is abelian, and let $\alpha \in \mathcal{A}_c^\omega(M)$ be d_t-closed. Then

$$\frac{1}{d_M} \int_M \alpha(\xi) = \sum_F \frac{1}{d_F} \int_F \iota_F^* \alpha(\xi) \text{Eul}(\nu_F, \xi)$$

for all ξ in sufficiently small neighborhood of $0 \in \frak{t}$. Here, the sum is over the fixed point orbifolds, and d_F is the multiplicity of F as a suborbifold of M.

The proof of this result proceeds exactly as in the manifold case, see e.g. [7]. The multiplicities occur because the proof involves an integration over the fibers of ν_F, to be performed in local orbifold charts. In passing to the quotient, one has to divide by the “twist” of ν_F, which gives a factor d_M/d_F.

If M is a T-manifold resp. orbifold with an (oriented) T-invariant boundary $Z = \partial M$, the localization formula includes additional boundary terms. Let us just consider the case $T = S^1$, and suppose for simplicity that the action of S^1 on ∂M is locally free. Let $j : Z \to M$ be the inclusion, and $\theta \in \mathcal{A}^1(Z)$ a connection. Then the boundary contribution is given by

$$-\frac{1}{d_M} \int_{\partial M} j^* \alpha(\xi) \text{dR}(\theta(\xi)) \wedge \theta.$$

For a proof (in the manifold case), see e.g. Kalkman [22], or Vergne [34].

3. Riemann-Roch Theorems for Orbifolds

Suppose M is a compact orbifold, equipped with a positive Kähler structure, and that $E \to M$ is a holomorphic Hermitian orbifold vector bundle over M. Just as in the manifold case, one has a twisted Dolbeault complex of E-valued forms,

$$\bar{\partial} : \mathcal{A}^{i,j}(M, E) \to \mathcal{A}^{i,j+1}(M, E),$$

and a corresponding Spinc-Dirac operator

$$\bar{\partial}_C = \sqrt{2}(\bar{\partial} + \bar{\partial}^*) : \mathcal{A}^{0,even}(M, E) \to \mathcal{A}^{0,odd}(M, E).$$

If M is only almost Kähler, it is still possible to construct $\bar{\partial}_C$, using Hermitian connections on E and on the canonical line bundle, $\wedge^{0,n} T^* M$. For the details of this construction see e.g. Duistermaat [4]. The dimension of the index space

$$\text{ind}(\bar{\partial}_C) = [\ker(\bar{\partial}_C)] - [\ker(\bar{\partial}_C)]$$

is independent of all choices, and will be called the Riemann-Roch number $\text{RR}(M, E)$ of $E \to M$.

Remark 3.1. If M is a symplectic orbifold and $E \to M$ a complex (or symplectic) vector bundle, one can always choose a compatible positive almost complex structures on M and Hermitian structure on E. Since any two choices are homotopic, $\text{RR}(M, E)$ does not depend on these choices.
If a compact Lie group G acts on the above data and if all choices are made G-equivariant, one has G-actions on $A^{i,j}(M, E)$, and the index space carries a virtual representation of G. In this case, we let $\text{RR}(M, E) = \chi \in R(G)$ be the equivariant Riemann-Roch number, i.e. $\chi(g) = \text{tr}(g \cdot \text{ind}(\mathfrak{g} \mathfrak{c}))$. The orbifold version of the equivariant index theorem expresses χ as an integral of certain characteristic classes over an associated orbifold \tilde{M}. Let us digress on how \tilde{M} is defined. As a set,

$$\tilde{M} = \bigcup_{x \in M} \text{Conj}(H_x),$$

where $\text{Conj}(H_x)$ is the set of conjugacy classes in the isotropy group H_x. Given an atlas for M, orbifold charts for \tilde{M} can be constructed as follows. For each V_i, let

$$\tilde{V}_i = \{(v, h) \in V_i \times H_i \mid h.v = v\}.$$

Then H_i acts on \tilde{V}_i via $a.(v, h) = (a.v, a.h.a^{-1})$, and by definition $\tilde{U}_i := \tilde{V}_i/H_i$. Notice that the action of H_i on the preimage of a given connected component need not be effective, even if the action on V_i was.

One can show that the orbifold charts $(\tilde{U}_i, \tilde{V}_i, H_i)$ inherit the compatibility conditions from the (U_i, V_i, H_i), and thus define an orbifold structure on \tilde{M}. Usually, \tilde{M} has various components of different dimension.

Remark 3.2. (Properties of \tilde{M}):

a. Let $G \times P \to P$ be a locally free action of a compact Lie group G on an orbifold P. Then $M = P/G$ is an orbifold, and $\tilde{M} = \tilde{P}/G$, where

$$\tilde{P} = \{(p, g) \in \tilde{P} \times G \mid g.p = p\}.$$

b. Consider the natural mapping $\tau : \tilde{M} \to M$. Since all mappings $\tilde{V} \to V$ in the above orbifold charts are H-equivariant immersions (on all connected components), it follows that τ is an immersion. (If M is a quotient of a manifold by a locally free action of an abelian group, τ restricts to orbifold embeddings of the connected components of M. This is however false in general, because the orbifold isotropy groups are only defined up to isomorphism, and may be glued together globally in a nontrivial way.)

Let $N_{\tilde{M}} \to \tilde{M}$ denote the normal bundle of this immersion. In a local orbifold chart (U, V, H), $N_{\tilde{M}}$ is obtained from the normal bundle N_V of the immersion $\tilde{V} \to V$ by dividing out the action of H.

c. Let $\tilde{E} \to \tilde{M}$ be an orbifold vector bundle, given in local orbifold charts (U, V, H) by H-equivariant vector bundles $\tilde{E}_V \to \tilde{V}$. Observe that for all $(v, h) \in \tilde{V}$, there is an action of h on the fiber of \tilde{E}_V over (v, h). These actions glue together to give a canonical section A of the automorphism bundle $\text{Aut}(\tilde{E})$. (Notice however that the action of A on sections of \tilde{E} is trivial!) Suppose that \tilde{E} is a complex Hermitian orbifold bundle with connection. Let $F(\tilde{E}) \in \mathcal{A}^2(\tilde{M}, \text{End}(\tilde{E}))$ be the curvature. We define twisted characteristic forms $\text{Ch}^{\tilde{M}}(\tilde{E})$ and $D^{\tilde{M}}(\tilde{E})$ by

$$\text{Ch}^{\tilde{M}}(\tilde{E}) = \text{tr}(A e^{\frac{1}{2}F(\tilde{E})}) \in \mathcal{A}(\tilde{M}).$$

and

$$D^{\tilde{M}}(\tilde{E}) = \det \left(1 - A^{-1} e^{-\frac{1}{2}F(\tilde{E})}\right) \in \mathcal{A}(\tilde{M}).$$
d. If F is a connected suborbifold of M, the principal stratum of F is contained in some stratum of M, and the multiplicity d_F is the order of the isotropy group corresponding to that stratum. Moreover, the associated orbifold \tilde{F} is a suborbifold of \tilde{M}.

Let us now turn to the case where M is a symplectic orbifold. Then \tilde{M} is a symplectic orbifold, and the normal bundle $N_{\tilde{M}}$ is a symplectic orbifold bundle. Choose a compatible positive almost complex structure J on M, thereby making the tangent bundles of M and \tilde{M} into Hermitian vector bundles. Consider a Hermitian connection on TM, with curvature $F(M) \in \mathcal{A}^2(M, \text{End}(TM))$, and let

$$\text{Td}(M) = \det \left(\frac{i}{2\pi} F(M) \right)$$

and $\text{Td}(\tilde{M})$ be the corresponding Todd forms.

Let $E \to M$ be an orbifold vector bundle over an almost complex orbifold, and let $\tilde{E} = \tau^* E$.

Theorem 3.3 (Kawasaki). The Riemann-Roch number $\text{RR}(M, E) := \dim(\text{ind}(\tilde{\phi}_C))$ is given by the formula

$$\text{RR}(M, E) = \int_{\tilde{M}} \frac{1}{d_{\tilde{M}}} \frac{\text{Td}(\tilde{M}) \text{Ch}_{\tilde{M}}(\tilde{E})}{D^M(N_{\tilde{M}})}.$$

(24)

(For orbifolds M that can be represented as quotients of manifolds by locally free actions of abelian groups, the orbifold index theorem is due to Atiyah \[1\].) Let now G be a compact, connected Lie group acting on $E \to M$, and suppose all the above choices have been made G-invariant. By lifting the fundamental vector fields, one obtains an action on \tilde{M} of some finite cover of G (due to the holonomy phenomenon mentioned in Remark 3.2 (b), G itself need not act on \tilde{M}). In \[33\], M. Vergne has proved the following orbifold version of the equivariant index theorem of Atiyah-Segal-Singer \[4\]. Denote by $\text{Td}_g(\tilde{M}, \xi), \text{Ch}_g(\tilde{E}, \xi)$ etc. the equivariant characteristic classes for the respective bundles on \tilde{M}.

Theorem 3.4 (Vergne). For $\xi \in g$ sufficiently small, the equivariant Riemann-Roch number $\chi = \text{RR}(M, E)$ is given by the formula

$$\chi(e^\xi) = \int_{\tilde{M}} \frac{1}{d_{\tilde{M}}} \frac{\text{Td}_g(\tilde{M}, \xi) \text{Ch}^\tilde{M}_g(\tilde{E}, \xi)}{D^M(N_{\tilde{M}}, \xi)}.$$

(25)

More generally, Vergne has proved a cohomological formula for $\chi(g e^\eta)$, with η in the Lie algebra of the stabilizer of g, as an integral over \tilde{M}^g. If we take $\eta = 0$, and $g = \exp(\xi) \in T$ generic in the sense that g generates T, this includes the following special case:

Theorem 3.5. (Fixed point formula for orbifolds.) The equivariant index $\chi(e^\xi)$ of $\tilde{\phi}_C$ is given by the formula $\chi|T = \sum_F \chi_F$, where the sum is over the connected components F of the fixed point orbifold M^T, and χ_F is a meromorphic function given by the formula

$$\chi_F(e^\xi) = \int_{\tilde{F}} \frac{1}{d_{\tilde{F}}} \frac{\text{Td}(\tilde{F}) \text{Ch}^{\tilde{F}}(\tilde{F}, \xi)}{D^{\tilde{F}}(N_{\tilde{F}}) D^\xi(\tilde{\nu}_F, \xi)}.$$

(26)

Here ν_F is the normal bundle of F in M, and $\tilde{\nu}_F$ its pullback to \tilde{F}.
orbifold singularity of order k G.

Let χ is smooth, the character of the action on the normal bundle is +1, and so the line bundle. The fixed point set consists of two points, z coordinate w coordinate c.

The teardrop orbifold M is obtained by gluing a copy of C/\mathbb{Z}_k, with coordinate w^k, with a copy of C, with coordinate z, via the mapping $z \mapsto w^{-k}$ for $z \neq 0$. Note that M is a disjoint union of a copy of M and $(k - 1)$ points. Let $G = S^1$ act by rotation, i.e. $z \mapsto e^{i\phi} \cdot z$, and let $E = M \times C$ be the trivial line bundle. The fixed point set consists of two points, $z = 0, \infty$. At $z = 0$, M is smooth, the character of the action on the normal bundle is +1, and so the fixed point contribution becomes $\chi(0)(e^{i\phi}) = (1 - e^{i\phi})^{-1}$. At $z = \infty$, there is an orbifold singularity of order k, hence \tilde{F} consists of k points. The normal bundle is isomorphic to C/\mathbb{Z}_k, and S^1 acts by the orbi-weight $-\frac{1}{k}$. Thus

$$\chi(\infty)(e^{i\phi}) = \frac{1}{k} \sum_{l=0}^{k-1} \frac{1}{1 - e^{-\phi}}$$

where $c = \exp(-\frac{2\pi i}{k})$. Using the identity

$$\frac{1}{k} \sum_{l=0}^{k-1} \frac{1}{1 - e^{l\phi}} = \frac{1}{1 - u^k},$$

we can carry out the summation and find $\chi(\infty)(e^{i\phi}) = (1 - e^{-i\phi})^{-1}$. The two contributions add up to give $\chi(e^{i\phi}) = (1 - e^{i\phi})^{-1} + (1 - e^{-i\phi})^{-1} = 1$.

We will now give a simple application of the fixed point formula in connection with holomorphic induction. Let G be a compact connected Lie group, with maximal torus T, and $t^*_+ \subset t^* = (\mathfrak{g})^T$ some choice of a positive Weyl chamber. For each face Σ of t^*_+, there is a compact, connected subgroup $G_{\Sigma} \subset G$ with the property that $G_\alpha = G_{\Sigma}$ for all $\alpha \in \text{int}(\Sigma)$. Write $t^*_{\Sigma,+} \supset t^*_+$ for the positive Weyl chamber of G_{Σ}, $W_{\Sigma} \subset W$ for the Weyl group, $\mathfrak{R}_{\Sigma,+} \subset \mathfrak{R}_+$ for the positive roots, and $\Lambda^*_{\Sigma,+} = \Lambda^* \cap t^*_{\Sigma,+}$ for the dominant weights. Let G/G_{Σ} be equipped with its canonical G_{Σ}-invariant complex structure, corresponding to the interpretation as a coadjoint orbit for G. If Y_{Σ} is a compact, almost complex G_{Σ}-orbifold, the associated bundle $G \times_{G_{\Sigma}} Y_{\Sigma}$ has a canonically induced almost complex structure, and given a G_{Σ}-equivariant orbifold-vector bundle $E_{\Sigma} \to Y_{\Sigma}$, one can form the associated bundle $G \times_{G_{\Sigma}} E_{\Sigma} \to G \times_{G_{\Sigma}} Y_{\Sigma}$. In particular, one can apply this to the case where $Y_{\Sigma} = G_{\Sigma} \cdot \mu$ is an integral coadjoint orbit through a G_{Σ}-weight $\mu \in \Lambda^*_{\Sigma,+}$, and $E_{\Sigma} = G_{\Sigma} \times T C_{\mu}$ the corresponding pre-quantum line bundle. Then $\text{RR}(G_{\Sigma} \cdot \mu, G_{\Sigma} \times_{G_{\Sigma}} C_{\mu})$ is the irreducible G_{Σ}-representation $\chi_{\Sigma,\mu}$ labelled by μ. The associated bundle $G \times_{G_{\Sigma}} Y_{\Sigma}$ is just the coadjoint orbit $G \cdot \mu$, and the Riemann-Roch number of $G \times_{G_{\Sigma}} E_{\Sigma} = G \times_{G_{\Sigma}} C_{\mu}$ is by definition the holomorphic induction of $\chi_{\Sigma,\mu}$. Let

$$\text{Ind}_{G_{\Sigma}}^G : R(G_{\Sigma}) \to R(G)$$

denote the holomorphic induction map.

Theorem 3.6. Let Y_{Σ} be a compact almost complex G_{Σ}-orbifold, and $E_{\Sigma} \to Y_{\Sigma}$ a G_{Σ}-equivariant orbifold vector bundle. The G-equivariant Riemann-Roch number
of $G \times G_\Sigma$ \(E_\Sigma\) is related to the \(G_\Sigma\)-equivariant Riemann-Roch number of \(E_\Sigma\) by holomorphic induction:

\[(28) \quad \text{RR}(G \times G_\Sigma Y_\Sigma, G \times G_\Sigma E_\Sigma) = \text{Ind}_{G_\Sigma}^G \text{RR}(Y_\Sigma, E_\Sigma)\]

Proof. The proof is by applying the fixed point formula to both sides. We write \(\chi = \text{RR}(G \times G_\Sigma Y_\Sigma, G \times G_\Sigma E_\Sigma)\) and \(\chi_\Sigma = \text{RR}(Y_\Sigma, E_\Sigma)\), and denote by \(N_\Sigma(\mu)\) the multiplicity of a \(G_\Sigma\)-weight \(\mu \in \Lambda^*_\Sigma\) in \(\chi_\Sigma\). Since \((G/G_\Sigma)^T = W/W_\Sigma, \)

\[M^T = (G \times G_\Sigma Y_\Sigma)^T = W \times W_\Sigma Y_\Sigma^T.\]

We will think of \(W/W_\Sigma\) as the set of all \(w \in W\) such that \(w \cdot t^*_\Sigma \subset t^*_{\Sigma,+}\), so that

\[\chi(e^\xi) = \sum_{F \subset M^T} \chi_F(e^\xi) = \sum_{w \in W/W_\Sigma} \sum_{F \subset Y_\Sigma^T} \chi_F(w^{-1}(\xi)).\]

Consider the \(T\)-action on \(T_x M\), for \(x \in Y_\Sigma^T \subset M^T\). The weights for the action on \(T_x M/T_x Y_\Sigma\) are just \(\mathfrak{g}_+ - \mathfrak{g}_{\Sigma,+}\), the set of positive roots of \(G\) that are not positive roots for \(G_\Sigma\). It follows that for all \(F \subset Y_\Sigma^T \subset M^T\), the fixed point contributions \(\chi_{\Sigma,F}(\xi), \chi_F(\xi)\) with respect to \(Y_\Sigma, M\) are related by

\[\chi_F(\xi) = \frac{\chi_{\Sigma,F}(\xi)}{\prod_{\beta \in \mathfrak{g}_+ - \mathfrak{g}_{\Sigma,+}} (1 - e^{-2\pi i \beta,\xi})}.\]

Summation over all fixed point contributions in \(Y_\Sigma^T \subset M^T\) gives, by another application of the fixed point formula,

\[\chi(e^\xi) = \sum_{w \in W/W_\Sigma} \sum_{F \subset Y_\Sigma^T} \chi_{\Sigma,F}(w^{-1}(\xi)) = \sum_{w \in W/W_\Sigma} \prod_{\beta \in \mathfrak{g}_+ - \mathfrak{g}_{\Sigma,+}} (1 - e^{-2\pi i \beta,\xi}) \sum_{\mu \in \Lambda^*_\Sigma} N_\Sigma(\mu) \sum_{w \in W/W_\Sigma} \frac{\rho_{\Sigma,\mu}(w^{-1}(\xi))}{\prod_{\beta \in \mathfrak{g}_+ - \mathfrak{g}_{\Sigma,+}} (1 - e^{-2\pi i \beta,w^{-1}(\xi)})}.\]

The same formula with \(N_\Sigma(\mu) = 1\) gives an expression for \(\text{Ind}_{G_\Sigma}^G \rho_{\Sigma,\mu}\). Thus

\[\chi(e^\xi) = \sum_{\mu \in \Lambda^*_\Sigma} N_\Sigma(\mu) \text{Ind}_{G_\Sigma}^G \rho_{\Sigma,\mu}(e^\xi) = \text{Ind}_{G_\Sigma}^G \chi_\Sigma(e^\xi).\]

\[\square\]

4. SYMPLECTIC SURGERY

Let \((M, \omega)\) be a symplectic orbifold, and \(S^1 \times M \to M\) a Hamiltonian action with moment map \(\Phi : M \to \mathbb{R}\). Suppose that 0 is a regular value of \(\Phi\), and let \(M_{\text{red}} = \Phi^{-1}(0)/S^1\) be the symplectic quotient. The symplectic cutting construction of Lerman \cite{L} yields two new symplectic orbifolds \(M_-, M_+\), such that, as a set,

\[(29) \quad M_- = M_{\text{red}} \cup \{\Phi < 0\}, \quad M_+ = M_{\text{red}} \cup \{\Phi > 0\},\]

and the embeddings of \(M_{\text{red}}, \{\Phi < 0\}, \{\Phi > 0\}\) are symplectic.

The structure of symplectic orbifolds on these spaces is obtained as follows. Consider the product \(M \times \mathbb{C}\), with symplectic form \(\omega - \frac{i}{2} dz \wedge d\bar{z}\), and the diagonal circle action \(e^{i\phi} \cdot (x, z) = (e^{i\phi} \cdot x, e^{-i\phi} z)\), with moment map \(\psi(x, z) = \Phi(x) - |z|^2\).
Then 0 is a regular value of \(\psi \), and so \(\psi^{-1}(0)/S^1 \) is a symplectic orbifold. The level set \(\psi^{-1}(0) \) consists of two components:

\[
\psi^{-1}(0) = \{(x,z)| \Phi(x) > 0, \; |z|^2 = \Phi(x)\} \cup (\Phi^{-1}(0) \times \{0\}).
\]

It is now easy to see that the map

\[
\alpha : \{\Phi > 0\} \to \psi^{-1}(0) \subset M \times \mathbb{C}, \; x \mapsto (x, \sqrt{\Phi(x)})
\]

satisfies \(\alpha^*(\omega - \frac{1}{2} dz \wedge d\bar{z}) = \omega \). This identifies \(\psi^{-1}(0)/S^1 = M_+ \). For \(M_- \), one simply takes the opposite circle action on \(\mathbb{C} \).

Example: Take \(M = \mathbb{C}P(1) \), with the Fubini-Study form, and consider the natural action of \(S^1 \), \(e^{i\theta} [z_0 : z_1] = [e^{i\theta} z_0 : z_1] \). A moment map for this action is given by \(\Phi([z_0 : z_1]) = -\frac{|z_0|^2}{|z_1|^2} + \frac{1}{2} \). Zero is a regular value of \(\Phi \), the action of \(S^1 \) on \(\Phi^{-1}(0) \) is free, and the cut spaces are spheres with half the volume of \(\mathbb{C}P(1) \). Consider, on the other hand, the moment map \(\Phi(k) = k \Phi \), for \(k \in \mathbb{N} \), which lets \(S^1 \) rotate \(\mathbb{C}P(1) \) with \(k \)-fold speed. For this case, the \(S^1 \) action on the zero level set is only locally free, and the cut spaces are teardrop-orbifolds with a \(\mathbb{Z}/k\mathbb{Z} \)-singularity at \(M_{\text{red}} = \{pt.\} \).

For the cutting construction, the Hamiltonian \(S^1 \) action needs only be locally defined, in some neighborhood of the hypersurface \(Z = \Phi^{-1}(0) \). The corresponding cut space \(M_{\text{cut}} \) (equal to \(M_+ \cup M_- \) for a globally defined \(S^1 \) action) has one or two connected components, depending on whether or not \(Z \) disconnects \(M \). We denote the two copies of \(M_{\text{red}} \) in \(M_{\text{cut}} \) by \(M_{\text{cut}}^{\pm} \).

Consider for example the torus \(M = T^2 = \mathbb{R}^2/\mathbb{Z}^2 \), with the action of \(S^1 \) defined by \(e^{2\pi i t} [x,y] = [x+t,y] \). In a neighborhood of the circle \(e^{2\pi i t}, [0,0] \), one can take \(\Phi([x,y]) = y \) as a moment map, and \(M_{\text{cut}} \) is symplectomorphic to \(S^2 \).

Remark 4.1.

a. If a Lie-group \(G \) acts on \(M \) in a symplectic fashion, and if this action commutes with the action of \(S^1 \), one obtains a symplectic \(G \)-action on \(M_{\text{cut}} \). If the action on \(M \) has a moment map, the restriction of this moment map to \(M - Z \) extends smoothly to a \(G \)-moment map on \(M_{\text{cut}} \).

b. Consider \(Z \to M_{\text{red}} \) as an orbifold principal \(S^1 \)-bundle. The normal orbifold-bundle of \(M_{\text{red}} \), in \(M_{\text{cut}} \), is equal to the associated bundle \(Z \times \mathbb{S}^1, \mathbb{C} \), where \(S^1 \) acts on \(\mathbb{C} \) by the character \(e^{\pm i\phi} \). In particular, they have opposite Chern classes.

c. The cutting construction does not use nondegeneracy of \(\omega \).

Let us return to the case where the \(S^1 \) action is globally defined, and consider an \(S^1 \)-equivariant Hermitian orbifold vector bundle \(E \to M \). Let \(\pi_1 : M \times \mathbb{C} \to M \) denote projection to the first factor, and define \(E_{\text{red}} = (E|_{\Phi^{-1}(0)})/S^1 \) and \(E_{\pm} = (\pi_1^* E|_{\psi^{-1}(0)})/S^1 \), with the induced Hermitian structure. The mapping (31) induces a mapping

\[
E|_{\{\Phi > 0\}} \times S^1 \to \pi_1^* E,
\]

which descends to an isomorphism of Hermitian vector bundles \(E_+|_{\{\Phi > 0\}} \cong E|_{\{\Phi > 0\}} \), and similarly of course \(E_-|_{\{\Phi < 0\}} \cong E|_{\{\Phi < 0\}} \). It follows that cutting is local on the level of Hermitian vector bundles, in the following sense: Suppose that the \(S^1 \) action on \(E \to M \) is only defined near a given \(S^1 \)-invariant hypersurface \(Z = \Phi^{-1}(0) \). Then one can define a reduced Hermitian bundle \(E_{\text{red}} \to ...
\(M_{\text{red}}\) and a cut bundle, \(E_{\text{cut}} \to M_{\text{cut}}\). If a compact Lie group \(G\) acts on \(E \to M\) and if all data are \(G\)-invariant, one obtains smooth \(G\)-actions on \(E_{\text{red}}\) and \(E_{\text{cut}}\). Given this situation, let us now study the relation of the \((G\text{-equivariant})\) Riemann-Roch numbers of \(M\) and its cut- and reduced spaces.

Theorem 4.2 (Gluing Formula). The \((G\text{-equivariant})\) Riemann-Roch numbers of \(E\), \(E_{\text{cut}}\), \(E_{\text{red}}\) are related by

\[
\text{RR}(M, E) = \text{RR}(M_{\text{cut}}, E_{\text{cut}}) - \text{RR}(M_{\text{red}}, E_{\text{red}}).
\]

Proof. Let us assume \(G = \{1\}\) for simplicity of notation; for the general case, one simply replaces characteristic classes by \((G\text{-equivariant})\) characteristic classes. Let \(B \subset M\) be a tubular neighborhood of \(Z\), such that the Hamiltonian \(S^1\) action is defined and locally free on \(B\). Pick compatible almost complex structures of \(M\) and \(M_{\text{cut}}\) in such a way that they agree over some neighborhood of \(M - B\). Also, choose Hermitian connections \(\nabla, \nabla_{\text{cut}}\) on \(E, E_{\text{cut}}\) that agree over some neighborhood of \(M - B\) and are \(S^1\)-invariant over \(B\).

Let \(\tilde{B}\) be the preimage of \(B\) in \(\tilde{M}\). Over \(\tilde{B}\), we can introduce \(S^1\)-equivariant characteristic classes, and write

\[
\text{RR}(M, E) = \int_{\tilde{M} - \tilde{B}} \frac{1}{d_{\tilde{M}}} \text{Td}(\tilde{M}) \text{Ch}_{\tilde{M}}(\tilde{E}) + \int_{\tilde{B}} \frac{1}{d_{\tilde{M}}} \text{Td}_{\mathbb{R}}(\tilde{M}, \xi) \text{Ch}_{\mathbb{R}}(\tilde{E}, \xi) \bigg|_{\xi = 0},
\]

To the second term, we apply the localization formula for manifolds with boundary, and rewrite it in the form

\[
\int_{\partial B} \alpha(\xi) \bigg|_{\xi = 0},
\]

for some equivariant differential form \(\alpha \in \mathcal{A}_G(\partial B)\). Let us do the same computation for \(M_{\text{cut}}\), with \(B\) replaced by \(B_{\text{cut}}\). \(M_{\text{cut}}\) contains two copies of \(M_{\text{red}}\) as codimension 2, \(S^1\)-fixed suborbifolds, but with opposite normal bundles, and the complement is symplectomorphic to \(M - Z\). We hence obtain the same terms as above, plus two additional terms corresponding to the two copies of \(M_{\text{red}}\):

\[
\int_{M_{\text{red}}} \frac{1}{d_{M_{\text{red}}}} \text{Td}(\tilde{M}_{\text{red}}) \text{Ch}_{\mathbb{R}}(\tilde{E}_{\text{red}}, \xi) + \int_{M_{\text{red}}} \frac{1}{d_{M_{\text{red}}}} \text{Td}_{\mathbb{R}}(\tilde{M}_{\text{red}}, \xi) \text{Ch}_{\mathbb{R}}(\tilde{E}_{\text{red}}, \xi),
\]

evaluated at \(\xi = 0\). But

\[
D_{\mathbb{R}}(\tilde{M}_{\text{red}}, \tilde{\nu}, \tilde{\nu}^*)^{-1} + D_{\mathbb{R}}(\tilde{M}_{\text{red}}, \tilde{\nu}, \tilde{\nu}^*)^{-1} = 1,
\]

(using the formal identity \((1 - z)^{-1} + (1 - z^{-1})^{-1} = 1\), so the sum of these terms is just \(\chi_{\text{red}}\).

Remark 4.3.

a. Notice that in the above proof, the Chern character may be replaced by any characteristic class of \(\tilde{E}\).

b. For any symplectic orbifold \(M\), let \(\tau(M) = \int_M \text{Td}(M)\). The above Theorem, applied to the trivial bundle \(E = M \times \mathbb{C}\), greatly simplifies the computation of \(\tau(M)\).

i) Consider for example the cutting of \(M = \mathbb{C}P(n)\) along the equator sphere \(Z = S^{2n-1}\). Then \(M_{\text{cut}}\) consists of two copies of \(\mathbb{C}P(n)\), and the reduced space is \(\mathbb{C}P(n-1)\). Hence \(\tau(\mathbb{C}P(n)) = 2\tau(\mathbb{C}P(n)) - \tau(\mathbb{C}P(n - 1))\), or \(\tau(\mathbb{C}P(n)) = \tau(\mathbb{C}P(n - 1)) = \ldots = \tau(\mathbb{C}P(0)) = 1\).
(ii) Consider next a Riemann surface M of genus g. By cutting along g circles, M can be made into a sphere, hence $\tau(M) = \tau(S^2) - g = 1 - g$.

(iii) Let M be any symplectic manifold, and $p \in M$. The symplectic analogue of the blow-up $Bl_p(M)$ of M at p (see (23)) replaces p by a “small” $\mathbb{C}P(n-1)$, and may be regarded as a cutting operation (see (25)), with $M_+ = Bl_p(M)$, $M_- = \mathbb{C}P(n)$, and $M_{\text{red}} = \mathbb{C}P(n-1)$. Since $\tau(\mathbb{C}P(k))$ is equal to one, $\tau(Bl_p(M)) = \tau(M) - \tau(\mathbb{C}P(n)) + \tau(\mathbb{C}P(n-1)) = \tau(M)$. More generally, one can consider symplectic blow-ups $Bl_N(M)$ along a symplectic submanifold $N \subset M$, and a similar argument shows that $\tau(Bl_N(M)) = \tau(M)$.

(iv) Let M_k be the teardrop-orbifold of order k. Recall from the first example in this section that M_k can be constructed by cutting the sphere $\mathbb{C}P(1) = S^2$, with S^1 acting with k-fold speed. The gluing formula $RR(\mathbb{C}P(1), \mathbb{C}) = 2 RR(M_k, \mathbb{C}) - RR(pt, \mathbb{C})$ shows (using Kawasaki’s formula) that

$$1 = 2(\tau(M_k) + \frac{1}{k} \sum_{j=1}^{k-1} \frac{1}{1 - e^{2\pi i j/k}}) - 1$$

$$= 2(\tau(M_k) + \frac{1}{2}(1 - \frac{1}{k})) - 1.$$

Hence $\tau(M_k) = \frac{1}{2}(1 + \frac{1}{k})$. More generally, if M is a 2-dimensional symplectic orbifold of genus g, with r orbifold-singularities of order k_1, \ldots, k_r, one finds

$$\tau(M) = 1 - g - \frac{1}{2} \sum_{i=1}^{r} (1 - \frac{1}{k_i}).$$

(35)

c. As pointed out in (29), the original space can be recovered from the cut space by means of the symplectic gluing procedure of Gompf (13): Let N be a symplectic orbifold, and let $\iota_i : N \to M_i$ be symplectic embeddings into two given symplectic orbifolds with $\dim M_i = \dim N + 2$. If the corresponding normal bundles ν_i are opposite, $\nu_1^* \cong \nu_2^*$. Gompf’s method yields a new symplectic manifold M, which as a set is a union of $M_1 - N$, $M_2 - N$ and the unit circle bundle of $\nu_1 = \nu_2^*$. One can show that the gluing procedure is quantizable as well, i.e. given symplectic orbifold vector bundles E_i with the same restriction to $N \subset M_i$, then there is a symplectic orbifold vector bundle E on M, and the E_i are obtained from E by cutting.

Let Z be the generic stabilizer for the action of S^1 on $\Phi^{-1}(0)$. Then the action of $H = S^1/Z$ on $\Phi^{-1}(0)$ is generically free. We may use H instead of the original S^1 for the cutting construction, and obtain a cut space M_+ which is again the disjoint union of M_{red} and $\{ \Phi > 0 \}$, but they are glued together in a different way. Conversely, starting from a generically free action on $\Phi^{-1}(0)$, with corresponding cut space M_+, obtains new cut spaces $M^{(l)}_+$ ($l \in \mathbb{N}$) by replacing S^1 by its l-fold cover. The normal bundle $\nu^{(l)}$ of M_{red} in $M^{(l)}_+$ is equal to the quotient of ν by the action of Z, and the equivariant Chern class (where we consider the action of the original $G = S^1$ on $M^{(l)}_+$) gets divided by a factor of l. The space $M^{(l)}_{\text{red}}$ consists simply of l copies of M_{red}, in particular $d_{\tilde{M}^{(l)}_{\text{red}}} = l d_{\tilde{M}_{\text{red}}}$. Therefore, the fixed point
contribution $\chi_{M_{\text{red}}}^{(l)}$ becomes

$$\chi_{M_{\text{red}}}^{(l)}(e^{i\xi}) = \frac{1}{l} \int_{M_{\text{red}}} \frac{1}{\text{Td}_R(M_{\text{red}})} \frac{1}{\text{Ch}_R(M_{\text{red}})} \frac{1}{\text{D}_R^{M_{\text{red}}}} \sum_{j=0}^{l-1} \frac{1}{\text{D}_R^{M_{\text{red},j}}} \left(\hat{\nu}^{(l)} + 0 \right),$$

where $\hat{M}_{\text{red},j}$ denotes the jth copy of M_{red}. The sum over j can be computed, using Equation (27):

$$\frac{1}{l} \sum_{j=0}^{l-1} \frac{1}{\text{D}_R^{M_{\text{red},j}}} \left(\hat{\nu}^{(l)} + 0 \right) = \frac{1}{\text{D}_R^{M_{\text{red}}}} \left(\hat{\nu}, \xi \right).$$

This leads to the following observation:

Proposition 4.4. The fixed point contributions $\chi_{M_{\text{red}}}^{\alpha}(e^{i\xi})$ to $\text{RR}(M_{\pm}, E_{\pm})$ depend only on the cutting hypersurface Z, not on how the projection $Z \rightarrow M_{\text{red}}$ is made into an orbifold S^1 bundle.

We will now consider the special case that $E = L$ is a pre-quantum line bundle, with Hermitian connection satisfying the pre-quantum condition

$$\frac{i}{2\pi} \text{curv}(\nabla) = \omega,$$

and such that the S^1-action on M lifts to L according to (31). It is well known that $L_{\text{red}} = (L|\Phi^{-1}(0))/S^1$ has a unique Hermitian connection, such that the pullback to $\Phi^{-1}(0)$ is equal to the restriction of ∇.

The trivial line bundle $L_C = C \times C$, with Hermitian fiber metric

$$\langle w_1, w_2 \rangle = \exp(-\pi |z|^2) \bar{w}_1 \cdot w_2,$$

$(w_i \in (L_C)_{\bar{z}})$ and connection 1-form $A = -\pi z d\bar{z}$ is a pre-quantum bundle for the symplectic structure $-\frac{i}{\pi} d\bar{z} \wedge d\bar{z}$. The pre-quantum lift (31) of the S^1 action on C to L_C is simply the trivial action. Hence, $L \boxtimes L_C$ is a pre-quantum line bundle for $M \times C$, and the above prescription gives a pre-quantum bundle for M_{+},

$$L_{+} = (L \boxtimes L_C|\psi^{-1}(0))/S^1.$$

Notice that over $\{\Phi > 0\}$, we have now two pre-quantum line bundles: One coming from the embedding into M, the other from the embedding into M_{+}.

Theorem 4.5. There exists a canonical isomorphism of pre-quantum line bundles with connection, $L_{+}|\{\Phi > 0\} \cong L|\{\Phi > 0\}$, and $L_{+}|M_{\text{red}}^{-1} \cong L_{\text{red}}$.

Proof. Since L_C is trivial, $L \boxtimes L_C \cong \pi_{1}^{L}$ as a complex vector bundle, but the fiber metric is multiplied by a factor $e^{-\pi |z|^2}$, and the connection is

$$\nabla \boxtimes \nabla C = \pi_{1}^{L} \nabla - \pi z d\bar{z}.$$

The map

$$\alpha : \{\Phi > 0\} \rightarrow \psi^{-1}(0) \subset M \times C, \ x \mapsto (x, \sqrt{\Phi(x)})$$

in (31) is covered by a bundle map

$$\beta : L|\{\Phi > 0\} \rightarrow \pi_{1}^{L}, \ \lambda \mapsto \lambda e^{\frac{\Phi(x)}{2}}$$

which preserves the fiber metric, and satisfies

$$\beta^{*} (\nabla) = \nabla + \frac{\pi}{2} d\Phi, \ \beta^{*} (\pi z d\bar{z}) = \frac{\pi}{2} d\Phi.$$

This proves the first isomorphism, and the second is obvious. \[\square\]
A similar result holds of course for $L_− \rightarrow M_−$. As a consequence of this Theorem, cutting is local even on the level of pre-quantum line bundles.

It is possible to cut at nonzero levels $α ∈ \mathbb{R}$ of the moment map, by simply redefining the moment map used for the cutting construction as $Φ′ = Φ − α$. Given a S^1-invariant complex vector bundle $E → M$, one again obtains cut bundles E_+ and $E_−$. Notice however that if L is a pre-quantum line bundle for M, the cut bundles obtained in this way are not pre-quantum line bundles for $M_±$. Similarly, $L|Φ^{-1}(α)/S^1$ is not a pre-quantum bundle for $M_α = Φ^{-1}(α)/S^1$, since the S^1 action on L satisfies the pre-quantum condition with respect to $Φ$, but not with respect to $Φ′$. If $α$ is an integer, the correct lift is obtained by tensoring L with the trivial line bundle \mathbb{C}, with S^1 acting by the character $e^{-2πi(α,ξ)}$, before applying the cutting construction. More generally, if $α$ is a rational number, one can choose $k ∈ \mathbb{N}$ such that $kα$ is an integer, and cut with respect to the k-fold cover of the original S^1. This will introduce extra orbifold singularities in $M_±$, thereby making $M_±$ quantizable by means of orbifold-line bundles.

To conclude this section, let us briefly explain (following [10]) why the gluing formula implies the Guillemin-Sternberg conjecture for the case $G = S^1$ (and therefore also for the abelian case $G = T$, using reduction in stages). It can be deduced from the fixed point formula that the multiplicity of 0 is equal to $RR(M_0, L_0)$ if zero is a maximum or minimum of $Φ$, since in that case M_0 is contained in M as a fixed point manifold, and $L_0 = L|M_0$. Let $N_±$ be the multiplicity functions for the cut bundles $L_± → M_±$. By the gluing formula,

$$N(μ) = N_+(μ) + N_-(μ) − RR(M_0, L_0)δ_μ,0.$$

Since 0 is a maximum of the moment map for $M_−$ and a minimum for M_+, we have $N_+(0) = N_−(0) = RR(M_0, L_0)$. Hence $N(0) = RR(M_0, L_0)$, q.e.d. In particular, a weight does not occur if it is not in the image of the moment map.

Corollary 4.6. (See [10]) Let (M, L) be a quantizable Hamiltonian S^1 space, with multiplicity function $N(μ)$, and suppose 0 is a regular value of the moment map. Then the multiplicity function for the cut bundle $L_+ → M_+$ is given by $N_+(μ) = N(μ)$ if $μ ≥ 0$, and $N_+(μ) = 0$ if $μ < 0$.

5. **Multiple Cutting**

5.1. **Cutting with respect to polytopes.** Let T be a k-torus, and M a compact connected Hamiltonian T-orbifold, with moment map $Φ : M → \mathfrak{t}^*$. Denote

$$M_θ = \{ x ∈ M | t_x = θ\}.$$

(37)

The connected components of $M_θ$ are symplectic suborbifolds of $M_θ$. Let $M = \bigcup M_i$ be the corresponding decomposition of M, where the M_i are the connected components of the various $M_θ$, and let \mathfrak{h}_i denote the isotropy group corresponding to M_i.

By the convexity theorem of Atiyah [2] and Guillemin-Sternberg [13], and its extension to the orbifold case by Lerman and Tolman [27], the image $Δ = Φ(M)$ is equal to the convex hull of the image of the fixed point set, $Φ(M^T)$. More precisely, the closure of $Φ(M_i)$ is a convex polytope $Δ_i$ of codimension $\dim \mathfrak{h}_i$.

4Given an action of a compact Lie group G on an orbifold M, the set M_H of points with stabilizer G_x equal to some fixed group H is in general not a suborbifold, because the action of G_x does not always lift to an action in orbifold charts around x.

which is contained in an affine space of the form \(\{ \alpha \} + h_0^0 \subset t^* \). It turns out that the \(\Phi(M_i) \) define a subdivision of \(\Delta \) into rational convex polytopes. In particular, the connected components of the set \(\Delta_* \subset \Delta \) of regular values are convex open subpolytopes of \(\Delta \).

Let \(R \) be a rational, convex polytope \(R \subset t^* \), i.e. a polytope defined by a finite number of inequalities and equalities,

\[
\begin{align*}
\{ \langle \alpha, v_i \rangle & \geq \mu_i : i = 1, \ldots, r \\
\langle \alpha, v_i \rangle & = \mu_i : i = r + 1, \ldots, N
\end{align*}
\]

where \(v_i \in \Lambda \) and \(\mu_i \in \mathbb{R} \). Denote by \(R_\mathbb{R} \) the affine subspace generated by \(R \), and by \(T_R \subset T \) the torus perpendicular to \(R_\mathbb{R} \). We will call \(R \) admissible, if it satisfies the following conditions:

(A) The affine hyperplanes \(\langle \alpha, v_i \rangle = \mu_i \), \(i = 1, \ldots, N \), are all transversal.

(B) The faces of \(R \) are transversal to all (interior and exterior) faces of \(\Delta \).

Let \(\alpha \in R \cap \Delta \), and \(x \in \Phi^{-1}(\alpha) \). Let \(R_\alpha \subset R \) be the unique face that contains \(\alpha \) in its interior. Condition (B) is equivalent to \(t_\mathbb{R} + t_{R_\alpha} = t^* \), or to

(B') For all \(\alpha \in R \cap \Delta \) and \(x \in \Phi^{-1}(\alpha) \), \(t_\mathbb{R} \cap t_{R_\alpha} = \{0\} \).

For the pre-quantization setting, we will need the additional condition

(Q) For all \(i = 1, \ldots, N \), \(\mu_i \) is an integer.

Let \(T_i \) be the circle group with generator \(v_i \), and \(T' = \prod T_i \). Let \(T' \) act on the product \(M \times \mathbb{C}^r \), with moment map

\[
\psi_i(x, z) = \begin{cases}
\langle \Phi(x), v_i \rangle - \mu_i - |z_i|^2 & : i = 1, \ldots, r \\
\langle \Phi(x), v_i \rangle - \mu_i & : i = r + 1, \ldots, N.
\end{cases}
\]

For all \(I \subset \{1, \ldots, N\} \), let \(I' \) be the complementary set, \(R_I \) the subpolytope of \(R \) defined by \(\langle \alpha, v_i \rangle = \mu_i \) for all \(i \in I \), and \(T_I = \prod_{i \in I} T_i \). Then

\[
\psi^{-1}(0) \cong \bigcup_I \Phi^{-1}(\text{int}(R_I)) \times T_I.
\]

Assumption (A) implies that for all \(R_I \neq \emptyset \), \(T_I \) is a finite cover of \(T_{R_I} \), and by assumption (B), it acts locally freely on \(\psi^{-1}(\text{int}(R_I)) \). Hence \(T' \) acts locally freely on \(\psi^{-1}(0) \), and the cut space

\[
M_R := \psi^{-1}(0)/T'
\]

is a symplectic orbifold. Moreover, we have a decomposition of \(M_R \) into symplectic suborbifolds,

\[
M_R = \bigcup_{R' \subset R} W_{R'}
\]

where

\[
W_{R'} = \Phi^{-1}(\text{int}(R'))/T_{R'}.
\]

Remark 5.1. a. For all faces \(R_I \subset R \), there is a natural embedding \(M_{R_I} \hookrightarrow M_R \) as a symplectic suborbifold of codimension \(2(\dim R - \dim R_I) \). The normal bundle \(N_I \) of \(\Phi^{-1}(\text{int}(R_I))/T_I \) in \(M_R \) is given by the associated bundle \(\Phi^{-1}(\text{int}(R_I)) \times_{T_I} \mathbb{C}^{|I|} \), with the standard action of \(T_I \) on \(\mathbb{C}^{|I|} \). Let us rewrite this in terms of \(T_{R_I} \). The covering mapping \(T_I \rightarrow T_{R_I} \) gives rise to an isomorphism \(t_I \rightarrow t_{R_I} \). Let \(\Lambda_I \subset \Lambda \) be the lattice generated by the \(v_i, i \in I \), and
\[N_I = \bigoplus_{i \in I} N_{-\alpha_i}, \]

where \(N_{-\alpha_i} \) is the associated bundle

\[\Phi^{-1}(\text{int}(R_I)) \times_{T_{R_I}} \mathbb{C} \]

for the orbi-character \(\exp(-2\pi i (\alpha_i, \xi)) \).

b. Given a symplectic action of a Lie group \(G \) on \(M \) which commutes with the \(T \)-action, one obtains a symplectic \(G \)-action on \(M_{R} \). If the action is Hamiltonian, with moment map \(J : M \to \mathfrak{g}^* \), the induced action on \(M_{R} \) is Hamiltonian, and the moment map \(J_{R} \) is obtained from the \(T_{I} \)-invariant restrictions \(J|\Phi^{-1}(\text{int}(R_I)) \). In particular, one has a Hamiltonian \(T \)-action on \(M_{R} \), with moment polytope \(\Delta_{R} = \Phi_{R}(M_{R}) = \Delta \cap R \).

c. Cutting is local, in the sense that for all open subsets \(U \subset t^* \), there is a canonical symplectic isomorphism

\[\Phi^{-1}(U) \cong \Phi^{-1}(U)_{R}. \]

In particular, one does not always need a global \(T \)-action to define the cut space.

d. Given a \(T \times G \)-equivariant symplectic (resp. Hermitian) orbifold-vector bundle \(E \to M \), one obtains a \(T \times G \)-equivariant symplectic (resp. Hermitian) orbifold-vector bundle \(E_{R} \to M_{R} \), by letting

\[E_{R} = (E \boxtimes \mathbb{C})|\Psi^{-1}(0)/T', \]

where we use the action of \(T' \) on \(E \) induced by the canonical map \(T' \to T \), and the trivial action on \(\mathbb{C} \). More generally, one can let \(T' \) act on \(\mathbb{C} \) by a nontrivial character. (The gluing formulas proved in this paper won’t depend on this choice.) In particular, if \(E = L \) is a pre-quantum line bundle, one will only obtain a pre-quantum bundle \(L_{R} \) for \(M_{R} \) if condition (Q) is satisfied and if one uses the character \(\exp(-2\pi i (\mu, \xi)) \) for \(T' \). In the sequel, we will always make this choice for pre-quantum line bundles, without mentioning this explicitly.

For each face \(R_{I} \subset R \), there is a natural identification

\[E_{R}|(\Phi^{-1}(\text{int}(R_I)))/T_{I} = (E|\Phi^{-1}(\text{int}(R_I)))/T_{I}. \]

If \(E = L \) is a pre-quantum line bundle, this identification preserves the Hermitian structure and the connection.

e. The \(T \times G \)-equivariant Riemann-Roch numbers \(\text{RR}(M_{R}, E_{R}) = \chi_{R} \) depend only on the polytope \(R \), not on the choice of the \(v_{i}, \mu_{i} \). In fact, all \(T \)-fixed point contributions \(\chi_{R,F} \) are independent of this choice.

Example:
A compact Hamiltonian \(T \)-space \(M \) is called a symplectic toric orbifold if \(\dim M = 2 \dim T \) and the \(T \)-action is effective. By a theorem of Delzant, symplectic toric manifolds are completely classified by their moment polytopes \(\Phi(M) = \Delta \). Lerman and Tolman have shown that in the orbifold case, any rational simple polytope \(\Delta \subset t^* \) can occur as a moment map image. To specify \(M \), one needs in addition a positive integer attached to each facet \(\Delta_{i} \); this corresponds to choosing some lattice vector \(v_{i} \) perpendicular to \(\Delta_{i} \). It was mentioned in [26] that every symplectic toric
orbifold can be obtained by symplectic cutting: Let $M = \mathbb{C}P(1)^k$, with symplectic form on $\mathbb{C}P(1)$ equal to $l \in \mathbb{R}_{>0}$ times the Fubini-Study form. The moment map

$$\Phi_j(w_1, \ldots, w_k) = -l \frac{|w_j|^2 - 1}{|w_j|^2 + 1}$$

$(w_j \in \mathbb{C} \cup \{\infty\})$ defines a Hamiltonian $(S^1)^k$ action on M, with moment map image the cube $P_l = \{\alpha \in (\mathbb{R}^k)^* | -l \leq \alpha_j \leq l\}$. Consider a compact polytope R as above, and choose l large enough such that $R \subset \text{int}(P_l)$. The corresponding cut space M_R does not depend on l, and is the symplectic toric orbifold associated to R. If $l \in \mathbb{N}$, the lth power of the hyperplane bundle is a pre-quantum bundle for $(\mathbb{C}P(1), l\omega_{F.S.})$, and by taking exterior tensor products one obtains a pre-quantum bundle L for M. The equivariant character $\chi = \text{RR}(M, L)$ for the T-action on M is given by

$$\chi(z) = \prod_{j=1}^k \left(\sum_{\nu_j = -l}^l z_{\nu_j} \right) = \sum_{\alpha \in P_l} z^\alpha,$$

for $z = (z_1, \ldots, z_k) \in T$. Hence, by applying the equivariant version of Corollary 4.6 in stages, one recovers the well-known result that the equivariant Riemann-Roch number for M_R is given by

$$\text{RR}(M_R, L_R)(z) = \sum_{\alpha \in R} z^\alpha. \quad (48)$$

Remark 5.2. Letting D_R be the symplectic toric orbifold associated to R, and M any Hamiltonian T-space, one can actually define M_R to be the reduction at 0 of $M \times D_R^{-}$ with respect to the diagonal action; here D_R^{-} denotes D_R with the opposite symplectic structure.

5.2. The abelian gluing formula. Consider now a finite collection $\mathcal{R} = \{R\}$ of admissible polytopes, such that $\Delta \subset \bigcup_{R \in \mathcal{R}} R$, and such that for each polytope in \mathcal{R}, all faces are also in \mathcal{R}, and for all $R_1, R_2 \in \mathcal{R}$, the intersection $R_1 \cap R_2$ is a face of each. For each $R \in \mathcal{R}$, let $W_R = \Phi^{-1}((\text{int}(R))/T_R$. By (42), each cut space M_R is a disjoint union of symplectic orbifolds

$$M_R = \bigcup_{R' \subset R} W_{R'} \quad (49)$$

Although the gluing of the $W_{R'}$ depends on the choice of the v_i, the Riemann-Roch numbers $\text{RR}(M_R, E_R)$ are independent of this choice.

Theorem 5.3. (Gluing Formula) The Riemann-Roch numbers satisfy the gluing rule

$$(-1)^{\text{dim}\Delta} \text{RR}(M, E) = \sum_{R \in \mathcal{R}} (-1)^{\text{dim}\Delta} \text{RR}(M_R, E_R). \quad (50)$$

If a compact Lie group G acts on $E \to M$ and this action commutes with the action of T, the gluing rule holds for the corresponding G-equivariant Riemann-Roch numbers.

We can actually prove a slightly stronger, local result. Write each $\text{RR}(M_R, E_R) = \chi_R$ as a sum over fixed point contributions $\chi_{R,F}$, where F ranges over the connected components of M_R^T.

Suppose $F \subset W_S$ is a connected component of a T-fixed point orbifold for some $S \in \mathcal{R}$. If $\dim S = \dim T$, W_S is an open subset of M, so F is also a fixed point orbifold for M, and clearly $\chi_F = \chi_{S,F}$. Suppose, on the other hand, that $\dim S < \dim T$. Then F is not a fixed point orbifold of M, and is a fixed point orbifold for M_R if and only if $\Phi_S(F) \in R$.

Theorem 5.4. *(Local gluing formula)* Let $F \subset \Phi^{-1}(\text{int}(S))/T_S$ be a fixed point orbifold, where $S \in \mathcal{R}$ is a polytope with $\dim S < \dim T$. Then

\begin{equation}
\sum_{R \ni \mu} (-1)^{\dim R} \chi_{R,F} = 0,
\end{equation}

where $\mu = \Phi_S(F)$.

Recall that for the S^1 case, we needed the identity $(1 - z)^{-1} + (1 - z^{-1})^{-1} = 1$ in the proof of the gluing formula. To prove Theorem 5.4 we need a somewhat more sophisticated version of this identity.

Consider a k-dimensional simplicial cone $C \subset \Lambda^*_R := t^*$, and let $\alpha_j \in \Lambda^* \otimes \mathbb{Z} \mathbb{Q}$ be linearly independent generating vectors for C, with the property that the lattice Λ_C^* generated by the α_j contains Λ^*. Let Λ_C be the dual lattice, and $\Gamma_C = \Lambda/\Lambda_C$. For all $\gamma \in \Gamma_C$, let $c_{\nu}(\gamma) = e^{\nu(\alpha_j, \gamma)}$, and define the following meromorphic function on the complexified torus T^C:

\begin{equation}
f_C(z) = \frac{1}{\#\Gamma_C} \sum_{\gamma \in \Gamma_C} \left(\prod_{j=1}^{k} (1 - c_{\nu}(\gamma)z^{\alpha_j}) \right)^{-1},
\end{equation}

where $z^\nu = \exp(2\pi i (\mu, \xi))$ if $z = \exp(\xi) \in T^C$. Notice that the individual summands on the right hand side are only functions on the covering torus $(\Lambda_R/\Lambda_C)^C$, but the sum is Γ_C-invariant and therefore descends to T^C. If C is a lower dimensional simplicial polytope, f_C is defined similarly, by considering the lattice $(\mathbb{R}^C \cap \Lambda^*)_C$.

Lemma 5.5. On the set of all $z \in T^C$ such that $|z^\mu| < 1$ for all $\mu \in C - \{0\}$,

\begin{equation}
f_C(z) = \sum_{\mu \in C} z^\mu.
\end{equation}

Proof. By Taylor’s expansion,

\[
f_C(z) = \frac{1}{\#\Gamma_C} \sum_{\nu_j \geq 0} \left(\sum_{\gamma \in \Gamma_C} e^{2\pi i \sum_{j} \nu_j (\alpha_j, \gamma)} \right) z^{\sum j \nu_j \alpha_j}.
\]

But the sum over Γ_C equals $\#\Gamma_C$ if $\sum_j \nu_j \alpha_j \in \Lambda^*$, 0 otherwise. \hfill \square

Recall now that a simplicial fan in Λ^*_R is a collection $\mathcal{C} = \{ C \}$ of simplicial cones, with the property that for each cone C in \mathcal{C}, all faces are also in \mathcal{C}, and the intersection of any two cones in \mathcal{C} is a face of each. The fan is called complete if the C’s cover all of Λ_R. A fan \mathcal{C}' is called a refinement of \mathcal{C} if any cone in \mathcal{C} is a union of cones in \mathcal{C}'. We define

\begin{equation}
f_{\mathcal{C}}(z) = \sum_{C \in \mathcal{C}} (-1)^{\dim C} f_C(z).
\end{equation}

It follows from Lemma 5.5 that $f_{\mathcal{C}}(z)$ is invariant under (simplicial) refinements.
Lemma 5.6. If \(\mathcal{C} \) is a complete simplicial fan,
\[
(55) \quad \sum_{C \in \mathcal{C}} (-1)^{\dim C} f_C(z) = 0.
\]

Proof. Let \(\beta_1, \ldots, \beta_k \in \Lambda^* \) be a lattice basis, and \(\mathcal{C}_1 \) the simplicial fan whose cones are generated by all subsets of \(\pm \beta_1, \ldots, \pm \beta_k \) not containing both \(\pm \beta_j \), for any \(j \). Let \(\mathcal{C}_2 \) be the fan whose cones are all intersections of cones in \(\mathcal{C}, \mathcal{C}_1 \), and let \(\mathcal{C}_3 \) be a simplicial refinement of \(\mathcal{C}_2 \). Since \(\mathcal{C}_3 \) refines both \(\mathcal{C}, \mathcal{C}_1 \), it follows that \(f_{\mathcal{C}} = f_{\mathcal{C}_3} = f_{\mathcal{C}_1} \). But
\[
f_{\mathcal{C}_1}(z) = (-1)^k \prod_{j=1}^{k} \left(\frac{1}{1 - z^{\beta_j}} + \frac{1}{1 - z^{-\beta_j}} - 1 \right) = 0,
\]
q.e.d.

Proof of Theorem 5.4. Without loss of generality, we may assume \(\mu = 0 \). We will also assume \(G = \{ e \} \) for simplicity, the general case is obtained by working with \(T \times G \)-equivariant characteristic classes.

For each polytope \(R \ni 0 \), let \(C = C_R \) be the cone \(\mathbb{R}_{\geq 0} R \), and let \(\mathcal{C} = \{ C \} \) be the fan obtained in this way. Since the statement of the theorem depends only on local data in a neighborhood of \(\Phi^{-1}(0) \), we can assume without loss of generality that \(\mathcal{R} = \mathcal{C} \). Let us first consider the case \(\dim S = 0 \), which implies that \(S = \{ 0 \} \) is a vertex of all \(C \in \mathcal{C} \). This means in particular that \(0 \) is a regular value of \(\Phi \), and that \(F = M_0 = \Phi^{-1}(0)/T \). By assumption (A), \(\mathcal{C} \) is a complete simplicial fan in \(t^* \).

We now have to investigate how the local contributions from the fixed point formula add up. Notice that the multiplicity of the fixed point manifold \(F \subset M_C \) depends on \(C \). In fact, the generic isotropy group of \(F \) as a suborbifold of \(M_C \) is a \(\# \Gamma_C \)-fold cover of the isotropy group of \(F \) as identified with \(M_S \), since this is the “twist” of the normal bundle \(N_C \) of \(F \) in \(M_C \). It follows that the associated orbifold \(\tilde{F}_C \) of \(F \) considered as a suborbifold of \(M_C \) is a \(\# \Gamma_C \)-fold cover of \(\tilde{F} := \tilde{F}_S \).

By (44), there is an explicit description of \(N_C \): Suppose the cone \(C \) is generated by the orbi-weights \(\alpha_j \). For each orbi-weight \(\alpha \in \Lambda^* \otimes \mathbb{Q} \), let \(N_\alpha \) be the associated orbifold bundle \(N_\alpha = \Phi^{-1}(0) \times_T C \), where \(T \) acts by the (orbi-) character \(\exp(2\pi i (\alpha, \xi)) \). Then \(N_C = \oplus_\alpha N_{-\alpha} \).

Consider now \(E' = \Phi^{-1}(0) \times_T (t \otimes \mathbb{C}) \) as a \(T \)-equivariant orbifold bundle over \(F \), and let \(F_1(E', \xi) \) be its equivariant curvature. Let \(\tilde{E}' \) be the pullback of \(E' \) to \(\tilde{F} \), and \(A \in C^\infty(\text{Aut}(\tilde{E}')) \) as in section 3. Notice that the equivariant curvature of \(N_\alpha \) is \(F_1(N_\alpha, \xi) = (\alpha, F_1(E', \xi)) \).

By performing the summation over the fibers of \(\tilde{F}_C \to \tilde{F} \), the fixed point contribution of \(F \subset M_C \) becomes
\[
\chi_{C,F}(e^x) = \int_{\tilde{F}} \frac{1}{d\tilde{F}} \frac{Td(\tilde{F}) Ch_i(\tilde{F}; N_\xi)}{D(\tilde{F})} f_C(A^{-1} e^{\sqrt{-1} F_1(E', \xi)}).
\]
The local glueing formula now follows directly from (53).

If \(S \neq \{ 0 \} \), each \(C \) contains \(S \) as a subspace, and the collection of quotient cones \(C/S \) defines a complete rational simplicial fan in \(t^*/S \). The normal bundle \(N_C \) of \(F \) in \(M_C \) splits into the direct sum of its part in \(M_S \) and its symplectic orthogonal, which we denote by \(N_{C/S} \):
\[
N_C = N_S \oplus N_{C/S}.
\]
Hence
\[
\chi_{C,F}(e^t) = \int_{\tilde{F}} \frac{1}{|\det(\tilde{F})|} \left(\frac{1}{D^F(N_F)} \right) f_{C/S}(A^{-1} e^{\pi i F}(E',\xi)),
\]
where now \(E' = \Phi^{-1}(\text{int}(S)) \times_{T_S} (t_S \otimes \mathbb{C}) \). Again, the claim follows from (53).

6. Nonabelian Cutting

In this section, we will prove a generalization of Theorem 5.3 to nonabelian groups. Let \(G \) be a compact connected Lie group, with maximal torus \(T \), and \(G = K A \) its decomposition into its semisimple part, \(K = (G,G) \), and its connected abelian part. By general properties of orbit type decompositions, the stabilizer into semisimple and abelian part. The Lie-algebras are given by \(k \), \(\mathfrak{g}^\infty \) submanifold of \(\mathfrak{g} \) where now \(\mathfrak{g}^\infty \) of \(\Sigma \), with equality if and only if \(\Sigma = \Sigma' \). Let \(G_\Sigma = K_\Sigma A_\Sigma \) be the decomposition into semisimple and abelian part. The Lie-algebras are given by \(\mathfrak{g}_\Sigma = [\mathfrak{g}_\Sigma,\mathfrak{g}_\Sigma] \) and \(a_\Sigma = (\mathfrak{g}_\Sigma)^{G_\Sigma} \), respectively. For all \(\alpha \in \Sigma \),
\[
T_\alpha(\Sigma) = (\mathfrak{g}^\infty)^{G_\Sigma} \cap t^* = a_\Sigma^* = [\mathfrak{g}_\Sigma,\mathfrak{g}_\Sigma]^0 \cap t^*.
\]
Consider now a compact connected Hamiltonian \(G \)-orbifold \(M \), with moment map \(J : M \to \mathfrak{g}^* \). By a theorem of Kirwan \(\Delta = J(M) \cap t^*_\Sigma \) is a compact convex polytope. (To be precise, Kirwan’s theorem only covers the manifold case, the extension to Hamiltonian orbifolds is proved in [28].)

Given a face \(\Sigma \) of \(t^*_\Sigma \), let \(U_\Sigma \) be the open set
\[
U_\Sigma = \{ \alpha \in t^*_\Sigma | G_\alpha \subset G_\Sigma \} = \bigcup_{\Sigma \subset \Sigma'} \text{int}(\Sigma'),
\]
and define
\[
Y_\Sigma = J^{-1}(G_\Sigma U_\Sigma), \quad M_\Sigma = J^{-1}(G U_\Sigma) = G \times_{G_\Sigma} Y_\Sigma.
\]
Let \(\pi_\Sigma : t^* \to a_\Sigma^* \) denote the projection, and \(q : \mathfrak{g}^* \to t^*_\Sigma \) the mapping that sends \(\alpha \) to the unique point of intersection of the coadjoint orbit \(G_\alpha \) with \(t^*_\Sigma \). Notice that the restriction of \(q_\Sigma := \pi_\Sigma \circ q \) to \(G_\Sigma U_\Sigma \) is smooth.

Theorem 6.1. (Symplectic cross section theorem.) \(Y_\Sigma \) is a connected symplectic submanifold of \(M \), and \(M_\Sigma \) is a Hamiltonian \(G_\Sigma \)-space, with the restriction of \(J \) serving as a moment map. The action of \(A_\Sigma \subset G_\Sigma \) on \(Y_\Sigma \) extends in a unique way to an action on \(M_\Sigma \) which commutes with the \(G \)-action. Moreover, this action is Hamiltonian, with moment map \(\Phi_\Sigma = q_\Sigma \circ J \).

For a proof of the first part, see [19], p. 194. The second part is obvious since \(\Phi_\Sigma = J \) on \(Y_\Sigma \).

The idea to use the local \(A_\Sigma \)-actions for symplectic cutting of Hamiltonian \(G \)-spaces is due to Chris Woodward \([16]\). Consider a simple polytope \(R \subset t^* \) of the form (58). Suppose that for all faces \(S \) of \(R \), and all \(\Sigma \) such that \(S \cap \Sigma \neq 0 \), the torus \(T_S \) is a subtorus of \(A_\Sigma \). By taking perpendiculars, the condition
\[
S \cap \Sigma \neq 0 \implies T_S \subset A_\Sigma
\]
for all \(S, \Sigma \) is equivalent to the following assumption:

(C) For all faces \(S \) of \(R \) meeting a face \(\Sigma \) of \(t^*_\Sigma \), the tangent space to \(S \) contains the space perpendicular to \(\Sigma \) (i.e. the space \(t^*_\Sigma \cap t^* \)).
For all Σ, choose a neighborhood $V_\Sigma \subset U_\Sigma$ such that $V_\Sigma \cap R = V_\Sigma \cap \pi_{\Sigma}^{-1}(R_\Sigma)$ where $R_\Sigma = R \cap \alpha_{\Sigma}^\ast$, and define the cut space M_R by gluing the cut spaces with respect to the local A_Σ-actions, $(J^{-1}(G.V_\Sigma))_{R_\Sigma}$. M_R is a symplectic orbifold if for all Σ, R_Σ is admissible for $J^{-1}(G.V_\Sigma)$, in other words if the following condition is satisfied:

(B’) For all faces S of R and all $x \in J^{-1}(S \cap t^*_+)$, $g_x \cap t_S = \{0\}$.

To summarize, in the nonabelian case we will call a polytope $R \subset t^*$ admissible if it satisfies conditions (A), (B’) and (C), plus the extra condition (Q) if we are in the pre-quantization setting. Each admissible polytope R defines a cut space M_R.

The discussion from the abelian case goes through with no essential changes: We have a decomposition into symplectic suborbifolds,

\[M_R = \bigcup_{S \subset R} (q \circ J)^{-1}(\text{int}(S))/T_S, \]

and for each face $S \subset R$, there is a canonical embedding $M_S \to M_R$ as a symplectic suborbifold of codimension $2(\dim R - \dim S)$. The induced action of G on M_R is Hamiltonian, and the corresponding moment polytope is

\[\Delta_R = J_R(M_R) \cap t^*_+ = \Delta \cap R. \]

If $E \to M$ is a G-equivariant complex vector bundle, one obtains a cut-bundle $E_R \to M_R$ with a canonically induced G-action.

Remark 6.2. A more geometric description of condition (B’) can be obtained as follows. For all subalgebras $h \subset g$, let $M_{(h)} \subset M$ be the set of points x with infinitesimal stabilizer g_x conjugate to h. It is well-known that only finitely many conjugacy classes (h) occur as stabilizers, and that each $M_{(h)}$ has a finite number of connected components. For each representative h for (h), let M_h be the set of all x with $g_x = h$; then $M_{(h)} = G.M_h$. By equivariance of the moment map,

\[J(M_h) \subset (g^*)^h = \{ \alpha \in g^* | \text{ad}^*(\xi)\alpha = 0 \}. \]

Let $z = g^b$ be the centralizer of h in g, and $Z = \exp(z)$. Then $Z \subset G$ acts on M_h in a Hamiltonian fashion, and by [24] the restriction $J| M_h$ serves as a moment map.

Since every moment map J has the property

\[\text{im}(T_x J) = g_x^0 \text{ for all } x \in M, \]

this shows that the image under J of each connected component of M_h is an open subset of an affine space of the form $\alpha + (h^0)^b$, where $\alpha \in z^*$. By a suitable choice of h, we can assume that $t_1 = z \cap t$ is a Cartan subalgebra of z. Then $J(M_h) \cap t^*_+ = J(M_h) \cap t^*_+$, and therefore

\[J(M_{(h)}) = G.J(M_h) = G.Z.(J(M_h) \cap t^*_+) = G.(J(M_h) \cap t^*). \]

It follows that the image under Φ of each connected component of $M_{(h)}$ is an open connected subset of $W.(\alpha + (h^0 \cap t^*)) \cap t^*_+$ for some $\alpha \in z^* \cap t^*$. Using this result, condition (B’) can be formulated as follows:

(B) The faces of R intersect all sets $q \circ J(M_{(h)})$ transversally.

Notice that this condition is generically fulfilled.
Theorem 6.3. (Nonabelian gluing formula) Suppose that $\mathcal{R} = \{R\}$ is a finite collection of admissible polytopes such that the R's cover Δ, the faces of each $R \in \mathcal{R}$ are also in \mathcal{R}, and for all $R_1, R_2 \in \mathcal{R}$, their intersection is a face of each. For each G-equivariant vector bundle $E \to M$, one has the following gluing formula for G-equivariant Riemann-Roch numbers:

\[
(-1)^{\dim \Delta} \text{RR}(M, E) = \sum_{R \in \mathcal{R}} (-1)^{\dim R} \text{RR}(M_R, E_R).
\]

Proof. This follows again from a local result: Suppose that F is a T-fixed point manifold for some M_R, and $\alpha = q \circ J_R(F)$. If $\dim R = \dim T$ and $\alpha \in \text{int}(R)$, then F is a T-fixed point manifold for M, and $\chi_F = \chi_{R.F}$. Otherwise, let $S \in \mathcal{R}$ be the unique polytope with $\alpha \in \text{int}(S)$. Since $M_S \subset M_R$ if $S \subset R$, if F is T-fixed for all M_R with $\alpha \in R$. We have to show that

\[
\sum_{R \ni \alpha} (-1)^{\dim R} \chi_{R,F}(e^\xi) = 0.
\]

The normal bundle $\nu_{R,F}$ of F in M_R is a direct sum of the normal bundle of F in M_S, and the restriction to F of the normal bundle of M_S in M_R. Hence (65) follows from the abelian result, Theorem 5.4.

We will now explicitly describe a decomposition \mathcal{R} of t^* into admissible polytopes, which we will use in the following section. Assume first that G is semisimple. Let $\mathfrak{S}_+ = \{\beta_1, \ldots, \beta_k\} \subset \mathfrak{R}_+$ be the set of simple positive roots, and $\alpha_1, \ldots, \alpha_k \in \Lambda^* \otimes \mathbb{Z} \mathbb{Q}$ generating vectors for the edges of t^*_+ such that β_i is perpendicular to the facet spanned by the α_j, $j \neq i$. Let \mathfrak{C} be the complete simplicial fan in t^*_+ generated by $\alpha_1, \ldots, \alpha_k, -\beta_1, \ldots, -\beta_k$. The cones in this fan are generated by all subsets which do not contain both α_i and $-\beta_i$, for any i. For generic choices $\gamma \in \text{int}(t^*_+) \cap \Lambda^* \otimes \mathbb{Z} \mathbb{Q}$, the polytopes $R_C = \gamma + C$ are admissible. Notice that for the polytope R_0 that contains 0, the intersection $R_0 \cap t^*_+$ is equal to the intersection of the convex hull of $W.\gamma$ with t^*_+. The following picture shows the decomposition for the Weyl chamber of $G = SU(3)$, the intersection $R_0 \cap t^*_+$ is shaded.

If G is a general compact connected group, let $G = K A$ be the decomposition into semisimple and abelian part. We can apply the above construction to the semisimple part, to obtain a decomposition $\mathcal{R}^{(1)}$ of $t^* \cap t^*$ into polytopes. Now take any decomposition $\mathcal{R}^{(2)}$ of a^* into rational polytopes satisfying assumption (A), and let \mathcal{R} be the set of all products $R^{(1)} \times R^{(2)}$, $R^{(i)} \in \mathcal{R}^{(i)}$. Again, these polytopes will be admissible for generic choices $\gamma \in t^* \cap \text{int}(t^*_+)$. The important point about this decomposition is that for all polytopes $R = R^{(1)} \times R^{(2)}$ with $0 \not\in R^{(1)}$, there exists a face $\Sigma \neq a^*$ of t^*_+ such that the intersection
In this situation, Theorem 3.6 shows that the computation of \(RR(M_R, E_R) \) reduces to that of \(RR(Y_{R, \Sigma}, E_R|Y_{R, \Sigma}) \).

7. Quantization

Up to this point, we have been dealing with arbitrary \(G \)-equivariant vector bundles \(E \). Let us now focus on the special case that \(E = L \to M \) is a pre-quantum line bundle, as explained in the introduction. Let \(\chi = RR(M, L) \in R(G) \) denote the equivariant Riemann-Roch number, and \(N : \Lambda^*_+ \to \mathbb{Z} \) the multiplicity function. In this section, we will prove the Guillemin-Sternberg conjecture, Theorem [1.1]. We will use that Theorem 1.1 is already proved in the abelian case (see the remarks at the end of section [1]). Using induction on \(\dim G \), we can also assume that Theorem [1.1] (hence also Corollary [1.2]) holds for all proper subgroups of \(G \).

Choose a decomposition \(R = R^{(1)} \times R^{(2)} \) as described at the end of the previous section, in such a way that 0 is contained in the interior of a unique polytope \(R_0 = R^{(1)}_0 \times R^{(2)}_0 \). We claim that for any polytope \(R = R^{(1)} \times R^{(2)} \) with \(0 \not\in R \), we have \(RR(M_R, L_R)^G = 0 \). Indeed, if \(0 \not\in R^{(2)} \) this follows from the abelian result since already \(RR(M_R, L_R)^A = 0 \). If \(0 \not\in R^{(1)} \), we have a global symplectic cross-section \(Y_{R, \Sigma} \), and the result follows from Theorem 3.6 because \(RR(Y_{R, \Sigma}, E_R|Y_{R, \Sigma})^{G_\Sigma} = 0 \) since \(\Phi(Y_{R, \Sigma}) \not\in 0 \).

We may choose \(R_0 \cap t^*_+ \) arbitrarily small, this proves the following excision property for \(RR(M, L)^G \):

Proposition 7.1. If \(R \subset t^* \) is any admissible polytope containing 0, \(RR(M, L)^G = RR(M_R, L_R)^G \).

In particular, \(RR(M, L)^G \) depends only upon local data near \(J^{-1}(0) \). Let us now suppose that \(0 \in J(M) \) is a regular value of \(J \), and denote \(P = J^{-1}(0) \). Then \(\pi : P \to M_{\text{red}} \) is an orbifold-principal \(G \)-bundle. We will use the normal form theorem of Gotay to describe a neighborhood of \(P \) in \(M \). Choose a connection \(\theta \in \mathcal{A}^1(P, g) \) on \(P \), and equip the product \(P \times g^* \) with the closed two-form

\[
\sigma = \pi^* \omega + d(pr_2, \theta),
\]

where \(pr_2 : P \times g^* \to g^* \) denotes projection to the second factor. The diagonal action of \(G \) makes \(P \times g^* \) into a Hamiltonian \(G \)-space, with moment map equal to \(\pi \).

Theorem 7.2. (Normal form theorem [14]) There exists a \(G \)-equivariant symplectomorphism from a neighborhood of \(\bar{P} \) in \(P \times g^* \) to a neighborhood of \(P \) in \(M \).

A well-known consequence of the normal form theorem is the following description of reduced spaces, for \(\alpha \) close to 0. Let \(F^\theta = d\theta \in \mathcal{A}^2(P, g) \) be the curvature of \(\theta \). Let \(O_\alpha \) be the coadjoint orbit through \(\alpha \), equipped with its canonical symplectic structure \(\sigma_\alpha \). The \(G \)-action on \(O_\alpha \) is Hamiltonian, with moment map the embedding \(J_\alpha : O_\alpha \to g^* \). By the shifting trick, the reduced space \(M_\alpha = J^{-1}(\alpha)/G_\alpha \) is symplectomorphic to the reduced space at zero of \(M \times O_\alpha^{-} \), where the superscript "-" indicates that one takes the opposite symplectic form. By doing this calculation in the canonical model, one finds:
Corollary 7.3. There is a neighborhood $U \ni 0$ in the set of regular values of J, such that for all $\alpha \in U$, the reduced space M_α is symplectomorphic to the symplectic fiber bundle

$$M_\alpha = P \times_G O_\alpha \xrightarrow{\phi_\alpha} M_0,$$

with symplectic form given by the minimal coupling recipe of Sternberg fiber bundle. Then there is a neighborhood $\Delta_{\alpha} \ni (\alpha,\beta) = 0$.

(67) $\pi^*_\alpha \omega_\alpha = \pi^*_0 \omega_0 + d(J_\alpha, \theta) + \sigma_\alpha$.

Here $\pi_\alpha : P \times_G O_\alpha \to M_\alpha$ denotes the projection.

Similarly, one can express the associated orbifold \hat{M}_α as a symplectic fiber bundle

(68) $\hat{M}_\alpha \cong \hat{P} \times_G O_\alpha \xrightarrow{\hat{\phi}_\alpha} \hat{M}_0$,

where \hat{P} was defined in (20). Notice that $N_{\hat{M}_\alpha} = \hat{\phi}_\alpha^* N_{\hat{M}_0}$, and hence

(69) $D^{\hat{M}_\alpha}(N_{\hat{M}_\alpha}) = \hat{\phi}_\alpha^* D^{\hat{M}_0}(N_{\hat{M}_0})$.

Proof of Theorem 1.1: Choose $R_0 = R_0^{(1)} \times R_0^{(2)}$ as above, in such a way that $R_0 \cap t_0^*$ is contained in the neighborhood U from Corollary 7.3. The moment polytope for M_{R_0} is then simply $\Delta_{R_0} = t_0^* \cap R_0$, and the set of regular values of J_{R_0} is $\text{int}(R_0) \cap t_0^*$. Notice that 0 is a regular value for the action of $A \subset G$ on M_{R_0}, since $t_0^* \oplus \{0\}$ is transversal to all faces of R_0. From the result for the abelian case, we have

$$\text{RR}(M, L)^G = \text{RR}(M_{R_0}, L_{R_0})^G = \text{RR}((M_{R_0})_{A}, (L_{R_0})_{A})^K,$$

where the subscript A denotes the reduced space with respect to the A-moment map. Using reduction in stages, it is therefore sufficient to prove Theorem 1.1 for the semisimple case.

Let us assume for the rest of this proof that G is semisimple. Let \{ $\beta \mid \beta \in \mathfrak{g}_+$ \} $ \subset A \otimes \mathbb{Q}$ be the dual basis to \mathfrak{g}_+. By definition, R_0 is given by inequalities

(70) $\langle \alpha - \gamma, \beta \rangle \leq 0$ for all $\beta \in \mathfrak{g}_+$.

Choose $k \in \mathbb{N}$ such that for all $\beta \in \mathfrak{g}_+$, $v_\beta := -k \beta \in A$ and $\mu_\beta := -k(\gamma, \beta) \in \mathbb{N}$. Thus R_0 is given by

(71) $\langle \alpha, v_\beta \rangle \geq \mu_\beta$ for all $\beta \in \mathfrak{g}_+$.

To compute $N(0)$, we may replace $L \to M$ by the cut bundle $L_{M_{R_0}} \to M_{R_0}$, which we continue to denote by $L \to M$. The components of the T-fixed point set for M are then simply the preimages

(72) $J^{-1}(w, \gamma) \cong M_w, \gamma \cong M_\gamma \cong P/T$,

for $w \in W$. We can write $\chi(e^\xi)$ as a sum over fixed point contributions χ_γ of M_γ considered as a fixed point manifold in the symplectic cross-section $J^{-1}(\text{int}(t_0^*))$:

(73) $\chi(e^\xi) = \sum_{w \in W} \det(w) e^{2\pi i (w(\delta - \Delta, \xi))} \chi_\gamma(w^{-1}(\xi)) / \prod_{\beta \in \pi_0}(1 - e^{-2\pi i (\beta, \xi)})$.

The fixed point formula for χ_γ involves the normal bundle ν_γ of M_γ in $J^{-1}(\text{int}(t_0^*))$. By (13), $\nu_\gamma = \oplus N_{-\alpha, \beta}$, where the orbiformal weights $\alpha_\beta := -\frac{1}{\beta} \beta$ form the dual basis to
\(\nu_{\beta} \). The equivariant Chern class of \(N_{-\alpha_{\beta}} \) is simply \(c_{\beta}(\xi) = -\langle \alpha_{\beta}, F^{\theta} + 2\pi i \xi \rangle \). We have

(74)

\[
\chi_{\gamma}(w^{-1}(\xi)) = \int_{\tilde{M}_\gamma} \frac{1}{d_{\tilde{M}_\gamma}} \text{Td}(\tilde{M}_\gamma) \frac{\text{Ch}_{\tilde{M}_\gamma}(\tilde{L}_{w(\gamma)}, \xi)}{D_{\tilde{M}_\gamma}(N_{\tilde{M}_\gamma})} \prod_{\beta \in \Phi^+} D_{\tilde{M}_\gamma}(N_{-w(\alpha_{\beta})}, \xi)^{-1}.
\]

Let us consider (74) as an equality of meromorphic functions on \(t \otimes \mathbb{C} \). For all \(w(\alpha_{\beta}) \), we can expand

(75)

\[
D_{\tilde{M}_\gamma}(N_{-w(\alpha_{\beta})}, \xi)^{-1} = (1 - e^{2\pi i w(\alpha_{\beta}), \xi}) \text{Ch}_{\tilde{M}_\gamma}(N_{w(\alpha_{\beta}))}^{-1}
\]

into a geometric series with respect to \(e^{2\pi i w(\alpha_{\beta}), \xi} \). Of course, this will only converge if \(\langle w(\alpha_{\beta}), \Im(\xi) \rangle > 0 \). Since we want to expand all factors in (74) simultaneously we polarize the weights: Let

(76)

\[
l_{\beta}^w = \begin{cases} 0 & : \langle w(\alpha_{\beta}), \eta \rangle > 0 \\ 1 & : \langle w(\alpha_{\beta}), \eta \rangle < 0 \end{cases} \quad \text{for all } \eta \in \text{int}(t_+),
\]

where \(t_+ \) is the positive Weyl chamber in \(t \), and write \(\alpha_{\beta}^w = (-1)^{l_{\beta}^w} w(\alpha_{\beta}) \), and \(\epsilon_w = (-1)^{\sum l_{\beta}^w} \). Then we may rewrite the denominator of the second term in (74), for \(\Im(\xi) \in \text{int}(t_+) \), as

\[
D_{\tilde{M}_\gamma}(N_{-w(\alpha_{\beta})}, \xi)^{-1} = (-1)^{l_{\beta}^w} D_{\tilde{M}_\gamma}(N_{-\alpha_{\beta}^w}, \xi)^{-1} \text{Ch}_{\tilde{M}_\gamma}(N_{\alpha_{\beta}^w}, \xi)
\]

\[
= (-1)^{l_{\beta}^w} \sum_{l_{\beta} \geq 0} \text{Ch}_{\tilde{M}_\gamma}(N_{(l_{\beta}+l_{\beta}^w) \alpha_{\beta}^w}, \xi).
\]

Notice also that \(L_\gamma \equiv \phi^* L_0 \otimes N_\gamma \) by the pre-quantum condition and (57), thus \(\text{Ch}_{\tilde{M}_\gamma}(L_\gamma, \xi) = \phi^*_\gamma \text{Ch}_{\tilde{M}_\gamma}(L_0) \text{Ch}_{\tilde{M}_\gamma}(N_\gamma, \xi) \). We hence obtain the formula

\[
\chi(e^\xi) \prod_{\beta \in \Phi^+} (1 - e^{-2\pi i \langle \beta, \xi \rangle}) = \sum_{w \in W} \sum_{l_{\beta} \geq 0} \epsilon_w \det(w) \times
\]

\[
\times e^{2\pi i w(\delta - \delta_{-\delta, \xi})} \int_{\tilde{M}_\gamma} \frac{1}{d_{\tilde{M}_\gamma}} \text{Td}(\tilde{M}_\gamma) \phi^*_\gamma \text{Ch}_{\tilde{M}_\gamma}(L_0) \text{Ch}_{\tilde{M}_\gamma}(N_{w(\gamma)+\sum(l_{\beta}+l_{\beta}^w) \alpha_{\beta}^w}, \xi).
\]

On the other hand, Weyl's character formula

(77)

\[
\chi(e^\xi) \prod_{\beta \in \Phi^+} (1 - e^{-2\pi i \langle \beta, \xi \rangle}) = \sum_{\mu \in \Lambda^+_+} N(\mu) \sum_{w \in W} e^{2\pi i w(\delta + \mu - \delta_{-\delta, \xi})}.
\]

shows that \(N(\mu) \) is the coefficient of \(e^{2\pi i \langle \mu, \xi \rangle} \) in \(\chi(e^\xi) \prod(1 - e^{-2\pi i \langle \beta, \xi \rangle}) \) (because, for all \(\nu \in \Lambda^+_+ \), \(\nu(\delta + \nu) - \delta_{-\delta, \xi} \) if and only \(w = 1 \)). To find \(N(0) \), we thus have to solve the equation

(78)

\[
w(\delta + \gamma) - \delta = -\sum(l_{\beta} + l_{\beta}^w) \alpha_{\beta}, \quad l_{\beta} \geq 0.
\]

Let us apply \(w^{-1} \) to both sides, and take the scalar product with \(\beta^\xi \), using that \(\alpha_{\beta} = -\frac{1}{k} \beta; \)

(79)

\[
\langle \delta + \gamma - w^{-1}(\delta), \beta^\xi \rangle = (-1)^{l_{\beta}^w} (l_{\beta} + l_{\beta}^w) k^{-1}, \quad l_{\beta} \geq 0
\]

The left hand side of (79) is strictly positive, since \(\delta - w^{-1}(\delta) \) is a sum of positive roots. If \(w \neq 1 \), there is no solution of (78), because at least one \(l_{\beta}^w = 1 \), which
SYMPLECTIC SURGERY AND THE SPINc-DIRAC OPERATOR

makes the right hand side negative. If \(w = 1 \), we have \(l_\beta^w = 0 \) for all \(\beta \in \mathcal{S}_+ \), and therefore \(l_\beta = k(\gamma, \beta^2) \). But then

\[
\sum_{\beta \in \mathcal{S}_+} l_\beta \alpha_\beta = \sum_{\beta \in \mathcal{S}_+} \langle \gamma, \beta^2 \rangle \beta = \gamma.
\]

We have thus shown:

\[
N(0) = \int_{\tilde{M}_0} \frac{1}{\phi^* D_{\tilde{M}_0}(N_{\tilde{M}_0})} \text{Td} (\tilde{M}_0) \hat{\phi}_{\gamma}^* \text{Ch} (\tilde{M}_0). \tag{80}
\]

Let us finally integrate over the fibers of \(\tilde{\phi}_{\gamma} \), using that \(\int_O \text{Td} (O) = 1 \) for every coadjoint orbit \(O \):

\[
N(0) = \int_{\tilde{M}_0} \frac{1}{D_{\tilde{M}_0}(N_{\tilde{M}_0})} \text{Td} (\tilde{M}_0) \text{Ch} (\tilde{M}_0) = \text{RR}(M_0, L_0),
\]

q.e.d.

8. Appendix: A Short Proof for \(G = SU(2) \)

In this section, we will give a short proof of Theorem 1.1 for the case \(G = SU(2) \), modeled after the proof for \(G = S^1 \) in [10]. The main idea will be to construct a Hamiltonian \(S^1 \)-space, which has the same multiplicities and the same reduced spaces. Let \((M, \omega)\) be a quantizable Hamiltonian \(G \)-space, and suppose that 0 is a regular value of the moment map \(J \).

For simplicity, we will assume that \(M \) is a manifold, and that the action on \(J^{-1}(0) \) is free, although the proof is easily adaptable to the orbifold case. Let \(T = S^1 \) be the maximal torus of \(SU(2) \). The dominant weights of \(G \) are labeled by nonnegative integers, \(\Lambda^+ = \mathbb{Z}_{\geq 0} \), and the positive root is equal to 2. By Weyl’s character formula,

\[
\chi(e^{i\phi}) = \sum_{\mu \in \mathbb{Z}_{\geq 0}} N(\mu) \left(\frac{e^{i\mu\phi}}{1 - e^{-2i\phi}} + \frac{e^{-i\mu\phi}}{1 - e^{2i\phi}} \right), \tag{82}
\]

This shows that the restriction of \(\chi \) to \(S^1 \) extends to a rational function on the Riemann sphere, \(\mathbb{C} \cup \{\infty\} \), and

\[
N(0) = \text{res}_{z=\infty} \left(\frac{(1 - z^{-2})\chi(z)}{z^{-1}} \right). \tag{83}
\]

On the other hand, we can use the equivariant index theorem [26] to express \(\chi|_{S^1} \) as a sum over fixed point contributions, \(\chi|_{S^1} = \sum_F \chi_F(z) \). By analytic continuation, this becomes an equality of rational functions on \(\mathbb{C} \cup \{\infty\} \).

Since 0 is a regular value of \(J \), all \(S^1 \)-fixed point components \(F \) will have \(J_F \neq 0 \). By the symplectic cross section theorem, \(Y_+ = J^{-1}(\mathbb{R}_{>0}) \) is a symplectic submanifold of \(M \), equipped with a Hamiltonian action of \(T = S^1 \) whose moment map is simply the restriction of \(J \). The restriction of \(L \) to \(Y_+ \) is a pre-quantum line bundle. For all \(J_F > 0 \), we can view \(F \subset Y_+ \) as a fixed point manifold for the \(S^1 \) action on \(Y_+ \). Let \(\chi_{+ , F}(e^{i\phi}) \) be the corresponding fixed point contribution. Then

\[
\chi_F(z) = \frac{\chi_{+, F}(z)}{1 - z^{-2}}.
\]
Note that the Weyl group \(W = \{ e, g \} \cong \mathbb{Z}_2 \) of \(G \) acts effectively on the set of connected components of \(M^F \), and \(\chi_{g,F}(z) = \chi_F(z^{-1}) \). Hence

\[
\chi(z) = \sum_{J_F > 0} \left(\frac{\chi_{+,F}(z)}{1 - z^{-2}} + \frac{\chi_{+,F}(z^{-1})}{1 - z^2} \right)
\]

or

\[
(1 - z^{-2}) \chi(z) = \sum_{J_F > 0} \left(\chi_{+,F}(z) - z^{-2} \chi_{+,F}(z^{-1}) \right).
\]

Since \(\chi_{+,F}(z^{-1}) = O(z^{-J_F}) \) for \(z \to \infty \), it follows that only the first term will contribute to the residue at \(z = \infty \), and we obtain the formula

\[
N(0) = \sum_{J_F > 0} \text{res}_{z=\infty} \frac{\chi_{+,F}(z)}{z-1}.
\]

We will now use the following trick, which is due to Eugene Lerman and may be regarded as the \(SU(2) \) version of symplectic cutting. Let \(\mathbb{C}^2 \) be equipped with its standard symplectic structure and the standard action of \(U(2) \). Let \(\phi : M \times (\mathbb{C}^2)^{-} \to \mathfrak{su}(2)^* \) be the moment map for the diagonal \(SU(2) \subset U(2) \) action, and define \(M_+ \) to be the reduced space, \(M_+ = \phi^{-1}(0)/SU(2) \). It is easy to check the following properties of \(M_+ \):

a. As a set, \(M_+ \) is equal to the disjoint union \(M_0 \cup Y_+ \), and the embeddings of \(M_0 \) and \(Y_+ \) are symplectic.

b. The normal bundle of \(M_0 \) in \(M_+ \) is isomorphic to the associated bundle

\[
\nu = J^{-1}(0) \times_{SU(2)} \mathbb{C}^2.
\]

c. From the action of the center \(U(1) \subset U(2) \) on \(\mathbb{C}^2 \) we get an induced Hamiltonian \(U(1) \) action on \(M_+ \), which fixes \(M_0 \) and is equal to the action of the maximal torus \(T \subset SU(2) \) on \(Y_+ \). The weights for the \(U(1) \) action on \(\nu \) are \((-1, -1)\).

d. Let \(L_{\mathbb{C}^2} \) be the trivial line bundle over \(\mathbb{C}^2 \), with fiber metric \(\exp(-\pi |z|^2) \). Then \(L_+ = (L \boxtimes L_{\mathbb{C}^2}^{-}|\phi^{-1}(0))/SU(2) \) is a pre-quantum line bundle for \(M_+ \). There is a natural lift of the \(U(1) \) action on \(M_+ \) to \(L_+ \).

Let \(\chi_+ = \text{RR}(M_+, L_+) \) be the equivariant Riemann-Roch number of \(M_+ \) with respect to this \(U(1) \) action, and \(N_+(\mu) \) the multiplicity function. By the fixed point formula for \(\chi_+ \), we have

\[
\chi_+(z) = \sum_{J_F > 0} \chi_{+,F}(z) + \int_{M_0} \frac{\text{Td}(M_0) \text{Ch}(L_0)}{\det(1 - z e^{\frac{\pi}{2} F(\nu)})}.
\]

The second term is \(O(z^{-2}) \) for \(z \to \infty \) since \(\dim_{\mathbb{C}} \nu = 2 \). Hence

\[
N_+(0) = \text{res}_{z=\infty} \frac{\chi_+(z)}{z-1} = \sum_{J_F > 0} \text{res}_{z=\infty} \frac{\chi_{+,F}(z)}{z-1} = N(0).
\]

On the other hand, we see from (85) that \(\chi_+(z) \) is holomorphic for \(z \to 0 \), and

\[
N_+(0) = \chi_+(0) = \int_{M_0} \text{Td}(M_0) \text{Ch}(L_0) = \text{RR}(M_0, L_0),
\]

q.e.d.
REFERENCES

[1] M. F. Atiyah: Elliptic operators and compact groups. Springer Lecture Notes in Mathematics 401, Springer-Verlag, Berlin (1974).
[2] M. F. Atiyah: Convexity and commuting Hamiltonians. Bull. London Math. Soc. 14 (1982), 1-15.
[3] M. F. Atiyah, I. Singer: The index of elliptic operators I. Ann. Math. 87 (1968), 484-530.
[4] M. F. Atiyah, G. Segal: The index of elliptic operators II. Ann. Math. 87 (1968), 531-545.
[5] M. F. Atiyah, I. Singer: The index of elliptic operators III. Ann. Math. 87 (1968), 546-604.
[6] N. Berline, M. Vergne: Classes caractéristiques équivariantes. Formules de localisation en cohomologie équivariante. C. R. Acad. Sci. Paris 295 (1982), 539-541.
[7] N. Berline, E. Getzler, M. Vergne: Heat kernels and Dirac operators, Springer-Verlag 1992.
[8] T. Delzant: Hamiltoniens périodique et images convexes de l’application moment. Bull. Soc. Math. France 116 (1988), 315-339.
[9] J. J. Duistermaat: The Heat Kernel Lefschetz Fixed Point Formula for the Spinc-Dirac Operator. Birkhäuser (1995).
[10] J. J. Duistermaat, V. Guillemin, E. Meinrenken, S. Wu: Symplectic reduction and Riemann-Roch for circle actions. Math. Res. Letters 2 (3) (1995), 259-266.
[11] J. J. Duistermaat, G. Heckman: On the variation in the cohomology of the symplectic form of the reduced phase space. Inv. Math. 69 (1982), 259-268. Addendum, Inv. Math. 72 (1983), 153-158.
[12] W. Fulton: Introduction to toric varieties. Princeton university press, 1994.
[13] R. Gompf: A new construction of symplectic manifolds, Ann. of Math. 142 (1995), 527–595.
[14] M. J. Gotay: On coisotropic embeddings of presymplectic manifolds. Proc. Am. Math. Soc. 84 (1982), 111-114.
[15] V. Guillemin: Reduction and Riemann-Roch. In: Lie groups and geometry in honour of B. Kostant. Progr. Math. Birkhäuser Boston, 1994.
[16] V. Guillemin, S. Sternberg: Geometric quantization and multiplicities of group representations. Invent. Math. 67 (1982), 515-538.
[17] V. Guillemin, S. Sternberg: Homogeneous quantization and multiplicities of group representations. J. Funct. An. 47 (1982), 344-380.
[18] V. Guillemin, S. Sternberg: Convexity properties of the moment map. Invent. Math. 67 (1982), 491-513.
[19] V. Guillemin, S. Sternberg: Symplectic techniques in physics. Cambridge University Press 1984.
[20] V. Guillemin, S. Sternberg: Birational equivalence in the symplectic category. Invent. Math. 97 (1989), 485-522.
[21] L. Jeffrey and F. Kirwan: On localization and Riemann-Roch numbers for symplectic quotients. Preprint, hep-th/9506007.
[22] J. Kalkman: Cohomology rings of symplectic quotients. J. reine angew. Math. 485 (1995), 37-52.
[23] T. Kawasaki: The signature theorem for V-manifolds. Topology 17 (1978), 75-83.
[24] T. Kawasaki: The Riemann-Roch Theorem for complex V-manifolds. Osaka J. Math. 16 (1979), 151-157.
[25] F. Kirwan: Convexity properties of the moment map III, Invent. Math. 77 (1984), 547-552.
[26] E. Lerman: Symplectic Cuts. Math. Res. Letters 2 (1995), 247-258.
[27] E. Lerman, S. Tolman: Symplectic toric orbifolds. Preprint M.I.T. (December 1994). hep-th/9405005.
[28] E. Lerman, E. Meinrenken, S. Tolman, C. Woodward: Non-abelian convexity by symplectic cuts. preprint, hep-th/9603015.
[29] E. Meinrenken: On Riemann-Roch formulas for multiplicities. Journal of the A.M.S., 9 (1996), 373–389.
[30] E. Meinrenken: Vielfachheitsformeln für die Quantisierung von Phasenräumen. Thesis, Freiburg September 1994.
[31] I. Satake: The Gauss-Bonnet theorem for V-manifolds. J. Math. Soc. Japan, 9 (1957), 464-492.
[32] S. Sternberg: On minimal coupling and the symplectic mechanics of a classical particle in the presence of a Yang-Mills field. Proc. Nat. Acad. Sci. 74 (1977), 5253-5254.
[33] M. Vergne: Quantification géométrique et multiplicités. C. R. Acad. Sci. 319 (1994), 327-332.
[34] M. Vergne: Multiplicity formula for geometric quantization. Part I,II. Duke Math. J. 82 (1996), 143-194.
[35] M. Vergne: Equivariant index formula for orbifolds. Duke Math. J. 82 (1996), 637-652.
[36] C. Woodward, The classification of transversal multiplicity-free group actions, *Annals of Global Analysis and Geometry* 14 (1996), 3-42.

Massachusetts Institute of Technology, Department of Mathematics, Cambridge, Massachusetts 02139-4307

E-mail address: mein@math.mit.edu