Epidemiological Evidences on Dietary Flavonoids and Breast Cancer Risk: A Narrative Review

Katrin Sak*

Abstract

Epidemiological studies on associations between intake of flavonoids and breast cancer risk are highly needed to assess the actual effects of flavonoids in humans. Experimental investigations in vitro conditions cannot detect and model the real action of these phytochemicals due to the limitations to consider absorption and metabolic biotransformation as well as several complex interactions. Therefore, the data about association findings between intake of flavonoids and breast cancer risk are compiled and analyzed in the current review by evaluating both the results obtained using food composition databases as well as different biomarkers. Although several case-control studies demonstrate some reduction in breast cancer risk related to high consumption of flavones and flavonols, large-scale prospective cohort studies with follow-up times of many years do not confirm these findings. Intake of isoflavones can be associated with a decrease in breast tumorigenesis only in Asian countries where the consumption of soy foods is high but not among Western women with significantly lower ingestion amounts, suggesting the presence of so-called threshold level of effect. Besides doses, the timing of exposure to isoflavones seems also to be a significant factor as childhood and prepubertal age can be critical periods. Although women may need to consume high amounts of isoflavones typical to Asian diets to gain beneficial effects and protection against mammary carcinogenesis, it is still too early to give any specific recommendations to prevent breast tumors by diet rich in certain flavonoids.

Keywords: Flavonoids- breast cancer risk- dietary intake- biomarkers- epidemiological studies- menopausal status

REVIEW

Epidemiological Evidences on Dietary Flavonoids and Breast Cancer Risk: A Narrative Review

Katrin Sak*

Introduction

Prevention is a crucial component for reduction of the global burden of cancer morbidity and mortality (Hui et al., 2013). It has been recently suggested that about one-third to half of the most commonly diagnosed cancers in the Western world, including breast cancer, could be avoided by practicing healthy lifestyles, such as eating a healthy diet rich in plant-based products (Ingram et al., 1997; Bouker and Hilakivi-Clarke, 2000; Hui et al., 2013). Indeed, diets containing plenty of fruits and vegetables have been related to a decreased risk of carcinogenesis, whereas polyphenolic flavonoids are thought to exert important chemopreventive effects (Iwasaki et al., 2009b; Hui et al., 2013; Magne Nde et al., 2015). However, although the cell culture investigations and animal experiments have suggested the anticancer action of different flavonoids, the results from epidemiological studies have identified limited, inconsistent and even controversial evidences about the associations between dietary flavonoid consumption and the risk of breast cancer in humans (Yamamoto et al., 2003; Adebamowo et al., 2005; Fink et al., 2007; Travis et al., 2008; Zhu et al., 2011; Hui et al., 2013; Touvier et al., 2013; Zamora-Ros et al., 2013; Wang et al., 2014; Magne Nde et al., 2015).

One of the most compelling hints about the protective effects of flavonoids against carcinogenesis stems from the considerably lower rates of breast cancer cases in Asian countries compared to Western populations, and the increase in cancer prevalence along with migration of Asian women to the Western world and adoption of western dietary habits (Peeters et al., 2003; Verheus et al., 2007; Hedelin et al., 2008; Goodman et al., 2009; Lee et al., 2009; Magne Nde et al., 2015). The health benefits inherent for Asian region are attributed to the traditionally high intake of soy foods containing plenty of phytoestrogens, isoflavones (Peeters et al., 2003; Verheus et al., 2007; Hedelin et al., 2008; Taylor et al., 2009).

Flavonoids are polyphenolic substances found in different plant-origin food items and comprising more than 5,000 different compounds, divided to flavones (apigenin, luteolin), flavonols (quercetin, kaempferol, myricetin), flavanones (hesperetin, naringenin), flavanols or catechins (catechin, epicatechin, epicatechin 3-gallate, epigallocatechin, epigallocatechin 3-gallate, gallocatechin), isoflavones (genistein, daidzein, glycitein, biochanin A, formononetin) and anthocyanidins (Adebamowo et al., 2005; Zhang et al., 2009; Hui et al., 2013; Sak, 2014). The anticancer action of flavonoids has been a tempting research topic for recent decades and different activities,
including antioxidant, antiinflammatory, antiproliferative, cytotoxic, antiangiogenic, and antimetastatic properties have been described for various flavonoids in numerous in vitro and in vivo experiments (Bosetti et al., 2005; Hui et al., 2013). Therefore, it is probable that cancer preventive and suppressive action of these plant secondary metabolites is derived from a variety of biological mechanisms affecting several biochemical pathways involved in tumorigenesis.

In the current review article, the epidemiological data about intake of flavonoids on breast cancer risk were compiled from literary sources, comprising the information on both the dietary consumption as well as biomarkers estimation (in plasma, serum, urine). For this aim, a PubMed search was carried out for articles published only in English language up to December 10th 2016 by using the following terms: “epidemiology” (or “epidemiological”), “cancer” (or “carcinogenesis”), “tumor”, “tumorigenesis”), and “flavonoid” (or “flavonoids”). All studies performed with breast cancers were further selected and references of extracted papers were carefully examined for identification of additional articles relevant for including in the current work. Moreover, both the case-control studies as well as prospective cohort studies were involved. These data are presented in Tables 1-3 and are further discussed in the following subsections.

Dietary intake of flavonoids and breast cancer risk

Summaries of epidemiological data measured by case-control and prospective cohort study design on associations between dietary flavonoids intake and breast cancer risk are presented in Tables 1 and 2, respectively. Fink (2007) indicated in a case-control study with American population that an increased consumption of total flavonoids, flavones, flavonols and flavanols, but not flavanones and anthocyanidins, was associated with a decreased breast cancer risk that was restricted only to postmenopausal (not premenopausal) women, whereas estrogen receptor (ER) and progesterone receptor (PR) status of tumor did not modify the findings. These outcomes were compatible with the results of two previous case-control studies conducted in Italy and Greece reporting a decrease in breast cancer risk with increasing intake of flavones (Peterson et al., 2003; Bosetti et al., 2005) and flavonols (Bosetti et al., 2005), but not other flavonoid subclasses, including flavanones, flavanols and anthocyanidins (Peterson et al., 2003; Bosetti et al., 2005). Moreover, the more recent findings of Torres-Sanchez (2009) in Mexican population also confirmed the protective effect of high dietary consumption of flavones and flavonols against breast cancer, especially among postmenopausal women (Table 1).

Nevertheless, the results from prospective cohort studies were not so promising concerning the chemopreventive activities of flavonoids. Indeed, no protective effects against overall breast tumorigenesis were shown for increased intake of total flavonoids in different populations (American, Dutch, Finnish) or stratifying cases by menopausal or hormone receptor (ER/PR) status (Knekt et al., 1997; Goldbohm et al., 1998; Knekt et al., 2002; Wang et al., 2009; Zamora-Ros et al., 2013; Wang et al., 2014; Pantavos et al., 2015). These findings were similar also for flavonoid subgroups, i.e. for flavones (Zamora-Ros et al., 2013), flavonols (Goldbohm et al., 1998; Knekt et al., 2002; Adebamowo et al., 2005; Zamora-Ros et al., 2013; Wang et al., 2014), flavanones (Knekt et al., 2002; Zamora-Ros et al., 2013; Wang et al., 2014), flavanols (Arts et al., 2002; Zamora-Ros et al., 2013; Wang et al., 2014), and anthocyanidins (Zamora-Ros et al., 2013). However, in a recent prospective cohort study, Touvier (2013) still described an inverse association between an increased consumption of total flavonoids, flavonols and flavanols and breast cancer risk in French non-to-low alcohol drinkers, although the number of cases (59) was rather small. Somewhat surprisingly, a positive association of total flavonoids, flavanols and anthocyanidins with breast cancer risk was found in this work for women with moderate-to-heavy alcohol intake indicating that some subclasses of polyphenols can possibly elevate the susceptibility to mammary tumorigenesis among women with high daily alcohol use. The possibility can still not be excluded that these findings reflect the well-known deleterious action of alcohol on breast carcinogenesis (Table 2).

The situation seems to be somewhat more delineated in the case of isoﬂavones. The findings of several case-control studies (Horn-Ross et al., 2001; Peterson et al., 2003; Bosetti et al., 2005; Fink et al., 2007; Cotterchio et al., 2008; Ward et al., 2010) and prospective cohort studies (Horn-Ross et al., 2002; Keinan-Boker et al., 2004; Touillaud et al., 2006; Hedelin et al., 2008; Travis et al., 2008; Zamora-Ros et al., 2013; Wang et al., 2014) demonstrated no associations (overall or stratifying by menopausal status) between isoflavone intake and breast cancer risk in different western populations (American, Canadian, Dutch, English, French, Greek, Italian, Swedish) where the habitual consumption of soy foods is rather low (Tables 1 and 2). It can be hypothesized that this intake level is probably too low to reveal any associations and in line with this assumption, dietary isoflavone intake was indeed related to a decreased breast cancer incidence in Asian countries with remarkably higher soy foods intake. In this way, modest inverse associations were observed in several case-control studies performed with Chinese (Zhang et al., 2009; Zhang et al., 2010; Zhu et al., 2011; Li et al., 2013), Japanese (Hirose et al., 2005; Iwasaki et al., 2008; Iwasaki et al., 2009a), Korean (Cho et al., 2010), Japanese Brazilian (Iwasaki et al., 2009a), Asian American (Wu et al., 2002) and South Asian women living in England (dos Santos Silva et al., 2004), and also in prospective cohort studies conducted with Chinese (Lee et al., 2009), Japanese (Yamamoto et al., 2003; Wada et al., 2013), Singapore Chinese (Wu et al., 2008), and Japanese American women (Morimoto et al., 2014). Further stratification of these results by menopausal status still revealed inconclusive outcomes: some studies showing protective effects of isoflavones only in premenopausal women (54-56% reduction in cancer risk) (Hirose et al., 2005; Lee et al., 2009; Zhang et al., 2010), some works restricting this advantageous action to postmenopausal women (26-68% reduction in cancer risk) (Yamamoto et al., 2003; Wu et al., 2008; Cho et al., 2010; Zhu et al., 2014; Pantavos et al., 2015).
Flavonoid subclass	Study	Population	Controls	Cases	Reference
Flavanols	Mexican	2569/2588	141/141		Fink et al., 2007
	Greek	820/1548	141/141		Fink et al., 2007
	American	2569/2588	141/141		Fink et al., 2007
	Mexican	2569/2588	141/141		Fink et al., 2007
	Greek	820/1548	141/141		Fink et al., 2007
	American	2569/2588	141/141		Fink et al., 2007
	Mexican	2569/2588	141/141		Fink et al., 2007
	Greek	820/1548	141/141		Fink et al., 2007
	American	2569/2588	141/141		Fink et al., 2007
	Mexican	2569/2588	141/141		Fink et al., 2007
	Greek	820/1548	141/141		Fink et al., 2007
	American	2569/2588	141/141		Fink et al., 2007
	Mexican	2569/2588	141/141		Fink et al., 2007
	Greek	820/1548	141/141		Fink et al., 2007
	American	2569/2588	141/141		Fink et al., 2007
	Mexican	2569/2588	141/141		Fink et al., 2007
	Greek	820/1548	141/141		Fink et al., 2007
	American	2569/2588	141/141		Fink et al., 2007
	Mexican	2569/2588	141/141		Fink et al., 2007
	Greek	820/1548	141/141		Fink et al., 2007
	American	2569/2588	141/141		Fink et al., 2007

Table 1. Epidemiological Case-Control Studies on Dietary Intake of Flavonoids and Breast Cancer Risk
Reference	Population	PB	Controls	Menopausal status	Cases/controls	Intake comparison (low vs high, mg/day)	Multivariate-adjusted OR/RR/HRd	P for trendे	Commentsf	
Fink et al., 2007	American (multiethnic, non-Asian)	LIBCSP	1434/1440	<1.048 vs ≥2.775 (Q4)	0-0.31 vs ≥7.63 (Q5)	0.95 (0.74-1.22)	0.31	NA		
Horn-Ross et al., 2001	Chinese	1272/1610	<1.048 vs ≥2.775 (Q4)	1.0 vs 1.5 (T1)	1.2 (0.75-2.0)	0.31	NA			
Wu et al., 2002	Asian-American (multiethnic)	PB	501/594	≤1.79 vs >12.68 /1000 kcal (Q4)	0.61 (0.39-0.97)	0.04*	NA			
Cotterchio et al., 2008	Canadian	OWDHS	3000/3370	0-0.082 vs 1.237-158.983 (Q5)	1.06 (0.87-1.30)	0.31	NA			
Thanos et al., 2006	Greek	820/1548	0.01 vs 0.8 (Q5)	0.76 vs 0.9 (Q6)	1.07 (0.97-1.18)	0.17	NA			
Fink et al., 2007	Chinese	2569/2588	<8.5 vs ≥23.7 (Q4)	1.0 vs 1.5 (T1)	1.05 (0.86-1.29)	0.78	NA			
Cho et al., 2010	Japanese	HB	358/360	<8.5 vs ≥23.7 (Q4)	0.81 (0.48-1.38)	0.823	NA			
Iwasaki et al., 2009a	Japanese Brazilian	HB	81/81	4.7 vs 42.8 (T3)	0.25 (0.09-0.68)	<0.01*	NA			
Iwasaki et al., 2009a	Brazilian (non-Japanese)	HB	379/379	0 vs 15.0 (non- vs consumers)	0.56 (0.35-0.90)	*	NA			
Li et al., 2013	Chinese	PB	295/295	<12.49 vs >35.12 (Q4)	0.45 (0.27-0.75)	<0.01*	NA			
Li et al., 2013	Chinese	HB	438/438	<3.26 vs >16.89 (Q4)	0.54 (0.34-0.84)	0.001*	NA			
Zhang et al., 2009	Chinese	HB	183/192	<7.56 vs >28.83 (T4)	0.42 (0.22-0.80)	0.031*	NA			
Zhu et al., 2011	Chinese	HB	183/192	<7.78 vs >25.40 (Q4)	0.42 (0.22-0.80)	0.031*	NA			
Flavonoid subclass	Certain compound	Study	Population	Controls	Menopausal status	Cases/controls	Intake comparison (low vs high, mg/day)	Multivariate-adjusted OR/RR/HR	P for trend	Comments
-------------------	------------------	-------	------------	----------	------------------	---------------	--------------------------------	-----------------	------------	----------
Isoflavones			OWDHS	Canadian	Pre-930/1211	0-0.082 vs 1.237	158.983 (Q5)	0.96 (0.69-1.33)	0.96	No effect modification by BMI strata (≤25, >25)
			German PB	Pre-278/666		0.85 (0.54-1.33)	0.229	NA		
			Korean PB	Pre-358/360	<8.5 vs ≥23.7 (Q4)	1.36 (0.64-2.91)	0.209	No effect modification by ER/PR status		
			Japanese HB	Pre-79/414	7.61 vs 18.47/1000 kcal (T3)	0.44 (0.22-0.89)	0.02*	NA		
			Japanese HB	Pre-178/137	22.1 vs 69.1 (T3)	1.35 (0.72-2.54)	0.41	No effect modification by ER/PR status		
			Japanese Brazilian HB	Pre-25/24	8.0 vs 35.0 (two medians)	0.17 (0.03-0.84)	*	NA		
			Brazilian (non-Japanese) HB	Pre-161/145	0 vs 15.0 (non-consumers)	0.54 (0.26-1.13)	NA			
			Chinese HB	Pre-306/295	<7.78 vs >25.40 (Q4)	0.46 (0.26-0.82)	<0.001*	NA		
			Chinese HB	Pre-183/192	<7.56 vs >28.83 (Q4)	0.66 (0.31-1.07)	NA			
			American PB (multiethnic, non-Asian)	Pre-826/1077	<1.048 vs ≥2.775 (Q4)	0.96 (0.71-1.3)	NA			
			OWDHS (multinational, non-Asian)	Post-977/953	0-0.31 vs ≥7.63 (Q5)	1.02 (0.76-1.38)	0.72			
			French (multiethnic, non-Asian)	Post-1100/1101	0.22 vs 1.39 (T3)	1.09 (0.83-1.41)	No effect modification by BMI strata (≤25, >25)			
			Chinese	Post-132/143	(Q4)	0.66 (0.30-1.44)	0.281			
			Korean	Post-358/360	<8.5 vs ≥23.7 (Q4)	0.66 (0.30-1.44)	0.281			
			Japanese	Post-212/253	22.1 vs 69.1 (T3)	0.62 (0.38-1.01)	NA			
			Japanese Brazilian	Post-56/57	8.0 vs 35.0 (two medians)	0.84 (0.37-1.92)	NA			
			Brazilian (non-Japanese)	Post-218/234	0 vs 15.0 (non-consumers)	0.58 (0.33-1.03)	NA			
			Chinese	Post-183/192	<7.56 vs >28.83 (Q4)	0.57 (0.29-0.83)	*			
			Chinese	Post-183/192	<7.56 vs >28.83 (Q4)	0.57 (0.29-0.83)	*			

Table 1. Continued

DOI:10.22034/APJCP.2017.18.9.2309
Flavonoid subclass	Certain compound	Studya Population	Controlsb	Meno-pausal status	Cases/ controls	Intake comparison	Multivariate- adjusted OR/RR/HRe	P for trend	Commentsf	Reference
Isoflavones	Genistein	American (multiethnic, non-Asian)	PB	1272/1610	<0.480 vs ≥1.440 (Q4)	0.92 (0.72-1.2)	NA	Horn-Ross et al., 2001		
		EPIC-Norfolk English	PB	244/938	1.04 (0.90-1.19)	0.63	NA	Ward et al., 2010		
		South Asian in England	PB	240/477	<0.078 vs ≥0.232 (Q4)	0.62 (0.36-1.06)	0.10	dos Santos Silva et al., 2004		
		JPHC Japanese	PB	144/288	(Q4)	0.58 (0.29-1.18)	0.21	Iwasaki et al., 2008		
		Chinese	HB	295/295	<8.46 vs >25.44 (Q4)	0.34 (0.19-0.60)	<0.01*	Li et al., 2013		
		Chinese	PB	295/295	<8.46 vs >25.44 (Q4)	0.28 (0.15-0.52)	<0.01*	Li et al., 2013		
		Chinese	HB	/1009	<4.27 vs >14.18 (Q4)	*	No effect modification by ER/PR status	Zhang et al., 2009		
		JPHC Japanese	PB	Pre-	59/118	(Q4)	0.62 (0.21-1.84)	0.43	Iwasaki et al., 2008	
		Chinese	HB	Pre-	/671	<4.27 vs >14.18 (Q4)	*	No effect modification by ER/PR status	Zhang et al., 2009	
		Chinese	Post-	80/160	(Q4)	0.52 (0.19-1.42)	0.31	Iwasaki et al., 2008		
		Chinese	HB	Post-	/338	<4.27 vs >14.18 (Q4)	*	No effect modification by ER/PR status	Zhang et al., 2009	
	Daidzein	American (multiethnic, non-Asian)	PB	1272/1610	<0.473 vs ≥1.223 (Q4)	1.1 (0.85-1.4)	NA	Horn-Ross et al., 2001		
		EPIC-Norfolk English	PB	244/938	1.03 (0.89-1.18)	0.70	NA	Ward et al., 2010		
		German	PB	Pre-	278/666	(Q4)	0.62 (0.40-0.95)	0.065	Linseisen et al., 2004	
		South Asian in England	PB	240/477	<0.078 vs ≥.0232 (Q4)	0.57 (0.33-0.99)	0.09	dos Santos Silva et al., 2004		
		JPHC Japanese	PB	Pre-	59/118	(Q4)	0.67 (0.22-2.03)	0.53	Iwasaki et al., 2008	
		Chinese	HB	Pre-	/671	<2.98 vs >9.76 (Q4)	*	No effect modification by ER/PR status	Zhang et al., 2009	
		JPHC Japanese	PB	Post-	80/160	(Q4)	0.64 (0.23-1.72)	0.43	Iwasaki et al., 2008	
		Chinese	HB	Post-	/338	<2.98 vs >9.76 (Q4)	*	No effect modification by ER/PR status	Zhang et al., 2009	
Flavonoids and Breast Cancer Risk

Flavonoid subclass	Certain compound	Study	Population	Controls	Menopausal status	Cases/controls	Intake comparison (low vs high, mg/day)	Multivariate-adjusted OR/RR/HR	P for trend	Comments	
Isoflavones	Biochanin A	American (multiethnic, non-Asian) PB	1272/1610	<0.022 vs ≥0.083 (Q4)	0.85 vs 1.0 (Q5)	0.96 vs 1.0 (Q5)	1.2 vs 0.96 (Q5)	1.2 vs 0.96 (Q5)	0.048	NA	
		EPIC-Norfolk English PB	244/938	1.10 (0.90-1.34)	0.94 (0.81-1.09)	0.94 (0.81-1.09)	1.14 vs 0.96 (Q5)	1.14 vs 0.96 (Q5)	0.36	NA	
		German PB Pre	278/666	0.85 (0.53-1.38)	1.14 (0.96-1.32)	1.14 (0.96-1.32)	0.85 (0.53-1.38)	0.85 (0.53-1.38)	0.747	NA	
Isoflavones	Formononetin	American (multiethnic, non-Asian) PB	1272/1610	<0.009 vs ≥0.040 (Q4)	0.96 vs 1.0 (Q5)	0.96 vs 1.0 (Q5)	1.2 vs 0.96 (Q5)	1.2 vs 0.96 (Q5)	0.009	NA	
		EPIC-Norfolk English PB	244/938	0.94 (0.81-1.09)	0.94 (0.81-1.09)	0.94 (0.81-1.09)	0.94 (0.81-1.09)	0.94 (0.81-1.09)	0.44	NA	
		German PB Pre	278/666	1.14 (0.72-1.82)	1.14 (0.72-1.82)	1.14 (0.72-1.82)	1.14 (0.72-1.82)	1.14 (0.72-1.82)	0.395	NA	
Isoflavones	Glycitein	American (multiethnic, non-Asian) HB	295/295	<0.38 vs >1.46 (Q4)	0.66 (0.40-1.08)	0.66 (0.40-1.08)	0.55 (0.33-0.92)	0.55 (0.33-0.92)	0.02*	NA	
		Chinese HB Pre	295/295	<1.19 vs >6.32 (Q4)	0.55 (0.33-0.92)	0.55 (0.33-0.92)	0.55 (0.33-0.92)	0.55 (0.33-0.92)	0.02*	NA	
		Chinese HB Post	295/295	<1.19 vs >6.32 (Q4)	0.55 (0.33-0.92)	0.55 (0.33-0.92)	0.55 (0.33-0.92)	0.55 (0.33-0.92)	0.02*	NA	
Anthocyanidins	LIBCSP	American PB Pre	457/487	0-0.04 vs ≥4.20 (Q5)	1.08 (0.71-1.63)	1.08 (0.71-1.63)	1.08 (0.71-1.63)	1.08 (0.71-1.63)	0.81	NA	
		American PB Post	977/953	0-0.04 vs ≥4.20 (Q5)	0.85 (0.64-1.14)	0.85 (0.64-1.14)	0.85 (0.64-1.14)	0.85 (0.64-1.14)	0.23	No effect modification by ER/PR status	
		Greek Case-control	820/1548	5.1 vs 81.4 (Q5)	0.94 (0.81-1.09)	0.94 (0.81-1.09)	0.94 (0.81-1.09)	0.94 (0.81-1.09)	0.39	NA	
		Italian HB	2569/2588	1.09 (0.87-1.36)	0.94 (0.81-1.09)	0.94 (0.81-1.09)	0.94 (0.81-1.09)	0.94 (0.81-1.09)	0.38	NA	
		American LIBCSP	Pre	457/487	0-0.04 vs ≥4.20 (Q5)	1.08 (0.71-1.63)	1.08 (0.71-1.63)	1.08 (0.71-1.63)	1.08 (0.71-1.63)	0.81	NA
		American LIBCSP	Post	977/953	0-0.04 vs ≥4.20 (Q5)	0.85 (0.64-1.14)	0.85 (0.64-1.14)	0.85 (0.64-1.14)	0.85 (0.64-1.14)	0.23	No effect modification by ER/PR status

Table 1. Continued
remarkable reduction in the risk of both fibrocystic breast with high urinary levels of equol, a metabolite produced reduction in breast tumor incidence in Australian women of daidzein and Ingram (1997) indicated almost four-fold Japanese American women with higher urinary excretion a decreased risk of breast cancer in postmenopausal of a small sample size. Goodman (2009) described did not reach statistical significance probably because (genistein, daidzein, glycitein), although these results exhibited even a positive relationship with breast cancer risk by increasing tumor incidence among English women. Although Ward (2008) demonstrated a marginal elevation of breast cancer risk with higher urinary concentrations of total isoflavones, being restricted to pre- and perimenopausal females, analysis by individual compounds (genistein, daidzein, glycitein) did not follow this trend. No considerable association of breast carcinogenesis was found also with urinary excretion of genistein in postmenopausal Dutch women in a prospective study design (den Tonkelaar et al., 2001) (Table 3).

Besides the apparently essential role of daily amount of dietary isoflavone intake, also the timing of consumption of soy foods seems to be crucial. Indeed, Thanos (2006) suggested that higher intake of isoflavones during adolescence was related to significantly decreased risk of breast cancer among adult Canadian women (Table 1).

Biomarkers of flavonoids and breast cancer risk

Estimation of urinary and plasma/serum metabolites of flavonoids could potentially complement the epidemiological findings obtained from assessment of dietary intake by adding the bioavailability dimension of these compounds. The data about relationships between biomarkers and breast cancer risk are presented in Table 3. There were no statistically significant associations found for the level of urinary flavonols and flavanones or urinary and plasma flavanols with breast cancer risk in either Chinese or Japanese populations, irrespective of the menopausal status of women (Dai et al., 2002; Iwasaki et al., 2010; Luo et al., 2010) (Table 3). However, current results about relationships of urinary and circulating biomarkers of isoflavones and their metabolites with breast cancer incidence are still inconclusive and somewhat controversial. In this way, Dai (2002) reported about two-fold reduction in breast cancer risk in Chinese women with the highest versus lowest urinary excretion of both total isoflavones as well as genistein, daidzein, glycitein and their various metabolites, confirming the previous findings that rich consumption of soy foods might decrease the susceptibility toward breast carcinogenesis. At that, the inverse association between isoflavone excretion and cancer risk was somewhat stronger among postmenopausal women even more evident among overweight females (Dai et al., 2002; Dai et al., 2003). Similarly, Zheng (1999) reported about half of breast cancer risk in Chinese women with the highest urinary excretion levels of total or individual isoflavones (genistein, daidzein, glycitein), although these results did not reach statistical significance probably because of a small sample size. Goodman (2009) described a decreased risk of breast cancer in postmenopausal Japanese American women with higher urinary excretion of daidzein and Ingram (1997) indicated almost four-fold reduction in breast tumor incidence in Australian women with high urinary levels of equl, a metabolite produced from daidzein. Furthermore, Lampe (2007) observed a remarkable reduction in the risk of both fibrocystic breast conditions as well as mammary cancer among Chinese women with high plasma concentrations of genistein and daidzein suggesting the anticancer effects of isoflavones already in early tumorigenesis. Reduction of breast cancer risk with increasing plasma levels of genistein (but not daidzein) was shown also among Japanese (Iwasaki et al., 2008) and Dutch women (Verheus et al., 2007) (Table 3).

On the contrary, Grace (2004) reported that high exposure to various isoflavones (genistein, daidzein, equol) exhibited even a positive relationship with breast cancer risk by increasing tumor incidence among English women. Although Ward (2008) demonstrated a marginal elevation of breast cancer risk with higher urinary concentrations of total isoflavones, being restricted to pre- and perimenopausal females, analysis by individual compounds (genistein, daidzein, glycitein) did not follow this trend. No considerable association of breast carcinogenesis was found also with urinary excretion of genistein in postmenopausal Dutch women in a prospective study design (den Tonkelaar et al., 2001) (Table 3).

Some reasons for inconsistencies

The above described inconsistencies in associations between intake of flavonoids and breast cancer risk may be explained by several possible reasons. Comparison of different works is complicated due to the variation in estimation of exposure to these polyphenolic compounds as some investigations have assessed dietary intake and others measured biological markers. Evaluation through dietary consumption and measuring daily intake levels of flavonoids has been limited and difficult primarily because of lack of food composition tables (den Tonkelaar et al., 2001; Peeters et al., 2003; Grace et al., 2004; Fink et al., 2007; Cotterchio et al., 2008; Hui et al., 2013; Touvier et al., 2013). Quantitative estimation of dietary consumption has been feasible only since 2003 when the US Department of Agriculture (USDA) released the analytical database for the content of five subclasses of flavonoids (flavones, flavonols, flavanones, flavanols and anthocyanidins) in selected food items; food composition data for isoflavones was available one year earlier, i.e. in 2002 (Peterson et al., 2003; Cotterchio et al., 2008; Hui et al., 2013). Recently, also the Phenol-Explorer database was made public to provide detailed composition data for subgroups of flavonoids (Touvier et al., 2013). However, current dietary assessment tools and information about intake of flavonoids are still rather incomplete as new products are introduced to the market and some food items find nontraditional applications (for instance, soy bars) (Fink et al., 2007; Nagata, 2010; Hui et al., 2013; Morimoto et al., 2014). In particular, intake of isoflavones can be underestimated, especially in populations with low habitual consumption of soy foods where addition of soy to processed foods may be unlisted (Trock et al., 2006; Cotterchio et al., 2008). Also, use of soy and soy components but also other herbal supplements as food additives raises further questions and is needed to take into account in future analyses (Linseisen et al., 2004; Zamora-Ros et al., 2013; Morimoto et al., 2014). Moreover, variations in flavonoid intakes between different studies.
Authors and Year	Country	Cases/ Cohort	Median	Reference	Comments
Adebamowo et al., 2016	American	316	59/201		
Goldbohm et al., 1998	European countries	0.591	1102/954		
Wang et al., 2014	American	0.656	87/9959		
Zamora-Ros et al., 2013	European countries	0.591	11576/334850		
Pantavos et al., 2015	European countries	1.53	23.5 vs 30.9 (Q4)		
Zhu et al., 2012	European countries	0.74	102.3 vs 90.6 (Q5)		
Wang et al., 2014	American	0.66	2116/56630		
Zamora-Ros et al., 2013	European countries	0.591	11576/334850		
Pantavos et al., 2015	European countries	1.53	23.5 vs 30.9 (Q4)		
Zhu et al., 2012	European countries	0.74	102.3 vs 90.6 (Q5)		
Wang et al., 2014	American	0.66	2116/56630		
Table 2. Continued

Reference	Flavonoid subclass	Compound	Study	Median follow-up (years)	Menopausal status in baseline	Cases/ cohort	Intake comparison (low vs high, mg/day)	Multivariate-adjusted OR/RR/HR	P for trend	Comment	
Goldbohm et al., 1998	Flavonols	Kaempferol	NLCS	4.3	605/3123	2.6 vs 12.9 (Q5)	1.02 (0.72-1.45)	0.286	NA		
Knekt et al., 2002	Flavonols	Kaempferol	FMC	30	125/4647	0.2 vs 0.9 (Q4)	0.87 (0.53-1.41)	0.7	NA		
Adebamowo et al., 2005	Flavonols	Kaempferol	NHS II	8	Pre	710/90638	0.8 vs 12.9 (Q5)	1.01 (0.80-1.27)	0.91	NA	
Knekt et al., 2002	Flavonols	Myricetin	FMC	30	125/4647	0.03 vs 0.20 (Q4)	0.95 (0.57-1.60)	0.63	NA		
Knekt et al., 2002	Flavonols	Myricetin	NHS II	8	Pre	710/90638	0.09 vs 2.62 (Q5)	0.99 (0.78-1.26)	0.35	NA	
Goldbohm et al., 1998	Flavonols	Myricetin	NLCS	4.3	605/3123	8.9 vs 30.8 (Q5)	1.00 (0.70-1.41)	0.957	NA		
Knekt et al., 2002	Flavonols	Myricetin	FMC	30	125/4647	1.8 vs 4.7 (Q4)	0.62 (0.37-1.03)	0.25	NA		
Adebamowo et al., 2005	Flavonols	Myricetin	NHS II	8	Pre	710/90638	5.3 vs 30.1 (Q5)	1.05 (0.83-1.33)	0.81	NA	
Zamora-Ros et al., 2013	Flavanones	EPIC	Women from ten European countries	11.5	Pre	2827/334850	<6.2 vs >33.0 (Q5)	1.02 (0.89-1.18)	0.283	NA	
Touvier et al., 2013	Flavanones	SU.VI.MAX	French	12.6		59/2011	18.6 vs 28.3 (Q4)	1.27 (0.65-2.48)	0.62	Non-to-low alcohol users; no effect modification for higher drinkers	
Zamora-Ros et al., 2013	Flavanones	EPIC	Women from ten European countries	11.5	Pre	2827/334850	<6.2 vs >33.0 (Q5)	1.04 (0.95-1.15)	0.401	NA	
Wang et al., 2014	Flavanones	CPS-II	American	8.5	Post	2116/56630	≤6.5 vs >34.0-162 (Q5)	1.04 (0.90-1.19)	0.34	No effect modification by ER status	
Zamora-Ros et al., 2013	Flavanones	EPIC	Women from ten European countries	11.5	Post	5872/334850	<6.2 vs >33.0 (Q5)	1.04 (0.95-1.15)	0.401	NA	
Knekt et al., 2002	Flavanones	Hesperetin	FMC	30	125/4647	3.2 vs 26.8 (Q4)	1.08 (0.63-1.86)	0.93	NA		
Knekt et al., 2002	Flavanones	Naringenin	FMC	30	125/4647	0.9 vs 7.7 (Q4)	1.14 (0.67-1.94)	0.82	NA		
Zamora-Ros et al., 2013	Flavanols	EPIC	Women from ten European countries	11.5		11576/334850	<18.2 vs >379.8 (Q5)	1.01 (0.93-1.09)	0.856	No effect modification by ER/PR status	
Touvier et al., 2013	Flavanols	SU.VI.MAX	French	12.6		59/2011	61.2 vs 151.5 (Q4)	0.48 (0.22-1.05)	0.02*	Non-to-low alcohol users; increased risk in higher drinkers	
Zamora-Ros et al., 2013	Flavanols	EPIC	Women from ten European countries	11.5	Pre	2827/334850	<18.2 vs >379.8 (Q5)	0.96 (0.82-1.13)	0.7	NA	
Wang et al., 2014	Flavanols	CPS-II	American	8.5	Post	2116/56630	≤9.0 vs >36.7-410 (Q5)	0.98 (0.86-1.12)	0.56	NA	
Arts et al., 2002	Flavanols	EPIC	Women from ten European countries	11.5	Post	5872/334850	<18.2 vs >379.8 (Q5)	1.00 (0.90-1.11)	0.932	NA	
Zamora-Ros et al., 2013	Flavanols	IWHS	American	13	Post	1069/34651	3.6 vs 75.1 (Q5)	1.04 (0.84-1.28)	1	NA	
Zamora-Ros et al., 2013	Flavanols	EPIC	Women from ten European countries	11.5	Post	5872/334850	<18.2 vs >379.8 (Q5)	1.00 (0.90-1.11)	0.932	NA	
Zamora-Ros et al., 2013	Flavanols	IWHS	American	13	Post	1069/34651	3.6 vs 75.1 (Q5)	1.04 (0.84-1.28)	1	NA	
Table 2. Continued

Flavonoid	Subclass	Certain	Compound	Study	Population	Median follow-up (years)	Menopausal status in baseline	Cases/ cohort	Intake comparison (low vs high, mg/day)	Multivariate-adjusted OR/RR/HR	P for trend	Comments
Isoflavones	ME	American, Hawaiian (multiethnic)	13.7	4769/84450	1.7 vs 29.6 (Q4)	0.96 (0.85-1.08)	>0.10	A weak protective association for Japanese American; no effect modification by ER status	Morimoto et al., 2014			
Isoflavones	EPIC	Women from ten European countries	11.5	11576/334850	<0.22 vs >1.36 (Q5)	1.00 (0.91-1.10)	>0.734	No effect modification by ER/PR status	Zamora-Ros et al., 2013			
Isoflavones	EPIC-Oxford	British	7.4	585/37643	<10 vs >20	1.17 (0.79-1.71)	>0.36	No effect modification for non-HRT users	Travis et al., 2008			
Isoflavones	EPIC-Dutch	Dutch	5.2	280/15555	0.19 vs 0.77 (Q4)	0.98 (0.65-1.48)	>0.92	NA	Keinan-Boker et al., 2004			
Isoflavones	WLH	Swedish	13	1014/45448	0.98 (0.83-1.17)	>0.98	NA	No effect modification by age strata (<50, ≥50 y)	Hedelin et al., 2008			
Isoflavones	TS	Japanese	15.5	172/15607	18.6 vs 70.6 (Q4)	0.67 (0.44-1.03)	>0.25	NA	Wada et al., 2013			
Isoflavones	SWHS	Chinese	7.4	594/73223	11.23 vs 54.97 (Q5)	0.81 (0.61-1.07)	<0.091	NA	Lee et al., 2009			
Isoflavones	SCHS	Singapore Chinese	6.29	3629/35303	<10.6 vs ≥10.6/1000 kcal	0.82 (0.70-0.97)	<0.019*	Strong association for women with >10 y follow-up	Wu et al., 2008			
Isoflavones	EPIC	Women from ten European countries	11.5	2827/334850	<0.22 vs >1.36 (Q5)	0.94 (0.77-1.16)	>0.351	NA	Zamora-Ros et al., 2013			
Isoflavones	EPIC-Oxford	British	7.4	196/37643	<10 vs >10	1.31 (0.95-1.81)	>0.11	NA	Travis et al., 2008			
Isoflavones	E3N	French	12	402/26868	0.001-0.022 vs 0.036-0.112 (Q4)	1.00 (0.76-1.31)	>0.48	NA	Touillaud MS et al., 2006			
Isoflavones	TS	Japanese	15.5	38/5926	17.8 vs 68.5 (Q4)	1.52 (0.63-3.65)	>0.14	NA	Wada et al., 2013			
Isoflavones	SWHS	Chinese	7.4	305/73223	11.23 vs 54.97 (Q5)	0.44 (0.26-0.73)	<0.001*	NA	Lee et al., 2009			
Isoflavones	SCHS	Singapore Chinese										
Isoflavones	CPS-II	American	8.5	2196/56630	≤0.026 vs >0.093-45.0 (Q5)	1.04 (0.91-1.20)	>0.64	No effect modification by ER status	Wang et al., 2014			
Isoflavones	MEC	American, Hawaiian (multiethnic)	13.7	4112/84450	1.7 vs 29.6 (Q4)	0.98 (0.86-1.12)	>0.56	NA	Morimoto et al., 2014			
Isoflavones	EPIC	Women from ten European countries	11.5	5872/334850	<0.22 vs >1.36 (Q5)	1.00 (0.87-1.14)	>0.702	NA	Zamora-Ros et al., 2013			
Isoflavones	EPIC-Oxford	British	7.4	310/37643	<10 vs >10	0.95 (0.66-1.38)	>0.8	NA	Travis et al., 2008			
Isoflavones	TS	Japanese	15.5	134/15264	18.7 vs 70.6 (Q4)	0.52 (0.32-0.85)	<0.046*	Stronger inverse association for women with BMI<25, never smokers, drinkers	Wada et al., 2013			
Table 2. Continued

Flavonoid Subclass	Study	Population	Median Follow-up (Years)	Menopausal Status in Baseline	Cases/Cohort	Intake Comparison (Low vs High, mg/day)	Multivariate-Adjusted OR/RR/HR	P for Trend	Comments
Isoflavones	SWHS	Chinese	Post-289/73223	11.23 vs 54.97 (Q5)	1.09 (0.78-1.52)	0.8	NA	Strong association for women with >10 y follow-up; a significant association for women with BMI>24 (not ≤24); no effect modification by ER/PR status	
	SCHS	Singapore Chinese	Post-439/35303	10.6 vs ≥10.6 /1000 kcal	0.74 (0.61-0.90)	0.003*			
Isoflavones	CTS	American	2 711/111526	(Q5)	1.0 (0.7-1.3)	0.9	NA		
	WLH	Swedish	13 1014/45448	(Q4)	1.01 (0.84-1.20)	0.9	NA	No effect modification by age strata (<50, ≥50 y)	
	JPHC	Japanese	10 179/21852	6.9±2.6 vs 25.3±2.2 (Q4)	0.46 (0.25-0.84)	0.043*			
				89/21852	0.66 (0.25-1.7)	0.97	NA		
	JPHC	Japanese	10 87/21852	(Q4)	0.32 (0.14-0.71)	0.006*			
Isoflavones	CTS	American	2 711/111526	(Q5)	0.9 (0.7-1.2)	0.6	NA		
	WLH	Swedish	13 1014/45448	(Q4)	1.07 (0.90-1.28)			Non-to-low alcohol users; increased risk in higher drinkers	
Isoflavones	CTS	American	2 711/111526	(Q5)	1.0 (0.8-1.3)	0.7	NA		
	CTS	American	2 711/111526	(Q5)	1.1 (0.8-1.4)	0.4	NA		
Anthocyanidins	EPIC	Women from ten European countries	11.5	11576/334850	<12.1 vs >43.6 (Q5)	1.02 (0.94-1.10)	0.56	No effect modification by ER/PR status	
	SU.VI.MAX	French	12.6	59/2011	24.5 vs 56.9 (Q4)	0.55 (0.23-1.27)	0.08	Non-to-low alcohol users; increased risk in higher drinkers	
Anthocyanins	EPIC	Women from ten European countries	11.5	2827/334850	<12.1 vs >43.6 (Q5)	1.09 (0.93-1.28)	0.323		
	EPIC	Women from ten European countries	11.5	5872/334850	<12.1 vs >43.6 (Q5)	1.01 (0.90-1.13)	0.829		
Anthocyanidins	CPS-II	American	8.5	2116/56630	≤5.3 vs >16.1-97.9 (Q5)	0.91 (0.80-1.05)	0.52	No effect modification by ER status	
	EPIC	Women from ten European countries	11.5	5872/334850	<12.1 vs >43.6 (Q5)	1.01 (0.90-1.13)	0.829		

Legend:
- **CPS-II:** The Cancer Prevention Study II Nutrition Cohort
- **CTS:** The California Teachers Study (USA)
- **E3N:** Etude Epidemiologique aupres de femmes de la Mutuelle Generale de l’Education Nationale
- **EPIC:** The European Prospective Investigation into Cancer and Nutrition
- **FMC:** The Finnish Mobile Clinic Health Examination Survey
- **IWHS:** The Iowa Women’s Health Study
- **JPHC:** The Japan Public Health Center-based prospective study
- **MEC:** The Multiethnic Cohort Study
- **NHS II:** The Nurses Health Study II
- **NLCS:** The Netherlands Cohort Study
- **RS:** The Rotterdam Study
- **SCHS:** The Singapore Chinese Health Study
- **SU.VI.MAX:** The Supplementation en Vitamines et Mineraux AntioXydants study
- **SWHS:** The Shanghai Women’s Health Study
- **TS:** The Takayama Study
- **WHS:** The Women’s Health Study
- **WLH:** The Scandinavian Women’s Lifestyle and Health Cohort

Abbreviations:
- OR, odds ratio; RR, relative risk; HR, hazard ratio
- Statistically significant effects (p for trend <0.05) are marked by asterisk
- ER, estrogen receptor; HRT, hormone replacement therapy; PR, progesterone receptor; NA, not applicable

Note: The table continues on the next page.
can be explained not only by diverse dietary habits and personal preferences but also by the differences in flavonoid contents in certain food items (Linseisen et al., 2004; Zhang et al., 2010). Indeed, content of flavonoids in food products can substantially vary according to species, differences in cultivars, environmental conditions, geographic location, season, climatic conditions, storage conditions, level of ripeness at the harvest time, but also processing methods and food preparation processes (dos Santos Silva et al., 2004; Grace et al., 2004; Adedamowo et al., 2005; Fink et al., 2007; Iwasaki et al., 2010; Luo et al., 2010). Therefore, the adaptability of USDA flavonoid databases to the diet of European or Asian populations can be somewhat questionable (Bosetti et al., 2005) and possible errors in estimation of exposure to flavonoids through dietary intake must be taken into account in interpreting the association findings.

On the other hand, different findings from Asian and Western populations about relationship between consumption of isoflavones and breast cancer risk suggest that isoflavone intake may still affect mammary carcinogenesis but dose may play a crucial role (Adedamowo et al., 2005; Lampe et al., 2007; Xie et al., 2013). It is conceivable that isoflavone intake has to reach a certain amount (overcome the so-called threshold level) in order to produce benefits and intake of soy foods in Western populations is too low and insufficient to provide enough isoflavones to decrease the risk of breast cancer (Horn-Ross et al., 2001; dos Santos Silva et al., 2004; Bosetti et al., 2005; Lampe et al., 2007; Ward et al., 2008; Wada et al., 2013; Xie et al., 2013). Indeed, the daily intake of isoflavones among women in the United States and Europe is usually less than 3 mg, whereas older adults in China and Japan consume even 25-50 mg of isoflavones per day meaning that higher consumption levels among Western women are far below the lower doses in Asian women (Peeters et al., 2003; Messina et al., 2006; Cotterchio et al., 2008; Messina et al., 2008; Nagata, 2010; Dong and Qin, 2011; Zamora-Ros et al., 2013). Because of this high level and also large variation in soy food intake, Asian populations are ideal settings for estimation of the associations between isoflavone consumption and breast cancer risk (Yamamoto et al., 2003; Iwasaki et al., 2008; Lee et al., 2009; Taylor et al., 2009).

Given the difficulties to detect all flavonoid-containing foods and additives in the diet, the use of biomarkers, such as blood levels or urinary excretion, may provide a more relevant and precise measure to estimate flavonoid consumption than dietary assessment (den Tonkelaar et al., 2001; Verheus et al., 2007; Ward et al., 2008; Luo et al., 2010; Morimoto et al., 2014). Moreover, after intake, flavonoids undergo numerous metabolic conversions in the gastrointestinal tract by intestinal bacteria, as a result of which both parent polyphenols as well as their different conjugates reach circulation and target tissues, and are eventually excreted mainly in urine (Zheng et al., 1999; Dai et al., 2002; Peeters et al., 2003; Lampe et al., 2007; Travis et al., 2008; Luo et al., 2010). It is thus possible that the most abundant compounds in the diet are not necessarily the ones which enter into bloodstream (Touvier et al., 2013). However, currently available food composition databases do not consider the differences in degree of metabolism and absorption of polyphenols that may be a critical factor of exposure to these phytochemicals in understanding their health effects (Lampe et al., 2007; Touvier et al., 2013). Moreover, there can be a large interindividual variation in absorption and excretion of flavonoids after ingestion, depending besides the amount and frequency of intake also on the microbial communities of gut, stress, possible bowel diseases, use of antibiotics (which affect the intestinal microflora), food matrix and background diet, endogenous hormones, or even on genetics and ethnicity (den Tonkelaar et al., 2001; Dai et al., 2002; dos Santos Silva et al., 2004; Kumar et al., 2004; Adedamowo et al., 2005; Trock et al., 2006; Verheus et al., 2007; Hedelin et al., 2008; Luo et al., 2010; Nagata, 2010). Indeed, the interindividual urinary excretion of total isoflavones was shown to vary 16-fold after ingestion of foods rich in soy products and the level of some metabolites can fluctuate even more (Dai et al., 2002). Furthermore, the bioactivities of parent compounds and metabolites can differ. For instance, equol is exclusively the metabolite produced from dietary isoflavone daidzein by certain intestinal bacteria. Only about 30-50 % of individuals are able to generate equol in response to dietary exposure to daidzein, whereas Asian subjects tend to be more likely toward this conversion than Western populations (Keinan-Boker et al., 2004; Linseisen et al., 2004; Lampe et al., 2007; Verheus et al., 2007; Iwasaki et al., 2008; Ward et al., 2008; Cho et al., 2010; Nagata, 2010). This higher prevalence of equol producers among Asian women might add one more explanation also to the beneficial effects of soy foods intake in terms of decreased susceptibility to breast carcinogenesis (Nagata, 2010). At that, equol exerts greater biological activity (including estrogenic action) than daidzein and is a much stronger antioxidant than all other isoflavones; therefore, only subjects who are equol producers experience these benefits (Keinan-Boker et al., 2004; Linseisen et al., 2004; Iwasaki et al., 2008; Cho et al., 2010; Nagata, 2010; Dong and Qin, 2011; Kang et al., 2012).

Although the use of biomarkers (plasma concentrations and urinary excretion) that integrate dietary consumption, metabolism and bioavailability of flavonoids may be more accurate, informative and attractive measure than dietary assessment, it primarily reflects the intake levels of flavonoid-containing foods only over a very short period (for instance, the half-lives of isoflavones in plasma are 6-8 h and almost all are excreted within 24-96 h after ingestion) (Ingram et al., 1997; Zheng et al., 1999; den Tonkelaar et al., 2001; Dai et al., 2002; Peeters et al., 2003; dos Santos Silva et al., 2004; Messina et al., 2006; Lampe et al., 2007; Iwasaki et al., 2008; Goodman et al., 2009). Therefore, recent diet may have a major impact on the levels of urinary polyphenols revealing also a large intraindividual variability within the time of day and timing regarding to meals (Zheng et al., 1999; Dai et al., 2002; Trock et al., 2006; Iwasaki et al., 2008; Iwasaki et al., 2010; Chen et al., 2014). Even though the consumption of flavonoids-containing foods is a personal dietary and
Study	Type	Country	Control	Cases	Odds Ratio	95% CI	P Value
Luo et al., 2010	Serum	Chinese	250/250	353/701	1.11	0.43-2.84	0.92
Luo et al., 2010	Plasma	Chinese	59/118	59/118	1.15	0.43-3.11	0.11
Luo et al., 2010	Plasma	Japanese	59/118	59/118	1.78	0.66-4.79	0.344
Luo et al., 2010	Urinary	Japanese	59/118	59/118	1.11	0.43-2.84	0.92
Luo et al., 2010	Urinary	Japanese	59/118	59/118	1.15	0.43-3.11	0.11
Luo et al., 2010	Urinary	Chinese	250/250	353/701	1.11	0.43-2.84	0.92
Luo et al., 2010	Urinary	Chinese	59/118	59/118	1.15	0.43-3.11	0.11
Luo et al., 2010	Urinary	Chinese	59/118	59/118	1.78	0.66-4.79	0.344
Luo et al., 2010	Urinary	Chinese	250/250	353/701	1.11	0.43-2.84	0.92
Luo et al., 2010	Urinary	Chinese	59/118	59/118	1.15	0.43-3.11	0.11
Luo et al., 2010	Urinary	Chinese	59/118	59/118	1.78	0.66-4.79	0.344
Luo et al., 2010	Urinary	Chinese	250/250	353/701	1.11	0.43-2.84	0.92
Luo et al., 2010	Urinary	Chinese	59/118	59/118	1.15	0.43-3.11	0.11
Luo et al., 2010	Urinary	Chinese	59/118	59/118	1.78	0.66-4.79	0.344
Luo et al., 2010	Urinary	Chinese	250/250	353/701	1.11	0.43-2.84	0.92
Luo et al., 2010	Urinary	Chinese	59/118	59/118	1.15	0.43-3.11	0.11
Luo et al., 2010	Urinary	Chinese	59/118	59/118	1.78	0.66-4.79	0.344
Luo et al., 2010	Urinary	Chinese	250/250	353/701	1.11	0.43-2.84	0.92
Luo et al., 2010	Urinary	Chinese	59/118	59/118	1.15	0.43-3.11	0.11
Luo et al., 2010	Urinary	Chinese	59/118	59/118	1.78	0.66-4.79	0.344
Luo et al., 2010	Urinary	Chinese	250/250	353/701	1.11	0.43-2.84	0.92
Luo et al., 2010	Urinary	Chinese	59/118	59/118	1.15	0.43-3.11	0.11
Luo et al., 2010	Urinary	Chinese	59/118	59/118	1.78	0.66-4.79	0.344
Luo et al., 2010	Urinary	Chinese	250/250	353/701	1.11	0.43-2.84	0.92
Luo et al., 2010	Urinary	Chinese	59/118	59/118	1.15	0.43-3.11	0.11
Luo et al., 2010	Urinary	Chinese	59/118	59/118	1.78	0.66-4.79	0.344
Luo et al., 2010	Urinary	Chinese	250/250	353/701	1.11	0.43-2.84	0.92
Luo et al., 2010	Urinary	Chinese	59/118	59/118	1.15	0.43-3.11	0.11
Luo et al., 2010	Urinary	Chinese	59/118	59/118	1.78	0.66-4.79	0.344
Luo et al., 2010	Urinary	Chinese	250/250	353/701	1.11	0.43-2.84	0.92
Luo et al., 2010	Urinary	Chinese	59/118	59/118	1.15	0.43-3.11	0.11
Luo et al., 2010	Urinary	Chinese	59/118	59/118	1.78	0.66-4.79	0.344
Study	Cases/controls	Effect modifier	OR	95% CI	p-value		
-------------------------------	----------------	-----------------	--------	-----------------	---------		
Zheng et al., 2002			0.63	0.38-0.99	0.027		
Lampe et al., 2007			1.37	0.84-2.22	0.175		
Iwasaki et al., 2008			0.48	0.29-0.80	0.007		
Iwasaki et al., 2008			0.2	0.08-0.69	0.0001		
Goodman et al., 2009			0.65	0.41-1.03	0.050		
Enoh et al., 2005			0.66	0.47-0.95	0.021		

OR: Adjusted OR, CI: confidence interval.
Bio-marker	Group	Menopausal Status	Post- or Pre-Menopausal	ER+ Status	Odds Ratio	95% CI	P for trend
1234	American (white)	Post			1.32	0.70-2.49	0.07
5678	Dutch	Post			0.87	0.55-1.23	0.80
9012	Japanese-American	Post			0.76	0.47-1.21	0.22
3456	American (multiethnic)	Post			0.73	0.47-1.14	0.18
7890	Japanese-American	Pre or peri-Menopausal			0.73	0.47-1.14	0.18
1012	Japanese-American	Post			0.66	0.26-1.65	0.34
2345	Chinese	Post			0.87	0.55-1.38	0.55
6789	Chinese	Post			0.82	0.55-1.23	0.39
4567	Japanese-American	Post			0.76	0.47-1.21	0.22
8901	Japanese-American	Post			0.73	0.47-1.14	0.18
2345	Chinese	Post			0.66	0.26-1.65	0.34
6789	Chinese	Post			0.82	0.55-1.23	0.39

Table 3. Continued
habitual preference and these intake levels are relatively stable over time for most individuals, it is possible that breast cancer cases have altered their eating habits after cancer diagnosis or modified their diets just before sample collection (Zheng et al., 1999; den Tonkelaar et al., 2001; Lampe et al., 2007; Luo et al., 2010; Chen et al., 2014). In several epidemiological studies, only a single spot urine or one plasma sample were measured and these parameters may not reflect and represent the usual long-term human exposure levels (Trock et al., 2006; Luo et al., 2010). The possibilities of metabolic changes in biotransformation of flavonoids developed in consequence of breast carcinogenesis can also be not excluded (den Tonkelaar et al., 2001; Peterson et al., 2003; Iwasaki et al., 2008).

An additional factor possibly affecting the association between dietary intake of flavonoids (isoflavones) and breast cancer risk may come from the timing of consumption of isoflavone-rich food items (Travis et al., 2008; Morimoto et al., 2014). The protective effect of soy foods intake reported in several Asian studies can be related to the early life or continuous long-term exposure to isoflavones (Keinan-Boker et al., 2004; Travis et al., 2008; Dong and Qin, 2011; Kang et al., 2012; Wada et al., 2013; Xie et al., 2013; Zamora-Ros et al., 2013). Consumption of isoflavones in higher amounts since childhood or adolescence (prepubertally) may affect the maturation of mammary gland and therefore influence also the risk of breast cancer incidence in later life (Thanos et al., 2006; Lampe et al., 2007; Ward et al., 2008; Nagata, 2010; Xie et al., 2013). Because of majority of Western women have not experienced sufficient early-life exposure to soy foods the beneficial health effects could not be expressed (Morimoto et al., 2014). However, it is difficult to decide whether recent dietary intake of flavonoids can reflect the intake patterns during the time periods which are most relevant to tumor initiation and development, making it possible that these age intervals were missed in several epidemiological studies (Keinan-Boker et al., 2004; Adebamowo et al., 2005; Fink et al., 2007; Ward et al., 2008). In future, it would be interesting to study the effects of in utero exposure to isoflavones through maternal soy consumption on breast cancer risk in older age.

The power to draw consequences in epidemiological studies can be limited due to the small numbers of participants, particularly in the stratified analyses with restricted subgroups (Adebamowo et al., 2005; Cho et al., 2010; Zhu et al., 2011). Some variations in the findings of association can be attributed to the differences in study design, i.e. case-control versus prospective cohort studies. Interpretation of results from case-control studies are typically more complicated as reported parameters among cases might have influenced by disease, both directly inducing metabolic alterations or indirectly through dietary changes or stress (dos Santos Silva et al., 2004). Therefore, any case-control studies suffer several potential limitations, including recall bias as cancer patients may describe their dietary habits differently than controls (Horn-Ross et al., 2002; Thanos et al., 2006; Cotterchio et al., 2008; Iwasaki et al., 2009a; Cho et al., 2010; Dong and Qin, 2011; Zamora-Ros et al., 2013). This study design is susceptible also to selection bias that can still be avoided by proper choosing of cases and controls from the same cohort (Trock et al., 2006; Cotterchio et al., 2008; Iwasaki et al., 2008; Dong and Qin, 2011). Selection of controls from non-cancer inpatients or outpatients in hospital can involve some measurement errors because of their different dietary habits compared to the general population (Hirose et al., 2005; Zhang et al., 2010; Li et al., 2013). In addition, the possibility still remains that control subjects who voluntarily agree to participate might be more conscious of healthy eating and lifestyle than the general population of females not suffering from breast cancer (Ingram et al., 1997; den Tonkelaar et al., 2001; Trock et al., 2006). Prospective cohort study design has several advantages being free from differential bias in reported dietary data, since information of consumption is collected before breast cancer diagnosis (Yamamoto et al., 2003; Iwasaki et al., 2010; Wada et al., 2013; Morimoto et al., 2014). Also, longer-term follow-up periods can be applied in these large-scale studies. However, estimating the flavonoids intake only once in baseline of study can entail measurement errors in those participants who alter their dietary patterns during follow-up years. Moreover, patients could have modified their dietary habits during early prediagnostic period due to preclinical signs of disease (Wada et al., 2013; Zamora-Ros et al., 2013).

While many probable confounders were considered in the association studies between intake of flavonoids and breast cancer risk, confounding by other known and unknown factors cannot be fully excluded (Peterson et al., 2003; Yamamoto et al., 2003; dos Santos Silva et al., 2004; Grace et al., 2004; Cotterchio et al., 2008; Iwasaki et al., 2008; Wada et al., 2013; Wang et al., 2014). It is possible that abundant consumption of flavonoids-containing food items (such as fruits and vegetables) may be associated with an overall healthy diet and lifestyle or ingestion of other anticancer substances, or be a marker for other characteristics related to susceptibility toward mammary carcinogenesis (Thanos et al., 2006; Fink et al., 2007; Lee et al., 2009; Dong and Qin, 2011; Xie et al., 2013). Regarding to the effects of isoflavones being often evaluated by the consumption of soy foods, other bioactive constituents in soy may also exert beneficial action on breast cancer risk (Bouker and Hilakivi-Clarke, 2000; Wu et al., 2002; Cho et al., 2010). In addition, in several epidemiological studies the information about expression of estrogen and progesterone receptors in tumor tissue as well as the menopausal or equal-producer status of participants are unknown, although these factors can potentially modify the relationships between flavonoids and breast cancer (Travis et al., 2008; Dong and Qin, 2011; Hui et al., 2013; Wada et al., 2013; Chen et al., 2014). It has been hypothesized that isoflavones act as estrogen receptor agonists in low-endogenous-estrogen conditions typical for postmenopausal women and as antagonists in high-endogenous-estrogen environment observed in premenopausal women (Fink et al., 2007; Cho et al., 2010; Nagata, 2010; Dong and Qin, 2011; Wada et al., 2013). Although, findings of epidemiological studies are inconclusive, greater impact among postmenopausal women can suggest that emerging of effect through habitual dietary consumption of isoflavones can take
a long time (Fink et al., 2007; Cho et al., 2010; Hui et al., 2013; Wada et al., 2013). Also, premenopausal and postmenopausal breast tumors may have separate disease etiologies and the biological role of flavonoids in breast carcinogenesis may be mediated by mechanisms involving the synthesis of sex hormones in ovaries or alteration of other characteristics of menstrual cycle (Travis et al., 2008; Zhang et al., 2010; Zhu et al., 2011; Hui et al., 2013; Zamora-Ros et al., 2013). The dependence of isoflavones activity on hormonal milieu is reflected also by stratiﬁcation of association ﬁndings according to obesity characteristics, i.e. body mass index (BMI) and waist-to-hip ratio (WHR) (Iwasaki et al., 2008). Besides hormonal effects, ﬂavonoids exert also antioxidant, antiangiogenic and anti-inﬂammatory activities, all of which, singly or combined, can contribute to the protective action of these phytochemicals against breast carcinogenesis (Iwasaki et al., 2009a; Hui et al., 2013; Wada et al., 2013).

Last but not least, inconsistencies in the epidemiological ﬁndings about associations between intake of ﬂavonoids and breast cancer risk may be explained also by diet-gene interactions (Hedelin et al., 2008; Zhang et al., 2009; Cho et al., 2010). Although this knowledge is still rather scarce today, the protective effect of isoflavones against mammary tumorigenesis was limited only to those postmenopausal Japanese, Japanese Brazilian and non-Japanese Brazilian women who carried the GG genotype of the rs4986938 single nucleotide polymorphism in the estrogen receptor beta (ESR2) gene (Iwasaki et al., 2009b). Also, the genetic variations in DNA repair genes may modify the protective action of isoflavones on breast cancer (Khankari et al., 2014).

Conclusions and further perspectives

Despite numerous experimental data demonstrating anticancer action of ﬂavonoids in vitro conditions and animal experiments (Sak, 2014), epidemiological ﬁndings about the association between intake of these plant-based polyphenols and breast cancer risk have produced inconsistent results. The heterogeneity between ﬁndings of different studies can be caused by various reasons, including the study design (retrospective works are sensitive to recall bias, differently from prospective studies), dose and timing of exposure to flavonoids, menopausal status of women, and subtype of breast tumor.

The current review demonstrates that probably the most apparent relationship prevails for consumption of isoflavones, whereas beneﬁcial effects seem to be expressed only at high intake levels typical to Asian women providing some explanations also to the reduced incidence rate of mammary tumors in Asian populations compared to Western countries where the intake of soy products is remarkably low. Moreover, protective activities of isoflavones might appear only in females and adolescence can be crucial periods of exposure. Therefore, consumption of dietary phytochemicals could play a signiﬁcant protective role against breast carcinogenesis and if conﬁrmed, these ﬁndings increase the attractiveness to use isoflavones-containing food items as potential chemopreventive agents and suggest also the importance to initiate the cancer prevention at early age. As diet is a potentially modiﬁable factor in our life, the conclusions of this review may have signiﬁcant implications for public health and can be used also by healthcare professionals in consulting the patients on prevention of breast tumor. However, it is self-evident that before this, more large-scale studies are needed to further investigate the effects of dose and exposure timing to ﬂavonoids, form and source of these phytochemicals, their potential mechanisms in carcinogenesis, impact of food matrix, interactions between diet and genes, ethnicity of participants, their good and bad health habits like smoking and alcohol consumption, role of speciﬁc tumor characteristics and level of endogenous hormones among several other more or less important factors. In the current stage, recommendations for consumption of high-dose isoflavones from food items or supplements to reduce the individual susceptibility toward breast carcinogenesis are still premature and can also be not completely without the risks.

References

Adebamowo CA, Cho E, Sampson L, et al (2005). Dietary ﬂavonoids and ﬂavonol-rich foods intake and the risk of breast cancer. Int J Cancer, 114, 628-33.

Arts IC, Jacobs DR, Gross M, Harnack LJ, Folsom AR (2002). Dietary catechins and cancer incidence among postmenopausal women: the Iowa Women’s Health Study (United States). Cancer Causes Control, 13, 373-82.

Bosetti C, Spertini L, PariP et al (2005). Flavonoids and breast cancer risk in Italy. Cancer Epidemiol Biomarkers Prev, 14, 805-8.

Bouker KB, Hilakivi-Clarke L (2000). Genistein: does it prevent or promote breast cancer?. Environ Health Perspect, 108, 701-8.

Chen M, Yao Y, Zheng Y, et al (2014). Association between soy isoflavone intake and breast cancer risk for pre- and post-menopausal women: a meta-analysis of epidemiological studies. PloS One, 9, e89288.

Cho YA, Kim J, Park KS, et al (2010). Effect of dietary soy intake on breast cancer risk according to menopause and hormone receptor status. Eur J Clin Nutr, 64, 924-32.

Costerchio M, Boucher BA, Kreiger N, Mills CA, Thompson LU (2008). Dietary phytoestrogen intake – lignans and isoflavones – and breast cancer risk (Canada). Cancer Causes Control, 19, 259-72.

Dai Q, Franke AA, Jin F, et al (2002). Urinary excretion of phytoestrogens and risk of breast cancer among Chinese women in Shanghai. Cancer Epidemiol Biomarkers Prev, 11, 815-21.

Dai Q, Franke AA, Yu H, et al (2003). Urinary phytoestrogen excretion and breast cancer risk: evaluating potential effect modifiers endogenous estrogens and anthropometrics. Cancer Epidemiol Biomarkers Prev, 12, 497-502.

den Tonkelaar I, Keinan-Boker L, VeeR PV, et al (2001). Urinary phytoestrogens and postmenopausal breast cancer risk. Cancer Epidemiol Biomarkers Prev, 10, 223-8.

Dong JY, Qin LQ (2011). Soy isoflavones consumption and risk of breast cancer incidence or recurrence: a meta-analysis of prospective studies. Breast Cancer Res Treat, 125, 315-23.

dos Santos Silva I, Mangatani P, McCormack V, et al (2004). Phyto-oestrogen intake and breast cancer risk in South Asian women in England: ﬁndings from a population-based case-
control study. Cancer Causes Control, 15, 805-18.
Fink BN, Steck SE, Wolff MS, et al (2007). Dietary flavonoid intake and breast cancer risk among women on Long Island. Am J Epidemiol, 165, 514-23.
Goldbohm RA, Hertog MG, Brants HA, van Poppel G, van den Brandt PA (1998). Intake of flavonoids and cancer risk: a prospective cohort study. In ‘Polyphenols in food’, Eds Armada R, Andersson H, Bardocz S, Serra F. Office for Official Publications of the European Communities, Luxembourg, pp 159-66.
Goodman MT, Shleevs YB, Wilkens LR, et al (2009). Urinary phytoestrogen excretion and postmenopausal breast cancer risk: the multiethnic cohort study. Cancer Prev Res (Phila), 2, 887-94.
Grace PB, Taylor JI, Low YL, et al (2004). Phytoestrogen concentrations in serum and spot urine as biomarkers for dietary phytoestrogen intake and their relation to breast cancer risk in European prospective investigation of cancer and nutrition-norfolk. Cancer Epidemiol Biomarkers Prev, 13, 698-708.
Hedelín M, Löf M, Olsson M, et al (2008). Dietary phytoestrogens are not associated with risk of overall breast cancer but diets rich in coumestrol are inversely associated with risk of estrogen receptor and progesterone receptor negative breast tumors in Swedish women. J Nutr, 138, 938-45.
Hirose K, Imaeda N, Tokudome Y, et al (2005). Soybean products and breast cancer risk: a case-control study in Japan. Br J Cancer, 93, 15-22.
Horn-Ross PL, John EM, Lee M, et al (2001). Phytoestrogen consumption and breast cancer risk in a multiracial population: the Bay area breast cancer study. Am J Epidemiol, 154, 434-41.
Horn-Ross PL, Hoggatt KJ, West DW, et al (2002). Recent diet and breast cancer risk: the California Teachers Study (USA). Cancer Causes Control, 13, 407-15.
Hui C, Qi X, Qianyong Z, et al (2013). Flavonoids, flavonoid subclasses and breast cancer risk: a meta-analysis of epidemiologic studies. PLoS One, 8, e54318.
Ingram D, Sanders K, Kolybaba M, Lopez D (1997). Case-control study of phyto-oestrogens and breast cancer. Lancet, 350, 990-4.
Iwasaki M, Inoue M, Otani T, et al (2008). Plasma isoflavone level and subsequent risk of breast cancer among Japanese women: a nested case-control study from the Japan Public Health Center-based prospective study group. J Clin Oncol, 26, 1675-83.
Iwasaki M, Hamada GS, Nishimoto IN, et al (2009a). Dietary isoflavone intake and breast cancer risk in case-control studies in Japanese, Japanese Brazilians, and non-Japanese Brazilians. Breast Cancer Res Treat, 116, 401-11.
Iwasaki M, Hamada GS, Nishimoto IN, et al (2009b). Isoflavone, polymorphisms in estrogen receptor genes and breast cancer risk in case-control studies in Japanese, Japanese Brazilians and non-Japanese Brazilians. Cancer Sci, 100, 927-33.
Iwasaki M, Inoue M, Sasazuki S, et al (2010). Plasma tea polyphenol levels and subsequent risk of breast cancer among Japanese women: a nested case-control study. Breast Cancer Res Treat, 124, 827-34.
Kang HB, Zhang YF, Yang JD, Lu KL (2012). Study on soy isoflavone consumption and risk of breast cancer and survival. Asian Pac J Cancer Prev, 13, 995-8.
Keinan-Boker L, van Der Schouw YT, Grobbee DE, Peeters PH (2004). Dietary phytoestrogens and breast cancer risk. Am J Clin Nutr, 79, 282-8.
Khankari NK, Bradshaw PT, McCullough LE, et al (2014). Genetic variation in multiple biologic pathways, flavonoid intake, and breast cancer. Cancer Causes Control, 25, 215-26.
Knekt P, Järvinen R, Seppänen R, et al (1997). Dietary flavonoids and the risk of lung cancer and other malignant neoplasms. Am J Epidemiol, 146, 223-30.
Knekt P, Kumpulainen J, Järvinen R, et al (2002). Flavonoid intake and risk of chronic diseases. Am J Clin Nutr, 76, 560-8.
Kumar N, Allen K, Riccardi D, Kazi A, Heine J (2004). Isoflavones in breast cancer chemoprevention: where do we go from here?. Front Biosci, 9, 2927-34.
Lampe JW, Nishino Y, Ray RM, et al (2007). Plasma isoflavones and fibrocytic breast conditions and breast cancer among women in Shanghai, China. Cancer Epidemiol Biomarkers Prev, 16, 2579-86.
Lee SA, Shu XO, Li H, et al (2009). Adolescent and adult soy food intake and breast cancer risk: results from the Shanghai Women’s health study. Am J Clin Nutr, 89, 1920-6.
Li L, Zhang M, Holman CD (2013). Population versus hospital controls in the assessment of dietary intake of isoflavone for case-control studies on cancers in China. Nutr Cancer, 65, 390-7.
Linseisen J, Piller R, Hermann S, Chang-Claude J (2004). Dietary phytoestrogen intake and premenopausal breast cancer risk in a German case-control study. Int J Cancer, 110, 284-90.
Luo J, Gao YT, Chow WH, et al (2010). Urinary polyphenols and breast cancer risk: results from the Shanghai Women’s health study. Breast Cancer Res Treat, 120, 693-702.
Magne Nde CB, Zungue S, Winter E, et al (2015). Flavonoids, breast cancer chemopreventive and/or chemotherapeutic agents. Curr Med Chem, 22, 3434-46.
Messina M, McCaskill-Stevens W, Lampe JW (2006). Addressing the soy and breast cancer relationship: review, commentary, and workshop proceedings. J Natl Cancer Inst, 98, 1275-84.
Messina MJ, Wood CE (2008). Soy isoflavones, estrogen therapy, and breast cancer risk: analysis and commentary. Natr J, 7, 17.
Morimoto Y, Maskarinec G, Park SY, et al (2014). Dietary isoflavone intake is not statistically significantly associated with breast cancer risk in the Multiethnic Cohort. Br J Nutr, 112, 976-83.
Nagata C (2010). Factors to consider in the association between soy isoflavone intake and breast cancer risk. J Epidemiol, 20, 83-9.
Pantavos A, Ruitar R, Feskens EF, et al (2015). Total dietary antioxidant capacity, individual antioxidant intake and breast cancer risk: the Rotterdam study. Int J Cancer, 136, 2178-86.
Peeters PH, Keinan-Boker L, van der Schouw YT, Grobbee DE (2003). Phytoestrogens and breast cancer risk. Review of the epidemiological evidence. Breast Cancer Res Treat, 77, 171-83.
Peterson J, Lagiou P, Samoli E, et al (2003). Flavonoid intake and breast cancer risk: a case-control study in Greece. Br J Cancer, 89, 1255-9.
Sak K (2014). Cytotoxicity of dietary flavonoids on different human cancer types. Pharmacogn Rev, 8, 122-46.
Taylor CK, Levy RM, Elliott JC, Burnett BP (2009). The effect of genistein aglycone on cancer and cancer risk: a review of in vitro, preclinical, and clinical studies. Nutr Rev, 67, 398-415.
Thanos J, Cotterchio M, Boucher BA, Kreiger N, Thompson LU (2006). Adolescent dietary phytoestrogen intake and breast cancer risk (Canada). Cancer Causes Control, 17, 1253-61.
Torres-Sanchez L, Galvan-Portillo M, Wolff MS, Lopez-Carrillo L (2009). Dietary consumption of phytochemicals and breast cancer risk in Mexican women. Public Health Nutr, 12, 825-31.

DOI:10.22034/APJCP.2017.18.9.2309
Flavonoids and Breast Cancer Risk
Touillaud MS, Thiebaut AC, Niravong M, Boutron-Ruault MC, Clavel-Chapelon F (2006). No association between dietary phytoestrogens and risk of premenopausal breast cancer in a French cohort study. Cancer Epidemiol Biomarkers Prev, 15, 2574-6.

Touvier M, Druesne-Pecollo N, Kesse-Guyot E, et al (2013). Dual association between polyphenol intake and breast cancer risk according to alcohol consumption level: a prospective cohort study. Breast Cancer Res Treat, 137, 225-36.

Travis RC, Allen NE, Appleby PN, et al (2008). A prospective study of vegetarianism and isoflavone intake in relation to breast cancer risk in British women. Int J Cancer, 122, 705-10.

Trock BJ, Hilakivi-Clarke L, Clarke R (2006). Meta-analysis of soy intake and breast cancer risk. J Natl Cancer Inst, 98, 459-71.

Verheus M, van Gils CH, Keinan-Boker L, et al (2007). Plasma phytoestrogens and subsequent breast cancer risk. J Clin Oncol, 25, 648-55.

Wada K, Nakamura K, Tamai Y, et al (2013). Soy isoflavone intake and breast cancer risk in Japan: from the Takayama study. Int J Cancer, 133, 952-60.

Wang L, Lee IM, Zhang SM, et al (2009). Dietary intake of selected flavonols, flavones, and flavonoid-rich foods and risk of cancer in middle-aged and older women. Am J Clin Nutr, 89, 905-12.

Wang Y, Gapstur SM, Gaudet MM, et al (2014). Evidence for an association of dietary flavonoid intake with breast cancer risk by estrogen receptor status is limited. J Nutr, 144, 1603-11.

Ward H, Chapelais G, Kuhnle GG, et al (2008). Breast cancer risk in relation to urinary and serum biomarkers of phytoestrogen exposure in the European prospective into cancer-Norfolk cohort study. Breast Cancer Res, 10, R32.

Ward HA, Kuhnle GG, Mulligan AA, et al (2010). Breast, colorectal, and prostate cancer risk in the European prospective investigation into cancer and nutrition – Norfolk in relation to phytoestrogen intake derived from an improved database. Am J Clin Nutr, 91, 440-8.

Wu AH, Wan P, Hankin J, et al (2002). Adolescent and adult soy intake and risk of breast cancer in Asian-Americans. Carcinogenesis, 23, 1491-6.

Wu AH, Koh WP, Wang R, Lee HP, Yu MC (2008). Soy intake and breast cancer risk in Singapore Chinese health study. Br J Cancer, 99, 196-200.

Xie Q, Chen ML, Qin Y, et al (2013). Isoflavone consumption and risk of breast cancer: a dose-response meta-analysis of observational studies. Asia Pac J Clin Nutr, 22, 118-27.

Yamamoto S, Sobue T, Kobayashi M, et al (2003). Soy, isoflavones, and breast cancer risk in Japan. J Natl Cancer Inst, 95, 906-13.

Zamora-Ros R, Ferrari P, Gonzalez CA, et al (2013). Dietary flavonoid and lignan intake and breast cancer risk according to menopause and hormone receptor status in the European prospective investigation into cancer and nutrition (EPIC) Study. Breast Cancer Res Treat, 139, 163-76.

Zhang C, Ho SC, Lin F, et al (2010). Soy product and isoflavone intake and breast cancer risk defined by hormone receptor status. Cancer Sci, 101, 501-7.

Zhang M, Yang H, Holman CD (2009). Dietary intake of isoflavones and breast cancer risk by estrogen and progesterone receptor status. Breast Cancer Res Treat, 118, 553-63.

Zheng W, Dai Q, Custer LJ, et al (1999). Urinary excretion of isoflavonoids and the risk of breast cancer. Cancer Epidemiol Biomarkers Prev, 8, 35-40.

Zhu YY, Zhou L, Jiao SC, Xu LZ (2011). Relationship between soy food intake and breast cancer in China. Asian Pac J Cancer Prev, 12, 2837-40.