Recently years have seen the development of bacterial resistance to currently available antibiotics, which necessitates a search for new antimicrobial agents. Amomum muricarpum Elmer is a widely used medicinal plant species in the genus Amomum (family Zingiberaceae) that is commonly found in Laos, the Philippines, China, and Vietnam. The present article describes the chemical composition and antimicrobial activity of essential oils extracted from the leaves and rhizomes of A. muricarpum from North Vietnam. The hydrodistilled essential oil was analyzed using gas chromatography and gas chromatography-mass spectrometry, with the broth microdilution method designed to evaluate its antimicrobial efficacy. The absolute yield of essential oils amounted to 0.11% and 0.13% (v/w) for leaves and rhizomes, respectively, on a dry weight basis. It was found that the leaves and rhizomes of A. muricarpum produce oils abounding in monoterpenes. Of the total identified volatile components in the leaf oil (97.18%), three main constituents include α-pinene (40.45%), linalool (12.34%), and β-pinene (10.31%). In the rhizome oil, the main constituents include α-pinene (48.10%), β-pinene (20.32%), and linalool (7.56%) of the total identified volatile components (98.08%). An antimicrobial activity test indicates that essential oils from the leaves and rhizome of A. muricarpum inhibit the growth of Staphylococcus aureus ATCC 25923, with a minimum inhibitory concentration (MIC) of 200 µg/ml. In addition, the rhizome essential oil also exhibits antimicrobial activity against Bacillus cereus ATCC 14579, with a MIC value of 200 µg/ml. The results indicate the potential of essential oils extracted from A. muricarpum as a source of antimicrobial agents.

Keywords: Amomum muricarpum, Zingiberaceae, essential oil, monoterpenes, α-pinene, antimicrobial activity

For citation: Thin D. B., Thanh V. Q., Thinh B. B. Chemical composition and antimicrobial activity of essential oils extracted from Amomum muricarpum Elmer from North Vietnam. Izvestiya Vuzov. Prikladnaya Khimiya i Biotehnologiya = Proceedings of Universities. Applied Chemistry and Biotechnology. 2021;11(4):523-530. (In English). https://doi.org/10.21285/2227-2925-2021-11-4-523-530.
INTRODUCTION

Since immemorial times, it has been known that the chemical constituents of essential oils of various plants are biologically and pharmacologically active natural substances [1, 2]. Therefore, greater attention has been paid to the screening of essential oils for their biological activity, as a source of developing new therapeutic agents for the prevention and amelioration of natural ailments caused by microorganisms [3, 4]. In continuation of our research on the chemical compounds and biological activities of essential oils from Vietnamese Zingiberaceae plants, we report our findings on the chemical composition and antimicrobial activity of essential oils of *Amomum muricarpum*.

Amomum is a large genus in the Zingiberaceae family distributed in Asia, Africa, and Australia with about 180 species [5]. *Amomum* plants have been described as sources of biologically active components [4, 6–8]. *A. muricarpum* is a medicinal plant that can grow up to 2.5 m tall. Phytochemical investigation of *A. muricarpum* led to the iden-\textit{tification of diarylethanoids [9, 10]. Previously, the compositions and biological activities of essential oils from various parts of *A. muricarpum* from Central Vietnam were determined and reported [11–14]. Studies noted the effects of geographical and envi-ronmental factors, on the composition and quality of the essential oil [15–17]. This article will provide new data on the chemical composition and antimicrobial activity of essential oils extracted from *A. muricarpum*, which was grown in North Vietnam.

MATERIALS AND METHODS

Plant material. The plant parts used for this study namely the leaves and rhizomes of *A. muricarpum* were collected from Na Hang, Tuyen Quang Province, Northern Vietnam in July 2018. Botanical identification was performed by Assoc. Prof. Dr. Dau Ba Thin. Leaves and rhizomes of *A. muricarpum* were dried at room temperature (25 °C) for one week before hydrodistillation.

Hydrodistillation of essential oils. Essential oils were obtained from leaves and rhizomes of *A. muricarpum* (two kilogram for each extraction) by hydrodistillation using a Clevenger-type apparatus for 4 h at normal pressure according to the pro-\textit{cedure of the Vietnamese Pharmacopoeia} 2. The process of hydrodistillation using a Clevenger type apparatus has obtained a mixture of oil with a quantity of water. To remove water, the extracted essential oils were then dried by adding anhydrous sodium sulfate-Na\textsubscript{2}SO\textsubscript{4}. The absorption of water into the sodium sulfate is complete in seconds, causing the grains to coagulate. If additional sodium sulfate is added, and the grains do not coagulate, then the oil is essentially anhydrous. The obtained oils were stored in dry amber vials at 4 °C until analysis. All measurements were performed in triplicate.

Analysis of essential oils. Gas chromatography (GC) analysis was performed on Agilent GC 7890A equipped with a FID and fitted with HP-5MS column (30 m × 0.25 mm, film thickness 0.25 μm, Agilent Technology). The analytical conditions were: carrier gas Helium (1 ml/min), injector temperature (PTV) 250 °C, detector temperature 260 °C, column temperature programmed from 60 °C (2 min hold) to 220 °C (10 min hold) at the heating rate 4 °C/min. Samples were injected by splitting and the split ratio was 10:1. The volume injected was 1.0 μL. Inlet pressure was 6.1 kPa.

1Nguyen T.B. *Flora of Vietnam.* Vol. 1. Hanoi: Science and Technology Publishing House, 2000.

2Vietnamese Pharmacopoeia. Medical Publishing House, 2nd Edition, Hanoi, Vietnam, 2009.
An Agilent GC 7890A chromatograph fitted with a fused silica capillary HP-5MS column (30 m x 0.25 mm, film thickness 0.25 μm) and interfaced with a mass spectrometer HP 5973 MSD was used for the GC/MS analysis, under the same conditions as those used for GC analysis. The conditions were the same as described above with Helium (1 ml/min) as carrier gas. The MS conditions were as follows: ionization voltage 70 eV; emission current 40 mA; scan mass range of 35–350 amu at a sampling rate of 1.0 scan/s.

The identification of constituents from the GC/MS spectra of A. muricarpum was performed on the basis of retention indices (RI) determined with reference to a homologous series of n-alkanes, under identical experimental conditions, co-injection with standards (Sigma-Aldrich, St. Louis, MO, USA) or known essential oil constituents, MS library search and as described in previous studies [11–14].

Antimicrobial screening. Antimicrobial activity of A. muricarpum essential oil was carried out on three Gram-negative bacteria, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, and Salmonella enterica ATCC 13076; three Gram-positive bacteria, Enterococcus faecalis ATCC 29212, Staphylococcus aureus ATCC 25923, and Bacillus cereus ATCC 14579; and the yeast, Candida albicans ATCC 10231, using the microdilution broth susceptibility assay as previously described [18]. Testing media included Mueller-Hinton Agar (MHA) used for bacteria and Sabouraud Agar (SA) used for fungi. The minimum inhibitory concentration (MIC) values were determined as the lowest concentration of the test sample that completely inhibits the growth of microorganisms. All measurements were performed in triplicate.

Statistical analysis. All results of chemical composition and antimicrobial experiments were repeated three times and are expressed as mean ± standard deviation (SD).

RESULTS AND DISCUSSION

Yields and chemical constituents of essential oils. Hydrodistilled essential oils from the leaves and rhizomes of A. muricarpum are analyzed by GC/MS. The yields of the essential oils were 0.11 and 0.13% (v/w, ±0.01) respectively for the leaf and rhizome of A. muricarpum. All the essential oils were yellow coloured. The identities of the compounds of A. muricarpum oils, their per cent compositions and retention indices on HP-5MS column could be seen in Table 1.

A total of 45 compounds amounting to 97.18% in the A. muricarpum leaf essential oil were identified (Table 1). Among these 59.53% were monoterpenes hydrocarbons, 17.71% were oxygenated monoterpenes, and it also contained 17.59% sesquiterpenes hydrocarbons and 2.14% oxygenated sesquiterpenes. The major constituents in the A. muricarpum leaf essential oil were α-pinene (40.45%), linalool (12.34%), and β-pinene (10.31%). Comparing our results with those obtained by previous studies showed that all the leaf essential oils extracted are similar with α-pinene and β-pinene predominating [11–13]. However, although 1,8-cineole was the second major component in the previous studies [12, 13], this component was not detected in the leaf oil of A. muricarpum in the present study. Furthermore, linalool (12.34%) was found at relatively high amounts in the leaf oil of A. muricarpum in the present study (Table 1), while this component was in much lower amounts in the previous studies [12, 13]. The variations in chemical constituents can likely be attributed to the different geographical collection sites as well as climatic factors.

In the essential oil extracted from A. muricarpum rhizome, 44 compounds were identified, corresponding to 98.08% of the total oil (Table 1). It is comprised of monoterpene hydrocarbons (75.83%), oxygenated monoterpenes (10.76%), sesquiterpene hydrocarbons (10.52%), and oxygenated sesquiterpenes (0.81%). The main constituents in the A. muricarpum rhizome essential oil were α-pinene (48.10%), β-pinene (20.32%), and linalool (7.56%). To the best of our knowledge, there are several reports on the chemical composition of A. muricarpum rhizome oil [11–14]. Most of these reports indicate that α-pinene and β-pinene are the main and/or characteristic constituents of rhizome oil. The findings on the major components of A. muricarpum rhizome oil were in agreement with the previous reports except for linalool, which was found to be 7.56% in our study. As highlighted previously, this difference can also be attributed to growth, genetics, and climatic conditions.

Antimicrobial Activity. The antimicrobial activities of essential oils from the leaf and rhizome of A. muricarpum were estimated by means of the microdilution broth method and the results are expressed as the minimum inhibitory concentration (MIC) in Table 2. The rhizomes oil had moderate bactericidal activities against S. aureus and B. cereus with the MIC value of 200 μg/mL. The leaves oil only exhibited antimicrobial action against the growth of S. aureus with a MIC value of 200 μg/mL. The observed antimicrobial result of A. muricarpum essential oils was in agreement with previous information that Amomum essential oils from Vietnam and other parts of the world selectively inhibited the growth of different microorganisms [4, 6, 7, 14].

In general, the antibacterial activities of essential oils could be attributed to the most abundant components or the synergistic effects between its major components and minor ones in the oils.

3National Institute of Science and Technology. NIST Chemistry Webbook // Data from NIST Standard Reference Database 69, 2018.
Compound name	RI^b	RI^c	Percentage composition^d
			Leaves
			Rhizomes
Tricyclicene	928	927	0.15
α-Pinene	939	932	40.45
Camphene	955	954	1.15
β-Pinene	980	979	10.31
β-Myrcene	990	988	3.05
α-Phellandrene	1006	1003	0.42
δ-3-Carene	1010	1007	–
α-Terpinene	1017	1014	–
p-Cymene	1026	1020	0.15
β-Phellandrene	1028	1024	1.52
Limonene	1032	1024	0.45
1,8-Cineole	1035	1030	–
(2)-β-Ocimene	1045	1032	0.17
(E)-β-Ocimene	1051	1044	–
γ-Terpinene	1061	1056	0.50
α-Terpineol	1091	1086	1.21
Linalool	1100	1095	12.34
Bornol	1166	1165	0.21
Terpinen-4-ol	1177	1174	–
α-Terpeneol	1188	1187	–
Fenchyl acetate	1228	1225	0.54
Geraniol	1253	1249	1.24
Bornyl acetate	1289	1287	0.12
Bicycloelemene	1327	1325	0.98
α-Cubebene	1351	1345	0.35
α-Copaene	1377	1374	0.62
Geranyl acetate	1381	1380	3.26
β-Bourbonene	1385	1384	–
β-Elemene	1391	1398	–
α-Gurjunene	1412	1409	0.13
β-Caryophyllene	1419	1417	1.95
α-Santalene	1427	1427	0.61
γ-Elemene	1430	1437	0.27
trans-α-Bergamotene	1435	1431	0.23
Aromadendrene	1441	1439	–
(2)-β-Farnesene	1443	1440	0.56
α-Humulene	1454	1452	0.42
β-Santalene	1457	1457	–
Valencene	1473	1470	0.60
γ-Gurjunene	1477	1475	0.15
Germacrene D	1490	1484	0.27
α-Selinene	1493	1498	1.93
Bicyclogermacrene	1500	1500	3.47
(E,E)-α-Farnesene	1508	1505	2.24
γ-Cadinene	1514	1513	0.24
trans-γ-Bisabolene	1516	1514	0.21
α-Panasinsene	1518	1518	0.17
β-Sesquiphellandrene	1524	1521	0.56
δ-Cadinene	1525	1522	1.63
Calacorene	1546	1540	0.28
Germacrene B	1561	1559	–
(E)-Nerolidol	1563	1561	0.27
Spathulenol	1578	1577	0.31
Guaiol	1601	1601	0.34
α-Cadinol	1654	1652	0.52
(E,E)-Farnesol	1718	1718	0.70
Phytol	2125	2124	0.21
Total	97.18	98.08	

^aElution order on HP-5MS column; ^bRetention indices on HP-5MS column; ^cLiterature retention indices; ^dStandard deviation were insignificant and excluded from the Table to avoid congestion; "–" – Not identified.
Table 2. Antimicrobial activity of A. muricarpum essential oils

Microorganisms	Minimum inhibitory concentration (MIC, μg/mL)	
	Leaves	Rhizomes
Escherichia coli ATCC 25922	na	na
Pseudomonas aeruginosa ATCC 27853	na	na
Salmonella enterica ATCC 13076	na	na
Enterococcus faecalis ATCC 29212	na	na
Staphylococcus aureus ATCC 25923	200.0±0.231	200.0±0.147
Bacillus cereus ATCC 14579	na	200.0±0.325
Candida albicans ATCC 10231	na	na

CONCLUSIONS

In summary, this study provides information on the chemical composition and antimicrobial activity of essential oils from the leaves and rhizomes of A. muricarpum. According to GC/MS analyses, the major components of leaf oil were α-pinene (40.45%), linalool (12.34%), and β-pinene (10.31%), while rhizome oil consists mainly of α-pinene (48.10%), β-pinene (20.32%), and linalool (7.56%). These compounds may be thought of as the contributing factor to the observed antimicrobial activity of the essential oils against S. aureus and B. cereus. Thus, the A. muricarpum essential oils may be sources of promising antimicrobial agents.

REFERENCES

1. Ponce A. G., Del Valle C. E., Roura S. I. Natural essential oils as reducing agents of peroxidase activity in leafy vegetables. LWT-Food Science and Technology. 2004;37(2):199–204. https://doi.org/10.1016/j.lwt.2003.07.005.
2. Vergis J., Gokulakrishnan P., Agarwal R. K., Kumar A. Essential oils as natural food antimicrobial agents: a review. Critical Reviews in Food Science and Nutrition. 2015;55(10):1320–1323. https://doi.org/10.1080/10408398.2012.692127.
3. Fokou J. B. H., Dongmo P. M. J., Boyom F. F. Essential oil’s chemical composition and pharmacological properties. In: Essential oils – oils of nature. IntechOpen Publishers, U.K., 2020, pp. 1–23. https://doi.org/10.5772/intechopen.86573.
4. Huong L. T., Linh L. D., Dai D. N., Oguwande I. A. Chemical compositions and antimicrobial activity of essential oils from Amomum velutinum X. E. Ye, Škorniè, & N. H. Xia (Zingiberaceae) from Vietnam. Journal of Essential Oil Bearing Plants. 2020;23(5):1132–1141. https://doi.org/10.1080/0972060X.2020.1856005.
5. Lamxay V., Newman M. F. A revision of Amomum (Zingiberaceae) in Cambodia, Laos and Vietnam. Edinburgh Journal of Botany. 2012;69(1):99–206. https://doi.org/10.1017/S0960428611000436.
6. Huong L. T., Viet N. T., Sam L. N., Giang C. N., Hung N. H., Dai D. N., et al. Antimicrobial activity of the essential oils from the leaves and stems of Amomum rubidum Lamxay & N. S. Ly. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas. 2021;20(1):81–89. https://doi.org/10.37360/blacmpma.21.20.1.7.
7. Huong L. T., Viet N. T., Sam L. N., Giang C. N., Hung N. H., Dai D. N., et al. Antimicrobial activity of essential oil from the rhizomes of Amomum rubidum growing in Vietnam. American Journal of Essential Oil and Natural Products. 2019;7(4):11–14.
8. Thin B. B., Doudkin R. V., Thanh V. Q. Chemical composition of essential oil of Amomum xanthoides Wall. ex Baker from Northern Vietnam. Biointerface Research in Applied Chemistry. 2021;11(4):12275–12284. https://doi.org/10.33263/BRIAC11.1227521284.
9. Giang P. M., Son P. T., Matsunami K., Otsuka H. New Diarylethanoicid from Amomum muricarpum Elmer. Chemical and Pharmaceutical Bulletin. 2006;54(1):139–140. https://doi.org/10.1248/cpb.54.139.
10. Giang P. M., Son P. T., Matsunami K., Otsuka H. One new and several minor diarylthanoicid from Amomum muricarpum. Natural Product Research. 2012;26(13):1195–1200. https://doi.org/10.1080/14787447.2010.545775.
11. Huong L. T., Dai D. N., Thang T. D., Bach T. T., Oguwande I. A. Volatile constituents of Amomum maximum Roxb and Amomum microcarpum C. F. Liang & D. Fang: two Zingiberaceae grown in Vietnam. Natural Product Research. 2015;29(15):1469–1472. https://doi.org/10.1080/14787447.2014.1003064.
12. Huong L. T., Dai D. N., Binh N. Q., Chung M. V., Dung D. M. Constituents of essential oil from the Amomum muricarpum C.F. Liang & D. Fang in Vucbiochemical:

https://vuzbiochemi.elpub.ru/jour
Quang National Park, Ha Tinh province. In: Proceedings of the 2nd National Conference on the Vietnam Natural Museum System, Hanoi, Vietnam; 2016. p. 452–457.

13. Thin D. B. Chemical Composition of Essential oils from the leaves and roots of Amomum muricarpum C.F. Liang & D. Fang in Ben En National Park, Thanh Hoa province. In: Proceedings of the 7th National Scientific Conference of Ecology and Biological Resources, Hanoi, Vietnam; 2017. p. 1484–1488.

14. Son N. T., Anh L. T., Thuy D. T. T., Luyen N. D., Tuyen T. T. Essential oils from the aerial part and rhizome of Amomum muricarpum Elmer and their antimicrobial activity. Letters in Applied Nano-BioScience. 2022;11(1):3322–3328. https://doi.org/10.33263/LIANBS111.33223328.

15. Hendawy S. F., Hussein M. S., El-Gohary A. E., Soliman W. S. Chemical constituents of essential oil in Chervil (Anthriscus cerefolium L. Hoffm.) cultivated in different locations. Journal of Essential Oil Bearing Plants. 2019;22(1):264–272. https://doi.org/10.1080/0972060X.2019.1587316.

16. Formisano C., Delfine S., Oliviero F., Tenore G. C., Rigano D., Senatore F. Correlation among environmental factors, chemical composition and antioxidant properties of essential oil and extracts of chamomile (Matricaria chamomilla L.) collected in Molise (South-central Italy). Industrial Crops and Products. 2015;63:256–263. https://doi.org/10.1016/j.indcrop.2014.09.042.

17. Elbali W., Djouahri A., Djerrad Z., Saka B., Aberrane S., Sabau N., et al. Chemical variability and biological activities of Marrubium vulgare L. essential oil, depending on geographic variation and environmental factors. Journal of Essential Oil Research. 2018;30(6):470–487. https://doi.org/10.1080/10412905.2018.1493405.

18. Thin D. B., Doudkin R. V., Chac L. D., Chinh H. V., Hong N. T. M., Setzer W. N., et al. Chemical Composition and Antimicrobial Activity of Essential Oils from the Leaves and Stems of Tinnomiscium petiolare Hook. f. & Thomson from Vietnam. Journal of Essential Oil Bearing Plants. 2021;24(3):461–468. https://doi.org/10.1080/0972060X.2021.1936206.

19. Dai D. N., Huong L. T., Hung N. H., Chinh H. V., Ogunwande I. A. Antimicrobial activity and chemical constituents of essential oil from the leaves of Alpinia globosa and Alpinia tonkinensis. Journal of Essential Oil Bearing Plants. 2020;23(2):322–330. https://doi.org/10.1080/0972060X.2020.1752816.

20. Chen Z., He B., Zhou J., He D., Deng J., Zeng R.-H. Chemical compositions and antibacterial activities of essential oils extracted from Alpinia guillenensis against selected foodborne pathogens. Industrial Crops and Products. 2016;83:607–613. https://doi.org/10.1016/j.indcrop.2015.12.063.

21. Aelenei P., Rimbu C. M., Guguianu E., Dimintiu G., Aprotosoaie A. C., Brebu M., et al. Coriander essential oil and linalool–interactions with antibiotics against Gram-positive and Gram-negative bacteria. Letters in Applied Microbiology. 2019;68(2):156–164. https://doi.org/10.1111/lam.13100.

22. Ghavam M., Manca M. L., Manconi M., Bacchetta G. Chemical composition and antimicrobial activity of essential oils obtained from leaves and flowers of Salvia hydrangea DC. ex Benth. Scientific Reports. 2020;10(1). Article number 15647. 10 p. https://doi.org/10.1038/s41598-020-73193-y.

23. Salleh W. M. N. H. W., Ahmad F., Yen K. H., Sirat H. M. Chemical compositions, antioxidant and antimicrobial activities of essential oils of Piper cani-num Blume. International Journal of Molecular Sciences. 2011;12(11):7720–7731. https://doi.org/10.3390/ijms12117720.

СПИСОК ИСТОЧНИКОВ

1. Ponce A. G., Del Valle C. E., Roura S. I. Natural essential oils as reducing agents of peroxidase activity in leafy vegetables // LWT-Food Science and Technology. 2004. Vol. 37, no 2. P. 199–204. https://doi.org/10.1016/j.lwt.2003.07.005.

2. Vergis J., Gokulakrishnan P., Agarwal R. K., Kumar A. Essential oils as natural food antimicrobial agents: a review // Critical Reviews in Food Science and Nutrition. 2015. Vol. 55, no 10. P. 1320–1323. https://doi.org/10.1080/10408398.2012.692127.

3. Fokou J. B. H., Dongmo P. M. J., Boyom F. F. Essential oil’s chemical composition and pharmacological properties. In: Essential oils – oils of nature. IntechOpen Publishers, U.K., 2020, pp. 1–23. https://doi.org/10.5772/intechopen.86573.

4. Huong L. T., Linh L. D., Dai D. N., Ogunwande I. A. Chemical compositions and antimicrobial activity of essential oils from Amomum velutinum X. E. Ye, Skorniek. & N. H. Xia (Zingiberaceae) from Vietnam // Journal of Essential Oil Bearing Plants. 2020. Vol. 23, no 5. P. 1132–1141. https://doi.org/10.1080/0972060X.2020.1856005.

5. Lamxay V., Newman M. F. A revision of Amomum (Zingiberaceae) in Cambodia, Laos and Vietnam // Edinburgh Journal of Botany. 2012. Vol. 69, no 1. P. 99–206. https://doi.org/10.1017/S0960428611000436.

6. Huong L. T., Viet N. T., Sam L. N., Giang C. N., Hung N. H., Dai D. N., et al. Antimicrobial activity of the essential oils from the leaves and stems of Amomum rubidum Lamxay & N. S. Lý // Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas. 2021. Vol. 20, no 1. P. 81–89. https://doi.org/10.37360/blapcdn.21.20.1.7.

7. Huong L. T., Viet N. T., Sam L. N., Giang C. N., Hung N. H., Dai D. N., et al. Antimicrobial activity of essential oil from the rhizomes of Amomum rubidum growing in Vietnam // American Journal of Essential
Oil and Natural Products. 2019, Vol. 7, no. 4. P. 11–14.

8. Thinh B. B., Doudkin R. V., Thanh V. Q. Chemical composition of essential oil of *Amomum xanthioides* Wall. ex Baker from Northern Vietnam // Biointerface Research in Applied Chemistry. 2021. Vol. 11, no. 4. P. 12275–12284. https://doi.org/10.33263/BRIAC114.1227512284.

9. Giang P. M., Son P. T., Matsunami K., Otsuka H. New Diarylethannoids from *Amomum muri- carpum* Elmer // Chemical and Pharmaceutical Bulletin. 2006. Vol. 54, no. 1. P. 139–140. https://doi.org/10.1248/cpb.54.139.

10. Giang P. M., Son P. T., Matsunami K., Otsuka H. One new and several minor diarylethannoids from *Amomum muri- carpum* // Natural Product Research. 2012. Vol. 26, no. 13. P. 1195–1200. https://doi.org/10.1080/14786419.2010.545775.

11. Huong L. T., Dai D. N., Thang T. D., Bach T. T., Ogunwande I. A. Volatile constituents of *Amomum maximum* Roxb and *Amomum microcarpum* C. F. Liang & D. Fang: two Zingiberaceae grown in Vietnam // Natural Product Research. 2015. Vol. 29, no. 15. P. 1469–1472. https://doi.org/10.1080/14786419.2014.1003064.

12. Huong L.T., Dai D.N., Binh N.Q., Chung M.V., Dung D.M. Constituents of essential oil from the *Amomum microcarpum* C.F. Liang & D. Fang in Vu Quang National Park, Ha Tinh province // Proceedings of the 2nd National Conference on the Vietnam Natural Museum System (Hanoi, Vietnam). 2016. P. 452–457.

13. Thin D.B. Chemical Composition of Essential oils from the leaves and roots of *Amomum microcarpum* C.F. Liang & D. Fang in Ben En National Park, Thanh Hoa province // Proceedings of the 7th National Scientific Conference of Ecology and Biological Resources (Hanoi, Vietnam). 2017. P. 1484–1488.

14. Son N. T., Anh L. T., Thuy D. T. T., Luyen N. D., Tuyen T. T. Essential oils from the aerial part and rhiizome of *Amomum micrrocarpum* Elmer and their antimicrobial activity // Letters in Applied Nano-Biology. 2022. Vol. 11, no. 1. P. 3322–3328. https://doi.org/10.33263/LIANBS111.33223328.

15. Hendawy S. F., Hussein M. S., El-Gohary A. E., Soliman W. S. Chemical constituents of essential oil in Chervil (*Anthriscus cerefolium* L. Hoffm.) cultivated in different locations // Journal of Essential Oil Bearing Plants. 2019. Vol. 22, no. 1. P. 264–272. https://doi.org/10.1080/0972060X.2019.1587316.

16. Formisano C., Delfine S., Oliviero F., Tenore G. C., Rigano D., Senatore F. Correlation among environmental factors, chemical composition and antioxidative properties of essential oil and extracts of chamomile (*Matricaria chamomilla* L.) collected in Molise (South-central Italy) // Industrial Crops and Products. 2015. Vol 63. P. 256–263. https://doi.org/10.1016/j.indcrop.2014.09.042.

17. Elbali W., Djouahri A., Djerrad Z., Saka B., Aberrane S., Sabau N., et al. Chemical variability and biological activities of *Marrubium vulgare* L. essential oil, depending on geographic variation and environmental factors // Journal of Essential Oil Research. 2018. Vol. 30, no. 6. P. 470–487. https://doi.org/10.1080/10412905.2018.1493405.

18. Thinh B. B., Doudkin R. V., Chac L. D., Chinh H. V., Hong N. T. M., Setzer W. N., et al. Chemical Composition and Antimicrobial Activity of Essential Oils from the Leaves and Stems of *Tinomiscium petiolare* Hook.f. & Thomson from Vietnam // Journal of Essential Oil Bearing Plants. 2021. Vol. 24, no. 3. P. 461–468. https://doi.org/10.1080/0972060X.2021.1936206.

19. Dai D. N., Huong L. T., Hung N. H., Chinh H. V., Ogunwande I. A. Antimicrobial activity and chemical constituents of essential oil from the leaves of *Alpinia globoa* and *Alpinia tonkinensis* // Journal of Essential Oil Bearing Plants. 2020. Vol. 23, no. 2. P. 322–330. https://doi.org/10.1080/0972060X.2020.1752816.

20. Chen Z., He B., Zhou J., He D., Deng J., Zeng R.-H. Chemical compositions and antibacterial activities of essential oils extracted from *Alpinia guinensis* against selected foodborne pathogens // Industrial Crops and Products. 2016. Vol. 83. P. 607–613. https://doi.org/10.1016/j.indcrop.2015.12.063.

21. Aelenei P., Rimbu C. M., Guguianu E., Dimiatriu G., Aprotosoaie A. C., Crebu M., et al. Coriander essential oil and linalool–interactions with antibiotics against Gram-positive and Gram-negative bacteria // Letters in Applied Microbiology. 2019. Vol. 68, no. 2. P. 156–164. https://doi.org/10.1111/lam.13100.

22. Ghavam M., Manca M. L., Manconi M., Bachetta G. Chemical composition and antimicrobial activity of essential oils obtained from leaves and flowers of Salvia hydrangea DC. ex Benth // Scientific Reports. 2020. Vol. 10, no. 1. Article number 15647. 10 p. https://doi.org/10.1038/s41598-020-73193-y.

23. Salleh W. M. N. H. W., Ahmad F., Yen K. H., Sirat H. M. Chemical compositions, antioxidant and antimicrobial activities of essential oils of *Piper canum* Blume // International Journal of Molecular Sciences. 2011. Vol. 12, no. 11. P. 7720–7731. https://doi.org/10.3390/ijms12117720.

INFORMATION ABOUT THE AUTHORS

Dau B. Thin,
Cand. Sci. (Biology), Associate Professor, Hong Duc University, 565, Quang Trung St., Thanh Hoa, 40130, Vietnam, https://orcid.org/0000-0002-6351-3335

СВЕДЕНИЯ ОБ АВТОРАХ

Дау Ба Тхин, к.б.н., доцент, Университет Хонгдык, 40130, г. Тханьхао, ул. Куанг Чунг, 565, Вьетнам, https://orcid.org/0000-0002-6351-3335
Vu Q. Thanh,
Researcher,
Vietnam-Russia Tropical Center,
Nguyen Van Huyen St., Hanoi, 11300, Vietnam,
https://orcid.org/0000-0002-8783-9014

Bui B. Thinh,
Researcher,
Far Eastern Federal University,
10, Ajax Bay, Russky Island,
Vladivostok, 690922,
Russian Federation,
buiibaothinh9595@gmail.com
https://orcid.org/0000-0002-3826-1199

Contribution of the authors
The authors contributed equally to this article.

Conflict interests
The authors declare no conflict of interests regarding the publication of this article.

The final manuscript has been read and approved by all the co-authors.

Information about the article
The article was submitted 05.10.2021.
Approved after reviewing 15.11.2021.
Accepted for publication 30.11.2021.