UNIQUE CONTINUATION FOR FRACTIONAL SCHRÖDINGER OPERATORS IN THREE AND HIGHER DIMENSIONS

IHYEOK SEO

(Communicated by Joachim Krieger)

Abstract. We prove the unique continuation property for the differential inequality $|(-\Delta)^{\alpha/2}u| \leq |V(x)u|$, where $0 < \alpha < n$ and $V \in L^{n/\alpha, \infty}_{\text{loc}}(\mathbb{R}^n)$, $n \geq 3$.

1. Introduction

In this note we are concerned with the unique continuation property for solutions of the differential inequality

$$|(-\Delta)^{\alpha/2}u| \leq |V(x)u|, \quad x \in \mathbb{R}^n, \quad n \geq 2,$$

where $(-\Delta)^{\alpha/2}$, $0 < \alpha < n$, is defined by means of the Fourier transform $F f (= \hat{f})$:

$$F[(-\Delta)^{\alpha/2}f](\xi) = |\xi|^\alpha \hat{f}(\xi).$$

In particular, the equation $((-\Delta)^{\alpha/2} + V(x))u = 0$ has attracted interest from quantum mechanics in the case $1 < \alpha < 2$ as well as the case $\alpha = 2$. Recently, by generalizing the Feynman path integral to the Lévy one, Laskin [5] introduced the fractional quantum mechanics in which it is conjectured that physical realizations may be limited to $1 < \alpha < 2$, where averaged quantities are finite, and the fractional Schrödinger operator $(-\Delta)^{\alpha/2} + V(x)$ plays a central role. Of course, the case $\alpha = 2$ becomes equivalent to an ordinary quantum mechanics.

The unique continuation property means that a solution of (1.1) which vanishes in an open subset of \mathbb{R}^n must vanish identically. In the case of $\alpha = 2$, Jerison and Kenig [1] proved the property for $V \in L^{n/2}_{\text{loc}}, n \geq 3$. An extension to $L^{n/2, \infty}_{\text{loc}}$ was obtained by Stein [9] with small norm in the sense that

$$\sup_{a \in \mathbb{R}^n} \lim_{r \to 0} \|V\|_{L^{n/2, \infty}(B(a,r))}$$

is sufficiently small. Here, $B(a,r)$ denotes the ball of radius $r > 0$ centered at $a \in \mathbb{R}^n$. These results later turn out to be optimal in the context of L^p spaces ([2,3]).

On the other hand, the results when $\alpha \neq 2$ are rather scarce. Laba [4] considered the higher orders where $\alpha/2$ are integers, and obtained the property for $V \in L^{n/\alpha}_{\text{loc}}$. Recently, there was an attempt [7] to handle the non-integer orders when $n - 1 \leq \alpha < n$, $n \geq 2$, from which it turns out that the condition $V \in L^p$, $p > n/\alpha$, is sufficient to have the property. Hence this particularly gives a unique continuation
result for the fractional Schrödinger operator in the full range $1 < \alpha < 2$ when $n = 2$. Our aim here is to fill the gap, $0 < \alpha < n - 1$, for $n \geq 3$, which allows us to have the unique continuation for the fractional Schrödinger operator when $n \geq 3$ with the full range of α.

Theorem 1.1. Let $n \geq 3$ and $0 < \alpha < n$. Assume that $V \in L^{n/\alpha, \infty}_{\text{loc}}$ and u is a non-zero solution of (1.1) such that

\begin{equation}
(1.2) \quad u \in L^1 \cap L^{p,q} \quad \text{and} \quad (-\Delta)^{\alpha/2} u \in L^q,
\end{equation}

where $p = 2n/(n-\alpha)$ and $q = 2n/(n+\alpha)$. Then it cannot vanish in any non-empty open subset of \mathbb{R}^n if

\begin{equation}
(1.3) \quad \sup_{\alpha \in \mathbb{R}^n} \lim_{r \to 0} \|V\|_{L^{n/\alpha, \infty}(B(a, r))}
\end{equation}

is sufficiently small. Here, $L^{p,q}$ denotes the usual Lorentz space.

Remarks. (a) The smallness condition (1.3) is trivially satisfied for $V \in L^{n/\alpha}_{\text{loc}}$ because $L^{n/\alpha}_{\text{loc}} \subset L^{n/\alpha, \infty}_{\text{loc}}$. Hence the above theorem can be seen as a natural extension of (1.1) of the results obtained in [10] for the Schrödinger operator ($\alpha = 2$). As an immediate consequence of the theorem, the same result also holds for the stationary equation

\[((-\Delta)^{\alpha/2} + V(x))u = Eu, \quad E \in \mathbb{C}, \]

because $(-\Delta)^{\alpha/2} u = (E - V(x))u$ and the condition (1.3) is trivially satisfied for the constant E.

(b) The index n/α is quite natural, in view of the standard rescaling: $u_{\varepsilon}(x) = u(\varepsilon x)$ takes the equation $(-\Delta)^{\alpha/2} u = V u$ into $(-\Delta)^{\alpha/2} u_{\varepsilon} = V_{\varepsilon} u_{\varepsilon}$, where $V_{\varepsilon}(x) = \varepsilon^\alpha V(\varepsilon x)$. So, $\|V_{\varepsilon}\|_{L^{p,\infty}} = \varepsilon^{\alpha-n/p} \|V\|_{L^{p,\infty}}$. Hence the $L^{p,\infty}$ norm of V_{ε} is independent of ε precisely when $p = n/\alpha$.

(c) When $\alpha = n$ in (1.1), there are some unique continuation results with $V \in L^p$, $p > 1$. (See [1] and [6] for $\alpha = 2$ and $\alpha = 2m$ ($m \in \mathbb{N}$), respectively.)

2. **Proof of the theorem**

From now on, we will use the letter C to denote a constant that may be different at each occurrence.

Without loss of generality, we need to prove that u must vanish identically if it vanishes in a sufficiently small neighborhood of zero.

Our proof is based on the following Carleman estimate which will be shown below: If $f \in C^\infty_0(\mathbb{R}^n \setminus \{0\})$ and $(-\Delta)^{\alpha/2} f \in C^\infty_0(\mathbb{R}^n \setminus \{0\})$, then there is a constant C depending only on $\delta_t := \min_{k \in \mathbb{Z}} |t - k|$ and n such that for $t \not\in \mathbb{Z}$ with $\delta_t < n - \alpha$

\begin{equation}
(2.1) \quad \| |x|^{-t-n/p} f \|_{L^{p,q}} \leq C \| |x|^{-t+\alpha-n/q} (-\Delta)^{\alpha/2} f \|_{L^q},
\end{equation}

where p, q are given as in the theorem (i.e., $1/p + 1/q = 1$ and $1/q - 1/p = \alpha/n$).

Indeed, since we are assuming that $u \in L^1 \cap L^{p,q}$ and $(-\Delta)^{\alpha/2} u \in L^q$ vanish near zero (see (1.2), (1.1)), from (2.1) (with a standard limiting argument involving a C^∞_0 approximate identity), we see that

\[\| |x|^{-t-n/p} u \|_{L^{p,q}} \leq C \| |x|^{-t+\alpha-n/q} (-\Delta)^{\alpha/2} u \|_{L^q}. \]
Hence,
\[\|x|^{t-n/p}u\|_{L^{p,q}(B(0,r))} \leq C \|x|^{t+\alpha-n/q}Vu\|_{L^{q}(B(0,r))} + C \|x|^{t+\alpha-n/q}(-\Delta)^{\alpha/2}u\|_{L^q(\mathbb{R}^n\setminus B(0,r))}. \]

The first term on the right-hand side can be absorbed into the left-hand side as follows:
\[C \|x|^{t+\alpha-n/q} Vu\|_{L^q(B(0,r))} \leq C \|V\|_{L^{n/\alpha,\infty}(B(0,r))} \|x|^{t+\alpha-n/q} u\|_{L^{p,q}(B(0,r))} \]
\[\leq \frac{1}{2} \|x|^{-n/p}u\|_{L^{p,q}(B(0,r))} \]
if we choose \(r \) small enough (see [13]). Here, recall that \(\alpha - n/q = -n/p \), and \(\|x|^{-n/p}u\|_{L^{p,q}(B(0,r))} \) is finite since \(u \in L^{p,q} \) vanishes near zero. So, we get
\[\|(r/|x|)^{t+n/p}u\|_{L^{p,q}(B(0,r))} \leq 2C \|(-\Delta)^{\alpha/2} u\|_{L^{q}(\mathbb{R}^n\setminus B(0,r))} < \infty. \]

Now, we choose a sequence \(\{t_i\} \) of values of \(t \) tending to infinity such that \(\delta_{t_i} \) is independent of \(i \in \mathbb{N} \). Then, by letting \(i \to \infty \), we see that \(u = 0 \) on \(B(0,r) \), which implies \(u \equiv 0 \) by a standard connectedness argument.

Proof of (2.1). We will show (2.1) using Stein’s complex interpolation, as in [9], on an analytic family of operators \(T_z \) defined by
\[T_z g(x) = \int_{\mathbb{R}^n} K_z(x,y)g(y)|y|^{-n}dy, \]
where \(K_z(x,y) = H_z(x,y)/\Gamma(n/2-z/2) \) with
\[H_z(x,y) = |x|^{-t}|y|^{n+t-z} c_z \left(|x-y|^{-n+z} - \sum_{j=0}^{m-1} \frac{1}{j!} \left(\frac{\partial}{\partial s} \right)^j |sx-y|^{-n+z} |s=0 \right). \]

Note that for \(f \in C_0^\infty(\mathbb{R}^n \setminus \{0\}) \)
\[T_\alpha(|x|^{-t+\alpha}(-\Delta)^{\alpha/2} f(y))(x) = |x|^{-t} f(x)/\Gamma(n/2-\alpha/2) \]
(see Lemma 2.1 in [7]).

Let \(m \) be a fixed positive integer such that \(m-1 < t < m \), and recall the following two estimates for the cases of \(\Re z = 0 \) (Lemma 2.3 in [1]) and \(n-1 < \Re z < n-\delta_t \) (Lemma 4 in [9]): There is a constant \(C \) depending only on \(\delta_t \) and \(n \) such that
\[\|T_{i\gamma}g\|_{L^2(dx/|x|^n)} \leq Ce^{c|\gamma|} \|g\|_{L^2(dx/|x|^n)}, \quad \gamma \in \mathbb{R}, \]
and
\[\|T_z g\|_{L^r(dx/|x|^n)} \leq Ce^{c|\gamma|} \|g\|_{L^r(dx/|x|^n)}, \quad \gamma = \Im z \in \mathbb{R}, \]
where \(n-1 < \beta = \Re z < n-\delta_t \), \(1/s - 1/r = \beta/n \) and \(1 < s < n/\beta \).

We first consider the case where \(n-1 < \alpha < n \). Note that we can choose \(\beta \) so that \(\alpha < \beta < n-\delta_t \), since we are assuming \(\delta_t < n-\alpha \). Hence, by Stein’s complex interpolation ([8]) between (2.3) and (2.4), we see that
\[\|T_\alpha g\|_{L^r(dx/|x|^n)} \leq C \|g\|_{L^r(dx/|x|^n)}, \]
where \(1/s - 1/r = \alpha/n \) and \(1 < s < n/\alpha \). From this and (2.2), we get
\[\|x|^{-t-n/r} f\|_{L^r} \leq C \|x|^{-t+\alpha-n/s}(-\Delta)^{\alpha/2} f\|_{L^s}. \]
with the same \(r, s \) in (2.5), since we are assuming \((-\Delta)^{\alpha/2} f \in C_0^\infty(\mathbb{R}^n \setminus \{0\})\). Note that \(1 < q < n/\alpha \). So, we can choose \(r_j, s_j, j = 1, 2 \), such that

\[
1 < s_1 < q < s_2 < n/\alpha, \quad 1/s_j - 1/r_j = \alpha/n,
\]

and for \(t_j = t + n(1/p - 1/r_j) \)

\[
m - 1 < t_j < m, \quad \delta_t/2 \leq \delta_{t_j} \leq 3\delta_t/2.
\]

Hence we can apply (2.6) with \(t = t_j \) to obtain

\[
(2.7) \quad \|x\|^{-t-n/p} f \in L_{s_j} \leq C \|x\|^{-t+\alpha-n/q} (-\Delta)^{\alpha/2} f \|L_{s_j}.
\]

for \(j = 1, 2 \). Since \(r_1 < p < r_2 \) and \(s_1 < q < s_2 \), by real interpolation (8) between the estimates in (2.7), we see that for \(1 \leq w \leq \infty \)

\[
\|x\|^{-t-n/p} f \in L_{p,w} \leq C \|x\|^{-t+\alpha-n/q} (-\Delta)^{\alpha/2} f \|L_{q,w}.
\]

By choosing \(w = q \), we get (2.1).

Now we turn to the remaining case where \(0 < \alpha \leq n - 1 \). In this case, (2.5) is valid for \(1/s - 1/r = \alpha/n \) and

\[
(2.8) \quad \frac{1}{2}(1 - \frac{\alpha}{n-1}) + \frac{\alpha}{n} < \frac{1}{2} + \frac{\alpha}{2(n-1)},
\]

because we can choose \(\beta \) so that \(n - 1 < \beta < n - \delta_t \). Since (2.8) holds for \(s \) replaced by \(q \), repeating the previous argument, one can show (2.1). We omit the details. \qed

Acknowledgment

The author is very grateful to Luis Escauriaza for bringing the author’s attention to the papers [1,9] and for helpful suggestions and discussions.

References

[1] David Jerison and Carlos E. Kenig, Unique continuation and absence of positive eigenvalues for Schrödinger operators, Ann. of Math. (2) 121 (1985), no. 3, 463–494, DOI 10.2307/1971205. With an appendix by E. M. Stein. MR794370 (87a:35058)
[2] Carlos E. Kenig and Nikolai Nadirashvili, A counterexample in unique continuation, Math. Res. Lett. 7 (2000), no. 5-6, 625–630, DOI 10.4310/MRL.2000.v7.n5.a8. MR1809288 (2001m:35044)
[3] Herbert Koch and Daniel Tataru, Sharp counterexamples in unique continuation for second order elliptic equations, J. Reine Angew. Math. 542 (2002), 133–146, DOI 10.1515/crll.2002.003. MR1880829 (2002m:35020)
[4] Izabella Laba, Unique continuation for Schrödinger operators and for higher powers of the Laplacian, Math. Methods Appl. Sci. 10 (1988), no. 5, 531–542, DOI 10.1002/mma.1670100504. MR965420 (89k:35073)
[5] Nikolai Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A 268 (2000), no. 4-6, 298–305, DOI 10.1016/S0375-9601(00)00201-2. MR1755089 (2000m:81097)
[6] Ihyeok Seo, Remark on unique continuation for higher powers of the Laplace operator, J. Math. Anal. Appl. 397 (2013), no. 2, 766–771, DOI 10.1016/j.jmaa.2012.08.035. MR3197961
[7] Ihyeok Seo, On unique continuation for Schrödinger operators of fractional and higher orders, Math. Nachr. 287 (2014), no. 5-6, 699–703, DOI 10.1002/mana.201300008. MR3193945
[8] Elias M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc. 83 (1956), 482–492. MR0082586 (18,575d)
[9] E. M. Stein, Appendix to “unique continuation”, Ann. of Math. 121 (1985), 489–494.

Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Republic of Korea

E-mail address: ihseo@skku.edu