Chemistry, pharmacology and medicinal property of *Rhodiola rosea* from the selection of traditional applications to the novel phytotherapy for the prevention and treatment of serious diseases

Rafie Hamidpour, Soheila Hamidpour, Mohsen Hamidpour, Mina Shahlari, Mahnaz Sohraby, Nooshin Shahlari, Roxanna Hamidpour

ABSTRACT

Rhodiola rosea is a remarkable herb that has been a part of traditional medicine system in order to stimulate the nervous system, to protect the body against oxidative stress, free radical damage, inflammation, and virus infection. Rhodiola rosea is included among a class of plant derivatives called adaptogen, an agent that help the body adapt to various stressors. Adaptogens have been claimed to treat a wide variety of medical conditions, from fatigue to cancer. The studies on Rhodiola rosea have shown that the plant has anti-stress, anti-anxiety, anti-fatigue, and anti-depressant properties with no significant side effects. Rhodiola rosea has been considered in drug development because of its pharmacological activities throughout the world, especially in parts of Europe, Asia, and Russia. Rhodiola rosea has shown more efficiency and safety than pharmaceutical drugs for anxiety and depression, which typically can have side effects, such as digestive upset, mood and sleep disorders. This research paper, suggests that Rhodiola rosea, in addition to cure common disorders such as depression, binge eating, anorexia, generalized anxiety disorders, and physical and mental fatigue, might contribute to prevent, reduce and treat serious diseases such as Alzheimer’s disease, Parkinson’s disease, cardiovascular disease, diabetes, and cancer. The aim of our future research is to extract Rhodiola rosea in to the filtration equipment then by purification and extended quality control produce tablets for the animal trials.
Chemistry, pharmacology and medicinal property of *Rhodiola rosea* from the selection of traditional applications to the novel phytotherapy for the prevention and treatment of serious diseases

Rafie Hamidpour, Soheila Hamidpour, Mohsen Hamidpour, Mina Shahlari, Mahnaz Sohraby, Nooshin Shahlari, Roxanna Hamidpour

ABSTRACT

Rhodiola rosea is a remarkable herb that has been a part of traditional medicine system in order to stimulate the nervous system, to protect the body against oxidative stress, free radical damage, inflammation, and virus infection. *Rhodiola rosea* is included among a class of plant derivatives called adaptogen, an agent that help the body adapt to various stressors. Adaptogens have been claimed to treat a wide variety of medical conditions, from fatigue to cancer. The studies on *Rhodiola rosea* have shown that the plant has anti-stress, anti-anxiety, anti-fatigue, and anti-depressant properties with no significant side effects. *Rhodiola rosea* has been considered in drug development because of its pharmacological activities throughout the world, especially in parts of Europe, Asia, and Russia. *Rhodiola rosea* has shown more efficiency and safety than pharmaceutical drugs for anxiety and depression, which typically can have side effects, such as digestive upset, mood and sleep disorders. This research paper, suggests that *Rhodiola rosea*, in addition to cure common disorders such as depression, binge eating, anorexia, generalized anxiety disorders, and physical and mental fatigue, might contribute to prevent, reduce and treat serious diseases such as Alzheimer’s disease, Parkinson’s disease, cardiovascular disease, diabetes, and cancer. The aim of our future research is to extract *Rhodiola rosea* in to the filtration equipment then by purification and extended quality control produce tablets for the animal trials.

Keywords: Alzheimer’s disease, Anti-fatigue, Antidepressant, Cancer and memory enhancement

How to cite this article

Hamidpour R, Hamidpour S, Hamidpour M, Shahlari M, Sohraby M, Shahlari N, Hamidpour R. Chemistry, pharmacology and medicinal property of *Rhodiola rosea* from the selection of traditional applications to the novel phytotherapy for the prevention and treatment of serious diseases. Int J Case Rep Images 2015;6(11):661–671.

doi:10.5348/ijcri-201458-RA-10013
INTRODUCTION

Rhodiola rosea, also known as golden root or Lignum rhodium is a perennial herbaceous plant in the Crassulaceae family which has been used as a natural medicine from ancient times. This perennial plant reaches a height of 30–70 cm with a thick rhizome and yellow, fragrant flowers. It is a remarkable herb that is valued in traditional medicine in Eastern and Northern Europe, Asia, China, and Russia for its unique pharmacological activity [1]. The plant has been categorized as an “adaptogen” by Russian researchers due to its ability to elevate body resistance to physical, chemical or biological stressors [2], treat fatigue, promote longevity, and support cognition and mood wellbeing [3]. Rhodiola rosea (SHR-5 extract) has been indicated as an adaptogen in the situation of fatigue, poor mental performance and depression [3]. Rhodiola rosea phytochemical extracts, are the source of important biological activities which is used widely in the treatment of a wide range of diseases like those of the nervous and cardiovascular systems [2], Alzheimer’s [4] and Parkinson’s disease [5], cancer [2], and inflammatory diseases [6]. The studies of pharmacological activities of R. rosea have revealed its hepatoprotective [3] and Monoamine oxidase A (MAO-A) inhibitory effects [7], in addition to the antiviral [8] and antibacterial activities of this plant [9].

Phenylethanoid (salidroside, p-tyrosol), phenylpropanoid glycoside (rosarin, rosavin, rosin) and monoterpen (rosiridin) are responsible for the bioactivity of R. rosea [10]. Salidroside, rosarin, rosinavin, and p-tyrosol are the most critical plant constituents used for therapeutic activities [2]. Salidroside and p-tyrosol have been found in all Rhodiola species, but the other active glycosides: rosavin, rosin, and rosarin have not been detected in other genus of Rhodiola species. The compound rosavin (rosavin, rosin, and rosarin) are the compound that contains the highest percent of R. rosea which was not identified in other species. The compound salidroside is the most biologically active compound which shares many of its effects with rosavin [2]. The absence of adverse drug interactions and side effects associated with R. rosea in the clinical trials, make it possible to be used as a safe medication [3]. Rhodiola rosea also can be applied as an adjuvant to enhance therapeutic effects of other medicines in a number of disorders such as chronic pneumonia, chronic tuberculosis, vascular dystonia, cancer (reduction of metastasis), and in reducing the debilitating effects of radiotherapy and chemotherapy [11] (Figure 1).

Common names

Rhodiola rosea has numerous common names. Some of the best known names include arctic root, golden root, king’s crown, lignum rhodium, orpin rose, rose root, Sedum rhodiola, and SHR-5 extract. The term “arctic root” is used as a general name. However, arctic root is actually a trademark name for the specific commercial extract.

Chemical composition

The phytochemical analysis of the Rhodiola species has shown that the major beneficial components include salidroside and tyrosol, which are rich in the rhizomes [12]. The dried rhizomes contained 0.05% essential oil. Terpenes and volatile compound have been isolated from Rhodiola rosea. As given in Table 1, Myrtanol (36.9%), trans-pinocarveol (16.1%), geraniol (12.7%), cumin alcohol (12.1%), linalool (2.7%), perilla alcohol (1.7%) and dihydrocumin alcohol (12.1%) are the most abundant volatiles detected in the oil [13]. Geraniol and myrtanol are responsible for the rose like odor of the plant. A total number of 140 chemical compounds were identified in R. rosea roots. The principal components are phenylpropanoids (rosavin, rosin, and rosarin), Phenylethanoids (salidroside, p-tyrosol) and a monoterpen (rosiridin) which are responsible for the pharmacological effects of R. rosea [13, 3]. Rosiridin has attracted particular interest because of its effect in depression and senile dementia. Rhodioloside (salidroside) active principles of the SHR-5 extract were found to have neuroprotective, cardioprotective and hepatoprotective activities and can be effective in the prevention of a number of disorders related to neuroendocrine and immune system [3]. Three rosavin compounds (rosavin, rosin, and rosarin) which are unique to R. rosea (the most used species of Rhodiola genus) might be responsible for antidepressant, anticancer, neurotropic, and hepatoprotective effects of this herb [3].

Antioxidative effect

The imbalance between reactive oxygen species (ROS) generation and antioxidant defense mechanism causes oxidative damage to the proteins, membrane lipids and nucleic acids in the cells. The increased generation of ROS damages the mitochondria, the power house of the body, which account for reducing the ability of maintaining
energy at the cellular level and results in muscular atrophy and muscle fatigue, leading to the decreased performance of an individual [14].

Antioxidants are natural substances that prevent or delay some type of cell damages and protect the body against the oxidative stress and free radicals. Various *Rhodiola* species have shown significant antioxidant activities. Among the 28 different compounds identified in *R. rosea*, P-tyrosol, salidroside, and five salidroside-like glycoside (Rhodiolin, rosiridin, rosarin, rosavin, and rosin), possess strong antioxidant activities [15].

Polyphenols in *R. rosea* neutralize oxidative reactions, which are induced by free radicals since they are excellent donors of protons and electrons. In addition, polyphenols, due to their metal chelating properties, are able to decrease oxidative stresses, induced by transition metals [16].

Salidroside (SDS), a major component extracted from *Rhodiola rosea*, is a glucoside of tyrosol which possess a broad spectrum of pharmacological properties including strong antioxidant activity. Salidroside induces its antioxidant effects to the cells by preventing collection of intracellular ROS, restoring the impaired mitochondria function and mitigating oxidative-stress-induced apoptosis [17].

Production and detoxification of reactive oxygen species (ROS) are of major importance in regulation of erythropoiesis (formation of red blood cells). Salidroside plays an essential role in maintaining normal erythropoiesis through the up-regulation of antioxidant defense mechanism. Salidroside can act as blood tonic supplement and adaptogen. Patients with anemic hypoxia can take advantage of SDS as an adjuvant for erythropoietin (EPO) or other erythropoiesis-stimulating agents. This compound also defends erythroblasts against oxidative stress through up-regulating the expression of antioxidant molecules, glutathione peroxidase, and thioredoxin, and it also nullifies ischemia-induced cardiomyocyte death through suppressing ROS overgeneration [17, 18].

Effect on cancer cells

Cancer is a class of diseases characterized by out-of-control cell growth. Complete eradication of cancer without damage to the rest of the body is the goal of the treatment. Some plant extracts that indicate potential as an anticancer agent have shown to be useful for the treatment or prevention of the cancer with minimal toxicity, and they act synergistically with cytostatic to reduce their toxicity. Study showed that the use of *R. rosea* extract in combination with the antitumor agent cyclophosphamide increased the anti-tumor and antimetastatic efficacy of the drug [2, 19].

The results of investigation in vivo show that *R. rosea* extract has cytotoxic effect on tumor cell line through its major component, polyphenols [20]. The cytotoxicity effect of polyphenols on tumor cells are induced by reaction oxygen species (ROS) mediated mechanisms. Polyphenols including tannins and gallic acids, induce apoptosis in tumor cells by increasing intracellular...
peroxides [20]. The results show that salidroside, a component isolated from plants Rhodiola genus, causes growth inhibition in several human cancer cell line in concentration between 1 µg/ml and 32 µg/ml dose dependently by induction of G1-phase and/or G2-phase arrest [21]. A number of studies have investigated the inhibitory effect of salidroside on the growth of stomach adenocarcinoma cells, leukemia cells, and parotid carcinoma cells in vitro [22]. In a few studies performed in China, was found that Salidroside could inhibit tumor-induced angiogenesis in mice [22].

Breast cancer is the most common cancer diagnosed in woman in the United States. It develops by the mammary cell proliferation induced by estrogen. Resistance of estrogen receptor negative (ER) tumors to anti-hormone therapy is the main concern in breast cancer treatment. Investigations of the effects of salidroside on the breast cancer showed its inhibitory properties on human breast cancer MDA-MB-231 cells. The result indicated that salidroside in concentration between 5 µm and 80 µm dose dependently induced cell-cycle arrest and apoptosis cell death in ER-negative and ER-positive tumors in human breast cancer [23].

Thyroid cancer is the most frequent endocrine neoplasia and accounts for about 2% of cancer-related deaths. Management options for thyroid cancer include total or near total thyroidectomy, radioiodine therapy and pharmacotherapy. These patients may have neuropsychological concerns such as depressive moods or developed cardiovascular problems such as hypertension, electrocardiogram abnormalities, and diastolic dysfunction. In numerous studies, R. rosea has demonstrated CNS stimulating, neuro-protective, cardio-protective and antidepressant effects [2]. Since most of these symptoms are in fact the clinical aspect of hypothyroidism, Rhodiola rosea is recognized to aid in patient preparation during the hormone withdrawal period. Oxidative stress increases when thyroid hormones are missing during hypothyroidism [24]. In vitro experiments using human erythrocyte reveal that supplementation with R. rosea extract can protect cells from oxidative injuries in dose-dependent manner [25]. These findings have also been replicated in human. Rhodiola rosea have potentially additional benefits as an adaptogen that tends to be a regulator, having normalizing effects on the organism. Hypothyroidism can be considered as a stressor and then R. rosea as an adaptogen that could help the organism’s responding [24].

Alzheimer’s Disease

Alzheimer’s disease (AD) is a progressive brain disorder characterized by the memory and cognitive impairments. Neuropathologically, AD is defined by the accumulation of amyloid plaques and neurofibrillary tangles in certain region of the brain which are important in memory and can cause the loss of synaptic connection between cells. One of the most important parts of unraveling the AD mystery is discovering what causes the disease. It has been suggested that oxidative stress and dysfunction of neurogenesis play important roles in pathogenesis of AD [26]. Amyloid beta (Aβ) peptide, the hallmark of Alzheimer’s disease induces an oxidative damage to neurons and finally causes neurons death. Reduced levels of anti-oxidative activity have been observed in the specific regions of the central nervous system of AD patients.

Now researchers are paying great efforts to find potent natural antioxidant with neuroprotective potentials. Salidroside, an active compound occurring naturally in Rhodiola rosea L. is protective against (Aβ)-induced oxidative stress by the induction of antioxidant enzymes, thioredoxin (Trx), heme oxygenase-1 (HO-1), and peroxiredoxin-1 (Prxl); the down regulation of pro-apoptotic protein Bax and the up regulation of anti-apoptotic Bcl-X1. Pathophysiology of neurodegenerative diseases such as AD has shown that Aβ is associated with ROS generation which leads to mitochondrial dysfunction, lipid peroxidation and apoptosis. Exposure to ROS also inhibits neurogenesis, which is the onset of cognitive impairments and memory deficits. Salidroside could decrease the intracellular ROS level and restore the abnormal mitochondrial membrane potential (MMP). The neuroprotective effect of Salidroside may offer long-term protection in the pathogenesis of AD [26, 27].

Adaptogenic and anti-fatigue effects

Adaptogens are unique group of herbal ingredients which help strengthen the body’s response to stress, enhance its ability to cope with anxiety, and fight fatigue. They have the unique ability to adapt their function according to the body’s specific needs and do not disturb bodily functions at normal levels. Rhodiola rosea is known as a plant’s adaptogens because it possesses anti-fatigue and anti-stress activities that can increase mental and physical working performance against a background of fatigue or stress [28]. The phenylpropanoid glycoside called salidroside; flavonoids, phenolic, polyphenolic, and flavonolignans are thought to be the main components of stress- protective and adaptogens of Rhodiola rosea. Other constituents isolated from R. rosea include rhodionside, rhodioloside A-E, rhodiolin, rosin, rosavin, rosarin, rosiridin, rosiridol, rhodalgin, acetylrhodalgin, and lotaustralin might also be responsible for stimulant of R. rosea or adaptogenic effects. Such compounds can play an active role in increasing energy, stamina, strength and mental capacity required in fight to fight situation to help the body to adapt and resist physical, chemical, and environmental stresses [28, 29].

Clinical efficacy of adaptogens in behavioral and mental disorder has been reviewed. It is now accepted that adaptogens have shown anti-fatigue, anti-depressant, anxiolytic, nootropic, and CNS stimulating effects. Adaptogens do not possess any side effects of conventional drugs such as addiction, tolerance and
abuse potentials, or impair mental function, nor do they cause psychotic symptoms with long-term use [30].

Neuro-degenerative disorders characterized by the progressive loss of structure or function of neurons in the brain region involved in learning and memory. *Rhodiola rosea* as an adaptogen could induce a positive effect in neuro-degenerative disorders due to their inhibitory effects on the formation of p-SAPK (phosphorylated stress-activated protein kinase). Related data may be considered to add further support to the hypothesis that adaptogens have beneficial effect on mental performance and cognitive function [28]. The key point of action of adaptogens on stress appears to be related to the regulation of homeostasis via hypothalamic-pituitary-adrenal axis and regulation of molecular chaperones, stress-activated c-Jun, N-terminal protein kinase, fork head box O transcription factor DAF-16, cortisol, nitric oxide (NO) and beta-endorphin [30]. The optimal corticosteroid level is required for efficient cognitive function. Significant changes (up or down) in circulating levels of corticosteroids have been accepted as the reason for cognitive impairment. Regulatory effects of *R. rosea* on the basal level of salivary cortisol results in an improvement in cognitive function [3].

Rhodiola rosea combines well with other adaptogens and tonics in appropriate dosages. The herbal drug ADAPT-232 is based on the synergistic effect of the three most efficient adaptogen plants, *Rhodiola rosea*, *Schisandra chinensis* and *Eleutherococcus senticosus* in a fix combination. Administration of single and repeated doses of ADAPT-232 has been shown to increase physical energy as well as mental performance and cognitive function [30]. ADAPT-232 significantly increases secretion and release of stress hormones, neuropeptide Y (NPY) and Heat Shock Protein 72 (Hsp 72) which increase tolerance and adaptation to stress. These pathways contribute to the anti fatigue effect of ADPAT, increase the attention and improve the cognitive function [31].

Furthermore, a number of studies have investigated the effects of ADAP-232 on pneumonia patients. Clearly, adjuvant therapy on pneumonia patients with ADAPT-232 has a positive effect on the recovery of the patients, by decreasing the duration of the acute phase of the illness, increasing mental performance of the patients during the rehabilitation period and by improving their quality of life [30].

Anti-depressant and general anxiety

Depression is a severe despondency and sadness accompanied by a feeling of desperation and inadequacy. The mechanism of depression is complex. The therapeutic effects of anti-depressants such as Tricyclic antidepressants (TCAs), Monoamine oxidase inhibitors (MAOIs) and Selective serotonin reuptake inhibitors (SSRIs) come with a number of side effects like psychomotor impairment and dependence liability [32]. The use of alternative medicine especially natural products for the treatment of mental disorders has been increased in the US and worldwide. The most common reason for people to use complementary therapies is that they want to avoid the common side-effects of prescription anti-depressant drugs. A few natural psychotropics have been more extensively examined in well-designed, placebo-controlled, double-blind studies. *Rhodiola rosea* is one of these second-tier natural products for mood disorders [33]. The standardized extract SHR-5 (3% rosavin and 0.8% salidroside) from *R. rosea* has a significant antidepressant activity in mild to moderate depression. The symptoms evaluated were emotional instability, decreased motivation, cognitive complains and susceptibility to stress [34]. Significant improvement in the overall symptom of depression and mood deficiencies was observed in a 6-week monitoring study in Sweden, which *R. rosea* was given daily with a dosage of two tablets a day, each containing 170 mg of the extract [34]. The role of serotonin, a monoamine neurotransmitter, is usually known and associated with depression, however, serotonin also has some cognitive functions, including the enhancement of memory and learning. Regulation of serotonin at synapses is a major mechanism of action possibly contributing to pharmacological antidepressants. Central and peripheral serotonin levels decreases in patients with depression. Monoamine oxidase type A has an important role in degradation of biogenic amines such as epinephrine, norepinephrine, and serotonin. Monoamine oxidase inhibitors (MAOIs) prevent the breakdown of monoamine neurotransmitters including serotonin and therefore increase the concentrations of neurotransmitter in the brain. MAOIs therapy with synthetics drugs are known to interact negatively with other medications and even with food. Monoamine oxidase inhibitors can cause death if they are taken in overdose extent. There is an evident that *R. rosea* acts as monoamine oxidase inhibitors and influence the level and activity of biogenic monoamines such as serotonin, norepinephrine, and dopamine in the nerve terminal. *Rhodiola rosea* inhibits the activity of the enzymes responsible for monoamine degradation (monoamine oxidase and catechol-0 methyl transferase) [3, 7]. General anxiety disorder (GAD) is a common disorder that involves chronic worrying, nervousness and tension. There are different types of medication for GAD, including antidepressants, Benzodiazepines, and serotonin reuptake inhibitors. Patients who do respond to conventional treatment often experience adverse side effects that may interfere with their constancy. *Rhodiola rosea* is a safe and tolerable alternative medicine. Administration of *R. rosea* in a dosages of 2–3 capsules each containing 100–170 mg daily, approximate the perfect dose to gain beneficial effects [35].

Anti-inflammatory and neuro-protective effect

In general, inflammation is a localized reaction of the body tissues to infections, irritation, injuries, or disorders
of the immune system which produce redness, warmth, swelling, and pain. As we age, the level of inflammatory immune cytokines increases and we get vulnerable to a number of inflammation-linked diseases, such as cancer, arthritis, muscle weakness, fatigue, sleep disorder, Alzheimer’s and Parkinson’s disease. An enormous amount of researches have demonstrated the link between chronic low-level brain inflammation and elevated brain glutamate levels, which are a neurotransmitter normally involved in learning and memory. In some cases, glutamate can be an excitotoxin that involves in nerve-cell death in various neurodegenerative disorder including Alzheimer’s and Lou Gehrig’s disease. Glutamate not only influence amyloid β production (the cause of Alzheimer’s disease), but also amyloid β can change the levels of glutamate in the brain which increase the vulnerability of cortical neurons to glutamate cytotoxicity. It has been shown in several studies that *R. rosea* could improve inflammation and neurotoxicity in cortical neuronal cells. *Rhodiola rosea* modulates the neuronal over action and endogenous anti-inflammatory [6].

Microglia, a type of glial cell, act as the first and main form of active immune defense in the central nervous system (CNS), and thus this cell play a key role in the inflammatory reaction. Inflammatory process, in the central nervous system leads to neuronal cell death, and inflammatory response is mediated by the activated microglia, which remove the damaged cell by phagocytosis. The chronic activation of microglia may in turn cause neuronal damage through the secretion of cytotoxic molecules such as proinflammatory cytokines (interleukin-1β (IL-1), IL-6 and TNF-α), proteases, and reactive oxygen species (ROS), and nitric oxide (NO). Therefore, suppression of microglia-mediated inflammation can appear to be the most promising option in neurodegenerative disease therapy. Since overproduction of NO plays an important role in neuroinflammatory disease, the effect of the *R. rosea* on nitric oxide production was investigated in lipopolysaccharide (LPS)-induced microglia cells. *Rhodiola rosea* has shown to strongly inhibit NO production and the expression of *Inducible nitric oxide synthase* (iNOS), the key enzyme for NO in LPS-stimulated microglia cells [6].

Antiviral activity

The influenza is an acute infections disease caused by an RNA virus of the family orthomyxovirus. Influenza virus infects the epithelial cells of respiratory tract that causes acute pulmonary diseases. Influenza outbreak usually occurs in winter, killing numerous people in pandemic years. The epidemic outbreaks of influenza are associated with influenza virus type A and B. Type C virus is associated with minor symptoms. Two neuraminidase inhibitors have been approved by FDA (zanamivir, and oseltamivir) to treat influenza virus infection. Both of these inhibitors are active against influenza virus A and B, however, they have several toxic effects in the digestive and autonomic nervous system. The flavonols Kaempferol, Herbacetin, Rhodiolin, Rhodonion and Rhodosin were isolated from *Rhodiola rosea*. The compounds showed neuraminidase inhibitory and anti-influenza virus activities. The in vitro anti-influenza virus activities of flavonoids were evaluated using two influenza viral strains, H1N1 and H9N2, testing their ability to reduce virus-induced cytopathic effect (CPE) in MDCK, Madin-Darby Canine Kidney Cells (virus tissue culture). Anti-influenza activity depends on the position and the number of hydroxyl groups on the flavonoids backbone. Kaempferol showed the highest activity against two influenza viruses, H1N1 and H9N2 with the half maximal effective concentration (EC50) values of 30.2 and 18.5 μM [36].

Coxsackievirus B3 (CVB3) is important human pathogen that belongs to picornavirus family. CVB3 is the most common cause of viral myocarditis, a serious disease that can further leads to dilated cardiomyopathy and cardiac failure and also often induce pancreatitis and aseptic meningitis. Although a few vaccine have been reported to be effective in a murine CVB3-induced myocarditis model, but there are no effective therapeutic agents against CVB3 for the clinic up to now [37]. Salidroside (p-hydroxyphenethyl-β-D-glucoside) which is extracted from *R. rosea* demonstrated antiviral activity while not affecting the normal physiological function of the host cells [8]. Salidroside exhibited obvious antiviral activity in vitro and protected myocardial cells against CVB3 infection. The antiviral activities of salidroside against CVB3 may be related to modulating serum superoxide dismutase (SOD), serum nitric oxide (NO), serum catalase (CAT), and serum malondialdehyde (MDA) activities to prevent heart muscle against the harmful effect of free radicals. Also salidroside has the ability to increase the hemoglobin capacity to carry oxygen, which provides protection for the myocardial cells from hypoxemia [8]. Since salidroside also has shown antiviral activities against CVB3 in vitro, the findings have significant implications for a potential therapeutic agent for treatment of viral myocarditis and influenza virus infections which is worthy of further future researches [8].

Antidiabetic

The antidiabetic effects of dietary administration of *Rhodiola*-water extract on streptozotocin (STZ)-induce diabetes rat model were investigated. The STZ is a toxin with the ability to damage pancreatic beta cells, resulting in hypoinsulinemia and hyperglycemia [38]. The study used STZ mice as a model because it is considered an appropriate model to assess mechanisms of diabetes and evaluate potential therapies [39]. Three days administration of *Rhodiola*-water extract in STZ-diabetic rats resulted in an increase of glucose transporter subtype 4/GLUT 4 in skeletal muscle and a reduction of phosphoenolpyruvate carboxykinase in liver [38]. It has...
been reported that *Rhodiola*-water extract have a long-term blood glucose level control effect and improves hyperglycemia by an increase of beta-endorphin secretion from adrenal gland to activate opioid mu-receptors to achieve the higher of GLUT 4 gene expression in STZ rats model [38].

Evidence in both experimental and clinical studies shows that increased oxidative stress is the common pathogenic factor causing diabetic mellitus and its complication. Diabetes is a chronic metabolic disorder characterized by hyperglycemia and the inability of tissues to utilize glucose. Hyperglycemia and fluctuation in blood glucose generate oxidative stress through overproduction of reactive oxygen species. Dietary *R. rosea* supplementation results in a significant reduction on blood glucose and lipid peroxide, increased levels of glutathione, glutathione peroxide, catalase, and superoxide dismutase (SOD) in the liver. *Rhodiola rosea* extracts may be effective for correcting hyperglycemia and preventing diabetic complications [40]. Managing diabetes without any side effect is still a challenge. Therefore, it is worth more investigation in the antidiabetic activity of natural products such as *R. rosea* on human in the future.

Lifespan increasing effects

Recent studies on Drosophila melanogaster and *Caenorhabditis elegans* have shown that bioactive components of *R. rosea*, particularly salidroside and/or rosavins, may have an effect on lifespan and improve health spans. The plant adaptogens can induce their effects by different routes. Adaptogens can extend the lifespan by increasing an organism’s resistance against the damaging effects of different stress conditions. The plants adaptogens such as *R. rosea* interfere with the localization of DAF-16, a fork head/winged-helix transcription factor. The *Caenorhabditis elegans* DAF-16 transcription factor is critical for diverse biological processes specifically longevity and stress resistance. *Rhodiola rosea* induce translocation of the DNF-16 transcription factor from the cytoplasm into the nucleus. DAF-16 in the nucleus regroups the transcriptional activities favoring the transcription of a large number of genes involved in stress resistance and longevity [17].

Moreover, dietary conditions are another hypothesis for anti aging effect of *Rhodiola rosea*. The effect of *R. rosea* supplement on the lifespan of fruit fly depends on diet composition particularly on the protein-to-carbohydrate ratio. Dietary compositions with the protein-to-carbohydrate ratio less than 1 extends the lifespan by 15–21%, but diets with high protein-to-carbohydrate ratio or high caloricity do not support the beneficial action of *R. rosea* on longevity [42].

Hormesis is favorable biological responses to a low dose stress-induced stimulation resulting in biologically beneficial effects on growth, reproduction and longevity. Hormesis activates defense systems of the body and the defense process repair the damage caused by the toxin and also protect body against any additional stress. It can be hypothesized that the plants adaptogen like *R. rosea* act as a mild stressor leading to activate an adaptive response which protects the cells from stressful environments and increase the life span. In this way, it can be mentioned that adaptogen acts as hormetic agents. The findings of a study support the view that low doses of *R. rosea* extract (10–25 µg/ml) works in a deliberate and systematic way in order to increase the stress resistance and lifespan of *C. elegans* between 10 and 20%, whereas the higher doses tested (250µg/ml) of *Rhodiola* showed a life span shortening of 15–25% [41].

Cardio-protective effects

Hyperhomocysteinemia (high homocysteine level in the blood) is a major risk factor of cardiovascular disease. An abnormal accumulation of homocysteine, an amino acid that is produced by human body due to consuming meat, is related to various cardiovascular diseases such as coronary heart disease, stroke and peripheral vascular disease (fatty deposits in peripheral arteries). Homocysteine exert its adverse effect on endothelial function by increasing superoxide production and decreasing the activity of nitric oxide synthase. Homocysteine could be a starting point for the development of atherosclerosis by disturbing vascular permeability, damaging the inner lining of the arteries and promoting blood clots. Salidroside extracted from *Rhodiola* protect rats aortas against homocysteine-induce impairment of endothelium by inhibiting NOX2-dependent ROS overproduction. These results suggest that salidroside significantly inhibit ROS overproduction associated with vascular dysfunction, a common pathological process in hypertension and diabetes [17].

Effect on Binge eating and Anorexia

Binge eating (BE) and Anorexia nervosa are official eating disorders. Binge eating appears to be characterized by extreme overeating without subsequent purging episodes, usually secretive, and filled with shame [43]. Topiramate or sibutramine are medications that have been suggested to reduce BE. However, their uses are associated with a variety of adverse side effects which causes serious problems, such as cardiovascular disorder and stroke. As a result they have been withdrawn from the market in many European countries. Since stress is a key factor in BE, a reduction of stress response might show an effective mechanism for the treatment of BE. Therefore, due to its anti-stress properties, the effect of Salidroside, an active principle of the dry extract of *R. rosea*, was evaluated for treatment of BE. Studies have shown that Salidroside abolishes BE by suppressing the activation of hypothalamic-pituitary-adrenal (HPA) axis, leading to a reduction of serum corticosterone flowing chronic treatment [1].
Eating disorders are associated with stress responses depending on the intensity of stress itself. Moderate stressor stimulate eating while acute stressor which causes high levels of CRF (corticotrophin-releasing factors), induce anorexia. In particular, considerable evidence suggests a role for endogenous brain CRF system in appetite regulation and the cause of eating disorder. At doses of 15 and 20 mg/kg, *Rhodiola* extract significantly inhibits the anorexia effects of stress within a 60 min after a single oral administration of *R. rosea* extract [44]. Therefore, the difference effects evoked by *R. rosea* on eating behavior could be attributed to its ability to modulate the activation of several components of stress-response system rather than a direct effect on orexigenic or anorexigenic mechanisms [1].

Effect on Parkinson's Disease

Parkinson's disease (PD) is a chronic and progressive disorder of the nervous system that affects movements of the body and the symptoms continue and worsen over the time. Parkinson’s primarily affects neurons in the area of the brain called substantia nigra. Cells within the substantia produce and release dopamine, a neurotransmitter that controls the movement and balance. In patients suffering from Parkinson’s, the amount of dopamine produced in the brain decreases. The shaking or tremor may begin to interfere with the daily activities of the PD patients. As these symptoms become more pronounced, patients may have difficulty walking, talking or performing other simple tasks. Although there is no cure, there are treatment options such as medication and surgery to control the symptoms [5].

The new plant preparation phytomix-40 (PM-40) is developed for the treatment of Parkinson's disease. Phytopharmacology (PM-40) is a mixture of natural extracts of 40 medical plants, including extracts of *R. rosea, Eleutherococcus*, ginseng, and other adaptogens with neuroprotective properties. Animal experiments demonstrated that PM-40 had a low toxicity. The neuroprotective plant adaptogen can be used in complex therapy for the Parkinson’s disease for improving its efficacy. Oral administration of 10% solution of PM-40 to mice with MPTP-induced Parkinson’s syndrome reduces the severity of rigidity and increase motor activity [45]. The preparation normalized immunobiological parameters in PD patients and relieved the clinical symptom of the disease. The mechanism of action of PM-40 contributes to the recovery of the dopamine synthesis by healing of damaged neurons. PM-40 can be used with the combination of other standard antiparkinson drugs in order to improve their clinical effects and minimize side effects of Parkinson’s medication [5].

Overview of toxicological and safety data

Through the doses administered in clinical trials, there is no report of serious side effects that could be attributed to the extract of *Rhodiola rosea*. The normal usage of *R. rosea* is safe, however it is important to consider that *R. rosea* a strong adaptogenic and tonic herb might have an addictive effect with other substance exhibiting stimulant properties (such as caffeine) [46].

Continuous daily use of *R. rosea* for days and months is followed by an interval with no supplementation (three weeks “on” and one week “off”). This clinical recommendation helps avoid possible side effects at higher dosages such as insomnia, irritability, dizziness, dry mouth, and allergy (unspecified) [35].

The most commonly used standardized extract has a minimum of 3% rosavin and 1% salidroside. The typical daily dose for chronic administration extracts range from 100–170 mg per day when standardized for 2.6% rosavin. Evidence on the safety and appropriateness of *R. rosea* supplementation during pregnancy and lactation has not been established [2].

CONCLUSIONS

Rhodiola rosea, which is also known as the golden root, is one of the most studied *Rhodiola* species. As an adaptogen, many health benefits are related to *Rhodiola* drug extracts due to their balancing and regulatory effects. Significant antioxidant activities have been documented for various *Rhodiola* species extracts. In Russian and Chinese folk medicine, the plant is used for stimulating the nervous system and decreasing mental and physical fatigue. It has been shown in pharmacological investigations that, *R. rosea* possess antioxidant, anti-aging, anti-cancer and anti-cardiovascular disease properties. As a dietary supplement, numerous preparations of extracts are used worldwide including teas, homeopathic preparations and tinctures as well as standardized extract. *Rhodiola rosea* has enormous traditional and pharmacological use in supporting mood and cognitive function.

Rhodiola rosea is a versatile, safe and easily accessible plant which offers resistance to the physical, chemical and biological stressors without interacting with other food or drugs. The remarkable therapeutic effects of this plant in prevention and treatment of variety of human diseases, makes this plant very valuable for further investigation in the area of pharmaceutical industries.

Author Contributions

Rafie Hamidpour – Substantial contributions to conception and design, Analysis and interpretation of data, Revising it critically for important intellectual content, Final approval of the version to be published

Soheila Hamidpour – Analysis and interpretation of data, Revising it critically for important intellectual content, Final approval of the version to be published

Mohsen Hamidpour – Analysis and interpretation of data, Revising it critically for important intellectual content, Final approval of the version to be published
content, Final approval of the version to be published
Mina Shahhari – Acquisition of data, Drafting the article,
Final approval of the version to be published
Mahnaz Sohrabey – Acquisition of data, Drafting the
article, Final approval of the version to be published
Nooshin Shahhari – Acquisition of data, Drafting the
article, Final approval of the version to be published
Roxanna Hamidpour – Acquisition of data, Drafting the
article, Final approval of the version to be published

Guarantor

The corresponding author is the guarantor of submission.

Conflict of Interest

Authors declare no conflict of interest.

Copyright

© 2015 Rafie Hamidpour et al. This article is distributed
under the terms of Creative Commons Attribution
License which permits unrestricted use, distribution
and reproduction in any medium provided the original
author(s) and original publisher are properly credited.
Please see the copyright policy on the journal website for
more information.

REFERENCES

1. Cifani C, Micioni Di B MV, Vitale G, Ruggieri V, Ciccocioppo R, Massi M. Effect of salidroside, active
principle of Rhodiola rosea extract, on binge eating. Physiol Behav 2010 Dec 2;101(5):555–62.
2. Kelly GS. Rhodiola rosea: a possible plant adaptogen. Altern Med Rev 2001 Jun;6(3):293–302.
3. Panossian A, Wikman G, Sarris J. Rosenroot (Rhodiola rosea): traditional use, chemical composition,
pharmacology and clinical efficacy. Phytomedicine 2010 Jun;17(7):481–93.
4. Qu ZQ, Zhou Y, Zeng YS, Li Y, Chung P. Pretreatment with Rhodiola rosea extract reduces cognitive
impairment induced by intracerebroventricular streptozotocin in rats: implication of anti-oxidative
and neuroprotective effects. Biomed Environ Sci 2009 Aug;22(4):318–26.
5. Bocharov EV, Ivanova-Smolenskaya IA, Poleshchuk VV, Kucheryanu VG, II'enko VA, Bocharova OA.
Therapeutic efficacy of the neuroprotective plant adaptogen in neurodegenerative disease (Parkinson’s
disease as an example). Bull Exp Biol Med 2010 Nov;149(6):682–4.
6. Lee Y, Jung JC, Jang S. Anti-Inflammatory and Neuroprotective Effects of Constituents Isolated from
Rhodiola rosea. Evid Based Complement Alternat Med 2013;2013:514049.
7. van Diermen D, Marston A, Bravo J, Reist M, Corrupt PA, Hostettmann K. Monoamine oxidation
inhibition by Rhodiola rosea L. roots. J Ethnopharmacol 2009 Mar 18;122(2):397–401.
8. Wang H, Ding Y, Zhou J, Sun X, Wang S. The in vitro and in vivo antiviral effects of salidroside
from Rhodiola rosea L. against coxsackievirus B3. Phytomedicine 2009 Mar;16(2-3):146–55.
9. Ming DS, Hillhouse BJ, Guns ES, et al. Bioactive compounds from Rhodiola rosea (Crassulaceae).
Phytother Res 2005 Sep;19(9):740–3.
10. Ma CY, Tang J, Wang HX, Gu XH, Tao GJ. Simultaneous Determination of Six Active Compounds in Rhodiola
L. by RP-LC. Chromatographia 2008;67(5):383–8.
11. Ma YC, Wang XQ, Hou F, et al. Simultaneous quantification of polyherbal formulations containing
Rhodiola rosea L. and Eleutherococcus senticosus Maxim. using rapid resolution liquid chromatography
(RRLC). J Pharm Biomed Anal 2011 Jul 15;55(5):908–15.
12. Tsering T, Bai Z, Nan P, et al. Chemical composition of the essential oils of three Rhodiola species from
Tibet. Chem Nat Comp 2007;43(6):716–18.
13. Héthelyi ÉB, Korány K, Galmabosi B, Domokos J, Pálinkás J. Chemical Composition of the Essential
Oil from Rhizomes of Rhodiola rosea L. Grown in Finland. J Essen Oil Res 2005;17(6):628–9.
14. Gupta V, Lahiri SS, Sultana S, Kumar R. Mechanism of action of Rhodiola imbricata Edgew during exposure
to cold, hypoxia and restraint (C-H-R) stress induced hypothermia and post stress recovery in rats. Food
Chem Toxicol 2009 Jun;47(6):1239–45.
15. Schriner SE, Abrahmany A, Avanessian A, et al. Decreased mitochondrial superoxide levels and enhanced protection against paraquat in Drosophila melanogaster supplemented with Rhodiola rosea. Free Radic Res 2009 Sep;43(9):836–43.
16. Chen TS, Liou SY, Chang YL. Antioxidant evaluation of three adaptogen extracts. Am J Chin Med
2008;36(6):1209–17.
17. Leung SB, Zhang H, Lau CW, Huang Y, Lin Z. Salidroside improves homocystine-induced endothelial
dysfunction by reducing oxidative stress. Evid Based Complement Alternat Med 2013;2013:679635.
18. Qian EW, Ge DT, Kong SK. Salidroside promotes erythropoiesis and protects erythroblasts against
oxidative stress by up-regulating glutathione peroxidase and thiorodoxin. J Ethnopharmacol 2011
Jan 27;133(2):308–14.
19. Majewska A, Hoser G, Furmanowa M, et al. Antiproliferative and antimitotic effect, S phase
accumulation and induction of apoptosis and necrosis after treatment of extract from Rhodiola rosea
rhizomes on HL-60 cells. J Ethnopharmacol 2006 Jan 3;103(1):43–52.
20. Mishra KP, Padwad YS, Dutta A, et al. Aqueous extract of Rhodiola imbricata rhizome inhibits
proliferation of an erythroleukemic cell line K-562 by inducing apoptosis and cell cycle arrest at G2/M
phase. Immunobiology 2008;213(2):125–31.
21. Hu X, Liu S, Yu D, Qu S, Zhang X, Mei R. A preliminary study: the anti-proliferation effect of salidroside on
different human cancer cell lines. Cell Biol Toxicol 2010 Dec;26(6):499–507.
22. Skopinska-Rózewska E, Malinowski M, Wasiutynski A, et al. The influence of Rhodiola quadrifida
(RRLC). J Pharm Biomed Anal 2011 Jul 15;55(5):908–15.
23. Skopinska-Rózewska E, Malinowski M, Wasiutynski A, et al. The influence of Rhodiola quadrifida
(RRLC). J Pharm Biomed Anal 2011 Jul 15;55(5):908–15.
23. Hu X, Zhang X, Qiu S, Yu D, Lin S. Salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells. Biochem Biophys Res Commun 2010 Jul 16;398(1):62–7.

24. Zubeldia JM, Nabi HA, Jiménez del Río M, Genovese J. Exploring new applications for Rhodiola rosea: can we improve the quality of life of patients with short-term hypothyroidism induced by hormone withdrawal? J Med Food 2010 Dec;13(6):1287–92.

25. De Sanctis R, De Bellis R, Scesa C, Mancini U, Cucchiari L, Dachì M. In vitro protective effect of Rhodiola rosea extract against hypochlorous acid-induced oxidative damage in human erythrocytes. Biofactors 2004;20(3):147–59.

26. Qu ZQ, Zhou Y, Zeng YS, et al. Protective effects of a Rhodiola crenulata extract and salidroside on hippocampal neurogenesis against streptozotocin-induced neural injury in the rat. PLoS One 2012;7(1):e29641.

27. Zhang L, Yu H, Zhao X, et al. Neuroprotective effects of a Rhodiola crenulata extract and salidroside against Streptozotocin-induced oxidative stress in SH-SY5Y human neuroblastoma cells. Neurochem Int 2010 Nov;57(5):547–55.

28. Panossian A, Hambardzumyan M, Hovhanissyan A, Wikman G. The adaptogens rhodiola and schizandra modify the response to immobilization stress in rabbits by suppressing the increase of phosphorylated stress-activated protein kinase, nitric oxide and cortisol. Drug Target Insights 2007;2:39–54.

29. Buckley MS. Concentration and mental performance amplifying formulation. U.S. Patent Application 2012;13/420,409.

30. Aslanyan G, Amroyan E, Gabrielyan E, Nylander M, Wikman G, Panossian A. Double-blind, placebo-controlled, randomised study of single dose effects of ADAPT-232 on cognitive functions. Phytomedicine 2010 Jun;17(7):494–9.

31. Panossian A, Wikman G, Kaur P, Asea A. Adaptogens stimulate neuropeptide y and hsps72 expression and release in neuroglia cells. Front Neurosci 2012 Feb 1;6:6.

32. Chan SW. Panax ginseng, Rhodiola rosea and Schisandra chinensis. Int J Food Sci Nutr 2012 Mar;63 Suppl 1:75–81.

33. Iovieno N, Dalton ED, Fava M, Mischoulon D. Second-tier natural antidepressants: review and critique. J Affect Disord 2011 May;130(3):343–57.

34. Darbinyan V, Aslanyan G, Amroyan E, Gabrielyan E, Malmström C, Panossian A. Clinical trial of Rhodiola rosea L. extract SHR-5 in the treatment of mild to moderate depression. Nord J Psychiatry 2007;61(5):343–8.

35. Rhodiola rosea for general anxiety disorder. Kiefer D. Intregative Medi Alert 2008. [Available at: http://www.ahcmedia.com/articles/12628-rhodiola-rosea-for-general-anxiety-disorder]

36. Jeong HJ, Ryu YB, Park SJ, et al. Neuraminidase inhibitory activities of flavonols isolated from Rhodiola rosea roots and their in vitro anti-influenza viral activities. Bioorg Med Chem 2009 Oct 1;17(19):6816–23.

37. Hunziker IP, Harkins S, Feuer R, Cornell CT, Whitton JL. Generation and analysis of an RNA vaccine that protects against coxsackievirus B3 challenge. Virology 2004 Dec 5;330(1):196–208.

38. Niu CS, Chen LJ, Niu HS. Antihyperglycemic action of rhodiola-aequus extract in type-1 diabetic rats. BMC Complement Altern Med 2014 Jan 13;14:20.

39. Biswas M, Kar B, Bhattacharya S, Kumar RB, Ghosh AK, Haldar PK. Antihyperglycemic activity and antioxidant role of Terminalia arjuna leaf in streptozotocin-induced diabetic rats. Pharm Biol 2011 Apr;49(4):335–40.

40. Kim SH, Hyun SH, Chaong SY. Antioxidative effects of Cinnamomum cassia and Rhodiola rosea extracts in liver of diabetic mice. Biofactors 2006;26(3):209–19.

41. Wiegart FA, Surinova S, Ytsma E, Langelaar-Makkinje M, Wikman G, Post JA. Plant adaptogens increase lifespan and stress resistance in C. elegans. Biogerontology 2009 Feb;10(1):27–42.

42. Gospodaryov DV, Yurkevych IS, Jafari M, Lushchak VI, Lushchak OV. Lifespan extension and delay of age-related functional decline caused by Rhodiola rosea depends on dietary macronutrient balance. Longev Healthspan 2013 Apr 2;2(1):5.

43. Cifani C, D.B MVM, Vitale G, Massi M. Effect of Rhodiola rosea extracts on binge eating in female rats. Appetite 2010;54(3):639–39.

44. Mattioli L, Perfumi M. Rhodiola rosea L. extract reduces stress- and CRF-induced anorexia in rats. J Psychopharmacol 2007 Sep;21(7):742–50.

45. Bocharov EV, Kucheryanu VG, Kryzhanovskii GN, Bocharova OA, Kudrin VS, Belorustseva SA. Effect of complex phytoadaptogen on MPTP-induced Parkinson’s syndrome in mice. Bull Exp Biol Med 2006 May;141(5):560–3.

46. Ishaque S, Shameer L, Bukutu C, Vohra S. Rhodiola rosea for physical and mental fatigue: a systematic review. BMC Complement Altern Med 2012 May 29;12:70.
Edorium Journals: An introduction

Edorium Journals Team

About Edorium Journals
Edorium Journals is a publisher of high-quality, open access, international scholarly journals covering subjects in basic sciences and clinical specialties and subspecialties.

Invitation for article submission
We sincerely invite you to submit your valuable research for publication to Edorium Journals.

But why should you publish with Edorium Journals?
In less than 10 words - we give you what no one does.

Vision of being the best
We have the vision of making our journals the best and the most authoritative journals in their respective specialties. We are working towards this goal every day of every week of every month of every year.

Exceptional services
We care for you, your work and your time. Our efficient, personalized and courteous services are a testimony to this.

Editorial Review
All manuscripts submitted to Edorium Journals undergo pre-processing review, first editorial review, peer review, second editorial review and finally third editorial review.

Peer Review
All manuscripts submitted to Edorium Journals undergo anonymous, double-blind, external peer review.

Early View version
Early View version of your manuscript will be published in the journal within 72 hours of final acceptance.

Manuscript status
From submission to publication of your article you will get regular updates (minimum six times) about status of your manuscripts directly in your email.

Our Commitment

Six weeks
You will get first decision on your manuscript within six weeks (42 days) of submission. If we fail to honor this by even one day, we will publish your manuscript free of charge.

Four weeks
After we receive page proofs, your manuscript will be published in the journal within four weeks (31 days). If we fail to honor this by even one day, we will publish your manuscript free of charge and refund you the full article publication charges you paid for your manuscript.

Most Favored Author program
Join this program and publish any number of articles free of charge for one to five years.

Favored Author program
One email is all it takes to become our favored author. You will not only get fee waivers but also get information and insights about scholarly publishing.

Institutional Membership program
Join our Institutional Memberships program and help scholars from your institute make their research accessible to all and save thousands of dollars in fees make their research accessible to all.

Our presence
We have some of the best designed publication formats. Our websites are very user friendly and enable you to do your work very easily with no hassle.

Something more...
We request you to have a look at our website to know more about us and our services.

We welcome you to interact with us, share with us, join us and of course publish with us.