Review of *Viparit lajjalu (Biophytum sensitivum Linn.)* and its Effect on Sperms

Dhiraj Zade¹, Swanand Pathak², Pramod Khobragade³, Sonali Wairagade⁴, Prafulla Fadanvis⁵

¹Associate Professor, Department of Dravyaguna, DMAMCH & RC, Nagpur, India; ²Professor, Department of Pharmacology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences, Sawangi (Meghe), Wardha, Maharashtra, India; ³Professor, Department of Dravyaguna, DMAMCH & RC, Nagpur; ⁴Professor, Department of Kayachikitsa, DMAMCH & RC, Nagpur; ⁵Associate Professor, Department of Shalyatantra, DMAMCH & RC, Nagpur, India.

ABSTRACT

Medicinal plants are commonly used by traditional medical practitioners to treat different illnesses in their everyday practices. In various diseases such as stomach ache and burning sensation, inflammation, arthritis, wounds, gonorrhoea, amenorrhea and dysmenorrhea, asthma, cough, degenerative joint disease, urinary calculus, diabetes, snake bite, *Viparit Lajjalu (Biophytum sensitivum Linn)* of the family Oxalidaceae is one of those used as traditional folk medicine. It is a small, flowering, annual herb with sensitive leaves in the opposite direction. It grows in the warmer parts of India and Nepal and in tropical Africa & Asia. Several ethano-botanical reviews illustrate the same plant’s aphrodisiac activity and sterility activity. An aphrodisiac is a drug or food that activates sexual instinct, induces desire, or enhances sexual enjoyment or efficiency.

Key Words: *Viparit Lajjalu, Sperm, Vajikaran*

INTRODUCTION

Folklore herbal medicines are getting more attention now a day. Folklore medicines are a more important source of knowledge for research and development.¹ The traditional therapist more often carries the traditional philosophies, civilisations, and stories of a community, which they receive from the previous generations.² There is scope to encourage the new idea, manner and treatment modalities from older healing procedure.³ The traditional medical practitioner provides health maintenance by using herbal plants, inorganic and organic materials and certain other approaches based on the societal, ethnic and spiritual backgrounds as well as the fundamental knowledge.⁴ Traditional practitioner used different medicinal formulas from various natural substances (herbal plants, inorganic and organic materials). They have wide knowledge based on herbal plants for treatment and dietary purposes. Currently, traditional therapists have their area of expertise. There are different types of medicinal plants that are known to traditional therapists, *Biophytum sensitivum Linn* is one of the tremendous effect, variety of uses even though not into the lumen of research.

There are so many therapeutic myths on different types of traditional medicine but lacking scientific study on them.⁶ Most of the folklore medicines are given without doing any ethical, well-mannered research even in this era of science. Single herbs have so many qualities, activity on different diseases in so many types of permutation and combinations.

Infertility is emerging as one of the embarrassing problems in the present world. But now the male infertility of a day is unexpectedly raising & putting up a major concern for both patients and doctors. Infertility affects around 1 in 7 reproductive-age couples, frequently causing significant psychological distress. In men, infertility may results from impaired sperm quality, quantity and abnormality. Azoospermia or Oligospermia is usually idiopathic but may be a consequence of hypogonadism.¹ Male infertility is commonly due to deficiency in the semen and semen quality is used as a surrogate measure of male fecundity.² It may cause due to y-chromosomal microdeletions, varicocele, hypogonadism, previous vasectomy, previous sexually transmitted infection and others.³ To verify the number, shape and movement of sperm in the ejaculate, the diagnosis should require a medical history of the individual and a physical examination along
with a semen analysis. To verify the levels of hormones that regulate the development of sperm, blood tests may also be performed. Genetic investigations and testicular biopsies are sometimes done. For this there are some treatments, today doctors will advise that the couple take Reproductive Assisted Technologies (ART), such as IVFF (in vitro fertilisation). The cause of infertility is not healed or treated by ART but may help couples achieve pregnancy even if the man’s sperm count is very low.6,7

All these treatments may be expensive, prolonged which cannot possible for every couple and there is no reassurance about fertility after these treatments. It ultimately results that some men have to deal with the reality that nothing can be done about their infertility. In Bhavaprakash about Laxmana as Putrajanani means ability to produce healthy progeny. Viparit Lajjalu (Biophytm sensitive) is one drug under the category of Laxmana in Bhavaprakash. Laxmanamula Strivan-dhitvanashana and Vandhyatva in Shushrutasaamhita, which improves the consistency, quantity and abnormality of the female reproductive system, have also been described by Acharya Shushruta.6

B. sensitive Linn. has been literally used all over India. Even in folklore in West Africa and Mali region it is used for Aphrodisiac activity, wound healing and malaria.7 B. sensitive Linn the whole plant is also eaten to induce sterility in man.8 Due to different opinion on the activity of sperm of B. sensitive Linn., the proper scientific study should be done for an accurate conclusion of the effect on sperms.

AYURVEDIC REVIEW

Shukra is considered as the last of the seven Dhatus which are responsible for maintaining and providing strength to the human body. Ingested food material after digestion “Rasa Dhatu” is produced which after the action of Agnis of different Dhatus produces Rakta, Mansa, Meda, Asthi, Majja while these Dhatus are formed different types of waste products are produced and are thrown out of the Dhatu resulting into the Mala Rahit (devoid of waste products) Last Dhatu i.e. Shukra.9

As the function described to Shukra Dhatu is to produce “Garbha” (Fetus) it must be the cleanest Dhatu. Being cleanest of the Dhatus it is also one of the “Ten Pranayatanini” i.e. one of the ten body parts where the “Jiva” i.e. life resides10. Any harm to these ten parts costs the life of the person who is hurt at those places. Shukra Dhatu is formed or produced in the body from the Rasa Dhatu i.e. an absorbed form of the digested food material from the Gut. Rasa Dhatu then produced Rakta and then Mansa& so on till the Shukra the last of the Seven Dhatus is produced. Acharyas consider that it requires 3 day nights to produce the next Dhatu thus it takes 21 days for producing Shukra. Some Acharyas believe that after one month Shukra Dhatu is produced. There are interesting theories to explain the formation of these Dhatus one of which is denoted by giving an example of a canal that irrigates the farm turn by turn, this theory is known as “Kedar kullya nyay”.

The second theory indicates that as the milk is turned into curd and so on likewise Rasa turns to Rakta and Rakta to Mansa and so on, this theory is known as “ksheer dadhi nyay”11,12

The third theory explains that as the pigeon collects grain from the field where grains are extracted, pigeons whose nest is nearby will reach earlier whereas whose nest is faraway will take more time to reach likewise Rakta being the next Dhatu will be formed earlier, Mansa being third in line will take more time. Shukra being the farthest will be the last to be formed. This theory is known as “khale kapot nyay.”11 When these theories are seen collectively it becomes clear that rasa contents raw material to produce different Dhatus. It flows in the body continuously providing raw material to different manufacturing systems of the Dhatus, which after receiving the suitable raw material produces particular Dhatu with help of Dhatavagnis which converts them properly and the waste material ready to be thrown out of the body.

There are many opinions regarding the production of Dhatu particularly that of Shukra. Some Acharyas consider that it takes one day and one night (i.e. 24 Hrs) to produce the next Dhatu likewise at the end of the seventh day after ingestion of food Shukra is produced.

The digested and absorbed Rasa contents the raw material required for the formation of different Dhatus which are processed by different Agnis and next Dhatu have formed including Shukra and oja there after. When these processes go wrong due to various reasons including heredity, to dietary deficiencies, the previous history of the diseases, deficient Dhatavagnis, abnormalities of the system concerned whether congenital or acquired, the Dhatu produced is not normal or optimum. Such abnormal or deficient Dhatu is also deficient in its performance. The same is the case of ShukraDhatu; if the production of the ShukraDhatu is deficient due to any reasons mentioned above or any other reason it cannot produce “Garbha”. The production of “Garbha” is the prime function of ShukraDhatu.13,14,15

According to Kashyap Samhita, though Shukra is present in the body it remains dormant and becomes vyakta at the age of 16 years. As it becomes Sampurna i.e. Complete hence becomes visible. Of these, the SarvdeihShukra produces secondary sex characters and the SthanikShukra is ready for ejaculation and producing Garbha. The “Garbhot pati” is possible only if a good “Shoniit” i.e. Stribija and good healthy Shukra unite to form a Garbha” i.e. Zygote. This Zygote when reaches the healthy uterus it’s implanted and
This was observed in men who are hypogonadism due to unknown reasons, as well as in men with lower production of testosterone due to long-term replacement therapy with testosterone. The improvement in testosterone output from HCG can also increase the chance of successful sperm retrieval in men with non-obstructive azoospermia, according to another study.16 One of the declines in sperm motility and seminal vesicle secretions, irregular sperm morphology, is also methadone hydrochloride.17,18 Spermatogenic arrest/decreased sperm count by nitrofurantoin (in high doses).19,20

MODERN VIEW

With the advancement of Teratozoospermia, the physics and tools offered by it for medical usage the microscopic examination of the semen reveal abnormalities of the semen particularly of the sperms and their viability. The sperm with abnormalities in its anatomy and physiology is unable to fertilize the ovum. In cases where the number of such abnormal sperms is high ovum cannot be fertilized causing infertility. Many such abnormalities of the sperms ranging from semen without sperm (Azoospermia), Dead sperms (Necrosperrma), Fewer sperms (Oligozoospermia), sperms with pus cells (Pyospermia) & abnormalities of its head, body, tail are now encountered. Amongst these abnormalities, Teratozoospermia is one such abnormality where the head, body or tail of the sperm is abnormal separately or collectively.19,20

AYURVEDIC DRUG REVIEW

Taxonomical Description
Botanical name – Biophytum sensitive Linn.

Synonyms
Sanskrit: Jhullipuspa, Lajjaluka, Panktipatra, Pitapushpa, Vipareetalajjaalu20
Common name: Life plant, little tree plant, sensitive plant21
Hindi: Lajalu, Lajjaalu, Lakshmana, Zarer22
Marathi: Jharera, Lajwanti, Lahanmulaka23
Family: Oxalidaceae
Genus: Biophytum
Species: sensitivum24

It has been used in traditional medicine, especially in Indian medicine, for different ailments.25,26 In the tradition and culture of the state of Kerala in India, the flower of this plant is regarded as one of the ten sacred plants called Dasapushpam27

Botanical description
It is an annual herb that looks like a miniature palm, with 2.5 to 25 cm of unbranched, erect, glabrous or hairy stems. Leaves, with 6-12 pairs of leaflets, are sensitive, pinnately compound, crowded into rosette at the top of the stem, and 5-12 cm long. The leaflets are opposite, the petiole is short, and the size increases upwards steadily, being 1.5 cm long, oblong and apiculate at the apex. Flowers are dimorphic, numerous, and up to 10 cm long, 8 mm across the yellow peduncle. With parallel nerves, sepals are 5, lanceolate, imbricate, and acute. Petals are 5, red-marked gold, connate into a salver-shaped corolla and rounded lobes far exceeding the sepals. The fruit is a capsule that is apiculate, ellipsoid, slightly exceeding the sepals. Seeds are ovoid and striate transversely. There are 10 stamens, free of separate filaments, five inner ones are longer, and five styles.28

MODERN DRUG REVIEW

There is a generic medicine that affected sperm quality and quantity. Clomiphene is the licensed medicine for female infertility, but clomiphene can also be administered to males by physicians.12 It will decrease hyperandrogenic (low testosterone) symptoms, increase sperm count, and potentially help boost non-obstructive azoospermia, a blockage that prevents semen from entering the sperm.13

Originally designed for breast cancer, Anastrozole or Arimidex has become a viable off-label treatment for particular groups of infertile men. Anastrozole inhibits the enzyme, aromatase, which prevents testosterone from transforming into estradiol, unlike most fertility medications.14 This process helps increase the level of testosterone and reduces the level of estrogen. Anastrozole was found to decrease symptoms of male hypoandrogenism, such as low energy, decreased muscle mass, low libido, and erectile dysfunction. It has also been shown in males who are azoospermic or have a low sperm count to increase sperm production and sperm recovery rates.15

By directly stimulating the testes, human chorionic gonadotropin acts to produce its testosterone and increase sperm production. In hypogonadism men, research has found HCG to improve energy, libido, strength, and mood.
Movement of plant leaves

B. sensitivum displays nastic movement in the leaves in response to touch, contact with the foreign body, rainfall, wind, vibration, heat, and closing of its leaflets, and the movement is independent of the direction of the stimulus. Depending on the stimulus intensity applied, the degree of motion varies. When the sensitive plant’s leaf apex is gently touched, only a few pairs of leaflets close up, and when roughly touched, all the leaflets respond in the same way from the apex downward. A motor structure formed by a rod of collenchyma surrounded by sclerenchyma is the pulvinus. In their extended location, the cells of the entire collenchyma are distended with water, and the cells in the lower half of the pulvinus react by expelling potassium and chlorine ions and taking up calcium ions upon receipt by contact of the action potential signal. This results in an osmotic gradient that pulls water out of the affected cells. The lower pulvinus cells temporarily shrink due to water depletion. In the manner of a fan, this causes the entire structure to bend down. The pulvinus no longer acts as a support in this contracted role and the petiole droops. Furthermore, botanists have found a signalling molecule called turgorin, which is known to be a new phytohormone class that regulates all leaf motions by regulating the turgor of plant cells. A highly acidic, free sulphuric acid group is included in the turgorin molecule and it was found that diluted sulphuric acid-induced leaf closing as strongly as turgorin. Therefore it was concluded that turgorin’s leaf-closing activity is due to its sulphuric acid group’s high acidity.

Properties of Vipareeta lajjaalu (Biophytum sensitivum Linn)

Guna: Laghu

Rasa: Tikta, Madhur, Kashaya,

Veerya: Sheeta

Vipak: Katu

Gana:-Guduchyaadivraga B.H.P.

Chemical composition: There are different chemical components in the whole plant, such as phenolic and polyphenolic compounds, saponin, essential oil, polysaccharides and pectin. The key constituent was found to be amentoflavone in methanolic extract of roots, stems and leaves.

Other therapeutic utilities of the plants:-

1. In Urine calculus Quath of the root of *B. sensitivum* administered.
2. In piles Roots powder paste applied.
3. The root of *B. sensitivum* is tied on Hydrocele patient on locally.

Safety profile

Acute toxicity for *B. Sensitivum* extracts has been tested in rodents. Aqueous plant leaf extract was tested and found to be non-toxic at 100, 200 and 300 mg/kg dose levels by oral route in mice. Methanol extract *B. Sensitivum* whole plant is well tolerated up to an oral dose of 4000 mg/kg as no mortality was observed within 24 h. The median dose (LD50) of plant in hexane, chloroform, ester, N-butanol and ethanol extracts found to be greater than 1 g/kg when intraperitoneally administered to rats.

Clinical Studies

B. sensitivum is used for the treatment of diabetes traditionally said to have an insulin-like compound. The mechanism of action is not well understood, but tropical insulin properties appear to be present. Clinical studies on the *B. Sensitivum* containing formulation have been published since 2002, DB14201 has been sold under an Ayurvedic license granted under the trade name Diabedrink by the Drug Controller of the State of Kerala. In Ayurveda, it is a mixture of 16 herbs including *B. sensitivum*. Blinded, placebo-controlled, randomized clinical trials have been reported in 30 patients with type 2 diabetes aged 29-71 with single oral diabetes in both sexes. It is confirmed that when administered along with glibenclamide, the herbal formulation DB14201 is safe in T2DM patients and enhances the efficacy of glibenclamide in providing improved glycemic control. Compared to the addition of placebo, it also offers a substantial increase in fasting and postprandial blood sugar levels and also significantly decreases HbA1c levels.

Herbal emulsifying creams and gels are prepared by adding the dry methanolic extract of the whole plant *B. Sensitivum* has been assessed for in-vitro antibacterial efficacy against four distinct bacterial strains (Salmonella typhi, Staphylococcus aureus, Escherichia coli and Bacillus subtilis). The findings revealed that when formulated as cream and gel for topical use *B. sensitivum* has a high potential as an antibacterial agent.

B. sensitivum was prepared with an optimized tablet formulation by using the methanolic extract from the dried whole plant. Their antioxidant properties were evaluated in vitro based on their total flavonoid content (TFC) against the regular flavonoid, Quercetin, and also in vivo for the antidiabetic activity of Streptozotocin (STZ)-induced diabetic rats against the anti-diabetic drug Glibenclamide. The drug with the formulations showed antioxidant and anti-diabetic properties anti-inflammatory anti-cancerous, Immuno-modulatory effect and Radioprotective.

CONCLUSION

It has historically been recognized that parts of the plant have a broad range of medicinal properties, including antiseptic.
properties, including beneficial effects on a variety of skin infections and diabetes care. Scientific study has shown that anti-bacterial, anti-fungal and anti-diabetic practices have been carried out. The plant has been extensively assessed and confirmed to have anti-inflammatory, antipyretic, anti-microbial, anti-obesity, antioxidant, anti-diabetic, anti-fungal, anti-cancer, larvicidal, anti-obesity, anti-hypertensive, anti-epileptic, wound healing and anti-fertility activity for various pharmacological activities. In the treatment of different diseases, the entire plant is often traditionally used. One article is suggesting Aphrodisiac activity and the other one sterility activity of *B. sensitivum*. Whereasthe drug is used for infertility by tribal people. Previous evidence search on *B. sensitivum* no fact has been generated to prove the exact mechanisms on sperm by *B. sensitivum*. To generate the evidence regarding specific action *B. sensitivum*, it is necessary to overcome the confusion about the activity of *B. sensitivum* on sperm in a scientific manner.

Conflict of interest: Nil

Source of funding: Nil

REFERENCES

1. Walker B, Ralston S. Davidso practice and medicine; 21st edi.British Library Cataloguing in Publication Data. 2019;758-60.
2. Cooper TG, Noonan E, Von Eckardstein S, Auger J, Baker HW, Behre HM, Haugen TB, Kruger T, Wang A. World Health Organization reference values for human semen characteristics. Human Reprod Update 2009;16(3):231–245.
3. Collodge N, Walker B, Ralston S. Davidson’s principle and practice of medicine; 21st edi. British Library Cataloguing in Publication Data 2019;758-760.
4. Andrology Australia. Male infertility Andrology Australia, School of Public Health & Preventive Medicine, Monash University; Melbourne; (Last modified: March 23, 2016) cited 2017 feb. 10
5. Mishra B, Vaishya R. Bhavaprakash of Bhavamishra. Vol I Parishishta 2; chaukhamba Sanskritibhavan, Varanasi. Bhavaprakash Nighantu Madhyam Khanda, Guduchyadi Varga. 2017;147-148,357-359.
6. Shushrutasaamitha, ChiktsaSthana, 37/16.
7. Tom EG. Ethnopharmacological survey of six medicinal plants from Mali, West-Africa. J Ethn Ethnomed 2008;4(26).
8. Charak Samhitā, Sutrasthana, Dirghajivitam Adhya-1/42-43.
9. Charakchikṣta, chakrapanaani, Grandhishachikṣita, 15/16-19.
10. Moskovic D, Katz D, Akhavan A, Park K, Mulhall J. Clomiphene citrate is safe and effective for long-term management of hypogonadism. BJU Internat 2012;110(10):1524–1528.
11. Hussein A, Ozgok Y, Ross L, Niederberger C. Clomiphene administration for cases of nonobstructive azoospermia: a multicenter study. J Androl 2005;26(6):787-791.
12. Kim E, Crosnoe L, Bar-Chama N, Khera M, Lipshultz L. The treatment of hypogonadism in men of reproductive age. J Fert Ster 2012;99(3):678-79.
13. Kim E, Crosnoe L, Bar-Charma N, Khera M, Lipshultz L. The treatment of hypogonadism in men of reproductive age. J Fert Ster 2013;99(3):718-24.
14. Shinjo E, Shiraishi K, Matsuyama H. The effect of human chorionic gonadotropin-based hormonal therapy on intratesticular testosterone levels and spermatogonial DNA synthesis in men with non-obstructive azoospermia. J Andr 2013;16(6):929-935.
15. Cicero TJ, Bell RD, Wiest WG, Allison JH, Polakoski K, Robins E. Function of the male sex organs in heroin and methadone users. N Engl J Med 1975(292):882–887.
16. Ragini G, De Lauretis L, Gambaro V, Di Pietro R, Bestetti O, Recalcati F, et al. Semen evaluation in heroin and methadone addicts. Acta Eur Fertil 1985;16:245–249.
17. Albert PS, Mininberg DT, Davis JE. The nitrofurans as sperm immobilising agents: their tissue toxicity and their clinical application. Br J Urol 1975;47:459–462.
18. Editorial Committee of the Flora of Taiwan; Flora of Taiwan, 2nd ed. 1993. Biophytum sensitivum (Oxalidaceae) at the culture sheet. http://culturesheet.org/doku.php?id=oxalidaceae:Biophytum:Sensitivum
19. Pawar AT and Vyawahare NS: Phytochemical and Pharmacological profile of BiophytumSensitivum (L.) DC. Int J Pharm Pharmac Sci 2014;6(11):18-22.
20. Kala SC, Mallikarjuna K. Short review on callus studies of Biophytumsensitivum Linn. World J Microb Res 2015;4(4):985-991.
21. Kakade RT, Sandu N and Senthilkumar KL: In-vitro anthelmintic activity of leaves and stems extract of BiophytumSensitivum Linn. Asian J Plant Sci Res 2013;3(6):64-68.
22. Biophytum sensitivum var. assamicum (life plant). Available from: http://zipcodezoo.com/Plants/Biophytum_sensitivum
23. Jirovetz L, Buchbauer G, Wobus A, Shafi MP, Jose B. Medicinal used plants from India: Analysis of the essential oil of air-dried Biophytum sensitivum (L.) DC. Sci Pharm 2004;72:87–96.
24. Metcalfe CR, Chattaway MM, Hare CL, Richardson FR, Slatter EM, Chalk L. Anatomy of the dicotyledons: Leaves, stem, and wood in relation to taxonomy, with notes on economic uses. Int J Pharma Sci Res 2010;34:50–59.
25. Varghese KJ, Anila J, Nagalekshmi R, Resiya S, Dasapushpam JS. The traditional uses and the therapeutic potential of ten sacred plants of Kerala state in India. Int J Pharma Sci Res 2012;99(3):678-79.
26. Metcalfe CR, Chattaway MM, Hare CL, Richardson FR, Slatter EM, Chalk L. Anatomy of the dicotyledons: Leaves, stem, and wood in relation to taxonomy, with notes on economic uses. Int J Pharma Sci Res 2010;34:50–59.
27. Metcalfe CR, Chattaway MM, Hare CL, Richardson FR, Slatter EM, Chalk L. Anatomy of the dicotyledons: Leaves, stem, and wood in relation to taxonomy, with notes on economic uses. Int J Pharma Sci Res 2012;99(3):678-79.
properties of Biophytumsensitivum. J Ind Drug 2008; 45(2): 123-131.
32. Johnson DB, Kumar DC, Arunkanth KR, Giles D, Gopal M, Hubert VG. Antifertility activity of Biophytumsensitivum. J Ind Drugs 2003; 40(9): 523-525.
33. Krishnan G, Gopalakrishna P. Pharmacological Integration: Adjunct effect of Db14201, A new herbal formulation developed based on ayurvedic principles, when co-administered with Glibenclamide: Results of a placebo-controlled trial. J Ind Drugs 2015; 2(1): 2-10.
34. Pal TK, Dutta D, Banerjee R, Maity S. Formulation and evaluation of antimicrobial topical semisolid dosage form containing whole plant extract of B. sensitivum. J Pharm Res 2013; 6(7): 641.
35. Pal TK, Kalita P, Burman TK, Chatterjee TK, Maity S. Formulation and evaluation of antidiabetic tablet containing whole plant extract of Biophytum sensitivum on the basis of total flavonoid content. World J Pharm Res 2007;2(4):986-1007.
36. Bucar F, Jachak SM, Noreem Y, Karting T, Perera P, Bohlin L, et al. Catalysed prostaglandin M. Amentoflavone from Biophytum sensitivum and its effect on COX-1/COX-2biosynthesis. Planta Med 1998;64:373-374.
37. Puri D. The insulintropic activity of a Nepalese medicinal plant Biophytum sensitivum: Preliminary experimental study. J Ethnopharm 2001;78:89-93.
38. Guruvayoorappan C, Kuttan G. Amentoflavone stimulates apoptosis in B16F-10 melanoma cells by regulating bel-2, p53 as well as caspase-3 genes and regulates the nitric oxide as well as pro-inflammatory cytokine production in B16F-10 melanoma cells, tumour associated macrophages and peritoneal macrophages. J Exp Ther Oncol 2008;7:207-18.
39. Guruvayoorappan C, Kuttan G. Amentoflavone Inhibits Experimental Tumor Metastasis Through a Regulatory Mechanism Involving MMP-2, MMP-9, Prolyl Hydroxylase, Lysyl Oxidase, VEGF, ERK-1, ERK-2, STAT-1, nm23 and Cytokines in Lung Tissues of C57BL/6 mice. Immunopharm Immunot 2008;30:711-727.
40. Guruvayoorappan C, Kuttan, G. Anti-metastatic effect of Biophytum sensitivum is exerted through its cytokine and Immunomodulatory activity and its regulatory effect on the activation and nuclear translocation of transcription factors in B16F-10 melanoma cells. J ExpTher Oncol 2008;7:49-63.
41. Guruvayoorappan C, Kuttan G. Immunomodulatory and antitumor activity of Biophytum sensitivum extract. Asian Pac J Cancer Prev 2007;8:32.
42. Chandrasekharan C, Kuttan G.Methanol Extract of Biophytum sensitivum Alters the Cytokine Profile and Inhibits iNOS and COX-2 Expression in LPS/Con A Stimulated Macrophages. Drug Chem Toxicol 2008;31:175-188.
43. Guruvayoorappan C, Kuttan G. Protective effect of Biophytum sensitivum (L.) DC on radiation-induced damage in mice. Immunopharm Immunot 2008;30:815-835.