ŁOJASIEWICZ IDEALS
IN DENJOY-CARLEMAN CLASSES

VINCENT THILLIEZ

Abstract. The classical notion of Łojasiewicz ideals of smooth functions is studied in the context of non-quasianalytic Denjoy-Carleman classes. In the case of principal ideals, we obtain a characterization of Łojasiewicz ideals in terms of properties of a generator. This characterization involves a certain type of estimates that differ from the usual Łojasiewicz inequality. We then show that basic properties of Łojasiewicz ideals in the \mathcal{C}^∞ case have a Denjoy-Carleman counterpart.

1. Introduction

Let Ω be an open subset of \mathbb{R}^n, and let $\mathcal{C}^\infty(\Omega)$ be the Fréchet algebra of smooth functions in Ω. Let X be a closed subset of Ω. An element φ of $\mathcal{C}^\infty(\Omega)$ is said to satisfy the Łojasiewicz inequality with respect to X if, for every compact subset K of Ω, there are real constants $C > 0$ and $\nu \geq 1$ such that, for any $x \in K$, we have

$$|\varphi(x)| \geq C \operatorname{dist}(x, X)^\nu.$$ (1)

For example, it is well-known that any real-analytic function satisfies the Łojasiewicz inequality with respect to its zero set.

An element of $\mathcal{C}^\infty(\Omega)$ is said to be flat on X if it vanishes, together with all its derivatives, at each point of X. Denote by m_X^∞ the ideal of functions of $\mathcal{C}^\infty(\Omega)$ that are flat on X. The following statement appears in [15, Section V.4] and establishes a connection between the Łojasiewicz inequality and the behavior of ideals with respect to flat functions.

Theorem 1.1. Let \mathcal{I} be a finitely generated proper ideal in $\mathcal{C}^\infty(\Omega)$, and let X be the zero set of \mathcal{I}. The following properties are equivalent:

(A) The ideal \mathcal{I} contains an element φ which satisfies the Łojasiewicz inequality with respect to X.
(B) $m_X^\infty \subset \mathcal{I}$.
(C) $m_X^\infty = \mathcal{I}m_X^\infty$.

2010 Mathematics Subject Classification. 26E10, 46E10.
Key words and phrases. Łojasiewicz ideals, Ultradifferentiable functions.
A finitely generated ideal \mathcal{I} satisfying the equivalent properties (A), (B), (C) is called a \textit{Łojasiewicz ideal}. A principal ideal is Łojasiewicz if and only if condition (A) holds for a generator φ of the ideal. In the general case of a finitely generated ideal with generators $\varphi_1, \ldots, \varphi_p$, one can take $\varphi = \varphi_1^2 + \cdots + \varphi_p^2$. Łojasiewicz ideals play an important role in the study of ideals of differentiable functions; see for instance \cite{8, 14, 15}. In particular, every closed ideal of finite type is Łojasiewicz, whereas the converse statement is false.

In the present paper, we study a possible approach to Łojasiewicz ideals in non-quasianalytic Denjoy-Carleman classes $\mathcal{C}_M(\Omega)$. While several papers have already been devoted to the study of closed ideals in $\mathcal{C}_M(\Omega)$ (see for example \cite{10, 11, 12}), a suitable notion of Łojasiewicz ideal is still lacking, even in the case of principal ideals. This is due to the fact that if we put $m^\infty_{X,M} = m^\infty_X \cap \mathcal{C}_M(\Omega)$ and $\mathcal{I} = \varphi \mathcal{C}_M(\Omega)$, where φ is a given element of $\mathcal{C}_M(\Omega)$, it turns out that the usual Łojasiewicz inequality φ is not a sufficient condition for the inclusion $\mathcal{I} \subset m^\infty_{X,M}$, let alone for the equality $m^\infty_{X,M} = \mathcal{I} m^\infty_{X,M}$. Therefore, it is natural to ask for a characterization of both of these properties in terms of the generator φ, in the spirit of the characterization given by Theorem 1.1 in the \mathcal{C}^∞ case.

In the case of principal ideals, a suitable characterization will be obtained in Theorem 3.1. In the statement, the Łojasiewicz inequality φ has to be replaced by a quite different property involving successive derivatives of $1/\varphi$, which will be shown to be equivalent to the obvious Denjoy-Carleman version of property (C), that is, to the equality $m^\infty_{X,M} = \mathcal{I} m^\infty_{X,M}$. We are also able to get an equivalence with a corresponding version of property (B), provided we consider the inclusion $m^\infty_{X,M} \subset \mathcal{I}$ together with a mild extra requirement on the flat points of φ.

In order to prove these results, one has to deal with the fact that the constructive techniques used by Tougeron in the classical \mathcal{C}^∞ case do not seem applicable to the \mathcal{C}_M setting. Thus, the main part of our proof of Theorem 3.1 is actually based on a functional-analytic argument. Once the theorem is proven, we discuss several related properties showing that basic results of the \mathcal{C}^∞ case are extended in a consistent way. For instance, we show that our \mathcal{C}_M Łojasiewicz condition holds for closed principal ideals, and we also provide a non-closed example.
2. Denjoy-Carleman classes

2.1. Notation. For any multi-index $J = (j_1, \ldots, j_n)$ of \mathbb{N}^n, we always denote the length $j_1 + \cdots + j_n$ of J by the corresponding lower case letter j. We put $J! = j_1! \cdots j_n!$, $D^J = \partial^{j_1} / \partial x_1^{j_1} \cdots \partial x_n^{j_n}$ and $x^J = x_1^{j_1} \cdots x_n^{j_n}$. We denote by $| \cdot |$ the euclidean norm on \mathbb{R}^n; balls and distances in \mathbb{R}^n will always be considered with respect to that norm.

If a is a point in \mathbb{R}^n, and if f is a smooth function in a neighborhood of a, we denote by $T_a f$ the formal Taylor series of f at a, that is, the element of $C[[x_1, \ldots, x_n]]$ defined by

$$T_a f = \sum_{J \in \mathbb{N}^n} \frac{1}{J!} D^J f(a) x^J.$$

The function f is said to be flat at the point a if $T_a f = 0$.

2.2. Some properties of sequences. Let $M = (M_j)_{j \geq 0}$ be a sequence of real numbers satisfying the following assumptions:

(2) the sequence M is increasing, with $M_0 = 1$,

(3) the sequence M is logarithmically convex.

Property (3) amounts to saying that M_{j+1}/M_j is increasing. Together with (2), it implies

(4) $M_j M_k \leq M_{j+k}$ for any $(j, k) \in \mathbb{N}^2$.

We say that the moderate growth property holds if there is a constant $A > 0$ such that, conversely,

(5) $M_{j+k} \leq A^{j+k} M_j M_k$ for any $(j, k) \in \mathbb{N}^2$.

We say that M satisfies the strong non-quasianalyticity condition if there is a constant $A > 0$ such that

(6) $\sum_{j \geq k} \frac{M_j}{(j+1)M_{j+1}} \leq A \frac{M_k}{M_{k+1}}$ for any $k \in \mathbb{N}$.

Notice that property (6) is indeed stronger than the classical Denjoy-Carleman non-quasianalyticity condition

(7) $\sum_{j \geq 0} \frac{M_j}{(j+1)M_{j+1}} < \infty$.

The sequence M is said to be strongly regular if it satisfies (2), (3), (5) and (6).
Example 2.3. Let α and β be real numbers, with $\alpha > 0$. The sequence M defined by $M_j = j!^\alpha (\ln(j + e))^{\beta j}$ is strongly regular. This is the case, in particular, for Gevrey sequences $M_j = j!^\alpha$.

With every sequence M satisfying (2) and (3) we also associate the function h_M defined by $h_M(t) = \inf_{j \geq 0} t^j M_j$ for any real $t > 0$, and $h_M(0) = 0$. From (2) and (3), it is easy to see that the function h_M is continuous, increasing, and it satisfies $h_M(t) > 0$ for $t > 0$ and $h_M(t) = 1$ for $t \geq 1/M_1$. It also fully determines the sequence M, since we have $M_j = \sup_{t > 0} t^{-j} h_M(t)$.

Example 2.4. Let M be defined as in Example 2.3 and put $\eta(t) = \exp(- (t |\ln t|^{\beta} - 1/\alpha))$ for $t > 0$. Elementary computations show that there are constants $a > 0$, $b > 0$ such that $\eta(at) \leq h_M(t) \leq \eta(bt)$ for $t \to 0$.

A technically important consequence of the moderate growth assumption (5) is the existence of a constant $\rho \geq 1$, depending only on M, such that
\begin{equation}
(8) \quad h_M(t) \leq (h_M(\rho t))^2 \text{ for any } t \geq 0.
\end{equation}

We refer to [3] for a proof that (2), (3) and (5) imply (8).

2.5. Denjoy-Carleman classes. Let Ω be an open subset of \mathbb{R}^n, and let M be a sequence of real numbers satisfying (2) and (3). We define $C_M(\Omega)$ as the space of functions $f \in C^\infty(\Omega)$ satisfying the following condition: for any compact subset K of Ω, one can find a real $\sigma > 0$ and a constant $C > 0$ such that
\begin{equation}
(9) \quad |D^J f(x)| \leq C\sigma^j j! M_j \text{ for any } J \in \mathbb{N}^n \text{ and } x \in K.
\end{equation}

Given a function f in $C^\infty(\Omega)$, a compact subset K of Ω and a real number $\sigma > 0$, put
\begin{equation}
\|f\|_{K,\sigma} = \sup_{x \in K, \ J \in \mathbb{N}^n} \frac{|D^J f(x)|}{\sigma^j j! M_j}.
\end{equation}

We see that f belongs to $C_M(\Omega)$ if and only if, for any compact subset K of Ω, one can find a real $\sigma > 0$ such that $\|f\|_{K,\sigma}$ is finite ($\|f\|_{K,\sigma}$ then coincides with the smallest constant C for which (9) holds). The function space $C_M(\Omega)$ is called the Denjoy-Carleman class of functions of class C_M in the sense of Roumieu (which corresponds to $\mathcal{E}_{\{j! M_j\}}(\Omega)$ in the notation of [5]).

From now on, we will assume that the sequence M is strongly regular. In particular, it satisfies (7), which implies that $C_M(\Omega)$ contains compactly supported functions. We denote by $\mathcal{D}_M(\Omega)$ the space of elements of $C_M(\Omega)$ with compact support in Ω.
For the reader’s convenience, we now recall some basic topological facts about $\mathcal{C}_M(\Omega)$ and $\mathcal{D}_M(\Omega)$, without proof (we refer to [5] for the details).

With each Whitney 1-regular compact subset K of Ω, and each integer $\nu \geq 1$, we associate the vector space $\mathcal{C}_{M,K,\nu}$ of all functions f which are C^∞-smooth on K in the sense of Whitney, and such that $\|f\|_{K,\nu} < \infty$. Then $\mathcal{C}_{M,K,\nu}$ is a Banach space for the norm $\| \cdot \|_{K,\nu}$ and it can be shown that for $\nu < \nu'$, the inclusion $\mathcal{C}_{M,K',\nu} \hookrightarrow \mathcal{C}_{M,K',\nu'}$ is compact. We define the Denjoy-Carleman class $\mathcal{C}_M(\Omega)$ as the reunion of all spaces $\mathcal{C}_{M,K,\nu}$ with $\nu \geq 1$. Endowed with the inductive topology, $\mathcal{C}_M(\Omega)$ is a (DFS)-space (or Silva space). Given an exhaustion $(K_j)_{j \geq 1}$ of Ω by Whitney 1-regular compact subsets, the Denjoy-Carleman class $\mathcal{C}_M(\Omega)$ can be identified with the projective limit of all (DFS)-spaces $\mathcal{C}_M(K_j)$.

Similarly, denote by $\mathcal{D}_{M,K,\nu}$ the space of all functions $f \in C^\infty(\Omega)$ such that $\text{supp} \ f \subset K$ and $\|f\|_{K,\nu} < \infty$. Then $\mathcal{D}_{M,K,\nu}$ is a Banach space and we have the following properties: for $K \subset K'$, the space $\mathcal{D}_{M,K,\nu}$ is a closed subspace of $\mathcal{D}_{M,K',\nu}$, and for $\nu < \nu'$, the inclusion $\mathcal{D}_{M,K',\nu} \hookrightarrow \mathcal{D}_{M,K',\nu'}$ is compact. For any integer $\nu \geq 1$, put $\mathcal{D}_\nu = \mathcal{D}_{M,K_\nu,\nu}$, $\| \cdot \|_\nu = \| \cdot \|_{K_\nu,\nu}$, and notice that we have $\mathcal{D}_M(\Omega) = \bigcup_{\nu \geq 1} \mathcal{D}_\nu$ as a set. By the preceding remarks, we have a compact injection $\mathcal{D}_\nu \hookrightarrow \mathcal{D}_{\nu+1}$. Thus, the space $\mathcal{D}_M(\Omega)$ is another (DFS)-space for the corresponding inductive limit topology.

2.6. Some basic properties of $\mathcal{C}_M(\Omega)$

Properties (2) and (3) of the sequence M ensure that $\mathcal{C}_M(\Omega)$ is an algebra containing the algebra of real-analytic functions, and that \mathcal{C}_M regularity is stable under composition [9]. This implies, in particular, the following invertibility property.

Lemma 2.7 ([9]). If the function f belongs to $\mathcal{C}_M(\Omega)$ and has no zero in Ω, then the function $1/f$ belongs to $\mathcal{C}_M(\Omega)$.

It is also known that the implicit function theorem holds within the framework of \mathcal{C}_M regularity [6]. Thus, \mathcal{C}_M manifolds and submanifolds can be defined in the usual way.

The strong regularity assumption on M ensures that suitable versions of Whitney’s extension theorem and Whitney’s spectral theorem hold in $\mathcal{C}_M(\Omega)$; see [1234]. The extension result relies on a crucial construction of cutoff functions whose successive derivatives satisfy a certain type of optimal estimates. This construction is due to Bruna [2]; see also [3, Proposition 4]. Up to a rescaling in the statement of [3], the result can be written as follows.

Lemma 2.8 ([23]). There is a constant $c > 0$ such that, for any real numbers $r > 0$ and $\sigma > 0$, one can find a function $\chi_{r,\sigma}$ belonging to $\mathcal{C}_M(\mathbb{R}^n)$,
compactly supported in the ball \(B = B(0, r) \), and such that we have \(0 \leq \chi_{r, \sigma} \leq 1 \), \(\chi_{r, \sigma}(t) = 1 \) for \(|t| \leq r/2 \) and \(\| \chi_{r, \sigma} \|_{\mathcal{B}(c\sigma)} \leq (h_M(\sigma r))^{-1} \).

We shall also need a basic result on flat functions. Given a closed subset \(Z \) of \(\Omega \), recall that \(m_{\infty,Z,M} \) denotes the ideal of functions of \(\mathcal{C}_M(\Omega) \) which are flat at each point of \(Z \).

Lemma 2.9. Let \(f \) be an element of \(m_{\infty,Z,M} \). For any compact subset \(K \) of \(\Omega \), there are positive constants \(c_1 \) and \(c_2 \) such that, for any multi-index \(I \) in \(\mathbb{N}^n \) and any \(x \) in \(K \), we have

\[
|D^I f(x)| \leq c_1 c_2^I! M_I h_M(c_2 \text{dist}(x, Z)).
\]

Proof. For any real \(r > 0 \), put \(K_r = \{ y \in \Omega : \text{dist}(y, K) \leq r \} \). If \(r \) is chosen small enough, \(K_r \) is a compact subset of \(\Omega \). Thus, there is a constant \(\sigma > 0 \) such that, for any \(y \in K_r \), \(I \in \mathbb{N}^n \) and \(J \in \mathbb{N}^n \), we have \(|D^{I+J} f(y)| \leq \|f\|_{K_r, \sigma} \sigma^I (i + j)! M_{i+j} \). Using (11) and the elementary estimate \((i + j)! \leq 2^{i+j} j!\), we get

\[
|D^{I+J} f(y)| \leq c_1 c_2^I! M_I c_2^J! M_j.
\]

with \(c_1 = \|f\|_{K_r, \sigma} \) and \(c_2 = 2A\sigma \). Now let \(x \) be a point in \(K \), and let \(z \) be a point in \(Z \) such that

\[
|x - z| = \text{dist}(x, Z).
\]

If \(\text{dist}(x, Z) \leq r \), then the segment \([x, z]\) is contained in \(K_r \). Let \(j \) be an integer. Since \(D^I f \) is flat at \(z \), the Taylor formula easily yields \(|D^I f(x)| \leq n! \sup_{|I|=j, y \in K_r} |D^{I+J} f(y)||x - z|^j / j! \). Using (11) and (12), and taking the infimum with respect to \(j \), we obtain (10) up to the replacement of \(c_2 \) by \(nc_2 \). If \(\text{dist}(x, Z) > r \), the estimate is a simple consequence of the definition of \(\mathcal{C}_M(\Omega) \), up to another modification of \(c_1 \) and \(c_2 \). \(\square \)

3. Łojasiewicz ideals

The following notion will serve as a replacement for the standard Łojasiewicz inequality.

Definition 3.1. Let \(\varphi \) be a non-zero element of \(\mathcal{C}_M(\Omega) \) and let \(X \) be the zero set of \(\varphi \). We say that \(\varphi \) satisfies the \(\mathcal{C}_M \) Łojasiewicz condition if, for any compact subset \(K \) of \(\Omega \) and any real \(\lambda > 0 \), one can find positive constants \(C \) and \(\sigma \) (depending on \(K \) and \(\lambda \)) such that, for any multi-index \(J \in \mathbb{N}^n \) and any \(x \in K \setminus X \), we have

\[
|D^J (1/\varphi)(x)| \leq \frac{C \sigma^j M_j}{h_M(\lambda \text{dist}(x, X))}.
\]
Remark 3.2. From the basic properties of h_M in Section 2.2 we see that, on a given open subset $\{x \in \Omega : \text{dist}(x, X) > \delta\}$ with $\delta > 0$, the C_M Łojasiewicz condition amounts to nothing more than the conclusion of Lemma 2.7. It is relevant only as a bound on the explosion of $1/\varphi$ and its derivatives in a neighborhood of the zeros of φ.

In Section 4 we will provide examples of functions for which the C_M Łojasiewicz condition holds. Lemma 3.3 below shows that such functions cannot have “too many flat points” on the boundary of their zero set.

Lemma 3.3. Let φ be a non-zero element of $C_M(\Omega)$ and let X be its zero set. Assume that φ satisfies the C_M Łojasiewicz condition, and let $X_\infty = \{a \in X : T_a \varphi = 0\}$ be the set of points of flatness of φ. Then $X \setminus X_\infty$ is dense in the boundary ∂X of X.

Proof. Notice that φ is necessarily flat at each interior point of X, hence the inclusion $X \setminus X_\infty \subset \partial X$. We prove the density property by contradiction. If the property is not true, there are a point a in ∂X and an open neighborhood ω of a in Ω, such that φ is flat on $\omega \cap \partial X$. Put $K = B(a, r)$ with $r = \frac{1}{2} \text{dist}(a, X \setminus \omega)$. Then K is a compact subset of ω and we have

$$\text{dist}(x, \omega \cap \partial X) = \text{dist}(x, \partial X) = \text{dist}(x, X) \text{ for any } x \in K. \tag{14}$$

Using Lemma 2.9 on the open set ω, with $f = \varphi|\omega$, $Z = \omega \cap \partial X$ and $I = 0$, we see that there are constants c_1 and c_2 such that we have $|\varphi(x)| \leq c_1 h_M(c_2 \text{dist}(x, \omega \cap \partial X))$ for any $x \in K$. Taking property (8) into account, we obtain, for any $x \in K$,

$$|\varphi(x)| \leq c_1 h_M(c_3 \text{dist}(x, \omega \cap \partial X))^2 \tag{15}$$

with $c_3 = \rho c_2$. On the other hand, using the C_M Łojasiewicz condition with $\lambda = c_3$ and $J = 0$, we obtain a constant $c_4 > 0$ such that, for any $x \in K \setminus X$,

$$|\varphi(x)| \geq c_4 h_M(c_3 \text{dist}(x, X)). \tag{16}$$

Gathering (14), (15) and (16), we obtain $h_M(c_3d(x, X)) \geq c_4/c_1$ for any $x \in K \setminus X$, which is impossible since $K \setminus X$ has at least an accumulation point on X, namely the point a. \hfill \Box

We are now able to state the main result.

Theorem 3.4. Let φ be a non-zero element of $C_M(\Omega)$, let X be its zero set, and let X_∞ be its set of points of flatness. Put $\mathcal{I} = \varphi C_M(\Omega)$. The following properties are equivalent:

(A') The function φ satisfies the C_M Łojasiewicz condition.
\((B')\) \(m_{X,M}^\infty \subset I\) and \(X \setminus X_\infty\) is dense in \(\partial X\).

\((C')\) \(m_{X,M}^\infty = m_{X,M}^\infty\).

Proof. We prove the implication \((C') \Rightarrow (A')\) first. We use the (DFS)-space \(D_M(\Omega) = \lim_n D_\nu\) defined in Section 2.2. The intersection \(D_M(\Omega) \cap m_{X,M}^\infty\) is obviously closed in \(D_M(\Omega)\), hence it is also a (DFS)-space with step spaces \(E_\nu = D_\nu \cap m_{X,M}^\infty\).

It is easy to see that the map \(\Lambda : D_M(\Omega) \cap m_{X,M}^\infty \to D_M(\Omega) \cap m_{X,M}^\infty\) defined by \(\Lambda(f) = \varphi f\) is continuous. Moreover, given an element \(g\) of \(D_M(\Omega) \cap m_{X,M}^\infty\), the assumption implies that it can be written \(\varphi h\) for some \(h \in m_{X,M}^\infty\). If \(\chi\) is an element of \(D_M(\Omega)\) such that \(\chi = 1\) on \(\text{supp} g\), we then have \(g = \chi g = \varphi f\) with \(f = \chi h \in D_M(\Omega) \cap m_{X,M}^\infty\). Thus, \(\Lambda\) is also surjective.

We can therefore apply the De Wilde open mapping theorem ([7, Chapter 24]), which yields the following property: for any \(\nu \geq 1\), there exist an integer \(\mu_\nu \geq 1\) and a real constant \(C_\nu > 0\) such that, for any \(g \in E_\nu\), one can find an element \(f\) of \(E_{\mu_\nu}\) such that

\[\varphi f = g \quad \text{and} \quad \|f\|_{\mu_\nu} \leq C_\nu\|g\|_{\nu}.\]

Now, let \(x\) be a point in \(K \setminus X\), let \(d_K\) be a real number such that \(0 < d_K < \text{dist}(K, \mathbb{R}^n \setminus \Omega)\), and put \(r_x = \min(\text{dist}(x, X), d_K)\). Given \(\lambda > 0\), we apply Lemma 2.8 with \(r = 2r_x / 3\) and \(\sigma = 3\lambda / 2\). We set \(g_x(y) = \chi_{r,\sigma}(y - x)\). Then \(g_x\) belongs to \(C_M(\Omega)\) and is compactly supported in the ball \(B_x = B(x, 2r_x / 3)\). Obviously \(B_x\) is contained in \(K' = \{y \in \Omega : \text{dist}(y, K) \leq 2d_K / 3\}\), which is a compact subset of \(\Omega\). For a sufficiently large integer \(\nu\), depending only on \(K\) and \(\lambda\), we have \(\nu \geq c\sigma\) and \(K' \subset \hat{K}_\nu\), so that \(g_x\) belongs to \(E_\nu\) and

\[\|g_x\|_\nu = \|g_x\|_{\nu, r} \leq \|g_x\|_{\nu, \sigma} \leq (h_M(\lambda r_x))^{-1}.\]

Since \(h_M(\lambda r_x)\) equals either \(h_M(\lambda \text{dist}(x, X))\) or \(h_M(\lambda d_K)\), and since we have \(h_M(t) \leq 1\) for every \(t > 0\), we see that

\[h_M(\lambda r_x) \geq h_M(\lambda d_K) h_M(\lambda \text{dist}(x, X)).\]

Now, if \(f_x\) denotes the element of \(E_{\mu_\nu}\) associated with \(g_x\) by property \((17)\), we therefore have \(\varphi f_x = g_x\) and, thanks to \((18)\) and \((19)\),

\[\|f_x\|_{\mu_\nu} \leq C'_\nu (h_M(\lambda \text{dist}(x, X)))^{-1}\]

with \(C'_\nu = C_\nu / h_M(\lambda d_K)\). For any \(y\) in \(B'_x = B(x, r_x / 3)\), we have \(g_x(y) = 1\), hence

\[f_x(y) = 1 / \varphi(y).\]
In particular, we have \(f_x(y) \neq 0 \). Thus, we derive \(B'_x \subset \text{supp} \ f_x \subset K_{\mu \nu} \), which implies, for any \(y \in B'_x \) and any multi-index \(J \),

\[
|D^J f_x(y)| \leq \| f_x \|_{\mu \nu} |J|! M_j.
\]

Combining (20), (21) and (22), we get the desired estimate (13) with suitable constants \(A = C'_\nu \) and \(B = \mu \nu \) depending only on \(\nu \), hence only on \(K \) and \(\lambda \).

We now prove the implication \((A') \Rightarrow (B')\). By Lemma 3.3 the assumption implies that \(X \setminus X_\infty \) is dense in \(\partial X \). The proof of the inclusion \(m_{X,M}^\infty \subset I \) is a variant of the proof of [10, Theorem 2.3]; we give some details for the reader’s convenience. Let \(f \) be an element of \(m_{X,M}^\infty \). For any \(x \in \Omega \setminus X \) and any multi-index \(P \in \mathbb{N}^n \), the Leibniz formula yields

\[
D^P(f/\varphi)(x) = \sum_{I+J = P} \frac{P!}{I!J!} D^I f(x) D^J (1/\varphi)(x).
\]

Let \(K \) be a compact subset of \(\Omega \). For \(x \in K \setminus X \), we combine the \(C_M \) Łojasiewicz condition with Lemma 2.9 in order to obtain an estimate for all the terms \(D^I f(x) D^J (1/\varphi)(x) \) that appear in (23). Lemma 2.9, together with (3), yields \(|D^I f(x)| \leq c_1 c_2^i M_i (h_M (c_3 \text{dist}(x,X)))^2 \) with \(c_3 = \rho c_2 \).

Applying the \(C_M \) Łojasiewicz condition with \(\lambda = c_3 \), we therefore get \(|D^I f(x) D^J (1/\varphi)(x)| \leq c_2 C c_2^j \sigma^j |J|! M_i M_j h_M (c_3 \text{dist}(x,X)) \). Since \(i + j = p \), we have \(|J| \leq \rho \), as well as \(M_i M_j \leq M_p \) by (4). Inserting these estimates in (23), we obtain, for every multi-index \(P \) and every \(x \in K \setminus X \),

\[
|D^P(f/\varphi)(x)| \leq c_5 c_3^p M_p h_M (c_3 \text{dist}(x,X))
\]

with \(c_5 = c_2 C \) and \(c_4 = c_2 + \sigma \). Using (24) and the Hestenes lemma, we see that the function \(g \) defined by \(g(x) = f(x)/\varphi(x) \) for \(x \in \Omega \setminus X \) and \(g(x) = 0 \) for \(x \in X \) belongs to \(C_M(\Omega) \). Obviously, we have \(f = \varphi g \), hence \(f \in I \).

Finally, we prove the implication \((B') \Rightarrow (C')\). Let \(f \) be an element of \(m_{X,M}^\infty \). By assumption, there is \(g \in C_M(\Omega) \) such that \(f = \varphi g \). Let \(a \) be a point of \(X \setminus X_\infty \). In the ring of formal power series, we have \(0 = T_a f = (T_a \varphi)(T_a g) \) with \(T_a \varphi \neq 0 \), which implies \(T_a g = 0 \). Thus, \(g \) is flat on \(X \setminus X_\infty \), hence on \(\partial X \) since it is assumed that \(X \setminus X_\infty \) is dense in \(\partial X \). Put \(\tilde{g}(x) = g(x) \) for \(x \in \Omega \setminus X \) and \(\tilde{g}(x) = 0 \) for \(x \in X \). By the Hestenes lemma, it is then readily seen that \(\tilde{g} \in m_{X,M}^\infty \). Moreover, we have \(f = \varphi \tilde{g} \), hence \(f \in I m_{X,M}^\infty \), and the proof is complete.

Remark 3.5. We do not know whether the implication \((B') \Rightarrow (C')\) still holds without the additional assumption on \(X \setminus X_\infty \) in \((B')\). This is true
when X is a real-analytic submanifold of Ω: indeed, according to [13, Theorem 4.2.4], we then have $m_{X,M}^\infty = m_{X,M}^\infty m_{X,M}^\infty$. Thus, in this case, the inclusion $m_{X,M}^\infty \subset I$ easily implies (C').

Remark 3.6. Using the equivalence $(A') \Leftrightarrow (C')$, we see that if φ satisfies the C_M Łojasiewicz condition and if h is an invertible element of the algebra $C_M(\Omega)$, so that φ and $h\varphi$ generate the same ideal I, then $h\varphi$ also satisfies the C_M Łojasiewicz condition. This can also be checked by a direct computation with the Leibniz formula.

4. **Additional properties and examples**

4.1. **On the zero set.** We have a Denjoy-Carleman counterpart of [15, Proposition V.4.6].

Proposition 4.2. Let φ be an element of $C_M(\Omega)$ that satisfies the C_M Łojasiewicz condition, and let X be its zero set. Then there is a C_M-smooth submanifold Y of Ω such that $X = \overline{Y}$.

Proof. We notice first that the conclusion of Lemma 3.3 only requires a weaker property than the C_M Łojasiewicz condition: more precisely, the proof remains valid as soon as, for any compact subset K of Ω and any real $\lambda > 0$, one can find a constant $C > 0$ such that the inequality $|\varphi(x)| \geq Ch_M(\lambda \text{dist}(x,X))$ holds for any $x \in K$. It is then fairly easy to check that the proof by induction given in [15] for the usual Łojasiewicz inequality on C^∞ functions remains valid in the C_M case, up to minor modifications. □

4.3. **Connection with closedness.** In this section, we show that the C_M Łojasiewicz condition behaves as expected with respect to closedness properties of ideals.

Proposition 4.4. Let φ be a non-zero element of $C_M(\Omega)$ that generates a closed ideal in $C_M(\Omega)$. Then φ satisfies the C_M Łojasiewicz condition. Moreover, both properties are equivalent when the zeros of φ are isolated.

Proof. We use the same notation as in the proof of the implication $(C') \Rightarrow (A')$ of Theorem 3.4. Put $I = \varphi C_M(\Omega)$ and assume that I is closed in $C_M(\Omega)$. Since the inclusion $D_M(\Omega) \hookrightarrow C_M(\Omega)$ is continuous, $I \cap D_M(\Omega)$ is closed in $D_M(\Omega)$. Using cutoff functions, it is also easy to see that $I \cap D_M(\Omega) = \varphi D_M(\Omega)$. It is then possible to duplicate the proof of the implication $(C') \Rightarrow (A')$.

1The result in [15] is actually a local version of that statement, but it can be globalized, using partitions of unity.
Łojasiewicz condition: for instance, given an integer \(k \), include any homogeneous polynomial with an isolated real critical point at \(\psi \) with \(\Psi^{k} = 0 \). In particular, the Łojasiewicz condition does not imply closedness in general.

The converse in the case of isolated zeros is based on a variant of the argument leading to \cite{10} Proposition 4.1 (which deals with a singleton). Assume that \(\varphi \) satisfies the \(C_{M} \) Łojasiewicz condition and that its zero set \(X \) consists of isolated points, so that \(X \) is a countable subset \(\{a_{j} : j \geq 1\} \) of \(\Omega \). Put \(\mathcal{I} = \varphi C_{M}(\Omega) \) and let \(f \) be an element of the closure \(\overline{\mathcal{I}} \). By the \(C_{M} \) version of Whitney’s spectral theorem \cite{4}, for every \(j \geq 1 \) there is a function \(g_{j} \) of \(C_{M}(\Omega) \) such that \(f - \varphi g_{j} \) is flat at \(a_{j} \). Let \((\chi_{j})_{j \geq 1} \) be a sequence of compactly supported elements of \(C_{M}(\Omega) \) such that \(\chi_{j} = 1 \) in a neighborhood of \(a_{j} \) and \(\text{supp} \chi_{j} \cap \text{supp} \chi_{k} = \emptyset \) for \(k \neq j \). Then the (locally finite) series \(g = \sum_{j \geq 1} \chi_{j} g_{j} \) defines an element of \(C_{M}(\Omega) \) and we have \(f - \varphi g \in \overline{\mathcal{I}} \). Since \((B') \) holds, this yields \(f \in \mathcal{I} \), hence the result.

\(\square \)

Example 4.5. According to Proposition 4.4 and the results in \cite{10, 12}, examples of functions \(\varphi \) which satisfy the \(C_{M} \) Łojasiewicz condition will include any homogeneous polynomial with an isolated real critical point at 0, as well as real analytic functions whose germs of complex zeros intersect \(\mathbb{R}^{n} \) at isolated points with Łojasiewicz exponent 1 for the regular separation property. On the other hand, some analytic functions do not satisfy the \(C_{M} \) Łojasiewicz condition: for instance, given an integer \(k \geq 2 \), the polynomial \(\psi(x) = x_{1}^{2} + x_{2}^{2k} \) does not satisfy the \(C_{M} \) Łojasiewicz condition in \(\mathbb{R}^{2} \), as can be seen from the results in \cite{10} (property \(B' \) fails).

We now give an example showing that the converse to Proposition 4.4 is false without the assumption of isolated zeros. In particular, the \(C_{M} \) Łojasiewicz condition does not imply closedness in general.

Example 4.6. We put \(n = 2, \Omega = \mathbb{R}^{2} \), and \(\varphi(x) = x_{1} \psi(x) \) where \(\psi \) is the polynomial mentioned in Example 4.5. We then have \(X = \{x \in \mathbb{R}^{2} : x_{1} = 0\} \) and \(\text{dist}(x, X) = |x_{1}| \). Let \(x \) be a point in \(\mathbb{R}^{2} \setminus X \). For any \(v = (v_{1}, v_{2}) \in \mathbb{C}^{2} \), we have

\[
|\psi(x + v) - \psi(x)| \leq 2|x_{1}||v_{1}| + |v_{1}|^{2} + \sum_{p=1}^{2k} \binom{2k}{p} |x_{2}|^{2k-p} |v_{2}|^{p}.
\]

We also have the obvious inequalities \(|x_{1}| \leq (\psi(x))^{1/2} \) and \(|x_{2}| \leq (\psi(x))^{1/2k} \). Thus, if we assume \(|v_{1}| \leq \delta (\psi(x))^{1/2} \) and \(|v_{2}| \leq \delta (\psi(x))^{1/2k} \) for some real number \(\delta \) with \(0 < \delta < 1 \), we get

\[
|\psi(x + v) - \psi(x)| \leq \left(2\delta + \delta^{2} + \sum_{p=1}^{2k} \binom{2k}{p} \delta^{p} \right) \psi(x) \leq (2^{2k} + 2)\delta \psi(x).
\]
Setting $\delta = (2^{2k+1} + 4)^{-1}$, we obtain $|\psi(\zeta)| \geq \frac{1}{2} \psi(x)$ for every point ζ in the bidisc $\{\zeta \in \mathbb{C}^2 : |\zeta_1 - x_1| \leq \delta(\psi(x))^{1/2}, |\zeta_2 - x_2| \leq \delta(\psi(x))^{1/2k}\}$. The Cauchy formula then yields, for every $(i, j) \in \mathbb{N}^2$,
\[
\frac{\partial^{i+j}}{\partial x_1^i x_2^j} \left(\frac{1}{\psi(x)} \right) \leq 2\delta^{-(i+j)i!j!}(\psi(x))^{-(\frac{i}{2} + \frac{j}{k} + 1)},
\]
which easily implies
\[
(25) \quad \frac{\partial^{i+j}}{\partial x_1^i x_2^j} \left(\frac{1}{\psi(x)} \right) \leq 2\delta^{-(i+j)i!j!}|x_1|^{-(i+j+2)}
\]
provided we assume $|x_1| < 1$. Using (25), the definition of φ, and the Leibniz formula, we then get
\[
\frac{\partial^{i+j}}{\partial x_1^i x_2^j} \left(\frac{1}{\varphi(x)} \right) \leq B^{i+j+1} i!j!|x_1|^{-(i+j+2)}
\]
for some suitable constant $B > 0$. Let λ be a given positive real number. We write $|x_1|^{-(i+j+2)} = \frac{\lambda^{i+j+2} \lambda^{i+j+2}}{(\lambda|x_1|)^{i+j+2}}$. The definition of h_M implies $(\lambda|x_1|)^{i+j+2} M_{i+j+2} \geq h_M(\lambda|x_1|) = h_M(\lambda \text{dist}(x, X))$, whereas (5) yields $M_{i+j+2} \leq A^{i+j+2} M_{i+j}$. Gathering these inequalities, we eventually obtain $|x_1|^{-(i+j+2)} \leq (A\lambda)^{i+j+2} (h_M(\lambda \text{dist}(x, X)))^{-1}$ and
\[
\frac{\partial^{i+j}}{\partial x_1^i x_2^j} \left(\frac{1}{\varphi(x)} \right) \leq C\sigma^{i+j}(i+j!M_{i+j})\frac{h_M(\lambda \text{dist}(x, X))}{h_M(\lambda \text{dist}(x, X))}
\]
with $C = A^2 B^2$ and $\sigma = A B \lambda$. Thus, we have established the desired estimate for $|x_1| = \text{dist}(x, X) < 1$, which suffices to conclude that φ satisfies the C_M Łojasiewicz condition (see Remark 3.2). However, the ideal $I = \varphi C_M(\mathbb{R}^2)$ is not closed for $k \geq 2$. Indeed, in this case, it has been shown in [10] that the ideal $J = \psi C_M(\mathbb{R}^2)$ is not closed. Since J is the preimage of I under the continuous mapping $\Pi : C_M(\mathbb{R}^2) \to C_M(\mathbb{R}^2)$ defined by $\Pi(f)(x) = x_1 f(x)$, we see that I is not closed either.

We conclude with a natural question.

Problem. Is it possible to extend the above results to the general case of finitely generated ideals? A first idea is to mimic the definition of Łojasiewicz ideals in the C^∞ case, and say that a finitely generated ideal of $C_M(\Omega)$ is Łojasiewicz if it contains an element φ which satisfies the C_M Łojasiewicz condition. However, this definition doesn’t seem to allow an immediate extension of the crucial implication $(C') \Rightarrow (A')$, whose proof is quite different from the C^∞ case and doesn’t seem easily adaptable to the case of several generators.
References

[1] J. Bonet; R. Braun; R. Meise; B.A. Taylor, Whitney’s extension theorem for nonquasianalytic classes of ultradifferentiable functions, Studia Math. 99 (1991), 155–184.

[2] J. Bruna, An extension theorem of Whitney type for non quasianalytic classes of functions, J. London Math. Soc. 22 (1980), 495–505.

[3] J. Chaumat; A.-M. Chollet, Surjectivité de l’application restriction à un compact dans des classes de fonctions ultradifférentiables, Math. Ann. 298 (1994), 7–40.

[4] J. Chaumat; A.-M. Chollet, Caractérisation des anneaux noetheriens de séries formelles à croissance contrôlée. Application à la synthèse spectrale, Publ. Math. 41 (1997), 545–561.

[5] H. Komatsu, Ultradistributions, I. Structure theorems and a characterization, J. Fac. Sci. Univ. Tokyo, Sect. IA 20 (1973), 25–105.

[6] H. Komatsu, The implicit function theorem for ultradifferentiable mappings, Proc. Japan Acad. ser. A 55 (1979), 69–72.

[7] R. Meise; D. Vogt, Introduction to functional analysis, The Clarendon Press, Oxford University Press, New York, 1997.

[8] J.-J. Risler, Le théorème des zéros pour les idéaux de fonctions différentiables en dimension 2 et 3, Ann. Inst. Fourier 26 (1976), 73–107.

[9] C. Roumieu, Ultradistributions définies sur \mathbb{R}^n et sur certaines classes de variétés différentiables, J. Analyse Math. 10 (1962-1963), 153–192.

[10] V. Thilliez, On closed ideals in smooth classes, Math. Nachr. 227 (2001), 143–157.

[11] V. Thilliez, A sharp division estimate for ultradifferentiable germs, Pacific J. Math. 205 (2002), 237–256.

[12] V. Thilliez, Bounds for quotients in rings of formal power series with growth constraints, Studia Math. 151 (2002), 49–65.

[13] V. Thilliez, Division by flat ultradifferentiable functions and sectorial extensions, Results Math. 44 (2003), 169–188.

[14] R. Thom, On some ideals of differentiable functions, J. Math. Soc. Japan 19 (1967), 255–259.

[15] J.-C. Tougeron, Idéaux de fonctions différentiables, Springer Verlag, Berlin, 1972.

Laboratoire Paul Painlevé, Mathématiques - Bâtiment M2, Université Lille 1, F-59655 Villeneuve d’Ascq Cedex, France
E-mail address: thilliez@math.univ-lille1.fr