Nemolizumab is associated with a rapid improvement in atopic dermatitis signs and symptoms: subpopulation (EASI ≥ 16) analysis of randomized phase 2B study

J.I. Silverberg, A. Pinter, A. Alavi, C. Lynde, J.-D. Bouaziz, A. Wollenberg, D.F. Murrell, S. Alpizar, V. Laquer, K. Chaouche, F. Ahmad, J.M. Armstrong, C. Piketty

1Department of Dermatology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
2Department of Dermatology, Venereology, and Allergology, University Hospital Frankfurt am Main, Frankfurt am Main, Germany
3Department of Dermatology, Mayo Clinic, Rochester, MN, USA
4Department of Medicine, University of Toronto, Toronto, ON, Canada
5Department of Dermatology and Allergology and Allergology, Ludwig-Maximilians-Universität, Munich, Germany
6Department of Dermatology, St George Clinical School, University of New South Wales, Sydney, NSW, Australia
7Clinical Research Trials of Florida, Tampa, FL, USA
8First OC Dermatology, Fountain Valley, CA, USA
9Galderma, Entre-Deux-Villes, Switzerland
10Galderma Laboratories, Fort Worth, TX, USA

Abstract

Background Nemolizumab is a humanized anti-IL-31 receptor blocker in phase 3 for atopic dermatitis (AD).

Objective Analyse onset of action of nemolizumab 30 mg and compare efficacy and safety vs placebo (SC q4wk plus loading dose) in moderate-to-severe AD.

Methods Post hoc analysis of patients with Eczema Area and Severity Index (EASI) scores ≥ 16 from a phase 2b trial of moderate-to-severe AD. Endpoints were change in EASI score at week 16, peak pruritus numeric rating scale (PP-NRS), Investigator’s Global Assessment (IGA), changes in sleep and responders with ≥ 4-point improvement on PP-NRS.

Results There was a significantly greater itch relief apparent by Day 2 (−22.8% vs −12.3% PP-NRS; P = 0.005) which continued to improve through week 16 (−68.5% vs −30.9% PP-NRS; P < 0.001). At week 16, PP-NRS ≥ 4-point response of itch was observed in 68.0% nemolizumab vs 15.9% placebo patients (P ≤ 0.001). There was also a rapid improvement of sleep disturbance with nemolizumab 30 mg, with a significant separation from placebo by Day 3 (−26.6% vs −9.0%; P < 0.001) which further improved till week 16 (−76.0% vs −36.5%; P < 0.001). Also for the EASI score a separation between groups in favour of nemolizumab was observed by week 1 (P ≤ 0.001), which increased through week 16 (−68.6% vs −42.6%; P = 0.002). Finally, the degree of response was greater in nemolizumab-treated patients; clinically relevant reductions of 75% EASI were observed in 50.0% of nemolizumab patients versus 15.9% of placebo patients, while 90% reductions were reported for 36.0% and 6.8% of patients, respectively (P < 0.001 for both). IGA success (score of 0/1) was 32.0% for nemolizumab vs 6.8% for placebo (P = 0.002). Nemolizumab was safe and well-tolerated in this population; nasopharyngitis and upper respiratory tract infection were the most common adverse events.

Conclusions Nemolizumab resulted in very rapid, sustained improvements of inflammation, pruritus and sleep in patients with EASI ≥ 16 at baseline.

Received: 29 November 2020; Accepted: 18 February 2021

Conflicts of interest

Dr Silverberg has received honoraria as a speaker/consultant for Galderma, Abbvie, AnaptysBio, Asana, Arena, Boehringer Ingelheim, Dermavant, Eli Lilly, GlaxoSmithKline, Glenmark, Kiniksa, Leo, Menlo, Novartis, Pfizer, Regeneron-Sanofi and Realm and has received grants as an investigator from Galderma and GlaxoSmithKline. Dr Pinter has worked as an investigator and/or speaker and/or advisor for following pharmaceutical companies: AbbVie, Almirall-Hermal, Amgen,

Clinicaltrials.gov listing: NCT03100344
Biogen Idec, Biontech, Boehringer Ingelheim, Celgene, GSK, Eli Lilly, Galderma, Hexal, Janssen, LEO Pharma, MC2, Medac, Merck Serono, Mitsubishi, MSD, Novartis, Pascoe, Pfizer, Tigercat Pharma, Regeneron, Roche, Sandoz Bio-pharmaceuticals, Sanofi-Genzyme, Schering-Plough and UCB Pharma. Dr Alavi has received honoraria as a consultant, speaker or advisory board participant from AbbVie, Galderma, Janssen, Kyowa, LEO, Novartis, Pfizer, Regeneron and UCB. Dr Lynde has served as consultant, speaker and investigator as well as participated in advisory boards for Valeant Pharma and Galderma, and has served as an investigator for Xenon and Demira. Dr Bouaziz has received honoraria as advisor for Galderma. Dr Wollenberg has received grants, personal fees and/or nonfinancial support from Almirall, Beiersdorf, Bioderma, Chugai, Galapagos, Galderma, Hans Karrer, Leo Pharma, Eli Lilly, L’Oreal, Maruho, MedImmune, Novartis, Pfizer, Pierre Fabre, Regeneron, Santen and Sanofi-Aventis. Dr Murrell has received grants as investigator and honoraria as advisor for Galderma, Sanofi, Anacor, Pfizer, Menlo, Pierre Fabre and GlaxoSmithKline, Principiabio and Argenix and has also served as an investigator for Regeneron and MedImmune. Dr Alpizar has received honoraria as a consultant for AstraZeneca and Galderma. Dr Laquer has received honoraria as a consultant for Abbvie, Leo Pharma, Novartis, Aqua, Pfizer, Biogen, Mayne, Intraderm, Celgene and Allos. Dr Laquer has also served as an investigator from Ortho Dermatologics and Galderma. Dr Chaouche, Mr Ahmad, Dr Armstrong and Dr Piketty are employees of Galderma.

Funding source
The study was funded by Galderma R&D. The funders participated in the conception and design of the study, analysis and interpretation of the data, drafting and critical revision of the report, and gave approval to submit. The corresponding author had full access to all data in the study and had full responsibility for the decision to submit for publication. All authors provided final approval to submit.

Introduction
Atopic dermatitis (AD), a common and debilitating inflammatory skin disease, is characterized by dysfunction of the immune system, skin barrier and neuronal pathways. Eczema and itch are prominent clinical manifestations, and the itch-scratch cycle leads to further exacerbation of skin disease and sleep disturbances that can impact daytime functioning. AD negatively affects patients’ overall quality of life, and the intensity of itch is correlated with impact on psychosocial well-being.

Recent research showed that interleukin 31 (IL-31) plays a critical role in AD. IL-31 is a cytokine that is expressed in many human tissues, including skin, and is involved in T_H2-inflammation. Furthermore IL-31 provides a link between the immune and neuronal systems to mediate inflammatory itch, and IL-31-specific activation of dendritic cells is thought to be part of a positive feedback loop in inflammatory skin diseases. Study of skin biopsies revealed increased IL-31 expression in the inflammatory infiltrates from AD patients compared with controls; increased IL-31 expression was not found in biopsies of patients with other T_H2-weighted inflammatory skin diseases such as contact dermatitis. Thus, it is important to investigate the therapeutic actions in AD of treatments targeted towards inhibiting IL-31.

Nemolizumab is a humanized anti-IL-31 receptor blocker that is currently in phase 3 studies for treatment of AD and prurigo nodularis. Phase 2 studies of nemolizumab showed important clinical benefit in reducing cutaneous signs of inflammation and itch in patients with EASI scores of 12 or higher. A phase 2b randomized controlled trial evaluated nemolizumab 10 mg, 30 mg and 90 mg vs placebo with a background of topical corticosteroids (TCSs) in patients with moderate-severe AD, and observed maximal efficacy with the 30 mg dose. In this 24 week study, nemolizumab improved Eczema Area and Severity Index (EASI), investigator global assessment (IGA) and peak pruritus numeric rating scale (PP-NRS). However, this study defined moderate-severe AD using an inclusion criterion of EASI ≥ 12, which is lower than the threshold used in most other trials of emerging therapies for moderate-severe AD. To help clinicians evaluate the clinical profile of nemolizumab in context with other emerging therapies, a subgroup analysis was performed on 16-week data from the phase 2b study focusing on patients with EASI scores ≥ 16 who were treated with nemolizumab 30 mg or placebo, since this is more comparable to the baseline characteristics in studies of current and emerging therapies. This will also allow the phase 2 data to be interpreted in context of data from ongoing phase 3 studies in patients with baseline EASI ≥ 16. Similarly, although the original primary study endpoint was at week 24, data from the week 16 visit are included here, to assess data similar to that generated by other recent investigations. Moreover, we were interested in the velocity of the onset of action of nemolizumab and performed respective analyses on itch, sleep and lesions.
Methods

Full details of the phase 2b study were published in Silverberg et al and are briefly summarized.16

Study design

This phase 2b study was a randomized, double-blind, multicentre, study in adults with moderate-to-severe AD and severe pruritus, inadequately controlled with topical therapies (NCT03100344). Patients received nemolizumab 30 mg every 4 weeks with a 60 mg loading dose or placebo, with concomitant mid-potency topical corticosteroids (TCS) introduced at screening visit, for 24 weeks. This post hoc analysis evaluated efficacy in patients with baseline EASI scores ≥ 16 (nemolizumab: n = 50, placebo: n = 44) at week 16, as well as secondary endpoints.

Ethics

The study was performed following ethical principles of the Declaration of Helsinki and Good Clinical Practice. All patients gave written informed consent before any study procedures were performed.

Patients

Detailed inclusion and exclusion criteria were previously reported.16 The main inclusion criteria were moderate-to-severe AD (Investigator’s Global Assessment [IGA] score of 3 or 4), in patients aged ≥ 18 years, plus severe pruritus inadequately controlled by topical therapy. Severe pruritus was defined as a Pruritus Categorical Scale score ≥ 7 (range: 0–10) on ≥ 3 out of the 7 days prior to screening plus an average daily peak pruritus numeric rating scale (PP-NRS) of at least 7 during the week prior to baseline visit. Inadequate response to topical therapy within the past 6 months had to be documented, and patients had to agree to using only authorized TCS throughout the study.

Outcomes assessed in this analysis

This analysis described the efficacy of nemolizumab 30 mg vs placebo after 16 weeks treatment. Percentage change from baseline at week 16 in EASI score was the study primary endpoint; to further assess the efficacy of nemolizumab in AD, secondary endpoints included percent change of EASI scores at each visit, the proportion of patients achieving EASI score reductions of 75% or 90% from baseline, IGA success rate (clear [0] or almost clear [1] with 2 point reduction), and change in body surface area (BSA involvement). The proportion of subjects with ≥4-point improvement in PP-NRS score, and dynamic pruritus scale (DPS) scores were evaluated. The impact of nemolizumab on sleep was investigated via changes in sleep disturbance NRS.18 Additional assessments, including pruritus categorical scale (PCS), the Scoring Atopic Dermatitis (SCORAD) tool, Dermatology Life Quality Index (DLQI) and use of topical corticosteroids by group, are presented in the accompanying supplemental document. Standard safety assessments were performed, with details previously published.16

Statistical analysis

Statistical analysis details for the phase 2b study primary and secondary endpoints were published previously.16 All efficacy endpoints for this subpopulation (EASI ≥ 16) were summarized by treatment at individual study visits, and continuous data were described by means, medians, min/max and standard deviations. Categorical variables had frequency and percentage analysed for each response category. Continuous efficacy endpoints were analysed with a mixed-effects model for repeated measures approach, with terms for treatment group and baseline disease severity. Categorical endpoints were evaluated with stratified Cochran Mantel-Haenszel test, with time-to-event data described using the Kaplan-Meier method. Missing values for continuous endpoints were handled using MMRM approach, missing values were treated as ‘non-responders’ for all binary endpoints. Safety analyses were performed for all patients who received at least one dose of study medication, and adverse events were tabulated by frequency using System Organ Class and MedDRA preferred terms. SAS software (v9.3, SAS Institute, Cary, NC) was used to perform the analysis.

Results

Study population

The subgroup with baseline EASI ≥ 16 comprised 83.9% of all study patients (nemolizumab n = 50/55 [90.9%], placebo n = 44/57 [77.2%]). Demographics are shown in Table 1. There were 18 patients in each group with IGA 4, and 32 vs 26 patients with IGA 3 score at baseline in the nemolizumab 30 mg group. Additionally, there was a higher body surface area (BSA) involvement in the placebo group (53.1% compared with 44.3%).

Efficacy: AD and inflammation

Change in EASI scores

The least square (LS) mean EASI score at week 16 was reduced by 68.6% in the nemolizumab group as compared with 42.6% in the placebo group (P = 0.002). As shown in Figure 1, significant differences between groups in the EASI scores were observed by week 1 (P ≤ 0.001).

In addition, nemolizumab-treated patients were significantly more likely to achieve a 75% reduction in EASI score (EASI 75) (50.0% vs 15.9%) and a 90% reduction (EASI 90) at week 16 (36.0% vs 6.8%; P < 0.001 for both comparisons).

IGA success rates

At week 16, IGA0/1 was achieved in 32.0% of nemolizumab subjects compared to 6.8% of those in the placebo group (P = 0.003; delta 25.1%; 95% CI 10.1, 40.1). At all study visits, including week 1, IGA success rates in the
Table 1 Patients’ demographics and baseline characteristics (EASI ≥ 16 subgroup)

	Placebo (N = 44)	Nemolizumab 30 mg (N = 50)
Gender		
Male	27 (61.4%)	27 (54.0%)
Female	17 (38.6%)	23 (46.0%)
Race		
White	34 (77.3%)	35 (70.0%)
Black/African American	6 (13.6%)	8 (16.0%)
Asian	4 (9.1%)	6 (12.0%)
Other	0	1 (2.0%)
Ethnicity		
Hispanic/Latino	2 (4.5%)	2 (4.0%)
Non-Hispanic/Latino	42 (95.5%)	48 (96.0%)
Age (years)		
Mean (SD)	39.6 (14.74)	40.1 (16.56)
Range	18–72	18–80
Weight		
Mean (SD) (kg)	81.16 (19.53)	76.73 (19.13)
Mean EASI (SD)	30.91 (11.45)	27.48 (10.24)
IGA		
3 (moderate)	26 (59.1%)	32 (64.0%)
4 (severe)	18 (40.9%)	18 (36.0%)
Mean AD involvement of BSA (SD)	53.1% (20.18)	44.3% (16.80)
Weekly PP-NRS		
Mean ± SD	8.23 ± 1.17	8.33 ± 0.93
Range	(3.6–10.0)	(6.3–10.0)
Weekly avg pruritus NRS		
Mean ± SD	7.59 ± 1.45	7.68 ± 1.26
Sleep NRS	7.7 ± 1.63	7.7 ± 1.53
Mean SCORAD ± SD	71.23 ± 12.01	68.44 ± 11.35
Mean DLQI	17.3 ± 6.71	15.3 ± 6.78
Mean HADS	11.9 ± 8.14	11.8 ± 7.23

AD, atopic dermatitis; BSA, body surface area; DLOI, Dermatology Life Quality Index; EASI, Eczema Area and Severity Index; HADS, Hospital Anxiety and Depression Scale; IGA, Investigator Global Assessment; NRS, numerical rating scale; PP-NRS, peak pruritus numerical rating scale; SCORAD, SCORing Atopic Dermatitis; SD, standard deviation.

Nemolizumab 30 mg group were at least two-fold greater than those in the placebo group.

Reduction in AD-involved BSA BSA reductions were noted at week 1 and continued throughout the study. By week 16, the percent change from baseline in BSA was −49.9% in the nemolizumab 30 mg group as compared with −28.1% in the placebo group (P = 0.053).

Efficacy: Pruritus and sleep

Reduction in itch Peak pruritus NRS was improved for nemolizumab 30 mg vs placebo at week 16 (−68.5% vs −30.9%; P < 0.001) (Figure 2) and there was greater itch relief apparent by Day 2 (−22.8% vs −12.3%; P = 0.005). The absolute mean daily PP-NRS decreased in the nemolizumab group from 8.0 at baseline to 3.4 at Day 30 but remained relatively constant in the placebo group (8.0 at baseline to 6.5 at Day 30) (Figure S1). Significantly more patients achieved NRS response (≥4-point) with nemolizumab 30 mg vs placebo at week16 (68.0% vs 15.9%; P < 0.001) and as shown in Figure 3 the difference in the proportion of PP-NRS responders was statistically significant as early as Day 4 (32.0% vs 6.8%; P = 0.003). The delta between groups was 52.1 in favour of nemolizumab. A 3-point reduction was achieved in 74.0% of the nemolizumab group compared with 22.7% of the placebo group at week 16 (P < 0.001), for a similar delta between groups of 51.3.

Reduction in weekly average itch in the nemolizumab groups was significantly greater than placebo in at all assessments. At week one, the LS mean change in weekly average PP-NRS was −27.2% vs −9.8% for nemolizumab and placebo, respectively (P < 0.001). Reductions in average PP-NRS continued week over week in the nemolizumab group until week 16 (−68.5%); in comparison, reduction in weekly average PP-NRS in the placebo group at week 16 was −30.9% (P < 0.001). Of note, the proportion of patients with weekly average PP-NRS < 2 at week 16 was 38.0% in the nemolizumab group and 4.5% in the placebo group (P < 0.001).

Dynamic Pruritus Scale (DPS) The Dynamic Pruritus Scale (DPS) assessed after the first study treatment injection at baseline showed that 25% of nemolizumab patients perceived improvement in itch at 4 h compared with 17.9% of those in the placebo group. By 8 h post-dose, 31.0% of nemolizumab and 23.5% of placebo patients perceived improvement; by 24 h post-dose, improvement was apparent in 53.7% of nemolizumab and 36.4% of placebo patients; by 48 h, improvement for
nemolizumab and placebo was 75.6% vs 38.7%, respectively. At 72 h, 73.7% of patients had some improvement in the nemolizumab group vs 34.4% in the placebo group.

Additional itch endpoints The positive benefits of nemolizumab versus placebo in relieving itch were also demonstrated in the 5-D Itch Scale scores and the Pruritus Categorical Scale scores (details presented in the supplemental document).

Improvements in sleep Weekly Sleep disturbance NRS was improved for nemolizumab 30 mg vs placebo at week 16 (−76.0% vs −36.5%; P < 0.001) with significant separation from placebo by week 1 (−28.0% vs −7.5%; P < 0.001). The percentage change in LS Mean sleep NRS on a daily basis from Day 0 to Day 15 is presented in Figure 4. There was greater sleep disturbance improvement apparent by Day 3 (−26.6% vs −9.0%; P < 0.001). By Day 30, 13 (26.0%) of patients in the nemolizumab group reported a score of 0 or 1 compared with 4 (9.1%) of patients in the placebo group (P = 0.039). Also at Day 30, there were 26 (52.0%) patients with ≥4-point improvement in sleep NRS in the nemolizumab group and 7 (15.9%) in the placebo group (P < 0.001).

Composite responders Notably, 32.0% of nemolizumab patients achieved combined IGA success, ≥4-point improvement in average PP-NRS and
EASI-75 score at Week 16 compared to only 2.3% of placebo patients \((P < 0.001) \).

Safety

Nemolizumab was safe and well-tolerated, with details previously published.\(^{16}\) Among patients with EASI \(\geq 16 \), 87.2% of nemolizumab and 79.1% of placebo-treated patients had at least one treatment emergent adverse event. Serious adverse events were uncommon, occurring in one patient each in the nemolizumab and placebo groups, and severe adverse events were more common in the placebo group (6 patients) than in the nemolizumab group (4 patients). The most common adverse events were nasopharyngitis and upper respiratory tract infection (Tables S1 and S2).

Discussion

An EASI threshold of \(\geq 16 \) has recently become a standard inclusion criteria in clinical trials for treatments of moderate-severe AD,\(^{19}\) and will be used in nemolizumab phase 3 clinical trials. As such, we performed a subgroup analysis of the phase 2b AD study to provide estimates of efficacy and safety in a cohort that is more comparable to other therapeutics. In this subpopulation of subjects in the nemolizumab phase 2 study with EASI \(\geq 16 \), the baseline mean EASI score was 27.48, which compares with the baseline EASI scores in other studies of moderate-severe AD. A decrease of 68.6% in mean EASI score at Week 16 compares well with dupilumab plus TCS at 77% (CHRONOS study).\(^{19}\) IGA success with nemolizumab in this study was 32.0% (delta between active drug and placebo group = 25.2), which is comparable to the 39% (delta between active drug and placebo group = 26.3) reported with dupilumab in the CHRONOS study.\(^{19}\) It should be noted that there have been no head-to-head comparative studies of nemolizumab and dupilumab, and the number of participants in this phase 2b study was relatively small. These limitations should be considered when evaluating efficacy data.

The daily PP-NRS scores show a robust reduction in pruritus as early as 2 days after initiation of nemolizumab therapy. Patients reported clinically meaningful reductions in pruritus after the first nemolizumab dose. At Day 2, the LS mean PP-NRS was reduced by 25.5\% \((P < 0.001) \) and the improvement in itch steadily increased until week 16, when it was reduced by 68.5\%. There was significant separation in sleep disturbance NRS scores as early as Day 3 between nemolizumab and placebo, indicating a positive effect on another major issue that most patients with moderate-to-severe AD face. Finally, a substantial group of nemolizumab patients (32.0\%) had a robust composite response including IGA success, clinically relevant reduction in itch (\(\geq 4 \) points on PP-NRS), and 75\% or greater reduction in EASI score; this is in comparison with just 2.3\% of patients in the placebo group.

When the analysis is confined to subjects with EASI \(\geq 16 \), the placebo responses are lower compared to the overall population, resulting in larger deltas between placebo and nemolizumab, which is also consistent with data from other new agents. Similarly, the response to corticosteroids is flattened in the placebo population with more severe illness.

A head-to-head randomized clinical trial of nemolizumab with other treatments has not yet been conducted. In a population of AD patients with EASI \(\geq 16 \), the efficacy of nemolizumab at improving AD lesions (IGA and EASI) is in the same range to data from the published literature about dupilumab; further, the efficacy of nemolizumab in improving pruritus (proportion of patients with NRS response \(\geq 4 \)) suggests greater effect compared with published data on dupilumab. The rapid effect on pruritus is an important finding, as pruritus is the most common and most burdensome symptom in AD patients.\(^{2}\) Nemolizumab resulted in robust and sustained improvements of AD...
lesions and symptoms in patients with more severe AD, with favourable benefit-risk profile.

Acknowledgement
We acknowledge the writing support of Valerie Sanders of Sanders Medical Writing in the United States.

References
1. Meng J, Moriyama M, Feld M et al. New mechanism underlying IL-31-induced atopic dermatitis. J Allergy Clin Immunol 2018; 141: 1677–1689.e8.
2. Silverberg JI, Gelfand JM, Margolis DJ et al. Patient burden and quality of life in atopic dermatitis in US adults: A population-based cross-sectional study. Annals Allergy, Asthma Immunol 2018; 121: 340–347.
3. Ruzicka T, Hanifin JM, Furue M et al. Anti-Interleukin-31 receptor antibody for atopic dermatitis. New Engl J Med 2017; 376: 826–835.
4. Yu SH, Attarian H, Zee P, Silverberg JI. Burden of sleep and fatigue in US adults with atopic dermatitis. Dermatitis 2016; 27: 50–58.
5. Cheng BT, Silverberg JI. Association between atopic dermatitis and lower health utility scores in US adults. Annals Allergy Asthma Immunol 2020; 124: 88–89.
6. Silverberg JI, Gelfand JM, Margolis DJ et al. Health utility scores of atopic dermatitis in US Adults. J Allergy Clin Immunol 2019; 7: 1246–1252.e1.
7. Chrostowska-Plak D, Reich A, Szepietowski JC. Relationship between itch and psychological status of patients with atopic dermatitis. J Eur Acad Dermatol Venereol 2013; 27: e239–e242.
8. Halvorsen JA, Lien L, Dalgaard F, Bjertness E, Stern RS. Suicidal ideation, mental health problems, and social function in adolescents with eczema: a population-based study. J Invest Dermatol 2014; 134: 1847–1854.
9. Silverberg JI, Garg NK, Paller AS, Fishbein AB, Zee PC. Sleep disturbances in adults with eczema are associated with impaired overall health: a US population-based study. J Invest Dermatol 2015; 135: 56–66.
10. Takeuchi S, Oba J, Esaki H, Furue M. Pruritus of patients with atopic dermatitis in daily life and their experience of therapeutic effects: results of a web-based questionnaire survey. Br J Dermatol 2015; 173: 250–252.
11. Bagci IS, Ruzicka T. IL-31: A new key player in dermatology and beyond. J Allergy Clin Immunol 2018; 141: 858–866.
12. Sonkoly E, Muller A, Lauerma AI et al. IL-31: a new link between T cells and pruritus in atopic skin inflammation. J Allergy Clin Immunol 2006; 117: 411–417.
13. Cevikbas F, Wang X, Akiyama T et al. A sensory neuron-expressed IL-31 receptor mediates T helper cell-dependent itch: Involvement of TRPV1 and TRPA1. J Allergy Clin Immunol 2014; 133: 448–460.
14. Horejs-Hoeck J, Schwarz H, Lamprecht S et al. Dendritic cells activated by IFN-gamma/STAT1 express IL-31 receptor and release proinflammatory mediators upon IL-31 treatment. J Immunol 2012; 188: 5319–5326.
15. Nobbe S, Dziunycz P, Muhleisen B et al. IL-31 expression by inflammatory cells is preferentially elevated in atopic dermatitis. Acta Dermato-venereologica 2012; 92: 24–28.
16. Silverberg JI, Pinter A, Pulka G et al. Phase 2B randomized study of nemolizumab in adults with moderate-to-severe atopic dermatitis and severe pruritus. J Allergy Clin Immunol 2020; 145: 173–182.
17. Kabashima K, Furue M, Hanifin JM et al. Nemolizumab in patients with moderate-to-severe atopic dermatitis: Randomized, phase II, long-term extension study. J Allergy Clin Immunol 2018; 142: 1121–1130.e7.
18. Dias-Barbosa C, Matos R, Vernon M, Carney CE, Krystal A, Puelles J. Content validity of a sleep numerical rating scale and a sleep diary in adults and adolescents with moderate-to-severe atopic dermatitis. J Patient-Reported Outcomes 2020; 4: 100.
19. Blauvelt A, de Bruin-Weller M, Goederham M et al. Long-term management of moderate-to-severe atopic dermatitis with dupilumab and concomitant topical corticosteroids (LIBERTY AD CHRONOS): a 1-year, randomised, double-blinded, placebo-controlled, phase 3 trial. Lancet 2017; 389: 2287–2303.

Supporting information
Additional Supporting Information may be found in the online version of this article:

Figure S1. LSMean percent change from baseline in PCS at each study visit.
Table S1. Summary of adverse events in EASI-16 patients.
Table S2. Incidence of AEs occurring in ≥5% of patients.