The impact of vitamin D level on serum lipids in type 2 diabetes mellitus

Zainab J. Subber¹, Hashim M. Hashim² and Ghassan A. Al-Shamma¹∗

¹Department of Chemistry and Biochemistry, College of Medicine, Al-Nahrain University, Baghdad, Iraq
²Department of Medicine, College of Medicine, Al-Nahrain University, Baghdad, Iraq

ABSTRACT

Background: Vitamin D is considered an important regulator of many metabolic processes in the body. Its deficiency was reported to associate with many pathological conditions, with contradicting reports on its role in dyslipidemia.

Objectives: to evaluate the role of vitamin D (total and/or free) in improving dyslipidemia of type 2 diabetes mellitus (T2DM).

Methods: Sixty-four patients with T2DM, and 73 apparently healthy normal subjects were enrolled in the study from March to October 2020. Their fasting blood glucose, glycated hemoglobin, HbA¹c, and serum lipids (cholesterol, its fractions and triglycerides) were measured in addition to total and free vitamin D.

Results: There was a significant negative correlation between total vitamin D and each of cholesterol and LDL-C in the diabetic group. The correlations between serum vitamin D and all other lipid parameters (HDL-C, VLDL-C and triglycerides) were non-significant in the diabetic group, while in the control groups none of serum lipids showed significant correlations with vitamin D.

Conclusions: The significant negative association of vitamin D with total cholesterol and LDL-C in the diabetics reveals the important action of vitamin D in reducing the atherogenic indices, and consequent reduction in the rate of atherosclerosis and cardiovascular disease or stroke.

Keywords: cholesterol, LDL-cholesterol, serum lipids, T2DM, vitamin D

INTRODUCTION

Dyslipidemia is characterized by hypertriglyceridemia, hypercholesterolemia, reduced high-density lipoprotein cholesterol (HDL-C), and elevated low-density lipoprotein cholesterol (LDL-C). It is a key factor associated with the increased risk of several cardiovascular diseases,¹⁻³ and considered as a major causative factor for death.⁴,⁵

Vitamin D is one of essential fat-soluble vitamins, which supports many functions in the body. The prime source providing vitamin D to humans is exposure to sunlight.⁶ The skin contains 7-dehydrocholesterol which after absorption of the ultraviolet B radiation is
converted to provitamin D3 and after that it is hydroxylated into 25(OH)D and then converted into 1,25-dihydroxyvitamin D3 with the help of hydroxylases found in the kidneys and liver. Additional sources of vitamin D are oral supplements and diet. Bone metabolism and regulation of calcium are important physiological functions of vitamin D. Other functions of vitamin D, may include reduction of inflammation, modulation of processes like cell growth, neuromuscular and immune function, with evidence of involvement in glucose metabolism. Many genes encoding proteins that regulate cell proliferation, differentiation, and apoptosis are modulated in part by vitamin D.

Therapeutic interventions for lowering the level of cholesterol can also decrease the mortality and morbidity due to cardiovascular diseases. Some research studies have also demonstrated a link between dyslipidemia and decreased concentration of vitamin D. Contradicting results were reported for the relation between serum vitamin D and serum lipid levels, or in vitamin D supplementation.

The aim of the present study was to assess the correlation between vitamin D and serum lipids in a group of patients with T2DM.

MATERIAL AND METHODS

Study design and subjects

In this case-control study a total of 137 participants were included and divided into two groups. The patients’ group consisted of 64 type 2 diabetic patients (38 males and 26 females), with age range of 26 and 75 years. They were all outpatients from the Diabetes Clinic in Al-Imamain Al-Kadhimain Medical City (Baghdad, Iraq) from March to October 2020. Patients with renal, arthritics, cardiovascular diseases or any type of neoplastic diseases were excluded from the study. The control group consisted of 73 healthy individuals (43 males and 30 females) with age range of 24 to 70 years, from the hospital or clinic staff and staff of the Chemistry and Biochemistry Department of Al-Nahrain College of Medicine.

All subjects (patients and controls) were subjected to a questionnaire that included basic background to indicate the patient's gender, age, marital status, education, employment, smoking, and nutrition. It has also indicated the medical condition and the patient's intake of vitamin D supplements. The Institutional Review Board of the Medical College at Al-Nahrain University approved the current study.

Biochemical parameters

Measurements of total, free and bioavailable vitamin D, were reported in our previous report. While, serum lipids (total cholesterol, LDL-C, HDL-C, VLDL-C and triglycerides were measured by enzymatic colorimetric methods using Clinical Chemistry Auto-analyzer (Mindary, China).
Biostatistics

Using package for social sciences (SPSS) version 23 and Microsoft Office Excel 2010 the following processes were done:

- A Chi-square test to evaluate the association between any two variables.
- Independent samples t-test to evaluate the difference in the mean of normally distributed numeric variables between any two groups.
- Spearman correlation to evaluate the correlation between any two numeric variables, and the results were expressed as correlation coefficient (r) and the level of significance (p).

For all the statistical tests, p-value of 0.05 was considered statistically significant.

RESULTS

Vitamin D

Results of serum total vitamin D, free vitamin D and bioavailable vitamin D for both, patients and controls, were listed in our previous paper; showing significantly lower total vitamin D in diabetic patients than its level in healthy subjects.\(^{14}\)

Serum lipid profile

As shown in Table 1, when compared to the control group, serum cholesterol, triglyceride, LDL-C and VLDL-C were significantly higher in the patients’ group (p<0.05). While, serum HDL-C was lower in the patients’ group in a highly significant manner (p<0.05).

Correlation analysis

The correlation of serum lipids and total vitamin D in patients with T2DM and control subjects is shown in Table 2. Regarding the control group, serum total vitamin D (log total) was not correlated significantly to any of serum lipids (p>0.05). In patients with T2DM, there was no significant association between triglycerides, nor HDL-C with log total vitamin D (p=0.674 and 0.229, respectively). However, there was a significant negative correlation between log total vitamin D and each of total cholesterol and LDL-C (r=-0.277; p=0.027 & r=-0.305; p=0.014, respectively). The same negative correlation was noted between log total vitamin D and VLD-L (r=- 0.216), but this correlation was not significant (p=0.086).

DISCUSSION
Table 1 Comparison of serum lipid profile between patients and control groups.

Characteristics	Control (n =73)	Patients (n =64)	p
Cholesterol (mg/dl)			
Mean±SD	170.24±24.73	196.79±40.65	<0.001
Range	115-220	118-290	
Triglyceride (mg/dl)			
Mean±SD	148.16±60.88	213.51±75.71	<0.001
Range	18-280	50-472	
HDL-C (mg/dl)			
Mean±SD	44.94±7.69	40.24±4.87	<0.001
Range	30-63.6	32.5-55	
LDL-C (mg/dl)			
Mean±SD	93.97±28.92	108.23±41.99	0.021
Range	28-165	36.3-200	
VLDL-C (mg/dl)			
Mean±SD	33.21±16.20	51.11±27.04	<0.001
Range	5.5-79.2	7.6-140	

n: number of cases; SD: standard deviation; I: independent samples t-test; HS: highly significant at p≤0.01; S: significant at p≤0.05, **HDL-C, LDL-C, and VLDL-C**: high, low and very low-density lipoprotein cholesterol, respectively.

Table 2 The correlation of serum lipid profile to total vitamin D in patients with type 2 diabetes mellitus and control subjects.

Characteristics	Patients (n =64)	Control (n =73)	r	p	r	p
Total cholesterol	-0.277	0.027S	0.004	0.971NS		
Triglycerides	-0.054	0.674NS	-0.118	0.319NS		
HDL-C	0.153	0.229NS	0.184	0.118NS		
LDL-C	-0.305	0.014S	0.022	0.855NS		
VLDL-C	-0.216	0.086NS	-0.169	0.154NS		

n: number of cases, r: correlation coefficient; NS: not significant (when p>0.05); S: significant at p≤0.05, **HDL-C, LDL-C, and VLDL-C**: high, low and very low-density lipoprotein cholesterol, respectively.

Our results revealed (in our previous report) that the incidence of vitamin D deficiency in T2DM patients was significantly higher than that of controls (range: 1.70- 48.40 and 3.00-74.00, respectively).14

The term “deficiency” for vitamin D may be of the order of ≥20 ng/ml. Its abundance varies with different factors, age and race are among them.15,16 Low serum levels were reported to associate with many diseases including cardiovascular diseases, stroke, diabetes and dyslipidemia.17 The significant negative correlations between total vitamin D and each of cholesterol and LDLC, in the present study, may coincide, in some aspects, with previous reports10,11 who found that vitamin D insufficiency or deficiency associates with higher total cholesterol, LDL-C and triglycerides, with a reduction in HDL-C, however; in our study there is no significant correlations between the vitamin and triglycerides or HDL-C.
Moreover, results obtained from giving vitamin D supplement revealed an improvement in the LDL-C only,13 while in another report, non-significant effects of vitamin D supplementation on total cholesterol, LDL-C, HDL-C, and triglycerides were found by a meta-analysis,12. Moreover, a study done in 2018 contradicted all other studies when reported an increase in all serum lipid parameters as effected by vitamin D supplementation.18

These contradicting results of different reports about the correlation between vitamin D and serum lipids are similar to those concerned with the effect of vitamin D on cardiovascular disease presented by Zittermann et al 2021,19 who found a discrepancy between their findings and the real clinical and general population studies. They found an inverse non-linear association between vitamin D status and cardiovascular events, with the highest cardiovascular risk at severe vitamin D deficiency but no strong evidence for beneficial effects of vitamin D on cardiovascular risk, either in the general population or in high-risk groups, and finally suggested that there might be other factors which may cause these results as specific gene variation, certain nutrition or life style factors.

In conclusion, from our present results, we can say that the presence of significant negative correlations between the vitamin and each of total cholesterol and LDL-C, which agrees with most of the previous reports, can confirm the role of vitamin D to improve the athero-genic indices, with a consequent reduction in the rate of atherosclerosis and related risks for cardiovascular disease or stroke.

ACKNOWLEDGMENTS

The authors would like to thank Assistant Professor Thaer Wali for his kind assistance in biostatistical evaluation of the data of this study.

DECLARATION

Authors’ contributions

ZJS, HMH and GAA conducted the practical part. HMH and GAA supervised the project. All the authors reviewed and approved the final form of this paper before publication.

Conflict of interest

The authors have no conflict of interests to declare.

Ethical approvals

College of Medicine, Al-Nahrain University and its Institutional Review Board approved the current study.

Data availability

All the data associated with this paper can be requested from the corresponding author upon resonable request.
Funding resources

This work didn't receive any fund.

REFERENCES

1. Velagaleti RS, Massaro J, Vasan RS, Sander J, Robins SJ, Kannel WB, et al. Relations of lipid concentrations to heart failure incidence: the Framingham Heart Study. Circulation. 2009;120(23):2345–2351. Available from: 10.1161/CIRCULATIONAHA.109.830984.

2. Han Q, Yeung SC, Ip M, Mak JCW. Dysregulation of cardiac lipid parameters in high-fat high-cholesterol diet-induced rat model. Lipids Health Dis. 2018;17(1):255–255. Available from: 10.1186/s12944-018-0905-3.

3. Yao YS, Li TD, Zeng ZH. Mechanisms underlying direct actions of hyperlipidemia on myocardium: an updated review. Lipids Health Dis. 2020;19(1):23–23. Available from: 10.1186/s12944-019-1171-8.

4. Fleet JC, Shapses SA. Vitamin D. In: Marriott B, Birt D, Stalling V, Yates A, editors. Present Knowledge in Nutrition. vol. 1 of Basic Nutrition and Metabolism. Elsevier; 2020. .

5. Dobnig H, Pilz S, Scharnagl H, Renner W, Seelhers U, Wellnitz B, et al. Independent association of low serum 25-hydroxyvitamin d and 1,25-dihydroxyvitamin d levels with all-cause and cardiovascular mortality. Arch Intern Med. 2008;168(12):1340–1349. Available from: 10.1001/archinte.168.12.1340.

6. Liyanage GC, Lekamwasam S, Weerarathna TP, Liyanage CE. Effects of high-dose parenteral vitamin D therapy on lipid profile and blood pressure in patients with diabetic nephropathy: A randomized double-blind clinical trial. Diabetes Metab Syndr. 2017;11(2):767–770. Available from: 10.1016/j.dsx.2017.05.013.

7. Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G. Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. Physiol Rev. 2016;96(1):365–408. Available from: 10.1152/physrev.00014.2015.

8. Kunutsor SK, Apekey TA, Steur M. Vitamin D and risk of future hypertension: meta-analysis of 283,537 participants. Eur J Epidemiol. 2013;28(3):205–221. Available from: 10.1007/s10654-013-9790-2.

9. Jolliffe DA, Walton RT, Griffiths CJ, Martineau AR. Single nucleotide polymorphisms in the vitamin D pathway associating with circulating concentrations of vitamin D metabolites and non-skeletal health outcomes: Review of genetic association studies. J Steroid Biochem Mol Biol. 2016;164:18–29. Available from: 10.1016/j.jsbmb.2015.12.007.

10. Wang MM, Chen ZJ, Wang Y, Xu XR, Li HJ, Yang J. Effects of Vitamin D Supplementation on Serum Lipid Profiles and Neonatal Outcomes in Gestational Diabetes Mellitus:a Meta-analysis. Acta Academiae Medicinae Sinicae. 2021;43(1):82–91. Available from: 10.3881/j.issn.1000-503X.12940.
11. Bashir NA, Bashir AAM, Bashir HA. Effect of Vitamin D deficiency on Lipid Profile. Am J Lab Med. 2019;4(1):11–18. Available from: 10.11648/j.ajlm.20190401.12.

12. Wang H, Xia N, Yang Y, Peng DQ. Influence of vitamin D supplementation on plasma lipid profiles: a meta-analysis of randomized controlled trials. Lipids Health Dis. 2012;11:42–42. Available from: 10.1186/1476-511X-11-42.

13. Sadeghi R, Eidi MR, Zamani N. Association of Serum Vitamin D Level and Serum Lipids Profile. Int J Cardiovasc Pract. 2018;3(2):30–33. Available from: 10.21859/ijcp-03203.

14. Subber ZJ, Al-Shamma G, Hashim H. Total and free vitamin D in type 2 diabetes mellitus patients in Baghdad city. Baghdad J Biochem Appl Biol Sci. 2021;2(02):79–93. Available from: 10.47419/bjbabs.v2i02.41.

15. Forrest KY, Stuhldreher WL. Prevalence and correlates of vitamin D deficiency in US adults. Nutr Res. 2011;31(1):48–54. Available from: 10.1016/j.nutres.2010.12.001.

16. Mitchell DM, Henao MP, Finkelstein JS, Burnett-Bowie SM. Prevalence and predictors of vitamin D deficiency in healthy adults. Endocrine Pract. 2012;18(6):914–923. Available from: 10.4158/EP12072.OR.

17. Ginde AA, Scragg R, Schwartz RS, Camargo C. Prospective study of serum 25-hydroxyvitamin D level, cardiovascular disease mortality, and all-cause mortality in older U.S. adults. J Am Geriatr Soc. 2009;57(9):1595–1603. Available from: 10.1111/j.1532-5415.2009.02359.x.

18. Schwetz V, Scharnagl H, Trummer C, Stojakovic T, Pandis M, Grübler MR, et al. Vitamin D supplementation and lipoprotein metabolism: A randomized controlled trial. J Clin Lipidol. 2018;12(3):588–596. Available from: 10.1016/j.jacl.2018.03.079.

19. Zittermann A, Theiler-Schwetz V, Lerchbaum E, Márz W, Pilz S. Vitamin D and Cardiovascular Disease: An Updated Narrative Review. Int J Mol Sci. 2021;22(6):2896–2896. Available from: 10.3390/ijms22062896.