Integrating the DNA damage and protein stress responses during cancer development and treatment

Vassilis G Gorgoulis123*, Dafni-Eleftheria Pefani4, Ioannis S Pateras1 and Ioannis P Trougakos5

1 Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
2 Biomedical Research Foundation of the Academy of Athens, Athens, Greece
3 Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
4 CRUK/MRC Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
5 Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece

*Correspondence to: VG Gorgoulis, Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias St, GR-11527, Athens, Greece. E-mail: vgorg@med.uoa.gr

Abstract

During evolution, cells have developed a wide spectrum of stress response modules to ensure homeostasis. The genome and proteome damage response pathways constitute the pillars of this interwoven ‘defensive’ network. Consequently, the deregulation of these pathways correlates with ageing and various pathophysiological states, including cancer. In the present review, we highlight: (1) the structure of the genome and proteome damage response pathways; (2) their functional crosstalk; and (3) the conditions under which they predispose to cancer. Within this context, we emphasize the role of oncogene-induced DNA damage as a driving force that shapes the cellular landscape for the emergence of the various hallmarks of cancer. We also discuss potential means to exploit key cancer-related alterations of the genome and proteome damage response pathways in order to develop novel efficient therapeutic modalities.

Keywords: homeostasis; stress response; cancer; DNA damage response; proteome damage response; oncogenes; tumor suppressors; replication stress

Introduction: homeostasis and stress response

The human body is continually exposed to a variety of stressors, a generic/collective term describing exogenous and/or endogenous noxious events/factors that disrupt the steady state of the cell [1]. The cell’s tendency to resist changes in order to maintain the status quo is called homeostasis [derived from the Greek words homeo (same) and histimi (standing up)] [2]. From a thermodynamic point of view, living organisms are open systems that are constantly pushed away from their equilibrium. This measure of disorder or ataxia is termed entropy, and represents ‘the general trend of the universe towards death and disorder’, as stated by Newman [3]. When a stressor ‘enters the scene’, this delicate balance between order and disorder tilts towards pathophysiological states, if not dealt with efficiently (Figure 1A).

To preserve homeostasis and counteract such challenges, cells have developed the capacity to mount a multiplicity of stress responses (SRs) [4]. Remarkably, reconstruction of the phylogeny of SRs makes it apparent that many of the key players participating in SRs are not only evolutionarily conserved, but still serve related functions.

Both the nature and the end result of a SR are determined by the type (what/which), magnitude (how much) and duration (how long) of the deleterious stimulus. Additionally, the spatiotemporal parameters of where (tissue organ/cellular/subcellular site) and when (young, old, or stage of a pathophysiological process – early or late) the stressogenic event takes place constitute the parameters that affect the final outcome in a particular cellular context (Figure 1B). Although all biomolecules are susceptible to damage, dysfunction of the genome and protein machineries will mainly affect the cell’s fate. Highly sophisticated and complex protein networks curate and maintain the integrity of the genome and proteome, comprising the so-called DNA damage response (DDR) and protein damage response (PDR) pathways [5,6]. These damage/stress response pathways (SRPs) are hierarchically constructed and composed of sensors, signalling cascades (transducers and effectors), trafficking and repair modules, or destruction sites (Figure 1C). Each step/process is regulated by...
regulatory feedback loops that ensure an efficient and fine-tuned response, which is gradually turned off once the damage is repaired, or proceeds to cell death if the damage is irreversible. However, things are not always so clear. Depending on the SR parameters (Figure 1B), there are variations in the way in which the cell orchestrates its reaction (supplementary material, Figure S1). For instance, a high level of damage in a low bioenergetic state (deprivation of ATP resources) will trigger necrosis instead of apoptosis, which is energy-based [7]. Necrosis predisposes to inflammation, whereas apoptosis is a ‘benign and inflammation-free’ process [8]. Then again, moderate DNA damage persisting because of repair difficulties, in an energy-proficient environment, can trigger a prolonged cell cycle arrest called senescence* (see the Glossary in the supplementary material for further information on items marked with an asterisk). Senescence has a bright side and a dark side; it can operate as a tumor barrier, but can also foster a protumorigenic environment by resulting in the secretion of a broad spectrum of growth factors and cytokines (SASP*) [9,10]. As senescent cells are resistant to apoptosis, clearance by the immune system will neutralize long-term harmful effects induced by SASP [11]. Concurrently, as energy supplies are consumed, autophagy* is induced to secure cellular fitness, and restore metabolism and homeostasis [12,13]. In contrast, low levels (how much) of persistent (how long) DNA damage may have a long-term beneficial effect, termed hormesis [14], recalling Nietzsche’s quote ‘That which does not kill us, makes us stronger.’ Moreover, RNAs have an active role in SRs. They are considered to be the ancestral life-encoding molecules [15], and are heterogeneous and versatile molecules that regulate many cellular processes [16]. They include long and short RNAs, as well as coding and non-coding RNAs, with the last group being in the majority [17]. RNAs are critical in the genome reaction to SRs. They are involved in development and normal cell physiology, as well as in disease states, including cancer (supplementary material, Table S1), and other SRs [16]. From the pathologist’s point of view, the cellular reaction to SRs at the RNA level is illustrated by the generation of stress granules, which are dense cytosolic aggregations lacking a membrane, composed of RNAs and proteins [18]. These granules store and protect RNAs in stressed
cells, and are mainly identified by use of the TIA-1* and G3BP1* factors [19]. Detailed information on this field is provided in other excellent reviews (see supplementary material, Table S1).

Notably, in metazoans, such as humans, the response to stress is not limited to the cellular (local) level, but, importantly, is also elicited intercellularly/systematically (global). This intercellular response is orchestrated mainly via the immune system. It is a paracrine and circulation-based response that attracts the diverse immune cell types at the sites of ‘damage’ in an attempt to ‘repair and clear it’. The immune cells execute specific and highly contextualized transcriptional programmes promoting immunity, while maintaining homeostasis. Remarkably, >1600 genes are involved in innate and adaptive immune responses [20,21]. The immune system is a constantly evolving functional entity via mechanisms of adaptation, expansion, maturation, and, ultimately, immunological memory, and represents the cornerstone of stewardship at the organismal level [22–24].

Consequently, the outcome of this ‘stressor versus SR confrontation’ will be determined by the cellular, microenvironmental and organismal context, leading either to healing or to various pathophysiological conditions. In most pathological situations, quantitative and/or qualitative defects in the DDR and PDR pathways are almost always observed (supplementary material, Figure S1). In the case of DDR, the significance of such alterations is underscored by the wide spectrum of clinical manifestations that occur when its components are defective (supplementary material, Table S2). Among the most unfavourable consequences of DDR and PDR deregulation is predisposition to cancer. Cancer is a complex, heterogeneous disease with an adverse prognosis if not diagnosed early. It evolves in a multistep process, and each phenotypic stage reflects a particular set of molecular alterations that provides a selective advantage to the tumor cells carrying them. Depending on cancer type, diverse molecular defects may occur, although key events, such as p53 mutations or pRb pathway inactivation, are common among malignancies [25,26]. Deciphering these molecular dynamics will help us to better understand the traits of carcinogenesis, and will aid in the development of efficient therapeutic strategies. Therefore, mutational signatures* identified by analysing the genomes of various tumors represent the ‘DNA repair traits’, and can help to unveil the repair routes engaged during carcinogenesis, thus suggesting potential therapeutic targets [27,28]. These ‘DNA repair traits’ form part of a broader process termed genomic instability.

DDR–PDR: an integrated genome–proteome maintenance network

GI* is a feature that nearly all tumors share, and is considered to be a hallmark of cancer [29]. By the term GI, we refer to the high frequency of genetic alterations within the genome of a cellular lineage. Genetic alterations can range from single-nucleotide substitutions (SNVs) (point mutations) to more complex quantitative and/or qualitative changes such as chromosome losses, gains, and/or rearrangements. GI can result from malfunctions at various steps of the DNA cycle, from replication to chromosome segregation [30,31]. The corollary of GI is that the transcriptome and proteome landscapes will progressively change, affecting the functionality of the cell. To comprehend the nature of this abnormal, albeit dynamic, process, we need to go through the essential operational characteristics of the DDR and PDR pathways and how they are physiologically wired and rewired during cancer development (Figures 2–4).

Overview of the DNA damage response and repair (DDR/R) network

As DNA is the repository of genetic information, the ultimate goal of the DDR/R network is to preserve its integrity. However, because of the large number of DNA lesions induced in a cell every day, this task is not always achieved without cost (Figure 2) [32,33]. DNA lesions can be divided in two broad categories: those occurring on one strand of the double helix (category-S lesions), such as modified bases, abasic sites, helix-distorting base lesions, and single-strand breaks; and those involving both strands [category-D lesions: interstrand crosslinks and double-strand breaks (DSBs)]. In certain cases, such as exposure to ionizing radiation, category-S and/or category-D lesions coexist, and, when they are in close vicinity, they are termed clustered DNA lesions* [34]. As shown in Figure 2, the type of DNA lesion and the cell-cycle phase largely dictate the repair programme to be engaged. Whereas some types of damage, such as O6-methylguanine, are subject to direct protein-mediated reversal (Figure 3A), most are repaired by a series of catalytic events entailing multiple proteins and generally including two steps: (1) damage recognition by sensors; and (2) processing and repair of the lesion (Figures 3B and 4). Depending on which damage category is to be repaired, these steps encompass unique characteristics.

Repairing category-S lesions

For category-S lesions, subsequent to recognition, the following are required for processing and repair: (1) incisions flanking the damage; (2) excision of the damaged area; (3) filling of the gap by nucleotide polymerization; and (4) ‘sealing’ the gap with ligation (Figure 3). More specifically, the high-fidelity (error-free) pathways base excision repair (BER) [35,36] and nucleotide excision repair (NER) [37] address single-base DNA defects and helix-distorting base lesions, respectively, whereas repair of nucleotide misincorporation is mediated by mismatch repair (MMR) (Figure 3B) [38]. In the case of NER, the global release
of RNAPII waves from promoter proximal pausing sites maximizes sensing and accelerates the repair of category-S lesions equally well in genes with low and high expression via transcription-coupled (TC) NER, guaranteeing unbiased transcriptome surveillance [39]. However, if BER and NER malfunction or are overloaded by ‘fixing’ demands, then the translesion synthesis (TLS) pathway, which is a low-fidelity repair module (error-prone) pathway known as DNA-damage tolerance (DDT), takes over (Figure 3C) [40]. To avoid replication of damaged DNA that could lead to fork collapse, DSB production, and genome destabilization, cells opt to recruit TLS/DDT to bypass encountered lesions and repair them at a later time [40]. Thus, TLS/DDT is considered to be responsible for the majority of mutagenic events, playing a central role in carcinogenesis. Although the latter is an undesired event, from a broader perspective it is a ‘cost’ that the cell has to pay to avoid DSBs, thus preserving double helix continuity [41,42]. In line with this, inhibition of factors involved in category-S defect repair processes has the potential to induce DSB formation during replication, triggering RS* and death if the cell is also deficient in components implicated in DSB
repair (Figure 3). One of the best examples supporting this scenario is the enzyme poly(ADP-ribose) polymerase (PARP) [43]. PARP is a vital repair protein involved in single-strand break (SSB) repair and BER. PARP catalyses the synthesis of negatively charged poly(ADP-ribose) chains by utilizing the respiratory coenzyme NAD$^+$, with release of nicotinamide. The negative charge of the ADP-ribose polymers around SSBs repels the positively charged histones of the nucleosomes, opening chromatin and thus allowing access to the repair machinery [8]. Targeting of PARP has been shown to kill cancer cells deficient in the homologous recombination factors breast cancer susceptibility gene 1 (BRCA1) and breast cancer susceptibility gene 2 (BRCA2) (see below), paving the way for the use of PARP inhibitors in clinical practice [44,45].

Repairing category-D lesions

DSBs are category-D defects, and are considered to be the most deleterious types of DNA damage. From their frequency (Figure 2), it is apparent that the cell cannot tolerate them, as repair of a single DSB requires $>10^5$ ATP molecules [46]. Such an energy investment calls for a staggering level of cellular reorganization once DSBs occur. With the exception of immune receptor diversity [V(D)J and class switch (CS) recombination] and chromosomal crossover during meiosis II of gamete production, in which DSBs form part of physiological programmes [47,48], the cellular reaction to DSBs epitomizes an integrated cellular SR to ‘imminent danger’. Once a DSB is formed, a cascade of biochemical events take place within minutes in an effort to efficiently ‘access, repair, and restore’ [49,50]. These biochemical processes are characterized by extensive PTMs* of the involved DDR proteins and chromatin structure of the damaged area; these processes: (1) are much faster chemical reactions than transcription; and (2) form docking sites for the recruitment of repair factors [51].

Two classes of DDR proteins are recruited at damaged sites: those that present directly at DSBs (called sensors* and mediators*), and those associated with the DSB-flanking chromatin, altogether constituting so-called DDR foci (Figure 4) [52]. Over time, the DDR foci spread away from the DSB to distances up to megabases in mammals, forming an amplification mechanism recruiting signal transduction factors that further amplify the signal with effectors that set the cell in an ‘alarm’ state (Figure 4; DDR cascade). This mechanism has, on the one hand, a local effect by relaxing the chromatin and increasing the concentration of repair factors at the damaged site, and, on the other

Figure 3. Repair routes for category-S lesions (DDR surveillance). (A) Direct protein-mediated reversal. (B) BER and NER. (C) TLS repair. See supplementary material for a detailed legend.
hand, a systemic effect, termed checkpoint activation*, that reduces the activity of CDKs* (Figure 2B) [5]. Notably, in certain cases and depending on the cellular context, checkpoint activation, apart from the DDR signalling cascade, also involves the parallel action of other SR signalling routes (Figure 2), like the p38 mitogen-activated protein kinase (p38MAPK) pathway, which coordinates several cellular functions [53]. The endpoint of the SR signalling cascade is always the cyclin–CDK complex* (Figure 2B). The cyclin–CDK
complexes represent drivers of the cell cycle and, when they are suppressed, the cell enters a state of arrest, providing time for repair.

One of the earliest features that mark these DDR foci is histone variant H2AX phosphorylation at serine 139, (also referred to as γH2AX), by ataxia telangiectasia mutated (ATM) backed up by ataxia telangiectasia and Rad3-related (ATR) and DNA-dependent protein kinase, catalytic subunit (DNA-PK); all three kinases are members of the phosphatidylinositol 3-kinase (PI3K) family and key DDR signalling components (transducers) [51,54–57]. Subsequently, the DNA damage mediator called mediator of DNA-damage checkpoint 1 (MDC1) attaches to γH2AX, acting as a platform for the meiotic recombination 11 (MRE11)–Rad50–Nijmegen breakage syndrome 1 (NBS1) (MRN) sensor complex that activates ATM, thus forming an amplification loop [58,59]. Concurrently, MRN complexes bind the DSB avidly, playing a pivotal role in the initial processing of the break, generating single-strand (ssDNA) DNA 3′-overhangs that are recognized by replication protein A (RPA). This event brings into play the ATR transducer kinase, which, in cooperation with ATM, turns on the downstream transducer* kinases checkpoint kinase 1 (Chk1) and checkpoint kinase 2 (Chk2) (Figure 4) [60]. In concert, these kinases activate a key effector* of the DDR pathway, namely p53 [61,62]. p53 is a transcription factor that governs a complex SR programme covering a bewildering range of biological functions, explaining why p53 is frequently mutated in cancer [63]. Activation of p53, mainly via PTMs, induces the expression of numerous downstream effectors, including the universal CDK inhibitor p21WAF1/Cip1, leading to cell-cycle arrest. Concurrently, ATM imposes a transcription silencing programme by shutting down both RNA polymerase II* and RNA polymerase I*, thus saving the energy that transcription demands and preventing collision between transcription and repair (analysed below in ‘Malfunction of endogenous operations as a cause of DNA damage’) [64–66]. In parallel with this, the cell gains time and reshuffles energy resources for the repair machinery to ‘seal’ the DSBs, or it otherwise proceeds to apoptosis or senescence, depending on the extent of damage (Figure 4; supplementary material, Figure S1). Concomitantly with these global effects, repair is facilitated by extensive chromatin modifications and remodelling* at the site of the DSB [67]. In brief, SWI/SNF-dependent histone H2A.Z exchange for histone H2A destabilizes the nucleosomes surrounding the DSB. This nucleosome remodelling event exposes the N-terminal tail of histone H4, which, in turn, is acetylated by TIP60 histone acetyltransferase, further relaxing chromatin and enabling access to downstream repair factors [68].

The actual repair of the DSB lesion is carried out by homologous recombination repair (HRR) and non-homologous end joining (NHEJ) (Figure 4; supplementary material, Figure S1) [69,70]. HRR is considered to be an error-free repair system occurring during the S and G2 cell-cycle phases, whereas NHEJ is an error-prone repair pathway dealing mainly with non-replication-associated DSBs, and represents the predominant repair route that functions irrespective of the cell cycle (Figure 2). HRR is initiated by the binding of BRCA1 to the ubiquitin chain added by the E3 ligases ring finger protein 8 (RNF8) and ring finger protein 168 (RNF168) to the remodelled nucleosome [49,71–73]. In this way the BASC* connects sensing and signalling with the repair component BRCA2, which controls the Rad51 recombinase that replaces RPA. The BRCA2–Rad51 complex then invades the homologous template and primes DNA synthesis, copying and restoring the genetic information [74,75]. When the homologue donor strand is the sister chromatin, HRR is accurate. However, recombination may take place across different genome regions, challenging previous notions concerning the error-free nature of HRR (Figure 5) [76]. Hence, to secure sealing of DSBs, various routes of HRR exist that may favour inappropriate pairing. Alternatively, three critical histone modifications, namely histone H4 lysine 20 dimethylation (H4K20me2) [catalysed sequentially by methyltransferases SU(VAR)3-9H1 and SETDB8], ubiquitylation of histone H2A on lysine 15 (H2AK15ub) (induced by the E3 ligase RNF168), and histone H3 lysine 79 methylation (H3K79me2), are recognized by the signalling mediator p53-binding protein 1 (53BP1) at DSBs, promoting NHEJ [77–82]. Importantly, 53BP1 accumulation antagonizes BRCA1-mediated HRR in favour of NHEJ (Figure 4) [83–85]. In NHEJ, the DSB is sensed by the lupus Ku autoantigen protein p80 (Ku80)–lupus Ku autoantigen protein p70 (Ku70) heterodimer, which recruits and assembles the DNA–PK complex, which, in turn, processes the DNA ends and increases the recruitment of ligase IV/X-ray repair complementing defective repair in Chinese hamster cells 4 (XRCC4), which carries out the rejoicing reaction [74]. Although HRR is the favoured pathway to deal with a DSB, ensuring DNA sequence fidelity, in the event that HRR is non-functional the cell ‘prefers’ to follow inappropriate repair routes to secure cell viability [86]. In this case, the faster kinetics of the Ku heterodimer for DSBs compared to those of the HRR factors [87] make the error-prone NHEJ (the repair pathway of choice) operate even during S phase, with potential unfavourable effects for the cell [86,88–90].

The second type of category-D defects comprises DNA interstrand crosslinks (ICLs) that are generated by a class of agents such as mitomycin C (MMC) and diepoxybutane (DEB), or circulating metabolites such as formaldehyde. ICLs are toxic, because the covalent links that they form prevent DNA from unwinding, thereby blocking replication and transcription, causing replication and transcription stress, respectively. These lesions are fixed by the Fanconi anaemia (FA) pathway, which is a replication-dependent repair mechanism that appeared relatively late in evolution (Figure 4) [91]. It is considered to be the most sophisticated repair route, enlisting modules of three classic repair pathways, i.e. TLS, NER, and HRR.© 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. www.pathsoc.org J Pathol 2018; 246: 12–40 www.thejournalofpathology.com
The central components of the FA pathway are the 13 complementation groups identified so far, i.e. Fanconi anaemia complementation group (FANC) A, FANCB, FANCC, and FANCD1 (better known as BRCA2), FANCD2, FANCE, FANCF, FANCG, FAQNCI, and FANCJ [BRCA1-interacting protein C-terminal helicase 1 (BRIPI) or BTB domain and CNC homologue 1 (BACH1)], and FANCL, FANCM, and FANCN [also termed partner and localizer of BRCA2 (PALB2)], which are mutated with various frequencies in FA*. FANCA–FANCG, FANCC–FANCE–FANCF and FANCB–FANCL–FAAP100 form the core complex that is recruited at the damage site by FANCM and FA-associated protein of 24 kDa (FAAP24), which sense the stalled replication fork. The FA core complex* possesses ubiquitin ligase properties; it mono-ubiquitinates FANCD2 and FANCI, which is regarded as the essential step for FA activation, in analogy to proliferating cell nuclear antigen (PCNA) ubiquitination-dependent recruitment of TLS polymerases. Subsequently, DNA
repair is organized by engaging ubiquitinated FANCD2 and FANCI with the downstream factors FANCD1 (BRCA2), the helicase FANCJ (BRIP1 or BACH1) and BRCA2 (FANCD1)-interacting partner FANCN, also termed PALB2 [93]. The subsequent repair steps require coordinated and sequential activity of TLS, NER and HR enzymes. Once the replication fork moving from both directions stalls at the ICL, a dual incision by endonucleases methyl methanesulphonate and ultraviolet (UV)-sensitive clone 81 (MUS81) and essential meiotic structure-specific endonuclease 1 (EME1) at the 3′-end of the lesion, and excision repair cross-complementation group 1 (ERCC1) (XPF) at the 5′-end unhooks the ICL, which is then bypassed by a TLS polymerase, probably Rev1 (polymerase ζ). NER removes the bypassed crosslink and HRR repairs the broken chromatid by using the newly repaired by TLS sister as a template (Figure 4) [37,94].

Shutting off the DDR pathway

In a normal setting, DDR/R activation is coupled with inactivation to allow a cell to complete its cycle. Feedback control of DDR fine-tunes the magnitude and duration of the response, limiting aberrant DNA repair. Turning off DDR/R is a more arcane process than it was initially considered to be. Timely termination of DDR is controlled in a spatiotemporal manner, by different mechanisms acting in an overlapping manner [95]. As activation of DDR/R signalling encompasses a series of PTMs, shutting it off calls for the reverse procedure. To date, several protein phosphatases (PPs) and deubiquitinating enzymes (DUBs) have been recognized as critical players in DDR/R termination (Figure 4). PP2A is among the best studied PPs; it catalyses dephosphorylation of γH2AX [96]. PP2 catalytic subunit-α (PP2A) inhibition results in persistent γH2AX foci, compromising DDR/R and rendering cells hypersensitive to DNA damage. Another DDR/R regulator is Wip1, which is involved in the dephosphorylation of multiple DDR components [97,98]. Notably, Wip1 is a transcriptional target of p53, and is stimulated after genotoxic stress [99]. Activation of Wip1 [100] facilitates p53 degradation by murine double minute 2 (MDM2), forming a negative feedback loop that allows termination of DDR. Conversely, overexpression of Wip1 has an oncogenic effect, signifying the importance of fine-tuning for proper DDR/R operation (Figure 4) [98,101]. Recruitment of ubiquitin-specific peptidase (USP) 44 and USP11 at DSBs antagonizing RNF8/RNF168 mono-ubiquitination of histone H2A [102,103] represents an example of how DUBs regulate DDR/R. Likewise, the activity of the deubiquitinating complex USP1–UAF1 over FANCD2 keeps the FA pathway in check [104,105].

An additional way to terminate the activity of phosphorylated checkpoint proteins is through proteolytic degradation [106]. Phosphorylation marks targets for proteolysis via the ubiquitin–proteasome (UPP) pathway, pinpointing the interdependence of the proteostasis and DDR/R networks [107]. This mechanism is exemplified by SCFβTrcp, which acts as a switch between checkpoint initiation and recovery [6]. Upon DNA damage, phosphorylated CDC25A is recognized by SCFβTrcp, promoting G2 arrest, whereas, when the DNA damage is repaired, the same complex mediates claspin* and Weel* degradation, favouring checkpoint recovery and progression to mitosis.

Malfunction of endogenous operations as a cause of DNA damage

Further to various exogenous mutagenic agents (clastogens*), deregulation of endogenous processes can create a genetic landscape prone to DSBs, adding an extra level of pathophysiological complexity. As with exogenous stimuli, a key aspect related to endogenous operations is keeping CDK activity in check. In mammals, several CDK–cyclin complexes are essential for normal proliferation [108]. The significance of these complexes is underscored by the fact that aberrant CDK activity is a universal feature of human tumors. Deranged function of cyclin–CDK complexes [108] is counteracted by checkpoint activation, which is aimed at preserving genome integrity [29,109]. Distinct checkpoints halt the cell cycle at specific phases and activate the DDR/R pathway, allowing time for DNA repair completion before entry into mitosis (Figure 4) [6]. If there is extensive DNA damage, and depending on its severity, checkpoints activate apoptosis or senescence instead of cell-cycle resumption. Thus, aberrant CDK activity exerts selective pressure on the checkpoints, eventually breaching them, allowing DNA damage accumulation and the emergence of GI with pathological consequences [29,109], making CDKs attractive targets for inhibition [108]. As another example, RT* is a highly regulated programme giving rise to early, middle and late time zones, and is strictly coordinated with transcription to avoid replication–transcription collision [110,111]. If this spatiotemporal process is altered by misregulation of an RT-related gene [32] or a replication process step, e.g. replication licensing* [112,113], the propensity to DSB formation due to replication–transcription collision increases [114–116]. In this regard, low-density replication–initiation may lead to unfinished replication, owing to the long distance between replication forks, making breakage a probable event [117]. Common fragile sites (CFSs), which are late-replicating areas of the genome with a paucity of replication origins, are particularly vulnerable to RS, and are at high risk of breaking [118]. Conversely, ill-timed replication–initiation can cause re-replication, a form of RS that leads to DSBs and GI, and, as discussed later, is frequently observed in cancer from its earliest stages. Overproduction of replication and/or transcription intermediates that are normally formed in low amounts can also pose a threat to genome integrity (supplementary material, Figure S3A,B) [119,120]. A particular DNA:RNA hybrid termed the R-loop*

(supplementary material, Figure S3B), identified 42 years ago [121], has drawn attention as a source of GI. R-loops usually have short lifespans (∼20 min), as they are efficiently removed under normal circumstances, and play an important role in various processes such as immunoglobulin class switches, and transcriptional regulation and termination [122]. However, production of R-loops resulting from various defects, such as lack of RBP*5, which coat and protect nascent RNA from illicit DNA hybridization [123], make these structures ‘hotspots’ for damage [124]. The thermodynamically stable DNA:RNA hybrid structure of the R-loop can impede proper completion of replication, leading to replication fork stalling and collapse*, and DSB formation, whereas the relatively unstable non-template ssDNA of the R-loop can act as a substrate for deamidases. Another endogenous cause of DNA damage is an inability of nucleotide biogenesis to cope with hyper-proliferative states, resulting in replication fork deceleration, which can lead to fork stalling and, if not reversed, to fork collapse [125]. Exogenous supplementation with nucleosides reverses these adverse effects [126].

A delicate operation that the cell has to carry out following stalling or collapse replication forks is repair and replication restart (supplementary material, Figure S3C) [127]. Depending on the duration (how long) of the replication block, there are two options. (1) In short replication blocks (2–4 h), restart is mediated by fork remodelling of replication intermediate structures (fork reversal: ‘chicken foot’). Replication fork reversal is a mechanism in which a three-way junction at a replication fork is converted to a four-way junction by the annealing of the two newly replicated strands into a regressed arm at the forks [128]. Regressed fork restart requires restoration of the typical replication fork structure, and involves helicase (RECQ-1*, WRN*, BLM* and DNA2 nuclease*) [128,129] and translocase (SMARCAL1*, ZRANB3* and HLTI*) activity in the resolution of these intermediates [129]. Whether these helicases recognize different structures or act on the same substrates is a matter of investigation [130–132]. RAD51 recombinase has been described as an essential factor in replication fork restart [127], as RAD51-mediated strand invasion rapidly and effectively leads to replication fork remodelling [133]. As the regressed arm of a reversed replication fork resembles a one-ended DSB, it has to be protected from cleavage. RAD51-coated nucleofilaments protect nascent DNA from MRE11*-mediated nucleolytic attack [134,135]. BRCA2 has been shown to be dispensable for RAD51-mediated fork reversal [136], but is crucial for the assembly of stable protective RAD51 nucleofilaments on regressed arms [134,135,137,138]. MRE11-mediated degradation has recently been shown to be one of the leading causes of sensitivity to DNA-damaging agents in BRCA-deficient cancers [139]. Recent studies have shed light on MRE11 recruitment at regressed forks by highlighting the role of PTIP*, MLL4*, and RAD52* [136,139]. Recently, a combination of electron microscopy with DNA fibre analysis further defined the events in reversed fork resection in BRCA-deficient tumors [140]. It was shown that CtIP* initiates MRE-mediated degradation, which is then extended by EXO1* [140]. How cells cope with extensive resection at the forks and how different remodellers collaborate to catalyse fork reversal is still poorly understood. (2) In long replication blocks (>24 h) resulting in fork collapse, new origins are fired in an attempt to compensate, and repair takes place by remodelling, utilizing structure-specific endonuclease complexes* [30,115] that generate DSBs, promoting Rad51-dependent homologous recombination (Figure 4). The significance of the above factors is underscored by the severity of the clinical manifestations presented in disorders such as Bloom* and Werner* syndromes, in which corresponding helicases are mutated [141,142].

Chromatin structure, DNA damage, and DDR/R

Remarkably, susceptibility to DNA damage is not the same across the genome (where), as chromatin compaction seems to provide a ‘shield’ against DNA insults, with heterochromatin (compact chromatin) providing significant protection against breaks, but euchromatin (open chromatin), which is a relaxed and transcriptionally active conformation, being vulnerable to damage [143]. A feature of heterochromatin is its high level of enrichment in repetitive DNA sequences* and its concentration in pericentromeric and telomeric genomic regions. Given that repetitive sequences represent recombination ‘hotspots’, and are thus prone to DSBs, heterochromatin formation at these sites has evolved as a protective mechanism preventing illegitimate recombination events [144]. A specialized type of compact chromatin is present at telomeres* [145,146]. Telomeres resemble staggered DSBs, and, if not protected by the shelterin complex*, will be recognized as a damaged area, eliciting a DDR with detrimental effects (see ‘Monitoring mitosis: the last checkpoint’ below) [147,148].

However, a disadvantage of compaction is that it is refractory to repair, as demonstrated by the inability to expand γH2AX [149]. Studies in yeast and mammals showed fewer γH2AX foci at DSBs in heterochromatin than in euchromatin [150]. When a break occurs in euchromatin, a complex of heterochromatin-associated proteins*, including KRAB-associated protein 1 (KAP1), heterochromatin protein 1 (HP1), and SU(VAR)3-9H1, assist in trimethylation of H3K9, which is a repressive histone PTM. This reaction facilitates an amplification process that spreads over many kilobases from the damage [116]. Activated TIP60 (see above) binds to H3K9me3, leading to ATM activation and H4 acetylation, promoting chromatin relaxation. In turn, ATM phosphorylates KAP1, releasing it from chromatin and enhancing access to the damaged site. It appears, that following DNA damage, there is a transient shift in euchromatin, like the ‘squeezing phase of an accordion’, to increase compaction to recruit TIP60 and
nucleolar proteins have functions unrelated to ribosome biogenesis, including triggering SR pathways. A characteristic example is p53 activation following nucleolar segregation (ribosomal stress*) upon DNA damage or transcription inhibition (supplementary material, Figure S4A) [172–174].

Surveillance and maintenance of mitochondrial genome integrity

Mitochondria are the ‘energy factories’ of cells, and they also regulate other vital functions, including apoptosis. The symbiotic relationship between mitochondria and eukaryotic cells started more than a billion years ago, leading to synchronized action between the two genomes, with most proteins involved in mitochondrial DNA (mtDNA) metabolism being encoded by nuclear DNA [175]. Conversely, proteins participating in oxidative phosphorylation are encoded by mtDNA, making mtDNA integrity of paramount importance for cell homeostasis [176]. mtDNA is more prone to damage than nuclear DNA, with a 10–20-fold higher mutation rate, possibly because of proximity to reactive oxygen species (ROS) production (supplementary material, Figure S4B).

mtDNA is an approximately 16-kb closed circular DNA containing a specific regulatory region, termed the D-loop*, harbouring initiation sites for both replication and transcription. The mitochondrion-specific polymerase-γ (pol-γ) holoenzyme is responsible for replication, with >200 mutations in POLG having been linked to mitochondrial diseases [177]. In contrast to the nuclear genome, which is organized into nucleosomes, mtDNA lacks nucleosomes and is arranged as protein–DNA complexes known as nucleoids. Interestingly, super-resolution microscopy has revealed that the mtDNA packaging density is higher than that of nuclear chromatin, forming a ‘shield’ against mutagenesis [178]. Interestingly, Twinkle helicase is essential for mtDNA maintenance and a key regulator of mtDNA copy number by linking the mitochondrial replication machinery with the cytoplasmic dNTP pool [179]. As mitochondria are the largest consumers of dNTPs in the cell, controlling mtDNA copy number is apparently essential for meeting cellular energy requirements [180].

Oxidative damage is a common mechanism of mitochondrial injury. Byproducts of oxidative phosphorylation are ROS, because, during the series of redox reactions, a small percentage of electrons leak directly to oxygen. Thus, 1–2% of the oxygen consumed within the cell is released from mitochondria as ROS. Under normal conditions, the amount of ROS produced is relatively low and essential for proper intracellular signalling, metabolism, and responses to pathogens; however, during periods of increased and/or prolonged ROS production, extensive and persistent mtDNA damage may occur (supplementary material, Figure S4B) [181]. BER is the predominant DNA repair pathway for category-S lesions in mitochondria, whereas they lack effective MMR and are deficient in NER. Adducts requiring NER for their removal

The nucleolus at the crossroad of stress response

The nucleolus, which is the largest structure in the nucleus, is responsible for rRNA production and ribosomal assembly, as reflected by its characteristic tripartite spatial organization* (supplementary material, Figure S4A) [155,156]. To cope with increased protein production, rDNA is organized into clusters of gene repeats around areas termed NORs* [157]. Depending on the demands of protein synthesis, an additional regulation step occurs, which involves adjustment of the number of ‘active’ repeats and alteration of their transcriptional rates [158]. RNA polymerase I transcribes rDNA into rRNA, forming the framework of the ribosome. rRNA constitutes 80% of the total cellular RNA, making rDNA the highest-transcribed locus of the genome. Obviously, the propensity for replication–transcription collisions and R-loop formation is increased in rDNA loci, especially under conditions of oncogene-induced RS [159]. As a ‘precautionary measure’, the RFB* (supplementary material, Figure S4A), which is an intergenic rDNA site, is recognized as a site coordinating replication and transcription [160], whereas heterochromatin associated with the rDNA clusters acts as a ‘buffer zone’ against genotoxic conditions [161–163]. Regardless of cellular demands, not all rDNA sequences are transcriptionally active, and a fraction of nucleolar rDNA is always silent (supplementary material, Figure S4A). The stability of the repetitive and recombinogenic-prone rDNA sequences requires chromatin silencing complexes [162,164,165]. The fraction of ‘active’ versus ‘silent’ rDNA is regulated by the rDNA remodelling complexes NoRC*, eNoSC*, and NuRD*, which limit accessibility to the recombinogenic machinery [166–169]. Disruption of rDNA-associated silencing proteins within the inner nuclear membrane* disturbs the nucleolus–nucleoplasm boundary, induces the formation of recombination foci, and destabilizes the repeats [170,171]. Finally, almost 70% of nucleolar proteins have functions unrelated to ribosome
will accumulate, resulting in mtDNA mutations and, ultimately, mtDNA degradation [182]. Importantly, pol-γ can bypass some lesions by TLS. Regarding TLS, primase-polymerase (PrimPol), which is an archaic enzyme with dual primase and polymerase activities, identified in human mitochondria, has the unique feature of de novo DNA synthesis, and the ability to tolerate lesions such as 8-oxoguanine (8-oxoG) and apurinic/apyrimidinic or abasic (AP) sites [183]. Along the same line, Pif1, a 5′–3′ DNA helicase that is essential for mtDNA replication [184], is involved in the repair of many types of mtDNA damage, including the unwinding of genotoxic G-quadruplex DNA* [183]. For category-D lesions, the prevailing view is that both HR and NHEJ are active in mitochondria, although recent evidence suggests that NHEJ is replaced by microhomology-mediated end-joining (MMEJ), also known as alternative non-homologous end joining (alt-NHEJ) (Figure 4) [185].

Depending on the type and amount of damage, inefficient mtDNA repair activates either mitochondrial fusion* or fission* [186]. Fusion rearranges the matrix content of a damaged mitochondrion with a healthy one; this event results in diluting the damage that relates e.g. to unfolded proteome or to mutated DNA. On the other hand, fission partitions damaged material to daughter organelles. If the above fail, mitophagy* or apoptosis will take place, determined by the extent of damage (supplementary material, Figure S4B) [187]. Molecular players dictating the outcome include ATM, p53, and Sirt1* [188]. Sirt1 is a master regulator inhibiting p53-mediated apoptosis, and, by interacting with AMPK*, directs the SR to mitophagy. Concurrently, by deacetylating PGCl1-a*, it stimulates mitochondrial biogenesis to compensate for losses.

Monitoring mitosis: the last checkpoint

The cell’s final level of surveillance occurs during mitosis, as its genetic material must be accurately and equally transferred to offspring. Mitosis is an orchestrated process leading to aneuploidy, CIN* or death if deregulated (supplementary material, Figure S5) [189–191]. Owing to its complexity and short duration (~1 h), multiple control checkpoints ensure the fidelity of genome inheritance [192,193]. Identified checkpoints occur: (1) between prophase and prometaphase, controlled by checkpoint with forkhead and ring finger domain (CHFR), which is implicated in sensing microtubule poisons [194,195]; (2) during metaphase, governed by the SAC* [196]; and (3) in telophase, regulated by the cytokinesis or ‘abscission’ checkpoint* (AC), which is Aurora-B*-dependent (supplementary material, Figure S5) [197–199].

The SAC is the most important surveillance mechanism, monitoring kinetochore–microtubule attachment, and ensuring correct alignment of chromosome pairs before segregation [200–202]. During metaphase, the unattached kinetochores recruit the SAC machinery*, which sequesters CDC20* to block activation of the APC/C* [203]. Proper chromosome alignment results in SAC silencing, allowing activation of APC/C, which, in turn, targets securin* and cyclin-B* for degradation [204]. Destruction of securin releases separase*, which cleaves the cohesin rings*, promoting sister chromatid separation (supplementary material, Figure S5). The significance of SAC was demonstrated in mouse models showing that complete loss of these genes results in early embryonic lethality, whereas heterozygous and hypomorphic* mice are viable and fertile despite showing increased levels of aneuploidy. Although aneuploidy is evident in these mice, malignant transformation is a rare and late event [189], questioning whether aneuploidy as such is causative for cancer development [205]. Differences in cancer incidence among individuals with identical aneuploidy, as well as between common genetic disorders such as trisomies 13 [206], 18 [207] and 21 [208], suggest that additional hits are required for cancer to evolve. Moreover, extensive analysis in common sporadic cancers with aneuploidy demonstrated the low frequency of mutations in caretaker genes*, including SAC genes, arguing against their role in promoting cancer [29]. In this regard, the role of centrosome* aberrations in aneuploidy and CIN [189,209,210] requires more clarification, especially in view of emerging concepts such as ‘centrosome inactivation checkpoint’ [211] that link components of the DDR/R machinery with centrosome ‘status’ and ‘mitotic catastrophe’* (supplementary material, Figure S5) [211,212]. Likewise, how delayed abscission affects chromosome homeostasis requires further investigation [199]. Unexpectedly, overexpression of SAC genes is a more frequent event in human cancer [29]. Conditional Mad2 upregulation predisposes mice to a wide range of early-onset, aneuploid malignant tumors [213]. The main difference from haploinsufficient Mad2 mice, which develop only benign tumors [189,214], is the occurrence of extensive structural aberrations, implying that the structural branch of CIN, involving DSBs, lies behind cancer progression [109,215,216] (see the next section). Notably, p53 and pRb inactivation lead to Mad2 overexpression, CIN, and a malignant phenotype encompassing highly aggressive features [217–219]. These data corroborate previous reports linking p53/pRb expression aberrations with aneuploidy and CIN in common human malignancies [220,221]. Overall, these observations support the idea that deregulation of critical checkpoints impinges on mitotic surveillance and fidelity, determining the fate of daughter cells.

The significance of engaging the repair machinery in the correct context (where and/or when) is vital. During interphase, DNA repair is essential to maintain genome stability, whereas in mitosis it may be deleterious [222]. Induction of DSBs in mitosis leads to a ‘muted’, non-classic DDR (supplementary material, Figure S5). Mitotic DSBs are marked by MRN, MDC1 and γH2AX foci in a PI3K-dependent manner, whereas RNF8 and RNF168 localization with mitotic γH2AX does not take place, excluding the recruitment of 53BP1 and BRCA1 [223], thus blocking NHEJ and HRR, respectively.
Overview of the proteostasis network (PN): connecting the PDR with DDR

Downstream of the critical, but ‘lifeless’, genetic information, there is a world of immense complexity, namely the proteome. The entry point to this world occurs via protein synthesis, which takes place in the cytosol and endoplasmic reticulum (ER) by a complicated machine (i.e., the ribosome) that (1) decodes the information stored in nucleic acids, and (2) shifts the chemistry from nucleic acids to amino acids.

Human cells express millions of polypeptides of >10 000 different species [244] that fold into well-defined three-dimensional structures that form parts of protein machines. Because the average protein and proteome sizes have increased significantly during evolution [245], and the consequences of an unstable proteome can be catastrophic [246,247], cells have evolved a modular, but integrated, system that ensures general proteome quality control, called the PN [248]. The PN performs the daunting task of curating polypeptide synthesis, folding, conformational maintenance, sorting—trafficking, and degradation; it also responds to conditions of proteotoxic stress by addressing the triage decision of fold, hold, or degrade (supplementary material, Figure S6A). The PN comprises ∼2000 chaperones, folding enzymes, trafficking modules, and degradation components, and it is not surprising that proteome stability maintenance consumes the majority of cellular ATP [249,250]. Because of the wiring and interdependence of various PN branches, defects in one module trigger a breakdown of the entire network; these effects are evident during ageing and in age-related diseases such as cancer [251].

The ‘chaperome’ consists of hundreds of cytosolic and organelle-specific chaperones that, along with their associated factors, bind to a wide range of distinct substrates [252,253]. Chaperones* are involved in proper polypeptide folding, unfolding, and remodelling, and in the assembly of protein machines or the delivery of damaged polypeptides to degradation machineries (supplementary material, Figure S6). Nuclear chaperones provide examples demonstrating how components of the PN assist the DDR/R machinery, unveiling a new role of proteome quality control in preserving genomic stability (supplementary material, Figure S6A). Specifically, nuclear chaperones orchestrate the delivery of newly produced histones to DNA, and also facilitate histone turnover [68,254]. Hence, reassembly of chromatin upon DNA repair is highly dependent on chaperones [51,255].

When folding of a mutated or a post-translationally irreversibly modified polypeptide fails, cellular proteases take over. The two main branches of this part of the PN are the UPP and autophagy–lysosome (ALP) pathways, comprising ∼850 and ∼500 different components, respectively (supplementary material, Figure S6A) [256–260]. The UPP pathway degrades short-lived poly-ubiquintated normal proteins and non-functional or misfolded polypeptides and is composed of ubiquitin-conjugating enzymes and the 26S (or 20S) proteasome* [261,262]. The ubiquitin ligase family confers substrate specificity and comprises almost 600 genes in humans [257,263]. The UPP pathway is central to protein synthesis quality control, as non-functional newly synthesized polypeptides are targeted for degradation to cytosolic or ER-bound proteasomes [ER-associated protein degradation (ERAD)] [264]. Proteasomes are also located in the outer mitochondrial membrane, and perform
outer mitochondrial membrane-associated degradation (OMMAD) during activation of the mitochondrial unfolded protein response (UPRMT) [265]. The UPP pathway is also involved in the degradation of mitochondrial fusion/fission proteins, and thus, apart from genome and proteome stability, PN modules are also critical for mitostasis* [186]. It is not thus surprising that ubiquitin ligases are frequently deregulated in cancer [262].

The ALP pathway is an intracellular self-catabolic process that comprises three forms in mammalian cells: (1) chaperone-mediated autophagy (CMA); (2) microautophagy; and (3) macroautophagy [12,266–268]. In CMA, damaged polypeptides are degraded in lysosomes after being recognized by chaperones, which bind to the lysosomal LAMP2A receptor [269]; CMA offers an alternative to the UPP pathway for degradation of misfolded proteins. Microautophagy is a less well understood process involving engulfment of small cytosolic regions by the lysosomal membrane. Finally, in macroautophagy, the Atg* proteins form autophagosomes that capture lipids, proteins, or even organelles, transferring them to lysosomes for degradation [270]. The ALP pathway also degrades ubiquitinated substrates (including protein aggregates) via the action of microtubule-associated histone deacetylase 6 (HDAC6) and sequestrome-1 (p62/SQSTM1) [271].

Genome damage results in the activation of proteostatic modules, and crosstalk between the DDR/R machinery and autophagy has been established (supplementary material, Figure S6A) [272–274]. Prominent connections include those between ATM and PARP1 with AMPK*, one of the central metabolic regulators in eukaryotes. AMPK is activated when the AMP/ATP ratio is high, setting in motion autophagic flux [275–277]. Likewise, p53 has been shown to upregulate components of autophagy, thus forming an amplification loop [278]. Autophagy modulates DNA repair by degrading (among others) KAP1, HP1, and sequestrome-1 (p62/SQSTM1), which hinder BRCA1 and Rad51 accessibility to DSB sites, promoting successful completion of HRR [279]. Similarly, the UPP pathway and ubiquitylation are integral parts of the DDR pathway, as ubiquitylation of DDR factors has emerged as a switch that initiates signalling cascades, namely the heat shock response, oxidative stress response, unfolded protein response in the ER (UPRER)*, and UPRMT*, are modulated by transcription factors that sense stress and mobilize genomic–cytoprotective responses [274,281,283]. These responses are also coupled with a decrease in protein synthesis, thereby reducing the influx of newly synthesized proteins and/or allowing preferential translation of stress-responsive mRNAs until proteome stability restoration [284–286].

Proteome instability is mainly counteracted by heat shock factor 1 (Hsf1), which is maintained in an inert state by chaperone binding [287]. Upon heat or other types of stress that destabilize the proteome, these chaperones are titrated away from Hsf1 by binding to denatured proteins, and Hsf1 thus translocates to the nucleus, inducing transcription of a wide range of proteostatic modules [288,289]. Similarly, chaperones that are localized in the ER guide the folding of membrane or secreted proteins. Furthermore, the ER has its own stress response pathway (UPRER)* that is activated in cases of increased flux or heavy secretory loads, or after heat shock that increases protein misfolding [290]. The UPRER attenuates de novo protein synthesis and induces the expression of chaperones to aid proper polypeptide folding, or, if organelle proteostasis cannot be restored, triggers apoptosis. Likewise, the UPRMT maintains mitochondrial functional integrity by increasing the rates of polypeptide folding and degradation through the transcriptional activation of specific mitochondrial chaperones and proteases [291–293]. Additionally, the UPRMT induces OMMAD, mitophagy, or apoptosis if disruption of mitostasis is irreversible [293,294]. An SR of paramount importance for cellular survival is triggered by hypoxia and is regulated by the Hif-1 transcription factor [295]. Under normoxic conditions, Hif-1 is targeted for proteosomal degradation by the VHL E3-ubiquitin ligase. In hypoxic conditions, Hif-1 is protected, activating a transcriptional programme that includes (among other things) the upregulation of chaperones [296]. Finally, the Nrf2 signalling pathway plays a crucial role in defence against oxidative and/or xenobiotic damage by activating [after binding to antioxidant

© 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. www.pathsoc.org

J Pathol 2018; 246: 12–40

www.thejournalofpathology.com
response elements (AREs) a broad range of detoxification enzymes [297,298] and by inducing UPP and ALP pathway genes [299,300].

The PDR and DDR/R: an intermingled fate
Unmitigated stress will eventually exceed the buffering capacity of the PN, leading to proteome instability (supplementary material, Figure S6B) [301], which is a daunting prospect. As the DDR/R machinery includes complex protein machines, the faithful execution of the triage ‘access—repair—restore’ is obviously dependent on proteome stability. Failure of the PDR pathway to cope with proteotoxic stress poses a risk for genomic integrity. Conversely, constitutive DDR/R activation will eventually wear out the proteome because of defective transcription and reduced polypeptide quality (supplementary material, Figure S6B). Suppressed ribosomal biogenesis during DNA damage is an example of how activation of DDR/R may affect proteostasis [302]. Furthermore, sustained DNA damage can compromise DDR/R efficiency, increasing the production of mutated polypeptides and proteome instability. Subsequently, a vicious cycle of low-fidelity DDR/R–PN activity develops that will trigger pathophysiological states, including carcinogenesis [303]. The most characteristic paradigm of a ‘saturated’ PDR linked with aberrant DDR activation is accumulation of lipofuscin during oncogene-induced senescence, with detrimental effects for the cell (see the next section; supplementary material, Figure S6).

Oncogene-induced DNA damage and cancer development; ‘a model to rule them all?’

In a seminal paper in the early 1990s, Fearon and Vogelstein [304] proposed a genetic model for cancer development, using colorectal cancer as the basis of their study. They suggested that salient molecular alterations characterize each morphological stage of colorectal cancer progression, from the early small adenomas (benign phase) to the large metastatic carcinomas (malignant phase). Molecular changes increase from the benign to the malignant phase, and include mutational activation of oncogenes* coupled with inactivation of tumor suppressors* [305]. Since then, the general features of this model have been applied to other epithelial neoplasms [306]. The idea of analysing the general features of this model have been applied to other tumours (malignant phase). Molecular changes increase from the benign to the malignant phase, and include mutational activation of oncogenes coupled with inactivation of tumor suppressors [305]. Since then, the general features of this model have been applied to other epithelial neoplasms [306]. The idea of analysing the molecular traits of each developmental stage of cancer has revolutionized the field and played a major role in the emergence of molecular pathology. Twenty years later, findings largely based on the above models led Hanahan and Weinberg [307] to propose six hallmarks of cancer. These include sustained proliferative signals, inactivation of tumor suppressors, resistance to apoptosis, replicative immortality, increased angiogenesis, and invasion/metastasis. Conceptual advances in the last decade provided two additional hallmarks: escape from immune surveillance and deregulated metabolism [308].

In spite of the value that the above model provided by setting the timeline of molecular events, it does not offer an explanation of how one molecular alteration leads to the next. In other words, it is a static model lacking the dynamic parameter of the driving force. Some years ago, we put forward a model for cancer development postulating that oncogene-induced DNA damage followed by error-prone repair could be the link between the hallmarks of cancer [109]. The concept was based on the simple finding that carcinomas show DDR foci from their earliest stages of development, whereas adjacent normal epithelium is ‘clear’ [309,310]. This observation suggested that an endogenous source within the incipient cancerous environment caused DNA damage, triggering constitutive activation of the DDR pathway. We hypothesized that a hyperproliferative state could be the origin. Hyperproliferative signals, in most cases, represent parts of SR pathways that deviate from their adaptive/protective role, particularly when SR parameters stray beyond certain limits. For example, squamous metaplasia of the bronchial epithelium is an adaptive response to toxic injury caused by cigarette smoke stimulated by the epidermal growth factor receptor (EGFR) pathway [311]. Depending on the cellular and environmental context, squamous metaplasia can shift progressively to dysplasia and to full neoplastic transformation in which EGFR becomes frequently amplified, fulfilling the first hallmark of cancer [Figure 5(1), lower panel] [307,312,313].

To functionally recapitulate the above scenario, we utilized various types of normal cells and precancerous models, and showed that hyperproliferative stimuli, including activated oncogenes, caused DSBs [159,309,310,314]. Interestingly, the lesions occurred predominantly at CFSs* [159,309,314,315]. As mentioned above, CFSs are late-replicating regions of the genome with a sequence composition that makes them vulnerable to RS [Figure 5(2,3); lower panel] [118,316,317]. As a result, they show breaks, losses and rearrangements, which are genetic alterations collectively termed CFS expression [Figure 5(3); lower panel] [118,318–320]. Their expression is not just a ‘passive’ event, but an incident with severe repercussions, as CFSs constitute highly ‘functional’ entities harbouring cancer-related genes, often extending over large genomic regions (long genes), microRNAs (miRNAs), and regulatory sequences, with a much higher density than in non-fragile sites [118,321]. For instance, two of the long genes located within CFSs are FHIT in FRA3B, and WWOX in FRA16D, both of which are potent tumor suppressors that are frequently inactivated in cancer [322–325]. Consistently, sequencing of colon adenomas revealed that SNSs mapped more often to very large genes [326]. Likewise, in a precancerous cellular model, we noticed that, apart from CFSs, the repetitive and damage-prone rDNA (see ‘The nucleolus at the crossroad of stress response’ above) was an additional ‘hotspot’ for oncogene-mediated damage [Figure 5(3); lower panel] [159].
The above observations led us to suggest that activated oncogenes compromise DNA replication, provoking RS and, in turn, activating the DDR/R pathway in an effort to ‘fix’ the generated lesions [Figure 5(2); lower panel]. Concurrently, to impede the transition of mutated genetic material to offspring, the DDR sets in motion the antitumor barriers of apoptosis and senescence [109,159,309,310,314,327–330]. However, sustained RS would lead to accumulation of damage that, at some point, would overwhelm the capacity of the high-fidelity DNA repair routes, shifting error-free to error-prone repair [Figure 5(2,3)]. This switch will, in due course, modify the genome landscape, exhausting the integrity of antitumor responses and paving the way for cancer progression [Figure 5(2–5); lower panel].

A prediction of this model whereby oncogene-induced RS (OIRS) acts as a driving force for cancer progression is that the replication machinery and its regulatory network* should play a vital role in cancer initiation and progression [Figure 5(2); lower panel] [331,332]. Genes that either positively or negatively regulate growth would be primary targets for activating or inactivating mutations, respectively, whereas DNA repair genes will be spared to ‘fix’, as otherwise the incipient cancer cell will die. Recent high-throughput sequencing studies in sporadic cancers support this notion, showing: (1) a high frequency of inactivating mutations in checkpoint genes such as RB (retinoblastoma), TP53, and ATM; (2) a high incidence of activating events (e.g. mutations and gene amplifications) in growth-promoting genes such as RAS and EGF R; and (3) a paucity of mutations in DNA repair genes [29]. Particular attention should be given to the p16INK4A–Rb–E2F pathway, which is a major ‘molecular crossroad’ that most mitogenic/oncogenic signals converge to. Its phosphorylation status determines whether the cell will bypass the ‘restriction point’ of G1 phase, committing the cell to progress to S phase without the requirement for extracellular stimulants [112–333]. Hence, inactivation of p16INK4A–Rb signalling is not a surprising finding in cancer [221,334–337], as it releases E2F transcription factor 1 (E2F1) from its inhibitory control [329,333,338,339], stimulating the sustained expression of cell-cycle drivers such as cyclin E, Cdc6, and Cdt1, converting them into ‘oncogenic stimuli’ [Figure 5(1); lower panel] [112,210,314,327,338,340]. In support of this, we observed that E2F1, Cdc6 and Cdt1 are aberrantly expressed in most cancer types examined, and, importantly, from their earliest stages [112,314,329,338–340]. Deregulated production of E2F1, Cdc6 and Cdt1 was not a mere reflection of an increased proliferation rate, as their forced expression (utilizing various inducible cellular systems covering the whole spectrum of carcinogenesis) triggered RS, DNA damage and DDR activation with induction of apoptosis and/or senescence [159,314,327,329,340–342].

In accordance with the main prediction of our model, p53 function was gradually attenuated, apoptosis was reduced, and a fraction of senescent cells escaped, showing aggressive traits [Figure 5(4–6); lower panel] [159,314,327,342], such as increased invasiveness, aneuploidy,* and features reminiscent of EMT* [159,314,343], which is an embryonic developmental programme exploited by cancer cells to invade and metastasize [344,345]. The above sequence of events explains why p53 needs to be inactivated in tumors for oncogenes to exert their adverse effects [221,335,338,339,346–350].

The functional coupling between oncogene activation and inactivation of tumor barriers provides experimental evidence that OIRS acts as a driving force exerting selective pressure that eventually shapes the stage for cancer progression (Figure 5). The mechanism behind OIRS and cancer development depends on the availability of ‘quantitative and qualitative repair resources’. When the latter condition is not met, continuous rewiring of DNA repair networks occurs, favouring the survival of the ‘fittest incipient cancer cell’. As a consequence, chronic activation of the DDR/R network results in the exhaustion of essential short-lived repair factors controlling high-fidelity repair, such as Rad51 or 53BP1, thus forcing repair to follow less accurate routes [342,351,352]. Within this framework, we noticed that, in a p53-deficient environment, p21WAF1/Cip1 (a traditional tumor suppressor) revealed a ‘dark side’ of promoting GI by deregulating the replication licensing machinery and rewiring the DNA repair network to favour Rad52-dependent error-prone break-induced replication (BIR) and single-strand annealing (SSA) [Figure 5(2,3); lower panel] [342,353,354]. This observation challenges the conventional view of dividing cancer-related genes into ‘oncogenes’ and ‘tumor suppressors’, stressing the significance of cellular context in protein function.

As the activities of the DDR/R network go well beyond the boundaries of just ‘sensing, signalling and repairing DNA lesions’, by crosstalkling with crucial SR pathways, OIRS-mediated DNA damage makes the situation more complex [23,274,355]. It is thus apparent that, when DDR components such as p53 and ATM are targeted, essential intercellular and intracellular surveillance operations will be modified, favouring, in the end, cellular transformation. There are two additional DDR interactions worth mentioning: (1) the immune system; and (2) metabolic pathways [Figure 5(3); lower panel]. Regarding the first, the DDR pathway communicates with nuclear factor-κB (NF-κB), the central hub of the immune response. Two of the best-characterized connections involve ATM-dependent activation of NEMO, a regulatory subunit of the IKK complex, stimulating NF-κB activity [356–360], and of NKG2D and DNAM-1/CD226 ligands, two key players in innate immunity [361–363]. Another paradigm of DDR and immune response crosstalk is that between p53 and ICAM1 [364–366], showing a direct role of p53 in immunosurveillance. As a result, tumor-promoting inflammation, which is an enabling characteristic of cancer [308], can be attributed, to a certain degree, to a sustained DDR [23,109,367–369]. Considering the
link with metabolism, the most prominent example is that of p53 inhibiting glycolysis by inducing TIGAR [355,370]. Within this context, cells deficient in ATM or p53 will create, over time, a permissive environment favoring immune evasion and ‘aerobic glycolysis’, both of which are hallmarks of cancer cells (Figure 5).

Collectively, the above data further support the role of GI in carcinogenesis, making it a hallmark of cancer [Figure 5(3); lower panel] [29,308]. Nevertheless, although our model provides a unified mechanistic explanation of how the hallmarks of cancer are formulated during cancer development, several questions remain to be answered (Figure 5). For instance, how does OIRS lead to replicative immortality? Surprisingly, reactivation of telomerase, which occurs in almost 90% of human cancers, is attributable to two nucleotide substitutions, C228T and C250T, located within the TERT promoter, implying that error-prone repair was involved in the selection of these mutations (Figure 5) [371]. Another issue is how angiogenesis is induced within the context that we propose. A potential mechanism could be via ROS production, which prevents Hif-prolyl hydroxylase from activating Hif, which, in turn, stimulates neovascularization [372]. Escaping senescence is an emerging concept in cancer progression. OIRS seems to play a role in shaping the genetic landscape for ‘escape’ to occur [159,342,354,373]. However, apart from genetic alterations, epigenetic modifications, extensive chromatin remodelling, increased proteome instability and metabolic reprogramming should also take place for such a dramatic shift in cellular behaviour to occur [68,251,374–377]. Addressing the mechanistic details linking OIRS with these molecular adjustments would help immensely in finding the ‘Achilles’ heel’ and designing analogical therapeutic strategies.

Therapeutic strategies, novel tools, and future perspectives

If OIRS and error-prone repair drives cancer, targeting this process will kill cancer cells [303,378,379]. This hypothesis has been tested by designing various relevant therapeutic approaches over the last few years. The most characteristic example is PARP inhibition. In 2014, olaparib was the first PARP inhibitor approved for the treatment of advanced BRCA1/2 mutant ovarian cancer [380,381]. ATR or Chk1 inhibitors are not particularly toxic for normal cells, but cancer cells harbouring DNA lesions rely on ATR for survival. Two highly selective and potent ATR inhibitors, AZD6738 and VX-970, are in early-phase clinical trials, either as monotherapies or in combination with a variety of genotoxic chemotherapies [382]. In addition to inhibitors of RS, cell-cycle checkpoint inhibitors against the Wee1 kinase and several CDKs are also under development as stand-alone or combination therapies [383,384]. A parameter to be taken into consideration in future therapeutic interventions is the circadian rhythm, as increasing evidence has demonstrated its impact on key biochemical functions, including the DDR/R [385–388]. This constraint should be into consideration when novel therapeutic modalities are designed, to augment the therapeutic effect.

The dramatic changes that occur in cellular metabolism during cancer development have drawn attention to novel therapeutic approaches. Specifically, the increased oxidative stress that characterizes most cancer cells has been an object of intense investigation. Targeting enzymes that hydrolyse and remove oxidized nucleotides, such as mutT homologue 1 (MTH1), has shown promising results [389–392]. An additional relationship that can be exploited therapeutically is that between ATM and alternative reading frame (ARF). ARF is encoded together with p16INK4A by the CDKN2 locus. Historically, it was the first tumor suppressor reported to sense and react to oncogenic stimuli [393]. It is interesting that, for many years, it was considered to act in a DDR-independent manner, showing multiple functions such as regulating p53 stability and ribosome biogenesis [394,395]. We recently showed that ATM keeps ARF in check, as a ‘second line of defence’ [174]. Moreover, ARF shows a higher activation threshold to ‘oncogenic load’ than the DDR pathway, thus forming together the DDR with a hierarchically organized ‘antitumor barrier’ [330]. Consequently, targeting ATM, particularly in p53-deficient tumors, will probably set in motion the antitumor properties of ARF, simultaneously crippling DDR signalling and cumulatively inhibiting tumor growth [174].

As the functionality of proteostatic modules [261] and anti-stress responses [298] decline during ageing, these events also fuel ageing and age-related diseases, including cancer (supplementary material, Figure S6B,C) [248,301,396]. However, during the late phases of carcinogenesis and because of accumulating stressors, there should be a selective pressure for upregulation of the cytoprotective PN, and advanced and/or metastatic tumors may thus become ‘addicted’ to the higher expression levels and/or activities of proteostatic modules [Figure 5(3); lower part]. This hallmark of advanced tumors can be exploited therapeutically, because, apart from the increased load of mutated polypeptides, the high replication rates of cancer cells requires upregulated protein synthesis and maintenance that are out of balance relative to differentiated cells. Indeed, cancer cells are highly sensitive to Hsp90 inhibitors [397], and proteasome inhibitors have shown clinical efficacy in haematological cancers [398]. Likewise, the ‘stress phenotype’ of cancer cells offers novel therapeutic strategies, as cancer cells have probably exhausted their capacity to survive under conditions of increased stress. In support of this, it was found recently that piperlongumine (a compound that upregulates ROS in both cancer and normal cells) had selective antitumor effects with no apparent toxicity in physiological tissues [399]. However, one thing that cancer has taught us is its resilience, adaptation to therapy, and evolution
Acknowledgements

We would like to thank Dr Athanasios Kotsinas, Dr Konstantinos Evangelou, Dr Panagiota Vasileiou and Aggelos Margetis for their assistance with the preparation of the manuscript. Financial support was from a Greek National Scholarships Foundation–Siemens Aristeia Fellowship and from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grants agreement No. 722729, Welfare Foundation for Social & Cultural Sciences (KIKPE), Greece. We would like to apologise for not being able to include all relevant works in the field.

Author contributions statement

VGG and IPT conducted writing and manuscript preparation. DEP and ISP performed the literature search, and figure and manuscript preparation. VGG supervised manuscript preparation.

References

1. Report on Carcinogens. 2016. Available from: https://ntp.niehs.nih.gov/pubhealth/roc/index-1.html
2. Davies KJ. Adaptive homeostasis. Mol Aspects Med 2016; 49: 1–7.
3. Wolfe J. Cellular Thermodynamics: the Molecular and Macroscopic Views. eLS: Wiley, 2001.
4. Nesse RM, Bhatnagar S, Young EA. Evolutionary origins and functions of the stress response. In Encyclopedia of Stress. Elsevier: San Diego, 2010; 965–970.
5. Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature 2009; 461: 1071–1078.
6. Bartek J, Lukas J. DNA damage checkpoints: from initiation to recovery or adaptation. Curr Opin Cell Biol 2007; 19: 238–245.
7. Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ 2018; 25: 486–541.
8. Bernstein C, Bernstein H, Payne CM, et al. DNA repair/pro-apoptotic dual-role proteins in five major DNA repair pathways: fail-safe protection against carcinogenesis. Mutat Res 2002; 511: 145–178.
9. Gorgoulis VG, Halazonetis TD. Oncogene-induced senescence: the bright and dark side of the response. Curr Opin Cell Biol 2010; 22: 816–827.
10. Campisi J, d’Adda di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 2007; 8: 729–740.
11. Munoz-Espin D, Serrano M. Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol 2014; 15: 482–496.
12. Galluzzi L, Baehrecke EH, Ballabio A, et al. Molecular definitions of autophagy and related processes. EMBO J 2017; 36: 1811–1836.
13. Simon HU, Friis R, Tait SW, et al. Retrograde signaling from autophagy modulates stress responses. Sci Signal 2017; 10: e2792791.
14. Schumacher B. Transcription-blocking DNA damage in aging: a mechanism for hormesis. Bioessays 2009; 31: 1347–1356.
15. Robertson MP, Joyce GF. The origins of the RNA world. Cold Spring Harb Perspect Biol 2012; 4: a005608.
16. Amaral PP, Dinger ME, Mattick JS. Non-coding RNAs in homeostasis, disease and stress responses: an evolutionary perspective. Brief Funct Genomics 2013; 12: 254–278.
17. Ng KW, Anderson C, Marshall EA, et al. Piwi-interacting RNAs in cancer: emerging functions and clinical utility. Mol Cancer 2016; 15: 5.
18. Proctor DS, Parker R. Principles and properties of stress granules. Trends Cell Biol 2016; 26: 668–679.
19. Anderson P, Kedersha N. RNA granules. J Cell Biol 2006; 172: 803–808.
20. Bardoe BW, Strijp JA. Molecular battle between host and bacteria: recognition in innate immunity. J Mol Recognit 2011; 24: 1077–1086.
21. Cao X. Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease. Nat Rev Immunol 2016; 16: 35–50.
22. Liston A, Masters SL. Homeostasis-altering molecular processes as mechanisms of inflammusene activation. *Nat Rev Immunol* 2017; 17: 208–214.

23. Pateras IS, Havaki S, Nkitopoulou X, *et al.* The DNA damage response and immune signaling alliance: is it good or bad? Nature decides when and where. *Pharmacol Ther* 2015; 154: 36–56.

24. Nakad R, Schumacher B. DNA damage response and immune defense: links and mechanisms. *Front Genet* 2016; 7: 147.

25. Levine AJ, Oren M. The first 30 years of p53: growing ever more complex. *Nat Rev Cancer* 2009; 9: 749–758.

26. Weinberg RA. The retinoblastoma protein and cell cycle control. *Cell* 1995; 81: 323–330.

27. Helleday T, Eshtad S, Nik-Zainal S. Mechanisms underlying mutational signatures in human cancers. *Nat Rev Genet* 2014; 15: 585–598.

28. Alexandrov LB, Nik-Zainal S, Wedge DC, *et al.* Signatures of mutational processes in human cancer. *Nature* 2013; 500: 415–421.

29. Negrini S, Gorgoulis VG, Halazonetis TD. Genomic instability – an evolving hallmark of cancer. *Nat Rev Mol Cell Biol* 2010; 11: 220–228.

30. Aguilera A, García-Muse T. Causes of genome instability. *Ann Rev Genet* 2013; 47: 1–32.

31. Abbas T, Keaton MA, Dutta A. Genomic instability in cancer. *Cold Spring Harb Perspect Biol* 2013; 5: a012914.

32. Tubbs A, Nussenzweig A. Endogenous DNA damage as a source of genomic instability in cancer. *Cell* 2017; 168: 644–656.

33. Ciccia A, Elledge SJ. The DNA damage response: making it safe through the Mre11–Rad50–Nbs1 complex. *Nat Rev Cancer* 2013; 13: 308: 100–109.

34. Krokan HE, Bjoras M. Base excision repair. *EMBO J* 2003; 22: 5612–5621.

35. Lee JH, Paull TT. ATM activation by DNA double-strand breaks. *DNA Repair (Amst)* 2010; 9: 1249–1255.

36. Bartek J, Bartkova J, Lukas J. DNA damage signalling guards against activated oncogenes and tumour progression. *Oncogene* 2007; 26: 7773–7779.

37. Clapier CR, Cairns BR. The biology of chromatin remodeling complexes. *Cold Spring Harb Perspect Biol* 2013; 5: a012716.

38. Vanden HV, Prives C. Blinded by the light: the growing complexity of p53. *Cell* 2009; 137: 413–431.

39. Lane DP. Cancer: p53, guardian of the genome. *Nature* 1992; 358: 15–16.

40. Greenblatt MS, Bennett WP, Hollstein M, *et al.* Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. *Cancer Res* 1994; 54: 4855–4878.

41. Shanbhag NM, Rafalska-Metcalf IU, Balane-Bolivar C, *et al.* ATM-dependent chromatin changes silence transcription in cis to DNA double-strand breaks. *Cell* 2010; 141: 970–981.

42. Hau BB, Gasser SM. Chromatin and nucleosome dynamics in DNA damage and repair. *Genes Dev* 2017; 31: 2204–2221.

43. Jasin M, Haber JE. The democratization of gene editing: insights from site-specific cleavage and double-strand break repair. *DNA Repair (Amst)* 2016; 44: 6–16.

44. Mehta A, Haber JE. Sources of DNA double-strand breaks and models of recombinational DNA repair. *Cold Spring Harb Perspect Biol* 2014; 6: a016428.
DNA damage and Stress responses in cancer development and treatment

71. Doi C, Mailand N, Bekker-Jensen S, et al. RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins. *Cell 2009; 136: 435–446.

72. Ranjha L, Howard SM, Cejka P. Main steps in DNA double-strand break repair: an introduction to homologous recombination and related processes. *Chromosoma* 2018; 127: 187–214.

73. Chapman JR, Taylor MR, Boulton SJ. Playing the end game: DNA double-strand break repair pathway choice. *Mol Cell 2012; 47: 497–510.

74. Wyman C, Kanaar R. DNA double-strand break repair: all’s well that ends well. *Ann Rev Genet 2006; 40: 363–383.

75. Venkitaraman AR. Linking the cellular functions of BRCA genes to cancer pathogenesis and treatment. *Ann Rev Pathol 2009; 4: 461–487.

76. Rodgers K, McVey M. Error-prone repair of DNA double-strand breaks. *J Cell Physiol 2016; 231: 15–24.

77. Fradet-Turcotte A, Escribano-Diaz C, et al. 53BP1 is a reader of the DNA-damage-induced H2A Lys 15 ubiquitin mark. *Nature 2013; 499: 50–54.

78. Schotta G, Sengupta R, Kubicek S, et al. A chromatin-wide transition of H4K20 monomethyllysine impairs genome integrity and programmed DNA rearrangements in the mouse. *Genes Dev 2008; 22: 2048–2061.

79. Yang H, Pesavento JJ, Ward IM, et al. Preferential dimethylation of histone H4 lysine 20 by Suv4-20. *J Biol Chem 2008; 283: 12085–12092.

80. Cottereau MV, Lee J, Ward IM, et al. Structural basis for the methylation state-specific recognition of histone H4-20 by 53BP1 and Crb2 in DNA repair. *Cell 2006; 127: 1361–1373.

81. Botuyan MV, Lee J, Ward IM, et al. Methylylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. *Nature 2004; 432: 406–411.

82. Apatico T, Baer R, Gautier J. DNA double-strand break repair pathway choice and cancer. *DNA Repair (Amst) 2014; 19: 169–175.

83. Zimmermann M, de Lange T. 53BP1: pro choice in DNA repair. *Trends Cell Biol 2014; 24: 108–117.

84. J.L. Harris P. DNA resection in eukaryotes: deciding how to fix the break. *Nat Struct Mol Biol 2010; 17: 11–16.

85. Branchi D, Foiani M. Regulation of DNA repair throughout the cell cycle. *Nat Rev Mol Cell Biol 2008; 9: 297–308.

86. Kim JS, Krasieva TB, Kurumizaka H, et al. Deficiency of human BRCA2 leads to impaired homologous recombination but main-
lates error-prone homology-directed repair of DNA double-strand sites in mammalian cells. *Proc Natl Acad Sci U S A 2009; 106: 187–214.

87. Tutt A, Bertwistle D, Valentine J, et al. Mutation in Brca2 stimu-
lates error-prone homology-directed repair of DNA double-strand breaks occurring between repeated sequences. *EMBO J 2001; 20: 4704–4716.

88. Che R, Zhang J, Nepal M, et al. Multifaceted Fanconi anemia signaling. *Trends Genet 2018; 34: 171–183.

89. Bukowska B, Karwowska BT. Actual state of knowledge in the field of diseases related with defective nucleotide excision repair. *Life Sci 2018; 195: 6–18.

90. Panier S, Durocher D. Push back to respond better: regulatory inhibition of the DNA double-strand break response. *Nat Rev Mol Cell Biol 2013; 14: 661–672.

91. Xia F, Taghian DG, DeFrank JS, et al. Deficiency of human BRCA2 leads to impaired homologous recombination but main-
lates error-prone homology-directed repair of DNA double-strand sites in mammalian cells. *Mol Cell 2006; 127: 1361–1373.

92. Venkitaraman AR. Linking the cellular functions of BRCA genes to cancer pathogenesis and treatment. *Ann Rev Pathol 2009; 4: 461–487.

93. Rodgers K, McVey M. Error-prone repair of DNA double-strand breaks. *J Cell Physiol 2016; 231: 15–24.

94. Fradet-Turcotte A, Canny MD, Escribano-Diaz C, et al. 53BP1 is a reader of the DNA-damage-induced H2A Lys 15 ubiquitin mark. *Nature 2013; 499: 50–54.

95. Zgheib O, Pataky K, Brugger J, et al. The ubiquitin E3 ligase RNF168 binds and amplifies ubiqutin conjugates on damaged chromosom est to allow accumulation of repair proteins. *Proc Natl Acad Sci U S A 2008; 105: 589–599.

96. Lowe J, Chu H, Lee MO, et al. Regulation of the Wip1 phosphatase and its effects on the stress response. *Front Biosci (Landmark Ed) 2012; 17: 1480–1498.

97. Fiscella M, Zhang H, Fan S, et al. Wip1, a novel human protein phosphatase that is induced in response to ionizing radiation in a p53-dependent manner. *Proc Natl Acad Sci U S A 1997; 94: 6048–6053.

98. Lu X, Ma O, Nguyen TA, et al. The Wip1 phosphatase acts as a gatekeeper in the p53–Mdm2 autoregulatory loop. *Cancer Cell 2007; 12: 342–354.

99. Goloumid A, Kochetkova EY, Pospelova TV, et al. Wip1 phos-
phatase: between p53 and MAPK kinases pathways. *Oncotarget 2016; 7: 31563–31571.

100. Mosbech A, Lukas C, Bekker-Jensen S, et al. The doubleubiquitylation of the H2AX ubiquitin ligases. *Cell 2013; 1658: 16579–16587.

101. Wu M, Liu K, Xiao Z, et al. 53BP1 is a negative regulator to gammaH2AX ubiquitylation by RNF8/RNF168. *J Biol Chem 2016; 291: 959–967.

102. Nijman SM, Huang TT, Dirac AM, et al. The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway. *Cell 2005; 17: 331–339.

103. Seger R, Kastan MB, Crabtree GR. A multifaceted Fanconi anemia pathway. *Nat Rev Mol Cell Biol 2002; 3: 153–166.

104. Calonge TM, O’Connell MJ. Turning off the G2 DNA damage checkpoint. *DNA Repair (Amst) 2008; 7: 136–140.

105. Maniatis T. A ubiquitin ligase complex essential for the NF-kappaB, Wnt/Wingless, and Hedgehog signaling pathways. *Genes Dev 1999; 13: 505–510.

106. Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. *Nat Rev Cancer 2009; 9: 153–166.

107. Halazonetis TD, Gorgoulis VG, Bartek J. An oncogene-induced DNA damage model for cancer development. *Science 2008; 319: 1352–1355.

108. Blumenfeld B, Ben-Zimra M, Simon I. Perturbations in the replication program contribute to genomic instability in cancer. *Int J Mol Sci 2017; 18: E1138.

109. Rivera-Mulia JC, Gilbert DM. Replication timing and transcriptional control: beyond cause and effect – part III. *Curr Opin Cell Biol 2016; 40: 168–178.

110. Petrakis TG, Komseli ES, Papaioannou M, et al. Exploring and exploiting the systemic effects of deregulated replication licensing. *Semin Cancer Biol 2016; 37–38: 3–15.

111. Blow JJ, Gillespie PJ. Replication licensing and cancer – a fatal entanglement? *Nat Rev Cancer 2008; 8: 799–806.

112. Vitelli V, Galbiati A, Iannelli F, et al. Recent advances in DNA damage-transcription crosstalk and high-resolution mapping of DNA breaks. *Annu Rev Genomics Hum Genet 2017; 18: 87–113.

© 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. www.pathsoc.org
115. Gaillard H, Garcia-Muse T, Aguilera A. Replication stress and cancer. Nat Rev Cancer 2015; 15: 276–289.

116. Helmrich A, Ballarino M, Nudler E, et al. Transcription–replication encounters, consequences and genomic instability. Nat Struct Mol Biol 2013; 20: 412–418.

117. Techer H, Koundroutsoukoff S, Nicolas A, et al. The impact of replication stress on replication dynamics and DNA damage in vertebrate cells. Nat Rev Genet 2017; 18: 535–550.

118. Georgakilas AG, Tsantoulis P, Kotsinas A, et al. Are common fragile sites merely structural domains or highly organized ‘functional’ units susceptible to oncogenic stress? Cell Mol Life Sci 2014; 71: 4519–4544.

119. Neelsen KJ, Zanini IM, Mijic S, et al. Deregulated origin licensing leads to chromosomal breaks by rereplication of a gapped DNA template. Genes Dev 2013; 27: 2537–2542.

120. Couch FB, Bansbach CE, Driscoll R, et al. ATR phospholyses SMARCAL1 to prevent replication fork collapse. Genes Dev 2013; 27: 1610–1623.

121. Thomas M, White RL, Davis RW. Hybridization of RNA to double-stranded DNA: formation of R-loops. Proc Natl Acad Sci U S A 1976; 73: 2294–2298.

122. Sebastian R, Oberdoerffer P. Transcription-associated events affecting genomic integrity. Phil Trans R Soc Lond B Biol Sci 2017; 372: 20160288.

123. Nishida K, Kuwano Y, Nishikawa T, et al. RNA binding proteins and genome integrity. Int J Mol Sci 2017; 18: E1431.

124. Freudenreich CH. R-loops: targets for nucleosome cleavage and repeat instability. Curr Genet 2018; https://doi.org/10.1007/s00294-018-0806-z [Epub ahead of print].

125. Hills SA, Diffley JF. DNA replication and oncogene-induced replicative stress. Curr Biol 2014; 24: R435–R444.

126. Giannattasio M, Branzei D. S-phase checkpoint regulations that preserve replication and chromosome integrity upon dNTP depletion. Cell Mol Life Sci 2017; 74: 2361–2380.

127. Petermann E, Helleday T. Pathways of mammalian replication fork restart. Nat Rev Mol Cell Biol 2010; 11: 683–687.

128. Neelsen KJ, Lopes M. Replication fork reversal in eukaryotes: from end to dynamic response. Nat Rev Mol Cell Biol 2015; 16: 207–220.

129. Quinet A, Lemacq D, Vindigni A. Replication fork reversal: players and guardians. Mol Cell 2017; 68: 830–833.

130. Betous R, Couch FB, Mason AC, et al. Substrate-selective repair and restart of replication forks by DNA translocases. Cell Rep 2013; 3: 1958–1969.

131. Hishiki A, Hara K, Ikegaya Y, et al. DNA-binding domain of helicase-like transcription factor (HLTF) and its functional implication in DNA damage tolerance. J Biol Chem 2015; 290: 13215–13223.

132. Kile AC, Chavez DA, Bacal J, et al. Replication fork reversal is a global response to genotoxic treatments in human cells. J Cell Biol 2015; 208: 563–579.

133. Hashimoto Y, Ray Chandhuri A, Lopes M, et al. Rad51 protects nascent DNA from Mre11-dependent degradation and promotes continuous DNA synthesis. Nat Struct Mol Biol 2010; 17: 1305–1311.

134. Schlacher K, Christ N, Siaud N, et al. Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 2011; 145: 520–542.

135. Mijic S, Zellweger R, Chappidi N, et al. Replication fork reversal triggers fork degradation in BRCA2-defective cells. Nat Commun 2017; 8: 859.
concurrently monitor micro-RNAs and proteins in situ during oncogene-induced senescence. **BMC Genomics** 2018; 19: 37.

160. Akamatsu Y, Kobayashi T. The human RNA polymerase I transcription terminator complex acts as a replication fork barrier that coordinates the progress of replication with RNA transcription activity. *Mol Cell Biol* 2015; 35: 1871–1881.

161. Deregowksa A, Adamczyk J, Kwiatkowska A, et al. Shifts in rDNA levels act as a genome buffer promoting chromosome homeostasis. *Cell Cycle* 2015; 14: 3475–3487.

162. Grummt I. The nucleolus – guardian of cellular homeostasis and genome integrity. *Chromosoma* 2013; 122: 487–497.

163. Kobayashi T. A new role of the rDNA and nucleolus in the nucleus – rDNA instability maintains genome integrity. *Bioessays* 2008; 30: 267–272.

164. Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in *Saccharomyces cerevisiae* by two different mechanisms. *Genes Dev* 1999; 13: 2570–2580.

165. Gottlieb S, Esposito RE. A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA. *Cell* 1989; 56: 771–776.

166. Santos R, Li J, Grummt I. The nuclear remodeling complex NoRC mediates heterochromatin formation and silencing of ribosomal gene transcription. *Nat Genet* 2002; 32: 393–396.

167. Murayama A, Ohmori K, Fujimura A, et al. Epigenetic control of rDNA loci in response to intracellular energy status. *Cell* 2008; 133: 627–639.

168. Lai AY, Wade PA. Cancer biology and NuRD: a multifaceted chromatin remodelling complex. *Nat Rev Cancer* 2013; 13: 257–266.

169. Srivastava R, Ahn SH. The epigenetic pathways between the DNA-damage-response kinase ATM and ARF tumour suppressor protein in human cancer. *Nat Rev Mol Cell Biol* 2016; 17: 308–321.

170. Mekhail K, Seebacher J, Gygi SP, et al. Microhomology-mediated end joining is the principal mediator of double-strand break repair during mitochondrial DNA lesions. *Mol Biol Cell* 2016; 27: 223–235.

171. Nemeth A, Langst G. Genome organization in and around the nucleolus. *Trends Genet* 2011; 27: 149–156.

172. Pelletier J, Thomas G, Volarevic S. Ribosomal biogenesis in cancer: new players and therapeutic avenues. *Nat Rev Cancer* 2018; 18: 51–63.

173. Bogenhagen DF. Mitochondrial DNA nucleoid structure. *Biochim Biophys Acta* 2012; 1819: 914–920.

174. Tyynismaa H, Semioni B, Bokori-Brown M, et al. Twinkle helicase is essential for mtDNA maintenance and regulates mtDNA copy number. *Hum Mol Genet* 2004; 13: 3219–3227.

175. Wallace DC. Why do we still have a maternally inherited mitochondrial DNA? Insights from evolutionary medicine. *Anna Rev Biochem* 2007; 76: 781–821.

176. Vasilieou PVS, Mourouzis I, Pantos C. Principal aspects regarding the maintenance of mammalian mitochondrial genome integrity. *Int J Mol Sci* 2017; 18: E1821.

177. Stumpf JD, Copeland WC. Mitochondrial DNA replication and disease: insights from DNA polymerase gamma mutations. *Cell Mol Life Sci* 2011; 68: 219–233.

178. Bogenhagen DF. Mitochondrial DNA nucleoid structure. *Biochim Biophys Acta* 2012; 1819: 914–920.

179. Tyynismaa H, Semioni B, Bokori-Brown M, et al. Twinkle helicase is essential for mtDNA maintenance and regulates mtDNA copy number. *Hum Mol Genet* 2004; 13: 3219–3227.

180. Nikkanen J, Forsström S, Euro L, et al. Mitochondrial DNA replication defects disturb cellular dNTP pools and remodel one-carbon metabolism. *Cell Metab* 2016; 23: 635–648.

181. Sabharwal SS, Schumacker PT. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel? *Nat Rev Cancer* 2014; 14: 709–721.

182. Kazar L, Reyes A, Holt JJ. Minimizing the damage: repair pathways keep mitochondrial DNA intact. *Nat Rev Mol Cell Biol* 2012; 13: 659–671.

183. Garcia-Gomez S, Reyes A, Martinez-Jimenez MI, et al. PrimPol, an archaic primase/polymerase operating in human cells. *Mol Cell* 2013; 52: 541–553.

184. Futami K, Shimamoto A, Furuchi Y. Mitochondrial and nuclear localization of human Pif1 helicase. *Biofarm Bull* 2007; 30: 1685–1692.

185. Tadi SK, Sebastian R, Dahi S, et al. Microhomology-mediated end joining is the principal mediator of double-strand break repair during mitochondrial DNA lesions. *Mol Biol Cell* 2016; 27: 223–235.

186. Gumeni S, Trougakos IP. Cross talk of protooncotics and mitostasis in cellular homeodynamics, ageing, and disease. *Oxid Med Cell Longev* 2016; 2016: 4587691.

187. Twig G, Hyde B, Shrirai HS. Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. *Biochim Biophys Acta* 2008; 1777: 1092–1097.

188. Fang EF, Scheibe-Knudsen M, Chua KF, et al. Nuclear DNA damage signalling to mitochondria in ageing. *Nat Rev Mol Cell Biol* 2016; 17: 308–321.

189. Holland AJ, Cleveland DW. Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. *Nat Rev Mol Cell Biol* 2009; 10: 478–487.

190. Potapaova TA, Zhu J, Li R. Aneuploidy and chromosomal instability: a vicious cycle driving cellular evolution and cancer genome chaos. *Cancer Metastasis Rev* 2013; 32: 377–389.

191. Thompson SL, Compton DA. Examining the link between chromosomal instability and aneuploidy in human cells. *J Cell Biol* 2008; 180: 665–672.

192. Funk LC, Zasadil LM, Weaver BA. Living in CIN: mitotic infidelity and its consequences for tumor promotion and suppression. *Dev Cell* 2016; 39: 638–652.

193. Kastan MB, Bartek J. Cell-cycle checkpoints and cancer. *Nature* 2004; 432: 316–323.

194. Scolnick DM, Halazonetis TD. Chfr defines a mitotic stress checkpoint that delays entry into metaphase. *Nature* 2000; 406: 430–435.

195. Mariatos G, Bothos J, Zacharatos P, et al. Inactivating mutations targeting the chfr mitotic checkpoint gene in human lung cancer. *Cancer Res* 2003; 63: 7185–7189.

196. Musacchio A. The molecular biology of spindle assembly checkpoint signalling dynamics. *Curr Biol* 2015; 25: R1002–R1018.

197. Steigemann P, Wurzenberger C, Schmitz MH, et al. Aurora B-mediated abscission checkpoint protects against tetraploidization. *Cell* 2009; 136: 473–484.

198. Norden C, Mendoza M, Dobbelare J, et al. The NoCut pathway links completion of cytokinesis to spindle midzone function to prevent chromosome breakage. *Cell* 2006; 125: 85–98.

199. Nahe V, Christ L, Stemmark H, et al. The abscission checkpoint: making it to the final cut. *Trends Cell Biol* 2017; 27: 1–11.

200. Kops GJ, Weaver BA, Cleveland DW. On the road to cancer: aneuploidy and the mitotic checkpoint. *Nat Rev Cancer* 2005; 5: 773–785.

201. Lara-Gonzalez P, Westhorpe FG, Taylor SS. The spindle assembly checkpoint. *Curr Biol* 2012; 22: R966–R980.

202. Bakhoun SF, Thompson SL, Manning AL, et al. Genome stability is ensured by temporal control of kinetochore–microtubule dynamics. *Nat Cell Biol* 2009; 11: 27–35.

203. Benanti JA, Toczyski DP, Cdc20, an activator at last. *Mol Cell* 2008; 32: 460–461.

204. Liu ST, Zhang H. The mitotic checkpoint complex (MCC): looking back and forth after 15 years. *AIMS Mol Sci* 2016; 3: 597–634.
205. Brinkley BR, Goepfert TM. Supernumerary centrosomes and cancer: Boveri’s hypothesis resurrected. Cell Motil Cytoskeleton 1998; 41: 281–288.

206. Satge D, Nishi M, Sirvent N, et al. A tumor profile in Patau syndrome (trisomy 13). Am J Med Genet A 2017; 173: 2088–2096.

207. Satge D, Nishi M, Sirvent N, et al. A tumor profile in Edwards syndrome (trisomy 18). Am J Med Genet C Semin Med Genet 2016; 172: 296–306.

208. Xavier AC, Ge Y, Taub JW. Down syndrome and malignancies: a unique clinical relationship: a paper from the 2008 William Beaumont hospital symposium on molecular pathology. J Mol Diagn 2009; 11: 371–380.

209. Nigg EA. Centrosome aberrations: cause or consequence of cancer progression? Nat Rev Cancer 2002; 2: 815–825.

210. Koutsami MK, Tsantoulis PK, Kouloukoussa M, et al. Centrosome abnormalities are frequently observed in non-small-cell lung cancer and are associated with aneuploidy and cyclin E overexpression. J Pathol 2006; 209: 512–521.

211. Loffler H, Lukas J, Bartek J, et al. Structure meets function – centrosomes, genome maintenance and the DNA damage response. Exp Cell Res 2006; 312: 2633–2640.

212. Vakifahmetoglu H, Olsson M, Zhivotovsky B. Death through mitotic catastrophe. Cell Death Differ 2008; 15: 1153–1162.

213. Sotillo R, Hernando E, Diaz-Rodriguez E, et al. Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell 2007; 11: 9–23.

214. Michel LS, Liberal V, Chatterjee A, et al. MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature 2001; 409: 355–359.

215. Fihan G, Dossy SJ. Mutations and aneuploidy: co-conspirators in cancer? Cancer Cell 2003; 4: 89–94.

216. Sarni D, Kerem B. Oncogene-induced replication stress drives cancer. Nat Rev Cancer 2003; 3: 355–359.

217. Heijink AM, Krajewska M, van Vugt MA. The DNA damage response during mitosis induces genomic instability. Cancer Sci 2014; 105: 1519–1525.

218. Hann DS, Davydenko O, Lampson MA. Polo-like kinase 1 regulates mitotic entry. J Cell Sci 2012; 198: 491–499.

219. Stolz A, Ertzych N, Kientz A, et al. The CHK2–BRCA1 tumour suppressor pathway ensures chromosomal stability in human somatic cells. Nat Cell Biol 2010; 12: 492–499.

220. Zhang CZ, Spektor A, Cornils H, et al. Chromothripsis from DNA damage in micronuclei. Nature 2015; 522: 179–184.

221. Hayashi MT, Cesare AJ, Rivera T, et al. Cell death during crisis is mediated by mitotic telomere protection. Nature 2015; 522: 492–496.

222. Hayashi MT, Cesare AJ, Fitzpatrick JA, et al. A telomere-dependent DNA damage checkpoint induced by prolonged mitotic arrest. Nat Struct Mol Biol 2012; 19: 387–394.

223. Terasawa M, Shinohara A, Shinohara M. Double-strand break repair-adox: restoration of suppressed double-strand break repair during mitosis induces genomic instability. Cancer Sci 2014; 105: 1519–1525.

224. Cesare AJ, Rivera T, et al. Cell death during crisis is mediated by mitotic telomere protection. Nature 2015; 522: 492–496.

225. Uetake Y, Sluder G. Prolonged prometaphase blocks daughter cell proliferation despite normal completion of mitosis. Curr Biol 2010; 20: 1666–1671.

226. Lukas C, Savic V, Bekker-Jensen S, et al. 53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress. Nat Cell Biol 2011; 13: 243–253.

227. Moreno A, Carrington JT, Albarghile L, et al. Unreplicated DNA remaining from unperturbed S phases passes through mitosis for resolution in daughter cells. Proc Natl Acad Sci U S A 2016; 113: E5757–E5764.

228. Yang HW, Chung M, Kudo T, et al. Competing memories of mitogen and p53 signalling control cell-cycle entry. Nature 2017; 549: 404–408.

229. Topham CH, Taylor SS. Mitosis and apoptosis: how is the balance set? Curr Opin Cell Biol 2013; 25: 780–785.

230. Salazar-Rou M, Malumbres M. Fueling the cell division cycle. Trends Cell Biol 2017; 27: 69–81.

231. Kulak NA, Geyer PE, Mann M. Loss-less nano-fractionator for high sensitivity, high coverage proteomics. Mol Cell Proteomics 2017; 16: 694–705.

232. Balchin D, Hayer-Hartl M, Hartl FU. In vivo aspects of protein folding and quality control. Science 2016; 353: aaa4354.

233. Gidalevitz T, Ben-Zvi A, Ho KH, et al. Progressive disruption of cellular protein folding in models of polyglutamine diseases. Science 2006; 311: 1471–1474.

234. Cesare AJ, Rivera T, et al. Destabilizing protein polymorphisms in the genetic background direct phenotypic expression of mutant SOD1 toxicity. PLoS Genet 2009; 5: e1000399.
DNA damage and Stress responses in cancer development and treatment

Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and regulation of its components. PLoS One 2008; 3: e1487.

Senft D, Qi J, Ronai ZA. Ubiquitin ligases in oncogenic transformation. Autophagy 2010; 6: 672–673.

Rodriguez-Vargas JM, Ruiz-Magana MJ, Ruiz-Ruiz C, et al. ROS-induced DNA damage and PARP-1 are required for optimal induction of starvation-induced autophagy. Autophagy 2010; 6: 1231–1241.

Cuervo AM. Chaperone-mediated autophagy: selectivity pays off. Annu Rev Biochem 2012; 81: 167–176.

Garcia-Prat L, Martinez-Vicente M, Perdiguerio E, et al. Autophagy maintains stemness by preventing senescence. Nature 2016; 529: 37–42.

Tsakiri EN, Trougakos IP. The amazing ubiquitin–proteasome system: structural components and implication in aging. Int Rev Cell Mol Biol 2015; 314: 171–237.

Senft D, Qi J, Ronai ZA. Ubiquitin ligases in oncogenic transformation and cancer therapy. Nat Rev Cancer 2018; 18: 69–88.

Hohn TJ, Grune T. The proteasome and the degradation of oxidized proteins: part III – Redox regulation of the proteasomal system. Redox Biol 2014; 2: 388–394.

Vembar SS, Brodsky JL. One step at a time: endoplasmic reticulum-associated degradation. Nat Rev Mol Cell Biol 2008; 9: 944–957.

Neutner A, Youle RJ, Karbowski M. Outer mitochondrial membrane protein degradation by the proteasome. Novartis Found Symp 2007; 287: 4–14; discussion 14–20.

Cuervo AM. Chaperone-mediated autophagy: selectivity pays off. Trends Endocrinol Metab 2010; 21: 142–150.

Mizushima N, Levine B, Cuervo AM, et al. Autophagy fights disease through cellular self-digestion. Nature 2008; 451: 1069–1075.

Klionsky DJ, Abdelmohsen K, Abe A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 2016; 12: 1–222.

Cuervo AM, Wong E. Chaperone-mediated autophagy: roles in disease and aging. Cell Res 2014; 24: 92–104.

Wong E, Cuervo AM. Autophagy gone awry in neurodegenerative diseases. Nat Neurosci 2010; 13: 805–811.

Kirkin V, Dikic I. Ubiquitin networks in cancer. Curr Opin Genet Dev 2011; 21: 21–28.

Klaps CL, Jayaraj GG, Hartl FU. Pathways of cellular proteostasis in aging and disease. J Cell Biol 2018; 217: 51–63.

Balch WE, Morimoto RI, Dillin A, et al. Adapting proteostasis for disease intervention. Science 2008; 319: 916–919.

Powars ET, Morimoto RI, Dillin A, et al. Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem 2009; 78: 959–991.

Troupakos IP, Sesti F, Tsakiri E, et al. Non-enzymatic post-translational protein modifications and proteostasis network deregulation in carcinogenesis. J Proteomics 2013; 92: 274–298.

Brehme M, Voisine C, Rolland T, et al. A chaperone subnetwork safeguards proteostasis in aging and neurodegenerative disease. Cell Rep 2014; 9: 1135–1150.

Sala AJ, Bott LC, Morimoto RI. Shaping proteostasis at the nuclear envelope. Biochem Soc Trans 2014; 42: 69–74.

Liu X, Kentridge DJ, Ong YS, et al. Comprehensive functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle’s dynamics and regulation of its components. PLoS One 2008; 3: e1487.

Nijman SM, Luna-Vargas MP, Velds A, et al. A genomic and functional inventory of deubiquitinating enzymes. Cell 2005; 123: 773–786.

Li W, Bengtson MH, Ulbrich A, et al. The ubiquitin system, an immensely real realm. Annu Rev Biochem 2016; 85: 37–74.

Li X, Tyler JK. Nucleosome disassembly during human import efficiency of ATFS-1 regulates mitochondrial UPR activation. Cell Res 2013; 23: 467–480.

Niforou K, Cheimonidou C, Troupakos IP. Molecular chaperones and proteostasis regulation during redox imbalance. Redox Biol 2014; 2: 323–332.

Zou J, Guo Y, Guettouche T, et al. Repression of heat shock transcription factor HSF1 activation by HSF90 (HSF90 complex) that forms a stress-sensitive complex with HSF1. Cell 1998; 94: 471–480.

Zheng X, Krakowiak J, Patel N, et al. Dynamic control of Hsf1 during heat shock by a chaperone switch and phosphorylation. Elife 2016; 5: e18638.

Havasi S, Vlachou V, Zampetidis CP, et al. Monitoring autophagy immunohistochemically and ultrastructurally during human head and neck carcinogenesis. Relationship with the DNA damage response pathway. Int J Mol Sci 2017; 18: E1920.

Eliopoulos AG, Havaki S, Gorgoulis VG. DNA damage response and autophagy: a meaningful partnership. Front Genet 2016; 7: 204.

Gumeni S, Evangelakou Z, Gorgoulis VG, et al. Proteome stability as a key factor of genome integrity. Int J Mol Sci 2017; 18: E2036.

Alexander A, Cai SL, Kim J, et al. ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc Natl Acad Sci U S A 2010; 107: 4153–4158.

Alexander A, Kim J, Walker CL. ATM engages the TSC2/mTORC1 signaling node to regulate autophagy. Autophagy 2010; 6: 672–673.

Balch WE, Morimoto RI, Dillin A, et al. Adapting proteostasis for disease intervention. Science 2008; 319: 916–919.
36. Baker BM, Haynes CM. Mitochondrial protein quality control during biogenesis and aging. Trends Biochem Sci 2011; 36: 254–261.

294. Lendahl U, Lee KL, Yang H, et al. Generating specificity and diversity in the transcriptional response to hypoxia. Nat Rev Genet 2009; 10: 821–832.

295. Schöffel CJ, Ratcliffe PJ. Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol 2004; 5: 343–354.

296. Kessler TW, Wakabayashi N. Nrf2: friend or foe for chemoprevention? Carcinogenesis 2010; 31: 90–99.

297. Sykiotis GP, Bohmann D. Stress-activated cap ’n’ collar transcription factors in aging and human disease. Sci Signal 2010; 3: re3.

298. Tsakiri EN, Sykiotis GP, Papassideri IS, et al. Proteasome dysfunction in Drosophila signals to an Nrf2-dependent regulatory circuit aiming to restore proteostasis and prevent premature aging. Aging Cell 2013; 12: 802–813.

299. Li X, Matilainen O, Jin C, et al. Specific SKN-1/Nrf stress responses to perturbations in translation elongation and proteasome activity. PLoS Genet 2011; 7: e1002119.

300. Lopez-Otin C, Blasco MA, Partridge L, et al. The hallmarks of aging. Cell 2013; 153: 1194–1217.

301. van Sluis M, McStay B. Ribosome biogenesis: Achilles heel of some activity. PLoS Genet 2009; 5: 153–153.

302. Luo J, Solimini NL, Elledge SJ. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 2009; 136: 823–837.

303. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990; 61: 759–767.

304. Jass JR. Colorectal cancer: a multipathway disease. Crit Rev Oncog 2006; 12: 273–287.

305. Vonderstain S, Hirsch FR, et al. Epidermal growth factor receptor family in lung cancer and premalignancy. Semin Oncol 2002; 29: 3–14.

306. Franklin WA, Veve R, Hirsch FR, et al. Epidermal growth factor receptor family in lung cancer and premalignancy. Semin Oncol 2002; 29: 3–14.

307. Roskoski R, Jr. The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol Res 2014; 79: 34–74.

308. Gorgoulis VG, Vassiliou LV, Karakaidos P, et al. Oncogene-induced replication stress preferentially targets common fragile site in preneoplastic lesions. A genome-wide study. Oncogene 2008; 27: 3256–3264.

309. Harrigan JA, Belotserkovskaya R, Coates J, et al. Replication stress induces 53BP1-containing OPT domains in G1 cells. J Cell Biol 2011; 193: 97–108.

310. Chan KL, Palmai-Pallag T, Ying S, et al. Replication stress induces sister-chromatid bridging at fragile site loci in mitosis. Nat Cell Biol 2009; 11: 7537–7560.

311. Glover TW, Wilson TE, Ault MF. Fragile sites in cancer: more than meets the eye. Nat Rev Cancer 2017; 17: 489–501.

312. Sarni D, Kerem B. The complex nature of fragile site plasticity and its importance in cancer. Curr Opin Cell Biol 2016; 40: 131–136.

313. Debatissé M, Le Tallec B, Letessier A, et al. Common fragile sites: mechanisms of instability revisited. Trends Genet 2012; 28: 22–32.

314. Karras JR, Schrock MS, Batar B, et al. Fragile genes that are frequently altered in cancer: players not passengers. Cytogenet Genome Res 2016; 150: 208–216.

315. Del Mare S, Husanie H, Ianco O, et al. WWOX and p53 dysregulation synergize to drive the development of osteosarcoma. Cancer Res 2016; 76: 6107–6117.

316. Waters CE, Saldívar JC, Hosseini SA, et al. The FHTI gene product: tumor suppressor and genome ‘caretaker’. Cell Mol Life Sci 2014; 71: 4577–4587.

317. Gardenswartz A, Aqülan RI. WW domain-containing oxido-ductase’s role in myriad cancers: clinical significance and future implications. Exp Biol Med (Maywood) 2014; 239: 253–263.

318. Paige AJ, Taylor KJ, Taylor C, et al. WWOX: a candidate tumor suppressor gene involved in multiple tumor types. Proc Natl Acad Sci U S A 2001; 98: 11417–11422.

319. Nikolaev SV, Sotiriou SK, Pateras IS, et al. A single-nucleotide substitution mutator phenotype revealed by exome sequencing of human colon adenomas. Cancer Res 2012; 72: 6279–6289.

320. Barikova J, Rezaei N, Liontos M, et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 2006; 444: 633–637.

321. Di Micco R, Fumagalli M, Cicala E, et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 2006; 444: 638–642.

322. Liontos M, Niforou K, Velmazei G, et al. Modulation of the E2F1-driven cancer cell fate by the DNA damage response machinery and potential novel E2F1 targets in osteosarcomas. Am J Pathol 2009; 175: 376–391.

323. Evangelou K, Barikova J, Kotsinas A, et al. The DNA damage checkpoint precedes activation of ARF in response to escalating oncogenic stress during tumorigenesis. Cell Death Differ 2013; 20: 1485–1497.

324. Macherey M, Halazonetis TD. DNA replication stress as a hallmark of cancer. Annu Rev Pathol 2015; 10: 425–448.

325. O’Driscoll M. The pathological consequences of impaired genome integrity in humans; disorders of the DNA replication machinery. J Pathol 2017; 241: 192–207.

326. Tsantoulis PK, Gorgoulis VG. Involvement of E2F transcription factor family in cancer. Eur J Cancer 2005; 41: 2403–2414.

327. Sherr CJ, McCormick F. The RB and p53 pathways in cancer. Cancer Cell 2002; 2: 103–112.

328. Gorgoulis VG, Zacharatos P, Kotsinas A, et al. Alterations of the p16−pRb pathway and the chromosome locus 9p21−22 in non-small-cell lung carcinomas: relationship with p53 and MDM2 protein expression. Am J Pathol 1998; 153: 1749–1765.

329. Gorgoulis VG, Koutroumbi EN, Kotsinas A, et al. Alterations of the p16−pRb pathway and chromosome locus 9p21−22 in sporadic invasive breast carcinomas. Mol Med 1998; 4: 807–822.

330. Mariatos G, Gorgoulis VG, Zacharatos P, et al. Expression of p16(INK4A) and alterations of the 9p21−23 chromosome region in non-small-cell lung carcinomas: relationship with tumor growth parameters and ploidy status. Int J Cancer 2000; 89: 133–141.

331. Gorgoulis VG, Zacharatos P, Mariatos G, et al. Transcription factor E2F-1 acts as a growth-promoting factor and is associated with adverse prognosis in non-small cell lung carcinomas. J Pathol 2002; 198: 142–156.

332. Zacharatos P, Kotsinas A, Evangelou K, et al. Distinct expression patterns of the transcription factor E2F-1 in relation to tumour
DNA damage and Stress responses in cancer development and treatment

37

growth parameters in common human carcinomas. J Pathol 2004; 203: 744–753.

340. Karakaidos P, Taraviras S, Vassiliou LV, et al. Overexpression of the replication licensing regulators hCdt1 and hCdc6 characterizes a subset of non-small-cell lung carcinomas: synergistic effect with mutant p53 on tumor growth and chromosomal instability – evidence of EZF-1 transcriptional control over hCdt1. Am J Pathol 2004; 165: 1351–1365.

341. Walter D, Hoffmann S, Komseli ES, et al. SCAF(Cyclin F)-dependent degradation of CDC6 suppresses DNA re-replication. Nat Commun 2016; 7: 10530.

342. Galanopoulou K, Pateras IS, Evangelou K, et al. Chronic p53-independent p21 expression causes genomic instability by deregulating replication licensing. Nat Cell Biol 2016; 18: 777–789.

343. Sideridou M, Zakopoulou R, Evangelou K, et al. DNA damage and Stress responses in cancer development and treatment

344. Nieto MA, Huang RY, Jackson RA, et al. Emt: 2016. Cell 2016; 166: 21–45.

345. Kalluri R, Weinberg RA. The basics of epithelial–mesenchymal transition. J Clin Invest 2009; 119: 1420–1428.

346. Sengupta S, Harris CC. p53: traffic cop at the crossroads of metabolism – evidence of E2F-1 transcriptional control over hCdt1. J Pathol 2011; 225: 1123–1140.

347. Galanopoulou K, Pateras IS, Evangelou K, et al. Association of allelic loss at the FHIT locus and p53 alterations with tumour kinetics and chromosomal instability in non-small-cell lung carcinomas (NSCLCs). J Pathol 2001; 193: 55–65.

348. Gorgoulis VG, Zacharatos P, Mariatos G, et al. Deregulated expression of c-mos in non-small cell lung carcinomas: relationship with p53 status, genomic instability, and tumor kinetics. Cancer Res 2001; 61: 538–549.

349. Kotsinas A, Evangelou K, Zacharatos P, et al. Proliferation, but not apoptosis, is associated with distinct beta-catenin expression patterns in non-small-cell lung carcinomas: relationship with adenomatous polyposis coli and G(1)-to-S phase-cell-cycle regulators. Am J Pathol 2002; 161: 1619–1634.

350. Apostolopoulou K, Pateras IS, Evangelou K, et al. Gene amplification is a relatively frequent event leading to ZBTB7A (Pokemnon) overexpression in non-small cell lung cancer. J Pathol 2007; 213: 294–302.

351. Ochs F, Somyajit K, Altmeier M, et al. 53BP1 fosters fidelity of homology-directed DNA repair. Nat Struct Mol Biol 2016; 23: 714–721.

352. Ottaviani D, LeCain M, Sheer D. The role of microhomology in genomic structural variation. Trends Genet 2014; 30: 85–94.

353. Sotiriou SK, Kamileri I, Lugli N, et al. Mammalian RAD52 functions in break-induced replication repair of collapsed DNA replication forks. Mol Cell 2016; 64: 1127–1134.

354. Galanopoulou K, Pappas G, Polyzos A, et al. Mutational signatures reveal the role of RAD52 in p53-independent p21-driven genomic instability. Genome Biol 2018; 19: 37.

355. Gorgoulis VG, Zacharatos P, Mariatos G, et al. Systemic DNA damage responses: aging and cancer perspectives. Trends Immunol 2015; 36: 217–228.

356. Ermolaeva MA, Schumacher B. Systemic DNA damage responses: organismal adaptations to genome instability. Trends Genet 2014; 30: 95–102.

357. Chatzikonolou G, Karakasilioti I, Gerasimidis G. DNA damage and innate immunity: links and trade-offs. Trends Immunol 2014; 35: 429–435.

358. Wang SJ, Gu W. To be, or not to be: functional dilemma of p53 metabolic regulation. Curr Opin Oncol 2014; 26: 78–85.

359. Li Y, Tergaonkar V. Telomerase reactivation in cancers: mechanisms that govern transcriptional activation of the wild-type vs. mutant TERT promoters. Transcription 2016; 7: 44–49.

360. Boalhabe H, Duran RV, Gottlieb E. Prolyl hydroxylases as regulators of cell metabolism. Biochem Soc Trans 2009; 37: 291–294.

361. Milanovic M, Fan DNY, Beleni D, et al. Senescence-associated reprogramming promotes cancer stemness. Nature 2018; 553: 96–100.

362. Sandoval J, Esteller M. Cancer epigenomics: beyond genomics. Curr Opin Genet Dev 2012; 22: 50–55.

363. Daskalos A, Nikolaidis G, Xinarianos G, et al. Hypomethylation of retrotransposable elements correlates with genomic instability in non-small cell lung cancer. Int J Cancer 2009; 124: 81–87.

364. Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 2012; 21: 297–308.

365. Ogrunc M, Di Micco R, Lioni M, et al. Oncogene-induced reactive oxygen species fuel hyperproliferation and DNA damage response activation. Cell Death Differ 2014; 21: 998–1012.

366. Dobbelsmeier M, Sorensen CS. Exploiting replicative stress to treat cancer. Nat Rev Drug Discov 2015; 14: 405–423.

367. Aziz K, Nowseeen S, Pantelias G, et al. Targeting DNA damage and repair: embracing the pharmacological era for successful cancer therapy. Pharmacol Ther 2012; 133: 334–350.

368. Ray Chaudhuri A, Nussenzweig A. The multifaceted roles of CDK4/6 inhibition in cancer therapy. Nat Rev Drug Discov 2015; 14: 405–423.
383. Do K, Doroshow JH, Kummar S. Wee1 kinase as a target for cancer therapy. **Cell Cycle** 2013; **12**: 3159–3164.
384. Asghar U, Witkiewicz AK, Turner NC, et al. The history and future of targeting cyclin-dependent kinases in cancer therapy. **Nat Rev Drug Discov** 2015; **14**: 130–146.
385. Miki T, Matsumoto T, Zhao Z, et al. p53 regulates Period2 expression and the circadian clock. **Nat Commun** 2013; **4**: 2444.
386. Gaddameedi S, Selby CP, Kaufmann WK, et al. Control of skin cancer by the circadian rhythm. **Proc Natl Acad Sci U S A** 2011; **108**: 18790–18795.
387. Wang H, van Spyk E, Liu Q, et al. Targeting DNA repair, DNA metabolism and replication stress as anti-cancer strategies. **FEBS J** 2016; **283**: 232–245.
388. Warman Berglund U, Sanjiv K, Gad H, et al. Validation and development of MTH1 inhibitors for treatment of cancer. **Ann Oncol** 2016; **27**: 2275–2283.
389. Giribaldi MG, Munoz A, Halvorsen K, et al. Targeting DNA repair, DNA metabolism and replication stress as anti-cancer strategies. **FEBS J** 2016; **283**: 232–245.
390. Sherr CJ. The Pezcoller lecture: cancer cell cycles revisited. **Cancer Res** 2014; **70**: 215–221.
391. Giribaldi MG, Munoz A, Halvorsen K, et al. MTH1 expression is required for effective transformation by oncogenic HRAS. **Oncotarget** 2015; **6**: 11519–11529.
392. Sherr CJ. The Pezcoller lecture: cancer cell cycles revisited. **Cancer Res** 2014; **70**: 215–221.
393. Sherr CJ. Divorcing ARF and p53: an unsettled case. **Sci Rep** 2015; **5**: 13752.
394. Puigvert JC, Sanjiv K, Helleday T. Targeting DNA repair. **DNA Repair (Amst)** 2016; **18**: E2329.
395. Sherr CJ. Divorcing ARF and p53: an unsettled case. **Sci Rep** 2015; **5**: 13752.
396. Kaushik S, Cuervo AM. Proteostasis and aging. **Nat Med** 2015; **21**: 1406–1415.
397. Trepel J, Mollapour M, Giaccone G, et al. Targeting the dynamic HSPP90 complex in cancer. **Nat Rev Cancer** 2010; **10**: 537–549.
398. Dimopoulos MA, Moreau P, Palumbo A, et al. Carfilzomib and dexamethasone versus bortezomib and dexamethasone for patients with relapsed or refractory multiple myeloma (ENDEAVOR): a randomised, phase 3, open-label, multicentre study. **Lancet Oncol** 2016; **17**: 27–38.
399. Raj L, Ide T, Garkar AU, et al. Selective killing of cancer cells by a small molecule targeting the stress response to ROS. **Nature 2011; 475**: 231–234.
400. Koutsami M, Velmezzi G, Kotsinas A, et al. Is exclusive Skp2 targeting always beneficial in cancer therapy? **Blood 2008; 112**: 4777–4779.
401. Solomon H, Dinowitz N, Pateras IS, et al. Mutant p53 gain of function underlies high expression levels of colorectal cancer stem cells markers. **Oncoogene** 2018; **37**: 1669–1684.
402. Oren M, Tal P, Rotter V. Targeting mutant p53 for cancer therapy. **Aging (Albany NY)** 2016; **8**: 1159–1160.
403. Cooks T, Pateras IS, Tarcic O, et al. Mutant p53 prolongs NF-kappaB activation and promotes chronic inflammation and inflammation-associated colorectal cancer. **Cell Cancer Cell** 2013; **23**: 634–646.
404. Gorgoulis VG, Zacharatos PV, Manolis E, et al. Effects of p53 mutants derived from lung carcinomas on the p53-responsive element (p53RE) of the MDM2 gene. **Br J Cancer** 1998; **77**: 374–384.
405. Gorgoulis VG, Zoupoulouis V, Rassidakis GZ, et al. A molecular and immunohistochemical study of the MDM2 protein isoforms and p53 gene product in bronchogenic carcinoma. **J Pathol** 1996; **180**: 129–137.
406. Spranger S, Gajewski TF. Impact of oncogenic pathways on evasion of antitumour immune responses. **Nat Rev Cancer** 2018; **18**: 139–147.
407. Cooks T, Pateras IS, Jenkins LM, et al. Mutant p53 cancers reprogram macrophages to tumor supporting macrophages via exosomal miR-1246. **Nat Commun** 2018; **9**: 771.
408. Edifizi D, Schumacher B. Omics approaches for identifying physiological adaptations to genome instability in aging. **Int J Mol Sci** 2017; **18**: E2329.
409. Langmead B, Nellore A. Cloud computing for genomic data analysis and collaboration. **Nat Rev Genet** 2018; **19**: 325.
410. Cooper LA, Demicco EG, Saltz JH, et al. Pan-cancer insights from The Cancer Genome Atlas: the pathologist’s perspective. **J Pathol** 2018; **244**: 512–524.
411. Angermueller C, Parmamaa T, Parts L, et al. Deep learning for computational biology. **Mol Syst Biol** 2016; **12**: 878.
412. Campbell BB, Light N, Fabrizio D, et al. Comprehensive analysis of hypermutation in human cancer. **Cell 2017; 171**: 1042–1056.
413. Martincorena I, Raine KM, Gerstung M, et al. Universal patterns of selection in cancer and somatic tissues. **Cell 2017; 171**: 1029–1041.
414. Schmitt AD, Hu M, Ren B. Genome-wide mapping and analysis of chromosome architecture. **Nat Rev Mol Cell Biol** 2016; **17**: 743–755.
415. Munichbach MR, Rubin AJ, Flynn RA, et al. HiChIP: efficient and sensitive analysis of protein-directed genome architecture. **Nat Methods** 2016; **13**: 919–922.
416. Rao SS, Huntley MH, Durand NC, et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. **Cell 2014; 159**: 1665–1680.
417. Georgakopoulou E, Tsimarotou K, Evangelou K, et al. Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues. **Aging (Albany NY)** 2013; **5**: 37–50.
418. Evangelou K, Lougiakis N, Rizou SV, et al. Robust, universal biomarker assay to detect senescent cells in biological specimens. **Aging Cell 2017; 16**: 192–197.
419. Asano M, Basieva I, Kheniniov K, et al. A model of differentiation in quantum bioinformatics. **Prog Biophys Mol Biol** 2017; **130**: 88–98.
420. Kotsinas A, Papangnou P, Galanos P, et al. MKK7 and ARF: new players in the DNA damage response scenery. **Cell Cycle 2014; 13**: 1227–1236.
421. Kotsinas A, Papangnou P, Evangelou K, et al. ARF: a versatile DNA damage response ally at the crossroads of development and tumorigenesis. **Front Genet 2014; 5**: 236.
422. Burgess RC, Misteli T. Not all DDR are created equal: non-canonical DNA damage responses. **Cell 2015; 162**: 944–947.
423. Wagner EF, Nebreda AR. Signal integration by JNK and p38 MAPK pathways in cancer development. **Nat Rev Cancer 2009; 9**: 537–549.
424. Park JH, Shin JE, Park HW. The role of Hippo pathway in cancer stem cell biology. **Mol Cells** 2018; **41**: 83-92.
425. Pefani DE, O'Neil E. Hippo pathway and protection of genome stability and the circadian clock. **FEBS J 2017; 284**: 1392–1403.
426. Karimaian A, Majidinia M, Bannazadeh Baghi H, et al. The crosstalk between Wnt/β-catenin signaling pathway with DNA damage response and oxidative stress: implications in cancer therapy. **DNA Repair (Amst)** 2017; **51**: 14–19.
427. Essers MA, de Vries-Smits LM, Barker N, et al. Functional interaction between beta-catenin and FOXO in oxidative stress signaling. **Science 2005; 308**: 1181–1184.
DNA damage and Stress responses in cancer development and treatment

*428. Funato Y, Michiue T, Asashima M, et al. The thioredoxin-related redox-regulating protein thioredoxin inhibits Wnt–β-catenin signalling through dishevelled. Nat Cell Biol 2006; 8: 501–508.

*429. Vermeuzovic J, Adamowicz M, Santurri L, et al. Notch is a negative regulator of the DNA-damage response. Nature 2015; 22: 417–424.

*430. Meng E, Hanna A, Samant RS, et al. The impact of Hedgehog signaling pathway on DNA repair mechanisms in human cancer. Cancers 2015; 7: 1333–1348.

*431. Cohen I, Rider P, Vornov E, et al. IL-1α is a DNA damage sensor linking genotoxic stress signaling to sterile inflammation and innate immunity. Sci Rep 2015; 5: 14756.

*432. Engreitz JM, Pandy-Jones A, McDonel P, et al. The Xist IncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 2013; 341: 1237973.

*433. Rao AKM, Rajkumar T, Mani S. Perspectives of long non-coding RNAs in cancer. Mol Biol Rep 2017; 44: 203–218.

*434. Pateras IS, Apostolopoulou K, Koutsami M, et al. Downregulation of the KIP family members p27(KIP1) and p57(KIP2) by SKP2 and the role of methylation in p57(KIP2) inactivation in nonsmall cell lung cancer. Int J Cancer 2006; 119: 2546–2556.

*435. Pateras IS, Apostolopoulou K, Niforou K, et al. p57(KIP2): ‘Kip’ing the cell under control. Mol Cancer Res 2009; 7: 1902–1919.

*436. Mowel WK, Kozin JJ, McCreight SJ, et al. Control of immune cell homeostasis and function by lncRNAs. Trends Immunol 2018; 39: 55–69.

*437. Lee YS, Dutta A. MicroRNAs in cancer. Annu Rev Pathol 2009; 4: 199–227.

*438. Sayed A, Abdellatif M. MicroRNAs in development and disease. Physiol Rev 2011; 91: 827–887.

*439. Stepanov GA, Filippova IA, Komissarov AB, et al. Small RNAs with big functions and role in human diseases. Front Mol Biosci 2017; 4: 206849.

*440. Mannoor K, Liao J, Jiang F. Small nucleolar RNAs in cancer. Biochim Biophys Acta 2012; 1826: 121–128.

*441. McMahon M, Contreras A, Ruggero D. Small RNAs with big functions and role in human diseases. Front Mol Biosci 2017; 4: 38.

*442. Benitez-Buelga C, Vaclová T, Ferreira S, et al. Molecular insights into the OGG1 gene, a cancer risk modifier in BRCA1 and BRCA2 mutations carriers. Oncotarget 2016; 7: 25815–25825.

*443. Weren RD, Lightenberg MJ, Geurts van Kessel A, et al. The thioredoxin-related redox-regulating protein thioredoxin inhibits Wnt–β-catenin signalling through dishevelled. Nat Cell Biol 2006; 8: 501–508.

*444. Shen J, Gilmore EC, Marshall CA, et al. Mutations in PNPK cause microcephaly, seizures and defects in DNA repair. Nat Genet 2010; 42: 245–249.

*445. Pachlomak Schmid J, Lemoine R, Nehme N, et al. Polymerase ε1 mutation in a human syndrome with facial dysmorphism, immunodeficiency, livedo, and short stature (‘FILS syndrome’). J Exp Med 2012; 209: 2323–2330.

*446. Cleaver JE. Cancer in xeroderma pigmentosum and related disorders of DNA repair. Nat Rev Cancer 2005; 5: 564–573.

*447. Beerenburg M, Lehmann AR. Xeroderma pigmentosum and related disorders: defects in DNA repair and transcription. Adv Genet 2001; 43: 71–102.

*448. Laugel V. Cockayne syndrome: the expanding clinical and mutational spectrum. Mech Ageing Dev 2013; 134: 161–170.

*449. Stefanini M, Bottu E, LanzaFame M, et al. Trichothiodystrophy: from basic mechanisms to clinical implications. DNA Repair (Amst) 2010; 9: 2–10.

*450. Carethers JM, Stoof EM. Lynch syndrome and Lynch syndrome mimics: the growing complex landscape of hereditary colon cancer. World J Gastroenterol 2015; 21: 9253–9261.

*451. Ponti G, Manfredini M, Tomasi A, et al. Muir–Torre syndrome and founder mismatch repair gene mutations: a long gone historical genetic challenge. Gene 2016; 589: 127–132.

*452. Schmidt MH, Pearson CE. Disease-associated repeat instability and mismatch repair. DNA Repair (Amst) 2016; 38: 117–126.

*453. Kobayashi H, Ohno S, Sasaki Y, et al. Hereditary breast and ovarian cancer susceptibility genes. Oncol Rep 2013; 30: 1019–1029.

*454. Salewsky B, Wessendorf P, Hirsch D, et al. Nijmegen breakage syndrome: the clearance pathway for mutant nibrin protein is allele specific. Gene 2013; 519: 217–221.

*455. Suhassini AN, Brosh RM Jr. Disease-causing missense mutations in human DNA helicase disorders. Mutat Res 2013; 752: 138–152.

*456. Taylor AM, Groom A, Byrd PJ. Ataxia-telangiectasia-like disorder (ATLD) – its clinical presentation and molecular basis. DNA Repair (Amst) 2004; 3: 1219–1225.

*457. Pichierri P, Ammazzalorso F, Bignami M, et al. The Werner syndrome protein: linking the replication checkpoint response to genome stability. Aging (Albany NY) 2011; 3: 311–318.

*458. Jeppesen DK, Boehr VA, Stevensen T. DNA repair deficiency in NTHL1 mutations carriers. Int J Cancer 2018; 142: 1227–1235.

*459. Belizna C, Henrion D, Beucher A, et al. Anti-Ku antibodies: clinical, genetic and diagnostic insights. Autoimmun Rev 2010; 9: 691–694.

*460. O’Driscoll M, Gennery AR, Seidel J, et al. An overview of three new disorders associated with genetic instability: LIG4 syndrome, RS-SCID and ATR-Seckel syndrome. DNA Repair (Amst) 2004; 3: 1227–1235.

*461. Woodbine L, Gennery AR, Jeggo PA. The clinical impact of deficiency in DNA non-homologous end-joining. DNA Repair (Amst) 2014; 16: 84–96.

*462. Bogliolo M, Surralles J. Fanconi anemia: a model disease for studies on human genetics and advanced therapeutics. Curr Opin Genet Dev 2015; 33: 32–40.

*463. Su X, Huang J. The Fanconi anemia pathway and DNA interstrand cross-link repair. Protein Cell 2011; 2: 704–711.

*464. Taylor AM, Lam Z, Last JH, Byrd PJ. Ataxia telangiectasia: more variation at clinical and cellular levels. Clin Genet 2015; 87: 199–208.

*465. Cited only in supplementary material.
SUPPLEMENTARY MATERIAL ONLINE

Supplementary figure legends
Full legends for main figures
Glossary and list of abbreviations

Figure S1. The cellular fate following genotoxic insults
Figure S2. Other pathways that contribute to DDR signalling
Figure S3. Replication-transcription intermediates and replication fork restart
Figure S4. Nucleolus and rDNA organization and maintaining mitochondrial DNA integrity
Figure S5. Monitoring Mitosis (DDR surveillance)
Figure S6. Functional interplay and interdependence of genome and proteome maintenance modules (DDR and PDR surveillance)
Table S1. Representative categories and types of human RNAs involved in physiological processes and diseases, including cancer
Table S2. The implications of defective key components of the DNA damage response mechanisms in the pathogenesis of specific clinical syndromes in humans

25 Years ago in The Journal of Pathology...

On aqueous humour, micro-organisms, and immunity

E. Metchnikoff

Pulsations in the veins, with the description of a method for graphically recording them

James Mackenzie M.D

A note upon the relations between plasma and serum, and upon a modification in the method of obtaining serum

A. E. Wright M.D. (Dublin)

To view these articles, and more, please visit:
www.thejournalofpathology.com
Click 'BROWSE' and select 'All issues', to read articles going right back to Volume 1, Issue 1 published in 1892.

The Journal of Pathology
Understanding Disease