Muesli: Combining Improvements in Policy Optimization

Matteo Hessel*1 Ivo Danihelka*12 Fabio Viola1 Arthur Guez1 Simon Schmitt1 Laurent Sifre1 Theophane Weber1 David Silver12 Hado van Hasselt1

Abstract
We propose a novel policy update that combines regularized policy optimization with model learning as an auxiliary loss. The update (henceforth Muesli) matches MuZero’s state-of-the-art performance on Atari. Notably, Muesli does so without using deep search: it acts directly with a policy network and has computation speed comparable to model-free baselines. The Atari results are complemented by extensive ablations, and by additional results on continuous control and 9x9 Go.

1. Introduction
Reinforcement learning (RL) is a general formulation for the problem of sequential decision making under uncertainty, where a learning system (the agent) must learn to maximize the cumulative rewards provided by the world it is embedded in (the environment), from experience of interacting with such environment (Sutton & Barto, 2018). An agent is said to be value-based if its behavior, i.e. its policy, is inferred (e.g. by inspection) from learned value estimates (Sutton, 1988; Watkins, 1989; Rummery & Niranjan, 1994; Tesauro, 1995). In contrast, a policy-based agent directly updates a parametric policy (Williams, 1992; Sutton et al., 2000) based on past experience. We may also classify as model-free the agents that update values and policies directly from experience (Sutton, 1988), and as model-based those that use (learned) models (Oh et al., 2015; van Hasselt et al., 2019) to plan either global (Sutton, 1990) or local (Richelet et al., 1978; Kaelbling & Lozano-Pérez, 2010; Silver & Veness, 2010) values and policies. Such distinctions are useful for communication, but, to master the singular goal of optimizing rewards in an environment, agents often combine ideas from more than one of these areas (Hessel et al., 2018; Silver et al., 2016; Schrittwieser et al., 2020).

In this paper, we focus on a critical part of RL, namely policy optimization. We leave a precise formulation of the problem for later, but different policy optimization algorithms can be seen as answers to the following crucial question:

given data about an agent’s interactions with the world, and predictions in the form of value functions or models, how should we update the agent’s policy?

We start from an analysis of the desiderata for general policy optimization. These include support for partial observability and function approximation, the ability to learn stochastic policies, robustness to diverse environments or training regimes (e.g. off-policy data), and being able to represent knowledge as value functions and models. See Section 3 for further details on our desiderata for policy optimization.

Then, we propose a policy update combining regularized policy optimization with model-based ideas so as to make progress on the dimensions highlighted in the desiderata. More specifically, we use a model inspired by MuZero (Schrittwieser et al., 2020) to estimate action values via one-step look-ahead. These action values are then plugged into a modified Maximum A Posteriori Policy Optimiz-
Muesli: Combining Improvements in Policy Optimization

The agent starts at a state S_0 and interacts with the environment.

Most of our experiments were performed on 57 classic Atari games from the Arcade Learning Environment (Bellemare et al., 2013; Machado et al., 2018), a popular benchmark for deep RL. We found that, on Atari, Muesli can match the state of the art performance of MuZero, without requiring deep search, but instead acting directly with the policy network and using one-step look-aheads in the updates. To help understand the different design choices made in Muesli, our experiments on Atari include multiple ablations of our proposed update. Additionally, to evaluate how well our method generalises to different domains, we performed experiments on a suite of continuous control environments (based on MuJoCo and sourced from the OpenAI Gym (Brockman et al., 2016)). We also conducted experiments in 9x9 Go in self-play, to evaluate our policy update in a domain traditionally dominated by search methods.

2. Background

The environment. We are interested in episodic environments with variable episode lengths (e.g. Atari games), formalized as Markov Decision Processes (MDPs) with initial state distribution μ and discount $\gamma \in [0, 1)$; ends of episodes correspond to absorbing states with no rewards.

The objective. The agent starts at a state $S_0 \sim \mu$ from the initial state distribution. At each time step t, the agent takes an action $A_t \sim \pi(A_t|S_t)$ from a policy π, obtains the reward R_{t+1} and transitions to the next state S_{t+1}. The expected sum of discounted rewards after a state-action pair is called the action-value or Q-value $q_\pi(s, a)$:

$$q_\pi(s, a) = \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t R_{t+1} | \pi, S_0 = s, A_0 = a \right].$$

(1)

The value of a state s is $v_\pi(s) = \mathbb{E}_{A \sim \pi(\cdot|s)} [q_\pi(s, A)]$ and the objective is to find a policy π that maximizes the expected value of the states from the initial state distribution:

$$J(\pi) = \mathbb{E}_{S \sim \mu} [v_\pi(S)].$$

(2)

Policy improvement. Policy improvement is one of the fundamental building blocks of reinforcement learning algorithms. Given a policy π_{prior} and its Q-values $q_{\pi_{\text{prior}}}(s, a)$, a policy improvement step constructs a new policy π such that $v_\pi(s) \geq v_{\pi_{\text{prior}}}(s) \forall s$. For instance, a basic policy improvement step is to construct the greedy policy:

$$\arg\max_{\pi} \mathbb{E}_{A \sim \pi(\cdot|s)} [q_{\pi_{\text{prior}}}(s, A)].$$

(3)

Regularized policy optimization. A regularized policy optimization algorithm solves the following problem:

$$\arg\max_{\pi} \left(\mathbb{E}_{A \sim \pi(\cdot|s)} \left[q_{\pi_{\text{prior}}}(s, A) \right] - \Omega(\pi) \right),$$

(4)

where $q_{\pi_{\text{prior}}}(s, a)$ are approximate Q-values of a π_{prior} policy and $\Omega(\pi) \in \mathbb{R}$ is a regularizer. For example, we may use as the regularizer the negative entropy of the policy $\Omega(\pi) = -\lambda H[\pi]$, weighted by an entropy cost λ (Williams & Peng, 1991). Alternatively, we may also use $\Omega(\pi) = \lambda \text{KL}(\pi_{\text{prior}}, \pi)$, where π_{prior} is the previous policy, as used in TRPO (Schulman et al., 2015).

Following the terminology introduced by Vieillard et al. (2020), we can then solve Eq. 4 by either direct or indirect methods. If $\pi(a|s)$ is differentiable with respect to the policy parameters, a direct method applies gradient ascent to

$$J(s, \pi) = \mathbb{E}_{A \sim \pi(\cdot|s)} \left[q_{\pi_{\text{prior}}}(s, A) \right] - \Omega(\pi).$$

(5)

Using the log derivative trick to sample the gradient of the expectation results in the canonical (regularized) policy gradient update (Sutton et al., 2000).

In indirect methods, the solution of the optimization problem (4) is found exactly, or numerically, for one state and then distilled into a parametric policy. For example, Maximum a Posteriori Policy Optimization (MPO) (Abdolmaleki et al., 2018) uses as regularizer $\Omega(\pi) = \lambda \text{KL}(\pi, \pi_{\text{prior}})$, for which the exact solution to the regularized problem is

$$\pi_{\text{MPO}}(a|s) = \pi_{\text{prior}}(a|s) \exp(\frac{q_{\pi_{\text{prior}}}(s, a)}{\lambda}) \frac{1}{z(s)},$$

(6)

where $z(s) = \mathbb{E}_{A \sim \pi_{\text{prior}}(\cdot|s)} \left[\exp(\frac{q_{\pi_{\text{prior}}}(s, A)}{\lambda}) \right]$ is a normalization factor that ensures that the resulting probabilities form a valid probability distribution (i.e. they sum up to 1).

MuZero. MuZero (Schrittwieser et al., 2020) uses a weakly grounded (Grimm et al., 2020) transition model m trained end to end exclusively to support accurate reward, value and policy predictions: $m(s_t, a_t, s_{t+1}, \ldots, s_{t+k}) \approx (R_{t+k+1}, v_\pi(S_{t+k+1}), \pi(\cdot|S_{t+k+1}))$. Since such model can be unrolled to generate sequences of rewards and value estimates for different sequences of actions (or plans), it can be used to perform Monte-Carlo Tree Search, or MCTS (Coulom, 2006). MuZero then uses MCTS to construct a policy as the categorical distribution over the normalized visit counts for the actions in the root of the search tree; this policy is then used both to select actions, and as a policy target for the policy network. Despite MuZero using different motivations, Grill et al. (2020) showed that the MuZero policy update can also be interpreted as approximately solving a regularized policy optimization problem with the regularizer $\Omega(\pi) = \lambda \text{KL}(\pi_{\text{prior}}, \pi)$ also used by the TRPO algorithm (Schulman et al., 2015).
3. Desiderata and motivating principles

First, to motivate our investigation, we discuss a few desiderata for a general policy optimization algorithm.

3.1. Observability and function approximation

Being able to learn stochastic policies, and being able to leverage Monte-Carlo or multi-step bootstrapped return estimates is important for a policy update to be truly general.

This is motivated by the challenges of learning in partially observable environments (Åström, 1965) or, more generally, in settings where function approximation is used (Sutton & Barto, 2018). Note that these two are closely related: if a chosen function approximation ignores a state feature, then the state feature is, for all practical purposes, not observable.

In POMDPs the optimal memory-less stochastic policy can be better than any memory-less deterministic policy, as shown by Singh et al. (1994). As an illustration, consider the MDP in Figure 2: in this problem we have 4 states and, on each step, 2 actions (up or down). If the state representation of all states is the same \(\phi(s) = \emptyset \), the optimal policy is stochastic. We can easily find such policy with pen and paper: \(\pi^*(\text{up}|\phi(s)) = \frac{5}{8} \); see Appendix B for details.

It is also known that, in these settings, it is often preferable to leverage Monte-Carlo returns, or at least multi-step bootstrapped estimators, instead of using one-step targets (Jaakkola et al., 1994). Consider again the MDP in Figure 2: bootstrapping from \(v_\pi(\phi(s)) \) produces biased estimates of the expected return, because \(v_\pi(\phi(s)) \) aggregates the values of multiple states; again, see Appendix B for the derivation.

Among the methods in Section 2, both policy gradients and MPO allow convergence to stochastic policies, but only policy gradients naturally incorporate multi-step return estimators. In MPO, stochastic return estimates could make the agent overly optimistic (\(\mathbb{E}[\exp(G)] \geq \exp(\mathbb{E}[G]) \)).

3.2. Policy representation

Policies may be constructed from action values or they may combine action values and other quantities (e.g., a direct parametrization of the policy or historical data). We argue that the action values alone are not enough.

First, we show that action values are not always enough to represent the best stochastic policy. Consider again the MDP in Figure 2 with identical state representation \(\phi(s) \) in all states. As discussed, the optimal stochastic policy is \(\pi^*(\text{up}|\phi(s)) = \frac{5}{8} \). This non-uniform policy cannot be inferred from Q-values, as these are the same for all actions and are thus wholly uninformative about the best probabilities: \(q^*_\pi(\phi(s), \text{up}) = q^*_\pi(\phi(s), \text{down}) = \frac{1}{4} \). Similarly, a model on its own is also insufficient without a policy, as it would produce the same uninformative action values.

One approach to address this limitation is to parameterize the policy explicitly (e.g., via a policy network). This has the additional advantage that it allows us to directly sample both discrete (Mnih et al., 2016) and continuous (van Hasselt & Wiering, 2007; Degris et al., 2012; Silver et al., 2014) actions. In contrast, maximizing Q-values over continuous action spaces is challenging. Access to a parametric policy network that can be queried directly is also beneficial for agents that act by planning with a learned model (e.g. via MCTS), as it allows to guide search in large or continuous action space.

3.3. Robust learning

We seek algorithms that are robust to 1) off-policy or historical data; 2) inaccuracies in values and models; 3) diversity of environments. In the following paragraphs we discuss what each of these entails.

Reusing data from previous iterations of policy \(\pi \) (Lin, 1992; Riedmiller, 2005; Mnih et al., 2015) can make RL more data efficient. However, if computing the gradient of the objective \(\mathbb{E}_{A \sim \pi(s)} \left[q_{\pi_{\text{prior}}}(s, A) \right] \) on data from an older policy \(\pi_{\text{prior}} \), an unregularized application of the gradient can degrade the value of \(\pi \). The amount of degradation depends on the total variation distance between \(\pi \) and \(\pi_{\text{prior}} \), and we can use a regularizer to control it, as in Conservative Policy Iteration (Kakade & Langford, 2002), Trust Region Policy Optimization (Schulman et al., 2015), and Appendix C.

Whether we learn on or off-policy, agents’ predictions incorporate errors. Regularization can also help here. For instance, if Q-values have errors, the MPO regularizer \(\Omega(\pi) = \lambda \text{KL}(\pi, \pi_{\text{prior}}) \) maintains a strong performance bound (Vieillard et al., 2020). The errors from multiple iterations average out, instead of appearing in a discounted sum of the absolute errors. While not all assumptions behind this result apply in an approximate setting, Section 5 shows that MPO-like regularizers are helpful empirically.
4. Robust yet simple policy optimization

The full list of desiderata is presented in Table 1. These are far from solved problems, but they can be helpful to reason about policy updates. In this section, we describe a policy optimization algorithm designed to address these desiderata.

4.1. Our proposed clipped MPO (CMPO) regularizer

We use the Maximum a Posteriori Policy Optimization (MPO) algorithm (Abdolmaleki et al., 2018) as starting point, since it can learn stochastic policies (1a), supports discrete and continuous action spaces (2c), can learn stably from off-policy data (3a), and has strong performance bounds even when using approximate Q-values (3b). We then improve the degree of control provided by MPO on the total variation distance between π and π_{prior} (3a), avoiding sensitive domain-specific hyperparameters (3d).

MPO uses a regularizer $\Omega(\pi) = \lambda \text{KL}(\pi, \pi_{\text{prior}})$, where π_{prior} is the previous policy. Since we are interested in learning from stale data, we allow π_{prior} to correspond to arbitrary previous policies, and we introduce a regularizer $\Omega(\pi) = \lambda \text{KL}(\pi_{\text{CMPO}}, \pi)$, based on the new target

$$\pi_{\text{CMPO}}(a|s) = \frac{\pi_{\text{prior}}(a|s) \exp \left(\text{clip}(\text{adv}(s, a), -c, c) \right)}{z_{\text{CMPO}}(s)},$$

(7)

where $\text{adv}(s, a)$ is a non-stochastic approximation of the advantage $\hat{q}_{\pi_{\text{prior}}}(s, a) - \hat{\pi}_{\text{prior}}(s)$ and the factor $z_{\text{CMPO}}(s)$ ensures the policy is a valid probability distribution. The π_{CMPO} term we use in the regularizer has an interesting relation to natural policy gradients (Kakade, 2001): π_{CMPO} is obtained if the natural gradient is computed with respect to the logits of π_{prior} and then the expected gradient is clipped (for proof note the natural policy gradient with respect to the logits is equal to the advantages (Agarwal et al., 2019)).

The clipping threshold c controls the maximum total variation distance between π_{CMPO} and π_{prior}. Specifically, the total variation distance between π' and π is defined as

$$D_{\text{TV}}(\pi'(|s), \pi(|s)) = \frac{1}{2} \sum_a |\pi'(a|s) - \pi(a|s)|.$$

(8)

As discussed in Section 3.3, constrained total variation supports robust off-policy learning. The clipped advantages allows us to derive not only a bound for the total variation distance but an exact formula:

Theorem 4.1 (Maximum CMPO total variation distance)

For any clipping threshold $c > 0$, we have:

$$\max_{\pi_{\text{prior}}, \text{adv}, s} D_{\text{TV}}(\pi_{\text{CMPO}}(|s), \pi_{\text{prior}}(|s)) = \tanh\left(\frac{c}{2} \right).$$
We refer readers to Appendix D for proof of Theorem 4.1; we also verified the theorem predictions numerically.

Note that the maximum total variation distance between \(\pi_{\text{CMPO}} \) and \(\pi_{\text{prior}} \) does not depend on the number of actions or other environment properties (3d). It only depends on the clipping threshold as visualized in Figure 3a. This allows to control the maximum total variation distance under a CMPO update, for instance by setting the maximum total variation distance to \(\epsilon \), without requiring the constrained optimization procedure used in the original MPO paper. Instead of the constrained optimization, we just set \(c = 2 \arctanh(\epsilon) \). We used \(c = 1 \) in our experiments, across all domains.

4.2. A novel policy update

Given the proposed regularizer \(\Omega(\pi) = \lambda \text{KL}(\pi_{\text{CMPO}}, \pi) \), we can update the policy by direct optimization of the regularized objective, that is by gradient descent on

\[
L_{\text{PG+CMPO}}(\pi, s) = -E_{A \sim \pi(\cdot|s)} \left[\text{adv}(s, A) \right] + \lambda \text{KL}(\pi_{\text{CMPO}}(\cdot|s), \pi(\cdot|s)),
\]

where the advantage terms in each component of the loss can be normalized using the approach described in Section 4.5 to improve the robustness to reward scales.

The first term corresponds to a standard policy gradient update, thus allowing stochastic estimates of \(\text{adv}(s, A) \) that use Monte-Carlo or multi-step estimators (1b). The second term adds regularization via distillation of the CMPO target, to preserve the desiderata addressed in Section 4.1.

Critically, the hyper-parameter \(\lambda \) is easy to set (3d), because even if \(\lambda \) is high, \(\lambda \text{KL}(\pi_{\text{CMPO}}(\cdot|s), \pi(\cdot|s)) \) still proposes improvements to the policy \(\pi_{\text{prior}} \). This property is missing in popular regularizers that maximize entropy or minimize a distance from \(\pi_{\text{prior}} \). We refer to the sensitivity analysis depicted in Figure 3b for a sample of the wide range of values of \(\lambda \) that we found to perform well on Atari. We used \(\lambda = 1 \) in all other experiments reported in the paper.

Both terms can be sampled, allowing to trade off the computation cost and the variance of the update; this is especially useful in large or continuous action spaces (2b), (2c).

We can sample the gradient of the first term by computing the loss on data generated on a prior policy \(\pi_{\text{prior}} \), and then use importance sampling to correct for the distribution shift wrt \(\pi \). This results in the estimator

\[
-\frac{\pi(a|s)}{\pi_b(a|s)} (G^u(s, a) - \hat{v}_{\pi_{\text{prior}}}(s)), \tag{10}
\]

for the first term of the policy loss. In this expression, \(\pi_b(a|s) \) is the behavior policy; the advantage \((G^u(s, a) - \hat{v}_{\pi_{\text{prior}}}(s)) \) uses a stochastic multi-step bootstrapped estimator \(G^u(s, a) \) and a learned baseline \(\hat{v}_{\pi_{\text{prior}}}(s) \).

We can also sample the regularizer, by computing a stochastic estimate of the KL on a subset of \(N \) actions \(a^{(k)} \), sampled from \(\pi_{\text{prior}}(s) \). In which case, the second term of Eq. 9 becomes (ignoring an additive constant):

\[
-\frac{\lambda}{N} \sum_{k=1}^N \frac{\exp(\text{clip}(\hat{\text{adv}}(s, a^{(k)}), -c, c))}{z_{\text{CMPO}}(s)} \log \pi(a^{(k)}|s), \tag{11}
\]

where \(\text{adv}(s, a) = \hat{q}_{\pi_{\text{prior}}}(s, a) - \hat{v}_{\pi_{\text{prior}}}(s) \) is computed from the learned values \(\hat{q}_{\pi_{\text{prior}}} \) and \(\hat{v}_{\pi_{\text{prior}}} \). To support sampling just few actions from the current state \(s \), we can estimate \(z_{\text{CMPO}}(s) \) for the \(i \)-th sample out of \(N \) as:

\[
z_{\text{CMPO}}^{(i)}(s) = \frac{z_{\text{init}} + \sum_{k \neq i} \exp(\text{clip}(\hat{\text{adv}}(s, a^{(k)}), -c, c))}{N}, \tag{12}
\]

where \(z_{\text{init}} \) is an initial estimate. We use \(z_{\text{init}} = 1 \).

4.3. Learning a model

As discussed in Section 3.4, learning models has several potential benefits. Thus, we propose to train a model alongside policy and value estimates (4b). As in MuZero (Schrittwieser et al., 2020) our model is not trained to reconstruct observations, but is rather only required to provide accurate estimates of rewards, values and policies. It can be seen as an instance of value equivalent models (Grimm et al., 2020).

For training, the model is unrolled \(k > 1 \) steps, taking as inputs an initial state \(s_t \) and an action sequence \(a_{c+t+k} = a_t, a_{t+1}, \ldots, a_{t+k-1} \). On each step the model then predicts rewards \(\hat{r}_k \), values \(\hat{v}_k \) and policies \(\pi_k \). Rewards and values
are trained to match the observed rewards and values of the states actually visited when executing those actions.

Policy predictions \(\hat{\pi}_k \) after unrolling the model \(k \) steps are trained to match the \(\pi_{\text{CMPO}}(\cdot|s_{t+k}) \) policy targets computed in the actual observed states \(s_{t+k} \). The policy component of the model loss can then be written as:

\[
L_m(\pi, s_t) = \frac{1}{K} \sum_{k=1}^{K} \text{KL}(\pi_{\text{CMPO}}(\cdot|s_{t+k}), \hat{\pi}_k(\cdot|s_t, a_{t+k}))
\]

This differs from MuZero in that here the policy predictions \(\hat{\pi}_k(\cdot|s_t, a_{t+k}) \) are updated towards the targets \(\pi_{\text{CMPO}}(\cdot|s_{t+k}) \), instead of being updated to match the targets \(\pi_{\text{MCTS}}(\cdot|s_{t+k}) \) constructed from the MCTS visitations.

4.4. Using the model

The first use of a model is as an auxiliary task. We implement this by conditioning the model not on a raw environment state \(s_t \) but, instead, on the activations \(h(s_t) \) from a hidden layer of the policy network. Gradients from the model loss \(L_m \) are then propagated all the way into the shared encoder, to help learning good state representations.

The second use of the model is within the policy update from Eq. 9. Specifically, the model is used to estimate the action values \(q_{\pi_{\text{prior}}}(s, a) \), via one-step look-ahead:

\[
\hat{q}_{\pi_{\text{prior}}}(s, a) = \hat{r}_1(s, a) + \gamma \hat{v}_1(s, a),
\]

and the model-based action values are then used in two ways. First, they are used to estimate the multi-step return \(G^\nu(s, A) \) in Eq. 10, by combining action values and observed rewards using the Retrace estimator (Munos et al., 2016). Second, the action values are used in the (non-stochastic) advantage estimate \(\text{adv}(s, a) = \hat{q}_{\pi_{\text{prior}}}(s, a) - \hat{v}_{\pi_{\text{prior}}}(s) \) required by the regularisation term in Eq. 11.

Using the model to compute the \(\pi_{\text{CMPO}} \) target instead of using it to construct the search-based policy \(\pi_{\text{MCTS}} \) has advantages: a fast analytical formula, stochastic estimation of \(\text{KL}(\pi_{\text{CMPO}}, \pi) \) in large action spaces (2b), and direct support for continuous actions (2c). In contrast, MuZero’s targets \(\pi_{\text{MCTS}} \) are only an approximate solution to regularized policy optimization (Grill et al., 2020), and the approximation can be crude when using few simulations.

Note that we could have also used deep search to estimate action-values, and used these in the proposed update. Deep search would however be computationally expensive, and may require more accurate models to be effective (3b).

4.5. Normalization

CMPO avoids overly large changes but does not prevent updates from becoming vanishingly small due to small advantages. To increase robustness to reward scales (3c), we divide advantages \(\text{adv}(s, a) \) by the standard deviation of the advantage estimator. A similar normalization was used in PPO (Schulman et al., 2017), but we estimate \(\mathbb{E}_{S_t, A_t} [(G^\nu(S_t, A_t) - \hat{v}_{\pi_{\text{prior}}}(S_t))^2] \) using moving averages, to support small batches. Normalized advantages do not become small, even when the policy is close to optimal; for convergence, we rely on learning rate decay.

All policy components can be normalized using this approach, but the model also predict rewards and values, and the corresponding losses could be sensitive to reward scales. To avoid having to tune, per game, the weighting of these unnormalized components (4c), (4d), we compute losses in a non-linearly transformed space (Pohlen et al., 2018; van Hasselt et al., 2019), using the categorical reparametrization introduced by MuZero (Schrittwieser et al., 2020).

5. An empirical study

In this section, we investigate empirically the policy updates described in the Section 4. The full agent implementing our recommendations is named Muesli, as homage to MuZero. The Muesli policy loss is \(L_{\text{PG+CMPO}}(\pi, s) + L_m(\pi, s) \). All agents in this section are trained using the Sebulba podracer architecture (Hessel et al., 2021).

First, we use the 57 Atari games in the Arcade Learning Environment (Bellemare et al., 2013) to investigate the key design choices in Muesli, by comparing it to suitable baselines and ablations. We use sticky actions to make the environments stochastic (Machado et al., 2018). To ensure comparability, all agents use the same policy network, based on the IMPALA agent (Espeholt et al., 2018). When applicable, the model described in Section 4.3 is parametrized
by an LSTM (Hochreiter & Schmidhuber, 1997), with a diagram in Figure 10 in the appendix. Agents are trained using uniform experience replay, and estimate multi-step returns using Retrace (Munos et al., 2016).

In Figure 1a we compare the median human-normalized score on Atari achieved by Muesli to that of several baselines: policy gradients (in red), PPO (in green), MPO (in grey) and a policy gradient variant with TRPO-like KL(π_b, π) regularization (in orange). The updates for each baseline are reported in Appendix F, and the agents differed only in the policy components of the losses. In all updates we used the same normalization, and trained a MuZero-like model grounded in values and rewards. In MPO and Muesli, the policy loss included the policy model loss from Eq. 13. For each update, we separately tuned hyperparameters on 10 of the 57 Atari games. We found the performance on the full benchmark to be substantially higher for Muesli (in blue). In the next experiments we investigate how different design choices contributed to Muesli’s performance.

In Figure 4 we use the Atari games beam rider and gravitar to investigate advantage clipping. Here, we compare the updates that use clipped (in blue) and unclipped (in red) advantages, when first rescaling the advantages by factors ranging from 10^{-3} to 10^3 to simulate diverse return scales. Without clipping, performance was sensitive to scale, and degraded quickly when scaling advantages by a factor of 100 or more. With clipping, learning was almost unaffected by rescaling, without requiring more complicated solutions such as the constrained optimization introduced in related work to deal with this issue (Abdolmaleki et al., 2018).

In Figure 5 we show how Muesli combines the benefits of direct and indirect optimization. A direct MPO update uses the $\lambda \text{KL}(\pi, \pi_{\text{prior}})$ regularizer as a penalty; c.f. Mirror Descent Policy Optimization (Tomar et al., 2020). Indirect MPO first finds π_{MPO} from Eq. 6 and then trains the policy π by the distillation loss $\text{KL}(\tilde{\pi}_{\text{MPO}}, \pi)$. Note the different direction of the KLs. Vieillard et al. (2020) observed that the best choice between direct and indirect MPO is problem dependent, and we found the same: compare the ordering of direct MPO (in green) and indirect CMPO (in yellow) on the two Atari games alien and robotank. In contrast, we found that the Muesli policy update (in blue) was typically able to combine the benefits of the two approaches, by performing as well or better than the best among the two updates on each of the two games. See Figure 13 in the appendix for aggregate results across more games.

In Figure 6a we evaluate the importance of using multi-step bootstrapped returns and model-based action values in the policy-gradient-like component of Muesli’s update. Replacing the multi-step return with an approximate $\hat{q}_{\text{prior}}(s, a)$ (in red in Figure 6a) degraded the performance of Muesli (in blue) by a large amount, showing the importance of leveraging multi-step estimators. We also evaluated the role of model-based action value estimates q_{π} in the Retrace estimator, by comparing full Muesli to an ablation (in green) where we instead used model-free values \hat{v} in a V-trace estimator (Espeholt et al., 2018). The ablation performed worse.

In Figure 6b we compare the performance of Muesli when using different numbers of actions to estimate the KL term in Eq. 9. We found that the resulting agent performed well, in absolute terms (~ 300% median human normalized performance) when estimating the KL by sampling as little as a
Figure 7. Median score across 57 Atari games. (a) Muesli ablations that train one-step models (in green), or drop the policy component of the model (in red). (b) Muesli and two MCTS-baselines that act sampling from \(\pi_{MCTS} \) and learn using \(\pi_{MCTS} \) as target; all use the IMPALA policy network and an LSTM model.

single action (brown). Performance increased by sampling up to 16 actions, which was then comparable the exact KL.

In Figure 7a we show the impact of different parts of the model loss on representation learning. The performance degraded when only training the model for one step (in green). This suggests that training a model to support deeper unrolls (5 steps in Muesli, in blue) is a useful auxiliary task even if using only one-step look-aheads in the policy update. In Figure 7a we also show that performance degraded even further if the model was not trained to output policy predictions at each steps in the future, as per Eq. 13, but instead was only trained to predict rewards and values (in red). This is consistent with the value equivalence principle (Grimm et al., 2020): a rich signal from training models to support multiple predictions is critical for this kind of models.

In Figure 7b we compare Muesli to an MCTS baseline. As in MuZero, the baseline uses MCTS both for acting and learning. This is not a canonical MuZero, though, as it uses the (smaller) IMPALA network. MCTS (in purple) performed worse than Muesli (in blue) in this regime. We ran another MCTS variant with limited search depth (in green); this was better than full MCTS, suggesting that with insufficiently large networks, the model may not be sufficiently accurate to support deep search. In contrast, Muesli performed well even with these smaller models (3b).

Since we know from the literature that MCTS can be very effective in combination with larger models, in Figure 1b we reran Muesli with a much larger policy network and model, similar to that of MuZero. In this setting, Muesli matched the published performance of MuZero (the current state of the art on Atari in the 200M frames regime). Notably, Muesli achieved this without relying on deep search: it still sampled actions from the fast policy network and used one-step look-aheads in the policy update. We note that the resulting median score matches MuZero and is substantially higher than all other published agents, see Table 2 to compare the final performance of Muesli to other baselines.

Next, we evaluated Muesli on learning 9x9 Go from self-play. This requires to handle non-stationarity and a combinatorial space. It is also a domain where deep search (e.g. MCTS) has historically been critical to reach non-trivial performance. In Figure 8a we show that Muesli (in blue) still outperformed the strongest baselines from Figure 1a, as well as CMPO on its own (in yellow). All policies were evaluated against Pachi (Baudis & Gailly, 2011). Muesli reached a \(\sim 75\% \) win rate against Pachi: to the best of our knowledge, this is the first system to do so from self-play alone without deep search. In the Appendix we report even stronger win rates against GnuGo (Bump et al., 2005).

In Figure 8b, we compare Muesli to MCTS on Go; here, Muesli’s performance (in blue) fell short of that of the MCTS baseline (in purple), suggesting there is still value in using deep search for acting in some domains. This is demonstrated also by another Muesli variant that uses deep search at evaluation only. Such Muesli/MCTS[Eval] hybrid (in light blue) recovered part of the gap with the MCTS baseline, without slowing down training. For reference, with the pink vertical line we depicts published MuZero, with its even greater data efficiency thanks to more simulations, a different network, more replay, and early resignation.

Finally, we tested the same agents on MuJoCo environments in OpenAI Gym (Brockman et al., 2016), to test if Muesli can be effective on continuous domains and on smaller data budgets (2M frames). Muesli performed competitively. We refer readers to Figure 12, in the appendix, for the results.
Table 2. Median human-normalized score across 57 Atari games from the ALE, at 200M frames, for several published baselines. These results are sourced from different papers, thus the agents differ along multiple dimensions (e.g. network architecture and amount of experience replay). MuZero and Muesli both use a very similar network, the same proportion of replay, and both use the harder version of the ALE with sticky actions (Machado et al., 2018). The ± denotes the standard error over 2 random seeds.

AGENT	MEDIAN
DQN (Mnih et al., 2015)	79%
DreamerV2 (Hafner et al., 2020)	164%
IMPALA (Espeholt et al., 2018)	192%
Rainbow (Hessel et al., 2018)	231%
Meta-gradient{γ, λ} (Xu et al., 2018)	287%
STAC (Zahavy et al., 2020)	364%
LASER (Schmitt et al., 2020)	431%
MuZero Reanalyse (Schrittwieser et al., 2021)	1,047 ±40%
Muesli	1,041 ±40%

6. Conclusion

Starting from our desiderata for general policy optimization, we proposed an update (Muesli), that combines policy gradients with Maximum a Posteriori Policy Optimization (MPO) and model-based action values. We empirically evaluated the contributions of each design choice in Muesli, and compared the proposed update to related ideas from the literature. Muesli demonstrated state of the art performance on Atari (matching MuZero’s most recent results), without the need for deep search. Muesli even outperformed MCTS-based agents, when evaluated in a regime of smaller networks and/or reduced computational budgets. Finally, we found that Muesli could be applied out of the box to self-play 9x9 Go and continuous control problems, showing the generality of the update (although further research is needed to really push the state of the art in these domains). We hope that our findings will motivate further research in the rich space of algorithms at the intersection of policy gradient methods, regularized policy optimization and planning.

Acknowledgements

We would like to thank Manuel Kroiss and Iurii Kemaev for developing the research platform we use to run and distribute experiments at scale. Also we thank Dan Horgan, Alaa Saade, Nat McAleese and Charlie Beattie for their excellent help with reinforcement learning environments. Joseph Modayil improved the paper by wise comments and advice. Coding was made fun by the amazing JAX library (Bradbury et al., 2018), and the ecosystem around it (in particular the optimisation library Optax, the neural network library Haiku, and the reinforcement learning library Rlax). We thank the MuZero team at DeepMind for inspiring us.

References

Abdolmaleki, A., Springenberg, J. T., Tassa, Y., Munos, R., Heess, N., and Riedmiller, M. Maximum a Posteriori Policy Optimisation. In International Conference on Learning Representations, 2018.

Agarwal, A., Kakade, S. M., Lee, J. D., and Mahajan, G. On the Theory of Policy Gradient Methods: Optimality, Approximation, and Distribution Shift. arXiv e-prints, art. arXiv:1908.00261, August 2019.

Agarwal, A., Jiang, N., Kakade, S. M., and Sun, W. Reinforcement Learning: Theory and Algorithms, 2020. URL https://rltheorybook.github.io.

Åström, K. Optimal Control of Markov Processes with Incomplete State Information I. Journal of Mathematical Analysis and Applications, 10:174–205, 1965. ISSN 0022-247X.

Baudì, P. and Gallij, J.-l. Pachi: State of the art open source Go program. In Advances in computer games, pp. 24–38. Springer, 2011.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. The Arcade Learning Environment: An evaluation platform for general agents. JAIR, 2013.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., and Zhang, Q. JAX: composable transformations of Python+NumPy programs, 2018. URL http://github.com/google/jax.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba, W. OpenAI Gym. arXiv e-prints, art. arXiv:1606.01540, June 2016.

Bump et al. Gnugo, 2005. URL http://www.gnu.org/software/gnugo/gnugo.html.

Byravan, A., Springenberg, J. T., Abdolmaleki, A., Hafner, R., Neunert, M., Lampe, T., Siegel, N., Heess, N., and Riedmiller, M. Imagined value gradients: Model-based policy optimization with transferable latent dynamics models. In Conference on Robot Learning, pp. 566–589. PMLR, 2020.

Cobbe, K., Hilton, J., Klimov, O., and Schulman, J. Phasic Policy Gradient. arXiv e-prints, art. arXiv:2009.04416, September 2020.

Coulom, R. Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search. In Proceedings of the 5th International Conference on Computers and Games, CG’06, pp. 72–83, Berlin, Heidelberg, 2006. Springer-Verlag. ISBN 3540755373.
Dabney, W., Ostrovski, G., Silver, D., and Munos, R. Implicit Quantile Networks for Distributional Reinforcement Learning. In International Conference on Machine Learning, pp. 1096–1105, 2018.

Degris, T. and Modayil, J. Scaling-up Knowledge for a Cognizant Robot. In AAAI Spring Symposium: Designing Intelligent Robots, 2012.

Degris, T., Pilarski, P. M., and Sutton, R. S. Model-free reinforcement learning with continuous action in practice. In 2012 American Control Conference (ACC), pp. 2177–2182, 2012.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V., Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning, I., Legg, S., and Kavukcuoglu, K. IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures. In International Conference on Machine Learning, 2018.

Farquhar, G., Rocktäschel, T., Igl, M., and Whiteson, S. TreeQN and ATreeC: Differentiable tree-structured models for deep reinforcement learning. In International Conference on Learning Representations, volume 6. ICLR, 2018.

Fujimoto, S., Hoof, H., and Meger, D. Addressing function approximation error in actor-critic methods. In International Conference on Machine Learning, pp. 1582–1591, 2018.

Gregor, K., Jimenez Rezende, D., Besse, F., Wu, Y., Merzic, H., and van den Oord, A. Shaping belief states with generative environment models for rl. In Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Grill, J.-B., Altché, F., Tang, Y., Hubert, T., Valko, M., Antonoglou, I., and Munos, R. MCTS as regularized policy optimization. In International Conference on Machine Learning, 2020.

Grimm, C., Barreto, A., Singh, S., and Silver, D. The value equivalence principle for model-based reinforcement learning. Advances in Neural Information Processing Systems, 33, 2020.

Gruslys, A., Dabney, W., Azar, M. G., Piot, B., Bellemare, M., and Munos, R. The Reactor: A fast and sample-efficient Actor-Critic agent for Reinforcement Learning. In International Conference on Learning Representations, 2018.

Guez, A., Mirza, M., Gregor, K., Kabra, R., Racanière, S., Weber, T., Raposo, D., Santoro, A., Orseau, L., Eccles, T., et al. An investigation of model-free planning. arXiv preprint arXiv:1901.03559, 2019.

Guez, A., Viola, F., Weber, T., Buesing, L., Kapturowski, S., Precup, D., Silver, D., and Heess, N. Value-driven hindsight modelling. In Advances in Neural Information Processing Systems, 2020.

Guo, Z. D., Gheshlaghi Azar, M., Piot, B., Pires, B. A., and Munos, R. Neural Predictive Belief Representations. arXiv e-prints, art. arXiv:1811.06407, November 2018.

Guo, Z. D., Pires, B. A., Piot, B., Grill, J.-B., Altché, F., Munos, R., and Azar, M. G. Bootstrap latent-predictive representations for multitask reinforcement learning. In International Conference on Machine Learning, pp. 3875–3886. PMLR, 2020.

Ha, D. and Schmidhuber, J. Recurrent world models facilitate policy evolution. In Advances in Neural Information Processing Systems, volume 31, pp. 2450–2462. Curran Associates, Inc., 2018.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P., and Levine, S. Soft Actor-Critic Algorithms and Applications. arXiv e-prints, art. arXiv:1812.05905, December 2018.

Hafner, D., Lillicrap, T., Norouzi, M., and Ba, J. Mastering Atari with Discrete World Models. arXiv e-prints, art. arXiv:2010.02193, October 2020.

Hamrick, J. B. Analogues of mental simulation and imagination in deep learning. Current Opinion in Behavioral Sciences, 29:8–16, 2019.

Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Pfaff, T., Weber, T., Buesing, L., and Battaglia, P. W. Combining q-learning and search with amortized value estimates. In International Conference on Learning Representations, 2020a.

Hamrick, J. B., Friesen, A. L., Behbahani, F., Guez, A., Viola, F., Witherspoon, S., Anthony, T., Buesing, L., Velickovic, P., and Weber, T. On the role of planning in model-based deep reinforcement learning. arXiv preprint arXiv:2011.04021, 2020b.

Hessel, M., Modayil, J., van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan, D., Piot, B., Azar, M. G., and Silver, D. Rainbow: Combining improvements in deep reinforcement learning. AAAI Conference on Artificial Intelligence, 2018.

Hessel, M., van Hasselt, H., Modayil, J., and Silver, D. On Inductive Biases in Deep Reinforcement Learning. arXiv e-prints, art. arXiv:1907.02908, July 2019.

Hessel, M., Kroiss, M., Clark, A., Kemaev, I., Quan, J., Keck, T., Viola, F., and van Hasselt, H. Podracer architectures for scalable reinforcement learning. arXiv e-prints, April 2021.
Hochreiter, S. and Schmidhuber, J. Long short-term memory. *Neural computation*, 9(8):1735–1780, 1997.

Hubert, T., Schrittwieser, J., Antonoglou, I., Barekatain, M., Schmitt, S., and Silver, D. Learning and Planning in Complex Action Spaces. *arXiv e-prints*, April 2021.

Jaakkola, T., Singh, S. P., and Jordan, M. I. Reinforcement learning algorithm for partially observable Markov decision problems. In *Advances in Neural Information Processing Systems*, pp. 345–352, Cambridge, MA, USA, 1994. MIT Press.

Jaderberg, M., Mnih, V., Czarnecki, W. M., Schaul, T., Leibo, J. Z., Silver, D., and Kavukcuoglu, K. Reinforcement learning with unsupervised auxiliary tasks. In *International Conference on Learning Representations*, 2017.

Janner, M., Fu, J., Zhang, M., and Levine, S. When to Trust Your Model: Model-Based Policy Optimization. *arXiv e-prints*, art. arXiv:1906.08253, June 2019.

Kaelbling, L. P. and Lozano-Pérez, T. Hierarchical task and motion planning in the now. In *Proceedings of the 1st AAAI Conference on Bridging the Gap Between Task and Motion Planning*, AAAIWS’10-01, pp. 33–42. AAAI Press, 2010.

Kaiser, L., Babaeizadeh, M., Milos, P., Osinski, B., Campbell, R. H., Czechowski, K., Erhan, D., Finn, C., Kozakowski, P., Levine, S., Mohiuddin, A., Sepassi, R., Tucker, G., and Michalewski, H. Model-Based Reinforcement Learning for Atari. *arXiv e-prints*, art. arXiv:1903.00374, March 2019.

Kakade, S. and Langford, J. Approximately optimal approximate reinforcement learning. In *International Conference on Machine Learning*, volume 2, pp. 267–274, 2002.

Kakade, S. M. A natural policy gradient. *Advances in Neural Information Processing Systems*, 14:1531–1538, 2001.

Kingma, D. P. and Ba, J. Adam: A Method for Stochastic Optimization. *arXiv e-prints*, art. arXiv:1412.6980, December 2014.

Kingma, D. P. and Welling, M. Auto-Encoding Variational Bayes. *arXiv e-prints*, art. arXiv:1312.6114, December 2013.

Lanctot, M., Lockhart, E., Lespiau, J.-B., Zambaldi, V., Upadhyay, S., Pérolat, J., Srinivasan, S., Timbers, F., Tuyls, K., Omidshafiei, S., Hennes, D., Morrill, D., Muller, P., Ewalds, T., Faulkner, R., Kramár, J., De Vrynder, B., Saeta, B., Bradbury, J., Ding, D., Borgeaud, S., Lai, M., Schrittwieser, J., Anthony, T., Hughes, E., Danihelka, I., and Ryan-Davis, J. OpenSpiel: A Framework for Reinforcement Learning in Games. *arXiv e-prints*, art. arXiv:1908.09453, August 2019.

Levine, S., Kumar, A., Tucker, G., and Fu, J. Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems. *arXiv e-prints*, art. arXiv:2005.01643, May 2020.

Lin, L.-J. Self-improving reactive agents based on reinforcement learning, planning and teaching. *Mach. Learn.*, 8 (3–4):293–321, May 1992. ISSN 0885-6125.

Loshchilov, I. and Hutter, F. Decoupled Weight Decay Regularization. *arXiv e-prints*, art. arXiv:1711.05101, November 2017.

Machado, M. C., Bellemare, M. G., Talvitie, E., Veness, J., Hausknecht, M., and Bowling, M. Revisiting the arcade learning environment: Evaluation protocols and open problems for general agents. *Journal of Artificial Intelligence Research*, 61:523–562, 2018.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., and Hassabis, D. Human-level control through deep reinforcement learning. *Nature*, 2015.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., and Kavukcuoglu, K. Asynchronous methods for deep reinforcement learning. In *International Conference on Machine Learning*, pp. 1928–1937, 2016.

Moerland, T. M., Broekens, J., and Jonker, C. M. Model-based Reinforcement Learning: A Survey. *arXiv e-prints*, art. arXiv:2006.16712, June 2020.

Munos, R., Stepleton, T., Harutyunyan, A., and Bellemare, M. Safe and efficient off-policy reinforcement learning. In *Advances in Neural Information Processing Systems*, vol. 30. Curran Associates, Inc., 2017.

Oh, J., Guo, X., Lee, H., Lewis, R. L., and Singh, S. Action-conditioned video prediction using deep networks in Atari games. In *Advances in Neural Information Processing Systems*, pp. 2845–2853. Curran Associates, Inc., 2015.

Oh, J., Singh, S., and Lee, H. Value prediction network. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R. (eds.), *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc., 2017.

Papamakarios, G., Nalisnick, E., Jimenez Rezende, D., Mohamed, S., and Lakshminarayanan, B. Normalizing Flows for Probabilistic Modeling and Inference. *arXiv e-prints*, art. arXiv:1912.02762, December 2019.
Pascaru, R., Li, Y., Vinyals, O., Heess, N., Buesing, L., Racanière, S., Reichert, D., Weber, T., Wierstra, D., and Battaglia, P. Learning model-based planning from scratch. \textit{arXiv e-prints}, art. arXiv:1707.06170, July 2017.

Pohlen, T., Piot, B., Hester, T., Gheshlaghi Azar, M., Horgan, D., Budden, D., Barth-Maron, G., van Hasselt, H., Quan, J., Vecherik, M., Hessel, M., Munos, R., and Pietquin, O. Observe and Look Further: Achieving Consistent Performance on Atari. \textit{arXiv e-prints}, art. arXiv:1805.11593, May 2018.

Racanière, S., Weber, T., Reichert, D., Buesing, L., Guez, A., Jimenez Rezende, D., Puigdomènech Badia, A., Vinyals, O., Heess, N., Li, Y., Pascaru, R., Battaglia, P., Hassabis, D., Silver, D., and Wierstra, D. Imagination- augmented agents for deep reinforcement learning. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R. (eds.), \textit{Advances in Neural Information Processing Systems}, volume 30. Curran Associates, Inc., 2017.

Rezende, D. J., Mohamed, S., and Wierstra, D. Stochastic backpropagation and approximate inference in deep generative models. In Xing, E. P. and Jebara, T. (eds.), \textit{Proceedings of the 31st International Conference on Machine Learning}, volume 32 of \textit{Proceedings of Machine Learning Research}, pp. 1278–1286, Beijing, China, 22–24 Jun 2014. PMLR.

Rezende, D. J., Danihelka, I., Papamakarios, G., Ke, N. R., Jiang, R., Weber, T., Gregor, K., Merzic, H., Viola, F., Wang, J., Mitrovic, J., Besse, F., Antonoglou, I., and Buesing, L. Causally Correct Partial Models for Reinforcement Learning. \textit{arXiv e-prints}, art. arXiv:2002.02836, February 2020.

Richalet, J., Rault, A., Testud, J. L., and Papon, J. Paper: Model predictive heuristic control. \textit{Automatica}, 14(5): 413–428, September 1978. ISSN 0005-1098.

Riedmiller, M. Neural fitted Q iteration – first experiences with a data efficient neural reinforcement learning method. In \textit{Proceedings of the 16th European Conference on Machine Learning}, ECML’05, pp. 317–328, Berlin, Heidelberg, 2005. Springer-Verlag. ISBN 3540292438.

Rummary, G. A. and Niranjan, M. On-line Q-learning using connectionist systems. Technical Report TR 166, Cambridge University Engineering Department, Cambridge, England, 1994.

Schmidhuber, J. An on-line algorithm for dynamic reinforcement learning and planning in reactive environments. In \textit{In Proc. IEEE/INNS International Joint Conference on Neural Networks}, pp. 253–258. IEEE Press, 1990.

Schmitt, S., Hessel, M., and Simonyan, K. Off-Policy Actor-Critic with Shared Experience Replay. In \textit{International Conference on Machine Learning}, volume 119, pp. 8545–8554, Virtual, 13–18 Jul 2020. PMLR.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S., Guez, A., Lockhart, E., Hassabis, D., Graepel, T., Lillicrap, T., and Silver, D. Mastering Atari, Go, chess and shogi by planning with a learned model. \textit{Nature}, 588(7839):604–609, Dec 2020. ISSN 1476-4687.

Schrittwieser, J., Hubert, T., Mandhane, A., Barekatain, M., Antonoglou, I., and Silver, D. Online and offline reinforcement learning by planning with a learned model. \textit{arXiv e-prints}, April 2021.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. Trust Region Policy Optimization. In \textit{International Conference on Machine Learning}, pp. 1889–1897, 2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. Proximal Policy Optimization Algorithms. \textit{arXiv e-prints}, art. arXiv:1707.06347, July 2017.

Silver, D. and Veness, J. Monte-Carlo Planning in Large POMDPs. In \textit{Advances in Neural Information Processing Systems}, volume 23, pp. 2164–2172. Curran Associates, Inc., 2010.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M. Deterministic policy gradient algorithms. In \textit{International Conference on Machine Learning}, pp. 387–395. JMLR.org, 2014.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., and Hassabis, D. Mastering the game of Go with deep neural networks and tree search. \textit{Nature}, 529(7587):484–489, January 2016.

Silver, D., van Hasselt, H., Hessel, M., Schaul, T., Guez, A., Harley, T., Dulac-Arnold, G., Reichert, D., Rabinowitz, N., Barreto, A., and Degris, T. The predictron: End-to-end learning and planning. In Precup, D. and Teh, Y. W. (eds.), \textit{Proceedings of the 34th International Conference on Machine Learning}, volume 70 of \textit{Proceedings of Machine Learning Research}, pp. 3191–3199. PMLR, 06–11 Aug 2017.

Singh, S. P., Jaakkola, T., and Jordan, M. I. Learning without state-estimation in partially observable Markovian decision processes. In \textit{Machine Learning Proceedings 1994}, pp. 284–292. Elsevier, 1994.
Springenberg, J. T., Heess, N., Mankowitz, D., Merel, J., Byravan, A., Abdolmaleki, A., Kay, J., Degrawe, J., Schrittwieser, J., Tassa, Y., Buchli, J., Belov, D., and Riedmiller, M. Local Search for Policy Iteration in Continuous Control. *arXiv e-prints*, art. arXiv:2010.05545, October 2020.

Srinivas, A., Jabri, A., Abbeel, P., Levine, S., and Finn, C. Universal planning networks: Learning generalizable representations for visuomotor control. In *International Conference on Machine Learning*, pp. 4732–4741. PMLR, 2018.

Sutton, R. S. Learning to predict by the methods of temporal differences. *Machine learning*, 1988.

Sutton, R. S. Integrated architectures for learning, planning and reacting based on dynamic programming. In *Machine Learning: Proceedings of the Seventh International Workshop*, 1990.

Sutton, R. S. and Barto, A. G. *Reinforcement learning: An introduction*. MIT press, 2018.

Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour, Y. Policy gradient methods for reinforcement learning with function approximation. In *Advances in Neural Information Processing Systems*, pp. 1057–1063, 2000.

Sutton, R. S., Modayil, J., Delp, M., Degris, T., Pilarski, P. M., White, A., and Precup, D. Horde: A scalable real-time architecture for learning knowledge from unsupervised sensorimotor interaction. In *The 10th International Conference on Autonomous Agents and Multiagent Systems-Volume 2*, pp. 761–768. International Foundation for Autonomous Agents and Multiagent Systems, 2011.

Tamar, A., WU, Y., Thomas, G., Levine, S., and Abbeel, P. Value iteration networks. In Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., and Garnett, R. (eds.), *Advances in Neural Information Processing Systems*, volume 29. Curran Associates, Inc., 2016.

Tesauro, G. Temporal difference learning and TD-Gammon. *Communications of the ACM*, 38(3):58–68, March 1995.

Tomar, M., Shani, L., Efroni, Y., and Ghavamzadeh, M. Mirror Descent Policy Optimization. *arXiv e-prints*, art. arXiv:2005.09814, May 2020.

van Hasselt, H. and Sutton, R. S. Learning to Predict Independent of Span. *arXiv e-prints*, art. arXiv:1508.04582, August 2015.

van Hasselt, H. and Wiering, M. A. Reinforcement learning in continuous action spaces. In *2007 IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning*, pp. 272–279. IEEE, 2007.
Muesli Supplement

Content

• A - Stochastic estimation details
• B - The illustrative MDP example
• C - The motivation behind Conservative Policy Iteration and TRPO
• D - Proof of Maximum CMPO total variation distance
• E - Extended related work
• F - Experimental details
• G - Additional experiments

A. Stochastic estimation details

In the policy-gradient term in Eq. 10, we clip the importance weight \(\frac{\pi(A|s)}{\pi_b(A|s)} \) to be from \([0, 1]\). The importance weight clipping introduces a bias. To correct for it, we use \(\beta\)-LOO action-dependent baselines (Gruslys et al., 2018).

Although the \(\beta\)-LOO action-dependent baselines were not significant in the Muesli results, the \(\beta\)-LOO was helpful for the policy gradients with the TRPO penalty (Figure 16).

![Diagram](image)

Figure 9. The episodic MDP from Figure 2, reproduced here for an easier reference. State 1 is the initial state. State 4 is terminal. The discount is 1.

B. The illustrative MDP example

Here we will analyze the values and the optimal policy for the MDP from Figure 9, when using the identical state representation \(\phi(s) = \emptyset\) in all states. With the state representation \(\phi(s)\), the policy is restricted to be the same in all states. Let’s denote the probability of the up action by \(p\).
Given the policy \(p = \pi(up|\phi(s)) \), the following are the values of the different states:

\[
\begin{align*}
v_\pi(3) &= p + (1 - p)(-1) = 2p - 1 \\
v_\pi(2) &= p \cdot (-1) + (1 - p) = -2p + 1 \\
v_\pi(1) &= p \cdot (1 + v_\pi(2)) + (1 - p)v_\pi(3) \\
&= -4p^2 + 5p - 1.
\end{align*}
\] (15) (16) (17) (18)

Finding the optimal policy. Our objective is to maximize the value of the initial state. That means maximizing \(v_\pi(1) \). We can find the maximum by looking at the derivatives. The derivative of \(v_\pi(1) \) with respect to the policy parameter is:

\[
\frac{dv_\pi(1)}{dp} = -8p + 5.
\] (19)

The second derivative is negative, so the maximum of \(v_\pi(1) \) is at the point where the first derivative is zero. We conclude that the maximum of \(v_\pi(1) \) is at \(p^* = \frac{5}{8} \).

Finding the action values of the optimal policy. We will now find the \(q_\pi^*(\phi(s), up) \) and \(q_\pi^*(\phi(s), down) \). The \(q_\pi(\phi(s), a) \) is defined as the expected return after the \(\phi(s) \), when doing the action \(a \) (Singh et al., 1994):

\[
q_\pi(\phi(s), a) = \sum_{s'} P_\pi(s'|\phi(s))q_\pi(s', a),
\] (20)

where \(P_\pi(s'|\phi(s)) \) is the probability of being in the state \(s' \) when observing \(\phi(s) \).

In our example, the Q-values are:

\[
q_\pi(\phi(s), up) = \frac{1}{2}(1 + v_\pi(2)) + \frac{1}{2}p \cdot (-1) + \frac{1}{2}(1 - p)
\] (21)

\[
= -2p + \frac{3}{2}
\] (22)

\[
q_\pi(\phi(s), down) = \frac{1}{2}v_\pi(3) + \frac{1}{2}p + \frac{1}{2}(1 - p)\cdot (-1)
\] (23)

\[
= 2p - 1
\] (24)

We can now substitute the \(p^* = \frac{5}{8} \) in for \(p \) to find the \(q_\pi^*(\phi(s), up) \) and \(q_\pi^*(\phi(s), down) \):

\[
q_\pi^*(\phi(s), up) = \frac{1}{4}
\] (25)

\[
q_\pi^*(\phi(s), down) = \frac{1}{4}.
\] (26)

We see that these Q-values are the same and uninformative about the probabilities of the optimal (memory-less) stochastic policy. This generalizes to all environments: the optimal policy gives zero probability to all actions with lower Q-values. If the optimal policy \(\pi^*(\cdot|\phi(s)) \) at a given state representation gives non-zero probabilities to some actions, these actions must have the same Q-values \(q_\pi^*(\phi(s), a) \).

Bootstrapping from \(v_\pi(\phi(s)) \) would be worse. We will find the \(v_\pi(\phi(s)) \). And we will show that bootstrapping from it would be misleading. In our example, the \(v_\pi(\phi(s)) \) is:

\[
v_\pi(\phi(s)) = \frac{1}{2}v_\pi(1) + \frac{1}{2}pv_\pi(2) + \frac{1}{2}(1 - p)v_\pi(3)
\] (27)

\[
= -4p^2 + \frac{9}{2}p - 1.
\] (28)

We can notice that \(v_\pi(\phi(s)) \) is different from \(v_\pi(2) \) or \(v_\pi(3) \). Estimating \(q_\pi(\phi(s), up) \) by bootstrapping from \(v_\pi(\phi(2)) \) instead of \(v_\pi(2) \) would be misleading. Here, it is better to estimate the Q-values based on Monte-Carlo returns.
C. The motivation behind Conservative Policy Iteration and TRPO

In this section we will show that unregularized maximization of $E_{A \sim \pi(a|s)} \left[q_{\pi} (s, A) \right]$ on data from an older policy π_{prior} can produce a policy worse than π_{prior}. The size of the possible degradation will be related to the total variation distance between π and π_{prior}. The explanation is based on the proofs from the excellent book by Agarwal et al. (2020).

As before, our objective is to maximize the expected value of the states from an initial state distribution μ:

$$J(\pi) = E_{S \sim \mu} \left[v_{\pi} (S) \right].$$

(29)

It will be helpful to define the discounted state visitation distribution $d_{\pi}(s)$ as:

$$d_{\pi}(s) = (1 - \gamma) E_{S_0 \sim \mu} \left[\sum_{t=0}^{\infty} \gamma^t P(S_t = s| \pi, S_0) \right],$$

(30)

where $P(S_t = s| \pi, S_0)$ is the probably of S_t being s, if starting the episode from S_0 and following the policy π. The scaling by $(1 - \gamma)$ ensures that $d_{\pi}(s)$ sums to one.

From the policy gradient theorem (Sutton et al., 2000) we know that the gradient of $J(\pi)$ with respect to the policy parameters is

$$\frac{\partial J}{\partial \theta} = \frac{1}{1 - \gamma} \sum_s d_{\pi}(s) \sum_a \frac{\partial \pi(a|s)}{\partial \theta} q_{\pi} (s, a).$$

(31)

In practice, we often train on data from an older policy π_{prior}. Training on such data maximizes a different function:

$$\text{TotalAdv}_{\pi_{\text{prior}}} (\pi) = \frac{1}{1 - \gamma} \sum_s d_{\pi_{\text{prior}}}(s) \sum_a \pi(a|s) \text{adv}_{\pi_{\text{prior}}} (s, a),$$

(32)

where $\text{adv}_{\pi_{\text{prior}}}(s, a) = q_{\pi_{\text{prior}}}(s, a) - v_{\pi_{\text{prior}}}(s)$ is an advantage. Notice that the states are sampled from $d_{\pi_{\text{prior}}}(s)$ and the policy is criticized by $\text{adv}_{\pi_{\text{prior}}}(s, a)$. This happens often in the practice, if updating the policy multiple times in an episode, using a replay buffer or bootstrapping from a network trained on past data.

While maximization of $\text{TotalAdv}_{\pi_{\text{prior}}} (\pi)$ is more practical, we will see that unregularized maximization of $\text{TotalAdv}_{\pi_{\text{prior}}} (\pi)$ does not guarantee an improvement in our objective J. The $J(\pi) - J(\pi_{\text{prior}})$ difference can be even negative, if we are not careful.

Kakade & Langford (2002) stated a useful lemma for the performance difference:

Lemma C.1 (The performance difference lemma) *For all policies π, π_{prior},

$$J(\pi) - J(\pi_{\text{prior}}) = \frac{1}{1 - \gamma} \sum_s d_{\pi_{\text{prior}}}(s) \sum_a \pi(a|s) \text{adv}_{\pi_{\text{prior}}} (s, a).$$

(33)

We would like the $J(\pi) - J(\pi_{\text{prior}})$ to be positive. We can express the performance difference as $\text{TotalAdv}_{\pi_{\text{prior}}} (\pi)$ plus an extra term:

$$J(\pi) - J(\pi_{\text{prior}}) = \text{TotalAdv}_{\pi_{\text{prior}}} (\pi) - \text{TotalAdv}_{\pi_{\text{prior}}} (\pi) + \frac{1}{1 - \gamma} \sum_s d_{\pi}(s) \sum_a \pi(a|s) \text{adv}_{\pi_{\text{prior}}} (s, a)$$

(34)

$$= \text{TotalAdv}_{\pi_{\text{prior}}} (\pi) + \frac{1}{1 - \gamma} \sum_s (d_{\pi}(s) - d_{\pi_{\text{prior}}}(s)) \sum_a \pi(a|s) \text{adv}_{\pi_{\text{prior}}} (s, a)$$

(35)

$$= \text{TotalAdv}_{\pi_{\text{prior}}} (\pi) + \frac{1}{1 - \gamma} \sum_s (d_{\pi}(s) - d_{\pi_{\text{prior}}}(s)) \sum_a (\pi(a|s) - \pi_{\text{prior}}(a|s)) \text{adv}_{\pi_{\text{prior}}} (s, a).$$

(36)

To get a positive $J(\pi) - J(\pi_{\text{prior}})$ performance difference, it is not enough to maximize $\text{TotalAdv}_{\pi_{\text{prior}}} (\pi)$. We also need to make sure that the second term in (36) will not degrade the performance. The impact of the second term can be kept small by keeping the total variation distance between π and π_{prior} small.
For example, the performance can degrade, if \(\pi \) is not trained at a state and that state gets a higher \(d_\pi(s) \) probability. The performance can also degrade, if a stochastic policy is needed and the \(\text{adv}_{\pi_{\text{prior}}} \) advantages are for an older policy. The \(\pi \) would become deterministic, if maximizing \(\sum_a \pi(a|s) \text{adv}_{\pi_{\text{prior}}}(s, a) \) without any regularization.

C.1. Performance difference lower bound.

We will express a bound of the performance difference as a function of the total variation between \(\pi \) and \(\pi_{\text{prior}} \). Starting from Eq. 36, we can derive the TRPO lower bound for the performance difference. Let \(\alpha \) be the maximum total variation distance between \(\pi \) and \(\pi_{\text{prior}} \):

\[
\alpha = \max_s \frac{1}{2} \sum_a |\pi(a|s) - \pi_{\text{prior}}(a|s)|.
\]

The \(\|d_\pi - d_{\pi_{\text{prior}}}\|_1 \) is then bounded (see Agarwal et al., 2020, Similar policies imply similar state visitations):

\[
\|d_\pi - d_{\pi_{\text{prior}}}\|_1 \leq \frac{2\alpha \gamma}{1 - \gamma}.
\]

Finally, by plugging the bounds to Eq. 36, we can construct the lower bound for the performance difference:

\[
J(\pi) - J(\pi_{\text{prior}}) \geq \text{TotalAdv}_{\pi_{\text{prior}}}(\pi) - \frac{4\alpha^2 \gamma \epsilon_{\text{max}}}{(1 - \gamma)^2},
\]

where \(\epsilon_{\text{max}} = \max_{s,a} |\text{adv}_{\pi_{\text{prior}}}(s, a)| \). The same bound was derived in TRPO (Schulman et al., 2015).

D. Proof of Maximum CMPO total variation distance

We will prove the following theorem: For any clipping threshold \(c > 0 \), we have:

\[
\max_{\pi_{\text{prior}}, \text{adv}, s} D_{TV}(\pi_{\text{CMPO}}(\cdot|s), \pi_{\text{prior}}(\cdot|s)) = \tanh\left(\frac{c}{2}\right).
\]

Having 2 actions. We will first prove the theorem when the policy has 2 actions. To maximize the distance, the clipped advantages will be \(-c\) and \(c\). Let’s denote the \(\pi_{\text{prior}} \) probabilities associated with these advantages as \(1 - p\) and \(p\), respectively.

The total variation distance is then:

\[
D_{TV}(\pi_{\text{CMPO}}(\cdot|s), \pi_{\text{prior}}(\cdot|s)) = \frac{p \exp(c)}{p \exp(c) + (1 - p) \exp(-c)} - p.
\]

We will maximize the distance with respect to the parameter \(p \in [0, 1] \).

The first derivative with respect to \(p \) is:

\[
\frac{d D_{TV}(\pi_{\text{CMPO}}(\cdot|s), \pi_{\text{prior}}(\cdot|s))}{dp} = \frac{1}{(p \exp(c) + (1 - p) \exp(-c))^2} - 1.
\]

The second derivative with respect to \(p \) is:

\[
\frac{d^2 D_{TV}(\pi_{\text{CMPO}}(\cdot|s), \pi_{\text{prior}}(\cdot|s))}{dp^2} = -2(p \exp(c) + (1 - p) \exp(-c))^{-3}(\exp(c) - \exp(-c)).
\]

Because the second derivative is negative, the distance is a concave function of \(p \). We will find the maximum at the point where the first derivative is zero. The solution is:

\[
p^* = \frac{1 - \exp(-c)}{\exp(c) - \exp(-c)}.
\]
At the found point p^*, the maximum total variation distance is:

$$
\max_p D_{TV}(\pi_{\text{CMPO}}(\cdot|s), \pi_{\text{prior}}(\cdot|s)) = \exp(c) - 1 \over \exp(c) + 1 = \tanh\left(\frac{c}{2}\right). \quad (44)
$$

This completes the proof when having 2 actions.

Having any number of actions. We will now prove the theorem when the policy has any number of actions. To maximize the distance, the clipped advantages will be $-c$ or c. Let’s denote the sum of π_{prior} probabilities associated with these advantages as $1 - p$ and p, respectively.

The total variation distance is again:

$$
D_{TV}(\pi_{\text{CMPO}}(\cdot|s), \pi_{\text{prior}}(\cdot|s)) = \frac{p \exp(c)}{p \exp(c) + (1 - p) \exp(-c)} - p, \quad (45)
$$

and the maximum distance is again $\tanh\left(\frac{c}{2}\right)$.

We also verified the theorem predictions experimentally, by using gradient ascent to maximize the total variation distance.

E. Extended related work

We used the desiderata to motivate the design of the policy update. We will use the desiderata again to discuss the related methods to satisfy the desiderata. For a comprehensive overview of model-based reinforcement learning, we recommend the surveys by Moerland et al. (2020) and Hamrick (2019).

E.1. Observability and function approximation

1a) **Support learning stochastic policies.** The ability to learn a stochastic policy is one of the benefits of policy gradient methods.

1b) **Leverage Monte-Carlo targets.** Muesli uses multi-step returns to train the policy network and Q-values. MPO and MuZero need to train the Q-values, before using the Q-values to train the policy.

E.2. Policy representation

2a) **Support learning the optimal memory-less policy.** Muesli represents the stochastic policy by the learned policy network. In principle, acting can be based on a combination of the policy network and the Q-values. For example, one possibility is to act with the π_{CMPO} policy. ACER (Wang et al., 2016) used similar acting based on π_{MPO}. Although we have not seen benefits from acting based on π_{CMPO} on Atari (Figure 15), we have seen better results on Go with a deeper search at the evaluation time.

2b) **Scale to (large) discrete action spaces.** Muesli supports large actions spaces, because the policy loss can be estimated by sampling. MCTS is less suitable for large action spaces. This was addressed by Grill et al. (2020), who brilliantly revealed MCTS as regularized policy optimization and designed a tree search based on MPO or a different regularized policy optimization. The resulting tree search was less affected by a small number of simulations. Muesli is based on this view of regularized policy optimization as an alternative to MCTS. In another approach, MuZero was recently extended to support sampled actions and continuous actions (Hubert et al., 2021).

2c) **Scale to continuous action spaces.** Although we used the same estimator of the policy loss for discrete and continuous actions, it would be possible to exploit the structure of the continuous policy. For example, the continuous policy can be represented by a normalizing flow (Papamakarios et al., 2019) to model the joint distribution of the multi-dimensional actions. The continuous policy would also allow to estimate the gradient of the policy regularizer with the reparameterization trick (Kingma & Welling, 2013; Rezende et al., 2014). Soft Actor-Critic (Haarnoja et al., 2018) and TD3 (Fujimoto et al., 2018) achieved great results on the Mujoco tasks by obtaining the gradient with respect to the action from an ensemble of approximate Q-functions. The ensemble of Q-functions would probably improve Muesli results.
E.3. Robust learning

3a) Support off-policy and historical data. Muesli supports off-policy data thanks to the regularized policy optimization, Retrace (Munos et al., 2016) and policy gradients with clipped importance weights (Gruslys et al., 2018). Many other methods deal with off-policy or offline data (Levine et al., 2020). Recently MuZero Reanalyse (Schrittwieser et al., 2021) achieved state-of-the-art results on an offline RL benchmark by training only on the offline data.

3b) Deal gracefully with inaccuracies in the values/model. Muesli does not trust fully the Q-values from the model. Muesli combines the Q-values with the prior policy to propose a new policy with a constrained total variation distance from the prior policy. Without the regularized policy optimization, the agent can be misled by an overestimated Q-value for a rarely taken action. Soft Actor-Critic (Haarnoja et al., 2018) and TD3 (Fujimoto et al., 2018) mitigate the overestimation by taking the minimum from a pair of Q-networks. In model-based reinforcement learning an unrolled one-step model would struggle with compounding errors (Janner et al., 2019). VPN (Oh et al., 2017) and MuZero (Schrittwieser et al., 2020) avoid compounding errors by using multi-step predictions \(P(R_{t+k+1}|s_t, a_t, a_{t+1}, \ldots, a_{t+k}) \), not conditioned on previous model predictions. While VPN and MuZero avoid compounding errors, these models are not suitable for planning a sequence of actions in a stochastic environment. In the stochastic environment, the sequence of actions needs to depend on the occurred stochastic events, otherwise the planning is confounded and can under- or overestimate the state value (Rezende et al., 2020). Other models conditioned on limited information from generated (latent) variables can face similar problems on stochastic environment (e.g. DreamerV2 (Hafner et al., 2020)). Muesli is suitable for stochastic environments, because Muesli uses only one-step look-ahead. If combining Muesli with a deep search, we can use an adaptive search depth or a stochastic model sufficient for causally correct planning (Rezende et al., 2020). Another class of models deals with model errors by using the model as a part of the Q-network or policy network and trains the whole network end-to-end. These networks include VIN (Tamar et al., 2016), Predictron (Silver et al., 2017), I2A (Racanière et al., 2017), IBP (Pascanu et al., 2017), TreeQN, ATreeC (Farquhar et al., 2018) (with scores in Table 3), ACE (Zhang & Yao, 2019), UPN (Srinivas et al., 2018) and implicit planning with DRC (Guez et al., 2019).

3c) Be robust to diverse reward scales. Muesli benefits from the normalized advantages and from the advantage clipping inside \(\pi_{\text{CMPO}} \). Pop-Art (van Hasselt et al., 2016) addressed learning values across many orders of magnitude. On Atari, the score of the games vary from 21 on Pong to 1M on Atlantis. The non-linear transformation by Pohlen et al. (2018) is practically very helpful, although biased for stochastic returns.

3d) Avoid problem-dependent hyperparameters. The normalized advantages were used before in PPO (Schulman et al., 2017). The maximum CMPO total variation (Theorem 4.1) helps to explain the success of such normalization. If the normalized advantages are from \([-c, c]\), they behave like advantages clipped to \([-c, c]\). Notice that the regularized policy optimization with the popular \(-H[\pi]\) entropy regularizer is equivalent to MPO with uniform \(\pi_{\text{prior}} \) (because \(-H[\pi] = \text{KL}(\pi, \pi_{\text{uniform}}) + \text{const.}\)). As a simple modification, we recommend to replace the uniform prior with \(\pi_{\text{prior}} \) based on a target network. That leads to the model-free direct MPO with normalized advantages, outperforming vanilla policy gradients (compare Figure 13 to Figure 1a).

E.4. Rich representation of knowledge

4a) Estimate values (variance reduction, bootstrapping). In Muesli, the learned values are helpful for bootstrapping Retrace returns, for computing the advantages and for constructing the \(\pi_{\text{CMPO}} \). Q-values can be also helpful inside a search, as demonstrated by Hamrick et al. (2020a).

4b) Learn a model (representation, composability). Multiple works demonstrated benefits from learning a model. Like VPN and MuZero, Gregor et al. (2019) learns a multi-step action-conditional model; they learn the distribution of observations instead of actions and rewards, and focus on the benefits of representation learning in model-free RL induced by model-learning; see also (Guo et al., 2018; Guo et al., 2020). Springenberg et al. (2020) study an algorithm similar to MuZero with an MPO-like learning signal on the policy (similarly to SAC and Grill et al. (2020)) and obtain strong results on Mujoco tasks in a transfer setting. Byravan et al. (2020) use a multi-step action model to derive a learning signal for policies on continuous-valued actions, leveraging the differentiability of the model and of the policy. Kaiser et al. (2019) show how to use a model for increasing data-efficiency on Atari (using an algorithm similar to Dyna (Sutton, 1990)), but see also van Hasselt et al. (2019) for the relation between parametric model and replay. Finally, Hamrick et al. (2020b) investigate drivers of performance and generalization in MuZero-like algorithms.
Table 3. The mean score from the last 100 episodes at 40M frames on games used by TreeQN and ATreeC. The agents differ along multiple dimensions.

	Alien	Amidar	Crazy Climber	Enduro	Frostbite	Krull	Ms. Pacman	Q* Bert	Seaquest
TreeQN-1	2321	1030	107983	800	2254	10836	3030	15688	9302
TreeQN-2	2497	1170	104932	825	581	11035	3277	15970	8241
ATreeC-1	3448	1578	102546	678	1035	8227	4866	25159	1734
ATreeC-2	2813	1566	110712	649	281	8134	4450	25459	2176
Muesli	16218	524	143898	2344	10919	15195	19244	30937	142431

F. Experimental details

F.1. Common parts

Network architecture. The large MuZero network is used only on the large scale Atari experiments (Figure 1b) and on Go. In all other Atari and MuJoCo experiments the network architecture is based on the IMPALA architecture (Espeholt et al., 2018). Like the LASER agent (Schmitt et al., 2020), we increase the number of channels 4-times. Specifically, the numbers of channels are: (64, 128, 128, 64), followed by a fully connected layer and LSTM (Hochreiter & Schmidhuber, 1997) with 512 hidden units. This LSTM inside of the IMPALA representation network is different from the second LSTM used inside the model dynamics function, described later. In the Atari experiments, the network takes as the input one RGB frame. Stacking more frames would help as evidenced in Figure 17.

Q-network and model architecture. The original IMPALA agent was not learning a Q-function. Because we train a MuZero-like model, we can estimate the Q-values by:

\[\hat{q}(s, a) = \hat{r}_1(s, a) + \gamma \hat{v}_1(s, a), \]

where \(\hat{r}_1(s, a) \) and \(\hat{v}_1(s, a) \) are the reward model and the value model, respectively. The reward model and the value model are based on MuZero dynamics and prediction functions (Schrittwieser et al., 2020). We use a very small dynamics function, consisting of a single LSTM layer with 1024 hidden units, conditioned on the selected action (Figure 10).

The decomposition of \(\hat{q}(s, a) \) to a reward model and a value model is not crucial. The Muesli agent obtained a similar score with a model of the \(q_\pi(s, a) \) action-values (Figure 14).

Value model and reward model losses. Like in MuZero (Schrittwieser et al., 2020), the value model and the reward model are trained by categorical losses. The target for the value model is the multi-step return estimate provided by Retrace (Munos
Muesli: Combining Improvements in Policy Optimization

et al., 2016). Inside of the Retrace, we use $\hat{q}_{\pi_{\text{prior}}}(s, a)$ action-values provided by the target network.

Optimizer. We use the Adam optimizer (Kingma & Ba, 2014), with the decoupled weight decay by (Loshchilov & Hutter, 2017). The learning rate is linearly decayed to reach zero at the end of the training. We do not clip the norm of the gradient. Instead, we clip the parameter updates to $[-1, 1]$, before multiplying them with the learning rate. In Adam’s notation, the update rule is:

$$\theta_t = \theta_{t-1} + \alpha \text{clip}(\frac{\hat{m}_t}{\hat{v}_t + \epsilon}, -1, 1),$$ \hspace{1cm} (47)$$

where \hat{m}_t and \hat{v}_t are the estimated moments, not value functions.

Replay. As observed by (Schmitt et al., 2020), the LASER agent benefited from mixing replay data with on-policy data in each batch. Like LASER, we also use uniform replay and mix replay data with on-policy data. To obtain results comparable with other methods, we do not use LASER’s shared experience replay and hence compare to the LASER version that did not share experience either.

Evaluation. On Atari, the human-normalized score is computed at 200M environment frames (including skipped frames). The episode returns are collected from last 200 training episodes that finished before the 200M environment frames. This is the same evaluation as used by MuZero. The replayed frames are not counted in the 200M frame limit. For example, if replayed frames form 95% of each batch, the agent is trained for 20-times more steps than an agent with no replay.

F.2. Muesli policy update

The Muesli policy loss usage is summarized in Algorithm 1.

Prior policy. We use a target network to approximate $v_{\pi_{\text{prior}}}$, $q_{\pi_{\text{prior}}}$ and π_{prior}. Like the target network in DQN (Mnih et al., 2015), the target network contains older network parameters. We use an exponential moving average to continuously update the parameters of the target network.

In general, the π_{prior} can be represented by a mixture of multiple policies. When forming π_{CMPO}, we represented π_{prior} by the target network policy mixed with a small proportion of the uniform policy (0.3%) and the behavior policy (3%). Mixing with these policies was not a significant improvement to the results (Figure 18).

F.3. Hyperparameters

On Atari, the experiments used the Arcade Learning Environment (Bellemare et al., 2013) with sticky actions. The environment parameters are listed in Table 4.

The hyperparameters shared by all policy updates are listed in Table 5. When comparing the clipped and unclipped advantages in Figure 4, we estimated the $\text{KL}(\pi_{\text{CMPO}}, \pi)$ with exact KL. The unclipped advantages would have too large variance without the exact KL.

The hyperparameters for the large-scale Atari experiments are in Table 6, hyperparameters for 9x9 Go self-play are in Table 7 and hyperparameters for continuous control on MuJoCo are in Table 8. On Go, the discount $\gamma = -1$ allows to train by self-play on the two-player perfect-information zero-sum game with alternate moves without modifying the reinforcement learning algorithms.

F.4. Policy losses

We will explain the other compared policy losses here. When comparing the different policy losses, we always used the same network architecture and the same reward model and value model training. The advantages were always normalized.

The hyperparameters for all policy losses are listed in Table 9. We tuned the hyperparameters for all policy losses on 10 Atari games (alien, beam_rider, breakout, gravitar, hero, ms_pacman, phoenix, robotank, seaquest and time_pilot). For each hyperparameter we tried multiples of 3 (e.g., 0.1, 0.3, 1.0, 3.0). For the PPO clipping threshold, we explored 0.2, 0.25, 0.3, 0.5, 0.8.

Policy gradients (PG). The simplest tested policy loss uses policy gradients with the entropy regularizer, as in (Mnih et al.,
Algorithm 1 Agent with Muesli policy loss

 Initialization:
 Initialize the estimate of the variance of the advantage estimator:
 \[\text{var} := 0 \]
 \[\beta_{\text{product}} := 1.0 \]
 Initialize \(\pi_{\text{prior}} \) parameters with the \(\pi \) parameters:
 \[\theta_{\pi_{\text{prior}}} := \theta_{\pi} \]

 Data collection on an actor:
 For each step:
 Observe state \(s_t \) and select action \(a_t \sim \pi_{\text{prior}}(\cdot|s_t) \).
 Execute \(a_t \) in the environment.
 Append \(s_t, a_t, r_{t+1}, \gamma_{t+1} \) to the replay buffer.
 Append \(s_t, a_t, r_{t+1}, \gamma_{t+1} \) to the online queue.

 Training on a learner:
 For each minibatch:
 Form a minibatch \(B \) with sequences from the online queue and the replay buffer.
 Use Retrace to estimate each return \(G^v(s, a) \), bootstrapping from \(\hat{q}_{\pi_{\text{prior}}} \).
 Estimate the variance of the advantage estimator:
 \[\text{var} := \beta_{\text{product}} \text{var} + (1 - \beta_{\text{product}}) \frac{1}{|B|} \sum_{(s,a) \in B} (G^v(s, a) - \hat{v}_{\pi_{\text{prior}}}(s))^2 \]
 Compute the bias-corrected variance estimate in Adam’s style:
 \[\beta_{\text{product}} := \beta_{\text{product}} \beta_{\text{var}} \]
 \[\hat{\text{var}} := \text{var} (1 - \beta_{\text{product}}) \]
 Prepare the normalized advantages:
 \[\hat{\text{adv}}(s, a) = \frac{\hat{q}_{\pi_{\text{prior}}}(s,a) - \hat{v}_{\pi_{\text{prior}}}(s)}{\sqrt{\hat{\text{var}} + \epsilon_{\text{var}}}} \]
 Compute the total loss:
 \[L_{\text{total}} = \left(L_{\text{PG}+\text{CMPO}}(\pi, s) \right. \]
 \[\left. + L_m(\pi, s) \right) \] // Regularized policy optimization, Eq. 9.
 \[+ L_v(\hat{v}_{\pi}, s) + L_{r}(\hat{r}_{\pi}, s) \] // MuZero value and reward losses.
 Use \(L_{\text{total}} \) to update \(\theta_{\pi} \) by one step of gradient descent.
 Use a moving average of \(\pi \) parameters as \(\pi_{\text{prior}} \) parameters:
 \[\theta_{\pi_{\text{prior}}} := (1 - \alpha_{\text{target}})\theta_{\pi_{\text{prior}}} + \alpha_{\text{target}}\theta_{\pi} \]

The loss is defined by
\[L_{\text{PG}}(\pi, s) = -\mathbb{E}_{A \sim \pi(\cdot|s)} \left[\hat{\text{adv}}(s, A) \right] - \lambda_H H[\pi(\cdot|s)]. \] (48)

Policy gradients with the TRPO penalty. The next policy loss uses \(KL(\pi_b(\cdot|s), \pi(\cdot|s)) \) inside the regularizer. The \(\pi_b \) is the behavior policy. This policy loss is known to work as well as PPO (Cobbe et al., 2020).

\[L_{\text{PG}+\text{TRPO penalty}}(\pi, s) = -\mathbb{E}_{A \sim \pi(\cdot|s)} \left[\hat{\text{adv}}(s, A) \right] - \lambda_H H[\pi(\cdot|s)] + \lambda_{\text{TRPO}} KL(\pi_b(\cdot|s), \pi(\cdot|s)). \] (49)

Proximal Policy Optimization (PPO). PPO (Schulman et al., 2017) is usually used with multiple policy updates on the same batch of data. In our setup, we use a replay buffer instead. PPO then required a larger clipping threshold \(\epsilon_{\text{PPO}} \). In our setup, the policy gradient with the TRPO penalty is a stronger baseline.
Table 4. Atari parameters. In general, we follow the recommendations by Machado et al. (2018).

PARAMETER	VALUE
Random modes and difficulties	No
Sticky action probability ζ	0.25
Start no-ops	0
Life information	Not allowed
Action set	18 actions
Max episode length	30 minutes (108,000 frames)
Observation size	96×96
Action repetitions	4
Max-pool over last N action repeat frames	4
Total environment frames, including skipped frames	200M

Table 5. Hyperparameters shared by all experiments.

HYPERPARAMETER	VALUE
Batch size	96 sequences
Sequence length	30 frames
Model unroll length K	5
Replay proportion in a batch	75%
Replay buffer capacity	6,000,000 frames
Initial learning rate	3×10^{-4}
Final learning rate	0
AdamW weight decay	0
Discount	0.995
Target network update rate α_{target}	0.1
Value loss weight	0.25
Reward loss weight	1.0
Retrace $\mathbb{E}_{A \sim \pi}[\hat{q}^{\pi_{\text{prior}}}(s, A)]$ estimator	16 samples
KL(π_{MPO}, π) estimator	16 samples
Variance moving average decay β_{var}	0.99
Variance offset ϵ_{var}	10^{-12}

\[
L_{\text{PPO}}(\pi, s) = -\mathbb{E}_{A \sim \pi_{\text{b}}(\cdot | s)} \left[\min \left(\frac{\pi(A|s)}{\pi_{\text{b}}(A|s)}, \text{clip} \left(\frac{\pi(A|s)}{\pi_{\text{b}}(A|s)}, 1 - \epsilon_{\text{PPO}}, 1 + \epsilon_{\text{PPO}} \right) \hat{\text{adv}}(s, A) \right) \right] - \lambda \mathcal{H}(\pi(\cdot | s)).
\]

(50)

Maximum a Posteriori Policy Optimization (MPO). We use a simple variant of MPO (Abdolmaleki et al., 2018) that is not specialized to Gaussian policies. Also, we use $\pi_{\text{MPO}}(\cdot | s_{t+k})$ as the target for the policy model.

\[
L_{\text{MPO}}(\pi, s_t) = \text{KL}(\pi_{\text{MPO}}(\cdot | s_t), \pi(\cdot | s_t)) + \frac{1}{K} \sum_{k=1}^{K} \text{KL}(\pi_{\text{MPO}}(\cdot | s_{t+k}), \pi_{k}(\cdot | s_t, a_{<t+k}))
\]

(51)

\[
s.t. \mathbb{E}_{S \sim d_{\pi}} \left[\text{KL}(\pi_{\text{MPO}}(\cdot | S), \pi(\cdot | S)) \right] < \epsilon_{\text{MPO}}.
\]

(52)

Direct MPO. Direct MPO uses the MPO regularizer $\lambda \text{KL}(\pi, \pi_{\text{prior}})$ as a penalty.

\[
L_{\text{DirectMPO}}(\pi, s) = -\mathbb{E}_{A \sim \pi(\cdot | s)} \left[\hat{\text{adv}}(s, A) \right] + \lambda \text{KL}(\pi(\cdot | s), \pi_{\text{prior}}(\cdot | s)).
\]

(53)

F.5. Go experimental details

The Go environment was configured using OpenSpiel (Lanctot et al., 2019). Games were scored with the Tromp-Taylor rules with a komi of 7.5. Observations consisted of the last 2 board positions, presented with respect to the player in three
Table 6. Modified hyperparameters for large-scale Atari experiments. The network architecture, discount and replay proportion are based on MuZero Reanalyze.

HYPERPARAMETER	VALUE
Network architecture	MuZero net with 16 ResNet blocks
Stacked frames	16
Batch size	768 sequences
Replay proportion in a batch	95%
Replay buffer capacity	28,800,000 frames
AdamW weight decay	10^{-4}
Discount	0.997
Retrace λ	0.95
KL(π_{CMPO}, π) estimator	exact KL

Table 7. Modified hyperparameters for 9x9 Go self-play experiments.

HYPERPARAMETER	VALUE
Network architecture	MuZero net with 6 ResNet blocks
Batch size	192 sequences
Sequence length	49 frames
Replay proportion in a batch	0%
Initial learning rate	2×10^{-4}
Target network update rate	$\alpha_{target} = 0.01$
Discount	-1 (self-play)
Multi-step return estimator	V-trace
V-trace λ	0.99

9x9 planes each (player’s stones, opponent’s stones, and empty intersections), in addition to a plane indicating the player’s color. The agents were evaluated against GnuGo v3.8 at level 10 (Bump et al., 2005) and Pachi v11.99 (Baudiš & Gailly, 2011) with 10,000 simulations, 16 threads, and no pondering. Both were configured with the Chinese ruleset. Figure 11 shows the results versus GnuGo.

G. Additional experiments

Table 10 lists the median and mean human-normalized score across 57 Atari games. The table also lists the differences in the number of stacked frames, the amount of replay and the probability of a sticky action. The environment with a non-zero probability of a sticky action is more challenging by being stochastic (Machado et al., 2018).

In Figure 15 we compare the different ways to act and explore during training. Muesli (in blue) acts by sampling actions from the policy network. Acting proportionally to π_{CMPO} was not significantly different (in green). Acting based on the Q-values only was substantially worse (in red). This is consistent with our example from Figure 2 where acting with Q-values would be worse.
Table 8. Modified hyperparameters for MuJoCo experiments.

HYPERPARAMETER	VALUE
Replay proportion in a batch	95.8%

Table 9. Hyperparameters for the different policy losses.

HYPERPARAMETER	PG	TRPO penalty	PPO	MPO	Muesli
Total policy loss weight	3.0	3.0	3.0	3.0	3.0
Entropy bonus weight	0.003	0.0003	0.003	0	0
TRPO penalty weight	0	0.01	0	0	0
PPO clipping ϵ_{PPO}	-	-	0.5	-	-
MPO KL(π_{MPO}, π) constraint	-	-	-	0.01	-
CMPO loss weight	0	0	0	-	1.0
CMPO clipping threshold c	-	-	-	-	1.0

Table 10. Median and mean human-normalized score across 57 Atari games, after 200M environment frames. The agents differ in network size, amount of replay, the probability of a sticky action and agent training. The ± indicates the standard error across 2 random seeds. While DreamerV2 was not evaluated on defender and surround, DreamerV2 median score remains valid on 57 games, if we assume a high DreamerV2 score on defender.

AGENT	MEDIAN	MEAN	STACKED FRAMES	REPLAY	STICKY ACTION
DQN (Mnih et al., 2015)	79%	-	4	87.5%	0.0
IMPALA (Espeholt et al., 2018)	192%	958%	4	0%	0.0
IQN (Dabney et al., 2018)	218%	-	4	87.5%	0.0
Rainbow (Hessel et al., 2018)	231%	-	4	87.5%	0.0
Meta-gradient{γ, λ} (Xu et al., 2018)	287%	-	4	0%	0.0
LASER (Schmitt et al., 2020)	431%	-	4	87.5%	0.0
DreamerV2 (Hafner et al., 2020)	164%	-	1	-	0.25
Muesli with IMPALA architecture	562 ±3%	1,981 ±66%	4	75%	0.25
Muesli with MuZero arch, replay=80%	755 ±27%	2,253 ±120%	16	80%	0.25
Muesli with MuZero arch, replay=95%	1,041 ±40%	2,524 ±104%	16	95%	0.25
MuZero Reanalyse (Schrittwieser et al., 2021)	1,047 ±40%	2,971 ±115%	16	95%	0.25

Figure 11. Win probability on 9x9 Go when training from scratch, by self-play, for 5B frames. Evaluating 3 seeds against GnuGo (level 10). (a) Muesli and other search-free baselines. (b) MuZero MCTS with 150 simulations and Muesli with and without the use of MCTS at the evaluation time only.
Figure 12. Mean episode return on MuJoCo environments from OpenAI Gym. The shaded area indicates the standard error across 10 random seeds.
Muesli: Combining Improvements in Policy Optimization

Figure 13. Median score of across 57 Atari games for different MPO variants. CMPO is MPO with clipped advantages and no constrained optimization.

Figure 14. Median score of Muesli across 57 Atari games when modeling the reward and value or when modeling the $q_\pi(s, a)$ directly.

Figure 15. Median score across 57 Atari games for different ways to act and explore. Acting with π_{CMPO} was not significantly different. Acting with $\text{softmax}(\hat{q}/\text{temperature})$ was worse.

Figure 16. Median score across 57 Atari games when using or not using β-LOO action dependent baselines.

Figure 17. Median score across 57 Atari games for different numbers of stacked frames.

Figure 18. Median score across 57 Atari games for different π_{prior} compositions.
Table 11. The mean score from the last 200 episodes at 200M frames on 57 Atari games. The ± indicates the standard error across 2 random seeds.

GAME	Random	Human	MuZero	Muesli		
alien	228	712	135541	±65349	139409	±12178
amidar	6	1720	1061	±136	21653	±2019
assault	222	742	29697	±3595	36963	±533
asterix	210	8503	918628	±56222	316210	±48368
asteroids	719	47389	509953	±33541	484609	±5047
atlantis	12850	29028	113609	±1466	1363427	±81093
bank_heist	14	753	14176	±13044	1213	±0
battle_zone	2360	37188	320641	±141924	414107	±13422
beam_rider	364	16927	319684	±13394	288870	±137
berzerk	124	2630	19523	±16817	44478	±3640
bowling	23	161	156	±25	191	±37
boxing	0	12	100	±0	99	±1
breakout	2	30	778	±20	791	±10
centipede	2091	12017	862737	±11564	869751	±16547
chopper_command	811	7388	494578	±488588	101289	±24339
crazy_climber	10780	35829	176172	±17630	175322	±3408
defender	2874	18689	544320	±12881	629482	±39646
demon_attack	152	1971	143846	±8	129544	±11792
double_dunk	-19	-16	24	±0	-3	±2
enduro	0	861	2363	±2	2362	±1
fishing_derby	-92	-39	69	±5	51	±0
freeway	0	30	34	±0	33	±0
frostbite	65	4335	410173	±35403	30694	±275298
gopher	258	2412	121342	±1540	104441	±424
gravitar	173	3351	10926	±2919	11660	±481
hero	1027	30826	37249	±15	37161	±114
ice_hockey	-11	1	40	±2	25	±13
jamesbond	29	303	32107	±3480	19319	±3673
kangaroo	52	3035	13928	±90	14096	±421
krull	1598	2666	50137	±22433	34221	±1385
kung_fu_master	258	22736	148533	±31806	134689	±9557
montezuma_revenge	0	4753	1450	±1050	2359	±309
ms_pacman	307	6952	79319	±8659	65278	±1589
name_this_game	2292	8049	108133	±6935	105043	±732
phoenix	761	7243	748424	±67304	805305	±26719
pitfall	-229	6464	0	±0	0	±0
pong	-21	15	21	±0	20	±1
private_eye	25	69571	7600	±7500	10323	±4735
qbert	164	13455	85926	±8980	157353	±6593
riverraid	1338	17118	172266	±592	47323	±1079
road_runner	12	7845	554956	±23859	327025	±45241
robotank	2	12	85	±15	59	±2
seaquest	68	42055	501236	±498423	815970	±128855
skiing	-17098	-4337	-30000	±0	-18407	±1171
solaris	1236	12327	4401	±732	3031	±491
space_invaders	148	1669	31265	±27619	59602	±2759
star_gunner	664	10250	158608	±4060	214383	±23087
surround	-10	7	10	±0	9	±0
tennis	-24	-8	-0	±0	12	±12
time_pilot	3568	5229	413988	±10023	359105	±21396
tutankham	11	168	318	±30	252	±47
up_n_down	533	11693	606602	±28296	549190	±70789
venture	0	1188	866	±866	2104	±291
video_pinball	0	17668	921563	±56020	685436	±155718
wizard_of_wor	564	4757	103463	±3366	93291	±5
yars_revenge	3093	54577	187731	±32107	557818	±1895
zaxxon	32	9173	106935	±45495	65325	±395