Probing Hot and Dense Nuclear Matter with Particle Correlations and Jets at RHIC

H. Pei
Department of Physics and Astronomy, University of Illinois at Chicago, Chicago, IL, USA

The hot and dense medium created at RHIC, called Quark and Gluon Plasma (QGP) has been a hot topic in the last ten years. Due to the high multiplicities in such heavy-ion collision events, particle correlations using either trigger particles, or fully-reconstructed jets, become not only useful but necessary, in addition to the single particle observables. In this paper the most recent work studying this medium will be shown, including both on bulk properties and tagged events.

I. INTRODUCTION

The central goal of RHIC/LHC heavy-ion program is to study the quantitative properties of the phases of QCD. The bulk properties of this hot and dense QGP medium is going to be used to extract the physics characters: $T, C_s, \hat q, \eta, \zeta$, etc. While the single particles observables are the natural points, the following sections will show the methods of correlations are also powerful and necessary.

II. BEGINNING FROM SINGLES R_{AA}

The single particles R_{AA} measurement at RHIC shows clearly PID dependence. The mesons, whether of light quarks or charm/bottom quarks, all indicate strong suppression patterns at high-p_T. [1–3]. On the other hand, the “baryon anomaly” and direct-γR_{AA} measurements show strong medium effects on the particle production mechanisms. [1, 2, 4]. This medium effects is further studied in the recent LHC data, where the $\sqrt{s_{NN}}$ is more than a factor of 10 higher. The R_{AA} of mesons is reported to be very close at LHC as RHIC at $5\leq p_T\leq 20$ GeV/c. [5] It has been discussed if the same “Quark soup” had been cooked at LHC and RHIC. Thus, it is necessary to introduce correlation method to study the medium in further details.

III. CORRELATIONS

Correlations can be studied in two ways, triggered and untriggered. The triggers are usually high-p_T particles as proxies of jets, or jets themselves. Because jets are considered to originate from hard-scattering of partons which happen at the early age of QGP formation, they have a high chance of carrying the information of medium by flying through and interact with medium, thus are good probes of medium. However, the RAW correlations contain not only jets, but also bulk medium information, mainly the flow items (v_n), and these properties have their own centrality dependence other than that of jets. These flow factors then bring complexity to the correlations study. For example, RHIC has reported the “cone” and “ridge” structures [6, 7]. While the first even order flow v_2 has been subtracted, questions still rise as whether these structures are evidence of modified jets production, or these are fluctuations and/or evolution of medium itself that coincide with trigger particles.

Therefore, it is necessary to disentangle these flow factors from jets correlations at much detail. Higher order v_n, and not only even order but also odd orders, needs to be considered and subtracted carefully. This is where the untriggered correlations come to use, which will bring us the so-called $v_n(2), v_n(4)$, etc.

A. Before v_3 era

While the flow items can be measured through untriggered correlations, the effort to disentangle them from jets were already made even earlier through multi-particle correlations. In the $\Delta\eta - \Delta\eta$ correlation paper [8], by studying the cross-pair densities at “jet” and “ridge” regions, the possibility of particles correlated in physics between these two was found to be close to zero within errors. This paper then claimed “No correlation is found between production of the ridge and production of the jet-like particles, suggesting the ridge may be formed from the bulk medium itself.”
B. The v_n measurements

The higher order v_n values, especially those odd order items, have been noticed in recent years as possible explanations of the “cone” and “ridge” structures. In Figure 1, the recent STAR $v_n^2(2)$ measurements are shown. Here the v_3 items exhibit effects of elliptic overlap geometry and follow an $N_{part}v_3^{2,part}$ trend similar to v_2 [10], indicating the possible source of initial density fluctuations manifesting into momentum space [11].

Since such fluctuation models agree with data, showing at most central collisions the v_n drop with n at low p_T but v_3 v_2 at intermediate p_T, it is natural to ask if these v_n together can reproduce the “cone” and “ridge” structures at RHIC. In Figure 2 it is proved to be a great success in central Au+Au data, where the “mach-cone” is almost gone [12], although remaining medium effect can possibly exist.

However, this is not the end of story yet. Since the 2nd and 3rd order event planes, Ψ^{EP}_2 and Ψ^{EP}_3 respectively, are weakly correlated [12], it means the measurement that v_2 modulations subtracted correlation shapes still keep strong Ψ^{EP}_2 dependence cannot be explained by pure v_3 [13]. Currently the measured v_ns have weak $|\eta|$ dependence from long $\Delta\eta$ away Ψ^{EP}_2 and Ψ^{EP}_3, but the long $\Delta\eta$ non-flow contributions can’t be excluded yet. Meanwhile, the higher order v_ns contributions may also be needed even if their magnitude is small.

The next step of studying v_n modulations will be the PID-ed measurements, similar to what was done in the single particle R_{AA}. The kE_T and n_q scaling v_2 has long been used as an evidence of partonic flow within QGP [14], and the recent PID-ed v_3 measurements at RHIC are consistent with this n_q-scaling picture at intermediate p_T region [17]. Thus the correlation functions are expected to show an evident mass splitting effect, based on higher order v_n modulation pattern, on structures such as “cone” and “ridge”. This is confirmed in the STAR PID-ed trigger correlation in Figure 3 where trigger particles are grouped into charged pions and charged kaons/protons, then the low-p_T associated particles are plotted. A clear mass splitting effect between triggers exists [10].

The PID-ed v_ns can bring more questions. A much weaker centrality dependence of v_3 at intermediate p_T has been observed at RHIC and LHC, contrary to that of v_2, and this is commonly considered an evidence of v_3 being caused by initial state density inhomogeneity [17], as were predicted by theory models. On the other hand, the baryons “anomaly” enhancements relative to mesons in A+A collisions are well-known to be centrality dependent. If v_3 is partonic flow as indicated from RHIC/LHC data, then the weak centrality dependence of v_3 has to be due to a complex convolution among $v_3^{2,part}$, PID-ed v_3, and baryon anomaly. Is it a simple coincidence, or an indication of deeper relations between these physics mechanisms? This is being studied through multiple analysis working in progress, including the v_3 modulations in the PID-ed trigger correlations, and non-flow effect in long $\Delta\eta$ correlations.

C. High-p_T triggers and jets correlations

While the low-p_T v_ns are mainly from collective effect, the high-p_T particles measured at RHIC are dominated by jet source. Since the high-p_T v_2 isn’t approaching zero [18], this is a strong evidence of jet quenching in
medium. Then a similar question rises, do jets also induce v_3? This is studied from more than one ways. First, a pair of high-p_T triggers are used as proxies of jets, called “2+1” correlations. On contrary to the normal 2-particle correlations, the two triggers are required to be back-to-back in the azimuthal plane to tag “back-to-back hard-scattering” events. The low-p_T associates are then studied around both triggers with v_2 modulation subtracted. The energy asymmetry between the two triggers are also varied as a method to control the relative medium travelling length of both partons [19, 20]. In Figure 4 a set of typical 2+1 correlation functions are shown, and no v_3 observed.

Second, the fully reconstructed jets are directly applied as triggers. In Figure 5 the axis of jets are used as trigger direction and all particles are plotted around this axis. While the v_2 modulations are evident especially at low-p_T region as expected, the v_2 subtracted correlation functions don’t leave much space for possible higher-order v_n such as v_3 [21].

IV. COLD NUCLEAR MATTER EFFECT

It is important to understand that all the medium properties from correlation measurements, either v_n or jet correlations, are induced by hot nuclear matter effects in addition to the modification of nuclear target relative to “vacuum” collisions of protons and DIS collisions. Therefore, the cold-nuclear-matter (CNM) effect has to be studied as a baseline. The Figure 6 shows the correlations in d+Au comparing to p+p. The triggers and associates are selected to be separated in broad $\Delta \eta$ similar as those v_n measured in event-plane method. Currently, no significant broadening or away-side peak suppression observed in d+Au comparing to p+p [22]. This proves at current stage that the observed long $\Delta \eta$ higher-order v_n are still hot nuclear matter specific.
Au+Au 0-10%

4 < $p_{T,\text{trigger}}$ < 6 GeV/c

$p_{t,\text{assoc.}}$ > 1.5 GeV/c

Trigger:
- π^\pm
- $(P^\pm+K^\pm)$
- Charged h

Background subtracted correlations

Raw correlations

FIG. 3: STAR central Au+Au correlations, with different PID-ed triggers. The $\Delta\phi$ projections show mass-splitting effect on “cone” structure, while the $\Delta\eta$ projections show that on “ridge”.

FIG. 4: STAR 2+1 correlations in d+Au and central Au+Au, with back-to-back high-p_T triggers. The $\Delta\phi$ projections and $\Delta\eta$ projections both show similar shapes and magnitudes between d+Au and central Au+Au data after v_2 modulation subtracted, indicating no evidence of v_3. The ratios of associated spectra also show no evident modification.

V. SUMMARY AND OUTLOOK

Recent measurements of higher order Fourier harmonics v_n at RHIC has been an important role to disentangle different sources of physics, by successfully reproducing the correlation structures (cone/ridge) with little help from jets-medium interaction. While these higher-order v_n are widely considered to be produced by initial geometry fluctuations, more quantitative analysis and theory predictions are necessary, including their dependence on
FIG. 5: STAR jet-hadron correlations in central Au+Au. The $\Delta \phi$ projections are plotted on both low- and high-p_T associates. The dashed lines show current estimation of v_2 modulations.

$P_T(FMS) > 2.5 \text{ GeV/c} ; 1.5 \text{ GeV/c} < P_T(BEMC/TPC) < P_T(FMS)$

FIG. 6: STAR forward-central correlations in p+p and d+Au.

p_T, $\Delta \eta$, centrality, PID, etc. At high-p_T end, the hadron correlations using multiple high-energy triggers and/or fully reconstructed jets show no signal of higher-order v_n on contrary to v_2. This observation also supports the assumptions of v_2 and high-order v_n from different sources. Meanwhile, no evident cold-nuclear-matter effect was observed for higher-order v_n, indicating they are hot nuclear matter specific.

[1] S. S. Adler et al., Phys. Rev. C 69 034910 (2004)
[2] J. Adams et al., Phys. Rev. Lett. 91 (2003) 172302
[3] S. S. Adler et al., Phys. Rev. Lett. 96 032301 (2006)
[4] S. S. Adler et al., Phys. Rev. Lett. 94 232301 (2005)
[5] K. Aamodt, et al., arXiv:1012.1004
[6] A. Adare et al., Phys. Rev. C 77 011901 (2008)
[7] B. Abelev et al., Phys. Rev. C 80 (2009) 064912
[8] B. Abelev et al., Phys. Rev. Lett. 105 (2010) 022301
[9] Paul Sorensen, arXiv:1110.0737, Quark Matter 2011, Annecy.
[10] A. Bilandzic, R. Snellings, and S. Voloshin, \textit{Phys. Rev. C} \textbf{83} 044913 (2011)
[11] G. L. Ma and X. N. Wang, \textit{Phys. Rev. Lett.} \textbf{106} 162301 (2011)
[12] Shinichi Esumi, Quark Matter 2011, Annecy.
[13] H. Agakishiev \textit{et al.}, arXiv:1010.0690
[14] A. Adare \textit{et al.}, \textit{Phys. Rev. Lett.} \textbf{98} 162301 (2007)
[15] Roy Lacey, arXiv:1108.0457, Quark Matter 2011, Annecy.
[16] Kolja Kauder, arXiv:0907.4673, Quark Matter 2011, Annecy.
[17] A. Adare \textit{et al.}, arXiv:1105.3928
[18] A. Adare \textit{et al.}, \textit{Phys. Rev. Lett.} \textbf{105} 142301 (2010)
[19] H. Agakishiev \textit{et al.}, \textit{Phys. Rev. C} \textbf{83} (2011) 016901
[20] H. Pei \textit{J.Phys.: Conf. Ser.} 316 012016
[21] Alice Ohlson, arXiv:1106.6243, Quark Matter 2011, Annecy.
[22] Ermes Braidot, arXiv:1102.0931