Computational analysis of human and mouse CREB3L4 Protein

Kiran Kumar Velpula1§, Azeem Abdul Rehman2§, Soumya Chigurupati1, Ramadevi Sanam3, Krishna Kishore Inampudi4 & Chandra Sekhar Akila5*

1Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816; 2Bradley University, Peoria, IL, 61615; 3Informatics Division, GVK Biosciences Pvt Ltd, Hyderabad, India; 4Department of Chemistry, University of Hyderabad, India 500046; 5Department of Biotechnology, School of Life Sciences, Yogi Vemana University, Kadapa, Andhra Pradesh, India -516003; Chandra Sekhar Akila – Email: chandrasekhar9@yahoo.com, acsekhar@yogivemanauniversity.ac.in; Phone: 0091-8562-225426 & 225435 (O); Fax: 0091-8562-225419; *Corresponding author §Both authors contributed equally

Received June 05, 2012; Accepted June 08, 2012; Published June 28, 2012

Abstract:
CREB3L4 is a member of the CREB/ATF transcription factor family, characterized by their regulation of gene expression through the cAMP-responsive element. Previous studies identified this protein in mice and humans. Whereas CREB3L4 in mice (referred to as Tisp40) is found in the testes and functions in spermatogenesis, human CREB3L4 is primarily detected in the prostate and has been implicated in cancer. We conducted computational analyses to compare the structural homology between murine Tisp40 and human CREB3L4. Our results reveal that the primary and secondary structures of the two proteins contain high similarity. Additionally, predicted helical transmembrane structure reveals that the proteins likely have similar structure and function. This study offers preliminary findings that support the translation of mouse Tisp40 findings into human models, based on structural homology.

Background:
The CREB/ATF family contains transcription factors that regulate various processes, including cell proliferation, differentiation and apoptosis [1-4]. Members of the CREB/ATF family are characterized by their control of gene expression through the cAMP-responsive element sequence [5]. Moreover, these proteins contain a conserved transmembrane region and basic region-leucine zipper (bZip) domain on the C-terminus [5-8]. Although particular proteins are ubiquitously expressed in tissues, certain members are tissue specific and organism specific. For instance, the CREB3L4 protein is primarily found in the human prostate [6], whereas mice express CREB3L4, referred to as Tisp40, almost exclusively in the testis [9-11]. Nonetheless, CREB3L4 isoforms are cytoplasmic proteins, found embedded in the endoplasmic reticulum [6, 10]. Upon activation of CREB3L4, via Golgi protease SIP cleavage, CREB3L4 translocates to the nucleus to regulate DNA targets [7, 11, 13].

Two isoforms of the mouse CREB3L4 protein have been identified, namely Tisp40α and Tisp40β [10-12]. Both transcripts vary in size, where Tisp40α contains 315 amino acids and Tisp40β possesses 370 amino acids. This transcript difference in size is due to differing transcription start sites [11]. Moreover, this difference could result in varying secondary structure elements, ultimately promoting alternative structures. Although Tisp40α is the more abundant form of the CREB3L4 protein in mice testes, Tisp40β is the more potent transcriptional activator [13]. In contrast, human CREB3L4 contains 395 amino acids, with a similar transcription start site to that of Tisp40β [GenBank AB057281.2]. Furthermore, elevated CREB3L4 expression in humans has been linked to a variety of cancers, including prostate and hepatocellular carcinomas [6, 13-14].

Mice offer a valuable experimental model organism for analyzing signaling pathways implicated in human cancer development. However, preliminary examinations must be...
conducted in order to insure that results from murine studies can be translated into a human model. Computational approaches involving bioinformatics offer a method for deducing protein homology when comparing factors across organisms. The aim of the current study is to analyze the similarities and differences of CREB3L4 in mice and humans, using tissue location, sequence length, sequence homology, protein binding sites and folding patterns in active sites as parameters for assessing whether knowledge regarding Tisp40α in mice can be extrapolated for human CREB3L4. Structural similarities can reveal functional similarities, as most protein function is ultimately determined by structure.

Figure 1: Legend – Structure of the human CREB3L4 gene with the encoded polypeptides. The solid black rectangles illustrate the coding exons while the solid line depicts the non-coding exons. The Genbank accession number for the human CREB3L4 gene is AB052781.2

Figure 2: Expression of the Atce1/Tisp40α isoform of CREB3L4 in mouse spermatids in life long runners and sedentary mice.

Methodology:
For immunostaining, frozen testis sections (5 microns) were exposed for 60 minutes to PBS containing 10% normal goat serum (Sigma, St. Louis, MO) and 0.1% Triton X-100 (Research Organics Inc, Cleveland, OH) to block nonspecific antibody binding, followed by incubation overnight with primary antibody for mouse Atce1/Tisp40α isoform of CREB3L4 at 4°C. After being incubated with Alexa Fluor 568-conjugated IgG (1:500) secondary antibody and counterstained with 4,6-diamidino-2-phenylindole (DAPI), images were acquired using Nikon Eclipse E600 fluorescence microscope. Images were processed by using SPOT advance software, Diagnostic Instruments, Sterling Heights, MI and Photoshop CS3 (Adobe Systems, San Jose, CA), with the input levels adjusted to span the range of acquired signal intensities exactly.

Discussion:
Similar to the murine CREB3L4 as shown by El-Alfy et al. (2006), the human isoform also contains nine exons (Figure 1). However, the human CREB3L4 has only one isoform while the mouse contains two isoforms. Specifically, the human isoform is more similar to mouse Tisp40β as it contains the initial 55 residues which are absent in Tisp40α. Nonetheless, the current study utilized Tisp40α because this particular isoform is more prevalent [13].

DAPI staining and fluorescence microscopy reveal that active mice had higher Tisp40α expression in their spermatids compared to sedentary mice. Images suggest that Tisp40α operates as a stress-response molecule during murine spermatogenesis (Figure 2). Detection of the Tisp40α isoform is consistent with a prior study in which only Tisp40α was present in the mice testes [11]. Zhang and Kaufman (2004) propose that factors containing a basic leucine zipper domain (bZIP) support the maintenance of the endoplasmic reticulum (ER) [18]. Specifically, bZIP factors initiate the production of proteins utilized by the ER for the synthesis of peptides. Thus, if the onset of activity instigates stress and elevated protein production, greater expression of bZIP factors such as Tisp40α...
would likely occur. This reasoning provides an explanation for
the elevated Tisp40α shown in the active mice. Moreover,
Chigurupati et al. (2008) report that exercise in mice alleviates
oxidative stress and promotes spermatogenesis and testosterone
production. The Tisp40α isoform possibly mediates this effect,
as demonstrated by the elevated expression of Tisp40α in
running mice [19].

Figure 4: Secondary structural features of mouse and human
CREB3L4 protein predicted by the PHD program. Yellow
arrows indicate the region of beta strand conformation while
red color lines indicate regions with alpha helices.

According to PHD, both proteins contain a secondary structure
that primarily consists of coils and alpha helices. Specifically,
mouse Tisp40α showed 31.75% alpha helices, 11.43% beta
strands and 56.83% random coils whereas human CREB3L4
showed 34.80% alpha helices, 9.72% beta strands and 55.49%
random coils (Figure 4). Transmembrane helices, as predicted
by the PHD Helical transmembrane (PHDhtm) program, also
showed similar secondary structural features (Figure 5).
Conserved transmembrane helices suggest that the overall
folding and resultant function of these proteins are likely
similar.

Our results reveal that the genomic organization of human
CREB3L4 is very similar to mouse Tisp40α. Although the two
proteins are found in different organisms and tissues, the
isoforms display very similar secondary structural homology.
Comparisons of 3D structures for these proteins are unavailable
because the current RCSB database does not contain the
structures. Our computational results suggest that the
important domains necessary for the function of the protein are
well conserved. These proteins likely carry out similar
functions, acting as membrane-associated transcription factors
with a bZIP domain that mediate DNA binding and
dimerization.
Conclusion:
The present study offers the first preliminary results depicting the homology of mouse Tisp40α to human CREB3L4. We conclude that although both proteins are found in different organisms and tissues, the isoforms likely demonstrate similar mechanisms in regulating gene expression due to their high structural homology. Other studies have mentioned the presence of a pig CREB3L4 that contains a similar genomic organization to the human CREB3L4 [5]. Further studies examining the homology of the porcine gene would be useful in constructing an evolutionary tree for the CREB3L4 gene. Although mouse Tisp40α is commonly identified in the mouse testes, RT-PCR results have revealed the presence of mRNA transcripts of the gene in the mouse prostate [10]. Moreover, another study detected human CREB3L4 mRNA transcripts in the human testes [20], suggesting that this protein may be expressed in a variety of tissues within a single organism.

Understanding the homology across different isoforms is vital to extrapolating information across organisms. Numerous studies utilize a murine model to analyze interactions in vivo. However, murine models exhibit little use if observations cannot be related to the human population. Structural evidence suggests the similarity existing between mouse Tisp40α to human CREB3L4, despite the two proteins being present in different organisms and tissues. Thus, translating observations collected on Tisp40α in a mouse-based model to human CREB3L4 is plausible, as supported by the results of the study.

Conflict of Interest:
The authors declare no conflict of interest exists with this manuscript.

Acknowledgement:
We thank Dr. Mark P. Mattson and Alexis Stranahan of National Institute on Aging, National Institutes of Health, Baltimore, MD for kindly providing mouse tissues. We also thank Sic L. Chan, Assistant Professor and Srinivasulu Chigurupati, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816 for providing laboratory to conduct experiments. Antibody specific for mouse Tisp40α isoform of CREB3L4 was kindly provided by Dr. Claude Labrie, CHUL Research Center: 2705 Laurier Boul, Ste-Foy, QC, G1V 4G2, Canada (email: Claude.Labrie@crchul.ulaval.ca)

References:
[1] Iguchi H et al. Endocr J. 2011 58: 9 [PMID: 21701076]
[2] Ionescu AM et al. J Biol Chem. 2001 276: 15 [PMID: 11136722]
[3] Lee YW et al. Toxicol Appl Pharmacol. 2003 189: 1 [PMID: 12758055]
[4] Velmurugan K et al. Endocrinology. 2012 153: 3 [PMID: 22253425]
[5] Qi YM et al. Mol Biol Rep. 2009 36: 7 [PMID: 18982425]
[6] Qi H et al. Cancer Res. 2002 62: 3 [PMID: 11830526]
[7] Stirling J & O’Hare P, Mol Biol Cell. 2006 17: 1 [PMID: 16236796]
[8] Blendy JA et al. Nature. 1996 380: 6570 [PMID: 8600391]
[9] Stelzer G & Don J, Endocrinology. 2002 143: 5 [PMID: 11956138]
[10] Adham IM et al. Mol Cell Biol. 2005 25: 17 [PMID: 16107712]
[11] El-Alfy M et al. J Androl. 2006 27: 5 [PMID: 16728718]
[12] Nagamori N et al. Genes Cells. 2005 10: 6 [PMID: 15938716]
[13] Levesque MH et al. Urology. 2007 69: 1 [PMID: 17270658]
[14] Inagaki Y et al. Cancer Genet Cytogenet. 2008 180: 1 [PMID: 18068530]
[15] Larkin MA et al. Bioinformatics. 2007 23: 21 [PMID: 17846036]
[16] Rost B, Methods Enzymol. 1996 266 [PMID: 8743704]
[17] Rost B et al. Protein Sci. 1996 5: 8 [PMID: 8844859]
[18] Zhang K & Kaufman RJ, J Biol Chem. 2004 279: 25 [PMID: 15070890]
[19] Chigurupati S et al. J Endocrinol. 2008 199: 2 [PMID: 18701639]
[20] Cunha AC et al. Cancer Lett. 2006 236: 2 [PMID: 16046056]

Edited by P Kanguane

License statement: This is an open-access article, which permits unrestricted use, distribution, and reproduction in any medium, for non-commercial purposes, provided the original author and source are credited