PEROXYNITRITE IS THE MAJOR SPECIES FORMED FROM DIFFERENT FLUX RATIOS OF CO-GENERATED NITRIC OXIDE AND SUPEROXIDE: DIRECT REACTION WITH BORONATE-BASED FLUORESCENT PROBE.

Jacek Zielonka1, Adam Sikora1,2, Joy Joseph1, B. Kalyanaraman1

From Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI 532261; Institute of Applied Radiation Chemistry, Technical University of Lodz, Poland2

Address correspondence to: B. Kalyanaraman, Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226. Tel. 414 456 4035; Fax. 414 456 6512, E-mail: balarama@mcw.edu

Running title: Quantitation of ONOO• from the reaction between NO and O₂•

There is much interest in the nitration and oxidation reaction mechanisms initiated by superoxide radical anion (O₂•-) and nitric oxide (•NO). It is well known that O₂•- and •NO rapidly react to form a potent oxidant, peroxynitrite anion (ONOO•). However, indirect measurements with the existing probes (e.g., dihydrorhodamine) previously revealed a bell-shaped response to co-generated •NO and O₂•- fluxes, with the maximal yield of the oxidation or nitration product occurring at a 1:1 ratio. These results raised doubts on the formation of ONOO• per se at various fluxes of •NO and O₂•-.

Using a novel fluorogenic probe, coumarin-7-boronic acid, that reacts stoichiometrically and rapidly with ONOO• (k = 1.1 × 10^6 M^-1s^-1), we report that ONOO• formation increased linearly and began to plateau after reaching a 1:1 ratio of co-generated •NO and O₂•- fluxes. We conclude that ONOO• is formed as the primary intermediate during the reaction between •NO and O₂•- co-generated at different fluxes.

Peroxynitrite (ONOO•) is an unstable intermediate formed from the diffusion-controlled reaction between nitric oxide (•NO) and superoxide radical anion (O₂•-, reaction 1, k1 = (0.38 - 1.6) × 10^10 M^-1s^-1) (1-6).

\[•NO + O_2•^- \rightarrow ONOO• \] (1)

The early indication of the occurrence of this reaction in biological systems came from the report on the inhibitory effect of O₂•- on the activity of endothelium-derived relaxing factor (EDRF) (7). After EDRF identity was established as "NO (8;9), its scavenging by O₂•- was first proposed as a contributing factor to endothelial injury (10). Reaction 1 has great physiological significance as both •NO and hydrogen peroxide (H₂O₂, the product of dismutation of O₂•-) act as important second messengers in redox cell signaling (11;12).

In the absence of scavengers, ONOO• decomposes at neutral pH via protonation to peroxynitrous acid (pKₐ = 6.7, reaction 2) to yield nitrate (NO₃⁻) and free radical intermediates: hydroxyl radical (·OH) and nitrogen dioxide (·NO₂) (reaction 3, k₃ = 1.25 s^-1) (2;13).

\[ONOO• + H⁺ ⇄ ONOOH \] (2)

\[ONOOH \rightarrow HNO_3 (ca. 70%); \cdot OH + \cdot NO_2 (ca. 30%) \] (3)

In most biological systems, carbon dioxide is a likely scavenger of ONOO•, yielding a short-lived nitrosoperoxycarbonate anion (ONOOCO₂•-, reaction 4, k₄ = 2.9 × 10^4 M^-1s^-1 (14)). During the decomposition of ONOOCO₂•-, nitrate and carbon dioxide are formed, as well as nitrogen dioxide radical and carbonate radical anion (reaction 5) (2;13;15).

\[ONOO• + CO₂ \rightarrow ONOOCO_2•^- \] (4)

\[ONOOCO_2•^- \rightarrow NO_3^- + CO_2 (ca. 65%); \] (5)

Due to the occurrence of reactions 4 and 5, as well as the scavenging by peroxiredoxins or oxyhemoglobin in specific subcellular compartments, the lifetime of ONOO• in biological systems is limited to only a few milliseconds (2;13). The current methodologies for detection of ONOO• are based on the detection of radical species formed from ONOO• decomposition, i.e. 'NO₂ and CO₃•- or ·OH, using
tyrosine that forms nitrotyrosine (TyrNO$_2$) as a marker product of intracellular NO$_2$ and dihydrorhodamine (DHR) as a fluorogenic probe for oxidants (NO$_2$, OH, CO$_3$$^\cdot$). However, NO$_2$ radical formed from the ONOO$^-$-independent processes, e.g. via myeloperoxidase (MPO)-catalysed oxidation of nitrite by H$_2$O$_2$ (16) could make data interpretation more tenuous (17;18). Additional problem with this indirect approach may arise from alternate mechanisms through which TyrNO$_2$ can be formed without the involvement of NO$_2$ radicals (19). DHR can be oxidized to the fluorescent rhodamine molecule by various one-electron oxidants, including compounds I and II of peroxidases (20;21). Previous reports suggest that oxidative and nitrative modifications of tyrosine and DHR observed in the presence of co-generated NO and O$_2$$^\cdot$ in cell-free and cellular systems displayed a characteristic bell-shaped response with maximal response occurring at 1:1 ratio of NO to O$_2$$^\cdot$ (22-26). While these findings could implicate that ONOO$^-$ is formed at the maximal yield only at the 1:1 ratio of NO/O$_2$$^\cdot$, one could also question the interpretations because of the confounding effects of radical-radical interactions from free radical species derived from ONOO$^-$ decomposition with probe-derived radicals (tyrosyl radical or rhodamine radical) (22;27-29). Clearly, there is an urgent need for developing direct probe(s) for ONOO$^-$ that will enable us to understand the chemical and biological interactions of NO with O$_2$$^\cdot$.

We have recently shown that boronic compounds (boric acids and their esters) react stoichiometrically with ONOO$^-$, yielding the corresponding hydroxylated compounds as the major products (30). We have proposed that boronate groups attached to the fluorogenic probes may be used in the detection of ONOO$^-$ both in cell-free and cellular systems. As the rate constant of the reaction of arylboronates with ONOO$^-$ is relatively high (ca. 10^6 M$^{-1}$ s$^{-1}$ at pH 7.4), it can outcompete other reactions resulting from the decay of ONOO$^-$ and can be used to monitor ONOO$^-$ levels under different conditions. Here we report the development of a novel fluorescent probe for ONOO$^-$ and resolve a long-standing controversy with regard to the identity, reaction profile, and yields of oxidant formed from varying ratios of NO to O$_2$$^\cdot$ fluxes. We synthesized and employed the boronate-based fluorogenic probe, namely coumarin-7-boronic acid (CBA, Figure 1) to monitor ONOO$^-$ formed under varying fluxes of O$_2$$^\cdot$ and NO. Contrary to previous results obtained with tyrosine and DHR probes (22-26), we report in this study, using a boronate probe, that ONOO$^-$ is the major species formed under various flux ratios of NO and O$_2$$^\cdot$ and that there is no bell-shaped response in ONOO$^-$ formation. We conclude that the bell-shaped response previously reported during the reaction between co-generated NO and O$_2$$^\cdot$ is due to the free radical chemistry of the probe employed (tyrosine and dihydrorhodamine) which does not totally reflect the actual yield of ONOO$^-$ formation.

EXPERIMENTAL PROCEDURES

Materials - H$_2$O$_2$ was from Fluka, xanthine oxidase (XO) and superoxide dismutase (SOD) from bovine erythrocytes were from Roche Diagnostics, catalase was from Boehringer Mannheim and PAPA-NONOate ((Z)-1-[N-(3-ammoniopropyl)-N-(n-propyl)amino]diazen-1-ium-1,2-diolate) was from Cayman Co. Dihydrorhodamine 123 (DHR) was from AnaSpec Inc. All other chemicals were from Sigma-Aldrich and were of highest purity available. All solutions were prepared using the deionised water (Millipore Milli-Q system). ONOO$^-$ was prepared by reacting nitrite with H$_2$O$_2$, according to the published procedure (31). The concentration of ONOO$^-$ in alkaline aqueous solutions (pH > 12) was determined by measuring the absorbance at 302 nm ($\varepsilon = 1670$ M$^{-1}$cm$^{-1}$). The pinacolate ester of coumarin boronic acid (CBE) was synthesized following the procedure described elsewhere (32). Coumarin boronic acid (CBA) was prepared by acidic hydrolysis of CBE.

UV-Vis absorption and fluorescence measurements - The UV-Vis absorption spectra were collected using an Agilent 8453 spectrophotometer equipped with a diode array detector and thermostated cell holder. Fluorescence spectra were collected using the Perkin-Elmer LS 55 luminescence spectrometer. The kinetic absorption and fluorescence measurements were carried out at room temperature using the same instruments.
Determination of O$_2^-$ and NO fluxes - NO fluxes were determined from the measured rate of the decomposition of PAPA-NONOate by following the decrease of its characteristic absorbance at 250 nm ($\varepsilon = 8.1 \times 10^3$ M$^{-1}$ cm$^{-1}$). Under the conditions used, the NO-donor decomposed with the rate constant of $(2.5 \pm 0.2) \times 10^{-4}$ M$^{-1}$s$^{-1}$ as determined at 25 °C. The rate of decay of PAPA-NONOate was multiplied by a factor of two to obtain the rate of NO release, assuming that two molecules of NO are released during the decomposition of one molecule of PAPA-NONOate (33). The stoichiometry of NO release was confirmed by performing the oxyhemoglobin assay (34) under the conditions of complete decomposition of PAPA-NONOate (10 and 20 µM) in the presence of excess of oxyhemoglobin (60 µM). The flux of O$_2^-$, generated by xanthine oxidase catalyzed oxidation of xanthine to uric acid, was determined by monitoring the ferricytochrome c reduction and the increase in absorbance at 550 nm (using a difference in the values of the extinction coefficients between reduced and oxidized cytochrome of 2.1×10^4 M$^{-1}$ cm$^{-1}$ (35)).

Stopped-flow measurements – Stopped-flow kinetic experiments were performed on Applied Photophysics 18MX stopped flow spectrophotometer equipped with photomultipliers for absorption and fluorescence measurements. The thermostatted cell (25 °C) with a 10-mm optical pathway was used for kinetic measurements. For determining the rate constant, the reaction was carried out under pseudo first-order conditions (greater than tenfold excess of boronate probe over ONOO$^-$). For the fluorescence measurements, the cut-off filter (transmitting the light longer than 400 nm) was placed between the cell and the detector.

HPLC analysis – The coumarin boronic acid (CBA) and 7-hydroxycoumarin (COH) were separated on an HPLC system Agilent 1100 equipped with fluorescence and UV-Vis absorption detectors. Typically, 100 µl of sample was injected into the HPLC system equipped with a C$_{18}$ column (Alltech, Kromasil, 250 mm × 4.6 mm, 5 µm) equilibrated with 10% acetonitrile (CH$_3$CN) (containing 0.1% (v/v) trifluoroacetic acid (TFA)) in 0.1% TFA aqueous solution. The compounds were separated by a linear increase in CH$_3$CN phase concentration from 10% to 55% over 15 min at a flow rate of 1 ml/min. Under those conditions CBA eluted at 9.5 min and COH at 10.7 min. The concentrations of CBA and COH were calculated based on the peak areas detected by absorptions at 280 nm and 324 nm, respectively. Although COH can also be detected with a high sensitivity using the fluorescence detection (excitation at 332 nm and emission at 475 nm), at the concentrations used, the absorption detection was sufficient for reliable quantitation. Additionally, under the HPLC conditions used, the concentration of uric acid (2.8 min) and xanthine (3.7 min) could also be quantitated based on the peak areas detected by monitoring the absorption at 280 nm.

Kinetic simulations – The simulation of the inhibitory effect of SOD on the conversion of CBA into COH and on the steady-state concentration of NO was carried out using a freely available software, Kintecus, version 3.95 (36). The kinetic model used in this study is a modification of the published model of peroxynitrite decay (37). The list of the chemical reactions, rate constants, and major modifications used in the simulation is shown in Supplemental Table S1.

RESULTS

Oxidation of coumarin boronic acid by ONOO$^-$/H$_2$O$_2$ – First, we investigated the stoichiometry and kinetics of the reaction between CBA and ONOO$^-$ or H$_2$O$_2$. Both oxidants converted the boronate probe into a fluorescent product that was visually examined under UV light illumination (Supplemental Fig. S1). The UV-Vis absorption spectra (Supplemental Fig. S2 and S3) of the product formed in both reactions indicated the formation of a single species with spectral characteristics similar to that of 7-hydroxycoumarin (COH). The fluorescence spectra observed upon oxidation of CBA by ONOO$^-$ were consistent with the formation of COH as the major product (Figure 2). Moreover, the intensity of both the excitation and emission bands increased linearly with increasing ONOO$^-$ concentration (Figure 2). The identity of the product was confirmed by HPLC analysis (Figure 2, insets, Supplemental Fig. S4), showing that the product co-eluted with the authentic standard, 7-hydroxycoumarin, under identical HPLC
conditions. The HPLC analysis enabled us to determine the stoichiometry of the reaction, indicating that one molecule of CBA reacts with a molecule of ONOO\(^{\cdot}\), producing COH with the overall yield of ca. 81\% (Figure 3 and Supplemental Fig. S4). This finding is similar to what has been previously reported for 4-acetylphenyl and phenylalanine-4-boronic acids (30).

As can be seen in Supplemental Fig. S1, the fluorescence of the solutions was observed immediately after mixing with ONOO\(^{\cdot}\); however, no significant fluorescence was observed even 30 min after mixing with H\(_2\)O\(_2\), indicating that the reaction was rather slow. As both oxidants resulted in the formation of the same fluorescent product, this is attributed to vastly different rates of oxidation of the probe. We monitored the reaction progress with both oxidants by following the changes in the UV-Vis absorption spectra and the increase in the fluorescence intensity during oxidation of CBA to COH. The rate constant of 1.5 ± 0.2 M\(^{-1}\)s\(^{-1}\) was determined for the reaction with H\(_2\)O\(_2\) at pH 7.4 (Supplemental Fig. S5).

With ONOO\(^{\cdot}\), the stopped-flow technique was used to measure the rate constant. As shown in Figure 4, the disappearance of the absorption band responsible for CBA (as monitored at 286 nm) was accompanied by the build-up of the absorption (monitored at 370 nm) and fluorescence (excitation at 332 nm, emission at > 400 nm) bands for COH. Based on the rate of the product build-up, the rate constant of \((1.1 ± 0.2) \times 10^6\) M\(^{-1}\)s\(^{-1}\) was calculated for oxidation of CBA by ONOO\(^{\cdot}\). Thus, ONOO\(^{\cdot}\) reacts with the coumarin boronate at least a million times faster than H\(_2\)O\(_2\).

Oxidation of coumarin boronate by co-generated \(^\cdot\)NO and O\(_2\)\(^{\cdot\cdot}\) - To investigate whether the same probe can be oxidized similarly by \(^\cdot\)NO and O\(_2\)\(^{\cdot\cdot}\) generated simultaneously, we monitored the rate of oxidation of CBA to COH in incubation mixtures containing xanthine (X) and xanthine oxidase (XO) as a source of steady flux of O\(_2\)\(^{\cdot\cdot}\) and PAPA-NONOate as a source of \(^\cdot\)NO flux (Figure 5). The uric acid formed from xanthine oxidation interfered with tyrosine nitration assay (38). However, the reaction between ONOO\(^{\cdot}\) and CBA outcompetes not only the self-decomposition of ONOO\(^{\cdot}\), but also its reaction with uric acid (the reported value of the apparent rate constant for the reaction of urate monoanion with ONOOH is 155 M\(^{-1}\)s\(^{-1}\) at pH 7.4 (39)). The slower reaction between CBA and H\(_2\)O\(_2\) generated by XO and by dismutation of O\(_2\)\(^{\cdot\cdot}\) was completely mitigated using the catalase enzyme. The oxidation of CBA to COH occurred only in the presence of both O\(_2\)\(^{\cdot\cdot}\) and \(^\cdot\)NO and virtually no oxidation of the probe into fluorescent product was observed in the presence of either O\(_2\)\(^{\cdot\cdot}\) or \(^\cdot\)NO alone (Fig. 5). This is attributed to the reaction between CBA and ONOO\(^{\cdot}\) formed \textit{in situ}. These results suggest that it is feasible to monitor in "real-time" formation of ONOO\(^{\cdot}\), using the boronate probe.

To investigate the relative contribution of H\(_2\)O\(_2\) and ONOO\(^{\cdot}\) in the conversion of CBA into COH in this system, we tested the effect of catalase and superoxide dismutase (SOD) on the fluorescence increase in incubations containing X/XO system with or without \(^\cdot\)NO-donor (Figure 6). In the absence of the \(^\cdot\)NO-donor, the fluorescence signal was inhibited by catalase but not by SOD. This indicates that H\(_2\)O\(_2\) is the primary oxidant responsible for the observed increase in the fluorescence intensity obtained in the absence of the \(^\cdot\)NO donor. The addition of the \(^\cdot\)NO-donor to the incubation caused an increase in the rate of formation of the fluorescence product, which was partly inhibited by SOD and not by catalase. This observation suggests that the oxidation of CBA to COH was H\(_2\)O\(_2\)-independent and O\(_2\)\(^{\cdot\cdot}\) - and \(^\cdot\)NO-dependent oxidant formation in this system. In the presence of the \(^\cdot\)NO-donor, maximal inhibition was observed when both catalase and SOD were present in the system, indicating that H\(_2\)O\(_2\) produced by SOD is also contributing to the oxidation of CBA to COH. For the quantitative analysis of the amount of CBA consumed and COH formed, we used the HPLC method. As can be seen in Figure 6C, the effect of SOD and catalase on the amount of COH formed during a 30 min incubation period closely followed the fluorescence results. The concentration of COH formed (50 µM) in incubations containing the \(^\cdot\)NO-donor and X/XO system is lower than the theoretical yield of ONOO\(^{\cdot}\) (66 µM, based on the assumption of a steady flux of 2.2 µM/min of O\(_2\)\(^{\cdot\cdot}\) and \(^\cdot\)NO), giving the net yield of 76%, that is reasonably close to ca. 81\% detected in the presence of a bolus addition of ONOO\(^{\cdot}\).

\textbf{Effect of variation of \(^\cdot\)NO/O\(_2\)\(^{\cdot\cdot}\) flux ratios on the yield of ONOO\(^{\cdot}\)} - The fluorescence intensity
changes were monitored over a 5 min period in incubation mixtures containing CBA and a constant flux of O$_2^•$ (2 µM/min) and different fluxes of NO (0 – 12 µM/min) by varying the concentrations of NO-donor, PAPA-NONOate (Figure 7A). At low rates of NO generation (< 2 µM/min), the rate of increase in the fluorescence intensity was proportional to the NO flux, as NO concentration was the limiting factor in ONOO⁻ generation. At rates of NO generation higher than that of O$_2^•$ (> 2 µM/min), the rate of fluorescence increase reached a plateau and remained unchanged up to a 6-fold excess of NO (Figure 7B). At longer duration of incubation (30 min) and gradually increasing ratios of NO to O$_2^•$ fluxes from 1 to 8, a slow decline in the yield of COH was noted as determined by HPLC (Figure 7C). However, we also observed that under excess of NO, the extent of conversion of xanthine into uric acid was also decreased with increasing NO flux (Figure 7C). This may be due to NO-dependent inhibition of the enzyme (40-42). Assuming that the rate of O$_2^•$ generation is proportional to XO activity, and therefore, to the rate (and the yield) of uric acid formation, we normalized the amount of COH (“corrected”) to the yield of uric acid (and thus to O$_2^•$). In the presence of excess NO, the rate of O$_2^•$ production was the limiting factor in COH formation. The dependence of the “corrected” yield of COH on the ratio of NO/O$_2^•$ fluxes is shown in Figure 7D. The HPLC data are in agreement with the fluorescence results, indicating that the yield of ONOO⁻ is constant under conditions of NO formation rate that exceeds the rate of O$_2^•$ production by 8-fold. From these results, we conclude that ONOO⁻ is formed as a major species during simultaneous generation of NO and O$_2^•$ and that ONOO⁻ formation increased linearly up to a 1:1 ratio of NO/O$_2^•$ flux which then began to plateau. In contrast to results shown in Figure 7, different results were obtained when dihydrorhodamine 123 (DHR) was used as a detection probe for ONOO⁻. The rate of fluorescence increase of rhodamine 123 formed from DHR was monitored at different NO/O$_2^•$ ratios (Supplemental Fig. S6). In agreement with the previous reports (23-26), a bell-shaped response was observed under these conditions. Clearly, the DHR-based detection method is not reliable for quantitative analysis of ONOO⁻ formed from NO/O$_2^•$ reaction.

DISCUSSION

Coumarin-7-boronate (CBE) has previously been reported to react with H$_2$O$_2$ resulting in the formation of a highly fluorescent 7-hydroxycoumarin (COH, umbelliferone) (32). In this study, we show that coumarin-7-boronic acid reacts rapidly and stoichiometrically with ONOO⁻ to give COH as the major product (ca. 85%). This is similar to what had been published with simple arylboronates, indicating that the reaction between boronates and ONOO⁻ is quite general (30). The rate of reaction between CBA and ONOO⁻ is at least a million times faster than between CBA and H$_2$O$_2$ and even at low micromolar concentrations, the boronate probes can effectively compete with the self-decomposition of ONOO⁻ at neutral pH. To our knowledge, this is the first report using a fluorogenic probe that reacts directly and stoichiometrically with ONOO⁻. The probe can successfully scavenge ONOO⁻ added as a bolus, or formed from co-generated NO and O$_2^•$, thus allowing for real-time monitoring of ONOO⁻ formation in biological systems.

To confirm the identity of the oxidant trapped, we tested the effects of SOD and catalase on the yield of the fluorescent product formation (Figure 6). The results are consistent with the oxidation of the probe by an oxidant formed from interaction of NO and O$_2^•$. From our earlier studies, we can conclude that ONOO⁻ but not nitrogen oxides (NO, NO$_2$) is responsible for oxidation of the boronate probe (30). The lack of a total inhibition of the oxidation by SOD, even in the presence of catalase and at high concentration of SOD (up to 1 mg/ml), can be explained by the dynamic competition between NO and SOD for O$_2^•$ as follows: SOD effectively competes with NO in removing O$_2^•$, causing a rise in the steady-state concentration of NO that can again effectively compete with SOD for O$_2^•$ (43;44). This proposal was indeed confirmed by the kinetic simulations of the inhibitory effects of SOD, yielding the same degree of inhibition of CBA oxidation by NO/O$_2^•$ system, as noted experimentally. (Supplemental Fig. S7 and S8). Additionally, the kinetic simulations predicted an increase in the steady-state NO levels upon addition of SOD, as previously reported (43). The reaction pathways involved in the oxidation of CBA to COH and the
inhibitory effects of SOD and catalase in the present study are shown in Figure 8. We used the coumarin boronate to resolve the long-standing controversy regarding the yield of ONOO−, formed under different fluxes of •NO and O2•-. Previous studies indicate that in cell-free systems tyrosine nitration/oxidation and dihydrorhodamine oxidation is maximal only when the rates of generation of •NO to O2•- are equal and that the probe oxidation and nitration declined drastically with increasing flux of either species (22,24,45). The net effect is a bell-shaped response of the yield of reaction product vs. the flux of one species at the constant flux of the other co-reactant. A bell-shaped response in DHR oxidation in the presence of various ratios of •NO to O2•- fluxes in cellular systems was also reported (26). These findings called into question the nature of the identity of the oxidant formed from the reaction of •NO with O2•- under various ratios of both species. The lack of availability of a chemical probe that would react quickly and stoichiometrically with ONOO− hampered the progress in the understanding of the chemistry of the interaction of "NO with O2•−. Both tyrosine and dihydrorhodamine react with the free radical product(s) of ONOO− decomposition, rather than with ONOO− itself, complicating the analysis of the primary events in the interaction between "NO and O2•−. In this study, we used the fluorogenic boronic probe, which reacts directly with ONOO−, out-competing the decomposition of ONOO− into the radical products. Our results directly prove that ONOO− is the primary product of the reaction of O2•- with "NO over a wide range of "NO to O2•- fluxes. Thus, the previously reported bell-shaped responses which do not accurately reflect the chemistry of O2•-/"NO interaction are due to free radical-dependent oxidation and nitration of the probe molecules (tyrosine and dihydrorhodamine) and reactions of probe-derived radicals with "NO and O2•-. The ongoing research indicates that the boronate-based fluorogenic probes can be used for real-time monitoring of ONOO− generation in cellular systems (46).

REFERENCES

1. Blough, N. V. and Zafiriou, O. C. (1985) Inorganic Chemistry 24, 3502-3504
2. Ferrer-Sueta, G. and Radi, R. (2009) ACS Chem. Biol. 4, 161-177
3. Goldstein, S. and Czapski, G. (1995) Free Radic. Biol. Med. 19, 505-510
4. Huie, R. E. and Padmaja, S. (1993) Free Radic. Res. Commun. 18, 195-199
5. Kissner, R., Nauser, T., Bugnon, P., Lye, P. G., and Koppenol, W. H. (1997) Chem. Res. Toxicol. 10, 1285-1292
6. Kobayashi, K., Miki, M., and Tagawa, S. (1995) Journal of the Chemical Society, Dalton Transactions 2885-2889
7. Gryglewski, R. J., Palmer, R. M., and Moncada, S. (1986) Nature 320, 454-456
8. Ignarro, L. J., Byrns, R. E., Buga, G. M., Wood, K. S., and Chaudhuri, G. (1988) J. Pharmacol. Exp. Ther. 244, 181-189
9. Palmer, R. M., Ashton, D. S., and Moncada, S. (1988) Nature 333, 664-666
10. Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A., and Freeman, B. A. (1990) Proc. Natl. Acad. Sci. U. S. A 87, 1620-1624
11. Brown, D. I. and Griendling, K. K. (2009) Free Radic. Biol. Med. 47, 1239-1253
12. Pacher, P., Beckman, J. S., and Liaudet, L. (2007) Physiol Rev. 87, 315-424
13. Goldstein, S. and Merenyi, G. (2008) Methods Enzymol. 436, 49-61
14. Lyman, S. V. and Hurst, J. K. (1995) J. Am. Chem. Soc. 117, 8867-8868
15. Augusto, O., Bonini, M. G., Amanso, A. M., Linares, E., Santos, C. C., and De Menezes, S. L. (2002) Free Radic. Biol. Med. 32, 841-859
16. Burner, U., Furtmuller, P. G., Kettle, A. J., Koppenol, W. H., and Obinger, C. (2000) J. Biol. Chem. 275, 20597-20601
17. Palazzolo-Ballance, A. M., Suquet, C., and Hurst, J. K. (2007) Biochemistry 46, 7536-7548
18. Pfieffer, S., Lass, A., Schmidt, K., and Mayer, B. (2001) J. Biol. Chem. 276, 34051-34058
19. Gunther, M. R., Sturgeon, B. E., and Mason, R. P. (2002) Toxicology 177, 1-9
20. Wardman, P. (2007) *Free Radic. Biol. Med.* **43**, 995-1022
21. Royall, J. A. and Ischiropoulos, H. (1993) *Arch. Biochem. Biophys.* **302**, 348-355
22. Hodges, G. R., Marwaha, J., Paul, T., and Ingold, K. U. (2000) *Chem. Res. Toxicol.* **13**, 1287-1293
23. Jourd'heuil, D., Jourd'heuil, F. L., Kutchukian, P. S., Musah, R. A., Wink, D. A., and Grisham, M. B. (2001) *J. Biol. Chem.* **276**, 28799-28805
24. Miles, A. M., Bohle, D. S., Glassbrenner, P. A., Hansert, B., Wink, D. A., and Grisham, M. B. (1996) *J. Biol. Chem.* **271**, 40-47
25. Thomas, D. D., Espey, M. G., Vitek, M. P., Miranda, K. M., and Wink, D. A. (2002) *Proc. Natl. Acad. Sci. U. S. A* **99**, 12691-12696
26. Thomas, D. D., Ridnour, L. A., Espey, M. G., Donzelli, S., Amboss, S., Hussain, S. P., Harris, C. C., DeGraff, W., Roberts, D. D., Mitchell, J. B., and Wink, D. A. (2006) *J. Biol. Chem.* **281**, 25984-25993
27. Goldstein, S., Czapski, G., Lind, J., and Merenyi, G. (1999) *Chem. Res. Toxicol.* **12**, 132-136
28. Goldstein, S., Czapski, G., Lind, J., and Merenyi, G. (2000) *J. Biol. Chem.* **275**, 3031-3036
29. Quijano, C., Romero, N., and Radi, R. (2005) *Free Radic. Biol. Med.* **39**, 728-741
30. Sikora, A., Zielonka, J., Lopez, M., Joseph, J., and Kalyanaraman, B. (2009) *Free Radic. Biol. Med.* **47**, 1401-1407
31. Kissner, R., Beckman, J. S., and Koppenol, W. H. (1999) *Methods Enzymol.* **301**, 342-352
32. Du, L., Li, M., Zheng, S., and Wang, B. (2008) *Tetrahedron Lett.* **49**, 3045-3048
33. Thomas, D. D., Miranda, K. M., Espey, M. G., Citrin, D., Jourd'heuil, D., Paolocci, N., Hewett, S. J., Colton, C. A., Grisham, M. B., Feelisch, M., and Wink, D. A. (2002) *Methods Enzymol.* **359**, 84-105
34. Murphy, M. E. and Noack, E. (1994) *Methods Enzymol.* **233**, 240-250
35. Massey, V. (1959) *Biochim. Biophys. Acta* **34**, 255-256
36. Ianni, J. C. (2008) *Kintecus*, Windows Version 3.95, www.kintecus.com.
37. Kirsch, M., Korth, H. G., Wensing, A., Sustmann, R., and de Groot, H. (2003) *Arch. Biochem. Biophys.* **418**, 133-150
38. Reiter, C. D., Teng, R. J., and Beckman, J. S. (2000) *J. Biol. Chem.* **275**, 32460-32466
39. Squadrito, G. L., Cueto, R., Splenser, A. E., Valavanidis, A., Zhang, H., Uppu, R. M., and Pryor, W. A. (2000) *Arch. Biochem. Biophys.* **376**, 333-337
40. Ichimori, K., Fukahori, M., Nakazawa, H., Okamoto, K., and Nishino, T. (1999) *J. Biol. Chem.* **274**, 7763-7768
41. Lee, C. I., Liu, X., and Zweier, J. L. (2000) *J. Biol. Chem.* **275**, 9369-9376
42. Houston, M., Chumley, P., Radi, R., Rubbo, H., and Freeman, B. A. (1998) *Arch. Biochem. Biophys.* **355**, 1-8
43. Beckman, J. S. and Koppenol, W. H. (1996) *Am. J. Physiol* **271**, C1424-C1437
44. Liochev, S. I. and Fridovich, I. (2002) *Arch. Biochem. Biophys.* **402**, 166-171
45. Sawa, T., Akahei, T., and Maeda, H. (2000) *J. Biol. Chem.* **275**, 32467-32474
46. Zielonka, J., Sikora, A., Zielonka, M., Joseph, J., Hardy, M., and Kalyanaraman, B. (2009) *Free Radical Biology and Medicine* **47**, S39

FOOTNOTES

This work was supported by NIH grant HL063119.

The abbreviations used are: CBA, coumarin-7-boronic acid; COH, 7-hydroxycoumarin; DHR, dihydrorhodamine 123; PAPA-NONOate, (Z)-1-[N-(3-ammoniopropyl)-N-(n-propyl)amino]diazene-1-ium-1,2-diolate; X, xanthine; XO, xanthine oxidase; SOD, superoxide dismutase; CAT, catalase.

FIGURE LEGENDS
Figure 1. Scheme showing the conversion of coumarin-7-boronic acid (CBA) and its pinacolate ester (CBE) into the fluorescent product, 7-hydroxycoumarin (COH).

Figure 2. Fluorescent spectral changes during the reaction between CBA and peroxynitrite. Fluorescence spectra (excitation/emission) obtained from incubations containing CBA (50 µM) and DTPA (50 µM) in phosphate buffer (0.45 M, pH 7.4) after the addition of various amounts of ONOO (0 – 2 µM). Emission spectra were collected using excitation at 332 nm; excitation spectra were collected by monitoring the emission intensity at 451 nm. * Insets: * HPLC traces recorded from the incubation mixtures containing CBA (100 µM), before (control, top trace) and after (bottom trace) the addition of ONOO (20 µM). Left panel represents the signal detected using the absorption detector set at 300 nm; right panel represents the signal detected using the fluorescence detector with the excitation set at 332 nm and emission at 470 nm. HPLC peaks at 9.5 min and 10.7 min correspond to CBA and COH, respectively.

Figure 3. Stoichiometry of the reaction between CBA and ONOO. The concentrations of CBA and COH calculated from HPLC data obtained from incubations containing CBA (100 µM), 20 µM DTPA and ONOO (0 - 200 µM) in phosphate buffer (0.1 M, pH 7.4).

Figure 4. Kinetics of the reaction between CBA and ONOO. (A-C) Stopped-flow kinetic traces obtained after mixing CBA (20 µM) and ONOO (10 µM) in phosphate buffer (0.25 M, pH 7.4), using the absorption detector at 286 nm (panel A) and 370 nm (panel B) or using the fluorescence detector (panel C, excitation at 332 nm, emission at > 400 nm), and (D) The dependence of the pseudo-first order rate constant of COH formation (as detected by fluorescence) on the CBA concentration; [ONOO] = 0.1 µM.

Figure 5. Detection of ONOO formed from co-generated superoxide and nitric oxide fluxes. The fluorescence intensity (excitation at 332 nm, emission at 450 nm) of the reaction mixtures consisting of CBA (100 µM) with or without X/XO (O2•- flux: 2 µM/min) and PAPA-NONOate (•NO flux: 2 µM/min) was measured over a period of 30 min. The reaction mixtures contained catalase (0.1 kU/ml) and DTPA (10 µM) in phosphate buffer (100 mM, pH 7.4).

Figure 6. Detection of ONOO formed from co-generated superoxide and nitric oxide fluxes - effects of superoxide dismutase and catalase. (A) The time-course of the fluorescence intensity increase (excitation at 332 nm, emission at 450 nm) measured in reaction mixtures containing CBA (100 µM) and DTPA (10 µM) in phosphate buffer (100 mM, pH 7.4) with or without X (200 µM), XO (O2•- flux: 1.2 µM/min) and PAPA-NONOate (•NO flux: 2.7 µM/min), (B) Effects of SOD (1 mg/ml) and catalase (100 U/ml) on the total change in the fluorescence intensity after 30 min of incubation, and (C) COH concentrations in the reaction mixtures measured by HPLC after 30 min incubation under similar conditions, but with •NO and O2•- fluxes of 2.2 µM/min and SOD concentration of 0.2 mg/ml. Open and solid symbols/bars represent the values obtained from mixtures in the absence and presence of PAPA-NONOate, respectively.

Figure 7. Detection of ONOO formed from co-generated superoxide and nitric oxide fluxes - effects of varying NO/O2•- ratios on product formation. (A) The time-course of the increase in the fluorescence intensity (excitation at 332 nm, emission at 450 nm) obtained at room temperature from the incubation mixtures containing CBA (100 µM), 10 µM DTPA, 100 U/ml catalase, xanthine (200 µM), XO (O2•- flux: 2 µM/min) and different concentrations of PAPA-NONOate (•NO flux: 0 - 12 µM/min) in phosphate buffer (0.1 M and pH 7.4). •NO fluxes (µM/min): (a) 0; (b) 0.75; (c) 1.5; (d) 2.25; (e) 3; (f) 6; (g) 9; (h) 12, (B) Rate of increase in the fluorescence intensity vs. •NO flux, (C) HPLC measurements of COH and uric acid formed after 30 min of incubation under similar conditions, but with O2•- flux of 2.2 µM/min, and (D) The concentration of COH after correcting for the inactivation of the enzyme, XA. Note that in panels C and D, the X-axis scale is not linear.
Figure 8. Proposed reaction pathways in the oxidation of coumarin-7-boronic acid (CBA) to 7-hydroxycoumarin (COH).
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

A. Fluorescence intensity as a function of time.

B. Rate of fluorescence increase as a function of NO flux.

C. [COH] vs. NO/O_2 ratio.

D. [COH]corrected vs. NO/O_2 ratio.
Figure 8
Peroxynitrite is the major species formed from different flux ratios of co-generated nitric oxide and superoxide: direct reaction with boronate-based fluorescent probe
Jacek Zielonka, Adam Sikora, Joy Joseph and B. Kalyanaraman
J. Biol. Chem. published online March 1, 2010

Access the most updated version of this article at doi: 10.1074/jbc.M110.110080

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

Supplemental material:
http://www.jbc.org/content/suppl/2010/03/01/M110.110080.DC1