Receptor tyrosine kinase Met promotes cell survival via kinase-independent maintenance of integrin α3β1

Lia Tesfay¹, Veronique V. Schulz², Sander B. Frank, Laura E. Lamb, and Cindy K. Miranti* Laboratory of Integrin Signaling and Tumorigenesis, Van Andel Research Institute, Grand Rapids, MI 49503

ABSTRACT Matrix adhesion via integrins is required for cell survival. Adhesion of epithelial cells to laminin via integrin α3β1 was previously shown to activate at least two independent survival pathways. First, integrin α3β1 is required for autophagy-induced cell survival after growth factor deprivation. Second, integrin α3β1 independently activates two receptor tyrosine kinases, EGFR and Met, in the absence of ligands. EGFR signaling to Erk promotes survival independently of autophagy. To determine how Met promotes cell survival, we inhibited Met kinase activity or blocked its expression with RNA interference. Loss of Met expression, but not inhibition of Met kinase activity, induced apoptosis by reducing integrin α3β1 levels, activating anoikis, and blocking autophagy. Met was specifically required for the assembly of autophagosomes downstream of LC3II processing. Reexpression of wild-type Met, kinase-dead Met, or integrin α3 was sufficient to rescue death upon removal of endogenous Met. Integrin α3β1 coprecipitated and colocalized with Met in cells. The extracellular and transmembrane domain of Met was required to fully rescue cell death and restore integrin α3 expression. Thus Met promotes survival of laminin-adherent cells by maintaining integrin α3β1 via a kinase-independent mechanism.

INTRODUCTION
Adhesion of cells to the extracellular matrix via integrins is required for cell survival. Death induced by loss of cell adhesion, called anoikis, is mediated through both intrinsic and extrinsic apoptotic pathways (Frisch and Screaton, 2001; Marconi et al., 2004; Valentijn et al., 2004; Gilmore, 2005). Detachment induces extrinsic apoptosis through FADD-dependent activation of caspase 8 and FOXO1/3a suppression of the caspase 8 antagonist c-Flip, which may or may not involve Fas/FasL interactions (Frisch, 1999; Rytoma et al., 1999; Aoudjit and Vuori, 2001; Rosen et al., 2002; Skurk et al., 2004; Gan et al., 2009). Conversely, adhesion lowers Fas expression while at the same time inducing c-Flip by up-regulating Erk signaling (Aoudjit and Vuori, 2001). Integrin signaling also up-regulates anti-apoptotic proteins such as Bcl-2, Bcl-xL, and Mcl-1 via Akt, Jnk, Erk, or Src and simultaneously prevents anoikis-dependent activation of the proapoptotic proteins Bid, Bmf, Bim, and Bak/Bax (Frisch et al., 1996; Flusberg et al., 2001; Puthalakath et al., 2001; Coll et al., 2002; Reginato et al., 2003; Harnois et al., 2004; Valentijn and Gilmore, 2004; Schmelzle et al., 2007; Boisvert-Adamo and Aplin, 2008; Boisvert-Adamo et al., 2009; Owens et al., 2009).

Another mechanism by which integrins promote survival is through activation of the receptor tyrosine kinase (RTK) epidermal growth factor receptor (EGFR). Adhesion of epithelial cells to laminin is sufficient to activate EGFR in the absence of ligand (Bill et al., 2004). EGFR activation by adhesion to laminin via integrin α3β1 leads to Erk signaling, which is required for survival (Manohar et al., 2004; Edick et al., 2007). Under starvation conditions, integrin α3β1 in epithelial cells is also required to robustly activate autophagy-dependent survival (Edick et al., 2007). However, the mechanism by which autophagy is controlled by integrin α3β1 remains to be determined.

This article was published online ahead of print in MBoC in Press (http://www.molbiolcell.org/cgi/doi/10.1091/mbc.E15-09-0649) on June 15, 2016.

¹These authors contributed equally.

The authors declare that there are no conflicts of interest involved in this study.

*Address correspondence to: Cindy K. Miranti (cindy.miranti@vai.org).

Abbreviations used: DN, dominant negative; EGFR, epidermal growth factor receptor; GFP, green fluorescent protein; HUVEC, human umbilical vein endothelial cells; RNAi, RNA interference; RTK, receptor tyrosine kinase; shRNA, short hairpin RNA; siRNA, small interfering RNA; WT, wild type.

© 2016 Tesfay, Schulz, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution-Noncommercial-Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-nd/3.0/).

“ASCB”, “The American Society for Cell Biology”, and “Molecular Biology of the Cell” are registered trademarks of The American Society for Cell Biology.
RESULTS

Primary prostate epithelial cells (PrECs) isolated from patients and cultured in defined medium secrete an endogenous laminin matrix to which the cells adhere via integrins \(\alpha 3\beta 1 \) and \(\alpha 6\beta 4 \) (Gmyrek et al., 2001; Edick et al., 2007). Our previous studies demonstrated that survival of PrECs on this matrix in the absence of growth factors is dependent on integrin \(\alpha 3\beta 1 \) (Edick et al., 2007). For all the assays reported here, the cells are first genetically manipulated and then allowed to adhere to their endogenous matrix in the absence of growth factors.

PrECs were transfected with control or Met-specific siRNAs or infected with Met-specific adenoviral short hairpin RNAs (shRNAs). After adhesion, Met protein expression was monitored by immunoblotting. Met expression was reduced 80–90% by Met-specific RNA interference (RNAi; Figure 1A) but not by scrambled or mutant RNAs or lipid-only, mock-infected, or vector controls. There was a corresponding decrease in the number of cells in Met RNAi-treated cells and cells displayed a rounded morphology (Figure 1B). This was accompanied by a ninefold reduction in cell viability (Figure 1C) and a twofold decrease in intracellular ATP (Figure 1D). Thus Met is required for normal cell survival.

Inhibition of Met expression by RNAi reduced both full-length caspase 3 and Bcl-xL expression and increased cleaved caspase3 (Figure 2, A and B). In addition, >70% of the cells stained positive for annexin V (Figure 2C), and there was an approximately fourfold increase in caspase 3/7 activity, equivalent to that seen with the general apoptosis inducer staurosporine (Figure 2, D and E). Thus Met promotes survival by preventing apoptosis.

The RTK Met is expressed in epithelial and endothelial cells and promotes cell proliferation, migration, and morphogenesis (Knudsen and Vande Woude, 2008). Like EGFR, integrins activate Met in the absence of ligand (Wang et al., 1996; Sridhar and Miranti, 2006), and ligand-independent activation of Met promotes tumorigenesis and invasion (Wang et al., 2001; Sridhar and Miranti, 2006). Furthermore, blocking Met expression by small interfering RNA (siRNA) induces cell death in metastatic tumor cell lines, indicating that Met is also important for tumor cell survival (Shinomiya et al., 2004). Studies in Met conditional knockout mice suggest that Met regulates normal cell survival as well. Liver hepatocytes from albumin-Cre Met\(^{−/−}\) mice are much more sensitive to FasL-induced cell death and contain elevated levels of reactive oxygen species (Huh et al., 2004; Gomez-Quiroz et al., 2008). One possible mechanism for increased Fas sensitivity in Met-null cells could involve enhanced Fas dimerization due to disruption of Met/Fas complexes (Wang et al., 2002; Zou et al., 2007). Because Fas/FasL signaling is suppressed by integrins, we tested the hypothesis that Met activation via laminin integrins regulates normal cell survival.

The possibility that Met/FasL signaling is suppressed by integrins, we tested the hypothesis that Met activation via laminin integrins regulates normal cell survival.

FIGURE 1: Loss of Met induces cell death. PrECs transfected with Met siRNAs (siMet1251, siMet4268) or controls (siScr, lipid) or infected with adenoviruses containing Met shRNA (shMet) or control viruses (shMetMut, shScr, vector, mock) at an MOI of 2 in starvation medium, plated on endogenous laminin matrix, and analyzed 72 h later. (A) Total Met in cell lysates measured by immunoblotting; tubulin is the loading control. (B) Cells expressing the indicated RNAi visualized under phase-contrast microscopy. (C) Cell viability measured by trypan blue exclusion before (0 h) or 72 h after siRNA transfection. (D) Cellular ATP measured 72 h after siRNA transfection or 24 h after 1 \(\mu M \) staurosporine (Str) treatment. Error bars are SD; \(n = 3; p \) values are as indicated.
cells compared with vehicle-treated controls (Figure 3G). The loss of Met protein was verified by immunoblotting, and there was a corresponding decrease in full-length caspase 3 and Bcl-xL levels in the cultures (Figure 3, F and H). Thus loss of Met in both human and mouse primary epithelial cell cultures resulted in cell death.

To further test Met kinase dependence, we infected cells with viruses expressing an empty vector, wild-type (WT) Met (full-length, siMet-resistant), or a kinase-inactive (DN) Met mutant. Endogenous Met was then removed by siRNA. Exogenous Met in the siRNA-treated cells was expressed at levels equivalent to endogenous Met in the control cells (Figure 4A). The Met mutant was not active, as measured by a lack of tyrosine phosphorylation at the activation site. Furthermore, activation of endogenous Met was also suppressed (Figure 4B). Expression of either wild-type or kinase-inactive Met was sufficient to prevent cell morphology changes (Figure 4C), cell death (Figure 4D), caspase 3/7 activation (Figure 4E), and loss of Bcl-xL (Figure 4A) induced by siMet. Thus the kinase activity of Met is not required for cell survival.

Cell survival on laminin is mediated through integrin α3β1–dependent activation of the EGFR/Erk signaling pathway (Manohar et al., 2004; Edick et al., 2007). Met siRNA decreased EGFR and Erk activity (Figure 5A). The loss of EGFR/Erk signaling could be due to nonspecific effects of intrinsic caspase activation mediated by Met loss rather than a direct effect of Met loss. However, zVAD at concentrations sufficient to block caspase 3/7 activation (Figure 5B) did not block the decrease in EGFR (unpublished data) or Erk activation induced by siMet (Figure 5C), indicating that cell death is occurring downstream of EGFR/Erk inhibition. Thus loss of Met prevents cell survival mediated by integrin α3β1–dependent EGFR/Erk signaling.

We also previously showed that integrin α3β1–mediated adhesion promotes the survival of growth factor–starved cells by induc-
The decrease in surface expression of integrin α3 and β6, as detected by immunoblotting, was seen much later, 72 h after siMet treatment (Figure 6B). However, this late decrease in α6, unlike that in α3, was reversed by inhibition of caspase 3/7. This is consistent with reports demonstrating a caspase 3/7 cleavage site in integrin β4, a partner of α6 (Chmielowiec et al., 2007). Thus loss of α3β1 is upstream, whereas loss α6β4 is downstream, of caspase activation. Loss of integrin α3 was accompanied by a reduction in integrin β1, its associated subunit partner (Figure 6C); this partial loss is likely due to β1 pairing with other remaining α subunits. Thus the differential effects on integrin α6β4 versus integrin α3β1 highlight the specificity of Met in targeting integrin α3β1.

Exogenous expression of WT or DN Met in siMet-treated cells restored Erk signaling and integrin α3 expression (Figure 6D). Furthermore, restoring integrin α3 expression alone in siMet-treated cells (Figure 6E) was sufficient to rescue cell death (Figure 6F). Thus Met mediates cell survival through integrin α3β1. To determine the universality of the Met/α3β1 relationship, we assessed the effect of Met loss on α3β1 expression and signaling in human umbilical vein endothelial cells (HUVECs). HUVECs express Met, EGFR, and integrin α3β1 and adhere to laminin; therefore they may share a similar survival mechanism. Indeed, reductions in integrin α3, Erk activation, and Bcl-xL expression (Figure 6G), as well as induction of cell death (unpublished results), were observed in HUVEC cells transfected with siMet relative to the scrambled siRNA controls. Thus Met mediates survival by maintaining integrin α3 expression in at least two different cell types.

The absence of integrin α3β1 in Met-deficient cells suggests that Met loss triggers anoikis. Inhibition of caspase 8/10 with zIETD or Fas with ZB4 neutralizing antibody, individually or in combination, resulted in a partial rescue of cell viability (Supplemental Figure S1A). Similarly, inhibition of late-stage caspases by zVAD partially rescued cell viability (Supplemental Figure S1B). Thus the proximal regulation of α3β1 expression provides a survival mechanism. Indeed, reductions in integrin α3 (Figure 6B) and EGFR/Erk signaling (Supplemental Figure S1A) failed to restore integrin α3 surface expression (Figure 6A) or α3β1 partial loss is likely due to β1 pairing with other remaining α subunits. Thus the differential effects on integrin α6β4 versus integrin α3β1 highlight the specificity of Met in targeting integrin α3β1.

Exogenous expression of WT or DN Met in siMet-treated cells restored Erk signaling and integrin α3 expression (Figure 6D). Furthermore, restoring integrin α3 expression alone in siMet-treated cells (Figure 6E) was sufficient to rescue cell death (Figure 6F). Thus Met mediates cell survival through integrin α3β1. To determine the universality of the Met/α3β1 relationship, we assessed the effect of Met loss on α3β1 expression and signaling in human umbilical vein endothelial cells (HUVECs). HUVECs express Met, EGFR, and integrin α3β1 and adhere to laminin; therefore they may share a similar survival mechanism. Indeed, reductions in integrin α3, Erk activation, and Bcl-xL expression (Figure 6G), as well as induction of cell death (unpublished results), were observed in HUVEC cells transfected with siMet relative to the scrambled siRNA controls. Thus Met mediates survival by maintaining integrin α3 expression in at least two different cell types.

The absence of integrin α3β1 in Met-deficient cells suggests that Met loss triggers anoikis. Inhibition of caspase 8/10 with zIETD or Fas with ZB4 neutralizing antibody, individually or in combination, resulted in a partial rescue of cell viability (Supplemental Figure S1A). Similarly, inhibition of late-stage caspases by zVAD partially rescued cell viability. Simultaneous inhibition of caspase 8/10 and late-stage caspases completely restored cell viability. Treatment with zIETD, Fas blocking antibody, or zVAD (Figure 5) failed to restore integrin α3 or EGFR/Erk signaling (Supplemental Figure S1B). Thus the proximal regulation of α3β1 expression provides a survival mechanism. Indeed, reductions in integrin α3 (Figure 6B) and EGFR/Erk signaling (Supplemental Figure S1A) failed to restore integrin α3 surface expression (Figure 6A) or α3β1 formation and adherence to laminin; therefore they may share a similar survival mechanism. Indeed, reductions in integrin α3, Erk activation, and Bcl-xL expression (Figure 6G), as well as induction of cell death (unpublished results), were observed in HUVEC cells transfected with siMet relative to the scrambled siRNA controls. Thus Met mediates survival by maintaining integrin α3 expression in at least two different cell types.
between Met and integrin α6; this is in keeping with our previous findings that loss of α6 does not induce significant cell death (Edick et al., 2007) and loss of integrin α6 is not directly regulated by Met (Figure 6B). Immunofluorescence staining and confocal microscopy further showed colocalization of Met and integrin α3 at the basal surface of cell–cell junctions (Figure 7B). We blocked proteasome-mediated degradation with MG132 or lactacystin or lysosomal degradation with chloroquine. Inhibition of the lysosomal pathway, but not the proteasome, prevented the loss of both Met and integrin α3 protein upon Met mRNA knockdown (Figure 7C). Together these data indicate that Met and integrin α3 coexist in a complex at the cell membrane and both are targeted for degradation via the lysosome when new Met protein expression is inhibited by siRNA.

We next determined which domain on Met is required for cell survival and to maintain integrin α3 expression. First we tested whether the truncated, intracellular, constitutively active Met mutant Tpr-Met (Pomerleau et al., 2014) could rescue cell survival and integrin α3 expression. Tpr-Met is not targeted by our siRNA, and its expression in siMet-treated cells completely rescued cell death (Supplemental Figure S2A), but it failed to rescue integrin α3β1 expression (Supplemental Figure S2B). Constitutively active Tpr-Met can activate Erk (Pomerleau et al., 2014), and since Erk is required for PrEC survival (Edick et al., 2007), we assessed Erk activation in the Tpr-Met–expressing cells. Tpr-Met was sufficient to rescue Erk activity, induce Bcl-xL, and prevent caspase 3 cleavage (Supplemental Figure S2C). Thus Tpr-Met rescued cell death independently of integrin α3β1 by up-regulating Erk signaling.

We next generated an siMet-resistant Met mutant in which most of the cytoplasmic domain was deleted (∆CT). The cytoplasmic deletion exposes the Y1003 Cbl E3-ligase binding site, which could affect Met and/or integrin α3 turnover. Therefore we also generated a Y1003F∆CT mutant. Expression of either WT or Y1003F∆CT Met was sufficient to rescue death induced by siMet (Figure 7D). Integrin α3 expression was also restored by both mutants (Figure 7E). Finally, we exposed siMet-treated cells to recombinant Met extracellular domain protein, which partially rescued death in a dose-dependent manner (Figure 7F). However, this ectodomain was not sufficient to restore integrin α3 expression (unpublished data). Thus both the extracellular and transmembrane domains of Met are required to fully prevent cell death and restore integrin α3 expression.

DISCUSSION

In this study, we identified a new mechanism by which the receptor tyrosine kinase Met promotes cell survival. Specifically, Met is required to maintain adequate levels of integrin α3β1 on the cell surface to prevent activation of cell death pathways and maintain autophagic flux (Figure 8). The ability of Met to support this survival pathway is independent of its kinase activity but requires the extracellular and transmembrane domains. Our previous studies demonstrated that integrin α3β1–mediated adhesion to matrix activates EGFR/Erk signaling to promote survival (Edick et al., 2007). Because loss of Met interferes with integrin α3β1, the EGFR/Erk signaling pathway is also disrupted. Thus we defined three distinct signaling pathways downstream of Met/α3β1 that promote epithelial survival on matrix: EGFR/Erk, Fas, and autophagy.

Our data demonstrate that Met has a function that extends beyond its well-characterized role as a receptor tyrosine kinase. Although this is the first description of a nonkinase function for cytoplasmic-truncated Met, it has been demonstrated that several kinases have functions independent of their catalytic activity. Loss of EGFR by siRNA, but not inhibition of its kinase activity, kills PC3.
Several examples of molecules with kinase-independent functions include FAK, Src, PAK, EphB2, and ILK (Grunwald et al., 2001; Zervas et al., 2001; Higuchi et al., 2008). Other examples of molecules with reported kinase-independent functions include FAK, Src, PAK, EphB2, and ILK (Grunwald et al., 2001; Zervas et al., 2001; Higuchi et al., 2008; Garcia-Martinez et al., 2010; Luo et al., 2013). In many of these cases, the mechanism involves a scaffolding function that brings several molecules together. These studies further indicate that simply targeting the catalytic activity of a kinase implicated in disease may not be sufficient to fully impede all of its functions.

Defining the exact nature of the Met and integrin α3-interacting complex will require further extensive characterization. The extracellular domain of the integrin α3 subunit is known to bind directly to the tetraspanin CD151 extracellular domain (Yauch et al., 2000; Berditchevski et al., 2001). Several studies suggest there are functional interactions between tetraspanins and Met (Sridhar and Miranti, 2006; Todeschini et al., 2007; Klosek et al., 2009). CD151 overexpression favors cell migration, and CD151 loss in mice prevents wound healing in the skin, as also seen in Met-null keratinocytes (Cowin et al., 2006; Chmielowiec et al., 2007). One study also linked CD151 with epithelial branching in vitro (Klosek et al., 2009), a defect seen in Met- and integrin α3-null kidneys (Kreidberg et al., 1996; Ishibe et al., 2009). Thus tetraspanins could provide a link between Met and integrin α3β1. However, loss of CD151 does not affect the expression of integrin α3β1 (Cowin et al., 2006), indicating that other factors are likely to be involved.

The idea that Met promotes cell survival was nicely demonstrated in conditional Met-null mice. Hepatocytes lacking Met rapidly die from apoptosis after activating Fas receptor (Huh et al., 2004). Met and Fas are known to interact with each other, and Met suppresses Fas by blocking ligand binding via a region on the extracellular domain of Met (Zou et al., 2007). However, our data indicate that loss of Met triggers death by activating Fas through a loss of integrin α3β1. We also find that the extracellular domain of Met is required. Thus the ability of Met to suppress Fas-induced cell death is likely mediated through α3β1.

Although the induction of anoikis is well characterized with respect to the intrinsic and extrinsic apoptosis pathways (Taddei et al., 2012), our study reveals more details about how integrins promote survival through autophagy (Edick et al., 2007). Our data demonstrate that the step in autophagy that is targeted by Met/α3β1 lies between LC3-II processing, which is impaired. This is seen by the dramatic accumulation of LC3-II but lack of subsequent degradation and the failure to form puncta, that is, to assemble on autophagosomal membranes. Our study...
activating autophagy and escape death due to activation of intrinsic and extrinsic apoptosis pathways.

MATERIALS AND METHODS

Cell culture
Primary cultures of human PrECs derived from normal human prostatic tissues were isolated and cultured as previously described...
Integrin α6 polyclonal antibody was provided by Anne Cress (University of Arizona, Phoenix, AZ; Pawar et al., 2007). Integrin α3 immunoblotting polyclonal antibody was provided by Chris Stipp (University of Iowa, Iowa City, IA).

Antibodies

Immunoblotting. Polyclonal Met (C-28) antibody was purchased from Santa Cruz Biotechnology (Dallas, TX) (cytoplasmic domain) and monoclonal Met (4F8.2) from Millipore (Ontario, Canada) (extracellular domain). Anti-α-tubulin was purchased from Sigma-Aldrich (St. Louis, MO), caspase 3, Bcl-xL, LC3, LAMP2, and phospho-Erk1/2 (T202/Y204) antibodies were purchased from Cell Signaling (Danvers, MA). The anti-phosphotyrosine monoclonal antibody 4G10 was obtained from Millipore. EGFR (Ab12) monoclonal antibody was purchased from NeoMarkers (Fremont, CA). Monoclonal Erk1/2 antibodies were purchased from Becton-Dickinson Transduction Labs (Franklin Lakes, NJ). Polyclonal goat mouse-specific anti-Met antibody (AF527) was from R&D Systems (Minneapolis, MN). Integrin α6 polyclonal antibody was provided by Anne Cress (University of Arizona, Phoenix, AZ; Pawar et al., 2007). Integrin α3 immunoblotting polyclonal antibody was provided by Chris Stipp (University of Iowa, Iowa City, IA).

Immunoprecipitation. EGFR monoclonal antibodies were purified from hybridoma HB-8508 obtained from the ATCC. Met immunoprecipitating monoclonal antibody, D1, was provided by the Van Andel Institute Antibody Core. Immunoprecipitating α3 monoclonal antibody, A3-X8, was provided by Chris Stipp (Winterwood et al., 2006).

Fluorescence-activated cell sorting, blocking, and immunostaining

Monoclonal α3 clone ASC-1 and β4 integrin clone ASC-3 were purchased from Chemicon (Ontario, Canada), and rat polyclonal α6
FIGURE 8: Model for Met and integrin α3β1-mediated survival. The extracellular and transmembrane domain of Met (cyan), but not the cytoplasmic tail (black), is required for cell survival on matrix via regulation of a potential complex with integrin α3β1 and Fas. Met-mediated maintenance of integrin α3β1 is required to suppress ROS-mediated death through induction of EGFR/Erk signaling, inhibit apoptosis by suppressing Fas, and promote autophagy-mediated survival under growth factor starvation conditions.

cloned GoH3 was purchased from BD PharMingen (San Jose, CA). Polyclonal antibody to human Met was from R&D (AF276), and the immunostaining integrin α3 (P1F2-1-1) antibody was a gift from William Carter (Fred Hutchinson Cancer Research Center, Seattle, WA; Symington and Carter, 1995). Fas receptor blocking antibody ZB4 was purchased from Millipore. Anti-annexin V conjugated to Alexa Fluor 568 came from Molecular Probes. Horseradish peroxidase–conjugated secondary antibodies for immunoblotting, rabbit anti-mouse and goat anti-rabbit, were purchased from Santa Cruz Biotechnology.

Molecular constructs

Full-length human Met cDNA in pMOG was provided by George Vande Woude (Van Andel Institute, Grand Rapids, MI). The Sal I Met restriction fragment of the extracellular domain was subcloned into pET-DuetI and used to generate the siMet-resistant WT Met target sequence (siMet1251) targeted to the extracellular domain of Met (cyan), but not the cytoplasmic tail (black), is required for cell survival on matrix via regulation of a potential complex with integrin α3β1 and Fas. Met-mediated maintenance of integrin α3β1 is required to suppress ROS-mediated death through induction of EGFR/Erk signaling, inhibit apoptosis by suppressing Fas, and promote autophagy-mediated survival under growth factor starvation conditions.

cloned GoH3 was purchased from BD PharMingen (San Jose, CA). Polyclonal antibody to human Met was from R&D (AF276), and the immunostaining integrin α3 (P1F2-1-1) antibody was a gift from William Carter (Fred Hutchinson Cancer Research Center, Seattle, WA; Symington and Carter, 1995). Fas receptor blocking antibody ZB4 was purchased from Millipore. Anti-annexin V conjugated to Alexa Fluor 568 came from Molecular Probes. Horseradish peroxidase–conjugated secondary antibodies for immunoblotting, rabbit anti-mouse and goat anti-rabbit, were purchased from Santa Cruz Biotechnology. Alexa Fluor 488 and 563 goat anti-rat, mouse anti-rabbit, and rabbit anti-mouse were purchased from Molecular Probes. Control immunoglobulin Gs (IgGs; rat, mouse, rabbit) were purchased from Molecular Probes. Control immunoglobulin Gs (IgGs; rat, mouse, rabbit) were purchased from Molecular Probes.

Adenovirus

HEK293 cells were transfected with 5 μg of linearized adenoviral recombinant DNA constructs using Lipofectamine 2000. As soon as cytopathic effects appeared at 3–5 d, cells were harvested and lysed by freeze-thawing and adenoviruses purified and titered in PrECs using a kit from Clontech. PrECs were routinely infected at a multiplicity of infection (MOI) of 1–2 for cDNAs and 2–5 for shRNAs. For viral constructs independently expressing GFP, immunofluorescence imaging indicated that the MOI was sufficient to generate an infection rate of >95%. Immunoblotting verified that the MOI was sufficient to knock down Met expression by 85–90%.

siRNA

Several Met-specific siRNAs—siMet1251 (human specific), siMet4268 (cross species), and two 3′ untranslated region (siMet3′-1,2)—as well as a scrambled siRNA, were ordered from Integrated DNA Technologies (Coralville, IA) and annealed to generate double-stranded siRNAs. An additional Met-targeted siRNA, siMet565, was tested, but it failed to block Met expression and was used as a second control siRNA (shMetMut). siRNA sequences were as follows: siMet1251, 5′-AATGTTGTGTCGCTCGCTGAGATGTCCTGTGATTCTCTTTT-3′; siMet4268, 5′-AATGTTGTGTCGCTCGCTGAGATGTCCTGTGATTCTCTTTT-3′; siMet565 (shMetMut), 5′-AAAGCCGGGTTTATCCTTTT-3′; and scrambled sequence, 5′-TCAAGAGAGGTGAGATGTCCTGTGAGAGATGTCCTTGTTT-3′. GFP-cre (courtesy of George Vande Woude), Met, or shRNAs were used to generate pAd-Easy (Strategene) adenoviral recombinants in BJ5183-AD1 bacteria.
and scrambled, 5′-ACTACGTTGTATAGGTG-3′, siRNAs between 5 and 30 nM were introduced into PrECs using SiLentect lipid from Bio-Rad (Hercules, CA), and the lowest concentration of siRNA giving the most effective knockdown was subsequently used. Control studies using fluorescently labeled control siRNAs indicated >90% transfection efficiency in PrECs.

Inhibitors
PrECs adherent to endogenous laminin matrix and starved for 24 h were treated with 1 μM staurosporine (Promega, Madison, WI), 10–20 μM SU11274 (Calbiochem, Ontario, Canada), or 0.1–1 μM PHA665752 (provided by James Christensen, Pfizer, La Jolla, CA). Cells were incubated for 24–72 h. The working concentration of the Met pharmacological inhibitors was determined by titrating to the minimum inhibitor concentration that effectively blocked tyrosine phosphorylation of Met for 72 h. Caspase 3/7 inhibitor, zVAD-fmk, was purchased from Promega and caspase 8 inhibitor, zEtD-fmk, from Sigma-Aldrich. Both were used at 20 μM and added 16 h after siRNA transfection. Lactacystin, MG132, and chloroquine were purchased from Sigma-Aldrich.

Peptide rescue
Human recombinant Met, consisting of the cleaved and cysteine-bonded α- and β-chains of the Met extracellular domain fused to Fc (rFc-Met), was purchased from R&D Systems and reconstituted in bovine serum albumin (BSA) as directed. At 16 h after siRNA Met transfection, cells were treated with IgG/BSA or concentrations of peptide from 0.01 to 0.1 nM.

Metβ0/β5 mice
Metβ0/β5 mice (Chmielowicz et al., 2007) and Cre-ERβ5 mice (Hayashi and McMahon, 2002) were obtained from the Van Andel Research Institute Mouse Repository and bred to generate Metβ0/β5 or Cre-ERβ5/Metβ0/β5 mice. Prostate epithelial cells were isolated from 6- to 10-wk-old adult male mice as described. After 1 d in culture, cells were either infected with Cre adenovirus (Metβ0/β5) or treated with 1.5 μM tamoxifen (Cre-ERβ5/Metβ0/β5) to induce loss of Met expression. Cell viability and biochemical analyses were conducted 24 h later. Institutional Animal Care and Use Committee protocol approval was obtained for these studies in compliance with all relevant federal guidelines and institutional policies.

Cell viability assays
Trypan blue exclusion. Cell viability was measured 48–72 h posttransfection with siRNAs. Cells were trypsinized and counted after exposure to trypan blue. Cells not taking up the dye were considered to be viable.

ATP levels. Cell viability was assayed using the CellTiter-Glo Luminescent Assay kit (Promega) following the manufacturer’s protocol. This assay determines cell viability based on quantification of intracellular ATP levels. Approximately 10,000 cells/well were allowed to adhere to endogenous laminin matrix in BSA-coated 96-well plates. CellTiter-Glo reagent was added 24–72 h after inhibitor or siRNA treatment and incubated for 1 h at room temperature in the dark. Relative light intensity was measured in each well using a Fluoroskan Assent FL fluorometer and software (Labsystems).

Annexin V
Annexin V was measured using a kit obtained from Molecular Probes (Invitrogen). Cells were resuspended in annexin binding buffer (10 mM 4-(2-hydroxyethyl)-1-piperazinethanesulfonic acid, 140 mM NaCl, 2.5 mM CaCl2, pH 7.4) containing Alexa Fluor 568-conjugated annexin V and incubated in the dark for 15 min. Samples were put on ice and immediately analyzed. The extent of staining was monitored by fluorescence-activated cell sorting (FACS) using a FACSCalibur (Becton-Dickinson) and CellQuest acquisition and analysis software (Becton-Dickinson) immediately after staining. On several occasions, annexin V staining was also monitored in adherent cells using a Nikon Eclipse TE300 fluorescence microscope and quantified using OpenLab image analysis software (ImproVision).

Caspase activity
The CaspaseGlo 3/7 kit (Promega) was used to measure caspase 3 and 7 activities following the manufacturer’s protocol. Approximately 10,000 cells/well were allowed to adhere to endogenous laminin in BSA-coated 96-well plates. CaspaseGlo reagent was added 24–72 h after inhibitor or siRNA or shRNA treatment and incubated for 1 h at room temperature in the dark. Relative light intensity was measured in each well using a Fluoroskan Assent FL fluorometer and software (Labsystems, Waltham, MA). In addition, total caspase 3 levels were monitored by immunoblotting, with decreased levels of caspase 3 being associated with increased cell death.

Immunoprecipitation and immunoblotting
For protein analyses of whole-cell lysates, cells were lysed in RIPA (10 mM Tris, pH 7.2, 158 mM NaCl, 1 mM EDTA, 0.1% SDS, 1% NaDOC, 1% Triton X-100, 1 mM Na3VO4, 1 mM phenylmethylsulfonyl fluoride [PMSF], 100 U/ml aprotinin, 10 μg/ml pepstatin, and 10 μg/ml leupeptin) and protein concentrations determined by bicinchoninic acid assay (Pierce). For coimmunoprecipitation studies, cells were lysed in Triton X-100 buffer (50 mM Tris, pH 7.5, 100 mM NaCl, 0.5 mM EDTA, 1% Triton X-100, 50 mM NaF, 50 mM β-glycerophosphate, 5 mM sodium pyrophosphate, 1 mM Na3VO4, 1 mM PMSF, 100 U/ml aprotinin, 10 μg/ml pepstatin, and 10 μg/ml leupeptin). Immunoprecipitation and immunoblotting conditions were carried out as previously described (Edick et al., 2007). Chemiluminescence signal was captured by a charge-coupled device (CCD) camera in a Bio-Rad Chemi-Doc Imaging System. Where necessary, blots were stripped and reprobed for total levels of protein in the immunoprecipitates or cell lysates.

Autophagy assays
LC3-GFP. PrECs were infected at MOI of 1–2 with adenoviruses expressing LC3-GFP (Edick et al., 2007). Twenty-four hours later, cells were growth factor–deprived and transfected with Met or scrambled siRNA. Localization of GFP-LC3 was monitored by a standard fluorescence microscopy at 24 and 48 h posttransfection using a Nikon Eclipse TE300 fluorescence microscope and OpenLab image analysis software (ImproVision, Waltham, MA). For quantification, cells displaying at least 10 punctate spots were scored as positive for LC3-II staining.

LC3 Immunoblotting. Expression of endogenous LC3 was measured by immunoblotting. PrECs were transfected with Met or scrambled siRNA, starved, and plated on endogenous laminin for 48 h and then treated with dimethyl sulfoxide (DMSO) or 4 μM chloroquine several hours before lysis to inhibit lysosomal function. Levels of LC3-I and LC3-II and LAMP2 were monitored by immunoblotting.

FACS
Cell surface expression of α3β1 or α6β4 integrin was measured by FACS. Cells were treated with dissociation buffer and then lightly
trypsinized. Cells were stained with corresponding primary antibo-
dy anti-ITGα3, ITGβ4, or ITGα6 for 1 h at 4°C. After several washes,
Alexa Fluor–labeled secondary antibodies were applied and
incubated for 1 h at 4°C. Samples were put on ice and immedi-
ately analyzed. The extent of staining was monitored using a FACS-
Calibur and CellQuest acquisition and analysis software.

Immunofluorescence staining

Starved PrECs were placed in eight-chamber slides (LabTek) at a
density of 1 × 10^5 cells/chamber and allowed to adhere to endo-
geous LMS matrix for 72 h. Cells were fixed with 4% formaldehyde for
20 min at room temperature. Slides were washed three times with
 Dulbecco’s phosphate-buffered saline (PBS) and then washed with
times with 100 mM glycine in PBS for 5–10 min per wash. Slides were
blocked with 5% BSA in PBS for 2 h at room temperature. Slides were
first incubated for 20 h at 4°C with goat anti-Met AF527 anti-ody (R&D Systems) diluted 1:75 in 5% BSA/PBS and then washed.
All washes were done three times for 5–10 min per wash using PBS
containing 0.1% BSA and 0.05% Tween 20. Slides were further incu-
bated with mouse anti-ITGα3 antibody (PIF2) diluted 1:10 in 5% BSA/PBS
for 20 h and then washed. Mouse secondary Alexa Fluor
546 and goat secondary Alexa Fluor 488 (Invitrogen), each diluted
1:500 in 5% BSA/PBS, were added for 1 h at room temperature, and
then slides were again washed. Nuclei were stained with Hoechst
33258 (Sigma-Aldrich) at 1.25 μg/ml in 5% BSA/PBS for 10 min at
room temperature. Finally, slides were washed three times in BSA/
Tween 20/PBS and then three times with water and then mounted
with aqueous gel mounting medium (Biomedia, St. Louis, MO).
Images were acquired either by epifluorescence with a Nikon
Eclipse TE300 microscope and Hamamatsu CCD video camera us-
ing OpenLab Imaging software (Improvision) or by confocal micro-
copy using sequential detection on an Olympus Fluoview 1000 LSM
using FluoView software, version 5.0.

ACKNOWLEDGMENTS

We thank the following for help with this study. Beatrice Knudsen
supplied the primary prostate epithelial cells. James Christensen
graciously provided the PHA665752 drug. Christopher Stipp pro-
vided the monoclonal anti-α3 integrin antibodies for
immunoblotting and immunoprecipitation. Anne Cress provided
the monoclonal anti-α3 integrin antibody. William Carter provided
the monoclonal anti-α3 integrin antibody for FACS and immuno-
staining. Michael DiPersio provided the integrin α3 construct.
George Vande Woude supplied the original Met and adenoviral Cre
constructs. Mouse strains were provided by the Van Andel Research
Institute Vivarium Repository. The Van Andel Research Institute
Monoclonal Antibody Core generated purified anti-Met (D1) and
EGFR antibodies. We give special thanks to the Michigan State
University Microscopy Core, run by Melinda Frame, for the use of
their confocal microscope; to the FACS core at the Van Andel
Research Institute; and to Carrie Gravelle for troubleshooting on the
anti-mouse Met antibody. These studies were supported by funding
from the American Cancer Society (RSG-05-245-01-CSR; L.T.,
C.K.M., L.E.L.) and the Van Andel Research Institute (VVS., S.B.F.).

REFERENCES

Aoudjit F, Vuori K (2001). Matrix attachment regulates Fas-induced apopto-
sis in endothelial cells: a role for c-flip and implications for anoikis. J Cell
Biol 152, 633–643.

Berdichevski F, Gilbert E, Griffiths MR, Fitter S, Ashman L, Jenner SJ (2001).
Analysis of the CD151-α3β3δ3 integrin and CD151-tetraspanin
interactions by mutagenesis. J Biol Chem 276, 41165–41174.

Bill HM, Knudsen B, Moores SL, Muthuswamy SK, Rao VR, Brugge JS,
Miranti CK (2004). Epidermal growth factor receptor-dependent regula-
tion of integrin-mediated signaling and cell cycle entry in epithelial cells.
Mol Cell Biol 24, 8586–8599.

Boisvert-Adamo K, Apolin AE (2008). Mutant B-Raf mediates resistance to
anoikis via Bad and Bim. Oncogene 27, 3301–3312.

Boisvert-Adamo K, Longmate W, Abel EV, Apolin AE (2009). Mcl-1 is required
for melanoma cell resistance to anoikis. Mol Cancer Res 7, 549–556.

Chmielewicz J, Borowiak M, Morkel M, Stradal T, Munz B, Werner S,
Wehland J, Birchmeier C, Birchmeier W (2007). c-Met is essential for
wound healing in the skin. J Cell Biol 177, 151–162.

Christensen JG, Schreck R, Burrows J, Kuruganti P, Chan E, Le P, Chen J,
Wang X, Ruslim L, Blake R, et al. (2003). A selective small molecule
inhibitor of c-Met kinase inhibits c-Met-dependent phenotypes in vitro and
exhibits cytotoxic reuptake into tumor activity. Cancer Res 63, 7345–7355.

Coll ML, Rosen K, Ladeda V, Filmus J (2002). Increased Bcl-xl expression mediates
v-Src-induced resistance to anoikis in endothelial epithelial cells.
Oncogene 21, 2908–2913.

Cowan AJ, Adams D, Geary SM, Wright MD, Jones JC, Ashman LK (2006).
Wound healing is defective in mice lacking tetraspanin CD151. J Invest
Dermatol 126, 680–689.

Edick MJ, Tesfay L, Lamb LE, Knudsen BS, Miranti CK (2007). Inhibition of
integrin-mediated crosstalk with epidermal growth factor receptor/Erk
or Src signaling pathways in autophagic prostate epithelial cells induces
caspase-independent death. Mol Biol Cell 18, 2481–2490.

Flusberg DA, Numaguchi Y, Ingber DE (2001). Cooperative control of
Akt phosphorylation, bcl-2 expression, and apoptosis by cytoskeletal
microfilaments and microtubules in capillary endothelial cells. Mol Biol
Cell 12, 3087–3094.

Frisch SM (1999). Evidence for a function of death-receptor-related, death-
domain-containing proteins in anoikis. Curr Biol 9, 1047–1049.

Frisch SM, Scretan RA (2001). Anoikis mechanisms. Curr Opin Cell Biol 13,
555–562.

Frisch SM, Vuori K, Kelata D, Sicks S (1996). A role for Jun-N-terminal
kinase in anoikis; suppression by bcl-2 and cma. J Cell Biol 135,
1372–1382.

Furge KA, Kewlich D, Le P, Vo MN, Faure M, Howlett AR, Lipson KE,
Woude GF, Webb CP (2001). Suppression of Ras-mediated tumorigen-
icity and metastasis through inhibition of the Met receptor tyrosine kinase.
Proc Natl Acad Sci USA 98, 10722–10727.

Gan L, Liu P, Lu H, Chen S, Yang J, McCarthy JB, Knudsen KE, Huang H
(2009). Cyclin D1 promotes anchorage-independent cell survival by
inhibiting FOXO-mediated anoikis. Cell Death Differ 16, 1408–1417.

Garcia-Martinez JM, Calcabrini A, Gonzalez L, Martin-Forero E, Aguillo-
Ortuno MT, Simon V, Watkin H, Anderson SM, Roche S, Martin-Perez J
(2010). A non-catalytic function of the Src family tyrosine kinases controls
prolactin-activated Jak2 signaling. Cell Signal 22, 415–426.

Gilmore AP (2005). Anoikis. Cell Death Differ 12, 1473–1477.

Gmyrek GA, Walburg M, Webb CP, Yu HM, You X, Vaughan ED, Vande
Woude GF, Knudsen BS (2001). Normal and malignant prostate epi-
thelial cells differ in their response to hepatocyte growth factor/scatter
factor. Am J Pathol 159, 579–590.

Gomez-Quiroz LE, Factor VM, Kaposi-Novak P, Coulouam C, Conner EA,
Thorgergsson SS (2008). Hepatocyte-specific c-Met deletion disrupts
redox homeostasis and sensitizes to Fas-mediated apoptosis. J Biol
Chem 283, 14581–14589.

Gonzatti-Haces M, Seth A, Park M, Copeland T, Orozslan S, Vande Woude
GF (1988). Characterization of the TPR-MET oncogene p25 and the MET
protein-tyrosine p140 protein-tyrosine kinases. Proc Natl Acad Sci USA
85, 21–25.

Grulwald IC, Korte M, Wolfer D, Wilkinson GA, Unsicker K, Lipp HP,
Wehland J, Birchmeier W, Birchmeier C (2007). c-Met is essential for
wound healing in the skin. J Cell Biol 177, 151–162.

Higuchi M, Onishi K, Kikuchi C, Gotoh Y (2008). Scaffolding function of PAK
in the PDK1-Akt pathway. Nat Cell Biol 10, 1355–1364.

Huh CG, Factor VM, Sanchez A, Uchida K, Conner EA, Thorgergsson SS
(2004). Hepatocyte growth factor/c-met signaling pathway is required
for

Volume 27 August 1, 2016 Met-mediated survival via integrin α3β1 | 2503
for efficient liver regeneration and repair. Proc Natl Acad Sci USA 101, 4477–4482.

Humbert M, Medova M, Aebersold DM, Blaukat A, Bladt F, Fey MF, Zimmer Y, Tschan MP (2013). Protective autophagy is involved in resistance towards MET inhibitors in human gastric adenocarcinoma cells. Biochem Biophys Res Commun 431, 264–269.

Ishibue S, Karhaloo A, Ma H, Zhang J, Marlier A, Mitobe M, Togawa A, Schmitt R, Cyzyck J, Kashgarian M, et al. (2009). Met and the epidermal growth factor receptor act cooperatively to regulate final nephron number and maintain collecting duct morphology. Development 136, 337–345.

Klosek SK, Nakashiro K-i, Hara S, Goda H, Hasegawa H, Hamakawa H (2009). CD151 regulates HGF-stimulated morphogenesis of human breast cancer cells. Biochem Biophys Res Commun 379, 1097–1100.

Knudsen BS, Vande Woude G (2008). Showering c-MET-dependent cancers with drugs. Curr Opin Genet Dev 18, 87–96.

Kreibig JA, Donovan MJ, Goldstein SL, Rennke H, Shepherd K, Jones RC, Jaenisch R (1996). Alpha 3 beta 1 integrin has a crucial role in kidney and lung organogenesis. Development 122, 3537–3547.

Luo M, Zhao X, Chen S, Liu S, Wicha MS, Guan JL (2013). Distinct FAK functions determine progenitor and mammary stem cell characteristics. Cancer Res 73, 5591–5602.

Manohar A, Shome SG, Lamar J, Stirling L, Iyer V, Pumiglia K, DiPersio CM (2004). a3b1 integrin promotes keratinocyte cell survival through activation of a MEK/ERK signaling pathway. J Cell Sci 117, 4043–4054.

Marconi A, Atzori P, Panza C, Fila C, Tiberio R, Truzzi F, Wachter T, Leverkus M, Pincelli C (2004). Flice/caspase-8 activation triggers anoikis induced by beta1-integrin blockade in human keratinocytes. J Cell Sci 117, 5815–5823.

Owens TW, Valentin AJ, Upton JP, Keeble J, Zhang L, Lindsay J, Zouq NK, Gilmore AP (2009). Apoptosis commitment and activation of mitochondrial Bax during anoikis is regulated by p38MAPK. Cell Death Differ 16, 1551–1562.

Pawar SC, Demetriou MC, Nagle RB, Bowden GT, Cress AE (2007). Integrin alpha6 cleavage: a novel modification to modulate cell migration. Exp Cell Res 313, 1080–1089.

Pomerleau V, Landry M, Bernier J, Vachon PH, Saucier C (2014). Met transition of a MEK/ERK signaling pathway. J Cell Sci 117, 4043–4054.

Rytomaa M, Martins LM, Downward J (1999). Involvement of FADD and caspase-8 signalling in detachment-induced apoptosis. Curr Biol 9, 1043–1046.

Safigd, Beertsen W, Eskelinen EL (2008). LAMP-2: a control step for phagosome and autophagosome maturation. Autophagy 4, 510–512.

Schmelele T, Mailloux AA, Overholtzer M, Carroll JS, Solimini NL, Lightcap ES, Veiby OP, Brugge JS (2007). Functional role and oncogene-regulated expression of the BH3-only factor Bmf in mammary epithelial anoikis and morphogenesis. Proc Natl Acad Sci USA 104, 3787–3792.

Shinomiya N, Gao CF, Xie Q, Gustafson M, Waters DJ, Zhang WW, Vande Woude GF (2004). RNA interference reveals that ligand-independent Met activity is required for tumor cell signaling and survival. Cancer Res 64, 7962–7970.

Skurk C, Maatz H, Kim H-S, Yang J, Abid MR, Aird WC, Walsh K (2004). The Akt-regulated forkhead transcription factor FOXO3a controls endothelial cell viability through modulation of the caspase-8 inhibitor FLIP. J Biol Chem 279, 1513–1525.

Sridhar SC, Miranti CK (2006). Tetraspanin KA1/CD82 suppresses invasion by inhibiting integrin-dependent crosstalk with c-Met receptor and Src kinases. Oncogene 25, 2367–2378.

Symington BE, Carter WG (1995). Modulation of epithelial differentiation by epiligrin and integrin alpha 3 beta 1. J Cell Sci 108, 831–838.

Taddei ML, Giannoni E, Fiaschi T, Chiarugi P (2012). Anoikis: an emerging hallmark in health and diseases. J Pathol 226, 380–393.

Todeschini AR, Dos Santos JN, Handa K, Hakomori SI (2007). Ganglioside GM2-tetraspanin CD82 complex inhibits met and its cross-talk with integrins, providing a basis for control of cell motility through glycosynapse. J Biol Chem 282, 8123–8133.

Valentijn AJ, Gilmore AP (2004). Translocation of full-length Bcl 2 into mitochondria during anoikis. J Biol Chem 279, 32848–32857.

Valentijn AJ, Zouq N, Gilmore AP (2004). Anoikis. Biochem Soc Trans 32, 421–425.

Wang X, DeFrances MC, Dey I, Pedladikatis P, Johnson C, Bell A, Michalopoulos GK, Zarnegar R (2002). A mechanism of cell survival: sequestration of Fas by the HGF receptor Met. Mol Cell 9, 411–421.

Wang R, Ferrell LD, Fauzi S, Maher JJ, Bishop JM (2001). Activation of the Met receptor by cell attachment induces and sustains hepatocellular carcinomas in transgenic mice. J Cell Biol 153, 1023–1034.

Wang R, Kobayashi R, Bishop JM (1996). Cellular adherence elicits ligand-independent activation of the Met cell-surface receptor. Proc Natl Acad Sci USA 93, 8425–8430.

Wehla Z, Tuan R, Huang WC, Wu Q, Chiu CH, Fidler IJ, Hung MC (2008). Survival of cancer cells is maintained by EGFR independent of its kinase activity. Cancer Cell 13, 385–393.

Winterwood NE, Varzavand A, Meland MN, Ashman LK, Stipp CS (2006). A critical role for tetraspanin CD151 in alpha3beta1 and alpha6beta4 integrin-dependent tumor cell functions on laminin-5. Mol Biol Cell 17, 2707–2721.

Yauch RL, Kazarov AR, Desai B, Lee RT, Hemler ME (2000). Direct extracellular contact between integrin alpha(3)beta(1) and TM4SF protein CD151. J Biol Chem 275, 9230–9238.