Exploring the Habitat Restoration and Landscape Construction of the Wetland Lakeside Zone in the Lujiang Section on the Southern Bank of the Chaohu Lake

Zhiyong Cheng¹,* and Xiaofan Zhang²

¹ Department of art and design, Anhui Business College, Wuhu, China
² Anhui Technical College of Mechanical and Electrotechnical Engineering, Wuhu, China

*Corresponding author e-mail: chengzhiyong@abc.edu.cn

Abstract. This article proposes the corresponding situation from the four aspects of the wetland along the south bank of the Chaohu Lake, the aquatic reed wetland habitat, the aquatic plant landscape, the anti-wave forest and the slope protection, combined with the current situation and treatment of the lakeside line in the Lujiang section on the south bank of Chaohu Lake. Focusing on the habitat and landscape construction of the south bank of the Chaohu Lake wetland, it emphasizes the principle of ecological priority, highlights the application of ecological engineering technology, continues the urban “blue vein green network” ecological pattern, which strengthens the construction of ecological corridors and protection systems, and that establishes a stable and excellent ring. Chaohu wetland lakeside ecosystem.

Keywords: The Chao Lake Wetland; Habitat Restoration; landscape construction

1. Introduction

Introduction of the current situation which the wetland lakeside zone in the Lujiang section on the southern bank of the Chaohu Lake

Wetlands refer to naturally formed or artificially formed areas, such as swamps, lakes, rivers, coastal waters, ponds, etc. They are perennial or seasonally accumulated water, suitable for the growth of wild animals which have important ecological functions. Chaohu Lake is located 15 kilometers south of Hefei City of Anhui Province. It belongs to the left bank water system in the lower reaches of the Yangtze River and becomes one of the four freshwater lakes in China. Chaohu Lake is 54.5 kilometers long from east to west and 21 kilometers wide from north to south. The lakeshore line is more than 170 kilometers long. The total wetland area in the Chaohu Lake area is 168.05 km², and the wetland area in the Chaohu Lake area accounts for 95.37% of the wetland area of Hefei City. Where the territory are the Sanchahe National Wetland Park, Yulin Wetland Park, and Hefei Binhu District Wetland Forest Park. As show in Fig 1, the wetland of the Lujiang River in the south bank of Chaohu river is located on the south bank of Chaohu Lake, north of Chaohu Lake, east to Zhaohoe Lake, and west to Weihe River. The total length of the wetland is about 25km. The coast involves Tongda Town,
Baishan Town and Shengqiao Town of Lujiang County. Among them, Baishan Town is located on the south bank of Chaohu Lake. Along the coastline of Chaohu Lake, it involves administrative villages such as Tongchun Village, Juehai Village and Xinggang Village. Shengqiao Town is located on the south bank of Chaohu Lake and belongs to Dongdaemun of Lujiang County. Along the coastline of Chaohu Lake, it involves administrative villages such as Xuqiao Village, Dongyue Village, Jincheng Village and Cangtou Village[1], as shown in Figure 1 and Figure 2. From the hydrological point of view, the water level in Chaohu flood season is higher than the runoff water level in the lake. In case of heavy rain, internal and external impacts, floods are prone to floods, wetlands are flooded, and the water level of Chaohu Lake is increased. Chaohu Lake is relatively unstable for many years. And it keep high water level. The average water depth in the estuary area is 3.06m, and the water depth is 1.0m-6.78m. In terms of hydrology, the average water level during the flood season (May to September) generally does not exceed 7.6 m, and the fluctuation range is 5.6 to 8.6 m. [2]

Figure 1. Study area

2. This Existing Problems in Wetland Lakeside Habitats in the Lujiang Section on the South Bank of the Ring Nest

2.1. The lakeside belt of the wetland collapses seriously in the Lujiang section on the southern bank of the Chaohu Lake.

With the development of urbanization in the Chaohu Lake area eroding the development space and habitat of the wetland, the beach in the lakeside buffer zone of the Lujiang River in the south bank of the Chaohu Lake was severely eroded and the earth embankment collapsed. The total length of the purely collapsed pure soil bank was 44.38km, which was a slight collapse. The lower part of the bedrock has a total length of 20.2km[3], which leads to the retreat of the beach line, that this is most vulnerable to natural disasters. At the same time, the construction of large-scale water conservancy facilities in Polder field and the destruction of the natural properties of the buffer zone in the surrounding area of the Chaohu Lake has intensified the destruction of the self-purification function in the lakeside buffer zone, The increasing the pollution load of the lakeside buffer zone and changing the ecological environment of the area. Sustainable development.

Figure 2. The layout of the lakeside wetland function restoration in the Minjiang section
2.2. The number of aquatic plants which in the wetland of the Lujiang section of the southern bank of the Chaohu Lake is sharply reduced.

The population pressure on the south bank of the Chaohu Lake is increasing and economic activities are frequent, especially the people's activities around the lake and the expansion of urban wetland parks. There are human disturbances and damage to the lakeside vegetation, which makes the wetland ecosystem around the Chaohu Lake disturb and aquatic biodiversity. The increasing threat of sex has led to a sharp decline in the number of aquatic species. According to the monitoring data, there are only 196 kinds of phytoplankton in the buffer zone of the Chaohu Lake wetland, and the descending speed is obvious. There are only a few water-producing plants in the Shuangqiao estuary, and a small number of submerged plants exist in the Shuangqiao estuary.

2.3. The habitat of aquatic plants in the wetland of the Lujiang section on the southern bank of the nest is deteriorating

In terms of wetland plant habitats, the main manifestations of ecological degradation in Chaohu Lake wetland are silting of lake basins, lack of aquatic plants, deterioration of water quality, frequent blooms, and large-scale aquatic plants such as reeds and alfalfa, among which reeds are the main ones. The number is also small. Because the reclamation of the beach and the low elevation of the beach surface, the self-repair function of the lakeside wetland is basically lacking. Due to the expansion of the agricultural surface source of the Chaohu aquatic ecosystem, the eutrophication of the lake body is intensified, the total amount of nitrogen reaches 17,000 tons, and the total amount of phosphorus reaches 219.8 tons, resulting in the outbreak of cyanobacteria in the lake, as shown in Table 1. In addition, the increase in \(\text{CO}_2 \) emissions in the wet area of the Chaohu Lake has also accelerated the occurrence and development of lake eutrophication to some extent.

Sampling point	TN (mg/l)	TP (mg/l)	Transparency (cm)	Chlorophyll a (complex)
Hangyong Estuary	1.779	0.084	38	7.449
Zhaohe Estuary	1.894	0.097	35	6.814

2.4. The wetland lakeside of the south bank of the Chaohu Lake is separated by human settlements.

The main problem facing the living environment of the Chaohu Lake wetland is the traffic and function separation of the city and the lake greenway. Although the city is facing the lake, it cannot see the beautiful scenery of the lake. The waterfront area lacks the interface of leisure activities. The current situation is separated from the lake. The hard embankment that cannot be accessed cannot meet the needs of citizens for water, lake and fitness. The Huan Chaohu Wetland Park is mainly concentrated on the north bank. The south bank has a small layout and is close to the village, resulting in a lack of public service facilities. It is necessary to strengthen the relationship between the city and the lake. At the same time, the fishing of the villagers near the south bank of the Chaohu Lake caused noisy coastal environment and more domestic garbage, which affected the ecological environment of Chaohu Lake to a certain extent, which made the visitors discouraged.

3. Conservation and Landscape Construction Strategy of Wetland Lakeside Belt in Lujiang Section on the South Bank of Huanchao Lake

The environmental factors affecting the habitat succession of the plant communities in the Chaohu Lake wetland are multifaceted, including natural disasters and human disturbance factors. It is precisely because of these factors that the vegetation area of the Wetland in the Chaohu Lake has shrunk and the eutrophication of lakes has accelerated. According to the topography of the wetland
along the south bank of the Chaohu Lake, the aquatic reed habitat, the aquatic plant landscape, the anti-wave forest and slope protection, and the river runoff along the lake, combined with the current situation and treatment of the lakeside line of the Minjiang section of the south bank of Chaohu Lake, the corresponding protection measures are proposed [4].

3.1. Terrain reconstruction along the estuary wetland along the lakeside of the Lujiang River on the south bank of Chaohu Lake

The land use status of the lakeside wetland in the Lujiang section of the South Bank of the Chaohu Lake is mainly beach land. The area occupied by the long-term occupation of the beach is about 17hm². The beach outside the levee is in good condition. The range of the beach is generally between 50m and 600m. The flat surface of the lakeside is gradually extended. Firstly, in the lake. Which increasing the residence time of the water body at the estuary of the lake's water system on the south bank of the Chaohu Lake wetland, the existing river channel (the rivers of the Changi River, the Gusheng River, the Jiawan River, and the Jiehe River) will be converted into a roundabout shape. The estuary wetland creates the characteristics of the surrounding lake bay pond, enhancing the plasticity of the water body, the diversity of the water body and the water purification effect. The wetland water environment is the key factor for the stability of the wetland ecosystem. The wetland formation time of the Chaohu Lakeside Wetland Reserve is relatively late, and most of its wetlands are formed by the water and impact of the Chaohu Lake. Secondly, the south bank of the Huanchao Lake Wetland uses the existing topography and landforms, combined with the topographic reconstruction of the wetland along the estuary section, and uses the lakeside buffer zone to slow down the high and low micro-topography to create wind and wave protection for the south bank of the Chaohu Lake wetland, when it through different vertical designs. The use of terrain height difference and plant planting to classify the rainwater to reduce the erosion of the wetland revetment by the wind and waves in the lake area, maintain the relatively stable water body ecological environment in the wetland marsh area, and reduce the backwater irrigation of the Chaohu Lake. Thirdly, in the case of ensuring that the elevation is constant, the excavation of the estuary wetland into the lake system is carried out. For example, the Hangyong River is located on the south bank of Chaohu Lake and is one of the main rivers that flow into Chaohu Lake. The Hangyong River flows through the hilly land and alluvial plains, bringing a lot of agricultural runoff, and finally forms the estuary wetland where the Chaohu Lake plays an important role. The topographic reconstruction of the estuary of the Hangyong River into the lake is included in the estuarine silt dredging project. The estuary wetland range is sloping 1:3 to 1.5m water depth, 5.60m, and the water plant on both sides is constructed to construct the waterfront landscape zone, and the slope shallow water area is cultivated. Submerged plants of low-lying plants, submerged plants with high plant height in deep water, constructed into a natural purification system for rivers. Finally, through the calculation of the catchment capacity of surrounding towns and villages, a continuous inland river is designed outside the Chaohu levee to meet the requirements of the surrounding artificial buildings for flood discharge capacity, and through the three technologies of “stagnation”, “storage” and “slow”. The method is to slow down the surface runoff rainwater flow rate that relieve the pressure of the rainwater buffer zone on the wetland, which create a beaded lakeside buffer zone marsh wetland, and improve the quality of the water flowing into the lake to create a natural wetland purification system.

3.2. Rehabilitation of aquatic reed wetland in the wetland of the Lujiang section on the southern bank of the Chaohu Lake

The lakeside wetland in the Lujiang section on the southern bank of the Chaohu Lake is dominated by tidal wetlands and marsh wetlands. At the same time, the city's scarce wetland type and the reed wetland is distributed. These wetland shoals are covered by a large number of reeds and belong to excellent natural shoreline resources. Reed is one of the most commonly used plants in constructed wetlands. It has strong viability, suitable for growing water depth of 0.3m~0.5m, which growing
season from April to November every year, low maintenance cost, and can better adapt to near-water end waves. And the change of water level, the drought at the far end and the landscape effect. According to the water level fluctuation duration of the Huohu Lake wetland area, the suitable growth requirements of the reed and the existing reed distribution range, the elevation of the aquatic reed distribution area is 6.0m-8.8m, of which the reed grows most vigorously at about 7.3m, and the corresponding submergence time is 3.5. About a month later, the reed wetland creates different habitats and perfect biological chains, providing habitats that can be relied upon for animals and plants. Which Using 3s digital technology to establish a wetland resource monitoring and management system to monitor the changes in the distribution of wetland reeds[5],especially the wetland ecological environment. As shown in Table 2, the changes include the dynamic monitoring and management of aquatic plants and other ecological environments such as reeds. From the current situation, the

Ecological functional area	your region	Major ecological problems	Ecological environment sensitivity	Major ecosystem services	Protection measures and development direction
I. The hilly and alfalfa agro-ecological functional zone in the eastern part of the Chaohu Lake	Northern part of Qijiang County	Mining destroys surface landscape	Water environment is sensitive to stress, water environment pollution is mildly sensitive, soil erosion is highly sensitive, and geological disasters are sensitive.	Wetland protection, agricultural production	Protecting the coastal zone of the Chaohu Lake, ecological restoration of the mining area, development of ecological agriculture and aquatic product production, and conservation of biodiversity
II. Ecological and functional areas of agricultural and non-point source pollution control in the western plain of Chaohu Lake	Northwest part of Jiangxi Province	The terrain is low, vulnerable to floods, and the agricultural sources are serious.	Water environment is sensitive to stress, soil erosion is mildly sensitive, and some geological disasters are extremely sensitive.	Agricultural production and non-point source pollution control	Stabilizing agricultural production and developing high-quality grain bases and aquatic products bases
III. Ecological Lakes of Chaohu Lake	Chaohu Lake District water surface and coastal zone	Eutrophication is serious, siltation, shallow lake basin, non-ecological control water level	Water environment pollution is sensitive, soil erosion and geological disasters are highly sensitive.	Drinking water source supply, fishery, shipping, wetland habitat	Protect water quality, reduce soil erosion, rationally adjust water level, scientifically develop water surface, and restore surrounding wetland functions

human disturbance in the reed wetland area on the south bank of the Chaohu Lake is relatively light, and the wetland vegetation is relatively intact, thus becoming an important wintering ground for fish spawning, habitat and migratory birds. However, due to the relatively small area, the ability to purify water is small, and the overall wetland system is not formed. That by reducing the biomass of the bath and improving the water quality, it is necessary to accelerate the restoration of the Chaohu wetland ecosystem by strengthening the protection of these areas. Firstly, it increasing the water storage space
at the low-lying area of the reed wetland at the lakeside belt of the southern bank of the Chaohu Lake is an important measure to restore the ecological system along the lake, increase the texture of the Taitian, enrich the landscape of the vertical reed, slow down the runoff of the rainwater and purify the rainwater, and improve the reeds. Wetland ecosystem. Secondly, in order to protect and enhance the aquatic reed resources in the existing wetland, the area of the wild reeds should be appropriately expanded and restored on the basis of the reed area of the existing lake area, thereby further reducing the lake and the wind, improving the ecological environment along the lake, and purifying the water to repair the reed wetland. Finally, combined with the current situation of the wetland, the artificial cultivation of reeds is carried out. The artificial cultivation of reed wetland adopts two methods. One is to replant the reeds in the area where the original reeds are distributed, and the other is to use interval planting in the reed expansion area. The area selection is more suitable for the reproduction of the reeds in the ground elevation, so that the reeds can spread and spread, and the cultivation is carried out in the higher or lower elevation of the ground. The cultivation method is distributed along the lakeshore strips. Reeds are cultivated on both sides of the wetland pipe protection road, and no interval area is provided to form a better natural beach.

3.3. Construction of aquatic plants in the lakeside zone of the Lujiang section on the southern bank of the Chaohu Lake

The water ecosystem takes the water purification effect and the landscape effect as the basic starting point. Through the cultivation of submerged plants, a perfect water purification system and the emergent plants are used to construct the waterfront landscape belt. The wetland water environment is the key factor for the stability of the wetland ecosystem. The various plant resources of the wetland ecosystem are changing during the process of continuous generation, development and succession. Preliminary investigations have shown that the environmental factors affecting the succession of plant communities in the lakeside wetland of the Lujiang River on the south bank of Chaohu Lake are multifaceted. The irresistible natural disasters and human disturbances cause other factors to change, so that certain plant species are replaced and the lake swamp is accelerated Chemical. The lakeside wetland in the Minjiang section of the southern bank of the Chaohu Lake is located in shallow waters with a water depth of less than 3 m in the landscape waters. Reasonable arrangement of different plant heights and different flower coloring plants can enhance the water landscape effect. In order to ensure the impact of dense and close-range landscapes on the shore, aquatic plants are planted in clusters and small plots, aquatic plants are arranged in a variety of colors and landscapes, and low-yield species are used to construct waterfront landscape belts. Due to the high embankment of the Chaohu Lake, the inland water cannot be directly discharged into the Chaohu Lake. Therefore, the open lake surface can be expanded at the lowest point of the site, which not only expands the water storage space, but also highlights the core of the entire wetland tidal flat. It can be seen that the better water quality is mainly based on the underwater plant arrangement, and the Chaohu Lake wetland tidal flat is based on the water purification and strengthens the landscape effect. From the wetland tidal flat to the shallow water of the lake, it is carried out by the arbor belt→wet grass belt→water belt→floating leaves and submerged plant belts [6]. In other waters, due to long-term fixed fence farming, the breeding species are single, the wetland sinking and planting is greatly reduced, and the floating plant of Ling and other large areas spread, which interferes with the wetland ecosystem and biodiversity. For these waters, it is necessary to gradually restore the wetland vegetation by adjusting the culture structure and promote the virtuous cycle of the wetland ecosystem. In terms of specific arrangements, the comprehensive management and restoration of wetlands will be carried out vigorously in the 2.5-kilometer area around the Chaohu Lake wetland and the 9 rivers and rivers in the lake. That use of Luzhu, Jiaobai, lotus, Ling, water lily, duckweed, reed, etc [7]. Which the use of wetland plant resources, aquatic plants have many flowers and plants for viewing, such as lotus, leeks, water hyacinth, moderately aquatic Many economic aquatic plants in the plant processing and utilization area have not been rationally utilized, such as Ling, lotus, and alfalfa, and most of them have died. By adding floating leaf plants to increase the water surface perception, the plant configuration uses a submerged plant water
The purification system constructed from Hydrilla verticillata, serrata and Ophiopogon japonica. At the same time, government departments can use the administrative regulations to isolate the lake runoff from the surrounding villages and towns, to reduce the interference of human life and production on the plant community of Chaohu wetland, to prevent the accumulation of cyanobacteria in the wetland tidal flat, and to ensure the wetland buffer plant population and lake. The integrity of the body water ecology, and then the construction of a flexible, ecological lakeside wetland system.

3.4. The lakeside zone of the Luijiang River on the south bank of the Chaohu Lake is built with anti-wave forests and slope protection

![Figure 3. Layout of reed wetland and anti-wave forest in Minjiang section](image)

The scouring force is strong, the bank slope collapses seriously, and the erosion of the bottom of the flood control wall is obviously that the main problem faced by the tidal flat of the Chaohu Lake. These problems are seriously invaded for the shoreline of the Chaohu wetland, which greatly damages the stability of the wetland ecosystem. The problem can be as follows. First of all, through the construction of farmland shelterbelt system with wave forest and farmland forest as the main body in the key areas such as villages and towns, roads, water systems and farmland areas in the lakeside wetland basin of the south bank of the Chaohu Lake, which combined with ecological restoration and bank collapse Protection and traffic roads, construction of green villages and towns, farmland shelter forest projects. Planting anti-wave forest along the Bund of the lake is a very effective lakeshore control measure. The anti-wave forest can eliminate some wind and wave climbing, reduce the wave impact force, ensure the safety of the dike and bank slope, enhance the ecological atmosphere of the lake, and increase the hydrophilic effect. On the planting ideas, the important dykes and lakes in the Langda Beach are unprotected that the lakes are built along the lake. Through intensive cultivation and scientific transformation that rivers with diverse and complex rivers are realized, generating stable Structure and complete functionality[8]. As shown in Figure 1, in terms of specific construction, a 20-60m wide ecological corridor will be built on both sides of the river flowing through the town, a group of vegetation will be built to protect the river bank, and the levee will be stabilized through the roots of the vegetation to maintain the natural properties of the slope protection and reduce wind and wave climbing and protection. The bank slope is stable and the ecological landscape around the lake is constructed. Due to the relatively large investment in the construction of anti-wave forest and forest platform, the selected anti-wave forest tree species should first be suitable for growing on the shore of Chaohu Lake, and it is resistant to flooding, impact, pollution, material flexibility, foliage, and deep roots. Fast growth and other characteristics. Secondly, in order to accelerate the restoration of vegetation in wetland areas, adjust the structure of wetland vegetation, improve the quality of wetland vegetation, and according to the land use function of the hinterland of the two banks, form different types of waterfront dikes to adapt to different functional areas, and make full use of the waterfront of the Chaohu Lake embankment. Landscape resources. Through the improvement of the lakeside
wetland flood control project system in the Minjiang section of the southern bank of the Chaohu Lake, the flood warning dispatching will be strengthened, and the ability to cope with extreme climate and excess floods will be increased, which will be the dredging of the estuary, the ecological restoration of the shoreline and the construction of the anti-wave forest. Finally, in view of the large changes in the water level of Chaohu Lake, shielded pile dams, bamboo wicker fences and anti-wave screens were used to eliminate waves. The construction of the three-stage submerged plant area will focus on the protection of submerged plants in the uncovered areas, while the protected areas will not be protected[9]. The key river sections are closed, so that the regional ecosystem can be restored without external interference, and gradually play the role of energy channel.

4. The Conclusion
Restoring the habitat diversity of Chaohu wetland and establishing a stable and excellent Chaohu wetland ecosystem is the core target of the Lujiang section on the South Bank of the Chaohu Lake wetland. According to the uniqueness of the lakeside wetland system and geographical location of the Lujiang section of the southern bank of Chaohu Lake, the change of the value of ecological services caused by the change of land use type and structure is contacted, and then the impact of various structures on the ecological function is derived[10]. For climate regulation water regulation, water supply, and biological shelters. To solve the problem of habitat and landscape construction on the south bank of the Chaohu Lake wetland. It is necessary to emphasize the application of ecological engineering technology based on the principle of ecological priority, extend the ecological pattern of the “blue vein green network” of the city, and strengthen the construction of ecological corridors and ecological protection systems. On the macro level, through the combination of wetland restoration, forest platform construction, shoreline solid foundation and other anti-wave and wave-breaking, the lakeside dyke in the south bank of Chaohu Lake will be reinforced, and different habitat greening corridors will be built, flood control levels will be upgraded, and internal disasters will be alleviated. Incorporate into the slow and enjoy. On the micro level, through the creation of flexible inland rivers and wetland buffer zones, etc, to protect the habitats of wetland plants such as flood prevention and flood control, and to create different waterfront urban landscapes in combination with site and space, and to create an ecological environment for the waterfront buffer zone on the south bank of the nest. The safe and healthy integration of the Chaohu Lake Wetland Park will build a new image of “Damei Chaohu, Vibrant Green Gallery”, making the South Coast Wetland of Chaohao Lake a strong regional cultural feature, water beauty forest show, natural oxygen, and full Wild and near-natural ecological waterfront landscape.

Acknowledgments
Outstanding University Talents Support Programme In the 2020 (gxyq2020230).

References
[1] Hongbin Xiong, Lingyan Zhou. Ecological Environmental Impact Assessment of Chaohu Lake Flood Control Project Based on PSR-Gray Target Model. Journal of Yangtze River Resources and Environment,2018,27(09):1977-1987.
[2] Zhuoran Zhang, Xiaoxi Tang, etc. Analysis of Spatial Distribution Characteristics and Influencing Factors of Protected Areas——A Case Study of the Middle and Lower Reaches of the Yangtze River. Journal of Anhui Agricultural University,2017,44(3):439-447.
[3] Zhiyong Cheng. Study on the Ecological Restoration Model of Wetland Landscape Based on Natural System——Taking Huanchao Lake as an Example. Journal of Shenyang Jianzhu University(Social Science Edition),2015,17(02):122-126.
[4] Zongguo Wen, Jing Zhou, Kun Yue. Research on Ecological Civilization Construction Model Based on Water Environment——Taking Hefei City and Chaohu Basin as Examples [J/OL]. China Engineering Science, 2019,1-7.
[5] Yingying Li, Luoli, Yongsheng Chen, Jixia. Huang the temporal and spatial evolution characteristics of multiple ponds in the Chaohu Lake area and their driving factors. Acta Ecologica Sinica, 2018, 38(17): 6280-6291.

[6] Liqian Gao, Yunge Zhao etc. The influence of biological soil crust succession on Soil Eco stoichiometric characteristics. Journal of ecology, 2018, 38 (02): 678-682.

[7] Haixia Zhao, Xiaowei Jiang, Yan Liu. Study on the spatial development control division based on water ecological health maintenance——Taking the lake area around Chaohu as an example. Acta Ecologica Sinica, 2018, 38(03): 866-875.

[8] Zuo-ran Zhang, Xiao-lan Tang, Yan-yan Jia. Spatial Distribution Characteristics and Influencing Factors of Protected Areas: A Case Study of the Middle and Lower Reaches of the Yangtze River. Journal of Anhui Agricultural University, 2017, 44(03): 439-441.

[9] Environmental Impact Report of Ecological Restoration Project on the South Bank of Chaohu Lake (Lujiang). Tianjin Institute of Meteorological Sciences, 2017, 41-63.

[10] Jinxia Wang, Yuqi Meng, Guoxiang Li, Junfeng Gao, Yongjiu Cai, et al. The diversity of aquatic plants in Chaohu Lake Basin. Journal of Lake Science, 2017, 29(06): 1386-1397.