Efficiency of Iranian Hospitals before and after Health Sector Evolution Plan: A systematic Review and Meta-Analysis Study

CURRENT STATUS: UNDER REVIEW

Saeed Amini
Arak University of Medical Sciences
ORCiD: 0000-0003-1512-245X

Behzad Karami Matin
Kermanshah University of Medical Sciences

Zohreh Anbari
Arak University of Medical Sciences

Javad Nazari
Arak University of Medical Sciences

Yahya Salimi
Kermanshah University of Medical Sciences

Mohammadreza Amiresmaili New
Kerman University of Medical Sciences

Ali Kazemi Karyani
alikazemi.k20@gmail.comCorresponding Author
ORCiD: 0000-0002-4448-9317

DOI:
10.21203/rs.2.13828/v1

SUBJECT AREAS
Health Policy

KEYWORDS
Efficiency, Hospital, Ownership, Costs, Iran
Abstract

Background Aging, chronic diseases, development of expensive and advanced technologies has increased hospitals costs which have necessitated their efficiency in utilization of resources. This systematic review and meta-analysis study has assessed the efficiency of Iran hospitals before and after 2011 Health Sector Evolution Plan (HSEP).

Methods Internal and external databases were searched using specified keywords without considering time limitations. The retrieved articles were entered to EndNote considering inclusion and exclusion criteria and the final analysis was performed after removing duplicates. Heterogeneity between the studies was assessed using Q and I2 tests. Forest plot with 95% Confidence Interval (CI) used to calculate different types of efficiency. The data were analyzed using STATA 14.

Results Random pooled estimation of hospitals technical, managerial and scale efficiencies were 0.84 (95%CI = 0.78, 0.52), 0.9 (95% CI= 0.85,0.94) and 0.88 (95%CI= 0.84, 0.91), respectively. Sub-group analysis on the basis of study year (before and after HSEP in 2011) indicated that random pool estimation of technical (0.86), managerial (0.91) and scale (0.90) efficiencies of Iran hospitals for 2011 and before were better than technical (0.78), managerial (0.86) and scale (0.74) efficiencies after 2011. Conclusion Type of hospitals’ ownership was effective on hospitals efficiency. However, HSEP has not improved hospitals efficiency, so that it is necessary to future national plans consider all aspects.

Background

Hospitals have an undeniable role in providing healthcare services to the society but their increasing costs have become to an important challenge for many countries. In other words, utilization of technologies and new methods of diagnosis and treatment of diseases
and also increasing elderlies, increasing chronic diseases, increasing demands for healthcare services and specialists and hospitals errors have increased health system costs [1, 2]. Because of these issues and problems, hospitals are always encountered with human and financial resources’ constraints which have necessitated efficiency in consuming the resources more than ever [3].

The efficiency concept has been created from the combination of technical and allocative efficiencies. Technical efficiency mean using the lowest amount of inputs to produce a specified amount of the outputs or using a specified amount of inputs to produce more outputs. Allocative efficiency mean using the correct amount of inputs in terms of their prices to produce a specified amount of outputs. Technical efficiency, on the other hand, is created my multiplying scale efficiency and managerial efficiency. Scale efficiency is the ability of an organization unit to perform in or near the most profitable scale to prevent the loss in the resources. Lastly, managerial efficiency means hard working, correct policy making, application of correct number of employees and correct combination of production factors [4].

One of the most widely used methods in assessment of different Decision Making Units (DMUs) such as hospitals and other organizations in terms of the components of efficiency (id est. technical, scale and managerial efficiency) is Data Envelopment Analysis (DEA) method. It is possible, through this method, to create a logical framework to distribute human and financial resources between different wards and sections of studied organizations [5]. DEA method as a non-parametric programming technique has been used from the mid of 1980 to measure DMUs efficiency [6]. In other words, linear and multiple programming models are used in this method to assess the relative efficiency of a field, section, unit or an organization, as a DMU, using multiple input and output indices [7]. Numerous studies have assessed the efficiency of hospitals efficiency using DEA method.
These studies can be divided into 4 categories. In the first category, the efficiency of university, teaching and public hospitals, as the main providers of healthcare and therapeutic services, has been assessed such as studies by Kalhor et al. [8] and Nabi-lou et al. [9]. In the second category, the efficiency of private hospitals has been studied and their efficiency has been compared with the first category hospitals [10, 11]. The third category includes studies on hospitals affiliated with special entities such as Social Security Organization [12, 13] and Armed Forces [14]. The last category measures the efficiency of hospital wards such as radiology [15], dentistry [4], Intensive Care Unit [16], Emergency [17] departments. Because the recent category has studied wards of hospitals not the hospitals as an entity and also have not assessed the technical, managerial and scale efficiency of hospitals wholly, so this category was excluded from the current study.

Although many studies have assessed the efficiency of hospitals using DEA method in Iran, but there is no systematic review and meta-analysis study in this regard to present the final situation of Iran hospitals efficiency. By determining technical, managerial and scale efficiency of Iran hospitals, policy makers and planners can improve hospitals efficiency through improving distribution and consumption of resources.

The extensive review of the literature by the authors of current study have resulted in 4 systematic review and meta-analysis studies on Iran hospital efficiency using DEA method. The first study has assessed the studies in terms of provinces which they have been performed, being input or output oriented, and being fixed or variable return to scale [18]. The researchers in another two systematic and meta-analyzing studies have discussed the methods used to assess hospitals efficiency [19, 20]. The last study has stated only a number about hospitals efficiency and does not mentioned the efficiency sub dimensions namely scale, managerial and technical efficiency [21]. By attention that any of before systematic review and meta-analysis studies have not assessed the main issue namely the
hospitals efficiency status separately for its dimensions, so the current study assesses technical, managerial and scale efficiency of hospitals through Systematic review and meta-analysis.

Methods

Search strategy

The foreign databases of Institute for Scientific Information (ISI), PubMed, Scopus, Google Scholar and Persian databases of Scientific Information Database (SID), Magiran and Barakat were searched using the combination of “efficiency”, “hospital” “data envelopment analysis”, “DEA” and “Iran” keywords in 2018. The references of the retrieved articles were searched to increase the study credibility and precision.

Inclusion and exclusion criteria

All published Persian and English languages articles about hospital efficiency with score between 8–12 were entered the study without considering time limit. If several formats of a research were published (such as book, article, report and so on), only one of them were entered to the study. The input-oriented studies were entered to the study. Short reports, letter to editors or editorial comments, one study but in two languages, studies on health care facilities other than hospitals and studies on internal parts of hospitals were removed from the study. Two researchers assessed and extracted data from the studies independently and the third researcher resolved disagreements if there was any one.

Data collection

A researcher made checklist used to extract the studies data including the first author name, year of data collection, place of study, language, sample size, the score of technical, managerial and scale efficiency. Another checklist designed previously which its credibility is approved by numerous studies was used to assesses the studies quality [19, 21]. This checklist includes 12 questions regarding the study aim, method, data collection,
sample size and study population. Each question has the score between 0–1 and the score for each study is calculated by summing the scores of questions. So that the studies with scores between 8–12 were entered to the final analysis. The study protocol was approved by the Ethical Committee of Kerman University of Medical Sciences.

Data analysis

Efficiency types were considered as a proportion in this study. Therefore, the numerator was the sum of technical, managerial and efficiency scores and the denominator was the number of study hospitals. Heterogeneity between the studies was assessed using Q and I² tests. P-value lower than 0.05 for Q-test and I² higher than 50% were considered as the measure of studies’ heterogeneity. Because the studies were heterogeneous, Random Effect Model was used to estimate hospitals’ efficiency. Forest plot with 95% Confidence Interval (CI) used to calculate different types of efficiency. Egger and Begg tests used to assess publication bias. In order to assess the effect of 2011 Iran Health Sector Evolution Plan (HSEP) [22] on hospital efficiency, the studies before and after it were compared. The data were entered to Excel 2016 to be edited and then transmitted and analyzed using STATA v.14.2.

Results

Each one of the scientific databases were searched on the basis of recommended search strategy by the databases themselves using defined keywords. For example, about PubMed database, Twenty-three articles were retrieved after placing search query. Search query used for PubMed was: (((data envelopment analysis) OR DEA) AND hospital) AND Iran))). Among retrieved articles, 9 articles had assessed efficiency in other areas such as radiology units, intensive care units, health centers which were excluded from the study.
So, finally 14 articles from PubMed database were entered to the EndNote software. In other databases, after adjusting search query on the basis of the database guide and then removing unrelated retrieved articles through reading titles, abstracts and texts, 25 articles from Scopus, 41 from Google Scholar, 8 from Web of Science, 16 from Barakat, 14 from Magiran and 7 from SID were entered to the EndNote software. After combination of these articles in EndNote software and removing duplicate articles, 47 final articles remained. Also, the assessment of references of these articles resulted in 2 new articles. In this way, 49 articles were entered to the final step of systematic review and meta-analysis (Figure 1). Twelve articles (24.48%) of these were in Persian language and the remaining were in English language.

By attention that some studies have reported the efficiency in several forms or in different scenarios and different inputs were used in them, so we considered them as separated studies. In this regard, studies of Hatam et al., Karimi et al., Salehzade et al., Raeisian et al., Firouzi Jahantigh et al., and Sheikhzadeh et al. each one were considered as 2 separated studies. Studies of Joshan et al. and Asadi et al. Each one were considered as 3 studies and lastly studies of fazeli et al. and Mahfoozpor et al. each one were considered as 4 studies. The average number of hospitals entered to the studies were 17.59 hospitals. The lowest and the highest number of hospitals belonged to the Rezapour et al. with 4 hospitals and Aboulhalaj et al. with 122 hospitals, respectively.

Figure 1

As mentioned before each type of efficiency was entered to the meta-analysis separately, so that 50 studies for technical efficiency, 36 studies for managerial efficiency and 41 studies for scale efficiency had entry requirements to the analysis.

The studies were performed from 1996 to 2016. After performing all steps of study selection, 49 articles were entered to the final phase of the study. The number of
hospitals assessed in these articles ranged from 4 to 122. The inputs considered in the studies included number of beds, number of operation rooms, physicians, nurses, support forces and other human resources, costs, education hours, and working days. The outputs were number of surgeries, outpatients, occupancy rate, bed day, admission, inpatients, surgeries, emergencies, bed turnover, mean patient stay, hospital income, bed occupancy rate, SERVQUAL score, number of clinical, Para clinical and outpatient services, number of discharged patients, number of contracted insurances, access to emergency, confront with hospital infections, anesthesia problems, employee consent, active to fixed bed ratio, bed turnover, number of deaths and patient-day. 2 studies had assessed charity hospitals, 4 studies had assessed private hospitals and 5 studies had assessed Social Security Organization (SSO) hospitals. The remaining studies had assessed the hospitals affiliated with universities of medical sciences belonged to Iran Ministry of Health (Table 1).

Table 1

The results indicated that there is heterogeneity in studies related to technical efficiency (Heterogeneity chi^2 = 156, p<0.001), Managerial efficiency (Heterogeneity chi^2 = 79.58, p<0.001) and scale efficiency (Heterogeneity chi^2 = 67.22, p<0.001). I^2 index in technical and managerial efficiency was higher than 50%, which indicates high heterogeneity between the studies. This index was lower than 50% for scale efficiency. Study publication error using Egger test indicates that there is publication bias in technical and managerial efficiencies (P<0.001), but there was no publication bias in scale efficiency (p = 0.19). Table 2 indicates the results of Egger’s test for 3 types of efficiencies. Begg’s test indicated that there is no publication bias in 3 types of efficiencies (P< 0.001).

The results indicated that technical efficiency of Iran hospitals has high variation, so that it ranges from 0.34 in Mahfoozpor et al. study to 1 in Raeisian et al. and Najafi et al. On
the basis of random effects modeling, random pooled estimation of hospitals technical efficiency was 0.84 (95% CI = 0.52, 0.78) (Table 2, Figure 1). The managerial efficiency of Iran hospitals was between 0.59 in Aboulhalaj et al. study and 1 in studies of Joshan et al., Raeisian et al. and Najafi et al. Random pooled estimation of managerial efficiency of Iran hospitals was 0.90 (95% CI = 0.85, 0.94) (Table 3, Figure 2). The lowest amount of scale efficiency (0.52) was for Mahfoozpor et al. study and the highest (1) was for Raeisian et al. and Torabipour et al. studies. Random pool estimation of scale efficiency for Iran hospitals was 0.88 (95% CI = 0.84, 0.91) (Table 4, Figure 3). The results of technical, managerial and scale efficiencies are presented in tables 2, 3 and 4, respectively. In addition, the forest plots for technical, managerial and scale efficiencies are presented in figures 1, 2 and 3, respectively.

Table 2
Table 3
Figure 2
Table 4
Figure 3

Sub-group analysis based on study year indicated that random pool estimation of technical efficiency of Iran hospitals for 2011 and before and after 2011 was 0.86 (95% CI = 0.80, 0.91) and 0.78 (95% CI = 0.64, 0.89), respectively. The status of managerial efficiency for 2011 and before was better than after 2011 (Random pool estimation equal to 0.91 compared to 0.86). Random pool estimation of scale efficiency for 2011 and before was 0.90 (95% CI = 0.86, 0.93). This is while random pool estimation of scale efficiency for after 2011 was 0.74 which is lower than it (95% CI = 0.61, 0.86) (Table 5).

Table 5
Discussion

The assessment of hospitals efficiency provides the ground to assess their performance and increase the productivity in using the limited resources. One of the ways assessing the allocated resources to obtain the specified goals is efficiency studies. In summary, efficiency mean the maximum using of the resources to produce goods and services [23]. This is the first systematic review and meta-analysis study regarding assessment the efficiency of Iran hospitals in terms of its sub-categories namely technical, managerial and scale efficiencies. The different methods have been used to assess Iran hospitals efficiency such as DEA, Pabon-Lasso and Stochastic Frontier Analysis (SFA) from the several past decades [21]. In this regard, as this study indicates, DEA method is the most widely applied method to assess hospitals efficiency [19].

Our findings showed that the random pool estimations of technical, managerial and economics of scale efficiency were 0.87, 0.9 and 0.88, respectively. This finding indicates that the resources of the studied hospitals in Iran have been used in an inefficient way. One idea about hospital efficiency is that the expectation from hospitals to work efficiently is far from reality. The reasoning for this claim is the economic theory of firms that declare the hospitals can’t work fully efficient because of uncertainty in costs and prices of services that they provide. In summary, lack of information on costs and prices is one of the main factors that have negative affect on hospitals efficiency [24, 25].

Most of the studies were implemented in Tehran province (13 studies). Four studies investigated the efficiency of hospitals across all provinces of Iran. However, some provinces such as Sistan and Baluchistan had no any individual report about the efficiency of hospitals. Therefore, there are an information gap for health policy makers and hospital managers in this field.

As the results indicated, most of the researchers tend to perform analyzes through input-
oriented method, because the inputs are in the control of hospital managers, so that by creating changes in the inputs can change the rate of outputs to the desired extend. However, it is suggested that private and for-profit hospitals are excluded from this rule, because the managers of these type of hospitals want to maximize the outputs and as a results hospital profits [26].

Human and capital resources such as number of nurses, physicians and number of beds were the main inputs in all included studies. Number of surgeries, outpatient admissions, inpatient admissions bed day and bed occupancy rate were the most frequent outputs that considered in the studies to estimate the efficiency of hospitals. Todays, the management of all resources, especially human resources in health care industry is recognized as vital issue for all healthcare organizations [27]. Furthermore, better management of human resources is associated with higher patient outcomes without significant increase in cost of hospitals [28].

The results indicated that most of hospital efficiency studies suffer from some weak points. So that, the selection of inputs has been performed on the basis of resources review (id est. previous published articles) not consideration of each hospital situation. Also, the inputs were not weighted, so that the resources with high specialty and expenditure receive the same weight as others. Hospital case mix have not been considered in hospital efficiency assessment. This leads to low efficiency assessment in hospitals which have most complicated cases. Lastly, some studies have not considered precisely the data validity and the appropriate ratio of inputs and outputs with the number of hospitals.

The study of Contor VJM and Poh KI provides some theoretical and methodological limitations of DEA method to capture full view of efficiency of healthcare centers, too [29]. However, with a suitable study design, DEA method is among the most important and most
applicable methods in assessment health system efficiency specially hospitals [30].
The results indicated that technical, managerial and scale efficiency of Iran hospitals after performing HSEP have decreased in comparison with before it. On the basis of a study on Turkey hospitals from 2001–2006, which measured the effect of Turkey health sector reform on hospitals efficiency to provide policy implications for policy makers, indicated that this reform has increased the efficiency of public hospitals but the efficiency of private hospitals has decreased [31].

By attention that there was no hospital with full efficiency in the study and increasing trend of health system costs and scarce resources, it is proposed to design and implement a system to monitor efficiency and consumption of resources specially in the hospitals. This can help to identify hospitals with inefficient hospitals and the causes of it. Health policy makers through cost management planning and increasing the outputs can pave the path in this regard.

Conclusions

This study indicated that many number of hospitals are inefficient. This imply that there is considerable room for efficiency improvement for hospitals. Hospital management has a unique role in this regard. Health system reforms in spite of increasing access and utilization of patients to the services, but have not considered efficiency improvement of hospitals. So, health policy makers and hospital managers should design and implement some related programs in order to monitoring and improving the efficiency of hospitals.

Abbreviations

HSEP: Health Sector Evolution Plan; CI: Confidence Interval; DEA: Data Envelopment Analysis, DMUs: Decision Making Units; SSO: Social Security Organization; ISI: Institute for Scientific Information; SID: Scientific Information Database; TUMS: Tehran University of
Medical Sciences; IUMS: Iran University of Medical Sciences; SBMU: Shaheed Beheshti University of Medical Sciences; MUI: Isfahan University of Medical Sciences; SSU: Shahid Sadoghi (Yazd) University of Medical Sciences; TUMS: Tehran University of Medical Sciences; MHH: Ministry of Health’ hospitals; MUQ: Qom university of Medical Sciences; MUMS: Mashhad University of Medical Sciences; UMSU: Urmia University of Medical Sciences; AJUMS: Ahvaz Jundishapur University of Medical Sciences; TBZMED: Tabriz University of Medical Sciences; UMSHA: Hamedan University of Medical Sciences; GUMS: Guilan University of Medial Sciences; MEDILAM: Ilam University of Medical Sciences; KUMS: Kermanshah University of Medical Sciences; MUK: Kurdistan University of Medical Sciences; LUMS: Lorestan University of Medical Sciences; KMU: Kerman University of Medical Sciences; IAU-ARAK: Islamic Azad University Branch of Arak; SUMS: Shiraz University of Medical Sciences; QUMS: Qazvin University of Medical Sciences.

Declarations

Ethics approval and consent to participate
This systematic review and meta-analysis study is approved by ethical committee of Arak University of Medical Sciences (ethical code number: IR.ARAKMU.REC.1398.044).

Consent for publication
not applicable.

Availability of data and materials
All data generated or analyzed during this study are included in this published article.

Competing interests
Authors declare that they have no competing interests.

Funding
This paper is retrieved from an approved research project. The Deputy Research of Arak University of Medical Sciences has supported financially this study in different parts of the
study including design, data collection, analysis, interpretation and writing the manuscript (Grant number: 3382).

Authors’ contributions

Conception and design of study/review/case series: SA, BKK, AKK. Acquisition of data: SA, MA (CA). Analysis of collected data: AKK, YS, JN, BKK, ZA. Interpretation of data: SA, AKK, YS, JN, ZA, MA. Drafting of paper and/or critical revision: SA, AKK, MA. All the authors have read and approved the manuscript to be submitted to BMC Health Services Research.

Acknowledgements

The authors would like to acknowledge deputy of research of Arak university of Medical Sciences for financial support of this study and providing the background to perform this study.

References

1. Lotfi, M. and S. Rahimi-Pordanjani, Comparison of the growth patterns among children with congenital hypothyroidism and healthy children in Yazd city in 2014: a historical cohort study. Feyz Journal of Kashan University of Medical Sciences, 2015. 19(1).

2. Ordooei, M., et al., Cognitive outcomes for congenital hypothyroid and healthy children: a comparative study. Iranian journal of child neurology, 2014. 8(4): p. 28.

3. Li, Y., X. Lei, and A. Morton, Performance evaluation of nonhomogeneous hospitals: the case of Hong Kong hospitals. Health care management science, 2018: p. 1-14.

4. Barouni, M., et al., The efficiency assessment of dental units using data envelopment analysis approach: The case of Iran. Iranian journal of public health, 2017. 46(4): p. 552.

5. Kontodimopoulos, N., P. Nanos, and D. Niakas, Balancing efficiency of health services and equity of access in remote areas in Greece. Health policy, 2006. 76(1): p. 49-57.

6. Hollingsworth, B., P. Dawson, and N. Maniadakis, Efficiency measurement of health care: a review of non-parametric methods and applications. Health care management science,
1999. 2(3): p. 161-172.

7. Banker, R. D., A. Charnes, and W. W. Cooper, *Some models for estimating technical and scale inefficiencies in data envelopment analysis*. Management science, 1984. 30(9): p. 1078-1092.

8. Kalhor, R., et al., *Factors affecting the technical efficiency of general hospitals in Iran: data envelopment analysis*. Journal of the Egyptian Public Health Association, 2016. 91(1): p. 20-25.

9. Nabilou, B., et al., *The productivity and its barriers in public hospitals: case study of Iran*. Medical journal of the Islamic Republic of Iran, 2016. 30: p. 316.

10. Sheikhzadeh, Y., et al., *Public and private hospital services reform using data envelopment analysis to measure technical, scale, allocative, and cost efficiencies*. Health promotion perspectives, 2012. 2(1): p. 28.

11. Jandaghi, G., et al., *Efficiency evaluation of Qom public and private hospitals using data envelopment analysis*. European Journal of Economics, Finance and Administrative Sciences, 2010. 22(2): p. 83-91.

12. Hajialiafzali, H., J. Moss, and M. Mahmood, *Efficiency measurement for hospitals owned by the Iranian social security organisation*. Journal of Medical Systems, 2007. 31(3): p. 166-172.

13. Hatam, N., et al., *Factors affecting efficiency of social security hospitals in Iran: Data Envelopment Analysis*. HealthMED, 2012. 6(6): p. 1961-1968.

14. Abolghasemi, K. and E. Teymourzadeh, *Performance evaluation and ranking of selective wards in a military hospital using DEA and promethee method*. Journal Mil Med, 2017. 18(4): p. 325-334.

15. Keshtkaran, A., et al., *Economic efficiency of radiology wards using data envelopment analysis: Case study of Iran*. Health, 2014. 6(05): p. 311.
16. Bahrami, M. A., et al., *Data envelopment analysis for estimating efficiency of intensive care units: a case study in Iran*. Int J Health Care Qual Assur, 2018. 31(4): p. 276–282.

17. Gharahighehi, A., et al., *Improving performances of the emergency department using discrete event simulation, DEA and the MADM methods*. Digit Health, 2016. 2: p. 2055207616664619.

18. Jahangiri, A., *Application of data envelopment analysis technique in Iranian hospitals (A systematic review)*. Journal of Hospital, 2016. 15(3): p. 103-124.

19. Kiadaliri, A. A., M. Jafari, and U.-G. Gerdtham, *Frontier-based techniques in measuring hospital efficiency in Iran: a systematic review and meta-regression analysis*. BMC health services research, 2013. 13(1): p. 312.

20. Bahadori, M., et al., *The evaluation of hospital performance in Iran: a systematic review article*. Iranian journal of public health, 2016. 45(7): p. 855.

21. Mosadeghrad, A.M., P. Esfahani, and M. Nikafshar, *Hospitals’ efficiency in Iran: A systematic review and meta-analysis of two decades of research*. Journal of Payavard Salamat, 2017. 11(3): p. 318–331.

22. Moradi-Lakeh, M. and A. Vosoogh-Moghaddam, *Health Sector Evolution Plan in Iran; Equity and Sustainability Concerns*. International journal of health policy and management, 2015. 4(10): p. 637–640.

23. Nayar, P. and Y. A. Ozcan, *Data envelopment analysis comparison of hospital efficiency and quality*. J Med Syst, 2008. 32(3): p. 193-9.

24. Hollingsworth, B., P. Dawson, and N. J. H.c.m.s. Maniadakis, *Efficiency measurement of health care: a review of non-parametric methods and applications*. 1999. 2(3): p. 161–172.

25. Evans, R. G. J. T. C. J.o.E. R.c.d.E., "*Behavioural*” Cost Functions for Hospitals. 1971. 4(2): p. 198–215.

26. EMAMREZAEI, A. and M. BAROUNI, *Efficiency analysis of hospitals in Iran: A systematic
review. 2017.

27. Kabene, S. M., et al., *The importance of human resources management in health care: a global context*. 2006. 4(1): p. 20.

28. Stock, G. N., C. McDermott, and M. J. H.t. McDermott, *The effects of capital and human resource investments on hospital performance*. 2014. 92(1): p. 14–19.

29. Cantor, V. J. M. and K. L. J.o.m.s. Poh, *Integrated Analysis of Healthcare Efficiency: A Systematic Review*. 2018. 42(1): p. 8.

30. Kohl, S., et al., *The use of Data Envelopment Analysis (DEA) in healthcare with a focus on hospitals*. 2018: p. 1-42.

31. Gok, M. S. and B. Sezen, *Analyzing the efficiencies of hospitals: An application of Data Envelopment Analysis*. Journal of Global Strategic Management, 2011. 10(1): p. 137-146.

Tables

Row	Authors	Years of data collection	Language	Location	Affiliation of hospitals	Number of hospital			
1	Joshan et al. (1)	2011-12	Persian	Tehran	TUMS	14			
2	Joshan et al. (1)	2011-12	Persian	Tehran	IUMS	8			
3	Joshan et al. (1)	2011-12	Persian	Tehran	SBMU	10			
4	Sepehrdost et al. (2)	2007-08	Persian	Iran	SSO	28			
5	Sepehrdost et al. (2)	2007-08	Persian	Iran	SSO	37			
6	Ghaderi et al. (2)	2005-09	Persian	Tehran & Alborz	IUMS	26			
7	Karimi et al.	2005-06	Persian	Isfahan	MUI	23			
No.	Authors	Year	Language	Location	Institutions	N	Notes		
-----	---------	------	----------	----------	--------------	---	-------		
8	Mohammadi Ardakani et al. (4)	2004-06	Persian	Yazd	SSO	12	N physicians,		
9	Pourreza et al. (5)	1996-98	Persian	Tehran	TUMS	12	N beds, nurses		
10	Abouhalaj et al. (6)	2009	Persian	Iran	MHH	122	N beds, physicians		
11	Salehzade et al. (7)	2007	Persian	Qom	MUQ & Self-administered	8	N physicians,		
12	Salehzade et al. (7)	2007	Persian	Qom	MUQ & Self-administered	8	N physicians,		
13	Asadi et al. (8)	2008	Persian	Yazd	SSO	13	Costs, education		
14	Askari et al. (9)	2001-08	Persian	Yazd	SSO	13	N active beds,		
15	Ilbeigi et al. (10)	2009	Persian	Mashhad	MUMS	17	N beds, physicians,		
16	Rahimi et al. (11)	2009	Persian	W. Azarbaijan	UMSU	23	N beds, physicians,		
17	Najjarzadeh et al. (12)	2006-10	Persian	Ahvaz	AJUMS	13	N physicians,		
18	Akbari et al. (13)	2005-08	Persian	Tabriz	TBZMED	20	N physicians,		
19	Azar et al. (14)	2009-11	Persian	Tehran	TUMS	22	N beds, physicians,		
20	Safi Aryan et al. (15)	2009	Persian	Hamadan	UMSHA	16	N beds, physicians,		
21	Kazemi et al. (16)	2006-08	Persian	East of Iran	Medical Universities, SSO	11	N beds, physicians,		
22	Raeisian et al. (17)	2007-11	Persian	Ahvaz	AJUMS & SSO, Private & Charity	8	N beds, physicians,		
23	Raeisian et al. (17)	2007-11	Persian	Ahvaz	AJUMS & SSO, Private & Charity	8	N beds, physicians,		
24	Mohebifar et al. (18)	2006-10	Persian	Guilan	GUMS	19	N beds, physicians,		
25	Fazeli et al. (19)	2009-11	Persian	Ilam	MEDILAM	9	N beds, physicians,		
26	Fazeli et al. (19)	2009-13	Persian	Ilam	MEDILAM	9	N beds, physicians,		
27	Mahfoozpor et al. (20)	2013-14	Persian	Tehran	SBMU	10	N physicians,		
28	Mahfoozpor et al. (20)	2013-14	Persian	Tehran	SBMU	10	N physicians,		
29	Mahfoozpor et al. (20)	2013-14	Persian	Tehran	SBMU	10	N physicians,		
30	Mahfoozpor et al. (20)	2013-14	Persian	Tehran	SBMU	10	N physicians,		
31	Ghasemi et al. (21)	2005-11	Persian	Kermanshah	KUMS	7	N beds, N physicians,		
32	Firouzi et al. (22)	NA	Persian	Tehran	TUMS	40	N beds, physicians,		
33	Amozadeh et al. (23)	2012, 13, 15	Persian	Mazandaran and Babol	Mazandaran & Babol UMS	21	N beds, physicians,		
	Authors et al.	Year	Language	Location	Study Sites	Manuscript Language	Manuscript Year	Country	Human resources, Capital resources, N beds, physicians and nurses
---	----------------	------	----------	----------	-------------	---------------------	----------------	---------	--
34	Youzi et al. (24)	2016	Persian	Tehran	TUMS	21	N beds, physicians and nurses		
35	Lotfi et al. (25)	2007-2011	English	Ahvaz	Affiliated and non-affiliated with AJUMS	16	N beds, physicians		
36	Nabilou et al. (26)	2009-2014	English	Tehran	TUMS	17	N beds, nurses		
37	Rezapour et al. (27)	2009-2012	English	Tehran	IUMS & TUMS	19	Human resources		
38	Torabipour et al. (28)	2007-2010	English	Ahvaz	University, Charity, Private	12	N nurses, beds		
39	Kiadaliri et al. (29)	2006	English	Ahvaz	AJUMS	19	Human resources		
40	Nabilou et al. (30)	2013-2014	Persian	Urmia	UMSU	23	N nurses, physicians, beds		
41	Rezaei et al. (31)	2007-2011	English	Kurdistan	MUK	12	N beds, nurses		
42	Goudarzi et al. (32)	2001-07	Persian	Lorestan	LUMS	13	N beds, nurses		
43	Askari et al. (33)	2001-11	English	Yazd	SSU	13	N beds, non-clinical staffs		
44	Sabermahani et al. (34)	2011	English	Kerman	KMU	13	Full-time physicians and nurses		
45	Jahangiri et al. (35)	2011-13	Persian	Arak	IAU-ARAK	31	N day-beds, working days, physicians and other staffs		
46	Najafi et al. (36)	2001-06	Persian	Ardabil	TUMS	10	N beds		
47	Hatam	NA	Persian	Iran	SUMS	18	N beds and all full-time staffs		
48	Rezapour et al. (37)	1998-07	Persian	Qazvin	QUMS	4	N beds, physicians		
49	Hadian	2006-11	Persian	Tehran	Iran & Tehran UMS	19	N beds, nurses		
50	Mehrtak et al.	NA	English	E. Azarbaijan	IUMS	18	N beds, physicians and nurses		

Tehran University of Medical Sciences= TUMS, Iran University of Medical Sciences= IUMS, Shaheed Beheshti University of Medical Sciences= SBMU, Social Security Organization=SSO, Isfahan University of Medical Sciences= MUI, Yazd University of Medical Sciences= SSU, Tehran University of Medical Sciences= TUMS, Ministry of Health' hospitals= MHH, Qom university of Medical Sciences= MUQ, Mashhad University of Medical Sciences= MUMS, Urmia University of Medical Sciences= UMSU, Ahvaz Jundishapur University of Medical Sciences= AJUMS, Tabriz University of Medical Sciences= TBZMED, Hamedan University of Medical Sciences= UMSHA, Guilan University of Medical Sciences=...
Table 2. Egger’s test for small-study effects to examine the publication bias

	Coefficient	S.E.	P-value	95% confidence Interval	Test of H0: no small-study effects	
Technical efficiency	slope	0.56	0.00	0.000	(.40, 0.73)	P = 0.005
	bias	-1.01	0.34	0.005	(0.32, 1.70)	
Managerial efficiency	slope	1.00	0.0008	0.000	(0.99, 1.00)	P = 0.000
	bias	-1.22	0.26	0.000	(-1.76, -0.68)	
Economics of scale efficiency	slope	1.00	0.00009	<0.001	(0.99, 1.00)	P = 0.000
	bias	-1.28	0.19	<0.001	(-1.67, -0.90)	
Table 2. The results of pool estimation for technical efficiency among Iranian hospitals.

study	authors	estimation	95% confidence Intervals	Weight
1	Joshan et al.	0.93	(0.66,1)	1.99
2	Joshan et al.	0.88	(0.47,1)	1.58
3	Joshan et al.	0.9	(0.55,1)	1.75
4	Sepehrdost et al.	0.86	(0.67,0.96)	2.42
5	Sepehrdost et al.	0.89	(0.75,0.97)	2.55
6	Ghaderi et al.	0.88	(0.7,0.98)	2.38
7	Karimi et al.	0.91	(0.72,0.99)	2.31
8	Alimohammadi Ardakani et al.	0.75	(0.43,0.95)	1.88
9	pourreza et al.	0.92	(0.62,1)	1.88
	Authors	ES	95% CI	SE
---	-------------------------	------	------------	-----
10	Aboulhalaj et al.	0.43	(0.34, 0.53)	2.92
11	Salehzade et al.	0.75	(0.35, 0.97)	1.58
12	Salehzade et al.	0.88	(0.47, 1)	2.31
13	Asadi et al.	0.92	(0.64, 1)	1.94
14	Askari et al.	0.92	(0.64, 1)	1.94
15	Ilbeigi et al.	0.76	(0.5, 0.93)	2.12
16	Rahimi et al.	0.57	(0.34, 0.77)	3.18
17	Najarzadeh et al.	0.69	(0.39, 0.91)	1.94
18	Akbari et al.	0.95	(0.75, 1)	2.22
19	Azar et al.	0.86	(0.65, 0.97)	2.28
20	Safi Aryan et al.	0.88	(0.62, 0.98)	2.08
21	Kazemi et al.	0.82	(0.48, 0.98)	1.82
22	Raeisian et al.	0.88	(0.47, 1)	1.58
23	Raeisian et al.	1	(0.63, 1)	1.58
24	Mohebifar et al.	0.89	(0.67, 0.99)	2.19
25	fazeli et al.	0.78	(0.4, 0.97)	1.67
26	fazeli et al.	0.78	(0.4, 0.97)	1.67
27	Mahfoozpor et al.	0.4	(0.12, 0.74)	1.75
28	Mahfoozpor et al.	0.4	(0.12, 0.74)	1.75
29	Mahfoozpor et al.	0.3	(0.07, 0.65)	1.75
30	Mahfoozpor et al.	0.5	(0.19, 0.81)	1.75
31	Ghasemi et al.	0.86	(0.42, 1)	1.49
32	Firouzi Jahantigh et al.	0.93	(0.8, 0.98)	2.59
33	Amozadeh et al.	0.9	(0.7, 0.99)	2.25
34	Youzi et al.	0.86	(0.64, 0.97)	2.25
35	Loffi et al.	0.88	(0.62, 0.98)	2.08
36	Nabilou et al.	0.94	(0.71, 1)	2.12
37	Rezapour et al.	0.84	(0.6, 0.97)	2.19
38	Torabipour et al.	0.92	(0.62, 1)	1.88
39	Ahmad Kiadaliri et al.	0.89	(0.67, 0.99)	2.19
40	Nabilou et al.	0.87	(0.66, 0.97)	2.31
41	Rezaei et al.	0.83	(0.52, 0.98)	1.88
42	Goudarzi et al.	0.92	(0.64, 1)	1.94
43	Askari et al.	0.92	(0.64, 1)	1.94
44	Sabermahani et al.	0.85	(0.55, 0.98)	1.94
45	Jahangiri et al.	0.97	(0.83, 1)	2.47
46	Najafi et al.	1	(0.69, 1)	1.75
47	Hatam	0.89	(0.65, 0.99)	2.16
48	Rezapour et al.	0.75	(0.19, 0.99)	2.16
49	Hadian	0.95	(0.74, 1)	2.19
50	Mehrbak et al.	0.78	(0.52, 0.94)	2.16

Random pooled estimation

Heterogeneity chi^2 = 156.97 (d.f. = 49) p = 0.000

I^2 (variation in ES attributable to heterogeneity) = 68.78%

Estimate of between-study variance Tau^2 = 0.12

Table 3. The results of pool estimation for managerial efficiency among Iranian hospitals
Study	authors	estimation	95% confidence Intervals	Weight
1	Joshan et al.	0.93	(0.66,1)	2.71
2	Joshan et al.	1	(0.63,1)	2.01
3	Joshan et al.	0.9	(0.55,1)	2.28
4	Sepehrdost et al.	0.93	(0.76,0.99)	3.59
5	Sepehrdost et al.	0.95	(0.82,0.99)	3.9
6	Ghaderi et al.	0.88	(0.7,0.98)	3.5
7	Karimi et al.	0.96	(0.78,1)	3.35
8	pourreza et al.	0.92	(0.62,1)	2.51
9	Abouhalaj et al.	0.59	(0.5,0.68)	4.83
10	Askari et al.	0.92	(0.64,1)	2.61
11	Ilbeigi et al.	0.88	(0.64,0.99)	2.96
12	Rahimi et al.	0.74	(0.52,0.9)	3.35
13	Najjarzadeh et al.	0.85	(0.55,0.98)	2.61
14	Akbari et al.	0.95	(0.75,1)	3.17
15	Safi Aryan et al.	0.94	(0.7,1)	2.88
16	Kazemi et al.	0.91	(0.59,1)	2.4
17	Raeisian et al.	1	(0.63,1)	2.01
18	Raeisian et al.	1	(0.63,1)	2.01
19	Mohseifar et al.	0.95	(0.74,1)	3.11
20	Mahfoozpor et al.	0.6	(0.26,0.88)	2.28
21	Mahfoozpor et al.	0.6	(0.26,0.88)	2.28
22	Mahfoozpor et al.	0.7	(0.35,0.93)	2.28
23	Mahfoozpor et al.	0.8	(0.44,0.97)	2.28
24	Nabilou et al	0.94	(0.71,1)	2.96
25	Rezapour et al.	0.95	(0.74,1)	3.11
26	Torabipour et al.	0.92	(0.62,1)	2.51
27	Ahmad Kiadalir et al.	0.89	(0.67,0.99)	3.11
28	Nabilou et al	0.91	(0.72,0.99)	3.35
29	Rezaei et al	0.83	(0.52,0.98)	2.51
30	Goudarzi et al.	0.92	(0.64,1)	2.61
31	Askari et al.	0.92	(0.64,1)	2.61
32	Sabermahani et al.	0.92	(0.64,1)	2.61
33	Najafi et al.	1	(0.69,1)	2.28
34	Rezapour et al.	0.75	(0.19,0.99)	1.29
35	Hadian	0.95	(0.74,1)	3.11
36	Mehrtaek et al.	0.94	(0.73,1)	3.04
Random pooled estimation	0.9	(0.85,0.94)	100	

Heterogeneity chi^2 = 79.58 (d.f. = 35), p = 0.000

I^2 (variation in ES attributable to heterogeneity) = 56.02%

Estimate of between-study variance Tau^2 = 0.07

Test of ES=0 : z= 34.96, p = 0.00
Table 4. The results of pool estimation for economies of scale efficiency among Iranian hospitals

Study	authors	estimation	95% confidence Intervals	Weight
1	Joshan et al.	0.93	(0.66,1)	2.38
2	Joshan et al.	0.88	(0.47,1)	1.64
3	Joshan et al.	0.9	(0.55,1)	1.91
4	Sepehrdost et al.	0.93	(0.76,0.99)	3.46
5	Sepehrdost et al.	0.95	(0.82,0.99)	3.91
6	Ghaderi et al.	0.96	(0.8,1)	3.34
7	Karimi et al.	0.96	(0.78,1)	3.15
8	pourrea et al.	0.92	(0.62,1)	2.16
9	Abouhalaj et al.	0.75	(0.66,0.82)	5.44
10	Salehzade et al.	0.88	(0.47,1)	1.64
11	Salehzade et al.	0.88	(0.47,1)	1.64
12	Askari et al.	0.92	(0.64,1)	2.27
13	Ilbeigi et al.	0.82	(0.57,0.96)	2.67
14	Rahimi et al.	0.74	(0.52,0.9)	3.15
15	Najarzadeh et al.	0.77	(0.46,0.95)	2.27
16	Akbari et al.	0.95	(0.75,1)	2.92
17	Safi Aryan et al.	0.94	(0.7,1)	2.58
18	Kazemi et al.	0.91	(0.59,1)	2.04
19	Raesian et al.	0.88	(0.47,1)	1.64
20	Raesian et al.	1	(0.63,1)	1.64
21	Mohebifar et al.	0.95	(0.74,1)	2.84
22	fazeli et al.	0.67	(0.3,0.93)	1.78
23	fazeli et al.	0.91	(0.59,1)	2.04
24	Mahfoozpor et al	0.5	(0.19,0.81)	1.91
25	Mahfoozpor et al	0.7	(0.35,0.93)	1.91
26	Mahfoozpor et al	0.5	(0.19,0.81)	1.91
27	Mahfoozpor et al	0.6	(0.26,0.88)	1.91
28	Nabilou et al	0.94	(0.71,1)	2.67
29	Rezapour et al.	0.89	(0.67,0.99)	2.84
30	Torabipour et al.	1	(0.74,1)	2.16
31	Ahmad Kiadaliri et al.	0.95	(0.74,1)	2.84
32	Nabilou et al	0.91	(0.72,0.99)	3.15
33	Rezaei et al	0.92	(0.62,1)	2.16
34	Goudarzi et al.	0.92	(0.64,1)	2.27
35	Askari et al.	0.92	(0.64,1)	2.27
36	Sabermahani et al.	0.85	(0.55,0.98)	2.27
37	Najafi et al.	0.9	(0.55,1)	1.91
38	Hatam	0.5	(0.26,0.74)	2.76
39	Rezapour et al.	0.75	(0.19,0.99)	0.98
40	Hadian	0.95	(0.74,1)	2.84
41	Mehrtak et al.	0.78	(0.52,0.94)	2.76

Random pool estimation

Heterogeneity chi^2 = 67.22 (d.f. = 40) p = 0.00
I^2 (variation in ES attributable to heterogeneity) = 40.5%
Test of ES=0 : z= 40.93 p = 0.00
Table 5. The random pool estimation of technical, managerial and economics of scale efficiencies among Iranian hospitals by time of studies.

subgroup	estimation	95%confidence Intervals	Weight	Test(s) of heterogeneity	P-value	P-v	
Technical efficiency	2011 and before	0.86	(0.80, 0.91)	75.97	66.80%	0.000	0.2
	After 2011	0.78	(0.64, 0.89)	24.03	75.55%	0.000	
Managerial efficiency	2011 and before	0.91	(0.86, 0.95)	77.89	60.74%	0.000	0.2
	After 2011	0.86	(0.75, 0.94)	22.11	39.89%	0.100	
Economics of scale efficiency	2011 and before	0.90	(0.86, 0.93)	83.67	32.79%	0.040	0.0
	After 2011	0.74	(0.61, 0.86)	16.33	35.26%	0.150	

** I^2: the variation in ES attributable to heterogeneity
Figures

Figure 1

Flow chart of systematic search and studies selection

Search results in ISI, PubMed, Scopus, Barakat, SID, and Magiran N=211

42 excluded due to duplicated in databases

169 articles after duplication

97 articles excluded based on title

72 articles after title screening

1 articles excluded based on abstract

71 articles remained to review based on full-text

1 articles were excluded due to investigation efficiency of health centers of social security of organization, 2 articles were excluded because of investigation of specific hospital sectors, 1 articles were excluded because of investigation diagnosis department of a hospital, 1 article were excluded because the productivity had been measured.

47 articles + 2 articles entered to the study through references check included in the review
Figure 2

Forest plot of estimates and 95% confidence intervals of the technical efficiency among Iranian hospitals.
Figure 3

Forest plot of estimates and 95% confidence intervals of the managerial efficiency among Iranian hospitals.
Figure 4

Forest plot of estimates and 95% confidence intervals of the economics of scale efficiency among Iranian hospitals.

Supplementary Files
This is a list of supplementary files associated with the primary manuscript. Click to download.

PRISMA 2009 checklist.doc