Supporting information for:
Martini 3 Coarse-Grained Force Field:
Small Molecules

Riccardo Alessandri,*†§ Jonathan Barnoud,†∥ Anders S. Gertsen,‡ Ilias Patmanidis,† Alex H. de Vries,† Paulo C. T. Souza,*†¶ and Siewert J. Marrink*†

†Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
‡Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej 310, DK-2800 Kgs. Lyngby, Denmark
¶Current address: Molecular Microbiology and Structural Biochemistry (MMSB, UMR 5086), CNRS & University of Lyon, 7 Passage du Vercors, 69007, Lyon, France
§Current address: Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
∥Current address: Intangible Realities Laboratory, University of Bristol, Bristol BS8 1UB, U.K.

E-mail: ric.alessandri@gmail.com; paulocts@gmail.com; s.j.marrink@rug.nl
Contents

1 COG- vs COM-Based Mappings: Benzene and Cyclohexane S3
2 COG- vs COM-Based Mappings: Alkanes S4
3 Advanced Model Design Strategies S5
4 LINCS Settings S6
5 Solvent Accessible Surface Area Calculations S7
6 Solvent Properties: Mass Density with COG-Mapping S8
7 Mixture Simulations: Miscibility Assays S8
8 Vapor–Liquid Equilibrium Simulations S9
9 Stacking Interactions: Dimerization Free Energy Landscapes S10
10 Database: List of Molecules S11

References S14
1 COG- vs COM-Based Mappings: Benzene and Cyclohexane

Figure S1: Benzene and cyclohexane bonded parameters. Bond lengths based on center-of-mass (COM) mapping—(a), (d), red—proved to be unsatisfactory, leading to too high packing densities (b), (e). Instead, center-of-geometry (COG)-based bond lengths—(a), (d), green—lead to densities close to experimental values (b), (e). The bond distributions for COM- and COG-mapped benzene (c) and cyclohexane (f) are also shown.
Figure S2: Alkane bonded parameters extracted from all-atom (AA) simulations of hexadecane solvated in hexane. CG models are built by mapping 4 C atoms, and associated hydrogens, to each regular bead. Bonded distributions extracted using COM (red) and COG (green) mappings for the (a) central-central and (b) central-terminal bead. The average distance is 0.461 nm (COM) and 0.466 nm (COG) in (a) and 0.463 nm (COM) and 0.481 nm (COG) in (b), indicating a negligible difference for (a) and a small one for (b).
3 Advanced Model Design Strategies

Figure S3: (top) Possible Martini models for naphthalene. (a) An “all-constraints” model that readily leads to numerical instabilities and (b) a “hinge” model that runs with a time step of 20 fs. A schematic representation of the CG model is drawn on top of the chemical structure of naphthalene: the grey circle with solid red contour indicates a CG particle, while a gray circle with a dashed cyan contour represents a virtual site. Solid red lines indicate constraints. The “hinge” model also uses an improper dihedral (between the four vertices of the model) to keep the model flat. A comparison of this dihedral distribution to reference COG-mapped atomistic distributions is shown in (c) for two improper dihedral force constants, 100 kJ mol$^{-1}$ rad$^{-2}$ and 200 kJ mol$^{-1}$ rad$^{-2}$. Nonbonded interactions between the two CG sites which share no bond in the “hinge” model—top left and bottom right in (b)—are excluded. (bottom) Example topologies using the “hinge” model. (d) Rendering of the naphthalene (NAPH) model of panel (b). (e) Rendering of the caffeine model: the model uses the “hinge” construction and additionally three virtual sites are built from the hinge scaffold. (f) Rendering of the tetracene model: the model uses the “hinge” construction and additionally five virtual sites are built from the hinge scaffold. Virtual sites are indicated with the label “VS”.

S5
Figure S4: LINCS settings have no significant impact on mixtures. (a) Benzene-cyclohexane, which mix quite well; (b) benzene-ethanol, mildly phase-separating; (c) benzene-water, strongly phase-separating. \texttt{lincs41} refers to the default LINCS settings (order=4, iter=1); \texttt{lincs82} (order=8, iter=2); \texttt{15fs} uses a time step of 15 fs (instead of the default 20 fs); \texttt{gmx’20} uses Gromacs 2020 (instead of 2016.5). Systems are \(\approx (5.5 \text{ nm})^3 \); contacts and temperatures are averaged over the last 350 ns of 400 ns long MD. In the temperature plots, the gray bar represents the temperature of benzene, the other bar the one of the other component. Error bars are standard deviations (last 350 ns). Default Martini “new” settings.
5 Solvent Accessible Surface Area Calculations

SASA Calculation Details. Solvent Accessible Surface Area (SASA) values have been computed using the GROMACS tool `gmx sasa` on energy-minimized AA or CG geometries. At both levels, we use the command:

```
gmx sasa -s benzene.gro -o sasa.xvg -probe 0.191 -ndots 4800
```

where the `-ndots` flag, which specifies the number of grid points used to calculate the SASA, should be set at least to 4800 for accurate values, and the probe size of 0.191 nm corresponds to the van der Waals (vdW) radius of a T-bead, r_{vdW}^T, that is:

$$r_{vdW}^T = r_m^T = \frac{d_{m-T}^T}{2} = \frac{\sqrt{2} \cdot \sigma_{T-T}}{2} = \frac{\sqrt{2} \cdot 0.34}{2} = 0.191 \text{ nm} \quad (1)$$

where σ_{T-T} is the LJ σ parameter of T-T interactions, $i.e.$, 0.34 nm. The probe size impacts the absolute SASA values, but not their relative differences (Table S1). For the CG calculations, the file `vdwradii.dat` from

```
/usr/local/gromacs-XXX/share/gromacs/top/vdwradii.dat
```

(where `XX` could be any gromacs version) should be copied to the folder where the `gmx sasa` command is executed. The file, containing default vdW radii for atomistic force fields, should be modified so as to contain the vdW radii of Martini beads (computed as done for a T-bead in Eq. 1). Note that the vdW radii database file contains radii associated to atom names (and not atom or bead types). For the atomistic SASA calculations, we used the radii from Rowland and Taylor S1 (the file can be found at https://github.com/ricalessandri/Martini3-small-molecules).

Table S1 shows also that there is negligible difference between different all-atom force fields.
Table S1: Solvent Accessible Surface Area (SASA) values in nm\(^2\) for several rings with different all-atom force fields. Values in parentheses are computed using a T-bead sized probe, while the other values use the default probe of \texttt{gmx sasa}. Relative errors (%) of the Martini values (which are based on COG-mapping) with respect to the two all-atom force fields are also shown. BENZ = benzene; NAPH = naphthalene; CYPO = cyclopentanone.

molecule	GROMOS	OPLS	Martini 3	Err. % (GROMOS)	Err. % (OPLS)
BENZ	2.433 (2.976)	2.437 (2.986)	2.293 (2.807)	-6% (-6%)	-6% (-6%)
NAPH	3.108 (3.707)	3.106 (3.703)	3.035 (3.624)	-2% (-2%)	-2% (-2%)
CYPO	2.538 (3.073)	2.523 (3.063)	2.406 (2.935)	-5% (-5%)	-5% (-5%)

6 Solvent Properties: Mass Density with COG-Mapping

![Graph](a)

Figure S5: Mass densities and SASA values obtained used COG-based mappings. Same as Figure 5c-d but using exclusively COG-based bond lengths for the Martini models.

7 Mixture Simulations: Miscibility Assays

We compute the contacts between the two components \(A\) and \(B\) with the command:

```
echo 0 1 | gmx mindist -f run.xtc -d 0.6 -n index.ndx -on contacts.xvg
```

where \texttt{index.ndx} contains two groups, one containing all the the beads of component \(A\), the other all the beads of component \(B\); \texttt{run.xtc} is the trajectory of the production
phase (at least 400 ns long), and contacts.xvg contains the number of A-B contacts as a function of simulation time. Two examples are plotted in Figure S6a: binary mixtures either readily demix and thus show a low number of A-B contacts, e.g., benzene-water (BENZ-W) mixture, or stay mixed, as in the benzene-toluene (BENZ-TOLU) case.

Figure S6: (a) Typical evolutions of number of A-B contacts for a binary mixture: a low number of contacts—benzene-water (BENZ-W) mixture—indicate a phase separated systems; a high number of contacts—benzene-toluene (BENZ-TOLU) mixture—indicate that the two components are miscible. (b) Typical density profiles (centered around the liquid phase) obtained from vapor–liquid equilibrium simulations; the inset shows the difference in densities of the vapor phases. (c) Martini 3 vs experimental benzene-chloroform (BENZ-CLF) ΔG_{ex} curves as a function of mixture composition. x_1 is the BENZ molar fraction. Experimental data are from Ref. S2.

8 Vapor–Liquid Equilibrium Simulations

Method Details. Vapor and liquid densities were extracted with the GROMACS tool gmx density using the following command:

```
  echo A A | gmx density -f mix.xtc -s mix.tpr -d Z \n        -o A-density-Z.xvg -symm -center
```

where “A” is the label of component A, e.g., “BENZ” or “CLF”. With the first “A” we select the group around which the density profile should be centered; with the second “A” we select
the group for which we calculate the density. Typical profiles are shown in Figure S6b.

Benzene-Chloroform Mixture. Chloroform (and other chlorinated solvents such as chlorobenzene) is a widely used solvent in organic electronics. Aromatic systems, especially if functionalized with alkyl side chains, show good solubilities in such a solvent. We therefore also estimated quantitatively how the new Martini model performs with respect to the miscibility of chloroform and benzene by computing excess free energy of mixing (\(\Delta G_{ex}\)) as a function of the composition of the mixture. The computed values, obtained as described in Section 2.3, are compared to experimental data in Figure S6c.

9 Stacking Interactions: Dimerization Free Energy Landscapes

Figure S7: Two-dimensional free energy profiles of dimerization for several aromatic compounds in water. The free energy surface is plotted on the 2D coordinate space formed by the distance between the COGs of the molecules and the order parameter of Eq. 4. (a)–(b) are AA, and (c)–(d) are Martini 3 surfaces. Molecular structures (and mappings) are shown as figure insets.
10 Database: List of Molecules

Table S2: Molecules in the database. The unique identifier (uID), common name, and SMILES string for all the molecules in the database.

uID	name	SMILES
1MIMI	1-METHYLIMIDAZOLE	Cn1ccnc1
2MPYR	2-METHYL-PYRIDINE	Cc1cccn1
2NIMX	2-NITRO-m-XYLENE	Cc1c(c(cc1)C)[N+](=O)[O-]
2NITL	2-NITROTOLUENE	Cc1cccccc1[N+](=O)[O-]
2T	2,2'-BITHIOPHENE	c1cc(sc1)c2cccs2
3HT	3-HEXYL-THIOPHENE	CCCCCCc1ccsc1
3PT	3-PROPYL-THIOPHENE	CCCc1ccsc1
4MIMI	4-METHYLIMIDAZOLE	[nH]1cc(nc1)C
4NIAN	4-NITROANISOLE	COc1ccc(cc1)[N+](=O)[O-]
ACPH	ACETOPHENONE	CC(=O)c1cccccc1
ANIL	ANILINE	Nc1cccccc1
ANTH	ANTHRACENE	c1ccc2cc3cccccc3cc2c1
BEAL	BENZALDEHYDE	O=Cc1cccccc1
BENZ	BENZENE	c1cccccc1
BRA	4-BROMOANISOLE	COc1ccc(cc1)Br
BRBZ	BROMOBENZENE	c1ccc(cc1)Br
BZDOL	1,3-BENZENEDIOL	Oc1cc(cc1)O
BZIM	BENZIMIDAZOLE	c1ccc2c(c1)[nH]cn2
BZNI	BENZONITRILE	N#Cc1cccccc1
BZQU	para-BENZOQUINONE	c1cc(=O)ccc1=O
BZTA	BENZOTHIAZOLE	n1c2cccccc2sc1
BZTF	BENZOTRIFLUORIDE	c1ccc(cc1)C(F)(F)F
BZTH	BENZOTHIOPHENE	c1c2cccccc2sc1
uID	name	SMILES
-------	-----------------------------	--
CAFF	CAFFEINE	Cn1cnc2n(C)c(=O)n(C)c(=O)c12
CHEX	CYCLOHEXANE	C1CCCCC1
CHEXE	CYCLOHEXENE	C1CCceC1
CLBZ	CHLOROBENZENE	Clc1cccccc1
CLPR	CHLORPROPHAM	CC(C)OC(=O)Ne1cc(ccc1)Cl
CLTL	2-CHLOROTOLUENE	Cc1c(cccc1)Cl
CNAP	1-CHLORO-NAPHTHALENE	Clc2ccccc1ccccc12
CPR	CYCLOPROPANE	C1CC1
CUME	CUMENE	CC(C)c1cccccc1
CYPE	CYCLOPENTANE	C1CCCCC1
CYPO	CYCLOPENTANONE	C1CCC(=O)C1
CYPOL	CYCLOPENTANOL	C1CCC(C1)O
DBRBZ	1,2-DIBROMOBENZENE	c1ccc(c(c1)Br)Br
DCLBZ	1,2-DICHLOROBENZENE	Clc1cccc(Cl)c1
DIOX	1,4-DIOXANE	O1CCOCC1
DMAN	N,N-DIMETHYLANILINE	CN(C)e1ccccce1
DMBZQ	2,5-DIMETHYL-1,4-BENZOQUINONE	Cc1cc(=O)c(cc1=O)C
DXLA	1,3-DIOXOLANE	O1CCOC1
EBEN	ETHER-BENZENE	CCc1cccccl
ENAPH	1-ETHYL-NAPHTHALENE	CCc1cccc2cccccc21
FURA	FURAN	c1ccoc1
IMID	IMIDAZOLE	c1cnc[nH]l
INDA	INDAZOLE	c2ccc1[nH]nc1c2
INDO	INDOLE	c12c(ccn2)cccc1
IOBZ	IODOBENZENE	c1ccc(cc1)I
uID	name	SMILES
------	---------------------------	---
IOPHE	2-iodophenol	c1ccc(c(c1)O)I
MBZOA	methyl-benzoate	COc1ccc1c1ccccc1
MCYPE	methycyclopentane	CC1CCCC1
MESI	mesitylene	Cc1cc(c(c1)C)C
MIND	3-methyl-1H-indole	c1ccccc2c1c[c(nH)2]C
MINDA	1-methyl-indazole	Cn1c2cccccc2cn1
MNAP	1-methyl-naphthalene	Ce2cccc1ccccccc12
MXYLE	m-xylene	Cc1ccccc(c1)C
NAPH	naphthalene	c1cc2cccccc2c1
NAPY	1,5-naphthyridine	c1cc2ncccc2n1
NBAPH	N-BOC-2-aminophenol	Oc1ccccc1NC(=O)OC(C)(C)(C)
NDMBI	N-DMBI	CN(C)e1cc(c1)C2N(C)e3cccccc3N2C
NIBZ	nitrobenzene	c1ccc(c1)[N+](=O)[O-]
OMA	ortho-methylanisole	COc1ccccc1c1
OXYLE	o-xylene	Cc1c(C)cccc1
PBEN	propyl-benzene	CCCc1cccc1
PBZOA	propyl-benzoate	CCCOC(=O)c1ccccc1
PCRE	para-cresol	Cc1cc(O)c1c1
PCYM	p-cymene	c1cc(ccc1C(C)C)C
PHEN	phenol	c1cc(c1)(CC)O
PIPER	piperidine	C1CCNCC1
PXYLE	p-xylene	Cc1cc(CC)(cc1)
PYAZ	pyridazine	c1ccntn1
PYLI	pyrrolidine	C1CCNCl
PYMI	pyrimidine	c1cnccc1
Table S2: (continued)

uID	name	SMILES
PYRI	PYRIDINE	c1ccncnc1
PYRR	PYRROLE	[nH]1ccnc1
QUIN	QUINOLINE	n1ccnc2ccnc12
STYR	STYRENE	c1ccnc1C=C
TCLBZ	1,2,4-TRICHLOROBENZENE	Cclccc(Cl)c(Cl)c1
TDMBI	TEG-DMBI	COCCOCCOCCOCCOc1cccc(cc1)⋯
		⋮
TECE	TETRACENE	c34cc2cc1ccccc1cc2cc3ccccc4
THAZ	THIAZOLE	n1ccsc1
THF	TETRAHYDROFURAN	C1CCOC1
THIO	THIOPHENE	c1ccsc1
THP	TETRAHYDROPYRAN	O1CCCCC1
TPH	THIOPHENOL	Sc1ccccc1
THPY	THIENO[2,3-c]PYRIDINE	c1cncc2cc1ccs2
THT	TETRAHYDROTHIOPHENE	S1CCCC1
TOLU	TOLUENE	Cc1ccccc1
XBZ	METHOXYBENZENE	COc1ccccc1
XNAPH	1-METHOXYNAPHTHALENE	COc1ccccc2ccccc21

References

(S1) Rowland, R. S.; Taylor, R. J. Phys. Chem. 1996, 100, 7384–7391.

(S2) Campbell, A.; Kartzmark, E. M.; Chatterjee, R. Can. J. Chem. 1966, 44, 1183–1189.

(S3) Zhang, S.; Ye, L.; Zhang, H.; Hou, J. Mater. Today 2016, 19, 533–543.