Hibernation in bats (Mammalia: Chiroptera) did not evolve through positive selection of leptin

Margaret E. Lazzeroni1 | Frank T. Burbrink2 | Nancy B. Simmons3

1Richard Gilder Graduate School, American Museum of Natural History, New York, New York
2Division of Vertebrate Zoology, Department of Herpetology, American Museum of Natural History, New York, New York
3Division of Vertebrate Zoology, Department of Mammalogy, American Museum of Natural History, New York, New York

Correspondence
Margaret E. Lazzeroni, Richard Gilder Graduate School, American Museum of Natural History, New York, NY. Email: mlazzeroni@amnh.org

Funding information
Earth Institute Travel Grant; Theodore Roosevelt Memorial Grant; Ecology Evolution and Environmental Biology Department’s MA Student Travel Grant from Columbia University

Abstract
Temperature regulation is an indispensable physiological activity critical for animal survival. However, relatively little is known about the origin of thermoregulatory regimes in a phylogenetic context, or the genetic mechanisms driving the evolution of these regimes. Using bats as a study system, we examined the evolution of three thermoregulatory regimes (hibernation, daily heterothermy, and homeothermy) in relation to the evolution of leptin, a protein implicated in regulation of torpor bouts in mammals, including bats. A threshold model was used to test for a correlation between lineages with positively selected *lep*, the gene encoding leptin, and the thermoregulatory regimes of those lineages. Although evidence for episodic positive selection of *lep* was found, positive selection was not correlated with lineages of heterothermic bats, a finding that contradicts results from previous studies. Evidence from our ancestral state reconstructions suggests that the most recent common ancestor of bats used daily heterothermy and that the presence of hibernation is highly unlikely at this node. Hibernation likely evolved independently at least four times in bats—once in the common ancestor of Vespertilionidae and Molossidae, once in the clade containing Rhinolophidae and Rhinopomatidae, and again independently in the lineages leading to *Taphozous melanopogon* and *Mystacina tuberculata*. Our reconstructions revealed that thermoregulatory regimes never transitioned directly from hibernation to homeothermy, or the reverse, in the evolutionary history of bats. This, in addition to recent evidence that heterothermy is best described along a continuum, suggests that thermoregulatory regimes in mammals are best represented as an ordered continuous trait (homeothermy ← → daily torpor ← → hibernation) rather than as the three discrete regimes that evolve in an unordered fashion. These results have important implications for methodological approaches in future physiological and evolutionary research.

Keywords
ancestral state reconstruction, bats, hibernation, homeothermy, leptin, thermoregulation, torpor
1 | INTRODUCTION

In mammals, the evolution of endothermy—the use of metabolically produced heat to maintain T_b (body temperature)—has enabled survival of many different taxa across a variety of ecological niches and ecosystems (Fristoe et al., 2015; Hillenius & Ruben, 2004; Scholander, Hock, Walters, & Johnson, 1950). Homeothermy is defined as maintenance of a relatively constant T_b over time (Ivanov, 2006), and endothermy and homeothermy are frequently linked in mammals. Endothermic heterothermy, characterized by a combination of metabolically produced heat and the use of torpor—a physiological state characterized by the reduction in metabolism, and subsequently T_b below basal levels—has enabled the survival of mammalian taxa globally, especially in extremely cold climates, highly variable climates, or regions with periodic constraints on food and water availability (Geiser & Stawski, 2011; Geiser & Turbill, 2009; Tattersall et al., 2012). The duration of discrete torpor bouts is often used to define the two traditionally recognized forms of heterothermy in mammals: hibernation and daily heterothermy, also known as daily torpor (Geiser, 2004; Ruf & Geiser, 2015). Hibernators are capable of multiday torpor bouts and drastic T_b reduction, while daily heterotherms exclusively use shorter (<24 hr), shallower torpor bouts (Geiser, 2004; Ruf & Geiser, 2015). However, this binary categorization of heterothermy has been debated, with some authors arguing that hard boundaries between hibernation and daily torpor do not exist (Boyles et al., 2013; Canale, Levesque, & Lovegrove, 2012; Geiser & Ruf, 1995; Ruf & Geiser, 2015; van Breukelen & Martin, 2015). As new methods are developed, support for a continuum of heterothermic abilities has been growing but a consensus has not been reached (Boyles, Bennett, Mohammed, & Alagaili, 2017; Levesque, Nowack, & Stawski, 2016).

Although the common ancestor of mammals was traditionally presumed to be homeothermic (Crompton, Taylor, Jagger, & a, 1978), some recent authors have argued against this interpretation on physiological and/or behavioral grounds (Grigg, Beard, & Augee, 2004; Lovegrove, 2012). Grigg et al (2004) suggested that endothermic heterothermy may be ancestral to homeothermy in mammals because endothermic heterothermy would provide a reasonable intermediate along the transition from ectothermy to full endothermic homeothermy, a shift that would have required a many-fold increase in metabolism (Geiser & Stawski, 2011).

Transitions to new thermoregulatory regimes over evolutionary time require physiological changes. Leptin, a hormone encoded by the lep gene, influences thermoregulation and satiety by signaling to the brain the degree of adiposity available for energy intake (Dodd et al., 2014; Enriori, Sinnayah, & Simonds, 2011; Kaiyala, Ogimoto, & Nelson, 2015; Zhang et al., 2011). Due to the role it plays in regulating satiety and metabolic activity, leptin concentrations may also be impacted by diet (Clarke & Connor, 2014; Harvey et al., 2000; Weigle et al., 2005). Leptin function is correlated with post-hibernation weight gain in arctic ground squirrels (Boyer et al., 1997), pre-hibernation weight gain in male woodchucks (Concannon, Levac, & Rawson, 2001), and feeding activity of at least one homeothermic bat ($Scotophilus$ $heathii$; Srivastava & Krishna, 2008). Exon 3 of lep may be particularly important because it contains 29 amino acid variants with functional significance (Yuan et al., 2011). Some hibernating bats show structural alterations in exon 3 of lep that may cause leptin to become more physiologically active (He et al., 2010). Outside of the relationship leptin has with food intake and temperature regulation, leptin has a mechanistically independent function in initiating torpor bouts in some species (Stehling, Doring, & Ertl, 1996; Swoap, 2008). As part of a complex matrix of gene–gene interactions, sympathetic activation of white adipose tissue during fasting triggers a dramatic decrease in circulating leptin which is thought to initiate a torpor bout (Swoap, 2008). Entrance into torpor for Siberian hamsters is triggered by leptin (Freeman, Lewis, & Kauffman, 2004), and regulation of T_b is impacted by leptin in homeothermic rats (Stehling et al., 1996).

Bats (Chiroptera) represent a useful model for comparative evaluation of the evolutionary genomics of thermoregulatory regimes because they are a large monophyletic group with nearly 1,400 extant species, and show considerable variation in thermoregulatory regimes across the phylogeny including homeothermy, daily torpor, and hibernation (Lyman, 1970; Simmons, 2005; Stawski, Willis, & Geiser, 2014). Bats are also among the most diverse mammalian clades with respect to diet, with various lineages specialized as insectivores, carnivores, frugivores, nectarivores, omnivores, and even sanguinivores (Fenton & Simmons, 2015; Hill & Smith, 1984).

Consistent with studies on other mammals, leptin in bats influences torpor abilities, feeding activity, and energy balance (Banerjee, Udin, & Krishna, 2011; He et al., 2010; Kronfeld-Schor, Richardson, & Silvia, 2000; Srivastava & Krishna, 2008; Yuan et al., 2011; Zhu et al., 2014). Ancestral state reconstruction based on the evolution of the lep gene (Yuan et al., 2011) and circumstantial evidence based on the abundance of tropical and subtropical heterothermic bats (Cory Toussaint, McKechnie, & Merwe, 2010; Geiser & Stawski, 2011; Liu & Karasov, 2011; Stawski, Turbill, & Geiser, 2009; Turbill, Law, & Geiser, 2003) have been used to suggest that the most recent common ancestor of bats was heterothermic. However, it is unclear if this ancestor used hibernation or daily torpor.

To better understand the unique evolutionary history of thermoregulation, we examined the relationship between thermoregulatory regime of extant taxa and selection on lep exon 3. Yuan et al. (2011) found that leptin has undergone positive selection in heterothermic bat lineages, and therefore associated it with the evolution of torpor. However, by using a lep exon 3 gene tree instead of a species tree, Yuan et al. (2011) effectively treated two nonindependent variables (branch length and lep selection) as independent. Coalescence theory suggests that the use of gene trees to calculate ω, a measure of positive selection, may bias results because gene trees do not necessarily mirror species trees, and may have alternative branching patterns and lengths compared to the species tree (Diekmann & Pereira-Leal, 2016). To reexamine the findings of Yuan et al. (2011), we hypothesized that lep exon 3 has undergone episodic positive selection in heterothermic lineages. Episodic positive selection is defined as positive selection which occurs in a subset of lineages. We
Taxa	TR Reference	Diet Reference	Accession ID	Loan Institution		
Anoura geoffroyi	Daily Torpor	Audet and Thomas (1997), Avila-Flores and Medellin (2004), Stawski et al. (2014)	Insectivorous	Baker, Jones, and Carter (1976), Ortega and Alarcón-D (2008)	GU230833	
Carollia perspicillata	Daily Torpor	Audet and Thomas (1997)				
Dermanura gnomus	Daily Torpor	Audet and Thomas (1997), Avila-Flores and Medellin (2004), Stawski et al. (2014)	Frugivorous	Solari et al. (2009), Rojas, Vale, Ferrero, and Navarro, (2011)	GU230832	
Erophylla bombifrons	Daily Torpor	Rodríguez-Duran (1995)				
Eumops perotis	Daily Torpor	Leitner (1966)				
Glossophaga soricina	Daily Torpor	Rasweiler (1973)				
Lasiurus seminolus	Daily Torpor	Genoud (1993)				
Macroglossus minimus	Daily Torpor	Bartels, Law, and Geiser (1998), Geiser (2006)	Nectarivorous	Nowak (1994), Hollar and Springer (1997)	AMCC: CEF801	
Megaloglossus woermanni	Daily Torpor	Kulzer and Storf (1980)				
Monophyllus redmani	Daily Torpor	Rodríguez-Duran (1995)				
Mops condylurus	Daily Torpor	Maloney, Bronner, and Buffenstein (1999)				
Myotis daubentoni	Daily Torpor	Dietz and Kalko (2006)				
Nycteris thebaica	Daily Torpor	Cory Toussaint and McKechnie (2012)				
Nyctimene albiventer	Daily Torpor	Bartholomew, Dawson, and Lasiewski (1970)				
Nyctimene robinsoni	Daily Torpor	Geiser (2006)				
Peropteryx macrotis	Daily Torpor	Genoud, Bonaccorso, and Anends (1990)				
Pteropus davyi	Daily Torpor	Czenze and Dunbar (2017)				
Rhinolophus megaphyllus	Daily Torpor	Young (2001)				
Scotophilus dinganii	Daily Torpor	Jacobs, Kelly, Mason, and Stoffberg (2007)				
Sturnira lilium	Daily Torpor	Audet and Thomas (1997)				
Syconycteris australis	Daily Torpor	Geiser (2006)	Nectarivorous	Altringham (1996), Hollar and Springer (1997), Courts (1998)	Smithsonian: 585524	
Tadarida teniotis	Daily Torpor	Arlettaz et al. (2000)	Insectivorous	Freeman (1979), Rydell and Arlettaz (1994), Whitaker and Karataş (2009)	GU230839	
Taphozous australis	Daily Torpor	Kulzer, Nelson, McKeen, and Möhres (1970), Geiser (2006)				
Barbastella barbastellus	Hibation	Pohl (1961), Russo et al. (2017)				
Taxa	TR reference	Diet	Diet reference	Accession #	Loan Institution: ID	
--------------------------	---	------------	--	---------------	---------------------	
Chaerephon plicatus	Hibernation Vivier and Van Der Merwe (2007), Yuan et al. (2011)	Insectivorous	Freeman (1979), Bohmann et al. (2011), Kusuminda and Yapa (2017)	GU230836		
Chalinolobus gouldii	Hibernation Stawski and Currie (2016)					
Eptesicus fuscus	Hibernation Brack (2007)	Insectivorous	Agosta (2002)	NW_007370746		
Hipposideros armiger	Hibernation Liu and Karasov (2011)	Insectivorous	Whitaker and Karataş (2009), Weterings, Wardenaar, Dunn, and Umponstira (2015)	NW_017731447		
Lasionycteris noctivagans	Hibernation Izor (1979)					
Lasiurus borealis	Hibernation Dunbar and Tomasi (2006)					
Lasiurus cinereus	Hibernation Cryan (2003), Willis, Brigham, and Geiser (2006)					
Miniopterus fuliginosus	Hibernation Kimura and Uchida (1983), Yuan et al. (2011)	Insectivorous	Hu, Wei, Zhu, Wang, and Zhang (2011)	GU230844		
Miniopterus natalensis	Hibernation Van Der Merwe (1973)	Insectivorous	Naidoo, Mackey, and Schoeman MC, (2011)	NW_015504548		
Miniopterus schreibersii	Hibernation Kulzer et al. (1970), Geiser (2006)					
Myotis adversus	Hibernation Kulzer et al. (1970)					
Myotis brandtii	Hibernation Villanueva-Cañas et al. (2014)	Insectivorous	Vaughan (1997), Whitaker and Karataş (2009)	NW_005360677		
Myotis davidii	Hibernation Villanueva-Cañas et al. (2014)	Insectivorous	Zhang et al. (2013)	NW_006296405		
Myotis leibii	Hibernation Best and Jennings (1997)					
Myotis lucifugus	Hibernation Brack (2007)	Insectivorous	Belwood and Fenton (1976)	NW_005871121		
Myotis myotis	Hibernation Pohl (1961), Harmata (1987), Koteja, Jurczyszyn, and Wołoszyn (2001)					
Myotis nattereri	Hibernation Hope and Jones (2012)					
Myotis ricketti	Hibernation Zhang et al. (2014)	Piscivorous	Ma et al. (2003)	GU230846		
Myotis septentrionalis	Hibernation Brack (2007)					
Myotis sodalis	Hibernation Brack (2007)					
Myotis velifer	Hibernation Tinkle and Patterson (1965), Riedesel and Williams (1976)					
Taxa	TR	TR reference	Diet	Diet reference	Accession #	Loan Institution: ID
------------------	--------	---	------------------	---	-------------	----------------------
Myotis vivesi	Hibernation	Salinas, Herrera, Flores-Martínez, and Johnston (2014)				
Nyctalus noctula	Hibernation	Ransome (1990), Arlettaz et al. (2000)				
Mystacina tuberculata	Hibernation	Czenze, Brigham, Hickey, and Parsons (2017a)				
Nyctophilus geoffroyi	Hibernation	Turbill et al. (2003)				
Nyctophilus gouldi	Hibernation	Turbill et al. (2003)				
Pipistrellus pipistrellus	Hibernation	Kayser (1964), Kulzer (1965)				
Plecotus auritus	Hibernation	Eisentraut (1956)				
Rhinolophus ferrumequinum	Hibernation	Park, Jones, and Ransome (1999); Chen, Yuan, and Sun (2008)	Insectivorous	Vaughan (1997), Whitaker and Karatas (2009)	GU230845	
Rhinolophus hipposideros	Hibernation	Harmata (1987)				
Rhinopoma microphyllum	Hibernation	Levin and Kronfeld-schor (2012), Stawski et al. (2014)	Insectivorous	Sharifi and Hemmati (2002)	GU230830	
Scotophilus heathii	Hibernation	Rashid, Irfan, Nadeem, and Shabbir (2016)	Insectivorous	Jacobs, Eick, Schoeman, and Matthee (2006)	GU230843	
Tadarida aegyptiaca	Hibernation	Geiser and Stawski (2011)				
Tadarida brasiliensis	Hibernation	Herreid (1963), Herreid and Schmidt-Nielsen (1966)				
Taphozous melanopogon	Hibernation	Kulzer (1965)	Insectivorous	Hu et al. (2011), Weterings et al. (2015)	GU230842	
Carollia brevicauda	Homeothermy	Avila-Flores and Medellín (2004)	Frugivorous	Fleming (1991)	GU230829	
Cynopterus sphinx	Homeothermy	Banerjee, Meenakumari, and Krishna (2007), Stawski et al. (2014)	Frugivorous	Ruby, Nathan, Balasingh, and Kunz (2000)	GU230842	
Dobsonia viridis	Homeothermy	Stawski et al. (2014)	Frugivorous	Bonaccorso, Winkelmann, Dumont, and Bat (2002)	GU230840	
Eldolon helvum	Homeothermy	Zaidan (1980)	Frugivorous	Richter and Cumming (2006)	GU230838	
Eonycteris spelaea	Homeothermy	Krutzsch (1979)	Nectarivorous	Fenton (1990), Bumrungsri et al. (2013)	GU230848	
Macroderma gigas	Homeothermy	Lyman (1970)				
Mormoops blainvill	Homeothermy	Bonaccorso et al. (1992), Rodriguez-Duran (1995)				
Nyctimene major	Homeothermy	Bartholomew et al. (1970)	Frugivorous	Freeman (1995)		AMCC: PRS2767

(Continues)
TABLE 1 (Continued)

Taxa	TR	TR reference	Diet	Diet reference	Accession #	Loan Institution: ID
Pteronotus parnella	Homeothermy	Bonacorso et al. (1992); Stawski et al. (2014)	Insectivorous	Fenton (1990), Brigham (1991), Rojas et al. (2011)	GU230831	
Pteronotus personatus	Homeothermy	Bonacorso et al. (1992), Stawski et al. (2014)				
Pteronotus quadridens	Homeothermy	Rodriguez-Duran (1995)				
Pteropus alectoa	Homeothermyb	McNab and Bonacorso (2001)	Herbivorous	Zhang et al. (2013)	NW_006434839	
Pteropus giganteusa	Homeothermy	Kulzer (1965)	Frugivorous	Nowak (1994), Vaughan (1997)	GU230837	
Pteropus hypomelanusa	Homeothermy	Ochoa-Acuña and Kunz (1999)	Frugivorous	Heard and Whittier (1997)		AMCC: PER 1
Pteropus vampyrusa	Homeothermy	McNab and Armstrong (2001)	Herbivorous	Stier and Mildenstein (2005)	NW_011888814	
Rousettus aegyptiacusa	Homeothermy	Noll (1979)	Frugivorous	Korine, Izhaki, and Arad (1999)	NW_015494499	
Rousettus leschenaultia	Homeothermy	Noll (1979), Stawski et al. (2014)	Frugivorous	Raghuram, Thangadurai, and Gopukumar (2009)	GU230847	
Outgroups						
Capra hircusa	Homeothermy	Kacuba-Usciz.xl;erox, Jessen, Feistkorn, and Brzezinska (1987)	Folivorous	Genin and Pijoan (1993)	AM114397	
Galeopterus variegatusa	Homeothermy		Herbivorous	Dzulheli and Abdullah (2009)	NW_007735418	
Homo sapiensa	Homeothermy	Mekjavic and Eiken (2006)	Omnivorous		D63519	

Notes. TR: thermoregulatory regime.

a Included in the dataset for the tests of positive selection of lep exon 3.

b Species-specific thermoregulatory regime is undocumented in the literature. The most likely thermoregulatory regime was inferred based on associated literature and family-level summaries of thermal physiology (Stawski et al., 2014).
tested this hypothesis in the context of a species tree for relevant bat taxa. We also reconstructed the ancestral thermoregulatory regimes of bats with revised species-level data compared to previous family-level analyses (Yuan et al., 2011). By evaluating the number of transitions between regimes across the phylogeny through stochastic character mapping, we also evaluated the validity of categorizing thermoregulatory regimes as three discrete character states. Finally, to address other known effects of leptin, we tested for correlation between lineages with positively selected lep exon 3 and the diets of those lineages.

2 | MATERIALS AND METHODS

2.1 | Taxon sampling

To test for positive selection of lep exon 3, 31 species of bats with known thermoregulatory regimes were sampled for the lep exon 3 gene, including representatives from nine families (Table 1). Thirteen of these species hibernate, five use daily torpor, and 13 are homeothermic (Table 1). Lep exon 3 sequences for 27 of these species were downloaded from GenBank, and the other four, Pteropus hypomelanus, Nyctimene major, MacroGLOSSUS minimus, and Syonycteris australis, were sequenced in the Sackler Institute for Comparative Genomics. Lep exon 3 sequences for three outgroups were also included, Homo sapiens (human), Capra hircus (goat), and Galeopterus variegatus (Sunda colugo; Table 1). Species-specific data on thermoregulatory regimes and dietary preferences were taken from the primary literature (Table 1, dietary preferences only listed for species in this dataset). The resulting dataset included 34 taxa, which we used for analyses of positive selection of lep exon 3 and models evaluating the relationship between positive selection of lep exon 3 and thermoregulatory strategies or diet.

A larger dataset including 76 bat taxa and three outgroups was used for the ancestral state reconstruction of thermoregulatory regimes. Here, we were not limited by the requirement of having leptin sequences, which allowed for greater coverage of the phylogeny. Species were selected for the ancestral state reconstruction based on availability of data describing their thermoregulatory regime and presence in the published phylogeny that was used in the analyses (i.e., Amador, Arévalo, & Almeida, 2016). Data on the thermoregulatory regime of each species were taken from the primary literature by searching databases (Google Scholar and Web of Science) between the dates of September 2015 and August 2018, using keywords “bats,” “thermoregulation,” “thermoregulatory regimes,” “temperature regulation,” “hibernation,” “torpor,” “daily torpor,” “daily heterothermy,” “heterothermy,” “homeothermy,” “metabolism,” and “Chirottera.” These data are summarized in Table 1.

DNA was extracted and lep exon 3 was amplified and sequenced for four bat species for the tests for positive selection—Pteronotus giganteus, Nyctimene major, MacroGLOSSUS minimus, and Syonycteris australis. All laboratory work was conducted in the Sackler Institute for Comparative Genomics. DNA was extracted from either wing punches or tissues of museum specimens (Table 1) using the Qiagen DNeasy Blood and Tissue Extraction Kit. In order to amplify lep exon 3 in these species, a primer pair (F1—AGAAGGGAGGGAGGACTCAAC, R1—GCTTCAGCACCCAGGGCTG) was developed on the flanking region of the consensus sequence from a multiple alignment of published lep sequences from Rousettus leschenaultii, Pteronotus giganteus, Eonycteris spelaea, Eidolon helvum, Dobsonia viridis, and Cynopterus sphinx which was made by eye in Geneious (Kearse et al., 2012).

The polymerase chain reaction (PCR) was carried out using illustraTM puReTaq Ready-To-Go PCR Beads Kit. Amplification was performed in a 25 µl reaction volume. This consisted of 20.7 µl nuclelease-free water, 0.3 µl bovine serum albumin, 1 µl 10x solution of forward primer, 1 µl 10x solution of reverse primer, 2 µl template, and one bead containing recombinant puReTaq DNA polymerase. PCR conditions were as follows: an initial denaturation phase at 95°C for 5 min, 25 cycles with a denaturation phase at 95°C for 30 s, an annealing phase at 57°C for 30 s, and an extension phase at 72°C for 45 s. The wells were then stored in a refrigerator at 4°C. PCR products were purified with AgenCourt AMPure XP. PCR products were sequenced using Sanger sequencing (Smith & Hood, 1987) following protocol from the BigDye® Terminator v3.1 Cycle Sequencing Kit.

Sequences were assembled and edited within Geneious (Kearse et al., 2012). Ends of forward and reverse sequences were trimmed with an error set to 0.01. Trimmed regions were ignored and forward and reverse sequences were assembled using de novo assembly, as outlined by the Geneious manual (Biomatters, 2017). The forward and reverse sequences of lep for Nyctimene major did not assemble through de novo assembly. Therefore, these were mapped to the reference sequence from which the primers were built. Reads were then manually edited to maximize the coverage and identity between the forward and reverse sequences. Lep exon 3 was trimmed to the open reading frame (ORF), and stop codons were removed from the tail. ORFs from all species in the dataset were then aligned by eye in Geneious (Kearse et al., 2012).

2.2 | Branch–sites under positive selection

To identify lineages that have experienced episodic positive selection of lep exon 3, we ran a mixed-effects model of evolution (MEME) to detect a subset of branch–sites under episodic positive selection (Murrell et al., 2012). MEME uses a fixed-effect model to explain the distribution and variation of ω across sites, and a random-effects model to explain variation in the distribution of ω across branches (Kosakovsky Pond et al., 2011; Murrell et al., 2012; Nielsen & Yang, 1998). MEME was used here because other tests, which usually average ω over branches and sites, often miss positive selection when it occurs in a subset of branch–sites (Yang & Nielsen, 2002). When evaluating if a branch–site is under positive selection, MEME considers the specific model of molecular evolution, which here was the TRN93 model (Tamura & Nei, 1993), differences in codon frequencies, and ω.

The test for branch–sites under episodic positive selection, MEME, was performed within the DataMonkey web server (Delport,
Poon, Frost, & Kosakovsky Pond, 2010) using the aligned lep exon 3 sequences, the automatic substitution model selection tool, and a user-specified tree from Amador et al. (2016). This 807 taxa phylogeny was calibrated using 44 key fossils, inferred using nine nuclear and mitochondrial genes, and shows support for the majority of currently recognized bat clades (Amador et al., 2016). The Amador et al. (2016) tree was chosen for this study because it represents the most genus- and species-level diversity, 90% and 64%, respectively, compared to other phylogenies (Amador et al., 2016). The tree was pruned using the ape package in R (Paradis, Claude, & Strimmer, 2004) to only include the 31 bats and three outgroup taxa in our dataset. The model of molecular evolution that best fit these data was determined to be the TRN93 model (Tamura & Nei, 1993) using the automatic function available in DataMonkey (Delport et al., 2010).

The significance threshold was set to 0.1 and a log-ratio test (LRT) was performed, comparing the alternative model to the null model. The alternative model allows for positive selection in a subset of branch-sites, while the null model does not allow for positive selection in a subset of branch-sites. For each branch, an empirical Bayes factor (EBF) for having $\omega > 1$ was calculated with an associated posterior probability.

Mixed-effects model of evolution only detects branch-sites under episodic positive selection, not lineages with gene-wide positive selection. Therefore, to confirm that lep exon 3 is indeed under positive selection in the branches detected by MEME, we tested for gene-wide episodic positive selection using BUSTED, a branch-site unrestricted statistical test for episodic positive selection (Murrell et al., 2015). BUSTED uses a LRT to detect evidence of episodic positive selection, when the rate of non-synonymous to synonymous substitutions at branch-sites is transiently greater in the foreground branches compared to background (Murrell et al., 2015). Foreground branches are the lineages hypothesized to be under positive selection, and the background branches are all other branches in the phylogeny. This model assumes that the gene evolves under the general time reversal model (Tavaré, 1986).
FIGURE 2 Ancestral state reconstruction under the Mkn model. Topology of tree generated from Amador et al. (2016). Pie charts represent the marginal likelihoods of each thermoregulatory regime at a given node.
We also used BUSTED to test for episodic positive selection by binning branch-sites into three \(\omega \) categories representative of either purifying, neutral, or positive selection. Purifying selection is defined by having a \(\omega < 1 \), indicating that there is strong selection to maintain the sequence over evolutionary time. Neutral selection is defined by having a \(\omega \) approximately equal to 1, indicating that there is neither strong selection for the maintenance of a sequence over time nor selection for changes to that sequence. In the unconstrained model, both foreground and background branches can evolve under positive selection. In the null models, neither foreground nor background branches are allowed to evolve through positive selection. This analysis required, as input, the same alignment of lep exon 3 sequences used in the MEME analysis, and the pruned, user-specified phylogeny from Amador et al. (2016).

Two analyses to test for gene-wide positive selection were performed. In the first analysis, we tested for selection along branches where evidence for positive selection was previously detected (Figure 1a; Yuan et al., 2011). In the second analysis, we selected foreground branches based on lineages with evidence for positive selection from the MEME results (Figure 1b). Here, branches were considered foreground if they met the following criteria based on the MEME output: A branch had at least one codon site with an EBF > 3 for having \(\omega > 1 \), and a posterior probability >0.25 for having \(\omega > 1 \). These criteria conform with the guidelines for interpreting EBF values from Kass and Raftery (1995). In addition to the LRT calculation, Akaike information criteria (AIC) scores were calculated. AIC statistically quantifies the quality of each model by considering the optimum log likelihood (l) and the number of parameters (p) (AIC = −2l + 2p), enabling model comparison.

TABLE 2 Branch-Sites with evidence of positive selection in lep exon 3

Branch	TR	Sites	EBF	Posterior probability	
Node 3	–\(^a\)	75	210.2	1	
Node 8	–\(^a\)	7	15.3	0.56	
Node 10	–\(^a\)	5	>1,000	1	
		6	>1,000	1	
		7	11.8	0.5	
		75	15	0.86	
		108	46.2	0.39	
Node 13	–\(^a\)	75	209	1	
Node 26	–\(^a\)	78	319.6	0.99	
		86	42.1	1	
Node 57	–\(^a\)	86	436.3	1	
Eidolon helvum		Homeothermic	86	>1,000	1
Hipposideros armiger		Hibernation	7	23.8	0.67
		75	48.4	0.95	
		78	3.6	0.61	
		108	529.1	0.88	
Homo sapiens		Homeothermic	91	>1,000	1
Myotis lucifugus		Hibernation	6	>1,000	1
Pteronotus parnellii		Homeothermic	4	>1,000	1
		56	>1,000	1	
		86	23.2	1	
Rhinolophus ferrumequinum		Hibernation	7	17.3	0.59
		78	3.6	0.61	
		108	206.5	0.74	
Rhinopoma microphyllum		Hibernation	4	>1,000	1
		7	36.2	0.75	
		78	234	0.99	
Syconycteris australis		Daily Torpor	86	>1,000	1
Taphozous melanopogon		Hibernation	6	>1,000	1
		75	>1,000	1	

Note. EBF: empirical Bayes factor for having \(\omega > 1 \); Posterior: posterior probability; TR: thermoregulatory regime.

\(^a\)Not Applicable.
2.3 | Correlation between positive selection and phenotypic traits

To determine whether evolution of lep exon 3 is correlated with evolution of thermoregulatory regimes, we ran a threshold model (Felsenstein, 2012). Here, a discrete trait is presumed to change state when an underlying variable, the liability, crosses a certain threshold (Felsenstein, 2005, 2012). This liability is assumed to have a multivariate normal distribution and to evolve under Brownian motion (Felsenstein, 2005, 2012). Contrasting the commonly used continuous-time Markov (Mkn) model of discrete character evolution (Lewis, 2001; Pagel, 1994), character states under the threshold model are inherently ordered and the evolution of discrete character states is not memoryless (Felsenstein, 2005, 2012); the character state at one node is influenced by the character state at previous nodes. We categorized thermoregulatory regimes into three states: hibernation, daily torpor, and homeothermy. The presence (1) or absence (0) of positive selection in lep exon 3 served as the liability.

Parameters for the model were estimated with a Bayesian Markov chain Monte Carlo (MCMC) approach using the threshBayes function in R, with default priors and likelihoods (Revell, 2012). We ran the chain for 3 million generations, thinned to 1,000 samples per chain, to account for autocorrelation, and discarded the first 500,000 as burn-in. To quantify the relationship between lep evolution and TR, a correlation coefficient was calculated between the liability and the thermoregulatory regime. Finally, the highest posterior densities (HPDs) were estimated from the correlation coefficients to determine whether the correlation between traits statistically differed from 0, indicating a statistically significant relationship between the two variables. To test the alternative hypothesis that lep exon 3 evolution is correlated with diet, we used the same methods as above but used diet as the discrete trait evolving under the liability.

2.4 | Ancestral state reconstruction of thermoregulatory regimes

To model the ancestral thermoregulatory regimes of bats, we first used the Mkn model of discrete character evolution (Lewis, 2001; Pagel, 1994) with the states hibernation, daily torpor, and homeothermy. It was important to test which transition rate matrix best described the data. Transition matrices describe the rate of transitioning from state i to state j. Here, we tested the data to fit one of three transition matrices: (a) equal transitions between all states (equal rates), (b) different transition rates between, but not among, pairs of states (symmetric), and (c) different transition rates between and among pairs of states (all rates different). We also tested each transition matrix under different transformations to determine whether transition rates varied overtime. We ran these tests for 100 iterations within the fitDiscrete function in the geiger package in R (Harmon, Weir, & Brock, 2008). The model with the lowest weighted AIC score was subsequently chosen to run the ancestral state reconstruction. The symmetric model under a kappa transformation had the best fit to these data. This suggests that, given our data, transition rates vary over time depending on the number of speciation events between two species and that the transition rate between one pair of character states is identical in the forward and reverse but pairs of states can have different transition rates. No transformations were indicated by the data, indicating that the transition rate does not vary over time.

Given these parameters, we ran an ancestral state reconstruction using the Ace function from the ape package in R (Figure 2) with maximum likelihood estimation to obtain probabilities of states at interior nodes (Paradis et al., 2004). Stochastic character mapping (Bollback, 2006; Huelsenbeck, Nielsen, & Bollback, 2003) was also used to estimate states at interior nodes and to determine how well the chosen parameters matched the real data. Stochastic character maps were built using the make.simmap function in the phytools package in R (Revell, 2012). Fifty thousand simulations were run using the parameters described previously. A Q–Q plot was generated to compare the Mkn model to the stochastic character map to evaluate the goodness of fit. The stochastic character map was then used to quantify the number of transitions between states across simulations.

3 | RESULTS

3.1 | Data collection

We obtained new lep sequences for four bats, Pteropus hypomelanus (484 bp), Nyctimene major (487 bp), Macroglossus minimus (788 bp), and Syconyteris australis (489 bp). These were aligned to

Codon	α	Unconstrained β^+	ω	p-Value
4	0	7.21	∞	0.03
5	2.04	48.00	23.53	0.04
6	0	5.64	∞	0.03
7	0.56	43.45	77.59	0.05
56	0	207.15	∞	0.01
75	0	5.50	∞	0.02
78	0	5.84	∞	0.07
86	0	1.37	∞	0.08
91	0.66	11.68	17.70	0.06
108	0	38.31	∞	<0.001

Note. α: maximum likelihood estimation (MLE) of synonymous rate; β^+: unconstrained MLE of non-synonymous rate.
FIGURE 3 Ancestral state reconstruction from stochastic character mapping. Topology of tree generated from Amador et al. (2016). Pie charts represent the posterior probability of each thermoregulatory regime at a given node.
the other sequences in the dataset. Once aligned, sequences were trimmed to the coding region of *lep* exon 3 at 357 bp across 34 taxa.

3.2 Measuring positive selection

From the MEME results, evidence for positive selection was detected in 15 branches (Table 2) over a total of 10 codons (Table 3). When these lineages were selected as the foreground branches in the BUSTED analyses, evidence for episodic positive selection was detected \((p = 0.009; \text{Figure 1b}) \). Positive selection was not detected when the foreground branches were selected according to those previously found by Yuan et al. (2011) to be under positive selection \((p = 0.220) \).

3.3 Correlation between positive selection and phenotypic traits

No relationship was found between thermoregulatory regimes and lineages with positive selection of *lep* exon 3 \((95\% \text{ HPD} = -0.271 \text{ to } 0.600) \), or between positively selected lineages and diet \((95\% \text{ HPD} = -0.222 \text{ to } 0.692) \).

3.4 Ancestral state reconstruction

The scaled likelihoods from the Mkn model (Supporting Information Table S1) and the scaled probabilities from stochastic character mapping were highly correlated \((p = 0.985, \text{ } p = 2.2 \times 10^{-16}; \text{Figures 2 and 3}) \). The state of the most recent common ancestor of bats could not be fully resolved in either model (Daily Torpor, logL = 0.660, posterior = 0.714; Hibernation, logL = 0.005, posterior = 0.154; Homeothermy, logL = 0.289 posterior = 0.131). In the Mkn model (Figure 2), the transition rate between daily torpor and hibernation was similar to that between daily torpor and homeothermy \((\text{MLE} = 0.054 \pm 0.012 \text{ and } \text{MLE} = 0.052 \pm 0.014) \), respectively, while no transitions were found between hibernation and homeothermy. Across the 50,000 stochastic simulations, an average of 33 state changes occurred per tree (summarized in Figure 3). Over each tree, an average of eight transitions occurred from daily torpor to hibernation, and 10 transitions occurred from hibernation to daily torpor. An average of eight transitions occurred from daily torpor to homeothermy, and seven transitions from homeothermy to daily torpor. Transitions between hibernation and homeothermy, in either direction, never occurred across all simulations. Across all regimes and simulations, the mean proportion of time spent in each state was 0.308, 0.436, and 0.256 for daily torpor, hibernation, and homeothermy, respectively. Here, time was measured by the proportion of branch lengths for which lineages are predicted to use a specific regime in the phylogeny averaged over all simulations.

Based on the ancestral state reconstruction, hibernation appears to have evolved four times in bats. Vespertilionidae and Molossidae both have taxa that use hibernation. Their most recent common ancestor may have used hibernation \((\text{logL} = 0.533) \). The MRCA of Vespertilionids likely hibernated \((\text{logL} = 0.850) \), and multiple internal nodes in Molossidae suggest a heterothermic ancestor. Our results suggest that hibernation evolved at least once in this group. Our data suggest that hibernation evolved independently at least three other times, in the species *Taphozous melanopogon* (Family Emballonuridae) and *Mystacina tuberculata* (Family Mystacinidae), and again in the clade comprised of Rhinopomatidae and Rhinolophidae. However, the node(s) at which hibernation arose in these groups remains ambiguous.

4 DISCUSSION

We found that the common ancestor of bats most likely used daily heterothermy and is very unlikely to have used hibernation. We also found that leptin evolution is not associated with the evolution of thermoregulatory regimes in bats. Twente and Twente (1964) hypothesized that the most recent common ancestor of bats was homeothermic and that heterothermy evolved secondarily as an adaptation to survive cold climates \((\text{Bieber & Ruf, 2009; Geiser & Turbill, 2009; Kortner & Geiser, 2000}) \). However, daily heterothermy remains adaptive even at warmer temperatures because it increases energy savings and long-term survival \((\text{Geiser & Stawski, 2011; Stawski & Geiser, 2012}) \). Flexible use of torpor may have enhanced the ability of some bats to survive in warm and/or tropical climates, such as the environments likely encountered throughout the Eocene when bats likely originated \((\text{Amador et al., 2016; Czenze & Dunbar, 2017; Czenze, Brigham, Hickey, & Parsons, 2017b; Meredith et al., 2011; O’Leary et al., 2013; Simmons, 2005; Simmons & Geiser, 1998; Simmons, Seymour, Habersetzer, & Gunnell, 2008; Teeling, 2005}) \).

Supporting our results, recent work estimating the ancestral thermoregulatory regimes of bats \((\text{Yuan et al., 2011}) \) and evidence for the commonality of heterothermy in bats \((\text{Geiser & Stawski, 2011}) \) suggests that heterothermy was the ancestral state for Chiroptera and that homeothermy was secondarily derived \((\text{Geiser & Stawski, 2011; Yuan et al., 2011}) \). This scenario mirrors the hypothesis that the common ancestor of all mammals was heterothermic \((\text{Grigg et al., 2004; Lovegrove, 2012}) \). However, until now, the question of which heterothermic regime was used by the ancestor of bats—hibernation or daily heterothermy—was unresolved. Here, we show evidence that the ancestor of bats was likely a daily heterotherm.

Consistent with the lack of evolutionary advantages that a hibernator would be expected to accrue during the early Eocene, a relatively warm time period characterized by widespread tropical and subtropical conditions, our results suggest that the common ancestor of bats did not hibernate \((\text{Humphries, Thomas, & Speakman, 2002}) \). Although our results suggested a marginal likelihood that the ancestor of bats was a homeotherm, this seems unlikely based on previous studies \((\text{e.g., Geiser & Stawski, 2011; Yuan et al., 2011}) \). Taken together with the high likelihood of daily heterothermy at this node, we argue that the most recent common ancestor of bats
was a daily heterotherm. Our reconstruction therefore also indicates several reversals back to daily heterothermy. Pteronotus davyi, Nyctimene major, Macroglossus minimus, and Syconycteris australis all represent reversals back to daily heterothermy after their lineages evolved homeothermy. However, due to inconsistent methods for measuring \(T_b \) and the setting of arbitrary thresholds to determine a torpid state (Levesque et al., 2016), some of the bats categorized as homeothermic in our study may in fact be heterothermic. This may alter the interpretation of reversals back to heterothermy. Increased data collection following consistent operationalized definitions of torpor should be performed for more species and recollected for species currently identified as homeothermic. Our suspicion is that many bats thought to be endothermic are actually facultative homeotherms under some conditions (e.g., see Czenze & Dunbar, 2017). Future work should also focus on other species across the mammal phylogeny in order to reconstruct the ancestral states at deeper nodes.

Our analyses suggest that hibernation evolved approximately four times in Chiroptera—at the base of Vespertilionidae and Molossidae, in the species Taphozous melanopogon and Mystacina tuberculata from the families Emballonuridae and Mystacinidae, and in the clade comprised of Rhinolophidae and Rhinopomatidae. Our analyses also suggest that the MRCA of Rhinolophidae used hibernation; however, it is unclear if this is derived or ancestral. Conservatively, we suggest that hibernation arose at least once in this group. Similarly, we suggest that hibernation arose at least once in the clade comprised of Vespertilionids and Molossids. We found no evidence for reversals in the hibernation phenotype—no lineages that lost and subsequently regained the ability to hibernate.

Significant evidence for positive selection of \(\text{lep} \) was detected in some lineages of Chiroptera, but this had no correlation with the thermoregulatory regimes of those lineages (Figure 1b).

FIGURE 4 *Pteronotus parnellii* photograph taken by Brock and Sherri Fenton in a cave in the western end of Cuba

Compared to results from Yuan et al. (2011), our dataset included 11 additional bat taxa, and the thermoregulatory regimes of *Carollia breviceuda* and *Pteronotus parnellii* (Figure 4) were reclassified to be consistent with the literature (Avila-Flores & Medellín, 2004; Bonaccorso, Arens, & Genoud, 1992). Leptin evolution is impacted by pleiotropic effects on other physiological and developmental processes beyond thermoregulation. Leptin can effect thyroid function (Ghamari-Langroudi et al., 2010) and bone development (Crespi & Denver, 2016), induction of mitosis (Gat-Yablonski & Phillip, 2008), and immune and stress responses (Ahima & Osei, 2004; Procaccini, Lourenco, Matarese, & La, 2009). The potential for positive selection of leptin for alternative traits (Carey, Andrews, & Martin, 2003; Jastroch et al., 2016; Yang et al., 2008) makes it difficult to find correlations between positive selection of \(\text{lep} \) and a singular function. Therefore, in retrospect it is perhaps not surprising that we found no evidence for a tight correlation between leptin and chiropteran thermoregulatory regimes, and also found no correlation between leptin selection and diet despite the known influence of high-fat diets on leptin functioning (Frederich et al., 1995; Koch et al., 2014).

Complex genomic mechanisms and associated physiological alterations to organ systems and physiological functions across species with different thermoregulatory regimes suggest that the evolution of thermoregulatory regimes may intrinsically have no correlation with positive selection of a single gene (Andrews, 2004; Grabek et al., 2011; Hindle, Grabek, & Epperson, 2014; Morin & Storey, 2009; Villanueva-Cañas, Faherty, Yoder, & Albà, 2014). A non-synonymous substitution at codon site 91 in exon 3, found here to be under positive selection, was previously inferred to cause a functional difference in hibernating bats compared to homeothermic bats (He et al., 2010). However, we found that this substitution in the sequence of the hibernating bat is shared with *Homo sapiens*, a homeothermic species. Therefore, a direct relationship to thermoregulatory regime and sequence variation cannot be made for this site. Recent evidence suggests that thermoregulatory regimes are mostly influenced by the regulation of gene expression, rather than the sequence specificity of protein-coding genes (Geiser & Stawski, 2011; Grabek, Martin, & Hindle, 2015; Morin & Storey, 2009; Schwartz, Hampton, & Andrews, 2013; Yan, Barnes, Kohl, & Marr, 2008).

In our ancestral state reconstruction, zero direct transitions occurred between hibernation and homeothermy. In this model, we assumed a priori that character states are not ordered. Therefore, the lack of transitions between hibernation and homeothermy is not an artifact of the model. This suggests that thermoregulatory regimes may be better represented as an ordered trait (with daily torpor as a necessary intermediate between homeothermy and hibernation) rather than as an unordered trait. Recent evidence suggests that heterothermy exists along a continuum (Boyles et al., 2013; Dunbar & Brigham, 2010; Lovegrove, 2012; Wilz & Heldmaier, 2000). If true, this suggests that there is an inherent order to the evolution of thermoregulatory regimes, which our results indicate. Our results suggest that future research on mammalian thermoregulation should
treat thermoregulatory regimes as an ordered and possibly continuous trait.

The genomics underlying thermoregulation in mammals remains largely unclear. Future research should aim to sequence whole genomes of mammals that vary in thermoregulatory regime. Comparing these data in a phylogenetic framework would enable a more complete understanding of the genomic components involved in the evolution of thermoregulatory regimes. Our results revealed that leptin does not appear to be directly involved in the evolution of thermoregulatory regimes but many candidate genes including LEPR (Rezai-Zadeh et al., 2014), MEF2 (Tessier & Storey, 2010), and G0S2 (Jessen et al., 2016) have yet to be examined in a similar framework. Such studies will reveal the importance these candidate genes have in the evolution of thermoregulation across diverse taxa.

ACKNOWLEDGMENTS

This research was supported through the Theodore Roosevelt Memorial Grant, the Ecology Evolution and Environmental Biology Department’s MA Student Travel Grant from Columbia University, and the Earth Institute Travel Grant. Thanks also Rebecca Hersch in the Sackler Institute for Comparative Genomics for helping with laboratory work, and Angelo Soto-Centeno for the many discussions that inspired this project.

CONFLICT OF INTEREST

None declared.

AUTHOR CONTRIBUTIONS

M.E.L., F.T.B., and N.B.S. contributed to the concept and design of project. M.E.L. performed laboratory work, data collection, and analyses, and drafted the manuscript. All authors contributed to manuscript preparation and approval of final draft.

DATA ACCESSIBILITY

Sequence data are available on GENBANK (https://www.ncbi.nlm.nih.gov/genbank/) with accession numbers listed in Table 1. Log likelihoods for the thermoregulatory regime at each internal node in the phylogeny under the Mkn model are available in Supporting Information Table S1. All other data can be accessed through Dryad or by contacting Margaret Lazzeroni.

ORCID

Margaret E. Lazzeroni http://orcid.org/0000-0002-6660-7599

REFERENCES

Agosta, S. J. (2002). Habitat use, diet and roost selection by the big brown bat (Eptesicus fuscus) in North America: A case for conserving an abundant species. Mammal Review, 32, 179-198. https://doi.org/10.1046/j.1365-2907.2002.00103.x

Ahima, R. S., & Osei, S. Y. (2004). Leptin signaling. Physiology & Behavior, 81, 223-241. https://doi.org/10.1016/j.physbeh.2004.02.014

Altringham, J. (1996). Bats: Biology and behaviour. Oxford, UK: Oxford University Press.

Amador, L. I., Arévalo, R. L. M., & Almeida, F. C. (2016). Bat systematics in the light of unconstrained analyses of a comprehensive molecular supermatrix. Journal of Mammalian Evolution, 25(1), 37-70. https://doi.org/10.1007/s10914-016-9363-8

Andrews, M. T. (2004). Genes controlling the metabolic switch in hibernating mammals. Biochemical Society Transactions, 32, 1021-1024. https://doi.org/10.1042/BST0321021

Arlettaz, R., Ruchet, C., Aeschimann, J., Brun, E., Genoud, M., & Vogel, P. (2000). Physiological traits affecting the distribution and wintering strategy of the bat Tadarida teniotis. Ecology, 81, 1004-1014. https://doi.org/10.2307/177174

Audet, D., & Thomas, D. W. (1997). Facultative hypothermia as a thermoregulatory strategy in the phyllostomid bats, Carollia perspicillata and Sturnira lilium. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 167, 146-152. doi.org/10.1007/s003600050058

Avila-Flores, R., & Medellín, R. A. (2004). Ecological, taxonomic, and physiological correlates of cave use by Mexican bats. Journal of Mammalogy, 85, 675-687. https://doi.org/10.1644/BOIS-127

Baker, R. J., Jones, J. K., & Carter, D. C. (1976). Regulation of leptin synthesis in white adipose tissue of the female fruit bat, Cynopterus sphinx: Role of melatonin with or without insulin. Experimental Physiology, 96, 216-225. https://doi.org/10.1139/exphyphysiol.2010.055129

Bartels, W., Law, B. S., & Geiser, F. (1998). Daily torpor and energetics in a tropical mammal, the northern blossom-bat Macroglossus minimus (Megachiroptera). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 168, 233-239. https://doi.org/10.1007/s003600050141

Bartholomew, G. A., Dawson, W. R., & Lasiewski, R. C. (1970). Thermoregulation and heterothermy in some of the smaller flying foxes (Megachirotrema) of New Guinea. Zeitschrift Für Vergleichende Physiologie, 70, 196–209. https://doi.org/10.1007/BF00297716

Belwood, J. J., & Fenton, M. B. (1976). Variation in the diet of Myotis lucifugus (Chiroptera: Vespertilionidae). Canadian Journal of Zoology, 54, 1674-1678. https://doi.org/10.1139/z76-276-194

Best, T. L., & Jennings, J. B. (1997). Myotis leibii. American Society of Mammalogists, 547, 1–6.

Bieber, C., & Ruf, T. (2009). Summer dormancy in edible dormice (Cifugus) and other hibernating mammals. Journal of Mammalogy, 167, 1674–1678. https://doi.org/10.1139/z76-194

Bohmann, K., Monadjem, A., Lehmkühl Noer, C., Rasmussen, M., Zeale, M. R. K., & Gilbert, M. T. P. (2011). Molecular diet analysis of two African free-tailed bats (molossidae) using high throughput sequencing. PLoS ONE, 6(6), e21441. https://doi.org/10.1371/journal.pone.0021441

Bollback, J. P. (2006). SIMMAP: Stochastic character mapping of discrete traits on phylogenies. BMC Bioinformatics, 7, 88. https://doi.org/10.1186/1471-2105-7-88

Bonaccorso, F. J., Arends, A., Genoud, M., Cantoni, D., & Morton, T. (1992). Thermal ecology of moustached and ghost-faced bats
Geiser, F., & Stawski, C. (2011). Hibernation and torpor in tropical and subtropical bats. *American Naturalist*, 179, 145–156. https://doi.org/10.1086/663681

Fenton, M. B. (1990). The foraging behaviour and ecology of animal-eating bats. *Canadian Journal of Zoology*, 68, 411–422. https://doi.org/10.1139/z90-061

Fenton, B. M., & Simmons, N. B. (2015). *Bats: A world of science and mystery*. Chicago, IL: University of Chicago Press.

Fleming, T. H. (1991). The relationship between body size, diet, and habitat use in frugivorous bats, genus *Carollia* (*Phyllostomidae*). *Journal of Mammalogy*, 72, 493–501. https://doi.org/10.2307/1382132

Freeman, P. W. (1979). Beetle- and moth-eating molossid bats. *Journal of Mammalogy*, 60, 467–479.

Freeman, P. W. (1995). Nectarivorous feeding mechanisms in bats. *Biological Journal of the Linnean Society*, 56(3), 439–463. https://doi.org/10.1111/j.1095-8312.1995.tb01104.x

Fristoe, T. S., Burger, J. R., Balk, M. A., Khaliq, I., Hof, C., & Brown, J. (2009). The evolution of endothermy in terrestrial vertebrates: Who? When? Why? *Proceedings of the Royal Society of London. Series B: Biological Sciences*, 276, 2366–2381. https://doi.org/10.1098/rspb.2010.1209

Friedler, J. (1995). Regulation of thyrotropin-releasing hormone-expressing neurons in paraventricular nucleus of the hypothalamus by signals of adiposity. *Molecular Endocrinology*, 24, 2366–2381. https://doi.org/10.1210/me.2010-0023

Graber, K. R., Carollia, A., Epperson, L. E., Hindle, A., Hunter, L. E., & Martin, S. L. (2011). Multistate proteomics analysis reveals novel strategies used by a hibernator to precondition the heart and conserve ATP for winter heterothermy. *Physiological Genomics*, 43, 1263–1275. https://doi.org/10.1152/physiolgenomics.00125.2011

Graber, K. R., Martin, S. L., & Hindle, A. G. (2015). Proteomics approaches shed new light on hibernation physiology. *Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology*, 185, 607–627. https://doi.org/10.1007/s00360-015-0905-9

Grigg, G. C., Beard, L. A., & Augee, M. L. (2004). The evolution of endothermy and its diversity in Mammals and Birds. *Physiological and Biochemical Zoology*, 77, 982–997. https://doi.org/10.1086/425188

Harmata, W. (1987). The frequency of winter sleep interruptions in two species of bats hibernating in limestone tunnels. *Acta Theriologica (Warszawa)*, 32, 21–31. https://doi.org/10.4098/AT.arch.87-23

Harmon, L. J., Weir, J. T., Brock, C. D., Gler, R. E., & Challenger, W. (2008). GEIGER: Investigating evolutionary radiations. *Bioinformatics*, 24, 129–131. https://doi.org/10.1093/bioinformatics/btn538

Harvey, J., McKay, N. G., Walker, K. S., Van der Kaay, J., Downes, C. P., & Ashford, M. J. L. (2000). Essential role of phosphoinositide 3-kinase in leptin-induced K ATP channel activation in the rat CRI-G1 insulinoma cell line. *Journal of Biological Chemistry*, 275, 4660–4669. https://doi.org/10.1074/jbc.275.7.4660

He, L., Pan, Y., He, G., Lin, B., Liao, C.-C., Zuo, X., & Yuan, L. (2010). Structural and functional studies of leptins from hibernating and non-hibernating bats. *General and Comparative Endocrinology*, 168, 29–35. https://doi.org/10.1016/j.ygcen.2010.04.001

Heard, D. J., & Whittier, D. A. (1997). Hematologic and plasma biochemical reference values for three flying fox species (*Pteropus sp.*). *American Association of Zoo Veterinarians*, 28, 464–470.

Herreid, C. F. I. (1963). Temperature regulation of Mexican free-tailed bats in cave habitats. *Journal of Mammalogy*, 44, 560–573. https://doi.org/10.2307/1377140

Herreid, C. F. I., & Schmidt-Nielsen, K. (1966). Oxygen consumption temperature and water loss in bats from different environments. *American Journal of Physiology*, 211, 1108–1112. https://doi.org/10.1152/ajplegacy.1966.211.5.1108

Hill, J. E., & Smith, J. D. (1984). Bats: A natural history. Austin, TX: University of Texas Press.

Hillenius, W. J., & Ruben, J. A. (2004). The evolution of endothermy in terrestrial vertebrates: Who? When? Why? *Physiological and Biochemical Zoology*, 77, 1019–1042. https://doi.org/10.1086/425185

Hindle, A. G., Graber, K. R., Epperson, L. E., Carollia, A., & Martin, S. L. (2014). Metabolic changes associated with the long winter fast dominate the liver proteome in 13-lined ground squirrels. *Physiological Genomics*, 46, 348–361. https://doi.org/10.1152/physiolgenomics.00190.2013

Hollar, L. J., & Springer, M. S. (1997). Old World fruitbat phylogeny: Evidence for convergent evolution and an endemic African clade. *Proceedings of the National Academy of Sciences of the United States of America*, 94, 5716–5721. https://doi.org/10.1073/pnas.94.11.5716

Hope, P. R., & Jones, G. (2012). Warming up for dinner: Torpor and arousal in hibernating Natterer’s bats (*Myotis nattereri*) studied by radio telemetry. *Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology*, 182, 569–578. https://doi.org/10.1007/s00360-011-0631-x

Hu, K. L., Wei, L., Zhu, T. T., Wang, X. Z., & Zhang, L. B. (2011). Dietary composition, echolocation pulses, and morphological measurements...
McNab, B. K., & Armstrong, M. I. (2001). Sexual dimorphism and scaling of energetics in flying foxes of the genus Pteropus. *Journal of Mammalogy, 82*, 709. https://doi.org/10.1093/joedm/82.4.709

McNab, B. K., Bloch, J. I., Flynn, J. J., Gaudin, T. J., Giallombardo, A., McNab, B. K., & Armstrong, M. I. (2001). The metabolism of New Guinean pteropodid bats. *Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 171*, 201-214. https://doi.org/10.1007/s003600000163

Mekjavic, I. B., & Eiken, O. (2006). Contribution of thermal and nonthermal factors to the regulation of body temperature in humans. *Journal of Applied Physiology, 100*, 2065–2072. https://doi.org/10.1152/japplphysiol.01118.2005

Meredith, R. W., Janecka, J. E., Gatesy, J., Ryder, O. A., Fisher, C. A., Teeling, E. C., ... Murphy, W. J. (2011). Impacts of the cretaceous radiation of placental mammals on the evolution of body size. *Science, 334*, 521–524. https://doi.org/10.1126/science.1211028

Morin, P., & Storey, K. B. (2009). Mammalian hibernation: Differential gene expression and novel application of epigenetic controls. *International Journal of Developmental Biology, 53*, 433–442. https://doi.org/10.1387/ijdb.082643pm

Naidoo, S., Mackey, R. L., & Schoeman, M. C. (2011). Foraging ecology of insectivorous bats (Chiroptera) at polluted and an unpolluted river in an urban landscape. *Durban Natural Science Museum Novitates, 34*, 21-28. https://doi.org/10.1017/CBO9781107415324.004

Nowak, R. M. (1994). *Walker’s bats of the world*. Baltimore, MD: JHU Press.

Ochoa-Acuña, H., & Kunz, T. H. (1999). Thermoregulatory behavior in the small island flying fox, *Pteropus hypomelanus* (Chiroptera: Pteropodidae). *Journal of Thermal Biology, 24*, 15–20. https://doi.org/10.1016/S0306-4565(98)00103-3

O’Leary, M. A., Bloch, J. I., Flynn, J. J., Gaudin, T. J., Giallombardo, A., McNab, B. K., & Armstrong, M. I. (2001). The metabolism of New Guinean pteropodid bats. *Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 171*, 201-214. https://doi.org/10.1007/s003600000163

Pohl, H. (1961). Temperature regulation and tagesperiodik des Stoffwechsels bei Winterschläfern.

Rancome, R. (1990). *Natural History of Hibernating Bats*. Rashid, N., Irfan, M., Nadeem, M. S., & Shabbir, A. (2016). Comparative seasonal haematology of two bat species, *Scotophilus heathi and Pipistrellus pipistrellus*, in a Subtropical Area of Pakistan. *Pakistan Journal of Zoology, 48*, 1503–1510.

Reiwar, J. J. I. (1973). Care and management of the long-tongued bat, *Glossophaga soricina* (Chiroptera: Phyllostomidae), in the laboratory, with observations on estivation induced by food deprivation. *Journal of Mammalogy, 54*, 391–404.

Ritcher, R. C., & Cumming, G. S. (2006). Food availability and annual migration of the straw-colored fruit bat (*Eidolon helvum*). *Journal of Zoology, 268*, 35–44. https://doi.org/10.1111/j.1469-7998.2005.00020.x

Rieder, H. V., & Williams, B. A. (1976). Continuous 24-hour oxygen consumption studies of myots vellifer. *Biochem Physiol, 54A*, 95–99.

Rodriguez-Duran, A. (1995). Metabolic rates and thermal conductance in four species of neotropical bats roosting in hot caves. *Comparative Biochemistry and Physiology, 110*, 347–355. https://doi.org/10.1016/0300-9697(94)00174-R

Ruby, J., Nathan, P. T., Balasingh, J., & Kunz, T. H. (2000) *Chemical composition of fruits and leaves eaten by short-nosed fruit bat, Cynopterus sphinx*. Ruf, T., & Geiser, F. (2015). Daily torpor and hibernation in birds and mammals. *Biological Reviews, 90*, 1–70. https://doi.org/10.1111/brv.12137

Russo, D., Cistone, L., Budinski, I., Console, G., Della Corte, M., Milighetti, C., Ancillotto, L. (2017). Sociality influences thermoregulation and roost switching in a forest bat using ephemeral roosts. *Ecology and Evolution, 7*, 5310–5321. https://doi.org/10.1002/ece3.3111

Rydell, J., & Arlettaz, R. (1994). Low-frequency echolocation enables the bat *Tadarida teniotis* to feed on tymbanate insects. *Proceedings of the Royal Society of London. Series B: Biological Sciences, 257*, 175–178.

Salinas, R. V. B., Herrera, M. L. G., Flores-Martínez, J. J., & Johnston, D. S. (2014). Winter and summer torpor in a free-ranging subtropical desert bat: The fishing myotis (*Myotis vivesi*). *Acta Chiropterologica, 16*, 531–544. https://doi.org/10.5755/j01.achiro.16.3.0498

Scholander, P. F., Hock, R., Walters, V., & Johnson, F. (1950). Heat regulation in some arctic and tropical mammals and birds. *Biological Bulletin, 99*, 237–258. https://doi.org/10.2307/1538741

Schwartz, C., Hampton, M., & Andrews, M. T. (2013). Seasonal and regional differences in gene expression in the brain of a hibernating mammal. *PLoS ONE, 8*(3), e58427. https://doi.org/10.1371/journal.pone.0058427

Sharifi, M., & Hemmati, Z. (2002). Variation in the diet of the Greater Mouse-tailed Bat, *Rhinopoma microphyllum* (Chiroptera: *Rhinopomatidae*) in south-western Iran In dry habitats, large and seasonally rich insect patches may support large colonies of bats, 7140.

Procaccini, C., Lourenco, E. V., Matarese, G., & La, C. A. (2009). Leptin signaling: A key pathway in immune responses. *NIH Public Access, 4*, 22-30. https://doi.org/10.2174/1574362097870487111

Raghunam, H., Thangadurai, C., Gopukumar, N., Nathar, K., & Sripathi, K. (2009). The role of olfaction and vision in the foraging behavior of an echolocating megachiropteran fruit bat, *Rousettus leschenaulti* (Pteropodididae). *Mammalian Biology, 74*, 9–14. https://doi.org/10.1016/j.mambio.2008.02.008

12594

12594

12594

12594
Simmons, N. B. (2005). An eocene big bang for bats. Evolution (New York), 307, 527–529.

Simmons, N. B., & Geisler, J. H. (1998). Phylogenetic relationships of Icaroeryctes, Archaeoeryctes, Hassianyceris, and Palaeochoiripteryx to extant bat lineages, with comments on the evolution of echolocation and foraging strategies in Microchiroptera. Bulletin of the American Museum of Natural History, 226, 1–128.

Simmons, N. B., Seymour, K. L., Habersetzer, J., & Gunnell, G. F. (2008). Primitive Early Eocene bat from Wyoming and the evolution of flight and echolocation. Nature, 451, 818–821. https://doi.org/10.1038/nature06549

Smith, L., & Hood, L. (1987). Mapping and sequencing the human genome: How to proceed. Nature Biotechnology, 5, 933–939. https://doi.org/10.1038/nbt0987-933

Solari, S., Hooper, S. R., Larsen, P. A., Brown, A. D., Bull, R. J., Guerrero, J. A., ... Baker, R. J. (2009). Operational criteria for genetically defined species: analysis of the diversification of the small fruit-eating bats, Dermanura (Phyllostomidae: Stenodermatinae). Acta Chiropterologica, 11, 279–288. https://doi.org/10.3161/15081109X485521

Srivastava, R. K., & Krishna, A. (2008). Seasonal adiposity, correlative changes in metabolic factors and unique reproductive activity in a vespertilionid bat, Scotophilus heathi. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 309, 94–110. https://doi.org/10.1002/jez.440

Stawski, C., & Currie, S. E. (2016). Effect of roost choice on winter torpor patterns of a free-ranging insectivorous bat. Australian Journal of Zoology, 64, 132–137. https://doi.org/10.1017/Z016030

Stawski, C., & Geiser, F. (2012). Will temperature effects or phenotypic plasticity determine the thermal response of a heterothermic tropical bat to climate change? PLoS ONE, 7, e40278. https://doi.org/10.1371/journal.pone.0040278

Stawski, C., Turbill, C., & Geiser, F. (2009). Hibernation by a free-ranging subtropical bat (Nyctophilus bifax). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 179, 433–441. https://doi.org/10.1007/s00360-008-0328-y

Stawski, C., Willis, C. K. R., & Geiser, F. (2014). The importance of temporal heterothermy in bats. Journal of Zoology, 292, 86–100. https://doi.org/10.1111/jz.12105

Stehling, O., Doring, H., Ertl, J., Preibisch, G., & Schmidt, I. (1996). Leptin reduces juvenile fat stores by altering the circadian cycle of energy expenditure. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 40, R1770–R1774. https://doi.org/10.1152/ajpregu.1996.271.6.R1770

Stier, S. C., & Mildenstein, T. L. (2005). Dietary habits of the world’s largest bats: The Philippine Flying Foxes, Acerodon jubatus and Pteropus vampyrus lanensis. Journal of Mammalogy, 86, 719–728.

Swoap, S. J. (2008). The pharmacology and molecular mechanisms underlying temperature regulation and torpor. Biochemical Pharmacology, 76, 817–824. https://doi.org/10.1016/j.bcp.2008.06.017

Tamura, K., & Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10, 512–526. https://doi.org/10.1093/molbev/ms3149

Tattersall, G. J., Sinclair, B. J., Withers, P. C., Fields, P. A., Seebacher, F., Cooper, C. E., & Maloney, S. K. (2012). Coping with thermal challenges: Physiological adaptations to environmental temperatures. Comprehensive Physiology, 2, 2151–2202. https://doi.org/10.1002/cphy.c110055

Tavaré, S. (1986). Some probabilistic and statistical problems in the analysis of DNA sequences. American Mathematical Society Lectures on Mathematics in the Life Sciences, 17, 57–86.

Teeling, E. C. (2005). A molecular phylogeny of bats illuminates biogeography and the fossil record. Science, 307, 580–584.

Tessier, S. N., & Storey, K. B. (2010). Expression of myocyte enhancer factor-2 and downstream genes in ground squirrel skeletal muscle during hibernation. Molecular and Cellular Biochemistry, 344, 151–162. https://doi.org/10.1007/s11010-010-0538-y

Tinkle, D. W., & Patterson, I. G. (1965). A study of hibernating populations of myotis velleri in Northwestern Texas. Journal of Mammalogy, 46, 612–633. https://doi.org/10.2307/1377932

Turbill, C., Law, B. S., & Geiser, F. (2003). Summer torpor in a free-ranging bat from subtropical Australia. Journal of Thermal Biology, 28, 223–226. https://doi.org/10.1016/S0306-4565(02)00067-0

Twente, J. W., & Twente, J. A. (1964). An hypothesis concerning the evolution of heterothermy in bats.

van Breukelen, F., & Martin, S. L. (2015). The hibernation continuum: Physiological and molecular aspects of metabolic plasticity in mammals. Physiology (Bethesda), 30, 273–281. https://doi.org/10.1152/physiol.00010.2015

Van Der Merwe, M. (1973). Aspects of temperature and humidity in preferred hibernation sites of the natal clinging bat Miniopterus schreiberi natalensis (A. Smith, 1834). Zoologica Africana, 8, 121–134. https://doi.org/10.1080/0044506197311447471

Vivier, L., & Van Der Merwe, M. (2007). The incidence of torpor in winter and summer in the Angolan free-tailed bat, Mops condylurus (Microchiroptera: Molossidae), in a subtropical environment, Mpumulanga, South Africa. African Zoology, 42, 50–58. https://doi.org/10.3377/1562.7020(2007)42(50):T0ITW1.2.CO;2

Weigle, D. S., Breen, P. A., Matthys, C. C., Callahan, H. S., Meeuwis, K. E., Burden, V. R., & Purnell, J. Q. (2005). A high-protein diet induces sustained reductions in appetite, adiposity, and ghrelin concentrations. American Journal of Clinical Nutrition, 82, 41–48. https://doi.org/10.1093/ajcn/82.1.41

Wetternings, R., Wardenaar, J., Dunn, S., & Umpornstira, C. (2015). Dietary analysis of five insectivorous bat species from Kamphaeng Phet, Thailand. Raffles Bulletin of Zoology, 63, 91–96. https://doi.org/10.3161/15081110X10537927

Whitaker, J. O., & Karataş, A. (2009). Food and feeding habits of some bats from Turkey. Acta Chiropterologica, 11, 393–403. https://doi.org/10.3161/15081109X485611

Willis, C. K. R., Brigham, R. M., & Geiser, F. (2006). Deep, prolonged torpor by pregnant, free-ranging bats. Naturwissenschaften, 93(2), 70–83. https://doi.org/10.1007/s00114-005-0063-0

Wilz, M., & Heldmaier, G. (2000). Comparison of hibernation, estivation and daily torpor in the edible dormouse, Glis glis. Journal of Comparative Physiology B, 170, 511–521. https://doi.org/10.1007/s0036000000129

Yang, J., Barnes, B. M., Kohl, F., & Marr, T. G. (2008). Modulation of gene expression in hibernating arctic ground squirrels. Physiological Genomics, 32, 170–181. https://doi.org/10.1152/physiogenomics.00075.2007

Yang, Z., & Nielsen, R. (2002). Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Molecular Biology and Evolution, 19, 908–917. https://doi.org/10.1093/oxfordjournals.molbev.a004148

Yan, J., Barnes, B. M., Kohl, F., & Marr, T. G. (2008). Modulation of gene expression in hibernating arctic ground squirrels. Physiological Genomics, 32, 170–181. https://doi.org/10.1152/physiogenomics.00075.2007

Yang, Z., & Nielsen, R. (2002). Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Molecular Biology and Evolution, 19, 908–917. https://doi.org/10.1093/oxfordjournals.molbev.a004148

Young, R. A. (2001). The eastern horseshoe bat, Rhinolophus megaphyllus, in south-east Queensland, Australia: Colony demography and dynamics, activity levels, seasonal weight changes, and capture-recapture analyses. Wildlife Research, 28(4), 425–434.
Yuan, L., Zhao, X., Lin, B., Rossiter, S. J., He, L., Zuo, X., ... Zhang, S. (2011). Adaptive evolution of leptin in heterothermic bats. PLoS ONE, 6(11), e27189. https://doi.org/10.1371/journal.pone.0027189
Zaidan, N. K. K. S. (1980). Aging phenomena: Relationships among different levels of organization. New York, NY: Plenum Press.
Zhang, G., Cowled, C., Shi, Z., Huang, Z., Bishop-Lilly, K. A., Fang, X., ... Wang, J. (2013) Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science, 339(6118), 456–460. https://doi.org/10.1126/science.1230835
Zhang, Y., Kerman, I. A., Laque, A., Nguyen, P., Faouzi, M., Louis, G. W., ... Munzberg, H. (2011). Leptin-receptor-expressing neurons in the dorsomedial hypothalamus and median preoptic area regulate sympathetic brown adipose tissue circuits. Journal of Neuroscience, 31, 1873–1884. https://doi.org/10.1523/JNEUROSCI.3223-10.2011
Zhang, Y., Pan, Y.-H., Yin, Q., Yang, T., Dong, D., Liao, C.-C., & Zhang, S. (2014). Critical roles of mitochondria in brain activities of torpid Myotis ricketti bats revealed by a proteomic approach. Journal of Proteomics, 105, 266–284. https://doi.org/10.1016/j.jprot.2014.01.006
Zhu, T., Yuan, L., Jones, G., Hua, P., He, G., Chen, J., & Zhang, S. (2014). OB-RL silencing inhibits the thermoregulatory ability of Great Roundleaf Bats (Hipposideros armiger). General and Comparative Endocrinology, 204, 80–87. https://doi.org/10.1016/j.ygcen.2014.04.028

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Lazzeroni ME, Burbrink FT, Simmons NB. Hibernation in bats (Mammalia: Chiroptera) did not evolve through positive selection of leptin. Ecol Evol. 2018;8:12576–12596. https://doi.org/10.1002/ece3.4674