Insulin glargine affects the expression of *Igf-1r*, *Insr*, and *Igf-1* genes in colon and liver of diabetic rats

Clara I Juárez-Vázquez 1, Carmen M Gurrola-Díaz 2, Belinda Vargas-Guerrero 2, José A Domínguez-Rosales 2, Jessica F Rodríguez-Ortiz 3, Patricio Barros-Núñez 3, Silvia E Flores-Martínez 1, José Sánchez-Corona 1, Mónica A Rosales-Reynoso 1*

1 División de Medicina Molecular, Centro de Investigación Biomédica de Occidente. Instituto Mexicano del Seguro Social. Guadalajara, Jalisco, México
2 Instituto de Enfermedades Crónicas Degenerativas, Departamento de Biología Molecular y Genómica, C.U.C.S. Universidad de Guadalajara. Guadalajara, Jalisco, México
3 División de Genética, Centro de Investigación Biomédica de Occidente. Instituto Mexicano del Seguro Social. Guadalajara, Jalisco, México

Article type: Original article

Article history:
- Received: Jul 12, 2017
- Accepted: Sep 28, 2017

Keywords: Colon, Diabetes, Insulin glargine, Liver, Metformin, NPH insulin, Rats

ABSTRACT

Objectives: The mitogenic effect of the analogous insulin glargine is currently under debate since several clinical studies have raised the possibility that insulin glargine treatment has a carcinogenic potential in different tissues. This study aimed to evaluate the *Igf-1r*, *Insr*, and *Igf-1* gene expression in colon and liver of streptozotocin-induced diabetic rats in response to insulin glargine, neutral protamine Hagedorn (NPH) insulin, and metformin treatments.

Materials and Methods: Male Wistar rats were induced during one week with streptozotocin to develop Type 2 Diabetes (T2D) and then randomly distributed into four groups. T2D rats included in the first group received insulin glargine, the second group received NPH insulin, the third group received metformin; finally, untreated T2D rats were included as the control group. All groups were treated for seven days; after the treatment, tissue samples of liver and colon were obtained. Quantitative PCR (qPCR) was performed to analyze the *Igf-1r*, *Insr* and *Igf-1* gene expression in each tissue sample.

Results: The liver tissue showed overexpression of the *Insr* and *Igf-1r* genes (*P*<0.001) in rats treated with insulin glargine in comparison with the control group. Similar results were observed for the *Insr* gene (*P*<0.011) in colonic tissue of rats treated with insulin glargine.

Conclusion: These observations demonstrate that insulin glargine promote an excess of insulin and IGF-1 receptors in STZ-induced diabetic rats, which could overstimulate the mitogenic signaling pathways.

Introduction

Type 2 Diabetes (T2D) is considered a metabolic disorder of multifactorial etiology with relative or absolute deficiency of insulin secretion, involving several degrees of insulin resistance (1). Currently, some studies have reported an increased risk of cancer in T2D patients (2, 3). The reasons behind this association are subject to debate, and different factors could potentially be involved. Diabetes and cancer are indirectly associated through common risk factors; however, causal relationships due to metabolic disturbance as hyperglycemia, hyperinsulinemia, or insulin resistance, and the different therapeutic schemes for diabetes are more directly involved. On the other hand, now it is known that insulin affects the cellular proliferation and differentiation (4), and through epidemiological analysis a consistent association of some insulin analogs with an increased risk of cancer has been demonstrated (5-14). Although it has been described that AspB10 is the only insulin analog that promotes tumor growth (15), there exist reasonable doubts about the other types of insulin analogs. Insulin glargine is widely used as a long-acting analog and differs from the human insulin by the inclusion of asparagine by glycine at the position 21 of the A-chain and two arginine residues in the carboxy-terminal extension of the B-chain. Metabolic characteristics of glargine are equivalent to human insulin but display a slightly higher affinity to the insulin-like growth factor receptor 1 (IGF1R) (16, 17). The insulin glargine treatments increase the arrest to apoptosis in several cancer cell lines (18). This observation has allowed hypothesizing that these insulin analogs, with increased IGF1R affinity in *vitro*, promote augmented cell growth and reproduction (15). Both in animals and in humans, insulin glargine undertakes a fast and increased metabolism, generating the early formation of the critical metabolite M1, which has a mitogenic profile (in *vitro*) equivalent to human insulin (14, 16, 19). Such activity probably signifies the theoretical basis for the potential carcinogenicity of insulin glargine; however, the results obtained regarding the effect of insulin glargine on diverse types of cancer are inconsistent (20-26). Several studies report that neither glargine nor AspB10 manage to phosphorylate the IGF1R in different tissues from rats treated with high doses of these insulin analogs (14) however, results from another

*Corresponding author: Mónica Alejandra Rosales-Reynoso. División de Medicina Molecular. Centro de Investigación Biomédica de Occidente (CIBO). Instituto Mexicano del Seguro Social (IMSS). Sierra Mojada # 800. Colonia. Independencia. Guadalajara, Jalisco. México. CP 44340. Tel: + [52] 33- 36 68 30 00 ext. 31975; Email: mareynoso77@yahoo.com.mx, monica.rosales@imss.gob.mx
study showed that treatment with AspB10 resulted in higher phosphorylation levels and significantly longer phosphorylation duration of insulin receptor (IR) and protein kinase B (Akt) in several tissues, in comparison with human or glargine insulin, supporting the idea that AspB10 promotes tumorigenesis via persistent stimulation of the IR (27).

Insulin and IGF receptors are part of the superfamily of tyrosine kinase receptors, which shows an extensive structural homology. Both IGF-1Rs and insulin receptors (IRs) are dimeric molecules containing two ligand-binding extracellular alpha subunits and two transmembrane beta subunits in which the tyrosine kinase domain is included. When ligands bind to the receptor, transphosphorylation of kinase domains triggers the metabolic and mitogenic signaling pathways (14, 28, 29). Insulin-like growth factor-1 (IGF-1) is widely distributed in animal cells and exhibits multiple activities such as metabolism regulation, improvement of growth, and expansion of cells and tissues (30).

In this study, we evaluated the expression of the Igf-1r, Insr, and Igf-1 genes in colon and liver of streptozotocin-induced diabetic rats in response to insulin glargine, NPH insulin, and metformin treatment.

Materials and Methods

Healthy Wistar rats were obtained from the Bioterium of University Center for Health Science at the University of Guadalajara, in Guadalajara, Mexico. The experimental animals were preserved under standard laboratory conditions (temperature 24 ± 2 °C; humidity 50 ± 5%, and 12-hr/12-hr light-dark cycles); they were fed ad libitum a standard rodent diet (Purina LabDiet® 5001). Male Wistar rats (200–250 g) were grouped and housed in separate stainless-steel cages under a controlled environment. Animal usage protocols and study procedures were strictly based on the Mexican Official Standard (NOM-062-ZOO-1999) for laboratory animal care and management. This study was approved by the Scientific and Ethics Committee 1305 (R-2008-1305-6) of the West Biomedical Research Center, Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Mexico, and conducted respecting national and international ethical standards.

Experimental induction of T2D

Before diabetic induction, Wistar rats fasted for 8 hr. T2D induction method was based on a protocol previously described (31-33). Animals were injected intraperitoneally with a single dose of streptozotocin (STZ, 65 mg/kg; Sigma, St. Louis, MO, USA) diluted in citrate buffer (10 mmol/l sodium citrate, pH 4.5) (34). Glucose levels were monitored after 48 hr of STZ induction to verify the development of T2D in rats. Only rats showing blood glucose values of ≥200 mg/dl were included (35, 36). 40% of STZ-induced T2D rats died during the first post-induction week. Surviving T2D rats were randomly distributed into four groups, with five rats in each one.

Experimental groups

Rats from first group (MET group) were treated with metformin (300 mg/kg, dissolved in saline at 0.9%) (37); the second group (GLAR group) with insulin glargine (2 IU), and the third group (NPH group) with neutral protamine Hagedorn (NPH) insulin (2 IU). Both glargine and NPH insulin doses were standardized separately, and the final doses were the half of those previously described by Stammberger et al (38). T2D rats received one dose per day during seven days of metformin (oral administration) or insulin NPH/glargine (subcutaneous administration). The control group consisted of streptozotocin-induced T2D rats and received only the usual saline solution, 0.90% w/v NaCl. Blood glucose was monitored from the first to the seventh day to safeguard glycemic compensation in animals.

Glucose levels in diabetic and controls rats

In addition to daily glucose measurements, post-treatment (as a reference value) and final (the day of the sacrifice) glucose determinations were achieved in all rats. For a more accurate estimation, blood samples were collected in dry centrifuge tubes from the retro-orbital venous plexus of anesthetized rats (ether), which were fasted overnight.

Serum was separated by centrifugation at 3000 rpm for 15 min at 4 °C and immediately used for glucose level determination by the glucose oxidase-peroxidase enzymatic method (BioSystems, Spain) in a semi-quantitative spectrophotometer (BTS-330, BioSystems, Spain), following the manufacturer’s instructions. Remaining serum was stored at -70 °C. On the other hand, on the day of the sacrifice, tissue samples (liver and colon) were obtained for gene expression analysis.

RNA isolation, reverse transcription and gene expression

Total RNA was isolated from liver and colon tissues (nearly 30 mg) using the TOTALLY RNA™ Kit (Ambion® Applied Biosystems). Isolated RNA (5 μg) was converted into cDNA using SuperScript™ III First-Strand Synthesis SuperMix for RT-PCR Kit (Invitrogen™, Life Technologies); both procedures were performed according to the manufacturer’s instructions. Igf-1r, Insr, and Igf-1 gene expression was realized by real-time PCR using Light Cycler® FastStart DNA Master® Plus SYBR Green 1 Kit (Roche, Germany). Design of primers was done using Oligo 6 analyzer software. Actb was used as a housekeeping gene. Triplicate amplification reactions were performed in a 2.0 Light Cycler® (Roche, Germany), under the following cycling conditions: Actb gene: 95 °C for 10 min and 40 cycles of 95 °C for 10 sec, 60 °C for 10 sec, and 72 °C for 11 sec. Forward primer 5’-TCT TCG AGA ACG GAT CGA CAT TGT GAT GG-3’ and reverse primer 5’-AGG GCA ACA TAG CAC AGC TT-3’. Insr gene: 95 °C for 10 min and 40 cycles of 95 °C for 10 sec, 59 °C for 10 sec, and 72 °C for 11 sec. Forward primer 5’-TCT TGG AGA ACG CAT CGA GT-3 and reverse primer 5’-CAC AAA CTT CTT GGC GTT CA-3’. Igf-1 gene: 95 °C for 10 min and 40 cycles of 95 °C for 10 sec, 59 °C for 10 sec, and 72 °C for 14 sec. Forward primer 5’-AAC CTG CAA AAC ATC GGA AC-3’ and reverse primer 5’-GCA GCC AAA ATT CAG AGA GG-3’. Igf-1r gene: 95 °C for 10 min and 40 cycles of 95 °C for 10 sec, 60 °C for 10 sec, and 72 °C for 10 sec. Forward primer 5’-GAC AGT GAA TGA GGC TGC AA-3’ and reverse primer 5’-CCA GCC ATC TGG ATC TT-3’. As a negative control, sterile water rather than cDNA was used. The crossing
of threshold (Ct) values obtained for the target genes were normalized against housekeeping gene (Actb) Ct values. The relative quantification of gene expression was calculated using the 2^(-ΔΔCt) method. Melting curve analysis was performed to confirm the amplification of single amplicons for each gene analyzed (39).

Statistical analysis
A paired t-test was used to compare the pre- and post-treatment glucose levels. For the gene expression analysis, the mean is depicted in relative expression units (REU). Differences in the expression of each gene (Insr, Igf-1r, and Igf-1) were assessed between experimental groups by the Kruskal-Wallis test and post hoc adjustment Mann-Whitney U Test. PASW statistical software (ver. 18) was used for the data analysis (Chicago, IL, USA). The data were represented as mean ± SEM; P-value < 0.05 at (CI 95%) was taken as the level of significance.

Results
Pre and post-treatment glucose levels
Figure 1 shows the pre- and post-induction glucose levels as medians in all experimental groups. When comparing serum glucose levels between the pre- and post-treatment experimental groups (metformin, glargine/NPH insulins), in the GLAR group the reference value diminished 66% (day 0) (P<0.005), while in the NPH group it decreased 88% (P<0.001).

Gene expression analysis
All analyzed genes (Igf-1, Igf-1r, and Insr) showed a single melting peak under specific amplification conditions. The results are depicted as REU, which correspond to 2^-ΔΔCt of each analyzed gene (Figure 2). In liver, the Insr gene was significantly overexpressed in the GLAR group (3.66 REU) (P<0.05) compared with the control group; whereas, in the NPH group, this gene showed significant subexpression (0.17 REU) (P<0.05). The Igf-1 gene showed overexpression in the NPH group compared to the control group (P<0.05). In contrast, the Igf-1r gene was under-expressed in the MET and GLAR groups (P<0.05). On the other hand, the Igf-1r gene was overexpressed in all groups of treated rats, but mainly in the group treated with insulin glargine (3.11 REU) (P<0.05) (Figure 2A). In the colon, the Insr gene showed significant overexpression only in the GLAR group (1.73 REU). The Igf-1 gene showed subexpression with no statistical significance in all treated groups (Figure 2B). Finally, the Igf-1r gene was overexpressed in the MET group (12.67 REU) (P<0.05) (Figure 2B).

Discussion
This report analyzes for the first time the effect of insulin glargine and other hypoglycemics agents on the expression of Insr, Igf-1r, and Igf-1 in a model of STZ-induced diabetic rats. Insulin analogs are insulin molecules artificially modified by DNA recombinant technology; exhibiting some chemical variations compared with natural insulin, which result in an altered pharmacokinetic profile, as described for the insulin glargine (38). The NPH insulin is an intermediate-acting molecule characterized by a slow onset of action and by more prolonged activity regarding regular insulin (40). Metformin is also a hypoglycemic drug, widely used and with obvious benefits on the glucose metabolism and diabetes-related complications; the metformin treatment improves insulin sensitivity in sensitive tissues such as liver, fat, and muscles (41).
It has been demonstrated that glargine induces phosphorylation of IR, IGF1R, ERK, and AKT in cultured cancer cells, suggesting the possibility of stimulation of the MAPK and PI3K-AKT pathways (18).

The overexpression of *Insr* and *Igf-1r* genes in liver and colon of rats treated with insulin glargine observed in this study probably related with the increased affinity of glargine toward these receptors and with the subsequent increase of both metabolic and mitogenic pathways in hepatocytes and colonocytes. On the other hand, it is known that different isoforms of IR (A and B) are differentially expressed in diverse tissues; thus, IR-A is highly expressed in the kidney and the brain, while IR-B is expressed in the human liver (57). This alternative splicing is hormonally regulated, but it can be altered during development and under some pathological conditions such as T2D and cancer (57). Therefore, the *Insr* gene overexpression in the liver tissue, observed in this study, perhaps is related predominantly with the IR-B isoform.

Although it is proposed that insulin glargine has a potential mitogenic effect due to higher affinity for IGF-1R and IR and its consequent activation of metabolic and mitogenic signaling pathways, the molecular mechanism is still unidentified. Based on our results, which show an evident overexpression of both IGF1R and IR receptors, mainly in hepatic tissues of rats treated with glargine, it is reasonable to suppose that glargine, in addition to inducing metabolic and mitogenic signaling, might induce by a different and unknown pathway, the transcription of the *Igf-1r* and *Insr* genes, giving rise consequently to an increased number of receptors in the cytoplasmic membrane that stimulates these signaling pathways, inducing a vicious circle that finally begins a neoplastic process.

We also observed a dominant *Igf-1r* overexpression in the colonic tissue in the group treated with metformin (MET group). Although it has been reported that metformin inhibits cell proliferation by activating AMPK, which counteracts the PI3K/AKT and MAPK pathways downstream of the insulin-IGF1 receptors (58), and moreover, that metformin downregulates the insulin/IGF-1 signaling pathway (59-61), researchers (62) observed overexpression of the *IGF1R* gene (4.7-fold change, P < 0.001), but no overproduction of IGF1R in human endometrial stromal cells in response to treatment with metformin and insulin. In that sense, it is expected that the increased expression of the *IGF1R* gene, observed in the MET-group rats in our study, could not be translated in receptors; however, this assumption should be tested.

Leibiger et al. (63) described that the overexpression of A-type isoform of the insulin receptors led to a noticeable activation of the insulin promoter in response to either glucose or insulin stimulus. Such an observation allowed suggesting that insulin activates the transcription of its gene by signaling through the A-type insulin receptor. In the present study, rats from the different groups, including the control group, were STZ-induced T2D animals that showed variable degrees of hyperglycemia; however, the IR and IGF-1R however, the IR and IGF1R expression are significantly increased in the GLAR group respect the control group. Such a difference probably means that the glycemic level is
not a major stimulus to reach the overexpression of these receptors, at least in comparison with the insulin glargine.

Conclusion

Although the molecular mechanisms causing neoplastic transformation in the presence of IR and IGF1R overexpression are not fully understood, our observations showed that insulin glargine promotes an excess of insulin and IGF-1 receptors in a model of diabetic STZ-induced rats, which could play a central role over stimulating the mitogenic signaling pathways.

Acknowledgment

This study was supported by a grant from Consejo Nacional de Ciencia y Tecnología, México (Ciencia Básica, CONACYT, Project number CB-2007/83002; FIS/IMSS/PROT/613). The results presented in this paper are part of a doctoral thesis. Juárez-Vázquez received a graduate-fellowship from CONACYT (224963). M.A. Rosales-Reynoso is a recipient of a Fundación IMSS Scholarship (Mexico).

Conflicts of Interest

The authors declare no conflicts of interest

References

1. Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gaptur SM, Habel LA, et al. Diabetes and cancer: a consensus report. Diabetes Care 2010; 33:1674–1685.

2. Saydah SH, Loria CM, Eberhardt MS, Brancati FL. Abnormal glucose tolerance and the risk of cancer death in the United States. Am J Epidemiol 2003; 157:1092–1100.

3. Coughlin SS, Calle EE, Teras LR, Petrelli J, Thun MJ. Diabetes mellitus as a predictor of cancer mortality in a large cohort of US adults. Am J Epidemiol 2004; 159:1160–1167.

4. Sandow J. Growth effects of insulin and insulin analogs. Arch Physiol Biochem 2009; 115:72–85.

5. Yang YX, Hennessy S, Lewis JD. Insulin therapy and colorectal cancer risk among type 2 diabetes mellitus patients. Gastroenterology 2004; 127:1044–1050.

6. Bowker SL, Majumdar SR, Veugelers P, Johnson JA. Increased cancer-related mortality for patients with type 2 diabetes. Gastroenterology 2004; 127:1044–1050.

7. Chng YW, Han DS, Park KH, Eun CS, Yoo KS, Park CK. Insulin therapy and colorectal adenoma risk among patients with Type 2 diabetes mellitus: a case-control study in Korea. Dis Colon Rectum 2008; 51:593–597.

8. Hemkens LG, Gruvend J, Renden R, Gunster C, Gutschmid S, Selke G, et al. Risk of malignancies in patients with diabetes treated with human insulin or insulin analogs: a cohort study. Diabetologia 2009; 52:1732–1744.

9. Jonasson JM, Ljung R, Talback M, Haglund B, Gudbjornsdottir S, Steinbeck G. Insulin glargine use and short-term incidence of malignancies—a population-based follow-up study in Sweden. Diabetologia 2009; 52:1745–1754.

10. Colhoun HM. Use of insulin glargine and cancer incidence in Scotland: a study from the Scottish Diabetes Research Network Epidemiology Group. Diabetologia 2009; 52:1755–1765.

11. Chang CH, Toh S, Lin JW, Chen ST, Kuo CW, Chuang LM, et al. Cancer risk associated with insulin glargine among adult type 2 diabetes patients—a nationwide cohort study. PLoS One 2011; 6:e21368.
Discov 2002; 1:769-783.
29. De Meyts P. The insulin receptor isoform A: a mitogenic proinsulin receptor? Endocrinology 2012; 153:2054-2056.
30. Boucher J, Kleinridders A, Kahn CR. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol 2014; 6:1-10.
31. Takada J, Machado MA, Peres SB, Brito LC, Borges-Silva CN, Costa CEM, et al. Neonatal streptozotocin-induced diabetes mellitus: a model of insulin resistance associated with loss of adipose mass. Metabolism 2007; 56:977–984.
32. Trevino-Alanis M, Ventura-Juarez J, Hernandez-Pinero J, Nevarez-Garza A, Quintanar-Stephanho A, Gonzalez-Pina A. Delayed lung maturation of fetus of diabetic mother rats develop with a diminished, but without changes in the proportion of type I and II pneumocytes, and decreased expression of protein D-associated surfactant factor. Anat Histol Embryol 2009; 38:169–176.
33. Islas-Andrade S, Revilla Monsalve MC, Escobedo de la Peña J, Polanco AC, Palomino MA, Feria Velasco A. Streptozotocin and Alloxan in Experimental Diabetes; Comparison of The Two Models in Rats. Acta Histochem Cytochem 2000; 53:201–208.
34. Szukudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreatic. Physiol Res 2001; 50:537–546.
35. Abeele MA. Induction of Diabetes Mellitus in Rats Using Intraperitoneal Streptozotocin: A Comparison between 2 Strains of Rats. Eur J Soc Trans 2002; 30:312-317.
36. Etuk E. Animals models for studying diabetes mellitus. Agric Biol J N 2010; 1:130–134.
37. Pareek H, Sharma S, Khajia BS, Jain K, Jain GC. Evaluation of hypoglycemic and anti-hyperglycemic potential of Tridax procumbens (Linn.). BMC Complement Altern Med 2009; 9:48.
38. Stammberger I, Bube A, Durchfeld-Meyer B, Donaubauer H, Troschau G. Evaluation of the carcinogenic potential of insulin glargine (LANTUS) in rats and mice. Int J Toxicol 2002; 21:171–179.
39. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25:402–408.
40. Lucidi P, Porcellati F, Marinielli Andreoli A, Candeloro P, Cioli P, Bolli GB, Fanelli CG. Different insulin concentrations in resuspended vs. unsuspended NPH insulin: Practical aspects of subcutaneous injection in patients with diabetes. Diabetes Metab 2017; S1262-3636:30102-30107.
41. Rojas LB, Gomes MB. Metformin: an old but still the best treatment for type 2 diabetes. Diabetol Metab Syndr 2013; 5:6.
42. Chatzigeorgiou A, Halapas A, Kalafatakis K, Kamper E. The mechanism of action of subcutaneous injection in patients with diabetes. Diabetes Metab 2009; 35:778–785.
43. Takada J, Machado MA, Peres SB, Brito LC, Borges-Silva CN, Costa CEM, et al. Neonatal streptozotocin-induced diabetes mellitus: a model of insulin resistance associated with loss of adipose mass. Metabolism 2007; 56:977–984.
44. Li JB, Wang CY, Chen JW, Feng ZQ, Ma HT. Expression of liver insulin-like growth factor-1 receptor (IGF1R) signaling pathway for cancer therapy. Expert Opin Ther Targets 2012; 16:33-48.
45. Chen XH, Sharon E. IGF-1R as an anti-cancer target–trials and tribulations. Chin J Cancer 2013; 32:242-252.
46. Tognon CE, Sorensen PH. Targeting the insulin-like growth factor 1 receptor (IGF1R) signaling pathway for cancer therapy. Expert Opin Ther Targets 2012; 16:33-48.
47. Chen XH, Sharon E. IGF-1R as an anti-cancer target–trials and tribulations. Chin J Cancer 2013; 32:242-252.
48. Heni M, Hennlenlotter J, Scharpf M, Lutz SZ, Schwentner C, Todenhöfer T, et al. Insulin Receptor Isoforms A and B as well as Insulin Receptor Substrates-1 and -2 Are Differentially Expressed in Prostate Cancer. PLoS One 2012; 7:e50953.
49. Heidegger I, Ofer P, Doppler W, Rotter V, Klocker H, Massonner P. Diverse functions of IGF/insulin signaling in malignant and noncancerous prostate cells: proliferation in cancer cells and differentiation in noncancerous cells. Endocrinology 2012; 153:4633–4643.
50. Heidegger I, Kern J, Ofer P, Klocker H, Massonner P. Oncogenic functions of IGFR1 and INSR in prostate cancer include enhanced tumor growth, cell migration, and angiogenesis. Oncotarget 2014; 5:2723-2735.
51. Foulstone E, Prince S, Zacheo O, Burns JL, Harper J, Jacobs C, et al. Insulin-like growth factor ligands, receptors, and binding proteins in cancer. J Pathol 2005; 205:145–153.
52. Pandini G, Frasca F, Mineo R, Siacca L, Vigneri R, Belfiore A. Insulin/insulin-like growth factor I hybrid receptors have different biological characteristics depending on the insulin receptor isoform involved. J Biol Chem 2002; 277:39684–39695.
53. Belfiore A. The role of insulin receptor isoforms and hybrid insulin/IGF receptors in human cancer. Curr Pharm Des 2007; 13:671–686.
54. Pollak M. Insulin-like growth factor-related signaling and cancer development. Cancer Res 2007; 174:49–53.
55. Duan C, Ren H, Gao S. Insulin-like growth factors (IGFs), IGF receptors, and IGF-binding proteins: roles in skeletal muscle growth and differentiation. Gen Comp Endocrinol 2010; 167:344–351.
56. Kurzthals P, Schaffer L, Sorensen A, Kristensen C, Jonassen I, Schmid C, et al. Correlations of receptor binding and metabolic and mitogenic potencies of insulin analogs designed for clinical use. Diabetes. 2000; 49:999–1005.
57. Denley A, Wallace JC, Cosgrove LJ, Forbes BE. The insulin receptor isoform exon 11 (IR-A) in cancer and other diseases: a review. Horm Metab Res 2003; 35:778–785.
58. Zhang Q, Celestino J, Schmandt R, McCampeal AS, Urbauer DL, Meyer LA, et al. Chemopreventive effects of metformin on obesity-associated endometrial proliferation. Am J Obstet Gynecol 2013; 209:1-12.
59. Sarfstein R, Friedman Y, Attias-Geva Z, Fishman A, Bruchim I, Werner H. Metformin downregulates the insulin/IGF-I signaling pathway and inhibits different uterine serous carcinoma (USC) cells proliferation and migration in p53-dependent or -independent manners. PLoS One 2013; 8:e61537.
60. Abol-Elmatty DM, Ahmed EA, Tawfik MK, Helmy SA. Metformin enhancing the anti-tumor efficacy of carboplatin against Ehrlich solid carcinoma grown in diabetic mice: Effect on IGF-1 and tumoral expression of IGF-1 receptors. Int Immunopharmacol 2017; 44:72-86.
61. Wang Z, Xiao X, Ge R, Li J, Johnson CW, Rassoulian C, et al. Metformin inhibits the proliferation of benign prostate epithelial cells. PLoS One 2017; 12:e0173335.
62. Ferreira GD, Germeyer A, de Barros Machado A, do Nascimento TL, Bruin IS, Strowitzki T, et al. Are growth factor receptors modulated by metformin in human endometrial stromal cells after stimulation with androgen and insulin? Arch Gynecol Obstet 2014; 290:361-367.
63. Leibiger B, Moede T, Uhles S, Berggren PO, Leibiger IB. Short-term regulation of insulin gene transcription. Biochim Soc Trans 2002; 30:312-317.