Implications of farmland expansion for species abundance, richness and mean body mass in African raptor communities

Phil Shaw¹,²*, Micheal Kibuule³, Dianah Nalwanga⁴, George Kaphu⁵, Michael Opige⁴,⁶, Derek Pomeroy³*

¹ School of Biology, Sir Harold Mitchell Building, University of St Andrews, Fife, KY16 9TH, United Kingdom
² Institute of Tropical Forest Conservation, Mbarara University of Science and Technology, PO Box 44, Kabale, Uganda
³ Department of Zoology, Makerere University, PO Box 7298 Kampala, Uganda
⁴ NatureUganda, PO Box 27034, Kampala, Uganda
⁵ Uganda Wildlife Authority, PO Box 3530, Kampala, Uganda
⁶ Ecological Trends Alliance, PO Box 36839, Kampala, Uganda

*Corresponding authors
E-mail addresses: ps61@st-andrews.ac.uk (P. Shaw), derek@infocom.co.ug (D. Pomeroy)

Abstract

Globally, conversion of natural habitats to farmland poses the greatest extinction risk to birds, its consequences being especially pervasive in the case of large predators and scavengers, whose declines may trigger extensive cascading effects. Human population growth in sub-Saharan Africa is expected to drive a vast expansion in agricultural land by 2050, largely at the expense of pastoral land and savanna. In East Africa, the greatest expanse of suitable land yet to be converted to agriculture lies mainly in South Sudan, DRC and Tanzania. To gauge the effects of land conversion on raptor populations in this region we used road survey data from neighbouring Uganda, from which we determined linear encounter rates (birds seen 100 km⁻¹; n = 33 species), and species richness (53 species). Encounter rates were much lower in pastoral land than in protected savanna (median difference: -41%; 23 species), and lower still in agricultural land (-90%; 24 species). These disparities were influenced by diet and body mass. For large eagles and vultures, encounter rates in agricultural land were 97% lower than in protected savanna (median of 12 species), whereas for smaller raptors they were 30% lower (12 species). Large, apex consumers were thus more vulnerable to farmland expansion, and this was reflected in the mean body mass of species encountered in savanna (1,740 g), pastoral (995 g) and agricultural land (856 g). Body mass differences remained significant when vultures were excluded. Since threat status is linked to body mass, encounter rates for globally threatened and near-threatened species likewise showed a more pronounced deficit in farmland than those of least concern. Accordingly, pastoral and agricultural transects were less species-rich (10.6 and 6.7 raptor species 100 km⁻¹, respectively) than savanna transects (13.2 species). Our findings suggest that the projected expansion of agricultural land in sub-Saharan Africa is likely to reduce raptor populations in pastoral land and savanna by c. 50% and 90%, respectively. We propose that conservation efforts focus on identifying the causes of raptor population deficits in farmland, and on safeguarding tracts of unprotected, intact savanna, together with existing protected areas.

Keywords: apex consumers; vultures; eagles; savanna; agricultural impacts; protected areas
1. Introduction

Land use conversion is considered to be the single biggest driver of biodiversity loss in the tropics (Foley et al. 2005, Jung et al. 2017). In particular, the expansion of cropped and pastoral land within natural ecosystems is one of the most important forms of land conversion, by area (Lambin & Meyfroidt 2011). Farming is more damaging to wild nature than any other sector of human activity (Balmford et al. 2012) and poses the greatest extinction risk to birds, especially in developing countries (Green et al. 2005). In much of sub-Saharan Africa the expansion of agricultural habitats, particularly cultivated land, has occurred mainly at the expense of natural grassland, savanna and forests (Brink & Eva 2009), with profound effects on their ecological assemblages (Newbold et al. 2017). Similarly, the replacement of wild herbivore communities with domestic livestock has had substantial impacts on a range of ecosystem processes, contributing towards increased woody cover and a rise in herbivore methane emissions (Hemson et al. 2017).

While land use change has impacted severely on the extent, continuity and quality of terrestrial habitats, the loss of predators, scavengers and other apex consumers may have an equally pervasive influence on the natural world, due to the extensive cascading effects that follow their disappearance (Estes et al. 2011, Dirzo et al. 2014). In Africa, these effects include the potential loss of ecosystem services provided by vultures and other avian scavengers, which are likely to inhibit disease transmission, through the rapid disposal of carcasses (Ogada et al. 2012). The loss of this service in India has been described in a well-documented trophic cascade, wherein the collapse of vulture populations was followed by a substantial rise in the feral dog population, which in turn contributed to a $34 billion increase in healthcare costs associated with rabies treatment in humans (Sudarshan et al. 2007, Markandya et al. 2008).

For many African raptors the impacts of farmland conversion have been intensified through a range of anthropogenic effects, which include incidental and deliberate poisoning, linked mainly to the illegal killing of livestock predators and elephants (Otieno et al. 2010, Virani et al. 2011, Ogada 2014, Ogada et al. 2015, 2016, Monadjem et al. 2018). In West and Central Africa, large raptors are also killed for bushmeat (Buij et al. 2016), while trade in raptor body parts for traditional medicines is widespread, occurring in at least 19 African countries (McKean et al. 2013, Williams et al. 2014). Human disturbance can also adversely affect both tree- and cliff-nesting species (Borello & Borello 2002; Monadjem & Garcelon 2005; Bamford et al. 2009), while energy infrastructure poses a significant, growing threat to larger species, through collisions and electrocution (Jenkins et al. 2010, Rushworth & Krüger 2014, Kibuule & Pomeroy 2015).

The impacts of these pressures have attracted considerable attention, reflecting their scale, the graphic evidence they generate and their recent dramatic rise, particularly in the case of vulture poisoning (Ogada et al. 2016). In contrast, the effects of land use change on African raptor populations are more diffuse, and perhaps more difficult to quantify. Much of the transition to agriculture coincided with the colonial period, and hence pre-dates the standardised collection and analysis of biological survey data. Furthermore, for many observers the extent to which land use has changed may be obscured by shifting baseline syndrome, each generation viewing the conditions they encounter as the new norm, and focusing only on the extent to which these have changed over their own lifetime (Papworth et al. 2009).

While the effects of land use change on biodiversity may be difficult to quantify, its scale, and that of human population growth, are comparatively well documented. Between 1960 and 2016 the human population of sub-Saharan Africa increased by 0.8 billion (Canning et al. 2015, World Bank 2017a,b). During part of that period (1975–2000) the area of agricultural land in sub-Saharan Africa increased by 57%, mainly at the expense of natural vegetation, which contracted by 21%, with a loss of almost 5 million ha of forest and non-forest natural vegetation per annum (Brink & Eva 2009). The human population is projected to increase by a further 1.8 billion during 2016–2060 (Canning et al. 2015), generating an unprecedented surge in the demand for food. While the FAO has estimated that some 80% of this demand may be addressed through higher yields and
increased cropping intensity (Bruinsma 2009), the shortfall will have to be met through farmland expansion. In sub-Saharan Africa the expected increase in arable land alone has been estimated at 64 million ha by 2050 (Bruinsma 2009).

Despite the geographic scale of land use conversion in Africa there have been few long-term studies quantifying its impacts on bird communities. Notable exceptions are the raptor road surveys conducted in West Africa (Thiollay 2006a,b,c) and Northern Botswana (Herremans & Herremans-Tonnoeyr 2000, Garbett et al. 2018), which reported substantial declines, both within protected areas (PAs) and farmland, and across a range of feeding guilds. Not surprisingly, raptor encounter rates in both regions were higher in PAs than in surrounding farmland, particularly for eagle and vulture species. These and other effects have been examined in West Africa by Buij et al. (2013), who concluded that while some Palearctic raptors may benefit from cropland expansion, the majority of Afrotropical and insectivorous Palearctic raptors are likely to decline in the face of further agricultural intensification. Declines are likely to be particularly severe among larger raptor species, reflecting the pattern of extinction risk evident among avian scavengers and mammalian predators; larger species being disproportionately threatened and among the first to disappear (Fritz et al. 2009, Di Marco et al. 2014, Dirzo et al. 2014, Ripple et al. 2014, Buechley & Şekercioğlu 2016).

In East Africa, the most extensive areas of land suitable for agricultural conversion, by virtue of being non-forested, unprotected and supporting a low human population density, lie in South Sudan, the Democratic Republic of the Congo (DRC) and Tanzania (Lambin & Meyfroidt 2011). As a step towards evaluating the likely impacts of farmland conversion on raptors, we assessed the abundance, species richness and mean body mass of raptors in relation to land use in neighbouring Uganda. In common with most African countries, Uganda has undergone significant changes in land use over recent decades. Between 1961 and 2005 the country saw little change in the area of protected savanna (Byaruhanga et al. 2001), but a 122% expansion in its agricultural land, mainly at the expense of pastoral land (from Langdale-Brown et al. 1964, Nakakaawa et al. 2011). Since cultivated land thus now accounts for a much higher percentage of land area in Uganda than in most neighbouring countries (World Bank 2017b), Uganda’s raptor populations may exemplify the changes likely to arise elsewhere, as a result of further agricultural conversion.

Here, we examine disparities in each species’ abundance within protected savanna, pastoral and agricultural land, and test the following predictions. First, based on published findings from southern and West Africa (e.g. Herremans & Herremans-Tonnoeyr 2000, Thiollay 2006c, Buij et al. 2013), we expected the majority of raptor species surveyed to be more abundant in protected savanna than in either farmland type. Second, we expected species richness (the number of species detected over a given distance) to be higher in protected savanna than in pastoral or agricultural land. Third, we predicted that disparities in encounter rates in relation to land use would be more pronounced in the case of large, resident raptors than for smaller, migratory species.

2. Methods

2.1 Data collection

We recorded the number of individuals of each diurnal raptor species seen while driving a series of transects along roads and tracks in Uganda, during January (86% of surveys), February (10%) and March (4%), 2008–2015 (Tables A1, A2). Owl species were likely to be substantially under-recorded, and hence were excluded from the survey. Forty transects, of 9–122 km in length (recorded by odometer), were surveyed at a mean of 33 km hr⁻¹ on public roads, and 25 km hr⁻¹ in National Parks. Most transects were surveyed once per annum over the eight-year period, and the total distance surveyed was 11,188 km.
146 The routes surveyed included public roads from Entebbe to Mbarara, Kampala and Murchison Falls NP, and from Soroti towards Moroto (Pomeroy et al. 2019). They also included a network of unpaved tracks within Murchison Falls, Queen Elizabeth, Kidepo Valley and Lake Mburo National Parks, and in Bugungu Wildlife Reserve, a buffer area for Murchison Falls NP (Figure A1).

150 Observation teams comprised a recorder plus 2–4 observers. In National Parks, and on some tracks outside of the parks, 1–2 ‘outside’ observers watched from the cab roof or an open pick-up, to gain the widest possible view. Most transects were surveyed between 09:00 and 17:00, when soaring birds were more likely to be in the air, and hence more visible. Both flying and perched individuals were counted. Observer configuration, as well as road surface and transect length, thus varied in relation to land use type (see Section 2.2.1).

156 We assigned each transect to one of three forms of land use: protected savanna, pastoral or agricultural land. Protected savanna comprised a mosaic of open and wooded grassland habitats within PAs. Pastoral land was often superficially similar to protected savanna in terms of vegetation structure and species composition, but lay outside of PAs, where large, wild herbivores have been largely or wholly replaced by livestock. Their replacement is likely to have had an adverse effect on the availability of carrion, and a positive effect on the density of woody cover (Hempson et al. 2017), in turn influencing prey resource availability for different raptor guilds. Agricultural land supported a wide range of crops (see Pomeroy et al. 2014, 2019), sometimes interspersed with small areas of pastoral land. Conversely, pastoral transects often included small areas of agricultural land. For logistical reasons, we were unable to survey raptors in forest land, which supports some of the species included in the study. For each transect we also estimated mean altitude (from topographical maps), mean annual rainfall (from Government of Uganda 1967) and tree cover. The latter was defined as: open grassland, light tree cover, heavy tree cover, or closed canopy (i.e. forest). Only a small proportion of transects (within PAs) had heavy tree cover or closed canopy, mainly comprising *Acacia* and *Combretum* species.

172 Whereas some of the birds encountered were identified while the vehicle was moving, in most cases we stopped to confirm the bird's identity, particularly for birds in groups. Rarely, additional raptors were seen as a result of stopping, and were included in the count. Time spent stationary was included in the transect duration. Individuals of each species seen were assigned to one of four distance bands (0–100, 100–200, 200–500, >500 m), depending on their perpendicular distance from the transect. For further details see Pomeroy et al. (2019).

180 2.2 Data analysis

2.2.1 Encounter rates

182 On each survey of a given transect, we recorded the number of individuals of each species seen within 500 m on either side of the road. We used generalised linear mixed effects models (GLMMs) in the package glmmTMB (Brooks et al. 2017) in R (version 3.5.1; R Core Team 2018) to estimate species encounter rates in relation to land use, while controlling for the effects of other variables. In each model we entered the number of individuals of a given species recorded during one survey of a given transect as the dependent variable. The following variables were entered as fixed effects: the presence/absence of ‘outside’ observers (binary), land use category, altitude band (700–900, 950–1100, 1150–1400 m), rainfall band (800–950, 1000–1150, 1200–1400 mm) and tree cover (categorical). We specified transect length (log transformed) as an offset, and used a log-link function. Most transects were surveyed annually, yielding 226 transect-surveys in which the factors listed above were all recorded. To control for the effects of pseudo-replication, we entered ‘transect identity’ and ‘year’ as random terms.

194 Count data for scarce species typically follow a Poisson distribution, but one in which the amount of variation per sampling unit (e.g. per transect-survey) may be higher than expected, or over-dispersed (Linden and Mantyniemi 2011), in which case a negative binomial model may give an
improved fit. We therefore fitted models with both a Poisson and a negative binomial distribution, calculating the variance for the latter either as $\phi \mu$ ('NB1') or as $\mu(1+\mu/k)$ ('NB2') (Linden and Mantyniemi 2011, Brooks et al. 2017). For each of these three models we ran a zero-inflated and a non-zero-inflated version, yielding six model types (Table A3: Model 1). From these we selected the best fitting model for each species, based on Akaike’s Information Criterion (AIC), using AICctab in the R package bblme (Bolker 2016). For the model selected, we used the R predict function to derive the number of encounters predicted for each transect-survey. We then calculated the predicted encounter rate for each transect-survey (from the length of the transect), and the mean encounter rate predicted for that species within each land use type.

Differences in encounter rates for a given species in each land use type could reflect variation in both its detectability and its abundance. We therefore compared detection patterns (the proportion of detections made in each distance band) of a given species in different land use types, e.g. contrasting the pattern of detections made in protected savanna with that in pastoral land. We applied Kruskal-Wallis tests to identify, then exclude, species whose detection patterns in one land use type differed significantly from that in another. Where fewer than 20 detections had been made in the two land use types being considered, we pooled observations for the relevant genus, and excluded the species in question if the detection patterns shown by members of its genus differed significantly between the two land use types being considered (Kruskal-Wallis test). Species retained for pair-wise land use comparisons are identified in Table A1.

The difference between the mean encounter rates predicted for a species in two land use types was expressed as a proportion of its encounter rate in protected savanna, in pairwise comparisons between savanna and either pastoral or agricultural land. Similarly, the difference in encounter rates between pastoral and agricultural land was expressed as a proportion of the rates recorded in the former. We used linear mixed-effects models to test whether these differences varied in relation to diet, mass, migratory status or threat status. Median body mass (g, log transformed) was extracted from del Hoyo et al. (2017) (Table A1). Diet (six categories: scavenger; generalist; or specialist in fish; invertebrates; fruit; or mammals/ reptiles/ snakes) was extracted from Brown et al. (1997) and del Hoyo et al. (2017). Migratory status (Palearctic migrant; Afrotropical migrant; resident) was based on Buij et al. (2013), and global threat status (threatened/near-threatened vs least concern) was obtained from BirdLife International (2018).

For each pair of land use types we entered the proportional difference in the species’ encounter rate as the dependent variable. Since sample sizes were small, we limited each model to one fixed factor (median body mass, diet, migratory status or threat status). Because some genera (e.g. Gyps) were represented by multiple species, we included ‘Genus’ as a random effect (Table A3: Model 2). We selected the model with the lowest AIC score for each pairwise comparison. Probability estimates for the effects of each explanatory variable were calculated using the Kenward-Roger approximation (Halekoh & Højsgaard 2014).

2.2.2 Body mass

To further compare body mass differences in relation to land use, we calculated the total mass of all individuals seen on each survey of a given transect (using mass values given in Table A1), and divided this by the number of individuals, to give the mean mass of individuals seen per transect-survey. We assigned these values to 250 g intervals, to examine their frequency distribution in relation to land use. We then used a linear mixed-effects model to generate predicted values, specifying a natural log transformation of the mean mass as the dependent variable, and the following fixed factors: transect length (km, log transformed), the presence/absence of ‘outside’ observers (binary), land use category, tree cover, mean altitude band (m) and mean annual rainfall band (mm) (categorical) (Table A3: Model 3). ‘Transect identity’ and ‘year’ were entered as random terms, to control for the effects of pseudo-replication. The model yielded fitted, average body mass values for 220 transect surveys on which at least one raptor species had been recorded:
131 in protected savanna, 47 in pastoral land and 42 in agricultural land. We calculated the mean (±SE) predicted mass value for each land use type.

2.2.3 Species richness

To investigate the relationship between species richness and land use we plotted the cumulative number of species encountered during successive transect-surveys within each land use type, against the cumulative distance travelled. We excluded transect-surveys with missing data for tree cover or other factors. This approach shows the pattern of change in the number of ‘new’ species encountered over the (cumulative) distance surveyed, which totalled 5,031 km (protected savanna), 2,315 km (pastoral land) and 2,635 km (agricultural land). Since the pattern observed may have been influenced by factors other than land use, and involved the repeated sampling of transects, we further examined the relationship between species richness and land use using a linear mixed-effects model. In the model, we entered the number of species encountered on each transect-survey as the dependent variable, and the following variables as fixed effects: transect length (km, log transformed), the presence/absence of ‘outside’ observers (binary), land use, altitude, mean annual rainfall and tree cover (categorical) (Table A3: Model 4). Since we expected the number of species encountered to vary both in relation to land use and transect length, we included an interaction between these two variables, which improved the model fit (ΔAIC > 2). ‘Transect identity’ and ‘year’ were entered as random terms, to control for repeated sampling of the same transects and years. All (53) raptor species seen were included in this analysis (Table A4). To calculate the number of species predicted by the model we specified constant (modal) values for: ‘outside’ observers (present), altitude band (950–1100 m), rainfall band (1000–1150 mm) and tree cover (‘light’).

3. Results

3.1 Encounter rates in relation to land use

Over the eight survey years, 6,708 individuals of 53 raptor species were detected. Thirty-three species were seen in sufficient numbers to enable us to model encounter rates in relation to land use and other factors (Table A4). Of 23 species whose detection patterns (in relation to distance from the transect) were comparable in protected savanna and pastoral land (Table A1), 15 were less abundant in the latter. The median difference in the rate at which they were encountered was -41% (quartiles +40% to -80%; n = 23 species; Wilcoxon matched-pairs test: P = 0.088). A much greater disparity was evident between protected savanna and agricultural land: 19 out of 24 species were less abundant in the latter, and the median difference in their encounter rates was -90% (quartiles -31% to -100%; n = 24; Wilcoxon matched-pairs test: P < 0.003). Encounter rate differences between pastoral and agricultural land were also significant; 10 out of 14 species were less abundant in the latter, with a median difference of -52% (quartiles -2% to -83%; n = 14; Wilcoxon matched-pairs test: P = 0.025) (Fig. 1).

When the same comparisons were made with unmodelled data, median differences in encounter rates were broadly similar to those obtained from modelled data: a median of -48% between protected savanna and pastoral land, (quartiles +16% to -74%; n = 23 species; Wilcoxon matched-pairs test: P = 0.041); -88% between protected savanna and agricultural land (quartiles -45% to -98%; n = 24; Wilcoxon matched-pairs test: P < 0.001); and -41% between pastoral and agricultural land (quartiles -12% to -70%; n = 14; Wilcoxon matched-pairs test: P = 0.013) (Fig. 1).

In separate models, encounter rate differences for the same species in savanna and pastoral land were correlated with body mass and threat status. Heavier species and those of conservation concern showed a greater drop in abundance on pastoral land than lighter species and those of least concern. The first of these models (incorporating body mass) provided the better fit (Table 1,
Fig. 2). Similarly, encounter rate differences in savanna and agricultural land were significantly
correlated with diet, body mass and threat status, with the former model (incorporating diet)
providing the best fit (Table 1, Fig. 2). Species specialising in predating small mammals or reptiles
were significantly more abundant in agricultural land than in savanna, compared with generalist
species (Table 1). Body mass, diet, migratory- and threat status had no significant influence on
encounter rate disparities between pastoral and agricultural land.

3.2 Body mass in relation to land use

The mean body mass of all raptor individuals encountered during transect-surveys varied more
widely in protected savanna than in pastoral or agricultural land, the two farmland types
supporting a much more homogenous raptor community, with regards to size (Fig. 3). Predicted
average body mass values for birds seen from transects through pastoral land (mean = 995±25.6
g(SE); n = 47 transect-surveys) and agricultural land (mean = 856±18.1 g; n = 42) were 43% and
51% lower than those seen in protected savanna (mean = 1,740±63.0 g; n = 131). Since vultures
are heavier than most other raptors, and were more abundant in protected savanna, we re-
examined the relationship after excluding vulture species from the model. The pattern observed
was broadly similar, however, body mass averaging 933 g (±27.6 g; n = 47 transect-surveys) in
pastoral, 824 g (±16.6 g; n = 42) in agricultural land and 1,332 g (±37.0 g (SE); n = 130) in
protected savanna. Results from unmodelled data were similar with regards to body mass
variation in relation to land use (Table A5).

Disparities in encounter rates between protected savanna and both pastoral and agricultural land
were thus linked to body mass. To test this further, we examined encounter rate differences for
small species (<1 kg) and large species (≥1 kg) within the three pairwise land use comparisons.
Small species were more abundant (median difference: +44%; n = 10) and large species
significantly less abundant in pastoral land than in protected savanna (median: -76%; n = 13;
Kolmogorov-Smirnov test: D = 0.615; P < 0.03). Both size classes were less abundant in agricultural
land than in protected savanna, but to differing degrees. The median disparity for small species (-30%; n = 12) was less pronounced than that for large species (-97%; n =12; Kolmogorov-Smirnov
test: D = 0.667; P < 0.01). Body mass effects on encounter rate differences in pastoral and
agricultural land were not significant (small species: -63%; large species: -40%).

In a linear mixed effects model restricted to large (≥1 kg) species, the disparity between encounter
rates in protected savanna and pastoral land increased significantly in relation to body mass
(disparity = -0.547*log(mass) + 3.712; n = 13 species; P<0.02). This indicates that the disparity
widened by a further 18 percentage points for each 1 kg increase in body mass.

3.3 Threat status

Nine of the species examined were of global conservation concern, being listed as Critically
Endangered (four species), Endangered (two), Vulnerable (one) or near-threatened (two species)
(BirdLife International 2018). Species of global conservation concern were heavier on average
(4,075 g; n = 9) than those of least concern (976 g; n = 21; Kolmogorov-Smirnov test: D = 0.794; P <
0.001). Since heavier species were significantly less abundant in farmland than in protected
savanna, similar disparities were evident with respect to threat status. Species of conservation
concern showed a significantly greater drop in encounter rates between protected savanna and
pastoral land (median difference: -87%; n = 5), than those of least concern (median difference: -5%
; n = 18 species; Kolmogorov-Smirnov test: D = 0.689; P = 0.049). Similarly, encounter rate
differences between protected savanna and agricultural land were much greater for species of
conservation concern (median difference: -100%; n = 8), than for those of least concern (median
difference: -42%; n = 16 species; Kolmogorov-Smirnov test: D = 0.750; P = 0.005). Only one species
of conservation concern was likely to have benefited from farmland conversion; Hooded Vultures
were recorded 58% more frequently in agricultural land than in pastoral land. Encounter rates for
this species in pastoral and agricultural land were both higher than in protected savanna, however pairwise comparisons were confounded by differences in the species’ detectability in the latter.

3.4 Species richness

We recorded 48, 42 and 31 diurnal raptor species in protected savanna, pastoral and agricultural land, respectively, partly reflecting differences in the cumulative distances surveyed in these land use types (Fig. 4A). Over the first 100 km surveyed, the number of species encountered had already begun to diverge, being 13.6 species (by interpolation) in savanna, 9.4 in pastoral land and 6.1 in agricultural land. By 2,000 km, disparities in species numbers were proportionally less pronounced: 45 and 38 species in savanna and pastoral land, 27 species in agricultural land. In protected savanna, species number levelled off after a cumulative survey distance of c. 3,500 km, but showed no indication of doing so within the (shorter) distances surveyed in pastoral and agricultural land (Fig. 4A).

A linear mixed-effects model was used to control for the effects of survey- and habitat variables, and for the repeated sampling of transects (Table A 3: Model 4). This confirmed that the number of species encountered on each transect varied in relation to land use and length, yielding predicted totals of 13.2 species in protected savanna, 10.6 in pastoral land and 6.7 in agricultural land, on transects of 100 km (Fig. 4B).

4. Discussion

We show that raptor encounter rates were 41% lower in pastoral land and 90% lower in agricultural land than in protected savanna. In addition, encounter rates in agricultural land were 52% lower than in pastoral land, despite the latter being already depleted, mainly through the loss of large, scavenging species. This disparity is of particular relevance, since the 64 million ha expansion in agricultural land required to meet growing food demands by 2050 (Bruinsma 2009) is likely to be achieved mainly through the conversion of land already supporting pastoralism to some degree (Lambin & Meyfroidt 2011). Our findings suggest that such areas are likely to experience a median decline in raptor abundance of the order of 50% if converted to agriculture. In areas still largely comprising intact savanna, raptor abundance is likely to decline by a median of c. 90%, or higher in the case of large eagles and vultures.

Similar abundance patterns have been observed elsewhere in Africa. In West and southern Africa the relationship between raptor abundance and land use is influenced both by body size and migratory status; large, resident species are more sensitive to land use change than small Afrotropical or Palearctic migrants (Herremans & Herremans-Tonnoeyr 2000, Thiollay 2006c, Anadón et al. 2010, Buij et al. 2013). It has been suggested that non-breeding migrants are better able to tolerate the disturbance associated with farming activities than resident species, which tend to remain on their territories year-round, and hence avoid areas subject to disturbance when they are breeding. Furthermore, larger species are more likely to suffer from hunting pressure, through direct persecution (for bushmeat) and through the loss of their prey base (Thiollay 2006c) or of large trees in which to nest. Since large species tend to require larger territories, they are also less likely to persist in small fragments of suitable habitat. Our results were broadly consistent with these findings, in showing a link between abundance disparities, diet and body mass.

A more direct analysis of the effects of land conversion has been made in the Serengeti ecosystem, Tanzania, where Sinclair et al. (2002) compared bird species abundances in protected savanna with those in adjacent areas converted from savanna to cultivated land in the 1950s. Some 50 years later, insectivores and granivores/frugivores were 77% and 60% less common in the farmland plot than in the adjacent protected savanna. Furthermore, while the study recorded 104
individuals of 15 raptor species in protected savanna, only four individuals of three raptor species were recorded in the neighbouring farmland.

These deficits are broadly similar to those reported here, and consistent with findings reported by Child et al. (2009) in South Africa, in suggesting that African raptor species are particularly sensitive to farmland conversion. Child et al. (2009) showed that among nine functional bird groups examined, scavengers and raptors most often suffered a decrease in richness within agriculturally dominated landscapes.

An underlying assumption of the current study is that raptor populations within Uganda’s four savanna national parks represent a baseline from which farmland communities have departed. Survey transects within these PAs overlapped extensively with those in farmland, in terms of altitude, and received a similar level of rainfall to those in pastoral land (1,019 vs 950 mm). Within agricultural areas, however, mean annual rainfall was slightly higher (1,178 mm), and the land perhaps more likely to have once supported a mosaic of savanna and forest (Langdale-Brown et al. 1964). In addition, the public roads surveyed lay mainly in the southern half of the country (Fig. 1A), and hence might not have accurately reflected raptor abundances further north, where there are larger, continuous expanses of pastoral land.

Disparities between encounter rates in savanna and farmland could have been magnified by the greater disturbance effects associated with public roads in farmland areas. Species deterred by traffic disturbance, housing and the higher human population densities associated with public roads may have been more abundant at greater distances from these roads. That is, our approach may have under-estimated species abundances in farmland, where road-related disturbance levels are likely to have been higher than in protected savanna, where traffic volumes and human numbers are low.

Our paired land use comparisons were restricted to species whose detectability did not differ significantly between the two land use types under comparison, and were made using values predicted from GLMMs, which controlled for the effects of potentially confounding variables, and for repeated sampling of transects. For heavier species and those of conservation concern, encounter-rate disparities between protected savanna and each farmland type were significantly more pronounced than among lighter species and those of least concern. Furthermore, surveys within protected savanna yielded more raptor species (over a given distance; Fig. 4), showing a wider variation in body mass (Fig. 3). The much greater uniformity in body mass evident in pastoral and agricultural land only partly reflected the near-absence of vulture species from these landscapes.

4.1 Conservation management

While African farming systems typically involve simpler, non-mechanised methods and fewer chemical treatments than in Europe and North America, their impacts on bird species adapted to savanna or wooded habitats can be profound (Sinclair et al. 2002, Child et al. 2009, Hulme et al. 2013, Renwick et al. 2014). Uganda is unusual within Africa, in that much of its land has already been converted to crop production, the impacts of which have recently become the focus of agri-environmental research (Hulme et al. 2013, Renwick et al. 2014). As in western countries, mitigation efforts are likely to follow either of two contrasting approaches: land sharing, in which low-yield, ‘wildlife-friendly’ farming is promoted, at the expense of semi-natural land; and land sparing, in which farmers strive for higher yields, while leaving aside larger fragments of semi-natural land (Hulme et al. 2013). Theoretically, land sparing should ensure that more of the original savanna is retained in perpetuity, affording a refuge for species poorly adapted to synanthropic conditions, and a benchmark against which to gauge the effects of human interventions elsewhere (Sinclair et al. 2002).
In this study, raptor abundance and species richness in agricultural land were such that typical land sharing measures are unlikely to prove effective in retaining or re-establishing viable populations, except in the case of synanthropic species. Thus, on land deemed suitable for farmland conversion, including large tracts of South Sudan, DRC, Tanzania and Mozambique (Lambin & Meyfroidt 2011), conservation efforts should focus instead on identifying and safeguarding the largest remaining expanses of unprotected, relatively intact savanna. Here, and within existing protected areas, efforts should focus on retaining intact raptor communities. In Uganda, such efforts would include the following. First, exclude or minimise anthropogenic disturbance of protected areas (e.g. pollution from an ongoing oil exploration programme in and around Murchison Falls NP). Second, allow pastoral areas bordering PAs to revert to savanna, particularly where they might form a bridge or corridor between PAs supporting globally threatened resident species. These might take the form of community-run conservancies or private game reserves, which have proved successful in boosting game populations elsewhere in East Africa and in southern Africa. Third, factors contributing to the observed disparities in raptor abundance among the three land use types examined here should be identified and addressed. Together, such initiatives could help to counteract the biological impoverishment associated with farmland expansion, and ensure the survival of intact raptor communities.

5. Acknowledgements

We thank Uganda Wildlife Authority for granting us permission to make road counts in protected areas, and for providing their most experienced rangers to assist with the survey. Several volunteers from NatureUganda acted as recorders. Our thanks go to Taban Bruhan, Judith Mirembe, Lydia Tushabe and Lilian Twanza. Roger Skeen also kindly provided count data for Kidepo Valley National Park. Murn Campbell and Darcy Ogada made valuable comments on an early version of the manuscript. We also thank Greame Cumming, Johannes Kamp and two anonymous reviewers for their very helpful comments. We are especially grateful to Will Cresswell for providing guidance on modelling in R. The cost of fieldwork was generously covered by The Peregrine Fund (USA) and the Royal Society for the Protection of Birds (UK).

6. References

Anadón, J.D., Sánchez-Zapata, J.A., Carrete, M., Donázar, J.A., Hiraldo, F., 2010. Large-scale human effects on an arid African raptor community. Animal Conservation 13, 495–504.

Balmford, A., Green, R., Phalan, B., 2012. What conservationists need to know about farming. Proc. R. Soc. B 279, 2714–2724.

Bamford, A.J., Monadjem, A., Hardy, I.C.W., 2009. Nesting habitat preference of the African white-backed vulture Gyps africanus and the effects of anthropogenic disturbance. Ibis 151, 51–62.

BirdLife International, 2018. IUCN Red List for birds. Downloaded from http://www.birdlife.org on 31/01/2018

Bolker, B., R Development Core Team, 2016. bbmle: tools for general maximum likelihood estimation. R package version 1.0.18. https://CRAN.R-project.org/package=bbmle.

Borello, W.D., Borello, R.M., 2002. The breeding status and colony dynamics of Cape Vulture Gyps coprotheres in Botswana. Bird Conserv. Int. 12, 79-97.

Brink, A.B., Eva, H.D., 2009. Monitoring 25 years of land cover change dynamics in Africa: a sample based remote sensing approach. Applied Geography 29, 501-512

Brooks, M.E., Kristensen, K., van Benthem, K.J., Magnusson, A., Berg, C.W., Nielsen, A., Skaug, H.J., Maechler, M., Bolker, B.M. (2017). glmmTMB balances speed and flexibility among packages for zero-inflated Generalized Linear Mixed Modeling. The R Journal 9(2): 378–400.
Hulme, M.F., Vickery, J.A, Green, R.E, Phalan, B., Chamberlain, D.E., Pomeroy, D.E., Nalwanga, D., Mushabe, D., Katebaka, R., Bolwig, S., Atkinson, P.W. 2013 Conserving the Birds of Uganda’s Banana–Coffee Arc: Land Sparing and Land Sharing Compared. PLoS ONE 8(2): e54597. doi:10.1371/journal.pone.0054597

Jenkins, A.R., Smallie, J.J., Diamond, M. 2010. Avian collisions with power lines: a global review of causes and mitigation with a South African perspective. Bird Conserv. Int. 20, 263–278

Jung, M., Hill, S.L.L., Platts, P.J., Marchant, R., Siebert, S., Fournier, A., Munyekenye, F.B., Purvis, A., Burgess, N.D., Newbold, T., 2017. Local factors mediate the response of biodiversity to land use on two African mountains. Anim. Conserv. 20, 370–381. doi:10.1111/acv.12327

Kibuule, M., Pomeroy, D., 2015. Avian mortality rates on a power line near Kampala, Uganda. Scopus 34, 52–55

Lambin, E.F., Meyfroidt, P., 2011. Global land use change, economic globalization, and the looming land scarcity. PNAS 108(9): 3465–3472

Langdale-Brown, I., Osmaston, H.A., Wilson, J.G., 1964. The Vegetation of Uganda and its bearing on land-use. Government of Uganda, Entebbe, Uganda

Linden, A, Mantyniemi, S., 2011. Using the negative binomial distribution to model overdispersion in ecological count data. Ecology 92(7), 1414–1421.

Markandy, A., Taylor, T., Longo, A., Murty, M.N., Murty, S., Dhavala, K., 2008. Counting the cost of vulture decline – an appraisal of the human health and other benefits of vultures in India. Ecological Economics 67, 194–204.

McKean, S., Mander, M., Diederichs, N., Ntuli, L., Mavundla, K., Williams, V., Wakelin, J, 2013. The impact of traditional use on vultures in South Africa. Vulture News, 65, 15–36

Monadjem, A., Garcelon, D.K., 2005. Nesting distribution of vultures in relation to land use in Swaziland. Biodiversity and Conservation 14, 2079–2093

Monadjem, A., Kane, A., Botha, A., Kelly, C., Murn, C., 2018. Spatially explicit poisoning risk affects survival rates of an obligate scavenger. Scientific Reports 8: 4364 DOI:10.1038/s41598-018-22632-y

Nakakaawa, C.A., Vedeld, P.O., Aune, J.B., 2011. Spatial and temporal land use and carbon stock changes in Uganda: implications for a future REDD strategy. Mitig Adapt Strateg Glob Change 16, 25–62

Newbold, T., Boakes, E.H., Hill, S.L.L., Harfoot, M.B.J., Collen, B., 2017. The present and future effects of land use on ecological assemblages in tropical grasslands and savannas in Africa. Oikos doi: 10.1111/oik.04338

Ogada, D.L. 2014. The power of poison: pesticide poisoning of Africa’s wildlife. Annals of the New York Academy of Sciences, 1322, 1–20.

Ogada, D.L., Torchin, M.E., Kinnaird, M.F. & Ezenwa, V.O., 2012 Effects of vulture declines on facultative scavengers and potential implications for mammalian disease transmission. Conservation Biology, 26: 453–460.

Ogada, D., Shaw, P., Beyers, R.L., Buij, R., Murn, C., Thiollay, J.M., Beale, C.M., Holdo, R.M., Pomeroy, D., Baker, N., Krüger, S.C., Botha, A., Virani, M.Z., Monadjem, A., Sinclair, A.R.E., 2015. Another Continental Vulture Crisis: Africa’s Vultures Collapsing toward Extinction. Conservation Letters 9, 89-97. DOI: 10.1111/conl.12182

Ogada, D., Botha, A., Shaw, P., 2016. Ivory poachers and poison; drivers of Africa’s declining vulture populations. Oryx 50(4), 593–596 DOI: https://doi.org/10.1017/S0030605315001209

Otiengo, P.O., Lalah, J.O., Virani, M., Jondiko, I.O., Schramm, K.W., 2010. Carbofuran and its toxic metabolites provide forensic evidence for furadan exposure in vultures (Gyps africanus) in Kenya. Bulletin of Environmental Contamination and Toxicology, 84, 536–544.

Papworth, S.K., Rist, J., Coad, L., Milner-Gulland, E.J., 2009. Evidence for shifting baseline syndrome in conservation. Conservation Letters 2, 93–100.

Pomeroy, D., Shaw, P., Ogada, D.L., Virani, M.Z. 2014. Vulture populations in Uganda: using road survey data to measure both densities and encounter rates within protected and unprotected areas. Bird Conservation International 25(4): 399-414. DOI: 10.1017/S095927091400029X

Pomeroy, D., Kibuule, M., Nalwanga, D., Kaphu, G., Shaw, P., 2019. Densities and population sizes of raptors in Uganda’s conservation areas. Ostrich. DOI: 10.2989/00306525.2018.1508083
Renwick, A.R., Vickery, J.A., Potts, S.G., Bolwig, S., Nalwanga, D., Pomeroy, D.E., Mushabe, D., Atkinsona, P.W., 2014. Achieving production and conservation simultaneously in tropical agricultural landscapes. Agriculture, Ecosystems and Environment 192, 130–134.

Ripple, W.J. et al., 2014. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484. (doi:10.1126/science.1241484)

Rushworth, I., Krüger, S. 2014 Wind farms threaten southern Africa’s cliff-nesting vultures. Ostrich 85(1): 13-23. DOI: 10.2989/00306525.2014.913211

Sánchez-Zapata, J.A., Carrete, M., Gravilov, A., Sklyarenko, S., Ceballos, O., Donázar, J.A., Hiraldo, F., 2003. Land use changes and raptor conservation in steppe habitats of Eastern Kazakhstan. Biol. Conserv. 111, 71–77.

Sinclair, A.R.E., Mduma, S.A.R., Arcese, P., 2002. Protected areas as biodiversity benchmarks for human impact: agriculture and the Serengeti avifauna. Proc. Roy. Soc. B 269, 2401–2405.

Sudarshan, M.K., Madhusudana, S.N., Mahendra, B.J., Rao, N.S.N, Ashwath Narayana, D.H., Abdul Rahman, S., Meslin, F.-X., Lobo, D., Ravikumar, K., Gangaboraiah, 2007. Assessing the burden of human rabies in India: results of a national multi-center epidemiological survey. International Journal of Infectious Disease 11: 29–35.

Thiollay, J.M., 2006a. Severe decline of large birds in the Northern Sahel of West Africa: a long-term assessment. Bird Conservation International, 16, 353–365.

Thiollay, J.M., 2006b. The decline of raptors in West Africa: long-term assessment and the role of protected areas. Ibis 148, 240-254.

Thiollay, J.M., 2006c. Large bird declines with increasing human pressure in savanna woodland (Burkina Faso). Biodiversity & Conservation 15, 2085–2108.

Virani, M.Z., Kendall, C., Njoroge, P., Thomsett, S., 2011. Major declines in the abundance of vultures and other scavenging raptors in and around the Masai Mara ecosystem, Kenya. Biol. Conserv., 144, 746-752.

Williams, V.L., Cunningham, A.B., Kemp, A.C., Bruyns, R.K., 2014 Risks to Birds Traded for African Traditional Medicine: A Quantitative Assessment. PLoS ONE 9(8): e105397. doi:10.1371/journal.pone.0105397

World Bank, 2017a. https://data.worldbank.org/indicator/SP.POP.GROW?name_desc=false Downloaded 05/09/2017

World Bank, 2017b. https://data.worldbank.org/region/sub-saharan-africa. Downloaded 18/12/2017
Table 1
Variables associated with differences in raptor encounter rates within pairs of land use types. A negative effect, e.g. with respect to body mass, for ‘Savanna vs Pastoral’, indicates that the mean body mass of species detected on pastoral transects was lower than on protected savanna transects. Since sample sizes were low, potential explanatory variables (body mass, migratory status, threat status and diet) were examined in separate models. Parameters from models showing statistically significant effects are shown below, the best fitting model being that with the lowest AIC value (ΔAIC = 0.00). Differences in species encounter rates on pastoral vs agricultural transects showed no significant relationship with the four variables examined.

Model	n	ΔAIC	Term	LRT	P	Condition	Effect	SE	P			
Savanna vs Pastoral:			Intercept									
full dataset	23	0.00	Log body mass	15.466	<0.001	-0.591	0.132	<0.001				
	23	8.15	Intercept			Threat status	4.527	<0.040	Cons. concern¹	-0.894	0.418	0.643
Savanna vs Pastoral: excluding vultures²	21	0.00	Log body mass	12.036	<0.001	-0.614	0.160	0.002				
Savanna vs Agricultural:			Intercept			Diet	-0.528	0.333	0.136			
full dataset	24	0.00	Generalist	11.922	0.018	Fish	0.442	0.953	0.650			
			Invertebrates	-0.462		Reptiles/mammals	1.358	0.518	0.021			
			Carrion	-0.458			0.609	0.465				
	24	2.68	Log body mass	8.544	<0.004	-0.525	0.155	0.003				
	24	5.70	Intercept			Threat status	4.197	<0.050	Cons. concern¹	-0.493	0.241	0.070
Savanna vs Agricultural: excluding vultures	20	0.00	Log body mass	8.583	0.035	Generalist	-0.528	0.362	0.171			
			Fish	-0.442		Invertebrates	-0.462	1.036	0.678			
			Reptiles/mammals	1.358			0.563	0.034				
	20	2.88	Log body mass	6.442	<0.020	-0.620	0.212	0.010				

¹ Conservation concern: species classed as globally threatened or near-threatened
² Excluding scavenging vulture species
Figure legends

Fig. 1

Differences in linear encounter rates (individuals 100 km$^{-1}$ of transect) in relation to land use. Each column shows the median percentage difference in encounter rates for raptor species present in two land use types. Filled columns show estimates derived from GLMMs; unfilled columns show estimates from unmodelled data. Thus, modelled encounter rates for 23 species were 41% lower in pastoral land than in protected savanna. Error bars show upper and lower quartiles. Figures above the columns show the number of species included in each pair-wise comparison. Species showing significant differences in their detection patterns within the land use types in question were excluded from the comparison (see text)

Fig. 2

Pair-wise comparisons between the number of individuals encountered 100 km$^{-1}$ in protected savanna versus: (A) pastoral land and (B) agricultural land, in relation to body mass. Each point represents one species. A negative percentage value when comparing protected savanna with e.g., pastoral land, indicates that correspondingly fewer individuals were seen in the latter. Globally threatened or near-threatened species (black symbols) tended to be heavier and showed a greater drop in abundance than most species of least concern (grey symbols). Diamond symbols indicate scavenging vultures; circles indicate other raptor species

Fig. 3

Variation in the mean body mass of raptor species encountered during transect-surveys in: A. protected savanna ($n = 131$ transect-surveys); B. pastoral land ($n = 47$); and C. agricultural land ($n = 42$). Each column represents the number of transect-surveys on which the mean body mass recorded fell within a given 250 g interval. Since the number of transect-surveys varied between land use types, frequencies have been scaled to a value of 1.0. The mean body mass of raptors encountered within protected savanna was higher and much more variable than in pastoral or agricultural land, illustrating the greater size uniformity within farmland habitats

Fig. 4

The number of raptor species encountered in relation to distance surveyed within protected savanna (solid line), pastoral (dashed line) and agricultural land (dotted line). A). The cumulative number of species encountered in relation to the cumulative distance travelled during successive transect-surveys. B). The relationship between transect length and the number of raptor species encountered. Points indicate the mean number of species predicted from multiple surveys of transects within protected savanna (●), pastoral (●) and agricultural land (O). Error bars show ±1 SE. Fitted lines are the product of a linear mixed effects model controlling for the effects of other variables, and for repeated sampling of transects (see text)
Fig. 1

$\frac{1}{n} = \frac{1}{2}^{14}$

Difference in encounter rates

	Savanna vs Pastoral	Pastoral vs Agricultural	Savanna vs Agricultural			
n	23	14	24			
Percentages	-41%	-48%	-52%	-41%	-90%	-88%
Figure A1 Routes surveyed during annual road counts, 2008–2015. Black lines indicate public roads surveyed through farmland, and unpaved tracks surveyed within four National Parks. Reproduced from Ostrich (2019) 90(1): 25-36 with permission © NISC (Pty) Ltd
Table A1 Diurnal raptor species recorded within 500 m of driven line transects in Uganda during 2008–2015. Species whose encounter rates were included in pair-wise comparisons between land use types, e.g. Savanna versus Pastoral land, are indicated.

Species	Threat status	Mass (g)²	Diet	Migratory status	Savanna vs Pastoral	Pastoral vs Agri.	Savanna vs Agri.
African hawk-eagle	lc	1,425	G	AS	Y	Y	Y
steppe eagle	EN	3,175	G	P	Y	Y	Y
tawny eagle	lc	2,350	G	AS	Y	Y	Y
Verreaux's eagle	lc	4,012	MR	AS			Y
black-chested snake-eagle	lc	1,719	MR	AS	Y	Y	Y
brown snake-eagle	lc	2,000	MR	AS	Y	Y	Y
short-toed snake-eagle	lc	1,700	MR	P			
western banded snake-eagle	lc	1,126	MR	AS	Y		
lesser spotted eagle	lc	1,475	G	P			
African fish-eagle	ic	2,821	F	AS	Y	Y	
booted eagle	ic	842	G	P			
Wahlberg's eagle	ic	838	G	AM	Y	Y	Y
long-crested eagle	ic	1,291	MR	AS	Y	Y	
martial eagle	VU	4,605	G	AS	Y	Y	
crowned eagle	NT	3,674	MR	AS			
bateleur	NT	2,385	G	AS	Y	Y	Y
african hobby	ic	178	Br	AS			
common kestrel	ic	214	G	ASP	Y		
fox kestrel	ic	275	G	AS			
grey kestrel	ic	239	G	AS	Y	Y	Y
lanner falcon	ic	658	Br	AS			
lesser kestrel	ic	152	I	P			
red-necked falcon	ic	203	Br	AS			
african marsh-harrier	ic	486	G	AS			
Montagu's harrier	ic	308	G	P	Y		
pallid harrier	ic	401	G	P			Y
western marsh-harrier	ic	659	G	P			
African goshawk	ic	282	G	AS			
black sparrowhawk	ic	638	Br	AS			
little sparrowhawk	ic	83	Br	AS			
shikra	ic	172	MR	AS	Y	Y	Y
grasshopper buzzard	ic	340	I	AM	Y	Y	
augur buzzard	ic	1,110	G	AS			
Eurasian buzzard	ic	863	MR	P	Y		Y
red-necked buzzard	ic	654	G	AM			
lizard buzzard	ic	288	MR	AS	Y		Y
bat hawk	ic	625	Bt	AS			
dark chanting-goshawk	ic	759	G	AS	Y		Y
eastern chanting-goshawk	ic	643	G	AS	Y		Y
pale chanting-goshawk	ic	811	G	AS	Y		Y
Species	Threat status	Mass (g)²	Diet³	Migratory status⁴	Savanna vs Pastoral⁵	Pastoral vs Agri.	Savanna vs Agri.
--------------------------------	---------------	-----------	-------	-------------------	----------------------	-------------------	------------------
gabar goshawk Micronis gabar	lc	168	Br	AS			
European honey-buzzard Pernis apivorus	lc	698	I	P			
African harrier-hawk Polyboroides typus	lc	653	G	AS	Y	Y	Y
black-winged kite Elanus caeruleus	lc	259	MR	AS	Y	Y	
black kite Milvus migrans	lc	847	S	AMP			
osprey Pandion haliaetus	lc	1,510	F	P			
palm-nut vulture Gypohierax angolensis	lc	1,470	V	AS	Y		
Rüppell's vulture Gyps rueppelli	CR	7,570	S	AS			Y
white-backed vulture Gyps africanus	CR	5,450	S	AS	Y		Y
hooded vulture Necrosyrtes monachus	CR	2,050	S	AS			Y
Egyptian vulture Neophron percnopterus	EN	2,000	S	ASP			
lappet-faced vulture Torgos tracheliotus	EN	6,780	S	AS	Y		Y
white-headed vulture Trigonoceps occipitalis	CR	4,260	S	AS			Y

¹ lc = least concern; NT = near-threatened; VU = Vulnerable; EN = Endangered; CR = Critically endangered. BirdLife International (2018)
² Median of values given in del Hoyo et al. (2017).
³ Extracted from Brown et al. (1997), del Hoyo et al. (2017). S = scavenger; G = generalist, Br = bird specialist; Bt = bats; F = fish; I = invertebrates; MR= mammals/reptiles/snakes; V = vegetarian (fruit)
⁴ Migratory status: AM = Afrotropical migrant; AS = Afrotropical, sedentary; P = Palearctic migrant; ASP = Afrotropical, sedentary, but Palearctic migrants also occur; AMP = Afrotropical migrant, Palearctic migrants also occur. Adapted from Buij et al. (2013).
⁵ Species whose encounter rates were included in a pairwise comparison between Savanna and Pastoral land, i.e. their detection patterns, with respect to distance from the transect, did not differ significantly between these two land use types.
Table A2
Transect details. A. Combined distance and number of transects surveyed in each year and land use type. Figures include repeat surveys of some transects, i.e. ‘out and back’. B. The number of surveys made of each transect in each year of study. Adapted from *Ostrich* (2019) 90(1): 25-36 with permission © NISC (Pty) Ltd

Year	Agricultural	Pastoral	Savanna	Total
	Kms % Effort	Kms % Effort	Kms % Effort	Kms % Effort
2008	110 12%	9 1%	784 87%	22 903
2009	22 7%	0 0%	309 93%	9 331
2010	568 29%	463 24%	896 46%	22 1,927
2011	519 32%	394 24%	706 44%	19 1,619
2012	556 32%	394 23%	776 45%	21 1,726
2013	507 30%	394 23%	779 46%	21 1,680
2014	482 39%	363 29%	405 32%	16 1,250
2015	595 34%	394 22%	763 44%	21 1,752
Total:	3,359 30%	2,411 22%	5,418 48%	11,188

1 The distance surveyed within land use type, expressed as a percentage of the total distance surveyed in that year.
Land use	Transect identifier	2008	2009	2010	2011	2012	2013	2014	2015
Agricultural	2	1	1	2	1	1	1	1	1
	7	1	1	1	1	1	1	1	1
	24	2	2	2	2	2	2	2	2
	38	1	1	1	1	1	1	1	1
	39	1	1	1	1	1	1	1	1
	41	1	1	1	1	1	1	1	1
	44	1	1	1	1	1	1	1	1
	68	1	1	1	1	1	1	1	1
Pastoral	1	2	1	1	1	1	1	1	1
	12	1	1	1	1	1	1	1	1
	17	1	1	1	1	1	1	1	1
	21	2	2	2	2	2	2	2	2
	28	2	2	2	2	2	2	2	2
	32	2	2	2	2	2	1	1	1
	66	1	1	1	1	1	1	1	1
Savanna	3	1	1	1	1	1	1	1	1
	8	1	1	1	1	1	1	1	1
	9	1	1	1	1	1	1	1	1
	13	1	1	1	2	2	2	2	2
	18	2	1	1	1	2	2	2	2
	22	2	1	1	1	1	1	1	1
	25	2	1	1	1	1	1	1	1
	29	2	2	2	2	2	2	2	2
	47	1	1	1	1	1	1	1	1
	49	1	1	1	1	1	1	1	1
	50	1	1	1	1	1	1	1	1
	51	1	1	1	1	1	1	1	1
	52	1	1	1	1	1	1	1	1
	53	1	1	1	1	1	1	1	1
	54	1	1	1	1	1	1	1	1
	56	1	1	1	1	1	1	1	1
	58	1	1	1	1	1	1	1	1
	60	2	1	1	1	1	1	1	1
	61	2	1	2	1	1	1	1	1

732
Table A3 Models used to examine raptor encounter rates in relation to land use, body mass, threat- and migratory status

Model	Dependent variable	Fixed effects	Offsets	Interaction terms	Random factors	Distributions	Sample sizes
1	Individuals encountered	Outside observers + Land use + Altitude + Rainfall + Tree cover	Transect length (log transformed)	None	Survey year + Transect identity	Zero-inflated and non-zero-inflated Poisson and Negative binomial (NB1, NB2)	226 transect-surveys, 35 transects, 8 years
2	Percentage difference in a species’ encounter rates in two land use types	One of the following in each model: Body mass (log transformed); Diet; Migratory status; Threat status	None	None	Genus	23 species (Savanna vs Pastoral land)	
3	Mean body mass (log transformed) of birds encountered	Transect length (log transformed) + Outside observers + Land use + Tree cover + Altitude + Rainfall	None	None	Survey year + Transect identity	24 species (Savanna vs Agricultural land)	
4	Raptor species number	Transect length (log transformed) + Outside observers + Land use + Tree cover + Altitude + Rainfall	None	Transect length* Land use	Survey year + Transect identity	226 transect-surveys, 35 transects, 8 years	

1 The number of individuals encountered on each transect-survey

2 The difference between the mean fitted encounter rate for a species in two land use types, expressed as a proportion of its encounter rate in protected savanna (in pairwise comparisons between savanna and either pastoral or agricultural land) or pastoral land (in pairwise comparisons between pastoral and agricultural land)

3 A natural log transformation of the mean body mass of individuals of all species encountered on a given transect survey

4 Six transect-surveys on which no raptors were seen have been excluded
Table A4 Unmodelled and modelled encounter rates (birds seen 100 km\(^{-1}\)) for 53 and 33 raptor species, respectively. Modelled encounter rates are the rates predicted from GLMMs, after controlling for the effects of variation in transect length, the presence of outside observers, land use, altitude, rainfall and tree cover, and the repeated sampling of the same transects and years. Differences in the sample sizes from which modelled and unmodelled estimates were drawn reflect missing values for some of the variables used in the models. Encounter rates were modelled only for species with at least 10 sightings.

Species	Unmodelled encounter rates	Modelled encounter rates										
	n\(^{1}\)	Savanna	Pastoral	Agricultural	n\(^{1}\)	Savanna	SE	Pastoral	SE	Agricultural	SE	
African hawk-eagle	Aquila spilogaster	29	0.30	0.33	0.15	22	0.28	0.024	0.28	0.019	0.03	0.004
steppe eagle	Aquila nipalensis	84	1.33	0.50	0.00	84	1.03	0.317	0.69	0.242	0.00	0.000
tawny eagle	Aquila rapax	163	2.49	0.83	0.24	159	3.49	0.345	1.17	0.258	0.16	0.039
Verreaux's eagle	Aquila verreauxii	1	0.02	0.00	0.00	1	-	-	-	-	-	-
black-chested snake-eagle	Circaetus pectoralis	42	0.63	0.21	0.09	39	0.68	0.037	0.16	0.050	0.09	0.032
brown snake-eagle	Circaetus cinereus	150	1.66	1.29	0.86	128	1.33	0.038	1.22	0.054	0.73	0.087
short-toed snake-eagle	Circaetus gallicus	22	0.33	0.04	0.09	17	-	-	-	-	-	-
western banded snake-eagle	Circaetus cinerascens	27	0.24	0.50	0.06	24	0.43	0.132	0.43	0.084	0.02	0.003
lesser spotted eagle	Clanga pomarina	8	0.13	0.04	0.00	8	-	-	-	-	-	-
African fish-eagle	Haliaeetus vocifer	142	2.49	0.04	0.18	135	3.12	0.451	0.00	0.000	0.08	0.014
booted eagle	Hieraaetus pennatus	12	0.17	0.04	0.06	12	0.21	0.064	0.04	0.017	0.08	0.058
Wahlberg's eagle	Hieraaetus wahlbergi	104	0.54	1.49	1.16	91	0.81	0.048	1.08	0.099	1.00	0.107
long-crested eagle	Lophaetus occipitalis	313	2.79	2.74	2.86	290	1.92	0.143	2.81	0.153	2.82	0.186
martial eagle	Polemaetus bellicosus	38	0.65	0.12	0.00	35	0.65	0.034	0.11	0.013	0.00	0.000
crowned eagle	Stephanoaetus coronatus	2	0.04	0.00	0.00	2	-	-	-	-	-	-
bateleur	Terathopius ecaudatus	458	7.66	1.37	0.30	444	8.73	0.218	1.12	0.035	0.35	0.012
african hobby	Falco cuvieri	7	0.02	0.04	0.15	7	-	-	-	-	-	-
common kestrel	Falco tinnunculus	30	0.28	0.29	0.24	25	0.18	0.013	0.34	0.036	0.22	0.028
fox kestrel	Falco alopecus	2	0.02	0.04	0.00	2	-	-	-	-	-	-

1. n: number of sightings for each species.
| Species | Unmodelled encounter rates | Modelled encounter rates | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| | \(n \) | Savanna | Pastoral | Agricultural | \(n \) | Savanna | SE | Pastoral | SE | Agricultural | SE |
| grey kestrel | 160 | 1.96 | 1.00 | 0.89 | 149 | 1.70 | 0.195 | 0.91 | 0.064 | 1.03 | 0.142 |
| lanner falcon | 6 | 0.00 | 0.25 | 0.00 | 6 | - | - | - | - | - | - |
| lesser kestrel | 10 | 0.09 | 0.21 | 0.00 | 10 | - | - | - | - | - | - |
| red-necked falcon | 22 | 0.37 | 0.08 | 0.00 | 20 | - | - | - | - | - | - |
| african marsh-harrier | 16 | 0.15 | 0.00 | 0.24 | 14 | 0.18 | 0.041 | 0.00 | 0.000 | 0.25 | 0.053 |
| Montagu's harrier | 54 | 0.63 | 0.75 | 0.06 | 50 | 0.39 | 0.053 | 0.85 | 0.137 | 0.11 | 0.018 |
| pallid harrier | 29 | 0.35 | 0.37 | 0.03 | 24 | 0.18 | 0.034 | 0.54 | 0.092 | 0.00 | 0.000 |
| western marsh-harrier | 38 | 0.44 | 0.25 | 0.24 | 33 | 0.39 | 0.038 | 0.23 | 0.021 | 0.26 | 0.031 |
| African goshawk | 9 | 0.11 | 0.04 | 0.06 | 9 | - | - | - | - | - | - |
| black sparrowhawk | 3 | 0.04 | 0.00 | 0.03 | 3 | - | - | - | - | - | - |
| little sparrowhawk | 5 | 0.09 | 0.00 | 0.00 | 5 | - | - | - | - | - | - |
| shikra | 64 | 0.35 | 0.87 | 0.71 | 57 | 0.30 | 0.013 | 0.93 | 0.088 | 0.72 | 0.052 |
| grasshopper buzzard | 883 | 15.76 | 0.71 | 0.36 | 872 | 21.85 | 2.486 | 1.20 | 0.225 | 0.34 | 0.025 |
| augur buzzard | 4 | 0.00 | 0.12 | 0.03 | 3 | - | - | - | - | - | - |
| Eurasian buzzard | 35 | 0.48 | 0.25 | 0.09 | 34 | 0.54 | 0.070 | 0.22 | 0.030 | 0.13 | 0.020 |
| red-necked buzzard | 1 | 0.02 | 0.00 | 0.00 | 1 | - | - | - | - | - | - |
| lizard buzzard | 98 | 0.52 | 1.00 | 1.37 | 88 | 0.57 | 0.052 | 0.88 | 0.101 | 1.59 | 0.301 |
| bat hawk | 1 | 0.02 | 0.00 | 0.00 | 1 | - | - | - | - | - | - |
| dark chanting-goshawk | 123 | 0.92 | 2.03 | 0.71 | 107 | 1.08 | 0.110 | 2.98 | 0.718 | 0.34 | 0.141 |
| eastern chanting-goshawk | 1 | 0.02 | 0.00 | 0.00 | 1 | - | - | - | - | - | - |
| pale chanting-goshawk | 2 | 0.00 | 0.04 | 0.03 | 2 | - | - | - | - | - | - |
| gabar goshawk | 9 | 0.07 | 0.08 | 0.09 | 9 | - | - | - | - | - | - |
| European honey-buzzard | 152 | 2.33 | 1.04 | 0.03 | 141 | 2.71 | 0.239 | 1.09 | 0.134 | 0.00 | 0.000 |
| African harrier-hawk | 56 | 0.65 | 0.33 | 0.39 | 55 | 0.69 | 0.032 | 0.29 | 0.017 | 0.50 | 0.021 |
| Species | Unmodelled encounter rates | Modelled encounter rates |
|-------------------------------|-----------------------------|--------------------------|
| | n^1 | Savanna | Pastoral | Agricultural | n^1 | Savanna | SE | Pastoral | SE | Agricultural | SE |
| black-winged kite | 126 | 0.50 | 2.53 | 1.13 | 111 | 0.31 | 0.053 | 2.88 | 0.533 | 1.07 | 0.223 |
| Elanus caeruleus | | | | | | | | | | | |
| black kite | 2253 | 8.80 | 21.82 | 37.21 | 2138 | 9.31 | 1.178 | 25.08 | 1.408 | 45.48 | 7.365 |
| Milvus migrans | | | | | | | | | | | |
| osprey | 17 | 0.28 | 0.04 | 0.03 | 16 | - | - | - | - | - | - |
| Pandion haliaetus | | | | | | | | | | | |
| palm-nut vulture | 86 | 1.40 | 0.00 | 0.30 | 84 | 0.77 | 0.083 | 0.00 | 0.000 | 0.49 | 0.070 |
| Gypohierax angolensis | | | | | | | | | | | |
| Rüppell's vulture | 101 | 1.72 | 0.29 | 0.03 | 92 | 1.49 | 0.173 | 0.00 | 0.000 | 0.12 | 0.012 |
| Gyps rueppelli | | | | | | | | | | | |
| white-backed vulture | 494 | 9.08 | 0.08 | 0.00 | 473 | 10.39 | 1.110 | 0.25 | 0.034 | 0.00 | 0.000 |
| Gyps africanus | | | | | | | | | | | |
| hooded vulture | 134 | 0.46 | 1.33 | 2.29 | 110 | 0.29 | 0.023 | 1.38 | 0.132 | 2.18 | 0.257 |
| Necrosyrtes monachus | | | | | | | | | | | |
| Egyptian vulture | 1 | 0.00 | 0.04 | 0.00 | 1 | - | - | - | - | - | - |
| Neophron percnopterus | | | | | | | | | | | |
| lappet-faced vulture | 48 | 0.89 | 0.00 | 0.00 | 45 | 0.83 | 0.088 | 0.00 | 0.000 | 0.00 | 0.000 |
| Torgos tracheliotos | | | | | | | | | | | |
| white-headed vulture | 33 | 0.48 | 0.29 | 0.00 | 24 | 0.24 | 0.018 | 0.80 | 0.090 | 0.00 | 0.000 |
| Trigonoceps occipitalis | | | | | | | | | | | |

1 Number of encounters recorded
Table A5 A. The mean body mass of all individuals of (53) raptor species encountered during transect-surveys through protected savanna, pastoral and agricultural land, calculated from unmodelled data. The mean body mass was calculated for each transect-survey, from the number of individuals seen per species, and the species’ median mass (Table A1; from del Hoyo et al. 2017). Mean body mass was much higher in savanna than in pastoral or agricultural land, and these differences remained when vulture species were excluded.

B. Pairwise comparisons of encounter rates for large (>1 kg) vs small species, in relation to land use, using unmodelled data. Each comparison shows the median difference in encounter rates between protected savanna and either pastoral or agricultural land. A negative value indicates that the encounter rate in savanna was higher. Large species showed a significantly greater drop in abundance than smaller species.

A.

Land use type	All species	Excluding vultures				
	Mean mass (g)	SE	n¹	Mean mass (g)	SE	n¹
Protected savanna	1,898	99.89	131	1,395	52.35	130
Pastoral land	1,033	53.29	47	956	46.10	47
Agricultural land	880	34.38	42	847	33.10	42

¹ The number of transect-surveys conducted in each land use type

B.

Comparison	Body mass	Median difference	n¹	Kolmogorov-Smirnov: D	P
Savanna vs Pastoral	Large²	-67%	13	0.692	0.009
	Small	+12%	10		
Savanna vs Agricultural	Large	-97%	12	0.583	0.034
	Small	-43%	12		

¹ The number of species compared
² ‘Large’ species: > 1 kg