Application of the LM-BP neural network approach for landslide risk assessments

Junnan Xiong1,3,*, Ming Sun2, Hao Zhang1, Weiming Cheng3, Yinghui Yang1, Mingyuan Sun1, Yifan Cao1 and Jiyan Wang1

1School of Civil Engineering and Architecture, Southwest Petroleum University, Chengdu, 610500, P.R. China
2Geodetic Third Team, National Administration of Surveying, Mapping and Geo-information of China, Chengdu, 610100, P.R. China
3State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, P.R. China

Correspondence to: Junnan Xiong (neu_xjn@163.com)

Running Title: Landslide risk zonation in pipeline areas
Abstract. Landslide disaster is one of the main risks involved with the operation of long-distance oil and gas pipelines. Because previously established disaster risk models are too subjective, this paper presents a quantitative model for regional risk assessment through an analysis of the laws of historical landslide disasters along oil and gas pipelines. Using the Guangyuan section of the Lanzhou-Chengdu-Chongqing (LCC) Long-Distance Products Oil Pipeline (82km) in China as a case study, we successively carried out two independent assessments: a hazard assessment and a vulnerability assessment. We used an entropy weight method to establish a system for the vulnerability assessment, whereas a Levenberg Marquardt-Back Propagation (LM-BP) neural network model was used to conduct the hazard assessment. The risk assessment was carried out on the basis of two assessments. The first, the system of the vulnerability assessment, considered the pipeline position and the angle between the pipe and the landslide (pipeline laying environmental factors). We also used an interpolation theory to generate the standard sample matrix of the LM-BP neural network. Accordingly, a landslide hazard risk zoning map was obtained based on hazard and vulnerability assessment. The results showed that about 70% of the slopes were in high-hazard areas with a comparatively high landslide possibility and that the southern section of the oil pipeline in the study area was in danger. These results can be used as a guide for preventing and reducing regional hazards, establishing safe routes for both existing and new pipelines and safely operating pipelines in the Guangyuan section and other segments of the LCC oil pipeline.

Keywords: pipeline, landslide, risk, vulnerability, hazard, neural network

1. Introduction

By the year 2020, the total mileage of long-distance oil and gas pipelines is expected to exceed 160,000 km in China. This represents a major upsurge in the mileage of multinational long-distance oil and gas pipelines (Huo, Wang, Cao, Wang, & Bureau, 2016). The rapid development of pipelines is associated with significant geological hazards, especially landslides, which increasingly threaten the safe operation of pipelines (Wang et al., 2012; Yun & Kang, 2014; Zheng, Zhang, Liu, & Wu, 2012). Landslide disasters cause great harm to infrastructure and human life. Moreover, the wide impact area of landslides restricts the economic development of landslide-prone areas (Ding, Heiser, Hübl, & Fuchs, 2016; Hong, Pradhan, Xu, & Bui, 2015). A devastating landslide can lead to casualties, property losses, environmental damage and long-term service disruptions caused by massive oil and gas leakages (G. Li, Zhang, Li, Ke, & Wu, 2016; Zheng et al., 2012). Generally, pipeline failure or destruction caused by landslides is much more deleterious than the landslides themselves, which makes it important to research the risk assessment of geological landslide hazards in pipeline areas (Inaudi & Glisic, 2006; Mansour, Morgenstern, & Martin, 2011).

Natural disaster risk comprises a combination of natural and social attributes (Atta-Ur-Rahman & Shaw, 2015). The United Nations Department of Humanitarian Affairs expresses natural disaster risk as a product of hazards and vulnerabilities (Rafiq & Blaschke, 2012; Sari, Innaqa, & Safirilah, 2017). In recent years, progress in geographic information systems (GIS) and remote sensing (RS) technologies have greatly enhanced our ability to evaluate the potential risks that landslides pose to pipelines (Akgun,
Kıncal, & Pradhan, 2012; B. Li & Gao, 2015; Sari et al., 2017). The disaster risk assessment model has been widely recognized and applied by experts and scholars all over the world. Landslide risk assessment can take the form of a qualitative (Wu, Tang, & Einstein, 1996), quantitative (Ho, Leroi, & Roberds, 2000) or semi-quantitative assessment (Yingchun Liu, Shi, Lu, Xiao, & Wu, 2015) according to actual demand. Quantitative methods and models that have been proposed for the assessment can be divided into methods of statistical analysis (Sari et al., 2017), mathematical models (Akgun et al., 2012) and machine learning (He & Fu, 2009). However, most of these methods are subjective, which could affect the accuracy and reasonableness of the evaluation (Fall, Azzam, & Noubactep, 2006; Sarkar & Gupta, 2005). This shortcoming can be overcome through the artificial neural network, especially the mature Back Propagation (BP) Neural Network that is widely used in function approximation and pattern recognition (Ke & Li, 2014; P. L. Li, Tian, & Li, 2013; Su & Deng, 2003). The evaluation index system generally includes disaster characteristics, disaster prevention and pipeline attributes (J. Li, 2010; Shuiping Li, 2008). The fault tree analysis, fuzzy comprehensive evaluation and the grey theory are used to evaluate the failure probability of the system through index weight and scoring (Shi, 2011; Ye, Jiang, Yao, Xia, & Zhao, 2013). In previous studies, pipeline vulnerability evaluation indexes only considered the pipeline itself, and the relationship between the pipeline and environment was rarely examined (Feng, Zhang, & Zhang, 2014; Shuiping Li, 2008; Yingchun Liu et al., 2015). In this paper, the interaction between landslide hazards and the pipeline itself was considered, which improved the quantitative degree of the evaluation.

Based on the theory of the LM-BP neural network, a standard sample matrix was developed using the interpolation theory after an analysis of the distribution characteristics of landslides that occurred in the study area. A regional landslide hazards assessment was completed. Considering the interaction between landslide disasters and the pipeline itself, the pipeline vulnerability evaluation in the landslide area was realized using the entropy weight method. This paper established a risk assessment model and methods for assessing landslide geological hazards of oil pipelines by comprehensively utilizing GIS and RS technology, which together improved the quantitative degree of the assessment.

2. Study Area

The study area was Guangyuan City in the Sichuan province, which was further restricted to the area from 105°15’ to 106°04’E and 32°03’ to 32°45’N, straddling 19 townships in five counties from south to north (Figure 1). The Lanzhou-Chengdu-Chongqing (LCC) Products Oil Pipeline is China's first long-distance pipeline. It begins in Lanzhou City and runs through the Shaanxi and Sichuan provinces (Hao & Liu, 2008). Our study area covered sloped areas of the range with 5 km on both sides of the Guangyuan section (82 km) of the oil pipeline. The pipeline within the K558-K642 mileages may be affected by the slope areas. The Guangyuan section, located in northern Sichuan, is a transitional zone from the basin to the mountain. It features a terrain of moderate and low mountains, crisscrossed networks of ravines and a strong fluvial incision. Altitudes in this area range from 328 m to 1505 m. The study area has a subtropical monsoon climate with four distinctive seasons and annual precipitation measuring about 900 mm to 1,000 mm. Moreover, two large unstable faults (the Central Fault of Longmen Mountain and Longmen Mountain's Piedmont Fault Zone) make the area geologically unstable and prone to frequent
geological hazards (Shiyuan Li et al., 2012). Guangyuan, through which the pipeline passes, has a high
incidence of landslides, some of which have happened 300 times in the Lizhou and Chaotian districts
(Zhang, Shi, Gan, & Liu, 2011). In this area, landslide geological hazards seriously threaten the safe
operation of the LCC oil pipeline.

3. Data Sources
Landslide hazard assessment, pipeline vulnerability assessment and geological hazard risk assessment of
the landslide pipeline were made successively. Digital elevation model (DEM) data with 30 m accuracy
was sourced from the Geospatial Data Cloud (http://www.gscloud.cn/). Precipitation data was
downloaded from the dataset of annual surface observation values in China between the years 1981 to
2010, as published by the China Meteorological Administration (http://data.cma.cn/). This data was
collected from 18 meteorological observatories near and within the study area and interpolated using the
kriging method (at a resolution of 30 m × 30 m). Geological maps and landslide data (historical landslides)
in the study area were obtained from the Sichuan province’s geological environmental monitoring station.
RS images (GF-1, multispectral 8 m, resolution 2 m) were provided by the Sichuan Remote Sensing
Center.
The location of the middle line of the pipeline was detected through the direct connection method (i.e.,
the transmitter's output line was directly connected to the metal pipeline) using an RD8000 underground
pipeline detector. Pipeline midline coordinates were measured using total network Real Time Kinematic
technology, and simultaneously, the coordinates of the pipe ancillary facilities (including test piles,
mileage piles and milestones) were acquired. Mileage data obtained through inner pipeline detection was
derived from the China Petroleum Pipeline Company.

4. Methods
4.1 Assessment unit
Division precision and the scale of the slope unit (i.e., the basic element for a regional landslide hazard
assessment) were in keeping with the results of the evaluation (Qiu, Niu, Zhao Yan Nan, & Wu, 2015). A
total of 315 slope units were divided using hydrologic analysis in ArcGIS (v. 10.4) (Fig. 2a). The
irrational unit was artificially identified and modified by comparing GF-1 satellite remote sensing
images. Boundary correction, fragment combination and fissure filling were used for modification.
The object of the pipeline vulnerability assessment in the landslide area was the pipeline. Considering
both previous research and the particulars of the research object, we used a comprehensive
segmentation method based on GIS to divide the pipelines in our study. A total of 180 pipes were
divided in the study area, of which the longest was about 1.7 km, and the shortest was only about 10 m
(Fig. 2b).

4.2 Assessment factors
Based on selection principles of the indicator system and the formation mechanism of landslide
geological hazards, as few indicators as possible were selected to reflect the degree of danger posed by
the landslide as accurately as possible (Avalon Cullen, Al-Suhili, & Khanbilvardi, 2016; Jaiswal, Westen,
the internal factors in these indicators of the paper included topography, geological structure, stratigraphic lithology and surface coverage. Similarly, the external factors included mean annual precipitation (MAP) and the coefficient of the variation of annual rainfall (CVAR). The correlations between indicators were analyzed using R (v. 3.3.1), and the results showed a significant correlation between MAP and CVAR (R = 0.99) and between NDWI and NDVI (R = 0.87). Based on correlation and standard deviation, CVAR and NDWI were eliminated from the original evaluation system for landslide hazard assessment in the pipeline area (Table 1).

Generally, the evaluation index of pipeline vulnerability as it relates to the relationship between a pipeline and its surrounding environment is rarely considered. The evaluation indicators in this paper were refined to include pipeline parameters and the spatial relationship between a pipeline and landslide. The pipelines in the study area were based in mountainous areas and had been running for many years. All of these pipelines consisted of high-pressure pipes that were made of steel tubes and had a diameter of 610 mm for conveying oil. In keeping with the theory of the entropy weight method, these indicators (e.g., pressure, materials, diameter and media) were not included in the final evaluation system used to determine pipeline vulnerability.

4.3 LM-BP neural network Model

The LM algorithm, also known as the damped least square method, has the advantage of local fast convergence. Its strong global searching ability contributes to the strong extrapolation ability of the trained network. The BP neural network model, optimized by the LM algorithm, was used to evaluate the regional landslide hazard in this study. MATLAB 2014 with the trainlm training function was used to implement the LM-BP neural network.

Data from 106 landslide disasters was collected near the research area. Of these landslides, 23 were within the region of the study area. Most of the landslides located outside the study area were less than 20 km away from the pipeline. Due to comparable environmental conditions, these landslides could still help us identify the relationship between landslides and environment factors. In light of the frequency distribution of each evaluation indicator (Fig. 3), the landslide hazard grade corresponding to each interval of the indicators was divided, and then the hazard degree monotonicity in each interval was decided. For this study, the landslide hazard grade was divided into four levels: low (I), medium (II), high (III) and extremely high (IV).

On the basis of the classification criteria of the evaluation indicators used to predict landslide hazard degree and the functional relationship between the evaluation indicators and landslide probabilities, standard samples (training samples and test samples) were built using a certain mathematical method. The training samples and test samples were evaluated using similar construction methods but with different sample sizes. Finally, the indicator data was normalized, it was entered into the LM-BP neural network for simulation and 315 slope unit landslide hazard values were output.

4.4 Vulnerability assessment model for pipelines

The vulnerability evaluation model of pipelines in the landslide area was established using the entropy weight method, which overcome the shortcomings of the traditional weight method that does not consider the different evaluation indexes and the excessive human influence on the process of evaluation (Gao,
Pipeline defect density was obtained from the pipeline internal inspection data, which consisted of both mileage data that needed to be converted into three-dimensional coordinate data and pipeline center line coordinate data obtained through C# programming. In addition, the main slide direction of the landslide was replaced by the slope direction that was extracted by DEM. The coordinate azimuth of the pipe section was extracted using the linear vector data of each pipe section, and the angle between the pipeline and the slope was calculated using the mathematical method. The calculation process was solved in the VB language on ArcGIS using second development functions. Finally, the entropy weight of 5 indexes was calculated by programming in MATLAB 2014. The entropy weight calculation results for pipeline landslide vulnerability assessment are shown in Table 2. Pipeline vulnerability in landslide area was calculated using the following formula:

\[H_j = \sum_{i=1}^{m} w_i r_{ij} \]

where \(H_j \) is the evaluation value of the pipeline section’s vulnerability; \(w_i \) is the weight of the evaluation index; and \(r_{ij} \) represents the \(i^{th} \) evaluation index values of \(j^{th} \) pipe sections.

5 Results and comparison

5.1 Regional landslide hazard assessment

The LM-BP neural network was trained and the network was stopped after 182 iterations. An RMSE value of 9.93e-09 indicated that the goal of precision had been reached. Through the simulation of the network test, none of the absolute error values of test data (20 groups) were found to be greater than 0.02; this result aligned with our expectation of the precision of the landslide hazard assessment. The landslide hazard grade was divided into four levels by using the equal interval method at intervals of 0.25. The safe section (low hazard) was located in the central part of the study area. The dangerous (high hazard) section was located north and south (Fig. 4). In the study area, most of the exposed rock was dominated by shale, which belonged to the easy-slip rock group. Average altitude ranged from 450 m to 1400 m, and the relative height difference was greater than 80 m, with the slope between 15° and 35°. Based on an overlay analysis of historic landslides within the study area, and hazard zonation maps, we surmised that the probability of landslides in the study area was extremely high, and that 87% of the landslides occurred in the medium-, high-, and extremely high-hazard areas. Among these landslides, three were located in low-hazard areas, which accounted for 13% of the landslide disaster sites, five occurred in medium-hazard areas (accounting for 21.7% of disaster sites), seven occurred in high-hazard areas (accounting for 30.4% of sites) and eight occurred in extremely high-hazard areas (accounting for 34.8% of sites). The evaluation results were found to accurately reflect the trends and rules of distribution of landslides in the study area. The number and area of slopes in high-hazard and extremely high-hazard areas accounted for about 70% of the total (Table 3). The probability of landslide occurrence in the study area was generally high, which was consistent with the fact that the region was landslide-prone.

5.2 Vulnerability assessment for oil pipeline in landslide area

\[\text{Pipeline vulnerability} = \sum_{i=1}^{m} w_i r_{ij} \]
The equal interval of 0.25 was used to divide the pipeline vulnerability level into four grades to obtain the pipeline vulnerability zonation of the study area (Fig. 5). The pipeline in the northern part of the study area was given a low vulnerability grade, while the situation in the south of the region is more serious. The number, length and percentage of pipeline segments with different grade vulnerabilities are shown in Table 4. The number and length of pipeline segments in highly vulnerable areas (III) and extremely vulnerable areas (IV) accounted for about 12% of the total.

5.3 Risk assessment for oil pipeline in landslide area

According to natural disaster risk expressions released by the UN, the definition of risk may be expressed as the product of landslide hazard in a pipeline area and pipeline vulnerabilities in the landslide area. The risk degrees were distinguished using the equal interval method, and four grades were generated. Where the comprehensive risk assessment value was within 0 to 0.0625, the corresponding risk grade was Grade I; the corresponding risk grades with the values of 0.0625 to 0.25, 0.25 to 0.5625 and 0.5625 to 1.0 were Grade II, III and IV, respectively. The risk grade of each section of the pipeline within the research area is shown in Fig. 6.

The number of sections with a high-risk grade was 33, which accounted for 18.33% of all pipeline sections and represented 16.57% of the total pipeline length of 13.461 km). There were 4 sections with extremely high-risk grade, which accounted for 2.22% of all sections and represented 3.13% of the total pipeline length of 2.538 km. The section number and length of pipelines lying in high-risk (III) and extremely high-risk (IV) areas accounted for 20% of the total pipeline length, and the risk grade of pipelines inside Qingchuan and Jian’ge County was relatively high.

5.4 Analysis of risk assessment results

Large or huge landslides were common in areas that we categorized as extremely high risk, which we defined as those that were geologically evolving or had experienced obvious deformations within the last 2 years with still visible cracks. These pipelines were subject to dangers at any time, as the pipelines within the areas prone to landslides were found to contain many defects or extensive damage. These areas also posed considerable threats; for example, pipeline ruptures or breaks could lead to leakages or serious deformations that cause transportation failure. Because these are unacceptable events, risk prevention and control measures must be taken in a short time. Pipelines with extremely high risk were mainly distributed in the following areas: (1) Xiaxi Village in Xiaxi County (Pile No. K628-K630); (2) Shiwen Village-Maliu Village of Xiaxi County (Pile No. K635-K637). This section lay in the south of the research area, with an altitude of 500 m to 750 m. Here, the slope conditions affected the distribution of groundwater pore pressure and the physical and mechanical characteristics of the rock and soil in three areas: vegetation cover, evaporation and slope erosion. Ultimately, these three factors affected slope stability (Luo & Tan, 2011). Vertical and horizontal ravines have also been seen in this section, with a relative height difference greater than 100 m and slope between 15° to 35°. Slope degrees with obvious changes had a great influence on slope stability (Chang & Kim, 2004; Hu, Xu, Wang, Asch, & Hicher, 2015). The exposed rocks in this area were mainly shale and belonged to the sliding-prone rock group. Rock type and interlayer structure were found to be important internal indicators that a landslide could occur (Guzzetti, Cardinali, & Reichenbach, 1996; Xiang et al., 2010; Xin, Chong, &
Dai, 2009). The distance between the fault and the pipeline in the section was about 2 km with a NDVI of about 0.75 and MAP of about 970 mm. Faulted zones and nearby rock and earth masses that were destroyed in a geologic event reduced the integrity of a slope, and the faults and important groundwater channels could also cause deformation and damage of a slope (Yinghui Liu, 2009). The pipelines in these areas exhibited many defects. Most pipelines passed through the slope in an inclined or horizontal way, an attribute that typically increased the risk of a landslide occurring.

In high-risk areas, small or moderate landslides commonly occurred in areas that we categorized as high risk. They were in deformation, or had obvious deformation recently (within 2 years), such as obvious cracks, subsidence or tympanites on the landslide and even shear. The pipelines in these areas had defects and were buried at a shallow depth. If a landslide occurred in this pipeline area, it could cause pipe suspension, floating and damage. It could also contribute to a small to moderate leakage of the medium. However, damaged pipes can be welded or repaired. Monitoring is critical in high-risk areas.

In our study, the pipeline high-risk area was defined by the following areas: (1) Xiasi Town Xiasi Village-Shiweng Village (pipe No. K622-K633). (2) Xiasi Town Maliu Village Jinzishan Xiangdasang Village (pipe No. K635-K642). This area was located in the south of the pipe, which was buried in the study area. The altitude of the study area was between 450 m and 800 m, the relative elevation difference was over 100 m and the slope was between 15° and 40°. Most of the outcrops in this area were quartz sandstone, which belonged to the easy-sliding rock group. The pipes in this area were about 2.5 km away from faults. The NDVI was about 0.6 to 0.8, and MAP was about 970 mm. Pipes showed many defects, most of them either crossing the slope or lying in the center of slope. All of the above factors provided sufficient conditions for the formation of landslide.

In the medium-risk areas, only small landslides were found to occur, and we observed no sign of deformation. But through the analysis of geological structure, topography and landform, we found the area to demonstrate a tendency for developing landslides. The pipes in this risk area exhibited almost no faults and were buried deep beneath the ground. However, under bad conditions, the landslides in these areas could also affect the pipes' safety, causing the pipes to become exposed or deformed. These areas need simple monitoring. For our study, medium-risk areas were defined as follows: (1) Sanlong village of Dongxihe township-Panlong town Dongsheng village (pipe No. K559-K593). (2) Panlong town Qinlao village-Wu'ai village (pipe No. K595-K597). (3) Baolun town Laolin'gou village-Xiasi town Youyu village (pipe No. K599-K630).

In the low-risk areas, landslides didn’t occur under ordinary conditions, but they could occur if a strong earthquake hit or if the area experienced continuous or heavy rain. The pipes in low-risk areas showed no defects and were buried very deep. They were also located far away from areas affected by landslides. Therefore, landslides in these areas caused no obvious damage to the pipes, and few threatened the safety of pipes. However, regular inspection is necessary to ensure that the pipes continue to operate safely. The pipe low-risk area were defined as follows: (1) Panlong town Dongsheng village-Qinlao village (pipe No. K591-K597). (2) Baolun town Xiaojia village-Baolun town Laolin'gou village (pipe No. K599-K608).

Through comprehensive analysis of each risk level area, we compiled a list of pipeline landslide risks (Table 6). This list describes each landslide risk level in four respects: pipeline risk, landslide hazard,
pipeline vulnerability and risk control measures.

5 Results and comparison

The faults inherent to traditional landslide risk assessment include excessive human influence, failure of pipeline vulnerability assessments to consider the interaction between landslide disaster and pipeline ontology and the low quantification degree of risk assessment results.

Taking the Guangyuan section (82 km) of the LCC oil and gas pipeline as an example, we used GIS and RS technology to establish a regional landslide hazard assessment model based on the LM-BP neural network. We determined that there were 112 and 108 slopes in high-hazard and extremely high-hazard areas that accounted for 33.18% and 40.46% of the total area of the study area, respectively. Then, we established the model of pipeline vulnerability evaluation based on the entropy weight method by combining the pipeline body and the environmental information. The number and length of pipe segments in the highly vulnerable (III) and extremely vulnerable area (IV) accounted for about 12% of the total. Finally, based on the hazard assessment and the vulnerability assessment, we completed the risk assessment and risk division of the oil pipeline, thus forming a geological disaster risk assessment model and a method for oil pipeline and landslide risk assessment. The risk assessment results demonstrated that the number and length of high-hazard and extremely high-hazard pipeline segments represented 20% of the total. Similarly, the pipeline risk within Qingchuan and Jian’ge Counties was relatively high. Our pipeline landslide risk assessment has laid a foundation for the future study of pipeline safety management and pipeline failure consequence loss assessment.

Acknowledgments

The study has been funded by the Strategic Priority Research Program of Chinese Academy of Sciences (XDA20030302), IWHR(China Institute of Water Resources and Hydropower Research) National Mountain Flood Disaster Investigation Project (SHZH-IWHR-57), Southwest Petroleum University Of Science And Technology Innovation Team Projects (2017CXTD09) and the Study on temporal and spatial differentiation of historical mountain flood disasters in Fujian province (NDMBD2018003).
References

Akgun, A., Kincal, C., and Pradhan, B.: Application of remote sensing data and GIS for landslide risk assessment as an environmental threat to Izmir city (west Turkey). Environmental Monitoring & Assessment, 184(9), 5453-5470. https://doi: 10.1007/s10661-011-2352-8 2012.

Atta-Ur-Rahman, and Shaw, R. (2015). Hazard, Vulnerability and Risk: The Pakistan Context: Springer Japan.

Avalon Cullen, C., Al-Suhili, R., and Khanbilvardi, R.: Guidance Index for Shallow Landslide Hazard Analysis. Remote Sensing, 8(10), 866. https://doi: 10.3390/rs8100866, 2016.

Chang, H., and Kim, N. K.: The evaluation and the sensitivity analysis of GIS-based landslide susceptibility models. Geosciences Journal, 8(4), 415-423. https://doi: 10.1007/BF02910477, 2004.

Ding, M., Heiser, M., Hubl, J., and Fuchs, S.: Regional vulnerability assessment for debris flows in China—a CWS approach. Landslides, 13(3), 537-550. https://doi: 10.1007/s10346-015-0578-1 2016.

Fall, M., Azzam, R., and Noubactep, C.: A multi-method approach to study the stability of natural slopes and landslide susceptibility mapping. Engineering Geology, 82(4), 241-263. 2006.

Feng, W., Zhang, T., and Zhang, Y.: Evaluating the stability of landslides in xianshizhai village and the pipeline vulnerability with their action. Journal of Geological Hazards & Environment Preservation. 2014.

Gao, C. L., Li, S. C., Wang, J., Li, L. P., and Lin, P.: The Risk Assessment of Tunnels Based on Grey Correlation and Entropy Weight Method. Geotechnical & Geological Engineering(4), 1-11. https://doi: 10.1007/s10706-017-0415-5 2017.

Guzzetti, F., Cardinali, M., and Reichenbach, P.: The Influence of Structural Setting and Lithology on Landslide Type and Pattern. Environmental & Engineering Geoscience, 2(4), 531-555. 1996.

Hao, J., and Liu, J.: Zonation of Danger Degree of Geological Hazards over Lanzhou-Chengdu-Chongqing Products Pipeline. Oil & Gas Storage & Transportation. 2008.

He, Y., and Fu, W.: Application of fuzzy support vector machine to landslide risk assessment. Journal of Natural Disasters, 18(5), 107-112. 2009.

Ho, K., Leroi, E., and Roberds, B.: Quantitative Risk Assessment : Application, Myths and Future Direction. 2000.

Hong, H., Pradhan, B., Xu, C., and Bui, D. T.: Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines. Catena, 133, 266-281. https://doi: 10.1016/j.catena.2015.05.019 2015.

Hu, W., Xu, Q., Wang, G. H., Asch, T. W. J. V., and Hicher, P. Y.: Sensitivity of the initiation of debris flow to initial soil moisture. Landslides, 12(6), 1139-1145. https://doi: 10.1007/s10346-014-0529-2 2015.

Huo, F., Wang, W., Cao, Y., Wang, F., and Bureau, C. P.: China's Construction Technology of Oil and Gas Storage and Transportation and Its Future Development Direction. Oil Forum. 2016.

Inaudi, D., and Glisic, B.: Reliability and field testing of distributed strain and temperature sensors. Proceedings of SPIE - The International Society for Optical Engineering, 6167(14), 2586–2597. https://doi: 10.1117/12.661088 2006.

Jaiswal, P., Westen, C. J. V., and Jetten, V.: Quantitative landslide hazard assessment along a transportation corridor in southern India. Engineering Geology, 116(3), 236-250. https://doi: 10.1016/j.enggeo.2010.09.005, 2010.

Ke, F., and Li, Y.: The forecasting method of landslides based on improved BP neural network. Geotechnical Investigation & Surveying. 2014.

Li, B., and Gao, Y. (2015). Application of the improved fuzzy analytic hierarchy process for landslide
Li, G., Zhang, P., Li, Z., Ke, Z., and Wu, G.: Safety length simulation of natural gas pipeline subjected to transverse landslide. 2016.

Li, J. (2010). Wenchuan Earthquake and Secondary Geological Hazard Assessment Based on RS/GIS Technology. (Master), China University of Geosciences, Beijing, China.

Li, P. L., Tian, W. P., and Li, J. C.: Analysis of landslide stability based on BP neural network. Journal of Guangxi University. 2013.

Li, S. (2008). The Risk Assessment Study on the Environmental Geological Hazards along the West-East Nature Gas Pipeline. (Mater), SouthWest JiaoTong University, Chengdu, China.

Liu, Y. (2009). The characteristic and evaluation of collapse and landslide disaster along du-wen highway in Wenchuan earthquake region. (Master), Lanzhou University, Lanzhou.

Liu, Y., Shi, Y., Lu, Q., Xiao, H., and Wu, S.: Risk Assessment of Geological Disasters in Single Pipe Based on Scoring Index Method: A Case Study of Soil Landslide. Natural Gas Technology & Economy. 2015.

Luo, Z. F., and Tan, D. J.: Landslide Hazard Evaluation in Debris Flow Catchment Area Based on GIS and Information Method. China Safety Science Journal, 21(11), 144-150. https://doi: 10.1631/jzus.B1000265 2011.

Mansour, M. F., Morgenstern, N. R., and Martin, C. D.: Expected damage from displacement of slow-moving slides. Landslides, 8(1), 117-131. https://doi: 10.1007/s10346-010-0227-7 2011.

Pal, R.: Entropy Production in Pipeline Flow of Dispersions of Water in Oil. Entropy, 16(8), 4648-4661. https://doi: 10.3390/e16084648 2014.

Qiu, D., Niu, R., ZhaoYannan, and Wu, X.: Risk Zoning of Earthquake-Induced Landslides Based on Slope Units:A Case Study on Lushan Earthquake. Journal of Jilin University, 45(5), 1470-1478. https://doi: 10.13278/j.cnki.jjuese.201505201 2015.

Rafiq, L., and Blaschke, T.: Disaster risk and vulnerability in Pakistan at a district level. Geomatics Natural Hazards & Risk, 3(4), 324-341. https://doi: 10.1080/19475705.2011.626083 2012.

Ray, P. K. C., Dimri, S., Lakhera, R. C., and Sati, S.: Fuzzy-based method for landslide hazard assessment in active seismic zone of Himalaya. Landslides, 4(2), 101. https://doi: 10.1007/s10346-006-0068-6 2007.

Sari, D. A. P., Innaqa, S., and Safrilah. Hazard, Vulnerability and Capacity Mapping for Landslides Risk Analysis using Geographic Information System (GIS). 209(1), 012106. https://doi: 10.1088/1757-899X/209/1/012106 2017.

Sarkar, S., and Gupta, P. K.: Techniques for Landslide Hazard Zonation – Application to Srinagar-Rudraprayag Area of Gar. Journal of the Geological Society of India, 65(2), 217-230. 2005.

Shi, S.: Risk Analysis for Pipeline Construction about Third Party Damage Based on Triangular Fuzzy Number and Fault Tree Theory. Journal of Chongqing University of Science & Technology. 2011.

Su, G., and Deng, F.: On the Improving Backpropagation Algorithms of the Neural Networks Based on MATLAB Language: A Review. Bulletin of Science & Technology. 2003.

Wang, P., Xu, Z., Bai, M., Du, Y., Mu, S., Wang, D., and Yang, Y.: Landslide Risk Assessment Expert System Along the Oil and Gas Pipeline Routes. Advanced Materials Research, 418-420, 1553-1559. https://doi: 10.4028/www.scientific.net/AMR.418-420.1553 2012.
399 Wu, T. H., Tang, W. H., and Einstein, H. H. (1996). Landslides: investigation and mitigation. chapter 6 - 399 landslide hazard and risk assessment.

400 Xiang, L. Z., Cui, P., Zhang, J. Q., Huang, D. C., Fang, H., and Zhou, X. J.: Triggering factors susceptibility of earthquake-induced collapses and landslides in Wenchuan County. Journal of Sichuan University, 42(5), 105-112. 2010.

404 Xin, Y., Chong, X. U., and Dai, F. C.: Contribution of strata lithology and slope gradient to landslides triggered by Wenchuan Ms 8 earthquake, Sichuan, China. Geological Bulletin of China, 28(8), 1156-1162. 2009.

407 Ye, C., Jiang, H., Yao, A., Xia, Q., and Zhao, X.: Study on risk controlling method of third party construction damage on oil and gas pipeline. Journal of Safety Science & Technology, 9(8), 140-145. 2013.

410 Yun, L., and Kang, L.: Reliability Analysis of High Pressure Buried Pipeline under Landslide. Applied Mechanics & Materials, 501-504, 1081-1086. https://doi: 10.4028/www.scientific.net/AMM.501-504.1081 2014.

413 Zhang, Y., Shi, J., Gan, J., and Liu, C.: Analysis of Distribution Characteristics and Influencing Factors of Secondary Geohazards in Guangyuan City——Taking Chaotian District as an Example. Journal of Catastrophology, 26(1), 75-79. https://doi: 10.1007/s12182-011-0118-0 2011.

416 Zheng, J. Y., Zhang, B. J., Liu, P. F., and Wu, L. L.: Failure analysis and safety evaluation of buried pipeline due to deflection of landslide process. Engineering Failure Analysis, 25(4), 156-168. https://doi: 10.1016/j.engfailanal.2012.05.011 2012.
List of tables and figures

Table 1 Indicators of landslide hazard assessment and pipeline vulnerability assessment
Table 2 Entropy weight of evaluation index
Table 3 Number and area of slopes of four hazard grade
Table 4 Number and distances of pipeline of four vulnerability grade
Table 5 Number and distances of pipeline of four risk grade
Table 6 Description of pipeline risk level

Figure 1 Landslide location map of the study area
Figure 2 All slope units (a) and pipeline section (b) in the study area
Figure 3 The frequency distribution of each factor in the landslide location. Maps (a), (b), (c), (d), (e), (f), (g), and (h) represent the elevation, slope, aspect, height difference, TPC, NVI, MAP, and distance from the fault, respectively
Figure 4 Landslide hazard map of study area
Figure 5 Pipeline vulnerability map of study area
Figure 6 Pipeline risk map of study area
Factor	Indicators	
Landslide hazard index	Elevation	Slope
Landform	Aspect	
Height Difference	Topographic profile curvature (TPC)	
Land cover	NDVI	
NDWI		
Geology	Lithology	
Distance from the fault	Mean annual precipitation (MAP)	
Precipitation	Coefficient of variation of annual rainfall (CVAR)	
Pipeline vulnerability index	Defect Density	
Pipe Body	Depth	
Thickness	Pressure	
Materials	Diameter	
Diameter	Media	
Spatial relationship between pipeline and landslide	Position	
	Angle	
Table 2

	Depth	Angle	Defect Density	Thickness	Position
Weight	0.010007	0.101553	0.678851	0.154322	0.055266
Entropy	0.997322	0.97282	0.818308	0.958696	0.985208
Landslide hazard	Number of slopes	Percentage	Area (km²)	Percentage	
--------------------------	------------------	------------	------------	------------	
Low (I)	33	10.48%	32.63	8.76%	
Medium (II)	62	19.68%	65.53	17.60%	
High (III)	112	35.56%	123.55	33.18%	
Extremely high (IV)	108	34.29%	150.65	40.46%	
Total	**315**	**100%**	**372.36**	**100%**	
Pipeline vulnerability	Number of pipelines	Percentage	Area (km²)	Percentage	
------------------------	---------------------	------------	------------	------------	
Low (I)	120	66.66%	50.417	62.06%	
Medium (II)	37	20.56%	20.888	25.72%	
High (III)	22	12.22%	9.833	12.11%	
Extremely (IV)	1	0.56%	0.087	0.11%	
Total	180	100%	81.225	100%	
Pipeline risk	Number of pipelines	Percentage	Area (km2)	Percentage	
---------------	---------------------	------------	---------------	------------	
Low (I)	37	20.56%	14.469	17.81%	
Medium (II)	106	58.89%	50.757	62.49%	
High (III)	33	18.33%	13.461	16.57%	
Extremely (IV)	4	2.22%	2.538	3.13%	
Total	180	100%	81.225	100%	
Pipeline risk	landslides hazard	Vulnerability	Risk	Control measures	
---------------	------------------	---------------	------	------------------	
Low (I)	The landslide won't happen under ordinary conditions, but it will occur when strong earthquake, long continuous rain or extremely heavy rain happened.	The pipes in low risk areas have no any defects and buried very deep. Meanwhile, they are far away from the area affected by landslide.	Landslides have no obvious damage to the pipes, and few threats to pipes' safety.	Regular Inspection	
Medium (II)	Small landslide mainly occur, and no sign of deformation. But through analyzing geological structure, topography and landform, there is a tendency of landslide.	The pipes in risk areas have almost no faults and buried deep. However, under bad condition, the landslide may also affect the pipes' safety.	The landslide may make the pipes exposed or deformation.	simple monitoring	
High (III)	Landslides are most in medium-model and little-model, and they are in deformation, or have obvious deformation recently, such as obvious cracks, subsidence or tympanites on the landslide and even shear.	The pipeline has defects, and buried shallow. Once landslides occurred in the pipeline area, pipes' safety will be threatened	The safety of pipeline will be threatened and may suffer from pipe suspension, floating, and damage etc. Therefore it will contribute to a small amount of medium leakage. Fortunately, the pipe can be welded or repaired.	Main monitoring	
Extremely high (IV)	Large or huge landslide is common in the area with extremely high risk, which is changing or has experienced obvious deformation recently with visible cracks.	The pipelines are subject to dangers at any time as the pipelines within the area prone to landslide have been spotted with many defects or much damage.	There are great threats, for example pipeline rupture or break and may lead to considerable leakage of media or serious deformation even transportation failure.	Prevention and control measures shall be taken in a short time	
Figure 2
Figure 3

- Elevation
- Slope
- Aspect
- Height difference
- TPC
- NDI
- MAP
- Distance
Figure 6
Appendix 1: Classification of landslide hazard grade corresponding to different intervals

Factor	Indicators	Interval	Hazard degree monotonicity	Hazard level
Elevation	[1000, Highest]	Decreasing	Low hazard(I)	
	[Lowest, 600]	Increasing	Medium hazard(II)	
	[800, 1000)	Decreasing	High hazard(III)	
	[600, 700) ∪[700, 800)	Increasing, Decreasing	Extremely high hazard(IV)	
	[60, 90)	Decreasing	Low hazard(I)	
	[0, 15)	Increasing	Medium hazard(II)	
Slope	[30, 60)	Decreasing	High hazard(III)	
	[15, 20]∪[20, 30)	Increasing, Decreasing	Extremely high hazard(IV)	
	[0, 45) ∪[270, 360)	Decreasing	Low hazard(I)	
Aspect	[225, 270)∪[45, 90)	Increasing, Decreasing	Medium hazard(II)	
Landform	[90, 135) ∪[180, 225)	Increasing, Decreasing	High hazard(III)	
	[135, 157.5) ∪[157.5, 180)	Increasing, Decreasing	Extremely high hazard(IV)	
	[Lowest, 100)	Increasing	Low hazard(I)	
	[900, Highest] ∪[100, 200]	Increasing	Medium hazard(II)	
Height difference	[600, 900) ∪[200, 300)	Decreasing	High hazard(III)	
	[300, 450)∪[450, 600)	Increasing, Decreasing	Extremely high hazard(IV)	
	[Lowest, -0.025)	Increasing	Low hazard(I)	
	[0.025, Highest]	Decreasing	Medium hazard(II)	
topographic profile curvature	[-0.025, -0.01)∪[0.01, 0.025)	Increasing, Decreasing	High hazard(III)	
	[-0.01, 0]∪[0, 0.01)	Increasing, Decreasing	Extremely high hazard(IV)	
	[-1.0)	Increasing	Low hazard(I)	
	[0, 0.6)∪[0.9, 1]	Increasing, Decreasing	Medium hazard(II)	
	[0.6,0.7)∪[0.8,0.9)	Increasing	High hazard(III)	
Land cover	[0.7,0.75)∪[0.75,0.8)	Decreasing	Extremely high hazard(IV)	
	[1100, Highest)	Decreasing	Low hazard(I)	
NDVI	[0.99, 1100)	Increasing	Medium hazard(II)	
	[969.975)∪[975, 990)	Decreasing	High hazard(III)	
Precipitation	[15, 20)	Increasing, Decreasing	Extremely high hazard(IV)	
	[5, 15)	Increasing	Low hazard(I)	
	[0, 5)	Decreasing	Medium hazard(II)	
Geology	Distance from the fault	Increasing	High hazard(III)	
	[15, 20)	Decreasing	Extremely high hazard(IV)	
Appendix 2: Standard training sample matrix and standard test sample matrix

Sample type	ID	Aspect	Slope	Elevation	NDVI	MAP	Height Difference	TPC	Distance	Lithology	Output
Training sample											
1	1	0.2	89.9	458	-1	908.1	33	0.986	25.00	1.095	0.06
2	100	397.1	75.7	469	0.88	916.3	115	-0.33	21.90	0.12	0.12
3	150	399.3	67.6	485	0.85	920.4	167	-0.168	20.34	0.19	0.19
4	200	399.5	66.0	499	0.99	924.9	200	0.628	18.77	3.47	0.25
5	250	68.4	3.8	1209	0.73	930.4	1097	0.866	15.64	0.37	0.37
6	300	89.3	8.2	1296	0.65	938	1039	0.326	14.08	2.57	0.50
7	350	99.4	12.1	1102	0.56	943.6	977	0.183	12.52	3.56	0.44
8	400	134.8	46.3	90.5	0.4	972.6	7.5	0.018	10.95	2.62	0.44
9	450	113.4	52.9	95.2	0.46	980.6	8.5	0.048	9.39	2.54	0.27
10	500	79.3	15.0	1002	0.5	989.8	0.5	0.142	7.91	0.62	0.36
Test sample											
11	1	27.2	72.3	45.8	0.8	911.7	2.3	0.053	23.69	3.56	0.06
12	2	28.5	71.6	46.8	0.81	914.3	74	0.43	21.06	1.01	0.11
13	3	31.5	69.5	48.8	0.85	915.8	86	0.353	22.37	1.11	0.16
14	4	37.8	66.2	49.0	0.86	917.1	152	0.248	19.74	1.22	0.22
15	5	38.6	62.1	49.7	0.7	934.2	9.3	0.439	18.43	1.32	0.37
16	6	35.6	61.4	49.4	0.71	940.5	11.24	0.429	16.79	2.01	0.37
17	7	57.3	4.6	1240	0.68	995.6	941	0.318	14.48	1.02	0.37
18	8	65.3	7.6	1257	0.66	948.5	11.54	0.148	13.16	1.01	0.27
19	9	68.2	11.1	1290	0.56	948.8	11.46	0.148	10.68	1.12	0.27
20	10	74.7	14.5	1382	0.53	949.9	6.03	0.019	9.75	1.53	0.53
21	11	92.4	30.4	848.4	0.47	963.4	2.63	0.016	10.53	2.64	0.58
22	12	92.7	31.8	853.1	0.45	970.5	10.6	0.015	9.22	2.01	0.64
23	13	101.9	44.7	900.1	0.45	980.5	7.3	0.015	9.22	2.01	0.64
---	-----	-----	-----	-----	-----	-----	-----				
14	110.1	50.9	917	0.35	987	817	-0.015				
15	115.6	57.5	933	0.32	994.2	835	-0.015				
16	140.6	15.6	502	0.14	1001.5	245	0.019				
17	155.4	20	626	0.14	1002.3	256	0.008				
18	157.1	24.8	690	0.08	1010.6	293	0.007				
19	177.6	27.3	765	0.06	1012.7	392	0.004				
20	178.3	29.6	795	0.04	1022.7	446	0.001				
Appendix 3 Test error of LM-BP neural network

Number	Expected value	Network output	Error
1	0	0.0006	0.0006
2	0.06	0.0548	-0.0052
3	0.11	0.1113	0.0013
4	0.16	0.1699	0.0099
5	0.22	0.2302	0.0102
6	0.27	0.2614	-0.0086
7	0.32	0.315	-0.005
8	0.37	0.3697	-0.0003
9	0.43	0.4266	-0.0034
10	0.48	0.4899	0.0099
11	0.53	0.5153	-0.0147
12	0.58	0.5765	-0.0035
13	0.64	0.6405	0.0005
14	0.69	0.701	0.011
15	0.74	0.7523	0.0123
16	0.79	0.8094	0.0194
17	0.85	0.8616	0.0116
18	0.9	0.9155	0.0155
19	0.95	0.9675	0.0175
20	1	1.0173	0.0173
Appendix 4 Coordinates of the center line and ancillary facilities of the pipeline

Point number	Previous point	Material	Diameter	Pressure	Depth	Coordinate X	Coordinate Y	H	elevation
Marker peg	--	Steel	168	--	--	· · · 576.265	· · · 4357.849	503.877	--
GD1.421	GD1.420	Steel	168	high	2.2	· · · 572.111	· · · 4352.109	504.235	502.035
GD1.422	GD1.421	Steel	168	high	1.9	· · · 571.837	· · · 4336.010	503.866	501.966
GD1.423	GD1.422	Steel	168	high	2.1	· · · 571.538	· · · 4319.679	503.694	501.594
GD1.424	GD1.423	Steel	168	high	2.1	· · · 571.093	· · · 4308.825	503.510	501.410
GD1.425	GD1.424	Steel	168	high	2.0	· · · 570.718	· · · 4288.141	503.733	501.733
Detective pole K566	--	Steel	168	high	2.3	· · · 570.603	· · · 4275.147	503.998	501.698
GD1.426	GD1.425	Steel	168	high	2.3	· · · 574.641	· · · 4258.41	503.224	--
Mileage peg K566+200	--	Steel	168	high	2.0	· · · 570.222	· · · 4258.593	503.710	501.710
GD1.427	GD1.426	Steel	168	high	1.6	· · · 570.090	· · · 4247.642	503.283	501.683
GD1.428	GD1.427	Steel	168	high	2.3	· · · 569.458	· · · 4216.618	502.468	500.168
GD1.429	GD1.428	Steel	168	high	2.9	· · · 569.043	· · · 4208.558	504.055	501.155
Appendix 5 Internal detection data of pipeline

FID	Pipe number	distance(m)	Feature type	Remarks	Length (mm)	thickness (mm)
1	10	6.408	Pipe segment	Spiral weld	652	11.1
2	20	7.060	Pipe segment	--	1178	--
3	20	7.648	Fixed punctuation point	Valve centerline	--	--
4	20	7.650	Valve	centerline	--	--
5	30	8.238	Pipe segment	Spiral weld	768	11.1
6	40	9.006	Pipe segment	--	2184	--
7	40	10.100	Globular tee	centerline	--	--
8	50	11.190	Pipe segment	Spiral weld	1700	11.1
9	50	11.445	Pit	--	548	11.1
10	60	12.890	Pipe segment	Straight weld	2342	13.6
11	60	12.890	Wall thickness variation	from 11.1mmto 13.6mm	--	--
13	70	15.232	Pipe segment	Spiral weld	1999	11.1
14	70	15.232	Wall thickness variation	from 13.6mmto 11.1mm	--	--
15	80	17.231	Pipe segment	Straight weld	2352	13.4
16	80	17.231	Wall thickness variation	from 11.1mmto 13.4mm	--	--
18	90	19.583	Pipe segment	Spiral weld	11557	11.1
19	90	19.583	Wall thickness variation	from 13.4mmto 11.1mm	--	--
20	90	28.060	Attachments	--	598	11.1
21	100	31.140	Pipe segment	--	991	--
22	100	31.580	Flange	centerline	--	--
23	110	32.131	Pipe segment	Spiral weld	11660	11.1
24	120	43.791	Pipe segment	Spiral weld	5536	11.1
25	130	49.327	Pipe segment	Straight weld	2213	16.2
26	130	49.327	Wall thickness variation	from 11.1mmto 16.2mm	--	--
---	---	---	---	---	---	
28	140	51.5	Pipe segment	Spiral weld	5608	
29	140	51.5	Wall thickness variation	from 16.2mm to 11.1mm	--	
30	150	57.1	Pipe segment	Spiral weld	9432	

Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-360
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Discussion started: 6 December 2018
© Author(s) 2018. CC BY 4.0 License.
Appendix 6 Core Code of Pipeline Defect Point Coordinate Calculating Program

```csharp
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
using System.IO;

private void button10_Click(object sender, EventArgs e)
{
    double x1 = 0, y1 = 0, z1 = 0, x2 = 0, y2 = 0, z2 = 0, d1 = 0, d2 = 0, h1 = 0, h2 = 0;
    double l = Convert.ToDouble(textBox9.Text);
    double f = 0, nl = Convert.ToDouble(textBox7.Text);
    string[] SplitTxt = textBox2.Text.Split(',');
    for (long i = 0; i < SplitTxt.Length - 9; i += 5)
    {
        d1 = Convert.ToDouble(SplitTxt[i + 1]);
        x1 = Convert.ToDouble(SplitTxt[i + 2]);
        y1 = Convert.ToDouble(SplitTxt[i + 3]);
        z1 = Convert.ToDouble(SplitTxt[i + 4]);
        d2 = Convert.ToDouble(SplitTxt[i + 6]);
        x2 = Convert.ToDouble(SplitTxt[i + 7]);
        y2 = Convert.ToDouble(SplitTxt[i + 8]);
        z2 = Convert.ToDouble(SplitTxt[i + 9]);
        h1 = z1 - d1;
        h2 = z2 - d2;
        l += Math.Sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2) + (h1 - h2) * (h1 - h2));
    }
    textBox8.Text = l.ToString();
    f = (nl - l)/nl;
    ff = f;
    textBox5.Text = Convert.ToDouble(ff).ToString("P");
}
```

```csharp
private void button9_Click(object sender, EventArgs e)
{
    double f1 = ff;
    double l1 = 0;
    string zb = "";
    string[] SplitTxt = textBox3.Text.Split(',');
    for (long i = 0; i < SplitTxt.Length - 1; i += 2)
    {
        l1 = Convert.ToDouble(SplitTxt[i + 1]);
        ...
```
l1 += (-ff) * l1;

double x1 = 0, y1 = 0, z1 = 0, x2 = 0, y2 = 0, z2 = 0, d1 = 0, d2 = 0, h1 = 0, h2 = 0, l0=0,l2=0;

double l = Convert.ToDouble(textBox9.Text);

double x = 0, y = 0, h = 0;

string[] SplitTxt1 = textBox2.Text.Split(',');

for (long j = 0; j < SplitTxt1.Length - 9; j += 5)
{
 d1 = Convert.ToDouble(SplitTxt1[j + 1]);
 x1 = Convert.ToDouble(SplitTxt1[j + 2]);
 y1 = Convert.ToDouble(SplitTxt1[j + 3]);
 z1 = Convert.ToDouble(SplitTxt1[j + 4]);
 d2 = Convert.ToDouble(SplitTxt1[j + 6]);
 x2 = Convert.ToDouble(SplitTxt1[j + 7]);
 y2 = Convert.ToDouble(SplitTxt1[j + 8]);
 z2 = Convert.ToDouble(SplitTxt1[j + 9]);

 h1 = z1 - d1; h2 = z2 - d2;

 l0= Math.Sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2) + (h1 - h2) * (h1 - h2));

 l = l + l0;

 if (l - l1 < 0)
 {

 }
 else if (l - l1 >0)
 {
 l2 = l0 - (l - l1);
 x = x1 + (x2 - x1) * l2 / l0;
 y = y1 + (y2 - y1) * l2 / l0;
 h = h1 + (h2 - h1) * l2 / l0;

 string xx, yy, hh, v;
 v = SplitTxt[j];
 xx = Convert.ToDouble(x).ToString();
 yy = Convert.ToDouble(y).ToString();
 hh = Convert.ToDouble(h).ToString();
 zb +=v + "," + xx + "," + yy + "," + hh + "," + "n";
 break;
 }

 textBox6.Text = zb;
}
Appendix 7 Pipeline Landslide Risk Assessment Results

Fid	Start	Terminus	Hazard level	Hazard	Vulnerability level	Risk level		
1	K558	K559+446	0.874	IV	0.168	I		
2	K559+446	K563+718	0.874	IV	0.178	I		
3	K563+718	K564+883	0.932	IV	0.143	I		
4	K564+883	K566+90	0.943	IV	0.149	I		
5	K566+90	K567+117	0.943	IV	0.280	II		
6	K567+117	K567+224	0.766	IV	0.095	I		
7	K567+224	K567+384	0.729	III	0.117	I		
8	K567+384	K567+674	0.729	III	0.079	I		
9	K567+674	K567+782	0.729	III	0.141	I		
10	K567+782	K567+846	0.729	III	0.066	I		
11	K567+846	K567+904	0.729	III	0.097	I		
12	K568+904	K568+197	0.722	III	0.154	I		
13	K568+197	K568+430	0.763	IV	0.144	I		
14	K569+430	K569+419	0.739	III	0.186	I		
15	K569+419	K569+443	0.739	III	0.141	I		
16	K569+443	K569+467	0.739	III	0.107	I		
17	K569+467	K569+578	0.739	III	0.121	I		
18	K569+578	K569+920	0.739	III	0.107	I		
19	K571+920	K571+123	0.736	III	0.127	I		
20	K571+123	K571+982	0.799	IV	0.109	I		
21	K572+982	K572+729	0.753	IV	0.090	I		
22	K573+729	K573+548	0.802	IV	0.094	I		
23	K574+548	K574+249	0.805	IV	0.084	I		
24	K574+249	K574+525	0.805	IV	0.150	I		
25	K575+525	K575+538	0.805	IV	0.115	I		
26	K575+538	K575+600	0.805	IV	0.157	I		
27	K576+600	K576+737	0.816	IV	0.108	I		
28	K577+737	K577+120	0.889	IV	0.089	I		
29	K577+120	K577+146	0.889	IV	0.094	I		
30	K577+146	K577+187	0.889	IV	0.169	I		
31	K578+187	K578+571	0.889	IV	0.118	I		
32	K578+571	K578+608	0.889	IV	0.095	I		
33	K579+608	K579+624	0.853	IV	0.133	I		
34	K580+624	K580+582	0.871	IV	0.156	I		
35	K581+582	K581+443	0.871	IV	0.097	I		
36	K581+443	K581+273	0.871	IV	0.143	I		
37	K581+273	K581+536	0.880	IV	0.125	I		
38	K581+536	K581+659	0.872	IV	0.154	I		
39	K582+659	K582+263	0.830	IV	0.152	I		
40	K582+263	K582+437	0.830	IV	0.116	I		
41	K583+437	K583+512	0.830	IV	0.152	I		
42	K583+512	K583+693	0.798	IV	0.105	I		
43	K583+693	K583+720	0.740	III	0.113	I		
44	K585+720	K585+55	0.740	III	0.178	I		
45	K585+55	K585+101	0.668	III	0.196	I		
46	K585+101	K585+370	0.668	III	0.178	I		
47	K585+370	K585+634	0.696	III	0.190	I		
48	K585+634	K585+734	0.668	III	0.116	I		
49	K586+734	K586+900	0.690	III	0.190	I		
K585+734	K585+908	0.627	III	0.198	I	0.124	II	
K585+908	K585+949	0.627	III	0.168	I	0.105	II	
K586+949	K586+782	0.627	III	0.173	I	0.108	II	
K586+782	K586+805	0.627	III	0.117	I	0.073	II	
K587+805	K587+364	0.627	III	0.171	I	0.107	II	
K587+364	K587+498	0.618	III	0.078	I	0.048	I	
K587+498	K587+794	0.618	III	0.107	I	0.066	I	
K589+794	K589+251	0.618	III	0.102	I	0.063	I	
K590+251	K590+757	0.618	III	0.172	I	0.106	II	
K590+757	K590+780	0.556	III	0.153	I	0.085	II	
K590+780	K590+812	0.556	III	0.123	I	0.068	II	
K591+812	K591+500	0.555	III	0.135	I	0.075	II	
K591+500	K591+946	0.555	III	0.087	I	0.048	I	
K592+946	K592+259	0.555	III	0.107	I	0.059	I	
K593+259	K593+631	0.517	III	0.152	I	0.079	II	
K593+631	K593+912	0.374	II	0.153	I	0.057	II	
K594+912	K594+993	0.374	II	0.150	I	0.056	II	
K595+993	K595+203	0.374	II	0.076	I	0.028	I	
K595+203	K595+261	0.359	II	0.114	I	0.041	I	
K595+261	K595+383	0.359	II	0.099	I	0.036	I	
K596+383	K596+383	0.412	II	0.278	II	0.115	II	
K596+383	K596+429	0.412	II	0.107	I	0.044	I	
K597+429	K597+62	0.359	II	0.121	I	0.043	I	
K597+62	K597+200	0.412	II	0.158	I	0.065	II	
K597+200	K597+345	0.412	II	0.133	I	0.055	I	
K597+345	K597+680	0.412	II	0.273	II	0.112	II	
K599+680	K599+376	0.321	II	0.461	II	0.148	II	
K599+376	K599+693	0.211	I	0.105	I	0.022	I	
K600+693	K600+188	0.211	I	0.179	I	0.038	I	
K600+188	K600+353	0.106	I	0.172	I	0.018	I	
K601+353	K601+369	0.106	I	0.264	II	0.028	I	
K602+369	K602+495	0.099	I	0.190	I	0.019	I	
K603+495	K603+131	0.067	I	0.436	II	0.029	I	
K603+131	K603+551	0.099	I	0.144	I	0.014	I	
K604+551	K604+321	0.104	I	0.253	II	0.026	I	
K604+321	K604+976	0.099	I	0.102	I	0.010	I	
K605+976	K605+735	0.178	I	0.372	II	0.066	II	
K606+735	K606+368	0.236	I	0.637	III	0.150	II	
K606+368	K606+838	0.236	I	0.127	I	0.030	I	
K607+838	K607+596	0.323	II	0.407	II	0.131	II	
K608+596	K608+20	0.323	II	0.163	I	0.053	II	
K608+20	K608+287	0.323	II	0.145	I	0.047	I	
K608+287	K608+546	0.346	II	0.084	I	0.029	I	
K608+546	K608+583	0.406	II	0.215	I	0.087	II	
K608+583	K608+835	0.406	II	0.291	II	0.118	II	
K609+835	K609+565	0.442	II	0.279	II	0.123	II	
K610+565	K610+564	0.442	II	0.403	II	0.178	II	
K610+564	K610+945	0.442	II	0.453	II	0.200	II	
K611+945	K611+89	0.482	II	0.117	I	0.056	I	
K611+89	K611+691	0.501	III	0.138	I	0.069	II	
K612+691	K612+413	0.501	III	0.175	I	0.088	II	
100	K613+413	K613+269	0.501	III	0.163	Ⅰ	0.082	Ⅱ
101	K613+269	K613+442	0.502	III	0.166	Ⅰ	0.083	Ⅱ
102	K614+442	K614+83	0.502	III	0.354	Ⅱ	0.178	Ⅱ
103	K614+83	K614+980	0.502	III	0.263	Ⅱ	0.132	Ⅱ
104	K615+980	K615+218	0.601	III	0.153	Ⅰ	0.092	Ⅱ
105	K615+218	K615+388	0.601	III	0.143	Ⅰ	0.086	Ⅱ
106	K616+388	K616+87	0.635	III	0.126	Ⅰ	0.080	Ⅱ
107	K616+87	K616+300	0.556	III	0.144	Ⅰ	0.080	Ⅱ
108	K616+300	K616+460	0.505	III	0.269	Ⅱ	0.136	Ⅱ
109	K617+460	K617+715	0.505	III	0.172	Ⅰ	0.087	Ⅱ
110	K617+715	K617+827	0.505	III	0.255	Ⅱ	0.129	Ⅱ
111	K618+827	K618+28	0.556	III	0.170	Ⅰ	0.095	Ⅱ
112	K618+28	K618+687	0.556	III	0.313	Ⅱ	0.174	Ⅱ
113	K620+687	K620+78	0.556	III	0.188	Ⅰ	0.105	Ⅱ
114	K620+78	K620+298	0.425	II	0.196	Ⅰ	0.083	Ⅱ
115	K621+298	K621+509	0.576	III	0.223	Ⅰ	0.128	Ⅱ
116	K621+509	K621+611	0.425	II	0.107	Ⅰ	0.045	Ⅰ
117	K622+611	K622+10	0.425	II	0.262	Ⅱ	0.111	Ⅱ
118	K622+10	K622+46	0.425	II	0.122	Ⅰ	0.052	Ⅰ
119	K622+46	K622+539	0.693	III	0.178	Ⅰ	0.123	Ⅱ
120	K622+539	K622+897	0.634	III	0.549	III	0.348	Ⅲ
121	K623+897	K623+36	0.634	III	0.535	III	0.339	Ⅲ
122	K623+36	K623+794	0.693	III	0.145	Ⅰ	0.100	Ⅱ
123	K624+794	K624+866	0.693	III	0.310	Ⅱ	0.215	Ⅱ
124	K625+866	K625+242	0.796	IV	0.137	Ⅰ	0.109	Ⅱ
125	K627+242	K627+60	0.859	IV	0.452	Ⅱ	0.388	Ⅲ
126	K627+60	K627+162	0.859	IV	0.193	Ⅰ	0.166	Ⅱ
127	K627+162	K627+313	0.859	IV	0.166	Ⅰ	0.143	Ⅱ
128	K627+313	K627+700	0.783	IV	0.167	Ⅰ	0.131	Ⅱ
129	K628+700	K628+146	0.908	IV	0.501	III	0.455	Ⅲ
130	K628+146	K628+196	0.908	IV	0.139	Ⅰ	0.126	Ⅱ
131	K628+196	K628+610	0.908	IV	0.631	III	0.573	Ⅳ
132	K629+610	K629+355	0.787	IV	0.369	Ⅱ	0.290	Ⅲ
133	K629+355	K629+525	0.787	IV	0.729	Ⅲ	0.574	Ⅳ
134	K629+525	K629+570	0.787	IV	0.252	Ⅱ	0.198	Ⅱ
135	K629+570	K629+620	0.787	IV	0.465	Ⅱ	0.366	Ⅲ
136	K630+620	K630+348	0.787	IV	0.286	Ⅱ	0.225	Ⅱ
137	K630+348	K630+956	0.892	IV	0.389	Ⅱ	0.347	Ⅲ
138	K631+956	K631+116	0.886	IV	0.423	Ⅱ	0.375	Ⅲ
139	K631+116	K631+528	0.805	IV	0.513	III	0.413	Ⅲ
140	K633+528	K633+435	0.805	IV	0.568	III	0.457	Ⅲ
141	K635+435	K635+302	0.933	IV	0.625	III	0.583	Ⅳ
142	K635+302	K635+326	0.884	IV	0.611	III	0.540	Ⅲ
143	K635+326	K635+359	0.884	IV	0.441	Ⅱ	0.390	Ⅲ
144	K635+359	K635+368	0.884	IV	0.194	Ⅰ	0.171	Ⅱ
145	K635+368	K635+530	0.884	IV	0.374	Ⅱ	0.331	Ⅲ
146	K635+530	K635+604	0.884	IV	0.307	Ⅱ	0.271	Ⅱ
147	K635+604	K635+850	0.805	IV	0.377	Ⅱ	0.303	Ⅲ
148	K635+850	K635+943	0.805	IV	0.234	Ⅰ	0.188	Ⅱ
149	K635+943	K635+972	0.805	IV	0.139	Ⅰ	0.112	Ⅱ
150	K635+972	K635+974	0.805	IV	0.121	Ⅰ	0.097	Ⅱ
	K635+974	K635+990	0.805	IV	0.138	I	0.111	II
---	----------	----------	-------	----	--------	---	--------	----
152	K636+990	K636+152	0.933	IV	0.598	III	0.558	III
153	K636+152	K636+159	0.933	IV	0.157	I	0.146	II
154	K636+159	K636+320	0.884	IV	0.579	III	0.512	III
155	K636+320	K636+427	0.884	IV	0.166	I	0.147	II
156	K636+427	K636+517	0.884	IV	0.124	I	0.110	II
157	K636+517	K636+806	0.834	IV	0.663	III	0.553	III
158	K636+806	K636+893	0.834	IV	0.794	IV	0.662	IV
159	K637+893	K637+57	0.834	IV	0.519	III	0.433	III
160	K637+57	K637+109	0.834	IV	0.542	III	0.452	III
161	K637+109	K637+181	0.834	IV	0.111	I	0.093	II
162	K637+181	K637+332	0.834	IV	0.127	I	0.106	II
163	K638+332	K638+87	0.834	IV	0.608	III	0.507	III
164	K638+87	K638+140	0.834	IV	0.157	I	0.151	II
165	K638+140	K638+193	0.767	IV	0.682	III	0.523	III
166	K638+193	K638+199	0.767	IV	0.188	I	0.144	II
167	K638+199	K638+226	0.767	IV	0.126	I	0.097	II
168	K638+226	K638+368	0.767	IV	0.532	III	0.408	III
169	K638+368	K638+409	0.767	IV	0.604	III	0.463	III
170	K638+409	K638+432	0.767	IV	0.205	I	0.157	II
171	K638+432	K638+444	0.767	IV	0.525	III	0.403	III
172	K638+444	K638+676	0.767	IV	0.173	I	0.133	II
173	K638+676	K638+837	0.767	IV	0.479	II	0.367	III
174	K639+837	K639+266	0.744	III	0.483	II	0.359	III
175	K639+266	K639+339	0.744	III	0.427	II	0.318	III
176	K639+339	K639+435	0.744	III	0.549	III	0.408	III
177	K639+435	K639+562	0.631	III	0.324	II	0.204	II
178	K640+562	K640+63	0.607	III	0.476	II	0.289	III
179	K641+63	K641+600	0.607	III	0.604	III	0.367	III
180	K642+600	K642+225	0.607	III	0.461	II	0.280	III