Primary Epitopes of Chicken Egg Yolk Antibodies to Peptidophosphogalactomannan†

BRIGITTE A. TUEKAM,‡ SANDRA J. BONETTI,§ AND JOHN E. GANDER*†

Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611-0700

Received 11 July 1997/Returned for modification 1 October 1997/Accepted 5 February 1998

Egg yolks from hens immunized with peptidophosphogalactomannan (pPGalMan), which contains 10 phosphocholine diester residues and is secreted by Penicillium flettatum, contain antibodies against 5-β-D-galactofuranosyl epitopes. These epitopes were the only significant determinants in pPGalMan. Approximately 60-fold less pPGalMan (1.6 μM galactofuran chains) was required for 50% inhibition than galactofuranosyl-oligosaccharides or pPGalMan containing two galactofuranosyl residues per chain.

Filamentous fungi produce soluble extracellular polysaccharides and glycopeptides (1, 9, 10, 14, 19, 21, 23). Many of these polymers have active antigenic determinants (3, 14, 17, 20, 27). Penicillium flettatum (formerly Penicillium chartarutum) peptidophosphogalactomannans (pPGalMan; Mc, 25,000 to 70,000) (9, 19, 21, 23, 25, 32) contain a mannan with about 80 α-1,2- and α-1,6-mannopyranosyl residues and 12 small manno-oligosaccharidyl units, each attached to a 3-kDa peptide (Fig. 1). Eight to ten 5-β-D-galactofuranosyl-containing chains with 2 to 20 residues branch from the mannan. pPGalMan and pPGalMan (26, 31) contain approximately 10 and 2 phosphocholine diester residues, respectively, and a variable number of galactofuranosyl-6-O-phosphodiester residues (5).

Sera from rabbits immunized with whole-cell preparations from P. flettatum reacted with galactofuranosyl-containing heteropolysaccharide (20). Sera from guinea pigs injected with purified pPGalMan conjugated to bovine gamma globulin reacted weakly to manno-oligosaccharides of pPGalMan (11) and were unreactive to galactofuranosyl residues. Soluble pPGalMan did not elicit antibody in any of several species. This preparation, pPGalMan, was later shown to contain an average of two galactofuranosyl residues per galactan chain (unpublished data).

Antibodies that react specifically with furanosyl residues of parasites are of increasing clinical importance (4, 6–18). The purpose of this investigation was to determine if stable antibody could be elicited from purified glycopeptides, such as pPGalMan in phosphate-buffered saline (PBS) without adjuvant, and to determine the polymers’ epitope(s). Laying hens challenged with immunogenic substances during the laying season produce eggs that contain immunoglobulin Y (IgY), which is similar but not identical to IgG, in their yolks. Antibody is selectively deposited in egg yolk and is obtained by noninvasive means (2, 18).

Preliminary experiments. No immunological response was obtained in laying hens injected subcutaneously and in the footpad at weeks 1 and 3 with solutions of pPGalMan (200 μg/ml in PBS) and with whole P. flettatum cells at weeks 6 and 9. A response to subcutaneous injections of rabbit IgG in PBS was obtained in these hens. In contrast, other chickens responded to a course of two subcutaneous and two intravenous injections of either pPGalMan or pPGalMan in PBS. The immune responses to pPGalMan and pPGalMan were similar. Yolks from eggs stored at 4°C for a year retained antibody with little loss of activity. In these experiments, anti-pPGalMan activity was tested routinely by an enzyme-linked immunosorbent assay (ELISA) procedure (24, 27) in microtiter plates (Dynatech Laboratories, Inc.) coated with 0.4 μg (0.057 nmol) of either pPGalMan or pPGalMan (26) in 0.14 M NaCl-0.02% NaN, after incubation for 24 h at 4°C, the wells were washed with PBS containing 0.05% Tween 20. Unoccupied wells were blocked with 1 mg of bovine serum albumin in 0.1 ml of a solution of PBS, 0.01% NaN, and 0.05% Tween 20. Incubation at 24°C for 45 min followed. Plates were washed with PBS-NaN – Tween 20. Primary antibodies, prediluted with PBS, were added to all wells except those in the row that served as the secondary-antibody control. Plates were incubated for 60 min at 24°C. After the wells were washed, the quantity of chicken anti-pPGalMan antibody adsorbed to pPGalMan in each well was determined with rabbit anti-chicken IgG (whole molecule) alkaline phosphatase conjugate with p-nitrophenylphosphate as the substrate in 10% diethanolamine buffer (pH 9.8–0.2% NaN, p-Nitrophenol released in each well was quantified with a Bio-Rad ELISA model 2550 enzyme immunoassay reader set at 405 nm.

Purification of chicken egg yolk anti-P. flettatum antibody. Antibodies were fractionated by polyethylene glycol precipitation, hydrophobic-interaction chromatography, and gel permeation chromatography (12). Anti-pPGalMan activity from permeation chromatography resulted in a 31-fold increase in ELISA units per microgram of protein. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (13) showed anti-pPGalMan activity at 28 and 62 kDa.

Immunochemical studies. The reaction between pPGalMan or pPGalMan and anti-P. flettatum pPGalMan antibodies was quantified with 5 μg of protein/well. pPGalMan or pPGalMan (0 to 1 μg/well) was used in an indirect ELISA system. Both pPGalMan species bound to Immulon wells in a
hyperbolic concentration-dependent manner. Half saturation of the wells occurred with 26 nmol of either pPGalMan species (data not shown). Approximately 57 nmol (0.4 μg/well) of pPGalManii or pPGalManiii was used to coat the wells.

Competitive inhibition experiments with a range of concentrations of soluble phosphagalactomannan (PGalManii) or pPGalManii as the inhibitor of antibody interaction with bound pPGalManii or pPGalManiii, respectively, showed 50% inhibition at 0.14 and 0.16 μM (1.4 and 1.6 μM galactofuran chains), respectively (Table 1). This suggests that phosphocholine phosphodiester is a major epitope because pPGalManii, which contains at least fivefold more phosphocholine phosphodiester than pPGalManiii (26, 31), is not a better inhibitor than pPGalManiii. The epitope(s) on pPGalManii was determined with fragments derived by chemical or enzymatic degradation of pPGalManii. A range of concentrations of each fragment was tested as a hapten inhibitor of binding of anti-pPGalManiii antibodies to pPGalManii in a competitive ELISA inhibition system. The concentration of inhibitor or galactofuran chains required to inhibit 50% of antibody binding to Immulon-bound pPGalManii (Table 1) was determined from the plots of the percentages of inhibition versus log micromolar values of inhibition or chain.

TABLE 1. Inhibition of antibody binding to pPGalManii by modified pPGalManii and by oligosaccharide fragments

Inhibitorb	50% Inhibitory conc (μM)	Residues/ chain (n)
pPGalManii	0.16 1.6 20	
pPGalManii in PBS	0.13 1.3 20	
PGalMan	0.14 1.4 12	
pPMan	NI 11	
Peptide	NI 11	
pP(Gal)_Man	9.8 98	2
Galactofuran-oligosaccharides		
Tetrasaccharide(s)	55 55	4
Trisaccharide(s)	100 100	3
Disaccharide	180 180	2
1-O-β-CH2-O-Man	3,600 N/A	
Anionic saccharide	125 125	2

a NI, no inhibition; N/A, not applicable.
b Molecular masses are as follows: pPGalManii, 65 kDa; PGalMan, 62 kDa; pPMan, 18.6 kDa; and pP(Gal)_Man, 21.9 kDa.

We thank Steve Tuckam, formerly of the Department of Poultry Science, University of Florida, for assistance in inoculation of the chickens.

This research was supported by the Florida Agricultural Experiment Station.

REFERENCES

1. Bareto-Bergter, E., P. A. J. Gori, and L. R. Travassos. 1981. Cell constituents of mycelia and conidia of Aspergillus fumigatus. Carbohydr. Res. 95: 205–218.
2. Bar-Joseph, M., and M. Malkinson. 1980. Hen egg yolk as a source of antiviral antibodies in the enzyme-linked immunosorbent assay (ELISA): a comparison of two plant viruses. J. Virol. Methods 1:179–183.
3. Bennett, J. E., A. K. Bhattacharjee, and C. P. J. Glaudemans. 1985. Galactofuranosyl groups are immunodeterminant in Aspergillus fumigatus galactomannan. Mol. Immunol. 22:251–254.
4. Bhattacharjee, A. K., J. E. Bennett, and C. P. J. Glaudemans. 1984. Capsular polysaccharides of Cryptococcus neoformans. Rev. Infect. Dis. 6:619–623.
5. Bonetti, S. J., I. T. Gelbaum, and J. E. Gander. 1990. Peptide-containing phosphodiester in Penicillium euclorococcal glycoprotein. FASEB J. 4:2305–2310.
6. De Arruda, V. M., W. Coli, and B. Zingales. 1989. Terminal β-galactofuranosyl epitopes recognized by the antibodies that inhibit Trypanosoma cruzi internalization into mammalian cells. Eur. J. Biochem. 182:413–421.
7. Ferguson, M. A. J., and F. A. Williams. 1988. Cell-surface anchoring of pro-
teins via glycosyl-phosphatidylinositol structures. Annu. Rev. Biochem. 57: 285–320.
8. Fincher, G. B., B. A. Stone, and A. E. Clarke. 1983. Arabinogalactan-protein: structure, biosynthesis and function. Annu. Rev. Plant Physiol. 34:47–70.
9. Gander, J. E., N. H. Jentoft, L. R. Drewes, and P. D. Rick. 1974. The 5-O-β-D-galactofuranosyl-containing exocellular glycopeptidol of Penicillium charlesii. Characterization of peptidophosphogalactomannan. J. Biol. Chem. 249: 2063–2072.
10. Gander, J. E. 1974. Fungal cell wall glycoproteins and peptidopolysaccharides. Annu. Rev. Microbiol. 28:103–119.
11. Gander, J. E., and J. A. Rudbach. 1973. Immunological investigations of Penicillium. II. Primary binding of glycopeptide derivatives to specific antibodies. Immunochemistry 10:81–92.
12. Hassl, A., and H. Aspock. 1988. Purification of egg yolk immunoglobulins. A two step procedure using hydrophobic interaction chromatography and gel filtration. J. Immunol. Methods 110:225–228.
13. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685.
14. Latgé, J.-P., H. Kohayashi, J.-P. Debeaufuis, M. Diaquin, J. Sarfati, J.-M. Wieruszewska, E. Parra, J.-P. Bouchard, and B. Fournet. 1994. Chemical and immunological characterization of the extracellular galactomannan of Aspergillus fumigatus. Infect. Immun. 62:5424–5433.
15. McNeil, M. R., and P. J. Brennan. 1991. Structure, function and biogenesis of the cell envelope of mycobacteria in relation to bacterial physiology, pathogenesis and drug resistance; some thoughts and possibilities arising from recent structural information. Res. Microbiol. 142:451–463.
16. Meyer, R. D., L. S. Young, D. Armstrong, and B. Yu. 1973. Aspergillosis complicating neoplastic disease. Am. J. Med. 54:6–15.
17. Notermans, S., G. H. Veeneman, C. W. E. M. van Zuylen, P. Hoogerhout, and J. H. van Boom. 1988. (1→5)-linked β-D-galactofuranosides are immunodominant in extracellular polysaccharides of Penicillium and Aspergillus species. Mol. Immunol. 25:975–979.
18. Polson, A., M. B. von Wechmar, and M. H. V. von Regenmortel. 1980. Isolation of viral IgY antibodies from yolks of immunized hens. Immunol. Commun. 9:475–493.
19. Preston, J. F., E. Lapis, and J. E. Gander. 1969. Isolation and partial characterization of the exocellular polysaccharides of Penicillium charlesii. II. The occurrence of phosphate groups in high molecular weight polysaccharides. Arch. Biochem. Biophys. 134:316–323.
20. Preston, J. F., E. Lapis, and J. E. Gander. 1970. Immunological investigations of Penicillium. I. Serological reactivities of exocellular polysaccharides produced by six Penicillium species. Can. J. Microbiol. 16:587–694.
21. Preston, J. F., E. Lapis, S. Westerhouse, and J. E. Gander. 1969. Isolation and partial characterization of the exocellular polysaccharides of Penicillium charlesii. III. Heterogeneity in size and composition of high molecular weight polysaccharides. Arch. Biochem. Biophys. 134:324–334.
22. Reiss, E., and P. F. Lehmann. 1979. Galactomannan antigenemia in invasive aspergillosis. Infect. Immun. 25:357–365.
23. Rick, P. D., L. R. Drewes, and J. E. Gander. 1974. The 5-O-β-D-galactofuranosyl-containing glycopeptide of Penicillium charlesii. Occurrence of ethanolamine and partial characterization of peptide portion and the carbohydrate-peptide linkage. J. Biol. Chem. 249:2073–2078.
24. Ricke, S. C., D. M. Schaefer, M. E. Cook, and K. H. Kang. 1988. Differentiation of ruminal bacterial species by enzyme-linked immunosorbent assay using egg yolk antibodies from immunized chicken hens. Appl. Environ. Microbiol. 54:596–599.
25. Rietschel-Berst, M., N. H. Jentoft, P. D. Rick, C. Fletcher, F. Fang, and J. E. Gander. 1977. Extracellular exo-β-D-galactofuranosidase from Penicillium charlesii. Isolation, purification, and properties. J. Biol. Chem. 252:3219–3224.
26. Salt, S. D., and J. E. Gander. 1985. Variations in phosphoryl substituents in extracellular peptidophosphogalactomannans from Penicillium charlesii G. Smith. Exp. Mycol. 9:9–19.
27. Stynen, D., A. Goris, J. Sarfati, and J. P. Latgé. 1995. A new sensitive sandwich enzyme-linked immunosorbent assay to detect galactofuran in patients with invasive aspergillosis. J. Clin. Microbiol. 33:497–500.
28. Suzuki, S., and N. Takada. 1975. Serological cross reactivity of the D-galacto-mannan isolated from several pathogenic fungi against anti-Homodendrum pedrosorum serum. Carbohydr. Res. 49:193–197.
29. Swanink, C. M. A., J. F. G. M. Meis, A. J. M. M. Rijs, J. P. Donnelly, and P. E. Verweij. 1997. Specificity of a sandwich enzyme-linked immunosorbent assay for detecting Aspergillus galactomannan. J. Clin. Microbiol. 35:257–260.
30. Turco, S. J., and A. Descoteaux. 1992. The lipophosphoglycan of Leishmanina parasites. Annu. Rev. Microbiol. 46:55–94.
31. Unkefer, C. J., C. L. Jackson, and J. E. Gander. 1982. The 5-O-β-D-galactofuranosyl-containing glycopeptide from Penicillium charlesii. Identification of phosphocholine attached to C-6 of mannopyranosyl residues of the mannan region. J. Biol. Chem. 257:2491–2497.
32. Unkefer, C. J., and J. E. Gander. 1990. The 5-O-β-D-galactofuranosyl-containing glycopeptide from Penicillium charlesii. Characterization of the mannan by 13C NMR spectroscopy. J. Biol. Chem. 265:685–689.