Exploiting *Caenorhabditis elegans* to discover human gut microbiota-mediated intervention strategies in protein conformational diseases

Daniel M. Czyz

Age-dependent protein-conformational diseases (PCDs), such as Alzheimer’s disease (AD), Parkinson’s disease (PD), or amyotrophic lateral sclerosis (ALS), are characterized by misfolding and aggregation of metastable proteins present within the proteome of the affected individual. Recent evidence supports the notion that bacteria and bacterial products may be affecting the stability of these culprit host proteins and therefore influence disease progression and possibly even its onset. Although specific culprit proteins are associated with each disease (e.g., Aβ in AD, α-synuclein in PD, and TDP-43 in ALS), bacteria found to affect these diseases do not seem to differentiate between these specific proteins but likely affect host proteostasis in general, leading to misfolding of metastable proteins encoded within the proteome. The evidence that supports this hypothesis comes from studies where a single bacterial genus was linked to multiple PCDs. For example, a decrease in *Prevotella* spp. on *Caenorhabditis elegans* is linked to constipation, a condition that precedes PD motor symptoms by as much as 20 or more years (Savica et al., 2009; Zhu et al., 2014). Additionally, the abundance of *Prevotella* found in PD patients negatively correlates with the severity of the disease (Jin et al., 2019). *Prevotella* abundance was also lower in an AD mouse model (Shen et al., 2017) and ALS patients (Hertzberg et al., 2021), suggesting that this genus may provide protection against proteotoxicity. However, more research has to concentrate on *Prevotella* to understand its role in PCDs, as other studies have seen increased abundance in affected patients (Guo et al., 2021). Such discrepancy could be attributed to the large number of *Prevotella* species that may play diverse roles in disease pathogenesis, and since most studies looked at the genus level, the effect of individual species may provide additional clues. A recent study found two *Prevotella* species (i.e., *disiens* and *corporis*) that significantly suppressed polyglutamine protein aggregation in the *Caenorhabditis elegans* (C. elegans) model (Walker et al., 2021), suggesting that these specific species may enhance host proteostasis and protect the host against protein misfolding and aggregation. What is most promising is that the effect of *Prevotella* spp. on host proteostasis is observed across organisms, including worms, mice, and humans; therefore, less expensive, and manageable models, such as *C. elegans*, can be used as a discovery tool. The example of *Prevotella* and its potential role in the suppression of various PCDs demonstrates that bacteria affect host proteostasis and may be capable of influencing disease pathogenicity mediated by aggregation-prone proteins.

Butyrogenic bacteria are among other beneficial microbes whose abundance has negatively correlated with the pathogenicity of PCDs across many models. In the study by Walker et al. (2021), it was also noted that supplementation of exogenous butyrate, a short-chain fatty acid, protects *C. elegans* against bacteria-mediated polyglutamine aggregation and the associated toxicity. Additionally, butyrogenic bacteria had a similar protective effect. The results obtained in the *C. elegans* model seem to be conserved across all higher organisms, including humans, providing more traction in the exploration of butyrate as a potential therapeutic. These findings demonstrate that bacterial products can affect disease progression, which opens new avenues to target the microbial composition of the human gut as a promising therapeutic strategy. Further studies need to identify the mechanism by which butyrate suppresses bacteria-mediated disruption of host proteostasis.

Collectively the protective effect of butyrate and butyrogenic bacteria, *Prevotella* spp., and possibly other microbes, such as *Bacillus subtilis* that was recently found to suppress aggregation of α-synuclein in a PD *C. elegans* model (Goya et al., 2020), will likely open new opportunities for prevention, detection, and treatment of PCDs.

Prevention: Nearly all cases of PCDs have a late-onset and are sporadic, meaning individuals develop the disease without prior family history and only a small fraction of the affected individuals develop the early-onset familial type, which is inherited and is linked to specific genetic mutations. Individuals affected by the familial type are at the highest risk of developing the disease and therefore, any preventative measures early in life may offer opportunities to delay the onset or prevent disease pathogenesis (Figure 1); though, gut-targeted preventative approaches could be equally beneficial to both types of diseases since no differences in clinical symptoms were noted between familial and sporadic PD patients, suggesting a common etiology (Papapetropoulos et al., 2007). If bacteria indeed contribute to the pathogenesis of sporadic and familial cases, then early strategies that influence gut microbiota by targeting factors such as genetics, lifestyle, antibiotics, and diet may play a critical role in disease onset and progression. Among these various factors, antibiotics are the major contributor to gut dysbiosis – not surprisingly, the use of antibiotics, especially with broad-spectrum activity, was recently linked with increased risk of PD and ALS (Sun et al., 2019; Mertsalmi et al., 2020); however, the exact effect of antibiotics on PCDs is not well understood because of the lack of knowledge of the bacteria that contribute to these diseases. Walker et al. (2021) found that *Enterobacteriaceae* and other enteric gram-negative bacteria, namely *Pseudomonas aeruginosa*, disrupt host proteostasis and lead to toxic protein aggregation. In support of the idea that antibiotics contribute to PCDs, all of these bacterial species are well known for their resistance to antibiotics. As such, antibiotics could potentially select for resistant culprit bacteria that contribute to the disease pathogenesis while at the same time eliminate the population of the protective commensal bacteria.

Thus, bacteria-targeted prevention strategies would concentrate on eliminating harmful species and enriching the beneficial ones. Such a strategy will only be possible if we fully understand the contribution that each bacterial resident of the human microbiome has on host proteostasis. Ongoing research aims at deciphering the role of the human microbiome on host proteostasis and consequently PCDs.

Diagnostics: The accumulation of aggregate deposits of misfolded proteins leads to toxicity that manifests in disease onset and early symptoms. Diagnosing the disease or identifying the pre-disease stage early enough to apply intervention strategies is critical in mitigating PCDs. However, current methods of diagnostics rely on tests that often fail to capture the disease in the pre-symptom stage. The composition of the gut microbiota may offer a potential diagnostic tool (Figure 1).

Figure 1 | Targeting the human gut microbiota as a potential preventative, diagnostic, and therapeutic tool. Factors such as diet/probiotics, drugs/antibiotics, lifestyle, or genetics influence the human gut microbiota. Targeting these factors early in life could provide effective prevention strategies against PCDs. Furthermore, understanding the contribution of individual microbes and their products in disease pathogenesis will open new opportunities for disease diagnostics and therapeutics. SCFA: Short-chain fatty acids. Created with BioRender.com.
While the polyglutamine model offers scalability, affordability, feasibility and effective once we understand such therapeutic strategies will likely be more
patients (Arora et al., 2020). Such gut-targeted symptoms of AD (Scarmeas et al., 2006; Rusek et al., 2019). Additionally, the administration of Mediterranean and the ketogenic diet has been shown to decrease the risk for and alleviate
bacterium and is known to be associated with dysbiosis has been associated with other
microbes, such as butyrogenic bacteria, was shown to attenuate bacteria-mediated PCDs. Walker et al. (2021) found bacteria that disrupt protein folding upon intestinal colonization of the C. elegans polyglutamine model. While all of the identified microbes are detrimental and known to cause infections, they also colonize asymptomatic individuals; as such, identifying and elimination of these bacteria, especially from genetically predisposed individuals who are at risk of developing the familial disease type, could potentially affect disease onset and progression. One approach to target these detrimental species is by employing phages that kill bacteria with superb efficacy. Unlike antibiotics, phages have superior specificity towards bacteria which would allow for their utility in modifying the gut microbiome at the species level.

As the knowledge on bacterial contribution to PCDs increases, it is becoming more evident that healthcare will soon expand into personalized medicine to provide Intervention strategies that modulate individual gut microbiota. An increase in the abundance of beneficial bacteria and eliminating microbes that contribute to PCDs could offer an effective strategy to target these debilitating ailments (Figure 1).

Where do we go from here? While the protective effect of butyrogenic bacteria and Prevotella species described by Walker et al. provides only a glimpse of gut microbiota, the next obvious step is to decipher the effect of all residents of the human microbiome on PCDs. Such studies will be challenging and likely not feasible in rodents or humans; however, the C. elegans model offers scalability, affordability, and as emphasized above, the results seem to be conserved across higher organisms, including humans. A comprehensive understanding of the individual microbial contribution to host proteostasis is critical in the development of effective intervention strategies for PCDs. Further research will also have to explore the influence of disease stage and sexual dimorphism on the efficacy of microbiome-targeted therapeutic interventions.

The present work was supported by The National Institutes of Health (RO3AG069056-02, RO3AG070590-01) Infectious Diseases Society of America (to DMC).

Daniel M. Czyż
Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
Correspondence to: Daniel M. Czyż, dczy@ufl.edu
https://doi.org/10.4103/1673-5374.335788

How to cite this article: Czyż DM (2022) Exploiting Caenorhabditis elegans to discover human gut microbiota-mediated intervention strategies in protein conformational diseases. Neural Regen Res 17(10):2203-2205

Availability of data and materials: All data generated or analyzed during this study are included in this published article and its supplementary information files.

Open access statement: This is an open access journal, and articles are distributed under the terms of the Creative Commons AttributionNonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

Open peer reviewer: Gustavo Paccheco-Lopez, Univ Autonoma Metropolitana, Mexico.

Additional file: Open peer review report 1.

References

Arora K, Green M, Prakash S (2020) The microbiome and Alzheimer’s disease: potential and limitations of probiotic, prebiotic, and probiotic formulations. Front Biogeo Biotechnol doi: 10.3389/Fbioe.2020.537847.

Goya ME, Xue F, Sampredo-Torres Quevedo C, Arnoutelli S, Riquelme-Dominguez L, Romanowski A, Bryant J, Ball KL, Stanley-Wall NR, Doitsidou M (2020) Probiotic bacillus subtilis protects against α-synuclein aggregation in C. elegans. Cell Rep 30:367-380.

Guo M, Peng J, Huang X, Xiao L, Huang F, Zuo Z (2021) Gut microbiome features of Chinese patients newly diagnosed with Alzheimer’s disease or mild cognitive impairment. J Alzheimers Dis 80:299-310.

Hazar S (2020) Rapid improvement in Alzheimer’s disease symptoms following fecal microbiota transplantation: a case report. Int J Med Res Dev 48:0300060520929590.

Hertzberg VS, Singh H, Fournier CN, MoustaFA, Polak M, Kuelbs CA, Torralba MG, Tansey MG, Nelson KE, Glass JD (2021) Gut microbiome differences between amyotrophic lateral sclerosis patients and spouse controls. Amyotroph Lateral Scler Frontotemporal Degen doi: 10.1080/21678421.2021.1904949.

Jin M, Li L, Liu F, Lyu N, Wang K, Wang L, Liang S, Tao H, Zhu B, Alksnis R (2018) Analysis of the gut microbiota in patients with Parkinson’s disease. Front Neurosci 13:1184.

Mertsalmi TH, Pekkonen E, Scheperjans F (2020) Antibiotic exposure and risk of Parkinson’s disease in Finland: a nationwide case-control study. Mov Disord 35:431-442.

Papapetropoulos S, Adi N, Bluj I, Angriyu AA, Chroni E (2007) A prospective study of familial versus sporadic Parkinson’s disease. Neurodegener Dis 4:424-427.

Plassais J, Goblip-Benissan G, FigaroL G, Scheperjans G, Gorochov G, Derkinderen P, Cervino ACL (2021) Gut microbiome alpha-diversity is not a marker of Parkinson’s disease and multiple sclerosis. Brain Commun 3:eabc113.

Ruske M, Piuta R, Ulamek-Kozioł M, Czuczwar SJ (2019) Ketogenic diet in Alzheimer’s disease. Int J Mol Sci 20:3893.

Savio S, Carlin JM, Grossardt BR, Bower JH, Ahlsgk J, Marangone DM, Bharucha AE, Rocca WA (2009) Medical records documentation of constipation preceding Parkinson disease: a case-control study. Neurology 73:1752-1758.

Scarmeas N, Stern Y, Tang M-X, Mayeux R, Luchsinger JA (2006) Mediterranean diet and risk for Alzheimer’s disease. Ann NeuroL 59:912-921.

Shen L, Liu L, Ji HF (2017) Alzheimer’s disease histological and behavioral manifestations in transgenic mice correlate with specific gut microbiome state. J Alzheimers Dis 56:385-390.

Sun J, Zhan Y, Marious D, Larson H, Almqvist C, Ingre C, J, Ball KL, Stanley-Wall NR, Doitsidou M (2020) Probiotic bacillus subtilis protects against α-synuclein aggregation in C. elegans. Cell Rep 30:367-380.

Walker AC, Bhargava R, Vaziriyan-Sani AS, Pourciau C, Sun J, Zhan Y, Mariosa D, Larsson H, Almqvist C, Ingre C, Shen L, Liu L, Ji HF (2017) Alzheimer’s disease histological and Alzheimer’s disease: potential and limitations of probiotic, prebiotic, and probiotic formulations. Front Biogeo Biotechnol doi: 10.3389/Fbioe.2020.537847.