Intestinal epithelial cell metabolism at the interface of microbial dysbiosis and tissue injury

Eva Rath1 and Dirk Haller1,2,50

© The Author(s) 2022

Introduction - From Energy Deficiency to Chronic Inflammation

Inflammatory bowel diseases (IBD) are a paradigm for the complex interplay of gene-environment interactions in the development and progression of immune-mediated pathologies, and together with metabolic disorders, their incidence and prevalence are increasing, following a pattern of industrialization1,2. Crohn's disease and ulcerative colitis are the two main clinical phenotypes3 and dysbiotic changes of follow a pattern of industrialization1,2. Crohn's disease and ulcerative colitis are the two main clinical phenotypes3 and dysbiotic changes of inflammation predominantly affecting the ileo-colonic part of the intestine, while ulcerative colitis is restricted to the colonic mucosa. These anatomically and functionally distinct areas of the intestinal tract create spatially adapted microbial habitats, likely contributing to the heterogeneity of disease phenotypes in IBD. The intestinal epithelium represents the frontline of the complex pathogenesis, lying at the interface of luminal inflammatory triggers such as the microbiome and host immune cells, and a breach of this well-structured barrier is suggested as cornerstone of chronic inflammation. Consequently, episodes of tissue injury and incomplete healing of the intestinal epithelium are a prerequisite for immune reactivation and account for recurrent, chronically progressing phenotypes of IBD. Injury-associated stem cells are imperative in orchestrating tissue regeneration, and dynamic adaptations of mitochondrial metabolism in the intestinal stem cell (ISC) niche are essential to ensure tissue homeostasis. Thus, these results support the concept in which a reduced metabolic flexibility of IECs affects the regenerative capacity of the epithelium and renders the intestinal mucosa towards increased susceptibility to inflammatory triggers. Mitochondria are increasingly recognized as site of microbial signal-integration, and microbiome-derived metabolic signals emerge as an important player in determining the ability for mucosal healing. Intermittent flares of mucosal inflammation are associated with rapid individual changes in the microbiome of Crohn's disease patients, and relapsing as well as remitting Crohn's disease phenotypes are transmissive via fecal transfer in germ-free mouse models, supporting the hypothesis that functional alterations in the microbiome not only contribute to the progression but also to the remission of disease.

W.E. Roediger proposed in 1980 that ulcerative colitis is an energy deficiency disease of the intestinal epithelium defined by diminished butyrate oxidation leading to alterations in mucus synthesis, and crypt cell maturation. In the inflamed tissue microenvironment of IBD patients, infiltrating immune cells, together with the energy requirements of resident epithelial and stroma cells limit the available oxygen, and together with a reduced blood supply, these changes contribute to hypoxic conditions in chronic inflammation. Interestingly, mitochondrial dysfunction and associated changes in intestinal epithelial functions are suggested as early event in the pathogenesis of IBD, preceding inflammatory tissue aberrations. In particular, impaired mitochondrial function in intestinal epithelial cells (IEC) is associated with reduced stemness and Paneth cell dysfunction. However, even under inflammation-associated hypoxia, the remaining oxygen in the intestinal tissue is sufficient to support mitochondrial oxidative phosphorylation (OXPHOS), and these changes cannot explain the complex and early (before onset of histological inflammation) alterations in epithelial metabolism observed in intestinal inflammation. It seems an intriguing hypothesis that alterations in epithelial cell oxidative metabolism based on disturbed mitochondrial functions is not only a consequence, but rather a causal factor in the development of chronic intestinal

1Technical University of Munich, Chair of Nutrition and Immunology, Freising-Weihenstephan, Germany. 2Technical University of Munich, ZIEL Institute for Food & Health, Freising-Weihenstephan, Germany. 50email: dirk.haller@tum.de

Received: 20 December 2021 Revised: 16 March 2022 Accepted: 5 April 2022
Published online: 9 May 2022
Inflammation23–25. First hints towards this idea came from genome-wide association studies mapping IBD genetic risk loci to mitochondrial function-associated genes26–28, implying mitochondrial disturbances as underlying mechanism in IBD pathogenesis.

In this review, we introduce the concept of “metabolic injury” as a cell autonomous mechanism of organ and tissue wounding in response to mitochondrial perturbation (Fig. 1). By accounting for unresolved tissue injury, metabolic injury might play a key role in the pathogenesis of inflammatory and tumorigenic disorders of the digestive tract. Furthermore, we highlight epithelial metabolism as intersection of microbiome, immune cells and epithelial regeneration.

INTESTINAL EPITHELIAL ARCHITECTURE AND METABOLISM

The intestinal epithelium is a multicellular interface located in close proximity to a complex and dense microbial milieu. Simultaneously intestinal epithelial cells absorb nutrients, and form a physical and immune-mediated barrier against adverse components of the luminal environment. The intestinal epithelium represents the most regenerative tissue in the human body highlighted by the fact that self-renewal of this single cell-layered interface (30–40 m2) is completed every 3–5 days, most likely as a protective mechanism against injuries and infections. Under homeostatic conditions of self-renewal but also in response to injury, crypt base columnar cells (CBCs) expressing the leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) feed the transit amplifying zone of the epithelium, and progenitor cells finally differentiate into mature secretory (e.g., Paneth cells, goblet cells, enteroendocrine cells) and absorptive cells (columnar shaped enterocytes)29. Olfactomedin 4 (Olfm4), is an alternative marker for highly proliferative intestinal stem cells, co-expressed with, but not restricted to Lgr530 stem cells. Numbers of Olfm4 positive cells expands during mucosal healing processes30, and are implicated in colorectal cancer11. The Olfm4 gene shows an abnormal methylation and expression patterns in ulcerative colitis32, and encodes a putative secreted glycoprotein. Yet, Olfm4 is also involved in the regulation of mitochondrial respiration and cellular ATP level33. Paneth cells contribute to stem cell homeostasis and anti-microbial defence exclusively in the small intestine, while goblet cells are spread throughout the entire epithelial lining of the digestive tract, and specifically in the colon, these secretory cells produce a thick and well-structured mucus layer responsible for the sequestration of bacteria from the host14. Loss of Lgr53 stem cells in response to severe (often transmural) injury requires additional regenerative capacities in the intestine, involving quiescent slow-cycling cells located at the -4 position in the crypt, de-differentiated epithelial cells and reserve stem cells35. A breach in barrier integrity is associated with inflammatory pathologies36, and requires immediate action to restore barrier function and to induce mucosal healing37.

Metabolism, long perceived as mere supplier of ATP, is increasingly appreciated to reflect and determine cellular phenotypes. The central metabolic pathways, including mitochondrial OXPHOS, glycolysis, tricarboxylic acid (TCA) cycle, pentose phosphate pathway, fatty acid oxidation, fatty acid synthesis and amino acid metabolism, are tightly interrelated and essentially contribute to the availability of biosynthetic precursors and energy. Beyond constituting “building blocks”, central components of intermediary metabolism are co-factors or co-substrates of chromatin-modifying enzymes, and metabolic enzymes are directly involved in the control of gene expression38. Thus, metabolism and gene expression employ a regulatory interface, and consequently, IEC differentiation requires distinct metabolic identities, characterized by highly regulated changes in mitochondrial activity. Crypt cells including the stem cell niche and transit amplifying cells mainly rely on glycolysis for ATP generation, whereas differentiation and maturation of intestinal epithelial cells is accompanied by increased dependence on mitochondrial OXPHOS to meet their energetic needs. This metabolic gradient along the crypt-villus axis is reflected by the mitochondrial content of the cells, which also determines cellular levels of reactive oxygen species (ROS). The balance of ROS scavenger systems and ROS produced by the mitochondrial respiratory chain control the activation of mitochondria-dependent apoptotic cascades in senescent epithelial cells, hence mitochondrial functions steer and coordinate epithelial renewal and cell shedding39. Not only mitochondrial metabolism, but also mitochondrial proteostasis and the associated mitochondrial unfolded protein response (UPRmt) contribute to these processes and are involved in intestinal pathologies by controlling self-renewal and

![Fig. 1](image-url)
the proliferative capacity of the epithelium. This is not only critical to maintain epithelial homeostasis, but also crucial during inflammation and for differentiation processes associated with wound healing. Both require a tight regulation of cell proliferation and cell death programs and hence, mitochondrial functions. Furthermore, mitochondrial metabolism is a driving force in the generation of wound-associated epithelial cells—a cell type required for efficient barrier restoration upon injury. Thus, shifts in epithelial metabolism under inflammatory conditions might partly represent changes in IEC subtype composition and differentiation state and therefore, be secondary to inflammation. Vice versa, genetic risk factors affecting cellular metabolism might render particularly IECs sensitive to environmental triggers of inflammation, and thereby impair the regenerative capacity of the epithelium.

In the light of these findings, the functional plasticity of the intestinal epithelium and its regenerative response to injury are modulated or even controlled by mitochondrial metabolism, supporting the hypothesis that mitochondrial exhaustion contributes to the functional perturbation of the epithelium in IBD (referred to as metabolic injury).

MITOCHONDRIAL SIGNALING IN THE EPITHELIUM

Mitochondria play a profound role as platforms sensing the cellular environment and eliciting appropriate responses to cope with physiological disturbances. For example, mitochondria contribute to inflammatory processes by production of ROS, and mitochondrial DNA can act as damage-associated molecular pattern (DAMP), promoting inflammation through toll-like receptors.

Another IBD risk allele involved in the regulation of PP1F (encoding Cyclophilin D) affects cell death mechanisms by controlling mitochondrial membrane potential and the mitochondrial permeability transition pore (MPTP). Mitophagy removes dysfunctional mitochondria and several genetic risk variants are associated with this cellular process. Among these are PARK7, SMURF1, and NOD2, but also prominent IBD-related genes including ATG16L1 and PARK7.

In summary, changed expression of mitochondrial genes and proteins, mitochonldiopathy, perturbed mitochondrial dynamics, mitochondrial dysfunction, and activation of mitochondrial stress signaling were observed in IBD patients and added new facets to the old “energy deficiency” hypothesis (reviewed in). Consequently, mitochondrial metabolism and signaling including the UPR have been implicated in integrating nutrient- and microbiota-derived signals in the intestinal stem cell niche, critically affecting the regenerative capacity of the epithelium under homeostatic and disease conditions.

METABOLIC CIRCUITS BETWEEN THE MICROBIOME AND THE INTESTINAL EPITHELIUM

The human digestive tract harbors a complex array of microorganisms, including bacteria, archaea, viruses and fungi. Bacteria colonize the compartmentalized gastrointestinal tract in a spatially structured manner following a gradient from the proximal to the distal part of the intestine, reaching highest density and functional diversity in the colon. In comparison to the small intestine, the motility of the colon is substantially slowed down leading to a prolonged retention of luminal content (20–50 h) and the accumulation of biologically active metabolites. In this context, the term microbiome describes the “activity” including the complex physio-chemical characteristics of the microbial communities within the niche shaped by the host. Disruption of this microbiome-host symbiosis contributes to the initiation and progression of immune and metabolic diseases, such as IBD, graft-versus-host diseases (GVHD), and type 2 diabetes, underlining the proposition that microbe-host interactions are critically important for human health.

Several pathogens and their toxins specifically target and disrupt mitochondrial function and stress in IECs increases bacterial translocation. Yet, the mucosal interface not only responds to infections, but also to non-pathogenic bacteria. This finding seeded the idea that intestinal tissue homeostasis requires active engagement of multifaceted microbial (such as pattern recognition receptors) and chemical sensors (including olfactory receptors and purinergic receptors) that implicate the microbiome not only contributing to IBD progression but also to confer protective mechanisms. A main paradigm in IBD pathogenesis is that mucosal tolerance towards the “normal” microbiota is lost, and interestingly, mitochondrial dysfunction impairs the ability of the intestinal epithelium to be tolerant to commensal bacteria. On the other hand, the microbiome provides metabolic support for the epithelium, including butyrate, lactate, and purines (Fig. 2). Thus, the microbiome can modulate ISC niche function and host metabolism through direct contact or release of metabolic perturbations and limited metabolic flexibility sensitize the intestinal epithelium to additional insults. For example, SLC22A5 encodes the carnitine transporter OCTN2 involved in mitochondrial fatty acid oxidation. IRGM affects mitochondrial fission, a process crucial for the dynamic adaptation of mitochondrial function to physiological cellular changes. Another IBD risk allele involved in the regulation of the carnitine transporter OCTN2 involved in mitochondrial fatty acid oxidation.

The human digestive tract harbors a complex array of microorganisms, including bacteria, archaea, viruses and fungi. Bacteria colonize the compartmentalized gastrointestinal tract in a spatially structured manner following a gradient from the proximal to the distal part of the intestine, reaching highest density and functional diversity in the colon. In comparison to the small intestine, the motility of the colon is substantially slowed down leading to a prolonged retention of luminal content (20–50 h) and the accumulation of biologically active metabolites. In this context, the term microbiome describes the “activity” including the complex physio-chemical characteristics of the microbial communities within the niche shaped by the host. Disruption of this microbiome-host symbiosis contributes to the initiation and progression of immune and metabolic diseases, such as IBD, graft-versus-host diseases (GVHD), and type 2 diabetes, underlining the proposition that microbe-host interactions are critically important for human health.

Several pathogens and their toxins specifically target and disrupt mitochondrial function and stress in IECs increases bacterial translocation. Yet, the mucosal interface not only responds to infections, but also to non-pathogenic bacteria. This finding seeded the idea that intestinal tissue homeostasis requires active engagement of multifaceted microbial (such as pattern recognition receptors) and chemical sensors (including olfactory receptors and purinergic receptors) that implicate the microbiome not only contributing to IBD progression but also to confer protective mechanisms. A main paradigm in IBD pathogenesis is that mucosal tolerance towards the “normal” microbiota is lost, and interestingly, mitochondrial dysfunction impairs the ability of the intestinal epithelium to be tolerant to commensal bacteria. On the other hand, the microbiome provides metabolic support for the epithelium, including butyrate, lactate, and purines (Fig. 2). Thus, the microbiome can modulate ISC niche function and host metabolism through direct contact or release of metabolic perturbations and limited metabolic flexibility sensitize the intestinal epithelium to additional insults. For example, SLC22A5 encodes the carnitine transporter OCTN2 involved in mitochondrial fatty acid oxidation. IRGM affects mitochondrial fission, a process crucial for the dynamic adaptation of mitochondrial function to physiological cellular changes. Another IBD risk allele involved in the regulation of the carnitine transporter OCTN2 involved in mitochondrial fatty acid oxidation.

The human digestive tract harbors a complex array of microorganisms, including bacteria, archaea, viruses and fungi. Bacteria colonize the compartmentalized gastrointestinal tract in a spatially structured manner following a gradient from the proximal to the distal part of the intestine, reaching highest density and functional diversity in the colon. In comparison to the small intestine, the motility of the colon is substantially slowed down leading to a prolonged retention of luminal content (20–50 h) and the accumulation of biologically active metabolites. In this context, the term microbiome describes the “activity” including the complex physio-chemical characteristics of the microbial communities within the niche shaped by the host. Disruption of this microbiome-host symbiosis contributes to the initiation and progression of immune and metabolic diseases, such as IBD, graft-versus-host diseases (GVHD), and type 2 diabetes, underlining the proposition that microbe-host interactions are critically important for human health.

Several pathogens and their toxins specifically target and disrupt mitochondrial function and stress in IECs increases bacterial translocation. Yet, the mucosal interface not only responds to infections, but also to non-pathogenic bacteria. This finding seeded the idea that intestinal tissue homeostasis requires active engagement of multifaceted microbial (such as pattern recognition receptors) and chemical sensors (including olfactory receptors and purinergic receptors) that implicate the microbiome not only contributing to IBD progression but also to confer protective mechanisms. A main paradigm in IBD pathogenesis is that mucosal tolerance towards the “normal” microbiota is lost, and interestingly, mitochondrial dysfunction impairs the ability of the intestinal epithelium to be tolerant to commensal bacteria. On the other hand, the microbiome provides metabolic support for the epithelium, including butyrate, lactate, and purines (Fig. 2). Thus, the microbiome can modulate ISC niche function and host metabolism through direct contact or release of metabolic perturbations and limited metabolic flexibility sensitize the intestinal epithelium to additional insults. For example, SLC22A5 encodes the carnitine transporter OCTN2 involved in mitochondrial fatty acid oxidation. IRGM affects mitochondrial fission, a process crucial for the dynamic adaptation of mitochondrial function to physiological cellular changes. Another IBD risk allele involved in the regulation of the carnitine transporter OCTN2 involved in mitochondrial fatty acid oxidation.

The human digestive tract harbors a complex array of microorganisms, including bacteria, archaea, viruses and fungi. Bacteria colonize the compartmentalized gastrointestinal tract in a spatially structured manner following a gradient from the proximal to the distal part of the intestine, reaching highest density and functional diversity in the colon. In comparison to the small intestine, the motility of the colon is substantially slowed down leading to a prolonged retention of luminal content (20–50 h) and the accumulation of biologically active metabolites. In this context, the term microbiome describes the “activity” including the complex physio-chemical characteristics of the microbial communities within the niche shaped by the host. Disruption of this microbiome-host symbiosis contributes to the initiation and progression of immune and metabolic diseases, such as IBD, graft-versus-host diseases (GVHD), and type 2 diabetes, underlining the proposition that microbe-host interactions are critically important for human health.

Several pathogens and their toxins specifically target and disrupt mitochondrial function and stress in IECs increases bacterial translocation. Yet, the mucosal interface not only responds to infections, but also to non-pathogenic bacteria. This finding seeded the idea that intestinal tissue homeostasis requires active engagement of multifaceted microbial (such as pattern recognition receptors) and chemical sensors (including olfactory receptors and purinergic receptors) that implicate the microbiome not only contributing to IBD progression but also to confer protective mechanisms. A main paradigm in IBD pathogenesis is that mucosal tolerance towards the “normal” microbiota is lost, and interestingly, mitochondrial dysfunction impairs the ability of the intestinal epithelium to be tolerant to commensal bacteria. On the other hand, the microbiome provides metabolic support for the epithelium, including butyrate, lactate, and purines (Fig. 2). Thus, the microbiome can modulate ISC niche function and host metabolism through direct contact or release of metabolic perturbations and limited metabolic flexibility sensitize the intestinal epithelium to additional insults. For example, SLC22A5 encodes the carnitine transporter OCTN2 involved in mitochondrial fatty acid oxidation. IRGM affects mitochondrial fission, a process crucial for the dynamic adaptation of mitochondrial function to physiological cellular changes. Another IBD risk allele involved in the regulation of the carnitine transporter OCTN2 involved in mitochondrial fatty acid oxidation.
Chronic inflammation of the gut is associated with alterations in metabolic functions. This can be caused by reductions in substrates such as glutathione and overall energy metabolism, as well as on intestinal epithelial cells (IECs) suffering from mitochondrial perturbation. High levels of reactive oxygen species (ROS) and reactivate mitochondrial stress signaling pathways such as mitochondrial unfolded protein response (UPRmt). Host genetics impact the selection of microbiota (left) and mitochondrial functions (right). IEC metabolism in conjunction with microbiota-derived metabolites likely controls mucosal immune cell recruitment and differentiation, thus orchestrating healing responses. Vice versa, immune cell-derived factors such as cytokines steer epithelial responses by targeting mitochondrial functions and metabolism.

Intestinal epithelial mitochondrial function as intersection of microbiome, immune cells and epithelial regeneration. The intestinal epithelium senses the microbial environment via pattern recognition receptors and receptors sensing metabolites. Left: Under homeostatic conditions, intestinal epithelial cell (IEC) mitochondrial function contributes to the selection of a beneficial microbiome by maintaining low luminal oxygen concentration through oxidative phosphorylation (OXPHOS) and supporting production of antimicrobial peptides (AMPs). The microbiome provides metabolic support of epithelial cells by fermentation products such as short chain fatty acids (SCFAs), lactate, purines, and carnitines, thereby promoting cellular energetics and metabolic flexibility of IECs. As the ability to adapt mitochondrial functionality to the cellular demand determines the epithelial regenerative capacity, perturbations of mitochondrial metabolism result in metabolic injury of the epithelium (right). Shifting cellular metabolism away from OXPHOS to glycolysis (leading to elevated O2 levels) and impaired AMP production might result in dysbiosis, in turn aggravating the pro-inflammatory environment by reducing beneficial metabolites/ increasing disadvantageous microbial functions. IECs suffering from mitochondrial perturbation are exposed to high levels of reactive oxygen species (ROS) and activate mitochondrial stress signaling pathways such as mitochondrial unfolded protein response (UPRmt). Host genetics impact the selection of microbiota (left) and mitochondrial functions (right). IEC metabolism in conjunction with microbiota-derived metabolites likely controls mucosal immune cell recruitment and differentiation, thus orchestrating healing responses. Vice versa, immune cell-derived factors such as cytokines steer epithelial responses by targeting mitochondrial functions and metabolism.

Metabolic shaping of microbiome functions

![Diagram](image1.png)

Metabolic programming of cell function and phenotype

![Diagram](image2.png)

Orchestration of immune responses

![Diagram](image3.png)

MICROBIOME-DERIVED METABOLIC SIGNALS AND MUCOSAL HEALING

Fecal stream diversion in patients with active Crohn's disease and fecal microbial transplantation provided first clinical evidence to support the hypothesis that the intestinal microbial milieu contributes to disease recurrence. Microbiome alterations are evident in the initiation and progression of disease activity, and considering the high energy demand of the inflamed mucosa, the (disturbed) interplay of epithelial metabolic functions and the microbial milieu might be of particular relevance in IBD. Disturbed metabolic circuits between microbiome and host, including butyrate, carnitine, purine and tryptophan metabolism, are involved in the regulation of epithelial regenerative capacity and the development chronic inflammation, supporting the idea that mitochondrial perturbations contribute to IBD pathogenesis. In the anatomical location. Hence, small intestinal enterocytes predominantly utilize glucose and glutamine for energy generation, while microbiota-derived short-chain fatty acids (SCFA) represent the major energy source for colonocytes. There have been numerous reports indicating reductions in SCFA-producing bacteria in IBD. However, substantial interindividual variations are reported for SCFA levels and it is unlikely that the reductions in SCFAs observed under inflammatory conditions result in a primary energy deficiency of colonocytes. Under healthy conditions colonic concentrations of butyrate range from 10 to 20 mM (70–100 mM for the SCFAs acetate, propionate and butyrate combined) and portal vein plasma concentrations range from 14–20 µM, despite metabolism rates of 70–90% given for butyrate in colonocytes. Plasma concentrations of acetate and...
propionate are even higher than those of butyrate110, indicating a spillover of SCFAs into the blood stream and suggesting SCFA availability to exceed the physiological energy demand of colonocytes.

Furthermore, SCFAs regulate PGC\textsubscript{1}a, a major transcription factor of mitochondrial biogenesis, and other genes involved in energy metabolism while promoting IEC growth112–114. Consistently, colonocytes from germ-free mice show a metabolic shift from OXPHOS to glycolysis99 and concomitantly, diminished cell cycle progression115. These effects were associated with perturbed pyruvate dehydrogenase (PDH) function, and could be rescued by supplementation of butyrate115. Of note, the metabolic effects were attributed to butyrate serving as energy substrate and not butyrate acting as inhibitor of HDAC activity99, which has been reported to inhibit proliferation of colonic ISCs via FoxO\textsubscript{3}116. Propionate and acetate are additional substrates for the TCA cycle and ameliorate metabolic and intestinal diseases by activating intestinal gluconeogenesis (like microbiome-derived succinate117,118) and by enhancing innate immune responses via free fatty acid receptor 2 (FFAR2)-signaling119.

Similarly, lactate serves as energy substrate fueling OXPHOS, thereby enhancing intestinal stemness120. Microbiome-derived lactate furthermore accelerates colonocyte turnover121 and by activating Gpr81 either on Paneth cells or on stromal cells, augments Wnt factor-production, resulting in Lgr5 activating Gpr81 either on Paneth cells or on stromal cells, conditions, the intestinal microbiome produces and releases spillover of SCFAs into the blood stream and suggesting SCFA of mitochondrial biogenesis, and other genes involved in energy metabolism. By inducing genotoxic damage and impairing mitochondrial OXPHOS139,140, in IBD, increased abundance of sulfate-reducing bacteria (i.e., H\textsubscript{2}2-producers) and in parallel, decreased expression of mitochondrial proteins involved in H\textsubscript{2}\textsubscript{2}-detoxification on host side have been reported97 and a recent integrated microbiota and metabolite profile-analysis linked Clostridium1’s disease activity to bacterial sulfur metabolism12 (Fig. 3). Thus, not only loss-of-function but also gain-of-function of the microbiome is crucial for IBD pathogenesis.

EPITHELIAL METABOLIC SHAPING OF THE MICROBIOME

Several metabolic pathways are shared between microbiome and host, and common metabolites might originate from microbial or host metabolism. Hence, the question arises whether alterations in metabolite levels observed in the intestinal lumen under inflammatory conditions are due to microbiome alterations or mucosal dysfunction131. Tryptophan metabolism is a paradigm for shared and tightly entangled metabolic functions.

Intriguing aspects of host-microbiome interaction converging on tryptophan metabolism have been highlighted in Card9-deficient mice104, REG3A transgenic mice12 and Ido1-deficient mice135. Caspase recruitment domain family member 9 (CARD9) is a susceptibility gene for IBD and functions in the immune response against microorganisms. Host deficiency in Card9 or carrying CARD9 risk alleles results in a microbiome with reduced capability to metabolize tryptophan into Ahr ligands, resulting in increased colitis susceptibility in the mouse model104. Vice versa, mice transgenic for the human secreted antimicrobial peptide REG3A, display altered composition of their microbiota, favoring L-Ornithine-producing lactobacilli. In turn, microbiome-derived L-Ornithine promotes generation of the Ahr ligand L-kynurenine in IECs, increasing ILC3 cell numbers and intestinal mucus formation132. Similarly, increased tryptophan availability in mice deficient in tryptophan-metabolizing indoleamine 2,3 dioxygenase-1 (Ido1) leads to an expansion of intestinal lactobacilli which use tryptophan instead of sugars as energy source. Lactobacilli produce the Ahr ligand indole-3-aldehyde and thereby contribute to mucosal IL-22 expression and colonization resistance to the fungus *Candida albicans*133. These findings exemplify the bi-directional cross-talk between host genetics/host-derived factors, and microbiome composition/function, and its relevance to disease.

Despite enormous efforts in cataloguing microbiome alterations143, the functional specificity and cause of dysbiosis is not well understood144,145. An intriguing new concept suggests that metabolic reprogramming of the intestinal epithelium contributes to the dysbiotic adaptation of microbial communities146, highlighting the bi-directional metabolic interaction of microbiome and host at the intestinal interface.

The underlying hypothesis is that epithelial metabolism is integral to the mechanisms used by the host to shape the microbiome for its own benefit147. To achieve this, differentiated colonocytes are supposed to preferentially oxidize butyrate and other fatty acids and employ OXPHOS, with oxidation of SCFAs accounting for approximately 70% of oxygen consumption in colonocytes108. As a result of high epithelial oxygen consumption, the epithelial surface is kept in a hypoxic state, favoring a microbiota dominated by obligate anaerobic bacteria. Thereby, oxygen depletion fosters bacteria converting fiber into fermentation products and making an otherwise non-useable energy source...
Intestinal epithelial cell mitochondria serve as metabolic signaling platform translating microbiome-derived signals into mucosal responses. Intestinal epithelial cells (IECs) sense the microbial environment via pattern recognition receptors including toll-like receptors (TLR) and take up diet and microbiota-derived metabolites. Activation of TLR signaling can impact the electron transport chain (ETC) and oxidative phosphorylation (OXPHOS) via TNF receptor associated factor (TRAF) 6 and ECSIT (Evolutionarily conserved signaling intermediate in Toll pathway), altering production of reactive oxygen species (ROS). Viral sensing involves mitochondrial antiviral-signaling protein (MAVS) and initiates inflammatory responses i.e., activating NFκB pathway. Microbiota-derived metabolites feed the tricarboxylic acid (TCA) cycle and mitochondrial beta oxidation or can enhance cellular energetics through salvage pathways (purines). Hydrogen sulfide (H2S) produced by bacteria can as electron donor for the ETC, but at high concentrations, inhibit Complex IV activity and other mitochondrial proteins. Mitochondria are embedded in an organelle network, in particular, an exchange of calcium, FAD, and ATP with the endoplasmic reticulum (ER). Proteostasis, depending on protein import, chaperone activity, and proteases, is crucial to sustain mitochondrial functions, and disturbances of mitochondrial proteostasis are signaled by the mitochondrial unfolded protein response (UPRmt). Release of mitochondrial DNA and double-stranded (ds) mitochondrial RNA under stress conditions promotes inflammatory signaling and regulates cell cycle progression. Fission and fusion events as well as mitophagy are critical regulators of mitochondrial homeostasis and prevent accumulation of dysfunctional mitochondria and excess ROS production. Thus, mitochondria integrate environmental signals into metabolism, downstream employing various signaling pathways to contribute to cell fate decisions and determine cellular phenotypes. Gene names of known IBD risk variants involved in mitochondrial functions are given in dark red. AMPK AMP-activated protein kinase, NLRP3 NLR family pyrin domain containing 3, PGC1α Peroxisome proliferator-activated receptor gamma coactivator 1-alpha, PRK double-stranded RNA-activated protein kinase, SCFAs short chain fatty acids.

EPITHELIAL – IMMUNE CELL METABOLIC CIRCUITS
As mentioned above, tryptophan is catabolized by Ido1 in IECs as well as lamina propria immune cells, generating immunoregulatory kynurenine-based metabolites and resulting in tryptophan depletion. Under inflammatory conditions, such as IBD and GvHD but also in colorectal cancer (CRC), expression of Ido1 is strongly elevated\(^{154,155}\). Notably, the serum kynurenine to tryptophan ratio as a measure of Ido1 activity might be used as a disease biomarker\(^{156}\). The role of Ido1 and tryptophan metabolism, together with arginine metabolizing enzymes, has been extensively studied in the context of metabolic reprogramming of immune cells for balancing immunoregulatory and pro-inflammatory phenotypes\(^{157–159}\), thus being critical to wound healing, neoplasia, autoimmunity and the rejection of transplanted tissues\(^{155,160–162}\). Effects of Ido1 activity include promotion of T cell-mediated tolerance and antimicrobial effects\(^{134}\) and epithelial restitution and restoration of host-microbiome symbiosis.
Ido1 might also act at the site of expression to decrease T-cell proliferation and survival, diminishing colonic inflammation and reducing disease severity. Hence, the induction of Ido1 in intestinal epithelial cells under inflammatory conditions most likely represents an attempt to dampen immune cell activity and lower inflammation-associated tissue injury. In line, a subset of Paneth cells expressing Ido1 has recently been identified that might be involved in controlling immune responses towards the intestinal microbiome. Comparing epithelial Ido1 expression with the extensive data available for the role of Ido1 in immune cells and considering the concept of competition for nutrients in the control of immune responses, IECs potentially engage their metabolism to actively orchestrate mucosal immune responses. Determining the availability of metabolites in the IECs metabolism and function. For example, the pro-inflammatory cytokines TNF and IL-6, but also regulatory cytokines like IL-22 and IL-10 and transforming growth factor (TGF)-β inhibit Ido1, thus, activity of Ido1 in IECs reflects the balance between pro- and anti-inflammatory signals. Collectively, this highlights IECs metabolism and mitochondria as interface of microbiome and immune cell-derived signals and underlines the potential of epithelial metabolism as therapeutic target.

Attempts to modify IEC metabolism, using P110, a small peptide inhibitor of mitochondrial fission, or olaparib, a clinically applied PARP inhibitor improving mitochondrial function, already succeeded in reducing chemically induced colitis in mice. Additionally, established drugs like 5-amino salicylic acid, that already succeeded in reducing chemically induced colitis in mice, favor chronic inflammatory and tumorigenic disorders. Next to metabolites involved in host-microbiome metabolic communication discussed in this review, there is a vast number of additional candidate pathways like vitamin B12 and lipid metabolism that converge on epithelial function. Thus, a better molecular understanding of signals and mediators in regenerative tissue responses and resolution of metabolic injuries is critical to develop clinically-relevant therapeutic interventions focusing on the enforcement of epithelial regenerative capacity by improving metabolic fitness, a novel strategy for combating intestinal diseases.

OPEN QUESTIONS AND CONCLUSION

Metabolic fitness emerged as new frontier in intestinal epithelial homeostasis and disease pathogenesis, and multiple extrinsic as well as intrinsic factors converge at this junction. Mitochondrial dysfunction is an early event in IBD pathogenesis, preceding inflammatory tissue aberrations. Yet, it still needs to be clarified of whether these alterations are cause or consequence in response to injury and inflammation. These findings and insights gained in the field of host-microbiome symbiosis added new dimensions to the old hypothesis of IBD being an "energy deficiency disease" of the intestinal epithelium, evolving the idea of epithelial metabolism as central gatekeeper of barrier integrity and mucosal tolerance.

We propose that intrinsic defects in cellular metabolism cause epithelial dysfunction (metabolic injury) evoking attempts of the ISC niche to reconstitute normal tissue architecture and function. Metabolic injury may cause aberrant tissue responses reminiscent of intestinal reconstitution and, failure to resolve metabolic injuries leads to incomplete tissue healing and persistence of focal inflammatory lesions, predisposing IBD patients to remitting disease phenotypes or even tumor formation. The underlying causes of metabolic injury are most likely highly individual, and comprise an interrelated portfolio of genetic susceptibility and triggers from the luminal environment, including diet and the microbiome. Functional adaptations of the epithelium and in particular, the ISC niche are initiated by extrinsic signals affecting cellular metabolism. It remains largely elusive which factors targeting mitochondrial function control epithelial cell regeneration in response to metabolic disruption, and how these signals contribute to either healing and tissue homeostasis, or favor chronic inflammation or tumorigenesis.

More research is needed to elucidate the metabolic program of the intestinal interface, and its pathogenic role in the etiology of inflammatory and tumorigenic disorders. Next to metabolites involved in host-microbiome metabolic communication discussed in this review, there is a vast number of additional candidate pathways like vitamin B12 and lipid metabolism that converge on epithelial function. Thus, a better molecular understanding of signals and mediators in regenerative tissue responses and resolution of metabolic injuries is critical to develop clinically-relevant therapeutic interventions focusing on the enforcement of epithelial regenerative capacity by improving metabolic fitness, a novel strategy for combating intestinal diseases.

REFERENCES

1. Ng, S. C. et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 390, 2769–2778 (2018).
2. Piovani, D. et al. Environmental risk factors for inflammatory bowel diseases: an umbrella review of meta-analyses. Gastroenterology 157, 647–659 e644 (2019).
3. Chang, J. T. Pathophysiolog of Inflammatory Bowel Diseases. N. Engl. J. Med. 383, 2652–2664 (2020).
4. Nasser, J. et al. Genome-wide enhancer maps link risk variants to disease genes. Nature 593, 238–243 (2021).
5. de Lange, K. M. et al. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat. Genet 49, 255–261 (2017).
6. Justins, L. et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119–124 (2012).
7. Yadv, P. et al. Genetic factors interact with tobacco smoke to modify risk for inflammatory bowel disease in humans and mice. Gastroenterology 153, 550–565 (2017).
8. Urbauer, E., Rath, E. & Haller, D. Mitochondrial metabolism in the intestinal stem cell niche-sensing and signaling in health and disease. Front. Cell Dev. Biol. 8, 602814 (2020).
9. Ho, G. T. & Theiss, A. L. Mitochondria and inflammation and cancer. Gut Microbes 11, 285–304 (2020).
10. Cheng, C. W. et al. Ketone body signaling mediates intestinal stem cell homeostasis and adaptation to diet. Cell 178, 1115–1131 e1115 (2019).
11. Metwally, A. et al. Integrated microbiota and metabolite profiles link Crohn’s disease to sulfur metabolism. Nat. Commun. 11, 4322 (2020).
12. Roediger, W. E. The colonic epithelium in ulcerative colitis: an energy deficiency disease? Lancet 2, 712–715 (1980).
13. Colgan, S. P. & Taylor, C. T. Hypoxia: an alarm signal during intestinal inflammation. Nat. Rev. Gastroenterol. Hepatol. 7, 281–287 (2010).
14. Colgan, S. P., Curtis, V. F. & Campbell, E. L. The inflammatory tissue microenvironment in IBD. Inflamm. Bowel Dis. 19, 2238–2244 (2013).
15. Santhanam, S. et al. Mitochondrial electron transport chain complex dysfunction in the colonic mucosa in ulcerative colitis. Inflamm. Bowel Dis. 18, 2158–2168 (2012).
16. Siffroni, K. G. et al. Mitochondrial respiratory chain in the colonic mucosal of patients with ulcerative colitis. Mol. Cell Biochem 342, 111–115 (2010).
17. Kholoian, S., et al. Mitochondrial impairment drives intestinal stem cell transition into dysfunctional Paneth cells predicting Crohn’s disease recurrence. Gut 69, 1939–1951 (2020).
18. VanDusen, K. L. et al. Genetic variants synthesize to produce paneth cell phenotypes that define subtypes of Crohn’s disease. Gastroenterology 146, 200–209 (2014).
19. Jackson, D. N. et al. Mitochondrial dysfunction during loss of prohibitin 1 triggers Paneth cell defects and ileitis. Gut 69, 1928–1938 (2020).
20. Alula K. M., et al. Targeting mitochondrial damage as a therapeutic for ileal Crohn’s disease. Cells 10, 1349 (2021).
22. Berger, E. et al. Mitochondrial function controls intestinal epithelial stemness and proliferation. Nat. Commun. 7, 13171 (2016).

23. Beltran, B. et al. Mitochondrial dysfunction, persistent oxidative damage, and catalase inhibition in immune cells of naive and treated Crohn’s disease. Inflamm. Bowel Dis. 16, 76–86 (2010).

24. Fukushima, K. & Fiacchi, C. Paradigmatic decrease of mitochondrial DNA deletions in epithelial cells of active ulcerative colitis patients. Am. J. Physiol. Gastrointest. Liver Physiol. 286, G804–G813 (2004).

25. Roediger, W. E. & Nance, S. Metabolic induction of experimental ulcerative colitis by inhibition of fatty acid oxidation. Br. J. Exp. Pathol. 67, 773–782 (1986).

26. Martinez, A. et al. Association of the organic cation transporter OCTN genes with epithelial cell function. Biochim. Biophys. Acta 1766, 103–107 (2006).

27. Lamhonwah, A. M. & Tein, I. Novel localization of OCTN1, an organic cation/ carnitine transporter, to mammalian mitochondria. Biochem. Biophys. Res. Commun. 345, 1315–1325 (2006).

28. Yu, X. et al. Association of UCP2 −866 G/A polymorphism with chronic inflammatory diseases. Genes Immun. 10, 601–605 (2009).

29. Barker, N. Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat. Rev. Mol. Cell Biol. 15, 19–33 (2014).

30. van der Flier, L. G., Haegearth, A., Stange, D. E., van de Wetering, M. & Clevers, H. OLFM4 is a robust marker for stem cells in human intestine and marks a subset of colorectal cancer cells. Gastroenterology 137, 15–17 (2009).

31. Liu, W. et al. Olfactomedin 4 deletion induces colon adenocarcinoma in Apc (Min+/+) mice. Oncogene 35, 5237–5247 (2016).

32. Taman, H. et al. Genome-wide DNA methylation in treatment-naive ulcerative colitis. J. Crohns Colitis 12, 1338–1347 (2018).

33. Liu, W. et al. Olfactomedin 4 deletion improves male mouse glucose intolerance and insulin resistance induced by a high-fat diet. Endocrinology 159, 3235–3244 (2018).

34. Kurashima, Y. & Kiyono, H. Mucosal ecological network of epithelium and immune cells for gut homeostasis and tissue healing. Annu. Rev. Immunol. 35, 119–147 (2017).

35. Rees, W. D., Tandrun, R., Yau, E., Zachos, N. C. & Steiner, T. S. Regenerative intestinal stem cells induced by acute and chronic injury: the saving grace of the intestinal epithelium? Front. Cell Dev. Biol. 8, 583919 (2020).

36. Nakata, C. A. Does the epithelial barrier hypothesis explain the increase in allergy, inflammation and insulin resistance induced by a high-fat diet. Nat. Rev. Gastroenterol. Hepatol. 13, 1176–1184 (2016).

37. Kaser, A. et al. XBP1 links ER stress to intestinal inflammation. Mucosal. Immunol. 11, 120–130 (2018).

38. Boyapati, R. K. et al. Mitochondrial DNA is a pro-inflammatory mediator in active IBD and promotes intestinal inflammation. Mucosal. Immunol. 11, 120–130 (2018).

39. Martinez, A. et al. Genome-wide association study for ulcerative colitis identifies risk loci at 7q22 and 21q13 (L17REL). Nat. Genet. 42, 292–294 (2010).

40. Akdis, C. A. Does the epithelial barrier hypothesis explain the increase in allergy, inflammation and immune cells for gut homeostasis and tissue healing. Nat. Genet. 40, 955–962 (2008).

41. Wang, J. et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat. Genet. 39, 207–211 (2007).

42. Nomura, M. et al. Role of autophagy in the pathogenesis of inflammatory bowel disease. World J. Gastroenterol. 23, 1944–1953 (2017).

43. Akdis, C. A. Does the epithelial barrier hypothesis explain the increase in allergy, inflammation and immune cells for gut homeostasis and tissue healing. Nat. Rev. Gastroenterol. Hepatol. 13, 1176–1184 (2016).

44. Barret, J. C. et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat. Genet. 40, 955–962 (2008).

45. Shkoda, A. et al. Interleukin-10 blocked endoplasmic reticulum stress in intestinal epithelial cells induced by acute and chronic injury: the saving grace of the intestinal epithelium? J. Crohns Colitis 12, 1338–1347 (2018).

46. Kaser, A. et al. XBP1 links ER stress to intestinal inflammation. Mucosal. Immunol. 11, 120–130 (2018).

47. Akdis, C. A. Does the epithelial barrier hypothesis explain the increase in allergy, inflammation and immune cells for gut homeostasis and tissue healing. Nat. Genet. 40, 955–962 (2008).

48. Hampe, J. et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat. Genet. 39, 207–211 (2007).

49. Akdis, C. A. Does the epithelial barrier hypothesis explain the increase in allergy, inflammation and immune cells for gut homeostasis and tissue healing. Nat. Genet. 40, 955–962 (2008).

50. E. Rath and D. Haller
Boets, E. et al. Systemic availability and metabolism of colonic-derived short-chain fatty acids in human intestinal epithelial cells. Sci. Rep. 9, 643 (2019).

Lee, Y. S. et al. Microbiota-derived lactate accelerates intestinal stem-cell-mediated epithelial development. Cell Host Microbe 24, 833–846 e836 (2018).

Cader, M. Z. et al. FAMIN is a multifunctional purine enzyme enabling the purine nucleotide cycle. Cell 170, 278–295 e223 (2020).

Ocansey, D. K. W. et al. Mesenchymal stem cell-gut microbiota interaction in the repair of inflammatory bowel disease: an enhanced therapeutic effect. Clin. Transl. Med. 8, 31 (2019).

Everard, A. et al. Intestinal epithelial MyD88 is a sensor switching host metabolism towards obesity according to nutritional status. Nat. Commun. 5, 5648 (2014).

Mardougou, A. et al. The gut microbiota modulates host amino acid and glutathione metabolism in mice. Mol. Syst. Biol. 11, 834 (2015).

Donohoe, D. R. et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 13, 517–526 (2011).

Macpherson, A. J. & McCoy, K. D. Standardised animal models of host microbial mutualism. Mucosal Immunol. 8, 476–486 (2015).

Wichmann, A. et al. Microbial modulation of energy availability in the colon regulates intestinal transit. Cell Host Microbe 14, 582–590 (2013).

De Preter, V. et al. Impaired butyrate oxidation in ulcerative colitis is due to decreased butyrate uptake and a defect in the oxidation pathway. Inflamm. Bowel Dis. 18, 1127–1136 (2012).

Delpire, G., Avidor, I., Steinherz, R., Kadish, U. & Ben-Bassat, M. Ultrastructural abnormalities in endoscopically and histologically normal and involved colon in ulcerative colitis. Am. J. Gastroenterol. 84, 1038–1046 (1989).

van Lier Y. F. et al. Donor fecal microbiota transplantation ameliorates intestinal graft-versus-host disease in allogeneic hematopoietic cell transplant recipients. Sci. Transl. Med. 12, eaaz8926 (2020).

PARAMSOORY, S. et al. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. Lancet 389, 1218–1228 (2017).

Kootte, R. S. et al. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metab. 26, 611–619 e616 (2017).

Rutgeerts, P. et al. Effect of faecal stream diversion on recurrence of Crohn’s disease in the neoterminal ileum. Lancet 338, 771–774 (1991).

D’Haens, G. R. et al. Early lesions of recurrent Crohn’s disease caused by infusion of intestinal contents in excluded ileum. Gastroenterol. 114, 262–267 (1998).

Smith S. A., et al. Mitochondrial dysfunction in intestinal barrier function via the aryl hydrocarbon receptor. Mucosal Immunol. 9, 596–966 (2015).

Liu, Z. et al. Aryl hydrocarbon receptor activation maintained the intestinal epithelial barrier function through Notch1-dependent signaling pathway. Int. J. Mol. Med. 41, 1560–1572 (2018).

Metidji, A. et al. The environmental sensor AHR protects from inflammatory damage by maintaining intestinal stem cell homeostasis and barrier integrity. Immunity 49, 353–362 e355 (2018).

Scott, S. A., Fu, J. & Chang, P. V. Microbial tryptophan metabolites regulate gut barrier function via the aryl hydrocarbon receptor. Proc. Natl Acad. Sci. USA 117, 19376–19387 (2020).

Cervantes-Barragan, L. et al. Lactobacillus reuteri induces gut intraepithelial CD4(+)CD8alphaalpha T cells. Science 357, 806–810 (2017).

Leon, G., Neumann, P. A., Sumagin, R., Denning, T. L. & Nusrat, A. Wound repair: role of immune-epithelial interactions. Mucosal Immunol. 8, 599–968 (2015).

Liu, Z. et al. Aryl hydrocarbon receptor activation maintained the intestinal epithelial barrier function through Notch1-dependent signaling pathway. Int. J. Mol. Med. 41, 1560–1572 (2018).

Metidji, A. et al. The environmental sensor AHR protects from inflammatory damage by maintaining intestinal stem cell homeostasis and barrier integrity. Immunity 49, 353–362 e355 (2018).

Scott, S. A., Fu, J. & Chang, P. V. Microbial tryptophan metabolites regulate gut barrier function via the aryl hydrocarbon receptor. Proc. Natl Acad. Sci. USA 117, 19376–19387 (2020).

Casado, F. L. The aryl hydrocarbon receptor relays metabolic signals to promote intestinal barrier function. Cell Metab. 21, 1572 (2018).

Rath and D. Haller / Mucosal Immunology (2022) 15:595 – 604
