Direct Electron Transfer of Catalase and its Biosensing for H2O2

Yan-Na NINGa, Bao-Lin XIAOb, Di LIc, Jun HONGd,*

School of Life Sciences, Henan University, Kaifeng 475000, China

a2287280014@qq.com, barixxl@163.com, c1742043028@qq.com, dhongjun@henu.edu.cn

*Corresponding author

Yan-Na NING, Bao-Lin XIAO and Di LI contributed equally to this work.

Keywords: Catalase, Direct electron transfer, H2O2, Nano Composites.

Abstract. By immobilizing catalase on a functional nanocomposites containing ion-liquid, TiO\textsubscript{2} nano particles and carboxylic acid functionalized multi-walled carbon nanotubes, direct electron transfer of CAT was realized on the nanocomposites modified glassy carbon electrode. The electrochemical study showed that the formal potential and heterogeneous electron transfer constant of the prepared modified glassy carbon electrode were -0.163 V and 5.24 s-1, respectively. The electrocatalysis study showed that the linear response range toward H2O2 and the apparent Michaelis–Menten constant were from 5 µM to 1000 µM and 54.3 µM, respectively.

Introduction

The direct electrochemistry of redox proteins and enzymes on the electrodes can not only obtain important information such as thermodynamics and dynamics, but also help to understand and understand the mechanism of their electron transfer in life and the construction of a biosensor without the need of mediator\cite{1-6}.

Catalase (CAT) is a dumbbell-shaped tetrameric heme containing enzyme (220-350kD)\cite{7, 8}. Due to the large steric hindrance effect, the direct electron transfer between CAT and electrodes is usually difficult to observe.

Many nanomaterials have been applied to the electrochemical study of redox proteins. However, the strong hydrophobic effects of some nanomaterials may cause the conformational changes and inactivation of redox proteins. Therefore, it may be a new approach to realize direct electrochemistry of a redox protein by immobilizing it on a functional nanocomposites modified electrode \cite{9-29}.

In the present study, CAT was immobilized on a functional nanocomposites containing ion-liquid (IL), TiO\textsubscript{2} nano particles and carboxylic acid functionalized multi-walled carbon nano-tubes. Direct electron transfer of CAT was realized on a glassy carbon (GC) electrode and a novel biosensor for H2O2 was constructed.

Experimental

Reagents and Apparatus

CAT, Nafion (NF, 5% ethanol solution) and H\textsubscript{2}O\textsubscript{2} (v/v 30%) were obtained from Sigma, Saint. Louis, MO, USA. TiO\textsubscript{2} nanoparticles and Multi-walled carbon nano-tubes (MWCNTs) were from Shenzhen Nanotech Port Co., Ltd, China. Other chemicals were of analytical grade. Double distilled water was also used in this research. An electrochemical workstation
(CHI650C, Shanghai CHI Instrument Co. Ltd., China) was applied for electrochemical measurements. A Pt wire, an Ag/AgCl and a GC electrode were applied as the counter, reference and working electrodes, respectively.

Fabrication of NF/CAT/IL-CMWCNTs-TiO2/GC Electrode.

The Functionalization of MWCNTs was based on literature [27]. The modified electrode was prepared as following: at first, 2μl of the mixture of the prepared carboxylic acid functionalized multi-walled carbon nanotubes (CMWCNTs) (2 mg/ml) and TiO2 nano particles (1 mg/ml) (ratio of volume: 1) was added to the working surface of a new prepared GC electrode. Then, 1 μl IL was added on the electrode and dried for 4h at room temperature. Afterwards, 2μl CAT was added and dried for 12 hours at 4 ºC. Finally, 2μl NF was added for protection.

Results and Discussion

![Graphs](image)

Figure 1. (A) CVs of (a) NF/CAT/IL-CMWCNTs-TiO2/GC electrode and (b)NF/CAT/CMWCNTs-TiO2/GC electrode, respectively, in 0.05 M PBS (pH 7.0) at a scan rate of 0.05 V/s. (B) CVs of NF/CAT/IL-CMWCNTs-TiO2/GC electrode at various scan rates from 0.01 to 2.0 V/s. (C) Plot of peak current (Ip) versus scan rate υ. (D) Plot of peak potential (Ep) versus logarithm of scan rate υ.

The cyclic voltammograms (CVs) of: (a) NF/CAT/IL-CMWCNTs-TiO2/ GC electrode; (b)NF/CAT/CMWCNTs-TiO2/GC electrode are shown in Fig. 1A. The redox peaks of electrode (a), with a formal potential \[E^{°}=(E_{pa}+E_{pc})/2\] of -0.163 V (versus Ag/AgCl), are obviously stronger than that of electrode (b). It seems that the IL may help to increase the redox peak currents significantly. Moreover, the direct electron transfer of CAT at a bare GC electrode was too slow to be observed (data not shown).

Scan rate effects on NF/CAT/IL-CMWCNTs-TiO2/GC electrode are shown in Fig. 1B. The peak currents increased linearly with the increase of scan rate (υ) (Fig. 1C), which means that the electroactive substance (CAT) has been immobilized on the electrode surface [30]. The
cathodic peak potential in the range from 1.0 to 2.0 V/s changes linearly with lnυ (Fig. 1D). According to Eq. 1[31]:

\[E_p = E^{oc} + \frac{RT}{anF} - \frac{RT}{anF} \ln \nu \]

(1)

Where, R, T, α, n, and F are gas constant (8.314 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}), temperature (298 K here), cathodic electron transfer coefficient, number of electrons, and Faraday constant (96500 \text{ C} \cdot \text{mol}^{-1}), respectively. Then, α and n were calculated to be 0.33 and 1, respectively [32].

By using the Eq.2[33], the electron transfer rate constant (k_s) was obtained to be 5.24 s^{-1}:

\[\ln k_s = \alpha \ln (1 - \alpha) + (1 - \alpha) \ln a - \ln \left(\frac{RT}{nF \nu} \right) - \alpha (1 - \alpha) \frac{nF \Delta E_p}{RT} \]

(2)

By using the slope of I_p versus ν in Eq.3, the surface concentration (Γ) of CAT on the GC electrode was estimated to be 9.23×10^{-11} \text{ mol/cm}^2:

\[I_p = \frac{n^2 F^2 A \Gamma \nu}{4RT} \]

(3)

Figure 2. (A) The linear response range of the cathodic peak current of NF/CAT/IL-CMWCNTs-TiO2/GC electrode toward H2O2. (B) Determination of the H2O2 detection limit for the modified GC electrode. (C) Lineweaver–Burk plot for Kmapp determination.
The cathodic peak current of increases with the increase of H₂O₂ concentration, and has a linear relationship with the concentration of H₂O₂ at 5.0 to 1000 μM (Fig. 2A). The detection limit is 5.0 μM (Fig. 2B). The apparent Michaelis–Menten constant (K_{m}^{app}) is 54.3 μM (Fig. 2C) from the electrochemical version of Linewaver–Burk Eq.4 [5, 6, 30]:

$$\frac{1}{I_s} = \frac{1}{I_{max}} + \frac{K_{m}^{app}}{I_{max}C}$$

Where, c, I_s and I_{max} are H₂O₂ concentration in the bulk solution, steady-state current after the addition of H₂O₂ and maximum current measured under saturated substrate conditions, respectively.

Conclusions

Direct electron transfer CAT was realized on a functional IL-CMWCNTs-TiO₂ nanocomposites modified GC electrode. A novel biosensor for H₂O₂ was constructed by using the modified GC electrode.

Acknowledgement

The support of the Natural Science Foundation of Henan Province Science (182300410217), Henan University Science Foundation (Y1425013) and Project of Toxic and Harmful Gas Monitoring System (FX2222F08712) are gratefully acknowledged.

References

[1] H.A.O.H. Fraser A. Armstrong, Nicholas J. Walton, Direct electrochemistry of redox proteins, Accounts of Chemical Research, 21 (1995) 407-413.

[2] H.A.O. Hill, The development of bioelectrochemistry Coordination Chemistry Reviews, 151 (1996) 115-123.

[3] F.A. Armstrong, G.S. Wilson, Recent developments in faradaic bioelectrochemistry, Electrochimica Acta, 45 (2000) 2623-2645.

[4] D.R. Thévenot, K. Toth, R.A. Durst, G.S. Wilson, Electrochemical biosensors: recommended definitions and classification, Analytical Letters, 34 (2001) 635-659.

[5] J. Hong, W.Y. Yang, Y.X. Zhao, B.L. Xiao, Y.F. Gao, T. Yang, H. Ghourchian, Z. Moosavi-Movahedi, N. Sheibani, J.G. Li, Catalase immobilized on a functionalized multi-walled carbon nanotubes–gold nanocomposite as a highly sensitive bio-sensing system for detection of hydrogen peroxide, Electrochimica Acta, 89 (2013) 317-325.

[6] J. Hong, Y.X. Zhao, B.L. Xiao, M.M.A. Akbar, G. Hedayatollah, S. Nader, Direct Electrochemistry of Hemoglobin Immobilized on a Functionalized Multi-Walled Carbon Nanotubes and Gold Nanoparticles Nanocomplex-Modified Glassy Carbon Electrode, Sensors, 13 (2013) 8595-8611.
[7] I. Fita, M.G. Rossmann, The active center of catalase, Journal of Molecular Biology, 185 (1985) 21-37.

[8] H.M. Jouve, P. Gouet, N. Boudjada, G. Buisson, R. Kahn, E. Duee, Crystallization and crystal packing of Proteus mirabilis PR catalase, Journal of Molecular Biology, 221 (1991) 1075-1077.

[9] S. Iijima, Helical microtubules of graphitic carbon, Nature, 354 (1991) 56-58.

[10] T.W. Ebbesen, P.M. Ajayan, Large-scale synthesis of carbon nanotubes, Nature, 358 (1992) 220-222.

[11] P.M. Ajayan, Nanotubes from Carbon, Chemical Reviews, 99 (1999) 1787-1800.

[12] M. Li, P. He, Y. Zhang, N. Hu, An electrochemical investigation of hemoglobin and catalase incorporated in collagen films, Biochimica et biophysica acta. Proteins and Proteomics, 1749 (2005) 43-51.

[13] A. Salimi, A. Noorbakhsh, M. Ghadermarz, Direct electrochemistry and electrocatalytic activity of catalase incorporated onto multiwall carbon nanotubes-modified glassy carbon electrode, Analytical Biochemistry, 344 (2005) 16-24.

[14] F.W. Scheller, N. Bistolas, S. Liu, M. Jänchen, M. Katterle, U. Wollenberger, Thirty years of haemoglobin electrochemistry, Advances in Colloid & Interface Science, 116 (2005) 111-120.

[15] H. Chen, Y. Wang, Y. Wang, S. Dong, E. Wang, One-step preparation and characterization of PDDA-protected gold nanoparticles, Polymer, 47 (2006) 763-766.

[16] A. Salimi, A. Noorbakhsh, M. Ghadermarzi, Amperometric detection of nitrite, iodate and periodate at glassy carbon electrode modified with catalase and multi-wall carbon nanotubes, Sensors & Actuators B Chemical, 1 (2006) 530-537.

[17] Y. Wu, Q. Shen, S. Hu, Direct electrochemistry and electrocatalysis of heme-proteins in regenerated silk fibroin film, Analytica Chimica Acta, 558 (2006) 179-186.

[18] J. Di, M. Zhang, K. Yao, S. Bi, Direct voltammetry of catalase immobilized on silica sol-gel and cysteine modified gold electrode and its application, Biosensors & Bioelectronics, 22 (2007) 247-252.

[19] A. Salimi, E. Sharifi, A. Noorbakhsh, S. Soltanian, Direct electrochemistry and electrocatalytic activity of catalase immobilized onto electrodeposited nano-scale islands of nickel oxide, Biophysical Chemistry, 125 (2007) 540-548.

[20] H.J. Jiang, H. Yang, D.L. Akins, Direct electrochemistry and electrocatalysis of catalase immobilized on a SWNT-nanocomposite film, Journal of Electroanalytical Chemistry, 623 (2008) 181-186.

[21] J. Wang, Attachment of Nanoparticles to Pyrolytic Graphite Electrode and Its Application for the Direct Electrochemistry and Electrocatalytic Behavior of Catalase, Analytical Letters, 41 (2008) 1832-1849.
[22] H. Zhou, T.H. Lu, H.X. Shi, Z.H. Dai, X.H. Huang, Direct electrochemistry and electrocatalysis of catalase immobilized on multi-wall carbon nanotubes modified glassy carbon electrode and its application, Journal of Electroanalytical Chemistry, 612 (2008) 173-178.

[23] G.F. Chen, Z.Q. Liang, G.X. Li, G.F. Chen, Z.Q. Liang, G.X. Li, G.F. Chen, Z.Q. Liang, G.X. Li, G.F. Chen, Progress of electrochemical biosensors fabricated with nanomaterials, Acta Biophysica Sinica, 26 (2010) 711-725.

[24] N.M. Dimitrijevic, D.M. Bartels, C.D. Jonah, K. Takahashi, T. Rajh, Radiolytically Induced Formation and Optical Absorption Spectra of Colloidal Silver Nanoparticles in Supercritical Ethane, The Journal of Physical Chemistry B, 105 (2001) 954-959.

[25] P. Rahimi, H.A. Rafiee-Pour, H. Ghourochian, P. Norouzi, M.R. Ganjali, Ionic-liquid/NH2-MWCNTs as a highly sensitive nano-composite for catalase direct electrochemistry, Biosensors & Bioelectronics, 25 (2010) 1301-1306.

[26] P. Vatsyayan, S. Bordoloi, P. Goswami, Large catalase based bioelectrode for biosensor application, Biophysical Chemistry, 153 (2010) 36-42.

[27] K.J. Huang, D.J. Niu, X. Liu, Z.W. Wu, Y. Fan, Y.F. Chang, Y.Y. Wu, Direct electrochemistry of catalase at amine-functionalized graphene/gold nanoparticles composite film for hydrogen peroxide sensor, Electrochimica Acta, 56 (2011) 2947-2953.

[28] A.P. Periasamy, Y.H. Ho, S.M. Chen, Multiwalled carbon nanotubes dispersed in carminic acid for the development of catalase based biosensor for selective amperometric determination of HO and iodate, Biosensors & Bioelectronics, 29 (2011) 151-158.

[29] M. Shamsipur, M. Asgari, M.G. Maragheh, A.A. Moosavimovahedi, A novel impedimetric nanobiosensor for low level determination of hydrogen peroxide based on biocatalysis of catalase, Bioelectrochemistry, 83 (2012) 31-37.

[30] J. Hong, A.A. Moosavi-Movahedi, H. Ghourochian, A.M. Rad, S. Rezaei-Zarchi, Direct electron transfer of horseradish peroxidase on Nafion-cysteine modified gold electrode, Electrochimica Acta, 52 (2007) 6261-6267.

[31] E. Laviron, Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry, Journal of Electroanalytical Chemistry & Interfacial Electrochemistry, 52 (1974) 355-393.

[32] H. Ma, N. Hu, J. F. Rusling, Electroactive Myoglobin Films Grown Layer-by-Layer with Poly(styrenesulfonate) on Pyrolytic Graphite Electrodes, Langmuir, 16 (2000) 4969-4975.

[33] E. Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems, Journal of Electroanalytical Chemistry, 101 (1979) 19-28.