Crystal structure of 9,9-diethyl-9H-fluorene-2,4,7-tricarbaldehyde

Pierre Seidel, Anke Schwarzer and Monika Mazik*

Institut für Organische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany. *Correspondence e-mail: monika.mazik@chemie.tu-freiberg.de

The title compound, C_{20}H_{18}O_{3}, crystallizes in the space group P_{2}_1/c with one molecule in the asymmetric unit of the cell. The fluorene skeleton is nearly planar and the crystal structure is composed of molecular layers extending parallel to the (302) plane. Within a layer, one formyl oxygen atom participates in the formation of a C_{arne}—H···O bond, which is responsible for the formation of an inversion symmetric supramolecular motif of graph set R_{2}^{2}(10). A second oxygen atom is involved in an intramolecular C_{arne}—H···O hydrogen bond and is further connected with a formyl hydrogen atom of an adjacent molecule. A Hirshfeld surface analysis indicated that the most important contributions to the overall surface are from H···H (46.9%), O···H (27.9%) and C···H (17.8%) interactions.

1. Chemical context

Compounds featuring a fluorene moiety have been recognized as useful for a broad spectrum of applications, which range from agents for cell imaging, solar cells, organic light-emitting diodes to lasers. Furthermore, fluorene derivatives have the potential to act as artificial receptors for different ionic and neutral substrates in analogy to the known receptors possessing a benzene or biphenyl core, which, for example, are able to complex ammonium ions (Koch et al., 2015; Schulze et al., 2018; Chin et al., 2002; Arunachalam et al., 2010), ion pairs (Stapf et al., 2015) or carbohydrates (Stapf et al., 2020; Köhler et al., 2020, 2021; Kaiser et al., 2019; Lippe & Mazik, 2013, 2015; Amrhein et al., 2016; Amrhein & Mazik, 2021). As a result of the manifold application possibilities of fluorenes, the syntheses of new representatives of this class of compounds are the subject of intensive research (Seidel et al., 2019, 2021; Seidel & Mazik, 2020; Sicard et al., 2018). Fluorene derivatives bearing halogen, formyl or amino groups are valuable starting materials for a wide range of fluorene-based acyclic and macrocyclic compounds as well as polymers. Recently we have described the efficient one-step synthesis of 9,9-diethyl-9H-fluorene-2,4,7-tricarbaldehyde on the basis of 2,4,7-tris(bromomethyl)-9,9-diethyl-9H-fluorene (Seidel et al., 2019), which provided a threefold higher yield of the product than the previously known three-step reaction sequence (Yao & Belfield, 2005). In this work we describe the crystal structure of this fluorene derivative bearing three formyl groups.
2. Structural commentary

The title compound (I) (Fig. 1) crystallizes in the space group \(P2_1/c \) with one molecule in the asymmetric unit. The 2,4,7-substituted fluorene scaffold adopts a nearly planar geometry with the formyl groups inclined at angles of 4.2 (2), 3.5 (2) and 3.3 (2)° with respect to the fluorene moiety. These values correlate with torsion angles of \(-175.8 (3)\), \(-175.4 (3)\) and \(-176.7 (4)\)°, respectively, for the atomic sequences C3—C2—C14—O1, C3—C4—C15—O2 and C6—C7—C16—O3. The plane passing through the two ethyl groups is oriented nearly orthogonal to the plane of the fluorene unit [dihedral angle = 89.8 (1)°]. The oxygen atom O2 is involved in an intramolecular C—H···O hydrogen bond [\(d(H···O) = 2.18 \text{ Å} \), \(C—H···O 138^\circ; \text{Table 1} \).]

3. Supramolecular features

The crystal structure of the title compound is composed of molecular layers extending parallel to the (302) plane. An excerpt of the layer structure showing the mode of hydrogen bonding is depicted in Fig. 2. Within a given layer, the formyl oxygen atom O1 participates in the formation of a \(C_{\text{arene}}—H···O \) bond [\(d(H···O) = 2.59 \text{ Å} \); Table 1], thus creating an inversion-symmetric supramolecular motif of graph-set \(R_2^2(10) \) (Etter et al., 1990; Bernstein et al., 1995; for examples of other crystal structures including such a ten-membered supramolecular motif, see Seidel et al., 2021; Stapf et al., 2021). The steric requirements of the ethyl groups cause an offset of the molecules of consecutive layers, so that neither hydrogen bonds nor \(\pi–\pi \) arene stacking interactions are observed in the direction of the layer normal. Consequently, the crystal appears to be stabilized by van der Waals forces in the direction of the stacking axis of the molecular layers (Fig. 3).

4. Database Survey

A search in the Cambridge Structural Database (Version 5.41, November 2019; Groom et al., 2016) for 9\(H \)-fluorene derivatives bearing a formyl group resulted in three hits, including 9\(H \)-fluorene carbaldehyde (SAZQIT; Dobson & Gerkin, 1998) and two ferrocene-fluorene complexes including a 2-formyl-9-fluorenyl (HAPROF) and a 2,7-diformyl-9-fluorenyl moiety (HAPRUL; Wright & Cochran, 1993). As in the case of the title compound, the 9\(H \)-fluorene carbaldehyde crystallized in the space group \(P2_1/c \) with one molecule in the asymmetric unit. The molecular core is nearly planar and the crystal structure is characterized by the presence of C—H···O hydrogen bonds, which are responsible for the formation of a supramolecular motif of graph set \(R_2^2(14) \).

\(D—H···A \)	\(D—H \)	\(H···A \)	\(D···A \)	\(D—H···A \)
C1—H1—O1i	0.95	2.59	3.512 (4)	165
C5—H5—O2	0.95	2.18	2.961 (4)	138
C5—H5—O3ii	0.95	2.67	3.350 (4)	129
C16—H16—O2iii	0.95	2.53	3.321 (4)	141
C17—H17A—O1iii	0.99	2.68	3.611 (4)	157

Symmetry codes: (i) \(x+1, y+1, z+1 \); (ii) \(x, y, z+1 \); (iii) \(x, y+1, z+1 \).
5. Hirshfeld surface analysis

Hirshfeld surfaces (Spackman & Jayatilaka, 2009) were calculated and the associated 2D fingerprint plots generated using Crystal Explorer 17.5 (Turner et al., 2017). The 2D fingerprint plots (McKinnon et al., 2007) are displayed within the expanded 0.4–3.0 Å range including reciprocal contacts (Fig. 4); 3D \(d_{\text{norm}} \) surfaces are mapped over a fixed colour scale of ~0.3 a.u. (red)–1.0 a.u. (blue) (Figs. 5 and 6). The 2D fingerprint plots (see Fig. 4) indicate that the most important contributions to the overall surface are from H⋯H (46.9%), O⋯H (27.9%) and C⋯C (17.8%) interactions, whereas only 3.8% and 2.6% are from the C⋯C and C⋯O contacts, respectively. In addition to the fingerprint plots, the Hirshfeld plots mapped with \(d_{\text{norm}} \) give a hint about the significance of the close contacts. For example, the O⋯H hydrogen bonds are responsible for the intense red spots on the surface, as shown in Figs. 5 and 6.

6. Synthesis and crystallization

The title compound was prepared by an efficient one-step synthesis involving the treatment of 2,4,7-tris(bromomethyl)-9,9-diethyl-9\(H \)-fluorene with N-methylmorpholine N-oxide (Seidel et al., 2019). Single crystals of (I) were achieved via crystallization from a mixture of dichloromethane and \(n \)-hexane (1:1 v/v).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The non-hydrogen atoms were refined anisotropically. All hydrogen atoms were positioned geometrically and allowed to ride on their parent atoms: C—H = 0.95 Å for aryl-H atoms, C—H = 0.99 Å for methylene groups and C—H = 0.98 Å for methyl groups with \(U_{\text{iso}}(H) \) = \(1.5U_{\text{eq}}(C) \) for methyl groups and \(U_{\text{iso}}(H) = 1.2U_{\text{eq}}(C) \) for other hydrogen atoms. The crystal structure of (I) was refined as a two-component twin with an approximate occupancy ratio of 63:37.

Acknowledgements

Open Access Funding by the Publication Fund of the Technische Universität Bergakademie Freiberg is gratefully acknowledged.
Table 2
Experimental details.

Parameter	Value
Chemical formula	C_{20}H_{18}O_{3}
M_v	306.34
Crystal system, space group	Monoclinic, P2₁/c
Temperature (K)	150
a, b, c (Å)	15.6595 (9), 13.1466 (14), 7.6834 (15)
β (°)	93.146 (9)
V (Å³)	1579.4 (4)
Z	4
Radiation type	Mo Kα
μ (mm⁻¹)	0.09
Crystal size (mm)	0.38 x 0.30 x 0.15

Data collection

Parameter	Value
Diffractometer	Stoe IPDS 2T
Absorption correction –	
No. of measured, independent and observed [I > 2σ(I)] reflections	13951, 13951, 8830
R_{int}	?
(sin θ/λ)_{max} (Å⁻¹)	0.594

Refinement

Parameter	Value
R(F²)	0.047, 0.127, 0.93
No. of reflections	13951
No. of parameters	211
H-atom treatment	H-atom parameters constrained
Δρ_{max}, Δρ_{min} (e Å⁻³)	0.26, −0.24

Computer programs: X-AREA and X-RED (Stoe, 2009), SHELXT2018/2 (Stoe, 2015a), SHELXL2018/3 (Stoe, 2015b), XP (Stoe, 2008), WinGX (Farrugia, 2012), publCIF (Westrip, 2010) and shelXle (Hübschle et al., 2011).

References

Amrhein, F., Lippe, J. & Mazik, M. (2016). Org. Biomol. Chem. 14, 10648–10659.
Amrhein, F. & Mazik, M. (2021). Eur. J. Org. Chem. https://doi.org/10.1002/ ejoc.202100758
Arunachalam, M., Ahamed, B. N. & Ghosh, P. (2010). Org. Lett. 12, 2742–2745.
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
Chin, J., Oh, J., Jon, S. Y., Park, S. H., Walsdorff, C., Stranix, B., Ghoussoub, A., Lee, S. J., Chung, H. J., Park, S.-M. & Kim, K. (2002). J. Am. Chem. Soc. 124, 5374–5379.
Dobson, A. J. & Gerkin, R. E. (1998). Acta Cryst. C54, 1890–1892.
Eiter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.
Kaiser, S., Geffert, C. & Mazik, M. (2019). Eur. J. Org. Chem. pp. 7555–7562.
Koch, N., Seichter, W. & Mazik, M. (2015). Tetrahedron, 71, 8965–8974.
Köhler, L., Hübler, C., Seichter, W. & Mazik, M. (2021). RSC Adv. 11, 22221–22229.
Köhler, L., Seichter, W. & Mazik, M. (2020). Eur. J. Org. Chem. pp. 7023–7034.
Lippe, J. & Mazik, M. (2013). J. Org. Chem. 78, 9013–9020.
Lippe, J. & Mazik, M. (2015). J. Org. Chem. 80, 1427–1439.
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.
Schulze, M., Koch, N., Seichter, W. & Mazik, M. (2018). Eur. J. Org. Chem. pp. 4317–4330.
Seidel, P. & Mazik, M. (2020). ChemistryOpen, 9, 1202–1213.
Seidel, P., Schwarzar, A. & Mazik, M. (2019). Eur. J. Org. Chem. pp. 1493–1502.
Seidel, P., Seichter, W., Schwarzar, A. & Mazik, M. (2021). Eur. J. Org. Chem. pp. 2901–2914.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
Sicard, L., Jeannin, O., Rault-Berthelot, J., Quinton, C. & Poriel, C. (2018). ChemPlusChem, 83, 874–880.
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
Stapf, M., Leibiger, B., Schwarzar, A. & Mazik, M. (2021). Acta Cryst. E77, 919–923.
Stapf, M., Seichter, W. & Mazik, M. (2015). Chem. Eur. J. 21, 6350–6354.
Stapf, M., Seichter, W. & Mazik, M. (2020). Eur. J. Org. Chem. 2020, 4900–4915.
Stoe (2009). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
Wright, M. E. & Cochran, B. B. (1993). Organometallics, 12, 3873–3878.
Yao, S. & Belfield, K. D. (2005). J. Org. Chem. 70, 5126–5132.
Crystal structure of 9,9-diethyl-9H-fluorene-2,4,7-tricarbaldehyde

Pierre Seidel, Anke Schwarzer and Monika Mazik

Computing details
Data collection: X-AREA (Stoe, 2009); cell refinement: X-AREA (Stoe, 2009); data reduction: X-RED (Stoe, 2009); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 2012), publCIF (Westrip, 2010), and shelXle (Hübschle et al., 2011).

Crystal data
\[
\begin{align*}
C_{20}H_{18}O_3 & \\
M_r = 306.34 & \\
Monoclinic, P2_1/c & \\
a = 15.6595 (9) \, \text{Å} & \\
b = 13.1466 (14) \, \text{Å} & \\
c = 7.6834 (15) \, \text{Å} & \\
\beta = 93.146 \, (9)^\circ & \\
V = 1579.4 (4) \, \text{Å}^3 & \\
Z = 4 & \end{align*}
\]

\[F(000) = 648\]
\[D_x = 1.288 \, \text{Mg} \, \text{m}^{-3}\]

Mo Kα radiation, \(\lambda = 0.71073 \, \text{Å}\)

Cell parameters from 6293 reflections
\[\theta = 2.9–28.3^\circ\]
\[\mu = 0.09 \, \text{mm}^{-1}\]
\[T = 150 \, \text{K}\]

Piece, colorless

0.38 × 0.30 × 0.15 mm

Data collection
Stoe IPDS 2T diffractometer

Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus
Plane graphite monochromator

Detector resolution: 6.67 pixels mm\(^{-1}\)
rotation method scans

13951 measured reflections
13951 independent reflections
8830 reflections with \(I > 2\sigma(I)\)
\[\theta_{\text{max}} = 25.0^\circ, \theta_{\text{min}} = 3.0^\circ\]

\(h = -17\rightarrow 18\)
\(k = -15\rightarrow 15\)
\(l = -9\rightarrow 9\)

Refinement
Refinement on \(F^2\)
Least-squares matrix: full

\[R[F^2 > 2\sigma(F^2)] = 0.047\]
\[wR(F^2) = 0.127\]
\[S = 0.93\]
13951 reflections
211 parameters
0 restraints

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained
\[w = 1/\left[\sigma^2(F_c^2) + (0.0713P)^2\right]\]
where \(P = (F_c^2 + 2F_s^2)/3\)
\[(\Delta/\sigma)_{\text{max}} < 0.001\]

\(\Delta\rho_{\text{max}} = 0.26 \, \text{e} \, \text{Å}^{-3}\)
\(\Delta\rho_{\text{min}} = -0.24 \, \text{e} \, \text{Å}^{-3}\)
Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance
matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles;
correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate
(isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	x	y	z	Uiso * / Ueq
O1	0.51535 (14)	0.34892 (18)	0.5435 (3)	0.0532 (7)
O2	0.15641 (16)	0.18707 (17)	-0.0059 (3)	0.0604 (7)
O3	0.03712 (16)	0.7414 (2)	-0.2592 (4)	0.0713 (8)
C1	0.37790 (18)	0.4293 (2)	0.3116 (3)	0.0322 (7)
H1	0.414572	0.480263	0.361567	0.039*
C2	0.39372 (18)	0.3258 (2)	0.3466 (3)	0.0316 (7)
C3	0.33905 (17)	0.2531 (2)	0.2722 (4)	0.0330 (6)
H3	0.350875	0.183387	0.295850	0.040*
C4	0.26770 (17)	0.2774 (2)	0.1647 (3)	0.0313 (7)
C5	0.11308 (18)	0.4025 (2)	-0.0802 (4)	0.0372 (7)
H5	0.099564	0.332138	-0.087467	0.045*
C6	0.06274 (19)	0.4738 (2)	-0.1701 (4)	0.0412 (8)
H6	0.014947	0.451369	-0.241394	0.049*
C7	0.08030 (19)	0.5775 (2)	-0.1586 (4)	0.0385 (7)
C8	0.15063 (18)	0.6120 (2)	-0.0543 (4)	0.0364 (7)
C9	0.162721	0.682613	-0.044365	0.044*
C10	0.28194 (18)	0.5627 (2)	0.1500 (4)	0.0313 (7)
C11	0.30798 (17)	0.4554 (2)	0.2032 (3)	0.0294 (6)
C12	0.25144 (17)	0.3818 (2)	0.1286 (3)	0.0291 (6)
C13	0.18436 (17)	0.4364 (2)	0.0215 (3)	0.0305 (6)
C14	0.20206 (18)	0.5414 (2)	0.0338 (3)	0.0311 (7)
C15	0.46610 (18)	0.2932 (2)	0.4635 (4)	0.0379 (7)
C16	0.474848	0.222039	0.477297	0.045*
C17	0.2180 (2)	0.1882 (2)	0.0975 (4)	0.0436 (8)
C18	0.236754	0.123771	0.140831	0.052*
C19	0.0245 (2)	0.6512 (3)	-0.2560 (5)	0.0535 (9)
C20	-0.024467	0.625546	-0.320103	0.064*
H17A	0.315855	0.636730	0.382697	0.044*
H17B	0.245393	0.697499	0.266210	0.044*
C18	0.1931 (2)	0.5885 (2)	0.4212 (4)	0.0466 (8)
H18A	0.190690	0.630388	0.526375	0.070*
H18B	0.206083	0.518019	0.454380	0.070*
H18C	0.137719	0.591187	0.355334	0.070*
C19	0.35203 (19)	0.6155 (2)	0.0494 (4)	0.0388 (7)
H19A	0.331460	0.684240	0.015221	0.047*
H19B	0.403150	0.624283	0.129659	0.047*
C20	0.3791 (2)	0.5611 (3)	-0.1127 (4)	0.0516 (9)

Acta Cryst. (2021). E77, 1029-1032
Atomic displacement parameters (Å²)

	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
O1	0.0435 (13)	0.0551 (15)	0.0591 (14)	−0.0035 (12)	−0.0151 (13)	0.0044 (13)
O2	0.0656 (15)	0.0508 (15)	0.0633 (15)	−0.0157 (12)	−0.0094 (14)	−0.0051 (12)
O3	0.0680 (16)	0.0551 (16)	0.0880 (18)	0.0021 (15)	−0.0219 (16)	0.0182 (15)
C1	0.0309 (15)	0.0348 (16)	0.0311 (13)	−0.0035 (13)	0.0026 (13)	−0.0008 (12)
C2	0.0302 (15)	0.0353 (16)	0.0296 (15)	0.0015 (13)	0.0045 (13)	0.0014 (12)
C3	0.0389 (15)	0.0300 (15)	0.0308 (14)	0.0026 (14)	0.0072 (14)	0.0007 (12)
C4	0.0349 (15)	0.0303 (16)	0.0292 (14)	−0.0029 (13)	0.0071 (14)	−0.0032 (12)
C5	0.0341 (16)	0.0363 (16)	0.0409 (16)	−0.0056 (14)	0.0000 (14)	−0.0041 (14)
C6	0.0320 (17)	0.049 (2)	0.0421 (17)	−0.0048 (15)	−0.0037 (15)	−0.0012 (14)
C7	0.0332 (16)	0.0450 (19)	0.0371 (15)	0.0006 (14)	−0.0003 (14)	0.0057 (14)
C8	0.0360 (16)	0.0350 (16)	0.0381 (16)	−0.0038 (14)	0.0003 (14)	0.0044 (13)
C9	0.0330 (15)	0.0263 (14)	0.0344 (14)	−0.0022 (12)	−0.0008 (13)	0.0009 (12)
C10	0.0303 (15)	0.0301 (15)	0.0280 (13)	−0.0010 (13)	0.0034 (13)	−0.0004 (12)
C11	0.0314 (15)	0.0289 (15)	0.0274 (13)	−0.0020 (13)	0.0042 (12)	−0.0018 (12)
C12	0.0287 (15)	0.0321 (15)	0.0309 (14)	−0.0024 (12)	0.0036 (13)	−0.0014 (13)
C13	0.0316 (15)	0.0350 (16)	0.0381 (16)	−0.0030 (13)	0.0001 (13)	−0.0002 (13)
C14	0.0355 (16)	0.0414 (17)	0.0371 (17)	0.0051 (15)	0.0056 (15)	0.0057 (15)
C15	0.050 (2)	0.0422 (19)	0.0389 (17)	−0.0085 (16)	0.0045 (17)	−0.0019 (15)
C16	0.044 (2)	0.055 (2)	0.060 (2)	−0.0005 (18)	−0.0105 (18)	0.0115 (19)
C17	0.0403 (17)	0.0308 (15)	0.0378 (15)	0.0010 (14)	−0.0054 (14)	−0.0035 (13)
C18	0.0519 (19)	0.0454 (19)	0.0427 (17)	0.0051 (16)	0.0043 (16)	−0.0022 (15)
C19	0.0378 (16)	0.0349 (16)	0.0430 (16)	−0.0097 (13)	−0.0046 (15)	0.0071 (14)
C20	0.0473 (19)	0.060 (2)	0.0478 (18)	−0.0153 (18)	0.0095 (16)	0.0028 (17)

Geometric parameters (Å, °)

	O1—C14	1.207 (3)	C9—C13	1.523 (4)
O2—C15	1.216 (3)	C9—C19	1.542 (4)	
O3—C16	1.203 (4)	C9—C17	1.542 (4)	
C1—C10	1.382 (4)	C10—C11	1.411 (4)	
C1—C2	1.406 (4)	C11—C12	1.483 (4)	
C1—H1	0.9500	C12—C13	1.410 (4)	
C2—C3	1.386 (4)	C14—H14	0.9500	
C2—C14	1.471 (4)	C15—H15	0.9500	
C3—C4	1.390 (4)	C16—H16	0.9500	
C3—H3	0.9500	C17—C18	1.522 (5)	
C4—C11	1.421 (4)	C17—H17A	0.9900	
C4—C15	1.484 (4)	C17—H17B	0.9900	
C5—C6	1.384 (4)	C18—H18A	0.9800	
C5—C12	1.400 (4)	C18—H18B	0.9800	
C5—H5	0.9500	C18—H18C	0.9800	
Bond	Length (Å)	Bond	Length (Å)	
--------------	------------	--------------	------------	
C6—C7	1.393 (4)	C19—C20	1.517 (5)	
C6—H6	0.9500	C19—H19A	0.9900	
C7—C8	1.401 (4)	C19—H19B	0.9900	
C7—C16	1.479 (4)	C20—H20A	0.9800	
C8—C13	1.381 (4)	C20—H20B	0.9800	
C8—H8	0.9500	C20—H20C	0.9800	
C9—C10	1.518 (4)			
C10—C1—C2	118.8 (2)	C13—C12—C11	107.8 (2)	
C10—C1—H1	120.6	C8—C13—C12	121.2 (2)	
C2—C1—H1	120.6	C8—C13—C9	127.0 (2)	
C3—C2—C1	119.4 (2)	C12—C13—C9	111.8 (2)	
C3—C2—C14	119.2 (3)	O1—C14—C2	125.7 (3)	
C1—C2—C14	121.4 (2)	O1—C14—H14	117.2	
C2—C3—C4	123.0 (3)	C2—C14—H14	117.2	
C2—C3—H3	118.5	O2—C15—C4	128.2 (3)	
C4—C3—H3	118.5	O2—C15—H15	115.9	
C3—C4—C11	117.9 (2)	C4—C15—H15	115.9	
C3—C4—C15	114.4 (3)	O3—C16—C7	124.2 (3)	
C11—C4—C15	127.7 (2)	O3—C16—H16	117.9	
C6—C5—C12	118.5 (3)	C7—C16—H16	117.9	
C6—C5—H5	120.7	C18—C17—C9	115.5 (2)	
C12—C5—H5	120.7	C18—C17—H17A	108.4	
C5—C6—C7	121.8 (2)	C9—C17—H17A	108.4	
C5—C6—H6	119.1	C18—C17—H17B	108.4	
C7—C6—H6	119.1	C9—C17—H17B	108.4	
C6—C7—C8	119.9 (3)	H17A—C17—H17B	107.5	
C6—C7—C16	120.0 (3)	C17—C18—H18A	109.5	
C8—C7—C16	120.1 (3)	C17—C18—H18B	109.5	
C13—C8—C7	118.8 (3)	H18A—C18—H18B	109.5	
C13—C8—H8	120.6	C17—C18—H18C	109.5	
C7—C8—H8	120.6	H18A—C18—H18C	109.5	
C10—C9—C13	100.8 (2)	H18B—C18—H18C	109.5	
C10—C9—C19	111.4 (2)	C20—C19—C9	116.0 (2)	
C13—C9—C19	111.9 (2)	C20—C19—H19A	108.3	
C10—C9—C17	112.0 (2)	C9—C19—H19A	108.3	
C13—C9—C17	112.1 (2)	C20—C19—H19B	108.3	
C19—C9—C17	108.6 (2)	C9—C19—H19B	108.3	
C1—C10—C11	122.2 (2)	H19A—C19—H19B	107.4	
C1—C10—C9	125.8 (2)	C19—C20—H20A	109.5	
C11—C10—C9	112.0 (2)	C19—C20—H20B	109.5	
C10—C11—C4	118.8 (2)	H20A—C20—H20B	109.5	
C10—C11—C12	107.6 (2)	C19—C20—H20C	109.5	
C4—C11—C12	133.6 (2)	H20A—C20—H20C	109.5	
C5—C12—C13	119.8 (2)	H20B—C20—H20C	109.5	
C5—C12—C11	132.4 (2)			
C10—C1—C2—C3	−0.1 (4)			
C10—C11—C12—C5	180.0 (3)			
C10—C1—C2—C14 −178.8 (3) C4—C11—C12—C5 0.6 (6)
C1—C2—C3—C4 −0.7 (4) C10—C11—C12—C13 0.1 (3)
C14—C2—C3—C4 178.0 (3) C4—C11—C12—C13 −179.3 (3)
C2—C3—C4—C15 0.8 (4) C7—C8—C13—C12 −0.6 (5)
C2—C3—C4—C11 179.6 (3) C7—C8—C13—C9 178.7 (3)
C12—C5—C6—C7 −1.3 (5) C5—C12—C13—C8 −0.6 (4)
C5—C6—C7—C16 −179.6 (3) C4—C11—C12—C13 −179.3 (3)
C6—C7—C8—C13 0.9 (5) C11—C12—C13—C8 179.3 (3)
C6—C7—C8—C13 −0.1 (3) C5—C12—C13—C9 −180.0 (3)
C1—C10—C11—C4 −0.1 (4) C3—C4—C15—O2 −175.4 (3)
C9—C10—C11—C12 179.4 (3) C6—C7—C16—O3 −176.7 (4)
C9—C10—C11—C10 179.7 (3) C8—C7—C16—O3 3.5 (6)
C3—C4—C11—C10 −0.1 (4) C13—C9—C17—C18 54.8 (3)
C15—C4—C11—C10 −178.6 (3) C19—C9—C17—C18 57.6 (3)
C3—C4—C11—C12 0.7 (5) C13—C9—C17—C18 −55.3 (3)
C6—C5—C12—C13 1.5 (4) C17—C9—C17—C18 −179.6 (2)
C6—C5—C12—C11 −178.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
C1—H1···O1i	0.95	2.59	3.512 (4)	165
C5—H5···O2	0.95	2.18	2.961 (4)	138
C5—H5···O3ii	0.95	2.67	3.350 (4)	129
C16—H16···O2iii	0.95	2.53	3.321 (4)	141
C17—H17A···O1i	0.99	2.68	3.611 (4)	157

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, y−1/2, −z−1/2; (iii) −x, y+1/2, −z−1/2.