THE NON-PURE VERSION OF THE SIMPLEX AND THE BOUNDARY OF THE SIMPLEX

NICOLÁS A. CAPITELLI

Abstract. We introduce the non-pure versions of simplicial balls and spheres with minimum number of vertices. These are a special type of non-homogeneous balls and spheres (NH-balls and NH-spheres) satisfying a minimality condition on the number of maximal simplices. The main result is that minimal NH-balls and NH-spheres are precisely the simplicial complexes whose iterated Alexander duals converge respectively to a simplex or the boundary of a simplex.

1. Introduction

A simplicial complex K of dimension d is vertex-minimal if it is a simplex or it has $d+2$ vertices. It is not hard to see that a vertex-minimal homogeneous (or pure) complex of dimension d is either an elementary starring $(\tau,a)\Delta^d$ of a d-simplex or the boundary $\partial\Delta^{d+1}$ of a $(d+1)$-simplex. On the other hand, a general non-pure complex with minimum number of vertices has no precise characterization. However, since vertex-minimal pure complexes are either balls or spheres, it is natural to ask whether there is a non-pure analogue to these polyhedra within the theory of non-homogeneous balls and spheres. NH-balls and NH-spheres are the non-necessarily pure versions of combinatorial balls and spheres. They are part of a general theory of non-homogeneous manifolds (NH-manifolds) recently introduced by G. Minian and the author [4]. The study of NH-manifolds was in part motivated by Björner and Wachs’s notion of non-pure shellability [2] and by their relationship with factorizations of Pachner moves between (classical) manifolds. NH-balls and NH-spheres share many of the basic properties of combinatorial balls and spheres and they play an equivalent role to these in the generalized non-pure versions of classical manifold theorems. In a recent work [5], the results of Dong and Santos-Sturmfels on the homotopy type of the Alexander dual of simplicial balls and spheres were generalized to the non-homogeneous setting: the Alexander dual of an NH-ball is a contractible space and the Alexander dual of an NH-sphere is homotopy equivalent to a sphere (see [6, 8]). It was also shown in [5] that non-homogeneous balls and spheres are the Alexander double duals of classical balls and spheres. This result establishes a natural connection between the pure and non-pure theories.

The purpose of this article is to introduce minimal NH-balls and NH-spheres, which are respectively the non-pure versions of vertex-minimal balls and spheres. Note that $\partial\Delta^{d+1}$ is not only the d-sphere with minimum number of vertices but also the one with minimum number of maximal simplices. For non-pure spheres, this last property is strictly stronger than vertex-minimality and it is convenient to define minimal NH-spheres as the ones with minimum number of maximal simplices. With this definition, minimal NH-spheres with the homotopy type of a k-sphere are precisely the non-pure spheres whose nerve is $\partial\Delta^{k+1}$, a property that also characterizes the boundary of simplices. On the other hand, an NH-ball B is minimal if it is part of a decomposition of a minimal NH-sphere.

2010 Mathematics Subject Classification. 55M05, 52B70, 57Q99.

Key words and phrases. Simplicial complexes, combinatorial manifolds, Alexander dual.
i.e. if there exists a combinatorial ball L with $B \cap L = \partial L$ such that $B + L$ is a minimal NH-sphere. This definition is consistent with the notion of vertex-minimal simplicial ball (see Lemma 1.1 below).

Surprisingly, minimal NH-balls and NH-spheres can be characterized independently of their definition by a property involving Alexander duals. Denote by K^* the Alexander dual of a complex K relative to the vertices of K. Put inductively $K^{*(0)} = K$ and $K^{*(m)} = (K^{*(m-1)})^*$. Thus, in each step $K^{*(i)}$ is computed relative to its own vertices, i.e. as a subcomplex of the sphere of minimum dimension containing it. We call $\{K^{*(m)}\}_{m \in \mathbb{N}_0}$ the sequence of iterated Alexander duals of K. The main result of the article is the following

Theorem 1.1.

(i) There is an $m \in \mathbb{N}_0$ such that $K^{*(m)} = \partial \Delta^d$ if and only if K is a minimal NH-sphere.

(ii) There is an $m \in \mathbb{N}_0$ such that $K^{*(m)} = \Delta^d$ if and only if K is a minimal NH-ball.

Note that $K^* = \Delta^d$ if and only if K is a vertex-minimal d-ball which is not a simplex, so (ii) describes precisely all complexes converging to vertex-minimal balls. Theorem 1.1 characterizes the classes of Δ^d and $\partial \Delta^d$ in the equivalence relation generated by $K \sim K^*$.

2. Preliminaries

2.1. **Notations and definitions.** All simplicial complexes that we deal with are assumed to be finite. Given a set of vertices V, $|V|$ will denote its cardinality and $\Delta(V)$ the simplex spanned by its vertices. $\Delta^d = \Delta(\{0, \ldots, d\})$ will denote a generic d-simplex and $\partial \Delta^d$ its boundary. The set of vertices of a complex K will be denoted V_K and we set $\Delta_K := \Delta(V_K)$. A simplex is maximal or principal in a complex K if it is not a proper face of any other simplex of K. We denote by $m(K)$ the number of principal simplices in K. A ridge is a maximal proper face of a principal simplex. A complex is pure or homogeneous if all its maximal simplices have the same dimension.

$\sigma \ast \tau$ will denote the join of the simplices σ and τ (with $V_\sigma \cap V_\tau = \emptyset$) and $K \ast L$ the join of the complexes K and L (where $V_K \cap V_L = \emptyset$). By convention, if \emptyset is the empty simplex and $\{\emptyset\}$ the complex containing only the empty simplex then $K \ast \{\emptyset\} = K$ and $K \ast \emptyset = \emptyset$. Note that $\partial \Delta^0 = \{\emptyset\}$. For $\sigma \in K$, $\text{lk}(\sigma, K) = \{\tau \in K : \tau \cap \sigma = \emptyset, \tau \ast \sigma \in K\}$ denotes its link and $\text{st}(\sigma, K) = \sigma \ast \text{lk}(\sigma, K)$ its star. The union of two complexes K, L will be denoted by $K + L$. A subcomplex $L \subset K$ is said to be top generated if every principal simplex of L is also principal in K.

$K \setminus L$ will mean that K (simplicially) collapses to L. A complex is collapsible if it has a subdivision which collapses to a single vertex. The simplicial nerve $N(K)$ of K is the complex whose vertices are the principal simplices of K and whose simplices are the finite subsets of principal simplices of K with non-empty intersection.

Two complexes are PL-isomorphic if they have a common subdivision. A combinatorial d-ball is a complex PL-isomorphic to Δ^d. A combinatorial d-sphere is a complex PL-isomorphic to $\partial \Delta^{d+1}$. By convention, $\partial \Delta^0 = \{\emptyset\}$ is a sphere of dimension -1. A combinatorial d-manifold is a complex M such that $\text{lk}(v, M)$ is a combinatorial $(d-1)$-ball or $(d-1)$-sphere for every $v \in V_M$. A $(d-1)$-simplex in a combinatorial d-manifold M is a face of at most two d-simplices of M and the boundary ∂M of the complex is generated by the $(d-1)$-simplices which are face of exactly one d-simplex. Combinatorial d-balls and d-spheres are combinatorial d-manifolds. The boundary of a combinatorial d-ball is a combinatorial $(d-1)$-sphere.
2.2. Non-homogeneous balls and spheres. In order to make the presentation self-contained, we recall first the definition and some basic properties of non-homogeneous balls and spheres. For a comprehensive exposition of the subject, the reader is referred to [4] (see also [5, §2.3] for a brief summary).

NH-balls and NH-spheres are special types of NH-manifolds, which are the non-necessarily pure versions of combinatorial manifolds. NH-manifolds have a local structure consisting of regularly-assembled pieces of Euclidean spaces of different dimensions. In Figure 1 we show some examples of NH-manifolds and their underlying spaces. NH-manifolds, NH-balls and NH-spheres are defined as follows.

Definition. An NH-manifold (resp. NH-ball, NH-sphere) of dimension 0 is a manifold (resp. ball, sphere) of dimension 0. An NH-sphere of dimension \(-1\) is, by convention, the complex \(\{\emptyset\}\). For \(d \geq 1\), we define by induction

- An NH-manifold of dimension \(d\) is a complex \(M\) of dimension \(d\) such that \(\text{lk}(v, M)\) is an NH-ball of dimension \(0 \leq k \leq d - 1\) or an NH-sphere of dimension \(-1\) \(\leq k \leq d - 1\) for all \(v \in V_M\).
- An NH-ball of dimension \(d\) is a collapsible NH-manifold of dimension \(d\).
- An NH-sphere of dimension \(d\) and homotopy dimension \(k\) is an NH-manifold \(S\) of dimension \(d\) such that there exist a top generated NH-ball \(B\) of dimension \(d\) and a top generated combinatorial \(k\)-ball \(L\) such that \(B + L = S\) and \(B \cap L = \partial L\). We say that \(S = B + L\) is a decomposition of \(S\) and write \(\text{dim}_h(S)\) for the homotopy dimension of \(S\).

Figure 1. Examples of NH-manifolds. (a), (d) and (e) are NH-spheres of dimension 1, 3 and 2 and homotopy dimension 0, 2 and 1 respectively. (b) is an NH-ball of dimension 2 and (c), (f) are NH-balls of dimension 3. (g) is an NH-manifold which is neither an NH-ball nor an NH-sphere. The sequence (a)-(d) evidences how NH-manifolds are inductively defined.

The definitions of NH-ball and NH-sphere are motivated by the classical theorems of Whitehead and Newman (see e.g. [7] Corollaries 3.28 and 3.13). Just like for classical combinatorial manifolds, it can be seen that the class of NH-manifolds (resp. NH-balls, NH-spheres) is closed under subdivision and that the link of every simplex in an NH-manifold is an NH-ball or an NH-sphere. Also, the homogeneous NH-manifolds (resp. NH-balls, NH-spheres) are precisely the combinatorial manifolds (resp. balls, spheres). Globally, a connected NH-manifold \(M\) is (non-pure) strongly connected: given two principal simplices \(\sigma, \tau \in M\) there is a sequence of maximal simplices \(\sigma = \eta_1, \ldots, \eta_t = \tau\) such that \(\eta_i \cap \eta_{i+1}\) is a ridge of \(\eta_i\) or \(\eta_{i+1}\) for every \(1 \leq i \leq t - 1\) (see [4] Lemma 3.15)). In particular, NH-balls and NH-spheres of homotopy dimension greater that 0 are strongly connected.
Unlike for classical spheres, non-pure \(NH\)-spheres do have boundary simplices; that is, simplices whose links are \(NH\)-balls. However, for any decomposition \(S = B + L\) of an \(NH\)-sphere and any \(\sigma \in L\), \(lk(\sigma, S)\) is an \(NH\)-sphere with decomposition \(lk(\sigma, B) + lk(\sigma, L)\) (see \[4, Lemma 4.8\]). In particular, if \(\sigma \in B \cap L\) then \(lk(\sigma, B)\) is an \(NH\)-ball.

2.3. **The Alexander dual.** For a finite simplicial complex \(K\) and a ground set of vertices \(V \supseteq V_K\), the Alexander dual of \(K\) (relative to \(V\)) is the complex

\[
K^* \subset V = \{ \sigma \in \Delta(V) | \Delta(V - \sigma) \notin K \}.
\]

The main importance of \(K^*\) lies in the combinatorial formulation of Alexander duality: \(H_i(K^*) \cong H^{n-i-3}(K)\). Here \(n = |V|\) and the homology and cohomology groups are reduced (see e.g. \[1\]). In what follows, we shall write \(K^* := K^*\K\) and \(K^\tau := K^*\\tau\) if \(\tau = \Delta(V - V_K)\). With this convention, \(K^\tau = K^*\) if \(\tau = \emptyset\). Note that \((\Delta^d)^* = \emptyset\) and \((\partial\Delta^{d+1})^* = \{\emptyset\}\).

The relationship between Alexander duals relative to different ground sets of vertices is given by the following formula (see \[3, Lemma 3.1\]):

\[
K^\tau = \partial \tau \ast \Delta_K + \tau \ast K^*.
\]

Here \(K^*\) is viewed as a subcomplex of \(\Delta_K\). It is easy to see from the definition that \((K^*)^\tau|_{\Delta(V_K - V_{K^*})} = K\) and that \((K^\tau)^* = K\) if \(K \neq \Delta^d\) (see \[3, Lemma 3.1\]). The following result characterizes the Alexander dual of vertex-minimal complexes.

Lemma 2.1 (\[3, Lemma 4.1\]). If \(K = \Delta^d + u \ast lk(u, K)\) with \(u \notin \Delta^d\), then \(K^* = lk(u, K)^\tau\) where \(\tau = \Delta(V_K - V_{\ast lk(u, K)})\).

It can be shown that \(K^\tau\) is an \(NH\)-ball (resp. \(NH\)-sphere) if and only if \(K^*\) is an \(NH\)-ball (resp. \(NH\)-sphere). This actually follows from the next result involving a slightly more general form of formula \(\ast\), which we include here for future reference.

Lemma 2.2 (\[3, Lemma 3.5\]). If \(V_K \subset V\) and \(\eta \neq \emptyset\), then \(L := \partial \eta \ast \Delta(V) + \eta \ast K\) is an \(NH\)-ball (resp. \(NH\)-sphere) if and only if \(K\) is an \(NH\)-ball (resp. \(NH\)-sphere).

3. **Minimal \(NH\)-spheres**

In this section we introduce the non-pure version of \(\partial\Delta^d\) and prove part \((i)\) of Theorem \[1,1\]. Recall that \(m(K)\) denotes the number of maximal simplices of \(K\). We shall see that for a non-homogeneous sphere \(S\), requesting minimality of \(m(S)\) is strictly stronger than requesting that of \(V_S\). This is the reason why vertex-minimal \(NH\)-spheres are not necessarily minimal in our sense.

To introduce minimal \(NH\)-spheres we note first that any complex \(K\) with the homotopy type of a \(k\)-sphere has at least \(k + 2\) principal simplices. This follows from the fact that the simplicial nerve \(\mathcal{N}(K)\) is homotopy equivalent to \(K\).

Definition. An \(NH\)-sphere \(S\) is said to be minimal if \(m(S) = \dim_h(S) + 2\).

Note that, equivalently, an \(NH\)-sphere \(S\) of homotopy dimension \(k\) is minimal if and only if \(\mathcal{N}(S) = \partial\Delta^{k+1}\).

Remark 3.1. Suppose \(S = B + L\) is a decomposition of a minimal \(NH\)-sphere of homotopy dimension \(k\) and let \(v \in V_L\). Then \(lk(v, S)\) is an \(NH\)-sphere of homotopy dimension \(\dim_h(lk(v, S)) = k - 1\) and \(lk(v, S) = lk(v, B) + lk(v, L)\) is a valid decomposition (see §2.2). In particular, \(m(lk(v, S)) \geq k + 1\). Also, \(m(lk(v, S)) < k + 3\) since \(m(S) < k + 3\) and \(m(lk(v, S)) \neq k + 2\) since otherwise \(S\) is a cone. Therefore, \(m(lk(v, S)) = k + 1 = \dim_h(lk(v, S)) + 2\), which shows that \(lk(v, S)\) is also a minimal \(NH\)-sphere.
We next prove that minimal NH-spheres are vertex-minimal.

Proposition 3.2. If S is a d-dimensional minimal NH-sphere then $|V_S| = d + 2$.

Proof. Let $S = B + L$ be decomposition of S and set $k = \dim_h(S)$. We shall prove that $|V_S| \leq d + 2$ by induction on k. The case $k = 0$ is straightforward, so assume $k \geq 1$. Let $\eta \in B$ be a principal simplex of minimal dimension and let Ω denote the intersection of all principal simplices of S different from η. Note that $\Omega \neq \emptyset$ since $\mathcal{N}(S) = \partial \Delta^{k+1}$ and let $u \in \Omega$ be a vertex. Since $\eta \notin L$ then $\Omega \subseteq L$ and $u \in L$. By Remark 3.1 $lk(u, S)$ is a minimal NH-sphere of dimension $d - 2 = d - 1$ and homotopy dimension $k - 1$. By inductive hypothesis, $|V_{lk(u, S)}| \leq d' + 2 \leq d + 1$. Hence, $st(u, S)$ is a top generated subcomplex of S with $k + 1$ principal simplices and at most $d + 2$ vertices. By construction, $S = st(u, S) + \eta$. We claim that $V_\eta \subseteq V_{st(u, S)}$. Since $B = st(u, B) + \eta$, by strong connectivity there is a ridge $\sigma \in B$ in $st(u, B) \cap \eta$ (see §2.2). By the minimality of η we must have $\eta = w \ast \sigma$ for some vertex w. Now, $\sigma \in st(u, B) \cap \eta \subset st(u, S) \cap \eta$; but $st(v, S) \cap \eta \neq \sigma$ since, otherwise, $S = st(u, S) + \eta \cap \eta st(u, S) \cup u$, contradicting the fact that S has the homotopy type of a sphere. We conclude that $w \in st(u, S)$ since every face of η different from σ contains w. Thus, $|V_S| = |V_{st(u, S)}| + |V_\eta| = |V_{st(u, S)}| \leq d + 2$. □

This last proposition shows that, in the non-pure setting, requesting the minimality of $m(S)$ is strictly more restrictive than requesting that of $|V_S|$. For example, a vertex-minimal NH-sphere can be constructed from any NH-sphere and a vertex $u \notin S$ by the formula $S := \Delta_S + u \ast S$. It is easy to see that if S is not minimal, neither is S.

Remark 3.3. By Proposition 3.2 a d-dimensional minimal NH-sphere S may be written $S = \Delta^d + u \ast \text{lk}(u, S)$ for some $u \notin \Delta^d$. Note that for any decomposition $S = B + L$, the vertex u must lie in L (since this last complex is top generated). In particular, $\text{lk}(u, S)$ is a minimal NH-sphere by Remark 3.1.

As we mentioned above, the Alexander duals play a key role in characterizing minimal NH-spheres. We now turn to prove Theorem 1.1(i). We derive first the following corollary of Proposition 3.2.

Corollary 3.4. If S is a minimal NH-sphere then $|V_{S^*}| < |V_S|$ and $\dim(S^*) < \dim(S)$.

Proof. $V_{S^*} \subset V_S$ follows from Proposition 3.2 since if $S = \Delta^d + u \ast \text{lk}(u, S)$ then $u \notin S^*$. In particular, this implies that $\dim(S^*) \neq \dim(S)$ since S^* is not a simplex by Alexander duality. □

Theorem 3.5. Let K be a finite simplicial complex and let τ be a simplex (possibly empty) disjoint from K. Then, K is a minimal NH-sphere if and only if K^τ is a minimal NH-sphere. That is, the class of minimal NH-spheres is closed under taking Alexander dual.

Proof. Assume first that K is a minimal NH-sphere and set $d = \dim(K)$. We proceed by induction on d. By Proposition 3.2 we can write $K = \Delta^d + u \ast \text{lk}(u, K)$ for $u \notin \Delta^d$. If $\tau = \emptyset$ then, by Lemma 2.1, $K^\tau = \text{lk}(u, K)^\rho$ for $\rho = \Delta(V_K - V_{st(u, K)})$. By Remark 3.3 $\text{lk}(u, K)$ is a minimal NH-sphere. Therefore, $K^\tau = \text{lk}(u, K)^\rho$ is a minimal NH-sphere by inductive hypothesis. If $\tau \neq \emptyset$, $K^\tau = \text{d} \ast \Delta_K + \tau \ast K^\tau$ by formula (2). In particular, K^τ is an NH-sphere by Lemma 2.2 and the case $\tau = \emptyset$. Now, by Alexander duality,

$$\dim_h(K^\tau) = |V_K \cup V_\tau| - \dim_h(K) - 3 = |V_K| + |V_\tau| - \dim_h(K) - 3 = \dim_h(K^\tau) + |V_\tau|.$$

On the other hand,

$$m(K^\tau) = m(\text{d} \ast \Delta_K + \tau \ast K^\tau) = m(\text{d}) + \dim_h(K^\tau) + 2,$$

where the last equality follows from the case $\tau = \emptyset$. This shows that S^τ is minimal.
Assume now that K^τ is a minimal NH-sphere. If $\tau \not= \emptyset$ then $K = (K^\tau)^*$ and if $\tau = \emptyset$ then $K = (K^\tau)^{\Delta (V_K - V_{K^*})}$ (see §2.3). In any case, the result follows immediately from the previous implication.

Proof of Theorem 1.1 (i). Suppose first that K is a minimal NH-sphere. By Theorem 3.5, every non-empty complex in the sequence $\{K^{(m)}\}^{m \in N_0}$ is a minimal NH-sphere. By Corollary 3.4, $|V_{K^{(m+1)}}| < |V_{K^{(m)}}|$ for all m such that $K^{(m)} \not= \emptyset$. Therefore, $K^{(m_0)} = \emptyset$ for some $m_0 < |V_K|$ and hence $K^{(m_0-1)} = \partial \Delta^d$ for some $d \geq 1$.

Assume now that $K^{(m)} = \partial \Delta^d$ for some $m \in N_0$ and $d \geq 1$. We proceed by induction on m. The case $m = 0$ corresponds to the trivial case $K = \partial \Delta^d$. For $m \geq 1$, the result follows immediately from Theorem 3.5 and the inductive hypothesis.

4. **Minimal NH-balls**

We now develop the notion of minimal NH-ball. The definition in this case is a little less straightforward that in the case of spheres because there is no piecewise-linear-equivalence argument in the construction of non-pure balls. To motivate the definition of minimal NH-ball, recall that for a non-empty simplex $\tau \in K$ and a vertex $a \not\in K$, the elementary starring (τ, a) of K is the operation which transforms K in $(\tau, a)K$ by removing $\tau \ast lk(\tau, K) = st(\tau, K)$ and replacing it with $a \ast \partial \tau \ast lk(\tau, K)$. Note that when $\dim(\tau) = 0$ then $(\tau, a)K$ is isomorphic to K.

Lemma 4.1. Let B be a combinatorial d-ball. The following statements are equivalent.

1. $|V_B| \leq d + 2$ (i.e. B is vertex-minimal).
2. B is an elementary starring of Δ^d.
3. There is a combinatorial d-ball L such that $B + L = \partial \Delta^{d+1}$.

Proof. We first prove that (1) implies (2) by induction on d. Since Δ^d is trivially a starring of any of its vertices, we may assume $|V_B| = d + 2$ and write $B = \Delta^d + u \ast lk(u, B)$ for $u \not\in \Delta^d$. Since $lk(u, B)$ is necessarily a vertex-minimal $(d - 1)$-combinatorial ball then $lk(u, B) = (\tau, a)\Delta^{d-1}$ by inductive hypothesis. It follows from an easy computation that B is isomorphic to $(u \ast \tau, a)\Delta^d$.

We next prove that (2) implies (3). We have

$$B = (\tau, a)\Delta^d = a \ast \partial \tau \ast lk(\tau, \Delta^d) = a \ast \partial \tau \ast \Delta^{d \dim(\tau) - 1} = \partial \tau \ast \Delta^{d \dim(\tau)}.$$

Letting $L := \tau \ast \partial \Delta^{d \dim(\tau)}$ we get the statement of (3).

The other implication is trivial.

Definition. An NH-ball B is said to be **minimal** if there exists a minimal NH-sphere S that admits a decomposition $S = B + L$.

Note that if B is a minimal NH-ball and $S = B + L$ is a decomposition of a minimal NH-sphere then, by Remark 3.1, $lk(v, B)$ is a minimal NH-ball for every $v \in B \cap L$ (see §2.2). Note also that the intersection of all the principal simplices of B is non-empty since $\mathcal{N}(B) \subseteq \mathcal{N}(S) = \partial \Delta^{k+1}$. Therefore, $\mathcal{N}(B)$ is a simplex. The converse, however, is easily seen to be false.

The proof of Theorem 1.1 (ii) will follow the same lines as its version for NH-spheres.

Proposition 4.2. If B is a d-dimensional minimal NH-ball then $|V_B| \leq d + 2$.

Proof. This follows immediately from Proposition 3.2 since $\dim(B) = \dim(S)$ for any decomposition $S = B + L$ of an NH-sphere.

Corollary 4.3. If B is a minimal NH-ball then $|V_B| < |V_B|$ and $\dim(B^*) < \dim(B)$.
Proof. We may assume \(B \neq \Delta^d \). \(V_{B^*} \subseteq V_B \) by the same reasoning made in the proof of Corollary 3.4. Also, if \(\dim(B) = \dim(B^*) \) then \(B^* = \Delta^d \). By formula (39), \(B = (B^*)^0 = \partial \rho * \Delta^d \) where \(\rho = \Delta(V_B - V_{B^*}) \), which is a contradiction since \(|V_B| = d + 2 \). \(\square \)

Remark 4.4. The same construction that we made for minimal \(NH \)-spheres shows that vertex-minimal \(NH \)-balls need not be minimal. Also, similarly to the case of non-pure spheres, if \(B = \Delta^d + u * \text{lk}(u, B) \) is a minimal \(NH \)-ball which is not a simplex then for any decomposition \(S = B + L \) of a minimal \(NH \)-sphere we have \(u \in L \). In particular, since \(\text{lk}(u, S) = \text{lk}(u, B) + \text{lk}(u, L) \) is a valid decomposition of a minimal \(NH \)-sphere, then \(\text{lk}(u, B) \) is a minimal \(NH \)-ball (see Remark 3.3).

Theorem 4.5. Let \(K \) be a finite simplicial complex and let \(\tau \) be a simplex (possibly empty) disjoint from \(K \). Then, \(K \) is a minimal \(NH \)-ball if and only if \(K^\tau \) is a minimal \(NH \)-ball. That is, the class of minimal \(NH \)-balls is closed under taking Alexander dual.

Proof. Assume first that \(K \) is a minimal \(NH \)-ball and proceed by induction on \(d = \dim(K) \). The case \(\tau = \emptyset \) follows the same reasoning as the proof of Theorem 3.3 using the previous remarks. Suppose then \(\tau \neq \emptyset \). Since by the previous case \(K^\tau \) is a minimal \(NH \)-ball, there exists a decomposition \(\tilde{S} = K^\tau + \tilde{L} \) of a minimal \(NH \)-sphere. By Propositions 3.2 and 4.2 either \(K^\tau \) is a simplex (and \(V_{\tilde{S}} - V_{K^\tau} = \{ w \} \) is a single vertex) or \(V_{\tilde{S}} = V_{K^\tau} \subseteq V_K \). Let \(S := K^\tau + \tau * \tilde{L} \), where we identify the vertex \(w \) with any vertex in \(V_K - V_{K^\tau} \) if \(K^\tau \) is a simplex. We claim that \(S = K^\tau + \tau * \tilde{L} \) is a valid decomposition of a minimal \(NH \)-sphere. On one hand, formula (40) and Lemma 2.2 imply that \(K^\tau \) is an \(NH \)-ball and that

\[
S = \partial \tau * \Delta_K + \tau * K^\tau + \tau * \tilde{L} = \partial \tau * \Delta_K + \tau * \tilde{S}
\]

is an \(NH \)-sphere. Also,

\[
K^\tau \cap (\tau * \tilde{L}) = (\partial \tau * \Delta_K + \tau * K^\tau) \cap (\tau * \tilde{L})
\]

\[
= \partial \tau * \tilde{L} + \tau * (K^\tau \cap \tilde{L})
\]

\[
= \partial \tau * \tilde{L} + \tau * \partial \tilde{L}
\]

\[
= \partial(\tau * \tilde{L}).
\]

This shows that \(S = K^\tau + \tau * \tilde{L} \) is valid decomposition of an \(NH \)-sphere. On the other hand,

\[
m(S) = m(\partial \tau) + m(\tilde{S}) = \dim(\tau) + 1 + \dim(\tilde{L}) + 2 = \dim_k(S) + 2,
\]

which proves that \(S \) is minimal. This settles the implication.

The other implication is analogous to the corresponding part of the proof of Theorem 3.5. \(\square \)

Proof of Theorem 1.1 (ii). It follows the same reasoning as the proof of Theorem 1.1 (i) (replacing \(\emptyset \) with \(\emptyset \)). \(\square \)

If \(K^* = \Delta^d \) then, letting \(\tau = \Delta(V_K - V_{\Delta^d}) \neq \emptyset \), we have \(K = (K^*)^\tau = \partial \tau * \Delta^d = (\tau, v)\Delta^{d+\dim(\tau)} \). This shows that Theorem 1.1 (ii) characterizes all complexes which converge to vertex-minimal balls.

5. Further properties of minimal \(NH \)-balls and \(NH \)-spheres

In this final section we briefly discuss some characteristic properties of minimal \(NH \)-balls and \(NH \)-spheres.

Proposition 5.1. In a minimal \(NH \)-ball or \(NH \)-sphere, the link of every simplex is a minimal \(NH \)-ball or \(NH \)-sphere.
Therefore, using the inductive hypothesis, let
\[f(S) \] be a well defined application on \(d \). We may assume \(K \neq \Delta^d \). Since for a non-trivial decomposition \(\sigma = w \ast \eta \) we have \(\text{lk}(\sigma, S) = \text{lk}(w, \text{lk}(q, S)) \), by an inductive argument it suffices to prove the case \(\sigma = v \in V_K \). We proceed by induction on \(d \). We may assume \(d \geq 1 \). Write \(K = \Delta^d + u \ast \text{lk}(u, K) \) where, as shown before, \(\text{lk}(u, K) \) is either a minimal \(NH \)-ball or a minimal \(NH \)-sphere. Note that this in particular settles the case \(v = u \). Suppose then \(v \neq u \). If \(v \notin \text{lk}(u, K) \) then \(\text{lk}(v, K) = \Delta^{d-1} \). Otherwise, \(\text{lk}(v, K) = \Delta^{d-1} + u \ast \text{lk}(v, \text{lk}(u, K)) \). By inductive hypothesis, \(\text{lk}(v, \text{lk}(u, K)) \) is a minimal \(NH \)-ball or \(NH \)-sphere. By Lemma 2.1
\[\text{lk}(v, K)^* = \text{lk}(v, \text{lk}(u, K))^\rho, \]
and the result follows from Theorems 3.5 and 4.5. \(\square \)

For any vertex \(v \in K \), the deletion \(K - v = \{ \sigma \in K \mid v \notin \sigma \} \) is again a minimal \(NH \)-ball or \(NH \)-sphere. This follows from Proposition 2.3 Theorems 3.5 and 4.5 and the fact that \(\text{lk}(v, K^*) = (K - v)^* \) for any \(v \in V_K \) (see [3, Lemma 4.2 (1)]). Also, Remark 4.4 implies that minimal \(NH \)-balls are (non-pure) vertex-decomposable as defined by Björner and Wachs (see [5, §11]).

Finally, we make use of Theorems 3.5 and 4.5 to compute the number of minimal \(NH \)-spheres and \(NH \)-balls in each dimension.

Proposition 5.2. Let \(0 \leq k \leq d \).

1. There are exactly \(\binom{d}{k} \) minimal \(NH \)-spheres of dimension \(d \) and homotopy dimension \(k \). In particular, there are exactly \(2^d \) minimal \(NH \)-spheres of dimension \(d \).

2. There are exactly \(2^d \) minimal \(NH \)-balls of dimension \(d \).

Proof. We first prove (1). An \(NH \)-sphere with \(d = k \) is homogeneous by [3, Proposition 2.4], in which case the result is obvious. Assume then \(0 \leq k \leq d - 1 \) and proceed by induction on \(d \). Let \(S_{d,k} \) denote the set of minimal \(NH \)-spheres of dimension \(d \) and homotopy dimension \(k \). If \(S \in S_{d,k} \) it follows from Theorem 3.5 Corollary 3.4 and Alexander duality that \(S^* \) is a minimal \(NH \)-sphere with \(\dim(S^*) < d \) and \(\dim_h(S^*) = d - k - 1 \). Therefore, there is a well defined application
\[S_{d,k} \xrightarrow{f} \bigcup_{i=d-k-1}^{d-1} S_{i,d-k-1} \]
sending \(S \) to \(S^* \). We claim that \(f \) is a bijection. To prove injectivity, suppose \(S_1, S_2 \in S_{d,k} \) are such that \(S_1^* = S_2^* \). Let \(\rho_i = \Delta(V_{S_i} - V_{S_i^*}) \) \((i = 1, 2) \). Since \(|V_{S_1}| = d + 2 = |V_{S_2}| \) then \(\dim(\rho_1) = \dim(\rho_2) \) and, hence, \(S_1 = (S_1^*)^{\rho_1} = (S_2^*)^{\rho_2} = S_2 \). To prove surjectivity, let \(\tilde{S} \in S_{j,d-k-1} \) with \(d - k - 1 \leq j \leq d - 1 \). Taking \(\tau = \Delta^{d-j-1} \) we have \(S^* \in S_{d,k} \) and \(f(S^*) = \tilde{S} \) (see §2.3). Finally, using the inductive hypothesis,
\[|S_{d,k}| = \sum_{i=d-k-1}^{d-1} |S_{i,d-k-1}| = \sum_{i=d-k-1}^{d-1} \binom{i}{d-k-1} = \binom{d}{k}. \]

For (2), let \(B_d \) denote the set of minimal \(NH \)-balls of dimension \(d \) and proceed again by induction on \(d \). The very same reasoning as above gives a well defined bijection
\[B_d - \{ \Delta^d \} \xrightarrow{f} \bigcup_{i=0}^{d-1} B_i. \]
Therefore, using the inductive hypothesis,
\[|B_d - \{ \Delta^d \}| = \sum_{i=0}^{d-1} |B_i| = \sum_{i=0}^{d-1} 2^i = 2^d - 1. \] \(\square \)
Acknowledgement. I am grateful to Gabriel Minian for many helpful remarks and suggestions during the preparation of the paper.

References

[1] A. Björner, M. Tancer. Combinatorial Alexander Duality – A short and elementary proof. Discrete Comput. Geom. 42 (2009), No. 4, 586-593.

[2] A. Björner, M. Wachs. Shellable nonpure complexes and posets. I. Trans. Am. Math. Soc. 348 (1996), No. 4, 1299-1327.

[3] A. Björner, M. Wachs. Shellable nonpure complexes and posets. II. Trans. Am. Math. Soc. 349 (1997), No. 10, 3945-3975.

[4] N. A. Capitelli, E. G. Minian. Non-homogeneous combinatorial manifolds. Beitr. Algebra Geom. 54 (2013), No. 1, 419-439.

[5] N. A. Capitelli, E. G. Minian. A generalization of a result of Dong and Santos-Sturmfels on the Alexander dual of spheres and balls. Preprint 2014. [arXiv:1403.1291] [math.AT]

[6] X. Dong. Alexander duality for projections of polytopes. Topology 41 (2002), No. 6, 1109-1121.

[7] C.P. Rourke, B.J. Sanderson. Introduction to piecewise-linear topology. Springer-Verlag (1972).

[8] F. Santos, B. Sturmfels. Alexander duality in subdivisions of Lawrence polytopes. Adv. Geom. 3 (2003), No. 2, 177-189.