99mTc-MIBI single photon emission computed tomography/computed tomography for the incidental detection of rare parathyroid carcinoma

Zejun Chen, MDa,b, Jingjing Fu, MDa, Qing Shao, MDa, Bin Zhou, MDb, Feng Wang, MDa,b,*

Abstract
This study aimed to evaluate the characteristics of parathyroid carcinoma and to validate the diagnostic value of 99mTc-methoxyisobutylisonitrile (MIBI) single photon emission computed tomography/x-ray computed tomography (SPECT/CT) for differentiating between parathyroid carcinoma and hyperparathyroidism. Four consecutive patients with suspected primary hyperparathyroidism were enrolled in this study and underwent 99mTc-MIBI SPECT/CT, ultrasonography, enhanced CT, and MRI. Serum parathyroid hormone (PTH) and calcium were measured. All primary and recurrent lesions showed high focal uptake on 99mTc-MIBI image, whereas metastatic lymph nodes gave false negative results. The serum PTH was 165.14±90.26 pmol/L, which declined rapidly after surgery. One patient with a persistently high PTH (147.5 pmol/L after surgery presented with multiple lymphadenopathy in the neck. Higher expression of chromogranin A (CgA) further confirmed parathyroid carcinoma as a rare endocrine tumor. Parathyroid carcinoma is thus usually diagnosed incidentally based on nonspecific multorgan symptoms of hypercalcemia and hyperparathyroidism. 99mTc-MIBI SPECT/CT may help to localize the parathyroid carcinoma, while MRI is valuable for detecting metastasis. Serum PTH and CgA serve as circulating biomarkers in parathyroid carcinoma, and raised levels of PTH and CgA together with locoregional lymphadenopathy may indicate parathyroid carcinoma. Further studies are needed.

Abbreviations: ALP = alkaline phosphatase, CgA = chromogranin A, MIBI = methoxyisobutylisonitrile, PTH = parathyroid hormone, SPECT/CT = hybrid single photon emission computed tomography/x-ray computed tomography, US = ultrasonography.

Keywords: parathyroid carcinoma, primary hyperparathyroidism, PTH, SPECT/CT

1. Introduction
Parathyroid carcinoma is a rare neuroendocrine tumor associated with significantly increased parathyroid hormone (PTH) levels and hyperparathyroidism (HPT). For this reason, the tumor is difficult to distinguish from benign primary HPT and is usually diagnosed incidentally[1,2] Although several clinical and biochemical features differentiate parathyroid carcinoma from benign primary HPT, the diagnosis and management of parathyroid carcinoma remains difficult for various reasons, including its rarity, a lack of diagnostic tools, and its overlap in symptoms with primary HPT.

There is currently no standardized diagnostic framework for parathyroid carcinoma, and the tumor is usually confirmed by histopathology and characterized by vascular or capsular invasion.[3] En bloc resection is strongly recommend if parathyroid carcinoma is suspected[1,4] but fine needle aspiration should be avoided because it cannot differentiate between benign and malignant parathyroid lesions, and is also associated with risks of bleeding and tumor seeding within the biopsy tract.[1,4] Dual-phase 99mTc-methoxyisobutylisonitrile (MIBI) single photon emission computed tomography (SPECT/CT) is hybrid single photon emission computed tomography/x-ray computed tomography, US = ultrasonography. In the present study, 4 consecutive patients with parathyroid carcinoma confirmed by histopathological analyses underwent evaluation of biochemical markers and multi-modality imaging, including dual-phase 99mTc-MIBI SPECT/CT, US, enhanced CT, and MRI for the detection and staging of their tumors. The study aimed to evaluate the characteristic of parathyroid carcinoma, and to validate the diagnostic use of 99mTc-MIBI SPECT/CT for differentiating between parathyroid carcinoma and HPT.

2. Methods
2.1. Patients
Four consecutive patients (2 men and 2 women) with suspected HPT diagnosed between July 2013 and December 2016 were enrolled in the present study (mean age: 53.25 ± 5.7 years, range: 51–57 years). All patients underwent dual-phase 99mTc-MIBI SPECT/CT and US, and enhanced CT or MRI to evaluate the primary lesion and lymphadenopathy. All patients gave their
informed consent. The patients’ clinical characteristics are shown in Table 1.

Table 1

Case	Age/gender	Clinic features	Size, cm	Location	Surgery	Immunohistochemistry
1	M/52	Nausea, vomite, dizziness, fatigue	3.9 × 3.5 × 3.5	Left inferior	En bloc resection	CgA (+), PTH (+), Syn (+), CK7 (<), CT (<), CD56 (+), CEA (+), Ki-67 (<1%)
2	F/53	Anorexia, nausea, vomite, weight loss, lower extremity pain	4 × 4 × 3.5	Right inferior	En bloc resection	CgA (+), PTH (+), Syn (+), DTA-3 (+), DX19 (+), LS-100 (<), Ki-67 (10%), TTF-1 (<), CT (<), CEA (+)
3	M/51	Palpable neck mass	2 × 3 × 4	Right inferior	En bloc resection	CgA (+), PTH (+), CD56 (+), TTF-1 (<), CT (<), CEA (+), Ki-67 (<10%)
4	F/57	Fatigue, pain, and swelling of joint	1.9 × 1.5 × 1.0	Right inferior	En bloc resection	CgA (+), PTH (+), Syn (+), CD56 (+), TTF-1 (<), CT (<), CEA (+), Ki-67 (<5%)

APL = alkaline phosphatase, CgA = chromogranin A, PTH = parathyroid hormone, Syn = synaptophysin.

2.2. Imaging protocol

2.2.1. Dual-phase 99mTc-MIBI imaging

Imaging data were acquired using a hybrid SPECT/CT scanner (Symbia T2, 16; Siemens Healthcare, Hoffman Estates, IL). Dual-phase planar images were obtained at 15 and 120 minutes after intravenous administration of 370 to 740 MBq of 99mTc-MIBI using a low-energy, high-resolution, parallel collimator. The images were acquired for 10 minutes in a 128 × 128 matrix with a 20% window centered on the 140-keV photopeak (zoom: 3.2). The SPECT data were obtained with a broad energy, high-resolution, parallel collimator. The images were reconstructed using a dual-phase protocol. CT acquisition was performed in a similar manner to the SPECT acquisitions. The SPECT and CT data were then reconstructed using a three-dimensional iterative algorithm. CT acquisition was performed in a similar manner to the SPECT acquisitions.

2.2.2. US and anatomical imaging (CT and MRI)

US was performed using a Philips IU22 scanner (Philips Medical Systems, Bothell, WA) with a high-resolution (5–12 MHz) real-time scanner. Color Doppler was also performed to assess the vascularity. Longitudinal and transverse images were taken from the clavicles to the mandible, with the patient’s neck extended and their shoulders lowered. CT was performed using a Lightspeed 16 (GE Healthcare, Tokyo, Japan) and a dual-source CT scanner (Definite Flash; Siemens Healthcare, Forchheim, Germany). Craniocaudal coverage extended from the skull to the mediastinum, and the images were reconstructed using a 5-mm slice thickness. Helical scans were carried out 60 s after intravenous injection of a contrast medium (ioversol; 80–90 mL; 320 mgI/mL; Tyco Canada). MRI was performed using a 3-T scanner (Gyroscan ACS-NT; Phillips, Best, the Netherlands) and involved transverse, coronal, and sagittal coverage from the skull to the mediastinum. The scans used a 5-mm slice thickness and included T1-weighted, T2-weighted, and short-tau inversion recovery sequences.

2.2.3. Histopathology and immunohistoassay

Immunohistochemical staining for chromogranin A (CgA), PTH, and synaptophysin (Syn) was performed to confirm the parathyroid cancer as a neuroendocrine tumor. Specifically, 4-mm sections of formalin-fixed, paraffin-embedded tumor specimens were deparaffinized in xylene and rehydrated in graded alcohols. Endogenous peroxidase activity was blocked by incubating the slides in 3% hydrogen peroxide for 20 minutes at room temperature, followed by rinsing under running water for 5 min. Heat-induced epitope retrieval was carried out in a microwave oven for 30 minutes in preheated, 10 mmol/L citrate buffer (pH 6.0). The slides were transferred to phosphate-buffered saline and then incubated overnight at 48°C in rabbit polyclonal antibodies against CgA (1:50; DaKo), PTH, and Syn, respectively. The next day, the samples were incubated in secondary antibody for 1 hour at room temperature and the substrate chromogen (3,3′-diaminobenzidine) enabled visualization of the antigen–antibody complexes via a brown precipitate. Cell nuclei were visualized by counterstaining with hematoxylin-eosin (blue). Omission of the primary antibody provided a negative control. All slides were evaluated independently by 2 investigators who were blinded to the clinical data.

3. Results

A total of eight lesions comprising 4 primary lesions, 2 recurring lesions, and 2 cervical lymphadenopathies were detected. The primary tumor size was 3.45 ± 1.03 cm (range: 1.9–4 cm). The mean serum PTH was 165.14 ± 90.26 pmol/L (range: 46–263 pmol/L), which declined rapidly after surgery in 3 patients (mean:
1.38 ± 1.1 pmol/L, range: 0.3–1.5 pmol/L) but remained high in one patient (147.5 pmol/L) who presented with multiple lymphadenopathies in the neck. The mean serum calcium level was 3.32 ± 0.69 mmol/L (range: 2.88–4.42 mmol/L), which fell after surgery (mean: 2.33 ± 0.18 mmol/L, range: 2.17–2.55 mmol/L), and the mean serum ALP was 266.62 ± 202.7 U/L (range: 80.9–559 U/L). The biochemical data are detailed in Table 2.

All 4 patients were followed-up for >1 year (range: 14–38 months). Serum PTH levels declined rapidly after surgery in 2 patients, one with a serum PTH level of 1.8 pmol/L and a serum calcium level of 2.4 mmol/L, and the other with a serum PTH level of 2.3 pmol/L and a serum calcium level of 2.2 mmol/L. Multiple pulmonary nodules were detected by CT in one patient with repeated recurrences, suggesting pulmonary metastasis at 38 months (serum PTH: 75.6 pmol/L, calcium: 3.48 mmol/L). The final patient was followed-up for 15 months and presented with multiple lymphadenopathies in the neck, with a serum PTH level of 88 pmol/L and calcium level of 3.17 mmol/L.

Table 2
The serum PTH, Ca, and ALP levels of 4 cases of parathyroid carcinoma.

Case	PTH, pmol/L	Ca, mmol/L	ALP, U/L			
	Presurgery	Postsurgery	Presurgery	Postsurgery		
1	46	2.5	4.42	2.17	80.9	
2	160.9	0.3	3.16	2.22	559	
3	190.65	1.35	3.52	2.17	478	
	1st recurrence	46.9	4.4	3.24	2.35	219.2
	2nd recurrence	28.7	5.4	2.88	2.55	113.6
4	263.0	145.7	3.27	2.35	149	

The reference range. PTH: 1.3–9.3 pmol/L, Ca: 2.0–2.75 mmol/L, and ALP: 40–120 U/L.

ALP = alkaline phosphatase, PTH = parathyroid hormone.

Figure 1. A large, hyper-vascular lesion in the left neck detected by multi-modality imaging in parathyroid carcinoma. (A) Early phase and (B) delayed-phase images of 99mTc-MIBI scintigraphy. (C) Maximum intensity projection fusion image and (D) fusion image. (E) Enhanced CT showing a large hyper-vascular mass with cystic-necrotic degeneration behind the thyroid. (F) A heterogeneous hypoechoic mass with vascular invasion on US. (G, H) Histopathology: hematoxylin-eosin staining (×100). (I) High CgA expression in the tumor (×400). CgA = chromogranin A, MIBI = methoxyisobutylisonitrile, SPECT/CT = hybrid single photon emission computed tomography/x-ray computed tomography, US = ultrasonography.
3.1. Image interpretation

All primary lesions and 2 recurrent lesions showed high focal uptake on dual-phase 99mTc-MIBI SPECT/CT images. Surgical exploration demonstrated that fusion imaging had identified the precise locations of the lesions (Figs. 1 and 2). However, lymph node metastases produced false negative results, as confirmed by enhanced CT and MRI (Fig. 3). Two primary and one recurring lesion were heterogeneous, hypoechoic masses, with lobulated contours on US. One primary lesion was missed because there were multiple lesions within the thyroid. Three primary and one recurring lesion on CT manifested as enhanced masses behind the thyroid, and one patient with cervical lymphadenopathy on MRI showed enlarged lymph nodes in the bilateral neck.

3.2. Histopathology

Immunohistochemistry staining showed significantly increased expression of CgA, PTH, and Syn in 3 patients, suggesting differentiated parathyroid adenocarcinoma, which further confirmed parathyroid carcinoma is a rare endocrine tumor, CgA, PTH, and Syn may served as specific marker of parathyroid carcinoma, serum CgA and PTH may be circulating markers. The immunohistochemical results are shown in Table 1.

4. Discussion

Parathyroid carcinoma can occur either sporadically or as part of a genetic syndrome, with an overall incidence of 3.5 to 5.7 per 10 million.[5] In China, 5.96% of primary HPT cases are caused by parathyroid carcinoma, as revealed by serum calcium screening and the widespread use of high-resolution US.[6] However, there may be geographic and ethnic differences in its incidence.[2,7] The etiology of parathyroid carcinoma remains unclear, though a history of radiation exposure to the neck is a known risk factor.[4]

In addition, hereditary HPT–jaw tumor syndrome and multiple endocrine neoplasia types 1 and 2A are associated with both benign and malignant parathyroid tumors.[1,8–9] A previous retrospective study demonstrated that parathyroid adenoma and thyroid cancer can be risk factors for parathyroid carcinoma.[10] None of the current patients had any obvious hereditary factors, but suspected parathyroid adenoma was finally confirmed as parathyroid carcinoma. All patients show elevated serum calcium and PTH levels, larger tumor size, and vascular and capsular invasion. We therefore propose that parathyroid carcinoma should be strongly suspected when presurgical examination reveals lymphadenopathy in the surrounding tissues, as well as vascular invasion.

Parathyroid carcinoma tends to occur in the inferior gland, and is usually associated with local invasion and distant metastases. It also frequently recurs within 2–3 years after the initial operation, invading the surrounding tissue and spreading to contiguous structures in the neck.[5,11,12] All the primary lesions in the present study occurred in the inferior gland, and one patient suffered recurrences and pulmonary metastases, while another patient presented with multiple lymphadenopathies in the neck. Dual-phase 99mTc-MIBI scintigraphy and SPECT/CT has shown high sensitivity for the detection of parathyroid adenoma, including ectopic adenoma in the mediastinum, while hybrid SPECT/CT can be used to precisely localize adenomas and is thus valuable for guiding surgery.[13–15] However, 99mTc-MIBI SPECT/CT has not previously been fully validated for the detection of parathyroid carcinoma, though 99mTc-MIBI-avid lesions both in early and delayed images may indicate benign adenoma.[16] In the present study, 99mTc-MIBI SPECT/CT showed all the primary parathyroid carcinoma lesions, but planar imaging missed the primary lesion in case 2, giving a false negative result.

CgA and Syn are specific biomarkers for the identification of neuroendocrine tumors, and were analyzed in the current study. CgA, Ki-67, and Syn were positive in all the primary and metastatic lesions, suggesting that they might be valuable
markers for validating the diagnosis of parathyroid carcinoma. Serum CgA may be a particularly valuable circulating tumor marker for early diagnosis. The use of 68Ga-labelled somatostatin analogs has been well documented for the detection of neuroendocrine tumors; however, the use of 68Ga-labeled somatostatin analogs and positron emission tomography/CT have not been fully recognized in the diagnosis of parathyroid carcinoma and may warrant further investigation. Similarly, 18F-fluorodeoxyglucose positron emission tomography/CT should be employed to detect distant metastases. MRI is a valuable technique for detecting parathyroid adenoma because of its higher resolution, and the combination of 99mTc-MIBI planar imaging and SPECT/CT with MRI may thus be of great value for differentiating between parathyroid carcinoma and benign adenoma. Malignant parathyroid carcinoma should be considered in patients with HPT and locoregional lymphadenopathy. Failure of PTH to decrease significantly after surgery could exclude ectopic parathyroid adenoma, and metastasis secondary to parathyroid carcinoma should thus be suspected, with MRI representing a valuable tool for further diagnosis.

5. Conclusion
Parathyroid carcinoma is a rare neuroendocrine malignancy that presents with variable clinical characteristics. 99mTc-MIBI SPECT/CT is valuable for localizing the primary lesion, while serum PTH serves as a robust biomarker of presurgical parathyroid carcinoma and an excellent indicator of recurrence and metastasis. CT and MRI provide complementary modalities to detect recurrence or metastasis. Neuroendocrine tumor biomarkers are also useful for confirming the diagnosis of parathyroid carcinoma.

Author contributions
Conceptualization: Feng Wang, Zejun Chen, Jingjing Fu, Qing Shao, Bin Zhou.
Data curation: Feng Wang, Zejun Chen, Jingjing Fu, Qing Shao, Bin Zhou.
Formal analysis: Feng Wang, Zejun Chen, Jingjing Fu, Qing Shao, Bin Zhou.
Investigation: Zejun Chen.
Methodology: Feng Wang.
Project administration: Feng Wang, Zejun Chen, Jingjing Fu.
Resources: Feng Wang, Zejun Chen.
Supervision: Zejun Chen.
Visualization: Zejun Chen, Jingjing Fu, Qing Shao, Bin Zhou.
Writing – original draft: Feng Wang, Zejun Chen.
Writing – review & editing: Feng Wang, Zejun Chen.

References
[1] Wei CH, Harari A. Parathyroid carcinoma: update and guidelines for management. Curr Treat Opt Oncol 2012;13:11-23.
[2] Medas F, Erdas E, Loi G, et al. Controversies in the management of parathyroid carcinoma: a case series and review of the literature. Int J Surg 2016;28:S94-8.
[3] Lee YS, Hong SW, Jeong JJ, et al. Parathyroid carcinoma: a 16-year experience in a single institution. Endocr J 2010;57:493-7.
[4] Cassahun WT, Jonas S. Focus on parathyroid carcinoma. Int J Surg 2011;9:13-9.
[5] Lee PK, Jarosek SL, Virnig BA, et al. Trends in the incidence and treatment of parathyroid cancer in the United States. Cancer 2007;109:1736-41.
[6] Cao J, Chen C, Wang QL, et al. Parathyroid carcinoma: a report of six cases with a brief review of the literature. Oncol Lett 2015;10:3363-8.
[7] Marcocci C, Cetani F. Primary hyperparathyroidism. N Engl J Med 2011;365:2389-97.
[8] Okamoto T, Libera M, Obara T, et al. Parathyroid carcinoma: etiology, diagnosis, and treatment. World J Surg 2009;33:2343-54.
[9] Zhao L, Liu JM, He XY, et al. The changing clinical patterns of primary hyperparathyroidism in Chinese patients: data from 2000 to 2010 in a single clinical center. J Clin Endocrinol Metab 2013;98:721-8.
[10] Fallahi M, Kharazmi E, Sundquist J, et al. Nonendocrine cancers associated with benign and malignant parathyroid tumors. J Clin Endocrinol Metab 2011;96:E1108-14.
[11] Jacobson M, Ruffolo C, Lumachi F, et al. Results of iterative surgery for persistent and recurrent parathyroid carcinoma. Langenbecks Arch Surg 2005;390:385-90.
[12] Marcocci C, Cetani F, Rubin MR, et al. Parathyroid carcinoma. J Bone Miner Res 2008;23:1869-80.
[13] Kim YI, Jung YH, Hwang KT, et al. Efficacy of 99mTc-sestamibi SPECT/CT for minimally invasive parathyroidectomy: comparative study with 99mTc-sestamibi scintigraphy, SPECT, US and CT. Ann Nucl Med 2012;26:304-10.
[14] Pata G, Casella C, Magri GC, et al. Financial and clinical implications of low-energy CT combined with 99mTc-Technetium-sestamibi SPECT for primary hyperparathyroidism. Ann Surg Oncol 2011;18:2555-63.
[15] Treglia G, Sadeghi R, Schalin–Jantti C, et al. Detection rate of 99mTc-MIBI single photon emission computed tomography (SPECT)/CT in preoperative planning for patients with primary hyperparathyroidism: a meta-analysis. Head Neck 2016;38:E2159-72.
[16] Cheon MJ, Choi KY, Chung JH, et al. Differential findings of Tc-99m sestamibi dual-phase parathyroid scintigraphy between benign and malignant parathyroid lesions in patients with primary hyperparathyroidism. Nucl Med Mol Imaging 2011;45:276-84.
[17] Gardner CJ, Wieshmann H, Gosney J, et al. Localization of metastatic parathyroid carcinoma by 18F FDG PET scanning. J Clin Endocrinol Metab 2010;95:4844-5.