Environmental Factors Affecting Covid-19 Dynamics: A Study in Bengaluru City of Karnataka State of India

Nishant Juneja1 · Amit Grover2 · Harleen Kaur3 · Mehtab Singh4 · Anu Sheetal5

Accepted: 8 May 2022 / Published online: 20 June 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
The horrifying and fast spreading COVID-19 pandemic has shocked India and in fact the entire world to its core. Indian Government has taken all the possible preventive steps to contain the wider spread of this highly contagious disease but the second wave in the month of April, 2021 has turned this strong country in a helpless position. In this paper, the effect of environmental factors like temperature and air quality index on the new confirmed cases along with recovered cases has been seen in Bengaluru Urban district of Karnataka State of India. Regression analysis has been carried out with the help of SPSS software. The outcomes from the paper will definitely give some valuable insights for the researchers around the world in their future combat measures.

Keywords AQI · SPSS · Covid-19 · ANOVA

1 Introduction
Today World is suffering from the lethal viral disease Covid-19 which is causing a real threat to human life [6, 18]. WHO in its notification dated 11th March, 2020 announced this disease a pandemic [3]. The pandemic affects almost all spheres of lives like education economy, business, the health sector, industry and livelihood.

India too falls in trap of this deadly disease and is now at a critical phase in this deadlock war. Kerala was the first state of India which reported a positive case of corona virus on 30th January, 2020. With the passage of time, situation of COVID-19
pandemic worsened in other states of country. The highest provinces in the COVID-19 affected are Maharashtra, Kerala, Tamilnadu, New Delhi, Gujarat and Karnataka states of India (https://www.covid19india.org/). It has been suggested that COVID-19 and other viruses like Ebola and influenza had significant relationship with ecological factors [5, 9, 10, 15, 19].

Undoubtedly, the consequences of lockdown, because of this pandemic have been significant reduction in AQI levels, carbon emission, suspended particulate matter, improved air quality index and green gas emissions have dropped considerably [4, 13, 17, 20]. In the meantime, this pandemic also causes some adverse affects to the environment because of bulky quantity of household and medical litter. The people linked with recycling have the fear to get infected to this contagious virus which in turns worsened the situation in absence of proper recycling of this waste [21].

Many geographical researchers elaborated in their research that the severity of Coronavirus depends on geographical/climatological such factors mainly on temperature, sun exposure, humidity and average rainfall [2, 12, 14, 16]. Pollution is one of the crucial factor affecting the mortality rate of Covid-19 [1, 11]. No doubt environmental factors influence the COVID-19 transmission dynamics, yet there is a need to investigate the relationship with the help of advanced statistical techniques. The main aim of the present paper is to explore the effect of temperature and air quality index on the dynamics of covid-19 in Bengaluru city of Karnataka state of India. The effect of maximum & minimum temperatures along with AQI (air quality index) on transmission risk of Covid-19 has been investigated. Therefore, it is realistic to analyze the relation between environmental indicators (temperature and air quality index) and confirmed and recovered cases of Covid-19. Being an emerging study domain, the present survey study can formulate an analysis of current state of industrial city like Bengaluru that could provide directions to future research.

2 Methods

2.1 Study area

Bangalore which is now officially named as Bengaluru is one of the most developed city of India. Bengaluru is the capital city of Indian state Karnataka and well known for its famous gardens and modern life along with some good ancient architecture. It is the largest city of Karnataka with a population of around 8 million. It is located in Southern India on the Deccan Plateau. Bengaluru is the favorite tourist place to visit because of its lovely weather conditions all over the Year. Among all the cities of India, the elevation of Bengaluru is maximum. The coldest month in Bengaluru is December with mean highest and lowest temperatures 26.2 °C and 16 °C respectively. The hottest month is April with mean highest and lowest temperatures 35.8 °C and 21.8 °C respectively. The air quality index (AQI) at Bengaluru is however better than Delhi and Mumbai, yet it is one of the most polluted city of India ranked 82nd with a 2019 PM2. It is placed in moderate bracket for its polluted air by environmental regulatory authorities of India.
2.2 Data Collection

The set of maximum and minimum temperatures along with daily AQI (air quality index) ranging from 25th April 2021 to 22nd May, 2021 was obtained from the official website of American Media Company accuweather inc. (https://www.accuweather.com/en/in/bengaluru/204108/weather-forecast/204108). Also the daily confirmed cases of Covid-19 in Bengaluru along with daily recoveries for the same time period were derived from the official website of Indian government www.covid19ind.org.

2.3 Data Analysis

A two step multiple regression study was carried out in order to explore the significance of environmental factors like maximum and minimum temperatures along with daily AQI on the dynamics of Covid-19 in Bengaluru City of Karnataka. In first step, daily confirmed cases of covid-19 have been taken as dependent variable with environmental factors being the predictors. In the second step, daily recovered number of cases is taken as dependent variable with same predictors. The significance of the predictors on the dependent variables have been analyzed using ANOVA.

3 Results and Discussions

In the statistical investigation of the dataset, the dynamics of Covid-19 cases in Bengaluru has been studied with climate change parameters like temperature (maximum & minimum) along with AQI. The Fig. 1 shows the pattern of the daily confirmed cased of covid-19 from 25th April, 2021 to 22nd May, 2021. It can be seen that there is sudden surge in cases in end of April which continues to increase till 8th of May, 2021 with highest single day recorded case count of 26,756 recorded on 30th April, 2021. In the third week of May, the case count starts decreasing significantly with only 8214 cases reported on 22nd May. Similarly the Fig. 2 shows the everyday recovery chart of Covid-19 disease in Bengaluru. It can be seen from the figure that highest single day recovery of 23,706 people from the disease on 6th May, 2021. Similar plots have been given for maximum and minimum temperatures.

Fig. 1 Variation of confirmed cases day wise
recorded on daily basis (Figs. 3 and 4). Figure 5 shows the daily AQI data for the same time period in Bengaluru. It can be seen that AQI value has crossed 100 in the period from 25th April to 5th May, 2021. Bengaluru reported one of the most polluted days in this time frame with highest recorded AQI of 145 reported on 28th April, 2021.

Now, we will carry out multiple regression analysis firstly by taking daily confirmed cases of covid-19 as dependent variable. The descriptive stats for the dataset have been shown in Table 1. Further, Table 2 shows that the value of R square comes out to be 0.618 which shows that 61.8 percent of the variance of dependent variable (confirmed cases) has been explained by the three independent variables which are maximum and minimum temperatures along with AQI. The difference between the value of R square and adjusted R square is also less than 0.05 which justifies the characteristics of a good model. The value of F change is 12.954 which is more than 10 with a significant p value (Table 3).

Also, it has been noted from the regression analysis that the value of t statistics for the AQI comes out to be more than 1.96 (Table 4) with p value less than 0.05 and tolerance value 0.570 which is greater than 0.5 along with VIF value 1.755 which is sufficiently less than 5. So all these parametric values justifies that AQI is playing the significant role in
Fig. 4 Minimum temperature day wise

![Minimum temperature day wise chart]

Fig. 5 AQI (air quality index) day wise

![AQI day wise chart]

Table 1 Descriptive statistics with Confirmed cases as dependent variable

	Mean	SD	N
Confirmed cases	17,111.9643	5266.55091	28
AQI	85.5714	37.92920	28
Maximum temperature	32.3929	1.79174	28
Minimum temperature	22.4643	1.03574	28

Table 2 Determinants of performance

R	R²	Adjusted R²	Change in R²	Change in F	df1	df2	Sig. F Change
1	.786a	.618	.570	3451.57870	.618	12.954	3 24 .000

*a multiple correlation
the surge of infected cases. However, the t stats values for maximum and minimum temperatures are not significant. The correlation coefficient between daily confirmed cases and AQI is 0.463. The positive significant value of correlation coefficient shows that number of arrival of Covid-19 cases depends upon AQI of the region and the number of cases considerably increases with increase in AQI.

Now we will again carryout the regression analysis by taking daily recovered cases as dependent variable and keeping all the predictors same. The descriptive statistics for the dataset has been shown in Table 5. Further, Table 6 shows that the value of R square comes out to be 0.418 which shows that 41.8% of the variance of dependent variable (recovered cases) has been explained by the three independent variables which are maximum & minimum temperatures along with daily AQI of Bengaluru. The difference between the value of R square and adjusted R square is also less than 0.05 which justifies the characteristics of a good model. The value of F change is 5.754 which is considered to be reasonably good for a model. (Table 7).

Also, it has been noted from the regression analysis that the modulus value of t statistics for the AQI comes out to be more than 1.96 (Table 8) with p value less than 0.05 and tolerance value 0.570 which is greater than 0.5 along with VIF value 1.755 which is sufficiently less than 5. So all these parametric values justifies that AQI is playing the significant role in the daily recovered cases of Covid-19. However, the t stats values for maximum and minimum temperatures are not considerable. The correlation coefficient between confirmed cases and AQI is −0.513. The significant value of correlation coefficient between recovered cases and AQI truly justifies the fact that daily recovery from the disease depends upon the daily AQI of the Bengaluru city of Karnataka. The negative sign of correlation coefficient shows that daily recovered cases will increase with decrease in daily AQI.

Table 3 ANOVA table

	Sum of squares	df	Mean square	F	Sig
Regression	462,965,586.512	3	154,321,862.171	12.954	.000b
Residual	285,921,492.452	24	11,913,395.519		
Total	748,887,078.964	27			

b significant value at 1% level

4 Conclusion

In the present study, the affect of air quality index (AQI) on covid-19 transmission dynamics in Bengaluru city of Karnataka state of India has been explored. The statistical analysis from the paper indicates that air pollution significantly affect the susceptibility to this highly contagious disease. The multivariate regression analysis has been carried out, firstly with confirmed cases of Covid-19 as dependent variable and then by taking daily recovered cases as dependent variable. It has been seen that with increase in air pollution, there is an increase in daily confirmed cases of Covid-19 and decrease in daily recovered cases. This dependence of disease transmission on AQI can be attributed to the fact that this virus in presence of poor AQI worsens the scenario by weakening the respiratory system that leads to more cases of covid-19 along with poor recovery of infected individuals. The Governments of almost all states are trying at their level best to prevent the wider spread of this disease by imposing lockdowns, enlarging the medical infrastructure, vaccinating...
Table 4 Regression analysis

Model	Unstandardized coefficients	Standardized coefficients	T	Sig	Correlations	Collinearity statistics			
	B	SE	Beta		Zero-order	Partial	Part	Tolerance	VIF
1	(Constant) − 41,255.670	19,325.529	− 2.135	.043				.570	1.755
	AQI 59.373	23.201	.428	2.559	.017	.714	.463	.323	.606
	Max temp 734.717	455.034	.250119	.606	.313	.204	.664
	Min temp 1312.635	810.198	.258118	.625	.314	.204	.627

aDependent variable: confirmed cases
the public, creating awareness among people about the preventive measures like wearing masks, washing hands etc., yet there is a dire need to enforce some more significant regulations from the government side to curb AQI which in turn will surely help in containment of this highly contagious disease. Our study will certainly provide some useful insights for the policy makers in their combat actions against this Covid-19 pandemic.

Table 5 Descriptive statistics with Confirmed cases as dependent variable

	Mean	Std. Deviation	N
Recovered cases	13,394.9286	9159.57739	28
AQI	85.5714	37.92920	28
Max temp	32.3929	1.79174	28
Min temp	22.4643	1.03574	28

Table 6 Determinants of performance

R	R²	Adjusted R²	Change in R²	Change in F	df1	df2	Sig. F Change
1	.647a	.418	.346	7409.35012	.418	5.754	.004

a multiple correlation

Table 7 ANOVA table

Model	Sum of squares	df	Mean square	F	Sig
1 Regression	947,678,903.396	3	315,892,967.799	5.754	.004b
Residual	1,317,563,262.461	24	54,898,469.269		
Total	2,265,242,165.857	27			

b significant value at 1% level
Model	Unstandardized coefficients	Standardized coefficients	t	Sig	Correlations	Collinearity statistics					
	B SE	Beta			Zero-order	Partial	Part	Tolerance	VIF		
1	(Constant)	39,289.776	41,485.253	.947	.353	.645	.513	.456	.570	1.755	
	AQI	−145.738	49.805	−.603	−2.926	.007	−.384	−.040	−.031	.664	1.506
	Max temp	−192.253	976.802	−.038846	−.384	−.040	−.031	.664	1.506
	Min temp	−320.340	1739.216	−.036855	−.404	−.038	−.029	.627	1.596
Funding No funding has been received for this work.

Data availability statement The datasets generated during and/or analysed during the current study are available in the [https://www.covid19india.org/] repository, and [https://www.accuweather.com/en/in/bengaluru/204108/weather-forecast/204108].

Declarations

Conflict of interests Authors declare that they have no conflict of interests.

Code availability None.

References

1. Abdullah, S., Mansor, A. A., Napi, N. N. L. M., Mansor, W. N. W., Ahmed, A. N., Ismail, M., & Ramly, Z. T. A. (2020). Air quality status during 2020 Malaysia Movement Control Order (MCO) due to 2019 novel coronavirus (2019-nCoV) pandemic. Science of the Total Environment, 729, 139022.
2. Bashir, M. F., Ma, B., Komal, B., Bashir, M. A., Tan, D., & Bashir, M. (2020). Correlation between climate indicators and COVID-19 pandemic in New York, USA. Science of the Total Environment, 728(138), 835–838.
3. Benedetti, F., Pachetti, M., Marini, B., Ippodrino, R., Gallo, R. C., Cicciuzzi, M., & Zella, D. (2020). Inverse correlation between average monthly high temperatures and COVID-19-related death rates in different geographical areas. Journal of Translational Medicine, 18(251), 1–17.
4. Chakraborty, I., & Maity, P. (2020). COVID-19 outbreak: migration, effects on society, global environment and prevention. Science of the Total Environment, 728, 138882.
5. Chu, C. M., Tian, S. F., Ren, G. F., Zhang, Y. M., Zhang, L. X., & Liu, G. Q. (1982). Occurrence of temperature-sensitive influenza A viruses in nature. Journal of Virology, 47(2), 353–359.
6. Huang, C. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 6736(20), 30183–30185.
7. https://www.covid19india.org/
8. https://www.accuweather.com/en/in/bengaluru/204108/weather-forecast/204108
9. Lowen, A. C., & Steel, J. (2014). Roles of humidity and temperature in shaping influenza seasonality. Journal of Virology, 88(14), 7692–7695.
10. Moriyama, M., & Ichinohe, T. (2019). High ambient temperature dampens adaptive immune responses to influenza A virus infection. Proceedings of the National Academy of Sciences, 116(8), 3118–3125.
11. Muhammad, S., Long, X., & Salman, M. (2020). COVID-19 pandemic and environmental pollution: a blessing in disguise? Science of the Total Environment, 728, 138820.
12. Prata, D. N., Rodrigues, W., & Bermejo, P. H. (2020). Temperature significantly changes COVID-19 transmission in (sub) tropical cities of Brazil. Science of the Total Environment, 729(138), 862–868.
13. Saadat, S., Rawtani, D., & Hussain, C. M. (2020). Environmental perspective of COVID-19. Science of the Total Environment, 728, 138870.
14. Sharman, J., & Kohm, M. (2009). Absolute humidity modulates influenza survival, transmission and seasonality. Proceedings of the National academy of Sciences of the United States of America, 106(9), 3243–3248.
15. Thai, P. Q., Choisy, M., Duong, T. N., Thiem, V. D., Yen, N. T., Hien, N. T., et al. (2015). Seasonality of absolute humidity explains seasonality of influenza-like illness in Vietnam. Epidemics, 13, 65–73.
16. Tosepu, R., Gunawan, J., Effendy, D. S., Ahmad, L., Lestari, H., Bahar, H., & Asfian, P. (2020). Correlation between weather and Covid-19 pandemic in Jakarta, Indonesia. Science of the Total Environment, 725, 436–439.
17. Wang, Q., & Su, M. (2020). A preliminary assessment of the impact of COVID-19 on environment a case study of China. Science of the Total Environment, 728, 138915.
18. Xie, J., & Zhu, Y. (2020). Association between ambient temperature and Covid-19 infections in 122 cities from China. Science of the Total Environment, 724, 201–205.
19. Yip, C., Chang, W. L., Yeung, K. H., & Yu, I. T. (2007). Possible meteorological influence on the severe acute respiratory syndrome (SARS) community outbreak at Amoy Gardens, Hong Kong. Journal of Environmental Health, 70(3), 39–46.
20. Yunus, A. P., Masago, Y., & Hijioka, Y. (2020). COVID-19 and surface water quality: Improved lake water quality during the lockdown. *Science of the Total Environment, 731*, 139012.

21. Zambrano-Monserrate, M. A., Ruano, M. A., & Sanchez-Alcalde, L. (2020). Indirect effects of COVID-19 on the environment. *Science of the Total Environment, 728*, 138813.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Nishant Juneja obtained his Ph.D degree from I.K Gujral Punjab Technical University, Kapurthala in 2018. He received his Master's degree in Mathematics from Guru Nanak Dev University, Amritsar in 2002 and graduation degree from Punjab University, Chandigarh in 2000. Presently, he is working as Head, P.G. Department of Mathematics, Dev Samaj Post Graduate College for Women, Ferozepur, Punjab. His area of interest includes Mathematical Modeling, Computational Biology, and Statistical Techniques.

Amit Grover obtained his Ph.D. degree from Guru Nanak Dev University Amritsar in 2021. He received his M. Tech degree in Electronics and Communication Engineering from Punjab Technical University, Kapurthala, Punjab, India in 2008 and received his B. Tech degree in Electronics and Communication Engineering from Punjab Technical University, Kapurthala, Punjab, India in 2001. Currently, he is working as an Assistant Professor in Shaheed Bhagat Singh State University, Ferozepur, Punjab, India. His area of interest includes Wireless sensor networks, signal processing, MIMO systems, Wireless mobile communication; high speed digital communications, free space optics (FSO), inter-satellite optical wireless systems (IsOWC) and VLSI Design.

Harleen Kaur obtained her Ph.D. degree from I.K. Gujral Punjab Technical University, Kapurthala in 2017. She received her M. phil. degree in 2009 from Lovely Professional University, Phagwara, Punjab, India. She received her M. Sc. degree in Pure Chemistry in 2008 from Guru Nanak Dev University, Amritsar, Punjab, India. Currently, she is working as an Assistant Professor in Dev Samaj College for Women, Ferozepur City, Punjab, India. Her area of interest includes Nano Chemistry, Environmental Chemistry and Electrochemistry.
Mehtab Singh did Bachelor of Engineering in Electronics and Communication Engineering from Thapar Institute of Engineering & Technology, Patiala, India followed by Master of Technology in Electronics and Communication Engineering with specialization in Communication Systems and Doctor of Philosophy in Electronics Technology from Guru Nanak Dev University, Amritsar, India. His areas of interest include optical communication systems (wired and wireless).

Anu Sheetal was born in Bahadurgarh, Haryana, India, on 18th September, 1972. She obtained her Bachelor’s degree in Electronics Engineering with distinction from the Department of Electronics and Communication Engineering, Punjabi University, Patiala, India in 1994 and Master’s degree in Electronics Engineering from Punjab Technical University, Jalandhar, India in 2003. She obtained his Ph.D. degree from Punjab Technical University, Jalandhar, in 2012. She worked as a Design Engineer at Gilard Electronics Private Limited, Mohali, from 1994 to 1997. She then joined AIET, Faridkot as a lecturer and became Head of Department in 1999. In 2004, she joined Guru Nanak Dev University, Regional campus, Gurdaspur, Punjab, India in the Department of Electronics and Communication Engineering as a lecturer and became Assistant Professor in the Department of Electronics and Communication Engineering. Presently, she is working as Sr. Assistant Professor and Incharge of the department in the same institute. Her present interests are Optical Communication Systems, soliton transmission and DWDM Networks, WDM-PON, RoF etc. She has over 50 research papers published/presented in International/National Journals/Conferences to her credit. She is a life member of The Institution of Electronics and Telecommunication Engineers (IETE), New Delhi (India), Indian Society of Technical Education (ISTE), Optical Society of India, Kolkata (OSI), International Association of Engineers (IAENG). She is acting as a member of editorial board of The International Journal of VLSI and Signal Processing Applications (IJVSPA), International Journal of Research URICE, and ISP Journal of Electronics Engineering. She is acting as technical reviewer for Journal of SPIE—Optical Engineering.