Construction of multi-instantons in eight dimensions

Roman V. Buniy and Thomas W. Kephart
Department of Physics and Astronomy
Vanderbilt University, Nashville, TN 37235
3 October 2002

Abstract

We consider an eight-dimensional local octonionic theory with the seven-sphere playing the role of the gauge group. Duality conditions for two- and four-forms in eight dimensions are related. Dual fields—octonionic instantons—solve an 8D generalization of the Yang-Mills equation. Modifying the ADHM construction of 4D instantons, we find general k-instanton 8D solutions which depend on $16k - 7$ effective parameters.

1 Introduction.

The discovery of instantons [1] was an important advance in our understanding of non-perturbative quantum field theory. These objects are (anti-)self-dual ($*F = \pm F$) Euclidean solutions to Yang-Mills field equations in 4D. They have lead to a deeper understanding of the QCD vacuum (θ vacuum [2]), and have been conjectured to play a part in the confinement of color charges [3]. Instantons also have a broad significance in mathematics, specifically in the theory of fake \mathbb{R}^4-manifolds [4]. The most general multi-instanton solutions have been constructed [5], and these again played a part in broadening our understanding of gauge theories.

A single instanton solution is spherically symmetric and, in mathematical language, corresponds to the third Hopf map, which is the principal fibre bundle $S^7 \xrightarrow{\Sigma^3} S^4$, where S^4 is the one-point compactification of \mathbb{R}^4, $S^3 \sim SU(2)$ is the fibre (gauge group) and S^7 is the total space.

As string theory and M-theory live in higher dimensions, it is of interest to consider higher dimensional analogs of 4D instantons; in particular, there exists a natural generalization of instantons to 8D, where the last Hopf map $S^{15} \xrightarrow{S^7} S^8$ resides. The original 4D instanton had gauge group $SU(2)$ embedded in $Spin(4) \sim SU(2) \times SU(2)$, so that the bundle became $Spin(5) \xrightarrow{Spin(4)} S^4$.

1
The analogous single instanton solution in 8D was found in [6], and has a generalized self-duality $\star F^2 = \pm F^2$ with the bundle $Spin(9) \xrightarrow{Spin(8)} S^8$. The higher dimensional instanton have conformal features similar to those of 4D instantons. The 8D case, and especially its multi-instanton generalization, appears more complicated than its 4D counterpart for the following reasons:

1. The fibre that is twisted with the 4D base space is a three-sphere, but this is a group, while the twisted part of the $Spin(8) \sim S_5^L \times S_5^R \times G_2$ fibre is a seven-sphere. S^7 is the only paralellizable manifold that is not a Lie group, but it does have a close resemblance to a gauge group.

2. As S^7 can be represented by unit octonions, and G_2 is the automorphism group of the octonions, there is a hidden nonassociativity that comes into play.

3. There is only one choice (via the Hodge star) for the form of duality in 4D, but in 8D other possibilities arise, e.g., a tensor form of duality $\lambda F_{\mu\nu} = \frac{1}{2} T_{\mu\rho\sigma} F_{\rho\sigma}$ has been studied [7, 8].

Attempts [9] to obtain multi-instantons in a $Spin(8)$ gauge theory meet with a number of difficulties. To circumvent these obstructions, we turn to a theory with only S^7 fibre, but to do this, we first need to review the properties of the octonions. Here we will construct multi-instanton solutions in 8D through a generalization of the ADHM procedure, and to do this we must deal with all of the above complications. We will introduce products and operators in a way that nonassociativity is tamed. Next, a new generalized duality is used to provide results that allow us to relate the topologically significant quadratic duality on F^2 to a specific form of tensor duality. We then consider the symmetries of our multi-instanton solutions and show that in 8D the k-instanton S^7 bundles contain $16k - 7$ parameters in analogy with the $8k - 3$ parameters of the most general 4D k-instanton S^3 bundles.

2 Octonions

We recall (for a review, see e.g. [10]) that the nonassociative octonionic algebra has the multiplication rule $e_ie_j = -\delta_{ij} + f_{ijk}e_k$, where the f_{ijk}’s are completely anti-symmetric structure constants. The seven-sphere is described by a unit octonion g satisfying $g^*g = 1$. The octonions’ nonassociativity complicates construction of the analog of a gauge theory. For example, for imaginary octonionic A and $F = dA + A^2$, the corresponding S^7-gauge transformed quantities are

$$A_g = g^*Ag + g^*dg$$

and

$$F_g = g^*Fg$$

$$+ dg^*dg - (dg^*g)(g^*dg) + dg^*(Ag) - (dg^*g)(g^*Ag)$$

$$- g^*(Adg) + (g^*Ag)(g^*dg) - g^*A^2Ag + (g^*Ag)(g^*Ag).$$

(1)
Nonassociativity prevents the terms in the last two lines of (1) from canceling. Using \(g(g^\ast h) = h \), which holds for any octonions \(g \) and \(h \), we note that the terms do cancel in \(LF_g \), where \(L \) is the operator of left octonionic multiplication,

\[
L(a_1 \ldots a_n) = a_1(a_2(\ldots a_n)) \ldots .
\]

(2)

Any arrangement of parentheses in the argument of \(L \) give the same results on the right-hand side of (2). Use of the operator \(L \) allows us to perform various operations on the octonions as if they were associative. For simplicity in notations, we omit \(L \) in the following. Instead of left octonionic multiplication we could use right multiplication with the same result. From (1) we now find the familiar result \(F_g = g^\ast F_g \).

For associative \(A \) and \(F \), the forms \(tr F^n \) are closed. To extend this to octonions, which do not admit a matrix representation, we need an octonionic operator with some of the properties of the matrix trace. Consider the operator \(tr_O \) defined by

\[
tr_O L(a_1 \ldots a_n) = \frac{1}{n} \sum_{k=1}^{n} (-1)^{(r_k+\ldots+r_n)(r_1+\ldots+r_{k-1})} L(a_k \ldots a_n a_1 \ldots a_{k-1}),
\]

(3)

where differential forms \(a_k \) are of degrees \(r_k \). The operators \(tr_O \) and \(d \) commute and so the forms \(tr_O F^n \) are closed; thus we arrive at the familiar Lie algebra result [11]:

\[
tr_O F^n = dQ_{2n-1},
\]

(4)

where

\[
Q_{2n-1} = n tr_O \int_{0}^{1} dt A \left[tF + (t^2 - t)A^2 \right]^{n-1}.
\]

(5)

3 Linear duality

Since any pair of imaginary octonions generate a quaternionic subalgebra, we expect to find an octonionic duality condition which is reducible to its quaternionic counterpart. For example, let us define dual octonionic 2-forms according to

\[
\diamond (dx_\mu dx_\nu) = \frac{1}{2} f_{\mu\nu\rho\sigma} dx_\rho dx_\sigma,
\]

(6)

and determine the tensor \(f_{\mu\nu\rho\sigma} \) from the following two requirements: (i) any 2-form can be written as a sum of its self-dual and anti-self-dual parts, or equivalently, \(\diamond^2 = 1 \); (ii) \(dx dx^* \) is self-dual and \(dx^* dx \) is anti-self-dual. Consequently, for octonionic forms we obtain

\[
f_{\mu \nu \rho \sigma} = f_{\nu \mu \rho \sigma},
\]

\[
f_{\mu \nu \rho \sigma} = \frac{1}{3} f_{\mu \rho \nu \sigma},
\]

\[
f_{\mu \nu \rho \sigma} = \pm \frac{1}{3} f_{\mu \rho \nu \sigma} f_{\kappa \lambda \mu \tau} \mp (\delta_{\mu \kappa} \delta_{\nu \lambda} - \delta_{\mu \lambda} \delta_{\nu \kappa}).
\]

(7)
From Eqs. (6) and (7), the components of the \(\diamond \)-dual field strength \(F = \frac{1}{2} F_{\mu \nu} dx_\mu dx_\nu \) are subject to the following 21 relations:

\[F_{ij} = \pm f_{ijk} F_{0k}. \quad (8) \]

Applied to the quaternions, the above requirements lead to the familiar relations \(f_{0abc} = f_{n0bc} = \epsilon_{abc} \) and \(f_{abcd} = 0 \). In both the quaternionic and octonionic cases, the components \(f_{\mu \nu \rho \sigma} \) are the matrix elements of the corresponding groups and cosets in the products \(Spin(4) = S_3^L \times S_3^R \) and \(Spin(8) = S_7^L \times G_2 \times S_7^R \).

Also, the components turn out to coincide with the elements of the torsion and curvature tensors of \(Spin(4)/Spin(3) \) and \(Spin(7)/G_2 \) respectively (for the latter see [12]). Note the two choices of sign for the curvature tensor \(f_{\mu \nu \rho \sigma} \) in (7) and the two choices of orientation, \(S_7^L,R = Spin(7)_{L,R}/G_2 \). Neither corresponds to the two choices of sign in Eq. (8).

Dual fields satisfy \(\diamond F = \pm F \) and, in view of the octonionic Bianchi identity \(D F = 0 \), they also solve an 8D generalization of the Yang-Mills equation \(D \diamond F = 0 \). Below we find multi-particle solutions to the duality equations.

4 Quadratic duality

In addition to the linear form of duality considered above, a quadratic form of duality is also possible in 8D. In the latter case, dual octonionic 4-forms are related via the Hodge star, \("^\ast" \).

A conformally invariant action \(I = \text{tr}_O \int F^2 \ast F^2 \) yields the equation of motion \(\{ F, D \ast F^2 \} = 0 \). The \(\ast \)-dual fields, which are defined by

\[\ast F^2 = \pm F^2, \quad (9) \]

solve the equation of motion by means of the Bianchi identity \(DF = 0 \).

In terms of (anti-)self-dual \(F^2 \pm = \frac{1}{4} (F^2 \pm \ast F^2) \), the action becomes

\[I = \text{tr}_O \int \left(F^2 \ast F^2 + F^2 \ast F^2 \right). \quad (10) \]

On the other hand, the topological charge (the forth Chern number) is

\[N = \frac{1}{384 \pi^4} \text{tr}_O \int F^4 = \frac{1}{384 \pi^4} \text{tr}_O \int (F^2 \ast F^2 - F^2 \ast F^2), \quad (11) \]

where we have used \(F^2 \ast F^2 = 0 \). It follows from (10) and (11) that the action is bounded from below,

\[I \geq 384 \pi^4 |n|, \]

\[\text{While our octonionic duality condition (8) is similar in form to one of the two duality conditions for } SO(8) \text{ considered in Ref. [7], the latter were not constructed to satisfy either of the two above-mentioned requirements. Consequently, our octonionic instantons are different from the } SO(8) \text{ solutions in Ref. [8].} \]
with minima achieved when \(F^2_{\pm} = 0 \), i.e. for the \(*\)-dual fields (9). There are one-particle solutions to the quadratic duality equations (9), and these solutions have a geometric interpretation in terms of the forth Hopf map [6].

It is remarkable but straightforward to verify that \(\diamond F = \pm F \) implies \(\ast F^2 = \mp F^2 \). To check this, we need the identity

\[
\delta^{(i[jf^j]_{lm]} = -\frac{1}{24} \epsilon^{klmnopr} f^{i}_{np} f^{j}_{qr},
\]

where indices included in braces (brackets) are to be symmetrized (antisymmetrized). We can also view \(\ast \) as a “square” of \(\diamond \). The relation between the linear and quadratic dualities allows us to proceed with the construction of octonionic multi-instantons.

5 Solution

The ADHM construction [5] gives the most general multi-instanton solutions to the duality equations in four dimensions. We construct octonionic dual fields by a suitable 8D generalization of the ADHM formula. Namely, consider a gauge potential [13]

\[
A = \frac{U^\dagger dU - dU^\dagger U}{2(1 + U^\dagger U)}, \quad U^\dagger = V(B - xI)^{-1},
\]

where the \(k \)-dimensional vector \(V \) and the \(k \times k \) matrix \(B \) have constant octonionic entries. The operator \(L \) is suppressed as usual, and the symbol “\(\dagger \)” means matrix transposition combined with octonionic conjugation. The corresponding field strength is

\[
F = (1 + U^\dagger U)^{-2} U^\dagger dxW dx^* U,
\]

where \(W^{-1} = V^\dagger V + (B^\dagger - x^* I)(B - xI) \).

For real \(W \), i.e. when

\[
V^\dagger V + B^\dagger B \text{ is real}
\]

and \(B \) is symmetric,

\(F \) involves the expression \(L(\ldots dxdx^* \ldots) \). The \(\diamond \)-dual of this 2-form is \(L(\ldots \diamond (dxdx^*) \ldots) \) and, owing to the self-duality of \(dxdx^* \), \(F \) is \(\diamond \)-self-dual itself, but \(F^2 \) is \(\ast \)-anti-self-dual. Interchanging \(x \) and \(x^* \), interchanges self-dual and anti-self-dual objects for both dualities.

6 Instanton number

For the solution obtained above, the gauge potential vanishes at infinity faster than a pure gauge, and has singularities at the instanton locations. A physically acceptable solution results from a suitable gauge transformation.
The singularities are located at eigenvalues \(\{ b_i \} \) of the \(k \times k \) matrix \(B \). Expanding around each singularity, we have approximately

\[
A \approx \frac{y_i^* dy_i - dy_i^* y_i}{2|y_i|^2(1 + |y_i|^2)} \quad \text{for} \quad y_i \to 0,
\]

where \(y_i = (x - b_i) V_i^* \). A gauge transformation with the gauge function \(g_i = y_i^*/|y_i| \) removes the singularity at \(y_i = 0 \) in the potential (15), and leads to

\[
A_{g_i} \approx \frac{y_i^* dy_i - dy_i^* y_i^*}{2(1 + |y_i|^2)} \quad \text{for} \quad y_i \to 0.
\]

Similar to the quaternionic case [14], all singularities inside a finite \(S^7 \) can be removed. Inside this \(S^7 \), after using (4), the instanton number becomes

\[
N = \int_{R^4} \text{tr} O F^4_g = \int_{S^7} (Q_7)_g,
\]

where asymptotically \((Q_7)_g \sim -\frac{1}{4} \text{tr} (g^* dg)^7 \). Since the field strength corresponding to the gauge potential \(g^* dg \) is zero, we use Stokes’s theorem again to replace the integral over the large \(S^7 \) by the sum of the integrals over \(k \) small spheres \(S^7_i \) enclosing singularities \(b_i \). Around each singularity, \(F_g \) looks like the field of a single anti-instanton at the origin,

\[
F_g = \frac{dx dx^*}{(1 + |x|^2)^2}.
\]

Therefore, the topological charge \(N \) and minus the instanton number \(-k\) are one and the same.

7 Parameters

We now count the number of parameters needed to describe a \(k \)-instanton. The octonions \(V \) and \(B \) have, respectively, \(8k \) and \(8\frac{1}{2} k(k + 1) \) real parameters. There are \(7\frac{1}{2} k(k - 1) \) real equations in (14) constraining \(V \) and \(B \). When \(V \) is replaced by \(g^* V \), where \(g \in S^7 \) is constant, the potential (12) is gauge transformed, \(A \to g^* Ag \), eliminating 7 more parameters. Also, a transformation \(V \to VT \), \(B \to T^{-1} BT \) with real and constant \(T \in O(k) \), which has \(\frac{1}{2} k(k - 1) \) parameters, does not change \(A \). Therefore, the number of effective degrees of freedom describing a \(k \)-instanton is

\[
8k + 8\frac{1}{2} k(k + 1) - 7\frac{1}{2} k(k - 1) - 7 - \frac{1}{2} k(k - 1) = 16k - 7.
\]

We do not have a proof that the above construction gives all dual fields, although we suspect it does. At least it does so for the case of a one-instanton [6], which is described by 9 parameters—instanton’s scale and location. Perhaps completeness of the construction can be proved by using octonionic projective
spaces [15] and generalized twistors in analogy with the 4D case ([5, 13]). Other multi-instanton solutions are subsets of our solutions. For example, one can generalize Witten’s and ‘t Hooft’s [16] 4D multi-instanton solutions to 8D.

The single 8D instanton has entered string theory and produced a solitonic member of the brane scan (for a review, see [17]). We hope our general construction will facilitate further applications to string and M-theory, and perhaps in pure mathematics.

References

[1] A. A. Belavin, A. M. Polyakov, A. S. Schwartz and Y. S. Tyupkin, Phys. Lett. B 59 (1975) 85.
[2] G. ’t Hooft, Phys. Rev. Lett. 37 (1976) 8; C. G. Callan, R. F. Dashen and D. J. Gross, Phys. Lett. B 63 (1976) 334; R. Jackiw and C. Rebbi, Phys. Rev. Lett. 37 (1976) 172.
[3] C. G. Callan, R. F. Dashen and D. J. Gross, Phys. Rev. D 17 (1978) 2717.
[4] S. K. Donaldson and P. B. Kronheimer, The Geometry of Four-Manifolds (Clarendon Press, Oxford, 1990).
[5] M. F. Atiyah, N. J. Hitchin, V. G. Drinfeld and Y. I. Manin, Phys. Lett. A 65 (1978) 185.
[6] B. Grossman, T. W. Kephart and J. D. Stasheff, Commun. Math. Phys. 96 (1984) 431 [Erratum-ibid. 100 (1985) 311].
[7] E. Corrigan, C. Devchand, D. B. Fairlie and J. Nuyts, Nucl. Phys. B 214 (1983) 452; D. B. Fairlie and J. Nuyts, J. Math. Phys. 25 (1984) 2025.
[8] D. B. Fairlie and J. Nuyts, J. Phys. A 17 (1984) 2867; S. Fubini and H. Nicolai, Phys. Lett. B 155 (1985) 369.
[9] J. Spruck, D. H. Tchrakian and Y. Yang, Commun. Math. Phys. 188 (1997) 737; D. H. Tchrakian and A. Chakrabarti, J. Math. Phys. 32 (1991) 2532.
[10] R. D. Schafer, An Introduction to Nonassociative Algebras, (Academic Press, New York, 1966); F. Gürsey and C. H. Tze, On the Role of Division, Jordan and Related Algebras in Particle Physics, (World Scientific, Singapore, 1996).
[11] T. Eguchi, P. B. Gilkey and A. J. Hanson, Phys. Rept. 66 (1980) 213.
[12] J. Lukierski and P. Minnaert, Phys. Lett. B 129 (1983) 392.
[13] Michael Atiyah, Collected Works, (Clarendon Press, Oxford, 1988), vol. 5, pp. 75–173.
[14] J. J. Giambiagi and K. D. Rothe, Nucl. Phys. B 129 (1977) 111.

[15] M. Cederwall and C. R. Preitschopf, arXiv:hep-th/9403028; J. C. Baez, arXiv:math.ra/0105155.

[16] E. Witten, Phys. Rev. Lett. 38 (1977) 121; G. ’t Hooft, unpublished; R. Jackiw, C. Nohl and C. Rebbi, Phys. Rev. D 15 (1977) 1642.

[17] M. J. Duff, R. R. Khuri and J. X. Lu, Phys. Rept. 259 (1995) 213 [arXiv:hep-th/9412184].