Anomalous Wtb couplings in \( \gamma p \) collision at the LHC

B. Şahin

Department of Physics, Bulent Ecevit University, 67100 Zonguldak, Turkey

A. A. Billur

Department of Physics, Cumhuriyet University, 58140 Sivas, Turkey

Abstract

We study the possibility for the process \( pp \to p\gamma p \to pW^-t(W^+b)X \) with anomalous Wtb couplings in a model independent effective Lagrangian approach at the LHC. We find 95% confidence level bounds on the anomalous coupling parameters for various values of the integrated luminosity. The improved constraints on the anomalous Wtb couplings have been obtained compared to current limits.

PACS numbers: 14.65.Ha, 14.70.Fm, 12.60.-i
The Standard Model (SM) has been very successful in explaining the data taken from former colliders such as CERN LEP or Fermilab Tevatron. Testing SM at the CERN LHC will either lead to additional confirmation of the SM or give some hints for new physics beyond the SM. Because of the large mass of the top quark, its couplings are expected to be more sensitive to new physics than other particles [1, 2]. Especially, Wtb vertex deserves special attention since the top quark is expected to decay almost completely via this interaction. Thus, studying top quark couplings will be substantial to test the SM and a deviation of the top couplings from the expected values would imply the existence of new physics.

In this work we have analyzed anomalous Wtb couplings via single top quark production in $\gamma p$ collision at the LHC. This reaction is probable at the LHC via elastic photon emission from one of the incoming protons. The emitted photon can collide with the other proton and produce a final state of $WtX$ through deep inelastic scattering (Fig.1). We employ the equivalent photon approximation (EPA) [3–5] for elastic photon emission from the proton. In the EPA, emitted photons have a low virtuality and it is a good approximation to assume that they are on-mass-shell. For this reason these photons are sometimes called quasi-real photons. When a proton emits a quasi-real photon it remains intact and scatters with a very small angle from the beam pipe. The ATLAS and CMS Collaborations at the LHC, have a program with very forward detectors. It is aimed to investigate soft and hard diffraction, low x dynamics with forward jet studies, high energy photon-induced interactions, large rapidity gaps between forward jets, and luminosity monitoring [6–23]. These detectors will be located in a region nearly 220-420 m from the interaction point and they can detect protons in a continuous range of momentum fraction loss [24, 25]. Momentum fraction loss of the proton is defined as $\xi = (|\vec{p}'| - |\vec{p}''|)/|\vec{p}'|$. Here $\vec{p}$ is the momentum of the incoming proton and $\vec{p}'$ is the momentum of the intact scattered proton. Therefore equipped with very forward detectors, LHC can to some extend be considered as a high-energy photon-photon or photon-proton collider.

Photon induced reactions have been experimentally observed through $p\bar{p} \rightarrow \gamma\gamma p\bar{p} \rightarrow \ell^+\ell^- p\bar{p}$ processes in hadron-hadron collisions [26–28], $ep \rightarrow eXp$ in ep collisions [29–34], and pair production in AA collisions [35–38]. These experiments raise interest on the poten-
tial of LHC as a photon-photon and photon-proton collider and motivate phenomenological works on photon-induced reactions at the LHC as a probe of new physics [16–18, 39–49].

II. LAGRANGIAN AND CROSS SECTIONS

Anomalous \( Wtb \) couplings can be investigated in a model independent way by means of the effective Lagrangian approach [50–56]. We employ the following effective Lagrangian describing anomalous \( Wtb \) couplings:

\[
L = \frac{g_W}{\sqrt{2}} \left[ W_\mu \bar{t}(\gamma^\mu F_{1L} P_- + \gamma^\mu F_{1R} P_+) b - \frac{1}{2m_W} W_{\mu\nu} \bar{t}\sigma^{\mu\nu}(F_{2L} P_- + F_{2R} P_+) b \right] + \text{h.c.} \tag{1}
\]

where

\[
W_{\mu\nu} = D_\mu W_\nu - D_\nu W_\mu, \quad D_\mu = \partial_\mu - ieA_\mu
\]

\[
P_\mp = \frac{1}{2}(1 \mp \gamma_5), \quad \sigma^{\mu\nu} = \frac{i}{2}(\gamma^\mu \gamma^\nu - \gamma^\nu \gamma^\mu) \tag{2}
\]

It should be noted that Lagrangian (1) also give rise to anomalous \( Wtb\gamma \) couplings. In the SM, the \((V-A)\) coupling \( F_{1L} \) corresponds to the Cabibbo-Kobayashi-Maskawa (CKM) matrix element \( V_{tb} \), which is very close to unity and \( F_{1R}, F_{2L} \) and \( F_{2R} \) are equal to zero.

For off-shell top and/or bottom quarks the Lagrangian in Eq.(1) is not the most general one, it should be extended with \( k^\mu \) and \( \sigma^{\mu\nu} k_\nu \) terms where \( k \) is the sum of the momenta of the t and b quarks. However, if \( Wtb \) couplings arise from gauge invariant effective operators, single top production and decay can be described in full generality using the on-shell Lagrangian in Eq.(1) for the \( Wtb \) vertex, even in the process where the top and bottom quarks are far from their mass shell [57]. If the W boson is off-shell, then there are additional terms containing \( \partial_\mu W^\mu \) [56]. These terms are omitted in the Lagrangian, they can be recovered by applying the equation of motion through operators of the original Lagrangian [58].

Measurements at D0 detector at Fermilab Tevatron provide stringent direct constraints on these couplings [59–62]. The most stringent bounds on the anomalous couplings \( F_{1R}, F_{2R} \) and \( F_{2L} \) are given by \(|F_{1R}|^2 < 0.50, |F_{2R}|^2 < 0.05 \) and \(|F_{2L}|^2 < 0.11 \) at 95% C.L. assuming that \( F_{1L} = 1 \) [62]. Recent results from early LHC data set comparable, but still weaker bounds with respect to Tevatron [63]. We see from the Tevatron and LHC data that the bound on the coupling \( F_{2L} \) is weaker then the bound on \( F_{2R} \) and the bound on the coupling
$F_{1R}$ is weaker than the others [59–63]. The (V + A) coupling $F_{1R}$ is stringently bounded by the CLEO $b \to s\gamma$ data [64, 65] from an indirect analysis. Limit from the CLEO data is given by $|F_{1R}| < 4 \times 10^{-3}$ at 2$\sigma$ level [65]. It is explicit that indirect constraints are much more restrictive than direct constraints [66, 67].

In the literature there has been a great amount of work on Wtb couplings through single and pair top quark production. The single top quark production cross section was discussed below and above the $t\bar{t}$ threshold for the processes $e^+e^- \to Wtb$ [68, 69] and $e^+e^- \to e\nu tb$ at the CERN LEP [70, 71]. Top quark single and pair production processes were studied for future linear $e^+e^-$ collider and its $\gamma\gamma$ and $e\gamma$ modes [72–80] and also for $\gamma p$ collisions in TESLA+HERA p and CLIC+LHC options [81–83]. Anomalous Wtb couplings have also been probed at the LHC and Tevatron [57, 59–63, 67, 84–93].

The equivalent photon spectrum of virtuality $Q^2$ and energy $E_\gamma$ is given by the following formula [3–5]

$$\frac{dN_\gamma}{dE_\gamma dQ^2} = \frac{\alpha}{\pi E_\gamma Q^2}[(1 - \frac{E_\gamma}{E})(1 - \frac{Q_{min}^2}{Q^2})F_E + \frac{E_\gamma^2}{2E^2}F_M]$$

where

$$Q_{min}^2 = \frac{m_p^2E_\gamma^2}{E(E - E_\gamma)}, \quad F_E = \frac{4m_p^2G^2_E + Q^2G^2_M}{4m_p^2 + Q^2},$$

$$G^2_E = \frac{G^2_M}{\mu_p^2} = (1 + \frac{Q^2}{Q_0^2})^{-4}, \quad F_M = G^2_M$$

In Eq.(3), $E$ is the energy of the incoming proton beam and $m_p$ is mass of the proton. The magnetic moment of the proton is taken to be $\mu_p^2 = 7.78$ and $Q_0^2 = 0.71 GeV^2$ [3, 16, 23]. The photon spectrum which is integrated from a kinematic minimum $Q_{min}^2$ up to $Q_{max}^2$ is given by [16]

$$dN(E_\gamma) = \frac{\alpha}{\pi} \frac{dE_\gamma}{E_\gamma} \left(1 - \frac{E_\gamma}{E}\right) \left[\varphi\left(\frac{Q_{max}^2}{Q_0^2}\right) - \varphi\left(\frac{Q_{min}^2}{Q_0^2}\right)\right]$$

where the function $\varphi$ is defined as follows

$$\varphi(x) = (1 + ay) \left[-ln(1 + x^{-1}) + \sum_{k=1}^{3} \frac{1}{k(1 + x)^k}\right] + \frac{(1 - b)y}{4x(1 + x)^3} + c \left(1 + \frac{y}{4}\right)$$

$$\times \left[ln\frac{1 + x - b}{1 + x} + \sum_{k=1}^{3} \frac{b^k}{k(1 + x)^k}\right]$$
where
\[ y = \frac{E_\gamma^2}{E(E - E_\gamma)}, \quad a = \frac{1}{4}(1 + \mu_p^2) + \frac{4m_p^2}{Q_0^2} \approx 7.16 \]
\[ b = 1 - \frac{4m_p^2}{Q_0^2} \approx -3.96, \quad c = \frac{\mu_p^2 - 1}{b^4} \approx 0.028 \]

In the EPA emitted photons have a low virtuality and photon spectrum has an asymptotic behavior for large values of virtuality \( Q^2 \). In the EPA that we have considered typical photon virtuality is \( \langle Q^2 \rangle \approx 0.01 GeV^2 \) \[3\]. Above this average virtuality value, spectrum function rapidly decreases and the contribution to the integral above \( Q_{max}^2 \approx 2 GeV^2 \) is negligible. To be precise, the difference between SM cross sections for \( Q_{max}^2 = 2 GeV^2 \) and \( Q_{max}^2 = 64 GeV^2 \) is at the order of \( 10^{-5} \)pb. Therefore during calculations we set \( Q_{max}^2 = 2 GeV^2 \).

We consider the subprocesses \( \gamma b \to W^- t \) and \( \gamma \bar{b} \to W^+ \bar{t} \) of our main process \( pp \to p\gamma p \to pW^- t(W^+ \bar{t})X \). In the SM single production of the top quark via the process \( \gamma b \to W^- t \) is described by three tree level diagrams. Each of the diagrams contains a \( Wtb \) vertex. In the effective Lagrangian approach, there are four tree level diagrams; one of them contains an anomalous \( \gamma btW \) vertex, which is absent in the SM (Fig.2).

The total cross section for the process \( pp \to p\gamma p \to pW^- t(W^+ \bar{t})X \) can be obtained by integrating the cross section for the subprocesses over the photon and quark distributions:
\[
\sigma \left( pp \to p\gamma p \to pW^- t(W^+ \bar{t})X \right) = \int_{\xi_{1_{\text{min}}}}^{\xi_{1_{\text{max}}}} dx_1 \int_0^1 dx_2 \left( \frac{dN_\gamma}{dx_1} \right) \left( \frac{dN_q}{dx_2} \right) \times \left[ \tilde{\sigma}_{\gamma b \to W^- t(s)} + \tilde{\sigma}_{\gamma \bar{b} \to W^+ \bar{t}(s)} \right]
\]

In this formula, \( x_1 = \frac{E_\gamma}{E} \) and \( x_2 \) is the fraction which represents the ratio between \( b (\bar{b}) \) quark and incoming proton’s momentum. \( \frac{dN_q}{dx_2} \) is the \( b (\bar{b}) \) quark distribution function. We ignore interactions between different family quarks since the cross sections are suppressed due to small off diagonal elements of the Cabibbo-Kobayashi-Maskawa matrix. In the total cross section calculations we have used Martin, Stirling, Thorne and Watt distribution functions \[94\].

In our calculations three different forward detector acceptance ranges have been discussed: \( 0.0015 < \xi < 0.15, 0.0015 < \xi < 0.5 \) and \( 0.1 < \xi < 0.5 \). The former one was proposed by the ATLAS Forward Physics (AFP) Collaboration \[24, 25\]. The second acceptance range was proposed by the CMS-TOTEM forward detector scenario \[95\]. Since the forward detectors
can detect protons in a continuous range of $\xi$ one can impose some cuts and choose to work in a subinterval of the whole acceptance region. Hence, we also consider an acceptance of $0.1 < \xi < 0.5$ which is a subinterval of the CMS-TOTEM acceptance range.

In Figs. 3-6 we show the integrated total cross section of the process $pp \rightarrow p\gamma p \rightarrow pW^- tX$ as a function of anomalous couplings $F_{2R}, F_{2L}, F_{1R}$ and $\Delta F_{1L}$ for the acceptances of $0.0015 < \xi < 0.15, 0.0015 < \xi < 0.5$ and $0.1 < \xi < 0.5$. Here, the anomalous coupling $\Delta F_{1L}$ is defined by $\Delta F_{1L} \equiv F_{1L} - 0.99$. In Figs. 3 and 4 we observe that cross section approximately has a same dependence to both $F_{2R}$ and $F_{2L}$ couplings. We see from Fig. 5 that sensitivity of the cross section to anomalous coupling $F_{1R}$ is comparably weak.

III. SENSITIVITY TO ANOMALOUS COUPLINGS

We estimate the sensitivity of the process $pp \rightarrow p\gamma p \rightarrow pW^- t(W^+\bar{t})X$ to anomalous couplings $F_{2R}, F_{2L}, F_{1R}$ and $\Delta F_{1L}$ using a simple one parameter $\chi^2$ criterion for integrated luminosities of $L_{int} = 10, 30, 50, 100, 200 fb^{-1}$ and $\sqrt{s} = 14$ TeV. The $\chi^2$ function is given by

$$\chi^2 = \left( \frac{\sigma_{SM} - \sigma(\Delta F_{1L}, F_{1R}, F_{2L}, F_{2R})}{\sigma_{SM} \delta} \right)^2$$

where $\delta = \frac{1}{\sqrt{N}}$ is the statistical error. The expected number of events has been calculated considering the leptonic decay channel of the W boson and leptonic decay of the top quark as the signal $N = BR(W^- \rightarrow \ell^- \nu_\ell)BR(t \rightarrow W^+ b \rightarrow \ell^+ \nu_\ell b)\sigma_{SM} L_{int}$, where $\ell = e$ or $\mu$. ATLAS and CMS have central detectors with a pseudorapidity coverage $|\eta| < 2.5$. Therefore we consider an acceptance window of $|\eta| < 2.5$ for final state electrons, muons and b quark. Branching ratios appearing in the number of events are defined as $BR = \frac{\Gamma}{\Gamma_{total}}$ where $\Gamma_{total}$ is the full width and $\Gamma$ is the decay rate for the corresponding channel with a cut of $|\eta| < 2.5$ for final decay products.

The limits for the anomalous coupling parameters are given in tables 1-4 for integrated luminosities of $L_{int} = 10, 30, 50, 100, 200 fb^{-1}$ and forward detector acceptances of $0.0015 < \xi < 0.15, 0.0015 < \xi < 0.5$ and $0.1 < \xi < 0.5$. We see from the tables that $0.1 < \xi < 0.5$ case provides more restrictive bounds on both $F_{2R}$ and $F_{2L}$ couplings compare to the $0.0015 < \xi < 0.15$ and $0.0015 < \xi < 0.5$ cases. On the other hand, limits on $F_{1R}$ and $\Delta F_{1L}$ couplings in $0.1 < \xi < 0.5$ case are weaker then the limits in $0.0015 < \xi < 0.15$ and $0.0015 < \xi < 0.5$ cases. The limits presented in tables are reasonable. In the effective
lagrangian (1) anomalous couplings $F_{1R}$ and $F_{1L}$ are originated from dimension 4 effective operators but anomalous couplings $F_{2R}$ and $F_{2L}$ are originated from dimension 5 effective operators. Therefore energy dependence of the terms in the cross section proportional to $F_{2R}$ and $F_{2L}$ are expected to be higher than the standard model and also the terms in the cross section proportional to $F_{1R}$ and $F_{1L}$. Hence, the main new physics contribution from couplings $F_{2R}$ and $F_{2L}$ comes from high energy region $0.1 < \xi < 0.5$. On the contrary, the main standard model contribution comes from low energy region $0.0015 < \xi < 0.15$. The limits on $F_{2R}$ and $F_{2L}$ are expected to be better in the less forward region $0.1 < \xi < 0.5$ since the invariant mass of the incoming photon and b quark is large and the standard model background is low in that region.

IV. CONCLUSION

Our limits on the couplings $F_{2R}$ and $F_{2L}$ are approximately a factor from 2 to 4 and 3 to 6 better then the limits from direct constraints at the Tevatron respectively depending on the luminosity [62]. On the other hand, our best limit on $F_{1R}$ is a factor of 3.7 more restricted compared to Tevatron direct constraint [62].

Physics studied at the LHC is significantly enhanced via the forward physics programs of ATLAS and CMS collaborations. Equipped with forward detectors LHC gives us new options to examine high energy photon-proton interactions. With respect to pure deep inelastic scattering processes, photon-proton interactions provide a quite clean channel due to absence of one of the incoming proton remnants. Furthermore, detection of the intact scattered protons in the forward detectors allows us to reconstruct quasi-real photons momenta. This provides an advantage in reconstruction of the kinematics.
FIG. 1: Schematic diagram of the process $pp \rightarrow p\gamma p \rightarrow pWtX$.

FIG. 2: Tree level Feynman diagrams for the process $\gamma b \rightarrow W^- t$.

[1] R.D. Peccei, X. Zhang, Nucl. Phys. B 337, 269 (1990).
[2] R.D. Peccei, S. Peris, X. Zhang, Nucl. Phys. B 349, 305 (1991).
[3] K. Piotrzkowski, Phys. Rev. D 63, 071502 (2001).
[4] V. M. Budnev, I. F. Ginzburg, G. V. Meledin and V. G. Serbo, Phys. Rep. 15, 181 (1975).
[5] G. Baur et al., Phys. Rep. 364, 359 (2002).
[6] C. Royon, Mod. Phys. Lett. A, 18, 2169 (2003).
[7] M. Boonekamp, R. Peschanski, and C. Royon, Phys. Rev. Lett. 87, 251806 (2001).
[8] M. Boonekamp, R. Peschanski, and C. Royon, Nucl. Phys. B, 669, 277 (2003).
[9] M. Boonekamp, A De Roeck, R. Peschanski, and C. Royon, Phys. Lett. B 550, 93 (2003).
[10] V.A. Khoze, A.D. Martin, and M.G. Ryskin, Eur. Phys. J. C 19, 477 (2001).
[11] V.A. Khoze, A.D. Martin, and M.G. Ryskin, Eur. Phys. J. C 24, 581 (2002).
[12] V.A. Khoze, A.D. Martin, and M.G. Ryskin, Eur. Phys. J. C 55, 363 (2008).
[13] V.A. Khoze, A.D. Martin, and M.G. Ryskin, Phys. Lett. B 650, 41 (2007).
FIG. 3: The integrated total cross section of the process $pp \rightarrow p\gamma p \rightarrow pWtX$ as a function of anomalous coupling $F_{2R}$ for three different detector acceptances stated in the figure. The center of mass energy is taken to be $\sqrt{s} = 14$ TeV.

[14] A.B.Kaidalov, V.A.Khoze, A.D.Martin, and M.G. Ryskin, Eur. Phys.J. C 33, 261 (2004).
[15] A.B.Kaidalov, V.A.Khoze, A.D.Martin, and M.G. Ryskin, Eur. Phys.J. C 31, 387 (2003).
[16] O.Kepka and C.Royon, Phys.Rev.D 78, 073005 (2008).
[17] V.A.Khoze, A.D.Martin, and M.G. Ryskin, Eur. Phys.J. C 23, 311 (2002).
[18] N.Schul and K.Piotrzkowski, Nucl.Phys.B, Proc.Suppl. 179-180, 289 (2008).
[19] S.R.Klein and J.Nystrand Phys.Rev.Lett. 92, 142003 (2004).
[20] M.B. Gay Ducati and G.G.Silveira, Phys.Rev. D 82, 073004 (2010).
[21] V.P. Goncalves and M.V.T.Machado, Phys.Rev.D75, 031502 (2007).
[22] M.V.T.Machado, Phys.Rev.D 78, 034016 (2008).
[23] X. Rouby, PhD Thesis Measurements of photon induced processes in CMS and forward proton detection at the LHC, UCL-Thesis 135-2008, CMS TS-2009/004.
[24] C. Royon et al. (RP220 Collaboration), Proceedings for the DIS 2007 workshop, Munich, 2007; arXiv:0706.1796 [physics.ins-det].
[25] M.G. Albrow et al. (FP420 R and D Collaboration), JINST 4, T10001 (2009); arXiv:0806.0302
FIG. 4: The integrated total cross section of the process \( pp \rightarrow p\gamma p \rightarrow pWtX \) as a function of anomalous coupling \( F_{2L} \) for three different detector acceptances stated in the figure. The center of mass energy is taken to be \( \sqrt{s} = 14 \) TeV.

[hep-ex].

[26] A.Abulencia et al. (CDF Collaboration), Phys. Rev. Lett. 98, 112001 (2007).
[27] T.Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 102, 242001 (2009).
[28] T.Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 102, 222002 (2009).
[29] A.Aktas et al., Phys.Lett.B 583, 428 (2004).
[30] A.Aktas et al., Eur. Phys.J. C 31,17 (2003).
[31] F.D.Aaron et al., Eur. Phys.J. C 71,1578 (2011).
[32] ZEUS Collaboration, Nucl.Phys.B 800,1-76 (2008).
[33] ZEUS Collaboration, Nucl.Phys.B 816,1-61 (2009).
[34] H1 Collaboration, Eur.Phys.J.C 48,749-766 (2006).
[35] A.Belkacem et al., Phys.Rev.A 56, 2806 (1997).
[36] C.Vane et al., Phys.Rev.A 50, 2313 (1994).
[37] R.Baur et al., Phys.Lett.B 332, 471 (1994).
[38] J.Adams et al., Phys.Rev.C 70, 031902 (2004).
FIG. 5: The integrated total cross section of the process $pp \rightarrow p\gamma p \rightarrow pWtX$ as a function of anomalous coupling $F_{1R}$ for three different detector acceptances stated in the figure. The center of mass energy is taken to be $\sqrt{s} = 14$ TeV.

[39] S. M. Lietti, A. A. Natale, C. G. Roldao and R. Rosenfeld, Phys. Lett. B 497, 243 (2001); arXiv:hep-ph/0009289.

[40] E. Chapon, C. Royon and O. Kepka, Phys. Rev. D 81, 074003 (2010); arXiv:0912.5161 [hep-ph].

[41] S. Ata˘g, S. C. ˙Inan and ˙I. ˙Sahin, Phys. Rev. D 80, 075009 (2009); arXiv:0904.2687 [hep-ph].

[42] ˙I. ˙Sahin and S. C. ˙Inan, JHEP 09, 069 (2009); arXiv:0907.3290 [hep-ph].

[43] S. Ata˘g, S. C. ˙Inan and ˙I. ˙Sahin, JHEP 09, 042 (2010); arXiv:1005.4792 [hep-ph].

[44] S. C. ˙Inan, Phys. Rev. D 81, 115002 (2010); arXiv:1005.3432 [hep-ph].

[45] S. Ata˘g and A. A. Billur, JHEP 11, 060 (2010); arXiv:1005.2841 [hep-ph].

[46] M.G. Albrow, T.D. Coughlin and J.R. Forshaw, Prog. Part. Nucl. Phys. 65, 149-184 (2010); arXiv:1006.1289 [hep-ph].

[47] ˙I. ˙Sahin, and A. A. Billur, Phys. Rev. D 83, 035011 (2011); arXiv:1101.4998 [hep-ph].

[48] ˙I. ˙Sahin, and M. Koksal, JHEP 03, 100 (2011); arXiv:1010.3434 [hep-ph].

[49] ˙I. ˙Sahin, Phys. Rev. D 85, 033002 (2012); arXiv:1201.4364 [hep-ph].
FIG. 6: The integrated total cross section of the process $pp \to p\gamma p \to pWtX$ as a function of anomalous coupling $\Delta F_{1L}$ for three different detector acceptances stated in the figure. The center of mass energy is taken to be $\sqrt{s} = 14$ TeV.

[50] W. Buchmuller, D. Wyler, Nucl. Phys. B 268, 621 (1986)
[51] K. Hagiwara, S. Ishihara, R. Szalapski, D. Zeppenfeld, Phys. Rev. D 48, 2182 (1993)
[52] G.J. Gounaris, F.M. Renard, C. Verzegnassi, Phys. Rev. D 52, 451 (1995)
[53] G.J. Gounaris, F.M. Renard, N.D. Vlachos, Nucl. Phys. B 459, 51 (1996)
[54] K. Whisnant, J. Yang, B. Young, X. Zhang, Phys. Rev. D 56, 467 (1997)
[55] J.M. Yang, B. Young, Phys. Rev. D 56, 5907 (1997)
[56] G. Kane, G. Ladinsky, C.-P. Yuan, Phys. Rev. D 45, 124 (1992)
[57] J. A. Aguilar-Saavedra, Nucl. Phys. B 804, 160 (2008) [arXiv:0803.3810 [hep-ph]]
[58] E. Boos, A. Pukhov, M. Sachwitz, H.J. Schreiber, Phys. Lett. B404, 119-123 (1997)
[59] V.M. Abazov et al. (D0 Collaboration) Phys. Rev. Lett. 101, 221801 (2008); arXiv:0807.1692 [hep-ex]
[60] V.M. Abazov et al. (D0 Collaboration) Phys. Rev. Lett. 102, 092002 (2009).
[61] D0 Collaboration, D0 conference note 5838 (2009)
[62] V.M. Abazov et al. (D0 Collaboration) Phys. Lett. B 708, 21 (2012); arXiv:1110.4592 [hep-ex].
[63] J.A. Aguilar-Saavedra, N.F. Castro, and A. Onofre, Phys. Rev. D 83, 117301 (2011)
[64] CLEO Collaboration, M.S. Alam et al., Phys. Rev. Lett. 74, 2885 (1995)
[65] F. Larios, M.A. Perez, C.-P. Yuan, Phys. Lett. B 457, 334 (1999)
[66] J. Drobnak, S. Fajfer, and J. F. Kamenik, Nucl. Phys. B 855, 82 (2012) [arXiv:1109.2357 [hep-ph]]
[67] K. Kolodziej, Phys. Lett. B 710, 671 (2012) [arXiv:1110.2103 [hep-ph]]
[68] S. Ambrosanio, B. Mele, Z. Phys. C 63, 63 (1994)
[69] N. V. Dokholian, G. V. Jikia, Phys. Lett. B 336, 251 (1994)
[70] K. Hagiwara, M. Tanaka, T. Stelzer, Phys. Lett. B 325, 521 (1994)
[71] E. Boos et al., Phys. Lett. B 326, 190 (1994)
[72] B. Grzadkowski, Z. Hioki, Phys. Rev. D 61, 014013 (1999)
[73] B. Grzadkowski, Z. Hioki, Nucl. Phys. B 585, 3 (2000)
[74] E. Boos, M. Dubinin, M. Sachwitz and H. J. Schreiber, Eur. Phys. J. C 16, 269 (2000) [hep-ph/0001048]
[75] K. Cieckiewicz and K. Kolodziej, Acta Phys. Polon. B 34, 5497 (2003) [hep-ph/0310300]
[76] B. Grzadkowski, Z. Hioki, K. Ohkuma, J. Wudka, Phys. Lett. B 593, 189 (2004)
[77] K. Kolodziej, Phys. Lett. B 584, 89 (2004) [hep-ph/0312168]
[78] Q. -H. Cao and J. Wudka, Phys. Rev. D 74, 094015 (2006) [hep-ph/0608331]
[79] P. Batra, T. M. P. Tait, Phys. Rev. D 74, 054021 (2006)
[80] B. Şahin, İ. Şahin, Eur. Phys. J. C 54, 435441 (2008)
[81] S. Atag, O. Cakir and B. Dilec, Phys. Lett. B 522, 76 (2001) [hep-ph/0107179]
[82] S. Atag and B. D. Sahin, Phys. Rev. D 70, 037503 (2004) [hep-ph/0312115]
[83] S. Atağ and B. Sahin, Phys. Rev. D 73, 074001 (2006)
[84] D. O. Carlson and C.-P. Yuan, Phys. Lett. B 306, 386 (1993).
[85] D. O. Carlson, E. Malkawi and C.-P. Yuan, Phys. Lett. B 337, 145 (1994).
[86] T. Stelzer and S. Willenbrock, Phys. Lett. B 357, 125 (1995).
[87] M. C. Smith and S. Willenbrock, Phys. Rev. D 54, 6696 (1996).
[88] Z. Hioki, K. Ohkuma, Phys. Rev. D 83, 114045 (2011) [arXiv:1104.1221 [hep-ph]].
[89] S. K. Gupta, A. S. Mete, G. Valencia, Phys. Rev. D 80, 034013 (2009) [arXiv:0905.1074 [hep-ph]].
[90] E. L. Berger, Q. -H. Cao and I. Low, Phys. Rev. D 80, 074020 (2009) [arXiv:0907.2191 [hep-ph]].
[91] M. M. Najafabadi, JHEP 0803, 024 (2008) [arXiv:0801.1939 [hep-ph]].

[92] J. A. Aguilar-Saavedra, J. Carvalho, N. F. Castro, A. Onofre and F. Veloso, Eur. Phys. J. C 53, 689 (2008) [arXiv:0705.3041 [hep-ph]].

[93] F. del Aguila and J. A. Aguilar-Saavedra, Phys. Rev. D 67, 014009 (2003) [hep-ph/0208171].

[94] A. D. Martin, W. J. Stirling, R. S. Thorne and G. Watt, Phys. Lett. B 652, 292 (2007)

[95] V. Avati and K. Osterberg, Report No. CERN-TOTEM-NOTE-2005-002, 2006.
TABLE I: 95% C.L. sensitivity bounds of the coupling $F_{2R}$ for various forward detector acceptances and integrated LHC luminosities. The center of mass energy of the proton-proton system is taken to be $\sqrt{s} = 14$ TeV.

| $L(fb^{-1})$ | $0.0015 < \xi < 0.5$ | $0.0015 < \xi < 0.15$ | $0.1 < \xi < 0.5$ |
|--------------|------------------|------------------|------------------|
| 10           | -0.117;0.116     | -0.138;0.138     | -0.110;0.110     |
| 30           | -0.089;0.088     | -0.105;0.105     | -0.084;0.084     |
| 50           | -0.078;0.078     | -0.093;0.092     | -0.074;0.074     |
| 100          | -0.066;0.065     | -0.078;0.077     | -0.062;0.062     |
| 200          | -0.055;0.055     | -0.066;0.065     | -0.052;0.052     |

TABLE II: 95% C.L. sensitivity bounds of the coupling $F_{2L}$ for various forward detector acceptances and integrated LHC luminosities. The center-of-mass energy of the proton-proton system is taken to be $\sqrt{s} = 14$ TeV.

| $L(fb^{-1})$ | $0.0015 < \xi < 0.5$ | $0.0015 < \xi < 0.15$ | $0.1 < \xi < 0.5$ |
|--------------|------------------|------------------|------------------|
| 10           | -0.118;0.115     | -0.140;0.136     | -0.110;0.110     |
| 30           | -0.090;0.087     | -0.107;0.103     | -0.084;0.084     |
| 50           | -0.079;0.077     | -0.094;0.090     | -0.074;0.074     |
| 100          | -0.067;0.064     | -0.080;0.076     | -0.062;0.062     |
| 200          | -0.056;0.054     | -0.067;0.063     | -0.052;0.052     |

TABLE III: 95% C.L. sensitivity bounds of the coupling $F_{1R}$ for various forward detector acceptances and integrated LHC luminosities. The center-of-mass energy of the proton-proton system is taken to be $\sqrt{s} = 14$ TeV.

| $L(fb^{-1})$ | $0.0015 < \xi < 0.5$ | $0.0015 < \xi < 0.15$ | $0.1 < \xi < 0.5$ |
|--------------|------------------|------------------|------------------|
| 10           | -0.396;0.400     | -0.404;0.408     | -0.603;0.609     |
| 30           | -0.300;0.304     | -0.307;0.310     | -0.457;0.464     |
| 50           | -0.264;0.268     | -0.270;0.273     | -0.402;0.409     |
| 100          | -0.222;0.226     | -0.227;0.230     | -0.337;0.344     |
| 200          | -0.186;0.190     | -0.190;0.194     | -0.283;0.290     |
TABLE IV: 95% C.L. sensitivity bounds of the coupling $\Delta F_{1L}$ for various forward detector acceptances and integrated LHC luminosities. The center-of-mass energy of the proton-proton system is taken to be $\sqrt{s} = 14$ TeV.

| $L(fb^{-1})$ | $0.0015 < \xi < 0.5$ | $0.0015 < \xi < 0.15$ | $0.1 < \xi < 0.5$ |
|--------------|----------------------|----------------------|-------------------|
| 10           | -0.084;0.077         | -0.087;0.080         | -0.207;0.171      |
| 30           | -0.047;0.045         | -0.049;0.047         | -0.114;0.102      |
| 50           | -0.036;0.035         | -0.038;0.037         | -0.087;0.080      |
| 100          | -0.026;0.025         | -0.027;0.026         | -0.060;0.057      |
| 200          | -0.018;0.018         | -0.019;0.018         | -0.042;0.041      |