Myocardial damage associated with elective percutaneous coronary intervention in Chinese patients: a retrospective study

Shengjia Sun1,*, Yang Ou1,*, Haiming Shi1, Jianfeng Luo2, Xinping Luo1, Yunzhi Shen1, Yufei Chen1, Xiaojin Liu1, Zhidong Zhu1 and Wei Shen1

Abstract

Objective: To determine the prevalence of percutaneous coronary intervention (PCI) related myocardial damage (injury or myocardial infarction), investigate several cardiac biomarkers, explore possible risk factors and assess survival in patients undergoing elective PCI.

Methods: Patients >18 years of age who had undergone an elective PCI at Huashan hospital in Shanghai, China from October 2016 to June 2017 and had baseline and post-PCI results available for four cardiac biomarkers (cTnT, CK-MB mass, hs-CRP and NT-ProBNP) were eligible. Patients were separated into two groups according to whether or not they had PCI related myocardial damage.

Results: Of the 143 patients who were eligible for the study, 75 (52%) were classified as ‘controls,’ and 68 (48%) had PCI related myocardial damage. Of the 68 patients, 64 (45%) had PCI related myocardial injury and 4 (3%) had PCI related myocardial infarction. Elderly Chinese patients, with high systolic blood pressure on admission and who required multiple coronary segments for PCI had a high risk of myocardial damage. Relative cTnT or relative CK-MB mass may be useful cardiac biomarkers for monitoring PCI related myocardial damage, especially at 24h post-PCI. There was no significant difference in survival rates between controls and those with myocardial complications.

1Department of Cardiovascular Disease, Huashan Hospital, Fudan University, Shanghai, China
2Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China

*These authors (Shengjia Sun and Yang Ou) contributed equally to this work.

Corresponding author:
Wei Shen, Department of Cardiovascular Disease, Huashan Hospital, No.12 Middle Wulumuqi Road, 200040, Shanghai, China.
Email: drshenwei@163.com

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
Conclusions: PCI related myocardial damage is common but appears to have no impact on prognosis. Senior age, high systolic blood pressure and multiple coronary segments for PCI are risk factors.

Keywords
Percutaneous coronary intervention, biomarkers, myocardial infarction, coronary artery disease, risk factors, prognosis

Date received: 22 October 2019; accepted: 30 January 2020

Introduction
Percutaneous coronary intervention (PCI) has become an important therapeutic approach for revascularization in patients with coronary artery disease. Although PCI can significantly improve coronary artery stenosis and symptoms of myocardial ischemia, it also can cause myocardial injury or myocardial infarction. Indeed, the fourth universal definition of myocardial infarction released in 2018, specifies the category of periprocedural myocardial injury or myocardial infarction. Importantly, some studies have found that patients with PCI related myocardial infarction have a worse prognosis at 30 days and 1 year post-procedure.

We conducted a retrospective review of data from Chinese patients who had undergone an elective PCI at our centre to determine the prevalence of PCI related myocardial damage (injury and myocardial infarction), investigate several cardiac biomarkers, explore possible risk factors and assess survival.

Methods
This retrospective study included patients 18–90 years of age undergoing elective PCI at the Huashan hospital, Shanghai, China, from October 2016 to June 2017. The requirement for PCI was determined by patient symptoms, the degree and location of the stenosis, characteristics of the plaque and other factors according to guidelines on myocardial revascularization. Patient data were collected from the hospital’s electronic medical records system.

Patients with normal baseline cardiac troponin T (cTnT) or those with elevated pre-PCI cTnT values but stable (i.e., less than 20% variation) or falling cTn levels were included. Eligible patients also had blood test results available for four cardiac biomarkers before and at 8, 24, 48h post-PCI. The biomarkers were, cTnT, creatine kinase-muscle/brain (CK-MB) mass, highsensitivity C-reactive protein (hs-CRP) and N-terminal pro-brain natriuretic peptide (NT-ProBNP). Exclusion criteria were as follows: incomplete biomarker data; elevated pre-PCI cTnT levels with no reduction post-PCI; severe infection; presence of malignancies; acute pulmonary embolism; hepatic and/or renal insufficiency (Figure 1).

The biomarkers cTnT, CK-MB mass and NT-ProBNP had been measured using Roche Electrochemical luminescence ImmunoAssay and hs-CRP had been measured using Siemens Scattering nephelometry. Cardiac interventions had been performed according to current guidelines.
and the intervention strategy was at the discretion of the cardiologist. A dual loading dose of antiplatelet therapy had been given prior to each PCI. Other drugs for coronary artery disease (e.g., statins, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers,) were prescribed as required.

Patients’ characteristics which included, sex, age, systolic and diastolic blood pressure on admission, diabetes history, smoking history, body mass index (BMI), medication in hospital, echocardiography and common biochemical tests (i.e., complete blood count, lipids, liver function, urine analysis and haemoglobin A1c) were extracted from the patients’ records.

All coronary angiograms were reviewed by two independent interventional cardiologists. Angiographic features including number of impaired vessels, Thrombolysis in Myocardial Infarction (TIMI) flow grade, TIMI myocardial perfusion grade (TMPG), collateral Rentrop grade, collateral flow grade and collateral vessels recipient grade were recorded. In addition, procedural characteristics (i.e., duration of procedure, number of arteries or artery segments involved during intervention, and number of stents implanted) were noted as were peri-procedural adverse events. The TIMI flow grade and TMPG were used to assess epicardial coronary blood flow and perfusion in the capillary bed at the tissue level. Since good collateral circulation can have potential benefits on PCI-related myocardial injury or myocardial infarction, collateral vessels were assessed

Figure 1. Patient flow-chart of the study.
PCI, percutaneous coronary intervention; cTnT, cardiac troponin T; CK-MB, creatine kinase-muscle/brain; hs-CRP, high-sensitivity C-reactive protein; NT-ProBNP, N-terminal pro-brain natriuretic peptide; Lab, laboratory; ALT, alanine transaminase; eGFR, estimated glomerular filtration rate.
according to the Rentrop classification for coronary collaterals,6 collateral flow grade and collateral vessels recipient grade.7

Patients were separated into two groups according to whether or not they had PCI related myocardial damage. For those with myocardial damage, the fourth universal definition of myocardial infarction was used to separate patients into those with PCI related myocardial injury and those with PCI related myocardial infarction.2 All patients were followed up by telephone interview or clinic visit until August, 2018 and any major adverse cardiac events (MACEs), which included death, nonfatal myocardial infarction, hospitalization for heart failure or unexpected revascularization, were recorded.

The study protocol was approved by the Institutional Review Board of Huashan Hospital and because of the study’s retrospective design, there was no requirement for patients’ informed consent.

Statistical analyses

Data were analysed using the Statistical Package for Social Sciences (SPSS®) for Windows® release 20.0 (SPSS Inc., Chicago, IL, USA). All tests were two-sided and a P-value <0.05 was considered to indicate statistical significance. Differences between groups were compared using the χ^2 test for categorical variables and ANOVA was used for continuous variables. For data with abnormal distribution or heterogeneity of variance, the Mann–Whitney U test was performed. A multivariate logistic regression analysis was used to examine influential factors on PCI related myocardial injury or myocardial infarction. The Kaplan–Meier survival analysis was used to compare survival rates without MACE. Propensity score matching was also performed to control potential confounding factors.8

Results

Of the 526 patients who received elective PCI during the nine-month study period, 143 patients were eligible for the study (Figure 1). In total, 75 (52%) patients were classified as ‘controls,’ and 68 (48%) had PCI related myocardial damage. Of these 68 patients, 64 (45%) had PCI related myocardial injury and 4 (3%) had PCI related myocardial infarction.2 Low patient numbers in the myocardial infarction group prevented a separate sub-group analysis from being performed.

The patients’ baseline clinical characteristics are shown in Table 1. The only statistically significant difference between the control group and the PCI related myocardial damage group was related to the number of patients receiving aspirin or cilostazol. Differences between all other characteristics were not statistically significant.

Periprocedural biomarker changes following PCI are shown in Figure 2. Relative cTnT, CK-MB mass, hs-CRP and NT-ProBNP levels were compared between groups at 8h, 24h and 48h post-PCI. For patients in the PCI related myocardial damage group, their relative cTnT levels were significantly increased compared with controls at all time points, and peak time was 24h post-PCI. A similar pattern was observed for relative CK-MB mass levels. However, relative hs-CRP levels were only significantly elevated by comparison with controls at 48h post-PCI. No differences were observed between groups in relative NT-ProBNP levels.

By comparison with control subjects, patients with PCI related myocardial damage had statistically significantly more impaired vessels ($P < 0.05$), a longer procedural time ($P < 0.001$), more coronary vessels or artery segments for intervention ($P < 0.001$), more stents ($P < 0.001$) and longer total stent length ($P < 0.001$) (Tables 2 and 3). There were no differences
between groups in pre-PCI TIMI flow grades, TMPG or collateral vessel grades (Table 3).

Variables that showed a difference between groups with a P value of <0.1 were included in a binary logistic regression analysis to identify possible risk factors for PCI related myocardial damage. By comparison with controls, patients with PCI related myocardial damage were more senior in age (P = 0.034), had a higher systolic blood pressure (P = 0.03) and had more coronary segments that required PCI (P < 0.0001) (Table 4).

No patients were lost-to-follow-up. With the exception of PCI related myocardial

Table 1. Clinical characteristics of patients according to periprocedural outcome.

Characteristic	Controls (n = 75)	PCI related myocardial damage (n = 68)
Age, years	63.3 ± 1.1	66.7 ± 1.2
Sex, male	54 (72)	49 (72)
Systolic BP on admission, mmHg	129 ± 2	136 ± 3
Diastolic BP on admission, mmHg	74 ± 1	76 ± 1
Smokers	30 (40)	27 (40)
Hypertension	46 (61)	46 (68)
Diabetes	24 (32)	25 (37)
Diabetes duration (months)	53 ± 10	45 ± 10
Waistline, cm	92 ± 2	95 ± 1
BMI, kg/m²	25.0 ± 0.4	24.8 ± 0.4
Fraction shortening	63.9 ± 1.3	63.7 ± 1.0
E/E’ ratio	37.0 ± 0.9	36.0 ± 0.7
Medication in-hospital		
Statins	39 (52)	35 (52)
Aspirin*	58 (77)	61 (90)
Cilostazol*	17 (23)	7 (10)
Clopidogrel	72 (96)	67 (99)
Ticagrelor	3 (4)	1 (2)
Anticoagulation	14 (19)	11 (16)
Laboratory measures		
White blood cells, ×10⁹/l	6.7 ± 0.3	6.3 ± 0.2
Neutrophils, ×10⁹/l	4.5 ± 0.2	4.0 ± 0.2
Platelets, ×10⁹/l	196 ± 7	198 ± 7
Alanine transaminase, U/l	37.6 ± 3.6	28.7 ± 2.4
Serum creatinine, µmol/l	70.1 ± 1.9	98.2 ± 15.8
Total cholesterol, mmol/l	4.0 ± 0.1	4.0 ± 0.1
Triglycerides, mmol/l	1.6 ± 0.1	1.7 ± 0.1
High-density lipoprotein, mmol/l	1.1 ± 0.0	1.0 ± 0.0
Low-density lipoprotein, mmol/l	2.4 ± 0.1	2.3 ± 0.1
Uric acid, mmol/l	0.7 ± 0.4	0.4 ± 0.0
HbA1c, %	6.5 ± 0.2	6.5 ± 0.2

Values are shown as mean ± SEM or n (%); *P < 0.05, all other comparison were non-significant.

PCI, Percutaneous coronary intervention; BP, blood pressure; BMI: body mass index; LVEF: left ventricular ejection fraction; E/E’ ratio: ratio of trans-mitral early peak velocity to septal mitral annulus velocity; HbA1c: glycosylated haemoglobin.
damage, the number of peri-procedural adverse events were low. One patient had a forearm hematoma, three patients had contrast-induced nephropathy. After a median follow-up of 17 months, the survival rate without MACE in the control group was not statistically significantly different from that in the PCI related myocardial damage group (94% vs 96%). Propensity score matching, to control potential confounding factors, provided similar results (Figure 3).

Discussion

PCI related myocardial injury and myocardial infarction are iatrogenic complications that can occur during angioplasty. In this study we found that PCI related myocardial damage occurred in approximately half the patients undergoing the procedure, and of those, PCI related myocardial injury occurred in 45% patients and PCI related myocardial infarction occurred in 3% patients. These results are broadly in agreement with those from other studies. For example, PCI related myocardial injury has been reported to occur in approximately 20-40% patients with stable coronary artery disease and 40-50% of those with myocardial infarction. In addition, PCI related myocardial infarction has been reported to occur in 2% patients in one study, 7% in another and 14% in a study involving Chinese patients. The differences in the results probably reflects...
Our study showed that during the peri-procedural period, changes were observed in some cardiac biomarkers at multiple

Characteristic	Controls	PCI related myocardial damage
	\(n = 75\)	\(n = 68\)
Number of impaired coronary artery vessels*	1.5 ± 0.1	1.7 ± 0.1
Target artery pre-PCI TIMI flow grades, %		
Grade 0	7 (9.3)	7 (10.3)
Grade 1	1 (1.3)	3 (4.4)
Grade 2	7 (9.3)	8 (11.8)
Grade 3	60 (80.0)	50 (73.5)
Non-target artery pre-PCI TIMI flow grades		
Grade 0	0	1 (1.5%)
Grade 1	0	0
Grade 2	3 (4.0)	2 (2.9)
Grade 3	72 (96.0)	65 (95.6)
Target artery pre-PCI TMPG		
Grade 0	3 (4.0)	2 (2.9)
Grade 1	0	0
Grade 2	12 (16.0)	16 (23.5)
Grade 3	60 (80.0)	50 (73.5)
Non-target artery pre-PCI TMPG		
Grade 0	0	1 (1.5%)
Grade 1	0	0
Grade 2	18 (24.0)	10 (14.7)
Grade 3	57 (76.0)	57 (83.8)
Collateral vessels		
Grade 0	14 (18.7)	20 (29.4)
Collateral vessels Rentrop Grades		
Grade 0	61 (81.3)	48 (70.6)
Grade 1	3 (4.0)	8 (11.8)
Grade 2	10 (13.3)	10 (14.7)
Grade 3	1 (1.3)	2 (2.9)
Collateral flow grades		
Grade 0	61 (81.3)	48 (70.6)
Grade 1	1 (1.3)	1 (1.5)
Grade 2	10 (13.3)	13 (19.1)
Grade 3	3 (4.0)	6 (8.8)
Collateral vessels Recipient grades		
Grade 0	61 (81.3)	48 (70.6)
Grade 1	1 (1.3)	0
Grade 2	3 (4.0)	11 (16.2)
Grade 3	10 (13.3)	9 (13.2)

Values are shown as mean ± SEM or \(n\) (%); *\(P < 0.05\), all other comparison were non-significant.

PCI, Percutaneous coronary intervention; TIMI, thrombolysis in myocardial infarction; TMPG, TIMI myocardial perfusion grade.

Our study showed that differences in study design, sample size, patient clinical presentation, lesion characteristics and/or procedural factors.1
time points following the PCI. For instance, by comparison with controls, patients who had PCI related myocardial damage had significantly elevated levels of relative cTnT or CK-MB mass with peak levels occurring 24h after PCI. Therefore, to assess PCI related myocardial damage, we suggest that the optimum time to monitor these cardiac biomarkers post-PCI might be 24 hours after the procedure. Interestingly, relative hs-CRP levels were significantly elevated only after 48h post-PCI. During a spontaneous myocardial infarction, elevated CRP levels are thought to reflect the inflammatory activity of a ruptured plaque.12,13 Therefore, a similar inflammatory reaction might be associated with PCI related myocardial injury or myocardial infarction. We found no difference between patient groups in the levels of the biomarker NT-ProBNP, and so we suggest that this biomarker is not useful for monitoring PCI related myocardial damage.

Results from a multivariate logistic regression analysis of data showed that age and high systolic blood pressure on admission were independent risk factors for PCI related myocardial damage in our cohort of patients. Several studies have identified risk factors associated with PCI related myocardial injury or myocardial infarction. These include, age,3,14 renal

| Table 3. Percutaneous coronary intervention procedural characteristics. |
|------------------|------------------|------------------|------------------|
| Characteristic | Controls (n = 75) | PCI related myocardial damage (n = 68) | Statistical significance |
| Duration of procedure, min | 38.1 ± 2.3 | 48.2 ± 2.3 | \(P < 0.001 \) |
| Coronary artery vessels with PCI | 1.2 ± 0.1 | 1.6 ± 0.1 | \(P < 0.001 \) |
| Coronary artery segments with PCI | 1.4 ± 0.1 | 2.0 ± 0.1 | \(P < 0.001 \) |
| Pre-dilatation | 70 (93) | 67 (99) | ns |
| Maximum dilatation balloon diameter, mm | 2.1 ± 0.0 | 2.1 ± 0.0 | ns |
| Maximum dilatation pressure, atm | 12.4 ± 0.3 | 12.8 ± 0.4 | ns |
| Maximum stent released pressure, atm | 13.2 ± 0.2 | 13.4 ± 0.3 | ns |
| Number of stents | 1.3 ± 0.1 | 1.9 ± 0.1 | \(P < 0.001 \) |
| Total stent length, mm | 29.5 ± 1.9 | 46.7 ± 3.4 | \(P < 0.001 \) |
| Maximum stent diameter, mm | 3.0 ± 0.1 | 2.9 ± 0.0 | ns |
| Post-dilatation | 68 (91) | 57 (84) | ns |
| Rotational atherectomy | 0 | 1 (2) | ns |
| Drug-coated balloon | 1 (1) | 6 (9) | ns |

Values are shown as mean ± SEM or n (%);
PCI, Percutaneous coronary intervention; ns, non-significant

| Table 4. Odds Ratio for independent risk factors for percutaneous coronary intervention related myocardial damage. |
|------------------|------------------|------------------|------------------|
| Risk factors | Partial regression coefficient (\(\beta \)) | Odds Ratio (95% CI) | Statistical significance |
| Age, years | 0.04 | 1.05 (1.00, 1.09) | \(P = 0.034 \) |
| Systolic BP on admission, mmHg | 0.03 | 1.03 (1.00, 1.05) | \(P = 0.03 \) |
| Coronary artery segments with PCI | 1.23 | 3.41 (1.98, 5.87) | \(P < 0.0001 \) |

BP, blood pressure.
dysfunction, diabetes mellitus, systemic inflammation, and dyslipidemia. However, there is conflicting evidence about the relationship between hypertension and PCI related myocardial damage. For example, one study using pooled data from 11 studies found that hypertension was an independent indicator of periprocedural MI. By contrast, another study, in patients with chronic kidney disease who received elective PCI, found that hypertension was inversely related to the occurrence of PCI related myocardial injury. Our findings suggest that continuous blood pressure monitoring may be beneficial peri-procedurally.

The regression analysis also showed that a requirement for PCI in multiple coronary segments was more likely to be associated with PCI related myocardial damage. This finding is not surprising since lesion features, such as atherosclerotic plaque burden, and in-stent neoatherosclerosis with intimal rupture, thin-cap fibroatheroma or thrombi can impact on periprocedural myocardial damage. Moreover, procedural related factors, such as the intervention strategy, complications (e.g., side branch occlusion, coronary dissection, slow-flow or no flow, total stent length and the number of stents implanted), can also cause PCI related myocardial damage. Therefore, appropriate intervention strategies based on the patient’s clinical needs may play a crucial role in reducing the occurrence of PCI related myocardial damage.

We did not find any relationship between collateral vessels and PCI related myocardial damage. Although coronary collaterals can mitigate the degree of PCI related myocardial damage, they may be of insufficient patency to prevent it. Perhaps the protective effect of collateral vessels on the myocardium is time-dependent; further research is required to investigate this suggestion more fully.

Patients were monitored post-procedure for up to 20 months and there was no difference in survival rates without MACE between controls and patients with PCI related myocardial damage. Although this finding is similar to that of another study, other authors reported that patients with periprocedural myocardial damage had a higher rate of cardiovascular events at 30 days and at one year. It has been suggested that the effect of periprocedural myocardial infarction on mortality is dependent on the outcome of the stent procedure, and a successful PCI plays an important role in prognosis.

The study had several limitations. For example, this was a retrospective review of data from a single centre in China and many patients were excluded because of incomplete data. Therefore, the evaluation may have been influenced by numerous biases. In addition, the sample size was small and because of low patient numbers, a sub-group analysis of PCI related myocardial injury and PCI related myocardial infarction could not be performed. Further prospective studies using large sample sizes with a long duration are needed.
follow-up are required to confirm our findings.

In conclusion, this retrospective study showed that periprocedural myocardial damage is a common complication in patients undergoing an elective PCI at our centre. Relative cTnT or relative CK-MB mass may be useful cardiac biomarkers for monitoring PCI related myocardial damage, especially at 24h post-PCI. Importantly, elderly Chinese patients, with high systolic blood pressure on admission and who require multiple coronary segments for PCI have a high risk of myocardial damage following the procedure. However, PCI related myocardial damage appears to have no significant influence on the patient’s prognosis and survival rates are similar between controls and those with myocardial complications.

Declaration of conflicting interest
The authors declare that there were no conflicts of interests.

Funding
This work was funded by National Natural Science Foundation of China (Grant number: 81673701 and 81573710).

ORCID iDs
Shengjia Sun https://orcid.org/0000-0002-4253-3046
Wei Shen https://orcid.org/0000-0003-3732-989X

References
1. Lansky AJ and Stone GW. Periprocedural myocardial infarction. Circ Cardiovasc Interv 2010; 3: 602–610.
2. Thygesen K, Alpert JS, Jaffe AS, et al. Fourth universal definition of myocardial infarction (2018). Eur Heart J 2019; 40: 237–269.
3. Zeitouni M, Silvain J, Guedeney P, et al. Periprocedural myocardial infarction and injury in elective coronary stenting. Eur Heart J 2018; 39: 1100–1109.
4. Windecker S, Kolh P, Fernando A, et al. ESC/EACTS myocardial revascularization guidelines 2014. Eur Heart J 2014; 35: 3235–3236.
5. Gibson CM, Cannon CP, Murphy SA, et al. Relationship of TIMI myocardial perfusion grade to mortality after administration of thrombolytic drugs. Circulation 2000; 101: 125–130.
6. Rentrop KP, Cohen M, Blanke H, et al. Changes in collateral channel filling immediately after controlled coronary artery occlusion by an angioplasty balloon in human subjects. J Am Coll Cardiol 1985; 5: 587–592.
7. Gibson CM, Ryan K, Sparano A, et al. Angiographic methods to assess human coronary angiogenesis. Am Heart J 1999; 137: 169–179.
8. Austin PC. The use of propensity score methods with survival or time-to-event outcomes: reporting measures of effect similar to those used in randomized experiments. Stat Med. 2014;33:1242–1258.
9. Tricoci P. Consensus or controversy? Evolution of criteria for myocardial infarction after percutaneous coronary intervention. Clin Chem 2017; 63: 82–90.
10. Tricoci P, Newby LK, Clare RM, et al. Prognostic and practical validation of current definitions of myocardial infarction associated with percutaneous coronary intervention. JACC Cardiovasc Interv 2018; 11: 856–864.
11. Wu H, Qian J, Sun A, et al. Association of CYP2C19 genotype with periprocedural myocardial infarction after uneventful stent implantation in Chinese patients receiving clopidogrel pretreatment. Circ J 2012; 76: 2773–2778.
12. Sano T, Tanaka A, Namba M, et al. C-reactive protein and lesion morphology in patients with acute myocardial infarction. Circulation 2003; 108: 282–285.
13. Auer J, Berent R, Eber B, et al. C-reactive protein in patients with acute myocardial infarction. Circulation 2004; 109: E20.
14. Park DW, Kim YH, Yun SC, et al. Frequency, causes, predictors, and clinical
significance of peri-procedural myocardial infarction following percutaneous coronary intervention. *Eur Heart J* 2013; 34: 1662–1669.

15. Lee SW, Lee PH, Kang SH, et al. Determinants and prognostic significance of peri-procedural myocardial injury in patients with successful percutaneous chronic total occlusion interventions. *JACC Cardiovasc Interv* 2016; 9: 2220–2228.

16. Xia J, Xu J, Hu S, et al. Impact of glycemic variability on the occurrence of peri-procedural myocardial infarction and major adverse cardiovascular events (MACE) after coronary intervention in patients with stable angina pectoris at 6 months follow-up. *Clin Chim Acta* 2017; 471: 196–200.

17. Tandjung K, van Houwelingen KG, Jansen H, et al. Comparison of frequency of peri-procedural myocardial infarction in patients with and without diabetes mellitus to those with previously unknown but elevated glycated hemoglobin levels (from the TWENTE trial). *Am J Cardiol* 2012; 110: 1561–1567.

18. Verdoia M, Schaffer A, Barbieri L, et al. Impact of neutrophil-to-lymphocyte ratio on peri-procedural myocardial infarction in patients undergoing non-urgent percutaneous coronary revascularisation. *Neth Heart J* 2016; 24: 462–474.

19. Niccoli G, Sgueglia GA, Latib A, et al. Association of baseline C-reactive protein levels with peri-procedural myocardial injury in patients undergoing percutaneous coronary revascularisation: a CACTUS study subanalysis. *Catheter Cardiovasc Interv* 2014; 83: E37–E44.

20. Hubacek J, Basran RS, Shrive FM, et al. Prognostic implications of C-reactive protein and troponin following percutaneous coronary intervention. *Can J Cardiol* 2009; 25: e42–e47.

21. Patti G, Mangiacapra F, Ricottini E, et al. Correlation of platelet reactivity and C-reactive protein levels to occurrence of peri-procedural myocardial infarction in patients undergoing percutaneous coronary intervention (from the ARMYDA-CRP study). *Am J Cardiol* 2013; 111: 1739–1744.

22. Li XL, Li JJ, Guo YL, et al. Association of preprocedural low-density lipoprotein cholesterol levels with myocardial injury after elective percutaneous coronary intervention. *J Clin Lipidol* 2014; 8: 423–432.

23. Zhong Z, Liu J, Zhang Q, et al. Relationship between preoperative low-density lipoprotein cholesterol and peri-procedural myocardial injury in patients following elective percutaneous coronary intervention in southern China. *Med Sci Monit* 2018; 24: 4154–4161.

24. Zeng RX, Li XL, Zhang MZ, et al. Non-HDL cholesterol is a better target for predicting peri-procedural myocardial injury following percutaneous coronary intervention in type 2 diabetes. *Atherosclerosis* 2014; 237: 536–543.

25. Jerkic H, Letilovic T, Stipinovic M, et al. Association of chronic kidney disease with peri-procedural myocardial injury after elective stent implantation. *Medicine* 2016; 95: e5381.

26. Mehran R, Dangas G, Mintz GS, et al. Atherosclerotic plaque burden and CK-MB enzyme elevation after coronary interventions: intravascular ultrasound study of 2256 patients. *Circulation* 2000; 101: 604–610.

27. Kang SJ, Chang M, Yoon SH, et al. Impact of in-stent tissue type on peri-procedural myocardial infarction and 2-year clinical outcomes after treatment of coronary artery restenosis. *JACC Cardiovasc Imaging* 2016; 9: 211–213.

28. Lo N, Michael TT, Moin D, et al. Periprocedural myocardial injury in chronic total occlusion percutaneous interventions: a systematic cardiac biomarker evaluation study. *JACC Cardiovasc Interv* 2014; 7: 47–54.

29. Babu GG, Walker JM, Yellon DM, et al. Peri-procedural myocardial injury during percutaneous coronary intervention: an important target for cardioprotection. *Eur Heart J* 2011;32:23–31.

30. Herrmann J. Peri-procedural myocardial injury: 2005 update. *Eur Heart J* 2005;26:2493–519.
31. Park DW, Kim YH, Yun SC, et al. Impact of the angiographic mechanisms underlying periprocedural myocardial infarction after drug-eluting stent implantation. *Am J Cardiol* 2014; 113: 1105–1110.

32. Ndrepepa G, Colleran R, Braun S, et al. High-sensitivity troponin T and mortality after elective percutaneous coronary intervention. *J Am Coll Cardiol* 2016; 68: 2259–2268.

33. Jeremias A, Baim DS, Ho KK, et al. Differential mortality risk of postprocedural creatine kinase-MB elevation following successful versus unsuccessful stent procedures. *J Am Coll Cardiol* 2004; 44: 1210–1214.