Supporting Information

The Impact of Sampling Type, Frequency and Scale of Collection System on SARS-CoV-2 Quantification Fidelity

Andrea D. George¹,², Devrim Kaya², Blythe A. Layton¹, Kestrel Bailey¹, Scott Mansell¹, Christine Kelly², Kenneth J. Williamson¹, Tyler S. Radniecki²*

*Corresponding author: tyler.radniecki@oregonstate.edu

¹Department of Research & Innovation, Clean Water Services, Hillsboro, OR, 97123

²School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, 97331

21 pages
6 Equations
7 Figures
5 Tables
Equation S1. Mean Absolute Error (MAE)

\[
\frac{\sum_{i=1}^{n} |\hat{y}_i - y_i|}{n}
\]

Where \(\hat{y}_i = \) grab sample SARS-CoV-2 concentration (log-transformed)

\(y_i = \) composite sample SARS-CoV-2 concentration (log-transformed)

\(n = \) number of grab samples collected

Please note that the interpretation of the MAE requires the recognition of the use of log-transformed values. The log-transformation of the concentration establishes the metric as one of relative rather than absolute error (as the name may suggest), since log rules dictate that there is a division of the grab by the composite within the MAE calculation. Thus, the resulting MAE is a percent error not an absolute error.

Equation S2. Root Mean Square Log Error (RMSLE)

\[
\sqrt{\frac{\sum_{i=1}^{n} (\hat{y}_i - y_i)^2}{n}}
\]

Where \(\hat{y}_i = \) grab sample SARS-CoV-2 concentration (log-transformed)

\(y_i = \) composite sample SARS-CoV-2 concentration (log-transformed)

\(n = \) number of grab samples collected

Please note that the interpretation of the RMSLE requires the recognition of the use of log-transformed values. The log-transformation of the concentration establishes the metric as one of relative rather than absolute error (as the name may suggest), since log rules dictate that there is a division of the grab by the composite within the RMSLE calculation. Thus, the resulting RMSLE is a percent error not an absolute error. This metric penalizes underestimation more than overestimation, which can be seen by comparing two arithmetic values equidistant from the mean (above and below), log-transforming those values, and calculating RMSLE for each.
Equation S3. Percent Non-Detects

\[\frac{n_{negative}}{n_{tot}} \times 100 \]

Where \(n_{negative} \) = number of grab samples collected that were negative for SARS-CoV-2

\(n_{tot} \) = total number of grab samples collected

Equation S4. Percent Grabs Below Composite

\[\frac{n_{gbc}}{n_{tot}} \times 100 \]

Where \(n_{gbc} \) = number of grab samples with a SARS-CoV-2 concentration less than that of the associated composite

\(n_{tot} \) = total number of grab samples collected

Equation S5. Geometric Mean of N1 and N2 in Log10 gene copies per liter

\[
\frac{\log_{10}(N1)_1 + \log_{10}(N1)_2 + \log_{10}(N2)_1 + \log_{10}(N2)_2}{n}
\]

Where \((N1)_1\) and \((N1)_2\) = N1 measurements in two wells, calculated in gc/L from Equation S6

\((N2)_1\) and \((N2)_2\) = N2 measurements in two wells, calculated in gc/L from Equation S6

\(n \) = number of measurements of N1 and N2

Equation S6. Conversion of copies/reaction to copies/L

\[
\frac{\text{copies}}{\text{rxn}} \times \frac{1}{\text{Template Volume} (\mu L)} \times \frac{1}{\text{Elution Volume} (\mu L)} \times \frac{1}{\text{Lysate Volume} (\mu L)} \times \frac{1}{\text{Shield Volume} (\mu L)} \times \frac{1}{\text{Volume Filtered} (ml)} \times 1000 \times \frac{mL}{L} = \frac{\text{copies}}{L}
\]
Concentration Method Recovery using Bovine Coronavirus

Bovine coronavirus (BCoV) stock solution preparation

BCoV solution was prepared from freeze-dried Calf Guard cattle vaccine (Bovine Rotavirus-Coronavirus Vaccine from Zoetis, NJ, USA) after rehydrating in 3 mL of sterile diluent provided with the vaccine. Aliquots (100 μL) of stock solution were stored at -20 ºC. Each aliquot was used for a maximum of two freeze-thaw cycles. To determine the stock concentration, 10 μL BCoV stock was added to 390 μL PBS. From this mixture, RNA was extracted from 200 μL as described in the main text. The extracted BCoV RNA was serially diluted (1:10) in nuclease-free water for six dilutions and run in duplicate using a previously published BCoV assay by following the one-step RT-ddPCR procedure as described in the text. Stock concentration of BCoV was around 2.3 x 10^6 gc/μL.

Bovine coronavirus (BCoV) process recovery control

Similar to other studies, an attenuated vaccine strain of BCoV, was selected as a process recovery control due to its morphological and structural similarity to SARS-CoV-2. BCoV solution was prepared from freeze-dried Calf Guard cattle vaccine (Bovine Rotavirus-Coronavirus Vaccine from Zoetis, NJ, USA) as described above.

To determine process recovery efficiency, 5 μL of BCoV was added to 25 mL of separate wastewater samples (n=8) not collected for the purposes of this study, just prior to filtration. Samples were processed following the methods described in the main text. BCoV was quantified in the samples using the One-Step RT-ddPCR Advanced Kit for Probes on the QX-200 ddPCR system (Bio-Rad, Hercules, CA) using previously published primers and probes. All other assay and thermal cycling conditions are described in the main text. The BCoV recovery was calculated by dividing the quantity measured in wastewater samples to the quantity added to each wastewater sample prior to concentration. The mean BCoV recovery was 57 (± 4) %. Non-spiked wastewater samples (n=4) were also quantified for BCoV to assess background concentration. No BCoV was detected in non-spiked samples.

N1 and N2 LOD Determination

The limit of blank (LOB) for N1 was found to be 2.0 copies per reaction and 4.2 copies per reaction for N2. Since both LOB values are below the 3-droplet threshold, this further justifies our choice of threshold for calling positive reactions. No LOB reactions met the positive threshold for N1, but 4 non-target reactions (n=104) had 3 or more droplets in N2, generating a false positive rate of 4%. The predicted limits of detection (LOD) based on the LOB results were 4 copies per reaction for N1 and 12 copies per reaction for N2. Greater than 95% of test reactions at the predicted LOD value need to amplify above the LOB to validate an LOD estimate. The
LOD of N2 was confirmed to be 12 copies per reaction, as 97% of the test reactions (n = 60) at that concentration had gene copies above the N2 LOB. The N1 LOD appears to lie somewhere between 4 and 12 copies per reaction: at 12 copies per reaction, all 60 reactions amplified above the N1 LOB, but at 4 copies per reaction, 13 reactions (n=60) amplified below the N1 LOB (22%). Using a parametric method as an imperfect estimate, though the test reaction data are not normally distributed, yields an N1 LOD estimated at 8 copies per reaction.

Figure S1. The decay in Log10-transformed concentration of SARS-CoV-2 RNA in frozen aliquots of the same WWTP influent sample over 57 days. Points and error bars denote the mean and standard error, respectively, among 12 measurements (triplicate biological replicates analyzed in duplicate, and N targets combined). Samples were analyzed as described in the main text.
Figure S2. The N1 target concentrations (log$_{10}$ copies per reaction) plotted against the N2 target concentration (log$_{10}$ copies per reaction) in each sample and control reaction (n=412). Non-detects were replaced with 0.1 copies per reaction.
Figure S3. The 5-min grab samples collected in the first 2 h of sample collection plotted with a solid line indicating the (a) 5-min sampling frequency composite, (b) 10-min sampling frequency composite, and (c) 15-min sampling frequency composite. The error bars on the grab samples and the shaded range on the composite lines denote standard error. Non-detects are represented by open markers.
Figure S4. The 15-min grab samples collected in 8 h of sample collection plotted with a solid line indicating the (a) 15-min sampling frequency composite, (b) 30-min sampling frequency composite, and (c) 1-h sampling frequency composite. The error bars on the grab samples and the shaded range on the composite lines denote standard error. Non-detects are represented by open markers.
Figure S5. The fluorescence plots of (a) no-template control, (b) negative control (contains RP), and (c) positive controls used to show example positive and negative results.
Figure S6. The two technical replicates for every sample ($n = 268$) plotted against each other in \log_{10} gc/L to show intra-experiment repeatability. The black line is the 1:1 line, and the equation gives the linear model fit to the data.

$y = 0.45 + 0.89 \cdot x$, $r^2 = 0.82$
Figure S7. The boxplot exhibiting the distribution of viral concentrations (log_{10} gene copies/liter) of the grab samples at ultra-low-, low-, medium-, and high-flow sites.
Table S1. The storage time, temperature, volume concentrated, and Total Suspended Solids or Chemical Oxygen Demand for each of the raw wastewater samples collected from the four sites. Total Suspended Solids values were approximate and should only be used for comparative purposes because samples were frozen before analysis. Chemical Oxygen Demand tests were conducted on hourly grab high-flow samples (not frozen) and an asterisk added (*) to denote that these samples have a COD value but no TSS value.

LOCATION	HOUR	TEMP STORED (°C)	DAYS STORED	VOLUME FILTERED (mL)	TOTAL SUSPENDED SOLIDS/ CHEMICAL OXYGEN DEMAND*	
Ultra-Low Flow	9:10	-20	50	30	227	
Ultra-Low Flow	9:15	-20	9	30	450	
Ultra-Low Flow	9:20	-20	50	35	168	
Ultra-Low Flow	9:25	-20	50	10	567	
Ultra-Low Flow	9:30	-20	9	30	253	
Ultra-Low Flow	9:35	-20	50	50	78	
Ultra-Low Flow	9:40	-20	50	35	210	
Ultra-Low Flow	9:45	-20	9	40	149	
Ultra-Low Flow	9:50	-20	50	30	210	
Ultra-Low Flow	9:55	-20	50	35	150	
Ultra-Low Flow	10:00	-20	9	30	562	
Ultra-Low Flow	10:05	-20	50	30	307	
Ultra-Low Flow	10:10	-20	50	40	82	
Ultra-Low Flow	10:15	-20	9	30	213	
Ultra-Low Flow	10:20	-20	50	10	375	
Ultra-Low Flow	10:25	-20	50	30	287	
Ultra-Low Flow	10:30	-20	9	30	188	
Ultra-Low Flow	10:35	-20	50	30	393	
Ultra-Low Flow	10:40	-20	50	20	570	
Ultra-Low Flow	10:45	-20	9	35	80	
Ultra-Low Flow	10:50	-20	50	15	335	
Ultra-Low Flow	10:55	-20	50	30	143	
Ultra-Low Flow	11:00	-20	9	30	96	
Ultra-Low Flow	11:05	-20	50	40	84	
Ultra-Low Flow	11:30	-20	24	40	93	
Ultra-Low Flow	11:45	-20	24	30	237	
Ultra-Low Flow	12:00	-20	24	50	74	
Ultra-Low Flow	12:15	-20	11	30	159	
Ultra-Low Flow	12:30	-20	11	30	49	
Ultra-Low Flow	12:45	-20	11	30	284	
Ultra-Low Flow	13:00	-20	11	45	71	
Ultra-Low Flow	13:15	-20	24	30	198	
Time	Flow	Temp	Flow	Temp	Flow	
-----------	-------	------	------	------	------	
13:45	Ultra-Low Flow	-20	24	50	46	
14:00	Ultra-Low Flow	-20	24	40	140	
14:15	Ultra-Low Flow	-20	24	35	245	
14:30	Ultra-Low Flow	-20	24	50	144	
14:45	Ultra-Low Flow	-20	31	35	190	
15:00	Ultra-Low Flow	-20	31	30	565	
15:15	Ultra-Low Flow	-20	31	40	142	
15:30	Ultra-Low Flow	-20	31	50	1260	
15:45	Ultra-Low Flow	-20	31	35	212	
16:00	Ultra-Low Flow	-20	31	30	565	
16:15	Ultra-Low Flow	-20	31	40	142	
16:30	Ultra-Low Flow	-20	31	50	1260	
16:45	Ultra-Low Flow	-20	31	40	278	
17:00	Ultra-Low Flow	-20	31	50	138	
17:15	Ultra-Low Flow	-20	31	40	610	
17:30	Ultra-Low Flow	-20	31	50	60	
18:00	Ultra-Low Flow	-20	31	50	60	
18:15	Low-Flow	-20	12	20	1345	
18:30	Low-Flow	-20	12	20	820	
18:45	Low-Flow	-20	12	20	687	
19:00	Low-Flow	-20	12	20	1473	
19:15	Low-Flow	-20	12	20	1353	
19:30	Low-Flow	-20	12	10		
19:45	Low-Flow	-20	12	30		
20:00	Low-Flow	-20	12	20		
20:15	Low-Flow	-20	12	30	685	
20:30	Low-Flow	-20	12	30	657	
20:45	Low-Flow	-20	12	30	900	
21:00	Low-Flow	-20	12	30	1632	
21:15	Low-Flow	-20	12	20	1877	
21:30	Low-Flow	-20	12	20	768	
21:45	Low-Flow	-20	12	30	1117	
22:00	Low-Flow	-20	12	20	681	
22:15	Low-Flow	-20	12	20	3230	
22:30	Low-Flow	-20	12	30	723	
22:45	Low-Flow	-20	12	30	1337	
23:00	Low-Flow	-20	12	20	5082	
23:15	Low-Flow	-20	12	20	2533	
23:30	Low-Flow	-20	5	30	2063	
23:45	Low-Flow	Composite	-20	5	30	2063
00:00	Med-Flow	-20	15	40	740	
00:15	Med-Flow	-20	15	40	500	
00:30	Med-Flow	-20	15	30	3557	
00:45	Med-Flow	-20	15	30	600	
01:00	Med-Flow	-20	15	35	1753	
01:15	Med-Flow	-20	15	40	303	
01:30	Med-Flow	-20	15	25		
Med-Flow	8	-20	15	40	393	
Med-Flow	9	-20	15	40	623	
Med-Flow	10	-20	15	40	693	
Med-Flow	11	-20	15	40	480	
Med-Flow	12	-20	15	45	277	
Med-Flow	13	-20	15	50	106	
Med-Flow	14	-20	15	50	90	
Med-Flow	15	-20	15	50	73	
Med-Flow	16	-20	15	50	73	
Med-Flow	17	-20	15	40	163	
Med-Flow	18	-20	15	50	213	
Med-Flow	19	-20	15	40	387	
Med-Flow	20	-20	15	40	683	
Med-Flow	21	-20	15	40	581	
Med-Flow	22	-20	15	40	737	
Med-Flow	23	-20	15	30	857	
Med-Flow	24	-20	15	40	287	
Med-Flow Composite	-20	1	40	471		
High-Flow	1	-20	8	50	1200*	
High-Flow	2	-20	8	50	1090*	
High-Flow	3	-20	8	50	1010*	
High-Flow	4	-20	8	50	1080*	
High-Flow	5	-20	8	30	1210*	
High-Flow	6	-20	8	50	1120*	
High-Flow	7	-20	8	50	907*	
High-Flow	8	-20	8	50	896*	
High-Flow	9	-20	8	50	1050*	
High-Flow	10	-20	8	50	1340*	
High-Flow	11	-20	8	50	1330*	
High-Flow	12	-20	8	50	1220*	
High-Flow	13	-20	8	50	1190*	
High-Flow	14	-20	8	50	1140*	
High-Flow	15	-20	8	50	1270*	
High-Flow	16	-20	8	50	1220*	
High-Flow	17	-20	8	50	1090*	
High-Flow	18	-20	8	50	774*	
High-Flow	19	-20	8	50	859*	
High-Flow	20	-20	8	50	670*	
High-Flow	21	-20	8	50	634*	
High-Flow	22	-20	8	50	838*	
High-Flow	23	-20	8	50	713*	
High-Flow	24	-20	8	50	627*	
Table S2. The decay-corrected data and error metrics based on the decay constant calculated from the experiment in Figure S1.

Site	Number of Grab Samples (n)	Total Sampling Time (h)	Avg Dry Weather Flowrate (GPM)	Sampling Frequency	Composite Concentration (\log_{10} g/L)	Maximum Grab Concentration (\log_{10} g/L)	Minimum Grab Concentration (\log_{10} g/L)	Percent Non-Detects	Percent Grabs Below Composite	MAE	RMSLE
Ultra-Low-Flow***	32	8	13** 15-min	5.87 ± 0.08 * 7.21 ± 0.02	3.56 ± 0.04	40.6%	93.8%	1.81	1.89		
Low-Flow	21	24	111 1-h	4.79 ± 0.03 5.60 ± 0.01	3.75 ± 0.05	47.6%	76.2%	0.68	0.76		
Medium-Flow	24	24	700 1-h	3.92 ± 0.10 4.74 ± 0.02	3.64 ± 0.05	37.5%	70.8%	0.26	0.31		
High-Flow	24	24	2430 1-h	3.99 ± 0.13 4.51 ± 0.04	3.52 ± 0.06	0.0%	58.3%	0.24	0.29		

Site	Number of Grab Samples (n)	Total Sampling Time (h)	Avg Dry Weather Flowrate (GPM)	Sampling Frequency	Composite Concentration (\log_{10} g/L)	Maximum Grab Concentration (\log_{10} g/L)	Minimum Grab Concentration (\log_{10} g/L)	Percent Non-Detects	Percent Grabs Below Composite	MAE	RMSLE
Ultra-Low-Flow	24	2	13** 5-min	5.97 ± 0.09 7.21 ± 0.02	3.61 ± 0.05	25.0%	87.5%	1.59	1.69		
Ultra-Low-Flow	12	2	13** 10-min	6.17 ± 0.15 7.21 ± 0.02	3.61 ± 0.05	16.7%	91.7%	1.72	1.86		
Ultra-Low-Flow	8	2	13** 15-min	6.31 ± 0.20 7.21 ± 0.02	3.56 ± 0.04	12.5%	87.5%	2.03	2.10		

Site	Number of Grab Samples (n)	Total Sampling Time (h)	Avg Dry Weather Flowrate (GPM)	Sampling Frequency	Composite Concentration (\log_{10} g/L)	Maximum Grab Concentration (\log_{10} g/L)	Minimum Grab Concentration (\log_{10} g/L)	Percent Non-Detects	Percent Grabs Below Composite	MAE	RMSLE
Ultra-Low-Flow***	32	8	13** 15-min	5.87 ± 0.08 7.21 ± 0.02	3.56 ± 0.04	40.6%	93.8%	1.81	1.89		
Ultra-Low-Flow	17	8	13** 30-min	6.03 ± 0.12 7.21 ± 0.02	3.61 ± 0.05	41.2%	88.2%	1.89	2.01		
Ultra-Low-Flow	9	8	13** 1-h	6.28 ± 0.20 7.21 ± 0.02	3.73 ± 0.05	33.3%	88.9%	1.84	2.03		

*These composites were created digitally using the respective grab samples.
**This flow was estimated using the number of residents and a 67 GPD/resident flow estimate based on previous wastewater data in the region.
***This series is shown twice for comparison purposes.
Table S3. The oligonucleotide primers and probes used in the study, along with the number of bases and references for each sequence\(^3,4\).

Target	Oligonucleotide	Sequence and label (5' → 3')	Size (# of bases)	Reference
2019-nCoV N1-F	GAC CCC AAA ATC AGC GAA AT	Lu et al. 2020		
2019-nCoV N1-R	TCT GGT TAC TGC CAG TTG AAT CTG	72	Lu et al. 2020	
SARS-CoV-2	2019-nCoV N1- P	FAM-ACC CCG CAT TAC GTT TGG TGG ACC-BHQ1	Lu et al. 2020	
2019-nCoV N2-F	TTA CAA ACA TTG GCC GCA AA	Lu et al. 2020		
2019-nCoV N2-R	GCG CGA CAT TCC GAA GAA	67	Lu et al. 2020	
2019-nCoV N2- P	FAM-ACA ATT TGC CCC CAG CGC TTC AG-BHQ1	Lu et al. 2020		
RP (RNAseP)	RP-F	AGATTTGGACCTGCGAGCG		Lu et al. 2020
	RP-R	GACGGCTGTCTCCACAAGT	65	Lu et al. 2020
	RP-P	FAM-TCCTGACCTGAAGGCTCTGCG CG-BHQ-1		Lu et al. 2020
BCoV	BcoV-F	CTGGAAGTTGAGTGCAGTT	Decaro et al. 2008	
	BcoV-R	ATTATCGGCTAACATACATC	85	Decaro et al. 2008
	BcoV-P	FAM/CCTTCATAT/ZEN/CTATA CA	Decaro et al. 2008	
		CATCAAGTTGT- IABkFQ		

FAM: 6-carboxyfluorescein; IABkFQ: Iowa Black® FQ Quencher 1; BHQ1: Black Hole Quencher 1

Table S4. The sample-specific limit of detection of each sample analyzed in this study. This was calculated using the empirical N1 and N2 LOD determined in the “N1 and N2 LOD Determination” section above (N1: 8 copies/reaction, N2: 12 copies/reaction).

LOCATION	TIME OR HOUR	SAMPLE-SPECIFIC LOD (LOG\(_{10}\) GENE COPIES/LITER)
Ultra-Low Flow	9:10	3.99
Ultra-Low Flow	9:15	3.99
Ultra-Low Flow	9:20	3.92
Ultra-Low Flow	9:25	4.47
Time	Flow Rate	
-------	-----------	
9:30	3.99	
9:35	3.77	
9:40	3.92	
9:45	3.87	
9:50	3.99	
9:55	3.92	
10:00	3.99	
10:05	3.99	
10:10	3.87	
10:15	3.99	
10:20	4.47	
10:25	3.99	
10:30	3.99	
10:35	3.99	
10:40	4.17	
10:45	3.92	
10:50	4.29	
10:55	3.99	
11:00	3.99	
11:05	3.87	
11:10	3.87	
11:15	3.99	
11:20	3.99	
11:25	3.99	
11:30	3.99	
11:45	3.99	
12:00	3.77	
12:15	3.99	
12:30	3.99	
12:45	3.99	
13:00	3.82	
13:15	3.99	
13:45	3.77	
14:00	3.87	
14:15	3.92	
14:30	3.77	
14:45	3.92	
15:00	3.99	
15:15	3.87	
15:30	3.99	
16:15	3.87	
16:30	3.99	
16:45	3.92	
Flow Type	Time	Value
--------------	-------	-------
Ultra-Low Flow	17:00	3.82
Ultra-Low Flow	17:15	3.87
Ultra-Low Flow	17:30	3.77
Ultra-Low Flow	17:45	4.17
Ultra-Low Flow	18:00	3.77
Low-Flow 1		4.17
Low-Flow 2		4.17
Low-Flow 3		4.17
Low-Flow 4		4.17
Low-Flow 5		4.17
Low-Flow 7		4.47
Low-Flow 8		3.99
Low-Flow 9		4.17
Low-Flow 10		3.99
Low-Flow 11		3.99
Low-Flow 12		3.99
Low-Flow 13		3.99
Low-Flow 14		4.17
Low-Flow 15		4.17
Low-Flow 16		3.99
Low-Flow 17		4.17
Low-Flow 18		4.17
Low-Flow 20		3.99
Low-Flow 22		3.99
Low-Flow 23		4.17
Low-Flow 24		4.17
Low-Flow 1		4.17
Low-Flow 2		3.87
Low-Flow 3		3.99
Med-Flow 1		3.87
Med-Flow 2		3.87
Med-Flow 3		3.99
Med-Flow 4		3.99
Med-Flow 5		3.92
Med-Flow 6		3.87
Med-Flow 7		4.07
Med-Flow 8		3.87
Med-Flow 9		3.87
Med-Flow 10		3.87
Med-Flow 11		3.87
Med-Flow 12		3.82
Flow Type	Number	Value
-----------	--------	-------
Med-Flow	13	3.77
Med-Flow	14	3.77
Med-Flow	15	3.77
Med-Flow	16	3.77
Med-Flow	17	3.87
Med-Flow	18	3.77
Med-Flow	19	3.87
Med-Flow	20	3.87
Med-Flow	21	3.87
Med-Flow	22	3.87
Med-Flow	23	3.99
Med-Flow	24	3.87
Med-Flow	Composite	3.87
High-Flow	1	3.77
High-Flow	2	3.77
High-Flow	3	3.77
High-Flow	4	3.77
High-Flow	5	3.99
High-Flow	6	3.77
High-Flow	7	3.77
High-Flow	8	3.77
High-Flow	9	3.77
High-Flow	10	3.77
High-Flow	11	3.77
High-Flow	12	3.77
High-Flow	13	3.77
High-Flow	14	3.77
High-Flow	15	3.77
High-Flow	16	3.77
High-Flow	17	3.77
High-Flow	18	3.77
High-Flow	19	3.77
High-Flow	20	3.77
High-Flow	21	3.77
High-Flow	22	3.77
High-Flow	23	3.77
High-Flow	24	3.77
High-Flow	Composite	3.77
Table S5. The completed dMIQE checklist for the analysis of samples for this paper.

ITEM TO CHECK	PROVIDED	COMMENT
1. SPECIMEN		
Detailed description of specimen type and numbers	Y	Included in the Methods section and SI
Sampling procedure (including time to storage)	Y	Included in the Methods section
Sample aliquotation, storage conditions and duration	Y	Included in the Methods section
2. NUCLEIC ACID EXTRACTION		
Description of extraction method including amount of sample processed	Y	Included in the Methods section
Volume of solvent used to elute/resuspend extract	Y	Included in the Methods section
Number of extraction replicates	Y	Included in the Methods section
Extraction blanks included?	Y	Included in the Methods section
3. NUCLEIC ACID ASSESSMENT AND STORAGE		
Method to evaluate quality of nucleic acids	N	Not done
Method to evaluate quantity of nucleic acids (including molecular weight and calculations when using mass)	N	N/A
Storage conditions: temperature, concentration, duration, buffer, aliquots	Y	Included in the Methods section
Clear description of dilution steps used to prepare working DNA solution	N	No dilutions were made.
4. NUCLEIC ACID MODIFICATION		
Template modification (digestion, sonication, pre-amplification, bisulphite etc.)	N	N/A
Details of repurification following modification if performed	N	N/A
5. REVERSE TRANSCRIPTION		
cDNA priming method and concentration	N	N/A
One or two step protocol (include reaction details for two step)	Y	One step and Included in Methods section
Amount of RNA added per reaction	Y	Included in the Methods section
Detailed reaction components and conditions	Y	Included in the Methods section
Estimated copies measured with and without addition of RT*	N	Not done
Manufacturer of reagents used with catalogue and lot numbers	Y	Included in the Methods section
Storage of cDNA: temperature, concentration, duration, buffer and aliquots	N	N/A, since it is one step RT
6. dPCR OLIGONUCLEOTIDES DESIGN AND TARGET INFORMATION		
Sequence accession number or official gene symbol	Y	Included in the Methods section
Method (software) used for design and in silico verification	Y	Included in the Methods section
Location of amplicon	Y	As reported in methods of Lu et al. 2020, and in Graham et al., 2021
Amplicon length	Y	Included in the SI and also Lu et al. 2020, and in Graham et al., 2021
Primer and probe sequences (or amplicon context sequence)**	Y	Included in SI, also in methods of Lu et al. 2020 and Decaro et al., 2008
Location and identity of any modifications	N	N/A
Manufacturer of oligonucleotides	Y	Included in the Methods section
7. dPCR PROTOCOL		
Manufacturer of dPCR instrument and instrument model	Y	Included in the Methods section
Buffer/kit manufacturer with catalogue and lot number	Y	Included in the Methods section
Primer and probe concentration	Y	Included in the Methods section
Pre-reaction volume and composition (incl. amount of template and if restriction enzyme added)	Y	Included in the Methods section
Template treatment (initial heating or chemical denaturation)	N	N/A
Polymerase identity and concentration, Mg++ and dNTP concentrations***	N	N/A
Complete thermocycling parameters	Y	Included in the Methods section
8. ASSAY VALIDATION		
Details of optimisation performed	N	Not performed, optimized commerical assays were utilized.
Analytical specificity (vs. related sequences) and limit of blank (LOB)	Y	Included in SI
Analytical sensitivity/LoD and how this was evaluated	Y	Included in SI
Testing for inhibitors (from biological matrix/extraction)	N	Not done
9. DATA ANALYSIS

Description of dPCR experimental design	Y	Included in the Methods section
Comprehensive details negative and positive of controls (whether applied for QC or for estimation of error)	Y	Included in the Methods section
Partition classification method (thresholding)	Y	Included in the Methods section
Examples of positive and negative experimental results (including fluorescence plots in supplemental material)	Y	Included in SI
Description of technical replication	Y	Included in the Methods section
Reproducibility (intra-experiment variation)	Y	Included in SI
Reproducibility (inter-experiment/user/lab etc. variation)	N	Not performed
Number of partitions measured (average and standard deviation)	Y	Included in the Methods section
Partition volume	N	Not estimated
Copies per partition (K or equivalent) (average and standard deviation)	Y	Included in the Methods section
dPCR analysis program (source, version)	Y	Included in the Methods section
Description of normalization method	Y	Included in SI
Statistical methods used for analysis	Y	Included in the Methods section
Data transparency	raw data available on request	

References

(1) Graham, K. E.; Loeb, S. K.; Wolfe, M. K.; Catoe, D.; Sinnott-Armstrong, N.; Kim, S.; Yamahara, K. M.; Sassoubre, L. M.; Mendoza Grijalva, L. M.; Roldan-Hernandez, L.; Langenfeld, K.; Wigginton, K. R.; Boehm, A. B. SARS-CoV-2 RNA in Wastewater Settled Solids Is Associated with COVID-19 Cases in a Large Urban Sewershed. *Environ. Sci. Technol.* 2021, 55 (1), 488-498. https://doi.org/10.1021/acs.est.0c06191.

(2) M. Pecson, B.; Darby, E.; N. Haas, C.; M. Amha, Y.; Bartolo, M.; Danielson, R.; Dearborn, Y.; Giovanni, G. D.; Ferguson, C.; Fevig, S.; Gaddis, E.; Gray, D.; Lukasik, G.; Mull, B.; Olivas, L.; Olivieri, A.; Qu, Y.; Consortium, S.-C.-2 I. Reproducibility and Sensitivity of 36 Methods to Quantify the SARS-CoV-2 Genetic Signal in Raw Wastewater: Findings from an Interlaboratory Methods Evaluation in the U.S. *Environ. Sci. Water Res. Technol.* 2021, 7 (3), 504–520. https://doi.org/10.1039/D0EW00946F.

(3) Decaro, N.; Elia, G.; Campolo, M.; Desario, C.; Mari, V.; Radogna, A.; Colaianni, M. L.; Cironi, F.; Tempesta, M.; Buonaviglia, C. Detection of Bovine Coronavirus Using a TaqMan-Based Real-Time RT-PCR Assay. *J. Virol. Methods* 2008, 151 (2), 167–171. https://doi.org/10.1016/j.jviromet.2008.05.016.

(4) Lu, X.; Wang, L.; Sakthivel, S. K.; Whitaker, B.; Murray, J.; Kamili, S.; Lynch, B.; Malapati, L.; Burke, S. A.; Harcourt, J.; Tamin, A.; Thornburg, N. J.; Villanueva, J. M.; Lindstrom, S. US CDC Real-Time Reverse Transcription PCR Panel for Detection of Severe Acute Respiratory Syndrome Coronavirus 2 - Volume 26, Number 8—August 2020 - Emerging Infectious Diseases Journal - CDC. *2020*. https://doi.org/10.3201/eid2608.201246.

(5) dMIQE Group; Huggett, J. F. The Digital MIQE Guidelines Update: Minimum Information for Publication of Quantitative Digital PCR Experiments for 2020. *Clin. Chem.* 2020, 66 (8), 1012–1029. https://doi.org/10.1093/clinchem/hvaa125.