GYSIN-$(\mathbb{Z}/2\mathbb{Z})^d$-FUNCTORS

DORRA BOURGUIBA AND SAID ZARA TI

Abstract

Let $d \geq 1$ be an integer and K_d be a contravariant functor from the category of subgroups of $(\mathbb{Z}/2\mathbb{Z})^d$ to the category of graded and finite \mathbb{F}_2-algebras. In this paper, we generalize the conjecture of G. Carlsson [C3], concerning free actions of $(\mathbb{Z}/2\mathbb{Z})^d$ on finite CW-complexes, by suggesting, that if K_d is a Gysin-$(\mathbb{Z}/2\mathbb{Z})^d$-functor (that is to say, the functor K_d satisfies some properties, see 2.2), then we have:

$$(C_d) : \sum_{i \geq 0} \dim_{\mathbb{F}_2}(K_d(0))^i \geq 2^d$$

We prove this conjecture for $1 \leq d \leq 3$ and we show that, in certain cases, we get an independent proof of the following results (for $d = 3$ see [C4]):

If the group $(\mathbb{Z}/2\mathbb{Z})^d$, $1 \leq d \leq 3$, acts freely and cellularly on a finite CW-complex X, then

$$\sum_{i \geq 0} \dim_{\mathbb{F}_2}H^i(X; \mathbb{F}_2) \geq 2^d.$$

1. Introduction.

Since the work of Paul A. Smith around 1938 [Sm] (see also [MB]) known as "Smith theory" the following problem has been posed.

$(\mathcal{P}_{d,k})$: Which group $(\mathbb{Z}/2\mathbb{Z})^d$ acts freely and cellularly on a product of k spheres?

The case $k = 1$, which is easy, was proved since 1935 ([Sm], [M] and [MTW]); the result is that, if $(\mathbb{Z}/2\mathbb{Z})^d$ acts freely on the sphere S^n then $d \leq 1$.

The case $k = 2$ has been proved by A.Heller [He] in 1959 using a combinatorial method which, apparently, doesn’t extend to the case of three spheres (see [DV]). The result is that, if $(\mathbb{Z}/2\mathbb{Z})^d$ acts freely and cellularly on the product of two spheres $S^{n_1} \times S^{n_2}$, then $d \leq 2$.

Some works concerning the problem $(\mathcal{P}_{d,k})$ (such as [Co]) allow to have a generalization. The following statement has been conjectured by Benson-Carlson [BC]:

2020 Mathematics Subject Classification. Algebraic topology.

Key words and phrases. Elementary abelian 2-groups, $H^*(\mathbb{Z}/2\mathbb{Z})^d$-modules, $H^*(\mathbb{Z}/2\mathbb{Z})^d - \mathbb{F}_2$-algebras, Free actions of $(\mathbb{Z}/2\mathbb{Z})^d$ on finite CW-complexes, Equivariant cohomology, Gysin exact sequence.
(C_{d,S}): The group \((\mathbb{Z}/2\mathbb{Z})^{d+1}\) doesn't act freely and cellurally on a product of \(d\) spheres, \(d \geq 1\).

The conjecture \((C_{3,S})\) was proved by G. Carlsson in 1987 [C4].

Among other works concerning the conjecture \((C_{d,S})\), we can cite [AB], [C2], [Han], [OY] and [R]. Carlsson’s work [C2] concerns the case where the spheres have the same dimension and the action of the group \((\mathbb{Z}/2\mathbb{Z})^{d}\) on homology is trivial. The work of Adem-Browder [AB] concerns the case of the group \((\mathbb{Z}/p\mathbb{Z})^{d}\), \(p\) an odd prime.

In the middle of 1980s the conjecture \((C_{d,S})\) was generalized by G. Carlsson [C3] (and S. Halperin [Hal] for Torus) who suggest the following ”Halperin-Carlsson” Conjecture (it is also called ”toral rank conjecture” in some literature).

\((C_{d,X}): \) Let \(X\) be a finite CW-complex on which the group \((\mathbb{Z}/2\mathbb{Z})^{d}\) acts freely and cellurally . Then, \(\sum_{i \geq 0} \dim_{\mathbb{F}_2} H^i(X; \mathbb{F}_2) \geq 2^d\)

In this paper we generalize the conjecture \(C_{d,X}\) in the following sense which will be more precise in paragraph 2.2. Let’s call a Gysin-\((\mathbb{Z}/2\mathbb{Z})^{d}\)-functor a contravariant functor \(K_{(\mathbb{Z}/2\mathbb{Z})^{d}}\), or \(K_{d}\) for simplicity, from the category of subgroups of \((\mathbb{Z}/2\mathbb{Z})^{d}\) to the category of graded, finite and unitary \(\mathbb{F}_2\)-algebras such that:

- For every subgroup \(W\) of \((\mathbb{Z}/2\mathbb{Z})^{d}\), the graded, finite and unitary \(\mathbb{F}_2\)-algebra \(K_{d}(W)\) is non trivial and is an \(H^*(W; \mathbb{F}_2)\)-algebra,

- For every subgroup \(W\) of \((\mathbb{Z}/2\mathbb{Z})^{d}\) and for every \(U\) a subgroup of \(W\) of codimension one, there exist an exact sequence of \(H^*(W; \mathbb{F}_2)\)-modules of the form:

\[
\ldots \longrightarrow K_{d}(W)^{*-1} \overset{i}{\longrightarrow} K_{d}(W)^* \overset{\psi}{\longrightarrow} K_{d}(U)^* \overset{\pi^*}{\longrightarrow} K_{d}(W)^* \overset{\tau}{\longrightarrow} \ldots
\]

where

- \(i: U \hookrightarrow W\) is the inclusion,
- \(K_{d}(U)\) is an \(H^*(W; \mathbb{F}_2)\)-algebra via \(i^*: H^*(W; \mathbb{F}_2) \rightarrow H^*(U; \mathbb{F}_2)\),
- \(K_{d}(W)\) is an \(H^*(W/U; \mathbb{F}_2)\)-algebra via \(\pi^*: H^*(W/U; \mathbb{F}_2) \rightarrow H^*(W; \mathbb{F}_2)\), \(\pi: W \rightarrow W/U\) is the natural projection,
- \(H^*(W/U; \mathbb{F}_2) \simeq \mathbb{F}_2[t]\).

We propose the following conjecture:
\((C_d) \): Let \(K_d \) be a Gysin-(\(\mathbb{Z}/2\mathbb{Z} \))\(^d\)-functor, then:
\[
\sum_{i \geq 0} \dim_{\mathbb{F}_2}(K_d(0))^i \geq 2^d.
\]

The conjecture \(C_d \) implies the conjecture \(C_{d,X} \) because if \(X \) is a finite CW-complex on which the group \((\mathbb{Z}/2\mathbb{Z})^d \) acts freely and cellulyarly, then the functor \(K_d \) defined by \(K_d(W) = H^*_W(X; \mathbb{F}_2) \) is a Gysin-(\(\mathbb{Z}/2\mathbb{Z} \))\(^d\)-functor whose 0\(^{th}\)-term is \(H^*(X; \mathbb{F}_2) \).

The aim of this paper is to prove, in certain cases, the conjecture \(C_d \) for \(1 \leq d \leq 3 \).

The paper is structured as follows. In the second paragraph we fix the notations and we give some properties of Gysin-(\(\mathbb{Z}/2\mathbb{Z} \))\(^d\)-functors. The third paragraph will concern the proof of the main result of this paper.

Acknowledgements The first author is member of the "Laboratoire de Recherche LATAO code LR11ES12" of the Faculty of Sciences of Tunis at the University of Tunis El-Manar.

The second author would like to thank "Cabinet Karray" at Avicenne for their hospitality during the preparation of this paper.

2. **On Gysin-(\(\mathbb{Z}/2\mathbb{Z} \))\(^d\)-functors**

In this paragraph we fix some notations, introduce the Gysin-(\(\mathbb{Z}/2\mathbb{Z} \))\(^d\)-functors and give some of their properties.

2.1. **Notations.** Let \(V \) be an elementary abelian 2-group that is, a group isomorphic to \((\mathbb{Z}/2\mathbb{Z})^d \), \(d \geq 1 \); the integer \(d \) is called the rank of \(V \) and will be denoted by \(d = rk(V) \). The mod. 2 cohomology of \(V \) will be simply denoted \(H^*V \). Let’s recall that \(H^*V \) is a polynomial algebra over \(\mathbb{F}_2 \) on \(d \) generators \(t_i \), \(1 \leq i \leq d \), of degree one.

We denote by \((t)^k_0 = \mathbb{F}_2[t]/<t^{k+1}> \) where \(<t^s> \), \(s \in \mathbb{N} \), is the ideal of \(\mathbb{F}_2[t] \) of elements of degree \(\geq s \).

Let \(X \) be a CW-complex. Throughout this paper, the action of \(V \) on \(X \) will be considered cellulyar (see [TD] Chap. II, Sect. 1 for the notion of equivariant CW-complexes).

2.2. **Gysin-\(V \)-functors.** Let \(V \) be an elementary abelian 2-group of rank \(\geq 1 \). The set \(W \) of subgroups of \(V \) is ordered by inclusion and then can be considered as a category. Let \(\mathbb{K}_f \) be the category of graded, finite and unitary \(\mathbb{F}_2 \)-algebras; we denote by \(H^*V-\mathbb{K}_f \) the category of graded, finite and unitary \(H^*V-\mathbb{F}_2 \)-algebras. An object of this category is a graded, finite and unitary \(\mathbb{F}_2 \)-algebra \(K \) equipped with a map of graded unitary \(\mathbb{F}_2 \)-algebras \(H^*V \otimes K \to K \).
Definition 2.2.1. A Gysin-V-functor is a contravariant functor

$$\mathcal{K}_V : \mathcal{W} \ni \mathbb{K}_f, W \mapsto \mathcal{K}_V(W) = K_W$$

such that:

(i) For every subgroup W of V, the algebra K_W is a non trivial object of the category $H^*W.\mathbb{K}_f$.

(ii) For every subgroup W of V and for every subgroup U of W of codimension one, there exist an exact sequence of H^*W-modules of the form:

$$G(U, W) : \ldots \rightarrow (K_W)^{*-1} \xrightarrow{t} (K_W)^* \xrightarrow{\mathcal{K}_V(i)} (K_U)^* \xrightarrow{\psi} (K_W)^{*-t} \rightarrow \ldots$$

where

- $i : U \hookrightarrow W$ is the inclusion,
- K_U is an H^*W-algebra via $i^* : H^*W \rightarrow H^*U$,
- $H^*(W/U) \cong \mathbb{F}_2[t]$ and $t : K_W \rightarrow K_W$ is the $H^*(W/U)$-structure of K_W via the morphism $\pi^* : H^*(W/U) \rightarrow H^*W$ induced by the projection $\pi : W \rightarrow W/U$.

2.2.2. Vocabularies and notations

2.2.2.1. The exact sequence $G(U, W)$ will be called the Gysin sequence associated to the subgroups U and W of V ($U \subseteq W$ of codimension one).

2.2.2.2. When the structures and morphisms are fixed, a Gysin-V-functor will be simply denoted $\mathcal{K}_V = \{K_W, W \text{ subgroup of } V\}$.

Remark 2.2.3. Let $\tilde{H}^*(W/U)$ be the augmentation ideal of $H^*(W/U)$. Since K_W is an $H^*(W/U)$-module via $\pi^* : H^*(W/U) \rightarrow H^*W$ where $\pi : W \rightarrow W/U$ is the projection; we denote

$$\overline{K_W}^{W/U} = K_W/\tilde{H}^*(W/U).K_W$$

$$= \mathbb{F}_2 \otimes \left. K_W \right|_{H^*(W/U)} = Tor^H_{W/U} \left. K_W, \mathbb{F}_2 \right|_{H^*(W/U)}$$

The previous Gysin sequence $G(U, W)$ induces a short exact sequence of H^*U-modules:

$$\overline{G}(U, W) : 0 \rightarrow \overline{K_W}^{W/U} \xrightarrow{\mathcal{K}_V(i)} K_U \xrightarrow{\psi} \tau^{W/U}(K_W) \rightarrow 0$$

where
One can construct various examples of Gysin-V-functors; some of them are purely algebraic examples and the other comes from topology.

2.2.4. Examples

Example 2.2.4.1. Let $K_0 = \langle \iota, x_1, x_2, x_4, y_4, x_5 \rangle$ be the graded, finite and unitary \mathbb{F}_2-algebra generated by six generators: ι of degree zero, x_i of degree i, $i = 1, 2, 4, 5$ and y_4 of degree 4. These generators satisfy the following relations:

$$
\begin{cases}
 x_j^2 = y_4^2 = 0, & j = 1, 2, 4, 5, \\
 x_1 x_4 = x_1 y_4 = 0, \\
 x_2 x_4 = x_2 x_5 = 0, \\
 x_2 y_4 = x_1 x_5.
\end{cases}
$$

In K_0 the elements $x_1 x_2$ and $x_1 x_5$ are non trivial. As an \mathbb{F}_2-vector space $K_0 = \langle \iota, x_1, x_2, x_1 x_2, x_4, y_4, x_5, x_1 x_5 \rangle$.

Let $H^*(\mathbb{Z}/2\mathbb{Z}) \cong \mathbb{F}_2[t]$. We consider the graded, finite and unitary $\mathbb{F}_2[t]$-\mathbb{F}_2-algebra $K_{\mathbb{Z}/2\mathbb{Z}} = \langle \mu, t, z_1, z_2 \rangle$ generated by four generators: μ of degree zero, t and z_1 of degree one and z_2 of degree two. In $K_{\mathbb{Z}/2\mathbb{Z}}$ we have the relations:

$$
\begin{cases}
 z_1^2 = z_2^2 = 0, \\
 t^5 \mu = t^4 z_1 = t^4 z_2 = 0.
\end{cases}
$$

In $K_{\mathbb{Z}/2\mathbb{Z}}$ the elements $z_1 z_2$, $t^4 \mu$, $t^3 z_1$, $t^3 z_2$ and $t^3 z_1 z_2$ are non trivial. We then have:

$$
\begin{cases}
 \overline{K_{\mathbb{Z}/2\mathbb{Z}}} = \langle \mu, z_1, z_2, z_1 z_2 \rangle \text{ as an } \mathbb{F}_2\text{-vector space,} \\
 \tau^{\mathbb{Z}/2\mathbb{Z}}(K_{\mathbb{Z}/2\mathbb{Z}}) = \{ t^4 \mu, t^3 z_1, t^3 z_2, t^3 z_1 z_2 \} \text{ as an } \mathbb{F}_2\text{-vector space.}
\end{cases}
$$

Consider the following sequence of \mathbb{F}_2-vector spaces

$$
\begin{array}{ccccccccc}
0 & \longrightarrow & \overline{K_{\mathbb{Z}/2\mathbb{Z}}} & \longrightarrow & K_0 = \langle \iota, x_1, x_2, x_1 x_2, x_4, y_4, x_5, x_1 x_5 \rangle & \longrightarrow & \tau^{\mathbb{Z}/2\mathbb{Z}}(K_{\mathbb{Z}/2\mathbb{Z}}) = \{ t^4 \mu, t^3 z_1, t^3 z_2, t^3 z_1 z_2 \} & \longrightarrow & 0
\end{array}
$$

where

- $\sigma(\mu) = \iota$, $\sigma(z_1) = x_1$, $\sigma(z_2) = x_2$ and $\sigma(z_1 z_2) = x_1 x_2$.
- $\psi(\iota) = \psi(x_1) = \psi(x_2) = \psi(x_1 x_2) = 0$
- $\psi(x_4) = t^4 \mu$, $\psi(y_4) = t^3 z_1$, $\psi(x_5) = t^3 z_2$ and $\psi(x_1 x_5) = t^3 z_1 z_2$.
We verify that this sequence is exact and, by definition, that \(\mathcal{K}_{Z/2Z} = \{ K_0, K_{Z/2Z} \} \) is a Gysin-\(\mathbb{Z}/2\mathbb{Z}\)-functor with \(\mathcal{K}_{Z/2Z}(i) = \sigma, i : \{ 0 \} \hookrightarrow \mathbb{Z}/2\mathbb{Z} \) is the inclusion.

Example 2.2.4.2. Let \(V \) be an elementary abelian 2-group and let \(X \) be a finite CW-complex on which the group \(V \) acts freely. For every subgroup \(W \) of \(V \), we denote by \(X_{hW} = EW \times_W X \) the Borel construction which is the quotient of \(EW \times X \) by the diagonal action of \(W \). Here \(EW \) is a contractible space on which \(W \) acts freely; \(BW = EW/W \) is a classifying space of \(W \).

The mod.2 cohomology of the space \(X_{hW} \), \(H^*(X_{hW}) = H^*_W X \), is called the mod.2 equivariant cohomology of \(X \). We denote by \(\pi_W : X_{hW} \to BW \) the map induced by \(X \to \{ * \} \). It is clear that \(H^*_W X \) is a graded \(H^*W \)-module (resp. \(H^*V \)-module) via \(\pi_W^* : H^*W \to H^*_W X \) (resp. via \(i^* : H^*V \to H^*W \), where \(i : W \hookrightarrow V \) is the natural inclusion). We verify that \(H^*_W X \) is an object of the category \(H^*W \mathbb{K}_f \) that is a graded, finite and unitary \(\mathbb{F}_2 \)-algebra equipped with a map of graded unitary \(\mathbb{F}_2 \)-algebras \(H^*W \otimes H^*_W X \to H^*_W X \).

The contravariant functor \(\mathcal{K}_V : W \twoheadrightarrow \mathbb{K}_f, W \mapsto \mathcal{K}_V(W) = H^*_W X \) is a Gysin-V-functor because:

(i) For every subgroup \(W \) of \(V \), \(H^*_W X \) is a non trivial object of the category \(H^*W \mathbb{K}_f \).

(ii) Let \(W \subset V \) be a subgroup and let \(U \subset W \) be a subgroup of codimension 1. The inclusion \(i : U \hookrightarrow W \) induces the following two sheets covering: \(W/U \cong \mathbb{Z}/2\mathbb{Z} \rightarrow X_{hW} \xrightarrow{\pi_W} X_{hW} \) with \(B(\pi) \circ \pi_W : X_{hW} \to BW \to B(W/U) \) as a classifying map, \(\pi : W \to W/U \) is the natural projection.

Let \(H^*(W/U) \cong \mathbb{F}_2[t] \), we also denote by \(t \) the non trivial element \((B(\pi) \circ \pi_W)^*(t) \) of \(H^*_{W} X \). The Gysin exact sequence associated to the previous covering is the following exact sequence of \(H^*W \)-modules:

\[
\ldots \longrightarrow H^{i-1}_W X \overset{t}{\longrightarrow} H^i_W X \overset{i^*}{\longrightarrow} H^i_U X \overset{tr}{\longrightarrow} H^i_W X \overset{t}{\longrightarrow} \ldots
\]

where \(tr \) is the the transfer \(([Sp], \mathbb{Z}) \) and for \(x \in H^*_W X \), \(t x = (B(\pi) \circ \pi_W)^*(t) \sim x \).

This shows that \(\mathcal{K}_V = \{ K_W = H^*_W X, W \text{ a subgroup of } V \} \) is a Gysin-V-functor. This example comes from “topology” via the equivariant cohomology of a free action of \(V \) on a finite CW-complex \(X \).

2.3. Some properties of Gysin-V-functors.

Let’s recall some definitions and fix some notations. Let \(E \) be a finite graded \(\mathbb{F}_2 \)-vector space.

- We denote by \(\| E \| \) the norm of \(E \) which is the maximum of the set \(\{ k \in \mathbb{N}, E^k \neq 0 \} \).

- Let \(V \) be an elementary abelian 2-group. If \(E \) is an \(H^*V \)-module and \(x \in E \), we denote by \(\langle x \rangle_V \) the sub-\(H^*V \)-module of \(E \) generated by the element \(x \).
Definitions 2.3.1. (i) A finite graded \mathbb{F}_2-vector space E is called:

(i-a) **connected** if $E^0 \cong \mathbb{Z}/2\mathbb{Z}$.

(i-b) **bi-connected** if:

\[
\begin{align*}
E \text{ is connected: } E^0 & \cong \mathbb{Z}/2\mathbb{Z}, \\
\text{and } & \\
E^{\|E\|} & \cong \mathbb{Z}/2\mathbb{Z}.
\end{align*}
\]

(ii) A Gysin-V-functor $K_V = \{K_W, W \text{ subgroup of } V\}$ is **connected** (resp. **bi-connected**) if K_0 is **connected** (resp. K_0 is **bi-connected**).

(iii) A finite CW-complex X is **bi-connected** if H^*X is **bi-connected**.

We have the following property of Gysin-V-functors.

Lemma 2.3.2. Let V be an elementary abelian 2-group and let $K_V = \{K_W, W \text{ subgroup of } V\}$ be a bi-connected Gysin-V-functor. Then, for each subgroup W of V, the graded finite \mathbb{F}_2-algebra K_W is bi-connected and we have $\|K_W\| = \|K_0\|$.

Proof. The proof is by induction on the rank of the subgroup of V. Let K_V be a bi-connected Gysin-V-functor and let $U \subseteq V$ be a subgroup of rank one. The Gysin exact sequence of graded \mathbb{F}_2-vector spaces:

\[
\overline{G}(0, U) : 0 \longrightarrow \overline{K_U} \xrightarrow{K_V(i)} K_0 \xrightarrow{\psi} \tau^U(K_U) \longrightarrow 0
\]
shows that:

2.3.2.1. In degree zero, we have: $(P_0) : \mathbb{Z}/2\mathbb{Z} \cong (K_0)^0 \cong (\overline{K_U})^0$.

Since $(\tau^U(K_U))^0 \subseteq (K_U)^0 = (\overline{K_U})^0$, then $(\overline{K_U})^0 = 0$ implies $(\tau^U(K_U))^0 = 0$. This contradicts the equality (P_0). Then we deduce that: $(\tau^U(K_U))^0 = 0$ and $\mathbb{Z}/2\mathbb{Z} \cong (\overline{K_U})^0 \cong (K_U)^0$. This shows that K_U is connected.

2.3.2.2. In degree $\|K_0\|$, we have: $(P_{\|K_0\|}) : \mathbb{Z}/2\mathbb{Z} \cong (K_0)^{\|K_0\|} \cong (\overline{K_U})^{\|K_0\|} \oplus (\tau^U(K_U))^{\|K_0\|}$.

Since K_U is a graded finite H^*U-module, we have: $\|K_U\| = \|\tau^U(K_U)\|$. The following inequalities follow: $\|\overline{K_U}\| \leq \|K_U\| = \|\tau^U(K_U)\| \leq \|K_0\|$. We deduce from $(P_{\|K_0\|})$ that:

\[
(\overline{K_U})^{\|K_0\|} = 0 \text{ and } (\tau^U(K_U))^{\|K_0\|} \cong \mathbb{Z}/2\mathbb{Z}.\]

This shows that: $\|K_U\| = \|\tau^U(K_U)\| \geq \|K_0\|$. So, we have the equality: $\|K_U\| = \|\tau^U(K_U)\| = \|K_0\|$.

We proved that K_U is bi-connected and $\|K_U\| = \|K_0\|$.

The lemma holds by induction on the rank of subgroups of V using the same method. □
Let E be a graded finite \mathbb{F}_2-vector space. We denote by $d(E) = \sum_{i \geq 0} \dim_{\mathbb{F}_2} E^i$ the (total) dimension of E. We have:

Proposition 2.3.3. Let V be an elementary abelian 2-group and $\mathcal{K}_V = \{ K_W, W \text{ subgroup of } V \}$ be a Gysin-V-functor. Then, the dimension of K_0 is even: $d(K_0) \equiv 0 \pmod{2}$.

Proof. Let $U \subset V$ be a subgroup of rank one, then the Gysin exact sequence

$$\overline{G}(0, U) : 0 \longrightarrow K_U \longrightarrow \mathcal{K}_V(i) \longrightarrow K_0 \xrightarrow{\psi} \tau^U(K_U) \longrightarrow 0$$

Shows that $d(K_0) = d(K_U^U) + d(\tau^U(K_U))$. The proposition 2.3.3 is a consequence of the following lemma. \n
Lemma 2.3.4. Let U be an elementary abelian 2-group of rank one and let M be a graded finite H^*U-module. We have: $d(K_U^U) = d(\tau^U(M))$.

Proof. The proof is by induction on the dimension of the finite \mathbb{F}_2-vector space K_U^U. \n
Remark 2.3.5. Here is an example of application of the previous lemma. Let $U_i, i = 1, 2$, be an elementary abelian 2-group of rank one, let $V = U_1 \oplus U_2$ and let $H^*U_i \cong \mathbb{F}_2[t_i], i = 1, 2$. Let M be a graded finite H^*V-module, x_1 and x_2 two elements of M such that the finite $\mathbb{F}_2[t_i]$-modules $M_U^{U_2}$ and $\tau^{U_2}(M)$ are monogenic:

\[
\begin{cases}
M_U^{U_2} \cong (t_1)^{k_1} x_1, \\
\tau^{U_2}(M) \cong (t_1)^{k_2} x_2.
\end{cases}
\]

In this case we have $d(k_1) = k_1 + 1$ and $d(k_2) = k_2 + 1$. The lemma 2.3.4, applied for the H^*U_2-module M, implies the equality: $k_1 = k_2$.

2.4. **On the extension of Gysin-V-functors.** Let V be an elementary abelian 2-group, V' a subgroup of V and $\mathcal{K}_V = \{ K_W, W \text{ subgroup of } V \}$ be a Gysin-V-functor. Then, $\mathcal{K}_{V'} = \{ K_W, W \text{ subgroup of } V' \}$ is a Gysin-V'-functor called a "sub-Gysin-functor" of \mathcal{K}_V. We say also that \mathcal{K}_V is an extension of the Gysin-V'-functor $\mathcal{K}_{V'}$.

It is interesting to know when a Gysin-V-functor extends because this question is related to the extension of a free action of the group V on a finite CW-complex. We have.

Proposition 2.4.1. Let V be an elementary abelian 2-group and let $\mathcal{K}_V = \{ K_W, W \text{ subgroup of } V \}$ be a Gysin-V-functor such that $\overline{K}_V \cong \mathbb{Z}/2\mathbb{Z}$, then \mathcal{K}_V doesn’t extend.
Proof. Suppose that the Gysin-V-functor \mathcal{K}_V extends to \mathcal{K}_H, $H = V \oplus \mathbb{Z}/2\mathbb{Z}$ then, the Gysin exact sequence of graded finite H^*V-modules:

$$\overline{G}(V, H) : 0 \to \overline{K_H}^{H/V} \xrightarrow{\mathcal{K}_H(i)} K_V \xrightarrow{\psi} \tau^{H/V}(K_H) \to 0$$

Shows that

$$\left(K_V\right)^0 \cong \left(\overline{K_H}^{H/V}\right)^0 \oplus \left(\tau^{H/V}(K_H)\right)^0$$

Since $\left(\tau^{H/V}(K_H)\right)^0 \subseteq \left(K_H\right)^0$ and $\left(K_V\right)^0 \cong \mathbb{Z}/2\mathbb{Z}$ because $\overline{K_V} \cong \mathbb{Z}/2\mathbb{Z}$, we deduce that

$$\text{Im} \left(\left(\overline{K_H}^{H/V}\right)^V \xrightarrow{\mathcal{K}_H(i)} \overline{K_V}^V \right) \cong \mathbb{Z}/2\mathbb{Z} \text{ is an epimorphism and } \tau^{H/V}(K_H)^V = 0.$$

This leads to a contradiction because the $H^*(H)$-module K_H is non trivial and finite. \qed

Proposition 2.4.2. Let V be an elementary abelian 2-group, \mathcal{K}_V a bi-connected Gysin-V-functor and ι_V the unit of the \mathbb{F}_2-algebra K_V: $(K_V)^0 \cong \mathbb{Z}/2\mathbb{Z} = \langle \iota_V \rangle$.

If the norm of K_V is equal to the norm of its sub-H^*V-module generated by ι_V:

$$\| K_V \| = \| \langle \iota_V \rangle_V \|, \quad \text{then } \mathcal{K}_V \text{ doesn't extend.}$$

Proof. Let $\mathcal{K}_V = \{ K_W, W \text{ subgroup of } V \}$ be a bi-connected Gysin-V-functor and suppose that \mathcal{K}_V extends to \mathcal{K}_H, where $H = V \oplus \mathbb{Z}/2\mathbb{Z}$. By the lemma 2.3.2, the Gysin-H-functor \mathcal{K}_H is bi-connected and we have: $\| K_V \| = \| K_H \|$ and $(K_H)^0 \cong \mathbb{Z}/2\mathbb{Z} = \langle \iota_H \rangle$. Since the map $\mathcal{K}_H(i) : K_H \to K_V$, induced by the inclusion of V in H, is a map of unitary-(connected)-\mathbb{F}_2-algebras then, $\mathcal{K}_H(i)(\iota_V) = \iota_V$.

Let’s denote by $j : \langle \iota_H \rangle_H \hookrightarrow K_H$ the natural inclusion. We have the following commutative diagram whose second line is the short Gysin exact sequence $\overline{G}(V, H)$ of H^*V-modules.

$$\begin{array}{c}
0 \to \overline{K_H}^{H/V} \xrightarrow{\mathcal{K}_H(i)} K_V \xrightarrow{\psi} \tau^{H/V}(K_H) \to 0 \\
\text{Im}(j^{H/V}) \downarrow \quad \uparrow \quad \langle \iota_V \rangle_V \\
0 \to \overline{K_H}^{H/V} \xrightarrow{\mathcal{K}_H(i)} K_V \xrightarrow{\psi} \tau^{H/V}(K_H) \to 0
\end{array}$$

This shows that the sub-H^*V-module $\text{Im}(j^{H/V})$ of $\overline{K_H}^{H/V}$ is isomorphic to sub-H^*V-module $\langle \iota_V \rangle_V$ of K_V ($\mathcal{K}_H(i) : \text{Im}(j^{H/V}) \to \langle \iota_V \rangle_V$ is an isomorphism). This implies the inequality between norms:

$$\| \overline{K_H}^{H/V} \| \geq \| \text{Im}(j^{H/V}) \| = \| \langle \iota_V \rangle_V \| = \| K_V \|.$$

Since $\overline{K_H}^{H/V}$ is a sub-H^*V-module of K_V, we have that $\| \overline{K_H}^{H/V} \| \leq \| K_V \|$. So we have the
equality: $\| K_{H/H}^{H/V} \|=\| K_V \|$. The Gysin exact sequence $\mathcal{G}(V, H)$ of H^*V-modules:

$$0 \rightarrow K_{H/H}^{H/V} \xrightarrow{K_{H/(i)}} K_V \xrightarrow{\psi} \tau_{H/V}(K_H) \rightarrow 0$$

implies the following isomorphism: $(K_V)^{||K_V||} \cong (K_H^{H/V})^{||K_V||} \oplus (\tau_{H/V}(K_H))^{||K_V||}$. Since the Gysin-$V$-functor K_V is bi-connected, $(K_V)^{||K_V||} \cong \mathbb{Z}/2\mathbb{Z}$, and $\| K_{H/H}^{H/V} \|=\| K_V \|$, we deduce from the previous isomorphism:

$$\begin{cases}
(i) \ (K_H^{H/V})^{||K_V||} \cong (K_V)^{||K_V||} \cong \mathbb{Z}/2\mathbb{Z}, \\
(ii) \ (\tau_{H/V}(K_H))^{||K_V||} = 0.
\end{cases}$$

By proposition 2.3.2, $\| K_V \|=\| K_H \|$; since K_H is a graded, finite and non trivial $H^*(H/V)$-module, then $(\tau_{H/V}(K_H))^{||K_V||} \neq 0$. This contradicts the point (ii).

3. The main result

Let V be an elementary abelian 2-group of rank d and $K_V = \{ K_W, \ W \text{ subgroup of } V \}$ be a Gysin-V-functor. Let’s denote $d(K_0) = \Sigma_{i \geq 0} \dim_{\mathbb{F}_2}(K_0)^i$ the total dimension of the graded finite \mathbb{F}_2-vector space K_0.

The main result of this paper is to show, in certain cases, that $d(K_0)$ is related to the rank of the group V, as suggested by the conjecture (C_d), $d(K_0) \geq 2^{rk(V)}$.

More precisely, we have:

Theorem 3.1. Let V be an elementary abelian 2-group and $K_V = \{ K_W, \ W \text{ subgroup of } V \}$ be a Gysin-V-functor. Then,

(i) For $rk(V) = 1$, $d(K_0) \geq 2$ so the conjecture (C_1) holds.

(ii) For $rk(V) = 2$, if the Gysin-V-functor K_V is connected, we have the inequality: $d(K_0) \geq 4$, so the conjecture (C_2) holds.

(iii) For $rk(V) = 3$, if the Gysin-V-functor K_V is bi-connected, we have the inequality: $d(K_0) \geq 8$, so the conjecture (C_3) holds.

As an application of this theorem we get an independent proof of the results concerning $(C_{d,X})$ for $d \leq 3$.
Proposition 3.2. Let V be an elementary abelian 2-group and let X be a finite CW-complex on which the group V acts freely. Then,

(i) For $rk(V) = 1$, we have: $d(H^*X) \geq 2$.

(ii) For $rk(V) = 2$ and X connected, we have: $d(H^*X) \geq 4$.

(iii) For $rk(V) = 3$ and X bi-connected, we have: $d(H^*X) \geq 8$.

Proof.

Let V be an elementary abelian 2-group and let X be a finite CW-complex on which the group V acts freely. By the example 2.2.4.2, the contravariant functor $K_V : W \mapsto \mathbb{K}_f$, $W \mapsto K_V(W) = H^*_W X$ is a Gysin-V-functor whose 0th-term $K_0 = K_V(0) = H^*_X$.

Let S^n, $n \geq 1$, be the standard unit sphere in \mathbb{R}^{n+1}, then the product $S^{n_1} \times ... \times S^{n_k}$, $k \geq 1$, is a bi-connected CW-complex. By the proposition 3.2, if an elementary abelian 2-group V, $1 \leq rk(V) \leq 3$, acts freely on a product of k spheres then, $k \geq rk(V)$.

3.1. **proof of theorem 3.1.**

To prove theorem 3.1 we consider the following three cases:

3.1.1. **The case $rk(V) = 1$.**

The proposition 2.3.3 shows that if $K_V = \{K_W, W \text{ subgroup of } V\}$ is a Gysin-V-functor, $rk(V) = 1$, then $d(K_0) \equiv 0 \pmod{2}$. This implies that $d(K_0) \geq 2$ because the graded \mathbb{F}_2-vector space K_0 is not trivial.

3.1.2. **The case $rk(V) = 2$.**

Let $K_V = \{K_W, W \text{ subgroup of } V\}$ be a Gysin-V-functor, $rk(V) = 2$, and suppose that $d(K_0) < 4$. Since $d(K_0) \equiv 0 \pmod{2}$ (see proposition 2.3.3) and K_0 non trivial, we deduce that $d(K_0) = 2$.

Let $U \subseteq V$ be a subgroup of rank one and consider the short exact sequence of graded \mathbb{F}_2-vector spaces associated to the couple ($\{0\} \subseteq U$) of subgroups of V

$$
\mathcal{G} \{\{0\}, U\} : \quad 0 \longrightarrow \overline{K_U^U} \quad \xrightarrow{\kappa_V(i)} \quad K_0 \quad \xrightarrow{\psi} \quad \tau^U(K_U) \longrightarrow 0
$$

$i : \{0\} \hookrightarrow U$ denotes the inclusion. This shows that: $d(K_0) = 2 = d(\overline{K_U^U}) + d(\tau^U(K_U))$. The lemma 2.3.4 implies that: $d(\overline{K_U^U}) = 1$. Since the Gysin-V-functor K_V is connected, we have: $\mathbb{Z}/2\mathbb{Z} \cong (K_U)^0 \cong (\overline{K_U^U})^0 \cong \overline{K_U^U}$.

The proposition 2.4.1 shows that, in this case, the Gysin-U-functor $K_U = \{K_W, W \text{ subgroup of } U\}$ can not extend to K_V. This leads to a contradiction.
3.1.3. The case \(\text{rk}(V) = 3 \).

Let \(\mathcal{K}_V = \{K_W, W \text{ subgroup of } V\} \) be a bi-connected Gysin-\(V \)-functor, \(\text{rk}(V) = 3 \), and suppose that \(d(K_0) < 8 \). Since \(d(K_0) \equiv 0 \pmod{2} \) (see proposition 2.3.3) and \(K_0 \) non trivial, then we have three possibility: \(d(K_0) = 2 \), \(d(K_0) = 4 \) and \(d(K_0) = 6 \). We will show that the three cases \(d(K_0) = 2 \), \(d(K_0) = 4 \) and \(d(K_0) = 6 \) are impossible. Let \(U_i, 1 \leq i \leq 3 \), be a rank one subgroup of \(V \) such that: \(V \cong U_1 \oplus U_2 \oplus U_3 \).

3.1.3.1 The case \(d(K_0) = 2 \) is impossible by the previous case 3.1.2. We proved in 3.1.2 that if \(d(K_0) = 2 \), then \(K_0 \) can’t be the 0th-term of a Gysin-\(E \)-functor with \(E \) an elementary abelian 2-group of rank 2 and a fortiori of rank \(\geq 2 \).

3.1.3.2 Suppose that \(d(K_0) = 4 \). The Gysin exact sequence of graded finite \(\mathbb{F}_2 \)-vector spaces

\[
\overline{G}([0], U_1): 0 \longrightarrow K_{U_1}^{U_1} \xrightarrow{\mathcal{K}_V(i_1)} K_0 \xrightarrow{\psi} \tau_{U_1}(K_{U_1}) \longrightarrow 0
\]

\((i_1 : \{0\} \hookrightarrow U_1 \) is the inclusion), shows that \(d(K_0) = 4 = d(\overline{K_{U_1}}^U) + d(\tau_{U_1}(K_{U_1})) \). The lemma 2.3.4 implies that \(d(\overline{K_{U_1}}^U) = 2 \), that is: \(\overline{K_{U_1}}^U \cong \langle \overline{1}, \overline{g_1} \rangle \) is the \(\mathbb{F}_2 \)-vector space generated by two generators \(\overline{1} \) and \(\overline{g_1} \) where \(i_1 \in (K_{U_1})^0 \cong \mathbb{Z}/2\mathbb{Z} \) is the unit and \(g_1 \in (K_{U_1})^{k_1} \), \(k_1 \geq 1 \).

Since \(\mathcal{K}_{U_1} \) is a sub-Gysin-functor of \(\mathcal{K}_{U_1 \oplus U_2} \) whose 0th-term \(K_0 \) is bi-connected, then by 2.4.2, the norm of \(K_{U_1} \) is bigger than the norm of the sub-\(H^*U_1 \)-module generated by \(i_1 \). We have:

\[
\| K_{U_1} \| = \| \langle g_1 \rangle_{U_1} \|
\]

\[
> \| \langle i_1 \rangle_{U_1} \|
\]

This shows, in particular, that we have an isomorphism of \(H^*U_1 \)-modules:

\[
K_{U_1} \cong \langle i_1 \rangle_{U_1} \oplus \langle g_1 \rangle_{U_1}
\]

The Gysin exact sequence \(\overline{G}(U_1, U_1 \oplus U_2) \) of \(H^*U_1 \)-modules

\[
0 \longrightarrow \overline{K_{U_1 \oplus U_2}} \xrightarrow{\mathcal{K}_{U_1 \oplus U_2}(j_1)} K_{U_1} \cong \langle i_1 \rangle_{U_1} \oplus \langle g_1 \rangle_{U_1} \xrightarrow{\psi} \tau_{U_2}(K_{U_1 \oplus U_2}) \longrightarrow 0
\]

\(j_1 : U_1 \hookrightarrow U_1 \oplus U_2 \) denotes the natural inclusion, shows that:

\[
\begin{align*}
(i) \quad \overline{K_{U_1 \oplus U_2}} & \cong \langle i_1 \rangle_{U_1}, \\
(ii) \quad \tau_{U_2}(K_{U_1 \oplus U_2}) & \cong \langle \psi(g_1) \rangle_{U_1}.
\end{align*}
\]

The point (i) implies that \(\overline{K_{U_1 \oplus U_2}} \cong \mathbb{Z}/2\mathbb{Z} \) and the proposition 2.4.1 shows the contradiction since the Gysin-\(V \)-functor \(\mathcal{K}_V \) extends \(\mathcal{K}_{U_1 \oplus U_2} \) (\(V \cong U_1 \oplus U_2 \oplus U_3 \)).
3.1.3.3 Suppose that $d(K_0) = 6$. To show a contradiction, in this case, we will analyse the graded, finite and unitary H^*W-\mathbb{F}_2-algebras K_W for $W = U_1$ and $W = U_1 \oplus U_2$.

I1. Informations on K_{U_1}.

By the same previous method, using the Gysin exact sequence
\[G(\{0\}, U_1) : \quad 0 \longrightarrow \overline{K_{U_1}} \overset{K_{\mathcal{V}(i_1)}}{\longrightarrow} K_0 \longrightarrow \psi \longrightarrow \tau^{U_1}(K_{U_1}) \longrightarrow 0, \]
we show that $d(\overline{K_{U_1}}) = 3$ that is: $\overline{K_{U_1}} \cong \langle \overline{t_1}, \overline{g_1}, \overline{g_2} \rangle$ is the \mathbb{F}_2-vector space generated by three generators $\overline{t_1}$, $\overline{g_1}$ and $\overline{g_2}$: $t_1 \in (K_{U_1})^0 \cong \mathbb{Z}/2\mathbb{Z}$ is the unit, $g_1 \in (K_{U_1})^{k_1}$, $k_1 \geq 1$ and $g_2 \in (K_{U_1})^{k_2}$, $k_2 \geq 1$.

Since the bi-connected U_1-Gysin functor K_{U_1} extends, then by proposition 2.4.2, the norm of the graded finite \mathbb{F}_2-vector space K_{U_1} is reached as the norm of a sub-\mathbb{F}_2-vector space generated by a generator different of t_1, for example g_1. We have: $\| \langle t_1 \rangle_{U_1} \| < \| K_{U_1} \| = \| \langle g_1 \rangle_{U_1} \|$. We verify then that we have a short exact sequence of H^*U_1-modules of the form:
\[(E(U_1)) : \quad 0 \longrightarrow \langle t_1 \rangle_{U_1} \oplus \langle g_1 \rangle_{U_1} \longrightarrow K_{U_1} \longrightarrow C_{U_1} \longrightarrow 0 \]
where C_{U_1} is a graded finite monogenic H^*U_1-module generated by the element g_2.

In refers to 2.1, let $H^*U_i \cong \mathbb{F}_2[t_i]$, $i = 1, 2$, the polynomial algebra over \mathbb{F}_2 on one generator t_i of degree one, $< t^s >$, $s \in \mathbb{N}$, be the ideal of $\mathbb{F}_2[t]$ of elements of degree $\geq s$ and $(t)^k = \mathbb{F}_2[t]/ < t^{k+1} >$.

With these notations we have:

I1.1 $\langle t_1 \rangle_{U_1} \cong \langle t_1 \rangle^0_{U_1} t_1$, $n_1 \geq 1$.

I1.2 $C_{U_1} \cong \langle t_1 \rangle_{U_1}^0 g_2$ with $l_1 \leq n_1$ because, in the graded finite unitary \mathbb{F}_2-algebra K_{U_1}, we have: $g_2 = t_1.g_2$. This implies that: $t_1^s g_2 = (t_1^s t_1).g_2$, $s \in \mathbb{N}$.

I1.3 Remark. In I1.1 the integer n_1 is ≥ 1 because if not $n_1 = 0$ which means that: $t_1.t_1 = 0$. This implies that $t_1 \in \tau^{U_1}(K_{U_1})^0$. Since $(K_0)^0 \cong (\overline{K_{U}})^0 \oplus \tau^{U_1}(K_{U_1})^0$, we get a contradiction with K_0 connected: $(K_0)^0 \cong \mathbb{Z}/2\mathbb{Z}$.

I2. Informations on $K_{U_1 \oplus U_2}$.

Let $t_{1,2}$ be the unit of the graded \mathbb{F}_2-algebra $K_{U_1 \oplus U_2}$ and consider the short exact sequence of $H^*(U_1 \oplus U_2)$-modules:
\[(E(U_1 \oplus U_2)) : \quad 0 \longrightarrow \langle t_{1,2} \rangle_{U_1 \oplus U_2} \longrightarrow K_{U_1 \oplus U_2} \longrightarrow C_{U_1 \oplus U_2} \longrightarrow 0 \]
We have the following commutative diagram, (D), of H^*U_1-modules:

\[
\begin{array}{ccccccc}
0 & \rightarrow & \text{Im}(j^{U_2}) & \rightarrow & \langle \iota_1 \rangle_{U_1} \oplus \langle g_1 \rangle_{U_1} & \rightarrow & \langle \psi(g_1) \rangle_{U_1} & \rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \rightarrow & K_{U_1 \oplus U_2} & \rightarrow & K_{U_1} & \rightarrow & \tau^{U_2}(K_{U_1 \oplus U_2}) & \rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \rightarrow & C_{U_1 \oplus U_2} & \rightarrow & C_{U_1} & \rightarrow & Q & \rightarrow & 0 \\
0 & & 0 & & 0 & & 0 & & 0
\end{array}
\]

where $i_1 : U_1 \hookrightarrow U_1 \oplus U_2$ is the natural inclusion.

Note that the morphism $\langle \psi(g_1) \rangle_{U_1} \rightarrow \tau^{U_2}(K_{U_1 \oplus U_2})$ is injective because

\[
\| \langle \psi(g_1) \rangle_{U_1} \| = \| K_{U_1} \|
\]

\[
= \| K_{U_1 \oplus U_2} \|, \text{ by lemma 2.3.2}
\]

\[
= \| \tau^{U_2}(K_{U_1 \oplus U_2}) \|, \text{ because the graded } H^*(U_2) \text{-module } K_{U_1 \oplus U_2} \text{ is finite.}
\]

This shows that the graded finite $H^*(U_1 \oplus U_2)$-module $C_{U_1 \oplus U_2}$ is monogenic generated by an element $\xi \in K_{U_1 \oplus U_2}$. Since the bi-connected Gysin-$(U_1 \oplus U_2)$-functor is the restriction of the Gysin-V-functor, $(V = U_1 \oplus U_2 \oplus U_3)$, then by proposition 2.4.2, we have:

\[
\| K_{U_1 \oplus U_2} \| = \| \langle \xi \rangle_{U_1 \oplus U_2} \| > \| (t_{1,2})_{U_1 \oplus U_2} \|.
\]

This implies an isomorphism of $H^*(U_1 \oplus U_2)$-modules: $K_{U_1 \oplus U_2} \cong (t_{1,2})_{U_1 \oplus U_2} \oplus \langle \xi \rangle_{U_1 \oplus U_2}$.

By analysing the previous diagram (D), we verify that:

I2.1 $\text{Im}(j^{U_2}) \cong (t_{1,2})_{U_1 \oplus U_2} \cong \langle t_1 \rangle_{U_1} \cong (t_1)_0 n_1$, $n_1 \geq 1$, (see I1.1).

I2.2 $\overline{\langle \xi \rangle_{U_1 \oplus U_2}}^{U_2} \cong \overline{\langle \xi \rangle_{U_1 \oplus U_2}}^{U_2}$ and $\langle \psi(g_1) \rangle_{U_1} \cong \tau^{U_2}(\langle \xi \rangle_{U_1 \oplus U_2})$

I2.3 $Q \cong \tau^{U_2}(\langle t_{1,2} \rangle_{U_1 \oplus U_2}) \cong (t_1)_{0}^{m_1} \psi(g_2)$, $m_1 \in \mathbb{N}$, as a graded finite monogenic H^*U_1-module (see notations 2.1).
I3. The contradiction.

The last line of the previous diagram (D), which is an exact sequence of graded finite monogenic H^*U_1-modules, can now be written, using I1.2, as follows:

\[
\begin{array}{ccccccccc}
0 & \rightarrow & C_{U_1 \oplus U_2}^{U_2} & \rightarrow & C_{U_1} & \rightarrow & \tau^{U_2}(\langle t_{1,2} \rangle_{U_1 \oplus U_2}) & \rightarrow & 0 \\
& & \downarrow \cong & & \downarrow \cong & & \downarrow \cong & & \\
& & (t_1)_0^l g_2 & & (t_1)_0^m \psi(g_2) & & & & \\
\end{array}
\]

So we get: \(\| C_{U_1 \oplus U_2}^{U_2} \| = \| C_{U_1} \| > \| \tau^{U_2}(\langle t_{1,2} \rangle_{U_1 \oplus U_2}) \| \).

This is equivalent to: \(\| (t_1)_0^l g_2 \| = l_1 + k_2 > \| (t_1)_0^m \psi(g_2) \| = m_1 + k_2 \), where \(k_2 \) is the degree of \(g_2 \).

We have then, \(l_1 > m_1 \).

In conclusion, we have:

\[
\begin{array}{l}
(\langle t_{1,2} \rangle_{U_1 \oplus U_2}) \cong (t_1)_0^m \, t_1, \text{ see I2.1,}
\\
\tau^{U_2}(\langle t_{1,2} \rangle_{U_1 \oplus U_2}) \cong (t_1)_0^m \psi(g_2),
\\
m_1 < n_1, \text{ because } m_1 < l_1 \leq n_1, \text{ see I1.2}
\end{array}
\]

The lemma 2.3.4 (see also the remark 2.3.5) shows the equality of dimensions:

\[
d(\langle t_{1,2} \rangle_{U_1 \oplus U_2}^{U_2}) = n_1 = d(\tau^{U_2}(\langle t_{1,2} \rangle_{U_1 \oplus U_2})) = m_1,
\]

so the contradiction.

REFERENCES

[AB] A. Adem and W. Browder; The free rank of symmetry of \((S^n)^k\); Inventiones Mathematicae 92, 1988, 431-440.

[BC] D. J. Benson and J. F. Carlson; Complexity and multiple complexes, Math. Zeit. 195 (1987), 221-238.

[C1] G. Carlsson; On the non-existence of free action of elementary abelian groups on products of spheres, American J. of Math. Vol. 102, No 6, 1147-1157 (1980).

[C2] G. Carlsson; On the rank of abelian groups acting freely on \((S^n)^k\), Invent. Math. 69 (1982), 393-400.

[C3] G. Carlsson; Free \((Z/2Z)^k\)-actions and problems in commutative algebra, Lecture Notes in Math., 1217, Springer, Berlin,(1986), 79-83.

[C4] G. Carlsson; Free \((Z/2Z)^3\)-actions on finite complexes, Algebraic topology and Algebraic K-Theory, W. Browder (Ed.), Ann. of Math. Studies n° 113, Princeton University Press, Princeton (1987), 332-344.

[Co] P.E. Conner; On the action of a finite group on \(S^n \times S^n\), Ann. of Math. 66 (1957) 586-588.
[DV] J.A. Daccach and J.P. Vieira; Finite group actions on products of spheres, manuscripta math. 91, 511-523, (1996).

[Hal] S. Halperin; Rational homotopy and torus actions. Aspects of topology, 293-306, London Math. Soc. Lecture Note Ser., 93 Cambridge Univ. Press, (1985).

[Han] B. Hanke; The stable free rank of symmetry of products of spheres. Invent. Math. 178 (2009), 265-298.

[He] A. Heller; A note on spaces with operators. Illinois J. Math. 3 (1959), 98-100.

[MTW] I. Madsen, C.Thomas and C.T.C. Wall; The topological space form problem II, Topology 15 (1976), 375-382.

[M] J. Milnor; Groups which act on S^n without fixed-points, Am. J. Math. 79 (1957), 623-630.

[MB] J.W. Morgan and H. Bass; The Smith conjecture, Pure and applied Mathematics, Academic Press, n° 112, 1984.

[OY] Osman Berat Okutan and Ergün Yalcin; Free actions on products of spheres at high dimensions, arXiv: 1207.2363v1, 2012.

[R] M. Refai; Group actions on finite CW-complexes, Indian J. Pure Appl. Math. 24, n° 4, (1993) 245-255.

[Sm] P.A. Smith; Transformations of finite period,
 I Ann. of Math. 39, (1938), 127-164.
 II Ann. of Math. 40, (1939), 690-711.
 III Ann. of Math. 42, (1941), 446-458.

[Sp] E.H. Spanier; Algebraic Topology, 1966.

[TD] T. tom Dieck, Transformation groups, De Gruyter Studies in Mathematics 8, 1987.

[Z] S. Zarati; Défaut de stabilité d’opérations cohomologiques, Thèse de 3-ème cycle, Publications d’Orsay n° 78-07.

Université Tunis-ElManar, Faculté des Sciences de Tunis, Département de Mathématiques.
TN-2092 Tunis, TUNISIE.

Email address: dorra.bourguiba@fst.rnu.tn
Email address: said.zarati@fst.rnu.tn