A DELAYED DYNAMICAL MODEL FOR COVID-19 THERAPY WITH DEFECTIVE INTERFERING PARTICLES AND ARTIFICIAL ANTIBODIES

YANFEI ZHAO AND YEPENG XING*

Department of Applied Mathematics
Shanghai Normal University
Road Guilin No.100, 200234, Shanghai, China

(Communicated by Hao Wang)

Abstract. In this paper, we use delay differential equations to propose a mathematical model for COVID-19 therapy with both defective interfering particles and artificial antibodies. For this model, the basic reproduction number R_0 is given and its threshold properties are discussed. When $R_0 < 1$, the disease-free equilibrium E_0 is globally asymptotically stable. When $R_0 > 1$, E_0 becomes unstable and the infectious equilibrium without defective interfering particles E_1 comes into existence. There exists a positive constant R_1 such that E_1 is globally asymptotically stable when $R_1 < 1 < R_0$. Further, when $R_1 > 1$, E_1 loses its stability and infectious equilibrium with defective interfering particles E_2 occurs. There exists a constant R_2 such that E_2 is asymptotically stable without time delay if $1 < R_1 < R_0 < R_2$ and it loses its stability via Hopf bifurcation as the time delay increases. Numerical simulation is also presented to demonstrate the applicability of the theoretical predictions.

1. Introduction. The global epidemic of coronavirus disease 2019 (COVID-19) is now a major global health threat [40]. COVID-19 is the result of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that is an enveloped positive-sense single-stranded RNA virus belongs to coronavirus (CoV) family. Typical symptoms of COVID-19 infection include dry cough, fever, fatigue, breathing difficulty, and bilateral lung infiltration in severe cases. Older people, and those with underlying medical problems like cardiovascular disease, diabetes, chronic respiratory disease, and cancer are more likely to develop serious illness [13] [38].

Respiratory droplet and contact transmission are the main transmission routes for person-to-person spread of SARS-CoV-2 [18]. The mainstay of clinical treatment consists of symptomatic management and oxygen therapy, with mechanical ventilation for patients with respiratory failure. Although several antiviral drugs, including the nucleotide analogue remdesivir, are being actively tested, none has been specifically approved for COVID-19. In addition to vaccine development and

2020 Mathematics Subject Classification. Primary: 92C60; Secondary: 34k20, 34k60.

Key words and phrases. Delay differential equations, COVID-19 dynamical model, basic reproductive number, Lyapunov function, Hopf bifurcation.

The authors were supported by National Natural Science Foundation of China (No.12071297, No.12171320).

* Corresponding author: Yepeng Xing.
approaches that directly target the virus or block viral entry, treatments that address the immunopathology of the infection have become a major focus [5]. Defective interfering particles and artificial antibodies are proposed as potential therapies for COVID-19.

The therapy for COVID-19 uses defective interfering particles to prevent the replication of virus was proposed by researchers recently [41]. Defective interfering particles arise spontaneously by deletion mutations. The shortened genomes of the defective interfering particles cannot replicate unless they coinfect a cell with a normal virus. Upon coinfection, the DI genome replicates more quickly and outcompetes the normal virus. The coinfecting cell produces mostly defective interfering particles (DIPs) [12]. Several studies have associated defective interfering particles (DIPs) turn on the expression of IFNs and proinflammatory cytokines such as IL-1, TNF, and IL-6 [22] [31]. The strong interfering and immunostimulatory activities of defective interfering particles (DIPs) make them attractive candidates for antivirals [7] [23] [37]. In [41], Yao et al. have established a proof of principle that a synthetic defective interfering SARS-CoV-2 can replicate in cells infected with the virus and interfere with its replication. Influenza A virus (IAV) defective interfering particles (DIPs) were previously proposed for antiviral treatment against Influenza A infections [33] [37] [44]. In a recent study [27], Rand et al. conducted in vitro coinfection experiments with cell culture-derived DIPs and the IFN-sensitive SARS-CoV-2 in human lung cells. It showed that treatment with IAV DIPs leads to complete abrogation of SARS-CoV-2 replication. They proposed IAV DIPs as an effective antiviral agent for treatment of COVID-19, and potentially also for suppressing the replication of new variants of SARS-CoV-2.

Preclinical studies of neutralizing-antibody treatments for SARS-CoV-2 infection in several animal models have shown promising results, with marked reductions in viral loads in the upper and lower respiratory tracts [3]. The coronavirus binds to angiotensin-converting enzyme 2 (ACE2) through its S protein on the virion, and then the viral membrane fuses with the cell membrane. Subsequently, the RNA virus will replicate its genome inside the cell, and ultimately make new virions that will be secreted to infect other cells [19] [35]. The therapy was proposed to treat COVID-19 is the use of monoclonal antibodies that target the receptor binding domain of the SARS-CoV-2 S protein, thereby inhibiting engagement with the host cell entry receptor angiotensin-converting enzyme 2 (ACE2) [16] (see Figure 1). In [25], Pan et al. have isolated ten artificial antibodies from COVID-19 convalescent patients and their in vivo experiment of artificial antibodies using mice showed encouraging therapeutic and prophylactic efficacy against SARS-CoV-2. LY-CoV555 (also known as LY3819253), a potent antispikr neutralizing monoclonal antibody that binds with high affinity to the receptor-binding domain of SARS-CoV-2, was derived from convalescent plasma obtained from a patient with COVID-19. The antibody was developed by Eli Lilly after its discovery by researchers at AbCellera and at the Vaccine Research Center of the National Institute of Allergy and Infectious Diseases. In [6], Chen et al. examined the efficacy of LY-CoV555 in the treatment of mild or moderate COVID-19. In their interim analysis, the patients who received LY-CoV555 had fewer hospitalizations and a lower symptom, they proposed LY-CoV555 could become a useful treatment for emergency use in patients with recently diagnosed COVID-19.

Mathematical models can provide insights into the dynamics of viral load in vivo. In this paper, we consider to combine the above two potential treatments and we
propose a mathematical model to understand this approach of fighting a virus with DIPs and artificial antibodies.

A standard and classic in-host model in [26] for HIV infection can be described by the following differential equations:

\[
\begin{align*}
 x'(t) &= \lambda - dx - \beta xv, \\
 y'(t) &= \beta xv - ay, \\
 v'(t) &= ky - pv,
\end{align*}
\]

where \(x(t), y(t)\) and \(v(t)\) are the densities of uninfected target cells, infected target cells and the free virus, respectively, at time \(t\). The infection rate is \(\beta\). The healthy cell is assumed to be produced at a constant rate \(\lambda\). It is also assumed that once cells are infected, they may die at rate \(a\) either due to the action of the virus or the immune system, and in the mean time, they each produces virus particles at a rate \(k\) during their life which on average has length \(1/a\). \(p\) is the death rate of virus.

Many researchers also consider system (1) as a basic virus infection model for various other viruses, such as HBV [10], HCV [39]. In real situation, time is needed for the virus to contact a target cell and then the contacted cells to become actively affected [30] [34] [43] [45]. In [46], Zhu and Zou studied a HIV infection model with intracellular delay as follows

\[
\begin{align*}
 x'(t) &= \lambda - dx(t) - \beta x(t)v(t), \\
 y'(t) &= \beta x(t-\tau)v(t-\tau) - ay(t), \\
 v'(t) &= ky(t) - pv(t),
\end{align*}
\]

Several models have analysed the population dynamics of defective interfering particles. Bangham & Kirkwood [2] [15] and SzathmaHry [32] showed that fluctuating abundances of defective interfering particles and wild-type viruses often arise as a result of the predator-prey feedback dynamics between wild-type and defective interfering particles. Nelson and Perelson [24] developed a numerically realistic model of DIPs dynamics based on known parameters of HIV infection, they concluded that defective interfering particles (DIPs) are unlikely to survive or to influence HIV dynamics in peripheral blood, but may survive within infected lymphoid organs such as the lymph nodes and spleen. Frank proposed a reaction-diffusion model for the population dynamics of wild-type and defective interfering particles (DIPs), this model can predicts that the rate of cellular replacement strongly influences the role of defective interfering particles [8]. In [9], Frensing et al. proposed a model based on their experimental data demonstrate that DIPs rapidly accumulate...
during continuous virus propagation and, thus, represent a severe challenge for the productivity of the system.

In this paper, we proposed a delayed dynamical model for COVID-19 therapy with defective interfering particles and artificial antibodies. Let $T(t)$, $I(t)$, $V(t)$, $W(t)$ and $F(t)$ be the densities of susceptible host cells, infected cells, free virus, defective interfering particles and artificial antibodies, respectively, at time t. Susceptible host cells are produced at a constant rate λ, and die at a rate d_1. We assume that host cells infected by virus with a rate α, and infected cells die at a rate d_2. The virus are removed from the plasma at a rate d_3 and the antibody as enhancement of viral clearance at a rate η_2. δ is the constant injection rate of artificial antibodies and d_5 is the death rate of antibody. For defective interfering particles, we have the following simple assumptions:

1. Defective interfering particles alone have no influence on healthy host cells (Defective interfering particles cant not replicate without normal virus).

2. When defective interfering particles attack infected cells I, defective interfering particles can replicate with the help of normal virus. Cells coinfected with normal virus and defective interfering particles produce only DIPs (this hypothesis is consistent with the previous results [2]). We assume defective interfering particle attacks infected cells at a rate η_1, and infected cells that attacked by defective interfering particles relasing defective interfering particles at a rate k.

3. Defective interfering particles (DIPs) turn on the expression proinflammatory cytokines to inhibit the replication of normal virus, we assume the inhibition function of the virus at a rate β. And so the virus production rate is given by $\gamma/(1 + \beta W)$. The death rate of defective interfering particle is d_4.

We assume that the probability density that a cell still remains infected for τ time units after being contacted by the virus obeys an exponentially decay function and we assume a constant death rate a for infected but not yet virus-producing cells, the probability of surviving from time $t - \tau$ to t is $e^{-a\tau}$, τ denotes the average time for a viral particle to go through the eclipse phase. The system describing these interactions is given by

$$
\begin{cases}
 T'(t) = \lambda - \alpha T(t)V(t) - d_1 T(t), \\
 I'(t) = \alpha e^{-\alpha \tau} T(t) V(t - \tau) - d_2 I(t) - \eta_1 W(t) I(t), \\
 V'(t) = \frac{\gamma I(t)}{1 + \beta W(t)} - d_3 V(t) - \eta_2 F(t) V(t), \\
 W'(t) = k\eta_1 W(t) I(t) - d_4 W(t), \\
 F'(t) = \delta - d_5 F(t).
\end{cases}
$$

The paper is structured as follows. In section 2, we will discuss the well-posedness of the solutions, equilibria and their stability. Also, in order to properly define biologically meaningful equilibria, the basic reproduction number R_0 will be defined. We analyze the stability of the three equilibria: disease-free equilibrium E_0, infectious equilibrium without defective interfering particles E_1, and infectious equilibrium with defective interfering particles E_2. It will be shown that E_0 is globally asymptotically stable for $0 < R_0 < 1$, E_1 is globally asymptotically stable for $R_1 < 1 < R_0$, where R_1 is a constant defined in terms of the system parameters. We also prove the existence of Hopf bifurcation at E_2 as time delay increases. A numerical example is present in Section 3 to demonstrate the theoretical predictions. Finally, conclusion and discussion are drawn in Section 4.
Figure 2. Pathogen viral particles V infect normal cells T producing infected cells I; W can produce in infected cells; artificial antibodies F bind to virus, infected cells are able to produce virus V and defective interfering particles W.

2. Analytical results.

2.1. Positivity and boundedness of solutions. First, we assume that the initial conditions for the system (3) have the form

$$
T(\theta) = \phi_1(\theta), \quad I(\theta) = \phi_2(\theta), \quad V(\theta) = \phi_3(\theta),
$$

$$
W(\theta) = \phi_4(\theta), \quad F(\theta) = \phi_5(\theta), \quad \theta \in [-\tau, 0],
$$

(4)

where $\phi_i(\theta)(i = 1, 2, 3, 4, 5)$ are non-negative continuous functions on $\theta \in [-\tau, 0]$. From biological meaning, all variables in model (3) must be positive. Therefore, it is necessary to show that all solutions of the system (3) will be positive and bounded for all $t \geq 0$. We have the following result.

Theorem 2.1. All solutions of system (3) that satisfy the initial conditions (1) are positive for all $t \geq 0$.

Proof. For convenience, Let $X = C([-\tau, 0]; R^5)$ be the Banach space of continuous mapping from $[-\tau, 0]$ to R^5 equipped with the sup-norm. Let $X(t) = (T(t), I(t), V(t), W(t), F(t))^T$ and $X_t(\theta) = X(t + \theta)$ for $\theta \in [-\tau, 0]$. By the fundamental theory of FDEs [11], we know that there is a unique solution with the initial conditions (1). System (3) can be written as $X'(t) = F(X_t)$, where

$$
F(X_t) = \begin{bmatrix}
\lambda - \alpha T_t(0)V_t(0) - d_1 T_t(0) \\
\alpha e^{-\alpha \tau} T_t(-\tau) V_t(-\tau) - d_2 I_t(0) - \eta_1 W_t(0) I_t(0) \\
\gamma I_t(0) \\
\frac{\gamma I_t(0)}{1 + \beta W_t(0)} - d_3 V_t(0) - \eta_2 F_t(0) V_t(0) \\
k \eta_1 W_t(0) I_t(0) - d_4 W_t(0) \\
\delta - d_5 F_t(0)
\end{bmatrix}.
$$

(5)

It is easy to see that if any $\phi \in X$ satisfies $\phi \geq 0, \phi_i(0) = 0$ for some i, then $F_i(\phi) \geq 0$. Therefore, according to Theorem 2.1 (on page 81) in [29], we know that $X(t, \phi) \geq 0$ for all $t \geq 0$ in its maximal interval of existence if $\phi \geq 0$. \square

Theorem 2.2. All solutions of system (3) subject to initial conditions (1) are bounded for all $t \geq 0$.

Proof. Let \(\Lambda(t) = e^{-\alpha\tau}T(t) + I(t + \tau) + \frac{d_2}{2\gamma}V(t + \tau) + \frac{1}{k}W(t + \tau) + F(t + \tau) \) and
\[\mu = \min \left\{ \frac{d_1}{2}, \frac{d_2}{2\gamma}, \frac{d_4}{k}, d_5 \right\}. \]
Therefore
\[\frac{d\Lambda(t)}{dt} \leq e^{-\alpha\tau} \lambda + \delta - \mu \Lambda(t), \]
which implies that
\[\Lambda(t) \leq \max \left\{ \Lambda(0), \frac{e^{-\alpha\tau} \lambda + \delta}{\mu} \right\}. \]
Since all solutions of system (3) subject to initial conditions are positive for all \(t \geq 0 \). This implies that \(\Lambda(t) \) is bounded, so are \(T(t), I(t), V(t), W(t), F(t) \).

2.2. Equilibria and basic reproduction number. It is clear that system (3) always has a unique disease-free equilibrium at \(E_0 = (\frac{\lambda}{\alpha\gamma}, 0, 0, 0, \frac{\delta}{d_5}) \). Following the next generation matrix method [36], the new infection and transition matrices are
\[F = \begin{pmatrix} 0 & \frac{\alpha e^{-\alpha\tau}}{d_1} \\ 0 & 0 \end{pmatrix}, \quad V = \begin{pmatrix} d_2 & 0 \\ -\gamma & d_3 \end{pmatrix}. \] (6)
The basic reproduction number of system (3) is
\[R_0 = \rho(FV^{-1}) = \frac{\lambda \alpha \gamma d_5 e^{-\alpha\tau}}{d_1 d_2 (d_3 d_5 + \delta)}. \] (7)
Solving the following equilibrium equations associated with (3)
\[\begin{cases} \lambda - \alpha TV - d_1 T = 0, \\
\alpha e^{-\alpha\tau} TV - d_2 I - \eta_1 WI = 0, \\
\gamma I \left(1 + \beta W \right) - d_3 V - \eta_2 FV = 0, \\
k_\eta WI - d_4 W = 0, \\
\delta - d_5 F = 0, \end{cases} \] (8)
we can get infectious equilibrium without defective interfering particles \(E_1 \) when
\(W = 0 \), given as follows:
\[E_1 = \left(\frac{d_2}{d_1 \alpha \gamma}, \frac{\lambda}{d_2} \left(1 - \frac{1}{R_0} \right), \frac{d_1}{\alpha} (R_0 - 1), 0, \frac{\delta}{d_5} \right). \] (9)
Obviously, the infectious equilibrium without defective interfering particles \(E_1 \) exists
if and only if \(R_0 > 1 \).
We denote infectious equilibrium with defective interfering particles \(E_2 \) as \((T_2, I_2, V_2, W_2, F_2) \) when \(W \neq 0 \). From (5), we obtain
\[\begin{cases} T_2 = \frac{\lambda}{d_2 (d_5 + \delta)}, \\
I_2 = \frac{d_1}{d_4}, \\
V_2 = \frac{\gamma d_3 d_5}{k_\eta (1 + \beta W_2) (d_3 d_5 + \delta)}, \\
F_2 = \frac{\delta}{d_5}, \end{cases} \] (10)
and W_2 satisfies the following equation:

$$W_2^2 + BW_2 + C = 0,$$

where

$$B = \frac{1}{\beta} + \frac{d_2}{\eta_1} + \frac{d_4d_5\alpha\gamma}{k\eta_1d_1d_3d_5 + \delta},$$

$$C = \frac{d_2}{\beta\eta_1}(1 + \frac{d_4d_5\alpha\gamma}{k\eta_1d_1d_3d_5 + \delta} - \frac{\lambda\alpha\gamma d_5e^{-\alpha\tau}}{d_1d_2(d_3d_5 + \delta)}).$$

Since $B > 0$, quadratic equation (8) has a unique positive root if and only if $C < 0$. We denote R_1 as

$$R_1 = \frac{\lambda\alpha\gamma d_5k\eta_1e^{-\alpha\tau}}{d_2d_4d_5\alpha\gamma + k\eta_1d_2(d_3d_5 + \delta)}. \quad (12)$$

Note that

$$\frac{1}{R_1} = \frac{1}{R_0} + \frac{d_2d_4}{\lambda k\eta_1e^{-\alpha\tau}}. \quad (13)$$

Obviously, $C = \frac{d_2}{\beta\eta_1}[\frac{d_1d_4d_5\alpha\gamma}{d_1d_2(d_3d_5 + \delta)} + \alpha\gamma d_5](1 - R_1)$. When $R_1 > 1$, there exists infectious equilibrium with defective interfering particles E_2 of system (3). R_1 describes the condition for invasion of the defective interfering particles. If $R_1 > 1$, indicates that defective interfering particles can exist in the body, if $R_1 < 1$, the defective interfering particles will disappear in the body.

In order to analyze local stability of system (3) at an equilibrium $E_i(i = 0, 1, 2)$, we assume $E^* = (T^*, I^*, V^*, W^*, F^*)$ is an arbitrary equilibrium of system (3), the Jacobian matrix evaluated at E^* leads us to the following characteristic equation

$$\begin{vmatrix} \xi + \alpha V^* + d_1 & 0 & \alpha T^* & 0 & 0 \\ -e^{-(a+\xi)}\alpha V^* & \xi + d_2 + \eta_1 W^* - e^{-(a+\xi)}\alpha T^* & -\eta_1 I^* & 0 & 0 \\ 0 & \frac{\gamma}{1 + \beta W^*} & \xi + d_3 + \eta_2 F^* & \beta\gamma I^* & \eta_2 V^* \\ 0 & 0 & -k\eta_1 W^* & \xi - k\eta_1 I^* + d_4 & 0 \\ 0 & 0 & 0 & \xi + d_5 & \xi + d_5 \end{vmatrix} = 0 \quad (14)$$

The roots of the characteristic equation determine the local stability of E^*.

2.3. Stability of the disease-free equilibrium E_0. First, for the local stability of E_0, we have the following theorem.

Theorem 2.3. When $R_0 < 1$, the disease-free equilibrium E_0 is locally asymptotically stable; when $R_0 > 1$, E_0 becomes unstable.

Proof. For the disease-free equilibrium E_0, some fundamental calculations give the corresponding characteristic equation

$$(\xi + d_1)(\xi + d_4)(\xi + d_5)[\xi^2 + b_1\xi + b_0(\tau)] = 0, \quad (15)$$

where

$$b_1 = d_2 + d_3 + \frac{\eta_2\delta}{d_5},$$

$$b_0(\tau) = d_2(d_3 + \frac{\eta_2\delta}{d_5}) - \frac{\lambda\alpha\gamma}{d_1}e^{-(a+\xi)\tau}.$$
The stability of E_0 by the sign of real part of roots of the Equation (12). Obviously, it suffices to only consider the following equation

$$D_0(\xi) = \xi^2 + (d_2 + d_3 + \frac{\eta_2 \delta}{d_5}) \xi + d_2(d_3 + \frac{\eta_2 \delta}{d_5}) - \frac{\lambda \alpha \gamma}{d_1} e^{-(\alpha + \xi)\tau}. \quad (16)$$

If $R_0 > 1$, it is easy to show for real ξ that

$$D_0(0) = d_2(d_3 + \frac{\eta_2 \delta}{d_5})(1 - R_0) < 0, \quad \lim_{\xi \to +\infty} D_0(\xi) = +\infty.$$

Hence, $D_0(\xi) = 0$ has at least one positive real root. Therefore, if $R_0 > 1$, the disease-free equilibrium E_0 is unstable.

Now, consider $R_0 < 1$. When $\tau = 0$, equation (13) has the following form

$$D_0(\xi) = \xi^2 + (d_2 + d_3 + \frac{\eta_2 \delta}{d_5}) \xi + d_2(d_3 + \frac{\eta_2 \delta}{d_5}) - \frac{\lambda \alpha \gamma}{d_1}, \quad (17)$$

we know that the two roots of Equation (14) to have negative real part is equivalent to $d_2(d_3 + \frac{\eta_2 \delta}{d_5}) - \frac{\lambda \alpha \gamma}{d_1} > 0$, that is $R_0|_{\tau=0} < 1$. Therefore, all roots of (14) have negative real part when $R_0 < 1$.

When $\tau > 0$, Notice 0 is not a root of (13) because of $R_0 < 1$. Following the method in [28], we define $\xi = iw(w > 0)$ is a purely imaginary root of (13). Then we get

$$-w^2 + d_2(d_3 + \frac{\eta_2 \delta}{d_5}) = \frac{\lambda \alpha \gamma e^{-\sigma \tau}}{d_1} \cos(w \tau),$$

$$(d_2 + d_3 + \frac{\eta_2 \delta}{d_5})w = -\frac{\lambda \alpha \gamma e^{-\sigma \tau}}{d_1} \sin(w \tau). \quad (18)$$

Squaring and adding both equations of (15), it follows that

$$H_0(w^2) = w^4 + [(d_3 + \frac{\eta_2 \delta}{d_5})^2 + d_2^2]w^2 + 1 - R_0^2. \quad (19)$$

From $R_0 < 1$, we easily see that (16) has no positive roots. Therefore, all roots of (13) have negative real parts.

Further, for the global stability of disease-free equilibrium E_0. We have the following result.

Theorem 2.4. When $R_0 < 1$, the disease-free equilibrium E_0 is globally asymptotically stable.

Proof. We consturct the following Lyapunov function

$$L_0(t) = \frac{e^{-\sigma \tau}}{2} [T(t) - \frac{\lambda}{d_1}]^2 + \frac{\lambda}{d_1} I(t) + \frac{\lambda d_2}{d_1 \gamma} V(t) + \frac{\lambda}{kd_1} W(t) + \frac{1}{2} [F(t) - \frac{\delta}{d_5}]^2$$

$$+ \frac{\lambda \alpha e^{-\sigma \tau}}{d_1} \int_{t-\tau}^{t} T(s)V(s)ds. \quad (20)$$

Thus, we have
\[L'_0(t) = e^{-\alpha t}[T(t) - \frac{\lambda}{d_1}[\lambda - \alpha T(t)V(t) - d_1 T(t)]
+ \frac{\lambda}{d_1}[\alpha e^{-\alpha t}T(t-\tau)V(t-\tau) - d_2 I(t) - \eta_1 W(t)I(t)]
+ \frac{\lambda d_2}{d_1}\gamma I(t) 1 + \beta W(t) - d_3 V(t) - \eta_2 F(t)V(t)]
+ \frac{\lambda}{k d_1}[k \eta_1 W(t)I(t) - d_4 W(t)]
+ (F(t) - \delta d_5)(\delta - d_5 F(t)) + \frac{\lambda e^{-\alpha t}}{d_1}[T(t)V(t) - T(t-\tau)V(t-\tau)]
= -e^{-\alpha t}[T(t) - \frac{\lambda}{d_1}2[\alpha V(t) + d_1] + \frac{\lambda d_2}{d_1}(\frac{1}{1 + \beta W(t)} - 1)I(t) - \frac{\lambda d_4}{k d_1}W(t)
- d_5[F(t) - \frac{\delta}{d_5}d_5 + \frac{\lambda d_2(d_3d_5)}{\gamma d_1 d_5}(R_0 - 1)V(t)]. \]

Note that \(T, I, V, W, F \) are positive. All terms of the right in (18) are nonpositive when \(R_0 < 1 \). \(L'_0 = 0 \) if and only if \(T = \lambda/d_1, F = \delta/d_5 \) and other variables are zero. By LaSalle’s invariance principle \[17\], we conclude that \(E_0 \) is indeed globally asymptotically stable.

2.4. Stability of the infectious equilibrium \(E_1 \)

When \(R_0 > 1 \), the disease-free equilibrium \(E_0 \) becomes unstable and bifurcates into the infectious equilibrium without defective interfering particles \(E_1 \). Thus, in order to study the stability of \(E_1 \), we assume \(R_0 > 1 \) in this section. We have the following result.

Theorem 2.5. When \(R_1 < 1 < R_0 \), the infectious equilibrium without defective interfering particles \(E_1 \) is locally asymptotically stable; when \(R_1 > 1 \), \(E_1 \) becomes unstable.

Proof. For convenience, we denote \(E_1 \) as \((T_1, I_1, V_1, W_1, F_1)\). From (11), the corresponding characteristic equation as follows
\[\xi + d_5(\xi - k \eta_1 I_1 + d_4)[\xi^3 + b_{12}(\tau)\xi^2 + b_{11}(\tau)\xi + b_{10}(\tau) - (b_{21}(\tau)\xi + b_{20}(\tau))e^{-\xi \tau}] = 0, \]

where
\[b_{12}(\tau) = d_1 R_0 + d_2 + d_3 + \frac{\eta_2 \delta}{d_5}, \]
\[b_{11}(\tau) = d_1 d_2 R_0 + d_1(d_3 + \frac{\eta_2 \delta}{d_5})R_0 + d_2(d_3 + \frac{\eta_2 \delta}{d_5}), \]
\[b_{10}(\tau) = d_1 d_2(d_3 + \frac{\eta_2 \delta}{d_5})R_0, \]
\[b_{21}(\tau) = d_2(d_3 + \frac{\eta_2 \delta}{d_5})e^{-\alpha \tau}, \]
\[b_{20}(\tau) = d_1 d_2(d_3 + \frac{\eta_2 \delta}{d_5})e^{-\alpha \tau}. \]

From (19),
\[\xi_1 = -d_5 < 0, \]
\[\xi_2 = \frac{k \eta_1 \lambda}{d_1}(1 - \frac{1}{R_1}). \]
It is obvious that $\xi_2 > 0$ and equation (19) has at least one positive real root if $R_1 > 1$. Therefore, E_1 becomes unstable when $R_1 > 1$.

Next, we consider $R_1 < 1 < R_0$. Note that $\xi_2 < 0$ when $R_1 < 1$. We consider the following equation
$$D_1(\xi) = \xi^3 + b_{12}(\tau)\xi^2 + b_{11}(\tau)\xi + b_{10}(\tau) - (b_{21}(\tau)\xi + b_{20}(\tau))e^{-\xi\tau} = 0, \quad (24)$$

It is easy to see that $\xi = 0$ is not a root of (21) if $R_0 > 1$. When $\tau = 0$, (21) has the following form
$$D_1(\xi) = \xi^3 + b_{12}(0)\xi^2 + (b_{11}(0) - b_{21}(0))\xi + b_{10}(0) - b_{20}(0). \quad (25)$$

Applying the Routh-Hurwitz criterion,
$$b_{12}(0) = d_1R_0 + d_2 + d_3 + \frac{\eta_2\delta}{d_5} > 0,$$
$$b_{11}(0) - b_{21}(0) = d_1d_2R_0 + d_1(d_3 + \frac{\eta_2\delta}{d_5})R_0 > 0,$$
$$b_{10}(0) - b_{20}(0) = d_1d_2(d_3 + \frac{\eta_2\delta}{d_5})(R_0 - 1) > 0,$$
$$b_{12}(0)(b_{11}(0) - b_{21}(0)) - b_{10}(0) + b_{20}(0) = (d_1R_0 + d_2 + d_3 + \frac{\eta_2\delta}{d_5})$$
$$\quad - d_1d_2(d_3 + \frac{\eta_2\delta}{d_5})(R_0 - 1) > 0.$$

Therefore, any roots of (21) have negative real part when $\tau = 0$. Notice that $\xi = 0$ is not a root of (21). Next, we consider $\tau > 0$, $\xi = iw(w > 0)$ is the purely imaginary root of (21), and then obtain
$$-w^3 + b_{11}(\tau)w = b_{21}(\tau)w\cos(w\tau) - b_{20}(\tau)\sin(w\tau),$$
$$-b_{12}(\tau)w^2 + b_{10}(\tau) = b_{21}(\tau)w\sin(w\tau) + b_{20}(\tau)\cos(w\tau). \quad (27)$$

Squaring and adding both equations lead to
$$H_1(w^2) = w^6 + (b_{12}^2(\tau) - 2b_{11}(\tau))w^4 + (b_{11}^2(\tau) - 2b_{10}(\tau)b_{12}(\tau) - b_{21}(\tau)^2)w^2 + b_{10}(\tau)^2(\tau) - b_{20}(\tau)^2(\tau) = 0. \quad (28)$$

Note that
$$b_{12}^2(\tau) - 2b_{11}(\tau) = d_1^2R_0^2 + d_2^2 + (d_3 + \frac{\eta_2\delta}{d_5})^2 > 0,$$
$$b_{11}^2(\tau) - 2b_{10}(\tau)b_{12}(\tau) - b_{21}^2(\tau)$$
$$= (d_1d_2R_0)^2 + d_2^2(d_3 + \frac{\eta_2\delta}{d_5})^2R_0^2 + d_3^2(d_3 + \frac{\eta_2\delta}{d_5})^2(1 - e^{-\alpha\tau}) > 0,$$
$$b_{10}^2(\tau) - b_{20}^2(\tau) = (d_1d_2(d_3 + \frac{\eta_2\delta}{d_5}))^2(R_0^2 - e^{-\alpha\tau}) > 0,$$

note that all the coefficients of $H_1(w^2)$ is monotonically increasing for $0 < w^2 < \infty$ with $H_1(0) > 0$. Hence E_1 is locally asymptotically stable when $R_1 < 1 < R_0$. □

Also, E_1 is globally asymptotically stable.

Theorem 2.6. When $R_1 < 1 < R_0$, the infectious equilibrium without defective interfering particles E_1 is globally asymptotically stable.
Proof. We construct the following Lyapunov function
\[
L_1 = e^{-\sigma(T - T_1 \ln T)} + I - I_1 \ln I + \frac{d_2}{\gamma}(V - V_1 \ln V) + \frac{1}{k}W + \frac{d_2 \eta_2 V_1}{\delta \gamma}F \\
+ \int_{t-\tau}^{t} \left(\frac{T(s)V(s)}{T_1 V_1} - \ln \frac{T(s)V(s)}{T_1 V_1} \right) ds.
\]
(29)

Then
\[
L_1 = e^{-\sigma(1 - \frac{T_1}{T})T'} + (1 - \frac{I_1}{T})I' + \frac{d_2}{\gamma}(1 - \frac{V_1}{V})V' + \frac{1}{k}W' + \frac{d_2 \eta_2 V_1}{\delta \gamma}F'
\]
\[
+ \frac{T(t)V(t)}{T_1 V_1} - \frac{T(t - \tau)V(t - \tau)}{T_1 V_1} + \ln \frac{T(t - \tau)V(t - \tau)}{T_1 V_1}
\]
\[
\leq e^{-\sigma T_1} T_1 (2 - \frac{T_1}{T} - \frac{T_1}{T}) + e^{-\sigma \alpha T_1} V_1 [3 - \frac{T_1}{T} - \frac{IV_1}{IT_1 V_1} - \frac{I(T(t - \tau)V(t - \tau)}{IT_1 V_1}]
\]
\[
+ \ln \frac{T(t - \tau)V(t - \tau)}{T_1 V_1} + \frac{\lambda \eta_1 k_1}{d_1} (1 - \frac{1}{\lambda R_1}) W(t) - \frac{d_2 \eta_2}{\gamma} F(t) V(t) - \frac{d_3}{\gamma} V_1,
\]
(30)

according the following inequality ([14])
\[
n - \sum_{i=1}^{n} \frac{b_i}{a_i} + \ln \prod_{i=1}^{n} \frac{b_i}{a_i} \leq 0,
\]
(31)

we conclude that
\[
3 - \frac{T_1}{T} - \frac{IV_1}{IT_1 V_1} - \frac{I(T(t - \tau)V(t - \tau)}{IT_1 V_1} + \ln \frac{T(t - \tau)V(t - \tau)}{T_1 V_1} \leq 0.
\]
(32)

Thus, \(L_1' \leq 0 \) when \(R_1 < 1 \) and the equality holds if and only if \((T, I, V, W, F) = E_1 \). By LaSalle’s invariance principle [17], we conclude that \(E_1 \) is globally asymptotically stable.

2.5. Stability of the infectious equilibrium \(E_2 \). From (5), we obtain the solution of defective interfering particles \(W \) satisfies the following equation
\[
W = \frac{d_2}{\eta_1} \frac{\lambda \alpha \gamma d_5 k_1 \eta_1 e^{-\sigma}}{d_2 d_4 d_5 \alpha \gamma + k_1 d_1 d_2 (d_3 d_5 + \delta)(1 + \beta w_0)} - 1.
\]
(33)

In this section, we denote \(R_1 \) and \(R_0 \) as
\[
R_1 = \frac{\lambda \alpha \gamma d_5 k_1 \eta_1 e^{-\sigma}}{d_2 d_4 d_5 \alpha \gamma + k_1 d_1 d_2 (d_3 d_5 + \delta)(1 + \beta w_0)},
\]
\[
R_0 = \frac{\lambda \alpha \gamma d_5 e^{-\sigma}}{d_1 d_2 (d_3 d_5 + \delta)(1 + \beta w_0)},
\]
where \(w_0 \) is the positive root of equation (8). \(E_2 \) has the following form
\[
E_2 = \frac{\lambda R_1}{d_1 R_0 \alpha} \frac{d_4}{k_1 \eta_1} \left(\frac{d_1}{R_1 - 1} \right), \frac{d_2}{\eta_1} \left(\frac{R_1}{R_1 - 1} \right), \frac{d_2}{d_5}.
\]

When \(R_1 > 1 \), the infectious equilibrium without defective interfering particles \(E_1 \) becomes unstable and there appears another infectious equilibrium with defective interfering particles \(E_2 \). We have the following result.

Theorem 2.7. There exists an \(R_2 \) such that when \(1 < R_1 < R_0 < R_2, E_2 \) is asymptotically stable without delay.
Proof. For the infectious equilibrium with defective interfering particles E_2, the corresponding characteristic equation as follows

$$(\xi + d_5)[\xi^4 + m_3(\tau)\xi^3 + m_2(\tau)\xi^2 + m_1(\tau)\xi + m_0(\tau) - (n_2(\tau)\xi^2 + n_1(\tau)\xi + n_0(\tau))e^{-\xi\tau}] = 0,$$

where

\begin{align*}
m_3(\tau) &= d_1 \frac{R_0}{R_1} + d_2 R_1 + d_3 + \frac{\eta_2 \delta}{d_5}, \\
m_2(\tau) &= d_1 d_2 R_0 + (d_1 \frac{R_0}{R_1} + d_2 R_1)(d_3 + \frac{\eta_2 \delta}{d_5}) + d_2 d_4 (R_1 - 1), \\
m_1(\tau) &= d_1 d_2 R_0 (d_3 + \frac{\eta_2 \delta}{d_5}) + d_2 d_4 (R_1 - 1)(d_1 \frac{R_0}{R_1} + d_3 + \frac{\eta_2 \delta}{d_5}), \\
m_0(\tau) &= d_2 d_4 (R_1 - 1) d_1 \frac{R_0}{R_1} (d_3 + \frac{\eta_2 \delta}{d_5}), \\
n_2(\tau) &= d_2 R_1 (d_3 + \frac{\eta_2 \delta}{d_5}) e^{-a\tau},
\end{align*}

\begin{align*}
n_1(\tau) &= d_1 d_2 R_1 (d_3 + \frac{\eta_2 \delta}{d_5}) e^{-a\tau} - \frac{k\beta d_1 d_2^2 (d_3 + \frac{\eta_2 \delta}{d_5})^2 (R_0 - R_1)(R_1 - 1)}{\alpha\gamma} e^{-a\tau}, \\
n_0(\tau) &= \frac{k\beta d_1 d_2^2 (d_3 + \frac{\eta_2 \delta}{d_5})^2 (R_0 - R_1)(R_1 - 1)}{\alpha\gamma} e^{-a\tau}.
\end{align*}

Note that $\xi_1 = -d_5 < 0$, we consider following equation

$$D_2(\xi) = \xi^4 + m_3(\tau)\xi^3 + m_2(\tau)\xi^2 + m_1(\tau)\xi + m_0(\tau) - (n_2(\tau)\xi^2 + n_1(\tau)\xi + n_0(\tau))e^{-\xi\tau}.$$

When $\tau = 0$, (32) has the following form

$$D_2(\xi) = \xi^4 + m_3(0)\xi^3 + (m_2(0) - n_2(0))\xi^2 + (m_1(0) - n_1(0))\xi + m_0(0) - n_0(0).$$

We consider $0 < R_0 - R_1 < \epsilon$, using Routh-Hurwitz criterion [21], we obtain

\begin{align*}
\Delta_1 &= m_3(0) = d_1 \frac{R_0}{R_1} + d_2 R_1 + d_3 + \frac{\eta_2 \delta}{d_5} > 0, \\
\Delta_2 &= m_3(0)(m_2(0) - n_2(0)) - (m_1(0) - n_1(0)), \\
&= d_1 d_2 R_0 (d_1 \frac{R_0}{R_1} + d_2 R_1) + d_1 R_0 (d_3 + \frac{\eta_2 \delta}{d_5})(d_1 \frac{R_0}{R_1} + d_2 R_1 + d_3 + \frac{\eta_2 \delta}{d_5}) \\
&+ d_2^2 d_4 R_1 (R_1 - 1) + d_1 d_2 R_1 (d_3 + \frac{\eta_2 \delta}{d_5}) - \frac{k\beta d_1 d_2^2 (d_3 + \frac{\eta_2 \delta}{d_5})^2 (R_0 - R_1)(R_1 - 1)}{\alpha\gamma}, \\
\Delta_3 &= (m_1(0) - n_1(0))\Delta_2 - (m_0(0) - n_0(0))m_3(0)^2 \\
&= [d_1 d_2 (R_0 - R_1)(d_3 + \frac{\eta_2 \delta}{d_5}) + d_2 d_4 (R_1 - 1)(d_1 \frac{R_0}{R_1} + d_3 + \frac{\eta_2 \delta}{d_5})]$$
\end{align*}
We assert \(\Delta \) purely imaginary root of (32). We obtain that

\[
R^Ew\text{ without delay is asymptotically stable.}
\]

\[
2 - \tau - \Delta m^4 = (3\left(m + d - d^2 + d\tau\right)^2) > R_0(R_0 - R_1) - \frac{k\beta d_1 d_2(d + \frac{\eta \delta}{d_5})^2(R_1 - 1)(R_0 - R_1)}{\alpha \gamma}.
\]

\[
\Delta_4 = (m_0(0) - n_0(0))\Delta_3 = [d_2 d_4(R_1 - 1)d_1 R_0 R_1(d_3 + \frac{\eta \delta}{d_5}) - d_3 + \frac{\eta \delta}{d_5} - d_1 d_2 d_4(R_1 - 1) - \frac{k\beta d_1 d_2(d + \frac{\eta \delta}{d_5})^2(R_1 - 1)}{\alpha \gamma}.
\]

\[
\Delta_4 = (m_0(0) - n_0(0))\Delta_3 = [d_2 d_4(R_1 - 1)d_1 R_0 R_1(d_3 + \frac{\eta \delta}{d_5}) - d_3 + \frac{\eta \delta}{d_5} - d_1 d_2 d_4(R_1 - 1) - \frac{k\beta d_1 d_2(d + \frac{\eta \delta}{d_5})^2(R_1 - 1)}{\alpha \gamma}.
\]

\[
\Delta_4 = (m_0(0) - n_0(0))\Delta_3 = [d_2 d_4(R_1 - 1)d_1 R_0 R_1(d_3 + \frac{\eta \delta}{d_5}) - d_3 + \frac{\eta \delta}{d_5} - d_1 d_2 d_4(R_1 - 1) - \frac{k\beta d_1 d_2(d + \frac{\eta \delta}{d_5})^2(R_1 - 1)}{\alpha \gamma}.
\]

We assert \(\Delta_i > 0 \) for \(i = 1, 2, 3, 4 \) due to the arbitrary of \(\epsilon \). From above analysis, we conclude that there exists an \(R_2 \), when \(R_1 < R_0 < R_2 \), the infectious equilibrium \(E_2 \) without delay is asymptotically stable. \(\square \)

When \(\tau \neq 0 \), clearly, 0 is not the root of (32). Assuming \(\xi = iw(w > 0) \) is a purely imaginary root of (32). We obtain that

\[
w^4 - m_2(\tau)w^2 + m_0(\tau) = -n_2(\tau)w^2\cos(\omega \tau) + n_1(\tau)w\sin(\omega \tau) + n_0(\tau)\cos(\omega \tau),
\]

\[
- m_3(\tau)w^3 + m_1(\tau)w = n_2(\tau)w^2\sin(\omega \tau) + n_1(\tau)\cos(\omega \tau) - n_0(\tau)\sin(\omega \tau).
\]

(37)

Squaring and adding both equations of (34) lead to

\[
H_2(w^2) = w^8 + pw^6 + qw^4 + uw^2 + v,
\]

(38)

where

\[
p = m_3^2 - 2m_2,
\]

\[
q = m_2^2 + 2m_0 - 2m_1 m_3 - n_2^2,
\]

\[
u = m_1^2 - m_0 m_2 - n_1^2 - 2n_2 m_0,
\]

\[
v = m_0^2 - n_0^2.
\]
Let \(w^2 = s \), we have
\[
H_2(s) = s^4 + ps^3 + qs^2 + us + v. \tag{39}
\]
Thus,
\[
H'_2(s) = 4s^3 + 3ps^2 + 2qs + u. \tag{40}
\]
Set
\[
4s^3 + 3ps^2 + 2qs + u = 0. \tag{41}
\]
Let \(r = s + \frac{p}{4} \), we have
\[
r^3 + p_1 r + q_1 = 0, \tag{42}
\]
where \(p_1 = \frac{q}{2} - \frac{3}{16}p^2, q_1 = \frac{p^3}{32} - \frac{pq}{8} + \frac{u}{4} \). Define
\[
\Delta = \frac{q_1^2}{2} + \frac{p_1^3}{3}, \quad \zeta = \frac{-1 + i\sqrt{3}}{2},
\]
\[
r_1 = 3\sqrt{-\frac{q_1}{2} + \sqrt{\Delta}} + 3\sqrt{-\frac{q_1}{2} - \sqrt{\Delta}},
\]
\[
r_2 = 3\sqrt{-\frac{q_1}{2} + \sqrt{\Delta} \zeta} + 3\sqrt{-\frac{q_1}{2} - \sqrt{\Delta} \zeta^2},
\]
\[
r_3 = 3\sqrt{-\frac{q_1}{2} + \sqrt{\Delta} \zeta^2} + 3\sqrt{-\frac{q_1}{2} - \sqrt{\Delta} \zeta},
\]
\[
s_i = r_i - \frac{p}{4}, \quad i = 1, 2, 3.
\]
We cite the results in [20] about the existence of positive roots of the fourth-degree polynomial equation, namely, we have the following lemma.

Lemma 2.8 ([20]).

1. If \(v < 0 \), then (35) has at least one positive root.
2. If \(v \geq 0 \) and \(\Delta \geq 0 \), then (35) has positive roots if and only if \(s_1 > 0 \) and \(H_2(s_1) < 0 \).
3. If \(v \geq 0 \) and \(\Delta < 0 \), then (35) has positive roots if and only if there exists at least one \(s^* \in \{s_1, s_2, s_3\} \) such that \(s^* > 0 \) and \(H_2(s^*) < 0 \).

Supposing one of the above three cases in Lemma 2.8 is satisfied, (36) has finite positive roots \(s_1, s_2, \ldots, s_k (k \leq 4) \). Therefore (35) has finite positive roots
\[
\tau_1 = \sqrt{s_1}, \quad \tau_2 = \sqrt{s_2}, \quad \ldots, \quad \tau_k = \sqrt{s_k}, \quad k \leq 4. \tag{43}
\]
For every fixed \(\tau_i \) (\(i \leq 4 \)), there has
\[
\tau_i^j = \frac{1}{\tau_i} (\arccos U_i + 2j\pi), \quad i = 1, 2, 3, \ldots, 4, \quad j = 0, 1, 2, \ldots, \tag{44}
\]
and
\[
U_i = \frac{(-m_3w_i^3 + m_1w_i)w_1^3 - (w_i^3 - m_2w_i^2 + m_0)(n_2w_i^2 - n_0)}{n_1^2w_i^4 + (n_2w_i^2 - n_0)^2}. \tag{45}
\]
Let
\[
\tau^* = \min \{\tau_i^0 | i = 1, 2, \ldots, k, k \leq 4\} = \frac{1}{w^*} \arccos U^*,
\]
\(w^* = \tau_i \) for some \(1 \leq i \leq 4 \). Then (31) has a pair of purely imaginary roots \(\pm w_i \) when \(\tau = \tau^* \).

Differentiating both sides of Eq. (31) with respect to \(\tau \), we have
Lemma 2.9 ([20]).

\[
\frac{d}{d\tau}(Re\xi)^{-1}_{\tau=\tau'} = \frac{H'_2(w^2)}{n_1^2 w^2 + (n_2 w^2 - n_0)^2},
\]

(46)

Especially, supposing \(H'_2((w^*)^2) \neq 0 \), then

\[
\frac{d}{d\tau}(Re\xi)^{-1}_{\tau=\tau'} = \frac{H'_2((w^*)^2)}{n_1^2 (w^*)^2 + (n_2 (w^*)^2 - n_0)^2} > 0.
\]

(47)

Proof. From Eq.(32), we have

\[
e^{-\xi \tau} = \frac{\xi^4 + m_3(\tau)\xi^3 + m_2(\tau)\xi^2 + m_1(\tau)\xi + m_0(\tau)}{n_2(\tau)\xi^2 + n_1(\tau)\xi + n_0(\tau)}.
\]

(48)

Differentiating both sides of Eq.(32) with respect to \(\tau \) gives

\[
\left[\frac{d\xi(\tau)}{d\tau} \right]^{-1} = 4\xi^3 + 3m_3(\tau)\xi^2 + 2m_2(\tau)\xi + m_1(\tau) - (2m_2(\tau)\xi + n_1)e^{-\xi \tau} + \tau e^{-\xi \tau} \frac{\Delta}{\xi} \Delta e^{-\xi \tau},
\]

where

\[
\Delta = n_2(\tau)\xi^2 + n_1(\tau)\xi + n_0(\tau).
\]

(49)

From Eq.(45) and Eq.(46), We have

\[
\frac{d}{d\tau}(Re\xi)^{-1}_{\tau=\tau'} = Re\left[\frac{4\xi^3 + 3m_3(\tau)\xi^2 + 2m_2(\tau)\xi + m_1(\tau)}{\xi(\xi^4 + m_3(\tau)\xi^3 + m_2(\tau)\xi^2 + m_1(\tau)\xi + m_0(\tau))} \right]_{\xi=\text{Re}w_i}
\]

\[
- Re\left[\frac{2n_2(\tau)\xi + n_1(\tau)}{n_2(\tau)\xi^2 + n_1(\tau)\xi + n_0(\tau)} \right]_{\xi=\text{Re}w_i}
\]

\[
= \frac{(w_i^4 - m_2(\tau)w_i^2 + m_0(\tau))(4w_i^4 + 2m_2(\tau)w_i)}{w_i(m_3(\tau)w_i^3 - m_1(\tau)w_i^2 + w_i^4 - m_2(\tau)w_i^2 + m_0(\tau))^2} + \frac{m_3(\tau)w_i^3 - m_1(\tau)w_i(m_1(\tau) - 3m_3(\tau)w_i)}{w_i(m_3(\tau)w_i^3 - m_1(\tau)w_i^2 + w_i^4 - m_2(\tau)w_i^2 + m_0(\tau))^2} - \frac{n_1(\tau)(m_2(\tau) - n_2(\tau)w_i^2)}{(n_0(\tau) - n_2(\tau)w_i^2)^2 + n_1^2w_i^2}.
\]

Simplify the above formula to get

\[
\frac{d}{d\tau}(Re\xi)^{-1}_{\tau=\tau'} = \frac{4w_i^6 + 3pw_i^4 + 2qw_i + u}{n_1^2 w_i^2 + (n_2 w_i^2 - n_0)^2} = \frac{H'_2(w^2)}{n_1^2 w_i^2 + (n_2 w_i^2 - n_0)^2},
\]

(50)

If \(\frac{d}{d\tau}(Re\xi)^{-1}_{\tau=\tau'} < 0 \), then (32) has a root with positive real part for \(\tau < \tau^* \) and close to \(\tau^* \), which contradicts Lemma 2.8. This completes the proof. \(\square \)

From lemma 2.9, we have the following result.

Theorem 2.10. When \(1 < R_1 < \mathcal{R}_0 < R_2 \), there exists

\[
\tau^* = \min \{ \tau_i^0 | i = 1, 2, \ldots, k, k \leq 4 \}
\]

such that \(E_2 \) is asymptotically stable when \(\tau \in [0, \tau^*) \). Furthermore, if \(H'_2((w^*)^2) \neq 0 \) holds, and system (3) undergoes a Hopf bifurcation at \(E_2 \) when \(\tau = \tau^* \).
3. **Numerical results.** In this section, we use numerical examples and some simulations to demonstrate the theoretical results obtained in the previous sections. First, we assume the following parameters:

\[
\begin{align*}
\lambda &= 1, \alpha = \frac{1}{280}, d_1 = \frac{1}{180}, d_2 = 0.5, d_3 = d_4 = d_5 = 3, \\
\delta &= 90, \eta_1 = \frac{1}{260}, \eta_2 = \frac{1}{1600}, \beta = 0.008, k = 26, \gamma = 1.
\end{align*}
\]

Then the infectious equilibrium becomes

\[E_0 = (180, 0, 0, 30).\]

With the parameter values given in (48), it’s easy to see that \(0 < R_0 < 1\), \(E_0\) is globally asymptotically stable for these given parameter values. The simulation result is shown in Figure 3.1, indicating that all state variables, except for \(T\) and \(F\), converge to zero, and \(T\) converges to 180. It can be seen that the virus first increases and then monotonically decreases rapidly, while \(T\) and \(F\) always increases to equilibrium, the other variables monotonically decrease right from the beginning. They finally reach the infectious equilibrium \(E_0\).

![Figure 3.1](image1)

Figure 3. When \(R_0 < 1\), \(\tau = 1\), the disease-free equilibrium \(E_0\) is globally asymptotically stable.

Next, we consider the stability of \(E_1\) when \(R_1 < 1 < R_0\), we fixed

\[
\begin{align*}
\lambda &= 1, \alpha = \frac{1}{180}, d_1 = \frac{1}{180}, d_2 = 0.5, d_3 = d_4 = d_5 = 3, \\
\delta &= 90, \eta_1 = \frac{1}{160}, \eta_2 = \frac{1}{1600}, \beta = 0.008, k = 26, \gamma = 10.
\end{align*}
\]

With the parameter values given in (50), the infectious equilibrium without defective interfering particles \(E_1\) is globally asymptotically stable, as shown in Figure 3.2. We
choose $\tau = 0.8, 1, 1.5$, respectively. We found that the value of τ does not influence the stability of the infectious equilibrium E_1.

Now, we consider the stability of E_2 When $1 < R_1 < R_0$ and $0 < R_0 - R_1 < \epsilon$, we fix

$$\lambda = 1, \alpha = \frac{1}{180}, d_1 = \frac{1}{180}, d_2 = 0.5, d_3 = d_4 = d_5 = 3,$$
$$\delta = 90, \eta_1 = \frac{1}{160}, \eta_2 = \frac{1}{1600}, \beta = 0.008, k = 260, \gamma = 10.$$ \hspace{1cm} (54)

With the parameter values given in (50), the infectious equilibrium without defective interfering particles E_1 is globally asymptotically stable, as shown in Figure 3.3.

Finally, we consider possible Hopf bifurcation, we fixed

$$\lambda = 1, \alpha = \frac{1}{180}, d_1 = \frac{1}{180}, d_2 = 0.5, d_3 = d_4 = d_5 = 3,$$
$$\delta = 90, \eta_1 = \frac{1}{160}, \eta_2 = \frac{1}{1600}, \beta = 0.008, k = 2600, \gamma = 10.$$ \hspace{1cm} (55)

With the parameter values given in (52), the infectious equilibrium with defective interfering particles E_2 becomes unstable and a Hopf bifurcation occurs, leading to a family of periodic solutions. The simulation results shown in Figure 3.4. There is just one case where Hopf bifurcation occurs. There may be many other choices of the parameters that can occur Hopf bifurcation.
Figure 5. When $1 < R_1 < R_0$, $\tau = 1.6$, the infectious equilibrium with defective interfering particles E_2 is locally asymptotically stable.

Figure 6. When $1 < R_1 < R_0$, $\tau = 1.6$, the infectious equilibrium with defective interfering particles E_2 showing bifurcation to a stable limit cycle.
4. Conclusion and discussion. In this paper, we proposed a delay differential mathematical model for COVID-19 therapy with defective interfering particles and artificial antibodies. In section 2, we presented the positivity and boundedness of solutions for the system (3). The basic reproduction number R_0 was defined and three equilibria were given. We proved that E_0 is globally asymptotically stable when $R_0 < 1$ and the time delay does not destroy the globally asymptotical stability of E_0. E_1 is globally asymptotically stable when $R_1 < 1 < R_0$, and the time delay also does not destroy the globally asymptotically stable. For the stability of E_2, we proved that there exists an R_2, E_2 is locally asymptotically stability when $1 < R_1 < R_0 < R_2$. As the time delay increases, E_2 can undergo a Hopf bifurcation on proper conditions. The above descriptions reveal the role that each parameter plays in determining the global dynamics of the model and give some quantitative criteria in terms of the parameters for controlling the infection.

Artificial antibodies have great potential for the prevention and treatment of SARS-CoV-2 infection. When there are no defective interfering particles in vivo, there exists two equilibria: disease-free equilibrium E_0 and infectious equilibrium E_1. From (4), $R_0 = \frac{\lambda_0 \sigma d_2 e^{-e}}{d_1 d_3 (d_3 d_5 + \delta)}$, this implies that there exists a suitable value of δ makes $R_0 < 1$. Artificial antibodies do have a great impact on eliminating virus. In fact, a single injection of artificial antibodies is not helpful to eliminate the virus completely since artificial antibodies decay to zero throughout the body. We should consider multiple injections to ensure that artificial antibodies persist at a certain level in the body which may require more time and money. A concern for any antiviral therapeutic is the potential for acquiring drug resistance due to the rapid mutation of viral pathogens. Thus, the therapy only use artificial antibodies to against SARS-CoV-2 may not suffice.

Defective interfering particles (DIPs) could interfere with the virus by virtue of their faster replication in cells coinfected with the normal virus. From the basic reproduction number, defective interfering particles may have no impact on R_0. In this sense, introducing the defective interfering particles into the host does not help to eliminate the SARS-CoV-2 clearly. However, Comparing the infectious equilibrium without defective interfering particles $E_1 = (\frac{d_1}{\alpha \sigma}, \frac{d_2}{\alpha \gamma}, \frac{d_3}{\alpha \gamma} (R_0 - 1), 0, \frac{d}{\alpha \gamma})$ and infectious equilibrium with defective interfering particles $E_2 = (\frac{\lambda R_0}{d_1 \alpha \sigma}, \frac{d_1}{\alpha \gamma}, \frac{d_3}{\alpha \gamma} (\frac{R_0}{R_1} - 1), \frac{d_2}{\alpha \gamma} (R_1 - 1), \frac{d}{\alpha \gamma})$, it showed that defective interfering particles can reduce the viral load. When R_0 and R_1 are close enough, the viral load in vivo at a very low level. This results are consistent with a recent study [41]. In [41], Yao et al. have created a synthetic defective interfering version of SARS-CoV-2, reducing the viral load of infected cells by half in 24 hours. Defective interfering particles can replicate with the help of virus in vivo, avoid the trouble of multiple injections. Whether defective interfering particles can survive and reproduce in the body is a key factor in this therapy. We defined a quantity R_1 in our paper which determines the defective interfering particles can replicate in vivo or not. This quantity can be a certain of help for clinical research on the administration method of defective interfering particles.

Recent months have seen the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants [1] [4] [42], which could put more pressure on health-care systems and counter-measures such as vaccination programmes. In [41] and [25], they showed that artificial antibodies and defective interfering particles could be against SARS-CoV-2 variants. To better evaluate the effect of the
therapy, we need to extend the current model by incorporating more biological and epidemiological factors.

Acknowledgments. This research was funded by the National Natural Science Foundation of China (No.12071297, No.12171320). Author thanks two knowledgeable referees, who contributed enormously to the improvement of the manuscript.

REFERENCES

[1] D. Adam, What scientists know about new, fast-spreading coronavirus variants, Nature, 594 (2021), 19–20.
[2] C. M. Bangham and T. B. L. Kirkwood, Defective interfering particles: Effects in modulating virus growth and persistence, Virology, 179 (1990), 821–826.
[3] A. Baum, D. Ajithdoss, R. Copin et al., REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macaques and hamsters, Science, 370 (2020), 1110–1115.
[4] F. Campbell, B. Archer, H. Laurenson-Schafer et al., Increased transmissibility and global spread of SARS-CoV-2 variants of concern as at June 2021, Eurosurveillance, 26 (2021), 2100509.
[5] X. Cao, COVID-19: Immunopathology and its implications for therapy, Nat. Rev. Immunol., 20 (2020), 269–270.
[6] P. Chen, A. Nirula, B. Heller et al., SARS-CoV-2 neutralizing antibody LY-CoV555 in outpatients with Covid-19, N. Engl. J. Med., 384 (2021), 229–237.
[7] N. J. Dimmock and A. J. Easton, Defective interfering influenza virus RNAs: Time to reevaluate their clinical potential as broad-spectrum antivirals, J. Virol., 88 (2014), 5217–5227.
[8] S. A. Frank, Within-host spatial dynamics of viruses and defective interfering particles, J. Theoret. Biol., 206 (2000), 279–290.
[9] T. Frensing, F. S. Heldt, A. Pfugmacher et al., Continuous influenza virus production in cell culture shows a periodic accumulation of defective interfering particles, Plos One, 8 (2013), e72288.
[10] S. A. Gourley, Y. Kuang and J. D. Nagy, Dynamics of a delay differential equation model of hepatitis B virus infection, J. Biol. Dyn., 2 (2008), 140–153.
[11] J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer, New York, 1993.
[12] A. S. Huang and D. Baltimore, Defective viral particles and viral disease processes, Nature, 226 (1970), 325–327.
[13] C. Huang, Y. Wang, X. Li et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet, 395 (2020), 497–506.
[14] T. Kajiwara, T. Sasaki and Y. Takeuchi, Construction of Lyapunov functionals for delay differential equations in virology and epidemiology, Nonlinear Anal. Real World Appl., 13 (2012), 1802–1826.
[15] T. B. Kirkwood and C. R. Bangham, Cycles, chaos, and evolution in virus cultures: A model of defective interfering particles, Proc. Natl. Acad. Sci., 91 (1994), 8685–8689.
[16] R. L. Kruse, Therapeutic strategies in an outbreak scenario to treat the novel coronavirus originating in Wuhan, China, F1000Research, 9 (2020), 72.
[17] J. P. La Salle, The Stability of Dynamical Systems, Society for Industrial and Applied Mathematics, 1976.
[18] Q. Li, X. Guan, P. Wu et al., Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia, N. Engl. J. Med., 382 (2020), 1199–1207.
[19] W. Li, M. J. Moore, N. Vasilieva et al., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus, Nature, 426 (2003), 450–454.
[20] X. Li and J. Wei, On the zeros of a fourth degree exponential polynomial with applications to a neural network model with delays, Chaos Solitons Fractals, 26 (2005), 519–526.
[21] C. C. MacDuffee, The Theory of Matrices, Springer, New York, 2012.
[22] T. B. Manzoni and C. B. López, Defective (interfering) viral genomes re-explored: Impact on antiviral immunity and virus persistence, Future Virol., 13 (2018), 493–503.
[23] A. C. Marriott and N. J. Dimmock, Defective interfering viruses and their potential as antiviral agents, Rev. Med. Virol., 20 (2010), 51–62.
[24] G. W. Nelson and A. S. Perelson, Modeling defective interfering virus therapy for AIDS: Conditions for DIV survival, Math. Biosci., 125 (1995), 127–153.
A DELAYED DYNAMICAL MODEL FOR COVID-19 THERAPY 21

[25] Y. Pan, J. Du, J. Liu et al., Screening of potent neutralizing antibodies against SARS-CoV-2 using convalescent patients-derived phage-display libraries, Cell Discov., 7 (2021), 1–19.

[26] A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo., SIAM Rev., 41 (1999), 3–44.

[27] U. Rand, S. Y. Kupke, H. Shkarlet et al., Antiviral activity of influenza A virus defective interfering particles against SARS-CoV-2 replication in vitro through stimulation of innate immunity, Cells, 10 (2021), 1756.

[28] S. Ruan and J. Wei, On the zeros of a third degree exponential polynomial with applications to a delayed model for the control of testosterone secretion, Math. Med. Biol., 18 (2001), 41–52.

[29] H. L. Smith, Monotone dynamical systems: An introduction to the theory of competitive and cooperative systems, Bull. Amer. Math. Soc., 33 (1996), 203–209.

[30] X. Sun and J. Wei, Stability and bifurcation analysis in a viral infection model with delays, Adv. Differential Equations, 2015 (2015), Article number: 332, 22 pp.

[31] Y. Tian, Y. Bai and P. Yu, Impact of delay on HIV-1 dynamics of fighting a virus with another virus, Math. Biosci. Eng., 11 (2014), 1181–1198.

[32] M. N. Tortorici and D. Veesler, Structural insights into coronavirus entry, Adv. Virus. Res., 105 (2019), 93–116.

[33] P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48.

[34] M. Vignuzzi and C. B. López, Defective viral genomes are key drivers of the virus–host interaction, Nat. Microbiol., 4 (2019), 1075–1087.

[35] D. Wang, B. Hu, C. Hu et al., Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China, JAMA, 323 (2020), 1061–1069.

[36] D. Wodarz, Hepatitis C virus dynamics and pathology: The role of CTL and antibody responses, J. Gen. Virol., 84 (2003), 1743–1750.

[37] Y. Wu, C. Chen and Y. Chan, The outbreak of COVID-19: An overview, J. Chin. Med. Assoc., 83 (2020), 217–220.

[38] S. Yao, A. Narayanan, S. A. Majowicz, J. Jose and M. Archetti, A synthetic defective interfering SARS-CoV-2, PeerJ, 9 (2021), e11686.

[39] M. Zhang, J. Xiao, A. Deng et al., Transmission dynamics of an outbreak of the COVID-19 delta variant B. 1.617. 2-Guangdong Province, China, May–June 2021, CCDC Weekly, 3 (2021), 584–586.

[40] T. Zhang, Y. Song, Z. Jiang and J. Wang, Dynamical analysis of a delayed HIV virus dynamic model with cell-to-cell transmission and apoptosis of bystander cells, Complexity, 2 (2020), 126–144.

[41] H. Zhao, K. K. To, H. Chu et al., Dual-functional peptide with defective interfering genes effectively protects mice against avian and seasonal influenza, Nat. Commun., 9 (2018), 1–14.

[42] X. Zhou, X. Song and X. Shi, A differential equation model of HIV infection of CD4+ T-cells with cure rate, J. Math. Anal. Appl., 342 (2008), 1342–1355.

[43] H. Zhu and X. Zou, Dynamics of HIV-1 infection model with cell-mediated immune response and intracellular delay, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 511–524.

Received June 2021; 1st revision September 2021; 2nd revision October 2021; early access November 2021.

E-mail address: yanfeizhao0229@126.com
E-mail address: ypxing@shnu.edu.cn