Review

Exercise training modulates adipokine dysregulations in metabolic syndrome

Parvin Babaei a, b, c, *, Rastegar Hoseini d

a Cellular & Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
b Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
c Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
d Department of Sports Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran

ABSTRACT

Metabolic syndrome (MetS) is a cluster of risk factors for various metabolic diseases, and it is characterized by central obesity, dyslipidemia, hypertension, and insulin resistance. The core component for MetS is adipose tissue, which releases adipokines and influences physical health. Adipokines consist of pro and anti-inflammatory cytokines and contribute to various physiological functions. Generally, a sedentary lifestyle promotes fat accumulation and secretion of pro-inflammatory adipokines. However, regular exercise has been known to exert various beneficial effects on metabolic and cognitive disorders. Although the mechanisms underlying exercise beneficial effects in MetS are not fully understood, changes in energy expenditure, fat accumulation, circulatory level of myokines, and adipokines might be involved. This review article focuses on some of the selected adipokines in MetS, and their responses to exercise training considering possible mechanisms.

Introduction

Metabolic syndrome

Metabolic syndrome (MetS) is a clustering of symptoms or conditions including; central obesity, high blood pressure, hyperglycemia, insulin resistance, and dyslipidemia. Among them, central obesity, has been viewed as a serious problem of the 21st-century, and is associated with various metabolic disorders. Excess visceral fat, causes the secretion of pro-inflammatory adipokines. However, regular exercise has been known to exert various beneficial effects on metabolic and cognitive disorders. Currently their numbers supersed 800, because of heterogeneity of the adipose tissue. To simplify, they are categorized into two distinct classes of pro-inflammatory and anti-inflammatory adipokines. These peptides fuel the crosstalk feedback loops with other organs, particularly with skeletal muscles and mediate metabolic regulations. Since the production and secretion of adipokines, play a central role in chronic inflammation, understanding the scenario behind physiological mechanisms, may provide appropriate strategies for controlling insulin resistance and further related disorders.

Insulin and its signaling cascade normally control cell growth, metabolism, and survival through activation of Mitogen-Activated Protein Kinases (MAPKs) and Phosphoinositide-3-Kinase (PI3K), of which activation of PI-3K associated with Insulin Receptor Substrate (IRS)-1/2, Protein Kinase B (Akt), Forkhead Box O1 (FOXO1). Inactivation of Akt and activation of FOXO1, through suppression of IRS1 and IRS-2 in different organs following hyperinsulinemia and metabolic inflammation, may provide the underlying mechanisms for MetS in humans.11 Insulin regulates fat metabolism in peripheral tissues by activating complex signaling pathways including PI3K/AKT, and MAPK, by binding to FOXO and proliferator-activated receptor γ (PPARγ) transcription factors. Insulin resistance disrupts these pathways and causes hyperglycemia and dyslipidemia. Dyslipidemia, or fatty disorders, is the result of the accumulation of free fatty acids in the liver along with insulin-enhanced lipogenesis, which increases triglyceride production and secretion. This condition, along with increased hepatic absorption and renal clearance of High-Density Lipoprotein (HDL) cholesterol, causes a disturbance of the fat profile, i.e., decreasing HDL cholesterol and increasing triglycerides (TG), both of which are seen in the MetS.11

MetS prevention and treatment require appropriate behavioral interventions including both dietary and exercise. Considering the important roles of adipokines in MetS, and the molecular link between exercise and other tissues, here we review the effects of aerobic and resistance
training (AT and RT) on the selected adipokines in MetS models. Some of the other classical adipokines have been summarized in Table 1 briefly. It is worth mentioning that information provided in the manuscript is the most current knowledge on signaling pathways and these pathways are not fully elucidated.

Effects of exercise on MetS

A sedentary lifestyle results in hypertension, dyslipidemia, high blood glucose, and obesity, while regular physical activity successfully prevents the progression of metabolic diseases. Exercise is an important non-pharmacological tool, which exerts remarkable beneficial effects on various functional systems of the human body. Although the exact mechanism of the beneficial effect of regular exercise on organs function has not been understood yet, several biological mechanisms may be responsible including reduced visceral adiposity, TG, Low-Density Lipoproteins (LDL), blood pressure,14 and systemic inflammation,15 increased HDL,16,17 and improved insulin sensitivity. Regular exercise, importantly, performed at low/moderate intensities, exerts anti-inflammatory effects16,19 and modulate metabolic homeostasis,22 partly by increasing anti-inflammatory adipokines. It has been known that skeletal muscles and adipose tissues are among the first target organs for exercise training. They are characterized as an endocrine organ due to the various cytokines production (those are produced by adipose tissues are named adipokines, and those by skeletal muscles are named myokines). These molecules demonstrate autocrine, paracrine, and endocrine effects, and have metabolic consequences. Exercise alters adipokines levels by modulating genes expression and also activating/inactivating proteins involved in their signaling pathways. For example, the lipolytic action of exercise needs the activation of AMPK (AMP-activated protein kinase), which increases insulin sensitivity. Some of these signaling pathways are likely regulated by adipokines secreted by adipose tissues during exercise which provide health benefits. Bellow, we review some of the important adipokines alteration, first in response to MetS and then exercise training.

Adiponectin in MetS

Human adiponectin is a peptide, comprised of 244 amino acids produced by adipose tissues, skeletal muscles, and cardiac cells. It has been known that low adiponectin level is associated with MetS prevalence, insulin resistance, coronary heart disease, and...
Adiponectin alters nitric oxide level and leads to vasoprotective effects.

The exact effect of Resistance Training (RT) on adiponectin is not apparent. Ward et al.57 showed a significant increased in adiponectin levels in postmenopausal women and elevation after 15 weeks of RT engagement. Also, de Mello et al.58 showed a significant increased in adiponectin level, following both protocols of AT singly, and combined with RT, however, combination of AT and RT showed superiority to AT in obese adolescents with MetS.

Mechanistically, RT has been shown to increase muscle mass, decrease body fat percentage by increasing resting energy consumption in MetS patients,95 increasing blood flow, and shifting adiponectin to plasma.

Moreover, a combination of AT with RT, has been shown to increase adiponectin levels in obese Type 2 diabetes (T2D) patients and reduce insulin resistance and central adiposity.61 Although other mechanisms such as releasing myokines, or various hormones such as adrenocortico-tropin, and glucocorticoids are warranted.62

Finally, exercise-increased adiponectin level demonstrates an excellent potential strategy for developing novel therapeutic approaches for MetS.

Omentin in MetS

Omentin is a 313 amino acids adipokine, with two isoforms of omentin-1 and omentin-2. Omentin-1 mRNA is expressed in visceral adipose tissue and stands as a predominant form of mRNA.33,34 Clinical studies showed that circulating omentin-1 concentration is decreased in MetS and obesity.32 In contrast, an increased level of omentin might reflect the physiological compensatory mechanism in regulating insulin sensitivity68 and glucose homeostasis.36 Omentin-1 stimulates IRS and increases high-density lipoprotein, and finally, stimulates lipolysis.69

Alkaline phosphatase activity in adipocytes, and circulating omentin-1 concentration is decreased in MetS and obesity.38 In contrast, an increased level of omentin might reflect the physiological compensatory mechanism in regulating insulin sensitivity68 and glucose homeostasis.36 Omentin-1 stimulates IRS and increases high-density lipoprotein, and finally, stimulates lipolysis.69

Alkaline phosphatase activity in adipocytes, and circulating omentin-1 concentration is decreased in MetS and obesity.38 In contrast, an increased level of omentin might reflect the physiological compensatory mechanism in regulating insulin sensitivity68 and glucose homeostasis.36 Omentin-1 stimulates IRS and increases high-density lipoprotein, and finally, stimulates lipolysis.69

Alkaline phosphatase activity in adipocytes, and circulating omentin-1 concentration is decreased in MetS and obesity.38 In contrast, an increased level of omentin might reflect the physiological compensatory mechanism in regulating insulin sensitivity68 and glucose homeostasis.36 Omentin-1 stimulates IRS and increases high-density lipoprotein, and finally, stimulates lipolysis.69

Alkaline phosphatase activity in adipocytes, and circulating omentin-1 concentration is decreased in MetS and obesity.38 In contrast, an increased level of omentin might reflect the physiological compensatory mechanism in regulating insulin sensitivity68 and glucose homeostasis.36 Omentin-1 stimulates IRS and increases high-density lipoprotein, and finally, stimulates lipolysis.69

Alkaline phosphatase activity in adipocytes, and circulating omentin-1 concentration is decreased in MetS and obesity.38 In contrast, an increased level of omentin might reflect the physiological compensatory mechanism in regulating insulin sensitivity68 and glucose homeostasis.36 Omentin-1 stimulates IRS and increases high-density lipoprotein, and finally, stimulates lipolysis.69

Alkaline phosphatase activity in adipocytes, and circulating omentin-1 concentration is decreased in MetS and obesity.38 In contrast, an increased level of omentin might reflect the physiological compensatory mechanism in regulating insulin sensitivity68 and glucose homeostasis.36 Omentin-1 stimulates IRS and increases high-density lipoprotein, and finally, stimulates lipolysis.69
In addition, omentin-1 enhances glucose uptake via activating PKB and synergistically potentiates the adiponectin functions and alleviates insulin resistance.

Effect of AT and RT on omentin levels

Studies showed that both AT and RT protocols increase omentin levels, and omentin exerts anti-inflammatory and insulin-sensitizing effects by inserting GLUT4 into the target cells membranes. Animal studies showed an increase in serum omentin level parallel with alleviating MetS components in ovariectomized obese rats following AT and RT intervention. For example, Madsen et al. demonstrated increased serum omentin level following strenuous and moderate AT in ovariectomized rats. In contrast, Urbanová et al. and Faramarzi et al. showed no change in omentin following long-term low intensity AT intervention, despite a significant reduction in body weight, fasting insulin, and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR). Interestingly, Huang L, reported a reduction in serum omentin levels in obese rats following AT (75% VO2max). Collectively, AT is capable to modulate the production of omentin, as a cross-talk cytokine linking muscle and adipose tissues in T2D Mellitus rat models. Finally, increased omentin level by AT and RT improves insulin sensitivity and glucose metabolism via stimulating phosphorylation of PKB and AMPK. Conversely, a negative correlation between omentin-1 and insulin, glucose, and IL-6, but a positive with adiponectin levels have been found. Thus, exercise-induced omentin elevation may regulate glucose homeostasis and stimulate lipolysis. Taken all together, high and moderate-intensity AT induce more favorable effects on the increased omentin production and secretion. RT is also capable to increase omentin serum levels, however, the evidence on different intensities is rare.

Apelin in MetS

Apelin is a 36 amino-acid peptide that contributes to glucose metabolism, lipolysis, blood pressure, cardiovascular functions, fluid homeostasis, food intake, and vasodilation. A positive association has been reported between high circulating apelin levels and insulin resistance, hypertension, heart failure, central obesity, high blood glucose, and dyslipidemia, although elevated apelin might be a physiological compensatory response to MetS. Apelin is expressed by adipose tissue and promotes glucose uptake through GLUT4, and alleviates insulin resistance by activating PI3K/AKT. In agreement with these findings, administration of recombinant apelin, increases glucose utilization and reduces blood glucose. Apelin receptor is a G protein-coupled receptor, which is expressed in vascular smooth muscle and myocardial cells. Clinical and experimental studies support a role for apelin in cardiovascular and metabolic disorders via AMPK, Endothelial Nitric Oxide Synthase (eNOS), PKB, and ERK1/2 pathways. Apelin improves glucose tolerance and insulin sensitivity, mainly by improving the skeletal muscles’ metabolic functions and stimulating glucose transport in an AMPK-dependent manner. The ability of apelin to decrease blood glucose together with vasodilation and also reduction in blood pressure may open new therapeutic avenues for MetS.

Effect of AT and RT on apelin levels

The literature regarding exercise effects on apelin concentration in MetS status is inconsistent. For example, Bessé-Patin et al. reported a twofold increase in apelin mRNA level in muscle, but not in adipose tissue following an 8-week AT program indicating upregulated muscle apelin expression in obese men. Another study in overweight subjects reported a considerable upregulation in apelin following 12 weeks of AT even with no significant weight loss in patients with T2D. Jang et al. and Niskerseth et al. suggested a significant elevation in apelin only following AT, but not RT in obese individuals. However a recent study reported an elevated apelin by RT. Considering the mechanisms underlying the effects of exercise on apelin, rodent studies have shown that the AT mediates GLUT-4 translocation to the cell membranes, and then might decrease apelin gene expression. On the other hand, RT-induced fatty acid oxidation might reduce apelin levels by increasing lipoprotein lipase activity in muscles and decreasing insulin resistance. Taken all together, long-term AT and RT, are efficient in reducing apelin levels in favor of AT. Future studies are needed to clarify the effect of exercise intensity on apelin level in MetS.

Vaspin in MetS

Vaspin is formed of 412–415 amino acids released by adipose tissue that is associated with insulin resistance, obesity, and glucose intolerance in many diseases. Kloting et al. stated in their study that insulin sensitivity is the critical determinant of vaspin gene expression in adipose tissue. Surprisingly, administration of insulin, significantly upregulated vaspin mRNA in subcutaneous adipose tissue but reduced visceral fat. Conversely, administration of recombinant human vaspin in diabetic mice, significantly improved insulin sensitivity and glucose tolerance, increased GLUT4 and adiponectin in adipose tissues, whereas, suppressed leptin, resistin, and TNF-α. Overall, vaspin serves as an insulin sensitizer and anti-inflammatory adipokine.

It has been reported that the effects of vaspin on glycemic control are mediated by inhibiting kallikrein 7; an in vitro protease degradation of human insulin. Also, vaspin might protect blood vessels by preventing free fatty acid-induced apoptosis in human vascular endothelial cells via PI3K/AKT/eNOS signaling pathway upregulation. In addition, vaspin inhibits NF-xB/Protein Kinase C (PKC) in vascular smooth muscle cells, and suppresses the JAK2/STAT3 signaling pathway activity.

Effect of AT and RT on vaspin levels

Studies suggested that vaspin levels could be suppressed following different exercise protocols. It is known that vaspin concentration is lower in well-trained individuals compared to those with low physical fitness. Chang et al. and Shahdadi et al. showed a reduction in serum vaspin levels after AT in obese subjects. In contrast, a higher vaspin level has been found following 4-week AT in obese and T2D subjects. Also, Kadoglou et al. and Youn et al. reported an increase in serum vaspin levels in T2D patients and suggested that vaspin improves insulin sensitivity. Similar to AT, vaspin serum level is changed differently in response to RT. For example, two studies reported a significant reduction in serum vaspin level following RT in obese individuals, in contrast with Mahdirejei et al. who reported no significant alteration. RT might induce decreased vaspin mRNA expression secondary to muscle hypertrophy, increased basal metabolic rate, fat oxidation, and ultimately weight loss. It seems that vaspin serum concentration might be differentially regulated in an enzyme (nicotinamide phosphoribosyl transferase enzyme)-dependent manner. The exact signaling pathways by which AT and RT suppress vaspin production needs more investigation.

TNF-α and IL-6 in MetS

MetS is accompanied by an increase in pro-inflammatory cytokines, particularly TNF-α and IL-6. TNF-α is secreted by abdominal adipose tissue and immune system, and plays significant roles in inflammation and insulin resistance. For instance, TNF-α and its receptor genetic deletion, significantly improved insulin signaling in muscle and adipose tissue. Although the baseline expression of TNF-α...
in adipose tissues is relatively low, it is positively correlated with obesity and negatively with weight loss.157 TNF-\(\alpha\) elevation has been reported to associate with morbidity and mortality in MetS.158,159 A parallel increase in both TNF-\(\alpha\) and insulin resistance, together with visceral fat accumulation has also been found in rats model of MetS.160,161 It has been known that TNF-\(\alpha\) induces insulin resistance in the skeletal muscles by promoting fatty acids incorporation into triacylglycerol via increasing several kinases.162 Some of these stress-related kinases, perpetuate a positive feedback mechanism for more TNF-\(\alpha\) production, and promote chronic insulin resistance.163 In addition, increased TNF-\(\alpha\) level induces hepatic fatty acids uptake, reduces fatty acid oxidation and TG export, together with elevation in mitochondrial Reactive Oxygen Species (ROS).164 Besides, higher level of TNF-\(\alpha\) causes elevation in IL-6 as the secondary defense response. IL-6 secreted from adipose tissues has both pro- and anti-inflammatory effects and causes a wide range of different effects on lipid and glucose metabolism.165,166 Thus, TNF-\(\alpha\) likely stands as a pro-inflammatory adipokine, and representative marker in the MetS pathogenesis and cardiovascular burden. TNF-\(\alpha\) neutralization by antibodies or antagonists might be a future candidate therapy in MetS.167

Two TNF-\(\alpha\) receptors have been identified: Tumor Necrosis Factor Receptor Type 1 (TNFR1) and 2 (TNFR2). It is believed that TNFR1 is responsible for inflammatory actions, and mediates insulin resistance168 via down-regulating the insulin receptor expression, insulin-related substrate-1, stress-related kinases, and GLUT4.169 In other words, increased TNF-\(\alpha\) directly inhibits IRS-1 tyrosine phosphorylation, and also activates protein-tyrosine phosphatases,169 and indirectly acts via increasing IL-6, to reduce insulin-dependent glucose uptake.170 IL-6 enhances lipolysis and fat oxidation via activation of AMPK171 and increases the activity of the insulin-degrading enzyme, and thus inhibits downstream signaling of insulin.172 Generally, TNF-\(\alpha\) and IL-6 synergistically impair insulin signaling and induce chronic MetS.173

Effect of AT and RT on TNF-\(\alpha\) and IL-6 levels

Exercise training has been known as the best non-invasive intervention without serious side effects, which alleviates inflammation and immune function in patients with MetS and diabetes.174,175 Since adipose tissue releases inflammatory markers, long-term weight loss is a useful strategy to reduce the risk of high TNF-\(\alpha\) and IL-6 levels in overweight and obese individuals.176 However, existing literature regarding the TNF-\(\alpha\) alteration following exercise seems to be dual. For instant, acute, intensive, and unaccustomed exercise training sessions increase the TNF-\(\alpha\) and IL-6, while adaptation to long-term exercise protocols might reduce TNF-\(\alpha\) and IL-6.177,178 Allen et al. reported no change in serum TNF-\(\alpha\) following 9-week high-intensity AT in sedentary adults. While Abd El-Kader et al.180 showed significantly decreased TNF-\(\alpha\) and IL-6 following 3 months of AT in obese T2D patients (both men and women; aged 40–55 years). They also reported that moderate AT (65%–75% of maximum heart rate (HRmax)) was more effective in reducing TNF-\(\alpha\) and IL-6 than mild AT (55%–65% of HRmax). Geros-Neto et al.181 investigated the impact of 16-week high-intensity interval (90% HRmax) and moderate-intensity AT (70% HRmax) on subclinical inflammation in overweight or obese adults. They demonstrated that 16 weeks of training decreased blood levels of IL-6, but increased TNF-\(\alpha\) in the high-intensity group. Interestingly TNF-\(\alpha\) was decreased in the moderate-intensity group, suggesting efficacy for both high and moderate-intensity AT promoting changes in inflammatory profile in overweight or obesity subjects, in favor of moderate-intensity in case of TNF-\(\alpha\) responses. It seems that besides the contracting skeletal muscle cells, the local connective tissue produces more IL-6 as well, in response to a single-bout prolonged exercise in women with MetS.182 It should be noticed that a single exercise session induces an acute robust inflammatory response, while chronic AT induces long-lasting adaptation that might be different from the primary response regardless of fat loss.152,183 Studies showed that AT and RT (to a fewer extent) could be effective in the prevention and delay of chronic inflammatory diseases onset via reducing pro-inflammatory cytokines, particularly TNF-\(\alpha\) in patients with MetS.155,184,185

Anti-inflammatory effects of exercise are related not only to adipose tissue but also to the skeletal muscle and peripheral blood mononuclear cells.186 One of the possible exercise-induced mechanisms (in favor of AT) might be the reduced Toll-Like Receptors 4 (TLR4) expression in monocytes,187,188 which are capable to induce TNF-\(\alpha\) and IL-6 expression by activating NF-\(\kappa\)B.189 Increase in Inhibitory-\(\kappa\)B Kinase (IKK) \(\beta\) phosphorylation, but inhibition in nicotinamide adenine dinucleotide phosphate oxidase, are the mechanisms by which RT might lead to reduced TNF-\(\alpha\) and IL-6 mRNA expression and secretion in men with MetS.187,188 Furthermore, in an animal study, 15-week moderate AT has been shown to confront metabolic disorders by suppressing TNF-\(\alpha\) signaling responses and also promoting muscle energy-sensing network proteins, including AMPK, Sirtuin-1, PPAR\(\gamma\)Co-Activator 1\(\alpha\) (PGC-1\(\alpha\)).191

Overall, regarding anti-inflammatory effects, long-term moderate AT and RT protocols, especially those inducing fat loss and muscle hypertrophy might be a good candidate therapy in MetS.

Wnt5a and SFRP-5 in MetS

Extensive investigations have reported the significance of the Wnt Family Member 5A (WNT5a) pathways in regulating body mass, glucose metabolism, lipogenesis, LDL clearance, vascular smooth muscle plasticity, liver fat, and liver inflammation.192,193 WNT5a is an adipokine contributing to obesity-associated inflammation.194,195 The WNT5a activity is regulated by Secreted Frizzled-Related Protein 5 (SFRP-5), an extracellular Wnt signaling antagonist. SFRP5 is an anti-inflammatory adipokine, secreted by adipocytes acts as a decoy receptor by binding WNT5a and preventing its association with frizzled proteins. Lower SFRP5 levels are correlated with obesity, impaired glucose tolerance, insulin resistance, and T2D196,197 which results in the activation of WNT5A canonical/non-canonical signaling pathways.198,199 WNT5a exerts both inflammatory and anti-inflammatory effects, in part by modulating the NF-\(\kappa\)B pathway.200 Moreover, TNF-\(\alpha\) has been known to induce WNT5a secretion from adipocytes and causes an imbalance in WNT5a/SFRP5 signaling.94,201

The Wnt signaling pathway is a ubiquitous signaling cascade that regulates a wide range of physiologic processes. There are three signaling pathways; the canonical pathway (\(\beta\)-catenin dependent), the non-canonical, and the Wnt/calcium signaling pathway.193,202 In the canonical pathway, Wnt ligands bind to the frizzled receptor and low-density lipoprotein receptor-related protein (LRP) 5 or 6, resulting in the intranuclear \(\beta\)-catenin accumulation and leading to transcriptional regulation.195 In the non-canonical pathway, the Wnt ligands bind to the frizzled receptor and the receptor-like tyrosine kinase/RTK-like orphan co-receptors and activate the Rho/Rac signaling cascades. However, the non-canonical pathway promotes pro-inflammatory cytokines expression.202 It should be also noticed that Wnt and SFRP-5 proteins undergo several post-translational modifications, including N-glycosylation and acylation, both of which are required for signaling activity rather than secretion.203 Also, lipid modification, which is identified as palmitoylation, is essential for Wnt protein secretion.204 In the Wnt/calcium signaling pathway, Wnt ligands bind to the frizzled receptor and activate phospholipase C, and then increase intracellular calcium level.205 Some studies suggested non-canonical Wnt signaling as a metabolic dysregulation biomarker in both rats and humans with MetS.206,207 Inversely, a higher SFRP5 level inhibits the non-canonical WNT5A pathway to improve insulin sensitivity.208 Non-canonical Wnt signaling shifts the lipids storage from adipose tissue to liver and muscle, promoting metabolic complications of obesity such as insulin resistance209 via activating c-Jun N-terminal Kinases (JNK) cascade, and IRS-1 serine phosphorylation.210 Therefore, crosstalk of these signaling pathways promotes the pro-inflammatory state and MetS progression.195,211 On the other hand, SFRP5 neutralizes non-canonical JNK activation by WNT5a in macrophages and adipocytes.192 The JNK signaling pathway in
adipocytes and macrophages has emerged as an essential mediator of adipose tissue in inflammation that affects systemic metabolism.\(^{192,212}\) Thus, the SFRP5/JNK regulatory axis in fat represents a potential target for controlling obesity-linked abnormalities in glucose homeostasis by blocking the WNT5a.\(^{213}\) Generally, impaired canonical Wnt signaling and the activation of non-canonical Wnt signaling constitute the underlying mechanisms for cardio-metabolic abnormalities.

Effect of AT and RT on Wnt and SFRP-5

It has been reported that an increase in non-canonical Wnt signaling in human visceral adipose tissue is positively associated with cardiovascular risk factors and insulin resistance, which can be alleviated by high-intensity AT.\(^{160,195}\) Few studies considered the effect of RT on WNT5A/SFRP5. For example, Leal et al.\(^{214}\) stated that eight-week RT triggers more significant responses in the Wnt pathway, and potently elevates the expression of Wnt pathway genes and β-catenin.\(^{215,216}\) However, Mir et al.\(^{217}\) showed an improvement of T2D as a result of increased SFRP5 serum level and decreased WNT5a serum level after 12 weeks of combined exercise (high intensity AT and RT) possibly due to the reduction in fat mass. They also reported a significant negative relationship between SFRP5 and WNT5A.

It seems that dysregulated Wnt signaling pathway, which underlies the pleiotropy of MetS might be alleviated by both AT and RT protocols. RT might potentiate the Wnt function by influencing various post-translational mediators of this pathway.\(^{218}\) Then, Wnt binds to the cell surface transmembrane receptors which involve direct binding to several intracellular proteins including glycogen synthase kinase-3β, and disheveled.\(^{204,219,220}\)

Therefore, combined AT and RT might elevate SFRP5 and reduce Wnt more significantly than a single protocol of either AT or RT.

Conclusion

Considering diverse and complex adipokines functions in MetS, summarizing their role and selecting one core link to the MetS, seems to be an oversimplification. Thus, a panel of adipokines rather than an individual biomarker would be a useful and relatively reliable marker for identifying those who are at risk for developing MetS and related diseases.

Our search strategy for this review focused on those adipokines that have been studied on MetS in various laboratories including ours. Data for this review were identified by searches of science direct advance search, PubMed, and WOS to get any related articles available using the terms "adipokine, adiponectin, omentin, apelin, leptin, Wnt5a, Sfrp5, IL-6, and MetS, AT and RT. We tried to include articles on the English language with preference to publications from the past 15 years.

The strength of this review is summarizing the selected adipokines alteration in MetS and response to AT and RT. However, there are some limitations such as not including myokines and other adipokines due to complexities and varieties.

Reviewing literature revealed that adipokines are categorized into two groups of pro and anti-inflammatory molecules. Pro-inflammatory is related to insulin resistance and inflammation, in contrast to anti-inflammatory which exerts insulin sensitivity and lipid homeostasis. Furthermore, both moderate AT and RT, successfully modulate the adipokines profile toward the health-promoting adipokines. Also, it could be concluded that the constant, long-lasting alterations in adipokines level are more prominent following long-term exercise protocols, in contrast with acute and high-intensity exercise which stimulates pro-inflammatory adipokines.

Although the exact mechanisms underlying the beneficial effects of AT and RT in MetS have not been understood well, modulation of adipokines secreted from adipose tissues, together with weight loss consequences, might be the most important factor linking the molecular signaling pathways with improved glucose homeostasis, and better metabolic state.

Moderate-intensity AT and RT are associated with improved insulin sensitivity, improved circulation, mitochondrial biogenesis, and the release of numerous adipokines. Currently, among various mechanisms, adiponectin/AMPK signaling seems to be the main mediator of metabotrophic effects of exercise. These molecular signalings anticipate a better
understanding of mechanisms that will enable the development of pharmaceuticals, particularly for sedentary individuals who are at higher risk of developing Mets (Fig. 1, Graphical abstract).

For future studies, several important points should be considered:

- To clarify the source of circulating adipokines in response to MetS, AT, and RT
- To elucidate both up and down streams of adipokines together in response to a specified protocol of exercise to distinguish between cause and effect, compensatory or operatory functions.
- To administrate recombinant adipokines, and also monoclonal antibodies in a rodent model to evaluate their effects on MetS.

Authors’ contributions

Parvin Babaei drafted the MetS part based on the studies carried out in her lab and coordinated the contents of the manuscript. Rastegar Hoseini wrote the theoretical parts of the exercise. Both authors have read and approved the final version of the manuscript and agreed with the order of presentation of the authors.

Funding

No external source of funding was used in the preparation of this article.

Submission statement

Hereby we attest that the submitted manuscript has not been published previously, and it is not under consideration for publication elsewhere. We also agree that if accepted, it will not be published elsewhere including electronically in the same form, in English or in any other language.

Conflict of interest

The authors report no biomedical financial interests or potential conflicts of interest.

References

1. Alonso-Gómez AM, Tojal Sierra L, Fortuny Frau E, et al. Diastolic dysfunction and insulin sensitivity in the older population: a cross-sectional study. J Cardiol Heart Vasc. 2018;5(6):2602–2627. https://doi.org/10.1016/j.ijcha.2018.12.010.
2. Saitoh TN, Goto H, Toda M, et al. SIRT1 is a master regulator of systemic energy metabolism and longevity. Nature. 2012;485(7397):449–455. https://doi.org/10.1038/nature10951.
3. Pfeiffer AD, De Bock D, De Bold J. Regulation of adipocyte hypertrophy by TNF-α and IL-1β. Endocrinology. 2006;147(8):3602–3607. https://doi.org/10.1210/en.2006-0122.
4. Zhang X, Xu A, Chung SK, et al. Selective inactivation of c-Jun NH2-terminal kinase 1 is not sufficient to protect against diet-induced obesity in mice. Diabetes. 2013;62(10):3927–3934. https://doi.org/10.2337/db13-0804.
5. Banu N, Elango K, Adiponecin level in type 2 diabetes and its complication status on postexercise hypotension in patients with hypertension: a cross-sectional study. J Am Heart Assoc. 2019;8(18):e013525. https://doi.org/10.1161/JAHA.118.013525.
100. Brunetti L, Leone S, Orlando G, et al. Hypotensive effects of omentin-1 related to

111. Faramarzi M, Banitalebi E, Nori S, Farzin S, Taghavian Z. Effects of rhythmic

109. Madsen SM, Thorup AC, Bjerre M, Jeppesen PB. Does 8 weeks of strenuous bicycle

107. Rashid R, Maqbool M, Jan A, Geer MI. Role of adipokines and free fatty acids in

95. Buyukinan M, Atar M, Can U, Pirgon O, Guzelant A, Deniz I. The association

93. Shibata R, Ouchi N, Ohashi K, Murohara T. The role of adipokines in cardiovascular

92. McGee SL, Hargreaves M. Exercise adaptations: molecular mechanisms and

90. Tsai M, Asakawa A, Amitani H, Inui A. Stimulation of leptin secretion by insulin.

89. Sirio F, Bianco A, D’Alessandro C, et al. Effects of physical exercise on adiponectin, leptin, and inflammatory markers in childhood obesity: systematic review and meta-analysis. Child Obes. 2018;14(4):207–217. https://doi.org/10.1089/cho.2017.0269.

86. Mcgee SL, Hargreaves M. Exercise adaptations: molecular mechanisms and potential targets for therapeutic benefit. Nat Rev Endocrinol. 2020;16(9):495–505. https://doi.org/10.1038/s41574-020-0291-3.

85. Shibata R, Ouchi N, Ohashi K, Murakata T. The role of adipokines in cardiovascular disease. J Cardiol. 2017;70(4):329–334. https://doi.org/10.1016/j.jjcc.2017.02.006.

84. Nikolic Z, Lee M-J, Hu H, et al. Identification of omentin as a novel depot-specific adipokine in human adipose tissue: possible role in modulating insulin action. Am J Physiol Endocrinol Metab. 2006;290(6):E1252–E1261. https://doi.org/10.1152/ajpendo.00572.2004.

83. Buyukkiran M, Attar M, Can U, Pirog O, Guzelant A, Deniz I. The association between serum vaspin and omentin-1 levels in obese children with metabolic syndrome. Syndr Relat Disord. 2018;16(2):76–81. https://doi.org/10.1016/j.metend.2017.01.033.

82. Zhang M, Tan X, Yin C, Wang L, Tie Y, Xiao Y. Serum levels of omentin-1 are increased after weight loss and are particularly associated with increases in obese children with metabolic syndrome. Acta Paediatr. 2017;106(11):1851–1856. https://doi.org/10.1111/apa.14026.

81. Sitticharoen C, Nuyw NC, Chatree S, Churilantabhan M, Boonpunt P, Maikawp P. Interactions between adiponectin, visfatin, and omentin in subcutaneous and visceral adipose tissues and serum, and correlations with clinical and peripheral metabolic factors. Peptides. 2014;62:164–175. https://doi.org/10.1016/j.peptides.2014.03.012.

80. Pan X, Kaminga AC, Wen SW, Achampong K, Liu A. Omentin-1 in diabetes mellitus: a systematic review and meta-analysis. PLoS One. 2019;14(12), e0226292. https://doi.org/10.1371/journal.pone.0226292.

79. Castro Od, Silva A, Arocha MC, et al. Exercise and omentin: their role in the crosstalk between muscle and adipose tissues in type 2 diabetes mellitus rat models. Front Physiol. 2019;10:1881. https://doi.org/10.3389/fphys.2018.01881.

78. Brunetti L, Leone S, Orlando G, et al. Hypothetical effects of omentin-1 related to increased adiponectin and decreased interleukin-6 in intra-thoracic pericardial adipose tissue. Pharmaco Rep. 2014;66(6):991–995. https://doi.org/10.1055/s-0034-1383930.

77. Stejskal D, Vlaclavik J, Smelka A, Svobodova G, Richterova R, Svestak M. Omentin-1 levels in patients with diabetes and coronary artery disease, metabolic syndrome and healthy controls. Short communication. Biomed Pap Med Fac Palacky Univ Olomouc Czech Repub. 2016;160(2):219–221. https://doi.org/10.5007/bpmf.2016.019.

76. Liu F, Fang S, Liu X, et al. Omentin-1 protects against high glucose-induced endothelial dysfunction via the AMPK/PKA6 signaling pathway. Biochem Pharmacol. 2020;207:114380. https://doi.org/10.1016/j.bcp.2020.114380.

75. Watanabe K, Watanabe R, Konii H, et al. Counteractive effects of omentin-1 against atherogenesis. Cardiovasc Res. 2016;110(1):118–128. https://doi.org/10.1093/cvr/cv616.

74. Hirayama-liu M, Shibata R, Ohashi K, et al. Omentin attenuates atherosclerotic lesion formation in apolipoprotein-E deficient mice. Cardiovasc Res. 2016;110(1):1–12. https://doi.org/10.1093/cvr/crv036.

73. Zhou Y, Hao C, Li C, et al. Omentin-1 protects against bleomycin-induced acute lung injury. Mol Immunol. 2018;103:96–105. https://doi.org/10.1016/j.molimm.2018.09.007.

72. Bang R, Lennnerfors T. Doning and characterization of the human lactoferrin receptor gene promoter. Biomolecules. 2018;3(1):357–368. https://doi.org/10.3390/biom8010020.

71. Rashid R, Maqbool M, Jan A, Geer ML. Role of adipokines and free fatty acids in insulin resistance-a review. Int J Adv Res Sci Eng. 2017;4(11):2115–2123.

70. Baberi P, Pourrham Ghoroughi A, Damichi A, Soltani Tehrani M. The interactive effects of aerobic-resistance training and estrogen therapy on metabolic syndrome indices and omentin-1. Physiol Pharm. 2015;19(3):200–207.

69. Madhesh SM, Thorup AC, Bjerring M, Jeppesen PB. Does 8 weeks of strenuous bicycle exercise improve diabetes-related inflammatory cytokines and free fatty acids in type 2 diabetes patients and individuals at high-risk of metabolic syndrome? Arch Physiol Biochem. 2015;121(4):129–138. https://doi.org/10.3109/13884749.2015.1059845.

68. Urbanova M, Dostalova I, Trachta P, et al. Serum concentrations and subcutaneous adipose tissue mRNA expression of omentin in morbid obesity and type 2 diabetes mellitus: the effect of very-low-calorie diet, physical activity and laparoscopic sleeve gastrectomy. Physiol Res. 2014;63(2):207–218. https://doi.org/10.1215/03919914-929350.

67. Faramarzi M, Banitalebi E, Nori S, Farzin S, Taghavian Z. Effects of rhythmic aerobic exercise plus core stability training on serum omentin, chemerin and vaspin levels and insulin resistance of 2 type 2 diabetics. J Sports Med Phys Fit. 2016;56(4):476–482.

66. Ge H, Huang L, Pourbahrami T, Li C. Generation of soluble leptin receptor by ectodomain shedding of membrane-spanning receptors in vitro and in vivo. J Biol Chem. 2002;277(48):45984–45903. https://doi.org/10.1074/jbc.M206028201.

65. Yan P, Liu D, Long M, Ren Y, Pang J, Di R. Changes of serum omentin levels and relationship between omentin and adiponectin concentrations in type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes. 2011;119(4):257–263. https://doi.org/10.1055/s-0034-1383930.
140. Heiker JT, Kloting N, Kovacs P, et al. Vaspin inhibits kallikrein 7 by serpin mechanism. Cell Mol Life Sci. 2013;70(14):2569–2583. https://doi.org/10.1007/s00018-013-1294-2

141. Jung CH, Lee JW, Hwang JY, et al. Vaspin protects vascular endothelial cells against free fatty acid-induced apoptosis through a phosphatidylinositol 3-kinase/Akt pathway. Biochem Biophys Res Commun. 2011;413(2):264–269. https://doi.org/10.1016/j.bbrc.2011.07.162

142. Ziegler K, Weiner J, Krause K, et al. Vaspin suppresses cytokine-induced inflammation in 3T3-L1 adipocytes via inhibition of NF-κB pathway. Mol Cell Endocrinol. 2018;460:181–189. https://doi.org/10.1016/j.y paypal.2018.02.022

143. Phadke AK, Okada M, Hara Y, Yamawaki H. Vaspin prevents TNF-α-induced intracellular adhesion molecule-1 via inhibiting reactive oxygen species-dependent NF-κB and P65 activation in cultured rat vascular smooth muscle cells. Pharmacol Res. 2011;64(4):492–497. https://doi.org/10.1016/j.phrs.2011.06.016

144. Liu S, Dong Y, Wang T, et al. Vaspin inhibited proinflammatory cytokine induced activation of nuclear factor-kappa B and its downstream molecules in human endothelial EA, h9v26 cells. Diabetes Clin Pract. 2014;10(3):482–488. https://doi.org/10.1053/j.dcmpp.2014.12.002

145. Tantiwong P, Shanmugasundaram K, Monroy A, et al. NF-κB and its signaling pathways. Diabetes Metab Syndr. 2011;5(3):374–2079. https://doi.org/10.1016/j.dsx.2011.07.009

146. Choe SS, Huh JY, Hwang IJ, Kim JI, Kim JB. Adipose tissue remodeling: its role in obesity and type 2 diabetes. J Orthopaedic transl. 2014;58. https://doi.org/10.1016/j.joe.2014.05.023

147. Fabre O, Ingerslev LR, Garde C, Donkin I, Simar D, Barres R. Exercise training alters the genomic response to acute exercise in human adipose tissue. Sci Rep. 2017;7:1–6. https://doi.org/10.1038/s41598-017-00430-0

148. Youn B-S, Klöppel G, Ittner LF, et al. TNF-α induces tyrosine phosphorylation and recruitment of the Src homology protein-tyrosine phosphatase 2 to the gp130 signal-transducing subunit of the IL-6 receptor complex. J Immunol. 2003;171(2):257–266. https://doi.org/10.4049/jimmunol.171.1.257

149. Rotter V, Nageswaran S, Smith U. Interleukin-6 (IL-6) in obesity and inflammation in 3T3-L1 adipocytes and is like IL-8 and tumor necrosis factor-α, overexpressed in human fat cells from insulin-resistant subjects. J Biol Chem. 2003;278(46):45777–45784. https://doi.org/10.1074/jbc.M307797200

150. Grossicgi GJ, Barrett B, Englund D, et al. Clustering interleukin-6 is associated with skeletal muscle strength, quality, and functional adaptation with exercise training in mobility-limited older adults. J Frailty Aging. 2020;9(1):57–63. https://doi.org/10.1016/j.jfage.2019.10.003

151. Kururati MA, Costa-Júnior JM, Ferreira SM, et al. Interleukin-6 increases the expression and activity of insulin-degrading enzyme. Sci Rep. 2017;7:4765. https://doi.org/10.1038/s41598-017-04765-0

152. Alipourfard I, Datukshivili N, Mihaladze D. TNF-α downregulation modifies Insulin Receptor Substrate 1 (IRS-1) and metabolic signaling in insulin-resistant hepatocytes. Mediat Inflamm. 2019;2019:1–8. https://doi.org/10.1155/2019/530819

153. Keller C, Steensberg A, Hansen AK, Fischer CP, Plomgaard P, Pedersen BK. Effect of resistance training on in diabetic women with overweight/obese and type 2 diabetes mellitus: how does it work? Eur J Cardiol Rehabil. 2019;26(7):701–708. https://doi.org/10.1016/j.ejcrh.2017.11.001

154. Tostes RC. TNF-α as a pro-inflammatory cytokine in previously sedentary women recovering from breast cancer: a randomized controlled trial. J Frailty Aging. 2016;5(1):19. https://doi.org/10.1002/jfag.2016.5.1

155. Allen NG, Higham SM, Mendham AE, Kastelein TE, Larsen PS, Dufour AB. Long-term physical activity and inflammatory markers to a 12-week aerobic exercise training in women with overweight/obese. J Phys Activ Health. 2017;14(4):289–296. https://doi.org/10.1123/jpah.2016-038021

156. Scott JP, Sale C, Greaves JP, Casey A, Dutton J, Fraser WD. Effect of exercise intensity on the cytokine response to an acute bout of running. Med Sci Sports Exerc. 2011;43(12):2297–2306. https://doi.org/10.1249/mss.0b013e3182113a9a

157. Allen NG, Higham SM, Mendum AE, Kastelein TE, Larsen PS, Duffield R. The effect of low intensity aerobic exercise training on markers of systemic inflammation in sedentary populations. Eur J Appl Physiol. 2017;117(6):1249–1256. https://doi.org/10.1007/s00421-017-3613-1

158. Abd El-Kader S, Gari A, El-Den AS. Impact of moderate versus mild aerobic exercise training on inflammatory cytokines in obese type 2 diabetic patients: a randomized clinical trial. Afr Health Sci. 2019;13(4):857–863. https://doi.org/10.4314/afr.v13i4.1

159. Gerosa-Neto J, Antunes BM, Campos EZ, et al. Impact of long-term high-intensity interval and moderate-intensity continuous training on subclinical inflammation in overweight/obese adults. J Exerc Rehabil. 2016;12(6):575–580. https://doi.org/10.12955/jer.132770.385

160. Farinha JB, Steckling FM, Stefanello ST, et al. Response of oxidative stress and inflammatory biomarkers to a 12-week aerobic exercise training in women with metabolic syndrome. Sports Med Open. 2015;1(1):19. https://doi.org/10.1186/s40795-015-0011-2

161. Beavers KM, Hu F-C, Isom S, et al. Long-term physical activity and inflammatory biomarkers in older adults. J Sci Sports Exerc. 2015;10(2):219–216. https://doi.org/10.1249/mss.0b013e3181e3ac80

162. Cavalcante PAM, Gregnani MF, Henrique JS, Ornellas FH, Araújo RC. Aerobic but not resistance exercise can induce inflammatory pathways via toll-like 2 and 4: a systematic review. Sports Med Open. 2017;3(1):42. https://doi.org/10.1186/s40798-017-0111-2. published correction appears in Sports Med Open. 2018 Jan 31;4(1)

163. Monteiro-Junior RS, de Tavao Maciel-Pinheiro P, Portugal EdMM, et al. Effect of exercise on inflammatory profile of older persons: systematic review and meta-analyses. J Phys Activ Health. 2018;15(1):64–71. https://doi.org/10.1123/japh.2016-0715

164. Kroenig A, Thompson PD. The effects of physical activity on serum C-reactive protein and inflammatory markers: a systematic review. J Am Coll Cardiol. 2005;45(10):1563–1569. https://doi.org/10.1016/j.jacc.2004.12.077

165. Cavalcante PAM, Gregnani MF, Henrique JS, Ornellas FH, Ararijo RC. Aerobic but not resistance exercise can induce inflammatory pathways via toll-like 2 and 4: a systematic review. Sports Med Open. 2017;3(1):42. https://doi.org/10.1186/
119. Makarov SS, Babaei, R. Hoseini Sports Medicine and Health Science 4 (2022) 18–28.

120. Hu Z, Deng H, Qu H. Plasma SFRP5 levels are decreased in Chinese subjects with diabetes.

121. Abou Ziki MD, Mani A. The interplay of canonical and noncanonical Wnt signaling pathways.

122. Zuriaga MA, Fuster JJ, Farb MG, et al. Activation of non-canonical WNT signaling in metabolic syndrome.

123. Silveira Martins M, Farinha JB, Basso Benetti C, et al. Positive effects of resistance training on inflammatory parameters in men with metabolic syndrome risk factors.

124. Asokan SM, Wang T, Wang M-F, Lin W-T. A novel dipeptide from potato protein hydrolysate augments the effects of exercise training against high-fat diet-induced damage in senescence-accelerated mouse-prone 8 by boosting pAMPK/SIRT1/PGC-1α/pFOXO3 pathway. Aging (N Y). 2020;12(8):7334–7349. https://doi.org/10.18632/aging.103981.

125. Ouchi N, Higuchi A, Ohashi K, et al. Sfrp5 is an anti-inflammatory adipokine that modulates metabolic dysfunction in obesity. Science. 2010;329(5990):454–457. https://doi.org/10.1126/science.1188280.

126. Aboz Ziki MD, Mani A. The interplay of canonical and noncanonical Wnt signaling in metabolic syndrome. Nutr Res. 2019;79:18–25. https://doi.org/10.1016/j.nutres.2019.04.009.

127. Catalán V, Gómez-Ambrosi J, Rodríguez A, et al. Activation of noncanonical Wnt signaling through WNT5A in visceral adipose tissue of obese subjects is related to inflammation. Clin Endocrinol Monath. 2014;99(8):E1407–E1417. https://doi.org/10.1111/cem.12411.

128. Zuriaga MA, Fuster JJ, Farb MG, et al. Activation of non-canonical WNT signaling in human visceral adipose tissue contributes to local and systemic inflammation. Sci Rep. 2017;7(1):17226. https://doi.org/10.1038/s41598-017-17569-5.

129. Hu Z, Deng H, Qu H. Plasma SFRP5 levels are decreased in Chinese subjects with obesity and type 2 diabetes and negatively correlated with parameters of insulin resistance. Diabetes Res Clin Pract. 2013;99(3):391–395. https://doi.org/10.1016/j.diabres.2012.11.026.

130. Carstensen M, Herder C, Kempf K, et al. Sfrp5 correlates with insulin resistance and oxidative stress. Eur J Clin Invest. 2013;43(4):350–357. https://doi.org/10.1111/eci.12052.

131. El Amari Z, Tarrand J, Jenty M, et al. Convergent signaling pathways controlled by LRPI (receptor-related protein 1) cytoplasmic and extracellular domains limit cellular cholesterol accumulation. J Biol Chem. 2016;291(10):5116–5127. https://doi.org/10.1074/jbc.M116.714485.

132. Fujino T, Aiba H, Kang M-L, et al. Low-density lipoprotein receptor-related protein 5 (LRP5) is essential for normal cholesterol metabolism and glucose-induced insulin secretion. Proc Natl Acad Sci U S A. 2003;100(1):229–234. https://doi.org/10.1073/pnas.103073.

133. Makarov SS, NF-kB as a therapeutic target in chronic inflammation: recent advances. Mol Med Today. 2005;6(11):441–448. https://doi.org/10.1016/s1357-8310(05)00114-1.

134. De A. WuCa2+: signaling pathways: a brief overview. Acta Biochim Biophys Sin. 2011;43(10):745–756. https://doi.org/10.1093/abbs/gmr079.

135. Komiyama Y, Habas R. Wnt signal transduction pathways. Organogenesis. 2008;4(2):68–75. https://doi.org/10.4161/org.4.2.5851.

136. Baarsma HA, Konigshoff M, Gosens R. The WNT signaling pathway from ligand secretion to gene transcription: molecular mechanisms and pharmacological targets. Pharmacol Ther. 2015;158(1):156–163. https://doi.org/10.1016/j.pharmthera.2015.01.002.

137. Kohn AD, Moon RT. Wnt and calcium signaling: β-catenin-independent pathways. Cell Calcium. 2005;38(3–4):439–446. https://doi.org/10.1016/j.ceca.2005.08.022.

138. Ackers I, Malgor R. Interrelationship of canonical and non-canonical Wnt signaling pathways in chronic metabolic diseases. Diabetes Vasc Dis Res. 2018;15(1):3–13. https://doi.org/10.1177/1479167318738442.

139. Lu YC, Wang CP, Hou CC, et al. Circulating secreted frizzled-related protein 5 (Sfrp5) and wingless-type MMTV integration site family member 5a (Wnt5a) levels in patients with type 2 diabetes mellitus. Diabetes Metab Res Rev. 2013;29(7):551–556. https://doi.org/10.1002/dmr.2426.

140. Gustafson B, Hammantedt A, Hedjazifar S, Smith U. Restricted adipogenesis in hypertrophic obesity: the role of WISP2, WNT, and BMP4. Diabetes. 2013;62(9):2997–3004. https://doi.org/10.2337/db13-0473.

141. Laudes M. Role of WNT signaling in the determination of human mesenchymal stem cells into adipocytes. J Mol Endocrinol. 2011;46(2):R65–R82. https://doi.org/10.1530/jme-10-0169.

142. Weir GC. Glucolipotoxicity, β-cells, and diabetes: the emperor has no clothes. Diabetes. 2020;69(3):273–278. https://doi.org/10.2337/db19-0138.

143. Fuster JJ, Zuriaga MA, Ngo DT-M, et al. Noncanonical Wnt signaling promotes obesity-induced adipose tissue inflammation and metabolic dysfunction independent of adipose tissue expansion. Diabetes. 2015;64(4):1235–1248. https://doi.org/10.2337/db14-1164.

144. Bäck O, Moschen AR. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol. 2006;6(10):772–783. https://doi.org/10.1038/nri1937.

145. Shi Z, Xu M, Chen X, Wang J, Zhao T, Zhao D. The regulatory role of SFRP5/WNTSA axis in allergic rhinitis through inhibiting JNK pathway activation and lowering mucin generation in human nasal epithelial cells. Exp Mol Pathol. 2021;118:104591. https://doi.org/10.1016/j.yexmp.2020.104591.

146. Leaf ML, Lamas L, Aoki MS, et al. Effect of different resistance-training regimens on the WNT-signaling pathway. Eur J Appl Physiol. 2017;111(10):2535–2545. https://doi.org/10.1007/s00424-011-1874-7.

147. Wagemakers AJ, Pedersen BK. The anti-inflammatory effect of exercise: its role in diabetes and cardiovascular disease control. Essays Biochem. 2006;42:105–117.

148. Kariki S, Ngo DT, Farb MG, et al. WNT5A regulates adipose tissue angiogenesis via antiangiogenic VEGF-A165b in obese humans. Int J Diabetes Dev Ctries. 2015:0490. https://doi.org/10.1152/biophys.00076.2016.

149. Mir E, Mozannari M, Biegh N, Ikoub E, Rahimi N. Changes in SFRPS, WNT5A, HB1A1, BMI, PIB, and insulin resistance in men with type 2 diabetes after 12 weeks of combined exercise (HIIT and resistance). Int J Diabetes Dev Ctries. 2020;40(2):248–254. https://doi.org/10.1016/j.sjdi.2019.104591.

150. Newmire D, Willoughby DS. Wnt and β-catenin signaling and skeletal muscle myogenesis in response to muscle damage and resistance exercise and training. Int J Kinesiol Sports Sci. 2015;3(4):40–49. https://doi.org/10.7575/aiac.ibjss.v.3n.4p.40.

151. McCreery JA, Steelman L, Bertrand FE, et al. Multifaceted roles of GSK-3 and Wnt/β-catenin in hematopoiesis and leukemogenesis: opportunities for therapeutic intervention. Leukemia. 2014;28(1):15–33. https://doi.org/10.1038/leu.2013.184.

152. Aschenbach WG, Ho RC, Sakamoto K, et al. Regulation of Dishevelled and β-catenin in rat skeletal muscle; an alternative exercise-induced GSK-3β signaling pathway. Am J Endocrinol Metab. 2006;291(1):E152–E158. https://doi.org/10.1152/ajpendo.00180.2005.