Superimposed mosaicism in tuberous sclerosis complex: a key to understanding all of the manifold manifestations?

R. Happle,1* A. Torrelo2

1Department of Dermatology, Medical Center, University of Freiburg, Freiburg, Germany
2Department of Dermatology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain

*Correspondence: R. Happle. E-mail: rudolf.happle@uniklinik-freiburg.de

Abstract
In patients with tuberous sclerosis, we can today distinguish between two different categories of segmental mosaicism. The well-known simple segmental mosaicism is characterized by a unilateral or otherwise localized arrangement of the ordinary lesions of the disorder, reflecting heterozygosity for an early postzygotic new mutation. By contrast, superimposed mosaicism is defined by a pronounced segmental involvement in a patient with ordinary non-segmental lesions of the same disorder, resulting in a heterozygous embryo from loss of the corresponding wild-type allele that occurred at a very early developmental stage. So far, the second category has been called ‘type 2 segmental mosaicism’, but here we propose the short and unambiguous term ‘superimposed mosaicism’. In order to render physicians familiar with the manifold manifestations of this category as noted in tuberous sclerosis, we review the following clinical designations under which cases suggesting superimposed mosaicism have been published: forehead plaque; shagreen patch; fibrous cephalic plaque; fibromatous lesion of the scalp; folliculocystic and collagen hamartoma; segmental hypomelanosis; congenital segmental lymphedema; and segmental ‘diffuse’ lipomatosis. Molecular corroboration of this genetic concept has been provided in a case of forehead plaque and in a child with shagreen patch. – Extracutaneous manifestations suggesting superimposed mosaicism include columnar tuberous brain defects; ‘radial migration lines’ or ‘cerebral white matter migration lines’ as noted by brain imaging; linear hamartomatous lesions of the tongue; fibrous dysplasia of bones including macroactodacy; and unilateral overgrowth of an arm or leg. – Remarkably, superimposed mosaicism appears to occur in tuberous sclerosis far more frequently than simple segmental mosaicism.

Conflict of interest
The authors have no conflict of interest to declare.

Funding source
This article has no funding source.

Introduction
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder characterized by diversiform skin lesions and hamartomas of brain, heart, lungs and kidneys. When we consider the various clinical features of TSC, we should realize that in this autosomal dominant trait there is, according to present knowledge, no monoallelic heterozygous manifestation.1–4 Hence, all lesions of TSC are biallelic, reflecting mosaicism that originates from loss of the corresponding wild-type allele,5–8 which is in contrast to the monoallelic manifestation as customarily admitted in autosomal dominant disorders such as epidermolytic ichthyosis of Brocq. As with other genuinely biallelic cutaneous autosomal dominant disorders, mosaic TSC lesions are known to occur, so far, in three different forms (Fig. 1).9 Firstly, disseminated mosaicism is noted in ‘classic’ TSC being characterized by a non-segmental arrangement of facial angiofibromas,1 ash-leaf macules,2 cerebral tubers,3 subependymal giant cell astrocytomas4–7 and renal angiomyolipomas.5,8 The second-hits take place during most of the intrauterine time or the entire postnatal life. The term ‘disseminated mosaicism’ means that the lesions do not follow any of the known patterns of segmental mosaicism.9 Secondly, simple segmental mosaicism occurs in the form of unilateral or otherwise segmental arrangement of the usual lesions such as angiofibromas, ash-leaf macules, Koenen tumours or cerebral tubers.10,11 This presentation is due to a postzygotic new mutation arising, in an embryo with two wild-type alleles, at a very early developmental stage. It may lead to simultaneous gonadal mosaicism, which implies a slightly
increased risk for these individuals to transmit the disorder to the next generation in the form of non-segmental TSC. Thirdly, *superimposed mosaicism* is characterized by the presence of a pronounced segmental involvement in addition to ‘classic’, non-segmental TSC. This is a result of loss of the corresponding wild-type allele occurring during the first stages of embryogenesis.9,12

Until today, however, confusion prevails regarding the mosaic manifestations of TSC because many authors do not discriminate between the two distinct categories, simple segmental vs. superimposed mosaicism.11,13–15 Therefore, the purpose of the present review is to render readers familiar with pronounced mosaic cutaneous or extracutaneous lesions being superimposed on the ordinary, non-segmental phenotype. So far, this distinct type of mosaicism has been described as ‘type 2 segmental manifestation’12 or ‘type 2 segmental mosaicism’.9 However, because all superimposed mosaic lesions of autosomal dominant skin disorders including TSC display a segmental arrangement, the short term ‘superimposed mosaicism’ is proposed here as an appropriate designation.

Clinical features of suggesting superimposed mosaicism in TSC

These manifold segmental manifestations as noted in TSC have been described under various names. In fact, all of them can be subsumed under a single genetic term, superimposed mosaicism. With this concept in mind, the diverse pertinent designations will be considered in the following paragraphs.

Shagreen patch

Segmental patches of increased fibrous tissue, often associated with cobblestone-like surface, are a typical feature of TSC. These patches tend to involve the lumbar region (Fig. 2),16–18 but are also noted in other areas of the body. All sizeable patches of this kind can be best explained as superimposed mosaic lesions.

Forehead plaque

In 1987, Fryer et al.19 proposed this term for a lateralized, linear fibrous hamartoma involving the forehead (Fig. 3). Today, it is taken as a major diagnostic feature of TSC,20,21 but in principle it can be taken as a shagreen patch in a particular location.

Fibrous cephalic plaque

This name is presently used to describe the forehead plaque and similar segmental lesions involving other parts of the head including the scalp (Fig. 4).20,22–24 On the other hand, small papules or nodules of similar hamartomatous tissue22 reflect most likely disseminated mosaicism.9

Fibromatous lesion of the scalp

Under this term, Baykal et al.25 have documented large, soft lesions of the scalp showing scarce or no hair growth (Fig. 5). This is another name for fibrous cephalic plaques. Of note, the authors included small papular or nodular lesions that can be categorized as examples of disseminated mosaicism.9
Folliculocystic and collagen hamartoma

In 2012, this name was proposed by Torrelo et al.26 to delineate segmental lesions consisting of large infiltrated, tumour-like plaques that may involve all regions of the body. They are present at birth, and in time, they develop multiple comedones and cysts containing a draining keratinous or purulent material (Fig. 6).

Histopathologically, perifollicular fibrosis is a typical feature of this collagen hamartoma. The authors assumed that ‘at least some cases represent a type 2 segmental manifestation of TSC, superimposed on the usual features of the autosomal dominant disorder’.27 In the light of further publications on folliculocystic and collagen hamartoma,28–31 we can today conclude that all cases of this particular skin lesion reflect superimposed mosaicism. The disorder has preponderantly been found in male patients.26 At present, the male-to-female ratio is 8 : 2. – Under the term ‘fibrous hamartoma of infancy’, Han et al.32 described a 12 × 6.5 cm tumour of soft tissue that had rapidly grown on the abdominal wall of a 4-year-old boy with TSC. CT images and photographs of the excised tumour clearly show that this was a typical case of folliculocystic and collagen hamartoma avant la lettre. At the surface of the tumour, many comedones and a large follicular cyst were documented.

Segmental hypomelanosis

On rare occasions, patients with TSC may show segmental areas of hypomelanosis which can best be explained as a superimposed mosaic manifestation of the ordinary disseminated ash-leaf spots. Conspicuous examples have inadvertently been documented by Ortonne et al.33 and Jindal et al.34 Moreover, in a 9-month-old boy with bilateral disseminated ash-leaf spots, cerebro tubers and seizures, Selvaraj et al.35 described an unusually large ‘ash-leaf macule’ involving his left periocular region with ipsilateral cataract (Fig. 7). After vitrectomy, examination of the retina revealed two astrocytic hamartomas, whereas his right eye was found to be unaffected. This colocalization of cutaneous and intraocular features may likewise represent an example of superimposed mosaicism. In another case, Malissen et al.36 have shown that such large hypopigmented lesions can successfully be treated with topical sirolimus cream.
Congenital segmental lymphedema
So far, this anomaly has been documented in at least 13 children with TSC. Clinical features suggesting superimposed mosaicism include the presence at birth and strict lateralization of the disorder, ipsilateral aplasia of iliac or inguinal lymph nodes and the association with multiple aneurysms of ipsilateral large arteries.

Segmental ‘diffuse’ lipomatosis
This abnormality is characterized by hamartomatous growth of fatty tissue infiltrating the skin, subcutaneous tissue and muscles. The word ‘diffuse’ is ambiguous because all reported cases show a segmental arrangement. Another conspicuous example was photographically documented by Klein and Bar. In a 15-year-old boy, the right buttock and leg were diffusely enlarged without any lymphedema. A xeroradiograph showed focal lobular infiltrates of fatty tissue within the muscles. A skin biopsy showed lobules of fatty tissue infiltrating the reticular dermis.

Extracutaneous manifestations of superimposed mosaicism
The extracutaneous features of superimposed mosaicism in TSC and other autosomal dominant skin disorders have recently been reviewed. Contrasting with disseminated cerebral tubers, columnar cerebral defects radiating to the cortex suggest superimposed mosaicism (Fig. 10). Notably, the terms ‘radial migration lines’ or ‘cerebral white matter migration lines’ appear to be consistent with this genetic concept. Other extracutaneous features suggesting superimposed mosaicism include linear hamartomatous lesions of the tongue, segmental fibrous dysplasia of bones, including macrodactyly (Fig. 13) and unilateral occurrence of multiple arterial aneurysms in childhood. Moreover, unilateral overgrowth of a limb and ‘diffuse’ lipomatosis involving a leg or the thoracic wall could also be categorized among the extracutaneous manifestations of this particular form of mosaicism. – So far, the question cannot be settled whether some cases of unilateral giant renal angiomyolipoma may also reflect superimposed mosaicism, because a bilateral involvement is rather often reported.

Conclusive remarks
In TSC, molecular corroboration of this concept has been provided, so far, in two cases only. Tybusczy et al. documented compound heterozygosity for TSC2 mutations in a shagreen patch and in a forehead plaque of another patient. We should bear in mind, however, that in this disorder, the significance of such molecular analysis is rather limited because today we know that all of the disseminated, non-segmental lesions of TSC do likewise originate from second-hit events resulting in allelic loss, including facial angiofibromas, ash-leaf macules, cerebral tubers, subependymal giant cell astrocytomas and renal angiomyolipomas. And angiofibromas of patients with simple segmental TSC were also found to harbour biallelic
mutations.11 Hence, why should superimposed mosaic TSC lesions not result from the same genetic mechanism? The crucial difference is the point in time when the event of biallelic loss occurs. In superimposed mosaicism, it must happen rather early, during the first stages of embryonic development, whereas the ‘classic’ TSC lesions reflecting disseminated mosaicism can develop later during intrauterine or the entire postnatal life.

In the past, a case of superimposed mosaic TSC has erroneously been taken as a ‘forme fruste of Bourneville tuberous sclerosis’ by Garcia-Muret \textit{et al}.66 who described unilateral facial angiofibromas in an infant who later developed less pronounced contralateral facial lesions as well as a renal angiomyolipoma.27,67 Subsequently, this case was mistaken by two groups as an example of simple segmental TSC.13,14 Others have explained large shagreen patches as representing simple segmental mosaicism.68

Notably, superimposed mosaicism tends to occur in TSC far more often than simple segmental mosaicism.69 Such high degree of proclivity to develop superimposed mosaicism is also found in some other autosomal dominant skin disorders such as glomangiomatosis and the various types of porokeratosis.69

When elaborating this concept, it is not our intention to abolish the traditional names of TSC lesions as itemized above. Rather, we want to deepen the understanding of TSC and

\textbf{Figure 10} Columnar cerebral tuberous defect in tuberous sclerosis complex, suggesting superimposed mosaicism.59 (Reproduced with permission from Springer Nature, New York, USA).

\textbf{Figure 11} Radial migration line (arrow) as a tuberous sclerosis complex-specific brain abnormality.51 (Reproduced with permission from Springer Nature, New York, USA).

\textbf{Figure 12} Linear hamartoma of the tongue in a 17-year-old patient with tuberous sclerosis.52 (Reproduced with permission from BMJ Publishing Group Ltd., UK).

\textbf{Figure 13} (a/b) Macroductyly in an 11-year-old boy with tuberous sclerosis.57 (a) Clinical appearance; (b) X-ray shows irregular periosteal new bone formation (arrows) and cortical cysts (arrowhead). (Reproduced with permission from Springer Nature, New York, USA).
stimulate further research, by accumulating clinical examples suggesting superimposed mosaicism.

References

1. Li S, Takeuchi F, Wang JA et al. Mesenchymal-epithelial interactions involving epiregulin in tuberous sclerosis complex hamartomas. Proc Natl Acad Sci USA 2008; 105: 3539–3544.
2. Cao J, Tyburczy ME, Moss J et al. Tuberous sclerosis complex inactivation disrupts melanogenesis via mTORC1 activation. J Clin Invest 2017; 127: 349–364.
3. Crino PB, Aronica E, Balthg C, Nathanson KL. Biallelic TSC gene inactivation in tuberous sclerosis complex. Neurology 2010; 74: 1716–1723.
4. Sampson JR, Harris PC. The molecular genetics of tuberous sclerosis. Hum Mol Genet 1994; 3(suppl_1): 1477–1480.
5. Henske EP, Wessner LL, Golden J et al. Loss of tuberin in both subependymal giant cell astrocytomas and angiomyolipomas supports a two-hit model for the pathogenesis of tuberous sclerosis tumors. Am J Pathol 1997; 151: 1639–1647.
6. Chan JA, Zhang H, Roberts PS et al. Pathogenesis of tuberous sclerosis subependymal giant cell astrocytomas: biallelic inactivation of TSC1 or TSC2 leads to mTOR activation. J Neuropath Exp Neurol 2004; 63: 1236–1242.
7. Bongaarts A, Giannikou K, Reinten RJ et al. Subependymal giant cell astrocytomas in tuberous sclerosis complex have consistent TSC1/TSC2 biallelic inactivation, and no BRAF mutations. Oncotarget 2017; 8: 95516–95529.
8. Giannikou K, Malinowska IA, Pugh TJ et al. Whole exome sequencing identifies TSC1/TSC2 biallelic loss as the primary and sufficient driver event for renal angiomylipoma development. Plas Genet 2016; 12: e1006242.
9. Happle R. The categories of cutaneous mosaicism: a proposed classification. J Med Genet A 2016; 170A: 452–459.
10. Mashhood AA, Ajmaid M. Unilateral tuberous sclerosis complex. J Coll Physicians Surg Pak 2004; 14: 628–630.
11. Treichel AM, Hamieh L, Nathan NR et al. Phenotypic distinctions between mosaic forms of tuberous sclerosis complex. Genet Med 2019; 21: 2594–2604.
12. Happle R. A rule concerning the segmental manifestation of autosomal dominant skin disorders. Review of clinical examples providing evidence for dichotomous types of severity. Arch Dermatol 1997; 133: 1505–1509.
13. Camprubi M, Balague R, Azon Masoliver A et al. Unilateral facial angiofibromas; a review of the literature. Pediatr Dermatol 2006; 23: 303–305.
14. Borde-Gómez MT, Montequado-Sánchez B, Álvarez-Fernández JC. Angiofibromas faciales múltiples unilaterales: aportación de un nuevo caso [Multiple unilateral facial angiofibromas; description of a new case]. Actas Dermosifiliogr 2008; 99: 824–827. [Article in Spanish].
15. Mittal A, Vinay K, De D et al. Tuberous sclerosis complex and diffuse lipomatosis: case report of a rare association. Indian Dermatol Online J 2018; 9: 37–39.
16. Granata A, Mignani R. Nephrology image. Shagreen patch. Kidney Int 2009; 75: 1364.
17. Webb DW, Clarke A, Fryer A, Osborne JP. The cutaneous features of tuberous sclerosis: a population study. Br J Dermatol 1996; 135: 1–5.
18. Cammarata-Scalisi F, Vaides Moreno C, Stock F et al. Two novel mutations in the TSC2 gene causing severe phenotype in nervous system and skin in a patient with tuberous sclerosis complex. J Eur Acad Dermatol Venereol 2018; 32: e243–e245.
19. Fryer AE, Osborne JP, Schutt W. Forehead plaque: a presenting skin sign in tuberous sclerosis. Arch Dis Child 1987; 62: 92–93.
20. Teng JM, Cowen EW, Wataya-Kaneda M et al. Dermatologic and dental aspects of the 2012 International Tuberous Sclerosis Complex Consensus Statements. JAMA Dermatol 2014; 150: 1095–1001.
21. Nguyen Q-BD, DarCoute MD, Hebert AA. The cutaneous manifestations of tuberous sclerosis complex. Am J Med Genet Part C 2018; 178C: 321–325.
22. Oyerinde O, Buccine D, Treichel A et al. Fibrous cephalic plaques in tuberous sclerosis complex. J Am Acad Dermatol 2018; 78: 717–724.
23. Giacaman A, Martin-Santiago A. Fibrous cephalic plaque in tuberous sclerosis complex: treatment with 0.2% rapamycin. Actas Dermosifiliogr 2019; 110: e13.
24. Wu Q, Chen H, Elston DM. A firm plaque on the occipital scalp. JAMA Dermatol 2019; 155: 1071.
25. Boykal C, Tekturk P, Polat Ekinci A et al. Fibromatous lesion of the scalp: is it an underestimated sign of tuberous sclerosis? J Eur Acad Dermatol Venereol 2017; 31: e110–e112.
26. Torrelo A, Hadj-Rahia S, Colmenero I et al. Foliculocystic and collagen hamartoma of tuberous sclerosis complex. J Am Acad Dermatol 2012; 66: 617–621.
27. Happle R. Pourquoi les gênerodermes autosomiques dominantes ont-elles deux expressions segmentaires différentes? [Why do autosomal dominant genodermatoses have two different segmentary expressions?]. Ann Dermatol Venereol 2001; 128: 109–110. [French].
28. Reolil A, Navarro R, Dauden E et al. Foliculocystic and collagen hamartoma: a variant of fibrous cephalic plaque with prominent cyst formation? J Dtsch Dermatol Ges 2017; 19: 738–741.
29. An JM, Kim YS, Park YL, Lee S. Foliculocystic and collagen hamartoma: a new entity? J Eur Acad Dermatol Venereol 2015; 29: 593–596.
30. Brown MM, Walsh El, Yu L, Smidt AC. Progressive scalp plaque in a girl with tuberous sclerosis. Pediatr Dermatol 2014; 31: 249–250.
31. Kaplan L, Kazloukayva U, Ugöri R et al. Foliculocystic and collagen hamartoma of tuberous sclerosis: a new case in a female patient and review of literature. J Cutan Pathol 2018; 45: 67–70.
32. Han HJ, Lim GL, You CY. A large infiltrating fibrous hamartoma of infancy in the abdominal wall with rare associated tuberous sclerosis. Pediatr Radiol 2009; 39: 743–746.
33. Ortonne JP, Bahadoran P, Fitzpatrick TB et al. Hypomelanoses and hypermelanoses. In Freedberg IM, Eisen AZ, Wolff K, Austen KF, Goldsmith LA, Katz SI eds. Fitzpatrick’s Dermatology in General Medicine, 6th edn, McGraw-Hill, New York, 2003; 836–881.
34. Jindal R, Jain A, Gupta A, Shrazi N. Ash-leaf spots or naevoid depigmentation: a diagnostic challenge. BMJ Case Rep 2013; 2013. https://doi.org/10.1136/bcr-2012-007008
35. Selvaraj R, Kasturi N, Kumari P, Muralleedharan S. Unilateral cataract associated with congenital lymphedema: another unique and rare association. J Pediatr Ophthalmol Strabismus 2019; 56: NP54–NP57.
36. Malissen N, Vergely L, Simon M et al. Long-term treatment of cutaneous manifestations of tuberous sclerosis complex with topical 1% sirolimus cream: a prospective study of 25 patients. J Am Acad Dermatol 2017; 77: 464–472.
37. Hirsch RJ, Silverberg NB, Laude T, Weinberg JM. Tuberous sclerosis associated with congenital lymphedema. Pediatr Dermatol 1999; 16: 407–408.
38. Voudris KA, Skardoutouso A, Vagiakou EA. Tuberous sclerosis and congenital lymphedema. Pediatr Dermatol 2003; 20: 371–373.
39. Sukulak N, Namboodiri N. Congenital lymphedema: another unique and gender specific stigmata of tuberous sclerosis? Indian Pediatr 2012; 49: 845.
40. Navarre P, Poitas R. Lymphoedema in tuberous sclerosis: case report and review of the literature. J Pediatr Orthop 2014; 34: e27–e32.
41. Wiemer-Kruel A, Mayer H, Ewert P et al. Congenital lymphatic malformation and aortic aneurysm in a patient with TSC2 mutation. Neuropediatrics 2020; 51: 57–61.
42. Kaneshi Y, Shibasaki J, Aida N et al. Tuberous sclerosis and congenital lymphatic dysplasia with tuberous sclerosis complex: a case report. Pediatr Int 2020; 62: 234–236.
43. Prato G, Mancardi MM, Baglietto MG et al. Congenital segmental lymphedema in tuberous sclerosis complex with associated subependymal giant cell astrocytomas treated with mammalian target of rapamycin inhibitors. J Child Neurol 2014; 29: NP34–NP37.
Superimposed mosaicism in tuberous sclerosis

Hoshi S, Oguma E, Sato Y et al. Congenital focal lymphedema as a diagnostic clue to tuberous sclerosis complex: report of two cases diagnosed by ultrasound. *Skeletal Radiol* 2015; 44: 1165–1168.

Alcázar JD, Ramos R, Verdugo J. [Dorsal transthoracic diffuse lipomatosis in a patient with familial tuberous sclerosis]. *Arch Bronconeumol* 1998; 34: 468–469. [Article in Spanish].

Klein JA, Barr RJ. Diffuse lipomatosis and tuberous sclerosis. *Arch Dermatol* 1986; 122: 1298–1302.

Happle R. The concept of type 2 segmental mosaicism, expanding from dermatology to general medicine. *J Eur Acad Dermatol Venereol* 2013; 37: 1075–1088.

Overwater IE, Swenker R, van der Ende EL. Amin S, O’Callaghan FJ. Glossal hamartoma in tuberous sclerosis. *J Laryngol Otol* 2001; 115: 1160–1162.

Rovira A, Ruiz-Falcó ML, García-Esparza E et al. Recommendations for the radiological diagnosis and follow-up of neuropathological abnormalities associated with tuberous sclerosis complex. *J Neurooncol* 2014; 118: 203–223.

Griffiths PD, Bolton B, Verity C. White matter abnormalities in tuberous sclerosis complex. *Acta Radiol* 1998; 39: 482–486.

van Eeghen AM, Terán LO, Johnson J et al. The neuroanatomical phenotype of tuberous sclerosis complex: focus on radial migration lines. *Neuroradiology* 2013; 55: 1007–1014.

Overwater IE, Swenker R, van der Ende EL et al. Genotype and brain pathology phenotype in children with tuberous sclerosis complex. *Eur J Hum Genet* 2016; 24: 1688–1695.

Amin S, O’Callaghan FJ. Glossal hamartoma in tuberous sclerosis. *Arch Dis Child* 2013; 98: 161.

Itin PH, Buechner SA. Segmental forms of autosomal dominant skin disorders: the puzzle of mosaicism. *Am J Med Genet* 1999; 85: 351–354.

Wallace H, Davis A, Sp bedding A. Tongue-base hamartoma in tuberous sclerosis. *J Laryngol Otol* 2001; 115: 149–150.

Gross-Tsur V, Klar A, Gazit D, Shalev RS. Unique congenital features in tuberous sclerosis. *Clin Pediatr (Phila)* 1992; 31: 364–365.

Li P, Boronat S, Geoffrey AL et al. Rib and vertebral bone fibrous dysplasia in a child with tuberous sclerosis complex. *Am J Med Genet A* 2015; 167A: 2755–2757.

Tung HE, Shih SL. Tuberous sclerosis with rare presentation of macrodactyly. *Pediatr Radiol* 2009; 39: 878.

Ortonne JP, Jeune R, Fulton R, Thivolet J. Primary localized gigantism and tuberous sclerosis. *Arch Dermatol* 1982; 118: 877–878.

Taneja R, Singh DV. Giant renal angiomyolipoma: unusual cause of huge abdominal mass. *J Clin Imaging Sci* 2013; 3: 56.

Sohlberg E, Sun A, Massoudi R et al. Giant renal angiomyolipoma in a solitary kidney. *Can J Urol* 2018; 25: 9614–9616.

Fragkoulis C, Stasinopoulos K, Theocharis G et al. A rare case of giant renal angiomyolipoma in a woman with tuberous sclerosis. *Urol Case Rep* 2018; 20: 41–42.

Tidim G, Kilikcmez O, Culha MG. Recurrent, giant renal angiomyolipoma treated with selective arterial embolization: a case report. *Urol Int* 2019; 102: 364–366.

Wang L, Ni D, Zhong L, Wang J. Familial genetic tuberous sclerosis complex associated with bilateral giant renal angiomyolipoma: a case report. *Oncol Lett* 2017; 14: 7099–7106.

Carter D, Papps B, Brook NR. Disseminated intravascular coagulation after embolization to treat acutely bleeding bilateral massive angiomyolipoma: a case report. *J Endourol Case Rep* 2018; 4: 117–119.

Tyburczy ME, Wang JA, Li S et al. Sun exposure causes somatic second-hit mutations and angiofibroma development in tuberous sclerosis complex. *Hum Mol Genet* 2014; 23: 2023–2029.

García Muret MP, Pujol RM, de Moragas JM. [Multiple and unilateral angiofibromas of the face: forme fruste of Bourneville tuberous sclerosis]. *Ann Dermatol Venereol* 1998; 125: 325–327. [French].

García-Muret M, Pujol R. [Multiple unilateral angiofibromas of the face]. *Ann Dermatol Venereol* 2000; 127: 211. [French].

Wendt JR, Watson LR. Cosmetic treatment of shagreen patches in selected patients with tuberous sclerosis. *Plast Reconstr Surg* 1991; 87: 780–782.

Happle R. Mosaicism in Human Skin: Understanding Nevi, Neviod Skin Disorders, and Cutaneous Neoplasia, Springer, Berlin, 2014: 16–18.