Obstructions for partitioning into forests

Ringi Kim*12 and Sang-il Oum†§1,2

1Discrete Mathematics Group, Institute for Basic Science (IBS), Daejeon, Korea.
2Department of Mathematical Sciences, KAIST, Daejeon, Korea.

March 21, 2019

Abstract

For a class \mathcal{C} of graphs, we define \mathcal{C}-edge-brittleness of a graph G as the minimum ℓ such that the vertex set of G can be partitioned into sets inducing a subgraph in \mathcal{C} and there are ℓ edges having ends in distinct parts. We characterize classes of graphs having bounded \mathcal{C}-edge-brittleness for a class \mathcal{C} of forests or a class \mathcal{C} of graphs with no $K_4 \setminus e$ topological minors in terms of forbidden obstructions. We also define \mathcal{C}-vertex-brittleness of a graph G as the minimum ℓ such that the edge set of G can be partitioned into sets inducing a subgraph in \mathcal{C} and there are ℓ vertices incident with edges in distinct parts. We characterize classes of graphs having bounded \mathcal{C}-edge-brittleness for a class \mathcal{C} of forests in terms of forbidden obstructions.

1 Introduction

For a graph G, a subdivision of G is a graph obtained from G by replacing each edge of G with an internally disjoint path of length at least 1. For graphs G and H, we say H is a topological minor of G if G has a subgraph that is a subdivision of H. We say G is H-free, if no topological minor of G is isomorphic to H. For this paper, we call a class \mathcal{C} of graphs hereditary if \mathcal{C} is closed under taking topological minors.

*kimrg@kaist.ac.kr
†Supported by NRF-2018R1C1B6003786.
‡sangil@ibs.re.kr
§Supported by IBS-R029-C1.
Let C be a hereditary class of graphs. For a graph G, the C-edge-brittleness of G, denoted by $\eta_C(G)$, is the minimum integer ℓ such that there is a partition (V_1, V_2, \ldots, V_n) of $V(G)$ such that $G[V_i] \in C$ for all i and the number of edges having ends in distinct V_i’s is ℓ. It follows easily that $\eta_C(G)$ is the minimum number of edges of G whose deletion makes each component belong to C.

The aim of this paper is to study structures of graphs with large η_C. As will be shown later (Proposition 1.6), taking topological minors does not increase C-edge-brittleness. So it is a natural question to characterize hereditary classes of graphs having bounded η_C for various hereditary classes C of graphs.

For this question, we give affirmative answers when C is the class of forests or the class of diamond-free graphs. The acyclic edge-brittleness, denoted by η_a, is defined as η_C for the class C of forests. A diamond, denoted by D, is the graph obtained from K_4 by removing one edge, see Figure 1. The diamond-free edge-brittleness, denoted by η_d, is defined as η_C for the class C' of diamond-free graphs.

We write K_n and $K_{m,n}$ for the complete graph on n vertices and the complete bipartite graph on $m + n$ vertices partitioned into sets of m and n vertices. We write P_n to denote the path graph on n vertices. For graphs G and H, and a positive integer n, let $G + H$ be the disjoint union of G and H, and nG be the graph obtained by taking disjoint union of n copies of G. We denote by $\hat{n}D$ the graph obtained from nD by selecting one degree-2 vertex from each component and identifying all of them into one vertex, see Figure 3.

Our first theorem characterizes hereditary classes of graphs with bounded acyclic edge-brittleness.

Theorem 1.1. Let \mathcal{G} be a hereditary class of graphs. Then, \mathcal{G} has bounded η_a if and only if $\{K_3, 2K_3, 3K_3, \ldots\} \not\subseteq \mathcal{G}$, $\{K_1 + K_2, K_1 + 2K_2, K_1 + 3K_2, \ldots\} \not\subseteq \mathcal{G}$, and $\{K_{2,1}, K_{2,2}, K_{2,3}, \ldots\} \not\subseteq \mathcal{G}$.
Our second theorem characterizes hereditary classes of graphs with bounded diamond-free edge-brittleness.

Theorem 1.2. Let \(\mathcal{G} \) be a hereditary class of graphs. Then, \(\mathcal{G} \) has bounded \(\eta_d \) if and only if \(\{D, 2D, 3D, \ldots\} \not\subseteq \mathcal{G} \), \(\{K_1 + P_3, K_1 + 2P_3, K_1 + 3P_3, \ldots\} \not\subseteq \mathcal{G} \), \(\{K_2, 2K_2, 3K_2, \ldots\} \not\subseteq \mathcal{G} \) and \(\{\hat{D}, 2\hat{D}, 3\hat{D}, \ldots\} \not\subseteq \mathcal{G} \).

As corollaries of these theorems, we obtain the following Ramsey-type results as well.

Corollary 1.3. Let \(n \) be a positive integer.

- If a graph has sufficiently large acyclic edge-brittleness, then it contains a topological minor isomorphic to \(nK_3 \), \(K_1 + nK_2 \) or \(K_2, n \).

- If a graph has sufficiently large diamond-free edge-brittleness, then it contains a topological minor isomorphic to \(nD \), \(K_1 + nP_3 \), \(K_2, n \) or \(\hat{nD} \).

For the second part of this paper, we present an analogue of edge-brittleness for the partition of edges. We define the \(C \)-vertex-brittleness of \(G \), denoted by \(\kappa_C(G) \), as the minimum integer \(\ell \) such that there is a partition \((E_1, E_2, \ldots, E_n) \) of \(E(G) \) such that the subgraph of \(G \) induced by the edges in \(E_i \) belongs to \(C \) for each \(i \) and the number of vertices incident with edges in distinct \(E_i \)'s is \(\ell \).

The acyclic vertex-brittleness, denoted by \(\kappa_a \), is defined as the \(C \)-vertex-brittleness for the class \(C \) of forests. As the third theorem, we characterize all hereditary classes of graphs with bounded acyclic vertex-brittleness as follows.

Theorem 1.4. Let \(\mathcal{G} \) be a hereditary class of graphs. Then, \(\mathcal{G} \) has bounded \(\kappa_a \) if and only if \(\{K_3, 2K_3, 3K_3, \ldots\} \not\subseteq \mathcal{G} \) and \(\{K_1 + K_2, K_1 + 2K_2, K_1 + 3K_2, \ldots\} \not\subseteq \mathcal{G} \).

This also gives a Ramsey-type result for acyclic vertex-brittleness.

Corollary 1.5. Let \(n \) be a positive integer. If a graph has sufficiently large acyclic vertex-brittleness, then it has a topological minor isomorphic to \(nK_3 \) or \(K_1 + nK_2 \).
We finish this section with the proof that taking topological minors does not increase \mathcal{C}-edge-brittleness and \mathcal{C}-vertex-brittleness.

Proposition 1.6. Let \mathcal{C} be a hereditary class of graphs. If G' is a topological minor of a graph G, then

$$\eta_{\mathcal{C}}(G') \leq \eta_{\mathcal{C}}(G) \quad \text{and} \quad \kappa_{\mathcal{C}}(G') \leq \kappa_{\mathcal{C}}(G).$$

Proof. It is trivial if G' is a subgraph of G. So it is enough to prove this when G is a subdivision of G' obtained by subdividing one edge $e = uv$ of G' into a path uxv of length 2.

Let (V_1, V_2, \ldots, V_n) be a partition of $V(G)$ certifying $\eta_{\mathcal{C}}(G)$. Then $G[V_i] \in \mathcal{C}$. We may assume $x \in V_1$. Let $V'_1 = V_1 \setminus \{x\}$. If $u, v \in V_1$, then $G[V_1]$ is a subdivision of $G'[V_1']$ and so $G'[V_1'] \in \mathcal{C}$ as \mathcal{C} is hereditary. If $u \notin V_1$ or $v \notin V_1$, then $G'[V_1'] = G[V_1] \setminus x \in \mathcal{C}$. It is now straightforward to check in both cases that the partition (V'_1, V_2, \ldots, V_n) of $V(G')$ certifies that $\eta_{\mathcal{C}}(G') \leq \eta_{\mathcal{C}}(G)$.

For the second inequality, let (E_1, E_2, \ldots, E_n) be a partition of $E(G)$ certifying $\kappa_{\mathcal{C}}(G)$. Then the subgraph of G induced by E_i is in \mathcal{C} for each i. We may assume that $ux \in E_1$. If $xv \in E_1$, then let $E'_1 = (E_1 \setminus \{ux, xv\}) \cup \{e\}$ and then the subgraph of G' induced by E'_1 is still in \mathcal{C} because it is a topological minor of the subgraph of G induced by E_1. In this case, it is easy to see that the partition (E'_1, E_2, \ldots, E_n) certifies that $\kappa_{\mathcal{C}}(G') \leq \kappa_{\mathcal{C}}(G)$.

Thus we may assume that $xv \in E_2$. If u is not incident with edges in E_2, then let $E'_1 = (E_1 \setminus \{ux\})$, $E'_2 = (E_2 \setminus \{xv\}) \cup \{e\}$. Then clearly the subgraph of G' induced by each of E'_1 and E'_2 is in \mathcal{C} and therefore we can deduce easily that the partition $(E'_1, E'_2, \ldots, E_n)$ certifies that $\kappa_{\mathcal{C}}(G') \leq \kappa_{\mathcal{C}}(G)$. Thus we may assume that u is incident with an edge in E_2 and by symmetry, v is incident with an edge in E_1. Then both u and v have ends in distinct E_i's. Then $(E_1 \setminus \{ux\}, E_2 \setminus \{xv\}, E_3, \ldots, E_n, \{e\})$ certifies that $\kappa_{\mathcal{C}}(G') \leq \kappa_{\mathcal{C}}(G)$.

Proposition 1.6 does not necessarily hold if G' is a minor of G. For example, let G be the graph given in Figure 4 and let $G' = G/e$ for the edge e shown in the figure. Then $\eta_a(G) = 3$ witnessed by a partition $\{(w_1, w_2, w_3, v_1, v_2), \{v_2\}\}$ but $\eta_a(G/e) = 4$. It is also easy to see that $\kappa_a(G) = 2$ and $\kappa_a(G/e) = 3$.

This paper is organized as follows. Section 2 discusses edge-brittleness and proves Theorems 1.1 and 1.2. Section 3 discusses acyclic vertex-brittleness, proving Theorem 1.4.
2 Bounded edge-brittleness

In this section, we prove Theorem 1.1 and Theorem 1.2. We will use the following theorem of Erdős and Pósa [1].

Theorem 2.1 (Erdős and Pósa [1]). For a positive integer \(k\), there exists a function \(f_a(k) = O(k \log k)\) such that every graph \(G\) contains \(k\) vertex-disjoint cycles or \(G\) has a vertex set \(X\) of at most \(f_a(k)\) vertices such that \(G \setminus X\) has no cycles.

This has been generalized to minors by Robertson and Seymour [2]. We say a graph \(H\) has the Erdős-Pósa property if there is a function \(f : \mathbb{N} \rightarrow \mathbb{N}\) such that for every graph \(G\) and \(k \in \mathbb{N}\), \(G\) contains either \(k\) disjoint \(H\)-minors or a set \(X\) of vertices with \(|X| \leq f(k)\) such that \(G \setminus X\) has no minor isomorphic to \(H\).

Theorem 2.2 (Robertson and Seymour [2]). A graph \(H\) has the Erdős-Pósa property if and only if \(H\) is planar.

Since the diamond graph \(D\) is planar and has maximum degree 3, we deduce the following corollary.

Corollary 2.3. For a positive integer \(k\), there exists a function \(f_d(k)\) such that every graph \(G\) contains \(k\) vertex-disjoint subgraphs, each of which is isomorphic to a subdivision of the diamond graph \(D\), or has a vertex set \(X\) of at most \(f_d(k)\) vertices such that \(G \setminus X\) has no subdivision of \(D\) as a subgraph.

We will use these functions \(f_a\) and \(f_d\) later in the proofs.

Let \(G\) be a graph and let \(X\) be a set of vertices of \(G\). A vertex \(v\) is a neighbor of \(X\), if \(v\) has a neighbor in \(X\). A star \(S\) is a graph isomorphic to \(K_{1,n}\) for some \(n \geq 1\). If \(n \geq 2\), then the center of \(S\) is defined as the unique vertex of degree at least two. If \(n = 1\), then we fix one vertex of \(S\) as its center, so that every star contains exactly one center. A leaf of a tree is a vertex of degree 1. We remark that a one-edge graph is a star with one
center and two leaves. A subdivided X-star is a subgraph S' of G isomorphic to a subdivision of a star S where every leaf belongs to X. We denote by $c(S')$ the center of S, and by $L(S')$ the set of leaves of S.

Lemma 2.4. Let $n \geq 2$, k and m be positive integers. Let T be a tree and X be a subset of $V(T)$ with $|X| \geq k + (m - 1)(n - 2)(k - 1) + (m - 1)$. Then, T contains either

- a subdivided X-star with at least n leaves, or
- m vertex-disjoint subtrees of T each containing at least k vertices in X.

Proof. We use induction on $m + |V(T)|$. If $m = 1$, then the statement trivially follows since T itself contains at least k vertices in X.

Let $m > 1$. If $k = 1$, then $|X| \geq m$ and each vertex in X forms a subtree of T containing one vertex in X, so the second statement trivially holds. Now, we assume that $k \geq 2$. If T contains a leaf ℓ which is not in X, then we are done by applying the induction hypothesis to $T \setminus \ell$. So we may assume that every leaf of T belongs to X. If T contains a vertex v with degree at least n, then T contains a subdivided X-star with center v and at least n leaves, so we may further assume that T has maximum degree less than n.

Let T' be the subgraph of T induced by the set of edges $e = uv$ where each component of $T \setminus e$ contains at least k vertices in X. Clearly, T' is a proper subgraph of T because every edge incident with a leaf in T is not contained in T'. Furthermore, T' has at least one edge. If not, then every edge uv can be oriented so that uv is oriented towards v if the component of $T \setminus uv$ containing u has less than k vertices in X. Since $|E(T)| < |V(T)|$, T has a vertex w that is a sink in this orientation. Now the degree of w is at most $n - 1$ and therefore

\[
|X| \leq (n - 1)(k - 1) + 1
\]

\[
< k + (n - 2)(k - 1) + 1 \leq k + (m - 1)(n - 2)(k - 1) + (m - 1),
\]

contradicting the assumption on $|X|$.

Thus, there exists a leaf v of T'. Let u be the neighbor of v in T', and C be the component of $T \setminus uv$ containing v. By the definition of T', C contains at least k vertices in X.

We know that each component of $C \setminus v$ contains less than k vertices in X, since every edge in C incident with v does not belong to $E(T')$. As T has maximum degree at most $n - 1$, it follows that C contains at
most \((n - 2)(k - 1) + 1\) vertices in \(X\). Hence, \(T \setminus V(C)\) contains at least \(k + (m - 2)(n - 2)(k - 1) + (m - 2)\) vertices in \(X\), and by the induction hypothesis, either there is a subdivided \(X\)-star in \(T \setminus V(C)\) with at least \(n\) leaves, or \((m - 1)\) vertex-disjoint subtrees of \(T \setminus V(C)\) each containing at least \(k\) vertices in \(X\). If the second case happens, then since \(C\) is vertex-disjoint from \(T \setminus V(C)\) and contains at least \(k\) vertices in \(X\), we obtain desired \(m\) vertex-disjoint subtrees of \(T\). This completes the proof.

2.1 Bounded acyclic edge-brittleness

First let us see some examples of graphs having unbounded acyclic edge-brittleness.

Lemma 2.5. Let \(n \geq 2\) be an integer.

(i) \(\eta_a(nK_3) = 2n\).

(ii) \(\eta_a(K_1 + nK_2) = 2n\).

(iii) \(\eta_a(K_{2,n}) = n\).

Proof. (i): It is easy to see that \(\eta_a(nK_3) \leq 2n\). For the lower bound, suppose that \((V_1, V_2, \ldots, V_k)\) is a partition of \(V(nK_3)\). Each \(K_3\) has at least two edges having ends in distinct \(V_i\)'s and therefore there are at least \(2n\) edges having ends in distinct \(V_i\)'s. Therefore \(\eta_a(nK_3) \geq 2n\).

(ii): Suppose \((V_1, V_2, \ldots, V_k)\) is a partition of \(V(K_1 + nK_2)\), each part inducing a forest. We may assume that the vertex \(v\) from \(K_1\) is in \(V_1\). Then each triangle containing \(v\) must have exactly two edges having one end in \(V_1\) and another end not in \(V_1\). So, the number of edges of \(K_1 + nK_2\) between \(V_1\) and \(\bigcup_{i=2}^{k} V_i\) is at least \(2n\). Therefore, \(\eta_a(K_1 + nK_2) \geq 2n\). It is easy to see that \(\eta_a(K_1 + nK_2) \leq 2n\).

(iii): Let \((A, B)\) be the bipartition of \(K_{2,n}\) where \(A = \{u, v\}\) and \(|B| = n\). Suppose \((V_1, V_2, \ldots, V_k)\) is a partition of \(V(K_{2,n})\). We may assume that \(u\) is in \(V_1\). We claim that the number of edges of \(K_{2,n}\) between \(V_1\) and \(\bigcup_{i=2}^{k} V_i\) is at least \(n\), which implies \(\eta_a(K_{2,n}) \geq n\). If \(v\) is in \(V_1\), then there is at most one vertex in \(B\) contained in \(V_1\), and there are at least \(2(n - 1) (\geq n)\) edges having one end in \(V_1\) and the other end not in \(V_1\). So, we may assume \(v \notin V_1\), and without loss of generality, let \(v \in V_2\). Then for each vertex \(w\) in \(B\), either \(uw\) or \(vw\) has exactly one end in \(V_1\). So, \(\eta_a(K_{2,n}) \geq n\). It is easy to see that \(\eta_a(K_{2,n}) \leq n\).
Theorem 1.1. Let G be a hereditary class of graphs. Then, G has bounded η_a if and only if $\{K_3, 2K_3, 3K_3, \ldots \} \not\subset G$, $\{K_1 + K_2, K_1 + 2K_2, K_1 + 3K_2, \ldots \} \not\subset G$, and $\{K_{2,1}, K_{2,2}, K_{2,3}, \ldots \} \not\subset G$.

Proof. By Lemma 2.5, for $n \geq 2$, nK_3, $K_1 + nK_2$, and $K_{2,n}$ have η_a at least n. Thus, the forward implication holds.

For the backward implication, we claim that for every integer $n \geq 3$, if a graph G has no topological minor isomorphic to nK_3, $K_1 + nK_2$, or $K_{2,n}$, then $\eta_a(G)$ is at most $(p + 1)p^2n^3/2$ where $p = f_a(n)$ for the function f_a in Theorem 2.1.

We may assume that no component C of G is a tree because otherwise $\eta_a(G \setminus V(C)) = \eta_a(G)$ and so we can simply delete C from G. Since G has no n vertex-disjoint cycles, there exists a set U of vertices of G with $|U| \leq p$ such that $G \setminus U$ has no cycles by Theorem 2.1.

(1) For every component C of $G \setminus U$, each vertex u in U has at most $(n-1)^2+1$ neighbors in C.

Suppose not. We prove that G contains $K_{2,n}$ or $K_1 + nK_2$ as a topological minor, which leads a contradiction. Let X be the set of all neighbors of u in $V(C)$. Since C is a tree and $|X| \geq (n-1)^2+2$, we can apply Lemma 2.4 to C and X with $m = n$ and $k = 2$. Then, we obtain either a subdivided X-star S with at least n leaves, or n vertex-disjoint subtrees, each containing at least 2 vertices in X. In the first case, $V(S) \cup \{u\}$ induces a subgraph of G containing a $K_{2,n}$-topological minor. In the second case, in each subtree, we take a path with both ends in X and no interior vertex in X. (It is possible since each subtree contains at least 2 vertices in X.) Then, these n paths and u induce a subgraph of G containing a $K_1 + nK_2$-topological minor. This proves (1).

We divide components of $G \setminus U$ into three sets C_1, C_2, C_3. For each component C of $G \setminus U$,

- $C \in C_1$ if and only if $V(C)$ has at least two neighbors in U,
- $C \in C_2$ if and only if $V(C)$ has exactly one neighbor in U, say u, and u has at least two neighbors in $V(C)$, and
- $C \in C_3$ if and only if $V(C)$ has exactly one neighbor in U, say u, and u has exactly one neighbor in $V(C)$.

Since no component of G is a tree, every component of $G \setminus U$ has a neighbor in U. So, this clearly partitions the set of components of $G \setminus U$. Let $q_i = |C_i|$ for $i = 1, 2, 3$.

8
(2) $q_1 \leq (n - 1)\binom{p}{2}$.

Suppose $q_1 > (n - 1)\binom{p}{2}$. Since each component in C_1 has at least two neighbors in U, and $|U| \leq p$, the pigeonhole principle implies that there exist $C_1, C_2, \ldots, C_n \in C_1$ and $u_1, u_2 \in U$ such that both u_1 and u_2 are neighbors of $V(C_i)$ for $i = 1, 2, \ldots, n$. For $i = 1, 2, \ldots, n$, let P_i be a path of length at least 2 in G with ends u_1 and u_2 and all interior vertices in $V(C_i)$. By the definitions, we know the existence of such a path P_i. Since these n paths are internally disjoint, it follows that the union of them is a subdivision of $K_{2,n}$, which leads a contradiction. So, $q_1 \leq (n - 1)\binom{p}{2}$.

(3) $q_2 \leq (n - 1)p$.

If $q_2 > (n - 1)p$, then the pigeonhole principle implies that there exists a vertex u in U such that there are n components in C_2 having at least two neighbors of u. That would mean that G has a topological minor isomorphic to $K_1 + nK_2$, leading a contradiction. This prove (3).

For each $u \in U$, let $V_u = \{u\} \cup \left(\bigcup_{C \in C_3} \text{a neighbor of } u \text{ in } V(C)\right)$. By the definition of C_3, the sets V_u for $u \in U$ are disjoint. Now we consider the partition $\mathcal{P} = \{V(C) \mid C \in C \cup C_2\} \cup \{V_u \mid u \in U\}$. We claim that this partition gives $\eta_\mathcal{P}(G) \leq (p + 1)p^2n^3/2$.

Let e be an edge of G joining two distinct parts of \mathcal{P}. Then, e joins two vertices in U, or a vertex in U and some component in $C \cup C_2$. Since G is simple, there are at most $\binom{p}{2}$ edges with both ends in U. Furthermore, by (1), (2) and (3), we know that the number of edges between U and $\bigcup_{C \in C_3} V(C)$ is at most $p(n - 1)\binom{p}{2}(\frac{n(n - 1)^2}{2}) + 1$, and the number of edges joining U and $\bigcup_{C \in C_2} V(C)$ is at most $p(n - 1)p((n - 1)^2 + 1)$. Therefore, the number of edges of G joining two distinct parts of \mathcal{P} is at most

$$\binom{p}{2} + p(n - 1)\binom{p}{2}(\frac{n(n - 1)^2}{2}) + p(n - 1)p((n - 1)^2 + 1) \leq \frac{(p + 1)p^2n^3}{2}.$$

This completes the proof. □

2.2 Bounded diamond-free edge-brittleness

In this subsection, we prove Theorem 1.2.

Theorem 1.2. Let \mathcal{G} be a hereditary class of graphs. Then, \mathcal{G} has bounded η_d if and only if $\{D, 2D, 3D, \ldots\} \nsubseteq \mathcal{G}$, $\{K_{1+P_3}, K_{1+2P_3}, K_{1+3P_3}, \ldots\} \nsubseteq \mathcal{G}$, $\{K_{2,1}, K_{2,2}, K_{2,3}, \ldots\} \nsubseteq \mathcal{G}$ and $\{\hat{D}, 2\hat{D}, 3\hat{D}, \ldots\} \nsubseteq \mathcal{G}$.

9
The proof is similar to that of Theorem 1.1.

Proof. Similar to Lemma 2.5, we can show that for every positive integer n, the graphs nD, $K_1 + nP_3$, and nD have diamond-free edge-brittleness at least $2n$, and for every integer $n \geq 4$, $K_{2,n}$ has diamond-free edge-brittleness at least n. So, the forward implication follows.

We prove the backward implication. Let f_d be the function defined in Corollary 2.3. We claim that for every integer $n \geq 3$, if a graph G has no topological minor isomorphic to nD, $K_1 + nP_3$, $K_{2,n}$ or $\hat{n}D$, then $\eta_d(G)$ is at most $n^3m^2(m + 3)$ where $m = f_d(n)$.

We may assume that every component of G contains a subdivision of D. By the definition of f_d, there exists $U \subseteq V(G)$ with $|U| \leq m$ such that $G \setminus U$ is D-free.

Let C be the set of components of $G \setminus U$.

(1) For each vertex $u \in U$, every component $C \in C$ contains at most $(2n - 3)(n - 1) + 2$ neighbors of u.

Suppose u has more than $(2n - 3)(n - 1) + 2$ neighbors in $V(C)$. Let X be the set of neighbors of u in $V(C)$. Let S be a spanning tree of C. By Lemma 2.4 with $m = n$ and $k = 3$, there exist a subdivided X-star with at least n leaves, or n vertex-disjoint subtrees S_1, S_2, \ldots, S_n of S each containing at least 3 vertices in X. In the first case, G contains a subdivision of $K_{2,n}$. In the second case, for $i = 1, 2, \ldots, n$, let $v_{i,1}, v_{i,2}, v_{i,3}$ be three neighbors of u in $V(S_i)$. Since S_i is connected, there exists a vertex $v_i \in V(S_i)$ such that three paths from v_i to $v_{i,1}, v_{i,2}, v_{i,3}$ are mutually edge-disjoint. (We regard a one-vertex graph as a path of length zero.) This implies that the three paths together with $\{uv_{i,1}, uv_{i,2}, uv_{i,3}\}$ form a subdivision of D, where u corresponds to a vertex of degree three in the subdivision of D. Hence, G contains a $K_1 + nP_3$-topological minor, which is a contradiction. This proves (1).

We partition C into four sets C_1, C_2, C_3 and C_4 as follows: for each $C \in C$,

- $C \in C_1$ if and only if $V(C)$ has at least two neighbors in U,
- $C \in C_2$ if and only if $V(C)$ has exactly one neighbor in U, say u, and u has at least three neighbors in $V(C)$,
- $C \in C_3$ if and only if $V(C)$ has exactly one neighbor in U, say u, u has at most two neighbors in $V(C)$ and $\{u\} \cup V(C)$ induces a subgraph of G containing a subdivision of D, and
- $C \in C_4$ if and only if $V(C)$ has no neighbors in U.
- $C \in \mathcal{C}_4$ otherwise.

Clearly, this partitions \mathcal{C}.

(2) $|\mathcal{C}_1| \leq (n-1)\binom{m}{2}$.

Suppose $|\mathcal{C}_1| > (n-1)\binom{m}{2}$. Then, by the pigeonhole principle, there exist $u_1, u_2 \in U$ and $C_1, C_2, \ldots, C_n \in \mathcal{C}_1$ such that both u_1 and u_2 have neighbors in $V(C_i)$ for $i = 1, 2, \ldots, n$. For each $i = 1, 2, \ldots, n$, let P_i be a path of G joining u_1 and u_2 of length at least two where every internal vertex belongs to $V(C_i)$. Then, the union $\bigcup_{i=1,\ldots,n} P_i$ forms a subdivision of $K_{2,n}$, a contradiction. This proves (2).

(3) $|\mathcal{C}_2| \leq (n-1)m$.

Suppose not. Then, there exist $u \in U$ and $C_1, C_2, \ldots, C_n \in \mathcal{C}_2$ such that u has at least three neighbors in $V(C_i)$ for each $i = 1, 2, \ldots, n$. Then, by the same argument of the proof of (1), G contains a subdivision of $K_1 + nP_3$, a contradiction.

(4) $|\mathcal{C}_3| \leq (n-1)m$.

Suppose not. Then, there exist $u \in U$ and $C_1, C_2, \ldots, C_n \in \mathcal{C}_3$ such that for each $i = 1, 2, \ldots, n$, adding u and all edges of G between u and $V(C_i)$ to C_i produces a subgraph D_i that is a subdivision of D. Since C_i is D-free, D_i must contain u, and u must have degree 2 in D_i by the assumption of \mathcal{C}_3. This implies that the union of D_1, D_2, \ldots, D_n forms a subdivision of \hat{nD} in G, a contradiction.

Note that for each $C \in \mathcal{C}_4$, $V(C)$ has exactly one neighbor in U, say u, and u has at most two neighbors in $V(C)$, and furthermore, $\{u\} \cup V(C)$ induces a D-free subgraph of G. For each $u \in U$, let \mathcal{J}_u be the set of components C in \mathcal{C}_4 such that u has a neighbor in $V(C)$. Clearly, $\{u\} \cup \bigcup_{C \in \mathcal{J}_u} V(C)$ induces a D-free subgraph in G. Now we consider the partition $\mathcal{P} = \{\{u\} \cup \bigcup_{C \in \mathcal{J}_u} V(C) \mid u \in U\} \cup \{V(C) \mid C \in \mathcal{C}_1 \cup \mathcal{C}_2 \cup \mathcal{C}_3\}$. By the definition, each component of $G \setminus U$ is D-free, and as we mentioned above, $\{u\} \cup \bigcup_{C \in \mathcal{J}_u} V(C)$ induces a D-free subgraph. Hence, each part of \mathcal{P} induces a D-free subgraph of G.

We claim that the number of edges joining two distinct parts of \mathcal{P} is at most $n^3m^2(m + 3)$.

11
We count edges e of G joining two distinct parts of \mathcal{P}. There are two cases to consider:

- e joins two vertices in U.
- e joins U and some component in $C_1 \cup C_2 \cup C_3$.

In the first case, there are at most $\binom{m}{2}$ edges of G joining two vertices in U. In the second case, by (2), (3) and (4), there are at most $(n - 1)\binom{m}{2} + (n - 1)m + (n - 1)m = \frac{(n-1)m(m+3)}{2}$ components in $C_1 \cup C_2 \cup C_3$. So by (1), there are at most $(2n - 3)(n - 1) + 2 \cdot m \cdot \frac{(n-1)m(m+3)}{2} \leq n^2(n - 1)m^2(m + 3)$ edges of G joining U and some component in $C_1 \cup C_2 \cup C_3$. Therefore, the number of edges of G joining two distinct parts of \mathcal{P} is at most

$$\binom{m}{2} + n^2(n - 1)m^2(m + 3) \leq n^3m^2(m + 3),$$

which implies that $\eta_d(G) \leq n^3m^2(m + 3)$. This proves Theorem 1.2. □

3 Bounded acyclic vertex-brittleness

We will now discuss acyclic vertex-brittleness. First let us state a useful lemma.

Lemma 3.1. Let T be a tree and X be a subset of $V(T)$ with $|X| \geq 2$. Then, there are vertex-disjoint subdivided X-stars S_1, S_2, \ldots, S_m in T such that every vertex in X is a center or a leaf of S_i for some i.

Proof. We proceed by induction on $|X| + |E(T)|$. If $|X| = 2$ or $|X| = 3$, then there is a subdivided X-star S with $X \subseteq \{c(S)\} \cup L(S)$, so we are done.

Suppose $|X| > 3$. If T has a leaf not in X, say ℓ, then we can apply the induction hypothesis to $T \setminus \ell$. So, we may assume that every leaf of T belongs to X. We may further assume that for every edge $e \in E(T)$, there is a component of $T \setminus e$ containing at most one vertex in X, since otherwise, we can apply the induction hypothesis to each component. So, T is not a path because $|X| \geq 4$. This means that there exists a vertex of T with degree at least three. Indeed, such a vertex uniquely exists, since otherwise, each of the two components of $T \setminus e$, where e is in a path of T connecting two vertices of degree at least three, contains at least two vertices in X, a contradiction. Let c be the vertex of T with degree at least three. Let u be a neighbor of c. Because the degree of c is at least three, the component of $T \setminus cu$ containing c has at least two vertices in X. Hence, no vertex of degree
two belongs to X. This completes the proof because T itself is a subdivided X-star such that $X \subseteq \{c(T)\} \cup L(T)$.

By properly extending S_1, S_2, \ldots, S_m in Lemma 3.1, we can cover all edges of T by edge-disjoint subtrees T_1, T_2, \ldots, T_m where T_i contains S_i for $i = 1, 2, \ldots, m$. Then, we obtain the following lemma.

Lemma 3.2. Let T be a tree, X be a subset of $V(T)$ with $|X| \geq 2$. Then, there are edge-disjoint subtrees T_1, T_2, \ldots, T_m covering all edges of T, a partition (X_1, X_2, \ldots, X_m) of X, and vertex-disjoint subdivided X-stars S_1, S_2, \ldots, S_m such that for $i = 1, 2, \ldots, m$,

- $X_i \subseteq V(S_i) \subseteq V(T_i)$ and $|X_i| \geq 2$, and
- every vertex in X_i is a center or a leaf of S_i.

Before proving Theorem 1.4, we first consider a simple case that $V(G)$ can be partitioned into U and V where U is independent and V induces a tree.

Lemma 3.3. Let G be a graph with $V(G) = U \cup V$ where U is an independent set, and $G[V]$ is a tree. Suppose $|U| = m$ and G is $K_1 + nK_2$-free. Then, $\kappa_a(G) \leq 2m(n - 1)$.

Proof. We may assume that G has no isolated vertices. We may also assume that no vertex in U has degree one, since otherwise, we move such a vertex to V. So, every vertex in U has at least two neighbors in V. If $U = \emptyset$, then G is a tree, and $\kappa_a(G) = 0 \leq 2m(n - 1)$. So, we assume $U \neq \emptyset$.

Let $T = G[V]$. For $u \in U$, let X_u be the set of neighbors of u in V. Since $|X_u| \geq 2$, Lemma 3.2 implies that there exist edge-disjoint subtrees $T_{u,1}, T_{u,2}, \ldots, T_{u,k_u}$ of T covering all edges of T, a partition $(X_{u,1}, X_{u,2}, \ldots, X_{u,k_u})$ of X_u and vertex-disjoint subdivided X_u-stars $S_{u,1}, \ldots, S_{u,k_u}$ in T satisfying the conditions in Lemma 3.2.

For $i = 1, 2, \ldots, k_u$, since $|X_{u,i}| \geq 2$, it follows that $V(S_{u,i}) \cup \{u\}$ induces a subgraph of G containing a cycle. This means that $\{u\} \cup \bigcup_{i=1,2,\ldots, k_u} V(S_{u,i})$ induces a subgraph of G containing a $K_1 + k_uK_2$-topological minor because $S_{u,1}, \ldots, S_{u,k_u}$ are vertex-disjoint. By the assumption that G is $K_1 + nK_2$-free, we know that $k_u < n$. Let I_u be the subset of $V(T)$ consisting of

- all centers of the subdivided X_u-stars $S_{u,1}, \ldots, S_{u,k_u}$, and
- all vertices of T contained in at least two subtrees of $T_{u,1}, T_{u,2}, \ldots, T_{u,k_u}$.
Since \(k_u \leq n - 1 \), we have \(|I_u| \leq k_u + (k_u - 1) \leq 2n - 3 \).

Let \(I = \bigcup_{u \in U} I_u \). We remark that \(|I| \leq m(2n - 3) \). Let \(T_1, T_2, \ldots, T_s \) be the collection of all maximal subtrees of \(T \) having no internal vertex in \(I \).

We claim that for each \(u \in U \), it has at most one neighbor in \(V(T_i) \setminus I \).

Suppose \(u \) is adjacent to two vertices \(v_1, v_2 \in V(T_i) \setminus I \). Let \(P \) be the path between \(v_1 \) and \(v_2 \). Since \(v_1, v_2 \notin I \) and every interior vertex of \(P \) is an interior vertex of \(T_i \), every vertex of \(P \) is not contained in \(I \), in particular, not contained in \(I_u \). This means that \(P \) is a path of some subtree \(T_{u,j} \), \(v_1, v_2 \in X_{u,j} \) and \(T_{u,j} \) contains a subdivided \(X_{u,j} \)-star with center \(c_{u,j} \). Because \(v_1, v_2 \in X_{u,j} \), \(c_{u,j} \) is contained in \(P \), that is, \(P \) contains a vertex in \(I \), which leads a contradiction. Hence, \(u \) has at most one neighbor in \(V(T_i) \setminus I \).

For \(i = 1, 2, \ldots, s \), let \(E_i \) be the union of \(E(T_i) \) and the edges between \(U \) and \(V(T_i) \setminus I \). By the above claim, we know that \(E_i \) induces a tree in \(G \). For each \(v \in I \), let \(E_v \) be the set of edges joining \(v \) and \(U \). We consider the partition \(\mathcal{P} = \{E_j \mid j = 1, 2, \ldots, s\} \cup \{E_v \mid v \in I\} \). Clearly, this partitions \(E(G) \), and each part induces a tree. If \(v \in V(G) \) is incident with edges in distinct parts of \(\mathcal{P} \), then \(v \) is contained in \(U \) or \(I \). Because \(|U| + |I| \leq m + m(2n - 3) = 2m(n - 1) \), it follows that \(\kappa_a(G) \leq 2m(n - 1) \). This completes the proof.

Now we prove Theorem 1.4.

Theorem 1.4. Let \(\mathcal{G} \) be a hereditary class of graphs. Then, \(\mathcal{G} \) has bounded \(\kappa_a \) if and only if \(\{K_3, 2K_3, 3K_3, \ldots\} \not\subseteq \mathcal{G} \) and \(\{K_1 + K_2, K_1 + 2K_2, K_1 + 3K_2, \ldots\} \not\subseteq \mathcal{G} \).

Proof. Similar to Lemma 2.5, we can show that \(\kappa_a(nK_3) = 2n \) and \(\kappa_a(K_1 + nK_2) = n + 1 \). So the forward implication follows.

For the backward implication, we claim that for every positive integer \(n \), every graph \(G \) with no topological minor isomorphic to \(nK_3 \) or \(K_1 + nK_2 \) has \(\kappa_a \) at most \(2m^2n^2 \) where \(m = f_a(n) \) for the function \(f_a \) in Theorem 2.1.

Since \(G \) has no topological minor isomorphic to \(nK_3 \), \(G \) has no \(n \) vertex-disjoint cycles and therefore by Theorem 2.1 there exists a set \(U \) of vertices of \(G \) with \(|U| \leq m \) such that \(G \setminus U \) is a forest.

We may assume that no component \(C \) of \(G \) is a tree because otherwise \(\kappa_a(G \setminus V(C)) = \kappa_a(G) \) and so we can simply delete \(C \) from \(G \).

Let \(C_1, C_2, \ldots, C_p \) be the components of \(G \setminus U \) each having at least two neighbors of some vertex in \(U \), and \(D_1, D_2, \ldots, D_q \) be the other components of \(G \setminus U \). By the pigeonhole principle, if \(p > m(n - 1) \), then \(G \) contains a subdivision of \(K_1 + nK_2 \), a contradiction. So, \(p \leq m(n - 1) \).
For $1 \leq i \leq p$, let G_i be the subgraph of G induced by the set of edges with at least one end in $V(C_i)$. Since $V(G_i) \setminus V(C_i)$ is an independent set of size at most m in G_i, Lemma 3.3 implies that there is a partition P_i of $E(G_i)$, each part inducing a tree, which gives $\kappa_a(G_i) \leq 2m(n-1)$. For $i = 1, 2, \ldots, q$, let E_i be the set of all edges with at least one end in $V(D_i)$.

We consider the partition $P = \bigcup_{i=1,2,\ldots,p} P_i \cup \{E_1, E_2, \ldots, E_q\} \cup \{\{e\} | e \in E(G[U])\}$. Obviously, each part of P induces a tree. We claim that P gives $\kappa_a(G) \leq 2m^2n^2$. Note that every vertex in $V(D_i)$ is incident with only edges in E_i. For $i = 1, 2, \ldots, q$, if a vertex in $V(C_i)$ meets at least two parts of P, then it meets at least two parts of P_i. So by the construction of P_i, there are at most $2m(n-1)$ such vertices in $V(C_i)$. Therefore, the number of vertices meeting at least two parts of P is at most $|U| + 2m(n-1)p \leq m + 2m^2(n-1)^2 \leq 2m^2n^2$. This completes the proof.

References

[1] P. Erdős and L. Pósa. On independent circuits contained in a graph. Canad. J. Math., 17:347–352, 1965.

[2] N. Robertson and P. Seymour. Graph minors. V. Excluding a planar graph. J. Combin. Theory Ser. B, 41(1):92–114, 1986.