Virtual screening of a MDR-TB WhiB6 target identified by gene expression profiling

Mahalakshmi Vijayaraj, PA Abhinand & PK Ragunath*

Department of Bioinformatics, Faculty of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research (Deemed to Be University) Porur, Chennai – 600116; PK Ragunath- E-mail: hod.bioinformatics@sriramachandra.edu.in, *Corresponding author

Received July 27, 2019; Accepted August 14, 2019; Published September 5, 2019

DOI: 10.6026/97320630015557

Abstract:
Multidrug resistance in M. tb has become a huge global problem due to drug resistance. Hence, the treatment remains a challenge, even though short term chemotherapy is available. Therefore, it is of interest to identify novel drug targets in M.tb through gene expression profiling complimented by a subtractive proteome model. WhiB6 is a transcriptional regulator protein and a known drug resistant marker that is critical in the secretion dependent regulation of ESX-1, which is specialized for the deployment of host membrane-targeting proteins. The WhiB6 protein structure was modelled ab initio and was docked with a library of 173 phytochemicals with potential antituberculosis activity to the identified drug marker to find novel lead molecules. UDP-galactopyranose and GDP-L-galactose were identified to be potential lead molecules to inhibit the target WhiB6. The results were compared with the first line drugs for MDR-TB by docking with WhiB6. Data showed that Ethambutol showed better binding ability to WhiB6 but the aforementioned top ranked phytochemicals were found to be better candidate molecules. The chosen candidate lead molecules should be further validated by suitable in vitro or in vivo investigation.

Background:
Every year about 10 million people are affected by tuberculosis and among which 1.6 million people die. [1-2] Across the world about 10 million people developed tuberculosis as of 2017 about two third of all new cases occurred in 8 countries like India, China, Indonesia, Philippines, Pakistan, Nigeria, Bangladesh and South Africa which are designated the status of high TB burden countries along with 22 other countries. These countries contribute to 87% of world cases. [1] Multidrug resistance in Mycobacterium tuberculosis has emerged as a major problem in treatment even though short-term chemotherapy is available; development of resistance to antibiotics has become a global menace. [3] MDR-TB does not acquire drug resistance due to transposable element or a plasmid carrying drug resistant marker, but instead it is acquired by stepwise new mutations in genes for different drug targets. [4] Resistance against the major first line antituberculosis drugs - Streptomycin, Ethambutol, Pyrazinamide, Isoniazid and Rifampicin makes it necessary for treatment with second line drugs with greater toxicity and lesser efficacy. [5] Exuding antibiotic is due to the impermeable cell wall, that is mediated by efflux mechanisms by several ABC (ATP - binding cassette) transporter and major facilitator super family (MFS) proteins. Among the other causes for drug resistance, efflux mechanism contributes in a major way to intrinsic resistance to drugs. [6] Currently the growing trends of drug resistance in M.tb have led to a wide range of drug discoveries and to look for the functional protein that which is of key focus to target a lead molecule. In this scenario alternate treatment protocols with lesser toxicity can help clinicians battle MDR TB with greater ease. In the current study we have attempted to recognize novel drug target in M.tb through gene expression profiling approach complimented by a subtractive proteomic approach. Subsequently a library of Phytochemicals with potential antituberculosis activity, virtual screening was performed against the identified biomarkers to find
The concept concordance was limited to Tuberculosis, so that only datasets containing studies or data related to TB would be pulled out. Further the confidence of mining was tested by simple scoring algorithm. (Shown in Table 1) Out of these only those gene expression datasets pertaining to Multidrug resistant tuberculosis strains and/or clinical isolates were considered for analysis.

Gene expression profiling: Gene expression profiling is a technique aimed at understanding transcription pattern in a cell at a given time frame. Measuring mRNA levels is accomplished by measuring mRNA levels of individual genes. Usually, relative mRNA levels in two or more experimental conditions (case Vs control) are measured to analyze and understand specific gene expression pattern in given condition. Pre-processed datasets were chosen by systematic text mining technique as described above. [7] Based on the systematic literature search as described above, microarray datasets were retrieved from NCBI.GEO repository [https://www.ncbi.nlm.nih.gov/gds/?term=mycobacterium+tuberculosis] using accession number GSE3201 annotated in GPL2787 platform which provides complete coverage of the Human Genome (Build 133, April 20, 2001) plus 6500 additional genes for analysis of over 47,000 transcripts. Gene expression profiling analysis of the chosen dataset using GEO2R. [8] The dataset comprised of gene expression data from 11 clinical isolates and H37Rv as the (reference strain) as control. Each of the 11 clinical isolates was compared against H37Rv individually by using GEO2R log transformation was applied to the data prior to analysis. Bonferroni adjustment was applied to the p-values. In each of the 11 comparisons, only those genes, which showed log fold change >1.5 was taken for the further analysis (depicted in table). The upregulated genes which were common in all the clinical isolates (while comparing them with H37Rv) were chosen as candidate drug targets. The genes- MmpL10, WhiB6, Rv1052, PPE39, and Rv2035 were found to be upregulated in all the isolates. From these 5 genes WhiB6 was chosen as the suitable candidate drug target based upon several filtering parameters discussed in detail in the results and discussion section.

Protein Modelling: Determination of protein 3D structure is an essential part of many aspects of molecular research. In the absence of an experimentally determined protein structure (from X-diffraction or NMR) computational prediction of protein 3D structure becomes the only alternative. Computational protein structure prediction is highly beneficial in gaining insights on the protein function and drug screening. [9]

Ab-initio Modelling: The primary sequence of WhiB6 from H37Rv retrieved from UniprotKB ID No P9WF37. The protein sequence was subjected to a PSI Blast against PDB database to recognize suitable template for modelling WhiB6 by homology method. Due the absence of any structurally similar orthologs with a solved structure, Ab-initio modelling was chosen. Ab-initio protein structural modelling is employed when the protein of interest does not have any homologue with solved structure to be used as template for modelling. Ab-initio modelling performs a conformational scan based on designed energy function. QUARK is a computer algorithm for Ab initio protein structure prediction and protein peptide folding, which constructs the correct protein 3D model from small fragments, by replica exchange Monte Carlo simulation under the guidance of an atomic level knowledge-based force field. It conducts a conformational search of a designated energy function, which enables to generate a number of possible suitable structures. [10] The sequence was subjected to PSI-Blast against the human genome to rule out the presence of human orthologs with high sequence similarity.

Model validation: The model obtained by Ab-initio modelling using Ramachandran plot, ERRAT2 and ProSA. Ramachandran plot was obtained from the Pdbsum server.

Library of Phytochemicals- used as potential lead molecule against tuberculosis: Phytochemical were searched for using systematic literature search. Only those compounds with pro1 antituberculosis activity were chosen and their 3D structures in Dot Sdf format were taken. Those Phytochemicals, which did not abide by Lipinski’s rule of 5 were filtered out and rest of the compound was taken for further

Materials and Methods:

Systematic search for gene expression datasets pertaining to MDR-TB:
A comprehensive literature mining of all eligible studies on *Mycobacterium tuberculosis* gene expression was carried out by searching GEO datasets (as on December 2016) based on the search terms

\[X_1 \text{ AND } ("\text{"} \text{ OR } "\text{i}" \text{ AND } (T \text{ OR } t)) \]
\[X_2 \text{ AND } ("\text{"} T \text{ OR } "\text{i}" \text{ AND } (T \text{ OR } t)) \]

Where, \(X_1 = \text{Gene expression; } X_2 = \text{Microarray; } I = \text{Mycobacterium tuberculosis;} i = \text{Mtb;} T = \text{Tuberculosis;} t = \text{tb}\)

Gene expression profiling: Gene expression profiling is a technique aimed at understanding transcription pattern in a cell at a given time frame. Measuring mRNA levels is accomplished by measuring mRNA levels of individual genes. Usually, relative mRNA levels in two or more experimental conditions (case Vs control) are measured to analyze and understand specific gene expression pattern in given condition. Pre-processed datasets were chosen by systematic text mining technique as described above. [7] Based on the systematic literature search as described above, microarray datasets were retrieved from NCBI.GEO repository [https://www.ncbi.nlm.nih.gov/gds/?term=mycobacterium+tuberculosis] using accession number GSE3201 annotated in GPL2787 platform which provides complete coverage of the Human Genome (Build 133, April 20, 2001) plus 6500 additional genes for analysis of over 47,000 transcripts. Gene expression profiling analysis of the chosen dataset using GEO2R. [8] The dataset comprised of gene expression data from 11 clinical isolates and H37Rv as the (reference strain) as control. Each of the 11 clinical isolates was compared against H37Rv individually by using GEO2R log transformation was applied to the data prior to analysis. Bonferroni adjustment was applied to the p-values. In each of the 11 comparisons, only those genes, which showed log fold change >1.5 was taken for the further analysis (depicted in table). The upregulated genes which were common in all the clinical isolates (while comparing them with H37Rv) were chosen as candidate drug targets. The genes- MmpL10, WhiB6, Rv1052, PPE39, and Rv2035 were found to be upregulated in all the isolates. From these 5 genes WhiB6 was chosen as the suitable candidate drug target based upon several filtering parameters discussed in detail in the results and discussion section.

Protein Modelling: Determination of protein 3D structure is an essential part of many aspects of molecular research. In the absence of an experimentally determined protein structure (from X-diffraction or NMR) computational prediction of protein 3D structure becomes the only alternative. Computational protein structure prediction is highly beneficial in gaining insights on the protein function and drugs screening. [9]

Ab-initio Modelling: The primary sequence of WhiB6 from H37Rv retrieved from UniprotKB ID No P9WF37. The protein sequence was subjected to a PSI Blast against PDB database to recognize suitable template for modelling WhiB6 by homology method. Due the absence of any structurally similar orthologs with a solved structure, Ab-initio modelling was chosen. Ab-initio protein structural modelling is employed when the protein of interest does not have any homologue with solved structure to be used as template for modelling. Ab-initio modelling performs a conformational scan based on designed energy function. QUARK is a computer algorithm for Ab initio protein structure prediction and protein peptide folding, which constructs the correct protein 3D model from small fragments, by replica exchange Monte Carlo simulation under the guidance of an atomic level knowledge-based force field. It conducts a conformational search of a designated energy function, which enables to generate a number of possible suitable structures. [10] The sequence was subjected to PSI-Blast against the human genome to rule out the presence of human orthologs with high sequence similarity.

Model validation: The model obtained by Ab-initio modelling using Ramachandran plot, ERRAT2 and ProSA. Ramachandran plot was obtained from the Pdbsum server.

Library of Phytochemicals- used as potential lead molecule against tuberculosis: Phytochemical were searched for using systematic literature search. Only those compounds with pro1 antituberculosis activity were chosen and their 3D structures in Dot Sdf format were taken. Those Phytochemicals, which did not abide by Lipinski’s rule of 5 were filtered out and rest of the compound was taken for further
analysis. [11-15]

Figure 1: 3D structure of WhiB6

Molecular docking:
The library of Phytochemicals with reported antituberculosis activity subjected to virtual screening against WhiB6 (H37Rv) using Molegro virtual docker. Molegro Virtual Docker (MVD) 5.0 uses MolDock scoring system and it is based on a hybrid search algorithm, called guided differential evolution. This algorithm combines the technique of differential evolution optimization with a cavity prediction algorithm. The modelled protein structure was loaded on to MVD 5.0 platform for the molecular docking process. The built-in cavity detection algorithm of MVD 5.0 was used to identify the potential binding sites which are also referred to as active sites or cavities. The search algorithm used was MolDock SE and 10 was the number of runs taken while 2000 was the maximum iterations for a population size of 50 having 100 as the energy threshold. At every step, least 'min' torsions/translations/rotations were sought and the molecule having the lowest energy was preferred. After molecular docking simulation, the poses (binding modes) obtained were classified by re-rank score. Using the ligand preparation module of MVD 5.0, the selected ligands were manually prepared. Bond order, flexible torsion and the ligands were deducted. After the careful removal of hetero atoms and water molecules, the target protein structures were prepared and its electrostatic surface was produced. The grid resolution was set at 0.3 Å. The maximum interaction and maximum population size were set at 1500 and 50 respectively. Further the first line MDR-TB drugs- Ethambutol, Streptomycin, Pyrazinamide, Isoniazid, Rifampicin were docked against WhiB6 to measure the relative affinity and mode of interaction of these first-line drugs in comparison with the Phytochemicals which were found to posses the best binding affinity towards WhiB6.

Results and Discussion:

Gene expression profiling
Gene expression profiling of the 11 clinical isolates was performed using GEO2R by comparing each of the isolates against H37Rv (taken as control). Bonferroni correction was applied to the p-values to counteract the problem of multiple comparisons. Those genes that were at least 1.5 fold upregulated in each of these clinical isolates were tabulated and were shown in Table 2. The genes-MmpL10, WhiB6, Rv1052, PPE39, and Rv2035 were found to be upregulated in all the isolates. Amongst these 5 genes Rv1052 and Rv2035 were uncharacterized proteins and thereby were not included in the further analysis. PPE39 has number of genetic variance across, the different M.tbc isolates caused by SNPs or IS6110 integration. Owing to the high degree of variability PPE39 was not considered to be a suitable drug target. [16-17] MmpL10 (Rv1183) translocates diacyltrehaloses (DAT) across the plasma membrane where they are further acyla ted to generate pentacyltrehaloses (PAT). Still the role of MmpL10 in the virulence of mycobacterium tuberculosis is still unclear. [18-19] several studies on mice aerosol models revealed. DAT/PAT deficient M.tbc was more virulent and infected macrophages readily. Based on the functional redundancy and a 'little' importance in the virulence process, MmpL10 might not be an ideal drug target. [19-21] Further more MmpL10 was a large protein (1006 amino acid long) and lacked structure solved homologues. This was revealed by performing a PSI-Blast of MmpL10 against the PDB database. Therefore, MmpL10 is not be modeled by homology method.

WhiB6 is critical in the secretion dependent regulation of ESX-1 substrate which one of the secretion system that is deployed to target host membrane targeting protein. It is responsible for the secretion of ESAT-6 which is one of the most major and well studied virulence factors in M.tbc. [22] ESX-1s involved in the
transformation of a number of virulence factors. Perturbations in the ESX-1 gene cluster affects virulence and pathogenicity of M.tb drastically. [23]

Modelling of WhiB6 and Target validation by subtractive proteomic approach:
PSI-Blast was performed to predict the suitable template with solved 3D structure to model the WhiB6 (H37Rv), this revealed that no structural orthologs with more than 40% of sequence similarity with WhiB6. Therefore homology modelling could not be employed for structure prediction of WhiB6, so Ab-initio modelling was employed as an alternative. WhiB6 protein was modeled by Ab initio modelling method by using QUARK server by taking small fragments through replica exchange Monte Carlo simulation method utilizing atomic level knowledge based force field. The built protein model was validated using Ramachandran plot to evaluate the stereochemical stability of the modelled WhiB6. Ramachandran plot revealed that out of the total 101 non-glycine, non-proline residues present in WhiB6 -59 amino acids were present in the most favoured regions. 35 were present in the additionally allowed regions and further 5 amino acids were present in the generously allowed regions-totally constituting 98.0% of all residues. The number of amino acids in the disallowed regions was mere 2.01%. The presence of the vast majority of amino acids in the allowed regions of the plot shows that the modeled WhiB6 was stereochemically stable. [24] Errat2 server was employed to study the non-bonded interactions between the various atom types in the model protein. ProSA analysis revealed Z score of -5.69. Human protein shared more than 31% of similarity with H37Rv and WhiB6. It is generally hypothesized that protein sharing high degree of sequence similarity will also have structural similarity (Figure 1). Therefore lack of sequence and structural homologues in humans suggest that a lead molecule inhibiting M.tb WhiB6 will have very low propensity to cross bind with human WhiB6 leading to adverse effects.

Figure 2: Illustration of docking poses of (A) UDP-galactopyranose interacting with WhiB6 (H37Rv), (B) GDP-L-galactose interacting with WhiB6 (H37Rv), the image depicts each ligand’s interaction with the active site of WhiB6. The H-bonds are shown as green dotted lines, the ligand is shown in wire frame model and the protein in ball and stick model. CPK coloring scheme has been use.
Table 1: Systematic search for gene expression datasets pertaining to TB

S. No	Key words	Dataset size
1	Gene Expression AND (("Mycobacterium tuberculosis" OR "Mtb" AND (Tuberculosis OR tb))	1253
2	Microarray AND (("Mycobacterium tuberculosis" OR "Mtb" AND (Tuberculosis OR tb))	548
3	Total	1801

Table 2: Phytochemical library of compounds with reported antituberculosis activity for virtual screening against Whi6

S. No	Phytochemicals Common Name	Compound CID	Biological activity
1	Emivirine	CID:5366244	MDR TB
2	Berberastine	CID:5785	MDR TB
3	Phosphoglycolohydroxamic Acid	CID:442180	MDR TB
4	Cinnamaldehyde	CID:2553	MDR TB
5	Diallyl Disulfide	CID:637511	MDR TB
6	Bilobalide	CID:16590	MDR TB
7	Baicalin	CID:73581	Antituberculous
8	3-Formylcarbazole (1)	CID:64982	Antituberculous
9	3-Methoxyxycarbonylcarbazole (2)	CID:3091534	Antituberculous
10	2-Hydroxy-3-Formyl-7-	CID:504069	Antituberculous
11	Methoxyxycarbazole	CID:189687	Antituberculous
12	Clausoline J	CID:10797966	Antituberculous
13	Echinuline	CID:504070	Antituberculous
14	Pseudopteroxazole	CID:115252	Antituberculous
15	Seco-Pseudopteroxazole	CID:6475529	Antituberculous
16	Homopseudopteroxazole	CID:10614977	Antituberculous
17	Flavonols	CID:3003592	Antituberculous
18	Flavone	CID:11349	Antituberculous
19	Dentatin	CID:10680	Antituberculous
20	Nor-Dentatin	CID:342801	Antituberculous
21	Methyl Clausenidin	CID:5495613	Antituberculous
22	Chaetomonomone	CID:5315947	Antituberculous
23	Ergorgiaene	CID:5318998	Antituberculous
24	7-Hydroxy Ergorgiaene	CID:9816893	Antituberculous
25	Aureol N,N-Dimethyl-Thiocarbamate	CID:9816893	Antituberculous
26	Potamogetonin	CID:5270653	Antituberculous
27	Potamogetonyde	CID:5742898	Antituberculous
28	Potamogetonol	CID:485584	Antituberculous
29	(+)-Tetrol	CID:485585	Antituberculous
30	Secokauranes	CID:92783	Antituberculous
31	Phorbol Ester	CID:101394720	Antituberculous
32	Dustarin	CID:27924	Antituberculous
33	15-Acetoxydustain	CID:1239402	Antituberculous
34	Cycloartenol	CID:3010870	Antituberculous
35	Stigmasta-4-En-3-One	CID:92110	Antituberculous
36	Stigmasta-4,22-Dien-3-One	CID:5484202	Antituberculous
37	B-Sitosterol	CID:6442194	Antituberculous
38	Stigmasterol	CID:222284	Antituberculous
39	Epoxidysterol	CID:5280794	Antituberculous
40	Pregnen Saponin	CID:10789345	Antituberculous
41	Jujubogenin Analog	CID:3010873	Antituberculous
42	Physalin B	CID:12515703	Antituberculous
43	Physalin D	CID:5488849	Antituberculous
44	Preussomerin	CID:72551426	Antituberculous
45	Deoxyxypreussomerin	CID:44332169	Antituberculous
46	Punicalagen	CID:1107886	Antituberculous
47	Hirsutellide	CID:16129869	Antituberculous
48	Beauvericin	CID:3010884	Antituberculous
49	Enniatin B	CID:101925302	Antituberculous
50	Enniatin B1	CID:164754	Antituberculous
51	Enniatin C	CID:3010886	Antituberculous
52	Oceanapia	CID:3010888	Antituberculous
53	Psammaphysalin A	CID:3010892	Antituberculous
Compound Name	CID	Antituberculous	
---------------	--------------	-----------------	
Oceanapside	CID 44593641		
1,3-Pyridinium Polymers	CID 9986729		
[[2-aminoox-1H-purin-9-y]-3,4-dihydroxy-tetrahydrofuran-2-y]methoxy-hydroxy-phosphoryl]oxy	CID 84929		
GDP-L-Galactose	CID 16072216		
[[2R,3R,5R,6R]-3,4-dihydroxy-tetrahydrofuran-2-y]	CID 6857379		
GDP-4-Keto-6-deoxymannose	CID 644105		
UDP-Xylose	CID 439446		
Didp-4-Oxo-5-C-Methyl-L-Rhamnose;	CID 644105		
Didp-4-Oxo-6-Deoxy-5-C-Methyl-L-Rhamnose	CID 439293		
[(2R,3R,5R,6R)-3-hydroxy-5-(5-methyl-2,4-dioxo-phenoxy)]cis-maritinone (Or) 3,3'-isoplumericin	CID 443215		
GDP-D-Rhamnose	CID 11953944		
GDP-D-Glycero-Alpha-D-Manno-Heptose	CID 447152		
UDP-Galactopyranose (Natural Substrate Of UGM)	CID 439912		
L,4-Dihydroxy-2-naphthoate octaprenyltransferase	CID 21589136		
Aspartate-B-semialdehyde	CID 18068		
Ursolic Acid	CID 604249		
Oleanolic Acid An	CID 5287708		
Tiliacorine	CID 64945		
2'-nor-tiliacorine	CID 10205		
Tiliacorine	CID 124511658	MDR TB	
Licarin B	CID 14527219	MDR TB	
Eupomatoid-7	CID 101670430	MDR TB, XDR TB, mono DR	
Dihydroguaiaretic acid (meso and (-) forms)	CID 6441061	MDR TB, XDR TB, mono DR	
4-Epi-larreaticrin	CID 10314175	MDR TB, XDR TB, mono DR	
5,4'-dihydroxy-3,7,8,3'-tetrathemthoxy flavones	CID 476856	MDR TB, XDR TB, mono DR	
2,4-undecadienal	CID 11033399	MDR TB, XDR TB, mono DR	
10-acetoxy-6,9,9'-dibenzoyloxydihydro-b-agarofuran	CID 5459184	MDR TB, XDR TB, mono DR	
Leuchthanol	CID 5367531	MDR TB, XDR TB, mono DR	
Abietane	CID 54669845	MDR TB, XDR TB, mono DR	
6,12-dibenzoyl	CID 6857485	MDR TB, XDR TB, mono DR	
12-Methoxy benzoyle	CID 76983	MDR TB, XDR TB, mono DR	
12-Chlorobenzoyl	CID 231963	MDR TB, XDR TB, mono DR	
12-nitrobenzoyl esters	CID 8501	MDR TB, XDR TB, mono DR	
Mono-omethylkurcumin-isoxazole	CID 7071600	MDR TB, XDR TB, mono DR	
Plumericin	CID 10249311	MDR TB, XDR TB, mono DR	
Isoplerucin	CID 5281545	MDR TB, XDR TB, mono DR	
Maritirone (or) 3,3' - biplumbugin	CID 5281543	MDR TB, XDR TB, mono DR	
Cis-cinnamic acid	CID 183757	MDR TB, XDR TB, mono DR	
Ethyl p-hexosycinnamate	CID 5372954	MDR TB, XDR TB, mono DR	
Ursolic acid	CID 5281783	MDR TB, XDR TB, mono DR	
Oleanolic acid	CID 64945	MDR TB, XDR TB, mono DR	
Obtusifoliol	CID 103494	MDR TB, XDR TB, mono DR	
7,9-dimethoxytetraacrylpyrone	CID 65252	MDR TB, XDR TB, mono DR	
Ent-1b,7a,14triacetoxykaur-16-en-15-one	CID 96710	MDR TB, XDR TB, mono DR	
Plumbagin	CID 10205	MDR TB, XDR TB, mono DR	
Ambiguine	CID 10834980	MDR TB, XDR TB, mono DR	
Hapalindole H	CID 16109784	MDR TB, XDR TB, mono DR	
Hapalindole G	CID 21671525	MDR TB, XDR TB, mono DR	
Manilamine	CID 11067734	MDR TB, XDR TB, mono DR	
NmethyI angustiobine,	CID 101741721	MDR TB, XDR TB, mono DR	
19,20-(E)-Vallesamine	CID 123891912	H37Rv	
20(s)-Tubatwine	CID 123917087	H37Rv	
6,7-Seco-angustiobine	CID 13783720	H37Rv	
Globospiramine	CID 13891912	H37Rv	
5'-fluoro-3-phenyl-1H-indole	CID 53329268	H37Rv	
Indole-3-carboxylic acid	CID 57345765	H37Rv	
Isoxazole	CID 11636795	H37Rv	
Mercaptopyrhythmide-	CID 20305010	H37Rv	
7-Hydroxymethylene-7,8,9,10-tetrahydrocycloheptal	CID 129781839	H37Rv	
Compound	CID	Activity	
--	--------------	-------------------------------	
Voacangine	CID 197080	H37Rv	
Hymeninlin	CID 73255	H37Rv	
Monobromo Isophakellin	CID 6439099	H37Rv	
Ambroxol	CID 2442	H37Rv	
Denigrins A-C	CID 2132	H37Rv	
3-Methoxycarbonyl Carbazole	CID 231087	H37Rv	
Clausoline J	CID 21252858	H37Rv	
2-Hydroxy-3-Formyl-7-Methoxy-Carbazole	CID 5315952	H37Rv	
Cryptolepine	CID 53324960	H37Rv	
Neocryptolepine	CID 82143	H37Rv	
Bisnortetradecadienamide	CID 390526	H37Rv	
(+)-8-Hydroxymanzamine A	CID 10457065	H37Rv	
(-)-Manzamine F	CID 5270765	H37Rv	
Manzamine A	CID 44445042	H37Rv	
6-Hydroxymanzamine E	CID 5468480	H37Rv	
Graveolamine	CID 826247	H37Rv	
Kokusagine	CID 11044132	H37Rv	
Bidebine E (Dimericarpophine)	CID 5318829	H37Rv	
Liriodenine	CID 23642920	H37Rv	
Oxostephanine	CID 10144	H37Rv	
(-)-Nordicentrine	CID 343547	H37Rv	
Decarine [Or] Rutaceline	CID 10336429	H37Rv	
6-Acetonyldihydronitidine	CID 179640	H37Rv	
Nitidine	CID 10740045	H37Rv	
Chelerythrine	CID 4501	H37Rv	
Macarpine	CID 161243	H37Rv	
Berberine	CID 440929	H37Rv	
Anonaine	CID 2353		
Xylopine	CID 160597	MDR TB	
Anolobine	CID 160503	MDR TB	
Jatrohizine	CID 164710	MDR TB	
Sanguinarine	CID 72323		
Chelerythrine	CID 5154		
Vasicoline	CID 2703	H37Rv	
Vasicolinone	CID 626005	H37Rv	
Vasicinone	CID 627712	H37Rv	
Vasicine	CID 442935	H37Rv	
Adhatodine	CID 667496	H37Rv	
Anisotine	CID 5316460	H37Rv	
Vasicine Acetate	CID 442884	H37Rv	
Tryptanthrin	CID 11500	H37Rv	
Sarmentine	CID 73549	H37Rv	
Pyrroldine	CID 6440616	H37Rv	
Sarmentosine	CID 31268	H37Rv	
Brachyamide B	CID 6438710	H37Rv	
Pellitorine	CID 14162526	H37Rv	
Brachystamide B	CID 5318516	H37Rv	
Malyngamide A	CID 14779548	H37Rv	
Malyngamide B	CID 14779548	H37Rv	
N-Isobutyl-(2E,4E)-2,4-Tetradecadienamide	CID 44246695	H37Rv	
1-Piperonyl Piperidine	CID 10731388	H37Rv	
Nummularine H	CID 21636624	H37Rv	
Mauritine M	CID 101204325	MDR TB	
Texalin	CID 53260757	MDR TB	
Malyngamide 4	CID 473253	MDR TB	
Malyngamide B	CID 53366244	MDR TB	
N-Isobutyl-(2E,4E)-2,4-Tetradecadienamide	CID 5785	MDR TB	
1-Piperonyl Piperidine	CID 442180	MDR TB	
Nummularine H	CID 2353	MDR TB	
Mauritine M	CID 637511	Antituberculous	
Table 3: Docking results of Top ranked Phytochemicals interacting with WhiB6 (H37Rv)

Ligand	CID	MoleDock Score	H-Bond Score	H-bonds	Interacting Amino Acid
UDP-galactopyranose	18068	-97.6778		20.0687	Glu100, Arg101, Ser97, Arg96, Ala99, Pro105, Pyr104, Val106, Asp108
Methoxy-hydroxy-phosp-GDP	439446	-105.492	13.4574	10	Arg101, Ala99, Ser97, Glu100, Gly103, Tyr104, Pro105, Arg107, Asp108, Arg96
GDP-4-Dehydro-6-deoxy-D-mannose	439912	-111.961	-12.832	7	Asp108, Arg107, Val106, Pro105, Ala99, Glu100, Arg96
GDP-L-galactose	6857379	-115.809	12.6431	11	Tyr104, Pro105, Arg107, Val106, Ala99, Glu100, Asp108, Arg96, Ser112, Leu92, Gly93
Oceanapia	3010892	-105.273	11.5004	7	Gly103, Ala99, Glu100, Pro105, Arg96, Asp108, Arg107

Table 4: Docking results of MDR-TB first line drugs interacting with WhiB6 (H37Rv). Drugs shown in grey shade were found to be not interacting with WhiB6.

Name	MoleDockScore	H-Bond Score	No of H-Bond	Interacting Amino Acids
Pyrazinamide	-63.9854	-1.5602	4	Arg96, Val106
Isoniazid	-63.7479	0.554976	5	Asp108, Arg107, Arg96
Ethambutol	-78.1277	-7.05929	6	Asp108, Arg107, Val111
Streptomycin	34.2929	4.88673		
Rifampicin	967.454	-3.15092		No Interaction

Figure 3: Illustration of docking poses of Ethambutol interacting with WhiB6 (H37Rv)

Virtual screening of phytochemical library against WhiB6:
A library of 173 Phytochemicals was subjected to virtual screening against WhiB6 of H37Rv using Molegro Virtual docker 5.0. Out of the 173 compounds the following 5 compounds: UDP-galactopyranose, Methoxy-hydroxyl-phosp GDP-4-Dehydro-6-deoxy-D-mannose, GDP-D-Rhamnose, GDP-L-galactose and Oceanapia were found to show highest binding affinity against binding cavity of WhiB6. The docked compounds were ranked on the basis of Molegro score, number of H-bonds and H-bonding energy. [25] (Figure 2)

Figure 4: Flow chart illustrating the gene expression profiling, protein modeling and lead identification & Interpretation
UDP-galactopyranose binds with WhiB6 by forming nine H-bonds interacting with Glu100, Arg101, Ser97, Arg96, Ala99, Pro105, Pyr104, Val106, Asp108 with a MolDock score of -97.67 and H-bond of -20.06. Methoxy hydroxy phospho-GDP 4 Dehydro 6 deoxy D mannose binds with WhiB6 by forming 10 H-bonds interacting with Arg101, Ala99, Ser97, Glu100, Gly103, Tyr104, Pro105, Arg107, Asp108, and Arg96 with a MolDock score of -105.49 and H-bond of -13.45. GDP D Rhamnose binds with WhiB6 by forming 7 H-bonds interacting with Asp108, Arg107, Val106, Ala99, Glu100, and Arg96 with a MolDock score of -111.96 and H-bond of -12.83. GDP L galactose exhibited the highest binding affinity towards WhiB6 as indicated by a high MolDock score of -115.80 and H-bond score -12.64. It formed a total of 11 H-bonds with binding cavity of WhiB6 interacting with the amino acids Tyr104, Pro105, Arg107, Val106, Ala99, Glu100, Asp108, Arg96, Ser112, Leu92, and Gly93. Oceanapia binds with WhiB6 by forming 7 H-bonds interacting with Gly103, Ala99, Glu100, Pro105, Arg96, Asp108, and Arg107 with a MolDock score of -105.27 and H-bond of -11.50 (shown in Table 3).

UDP-galactopyranose belong to the class of Uridine Diphosphate Sugars commonly found in Cucurbit Fruit, Melons, and Legumes and GDP-L-galactose belong to the class of organophosphate oxoanion commonly found in tomato fruit, and strawberry are potential lead molecules against WhiB6 of M.tb based on their high binding affinity and the ability to form strong H-bonds. UDP-galactopyranose is further suitable as a lead molecule as it abides by all the Lipinski’s rule of five. [11] Whereas GDP-L-galactose has a molecule weight of 605.34 and thereby might not be suitable for oral administration. The first line MDR-TB drugs were docked against WhiB6 to identify their potential WhiB6 inhibiting activity in comparison with the identified Phytochemical lead molecules. The molecular docking of Pyrazinamide, Isoniazid, Ethambutol, and Streptomycin against WhiB6 revealed that streptomycin and Rifampicin do not bind with WhiB6 as shown by a positive MolDock score 34.2929 for streptomycin and 967.456 for Rifampicin (Table 4). The H-bond score are 4.88673 and -5.15092 respectively. (Figure 3) Ethambutol showed the highest binding affinity towards WhiB6 compare to all the other first line MDR-TB drugs which is shown by a MolDock score of -78.1277 and it formed 6 H-bonds with amino acids-Asp108, Arg107, and Val111 but while comparing the binding affinity with top ranked Phytochemicals, the compounds such as UDP-galactopyranose, GDP-L-galactose showed much stronger binding affinity with WhiB6 and formed more H-bonds.

Conclusion:
WhiB6 is a transcriptional regulator protein, which is a known drug resistant associated marker in M.tb. It is an ideal candidate drug target to combat MDR-TB based on the results from gene expression profiling and subtractive proteomic approach. UDP-galactopyranose and GDP-L-galactose is the potential lead molecule to bind and inhibit WhiB6. The in vitro and in vivo efficacy of UDP-galactopyranose and GDP-L-galactose needs to be investigated further.

References:
[1] https://www.who.int/news-room/factsheets/detail/tuberculosis
[2] http://apps.who.int/iris/
[3] Sandhu P et al. Int J Med Microbiol. 2015 3:05 [PMID: 25841626]
[4] Siddiqi N et al. Mem Inst Oswaldo Cruz. 1998 93:589 [PMID: 9830523]
[5] https://www.who.int/tb/areas-of-work/drug-resistant-tb/types/en/
[6] Balganesh M et al. Antimicro Agents Chemother. 2012 6:2643
[7] Sean D et al. Bioinformatics. 2007 23:1846. [PMID: 17496320]
[8] Barrett T et al. Nucleic Acids Res. 2013 41:991. [PMID: 23193258]
[9] Venkatesan A et al. Healthc Inform Res. 2013 19:137. [PMID: 23882419]
[10] Zhang W et al. Proteins. 2016 84:76. [PMID: 26370505]
[11] Lipinski CA. Adv Drug Deliv Rev 2016 101:34. [PMID: 27154268]
[12] Simões M et al. Nat Prod Rep. 2009 26:746. [PMID: 19471683]
[13] Muniyan R et al. Res J Biotechnol. 2017 12:75.
[14] Kaur R et al. Orient J Chem. 2015 31:597.
[15] Kumari TP et al. Int J Chem Stud. 2017 1:5.
[16] Kim A et al. Clin Vaccine Immunol. 2017 24:1. [PMID: 28877927]
[17] McCvoy CR et al. BMC Ecol Biol. 2009 9:1. [PMID: 19769792]
[18] Melly G et al. Microorganisms 2019 7:70. [PMID: 30841335]
[19] Manuel Belardinelli J et al. J Biol Chem 2014 289:27952. [PMID: 25124040]
[20] Rousseau C et al. Cell Microbiol. 2003 5:405. [PMID: 12780778]
[21] Passemard C et al. Cell Microbiol. 2014 16:195. [PMID: 24028583]
[22] Zeng X et al. BMC Genomics. 2018 19:1. [PMID: 29769016]
[23] Zondervan NA et al. Int J Mol Sci. 2018 19:9. [PMID: 29364195]
[24] Ho BK et al. BMC Struct Biol. 2005 5:1. [PMID: 16105172]
[25] https://phytochem.nal.usda.gov/phytochem/search/list

ISSN 0973-2063 (online) 0973-8894 (print)
Bioinformation 15(8): 557-567 (2019) ©Biomedical Informatics (2019)
License statement: This is an Open Access article which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. This is distributed under the terms of the Creative Commons Attribution License.
