Predicting Tunnel Squeezing Using the SVM-BP Combination Model

Zhen Huang · Minxing Liao · Haoliang Zhang · Jiabing Zhang · Shaokun Ma · Qixuan Zhu

Received: 29 March 2021 / Accepted: 2 August 2021 / Published online: 12 August 2021
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021

Abstract Rock squeezing has a large influence on tunnel construction safety; thus, when designing and constructing tunnels it is highly important to use a reliable method for predicting tunnel squeezing from incomplete data. In this study, a combination SVM-BP (support vector machine-back-propagation) model is proposed to classify the deformation caused by surrounding rock squeezing. We design different characteristic parameters and three types of classifiers (a SVM model, a BP model, and the proposed SVM-BP model) for the tunnel-squeezing prediction experiments and analyse the accuracy of predictions by different models and the influences of characteristic parameters on the prediction results. In contrast to other prediction methods, the proposed SVM-BP model is verified to be reliable. The results show that four characteristics: tunnel diameter \(D\), tunnel buried depth \(H\), rock quality index \(Q\) and support stiffness \(K\) reflect the effect of rock squeezing sufficiently for classification. The SVM-BP model combines the advantages of both an SVM and a BP neural network. It possesses flexible nonlinear modelling ability and the ability to perform parallel processing of large-scale information. Therefore, the SVM-BP model achieves better classification performance than do the SVM or BP models separately. Moreover, coupling \(D\), \(H\), and \(K\) has a significant impact on the predicted results of tunnel squeezing.

Keywords Tunnel squeezing · Support vector machine · Back-propagation · Classification performance · Machine learning

1 Introduction

Tunnel-surrounding rock squeezing is a deformation based on a space–time relationship that usually occurs in soft rock surrounding tunnels at large buried depths. Rock squeezing has a large impact on the tunnel construction safety (Wang 2020). The negative
consequences of tunnel squeezing have been reported repeatedly since it was first discovered during the construction of the Simplon Tunnel in Switzerland (Yassaghi and Salari-Rad 2005). Tunnel squeezing usually causes construction delays, budget overruns, shield blockage and even possibly results in tunnel instability as well as casualties (Sun et al. 2018). Therefore, when designing and constructing tunnels it is very important to adopt a reliable method for predicting rock squeezing surrounding the tunnel.

In view of the practical importance of this topic, many scholars have attempted to develop methods for predicting tunnel squeezing. These prior approaches include both theoretical analytical methods (Fritz 2010) and numerical simulation methods (Debernardi and Barla 2009; Gao et al. 2015). The analytical solution of time-dependent (or creep) deformation or numerical solutions for the advanced time-dependent constitutive model requires strong theoretical calculation ability that often exceeds the ability of many design and construction technicians. Some empirical methods are also included; these are often based on abundant reliable data (e.g., indicators of rock mass) or geometric classifications (RMR or Q systems). For instance, the ratio between rock mass uniaxial strength, \(\sigma_{\text{um}} \), and lithostatic stress, \(\sigma_0 = \gamma H \), was used to predict tunnel squeezing by (Jethwa and Singh 1984) and (Hoek and Marinos 2000); for example, (Hoek 2001) proposed that it is possible to produce squeezing with the values of \(\sigma_{\text{um}}/\sigma_0 < 0.35 \) (as defined by normalized convergences of more than 1% in unsupported tunnels); (Singh et al. 1992) presented a well-known empirical correlation related to the \(Q \)-value of the rock mass to predict squeezing conditions, in which tunnels deeper than \(H = 350Q^{1/3} \) (where \(H \) is in metres) could possibly present squeezing. Considering the practical difficulties in predicting the stress reduction factor (SRF) in the \(Q \) system, the above methods are still the main approaches for predicting tunnel squeezing in practice, and they play an important role. (For an in-depth review of these and other methods for empirical squeezing prediction; see (Singh et al. 1997 and Jimenez and Recio 2011).

Machine learning methods have attracted extensive attention from researchers and have been applied to many aspects of tunnel engineering prediction. Machine learning methods may be useful tools for predicting tunnel squeezing. At present, the main machine learning methods for predicting tunnel-
according to the surrounding rock index data. We summarized the three models’ accuracy and compared the prediction results with other methods in the previous literature. The results show the robustness of the SVM-BP combination model. Finally, the accuracy of the three models under different combinations of surrounding rock indexes is analysed. The conclusion and discussion section elaborates the study’s result and discusses the applicability of the three models for rock-squeezing prediction.

2 Selection of the Prediction Parameters and Data Analyses

2.1 Selection and Source of Parameters

The tunnel parameters and surrounding rock indexes reflect the basic characteristics of the tunnel and surrounding rock respectively and are the most reliable parameters for predicting tunnel squeezing. Based on literature reviews, the previously published methods for predicting tunnel squeezing are summarized, as shown in Table 1. We can clearly see that many scholars have mainly adopted features such as the tunnel buried depth \(H \), rock quality index \(Q \), tunnel diameter \(D \), support stiffness \(K \), and stress intensity ratio \(SSR \) as prediction parameters, but these prior studies seldom considered the vertical in situ stress and surrounding rock classification index \(GC \) based on the BQ system. Moreover, some of the above parameters are difficult to adopt as prediction parameters for various reasons, such as the vertical in situ stress and \(GC \), which are often difficult to obtain in the early stages of a project. The \(SSR \) is often difficult to obtain from engineering consequently, much of the existing literature omits data regarding the \(SSR \) parameter. Therefore, this study adopts four easy-to-obtain parameters \((H, Q, D, and K) \) as input variables to predict tunnel squeezing.

The sample cases collected in this paper are compiled were Sun et al. (2018) and Dwivedi et al. (2013). These cases include 180 large-scale tunnel-squeezing historical cases from Austria, Nepal, India, Bhutan and other countries. These case databases contain the adopted \(H, Q, D \), and \(K \) parameters. Based on the preliminary statistics of 180 tunnel squeezing cases, four parameter ranges were obtained in which \(D \) ranges from 1.25 m to 13 m, \(H \) from 52 to 850 m, \(Q \) from 0.001 to 93.5, and \(K \) from 0 to 5324 kPa. These data are used as model input variables. The output variable indicates the prediction—whether the surrounding rock is squeezed—that is, non-squeezing deformation or squeezing deformation. This study adopts the classification method of tunnel compression strength commonly used in Hoek and Marinos (2000), Singh et al. (1992), and Aydan et al. (1996). The deformation threshold for squeezing is \(\varepsilon = 1\% \) (\(\varepsilon \) is the percentage strain), that is, when \(\varepsilon > 1\% \), the tunnel-surrounding rock will be squeezed. Among the 180

Sources of references	Prediction method	Indicators considered	Number of samples
Singh et al. (1992)	\(H \geq 350Q^{0.32} \)	\(H, Q \)	39
Goel et al. (1995)	\(H^3270N^{0.33}D^{-0.1}, N = (Q)_{SRF-1} \)	\(D, Q, N \)	72
Jimenez and Recio (2011)	\(H^3424.4Q^{0.32} \)	\(H, Q \)	62
Shafiei et al. (2012)	SVM	\(H, Q \)	198
Dwivedi et al. (2013)	\(\varepsilon = \frac{q_{ ext{opt}}t_{ ext{opt}}}{\gamma_{ ext{so}}}, \sigma_{v}, Q, K \)	\(\sigma_{v}, Q, K \)	63
Feng et al. (2015)	Naive bayes	\(H, D, Q, K, SSR \)	166
Sun et al. (2018)	SVM	\(H, D, Q, K \)	117
Chen et al. (2020)	Coupling decision tree classifier, Bayesian and Markov geological model	\(H, D, K, SSR, GC \)	154
Zhang et al. (2020)	SVM, ANN, KNN, DT, LR, MLR, NB weighted combination classifier	\(H, D, Q, K, SSR \)	166
collected data samples, 112 were non-squeezing samples and 68 were squeezing samples. In this paper, the code for the non-squeezing condition is 0 and the code for the squeezing condition is 1.

2.2 Data Analysis

To obtain the relationships between the parameters, a parameter interaction matrix was constructed, as shown in Fig. 1a. The graph on the diagonal in Fig. 1a shows the distribution of each individual parameter (considering both squeezing and non-squeezing cases), while the graph not on the diagonal shows their pairing relationship. Some outliers exist in Fig. 1a that may lead to a lower classification accuracy. Therefore, it is necessary to detect these outliers and perform denoising. Figure 1b shows the correlation between the four parameters \(D, H, Q, K \) of the tunnel sample case after noise reduction. The red lines in the non-diagonal graph below the diagonal are the nonlinear fitting lines for each parameter pair.

Figure 2 shows the histogram, cumulative distribution and other statistical information (number of samples, maximum, minimum, average and standard deviation) of the four parameters \(D, H, Q, K \) used to predict tunnel squeezing. The database covers a wide range of the values of these four parameters; thus it has universality in principle. Based on the visualization principle of data association in Fig. 1, the No. 21 and No. 115 tunnel case samples (180 cases can be seen in the appendix) are eliminated, which is helpful for the later model analysis, and for establishing and improving the classification accuracy. Finally, 178 available samples are adopted.

3 Prediction Model

3.1 SVM Model

A support vector machine (SVM) is a machine learning algorithm in accordance to mathematical statistics theory. SVMs have been widely used in various industries because of their ability to solve problems such as high dimensionality and small sample sizes, nonlinearity and local minima (Dhakshina et al. 2020). In fact, the main feature of the support vector machine is that it uses a subset of the training set to represent a decision boundary, called a support vector, while the decision boundary is called the maximum edge hyperplane. The basic requirement of the SVM classifier is to find an optimal hyperplane to maximize the distance between the nearest point in space and itself, as shown in Fig. 3. The main idea of SVM can be divided into three problem categories: linearly separable, linearly inseparable and non-linearly separable.

In this paper, predicting tunnel-surrounding rock squeezing is a nonlinear separable case that lies in the main purview of an SVM: that is, the samples cannot
be classified by their linear relationship in a low dimensional space. By introducing a kernel function, a nonlinear transformation is presented to transform the input space into a feature space where the hypersurface model in the input space corresponds to the hyperplane model in the feature space. In this way, the classification problem can be settled with a linear support vector machine applying to this high-dimensional feature space. Therefore, this paper mainly describes the nonlinear support vector machine.

Record n (here $n = 178$) known case observation samples as $(u_1, v_1), (u_2, v_2), \ldots, (u_n, v_n)$, where u_i is the characteristic parameter of the i-th tunnel case sample, $u_i \in \mathbb{R}^4$. A result of $v_i = 1$ indicates squeezing.

3.1.1 The Sample is Nonlinear and Separable

First, we need to find an optimal hyperplane $w^T x + b = 0$, where $w, x \in \mathbb{R}^4$, $b \in \mathbb{R}^4$; w, b are undetermined and satisfy the following conditions (Chang and Lin 2011):

![Fig. 2](image) The vertical and cumulative parameter distributions

![Fig. 3](image) Structure of a support vector machine
\[
\left\{ \begin{array}{l}
 w^T u_i + b \geq 1, \quad v_i = 1 \\
 w^T u_i + b \geq -1, \quad v_i = -1
\end{array} \right. \quad (1)
\]

Here \(v_i(w^T u_i - b) \geq 1 \), where the sample that satisfies the equation \(w^T u_i + b = \pm 1 \) is called a support vector.

Then, to maximize the distance between the hyperplanes of the two types of data, we have (Chang and Lin 2011):

\[
\max \frac{1}{2} \|w\|^2 \Rightarrow \min \frac{1}{2} \|w\|^2
\]

3.1.2 Establish the SVM Model Based on the RBF Function

Step 1 define the generalized Lagrange function

\[
L(w, x) = \frac{1}{2} \|w\|^2 + \sum_{i=1}^{n} z_i [1 - v_i(w^T u_i + b)]
\]

where \(x = (x_1, \ldots, x_n)^T \), \(x_i \geq 0 \).

According to the Karush–Kuhn–Tucker complementary condition (Karush–Kuhn–Tucker 2020), we can obtain partial derivatives of \(w \) and \(b \):

\[
\begin{align*}
\frac{\partial L}{\partial w} &= w - \sum_{i=1}^{n} z_i v_i u_i = 0 \\
\frac{\partial L}{\partial b} &= \sum_{i=1}^{n} z_i v_i = 0
\end{align*} \quad (4)
\]

where \(w = \sum_{i=1}^{n} z_i v_i u_i \) and \(\sum_{i=1}^{n} z_i v_i = 0 \) are acquired from the solution and are substituted into the original Lagrangian function to obtain the following functions:

\[
L = \sum_{i=1}^{n} z_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j v_i v_j (u_i \cdot u_j)
\]

where \((u_i \cdot u_j)\) is the linear form of the kernel function. By changing \((u_i \cdot u_j)\) into a general kernel function \(K(x, y) \), we can obtain the general form of the model:

\[
\begin{align*}
\max \sum_{i=1}^{n} a_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j v_i v_j K(u_i, u_j) \\
s.t. = \begin{cases} \\
\sum_{i=1}^{n} a_i v_i = 0 \\
0 \leq z_i, i = 1, 2, \ldots, n
\end{cases} \quad (7)
\end{align*}
\]

Step 2 introduce the relaxation variable \(\xi \), which allows a small number of samples to be incorrectly divided. This method of processing is also called a soft interval. The parameter controlling the error level is \(c \) (Chang and Lin 2011):

\[
\min \frac{1}{2} \|w\|^2 + c \sum_{i=1}^{n} \xi_i
\]

\[s.t. = \begin{cases} \\
\xi_i \geq 0, i = 1, 2, \ldots, n
\end{cases} \quad (9)
\]

The classification function can be obtained by finding the optimal values for \(w^* \) and \(b^* \):

\[
f(x) = \text{sgn}(w^* T x + b^*)
\]

3.1.3 Solution of SVM Classification Model

In this paper, 140 cases are taken as training samples, the optimization toolbox of MATLAB is used to solve steps 1 and 2 (described in Sect. 3.1.2), and the optimal solutions for \(w^* \) and \(b^* \) are obtained. The linear inseparable vector in the original sample space is transformed into a linearly separable vector in the high-dimensional feature space, and the optimal accuracy rate is obtained.

The remaining 38 cases are used as test samples \(\tilde{u}_j, j = 1, 2, \ldots, 38 \) for the classification function \(f(x) = \text{sgn}(w^* T x + b) \) in Eq. (10) and classified according to the following rules: \(f(\tilde{u}_j) = -1 \) indicates that the \(j \)-th sample point is a non-squeezing deformation; \(f(\tilde{u}_j) = 1 \) indicates that the \(j \)-th sample point is a squeezing deformation.

3.2 BP Neural Network Model

Artificial neural networks (ANNs) constitute a new, interdisciplinary, and widely used field. They are based on a simplified simulation of the human brain’s neural system, which is composed of a large number of adaptive processing units that are densely connected to each other. This approach can also be considered a processing system for large-scale information. The BP neural network is a multilayer feedforward neural network trained by an error back-propagation algorithm, making it a mainstream type of neural network. The main characteristic of the error back-propagation
algorithm is that the sample is input in the forward direction, while errors are back-propagated to update the network (Zhou 2016). The error back-propagation is mainly based on the strategy of gradient descent to improve the model weights and thresholds causing the output of the model to be successively closer to the expected output. The steps of the BP neural network algorithm are as follows:

Step 1 Construct the neural network and initialize it

Based on the characteristic parameters and output categories of each group of data, a three-layer BP neural network is set up that contains a d input node and a q output node. According to the Kolmogorov theorem, the number of hidden layer nodes is represented by v, and $v = 2d + 1$. The smaller random number is selected as the connection weight w_{im} between the input layer and the hidden layer and the initial value of the connection weight w_{mj} between the hidden layer and the output layer. The selection rules for the initial values of the thresholds ϕ_m and θ_j of the neurons in the hidden layer and the output layer are the same. w_{im} is the connection weight between the i-th neuron in the input layer and the m-th neuron in the hidden layer, and w_{mj} is the connection weight between the m-th element in the hidden layer and the j-th neuron in the output layer. ϕ_m is the threshold of the m-th neuron in the hidden layer, and θ_j is the threshold of the j-th neuron in the output layer. Finally, the activation functions f and f' are set for the hidden layer and output layer, respectively, and the learning rate η is set.

Step 2 Calculate the output value and the error value of the output layer

$$P_m = f\left(\sum_{i=1}^{d} w_{im}x_i - \phi_m \right)$$ \hspace{1cm} (11)

where $P_m (m = 1, 2, \ldots, v)$ is the output value of the m-th neuron in the hidden layer and x_i is the i-th characteristic parameter of each group of data:

$$y_i = f'\left(\sum_{m=1}^{v} w_{mj}P_m - \theta_j \right)$$ \hspace{1cm} (12)

where $y_j (j = 1, 2, \ldots, q)$ is the predicted output value of the j-th neuron in the output layer:

$$e_j = Y_j - y_j$$ \hspace{1cm} (13)

and $Y_j (j = 1, 2, \ldots, q)$ is the ideal output value of the j-th neuron in the output layer, and $e_j (j = 1, 2, \ldots, q)$ is the prediction error value of the j-th neuron in the output layer.

Step 3 Adjust the connection weight and threshold

Based on the principle of gradient descent, the relevant parameters are adjusted in the backward direction. The adjustment formula for any related parameter λ is (Zhou 2016):

$$\lambda_i = \lambda_i + \Delta \lambda_i$$ \hspace{1cm} (14)

The weights and thresholds are adjusted as follows (Wang and Shi 2013) [28]:

$$w'_{im} = w_{im} + \eta P_m(1-P_m)x_i \sum_{j=1}^{q} w_{mj}e_j$$ \hspace{1cm} (15)

$$w'_{mj} = w_{mj} + \eta P_m e_j$$ \hspace{1cm} (16)

$$\phi'_m = \phi_m + \eta P_m(1-P_m) \sum_{j=1}^{q} w_{mj}e_j$$ \hspace{1cm} (17)

$$\theta'_j = \theta_j + e_j$$ \hspace{1cm} (18)

Step 4 Repeat the above steps

During the training process of the neural network, which can be considered as a process searching for the optimal parameter solutions—that is, minimize e by finding a set of optimal parameters in the parameter space. This process can be expressed as follows: when an $(\omega_{im}, \omega_{mj}, \phi_m, \theta_j)$ exists for any $(\omega_{im}, \omega_{mj}, \phi_m, \theta_j)$ in the parameter space; then, $(\omega^*, \omega^*, \phi^*, \theta^*)$ is the global minimum solution. Figure 4 shows the basic steps involved in training the BP neural network.

3.3 SVM-BP Combination Model

Many scholars use single classification methods (such as a clustering analysis of Euclidean distance, logistic regression analysis, support vector machine, naïve Bayes or other classification method) to evaluate and predict the squeezing of surrounding rock. Due to the different emphases of different classifiers, each
individual classification method has certain limitations. In addition, the performance of a single classifier trained by a standard learning algorithm differs on different data sets; the same classifier can also show different performances on different test sets (Samadzadeh et al. 2010; Jimenez and Recio 2011; Feng and Jimenez 2015). However, some studies show that the performance of multi-classifier fusion methods is better than that of single classifiers (Sun et al. 2018; Zhao and Liu 2020; Chen et al. 2020). In the field of surrounding rock squeezing classification, research using multi-classification fusion approaches is still limited; consequently, this line of research needs to be further expanded.

Therefore, this paper proposes a SVM-BP combination model by fusing the complementary advantages of a SVM and a BP neural network. Using an application involving the classification of surrounding rock squeezing, the classification performance differences between the SVM and BP model and the advantages and disadvantages of the combined SVM-BP model are explored. The SVM-BP combination model is constructed as follows:

First, in this study, based on 178 sets of original characteristic parameter sets of tunnel and surrounding rock where each group has four characteristic parameters $A_i (i = 1, 2, \ldots, 4)$, a three-layer BP neural network is set up containing four nodes in the input layer and four nodes in the hidden layer. The input value and the output target value are four original feature parameters $p_{ji} (j = 1, 2, \ldots, 4, i = 1, 2, \ldots, 178)$, and the number of hidden layer nodes corresponds to the number of new feature parameters. The nonlinear mapping ability of the BP neural network is used to transform the features in the sample data, the characteristic parameters are mapped to the new feature parameter space, and the linearly separable feature parameters are obtained.

Then, when the learning error e satisfies condition $e = \sum_{i=1}^{178} \sum_{j=1}^{4} (p_{ji} - \hat{p}_{ji}) \leq r$, the weights and thresholds of the modified BP neural network are the best mapping relations for feature extraction, and the output value of the hidden layer is the new feature parameter \hat{p}_{ji}.

Finally, after the feature extraction of the tunnel-surrounding rock squeezing is completed, the classification and recognition of tunnel-surrounding rock squeezing is carried out. Because of the strong generalizability of the SVM, the transformed features are input into the SVM classifier for reinforcement learning, which overcomes the poor generalization ability of the BP neural network. By using the RBF kernel function, the data processed by the BP neural network are mapped from the input space to the high-dimensional feature space, and a linear separable vector is obtained. The feature parameters fully reflect the classification hyperplane effect of the SVM classifier and obtain the best classification accuracy. The working principle of the SVM-BP model is shown in Fig. 5.

4 Results and Analysis

The innovation of this study is to present a combined model based on both a SVM and a BP model and applied to classify tunnel-surrounding rock squeezing. In particular, this study was designed to further
analyse the accuracy of the model prediction results and the influence of feature parameters on the prediction results by combining different feature parameters and using three classifiers (SVM, BP, and the SVM-BP combination model). In addition, we compared our combined model with other previously reported prediction methods to verify its reliability.

4.1 Prediction Accuracy Analysis

Figure 6 shows the prediction accuracy of the SVM, BP and the SVM-BP combination model when the characteristic input parameters are D, H, Q and K. As Fig. 6 shows, all three models have good prediction accuracy. However, the maximum accuracy rate of the SVM-BP combination model is 92.11%, which is better than that of the SVM model (89.47%) and the BP model (89.47%). The results show that the combination SVM-BP classifier achieves better performances than do the single SVM or BP neural network classifiers when classifying tunnel-squeezing rock; on average, the SVM-BP classifier improves the accuracy rate by 2.64%. The fusion of multiple classifiers can compensate for the shortcomings of a single classifier to a certain extent, helping to achieve higher classification accuracy. Figure 7 presents confusion matrices for the BP and SVM-BP model, showing that the accuracy rate of the SVM-BP model for predicting surrounding rock squeezing is slightly higher than that of the non-squeezing case. The accuracy rate of the BP model in predicting the surrounding rock squeezing is consistent with that of the non-squeezing case. However, its error rate for predicting a non-squeezing case as a squeezing case is higher. Generally, the accuracy of the SVM-BP model to predict the surrounding rock squeezing is higher than that of the BP model. For surrounding rock non-squeezing, the BP model is slightly superior to the SVM-BP model; however, it should be noted that the prediction results are affected by the quantity of test
set samples, and the greater the number of test set samples, the more obvious the differences in model performance may be.

Figure 8 shows the prediction performances of the three models on the test set. The SVM-BP model reaches the highest accuracy index value of 0.92, which is 0.26 higher than that of the SVM model and BP model. The Kappa index value of the SVM-BP model is also the highest (0.89), followed by the BP model (0.80), while that of the SVM is the worst (0.78). According to the results of the test set, based on the four indicators H, D, Q, and K, the SVM-BP model also achieves the best prediction performance, recall rate = 0.95 and F_1 = 0.92. F_1-value was presented to show the advantages and disadvantages of various algorithms, which was based on both precision and

Fig. 7 Confusion matrices for the BP and SVM-BP models

Fig. 8 Comparison of the prediction performance indexes of three classifiers

Fig. 9 Comparison of the AUC values of three classifiers
recall and could evaluate precision and recall as a whole. The F1 value = precision × recall ÷ (precision + recall).

Figure 9 shows a comparison of the AUC values of the three models after 10 iterations on the test set. The area under the curve (AUC) is the area under the receiver operating characteristic (ROC) curve. The reason why the AUC value is usually used as a model evaluation standard is that the ROC curve does not clearly show which classifier is better. In contrast, as a numerical value, a higher AUC value indicates a better classifier. Figure 9 shows that the AUC value of SVM-BP is the highest (0.92), and that the AUC values of SVM and BP are 0.89. Therefore, the classification effect of the SVM-BP model is better.

4.2 Prediction Method Analysis

To compare and analyse the performance of the SVM-BP combination model and other classification methods reported in the literature, the performance of the SVM-BP combination model in surrounding rock deformation classification is analysed. Table 2 shows a summary of the other existing methods and the combined method proposed in this paper, while Fig. 10 shows the accuracy comparison results of the various existing methods and the combined method proposed in this paper.

Table 2 Classification comparison between the methods in this paper and other models in the literature

Indicators of comparison	Shafiei et al (2012)	Feng et al. (2015)	Sun et al (2018)	Chen et al (2020)	Zhang et al (2020)	The method of this paper
Number of case samples	198	166	117	154	166	178
Prediction parameters	H, Q	H, D, Q, K, SSR	H, D, Q, K	H, K, SSR, GC, D	H, D, Q, K, SSR	H, D, Q, K
Prediction method	SVM	BN	M-SVM	DT	SVM, ANN, KNN, DT, LR, MLR, NB	SVM-BP
Accuracy/%	84.10	86.65	84.10	93.50	96.00	92.11
Number of classifiers	1	1	1	3	7	2

Fig. 10 Comparison of classification accuracy between the proposed method and methods proposed in previous studies

Table 2 and Fig. 10 show that in terms of the performance of a single classifier, Shafiei et al. (2012) constructed a SVM model based on two indexes (H and Q) to classify the surrounding rock squeezing that reached an overall accuracy rate of 84.10%; Sun et al. (2018) constructed a M-SVM (multi class support vector machine) model based on the four indicators (D, H, Q, and K) to classify the surrounding rock squeezing that achieved an overall accuracy of 84.10%. The accuracy of the model proposed in this paper is slightly higher than that of Shafiei et al. (2012) when the same SVM model is used and the number of case samples is similar; this result may be related to the number of indicators. The coupling effect of the four indicators is clear.
In terms of the performance of multiple classifier combinations, the SVM-BP model proposed in this paper is compared with Chen et al. (2020) which uses a decision tree combined with Bayesian updating, the Markov chain model, and with Zhang et al. (2020) model, which uses a weighted combination of seven classifier models. The common point among all these models is that the performances of the three multi-classifier combination models are considerably higher than those of any single classifier. Chen et al. (2020) achieves an accuracy rate of 93.50%, Zhang et al. (2020) achieved an accuracy rate of 96.00%, and the accuracy of the model proposed in this paper is 92.11%. The emphases of these combination models are different. The method in this paper focuses on the classification of statistical case data. The disadvantage of the proposed SVM-BP model is that it cannot dynamically predict the surrounding rock squeezing; however, the model is relatively simple and achieves high accuracy. Chen et al. (2020) focused predicting surrounding rock squeezing probability based on time series and established a model that integrated a decision tree with Bayesian updating and Markov geology to predict the probability of surrounding rock squeezing; however, that model is relatively difficult to control. Zhang et al. (2020) focused on determining the weights of seven classifiers predicting the deformation of surrounding rock and established seven weighted combination models of classifiers, including SVM, ANN, KNN, DT, LR, MLR and NB, to classify the surrounding rock squeezing. The classification accuracy rate of this combined model reaches as high as 96.00%, and it greatly improves the classification accuracy. However, when the number of classifiers is too large, the focus of classification is not obvious; thus, this method is too complex, theoretical and not universal.

4.3 Parameter Impact Analysis

This section mainly discusses the reliability and applicability of the SVM, BP and SVM-BP models in predicting tunnel squeezing with fewer prediction parameters. We combined the four parameters \((D, H, Q, K)\). The prediction accuracies of the different models are shown in Table 3 and Fig. 11. Table 3 and Fig. 11 shows that the accuracy with the four combined parameters \((D, H, Q, K)\) is the highest: 89.47% (SVM), 89.47% (BP) and 92.11% (SVM-BP), respectively. Therefore, the above four parameters can be used to predict tunnel-surrounding rock squeezing. The results show that the accuracy of the SVM-BP combination model is 89.47% while the prediction accuracy of the BP neural network is 86.84% when \(D, H,\) and \(Q\) are used to classify the surrounding rock squeezing. However, as a single classifier, the SVM

Prediction parameters	SVM	BP	SVM-BP
\(D, H, Q, K\)	89.47	89.47	92.11
\(D, H, Q\)	71.05	86.84	89.47
\(D, H, K\)	86.84	84.21	86.84
\(D, Q, K\)	78.95	76.32	86.84
\(H, Q, K\)	76.32	65.79	60.53

Fig. 11 Comparison of the classification accuracy of the three classifiers

Table 3 Comparison of accuracy results of three classifiers
achieves a higher prediction accuracy (86.84%) when using the D, H, and K parameters. In contrast, the prediction accuracy of the SVM-BP combination model based on the D, Q, and K parameters is only 86.84%, which is better than that of the single classifier. Based on only the parameters H, Q and K, the prediction results of the three models are not ideal, but again, the prediction accuracy of the SVM model is the highest, at 76.32%. Therefore, different parameters are most suitable for different classifiers.

In addition, the comparison of the prediction results when using the D, H, Q, K and the H, Q, K parameters shows that the prediction accuracy of the three models is greatly reduced; in fact, the prediction accuracy of the SVM-BP model decreases from 92.11 to 60.53%, the most significant decrease. This shows that the tunnel diameter D is the most important parameter in predicting the surrounding rock squeezing, which is consistent with the conclusion reached by Chen et al. (2020). Among the four characteristic parameters, H has the least influence on tunnel-surrounding rock squeezing prediction. However, the results of this model do not reflect the influence of Q and K parameters on the overall accuracy. Therefore, we use variance analysis to verify the significance of D, Q and K parameters. The significance values of D, K and Q parameters are 0.000, 0.001 and 0.104, respectively, indicating that K and D have a significant influence on the surrounding rock squeezing. This conclusion is consistent with the results of Feng et al. (2015), Sun et al. (2018), Chen et al. (2020), Zhang et al. (2020), and further verifies the feasibility of the SVM-BP model in this paper.

5 Conclusion and Discussion

(1) This study constructed a SVM-BP combination model to classify tunnel-surrounding rock squeezing by using four characteristics: D, H, Q, and K. The proposed model achieves a classification accuracy as high as 92.11%. The SVM-BP combination model is both simple and reliable.

(2) In classifying surrounding rock squeezing, through a comparison of three classifiers, this study concludes that the SVM-BP model combines the advantages of an SVM and a BP neural network; and that the combined model has flexible nonlinear modelling and parallel processing capabilities for large-scale data. Thus, the SVM-BP model achieves better classification performances than do the SVM and BP models. Simultaneously, however, the combined model may also reflect the shortcomings of both because its effect is not good on some classification problems. This aspect of the results is worth further study and mining.

(3) In this study, three classifiers (SVM, BP, SVM-BP) were used to classify tunnel-surrounding rock squeezing. Because this is a binary classification problem, the accuracy of all three tested classifiers is high. At present, most of the methods classify their results into two categories; however, in the future, predicting the probability of tunnel-surrounding rock squeezing has more practical significance.

(4) By combining different characteristic parameters and using different models to classify the surrounding rock squeezing, it can be concluded that the coupling of D, H and K has a large influence on the prediction of surrounding rock squeezing under different models.

(5) In future work, we plan to further study how to select the optimal feature subset by using optimization techniques to improve the performance of multi-classifier combinations.

Acknowledgements This work was supported by the National Science Foundation of China (Grant Nos. 51978668, 51968005), and the Guangxi University Young and Middle-Aged Teachers’ Basic Scientific Research Ability Improvement Project (2020ky01011).

Declarations

Conflict of interest The authors declare that there are no conflict of interest.
Appendix 1

No	D(m)	H(m)	Q	K(Mpa)	Squeezing	Reference
1	6.00	150.00	0.40	26.19	—	Sun et al. (2018)
2	6.00	200.00	0.40	20.00	—	
3	5.80	350.00	0.50	2.53	1	
4	4.80	225.00	3.60	1000.00	—	
5	4.80	340.00	1.80	500.00	—	
6	4.80	550.00	5.10	1600.00	—	
7	12.00	220.00	0.80	32.89	—	
8	13.00	52.00	15.00	16.67	—	
9	3.00	280.00	0.05	9.80	1	
10	3.00	280.00	0.02	5.96	1	
11	9.00	680.00	0.05	9.90	1	
12	9.00	280.00	0.02	48.56	1	
13	4.20	100.00	0.01	88.96	1	
14	4.00	112.00	0.01	71.28	1	
15	4.30	111.00	0.01	1936.00	—	
16	4.00	112.00	0.01	936.00	—	
17	4.00	112.00	0.01	651.00	—	
18	4.00	140.00	0.01	430.00	—	
19	4.20	100.00	0.01	31.72	1	
20	4.00	138.00	0.01	1934.00	—	
21	4.40	212.00	0.04	5324.00	—	
22	5.00	300.00	0.05	1430.00	—	
23	4.00	112.00	0.06	458.00	—	
24	4.00	95.00	0.07	933.00	—	
25	4.00	218.00	0.07	739.00	—	
26	4.00	98.00	0.08	933.00	—	
27	5.00	284.00	0.09	68.55	1	
28	5.00	300.00	0.09	664.29	—	
29	4.00	261.00	0.10	931.00	—	
30	4.00	198.00	0.14	934.00	—	
31	4.00	225.00	0.14	1430.00	—	
32	5.00	130.00	0.20	936.00	—	
33	4.10	158.00	0.23	650.00	—	
34	5.00	276.00	0.25	940.00	—	
35	5.00	276.00	0.28	652.00	—	
36	4.00	126.00	0.30	461.00	—	
37	4.00	114.00	0.47	648.00	—	
38	4.00	114.00	0.60	556.00	—	
39	4.60	300.00	0.02	7.71	1	
40	4.80	350.00	0.50	25.32	1	
41	4.80	800.00	2.50	48.99	1	
42	7.00	285.00	0.10	9.79	1	
43	7.00	410.00	0.30	9.79	1	
No	D(m)	H(m)	Q	K(Mpa)	Squeezing	Reference
----	------	------	----	--------	-----------	--------------
44	7.00	415.00	0.88	9.79	1	Sun et al. (2018)
45	2.50	480.00	0.80	9.84	1	
46	7.00	500.00	1.00	9.79	1	
47	2.50	510.00	0.88	9.84	1	
48	4.60	240.00	0.12	3.97	1	
49	4.60	440.00	0.05	3.97	1	
50	4.60	450.00	0.06	3.97	1	
51	4.60	400.00	0.03	3.98	1	
52	4.60	400.00	0.05	3.98	1	
53	4.60	200.00	0.02	2.98	1	
54	4.60	325.00	0.03	2.98	1	
55	4.60	400.00	0.51	2.98	1	
56	5.80	700.00	0.30	9.81	1	
57	5.80	550.00	1.70	9.81	1	
58	5.80	635.00	4.00	9.81	1	
59	5.80	650.00	4.12	9.81	1	
60	5.80	450.00	0.31	5.10	1	
61	5.80	750.00	0.50	8.10	1	
62	7.00	450.00	0.59	9.67	1	
63	6.80	337.00	0.01	44.76	1	
64	6.80	337.00	0.01	16.05	1	
65	6.80	337.00	0.01	22.58	1	
66	6.80	337.00	0.01	36.36	1	
67	6.80	337.00	0.08	14.09	1	
68	8.70	550.00	0.03	39.13	1	
69	8.70	600.00	0.02	90.71	1	
70	8.70	600.00	0.03	34.48	1	
71	8.70	600.00	0.02	26.20	1	
72	8.70	600.00	0.02	28.48	1	
73	8.70	620.00	0.02	26.20	1	
74	8.70	620.00	0.01	14.67	1	
75	8.70	620.00	0.01	14.67	1	
76	8.70	620.00	0.01	14.67	1	
77	8.70	620.00	0.02	26.20	1	
78	8.70	620.00	0.02	26.10	1	
79	8.70	620.00	0.03	50.80	1	
80	8.70	580.00	0.02	26.20	1	
81	8.70	580.00	0.03	74.66	1	
82	8.70	550.00	0.03	39.87	1	
83	8.70	575.00	0.01	21.17	1	
84	11.00	700.00	0.42	7.43	1	
No	\(D(m) \)	\(H(m) \)	\(Q \)	\(K(Mpa) \)	Squeezing	Reference
----	----------	----------	------	---------	---------	---------
85	11.00	700.00	0.33	9.14	1	Sun et al. (2018)
86	11.00	750.00	0.33	9.14	1	
87	11.00	600.00	0.25	9.14	1	
88	11.00	850.00	0.06	20.40	1	
89	11.00	600.00	0.03	33.33	1	
90	11.00	300.00	0.00	16.50	1	
91	11.00	400.00	0.00	17.00	1	
92	11.00	800.00	0.19	17.14	1	
93	6.50	300.00	0.03	10.00	1	
94	6.50	312.00	0.09	34.67	1	
95	6.50	280.00	0.08	29.33	1	
96	6.50	270.00	0.13	15.91	1	
97	6.50	285.00	0.06	12.80	1	
98	6.50	280.00	0.03	11.54	1	
99	6.50	280.00	0.04	12.50	1	
100	6.00	727.00	2.29	5.88	1	
101	6.00	736.00	2.43	7.69	1	
102	6.00	733.00	2.90	6.25	1	
103	6.00	690.00	1.65	9.38	1	
104	13.00	577.00	1.52	11.11	1	
105	5.40	199.70	0.02	1217.16	1	
106	5.40	217.50	0.01	1217.16	1	
107	5.40	252.20	0.01	1523.07	1	
108	5.40	246.30	0.01	1523.07	1	
109	5.40	283.90	0.01	1645.38	1	
110	5.40	284.50	0.01	1828.98	1	
111	5.40	210.80	0.01	1575.72	1	
112	5.40	237.70	0.01	1575.72	1	
113	5.40	230.00	0.02	1217.16	1	
114	5.40	222.60	0.02	1217.16	1	
115	5.40	80.00	93.50	0.00	–1	
116	5.40	190.00	7.45	0.00	–1	
117	5.40	130.00	1.53	0.00	–1	
118	3.5	285	0.1	9.79	1	
119	3.5	410	0.3	9.79	–1	
120	3.5	415	0.88	9.79	1	
121	1.25	480	0.8	9.84	–1	
122	3.5	500	1	9.79	–1	
123	1.25	510	0.88	9.84	–1	
124	2.3	240	0.12	3.97	–1	
125	2.3	440	0.05	3.97	1	
126	2.3	450	0.06	3.97	1	
127	2.3	400	0.03	3.98	–1	

Dwivedi, et al. (2013)
No	D(m)	H(m)	Q	K(Mpa)	Squeezing	Reference
128	2.3	400	0.05	3.98	1	Dwivedi, et al. (2013)
129	2.3	200	0.02	2.98	1	
130	2.3	325	0.03	2.98	-1	
131	2.3	400	0.512	2.98	1	
132	1.5	280	0.05	9.8	1	
133	1.5	280	0.022	5.96	1	
134	4.5	680	0.05	9.9	1	
135	4.5	280	0.022	48.56	-1	
136	2.9	700	0.3	9.81	-1	
137	2.9	550	1.7	9.81	-1	
138	2.9	635	4	9.81	-1	
139	2.9	650	4.12	9.81	-1	
140	2.9	450	0.31	5.1	-1	
141	2.9	750	0.5	8.1	-1	
142	3.5	450	0.59	9.67	-1	
143	3.4	337	0.011	8.97	1	
144	4.35	600	0.015	34.52	1	
145	4.35	600	0.023	90.71	1	
146	4.35	600	0.025	34.17	1	
147	4.35	600	0.018	26.20	1	
148	4.35	600	0.023	28.48	1	
149	4.35	620	0.02	26.20	-1	
150	4.35	620	0.008	14.67	-1	
151	4.35	620	0.009	14.67	-1	
152	4.35	620	0.01	26.20	1	
153	4.35	620	0.009	14.67	-1	
154	4.35	620	0.016	26.20	-1	
155	4.35	620	0.02	26.20	1	
156	4.35	620	0.025	56.96	-1	
157	4.35	580	0.023	26.20	1	
158	4.35	580	0.025	74.66	1	
159	4.35	575	0.001	34.17	1	
160	4.35	550	0.025	39.87	1	
161	2	98	0.08	933.0	-1	
162	2.15	111	0.008	1936.0	-1	
163	2	112	0.06	458.0	-1	
164	2	126	0.3	461.0	-1	
165	2	138	0.013	1934.0	-1	
166	2	198	0.14	934.0	-1	
167	2	261	0.095	931.0	-1	
168	2	95	0.065	933.0	-1	
169	2.5	130	0.2	936.0	-1	
References

Aydan Ö, Akagi T, Kawamoto T (1996) The squeezing potential of rock around tunnels: theory and prediction with examples taken from Japan. Rock Mech Rock Eng 26:137–163. https://doi.org/10.1007/BF01032650

Chang CC, Lin CJ (2011) Libsvm: a library for support vector machines. ACM Trans Intel Syst Technol 2(3):1–27. https://doi.org/10.1145/1961189.1961199

Chen Y, Li TB, Zeng P, Ma JJ, Patelli E, Edwards B (2020) Dynamic and probabilistic multi-class prediction of tunnel squeezing intensity. Rock Mech Rock Eng 53:3521–3542. https://doi.org/10.1007/s00603-020-02138-8

Debernardi D, Barla G (2009) New viscoplastic model for design analysis of tunnels in squeezing conditions. Rock Mech Rock Eng 42(2):259. https://doi.org/10.1007/s00603-020-02138-8

Dhakshina K, Esakkirajan S, Bama S, Keerthiveena B (2020) A microcontroller based machine vision approach for tomato grading and sorting using SVM classifier. Microprocess Microsyst 76:103090. https://doi.org/10.1016/j.micpro.2020.103090

Ding S, Su C, Yu J (2011) An optimizing BP neural network algorithm based on genetic algorithm. Artif Intell Rev 36(2):153–162. https://doi.org/10.1007/s10462-011-9208-z

Dwivedi RD, Singh M, Viladkar MN, Goel RK (2013) Prediction of tunnel deformation in squeezing grounds. Eng Geol 161:55–64. https://doi.org/10.1016/j.enggeo.2013.04.005

Feng XD, Jimenez R (2015) Predicting tunnel squeezing with incomplete data using Bayesian networks. Eng Geol 195:214–224. https://doi.org/10.1016/j.enggeo.2015.06.017

Fritz P (2010) An analytical solution for axisymmetric tunnel problems in elasto-viscoplastic media. Int J Numer Anal Meth Geomech 38(4):325–342. https://doi.org/10.1002/nag.1610080403

Gao F, Stead D, Kang H (2015) Numerical simulation of squeezing failure in a coal mine roadway due to mining-induced stresses. Rock Mech Rock Eng 48(4):1635–1645. https://doi.org/10.1007/s00603-014-0653-2

Ghasemi E, Gholizadeh H (2018) Development of two empirical correlations for tunnel squeezing prediction using binary logistic regression and linear discriminant analysis. Geotech Geol Eng 37(4):3435–3446. https://doi.org/10.1007/s10706-018-00758-0

Goel RK, Jethwa JL, Paithankar AG (1995) Tunnelling through the young Himalayas—A case history of the maneri-ut-tarkashi power tunnel. Eng Geol 39(1–2):31–44. https://doi.org/10.1016/0013-7952(94)00002-J

Hock E, Marinos P (2000) Predicting tunnel squeezing problems in weak heterogeneous rock masses. Tunn Tunn Int 32(11):45–51

Hoek E (2001) Big tunnels in bad rock. J Geotech Geoenviron Eng 127(9):726–740. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:9(726)

Jethwa JL, Singh B, Singh B (1984) Estimation of ultimate rock pressure for tunnel linings under squeezing rock conditions—a new approach. In: Brown ET, Hudson JA (eds) Design and performance of underground excavations, ISRM symposium. Cambridge, pp 231–238

Jimenez R, Recio D (2011) A linear classifier for probabilistic prediction of squeezing conditions in Himalayan tunnels. Eng Geol 121:101–109. https://doi.org/10.1016/j.enggeo.2011.05.006

Karush-Kuhn-Tucker, 2020, (Access online: http://apmonitor. com/me575/index.php/Main/KuhnTucker)

Mahdevari S, Haghighat HS, Torabi SR (2013) A dynamically approach based on svm algorithm for prediction of tunnel convergence during excavation. Tunn Undergr Space Technol 38(9):59–68. https://doi.org/10.1016/j.tust.2013.05.002

Samadzadegan F, Bigdeli B, Ramzi P (2010) A multiple classifier system for classification of LIDAR remote sensing data using multi-class SVM. In: 9th international workshop on multiple classifier systems, Cairo, EGYPT, 5997, 254–263.

Shafiei A, Parsaei H, Dusseault MB, (2012) Rock squeezing prediction by a support vector machine classifier. In: 46th
Singh B, Jethwa JL, Dube AK, Singh B (1992) Correlation between observed support pressure and rock mass quality. Tunn Undergr Space Technol 7(1):59–74. https://doi.org/10.1016/0886-7798(92)90114-W

Singh B, Goel RK, Jethwa JL (1997) Support pressure assessment in arched underground openings through poor rock masses. Eng Geol 48(1–2):59–81. https://doi.org/10.1016/S0013-7952(97)81914-X

Sun Y, Feng X, Yang L (2018) Predicting tunnel squeezing using multiclass support vector machines. Adv in Civil Eng 2018:4543984. https://doi.org/10.1155/2018/4543984

Wang J (2020) The key way is to release the genuine rock pressure—discussion on problems of tunnelling in squeezing ground. Modern Tunn Technol 57(4):1–11

Wang XC, Shi F (2013) Matlab neural network analysis of 43 cases. Beijing University of Aeronautics and Astronautics Press, Beijing, China

Wen J, Li ZJ, Wei LS, Zhen H (2002) The improvements of BP neural network learning algorithm. In: IEEE: 16th world computer congress. Beijing, China, pp 1647–1649. https://doi.org/10.1109/ICOSP.2000.893417

Yassaghi A, Salari-Rad H (2005) Squeezing rock conditions at an igneous contact zone in the Taloun tunnels, Tehran-Shomal freeway, Iran: a case study. Int J Rock Mech Mining Sci 42(1):95–108. https://doi.org/10.1016/j.ijrmms.2004.07.002

Zhang J, Li D, Wang Y (2020) Predicting tunnel squeezing using a hybrid classifier ensemble with incomplete data. Bull Eng Geol Env 79(6):3245–3256. https://doi.org/10.1007/s10064-020-01747-5

Zhao HH, Liu H (2020) Multiple classifiers fusion and CNN feature extraction for handwritten digits recognition. Granular Comput 5(3):411–418. https://doi.org/10.1007/s41066-019-00158-6

Zhou G, Sun Y, Peng J (2018) Application of genetic algorithm based BP neural network to parameter inversion of surrounding rock and deformation prediction. Modern Tunn Technol 55(01):107–113. https://doi.org/10.13807/j.cnki.mtt.2018.01.015

Zhou ZH (2016) Machine learning. Tsinghua University Press, Beijing, China

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.