Research advances in erythrocyte regeneration sources and methods in vitro

Shuming Sun a, b, c, Yuanliang Peng a, b, c, Jing Lia, b, * a Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China b Erythropoiesis Research Center, Central South University, Changsha 410078, China

1. Introduction

Oxygen delivery to cells and tissues is very important in developmental, physiological and regenerative processes. Erythrocytes perform this important task. Erythrocytes are produced by the differentiation of hematopoietic stem cells (HSCs) in their microenvironment (niche) in vivo. Erythropoiesis is divided into three major stages. Stage I (early erythroid differentiation) involves the staged differentiation of HSCs into erythrocyte progenitor cells (burst forming units-erythroid, BFU-E, and colony forming units-erythroid, CFU-E). Stage II (terminal erythroid differentiation) involves the differentiation of erythroblast and the enucleation of late erythroblast, including proerythroblast (Pro-E), basophilic erythroblast (Baso-E), polychromatic erythroblast (Poly-E) and orthochromatic erythroblast (Ortho-E). Stage III (maturation) involves the development of reticulocytes (Retic) into mature red blood cells (RBCs). 1

For many years, researchers have been very interested in studying erythrocyte regeneration, not only to elucidate the developmental mechanism, 2–5 but also to improve hematological disease treatments.6,7 The worldwide shortage of blood for transfusions has become increasingly evident, especially for rare blood types. There are three stem cell sources from which erythrocytes are artificially induced in vitro: HSCs, embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs). 8 ESCs and iPSCs differ from HSCs in their proliferative capacity, and they provide unlimited cellular resources for inducing erythrocyte production. Recently, studies have found alternative ways to generate erythrocytes from immortalized cell lines or transformed fibroblasts. For erythrocyte regeneration in vitro, three major bottlenecks need to be overcome: limited cell proliferation, difficulty in transforming embryonic globin into adult globin, and low enucleation rates. We summarize the research advances in erythrocyte regeneration sources and methods in this review (Fig. 1, Table 1).

2. From native HS/PCs to erythrocytes

Studies on native hematopoietic stem and progenitor cells (HS/PCs) have provided essential information about human erythropoiesis. In the last decade, researchers have refined methods of
primary human cell culture to obtain larger numbers of erythroid cells from relatively few HS/PCs obtained from bone marrow (BM), bone marrow mobilized cells in peripheral blood (PB), or umbilical cord blood (UCB). Erythropoiesis was first studied in vitro mainly through semi-solid culture in which erythroid progenitors develop into discrete colonies. Subsequently, researchers succeeded in the expansion of erythroid progenitors using a liquid culture system. Terminal erythroid differentiation has also been reported in a two-step method for mass production of erythroid cells derived from UCB cells. The medium was modified from the growth medium established previously for chicken erythroid progenitors. By adjusting the culture conditions and cytokines, such progenitor cells effectively undergo terminal erythroid differentiation in culture. Remarkably, this culture system can also be used for human PB- and BM-derived HS/PCs amplification and differentiation in vitro.

In 2002, Migliaccio, G. et al. described a new two-step culture method for mass production of erythrocytes in vitro from PB-derived HS/PCs. The culture method involved an early proliferative phase and a subsequent differentiative phase. More than 10 million erythroblasts were generated for each milliliter of blood collected from normal donors or thalassemic patients on day 7 of the proliferative phase. The erythroblasts were composed mostly of CD45low/GPAneg/CD71low cells (90% of erythroblasts). After being transferred to differentiation medium containing EPO and insulin, they progressed to mature erythroblasts with the expression of adult β-globin but without enucleation. At the same time, Douay, L. et al. also described a three-step procedure for the ex vivo

Table 1

Cell types	Origin and sources	Feeder cells	Hemoglobin expression	Enucleation ratio	References
Native HS/PCs	BM- or PB-derived CD34 + cells	human mesenchymal cells or MS-5 cell line	β-globin	> 95%	Douay, L. group [15,20]
hESCs	UCB-derived CD34 + cells	mFLSCs or mitomycin C treated MEFs	γ- and β-globin	77.5% ± 2.8%	Miharada, K. et al [21]
hiPSCs	H1, MA01, MA99 or HuES-3 cell lines	mFLSCs or mitomycin C treated MEFs	γ- and β-globin	> 60%	Ma, F. et al [31] and Lu, S.J. et al [12]
BM- or PB-derived CD34 + cells	UCB-derived CD34 + cells	mFLSCs or mitomycin C treated MEFs	γ- and β-globin	> 60%	Ma, F. et al [31] and Lu, S.J. et al [12]
hiPSCs	IMR90 or FD-136 cell lines	mitomycin C treated MEFs	ε- and γ-globin	~ 4%	Lapillonne, H. et al [8]
CTRL-2 c1 or CTRL-1 c3 cell lines	IMR90 or FD-136 cell lines	mitomycin C treated MEFs	ε- and γ-globin	20–26%	Kobari, L. et al [10]
BMSCs and PBEPs from SCD fibroblasts with OCT4	IMR90 or FD-136 cell lines	Matrigel-coated dish	β- and γ-globin	very low	Fujita, A. et al [18]
Transformed cell lines	IMR90 or FD-136 cell lines	Matrigel-coated dish	β- and γ-globin	very low	Uchida, N. et al [59]
Immortalized cell lines	IMR90 or FD-136 cell lines	Matrigel-coated dish	β- and γ-globin	very low	Szabo, E. et al [11]
HUDEP-2	feeder cell-free	β- with a little γ-globin	very low	Liu, Z. et al [43]	
BEL-A	feeder cell-free	γ-globin with a little ε- and β-globin	very low	Hirose, S. et al [45]	
		β- without γ-globin	very low	Kurita, R. et al [46]	
		β- without γ-globin	~ 30%	Trakarnsanga, K. et al [47]	

![Fig. 1. Multiple Sources for Erythrocytes Regeneration](Image 109x533 to 477x727)
expansion of UCB-derived HS/PCs into a pure erythroid precursor population by the sequential application of specific combinations of growth factors in a serum-free culture medium. Extraordinarily, when they were injected into nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice, the cultured erythroblasts were capable of proliferation and terminal differentiation into mature enucleated RBCs. Three years later, by mimicking the bone marrow microenvironment with cytokines and stromal feeder cells, the same group achieved substantial amplification of HS/PCs of diverse origins (almost 2 millions-fold) and more than 95% terminal differentiation into functional mature RBCs, and these cells could survive in NOD/SCID mice. Furthermore, comparing the characteristics of RBCs obtained from HSCs of diverse origins, their results showed that the proliferation capacity of HS/PCs from BM and PB sources was greater than that of HS/PCs from UCB sources. In addition, cultured RBCs (cRBCs) derived from PB and BM mainly contained adult hemoglobin (HbA, 94% ± 2% and 95% ± 10%, respectively), while fetal hemoglobin (HBF, 64% ± 13%) accounted for most of the hemoglobin in UCB-derived cRBCs.26 In 2006, Miharada, K. et al. developed a four-passage culture protocol that included VEGF and IGF-II in the culture medium to improve upon existing methods for producing enucleated RBCs from UCB-derived HS/PCs. In addition, their improved method produced enucleated RBCs efficiently (with enucleation rates of up to 77.5% ± 2.8%) in the absence of feeder cells.

Later, some groups also developed an HS/PC expansion and differentiation procedure to efficiently produce enucleated RBCs by optimizing the use of growth factors and cytokines. Using the optimized culture system, An, X. et al. discovered that BFU-E and CFU-E are characterized by CD45⁺/IL-3R⁺/C0⁺ and CD45⁺/IL-3R⁺/CD34⁺ low and CD45⁺/IL-3R⁺/CD34⁺/CD71 hi phenotypes, respectively. The use of band 3 and a4-integrin enabled us to isolate erythroblasts at specific developmental stages from primary human bone marrow.23 Transcriptome analyses of terminal erythroid differentiation have shown global patterns and have given us a deeper understanding of the mechanisms of erythroid development.26,27 These findings provide the standard dynamic molecular profiles for the erythroblast regeneration both in vitro and in vivo.

3. From hESCs to erythrocytes

hESCs can be propagated and expanded in vitro indefinitely, providing a potentially inexhaustible and donorless source of cells for human therapy. As early as 2001, Kaufman, D. S. et al. successfully differentiated hESCs into erythroid progenitor cells by coculturing them with the mouse bone marrow stromal cell line S17 and the mouse yolk-sac endothelial cell line C166. Subsequently, several research groups have clarified that the hematopoietic differentiation of hESCs progresses through sequential hematopoietic, primitive, and definitive stages resembling human yolk sac development, and the resulting primitive erythroblasts express embryonic ε- and fetal γ-globin but do not enucleate.28

In 2006, Miharada, K. et al. reported the complete differentiation of hESCs derived from human fetal (IMR90) and adult (FD-136) fibroblasts into definitive erythrocytes capable of maturing into enucleated RBCs (~4%).31 By using hPS cells derived from sickle cell disease (SCD) patients, the population contained 20–26% RBCs and 74–80% Ortho-E after cultured in the erythroid differentiation media for 25 days.32 However, the obtained RBCs all expressed typically produce e- and γ-globin rather than β-globin.27,33,34 hiPSCs from various somatic cells can also produce a large number of erythroid cells with embryonic and fetal-like characteristics.27 Fujita, A. et al. generated β-globin-expressing definitive erythroid cells through two fibroblast-derived hiPSC lines. In this work, primitive erythropoiesis gradually turned into definitive erythropoiesis during prolonged ES sac maturation, concurrent with the emergence of hematopoietic progenitor cells. GPA and CD34 expression were used as selection markers for primitive and definitive erythroid progenitor cells within the ES sacs before erythroid differentiation. This experimental strategy represents an important step toward the in vitro erythroid cell production systems from pluripotent stem cells. hiPSCs from various somatic cells can also produce a large number of erythroid cells with embryonic and fetal-like characteristics. And Uchida, N. et al. successfully simulated erythropoiesis in vitro with a system that can efficiently produce β-globin-expressing erythroid cells by using hiPSCs derived from bone marrow stromal cells (BMSCs) and peripheral blood erythroid progenitors (PBEPs) from sickle cell disease (SCD) patients who need reliable production of β-globin. This system will now allow comprehensive testing of genetic strategies aimed at correcting the SCD mutation. Therefore, this important finding will enable the eventual clinical translation of the strategy. Small molecules (isobutyl methyl xanthine (IBMX) and StemRegenin (SR1)) can also be used to increase the β-globin expression of erythroid cells derived from hiPSCs.39

To our knowledge, although some hiPSCs can produce erythroid cells with substantial adult β-globin expression, the lack of or low enucleation of blast cells and the low yield of functional RBCs still creates a bottleneck for RBC transfusion.

5. From transformed cell lines to erythrocytes

In addition to the aforementioned progenitors, human dermal fibroblasts can be reprogrammed by expressing OCT4 (also called POU5F1). OCT4-transduced fibroblasts exhibit similar OCT4 expression levels to those of established iPSCs and exclusively give rise to hematopoietic-like CD45⁺ cells.35 The study uniquely demonstrated the direct conversion of transformed fibroblasts into multipotent cell types. Zhang, S. et al. showed that transformed fibroblasts can be induced to differentiate toward erythroid lineages expressing hemoglobin both in vitro and in vivo. In this process, the hypoxia-mimic chemical cobalt chloride (CoCl₂) plays a critical role. Polyploidy giant cells (PGCs) induced from immortalized...
fibroblasts express stem cell markers. Most researchers first transform fibroblasts into iPSCs and then induce iPSCs to differentiate into multiple cell types.

By enforcing OCT4 gene expression and cytokine stimulation, human hair follicle mesenchymal stem cells (hHFMSCs) can be transdifferentiated into erythrocytes, even though with low transformation efficiency (1.55% CD34⁺ cells).

Nouri M et al. showed another way of reprogramming human peripheral blood monocytes to erythroid lineage, just by blocking PU-1 gene expression. PU-1 downregulation lead GATA-1 and hemoglobin overexpression. This strategy may provide another way of erythroid regeneration. These studies described above showed that direct conversions can also be induced through unique strategies.

6. From immortalized human cell lines to erythrocytes

Another strategy to generate erythrocytes is through immortalized erythroid progenitor cell lines. Currently, immortalized human cell lines are useful in studying erythropoiesis because they can be genetically manipulated and infinitely expanded. Erythroid cell lines derived from human primary HS/PCs have been established for studying erythropoiesis and for the large-scale production of RBCs. In 2013, Hirose, S. et al. immortalized erythroblasts by transduction of c-MYC and BCL-XL into multipotent hematopoietic progenitor cells derived from pluripotent stem cells, called iMERYPCs, which enable large-scale erythrocyte production, but the iMERYPC-derived erythrocytes mainly express γ-globin with little expression ε- and β-globin and have a very low enucleation ratio.

Kurita, R. and colleagues also established immortalized cell lines that express erythroid-specific markers by immortalizing UCB-derived HS/PCs and hiPSCs using a lentiviral vector containing the Tet-inducible expression system for HPV16-E6/E7. One of the cell lines, the human umbilical cord blood derived erythroid progenitor (HUDEP-2) cell line, can produce enucleated RBCs with functional hemoglobin expression after induction of differentiation in erythroid differentiation media. However, the efficiency of enucleated RBC production is too low for the large-scale production of RBCs.

By utilizing a similar approach, Trakarnsanga, K. and colleagues immortalized adult bone marrow-derived early erythroblasts, generating a stable line named BEL-A (Bristol Erythroid Line Adult). BEL-A cells can be steadily maintained in the pro-to early basophilic erythroblast phase in expansion media and efficiently differentiated into mature, functional reticulocytes with an enucleation rate of up to 30%. Remarkably, the BEL-A-derived erythroblasts and reticulocytes show no substantive differences compared to those derived from adult PB CD34⁺ cultures. The BEL-A line demonstrates the great potential of immortalized erythroid lines for the manufacture of novel red cell products for clinical use and as a research tool for the study of erythropoiesis in health and disease, with exciting applications in other research fields.

Further research is needed to determine the side effects of viral transduction related to these newly developed methods of erythrocyte production. In addition, low enucleation rates may be another critical problem that needs to be solved.

7. Discussion

Enucleation is an important biological activity in erythropoiesis in vivo, and it is also a rate-limiting process that must be performed to induce various stem cells or erythroid precursors to differentiate into mature RBCs in vitro. Low efficiency of enucleation is a very common problem, especially for sources derived from ES and iPSCs, so it is very important to elucidate the regulatory mechanism of enucleation to enable increases enucleation ratio. Understanding of the molecular mechanism of enucleation in late erythroblasts is still in the hypothesis stage. There are several hypotheses, including the apoptosis theory, the asymmetric division theory, the bubble transport theory, the signal network regulation theory and the macrophage mediation theory. Researchers have used mouse models to demonstrate that the expression of macrophage-specific adhesion molecules plays an important role in mediating enucleation. Lodish, H.F. et al. found that there is a substantial difference between human and mouse erythroid development; therefore, elucidating the mechanism of enucleation in human late red blood cells will require much further study. Recent studies have reported that KLF1, dynein, survivin/EPS15/clathrin play a critical role in human erythroid enucleation. Our unpublished study shows that downregulation of GATA1 can reduce the efficiency of enucleation and that GATA1 rescue can increase enucleation efficiency. We infer that overexpression of key transcription factors in orthochromatous erythroblasts can enhance enucleation efficiency.

In this review, we discussed advances in research seeking to determine sources of erythrocytes and how to regenerate mature and functional red blood cells. Even though the researchers already made several achievement, the production of erythrocytes in vitro still needs further fundamental study and functional test. A recent study has revealed that humanized NSGW41 mice show improved human erythropoiesis and platelet formation. This research suggests that the overexpression of certain molecules may contribute to the progression of erythropoiesis. Erythroid regeneration from different sources is regulated by multiple molecules, multiple stages and multiple layers. Autophagy, iron metabolism regulation, and specific cellular organelles are all very important for erythroid regeneration. Effective blood transfusion, drug delivery and hematological disorder treatment strategies are waiting for breakthroughs in erythroid regeneration.

Conflicts of interest

The authors declare no conflict of interest.

Authorship

J. L. designed the manuscript, S. S and Y. P collected and analyzed the references, S. S and Y. P wrote the paper, J. L revised and edited the paper.

Acknowledgments

This work was supported by the National Key Research and Development Program of China (2018YFA0107800), the Natural Science Foundation of China (81770107, 81270576).

References

1. Palis J. Ontogeny of erythropoiesis. Curr Opin Hematol. 2008;15:155–161.
2. Bresnick EH, Hewitt KJ, Mehta C, et al. Mechanisms of erythrocyte development and regeneration: implications for regenerative medicine and beyond. Development. 2018;145.
3. Han X, Zhang J, Peng Y, et al. Unexpected role for p19INK4d in post-transcriptional regulation of GATA1 and modulation of human terminal erythropoiesis. Blood. 2017;129:226–237.
4. An X, Schulz VP, Mohandas N, et al. Human and murine erythropoiesis. Curr Opin Hematol. 2015;22:206–211.
5. Yan H, Wang Y, Qu X, et al. Distinct roles for TET family proteins in regulating human erythropoiesis. Blood. 2017;129:2002–2012.
6. Pishesha N, Bilate AM, Wibowo MC, et al. Engineered erythrocytes covalently linked to antigenic peptides can protect against autoimmune disease. Proc Natl Acad Sci U S A. 2017;114:3157–3162.
