Theoretical Research of Roller Enveloping the Side-worm Gear Pairs Drive

Hao Rong, Zaixin Liu, Jinkuan Li, Jieyu Pu, Jianjun Quan
School of Mechanical Eng & Automation, Xihua University, Chengdu, 610039, China

ABSTRACT: Roller enveloping the side-worm gear pairs drive is proposed basing on roller enveloping hourglass worm drive. Roller enveloping the side-worm gear pairs drive means to assembling the roller on the end surface of the worm wheel equally. The hourglass worm tooth surface equation can be deduced by applying spatial meshing theory and differential geometry theory. The hourglass worm numerical models can be concluded by applying Matlab software to finish numerical simulation. At the same time, this theory also focus on analyzing the roller radius R, orifice coefficient K_1, circumferential angle α of worm gear for the meshing performance of this drive. According to the analysis, it can be concluded as that the roller radius is $5\sim20$mm.

KEYWORDS: Roller enveloping; Side-worm gear drive; Hourglass worm; Meshing performance.

1 INTRODUCTION

Roller enveloping the side-worm gear pairs drive is proposed as an new kind of practical drive pair basing on roller enveloping hourglass worm drive. Roller enveloping the side-worm gear pairs drive means to assembling the roller on the end surface of the worm wheel equally. It not only enjoys the advantages of traditional side-worm drive pairs such as high transmission ratio, compact structure and stable work status, but also includes the advantages of unique high transmission efficiency, continence to be assembled, low cost and etc.

For now, the models expanded through the side-worm gear pairs drive includes: Japanese roller pin worm gear drive and steel cylindrical worm gear with high precision-pc-surface worm pairs of Chongqing machine-tool[9].For the two kinds of drive pairs, the previous one is testing analyze about roller pin worm gear drive efficiency. According the analyze, the efficiency is above 70%. The second one only comes up with an assembly way of roller. It not emphasis the theory research about roller enveloping the side-worm gears pair drive.

Based on the spatial meshing theory and differential geometry theory, this article will deduce the hourglass worm tooth surface equation of roller enveloping the side-worm gear pairs drive, and analyze the meshing performance of this drive. This article can provide theory reference for the drive to be practical.

2 ROLLER ENVELOPING THE SIDE-WORM GEAR PAIRS DRIVE COORDINATE TRANSFORMATION

2.1 Location of coordination system

To establishing coordination system of worm-gear pair like Figure 1. Assuming the worm’s fixed and flexible coordination system as $S_1(O_1,i_1,j_1,k_1^1).S_2(O_1,i_1,j_1,k_1)$ respectively; assuming the worm-gear’s fixed and flexible coordination system as $S_3(O_2,i_2,j_2,k_2).S_4(O_2,i_2,j_2,k_2)$ respectively; k_1^1 represents worm’s axis of rotation and k_2 means worm gear’s axis of rotation. Then to establishing a coordination system $S_0(O_0,i_0,j_0,k_0)$ which rigidly connected to worm gear, k_0 is the direction of axis of rotation of the roller. The point O_0’s coordinate is (a_2,b_2,c_2) in coordination system $S_4(O_2,i_2,j_2,k_2); A$ represents center distance of transmission pair, α is circumferential angle of worm gear, φ_1 is rotating angle of the worm, φ_2 is rotating angle of the worm wheel, i_2l is the transmission ratio. When φ_1 and φ_2 is zero, the fixed and flexible coordinate system of worm are coincident, and the flexible and fixed coordinate system of worm gear are also coincident.

2.2 Transformation of coordinate system

The transformation relationship from coordination system $S_0(O_0,i_0,j_0,k_0)$ which rigidly connected to worm gear to worm’s flexible coordination system
$$S_i(O_{i1},i_{11:j1})$$ can be shown as below:

$$M_{10} = \begin{bmatrix}
D_{11} & D_{12} & D_{13} & D_{14} \\
D_{21} & D_{22} & D_{23} & D_{24} \\
D_{31} & D_{32} & D_{33} & D_{34} \\
D_{41} & D_{42} & D_{43} & D_{44}
\end{bmatrix}$$

(1)

Of which:

$$\begin{align*}
D_{11} &= -\cos(\varphi_1)\cos(\varphi_2)\sin(\alpha) + \cos(\varphi_1)\sin(\varphi_2)\cos(\alpha) \\
D_{12} &= \sin(\varphi_1)\cos(\varphi_2)\sin(\alpha) - \sin(\varphi_1)\sin(\varphi_2)\cos(\alpha) \\
D_{13} &= -\cos(\varphi_1)\cos(\varphi_2) - \sin(\varphi_1)\sin(\varphi_2) \\
D_{14} &= A\cos(\varphi_1) - a_2\cos(\varphi_2)\cos(\varphi_2) + b_2\cos(\varphi_1)\sin(\varphi_2) \\
D_{21} &= \sin(\varphi_1)\cos(\varphi_2)\cos(\alpha) + \sin(\varphi_1)\sin(\varphi_2)\sin(\alpha) \\
D_{22} &= -\sin(\varphi_1)\sin(\varphi_2)\cos(\alpha) - \sin(\varphi_1)\sin(\varphi_2)\sin(\alpha) \\
D_{23} &= -a_2\cos(\varphi_2)\sin(\varphi_2) - A\cos(\varphi_1) - b_2\sin(\varphi_2)\sin(\varphi_2) \\
D_{24} &= D_{12} = D_{33} = D_{34} = 0 \\
D_{44} &= 1
\end{align*}$$

2.3 Angular velocity and relative velocity

Setting the contact point $$P$$ of the worm tooth surface and the roller tooth surface as dynamic coordination $$S_{p}(O_{p},e_{1},e_{2},n)$$, as shown in Figure 2. Then the vector equation of the roller tooth surface in the coordinate system $$S_{p}(O_{p},i_{0},j_{0},k_{0})$$ is as below:

$$\begin{align*}
\mathbf{r}_n &= x_n\mathbf{i} + y_n\mathbf{j} + z_n\mathbf{k} \\
x_n &= R\cos\theta \\
y_n &= R\sin\theta \\
z_n &= u
\end{align*}$$

(2)

In above vector equation, $$R$$ means roller radius , $$\theta$$ and $$\mu$$ are roller surface parameters.

According to the differential geometry theory, the relative velocity vector $$V_{12}$$ of contact point $$P$$ of worm tooth surface and the roller surface in dynamic coordinate is shown as below:

$$\begin{align*}
V_{12} &= V_{12}^e + V_{12}^n \\
V_{12}^e &= -E_1(\cos\theta\sin\alpha + \cos\theta\cos\alpha) + E_2(\cos\theta\sin\alpha - \cos\alpha\sin\theta) \\
V_{12}^n &= E_1 \\
V_{12}^n &= E_2(\cos\theta\sin\alpha - \cos\alpha\sin\theta) + E_3(\cos\theta\sin\alpha + \cos\alpha\cos\theta) \\
E_1 &= z_n\cos(\varphi_1) + i_{12}(x_n\cos\varphi_2 + y_n\sin\alpha + b_2) \\
E_2 &= z_n\sin(\varphi_1) - i_{12}(x_n\sin\varphi_2 - y_n\cos\alpha + b_2) \\
E_3 &= \cos(\varphi_1)(x_n\sin\varphi_2 - y_n\cos\alpha + a_1) - \\
&\quad \sin(\varphi_1)(x_n\cos\varphi_2 + y_n\sin\alpha + b_2)
\end{align*}$$

In above formula: $$V_{12}^e$$, $$V_{12}^n$$, $$V_{12}$$ are casing shadows of elative velocity vector in dynamic coordinate $$S_{p}(O_{p},e_{1},e_{2},n)$$.

According to the meshing theory, the meshing function of the drive pairs can be shown as follow:

$$\begin{align*}
\Phi &= V_{12}^e = B_1\cos(\varphi_1) + B_2\sin(\varphi_1) + B_3 \\
B_1 &= -z_n(\cos\theta\sin\alpha - \cos\alpha\sin\theta) \\
B_2 &= z_n(\cos\alpha\cos\theta + \sin\alpha\sin\theta) \\
B_3 &= i_{12}\left[x_n\cos\varphi_2 + y_n\sin\alpha + b_2\right] - [\cos(\varphi_1)(x_n\sin\varphi_2 - y_n\cos\alpha + a_1) - \\
&\quad \sin(\varphi_1)(x_n\cos\varphi_2 + y_n\sin\alpha + b_2)]
\end{align*}$$

When $$V_{12}^n = 0$$, the meshing equation of worm drive should be:

$$\Phi = V_{12}^n = B_1\cos(\varphi_1) + B_2\sin(\varphi_1) + B_3 = 0$$

(5)

The contact line equation can be calculated by (2), (4), (5) as below:

$$\begin{align*}
r_n &= x_n\mathbf{i} + y_n\mathbf{j} + z_n\mathbf{k} \\
u &= f(\theta,\varphi_1) = \frac{M_{12}}{M_{11}} \\
M_{11} &= i_{12}\left[u_n(\cos\alpha\cos\theta + \sin\alpha\sin\theta) - b_1(\cos\theta\sin\alpha - \cos\alpha\sin\theta)\right] \\
M_{12} &= \cos(\varphi_1)[\cos\alpha\cos\theta + \sin\alpha\sin\theta] - \\
&\quad \cos(\varphi_1)[\cos\alpha\cos\theta - \cos\alpha\sin\theta] \\
\varphi_1 &= \text{const}
\end{align*}$$

The tooth surface equation of hourglass worm can be concluded through transferring the contact line equation to worm flexible coordinate system $$S_{2}(O_{i1},i_{11:j1},k_{1})$$ as be below:
2.4 Numerical simulation of hourglass worm

Parameter selection of this dive pair: \(Z_1 = 1, Z_2 = 40, A = 160, R = 7.5, K_1 = 0.4 \). Through numerical simulation of hourglass worm by applying Matlab software, the left tooth surface, right tooth surface and cylindrical spiral worm can be shown as Figure 3:

3 ANALYSIS OF MESHING PERFORMANCE

3.1 Induced principal curvature

According to document, the induced principal curvature of the drive gear is as below:

\[
\psi = \psi_1 - \psi_2 + \psi_3 - \psi_4
\]

\[
k_{\sigma}^{12} = -k_{\sigma}^{31} = \left(-\frac{\alpha_2^{12} + V_1^{12} / R^2 + (\alpha_1^{12})^2}{2} \right)
\]

\(\Psi \) is function of undercutting limit of gear dive. According to document, the conclusion can be shown:

\[
\Psi = \Phi_1 + \alpha_2^{12} V_1^{12} - \alpha_1^{12} V_2^{12} - (V_1^{12})^2 / R
\]

The induced principal curvature is one key element for the gear drive’s transmission performance. Next analysis will focus on the different impact of roller radius \(R \), circumferential angle \(\alpha \), orifice coefficient \(K_1 \) on induced principal curvature \(k_{\sigma}^{12} \) when worm running under different angle. Result can be shown as Figure 4:
According to analyzing the curve in the Figure. 4, the conclusion can be that: the roller radius \(R \) should less than 20mm and it has little impact on the induced principal curvature within 20mm. The circumferential angle \(\alpha \) also has little impact on induced principal curvature, and the whole trend is that the induced principal curvature will become bigger complying with the circumferential angle \(\alpha \) to be bigger. The orifice coefficient \(K_1 \) is smaller, the induced principal curvature is bigger. And overall, the induced principal curvature is very small, it shows that the meshing performance is very well.

3.2 Lubrication angel

According to document, the lubrication angel of this drive should be shown as below:

\[
\mu = \arcsin \frac{V_1^{(2)} (V_2^{(2)} - \alpha R^{(2)}) + \alpha V_1^{(2)}}{\sqrt{(V_1^{(2)} - \alpha R^{(2)})^2 + (\alpha V_1^{(2)})^2} \sqrt{(V_1^{(2)})^2 + (V_2^{(2)})^2}}
\]

(10)

The Lubrication angel is one important indicate to balance the quality lubrication of worm dive. Next analyze will focus on the different impact of roller radius \(R \), circumferential angle \(\alpha \), orifice coefficient \(K_1 \), on lubrication angel \(u \) when worm running under different angel. Result can be shown as Figure .5:

By analyzing the curve in Figure. 5, the conclusion can be that: The roller radius \(R \) should bigger than 5mm. When the roller radius \(R \) is bigger than 5mm, the lubrication angel is big. When \(\varphi_2 \) is positive , the circumferential angle \(\alpha \) become bigger , the lubrication angel will become bigger; When \(\varphi_2 \) is negative, the circumferential angle \(\alpha \) become bigger, the lubrication angel will become smaller. Impact of orifice coefficient \(K_1 \) can be concluded as that: the lubrication angel will become bigger at first then become smaller during the process of orifice coefficient \(K_1 \) to become bigger.

3.3 Angel of rotation

According to the document, the rotation angel of this drive should be shown as below:
The angel of rotation is one vital indicator to measuring the rotation performance. Continues analyze will focus on the different impact of roller radius R, circumferential angle α, orifice coefficient K_1 to angel of rotation z_0. Result can be shown as Figure. 6:

$$z_0 = \arccos \frac{|v_z^2|}{\sqrt{(V_{12}^1)^2 + (V_{12}^2)^2}}$$ (11)

By analyzing the curves in Figure. 6, the conclusion can be that: the angel of rotation will become bigger when the roller radius R become bigger, but the process is slowly. The circumferential angle α has small impact on angel of rotation. The angel of rotation will become smaller gradually within the process of orifice coefficient K_1 to become bigger. During the whole analyze in the picture, we can know that angel of rotation of the roller in this kind of model is very small and it’s about 15 degree.

4 CONCLUSION

The tooth surface equation of hourglass worm can be deduced by applying spatial meshing theory and differential geometry theory. The numerical models of hourglass worm can be concluded by applying Matalb software to finish numerical simulation. Result of numerical simulation can reflect real situation of hourglass worm’s contact line and spiral worm. At last, to analyze meshing performance of this drive based on the tooth surface equation of hourglass worm. After comprehensive analyze on the result, the conclusion can be that: the meshing performance and the lubrication performance of this worm dive are very well. The angel of rotation of the roller is very small and it’s about 15 degree. The best roller radius R of the worm drive should within 6-20mm, and the orifice coefficient K_1 should large than 0.25. The circumferential angle α has little impact on the meshing performance of this worm drive.

5 ACKNOWLEDGMENT

This work supported by the Key scientific research fund of Xihua University (Grant No: zl420208), China. This article research work supported by The Innovation Fund Of Postgraduate, Xihua University (ycjj2014056).

REFERENCES

[1] Rong Hao, Liu Zaixin, Tang Hao. One of roller enveloping the side-worm gears pair drive, China Patent, ZL21320821579.9-2013.12.16.
[2] Ted L, Tom W. Methods and apparel tusformation inmizing backlash in a plane tary mechanism: USA, 7121973 B2[P]. 2004-5-5.
[3] Deng Xingqiao, Wang Jinge, Zhang Junfu. Theoretical Study on Real Tooth Surface of Non-backlash Double-roller Enveloping Hourglass Worm Gearing[J]. Journal of Southwest Jiao Tong University, 2010.
[4] Wang Jinge. Rolling cone enveloping hourglass worm gearing [M]. Chengdu: Science and Technology Press of Sichuan, 2000:15-62.
[5] Kenjiro Tadakuma, Riichiro Tadakuma, Shotaro Onishi. Worm Wheel mechanism with passive rollers[J]. Advanced Robotics 2014.
[6] Shen Yu, Yang Yuhu, Yang Yiping. Kinematic analysis of roller enveloping hourglass worm gearing[J]. Journal of Machine Design, 2003.
[7] Yun Long Wei, Sumio Hirokawa. Masana Kato, A Study of Pin-Wheel Globoidal Worm Gearing[J]. Journal of the Japan Society of Mechanical Engineer, No. 86-0519 A.

[8] Yun Long Wei, Sumio Hirokawa. A Study of Pin-Wheel Globoidal Worm Gearing[J]. Journal of the Japan Society of Mechanical Engineer, No.87-0123 B.

[9] Jin Liangzhi, Jin Zhaohua, Long Lin. Steel Cylindrical Worm Gear with High Precision- Arc-Surface Worm Pair[J]. China Patent, 200710078249.4-2007.3.1.

[10] Wu Daren. Lectures on differential geometry[J]. Beijing: Higher Education Press, 198.

[11] Wu Daren, Luo Jiashun. A Geometric Theory of Conjugate Tooth Surfaces[J]. Beijing: Science Press, 1985.

[12] Zhang Guanghui, Wang Chaojin. Application of dynamic coordinate and improvement of Baxter formula for the induced normal curvature[J]. Journal of Chongqing University, 1983(2):4-15.

[13] Hou Li, Huang Chengxiang, Yin Guofu. Worm formative principle and object-oriented modeling method[J]. Journal of Sichuan University: Engineering Science Edition, 2002, 34(2) : 69-73.

[14] Liu Zaixin, Wang Jinge, Zhang Junfu. Meshing Analysis of Non-parallel Double-roller Enveloping Hourglass Worm Gear[J]. Journal of Sichuan University, 1009-3087(2012) 04-0221-05.

[15] Shen Yunfang, Rong, Erqian, Li Yinnian. Spatial meshing principle and SG-71 type worm gear pair[J], Beijing: Metallurgical Industry Press,1983.

[16] Wang Jinge, Zhang Junfu, Deng Xingqiao. Parameter Optimization of the Non-backlash Double-roller Enveloping Hourglass Worm Gear[J]. Journal of mechanical engineering, 2010, 46(21):6-9.