The Possibility of Complex Treatment of Optic Nerve Atrophy based on Etiopathogenetic Approach using the New Classification of this Ophthalmopathology

A I Bereznikov*

Department of Ophthalmology, Kursk State Medical University, Russia

Received: March 19, 2018; Published: March 28, 2018

*Corresponding author: AI Bereznikov, Department of Ophthalmology, Kursk State Medical University, Kursk, ul K Marks 3, Russia, Email: abereznikov@rambler.ru

Abstract

Application of treatment, differentiated based on the degree of functional changes and stages of atrophy, type of atrophy and nature of the lesion, significantly alters the effectiveness of treatment when compared to the isolated electropharmocological stimulation and even more so compared to the traditional medication method of treatment.

Keywords: New clinical classification and treatment of optic nerve atrophy

Abbreviations: ONA: Optic Nerve Atrophy; PONA: Partial Optic Nerve Atrophy

Introduction

Optic nerve atrophy (ONA) is the end result of disease, intoxication, genetically determined abnormality or injury of retinal ganglion cells and/or their axons situated between the retina and the lateral geniculate bodies of the brain. The prevalence percentage of various optic nerve diseases in the eye disease hospital is approximately 1-1.5%, 19 to 26% of those cases resulting in complete atrophy of the optic nerve and incurable blindness. Causes of ONA are: diseases of retina and optic nerve (inflammation, dystrophy, including glaucomatic and involutional, poor circulation due to hypertension, atherosclerosis, diabetes, etc., swelling, profuse bleeding, compression and damage of the optic nerve), diseases and injuries of the orbit, Central nervous system diseases (optic-chiasm leptomeningitis, abscesses and brain tumors with increased intracranial pressure, neurosyphilis, demyelinating disease, traumatic brain injury), intoxication with methyl alcohol, antibiotics (streptomycin, gentamicin), anti-malarial drugs (quinine, hingamin). ONA may be a component or sole manifestation of a number of hereditary diseases (congenital amaurosis, hereditary optic nerve atrophy, etc.) [1,2].

Table 1: Clinical Classification of the Partial Optic Nerve Atrophy.

Period	Type	Lesion class	Period	Type	Lesion class	Stages	Visual Functions Dynamics	
Early	Vascular	Peripheral	Late	Vascular	Peripheral	I 1,0-0,4	Narrows by 15 - 200 the possibility of central relative scotoma	Stabilized
	Post-Inflammatory	Peripheral			Central	II 0,4-0,1	Narrows by 20 - 300 central peripheral scotoma	Not stabilized
	Traumatic	Central			Total	III 0,1-0,001	Concentric narrowing to up to 100	
	Toxic	Central			Total	IV0,01 и <	Residual fields in the form of fragments	
	Compressive							
	Congenital							
	Undetermined							
Treatment of optic nerve atrophy is a very complex and difficult problem because of the extremely limited regenerative ability of the neural tissue. All depends on how widespread the degenerative process in the nerve fibers is and whether their viability is preserved. Some progress in the treatment of optic nerve atrophy has been achieved with the help of pathogenetically directed influences aimed to improve the viability of nervous tissue. The development of new methods of treatment of partial optic nerve atrophy (PONA) has greatly enhanced the possibility of rehabilitation of patients with this pathology. However, the abundance of methods in the absence of clear indications complicates the choice of a treatment plan in each individual case. [1,3,4,5,6,7] The analysis of literature on diagnosis and treatment of PONA showed lack of clear classification and the existence of various approaches to the assessment of the severity of the disease [2,8,9,10]. The following classification presented in Table 1 was used to determine the treatment plan [7,9]. The purpose of work. To create a method of optic nerve atrophy treatment differentiated depending on severity and other individual characteristics of the patient and to analyze the effect of the application of this technique.

Material and Methods

To treat the patients with partial atrophy of the optic nerve, we use the following methods. Infita-a low-frequency pulse physiotherapy device designed to expose the central nervous system (CNS) to low-frequency pulse electromagnetic field (without direct contact with the patient), which results in an improved central blood flow, saturation of blood with oxygen, and increased redox processes in the nervous tissue. It has as the following characteristics: no output signal - a triangular voltage pulse with negative polarity, pulse frequency 20 - 80 Hz (most frequently used 40 - 60 Hz), pulse duration of 3 ± 2 V, recommended number of procedures 12 - 15, starting with 5 minutes, increasing to 10 and then 12 minutes beginning with the fifth procedure and so on up to 12 treatments. Treatment method, hereinafter called the direct electropharmacological stimulation (EPS), includes installation of a soft PVC catheter into the retrobulbar space and a repeated inoculation of various medications through it into the retrobulbar space selected based on the etiopathogenesis of the atrophy. All patients were infused with a 10% solution of piracetam and dicain 0,5 epibulbarly. A 5-6 mm long skin incision is made in front the tendon and is clipped off. Three incisions of the scleral ring around the optic nerve are made. The solution of albucid is applied, and the muscle is locked in place. The suture is placed on the conjunctiva. Dixon and antibiotics are placed under the conjunctiva. The following scheme of treatment was suggested for the peripheral section of the optic nerve:

i. **Degree:** Emoksipin + dexamethasone subcutaneously in the region of the mastoid process, mildronat + emoksipin subcutaneously in the temple region, vitamin B1 1,0, alternate vitamin B6 1.0 V/m with piracetam 5.0 V/m, low-frequency electromagnetic stimulation.

ii. **Degree:** Catheterization of the retrobulbar space, direct EPS + long-term melioration: dexamethasone + emoksipin 2 times, piracetam (or other schemes depending on etiology), implantation of a collagen sponge with emoxipin into the subtenon space (ICS), piracetam 20,0 intravenously with physiological saline 200,0.

iii. **Degree:** Catheterization of the retrobulbar space, direct EPS + piracetam, dexamethasone, emoksipin 2 times a day. Implantation of a collagen sponge with emoxipin into the subtenon space, ligation of the superficial temporal artery, piracetam 20,0 intravenously with physiological saline 200,0.

iv. **Degree:** Step 1 - decompression of the optic nerve, step 2 or in case step 1 is not possible (severe somatic pathology) - catheterization + direct EPS, piracetam, dexamethasone, emoksipin 2 times retrobulbarly into the catheter. Ligation of the superficial temporal artery (if not done earlier). Implantation of a collagen sponge with emoxipin into the subtenon space, fenotropil tablets according to the treatment scheme, piracetam 20,0 intravenously with physiological saline 200,0.

Citation: A I Bereznikov. The Possibility of Complex Treatment of Optic Nerve Atrophy based on Etiopathogenetic Approach using the New Classification of this Ophthalmopathology. Op Acc J Bio Eng & Bio Sci 2(1)- 2018. OAJBEB.MS.ID.000127. DOI: 10.32474/OAJBEB.2018.02.000127.
Treatment scheme for the lesion of the central part of the visual pathway.

a. **Stage I**: Glycine 1 tablet 3 times a day sublingually for one month, cavinton according to the treatment scheme, then phenotropil (tablets) according to the treatment scheme. “Infita” - percutaneous low-frequency electrical stimulation.

b. **Stage II**: Cortexin intramuscularly No. 10. Trental intravenously in a physiological saline No. 5 (or aminophylline). Cerebrolysin intravenously No. 5. Glycine 1 tablet 3 times a day for one month. “Infita” low-frequency electrical stimulation.

c. **Stage III**: Cortexin intramuscularly No. 10. Glycine sublingually 1 tablet 3 times a day for one month. Trental intravenously in a physiological saline No. 5 (or aminophylline). Cerebrolysin or actovegin intravenously No. 5. Piracetam 5.0 intramuscularly No. 10. Antiplatelet agents (aspirin, clopidogrel) if necessary.”Infita” - percutaneous low-frequency electrical stimulation.

d. **Stage IV**: Cortexin intramuscularly No. 10. Emoxipin intramuscularly No. 10. Trental intravenously No.5. Cerebrolysin or actovegin or solkoseril No. 10. Piracetam 5,0 intramuscularly No. 10. Antiplatelet agents (aspirin, clopidogrel) if necessary. Catheterization with direct EPS, dexamethasone, piracetam, emoksipin retrobulbarly into the catheter.

In case of total lesion of the visual pathway the elements of both treatment schemes of the corresponding stages are combined. To compare the effectiveness of different PONA treatment schemes three groups of patients were formed. The first group consisted of 358 patients (508 eyes) with optic atrophy of various etiology and pathogenesis, getting treatment, differentiated based on the stage, localization and duration of existence of atrophy. The second group consisted of patients who, regardless of the stage of atrophy, were subjected to a course of electropharmacological stimulation: 107 patients (152 eyes). The control group consisted of 77 patients (126 eyes) who received only medication treatment. The percentage composition of the main types of dystrophy in all three groups was similar.

The main study group consisted of 136 glaucoma patients (183 eyes), 81 patients (122 eyes) with the atrophy of vascular origin, post-inflammatory atrophy was observed in 51 (76 eyes), cerebral in 25 patients (50 eyes), traumatic 52 patients (52 eyes), toxic in 13 patients (25 eyes). The second group included 36 patients with glaucoma (46 eyes), 14 patients (38 eyes) with the atrophy of vascular origin, post-inflammatory atrophy was observed in 16 (24 eyes), cerebral in 5 patients (10 eyes), traumatic in 18 patients (18 eyes), toxic in 8 patients (16 eyes). The control group consisted of 24 patients with glaucoma (42 eyes), 21 patients (32 eyes) with the atrophy of vascular origin, post-inflammatory atrophy was observed in 14 people (22 eyes), cerebral in 3 patients (6 eyes), traumatic in 18 patients (18 eyes), and 7 patients (14 eyes). Patients of this group were treated in a conservative manner: emoxipin with mildronate subcutaneously in the temple region, emoksipin with dexamethasone subcutaneously in the area of the mastoid process, taufon under the conjunctiva, piracetam intramuscularly. The result of the treatment of patients with partial atrophy of the optic nerve depending on the type of treatment can be seen in Tables 2 & 3.

Table 2: Results of treating patients with partial atrophy of the optic nerve.

Type of Treatment	Number of eyes treated	Improvement	Result
Differentiated treatment	508	340	66.9
Isolated direct EPS	152	84	55.3
Medication therapy	126	52	41

Table 3: Results of treating patients with partial atrophy of the optic nerve.

Type of Treatment	Number of eyes treated	Visual acuity	Field of vision
Differentiated treatment	508	0.35±0.06	0.5±0.04
Isolated direct EPS	152	0.28±0.04	0.43±0.05
Medication therapy	126	0.32±0.05	0.39±0.04

Note: p<0.01, compared to the values before treatment. No cases of deterioration were recorded.

Conclusion

Medication therapy combining medications which have various effects on the nervous tissue is effective only for the initial stages of atrophy of the optic nerve. Also, the use of non-invasive physiotherapeutic methods is effective in early stages. The use of direct electropharmacological stimulation is more reasonable for
advanced stages, and surgical methods - for severe cases. The use of
treatment, differentiated based on the degree of functional changes,
the type of atrophy and the nature of the lesion, significantly
increases the effectiveness of treatment compared to the isolated
use of EPS and even more so compared to medical treatment.

References
1. Libman ES, Shakhova EV (2000) State and dynamics of blindness and
disability due to eye pathology in Russia. Congress of ophthalmologists
of Russia, 7th proc, Dokl-M-S, pp. 209-214.
2. Tron EZ (1968) Diseases of the visual pathways.
3. Baranov VI (2008) Dynamic monitoring of visual functions in the
treatment of partial atrophy of the optic nerve by the method of direct
electro pharmacological stimulation. The conference materials, Moscow,
Russia.
4. Baranov VI, Bereznikov AI, Prusakova OY (2008) Collection of scientific
articles VI all-Russian scientific-practical conference with international
participation. The conference materials, Moscow, Russia, pp. 253-257.
5. Libman ES (1994) Conceptual approaches and the need for rehabilitation
of disabled persons with a visual disability. Congress of ophthalmologists
of Russia, 6th-M, pp. 346.
6. Maichuk YF (2000) The global initiative for the elimination of
preventable blindness in the world. Vestn Ophthalmology 4: 45-46.
7. Filipenko NG, Bereznikov AI (2012) Differentiated therapy of the partial
atrophy of the optic nerve based on the etiopathogenetic approach using
the new classification. Scientific statements of Belgorod state University,
(17/1st edn), 4(123): 32-38.
8. Katsnelson LA, Farafonova TI, Bunin IA (1990) Vascular diseases of the
eye. M Medicine, P 47-63.
9. Bereznikov AI (2015) The use of the device "Amplipuls" in the treatment
of partial atrophy of the optic nerve of traumatic origin. Biomedical
engineering 49(1): 45-47.
10. Sidorova SA, VB Laskova VB, Bobyntsev II (2011) Research on the
neuroprotective activity of deltaran and effectiveness of coupled multi-
channel electroneurostimulation during the recovery period of ischemic
stroke. Man and his health. Kursk scientific practical journal 1: 89-95.
11. Linnik LF, Anisimov SI (1994) Classification of partial atrophy of the
optic nerve. Anisimov Ophthalmosurgery 4(5): 14-17.
12. Bereznikov AI (2007) Analysis of the use of long-term melioration of the
retrobulbar space in combination with direct electrical stimulation in
the treatment of diseases of the optic nerve. II Central-Asian conference
on ophthalmology. The proceedings of the conference Issyk Kul, pp. 214-
217.
13. Linnik LF (1993) Recovery of visual functions in patients with partial
optic nerve atrophy after a neuroinfection by method of electro.
Ophthalmosurgery 1: 47-54.
14. Fedorov SN (1989) Functional parameters of electrical stimulation
of the optic nerve during its partial atrophy as a result of circulatory
collapse. Ophthalmosurgery 3(4): 3-8.

This work is licensed under Creative
Commons Attribution 4.0 License

To Submit Your Article Click Here: Submit Article

DOI: 10.32474/OAJBEB.2018.02.000127