Identification of phenolic constituents in *Lonicera caerulea* L. by HPLC with diode array detection electrospray ionisation tandem mass spectrometry

Mayya P. Razgonova 1,2*, Nadezhda G. Tikhonova1, Andrey S. Sabitov1, Natalia M. Mikhailova1, Svetlana R. Luchko1, Alexander M. Zakarenko 1,2, Konstantin S. Pikula 1, and Kirill S. Golokhvatst 1,2,3,4

1 N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000, Saint-Petersburg, Russian Federation
2 Far Eastern Federal University, Sukhanova 8, 690950, Vladivostok, Russian Federation
3 Siberian Federal Scientific Centre of Agrobiotechnology, 633501, Krasnoobsk, Russian Federation
4 Pacific Geographical Institute, Far Eastern Branch of the Russian Academy of Sciences, Radio 7, 690041, Vladivostok, Russian Federation

Abstract: The purpose of this work was a comparative metabolomic study of extracts of Blue-berried honeysuckle *Lonicera caerulea* L. from (Japan): №860 (Wild *Lonicera* from Amur river) from the collection of N.I. Vavilov All-Russian Institute of Plant Genetic Resources. To identify target analytes in extracts HPLC was used in combination with a Bruker Daltonics ion trap. The results showed the presence of 82 target analytes corresponding to *Lonicera caerulea* L. There were flavonols: Dihydrokaempferol, Rhamnetin I, Rhamnetin II, Taxifolin-3-O-glucoside, Mearnsetin-hexoside, Horridin; flavones: Chrysoeriol, Apigenin-O-pentoside, Chrysoeriol-7-O-glucoside; flavanone Naringenin; flavan-3-ols: Catechin, Epicatechin, Biochanin A-7-O-glucoside; essential amino acids: L-Pyroglutamic acid, Tyrosine; polypeptide 5-Oxo-L-prolyl-L-isoleucine; sterols: Ergosterol, Fucosterol, Beta-Sitosterin; triterpenoids: Betunolic acid, Oleaonic acid; anabolic steroid Vebonol, indole sesquiterpene alkaloid Sespendede; iridoids: Monotropein, p-Coumaroyl monotropein, p-Coumaroyl monotropein hexoside; Myristoleic acid, etc.

1 Introduction

Blue-berried honeysuckle *Lonicera caerulea* L., family *Caprifoliaceae* is known as a natural source of food, beverages and nutraceuticals due to its rich chemical composition, enriched with nutrient and biologically active compounds. The increased focus on these berries is due to their phenolic composition, antioxidant activity, and potential health benefits. The high content of phenols in *Lonicera caerulea* L. is directly related to their biological activity. Popularity of phenolic compounds has grown in recent years as they are excellent antioxidants. Antioxidant intake has been shown to be effective in preventing cancer, cardiovascular disease, osteoporosis, obesity, diabetes, and other health problems [Dias et al., 2017]. The antioxidant properties of plant phenolic compounds are relevant in the field of nutrition (inhibition of lipid oxidation), physiology (protection against oxidative stress) and cosmetology. Phenolic compounds provide antioxidant activity through direct reduction of reactive oxygen species (ROS), inhibition of enzymes involved in oxidative stress, binding of metal ions responsible for ROS production, and stimulation of endogenous antioxidant defense systems [Hossain et al., 2016]. The quality and quantity of phenolic compounds in plants usually depends on the stage of growth, the parts of the plant used and the growing conditions in the environment [Bujor O.-C., 2016].

In this regard, the purpose of this work is the simultaneous assessment of phenolic compounds in the berries of *Lonicera caerulea* L. of various species collected in different climatic-geographical zones of Russia. This study is a complete qualitative study of phenols and other compounds, leading to the identification of a large number of phenolic secondary metabolites isolated from *Lonicera caerulea* L. berries of various species.

* Corresponding author: razgonova.mp@dvfu.ru (M.R.)
Initial LC-MS/MS screening suggested that 82 target analytes detected in EtOH-extracts of Blue-berried honeysuckle. Therefore, tandem mass spectrometry was used in this study for comparative small molecule profiling of four Lonicera varieties cultivated in the collection of N.I. Vavilov All-Russian Institute of Plant Genetic Resources.

2 Experimental

2.1 Materials

The object of the study was the four varieties of Blue-berried honeysuckle Lonicera caerulea L. of breeding varieties obtained as a result of many years of research from the collection of N.I. Vavilov All-Russian Institute of Plant Genetic Resources. There were a varieties: №1043-11 (St. Petersburg); №1043-08 (St. Petersburg); №863 (Japan); №860 (Wild Lonicera from Amur river). The berries were harvested at the end of July 2020. All samples morphologically corresponded to the pharmacopoeial standards of the State Pharmacopoeia of the Russian Federation [SPh XIV, Russia, 2018].

2.2 Chemicals and Reagents

HPLC-grade acetonitrile was purchased from Fisher Scientific (Southborough, UK), MS-grade formic acid was from Sigma-Aldrich (Steinheim, Germany). Ultra-pure water was prepared from a SIEMENS ULTRA clear (SIEMENS water technologies, Germany), and all other chemicals were analytical grade.

2.3 Fractional maceration.

To obtain highly concentrated extracts, fractional maceration was applied. In this case, the total amount of the extractant (methyl alcohol of reagent grade) is divided into 3 parts and is consistently infused on potato with the first part, then with the second and third. The infusion time of each part of the extractant was 7 days.

2.4 Liquid chromatography

HPLC was performed using Shimadzu LC-20 Prominece HPLC (Shimadzu, Japan) was used, equipped with an UV-sensor and a Shodex ODP-40 4E reverse phase column to perform the separation of multicomponent mixtures. The gradient elution program was as follows: 0.01-4 min, 100% CH3CN; 4-35 min, 100-25% CH3CN; 35-50 min, 25-0% CH3CN; control washing 50-60 min 0% CH3CN. The entire HPLC analysis was done with a ESI detector at wavelengths of 230 nm and 330 nm; the temperature corresponded to 17°C. The injection volume was 1 ml.

2.5 Mass spectrometry

MS analysis was performed on an ion trap amaZon SL (BRUKER DALTONIKS, Germany) equipped with an ESI source in negative ion mode. The optimized parameters were obtained as follows: ionization source temperature: 70 °C, gas flow: 41 / min, nebulizer gas (atomizer): 7.3 psi, capillary voltage: 4500 V, and plate bend voltage: 1500V, fragmentary: 280 V, collision energy: 60 eV. An ion trap was used in the scan range m / z 100 -1.700 for MS and MS/MS. The capture rate was one spectrum/s for MS and two spectrum/s for MS/MS. Data collection was controlled by Windows software for BRUKER DALTONIKS. All experiments were repeated three times. A four-stage ion separation mode (MS/MS mode) was implemented.

3 Results and discussion

Four of the most consumed extracts of Lonicera caerulea L. have been selected. All of them have a rich bioactive composition. There were four extracts from a varieties: №1043-11 (St. Petersburg); №1043-08 (St. Petersburg); №863 (Japan); №860 (Wild Lonicera, Amur river) from the collection of N.I. Vavilov All-Russian Institute of Plant Genetic Resources. High accuracy mass spectrometric data were recorded on an ion trap amaZon SL BRUKER DALTONIKS equipped with an ESI source in the mode of negative-positive ions. The four-stage ion separation mode (MS/MS mode) was implemented. The combination of both ionization modes (positive and negative) in MS full scan mode gave extra certainly to the molecular mass determination (Fig. 2,3,4). The positive-negative ion mode provides the highest sensitivity and results in limited fragmentation, making it most suited to infer the molecular mass of the separated polyphenols, especially in cases where concentration is low. By comparing the m/z values, the RT and the fragmentation patterns with the MS² spectral data taken from the literature [Abeywickrama et al., 2016; Abu-Reidah et al., 2015; Rafsanjany et al., 2015; Goufo et al., 2020; Paudel et al., 2013; Jaiswal et al., 2014; De Rosso et al., 2014; Marzouk et al., 2018; Barros et al., 2012; Pradhan & Saha, 2016; da Silva et al., 2019; Ruiz et al., 2013; Ruiz et al., 2010; Razgonova et al., 2020; Kajdzanoska et al., 2010] or to search the data bases (MS2T, MassBank, HMDB). A unifying system table was compiled of the molecular masses of the target analytes isolated from the EtOH-extract of Lonicera caerulea L.
ease of identification (Table 1). The 82 target analytes shown in Table 1 belong to different polyphenolic families: flavones, flavonols, flavan-3-ols, flavanones, anthocyanins, hydroxycinnamic acids, hydroxybenzoic acids, stilbenes, proanthocyanidins and belong to others classes of compounds.

Fig.2. Chemical profiles of the *Lonicera caerulea* L. (variety SPb 1043-11) sample represented total ion chromatogram from MeOH-extract.

Fig.3. Chemical profiles of the *Lonicera caerulea* L. (variety SPb 1043-8) sample represented total ion chromatogram from MeOH-extract.

In addition to the reported metabolites, a number of metabolites were newly annotated in *Lonicera caerulea* L. There were flavonols: Dihydrokaempferol, Rhamnetin I, Rhamnetin II, Taxifolin-3-O-glucoside, Mearnsetin-hexoside, Horridin; flavones: Chrysoeriol, Apigenin-O-pentoside, Chrysoeriol-7-O-glucoside; flavanone Naringenin; flavan-3-ols: Catechin, Epicatechin, Biochanin A-7-O-glucoside; essential amino acids: L-Pyroglutamic acid, Tyrosine; polypeptide 5-Oxo-L-propyl-L-isoleucine; sterols: Ergosterol, Fucosterol, Beta-Sitosterin; triterpenoids: Betunolic acid, Oleanoic acid; anabolic steroid Vebonol, indole sesquiterpene alkaloid Sespendole; iridoids: Monotropein, p-Coumaroyl monotropein, p-Coumaroyl monotropein hexoside; Myristoleic acid, etc.

Fig.4. Chemical profiles of the *Lonicera caerulea* L. (variety Wild lonicera from Amur river) sample represented total ion chromatogram from MeOH-extract.
Table 1. Identified target analytes in MeOH extracts of berries of *Lonicera caerulea* L.

№	№ of collection of N.I. Vavilov All-Russian Institute of Plant Genetic Resources	Class of compounds	Identification	Formula	Calculate d mass	Observed d mass	MS/MS Stage 1 fragmentation	MS/MS Stage 2 fragmentation	MS/MS Stage 3 fragmentation
1	SPb 1043-11; SPb 1043-8	Flavonol	Kaempferol	C₁₇H₁₈O₆	286.2363	287	269; 149	239; 181	
2	863; SPb 1043-8	Flavonol	Dihydrokaempferol	C₁₇H₂₀O₆	288.2522	289	176; 144; 272	144	116
3	863; 860; SPb 1043-8	Flavonol	Quercetin	C₁₆H₁₀O₇	302.2357	303	257; 146	229	201; 145
4	SPb 1043-11	Flavonol	Rhamnetin I [beta-Rhamnocitrin; Quercetin 7-Methyl ether]	C₁₆H₁₂O₇	316.2623	317	299; 213	267	239
5	863	Flavonol	Rhamnetin II	C₁₆H₁₂O₇	316.2623	317	302	274; 153; 229; 153; 121	
6	863; SPb 1043-11	Flavonol	Isorhamnetin [Isorhamnetol; Quercetin 3'-Methyl ether; 3-Methylquercetin]	C₁₆H₁₀O₇	316.2623	315	283	255; 211	227
7	SPb 1043-8	Flavonol	Kaempferol-3-O-hexoside	C₂₁H₂₀O₁₁	448.3769	449	287	213	213
8	863	Flavonol	Quercetin-3-(3-O-arabinosyl)glucoside	C₂₆H₂₈O₁₆	596.4909	597	303; 465	257; 165	229
9	863; 860	Flavonol	Quercetin 3'-O-glucoside [Isoquercetin; Hirsutrin; Quercetin 3-O-Glucopyranoside; 3-Glucosylquercetin]	C₂₁H₁₈O₁₂	464.3763	465	303	229; 165	201; 161
10	863; SPb 1043-11; SPb 1043-8; 860	Flavonol	Taxifolin-3-O-glucoside	C₂₁H₂₁O₁₂	466.3922	467	449; 287	377; 279	345; 283
11	860	Flavonol	Kaempferol acetyl hexoside	C₂₀H₁₉O₁₂	490.4136	491	257	183	
12	SPb 1043-11	Flavonol	Mearnsetin-hexoside	C₂₀H₂₁O₁₃	494.4023	495	477; 387	387; 315; 199	
13	863	Flavonol	Horridin [Quercetin 3-Rhamnosyl-(1->2)-Rhamnoside]	C₂₁H₁₈O₁₃	594.5181	595	463; 432; 301	301	286
14	SPb 1043-11	Flavonol	Kaempferol 3-O-(6-O-rhamnosyl-glucoside)	C₂₂H₂₃O₁₄	594.5181	595	287	213	185
---	---	---	---	---	---	---			
15	863; SPb 1043-11	Flavonol	Rutin (Quercetin 3-O-rutinoside)	C_{27}H_{30}O_{16}	610.5175	611	303; 197	285; 229; 195	229
16	860	Flavan-3-ol	Catechin [D-Catechol]	C_{15}H_{16}O_{9}	290.2681	291	289; 159	230; 127	
17	SPb 1043-11	Flavan-3-ol	Epicatechin	C_{27}H_{30}O_{16}	290.2681	291	273; 137		
18	863	Flavan-3-ol	Biochanin A-7-O-glucoside	C_{22}H_{22}O_{10}	446.4041	447	245; 187	217	148; 182
19	SPb 1043-11; SPb 1043-8	Flavone	Apigenin [5,7-Dioxoxy-2-(40Hydroxyphenyl)-4H-Chromen-4-One]	C_{15}H_{14}O_{5}	270.2369	271	225	179	
20	SPb 1043-11	Flavone	Chrysoeriol	C_{16}H_{12}O_{6}	290.2681	291	293; 197	195	135
21	SPb 1043-11	Flavone	Apigenin-O-pentoside	C_{22}H_{22}O_{11}	448	449	403; 287; 216	347; 137	291
22	863; 860; SPb 1043-11	Flavone	Luteolin 7-O-glucoside [Cynaroside]	C_{21}H_{20}O_{11}	448.3769	449	287	269; 241; 132	133
23	860	Flavone	Chrysoeriol-7-O-glucoside	C_{22}H_{22}O_{11}	462.4035	463	301; 243	183	
24	SPb 1043-11	Flavone	Diosmin [Diosmetin-7-O-rutinoside; Barosmin; Diosimin]	C_{28}H_{32}O_{15}	608.5447	609	591; 531	531	487
25	863	Flavanone	Naringenin [Naringenol; Naringemine]	C_{15}H_{14}O_{7}	272.5228	273	147; 246		
26	SPb 1043-11	Anthocyanin	Delphinidin	C_{15}H_{11}O_{7}	303.2436	304	212; 149	212; 145	
27	SPb 1043-11	Anthocyanin	Petunidin	C_{16}H_{13}O_{7}	317.2702	318	256	238; 113	238
28	863	Anthocyanin	Cyanidin-pentoside	C_{20}H_{19}O_{10}	419.3589	419	287	259; 188; 133	160
29	863; SPb 1043-11	Anthocyanin	Cyanidin-3-O-glucoside [Cyanidin 3-O-beta-D-Glucoside]	C_{25}H_{22}O_{11}	449.3848	449	287	287; 213; 185; 141	
30	SPb 1043-11	Anthocyanin	Peonidin-3-O-galactoside	C_{22}H_{22}O_{11}	463.4114	463	301	286	258; 150
31	SPb 1043-8	Anthocyanin	Peonidin-3-O-glucoside	C_{22}H_{22}O_{11}	463.4114	463	301	286	258; 200
32	863	Anthocyanin	Peonidin 3-O-acetyl hexoside	C_{24}H_{25}O_{12}	505.4841	506	303; 487	303; 229; 165	201; 159
33	SPb 1043-11; SPb 1043-8;	Anthocyanin	Delphinidin 3-O-Beta-D-sambubioside	C_{25}H_{26}O_{13}	597.4989	597	303; 465; 229	229; 165	201; 172
34	SPb 1043-11; SPb 1043-8;	Anthocyanin	Peonidin 3-O-rutinoside	C_{25}H_{26}O_{14}	609.5526	609	301; 463	286	258
35	863; 860; SPb 1043-11; SPb 1043-8	Anthocyanin	Cyanidin 3,5-O-diglucoside	C_{27}H_{30}O_{14}	611.5335	611	287; 449	287; 213	185
#	Code	Compound	Molecular Formula	Experimental Molecular Mass	Calculated Molecular Mass	Error (%)			
----	---------------	-----------------------------------	-------------------	-----------------------------	----------------------------	-----------			
36	SPb 1043-11	Anthocyanin	C_{15}H_{15}O_{13}	274.2827	274.2827	0.0000			
37	863; SPb 1043-11	Hydroxybenzoic acid (Phenolic acid)	C_{15}H_{15}O_{13}	274.2827	274.2827	0.0000			
38	863; 860	Hydroxybenzoic acid (Phenolic acid)	C_{15}H_{15}O_{13}	274.2827	274.2827	0.0000			
39	863; SPb 1043-11	Hydroxybenzoic acid (Phenolic acid)	C_{15}H_{15}O_{13}	274.2827	274.2827	0.0000			
40	863; SPb 1043-11	Hydroxybenzoic acid (Phenolic acid)	C_{15}H_{15}O_{13}	274.2827	274.2827	0.0000			
41	863; SPb 1043-11	Hydroxybenzoic acid (Phenolic acid)	C_{15}H_{15}O_{13}	274.2827	274.2827	0.0000			
42	863; SPb 1043-11	Hydroxybenzoic acid (Phenolic acid)	C_{15}H_{15}O_{13}	274.2827	274.2827	0.0000			
43	863; SPb 1043-11	Hydroxybenzoic acid (Phenolic acid)	C_{15}H_{15}O_{13}	274.2827	274.2827	0.0000			
44	863; SPb 1043-11	Hydroxybenzoic acid (Phenolic acid)	C_{15}H_{15}O_{13}	274.2827	274.2827	0.0000			
45	863; SPb 1043-11	Hydroxybenzoic acid (Phenolic acid)	C_{15}H_{15}O_{13}	274.2827	274.2827	0.0000			
46	863; SPb 1043-11	Hydroxybenzoic acid (Phenolic acid)	C_{15}H_{15}O_{13}	274.2827	274.2827	0.0000			
47	863; SPb 1043-11	Hydroxybenzoic acid (Phenolic acid)	C_{15}H_{15}O_{13}	274.2827	274.2827	0.0000			
48	863; SPb 1043-11	Hydroxybenzoic acid (Phenolic acid)	C_{15}H_{15}O_{13}	274.2827	274.2827	0.0000			
49	863; SPb 1043-11	Hydroxybenzoic acid (Phenolic acid)	C_{15}H_{15}O_{13}	274.2827	274.2827	0.0000			
50	860; SPb 1043-11	Hydroxybenzoic acid (Phenolic acid)	C_{15}H_{15}O_{13}	274.2827	274.2827	0.0000			
51	863; SPb 1043-11	Hydroxybenzoic acid (Phenolic acid)	C_{15}H_{15}O_{13}	274.2827	274.2827	0.0000			
52	860; SPb 1043-11	Hydroxybenzoic acid (Phenolic acid)	C_{15}H_{15}O_{13}	274.2827	274.2827	0.0000			
SPb 1043-11	Oligomeric proanthocyanidins	(Epi)Catechin-A-(epi)gallocatechin	C_{30}H_{24}O_{11}	560.5050	561	399; 278; 201	325; 255; 191; 132		
SPb 1043-11	Oligomeric proanthocyanidins	(Epi)catechin-(4,8'/2,6')-(epi)catechin		576	577	559; 447; 377; 396; 265; 179	247; 121 175		
SPb 1043-11	Oligomeric proanthocyanidin	3-O-Galloyl (epi)catechin-(4,8)-(epi)gallocatechin		746	748	575; 466; 377; 306	265; 179 247; 121 175		
SPb 1043-11; SPb 1043-8	Aryl-beta-glycoside	Arbutin	C_{12}H_{16}O_{7}	272.2512	273	272; 255; 201			
SPb 1043-8	Non-proteinogenic L-alpha-amino acid	L-Pyroglutamic acid	[L-Pidolic acid; 5-Oxo-L-Proline]	C_{5}H_{7}NO_{3}	129.1140	130	111		
SPb 1043-11	Amino acid	Leucine	[(S)-2-Amino-Methylpentanoic acid]	C_{6}H_{13}NO_{2}	131.1729	132	130 112		
860; SPb 1043-8	Amino acid	Phenylalanine	[L-Phenylalanine]	C_{9}H_{11}NO_{2}	165.1891	166	120		
SPb 1043-11; SPb 1043-8; 860	Cyclohexenecarboxylic acid	Shikimic acid	[L-Schikimic acid]	C_{7}H_{10}O_{5}	174.1513	175	128 111		
863	Amino acid	Tyrosine	[(2S)-2-Amino-3-(4-Hydroxyphenyl)Propanoic acid]	C_{9}H_{11}NO_{3}	181.1885	179	133 115		
SPb 1043-8	Propenyl	Methyl eugenol		C_{11}H_{14}O_{2}	178.2277	179	151 123		
863; 860; SPb 1043-8	Dicarboxylic acid	Azelaic acid	[Nonanedioic acid; Anchoic acid; Finacea]	C_{9}H_{16}O_{4}	188.2209	189	171 139 111		
863; 860; SPb 1043-8	Tricarboxylic acid	Citric acid	[Anhydrous; Citrate]	C_{6}H_{8}O_{7}	192.1235	191	111; 173		
SPb 1043-8	Polyhydroxycarboxylic acid	Quinic acid		C_{6}H_{12}O_{7}	192.1666	191	111; 173 111		
863	Propanoic acid	Dihydroferulic acid		C_{6}H_{12}O_{4}	196.1999	197	127		
863; 860; SPb 1043-8	Carboxylic acid	Myristoleic acid	[Cis-9-Tetradecenoic acid]	C_{14}H_{26}O_{2}	226.3550	227	209; 165 121		
SPb 1043-11; SPb 1043-8	Polypeptide	S-Oxo-L-propyl-L-isoleucine		C_{9}H_{14}N_{1}O_{4}	242.2716	243	196; 137 151		
863	Medium-chain fatty acid	Hydroxy docosanoic acid		C_{32}H_{52}O_{4}	246.3001	247	229 187		
70	863	Terpenoid trilactone	Bilobalide [(-)-Bilobalide]	$\text{C}_{15}\text{H}_{18}\text{O}_8$	326.2986	325	183; 119; 160		
71	860	Iridoid	Monotropein	$\text{C}_{16}\text{H}_{21}\text{O}_9$	390.3393	391	219; 372; 202; 148; 139		
72	863	Phytosterol	Ergosterol [Provitamin D2; Ergosterol]	$\text{C}_{28}\text{H}_{41}\text{O}_9$	396.6484	397	379; 291; 296; 291; 223; 329		
73	860	Sterol	Fucosterol [Fucoster; Trans-24-Ethylidenecholesterol]	$\text{C}_{29}\text{H}_{43}\text{O}_9$	412.6908	413	395; 324; 219; 329		
74	863; SPb 1043-11	Sterol	Beta-Sitosterin [Beta-Sitosterol]	$\text{C}_{28}\text{H}_{41}\text{O}_9$	414.7067	415	216; 312; 159; 115		
75	SPb 1043-11	Anabolic steroid	Vebonol	$\text{C}_{19}\text{H}_{23}\text{O}_5$	452.6686	453	435; 336; 226; 209; 139		
76	860	Triterpenoid	Betunolic acid	$\text{C}_{30}\text{H}_{45}\text{O}_5$	454.6844	455	437; 345; 247; 326; 283; 303; 239; 199		
77	863	Triterpenic acid	Oleanolic acid	$\text{C}_{28}\text{H}_{43}\text{O}_5$	456.7003	457	425; 295; 225; 167		
78	863; SPb 1043-11	Thromboxane receptor antagonist	Vapiprost	$\text{C}_{28}\text{H}_{39}\text{NO}_4$	477.6350	478	337; 263; 121; 119		
79	863; SPb 1043-11	Indole sesquiterpene alkaloid	Sespendole	$\text{C}_{28}\text{H}_{39}\text{NO}_4$	519.7147	520	184; 125		
80	863	Iridoid glucoside	p-Coumaroyl monotropein	$\text{C}_{28}\text{H}_{39}\text{O}_{13}$	536.4820	537	375; 256; 185		
81	863; SPb 1043-11	Iridoid	p-Coumaroyl monotropein hexoside	$\text{C}_{28}\text{H}_{39}\text{O}_{13}$	698.8810	699	537; 347; 259; 375; 259; 185		
82	SPb 1043-11	Steroidal alkaloid	Alpha-chaconine	$\text{C}_{45}\text{H}_{73}\text{NO}_{14}$	852.0594	852	706; 560; 398; 398; 204		
The CID-spectrum (collision induced dissociation spectrum) in positive ion modes of Dihydrokaempferol from extracts of Lonicera caerulea L. (variety SPb 1043-8) is shown in Fig. 5. The [M + H]^+ ion produced three fragment ions at m/z 270.99, m/z 193.01, m/z 127.03 (Fig. 5). It was identified in the bibliography in extracts from Potato [Oertel et al., 2017]; F. glaucescens [Hamed et al., 2020]; Echinops [Seukep et al., 2020]; Rhodiola rosea [Lee et al., 2016]; Rhodiola crenulata [Daikonya et al., 2011].

![Fig.5. CID-spectrum of dihydrokaempferol from extracts of Lonicera caerulea L. (variety SPb 1043-8), m/z 289.98.](image)

The CID-spectrum in positive ion modes of Dihydrokaempferol from extracts of Lonicera caerulea L. (variety Wild Lonicera from Amur river) is shown in Fig. 6. The [M + H]^+ ion produced one fragment ion at m/z 448.92 (Fig. 6). The fragment ion with m/z 448.92 yields three daughter ions at m/z 376.96, m/z 344.93, and m/z 286.95. The fragment ion with m/z 376.96 yields two daughter ions at m/z 344.92, and m/z 286.99. It was identified in the bibliography in extracts from Rubus ulmifolius [da Silva et al., 2019]; Vitis vinifera [Goufo et al., 2020]

![Fig.6. CID-spectrum of Taxifolin 3-O-glucoside from extracts of Lonicera caerulea L. (variety Wild Lonicera from Amur river), m/z 466.92.](image)

4. Conclusions

Blue-berried honeysuckle Lonicera caerulea L. contains a large number of polyphenolic compounds and other biologically active substances. In this work, we first tried to conduct a comparative metabolomic study of biologically active substances of wild Blue-berried honeysuckle obtained from locations in Khabarovsk territory and from the collection of N.I. Vavilov All-Russian Institute of Plant Genetic Resources (St.-Petersburg). HPLC in combination with a BRUKER DALTONIKS ion trap (tandem mass spectrometry) was used to identify target analytes in extracts.

The results showed the presence of 82 biologically active compounds corresponding to the Blue-berried honeysuckle Lonicera caerulea species. In addition to the reported metabolites, a number of metabolites were newly annotated in blue-berried honeysuckle. There were flavonols: Dihydrokaempferol, Rhamnetin I, Rhamnetin II, Taxifolin-3-O-glucoside, Mearnsin-hexoside, Horridin; flavones: Chrysosierol, Apigenin-O-pentoside, Chrysosierol-7-O-glucoside; flavanone Naringenin; flavan-3-ols: Catechin, Epicatechin, Biochanin A-7-O-glucoside; essential amino acids: L-Prolyglutamic acid, Tyrosine; polypeptide 5-Oxo-L-propyl-L-isoleucine; sterols: Ergosterol, Fucosterol, Beta-Sitosterin; triterpenoids: Betunolic acid, Oleanolic acid; anabolic steroid Vebonol, indole sesquiterpene alkaloid Sespendede; iridoids: Monotropein, p-Coumaroyl monotropein, p-Coumaroyl monotropein hexoside; Myristoleic acid, etc.

The findings may support future research into the production of various pharmaceutical and dietary supplements containing blue-berried honeysuckle Lonicera caerulea L. extracts. A wide variety of biologically active compounds opens up rich opportunities for the creation of new drugs and biologically active additives based on extracts from this family Caprifoliaceae.

References

1. G. Abeywickram, S.C. Debnath, P. Ambigaipalan, F. Shahidi, J. Agric. Food Chem, 64(49) (2016)
2. I.M. Abu-Reidah, M. S. Ali-Shtayeh, R. M. Jamous, D. Arraes-Roman, A. Segura-Carretero, Food Chem, 166 179-191 (2015).
3. L. Barros, M. Duenas, A. M. Carvalho, I.C.F.R. Ferreira, C. Santos-Buelga, Food and Chem, 50(5) 1576-1582 (2012)
4. O.-C. Bujor Extraction, identification and antioxidant activity of the phenolic secondary metabolites isolated from the leaves, stems and fruits of two shrubs of the Ericaceae family (PhD THESIS, 2016)
5. A. Daikonya, S. Kitanaka, J Food Chem Safety, 18(3) 183-190 (2011)
6. L.P. Da Silva, E. Pereira, T.C.S.P. Pires, M.J. Alves, O.R. Pereira, L. Barros I.C.F.R. Ferreira, Food Res. Int., 119 34-43 (2019)
7. M. De Rosso, L. Tonidandel, R. Larcher, G. Nicolini, A. Dalla Vedova, F. De Marchi, M. Gardiman, M. Giust, R. Flamini, Food Chem, 163 244-251 (2014)
8. T.R. Dias, M.G. Alves, S. Casal, P.F. Oliveira, B.M. Silva, Current Med. Chem., 24 334-354 (2017)
9. P. Goufo, R.K. Singh, I. Cortez, Antioxidants, 9 398 (2020)
10. A.R. Hamed, S.S. El-Hawary, R.M. Ibrahim, U.R. Abdelmohsen, A.M. El-Halawany, J. Chrom. Sci., 1-9 (2020)
11. M.K. Hossain, A.A. Dayem, J. Han, Y. Yin, K. Kim, S.K. Saha, G.-M. Yang, H.Y. Choi, S.-G. Cho, Int. J. Mol. Sci., 17 569 (2016)
12. R. Jaiswal, H. Muller, A. Muller, M.G.E. Karar, N. Kuhnert, Phytochem. 108 252-263 (2014)
13. M. Kajdzanoska, V. Gjamovski, M.Stefova, Macedonian J. of Chemistry and Chemical Engr., 29(2) 181-194 (2010)
14. T.H. Lee, C.C. Hsu, G. Hsiao.; J.Y. Fang, W.M. Liu, C.K. Lee, Planta Med., 82(8) 698-704 (2016)
15. M.M. Marzouk, S.R. Hussein, A. Elkhatreeb, M. El-shabrawy, E.-S. S. Abdel-Hameed, S.A. Kawashy, J. Applied Pharm. Sci., 8(08) 116–122 (2018)
16. A. Oertel, A. Matros, A. Hartmann, P. Arapitsas K.J. Dehmer, S. Martens, H.P. Mock, Planta, 246 281-297 (2017)
17. P.C. Pradhan, S. Saha, J Food Sci. Technol., 53(2) 1205-1213 (2016)
18. L. Paudel, F.J. Wyzgowski, J.C. Scheerens, A.M. Chanon, R.N. Reese, D. Smiljanic, C. Wesdemiotis, J.J. Blakeslee, K.M. Riedl, P.L. Rinaldi, J. Agricult. Food Chem., 61 12032–12043 (20130
19. N. R afsanjany, J. Senker, S. Brandt, U. Dobrindt, A. Hensel, J. Agric. Food Chem., 63 8804-8818 (2015)
20. M.P. Razgonova, A.M. Zakharenko, V. Grudev, S. Ercisli, K.S. Golokhvast, Molecules 25 3774 2020
21. A. Ruiz, I. Hermosin-Gutierrez, C. Mardones, C. Vergara, E. Herlitz, M. Vega, C. Dorau, P. Winterhalter, von D. Baer, Agric. & Food Chem., 51 706-713 (2010)
22. A. Ruiz, I. Hermosin-Gutierrez, C. Vergara, D. von Baer, M. Zapata, A. Hitzschfeld, L. Obando, C. Mardones, Food Res. Int., 51 706-713 (2013)
23. A.J. Seukep, Y.-L. Zhang, Y.-B. Xu, M.-Q. Guo, Pharmaceut., 13 59 (2020)
24. State Pharmacopeia XIV (in Russ., 2018)