SEVERAL EXPLICIT FORMULAE OF SUMS AND HYPER-SUMS OF POWERS OF INTEGERS

FOUAD BOUNEBIRAT, DIFFALAH LAISSAOUI, AND MOURAD RAHMANI

Abstract. In this paper, we present several explicit formulas of the sums and hyper-sums of the powers of the first \((n+1)\)-terms of a general arithmetic sequence in terms of Stirling numbers and generalized Bernoulli polynomials.

Mathematics Subject Classification 2010: 11B73, 11B68, 33C05.

Keywords: Bernoulli polynomials, explicit formula, generating function, Stirling numbers.

1. Introduction

The problem of finding formulas for sums of powers of integers has attracted the attention of many mathematicians and has been developed in several different directions. For a recent treatment and references, see [1, 2, 7, 10, 11, 12]. This paper is concerned both with sums \(S_{p,(a,d)}(n)\) and hyper-sums \(S_{p,(a,d)}^{(r)}(n)\) of the \(p\)-the powers of the first \((n+1)\)-terms of a general arithmetic sequence. Let

\[
S_{p,(a,d)}(n) = a^p + (a + d)^p + \cdots + (a + nd)^p
\]

be the power sum of arithmetic progression with \(n, p\) are non-negative integers and \(a\) and \(d\) are complex numbers with \(d \neq 0\).

For the most studied case \(a = 0\) and \(d = 1\)

\[
S_{p,(0,1)}(n) = \begin{cases}
n + 1 & (p = 0)
1^p + 2^p + 3^p + \cdots + n^p & (p > 0)
\end{cases}
\]

there have been a considerable number of results.

The basic properties for the \(S_{p,(a,d)}(n)\) can be obtained from the following generating function [8]

\[
\sum_{p \geq 0} S_{p,(a,d)}(n) \frac{z^p}{p!} = \sum_{k=0}^{n} e^{(a + kd)z},
\]

and we can easily verify that [13]

\[
S_{p,(a,d)}(n) = \frac{d^p}{p+1} \left(B_{p+1} \left(n + \frac{a}{d} + 1 \right) - B_{p+1} \left(\frac{a}{d} \right) \right),
\]

where \(B_n(x)\) denotes the classical Bernoulli polynomials, which are defined by the following generating function

\[
\frac{ze^{xz}}{e^z - 1} = \sum_{n \geq 0} B_n(x) \frac{z^n}{n!}.
\]
Recall that the weighted Stirling numbers $S^i_n(x)$ of the second kind are defined by (see \cite{5, 6})

\begin{align}
S^i_n(x) &= \frac{1}{i!} \Delta^i x^n \\
&= \frac{1}{i!} \sum_{j=0}^{i} (-1)^{i-j} \binom{i}{j} (x+j)^n,
\end{align}

where Δ denotes the forward difference operator. The exponential generating function of $S^i_n(x)$ is given by

\begin{equation}
\sum_{n=i}^{\infty} \frac{S^i_n(x) z^n}{n!} = \frac{1}{i!} e^{xz} (e^z - 1)^i
\end{equation}

and $S^i_n(x)$ satisfy the following recurrence relation:

\[S^i_{n+1}(x) = S^{i-1}_n(x) + (x+i)S^i_n(x) \quad (1 \leq i \leq n). \]

In particular, we have for nonnegative integer r

\[S^i_n(0) = \left\{ \begin{array}{c} n \\ i \end{array} \right\} \quad \text{and} \quad S^i_n(r) = \left\{ \begin{array}{c} n+r \\ i+r \end{array} \right\}_r, \]

where $\left\{ \begin{array}{c} n \\ i \end{array} \right\}_r$ denotes the r-Stirling numbers of the second kind \cite{4}. These numbers counts the number of partitions of a set of n objects into exactly k nonempty, disjoint subsets, such that the first r elements are in distinct subsets.

For any positive integer m. The r-Whitney numbers of the second kind $W_{m,r}(n,i)$ are the coefficients in the expansion

\[(mx+r)^n = \sum_{i=0}^{n} m^i W_{m,r}(n,i)x(x+1)\cdots(x+i-1), \]

and given by their generating function

\[\sum_{n\geq i} W_{m,r}(n,i) \frac{z^n}{n!} = \frac{1}{m!} e^{rz} (e^{mz} - 1)^i. \]

Clearly, we have

\[W_{1,0}(n,i) = \left\{ \begin{array}{c} n \\ i \end{array} \right\}, \quad W_{1,r}(n,i) = \left\{ \begin{array}{c} n+r \\ i+r \end{array} \right\}_r \]

and

\[W_{m,r}(n,i) = m^{n-i} S^i_n \left(\frac{r}{m} \right). \]

For more details of these numbers see \cite{13}.
2. The sums of powers of integers $S_{p,(a,d)}(n)$

An explicit formula for $S_{p,(a,d)}(n)$ is given by the following:

Theorem 1. For all integers $n, p \geq 0$ and a, d are complex numbers with $d \neq 0$, we have

$$S_{p,(a,d)}(n) = d^p \sum_{k=0}^{p} k! \left(\frac{n + 1}{k + 1} \right) S_{p}^{k} \left(\frac{a}{d} \right).$$

Proof. It follows from (1.5) that

$$\sum_{p \geq 0} \left(d^p \sum_{k=0}^{p} k! \left(\frac{n + 1}{k + 1} \right) S_{p}^{k} \left(\frac{a}{d} \right) \right) \frac{z^p}{p!} = \sum_{k \geq 0} k! \left(\frac{n + 1}{k + 1} \right) \sum_{p \geq 0} S_{p}^{k} \left(\frac{a}{d} \right) \frac{(dz)^p}{p!}$$

$$= e^{az} \sum_{k \geq 0} \left(\frac{n + 1}{k + 1} \right) (e^{dz} - 1)^k$$

$$= e^{az} \frac{e^{(n+1)dz} - 1}{e^{dz} - 1}$$

$$= \sum_{k=0}^{n} e^{(a+kd)z}$$

and the proof is complete. \Box

The following Corollary immediately follows from Theorem 1.

Corollary 1. If we assume that d divides a, then we have for $p > 0$

$$S_{p,(a,d)}(n) = d^p \sum_{k=0}^{p} k! \left(\frac{n + 1}{k + 1} \right) \left\{ \frac{p + \frac{a}{d}}{k + \frac{a}{d}} \right\}. $$

The next Corollary contains an explicit formula for $S_{p,(a,d)}(n)$ expressed in terms of the r-Whitney numbers of the second kind $W_{m,r}(n,k)$.

Corollary 2. If we assume that a and d are coprime integers, then we have for $p \geq 0$

$$S_{p,(a,d)}(n) = \sum_{k=0}^{p} k! d^k \left(\frac{n + 1}{k + 1} \right) W_{a,d}(p,k).$$

An explicit formula for $S_{p,(a,d)}(n)$ involving Bernoulli polynomials is given by the following Theorem.

Theorem 2.

$$S_{p,(a,d)}(n) = \frac{d^p}{p + 1} \sum_{s=0}^{p} \binom{p + 1}{s} (n + 1)^{p+1-s} B_{s} \left(\frac{a}{d} \right),$$

Proof. It follows from (14) that

$$B_n(x) = \sum_{k=0}^{n} (-1)^k \frac{k!}{k+1} S_{n}^{k}(x).$$

(2.1)
Thus (1.2) becomes
\[
S_{p,(a,d)}(n) = \frac{d^p}{p + 1} \sum_{k=0}^{p+1} (-1)^k \frac{k!}{k+1} \left(S_{p+1}^k \left(n + \frac{a}{d} + 1 \right) - S_{p+1}^k \left(n + \frac{a}{d} + 1 \right) \right).
\]

Now, from (1.4), we get
\[
S_{p,(a,d)}(n) = \frac{d^p}{p + 1} \sum_{k=0}^{p+1} (-1)^k \frac{k!}{k+1} \left(\frac{1}{k!} \sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} \left[\sum_{s=0}^{p} \binom{p + 1}{s} \left(\frac{a + j}{d + j} \right)^s \right] \right)
\]
\[
= \sum_{s=0}^{p} \binom{p + 1}{s} (n + 1)^{p+1-s} \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} \left(\frac{a + j}{d + j} \right)^s
\]
\[
= \frac{d^p}{p + 1} \sum_{k=0}^{p+1} (-1)^k \frac{k!}{k+1} \left(\sum_{s=0}^{p} \binom{p + 1}{s} (n + 1)^{p+1-s} S_{p+1}^k \left(\frac{a}{d} \right) \right)
\]
\[
= \frac{d^p}{p + 1} \sum_{s=0}^{p} \binom{p + 1}{s} (n + 1)^{p+1-s} \sum_{k=0}^{p+1} (-1)^k \frac{k!}{k+1} S_{p+1}^k \left(\frac{a}{d} \right).
\]

Using again (2.1), we get the desired result.

\[\square\]

3. The hyper-sums of powers of integers \(S_{p,(a,d)}^{(r)}(n) \)

The hyper-sums of powers of integers \(S_{p,(a,d)}^{(r)}(n) \) \((p \geq 0)\) (or the \(r\)-fold summation of \(p\)th powers) are defined recursively as
\[
S_{p,(a,d)}^{(0)}(n) = \sum_{i=0}^{n} (a + id)^p
\]
\[
S_{p,(a,d)}^{(r)}(n) = \sum_{j=0}^{n} S_{p,(a,d)}^{(r-1)}(j).
\]

In this section, we generalize the results obtained recently by the same authors in [9]. An explicit formula for \(S_{p,(a,d)}^{(r)}(n) \) is given in the following Theorem.

Theorem 3. The hyper-sums of powers of integers \(S_{p,(a,d)}^{(r)}(n) \) is given by
\[
S_{p,(a,d)}^{(r)}(n) = \sum_{i=0}^{n} \binom{n + r - i}{r} (a + id)^p.
\]

Proof. These facts are easily verified by induction on \(r\) with
\[
\sum_{j=1}^{n} \binom{j - i + r - 1}{r - 1} = \binom{n + r - i}{r}.
\]

\[\square\]

We will now derive a few further consequences of Theorem 3.
Corollary 3. The exponential generating function of the hyper-sums of powers of integers $S_{p(a,d)}^{(r)}(n)$ is given by

\[
\sum_{p \geq 0} S_{p(a,d)}^{(r)}(n) \frac{z^p}{p!} = \sum_{k=0}^{n} \binom{n + r - k}{r} e^{(a+kd)z}. \tag{3.1}
\]

Proof. We have

\[
\sum_{p \geq 0} S_{p(a,d)}^{(r)}(n) \frac{z^p}{p!} = \sum_{p \geq 0} \left(\sum_{k=0}^{n} \binom{n + r - k}{r} (a+kd)^p \right) \frac{z^p}{p!}
\]

\[
= \sum_{k=0}^{n} \binom{n + r - k}{r} \sum_{p \geq 0} \frac{((a+kd)z)^p}{p!}
\]

\[
= \sum_{k=0}^{n} \binom{n + r - k}{r} e^{(a+kd)z}.
\]

\[\square\]

Theorem 4. The exponential generating function of the hyper-sums of powers of integers $S_{p(a,d)}^{(r)}(n)$ is

\[
\sum_{p \geq 0} S_{p(a,d)}^{(r)}(n) \frac{z^p}{p!} = \left(\frac{n + r + 1}{r + 1} \right) e^{az} {}_2F_1 \left(\frac{1}{r+2}, 1-e^{dz}; 1-e^{dz} \right), \tag{3.2}
\]

where $\, _2F_1 \left(\frac{a}{c} ;z \right)$ denotes the Gaussian hypergeometric function defined by

\[
\sum_{n \geq 0} \frac{(a)^n (b)_n}{(c)^n n!} z^n,
\]

and $(x)^\pi$ denotes the Pochhammer symbol defined by

\[
(x)^\pi = 1 \quad \text{and} \quad (x)^\pi = x(x+1) \cdots (x+n-1).
\]

Proof. From (3.1), we have

\[
\sum_{p \geq 0} S_{p(a,d)}^{(r)}(n) \frac{z^p}{p!} = e^{az} \sum_{k=0}^{n} \binom{k + r}{r} e^{d(n-k)z}
\]

\[
= \frac{(n + r + 1)! e^{az}}{n! r!} \sum_{k=0}^{n} \binom{n}{k} \frac{(n-k)! (k+r)!}{(n + r + 1)!} e^{d(n-k)z}
\]

\[
= \left(\frac{n + r + 1}{r + 1} \right) (r + 1) e^{az} \sum_{k=0}^{n} \binom{n}{k} e^{d(n-k)z} \int_{0}^{1} (1-x)^{r+k} x^{n-k-1} dx
\]

\[
= \left(\frac{n + r + 1}{r + 1} \right) (r + 1) e^{az} \int_{0}^{1} (1-x)^{r} \left(\sum_{k=0}^{n} \binom{n}{k} (xe^{dz})^{n-k} (1-x)^{k} \right) dx
\]
\[
= \left(\frac{n + r + 1}{r + 1}\right) e^{az} (r + 1) \int_{0}^{1} \left(1 - x\right)^{r} \left(1 - x + xe^{dz}\right)^{n} dx.
\]

It follows from the theory of hypergeometric functions that the Gaussian hypergeometric function \(\mathbf{2F1} \left(\frac{1, -n}{r + 2}; 1 - e^{dz} \right) \) has an integral representation given by
\[
\mathbf{2F1} \left(\frac{1, -n}{r + 2}; 1 - e^{dz} \right) = (r + 1) \int_{0}^{1} \left(1 - x\right)^{r} \left(1 - x + xe^{dz}\right)^{n} dx.
\]

which implies \((3.2) \).

Theorem 5. The ordinary generating function of the hyper-sums of powers of integers \(S_{p(a,d)}^{(r)}(n) \) is given by
\[
(3.3) \quad \sum_{r \geq 0} S_{p(a,d)}^{(r)}(n) z^{r} = \frac{1}{(1 - z)^{n+1}} \sum_{i=0}^{n} \frac{(1 - z)^{i} (a + i d)^{p}}{z^{r}}
\]

Proof. Since
\[
\sum_{r \geq 0} \binom{n + r - i}{r} z^{r} = (1 - z)^{i - n - 1},
\]
which implies \((3.3) \).

Theorem 6. The double generating function of the hyper-sums of powers of integers \(S_{p(a,d)}^{(r)}(n) \) is given by
\[
\sum_{r \geq 0} \sum_{p \geq 0} S_{p(a,d)}^{(r)}(n) \frac{z^{p}}{p!} t^{r} = \frac{e^{az} - (1 - t)^{n+1} e^{(a+(n+1)d)z}}{(1 - t)^{n+1} (1 - (1 - t) e^{dz})}.
\]

Proof. From \((3.1) \) and \((3.3) \), we obtain
\[
\sum_{r \geq 0} \sum_{p \geq 0} S_{p(a,d)}^{(r)}(n) \frac{z^{p}}{p!} t^{r} = \sum_{s=0}^{n} \sum_{r \geq 0} \binom{n + r - s}{r} t^{r} e^{(a+s d)z}
\]
\[
= \frac{e^{az}}{(1 - t)^{n+1}} \sum_{s=0}^{n} ((1 - t) e^{dz})^{s}
\]
\[
= \frac{e^{az}}{(1 - t)^{n+1}} \left[\frac{1 - (1 - t)^{n+1} e^{(n+1)d}z}{1 - (1 - t) e^{dz}} \right]
\]
\[
= \frac{e^{az} - (1 - t)^{n+1} e^{(a+(n+1)d)z}}{(1 - t)^{n+1} (1 - (1 - t) e^{dz})}.
\]

Now, according to the well-known formula, for \(n \in \mathbb{N} \) and \(m \in \mathbb{N}^{*} \)
\[
\mathbf{2F1} \left(\frac{-n, 1}{m}; z \right) = \frac{n! (z - 1)^{m-2}}{(m)^{n}} \sum_{k=0}^{m-2} \frac{(n + 1)^{k}}{k!} \left(\frac{z}{z - 1}\right)^{k} - (1 - z)^{n+1}.
\]
we can rewrite the exponential generating function of the hyper-sums of powers of integers $S_{p}^{(r)}(n)$ as

\begin{equation}
\sum_{p \geq 0} S_{p,(a,d)}^{(r)} \frac{z^{p}}{p!} = \frac{e^{(a+d(r+(n+1)))z}}{(e^{dz} - 1)^{r+1}} - \sum_{k=0}^{r} \binom{n+k}{k} \frac{e^{(a+(r-k)d)z}}{(e^{dz} - 1)^{r-k+1}}.
\end{equation}

The next result gives an explicit formula for $S_{p,(a,d)}^{(r)}(n)$ involving the generalized Bernoulli polynomials. Recall that the generalized Bernoulli polynomials $B_{n}^{(a)}(x)$ of degree n in x are defined by the exponential generating function

\begin{equation}
\left(\frac{z}{e^{z} - 1} \right)^{\alpha} e^{xz} = \sum_{n \geq 0} B_{n}^{(a)}(x) \frac{z^{n}}{n!}
\end{equation}

for arbitrary parameter α. In particular, $B_{n}^{(1)}(x) := B_{n}(x)$ denotes the classical Bernoulli polynomials with $B_{1}(0) = -\frac{1}{2}$. For a recent treatment see \[3\] \[15\].

Theorem 7. For all $n, p, r \geq 0$, we have

\begin{equation}
S_{p,(a,d)}^{(r)}(n) = \frac{p!d^{p}}{(p+r+1)!} B_{p+r+1}^{(r+1)} \left(\frac{a}{d} + (r+(n+1)) \right)
- \frac{p!d^{p}}{(p+r+1)!} \sum_{k=0}^{r} \binom{n+k}{k} \frac{1}{(p+r+1-k)!} B_{p+r+1-k}^{(r-k+1)} \left(\frac{a}{d} + (r-k) \right)
\end{equation}

Proof. By (3.4) and (3.5) we have

\begin{align*}
\sum_{p \geq 0} S_{p,(a,d)}^{(r)}(n) \frac{z^{p}}{p!} &= -\sum_{k=0}^{r} \binom{n+k}{k} \sum_{p \geq 0} d^{p-r-k+1} B_{p}^{(r-k+1)} \left(\frac{a}{d} + (r-k) \right) \frac{z^{p-r-k+1}}{p!} \\
&\quad + \sum_{p \geq 0} d^{p-r-1} B_{p}^{(r+1)} \left(\frac{a}{d} + (r+(n+1)) \right) \frac{z^{p-r-1}}{p!}
\end{align*}

After some rearrangement, we find

\begin{align*}
\sum_{p \geq 0} S_{p,(a,d)}^{(r)}(n) \frac{z^{p}}{p!} &= \sum_{p \geq 0} \frac{z^{p}}{p!} \left(\frac{p!d^{p}}{(p+r+1)!} B_{p+r+1}^{(r+1)} \left(\frac{a}{d} + (r+(n+1)) \right) \\
&\quad - \frac{p!d^{p}}{(p+r+1)!} \sum_{k=0}^{r} \binom{n+k}{k} \frac{1}{(p+r+1-k)!} B_{p+r+1-k}^{(r-k+1)} \left(\frac{a}{d} + (r-k) \right) \right)
\end{align*}

Equating the coefficient of $\frac{z^{p}}{p!}$, we get the result. \[\square\]

When $r = 0$, Theorem 7 reduces to (1.2).

References

[1] A. Bazsó and I. Mező, *On the coefficients of power sums of arithmetic progressions*, J. Number Theory 153 (2015), 117–123.

[2] A. F. Beardon, *Sums of powers of integers*, Amer. Math. Monthly 103 (1996), 201–213.

[3] M. A. Boutiche, M. Rahmani and H. M. Srivastava, *Explicit formulas associated with some families of generalized Bernoulli and Euler polynomials*, Mediterr. J. Math. 14 (2017), Art. 89, 10.
[4] A. Z. Broder, The \(r \)-Stirling numbers, Discrete Math. 49 (1984), 241–259.

[5] L. Carlitz, Weighted Stirling numbers of the first and second kind. I, Fibonacci Quart. 18 (1980), 147–162.

[6] L. Carlitz, Weighted Stirling numbers of the first and second kind. II, Fibonacci Quart. 18 (1980), 242–257.

[7] A. W. F. Edwards, Sums of powers of integers: a little of the history, Math. Gaz. 66 (1982), 22–28.

[8] C. D. Howard, Orthogonality of measures induced by random walks with scenery, Combin. Probab. Comput. 5 (1996), 247–256.

[9] D. Laissaoui, F. Bounebirat and M. Rahmani, On the hyper-sums of powers of integers, Miskolc Math. Notes 18 (2017), 307–314.

[10] D. Laissaoui and M. Rahmani, An explicit formula for sums of powers of integers in terms of Stirling numbers, J. Integer Seq. 20 (2017), Art. 17.4.8, 6.

[11] M. Merca, A new connection between \(r \)-Whitney numbers and Bernoulli polynomials, Integral Transforms Spec. Funct. 25 (2014), 937–942.

[12] I. Mező and J. L. Ramírez, The linear algebra of the \(r \)-Whitney matrices, Integral Transforms Spec. Funct. 26 (2015), 213–225.

[13] M. Rahmani, Some results on Whitney numbers of Dowling lattices, Arab J. Math. Sci. 20 (2014), 11–27.

[14] M. Rahmani, On \(p \)-Bernoulli numbers and polynomials, J. Number Theory 157 (2015), 350–366.

[15] H. M. Srivastava and J. Choi, Zeta and \(q \)-Zeta functions and associated series and integrals, Elsevier, Inc., Amsterdam, 2012.

(F. Bounebirat) USTHB, RECITS Laboratory, Faculty of Mathematics, P.O. Box 32, El Alia, 16111, Algiers, Algeria.
E-mail address: bounebiratfouad@yahoo.fr

(D. Laissaoui) Faculty of Science, University Yahia Farès Médéa, urban pole, 26000 Médéa, Algeria.
E-mail address: laissaoui.diffalah74@gmail.com

(M. Rahmani) USTHB, Faculty of Mathematics, P.O. Box 32, El Alia, 16111, Algiers, Algeria.
E-mail address: mrahmani@usthb.dz