Measurement of the B^0-\bar{B}^0 Mixing Parameter Δm_d using Semileptonic B^0 Decays

K. Hara, M. Hazumi, K. Abe, K. Abe, T. Abe, I. Adachi, Byoung Sup Ahn, H. Aihara, M. Akatsu, Y. Asano, T. Aso, V. Aulchenko, T. Aushav, A. Bakich, Y. Ban, A. Bay, I. Bedny, P. K. Behera, I. Bizjak, A. Bondar, A. Bozek, M. Bračko, J. Brodzicka, T. E. Browder, B. C. K. Casey, P. Chang, Y. Chao, K.-F. Chen, B. G. Cheon, R. Chistov, -K. Choi, Y. Choi, Y. K. Choi, M. Danilov, L. Y. Dong, J. Dragic, S. Eidelman, V. Eiges, Y. Enari, C. W. Everton, F. Fang, C. Fukunaga, N. Gabysev, A. Garmash, T. Gershon, B. Golob, R. Guo, J. Haba, K. Hanagaki, F. Handa, Hara, N. C. Hastings, H. Hayashi, E. M. Heenan, I. Higuchi, T. Higuchi, L. Hinz, Y. Hoshi, W.-S. Hou, Y. B. Hsiung, S.-C. Hsu, H.-C. Huang, T. Igaki, Y. Igarashi, T. Iijima, K. Inami, A. Ishikawa, R. Itoh, I. Itoh, H. Iwasaki, Y. Iwasaki, H. K. Jang, H. Kakuno, J. H. Kang, J. S. Kang, N. Katayama, H. Kawai, Y. Kawakami, N. Kawamura, H. Kichimi, D. W. Kim, H.eejong Kim, H. J. Kim, Hyunwoo Kim, H. T. Kim, K. Kinoshita, S. Korpar, P. Križan, P. Krovovny, R. Kulasiri, S. Kumar, A. Kuzmin, Y.-J. Kwon, J. S. Lange, G. Leder, S. H. Lee, J. Li, R.-S. Lu, J. MacNaughton, G. Majumder, F. Mandl, T. Matsuishi, S. Matsumoto, T. Matsumoto, K. Miyabayashi, Y. Miyabayashi, H. Miyata, G. R. Moloney, T. Mori, T. Nagamine, Y. Nagasaka, T. Nakadaira, E. Nakano, M. Nakao, J. W. Nam, Z. Natkaniec, S. Nishida, O. Nitoh, S. Noguchi, T. Nozaki, S. Ogawa, T. Ohshima, T. Okabe, S. Okuno, S. Olsen, Y. Onuki, W. Ostrowicz, H. Ozaki, H. Palka, C. W. Park, H. Park, L. S. Peak, J.-P. Perroud, M. Peters, E. Piilonen, N. Root, M. Rozanska, K. Rybicki, H. Sagawa, S. Saitho, Y. Sakai, H. Sakamoto, M. Satapathy, A. Satpathy, O. Schneider, S. Schrenk, C. Schwanda, S. Semenov, K. Senyo, R. Seuster, M. E. Sevior, H. Shibuya, B. Shwartz, J. B. Singh, N. Soni, S. Stanič, M. Starič, A. Sugi, A. Sugiyama, K. Sumisawa, T. Sumiyoshi, K. Suzuki, S. Suzuki, Y. Suzuki, Takahashi, F. Takasaki, N. Tamura, J. Tanaka, M. Tanaka, G. N. Taylor, Y. Teramoto, S. Tokuda, M. Tomoto, T. Tomura, K. Trabelsi, T. Tsuboyama, T. Tsukamoto, S. Uehara, K. Ueno, Y. Unno, S. Uno, Y. Ushiroda, G. Varner, K. E. Varvell, C. C. Wang, C. H. Wang, J. G. Wang, M.-Z. Wang, Y. Watanabe, E. Won, B. D. Yabsley, Y. Yamada, A. Yamaguchi, Y. Yamashita, M. Yamauchi, H. Yanai, M. Yokoyama, Y. Yuan, Y. Yusa, Z. Zhang, V. Zhilich, D. Žontar

(The Belle Collaboration)

1Aomori University, Aomori \hfill 2Budker Institute of Nuclear Physics, Novosibirsk
3 Chiba University, Chiba
4 Chuo University, Tokyo
5 University of Cincinnati, Cincinnati OH
6 University of Frankfurt, Frankfurt
7 Gyeongsang National University, Chinju
8 University of Hawaii, Honolulu HI
9 High Energy Accelerator Research Organization (KEK), Tsukuba
10 Hiroshima Institute of Technology, Hiroshima
11 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing
12 Institute of High Energy Physics, Vienna
13 Institute for Theoretical and Experimental Physics, Moscow
14 J. Stefan Institute, Ljubljana
15 Kanagawa University, Yokohama
16 Korea University, Seoul
17 Kyoto University, Kyoto
18 Kyungpook National University, Taegu
19 Institut de Physique des Hautes Énergies, Université de Lausanne, Lausanne
20 University of Ljubljana, Ljubljana
21 University of Maribor, Maribor
22 University of Melbourne, Victoria
23 Nagoya University, Nagoya
24 Nara Women’s University, Nara
25 National Kaohsiung Normal University, Kaohsiung
26 National Lien-Ho Institute of Technology, Miao Li
27 National Taiwan University, Taipei
28 H. Niewodniczanski Institute of Nuclear Physics, Krakow
29 Nihon Dental College, Niigata
30 Niigata University, Niigata
31 Osaka City University, Osaka
32 Osaka University, Osaka
33 Panjab University, Chandigarh
34 Peking University, Beijing
35 Panjab University, Chandigarh
36 Princeton University, Princeton NJ
37 RIKEN BNL Research Center, Brookhaven NY
38 University of Science and Technology of China, Hefei
39 Seoul National University, Seoul
40 Sungkyunkwan University, Suwon
41 University of Sydney, Sydney NSW
42 Tata Institute of Fundamental Research, Bombay
43 Tohoku Gakuin University, Tagajo
44 Tohoku University, Sendai
45 University of Tokyo, Tokyo
46 Tokyo Institute of Technology, Tokyo
47 Tokyo Metropolitan University, Tokyo
48 Tokyo University of Agriculture and Technology, Tokyo
Abstract

We present a measurement of the B^0-\bar{B}^0 mixing parameter Δm_d using neutral B meson pairs in a 29.1 fb$^{-1}$ data sample collected at the $\Upsilon(4S)$ resonance with the Belle detector at the KEKB asymmetric-energy e^+e^- collider. We exclusively reconstruct one neutral B meson in the semileptonic $B^0 \rightarrow D^{*-}\ell^+\nu$ decay mode and identify the flavor of the accompanying B meson from its decay products. From the distribution of the time intervals between the two flavor-tagged B meson decay points, we obtain $\Delta m_d = (0.494 \pm 0.012 \pm 0.015) \text{ ps}^{-1}$, where the first error is statistical and the second error is systematic.

PACS numbers: PACS numbers: 13.20.He, 11.30.Er, 12.15.Hh, 14.40.Nd
B^0-\bar{B}^0 mixing plays a unique role in the determination of basic parameters in the standard model (SM) of elementary particles. It is characterized by the oscillation frequency Δm_d, which is the difference between the two mass eigenvalues of neutral B meson states. In the SM, the mixing is due to second-order weak interactions known as box diagrams \[1\] whose amplitudes involve V_{td}, an element of the quark mixing matrix governing transitions between the top and down quarks \[2\]. The mixing also induces large time-dependent CP violation in neutral B meson decays, which has been observed recently \[3\]. For such CP violation measurements, precise Δm_d measurements are important.

In this Letter, we report a Δm_d measurement with 31.3 million B^0-\bar{B}^0 pairs, collected with the Belle detector at the KEKB asymmetric-energy e^+e^- (3.5 on 8 GeV) collider \[4\] operating at the $\Upsilon(4S)$ resonance. The time evolution is described as $e^{-|\Delta t|/\tau_{B^0}/(4\tau_{B^0})}\{1 \pm \cos(\Delta m_d\Delta t)\}$, where the plus (minus) sign is taken when the flavor of one B meson is opposite to (the same as) the other, τ_{B^0} is the lifetime of the neutral B meson and Δt is the proper time difference between the two B meson decays. At KEKB, the $\Upsilon(4S)$ is produced with a Lorentz boost of $\beta\gamma = 0.425$ nearly along the electron beamline (z). Since the B mesons are approximately at rest in the $\Upsilon(4S)$ center-of-mass system (c.m.s), Δt can be determined from the displacement in z between the two B decay vertices: $\Delta t \approx (z_{rec} - z_{tag})/\beta\gamma c \equiv \Delta z/\beta\gamma c$

The Belle detector \[1\] is a large-solid-angle spectrometer that consists of a silicon vertex detector (SVD), a central drift chamber (CDC), an array of aerogel threshold Čerenkov counters (ACC), time-of-flight scintillation counters (TOF), and an electromagnetic calorimeter comprised of CsI(Tl) crystals (ECL) located inside a superconducting solenoid coil that provides a 1.5 T magnetic field. An iron flux-return located outside of the coil is instrumented to detect K_L^0 mesons and to identify muons (KLM).

We use the decay chain $B^0 \rightarrow D^{*-}\ell^+\nu$, $D^{*-} \rightarrow D^0\pi^-$, and $D^0 \rightarrow K^{+}\pi^-$, $K^{+}\pi^-\pi^0$ or $K^{+}\pi^-\pi^+\pi^- \[7\]$. The large branching fractions and distinctive final states of the semileptonic decay allow for the efficient isolation of a high-purity B^0 sample. The event selection criteria are almost the same as those for our previous CP violation measurement \[3\]. Charged particles are selected from tracks with associated SVD hits. Track momenta for $D^0 \rightarrow K^{+}\pi^-\pi^+\pi^-$ decays are required to be larger than 0.2 GeV/c. Candidate $\pi^0 \rightarrow \gamma\gamma$ decays are pairs of photons with energies greater than 0.08 GeV that have an invariant mass within 0.011 GeV/c2 of m_{π^0} and a total momentum greater than 0.2 GeV/c. We require the invariant mass within 0.013 GeV/c2 of m_{D^0} for $D^0 \rightarrow K^{+}\pi^-$ or $K^{+}\pi^-\pi^+\pi^-$, and $-0.037 < M_{K^{+}\pi^-\pi^0} - m_{D^0} < +0.023$ GeV/c2 for $D^0 \rightarrow K^{+}\pi^+\pi^0$. The mass difference between the D^{*-} and D^0 candidates, M_{diff}, should be within 1 MeV/c2 of the nominal value. The c.m.s angle between the D^{*-} candidate and a lepton (an electron or a muon that has a c.m.s momentum within 1.4 < $p_{\ell}^{\text{c.m.s}}$ < 2.4 GeV/c) is required to be greater than 90 degrees. The energies and momenta of the B meson and the $D^{*}\ell$ system in the c.m.s should satisfy $M_{\nu}^2 = (E_{B}^{\text{c.m.s}} - E_{D^{*}\ell}^{\text{c.m.s}})^2 - |\vec{p}_{B}^{\text{c.m.s}}|^2 - |\vec{p}_{D^{*}\ell}^{\text{c.m.s}}|^2 + 2|\vec{p}_{B}^{\text{c.m.s}}||\vec{p}_{D^{*}\ell}^{\text{c.m.s}}| \cos \theta_{B,D^{*}\ell}$, where ν is the neutrino mass and $\theta_{B,D^{*}\ell}$ is the angle between $\vec{p}_{B}^{\text{c.m.s}}$ and $\vec{p}_{D^{*}\ell}^{\text{c.m.s}}$. We calculate $\cos \theta_{B,D^{*}\ell}$ setting $M_{\nu} = 0$. Figure \[3\] shows the $\cos \theta_{B,D^{*}\ell}$ distribution. The signal region is defined as $|\cos \theta_{B,D^{*}\ell}| < 1.1$.

We identify the flavor of the accompanying B meson from the properties of the decay products \[3\]. Several categories of well measured tracks that have a charge correlated with the b flavor are selected: high momentum leptons from $b \rightarrow \ell^-\nu$, lower momentum leptons from $c \rightarrow s\ell^+\nu$, charged kaons and Λ baryons from $b \rightarrow c \rightarrow s$, high momentum pions originating from decays of the type $B^0 \rightarrow D^{(*)}X$ (where $X = \pi^+, \rho^+, a_1^+, \text{etc}$), and slow pions from $D^{*-} \rightarrow D^0\pi^-$. Information extracted from each track is combined for the b-flavor
determination, taking into account correlations in case tracks in more than one category are present. For each flavor decision, we assign a MC-determined flavor-tagging dilution factor r, which ranges from $r = 0$ for no flavor discrimination to $r = 1$ for unambiguous flavor assignment. It is used only to sort data into six intervals of r, according to estimated flavor purity. More than 99.5% of the events are assigned a non-zero value of r.

We reconstruct the $B^0 \to D^*-\ell^+\nu$ decay vertex using the \bar{D}^0 trajectory, the lepton track and the interaction-point profile (IP) convolved with the finite B flight length in the plane perpendicular to the z axis (21 μm). The reduced χ^2 of the vertex is required to be less than 15. The method of reconstructing the tagging side B vertex is described elsewhere [3].

We find 16397 candidates after flavor tagging and vertex reconstruction. The signal fraction is estimated to be 80.4%. The backgrounds consist of fake D^* mesons (7.8%), $B \to D^{**}\ell\nu$ events (7.4%), random combinations of D^* mesons with leptons with no angular correlation (2.6%; called “uncorrelated background”) and continuum events (1.8%). Here D^{**} consists of non-resonant $D^*\pi$ components and charmed mesons heavier than D^*. The background due to a combination of a fake lepton and a true D^* from the same B meson is estimated with MC to be negligible. We estimate the fake D^* background fraction from the \bar{D}^0 mass sideband events and from fake D^* events reconstructed with wrong-charge slow pions. The uncorrelated background fraction is evaluated by counting candidates where we invert the lepton momentum vector artificially. We estimate the continuum background fraction by scaling the off-resonance data (2.3 fb$^{-1}$) with the integrated luminosity. We fit the $\cos\theta_{B,D^*\ell}$ distribution in a range $-10 < \cos\theta_{B,D^*\ell} < 1.1$ to estimate the $B \to D^{**}\ell\nu$ background fraction; the $\cos\theta_{B,D^*\ell}$ shapes for the signal and $B \to D^{**}\ell\nu$ are modelled using MC and all the other background fractions and distributions are fixed from the aforementioned special background samples.

The Δt resolution function for the signal, $R_{\text{sig}}(\Delta t)$, is expressed as

$$R_{\text{sig}}(\Delta t) = g_1 G(\Delta t; \mu_1, \sigma_1) + (1 - g_1) G(\Delta t; \mu_2, \sigma_2),$$

$$\sigma_{1(2)} = S_{1(2)} \sqrt{\sigma_{\text{rec}}^2 + \sigma_{\text{tag}}^2},$$
where $G(x; \mu_{1(2)}, \sigma_{1(2)})$ is the main (tail) Gaussian component with $\mu_{1(2)}$ and $\sigma_{1(2)}$ as the mean and standard deviation, respectively, g_ℓ is the fraction of the main component, $S_{1(2)}$ is a scale factor that corrects our imperfect error estimation, and $\sigma_{\text{rec}(tag)}$ is the Δt error calculated from the vertex error for the reconstructed (tagged) B meson determined for each event. We extract the above parameters from the Δt distribution of the candidate $B^0 \to D^{*+}\ell^+\nu$ events without distinguishing between different flavor assignments. The signal probability density function (PDF) is given by $F_{\text{sig}}(\Delta t) = \int_{-\infty}^{\infty} \Lambda(\Delta t'; \tau_{B^0}) R_{\text{sig}}(\Delta t - \Delta t')d\Delta t'$, where $\Lambda(\Delta t; \tau_{B^0}) = \exp(-|\Delta t|/\tau_{B^0})/(2\tau_{B^0})$. We define the likelihood value for each event as $L_i = (1 - f_{bg}) F_{\text{sig}}(\Delta t_i) + f_{bg} F_{bg}(\Delta t_i)$, where f_{bg} is the overall background fraction of 0.196 and $F_{bg}(\Delta t_i)$ is the background PDF given by $\sum_k f_k F_k(\Delta t_i)$. Here F_k and f_k are the PDF and the fraction, respectively, for each of the four background components. We use the signal PDF for the $B \to D^{**}\ell\nu$ component. For the other background components, we use $F_k(\Delta t) = \int_{-\infty}^{\infty} [(1 - f_{\delta k}) \Lambda(\Delta t'; \tau_k) + f_{\delta k} \delta(\Delta t')] G(\Delta t - \Delta t'; \mu_k, \sigma_k) d\Delta t'$, and $\sigma_k = S_k \sqrt{\sigma_{\text{rec}}^2 + \sigma_{\text{tag}}^2}$. Here $\delta(\Delta t')$ is the Dirac’s delta function that accounts for components with small or zero lifetimes. The parameters in $F_k(\Delta t)$ are obtained from the upper M_{diff} sideband ($0.155 < M_{\text{diff}} < 0.165$ GeV/c^2) for fake D^*, the lepton-momentum-inverted events for uncorrelated background, and off-resonance data for continuum background, respectively.

We perform a likelihood fit to determine $R_{\text{sig}}(\Delta t)$ with $\tau_{B^0} = 1.548$ ps \cite{8} and with the background parameters fixed to the obtained values. We find that the fraction of the main component is large ($g_\ell = 0.87^{+0.06}_{-0.09}$) and the Δt error estimation is correct ($S_1 = 0.99^{+0.09}_{-0.10}$).

The typical rms resolution on Δt is 1.43 ps.

We determine Δm_d by an unbinned maximum-likelihood fit to the Δt distributions. We define the likelihood value for each event as follows:

$$L_i^{\text{OF(SF)}} = (1 - f_{bg}) \{ (1 - f_{D^{**}\ell\nu}) F_{\text{sig}}^{\text{OF(SF)}}(\Delta t_i)
+ f_{D^{**}\ell\nu} F_{D^{**}\ell\nu}^{\text{OF(SF)}}(\Delta t_i) \}
+ f_{bg} \sum_k f_k^{\text{OF(SF)}} F_k^{\text{OF(SF)}}(\Delta t_i),$$

where OF (SF) denotes $B^{0}\overline{B}^{0}$ ($B^{0}\overline{B}^{0}$ or $\overline{B}^{0}\overline{B}^{0}$), i.e. a state with the opposite (same) flavor, $F_{\text{sig}}^{\text{OF(SF)}}$, $F_{D^{**}\ell\nu}^{\text{OF(SF)}}$ and $F_k^{\text{OF(SF)}}$ are PDFs for the OF (SF) signal events, $D^{**}\ell\nu$ decays and other backgrounds, respectively, $f_{bg}^{(l = 1, 6)}$ is an overall background fraction excluding $B \to D^{**}\ell\nu$ in each r region and $(1 - f_{bg}^{(l = 1, 6)}) f_{D^{**}\ell\nu}$ corresponds to a fraction of $D^{**}\ell\nu$ decays.

Other background fractions $f_k^{\text{OF(SF)}}$, where the relation $f_k^{\text{OF}} + f_k^{\text{SF}} = 1$ holds, are obtained from the control sample for the uncorrelated and fake D^* backgrounds, and from MC events for the continuum.

The PDFs for the OF and SF signal events are given by

$$F_{\text{sig}}^{\text{OF(SF)}}(\Delta t) = \int_{-\infty}^{\infty} P_{\text{mix}}^{\text{OF(SF)}}(\Delta t') R_{\text{sig}}(\Delta t - \Delta t') d\Delta t',$$

where

$$P_{\text{mix}}^{\text{OF(SF)}}(\Delta t) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \{ 1 \pm (1 - 2w_1) \cos(\Delta m_d \Delta t) \}.$$
of the vertex resolution, we measure Δm variation on the Δm unity in the MC (with all others set to zero), and repeat the analysis; we take the largest difference from the main result, which is obtained without the fake D^* background. We take the largest difference from the main result, which is obtained without the fake D^* background. We perform the fit with 10 free parameters (listed in Table I) to the Δt distributions of SF and OF events in the signal region and the $B \rightarrow D^{**}\ell\nu$ dominant region defined as $-10 < \cos\theta_{B,D^*\ell} < -1.1$. In this way, the background parameters f_{B^+}, f_δ and τ'_{B^+} are determined simultaneously. Additional correction factors, r_δ and r_{B^+}, are introduced only in the signal region to account for the difference between the two regions. We use MC to determine $r_\delta = 0.62^{+0.14}_{-0.12}$ and $r_{B^+} = 1.04 \pm 0.02$.

The fit result is summarized in Table I. Figure 3 shows the observed Δt distributions for the OF and SF events. Figure 4 shows the corresponding flavor asymmetry, $A(\Delta t) = [N_{OF}(\Delta t) - N_{SF}(\Delta t)]/[N_{OF}(\Delta t) + N_{SF}(\Delta t)]$, where $N_{OF(SF)}$ denotes the number of OF (SF) events.

Table I: Summary of mixing fit. Errors are statistical only. For each wrong tag fraction, the r interval and the number of candidate events are also shown.

parameter	result
Δm_d	0.494 ± 0.012 ps$^{-1}$
w_1 ($0 < r \leq 0.25$, 6360 events)	0.467 ± 0.010
w_2 ($0.25 < r \leq 0.5$, 2364 events)	0.360 ± 0.016
w_3 ($0.5 < r \leq 0.625$, 1453 events)	0.254 ± 0.020
w_4 ($0.625 < r \leq 0.75$, 1702 events)	0.182 ± 0.017
w_5 ($0.75 < r \leq 0.875$, 1958 events)	0.103 ± 0.014
w_6 ($0.875 < r \leq 1$, 2560 events)	0.032 ± 0.010
f_{B^+}	$0.70^{+0.12}_{-0.13}$
f_δ	$0.28^{+0.10}_{-0.09}$
τ'_{B^+}	$1.87^{+0.24}_{-0.18}$ ps

The systematic errors are summarized in Table II. D^{**} branching fractions used in this analysis are based on theoretical assumptions [3]. We set each such branching fraction to unity in the MC (with all others set to zero), and repeat the analysis; we take the largest variation on the Δm_d result as the systematic error. To account for uncertainties in the tails of the vertex resolution, we measure Δm_d by setting the upper limit on $|\Delta t|$ that ranges from 5 to 55 ps. We take the largest difference from the main result, which is obtained without the $|\Delta t|$ upper limit, as a systematic error. Systematic errors from the background PDFs are obtained by varying each shape parameter individually, repeating the fit procedure, and adding each contribution in quadrature. We also perform a MC study where we obtain background PDFs by two methods: one from the background control samples, and the other directly from the signal region. The difference between two Δm_d fit results is included in the systematic error. A fit with the $B \rightarrow D^{*}\ell\nu$ and $B \rightarrow D^{**}\ell\nu$ MC events yields the Δm_d value that is consistent with the input value within 1.7σ. We conservatively take the difference,
FIG. 2: The Δt distributions for (a) the OF events and (b) the SF events. The solid lines are the result of the unbinned maximum likelihood fit. The dashed lines show the background distribution.

FIG. 3: The observed time-dependent flavor asymmetry. The curve is the result of the unbinned maximum likelihood fit.

which we attribute to MC statistics, as a systematic uncertainty. The systematic error due to the IP constraint is estimated by varying ($\pm 10\mu m$) the smearing used to account for the B flight length. Other sources of systematic errors are obtained by changing each parameter by 1σ, repeating the fit procedure and adding each contribution in quadrature. We also perform a Δm_d fit in each r region and find no systematic trend.

In summary, we have measured the B^0-\bar{B}^0 mixing parameter Δm_d using $B^0 \rightarrow D^{*-}\ell^+\nu$ decays in a 29.1 fb$^{-1}$ data sample collected with the Belle detector at the KEKB e^+e^- collider operating at the $\Upsilon(4S)$ resonance. From an unbinned maximum likelihood fit to the
The result is one of the most precise measurements performed so far, and is consistent with the world average value of $\Delta m_d = 0.472 \pm 0.017$ (ps$^{-1}$) \cite{8} as well as other recent measurements \cite{10}.

We wish to thank the KEKB accelerator group for the excellent operation of the KEKB accelerator. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology of Japan and the Japan Society for the Promotion of Science; the Australian Research Council and the Australian Department of Industry, Science and Resources; the National Science Foundation of China under contract No. 10175071; the Department of Science and Technology of India; the BK21 program of the Ministry of Education of Korea and the CHEP SRC program of the Korea Science and Engineering Foundation; the Polish State Committee for Scientific Research under contract No. 2P03B 17017; the Ministry of Science and Technology of the Russian Federation; the Ministry of Education, Science and Sport of the Republic of Slovenia; the National Science Council and the Ministry of Education of Taiwan; and the U.S. Department of Energy.

* on leave from National Fermi Accelerator Laboratory, Batavia IL
† on leave from Nova Gorica Polytechnic, Nova Gorica

\[\Delta m_d = 0.494 \pm 0.012 \text{(stat)} \pm 0.015 \text{(syst)} \text{ ps}^{-1}. \]

TABLE II: Summary of the systematic errors (ps$^{-1}$) on the Δm_d measurement.

source	error (ps$^{-1}$)		
D^{**} branching fractions	0.007		
$	\Delta t	$ range	0.007
Background shape	0.006		
Resolution function	0.006		
B^0 lifetime	0.005		
Fit bias	0.004		
Background fraction	0.003		
$B \rightarrow D^{**} \ell \nu$ fraction	0.002		
IP constraint	0.002		
B^\pm wrong tag fraction	< 0.001		
B^\pm shape parameter	< 0.001		
total	0.015		
Throughout this Letter, the inclusion of the charge conjugate mode decay is implied.