720. Efficacy of Fosfomycin for Injection (FOS) vs. Piperacillin–Tazobactam (PIP-TAZ) in Adults With Complicated Urinary Tract Infection (cUTI) and Acute Pyelonephritis (AP): ZEUS Study Outcomes in Patients With Reduced Study Drug Susceptibility
Keith S. Kaye, MD, MPH;1 Anita F. Dao, PhD;2 Paul B. Eckburg, MD;3 Steven P. Gelone, PharmD;4 Jennifer Schranz, MD;5 Evelyn J. Ellis-Grosse, PhD;6 1University of Michigan Medical School, Ann Arbor, Michigan; 2Das Consulting, Guerneville, California; 3Self-employed, Mountain View, California; 4Nabriva Therapeutics US, Inc., King of Prussia, Pennsylvania Session: 68. Novel Antimicrobials and Approaches Against Resistant Bugs Thursday, October 3, 2019: 12:15 PM
Background. FOS is being pursued for US registration in cUTI/AP. Safety and efficacy of FOS vs. PIP-TAZ were demonstrated in the noninferiority ZEUS trial in hospitalized patients with cUTI/AP. Although FOS resistance has been observed in several in vitro studies, resistance rates in clinical settings have remained relatively stable despite >40 years of clinical use of FOS outside of the United States. Here we report outcomes in patients who developed reduced susceptibility to study drug (FOS or PIP-TAZ) after enrollment in ZEUS. Methods. Patients received IV FOS 6g q8h or PIP-TAZ 4.5g q7 days (no oral switch allowed). The primary endpoint was overall success (clinical cure + microbiologic eradication) in microbiologic modified intent-to-treat (m-MITT) population at test-of-cure (TOC; Day 19–21). Reduced susceptibility to FOS or PIP-TAZ was defined as a ≥4-fold increase in baseline from minimum inhibitory concentration (MIC) at Day 5, end of treatment (EOT; Day 7–8), or Late follow-up (L FU; Day 26 ± 2). Microbiologic eradication/persistence of baseline and postbaseline pathogens was confirmed post hoc by pulsed-field gel electrophoresis (PFGE). Results. In all m-MITT patients, overall success/c clinical/cure/microbiologic eradication rates (with PFGE) at TOC were 69.0/90.8/70.7% (FOS) and 57.3/91.6/60.1% (PIP-TAZ). Reduced susceptibility to FOS was identified in 7/184 (3.8%) FOS and 8/178 (4.5%) PIP-TAZ patients; all had monomicrobial infections. Reduced study drug susceptibility was identified in 7/184 (3.8%) FOS and 8/178 (4.5%) PIP-TAZ patients; all had monomicrobial infections. Resistance at test-of-cure (TOC; Day 19–21). Reduced susceptibility to FOS or PIP-TAZ was confirmed post hoc by pulsed-field gel electrophoresis (PFGE). In the ZEUS study, few patients had urine isolates with reduced postbaseline susceptibility to either FOS or PIP-TAZ. No trend was observed in isolate species associated with decreased susceptibility to FOS or PIP-TAZ, including Enterobacteriaceae species and Pseudomonas aeruginosa. Despite microbiologic persistence at TOC in a small number of patients, all of these patients were clinical cures at TOC and sustained cures at LFU. Conclusion. In the ZEUS study, few patients had urine isolates with reduced postbaseline susceptibility to either FOS or PIP-TAZ. No trend was observed in isolate species associated with decreased susceptibility to FOS or PIP-TAZ, including Enterobacteriaceae species and Pseudomonas aeruginosa. Despite microbiologic persistence at TOC in a small number of patients, all of these patients were clinical cures at TOC and sustained cures at LFU.

722. Pharmacokinetics (PK) and Safety of Lefamulin (LEF) After Single Intravenous Dose Administration in Subjects With Impaired Hepatic Function Wolgang Wicha, MS;1 Thomas C. Marbury, MD;2 James A. Dowell, Ph.D;2 Lori Lykens, BS;3 Cathie Leister, MS;3 James Ermer, MS;2 Steven P. Gelone, PharmD;4 Nabriva Therapeutics GmbH, Vienna, Wien, Austria; 5Orlando Clinical Research Center, Orlando, Florida; 6Pharmacology Development Services, LLC, Collegeville, Pennsylvania; 7Nabriva Therapeutics US, Inc., King of Prussia, Pennsylvania Session: 68. Novel Antimicrobials and Approaches Against Resistant Bugs Thursday, October 3, 2019: 12:15 PM
Background. Patients with chronic liver disease (CLD) have impaired immune function, are prone to community-acquired bacterial pneumonia (CABP), and experience greater morbidity/mortality and healthcare costs than CABP patients without CLD. Lefamulin (LEF), a novel pleuromutilin antibiotic (IV/oral) with primary liver elimination, was generally well tolerated and noninferior to moxifloxacin in two phase 3 studies of adults with CABP. We investigated the PK and safety of LEF and its main metabolite, BC-8041, in subjects with hepatic impairment. Methods. In this open-label study, subjects were allocated to 1 of 3 groups based on hepatic function level: Moderate (Child-Pugh score 7–9) or Severe subjects (Child-Pugh score ≥10) were matched (gender, age, and weight) to subjects in the Normal group (normal hepatic function, no liver cirrhosis). Subjects received a single 1-hour intravenous dose of LEF 1 g or BC-8041 using validated assays. Safety assessments included treatment-emergent adverse events (TEAEs), labs, vital signs, and electrocardiograms. Results. 27 subjects enrolled in and completed the study (n = 11, Normal; n = 8, Moderate; n = 8, Severe). Mean LEF and BC-8041 plasma concentration profiles were comparable across all hepatic function groups through the first 12 hours following the start of infusion. Subjects with hepatic impairment had slightly slower rates of elimination in the later elimination phases. LEF and BC-8041 exposures were comparable across all hepatic function groups (table), and the majority of LEF and BC-8041 were excreted nonrenally. TEAEs were reported in 2 (18.2%) subjects in the Normal group, 2 (25%) in the Moderate group, and 1 (12.5%) in the Severe group. None of the TEAEs were serious or led to study drug discontinuation. No subject met Hy’s law criteria. Within 4 hours postdose, the maximum mean change from baseline in the QTcF interval was 12.4, 19.2, and 14.1 msec in the Normal, Moderate, and Severe groups, respectively. Conclusion. No dosage adjustment for LEF appears to be required when treating subjects with hepatic impairment. LEF was generally well tolerated in all subjects regardless of hepatic functional status.

Disclosures. All authors: No reported disclosures.

721. In Vivo Activity of Cefcelofuroxime Against Gram-Negative Clinical Isolates From New York City
Alejandro Iregui, MD; Zeb Khan, MD; David Landman, MD; John M. Quale, MD; SUNY Downstate Medical Center, Brooklyn, New York Session: 68. Novel Antimicrobials and Approaches Against Resistant Bugs Thursday, October 3, 2019: 12:15 PM
Background. Multidrug-resistant Gram-negative bacteria have become a serious problem in hospitals worldwide. Cefcelofuroxime (CFDC) is a novel siderophore cephalosporin with activity against a wide range of carbapenemase- and ESBL-producing bacteria. We tested the activity of CFDC against (1) a recent collection of clinical isolates and (2) a separate collection of carbapenem-resistant isolates gathered from NYC hospitals.
Methods. Susceptibility testing was performed on isolates of E. coli, K. pneumoniae, Enterobacter spp., P. aeruginosa, and A. baumannii gathered in 2017 from 7 hospitals in Brooklyn, NY. Consecutive unique patient clinical isolates from all sources were collected for a three month period. Testing was also done on a collection of carbapenem-resistant isolates from a similar surveillance study conducted in 2013–2014. MICs were performed with iron-depleted cation-adjusted Mueller–Hinton broth for CFDC and agar dilution for other antibiotics according to CLSI methodology. The provisional CLSI breakpoint (≤4 μg/mL susceptible) was used for CFDC. Cephalosporin-resistant isolates were tested for common carbapenemases by PCR.
Results. The susceptibility results for CFDC and meropenem for the isolates gathered in 2017 are listed in the Table. All of the Enterobacteriaceae were susceptible to CFDC, including K. pneumoniae (93%). M. catarrhalis was the most resistant species and (2) a separate collection of carbapenem-resistant isolates gathered from NYC hospitals.

Strain	MIC (μg/mL)	Range	Percent susceptible
E. coli (n=1069)	≤0.125	≤0.125	100%
Meropenem	≤0.125	≤0.125	100%
Cefditorenol	0.125	≤0.003	100%
K. pneumoniae (n=518)	≤0.125	≤0.125	95.5%
Meropenem	≤0.125	≤0.125	97.6%
Cefditorenol	0.125	≤0.003	100%
P. aeruginosa (n=266)	≤0.125	≤0.125	67.6%
Meropenem	1	≤0.125	76%
Cefditorenol	0.25	≤0.003	99.0%
A. baumannii (n=46)	8	≤0.125	48%
Meropenem	8	≤0.125	48%
Cefditorenol	0.25	≤0.003	100%

Disclosures. All authors: No reported disclosures.

S324 • OFID 2019:6 (Suppl 2) • Poster Abstracts