Abstract

We have previously reported an important role of PR55α, a regulatory subunit of PP2A Ser/Thr phosphatase, in the support of critical oncogenic pathways required for oncogenesis and the malignant phenotype of pancreatic cancer. The studies in this report reveal a novel mechanism by which the p53 tumor suppressor inhibits the protein-stability of PR55α via FBXL20, a p53-target gene that serves as a substrate recognition component of the SCF (Skp1_Cullin1_F-box) E3 ubiquitin ligase complex that promotes proteasomal degradation of its targeted proteins. Our studies show that inactivation of p53 by siRNA-knockdown, gene-deletion, HPV-E6-mediated degradation, or expression of the loss-of-function mutant p53R175H results in increased PR55α protein stability, which is accompanied by reduced protein expression of FBXL20 and decreased ubiquitination of PR55α. Subsequent studies demonstrate that knockdown of FBXL20 by siRNA mimics p53 deficiency, reducing PR55α ubiquitination and increasing PR55α protein stability. Functional tests indicate that ectopic p53R175H or PR55α expression results in an increase of c-Myc protein stability with concomitant dephosphorylation of c-Myc-T58, which is a PR55α substrate, whose phosphorylation otherwise promotes c-Myc degradation. A significant increase in anchorage-independent proliferation is also observed in normal human pancreatic cells expressing p53R175H or, to a greater extent, overexpressing PR55α. Consistent with the common loss of p53 function in pancreatic cancer, FBXL20 mRNA expression is significantly lower in pancreatic cancer tissues compared to pancreatic normal tissues and low FBXL20 levels correlate with poor patient survival. Collectively, these studies delineate a novel mechanism by which the p53/FBXL20 axis negatively regulates PR55α protein stability.

Keywords: p53, FBXL20, PR55α, PP2A, c-Myc

Abbreviations: ATCC, American Type Culture Collection; CHX, cycloheximide; DMEM, Dulbecco’s modified Eagle’s medium; DMSO, Dimethyl sulfoxide; Dox, Doxycycline; esiRNAs, endoribonuclease-prepared siRNAs; FBXL20, F-Box and Leucine-Rich Repeat Protein 2B; HPNE, human normal pancreatic cells; HPV16, human papillomavirus 16; IB, immunoblotting; IHC, immunohistochemistry; IP, immunoprecipitation; KSR, Kinase Suppressor of Ras 1; LATS, Large Tumor Suppressor Kinase; PP2A, protein phosphatase 2A; RT-PCR, Reverse Transcription Polymerase Chain Reaction; SCF, Skp1_Cullin1_F-box; siRNA, short interfering RNA; shRNA, short hairpin RNA; wt, wild-type; YAP, Yes-associated protein.

* Corresponding author at: Department of Radiation Oncology, University of Nebraska Medical Center, 986850, Omaha, NE 68198-6850, USA.

Lepakshe S.V. Madduri†; Nichole D. Brandquist†; Chitra Palanivel†; Geoffrey A. Talmon†; Michael J. Baine†; Sumin Zhou†; Charles A. Enke†; Keith R. Johnson†; Michel M. Ouellette†; Ying Yan†,∗

† Department of Radiation Oncology, University of Nebraska Medical Center, 986850 Nebraska Medical Center, Omaha, NE 68198-6850, USA
‡ Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
§ Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
¶ College of Dentistry-Oral Biology, University of Nebraska Medical Center, Omaha, NE, USA
❼ Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
¶¶ Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
∥ Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA

E-mail address: yyan@unmc.edu (Y. Yan).
Received 20 July 2021; received in revised form 2 October 2021; accepted 13 October 2021

© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
http://doi.org/10.1016/j.neo.2021.10.002
Introduction

PP2A (protein phosphatase 2A) is a family of holoenzyme complexes accounting for the majority of serine/threonine phosphatase activities in human cells [1,2]. Each PP2A complex consists of one catalytic subunit, one scaffolding subunit, and one regulatory subunit [1,2]. While the scaffolding and catalytic subunits each contain only two highly conserved isoforms (α or β), the regulatory subunits are 26 members encoded by 15 genes and classified into four distinct subfamilies (B, B′, B″ and B‴), which determine the substrate specificities of their associated PP2A complexes [1,3]. PP2A complexes serve essential roles in fundamental cellular functions, including proliferation, survival, and differentiation [1,4–7]. Thus, dysregulated PP2A activities are associated with various human diseases including autoimmune diseases and cancer [8]. PR55α is a regulatory subunit of PP2A that has been shown to facilitate several oncogenic signaling pathways especially for tumorigenesis, progression, and/or metastasis of cancer [9–11]. These studies show that PR55α-controlled PP2A complex (PR55α/PP2A) promotes activation of the Raf/MEK/ERK oncogenic cascade through dephosphorylating their inhibitory sites KSR-S392 and Raf-S259/S295 and stabilizes β-catenin and c-Myc oncoproteins by dephosphorylating the β-catenin-T41/S37/33 and c-Myc-T58 residues, respectively [12–16]. Furthermore, our recent studies have revealed an essential role of PR55α in the activation of YAP oncogenic signaling that is required for anchorage-independent growth, cancer stem cell maintenance, and metastasis of most solid tumors. Our results also show that this role of PR55α/PP2A involves its direct dephosphorylation of MOB1-T35 and LATS1/2-S909, resulting in the inhibition of the Hippo tumor suppressor pathway that negatively regulates YAP’s nuclear retention and protein stability [17]. Consistent with the roles of PR55α in promoting oncogenic pathways, our studies show that PR55α is overexpressed in pancreatic cancer cells/tissues and required for tumorigenesis and metastasis of pancreatic cancer [15].

The p53 tumor suppressor detects genotoxic stress and coordinates diverse responding mechanisms to maintain genomic integrity and block malignant transformation [18]. Thus, over 50% of human cancers carry loss of function mutations in the p53 gene [18]. The loss of p53 function is detected in more than 80% of pancreatic cancers and serves as the main driver of pancreatic cancer [19,20]. Furthermore, the loss of p53 function is required for pancreatic cancer to progress into invasive and metastatic diseases [19,21,22]. p53 elicits its tumor suppressor function mainly by inducing the DNA-damage response that leads to cell cycle arrest and DNA repair, or apoptosis if the damage is unreparable [20,23]. In response to DNA damage, p53 has been shown to activate VPS34, a class III phosphoinositide 3-kinase that inhibits autophagy, which, in turn, promotes the transcription of FBXL20, an F-box protein that serves as a substrate recognition component of the SCF (Skp1_Cul1_F-box) E3 ubiquitin ligase complexes that promote proteasomal degradation [23–25]. Previous studies have also identified PR55α in promoting autophagic survival [26,27], suggesting a functional relationship of PR55α and p53 in DNA damage response. On the other hand, PR55α is shown to interact directly with FBXL16, which is another member of the F-box family [23,24,28]. In this study, we investigated the mechanism that regulates PR55α protein expression and identified the p53/FBXL20 axis as a negative regulator of the protein stability of PR55α.

Materials and methods

Cell culture and treatment

HPNE is a line of primary human pancreatic cells immortalized by human telomerase hTERT [29]. HPNE-E6, HPNE-E7, and HPNE-E6/E7 cell lines were established by transducing HPNE cells with retroviral vectors expressing the E6 and/or E7 proteins of HPV 16 virus [30]. HPNE/p53R175H stable clones were established by transducing HPNE cells with a lentiviral vector, pLenti6/V5_p53/R175H (Addgene, Watertown, MA), expressing V5-tagged p53R175H and selected with blastidin at 4 μg/ml (Thermo Fisher Scientific, Waltham, MA). HPNE/PR55α cell line expresses Doxycycline (Dox)-inducible PR55α cDNA, which was established by transducing HPNE cells with the pRevTet-On retroviral vector and selected with hygromycin at 200 μg/ml (Clontech) expressing PR55α cDNA, as described in our previous publication [17]. The panel of HPNE cell lines was maintained in Medium-D growth medium [3 parts high glucose Dulbecco’s modified Eagle’s medium (DMEM) (GE Healthcare Life Sciences, Pittsburgh, PA) to one-part M3Base A (INCELL, San Antonio, TX) supplemented with 10% Tet-free FBS with 10 ng/mL EGF (In Vitrogen)] [29]. Ectopic PR55α overexpression in HPNE/PR55α cells was induced with 1 μg/ml Dox for 48–72 h.

Human pancreatic cancer cell lines CD18/HPAF, Capan-1, BxPC-3, T3M-4, and AsPC-1 were obtained from ATCC (Manassas, VA). The Balb/c mouse cell lines were a gift from Dr. Arnold J. Levine (Institute for Advanced Study). Balb/c 3T3 (p53-wt) is an spontaneously immortal line derived from Balb/c mouse embryo fibroblasts and expresses wild-type p53. The Balb/c 3T3 (p53−/−) cell line is a derivative of Balb/c 3T3 cells that produce a p53 transcript with a stop codon at amino acid 173 and does not express a detectable level of p53 [31]. The Balb/c 3T3 (175.1) cell line was derived from the Balb/c 3T3 (p53−/−) line by stable transfection of the cells with a dominant-negative p53 mutant containing histidine to arginine substitution at codon 175 [32]. Both the Balb/c and pancreatic cancer cell lines were maintained in DMEM with 10% fetal bovine serum (FBS) in an atmosphere containing 5% CO2. Proteasome inhibitor MG132 (EMD Biosciences) was dissolved in DMSO and the cells were treated with MG132 at 10 μM [33,34].

Antibodies

All antibodies were purchased from Cell Signaling Technology (Danvers, MA) unless otherwise indicated. These include mouse IgG for α-tubulin (DM1A), V5-Tag (E9HO8), GAPDH (6C5) (Santa Cruz Biotechnology, Santa Cruz, CA), PP2A-C subunit (1D6, EMD Millipore, Burlington, MA), PR55α (2G9, EMD Millipore), p53 (DO1, Santa Cruz Biotechnology), FBXL20 (D-4, Santa Cruz Biotechnology), Ubiquitin antibody (P4D1, Santa Cruz Biotechnology), c-Myc (phospho-S62) (33A1E10, Abcam, Cambridge, UK); rabbit IgG for Ki67 (ab16667, Abcam), p53 (FL-393), PR22A-PR55α Subunit [100C1] and (#49533), c-Myc (D3N8F), c-Myc (phospho-T58), ab85380, FBXL20 (SCRAPPER) (ProSci, Poway, CA), FBXL16 Antibody (ProSci). Secondary antibodies for immunofluorescence studies included Alexa Fluor 594 Donkey Anti-rabbit IgG and Alexa Fluor 488 Donkey Anti-mouse IgG from Thermo Fisher Scientific. Nuclei were visualized by DAPI (Sigma-Aldrich, St. Louis, MO).

Immunoblotting, immunoprecipitation, and protein half-life analysis

Immunoblotting (IB) and immunoprecipitation (IP) were performed as described previously [15,35,36]. For the co-IP studies, PR55α and FBXL20 were immunoprecipitated from 0.6–1 mg protein from the lysates of HPNE cells using anti-PR55α and anti-FBXL20 rabbit antibodies, respectively, and the precipitates were probed for the presence of both PR55α and FBXL20 by immunoblotting with anti-PR55α and anti-FBXL20 mouse antibodies. PR55α and FBXL20 in the cell lysate were measured by immunoblotting as protein loading controls. For analyzing PR55α ubiquitination, PR55α immunoprecipitated from 0.6–1 mg protein lysates were analyzed for PR55α and ubiquitin by Western blot analysis.

To analyze protein half-life, cells were incubated with protein synthesis inhibitor cycloheximide (CHX, dissolved in water) (Sigma-Aldrich) at 15 μg/ml for the indicated times and analyzed for specific protein expression by immunoblotting, as described in our previous study [37]. Specific proteins and loading control (GAPDH or α-Tubulin) on Western blots were
visualized by chemiluminescence exposed to x-ray films, scanned using an EPSON Perfection 4490PHOTO scanner, and quantified with Fiji-ImageJ analytical program (NIH, Bethesda, MD). The levels of specific proteins were normalized with the control protein levels and calculated for half-life times \(t_{1/2} \) by linear regression analysis of log (protein level) against time using the SigmaPlot graphing and data analysis software, as described in our studies [38].

Short interfering RNAs and transfection

The ON-TARGETplus SMARTpool of siRNA duplexes (Dharmacon, Lafayette, CO) for silencing FBXL20 contains four siRNAs targeting multiple sites on the FBXL20 mRNA. The sequences of FBXL20 siRNAs are 5′-GCCCCUGACUGACUUGAUU-3′, 5′-GGAAUUGCAU UCAAGCACUA-3′, 5′-GGGGUGACGCAAAACCA-3′, and 5′-UACCAUAGCAGGGGUGU-3′. For validation, FBXL20 was also knocked down with endoribonuclease-prepared siRNAs (esiRNAs) targeting a region of FBXL20-mRNA (EMU193711, Millipore-Sigma). The sequence for generating the FBXL20 esiRNAs is 5′-CCTGCTACTGCTTGAAGATCTGAACAGACCCACCTGCGTCTTGCT TACGTCAATTAAACAAATCGTCTTCTAAGGCTGAGGGCT CTCAGCTGGTGAGCCATGCTGACGGCCTGACGCTTGACAACTTTA AACAGGGATACAGACACTGGTCTTGGACCTTGACGACGGTT CTCAAGGCGCTTATCTTTAAAGGCTGACACTGACGTAAAGATGA AGCTCTCAAGTACATAGGTGCGACACTGCTCTGCTCTGCTACTT TAAACCTGCAACTTCTGCTTACAAATCAAGAGTAAAGCTTCTATTA CCATATGACGGGGTGCTATAGGTGCGACACTGCTCTGCTCTGCTACTT GGTTGCTCTCCATATCAAGATGCTGCTCCTGCTCTGCTCTGCTACT TGAAGACTGACC-3′. The sequences of the SMART siRNAs pool silencing p53 are 5′-GAAAUUUGGCGUGGGAAGUA-3′, 5′-GUGCACGCGU GGUGUAUU-3′, 5′-GCACUGACAUCCACGCUGU-3′, and 5′- GGAAUAAUAAUCACCCUC-3′. The sequence of the control siRNA is 5′-UAGGCCACUAACAAUCA-3′. Cells were transfected with 100 pmol of siRNA and incubated for 48–72 h before analysis. All cell lines were transfected with DharmaFECT-1 (Thermo Fisher Scientific) as instructed by the manufacturer.

The sequences of shRNAs targeting the human PR55α (PPP2R2A) mRNA are 5′-ATGGCTAGCAGACATGGAG-3′, and 5′-CAACTATCTCAACTAAGCA-3′ and the sequence for the non-silencing Control-shRNA is 5′-ATCTCAGTGGTGGCAGAGTGAAGT-3′ (Dharmacon). Transduction of CD18/HPA1 cells with Control-shRNA and PR55α-shRNAs were done as described in our publication [17].

Immunofluorescence and microscopy

Immunofluorescence and microscopy were performed as described previously [17,35]. Briefly, cells grown on coverslips (#1-thickness) were fixed in 4% paraformaldehyde (PFA) for 20 min, followed by incubation with 0.25% Triton X-100 for 10 min to achieve permeabilization. Samples were then blocked for 30 min using 10% horse serum, 1% bovine serum albumin (BSA), and 0.5% Tween-20 in TBS at ambient temperature. To analyze the co-localization of PR55α with FBXL20, cells were incubated overnight at 4°C in anti-FBXL20 (SCRAPPER) rabbit IgG (1:50 dilution) and anti-PR55α mouse IgG (2G9) (1:200 dilution) in TBS at 0.05% Tween-20. After washing with 1% BSA in TBS, cells were incubated with Alexa Fluor 594 anti-rabbit IgG (1:200 dilution, Cat. #A-21207) and Alexa Fluor 488 anti-mouse IgG (1:200 dilution, Cat. #A-21202) for 1 hr in dark. DAPI staining occurred at a 1:1000 dilution for 5 min. Images were taken with a Zeiss-810 confocal laser-scanning microscope. FBXL20 and PR55α in the nuclei and cytoplasm, as well as their co-localization, were analyzed by Fiji-ImageJ [39–41].

Spheroid culture in soft-agar and immunohistochemistry analysis

As described previously in our studies [17,42], cells were plated at 50k cells/well in 6-well plates in Medium-D growth medium containing 0.35% NuSieve Agarose Soft-agar (FMC Bioproducts, Rockland, ME) and cultured for 3–6 weeks. The medium for HPNE/PR55α cells contained DFOX (1μg/ml) for maintaining ectopic PR55α expression. The Spheroids were collected using cell strippers (Corning, Tewksbury, MA) by centrifugation at 2000-RPM for 2 min, washed with PBS, and fixed in 4% PFA overnight at 4°C. Following fixation, Spheroids were washed with PBS, incubated in 30% sucrose solution for 24–48 h at 4°C, embedded into Histogel (Thermo Fisher, Waltham, MA), and analyzed for Ki67 proliferation marker with ab16667 at 1:200 dilution by immunohistochemistry (IHC) and Hematoxylin Counter Staining as described by the manufacturer. IHC analysis of FBXL20 expression in human pancreatic ductal adenocarcinoma tissue was carried out with the FBXL20 (SCRAPPER) rabbit IgG at 1:400 dilution, as described by the previous studies [15].

RT-PCR analysis

As described in our study [17], total RNA was isolated from the indicated cells using the TRIzol RNA-isolation Reagent (Invitrogen) and analyzed for human PR55α and GAPDH mRNA levels by real-time RT-PCR using the iScript Advanced cDNA Synthesis Kit (Quanta Biosciences) and SsoAdvanced Universal SYBR Green Supermix (Bio-Rad). The PR55α mRNA expression was normalized with GAPDH mRNA levels. The PCR primer sequences for human GAPDH include forward-primer 5′-CCCTCTCCACACCTTTGA-3′ and reverse-primer 5′-ACCCCTTGGCTGTAGCCA-3′. The PCR primer sequences for human PR55α (gene name PPP2R2A) include forward-primer 5′-GCAACAGGAGATAAGGGGTAG-3′ and reverse-primer 5′-TGTTTCTGTCGTTAGGAGTG-3′. The PCR primer sequences for mouse GAPDH include forward-primer 5′-TTCACCATGGCAGATT-3′ and reverse-primer 5′-TGCAAGGTTTCTTCTAGAC-3′. The PCR primer sequences for mouse PPP2R2A include forward-primer 5′-GAGCAGAAAAAGGAGACAGGT-3′ and reverse-primer 5′-ATTCTCCGTGAGCGGTCCT-3′.

Statistical analysis

Student's t-test and one-way ANOVA methods were used for the comparison of experimental groups using SigmaPlot software. Linear regression analysis of log (protein level) against time was used to calculate protein half-life (Figs. 2, 3D,E, and 6D) with SigmaPlot software. The Kaplan-Meier method was used to assess the correlation between FBXL20 mRNA expression and the survival of pancreatic cancer patients (Fig. 7C) using GraphPad Prism-8 software. For all the statistical analyses, P values ≤ 0.05 were considered significant.

Results

Inactivation of p53 function increases the stability of PR55α protein

We tested the effect of p53 function on PR55α protein expression in human normal pancreatic cells (HPNE), which were immortalized by human telomerase, and mouse embryonic BALB/c 3T3 cells. In HPNE cells, PR55α protein expression was always higher in the cells engineered to lack wild-type (wt) p53 function, either by siRNA-knockdown, expressing the viral oncoprotein HPV16-E6 that promotes p53 degradation [43] or expressing the dominant-negative mutant p53 (p53*H172Y) (Fig. 1A–C). In contrast, ectopically expressing HPV16-E7, which promotes the degradation of the pRB tumor suppressor [44], had little effect on PR55α protein level in HPNE
cells (Fig. 1B). As a positive control, the analysis included two pancreatic cancer cell lines that lack p53 function [45], CD18/HPAF expressing the p53R175H mutant, and AsPC-1 harboring p53 frame-shift/TGC→GC resulting in p53-null, both of which showed overexpression of PR55α (Fig. 1B). Consistently, mouse Balb/c 3T3 cells engineered to lack wt-p53 function either by p53 deletion (p53−/−) or expressing the p53R175H mutant also exhibited increased PR55α protein levels (Fig. 1D). Furthermore, RT-PCR analysis showed no significant difference in PR55α mRNA level among the cell lines, irrespective of p53 status (Fig. 1E), suggesting that the regulation of PR55α by p53 occurs at the protein level. As a comparison, we examined the effect of oncogenic mutant KrasG12D expression on PR55α-protein expression in HPNE cells. As shown in Fig. 1F, while expressing HPV16-E6 markedly increased PR55α-protein level in HPNE cells, expressing the KrasG12D mutant had little effect on PR55α-protein levels in the cells.

Subsequently, we tested the effect of proteasome inhibition by MG132 on PR55α-protein expression. As shown in Fig. 2A, MG132 treatment resulted in ~4-fold increase in the level of PR55α protein in p53-proficient HPNE or Balb/c 3T3 cells (p53+/+), whereas it did not affect the already high PR55α level in p53-deficient HPNE or Balb/c 3T3 cells (HPV-E6, p53−/− or p53R175H). We then measured PR55α protein stability in the isogenic HPNE and Balb/c 3T3 cell lines, which differ only in p53 function, using the CHX-chase assay as described in our previous study [17]. The results showed that loss of p53 function in human HPNE cells or mouse Balb/c 3T3 cells resulted in a marked extension of PR55α protein half-life (Fig. 2B,C).

p53-supported FBXL20 negatively regulates the protein-stability of PR55α

Previous studies show that FBXL20 is transcriptionally induced by p53 as part of the DNA damage response, while FBXL16 is shown to bind directly to PR55α [23–25, 28]. Therefore, we compared the effect of p53 function on the protein expression of FBXL16 and FBXL20, both of which are F-box family members serving as the adapters on the SCF E3 ubiquitin ligase complexes [24]. As shown in Fig. 3A,B, inactivation of p53 function by expressing the p53R175H mutant, p53 homologous deletion (p53−/−), or siRNA knockdown led to marked decreases in FBXL20 protein expression in both human and mouse cells. In contrast, the same interventions did not result in a decrease in FBXL16 protein level.

Next, we examined the effect of FBXL20 on PR55α expression with siRNAs. As shown in Fig. 3C, transfection with FBXL20-siRNA significantly reduced the FBXL20 protein level in HPNE/Control cells, which express wild-type p53, and resulted in an approximately 10-fold increase in PR55α protein level. In contrast, transfection of FBXL20-siRNA had little effect on the already low FBXL20 level in HPNE/p53R175H cells, as well as on the high PR55α level in these cells. Furthermore, there was very little difference in the PR55α level between the HPNE/Control cells transfected with FBXL20-siRNAs and the HPNE/p53R175H cells transfected with/without FBXL20-siRNA (lane 2 vs. lanes 3-5).

Subsequently, we assessed the effect of FBXL20 on PR55α protein stability using the CHX-chase method [17]. The result showed that FBXL20-
knockdown by siRNAs extended PR55α protein half-life from ~6 h to ~12 h in both HPNE and Balb/c 3T3 cells (Fig. 3DE). For validation, FBXL20 was also knocked down using esiRNAs (EMU193711, Millipore-Sigma), as described in Materials and Methods [46], and similar results were obtained (data not shown).

Loss of p53 function or FBXL20 expression reduces PR55α-ubiquitination

We analyzed the effect of p53 function on PR55α-ubiquitination in HPNE and Balb/c 3T3 cells. The cells with/without p53 function were incubated with MG132 (10 μM) or 0.1% DMSO (vehicle control) for 6 h to block protein degradation, immunoprecipitated (IP) with anti-PR55α antibody, and analyzed for PR55α-ubiquitination by immunoblotting (IB), as described previously [35]. As shown in Fig. 4A (top panel), the level of PR55α-ubiquitination reduced by 83% in HPNE/p53−/− cells compared to HPNE/Control (p53+/+) cells. The detection was specific, as PR55α-ubiquitination was not present in HPNE/Control cells without inhibition of proteasome activity by MG132 (Fig. 4A, top panel, lane 1). Similarly, the level of PR55α-ubiquitination was reduced by 87% in Balb/c 3T3 (p53−/−) cells relative to Balb/c 3T3 (p53+/+) cells (Fig. 4A, bottom panel).

Next, we examined the effect of FBXL20 expression on PR55α-ubiquitination. For this study, HPNE and Balb/c 3T3 cells were transfected with FBXL20-siRNAs for 3 days and treated with MG132 for 6 h before analyzing PR55α ubiquitination. As shown in Fig. 4B, FBXL20-knockdown resulted in the diminution of PR55α-ubiquitination by 77% and 80% in HPNE and Balb/c 3T3 cells, respectively.

Together, the results in Figs. 3,4 show that either loss of p53 function or decrease of FBXL20 expression diminishes PR55α-ubiquitination. This is linked to an increase in PR55α protein stability. Thus, this data suggests a role of p53/FBXL20 cascade in the promotion of PR55α proteasomal degradation.

FBXL20 interacts with PR55α in vitro and in vivo

We tested the interaction of PR55α and FBXL20 in HPNE cells by reciprocal co-immunoprecipitation (IP), as described previously in our study [17]. Immunoblotting (IB) revealed the presence of both PR55α and FBXL20 in the immunoprecipitates obtained from HPNE lysates with either anti-PR55α or anti-FBXL20 antibody (Fig. 5A), while neither were detected in the control immunoprecipitates obtained with non-immunized IgG.

Next, we analyzed the intracellular co-localization of PR55α and FBXL20 in HPNE cells by immunofluorescence (IF) confocal microscopy, as described in our studies [17,35]. The results in Fig. 5B–D (HPNE/Control) showed that PR55α and FBXL20 were present in both the cytoplasm and nucleus of the cells, with PR55α expression relatively higher in the nucleus. When ectopic PR55α expression was induced by Dox (1 μg/ml) in HPNE cells (HPNE/PR55α), the nuclear-portion of PR55α was significantly augmented (P=0.004) (Fig. 5B–C). A simultaneous increase in the nuclear portion of FBXL20 was also detected in the HPNE/PR55α, although
the increase was slightly below statistical significance (P=0.055) (Fig. 5B and D). Co-localization studies revealed that there was a significant decrease in the colocalization of PR55α and FBXL20 in the PR55α-high cells (HPNE/PR55α) compared to the isogenic PR55α-low cells (HPNE/Control) (Fig. 5E).

Ectopic expression of the p53^{R175H} mutant or PR55α increases the protein stability of c-Myc

c-Myc serves as a master regulator of cellular metabolism and proliferation. Aberrant c-Myc activation stimulates numerous metabolic changes that not only promote oncogenic transformation but also support the malignant phenotypes of cancer cells [11,47,48]. The intracellular level of c-Myc is mainly regulated by its stability via the phosphorylation of its S62 and T58 sites (Fig. 6A). c-Myc is a substrate of PR55α, and dephosphorylation of c-Myc-T58 by the PR55α/PP2A complex prevents c-Myc proteasomal degradation, thus stabilizing c-Myc protein (Fig. 6A) [16]. Alternatively, phosphorylation of c-Myc-S62 also promotes c-Myc stabilization, which is antagonized by a different PP2A regulatory subunit, PR61α [49,50] (Fig. 6A). Therefore, we examined the effects of p53^{R175H} and PR55α on c-Myc phosphorylation at these sites, as well as on c-Myc protein level and stability.

As shown in Fig. 6B, expressing ectopic p53^{R175H} mutant or PR55α in HPNE normal cells resulted in a decrease in c-Myc-T58 phosphorylation by ~84% and ~100%, respectively, as well as an induction in c-Myc protein level by 6.7-fold and 11.1-fold, respectively. For comparison, we analyzed c-Myc-S62 phosphorylation in these cells, as it also regulates c-Myc stability [16]. However, expressing either the ectopic p53^{R175H} or PR55α had little effect on c-Myc-S62 phosphorylation in HPNE cells (Fig. 6B). To verify the effect of PR55α on c-Myc, PR55α was knocked down by two different siRNAs in CD18/HPAF pancreatic cancer cells, which express the p53^{R175H} mutant [51–53]. As shown in Fig. 6C, knockdown of PR55α in CD18/HPAF cells resulted in induction in c-Myc-T58 phosphorylation with a concomitant decrease in total c-Myc protein levels.

Subsequently, we assessed the effects of p53^{R175H} or PR55α on c-Myc protein stability using the CHX-chase assay [17]. The results showed that ectopic expression of p53^{R175H} mutant and PR55α in HPNE cells resulted in an approximately 3-fold and 4-fold increase in c-Myc protein half-life, respectively (Fig. 6D).

We have previously demonstrated that PR55α overexpression promotes anchorage-independent colony formation of HPNE cells [17]. Since p53^{R175H} and PR55α increase c-Myc stability and c-Myc promotes transformation-associated proliferation [47], we assessed the effect of p53^{R175H} and PR55α on anchorage-independent proliferation in HPNE cells. HPNE/p53^{R175H}, HPNE/PR55α, and HPNE/Control cells were
plated in soft-agar in growth medium for 3-weeks and quantified for the number of cells positive in Ki67 expression, a hallmark for cell proliferation [54]. Immunohistochemistry analysis (IHC) revealed a 4-fold and 7-fold increase in the number of Ki67-positive cells in the spheroids formed by HPNE/PR55α and HPNE/PR55α cells, respectively, compared to HPNE/Control cells (Fig. 6E).

FBXL20 expression significantly decreases in pancreatic cancer cell lines/tissues and negatively associates with poor survival of pancreatic cancer patients

We have previously shown that the PR55α protein is overexpressed in pancreatic cancer and high levels of PR55α are associated with poor patient survival [15]. Thus, we analyzed FBXL20 protein expression in panels of pancreatic normal and cancer cell lines and tissues. As shown in Fig. 7A, FBXL20 was detected at much lower levels in the pancreatic cancer cell lines, which also express the mutant p53, as compared to HPNE normal control [51–53]. Consistently, both PR55α and c-Myc protein levels were much higher in the pancreatic cancer cell lines relative to HPNE normal cells, along with much lower levels of c-Myc-T58 phosphorylation detected in the pancreatic cell lines compared to HPNE control (Fig. 7A). These results together with the data in Fig. 6 suggest an inverse functional relationship between the p53/FBXL20 axis and the PR55α/c-Myc cascade. The studies also reveal a positive correction of p53 mutations with the diminution of the FBXL20 expression and with the increase in PR55α and c-Myc protein levels.
Next, we analyzed FBXL20 mRNA expression in human normal and malignant pancreatic tissues from the GENT2 database (GPI570 platform) (data set: HG-U133 Plus 2) [55]. As shown in Fig. 7B and Supplementary Table S1, pancreatic cancer tissues expressed significantly lower levels of FBXL20 mRNA relative to normal pancreatic tissues (P = < 0.001). We then analyzed the relationship of FBXL20 expression and the survival of pancreatic cancer patients with the RNA-sequencing data available from the Human Protein Atlas database [56]. The results showed that low FBXL20 mRNA levels were associated with poor survival of pancreatic cancer patients, as determined by Kaplan-Meier analysis (Fig. 7C,D and Supplementary Table S2).

In summary, the studies in this report delineate a novel mechanism by which p53 and its gene target FBXL20 negatively regulates PR55α protein stability through ubiquitin-mediated proteasomal degradation. The data also reveal a positive correlation of p53 mutations with the decrease in FBXL20 expression and induction of PR55α and c-Myc protein levels.

Discussion

PR55α/PP2A complex positively regulates several core oncogenic pathways including the ERK, Wnt/β-catenin, c-Myc, and YAP pathways [12,15,17,50,57]. Our previous studies reveal that PR55α protein level progressively increases during pancreatic cancer development and knockdown of PR55α by shRNA abrogates both tumorigenicity and metastasis of pancreatic cancer cells in mouse models [15]. Since oncogenic Kras activation and loss of p53 tumor suppressor due to mutations are the key drivers of pancreatic cancer [58], we examined their effects on PR55α expression in both human and mouse cells. The results of these studies delineate a novel role of p53 and its gene target FBXL20 in the negative regulation of PR55α protein stability.

FBXL20 is a transcriptional target of p53 in DNA damage response [25]. The results of this report reveal that FBXL20 can act as an effector for the p53 function in the suppression of PR55α protein stability. Thus, loss of FBXL20 expression phenocopies the loss of p53 function, reducing PR55α-ubiquitination and stabilizes PR55α protein, while the two together do not produce additive effects (see Figs. 1–4). Consistently, biochemical studies reveal a physical interaction of PR55α and FBXL20 in vitro and in vivo (See Fig. 5), which provides further evidence supporting PR55α as a substrate of FBXL20, which is a recognizing component of the SCF-E3 ubiquitin ligase complexes that promote protein degradation [23,24]. Thus, these results suggest a novel mechanism of PR55α inhibition that is based on the p53-controlled ubiquitin-proteasome degradation machinery. Future studies are needed to identify the ubiquitination sites and degrons targeted by the p53/FBXL20 axis in the PR55α protein for this regulation.
Although PR55α and FBXL20 are present in both the cytoplasm and nuclei, PR55α expression is relatively higher in the nuclei (see Fig. 5). Ectopic PR55α expression significantly increases the nuclear portion of PR55α expression, which coincidentally associates with a reduced co-localization of PR55α with FBXL20 (see Fig. 5C–E). Since several PR55α-promoted oncoproteins (e.g. β-catenin, c-Myc, YAP) are transcription factors in the nuclei [12,15,17,50,57], inhibition of PR55α by the p53/FBXL20 axis is anticipated to suppress these oncoproteins. Indeed, our previous studies show that PR55α supports the activation of β-catenin and YAP [15,17], and current studies demonstrate that PR55α promotes c-Myc protein stability, which is associated with concomitant dephosphorylation of c-Myc-T58, a substrate of PR55α (see Fig. 6). Thus, these results implicate the inhibition of PR55α as a new tumor suppressor function of p53.

Loss of p53 tumor suppressor is the most frequent event in human cancers. Deficiency in p53 function not only promotes malignant transformation, but also facilitates metastatic diseases of many solid tumor types including those in the breast, lung, colorectal, and pancreas [59]. Inactivation of p53 is essential for pancreatic cancer to progress into invasive and metastatic diseases [19,21,22]. The studies in this report demonstrate a novel function of p53 in the inhibition of PR55α expression, which supports several core oncogenic pathways, including YAP, β-catenin, ERK, and c-Myc that are critical for the oncogenesis and progression of pancreatic cancer [12,15,17,50,57,58]. Accordingly, our previous studies demonstrate that PR55α is required for both in vivo tumorigenicity and metastasis of pancreatic cancer cells [15]. Consistent with the observed correlation between high-PR55α levels with poor survival of pancreatic cancer patients [15], results in this report show that pancreatic cancer tissues express significantly lower levels of FBXL20 than normal tissues, and low-FBXL20 levels correlate with the poor survival of pancreatic cancer patients (See Fig. 7). Collectively, the studies in this report reveal a novel tumor suppression mechanism based on the p53/FBXL20 axis in the negative regulation of PR55α protein stability and subsequent PR55α-promoted c-Myc oncogenic pathway.
Fig. 7. FBXL20 levels are significantly lower in pancreatic cancer cells/tissues compared to normal cells/tissues and negatively associate with the survival of pancreatic cancer patients. (A) The indicated pancreatic normal and cancer cell lines were analyzed for the levels of FBXL20, PR55α, c-Myc, c-Myc-T58, and GAPDH by Western blot analyses. The mutational status of p53 in the cell lines is described in the table [45]. (B) Box plot shows FBXL20 mRNA expression data for pancreatic cancer (n = 262) and normal tissues (n = 92) from the GENT2 database GPL570 platform (data set: HG-U133 Plus 2) [55]. (C) High levels of FBXL20 mRNA correlate with better survival of pancreatic cancer patients, as determined by Kaplan-Meier survival analysis. mRNA sequencing data of the pancreatic cancer specimens retrieved from the Human Protein Atlas data set [61] was plotted at high (n = 101) and low (n = 61) FBXL20 expression in association with patient survival. The mRNA level (FPKM) > 2.3 was considered a high level of FBXL20 expression. Red and blue lines denote the cases expressing high and low FBXL20, respectively. (D) Representative images show high (left panels) and low (right panels) expression of FBXL20 by IHC. Arrows point to pancreatic ducts (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).

Funding

This work was supported, in part, by NIH/NIGMS R01GM143329, NIH/NCI R01CA206444, U.S. Army/USAMRAA/CDMRP W81XWH21110700, Nebraska/DHHS (2022-59), Nebraska/DHHS (2022-42), University of Nebraska Collaboration Initiative Program Award (No number), a pilot project award by the Great Plains IDeA-CTR-Pilot Projects Program 5U54GM115458, and a pilot project award by the Nebraska Center for Cellular Signaling P30GM106397.

Declaration of Competing Interest

The authors declare no conflict of interest.

CRediT authorship contribution statement

Lepakhe S.V. Madduri: Investigation, Formal analysis, Writing – original draft. Nichole D. Brandquist: Investigation, Formal analysis, Writing – original draft. Chitra Palanivel: Conceptualization, Validation. Geoffrey A. Talmon: Formal analysis. Michael J. Baine: Software, Writing – review & editing. Sumin Zhou: Software, Writing – review & editing. Charles A. Enke: Software, Writing – review & editing. Keith R. Johnson: Data curation, Writing – review & editing. Michel M. Ouellette: Visualization, Software, Formal analysis. Ying Yan: Visualization, Supervision, Writing – original draft.

Acknowledgments

We thank James Talaska and Janice Taylor for assistance with confocal microscopy [UNMC Microscope Core supported by NIGMS/P30GM106397], Dr. Robert Lewis for c-Myc-T58 and c-Myc-S62 antibodies, and Drs. Parthasarathy Seshacharyulu and Surinder Batra for the RT-PCR analysis of PR55α-mRNA expression.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.neo.2021.10.002.

References

[1] Eichhorn PJ, Creighton MP, Bernards R. Protein phosphatase 2A regulatory subunits and cancer. Biochim Biophys Acta 2009;1795:1–15.
[2] Seshacharyulu P, Pandey P, Datta K, Batra SK. Phosphatase: PP2A structural importance, regulation and its aberrant expression in cancer. Cancer Lett 2013;335:9–18.
[3] Janssens V, Longin S, Goris J. PP2A holoenzyme assembly: in cauda venenum (the sting is in the tail). Trends Biochem Sci 2008;33:113–21.
[4] Ruvolo PP. The broken “Off” switch in cancer signalling: PP2A as a regulator of tumorigenesis, drug resistance, and immune surveillance. BBA Clin 2016;6:87–99.
[5] Bikel I, Montano X, Agha ME, Brown M, McCormack M, Bolrax J, Livingston DM. SV40 small t antigen enhances the transformation activity of limiting concentrations of SV40 large T antigen. Cell 1987;48:321–30.
Pallas DC, Shahrik IK, Martin BL, Jaspers S, Miller TB, Brautigan DL, Roberts TM. Polymy small and middle T antigens and SV40 small t antigen form stable complexes with protein phosphatase 2A. Cell 1990;60:167–76.

Skoczylas C, Fahrbach KM, Rundell K. Cellular targets of the SV40 small t antigen in human cell transformation. Cell Cycle 2004;3:606–10.

Sangodkar J, Farrington CC, McClintik K, Galsky MD, Kastrinsky DB, Narla G. All roads lead to PP2A: exploiting the therapeutic potential of this phosphatase. FERs 2016;283:1004–24.

Balmanno K, Cook SJ. Tumour cell survival signalling by the ERK1/2 pathway. Cell Death Differ 2008;15:368–77.

Zhang Y, Wang X. Targeting the Wnt/β-catenin signaling pathway in cancer. J Hematol Oncol 2020;13:165.

Stine EJ, Walton JE, Altman BJ, Hsieh AL, Dang CV. MYC, Metabolism, and Cancer. Cancer Discov 2015;5:1024–39.

Adams DG, Coffee RL, Zhang H, Pelech S, Strack S, Wadzinski BE. Positive regulation of Raf1-MEK1/2-ERK1/2 signaling by protein serine/threonine phosphatase 2A. Holoenzymes. J Biol Chem 2005;280:42644–54.

Ory S, Zhou M, Conrads TP, Veenstra TD, Morrison DK. Protein phosphatase 2A positively regulates Ras signaling by dephosphorylating KSR1 and Raf-1 on critical 14-3-3 binding sites.Curr Biol 2003;13:1356–64.

MacDonald BT, Tamai K, He X. Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev Cell 2009;17:9–26.

Hein AL, Seshacharyulu P, Rachagani S, Sheinin YM, Ouellette MM, Ponunssamy MP, Mumbay MC, Batra SK, Yan Y. PR55α subunit of protein phosphatase 2A supports the tumorigenic and metastatic potential of pancreatic cancer cells by sustaining hyperactive oncogenic signaling. Cancer Res 2016;76:2243–53.

Farrell AS, Sears RC. MYC degradation. Cold Spring Harb Perspect Med 2014;4:a014365.

Hein AL, Brandquist ND, Ouellette CY, Seshacharyula P, Enke CA, Ouellette MM, Batra SK, Yan Y. PR55α regulatory subunit of PP2A inhibits the MOB1/LATS cascade and activates YAP in pancreatic cancer cells. Oncogene 2019;8:63.

Kastenhuber ER, Lowe SW. Putting p53 in context. Cell 2017;170:1062–78.

Gnonsi A, Licchetta A, Scarpa A, Azzariti A, Brunetti AE, Simone G, Nardulli P, Santini D, Aieta M, Delcuratolo S, et al. Carcinogenesis of pancreatic adenocarcinoma: precursor lesions. Int J Mol Sci 2013;14:19731–62.

Mantovani F, Collavini L, Del Sal G. Mutant p53 as a guardian of the cancer cell. Cell Death Differ 2019;26:199–212.

Makohon-Moore A, Iacobuzio-Donahue CA. Pancreatic cancer biology and genetics from an evolutionary perspective. Nat Rev Cancer 2016;16:553–65.

Norton F, Hahn SA, Real FX. A genetic roadmap of pancreatic cancer: still evolving. Gav 2017;66:2170.

Kenzelmann Brox D, Spano Mello S, Bieging KT, Jiang D, Dusek RL, Brady CA, Sidow A, Attardi LD. Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. Genes Dev 2013;27:1016–31.

Yamimoto K, Yamauchi Y, Nakayama KI. F-box proteins and cancer. Cancers (Basel) 2020;12:1249.

Xiao J, Zhang T, Xu D, Wang H, Cai Y, Jia T, Liu M, Jin M, Wu K, Yuan J. FBXL20-mediated Vps34 ubiquitination as a p53 controlled checkpoint in regulating autophagy and receptor degradation. Genes Des 2015;29:184–96.

Wong PM, Feng Y, Wang J, Shi R, Jiang X. Regulation of autophagy by coordinated action of mTORC1 and protein phosphatase 2A. Nat Commun 2015;6:8048.

Reid Michael A, Wang W-I, Rosales Kimberly R, Welliver Meng X, Pan M, Kong M. The B55ε subunit of PP2A drives a p53-dependent metabolic adaptation to glutamine deprivation. Mol Cell 2013;50:200–11.

Honarpour N, Rose CM, Brumbaugh J, Anderson J, Graham RL, Sweroski MJ, Hess S, Coon JJ, Deshaies R. F-box protein FBXL16 binds PP2A-B55α and regulates differentiation of embryonic stem cells along the FLK1+ lineage. Mol Cell Proteom 2014;13:780–91.

Lee KM, Nguyen C, Ulrich AB, Pour PM, Ouellette MM. Immortalization with telomerase of the Nestin-positive cells of the human pancreas. Biochem Biophys Res Commun 2003;301:1038–44.

Campbell PM, Groehler AL, Lee KM, Ouellette MM, Kharaz V, Der CJ. K-Ras promotes growth transformation and invasion of immortalized human pancreatic cells by Raf and phosphatidylinositol 3-kinase signaling. Cancer Res 2007;67:2098–106.

Harvey DM, Levine AJ. p53 alteration is a common event in the spontaneous immortalization of primary BALB/c murine embryo fibroblasts. Genes Dev 1991;5:2375–85.

Nigro JM, Baker SJ, Preisinger AC, Jessup JM, Hosteller R, Cleary K, Signer SH, Davidson N, Baylin S, Devilee P, et al. Mutations in the p53 gene occur in diverse human tumour types. Nature 1989;342:705–8.

Choudhury AD, Xu H, Baer R. Ubiquitination and proteasomal degradation of the BRCA1 tumor suppressor is regulated during cell cycle progression. J Biol Chem 2004;279:33909–18.

Chen F, Zhang Z, Bower J, Lu Y, Leonard SS, Ding M, Castranova V, Piwnica-Worms H, Shi X. Arsenite-induced Cdc25C degradation is through the KEN-box and ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A 2002;99:1990–5.

Yan Y, Black CP, Cao PT, Haferblieb JL, Kolb RH, Spiess KR, Ristow AM, Cowan KH. Gamma-irradiation-induced DNA damage checkpoint activation involves feedback regulation between extracellular signal-regulated kinase 1/2 and BRCA1. Cancer Res 2008;68:5113–21.

Yan Y, Cao PT, Greer PM, Nagengast ES, Kolb RH, Mumbay MC, Cowan KH. Protein phosphatase 2A has an essential role in the activation of gamma-irradiation-induced G2/M checkpoint response. Oncogene 2010;29:4317–29.

Yan Y, Shay JW, Wright WE, Mumbay MC. Inhibition of protein phosphatase activity induces p53-dependent apoptosis in the absence of p53 transactivation. J Biol Chem 1997;272:15220–6.

Arns JL, Hein AL, Taylor MA, Palermo NY, Contreras JL, Sonawane YA, Wähl AO, Ouellette MM, Natarajan A, Yan Y. Discovery and characterization of small molecule Ral1 inhibitors. Oncarget 2017;8:34586–600.

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods 2012;9:676–82.

Thomsen R, Christensen MH. MollDock: a new technique for high-accuracy molecular docking. J Mol Cell Sci 2006;49:3315–21.

Xie S, Bahl K, Reinecke JB, Hammond GRV, Naslavsky N, Caplan S. The endocytic recycling compartment maintains cargo segregation acquired upon exit from the sorting endosome. Mol Biol Cell 2016;27:108–26.

Batra SK, Castelino-Prabhu S, Wilksrand CJ, Zhu X, Humphrey PA, Friedman HS, Bigner DD. Epidermal growth factor ligand-independent, unregulated, cell-transforming potential of a naturally occurring human mutant EGFRIVIII gene. Cell Growth Differ 1995;6:1251–9.

Foster SA, Demers GW, Erscheid BG, Galloway DA. The ability of human papillomavirus E6 proteins to target p53 for degradation in vivo correlates with their ability to abrogate actinomycin D-induced growth arrest. J Virol 1994;68:5698–705.

Boyer SN, Wizer DE, Band V. E7 protein of human papilloma virus-16 induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway. Cancer Res 1996;56:4620–4.

Berrope G, Schaeffer J, Peinado MA, Real FX, Peruchó M. Comparative analysis of mutations in the p53 and K-ras genes in pancreatic cancer. Int J Cancer 1994;58:185–91.

Kittler R, Surendranath V, Heninger AK, Slabicki M, Theis M, Putz G, Franke K, Caldarelli A, Gruber H, Kožák K, et al. Genome-wide resources of endoribonuclease-prepared short interfering RNAs for specific loss-of-function studies. Nat Methods 2007;4:337–44.

Miller DM, Thomas SD, Islam A, Muench D, Sedoris K. c-Myc and cancer metabolism. Clin Cancer Res Off J Am Soc Cancer Res 2012;18:5546–53.

McAndley J, DiFeo A. The molecular ‘Myc-animus’ behind Myc-driven tumorigenesis and the relevant Myc-directed therapeutics. Int J Mol Sci 2020;21:9486.
[49] Sears RC. The life cycle of C-myc: from synthesis to degradation. Cell Cycle 2004;3:1133–7.

[50] Zhang L, Zhou H, Li X, Vartuli RL, Rowe M, Xing Y, Rudra P, Ghosh D, Zhao R, Ford HL. Eya3 partners with PP2A to induce c-Myc stabilization and tumor progression. Nat Commun 2018;9:1047.

[51] Loukopoulos P, Kanetaka K, Takamura M, Shibata T, Sakamoto M, Hirohashi S. Orthotopic transplantation models of pancreatic adenocarcinoma derived from cell lines and primary tumors and displaying varying metastatic activity. Pancreas 2004;29:193–203.

[52] Moore PS, Sipos B, Orlandini S, Sorio C, Real FX, Lemoine NR, Gress T, Bassi C, Klöppel G, Kalthoff H, et al. Genetic profile of 22 pancreatic carcinoma cell lines. Virchows Archiv 2001;439:798–802.

[53] Deer EL, Gonzalez-Hernandez J, Coursen JD, Shea JE, Ngatia J, Scaife CL, Firpo MA, Mulvihill SJ. Phenotype and genotype of pancreatic cancer cell lines. Pancreas 2010;39:425–35.

[54] Klauschen F, Wiernert S, Schmitt WD, Loibl S, Gerber B, Blohmer JU, Huober J, Rüdiger T, Erbrößer E, Mehta K, et al. Standardized Ki67 diagnostics using automated scoring-clinical validation in the GeparTrio breast cancer study. Clin Cancer Res 2015;21:3651–7.

[55] Park SJ, Yoon BH, Kim SK, Kim SY. GENT2: an updated gene expression database for normal and tumor tissues. BMC Med Genom 2019;12:101.

[56] Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson A, Sjostedt E, Asplund A, et al. Proteomics. Tissue-based map of the human proteome. Science 2015;347:1260419.

[57] Zhang W, Yang J, Liu Y, Chen X, Yu T, Jia J, Liu C. PR55α, a regulatory subunit of PP2A, specifically regulates PP2A-mediated β-Catenin Dephosphorylation. J Biol Chem 2009;284:22649–56.

[58] Macgregor-Das AM, Iacobuzio-Donahue CA. Molecular pathways in pancreatic carcinogenesis. J Surg Oncol 2013;107:8–14.

[59] Tang Q, Su Z, Gu W, Rustgi AK. Mutant p53 on the path to metastasis. Trends Cancer 2020;6:62–73.

[60] Gregory MA, Qi Y, Hann SR. Phosphorylation by glycogen synthase kinase-3 controls c-myc proteolysis and subnuclear localization. J Biol Chem 2003;278:51606–12.

[61] Uhlen M, Zhang C, Lee S, Sjostedt E, Fagerberg L, Bidkhori G, Benfeitas R, Arif M, Liu Z, Edfors F, et al. A pathology atlas of the human cancer transcriptome. Science 2017;357:eaan2507. doi:10.1126/science.aan2507.