Review Article

Ethnopharmacology, Phytochemistry and Pharmacological Properties of Cortex Phellodendri Chinensis: A Comprehensive Review

Jun-ling Ren¹, Ai-hua Zhang¹, Ling Kong¹ and Xi-jun Wang¹2*

¹National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning Guangxi, China
²National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacology, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China

ABSTRACT

Ethnopharmacological Relevance: Cortex Phellodendri Chinensis (CPC), a traditional Chinese medicine known as “HuangBai” in China, are being widely employed as its health benefits. CPC has the function of clearing heat and expelling dampness, purging fire and removing toxin, detumescencing and removing necrotic tissue, which have the treatment for a variety of diseases.

Aim of The Study: The present review is intended to summarize the current researches on the phytochemistry, pharmacological significances and medicinal uses of CPC, hoping to provide reference and scientific basis for the research of bioactive ingredients, quality markers of CPC, as well as further development and utilization in treatment of human diseases with CPC.

Materials and Methods: Extensive search of various documents and electronic databases such as Pubmed, Royal Society of Chemistry, Science Direct, Springer, Web of Science, and Wiley, etc., were done to obtain data. Other online academic libraries, e.g. Google Scholars, Scopus and national pharmacology literature were also been employed to learn more information about CPC. Additional information was derived from herbal classic books, Chinese pharmacopoeia, Postgraduate theses, China national knowledge internet, etc.

Results: The comprehensive analysis of the electronic database and literatures demonstrated that CPC is a valuable herbal medicine with multiple pharmacological effects. Phytochemical and pharmacological analysis indicated alkaloids are the major bioactive ingredients in CPC. However, there are no reports on the research of quality markers of CPC, which means in a short time, there will emerge many studies to fill this gap. Under the guidance of traditional Chinese medicines theory, CPC is usually combined with other traditional Chinese medicines into prescriptions for various clinical use.

Conclusions: This review summarized the results from current researches about the basic characteristics of CPC, such as bioactive constituents, pharmacological effect and mechanism of action, which are still being studied and explored in order to realize the optimal medical practice. Meanwhile, it points out the existed problems of the current researches of CPC and puts forward some suggestions for the future research of CPC.

Introduction

Cortex Phellodendri Chinensis (CPC), a famous herbal medicine, is the Phellodendron chinense Schneid.of Rutaceae family or the drying bark of Phellodendronamurense Rupr., which widespread in the world. The property of CPC was bitter and cold, moreover, it had the function of clearing away heat, reducing swelling and relieving pain. CPC usually grows in the mountains, riverside, streams and forests. It also widely distributed in China and other Asian regions [1]. Phellodendron chinense cortex is often called “Chuan HuangBai”, and the main producing areas

© 2020 Xi-jun Wang. Hosting by Science Repository. All rights reserved.
http://dx.doi.org/10.31487/j.AJMC.2020.01.02
are Sichuan, Guizhou, Hubei, Yunnan, Shaanxi, and Guangxi province in China. *Phellodendri amurensis cortex* is usually named as “Guan HuangBai”, and Liaoning, Jilin, Heilongjiang, Hebei province, and Inner Mongolia are the main producing areas (Figure 1).

![Figure 1: The major production areas of Cortex Phellodendri Chinensis in China.](image)

The blue font represents the main producing areas of “Chuan Huang Bai (CHB)”. The red font represents the main producing areas of “Guan Huang Bai (GHB)”

The main effective components of CPC are alkaloids, and significant differences in alkaloid species and components existed between *Phellodendri chinense cortex* and *Phellodendri amurensis cortex*. The main components of *Phellodendri chinense cortex* are berberine and phellodendrine, while berberine and palmatine are the main constituents in *Phellodendri amurensis cortex*, moreover, the berberine content in *Phellodendri chinense cortex* is much higher than that in *Phellodendri amurensis cortex* [2-4]. Although the 2005 edition of *Pharmacopoeia of the People's Republic of China* divided CPC into two kinds of medicinal materials, the description function of “Chuan Huang Bai” and “Guan Huang Bai” are the same.

With Yoyo Tu won the 2015 Nobel Prize in medicine, the researches on herbal medicine has gradually increased. CPC was first recorded as high grade in *Shen Nong Ben Cao Jing*, originally known as “Bo Mu”, having a wide range of clinical effects, such as anti-inflammatory anti-cancer anti-bacterial immunosuppression etc. [5-8]. There have been many studies on the chemical compositions and pharmacological activities of CPC, the medicinal herbs itself and its derived formulas have been widely recognized and used in clinical applications, such as Huanglian Jiedu Decotion (HLJDD), which is not only widely used in China, but also in Japan [9].

In view of the plentiful pharmacological activities of CPC, it is believed that the discovery and clinical application of new drugs based on CPC will have a far-reaching impact on human health through future studies. After consulting literatures, there were no relatively comprehensive reviews on CPC. In the present review, we exhibit a comprehensive overview on the current state of CPC’s medicinal properties, phytochemical composition, pharmacological effects, and its participation in clinical commonly used prescription, both highlighting the potential medicinal benefits of CPC which laying a scientific foundation for the wide application of CPC in clinical practice in future, and assessing the deficiencies of current researches and providing the direction for future CPC studies.

Phytochemical Constituents

With the earliest began in 1926, the Japanese scholar isolated berberine and palmatine from the Japanese production of *Phellodendri amurensis cortex*, hereafter, other chemical composition of CPC has been reported consecutively of which mainly include alkaloids, limonoids, flavonoids and so on (Table 1). Other chemical constituents such as lactones also enrich the diversity of chemical constituents of CPC. It is convinced that with the continuous progress of analytical techniques, more components will be detected and identified. The more components are identified, the research of CPC will be more thorough.

Category	Chemical compound	References
Alkaloids		
	Protoberberines	
	Berberine 1	[1]
	Berberastine 2	[81]
	Palmatine 3	[82]
	Jatrorrhizine 4	[82]
	Phellodendrine 5	[82]
	Govadine 6	[83]
	Tetrahydrojatrorrhizine 7	[82]
	Demethyleneberberine 8	[23]
	Tetrahydroberberine 9	[84]
	Thalifendine 10	[85]
	Columbamine 11	[86]
	Epiberberine 12	[86]
	13-Methoxyjatrorrhizine 13	[82]
Chemical Name	Reference	
---	-----------	
11-Hydroxypalmatine	14 [82]	
13-Hydroxypalmatine	15 [82]	
5,8,13,13a-Tetrahydro-2,9,10,11-tetrahydroxy-3-methoxy-7-methyl-6H-dibenzo[a,g]quinolizinium	16 [82]	
N-Methyltetrahydropalmatine	17 [82]	
Tetrahydropalmatine	18 [82]	
8-Oxoberberine	19 [82]	
8-Oxoepiberberine	20 [82]	
8-Oxopalmatine	21 [82]	
Aporphine		
Magnoflorine	22 [82]	
Magnoflorine isomer	23 [86]	
(+)-N-methylcorydine	24 [86]	
Xanthoplanine	25 [86]	
Menisperine	26 [82]	
N-methylphoebine	27 [86]	
Thalphpine	28 [85]	
Furoquinoline		
Dictamnine	29 [82]	
γ-fagarine	30 [82]	
Skimmianine	31 [87]	
Haplopine	32 [88]	
4-methoxy-1-methylquinolin-2(1H)-one	33 [89]	
Isoplatydesmine	34 [90]	
Canthinine		
Canthin-6-one	35 [1]	
Indolopyridoquinazoline		
Rutacarpine	36 [91]	
7-hydroxyrutacarpine	37 [91]	
7,8-dehydrotutacarpine	38 [91]	
Other		
Candicine	39 [86]	
N-methylhigenamine-7-O-β-D-glucopyranoside	40 [86]	
Litcubine	41 [86]	
Noroxyhydrastinine	42 [1]	
Tetrahydroreticuline	43 [86]	
Magnocurarine	44 [82]	
Lotusine	45 [86]	
(-)-Oblongine	46 [86]	
Evodiamine	47 [82]	
Dihydrocyclobuxine D	48 [82]	
N-Methylflindersine	49 [82]	
Bis-[4-(dimethylamino)phenyl]methanone	50 [82]	
4-Dimethylamino-4'-isopropylbenzophenone	51 [82]	
3,4-Dihydro-1-[(4-hydroxyphenyl)methyl]-7-methoxy-2-methyl-8-isoquinolinol	52 [82]	
3,4-Dihydro-1-[(4-hydroxyphenyl)methyl]-7-methoxy-2-methyl-6-isoquinolinol	53 [82]	
Limonoids		
Obaculactone	54 [89]	
12α-Hydroxylimonin	55 [89]	
Limonexic acid	56 [92]	
Compounds	References	
---	------------	
Isolimonexic acid 57	[93]	
Isolimonexic acid methyl ether 58	[94]	
Obacunone	[89]	
Obacunonic acid 60	[97]	
Nomilin 61	[97]	
Kihadanin B 62	[93]	
Kihadalactone A 63	[95]	
Kihadalactone B 64	[95]	
Triterpenoids		
Cneorin-NP 36 65	[96]	
Niloticin 66	[96]	
Niloticin acetate 67	[96]	
Dihydroruloticin 68	[96]	
Dihydrorucloticin 69	[97]	
Hispidol-B 70	[96]	
Melianone 71	[98]	
24-methylenecycloartanol 72	[97]	
[(21R,23R)epoxy-21α-ethoxy-24-hydroxy]tirucalla-7-en-3-one 73	[99]	
Fridelin 74	[97]	
[(21S,23R) epoxy-24-hydroxy-21β,25-diethoxy]tirucalla-7-en-3-one 75	[99]	
[(21R,23R) epoxy-24-hydroxy-21α,25-diethoxy]tirucalla-7-en-3-one 76	[99]	
Toonaclilatin K 77	[100]	
(21R,23R)-epoxy-21R-ethoxy-24S,25	[100]	
-dihydroxyapothirucalla-7-en-3-one 78		
Lignans		
(+)-Syringaresinol-4,4′-bis-O-β-D-glucoside 79	[101]	
(±)-Lyoniressinol 80	[101]	
(±)-5,5′-Dimethoxyariciresinol4′-O-β-D-glucoside 81	[101]	
Flavonoids		
Phellodenols D 82	[102]	
Phellodenols E 83	[102]	
Phellodensin G 84	[102]	
Phellamurin 85	[85]	
Armuresin 86	[85]	
Dihydropelloside 87	[85]	
Phellolside 88	[85]	
Noricarise 89	[85]	
Phellavin 90	[85]	
Hyperoside 91	[85]	
Dihydrokaepferol 92	[97]	
Phellochinin A 93	[97]	
Phenol derivatives		
Amurenlactone A 94	[103]	
Amurenamide A 95	[103]	
Coniferin 96	[86]	
Ferulic acid 97	[86]	
Cinnamylate 98	[104]	
Methyl 3-O-feruloyl-quinate 99	[104]	
Cyclohexanecarboxylic acid 100	[104]	
Syringaresinol di-O-β-D-glucopyranoside 101	[86]	
Phellolactone 102	[97]	
Vanilloloside 103	[86]	
3-O-feruloylquinicacid 104	[101]	
I Phytochemical Constituents and Corresponding Extraction Method of Alkaloids

i Phytochemical Constituents of Alkaloids

Many studies have reported the alkaloids are the active constituents of CPC which demonstrate a variety of biological and pharmacological

activities, including antimicrobial antimalarial and anti-diarrhea etc. [10-12]. These alkaloids mainly include protoberberine, aporphine, furoquinoline, canthinone, indolopyridoquinazoline, etc. The structures of these components were shown in (Figures 2 & 3).

![Figure 2: The structures of protoberberines from CPC.](image-url)

a:5,8,13,13a-Tetrahydro-2,9,10,11-tetrahydroxy-3-methoxy-7-methyl-6H-dibenzo[a,g]quinolizinium (16).
Ethnopharmacology, Phytochemistry and Pharmacological Properties of Cortex Phellodendri Chinensis: A Comprehensive Review

Figure 3: The structures of aporphines, furoquinolines, canthinone, indolopyridoquinazolines, and other alkaloids from CPC. A) The structures of aporphines from CPC, B) The structures of furoquinolines from CPC, C) The structures of canthinone and indolopyridoquinazolines from CPC, D) The structures of other alkaloids from CPC.

ii) Extraction Method of Alkaloids

Alkaloids can be extracted from CPC by multiple extraction techniques and solvents. Traditional technology used for extraction is liquid-liquid extraction, and the solvent is mixed reagents, such as different proportions of water and methanol, water and ethanol. With the progress of technology, substantial innovative methods for alkaloids extracting were emerged, and its extraction effect was greatly improved. Zhang et al. developed a simple poly ether ether ketone (PEEK) tube-base solid phase microextraction method for the extraction alkaloids in CPC [13]. This proposed method functionalized the chemically resistant surface of the PEEK tube and synthesized the poly acrylamide-ethylene glycol dimethacrylate inside the tube, and chemically bonded together with the surface. It showed the detection sensitivity was increased by about 400 folds, and also suitable for the extraction of complex samples.

Ionic liquids is a novel type of solvent, characterized by all the liquid composed of ions with the possibility of adjusting the solvation properties over a very wide range. Wang et al. developed a simple poly ether ether ketone (PEEK) tube-base solid phase microextraction method for the extraction alkaloids in CPC [13]. This proposed method functionalized the chemically resistant surface of the PEEK tube and synthesized the poly acrylamide-ethylene glycol dimethacrylate inside the tube, and chemically bonded together with the surface. It showed the detection sensitivity was increased by about 400 folds, and also suitable for the extraction of complex samples.

Ionic liquids is a novel type of solvent, characterized by all the liquid composed of ions with the possibility of adjusting the solvation properties over a very wide range. Wang et al. developed a simple poly ether ether ketone (PEEK) tube-base solid phase microextraction method for the extraction alkaloids in CPC [13]. This proposed method functionalized the chemically resistant surface of the PEEK tube and synthesized the poly acrylamide-ethylene glycol dimethacrylate inside the tube, and chemically bonded together with the surface. It showed the detection sensitivity was increased by about 400 folds, and also suitable for the extraction of complex samples.

Ionic liquids is a novel type of solvent, characterized by all the liquid composed of ions with the possibility of adjusting the solvation properties over a very wide range. Wang et al. developed a simple poly ether ether ketone (PEEK) tube-base solid phase microextraction method for the extraction alkaloids in CPC [13]. This proposed method functionalized the chemically resistant surface of the PEEK tube and synthesized the poly acrylamide-ethylene glycol dimethacrylate inside the tube, and chemically bonded together with the surface. It showed the detection sensitivity was increased by about 400 folds, and also suitable for the extraction of complex samples.

Ionic liquids is a novel type of solvent, characterized by all the liquid composed of ions with the possibility of adjusting the solvation properties over a very wide range. Wang et al. developed a simple poly ether ether ketone (PEEK) tube-base solid phase microextraction method for the extraction alkaloids in CPC [13]. This proposed method functionalized the chemically resistant surface of the PEEK tube and synthesized the poly acrylamide-ethylene glycol dimethacrylate inside the tube, and chemically bonded together with the surface. It showed the detection sensitivity was increased by about 400 folds, and also suitable for the extraction of complex samples.

Ionic liquids is a novel type of solvent, characterized by all the liquid composed of ions with the possibility of adjusting the solvation properties over a very wide range. Wang et al. developed a simple poly ether ether ketone (PEEK) tube-base solid phase microextraction method for the extraction alkaloids in CPC [13]. This proposed method functionalized the chemically resistant surface of the PEEK tube and synthesized the poly acrylamide-ethylene glycol dimethacrylate inside the tube, and chemically bonded together with the surface. It showed the detection sensitivity was increased by about 400 folds, and also suitable for the extraction of complex samples.

Ionic liquids is a novel type of solvent, characterized by all the liquid composed of ions with the possibility of adjusting the solvation properties over a very wide range. Wang et al. developed a simple poly ether ether ketone (PEEK) tube-base solid phase microextraction method for the extraction alkaloids in CPC [13]. This proposed method functionalized the chemically resistant surface of the PEEK tube and synthesized the poly acrylamide-ethylene glycol dimethacrylate inside the tube, and chemically bonded together with the surface. It showed the detection sensitivity was increased by about 400 folds, and also suitable for the extraction of complex samples.
served not only as identification elements for the recognition and acquisition of the target berberine, but also could use an external magnet to support the quick separation and purification of the bound target. The purity of berberine extracted from CPC was 98.7% compared with that of 4.85% in the extract. These reports indicated that different functionalized Fe$_3$O$_4$ nanoparticles were effective for the alkaloids enrichment and separation from CPC. Although the above-mentioned extraction method of alkaloids in CPC are novel and tremendously improved the extraction efficiency, they were still not widely accepted, and the reproducibility and extraction rate need further verification and investigation. Future extraction methods must be concise, efficient and easy to operate.

II Limonoids

Limonoids is a class of highly oxidized tetranortriterpenoid. The structure was shown in (Figure 4A).

III Triterpenoids

The structure of triterpenoids was shown in (Figure 4B).

![Figure 4: The structures of limonoids and triterpenoids from CPC. A) The structures of limonoids from CPC. B) The structures of triterpenoids from CPC. f: [(21S, 23R) epoxy-24-hydroxy-21β]-25-dihydroxyapotirucalla-7-en-3-one (75), g: [(21R, 23R) epoxy-24-hydroxy-21α,25-diethoxy] tirucalla-7-en-3-one (76), h: Toonaciliatin K (77), i: (21R,23R)-epoxy-21R-ethoxy-24S,25-dihydroxyapotirucalla-7-en-3-one (78).](image)

IV Lignans

The structure was shown in (Figure 5A).

V Flavonoids

Flavonoids are another major component of CPC, which has high medicinal value. Therefore, the optimization of extraction technology of flavonoids can provide scientific theoretical basis for the rational development and utilization of CPC resources. Zhang et al. investigated the extraction technology of total flavonoids from _Phellodendri amurensis cortex_ and its antioxidant activity in vitro [18]. The results showed that the extraction rate of total flavonoids from _Phellodendri amurensis cortex_ was 2.31% under the optimum extraction conditions. The inhibitory concentration (IC$_{50}$) values of total flavonoid extracts from _Phellodendri amurensis cortex_ were 2.9525 mg/L, 1.6827 mg/L and 1.3951 mg/L for OH, O$_2^-$ and DPPH, respectively, showed a strong antioxidant activity. Although the extraction yield is not high and lacking real pharmacological studies to verify the antioxidant of flavonoids, the results of this study suggested the possible medicinal value of flavonoids in _Phellodendri amurensis cortex_, which might indicate the broad prospects of exploitation and utilization of CPC resources. Thus, the
pharmacological studies of flavonoids in CPC need to be further implemented. The structure of flavonoids from CPC was shown in Figure 5B.

Figure 5: The structures of lignans and flavonoids from CPC. A) The structures of lignans from CPC, B) The structures of flavonoids from CPC.

Figure 6: The structures of phenols and their derivatives from CPC. j:rel-(1S,2R,3R)-5-hydroxy-3-(4-hydroxy-3-methoxyphenyl)-6-methoxy-1-(methoxycarbonylmethyl)-indane-2-carboxylic acid methyl ester (α-di(methyl ferulate)) (108), k:rel-(1R,2R,3R)-5-hydroxy-3-(4-hydroxy-3-methoxyphenyl)-6-methoxy-1-(methoxycarbonylmethyl)indane-2-carboxylic acid methyl ester (γ-di(methyl ferulate)) (109).
VI Phenols and Their Derivatives

The structure was shown in (Figure 6).

Pharmacology of Cortex Phellodendri Chinensis

Numerous pharmacological studies have manifested that CPC have various pharmacological effects, which ascribed to some of its bioactive components, such as alkaloids. The pharmacological activities mainly include anti-inflammatory activity, anti-microbial activity, anti-cancer activity, anti-diabetic activity, anti-ulcer activity, antioxidant activity, and neuroprotective effect (Table 2).

Table 2: Pharmacological activities of CPC.
Activity

Anti-inflammatory activity
Ethanol extracts
Demethylenberberine (chemical components)
80% methanol extracts
50% ethanol extracts
Methanol extracts
Anti-microbial activity
Activity

Boiled water extract
Anticancer activity
Nexrutine (chemical components)
Anti-diabetic activity
Anti-diabetic activity
Anti-ulcer activity
Anti-oxidant activity
Neuroprotective effect
Ethanol extract
I Cytotoxic Effect

On the basis of current knowledge, the toxicity of CPC is low and their use in herbal prescriptions is considered safe. The cytotoxic effects against cancer cell lines of methanol extracts (thirteen compounds, that are 1, 32, 33, 35, 42, 54, 56, 57, 58, 94, 104, 108, and 109) of CPC were evaluated [1]. In B16 melanoma cell lines, compounds 27, 28, 36, and 48 exhibited almost no toxicity. Compounds 1, 33, 35, 108, and 109 displayed cytotoxicities against HL60, AZ521, SK-BR-3 cell lines with half maximal IC50 values at the range of 2.6-90.0 μM (Table 3). It is worth noting that the IC50 values of compound 1 (berberine) against AZ521 and SK-BR-3 were 2.6 μM and 21.0 μM, which were superior to or similar with that of the reference cisplatin (9.5 μM and 18.8 μM). In zebrafish embryos, the median lethal dose of compound 5 was 500 μg/mL [19].

Table 3: Cytotoxic activities of compounds isolated from the extracts of CPC.

Compound	Cytotoxicity, IC50 (μM)			
	HL60 (Leukemia)	A549 (Lung)	AZ521 (Duodenum)	SK-BR-3 (Breast)
1	29.4±3.0	>100	2.6±0.4	21.0±1.1
33	29.3±2.3	>100	>100	>100
35	31.4±1.7	>100	37.5±3.4	40.0±2.3
108	90.0±1.0	>100	>100	59.8±2.8
109	56.6±4.5	>100	>100	35.0±4.3
Cisplatin	4.2±1.1	18.4±1.9	9.5±0.5	18.8±0.6

Trypan blue, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and flowcytometry were employed to investigate the cytotoxicity of CPC and other herbs on human corneal epithelial cells. CPC showed no cytoxicity after 5 minutes exposure to concentrations up to 5% which indicated CPC may have the potential for ocular preparations [20]. No cytotoxicity was found among the tested herbs when trypan blue and MTT method were used, while flowcytometry uncovered the cell membrane damage of *Rhizoma Coptidis*, which indicated it is very important to choose a sensitive method for detecting cytotoxicity. Meanwhile, it also suggested that a variety of research methods should be adopted in toxicity study to ensure the credibility of the results. In our present review study, we found the cytotoxic effects of CPC were not fully researched, thus, it suggested that a variety of research and research methods should be adopted in toxicity study to extend and ensure the credibility of the results.

II Anti-Inflammatory Activity

Anti-inflammatory activity of CPC was demonstrated in many studies, which has been proven the main effective components are alkaloids [21]. Choi et al. reported the anti-inflammatory effect of CPC is related with down-regulation of NO production and inducible nitric oxide synthase (iNOS) expression via degradation nuclear factor (NF)-κB and attenuated phosphorylation of mitogen-activated protein kinases (MAPK). MAPK, as well as inhibition of cytokines such as interleukin (IL)-6, IL-1β and macrophage chemo-attractant protein-1 [22]. Chen et al. also investigated that CPC alleviate inflammation mainly through the regulation of NF-κB pathway and Th cells homeostasis [23]. In the model of colitis, demethyleneberberine, a component of CPC, can significantly decrease pro-inflammatory cytokines IL-6 and tumor necrosis factor (TNF)-α in vivo, and inhibit the activation of NF-κB pathway.

In addition, the level of interferon-γ was also decreased, and IL-4 concentration was increased in splenocytes. Reactive oxygen species (ROS) production and pro-inflammatory cytokines were remarkable inhibited by demethyleneberberine in RAW264.7 cell line in vitro. Xian et al. studied the anti-inflammatory effect of the ethanol extracts of CPC in the 12-O-tetradecanoylphorbol-acetate-induced mouse model [24].

![Figure 7: Summary of CPC anti-inflammatory mechanism.](image-url)
CPC can also protect human osteoarthritis cartilage and chondrocytes. Kim et al. studied the effect of water extract of CPC on human osteoarthritis cartilage explants, taking celecoxib as the positive control medicine [26]. IL-1β-mediated degradation of glycosaminoglycan and type II collagen were notably inhibited by CPC in a concentration-dependent way. While celecoxib unable remarkably restrain glycosaminoglycan can release and only slightly lessened type II collagen. In the present study, CPC inhibits the destruction of osteoarticular cartilage and chondrocyte mainly depends on the inhibition of the proteoglycan release and type II collagen degradation, as well as down-regulating aggrecanase-1 and -2, matrix metalloproteinase-1, -3 and -13, phosphorylation of extracellular signal regulated kinase (ERK)1/2, Jan NH2-terminal kinase and p38 MAPK signal pathway, and up-regulating metalloproteinase activity. The anti-inflammatory activity of CPC has been universally acknowledged, but its anti-inflammatory components need to be further elucidated, which is helpful for the following systemic and comprehensive study of the anti-inflammatory activity of CPC.

III Anti-Microbial Activity

Wong et al. studied twenty traditional Chinese medicines (TCM) to evaluate their anti-microbial activity against Porphyromonas gingivalis, Streptococcus mitis, Streptococcus mutans, and Streptococcus sanguis [27]. CPC showed the antimicrobial activity of Streptococcus sanguis and Porphyromonas gingivalis. Although the present study demonstrated the antimicrobial activity of CPC against two types of bacteria, the associated active components and corresponding mechanism remained to be studied. Yu et al. investigated the anti-methicillin-resistant Staphylococcus aureus (anti-MRSA) activity of CPC [10]. The results indicated that berberine is the main antimicrobial component with the potential of restore the effectiveness of β-lactam antibiotics to MRSA, as well as suppress MRSA adhesion and intracellular invasion in human gingival fibroblasts. CPC also has the inhibitory effect on Helicobacter pylori and is widely used in the treatment of gastrointestinal disorders, but few studies elucidated the potential mechanism [28]. Li et al. reported the urease can be inhibited by CPC, which is usually considered to be an important target in the development of anti-Helicobacter pylori agents, and the main mechanism is the interaction with the sulphydryl group [7].

Seneviratne et al. studied eight types of TCM to assess the underlying anti-Candida species activity [29]. Here, the antifungal activity of TCM were screened by standard agar diffusion assay, and the potent antifungal activity of CPC were showed on three different non-albicans Candida species, including C. krusei, C. glabrata and C. tropicalis, which implied its potential therapeutic function. Although the aforementioned studies all reflect the anti-microbial effect of CPC, there is few in-depth studies on its antimicrobial mechanism, only the initial exploration has been carried out. Moreover, further research models are critically needed to confirm these anti-microbial activities in vivo and in humans. With the extensive use of antibiotics in recent years, drug resistance occurred frequently, and the choice of clinical medicines has also been greatly limited. All the above studies indicated the anti-microbial activity and potential anti-microbial value of CPC, in the meantime, provided references for the comprehensive development and utilization of CPC.

IV Anti-Cancer Activity

With the increase of population growth and aging, cancer has become the main cause of death, especially in less developed countries [30]. Owing to the little toxicity and adverse reaction of TCM, the anti-cancer effect of TCM gradually aroused people’s attention. Anti-cancer activity is also one of the pharmacological activities of CPC. Li et al. employed a chinnedomics platform to screen the active components of CPC for treating prostate cancer [31]. It was reported that berberine, magnoflorine-O-glucuronide, magnoflorine, jatrorrhizine, menisperine-O-glucuronide, menisperine, obaculactone, obacunone, and (p-hydroxybenzyl)-6,7-dihydroxy-N-methyltetrahydro iso-quinoline-7-O-p-D-glucopyranosid highly correlated with the treatment of CPC against prostate cancer. The above-mentioned components displayed the treatment effects mainly via regulating the following metabolic pathways: citrate cycle, purine metabolism, retinol metabolism, arachidonic acid metabolism, glycerophospholipid metabolism, and sphingolipid metabolism.

In present study, a novel method was adopted to delineate not only the active components of CPC, but also its mechanism. Mitani et al. proved the therapeutic effect of berberine on lymph node metastasis of murine lung cancer [32]. After oral administrated berberine for 14 days, spontaneous lymphatic metastasis of murine lung cancer was significantly inhibited, while the growth of the implanted lung cancer were not affected. In addition, the combination of berberine and CPT-11 (an anticancer drug) can result in significant anti-tumor effects compared with the individual treatments alone, which means that CPC can be used as a compatibility agent with other anticancer drugs in order to achieve better efficacy.

Bin et al. used a computational and experimental approach to explore the potential proteins involved in the anti-melanoma effects of berberine [33]. In this study, molecular docking and molecular dynamics exhibited that berberine could bind with four proteins, including p38 MAPK, 3-phosphoinositide-dependent protein kinase 1, dihydrofolate dehydrogenase, and glucocorticoid receptor. Cellular experiments displayed that berberine could inhibited cell proliferation, increased...
phosphorylation of p38 MAPK and glucocorticoid receptor, as well as inhibited the activity of dihydrofolate dehydrogenase in A375 human melanoma cells. It is the first time that identified dihydrofolate dehydrogenase as one of the direct anti-melanoma targets of berberine, which opened up a new target for the treatment of melanoma.

Alam et al. explored the mechanism of nexrutine on chemopreventive/chemotherapeutic effects against colon cancer and found oral administrated with nexrutine can significantly lessened the abnormal crypt lesions in rats induced by oxidized methane [34]. Furthermore, significant inhibition of oxidized methane-induced cell proliferation was also observed. Nexrutine can remarkable enhanced the apoptosis of colon cells of the oxidized methane treated rats. The present study suggested that nexrutine may be a useful drug candidate for the chemoprevention and treatment of colon cancer. CPC as observed with potent anti-cancer activities should be taken into next research stage to ensure its less side effects and can be safely used in cancer-related patients, which may further help ease the burden and mortality rate for cancer.

V Anti-Diabetic Activity

Diabetes is a metabolic disease characterized by high blood glucose. Persistent hyperglycemia and long-term metabolic disorders can lead to systemic organ damage. Following cardiovascular disease and cancer, diabetes has become the third non-communicable disease in developed countries [35]. Many researchers reported CPC can prevent or postpone the development of diabetes. Yin et al. employed HepG2 cell line to explore the effect of berberine to the glucose-lowering compared with troglitazone and metformin in vitro [36]. With the increase of glucose concentration, the glucose-reducing effect of berberine was decreased, and this effect is independent of insulin level, which was similar to metformin, while, unlike troglitazone. βTC3 cell line was also employed for insulin release test, while no secretory effect was observed by CPC.

These results indicated that CPC has glucose-reducing effect, which is independent of insulin and has no influence on insulin secretion. In Shen’s research, berberine can induce a reversible concentration-dependent inhibition of insulin gene transcription in NIT-1 cells, thus resulting in the decrease of the number of insulin and mRNA expression and protect the islet cells [37]. Zhou et al. exhibited that berberine can induce glucose transport by a different mechanism of insulin in 3T3-L1 adipocytes, which has the capacity of glucose-free glucose transport and GLUT4 expression [38]. Berberine was found to stimulate glucose uptake in a dose- and time-dependent way and activated ERK 1/2. Different from that of insulin, the effect of berberine on glucose uptake was insensitive to SB203580 and wortmannin. Here, berberine works mainly by increasing the phosphorylation of AMPK and acetyl-CoA carboxylase.

As one of the most serious complications of diabetes, diabetic nephropathy is regarded as the main cause of end-stage renal disease. Liu et al. probed the effect of berberine on rat glomerular mesangial cells under high glucose condition [39]. Here, the cell proliferation, collagen synthesis and protein expression were detected by MTT assay. 3H-proline incorporation assay and western blot analysis, respectively. The present study exhibited that berberine can remarkably restrain fibronectin and collagen synthesis through p38MAPK signal pathway in high glucose-treated mesangial cells. Furthermore, p38 phosphorylation may be directly inhibited by berberine, and the pathway may be affected via anti-oxidation.

All of the aforementioned studies were carried out in vitro, further in vivo studies and research models, particularly comparative studies using the already reported drugs in order to compare the activity. Diabetic patients need to take medicine for a long time. The adverse reactions of western medicine are relatively great. If CPC can be used as an alternative or adjuvant drug, it will benefit the majority of diabetic patients. All of the aforementioned studies were carried out in vitro, further in vivo studies and research models, particularly comparative studies using the already reported drugs in order to compare the activity should be explored.

VI Anti-Ulcer Activity

Gastric ulcer is the most common gastrointestinal disease in the world, and its incidence is increasing with each passing year as human diet diversified. CPC as a famous TCM can also play a protective role of gastric ulcer. Wang et al. investigated the anti-ulcer effect of total alkaloids in CPC of acetic acid-induced gastric ulcer rat model [40]. Ulcer area, ulcer inhibition rate and epidermal growth factor were used to assess the anti-ulcer effect of the total alkaloids. The levels of norepinephrine and serotonin were used to indicate the gastro protective mechanism of total alkaloids.

The results manifested that the anti-ulcer effect of total alkaloids is better than omeprazole, and can significantly enhance the level of growth factors, as well as accelerate ulcer healing. Takase et al. reported that the CPC in HLJDD can inhibit the decrease of gastric surface potential caused by ethanol, but has no effect on the basal gastric surface potential [41]. The CPC here can prevent the secretion of gastric acid induced by 2-deoxy-D-glucose and has a greater effect on pentagastrin compared with the other three TCM of the decoction. The gastric mucosal protection is mainly due to CPC and Rhizoma Coptidis by strengthening the mucosal barrier resistance via endogenous sulfhydril compounds [42].

VII Antioxidant Activity

ROS are continuously produced in the process of oxidative metabolism of life activities. Normally, the production and elimination of free radicals in human body are in a dynamic equilibrium state. When this balance is broken, the phenomenon of "oxidative stress" usually occurs, which induce various diseases. The antioxidant ability of CPC has attracted more and more attention of scientific researchers. Demethyleneberberine is a novel cationic antioxidant, could be guided into the mitochondrion by the high negative potential inside the mitochondrion. It was reported that binge drinking could significantly reduce mitochondrial glutathione (GSH) and glutathione peroxidase activity and further elevated thiobarbituric acid reactive substances formation in binge-drinking mice model.

After the treatment of demethyleneberberine, the results of H&E exhibited ethanol-mediated mitochondrial swelling can be alleviated,
and ultrastructural damages of mitochondria can also be profoundly ameliorated [43]. The inhibitory effects of expression at the protein or mRNA level of phosphorylated AMPK, and PGC-1α were also reversed. A novel mechanism of demethylenberberine involving the attenuation of hepatic oxidative stress and steatosis, partially through mitochondria targeted antioxidant, down regulation of CYP2E1, and activation of the Siruin 1/AMPK/peroxisome proliferator-activated receptor-γ coactivator-1α pathway-associated fatty acid oxidation were verified.

Phellodendrine is one of important characteristic ingredients of CPC and was firstly found by a Japanese scholar. It was found that phellodendrine isolated from CPC had the ability of antioxidant through regulating the Akt/NF-κB pathway in zebrafish embryo mainly by reversing the expression of ROS-dependent JNK, MAPK1, p38 MAPK, Akt and NF-κB signaling pathways which were abnormally changed by AAPH-induced oxidative stress [19].

VIII Neuroprotective Effect

Neurological degenerative diseases have become a major problem affecting human health and quality of life. Frequent reports on the neuroprotective effects of berberine have prompted researchers to explore the mechanism of neuroprotective effects of CPC from a scientific perspective. Berberine can decrease the activity of neurons and mitochondria-related caspase pathway, and significantly reverse the damage and apoptosis of primary hippocampal neurons induced by amyloid-β25-35 (Aβ25-35) [44].

The ethanol extract of both Phellodendri chinense cortex and Phellodendri amurensis cortex can significantly increase the cell viability in Aβ-treated PC12 cells, as well as elevated the ratio of the protein and mRNA expression of Bel-2/Bax, while remarkably decrease the release of cytochrome c, and the protein and mRNA expression of caspase-3 [45]. The report also pointed out Phellodendri amurensis cortex had better protective effect than Phellodendri chinense cortex against Aβ-induced neurotoxicity in PC12 cells. This neuroprotective effect may be mediated by inhibition of cellular apoptosis.

Acetylcholinesterase is a known therapeutic target for early stages of the most general form of dementia, Alzheimer’s Disease. Dorothea et al. tested 80 TCM plants for their in vitro anti-acetylcholinesterase activity, and the methanol, dichloromethane, and aqueous crude extracts of CPC substantially inhibited acetylcholinesterase [46]. Furthermore, the ethanol extract and water extract of CPC had no cytotoxicity at the inhibitory concentration of acetylcholinesterase. It was found that the combination of some alkaloids such as berberine, berberine and palmatine could synergistically enhance the inhibition of acetylcholinesterase which might provide new leading compounds for the treatment of neurological diseases.

Cortex Phellodendri Chinensis in Formula

Formula was consisted with a variety of TCMs, such combinations can reduce or neutralize the toxicity produced by certain herbs, as well as facilitate and improve the synergistic and additive effects of the herbs in the formulation [47]. Many classical medicine literatures have records of CPC, and the treatment effect is remarkable. A list of some other commonly known prescriptions including CPC is shown in (Table 4).

Prescription Name	Type	Main compositions	Function	Reference
Baidai Wan	Pill	Cortex Phellodendri Chinensis Ailanthi Cortex Paconiae Radix Alba Angelica Sinensis Cyperi Rhizoma Pulsatillae Radix Taraxaci Herba Scutellariae Radise Cortex Phellodendri Chinensis	Clearing heat, removing dampness, arresting leukorrhea	[85]
Baipuhuang Pian	Tablet	Pinelliae Rhizoma Praeparatum Gastrodiae Rhizoma Astragali Radix Preparata Cum Melle Ginseng Radix et Rhizoma Atractylodis Rhizoma Atractylodes Macrocephala Citri Reticulatae Pericarpium Alismatis Rhizoma Liu Shen Qu Hordei Fructus Germinatus Cortex Phellodendri Chinensis Rehmanniae Radix Praeparata Salt Anemarrhenae Rhizoma Salt Cortex Phellodendri Chinensis	Clearing heat and expelling dampness, detoxifying, blood-cooling	[85]
Banxia Tianma Wan	Pill	Pinelliae Rhizoma Praeparatum Gastrodiae Rhizoma Astragali Radix Preparata Cum Melle Ginseng Radix et Rhizoma Atractylodis Rhizoma Atractylodes Macrocephala Citri Reticulatae Pericarpium Alismatis Rhizoma Liu Shen Qu Hordei Fructus Germinatus Cortex Phellodendri Chinensis Rehmanniae Radix Praeparata Salt Anemarrhenae Rhizoma Salt Cortex Phellodendri Chinensis	Invigorating spleen to remove dampness, resolving phlegm and claming wind	[85]
Dabuyin Wan	Pill	Rehmanniae Radix Praeparata Salt Anemarrhenae Rhizoma Salt Cortex Phellodendri Chinensis	Nourishing Yin and removing fire	[85]
Medicine	Formulation	Constituents	Description	
----------	-------------	--------------	-------------	
Danyi Pian Tablet	Vinegar Testudinis Carapax et Plastrum, Swine Spinal Cord, Salviae Miltiorrhizae Radix et Rhizoma, Leonuri Herba, Verbena Herba, Achyranthis Bidentatae Radix, Cortex Phellodendri Chinensis, Pulsatillae Radix, Vaccariae Semen	Promoting blood circulation to remove blood stasis, clearing heat and promoting diuresis	[85]	
Danggui Longhu Wan Pill	Angelicae Sinensis Radix, Gentianae Radix et Rhizoma, Aloe, Indigo Naturalis, Gardeniae Fructus, Coptidis Rhizoma, Scutellariae Radix, Cortex Phellodendri Chinensis, Rhei Radix et Rhizoma, Aucklandiae Radix, Artificial Moschus	Discharging fire and relaxing the bowels	[85]	
Fufang Huangbaiye Tuji Embrocation	Forsythiae Fructus, Cortex Phellodendri Chinensis, Lonicerae Flos, Taraxaci Herba, Scolopendra	Clearing heat and removing toxicity, reducing swell and removing necrotic tissue	[85]	
Fuke Zhidai Pian Tablet	Ailanthi Cortex, Schisandrae Chinensis Fructus, Cortex Phellodendri Chinensis, Testudinis Carapax et Plastrum, Poria, Asini Corii Colla, Dioscoreae Rhizoma	Clearing away heat and Drying dampness, astringency and arresting leucorrhea	[85]	
Fenqing Wulin Wan Pill	Akebiae Caulis, Plantaginis Semen, Scutellariae Radix, Poria, Polyporus, Cortex Phellodendri Chinensis, Rhei Radix et Rhizoma, Polygonum Aviculare, Dianthi Herba, Anemarrhenae Rhizoma, Alismatis Rhizoma, Gardeniae Fructus, Glycyrrhizae Radix et Rhizoma, Talcum	Clearing heat and purging fire, inducing diuresis for treating stranguria	[85]	
Fengtong’an Jiaonang Capsule	Radix Stephaniae Tetrandrae, Tetrapanacis Medulla, Cinnamomi Ramulus, Curcumae Longae Rhizoma, Gypsum Fibrosum, Coicis Semen, Chaenomelis Fructus, Cortex Erythrinae, Lonicerae Japonicae Caulis	Clearing heat and promoting diuresis, promoting blood circulation to remove meridian obstruction	[85]	
Name	Form	Ingredients	Description	Reference
------------------	----------	---	---	-----------
Gonglao Qihuoo	Tablet	Cortex Phellodendri Chinensis, Talcum, Forsythiae Fructus, Mahoniae Caulis,	Clearing heat and producing sound	[85]
Pian		Cortex Phellodendri Chinensis, Scutellariae Radix, Gardeniae Fructus, Atractylodis Rhizoma	Detoxification swelling, dry wet itching	[85]
Jiusheng San	Powder	Atractylodis Rhizoma, Cortex Phellodendri Chinensis, Perillae Folium, Armeniacae Semen Amaran, Menthae haplocalycis Herba, Oblibamum, Myrrha.	Promoting Qi circulation and removing food stagnation, purging heat and relaxing the bowels	[85]
Muxiang Binglang	Pill	Aucklandiae Radix, Arecae Semen, Auranitii Fructus, Citri Reticulatae Pericarpium, Citri Reticulatae Pericarpium Viride, Cyperi Rhizoma, Sparganii Rhizoma, Curcumae Rhizoma, Coptidis Rhizoma, Cortex Phellodendri Chinensis, Rhei Radix et Rhizoma, Pharbitidis Semen, Natrii Sulfas.	Removing dampness and clearing away turbidness, dispersing blood stasis and removing stasis	[85]
Qianlietong Pian	Tablet	Vaccariae Semen, Astragali Radix, Plantaginis Semen, Phellodendri Amurensis Cortex, Anemones Raddaeanae Rhizoma, Taraxaci Herba, Lycopi Herba, Star Anise oil, Cinnamomi oil.	Clearing heat and removing toxicity, relieve swelling and pain	[85]
Qinlian Pian	Tablet	Scutellariae Radix, Forsythiae Fructus, Coptidis Rhizoma, Cortex Phellodendri Chinensis, Paoniae Radix Rubra, Glycyrrhizae Radix et Rhizoma.	Cleaning lung-heat and stopping cough, resolving sputum and relaxing the bowels	[85]
Qingfei Yihuo	Pill	Scutellariae Radix, Gardeniae Fructus, Anemarrhenae Rhizoma, Fritillare Thunbergii Bulbus, Cortex Phellodendri Chinensis, Sophoreae Flavescentis Radix, Platycodonis Radix, Peucedani Radix, Trichosanthis Radix, Rhei Radix et Rhizoma.	Regulating vital energy and nourishing blood, regulate menstruation.	[85]
Sizhi Xiangfu	Pill	Cyperi Rhizoma, Rehmanniae Radix Preparata, Angelicae Sinensis Radix, Chuanxiong Rhizoma, Atractylodis Macrocephalae Rhizoma.	Regulating vital energy and nourishing blood, regulate menstruation.	[85]
Chinese Medicine	Ingredients	Function		
-------------------	-------------	----------		
Wei’an Capsule Capsule	*Dendrobii Caulis* *Cortex Phellodendri Chinensis* *Adenophorae Radix* *Crataegi Fructus* *Aurantii Fructus* *Polygonati Rhizoma* *Glycyrrhizae Radix et Rhizoma* *Paeoniae Radix Alba* *Lycopi Herba*	Nourishing *Yin* and benefiting stomach, regulating liver and relieving pain [85]		
Wumei Wan Pill	*Paeoniae Radix Alba* *Lycopi Herba* *Cortex Phellodendri Chinensis* *Citri Reticulatae Pericarpium* *Glycyrrhizae Radix et Rhizoma* *Praeparata Cum Melle* *Wei’an Capsule*	Regulating the heat in the upper and cold in the lower [85]		
Wushe Zhiyang Pill	*Mume Fructus* *Zanthoxyli Pericarpium* *Asari Radix et Rhizoma* *Coptidis Rhizoma* *Cortex Phellodendri Chinensis* *Zingiberis Rhizoma* *Aconiti Lateralis Radix Praeparata* *Cinnamomi Ramulus* *Ginseng Radix et Rhizoma* *Angelicae Sinensis Radix* *Zaoys* *Saposhnikoviae Radix* *Cnidii Fructus* *Cortex Phellodendri Chinensis* *Atractylodis Rhizoma* *Ginseng Radix et Rhizoma Rubra* *Moutan Cortex* *Snake bile* *Sophorae Flavescentis Radix* *Bovis Calculus Artificius* *Angelicae Sinensis Radix*	Nourishing the blood to expel wind, eliminating dampness and relieving itching [85]		
Xiao’er Ganyan Granule	*Artemisiae Scopariae Herba* *Gardeniae Fructus* *Scutellariae Radix* *Cortex Phellodendri Chinensis* *Crataegi Fructus* *Sojae Semen Germinatum* *Curcumae Radix* *Tetrapanacis Medulla* *Xiao’er Ganyan*	Clearing heat and eliminating damp, relieving depression and pain [85]		
Xiao’er Qingre Pian Tablet	*Cortex Phellodendri Chinensis* *Junci Medulla* *Gardeniae Fructus* *Uncariae Ramulus Cum Uncis Realgar* *Coptidis Rhizoma* *Cinnabaris* *Gentianae Radix et Rhizoma* *Scutellariae Radix* *Rhei Radix et Rhizoma* *Peppermint Oil*	Clearing heat and removing toxicity, dispelling wind and relieving convulsion [85]		
Zhizi Jinhua Wan Pill	*Gardeniae Fructus* *Coptidis Rhizoma* *Scutellariae Radix* *Gardeniae Fructus* *Coptidis Rhizoma* *Scutellariae Radix*	Clearing heat and purging fire, cooling blood and eliminating toxins [85]		
I Ermiao San and Ermiao Wan

Ermiao San or Ermiao Wan, a traditional formula according to <Dan Xing Fa>, containing the equivalents of Atractylodis Rhizoma and CPC, has been widely used in treatment of gout and hyperuricemia by excreting dampness, eliminating heat and anti-edema [48, 49]. Kong et al. explored the effects of Ermiao San on lowering serum uric acid levels in hyperuricemia mice and the activities of mouse liver xanthine dehydrogenase and xanthine oxidase [50]. In the hyperuricemia model, Ermiao Wan was more effective than that of CPC alone, and the use of Atractylodis Rhizoma can promote the hypouricemic effect. Here, Atractylodis Rhizoma assisted and enhanced the effect of CPC on the lowering serum uric acid levels in hyperuricemia mice according to the theory of TCM that CPC is the main ingredient, and Atractylodis Rhizoma is an adjuvant ingredient in Ermiao Wan.

Chen et al. evaluated the anti-inflammatory activity and the molecular mechanism of Ermiao San in mouse RAW264.7 macrophages [51]. The production of NO in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages can be suppressed by Ermiao San, while, CPC and Atractylodis Rhizoma alone cannot. The production of TNF-α, IL-1β, macrophage chemotactic protein-1, p38 phosphorylation, inhibitor of NF-κB (IkBα), phosphorylated p65 and NF-κB DNA-binding activity can also be inhibited. The inactivation of the MAPK and NF-κB pathway was the key to the inhibition of inflammatory response in the LPS-stimulated RAW264.7 macrophages.

Chen et al. also further investigated the effects of Ermiao San extracts on TNF-α-induced matrix metalloproteinase-1 expression in human dermal fibroblasts [51]. Ermiao San can reduce the level of nuclear p65 protein while stabilizing the IkB content without suppressing MAPK phosphorylation. The results demonstrated that Ermiao San exerted the anti-inflammatory activity mainly by inhibiting NF-κB pathway rather than MAPK pathway in human dermal fibroblasts. These studies reconfirmed the anti-inflammatory effect of CPC from the prescription point of view.

II Sanmiao San and Sanmiao Wan

Sanmiao San was recorded in <Yi Xue Zheng Zhuan> in Ming Dynasty which composed of CPC, Atractylodis Rhizoma and Achyranthes Bidentatae Radix with equal proportion. Sanmiao San is usually employed in the treatment of Bi Zheng, which is a painful obstructive syndrome mainly caused by the invasion of external pathogenic factors into muscles, bones and joints of the suffer [52-55]. Sanmiao Wan has been used to treat gout via the elimination of heat and excretion of dampness [56, 57].

Wang et al. explored the hypouricemic effects and its potential mechanism of Sanmiao Wan in potassium oxonate-induced hyperuricemic mice model [57]. The present study demonstrates that Sanmiao Wan could reduce uric acid production by inhibiting liver xanthine oxidase and decrease urate reabsorption meanwhile increase urate excretion by down-regulating renal urate transporter 1. Thus, the dual hypouricemic function of Sanmiao Wan could decrease the uric acid level, while has no effect on normal mice. The effect of Sanmiao Wan on hyperuricemia rat model was evaluated by metabolomics techniques which can characterize hyperuricemia-related metabolic profiles [56].

Thirteen serum metabolites associated with hyperuricemia were identified, mainly involving tricarboxylic acid cycle, purine metabolism, glycerophospholipid metabolism, arginine and proline metabolism, phenylalanine metabolism, and tryptophan metabolism. After treatment with Sanmiao Wan, the above-mentioned perturbed metabolic pathways were partially regulated to reverse the pathogenesis of hyperuricemia except for glycerophospholipid metabolism. The study utilized another perspective to investigate the potential efficacy and mechanisms of Sanmiao Wan in treating hyperuricemia.

III Simiao San

Simiao San, a classic TCM prescription, composed of CPC, Achyranthis Bidentatae Radix, Coicis Semen and Rhizoma Atractylodis, was first registered in 1904 in <Cheng Fang Bian Du>. The recipe was extensively employed in the treatment of down flow of damp-heat syndrome complex [58]. Currently, its application has been extended to the treatment of general infections and inflammatory diseases. In modern clinical practice, this recipe is usually modified by substituting Achyranthis Bidentatae Radix with Rhizoma Coptidis in order to enhance the anti-inflammatory effect, which is known as the modified Simiao San [59-61].

Liu et al. made series of studies on the mechanism of modified Simiao San. For the treatment of inflammatory diseases, the underlying...
mechanism of modified Simia San may be caused by the inhibition of ERK and NF-kB pathway, thereby suppressing the production of inflammatory mediators, such as IL-6, NO, TNF-α [62]. Modified Simia San can also enhance inflammation-related glucose tolerance, thus improving hepatocyte insulin sensitivity by means of the inhibitor of NF-κB kinase-β (IKKβ)/ insulin receptor substrates-1 (IRS-1)/ serine/threonine kinase (Akt)-dependent pathway [58]. Advanced glycation end products-induced pancreatic β cell dysfunction can be ameliorated by modified Simia San via inhibiting ROS-associated inflammation, which was associated with the regulation of AMPK activity [63].

IV Huanglian Jiedu Decoction

Huanglian Jiedu Decoction (HLJDD), also known as Oren-gedoku-to in Japan, is a famous ancient recipe composed of Rhzoma Coptidis, Scutellaria Radix, CPC and Gardeniae Fructus the proportion of 3:2:2:3 with a dry weight ratio. This formula was first recorded in the treatise <Wai Tai Mi Yao> by Wang Tao in Tang Dynasty. It has been used to treat various clinical symptoms, such as inflammation Alzheimer’s disease stroke gastrointestinal disorders hypertension and cerebrovascular diseases etc. [64-69]. In this prescription, Rhzoma Coptidis serves on the chief ingredient with the main therapeutic effect of balance the disorder of the body. Scutellaria Radix performs as the minister drug to assist the therapeutic effect of chief ingredient.

CPC here acts as the adjuvant component and Fructus Gardenia plays both roles as adjuvant and messenger components. In this recipe, berberine is the main active ingredient of Rhzoma Coptidis and CPC [64, 22]. It was reported berberine could lessen Aβ accumulation in Alzheimer’s disease mouse model [70]. With the further research, the modified HLJDD (free of Scutellaria Radix) exhibited more significant Aβ precursor protein- and Aβ-reducing functions than berberine treatment alone [66]. The aqueous extracts of HLJDD can effectively improve collagen type II (CII)-induced arthritis, and dramatically inhibit immune response against CII with the analogous pharmacological effects, which demonstrated HLJDD has the potential to treat arthritis [71].

V Zishen Wan

Zishen Wan, a classic prescription of treating benign prostatic hyperplasia which was originated from <Secret Record of the Chamber of Orchids> by Li Gao in Yuan Dynasty, consists of Amaranthae Rhizoma, CPC and Cinnamomi Cortex with the quality ratio of 10:10:1. Modern clinical also commonly used it to treat prostatitis, urinary frequency, urinary system infection, and osteoporosis [72-74]. Amaranthae Rhizoma and CPC is a famous “herb pair”, which was first reported in <Ben Cao Gang Mu> and first include in Zishen Wan, as well as often involved in other TCM prescriptions, such as Zhibai Dihuang Wan, Dabuyin Wan, Shengui Zizyn Wan, etc. In Zishen Wan, Amaranthae Rhizoma was the sovereign drug, having the effect of clearing heat and fire.

CPC was the ministerial drug with a good treatment of lower energizer’s damp-heat. Cinnamomi Cortex was the anti-adjuvant drug which can prevent and control the cold effect of Amaranthae Rhizoma and CPC. Sun et al. reported that Zishen Wan can restrain benign prostatic hyperplasia of the induced-testosterone castrated rat by down-regulating the expression of vascular endothelial growth factor and basic fibroblast growth factor, as well as up-regulating the expression of prostate transforming growth factor-β1 in prostate [74]. Although the above studies clarified the mechanism of CPC as a drug pair in Zishen Wan, there is no explanation of this compatibility rule in present study.

VI Other Prescriptions Including Cortex Phellodendri Chinensis

Dahuang Xiaoshi Decoction (DHXSD) consists of four herbs, Rhei Radix et Rhizoma, Mirabilium, CPC and Gardeniae Fructus, with the mass ratio of 4:4:4:3. It was originally described in <Jin Kui Yao Lue> to be used for treating jaundice caused by interior-heat syndrome. The constituents of CPC, such as tetrahydropalmatine, jatrorrhizine, and berberine exerted hepatoprotective activities in tert-butylhydroperoxide-injured BRL-3A cells [75]. Zhibai Dihuang Wan is an ancient formulation consist of eight kinds of herb, Rehmanniae Radix Praeparata, Corni Fructus, Dioscoreae Rhizoma, Moutan Cortex, Poria, Alismatis Rhizoma, Anemarrhenae Rhizoma and CPC. It was originated from <Yi Zong Jin Jian> and has been used for the treatment of chronic kidney inflammation and diabetes for thousands of years [76].

Rehmanniae Radix Praeparata as the principal drug can nourish Yin and strengthen kidney, Corni Fructus, CPC, Dioscoreae Rhizoma, and Anemarrhenae Rhizoma act as minister drug, Moutan Cortex, Pori, and Alismatis Rhizoma serve as adjuvant drug, these herbs act together to generate the effect of nourishing Yin and removing fire. Hsu et al. explored the effect of Zhibai Dihuang Wan on cell growth and gentamicin-induced apoptosis in renal tubular cells [76]. The results demonstrated that Zhibai Dihuang Wan generated the protective effect against gentamicin-induced apoptosis in cells via a dose-dependent form and can also decrease gentamicin-induced renal toxicity in vivo which indicated that Zhibai Dihuang Wan may have therapeutic potential for gentamicin-induced kidney injury patients. K-601 is a hospital-prepared prescription comprised of five herbs, Lonicer Japonicae Flos, Isatidis Radix, Rhei Radix et Rhizoma, CPC, and Scutellariae Radix, which is usually used for relieving influenza symptoms and treating the cough caused by non-bacteria causes [77].

It’s well known for reducing swelling, relieving pain, and removing poisons [80]. At present, the study of prescriptions containing CPC mainly focuses on the evaluation of their effectiveness, followed by the
study of the effective ingredients. From ancient times to the present, CPC and other TCMs, such as Anemartharen Rhizoma, Paonieae Radix Rubra, usually form prescriptions in the form of "drug pairs". Future research can start with "CPC drug pairs", systematically study the analogous prescriptions containing CPC, and it is believed some breakthrough results will be obtained.

Conclusion

Through the above review, as a high-grade herbal medicine in ancient codes and records, a large number of significant researches have been made into the phytochemistry and pharmacology of CPC in cells and animals. In these studies, we have not only seen the great prospect of CPC clinical application, but also found some aspects need to be strengthened.

Benefiting from the rapid progresses of analytical technology, chemical compositions of CPC have been continuously identified. Although there are many studies on the chemical compositions of CPC, most of them are extracted with mixed solvents, such as different proportions of methanol and water. Most of these researches aim at obtaining as many compounds as possible in one extraction. While, water is the most commonly used traditional extraction solvent. At present, there are few studies on CPC water extractions, and some components may be ignored. The use of herbal medicine in clinic is usually soaked in water firstly and then decocted to form decoction for administration. From the perspective of clinical application, more attention should be paid on the water extractions and its biological function in the future research to serve the clinical.

Furthermore, a variety of analytical techniques can be used together to expand the coverage of chemical components in order to discovering more chemical components. And novel extraction methods can be established, such as the use of various SPE columns and selective enrichment components. Due to the diversity pharmacological properties and efficacy of TCM, its active ingredients have the characteristics of multi-pathway, multi-target, multi-link and multi-effect. Different compatibility of TCM or combination of active ingredients can often achieve synergistic effect. In the light of CPC can be prepared with other herbs into prescriptions for clinical uses, it will be valuable to study the effective components and compatibility laws in different compatibility environments and corresponding disease status.

At present, the research on prescriptions containing CPC mainly focuses on pharmacological effects and screening of active ingredients. It is necessary to further determine the appropriate dosage of these prescriptions in human body, as well as the side effects, adverse effects and toxicity characteristics. Although the chemical composition has been well elucidated, few studies have been done on CPC active components except berberine. Most of the studies lacked the necessary pharmacological data, such as the value of IC50, long-term chronic toxicity studies and acute toxicity, the data of pharmacokinetic were also not be well understood. Thus, there is a broad space to be explored for pharmacological research of CPC.

As a traditional and valuable herbal medicine, pharmacological research of CPC should be more in-depth and meticulous, such as the determination of the active components and their mechanisms of action, the repeated verification of in vivo and in vitro studies, and so on, to form a series of complete research, which is of great help to the discovery of new drugs. Despite the "Chuan HuangBai" and "Guan HuangBai" has the same function according to pharmacopoeia records, with the progress of science and technology, it has been known that the components in particular the contents of two herbs exist differences, therefore, the pharmacology and biological activity may have different focuses.

While, the researches concerned on the differences between the two herbs were relatively few, it is recommended to reinforce the investigation and development of pharmacology and pharmacological effects between “Chuan HuangBai” and “Guan HuangBai” to better facilitate their clinical applications for human health. Additionally, because of the wide distributions of CPC, the maturity time, time of harvesting, the climate and age can all affect the quality of CPC. In order to ensure the safety of the drug and the reliability of the experimental results, it is supposed to speed up the study of the CPC quality markers to ensure the safety and effectiveness of the CPC.

This review gathered the information of all-important aspects of CPC, including botanical description, phytochemical constituents, pharmacological activities, common clinical prescriptions. As discussed above, CPC has several potential uses for certain therapeutic activities, and how to solve the issues put forward in this review is also the key to the follow-up study of CPC. It is expected that this review will provide researchers with information, cornerstone and research directions for further in vitro, in vivo and clinical researches on CPC.

Acknowledgements

This work was supported by grants from the Key Program of Natural Science Foundation of State (Grant No. 81830110, 81861168037, 81973745, 81903818, 81430093), National Key Research and Development Program of China (2018YFC1706103), National Key Subject of Drug Innovation (Grant No. 2015ZX09010143-005, 2015ZX09010143-011), TCM State Administration Subject of Public Welfare (Grant No. 2015468004), Major Projects of Application Technology Research and Development Plan in Heilongjiang Province (GA18C004, GX16C003), National Science Foundation of Heilongjiang Province (YQ2019H030, LH2019H056, QC2018117, H2016056), Chinese Postdoctoral Science Foundation (2017M621319b), University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (UNPYSCT-2015118, UNPYSCT-2016213, UNPYSCT-2016212), Returned Overseas Scholars Program of Heilongjiang Province (2017QD0025), Young Talent Lift Engineering Project of China Association of Traditional Chinese Medicine (QNPC2-B06), Foundation of Heilongjiang University of Chinese Medicine (2018jc01, 2018bs02, 2018bs05, 201809), Nursing Program for Young Scholars with Creative Talents of Heilongjiang University of Chinese Medicine (2018RCQ13, 2018RCQ21), Longjiang Scholar Program of Education Department of Heilongjiang Province (Q201916), Heilongjiang Touyan Innovation Team Program.

Conflicts of Interest

None.
Ethnopharmacology, Phytochemistry and Pharmacological Properties of Cortex Phellodendri Chinensis: A Comprehensive Review

Abbreviation

AJ: amyloid-β
Akt: serine/threonine kinase
AMPK: AMP-activated protein kinase
CII: collagen type II
COX: cyclooxygenase
CPC: Cortex Phellodendri Chinensis
DHXSD: Dahuang Xiaoshi Decoction
ERK: extracellular signal regulated kinase
GSH: glutathione
HLJDD: Huanglian Jiedu Decoction
IC₅₀: half maximal inhibitory concentration
IKKβ: inhibitor of NF-κB kinase-β
IxB: inhibitor of NF-xB
IL: interleukin
Inos: inducible nitric oxide synthase
IRS-1: insulin receptor substrates-1
LPS: lipopolysaccharide
MAPK: mitogen-activated protein kinases
MRSA: methicillin-resistant Staphylococcus aureus
MTT: 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
NF: nuclear factor
PEEK: poly ether ether ketone
ROS: Reactive oxygen species
TCM: traditional Chinese medicines
TNF: tumor necrosis factor

REFERENCES

1. Akhisha T, Yokokawa S, Oghara E, Matsumoto M, Zhang J et al. (2017) Melanogenesis-inhibitory and cytotoxic activities of limonoids, alkaloids, and phenolic compounds from Phellodendron amurense Bark. Chem Biodivers 14: e1700105. [Crossref]

2. Li Y, Zhang T, Zhang X, Xu H, Liu C (2010) Chemical fingerprint analysis of Phellodendri Amurensis Cortex by ultra-performance LCQ-TOF-MS methods combined with chemometrics. J Sep Sci 33: 3347-3353. [Crossref]

3. Qi YD, Zhang ZP, Zhang Z, Zhang Y, Huang SX et al. (2016) Evaluation for heavy metal pollution of soil and herb from main producing area of Phellodendron amurense in China. Zhongguo Zhong yao za zhi 41: 383-389. [Crossref]

4. Zhang Y, Zhang ZP, Zhang Z, Bi CJ, Liu HT et al. (2016) Regional characteristic analysis of alkaloids and chlorogenic acid in wild Phellodendri Amurensis Cortex. Zhongguo Zhong yao za zhi 41: 1797-1802. [Crossref]

5. Choi YY, Kim MH, Han JM, Hong J, Lee TH et al. (2014) The anti-inflammatory potential of Cortex Phellodendron in vivo and in vitro: down-regulation of NO and iNOS through suppression of NF-kappaB and MAPK activation. Int Immunopharmacol 19: 214-220. [Crossref]

6. Chen X, Cao Y, Lv D, Zhi Z, Zhang J et al. (2012) Comprehensive two-dimensional HepG2/cell membrane chromatography/monolithic column/time-of-flight mass spectrometry system for screening anti-tumor components from herbal medicines. J Chromatogr A 1242: 67-74. [Crossref]

7. Li C, Xie J, Chen X, Mo Z, Wu W et al. (2016) Comparison of Helicobacter pylori Urease Inhibition by Rhizoma Coptidis, Cortex Phellodendri and Berberine: Mechanisms of Interaction with the Sulphydryl Group. Planta Med 82: 305-311. [Crossref]

8. Mori H, Fuchigami M, Inoue N, Nagai H, Koda A et al. (1995) Principle of the bark of Phellodendron amurense to suppress the cellular immune response: effect of phellodendrine on cellular and humoral immune responses. Planta Med 61: 45-49. [Crossref]

9. Kwon S, Jung W, Byun AR, Moon S, Cho K et al. (2015) Administration of Hwang-Ryun-Haedok-tang, a Herbal Complex, for Patients With Abdominal Obesity: A Case Series. Explore (NY) 11: 401-406. [Crossref]

10. Yu HH, Kim KJ, Cha JD, Kim HK, Lee YE et al. (2005) Antimicrobial activity of berberine alone and in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus. J Med Food 8: 454-461. [Crossref]

11. Wright CW, Marshall SJ, Russell PF, Anderson MM, Phillipson JD et al. (2000) In vitro antiplasmodial, antiameobic, and cytotoxic activities of some monomeric isoquinoline alkaloids. J Nat Prod 63: 1638-1640. [Crossref]

12. Habtemariam S (2016) Berberine and inflammatory bowel disease: A concise review. Pharmacol Res 113: 592-599. [Crossref]

13. Zhang W, Chen Z (2013) Masself inspired polydopamine functionalized poly (ether ether ketone) tube for online solid-phase microextraction-high performance liquid chromatography and its application in analysis of protoberberine alkaloids in rat plasma. J Chromatogr A 1278: 29-36. [Crossref]

14. Wang W, Li Q, Liu Y, Chen B (2015) Ionic liquid-aqueous solution ultrasonic-assisted extraction of three kinds of alkaloids from Phellodendron amurense Rupr and optimize conditions use response surface. Ultrason Sonochem 24: 13-18. [Crossref]

15. Shi HL, Peng SL, Sun J, Liu YM, Zhu YT et al. (2014) Selective extraction of berberine from Cortex Phellodendri using polydopamine-coated magnetic nanoparticles. J Sep Sci 37: 704-710. [Crossref]

16. Meng J, Zhang W, Bao T, Chen Z (2015) Novel molecularly imprinted magnetic nanoparticles for the selective extraction of protoberberine alkaloids in herbs and rat plasma. J Sep Sci 38: 2117-2125. [Crossref]

17. Jiang LF, Chen BC, Chen B, Li XJ, Liao HL et al. (2017) Aaptamer-functionalyzed Fe3 O4 magnetic nanoparticles as a solid-phase extraction adsorbent for the selective extraction of berberine from Cortex phellodendri. J Sep Sci 40: 2933-2940. [Crossref]

18. Zhang SJ, Lao SX, Zhao J, Hou W, Gao JB et al. (2015) Study on extract technology and antioxidant activity of flavonoid from Cortex Phellodendri Amurensis. Heilongjiang Med Pharm 38: 11-13. [Crossref]

19. Li L, Huang T, Tian C, Xiao Y, Kou S et al. (2016) The defensive effect of phellodendrine against AAPH-induced oxidative stress through regulating the AKT/NF-kappaB pathway in zebrafish embryos. Life Sci 157: 97-106. [Crossref]

20. Boost M, Yau P, Yap M, Cho P (2016) Determination of cytotoxicity of traditional Chinese medicine herbs, Rhizoma coptidis, Radix scutellariae, and Cortex phellodendri, by three methods. Cont Lens Anterior Eye 39: 128-132. [Crossref]

21. Fuji A, Okuyama T, Wakame K, Okumura T, Ikeya Y et al. (2017) Identification of anti-inflammatory constituents in Phellodendri Cortex and Coptidis Rhizoma by monitoring the suppression of nitric oxide production. J Nat Med 71 745-756. [Crossref]
22. Choi WM, Lam CL, Mo WY, Cheng Z, Mak NK et al. (2014) Effects of the modified Huanglian Jiedu decoction on the disease resistance in grey mullet (Mugil cephalus) to Lactococcus garvieae. Mar Pollut Bull 85: 816-823. [Crossref]

23. Chen YY, Li RY, Shi MJ, Zhao YX, Yan Y et al. (2017) Demethylberberine alleviates inflammatory bowel disease in mice through regulating NF-kappaB signaling and T-helper cell homeostasis. Inflamm Res 66: 187-196. [Crossref]

24. Xian YF, Mao QQ, Ip SP, Liu ZX, Che CT (2011) Comparison on the anti-inflammatory effect of Cortex Phellodendri Chinensis and Cortex Phellodendri Amurenensis in 12-O-tetradecanoyl-phorbol-13-acetate-induced ear edema in mice. J Ethnopharmacol 137: 1425-1430. [Crossref]

25. Oh Y, Kwon YS, Jung BD (2017) Anti-inflammatory effects of the natural compounds Cortex Phellodendri and Humulus japonicus on pelvic inflammatory disease in mice. Int J Med Sci 14: 729-734. [Crossref]

26. Kim JH, Huh JE, Baek YH, Lee JD, Choi DY et al. (2011) Effect of Phellodendron amurense in protecting human osteoarthritic cartilage and chondrocytes. J Ethnopharmacol 134: 234-242. [Crossref]

27. Wong RW, Hagg U, Samaranayake L, Yuen MK, Seneviratne CJ et al. (2010) Antimicrobial activity of Chinese medicine herbs against common bacteria in oral biofilm. A pilot study. Int J Oral Maxillofac Surg 39: 599-605. [Crossref]

28. Ma F, Chen Y, Li J, Qing HP, Wang JD et al. (2010) Screening test for anti-Helicobacter pylori activity of traditional Chinese herbal medicines. World J Gastroenterol 16: 5629-5634. [Crossref]

29. Seneviratne CJ, Wong RW, Samaranayake LP (2008) Potent antimicrobial activity of traditional Chinese medicine herbs against Candida species. Mycoses 51: 30-34. [Crossref]

30. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J et al. (2015) Global cancer statistics, 2012. CA-Cancer J Clin 65: 87-108. [Crossref]

31. Li XN, Zhang A, Wang M, Sun H, Liu Z et al. (2017) Screening the active compounds of Phellodendri Amurenis cortex for treating prostate cancer by high throughput chimmedomics. Sci Rep 7: 46234. [Crossref]

32. Mitani N, Murakami K, Yamaura T, Ikeda T, Saiki I (2001) Inhibitory effect of berberine on the mediastinal lymph node metastasis produced by orthotopic implantation of Lewis lung carcinoma. Cancer Lett 165: 35-42. [Crossref]

33. Bin L, Fu XQ, Li T, Tu S, Guo H et al. (2017) Computational and experimental prediction of molecules involved in the anti-melanoma action of berberine. J Ethnopharmacol 208: 225-235. [Crossref]

34. Alam S, Pal A, Kumar R, Mit SS, Ansari KM (2016) Neurxin inhibits azoxymethane-induced colonic aberrant crypt formation in rat colon and induced apoptotic cell death in colon adenocarcinoma cells. Mol Carcinog 55: 1262-1274. [Crossref]

35. Zhang AH, Yu JB, Sun H, Kong L, Wang XQ et al. (2018) Identifying quality-markers from Shengma San protects against transgenic mouse model of Alzheimer’s disease using chinnedomics approach. Phytomedicine 45: 84-92. [Crossref]

36. Yin J, Hu R, Chen M, Tang J, Li F et al. (2002) Effects of berberine on glucose metabolism in vitro. Metabolism 51: 1439-1443. [Crossref]

37. Shen N, Huan Y, Shen ZF (2012) Berberine inhibits mouse insulin gene promoter through activation of AMP-activated protein kinase and may exert beneficial effect on pancreatic beta-cell. Eur J Pharmacol 694: 120-126. [Crossref]

38. Zhou L, Yang Y, Wang X, Liu S, Shang W et al. (2007) Berberine stimulates glucose transport through a mechanism distinct from insulin. Metabolism 56: 405-412. [Crossref]

39. Liu W, Tang F, Deng Y, Li X, Lan T et al. (2009) Berberine reduces fibronectin and collagen accumulation in rat glomerular mesangial cells cultured under high glucose condition. Mol Cell Biochem 325: 99-105. [Crossref]

40. Wang L, Wang X, Zhu XM, Liu YQ, Du WJ et al. (2017) Gastroprotective effect of alkaloids from Cortex Phellodendri on gastric ulcers in rats through neurohumoral regulation. Planta Med 83: 277-284. [Crossref]

41. Takase H, Imanishi K, Miura O, Yumioka E, Watanabe H (1989) Features of the anti-ulcer effects of Oren-gedoku-to (a traditional Chinese medicine) and its component herb drugs. Jpn J Pharmacol 49: 301-308. [Crossref]

42. Takase H, Inoue O, Saito Y, Yumioka E, Suzuki A (1991) Roles of sulphydryl compounds in the gastric mucosal protection of the herb drugs composing oren-gedoku-to (a traditional herbal medicine). Jpn J Pharmacol 56: 433-439. [Crossref]

43. Zhang P, Qiang X, Zhang M, Ma D, Zhao Z et al. (2015) Demethylberberine, a natural mitochondria-targeted antioxidant, inhibits mitochondrial dysfunction, oxidative stress, and steatosis in alcoholic liver disease mouse model. J Pharmacol Exp Ther 352: 139-147. [Crossref]

44. Liang Y, Huang M, Jiang X, Liu Q, Chang X et al. (2017) The neuroprotective effects of Berberine against amyloid beta-protein-induced apoptosis in primary cultured hippocampal neurons via mitochondria-related caspase pathway. Neurosci Lett 655: 46-53. [Crossref]

45. Xian YF, Lin ZX, Ip SP, Su ZR, Chen JN et al. (2013) Comparison the neuroprotective effect of Cortex Phellodendri chinensis and Cortex Phellodendri amurense against beta-amyloid-induced neurotoxicity in PC12 cells. Pymatomecine 20: 187-193. [Crossref]

46. Kaufmann D, Kaur Dogra A, Tahrami A, Herrmann F, Wink M (2016) Extracts from Traditional Chinese Medicinal Plants Inhibit Acetylcholinesterase, a Known Alzheimer’s Disease Target. Molecules 21: 1161. [Crossref]

47. Bensky D, Barolet R (1990) Chinese Herbal Medicine: Formulas and Strategies. Eastland Press.

48. Bae S, Jung Y, Choi YM, Li S (2015) Effects of er-miao-san extracts on TNF-alpha-induced MMP-1 expression in human dermal fibroblasts. Biol Res 48: 8. [Crossref]

49. Yan F, He H, Yan R (2014) Relative determination of the alkaloid metabolites of Er Miao San in rat urine by LC-MS/MS and its application to pharmacokinetics. J Chromatogr B Analyt Technol Biomed Life Sci 951-952: 38-43. [Crossref]

50. Kong LD, Yang C, Ge F, Wang HD, Guo YS (2004) A Chinese herbal medicine Ermiao wan reduces serum uric acid level and inhibits liver xanthine dehydrogenase and xanthine oxidase in mice. J Ethnopharmacol 93: 325-330. [Crossref]

51. Chen G, Li KK, Fung CH, Liu CL, Wong HL et al. (2014) Er-Miao-San, a traditional herbal formula containing Atractylodis Rhizoma and Cortex Phellodendri inhibits inflammatory mediators in LPS-stimulated RAW264.7 macrophages through inhibition of NF-kappaB pathway and MAPKs activation. J Ethnopharmacol 154: 711-718. [Crossref]
52. Bao YX, Wong CK, Li EK, Tam LS, Leung PC et al. (2006) Immunomodulatory effects of lingzhi and san-miao-san supplementation on patients with rheumatoid arthritis. *Immunopharmacol Immunotoxicol* 28: 197-200. [Crossref]

53. Cai Z, Wong CK, Dong J, Jiao D, Chu M et al. (2016) Anti-inflammatory activities of Ganoderma lucidum (Lingzhi) and San-Miao-San supplements in MRL/lpr mice for the treatment of systemic lupus erythematosus. *Chin Med* 11: 23. [Crossref]

54. Lam FF, Ko IW, Ng ES, Tam LS, Leung PC et al. (2008) Analgesic and anti-arthritic effects of Lingzhi and San Miao San supplementation in a rat model of arthritis induced by Freund’s complete adjuvant. *J Ethnopharmacol* 120: 44-50. [Crossref]

55. Li EK, Tam LS, Wong CK, Li WC, Lam CW et al. (2007) Safety and efficacy of Ganoderma lucidum (lingzhi) and San Miao San supplementation in patients with rheumatoid arthritis: a double-blind, randomized, placebo-controlled pilot trial. *Arthritis Rheum* 57: 1143-1150. [Crossref]

56. Jiang T, Qian J, Ding J, Wang G, Ding X et al. (2017) Metabolomic profiles delineate the effect of Sanmiao wan on hyperuricemia in rats. *BioMed Chromatogr* 31: e3792. [Crossref]

57. Wang X, Wang CP, Hu QH, Lv YZ, Zhang X et al. (2010) The dual actions of Sanmiao wan as a hypouricemic agent: down-regulation of hepatic XOD and renal mURAT1 in hyperuricemic mice. *J Ethnopharmacol* 128: 107-115. [Crossref]

58. Liu K, Luo T, Zhang Z, Wang T, Kou J et al. (2011) Modified Si-Miao-San extract inhibits inflammatory response and modulates insulin sensitivity in hepatocytes through an IKKbeta/IRS-1/Akt-dependent pathway. *J Ethnopharmacol* 136: 473-479. [Crossref]

59. Zhang A, Zou D, Yan G, Tan Y, Sun H et al. (2014) Identification and characterization of the chemical constituents of Simiao Wan by ultra-high-performance liquid chromatography with mass spectrometry coupled to an automated multiple data processing method. *J Sep Sci* 37: 1742-1747. [Crossref]

60. Zhang A, Sun H, Wang X (2014) Potentiating therapeutic effects by enhancing synergism based on active constituents from traditional medicine. *Phytother Res* 28: 526-533. [Crossref]

61. Wang H, Sun H, Zhang A, Li Y, Wang L et al. (2013) Rapid identification and comparative analysis of the chemical constituents and metabolites of Phellodendri amurenensis cortex and Zhibai dihuang pill by ultra-performance liquid chromatography with quadrupole TOF-MS. *J Sep Sci* 36: 3874-3882. [Crossref]

62. Fan J, Liu K, Zhang Z, Luo T, Xi Z et al. (2010) Modified Si-Miao-San extract inhibits the release of inflammatory mediators from lipopolysaccharide-stimulated mouse macrophages. *J Ethnopharmacol* 129: 5-9. [Crossref]

63. Shang SW, Yang JL, Huang F, Liu K, Liu BL (2014) Modified Si-Miao-San ameliorates pancreatic B cell dysfunction by inhibition of reactive oxygen species-associated inflammation through AMP-kinase activation. *Chin J Nat Med* 12: 351-360. [Crossref]

64. Chen Y, Xian Y, Lai Z, Loo S, Chan WY et al. (2016) Anti-inflammatory and anti-allergic effects and underlying mechanisms of Huang-Lian-Jie-Du extract: Implication for atopic dermatitis treatment. *J Ethnopharmacol* 185: 41-52. [Crossref]

65. Lu J, Wang JS, Kong LY (2011) Anti-inflammatory effects of Huang-Lian-Jie-Du decoction, its two fractions and four typical compounds. *J Ethnopharmacol* 134: 911-918. [Crossref]

66. Durairajan SS, Huang Y, Yuen PY, Chen LL, Kwok KY et al. (2014) Effects of Huanglian-Jie-Du-Tang and its modified formula on the modulation of amyloid-beta precursor protein processing in Alzheimer’s disease models. *PloS one* 9: e92954. [Crossref]

67. Ye Y, Huang C, Jiang L, Shen X, Zhu S et al. (2012) Huanglian-Jie-Du-Tang extract protects against chronic brain injury after focal cerebral ischemia via hypoxia-inducible-factor-alpha-regulated vascular endothelial growth factor signaling in mice. *Biol Pharm Bull* 35: 355-361. [Crossref]

68. Yamasaki K, Kajimura K, Nakano M, Yokoyama H, Yoneda K et al. (1998) Effects of preparations of Chinese medicinal prescriptions on digestive enzymes in vitro and in vivo. *Biol Pharm Bull* 21: 133-139. [Crossref]

69. Arakawa K, Saruta T, Abe K, Inoura O, Ishii M et al. (2006) Improvement of accessory symptoms of hypertension by TSUMURA OrengeodoKuto Extract, four herbal drugs containing Kampo-Medicine Granules for ethical use: a double-blind, placebo-controlled study. *Phytomedicine* 13: 1-10. [Crossref]

70. Durairajan SS, Liu LF, Li JH, Chen LL, Yuan Q et al. (2012) Berberine ameliorates beta-amyloid pathology, glialosis, and cognitive impairment in an Alzheimer’s disease transgenic mouse model. *Neurobiol Aging* 33: 2903-2919. [Crossref]

71. Hu Y, Hu Z, Wang S, Dong X, Xiao C et al. (2013) Protective effects of Huang-Lian-Jie-Du-Tang and its component group on collagen-induced arthritis in rats. *J Ethnopharmacol* 150: 1137-1144. [Crossref]

72. Cai F, Xu W, Wei H, Sun L, Gao S et al. (2010) Simultaneous determination of active xanthone glycosides, timosaponins and alkaloids in rat plasma after oral administration of Zi-Shen Pill extract for the pharmacokinetic study by liquid chromatography-tandem mass spectrometry. *J Chromatogr B Analyt Technol Biomed Life Sci* 878: 1845-1854. [Crossref]

73. Kuang M (1998) The effect of Zi-Shen Pill on retention of urine and anuria. *J Pract Tradit Chin Med* 14: 30. [Crossref]

74. Sun H, Li TJ, Sun LN, Quy Q, Huang BB et al. (2008) Inhibitory effect of traditional Chinese medicine Zi-Shen Pill on benign prostatic hyperplasia in rats. *J Ethnopharmacol* 115: 203-208. [Crossref]

75. Wang S, Li X, Niu Y, Liu Y, Zhu Y et al. (2016) Identification and screening of chemical constituents with hepatoprotective effects from three traditional Chinese medicines for treating jaundice. *J Sep Sci* 39: 3690-3699. [Crossref]

76. Hsu YH, Chen TH, Wu MY, Lin YF, Chen WL et al. (2014) Protective effects of Zhibai Dihuang Wan on renal tubular cells affected with gentamicin-induced apoptosis. *J Ethnopharmacol* 151: 635-642. [Crossref]

77. Alogla RN, Fan Y, Zhang G, Li J, Zhao YJ et al. (2015) Pharmacokinetics of a multicomponent herbal preparation in healthy Chinese and African volunteers. *Sci Rep* 5: 12961. [Crossref]

78. Wu J, Yuan Q, Zhang D, Zhang X, Zhao L et al. (2011) Evaluation of Chinese medicine Qian-Yu for chronic bacterial prostatitis in rats. *Indian J Pharmacol* 43: 532-535. [Crossref]

79. Zhang K, Zeng X, Chen Y, Zhao R, Wang H et al. (2017) Therapeutic effects of Qian-Yu decoction and its three extracts on carrageenan-induced chronic prostatitis/chronic pelvic pain syndrome in rats. *BMC Complement Altern M* 17: 75. [Crossref]

80. Lay HL, Chen CC, Huang SC, Cham TM, Wu TS et al. (2010) Simultaneous analysis of nine components in patch preparations of Ru-
Ethnopharmacology, Phytochemistry and Pharmacological Properties of Cortex Phellodendri Chinensis: A Comprehensive Review

Yi-Jin-Huang-San by high-performance liquid chromatography. *J Nat Med* 64: 194-202. [Crossref]

81. Monkovic I, Spenser IA (1965) Biosynthesis of Berberastine. *J Am Chem Soc* 87: 1137-1138. [Crossref]

82. Xian X, Sun B, Ye X, Zhang G, Hou P et al. (2014) Identification and analysis of alkaloids in cortex Phellodendron amurense by high-performance liquid chromatography with electrospray ionization mass spectrometry coupled with photodiode array detection. *J Sep Sci* 37: 1533-1545. [Crossref]

83. Zhai H, Miller J, Sammis G (2012) First enantiomericselective syntheses of the dopamine D1 and D2 receptor modulators, (+)- and (-)-goyadine. *Bioorg Med Chem Lett* 22: 1557-1559. [Crossref]

84. Pingali S, Donahue JP, Payton Stewart F (2015) Tetrahedroberberine, a pharmacologically active naturally occurring alkaloid. *Acta crystallographica Section C Struct Chem* 71: 262-265. [Crossref]

85. Chinese Herbal Medicine Committee (2015) Pharmacopoeia of the People's Republic of China, 2015 ed. Beijing.

86. Hu YM, Su GH, Sze SC, Ye W, Tong Y (2010) Quality assessment of Cortex Phellodendri by high-performance liquid chromatography coupled with electrospray ionization mass spectrometry. *Biomed Chromatogr* 24: 438-453. [Crossref]

87. Akira I, Takayuki N, Hisao U (1998) Indolopyridinonazoline, furoquinoline and canthinone type alkaloids from phellodendron amurense callus tissue. *Phytochemistry* 48: 285-291.

88. Ishii H, Hosoya K, Ishikawa T, Ueda E, Hagiwara J (1974) Studies on the chemical constituents of rutaceus plants. xXI. the chemical constituents of Xanthopyrum arnottianum Maxim. (2). isolation of the chemical constituents of the xylem of stems. *Yakugaku Zasshi* 94: 322-331.

89. Min YD, Kwon HC, Yang MC, Lee KH, Choi SU et al. (2007) Isolation of limonoids and alkaloids from Phellodendron amurense and their multidrug resistance (MDR) reversal activity. *Arch Pharm Res* 30: 58-63. [Crossref]

90. Li XN, Zhai WF, Zhou MY, Shen PQ, Ge ZW et al. (2012) Chemical constituents from *Phellodendron chinensis*. *J Zhejiang univ tech* 40: 244-246.

91. Ikuta A, Urahe H, Nakamura T (1998) A new indolopyridinonazoline-type alkaloid from phellodendron amurense callus tissues. *J Nat Prod* 61: 1012-1014. [Crossref]

92. Lee SY, Morita H, Takeya K, Inokawa H, Fukaya H (1999) Limonoids from Citrus nippokioreana. *Natural Med* 53: 255-258.

93. Hitoshi K, Mujo K, Munetaka I, Young Joon A, Takehiko Y et al. (1989) Several Antifeedants from Phellodendron amurense against Reticulitermes speratus. *Agricol Biol Chem* 53: 2635-2640.

94. Khalil AT, Maatooq GT, El Sayed KA (2003) Limonoids from Citrus reticulate. *Z Naturforsch C J Biosci* 58: 165-170. [Crossref]

95. Kuki K, Kazuko Y, Shigenobu A (1992) Limonoids and protolimonoids from the fruits of phellodendron amurense. *Phytochemistry* 31: 1335-1338.

96. Alexander I, Prabha B, Peter GW (1998) New protolimonoids from the fruits of phellodendron chinensis. *Phytochem* 27: 1805-1808.

97. Wang M (2009) Studied on the chemical constituents and bioactivities of Cortex phellodendron Chinensis and Coptis chinensis Franch. Beijing: Peking Union Medical College.

98. Su RH, Kim M, Kawaguchi H, Yamamoto T, Goto K et al. (1990) Triterpenoids from the fruits of Phellodendron chinensis Schneid. : the stereostructure of niloticin Chem. *Pharm Bull* 38: 1616-1619.

99. Yan C, Zhang YD, Wang XH, Geng SD, Wang TY et al. (2016) Tricucalliene-type triterpenoids from the fruits of Phellodendron chinensis Schneid and their cytotoxic activities. *Fitoterapia* 113: 132-138. [Crossref]

100. Chen HD, Yang SP, Wu Y, Dong L, Yue JM (2009) Terpenoids from Toona ciliata. *J Nat Prod* 72: 685-689. [Crossref]

101. Yoshiteru Ida Y, Masumi Ohhtsuka, Miki Nagasao, Junzo Shoji (1993) Phenolic constituents of Phellodendron amurense bark. *Phytochem* 35: 209-215.

102. Kuo PC, Hsu MY, Danau AG, Su CS, Li CY et al. (2004) Flavonoids and Coumarins from leaves of phellodendron chinensis. *Planta Med* 70: 183-185.

103. Zhou HY, Wang D, Cui Z (2008) Ferulates, amurenlactone A and amurenlactone Am from traditional Chinese medicine cortex Phellodendri Amurense. *J Asian Nat Prod Res* 10: 409-413. [Crossref]

104. Sun ZG, Qiu KC, Li D, Qiu QY, Liu FM et al. (2017) Identification of the Constituents in Zhimu-huangbo Herb Pair by UPLC-LTQ-Orbitrap XL. *J Chinese Med Materials* 40: 101-106.

105. Morishita H, Iwashashi H, Osaka N, Kido R (1984) Chromatographic separation and identification of naturally occurring chlorogenic acids by IH nuclear magnetic resonance spectroscopy and mass spectrometry. *J Chromatogr* 315: 253-260. [Crossref]

106. Kuo YH, Wu CH, Wu RE, Lin ST (1995) Studies on acidic dimerization of 3,4-dioxygenated cinnamate or 1-phenylpropene to arylindane lignans. *Chem Pharm Bull* 43: 1267-1271.

107. Zhu YX, Chen LL, Gong JR, Wang SF (2014) Identification of constituents in Suauzaaen tang by LC-Q-TOF-MS and LC-IT-MS. *Zhongguo Zhong yao za zhi* 453. [Crossref]

108. Li XP, Li DD, Ding LQ, Qiu QY, Liu FM et al. (2017) Identification of arylindane lignans. *Acta Crystallographica Section C Struct Chem* 70: 1077-1080. [Crossref]

109. GopalaRajishnan S, Subbarao GV, Nakahara K, Yoshihashi T, Ito O et al. (2007) Nitrification Inhibitors from *Humidicola* a tropical grass. *J Agr Food Chem* 55: 4302-4306. [Crossref]

110. Su RH, Kim M, Kawaguchi H, Yamamoto T, Goto K et al. (1990) Triterpenoids from the fruits of Phellodendron chinensis Schneid. : the stereostructure of niloticin Chem. *Pharm Bull* 38: 1616-1619.

111. Schübl F, Fabian C, Jahangir S (2007) Structure and absolute configuration of loloidol isomers determined by comparison of calculated and experimental CD spectra. Seijas J A, Pilar Vázquez Tato M Eleventh International Electronic Conference on Synthetic Organic Chemistry. Switzerland: MDPI.