The Inert Doublet Model and evolution of the Universe

Maria Krawczyk* and Dorota Sokołowska

University of Warsaw, Faculty of Physics, Hoza 69, 00-681 Warsaw, Poland

January 26, 2013

Abstract

Inert Doublet Model (IDM) is a minimal extension of the Standard Model with the second scalar doublet that may provide a Dark Matter candidate. In this paper we consider the different variants of the evolution of the Universe after inflation, that lead towards the Inert phase today.

1 Introduction

2HDM The Two Higgs Doublet Model (2HDM) is a minimal extension of the Standard Model (SM) by the second scalar doublet [1]. The electroweak symmetry breaking (EWSB) via the Brout-Englert-Higgs-Kibble (BEHK) mechanism is described by the Lagrangian

\[\mathcal{L} = \mathcal{L}_{SM}^2 + \mathcal{L}_H + \mathcal{L}_Y, \quad \mathcal{L}_H = T - V. \] (1)

\[\mathcal{L}_{SM}^2 \] is the \(SU(2) \times U(1) \) Standard Model interaction of gauge bosons and fermions. In 2HDM the scalar Lagrangian of two SU(2) doublets \(\Phi_{S,D} \), with weak hypercharge \(Y = \pm 1 \), consists of the standard kinetic term \(T \) and the potential \(V \) of general form:

\[V = \frac{\lambda_1}{2} \left(\Phi^*_S \Phi_S \right)^2 + \frac{\lambda_2}{2} \left(\Phi^*_D \Phi_D \right)^2 + \lambda_3 \left(\Phi^*_S \Phi_S \right) \left(\Phi^*_D \Phi_D \right) + \lambda_4 \left(\Phi^*_S \Phi_D \right) \left(\Phi^*_L \Phi_S \right) \]

\[+ \frac{1}{2} \left(\Phi^*_S \Phi_D \right) \left(\Phi^*_D \Phi_S \right) + \lambda_6 \left(\Phi^*_S \Phi_S \right) \left(\Phi^*_D \Phi_D \right) + \lambda_7 \left(\Phi^*_D \Phi_D \right) \left(\Phi^*_D \Phi_S \right) + H.c. \]

\[- \frac{1}{2} m^2_{11} \left(\Phi^*_S \Phi_S \right) - \frac{1}{2} m^2_{22} \left(\Phi^*_D \Phi_D \right) - \frac{1}{2} m^2_{12} \left(\Phi^*_S \Phi_D \right) - \frac{1}{2} (m^2_{12})^* \left(\Phi^*_D \Phi_S \right), \] (2)

where \(\lambda_{1-7}, m^2_{1-2} \in \mathbb{R} \) and \(m_{5-7}, m^2_{12} \in \mathbb{C} \). If the explicit \(Z_2 \)-symmetry is present in the potential then the soft violating term \(\propto m^2_{12} \) and hard violating terms \(\propto \lambda_{6,7} \) are absent.

\(\mathcal{L}_Y \) describes the Yukawa interaction of SM fermions \(\psi \). We will assume Model I, meaning that only one scalar doublet \(\Phi_S \) interacts with fermions, and \(\mathcal{L}_Y(\psi, \Phi_S) \) has the same form as in the SM with the change \(\Phi \rightarrow \Phi_S \).

In this work we consider the Inert Doublet Model (IDM) which is a 2HDM with \(Z_2 \)-symmetric Lagrangian and a \(Z_2 \)-symmetric vacuum state. Exact \(Z_2 \) symmetry in the model provides us a Dark Matter candidate. We consider the different variants of the evolution of the Universe after inflation, that lead towards the Inert phase today.

\(Z_2 \) symmetry On this potential one may impose two discrete symmetries of \(Z_2 \) type, called here \(D \) and \(S \)-symmetry [2]. The corresponding transformations of scalar doublets are given by:

\[S: \Phi_S \rightarrow -\Phi_S, \quad \Phi_D \rightarrow \Phi_D, \quad D: \Phi_S \rightarrow \Phi_S, \quad \Phi_D \rightarrow -\Phi_D, \] (3)

while SM fields are even under both \(S \) and \(D \) transformation.

We will request the explicit \(Z_2 \)-symmetry (\(D \) or \(S \)-symmetry) in the potential \((\lambda_0 = \lambda_7 = m^2_{12} = 0) \), and without loss of generality one can set \(0 > \lambda_5 \in \mathbb{R} \). \(Z_2 \) symmetric potential has then 7 free parameters \(m^2_{11}, m^2_{22}, \lambda_{1-5} \). Those symmetries may be spontaneously violated by the non-vanishing v.e.v of one or two doublets \(\langle \Phi_S \rangle, \langle \Phi_D \rangle \). Note, that the Yukawa term violates \(S \)-symmetry even if \(\langle \Phi_S \rangle = \langle \Phi_D \rangle = 0 \), while it respects \(D \)-symmetry in any order of perturbation theory.

*Talk presented at 10th Hellenic School on Elementary Particle Physics and Gravity, Corfu 2010. Proceedings are to be published in Fortschritte der Physik.
Positivity conditions The existence of the stable vacuum is guaranteed by the positivity conditions imposed on V. You assume that the potential is bounded from below, and thus the extremum with the lowest energy is be the global minimum of the potential (vacuum). The positivity constrains relevant for this analysis are:

$$\lambda_1 > 0, \quad \lambda_2 > 0, \quad R + 1 > 0 \quad \text{with} \quad R = \lambda_{345}/\sqrt{\lambda_1 \lambda_2}, \quad \lambda_{345} = \lambda_3 + \lambda_4 + \lambda_5. \quad (4)$$

Vacua in Z_2 symmetric 2HDM The general solution of the extremum conditions of the potential V is:

$$\langle \Phi_S \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_S \end{pmatrix}, \quad \langle \Phi_D \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} u \\ v_D \end{pmatrix}, \quad (v^2 = v_S^2 + |v_D|^2 + u^2). \quad (5)$$

Depending on the values of the v_S, v_D, u parameters, different extrema can be realized in the model. Below we list the basic properties of possible extrema provided they are realized as the vacua.

The Charge breaking vacuum Ch with $u \neq 0$ and $v_D = 0$ leads to the electric charge non-conservation, as $U(1)_{EM}$ symmetry is broken.

The electroweak symmetric vacuum EWs corresponds to $u = v_S = v_D = 0$ and $m_{H1,2,2}^2 < 0$. Gauge bosons and fermions are massless, while the doublets have non-zero masses $\frac{|m_{H1}^2|}{\lambda_1}$ and $\frac{|m_{H2}^2|}{\lambda_2}$, respectively.

The Inert vacuum I_1 requires $u = v_D = 0$ and $v_S^2 = v^2 = m_{H1}^2/\lambda_1 > 0$. Fermions and gauge bosons are massive, the scalar sector contains SM-like Higgs h_S and dark scalars D_H, D_A, D^\pm, D_H. This is the only D-symmetric vacuum that can provide the DM candidate (more details in the next section) $[3, 4]$.

The inertlike vacuum I_2 with $u = v_S = 0$ and $v_D^2 = v^2 = m_{H2}^2/\lambda_2 > 0$ is “mirror-symmetric” to the inert vacuum I_1, with one Higgs particle D_A and four scalar particles: S_H, S_A, S^\pm. Here we have no DM candidate, as S-symmetry is violated by the Yukawa term (S-scalars interact with fermions) and D-symmetry is spontaneously violated by the vacuum state. Note that all fermions, by definition interacting only with Φ_S with vanishing v.e.v. $\langle \Phi_S \rangle = 0$, are massless.

The mixed vacuum M with $u = 0, v_S^2 = \frac{m_{H1}^2}{\lambda_1} - \lambda_{345} m_{H1}'^2 > 0$, $v_D^2 = \frac{m_{H2}^2}{\lambda_2} - \lambda_{345} m_{H2}'^2 > 0$, violates the full Z_2 symmetry of the potential. There are massive gauge bosons and fermions. Five massive Higgs bosons exist: two charged H^\pm and three neutral ones, the CP-even h and H and CP-odd A.

The realization of different types of vacua depends on the value of the parameters of the potential. M and Ch vacua can be realized in the separate regions of (λ_4, λ_5) parameter space, while I_1 (or I_2) can overlap M and Ch $[5]$. Note, that in the region where Ch can be realized, the lightest dark scalar is D^\pm.

2 Inert Doublet Model and dark matter

If the I_1 extremum realizes a vacuum then Universe is describy by the IDM. It predicts the existence of four dark scalars D_H, D_A, D^\pm and the Higgs particle h_S, which is interacting with the fermions and gauge bosons just as the Higgs boson in the SM.

Inert state is invariant under the D-transformation just as the whole Lagrangian $[1]$. Therefore, the D-parity is conserved and due to this fact the lightest D-odd particle is stable, being a good DM candidate. Masses of the scalar particles are:

$$M_{h_S}^2 = \lambda_1 v^2, \quad M_{D^\pm}^2 = (\lambda_3 v^2 - m_{H2}'^2)/2, \quad M_{D_H, D_A}^2 = M_{D^\pm}^2 + (\lambda_4 + \lambda_5) v^2/2. \quad (6)$$

These masses can be used to express the parameters of the potential V after EWSB. Since after EWSB the potential has 6 free parameters, one also needs two self-couplings to describe the model. Triple and quartic couplings between SM-like Higgs h_S and DM candidate D_H, i.e. $D_H D_H h_S$ and $D_H D_H h_S h_S$, are proportional to λ_{345}. λ_2 is related only to quartic self-couplings, e.g. $D_H D_H D_H D_H$. The remaining self-coupling, λ_3, governs the D^\pm interactions like $D^+ D^- h_S$ and $D^+ D^- h_S h_S$ vertices.

The value of λ_{345} strongly affects the DM interactions relevant for $\Omega_{DM}h^2$, the energy relict density of DM. This is because it governs the main decay channel in wide region of parameter space ($D_H D_H$ annihilation into fermions via h_S exchange). The value of λ_2 parameter does not influence $\Omega_{DM}h^2$ explicitly.

Collider constraints on scalars’ masses Strong limitations for the physics beyond SM come from the electroweak precision tests. For IDM both light and heavy Higgs particle is allowed $[1]$. EWPT constrain the mass splittings between the dark particles $\delta_A = M_{D_A} - M_{D_H}, \delta_{D_A} = M_{D^\pm} - M_{D_H}$ $[6]$. If SM Higgs is heavy, then large δ_{D_A} is needed, while δ_A could be small. For a light Higgs boson, the allowed region corresponds to $\delta_{D_A} \sim \delta_A$ with mass splittings that could be large.

MSSM constraints from LEP II were interpreted within the IDM in $[7]$. This analysis excludes the following region of masses: $M_{D_A} < 80 \text{ GeV}$, $M_{D_A} < 100 \text{ GeV}$ and $\delta_A > 8 \text{ GeV}$. For $\delta_A < 8 \text{ GeV}$ the LEP I limit $M_{D_H} + M_{D_A} > M_Z$ applies.
Figure 1: Possible vacua and evolution to a current states (dots) represented by rays on (μ_1,μ_2) plane for a) $R > 1$, b) $1 > R > 0$, c) $0 > R > -1$. The boundary lines are $A: \mu_2 = \mu_1 R$, $B: \mu_2 = \mu_1$, $C: \mu_2 = \mu_1/R$. Blue (dark shade) region represents I_2 vacuum, yellow (light shade) region $-I_1$ vacuum and green (medium shade) region $-M$ vacuum. In the hatched regions between lines A, B and $B, C I_1$ and I_2 minima co-exist.

DM relict density constraints Various studies [6, 8, 9, 10] show that for IDM there are three allowed regions of M_{DM}, which may give $\Omega_{DM} h^2$ in agreement with the astrophysical estimations $\Omega_{DM} h^2 = 0.112 \pm 0.009$ [11]. Those regions are: (i) light DM particles with mass close to and below 10 GeV, (ii) medium mass regime of 40 – 80 GeV and (iii) heavy DM of mass larger than 500 GeV.

Astrophysical estimations of $\Omega_{DM} h^2$ may be used to give the limitations for $|\lambda_{345}|$ depending on the chosen value of masses of D_H and other scalars [6] [8], however not on coupling λ_2.

3 Thermal evolution of the Universe

To study the earlier history of the Universe after inflation we consider thermal evolution of the Lagrangian in the first nontrivial approximation [12] [13] [2]. In this approximation the Yukawa couplings and the quartic coefficients λ_i’s remain unchanged, while the mass parameters $m_i^2 (i = 1, 2)$ vary with temperature T as follows: $m_i^2(T) = m_i^2 - c_i T^2$, $c_1 = c_1(\lambda) + c(g,g') + c_1(g_1,g_2)$, $c_2 = c_2(\lambda) + c(g,g')$. Here $c_1(\lambda) = (3\lambda_i + 2\lambda_3 + \lambda_4)/6$ are the scalar corrections; $c(g,g')$ is the contribution from the EW gauge couplings, which is the same for both c_1 and c_2. Only c_1 receives $c_1(g_1,g_2)$ correction, that comes from the interaction of Φ_S with t and b quarks.

In virtue of positivity conditions the sum of evolution coefficients is positive: $c_2 + c_1 > 0$. For $R > 0$ both $c_i > 0$, while for $R < 0$ arbitrary signs of $c_{1,2}$ are possible. The restoration of of EW symmetry for high T [14] requires positive c_1, c_2 [2]. Here we limit ourselves to the neutral vacua and the case of restoration of EW symmetry.

As the Universe is cooling down the potential V, with temperature dependent quadratic coefficients, may have different ground states, discussed in sec.1. Figures 1a-c present the types of evolution for different ranges of R. In case of rays Ia-c, Ia-b, III there is a single phase transition $EWs \rightarrow I_1$. For $R > 1$ there is a unique possibility of the 1st-order phase transition between I_2 and I_1 vacua (rays IV and V). Also in this case we have the possibility of co-existence of the vacuum I_1 and local minimum I_2 for $T = 0$ (rays III and V) [15]. For $0 < R < 1$ also M can be a vacuum (see [2]) and for ray VI Universe goes through a sequence of three 2nd-order phase transitions $EWs \rightarrow I_2 \rightarrow M \rightarrow I_1$. If $R < 0$ the only possible ray that corresponds to the EW symmetry in the past is ray Ic.

Figure 2 presents the temperature evolution of v.e.v v, proportional to the M_H mass, and the top quark mass m_t in two types of sequences represented by ray V (fig 2k) and ray VI (fig 2b). In the first picture the effects of the 1st-order phase transition are visible as a discontinuity during $I_2 \rightarrow I_1$. Second sequence consists of the three 2nd-order phase transitions.

Conclusions IDM is a model which may provide the DM candidate in agreement with WMAP observations. We argue, that during thermal evolution the Universe can pass through various intermediate phases, before it reaches the Inert phase. In those intermediate phases there is no DM candidate and gauge bosons and fermions may have different masses than in the Inert phase.

Acknowledgement We are thankful to I. F. Ginzburg and K. A. Kanishev for cooperation. We would like to thank the organizers of the School, especially George Zoupanos for very nice scientific atmosphere. Work was partly supported by Polish Ministry of Science and Higher Education Grant N N202 230337 and EU Marie Curie Research Training Network HEPTOOLS, under contract MRTN-CT-2006-035505.
Figure 2: Evolution of v.e.v $v(T)$ (solid line) and top mass $m_t(T)$ (dashed line) for example of a) ray V with $\lambda_2 = 0.05$, b) ray VI with $\lambda_2 = 0.125$ for $M_{h_u} = 120$ GeV, $M_{D_H} = 45$ GeV, $M_{D_A} = 115$ GeV, $M_{D^\pm} = 125$ GeV, $\lambda_{345} = 0.17$. Parameters were chosen to fulfill the existing collider contraints [15].

References

[1] T. D. Lee, Phys. Rev. D 8 (1973) 1226.
[2] I. F. Ginzburg, K.A. Kanishev, M. Krawczyk, D. Sokolowska, Phys. Rev. D 82 (2010) 123533.
[3] N. G. Deshpande and E. Ma, Phys. Rev. D 18 (1978) 2574;
[4] R. Barbieri, L. J. Hall and V. S. Rychkov, Phys. Rev. D 74 (2006) 015007.
[5] M. Krawczyk and D. Sokolowska, Proceedings of 21st Rencontres de Blois, arXiv:0911.2457 [hep-ph].
[6] E. M. Dolle and S. Su, Phys. Rev. D 80 (2009) 055012.
[7] E. Lundstrom, M. Gustafsson and J. Edsjo, Phys. Rev. D 79 (2009) 035013.
[8] L. Lopez Honorez, E. Nezri, J. F. Oliver and M. H. G. Tytgat, JCAP 0702 (2007) 028.
[9] T. Hambye and M. H. G. Tytgat, Phys. Lett. B 659 (2008) 651.
[10] L. L. Honorez and C. E. Yaguna, JHEP 09 (2010) 046.
[11] Particle Data Group. Journ. of Phys. G 37 #7A (2010) 075021
[12] I. P. Ivanov, Acta Phys. Polon. B 40 (2009) 2789.
[13] I. F. Ginzburg, I. P. Ivanov and K. A. Kanishev, Phys. Rev. D 81 (2010) 085031.
[14] M. B. Gavela, O. Pene, N. Rius and S. Vargas-Castrillon, Phys. Rev. D 59 (1999) 025008.
[15] D. Sokolowska, arXiv:1104.3326 [hep-ph].