A senescence-like cell-cycle arrest occurs during megakaryocytic maturation: implications for physiological and pathological megakaryocytic proliferation.

Rodolphe Besancenot, Ronan Chaligné, Carole Tonetti, Florence Pasquier, Caroline Marty, Yann Lécluse, William Vainchenker, Stefan Constantinescu, Stéphane Giraudier

To cite this version:

Rodolphe Besancenot, Ronan Chaligné, Carole Tonetti, Florence Pasquier, Caroline Marty, et al.. A senescence-like cell-cycle arrest occurs during megakaryocytic maturation: implications for physiological and pathological megakaryocytic proliferation.. PLoS Biology, Public Library of Science, 2010, 8 (9), epub ahead of print. 10.1371/journal.pbio.1000476. inserm-00707240

HAL Id: inserm-00707240
https://www.hal.inserm.fr/inserm-00707240
Submitted on 12 Jun 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A Senescence-Like Cell-Cycle Arrest Occurs During Megakaryocytic Maturation: Implications for Physiological and Pathological Megakaryocytic Proliferation

Rodolphe Besancenot¹², Ronan Chaligné¹², Carole Tonetti³, Florence Pasquier¹², Caroline Marty¹², Yann Lécluse², William Vainchenker¹², Stefan N. Constantinescu⁴, Stéphane Giraudier¹³

¹ INSERM, U790, Institut Gustave Roussy, Villejuif, France, ² Université Paris XI, IFR54, Institut Gustave Roussy, Villejuif, France, ³ AP-HP, Université Paris XII, Laboratoire d’Hématologie, PRB Cellulothèque hématologie, Hôpital Henri Mondor, Créteil, France, ⁴ Ludwig Institute for Cancer Research, Brussels, Belgium

Abstract

Thrombopoietin (TPO) via signaling through its cognate receptor MPL is a key cytokine involved in the regulation of megakaryocytic differentiation leading to platelet production. Mature megakaryocytes are polyploid cells that have arrested DNA replication and cellular proliferation but continue sustained protein synthesis. Here, we show that TPO induces cell-cycle arrest in the megakaryocytic UT7-MPL cell line by the activation of the ERK/MAPK pathway, induction of p21CIP transcription, and senescence markers through EGR1 activation. A similar senescence-like process was also detected in normal primary postmitotic megakaryocytes. In contrast, senescence was not observed in malignant megakaryocytes derived from primary myelofibrosis patients (a form of chronic myeloid hemopathy). Our data indicate that polyploid mature megakaryocytes receive signals from TPO to arrest cell proliferation and enter a senescent-like state. An escape from this physiological process may be associated with certain myeloproliferative neoplasms leading to abnormal megakaryocytic proliferation.

Introduction

Hematopoietic stem cells (HSCs) in adults are maintained in a long-term-quiescent state. On rare occasion HSCs may enter the cell cycle, and their proliferative state is usually coupled to a differentiation process regulated by both intrinsic and extrinsic factors such as cytokines [reviewed in (1)]. In most somatic cells, proliferation is dependent on mitogen-activated protein kinase (MAPK) signaling, shown to be involved in the transition through the early G1 phase of the cell cycle [reviewed in (2)]. Particularly, prolonged MAPK signaling is also a potent inducer of differentiation and thus links proliferation and developmental progression in somatic cells [3,4]. However, when mature cells are produced, they are maintained in a post-mitotic state by mechanisms not yet fully understood.

Megakaryopoiesis is the hematopoietic differentiation process that leads to platelet production. The arrest of megakaryocyte proliferation is followed by ploidization resulting from endomitosis. During endomitosis, cell size and protein production per cell increase. Indeed, endomitosis corresponds to a mitosis with a failure of late cytokinesis but is still associated with DNA replication [5,6] and transcription [7]. Usually, when megakaryocytes become 16N, the endomitosis process stops and is followed by terminal differentiation leading to cytoplasmic fragmentation and platelet shedding. The main regulator of megakaryocyte differentiation is the cytokine thrombopoietin (TPO: GeneID: 7066). TPO binds to and activates the TPO receptor (MPL: GeneID: 4352) signaling to regulate both early and late stages of differentiation [8].

Cellular senescence is a state of permanent cell-cycle arrest contributing to tissue aging and has been considered in recent years as an intrinsic barrier against tumorigenesis [reviewed in (9–11)]. Recently, multiple secreted inflammatory cytokines, their cognate receptors, and induced transcription factors have been identified as key mediators of oncogene-induced senescence (OIS) [12–14]. Besides prevention of tumor outgrowth from benign lesions, other roles of OIS in non-oncogenic processes are emerging such as the fibrogenic response to acute tissue damage.
Results

The erythro-megakaryocytic cell line UT7 does not naturally respond to TPO due to very low expression of the TPO receptor MPL but responds to GM-CSF, a hematopoietic cytokine mediating its effects on the neutrophil lineage as well as on hematopoietic progenitors, but it does not appear to have a role in basal hematopoiesis. The UT7 cell line expresses GM-CSF receptors and proliferates in response to this cytokine. We transduced the cells with a retroviral vector encoding MPL and selected a clone called UT711oc1, which expresses high levels of MPL. Proliferation of UT711oc1 cells was stimulated by GM-CSF (Figure 1a). Surprisingly, in the presence of TPO, UT711oc1 cells proliferated over a 2-d period before stopping (Figure 1a). This was a marked difference with the previously described UT7/MPL cells, which were selected for their growth in presence of TPO [25] but similar to other previously UT7 cell line described by Porteu et al. [26]. UT711oc1 cells could be maintained in culture for 3 wk (unpublished data). These differences are probably related to the selection processes of the clones: i.e., long-term selection at a low dose of TPO for the UT7/MPL. Komatsu’s cells and viral transduction of mpl for Porteu’s and our cells. These UT711oc1 cells were blocked in the DNA replication process (Figure 1b) and underwent morphological changes characterized by large cytoplasm and nucleus (Figure 1c). Exposure to TPO for 3 d was sufficient to render the cell unresponsive to further stimulation by GM-CSF (Figure 1e), suggesting that cell-cycle arrest was not reversible. Moreover, we did not detect any Annexin V staining in UT711oc1 cells stimulated with TPO (Figure S1a), nor were the PARP and caspase 3 cleaved (Figure S1b). On the other hand, these cells exhibited HIPgamma lco1 (Figure 1g), SA-beta-galactosidase staining (Figure 1d), and expressed cell-cycle inhibitors such as p21CIP and p27KIP (GeneID: 102) (Figure 1f), as previously reported [27], 3 senescence-associated markers. These results were confirmed in 2 other MPL-overexpressing UT7 cell lines (Figure S1c). In order to confirm that TPO was able to induce senescence, other markers of senescence were analyzed. Cathepsin D (GeneID: 1509) mRNA up-regulation has been previously proposed as a senescence marker [28]. We observed a drastic increase in cathepsin D mRNA expression in TPO-exposed cells (Figure S1d). To confirm the senescence phenotype, we determined TPO-induced gene expression in 24 h TPO-exposed cells relative to that of GM-CSF-stimulated cells by micro-array analysis. The TPO-induced gene expression profile was then compared to the published molecular signature of oncogenic ras-induced senescence [29]. A gene set enrichment analysis (GSEA) comparing these two sets of genes revealed a significant enrichment for TPO-induced gene expression in senescent fibroblast genes (Figure 1h). This enrichment was highly significant for up-regulated genes. The coincident 30 most up- and down-regulated genes are depicted (Figure S2). Among the most up-regulated coincident genes, we found genes involved in inflammation (CXCL2 (GeneID: 292), PTGS2 (GeneID: 574), IL6 (GeneID: 356), IL8 (GeneID: 3576), CXCL3 (GeneID: 2921), IL1B (GeneID: 3553)) that agree with recent literature linking OIS to an interleukin-dependent inflammatory network and among the most down-regulated coincident genes appeared genes involved in DNA replication and cell proliferation. Lastly, senescent cells are able to secrete cytokines and chemokines. We analyzed TPO-exposed UT711oc1 supernatant cytokine concentrations compared to GM-CSF-exposed UT711oc1 supernatant. MCP1 (GeneID: 6347), IL1-1, IL-10 (GeneID: 3586), and VEGF (GeneID: 7422) are secreted by TPO-exposed cells when compared to GM-CSF stimulated cells, cytokines previously reported to be secreted by senescent cells (Figure S1e) [30–33]. There are various types of senescence including the senescence induced by short telomeres and OIS. While the first mechanism is linked to long-term culturing, OIS can quickly be induced in cell lines after small GTPase RAS overstimulation. TPO has been shown to induce a high and sustained level of the RAS/MAPK signaling (Figure 1f). Altogether, these data indicate that TPO per se is able to induce a senescence process in UT711oc1 cells. We investigated the implication of MAPK activity in TPO-induced senescence.

In order to determine whether TPO-induced senescence was RAS/MAPK dependent, we used MAPK pathway inhibitors. RAS/MAPK inhibition either by PD98059 or U0126 reversed the TPO-induced cell proliferation arrest (Figure 2a) as previously reported [4], restored DNA replication (Figure 2b), and decreased the SA-beta-galactosidase staining (Figure 2c), p21CIP level (Figures 2d and S3a), and cathepsin D expression (Figure S3b) but did not induce recurrent changes in p27KIP, p53 (GeneID: 7157), or p16INK4a expression (Figure S3c). These results illustrate that TPO-induced senescence is MAPK-dependent. In order to clearly demonstrate that the senescence phenotype was a direct consequence of sustained RAS/MAPK-pathway activation, we over-expressed a constitutively active form of MEK (MEK1-S218D/S222D) in UT711oc1 cells and cultured cells in presence
of GM-CSF. We observed a proliferative arrest (Figure 2c) as previously reported [34], a DNA replication arrest (Figure 2f), an increased SA-β-galactosidase staining (Figure 2g), a rise in the p21CIP cell-cycle inhibitor transcript (Figure S3d) and protein (Figure 2h), and an up-regulation of cathepsin D mRNA (Figure S3e), but it did not affect p27KIP expression (Figure S3f). Of note, TPO stimulation or active form of MEK did not change total ERK protein expression (Figure S7). We concluded that TPO-
induced senescence was a direct consequence of the ERK activation.

To clarify the implication of cell-cycle inhibitors in TPO-induced senescence, we knocked down cell-cycle inhibitors (p27KIP, p21CIP, p16INK4a) and p53 in the UT711oc1 cell line using lentiviral shRNA expression. Specific shRNAs were functional at the protein level (Figure 3a). TPO induced a decrease in cell proliferation and in DNA replication in the shRNA-expressing cell lines except for p21CIP shRNAs (Figure 3b and c). Moreover, SA-β-galactosidase staining was high in all cell lines but in UT711oc1 cells expressing p21CIP shRNAs (Figure 3d). This demonstrated that TPO-induced senescence is p21CIP-dependent but p27KIP-, p16INK4a-, and p53-independent.

We next investigated whether p21CIP was transcriptionally regulated by the MAPK pathway. We detected significant p21CIP protein expression 4 h after addition of TPO (unpublished data), suggesting the possible involvement of a transcription factor regulated by ERK. Expression of p21CIP is known to be directly regulated by several transcription factors. We proposed the early
growth response protein 1 (EGR1 (GeneID: 1958)) as a candidate for TPO-induced p21CIP-dependent senescence because (i) EGR1 has been implicated in cell-cycle arrest [35], (ii) EGR1 can be activated by the RAS/MAPK pathway [36], and (iii) EGR1 regulates p21CIP transcription [37]. We first analyzed EGR1 expression in UT711oc1 cells stimulated by either GM-CSF or TPO and after ERK chemical inhibition. EGR1 was expressed in UT711oc1 cells only after TPO stimulation. Moreover, its expression was abrogated by PD98059 and U0126 inhibitors (Figure 4a). Thus, in UT71oc1 cells, EGR1 expression is regulated by TPO in a MAPK-dependent mechanism. We analyzed whether ERK signaling was the main pathway regulating EGR1 expression in our system. UT711oc1 cells infected with a constitutively active MEK (MEK1-SS/DD) and cultured in presence of GM-CSF presented an increase in EGR1 expression (Figure 4b). EGR1 is found either in the cytoplasm or the nucleus. We studied EGR1 localization after TPO stimulation using Western blotting (Figure 4c) and immunolabeling coupled with confocal microscopy (Figure 4d). Based on both these approaches we showed that EGR1 was localized in the nucleus after 2 h TPO stimulation and thus was presumably active. To examine whether EGR1 could regulate p21CIP expression following TPO stimulation, UT711oc1 cells were transduced with lentiviral vectors expressing EGR1 shRNAs. These shRNAs induced a knockdown of EGR1 at the mRNA and protein levels (Figures 4e and S4a) resulting in a decrease in expression of p21CIP after 2 h TPO stimulation (Figure 4f). Inactivation of EGR1 reversed, at least in part, the DNA replication arrest of UT711oc1 cells after TPO exposure (Figure S4b) and decreased the proportion of cells with SA-β-Galactosidase staining (Figure 4g). In order to demonstrate that EGR1 directly regulates p21CIP, chromatin immunoprecipitation ChIP analysis was performed. Briefly, after EGR1 immunoprecipitation, we detected binding to DNA sequences belonging to the p21CIP promoter. We observed an increase in EGR1 binding to p21CIP promoter after TPO stimulation (Figure 4h). Altogether these results confirmed that after TPO stimulation EGR1 was activated by the RAS/MAPK pathway, translocated to the nucleus, bound to p21CIP promoter, and activated p21CIP transcription, finally inducing senescence.

We studied whether TPO-induced senescence in UT711oc1 cells was a phenomenon widespread to normal megakaryocyte differentiation. Lin⁻ cells isolated from C57/B16 mice were cultured for 6 d with TPO and were found to display a high SA-β-Galactosidase activity (Figure 5a). To extend these findings to
human, CD34+ cells were cultured in vitro in megakaryocytic differentiation condition. We observed an increase in SA-β-galactosidase staining 10 to 16 d after the start of the culture (Figure 5b), when megakaryocytes were polyploid and initiating platelet production. Cathepsin D mRNA expression was also induced during megakaryocytic differentiation (Figure S5c). To determine whether the senescence observed in culture was associated to cell maturation, we analyzed p21CIP expression during megakaryocytic cell culture, along with CD41, CD42, and von Willebrand factor megakaryocytic markers. p21CIP expression was very low in immature cells (day 0 to day 3 of culture) and increased at day 6 and day 9. Interestingly, the peak in p21CIP expression was observed at day 6, which corresponds to the period of megakaryocytic differentiation. The analysis of p21CIP expression during megakaryocytic cell culture indicates that p21CIP is involved in the senescence-like cell cycle arrest observed in culture.

Figure 4. Transcription factor EGR1 increases and translocates to the nucleus in TPO-stimulated UT711oc1 cells and directly regulates p21 mRNA expression. (a) TPO-dependent EGR1 induction is inhibited by PD98056 or U0126 treatment. UT711oc1 cells were cultured for 5 d in presence of TPO and two different MAPK inhibitors. (b) EGR1 increases after MEK1-SS/DD expression in presence of GM-CSF. (c) TPO induces the translocation of EGR1 to the nucleus. Cells were grown with GM-CSF or TPO for 2 h and lysates were fractionated before being resolved by Western blotting. (d) Immunolabeling of EGR1 (in red) and nucleus (in blue) were performed and analyzed by confocal microscopy. EGR1 was present in low quantity in cytoplasm in proliferating UT711oc1 (GM-CSF), but TPO induced an increase in EGR1 labeling and translocation of the transcription factor to the nucleus. (e) EGR1 shRNA lentiviral transductions efficiently repress EGR1 mRNA expression after TPO exposure and (f) down-regulate expression of p21. (g) EGR1 knock-down inhibits the SA-β-galactosidase staining. (h) Study of chromatin immunoprecipitation (ChiP) with EGR1 antibody shows enrichment in p21 promoter after TPO exposure compared to GM-CSF. The figures represent one of three performed experiments. Error bar represents the standard deviation of three independent experiments.

doi:10.1371/journal.pbio.1000476.g004
expression was reached approximately 3 d after the maximum level of ERK phosphorylation (Figure 5c). There was a marked increase in megakaryocyte differentiation measured by the rising proportion of mature (CD41+/CD42+) versus progenitors (CD41−/CD42−) and immature megakaryocytes (CD41+/ CD42−) at days 3, 6, and 9 (Figures 5d and S5a). CD41+ cells were positive for von Willebrand factor (Figure S5b) and this megakaryocyte differentiation was correlated with the progressive increase in cathepsin D mRNA expression (Figure S5c). Chemical inhibition of ERK activation in human megakaryocytic cultures demonstrated a decrease in p21CIP mRNA and protein expression (Figure S6a and S6b). To confirm that senescence
could be defined as a physiological process happening during megakaryocyte differentiation, we sorted human mature normal CD41+/CD42+ megakaryocytes from human bone marrow aspirations and tested these cells for expression of markers of senescence. Using this approach, we confirmed that SA-β-galactosidase activity was also present in vivo in mature megakaryocytes (Figure 5e).

Cellular senescence is a permanent state of cell-cycle arrest and is emerging as an intrinsic barrier against tumorigenesis. Primary myelofibrosis (PMF) is a myeloproliferative disorder induced in 50% of cases by an acquired JAK2V617F mutation leading to spontaneous kinase activation. In PMF, this mutation is present in all myeloid cells including the megakaryocytic cell line. Thus, we investigated whether such malignant megakaryocytes could escape to TPO-induced physiological senescence. Human PMF and normal CD34+ cells were cultured with TPO for 12 d. PMF compared to normal megakaryocytes exhibited a lower SA-β-galactosidase staining as revealed by the intensity of staining and the percentage of SA-β-galactosidase-positive cells (Figure 5f). This result suggests a defect of TPO-induced senescence in these malignant megakaryocytes. We examined whether p21CIP was down-regulated in PMF megakaryocytes and analyzed its expression in 10 d cultured normal and PMF megakaryocytes. After 10 d of culture p21CIP mRNA and protein expressions were lower in PMF than in normal megakaryocytes (Figure 5g and 5h). The down-modulation of p21CIP expression may play a role in the resistance to the physiological TPO-induced senescence process, thus leading to the increase in megakaryocyte hyperproliferation in these myeloproliferative diseases.

Discussion

Hematopoietic cytokines are commonly considered as proliferative and anti-apoptotic proteins regulating blood cell production in basal or stress conditions. TPO is a specific megakaryocytic cytokine that induces proliferation and cell differentiation and regulates platelet production. In addition, in HSCs TPO induces quiescence of primitive HSCs and proliferation of the multipotent progenitors. Thus, TPO seems to have proliferative and anti-proliferative actions, depending on the cell type (reviewed in [30]). Megakaryopoiesis is a multiple stage differentiation process under the control of TPO. Megakaryocytic precursors proliferate, switch to polyploidization, and stop DNA replication before terminal differentiation leading to platelet shedding. Here, we report that UT7 cells genetically modified to over-express the TPO receptor respond to TPO by inducing senescence and that a similar process occurs in normal megakaryocytes. It was recently demonstrated that senescence is partially related to the release of inflammatory cytokines such as IL-6 and IL-8 [13,30,31,33]. Upon secretion by senescent cells, these cytokines can trigger and maintain the senescence process. Our observations support the notion that TPO, a non-inflammatory cytokine, recapitulates the OIS mechanisms by inducing a high and sustained RAS/MAPK activation and consequently transcription of EGR1, leading to synthesis of the p21CIP CDK inhibitor. In addition, a recent study suggests that increased reactive oxygen species (ROS) promote megakaryopoiesis [39]. ROS accumulation driving megakaryocyte maturation could also participate in DNA damage observed in megakaryocytes (γH2AX foci observed in megakaryocytes in our laboratory) (Ali A and Debili N, unpublished data), cumulative oxidative damage lastly contributing to cellular senescence (Figure 6). This TPO-induced senescence could be a key mechanism for post-mitotic arrest without cell death, allowing these cells to respond to different stimuli with biological effects other than proliferation. In this work, we have shown the important role of p21CIP in the proliferative arrest of the UT71loc1 cells. Similarly, induction of p21CIP was also found during megakaryocyte differentiation. It is worth noting that the mouse knock-out of p21CIP does not abrogate the post-mitotic arrest by normal megakaryocyte differentiation [40], suggesting the possible involvement of other CDKIs, such as p19INK4d (GeneID: 1032) [41]. Furthermore, based on our results on primary cells from healthy donors and from myeloproliferative patients, it is possible that the heterochromatin changes associated
with TPO-induced senescence might be more important in normal differentiation. Induction of several CDKis might occur differently in function of the differentiation stages and allow transmission of signals in a reversible manner in terminally differentiated megakaryocytes. It is possible that depending on the stage of differentiation, there will be differences in MPL and JAK2 expression levels resulting in different levels of TPO-induced ERK/MAPK signaling.

Senescence is a biological process that limits oncogenic transformation. Immature hematopoietic cells (progenitors or HSCs) have a very high proliferative capacity and linking senescence to proliferation could efficiently limit “high-risk” oncogenic processes in these cells. However, hematopoietic tissues are still the targets of oncogenic processes (i.e. leukemia and myeloproliferative disorders). Cancer cells can be defined as cells that escape the senescence process induced by an oncogene. The mechanisms leading to such an escape remain unclear. We hypothesize that in malignant megakaryocytic cells, depending on MPL signaling for their proliferation, TPO-induced senescence may be deficient due to events that counteract the MPL/MAPK/EGR1/p21CIP pathway. In favor of this hypothesis, we found that PMF megakaryocytes have lost their senescence ability in response to TPO due to a p21CIP down-expression. The entire mechanisms leading to such repression of p21CIP expression are actually not defined.

In conclusion, we describe in this report a mechanism leading to proliferation arrest in mature hematopoietic cells, the TPO-induced senescence, that is not operative in malignant megakaryocytic cells.

**Materials and Methods**

**Cell Culture**

UT711oc1 cells were seeded at a density of 1 x 10^5 cells/mL and grown in Dulbecco’s modified Eagle’s medium (DMEM; Invitrogen, Cergy Pontoise, France) or in methylcellulose medium. Both media were supplemented with 10% fetal bovine serum (FBS), antibiotics (100 IU/ml penicillin and 50 mg/ml streptomycin), and GM-CSF (5 ng/mL) or recombinant human TPO (hTPO) (10 ng/mL). The MAPK inhibitors PD98059 and U0126 were added to the media. UT711oc1 cells were seeded at a density of 1 x 10^5 cells/mL and grown in Dulbecco’s modified Eagle’s medium (DMEM; Invitrogen, Cergy Pontoise, France) or in methylcellulose medium. Both media were supplemented with 10% fetal bovine serum (FBS), antibiotics (100 IU/ml penicillin and 50 mg/ml streptomycin), and GM-CSF (5 ng/mL) or recombinant human TPO (hTPO) (10 ng/mL). The MAPK inhibitors PD98059 and U0126 were added to the media.

**Plasmids and Production of Retroviruses and Lentiviruses**

MEK1-S218D/S222D cDNA was cloned into the bicistronic retroviral vector pMIGR-RES-GFP. pgGZIP plasmids containing p21CIP shRNA (no. V2LHS-203118 and V2LHS-230370), p27KIP shRNA (no. V2LHS-262973), p53 shRNA (no. V2LHS-217), p16INK4a shRNA (no. V2LHS-195839), and EGR1 shRNA (no. V2LHS-262011, no. V2LHS-151347, and no. V2LHS-151348) were purchased from Open Biosystems (Thermo Scientific, Bremen, Germany). Proteins (20–40 μg per lane) were separated on SDS–polyacrylamide gel electrophoresis and transferred to polyvinylidene difluoride (PVDF) membranes by a standard procedure. Antibodies used for immunoblotting were: Actin (Sigma-Aldrich), p21CIP (no. 510242), and 16INK4a (no. 4824), PARP (no. 9542), phosphoERK (no. 9101), EGR1 (no. 4153) (Cell Signaling, Beverly, MA, USA), p27KIP (no. 510242) (BD Biosciences), p53 (no. SC-6243), and Caspase 3 (no. 7148) (Santa Cruz Biotechnology, Heidelberg, Germany). Bands were revealed using enhanced chemiluminescence (ECL, Pierce Perbio, Beverwijk, France). The nuclear and cytoplasmic protein separations were achieved according to the manufacturer’s recommendations (Millipore, Bedford, MA, USA). Human CD34 cells and mouse C57/B6 Lin cells were purified and seeded as previously described [42].

**Immunoblotting**

Proteins were extracted in RIPA buffer with 1% Triton X-100 (Sigma-Aldrich, St. Louis, MO, USA) and supplemented with protease inhibitor mixture tablets (Complete, Roche Diagnostics, Meylan, France). Proteins (20–40 μg per lane) were separated on SDS–polyacrylamide gel electrophoresis and transferred to polyvinylidene difluoride (PVDF) membranes by a standard procedure. Antibodies used for immunoblotting were: Actin (Sigma-Aldrich), p21CIP (no. 2947), p16INK4a (no. 4824), PARP (no. 9542), phosphoERK (no. 9101), EGR1 (no. 4153) (Cell Signaling, Beverly, MA, USA), p27KIP (no. 510242) (BD Biosciences), p53 (no. SC-6243), and Caspase 3 (no. 7148) (Santa Cruz Biotechnology, Heidelberg, Germany). Bands were revealed using enhanced chemiluminescence (ECL, Pierce Perbio, Beverwijk, France). The nuclear and cytoplasmic protein separations were achieved according to the manufacturer’s recommendations [43].

**Quantitative Real-Time PCR**

Total RNA was extracted using a Trizol RNA isolation kit according to the manufacturer’s protocol (Invitrogen). Transcription into cDNA was performed using random hexamers and SuperScript II reverse transcriptase (Invitrogen) according to the manufacturer’s instructions. All PCR reactions used Taqman PCR Master Mix (Applied Biosystems, Foster City, CA, USA) to a final volume of 20 μl. Each cDNA sample was analyzed in triplicate in the ABI PRISM 7900 Sequence Detection System (Applied Biosystems).

**Immunofluorescence**

Fixation and immunofluorescence were performed on UT711oc1 cells. The following antibodies were used: anti-HP1γ (no. 2619), anti-EGR1 (no. 4153) (cell signaling), and anti-human Von Willebrand Factor (A0082) (DakoCytomation). The appropriate secondary antibodies were conjugated with Alexa 488 or Alexa 546 (Molecular Probes-Invitrogen, Cergy-Pontoise, France). TOTO-3 iodide (Molecular Probes) or DAPI was applied for nuclear staining. Cells were examined under a Zeiss LSM 510 laser scanning microscope (Carl Zeiss, Le Pecq, France) with a 63×/1.4 numeric aperture (NA) oil objective.
Chromatin Immunoprecipitation

Chromatin immunoprecipitation (ChIP) assays were performed using a ChIP assay kit (cell signaling) with anti-ERGR1 Ab (cell signaling). These assays were performed using UT711oc1 chromatin samples. Quantification of precipitated DNA fragments was carried out on an ABI PRISM 7000 sequence detection system using Taqman probes (Eurogentec, Angers, France). Relative occupancy of the immunoprecipitated factor at a locus was calculated using the following equation: \( 2^{\Delta \Delta C_t} = \frac{C_{\text{Target}} - C_{\text{Internal Control}}}{C_{\text{Target}} - C_{\text{Internal Control}}} \), where C_target and C_target mean threshold cycles of PCR done in duplicate on DNA samples from negative control ChIP (using non-immune IgG) and targeted ChIP (specific antibody).

SA-β-Galactosidase

Detection of SA-β-galactosidase activity was performed at pH = 6 as previously described [18].

Cytokines and Chemokines Dosage

UT711oc1 cells were cultured with either GM-CSF or TPO for 6 d and secreted factor concentrations were measured in the supernatants using Procarta Protein Profiling Assays according to the manufacturer’s protocol.

Statistical Test

We performed the t test for all experiment. \( p \) indicates value of Student’s t test.

Supporting Information

Figure S1 Thrombopoietin induces cellular senescence of UT711oc1 and not apoptosis. (a) TPO and GM-CSF induce similar levels of apoptosis in UT711oc1 cells. Cells were treated with TPO for 3 and 6 d and compared to GM-CSF- and Annexin V labeling. (b) No difference in PARP and Caspase 3 cleavage between TPO- and GM-CSF-treated cells. UT711oc1 were cultured in presence of GM-CSF or TPO as indicated and PARP and Caspase 3 proteins were analyzed by Western blotting. The “W/O Cytokine” condition represents 24 h cytokine starvation and serves as a positive control for PARP and Caspase 3 cleavage. (c) Two other over-expressing MPL UT7 cell lines, called clone 5.1 and clone 86, were generated and SA-β-galactosidase activity was evaluated after 5 d of exposure to TPO or GM-CSF. (d) TPO up-regulates cathepsin D mRNA. Cells were exposed to TPO or GM-CSF for 3 to 6 d and cathepsin D mRNA expression determined by Taqman. (e) UT711oc1 supernatants of 48 h TPO-exposed and GM-CSF-exposed cells (1 million cells/ml) were collected and cytokine concentrations were measured (in pg/ml). Three independent experiments for each apoptosis assay were performed.

Found at: doi:10.1371/journal.pbio.1000476.s001 (1.55 MB TIF)

Figure S2 Top coincident genes when TPO-induced gene expression profile was compared to the molecular signature of oncogenic ras-induced senescence established in fibroblasts by Mason et al. [29]. (a) Top coincident up-regulated genes and their involvement in “growth, proliferation, and apoptosis”; “inflammation”; or “DNA replication, recombination, and repair,” when total coincident genes were analyzed using Ingenuity Pathways Analysis. (b) Top coincident down-regulated genes and their involvement in “growth, proliferation, and apoptosis,” “inflammation,” or “DNA replication, recombination, and repair.”

Found at: doi:10.1371/journal.pbio.1000476.s002 (1.96 MB TIF)

Figure S3 p21 mRNA expression is up-regulated by TPO via the RAS/MAPK pathway. (a) p21 mRNA expression in UT711oc1 cells. Cells were treated with GM-CSF or TPO in presence of PD089056 and U0126 inhibitors and assayed for gene expression by Taqman. (b) Cathepsin D mRNA expression in UT711oc1 cells. Cells were treated with GM-CSF or TPO in presence of PD089056 and U0126 inhibitors and assayed for gene expression by Taqman.

Figure S4 EGR1 shRNAs are functional and re-induce cell proliferation after TPO exposure. (a) EGR1 shRNAs inhibit EGR1 protein expression after TPO exposure. (b) BrdU incorporation at 5 d of culture shows a significant (but partial) increase in DNA replication with TPO when cells express EGR1 shRNAs. Error bar represents the standard deviation. We performed three independent experiments.

Found at: doi:10.1371/journal.pbio.1000476.s003 (1.18 MB TIF)

Figure S5 Cathepsin D and megakaryocytic differentiation markers in normal human megakaryocytes. (a) Proportion of CD41 and CD42 expressing cells during the megakaryocytic culture. (b) Co-expression of vWF and CD41 markers in megakaryocytes after 12 d of cell culture. (c) Cathepsin D mRNA expression during megakaryocytic differentiation process of human cytophesis CD34+ cells.

Found at: doi:10.1371/journal.pbio.1000476.s004 (0.18 MB TIF)

Figure S6 Inhibition of ERK decreases p21 expression in human megakaryocytes. Human megakaryocytes were cultured for 10 d in presence of TPO and 10 µM of U0126 MAPK inhibitor. U0126 inhibited ERK phosphorylation (b) and p21 protein (b) and mRNA expression (a). We performed three independent experiments.

Found at: doi:10.1371/journal.pbio.1000476.s005 (0.66 MB TIF)

Figure S7 TPO and MEK1SS/DD expression induces ERK phosphorylation without any changes in total ERK expression. (a) UT711oc1 cells were treated with GM-CSF or TPO ± PD089059 or UO126 for 2 d. ERK phosphorylation and total ERK expression were then evaluated by WB. (b) UT711oc1 cells transduced with either empty retroviral vector (pMigR) or the vector encoding for a spontaneously active MEK (MEKSS/DD) were cultured in presence of GM-CSF for 3 to 6 d. ERK phosphorylation and total ERK expression were then evaluated by WB.

Found at: doi:10.1371/journal.pbio.1000476.s006 (0.11 MB TIF)

Acknowledgments

The authors are grateful to Philippe Dessen, Justine Guégan, and Thomas Robert from the Unité de Génomique fonctionnelle for gene-array and GSEA analysis.

Author Contributions

The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: RB RC WV SNC SG. Performed the experiments: RB RC CT FP CM YL. Analyzed the data: RB RC CT FP CM YL. Wrote the paper: RB RC WV SNC SG.
References
1. Robb L (2007) Cytokine receptors and hematopoietic differentiation. Oncogene 26: 6715–6723.
2. Chang L, Karin M (2001) Mammalian MAP kinase signaling cascades. Nature 410: 37–40.
3. Filips MD, Porteu F, Le Pesteur F, Schiavo V, Millot GA, et al. (2002) Requirement for mitogen-activated protein kinase activation in the response of chronic myeloid cell-derived hematopoietic cells to thrombopoietin in vitro. Blood 99: 1174–1182.
4. Rouyez MC, Boucheron C, Gisselbrecht S, Dunanter-Fourt I, Porteu F (1997) Control of thrombopoietin-induced megakaryocytic differentiation by the inflammatory network. Cell 133: 1019–1031.
5. Lordier L, Jallal A, Aurade F, Larbret F, Langhero J, et al. (2000) Megakaryocyte endomitosis is a failure of late cytokinesis related to defects in the contractile ring and RhO/Rock signaling. Blood 112: 3164–3174.
6. Virat N, Cohen-Ssah K, Figue C, Le Couedic J, Norol F, et al. (1998) Endomitosis of human megakaryocytes are due to abortive mitosis. Blood 93: 3711–3723.
7. Nagata Y, Muro Y, Todokoro K (1997) Thrombopoietin-induced polyploidization of bone marrow megakaryocytes is due to a unique regulatory mechanism in later stage of endomitosis. Blood 89: 8499–8507.
8. Vigon I, Mornon J, Caoitat L, Mitjavila MT, Tambourin P, et al. (1992) Molecular cloning and characterization of MPL, the human homolog of the v-mpl oncogene: identification of a member of the hematopoietic growth factor receptor superfamily. Proc Natl Acad Sci U S A 89: 5640–5644.
9. Collado M, Blasco MA, Serrano M (2007) Cellular senescence in cancer and aging. Cell 130: 225–233.
10. Ohtani N, Mann DJ, Hara E (2009) Cellular senescence: its role in tumor suppression and aging. Cancer Sci 100(5): 792–797.
11. Moui WJ, Peper DS (2006) Oncogene-induced cell senescence–haling on the road to cancer. N Engl J Med 355(10): 1037–1046.
12. Acosta JC, O’Loghlen A, Banito A, Guijarro MV, Augert A, et al. (2008) Chemo sensitivity of activated stellate cells limits liver fibrosis. Cell 133: 1006–1018.
13. Kuilman T, Michaloglou C, Vredevedel LC, Douma S, van Doorn R, et al. (2008) Oncogene-induced senescence relayed by an interleukin-dependent signalling axis. Nat Cell Biol 10(9): 349–357.
14. Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR (2008) Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell 132: 365–375.
15. Kriyanovsky V, Yon M, Dickia R, Hearn S, Simon J, et al. (2000) Senescence of embryonic stem cell-derived hematopoietic cells to thrombopoietin in vitro. Mol Cell Biol 17: 4991–5000.
16. Lin AW, Barradas M, Stone JC, van Aelst L, Serrano M, Lowe SW (1998) Oncogene-induced senescence of human megakaryocytes are due to abortive mitosis. Blood 93: 3711–3723.
17. Lordier L, Jallal A, Aurade F, Larbret F, Langhero J, et al. (2000) Megakaryocyte endomitosis is a failure of late cytokinesis related to defects in the contractile ring and RhO/Rock signaling. Blood 112: 3164–3174.
18. Virat N, Cohen-Ssah K, Figue C, Le Couedic J, Norol F, et al. (1998) Endomitosis of human megakaryocytes are due to abortive mitosis. Blood 93: 3711–3723.
19. Nagata Y, Muro Y, Todokoro K (1997) Thrombopoietin-induced polyploidization of bone marrow megakaryocytes is due to a unique regulatory mechanism in later stage of endomitosis. Blood 89: 8499–8507.
20. Vigon I, Mornon J, Caoitat L, Mitjavila MT, Tambourin P, et al. (1992) Molecular cloning and characterization of MPL, the human homolog of the v-mpl oncogene: identification of a member of the hematopoietic growth factor receptor superfamily. Proc Natl Acad Sci U S A 89: 5640–5644.
21. Collado M, Blasco MA, Serrano M (2007) Cellular senescence in cancer and aging. Cell 130: 225–233.
22. Ohtani N, Mann DJ, Hara E (2009) Cellular senescence: its role in tumor suppression and aging. Cancer Sci 100(5): 792–797.
23. Moui WJ, Peper DS (2006) Oncogene-induced cell senescence–haling on the road to cancer. N Engl J Med 355(10): 1037–1046.
24. Acosta JC, O’Loghlen A, Banito A, Guijarro MV, Augert A, et al. (2008) Chemo sensitivity of activated stellate cells limits liver fibrosis. Cell 133: 1006–1018.
25. Kuilman T, Michaloglou C, Vredevedel LC, Douma S, van Doorn R, et al. (2008) Oncogene-induced senescence relayed by an interleukin-dependent signalling axis. Nat Cell Biol 10(9): 349–357.
26. Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR (2008) Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell 132: 365–375.
27. Kriyanovsky V, Yon M, Dickia R, Hearn S, Simon J, et al. (2000) Senescence of embryonic stem cell-derived hematopoietic cells to thrombopoietin in vitro. Mol Cell Biol 17: 4991–5000.
28. Lin AW, Barradas M, Stone JC, van Aelst L, Serrano M, Lowe SW (1998) Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev 12: 3008–3019.
29. Michaloglou C, Vredevedel LC, Soengas MS, Denyelle C, Kuilman T, et al. (2005) BRAF600-associated senescence-like cell cycle arrest of human naevi. Nature 436: 720–724.
30. Serrano M, Lin AW, McCarrach ME, Beach D, Lowe SW (1997) Oncogene sees associated with accumulation of p53 and p16INK4a. Cell 88: 593–602.
31. Gray-Schopfer VC, Cheong SC, Chong H, Chow J, Moss T, et al. (2006) Cellular senescence in naevi and immortalisation in melanoma: a role for p16? Br J Cancer 95: 496–500.
32. Krimpferl P, Epsenberg A, Song YJ, van der Valk M, Niujiw M, et al. (2007) p16INK4b is a critical tumour suppressor in the absence of p16INK4a. Nature 448: 549–546.
33. Munro J, Stott FJ, Vouwen KH, Peters G, Parkinson EK (1999) Role of the alternative INK4A proteins in human keratinocyte senescence: evidence for the specific inactivation of p16INK4A upon immortalization. Cancer Res 59: 2516–2521.
34. Pantano C, Serrano M (1999) Murine fibroblasts lacking p16 undergo senescence and are resistant to transformation by oncogenic Ras. Oncogene 18: 4974–4982.