Cell-specific pattern recognition receptor signaling in antibacterial defense

van Lieshout, M.H.P.

Publication date
2015

Document Version
Final published version

Citation for published version (APA):
van Lieshout, M. H. P. (2015). Cell-specific pattern recognition receptor signaling in antibacterial defense. [Thesis, fully internal, Universiteit van Amsterdam].

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Chapter 5

TIR-domain-containing adaptor-inducing interferon-β (TRIF) mediates antibacterial defense during gram-negative pneumonia by inducing Interferon-γ

Journal of Innate Immunity, 2015 June 9, e-pub ahead of print

Miriam H.P. van Lieshout ¹,²
Sandrine Florquin ³
Cornelis van’t Veer ¹,²
Alex F. de Vos ¹,²
Tom van der Poll ¹,²,⁴

Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands:
¹Center of Infection and Immunity Amsterdam
²Center of Experimental and Molecular Medicine
³Department of Pathology
⁴Division of Infectious Diseases
Abstract

Klebsiella pneumoniae is an important cause of gram-negative pneumonia and sepsis. Mice deficient for TIR-domain-containing adaptor-inducing interferon-β (TRIF) demonstrate enhanced bacterial growth and dissemination during *Klebsiella* pneumonia. We here show that the impaired antibacterial defense of TRIF mutant mice is associated with absent interferon (IFN)-γ production in the lungs. IFN-γ production by splenocytes in response to *K. pneumoniae* in vitro was critically dependent on Toll-like receptor 4 (TLR4), the common TLR adapter myeloid differentiation primary response gene (MyD88) and TRIF. Reconstitution of TRIF mutant mice with recombinant IFN-γ via the airways reduced bacterial loads in lungs and distant body sites to levels measured in wild-type mice, and partially restored pulmonary cytokine levels. The IFN-γ induced improved enhanced antibacterial response in TRIF mutant mice occurred at the expense of increased hepatocellular injury. These data indicate that TRIF mediates antibacterial defense during gram-negative pneumonia at least in part by inducing IFN-γ at the primary site of infection.
Introduction

Globally, pneumonia is a common cause of morbidity and mortality and the most common cause of sepsis (1-3). The emerging antibiotic resistance among gram-negative pathogens, including Enterobacteriaceae such as *Klebsiella (K.*) pneumoniae, is an issue of major concern, since therapeutic options are limited and infections with these pathogens are associated with an unfavorable outcome (3, 4). *K. pneumoniae* is a common sepsis pathogen in humans, in particular in the context of lower respiratory tract infection (2).

Pathogens entering the lower airways are detected by innate immune cells via pattern recognition receptors, among which the family of Toll-like receptors (TLRs) features prominently; this interaction initiates the early immune response (5). TLR signaling can proceed via two different routes that are dependent on myeloid differentiation primary response gene 88 (MyD88) and TIR-domain-containing adaptor-inducing interferon-β (TRIF) respectively (6). MyD88 is the universal adaptor for all TLRs except TLR3 and leads to NF-κB and MAP kinase activation and the induction of inflammatory cytokines. TRIF is the sole adaptor for TLR3 and in addition contributes to TLR4 signaling, leading to the activation of NF-κB and Interferon regulatory factor 3 (IRF3) and the induction of type I interferon (IFN) and inflammatory cytokine production (6). Notably, TLR4, that recognizes lipopolysaccharide (LPS), first activates the MyD88-dependent pathway before it initiates downstream signaling via the TRIF-dependent pathway once TLR4 complex is transported to the endosome for degradation (7). However, activation of both pathways is necessary for the induction of inflammatory cytokines via TLR4 (7).

We previously reported about the crucial role of the TLR adaptors MyD88 and TRIF during *K. pneumoniae* infection and their differential contribution to the host response in different body compartments (8, 9). In these studies we noted that mice deficient for TRIF were incapable of IFN-γ production at the primary site of infection (unpublished data). IFN-γ is an important cytokine for innate and adaptive immunity that influences a wide array of immunologically relevant cellular programs, such as the enhancement of leukocyte attraction, up-regulation of pathogen recognition, antigen processing and presentation, and microbicidal effector cell functions (10). A previous report demonstrated the importance of IFN-γ for antibacterial defense and survival during *K. pneumoniae* by the use of IFN-γ gene deficient mice (11, 12). Moreover, IFN-γ deficient mice were more susceptible to airway infection with *Legionella pneumophila* and *Burkholderia pseudomallei* (13, 14), and therapeutic administration of recombinant IFN-γ was beneficial in several models of experimental respiratory tract infection (15, 16). Also, rIFN-γ demonstrated a beneficial effect in several human studies when used as an adjunctive therapy for opportunistic pathogens (17-21).

We here report the impact of TRIF deficiency on pulmonary IFN-γ production during *Klebsiella* pneumonia. Furthermore, we explored to which extent the absence of local IFN-γ production during *K. pneumoniae* pneumonia in TRIF deficient mice contributes to their susceptible phenotype. We demonstrate that TRIF dependent signaling is crucial for IFN-γ production in vivo and in vitro and that reconstitution
of IFN-γ levels in the airways improves antibacterial defense in TRIF deficient but not in wild-type (WT) mice.

Materials and methods

Animals
TRIF mutant mice, generated on a C57Bl/6 genetic background (22), were provided by Dr B. Beutler (Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Texas). MyD88 deficient (*Myd88*−/−) (23) and *Tlr4*−/− mice (24) were provided by Dr. S. Akira (Research Institute for Microbial Diseases, Osaka, Japan) and backcrossed > 8 times to a C57Bl/6 genetic background. All gene deficient mice were bred in the animal facility of the Academic Medical Center (Amsterdam, the Netherlands). Age- and sex matched WT C57Bl/6 control mice were obtained from Harlan Nederland (Horst, the Netherlands). Mice were infected at 10-12 weeks of age. The Animal Care and Use Committee of the University of Amsterdam approved all experiments.

Induction of pneumonia and sampling of organs
Pneumonia was induced by intranasal inoculation with ~ 1 x 10⁴ colony forming units (CFU) of *K. pneumoniae* serotype 2 (ATCC 43816; American Type Culture Collection, Manassas, VA) (8,9). Mice were sacrificed at the indicated time points after infection and organs were harvested and processed exactly as described (8, 25). In the reconstitution experiment, mice were administered 50 ng of recombinant mouse IFN-γ (rIFN-γ) (R&D systems, Abbington, United Kingdom) or vehicle (0.1% human serum albumin in sterile saline) intranasally 30 minutes before and 24 hours after inoculation; mice were euthanized after 48 hours of infection.

Quantitative RT-PCR
RNA was isolated from lung homogenates using the Nucleospin RNA II kit (Machery-Nagel, Duren, Germany). Total RNA was reverse transcribed using oligo (dT) primer and Moloney murine leukemia virus reverse transcriptase (Invitrogen, Breda, The Netherlands). Quantitative PCR of *Ifng* gene product was performed as described (26). Data was analyzed using the LinRegPCR program. Results were normalized to β2m transcript.

In vitro studies
Splenocytes were obtained, seeded at a density of 500.000 cells per well and cultured exactly as described (27). Cells were stimulated for 48 hours in at least quadruplicate with the indicated concentrations of mitomycin C-treated (0.05 mg/ml) (Sigma-Aldrich) growth-arrested *K. pneumoniae* diluted in RPMI medium without antibiotics, LPS derived from Klebsiella pneumoniae (Sigma) (100 ng/ml) or ultra-pure Escherichia coli O111 B4 LPS (Invivogen) (100 ng/ml) diluted in RPMI medium with antibiotics in a final volume of 200 microliter. Supernatants were stored and analyzed for cytokine concentrations by ELISA.
TIR-domain-containing adaptor-inducing interferon-β (TRIF) mediates antibacterial defense during gram-negative pneumonia by inducing Interferon-γ

Assays
IFN-γ levels in cell supernatants and lung levels of IL-1β, CXCL1, CXCL2 and CCL2 were measured by ELISA (R&D Systems, Minneapolis, MN and Invitrogen, Breda, the Netherlands). Lung levels of IFN-γ, TNF-α, IL-6 and IL-10 were measured by using a cytometric bead array multiplex assay (BD Biosciences). Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured using kits from Sigma and a Hitachi analyzer (Boehringer Mannheim).

Histopathology
Histologic examination of lungs and liver was performed exactly as described (25, 28). Granulocyte immunohistochemic stainings were prepared using a FITC-labeled anti-mouse Ly6-C/G mAb (BD Biosciences, San Jose, CA) exactly as described before (27).

Statistical analysis
Data are expressed as box-and-whisker diagrams depicting the smallest observation, lower quartile, median, upper quartile, and largest observation (in vivo experiments) or as means ± standard error of the mean (tables, cell stimulation experiments); Bacterial loads are expressed as scatter plots, each symbol representing an individual mouse, with horizontal lines indicating medians. For experiments with 2 groups, the Mann–Whitney U test was used to determine statistical significance. For experiments with > 2 groups, the Kruskall-Wallis test was used, followed by Mann–Whitney U tests to compare individual genetically modified groups with the WT or TRIF mutant control group when appropriate. Fisher’s exact test was used to determine if the proportion of positive test results was different. These analyses were done using GraphPad Prism (San Diego, CA). p < 0.05 was considered statistically significant.

Results

IFN-γ production is impaired in TRIF mutant mice during Klebsiella pneumonia

In our previous studies on the role of TRIF during *K. pneumoniae* airway infection we demonstrated that TRIF mutant mice have an impaired antibacterial defense as illustrated by significantly higher bacterial loads in lungs, blood and spleen (8); in these investigations we also observed higher bacterial loads in livers of TRIF mutant mice and TRIF bone marrow chimeras lacking TRIF in hematopoietic cells (supplementary Figure 1A,B). We noticed in a multiplex cytokine assay performed on whole lung homogenates that IFN-γ levels remained undetectable in TRIF mutant mice throughout the infection (<5 pg/ml), while in WT mice lung IFN-γ concentrations increased after *Klebsiella* inoculation, peaking after 24 hours (p < 0.05 to 0.001 for the difference between groups, figure 1A). TRIF mutant mice also showed strongly reduced IFN-γ mRNA expression in lungs during *Klebsiella* pneumonia (p < 0.01 versus WT mice, figure 1B).
Figure 1: TRIF mediates IFN-γ production during *K. pneumoniae* airway infection. WT and TRIF mutant mice (n=7-8 per group) were infected with ~1 x 10^4 CFU *K. pneumoniae* and sacrificed at designated time points. IFN-γ levels in lungs of mice were determined by cytometric bead assay (A) and quantitative real-time RT-PCR (qRT-PCR) (B). Data are expressed as box-and-whisker diagrams depicting the smallest observation, lower quartile, median, upper quartile, and largest observation (A,B) or as mean (SE) (C). *p < 0.05, **p < 0.01 determined with Mann–Whitney U test. ###p < 0.001 determined with Fisher’s exact test.

IFN-γ production in response to *Klebsiella* is TLR4 dependent via both Myd88 and TRIF

Next, we stimulated splenocytes, as a source of IFN-γ producing cells, with growth-arrested *K. pneumoniae* in vitro. In a pilot-study, we observed significantly impaired IFN-γ secretion by TRIF mutant cells stimulated with either 2 x 10^5 or 2 x 10^6 bacteria (data not shown). We repeated this experiment, this time including splenocytes of *Tlr4−/−* and *Myd88−/−* mice in addition to splenocytes from TRIF mutant and WT mice. IFN-γ production in response to growth-arrested *K. pneumoniae* was most severely impaired in *Myd88−/−* cells, followed by *Tlr4−/−* and then TRIF mutant cells (figure 2A, *p < 0.05 to 0.01 compared to WT cells*). In addition, we stimulated cells with LPS derived from *K. pneumoniae* or ultra-purified LPS derived from *E. coli*, and found virtually absent IFN-γ release by *Tlr4−/−*, *Myd88−/−* and TRIF mutant cells (figure 2B, *p < 0.01 versus WT cells*).

Antibacterial defense of TRIF mutant mice can be restored by local treatment with IFN-γ

To test if the strongly reduced pulmonary IFN-γ levels contribute functionally to the impaired antibacterial defense of TRIF mutant mice we treated WT and TRIF mutant mice with IFN-γ intranasally 30 minutes before and 24 hours after infection with *Klebsiella*; we used 48 hours of infection as pre-defined endpoint since this was the time point at which the enhanced growth of *Klebsiella* in TRIF mutant relative to WT mice was most clear (8). While TRIF mutant mice treated with vehicle displayed undetectable pulmonary IFN-γ concentrations, confirming the results presented in figure 1A, TRIF mutant mice administered with rIFN-γ had lung IFN-γ levels that were similar to those measured in WT mice (figure 3A); WT mice that received rIFN-γ had significantly higher lung levels than WT mice treated with vehicle (*p <
TIR-domain-containing adaptor-inducing interferon-β (TRIF) mediates antibacterial defense during gram-negative pneumonia by inducing Interferon-γ

Figure 2: IFN-γ secretion by splenocytes is dependent on TLR4, MyD88 and TRIF. Splenocytes derived from WT, $Tlr4^{-/-}$, $Myd88^{-/-}$ and TRIF mutant mice were stimulated with different concentrations growth arrested $K.~pneumoniae$, and LPS derived from $E.~coli$ or $K.~pneumoniae$ ($n=4-6$ for each condition), and IFN-γ levels were determined after 48 hours. Data are expressed as mean (SE). * $p < 0.05$, ** $p < 0.01$ determined with Mann–Whitney U test (performed as post hoc following Kruskal-Wallis test).
We reproduced the previously described phenotype in TRIF mutant mice (8), showing 100-1000 fold higher bacterial loads in their lungs relative to WT mice, together with increased bacterial dissemination to blood and spleen (figure 3B-D, \(p < 0.001 \)). Importantly, we observed a spectacular improvement of antibacterial defense in rIFN-γ treated TRIF mutant mice compared to vehicle treated TRIF mutant mice (\(p < 0.01 \) to 0.001), as reflected by bacterial loads similar to WT mice in all organs. Of note, we observed no effect on bacterial burdens in WT mice treated with rIFN-γ compared to vehicle treated WT mice (figure 3B-D).

Figure 3: Administration of rIFN-γ via the airways restores antibacterial defense in TRIF mutant mice. WT and TRIF mutant mice were infected with \(\sim 1 \times 10^4 \) CFU \(K. \) pneumonia; 50 ng recombinant IFN-γ or vehicle was administered intranasally 30 minutes before infection and 24 hours thereafter (n=8 mice each group). Mice were sacrificed after 48 hours of infection. IFN-γ levels in lung homogenates 48 hours after infection (A) depicted as box-and-whisker diagrams depicting the smallest observation, lower quartile, median, upper quartile, and largest observation. Bacterial loads in lung (B), blood (C) and spleen (D) 48 hours after infection. Each symbol represents an individual mouse, horizontal lines represent medians. ** \(p < 0.01 \), *** \(p < 0.001 \) vs WT mice treated with vehicle, ## \(p < 0.01 \), ### \(p < 0.001 \) vs TRIF mutant mice treated with vehicle determined with Mann-Whitney U test, Fisher’s exact test was used in panel 1A for comparison between TRIF mutant groups (performed as post hoc after following Kruskal-Wallis test).
Impact of IFN-γ treatment on the inflammatory response to pneumonia

To obtain insight in the extent of local inflammation at the primary site of infection in TRIF mutant and WT mice, and the effect of rIFN-γ treatment hereon, we semi-quantitatively scored lung histopathology of tissue samples harvested 48 hours after infection, focusing on key histological features characteristic for severe pneumonia. While total lung histopathology scores were not different between groups (table 1), rIFN-γ treated TRIF mutant and WT mice had more signs of bronchitis and less signs of pleuritis when compared to their respective vehicle treated controls (table 1, \(p < 0.05 \) compared to the respective controls and figure 4A-F). Neutrophil recruitment to the lungs, measured as the percentage of Ly-6+ positive lung cell surface, was significantly higher in vehicle treated TRIF mutant mice compared to vehicle treated WT mice at this late stage of infection (table 1, \(p < 0.01 \)). Administration of rIFN-γ reduced total neutrophil numbers in lung tissue of TRIF mutant mice similar to those measured in WT mice (\(p < 0.05 \) compared to vehicle treated TRIF mutant mice); rIFN-γ treatment did not influence lung neutrophil counts in WT mice (table 1). Moreover, when the Ly-6 stainings were studied in detail, the number of intrabronchial neutrophils appeared to be larger after rIFN-γ treatment (Figure 4E-H). We next determined the effect of rIFN-γ treatment on the induction of proinflammatory cytokines (TNF-α, IL-1β, IL-6), the anti-inflammatory cytokine IL-10 and chemokines CXCL1, CXCL2 and CCL2 in whole lung homogenates. TRIF mutant mice demonstrated reduced levels of TNF-α, IL-1β, CXCL1, CXCL2 and CCL2 relative to WT mice (table 2, \(p < 0.05 \) to 0.001). Treatment of TRIF mutant mice with rIFN-γ partially restored the inflammatory profile with the exception of IL-1β: TNF-α and CXCL2 were not significantly different from vehicle treated WT mice, levels of CXCL1 and CCL2 were still significantly lower although differences were smaller (\(p < 0.05 \) to 0.01 compared to vehicle treated WT mice). The change in levels of inflammatory cytokines and chemokines after treatment with rIFN-γ of TRIF mutant mice was significant for TNF-α, IL-6, CXCL2 and CCL2 compared to vehicle treated TRIF mutant mice (table 2, \(p < 0.05 \) to 0.001 between groups).

IFN-γ deficiency protects TRIF mutant mice from liver injury

Klebsiella induced pneumonia derived sepsis is associated with hepatocellular injury, as reflected by increased plasma concentrations of AST and ALT (8, 29). TRIF mutant mice had lower AST and ALT plasma levels 48 hours after infection when compared with WT mice (\(p < 0.01 \), figure 5A,B) as well as fewer signs of liver inflammation as determined by liver histopathology scores (\(p < 0.01 \), figure 5C, Supplemental figure 2). Remarkably, rIFN-γ treatment significantly increased AST and ALT levels in TRIF mutant mice compared to vehicle treated TRIF mutant mice (\(p < 0.01 \) to 0.001) to levels similar to those measured in WT mice. In WT mice, rIFN-γ treatment reduced transaminase levels, significantly so for AST (\(p < 0.05 \), figure 5A).
Table 1: Histological scores

Mice	WT vehicle	WT rIFN-γ	TRIF mutant vehicle	TRIF mutant rIFN-γ
Total pathology score lung	14.5 (0.6)	13.8 (0.8)	14.5 (1.2)	13.1 (0.6)
Pneumonia % of lung surface	15 (3)	6 (4)	22 (6)	7 (3)
Interstitial inflammation	3.1 (0.1)	3.0 (0.5)	2.8 (0.7)	2.4 (0.3)
Oedema	2.8 (0.2)	2.5 (0.3)	3.4 (0.5)	3.0 (0.2)
Endothelialitis	2.5 (0.2)	2.9 (0.1)	3 (0.2)	2.6 (0.2)
Bronchitis	2.9 (0.1)	3.5 (0.2)*	2.6 (0.3)	3.8 (0.2)#
Pleuritis	1.8 (0.3)	1.3 (0.2)*	1.5 (0.3)	0.8 (0.2)#
Ly6+ % of total lung surface	2.3 (0.4)	2.1 (0.5)	8.6 (1.2)**	3.9 (0.8)#

WT and TRIF mutant mice were infected with 1x10⁴ CFU *K. pneumoniae* and 50 ng recombinant IFNγ was administered intranasally upon infection and after 48 hours. Histological scores determined 48 hours after infection. Total pathology score is the sum of the histological subscores determined as described in the methods. Data are mean (SE) of 7–8 mice per group. *p < 0.05, **p < 0.01 compared to vehicle treated WT mice. #p < 0.05 rIFN-γ treated TRIF mutant mice compared to vehicle treated TRIF mutant mice.

Table 2: Inflammatory response

Mice	WT vehicle	WT rIFN-γ	TRIF mutant vehicle	TRIF mutant rIFN-γ
TNF-α	892 (245)	760 (57)	191 (48)**	501 (115)#
IL-1β	7434 (642)	4950 (753)*	4168 (731)**	4525 (557)**
IL-6	1914 (451)	2030 (624)	2446 (398)	1507 (216)#
IL-10	14 (2)	11 (1)	14 (2)	bd
CXCL1	12586 (1899)	9453 (1645)	3625 (871)**	4255 (828)*
CXCL2	20553 (6546)	38048 (7157)	6432 (1532)*	28943 (5785)###
CCL2	4619 (541)	3718 (366)	1841 (210)***	2126 (240)**#

WT and TRIF mutant mice were infected with 1x10⁴ CFU *K. pneumoniae* and 50 ng recombinant IFNγ was administered intranasally upon infection and after 48 hours. Homogenates were prepared from right lungs. Cytokine and chemokine levels are presented in pg/ml lung homogenate. Data are mean (SE) of 7–8 mice per group. Bd= below detection. *p < 0.05, **p < 0.01, ***p < 0.001 compared to vehicle treated WT mice. #p < 0.05. ##p < 0.01, ###p < 0.001 rIFN-γ treated TRIF mutant mice compared to vehicle treated TRIF mutant mice.
TIR-domain-containing adaptor-inducing interferon-β (TRIF) mediates antibacterial defense during gram-negative pneumonia by inducing Interferon-γ

Figure 4: Effect of IFN-γ treatment on lung pathology. WT and TRIF mutant mice were infected with ~1x10⁴ CFU K. pneumoniae; 50 ng recombinant IFN-γ or vehicle was administered intranasally 30 minutes before infection and 24 hours thereafter. Mice were sacrificed after 48 hours of infection. Representative lung histology (H&E staining) of WT mice treated with vehicle (A), WT mice treated with rIFN-γ (B), TRIF mutant mice treated with vehicle (C) and TRIF mutant mice treated with rIFN-γ (D). In each upper panel arrows indicate signs of bronchitis (original magnification 10x) and in the lower panel asterisks indicate pleuritis (original magnification 20x). Representative lung histology (Ly-6 staining, indicating neutrophils) of lungs of WT mice treated with vehicle (E), WT mice treated with rIFN-γ (F), TRIF mutant mice treated with vehicle (G) and TRIF mutant mice treated with rIFN-γ (H), original magnification 10x.
Figure 5: TRIF mutant mice have attenuated liver injury that increases after rIFN-γ treatment. WT and TRIF mutant mice were infected with ~ 1 x 10^4 CFU K. pneumonia; 50 ng rIFN-γ or vehicle was administered intranasally 30 minutes before infection and 24 hours thereafter. Mice were sacrificed after 48 hours of infection. AST (A) and ALT (B) plasma levels and liver histopathology scored as described in the methods (C) expressed as box-and-whisker diagrams depicting the smallest observation, lower quartile, median, upper quartile, and largest observation. * p < 0.05, ** p < 0.01, *** p < 0.001 determined with Mann-Whitney U (performed as post hoc following Kruskal-Wallis test).

Discussion

K. pneumoniae is a clinically important gram-negative bacterium in pneumonia and one of the pathogens that causes major concern because of increasing antimicrobial resistance rates, limiting therapeutic options (2-4, 30). Previous research has documented the importance of TLR signaling for host defense during K. pneumoniae pneumonia, notably of TLR4, TLR2 and TLR9 (25, 31, 32), and we and others previously described the pivotal role for the TLR-adapters MyD88 and TRIF herein (8, 33). Given our discovery that in the absence of TRIF lung levels of IFN-γ were undetectable during the course of K. pneumoniae airway infection we here explored the functional importance thereof. Our main findings were that indeed TRIF is crucial for IFN-γ production in response to K. pneumonia, together with TLR4 and MyD88, and that reconstitution of TRIF mutant mice with rIFN-γ improves antibacterial defense to the level of WT mice, but at the expense of enhanced liver injury.

Earlier, we and others described the susceptible phenotype of TRIF deficient mice in Klebsiella pneumonia, marked by a clearly impaired antibacterial defense with a 100-1000 fold increase in bacterial loads 48 hours after infection, a finding that we reproduced in the current report (8, 25, 33). The early inflammatory response of mice partially or fully deficient for TRIF is characterized by impaired neutrophil...
TIR-domain-containing adaptor-inducing interferon-β (TRIF) mediates antibacterial defense during gram-negative pneumonia by inducing Interferon-γ

TIR-domain-containing adaptor-inducing interferon-β (TRIF) mediates antibacterial defense during gram-negative pneumonia by inducing Interferon-γ influx probably as a result of impaired CXCL1 secretion and lower levels of TNF-α and IL-6. However, during the course of the infection and in response to higher bacterial loads, all of these cytokines gradually increased in spite of (partial) TRIF deficiency (8). Notably, in the current study CXCL1, CXCL2 and TNF-α levels were still reduced in TRIF mutant mice 48 hours post infection, while lung neutrophil numbers as determined by immunohistochemistry were significantly higher. This is probably due to the very high bacterial numbers present in TRIF mutant mice at this moment, leading to tissue injury and neutrophil attraction via mechanisms other than provided by the chemoattractant gradient by the afore mentioned mediators. Remarkably, however, IFN-γ levels remained virtually undetectable in TRIF mutant mice throughout, which formed the rationale for the current study. We hypothesized that deficient IFN-γ production could at least in part be responsible for the impaired antibacterial defense of TRIF mutant mice, considering that IFN-γ is a powerful pleiotropic cytokine that during bacterial infection can enhance leukocyte attraction, pathogen recognition, antigen processing and presentation, and microbicidal effector cell functions (10). We extended our in vivo observation of decreased IFN-γ levels in TRIF mutant mice by demonstrating that also under controlled conditions with equal amounts of growth-arrested bacteria the capacity of TRIF mutant splenocytes to secrete IFN-γ is impaired. Moreover, IFN-γ production was critically dependent on MyD88 and TLR4. This is not surprising, since it is well known that these innate immune sensors are highly important for the induction of the inflammatory response to *K. pneumoniae* and the phenotype of *Myd88*^{-/-} and *Tlr4*^{-/-} mice is more severe than that of TRIF mutant mice during in vivo infection (8, 25). However, the role of these receptors specifically in the induction IFN-γ in response to pathogens is less well known. In accordance with the present report, TRIF deficient mice were demonstrated to produce lower IFN-γ levels during *Aspergillus* airway infection in vivo (34). In the current study, our results suggest that TLR2 dependent signals play a role in response to *K. pneumoniae* in addition to TRIF, MyD88 and TLR4, since IFN-γ levels secreted by TRIF mutant and *Tlr4*^{-/-} cells gradually increased with increasing bacterial concentrations, which is in line with the role of TLR2 during infection with *Klebsiella* in vivo (25).

We observed a spectacular effect on bacterial loads after reconstitution of TRIF mutant mice with rIFN-γ, which coincided with a partial recovery of the inflammatory cytokine profile. The importance of IFN-γ during *K. pneumoniae* infection was demonstrated before since *Ifn-γ*^{-/-} mice displayed an impaired antibacterial defense and increased mortality (11, 12, 25). The other way around, in a rat model of ethanol intoxication followed by *Klebsiella* airway infection, adenoviral expression of IFN-γ improved antibacterial defense (35). Likewise, conditional adenoviral expression of IFN-γ improved clearance of *Klebsiella* from the lungs in mice (36). Strikingly, in our study there was no effect of rIFN-γ on bacterial loads in WT mice, suggesting that local rIFN-γ administration is only beneficial when it compensates for a clearly deficient production. Also, in WT mice rIFN-γ treatment, with the exception of IL-1β, did not affect lung cytokine concentrations, while in TRIF mutant mice it increased the levels of TNF-α, IL-6, CXCL1, CXCL2 and CCL2. The mechanism by which rIFN-γ improves bacterial defense in TRIF mutant mice might be by enhancing the
bacterial killing capacity of alveolar macrophages (37). Unfortunately, the *Klebsiella* strain used here cannot be killed by macrophages or neutrophils in vitro (our own observations), illustrating its high virulence and precluding further in vitro analyses. Improved monocyte and macrophage function was also presumed to play a role in human clinical trials wherein treatment with rIFN-γ demonstrated beneficial effects in *Mycobacterium (M.) tuberculosis* and *M. avium* infections, Leishmaniasis and fungal sepsis, although the exact mechanisms are currently unknown (17-21). Recently, however, it was demonstrated in fungal sepsis patients that the ex vivo cytokine response was enhanced in patients treated with rIFN-γ (17).

In our study, TRIF mutant mice treated with rIFN-γ also had higher plasma IFN-γ levels when compared with TRIF mutant mice treated with vehicle, even though rIFN-γ was instilled locally in the airways. Hence, although it is likely that the reduced bacterial loads at distant body sites in rIFN-γ treated TRIF mutant mice at least in part are the consequence of lower bacterial burdens at the primary site of infection, we cannot exclude an additional systemic effect of local rIFN-γ treatment. Another aspect of the inflammatory response that we observed in our study is that while total lung histopathology scores were not different between groups, rIFN-γ treated *Trif*-/- and WT mice had more signs of bronchitis and lower scores on pleuritis when compared to their respective vehicle treated controls, possibly indicating a redistribution in the pattern of inflammatory cell migration. This might be secondary to a higher intrabronchial rIFN-γ concentration after intranasal administration, resulting in increased attraction of inflammatory cells to the intrabronchial and intraalveolar compartment (see also figure 4). Possibly, this contributed to a better containment of the infection.

In this and in our previous study we demonstrated significantly lower levels of AST and ALT in mice (partially) deficient for TRIF, despite higher levels of bacterial loads in the blood and liver (8). Although liver bacterial loads were not determined in rIFN-γ treated mice, it is unlikely that the increased hepatocellular injury in these animals was caused by higher bacterial burdens in livers considering the reduced *Klebsiella* numbers in blood and spleen. This illustrates the double edged sword character of the innate immune response that is on the one hand essential for early antibacterial defense but on the other hand contributes to collateral tissue damage in sepsis as was illustrated in previous work (38-40). Strikingly, the reconstitution of TRIF mutant mice with rIFN-γ deteriorated liver injury. This suggests that IFN-γ is involved in inflammation driven liver injury, as was proposed before in an intravenous model of *K. pneumoniae* sepsis in *Ifn-γ/-* mice (12). However, the lower AST levels in WT mice treated with rIFN-γ are more difficult to explain and require further investigation. Possibly, the increased plasma levels of the anti-inflammatory cytokine IL-10 in rIFN-γ treated WT mice (albeit not significant) played a role herein.

In conclusion, we demonstrate a crucial role for TRIF in IFN-γ production during *K. pneumoniae* pneumonia. TRIF mediated IFN-γ release is essential for an adequate innate immune response as reflected by the fact that the strongly impaired antibacterial defense of TRIF mutant mice can be restored by reconstitution of IFN-γ levels in the lungs by local treatment. These data provide new insight into
TIR-domain-containing adaptor-inducing interferon-β (TRIF) mediates antibacterial defense during gram-negative pneumonia by inducing Interferon-γ how TRIF mediates protective immunity during gram-negative infection.

Acknowledgments

We thank Regina de Beer, Joost Daalhuisen and Marieke ten Brink for expert technical assistance. This work was supported by the AMC Graduate School of Medical Science (to M. H. P. v. L).
References

1. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of Severe Sepsis in the United States: Analysis of Incidence, Outcome, and Associated Costs of Care. *Crit Care Med* 2001;29:1303-1310.

2. Kollef MH, Shorr A, Tabak YP, Gupta V, Liu LZ, Johannes RS. Epidemiology and Outcomes of Health-Care-Associated Pneumonia: Results From a Large US Database of Culture-Positive Pneumonia. *Chest* 2005;128:3854-3862.

3. World Health Organisation. World Health Observatory, Top Ten Causes of Death 2012.; 2012.

4. Schwaber MJ, Carmeli Y. Mortality and Delay in Effective Therapy Associated With Extended-Spectrum Beta-Lactamase Production in Enterobacteriaceae Bacteraemia: a Systematic Review and Meta-Analysis. *J Antimicrob Chemother* 2007;60:913-920.

5. Mizgerd JP. Acute Lower Respiratory Tract Infection. *N Engl J Med* 2008;358:716-727.

6. Kawai T, Akira S. Toll-Like Receptors and Their Crosstalk With Other Innate Receptors in Infection and Immunity. *Immunity* 2011;34:637-650.

7. The Role of Pattern-Recognition Receptors in Innate Immunity: Update on Toll-Like Receptors. *Nat Immunol* 2010;11:373-384.

8. van Lieshout MH, Blok DC, Wieland CW, de Vos AF, van ’t Veer C, van der Poll T. Differential Roles of MyD88 and TRIF in Hematopoietic and Resident Cells During Murine Gram-Negative Pneumonia. *J Infect Dis* 2012;206:1415-1423.

9. van Lieshout MH, Anas AA, Florquin S, Hou B, Van’t Veer C, de Vos AF, van der Poll T. Hematopoietic but Not Endothelial Cell MyD88 Contributes to Host Defense During Gram-Negative Pneumonia Derived Sepsis. *PLoS Pathog* 2014;10:e1004368.

10. Schroder K, Hertzog PJ, Ravasi T, Hume DA. Interferon-Gamma: an Overview of Signals, Mechanisms and Functions. *J Leukoc Biol* 2004;75:163-189.

11. Yoshida K, Matsumoto T, Tateda K, Uchida K, Tsujimoto S, Iwakurai Y, Yamaguchi K. Protection Against Pulmonary Infection With Klebsiella Pneumoniae in Mice by Interferon-Gamma Through Activation of Phagocytic Cells and Stimulation of Production of Other Cytokines. *J Med Microbiol* 2001;50:959-964.

12. Moore TA, Perry ML, Getsoian AG, Newstead MW, Standiford TJ. Divergent Role of Gamma Interferon in a Murine Model of Pulmonary Versus Systemic Klebsiella Pneumoniae Infection. *Infect Immun* 2002;70:6310-6318.

13. Shinozawa Y, Matsumoto T, Uchida K, Tsujimoto S, Iwakura Y, Yamaguchi K. Role of Interferon-Gamma in Inflammatory Responses in Murine Respiratory Infection With Legionella Pneumophila. *J Med Microbiol* 2002;51:225-230.

14. Easton A, Haque A, Chu K, Lukaszewski R, Bancroft GJ. A Critical Role for Neutrophils in Resistance to Experimental Infection With Burkholderia Pseudomallei. *J Infect Dis* 2007;195:99-107.
TIR-domain-containing adaptor-inducing interferon-β (TRIF) mediates antibacterial defense during gram-negative pneumonia by inducing Interferon-γ

15. Beck JM, Liggitt HD, Brunette EN, Fuchs HJ, Shellito JE, Debs RJ. Reduction in Intensity of Pneumocystis Carinii Pneumonia in Mice by Aerosol Administration of Gamma Interferon. *Infect Immun* 1991;59:3859-3862.

16. Buccheri S, Reljic R, Caccamo N, Meraviglia S, Ivanyi J, Salerno A, Dieli F. Prevention of the Post-Chemotherapy Relapse of Tuberculous Infection by Combined Immunotherapy. *Tuberculosis (Edinb)* 2009;89:91-94.

17. Delsing CE, Gresnigt MS, Leentjens J, Preijers F, Frager FA, Kox M, Monneret G, Venet F, Bleecker-Rovers CP, van de Veerdonk FL, et al. Interferon-Gamma As Adjunct Immunotherapy for Invasive Fungal Infections: a Case Series. *BMC Infect Dis* 2014;14:166.

18. Gao XF, Yang ZW, Li J. Adjunctive Therapy With Interferon-Gamma for the Treatment of Pulmonary Tuberculosis: a Systematic Review. *Int J Infect Dis* 2011;15:e594-e600.

19. Milanes-Virelles MT, Garcia-Garcia I, Santos-Herrera Y, Valdes-Quintana M, Valenzuela-Silva CM, Jimenez-Madrigal G, Ramos-Gomez TI, Bello-Rivero I, Fernandez-Olivera N, Sanchez-de la Osa RB, et al. Adjuvant Interferon Gamma in Patients With Pulmonary Atypical Mycobacteriosis: a Randomized, Double-Blind, Placebo-Controlled Study. *BMC Infect Dis* 2008;8:17.

20. Murray HW. Interferon-Gamma in Infection and Immunoparalysis. *Intensive Care Med* 1996;22 Suppl 4:S455.

21. Wunderink RG. Adjunctive Therapy in Community-Acquired Pneumonia. *Semin Respir Crit Care Med* 2009;30:146-153.

22. Hoebe K, Du X, Georgel P, Janssen E, Tabeta K, Kim SO, Goode J, Lin P, Mann N, Mudd S, et al. Identification of Lps2 As a Key Transducer of MyD88-Independent TIR Signalling. *Nature* 2003;424:743-748.

23. Adachi O, Kawai T, Takeda K, Matsumoto M, Tsutsui H, Sakagami M, Nakanishi K, Akira S. Targeted Disruption of the MyD88 Gene Results in Loss of IL-1- and IL-18-Mediated Function. *Immunity* 1998;9:143-150.

24. Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, Takeda K, Akira S. Cutting Edge: Toll-Like Receptor 4 (TLR4)-Deficient Mice Are Hyporesponsive to Lipopolysaccharide: Evidence for TLR4 As the Lps Gene Product. *J Immunol* 1999;162:3749-3752.

25. Wieland CW, van Lieshout MH, Hoogendijk AJ, van der Poll T. Host Defence During Klebsiella Pneumonia Relies on Haematopoietic-Expressed Toll-Like Receptors 4 and 2. *Eur Respir J* 2011;37:848-857.

26. van 't Veer C, van den Pangaart PS, Kruiswijk D, Florquin S, de Vos AF, van der Poll T. Delineation of the Role of Toll-Like Receptor Signaling During Peritonitis by a Gradually Growing Pathogenic Escherichia Coli. *J Biol Chem* 2011;286:36603-36618.

27. van Lieshout MH, Anas AA, Florquin S, Hou B, Van’t Veer C, de Vos AF, van der Poll T. Haematopoietic but Not Endothelial Cell MyD88 Contributes to Host Defense During Gram-Negative Pneumonia Derived Sepsis. *PLoS Pathog* 2014;10:e1004368.

28. Achouiti A, Vogl T, Urban CF, Rohm M, Hommes TJ, van Zoelen MA, Florquin S, Roth J, Van’t Veer C, de Vos AF, et al. Myeloid-Related Protein-14 Contributes to Protective Immunity in Gram-Negative Pneumonia Derived Sepsis. *PLoS Pathog* 2012;8:e1002987.
Chapter 5

29. Renckens R, Roelofs JJ, Bonta PI, Florquin S, de Vries CJ, Levi M, Carmeliet P, Van’t Veer C., van der Poll T. Plasminogen Activator Inhibitor Type 1 Is Protective During Severe Gram-Negative Pneumonia. *Blood* 2007;109:1593-1601.

30. Vardakas KZ, Tansarli GS, Rafailidis PI, Falagas ME. Carbapenems Versus Alternative Antibiotics for the Treatment of Bacteraemia Due to Enterobacteriaceae Producing Extended-Spectrum Beta-Lactamases: a Systematic Review and Meta-Analysis. *J Antimicrob Chemother* 2012;67:2793-2803.

31. Bhan U, Lukacs NW, Osterholzer JJ, Newstead MW, Zeng X, Moore TA, McMillan TR, Krieg AM, Akira S, Standiford TJ. TLR9 Is Required for Protective Innate Immunity in Gram-Negative Bacterial Pneumonia: Role of Dendritic Cells. *J Immunol* 2007;179:3937-3946.

32. Branger J, Knapp S, Weijer S, Leemans JC, Pater JM, Speelman P, Florquin S, van der Poll T. Role of Toll-Like Receptor 4 in Gram-Positive and Gram-Negative Pneumonia in Mice. *Infect Immun* 2004;72:788-794.

33. Cai S, Batra S, Shen L, Wakamatsu N, Jeyaseelan S. Both TRIF- and MyD88-Dependent Signaling Contribute to Host Defense Against Pulmonary Klebsiella Infection. *J Immunol* 2009;183:6629-6638.

34. de Luca A., Bozza S, Zelante T, Zagarella S, D’Angelo C, Perruccio K, Vacca C, Carvalho A, Cunha C, Aversa F, et al. Non-Hematopoietic Cells Contribute to Protective Tolerance to Aspergillus Fumigatus Via a TRIF Pathway Converging on IDO. *Cell Mol Immunol* 2010;7:459-470.

35. Kolls JK, Lei D, Stoltz D, Zhang P, Schwarzenberger PO, Ye P, Bagby G, Summer WR, Shellito JE, Nelson S. Adenoviral-Mediated Interferon-Gamma Gene Therapy Augments Pulmonary Host Defense of Ethanol-Treated Rats. *Alcohol Clin Exp Res* 1998;22:157-162.

36. Ruan S, Young E, Luce MJ, Reiser J, Kolls JK, Shellito JE. Conditional Expression of Interferon-Gamma to Enhance Host Responses to Pulmonary Bacterial Infection. *Pulm Pharmacol Ther* 2006;19:251-257.

37. Serezani CH, Chung J, Ballinger MN, Moore BB, Aronoff DM, Peters-Golden M. Prostaglandin E2 Suppresses Bacterial Killing in Alveolar Macrophages by Inhibiting NADPH Oxidase. *Am J Respir Cell Mol Biol* 2007;37:562-570.

38. Hochhauser E, Avlas O, Fallach R, Bachmetov L, Zemel R, Pappo O, Shainberg A, Ben AZ. Bone Marrow and Nonbone Marrow Toll Like Receptor 4 Regulate Acute Hepatic Injury Induced by Endotoxemia. *PLoS ONE* 2013;8:e73041.

39. Kitazawa T, Tsujimoto T, Kawarata H, Fukui H. Salvage Effect of E5564, Toll-Like Receptor 4 Antagonist on D-Galactosamine and Lipopolysaccharide-Induced Acute Liver Failure in Rats. *J Gastroenterol Hepatol* 2010;25:1009-1012.

40. Moore TA, Lau HY, Cogen AL, Monteleon CL, Standiford TJ. Anti-Tumor Necrosis Factor-Alpha Therapy During Murine Klebsiella Pneumoniae Bacteremia: Increased Mortality in the Absence of Liver Injury. *Shock* 2003;20:309-315.