Antibiotic Dosing in Sustained Low-Efficiency Dialysis in Critically Ill Patients

Sidharth Kumar Sethi1*, Vinod Krishnappa2,3*, Nisha Nangethu2, Paul Nemer2, Lawrence A. Frazee4, and Rupesh Raina2,5

Abstract
Purpose of review: Sustained low-efficiency dialysis (SLED) is increasingly used as a renal replacement modality in critically ill patients with acute kidney injury (AKI) and hemodynamic instability. There is, therefore, a greater need for the understanding of the antibiotic dosage and pharmacokinetics in these patients, to provide them with optimal therapy.
Sources of information: PubMed/Medline, Embase, and Google Scholar.
Methods: PubMed/Medline, Embase, and Google Scholar databases were searched using a combination of key words: dialysis, end stage renal disease, renal failure, sustained low efficiency dialysis, extended daily dialysis, prolonged intermittent renal replacement therapy (PIRRT), and antibiotic dosing. Studies that investigated antibiotic dosing and pharmacokinetics during SLED/extended daily dialysis/PIRRT were selected for this review.
Key findings: Eleven studies met inclusion criteria and selected for data extraction. The data with regard to dialysis specifications, type of antibiotic including dosages, drug clearances, and dosage recommendations are summarized in Table 1. It is a challenge to find therapeutic doses for antibiotics during SLED therapy because, in general, only aminoglycosides and vancomycin can be assayed in clinical laboratories.
Limitations: Although current studies on antibiotic dosing in SLED are limited due to diverse and undersized patient populations, antibiotic dosage adjustments for patients receiving SLED discussed here will serve as a valuable guide. Future large-scale research should focus on establishing guidelines for antibiotic dosage in SLED.
Implications: Pharmacokinetic principles should be taken into consideration for the appropriate dosing of drugs during SLED, yet it is vital to monitor response to drug to make sure therapeutic goals are achieved. Antibiotic dosing and timing relative to the initiation of SLED may be important to maximize either the time above the minimum inhibitory concentration (MIC) (time-dependent) or the peak to MIC ratio (concentration-dependent), balancing efficacy and toxicity concerns. Critical care physicians should liaise with nephrologists to make decisions regarding appropriate antibiotic dosing in patients undergoing SLED.

Abrégé
Justification : On recourt de plus en plus à l’hémodialyse prolongée à faible efficacité (SLED — sustained low-efficiency dialysis) comme thérapie de remplacement rénal chez les patients gravement malades présentant une insuffisance rénale aiguë (IRA) et une instabilité hémodynamique. Dès lors, il devient impératif de se pencher sur la posologie des antibiotiques et leur pharmacocinétique chez ces patients de façon à leur offrir le meilleur traitement possible.
Sources : Les bases de données PubMed/Embase, Embase et Google Scholar.
Méthodologie : Nous avons épluché les bases de données PubMed/Embase, Embase et Google Scholar à l’aide d’une combinaison de mots-clés : dialyse (dialyse), end stage renal disease (insuffisance rénale terminale), renal failure (insuffisance rénale), sustained low efficiency dialysis (hémodialyse prolongée à faible efficacité), extended daily dialysis (dialyse quotidienne prolongée), prolonged intermittent dialysis (dialyse quotidienne prolongée) ou PIRRT (therapie de remplacement renal intermittente prolongee) et antibiotic dosing (posologie des antibiotiques). Ont été retenues pour cette revue les études qui exploitaient la posologie des antibiotiques et leur pharmacocinétique dans les contextes de la SLED, de la dialyse quotidienne prolongée et de la PIRRT.
Constats : Onze études répondaient à nos critères d’inclusion. Les données obtenues sur les caractéristiques de la dialyse, de même que sur le type d’antibiotique, sa posologie, sa clairance et les doses recommandées sont résumées dans le Tableau 1. L’établissement de la dose thérapeutique d’antibiotique durant la SLED pose un défi puisque, généralement, seuls les aminoglycosides et la vancomycine peuvent être dosés en laboratoire clinique.
Limites : Bien que la fiabilité d’études traitant de la posologie des antibiotiques utilisés durant la SLED soit limitée, en raison notamment d’échantillons de sujets faibles et hétérogènes, les ajustements posologiques pour les patients traités par SLED discutés ci-après constitueront des balises utiles. De futurs essais à plus grande échelle devraient se concentrer sur l’établissement de lignes directrices concernant les doses thérapeutiques d’antibiotiques à administrer pendant la SLED.

Conclusion : Les principes pharmacocinétiques devraient être prise en compte pour établir la posologie d’antibiotique appropriée pendant la SLED. Il demeure toutefois crucial de surveiller la réponse au médicament pour s’assurer que les objectifs thérapeutiques sont atteints. La posologie d’antibiotiques et le moment d’initiation de la SLED pourraient se s’avérer importants pour maximiser soit le temps au-dessus de la concentration minimale inhibitrice (en fonction du temps), soit le rapport entre le pic et cette même concentration (en fonction de la concentration), de façon à établir un équilibre entre les préoccupations liées à l’efficacité et celles relatives à la toxicité. Les médecins des unités de soins intensifs et les néphrologues devraient coopérer pour prendre des décisions conjointes quant à la posologie d’antibiotique appropriée pour les patients traités par SLED.

Keywords
antibiotics, SLED, sustained low-efficiency dialysis, pharmacokinetics, extended daily dialysis

Received February 7, 2018. Accepted for publication June 14, 2018.

What was known before
Sustained Low Efficiency Dialysis (SLED) is becoming a common dialytic modality in critically sick patients. It utilizes diffusive and/or convective solute clearances. In addition to toxin removal, there is also drug removal, putting a patient at risk of drug dosing errors.

What this adds
This review adds valuable data on general pharmacokinetics and dose adjustment recommendations for commonly used drugs in the intensive care unit for critically sick patients.

Introduction
Patients suffering from acute kidney injury (AKI) require dialysis which provides adequate volume control, solute removal, and adequate hemodynamic stability and effectively corrects acid-base imbalances and electrolyte disturbances. Various methods of dialysis are predominantly guided by the availability of machines, hemodialysis unit requirements such as specific patient needs, resource needs of the unit, and staff proficiency. Sustained low-efficiency dialysis (SLED) is considered to be “a conceptual and technical hybrid” of continuous renal replacement therapy (CRRT) and intermittent hemodialysis (IHD). There are several advantages of SLED: stable hemodynamics due to decreased ultrafiltration rate, negligible solute disequilibrium due to low-efficiency solute removal, dialysis dose can be maximized due to prolonged treatment duration, and allows patients to undergo supplementary investigations or treatments during interdialytic periods, and has better mobility. CRRT uses advanced, expensive machines, requires trained intensive care unit (ICU) staff, and is usually labor intensive. SLED can provide renal replacement therapy over an extended period, but intermittently, using standard hemodialysis machines. SLED has been envisaged to safeguard hemodynamic stability and improve biochemical clearance with the cost-effectiveness of standard hemodialysis. This makes it an advantageous method of dialysis in developing countries where efficiency must be integrated with a careful watch on resources. Normally, the rate of blood flow is \(\leq 5 \text{ mL/kg/min} \) and dialysate flow is \(\leq \text{twice the blood flow rate} \). The hemodynamic advantage of CRRT over IHD has been credited to a slower ultrafiltration rate as the same ultrafiltration target is achieved over 24 hours instead of the conventional 3 to 4 hours. SLED also has a similar advantage but at a lower cost. Lengthening the dialysis session time beyond the standard 4 to 5 hours of IHD and

1Pediatric Nephrology, Kidney Institute, Medanta the Medicity, Gurgaon, Haryana, India
2Cleveland Clinic Akron General/Akron Nephrology Associates, OH, USA
3Northeast Ohio Medical University, Rootstown, OH, USA
4Pharmacy, Cleveland Clinic Akron General, OH, USA
5Department of Nephrology, Cleveland Clinic Akron General and Akron Children’s Hospital, OH, USA

*Both are first authors.

Corresponding Author:
Rupesh Raina, Consultant Nephrologist, Adult-Pediatric Kidney Disease/Hypertension, Department of Nephrology, Cleveland Clinic Akron General and Akron Children’s Hospital, 224 W Exchange St., Akron, OH 44302, USA.

Emails: rraina@akronchildrens.org
altering the rates of blood flow and dialysate flow are fundamental for executing SLED. Any machine with the ability to lower rates of blood flow and dialysate flow while increasing the time of hemodialysis can be used for SLED. Although there are benefits to SLED such as cost, small molecule clearance, (usually) no anticoagulation, hemodynamic stability, reduced risk of infection due to absence of bag handling, increased patient mobility and access, its aid in hyperkalemia, overnight treatment, and it being less labor intensive, there are disadvantages such as the higher start-up costs, unfamiliarity, and hypophosphatemia.

The other disadvantages of SLED are similar to IHD; small and large solute clearances being low compared with CRRT, which reduces intradialytic urea disequilibrium and maintains equivalence between single and double pool urea kinetic models. Furthermore, CRRT increases larger solute clearance including inflammatory mediators. These larger solutes have a molecular weight more than the cutoff for low-flux hemodialysis membranes and higher convective clearance with appropriate porous membranes is needed for their removal. Due to this, mainly diffusive solute clearance during SLED may be a disadvantage. To maximize the small and large solutes removal during SLED, it is necessary to increase blood and dialysate flow rates to optimize diffusive clearance (for small solutes) and consider on-line haemodialfiltration with adequate porous membranes for higher convective clearance (for larger solutes).

It is essential that clinicians understand the pharmacokinetic and pharmacodynamic properties, which influence drug dosing in SLED to make informed decisions on optimum patient treatment and ongoing management. In this article, we will be discussing the general pharmacokinetics of drugs during SLED, the pharmacokinetics of commonly used antibiotics in critically ill renal failure patients, and the various dosage adjustments which need to be made for these antibiotics during SLED. We believe that our article will be able to shed more light on the issues of antibiotic dosaging during SLED and how to overcome them.

Method

We searched PubMed/Medline, Embase, and Google Scholar using a comprehensive search strategy. The search strategy was designed using a combination of controlled vocabulary (eg, dialysis, ESRD, or end stage renal disease, renal failure) and key words (eg, sustained low efficiency dialysis or SLED, extended daily dialysis, prolonged intermittent renal replacement therapy or PIRRT, antibiotic dosing). There were no language or date restrictions on the searches. Additional literature was identified by hand searching the references of included articles and relevant reviews. Studies that investigated antibiotic dosing and pharmacokinetics during SLED/extended daily dialysis/prolonged intermittent renal replacement therapy (PIRRT) in comparison to other modalities of renal replacement therapy were included in this review. Studies that did not focus on SLED/PIRRT/extended daily dialysis were excluded. Studies focused solely on anticoagulation during SLED were also excluded. Two reviewers independently screened the list of identified abstracts using the predefined inclusion and exclusion criteria, and then extracted data from 11 selected studies for this review. The data with regard to dialysis specifications, type of antibiotic including dosages, drug clearances, and dosage recommendations were extracted into the Table 1.

Pharmacodynamic and Pharmacokinetic Considerations

Pharmacodynamic and pharmacokinetic factors should be considered when dosing antibiotics in critically ill patients receiving SLED. The pharmacodynamic profile of an antibiotic, whether its antimicrobial activity is concentration- or time-dependent, may influence the dosing regimen. Antibiotics such as aminoglycosides and quinolones are considered concentration-dependent antibiotics. For these drugs, a higher concentration relative to the minimum inhibitory concentration (MIC) of the organism results in greater antimicrobial efficacy. Conversely, β-lactams and vancomycin are considered time-dependent antibiotics meaning that the best determinant of antimicrobial efficacy is the percentage of time the drug concentration is above the MIC of the organism. Timing of antibiotic administration relative to the initiation of SLED to maximize either the time above the MIC (time-dependent) or the peak to MIC ratio (concentration-dependent) is an important consideration and must balance efficacy and toxicity concerns.

Changes in pharmacokinetic variables should also be considered when dosing antibiotics in critically ill patients receiving SLED. Absorption, distribution, and clearance of medications will be altered in this patient population. Oral absorption is unreliable in critically ill patients so medications are usually administered intravenously. Critically ill patients often receive large amounts of intravenous fluids which can influence drug distribution. Low concentrations of plasma proteins (primarily albumin) can result in a higher fraction of unbound drug in the plasma, which can alter drug distribution and elimination. In addition, overall drug elimination can change daily as a patient’s residual renal function improves or declines.

Clearance is the volume of reference fluid that is completely cleared of drug per unit time and is additive. The clearance of a renally eliminated drug in a patient undergoing renal replacement therapy will be determined by the patient’s residual kidney function and the mode of renal replacement therapy. During the period on dialysis, drug clearance per hour is usually higher with SLED than CRRT and slower than during IHD. However, because the duration of dialysis in SLED is usually 6 to 12 hours per day, the overall drug clearance per day is usually less than what is seen with CRRT but greater than what is seen with IHD.
Study et al	Drug	Dose	No. of subjects	Dialysis machine	SLED characteristics	Pharmacokinetics in SLED	Recommendations
Ahern et al	Vancomycin	Single dose 15 mg/kg IV	11	Fresenius 2008 H (Fresenius medical care)	Dialysate flow rate 100 mL/min and blood flow rate 200 mL/min. Dialysis duration 24 h	Mean half-life 43.1 hr and mean clearance 24.3 mL/min. Mean volume of distribution 0.84 L/kg. Mean volume of distribution 0.84 ± 0.17 L/kg	Initial dose of 15 mg/kg and measurement of serum drug levels at 24 h
Kielstein et al	Vancomycin	Single dose 1 g IV 12 h prior to dialysis	10	Batch dialysis system (GENIUS, Fresenius Medical care, Bad Homburg) with polysulfone high-flux dialyzer with surface area 1.3 m²	Both dialysate and blood flow rate 160 mL/min. Dialysis duration 480 ± 6 min	Mean half-life 11.2 h. Mean clearance 2.1 L/h and 3.8 L/h based on analysis method. Mean volume of distribution 0.57 L/kg	Initial dose of 20-25 mg/kg and monitoring of dialysis levels for further dosing
Manley et al	Gentamicin*	Single dose of 0.6 mg/kg IV post dialysis	8	Fresenius Medical care, high-flux polysulfone F50 filter with surface area 0.5 m²	Blood flow rate 200 mL/min and dialysate flow rate 300 mL/min. Duration of dialysis 480 min	Mean half-life 3.7 ± 0.8 h. Mean clearance 75.9 ± 38.4 mL/min/1.73 m². Mean volume of distribution 0.28 L/kg	Mean initial dose 2-2.5 mg/kg after hemodialysis to maintain optimal peak and trough levels at 7.5 µg/mL and 0.8 µg/mL, respectively
Kielstein et al	Meropenem	Single dose 1 g IV 6 h prior to dialysis	10	Batch dialysis system (GENIUS, Fresenius Medical care, Bad Homburg) with polysulfone high-flux dialyzer with surface area 1.3 m²	Both dialysate and blood flow rate 160 mL/min. Dialysis duration 480 ± 6 min	Mean half-life 3.7 h. Mean clearances 2.3 and 5.1 L/h based on analysis method. Mean volume of distribution 0.72 L/kg	0.5-1 g every 8 h
Braune et al	Meropenem	Varying doses of 0.5 g, 1 g and 2 g IV over 30 min every 8 h	19	GENIUS batch system (Fresenius Medical Care, Bad Homburg, Germany) with Fresenius FX 60 filter (surface area 1.4 m²)	Mean SLED duration 315 min. Mean blood/dialysate flow rate 250 mL/min and ultrafiltration rate 500 mL/h,	The PTA for 40% fT >MIC and 100% fT >MIC was >95% with a meropenem dose of 0.5 g 8 hourly for Pseudomonas aeruginosa (MIC ≤ 2) in patients without residual diuresis, whereas it was >95% and 93% with a dose of 1 g 12 hourly and 2 g 8 hourly, respectively, in patients with 300 mL/d residual diuresis. In patients with residual diuresis, FTA of 97% was achieved with a dose of 2 g 8 hourly for 100% fT >MIC. Pharmacokinetic properties are significantly influenced by the degree of residual diuresis in patients undergoing SLED. Therapeutic drug monitoring may help optimize individual dosing	
Burkhardt et al	Ertapenem	Single dose of 1 g IV	6	Batch dialysis system (GENIUS, Fresenius Medical care, Bad Homburg) with polysulfone high-flux dialyzer with surface area 1.3 m²	Mean blood and dialysate flow rate 160 mL/min. Dialysis duration 480 min	Half-life 6.7 h. Mean clearance 49.5 ± 10.9 mL/min. Volume of distribution 15.9 ± 3.2 L	1 g/d
Fiaccadori et al	Linezolid	Single dose of 600 mg IV before dialysis	15	Fresenius Medical Care (low-flux polysulfone filters with 1.6 m² surface area)	Blood flow 200 mL/min and dialysate flow 100 mL/min. Dialysis duration 8-9 h	Half-life 5.88 h and clearance 33.3 mL/min. Volume of distribution 30.19 L	Drug should be administered toward the end of dialysis session
Czock et al	Moxifloxacin	Single dose of 400 mg IV 8 h prior to dialysis	10	GENIUS batch system (Fresenius Medical Care, Bad Homburg, Germany) with polysulfone high-flux dialyzer with surface area 1.3 m²	Mean blood and dialysate flow 161 ± 4 mL/min. Dialysis duration 48 ± 9 min	Mean half-life 6 h and mean clearances 2 L/h and 3.1 L/h based on analysis method. Mean volume of distribution 3.8 L/kg	Standard 400 mg/d irrespective of liver impairment

(continued)
Table 1. (continued)

Study	Drug	Dose	No. of subjects	Dialysis machine	SLED characteristics	Pharmacokinetics in SLED	Recommendations
Czock et al^{13b}	Levofloxacin	Single dose of 250/500 mg IV 12 h prior to dialysis	5	GENIUS batch system (Fresenius Medical Care, Bad homburg) with polysulfone high-flux dialyzer with surface area 1.3 m²	Mean blood and dialysate flow 161 ± 4 mL/min. Dialysis duration 481 ± 9 min	Mean half-life 10.3 h and mean clearances 2.93 L/h and 3.12 L/h based on analysis method. Mean volume of distribution 1.71 L/kg	Dosage adjustment is necessary and drug should be given after dialysis
Lorenzen et al¹⁴	Ampicillin/ sulbactam	Single dose of 2 g/1 g IV 3 h prior to dialysis	12	GENIUS batch system (Fresenius Medical Care, Bad homburg) with polysulfone high-flux dialyzer with surface area 1.3 m²	Mean blood and dialysate flow 162 ± 6 mL/min. Dialysis duration 442 ± 77 min	Mean volume of distribution for ampicillin/sulbactam were 13.1 ± 11.1 L and 22 ± 21.8 L, respectively, mean half-life 2.8 ± 0.8 h and 3.5 ± 1.5 h, respectively, mean clearances 80.1 ± 7.7 mL/min and 83.3 ± 12.1 mL/min, respectively	No significant drug toxicity with twice daily dosing
Clajus et al¹⁵	Trimethoprim/ sulfamethoxazole	15 mg/kg/d and 95 mg/kg/d IV	1	GENIUS batch system (Fresenius Medical Care, Bad homburg) with polysulfone high-flux dialyzer with surface area 1.3 m²	Mean blood and dialysate flow 170 ± 41 mL/min. Dialysis duration 442 ± 101 min	Clearances 94 ± 20.2 mL/min and 51 ± 18.8 mL/min, respectively	Further studies needed to establish dosing recommendations
Strunk et al¹⁶	Colistin	6 million units loading dose and 3 million units every 8 h	1	High flux 1.3 m² dialyzer	Mean blood and dialysate flow rate 191 mL/min and 121 mL/min, respectively. Average dialysate duration 552 min	Colistin clearance 54-71 mL/min and colistin methanesulfonate 25-62 mL/min	Recommends loading dose of 6 million units and maintenance of 3 million units every 8 h
Konig et al¹⁷	Ceftazidime	1-2 g IV over 30 min 8-12 hourly	16	GENIUS batch system (Fresenius Medical Care, Bad Homburg, Germany) with Fresenius FX 60 filter (surface area 1.4 m²)	Mean duration of SLED 299 min. Mean blood/ dialysate flow rate 264 mL/min and mean ultrafiltration 540 mL/h	Mean clearance on SLED was 5.32 L/h versus 1.06 L/h off SLED. PTA for 50% fT>MIC was 98% at a dose of 1 g IV 8 hourly.	Ceftazidime at a dose of 1 g IV 8 hourly and 2 g IV 12 hourly is adequate for attaining 50% fT>MIC and 100% fT>MIC, respectively, for susceptible pathogens (MIC <8mg/L)

Note. SLED = sustained low-efficiency dialysis; kg = kilogram; IV = intravenous; PTA = probability of the target attainment; fT>MIC = blood levels of the given drug to be more than minimum inhibitory concentration for a specified duration of the dosing interval; PTA = fractional target attainment.

^aDenotes single study but 2 different antibiotics.

^bDenotes single study but 2 different antibiotics.

^cSlow daily home dialysis.
Because clearance is additive, total clearance (CL\textsubscript{T}) during SLED may be conceptualized as follows:22

\[CL_T = CL_{\text{pat}} + CL_D, \]

where CL\textsubscript{pat} = patient’s intrinsic clearance (sum of the patient’s residual renal and non-renal clearance); CL\textsubscript{D} = clearance from dialysis. In some patients, CL\textsubscript{pat} will be so low that practically CL\textsubscript{T} is equivalent to CL\textsubscript{D}.

Drug clearance from dialysis will be determined by the dialysis prescription and includes dialysate and blood flow rates as well as the type of dialyzer used. Drug clearance is also influenced by the mechanisms of solute removal, which in the case of SLED, are convection and diffusion. Transport of solutes across the hemofilter membrane via convection is the movement of plasma water from the vascular compartment to the effluent compartment, and the related bulk transport.23 Rates of convection depend on the rate of ultrafiltration, which is guided by the transmembrane pressure gradient created by the blood and ultrafiltrate pumps in the system. Transmembrane concentration gradient of the solute or medication results in the diffusive transport of solutes across the hemofilter membrane. Diffusion is the most effective method for removal of small molecules (<1000 daltons).23

In patients receiving SLED, the overall elimination will be biphasic with a slower elimination rate while the patient is off dialysis and a faster elimination rate during dialysis. The initial slow clearance represents the patient’s intrinsic clearance (CL\textsubscript{pat}) and the secondary phase is a more rapid elimination consisting of CL\textsubscript{pat} and CL\textsubscript{D} (clearance during SLED) (Figure 1). The dialysate and blood flow rates as well as the duration of SLED and the dialysis filter will have an impact on drug clearance. Because SLED is delivered for an extended period (6-12 hours each day) and antibiotics are administered intermittently (as opposed to a continuous infusion), timing of drug administration relative to the start of SLED will influence overall drug exposure.24 Any medications administered as a continuous infusion to a patient receiving SLED would need to have the infusion rate adjusted to different rates while on versus off dialysis. Therefore, it is important to consider the exact SLED prescription and timing of antibiotic administration when interpreting published pharmacokinetic studies for antibiotics in patients receiving SLED.

Careful dosing of antibiotics in patients receiving renal replacement therapy is important to prevent adverse events while ensuring therapeutic plasma concentrations. When evaluating the literature on antibiotic dosing during SLED, it is important to consider the dialysis procedure used including dialysate and blood flow rates, the type of dialyzer, and the duration and frequency of dialysis.25

Figure 1. Theoretical drug elimination curve in a patient receiving SLED showing a slower elimination phase while off dialysis followed by a more rapid elimination phase on dialysis.

Discussion on Individual Antibiotics

Although current studies on antibiotic dosing in SLED are limited due to diverse and undersized patient populations, antibiotic dosage adjustments for patients receiving SLED will be discussed here, and studies are summarized in Table 1. Table 2 describes normal pharmacokinetic properties of commonly used antibiotics.

Ampicillin and Sulbactam

The combination of ampicillin and sulbactam is a commonly used antibiotic for a myriad of infections, and better understanding of its pharmacokinetics in the setting of SLED is essential for correct therapeutic dosing. The primary route of clearance for both ampicillin and sulbactam is renal in normal subjects.26 The volume of distribution for ampicillin and sulbactam is 0.22 L/kg and 0.30 L/kg, respectively, and plasma protein binding is moderate.26,27 Half-lives of ampicillin and sulbactam in normal individuals are 1.4 and 1.7 hours, respectively, whereas in patients with stages 3 and 5 chronic kidney disease, it is 17 and 15 hours, respectively.14 In a prospective open-label observational pharmacokinetic study, 12 critically ill adult patients with AKI on SLED were administered a single dose of ampicillin/sulbactam 2 g/1 g.14 Dialysis was performed using a polysulfone high-flux dialyzer with mean blood and dialysate flow rates of 162 ± 6 mL/min. Dialysis was started about 3 hours after the administration of the ampicillin/sulbactam and continued for an average duration of 442 ± 77 minutes. Three patients received multiple doses of ampicillin/sulbactam 2 g/1 g given twice daily for 4 days. Noncompartmental pharmacokinetic analysis revealed ampicillin/sulbactam volume of distribution to be 13.1 ± 11.1 L and 22 ± 21.8 L, respectively; dialysis clearances were 80.1 ± 7.7 mL/min and 83.3 ± 12.1 mL/min, respectively; and half-lives were 2.8 ± 0.8 hours and 3.5 ± 1.5 hours, respectively. In this study, the half-life of ampicillin/sulbactam was longer than the half-life observed in healthy subjects, shorter than in patients with chronic kidney disease.
Drug	Renal clearance	Volume of distribution	Protein binding	Normal half-life	Half-life in renal failure
Ampicillin/Sulbactam	144 ± 64 mL/min (ampicillin) 136 ± 58 mL/min (sulbactam)	0.22 L/kg (ampicillin) 0.30 L/kg (sulbactam)	28% (ampicillin) 38% (sulbactam)	1.4 h (ampicillin) 1.7 h (sulbactam)	17 h in stage 5 CKD (ampicillin) 15 h in stage 5 CKD (Sulbactam)
Vancomycin	80%-90% of a single dose excreted as unchanged drug in the urine within 24 h	0.4-1 L/kg	10%-50%	6 h	>168 h in severe renal failure
Gentamicin	Almost entirely by filtration 80-90 mL/min/1.73 m²	0.14-0.70 L/kg	Negligible	2-3 h	50-70 h
Meropenem	70% of a single dose excreted as unchanged drug over 12 h. 139-252 mL/min	12.5-20.7 L/kg	2%	1 h	>5.7 h
Ertapenem	40% of a single dose excreted as unchanged drug. 22.7 mL/min	0.11-0.12 L/kg	84%-96%	4 h	4.4 h in mild renal insufficiency to 14.1 h in ESRD
Linezolid	30%-35% excreted as unchanged drug in the urine at steady state. 50% excreted as the two major metabolites. 50 mL/min	40-50 L	31%	4.5-5.5 h	Not significantly altered by renal failure
Moxifloxacin	20% excreted as unchanged drug in the urine 2.45-2.67 L/h	2.45-3.55 L/kg	39%-52%	12 h	Not significantly altered by renal failure
Levofloxacin	60%-87% of a single dose excreted as unchanged drug in the urine within 72 h 91-140 mL/min	0.92-1.36 L/kg	24%-38%	6-8 h	>20 h
Trimethoprim/ Sulfamethoxazole	80% (trimethoprim) and 20% (sulfamethoxazole) recovered in the urine as unchanged drug	100-120 L (trimethoprim) 12-18 L (sulfamethoxazole) 1.9 mL/min (colistin)	44% (trimethoprim) 70% (sulfamethoxazole) 59%-74% (colistin)	6-17 h (trimethoprim) 9 h (sulfamethoxazole) 2-3 h (CMS)	Prolonged 2-3 days in patients with anuria (CMS)
Colistin and Colistimethate (CMS)	100 mL/min which is 2/3 of total clearance (CMS) 14.0L (CMS) 12.4L (colistin) 1.9 mL/min (colistin)	14.0L (CMS) 12.4L (colistin)	59%-74% (colistin)	2-3 h (CMS)	2-3 days in patients with anuria (CMS)
Ceftazidime	70%-90% excreted unchanged in the urine within 24 h	18 L/1.73 m²	17%	1.5-2.5 h	15 h

Note: CKD = chronic kidney disease; ESRD = end-stage renal disease; CMS = colistimethate sodium.
stage 5.14 For the 3 patients who received ampicillin/subbac-
tam 2 g/1 g twice daily for 4 days, there was no accumulation of
drug to toxic levels. This study suggests that SLED clears
ampicillin/subbactam effectively and to a greater extent than
regular IHD. The authors suggest that when SLED is started
within 3 hours after administration of ampicillin/subbactam,
it should be given twice daily at a dose of 2 g/1 g with 1 dose
given after dialysis.14

Ceftazidime

In normal subjects, the volume of distribution of ceftazidime
is consistent with the extracellular space (18 L/1.73 m²).28
Most of the drug is eliminated as unchanged drug in the urine
and plasma protein binding is low (17%).28 The normal half-
life of ceftazidime is about 1.5 to 2.5 hours and in patients
with renal failure, it is about 15 hours.17 Ceftazidime has
time-dependent bactericidal effect that requires blood levels
to be more than MIC for at least 50% of the dosing interval
(50% fT >MIC) and latest evidence indicates that critically ill
subjects with severe infections to have a target of 100%
fT >MIC.29,30 Konig et al conducted single-arm, prospective,
observational pharmacokinetic study in 16 adult ICU patients
undergoing SLED.17 Ceftazidime 1 to 2 g was administered
intravenously (IV) over 30 min every 8 to 12 hours at the
physician’s discretion. The mean duration of SLED was 299
min with mean blood/dialysate flow rate of 264 mL/min and
mean ultrafiltration was 540 mL/h.17 Two-compartment lin-
ear population pharmacokinetic models were used for analy-
sis. The mean clearance of ceftazidime on SLED was 5.32
L/h versus 1.06 L/h off SLED.17 It was found that the prob-
ability of the target attainment (PTA) for 50% fT >MIC was
98% for ceftazidime at a dose of 1g IV every 8 hours.17 This
study concluded that ceftazidime at a dose of 1 g IV 8 hourly
and 2 g IV 12 hourly is adequate for attaining 50% fT >MIC
and 100% fT >MIC, respectively, for susceptible pathogens
(MIC =8 mg/L).17

Vancomycin

In normal subjects, the majority of intravenously adminis-
tered vancomycin is recovered unchanged in the urine.31
Mean half-life is 6 hours in normal subjects and >168 hours
in severe renal failure patients.32 Vancomycin penetration
to tissues is variable with a volume of distribution 0.4 to 1
L/kg and plasma protein binding capacity of 10% to 50%.31
Protein binding capacity is low in patients with severe renal
failure (18%-20%).32 Therapeutic serum vancomycin levels
are affected by the SLED dialysate and blood flow rates.
Studies have advocated initial dose of vancomycin to be 15
to 25 mg/kg depending on the dialyzer characteristics and
monitoring of drug concentration to determine further dosing
in patients on SLED.7,8 A prospective trial involving criti-
cally ill patients receiving SLED for AKI studied pharma-
cokinetics of vancomycin. The mean blood flow rate and
dialysate flow rate were 200 mL/min and 100 mL/min,
respectively. Patients received single dose of vancomycin 15
mg/kg depending on actual body weight. Single-compartment
model of pharmacokinetic analysis was used. The mean vol-
ume of distribution was 0.84 ± 0.17 L/kg with mean half-life
of 43.1 hours and clearance of 24.3 mL/min; dosing intervals
were 24 to 72 hours. This study recommends initial vanco-
mycin dose of 15 mg/kg and measurement of serum drug
levels at 24 hours to ascertain the need for additional doses,
as there was wide variability in vancomycin half-life.7
Another prospective study involving intensive care patients
with anuric AKI where the SLED dialysate flow rate and
blood flow rate was 160 mL/min, and single dose 1g of van-
comycin administered 12 hours prior to dialysis showed that
the mean volume of distribution was 0.57 L/kg, mean vanco-
mycin half-life of 11.2 hours, and mean clearances of 2.1 L/h
and 3.8 L/h based on analysis method used. In this study,
noncompartmental methods with presumed steady-state con-
ditions were used to study pharmacokinetics of the drug. The
initial recommended dose of vancomycin was 20 to 25 mg/
kg with drug concentration monitoring for further dosing.8

Gentamicin

Gentamicin provides a good coverage against gram-negative
organisms, and maintenance of adequate peak and trough lev-
els is crucial to retain effective coverage in patients on SLED.
In normal subjects, gentamicin distribution is approximately
equivalent to the extracellular space, although the volume of
distribution may be much larger in some patients (0.14-0.70 L/
kg).33 The elimination of gentamicin is almost exclusively by
glomerular filtration and plasma protein binding is negligi-
ble.33 Half-life of gentamicin is 2 to 3 hours, while it is 50 to
70 hours in renal failure patients.32 In a prospective, open-
label pharmacokinetic slow daily home hemodialysis study
involving ESRD, patients with SLED parameters of 200 mL/
min blood flow and 300 mL/min of dialysate flow received
single dose of gentamicin 0.6 mg/kg post dialysis depending
on actual body weight.9 The mean half-life of gentamicin was
3.7 ± 0.8 hours during dialysis and 20.4 ± 4.7 during interdia-
lytic period. The mean drug clearances during interdialytic
and intradialytic phases were 15.8 ± 4 mL/min/1.73 m² and
75.9 ± 38.4 mL/min/1.73 m², respectively. Mean volume of
distribution was 0.28 L/kg that was comparable to values in
healthy individuals. Gentamicin rebound was <4% and was
attributed to smaller dialyzer size, slower rates of blood and
dialysate flow. Due to this reduced drug rebound, which gives
adequate time for redistribution, it was recommended that 2 to
2.5 mg/kg of gentamicin administration intravenously post
dialysis to have optimal therapeutic levels and gram-negative
coverage.9

Meropenem

The majority of meropenem is excreted unchanged in the
urine in normal subjects, and distributes into multiple differ-
te tissues with a volume of distribution 12.5 to 20.7 L/kg
and protein binding is very low (2%).

Normal half-life of meropenem is 1 hour and is prolonged in renal failure patients to >5.7 hours. Pharmacokinetics of meropenem has been studied in the setting of SLED, and its clearance has been shown to be almost same as in other forms of CRRT. Furthermore, meropenem has time-dependent bactericidal effect that requires blood levels to be more than MIC for at least 40% of the dosing interval (40% fT >MIC) with latest evidence indicating to have a target of 100% fT >MIC in critically ill septic patients. A prospective study involving critical care patients with anuric AKI were given single dose meropenem 1 g intravenously 6 hours prior to SLED where the SLED dialysate flow rate and blood flow rate was 160 mL/min. Noncompartmental methods of pharmacokinetic calculations were done with presumed steady-state conditions. This study found that the mean half-life of meropenem in SLED (3.7 hours) was comparable to that of reported half-life for IHD (2.9 hours), but shorter than the reported half-life for CRRT (7.5 hours). The mean volume of distribution was 0.72 L/kg and mean clearances of meropenem by SLED were 2.3 and 5.1 L/h depending on the analysis method and were comparable to reported clearances for IHD (4.7-4.9 L/h) and CRRT (3.5 L/h). The recommended dose of meropenem according to this study was 0.5 to 1 g every 8 hours to maintain effective plasma levels. A recent prospective observational study by Braune et al tested pharmacokinetic properties of meropenem in 19 septic patients undergoing SLED. Two-compartment linear population pharmacokinetic model was used. The mean SLED duration was 315 min with mean blood/dialysate flow rate of 250 mL/min and ultrafiltration rate of 500 mL/h. Varying doses of 0.5 g, 1 g and 2 g meropenem was administered IV over 30 min every 8 hours at the discretion of the physician. The PTA for 40% fT >MIC and 100% fT >MIC was >95% with a meropenem dose of 0.5 g every 8 hours for 12 hours for Pseudomonas aeruginosa (MIC ≤2) in subjects without residual diuresis, whereas it was >95% and 93% with a dose of 1 g 12 hours and 2 g every 8 hours, respectively, in patients with 300 mL/d residual diuresis. Furthermore, in these patients with residual diuresis, fractional target attainment (FTA) of 97% was achieved with a dose of 2 g every 8 hours for 100% fT >MIC. In a recent national survey of pharmacists on antibiotic dosing recommendations in SLED, it was found that there was 4 to 12 fold variation in antibiotic dosing recommendations across institutions, and most frequently recommended regimen for meropenem was 1 g every 12 hours.

Ertapenem

Ertapenem is active against commonly encountered aerobic and anaerobic gram-positive and gram-negative organisms. The renal elimination of ertapenem involves glomerular filtration and tubular secretion as well as renal metabolism. Half-life of ertapenem is 4 hours in health people, while it is 4.4 hours in mild renal insufficiency to 14.1 hours in ESRD and is extensively protein bound (84%-96%) with a relatively small volume of distribution for total drug (0.11-0.12 L/kg). Standard dose of ertapenem without any dose adjustments in the setting of SLED maintains therapeutic levels to provide effective coverage. In a prospective open-label study in critical care patients with AKI on SLED were given single dose of 1 g ertapenem. Mean blood flow and dialysate flow rate was 160 mL/min. Noncompartmental method of pharmacokinetic analysis was done. Half-life of ertapenem was 6.7 hours, volume of distribution was 15.9 ± 3.2 L, and the clearance was 49.5 ± 10.9 mL/min that was similar to clearances observed in critical care patients without requiring dialysis and healthy volunteers. This shows that patients being treated with SLED should be given standard 1 g/d dose of ertapenem to have therapeutic levels that provide effective antibacterial coverage.

Linezolid

In normal subjects, plasma protein binding of linezolid is low to moderate (31%) and the volume of distribution is roughly equal to total body water 40 to 50 L. The half-life of linezolid is 4.5 to 5.5 hours, which is not markedly altered by renal failure, and elimination involves hepatic metabolism to inactive metabolites (50%), and renal clearance of intact linezolid is about 30% of a dose as unchanged drug in the urine at a steady state. Linezolid pharmacokinetics in SLED has been studied, and it was suggested that the drug be administered at the end of dialysis session to maintain optimal therapeutic levels and MIC. In a prospective study involving critically sick oliguric AKI patients on SLED (blood and dialysate flow rate of 200mL/min and 100mL/min respectively), a single dose of linezolid 600mg was administered prior to SLED initiation. Single-compartment pharmacokinetic analysis revealed linezolid volume of distribution was 30.19 L, half-life of 5.88 hours with clearance rate of 33.3 mL/min, and in most cases drug levels were <4 mg/L that is lower than the MIC required to target staphylococcus species. To maintain MIC, it was recommended that linezolid administration be done at the end of dialysis session.

Moxifloxacin and Levofloxacin

The major route of elimination of moxifloxacin in normal subjects is hepatic metabolism with only 20% excreted as unchanged drug in the urine. Moxifloxacin is reported to distribute extensively into tissues (2.45-3.55 L/kg) and demonstrates moderate protein binding (39%-52%). Levofloxacin distributes extensively into multiple tissues (0.92-1.36 L/kg) and demonstrates moderate plasma protein binding (24%-38%) that is not concentration dependent. In normal subjects, both glomerular filtration and tubular secretion are involved in the elimination of levofloxacin with almost no
metabolism occurring.40 Half-life of levofloxacin is 6 to 8 hours in normal subjects and >20 hours in renal failure patients.32 Pharmacokinetics of both moxifloxacin and levofloxacin were studied in 2 separate groups of intensive care patients receiving SLED for anuric AKI.13 Mean blood and dialysate flow rates were 161 ± 4 mL/min. One group was given standard dose of moxifloxacin 400 mg intravenously 8 hours prior to dialysis and other group was given single dose of levofloxacin 250/500 mg intravenously 12 hours prior to dialysis. Noncompartmental pharmacokinetic analysis showed moxifloxacin mean volume of distribution was 3.8 L/kg and mean half-life was 6 hours with mean clearance of 2 to 3.1 L/h depending on the analysis method, whereas for levofloxacin the mean volume of distribution was 1.71 L/kg and mean half-life was 10.3 hours with mean clearance of 2.93 – 3.12 L/h based on the analysis method. Moxifloxacin pharmacokinetics in this study was similar to the parameters observed in healthy subjects and renal failure patients, and there was no significant impact of liver impairment on pharmacokinetics of the drug. This study recommended moxifloxacin standard dose 400 mg/d post dialysis in patients receiving SLED irrespective of hepatic impairment. Also, in this study, half-life of levofloxacin was shorter with SLED, so post dialysis administration with dosage adjustments recommended.15 Furthermore, results of the national pharmacists survey found that the most frequently recommended regimen for levofloxacin was 500 mg every 24 hours.36

Trimethoprim/Sulfamethoxazole

In normal subjects both trimethoprim (TMP) and sulfamethoxazole (SMX) distribute extensively into tissues (TMP 100-120 L, SMX 12-18 L) and demonstrate moderate to high plasma protein binding (TMP 44%, SMX 70%).41 Hepatic metabolism and renal clearance are involved in the elimination of both drugs.41 Normal half-life of TMP and SMX is 6 to 17 hours and 9 hours, respectively, and prolonged in renal failure.15 TMP/SMX in the setting of dialysis has not been studied well despite of its extensive usage for decades. However, pharmacokinetics of TMP/SMX was examined in a critical care patient with cANCA (cytoplasmic anti-neutrophil cytoplasmic antibody) positive vasculitis on immunosuppressive therapy diagnosed to have pneumocystis pneumonia (PCP) and acute or chronic oliguric kidney injury requiring SLED.15 Blood and dialysate flow rate was 170 ± 41 mL/min and TMP/SMX was administered intravenously at a dose of 15 mg/kg/d and 95 mg/kg/d, respectively, due to increased clearance by dialysis. The clearances observed were 94 ± 20.2 mL/min for TMP and 51 ± 18.8 mL/min for SMX. After the SLED, significant decrease in the plasma drug concentration observed and the clearances were higher than the reported clearances for regular hemodialysis, continuous veno-venous hemodialysis (CVVHD), and continuous veno-venous hemodiafiltration (CVVHDF). Also, clearances were higher than the normal renal clearances, and further pharmacokinetic studies are recommended for correct and effective dosing in the setting of SLED.15

Colistin

Development of multidrug resistant organism lead to increased usage of colistin in critically ill patients especially in the ICU. Colistin is administered parenterally as the inactive prodrug colistimethate sodium (CMS), which is converted to the active colistin in vivo.32 In normal subjects, about two-thirds of CMS is cleared renal and is approximately equal to the glomerular filtration rate (GFR) while nonrenal clearance of CMS includes hydrolysis which forms the active moiety.43 High tubular reabsorption of colistin results in a low renal clearance; however, CMS excreted into the urine is also hydrolyzed to colistin in the urinary tract.43 Normal half-life of CMS is about 2 to 3 hours and 2 to 3 days in patients with anuria.44 The volume of distribution of colistin and CMS is approximately equivalent to the extracellular space (CMS: 14.0 L, colistin: 12.4 L) and the protein binding of colistin in critically ill patients is moderate (59%-74%).43 Reduced dose of colistin is required in patients with renal failure as half-life of the drug increases with decreasing GFR.16 However, pharmacokinetics of colistin in SLED is not studied except for a recent study investigating single- and multiple-dose pharmacokinetics in a patient with AKI receiving extended daily dialysis complicated by multidrug resistant Klebsiella pneumonia.16 The mean flow rates of blood and dialysate were 191 mL/min and 121 mL/min, respectively, and the average duration of dialysis was 9.2 hours. Colistin methanesulfonate is an inactive prodrug used for intravenous injections and converts into colistin inside the body.16 The patient was given loading dose of 6 million units followed by 9 million units/d in 3 divided doses for 9 days. The drug clearance with SLED for colistin was 54 to 71 mL/min and for colistin methanesulfonate was 25 to 62 mL/min. There was no accumulation of either colistin or its prodrug colistin methanesulfonate with the above mentioned doses of colistin. This study inferred that SLED has a greater impact on drug clearance compared with standard IHD and higher doses of colistin is required to maintain effective therapeutic blood levels. It was recommended that in patients receiving SLED for an average of 9 hours a day, 9 million units of colistin per day in 3 divided doses is sufficient.16

Conclusion

Pharmacokinetic principles should be taken into consideration for the appropriate dosing of drugs during SLED, yet it is vital to monitor response to drug to make sure therapeutic goals are achieved. Antibiotic dosing and timing relative to the initiation of SLED may be important to maximize either the time above the MIC (time-dependent) or the peak to MIC ratio (concentration-dependent), balancing efficacy and toxicity concerns. When the expected clinical response does not
occur, the sufficiency of drug dosing in SLED can be challenged given the lack of adequate clinical trials. It is a challenge to find therapeutic doses for antibiotics during SLED therapy because, in general, only aminoglycosides and vancomycin can be assayed in clinical laboratories. Critical care clinicians should liaise with nephrologists to make decisions regarding appropriate antibiotic dosing in patients undergoing SLED, as there is lack of guidelines and large-scale clinical trials. Future large-scale research should focus on establishing guidelines for antibiotic dosage in SLED.

Ethics Approval and Consent to Participate

This is a review article and does not involve any clinical intervention on patients.

Consent for Publication

This is a review article and does not involve any clinical intervention on patients.

Availability of Data and Materials

This is a review article, and all the data is provided in the tables 1 & 2.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iD

Rupesh Raina https://orcid.org/0000-0003-3892-8376

References

1. Walters S, Porter C, Brophy PD. Dialysis and pediatric acute kidney injury: choice of renal support modality. *Pediatr Nephrol*. 2009;24:37-48.
2. Marshall MR, Ma T, Galler D, Rankin AP, Williams AB. Sustained low-efficiency daily dialfiltration (SLEDD-f) for critically ill patients requiring renal replacement therapy: towards an adequate therapy. *Nephrol Dial Transplant*. 2004;19:877-884.
3. Berbeece AN, Richardson RM. Sustained low-efficiency dialysis in the ICU: cost, anticoagulation, and solute removal. *Kidney Int*. 2006;70:963-968.
4. Prowle JR, Schneider A, Bellomo R. Clinical review: optimal dose of continuous renal replacement therapy in acute kidney injury. *Crit Care*. 2011;15:207.
5. Schetz M. Non-renal indications for continuous renal replacement therapy. *Kidney Int Suppl*. 1999;72:S88-S94.
6. Ronco C, Brendolan A, Bellomo R. Continuous versus intermittent renal replacement therapy in the treatment of acute renal failure. *Nephrol Dial Transplant*. 1998;13(suppl 6):79-85.
7. Ahern JWLC, Rebuck JA, Possidente CJ, Weidner M. Experience with vancomycin in patients receiving slow low-efficiency dialysis. *Hosp Pharm*. 2004;39:138-143.
8. Kielstein JT, Czock D, Schopke T, et al. Pharmacokinetics and total elimination of meropenem and vancomycin in intensive care unit patients undergoing extended daily dialysis. *Crit Care Med*. 2006;34:51-56.
9. Manley HJ, Bailie GR, McClearan ML, Bender WL. Gentamicin pharmacokinetics during slow daily home hemodialysis. *Kidney Int*. 2003;63:1072-1078.
10. Braune S, Konig C, Roberts JA, et al. Pharmacokinetics of meropenem in septic patients on sustained low-efficiency dialysis: a population pharmacokinetic study. *Crit Care*. 2018;22:25.
11. Burkhardt O, Hafer C, Langhoff A, et al. Pharmacokinetics of ertapenem in critically ill patients with acute renal failure undergoing extended daily dialysis. *Nephrol Dial Transplant*. 2009;24:267-271.
12. Fiaccadori E, Maggiore U, Rotelli C, et al. Removal of linezolid by conventional intermittent hemodialysis, sustained low-efficiency dialysis, or continuous venovenous hemofiltration in patients with acute renal failure. *Crit Care Med*. 2004;32:2437-2442.
13. Czock D, Husig-Linde C, Langhoff A, et al. Pharmacokinetics of moxifloxacin and levofloxacin in intensive care unit patients who have acute renal failure and undergo extended daily dialysis. *Clin J Am Soc Nephrol*. 2012;7:385-390.
14. Lorenzen JM, Broll M, Kaever V, et al. Pharmacokinetics of ampicillin/sulbactam in critically ill patients with acute kidney injury undergoing extended dialysis. *Clin J Am Soc Nephrol*. 2012;7:373-375.
15. Clajus C, Kuhn-Velten WN, Schmidt JJ, et al. Cotrimoxazole plasma levels, dialyzer clearance and total removal by extended dialysis in a patient with acute kidney injury: risk of under-dosing using current dosing recommendations. *BMC Pharmacol Toxicol*. 2013;14:19.
16. Strunk AK, Schmidt JJ, Baroke E, et al. Single- and multiple-dose pharmacokinetics and total removal of colistin in a patient with acute kidney injury undergoing extended daily dialysis. *J Antimicrob Chemother*. 2014;69:2008-2010.
17. Konig C, Braune S, Roberts JA, et al. Population pharmacokinetics and dosing simulations of cefazidime in critically ill patients receiving sustained low-efficiency dialysis. *J Antimicrob Chemother*. 2017;72:1433-1440.
18. Owens RC Jr, Shorr AF. Rational dosing of antimicrobial agents: pharmacokinetic and pharmacodynamic strategies. *Am J Health Syst Pharm*. 2009;66:S23-S30.
19. Mueller BA, Scoville BA. Adding to the armamentarium: antibiotic dosing in extended dialysis. *Clin J Am Soc Nephrol*. 2012;7:373-375.
20. Alvarez-Lerma F, Grau S. Management of antimicrobial use in the intensive care unit. *Drugs*. 2012;72:447-470.
21. Mushatt DM, Mihm LB, Dreisbach AW, et al. Antibiotic dosing using current dosing recommendations. *BMC Pharmacol Toxicol*. 2013;14:19.
22. Matzke GR, Comstock TJ. Influence of renal disease and dialysis on pharmacokinetics. In: Burton ME, Shaw LM, Schentag JJ, Evans WE, eds. *Applied Pharmacokinetics and Pharmacodynamics: Principles of Therapeutic Drug Monitoring*. 4th ed. Baltimore, MD: Lippincott Williams & Wilkins; 2005:187-212.
23. Thompson A, Li F, Gross AK. Considerations for medication management and anticoagulation during continuous
renal replacement therapy. *AACN Adv Crit Care*. 2017;28:51-63.

24. Edrees F, Li T, Vijayan A. Prolonged intermittent renal replacement therapy. *Adv Chronic Kidney Dis*. 2016;23:195-202.

25. Battistella M, Matzke GR. Drug therapy individualization for patients with chronic kidney disease. In: Dipiro JT, Talbert RL, Yee GC, Matzke GR, Wells BG, Posey LM, eds. *Pharmacotherapy: A Pathophysiologic Approach*, 10th ed. New York, NY: Mcgraw-Hill Education; 2017:699-718.

26. Rafailidis PI, Ioannidou EN, Falagas ME. Ampicillin/sulbactam: current status in severe bacterial infections. *Drugs*. 2007;67:1829-1849.

27. Blum RA, Kohli RK, Harrison NJ, Schentag JJ. Pharmacokinetics of ampicillin (2.0 grams) and sulbactam (1.0 gram) coadministered to subjects with normal and abnormal renal function and with end-stage renal disease on hemodialysis. *Antimicrob Agents Chemother*. 1989;33:1470-1476.

28. Gentry LO. Antimicrobial activity, pharmacokinetics, therapeutic indications and adverse reactions of ceftazidime. *Pharmacotherapy*. 1985;5:254-267.

29. McKinnon PS, Paladino JA, Schentag JJ. Evaluation of area under the inhibitory curve (AUIC) and time above the minimum inhibitory concentration (T>MIC) as predictors of outcome for cefepime and ceftazidime in serious bacterial infections. *Int J Antimicrob Agents*. 2008;31:345-351.

30. De Waele JJ, Lipman J, Akova M, et al. Risk factors for target non-attainment during empirical treatment with β-lactam antibiotics in critically ill patients. *Intensive Care Med*. 2014;40:1340-1351.

31. Rybak MJ. The pharmacokinetic and pharmacodynamic properties of vancomycin. *Clin Infect Dis*. 2006;42(suppl 1):S35-S39.

32. Bogard KN, Peterson NT, Plumb TJ, Erwin MW, Fuller PD, Olsen KM. Antibiotic dosing during sustained low-efficiency dialysis: special considerations in adult critically ill patients. *Crit Care Med*. 2011;39:560-570.

33. Mathews A, Bailie GR. Clinical pharmacokinetics, toxicity and cost effectiveness analysis of aminoglycosides and aminoglycoside dosing services. *J Clin Pharm Ther*. 1987;12:273-291.

34. Baldwin CM, Lyseng-Williamson KA, Keam SJ. Meropenem: a review of its use in the treatment of serious bacterial infections. *Drugs*. 2008;68:803-838.

35. Nicolau DP. Pharmacokinetic and pharmacodynamic properties of meropenem. *Clin Infect Dis*. 2008;47(suppl 1):S32-S40.

36. Mei JP, Ali-Moghaddam A, Mueller BA. Survey of pharmacists' antibiotic dosing recommendations for sustained low-efficiency dialysis. *Int J Clin Pharm*. 2016;38:127-134.

37. Nix DE, Majundar AK, DiNubile MJ. Pharmacokinetics and pharmacodynamics of ertapenem: an overview for clinicians. *J Antimicrob Chemother*. 2004;53(suppl 2):i23-i28.

38. Stalker DJ, Jungbluth GL. Clinical pharmacokinetics of linezolid, a novel oxazolidinone antibacterial. *Clin Pharmacokinet*. 2003;42:1129-1140.

39. Perry CM, Jarvis B. Linezolid: a review of its use in the management of serious gram-positive infections. *Drugs*. 2001;61:525-551.

40. Rodvold KA, Neuhauser M. Pharmacokinetics and pharmacodynamics of fluoroquinolones. *Pharmacotherapy*. 2001;21:233S-252S.

41. Grim SA, Rapp RP, Martin CA, Evans ME. Trimethoprim-sulfamethoxazole as a viable treatment option for infections caused by methicillin-resistant *Staphylococcus aureus*. *Pharmacotherapy*. 2005;25:253-264.

42. Tran TB, Velkov T, Nation RL, et al. Pharmacokinetics/pharmacodynamics of colistin and polymyxin B: are we there yet? *Int J Antimicrob Agents*. 2016;48:592-597.

43. Gregoire N, Aranzana-Climent V, Magreault S, Marchand S, Couet W. Clinical pharmacokinetics and pharmacodynamics of colistin. *Clin Pharmacokinet*. 2017;56:1441-1460.

44. Michalopoulos AS, Falagas ME. Colistin: recent data on pharmacodynamics properties and clinical efficacy in critically ill patients. *Ann Intensive Care*. 2011;1:30.