On finite groups factorized by σ-nilpotent subgroups*

Zhenfeng Wu
School of Science, Jiangnan University
Wuxi, 214122, P.R. China
E-mail: zhfwu@jiangnan.edu.cn

Chi Zhang†
Department of Mathematics, China University of Mining and Technology
Xuzhou 221116, P.R. China
E-mail: zclqq32@cumt.edu.cn

Abstract
Let G be a finite group and $\sigma = \left\{ \sigma_i | i \in I \right\}$ be a partition of the set of all primes \mathbb{P}, that is, $\mathbb{P} = \bigcup_{i \in I} \sigma_i$ and $\sigma_i \cap \sigma_j = \emptyset$ for all $i \neq j$. A chief factor H/K of G is said to be σ-central in G, if the semidirect product $(H/K) \rtimes (G/C_G(H/K))$ is a σ_i-group for some $i \in I$. The group G is said to be σ-nilpotent if either $G = 1$ or every chief factor of G is σ-central. In this paper, we study the properties of a finite group $G = AB$, factorized by two σ-nilpotent subgroups A and B, and also generalize some known results.

1 Introduction

Throughout this paper, all groups are finite and G always denotes a group. Moreover, n is an integer, \mathbb{P} is the set of all primes. The symbol $\pi(n)$ denotes the set of all primes dividing n and $\pi(G) = \pi(|G|)$, the set of all primes dividing the order of G. And π always denotes a set of primes. Following [6], we say that a finite group G possesses the following properties: E_π if G contains a Hall π-subgroup; C_π if G enjoys E_π, and every two Hall π-subgroups of G

*Research was supported by NSFC of China(No. 12001526) and Natural Science Foundation of Jiangsu Province, China (No. BK20200626).
†Corresponding author
Keywords: finite group; nilpotent subgroup; σ-central; σ-nilpotent subgroup
Mathematics Subject Classification (2010): 20D10, 20D15, 20D20
are conjugate; \(D_\pi \) if \(G \) enjoys \(C_\pi \), and every one of its \(\pi \)-subgroups is contained in some Hall \(\pi \)-subgroup of \(G \).

In what follows, \(\sigma = \{ \sigma_i | i \in I \} \) is some partition of \(\mathbb{P} \), that is, \(\mathbb{P} = \bigcup_{i \in I} \sigma_i \) and \(\sigma_i \cap \sigma_j = \emptyset \) for all \(i \neq j \). \(\Pi \) is always supposed to be a non-empty subset of the set \(\sigma \) and \(\Pi' = \sigma \setminus \Pi \). We write \(\sigma(n) = \{ \sigma_i | \sigma_i \cap \pi(n) \neq \emptyset \} \) and \(\sigma(G) = \sigma(|G|) \).

Following [16] and [17], \(G \) is said to be \(\sigma \)-primary if \(G = 1 \) or \(|\sigma(G)| = 1 \). A chief factor \(H/K \) of \(G \) is said to be \(\sigma \)-central in \(G \) if the semidirect product \(H/K \rtimes G/C_G(H/K) \) is \(\sigma \)-primary. A set \(\mathcal{H} \) of subgroups of \(G \) is said to be a complete Hall \(\sigma \)-set of \(G \) if every non-identity member of \(\mathcal{H} \) is a Hall \(\sigma_i \)-subgroup of \(G \) for some \(i \) and \(\mathcal{H} \) contains exactly one Hall \(\sigma_i \)-subgroup of \(G \) for every \(\sigma_i \in \sigma(G) \).

Recall that \(G \) is called [16]: (i) \(\sigma \)-nilpotent if either \(G = 1 \) or every chief factor of \(G \) is \(\sigma \)-central in \(G \), (ii) \(\sigma \)-soluble if either \(G = 1 \) or every chief factor of \(G \) is \(\sigma \)-primary. We use \(\mathfrak{N}_\sigma \) and \(\mathfrak{S}_\sigma \) to denote the classes of all \(\sigma \)-nilpotent and \(\sigma \)-soluble groups, respectively. Following [16] we call the product of all normal \(\sigma \)-nilpotent subgroups of \(G \) the \(\sigma \)-Fitting subgroup of \(G \) and denote it by \(F_\sigma(G) \). Clearly, \(F_\sigma(G) \) is also \(\sigma \)-nilpotent (see the below Lemma 2.8).

It has been established earlier by the work of Wielandt [20] and Kegel [9] that the product of two finite nilpotent groups is soluble (see for example [1, Theorem 2.4.3]). Moreover, the structure of finite groups factorized by two nilpotent subgroups has been investigated by several authors (see [1, Chapter 2]), and properties of such groups have also been discovered by many authors (see for example [2, 7, 8, 11, 12, 18]). On the other hand, very little is known about the properties of a product of two \(\sigma \)-nilpotent subgroups. So the aim of this paper is to extend the knowledge of properties of such products by some \(\sigma \)-nilpotent subgroups.

Robinson and Stonehewer [14, Theorem 2] have shown that if the group \(G = AB \) is the product of two abelian subgroups \(A \) and \(B \), then every chief factor of \(G \) either is centralized by \(A \) or \(B \). Moreover, Stonehewer [18, Theorem 1] have proved that if \(G = AB \) is the product of two nilpotent subgroups \(A \) and \(B \), then for every minimal normal subgroup \(N \) of \(G \) one of the subgroups \(AN \) and \(BN \) is nilpotent. Our first main theorem generalizes these results to a finite group factorized by two \(\sigma \)-nilpotent subgroups.

Theorem 1.1. Let \(G \) be the product of two \(\sigma \)-nilpotent subgroups \(A \) and \(B \) and let \(N \) be a minimal normal subgroup of \(G \). Assume also that \(G \) is \(\sigma \)-soluble. Then \(AN \) or \(BN \) is \(\sigma \)-nilpotent.

Note that, the product of two finite nilpotent groups is always soluble by the well-known theorem of Wielandt [20] and Kegel [9]. However, the product of two finite \(\sigma \)-nilpotent groups is not necessarily \(\sigma \)-soluble. For example, let \(G = A_5 \) be the alternating group with degree 5, and let \(\sigma_1 = \{2, 3\}, \sigma_2 = \{5\} \) and \(\sigma_3 = \{2, 3, 5\}' \). Then it is clear that \(A_4 \) is \(\sigma \)-nilpotent.
and the Sylow 5-subgroup P of G is also σ-nilpotent. Then $G = A_4P$ is the product of two σ-nilpotent groups, but clear G is not σ-soluble.

It was also proved by Robinson and Stonehewer [14, Theorem 1] that if a group G has three abelian subgroups A, B and C such that $G = AB = BC = CA$, then every chief factor of G is central in G. This result has been extended to nilpotent subgroups, that is, Kegel [10] have shown that if the finite group $G = AB = BC = CA$ is the product of three nilpotent subgroups A, B and C, then G is nilpotent. So we have the following theorem.

Theorem 1.2. Let G be a finite group with σ-nilpotent subgroups A, B and C such that $G = AB = BC = CA$. Assume also that G satisfies D_{σ_i} for some $\sigma_i \in \sigma(G)$. Then G is σ-nilpotent.

Later Cossey and Stonehewer studied the structure of the product of two nilpotent subgroups in which its Fitting subgroup is a p-group for some prime p, that is, Cossey and Stonehewer [2, Theorem 1] have proved that: Let G be a soluble group for which $F(G)$ is a p-group (for some prime p). Then G is the product of two nilpotent subgroups if and only if it has a nilpotent Hall p'-subgroup. Base on this fact, we can study the case of σ-nilpotent subgroups. So we have the following theorem.

Theorem 1.3. Let G be a σ-soluble group with $F_{\sigma_i}(G)$ is a σ_i-group for some $\sigma_i \in \sigma(G)$. Then $G = AB$, where A, B are σ-nilpotent subgroups of G if and only if G has a σ-nilpotent Hall σ_i'-subgroup.

All unexplained terminologies and notations are standard, as in [3] and [16].

2 Preliminaries

Lemma 2.1. (See [15, Lemma 2.1]) The class \mathfrak{S}_σ is closed under taking direct products, homomorphic images and subgroups. Moreover, any extension of the σ-soluble group by a σ-soluble group is a σ-soluble group as well.

Recall that the product of all normal σ-soluble subgroups of G called the σ-radical [15] of G and denote it by $R_\sigma(G)$.

Lemma 2.2. (See [15, Theorem B]) Let $R = R_\sigma(G)$ be the σ-radical of G. Then G is σ-soluble if and only if for any Π the following hold: G has a Hall Π-subgroup E, every Π-subgroup of G is contained in some conjugate of E and $E R$-permutes with every Sylow subgroup of G.

All unexplained terminologies and notations are standard, as in [3] and [16].
Lemma 2.3. (See [12, Lemma]) Let $G = AB$ be a finite group satisfying D_π. If the subgroups A and B of G possess normal Hall π-subgroups A_π and B_π, respectively, then $A_\pi B_\pi = B_\pi A_\pi$ is a Hall π-subgroup of G and $[A_\pi, B_\pi] \leq O_\pi(G)$. In particular, if $O_\pi(G) = 1$, then $[A_\pi^G, B_\pi^G] = 1$.

Lemma 2.4. (See [9, Satz 3]) Let A and B be the subgroups of G such that $G \neq AB$ and $AB^x = B^xA$ for all $x \in G$. Then G has a proper normal subgroup N such that either $A \leq N$ or $B \leq N$.

Lemma 2.5. (See [4, Chapter 2, Lemma 4.4]) Let $G = AB$ be the product of the subgroups A and B. If L is a normal subgroup of A and $L \leq B$, then $L \leq O_\pi(G)$.

Lemma 2.6. (See [13, Lemma 2.1]) Let G be a finite group and A its normal subgroup. If G satisfies D_π, then G/A satisfies D_π.

Lemma 2.7. (See [5, Proposition 3.4]) Any two of the following conditions are equivalent:

1. G is σ-nilpotent.
2. $G = H_1 \times \cdots \times H_t$, where $\{H_1, \ldots, H_t\}$ is a complete Hall σ-set of G.
3. Every subgroup of G is σ-subnormal in G.

Lemma 2.8. (See [16, Corollary 2.4]) If A and B are normal σ-nilpotent subgroups of G, then AB is σ-nilpotent.

Lemma 2.9. (See [4, Chapter 1, Lemma 4.14]) Let A and B be proper subgroups of G such that $G = AB$. Then:

1. $G_p = A_p B_p$ for some Sylow p-subgroups G_p, A_p and B_p of G, A, B, respectively;
2. $G = A^xB$ and $G \neq AA^x$ for all $x \in G$.

3 Proofs of Theorem 1.1, 1.2 and 1.3

Proof of Theorem 1.1. Assume that the result is false and let G be a counterexample of minimal order. Since G is σ-soluble and N is a minimal normal subgroup of G, we have that $N < G$ and N is a σ_i-group for some i. Now without loss of generality we may assume that N is a σ_1-group, and let $\Pi = \sigma_1'$. Then we proceed the proof by the following steps.

1. N is the unique minimal normal subgroup of G.

If not, then let L be a minimal normal subgroup of G different from N. Since $G/L = (AL/L)(BL/L)$ and $AL/L \cong A/(A \cap L), BL/L \cong B/(B \cap L)$ are all σ-nilpotent, we have that G/L satisfies the hypothesis. Hence by the choice of G, we see that $(AL/L)(NL/L)$ or $(BL/L)(NL/L)$ is σ-nilpotent. If $(AL/L)(NL/L)$ is σ-nilpotent, then

$$AN/(AN \cap L) \cong ANL/L = (AL/L)(NL/L)$$
is σ-nilpotent. Clearly, $AN/N \cong A/(A \cap N)$ is σ-nilpotent. So

$$AN = (AN)/(AN \cap L \cap N) \subseteq (AN/N) \times (AN/AN \cap L)$$

is σ-nilpotent, a contradiction. Similarly, if $(BL/L)(NL/L)$ is σ-nilpotent, then we obtain that BN is also σ-nilpotent, a contradiction. Hence (1) holds.

(2) $O_H(G) = 1$.

This is clear from (1).

Since A and B are σ-nilpotent, we get that A and B have normal Hall Π-subgroup A_Π and B_Π, respectively.

(3) $A_\Pi \neq 1$ and $B_\Pi \neq 1$.

If $A_\Pi = 1$, then A is a σ_1-group. This implies that AN is also a σ_1-group, and so is σ-nilpotent, a contradiction. Hence $A_\Pi \neq 1$. Similarly, $B_\Pi \neq 1$. Hence (3) holds.

(4) Final contradiction.

Since G is σ-soluble, we have that G satisfies D_Π by Lemma 2.2. Clearly, $A_\Pi \leq A$ and $B_\Pi \leq B$. Then by (2) and Lemma 2.3, we see that $[A_\Pi^G, B_\Pi^G] = 1$, and so $A_\Pi^G \leq C_G(B_\Pi^G)$ and $B_\Pi^G \leq C_G(A_\Pi^G)$. From (1) and (3) we get that $N \leq A_\Pi^G \cap B_\Pi^G$. Hence $A_\Pi^G \leq C_G(N)$ and $B_\Pi^G \leq C_G(N)$. It is obvious that A_Π is also a Hall Π-subgroup of AN. Since A is σ-nilpotent, and $AN \leq A_\Pi^G \leq C_G(N)$, we have that A_Π is the normal Hall Π-subgroup of AN. Clearly, $A_{\sigma_1}N$ is a Hall σ_1-subgroup of AN and $A_{\sigma_1}N$ is normal in AN. Then $AN = A_\Pi \times A_{\sigma_1}N$ and so AN is σ-nilpotent, a contradiction. Similarly, BN is also σ-nilpotent, a contradiction. The final contradiction completes the theorem.

Proof of Theorem 1.2. First of all, we show that G is σ-soluble. Assume that the assertion is false and let G be a counterexample of minimal order. Without loss of generality we may assume that $\sigma_i \in \sigma(B)$. Then by Lemma 2.7, we see that B has a nonidentity normal Hall σ_i-subgroup, denote it by B_i. If $\sigma_i \notin \sigma(A)$, then $|G : C| = |A : A \cap C|$ is a σ_i-number for $G = AC$. Since $G = BC$, we see that $|B : B \cap C| = |BC : C| = |G : C|$ is a σ_i-number. Hence $B_i \leq B \cap C$ for B is σ-nilpotent. Therefore by Lemma 2.5, we have that $1 \neq B_i \leq C_G$. Now let R be a minimal normal subgroup of G which is contained in C_G. Then R is σ-soluble. Clearly, by Lemma 2.6 we see that G/R satisfies D_{σ_i}. Since

$$G/R = (AR/R)(BR/R) = (BR/R)(CR/R) = (CR/R)(AR/R)$$

and

$$AR/R \cong A/A \cap R, \; BR/R \cong B/B \cap R \text{ and } CR/R \cong C/C \cap R$$

are σ-nilpotent, we have that G/R satisfies the hypothesis. Hence by the choice of G, we obtain that G/R is σ-soluble. Then by Lemma 2.1 shows that G is σ-soluble for R is σ-soluble, a
contradiction. This contradiction shows that \(\sigma_i \in \sigma(A) \). Since \(A \) is \(\sigma \)-nilpotent, we have that \(A \) has a nonidentity Hall \(\sigma_i \)-subgroup by Lemma 2.7, and denote it by \(A_i \). Then by Lemma 2.3, we see that \(A_iB_i = B_iA_i \) is a Hall \(\sigma_i \)-subgroup of \(G \). It is obvious that \(A_iB_i < G \) and for any element \(x \in G \), by Lemma 2.9 \(G = AB^x \). And clearly, \(B^x \) is also \(\sigma \)-nilpotent and \(B_i^x \) is the normal Hall \(\sigma_i \)-subgroup of \(B^x \). Hence by Lemma 2.3 again, we have that \(A_iB_i^x = B_i^xA_i \) is a Hall \(\sigma_i \)-subgroup of \(G \). So by Lemma 2.4, we obtain that there exists a proper normal subgroup \(N \) of \(G \) such that \(A_i \leq N \) or \(B_i \leq N \). This means that \(G \) is not a simple group. Let \(R \) be a minimal normal subgroup of \(G \). Then \(G/R \) satisfies the hypothesis by Lemma 2.6. Hence by the choice of \(G \) we have that \(G/R \) is \(\sigma \)-soluble. Therefore \(R \) is the unique minimal normal subgroup of \(G \) and \(O_{\sigma_1}(G) = 1 \). So by Lemma 2.3, we see that \([A^G_{\sigma_i}, B^G_{\sigma_i}] = 1 \), that is, \(A^G_{\sigma_i} \leq C_G(B^G_{\sigma_i}) \). Since \(A_{\sigma_i} \neq 1 \) and \(B_{\sigma_i} \neq 1 \) and \(R \) is the unique minimal normal subgroup of \(G \), we obtain that \(R \leq A^G_{\sigma_i} \cap B^G_{\sigma_i} \). So \(R \leq A^G_{\sigma_i} \leq C_G(B^G_{\sigma_i}) \leq C_G(R) \), which shows that \(R \) is abelian. Hence we also get \(G \) is \(\sigma \)-soluble for \(G/R \) is \(\sigma \)-soluble, a contradiction. This contradiction shows that \(G \) is \(\sigma \)-soluble.

Now let \(N \) be a minimal normal subgroup of \(G \). Then since \(G \) is \(\sigma \)-soluble, we have that \(N \) is a \(\sigma_j \)-group for some \(\sigma_j \in \sigma(G) \). If \(N = 1 \), then \(G \) is a simple \(\sigma \)-soluble, and so \(G \) is \(\sigma_j \)-group, that is, \(G \) is \(\sigma \)-nilpotent. So we can always assume that \(N \neq 1 \). Now without loss of generality we may assume that \(N \) is a \(\sigma_1 \)-group. Then we can proceed to prove that \(G \) is \(\sigma \)-nilpotent by using induction on \(|G| \). Since

\[
G/N = (AN/N)(BN/N) = (BN/N)(CN/N) = (CN/N)(AN/N)
\]

and

\[
AN/N \cong A/A \cap N, \quad BN/N \cong B/B \cap N \quad \text{and} \quad CN/N \cong C/C \cap N
\]

are \(\sigma \)-nilpotent, and by Lemma 2.6 \(G/N \) satisfies \(D_{\sigma_i} \), we have that \(G/N \) satisfies the hypothesis. Hence by induction, we have that \(G/N \) is \(\sigma \)-nilpotent. If \(G \) has another minimal normal subgroup \(R \) of \(G \) which is different from \(N \), then by the same discussion as above, we also get \(G/R \) is \(\sigma \)-nilpotent. Hence \(G = G/(N \cap R) \cong G/N \times G/R \) is \(\sigma \)-nilpotent.

Now we can only consider that \(G \) has a unique minimal normal subgroup \(N \) of \(G \). By the discuss as above, we see that \(G/N \) is \(\sigma \)-nilpotent. So if \(N \leq \Phi(G) \), then \(G \) is also \(\sigma \)-nilpotent. Hence we can assume that \(N \notin \Phi(G) \). Since by Theorem 1.1 and \(G \) is \(\sigma \)-soluble, we have that at least two of \(AN \), \(BN \) and \(CN \) are \(\sigma \)-nilpotent. So we can assume that \(AN \) and \(BN \) are \(\sigma \)-nilpotent. This implies that \(A_{\sigma'_i} \leq C_G(N) \) and \(B_{\sigma'_i} \leq C_G(N) \) by Lemma 2.7. If \(A_{\sigma'_i} \neq 1 \), then \(A_{\sigma'_i} \leq C_G(N) \), it follows that \(C_G(N) \neq 1 \). But \(N \) is the unique minimal normal subgroup of \(G \), we have that \(N \leq C_G(N) \), that is, \(N \) is an elementary abelian \(p \)-group. Since \(N \notin \Phi(G) \), there exists a maximal subgroup \(M \) of \(G \) such that \(G = NM = C_G(N)M \). Clearly, \(N \cap M \leq G \) and \(C_G(N) \cap M \leq G \). This shows that \(N \cap M = 1 \) and \(C_G(N) \cap M = 1 \) for \(N \) is the unique
minimal normal subgroup of G. So $N = C_G(N)$. But $A_{\sigma'} \leq C_G(N) = N$ and N is a σ_1-group, we have that $A_{\sigma'} = 1$, a contradiction. This contradiction shows that $A_{\sigma'} = 1$. If we assume that $B_{\sigma'} \neq 1$, then we can get a contradiction like above. So this contradiction shows that $B_{\sigma'} = 1$. Hence $A_{\sigma'} = 1$ and $B_{\sigma'} = 1$. But A and B are σ-nilpotent, we have that A and B are all σ_1-group, which means that $G = AB$ is also a σ_1-group. So G is σ-nilpotent. Thus we have proved that G is σ-nilpotent.

Proof of Theorem 1.3. On one hand, if G has a σ-nilpotent Hall σ'_i-subgroup K. Then since G is σ-soluble, we have that there exists a Hall σ_i-subgroup H of G. Clearly, $G = HK$ and H, K are all σ-nilpotent.

On the other hand, suppose that $G = AB$ with A, B are σ-nilpotent subgroups of G and $F_\sigma(G)$ is a σ_i-group. First, we claim that $O_{\sigma'}(G) = 1$. In fact, if $O_{\sigma'}(G) \neq 1$, then let N be a minimal normal subgroup of G contained in $O_{\sigma'}(G)$. So N is a σ_j-group for some $\sigma_j \in \sigma(G) \setminus \sigma_i$, and so $N \leq F_\sigma(G)$. This contradicts to the fact that $F_\sigma(G)$ is a σ_i-group. Hence we have $O_{\sigma'}(G) = 1$. Since A and B are σ-nilpotent and by Lemma 2.7, we have that A and B have normal Hall σ'_i-subgroup $A_{\sigma'_i}$ and $B_{\sigma'_i}$, respectively. By Lemma 2.2, we see that G satisfies $D_{\sigma'}$ for G is σ-soluble. Hence by Lemma 2.3, we obtain that $G_{\sigma'} = A_{\sigma'}B_{\sigma'}$ is the Hall σ'_i-subgroup of G and $[A_{\sigma'}^G, B_{\sigma'}^G] = 1$. If $A_{\sigma'} = 1$ or $B_{\sigma'} = 1$, then $G_{\sigma'} = B_{\sigma'} \leq B$ or $G_{\sigma'} = A_{\sigma'} \leq A$, which all shows that $G_{\sigma'}$ is σ-nilpotent for A and B are σ-nilpotent. If $A_{\sigma'} \neq 1$ and $B_{\sigma'} \neq 1$, then since $[A_{\sigma'}^G, B_{\sigma'}^G] = 1$, we have that $A_{\sigma'} \leq A_{\sigma'}^G \leq C_G(B_{\sigma'}^G) \leq C_G(B_{\sigma'})$. This implies that $A_{\sigma'} \leq G_{\sigma'}$ and $B_{\sigma'} \leq G_{\sigma'}$. Thus by Lemma 2.8, we have that $G_{\sigma'}$ is σ-nilpotent. Therefore in any case, we always get that G has a σ-nilpotent Hall σ'_i-subgroup.

Remark 1. Note that the Theorem 1.1 does not hold if ”G is σ-soluble” is replaced by ”G satisfies D_{σ_i}, for every $\sigma_i \in \sigma(G)$”. We will give a counterexample to show this.

Example 3.1. Let $G = PSL_2(7)$ be the projective special linear group of degree 2 over F_7, a simple group with order $168 = 2^3 \cdot 3 \cdot 7$. Let $\pi = \{3, 7\}$. Then by [19, Condition III], we see that G satisfies D_{π}. Now let H be a Hall π-subgroup of G, and P be a Sylow 2-subgroup of G, and $\sigma_1 = \{2\}$, $\sigma_2 = \{3, 7\}$ and $\sigma_3 = \{2, 3, 7\}$. So P is a Hall σ_2-subgroup of G and $G = HP$. Clearly, G satisfies D_{σ_1} and D_{σ_2}. The Theorem 1.1 does not hold for G. However G is not σ-soluble.

References

[1] B. Amberg, S. Franciosi, F. de Giovanni, Products of Groups, Oxford Mathematical Monographs, Oxford, 1992.
[2] J. Cossey, S. E. Stonehewer, Products of finite nilpotent groups, Comm. Algebra, 27(1), 289-300 (1999).

[3] K. Doerk, T. Hawkes, *Finite Soluble Groups*, Walter de Gruyter, Berlin-New York, 1992.

[4] W. Guo, *Structure Theory for Canonical Classes of Finite Groups*, Springer, 2015.

[5] W. Guo, A. N. Skiba, Finite groups whose n-maximal subgroups are σ-subnormal, Sci. China. Math., 62(7), 1355-1372 (2019).

[6] P. Hall, Theorems like Sylow’s, Proc. London Math. Soc., III. Ser., 6(22), 286-304 (1956).

[7] H. Heineken, Products of finite nilpotent groups, Math. Ann., 287, 643-652 (1990).

[8] H. Heineken, The product of two finite nilpotent groups and its Fitting series, Arch. Math. (Basel), 59, 209-214 (1992).

[9] O. H. Kegel, Produkte nilpotenter Gruppen, Arch. Math., 12, 90-93 (1961).

[10] O. H. Kegel, Zur Struktur mehrfach faktorisierter endlicher Gruppen, Math. Z., 87, 42-48 (1965).

[11] G. Parmeggiani, Sulla serie di Fitting del prodotto di due gruppi nilpotenti finiti, Rend. Sem. Mat. Univ. Padova, 91, 273-278 (1994).

[12] E. A. Pennington, On products of finite nilpotent groups, Math. Z., 134, 81-83 (1973).

[13] D. O. Revin, E. P. Vdovin, On the number of classes of conjugate Hall subgroups in finite simple groups, J. Algebra, 324, 3614-3652 (2010).

[14] D. J. S. Robinson, S. E. Stonehewer, Triple factorizations by abelian groups, Arch. Math. (Basel), 60, 223-232 (1993).

[15] A. N. Skiba, A generalization of a Hall theorem, J. Algebra and its Application, 15(4), 21-36 (2015).

[16] A. N. Skiba, On σ-subnormal and σ-permutable subgroups of finite groups, J. Algebra, 436, 1-16 (2015).

[17] A. N. Skiba, On some results in the theory of finite partially soluble groups, Commun. Math. Stat., 4(3), 281-312 (2016).

[18] S. E. Stonehewer, On finite dinilpotent groups, J. Pure Appl. Algebra, 88, 239-244 (1993).
[19] E. P. Vdovin, D. O. Revin, Theorems of Sylow type, Russian Math. Surveys, 66(5), 829-870 (2011).

[20] H. Wielandt, Über Produkte nilpotenter Gruppen, Illinois J. Math., 2, 611-618 (1958).