THE MÖBIUS FUNCTION ON IMPLICATION SUBLATTICES OF A
BOOLEAN ALGEBRA

COLIN G.BAILEY AND JOSEPH S.OLIVEIRA

Abstract. Let B be a finite Boolean algebra. Let A be the partial order of all implication
sublattices of B. We will compute the Möbius function on A in two different ways.

1. Introduction

Let B be a finite Boolean algebra.

Definition 1.1. An implication subalgebra of B is a subset closed under \rightarrow.
An implication sublattice of B is a subset closed under \rightarrow and \land.

Implication algebras are developed in [1]. In this paper we wish to examine the poset
of implication sublattices of a finite Boolean algebra. By the general theory of implication
algebras we know that an implication sublattice is exactly a Boolean subalgebra of $[a, 1]$ for
some $a \in B$, and so we are really considering certain partial partitions of the atoms of
B.

Let \mathcal{A} be the partial order of all implication sublattices of B ordered by inclusion. Of
course \mathcal{A} is a finite lattice.

Our interest is in understanding the Möbius function of the poset \mathcal{A}. We consider two
methods of finding it. Both methods use a closure operators that provide two ways of
closing an implication sublattice to a Boolean subalgebra.

2. Method One

We wish to compute the Möbius function on \mathcal{A}. So let A_1 and A_2 be two implication
sublattices of B. Since A_2 is a Boolean algebra and A_1 is an implication sublattice of A_2
we may assume that $A_2 = B$. Let $A = A_1$ and $a = \min A$.

First we define a closure operator on \mathcal{A}.

Definition 2.1. Let $A \in \mathcal{A}$. Let $A^c = \{ \overline{x} \mid x \in A \}$.
Let $\overline{A} = A \cup A^c$.

Lemma 2.2. If $A \in \mathcal{A}$ then \overline{A} is a Boolean subalgebra of B.

Proof. Clearly \overline{A} is closed under complements. As $1 \in A$ we have $1 \in \overline{A}$ and $0 \in \overline{A}$. It
suffices to show closure under joins.

If $x, y \in A$ then $x \lor y \in A$ and $x \land y \in A$ as A is an implication lattice. Thus if $x, y \in A^c$
then $x \lor y = \overline{x \land y} \in A^c$.

If $x \in A$ and $y \in A^c$ then $x \lor y = x \lor \overline{y} = \overline{y} \rightarrow x \in A$ as $\overline{y} \in A$ and A is \rightarrow-closed. \qed

Date: 2009, February 3.
1991 Mathematics Subject Classification. 06A07, 06E99.
Key words and phrases. Boolean algebra, implication algebra, sublattice.
Lemma 2.3. Let $A \in \mathcal{A}$. Then $\overline{A} = A$ if A is a Boolean subalgebra of B.

Proof. By the last lemma \overline{A} is a Boolean subalgebra.

If A is a Boolean subalgebra then $A^c \subseteq A$ so that $\overline{A} = A$. □

Lemma 2.4. $A \mapsto \overline{A}$ is a closure operator on \mathcal{A}.

Proof. Clearly $A \subseteq \overline{A}$. As A is a Boolean subalgebra we have (by the last lemma) $A = \overline{A}$. □

Now we recall the closure theorem for Möbius functions – see [2] Proposition 2.1.19.

Theorem 2.5. Let X be a locally finite partial order and $x \mapsto \overline{x}$ be a closure operator on X. Let \overline{X} be the suborder of all closed elements of X and y, z be in X. Then

$$\sum_{x \in \overline{X}} \mu(y, x) = \begin{cases} \mu(x, \overline{y}) & \text{if } y \in \overline{X} \\ 0 & \text{otherwise} \end{cases}$$

Proof. See [2]. □

Lemma 2.6. Let $C \in \mathcal{A}$. Then $\overline{C} = B$ if $C = B$ or C is an ultrafilter of B.

Proof. Suppose that C is an ultrafilter. Then for any $x \in B$ we have $x \in C$ or $x \in C^c$ so that $x \in \overline{C}$. Thus $\overline{C} = B$.

Suppose that $\overline{C} = B$ and $C \neq B$. We first show that C is upwards-closed. Indeed, if not, then there is some $x \in B$ and $b < x < 1$ with $b \in C$ and $x \notin C$. As $\overline{C} = B$ we have $\overline{x} \in C$ so that $\overline{x} \rightarrow b \in C$. But $\overline{x} \rightarrow b = \overline{x} \lor b = x \lor b = x$ – contradiction.

Thus C is upwards-closed, and meet and join-closed, so C is a filter. As $C \neq B$ we know that $0 \notin C$. Also $C \cup C^c = B$ so that for all $x \in C$ either $x \in C$ or $\overline{x} \in C$. Thus C is an ultrafilter. □

This lemma together with the closure theorem allow us to use an induction argument to compute the Möbius function. The induction comes from the following lemma.

Lemma 2.7. Let $A \in \mathcal{A}$ and $a = \min A$. Let c_1 and c_2 be any atoms below a. Then

$$[A, [c_1, 1]]_{\mathcal{A}} \cong [A, [c_2, 1]]_{\mathcal{A}}.$$

Proof. Let τ be the permutation of the atoms of B that exchanges c_1 and c_2. Then τ induces an automorphism of B and that induces an automorphism of \mathcal{A}. It is clear that this induces the desired isomorphism between $[A, [c_1, 1]]_{\mathcal{A}}$ and $[A, [c_2, 1]]_{\mathcal{A}}$. □

Now suppose that $A \in \mathcal{A}$ and $a = \min A > 0$. Then we have

$$\mu(A, B) + \sum_{c \in \mathcal{B} \text{ atom}} \mu(A, [c, 1]) = 0$$

by the closure theorem and lemma 2.6. Thus

$$\mu(A, B) = - \sum_{c \in \mathcal{B} \text{ atom}} \mu(A, [c, 1])$$

$$= -|a| \mu(A, [c, 1])$$
where c is any B-atom below a. $|a|$ is the rank of a in B and equals the number of atoms below a. As we now have a reduction in rank (of a in $[c, 1]$) we see that we can proceed inductively to get

$$= -1^{\text{id}} |a|! \mu(A, [a, 1]).$$

So we are left with the case that A is in fact a Boolean subalgebra of B. We note that in this case, if $C \in [A, B]_A$ then C is also a Boolean subalgebra. We also note that any subalgebra is determined by its set of atoms and these form a partition of n. So the lattice of subalgebras of the Boolean algebra 2^n is isomorphic to the lattice of partitions of n and the Möbius function of this is well known. This gives us the final result that

$$\mu(A, B) = (-1)^{|d + w(A) - w(B)|} |a|! \prod_{c \text{ is an } A\text{-atom}} (|c| - |a| - 1)!$$

where $w(A)$ is the number of atoms of A and $|c|$ is the B-rank of c.

3. Method Two

Consider any implication sublattice A of B. Then A is a Boolean subalgebra of $[a = \min A, 1]$. This means we can take any extension $A \subseteq C \subseteq B$ and factor C into $([a, 1] \cap C, [0, a] \cap C)$ and this pairing completely determines C.

It follows that the interval $[A, B]$ is isomorphic to a product of two partial orders:

$$P_1 = [C \mid C \text{ is a Boolean subalgebra of } [a, 1] \text{ containing } [a, 1] \cap A]$$

$$P_2 = [C \mid C \text{ is an implication sublattice of } [0, a]].$$

P_1 is known as a partition lattice. P_2 is essentially the same as the interval we are considering with the assumption that $A = [1]$.

So we will compute $\mu([1], B)$.

Definition 3.1. Let C be any implication sublattice of B. Then

$$C \uparrow = \{x \mid \exists c \in C \ x \geq c\}$$

is the upwards-closure of C. Note that $C \uparrow = [\min c, 1]$.

Lemma 3.2. $C \mapsto C \uparrow$ is a closure operator and $C \uparrow = B$ iff $\min C = 0$.

Proof. This is immediate. □

It follows from this lemma that $C \uparrow = B$ iff C is a Boolean subalgebra of B.

Lemma 3.3. Let C_1 and C_2 be two Boolean subalgebras of B. Then

$$[(1), C_1] \simeq [(1), C_2] \text{ iff } C_1 \simeq C_2.$$

Proof. The left-to-right direction is clear.

Conversely, if $1 > s_1 > s_2 > \cdots > s_i = 0$ is a maximal chain in C_i then the set $\{[s_{ij}, 1] \mid 1 \leq j \leq j_i\}$ is a maximal chain in $[(1), C_i]$ -- since $[s_{i(j+1)}, 1]$ has one more atom than $[s_{ij}, 1]$.

Thus $j_1 = j_2$ and so $C_1 \simeq C_2$. □

We recall that there are $S_{n,k}$ Boolean subalgebras of B that have k atoms -- here n is the number of atoms that B has and $S_{n,k}$ is a Stirling number of the second kind, counting the number of partitions of n into k pieces.
Let C_k be any Boolean subalgebra of B with k atoms. We can now apply the lemma and the closure theorem to see that

$$
\mu(\{1\} , B) = - \sum_{C \subseteq B} \mu(\{1\} , C) \\
= - \sum_{n > k \geq 1} S_{n,k} \mu(\{1\} , C_k) \\
= \sum_{\Gamma \text{ a chain in } [1,n]} (-1)^p S_{n_0,n_1} \cdots S_{n_{p-1},n_p} \mu(\{1\} , C_1) \\
= \sum_{\Gamma \text{ a chain in } [1,n]} (-1)^{p+1} S_{n_0,n_1} \cdots S_{n_{p-1},n_p} \\
$$

3.1. An Identity. We can put these two methods together to see that

$$
\mu(\{1\} , B) = (-1)^n n! = \sum_{\Gamma \text{ a chain in } [1,n]} (-1)^{p+1} S_{n_0,n_1} \cdots S_{n_{p-1},n_p}.
$$

3.2. Conclusion & Beyond. We see from the above results that the poset \mathcal{A} is close to the poset of partitions of a set. The analysis we’ve undertaken shows this in two distinct ways – via the closure operators. In future work we plan to apply these results to an analysis of the subalgebras of cubic implication algebras.

References

[1] J. C. Abbott, Sets, Lattices, and Boolean Algebras, Allyn and Bacon, Boston, MA, 1969.
[2] E Spiegel and C. J. O’Donnell, Incidence Algebras, Marcel Dekker Inc., 1997.

School of Mathematics, Statistics & Operations Research, Victoria University of Wellington, PO Box 600, Wellington, NEW ZEALAND

E-mail address: Colin.Bailey@vuw.ac.nz

Pacific Northwest National Laboratories, Richland, U.S.A.

E-mail address: Joseph.Oliveira@pnl.gov