The Correlation between Neutrophil-to-Lymphocyte Ratio with C-reactive Protein and D-dimer Level among Indonesian COVID-19 Cases

Linda Rotty*, Jerome Kurube2, Paulus Novian Harijanto3, Frans Wantania4, Harlinda Haroen1, Cecilia Hendratta1, Pearla Lasut1, Christian Kawengian1, Randy Adiwinita3

1Department of Internal Medicine, Division of Hematology and Medical Oncology, Faculty of Medicine, Universitas Sam Ratulangi, Prof. dr. R. D. Kandou Hospital, Manado, Indonesia; 2Department of Internal Medicine, Faculty of Medicine, Universitas Sam Ratulangi, Prof. dr. R. D. Kandou Hospital, Manado, Indonesia; 3Department of Internal Medicine, Division of Tropical and Infectious Disease, Faculty of Medicine, Universitas Sam Ratulangi, Prof. dr. R. D. Kandou Hospital, Manado, Indonesia; 4Department of Internal Medicine, Division of Cardiology, Faculty of Medicine, Universitas Sam Ratulangi, Prof. dr. R. D. Kandou Hospital, Manado, Indonesia

Abstract

BACKGROUND: Coronavirus disease-19 (COVID-19) pandemic has resulted high number of mortalities globally. Several inflammatory and coagulation biomarkers have been studied for predicting and differentiating severe COVID-19 such as C-reactive protein (CRP) and D-dimer. However, those markers may not readily available in developing countries.

AIM: The aim of the study was to assess the utility of neutrophil-to-lymphocyte ratio (NLR), a widely available and inexpensive laboratory examination, as reliable inflammatory biomarkers for Indonesian COVID-19 patients; by analyzing the correlation of NLR level with CRP and D-dimer plasma level.

METHODS: We conducted cross-sectional study in Professor Dr. R.D. Kandou Hospital, Manado involving RT-PCR confirmed and hospitalized COVID-19 patients. Lymphocyte count, NLR, CRP, and D-dimer were examined in severe and non-severe COVID-19 cases at hospital admission. Correlation test was done using Spearman correlation test.

RESULTS: A total of 40 COVID-19 patients were included in the analysis, with 50% having mild disease and other half having severe disease. The NLR, CRP, and D-dimer were significantly higher in severe COVID-19 group. Significant correlation was found between NLR and CRP (p = 0.001 and r = 0.506) and also with D-dimer level (p = 0.000 and r = 0.570) in differentiating severity of COVID-19.

CONCLUSION: NLR is correlated with CRP and D-dimer level; therefore, NLR may serve as reliable, cost-effective, and practical inflammatory biomarker for differentiating severe and non-severe COVID-19 cases.

Introduction

Coronavirus disease-19 (COVID-19) is an ongoing global pandemic which has resulted over 273 million infected cases and more than 5.3 million deaths according to the World Health Organization (WHO) as of December 19, 2021 [1]. The number of new and death cases is predicted to be still fluctuating due to the incoming of new COVID-19 variants, wearing of protective antibody titer, and other factors. Unfortunately, until now, there are still no specific anti-SARS-CoV-2 drugs. The most of COVID-19 death cases were attributed to multiple organ failure due to cytokine storm and pulmonary embolism [2]. Several efforts have been employed to reduce those fatally COVID-19 complications, such as the use of dexamethasone and anticoagulant prophylaxis for hospitalized COVID-19 patients [3]. The evidence of cytokine storm presence in COVID-19 was proved by many studies which shown by high inflammatory cytokines and biomarkers such as interleukin-6 (IL-6), interferon (IFN)-γ, C-reactive protein (CRP), and others. C-reactive protein has been shown as reliable early biomarker to predict risk for severity of COVID-19 [4], [5]. Therefore, patients with the high level of CRP level on admission may be placed for closer observation. D-dimer is widely known as marker of inflammation and presence of thrombus. In COVID-19 cases, elevated D-dimer was associated with more severe COVID-19 disease course and higher risk of mortality [6]. While CRP and D-dimer are becoming an established COVID-19 prognostic biomarkers, those biomarkers examination may not be applicable in low- and middle-income countries or in limited resources healthcare facilities. A cost-effective yet readily available and accurate biomarker is needed. Therefore, we would like to assess the utility of neutrophil-to-lymphocyte ratio (NLR),
a simple, widely available, and inexpensive laboratory examination, as reliable inflammatory biomarkers for Indonesian COVID-19 patients; by comparing NLR level with CRP and D-dimer plasma level [7].

Methods

We conducted a cross-sectional study in Professor, Dr. R. D. Kandou Hospital, Manado, North Sulawesi, Indonesia and recruited confirmed mild and severe hospitalized COVID-19 patients aged older than 18 years old from June to August 2020. We excluded patients with waist circumference below 90 cm, patients with cancer, Human Immunodeficiency Virus (HIV) infection, and autoimmune disease. The disease severity was defined using National Guidelines of COVID-19 Management [8]. Mild case was defined as COVID-19 patients with the upper respiratory tract infection symptoms, without pneumonia and the need for oxygen supplementation. Severe case was defined as severe pneumonia which reflected by fever, cough, dyspnea, having respiratory rate more than 30 times/min, severe respiratory distress, and oxygen saturation below 90%. Confirmation of COVID-19 was based on Real-Time-Polymerase-Chain-Reaction (RT-PCR) testing. Informed consent was taken before the study and samples were collected with consecutive sampling methods. Sera were collected on the admission day. Each patient’s demographic, clinical, and hematological data were recorded. The NLR was calculated by dividing the number of neutrophile to lymphocyte count. The CRP value was counted using immunoturbidimetric method. Normal CRP value was defined as lower than 5 mg/dl. D-dimer level was quantified using Enzyme-linked Fluorescent Immunoassay (ELFA). D-dimer count was normal if below 0.5 µg/ml.

Data analysis was supported with Statistical Package for the Social Science (SPSS) version 22. Continuous variables were denoted as mean ± standard deviation. Normality test was conducted using Shapiro–Wilk test. Unpaired t-test or Mann–Whitney test was used to compare the mean of NLR, D-dimer, and CRP between mild and severe COVID-19 group. Pearson or Spearman correlation test was used to determine the correlation between NLR and D-dimer and CRP level.

Results

We recruited 40 COVID-19 patients during study period with half of them were having severe disease and 50% were male. The mean age of patients was 53.53 ± 15.15 years old. According to the disease severity, we found that 20 patients were having mild disease and 20 patients were having severe COVID-19 disease. The overall mean of absolute lymphocyte count was 1790.87 ± 1018.78 cells/mm³. The overall mean of NLR was 7.38 ± 6.94. The overall mean of CRP and D-dimer was 23.73 ± 19.39 mg/dl and 4.88 ± 6.36 µg/ml, respectively. Detail regarding our subject’s characteristics and comparison between mild and severe COVID-19 group can be seen in Table 1.

In our study, the Mann–Whitney test showed that NLR value was significantly higher in severe COVID-19 disease group compared to mild COVID-19 group with p value of 0.002. Similar finding was also found in analysis of CRP (p = 0.000) and D-dimer (p = 0.001). The Spearman correlation test showed significant correlation between NLR and CRP level (p = 0.001) with correlation coefficient of 0.506. The correlation analysis also showed significant correlation (p = 0.000) between NLR and D-dimer level correlation coefficient of 0.570.

Discussion

The NLR role as prognostic marker for COVID-19 patients was extensively studied. NLR may become a reliable, accessible, and cost-effective inflammation parameters, especially in developing country such Indonesia during COVID-19 pandemic era. NLR was easily calculated at emergency department using routine laboratory test [9], [10]. A meta-analysis by Simadibrata et al. which involving more than 5000 COVID-19 patients found that the higher NLR levels on admission were associated with 2.7 times higher mortality risk compared to patients with normal NLR. The higher NLR level was also associated with more severe disease COVID-19 course [7]. This finding was in line with our result which the higher NLR value is more commonly found in severe COVID-19 group. Elevation of NLR value may be explained by the increased level of neutrophil due to inflammation response and due to the lymphocytopenia. Lymphocytopenia occurred in 90% of severe COVID-19 cases [11], [12], [13]. Systematic review by Zhao et al. concluded that COVID-19 patients with lymphocytopenia are associated with nearly 3 times increased risk for severe disease course [12]. Several mechanisms have been proposed regarding the occurrence of lymphocytopenia in COVID-19 patients such as SARS-CoV-2 may induce apoptosis and pyroptosis of lymphocytes, bone marrow suppression due to proinflammatory cytokines released, thymus suppression, activation-induced cell death of lymphocytes, tissue redistribution of lymphocytes, and several other pathways [11].

In our study, we found significant correlation with moderate strength between NLR and CRP value. The CRP which determined as acute phase reactant plasma
The limitation of our study is regarding the small number of subjects; therefore, further study with larger sample size is warranted to establish stronger correlation between NLR, CRP, and D-dimer level among Indonesia COVID-19 patients.

Conclusion

NLR was found well correlated with established inflammatory and coagulation marker which capable in predicting severe COVID-19. Therefore, NLR which easily calculated at emergency department using routine laboratory test even in remote area may serve as practical and cost-effective marker for guiding the physician in awareness regarding the need for intensive care.

References

1. World Health Organization. COVID-19 Weekly Epidemiological Update. Geneva: World Health Organization; 2021. Available from: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---21-december-2021 [Last accessed on 2021 Dec 23].

2. Jose RJ, Manuel A. COVID-19 cytokine storm: The interplay between inflammation and coagulation. Lancet Respir Med. 2020;8(6):e46-7. https://doi.org/10.1016/S2213-2600(20)30216-2 PMid:32352521

3. World Health Organization. Living Guidance for Clinical Management of COVID-19. Geneva: World Health Organization; 2021 Available from: https://www.who.int/publications/i/item/WHO-2019-nCoV-clinical-2021-2 [Last accessed on 2021 Dec 23].

4. Tang Y, Liu J, Zhang D, Xu Z, Ji J, Wen C. Cytokine storm in COVID-19: The current evidence and treatment strategies. Front Immunol. 2020;11:1708. https://doi.org/10.3389/fimmu.2020.01708 PMid:32754163

5. Ali N. Elevated level of C-reactive protein may be an early marker to predict risk for severity of COVID-19. J Med Virol. 2020;92(11):2409-11. https://doi.org/10.1002/jmv.26097 PMid:32516845

6. Poudel A, Poudel Y, Adhikari A, Aryal BB, Dangol D, Poudel B, Adhikari A, Aryal BB, Dangol D.
Bajracharya T, et al. D-dimer as a biomarker for assessment of COVID-19 prognosis: D-dimer levels on admission and its role in predicting disease outcome in hospitalized patients with COVID-19. PLoS One. 2021;16(8):e0256744. https://doi.org/10.1371/journal.pone.0256744
PMid:34437642

7. Simadibrata DM, Calvin J, Wijaya AD, Ibrahim NA. Neutrophil-to-lymphocyte ratio on admission to predict the severity and mortality of COVID-19 patients: A meta-analysis. Am J Emerg Med. 2021;42:60-9. https://doi.org/10.1016/j.ajem.2021.01.006
PMid:33453617

8. Indonesian Society of Respiriology, Indonesian Hearth Association, Indonesian Society of Internal Medicine, Indonesian Society of Anesthesiology and Intensive Therapy, Indonesian Pediatric Society, Respirology; 2020.

9. Kerboua KE. NLR: A cost-effective nomogram to guide therapeutic interventions in COVID-19. Immunol Invest. 2021;50(1):92-100. https://doi.org/10.1080/08820139.2020.1773850
PMid:32482134

10. Zhu Z, Cai T, Fan L, Lou K, Hua X, Huang Z, et al. Clinical value of immune-inflammatory parameters to assess the severity of Coronavirus disease 2019. Int J Infect Dis. 2020;95:332-9. https://doi.org/10.1016/j.ijid.2020.04.041
PMid:32334118

11. Jafarzadeh A, Jafarzadeh S, Nozari P, Mokhtari P, Nemati M. Lymphopenia an important immunological abnormality in patients with COVID-19: Possible mechanisms. Scand J Immunol. 2021;93(2):e12967. https://doi.org/10.1111/sji.12967
PMid:32875598

12. Zhao Q, Meng M, Kumar R, Wu Y, Huang J, Deng Y, et al. Lymphopenia is associated with severe Coronavirus disease 2019 (COVID-19) infections: A systematic review and meta-analysis. Int J Infect Dis. 2020;96:131-5. https://doi.org/10.1016/j.ijid.2020.04.086
PMid:32376308

13. Zheng Y, Xu H, Yang M, Zeng Y, Chen H, Liu R, et al. Epidemiological characteristics and clinical features of 32 critical and 67 noncritical cases of COVID-19 in Chengdu. J Clin Virol. 2020;127:104366. https://doi.org/10.1016/j.jcv.2020.104366
PMid:32302954

14. Sproston NR, Ashworth J. Role of C-reactive protein at sites of inflammation and infection. Front Immunol. 2018;9:754. https://doi.org/10.3389/fimmu.2018.00754
PMid:29706967

15. Smilowitz NR, Kunichoff D, Garshick M, Shah B, Pillinger M, Hochman JS, et al. C-reactive protein and clinical outcomes in patients with COVID-19. Eur Heart J. 2021;42(23):2270-9. https://doi.org/10.1093/eurheartj/ehaa1103
PMid:33448289

16. Mousavi-Nasab SD, Mardani R, Azadani HN, Zali F, Vasmehjani AA, Sabeti S, et al. Neutrophil to lymphocyte ratio and C-reactive protein level as prognostic markers in mild versus severe COVID-19 patients. Gastroenterol Hepatol Bed Bench. 2020;13(4):361-6.
PMid:33244379

17. Sukrisman L, Sinto R, Priantono D. Hematologic profiles and correlation between absolute lymphocyte count and neutrophil/lymphocyte ratio with markers of inflammation of COVID-19 in an Indonesian national referral hospital. Int J Gen Med. 2021;14:6919-24. https://doi.org/10.2147/IJGM.S337440
PMid:34703296

18. Zhan H, Chen H, Liu C, Cheng L, Yan S, Li H, et al. Diagnostic value of D-dimer in COVID-19: A meta-analysis and meta-regression. Clin Appl Thromb Hemost. 2021;27:10760296211010976. https://doi.org/10.1177/10760296211010976
PMid:33926262

19. Rostami M, MansouriTorghabeh H. D-dimer level in COVID-19 infection: A systematic review. Expert Rev Hematol. 2020;13(11):1265-75. https://doi.org/10.1080/17474086.2020.181383
PMid:32997543

20. Poudel A, Poudel Y, Adhikari A, Aryan BB, Dangol D, Bajracharya T, et al. D-dimer as a biomarker for assessment of COVID-19 prognosis: D-dimer levels on admission and its role in predicting disease outcome in hospitalized patients with COVID-19. PLoS One. 2021;202;16(8):e0256744. https://doi.org/10.1371/journal.pone.0256744
PMid:34437642

21. Isbaniah F, Juliani T, Damayanti T, Yenita D, Yunus F, Antarkisa B, et al. The role neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR), and D-dimer in predicting the outcome of confirmed COVID-19 patients. J Respir Indones. 2021;41(4):236-44.

22. Man MA, Rajnoveanu RM, Motoc NS, Bondor CI, Chis AF, Lesan A, et al. Neutrophil-to-lymphocyte ratio, platelets-to-lymphocyte ratio, and eosinophil correlation with high-resolution computer tomography severity score in COVID-19 patients. PLoS One. 2021;2021;16(6):e0252599. https://doi.org/10.1371/journal.pone.0252599
PMid:34181675

https://oamjms.eu/index.php/mjms/index