Introduction

Nowadays, various sources are used to meet the need for electricity. One of the ways to meet energy needs is electricity generation with steam. Steam is the passage of water through various stages and from liquid to gas. In this article, we describe the transformation of electricity to steam by generating various stages and from liquid to gas. In this article, we describe the transformation of electricity to steam by generating various stages and from liquid to gas.

The water temperature in the feed water tank is increased a little. Burning of the arc furnaces with 23 MW installed power, which is used to melt the chrome, is taken into the boiler by vacuuming with the help of the resulting flue gas ID-Fan. Water is circulated through the boiler with the help of pipes. Boiler; high pressure economizer, high pressure evaporator, high pressure superheater, high pressure steam drum. The water in the pipes is interacted with the reverse flow by the gas taken in. The steam obtained as hot steam in the boiler is taken to the high pressure steam drum. The pressurized steam is sent to the steam turbine, and the synchronous generator connection of the steam turbine with the help of reducers. These variables affect the electricity generation and electricity production. In this article, Etkrom A.Ş. was estimated by using the data of Oven Power (MW), Water Inlet Gas Temperature, Steam Vapor Volume, ID-Fan Speed, Feeding Water Tank data. Electricity generation amount is used as verification data. That is, by the k-means clustering method, the electricity generation amount is divided into 3 classes (low, medium, and high). 3621 data including Oven Power (MW), Boiler Input Gas Temperature, Superheated Steam Amount, ID-Fan Speed, Feeding Water Tank data were used after class 3 separation. With the K-means clustering method, 2742 of these data were clustered as low electricity, 916 as medium electricity and 583 as high electricity. This clustered data was given to the Artificial Neural Network classifier. The success rate obtained as a result of this classification is 85.81%. Classified data were analyzed by ROC curve.

Abstract

Predicting the amount of electricity produced in a power plant is very important for today's economy. Oven Power (MW), Boiler Input Gas Temperature, Superheated Steam Amount, ID-Fan Speed, Feeding Water Tank data affect the electricity production. In this article, Etkrom A.Ş. was estimated by using the data of Oven Power (MW), Water Inlet Gas Temperature, Steam Vapor Volume, ID-Fan Speed, Feeding Water Tank data. Electricity generation amount is used as verification data. That is, by the k-means clustering method, the electricity generation amount is divided into 3 classes (low, medium, and high). 3621 data including Oven Power (MW), Boiler Input Gas Temperature, Superheated Steam Amount, ID-Fan Speed, and Feeding Water Tank data were used after class 3 separation. With the K-means clustering method, 2742 of these data were clustered as low electricity, 916 as medium electricity and 583 as high electricity. This clustered data was given to the Artificial Neural Network classifier. The success rate obtained as a result of this classification is 85.81%. Classified data were analyzed by ROC curve.
gas temperature directly refers to the boiler inlet temperature, that is, the temperature of the gas heating the water. The higher this temperature, the better the evaporation will be. It is easier to evaporate the water with high temperature because the feed water is heated by preheating the water in the tank. This means that the steam that needs to be created is easier to build. Because the heat required to evaporate cold water is higher than the heat that must be supplied to heat the hot water. The higher the amount of steam produced, the higher the amount of electricity produced. The number of active stages of the turbine will increase and the force generated will increase in direct proportion to the amount of steam. The ID-Fan devride affects steam production. If the ID-Fan cycle is not adjusted according to the flow of the flue gas, the steam production amount will decrease. If the gas flow is low, and the ID-Fan cycle is not at the proper value and the gas passes quickly through the boiler, the flue gas heat will leave the boiler without passing the water heat through the pipes, which will reduce the amount of steam. It also affects the amount of steam production and the amount of electricity generated at the outside temperature. When the outdoor temperature is low, the temperature of the flue gas in the flue gas channels will decrease. This will cause the boiler inlet gas temperature to decrease. In addition, when the ambient temperature is low on the steam transmission lines, the transmission will be condensed at the surface of the line, and the steam temperature and steam amount will decrease accordingly.

Even if the transmission lines are not drained, the turbine will be dismantled. On the other hand, when there is a malfunction in the steam turbine or generator, the superheated steam auxiliary condenser is transferred to the hot steam generator system so that it does not stop. It does not lose the hot steam feature on this. That is to say, electricity is produced as a result of the closed cycle with the steam produced depending on these variables. In addition to all these, dust and harmful residues in the gas taken from the flue are trapped by the filter bags. The dust and harmful debris carried by the conveyor system to the powder silos are removed by passing through the chemical process. At this point, the facility becomes an environmentally friendly facility at the same time. Also in the cogeneration plant belonging to Eti Krom A., since there are two furnaces, there are two boilers. For this reason, the amount of steam generated from the boiler, which is the same, is twice as much.

There are many studies about electricity production [1–8]. However, Elazığ EtiKrom A.Ş. does not have any studies that classified by artificial neural network according to the values affecting electricity generation. The purpose of this article is to classification by artificial neural network according to the values affecting electricity generation of the EtiKrom A.Ş. The novelty of this study, when studies in the literature are examined, it is seen that k-means and Artificial neural network are not used in together to classification Oven Power (MW), Boiler Inlet Gas Temperature, Amount of Steaming Steam, ID-Fan Speed, and Feeding Water Tank Data taken from EtiKrom A.Ş. Also, Analysis Oven Power (MW), Boiler Inlet Gas Temperature, Amount of Steaming Steam, ID-Fan Speed, and Feeding Water Tank Data taken from EtiKrom A.Ş. have been done with ROC curve.

Theory and Method

Obtaining the data

Electricity generation data in this article have been taken from EtiKrom A.Ş. The electricity generation data are valid for the first four months of 2017. It consists of total and instant values for each hour. It consists of total and instant values for each hour. The k-means clustering method is defined as low electricity level between 0–2.33 MW, medium electricity level between 2.333–2.39 MW, and high electricity level between 2.391–3.39 MW.

In this article, the proposed system for classification by artificial neural network according to the values affecting electricity generation taken from Elazığ EtiKrom A.Ş. is shown in figure 1.

In this article, according to the figure 2, EtiKrom A.Ş. den Furnace Power, Boiler Inlet Gas Temperature, Superheated Steam Amount, ID-Fan Speed Speed, Feeding Water Tank, Electricity production values were taken.

Later, only electricity generation values were clustered by the k-means method. The values of kiln power, boiler inlet gas temperature, superheated steam, ID-Fan speed, feeding water tank values which are used to generate electricity by using cluster data as verification data are used as a classification feature. Artificial Neural Network was used as a classifier. Then, the classification of ROC curve was analyzed.

K-means clustering algorithm

The k-means algorithm uses it intuitively to find the center seeds for the k-median clusters. According to Arthur
and Vassilvitskii [9,10], k-means improves the working time of the Lloyd algorithm and the quality of the final solution [9–13]. The k-means ++ algorithm chooses the seeds as follows, assuming that the number of clusters is k.

Step 1: Select a random observation of Z from the data set. The selected observation is the first center, designated as \(a_1 \).

Step 2: Calculate \(d(a_i, a_j) \) distances from each observation. Let be the distance between and observation b.

Step 3: Select the next centroid, \(a_2 \) at random from Z with probability

\[
\frac{d^2(z_{b},a_i)}{\sum_{j=1}^{n}d^2(z_j,a_i)}
\]

Step 4: To choose center f: Calculate the distance of each observation to each center and assign each observation to the nearest center. For \(b = 1, \ldots, n \) and \(p = 1, \ldots, f-1 \), select centroid \(p \) at random from Z with probability

\[
\frac{d^2(z_{b},a_p)}{\sum_{i=p+1}^{n}d^2(z_{b},a_i)}
\]

Where \(A_p \) is the set of all observations closest to centroid \(a_p \) and \(a_b \) belongs to \(A_p \).

That is, a probabilistic distance from each center must be selected that is proportional to the distance to the nearest selected center.

Step 5: Repeat step 4 until K centroids are selected. Using a simulation study of several cluster orientations, Arthur and Vassilvitskii [9,10] show that k-tools provide a faster convergence of cluster-centric distances from square points to the sum of a cluster set lower than Lloyd’s. algorithm [9–13].”

Experimental Results and Discussion

Electricity production amount to be produced in Elazığ Etikrom A.Ş. was estimated by using Furnace Power (MW) obtained from Etikrom A.Ş., Boiler Input Gas Temperature, Superheated Steam Quantity, ID-Fan Speed Rate, and Feeding Water Tank data after class 3 separation. With the k-means clustering method, 2742 of these data were clustered as low electricity generation amount, 296 as medium electricity generation, and 583 as high electricity generation. This values is determined as low-level classification k-means method.

In table 1 is seen examples of data affecting electricity generation. This values is determined as low-level classification with k-means method.

Conclusion

Predicting the amount of electricity produced in a power plant is very important for today’s economy. To date, there are many field work for classification or clustering [14–28]. Electricity generation datas in this article have been taken from Etikrom A.Ş. The electricity generation datas are valid for the first four months of 2017. The k-means clustering method is defined as low electricity level between 0–2.33 MW, medium electricity level between 2.333–2.39 MW, and high electricity level between 2.391–3.39 MW. Furnace Power (MW), Boiler Input Gas Temperature, Superheated Steam Amount, ID-Fan Speed, Feeding Water Tank data affect the electricity production. In this article, Etikrom A.Ş. The electricity production amount to be produced in Elazığ Etikrom A.Ş. was estimated by using the data of Furnace Power (MW), Boiler Input Gas Temperature, Superheated Steam Temperature, Steam Vapor Volume, ID-Fan Speed, and Feeding Water Tank data. Electricity generation amount is used as verification data. That is, by the k-means clustering method, the electricity generation amount is divided into 3 classes (low, medium, and high). 3621 data including Furnace Power (MW), Boiler Input Gas Temperature, Superheated Steam Temperature, ID-Fan Speed, and Feeding Water Tank data were used after class 3 separation. With the k-means clustering method, 2742 of these data were clustered as low electricity, 296 as medium electricity, and 583 as high electricity. This clustered data was given to the Artificial Neural Network classifier. The success rate obtained as a result of this classification is 85.81%. Classified data were analyzed by ROC curve.

Furnace Power	Boiler Inlet Gas Temperature	Amount of Steaming Steam	ID-Fan Speed	Feeding Water Tank
21	484	7.5	451	106
21.2	500	7.6	451	106
21.4	501	8.6	451	106
21.1	518	7.85	456	106
21.6	434	9.09	456	106
21.1	457	7.4	456	106
20.7	506	9.45	448	106
20.4	489	7.95	448	106
21.8	493	7	448	106
21.2	515	6.9	448	106
21.2	514	7.92	448	106

Figure 2: Display of data affecting electricity generation by ROC curve
583 as high electricity. This clustered data was given to the Artificial Neural Network classifier. The success rate obtained as a result of this classification is 85.81%. Classified data were analyzed by ROC curve.

References

1. Üstüntaş, T., Şahin, A.D. (2008) Wind turbine power curve estimation based on cluster center fuzzy logic modeling. Journal of Wind Engineering and Industrial Aerodynamics 96: 611-620. Link: https://goo.gl/BxNlus

2. Agrawal, S., Panigrahi, B.K., Twomey, P. (2006) Diversity and security in UK electricity generation: The influence of low-carbon objectives. Energy Policy 34: 4050-4062. Link: https://goo.gl/BUc56a

3. Grubb, M., Butler, L., Twomey, P. (2006) Diversity and security in UK electricity generation: The influence of low-carbon objectives. Energy Policy 34: 4050-4062. Link: https://goo.gl/BUc56a

4. Aelterman, P., Versichele, M., Marzorati, M., Boon, N., Verstraete, W. (2008) Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes. Bioresource Technology 99: 8895-8902. Link: https://goo.gl/ZUpQ2M

5. Seabra JEA, Tao L, Chum HL, Macedo IC (2010) A techno-economic evaluation of the effects of centralized cellulosic ethanol and co-products refinery options with sugarcane mill clustering. Biomass and Bioenergy 34: 1065-1078. Link: https://goo.gl/akOr6f

6. Dastrup SR, Zivin JG, Costa DL, Kahn ME (2012) Understanding the Solar Home price premium: Electricity generation and “Green” social status. European Economic Review 56: 961-973. Link: https://goo.gl/TwCHeU

7. Tekiner H, Cott DW, Felder FA (2010) Multi-period multi-objective electricity generation expansion planning problem with Monte-Carlo simulation. Electric Power Systems Research 80: 1394-1405. Link: https://goo.gl/CDQ5Sw

8. Marnay C, Venkataramanan G (2006) Microgrids in the evolving electricity generation and delivery infrastructure. In Power Engineering Society General Meeting IEEE. Link: https://goo.gl/Qe573w

9. kmeans. Link: https://goo.gl/my1Rnv

10. Arthur, D., Vassilvitskii, S. (2007) K-means++. The Advantages of Careful Seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms p. 1027–1035. Link: https://goo.gl/ioM3qT

11. Lloyd S (1982) Least Squares Quantization in PCM. IEEE Transactions on Information Theory 28: 129–137. Link: https://goo.gl/jy211R

12. Seber GAF (1984) Multivariate Observations. Hoboken, NJ: John Wiley & Sons Inc.

13. Spath H (1985) Cluster Dissection and Analysis: Theory, FORTRAN Programs, Examples. Translated by Goldschmidt J. New York: Halsted Press.

14. Korkmaz SA, Poyraz M (2014) A New Method Based for Diagnosis of Breast Cancer Cells from Microscopic Images: DWEE–JHT. Journal of Medical Systems 38: 92. Link: https://goo.gl/2xSeHq

15. Korkmaz SA, Binol H (2017) Analysis of Molecular Structure Images by using ANN, RF, LBP, HOG, and Size Reduction Methods for early Stomach Cancer Detection. Journal of Molecular Structure 1156: 255-263. Link: https://goo.gl/Po4Dkq

16. Korkmaz SA, Binol H, Akcicek A, Korkmaz MF (2017) A expert system for stomach cancer images with artificial neural network by using HOG features and linear discriminant analysis: HOG_LDA_ANN. Intelligent Systems and Informatics (ISyI), IEEE 15th International Symposium on 327-332. Link: https://goo.gl/b1p5Sh

17. Turkoğlu I (2007) Hardware implementation of varicap diode’s ANN model using Pic microcontrollers. Sensors and Actuators A: Physical 138: 288-293. Link: https://goo.gl/a13cey

18. Korkmaz SA (2018) LBP Özelliklerine Dayanan Lokasyon Koruyan Projeksiyon (LPP) Boyut Azaltma Metodunun Farklı Sınıflandırıcı Üzerindeki Performanslarının Karşılaştırılması. Sakarya University Journal of Science 22: 1. Link: https://goo.gl/TZYRNi

19. Korkmaz SA, Poyraz M (2014) A New Method Based for Diagnosis of Breast Cancer Cells from Microscopic Images: DWEE–JHT. Journal of Medical Systems 38: 1. Link: https://goo.gl/BBJeFc

20. Korkmaz SA, Poyraz M (2015) Least square support vector machine and minimum redundancy maximum relevance for diagnosis of breast cancer from breast microscopic images. Procedia-Social and Behavioral Sciences 174: 4026-4031. Link: https://goo.gl/EF4AVs

21. Korkmaz SA, Korkmaz MF (2015) A new method based cancer detection in mammogram textures by finding feature weights and using kullback–leibler measure with kernel estimation. Optik-International Journal for Light and Electron Optics 126: 2576-2583. Link: https://goo.gl/JHkDCS

22. Korkmaz SA, Korkmaz MF, Poyraz M (2015) Diagnosis of breast cancer in light microscopic and mammographic images textures using relative entropy via kernel estimation. Medical & biological engineering & computing 54: 561-573. Link: https://goo.gl/6WBXMx

23. Korkmaz SA, Eren H (2013) Cancer detection in mammograms estimating feature weights via kullback-leibler measure. In: Image and Signal Processing (CISP). 6th International Congress on. IEEE 2:1035-1040. Link: https://goo.gl/ukFfFj

24. Korkmaz SA (2017) Detecting cells using image segmentation of the cervical cancer images taken from scanning electron microscope. The Online Journal of Science and Technology 7. Link: https://goo.gl/WS6DqS

25. Korkmaz SA, Akcicek A, Binol H, Korkmaz MF (2017) Recognition of the stomach cancer images with probabilistic HOG feature vector histograms by using HOG features. Intelligent Systems and Informatics (ISyI), IEEE 15th International Symposium on 339-342. Link: https://goo.gl/2ZbW3

26. Korkmaz SA, Korkmaz MF, Poyraz M, Yaunhanoglu F (2016) Diagnosis of breast cancer nano-biomechanics images taken from atomic force microscope. Journal of Nanoelectronics and Optoelectronics 11: 551-559. Link: https://goo.gl/EZDii

27. Şengür A (2012) Support vector machine ensembles for intelligent diagnosis of valvular heart disease. Journal of medical systems 36: 2549-2655. Link: https://goo.gl/eNzFZH

28. Şengür A (2008) An expert system based on principal component analysis, artificial immune system and fuzzy k-NN for diagnostic of valvular heart diseases. Computers in Biology and Medicine 38: 329 - 338. Link: https://goo.gl/Z4mTu

Copyright: © 2018 Esmeray F, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Citation: Esmeray F, Korkmaz SA (2018) Classification by Artificial Neural Network according to the values affecting Electricity Generation. Trends Comput Sci Inf Technol 3(1): 001-004. DOI: http://dx.doi.org/10.17352/tcsit.000006