The mechanism of translation [version 1; referees: 3 approved]

Joachim Frank¹⁻³

¹Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
²Department of Biological Sciences, Columbia University, New York, NY, USA
³Howard Hughes Medical Institute, Columbia University, New York, NY, USA

Abstract
Translation of the genetic code on the ribosome into protein is a process of extraordinary complexity, and understanding its mechanism has remained one of the major challenges even though x-ray structures have been available since 2000. In the past two decades, single-particle cryo-electron microscopy has contributed a major share of information on structure, binding modes, and conformational changes of the ribosome during its work cycle, but the contributions of this technique in the translation field have recently skyrocketed after the introduction of a new recording medium capable of detecting individual electrons. As many examples in the recent literature over the past three years show, the impact of this development on the advancement of knowledge in this field has been transformative and promises to be lasting.
Introduction

In all organisms on earth, translation of the genetic code into protein is performed on the ribosome, a molecular machine of extraordinary complexity that is composed of RNA and a large (~80) number of proteins. Animals have them, plants have them, bacteria have them—all in different versions but with a common, virtually identical core. As a restless machine essential to life, it brings to mind our heart, the restlessness we experience every moment we are awake.

Since its discovery and first visualization in the 1960s, as an electron-dense granule studding the membrane of the endoplasmic reticulum \(^1\), the ribosome has been subject to many biochemical and biophysical studies that attempted to elucidate the mechanism of protein synthesis. Central to these studies were attempts at solving the ribosome structure. Once its structure was solved, so the thinking went, the way the ribosome reads the code and accordingly strings the amino acids up to form polypeptide—the precursor of the fully folded protein—would be revealed. The German language has a saying, adopted from the New Testament, “Wie Schuppen von den Augen fallen” (to fall like scales from the eyes), meaning that a long-sought solution to a problem becomes evident in a single flash of insight. But in the case of the ribosome, no such epiphany occurred for quite some time. Instead, hard work was required, drawing from x-ray crystallography, cryo-electron microscopy (cryo-EM), and mutation studies and increasingly by enlisting the help of other techniques capable of supplying information on the dynamics in real time, notably single-molecule fluorescence resonance energy transfer (smFRET).

As background for the current explosive development of structural and functional knowledge in the ribosome field, it is of interest to recall the relative contributions of electron microscopy and x-ray crystallography to the elucidation of ribosome structure. Electron microscopy employing negative staining provided first visualizations, sufficient to show the two subunits with different sizes. Attempts by several groups to obtain well-ordered two-dimensional crystals, suitable for electron crystallography, were only moderately successful\(^12\). Meanwhile, x-ray crystallography made very slow progress because of the difficulties posed by the crystallographic phasing of both the 30S and 50S subunits, requiring new approaches of labeling with compounds of sufficient phasing power. The first success in visualizing the subunits, their connecting bridges, and the intricate topology of the intersubunit space came with the single-particle cryo-EM approach\(^13\). Subsequently, initial structures relevant to the functional mechanism, showing the ribosome engaged with tRNAs and elongation factors, started to appear\(^12\). In the year 2000, subsequently referred to as the *annus mirabilis* of ribosome research, three x-ray structures appeared: one of the large subunit of an archaea bacterium\(^14\), the other two of the small subunit of a thermophilic bacterium\(^11,12\). These studies provided the first atomic models, revealing daunting complexity. However, critical information was missing not only for understanding the mechanism of action but even for a satisfactory characterization of the functional sites.

The translation field up to 2013

To understand the mechanism of translation on an elementary level, one has to figure out the structural basis for three events that are repeated for every single codon (that is, the element of the genetic code residing on the mRNA): (i) decoding, or the recognition of the current codon with the help of a cognate tRNA; (ii) peptidyl transfer, or the way the new-coming amino acid is being linked to the nascent polypeptide; and (iii) mRNA-tRNA translocation, or the way the ribosome manages to move on to the next codon.

Ostensibly, the solution of each of these problems required, at the very least, the atomic structures of the *complete* ribosome bound with various combinations of tRNAs and elongation factors in a functional context. For instance, conclusions on the mechanism of peptidyl-transfer made on the basis of the large subunit with substrates bound\(^13\) did not stand up to subsequent scrutiny (for example, \(^14\)). Such structures, however, were not available for quite some time. The first x-ray structure of the complete ribosome came out in 2001\(^15\) and contained three bound tRNAs, but its resolution was relatively low (5.5 Å), requiring the subunit structures published the year before for interpretation and atomic model building. Another structure from the same group provided the first mapping of the path of mRNA\(^16\). Then, for a number of years, a frustrating situation prevailed where functionally meaningful information was provided mainly by single-particle cryo-EM with increasingly better resolution but falling short, by a considerable margin, of the resolution required to pinpoint the crucial interactions between the various molecular players. X-ray crystallography, on the other hand, provided a few important structures in which mRNA and tRNAs were fortuitously bound to a model mRNA (for example, \(^17,18\)), establishing tRNA-ribosome interactions in the pre-translocational state and pinpointing the role of a magnesium ion in stabilizing a kink in the mRNA at the decoding center\(^7\).

To make use of knowledge provided by both techniques of structure determination, the hope was set on so-called hybrid methods\(^17\) (that is, by interpreting cryo-EM density maps in terms of available, suitably modified x-ray models\(^20,21\)). An example of radical change in structure from the free form studied by x-ray crystallography to its ribosome-bound structure visualized by cryo-EM was provided by release factors RF1\(^14\) and RF2\(^20\), illustrating the need for methods of flexible fitting.

Of course, the ribosome was only one of many structures facing the same quandary (that is, low-resolution density maps of functional states versus high-resolution atomic models of components). Starting at the turn of the century, “hybrid” conferences (for example, “The Structure of Large Biological Complexes”\(^22,23\)) were organized with the aim of bringing the communities of structural biologists together with those specialized in modeling, signal processing, and molecular dynamics simulations. Overall, these meetings were highly successful in creating an awareness of the complexity of the overall goal and in seeking solutions by connecting and integrating the methods employed in different fields.

In regard to tRNA selection and decoding, the basic principle by which the ribosome ascertains the formation of Watson-Crick pairing in the cognate case was settled early on\(^24,25\) and confirmed by many observations made since. The way the tRNA enters the ribosome as part of the ternary complex with elongation factor Tu (EF-Tu) and GTP was first observed by cryo-EM, with the...
surprising conclusion that incoming tRNA is strongly deformed, constituting a molecular spring29,31, suggesting that its latent energy sets the threshold for cognate versus near-cognate codon selection32. Evidence that this mechanism is at work for the different classes of tRNA was later supplied by Li et al.33. Such structures showing the tRNA in the so-called A/T position were captured at the atomic level by x-ray crystallography using kirromycin or non-hydrolyzable GTP analogs34,35, supplying significant insight into the way GTP hydrolysis is triggered following recognition of a cognate codon at the decoding center. At that time, the best resolution achieved by single-particle cryo-EM of the A/T complex was in the range of 6 to 7 Å36, requiring flexible fitting of known structures for interpretation37. Insights into the stochastic nature of tRNA selection in real time were provided in pioneering work by the Puglisi group38,39.

Translocation of mRNA-tRNA is a multi-step process of high complexity, during which the moiety formed by mRNA and two tRNAs bound to it via codon-anticodon interaction is moved along by the precise distance of one codon. Over a period of more than a decade, many structures shedding light on this process were obtained by cryo-EM and x-ray crystallography, starting with the observation of a ratchet-like intersubunit motion40,41 in apparent response to elongation factor G (EF-G; eEF2 in eukaryotes) binding, and bringing increasing evidence for the existence of intermediate states42-44. Real-time recordings of FRET signals from individual ribosomes with strategically placed donor/acceptor combinations45 reported on the motions of the molecular machine and the way it is affected by binding of EF-G. Altogether, the state of knowledge three years ago on the events of the elongation cycle has been portrayed in an extensive review by Voorhees and Ramakrishnan46.

The effect of the “resolution revolution” in the field of translation

As we have seen, single-particle cryo-EM even before the advent of the direct electron detectors has vastly expanded the scope and potential for the elucidation of the mechanism of translation. With this technique, many discoveries of functional states and conformational dynamics have been made since the turn of this century; however, as a result of new electron recording technology, the past three years in particular have brought an explosion of new information at resolutions in the range of 2.5 to 4 Å—resolutions that in principle permit the building of atomic models without resorting to published x-ray structures (but see the caveat below). In several ways, this breakthrough development has simplified the interpretation of density maps since reliance on hybrid methods has become less important. On the other hand, the increase in resolution and the sharpening of tools for sorting and classification of heterogeneous data47-49 have meant that for each project a plethora of structures in different states—not just a single one—are created, presenting new challenges of interpretation.

This situation is in some ways reminiscent of a phenomenon in high-energy physics, which has seen a proliferation of different types of particles with ever more exotic qualities over the past two decades as the energy of beams in the colliders was raised. In a similar way, the number of observed states of the ribosome is steadily increasing as the resolution of three-dimensional visualization improves, posing new questions at each turn.

A look at the literature in the past three years indicates that the effect of these new technological developments in electron microscopy on the exploration of the translation mechanism is transformative, multi-fold, and still emerging. The ribosome structure itself, at resolutions better than 3 Å, readily reveals features never seen before by cryo-EM: inventories of rRNA modification sites, locations of Mg2+ ions, and even water molecules50-52. It follows that fundamental multi-step mechanisms at the three functional centers can now be studied in much more detail than before. Again, it must be emphasized that owing to the capability of single-particle cryo-EM to capture molecules in their native states, high-resolution features such as locations of coordinating ions depicted are highly relevant for mechanistic interpretation of a molecular machine such as the ribosome.

However, it must be noted here that the advantage presented by the ability to look at the free molecule outside the crystal context comes at a price: as a rule, peripheral regions have reduced resolution compared with the core. Therefore, \textit{de novo} modeling, in cases where this has been attempted, usually starts in the core but often needs to stop before reaching the periphery, where modeling must rely on published x-ray structures which are not plagued by this limitation. An example is presented by our recent reconstruction of the 80S ribosome from \textit{Trypanosoma cruzi}53. Separate refinements of the 40S and 60S subunits yielded density maps at average resolutions of 3.7 and 2.5 Å, respectively, the difference in resolution reflecting high internal flexibility of the small subunit. The large subunit itself displayed resolutions ranging from 2.3 Å in the core to 4.6 Å at the periphery. Approximately 85% of the map was of sufficient quality for \textit{ab initio} modeling. However, a significant saving of time was achieved by following a different strategy—making use of both the x-ray structure of the ribosome from yeast and a 5.5-Å cryo-EM structure of the ribosome from \textit{T. brucei} and making suitable substitutions in non-conserved regions. A 3.2-Å reconstruction of the entire \textit{T. cruzi} 80S ribosome obtained by further refinement (Figure 1) demonstrates the large spread in local resolutions, ranging from 2.5 Å in the core of the large subunit to 4.75 Å in some of its rRNA expansion segments and in parts of the small subunit (Figure 1).

With regard to mRNA-tRNA translocation, the challenge has been to explain the sequence of events as a result of the interplay between EF-G/eEF2 and the ribosome buffeted by Brownian motion. As to the initial binding of EF-G, an unexpected result was obtained by X-ray crystallography showing a compact conformation of the factor54. Further work, both with x-ray crystallography55,56,57 and high-resolution cryo-EM58,59, revealed intermediate states in translocation with fully engaged EF-G/eEF2. Novel insights were provided by both smFRET experiments, that reported on the interaction between the ribosome and EF-G60,61, or by using a two-wavelength method, simultaneously acting on both EF-G binding and the ribosome rotation state62.

Because of a lack of x-ray structures, the understanding of the structural basis for IRES (internal ribosome entry site)-mediated translation has long had to rely on structures by cryo-EM at relatively low resolution, starting with the study by Spahn \textit{et al.} of the hepatitis C virus IRES-bound 40S subunit63. Knowledge in this area has been considerably advanced in four recent studies, two of which

This situation is in some ways reminiscent of a phenomenon in high-energy physics, which has seen a proliferation of different types of particles with ever more exotic qualities over the past two decades as the energy of beams in the colliders was raised. In a similar way, the number of observed states of the ribosome is steadily increasing as the resolution of three-dimensional visualization improves, posing new questions at each turn.
focused on cricket paralysis virus IRES and one on the IRES of hepatitis virus C. For the IRES element from Taura syndrome virus, inchworm-like translocation was observed in stunning detail by Abeyrathne et al. in a series of six reconstructions, with resolutions in the range of 3.5 to 4.2 Å. What we have learned from these new results is the way the IRES RNA mimics mRNA and tRNA and interacts with the 80S ribosome to trigger conformational changes akin to those associated with regular mRNA-tRNA translocation in the host.

In the short time since the direct electron detectors came on the market, we have also seen an expansion of the scope of inquiry from model systems (Escherichia coli, Thermus thermophilus, rabbit, and yeast) to ribosomes from a larger variety of species. These include a number of eukaryotic parasites (Trypanosoma cruzi, Leishmania, and Plasmodium falciparum) as there is now reasonable hope that the emerging structures may be of help in the design of more effective drugs. Here, the advance in resolution is strikingly exemplified by comparison of the best density map achieved for Trypanosoma brucei (5.5 Å using conventional recording on film), with those for T. cruzi (2.5 Å) and Leishmania (2.8 Å, 2.9 Å) using recording on direct electron detectors. In a similar vein, the first atomic structures of mitochondrial ribosomes have now been determined, again spurring hope that diseases relating to dysfunctions of mitochondrial translation may become understood and treatable.

One of the most promising and exciting developments set in motion by the high-resolution breakthrough is the exploration of ribosome biogenesis, a vast field as hundreds of factors are involved in ribosome assembly and quality testing. Prior to the introduction of the new detectors, the first cryo-EM results showing assembly intermediates in 40S subunit biogenesis were obtained by the Karbstein lab. Examples of observations and discoveries made in recent high-resolution cryo-EM studies include the assembly pathway of Trypanosomatids, large-scale domain motions during maturation of the 60S subunit and evidence supporting the test drive paradigm of ribosome biogenesis. Also worth mentioning in this context is a recent cryo-EM study which elucidates the structure of the earliest precursor of the eukaryotic ribosome, the 90S pre-ribosome.

In conclusion, the past three years have seen an extraordinary development of structural information relevant to the understanding of the mechanism of translation and translational regulation, fueled by the advent of the new detectors in electron microscopy. The fact that cryo-EM reconstructions can depict single molecules in a close-to-native environment and in a spectrum of multiple authentic states gives extra credence to structures derived from them. As a result of the increasing volume of depositions of relevant high-resolution cryo-EM density maps and coordinates derived from them in the public database, the overall pace of research and the potential for gaining new knowledge by interpreting and integrating this information have already picked up dramatically and will do so for some time to come.

Abbreviations
cryo-EM, cryogenic electron microscopy; EF-G, elongation factor G; FRET, fluorescence resonance energy transfer; IRES, internal ribosome entry site; smFRET, single-molecule fluorescence resonance energy transfer.

Competing interests
The author declares that he has no competing interests.

Grant information
This work was supported by the Howard Hughes Medical Institute and NIH R01 GM29169. I would like to thank Zheng Liu for preparing the figure of the T. cruzi 80S ribosome.
References

1. Sabatini DD, Tashiro Y, Palade GE: On the attachment of ribosomes to microsomal membranes, J Mol Biol. 1966; 19(2): 503–24.
2. Mulligan RA, Unwin PH: Location of exit channel for nascent protein in 80S ribosome, Nature. 1996; 384(6605): 693–4.
3. Yonath A, Leonard KR, Wittmann HG: A tunnel in the large ribosomal subunit revealed by three-dimensional image reconstruction. Science. 1987; 238(4803): 813–8.
4. Frank J, Zhu J, Penczek P, et al.: A model of protein synthesis based on cryo-electron microscopy of the E. coli ribosome. Nature. 1995; 376(6539): 441–4.
5. Stark H, Mueller F, Orlova EV, et al.: The 70S Escherichia coli ribosome at 23 A resolution: fitting the ribosomal RNA. Structure. 1995; 3(8): 815–21.
6. Agrawal RK, Penczek P, Grassucci RA, et al.: Direct visualization of A-, P-, and E-site transfer RNAs in the Escherichia coli ribosome. Science. 1996; 271(5251): 1670–2.
7. Agrawal RK, Penczek P, Grassucci RA, et al.: Visualization of elongation factor Tu on the Escherichia coli ribosome. Nature. 1997; 389(6649): 403–6.
8. Agrawal RK, Penczek P, Grassucci RA, et al.: EF-G-dependent GTP hydrolysis induces translocation accompanied by large conformational changes in the 70S ribosome. Nat Struct Biol. 1999; 6(7): 643–7.
9. Nissen P, Hansen J, Ban N, et al.: The structural basis of ribosome activity in peptide bond synthesis. Science. 2000; 289(5481): 905–20.
10. Wimberly BT, Brodersen DE, Clemons WM Jr, et al.: Structure of the 30S ribosomal subunit. Nature. 2000; 407(6802): 327–39.
11. Schultzzen F, Toola J, Zarivach R, et al.: Structure of functionally activated small ribosomal subunit at 3.3 A resolutions. Cell. 2000; 102(5): 615–23.
12. Nissen P, Hansen J, Ban N, et al.: The structural basis of ribosome activity in peptide bond synthesis. Science. 2000; 289(5481): 920–30.
13. Frank J, Zhu J, Penczek P, et al.: A model of protein synthesis based on cryo-electron microscopy of the E. coli ribosome. Nature. 1995; 376(6539): 441–4.
14. Voehrers RM, Schmeing TM, Kelley AC, et al.: The mechanism for activation of GTP hydrolysis on the ribosome. Science. 2010; 330(6005): 835–8.
15. Yusupov MM, Yusupova GZ, Baucom A, et al.: Crystal structure of the ribosome at 5.5 A resolution. Science. 2001; 292(5518): 883–96.
16. Yusupova GZ, Yusupov MM, Cate JH, et al.: The path of messenger RNA through the ribosome. Cell. 2001; 106(2): 233–41.
17. Schlemer M, Durham CM, Murphy FV 4th, et al.: Structure of the 70S ribosome-ribosome complex reveals functional interactions and rearrangements. Cell. 2006; 126(6): 1065–77.
18. Corseto A, Trikalinos V, Laubert M, et al.: Crystal structure of a 70S ribosome-ribosomal complex reveals functional interactions and rearrangements. Cell. 2006; 126(6): 1065–77.
19. Heyman K: Better structures through synergy. The Scientist. 2004.
20. Rawat UB, Zavialov AV, Sengupta J, et al.: A cryo-electron microscopic study of ribosome-bound termination factor RF2. Nature. 2003; 421(6918): 87–90.
21. Tama F, Valle M, Frank J, et al.: Dynamic reorganization of the functionally active ribosome explored by normal mode analysis and cryo-electron microscopy. Proc Natl Acad Sci U S A. 2003; 100(16): 9319–23.
22. Trabuco LG, Villa E, Mitra K, et al.: Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure. 2008; 16(5): 673–83.
23. Chan KY, Trabuco LG, Schreiner E, et al.: Cryo-electron microscopy modeling by the molecular dynamics flexible fitting method. Biopolymers. 2012; 97(9): 678–86.
24. Rawat UB, Zavialov AV, Sengupta J, et al.: Interactions of the release factor RF1 with the ribosome as revealed by cryo-EM. J Mol Biol. 2006; 357(4): 1144–53.
25. Asliomar, California USA, 19-22 April, 2002 – reviewed by Saibil and Otto, 2012.
26. Third International Conference on Structural Analysis of Supramolecular Assemblies by Hybrid Methods, Lake Tahoe, CA March, 2004 and subsequent biannual meetings at that site, later organized as part of the Keystone Conferences.
27. Ogle JM, Murphy FV, Tarry MJ, et al.: Selection of tRNA by the Ribosome Requires a Transition from an Open to a Closed Form. Cell. 2002; 111(5): 721–32.
28. Ramakrishnan V: Ribosome Structure and the Mechanism of Translation. Cell. 2002; 108(4): 557–72.
29. Valle M, Sengupta J, Swami NK, et al.: Cryo-EM reveals an active role for aminoaacyl-tRNA in the accommodation process. EMBO J. 2002; 21(13): 3557–67.
30. Stark H, Rodnina MV, Wieden HU, et al.: Ribosome interactions of aminoaacyl-tRNA and elongation factor Tu in the codon-recognition complex. Nat Struct Biol. 2002; 9(11): 849–54.
31. Valle M, Zavialov A, Li W, et al.: Incorporation of aminoaacyl-tRNA into the ribosome as seen by cryo-electron microscopy. Nat Struct Biol. 2003; 10(11): 899–906.
32. Schmeing TM, Voehrers RM, Kelley AC, et al.: The crystal structure of the ribosome bound to EF-Tu and aminoaacyl-tRNA. Science. 2005; 308(5705): 688–94.
33. Blanchard SC, Kim HD, Gonzalez RL Jr, et al.: tRNA dynamics on the ribosome during translocation. Proc Natl Acad Sci U S A. 2004; 101(35): 12893–8.
34. Li W, Agirrezabala X, Lei J, et al.: Recognition of aminoaacyl-tRNA: A common molecular mechanism revealed by cryo-EM. EMBO J 2008; 27(24): 3232–31.
35. Villa E, Sengupta J, Trabuco LG: Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysis. Proc Natl Acad Sci U S A. 2009; 106(4): 1063–8.
36. Blanchard SC, Gonzalez RL Jr, Kim HD, et al.: tRNA selection and kinetic proofreading in translation. Nat Struct Mol Biol. 2004; 11(10): 1008–14.
37. Zhou J, Lancaster J, Donohue JP, et al.: How the ribosome hands the A-site tRNA to the P site during EF-G-catalyzed translocation. Science. 2014; 345(6201): 1188–91.
38. Fei J, Kosut P, MacDougall DD, et al.: Coupling of ribosomal L1 stalk and RNA dynamics during translation elongation. Mol Cell. 2008; 30(3): 348–59.
39. Voehrers RM, Ramakrishnan V: Structural basis of the translational elongation cycle. Annu Rev Biochem. 2011; 80: 203–36.
57. Zhang X, Lai M, Chang W, et al.: Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization. Nat Methods. 2007; 4(1): 27–9. Published Abstract | Publisher Full Text | F1000 Recommendation

58. Scheres SH, Gao H, Valle M, et al.: A Bayesian view on cryo-EM structure determination. J Mol Biol. 2012; 415(2): 406–18. Published Abstract | Publisher Full Text | F1000 Recommendation

59. Lyumkis D, Brito AF, Theobald DL, et al.: Likelihood-based classification of cryo-EM images using FREALIGN. J Struct Biol. 2013; 183(3): 377–88. Published Abstract | Publisher Full Text | F1000 Recommendation

60. Fischer N, Neumann P, Konevega AL, et al.: Structure of the E. coli ribosome-EF-Tu complex at <3 Å resolution by C cryo-EM images using FREALIGN. Nature. 2015; 520(7548): 587–70. Published Abstract | Publisher Full Text | F1000 Recommendation

61. Liu Z, Gutierrez-Vargas C, Wei J, et al.: Activation of GTP hydrolysis in mRNA-tRNA Cell. 2015; 4(1): 12174–9. Published Abstract | Publisher Full Text | F1000 Recommendation

62. Wasermann MR, Alejo JL, Altman RB, et al.: Diverse roles of assembly factors preventing premature translation initiation by 40S assembly intermediates. Science. 2011; 333(6048): 1449–53. Published Abstract | Publisher Full Text | F1000 Recommendation

63. Murray J, Savva CG, Shin BS, et al.: Structural characterization of ribosome recruitment and translocation by type IV IRES. eLife. 2016; 5: pii: e13567. Published Abstract | Publisher Full Text | Free Full Text

64. Quade N, Boehringer D, Leibundgut M, et al.: Cryo-EM structure of Hepatitis C virus IRES bound to the human ribosome at 3.9 Å resolution. Nat Commun. 2015; 6: 7646. Published Abstract | Publisher Full Text | Free Full Text

65. Abeyrathne PD, Kohn CS, Grant T, et al.: Ensemble cryo-EM uncovers inchworm-like translocation of a viral IRES through the ribosome. eLife. 2016; 5: pii: e14874. Published Abstract | Publisher Full Text | Free Full Text

66. Wong W, Bai XC, Brown A, et al.: Cryo-EM structure of the Plasmodium falciparum 80S ribosome bound to the anti-protozoan drug emetine. eLife. 2014; 3. Published Abstract | Publisher Full Text | Free Full Text

67. Sun M, Li W, Blomqvist K, et al.: Dynamical features of the Plasmodium falciparum ribosome during translation. Nucleic Acids Res. 2015; 43(21): 10515–24. Published Abstract | Publisher Full Text | Free Full Text

68. Hashem Y, des Georges A, Fu J, et al.: High-resolution cryo-electron microscopy structure of the Trypanosoma brucei ribosome. Nature. 2013; 494(7437): 385–9. Published Abstract | Publisher Full Text | Free Full Text

69. Brown A, Amunts A, Bai XC, et al.: Structure of the large ribosomal subunit from human mitochondria. Science. 2014; 346(6210): 718–22. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

70. Greber BJ, Boehringer D, Leibundgut M, et al.: The complete structure of the large subunit of the mammalian mitochondrial ribosome. Nature. 2014; 516(7526): 283–8. Published Abstract | Publisher Full Text | F1000 Recommendation

71. Greber BJ, Bieri P, Leibundgut M, et al.: Ribosome. The complete structure of the 55S mammalian mitochondrial ribosome. Science. 2015; 348(6232): 303–8. Published Abstract | Publisher Full Text | F1000 Recommendation

72. Amunts A, Brown A, Toots J, et al.: Ribosome. The structure of the human mitochondrial ribosome. Science. 2015; 348(6230): 95–8. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

73. Strunk BS, Loucks CR, Su M, et al.: Ribosome assembly factors prevent premature translation initiation by 40S assembly intermediates. Science. 2011; 333(6048): 1449–53. Published Abstract | Publisher Full Text | Free Full Text

74. Barrio-Garcia C, Thoms M, Fliemming D, et al.: Architecture of the Rlx1-Rea1 checkpoint machinery during pre-60S ribosome remodeling. Nat Struct Mol Biol. 2016; 23(1): 37–44. Published Abstract | Publisher Full Text | F1000 Recommendation

75. Wu S, Tutuncuoglu B, Yan K, et al.: Diversity of assembly factors revealed by structures of late nuclear pre-60S ribosomes. Nature. 2016; 534(6605): 133–7. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

76. Greber BJ, Gerhardt S, Leitner A, et al.: Insertion of the Biogenesis Factor Rei1 Probes the Ribosomal Tunnel during 60S Maturation. Cell. 2016; 164(1–2): 91–102. Published Abstract | Publisher Full Text | F1000 Recommendation

77. Bussiere C, Hashem Y, Arora S, et al.: Integrity of the P-site is probed during maturation of the 60S ribosomal subunit. J Cell Biol. 2012; 197(6): 747–59. Published Abstract | Publisher Full Text | Free Full Text

78. Karlstein K: Quality control mechanisms during ribosome maturation. Trends Cell Biol. 2013; 23(5): 242–50. Published Abstract | Publisher Full Text | Free Full Text

79. Komrato M, Turk M, Kellner N, et al.: Architecture of the 90S Pre-ribosome: A Structural View on the Birth of the Eukaryotic Ribosome. Cell. 2016; 166(2): 380–93. Published Abstract | Publisher Full Text
Open Peer Review

Current Referee Status: ✔ ✔ ✔

Editorial Note on the Review Process
F1000 Faculty Reviews are commissioned from members of the prestigious F1000 Faculty and are edited as a service to readers. In order to make these reviews as comprehensive and accessible as possible, the referees provide input before publication and only the final, revised version is published. The referees who approved the final version are listed with their names and affiliations but without their reports on earlier versions (any comments will already have been addressed in the published version).

The referees who approved this article are:

Version 1

1 Vikram Govind Panse, Institute of Medical Microbiology (IMM), University of Zurich, Zurich, Switzerland

 Competing Interests: No competing interests were disclosed.

1 Christine M. Dunham, Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA

 Competing Interests: No competing interests were disclosed.

1 Marat Yusupov, Institute of Genetics and Molecular and Cellular Biology, Illkirch, 1 rue Laurent Fries, Illkirch CEDEX, France

 Competing Interests: No competing interests were disclosed.