Original Article

Predisposition of hypersensitivity in patients with exfoliative cheilitis

Luyao Cai a†, Jiao Wei a,b†, Danhua Ma a, Hao Xu a, Maofeng Qing a, Zhen Wang a, Yingqiang Shen a**, Yu Zhou a*

a State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
b Department of Oral Mucosal Diseases, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Disease and Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military University, Xi’an, Shanxi, China

Received 13 July 2021; Final revision received 27 July 2021
Available online 18 August 2021

KEYWORDS
Allergen detection; Chronic cheilitis; Exfoliative cheilitis; IgE; IgG

Abstract Background/purpose: Exfoliative cheilitis (EC) is a chronic and reversible inflammatory disease of the lips without definite etiology. Clinically, different types of allergens can be found in exfoliative cheilitis patients, however, few studies have focused on the relationship between exfoliative cheilitis and hypersensitivity. This research aimed to investigate the prevalence of hypersensitivity in EC patients. Materials and methods: A prospective study was conducted in 30 patients with exfoliative cheilitis and 30 healthy controls, matched in age and sex. Laboratory tests included serum total IgE, allergen-specific IgE, and food-specific IgG. Results: Increased serum total IgE level, positive food-specific IgG were seen more frequently in exfoliative cheilitis patients than in healthy control (P < 0.05). Special IgE level to FX5 and the degree of food-specific IgG to wheat were seen higher in exfoliative cheilitis patients than in healthy control (P < 0.05).

* Corresponding author. State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Sec 3 Renminnan Road, Chengdu, Sichuan, 610041, China
** Corresponding author. State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Sec 3 Renminnan Road, Chengdu, Sichuan, 610041, China.
E-mail addresses: shenyinqiang@outlook.com (Y. Shen), 812471898@qq.com (Y. Zhou).
† These two authors contributed equally to this work.

https://doi.org/10.1016/j.jds.2021.07.024
Introduction
Exfoliative cheilitis (EC) is a recurrent and reversible condition affecting upper or lower of lip, presenting as dryness and cracking, desquamation of scales, exudation and incrustation on the lips (see Fig. 1).1–3 The etiology of exfoliative cheilitis is still unclear,2,4 the known related factors including: psychiatric condition, vitamin deficiency, bacterial/fungal infection, long-term continuous stimulation, such as climate dryness, lip licking, etc.1–6
Owing to the non-specific inflammation feature, all other subtypes of cheilitis need to be excluded when the patient is diagnosed as exfoliative cheilitis, especially particularly contact cheilitis and actinic cheilitis. Repeated and entire inquiry about allergic exposure and chronic exposure to sunlight should be emphasized.3,7
Type I hypersensitivity reaction is the most common kind of hypersensitivity, mainly mediated by the specific IgE antibody. Elevated IgE levels and positive allergen-specific IgE are commonly associated with allergic diseases, such as atopic dermatitis, allergic rhinitis, allergic asthma.8 Food intolerance is a complex hypersensitivity disease belongs to type III hypersensitivity) mediated by IgG antibodies. It is believed that IgG-mediated food intolerance is caused by increased intestinal permeability, allowing access to food substances to the circulation and triggering food-specific IgG production.9 Food particles is regarded as antigen and combined with specific IgG antibody to form antigen–antibody complexes. To evaluate these distinct immunological mechanisms, the enzyme-linked immunosorbent assay (ELISA) is a common method, meanwhile the ImmunoCAP test is reliable and reproducible to measure serum/plasma total and specific IgE in vitro.10–12

Some studies have shown that tacrolimus ointment, an immunosuppressant, is effective in exfoliative cheilitis,2,13,14 which may imply a relationship between EC and hypersensitivity. Also, in clinical work, patients clinically diagnosed with EC may also be found to have different types or degrees of positive rate of allergen. However, few studies have focused on the relationship between hypersensitivity and exfoliative cheilitis.15 As the lack of information in the literature on EC and these immunological mechanisms, we sought to investigate the prevalence of hypersensitivity in EC by detecting serum total IgE, allergen-specific IgE, and food-specific IgG.

Materials and methods
Ethical approval
This is a prospective study that has been approved by the Human Research Ethics Committees of the West China Hospital of Stomatology, Sichuan University (WCHSIRB-D-2015-162). Written informed consent was obtained from all subjects before inclusion into the study.

Study participants
30 patients with exfoliative cheilitis and 30 healthy controls were recruited to detect the peripheral blood antigens. All samples included were visitors of West China Hospital of Stomatology from December 2014 to December 2016. There was no significant difference in the median age, gender ratio and cultural hierarchy between the two groups.

To minimize variability in the present study, the diagnosis of EC was determined jointly by the second (postgraduate doctor) and eighth (professor) authors of the article.

Inclusion and exclusion criteria
Inclusion criteria were: (1) prolonged course and reversible outbreak for more than 3 months; (2) clinical manifestations of repeated drying, desquamation, exudation and crustation on vermilion lips; (3) patients’ lips were soft texture.
Exclusion criteria were: (1) patients were pregnancy or lactation; (2) patients with systemic diseases such as anemia, diabetes, connective tissue disease, etc.; (3) sex hormones, tricyclic antidepressants, benzodiazepines, antihistamines and glucocorticoid were used within one month; (4) patients with other oral mucosal diseases; (5) patients with a history of contact stomatitis/cheilitis or chronic exposure to sunlight; (6) patients were diagnosed as other cheilitis of specific causes.

Figure 1 Clinical photograph of patient with exfoliative cheilitis.
Serum total IgE and special IgE

Blood was allowed to coagulate at room temperature for 20–30 min, centrifuged at 3000r for 10 min at 4 °C, separated and stored the sera in aliquots at −80 °C until analysis.

Total and specific IgE levels in patient serum were detected by the UniCAP system (Pharmacia & Upjohn, Uppsala, Sweden). Specific IgE was determined for 6 kinds of allergens including: animal fur scraps (ex1), shrimp (f24), house dust mixed (hx2), mixed allergen of food (fx5), mold (mx2) and weed pollen (wx5). All test results will be output to the Information Data Manager software by automatic immunofluorescence analyzer.

Food-specific IgG

Food-specific IgG production was determined in serum using the BIOMERICA Allerquant IgG Food Allergy Screening ELISA Kit (BIOMERICA, INC. 1533 Monrovia Avenue Newport Beach, CA 92663, America). The experiment followed strictly to the instructions of the kit. Standard serum of 50U/ml, 100U/ml, 200U/ml, 400U/ml were prepared respectively. For each specimen and standard control, the Thermo Scientific Varioskan Flash multimode reader was used to measure optical density at 450 nm per pore. The standard curve and working curve were drawn. The IgG concentration of specimens is calculated from the working curve.

Statistical analysis

All the data were analyzed by software SPSS 22.0. Test level α = 0.05.

Chi-square test, Mann–Whitney U test, rank sum test was used for non-normally distributed variables. Student’s t test was used in statistical analysis of age. Comparison of total serum IgE concentration between the two groups was statistically analyzed by a one-way ANOVA test and Student’s t test was used for non-normally distributed variables. Student’s t test was used in statistical analysis of age. Comparison of total serum IgE concentration between the two groups was statistically analyzed by a one-way ANOVA test and Student’s t test.

Results

This study included 30 patients with exfoliative cheilitis (age range 16–50 years, mean age 27.1 years) and 30 healthy subjects (age range 18–55 years, mean age 26.6 years). No significant differences were found in demographic features between EC group and healthy subjects (P > 0.05, Table 1).

Laboratory findings of IgE in exfoliative cheilitis group and healthy control

The laboratory findings of IgE in exfoliative cheilitis group and healthy control are shown in Table 2. The serum total IgE levels of exfoliative cheilitis group was significantly higher than that in control group (105.01 ± 110.94 vs 54.83 ± 72.42(KU/L), P = 0.042 < 0.05). Then, we analyzed the sIgE levels of 6 kinds of allergens including: animal fur scraps (ex1), shrimp (f24), house dust mixed (hx2), mixed allergen of food (fx5), mold (mx2) and weed pollen (wx5). The special IgE level to FX5 was significantly higher levels (KU/L) in patients with exfoliative cheilitis than healthy control (P < 0.05). For IgE to HX2, F24, MX2, WX5, EX1, there is no statistically significant difference.

Table 2	Laboratory findings of IgE in exfoliative cheilitis group and healthy control.		
Laboratory findings	Exfoliative cheilitis (n = 30)	Control (n = 30)	P value
Serum total IgE levels (KU/L)	105.01 ± 110.94	54.83 ± 72.42	0.042a
Serum total IgE >80KU/L	13 (43.3%)	6 (20%)	0.052
Serum special IgE >0.35 kU/L	8 (26.67%)	7 (23.33%)	0.766
Special IgE to EX1d	MD:0.03	MD:0.03	0.989
Special IgE to FX5d	MD:0.04	MD:0.02	0.604
Special IgE to HX2d	MD:0.05	MD:0.04	0.034a
Special IgE to MX2d	MD:0.05	MD:0.02	0.790
Special IgE to WX5d	MD:0.02	MD:0.01	0.181

Note: MD: median values; 25th: 25th percentiles; 75th: 75th percentiles; EX1: animal fur scraps; F24: shrimp; FX5: mixed allergen of food; HX2: house dust mixed; MX2: mold; WX5: weed pollen.

\(a \quad P < 0.05, \) the difference is statistically significant.

\(b \quad \) One-way ANOVA test and Student’s t test were used.

\(c \quad \) Chi-square test was used.

\(d \quad \) Mann–Whitney U test was used.

Table 1 Demographic features of the study population.

Group	Gender	Average age		
	Male	Female		
Exfoliative cheilitis (n = 30)	12	18	27.75 ± 9.68	26.61 ± 9.25
Control (n = 30)	14	16	26.64 ± 9.23	26.56 ± 9.40

\(a \quad x^2 = 0.271, P = 0.602 \)

\(b \quad \) Comparison between the two groups, t = 0.298, P = 0.768

\(c \quad \) Comparison between the two groups, t = 0.015, P = 0.988

L. Cai, J. Wei, D. Ma et al.
Laboratory findings of food intolerance of exfoliative cheilitis group and healthy control

The positive rate of total food-specific IgG of exfoliative cheilitis group was significantly higher than that in control group (80.00% vs 43.33%, \(P < 0.05 \)) (Table 3).

Table 4 shows the degree and positive rate of intolerance to each kind of food, including beef, milk, chicken, pork, cod, rice, corn, shrimp, crab, soy, egg, tomato, mushroom, wheat. In exfoliative cheilitis group, the intolerance degree of eggs, milk, wheat, shrimp, chicken, corn, tomatoes, soy were higher than in normal control. The degree of wheat was found significant higher in exfoliative cheilitis group (\(P < 0.05 \)). Among exfoliative cheilitis group, egg was the food with the highest positive rate with frequency 16 (53.33% of individuals with exfoliative cheilitis were diagnosed with an intolerance to egg) and then follows the milk with 9 (30%) and wheat with 6 (20%).

Discussion

We investigated the relationship between exfoliative cheilitis and hypersensitivity by detecting serum total IgE, allergen-specific IgE, and food-specific IgG using ELISA and UniCAP system. In our study, we found serum total IgE level was significantly elevated in exfoliative cheilitis group.

Also, we found high IgE level to FX5 in exfoliative cheilitis group than normal control with significance. As for IgG, we also found positive total food-specific IgG was more prevalent in exfoliative cheilitis patients than in control group (80.00% vs 43.33%, \(P = 0.028 < 0.05 \)). The intolerance degree of eggs, milk, wheat, shrimp, chicken, corn, tomatoes, soy were higher in exfoliative cheilitis patients than normal control, significant difference was found in wheat.

According to a study of 907 allergy patients, the average age of first allergic reaction was 31, and 68% of first allergic reactions occurred in the 18–50 age range.\(^{16}\) Also, exfoliative cheilitis is most prevalent in young women.\(^{17}\) Similarly, in our study, the mean age of the exfoliative cheilitis group was 27.1 years old, and the sex ratio (male/female) of the exfoliative cheilitis group was 2/3. Both allergic reaction and exfoliative cheilitis occur in young people, thus, we assumed that hypersensitivity might be important in the development of EC.

High levels of serum total IgE often indicate the possibility of hypersensitivity and are related to the degree of hypersensitivity frequently.\(^{18}\) Some allergens have been reported to be associated with cheilitis.\(^{19}\) In a study of 396 atopic dermatitis patients, patients with positive serum total IgE showed more positive clinical features of cheilitis.\(^{20}\) The relationship between food intolerance and oral mucosal disease has been reported in many literatures.\(^{21}\) One case of cheilitis associated with vitamin B12 has been reported in the literature, the symptoms were relieved with withdrawal of vitamin B12.\(^{22}\) Food intolerance is becoming more and more common with an incidence rate of 20%–45%.\(^{23}\) IgG-mediated food intolerance is associated with a wide range of specific and nonspecific symptoms, for example, the most common nonspecific symptoms such as chronic fatigue and hair loss.\(^{24}\) These symptoms start slowly and insidiously days even months after eating, presents with slow progression. Because of its insidious onset, and the non-specific

Allergen	Exfoliative cheilitis group	Control group	\(\chi^2 \)	\(P \)
	Concentration of IgG Positive number	Concentration of IgG Positive number		
	+ ++ +++	+ ++ +++		
Egg	9 5 2 16	6 2 2 10	2.44	0.12
Milk	3 3 3 9	3 0 1 4	1.57	0.21
Wheat	5 1 0 6	0 0 0 0	4.63	0.03a
Cod	5 0 0 5	3 1 0 4	0.13	1.00
Shrimp	4 1 0 5	2 1 0 3	0.14	0.70
Chicken	3 1 0 4	1 0 0 1	0.87	0.35
Corn	4 0 0 4	1 0 0 1	0.87	0.35
Tomato	4 0 0 4	0 0 0 0	2.41	0.12
Rice	2 1 0 3	2 0 0 2	0.00	1.00
Crab	1 0 0 1	3 0 0 3	0.27	0.61
Soy	0 0 1 1	0 0 0 0	0.00	1.00
Mushroom	1 0 0 1	0 3 0 3	0.27	0.61
Beef	0 0 0 0	0 0 0 0	0.00	1.00
Pork	0 0 0 0	0 0 0 0	0.00	1.00

Concentration of IgG: +, 50-100 U/ml; ++, 100-200U/ml, +++, >200 U/ml.

\(^a \) \(P < 0.05 \), Chi-square test was used
symptoms, it may lead to long-term chronic damage to the body. Exfoliative cheilitis is a recurrent and chronic subtype of cheilitis without clear etiology and histopathology, whether food intolerance is the cause of exfoliative cheilitis needs to be further explored.

Contact/eczematous cheilitis is a subtype of reversible cheilitis caused by partial contact with special irritating or allergic substances, which also manifests as dryness, scaling, erythema or fissuring. Exposure to local materials in contact cheilitis, such as toothpaste and metal materials, has been reported in many literatures. The patch test is an important way to identify these allergens that cause contact cheilitis locally. O’Gorman et al. used patch test in recalcitrant non-actinic cheilitis subjects, 45% patients had a final diagnosis of allergic contact cheilitis. Interestingly, patients clinically diagnosed with exfoliative cheilitis after eliminating local contact allergen were detected varying degrees of positive peripheral blood antigens in our study.

There are no previous investigations of peripheral blood antigens to allergens in exfoliative cheilitis subjects in the current literature. Therefore, this was the first study that investigated peripheral blood antigens to detect the relationship between EC and allergy. Total IgE level and positive total food-specific IgG rate was higher in EC subjects. Possibly due to the limitation of numbers of detected cases and allergens, IgE level to EX1/HX2/F25/MX2/WX5 did not find statistically significant differences. Another limitation of our study is that no clinical follow-up conducted to relate testing results with clinical outcomes.

In summary, we have demonstrated the possible link between exfoliative cheilitis and hypersensitivity. In clinical diagnosis and treatment, allergen detection should be performed to check whether allergen is the cause of lip inflammation. Allergen detection, especially detection of serum IgE level in vitro by ImmunoCAP test, is effective way to avoid missed diagnosis of allergic cheilitis. Expanding sample size and clinical follow-up need to conduct to confirm the relationship between exfoliative cheilitis and hypersensitivity.

Declaration of competing interest
The authors have no conflicts of interest relevant to this article.

Acknowledgments
This work was supported by grants from National Natural Science Foundation of China (No.81730030, 81771086, 81470747), the CAMS Innovation Fund for Medical Sciences (CIFMS, 2019-I2M-5-004). The funding agencies had no role in the study design, collection, analysis, or interpretation of data, writing of the report, or the decision to submit the article for publication.

References
1. Daley TD, Gupta AK. Exfoliative cheilitis. J Oral Pathol Med 1995;24:177–9.
2. Almazrooa SA, Woo SB, Mawardi H, Treister N. Characterization and management of exfoliative cheilitis: a single-center experience. Oral Surg Oral Med Oral Pathol Oral Radiol 2013;116:e485–9.
3. Lugović-Mihić L, Piplipović K, Crnarić I, Štum M, Duvančić T. Differential diagnosis of cheilitis - how to classify cheilitis? Acta Clin Croat 2018;57:342–51.
4. Girijala RL, Falkner R, Dalton SR, Martin BD. Exfoliative cheilitis as a manifestation of factitial cheilitis. Cureus 2018;10:e2565.
5. Reichart PA, Weigel D, Schmidt-Westhausen A, Pohle HD. Exfoliative cheilitis (EC) in AIDS: association with candida infection. J Oral Pathol Med 1997;26:290–3.
6. Dal Bello G, Colato C, Girolomoni G. Exfoliative cheilitis as a manifestation of factitial cheilitis in a young man. J Ital Dermatol Venereol 2020. https://doi.org/10.23736/s0392-0488.20.06809-1 (in press).
7. Chen QM, Zeng X. Case based oral mucosal diseases. Singapore: Springer, 2018.
8. Galli SJ, Tsai M. IgE and mast cells in allergic disease. Nat Med 2012;18:693–704.
9. Beyer K, Teuber SS. Food allergy diagnostics: scientific and unproven procedures. Curr Opin Allergy Clin Immunol 2005;5:261–6.
10. Johansson SG. ImmunoCAP specific IgE test: an objective tool for research and routine allergy diagnosis. Expert Rev Mol Diagn 2004;4:273–9.
11. Williams PB, Barnes JH, Szeinbach SL, Sullivan TJ. Analytic precision and accuracy of commercial immunoassays for specific IgE: establishing a standard. J Allergy Clin Immunol 2000;105:1221–30.
12. Simonova MA, Pivovarov VD, Ryazantsev DY, et al. Comparative diagnostics of allergy using quantitative immuno-PCR and ELISA. Bioanalysis 2018;10:757–67.
13. Connolly M, Kennedy C. Exfoliative cheilitis successfully treated with topical tacrolimus. Br J Dermatol 2004;151:241–2.
14. Zhang QQ, Xu P, Sun C, Liu LJ, Jiang WW. Topical tacrolimus with different frequency for exfoliative cheilitis: a pilot study. J Dermatol Treat 2020;1:1–5. https://doi.org/10.1080/09546634.2020.1771258 (in press).
15. Holmes G, Freeman S. Cheilitis caused by contact urticaria to mint flavoured toothpaste. Australas J Dermatol 2001;42:43–5.
16. Jiang N, Yin J, Wen L, Li H. Characteristics of anaphylaxis in 907 Chinese patients referred to a tertiary allergy center: a retrospective study of 1,952 episodes. Allergy Asthma Immunol Res 2016;8:353–61.
17. Liu J, Shi L, Wang X, et al. Tacrolimus 0.03% ointment treatment in exfoliative cheilitis: a randomised controlled clinical trial and monitoring blood concentration. J Oral Pathol Med 2021;50:251–9.
18. Somani VK. A study of allergen-specific IgE antibodies in Indian patients of atopic dermatitis. Indian J Dermatol Venereol Leprol 2008;74:100–4.
19. Pigatto PD, Berti E, Spadari F, Bombeccari GP, Guzzi G. Photoletter to the editor: exfoliative cheilitis associated with titanium dental implants and mercury amalgam. J Dermatol Case Rep 2011;5:89–90.
20. Hu Y, Liu S, Liu P, Mu Z, Zhang J. Clinical relevance of eosinophils, basophils, serum total IgE level, allergen-specific IgE, and clinical features in atopic dermatitis. J Clin Lab Anal 2020;34:e23214.
21. Thomas HC, Ferguson A, McLennan JG, Mason DK. Food antibodies in oral disease: a study of serum antibodies to food proteins in aphthous ulceration and other oral diseases. J Clin Pathol 1973;26:371–4.
22. Price ML, MacDonald DM. Cheilitis and cobalt allergy related to ingestion of vitamin B12. Contact Dermatitis 1981;7:352.
23. Jansen A, Mandić AD, Bennek E, et al. Anti-food and antimicrobial IgG subclass antibodies in inflammatory bowel disease. *Scand J Gastroenterol* 2016;51:1453–61.

24. Shakoor Z, AlFaifi A, AlAmro B, AlTawil LN, AlOhaly RY. Prevalence of IgG-mediated food intolerance among patients with allergic symptoms. *Ann Saudi Med* 2016;36:386–90.

25. Schena D, Fantuzzi F, Girolomoni G. Contact allergy in chronic eczematous lip dermatitis. *Eur J Dermatol* 2008;18:688–92.

26. de Groot A. Contact allergy to (ingredients of) toothpastes. *Dermatitis* 2017;28:95–114.

27. O’Gorman SM, Torgerson RR. Contact allergy in cheilitis. *Int J Dermatol* 2016;55:e386–91.

28. Bakula A, Lugović-Mihić L, Situm M, Turcín J, Sinković A. Contact allergy in the mouth: diversity of clinical presentations and diagnosis of common allergens relevant to dental practice. *Acta Clin Croat* 2011;50:553–61.