MicroRNA-539 Is Up-regulated in Failing Heart, and Suppresses O-GlcNAcase Expression*

Senthilkumar Muthusamy, Angelica M. DeMartino, Lewis J. Watson, Kenneth R. Brittian, Ayesha Zafir, Sujith Dassanayaka, Kyung U. Hong, and Steven P. Jones

From the Institute of Molecular Cardiology, and, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40202

Results: miR-539 is up-regulated in the failing heart, binds to the 3’UTR, and negatively regulates O-GlcNAcase expression.

Background: Protein O-GlcNAcylation is nearly ubiquitous; however, regulation of the expression of key enzymes remains unknown.

Protein O-GlcNAcylation can be regulated by post-transcriptional mechanisms.

Significance: miR-539 regulates one of the two enzymes responsible for O-GlcNAcylation in multicellular eukaryotes.

Heart failure is a multifactorial process and, despite some advances, few effective treatments have emerged in the last two decades. During heart failure, the myocardium undergoes profound alterations in gene expression and metabolic substrate utilization, which are associated with both pro- and maladaptive changes in mechanics and energetics (1). Likewise, nutrient and stress sensing mechanisms are also implicated, although debate still rages regarding what, exactly, such changes mean to the pathology or recovery of the failing heart.

At the cellular level, an ever-growing list of post-translational modifications affects organ function. Of these numerous post-translational modifications, O-linked N-acetylglucosamine (O-GlcNAc) modification of proteins represents an emerging target in various pathologies (2, 3). The hexosamine biosynthetic pathway forms UDP-N-acetylglucosamine (UDP-GlcNac), which serves as the sugar donor for O-GlcNAc modification. Two antagonistic enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA; human gene: MGEA5), directly regulate O-GlcNAcylation of proteins inasmuch as OGT catalyzes the addition of GlcNAc to some serine and/or threonine residues in proteins, whereas OGA removes it. Altered levels of O-GlcNAcylation occur in many pathological conditions, including cardiovascular disease, diabetes mellitus, neurodegeneration, and cancer (4–6).

Disruption of blood flow (i.e. ischemia) induces metabolic and oxidative stress to the myocardium. Various in vitro studies of isolated cells/hearts showed elevated O-GlcNac levels in response to various stressors (4, 7, 8). Moreover, augmented O-GlcNAcylation improved cell survival in various model systems (9, 10). Recently, our laboratory demonstrated that O-GlcNAcylation was increased in an infarct-induced heart failure model, which was associated with increased expression of OGT and reduced OGA expression (11). Although there are plausible metabolic explanations that may partially explain increased O-GlcNac levels in failing hearts, other possibilities exist.

Although many regard flux of substrate through the hexosamine biosynthetic pathway as the only (or at least primary) mechanism regulating O-GlcNAcylation, other regulatory mechanisms remain unexplored. Thus, understanding the mechanisms regulating expression of OGT and OGA persist as important limitations in the field. One potential area of molecular regulation may involve microRNAs (miRNAs), which are endogenous small RNAs (~22 nucleotides) that play key regulatory roles in cardiomyocytes during heart failure, which is consistent with the pro-adaptive role of increased O-GlcNAcylation during heart failure; however, molecular mechanisms regulating these enzymes during heart failure remain unknown. Using miRNA microarray analysis, we observed acute and chronic changes in expression of several miRNAs. Here, we focused on miR-539 because it was predicted to target OGA mRNA. Indeed, co-transfection of the OGA-3’UTR containing reporter plasmid and miR-539 overexpression plasmid significantly reduced reporter activity. Overexpression of miR-539 in neonatal rat cardiomyocytes significantly suppressed OGA expression and consequently increased O-GlcNAcylation; conversely, the miR-539 inhibitor rescued OGA protein expression and restored O-GlcNAcylation. In conclusion, this work identifies the first target of miR-539 in the heart and the first miRNA that regulates OGA. Manipulation of miR-539 may represent a novel therapeutic target in the treatment of heart failure and other metabolic diseases.

At the cellular level, an ever-growing list of post-translational modifications affects organ function. Of these numerous post-translational modifications, O-linked N-acetylglucosamine (O-GlcNAc) modification of proteins represents an emerging target in various pathologies (2, 3). The hexosamine biosynthetic pathway forms UDP-N-acetylglucosamine (UDP-GlcNac), which serves as the sugar donor for O-GlcNAc modification. Two antagonistic enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA; human gene: MGEA5), directly regulate O-GlcNAcylation of proteins inasmuch as OGT catalyzes the addition of GlcNAc to some serine and/or threonine residues in proteins, whereas OGA removes it. Altered levels of O-GlcNAcylation occur in many pathological conditions, including cardiovascular disease, diabetes mellitus, neurodegeneration, and cancer (4–6).

Disruption of blood flow (i.e. ischemia) induces metabolic and oxidative stress to the myocardium. Various in vitro studies of isolated cells/hearts showed elevated O-GlcNac levels in response to various stressors (4, 7, 8). Moreover, augmented O-GlcNAcylation improved cell survival in various model systems (9, 10). Recently, our laboratory demonstrated that O-GlcNAcylation was increased in an infarct-induced heart failure model, which was associated with increased expression of OGT and reduced OGA expression (11). Although there are plausible metabolic explanations that may partially explain increased O-GlcNac levels in failing hearts, other possibilities exist.

Although many regard flux of substrate through the hexosamine biosynthetic pathway as the only (or at least primary) mechanism regulating O-GlcNAcylation, other regulatory mechanisms remain unexplored. Thus, understanding the mechanisms regulating expression of OGT and OGA persist as important limitations in the field. One potential area of molecular regulation may involve microRNAs (miRNAs), which are endogenous small RNAs (~22 nucleotides) that play key regulatory roles in
miR-539 Suppresses O-GlcNAcase

fine-tuning gene expression by ultimately inhibiting translation of their target miRNAs and such post-transcriptional regulation has been associated with various cardiovascular diseases (12–14). Emerging evidence indicates that the miRNA expression profile changes in a region-specific manner during myocardial ischemia (15). Several diseases, at least experimentally, are improved by oligonucleotide-based technologies, making them attractive therapeutic candidates. Here we hypothesize that miRNAs up-regulated in heart failure may suppress OGA. The combination of miRNA microarray and bioinformatics revealed miR-539 as a potential novel regulator of OGA expression. These findings have important implications for cardiovascular disease, diabetes, metabolism, and other conditions in which alterations in O-GlcNAcylation may be implicated.

EXPERIMENTAL PROCEDURES

Myocardial Infarction—Adult (3–4 months old) C57BL6/J mice were subjected to in vivo coronary ligation to induce heart failure, as described previously (11, 16–20). In brief, mice were orally intubated, subjected to a thoracotomy, and the left coronary artery visualized and permanently occluded with the aid of a dissecting microscope. Upon recovery of spontaneous respiration, the endotracheal tube was removed and mice were allowed to recover in a temperature-controlled area supplemented with oxygen. All animal procedures were performed in accordance with federal guidelines and approved by the University of Louisville Animal Care and Use Committee.

Echocardiographic Assessment—Transthoracic echocardiography of the left ventricle was performed as previously described (16, 21, 22). Body temperature was maintained at 36.5–37.5 °C using a rectal thermometer interfaced with a servo-controlled heat lamp throughout the procedure. Briefly, mice were anesthetized with 2% isoflurane then maintained under anesthesia with 1.5% isoflurane and examined. Using the Vevo rail system, the mouse was placed chest up on an examination board interfaced with the Vevo 770. Next, a depilatory cream was applied to the chest of the mouse and wiped clean to remove all hair in the area of interest. The 707-B (30 MHz) scan head was used to obtain two-dimensional images (100 frames/s) of the parasternal long axis. M-modes images were also acquired. The probe was then rotated to acquire a short axis view of the heart. Beginning at the level of the papillary muscles and moving apically, serial two-dimensional images were taken every millimeter. All measurements were taken using the rail system Vevo 770 to maintain probe placement and allow for minute adjustments of position. Left ventricular inner diameters during diastole and systole were determined from M-modes along with heart rate. Diastolic and systolic volumes were acquired by applying Simpson’s rule of discs to the serially acquired short axis images. Stroke volume was calculated as: diastolic volume − systolic volume. Ejection fraction was calculated as: (stroke volume/diastolic volume) × 100%. Cardiac output was determined by: stroke volume × heart rate.

Masson’s Trichrome Staining—After 5 and 28 days (to assess early and late stage heart failure), the infarcted and sham-operated mice were euthanized, and the hearts were rapidly excised and fixed for immunohistochemical analysis or immediately frozen in liquid nitrogen and stored at −80 °C. In brief, after excision, sham and infarcted mouse hearts (5 and 28 days) were fixed in 4% paraformaldehyde for 1 h at 4 °C, then kept in PBS with 30% sucrose overnight at 4 °C, embedded in optimal cutting temperature compound (Sakura Finetek, Torrance, CA), sectioned (10 μm) with cryostat (Leica, Germany), and placed on superfrost slides. The degree of myocardial infarction (MI) was evaluated using Masson’s trichrome staining kit according to manufacturer’s protocol (Sigma).

miRNA Microarray and Real-time PCR—Total RNA from the 5- and 28-day sham and infarcted mouse hearts (n = 4) was isolated using TRIzol reagent (Invitrogen). Rodent miRNA microarray kit (Applied Biosystems) was used according to the manufacturer’s protocol. In brief, 1 μg of total RNA was reverse-transcribed with Megaplex RT primers (Megaplex RT Rodent Pool A), followed by a real-time PCR with TaqMan Rodent MicroRNA Array performed on an Applied Biosystems 7900HT System. SDS software version 2.3 and DataAssist version 3.0 (Applied Biosystems) were used to obtain the comparative threshold cycle (Ct) value. U6 small nuclear RNA included in the TaqMan Rodent MicroRNA Array was used as an endogenous control. Quantitative RT-PCR (qRT-PCR) analyses were carried out using TaqMan miRNA assays (Applied Biosystems) according to the manual. Relative expression of miR-539 was calculated using the ΔΔCt method normalized to the expression of U6 small nuclear RNA (Applied Biosystems). Relative levels of OGA and OGT mRNA were measured with specific primers (OGA: forward, 5'-TGGAGAACCTTTGCTTGATTG-3' and reverse, 5'-TGCTAGGTTCCCTCCATG-3'; OGT, forward, 5'-CTCTCTGGGGGAGGAAGG-3' and reverse, 5'-CGGCTGCTCTAATGTGT-3') using Fast SYBR Green (Applied Biosystems) and normalized to levels of 18 S mRNA. All qRT-PCR were performed in duplicate.

Cell Culture—Neonatal rat cardiomyocytes (NRCMs) were isolated from 1–2-day-old Sprague-Dawley rats according to the protocol described elsewhere (23). The isolated cardiomyocytes were cultured in DMEM containing 10% fetal bovine serum, penicillin/streptomycin, and vitamin B12 in the presence of anti-mitotic BrdU (0.1 mM) for 4 days to inhibit fibroblast growth and subsequently grown in the absence of BrdU. HEK293 cells were grown in DMEM containing 10% fetal bovine serum and penicillin/streptomycin. 293FT cells cultured in DMEM Glutamax (Invitrogen) containing 10% fetal bovine serum, penicillin/streptomycin, and Geneticin (Invitrogen) were used for the lentivirus preparation.

Luciferase Reporter Assay—For luciferase assay, we transiently co-transfected (Lipofectamine 2000, Invitrogen) pLentiv/V5-miR-539 or pLentiv/V5-scrambled (250 ng) overexpressing constructs with luciferase reporter plasmid containing wild type OGA-3'UTR (Genecopoeia, Inc.) or miR-539 binding seed mutant OGA-3'UTR (250 ng) in 60–70% confluent HEK293 cells grown in a 12-well plate. Renilla reporter plasmid (10 ng) was used as transfection control. At 48 h post-transfection, cells were lysed and assayed for luciferase activity using a dual luciferase assay kit (Promega).

miRNA-539 Construct and Lentivirus Preparation—The precursor miRNA-539 was amplified from mouse genomic DNA using forward (5'-CACGTGAGAGAGTGATGAT-3') and
miR-539 Suppresses O-GlcNAcase

Global profiling analysis revealed that several miRNAs are differentially expressed (<0.7- or >2-fold) in 5- and 28-day failing hearts compared with sham heart (Table 1). To identify the miRNAs that target HBP, we performed target prediction anal-
miR-539 Suppresses O-GlcNAcase

The table shows a summary of several miRNAs differentially expressed in 5- and 28-day infarcted mouse heart by miRNA microarray analysis. miR-539 is significantly up-regulated at both 5 and 28 days in the failing hearts compared to sham hearts.

miRNA	HF vs. sham (mean ± S.D.)
mmu-miR-224	2.40 ± 0.34
mmu-miR-215	0.66 ± 0.04
mmu-miR-223	3.17 ± 0.86
mmu-miR-224	2.40 ± 0.15
mmu-miR-26a	0.61 ± 0.05
mmu-miR-351	0.59 ± 0.01
mmu-miR-356	0.28 ± 0.01
mmu-miR-357a	0.60 ± 0.01
mmu-miR-357b	0.60 ± 0.01
mmu-miR-384	0.60 ± 0.01
mmu-miR-403	0.60 ± 0.01
mmu-miR-410	0.60 ± 0.01
mmu-miR-503	0.60 ± 0.01
mmu-miR-539	6.49 ± 0.01
mmu-miR-542	0.66 ± 0.01
mmu-miR-543	1.79 ± 0.16
mmu-miR-652	1.71 ± 0.14
mmu-miR-667	4.73 ± 0.27
mmu-miR-674	2.18 ± 0.60
mmu-miR-685	1.52 ± 0.42
mmu-miR-7a	2.64 ± 0.81

FIGURE 1. Masson's trichrome staining shows collagen fibers (blue) and healthy myocardium (red) in sham and infarcted mouse hearts. B and D shows a significant decrease in the left ventricular wall thickness with increased collagen deposition and loss of myocardium compared with their respective sham hearts (A and C). Magnification at ×2; scale bar = 1000 μm. MI induced significant left ventricular dysfunction (E-H). Mice subjected to MI had severely dilated left ventricles, reduced stroke volume (I), and ejection fraction (J). Despite elevated heart rates at 5 d following MI (K), cardiac output was significantly diminished at both 5 and 28 days (L), p < 0.05. LVDD, left ventricular internal diameter — diastole; LVIDS, left ventricular internal diameter — systole. Group sizes are indicated in the bars.
ysis (TargetScan and MiRanda algorithms) and found a predicted miR-539 binding site in OGA-3’UTR (26). The miR-539 binding sites in the OGA-3’UTR are conserved among mouse, rat, and human (Fig. 2A). We performed qRT-PCR to confirm the miRNA microarray data. Specifically, miRNA-539 was up-regulated ~5- and ~3-fold ($p < 0.05$) in 5 and 28 days, respectively, in the infarcted heart compared with sham heart (Fig. 2B). Further in situ hybridization analysis with the miR-539 LNA probe revealed increased expression of miR-539 in the remote zone (non-infarcted) of the failing heart compared with the sham heart (Fig. 2C). Interestingly, a strong signal of miR-539 was observed in 5-day compared with 28-day failing heart and the sham hearts showed weak signals at both 5 and 28 days. Histomorphological observation also showed the perinuclear localization of miR-539 in the cardiomyocytes. Collectively these data demonstrate that miR-539 was significantly up-regulated in the failing heart by 5 days and through at least 28 days.

Reduced OGA Expression and Increased O-GlcNAcylation in the Failing Heart—Use of qRT-PCR analysis showed significant down-regulation of OGA mRNA and protein levels in both 5- and 28-day infarcted hearts compared with sham hearts (Fig. 3, A and B). A significant increase in OGT mRNA expression was observed...
in 5- and 28-day infarcted hearts, which was accompanied by a significant increase in OGT protein at 5 days, but not 28 days (Fig. 3, C and D). In addition, there was a significant increase in protein O-GlcNAcylation at both 5 and 28 days in infarcted hearts (Fig. 3E).

miRNA-539 Targets OGA-3' UTR—To test whether miR-539 binds directly to the OGA-3' UTR as predicted, we co-transfected reporter plasmid containing luciferase upstream to the OGA-3' UTR or miR-539 binding site mutant (Fig. 4A) with scrambled control or miRNA-539 expression plasmids in HEK293 cells. Co-transfection of wild-type OGA-3' UTR with miR-539 significantly reduced luciferase activity (>40%) compared with scrambled control. In contrast, co-transfection of the miR-539 binding site mutant with miR-539 did not affect the luciferase activity (Fig. 4B). These results suggest that miR-539 binds to the OGA-3' UTR, thereby providing a potential mechanism to reduce OGA expression.

miRNA-539 Modulates OGA Expression in Vitro—To determine whether overexpression of miR-539 suppresses OGA expression, we transduced NRCMs and HEK293 cells with miR-539 lentivirus to overexpress miR-539. Real-time PCR analysis showed significant up-regulation of miR-539 in both NRCMs (~170-fold) and HEK293 cells (~35,000-fold) transduced with miR-539 lentivirus compared with scrambled virus (Fig. 4, C and E). Immunoblot analysis showed ~40% reduction in OGA expression in miR-539 overexpressed NRCMs compared with scrambled control or mCherry-transduced NRCMs (Fig. 4D), whereas HEK293 showed ~30% reduction in OGA expression in miR-539 overexpressed cells compared with scrambled control (Fig. 4F). Furthermore, transfection with the miR-539 inhibitor rescued OGA protein expression in miR-539 overexpressing NRCMs (Fig. 5, A and B) and HEK293 cells (Fig. 6, A and B) compared with negative control inhibitor-treated cells. Such findings indicate that overexpression of miR-539 significantly suppresses OGA expression in NRCMs. Interestingly, we found the OGT protein levels were also significantly diminished following miR-539 overexpression in this in vitro system (Figs. 5, C and D, and 6, C and D).

Effect of miRNA-539 on O-GlcNAcylation—To assess the functional consequence of miR-539-mediated OGA regulation, miR-539 overexpressed or expression-silenced NRCMs and HEK293 cells were assessed for O-GlcNAc levels. Overexpres-
sion of miR-539 significantly increased O-GlcNAc levels, whereas inhibition of miR-539 in miR-539 stably expressing NRCMs and HEK293 cells reduced O-GlcNAc to normal levels (Figs. 5, E and F, and 6, E and F).

Hypoxia-reoxygenation Increases miR-539 and Decreases OGA Expression—To determine whether miR-539 might play a role in regulating OGA expression in an *in vitro* proxy for a pathologic condition, we subjected NRCMs to hypoxia-reoxygenation. Indeed, the level of miR-539 was significantly increased after 3 h of reoxygenation with a decrease in the OGA protein level after 6 and 12 h of reoxygenation (Fig. 7, A and B). Thus, miR-539 is up-regulated in NRCMs following hypoxia, and is associated with a reduction in OGA expression.

DISCUSSION

More than 1,000 nuclear and cytoplasmic proteins are known to be O-GlcNAcked, including targets important for transcription, translation, signal transduction, and cell cycle control (27–30). In response to various stresses, global augmentation of protein O-GlcNAcylation confers a survival advantage at the cellular level. Several *in vitro* and *in vivo* analyses showed O-GlcNAc-mediated cardioprotection against ischemia-reperfusion, myocardial infarction, and oxidative stress (4, 7, 9, 31–33). The present study indicates that down-regulation of OGA may be involved, at least partially, in increased O-GlcNAcylation in non-reperfused myocardial infarction.
Numerous gain- and loss-of-function studies have uncovered prominent roles for miRNAs in human cardiovascular disorders including myocardial infarction, cardiac hypertrophy, heart failure, fibrosis, and pressure overload-induced remodeling (34–38). Few studies focused on miRNAs implicated in metabolic disorders (39, 40), yet, there are no prior studies

FIGURE 5. Inhibition of miR-539 rescues OGA expression and O-GlcNAcylation in NRCMs. A–D, Western blot analysis shows a significant reduction of OGA and OGT levels transduced with miRNA-539 upon negative control treatment, whereas anti-miR-539 transfection rescued the OGA expression toward the normal level (n = 3/group); p < 0.05. E and F, Western blot analysis shows a significant increase in protein O-GlcNAcylation by miR-539 overexpression, and inhibition of miR-539 brought the O-GlcNAc level to normal (n = 3/group); p < 0.05. IB, immunoblot.
FIGURE 6. Negative regulatory effect of miR-539 on OGA expression in human, non-cardiac cell types. A–D, Western blot analysis shows a significant reduction of OGA and OGT levels in HEK293 cells transduced with miR-539; anti-miR-539 transfection rescued OGA expression toward the basal level (n = 3/group); p < 0.05. E and F, Western blot analysis shows a significant increase in protein O-GlcNAcylation by miR-539 overexpression, and inhibition of miR-539 returned O-GlcNAc levels to normal (n = 3/group); p < 0.001. IB, immunoblot.
miR-539 Suppresses O-GlcNAcase

FIGURE 7. Hypoxia-reoxygenation induces miR-539 expression followed by a decrease in OGA expression. NRCMs subjected to 3 h of hypoxia were reoxygenated for 3, 6, and 12 h. qRT-PCR analysis shows a significant increase in miR-539 expression at 3 h reoxygenation; p < 0.05. Western blot analysis shows a significant decrease in OGA protein level at both 6 and 12 h of reoxygenation (n = 4/group); p < 0.001. IB, immunoblot.

demonstrating miRNA-mediated regulation of OGA (or OGT) expression. In this study, we report a novel paradigm of miRNA-mediated down-regulation of OGA with subsequent augmentation of O-GlcNAcylation in the failing heart. Use of miRNA microarray followed by qRT-PCR analysis clearly demonstrated that miR-539 was up-regulated in the failing heart.

Significant down-regulation of OGA in miR-539 overexpressing NRCM (rat) and HEK293 (human) cells indicates that OGA is a potential conserved target of miR-539. Although OGT does not have target sites for miR-539 binding, reduction of the OGT protein level by miR-539 overexpression reveals that there could be indirect mechanisms involved in the regulation of OGT by OGA or other targets of miR-539. Increased OGA expression with concomitant reduction in O-GlcNAcylation using the miR-539 inhibitor in both NRCMs and HEK293 cells overexpressing miR-539 indicates that miR-539 may be a potential marker/target of disease or other prognostic indicator.

MicroRNA-539 is present in the miRNA-rich intragenic region of mouse chromosome 12 (NC_000078.6 (109728129 to 109728202)) between Rian (RNA imprinted and accumulated in nucleus) and Mirg (miRNA containing gene). There are few reports of verified targets of miR-539. Recently, Milosevic et al. (41) observed TGF-β1-mediated stimulation of the cluster of microRNAs from chr14q32 (mouse analog; chr12qF1) in normal human lung fibroblasts where miR-539 is one among them; however, the exact mechanism of miR-539 expression per se requires further investigation. Interestingly, a recent study indicates that miR-539 regulates mitochondrial fission and apoptosis by targeting prohibitin 2 (PHB2) in cardiomyocytes (42). It is possible that miR-539 plays an even larger role than simply regulating OGA expression. In mast cells, CD117 (i.e. KIT or c-kit) represses miR-539 expression, thereby de-repressing microphthalmia-associated transcription factor expression and promoting proliferation (43). In other cell types, miR-539 expression may be biotin-sensitive, and miR-539 targets the mRNA of holocarboxylase synthase, which participates in genetic stability (44). Such collective findings create interesting implications for a more detailed understanding of the molecular interactions governing O-GlcNAc-dependent cell function; however, there is no evidence, at present to directly link the aforementioned observations to one another, at least at the level of O-GlcNAcylation.

It is also tempting to speculate whether miR-539 plays a role in other cardiovascular diseases in which O-GlcNAc appears to be involved. For example, during hypertension, inhibition of OGA increases arterial vascular reactivity (45). Another study demonstrated that OGA inhibition improved cardiac function during reperfusion (46). Our results demonstrate that up-regulation of miR-539 might be a possible mechanism that suppresses OGA expression in the infarcted, failing heart, which, in turn favors O-GlcNAcylation. The increase in miR-539 followed by a decrease in OGA protein level during hypoxia-reoxygenation mimics the phenomenon seen in the present in vivo myocardial infarction data. Future studies will directly interrogate the role of miR-539 in the evolution of disease and subsequent recovery.

Understanding the regulation of O-GlcNAcylation holds critical importance not only in heart failure but also in multiple diseases; no disease exemplifies the potential impact better than diabetes. Several studies suggest that elevated O-GlcNAc levels contribute to diabetic cardiomyopathy (47). In humans, the OGA/MGEA5 chromosome locus 10q24.1 is associated with late-onset Alzheimer disease (48). Experimental observations demonstrated that inhibition of OGA decreases phosphorylation of Tau and protects against Tau-mediated neurodegeneration as well as prevents amyloid-β load by increasing the amount of secreted amyloid precursor protein (sAPPα) (49, 50). This line of evidences suggests that increased O-GlcNAcylation by OGA inhibition improves neuronal outcome.

In addition, numerous studies showed hyper O-GlcNAcylation, increased expression of OGT, and decreased OGA expression in various cancers (51, 52). In part, hyper O-GlcNAcylation was also observed as a mechanism that promotes cancer cell survival and stress resistance. Similar to the approach of targeting
kinases, targeting OGA and OGT could be a valuable approach in many cancer therapies. Thus, the implications for our findings with miR-539 could be broad and manifold.

In light of results from this study, it will be interesting to see whether miR-539 expression is altered in these diseases and the role of microRNA-21 in the early phase of acute myocardial infarction. J. Biol. Chem. 284, 29514–29525.

16. Brainard, R. E., Watson, L. J., Demartino, A. M., Brittian, K. R., Readnower, R. D., Boakye, A. A., Zhang, D., Hoetker, J. D., Bhatnagar, A., Baba, S. P., and Jones, S. P. (2013) High fat feeding in mice is insufficient to induce cardiac dysfunction and does not exacerbate heart failure. PloS One 8, e83174.

17. Jones, S. P., Greer, J. J., van Haperen, R., Duncker, D. J., de Crom, R., and Lefer, D. J. (2003) Endothelial nitric oxide synthase overexpression attenuates congestive heart failure in mice. Proc. Natl. Acad. Sci. U.S.A. 100, 4891–4896.

18. Jones, S. P., and Lefer, D. J. (2001) Cardioprotective actions of acute HMG-CoA reductase inhibition in the setting of myocardial infarction. Acta Physiol. Scand. 173, 139–143.

19. Greer, J. J., Kakkar, A. K., Elrod, J. W., Watson, L. J., Jones, S. P., and Lefer, D. J. (2006) Low-dose simvastatin improves survival and ventricular function via eNOS in congestive heart failure. Am. J. Physiol. Heart Circ. Physiol. 291, H2743–H2751.

20. Jones, S. P., Greer, J. J., Ware, P. D., Yang, J., Walsh, K., and Lefer, D. J. (2005) Deficiency of iNOS does not attenuate severe congestive heart failure in mice. Am. J. Physiol. Heart Circ. Physiol. 288, H365–H370.

21. Watson, L. J., Long, B. W., DeMartino, A. M., Brittian, K. R., Readnower, R. D., Brainard, R. D., Cummins, T. D., Annamalai, L., Hill, B. G., and Jones, S. P. (2014) Cardiomyocyte Ogt is essential for postnatal viability. Am. J. Physiol. Heart Circ. Physiol. 306, H142–H153.

22. Sansbury, B. E., DeMartino, A. M., Xie, Z., Brooks, A. C., Brittian, R. E., Watson, L. J., DeFilippis, A. P., Cummins, T. D., Harbeson, M. A., Brittian, K. R., Prabhu, S. D., Bhatnagar, A., Jones, S. P., and Hill, B. G. (2014) Metabolomic analysis of pressure-overloaded and infarcted mouse hearts. Circulation 7, 634–642.

23. Jones, S. P., Teshima, Y., Akao, M., and Marbán, E. (2003) Simvastatin attenuates oxidant-induced mitochondrial dysfunction in cardiac myocytes. Circ. Res. 93, 697–699.

24. Facundo, H. T., Brainard, R. E., Watson, L. J., Ngoh, G. A., Hamid, T., Prabhu, S. D., and Jones, S. P. (2012) O-GlcNAc signaling is essential for NFAT-mediated transcriptional reprogramming during cardiomycyte hypertrophy. Am. J. Physiol. Heart Circ. Physiol. 302, H2122–H2130.

25. Obernosterer, G., Martinez, J., and Alenius, M. (2007) Licensed nuclear acid-based in situ detection of microRNAs in mouse tissue sections. Nat. Protoc. 2, 1508–1514.

26. Lewis, B. P., Burge, C. B., and Bartel, D. P. (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20.

27. Ozcan, S., Andrali, S. S., and Cantrell, J. E. (2010) Modulation of transcription factor function by O-GlcNAc modification. Biochim. Biophys. Acta 1799, 353–364.

28. Hart, G. W., Housley, M. P., and Slawson, C. (2007) Cycling of O-linked β-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446, 1017–1022.

29. Housley, M. P., Rodgers, J. T., Udeshi, N. D., Kelly, T. J., Shabanowitz, J., Hunt, D. F., Puigserver, P., and Hart, G. W. (2008) O-GlcNAc regulates FoxO activation in response to glucose. J. Biol. Chem. 283, 16283–16292.

30. Slawson, C., Zachara, N. E., Vosseller, K., Cheung, W. D., Prabhu, S. D., Bhatnagar, A., and Jones, S. P. (2011) Pervasive roles of microRNAs in cardiovascular biology. Nature 469, 336–342.

31. D’Alessandra, Y., Devanna, P., Limana, F., Straino, S., Di Carlo, A., Brambilla, P. G., Rubino, M., Carena, M. C., Spazzafumo, L., De Simone, M., Micheli, B., Bigioli, P., Achilli, F., Martelli, F., Maggioni, S., Marenzì, G., Pompilio, G., and Capogrossi, M. C. (2010) Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur. Heart J. 31, 2765–2773.

32. Divakaran, V., and Mann, D. L. (2008) The emerging role of microRNAs in cardiac remodeling and heart failure. Circ. Res. 103, 1072–1083.

33. Doug, S., Cheng, Y., Yang, J., Li, J., Liu, X., Wang, X., Wang, D., Krall, T. J., Delphin, E. S., and Zhang, C. (2009) MicroRNA expression signature and
miR-359 Suppresses O-GlcNAcase

RouhaniFard, S. H., Mackenthaler, M. U., Tuschl, T., Martin, G. R., Bauersachs, J., and Engelhardt, S. (2008) MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456, 980–984

35. van Rooij, E., Sutherland, L. B., Thatcher, J. E., DiMaio, J. M., Naseem, R. H., Marshall, W. S., Hill, J. A., and Olson, E. N. (2008) Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc. Natl. Acad. Sci. U.S.A. 105, 13027–13032

36. Callis, T. E., Pandya, K., Seok, H. Y., Tang, R. H., Tatsuguchi, M., Huang, Z. P., Chen, J. F., Deng, Z., Gunn, B., Shumate, J., Willis, M. S., Selzman, C. H., and Wang, D. Z. (2009) MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J. Clin. Invest. 119, 2772–2786

37. van Rooij, E., Sutherland, L. B., Qi, X., Richardson, J. A., Hill, J., and Olson, E. N. (2007) Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316, 575–579

38. Carè, A., Catulucci, D., Felicetti, F., Bonci, D., Addario, A., Gallo, P., Bang, M. L., Segnalini, P., Gu, Y., Dalton, N. D., Elia, L., Latronico, M. V., Haydal, M., Autore, C., Russo, M. A., Dorn, G. W., 2nd, Ellingsen, O., Ruiz-Lozano, P., Peterson, K. L., Croce, C. M., Peschle, C., and Condorelli, G. (2007) MicroRNA-133 controls cardiac hypertrophy. Nat. Med. 13, 613–618

39. Najafi-Shoushtari, S. H., Kristo, F., Li, Y., Shiota, T., Cohen, D. E., Gerszten, R. E., and Nääär, A. M. (2010) MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 328, 1566–1569

40. Esau, C., Davis, S., Murray, S. F., Yu, X. X., Pandey, S. K., Pear, M., Watts, L., Booten, S. L., Graham, M., McKay, R., Subramaniam, A., Propp, S., Lollo, B. A., Freier, S., Bennett, C. F., Bhanot, S., and Monia, B. P. (2006) miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 3, 87–98

41. Milosevic, J., Pandit, K., Magister, M., Rabovich, E., Ellwanger, D. C., Yu, G., Vuga, L. J., Weksler, B., Benos, P. V., Gibson, K. F., McMillan, M., Kahn, M., and Kaminski, N. (2012) Pro fibrillogenic role of miR-154 in pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 47, 879–887

42. Wang, K., Long, B., Zhou, L. Y., Liu, F., Zhou, Q. Y., Liu, C. Y., Fan, Y. Y., and Li, P. F. (2014) CARL IncRNA inhibits anoxia-induced mitochondrial fission and apoptosis in cardiomyocytes by impairing miR-539-dependent PHB2 down-regulation. Nat. Commun. 5, 3596

43. Lee, Y. N., Brandal, S., Noel, P., Wentzel, E., Mendell, J. T., McDevitt, M. A., Kapur, R., Carter, M., Metcalfe, D. D., and Takemoto, C. M. (2011) KIT signaling regulates MITF expression through miRNAs in normal and malignant mast cell proliferation. Blood 117, 3629–3640

44. Rodríguez-Meléndez, R., Cano, S., Méndez, S. T., and Velázquez, A. (2001) Biotin regulates the genetic expression of holocarboxylase synthetase and mitochondrial cardiolipins in rats. J. Nutr. 131, 1909–1913

45. Lima, V. V., Giachini, F. R., Choi, H., Carneiro, F. S., Carneiro, Z. N., Fortes, Z. B., Carvalho, M. H., Webb, R. C., and Tostes, R. C. (2009) Impaired vasodilator activity in deoxycorticosterone acetate-salt hypertension is associated with increased protein O-GlcNAcylation. Hypertension 53, 166–174

46. Lacy, B., Marsh, S. A., Brocks, C. A., Wittmann, I., and Chatham, J. C. (2010) Inhibition of O-GlcNAcase in perfused rat hearts by NAG-thiazoline at the time of reperfusion is cardioprotective in an O-GlcNAc-depended manner. Am. J. Physiol. Heart Circ. Physiol. 299, H1715–H1727

47. Marsh, S. A., Dell’Italia, L. J., and Chatham, J. C. (2011) Activation of the hexosamine biosynthesis pathway and protein O-GlcNAcylation modulate hypertrophic and cell signaling pathways in cardiomyocytes from diabetic mice. Amino Acids 40, 819–828

48. Deng, Y., Li, B., Liu, Y., Iqbal, K., Grundke-Iqbal, I., and Gong, C. X. (2009) Dysregulation of insulin signaling, glucose transporters, O-GlcNAcylation, and phosphorylation of tau and neurofilaments in the brain: implication for Alzheimer’s disease. Am. J. Pathol. 175, 2089–2098

49. Yuzwa, S. A., Macauley, M. S., Heinonen, J. E., Shan, X., Dennis, R. J., He, W., Whitworth, G. E., Stubbs, K. A., McEachern, E. J., Davies, G. J., and Vocadlo, D. J. (2008) A potent mechanism-inspired O-GlcNAcase inhibitor that blocks phosphorylation of Tau in vivo. Nat. Chem. Biol. 4, 483–490

50. Jacobsen, K. T., and Iverfeldt, K. (2011) O-GlcNAcylation increases non-amyloidogenic processing of the amyloid-β precursor protein (APP). Biochem. Biophys. Res. Commun. 404, 882–886

51. Ma, Z., and Vosseller, K. (2013) O-GlcNAc in cancer biology. Amino Acids 45, 719–733

52. Mi, W., Gu, Y., Han, C., Liu, H., Fan, Q., Zhang, X., Cong, Q., and Yu, W. (2011) O-GlcNAcylation is a novel regulator of lung and colon cancer malignancy. Biochem. Biophys. Acta 1812, 514–519