How to Escape Saddle Points Efficiently?

Praneeth Netrapalli
Microsoft Research India

Chi Jin
UC Berkeley

Michael I. Jordan
UC Berkeley

Rong Ge
Duke Univ.

Sham M. Kakade
U Washington
Nonconvex optimization

Problem: \(\min_x f(x) \quad f(\cdot): \text{nonconvex function} \)

Applications: Deep learning, compressed sensing, matrix completion, dictionary learning, nonnegative matrix factorization, ...
Gradient descent (GD) [Cauchy 1847]

\[x_{t+1} = x_t - \eta \nabla f(x_t) \]

Question
How does it perform?
Gradient descent (GD) [Cauchy 1847]

\[x_{t+1} = x_t - \eta \nabla f(x_t) \]

Question
How does it perform?

Answer
Converges to first order stationary points
Gradient descent (GD) [Cauchy 1847]

\[x_{t+1} = x_t - \eta \nabla f(x_t) \]

Question
How does it perform?

Answer
Converges to first order stationary points

Definition
\(\epsilon \)-First order stationary point (\(\epsilon \)-FOSP): \(\|\nabla f(x)\| \leq \epsilon \)
Gradient descent (GD) [Cauchy 1847]

\[x_{t+1} = x_t - \eta \nabla f(x_t) \]

Question
How does it perform?

Answer
Converges to first order stationary points

Definition
\(\epsilon \)-First order stationary point (\(\epsilon \)-FOSP): \(\| \nabla f(x) \| \leq \epsilon \)

Concretely
\(\epsilon \)-FOSP in \(O \left(\frac{1}{\epsilon^2} \right) \) iterations

[Folklore]
How do FOSPs look like?
How do FOSPs look like?

Hessian PSD
\[\nabla^2 f(x) \succeq 0 \]
Second order stationary points (SOSP)
How do FOSPs look like?

Hessian PSD
\[\nabla^2 f(x) \succeq 0 \]

Hessian NSD
\[\nabla^2 f(x) \preceq 0 \]

Second order stationary points (SOSP)
How do FOSPs look like?

Hessian PSD
\[\nabla^2 f(x) \succeq 0 \]
Second order stationary points (SOSP)

Hessian NSD
\[\nabla^2 f(x) \preceq 0 \]

Hessian indefinite
\[\lambda_{\min}(\nabla^2 f(x)) \leq 0 \]
\[\lambda_{\max}(\nabla^2 f(x)) \geq 0 \]
FOSPs in popular problems

• Very well studied
 • Neural networks [Dauphin et al. 2014]
 • Matrix sensing [Bhojanapalli et al. 2016]
 • Matrix completion [Ge et al. 2016]
 • Robust PCA [Ge et al. 2017]
 • Tensor factorization [Ge et al. 2015, Ge & Ma 2017]
 • Smooth semidefinite programs [Boumal et al. 2016]
 • Synchronization & community detection [Bandeira et al. 2016, Mei et al. 2017]
Two major observations

• FOSPs: proliferation (exponential #) of saddle points
 • Recall FOSP $\triangleq \nabla f(x) = 0$
 • Gradient descent can get stuck near them

• SOSPs: not just local minima; as good as global minima
 • Recall SOSP $\triangleq \nabla f(x) = 0 \& \nabla^2 f(x) \succeq 0$

Upshot
1. FOSP not good enough
2. Finding SOSP sufficient
Can gradient descent find SOSPs?

• Yes, perturbed GD finds an ϵ-SOSP in $O\left(\text{poly}\left(\frac{d}{\epsilon}\right)\right)$ iterations [Ge et al. 2015]

• GD is a first order method while SOSP captures second order information
Can gradient descent find SOSPs?

- Yes, perturbed GD finds an ϵ-SOSP in $O\left(\text{poly}\left(\frac{d}{\epsilon}\right)\right)$ iterations [Ge et al. 2015]

- GD is a first order method while SOSP captures second order information

Question 1

Does perturbed GD converge to SOSP efficiently?
In particular, independent of d?
Can gradient descent find SOSPs?

- Yes, perturbed GD finds an \(\epsilon \)-SOSP in \(O\left(poly\left(\frac{d}{\epsilon}\right)\right) \) iterations [Ge et al. 2015]

- GD is a first order method while SOSP captures second order information

Question 1
Does perturbed GD converge to SOSP efficiently?
In particular, independent of \(d \)?

Our result
Almost yes, in \(\tilde{O}\left(\frac{\text{polylog}(d)}{\epsilon^2}\right) \) iterations!
Accelerated gradient descent (AGD) [Nesterov 1983]

• Optimal algorithm in the convex setting

• Practice: Sutskever et al. 2013 observed AGD to be much faster than GD

• Widely used in training neural networks since then

• Theory: Finds an ϵ-FOSP in $O\left(\frac{1}{\epsilon^2}\right)$ iterations [Ghadimi & Lan 2013]

• No improvement over GD
Question 2: Does essentially pure AGD find SOSPs faster than GD?

• **Our result:** Yes, in $\tilde{O}\left(\frac{\text{polylog}(d)}{\epsilon^{1.75}} \right)$ steps compared to $\tilde{O}\left(\frac{\text{polylog}(d)}{\epsilon^{2}} \right)$ for GD

• Perturbation + negative curvature exploitation (NCE) on top of AGD
 • NCE inspired by Carmon et al. 2017

• Carmon et al. 2016 and Agarwal et al. 2017 show this improved rate for a more complicated algorithm
 • Solve sequence of regularized problems using AGD
Summary

- Convergence to SOSPs very important in practice

- Pure GD and AGD can get stuck near FOSPs (saddle points)

Algorithm	Paper	# Iterations	Simplicity
Perturbed gradient descent	Ge et al. 2015, Levy 2016	$O\left(\text{poly}\left(\frac{d}{\epsilon}\right)\right)$	Single loop
	Jin, Ge, N., Kakade, Jordan 2017	$\tilde{O}\left(\frac{\text{polylog}(d)}{\epsilon^2}\right)$	Single loop
Sequence of regularized subproblems with AGD	Carmon et al. 2016, Agarwal et al. 2017	$\tilde{O}\left(\frac{\text{polylog}(d)}{\epsilon^{1.75}}\right)$	Nested loop
Perturbed AGD + NCE	Jin, N., Jordan 2017	$\tilde{O}\left(\frac{\text{polylog}(d)}{\epsilon^{1.75}}\right)$	Single loop
Part I
Main Ideas of the Proof of Gradient Descent
Setting

- **Gradient Lipschitz:** \(\| \nabla f(x) - \nabla f(y) \| \leq \| x - y \| \)

- **Hessian Lipschitz:** \(\| \nabla^2 f(x) - \nabla^2 f(y) \| \leq \| x - y \| \)

- **Lower bounded:** \(\min_x f(x) > -\infty \)
How does GD behave?

Recall

FOSP: $\nabla f(x)$ small

SOSP: $\nabla f(x)$ small & $\lambda_{\min}(\nabla^2 f(x)) \gtrsim 0$

GD step

$x_{t+1} \leftarrow x_t - \eta \nabla f(x_t)$
How does GD behave?

Recall

FOSP: $\nabla f(x)$ small
SOSP: $\nabla f(x)$ small & $\lambda_{\min}(\nabla^2 f(x)) \succeq 0$

GD step

$x_{t+1} \leftarrow x_t - \eta \nabla f(x_t)$

- $\|\nabla f(x_t)\|$ small → SOSP
- $\|\nabla f(x_t)\|$ large → Saddle point

$$f(x_{t+1}) \leq f(x_t) - \frac{\eta}{2} \|\nabla f(x_t)\|^2$$
How does GD behave?

Recall

FOSP: $\nabla f(x)$ small
SOSP: $\nabla f(x)$ small & $\lambda_{\text{min}}(\nabla^2 f(x)) \geq 0$

GD step

$x_{t+1} \leftarrow x_t - \eta \nabla f(x_t)$

$\|\nabla f(x_t)\|$ small

- SOSP
- Saddle point

$\|\nabla f(x_t)\|$ large

$f(x_{t+1}) \leq f(x_t) - \frac{\eta}{2} \|\nabla f(x_t)\|^2$
How to escape saddle points?
Perturbed gradient descent

1. For $t = 0, 1, \cdots$ do
2. if perturbation_condition_holds then
3. $x_t \leftarrow x_t + \xi_t$ where $\xi_t \sim Unif(B_0(\epsilon))$
4. $x_{t+1} \leftarrow x_t - \eta \nabla f(x_t)$
Perturbed gradient descent

1. For $t = 0, 1, \ldots$ do
2. if perturbation_condition_holds then
3. $x_t \leftarrow x_t + \xi_t$ where $\xi_t \sim Unif(B_0(\epsilon))$
4. $x_{t+1} \leftarrow x_t - \eta \nabla f(x_t)$

Between two perturbations, just run GD!
Perturbed gradient descent

1. For $t = 0, 1, \ldots$ do
2. if perturbation_condition_holds then
3. $x_t \leftarrow x_t + \xi_t$ where $\xi_t \sim Unif(B_0(\epsilon))$
4. $x_{t+1} \leftarrow x_t - \eta \nabla f(x_t)$

Between two perturbations, just run GD!

1. $\nabla f(x_t)$ is small
2. No perturbation in last several iterations
How can perturbation help?
Key question

• $S \overset{\text{def}}{=} \text{set of points around saddle point from where gradient descent does not escape quickly}$

• Escape $\overset{\text{def}}{=} \text{function value decreases significantly}$

• How much is Vol(S)?

• Vol(S) small \Rightarrow perturbed GD escapes saddle points efficiently
Two dimensional quadratic case

• $f(x) = \frac{1}{2} x^\top \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} x$

• $\lambda_{\text{min}}(H) = -1 < 0$

• $(0,0)$ is a saddle point

• GD: $x_{t+1} = \begin{bmatrix} 1 - \eta & 0 \\ 0 & 1 + \eta \end{bmatrix} x_t$

• S is a thin strip, $\text{Vol}(S)$ is small
Three dimensional quadratic case

\(f(x) = \frac{1}{2} x^T \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} x \)

\((0,0,0) \) is a saddle point

\(B(0,0,0) \)

\(S \)

\(\text{Vol}(S) \) is small

\(S \) is a thin disc, \(\text{Vol}(S) \) is small
General case

Key technical results

\(S \sim \) thin deformed disc

\(\text{Vol}(S) \) is small
Two key ingredients of the proof

\textbf{Improve or localize}

\[f(x_{t+1}) \leq f(x_t) - \frac{\eta}{2} \|\nabla f(x_t)\|^2 \]
\[= f(x_t) - \frac{\eta}{2} \left\| \frac{x_t - x_{t+1}}{\eta} \right\|^2 \]

\[\|x_t - x_{t+1}\|^2 \leq 2\eta (f(x_t) - f(x_{t+1})) \]

\[\|x_0 - x_t\|^2 \leq t \sum_{i=0}^{t-1} \|x_i - x_{i+1}\|^2 \leq 2\eta t (f(x_0) - f(x_t)) \]
Two key ingredients of the proof

Improve or localize

Upshot
Either function value decreases significantly or iterates do not move much

\[
\|x_0 - x_t\|^2 \leq t \sum_{i=0}^{t-1} \|x_i - x_{i+1}\|^2 \leq 2\eta t (f(x_0) - f(x_t))
\]
Proof idea

• If GD from either u or w goes outside a small ball, it escapes (function value \downarrow)

• If GD from both u and w lie in a small ball, use local quadratic approximation of $f(\cdot)$

• Show the claim for exact quadratic, and bound approximation error using Hessian Lipschitz property

Coupling

Either GD from u escapes
Or GD from w escapes
Putting everything together

GD step:
\[x_{t+1} \leftarrow x_t - \eta \nabla f(x_t) \]

\[\|\nabla f(x_t)\| \text{ large} \]

\[\|\nabla f(x_t)\| \text{ small} \]

Saddle point

SOSP

Stays at SOSP

Perturbation + GD

\[f(\cdot) \text{ decreases} \]

Moves away from SOSP
Part II
Main Ideas of the Proof of Accelerated Gradient Descent
Nesterov’s AGD

Iterate x_t & Velocity v_t

1. $x_{t+1} = (x_t + (1 - \theta)v_t) - \eta \nabla f(x_t + (1 - \theta)v_t)$

2. $v_{t+1} = x_{t+1} - x_t$

Gradient descent at $x_t + (1 - \theta)v_t$

Challenge

Known potential functions depend on optimum x^*
Differential equation view of AGD

• AGD is a discretization of the following ODE [Su et al. 2015]

\[\ddot{x} + \tilde{\theta} \dot{x} + \nabla f(x) = 0 \]

• Multiplying by \(\dot{x} \) and integrating from \(t_1 \) to \(t_2 \) gives us

\[f(x_{t_2}) + \frac{1}{2} \| \dot{x}_{t_2} \|^2 = f(x_{t_1}) + \frac{1}{2} \| \dot{x}_{t_1} \|^2 - \tilde{\theta} \int_{t_1}^{t_2} \| \dot{x}_t \|^2 dt \]

• Hamiltonian \(f(x_t) + \frac{1}{2} \| \dot{x}_t \|^2 \) decreases monotonically
After discretization

Iterate: x_t and velocity: $v_t := x_t - x_{t-1}$

• Hamiltonian $f(x_t) + \frac{1}{2\eta} \|v_t\|^2$ decreases monotonically if $f(\cdot)$ “not too nonconvex” between x_t and $x_t + v_t$
 • too nonconvex = negative curvature
 • Can increase if $f(\cdot)$ is “too nonconvex”

• If the function is “too nonconvex”, reset velocity or move in nonconvex direction – negative curvature exploitation
Hamiltonian decrease

$$f(\cdot) \text{ between } x_t \text{ and } x_t + v_t$$

Not too nonconvex

\[||v_t|| \text{ large} \]

AGD step

Goes to

\[v_{t+1} = 0 \]

\[f(x_t) + \frac{1}{2\eta} ||v_t||^2 \text{ decreases} \]

Too nonconvex

\[||v_t|| \text{ small} \]

Move in \(\pm v_t \) direction
Negative curvature exploitation – $\|v_t\|$ small

One of $\pm v_t$ directions decreases $f(x_t)$
Hamiltonian decrease

\[f(\cdot) \text{ between } x_t \text{ and } x_t + v_t \]

Not too nonconvex

Too nonconvex
(Negative curvature exploitation)

AGD step

\[\|v_t\| \text{ large} \]
\[v_{t+1} = 0 \]

\[f(x_t) + \frac{1}{2\eta} \|v_t\|^2 \text{ decreases} \]

Move in \(\pm v_t \) direction

Enough decrease in a single step

Need to do amortized analysis
Improve or localize

\[f(x_{t+1}) + \frac{1}{2\eta} \|v_{t+1}\|^2 \leq f(x_t) + \frac{1}{2\eta} \|v_t\|^2 - \frac{\theta}{2\eta} \|v_t\|^2 \]

\[\sum_{t=0}^{T-1} \|x_{t+1} - x_t\|^2 \leq \frac{2\eta}{\theta} \cdot (f(x_0) - f(x_T)) \]

- Approximate locally by a quadratic and perform computations
 - Precise computations are technically challenging
Summary

• Simple variations to GD/AGD ensure efficient escape from saddle points

• Fine understanding of geometric structure around saddle points

• Novel techniques of independent interest

• Some extensions to stochastic setting
Open questions

➢ Is NCE really necessary?

➢ Lower bounds – recent work by Carmon et al. 2017, but gaps between upper and lower bounds

➢ Extensions to stochastic setting

➢ Nonconvex optimization for faster algorithms
Thank you!

Questions?