Photo-catalytic Conversion of CO₂ to Hydrocarbons: Introduction, Challenges and Possible Approaches

Xiangchao Meng and Zisheng Zhang*
Department of Chemical and Biological Engineering, University of Ottawa, Canada
*Corresponding author : Zisheng Zhang, Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, K1N6N5, Canada, Email: zhang@uottawa.ca
Submission: April 19, 2018; Published: May 08, 2018

Abstract
Photo-catalytic reduction of CO₂ to produce valuable hydrocarbons is a promising process to not only alleviate the issue of massive CO₂ emissions, but also provide a strategy to convert solar energy to chemical energy. It has been extensively studied in last 10 years. In this brief review, the basic concepts as well as an introduction of this advanced process are included. Meanwhile, challenges and possible approaches are also pointed out. Future works were also suggested at last.

Keywords: Photocatalysis; CO₂; CO₂ reduction; Solar energy

Introduction of Photo-catalysis and its mechanism in CO₂ reduction
Photo-catalysis has extensively studied since the first report in 1972 [1]. This technique theoretically aims to convert light energy into chemical energy. As for the mechanism, it can be interpreted as electrons on the conduction band (CB) of a semiconductor may be activated and jumped to its valence band (VB) with positive holes left behind. The separated charge carriers (electrons and holes) may be recombined, or transfer to the bulk surface to react with adsorbed water/oxygen to produce oxidative free radicals (such as •OH, •O₂⁻ etc.), or other adsorbed species (such as organics, CO₂, NO, bacteria, etc.) [2-8].

From the aspect of types of reactions, the applications of photo-catalysis can be simply divided into two categories, namely, advanced oxidation processes (AOPs) and photo-reduction processes. As for the AOPs, the effective species are photo-generated holes and generated oxidative free radicals, these processes are widely applied in decomposition of pollutants in waste water and polluted air, and bacteria inactivation or disinfection. And for the reduction processes, it mainly includes water splitting to evolve H₂, heavy metal ions recovery, CO₂ reduction and N₂ fixation. As a promising approach to convert CO₂ to valuable hydrocarbons, photo-catalytic reduction of CO₂ has been immensely studied in last 10 years. As shown in Figure 1, it summarized the number of documents about photo-catalytic reduction/ conversion of CO₂ by year, the number of related documents in the year of 2017 is about 7 times higher than that in the year of 2010. It suggests this research area is a promising and rapidly being developed topic in recent years and will possibly last long.

Figure 1: Documents by year with search the keywords ’CO₂ reduction photocatalysis’ or ’CO₂ conversion photocatalysis’ on April 18, 2017 using Scopus

In Inoue et al. [9] for the first time, reported on photo-catalytic reduction of CO₂ to produce hydrocarbons. The photo-catalytic reactions occurred in CO₂ reduction can be considered to the
follow schemes. The separated electrons and holes (reaction 1) can separately react with dissolved CO₂ and adsorbed water (reaction 2). It is more complicated for the reductions, formic acid, formaldehyde and methyl alcohol may be produced (Reaction 3-6). The feasibility of CO₂ reduction for a semiconductor is significantly determined by the conduction band potential. As shown in Figure 2 [10], only electrons on the conduction band with higher reduction ability are capable of converting CO₂ to hydrocarbons. The formation of products is different, which depends on the number of electrons and protons taking part in the chemical reactions. For example, to form CH₄ from CO₂, eight electrons and eight protons are required (Reaction 3-6). The selectivity of products is a significant problem for photo-catalytic reduction of CO₂, which is affected by many factors, such as reaction conditions, red-ox potentials and the type of substrates. From the point of thermo dynamic, CO₂ is too stable to be reacted. The structure of CO₂ (O=C=O) consists of a linear connection between carbon and two oxygen atoms. The Gibbs free energy for the CH₄ and CH3OH is -51 and -166kJ/mol, which is higher than that for water splitting. This determines CO₂ reduction is an incredible endothermic process, and more complicated compared to the water splitting process [11,12].

\[\text{catalyst} + hν \rightarrow \text{catalyst} \left(e^- + h^+ \right) \] (1)

\[H_2O + h^+ \rightarrow \frac{1}{2}O_2 + 2H^+ \] (2)

\[CO_2(aq) + 2H^+ + 2e^- \rightarrow HCOOH \] (3)

\[HCOOH + 2H^+ + 2e^- \rightarrow HCHO + H_2O \] (4)

\[HCHO + 2H^+ + 2e^- \rightarrow CH_4OH \] (5)

\[CH_3OH + 2H^+ + 2e^- \rightarrow CH_4 + H_2O \] (6)

Challenges and Possible Approaches

Photocatalytic activity

One of the ideal energy sources for photo-catalysis is solar light. The solar-driven photo-catalytic reduction of CO₂ to hydrocarbons is also called artificial photosynthesis. One of the primary hindrances for this process is its low activity under visible light, as for TiO₂ is a typical and commercialized photo-catalyst, only responsive to ultraviolet (UV). Approaches to overcome this shortage were adopted, and can be divided into two categories, namely, modification of TiO₂ [13-15] and preparation of visible light-responsive photo-catalysts [16-19]. Since CO₂ is a stable molecule, the photo-catalytic activity of a bare semiconductor is poor, and various modifications are generally required to improve the photo-catalytic activity in the CO₂ reduction. As for the effective approaches, they are comprehensively reviewed in [20].

Selectivity

As electrons on the conduction band are capable of react with various adsorbed species and the various hydrocarbons may be formed. It is significant to improve the selectivity of specific products. Meanwhile, hydrogen may also be generated, which will decrease of selectivity of hydrocarbon products. Dong et al. [21] have reported on improve the selectivity of CH4 in photo-catalytic reduction of CO₂ via adjusting the size of platinum nanoparticles (Figure 3). Kumar et al. [22] have reported on photo-catalytic reduction of CO₂ to selectively produce methanol without addition of sacrificial agents on graphene oxide supported heteroleptic ruthenium complex.

Figure 2: Band structures of various semiconductors relative to the redox potentials at pH 7 of compounds involved in CO₂ reduction (Adapted from [10], © 2014 WILEY−VCH Verlag GmbH & Co. KGaA, Weinheim).

Figure 3: Correlations between the selectivity for CH₄ and surface site proportion as functions of the size of Pt NPs (Adapted from [21], Copyright © 2018, Springer Nature).
Experimental Conditions

Various experimental conditions influenced the photo-catalytic reduction of CO₂. For example, Mizuno et al. [23] reported on the influence of CO₂ pressure on the photo-catalytic reduction CO₂. They found that with increase the pressure of CO₂, it will accelerate the CO₂ reduction process. Another critical issue for photo-catalytic reduction is the carbon source, carbonaceous residues on the photo-catalysts surface which may be from the synthesis process and the laboratory atmosphere, significantly influence the CO₂ reduction and possibly contribute to the overall product yield.

Conclusion and Outlook

Photo-catalytic reduction of CO₂ to produce valuable hydrocarbons is a promising process. However, as for the low conversion efficiency, low selectivity of a specific product, and unsatisfactory light harvesting, more and more efforts should be done before it's widely applied in practice. Also, mechanisms for this complex processes should be clearly clarified in future works. The key to boost the feasibility of this process is to develop advanced materials with high visible light-responsive activity and high selectivity, such as recently developed plasmonic photo-catalyst. Try to combine with other advanced techniques such as electro catalysis would be another approach to enhance the development of this process. To use it in industrial scale, photo reactor design would be another issue to be conducted.

Acknowledgement

This work was financially supported by a Discovery grant from the Natural Sciences and Engineering Research Council of Canada. Xiangchao Meng was the recipient of a scholarship from the China Scholarship Council (CSC) for the duration of this work.

References

1. Fujishima A, Honda K (1972) Electro-chemical photolysis of water at a semiconductor electrode. Nature 238(5358): 37-38.
2. Meng X, Zhang Z, Li X (2015) Synergetic photoelectrocatalytic reactors for environmental remediation: A review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 24: 83-101.
3. Hu X, Meng X, Zhang Z (2016) Synthesis and characterization of graphene oxide-modified Bi₂WO₆ and its use as photocatalyst. International Journal of Photoenergy 2016:1-8.
4. Meng X, Zhang Z (2016) Bismuth-based photocatalytic semiconductors: introduction, challenges and possible approaches. Journal of Molecular Catalysis A: Chemical 423: 533-549.
5. Li Z, Meng X, Zhang Z (2017) Recent development on MoS₂-based photocatalysis: a review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 35: 39-55.
6. Meng X, Li Z, Zeng H, Chen J, Zhang Z (2017) MoS₂ quantum dots-interspersed Bi₂WO₆ hetero structures for visible light-induced detoxification and disinfection. Applied Catalysis B: Environmental 210: 160-172.
7. Li Z, Meng X, Zhang Z (2018) Few-layer MoS₂ nanosheets-deposited on Bi₂MoO₆ microsheets: A Z-scheme visible-light photocatalyst with enhanced activity. Catalysis Today.
8. Meng X, Zisheng Z (2018) Two dimensional graphitic materials for photoelectrocatalysis: a short review. Catalysis Today.
9. Inoue T, Fujishima A, Konishi S, Honda K (1979) Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277: 637-638.
10. Tu W, Zhou Y, Zou Z (2014) Photo-catalytic conversion of CO₂ into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects. Adv Mater 26(27): 4607-4626.
11. Nahar S, Zain M, Kadhum A, Hasan H, Hasan M (2017) Advances in photocatalytic CO₂ reduction with water: a review. Materials 10(6): 629.
12. Hasan M, Zain M, Hamid R, Nahar S, Kaish A (2004) Recent Advances in Photo-catalytic Materials for Artificial Photosynthesis.
13. Tseng IH, Wu JCS, Chou HY (2004) Effects of sol-gel procedures on the photocatalysis of Cu/TiO₂ in CO₂ photoreduction. Journal of Catalysis 221(2): 432-440.
14. Li X, Liu H, Luo D, Li J, Huang Y, et al. (2012) Adsorption of CO₂ on heterostructure Gd(Bi,La)₃/γ-TiO₂ nanotube photocatalysts and their photocatalytic activities in the reduction of CO₂ to methanol under visible light irradiation. Chemical Engineering Journal 180: 151-158.
15. Zhang Q, Li Y, Ackerman EA, Gaigalatzis K, Josifovska M, Li H (2011) Visible light responsive iodine-doped TiO₂ for photocatalytic reduction of CO₂ to fuels. Applied Catalysis A: General 400(1-2): 195-202.
16. Fu Y, Sun D, Chen Y, Huang R, Ding Z, et al. (2012) An amine-functionalized titanium metal organic framework photocatalyst with visible-light-induced activity for CO₂ reduction. Angew Chem Int Ed Engl 51(14): 3364-3367.
17. Sato S, Morikata T, Saeki S, Kajino T, Motobiro T (2010) Visible-light-induced selective CO₂ reduction utilizing a ruthenium complex photocatalyst linked to a p-type nitrogen-doped Ta₂O₅ semiconductor. Angew Chem Int Ed Engl 49(30): 5101-5105.
18. Sato S, Morikata T, Kajino T, Ishitani O (2013) A highly efficient mononuclear iridium complex photocatalyst for CO₂ reduction under visible light. Angew Chem Int Ed Engl 52(3): 988-992.
19. Wang S, Hou Y, Wang X (2015) Development of a Stable MnCo₂O₄ Cocatalyst for Photocatalytic CO₂ Reduction with Visible Light. ACS Appl Mater Interfaces 7(7): 4327-4335.
20. Li K, Peng B, Peng T (2016) Recent Advances in Heterogeneous Photocatalytic CO₂ Conversion to Solar Fuels. ACS Catalysis 6(11): 7485-7527.
21. Dong C, Lian C, Hu S, Deng Z, Gong J, et al. (2018) Size-dependent activity and selectivity of carbon dioxide photocatalytic reduction over platinum nanoparticles. Nature Communications 9(1): 1252.
22. Kumar P, Bansal O, Labhasetwar N, Jain SL (2015) Visible light assisted photocatalytic reduction of CO₂ using a graphene oxide supported heteroleptic ruthenium complex. Green Chemistry 17(3): 1605-1609.
23. Mizuno T, Adachi K, Ohata K, Saji A (1996) Effect of CO₂ pressure on photocatalytic reduction of CO₂ using TiO₂ in aqueous solutions. Journal of Photochemistry and Photobiology A: Chemistry 96(1-2): 87-90.
How to cite this article: Xiangchao M Zisheng Z. Photo-catalytic Conversion of CO$_2$ to Hydrocarbons: Introduction, Challenges and Possible Approaches. Progress Petrochem Sci 1(4). PPS.000520.2018. DOI: 10.31031/PPS.2018.01.000520