Effects of DPP-4 Inhibitors on the Heart in a Rat Model of Uremic Cardiomyopathy

Lyubov Chaykovska1,2, Karoline von Websky1,2, Jan Rahnenführer1,2, Markus Alter1,2,3, Susi Heiden1,2, Holger Fuchs4, Frank Runge4, Thomas Klein4, Berthold Hocher1,2*

1 Charité • Universitätsmedizin Berlin, Center for Cardiovascular Research, Institute for Pharmacology and Toxicology, Berlin, Germany, 2 Institute of Nutritional Science, University of Potsdam, Potsdam-Nuthetal, Germany, 3 Charité • Universitätsmedizin Berlin, Medizinische Klinik für Endokrinologie und Nephrologie, Berlin, Germany, 4 Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany

Abstract

Background: Uremic cardiomyopathy contributes substantially to mortality in chronic kidney disease (CKD) patients. Glucagon-like peptide-1 (GLP-1) may improve cardiac function, but is mainly degraded by dipeptidyl peptidase-4 (DPP-4).

Methodology/Principal Findings: In a rat model of chronic renal failure, 5/6-nephrectomized [5/6N] rats were treated orally with DPP-4 inhibitors (linagliptin, sitagliptin, alogliptin) or placebo once daily for 4 days from 8 weeks after surgery, to identify the most appropriate treatment for cardiac dysfunction associated with CKD. Linagliptin showed no significant change in blood level AUC(0-\(\infty\)) in 5/6N rats, but sitagliptin and alogliptin had significantly higher AUC(0-\(\infty\)) values; 41% and 28% (\(p=0.0001\) and \(p=0.0324\)), respectively. No correlation of markers of renal tubular and glomerular function with AUC was observed for linagliptin, which required no dose adjustment in uremic rats. Linagliptin 7 \(\mu\)mol/kg caused a 2-fold increase in GLP-1 (AUC 201.0 ng/l*h) in 5/6N rats compared with sham-treated rats (AUC 108.6 ng/l*h) (\(p=0.01\)). The mRNA levels of heart tissue fibrosis markers were all significantly increased in 5/6N vs control rats and reduced/normalized by linagliptin.

Conclusions/Significance: DPP-4 inhibition increases plasma GLP-1 levels, particularly in uremia, and reduces expression of cardiac mRNA levels of matrix proteins and B-type natriuretic peptides (BNP). Linagliptin may offer a unique approach for treating uremic cardiomyopathy in CKD patients, with no need for dose-adjustment.

Introduction

Chronic kidney disease (CKD) and moreover, end-stage renal disease (ESRD), have been shown to increase cardiovascular disease and risk of death [1,2]. This has been substantiated in a systematic review on mortality risk, which concluded that increased risk for all-cause mortality in CKD patients was largely driven by cardiovascular deaths (58% deaths from 13 studies reporting both cardiovascular and all-cause deaths) [3]. Glucagon-like peptide-1 (GLP-1) is an incretin hormone secreted by the small intestine in response to nutrient ingestion. Although the major physiological function of GLP-1 appears to relate to glycaemic control, evidence suggests that GLP-1 plays an important role in the cardiovascular system. GLP-1 receptors (GLP-1Rs) are expressed in the heart and vasculature of rodents as well as humans. Research has shown that GLP-1R agonists affect a wide range of cardiovascular parameters, including heart rate, blood pressure, vascular tone and myocardial contractility. Importantly, these agents may also have beneficial effects in the setting of cardiovascular disease (CVD). For example, GLP-1 has been found to exert cardioprotective actions in experimental models of dilated cardiomyopathy, hypertensive heart disease and myocardial infarction (MI). Preliminary clinical studies also suggest that GLP-1 infusion may improve cardiac contractile function in chronic heart failure patients with and without diabetes, and in MI patients after successful angioplasty [4,5,6]. However, the cardiovascular effects of a pharmacological increase in GLP-1 in patients with CKD have not been determined.

Dipeptidyl peptidase-4 (DPP-4) inhibitors are considered incretin enhancers, because they inhibit the enzymatic degradation of incretins, in particular, GLP-1 [7] and therefore are established therapies for type 2 diabetes. At the same time, DPP-4 inhibition does not cause hypoglycemia, as was previously shown by Bergman et al in a study in healthy male volunteers [8]. Because the action of GLP-1 on insulin secretion is strictly glucose dependent, the risk of hypoglycaemia associated with DPP-4

[Received June 28, 2011; Accepted October 26, 2011; Published November 18, 2011]

* E-mail: hocher@uni-potsdam.de

Citation: Chaykovska L, von Websky K, Rahnenführer J, Alter M, Heiden S, et al. (2011) Effects of DPP-4 Inhibitors on the Heart in a Rat Model of Uremic Cardiomyopathy. PLoS ONE 6(11): e27861. doi:10.1371/journal.pone.0027861

Copyright: © 2011 Chaykovska et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Editor: Antonio Abbate, Virginia Commonwealth University, United States of America

Funding: This study was supported by Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany, who played a role in study design, data collection and analysis, decision to publish and preparation of the manuscript.

Competing Interests: The authors have read the journal's policy and have the following conflicts: This study was supported by Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany, who played a role in study design, data collection and analysis, decision to publish and preparation of the manuscript. Boehringer Ingelheim Pharma GmbH financially supported the study. Holger Fuchs, Frank Runge, and Thomas Klein are research staff of Boehringer Ingelheim Pharma GmbH & Co. Boehringer Ingelheim Pharma GmbH holds the patent of linagliptin (patent number: WO 2004/018468) and developed this compound. This does not alter the authors’ adherence to all the PLoS ONE policies on sharing data and materials, as detailed in the guide for authors.
Results

This study showed that 5/6N caused a significant decrease in GFR as measured by creatinine clearance and increased plasma cystatin C levels. Tubular function was significantly impaired after 5/6N as evidenced by increased plasma β2-microglobulin, NGAL and osteopontin levels. There was no significant difference in DPP-4 activity in 5/6N rats compared with sham-operated rats before treatment (Table 1), but DPP-4 activity decreased significantly in all groups following drug administration with no significant differences between control or 5/6N groups. The strongest DPP-4 inhibition was achieved after administration of 7 μmol/kg linagliptin (Table 2), whereas the other groups were comparable. The GLP-1 receptor mRNA expression was reduced about 40% in uremic rats as compared to healthy control rats (table 1).

We tested plasma glucose concentrations on alternate days while the rats were being treated with DPP-4 inhibitors. There was no change in plasma glucose in rats treated with DPP-4 inhibitors compared with nontreated animals (data not shown).

Influence of DPP-4 inhibitor administration on pharmacokinetic parameters in sham-operated rats and 5/6N rats

There were no difference in the blood concentration of linagliptin 0.5 μmol/kg in 5/6N rats (AUC(0-166.6 nmol·h/l); p=0.0324), respectively: sitagliptin sham-operated rats, AUC(0-171.117.1 nmol·h/l); 5/6N rats, AUC(0-1666.6 nmol·h/l); 5/6N rats, AUC(0-17177.5±21.44 nmol·h/l; p=0.771) compared with sham-operated rats (AUC(0-1257.5±24.85 nmol·h/l). A similar effect was seen after administration of sitagliptin 7 μmol/kg in 5/6N rats (AUC(0-1252.8±732.8 nmol·h/l) compared with sham-operated rats (AUC(0-748±75.52 nmol·h/l), with a slight, but not significant (p=0.283), decrease in AUC levels observed for linagliptin. In contrast, both sitagliptin and alogliptin (7 μmol/kg) had a significantly higher AUC(0-166.6 nmol·h/l) in 5/6N rats compared with sham-operated rats: 41% and 28% (p=0.0001 and p=0.0324), respectively: sitagliptin sham-operated rats, AUC(0-13690±103 nmol·h/l); 5/6N rats, AUC(0-1666.6 nmol·h/l) and alogliptin sham-operated rats, AUC(0-1771±225.5 nmol·h/l); 5/6N rats, AUC(0-1666.6 nmol·h/l) (Table 3). No correlation of markers of renal tubular and glomerular function with AUC for linagliptin was observed. In contrast, sitagliptin AUC significantly correlated with GFR, cystatin C, β2-microglobulin and NGAL, but not with osteopontin. Alogliptin

Table 2. DPP-4 activity.

|                  | Control       | Linagliptin 0.5 μmol/kg | Linagliptin 7 μmol/kg | Sitagliptin 7 μmol/kg | Alogliptin 7 μmol/kg |
|------------------|---------------|-------------------------|-----------------------|----------------------|---------------------|
|                  | mean±SEM      | mean±SEM                | mean±SEM              | mean±SEM             | mean±SEM            |
| DPP-4 activity   | 82156±        | 45951±                  | 21019±                | 57219±               | 50874±              |
|                  | 20673         | 13622                   | 5152                  | 21531                | 8958                |

DPP-4 activity was measured 24 h after administration of the respective compounds (N=13–17 per DPP-4 inhibitor group, control N=57; no difference was made between sham-operated rats and 5/6N groups). All drugs showed a significant inhibition of DPP-4 activity (p<0.001) compared with control.

Values are given in mean±SEM; sham-operated rats group, 5/6N rats, two-tailed students t-test.
*p<0.05;
**p<0.01;
***p<0.001.
doi:10.1371/journal.pone.0027861.t002
expression of BNP, TGF-β1, TIMP-1, Col1α1 and Col3α1 in uremic rat heart compared with sham-operated rat heart (see Figures 1, 2). Moreover, treatment of the 5/6N rats for only 4 days with linagliptin (7 μmol/kg) significantly reduced gene expression of BNP and all investigated fibrosis markers (Figure 1; 5/6N linagliptin 7 μmol/kg almost to baseline levels of healthy control rats. Cmax values were significantly (p = 0.03) higher for 5/6N (6.4 ± 2.6 pg/ml) vs sham animals (3.9 ± 1.9 pg/ml). No significant changes in DPP-4 inhibition were detected between sham and 5/6N animals (data not shown).

### Discussion

The overall goal of the present study was to compare the pharmacokinetic properties of available DPP-4 inhibitors in a rat model of uremic heart disease and select the optimal compound based on these data for the first pharmacodynamics analyses of potential efficacy in this rat model.

We have shown that renal impairment does not affect the pharmacokinetics of linagliptin, whereas it increases the exposure of sitagliptin and alogliptin. In the present study, only linagliptin was found not to further aggravate pathological changes of glomerular and tubular markers in rats with CRF, suggesting that it is a safe approach to be used in patients with CRF. Consequently, linagliptin was also the compound of choice to investigate further effects on uremic cardiomyopathy. This is of potential clinical impact, since patients with advanced stages of renal impairment are characterized by a high overall cardiac morbidity and mortality.

Our study demonstrated for the first time that short-term treatment with all DPP-4 inhibitors (linagliptin, sitagliptin and

### Table 3. AUC of different DPP-4 inhibitors in sham-operated rats vs 5/6N rats.

| Treatment        | Sham-operated rats, (AUC(0–24h)) nmol-h/l mean±SEM | 5/6N rats (AUC(0–24h)) nmol-h/l mean±SEM |
|------------------|------------------------------------------------------|------------------------------------------|
| Alogliptin 7 μmol/kg | 1771 ± 225.5                                         | 2445 ± 166.6 *                             |
| Linagliptin 0.5 μmol/kg | 267.4 ± 28.85                                        | 257.5 ± 21.44                              |
| Linagliptin 7 μmol/kg | 1252 ± 378.8                                         | 748.2 ± 74.52                               |
| Sitagliptin 7 μmol/kg | 3690 ± 103                                          | 6238 ± 423 ***                             |

N = 5–6 sham-operated rats and 8–13 5/6N rats.
*p<0.05,
***p<0.001.

doi:10.1371/journal.pone.0027861.t003

### Table 4. Correlation between AUC of different DPP-4 inhibitors and kidney function parameters in 5/6N rats.

| Kidney function parameters | Alogliptin 7 μmol/kg, r² | Sitagliptin 7 μmol/kg, r² | Linagliptin 0.5 μmol/kg, r² | Linagliptin 7 μmol/kg, r² |
|----------------------------|---------------------------|---------------------------|-----------------------------|---------------------------|
| GFR                        | 0.211                     | 0.374 *                   | 0.098                       | 0.18                      |
| Cystatin C                 | 0.376 *                   | 0.499 **                  | 0.004                       | 0.189                     |
| β2-microglobulin           | 0.391 *                   | 0.543 **                  | 0.001                       | 0.092                     |
| NGAL                       | 0.295                     | 0.604 **                  | 0.091                       | 0.1                       |
| Osteopontin                | 0.406 *                   | 0.325                     | 0.005                       | 0.154                     |

Correlation analysis between DPP-4 inhibitors and kidney function parameters was performed using Spearman’s rank correlation test. N = 6–12 per group.
*p<0.05,
**p<0.01.
doi:10.1371/journal.pone.0027861.t004
DPP-4 inhibitors can decrease the plasma concentration of the vascular calcification marker, osteopontin (Table 5). This suggests a class effect also, because among all biomarkers investigated only osteopontin was consistently reduced by DPP-4 inhibitors. The effect did not reach significance in the higher dose of alogliptin, most likely due to the high variability of osteopontin data in this group, however, also those data point towards reduced osteopontin levels.

Osteopontin is known to be associated with vascular calcification and cardiovascular morbidity in humans [14]. It would be of major clinical interest to see whether the osteopontin lowering effect of DPP4 inhibitors can be seen likewise in the ongoing clinical trials using compounds of this new class.

In addition, linagliptin administration decreased cardiac mRNA levels of BNP—a marker of left ventricular dysfunction (Figure 1), and reduced cardiac mRNA expression of fibrosis markers, such as TGF-β1, TIMP-1, Col1α1 and Col3α1 in uremic rats (Figure 2) to baseline levels. The 5/6N rat model of CRF with elimination of two-thirds of the left kidney after previous right nephrectomy is a gold standard for the study of CKD. Its pathological characteristics resemble those of renal failure in humans [15] and are widely used for investigation of pharmacokinetics of different compounds in the setting of renal impairment [16,17]. We have shown a simultaneous increase in plasma concentrations of the fibrosis marker, osteopontin (Table 5), which has recently been called “the killer of patients with CKD” [29], due to its role in vascular calcification. A link between diabetes, DPP-4 inhibitors and osteopontin was described by Senkel et al. in their study on hepatocyte nuclear factor 1β (HNF1β) [30]; the HNF1β promoted gene expression of both targets DPP-4 and osteopontin. In light of these data, it is of interest that short-term treatment of uremic rats with the DPP-4 inhibitor, linagliptin, normalizes the mRNA expression of all the key factors of uremic cardiomyopathy (transforming growth factor β (TGF-β), tissue inhibitor of matrix metalloproteinases (TIMP-1) and collagen (Col3α1) to baseline level (Figure 2). Previous studies have already reported a link between DPP-4 inhibition and improvement in cardiac function. DPP-4-deficient rats had a better preservation of cardiovascular function than wild-type rats during endotoxemia, which correlated with a more prominent elevation of GLP-1 signaling. These findings coincided with the pretreatment of the GLP-1 analogue, exendin-4, where the deterioration of cardiovascular function during endotoxemia was significantly reversed in wild-type rats [31]. Elevation of GLP-1 by DPP-4 inhibitors may have emerging cardiovascular effects in uremic heart disease.

Baseline GLP-1 concentrations in non-fasted rats with and without renal failure are low and almost similar (Figure 3).
However, treatment with linagliptin 7 μmol/kg caused a 2-fold increase in GLP-1 (AUC 201.0 ng/l*h) in 5/6N rats compared with sham-treated rats (AUC 108.6 ng/l*h) (p=0.01). These findings are in line with a recent clinical study [32]. The better efficacy of the DPP-4 inhibitor, linagliptin, in uremic rats with respect to plasma GLP-1 concentrations has two implications:

a) DPP-4 inhibition as novel treatment of T2D in patients with impaired renal function might be particularly effective. In patients with normal kidney function, treatment with DPP-4 inhibitors usually results in somewhat less pronounced elevation of GLP-1 as compared with the direct administration of synthetic GLP-1 [33]; however, this hypothesis needs to be tested in further clinical trials.

b) The pronounced elevation of GLP-1 after treatment with linagliptin in uremic rats might contribute to the remarkable effects of linagliptin on cardiac matrix synthesis via direct cardiac GLP-1 receptor mediated effects. However, it needs to be considered that cardiac GLP-1 receptor mRNA expression was lower in uremic rats (table 1) as compared to wild type rats. Our data with respect to the plasma biomarker osteopontin (table 5) as well as the cardiac mRNA expression of BNP and fibrosis biomarkers (figures 1 and 2) seem to indicate that the net effect of GLP-1 elevation after DPP-4 inhibition with Linagliptin results in cardio-protection. However, this needs to be proven in long-term studies (see also study limitation section below).

Figure 1. Experimental design.
doi:10.1371/journal.pone.0027861.g001

Figure 2. mRNA expression of BNP in uremic rat heart. Gene expression of the marker of left ventricular dysfunction BNP was significantly increased in rats after initiation of uremia. Treatment with linagliptin at a dose of 7 μmol/kg significantly reduced mRNA expression of BNP in uremic rat heart. Values are given in mean ± SEM. N = 7 sham-operated rats, 5 5/6N rats and 12 5/6N linagliptin-treated rats. *p<0.05; ***p<0.001.
doi:10.1371/journal.pone.0027861.g002
The underlying mechanism for this pronounced effect of DPP-4 inhibition on blood GLP-1 concentrations under the condition of impaired kidney function is most likely related to the renal clearance of GLP-1, which is impaired in renal failure, and the concomitant inhibition of its degradation by DPP-4. This hypothesis needs to be confirmed by controlled studies that would investigate the influence of active and total GLP-1 in healthy and renal-insufficient animals treated with DPP-4 inhibitors.

Although the major physiological function of GLP-1 appears to be in relation to glycemic control, there is growing evidence to suggest that it plays an important role in the cardiovascular system [6]. GLP-1 receptors (GLP-1Rs) are expressed in the heart and vasculature, and recent studies have shown that GLP-1 receptor agonists have cardiovascular actions, independent of improving glucose homeostasis, such as modulation of heart rate, blood pressure, vascular tone and myocardial contractility. Importantly, it appears that these agents may also have beneficial effects in the setting of cardiovascular disease, e.g., GLP-1 has been found to exert cardioprotective effects in experimental models of dilated cardiomyopathy, hypertensive heart failure and myocardial infarction (MI). Preliminary data of clinical studies also indicated that GLP-1 infusion may improve cardiac contractile function in chronic heart failure (CHF) patients with and without diabetes, and in MI patients after successful angioplasty [6].

It is of particular note that the transcription levels of BNP decreased to baseline levels after treatment with the DPP-4 inhibitor, linagliptin (Figure 1). BNP is a biomarker of acute and CHF also in renally compromised patients. Its levels are elevated in patients with left ventricular dysfunction. Rapid changes in BNP levels (up to 30% during the first 24 hours of treatment) reflect an adequate response to CHF therapy [34].

In our study, brain-derived natriuretic peptide mRNA was detected and was increased in the cardiac tissue of 5/6N rats and decreased after short-term treatment of uremic rats with linagliptin, suggesting an immediate improvement in cardiac function after DPP-4 inhibition (Figure 1, Figure 4). In addition, we have shown an inhibition of gene expression of profibrotic factors TGF-β1, TIMP-1, Col1α1 and Col3α1 in the uremic rat heart after DPP-4 inhibitor treatment. This study was carried out in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was approved by the Committee on the Ethics of Animal
Experiments of the city of Berlin, Germany (Landesamt für Gesundheit und Soziales [LAGeSo], Turnstr. 21, D-10559 Berlin, Germany), permit number: G0366/08. All surgery was performed under inhalation anesthesia with isoflurane, and all efforts were made to minimize suffering.

Experimental design

Rats in which two-thirds of the left kidney were surgically eliminated after previous right nephrectomy [5/6-nephrectomized [5/6N] rats) were randomly allocated into four groups (N = 8–13 rats per group) according to the following oral pretreatment: linagliptin 0.5 μmol/kg/day corresponding to 0.24 mg/kg/day, linagliptin 7 μmol/kg/day (3.3 mg/kg/day), sitagliptin 7 μmol/kg/day (2.34 mg/kg/day), alogliptin 7 μmol/kg/day (2.85 mg/kg/day), alogliptin 0.5 μmol/kg/day (3.3 mg/kg/day), sitagliptin 0.5 μmol/kg/day (3.3 mg/kg/day corresponding to 0.24 mg/kg/day, and vehicle control (0.5% Solu-Care and 0.2% Tween 80). The substances were administered once daily via oral gavage for 4 consecutive days. On the fourth day of treatment, blood samples were collected from the tail vein into ethylenediaminetetraacetic acid (EDTA)-coated vials at 0.5, 1, 2, 4, 6, 10, 24, 48 and 72 h after administration of the substance (Figure 5).

After centrifugation, plasma samples were stored at –20°C until bioanalytical measurement. After the last blood sampling, animals were sacrificed and kidneys were harvested and snap frozen in liquid nitrogen.

Studies of kidney function included measurements of serum and urine creatinine, glomerular filtration rate (GFR) and cystatin C at the same manner.

Commening at 8 weeks after surgery, substances were administered once daily via oral gavage for 4 consecutive days. On the fourth day of treatment, blood samples were collected from the tail vein into ethylenediaminetetraacetic acid (EDTA)-coated vials at 0.5, 1, 2, 4, 6, 10, 24, 48 and 72 h after administration of the substance (Figure 5).

After centrifugation, plasma samples were stored at –20°C until bioanalytical measurement. After the last blood sampling, animals were sacrificed and kidneys were harvested and snap frozen in liquid nitrogen.

Studies of kidney function included measurements of serum and urine creatinine, glomerular filtration rate (GFR) and cystatin C at 8 weeks after surgery.

Animal surgery

Animal procedures were approved by the local authorities and complied with the German Animal Protection Act. Male Wistar rats (250–290 g; Charles River Laboratories, Sulzfeld, Germany) were housed under standardized conditions with water and food ad libitum. All procedures were performed under inhalation anesthesia with isoflurane.

Chronic renal failure was initiated by a two-step 5/6 nephrectomy as previously described [36,37]. Briefly, a right kidney was exposed via laparotomy and removed after ligation of the renal pedicle. After a 2-week recovery period, the left kidney was exposed via laparotomy and removed after ligation of the renal pedicle. After a 2-week recovery period, the left kidney was procured and lower and upper poles were surgically removed in such a way that one-third of the left kidney mass remained. Sham-operated rats underwent the same operations, but kidneys were only mobilized instead of being removed. After recovery from anesthesia, animals were transferred to the housing facility and monitored until sacrifice. Body weight and urine output were measured together with blood sampling at Week 8 after surgery. This study was carried out in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was approved by the Committee on the Ethics of Animal Experiments of the city of Berlin, Germany (Landesamt für Gesundheit und Soziales [LAGeSo], Turnstr. 21, D-10559 Berlin, Germany), permit number: G0366/08. All surgery was performed under inhalation anesthesia with isoflurane, and all efforts were made to minimize suffering.

Renal function tests

Induction of CRF by 5/6 nephrectomy was confirmed by measuring creatinine clearance and plasma cystatin C as markers of glomerular filtration. Creatinine concentration was measured by the Jaffe colorimetric method. Creatinine clearance was estimated as described previously [36]. Plasma concentrations of β2-microglobulin, neutrophil gelatinase-associated lipocalin (NGAL) and osteopontin were measured by automated immunoassays (Rules-Based Medicine, Inc., Austin, Texas) for the assessment of tubular function.

Cardiac histology. Tissue samples were all embedded in paraffin, cut into 3 μm and 1 μm sections and subjected to Sirius Red, HE and Elastica-van Gieson staining. Cardiac morphology (interstitial fibrosis, myocyte diameter) was analyzed using a computer-aided image analysis system (for details see: 26, 27, 28). Briefly, interstitial fibrosis was evaluated by estimating the relationship of the total section area to fibrotic section area. We analyzed 25 sections per animal. The myocyte diameter was investigated in 1 μm sections after HE staining exactly as described previously (26,27,28). We analyzed at least 100 myocytes per animal.

Quantitative real-time PCR

Total RNA was extracted from 50 mg snap-frozen tissue by homogenization in peqGold Trifast reagent (Peqlab). Residual genomic DNA was removed with Turbo DNase (Applied Biosystems). The RNA concentration and purity were assayed by spectrophotometry. First-strand cDNA synthesis was performed with random hexamer primer and 1 μg RNA using High Capacity cDNA Reverse Transcription Kit (Applied Biosystems) according to the manufacturer’s instruction. (For further detail see Vinon-Zelweger et al [38]).

Sequences from the Ensemble database and the online available Primer3 software [39] were used to create specific, intron-spanning primers for the target genes. Primer pairs were proved for gene-specific amplification and the absence of single nucleotide

Figure 5. Active GLP-1 levels in uremic vs sham animals. The uremic situation resulted in a significant increase of GLP-1 AUC in 5/6N rats compared with controls. Linagliptin (7 μmol/kg) was administered daily for 4 days. Following the last dose, plasma was taken after the time points indicated and active GLP-1 was detected. Values are given as mean ± SEM. N = 5 sham-operated, and 8-12 rats for 5/6N.

doi:10.1371/journal.pone.0027861.g005
polymorphisms within binding sites by use of NCBI BLAST tools. Synthesized primers were obtained from Sigma-Aldrich®. A total of 10 ng cDNA in 5 μl was normally used as template for amplification. An additional 0.5 μl of each primer (5 pmol) and 12.5 μl of Power SYBR Green PCR Master Mix (Applied Biosystems) were added and diluted with water to a volume of 25 μl. The PCR was performed on an Mx3000P thermal cycler (Stratagene). Reaction conditions were 95°C for 10 min, 40 cycles at 95°C for 15 sec, and 60°C for 60 sec, followed by an examination of the melting curve. All samples were analyzed in triplicate. The amplification efficiency of every reaction was checked with the linear regression method [26]. Expression of the gene of interest was divided by the housekeeping gene, glyceraldehyde-3-phosphate dehydrogenase, and expressed as fold-change compared with the corresponding sham-operated rats group.

Plasma DPP-4 activity and GLP-1 measurements

Blood samples were drawn from the rat retrolubral venous plexus under isoflurane anesthesia at serial time points immediately before pretreatment and at various time points after the treatment (as described above) up to 72 h postdose. EDTA plasma was frozen for ex vivo measurement of DPP-4 activity. A 20 μl volume of EDTA plasma was diluted with 30 μl of DPP-4 assay buffer (100 mM Tris, 100 mM NaCl, adjusted to pH 7.8 with HCl) and mixed with 50 μl substrate (final concentration 100 μM H-Ala-Pro-7-amido-4-trifluoromethylcoumarin (AlaPro-AFC) was from Bachem) [200 mM stock solution in DMF, diluted 1:1000 with water]. The plate was then incubated at room temperature for 10 min and fluorescence of the wells was determined using a Wallac Victor™ 1420 Multilabel Counter, at an excitation wavelength of 405 nm and an emission wavelength of 535 nm. Active ( uncleaved, 7–36 amide or 7–37) GLP-1 was detected using the commercially available Multi-Array Assay System (K150JWC) from Meso Scale Discovery following the instructions of the supplier. This antibody only detects active GLP-1 (7–36 amide or 9–37 GLP-1) but not cleaved and inactive GLP-1 (9–36 amide or 9–37 GLP-1).

Bioanalysis and pharmacokinetic evaluation

Plasma concentrations of linagliptin, sitagliptin and alogliptin were determined by high performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) using solid phase extraction for sample preparation with a lower limit of quantification of 0.100 nmol/l for linagliptin and 0.250 nmol/l for sitagliptin and alogliptin. Linagliptin, sitagliptin and alogliptin were analyzed by HPLC-MS/MS assays using [13C3] linagliptin, sitagliptin and alogliptin as internal standards for linagliptin, sitagliptin and alogliptin, respectively. The assays comprise sample clean-up by solid phase extraction (SPE) on SPEC MP3 96-well extraction plates for linagliptin and Focus 96-well extraction plates for sitagliptin and alogliptin. Chromatography for all assays was achieved on a Phenomenex Luna Phenyl-Hexyl 100A, 3 μm, 50×2 mm analytical HPLC column with gradient elution. The analytes were detected and quantified by HPLC-MS/MS using electrospray ionization in the positive ion mode.

Pharmacokinetic analysis was performed using non-compartmental methods with ToxKin V 3.5 (LogicaCMG ITS AG, Switzerland). The linear trapezoidal rule was used for AUC calculation. The terminal half-life (t(1/2)) was calculated as ln2/λ(z) with the terminal elimination rate constant λ(z) as slope of the logarithmic-linear regression line ln(C(t) = ln(C(0 h) – λ(z) t) x t) of two or three data points in the terminal phase. Extrapolated AUC(0→∞) was calculated according to Aronson et al [40], using the calculated concentration and time (t/z) of the last measurable data point.

Statistics

For PCR analysis, means ± SEM were compared using the two-tailed Student’s t-test for two groups and one-way analysis of variance with paired comparisons for more than two groups. Correlation analysis was performed using Spearman’s rank correlation test. P-values of less than 0.05 were considered significant. These statistical tests were performed using SPSS 10.0 for Windows (SPSS Inc., Chicago, IL, USA). For AUC determinations, statistical comparison between sham and 5/6 nephrectomy was done by a one-factorial analysis of variance (ANOVA) with heterogeneous variances. For kidney function analysis before and after drug administration for each parameter the values were analyzed separately using an analysis of variance for repeated measurements, with factors experimental group and time as fixed effects. The values belonging to the same animal are modeled as repeated measurements assuming an unstructured covariance matrix.

Analysis of kidney function parameters before and after compound administration

For each parameter, the log10-transformed values were analyzed separately using an ANOVA for repeated measurements with factors for experimental group and time as fixed effects. The log10-transformed values belonging to the same animal are modeled as repeated measurements assuming an unstructured covariance matrix. These statistical analyses were carried out with the software product SAS (SAS Institute, Cary, NC USA), version 9.2.

Acknowledgments

Editorial support was provided by Envision Ltd. We are grateful to Dr. C. Ittrich for performing statistical analysis of the data and to Katja Thode for technical assistance.

Author Contributions

Conceived and designed the experiments: TK BH. Performed the experiments: LC KVW JR MA SH HF FR. Analyzed the data: LC TK BH. Contributed reagents/materials/analysis tools: LC KVW JR MA SH HF FR. Wrote the paper: LC TK BH.

References

1. Foley RN, Murray AM, Li S, Herzog CA, McBean AM, et al. (2005) Chronic kidney disease and the risk for cardiovascular disease, renal replacement, and death in the United States Medicare population, 1988 to 1999. J Am Soc Nephrol 16: 409–495.
2. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY (2004) Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 351: 1296–1305.
3. Tonelli M, Wiebe N, Culleton B, House A, Rabbat C, et al. (2006) Chronic kidney disease and mortality risk: a systematic review. J Am Soc Nephrol 17: 2034–2047.
4. Ossum A, van Deurs U, Engstrom T, Jensen JS, Treiman M (2009) The cardioprotective and inotropic components of the postconditioning effects of GLP-1 and GLP-1/9-36α in an isolated rat heart. Pharmacol Res 60: 411–417.
5. Benz JH, Hoogwerf BJ, Herrman WH, Pelletier EM, Smith DB, et al. (2011) Risk of cardiovascular disease events in patients with type 2 diabetes prescribed the glucagon-like peptide 1 (GLP-1) receptor agonist exenatide twice daily or other glucose-lowering therapies: a retrospective analysis of the LifeLink database. Diabetes Care 34: 90–95.
6. Griev D, Cassidy RS, Green BD (2009) Emerging cardiovascular actions of the incretin hormone glucagon-like peptide-1: potential therapeutic benefits beyond glycemic control. Br J Pharmacol 157: 1340–1351.

7. Herman GA, Stevens C, Van Dyk K, Bergman A, Yi B, et al. (2005) Pharmacokinetics and pharmacodynamics of sitagliptin, an inhibitor of dipeptidyl peptidase IV, in healthy subjects: results from two randomized, double-blind, placebo-controlled studies with single oral doses. Clin Pharmacol Ther 78: 675–680.

8. Bergman AJ, Stevens C, Zhou Y, Yi B, Laechem M, et al. (2006) Pharmacokinetic and pharmacodynamic properties of multiple oral doses of sitagliptin, a dipeptidyl peptidase-IV inhibitor: a double-blind, randomized, placebo-controlled study in healthy male volunteers. Clin Ther 28: 55–72.

9. Weir GC, Mojoo S, Hendrick GK, Habener JF (1989) Glucagon-like peptide I (7-37) actions on endocrine pancreas. Diabetes 38: 330–342.

10. Scheen AJ (2010) Pharmacokinetics of dipeptidylpeptidase-4 inhibitors. Diabetes Obes Metab 12: 648–653.

11. Shvarts V (2008) [New avenues for pharmacotherapy of type 2 diabetes mellitus]. Klin Med (Mosk) 86: 12–17.

12. Belch S, Ludwig-Schwellinger E, Graf-Mody EU, Winthrop B, Wadg K (2010) The metabolism and disposition of the oral dipeptidyl peptidase-4 inhibitor, linagliptin, in humans. Drug Metab Dispos 38: 667–670.

13. Heise T, Grafe-Mody EU, Huttner S, Ring A, Trounsmesasure D, et al. (2009) Pharmacokinetics, pharmacodynamics and tolerability of multiple oral doses of linagliptin, a dipeptidyl peptidase-4 inhibitor in male type 2 diabetes patients. Diabetes Obes Metab 11: 786–794.

14. Yan X, Sano M, Lu L, Wang W, Zhang Q, et al. (2010) Plasma concentrations and urinary excretion of anionic drugs. Drug Metab Pharmacokinet 18: 91–103.

15. Kujal P, Vernerova Z (2008) [5/6 nephrectomy as an experimental model of renal impairment in diabetes]. Clin Biochem 42: 108–110.

16. Herman GA, Stevens C, Van Dyck K, Bergman A, Yi B, et al. (2005) Plasma concentrations and the estimation of glomerular filtration rate in diabetes. Diabetes Metab 34: 575–585.

17. Masuda S (2003) Functional characteristics and pharmacokinetic significance of osteopontin, but not thrombin-cleaved osteopontin, are associated with the presence and severity of nephropathy and coronary artery disease in patients with type 2 diabetes mellitus. Cardiavas Diabetol 9: 70.

18. Kojal P, Vermetova Z (2008) [5/6 nephrectomy as an experimental model of chronic renal failure and adaptation to reduced nephron number]. Cesk Fysiol 57: 104–109.

19. Horiha N, Masuda S, Takeuchi A, Saito H, Okada M, et al. (2004) Gene expression variance based on random sequencing in rat remnant kidney. Int J Nephrol 66: 29–45.

20. Masuda S (2003) Functional characteristics and pharmacokinetic significance of kidney-specific organic anion transporters, OCTK1 and OCTK2, in the urinary excretion of anionic drugs. J Pharmacokinet Pharmacocinet 30: 89–103.

21. Pucci L, Triscornia S, Lucchetti D, Forino C, Pellegri G, et al. (2007) Cystatin C and estimates of renal function: searching for a better measure of kidney function in diabetic patients. Clin Chem 53: 480–488.

22. Rigaldeau V, Beauviroux MC, Le Moigne F, Lasseur C, Chauveau P, et al. (2008) Cystatin C improves the diagnosis and stratification of chronic kidney disease, and the estimation of glomerular filtration rate in diabetes. Diabetes Metab 34: 482–489.

23. Willems D, Wolf TF, Melkhi F, Gillet C (2009) Cystatin C for early detection of renal impairment in diabetes. Clin Biochem 42: 108–110.

24. Anman K, Breibach M, Ritz E, Mall G (1998) Myocyte/capillary mismatch in the heart of uremic patients. J Am Soc Nephrol 9: 1018–1022.

25. Mall G, Huthler W, Schneider J, Landin P, Ritz E (1990) Diffuse intermyocardiocytic fibrosis in uremic patients. Nephrol Dial Transplant 5: 39–44.

26. Tyrala K, Amann K (2003) Morphology of the heart and arteries in renal failure. Kidney Int Suppl. pp 880–83.

27. Lindham MM, Maxwell P, Dunn FG (2002) TIMP-1: a marker of left ventricular diastolic dysfunction and fibrosis in hypertension. Hyperension 40: 136–141.

28. Rabkin R, Awad I, Chen Y, Ashley EA, Sun D, et al. (2008) Low-dose growth hormone is cardioprotective in uremia. J Am Soc Nephrol 19: 174–1783.

29. Tian J, Shidyak A, Periyasamy SM, Haller S, Taleb M, et al. (2009) Spironolactone attenuates experimental uremic cardiomyopathy by antagonizing marimubafagenin. Hypertension 54: 1313–1320.

30. Boertriger G, Costello-Boerrigter LC, Harty GJ, Lapp H, Burnett JC, Jr. (2007) Des-arg-vasopressin brain natriuretic peptide 3-32 in cardiovascular regulation. Am J Physiol Regul Integr Comp Physiol 292: R97–R101.

31. Mizobuchi M, Towder D, Slatopolsky E (2009) Vascular calcification: the killer of patients with chronic kidney disease. J Am Soc Nephrol 20: 1435–1464.

32. Senkel S, Lucas B, Klein-Hirpaas L, Ruffel GU (2005) Identification of target genes of the transcription factor HNF1beta and HNF1alpha in a human embryonic kidney cell line. Biochim Biophys Acta 1731: 179–190.

33. Ku HC, Chen WP, Su MJ (2010) GLP-1 signaling preserves cardiac function in endotoxemic Fischer 344 and DPP4-deficient rats. Nanyn Schmiedebergs Arch Pharmacol 382: 463–474.

34. Meter JJ, Nauck MA, Kranz D, Hohl JJ, Deacon GF, et al. (2004) Secretion, degradation, and elimination of glucagon-like peptide 1 and gastric inhibitory polypeptide in patients with chronic renal insufficiency and healthy control subjects. Diabetes 53: 654–662.

35. Amori RE, Lai J, Pittas AG (2007) Efficacy and safety of incretin therapy in type 2 diabetes: systematic review and meta-analysis. Jama 298: 194–206.

36. Pfisterer M, Buser P, Rickli H, Gutmann M, Erne P, et al. (2009) BNP-guided vs symptom-guided heart failure therapy: the Trial of Intensified vs Standard Medical Therapy in Elderly Patients With Congestive Heart Failure (TIME-CHF) randomized trial. Jama 301: 385–392.

37. Lindsay MM, Maxwell P, Dunn FG (2002) TIMP-1: a marker of left ventricular diastolic dysfunction and fibrosis in hypertension. Hypertension 40: 136–141.

38. Vignon-Zellweger N, Relle K, Kienlen E, Alter M, Seider P, et al. (2011) NO–endothelin-1 overexpression restores diastolic function in eNOS knockout mice. Hypertension 57: 104–109.

39. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132: 365–386.

40. Aronson JK, Dengler HJ, Dettli L, Follath F (1980) Standardization of symbols in clinical pharmacology. Eur J Clin Pharmacol 5: 1–7.