Vegetative propagation and ex-situ conservation of \textit{Acantholimon androsaceum} and \textit{Limonium chersonesum}, two promising local endemics of Crete (Greece) available for floricultural and pharmaceutical sustainable exploitation

Katerina GRIGORIADOU, Nikos KRIGAS, Virginia SARROPOULOU, Eleni MALOUPA, Georgios TSOKTOURIDIS*

Hellenic Agricultural Organization (HAO)-DEMETER, Institute of Plant Breeding and Genetic Resources, Balkan Botanic Garden of Krousia, Laboratory of Protection and Evaluation of Native and Floriculture Species, GR-570 01 Thermi, Thessaloniki, P.O. Box 60458, Greece; kgrigoriadou@ipgrb.gr; nikoskrigas@gmail.com; vsarrop@gmail.com; maloupa@bbgk.gr; gtsok1@yahoo.co.uk (*corresponding author)

Abstract

The continual search for new attractive ornamentals and innovative natural medicinal products is the main focus of floricultural and pharmaceutical industries worldwide. Aiming to introduce two new Cretan endemic species in the commercial trade, \textit{Acantholimon androsaceum} (Jaub. & Spach) Boiss. and \textit{Limonium chersonesum} Erben & Brullo (Plumbaginaceae) have been selected in the current study. These were derived from a total of 223 local endemic species and subspecies of Crete, which constitute an exceptional wild treasure of the Mediterranean flora. Prior to any commercialization, efficient massive propagation protocols are required. Although sexual propagation using seeds collected from the wild was unsuccessful for these two taxa, the results of vegetative propagation experiments were satisfactory. Wild plant material was used for cuttings in order to develop a reasonable and homogenous number of stock mother plants for propagation trials. As a result of experiments conducted in the current research, two vegetative propagation protocols were developed, which could be used commercially for the massive production of elite clonal plants of \textit{A. androsaceum} and \textit{L. chersonesum}. These protocols provide 71.43\% successful rooting for \textit{A. androsaceum} within 40 days, using 2000 ppm IBA, and 80.95\% rooting for \textit{L. chersonesum} within 30 days, using 1000 ppm IBA. This study is part of a strategy and research methodology aiming at the selection of new, rare and endemic native industrial crops for the ornamental and pharmaceutical sector, exploiting sustainably the rich phytogenetic resources of Crete.

Keywords: cuttings; horticulture; phytogenetic resources; seed germination; sustainability

Introduction

Over the last two decades, medicinal and horticultural trade has been on the rise, driven by the growing interest of society for new innovative products. Consequently, there is enhanced attention to extant...
opportunities derived from new native plant species with an essential role as potential new innovative medicinal and/or new ornamental crops. These unexplored native phylogenetic resources grow in self-maintaining natural populations in wild habitats (Pascale and Romano, 2019). Although these resources are often neglected and underused, they play an important role in generating new medicinal products and are successfully used in floriculture as cut flowers or potted-plants, in sustainable landscaping with native plants (Antrop, 2006; Ahern, 2013) and in xeriscaping (Sari and Karaşah, 2015); such applications provide substantial advantages over other commercially available crops, such as lower water consumption, reduced demand for pesticides, lower need for fertilizers, reduced maintenance and labor costs (Helfand et al., 2006).

In this framework, the thorny cushion-like *Acantholimon* spp. of Plumbaginaceae family are used in landscaping of mountain area (Vainoriene, 2010; Kazemi and Abbasi, 2018), in restoration of steppe ecosystems (Dilaver, 2013) and in semi-arid or sub-humid regions (Jankju and Noedoost, 2014), while *A. acerosum* (Willd.) Boiss., *A. armenum* Boiss. & A. Huet and *A. litvinovii* Lincz. have been planted and adapted well on green roofs in a semi-arid climate (Schneider et al., 2014). Many *Acantholimon* spp. (ca. 200 species in the genus, see Kubitzki, 1993) are of high economic importance, primarily in floriculture because of the coloured flowers, long period of flowering and concomitant fruiting of similar appearance (Muvaffak et al., 2001).

Limonium spp. (Plumbaginaceae) are wild-growing halophytes or rock-dwellers in nutrient-poor, rocky, sandy or dry soils (Ančev, 1982). These plants are quite popular in the global ornamental industry, mainly as cut-flowers (among the top-20 worldwide) (Mebakerlin and Chakravorty, 2015) but also as potted plants (Mercuri et al., 2001), and represent suitable and reliable choices for sustainable landscaping in arid areas suffering from increased salinity and/or limited water availability (Pascale and Romano, 2019). *Limonium* spp. are popular for their distinct ornamental characteristics, such as the attractive flower colour, the branched inflorescences (many different types) and attractive post-harvest appearance, thus making them as valuable genetic resources for breeding and suitable ground cover plants in urban landscaping (Burchi et al., 2006). Among *Limonium* spp., several new flower species have been successfully introduced to the horticultural cut-flower market. These species or hybrids are grown for their flowers, the attractive calyx which remains open and coloured on the plant long after the true flowers have senesced, thus offering the potential to be also used as dried flowers. *Limonium* spp. are also used as a cheap ‘filler’ or ornament in modern bouquets, competing with other famous crops such as *Gypsophila* spp. It is estimated that the total value and turnover around them are constantly increasing in the Dutch flower market during the last decade, reaching 15 million euro in 2014 (Hanks, 2015; Morgan and Funnell, 2018).

With regards to medicinal interest, several members of the Plumbaginaceae family contain anthocyanins, flavonoids, tannins and quinines (Trabelsi et al., 2014) and have been used as effective natural remedies in Chinese, Mediterranean and Iranian folk medicine (Dhale and Markandeya, 2011) due to anti-plasmodial and insecticidal properties (Sunil et al., 2012), while *A. lycopodioides* (Girard) Boiss. has been used in the trans-Himalaya region as a medicinal plant for cardiac disorders (Bhadrecha et al., 2017).

Reproduction-wise, vegetative propagation is a common and relatively inexpensive method used for many medicinal or ornamental plants as it overcomes the difficulties of seed propagation (Elhaak et al., 2015). Initially, unsuccessful propagation by cuttings has been reported for *A. glumaceum* (Jaub. & Spach.) Boiss. using the auxins IBA and NAA (Metcalfe and Templeman, 1939), thus discouraging further research in this direction. Propagation of different *Acantholimon* spp. has been mainly achieved to date via seeds, germination varying depending on the species studied, seed age and quality or storage conditions. Usually, their seed germination is achieved at 20 °C within three months (or after storage at -4 °C to 4 °C for 2-4 weeks and repeated sowing at 20 °C) as reported in *A. acerosum*, *A. albanicum* O. Schwarz & F. Mey., *A. armenum*, *A. bracteatum* (Girard) Boiss., *A. dianthifolium* Bokhari, *A. glumaceum*, *A. kotschyi* (Jaub. & Spach) Boiss., *A. ulicinum* (Willd. ex Schult.) Boiss. (Clothier, 2003) or *A. raddeanum* Czerniak. (Jankju and Noedoost, 2014), while germination problems have been reported for several *Acantholimon* spp. (Deno, 1993). Vegetative propagation of *Limonium* spp. through shoot and root cuttings usually requires long periods and ensures
limited success, i.e. 20-30% (Anandamoy et al., 2012). A wide range of in vitro techniques have been also developed for their asexual massive propagation (Hosni et al., 2000), serving primarily conservation purposes (Casazza et al., 2002) or breeding needs through embryo culture, chromosome duplication, mutagenesis and transformation (Morgan and Funnell, 2018). Seed germination of L. meyeri (Boiss.) Kuntze, L. bulgaricum (Cav.) Kuntze, L. vulgare Mill., L. asterotrichum (C. E. Salmon) C. E. Salmon and L. gmelini (Willd.) Kuntze harvested from ex-situ grown plants and from in-situ wild-growing plants seems to be compromised (in laboratory conditions, in vivo and in vitro), with germination ability reported as species-specific (Kaninski et al., 2012). Other studies report high but time-varying and species-depended germination, i.e. either timely 100% germination in 3-7 days for L. californicum (Boiss.) A. Heller (Woodell and Mooney, 1970; SID-Kew) and L. cornarianum Kypr. & R. Artelari (Markaki, 2006), or slow (in 33 days) germination (100%) for L. dichroanthum (Rupr.) Ikonn. -Gal. (SID-Kew) and very slow (in 151 days) for 86% germination in L. popovii Kubansk. (SID-Kew).

In this study we focused on two native Cretan, local (single-island) endemic, rock-dwelling species with potentially valuable medicinal properties, which are universally rare. Additionally, these species have interesting features and natural adaptations that could be exploited in the horticultural field. These native local endemic plants provide exclusive characteristics, i.e. combination of uniqueness, impressive plant features, rarity, adaptability and utility, which are well appreciated by the global online floricultural-ornamental market (Dee et al., 2019). Moreover, such plants are already associated with high prices in the electronic ornamental trade of rare, threatened and unusual plants with conservation implications (Krigas et al., 2014; Menteli et al., 2019).

Hence, the development of propagation protocols (asexual and vegetative) of A. androsaceum (Jaub. & Spach.) Boiss. and L. chersonesum Erben & Brullo, species studied herein for the first time, aims to facilitate their ex situ conservation and pave the way for their sustainable exploitation as valuable and exceptional phytogenetic resources.

Materials and Methods

Plant material

Two botanical collections were organized on the island of Crete (Greece) during the end of August and mid-October of 2018. The collections were made using a special permission for the Balkan Botanic Garden of Kroussia (BBGK) which is issued and renewed every year by the Greek Ministry of Environment and Energy endorsing the provisions of the Convention of Biological Diversity, Nagoya Protocol and EU Directive 511/2014. Plant material composed of young individuals, seeds and annual stems was collected carefully from wild-growing populations of A. androsaceum and L. chersonesum (Figure 1), avoiding damages for the wild plants and was then transferred to the facilities of BBGK in Thermi, Thessaloniki. This wild plant material was taxonomically identified and finally obtained an IPEN (International Plant Exchange Network) accession number endorsing the provisions of the Convention of Biological Diversity, Nagoya Protocol and EU Directive 511/2014 (Table 1).

Table 1. A. androsaceum and L. chersonesum plant material (seeds, cuttings, living individuals) collected from wild habitats on the island of Crete for ex situ conservation and propagation of clonal plants at the facilities of the Balkan Botanic Garden of Kroussia

Taxon (IPEN accession number)	Geographical areas	No of seeds	Weight of 10 seeds (mg)	No of cuttings	No of living individuals
Acantholimon androsaceum (GR-1-BBGK-19,1)	Mt Psiloritis (Skinakas peak)	115	64	168	1
Limonium chersonesum (GR-1-BBGK-19,2)	West Stalida	10	2.5	-	1
Figure 1. Wild-growing and rock-dwelling individuals of *L. chersonesum* (left) and *A. androsaceum* (right) of Plumbaginaceae family in their natural habitats in coastal and mountain areas, respectively.

The young plants collected from the wild habitats (Table 1, Figure 1) were transplanted in pots and acclimatized for 6-9 weeks. The pots with the wild plants were placed outdoors on benches under shade without direct sunlight at the Institute of Plant Breeding and Phylogenetic Resources (Thermi, Thessaloniki), following the local seasonal climatic conditions of the area. Two months after collections from wild, shoot tips of 4-6 cm in length were excised from the collected plants and were treated with 0.2% powder indole-3-butyric acid (IBA) (Radicin, Fytorgan SA, Greece); then, they were transferred in multi-cell propagation trays using a substrate mixture of peat moss (Terrahum, Klasmann) : perlite (1:3 v/v) and were placed on a heated bench (±19 °C) under mist in 80-90% relative humidity (RH).

The rooted cuttings were transplanted after three weeks in 1 L plastic pots, containing a mixture of peat (TS2, Klasmann) and perlite (3:1 v/v), for further growth and this transfer was repeated monthly for six months (September 2018 until February 2019), in order to produce the stock plant material required for further propagation experiments (Table 2).

Taxon	September 2018	October 2018	February 2019	Total mother stock plants (Sep+Oct+Feb)					
	No. of cuttings	Rooting (%)	Period (days)	No. of cuttings	Rooting (%)	Period (days)	No. of cuttings	Rooting (%)	Period (days)
Acantholimon androsaceum	168	23	60	74	55	75	78	(0+38+40)	
(Oct: in-situ, Feb ex-situ)									
Limonium chersonesum	2	100	13	12	100	24	21	74	30
(All ex-situ)									30

The young stems collected from wild-growing plants of *A. androsaceum* and *L. chersonesum* (Table 1), were transported in a portable fridge to the BBGK’s laboratory, were transferred and maintained then in a walk-in cold room (2-4 °C) until experimentation for rooting, following the same procedure as described above.

The fruiting calyces and the inflorescences collected from wild were transferred for drying in a walk-in dark room with stable temperature (15 °C) and reduced humidity (RH 15%). After one month, the seeds were separated, weighed and used in the experiments (Table 1).
Vegetative propagation by cuttings

Propagation of *A. androsaceum* and *L. chersonesum* for the production of clonal plants was planned for experimentation using 0, 1000, 2000 and 4000 ppm of IBA (Duchefa Biochemie, The Netherlands) during June-July 2019. Softwood tip cuttings of *A. androsaceum* and *L. chersonesum* (both 1.5-2 cm) derived from mother stock plants conserved in the facilities of BBGK, were immersed for 10 sec in IBA solutions (dissolved in 50% ethanol) and finally were placed in multi-cell propagation trays using a 1:3 v/v peat moss (TS1, Klasmann): perlite substrate. The trays were then transferred on a heated bench (±19 °C) under mist (80-90% RH). The number of roots per cutting and root length was evaluated for *A. androsaceum* after 40 days and for *L. chersonesum* after 15 and 30 days, while the rooting rate was calculated as percentage (%). The rooted plants were then transplanted in 0.33 L plastic pots and subsequently in 2.5 L after 4 weeks, following the procedure described previously. A number of the excessive clonal plants of *A. androsaceum* and *L. chersonesum* was transferred for long-term *ex situ* conservation in special garden beds at the BBGK’s sea level and mountain facilities (botanic gardens in Thermi, prefecture of Thessaloniki and in Pontokerassia, prefecture of Kilkis at 650 m altitude).

Propagation by seeds

The experiments for seed germination were performed in autumn (November 2018). The seeds (n=50 for *A. androsaceum* and n=10 for *L. chersonesum*) were first saturated in distilled water overnight and then were sowed (4-5 mm in depth) in plastic trays using a substrate of peat (Terrahum, Klassman): perlite (1:1 v/v) and finally the seeds were covered with a layer of vermiculite (2-3 mm). These plastic trays were then placed on a heated bench (±19 °C) under mist (80-90% RH). The germination rate of the seeds was calculated every two weeks, counting the emergence of the visible sprouts for a period of two months. Finally, the seedlings were transplanted in multi-cell propagation trays following the procedure described above for cuttings.

Statistical analysis

The experiments on the induction of rhizogenesis of *A. androsaceum* and *L. chersonesum* included four treatments with 21 replicates (3 groups of 7 repetitions) and were repeated twice. Data generated from these experiments were analyzed according to the completely randomized design (CRD) and the means were subjected to analysis of variance (ANOVA) using SPSS 17.0 (SPSS Inc, Chicago, Illinois, USA). Comparison of means was performed with the Duncan’s multiple range test at significance level a = 0.05 (P ≤ 0.05). For *A. androsaceum*, a monofactorial experiment was organized where the influence of IBA concentration on the analyzed indicators was studied. For *L. chersonesum*, a bifactorial experiment was organized, with the main effect of two factors (rooting period and IBA concentration) as well as their interaction was evaluated by the General Linear Model (2-way ANOVA).

Results

Propagation and development of stock mother plants

The plant material collected from *A. androsaceum* plants from wild habitats (October 2018) for the production of clonal stock mother plants led to a rooting rate of 23% within 60 days. This value was lower compared to that obtained in the case of plant material collected in winter (end February) from *ex-situ* cultivated plants, namely a rooting rate of 55% within 75 days. In total, 78 new clonal plants of *A. androsaceum* were produced within seven months (Table 2). Following the same procedure for *L. chersonesum*, the cuttings collected in September 2018, October 2018 and the end of February 2019 from *ex-situ* cultivated plants formed roots in proportion of 100%, 100% and 74%, respectively, obtaining a total production of 30 new clonal stock mother plants (Table 2).
In the case of both species studied (A. androsaceum and L. chersonesum), the seeds did not germinate.

Effect of IBA on rooting

The 2000 ppm IBA treatment was the most effective, resulting in a rooting rate of 71.43% of A. androsaceum cuttings within 40 days, with an average root length of 0.86 cm and 2.65 roots per cutting. Similar results were achieved in the case of the highest concentration of IBA (4000 ppm), however with no statistical difference (Table 3, Figure 2).

Table 3. The influence of IBA on rooting rate (%), number of roots and root length (cm) of A. androsaceum cuttings obtained from stock mother plants after 40 days

Treatments	Rooting rate (%)	Number of roots per cutting	Root length (cm)
Control	9.53 c	1.50 ± 0.03 b	0.53 ± 0.00 a
1000 ppm IBA	38.10 b	3.13 ± 0.37 a	0.72 ± 0.11 a
2000 ppm IBA	71.43 a	2.65 ± 0.21 ab	0.86 ± 0.20 a
4000 ppm IBA	71.43 a	3.13 ± 0.29 a	0.61 ± 0.06 a

P-values: 0.001**, 0.000***, 0.224 ns

Means (n=21) ± standard error (S.E.) with the same letter in a column are not statistically significant different from each other according to the Duncan’s multiple range test at \(P \leq 0.05 \); ns: \(P \geq 0.05 \); ** \(P \leq 0.01 \); *** \(P \leq 0.001 \).

In the case of L. chersonesum species, the 1000 ppm IBA treatment was the most effective, resulting in a rooting rate of 80.95% of cuttings within 30 days, with an average root length of 2.75 cm and 4.93 roots per cutting. Similar but not statistically different results were obtained for 2000 and 4000 ppm IBA treatments, although the rooting rate at 2000 ppm was 84.21%. During the first fortnight, 4000 ppm IBA treatment resulted in higher rooting percentage (68.42%) with an increased number of roots and root length (3.69 roots and 2.00 cm), but at the end of the experimental period, the concentrations of 1000 and 2000 ppm IBA produced a significant increase of rooting rate (Table 4; Figure 3).

Table 4. Effect of IBA on rooting rate (%), number of roots and root length (cm) of L. chersonesum cuttings obtained from stock mother plants depending to the rooting period

Rooting period (days under mist)	IBA (ppm)	Rooting rate (%)	Number of roots per cutting	Root length (cm)
15	Control	45.00 c	2.33 ± 0.15 c	1.22 ± 0.13 d
	1000	57.14 d	3.00 ± 0.26 bc	1.28 ± 0.13 d
	2000	55.00 d	3.36 ± 0.25 b	1.30 ± 0.09 d
	4000	68.42 c	3.69 ± 0.39 b	2.00 ± 0.13 c
30	Control	72.22 bc	4.64 ± 0.25 a	2.06 ± 0.12 c
	1000	80.95 ab	4.93 ± 0.29 a	2.75 ± 0.15 b
	2000	84.21 a	4.56 ± 0.35 a	2.59 ± 0.18 b
	4000	73.68 bc	4.51 ± 0.18 a	3.40 ± 0.10 a

P-values (2-way ANOVA)

IBA Concentration (A)	0.001**	0.000***	0.000***
Number of days in the mist (B)	0.000***	0.122 ns	0.000***
(A)×(B)	0.002**	0.031*	0.079 ns

Means (n=21) ± standard error (S.E.) with the same letter in a column are not statistically significant different from each other according to the Duncan’s multiple range test at \(P \leq 0.05 \); ns: \(P \geq 0.05 \); ** \(P \leq 0.01 \); *** \(P \leq 0.001 \).
Figure 2. The influence of IBA on rooting of *A. androsaceum* (above) and *L. chersonesum* (below) cuttings from stock mother plants after 40 and 30 days, respectively

Acclimatization in different environments

The propagated plants of the Cretan local endemic taxa are currently cultivated and evaluated *ex-situ* with regards to their acclimatization potential in different environments at the grounds of the BBGK, such as outdoors in garden beds, both at sea level (Thermi, Thessaloniki) and at intermediate altitude of 650 m (Pontokerasia, Kilkis prefecture) as well as outdoors and greenhouse conditions cultivation in pots. To date, almost two years after *ex-situ* cultivation, the propagated plants of *A. androsaceum* and *L. chersonesum* presented a high adaptability to the man-made environment of the BBGK without any problems observed (Figure 4).
Figure 3. Rooted individuals of the local Cretan endemics *L. chersonesum* (left, with seasonal brownish-reddish leaves) and *A. androsaceum* (right, flowering) in spring during their acclimatization and ex-situ conservation at the premises of the Balkan Botanic Garden of Kroussia in Thermi, Thessaloniki (Northern Greece).

Figure 4. Wild-growing, cushion-forming individual of *A. androsaceum* during flowering with densely arranged flowers (photos: M. Avramakis, Natural History Museum of Crete, University of Crete) and close-up of spiny leaves, corolla and fruiting calyces (photo: F. Samaritakis), a local endemic of Cretan high mountains, Greece.
Discussion

The local Cretan endemic plants studied herein have some impressive features. *A. androsaceum* presents intense cushion-forming habit in the wild habitats and under ex-situ cultivation with rather symmetrical growth; this combined with limited nutrient demands, increased frost hardiness, impressive flowering, high flower density and lasting fruiting of similar appearance and dense spiny-tipped leaves result in its ranking in average to high positions among 223 local Cretan, Tunisian and Moroccan local endemics after multifaceted ornamental evaluation (Krigas et al., 2021, Figure 4). On the other hand, *L. chersonesum* shows increased salt resistance and limited water requirements in combination with impressive and long summer flowering, while long-lasting fruiting of similar appearance and seasonal differences in leaf colour may enhance and differentiate its ornamental potential (Krigas et al., 2021; Figures 3 and 5). On the other hand, *L. chersonesum* has increased salt resistance and limited water requirements in combination with an impressive and long summer flowering, while long-lasting fruiting of similar appearance and seasonal differences in leaf colour may enhance and differentiate its ornamental potential (Krigas et al., 2021; Figures 3 and 5). These attractive and useful features combined with uniqueness (local endemics of Crete), the exotic character (brand name Crete, Mediterranean) and existing commercial interest (Menteli et al., 2019) offers these plants considerable potential allowing for their sustainable exploitation (Krigas et al., 2021) and their introduction in commercial floriculture and/or the medical field (Dee et al., 2019).

Nevertheless, research on unknown plant taxa is a difficult task to achieve mainly due to the lack of information available in the literature. Moreover, the development of an efficient propagation protocol for the massive production of clonal plants is a difficult procedure that requires long experimentation and explicit technical skills. The current study demonstrates for the first-time successful experiments for vegetative propagation of the wild Cretan local endemics *A. androsaceum* and *L. chersonesum* aiming to be used for their ex-situ conservation and further evaluation as new medicinal and/or ornamental species.

Preliminary experiments on the germination of seeds collected from the wild Cretan endemics *A. androsaceum* and *L. chersonesum* showed no seed germination for these two taxa. Similar unsuccessful results as those reported herein are described for several *Acantholimon* spp., sowing at 20 °C and cold stratification at -4 to 4 °C for 2-4 weeks was proposed as likely essential for their germination (Kootenay Local Agricultural Society, 2008). However, the limited number of seeds obtained from the wild did not allow any further
experimentation. The same unsuccessful results delivered for *L. chersonesum*, are possible due to the immaturity of the collected seeds before their natural ripening, which normally occurs during October. This may also be deduced from another study concerning the well-ripened seeds of the local Cretan endemic *L. cornarianum* (another local Cretan endemic), that showed full germination (100%) within 2-4 days, at various temperatures tested (Markaki, 2006). According to Reyes-Betancort et al. (2008), the variation in the germination of seeds of *Limonium* spp. is partially determined genetically but also environmentally determined. Unfortunately, the limited number of wild seeds collected did not allow any further investigation.

The results of propagation experiments for *A. androsaceum* during winter using wild plant material for the production of mother-stock plants showed a lower rooting rate (23-55% within 2-2.5 months), compared to those repeated during summer (June-July) using cuttings from the conserved stock mother plants, (rooting rate of 71.43% at 2000 ppm IBA). It is known that IBA is commonly used to stimulate rhizogenesis, especially when endogenous auxin production is insufficient for root induction and development (Fragoso et al., 2017). This seems to apply for *A. androsaceum*, where the absence of IBA led to low rooting rates (9.53%). Better results were obtained for *L. chersonesum* (100% rooting rate during September in 13 days and in October within 24 days). In addition, for *L. chersonesum*, the current study showed that 1000 ppm of IBA was optimum (80.95%) for rhizogenesis within a month compared to 2000 ppm of IBA (84.21% rooting) with no statistically difference. The highest concentration of IBA (4000 ppm) led to a rooting rate of 73.68% but had phytotoxic effect on cuttings, an aspect also reported in the literature.

There are several factors and parameters affecting the development of an optimum vegetative propagation protocol for a plant species, such as the quality and quantity of irradiance (Hoffman et al., 2016; Lee et al., 2016), microbial associations (Assis et al., 2004; Zavattieri et al., 2016), gene expression (Delker et al., 2017), enzyme activity and phytohormonal responses (Sung et al., 2003; Assis et al., 2004). As the initial goal of this study was the achievement of a fast and efficient propagation protocol for the massive production of clonal plants of *A. androsaceum* and *L. chersonesum*, the most important parameters examined were the type of material used as explant, and the amounts and type of exogenous auxin used for root induction (De Almeida et al., 2017). These propagation protocols are above commercially needed standards and therefore may be used for the sustainable commercial exploitation of the studied local endemic species.

Seasonal differences and the origin of material used for the cuttings were also factors examined in this study. The season of the botanical collections and further experiments always depend on the plant species under investigation and especially on the stage of their biological cycle. Many times, the stage of obtaining the plant material from the wild is inappropriate but sometimes this cannot be avoided; in such cases, it is more difficult to develop the mother stock plants and special technical skills with experience are required. The development of mother stock plants after botanical collections is a standard procedure followed by the BBGK in order to obtain adequate and homogenous plant material for experimentation; this was also done for the Cretan endemics *A. androsaceum* and *L. chersonesum*. The mother plant material is grown in controlled environmental conditions in man-made habitats and the explants used for cuttings are all juvenile with fast-growing meristematic shoots which are ideal for experimentation. This has been broadly reported in the literature in massive propagation studies (Guerreira et al., 2010; Pijut et al., 2011; Beemnet and Solomon, 2012; Denaxa et al. 2012; Wendling et al., 2014b; Elhaak et al. 2015). Hence, most of the vegetative protocols developed for unknown native plant species in the BBGK use *ex-situ* cultivated material i.e., mother stock plants in the greenhouse, in plastic pots, garden beds or *in vitro* plants. This research methodology allows the development of vegetative propagation protocols derived from homogenic cultivated explant material and therefore can be further used for commercial nurseries.
Conclusions

The increase of human needs and the demanding market to date request new ornamental plants and new natural medicinal products. The present study demonstrates:

1) The development of two successful vegetative propagation protocols via cuttings for the local Cretan endemics *Acantholimon androsaceum* and *Limonium chersonesum*.

2) The rooting rates for both species are more than adequate for commercialization (71.43% for *A. androsaceum* and 80.95% for *L. chersonesum*), which may deliver potentially new industrial crops and may serve as an example of exploiting sustainably wild phytogenetic resources in horticulture and the cosmetic-medicinal sector.

3) In search of new profitable crops, the evaluation and domestication of many new wild taxa derived from natural resources is a promising way to enhance the income of local communities addressing global commercial needs. The strategy and research methodology presented herein, is aiming at the selection of new, rare and endemic native industrial crops from the rich phytogenetic resources of Crete.

Authors’ Contributions

Conceptualization: NK, KG, GT; Data curation: KG, NK, VS; Formal analysis: KG, NK, VS; Funding acquisition: KG, NK, GT; Investigation: KG, VS; Methodology: KG, NK, VS; Supervision: KG, EM; Validation: KG, EM, NK, GT; Visualization: KG, NK, VS; Writing - original draft preparation: KG, NK, VS, GT; Writing - review & editing: KG, NK, VS, GT; Project administration: KG, GT. All authors read and approved the final submitted manuscript.

Acknowledgements

This research has been co-financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH – CREATE – INNOVATE (project code: T1EDK-05434, acronym: PRECISE-M).

Conflict of Interests

The authors declare that there are no conflicts of interest related to this article.

References

Ahern J (2013). Urban landscape sustainability and resilience: the promise and challenges of integrating ecology with urban planning and design. Landscape Ecology 28:1203-1212. https://doi.org/10.1007/s10980-012-9799-z

Anandamoy D, Santanu P, Chayanika B, Tapas KB (2012). Effects of culture conditions on multiple shoot induction from inflorescence and RAPD analysis of cloned plants in *Limonium sinensis* (Girard) Kuntze, var. Golden Diamond. Journal of Plant Biochemistry and Biotechnology 22:348-352. https://doi.org/10.1007/s13562-012-0164-8

Ančev M (1982). Plumbaginaceae Lindl. In: Velčev V, Kožuharov S (Eds). Flora of National Republic of Bulgaria. Българската Академия на Науките, София (In Bulgarian) 8:342-364.
Antrop M (2006). Sustainable landscapes: contradiction, fiction or utopia? Landscape and Urban Planning 75(3-4):187-197. https://doi.org/10.1016/j.landurbplan.2005.02.014

Assis TF, Fett-Neto AG, Alfenas AC (2004). Current techniques and prospects for the clonal propagation of hardwoods with emphasis on Eucalyptus. In: Walter C, Carson M (Eds). Plantation Forest Biotechnology for the 21st Century. Research Sign Post, New Delhi, pp 303-333.

Becmnet MK, Solomon AM (2012). Effect of cutting position and rooting hormone on propagation ability of stevia (Stevia rebaudiana Bertoni). The African Journal of Plant Science and Biotechnology 6(1):5-8. https://doi.org/10.26655/IJABBR.2016.2.9

Bhadrecha P, Kumar V, Kumar M (2017). Medicinal plant growing under sub-optimal conditions in trans-Himalaya region at high altitude. Defence Life Science Journal 2(1):37-45. https://doi.org/10.14429/dlsj.2.11107

Burchi G, Mercatelli E, Maletta M, Mercuri A, Bianchini C, Schiva T (2006). Results of a breeding activity on Limonium spp. Acta Horticulturae 714:43-50. https://doi.org/10.17660/ActaHortic.2006.714.5

Casazza G, Savona M, Carli S, Minuto L, Profumo P (2002). Micropropagation of Limonium cordatum (L.) Mill for conservation purposes. The Journal of Horticultural Science and Biotechnology 77(5):541–545. https://doi.org/10.1080/14620316.2002.11511535

Clothier T (2003). Tom Clothier’s garden walk and talk. seed germination database – perennials. Retrieved 2020 October 05 from https://tomclothier.hort.net/page02.html

De Almeida MR, Aumond JRM, Da Costa CT, Schwambach J, Ruedell CM, Correa LR, Fett-Neto AG (2017). Environmental control of adventitious rooting in Eucalyptus and Populus cuttings. Trees 31(5):1377-1390. https://doi.org/10.1007/s00468-017-1550-6

Dee LE, Cowles J, Isbell F, Pau S, Gaines SD, Reich PB (2019). When do ecosystem services depend on rare species? Trends in Ecology & Evolution 34(8):746-758. https://doi.org/10.1016/j.tree.2019.03.010

Delker C, Van Zanten M, Quint M (2017). Thermosensing enlightened. Trends in Plant Science 22(3):185-187. https://doi.org/10.1016/j.tplants.2017.01.007

Denaxa NK, Vemmos SN, Roussos PA (2012). The role of endogenous carbohydrates and seasonal variation in rooting ability of cuttings of an easy and a hard to root olive cultivars (Olea europaea L.). Scientia Horticulturae 143:19-28. https://doi.org/10.1016/j.scienta.2012.05.026

Deno N (1993). Seed germination theory and practice. State College PA 16801, USA pp 83. Retrieved 2021 January 28 from https://naldc.nal.usda.gov/download/41278/PDF

Dhale DA, Markandeya SK (2011). Antimicrobial and phytochemical screening of Plumbago zeylanica L. (Plumbaginaceae) leaf. Journal of Experimental Sciences 2(3):4-6. www.jexpscient.com

Dilaver Z (2013). Conservation of natural plants and their use in landscape architecture. In: Ozavyuz M (Ed). Advances in Landscape Architecture, pp 885-903. http://dx.doi.org/10.5772/55767

Elhaak MA, Matter MZ, Zayed MA, Gad DA (2015). Propagation principles in using indole-3-butyric acid for rooting rosemary (Rosmarinus officinalis) stem cuttings. Journal of Horticulture 2:1-13. https://doi.org/10.4172/2376-0354.1000121

Fragoso ROF, Stuepp CA, Rickli HC, Zuffellato-Ribas KC, Koehler HS (2017). Maximum efficiency concentration of indole butyric acid in promoting the rooting of Japanese flowering cherry. Ciência Rural 47(1):1-6. https://doi.org/10.1590/0103-8478cr20150894

Guerreira B, Zuffellato-Ribas KC, Wendling I, Koehler HS, Nogueira AC (2010). Miniestaquia de Sapium glandulatum (Vell.) Pax com o uso de ácido indol butírico e ácido naftaleno acético. Ciência Florestal 20(1):19-31. https://doi.org/10.5902/198050981758.

Hanks G (2015). A review of production statistics for the cut flower and foliage sector 2015 (part of AHDB Horticulture funded project PO BOF 002a). The National Cut Flower Centre, AHDB Horticulture, pp 102. Retrieved 2021 January 28 from https://docgo.net

Helfand GE, Park JS, Nassauer JL, S Kosek (2006). The economics of native plants in residential landscape designs. Landscape and Urban Planning 78:229-240. https://doi.org/10.1016/j.landurbplan.2005.08.001

Hoffman AP, Adams JP, Nelson A (2016). Effects of light regime and IBA concentration on AR of an eastern cottonwood (Populus deltoides) clone. In: Schweitzer CJ, Clatterbuck WK, Oswalt CM (Eds). Proceedings of the 18th Biennial Southern Silvicultural Research Conference, e–Gen. Tech. Rep. SRS–212. US Department of Agriculture, Forest Service, Southern Research Station, Asheville, pp 478-485. Retrieved 2021 January 28 from https://www.srs.fs.usda.gov
Hosni AM, Hosni YA, Ebrahim MA (2000). *In vitro* micropropagation of *Limonium sinnuatum* 'Citron Mountain', a hybrid statice newly introduced in Egypt. Annals of Agricultural Science (Cairo) 45(1):327-339.

Jankju M, Noedooost F (2014). Species richness, evenness and plant community stability 22 years after ploughing a semiarid rangeland. Journal of Rangeland Science 4(2):129-140. http://www.rangeland.ir/index.php/article_512961.html

Kaninski AI, Ivanova I, Bistrichanov S, Zapryanova N, Atanassova B, Iakimova ET (2012). *Ex situ* conservation of endangered *Limonium* species in the Bulgarian flora. Journal of Fruit and Ornamental Plant Research 20(1):115-129. https://doi.org/10.2478/v10290-012-0009-5

Kazemi F, Abbasi M (2018). Investigating some challenges in domesticating native plants of Irano-Turanian phytogeographical region for Iran's urban landscaping. Acta Horticulturae 1190:59-66. https://doi.org/10.17660/ActaHortic.2018.1190.10

Krigas N, Tsoktouridis G, Anestis I, Khobbach A, Libiad M, Mediche-Ksouri W, ... Bourgou S (2021). Investigating the potential, feasibility and readiness timescale for sustainable exploitation of neglected and underutilized plants in the ornamental-horticultural sector: the case of local endemic plants of Crete, Morocco and Tunisia. Sustainability (Accepted, under review)

Krigas N, Menteli V, Vokou D (2014). The electronic trade in Greek endemic plants: biodiversity, commercial and legal aspects. Economic Botany 68(1):85-95. https://doi.org/10.1007/s12231-014-9264-9

Kubitzki K (1993). Plumbaginaceae Lindl. In: Kubitzki K, Rohwer JG, Bittrich V (Eds.), The families and genera of flowering plants. II. Flowering plants. Dicotyledons: magnoliid, hamamelid and caryophyllid families. Springer, Berlin, pp 523-530. https://doi.org/10.1007/978-3-662-02899-5

Lee HJ, Ha JH, Kim SG, Choi HK, Kim ZH, Han YJ, ... Park CM (2016). Stem-piped light activates phytochrome B to trigger light responses in *Arabidopsis thaliana* roots. Science Signaling 9(452):ra106. https://doi.org/10.1126/scisignal.aaf6530

Menteli V, Krigas N, Avramakis E, Turland N, Vokou D (2019). Endemic plants of Crete in electronic trade and wildlife tourism: current patterns and implications for conservation. Journal of Biological Research-Thessaloniki 26(10):1-14. https://doi.org/10.1186/s40709-019-0104-z

Mercuri A, Bruna S, De Benedetti L, Burchi G, Schiva T (2001). Modification of plant architecture in *Limonium* spp. induced by rol genes. Plant Cell, Tissue and Organ Culture 65:247-253. https://doi.org/10.1023/A:1010623309432

Metcalfe CR, Templeman WG (1939). Experiments with Plant growth-substances for the rooting of cuttings. Bulletin of Miscellaneous Information (Royal Botanic Gardens, Kew) 1939(8):441–456. Retrieved 2021 January 28 from www.jstor.org/stable/413546

Morgan E, Funnell K (2018). *Limonium*. In: Ornamental Crops. Handbook of Plant Breeding 11, Chapter 21, Springer. https://doi.org/10.1007/978-3-319-90698-0_21

Muvaffak A, Doğan M, Bilgin CC (2001). Numerical taxonomic study of the genus *Acantholimon* Boiss. (Plumbaginaceae) in Ankara Province. Israel Journal of Plant Sciences 49(4):297-300. https://doi.org/10.1560/crbg-hddj-mqmu-j34q

Pascale SD, Romano D (2019). Potential use of wild plants in floriculture. Acta Horticulturae 1240. https://doi.org/10.17660/ActaHortic.2019.1240.15
Grigoriadou K et al. (2021). Not Bot Horti Agrobo 49(1):12261

Pijut PM, Wowste KE, Michler CH (2011). Promotion of adventitious root formation of difficult-to-root hardwood tree species. In: Janick J (Ed). Horticultural Reviews 38:213-251. https://www.nrs.fs.fed.us/pubs/jrnl/2011/nrs_2011_pijut_002.pdf

Reyes-Betancort JA, Santos Guerra A, Guma IR, Humphries CJ, Carine MA (2008). Diversity, rarity and the evolution and conservation of the Canary Islands endemic flora. Anales del Jardín Botánico de Madrid 65(1):25-45. https://doi.org/10.3989/aibm.2008.v65.i1.244

Sari D, Karaşah B (2015). Green roofs and xeriscape planting that contribute to sustainable urban green space. ICFAUD 2015: 17th International Conference on Sustainable Architecture and Urban Design, Kyoto Japan 17(11):962-966.

Schneider A, Fusco M, Bousselot J (2014). Observations on the survival of 112 plant taxa on a green roof in a semi-arid climate. Journal of Living Architecture 2(1):10-30. https://doi.org/10.46534/jliv.2014.02.01.010

SID-Kew (Seed Information Database of Royal Botanic Gardens Kew). Wakehurst Place, Kew Gardens, London, UK. Retrieved 2021 January 28 from https://data.kew.org/sid/

Sung DY, Kaplan F, Lee KJ, Guy CL (2003). Acquired tolerance to temperature extremes. Trends in Plant Science 8(4):179-187. https://doi.org/10.1016/S1360-1385(03)00047-5

Sari D, Karaşah B (2015). Promotion of adventitious root formation of difficult-to-root hardwood tree species. In: Janick J (Ed). Horticultural Reviews 38:213-251. https://www.nrs.fs.fed.us/pubs/jrnl/2011/nrs_2011_pijut_002.pdf

Sung DY, Kaplan F, Lee KJ, Guy CL (2003). Acquired tolerance to temperature extremes. Trends in Plant Science 8(4):179-187. https://doi.org/10.1016/S1360-1385(03)00047-5

Sunil C, Duraipandiyan V, Agastian P, Ignacimuthu S. (2012). Antidiabetic effect of plumbagin isolated from Plumbago zeylanica L. Root and its effect on GLUT4 translocation in streptozotocin-induced diabetic rats. Food and Chemical Toxicology 50(12):4356-4363. https://doi.org/10.1016/j.fct.2012.08.046

Trabelsi N, Oueslati S, Ksouri R, Nassra M, Marchal A, Krisa S, ... Waffo-Téguob P (2014). The antioxidant properties of new dimer and two monomers of phenolic acid amides isolated from Limoniastrum guyonianum. Food Chemistry 146:466-471. https://doi.org/10.1016/j.foodchem.2013.09.077

Vainoriene R (2010). Floristic structure of mountain plants collection and the present situation in botanical garden of Siauliai University. Retrieved 2021 January 28 from http://sciences.lv/

Wendling I, Trueman SJ, Xavier A (2014). Maturation and related aspects in clonal forestry-part II: reinvigoration, rejuvenation and juvenility maintenance. New Forests 45:473-486. https://doi.org/10.1007/s11056-014-9415-y

Woodell SRJ, Mooney HA (1970). The effect of seawater on carbon dioxide exchange by the halophyte Limonium californicum (Boiss.) Heller. Annals of Botany 34(1):117-121. https://doi.org/10.1093/oxfordjournals.aob.a008434

Zavattieri MA, Ragonezi C, Klimaszewska K (2016). Adventitious rooting of conifers: influence of biological factors. Trees 30(4):1021-1032. https://doi.org/10.1007/s00468-016-1412-7

The journal offers free, immediate, and unrestricted access to peer-reviewed research and scholarly work. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.

License - Articles published in Notulae Botanicae Horti Agrobotanici Cluj-Napoca are Open-Access, distributed under the terms and conditions of the Creative Commons Attribution (CC BY 4.0) License. © Articles by the authors; UASVM, Cluj-Napoca, Romania. The journal allows the author(s) to hold the copyright/to retain publishing rights without restriction.