Fabrication of TiO₂ Spheres and a Visible Light Active α-Fe₂O₃/ TiO₂-Rutile/TiO₂-Anatase Heterogeneous Photocatalyst from Natural Ilmenite

Leshan Usgodaarachchi, Charitha Thambiliyagodage,* Ramanee Wijesekera, Saravanamuthu Vigneswaran,* and Murthi Kandanapitiye

ABSTRACT: High-purity (98.8%, TiO₂) rutile nanoparticles were successfully synthesized using ilmenite sand as the initial titanium source. This novel synthesis method was cost-effective and straightforward due to the absence of the traditional gravity, magnetic, electrostatic separation, ball milling, and smelting processes. Synthesized TiO₂ nanoparticles were 99% pure. Also, highly corrosive environmentally hazardous acid leachate generated during the leaching process of ilmenite sand was effectively converted into a highly efficient visible light active photocatalyst. The prepared photocatalyst system consists of anatase-TiO₂/rutile-TiO₂/Fe₂O₃ (TF-800), rutile-TiO₂/Fe₂TiO₅ (TFTO-800), and anatase-TiO₂/Fe₂O₃ (TF-450) nanocomposites, respectively. The pseudo-second-order adsorption rate of the TF-800 ternary nanocomposite was 0.126 g mg⁻¹ min⁻¹ in dark conditions, and a 0.044 min⁻¹ visible light initial photodegradation rate was exhibited. The TFTO-800 binary nanocomposite adsorbed methylene blue (MB) following pseudo-second-order adsorption (0.224 g mg⁻¹ min⁻¹) in the dark, and the rate constant for photodegradation of MB in visible light was 0.006 min⁻¹. The prepared TF-450 nanocomposite did not display excellent adsorptive and photocatalytic performances throughout the experiment period. The synthesized TF-800 and TFTO-800 were able to degrade 93.1 and 49.8% of a 100 mL, 10 ppm MB dye solution within 180 min, respectively.

1. INTRODUCTION

The first discovery of titanium was in 1791 by the British geologist William Gregor.¹ He examined a new element in FeTiO₃ found in black color sand from the Helford River in England. William Gregor produced an impure white metallic oxide from FeTiO₃ by treatment with hydrochloric (HCl) acid followed by washing with sulfuric (H₂SO₄) acid.² After 119 years, pure TiO₂ was synthesized in 1910 by M.A. Hunter.³ Globally, 50% of the titanium that is produced is used for the production of TiO₂ as white pigments, and 20 and 12% are used in paper and plastic industries, respectively.⁴ The remaining 18% is used in food, medicines, toothpastes, rubber, floor coverings, and ceramics as an additive in the cosmetics industry.⁵ In recent decades, TiO₂ has been used as catalysts, dielectrics in capacitors, a functional part in some oxygen sensors, a component of surgical implants and prostheses (for bone/medical implant integration), and as a semiconductor.⁶ Also, TiO₂ nanocomposites have been developed for use in solar cells and photocatalytic hydrogen generation from water.⁷ TiO₂ and TiO₂ modified nanocomposites are used in advanced oxidation processes (AOPs) in water purification.⁸⁹

Currently, titanium dioxide is produced from titanium ores by traditional processes such as the sulfate and chloride processes.⁸⁹ Globally, the sulfate process is employed in 40% of total TiO₂ production and the chloride process in 60%.¹⁰ In the sulfate process, low-grade ilmenite (40–60%, TiO₂) or titanium slag (72–85%, TiO₂) is digested in concentrated sulfuric acid at elevated temperature and pressure. After separating the iron sulfate, the titanium liquid employed by TiO₂ is called a sulfatable titanium slag. The titanium liquid is hydrolyzed to synthesize hydrated titanium dioxide. However, the sulfate process generates huge amounts of iron sulfate byproducts, which are considered a hazardous waste. In the chloride process, either high-grade rutile or titanium slag is digested in concentrated hydrochloric acid at elevated temperature and pressure. Separating the iron chloride, the titanium liquid employed by TiO₂ is called a sulfatable titanium slag. The titanium liquid is hydrolyzed to synthesize hydrated titanium dioxide. However, the sulfate process generates huge amounts of iron sulfate byproducts, which are considered a hazardous waste. In the chloride process, either high-grade rutile or titanium slag is digested in concentrated hydrochloric acid at elevated temperature and pressure.
Titanium dioxide is the most frequently applied semiconductor photocatalyst in photoinduced degradation processes. Even though TiO$_2$ has the disadvantage of being activated by ultraviolet (UV) light rather than visible light, it has several advantages, including being chemically and biologically inert, photocatalytically stable, and relatively easy to produce and use.15–18 The most common polymorphs of TiO$_2$, rutile and anatase, exhibit band gaps (E_g) of 3.2 and 3.0 eV, respectively, and they correspond to the wavelengths of 387.45 and 413.28 nm, respectively.19 The UV range in which light wavelengths shorter than roughly 400 nm are considered accounts for about 4% of solar radiation. Therefore, many researchers have been conducted in the past to improve the photocatalytic efficiency by enhancing the visible light sensitivity such as fabrication of semiconductor heterostructures,20,21 metal doping,22 nonmetallic doping,23–25 surface hybridization,26 noble metal co-deposition,27,28 and coupling with other technologies.29–32 Among these methods, TiO$_2$ has been doped with metals including Pt,29 Fe,30 Cu,31 V,32 Cr,33 Ag,34 etc., and nonmetals such as C,35 N,36–38 and S.39,37 Furthermore, TiO$_2$ has been combined with other semiconductors such as Cu$_2$O,40 CdS,41 and Bi$_2$S$_3$42 to improve visible light photocatalytic activity by enhancing charge separation. However, the construction of heterostructures is proven to be effective to improve photoinduced charge separation and photocatalytic performance. Similarly, TiO$_2$ has been combined with other metal oxides such as Fe$_2$O$_3$,43 V$_2$O$_5$,44 CeO$_2$,44 and CoTiO$_3$45 yielding heterojunctions in between semiconductors. In this study, we report the synthesis of an anatase-TiO$_2$/rutile-TiO$_2$/α-Fe$_2$O$_3$ heterojunction. The anatase and rutile binary heterojunction exhibited type II band alignment with the conduction band of rutile residing above that of anatase. The anatase/rutile phases allowed efficient charge separation through the photocatalyst with a minor influence on the hole recombination and strong effect on electron hole transferring. The excitation of α-Fe$_2$O$_3$ resulted due to the irradiation of visible light and electron holes migrated through the heterostructure.

The present work’s significant contribution is the novel approach to produce high-purity rutile from ilmenite sand and synthesize high-purity magnetite nanoparticles based on the photocatalyst through a very effective separation technique called facile synthesis. The novel facile synthesis approach is able to utilize natural ilmenite without generating environmentally hazardous waste substances. The first key advantage of the process implemented by this work is the use of commercially available ilmenite sand as a titanium source without additional gravity, magnetic, electrostatic separation, ball milling, and smelting process, making it a straightforward and cost-effective process. The second advantage of the proposed method is that it is nonhazardous to the environment unlike existing hydrometallurgical methods due to effectively converting the byproduct iron-based hydrochloric acid leachate to an efficient photocatalyst. The photocatalyst recovery process makes an extraordinary contribution to a greener environment by effective conversion and use of highly corrosive iron-based hydrochloric acid leachate.

2. MATERIALS AND METHODS

2.1. Chemicals. Ilmenite sand of particle size 100–200 μm was supplied by Lanka Mineral Sand (pvt) Ltd. Hydrochloric acid (37%, HCl), sodium hydroxide (98%, NaOH), and ethanol (99.95%, C$_2$H$_5$OH) were purchased from Sigma-Aldrich USA. Ethylene diamine tetraacetic acid (EDTA), isopropyl alcohol (IPA), and sodium persulfate (PS) were purchased from Sigma-Aldrich, GmbH. Hydrogen peroxide (30%, H$_2$O$_2$) and ammonium hydroxide (29%, NH$_4$OH) were purchased from Merck KGAa USA. Ferrous sulfate heptahydrate (99.5%, FeSO$_4$·7H$_2$O) and cetyltrimethylammonium bromide (100%, C$_{19}$H$_{31}$BrN) were purchased from Sisco Research Laboratories in India. All reagents used were of analytical grade. Solutions were prepared using ultra-pure water.

2.2. Hydrochloric Acid Leaching and Facile Separation. Ilmenite sand was washed thoroughly with ultra-pure water to completely remove dirt, dust, and suspended salts followed by drying at 80 °C. Dried ilmenite (12 g) was leached in 200 mL of concentrated HCl acid under vigorous stirring at 110 °C for 6 h under refluxing. The leached slurry was allowed to cool down and settle into layers in a solid–liquid separation funnel. The unleached ilmenite and titanium residue was separated and subjected to a second leaching cycle with 200 mL of concentrated hydrochloric acid at 110 °C for 6 h, and the slurry was allowed to settle into layers. This procedure was repeated three more times using 100 mL of concentrated HCl acid. Leachates produced after each cycle were combined, and oxygen gas was bubbled through overnight at 1 bar pressure to completely oxidize ferrous ions to ferric ions. The homogenized mixture was filtered through a Whatman filter paper, and the filtrate and the solid residue were collected separately. The leachate was analyzed by ICP-MS analysis. Minor quantities of unreacted ilmenite extracted into titanium residue during the solid–liquid separation were completely evaporated by further refluxing in 200 mL of 6 M HCl acid at 110 °C for 4 h under vigorous stirring. The resulting slurry was filtered, and sediment residue was thoroughly washed with ultra-pure water and 2-proponol until free from acid and chloride ions. Afterward, it was dried at 80 °C.
2.3. Preparation of Nanomaterials. 2.3.1. Synthesis of TiO₂ Nanoparticles. Dried titanium solid (3 g) residue was placed in a round-bottom flask, and 120 mL of 1 M NaOH solution was added. Afterward, 2 mL of 30% H₂O₂ was added as an oxidizing reagent, and the slurry was condensed at 40 °C for 1 h under reflux. The resulting mixture was centrifuged for 30 min at 6500 rpm, and the supernatant and precipitate were collected separately. The yellowish-green supernatant was called sodium titanate liquor, and it was divided into an equal volume of two portions. The first portion of sodium titanate liquor was treated hydrothermally at 180 °C for 2 h. The resulting white dispersion was further diluted with acidified deionized water. The resultant white color dispersion was filtered using a Whatman cellulose nitrate membrane filter paper, and the sedimented residue was thoroughly washed with ultra-pure water and ethanol until the washings are free of hydroxide ions. The successful elimination of hydroxy ions was confirmed by measuring pH. The resulting powder was dried at 80 °C and calcined at 800 °C to obtain TiO₂-A.

Similarly, to understand the formation of a porous structure during the synthesis of TiO₂-B, cetyl trimethyl ammonium bromide (CTAB) was introduced as the structure-directing agent. CTAB was gently dissolved in a 1:1 (v/v) mixture of ethanol and water. The conductivity of ethanol and water mixture was measured during the addition of CTAB. The addition of CTAB into the water—ethanol mixture took place until the conductivity of the solution became constant. The second portion of sodium titanate liquor was added dropwise into the CTAB solution and homogenized for 30 min. This mixture was treated hydrothermally at 180 °C for 2 h. The residue was isolated in the same manner described above for the synthesis of TiO₂ without CTAB. This material is referred to as TiO₂-A.

2.3.2. Synthesis of TiO₂/Fe₂O₃ Based Nanocomposites. Concentrated ammonium hydroxide was added dropwise to the leachate obtained by acid digestion of ilmenite under vigorous stirring until the pH of the reaction mixture reached 10. The resultant brown color slurry was aged for 12 h and washed thoroughly with ultra-pure water until the washings were free from chloride ions and the solution became neutral. Dried powder (TFTO) was calcined at 800 °C to obtain TiO₂/Fe₂O₃-A. This prepared powder is referred to as TFTO-C.

Dried titanium solid (3 g) residue was placed in a round-bottom flask, and 120 mL of 1 M NaOH solution was added. Afterward, 2 mL of 30% H₂O₂ was added as an oxidizing reagent, and the slurry was condensed at 40 °C for 1 h under reflux. The resulting mixture was centrifuged for 30 min at 6500 rpm, and the supernatant and precipitate were collected separately. The yellowish-green supernatant was called sodium titanate liquor, and it was divided into an equal volume of two portions. The first portion of sodium titanate liquor was treated hydrothermally at 180 °C for 2 h. The resulting white dispersion was further diluted with acidified deionized water. The resultant white color dispersion was filtered using a Whatman cellulose nitrate membrane filter paper, and the sedimented residue was thoroughly washed with ultra-pure water and ethanol until the washings are free of hydroxide ions. The successful elimination of hydroxy ions was confirmed by measuring pH. The resulting powder was dried at 80 °C and calcined at 800 °C to obtain TiO₂-A.

Similarly, to understand the formation of a porous structure during the synthesis of TiO₂-B, cetyl trimethyl ammonium bromide (CTAB) was introduced as the structure-directing agent. CTAB was gently dissolved in a 1:1 (v/v) mixture of ethanol and water. The conductivity of ethanol and water mixture was measured during the addition of CTAB. The addition of CTAB into the water—ethanol mixture took place until the conductivity of the solution became constant. The second portion of sodium titanate liquor was added dropwise into the CTAB solution and homogenized for 30 min. This mixture was treated hydrothermally at 180 °C for 2 h. The residue was isolated in the same manner described above for the synthesis of TiO₂ without CTAB. This material is referred to as TiO₂-B.

Concentrated ammonium hydroxide was added dropwise to the leachate obtained by acid digestion of ilmenite under vigorous stirring until the pH of the reaction mixture reached 10. The resultant brown color slurry was aged for 12 h and washed thoroughly with ultra-pure water until the washings were free from chloride ions and the solution became neutral. Dried powder (TFTO) was calcined at 800 °C to obtain TiO₂/Fe₂O₃-A. This prepared powder is referred to as TFTO-C.

2.3.3. Preparation of TiO₂/Fe₂O₄ and TiO₂/FeO₂O₃ Based Nanocomposites. Oxygen gas was bubbled through the leachate that was obtained from the acid digestion of ilmenite. The obtained solution was transferred to a two-neck round-bottom flask, and nitrogen gas was bubbled into the reaction mixture for 1 h. Then, 0.0237 mol of FeSO₄·7H₂O was added to the reaction mixture in a nitrogen atmosphere. After the complete dissolution of FeSO₄·7H₂O, ammonium hydroxide was added dropwise under vigorous stirring. Nitrogen gas was bubbled continuously until the pH of the reaction mixture reached 10. The resultant black slurry was aged for 12 h and thoroughly washed with ultra-pure water until the washings were free from chloride ions and neutral. The dried black color powder was calcined at 450 and 800 °C, separately. The uncalcined powder is referred to as TF, and samples calcined at 450 and 800 °C are referred to as TF-450 and TF-800, respectively.

2.4. Material Characterization. The crystalline structure of the synthesized samples was examined by an Advanced Bruker system X-ray diffraction (XRD) diffractometer. The X-rays were generated at 30 mA current and 40 kV voltage equipped with a Cu Ka anode. The diffractograms were generated by scanning in the 2θ range of 5–80° with a 2°/min scanning rate. The samples were analyzed with X’Pert High Score Plus (PANalytical). The average crystalline size of the nanoparticles was calculated by the Debye–Scherrer equation (eq 1).

\[
D = \frac{0.9\lambda}{\beta \cos \theta}
\]

where \(\lambda\) is the wavelength of Cu Ka (1.54060 nm), \(\theta\) is the diffraction angle, and \(\beta\) is the full width at half-maximum in radians.

The chemical composition of the samples was analyzed by HORIBA Scientific XGT-5200 X-ray fluorescence (XRF). The morphology and particle size of the prepared nanoparticles were characterized by a Zeiss field emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM). A FEI Tecnai F20 Super-Twin equipped with an FEG source (200 kV) was used to examine the TEM morphology of the produced nanocomposites. An Oxford Instruments energy dispersive X-ray (EDX) was used to acquire EDX spectra. The particle size distribution and the average particle size were determined by the ImageJ software. The nitrogen sorption isotherms of the TiO₂ samples were obtained at 77 K using a Quantachrome Autosorb IQ Station 1 analyzer. The samples were dried under a vacuum for 12 h at 393 K before performing the analysis. The ultraviolet–visible diffuse reflectance (UV–vis DRS) of the prepared samples were measured using a Shimadzu 1800 UV/Visible spectrophotometer utilizing a precision Czerny–Turner optical system. The absorbance of MB samples was acquired by a Shimadzu UV-1990 double beam UV–visible spectrophotometer.

2.5. Photocatalytic Measurements. The photocatalytic performance of the synthesized catalysts was evaluated under irradiation generated by a 50 W visible light LED source. In a typical photocatalytic experiment, 200 mg of the photocatalyst (TFTO-800, TF-450, and TF-800) was immersed in 100 mL (10 mg/L) of methylene blue dye solution (MB). Photocatalysts were shaken in the MB solution under dark conditions till adsorption–desorption equilibrium was reached. During the dark adsorption, aliquots were withdrawn at specific times to measure the absorbance readings. The mixture was then exposed to the LED light source, and aliquots were withdrawn at specific time intervals. The absorption spectra were obtained after necessary dilution using a Shimadzu UV-1900 UV–visible spectrophotometer, and maximum absorbance was recorded at 665 nm. Similar to this, the effects of sacrificial agents were investigated using the sacrificial agents IPA, EDTA, and PS. The concentration of the sacrificial agents was maintained at 8 mmol in a 100 mL solution of 10 mg/L MB. Using a Shimadzu UV-1900 UV–visible spectrophotometer, the absorption spectra were acquired following the appropriate dilution and maximum absorbance recorded in 665 nm.

3. RESULTS AND DISCUSSION

3.1. Precipitation of the Rutile Nanoparticles and Photocatalyst Composites. Ilmenite sand was directly digested in concentrated hydrochloric acid as expressed in eqs 2 and 3.46 Dissolution of iron is prominent at low ratios of acid to ilmenite, while at high ratios, efficient dissolution of
both iron and titanium was obtained.\(^\text{47}\) Ilmenite sand was acid leached in five continuous cycles. After each leaching cycle, unreacted ilmenite sand, titanium residue, and acid leachate were separated by a solid–liquid separation technique. As shown in Figure 1a unreacted ilmenite settled at the bottom of the funnel, while the leached titanium residue remained in between the aqueous acid leachate and the denser unreacted ilmenite layer. Less titanium residue was produced after the first leaching cycle with a highly intense orange color leachate. The color of the leachate decreased with increasing number of the cycle and turned out to be more yellow by the end of the fifth cycle. This suggests that during the first few cycles, more iron was leached out with titanium, while during latter leaching cycles, predominantly titanium leached out with less iron. This is due to the fact that loosely bound iron tends to leach out more easily rather than breaking the stable lattice, which limits the dissolution of titanium.

The white-colored titanium residue solid layer that was obtained is a combination of the precipitated hydrolyzed TiO\(_3^2\) and FeTiO\(_4\) in the form of TiO\(_2\)-nH\(_2\)O and H\(_2\)TiO\(_3\) according to eqs 4 and 5.\(^\text{46}\) However, the condensation reaction of H\(_2\)TiO\(_3\) had taken place during the washing and drying process of titanium residue which yields to unstable H\(_2\)TiO\(_3\).\(^\text{48}\)

\[
\text{FeTiO}_3 + 4\text{HCl} \rightarrow \text{Fe}^{2+} + \text{TiOCl}_4^{2-} + 2\text{H}_2\text{O} \\
\text{FeTiO}_3 + 4\text{HCl} \rightarrow \text{FeCl}_2 + \text{TiOCl}_2 + 2\text{H}_2\text{O} \\
\text{TiOCl}_2^{2-} + (1 + n)\text{H}_2\text{O} \rightarrow \text{TiO}_2\cdot n\text{H}_2\text{O} + 2\text{H}^{+} + 4\text{Cl}^- \\
\text{TiOCl}_2 + 2\text{H}_2\text{O} \rightarrow \text{H}_2\text{TiO}_3 + 2\text{HCl}
\]

Ilmenite sand consists of a variety of minerals. Hence, the leaching process of the ilmenite with hydrochloric acid was a complex heterogeneous reaction. The white titanium residue synthesized by the hydrochloric acid leaching process suggested the complete separation of pure titanium products by removing iron. However, the presence of quartz, anorthite, and aluminum phosphate in the titanium residue significantly affects the purity of synthetic rutile. It is well-known that titanium peroxide gel Ti(OH)\(_2\)O\(_2\) forms in a reaction of metallic Ti with H\(_2\)O\(_2\).\(^\text{49}\) The titanium peroxide gel that is produced decomposes into an amorphous hydrate titanat TiO\(_2\)-nH\(_2\)O layer.\(^\text{50}\)

Similarly, to increase the purity of synthesized rutile in this study, the titanium residue was treated in a mild alkaline condition using NaOH with H\(_2\)O\(_2\). The presence of H\(_2\)O\(_2\) is necessary for the formation of high-purity amorphous TiO\(_2\) nanoparticles. As shown in eq 6, under an alkaline environment, the hydrated titania layer may react with NaOH to form NaHTiO\(_3\).\(^\text{50}\) The NaHTiO\(_3\) that is formed is expected to be transformed into Na\(_2\)Ti(O\(_2\))\(_3\)(OH)\(_j\) via the condensation reactions shown in eqs 7–9.\(^\text{50}\) The synthesized Na\(_2\)Ti(O\(_2\))\(_3\)(OH)\(_j\) is transferred to H\(_2\)TiO\(_3\) when diluted in deionized water.\(^\text{14}\) H\(_2\)TiO\(_3\) converts into rutile TiO\(_2\) upon calcination at 800 °C according to eq 10.

\[
\text{TiO}_2\cdot n\text{H}_2\text{O} + \text{NaOH} \rightarrow \text{NaHTiO}_3 + n\text{H}_2\text{O} \\
\text{NaHTiO}_3 + \text{H}_2\text{O}_2 \rightarrow \text{Na}_2\text{Ti(O}_2)_j(\text{OH})_j \\
\text{TiO}_2\cdot n\text{H}_2\text{O} + \text{H}_2\text{O}_2 + \text{NaOH} \rightarrow \text{Na}_2\text{Ti(O}_2)_j(\text{OH})_j \\
\text{H}_2\text{TiO}_3\cdot n\text{H}_2\text{O} + \text{H}_2\text{O}_2 + \text{NaOH} \rightarrow \text{Na}_2\text{Ti(O}_2)_j(\text{OH})_j \\
\text{H}_2\text{TiO}_3 \rightarrow 3\text{TiO}_2 + \text{H}_2\text{O}
\]

During the formation of Na\(_2\)Ti(O\(_2\))\(_3\)(OH)\(_j\), silica and other impurities remained undissolved.\(^\text{46}\) As shown in Figure 1b, Na\(_2\)Ti(O\(_2\))\(_3\)(OH)\(_j\) was a greenish-yellow solution named titanium solution (titanium-sol), and it was used to synthesize rutile nanoparticles. Titanium-sol was directly subjected to the hydrothermal treatment at 180 °C for 2 h to synthesize amorphous titanium followed by calcination at 800 °C to synthesize rutile nanoparticles (TiO\(_2\)-A). TiO\(_2\)-B was synthesized by adding titanium-sol into CTAB dropwise and hydrothermally treating the product followed by calcination at 800 °C.

One of the key novel outcomes of this synthesis method is the ease in which valuable photocatalysts (TF-450, TF-800, and TFTO-800) were produced, which were synthesized effectively by utilizing environmentally hazardous iron-rich acid leachate. TF-450 composed of the anatase phase of TiO\(_2\) and Fe\(_2\)O\(_3\) is magnetically separable. Also, TF-800 is not magnetically separable as it consists of a mixture of anatase and rutile phases of TiO\(_2\) with α-Fe\(_2\)O\(_3\). The acid leachate obtained after the acid digestion of ilmenite contains iron in ferrous
(Fe$^{2+}$) and ferric (Fe$^{3+}$) forms in addition to the Ti$^{4+}$. However, it is virtually impossible to determine the exact Fe$^{2+}$ and Fe$^{3+}$ ion concentration of acid leachate as Fe$^{2+}$ readily oxidizes to Fe$^{3+}$ in the presence of O$_2$ dissolved in the medium and that is present in the atmosphere as shown in eq 11. The molar ratio of Fe$^{2+}$ and Fe$^{3+}$ was very important in determining the magnetism of the synthesized magnetite nanoparticles. Therefore, to completely oxidize Fe$^{2+}$ to Fe$^{3+}$, oxygen gas was bubbled through the acid leachate, and the resulting solution contained Fe$^{3+}$ as FeCl$_3$ and Ti$^{4+}$ present as H$_2$TiOCl$_4$ or TiOCl$_2$. The total Fe$^{3+}$ and Ti$^{4+}$ concentrations were determined by ICP-MS and were found to be 5434 and 3078 mg/L, respectively.

Then FeSO$_4$$\cdot$7H$_2$O was added to the acid leachate being half in number of moles of Fe$^{3+}$ while nitrogen gas bubbling. The precipitation of Fe$^{3+}$O$_4$ nano-particles and Ti(OH)$_4$ by the addition of NH$_4$OH can be expressed according to eqs 12−17.

\[
H_2TiOCl_4 + 4 OH^- \rightarrow Ti(OH)_4 + 4Cl^- + 2H_2O \tag{16}
\]
\[
TiOCl_2 + 4OH^- \rightarrow Ti(OH)_4 + 2Cl^- + O_2^- \tag{17}
\]

3.2. XRD and XRF Analysis

Figure 2 shows the detailed XRD analysis of the synthesized materials. As shown in Figure 2a, the XRD pattern of ilmenite sand matched with the ilmenite (ICDD no. 01-075-0519), hematite (01-073-0603), rutile (00-034-0180), and silica (01-085-0335) phases, suggesting these as the major phases with high crystallinity. The chemical composition of the ilmenite sand analyzed by XRF is tabulated in Table 1. When a sample is bombarded with X-rays, the material in the specimen emits additional X-rays. After that, a detector records the X-rays. The resulting spectrum characterizes the chemical components that make up the substance by oxide-analysis detection mode. XRF analysis revealed that ilmenite sand consisted of relatively high proportions of titanium, iron, silica, and vanadium content (48.87, 42.81, 3.94, and 1.21%, respectively) compared to the other impurities present in low quantities.

As shown in Figure 2b, the XRD pattern of the leached titanium residue matches with ICDD DB card nos. 01-076-1939, 01-083-2468, 00-041-1486, and 01-079-1095, indicating the presence of the TiO$_2$ (rutile), SiO$_2$ (quartz), CaAl$_2$Si$_2$O$_8$ (anorthite), and AlPO$_4$ (aluminum phosphate), respectively. Diffraction peaks at 27.46, 36.07, 41.20, 43.93, 54.28, 56.53, and 62.88° correspond to the (110), (101), (111), (210), (100), (111), (200), respectively.

![Figure 2](https://pubs.acs.org/doi/abs/10.1021/acsomega.2c03262)
ICDD DB card nos. 00-041-1432 and 01-076-1939, (rutile), and the crystallographic data are consistent with (anatase), respectively. The diffraction peak at 68.87° corresponds to the diffractions of the (031) plane of synthetic quartz. The XRD pattern of amorphous titanium is shown in Figure 2c where no clear diffractions peaks were observed. As shown in Figure 2d,e,f upon calcination of amorphous titanium at 800 °C, diffraction peaks corresponding to the crystalline rutile phase of titanium dioxide (ICDD DB card no. 01-076-1939) appeared in TiO$_2$-A and TiO$_2$-B, respectively. The average crystallite size calculated from Scherrer’s equation using the (110) crystalline plane for both TiO$_2$-A and TiO$_2$-B was 100.9 and 131.0 nm, respectively. The crystallite size of TiO$_2$ synthesized in the presence of CTAB (TiO$_2$-B) is higher than that of TiO$_2$-A, which was synthesized without CTAB. In the case without the CTAB surfactant, the Ti(OH)$_4$ chains polymerize. Polymerized chains could interact with other chains by interchain hydrogen bonding, so aggregation of TiO$_2$ particles and TiO$_2$ clusters may be formed. Also, the reduction of TiO$_2$ cluster aggregation occurs with the presence of the CTAB surfactant in critical micelle concentration. The hydrogen atoms of the polymeric Ti(OH)$_4$ interacted with (C$_{16}$H$_{33}$)(CH$_3$)$_2$N$^+$ cationic hydrophilic groups of CTAB micelles. These hydrophilic groups are removed upon calcination, resulting in less aggregated TiO$_2$ particles and clusters.

Figure 2f shows the XRD pattern of the dried TFTO composite and diffraction pattern matched with the ICDD DB card nos. 01-077-0044, 01-076-1939, and 01-073-0603, suggesting the presence of TiO$_2$ (anatase), TiO$_2$ (rutile), and α-Fe$_3$O$_4$ respectively. The diffraction peaks centered at 25.06, 35.62, 37.66, 47.23, and 62.22° are indexed to (101), (103), (004), (200), and (211) crystalline planes of TiO$_2$ (anatase), respectively. The diffraction peak at 27° is assigned to the (110) plane of TiO$_2$ (rutile). Similarly, the diffraction patterns centered at 32.9, 35.71, 41.12, and 62.22° correspond to the α-Fe$_3$O$_4$ (104), (110), (113), and (214) crystalline planes. The diffraction peak at 54.10° can be indexed to the (105) plane of TiO$_2$ (anatase), (211) plane of TiO$_2$ (rutile), and (116) plane of α-Fe$_3$O$_4$. Figure 2g shows the XRD pattern of the 800 °C annealed TFTO-800 composite. It shows the presence of Fe$_2$TiO$_4$ (pseudobrookite) and TiO$_2$ (rutile), and the crystallographic data are consistent with ICDD DB card nos. 00-041-1432 and 01-076-1939, respectively. The formation of Fe$_2$TiO$_4$ phase during the annealing process required a 2:1 molar ratio of Fe/Ti. Furthermore, the absence of Fe$_3$O$_4$ and presence of TiO$_2$ in the XRD pattern of TFTO-800 suggested the complete conversion of Fe$_3$O$_4$ in TFTO during the phase transformation.

The XRD pattern of TFTO-800 shows prominent diffraction peaks at 18.08, 25.53, 32.50, 37.35, 40.85, 46.00, 48.87, and 60.03° corresponding to the planes (200), (101), (230), (131), (240), (331), (430), and (232) of orthorhombic pseudobrookite, Fe$_2$TiO$_4$. Also, diffraction values centered with the 2θ values at 27.33, 40.85, 54.18, 56.19, and 65.60°, which corresponded to the crystalline planes (110), (111), (211), (200), (211), and (310) of rutile TiO$_2$. The compositional (changing the Fe/O ratio from 3:4 to 2:3) and structural modifications are both involved in the phase transformation of Fe$_3$O$_4$ to α-Fe$_3$O$_4$. The process is called oxygen dissociation and can occur at temperatures starting from 700 to 1000 °C, but the exact temperature varies due to composition and oxygen partial pressure. A quick hysteresis loop and back field demagnetization curve (to get coercivity and coercivity of remanence, respectively) should give a quick
Figure 4. SEM images of the (a) ilmenite sand, (b) TiO$_2$-A, (c) TiO$_2$-B, (d) uncalcined TF composite, (e) TF-450 composite, and (f) TF-800 composite.

Figure 3. Raman pattern of (a) TFTO-800, (b) TF-450, (c) TF-800, and (d) TiO$_2$-A.

indication of magnetite/maghemite (soft) versus hematite (hard) or a mixture of both.

Peaks at 25.30 and 27.32° are attributed to the (101) and (110) crystalline planes of anatase and rutile, respectively. Table 2 summarizes the detailed analysis of Fe$_3$TiO$_4$, TiO$_2$ (rutile), Fe$_3$O$_4$, TiO$_2$ (anatase), and α-Fe$_2$O$_3$.

3.3. Raman Analysis. To confirm the crystallographic structure suggested by XRD, Raman spectroscopic analysis of synthesized materials was conducted. Figure 2 shows the Raman spectra of TFTO-800, TF-450, TF-800, and TiO$_2$-A materials respectively. As shown in Figure 3a, Raman analysis of TFTO-800 consisted of Raman vibration bands at 199, 222, 243, 290, 334, 410, 436, 610, 658, and 780 cm$^{-1}$. The Raman vibration bands at 199, 222, 334, 436, 658, and 780 cm$^{-1}$ reveal the presence of the pseudobrookite (Fe$_3$TiO$_4$) phase. Vibration bands at 223 and 498 cm$^{-1}$ are the A_{1g} and the bands at 243, 290, 410, and 610 cm$^{-1}$ are assigned to the E_g vibration modes of α-Fe$_3$O$_4$. The observed vibration bands for α-Fe$_3$O$_4$, Fe$_3$TiO$_4$, and Fe$_2$TiO$_3$ are consistent with the literature reported data.

As shown in Figure 3b, the Raman spectra of the FT-450 nanocomposite consist of peaks located at 318, 517, and 671 cm$^{-1}$. Those peaks are attributed to the $E_g T_{2g}$ and A_{1g} mode of Fe$_3$O$_4$. To verify whether there is a phase transformation from Fe$_3$O$_4$ to γ-Fe$_3$O$_4$, the corresponding Raman spectra were intensively analyzed. These did not contain any apparent peak related to the γ-Fe$_3$O$_4$ or α-Fe$_2$O$_3$. This result gives the evidence for the existence of Fe$_3$O$_4$. The Raman band at 154 cm$^{-1}$ is very intense and sharp. Four characteristic Raman active modes of anatase TiO$_2$ with symmetries E_2g, B_1g, A_{1g}, and E_g were observed at 154, 382, 481, and 628 cm$^{-1}$. These characteristic vibration frequencies confirmed the phase pure anatase TiO$_2$ in the TF-450 nanocomposite. An additional broad and intense Raman scattering effect was observed at 1416 cm$^{-1}$ due to the 2LO Raman scattered intensities.

These Raman data confirm the formation of the pure phase of anatase and Fe$_3$O$_4$ in the TF-450 nanocomposite.

Figure 3c shows the Raman spectra of the 800 °C annealed TF-800 nanocomposite. As shown in Figure 3c, the sharp Raman vibration positions at 243 cm$^{-1}$ were assigned to the A_{1g} and those at 290, 410, and 610 cm$^{-1}$ were assigned to the E_g vibration modes of α-Fe$_3$O$_4$. Similarly, the rutile TiO$_2$ exhibited characteristic stretching peaks at 140 and 596 cm$^{-1}$ with relatively less intensity and correspond to the B_{1g} and A_{1g} vibration modes with respective intensity. Raman vibration modes of anatase TiO$_2$ with symmetries E_g, B_{1g}, A_{1g}, and E_g were observed at 123, 375, 500, and 618 cm$^{-1}$ wavenumbers with relatively less intensity. These characteristic vibrational wavenumbers and their intensity ratios confirmed the presence of the α-Fe$_3$O$_4$, anatase TiO$_2$, and rutile TiO$_2$, respectively.

Figure 3d shows the 800 °C annealed TiO$_2$-A sample, and Raman vibration positions were centered at 142, 445, and 611 cm$^{-1}$, respectively. These fundamental Raman vibrations are attributed to the B_{1g}, E_g, and A_{1g} modes of rutile, accordingly.

A noticeable broad band at 235 cm$^{-1}$ was observed in TiO$_2$-A, which did not coincide with any theoretical calculations for the fundamental Raman modes of rutile. However, the broad peak suggests that it might be either second-order or disorder induced photon scattering effect.

3.4. SEM Morphological Analysis. The morphology of the synthesized nanomaterials was determined by scanning electron microscopy. The SEM image of ilmenite sand (Figure 4a) shows the macro nature of the sand particles. SEM images of synthesized TiO$_2$-A and TiO$_2$-B are shown in Figure 4b,c.
Both TiO$_2$-A and TiO$_2$-B samples consisted of spherical nanoparticles. The average particle size of TiO$_2$-A and TiO$_2$-B was 347.2 and 218.4 nm, respectively. This result suggests that CTAB had prevented the formation of nanoparticles during the hydrothermal synthesis. The aggregation observed in the nanomaterials is due to the Oswald ripening that resulted from increased calcination temperature.

3.5. TEM Analysis. The morphological features of TiO$_2$-A and TF-800 composites at the nanoscale were analyzed by TEM (Figure 5). Bright-field TEM images of TiO$_2$-A (Figure 5a,b) indicated that the nanoparticles are spherical and irregular in shape and are polydisperse with aggregated nanoparticles. The HR-TEM image of TiO$_2$ (Figure 5c) shows the atomic arrangement of (112) and (110) planes of

Figure 5. (a, b) Bright-field TEM images of TiO$_2$-A; (c) HR-TEM images of TiO$_2$-A; (d, e) bright-field TEM images of TF-800; (f, g, h) HR-TEM images of TF-800; (i) EDX spectra of TF-800; and elemental mapping of TF-800 (j) C, (k) O, (l) Ti, and (m) Fe.
Figure 6. High-resolution XPS spectra of (a) Ti 2p of TiO$_2$-A, (b) Ti 2p of TF-800, (c) Ti 2p of TF-450, (d) Ti 2p of TFTO-800, (e) Fe 2p of TiO$_2$-A, (f) Fe 2p of TF-800, (g) Fe 2p of TF-450, (h) Fe 2p of TFTO-800, (i) C 1s of TiO$_2$-A, (j) C 1s of TF-800, (k) C 1s of TF-450, (l) C 1s of TFTO-800, (m) O 1s of TiO$_2$-A, (n) O 1s of TF-800, (o) O 1s of TF-450, and (p) O 1s of TFTO-800. Survey spectra of (q) TiO$_2$-A, (r) TF-800, (s) TF-450, and (t) TFTO-800.
rutile, corresponding to interlayer distances of 0.24 and 0.32 nm, respectively.

Bright-field TEM images of TF-800 showed aggregated nanoparticles with spherical and irregular shapes, as shown in Figure 5d,e. Nanoparticles in TF-800 are mostly fused. Additionally, the HR-TEM image (Figure 5f) shows the arrangement of the atomic planes of (014) of α-Fe₂O₃, (101) of anatase, and (110) of rutile that are exhibited by interlayer Figure 7.

Figure 7. (a) Nitrogen adsorption–desorption isotherms of TiO₂-A and TiO₂-B; (b) pore size distribution of TiO₂-A and TiO₂-B; (c) Kubelka–Munk function vs wavelength plot for TiO₂-A; Tauc plot for determination of (d) indirect band gap (n = 1/2) and (e) direct band gap (n = 2) according to eq 19; (f) Kubelka–Munk function vs wavelength plot for TF-800, TF-450, and TFTO-800; (g) indirect band gap (n = 1/2) for TF-800, TF-450, and TFTO-800; and (h) direct band gap (n = 2) for TF-800, TF-450, and TFTO-800.

Nanoparticles in TF-800 are mostly fused.
Table 3. Textural Properties of As-Prepared TiO₂ Samples

material	source	synthesis method	annealing temperature (°C)	surfactant	surface area S_BET (m² g⁻¹)	average pore size (nm)	pore volume V_pore (cm³ g⁻¹)	references
TiO₂-A	ilmenite sand	hydrothermal synthesis	800		20.731	1.929	0.042	present study
TiO₂-B	ilmenite sand	hydrothermal synthesis	800	CTAB	19.419	1.541	0.037	present study
anatase TiO₂	titanium butoxide (TTB)	sol–gel synthesis	475	PEG-20	22.34	9.7	0.081	85
anatase TiO₂	titanium isopropoxide (TTIP)	ultrasonic irradiation	500		38.37	10.4	0.112	87
anatase TiO₂	TTIP	solvothermal method	450		113.9	7.8	0.296	88
anatase TiO₂	TTIP	microwave method	450		116.1	9.3	0.373	88

distances 0.27, 0.35, and 0.32 nm, respectively, indicating the formation of a heterojunction between these compounds. Consequently, different exposed crystalline planes provided diverse electrochemical and catalytic properties. The (014) crystal plane of α-Fe₂O₃ nanocrystals have a higher surface energy and are more responsive to surface defects. As a result, photocatalytic activity might be affected by different exposed crystal surfaces. As shown in Figure 5i–m, images of EDX elemental maps exhibit the constituent elemental distribution with each other. The Fe 2p core-level spectra of TF-450 have been fitted to three main peaks at 725.57, 719.74, and 711.95 eV and two satellite peaks at 733.90 and 719.60 eV. The lowest binding energy peak at 711.95 eV was attributed to the Fe 2p₁/₂ of Fe²⁺, with a corresponding satellite at 719.74 eV. The Fe 2p₁/₂ of Fe³⁺ tetrahedral species was found with a binding energy of 725.57 eV. Iron comprised two oxidation states: Fe²⁺ and Fe³⁺ in TF-450. Figure 6h shows the XPS Fe 2p spectrum of TF-800. The Fe 2p₁/₂ and 2p₁/₂ main peaks are clearly accompanied with satellite structures on their high binding-energy side. The binding energy of 711.81 eV for the Fe 2p₁/₂ and 725.42 eV for the 2p₁/₂ main peaks shows the presence of Fe³⁺ in TF-800. The satellite peaks were observed at 714.45, 719.6, and 733.4 eV. The high-resolution C 1s XPS spectra of the synthesized materials are shown in Figure 6i–l. Peaks at 284.79, 286.07, and 288.46 eV have 0.007, 0.21, and 0.100 eV standard deviation values, respectively, which are attributed to C=C, C–O, and C=O bonds, respectively. Figure 6m,n shows the O 1s XPS spectra of the synthesized TiO₂-A, TF-800, TF-450, and TF-TTO-800 nanomaterials, respectively. The spectra have been fitted to two peaks with binding energies of 530.22 and 531.56 eV with standard deviations of 0.17 and 0.30 eV, respectively. The peak at 530.22 eV was ascribed to the O³⁻ of Fe³⁺, Fe²⁺, and Ti⁴⁺ oxides. Also, the peak at around 531.5 eV of TiO₂, TF-800, and TF-450 corresponded to OH, while the peak at 532 eV of TITO-800 corresponded to the oxygen bound to carbon. The survey spectra of TiO₂-A, TF-800, TF-450, and TF-TTO-800 are shown in Figure 6q–t. As shown in Figure 6q, the TiO₂-A nanomaterial consisted of Ti and O as the major constituents. However, the presence of Mn, Ca, and Si in minor concentrations in other photocatalysts was observed, while Fe and Ti were the major constituents of the photocatalyst material. The Ti/Fe ratios calculated from the XPS spectra of TiO₂-A, TF-800, TF-450, and TITO-800 were 1.25, 0.29, and 3.33, respectively. Also, the C/Ti ratio calculated for TiO₂-A nanomaterial was 0.08.

3.7 Nitrogen Sorption Analysis. To distinguish the effect of the CTAB surfactant for the formation of a porous structure, TiO₂ samples were subjected to Brunauer–
Emmett–Teller (BET) analysis to acquire nitrogen sorption isotherms and the BJH pore size distribution curves that are shown in Figures 7a and 6b, respectively. Nitrogen sorption isotherms of both TiO$_2$-A and TiO$_2$-B samples exhibit a type (III) isotherm, and it did not show any hysteresis loop. This isotherm referred to a nonporous or macroporous (>50 nm) material that was obtained due to the relatively weak interactions between the adsorbent and adsorbate (TiO$_2$ and N$_2$ molecules). The BJH pore size distribution curves of both TiO$_2$ materials show identical behavior with uniform pore distribution. The specific surface area, pore volume, and average pore diameters for prepared TiO$_2$-A and TiO$_2$-B samples are tabulated in Table 3. It was found that the BET surface area, pore volume, and average pore diameters for prepared TiO$_2$-A and TiO$_2$-B samples were similar. These results were attributed to the similar formation conditions of TiO$_2$ either with CTAB or without CTAB. In the case of hydrothermal synthesis, the structures of CTAB micelles are less stable under 180 °C. This instability of CTAB micelles resulted to the noncontrollable polymerization of Ti(OH)$_4$ in TiO$_2$-B. Further, as reported in the literature, the titanium source, synthesis method, annealing temperature, and type of the surfactant used significantly contributed to the surface area, pore size, and pore volume of the synthesized TiO$_2$ nanoparticles as shown in Table 3.

3.8. Optical Adsorption Properties

The UV–vis DRS optical absorption properties of the prepared TiO$_2$-A are shown in Figure 7c–e. The Kubelka–Munk function was plotted against wavelength. The TiO$_2$-A solid reveals an abrupt drop of absorption at about 400 nm, indicating an increase in radiation absorption below this wavelength. Also, it can be seen that TiO$_2$ exhibits a typical high absorption in the UV region and almost no absorption in the visible region. The adsorption edge for TiO$_2$-A was approximately 425 nm. This event is associated with the electron transition from the valence band to the conduction band in the rutile structure. On the other hand, diffuse reflectance UV–vis data were used to calculate the band gap energy. The band gap energy was calculated from the plot of $F(R)h\nu^n$ vs $h\nu$ (photon energy). The value of n used for the direct and indirect allowed transitions is 2 and $1/2$, respectively.

Figure 8. (a) Degradation rate of MB at the different time intervals; (b) pseudo-first-order model of TFTO-800, TF-450, and TF-800; (c) pseudo-second-order model of TF-450; (d) pseudo-second-order model of TFTO-800 and TF-800, dark 60 min adsorption of MB onto the prepared nanocomposite; (e) photocatalytic % decolorization of MB; first-order kinetic photodegradation of MB under LED light for (f) TFTO-800, (g) TF-450, and (h) TF-800 nanocomposites; and (i) conversion of MB at each photocatalytic cycle of TF-800.
The Kubelka-Munk function, \(F(R) \), is given by eq 18, and the band gap was determined using the Tauc plot:\(^9\)

\[
F(R) = \alpha = \frac{(1 - R)^2}{2} \frac{S}{R}
\]

(18)

\[
[F(R)h\nu]^n = A(h\nu - E_g)
\]

(19)

where \(\alpha = \) absorption coefficient (a.u), \(S = \) dispersion factor, \(R = \) diffuse reflectance of the sample divided by the reflectance of the reference material \((\text{BaSO}_4)\), \(h = \) Planck’s constant \((4.1357 \times 10^{-15} \text{ eV s})\), \(E_g = \) band gap (eV), and \(A = \) proportional constant.

According to Figure 7d,e, the calculated direct and indirect band gap energies for the synthesized TiO\(_2\)-A are 2.91 and 2.88 eV, respectively. The band gap that resulted from the direct transition was chosen, and it was lesser than the theoretical band gap value reported for rutile (3.0 eV).\(^90\) According to the XRF analysis, vanadium \((\text{V})\) is present at a weight percentage of 1.22%. Vanadium easily gets doped to the TiO\(_2\) lattice as the ionic radius of vanadium is quite similar to that of titanium and thus lowers the band gap of rutile by creating an energy level below the conduction band of TiO\(_2\).\(^56,91\) However, according to the XRD, Raman, and XPS analysis of TiO\(_2\)-A and TiO\(_2\)-B, the crystalline parameters related to the standard rutile TiO\(_2\) are precisely equivalent to those in the TiO\(_2\) in TiO\(_2\)-A and TiO\(_2\)-B. These results suggested that V doped into the TiO\(_2\) lattices and it may not deposit on the surface of TiO\(_2\) as heterostructures.

Furthermore, Figure 7f shows the Kubelka-Munk function plotted against the wavelength of TF-800, TF-450, and TPTO-800. As shown in Figure 7f, TF-800 and TPTO-800 reveal an abrupt drop of absorption at the visible light region. However, TF-450 shows an adsorption edge far away from the TF-800 and TFPTO-800 photocatalysts. The direct and indirect band gap responsible for the TF-800 and TPTO-800 is illustrated in Figure 7g,h, respectively. The indirect band gap for TF-800, TF-450, and TPTO-800 can be assigned as 2.01, 2.00, and 2.26 eV, respectively. In addition to that, the direct band gap for the direct transduction of TF-800, TF-450, and TPTO-800 can be assigned as 2.02, 2.04, and 2.28 eV, respectively.

3.9 Photocatalytic Degradation

The photocatalytic activities of the prepared TPTO-800, TF-450, and TF-800 samples were evaluated based on degradation of 10 mg/L methylene blue dye (MB) under visible light irradiation (Figure 8). The experiments were performed under the following conditions: \(C_0 = 10 \text{ mg/L, } T = 25 ^\circ \text{C, and pH = 7.} \) \(C_i \) is the absorbance at different time intervals, and \(C_0 \) is the initial MB concentration.

The photodegradation of MB under visible light is shown in Figure 8a. Catalysts were shaken with the MB solution under dark conditions for 60 min until adsorption—desorption was reached as shown in Figure 8a.

TF-450 did not show a significant capacity to absorb MB. However, TPTO-800 and TF-800 did absorb MB, where a significant adsorption was observed during the first 15 min because, initially, the surface of all the catalysts was vacant. With time, the progress rate of adsorption decreased, reaching an adsorption—desorption equilibrium at 60 min. As adsorption sites became occupied, available vacant sites for MB molecules became limited, resulting in low adsorption. Moreover, though adsorption sites may be available, incoming molecules cannot reach those sites due to the high steric hindrance of the preadsorbed MB molecules.\(^92,93\) To study the adsorption kinetics, data obtained under dark conditions were fitted to pseudo-first-order and pseudo-second-order kinetics models. The best fitting model was selected based on the linear regression correlation coefficient \(r^2 \) values. A linear form of the pseudo-first-order and pseudo-second-order adsorption models could be expressed by eqs 20 and 21.\(^94\) The plot for the pseudo-second-order kinetics model for all three catalysts is shown in Figure 8b. The plot that represents the pseudo-second-order kinetic model of TF-450 is given in Figure 8c, and that of TPTO-800 and TF-800 is shown in Figure 8d. Corresponding kinetic parameters are summarized in Table 4. The reusability of the TF-800 photocatalyst was evaluated for 3 h to determine how effective the catalysts would be when used multiple times. The initial concentration and volume of MB were 10 mg/L and 100 mL, respectively. The efficiency of TF-800 in photodegrading MB under visible light dropped from 98.32% at the first cycle to 94.25% at the fifth cycle, as illustrated in Figure 8i. There was only a 4.07% decrease in conversion of MB from cycle 1 to cycle 5, which may have been caused by an accumulation of MB molecules in the porous structure that slows the movement of fresh MB molecules to the catalytically active sites.

\[
\ln(q_e - q_t) = \ln q_e - k \cdot t
\]

(20)

\[
\frac{t}{q_i} = \frac{1}{k_1 q_e^2} + \left(\frac{1}{k_2}\right)^t
\]

(21)

where \(q_e = \) amount of adsorbed (adsorbate) at equilibrium per unit mass of adsorbent \((\text{mg/g}), q_t = \) amount of adsorbed (adsorbate) at time \(t \) per unit mass of adsorbent \((\text{mg/g}), k_1 = \) pseudo-first-order adsorption rate constant \((1/\text{min}), t = \) time \((\text{min})\), and \(k_2 = \) pseudo-second-order adsorption rate constant \((\text{g/min} \cdot \text{mg})\).

The adsorption data of TPTO-800 and TF-800 fitted well with the pseudo-second-order model with a linear regression correlation coefficient of 0.99. Also, as shown in Table 4, the experimental equilibrium adsorption capacity \((q_e, \text{exp}) \) of TPTO-800 and TF-800 is well aligned with the theoretical equilibrium adsorption capacities calculated from the pseudo-second-order model. Furthermore, the \(k_2 \) value of TPTO-800 was higher than the \(k_2 \) value of TF-800, indicating that the rate of adsorption of MB onto TPTO-800 is greater than TF-800, which could be due to the high surface area and pore volume.

The photocatalytic activity of the synthesized catalysts was evaluated based on the degradation of MB upon exposure to visible light. The photodegradation efficiency of the catalysts is

Table 4. Kinetic Parameters for Dark Adsorption of Methylene Blue onto Nanocomposites

Material	\(q_e, \text{exp} \) (mg g\(^{-1}\))	\(q_e \) (mg g\(^{-1}\))	\(k_1 \) (min\(^{-1}\))	\(k_2 \) (g min\(^{-1}\) mg\(^{-1}\))	\(r^2 \)	
TPTO-800	0.690	0.075	0.826	0.696	0.224	0.994
TF-450	0.048	0.005	0.246	0.034	4.347	0.180
TF-800	1.090	0.095	0.938	1.123	0.126	0.992

[9] Article Information

https://doi.org/10.1021/acsomega.2c03262

ACS Omega 2022, 7, 27617–27637

27629
shown in Figure 8e. The percentage decolorization was calculated by eq 22. The maximum percentage decolorization (88.6%) occurred when TF-800 was used as the photocatalyst followed by TTF0-800 (33.1%) and TF-450 (13.5%). The efficient photodegradation removal percentage of TF-800 due to the maximization of charge separation through the heterostructure explained in Section 3.9.

\[
\text{%Decolorization} = \left(\frac{A_0 - A}{A_0} \right) \times 100
\]

where \(A_0 \) = absorbance of MB at zero time and \(A \) = absorbance of MB at time \(t \).

Photocatalytic degradation kinetics of organic molecules usually follows the Langmuir–Hinshelwood kinetics mechanism, and the simplified equation can be expressed as in eq 23,25,96

\[
\ln \left(\frac{C}{C_0} \right) = -k_{\text{app}}t
\]

where \(C = \) concentration of MB at time \(t \) (mg/L), \(C_0 = \) initial concentration of MB (mg/L), \(k = \) reaction rate constant (1/min), \(K = \) adsorption coefficient of the reactant, \(k_{\text{app}} = \) apparent first-order rate constant (1/min), and \(t = \) time (min).

Figure 8f–h shows the first-order kinetic data points (ln(A/\(A_0 \))) fit to a polynomial order function equation. The polynomial equations obtained for TTF0-800, TF-450, and TF-800 are represented in eqs 24, 25, and 26, respectively. The data points (ln(A/\(A_0 \)), t) obtained for TF-800 and TTF0-800 nanocomposites fitted well to the second-order polynomial regression, while those obtained for TF-450 fitted well to the fourth-order polynomial regression. The correlation coefficient \(r^2 \) indicates how well the data fitted to the respective equations. The \(r^2 \) values and rate constants for TTF0-800, TF-450, and TF-800 photocatalysts for both linear and polynomial functions are tabulated in Table 5.

\[
y = 2.26 \times 10^{-5}x^2 - 6.09 \times 10^{-4}x
\]

\[
y = 4.28 \times 10^{-9}x^4 - 1.04 \times 10^{-6}x^3 + 6.92 \times 10^{-5}x^2
\]

\[- 1.91 \times 10^{-3}x\]

\[
y = 2.15 \times 10^{-4}x^2 - 0.04x
\]

where \(y = (\ln(\frac{A}{A_0})) \) and \(x = \) exposure time (t)/(min).

Table 5 shows that the initial rate constant for the photodegradation of MB in the presence of TF-800 (0.044 min\(^{-1}\)) was higher than that of TTF0-800 (0.006 min\(^{-1}\)) and TF-450 (0.002 min\(^{-1}\)). When the catalysts are illuminated by photons with energy higher than the band gap energy, photogenerated electrons are excited from the valence band (VB) to the conduction band (CB), leaving holes in the VB. When the surface of TTF0-800, TF-450, and TF-800 photocatalysts is illuminated by visible light, TiO\(_2\) is not expected to show a significant contribution to the photocatalytic activity because the energy of the incoming photons is insufficient to promote an electron from the VB to the CB. However, in the presence of only visible light, TiO\(_2\) merely serves as an electron transport layer. The electron transport layer can selectively collect photogenerated charge carriers produced in the visible light sensing absorber material and limit the recombination of carriers at interfaces, thus ensuring a high photocatalytic efficiency. Synthesized nanocomposites consisted of a visible light active component Fe\(_2\)TiO\(_5\), Fe\(_2\)O\(_4\), and α-Fe\(_2\)O\(_3\) in TTF0-800, TF-450, and TF-800, respectively. The theoretical band gap of spinel cubic Fe\(_2\)O\(_4\) is 0.14 eV, that of Fe\(_2\)TiO\(_5\) is around 2.25 eV, and that of α-Fe\(_2\)O\(_3\) is 2.1 eV, respectively.98–100 Those visible-light active materials can promote the initial excitation of electrons from the CB to the VB. The band alignment of the individual component in the nanocomposite is very important for the photocatalytic activity.

The TF-450 nanocomposite exhibited the lowest photocatalytic activity. As revealed by the XRD analysis, TF-450 consisted of approximately 65.7% of Fe\(_2\)O\(_3\) and 34.2% of TiO\(_2\). This decrease in photocatalytic activity could have occurred because of the photo-dissolution of iron oxide induced by photoactive TiO\(_2\) due to electronic interactions at the phase junction.101,102 As confirmed by the XRD analysis, Fe\(_2\)O\(_4\) has a spinel cubic structure that has a band gap of 0.14 eV.78,103–105 Hence, the Fe\(_2\)O\(_4\)/TiO\(_2\) phase junction exhibits a relatively large difference in energy gap between n-type semiconductors of rutile TiO\(_2\) (3.2 eV) and Fe\(_2\)O\(_4\) (0.14 eV). Photogenerated electrons in the excited Fe\(_2\)O\(_4\) cannot transfer to the CB of TiO\(_2\). The calculated CB and VB energy for Fe\(_2\)O\(_4\) is 1.21 and 1.35 eV, respectively. Therefore, the narrow band gap of Fe\(_2\)O\(_4\) enhances the recombination of electron–hole pairs, resulting in low photocatalytic activity in TF-450. The initial photocatalytic rate constant of TTF0-800 was 3 times faster than TF-450.

The TTF0-800 binary nanocomposite consisted of 71.1% Fe\(_2\)TiO\(_5\) and 28.9% TiO\(_2\). Fe\(_2\)TiO\(_5\) facilitated the initial excitation of electrons from CB to VB in the TTF0-800 binary nanocomposite. As reported in our previous study, Fe\(_2\)TiO\(_5\)/TiO\(_2\) shows a type I band alignment.74 Therefore, as the CB of TiO\(_2\) lies above the CB of Fe\(_2\)TiO\(_5\), migration of photogenerated electrons from Fe\(_2\)TiO\(_5\) to TiO\(_2\) would not take place. Hence, electron–hole pair recombination is possible at Fe\(_2\)TiO\(_5\). Therefore, the photocatalytic activity of TTF0-800 is greater than TF-450 but less than TF-800. The initial rate constant for the photodegradation of MB in the presence of TF-800 was 6 times higher than TTF0-800 and 22 times faster than TF-450.

The TF-800 nanocomposite consisted of 56% α-Fe\(_2\)O\(_3\), 26% anatase TiO\(_2\), and 17% rutile TiO\(_2\). The band gap energy of rutile and anatase polymorphs of TiO\(_2\) is at 3.03 and 3.2 eV, respectively. The CB of anatase lies above the CB of rutile TiO\(_2\), migration of photogenerated electrons from Fe\(_2\)TiO\(_5\) to TiO\(_2\) would not take place. Hence, electron–hole pair recombination is possible at TiO\(_2\). Therefore, the photocatalytic activity of TTF0-800 is greater than TF-450 but less than TF-800. The initial rate constant for the photodegradation of MB in the presence of TF-800 was 6 times higher than TTF0-800 and 22 times faster than TF-450.

Table 5. Linear and Polynomial Kinetic Parameters for Visible Light Photocatalysis

Material	Linear regression analysis	Polynomial regression analysis		
	\(k_{\text{app}} \) (min\(^{-1}\))	\(r^2 \)	initial rate constant (min\(^{-1}\))	\(r^2 \)
TTF0-800	0.004	0.960	0.006	0.985
TF-450	0.001	0.927	0.002	0.990
TF-800	0.024	0.929	0.044	0.993
P-25	0.0001	0.973		
other hand, holes are initially exhibited at the VB of anatase and rutile due to the overlapping of VB energy levels. Furthermore, holes are migrated to the VB of α-Fe$_2$O$_3$ from the VB of anatase and rutile. This type of band alignment of TF-800 is type II where the photo-generated electrons of Fe$_2$O$_3$ migrate to the CB of TiO$_2$, facilitating the charge separation and leading to higher photocatalytic activity by limiting the electron–hole recombination effects. According to these results, it is evident that the ternary TF-800 nanocomposite is more effective than binary TF-450 and TFTO-800 nanocomposites in photodegrading MB under visible light exposure.

First-order deterioration is depicted in Figure S1. The linear first-order rate constant calculated for P-25 was 0.0001 min$^{-1}$. The photocatalytic decomposition of MB in the presence of TF-800, TFTO-800, and TF-450 catalysts was 440, 60, and 20 times faster than that of P-25, respectively.

There is a lack of research work to evaluate kinetic parameters of dye degradation by photocatalyst materials synthesized from ilmenite sand. However, the photocatalytic performance of the TF-800 nanocomposite for MB degradation was compared with the first-order degradation rate of other ilmenite sand-based photocatalyst materials (Table 6).

3.10. Determination of Band Alignment in Photocatalysts. The mechanism of charge separation and the band alignment of the photocatalysts is important for understanding the photocatalytic activity. Figure 9 shows the schematic illustration of the possible charge separation band alignment structure of (a) TF-800, (b) TFTO-800, and (c) TF-450.

Based on the information available, TF-800 showed higher initial degradation rate compared to the other materials.

Table 6. First-Order Degradation Rates of Organic Dye by Ilmenite Sand Based Photocatalysts

material	irradiation source	pollutant	rate (min$^{-1}$)	reference
TiO$_2$/TiO$_2$/Fe$_2$O$_3$	LED	MB	0.044	present work
Fe$_2$TiO$_5$/Fe$_2$O$_3$/TiO$_2$	LED	MB	0.011	20
Fe$_2$TiO$_5$/TiO$_2$	solar energy	MB	0.008	74
ilmenite	solar energy	Reactive Black S	0.040	106
TiO$_2$/α-Fe$_2$O$_3$	UV light	indigo carmine	not clearly specified	107
pretreated ilmenite sand	visible light	Reactive Black S	0.018	108
pretreated ilmenite	visible light	MB	0.023	109
TiO$_2$ synthesized from ilmenite	UV light	Rhodamine B	0.002	90
alignment of TF-800, TFTO-800, and TF-450 are schematically illustrated in Figure 9. The band gap values determined from diffuse reflectance spectroscopic analysis for anatase TiO_2 rutile TiO_2, α-Fe_2O_3, Fe_3TiO_7, and Fe_2O_3 are 3.20, 3.03, 2.0, 2.25, and 0.14 eV, respectively. Potentials of the conduction band and the valance band were calculated by formulas 27 and 28, respectively.

\[E_{CB} = X - E^c - 0.5 E_g \]
\[E_{VB} = X - E^c + 0.5 E_g \]

where \(X \) is absolute electronegativity of the semiconductor, which is defined as the geometric mean of the absolute electronegativity of the constituent atoms; \(E^c \) = energy of free electrons on the hydrogen scale; \(E_g \) = band gap of the semiconductor; \(E_{CB} \) = conduction band (CB) position; and \(E_{VB} \) = valence band (VB) position.

The absolute electronegativity values for anatase-TiO_2, rutile-TiO_2, and α-Fe_2O_3 are 5.81, 5.81, and 4.76 eV, respectively.20 Also, the energy of free electrons on the hydrogen scale is 4.5 eV vs NHE. The parameters toward the calculation of VB and CB energy position have been tabulated in Table 7.

Table 7. Parameters behind the Calculation of VB and CB Energy

Semiconductor Oxide	Electronegativity (X)	\(E^c \) (eV)	Calculated CB Position (eV) (NHE)	Calculated VB Position (eV) (NHE)
Anatase TiO_2	5.81	3.30	-0.29	2.91
Rutile TiO_2	5.89	3.03	-0.12	2.91
α-Fe_2O_3	4.78	2.10	-0.77	1.33
Fe_3TiO_7	4.78	2.25	0.23	2.48
Fe_2O_3	5.78	0.14	1.21	1.35

XPS data were further analyzed to provide additional evidence for the electron transfer mechanism of the synthesized TF-800 composite. The binding energy of Fe 2p_3/2 of pure α-Fe_2O_3 is reported to be at 709.32 eV.20 The binding energy of Fe 2p_3/2 in TF-800 appeared at 711.95 eV, suggesting a decrease in the electron concentration at α-Fe_2O_3 of TF-800.12 The degree of delocalization and/or electronic coupling between TiO_2 empty electronic states can be demonstrated by proving that α-Fe_2O_3 impacts electronic states around the Fermi level.11 As a result of the low electron density at iron-based species, photogenerated electrons are readily taken up by TiO_2, resulting in the production of \(\bullet O^- \), which degrades MB as proposed by the mechanism. The binding energy of Ti 2p_3/2 in pure TiO_2 is reported to be at 459.36 eV,20 while Ti 2p_3/2 of TF-800 appeared at 458.48 eV, indicating a 0.88 eV decrease in binding energy and suggesting that TiO_2 is enriched with electrons. Therefore, it is evident that there is a net electron flow from Fe_2O_3 to TiO_2 in TF-800. As a result, \(O^\bullet^- \) radicals are formed at the CB band of TiO_2, while \(\bullet OH \) radicals are generated at the VB band of Fe_2O_3.14

3.11. Sacrificial Agent Study of TF-800

Radical scavenging tests were carried out to determine the primary active radical species for the degradation of MB in the presence of TF-800. In summary, EDTA, IPA, and PS were introduced to the degrading system to determine the effect of \(h^+ \), \(\bullet OH \), and \(\bullet S_2O_8^- \), respectively.110 All the parameters were kept constant where 8 mmol of the above reagents was added just before switching on the light. Readings were collected for 2 h under illumination. Figure 10a shows the reduction of the MB concentration with time. The PS added system showed a rapid reduction in the MB concentration where the concentration reached zero in 30 min. Figure 10b exhibits the first-order kinetics, while the rate constants calculated are expressed in Figure 10c. No sacrificial agent or PS was used in the control experiment. Table 8 summarizes the rate constants and the \(R^2 \) values. Linear first-order degradation rate constants for the systems with MB and TF-800 only and for the systems with IPA, EDTA, and PS additionally were 0.023, 0.007, 0.008, and 0.079 min⁻¹, respectively. The PS system was 3.43 times faster than the system with MB and TF-800 only, which acted as the control.

As shown in Figure 10d, the concentration of MB after the degradation process in which EDTA, IPA, and PS were used was 2.82, 2.97, and 0.11 mg/L, respectively, and the calculated removal efficiency for EDTA, IPA, and PS was 72.67, 71.22, and 99.12%, respectively, while that in the control experiment was 93.02%. There was no difference in the photocatalytic degradation of MB when EDTA and IPA were introduced, indicating that the effect of adding both reagents is the same.

Several tests were carried out to investigate the active species involved in the MB degradation process of TF-800. Generally, IPA is considered as an excellent \(\bullet OH \) scavenger, while EDTA is a \(h^+ \) scavenger.111 IPA and EDTA substantially inhibited the ultimate breakdown efficiency of MB as shown in Figure 10 almost equally, suggesting that both \(\bullet OH \) and \(h^+ \) are responsible for the degradation of MB. Further, \(\bullet OH \) is generated by the action of \(h^+ \). Therefore, when \(h^+ \) is scavenged automatically, the \(\bullet OH \) concentration also declines, further reducing the MB degradation. PS accelerated the visible light driven photocatalysis by yielding \(SO_4^{2-} \) radicals according to eqs 29–31. Further, \(S_2O_8^{-} \), the source of \(SO_4^{2-} \), is also generated when \(OH^- \) is present in the medium, further increasing the rate of the reaction.

\[\text{TF} - 800 + \text{visible light} \rightarrow e^- + h^+ \]
\[S_2O_8^{-} + h^+ \rightarrow S_2O_6^{2-} \]
\[S_2O_8^{-} + e^- \rightarrow SO_4^{2-} + SO_4^{2-} \]
\[SO_4^{2-} + OH^- \rightarrow SO_4^{2-} + OH \]
\[SO_4^{2-} + S_2O_8^{-} \rightarrow SO_4^{2-} + S_2O_8^{2-} \]

4. CONCLUSIONS

Highly pure TiO_2 spheres were successfully synthesized using natural ilmenite sand as the raw material via a combination of acid digestion and hydrothermal synthesis pathways. Synthesized TiO_2 spheres passivated with CTAB possesses a higher pore volume and contain more than 98.5% TiO_2 with vanadium being the only impurity. The band gap that resulted from the direct transition of TiO_2 is 2.91 eV, which is less than that of rutile (3.0 eV) due to the presence of V, which has doped to TiO_2, lowering the band gap. The corrosive and ecologically harmful acid leachate produced during the acid digestion and hydrothermal synthesis pathways. Synthesized TiO_2 spheres passivated with CTAB possess a higher pore volume and contain more than 98.5% TiO_2 with vanadium being the only impurity.
While rate constants of TFTO-800 and TF-450 are 0.006 and 0.002 min$^{-1}$, respectively. The TF-800 nanocomposites absorb visible light due to the presence of α-Fe$_2$O$_3$, and anatase-TiO$_2$ and rutile-TiO$_2$ band alignment promotes excellent charge separation throughout the heterojunction. The synthesized TF-800 ternary nanocomposite showed pseudo-second-order kinetics for the adsorption of MB in the dark with a rate of 0.126 g mg$^{-1}$ min$^{-1}$, revealing the chemisorption

Figure 10. (a) Comparative degradation of the MB concentration with scavengers by the TF-800 heterostructure at the different time intervals, (b) first-order kinetic degradation of MB by the TF-800 heterostructure, (c) histogram of first-order photodegradation rate constants for the TF-800 heterostructure with scavengers, (d) concentration of MB in the photocatalyst system before and after the degradation, and (e) photodegraded reaction system after 75 min.

Table 8. Kinetic Parameter Evaluation for MB Degradation

agent	concentration of sacrificial agent (mmol)	degradation rate (min$^{-1}$)	r^2
IPA	8	0.007	0.981
EDTA	8	0.008	0.993
PS	8	0.079	0.981
of MB to the adsorbent. XRD and Raman analysis confirmed the crystal nature of the synthesized nanomaterials. The XRD analysis of the TF-800 nanocomposite confirmed heterostructure composed by 56.24, 26.07, and 17.67% of α-Fe₃O₄, anatase TiO₂ and rutile TiO₂̂, respectively. XPS data revealed that the surface of TF-800 is composed of Fe²⁺ and Ti⁴⁺ oxidation states. The initial photodegradation rate was the highest value reported in the literature for the ilmenite sand based photocatalysts.

ASSOCIATED CONTENT
Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.2c03262.

Visible light driven first-order degradation rate of P-2S (PDF)

AUTHOR INFORMATION
Corresponding Authors
Charitha Thambiliyagodage — Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Colombo 10115, Sri Lanka; orcid.org/0000-0003-0906-4441; Email: charitha.t@slitlk
Saravanamuthu Vigneswaran — Faculty of Engineering, University of Technology Sydney (UTS), Broadway, NSW 2127, Australia; Faculty of Sciences & Technology (RealTek), Norwegian University of Life Sciences, Ås 1430, Norway; Email: Saravanamuth.Vigneswaran@uts.edu.au

Authors
Leshan Usgodaarachchi — Department of Materials Engineering, Faculty of Engineering, Sri Lanka Institute of Information Technology, Colombo 10115, Sri Lanka
Ramaneek Wijesekera — Department of Chemistry, Faculty of Science, University of Colombo, Colombo 3 00300, Sri Lanka
Murthi Kandanapithee — Department of Nano Science Technology, Wayamba University of Sri Lanka, Kulyapittiya 60200, Sri Lanka

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.2c03262

Funding
This research was supported by the Accelerating Higher Education Expansion and Development (AHEAD) Operation of the Ministry of Higher Education funded by the World Bank.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
Authors acknowledge the Sri Lanka Institute of Nanotechnology and Industrial Technology Institute for providing the instrument facilities.

REFERENCES
(1) Banerjee, D.; Williams, J. C. Perspectives on Titanium Science and Technology. Acta Mater. 2013, 61, 844–879.
(2) Malczewska-Toth, B. Titanium, Zirconium, and Hafnium. In Patty’s Toxicology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; pp. 427–474. DOI: 10.1002/0471435139.t0x035.pub2.
(3) Kroll, W. The Production of Ductile Titanium. Trans. Electrochem. Soc. 1940, 78, 35.
(4) Weir, A.; Westerhoff, P.; Fabricius, L.; Hristovski, K.; Von Goetz, N. Titanium Dioxide Nanoparticles in Food and Personal Care Products. Environ. Sci. Technol. 2012, 46, 2242–2250.
(5) Möllmann, A.; Gedamu, D.; Vivo, P.; Frohnhoven, R.; Stadler, D.; Fischer, T.; Ka, I.; Steinhorst, M.; Nechache, R.; Rosei, F.; Cloutier, S. G.; Kirchzart, T.; Mathur, S. Highly Compact TiO₂ Films by Spray Pyrolysis and Application in Perovskite Solar Cells. Adv. Eng. Mater. 2019, 21, 1801196.
(6) Gopinath, K. P.; Madhav, N. V.; Krishnan, A.; Malolan, R.; Rangarajan, G. Present Applications of Titanium Dioxide for the Photocatalytic Removal of Pollutants from Water: A Review. J. Environ. Manage. 2020, 270, No. 110906.
(7) Srikanth, B.; Goutham, R.; Badri Narayan, R.; Ramprasath, A.; Gopinath, K. P.; Sankaranarayanan, A. R. Recent Advancements in Supporting Materials for Immobilised Photocatalytic Applications in Waste Water Treatment. J. Environ. Manage. 2017, 200, 60–78.
(8) Gázquez, M. J.; Bolivar, J. P.; Garcia-Tenorio, R.; Vaca, F. A Review of the Production Cycle of Titanium Dioxide Pigment. Mater. Sci. Appl. 2014, 05, 441–458.
(9) Thambiliyagodage, C.; Wijesekera, R.; Bakker, M. G. Leaching of Ilmenite to Produce Titanium Based Materials: A Review. Discov. Mater. 2021, 1, 20.
(10) Nguyen, T. H.; Lee, M. S. A Review on the Recovery of Titanium Dioxide from Ilmenite Ores by Direct Leaching Technologies. Mineral Processing and Extractive Metallurgy Review. Taylor and Francis Inc. July 4, 2019, pp. 231–247.
(11) Gázquez, M. J.; Mantero, J.; Mosqueda, F.; Vioque, I.; García-Tenorio, R.; Bolivar, J. P. Radiological and Chemical Risks by Waste Scales Generated in the Titanium Dioxide Industry. Chemosphere 2021, 274, No. 129732.
(12) Hossain, S. M.; Park, H.; Kang, H. J.; Mun, J. S.; Tijing, L.; Rhee, I.; Kim, J. H.; Jun, Y. S.; Shon, H. K. Facile Synthesis and Characterization of Anatase TiO₂/g-CN Composites for Enhanced Photoactivity under UV–Visible Spectrum. Chemosphere 2021, 262, No. 128004.
(13) Mahmoud, M. H. H.; Afifi, A. A. I.; Ibrahim, I. A. Reductive Leaching of Ilmenite Ore in Hydrochloric Acid for Preparation of Synthetic Rutile. Hydrometallurgy 2004, 73, 99–109.
(14) Rajakaruna, T. P. B.; Udawatte, C. P.; Chandrajith, R.; Rajapakse, R. M. G. Nonhazardous Process for Extracting Pure Titanium Dioxide Nanorods from Geogenic Ilmenite. ACS Omega 2020, 5, 16176–16182.
(15) Verbruggen, S. W. TiO₂ Photocatalysis for the Degradation of Pollutants in Gas Phase: From Morphological Design to Plasmonic Enhancement. J. Photochem. Photobiol. C 2015, 24, 64–82.
(16) Tsang, C. H. A.; Li, K.; Zeng, Y.; Zhao, W.; Zhang, T.; Zhan, Y.; Xie, R.; Leung, D. Y. C.; Huang, H. Titanium Oxide Based Photocatalytic Materials Development and Their Role of in the Air Pollutants Degradation: Overview and Forecast. Environ. Int. 2019, 125, 200–228.
(17) Thambiliyagodage, C. Activity Enhanced TiO₂ Nanomaterials for Photodegradation of Dyes - A Review. Environ. Nanotechnol., Monit. Manage. 2021, 16, No. 100592.
(18) Seneviratne, K. L.; Munaweera, I.; Peiris, S. E.; Peiris, C. N.; Kottegoda, N. Recent Progress in Visible-Light Active (VLA) TiO₂ Nano-Structures for Enhanced Photocatalytic Activity (PCA) and Antibacterial Properties: A Review. Iran. J. Catal. 2021, 11, 217–245.
(19) Thambiliyagodage, C.; Usgodaarachchi, L. Photocatalytic Activity of N, Fe and Cu Co-Doped TiO₂ Nanoparticles under Sunlight. Curr. Res. Green Sustainable Chem. 2021, 4, No. 100186.
(20) Charitha, T.; Leshan, U.; Shanitha, M.; Ramaneek, W.; Buddi, L.; Martin, B. Efficient Photodegradation Activity of α-Fe₂O₃/Fe₃O₄/TiO₂ and Fe₂O₃/TiO₂ Nanostructures Synthesized from Natural Ilmenite. Results Mater. 2021, 12, No. 100219.
(21) Basavarajappa, P. S.; Patil, S. B.; Ganganagappa, N.; Reddy, K. R.; Raghu, A. V.; Reddy, C. V. Recent Progress in Metal-Doped TiO₂ Non-Metal Doped/Codoped TiO₂ and TiO₂ Nanostructured Hybrids for Enhanced Photocatalysis. Int. J. Hydrogen Energy 2020, 45, 7764–7778.
Visible Light Irradiation. Supported on TiO$_2$704. Water: A Comparative Study. Catalytic Degradation of Non-Steroidal Anti-Inflammatory Drugs in RSC Adv. 2020, S12, No. 144549.

He, H.; Huang, D.; Pang, W.; Sun, D.; Wang, Q.; Tang, Y.; Ji, X.; Guo, Z.; Wang, H. Plasma-Induced Amorphous Shell and Deep Cation-Site S Doping Endow TiO$_2$ with Extraordinary Sodium Storage Performance. Adv. Mater. 2018, 30, 1801013.

Eslami, A.; Amini, M. M.; Yazdanbakhsh, A. R.; Mohseni-Bandpei, A.; Safari, A. A.; Asadi, A. N.S Co-Doped TiO$_2$ Nanoparticles and Nanosheets in Simulated Solar Light for Photocatalytic Degradation of Non-Steroidal Anti-Inflammatory Drugs in Water: A Comparative Study. J. Chem. Technol. Biotecnol. 2016, 91, 2693–2704.

Zhang, L. W.; Fu, H. B.; Zhu, Y. F. Efficient TiO$_2$ Photocatalysts from Surface Hybridization of TiO$_2$ Particles with Graphite-like Carbon. Adv. Funct. Mater. 2008, 18, 2180–2189.

Karim, A. V.; Selvaraj, A. Graphene Composites in Photocatalytic Oxidation of Aqueous Organic Contaminants – A State of Art. Process Saf. Environ. Prot. 2021, 146, 136–160.

Usogodaarachi, L.; Thambilyagoda, C. Photocatalytic Activity of GO/Fe$_3$O$_4$ Fabricated by Sri Lankan Graphite under Visible Light Irradiation. J. Sci. Univ. Kelaniya Sri Lanka 2017, 87–99.

AL-Jawad, S. M. H.; Taha, A. A.; Salim, M. M. Synthesis and Characterization of Pure and Fe Doped TiO$_2$ Thin Films for Antimicrobial Activity. Optik 2017, 142, 42–53.

Bensouici, F.; Bououdina, M.; Dakhel, A. A.; Tala-Ighil, R.; Wang, T.; Shen, D.; Xu, T.; Liu, J.; Wang, Z.; Wang, F. Platinum-Copper Bimetallic Nanoparticles Supported on TiO$_2$ as Catalysts for Photo-Thermal Catalytic Toluene Combustion. ACS Appl. Nano Mater. 2022, 5, 1845–1854.

Jiang, Z.; Qian, K.; Zhu, C.; Sun, H.; Wan, W.; Xie, J.; Li, H.; Wong, P. K.; Yuan, S. Carbon Nitride Coupled with Cds-TiO$_2$ Nanodots as 2D/0D Ternary Composite with Enhanced Photocatalytic H2 Evolution: A Novel Efficient Three-Level Electron Transfer Process. Appl. Catal., B 2017, 210, 194–204.

Zhang, W.; Ma, Y.; Zhu, X.; Wang, L.; Ye, J.; Hou, X.; Liu, S.; Lu, M.; Tian, H.; Hu, X. In Situ Synthesis of α-Fe$_2$O$_3$/LaFeO$_3$ Modified with g-C$_3$N$_4$ and TiC$_2$ for Construction of Multiple Z-Scheme/ Schottky Heterojunctions as an Efficient Visible-Light Photocatalyst for Cr (VI) Reduction and Organic Pollutants Removal. J. Alloys Compd. 2022, 913, No. 165217.

Avansi, W.; Catto, A. C.; Da Silva, L. F.; Fiorido, T.; Bernardini, S.; Masterolo, V. R.; Aguir, K.; Arenal, R. One-Dimensional V$_2$O$_5$/TiO$_2$ Heterostructures for Chemiresistive Ozone Sensors. ACS Appl. Nano Mater. 2019, 2, 4756–4764.

Fan, Z.; Meng, F.; Gong, J.; Li, H.; Hu, Y.; Liu, D. Enhanced Photocatalytic Activity of Hierarchical Flower-like CeO$_2$/TiO$_2$ Heterostructures. Mater. Lett. 2016, 175, 36–39.

Li, Y.; Yang, W.; Wang, C.; Li, Z.; Lai, J.; Wang, L.; Huang, L. Achieving Controllable Coto$_x$-Encapsulated TiO$_2$ Heterostructures for Enhanced Photoelectrochemical Water Splitting. ACS Appl. Energy Mater. 2019, 2, 8229–8235.

Tengvall, P.; Elving, H.; Lundström, I. Titanium Gel Made from Metallic Titanium and Hydrogen Peroxide. J. Colloid Interface Sci. 1989, 130, 405–413.

Tsvetkov, S.; Bahmann, D. W. Mesoporous Titania Photocatalysts: Preparation, Characterization and Reaction Mechanisms. Journal of Materials Chemistry, The Royal Society of Chemistry August 28, 2011, pp. 11686–11707.

Jiang, Y.; Cheng, G.; Yang, R.; Liu, H.; Sun, M.; Yu, L.; Hao, Z. A Simple and “Green” Method for Synthesis of Magnetic Hollow Silica Spheres and Its 99Tcm Labeled Targeting Studies. Open J. Inorg. Chem. 2017, 07, 1–15.

Thambilyagoda, C.; Mirihana, S. Photocatalytic Activity of Fe and Cu Co-Doped TiO$_2$ Nanoparticles under Visible Light. J. Sol-Gel Sci. Technol. 2021, 99, 109–121.

Jiang, Y.; Cheng, G.; Yang, R.; Liu, H.; Sun, M.; Yu, L.; Hao, Z. Influence of Preparation Temperature and Acid Treatment on the Catalytic Activity of MnO$_2$ Nanoparticles. J. Sol-Gel Sci. Technol. 2019, 72, 173–181.

Payormhorm, J.; Chuangchote, S.; Laosiripojana, N. CTAB-Assisted Sol-Microwave Method for Fast Synthesis of Mesoporous TiO$_2$ Photocatalysts for Photocatalytic Conversion of Glucose to Value-Added Sugars. Mater. Res. Bull. 2017, 95, 546–555.

Roy, D.; Yadav, A. K. Green TiO$_2$-ZnO Nanocomposite Stimulator for the Growth of Solanum Lycopersicum in Aquaculture. Adv. Nanosci. 2022, 1–21.

Li, C.; Sun, T.; Zhang, D.; Zhang, X.; Qian, Y.; Zhang, Y.; Lin, X.; Liu, J.; Zhu, L.; Wang, X.; Shi, Z.; Lin, Q. Fabrication of Ternary Ag/La-Black TiO$_2$ Photocatalyst with Enhanced Visible-Light Photocatalytic Activity for Tetracycline Degradation. J. Alloys Compd. 2022, 891, No. 161960.

Zhang, Y.; Qi, Y.; Wang, F.; Han, Z.; Jiang, Y.; Han, H.; Liu, J.; Zhang, X.; Ong, W. J. State-of-the-Art Advancements in Photo-
Assisted CO₂ Hydrogenation: Recent Progress in Catalyst Development and Reaction Mechanisms. J. Mater. Chem. A 2020, 8, 24868–24894.

(58) Keerthana, S. P.; Yuvakkumar, R.; Ravi, G.; Kumar, P.; Elshikh, M. S.; Alkhamsi, H. H.; Alrefaei, A. F.; Velauthapillai, D. A Strategy to Enhance the Photocatalytic Efficiency of α-Fe₂O₃. Chemistry 2021, 270, No. 129498.

(59) Chinnathambi, A.; Vasantharaj, S.; Saravanan, M.; Sathiyavimal, S.; Duc, P. A.; Nasif, O.; Alharbi, S. A.; Chi, N. T. L.; Brindhadevi, K. Biosynthesis of TiO₂ Nanoparticles by Alcahya Indica; Photocatalytic Degradation of Methylene Blue. Appl. Nanosci. 2021, 1–8.

(60) Yin, P.; Tang, Y.; Zhang, L.; Wang, J.; Feng, X.; Dai, J. Effect of Nitric Acid Treatment on the Final Low-Frequency Microwave Absorption Performance of TiO₂/ZNFe₂O₄/ZnTiO₂ Nanocomposite. Appl. Nanosci. 2021, 11, 861–874.

(61) Liu, C.; Liu, Y.; Dang, Z.; Zeng, S.; Li, C. Enhancement of Heterogeneous Photo-Fenton Performance of Core-Shell Structured Boron-Doped Reduced Graphene Oxide Wrapped Methylated Fe₂O₃ Nanoparticles: Fe(II)/Fe(III) Redox and Mechanism. Appl. Surf. Sci. 2021, 544, No. 148886.

(62) John Prabhahar, M.; Jyules Jaisingh, S.; Arun Prakash, V. R. Role of Magnetite (Fe₃O₄)-Titania (TiO₂) Hybrid Particle on Mechanical, Thermal and Microwave Attenuation Behaviour of Flexible Natural Rubber Composite in X and Ku Band Frequencies. Mater. Res. Express 2019, 7, No. 016106.

(63) Jiang, R.-S.; Su, C.-J.; Wu, M.-C.; Lu, H.-C.; Wang, S.-F.; Sun, A.-C. Fabrication of Magnetic Fe₂O₃ Nanoparticles with Unidirectional Extension Pattern by a Facile and Eco-Friendly Microwave-Assisted Solvothermal Method. J. Nanosci. Nanotechnol. 2019, 19, 7645–7653.

(64) Hadiano, H.; Amiruddin, E.; Venera, R. S. P.; Aprilia, V. Structural and Morphological Properties of Undoped and Manganese Doped Hematite Nanoparticles Prepared by Ball Milling Method. In Journal of Physics: Conference Series; IOP Publishing Ltd, 2020; Vol. 1655, p 12013. DOI: 10.1088/1742-6596/1655/1/012013.

(65) Malla, A. M.; Dar, F. A.; Shah, M. A. Influence of Precursor Concentration on Structural, Morphological and Optical Properties of Hematite (α-Fe₂O₃) Nanoparticles. Curr. Nanomater. 2017, 2, 39.

(66) Liu, Y.; Du, Y. E.; Bai, Y.; An, J.; Li, J.; Yang, X.; Feng, Q. Facile Synthesis of [101], [100] and [111]-Faceted Anatase-TiO₂ Nanocrystals Derived from Porous Metallatitanic Acid H₄TiO₄F, for Enhanced Photocatalytic Performance. ChemistrySelect 2018, 3, 2867–2876.

(67) Isacfranklin, M.; Yuvakkumar, R.; Ravi, G.; Kumar, P.; Saravanakumar, B.; Velauthapillai, D.; Alahmadi, T. A.; Alharbi, S. A. Biomedical Application of Single Anatase Phase TiO₂ Nanoparticles with Addition of Rambutan (Nephelium Lappaceum L.) Fruit Peel Extract. Appl. Nanosci. 2020, 10, 699–708.

(68) Rani, C.; Pathak, D. K.; Tanwar, M.; Kandpal, S.; Ghosh, T.; Maximov, M. Y.; Kumar, R. Anharmonicity Induced Faster Decay of Hot Phonons in Rutile TiO₂ Nanorods: A Raman Spectroscopic Study. Mater. Adv. 2022, 1602–1608.

(69) Chen, Y.; Li, J.; Li, X.; Luo, F.; Wang, Z.; Wu, L.; Li, X. Copper Oxide Nanoparticles Confined in TiO₂ Nanotubes for the Water–Gas Shift Reaction: Promotional Effect of Potassium. J. Mater. Res. 2021, 36, 4475–4484.

(70) Pérez-Pérez, L. M. C.; Baez-Rodriguez, A.; García-González, L.; Hernández-Torres, J.; Velázquez-Camilo, O.; Zamora-Peredo, L. Nanopores and Nanosheets of α-Fe₂O₃ Synthesized by Electrochemical Anodization and Analysed by Raman Spectroscopy. MRS Adv. 2019, 4, 2863–2871.

(71) Amir, R. A.; Liara Goldring-Vandergeest, I.; Liang, K.; Lok, G. H.; Hui, S.; Turak, A. Role of Hydration and Micellar Shielding in Tuning the Structure of Single Crystaline Iron Oxide Nanoparticles for Designer Applications. 2021. DOI: 10.1002/nano.202100085.

(72) Athihyya, S.; Harish, S.; Ikeda, H.; Shimomura, M.; Hayakawa, Y.; Archana, J.; Navaneethan, M. Hierarchically Ordered Macro-porous TiO₂ Architecture via Self-Assembled Strategy for Environmental Remediation. Chemosphere 2022, 288, No. 132236.
Prepare Anatase TiO₂ Nanopowders from Natural Ilmenite via the H₃PO₄/NH₃ Process. *Int. J. Miner. Metall. Mater.* 2020, 27, 846–855.

(91) Santos, E.; Catto, A. C.; Peterline, A. F.; Avansi, W., Jr. Transition Metal (Nb and W) Doped TiO₂ Nanostructures: The Role of Metal Doping in Their Photocatalytic Activity and Ozone Gas-Sensing Performance. *Appl. Surf. Sci.* 2022, 579, No. 152146.

(92) Gunathilaka, H.; Thambiyagodage, C. J.; Usgadoarachchi, L.; Thambiyagodage, C.; Usgadoarachchi, L.; Angappan, S. Effect of Surfactants on Morphology and Textural Parameters of Silica Nanoparticles Derived from Paddy Husk and Their Efficient Removal of Methylene Blue Synthesis and Characterization of Novel Nanomaterials for Removal of Textile Dyes in Industrial Wastewater View Project Effect of Surfactants on Morphology and Textural Parameters of Silica Nanoparticles Derived from Paddy Husk and Their Efficient Removal of Methylene Blue. 2021, DOI: 10.6084/m9.igshare.14904873.

(93) Usgadoarachchi, L.; Thambiyagodage, C.; Wijesekera, R.; Bakker, M. G. Synthesis of Mesoporous Silica Nanoparticles Derived from Rice Husk and Surface-Controlled Amine Functionalization for Efficient Adsorption of Methylene Blue from Aqueous Solution. *Curr. Res. Green Sustainable Chem.* 2021, 4, No. 100116.

(94) Thambiyagodage, C.; Usgadoarachchi, L. Efficient Removal of Methylene Blue by Turbostatic Carbon/Fe/C3C/Fe Composite Synthesized by Catalytic Graphitization of Sucrose. *Mater. Today Proc.* 2022, 56, 2189–2194.

(95) Zahoor, M.; Arshad, A.; Khan, Y.; Iqbal, M.; Baiwa, S. Z.; Soomro, R. A.; Ahmad, I.; Butt, F. K.; Iqbal, M. Z.; Wu, A.; Khan, W. S. Enhanced Photocatalytic Performance of CeO₂–TiO₂ Nano-composite for Degradation of Crystal Violet Dye and Industrial Waste Effluent. *Appl. Nanosci.* 2018, 8, 1091–1099.

(96) Parmar, A.; Kaur, G.; Kapil, S.; Sharma, V.; Sharma, B. Biogenic PLGA-Zinc Oxide Nanocomposite as Versatile Tool for Enhanced Photocatalytic and Antibacterial Activity. *Appl. Nanosci.* 2019, 9, 2001–2016.

(97) Lou, Z.; Li, Y.; Song, H.; Ye, Z.; Zhu, L. Fabrication of Fe₂TiO₄/TiO₂ Nano-heterostructures with Enhanced Visible-Light Photocatalytic Activity. *RSC Adv.* 2016, 6, 45343–45348.

(98) Kumar, A.; Kumar, A.; Sharma, G.; Al-Muhthaseb, A. H.; Naushad, M.; Ghfar, A. A.; Said, L. J. Quadrinary Magnetic BiOCl/γ-C₂Ni₂O₃/CuO/Fe₂O₃ Nano-Junction for Visible Light and Solar Powered Degradation of Sulfamethoxazole from Aqueous Environment. *Chem. Eng. J.* 2018, 334, 462–478.

(99) Chen, K.; Dai, T. D.; Ngo, T. D.; Ngo, H. D.; Tamanai, A.; Ishii, S.; Li, X.; Misawa, H.; Nagaio, T. Enhanced Photocurrent Generation from Indium–Titania–Fe/TiO₂ Hybrid Nanocone Arrays. *Nano Energy* 2020, 76, No. 104965.

(100) Kumar, R. R.; Raj, R.; Venimadhav, A. Weak Ferromagnetism in Band-Gap Engineered α-(Fe₃O₄)₁-x(Cr₂O₃)x Nanoparticles. *J. Magn. Magn. Mater.* 2019, 473, 119–124.

(101) Devaraji, P.; Gao, R.; Xiong, L.; Jia, X.; Huang, L.; Chen, W.; Liu, S.; Mao, L. Usage of Natural Leaf as a Bio-Template to Inorganic Leaf: Leaf Structure Block TiO₂/Cds Heterostructure for Efficient Photocatalytic Hydrogen Evolution. *Int. J. Hydrogen Energy* 2021, 46, 14369–14383.

(102) Jiménez-Calvo, P.; Caps, V.; Keller, V. Plasmonic Au-Based Junctions onto TiO₂, GC, NiO, and TiO₂–GC, NiO Systems for Photocatalytic Hydrogen Production: Fundamentals and Challenges. *Renew. Sustainable Energy Rev.* 2021, 149, No. 111095.

(103) Roldan, A.; Santos-Carballal, D.; De Leeuw, N. H. A Comparative DFT Study of the Mechanical and Electronic Properties of Greigite Fe₅S₈ and Magnetite Fe₃O₄. *J. Chem. Phys.* 2013, 138, 204712.

(104) Liu, H.; Di Valentim, C. Band Gap in Magnetite above Verwey Temperature Induced by Symmetry Breaking. *J. Phys. Chem. C* 2017, 121, 25736–25742.

(105) Oddhui, D.; Tavaansaikhan, P.; Yun, W. S.; Hong, S. C. A First-Principles Study of Magnetoostrictions of Fe₃O₄ and CoFe₂O₄. *J. Appl. Phys.* 2014, 115, 17A916.