Supersymmetry requires $g = 2$ for vector bosons

Georg Junker

European Southern Observatory, Karl-Schwarzschild-Straße 2, D-85748 Garching, Germany

(Dated: March 26, 2020)

Relativistic arbitrary spin Hamiltonians are shown to exhibit a SUSY structure under a certain condition. This condition is identical to that required for the exactness of the Foldy-Wouthuysen transformation. Applied to the charged spin-1 particle in a constant magnetic field, supersymmetry necessarily requires a gyromagnetic factor $g = 2$.

I. INTRODUCTION

There is some common agreement that the gyromagnetic ratio g of charged elementary particles when coupled to an electromagnetic field is $g = 2$. There are several reasonable arguments for this. The equation of motion for the spin vector, as shown by Bargmann, Michel and Telegdi [1], takes a very simple form when $g = 2$. As argued by Weinberg [2] and much later by Ferrara, Porrati and Telegdi [3], the requirement to have a good high-energy behaviour of scattering amplitudes, one must choose $g = 2$ for any spin. This is of course in agreement with the standard model. Here the currently known electrically charged elementary particles are either spin-$\frac{1}{2}$ fermions or spin-1 bosons. The standard model indeed requires for all these charged particles a value $g = 2$ at the tree level. Whereas for the elementary fermions ($s = 1/2$) this assertion is consistent with the Belifante [4] conjecture $g = 1/s$, it obviously disagrees with the case of vector bosons where $s = 1$ and the Belifante conjecture would imply $g = 1$. In fact, precision measurements at the Tevatron [5] resulted in the bounds $1.944 \leq g \leq 2.080$ at 95% C.L. for the W boson. Hence, the case of spin-1 elementary particles is of particular interest as no charged higher-spin elementary particles are known yet.

In 1994 Jackiw [6] showed that the value $g = 2$ also follows from a gauge symmetry in the case of a massless spin-1 field coupled to an electromagnetic field. In this brief report we like to provide yet another symmetry argument based on a supersymmetric structure of the relativistic spin-1 Hamiltonian. For this we first generalise the concept of a supersymmetric (SUSY) Dirac Hamiltonian to relativistic Hamiltonians for arbitrary spin $s = 0, \frac{1}{2}, 1, \frac{3}{2}, \ldots$. Then we consider the case of a charged particle with $s = 1$ interacting with an external constant magnetic field. Here the coupling to the spin-degree of freedom is a prior considered with arbitrary gyromagnetic ratio g. It is shown that SUSY will require $g = 2$.

II. SUPERSYMMETRIC RELATIVISTIC HAMILTONIANS

The Hamiltonian of an arbitrary spin-s Hamiltonian can be put into the form

$$H = \beta \mathcal{M} + \mathcal{O},$$

which acts on the Hilbert space $\mathcal{H} = L^2(\mathbb{R}^3) \otimes \mathbb{C}^{2s+1}$ whose elements are $2(2s+1)$-dimensional spinors. The matrix β obeys the relation $\beta^2 = 1$ and may be represented as a block-diagonal matrix

$$\beta = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

where here the 1 stands for the $2s+1$-dimensional unit matrix. Let us note that the two parts of the Hamiltonian (1) are chosen such that \mathcal{M} accommodates all the even elements and \mathcal{O} all the odd elements of H with respect to β. That is, we have the commutation and anti-commutation relations

$$[\beta, \mathcal{M}] = 0, \quad \{\beta, \mathcal{O}\} = 0.$$

Note that the Hamiltonian (1) is hermitian, i.e. $H = H^\dagger$, only for the case of fermions, and hence for half-odd-integer s. For bosons, where s is integer, the Hamiltonian is pseudo-hermitian, i.e. $H = \beta H^\dagger \beta$. Having this in mind it is straightforward to show that in the representation (2) both parts of H are necessarily of the form

$$\mathcal{M} = \begin{pmatrix} M^+ & 0 \\ 0 & M^- \end{pmatrix}, \quad \mathcal{O} = \begin{pmatrix} 0 & A \\ (-1)^{(2s+1)} A^\dagger & 0 \end{pmatrix},$$

where $M^\pm : \mathcal{H}^\pm \mapsto \mathcal{H}^\pm$ with $M^\pm_\pm = M^\pm$, $A : \mathcal{H}_- \mapsto \mathcal{H}_+$ and $A^\dagger : \mathcal{H}_+ \mapsto \mathcal{H}_-$. Here we have introduced the positive and negative energy subspaces \mathcal{H}_+ and \mathcal{H}_-, which are also eigenspaces of β for eigenvalue $+1$ and -1, respectively. Note that $\mathcal{H} = \mathcal{H}_+ \oplus \mathcal{H}_-$ and $\mathcal{H}_+ = L^2(\mathbb{R}^3) \otimes \mathbb{C}^{2s+1}$. Well-know examples are the Klein-Gordon ($s = 0$) and the Dirac ($s = 1/2$) particle in a magnetic field [8].

Let us now assume that the odd and even parts of H commute, that is, $[\mathcal{M}, \mathcal{O}] = 0$. This assumption implies

$$M^+ A = A M^-, \quad A^\dagger M^+ = M^- A^\dagger.$$
From this condition follows that the squared Hamiltonian (1) becomes block diagonal as the off-diagonal blocks vanish due to (5). That is

\[H^2 = \begin{pmatrix} M_0^2 + (-1)^{2s+1} A A^\dagger & 0 \\ 0 & M_0^2 + (-1)^{2s+1} A A^\dagger \end{pmatrix}, \]

which allows us to define a SUSY structure in analogy to the Dirac case [9, 10]. To be more explicit let us introduce the non-negative SUSY Hamiltonian

\[H_{\text{SUSY}} := \frac{(-1)^{2s+1}}{2mc^2} (H^2 - M^2) = \frac{1}{2mc^2} \begin{pmatrix} AA^\dagger & 0 \\ 0 & A^\dagger A \end{pmatrix} \geq 0 \]

and the corresponding complex SUSY charge

\[Q := \frac{1}{\sqrt{2mc^2}} \begin{pmatrix} A \\ 0 \end{pmatrix}, \quad Q^\dagger := \frac{1}{\sqrt{2mc^2}} \begin{pmatrix} 0 \\ A^\dagger \end{pmatrix}. \]

It is now obvious that these operators together with the \(Z_2 \)-grading (or Witten) operator \(W := \beta \) obey the SUSY algebra

\[H_{\text{SUSY}} = \{ Q, Q^\dagger \}, \quad \{ Q, W \} = 0, \quad Q^2 = 0 = (Q^\dagger)^2, \]

\[[W, H_{\text{SUSY}}] = 0, \quad W^2 = 1. \]

Hence, an arbitrary spin Hamiltonian of the form (1) obeying the condition (5) may be called a \textit{supersymmetric arbitrary-spin Hamiltonian}. This is consistent with the usual definition [8, 10] of a supersymmetric Dirac Hamiltonian in the case \(s = \frac{1}{2} \). Let us note that condition (5) also implies that \(\mathcal{M} \) commutes with all operators of the algebra (9).

It is interesting to note that the condition \([\mathcal{M}, \mathcal{O}] = 0 \) in addition implies that there exists an exact Foldy-Wouthuysen transformation [11, 13]

\[U := \frac{[H] + \beta H}{\sqrt{2H^2 + 2M[H]}} = \frac{1 + \beta \text{sgn}H}{\sqrt{2 + \{\text{sgn}H, \beta\}}}, \]

\[\text{sgn}H := H/\sqrt{H^2}, \]

which brings the Hamiltonian into a block diagonal form, cf. eq. (6).

\[H_{\text{FW}} := U H U^\dagger = \beta \sqrt{H^2} = \beta |H|. \]

As a side remark we mention that the two operators

\[B_\pm := \frac{1}{2} [1 \pm \beta], \quad \Lambda_\pm := \frac{1}{2} [1 \pm \text{sgn}H] \]

are projection operators onto the subspaces \(H^\pm \) of positive and negative eigenvalues of \(\beta \) and \(H \), respectively, and they are related to each other via the unitary relation [14]

\[B_\pm = U \Lambda_\pm U^\dagger. \]

That is, the positive and negative energy eigenspaces are transformed via \(U \) into eigenspaces of positive and negative eigenvalues of \(\beta = W \), cf. eq. (11). Note that we may express \(U \) in terms of \(B_\pm \) and \(\Lambda_\pm \) as follows

\[U = \frac{B_+ \Lambda_+ + B_- \Lambda_-}{\sqrt{(B_+ \Lambda_+ + B_- \Lambda_-)(\Lambda_+ B_+ + \Lambda_- B_-)}}, \]

\[\text{III. SUPERSYMMETRIC VECTOR BOSONS} \]

Let us now consider the case of a vector boson with charge \(e \) and mass \(m \) interacting with a constant external magnetic field \(\vec{B} \) characterised via the vector potential \(\vec{A} = \frac{1}{2} \vec{B} \times \vec{r} \). The corresponding Hamiltonian is given by

\[H = \begin{pmatrix} M_+ & A \\ -A & -M_- \end{pmatrix}, \]

where

\[M_\pm := mc^2 + \frac{\vec{p}^2}{2m} - \frac{ge}{2mc}(\vec{S} \cdot \vec{B}), \]

\[A := \frac{\vec{p}^2}{2m} - \frac{1}{m}(\vec{S} \cdot \vec{B})^2 + \frac{(g-2)e}{2mc}(\vec{S} \cdot \vec{B}) = A^\dagger \]

and \(\vec{p} := \vec{p} - e\vec{A}/c \). Here \(\vec{S} = (S_1, S_2, S_3)^T \) is a vector whose components are \(3 \times 3 \) matrices obeying the SO(3) algebra \([S_i, S_j] = i\epsilon_{ijk}S_k \) representing the spin-one-degree of freedom of the particle, that is \(S^2 = 2 \) as the spin \(s = 1 \) for a vector boson. In above Hamiltonian we have introduced an arbitrary gyromagnetic factor \(g \) which describes the coupling of this spin-degree of freedom to the magnetic field \(\vec{B} \). Note that above Hamiltonian was, to the best of our knowledge, first derived in 1940 by Taketani and Sakata [15] with \(g = 1 \). At the same time Corben and Schwinger [16] had studied the electromagnetic properties of mesotrons and concluded that \(g = 2 \) is required to have a singularity free theory. For later work using above Hamiltonian with both \(g_2 = 2 \) as well as arbitrary values for \(g \) see, for example, refs. [17–22].

Let us now investigate if above Hamiltonian (15) together with (10) does form a supersymmetric relativistic spin-1 Hamiltonian. For this we recall the relation [21]

\[\left[\vec{p}^2, (\vec{S} \cdot \vec{p})^2 \right] = \frac{2e \hbar}{c} \left[(\vec{S} \cdot \vec{B}), (\vec{S} \cdot \vec{p})^2 \right] \]

which allows us to explicitly calculate the commutator

\[[M_\pm, A] = (g-2) \frac{e \hbar}{2mc^2} \left[(\vec{S} \cdot \vec{B}), (\vec{S} \cdot \vec{p})^2 \right]. \]

Obviously for a non-vanishing magnetic field the SUSY condition (5) is only fulfilled when \(g = 2 \). In other words, when we require that the relativistic Hamiltonian for a massive charged spin-1 particle in a magnetic field is a \textit{supersymmetric} Hamiltonian only \(g = 2 \) is allowed. This is indeed similar to the argument [10] that the phenomenological non-relativistic Pauli-Hamiltonian for a charged spin-\(\frac{1}{2} \) fermion exhibits a SUSY structure only when \(g = 2 \).
IV. CONCLUDING REMARKS

In a final remark let us note that the above SUSY structure allows to reduce the eigenvalue problem of a supersymmetric arbitrary-spin Hamiltonian to that of a non-relativistic Hamiltonian H_s. As we will show elsewhere [23], for a charged particle in the constant magnetic field \vec{B} the FW-transformed Hamiltonian (11) for the cases $s = 0$, $s = \frac{1}{2}$ and $s = 1$ takes the form

$$H_{\text{FW}} = \beta mc^2 \sqrt{1 + \frac{2H_s}{mc^2}}, \quad (19)$$

where

$$H_0 := \frac{1}{2m}(\vec{p} - e\vec{A}/c)^2,$$
$$H_{\frac{1}{2}} := \frac{1}{2m}(\vec{p} - e\vec{A}/c)^2 - \frac{e\hbar}{mc}(\vec{\sigma} \cdot \vec{B}), \quad (20)$$
$$H_1 := \frac{1}{2m}(\vec{p} - e\vec{A}/c)^2 - \frac{e\hbar}{mc}(\vec{\sigma} \cdot \vec{B}).$$

Obviously, H_0 and $H_{\frac{1}{2}}$ represent the well-known non-relativistic Landau and Pauli-Hamiltonian, respectively, and H_1 is the correct non-relativistic Hamiltonian for a spin-1 particle in a magnetic field with $g = 2$. In above $\vec{\sigma}$ is a vector whose components consist of Pauli’s 2×2 matrices representing the spin-$\frac{1}{2}$-degree of freedom.

The purpose of this short note is two-fold. First we generalised the concept of supersymmetric relativistic Hamiltonians known from the Dirac Hamiltonian with $s = \frac{1}{2}$ to the general case of arbitrary s. More explicitly, under the condition (5) it was shown that a SUSY structure, cf. eqs. (7)-(9), can be accommodated. Second, by considering a massive charged vector boson, i.e. $s = 1$, in the presents of a constant magnetic field, this system resembles a SUSY structure if and only if its gyromagnetic factor $g = 2$.

ACKNOWLEDGMENTS

I have enjoyed enlightening discussions with Mikhail Plyushchay for which I am very grateful.

[1] V. Bargmann, Louis Michel, and V. L. Telegdi, Phys. Rev. Lett. 2, 435 (1959)
[2] S. Weinberg, in Lectures on Elementary Particles and Quantum Field Theory, edited by S. Deser, M. Grisaru, and H. Pendleton (MIT Press, Cambridge, MA, 1970) Vol. I
[3] S. Ferrara, M. Porrati, and V. L. Telegdi, Phys. Rev. D 46, 3529 (1992)
[4] F. J. Belinfante, Phys. Rev. 92, 997 (1953)
[5] A.V. Kotwal, H. Schellman, and J. Sekaric, Int. J. Mod. Phys. A 30 1541004 (2015)
[6] R. Jackiw, Phys. Rev. D 57, 2635 (1998)
[7] L. L. Foldy, Phys. Rev. 102, 568 (1956)
[8] H. Feshbach and F. Villars, Rev. Mod. Phys. 30, 24 (1958)
[9] B. Thaller, The Dirac Equation (Springer-Verlag, Berlin, 1992)
[10] G. Junker, Supersymmetric Methods in Quantum, Statistical and Solid State Physics (IOP Publishing, Bristol, 2019)
[11] E. Eriksen, Phys. Rev. 111, 1011 (1958)
[12] A. Silenko, Phys. Rev. A 77, 012116 (2008); 91, 022103 (2015); 94, 032104 (2016);
[13] G. Junker and A. Inomata, J. Math. Phys. 59, 052301 (2018)
[14] E. de Vries and A.J. van Zanten, Phys. Rev. D 8, 1924 (1973)
[15] S. Sakata and M. Taketani, Proc. Math. Phys. Soc. Japan 22, 757 (1940)
[16] H.C. Corben and J. Schwinger, Phys. Rev. 58, 935 (1940)
[17] J. A. Young and S. A. Bludman, Phys. Rev. 131, 2326 (1966)
[18] R. F. Guertin, Ann. Phys. 88, 504 (1974)
[19] D. L. Weaver, Phys. Rev. D 14, 2824 (1976)
[20] J. Daicic and N. E. Frankel, Prog. Theor. Phys. 88 1 (1992)
[21] J. Daicic and N. E. Frankel, J. Phys. A 26, 1397 (1993)
[22] A. J. Silenko, Phys. Rev. D 89, 121701(R) (2014)
[23] G. Junker Supersymmetry of Relativistic Hamiltonians for Arbitrary Spin to be published