Development of Microsatellites in Labisia pumila (Myrsinaceae), an Economically Important Malaysian Herb

Authors: Tnah, Lee Hong, Lee, Chai Ting, Lee, Soon Leong, Ng, Chin Hong, and Ng, Kevin Kit Siong

Source: Applications in Plant Sciences, 2(6)

Published By: Botanical Society of America

URL: https://doi.org/10.3732/apps.1400019
Development of Microsatellites in *Labisia pumila* (Myrsinaceae), an economically important Malaysian herb

Lee Hong Tnah^{2,3}, **Chai Ting Lee**², **Soon Leong Lee**², **Chin Hong Ng**², and **Kevin Kit Siong Ng**²

²Genetics Laboratory, Forest Research Institute Malaysia, 52109 Kepong, Selangor, Malaysia

³Author for correspondence: leehong@frim.gov.my

- **Premise of the study:** The exploitation of *Labisia pumila* for commercial demand is gradually increasing. It is therefore important that conservation is prioritized to ensure sustainable utilization. We developed microsatellites for *L. pumila* var. *alata* and evaluated their polymorphism across var. *alata*, var. *pumila*, and var. *lanceolata*.

- **Methods and Results:** Ten polymorphic microsatellites of *L. pumila* were developed using the magnetic bead hybridization selection approach. A total of 84, 48, and 66 alleles were observed in *L. pumila* var. *alata*, *pumila*, and var. *lanceolata*, respectively. The species is likely a tetraploid, with the majority of the loci exhibiting up to four alleles per individual.

- **Conclusions:** This is the first report on the development of microsatellites in *L. pumila*. The microsatellites will provide a good basis for investigating the population genetics of the species and will serve as a useful tool for DNA profiling.

Key words: kacip fatimah; *Labisia pumila*; medicinal plant; microsatellites; Myrsinaceae; tetraploid.

Labisia pumila (Blume) Fern.-Vill. (Myrsinaceae) is a small understory shrub that is widely distributed in the tropical forests of Malaysia, Indonesia, Thailand, the Philippines, and Myanmar (Sunarno, 2005). Eight varieties are recognized (Sunarno, 2005), of which *L. pumila* var. *pumila*, *L. pumila* var. *alata* (Scheff.) Mez, and *L. pumila* var. *lanceolata* (Scheff.) Mez are commonly found in Malaysia. These varieties are morphologically distinct from one another in terms of their petiole and leaf characteristics. Among the Malay communities, these varieties are collectively known as kacip fatimah, which has long been used as the traditional medicine for the treatment of pre- and post-partum complications, menstrual disorders, dysentery, rheumatism, flatulence, and gonorrhea (Burkill, 1966; Jaganath, 2000).

To date, the exploitation of *L. pumila* for commercial demand, particularly in the pharmacological and cosmeceutical applications, is gradually increasing. Attention to conservation should therefore be prioritized to ensure sustainable utilization. Despite the importance of *L. pumila*, the availability of genetic information for the species is still very limited. Only two genetic variability studies of the species have been reported using dominant markers (Bhore et al., 2009; Farah Fazwa et al., 2013). In this study, we report the development of 10 microsatellite loci in *L. pumila* var. *alata*, and we evaluate their polymorphism across var. *alata*, var. *pumila*, and var. *lanceolata*. Microsatellites are preferred markers because of the nature of their codominant inheritance, high abundance, extent of allelic diversity, and the ease of assessing the size variation by PCR with pairs of flanking primers (Weising et al., 2005).

METHODS AND RESULTS

Leaf samples of 25, 20, and four individuals of *L. pumila* var. *alata*, *pumila*, and var. *lanceolata*, respectively, were obtained from Pasoh Forest Reserve (2°58′N, 102′18′E). An additional six individuals of var. *lanceolata* were obtained from the Ethnobotanical Garden of the Forest Research Institute Malaysia (FRIM). The voucher specimens of these three varieties were deposited in FRIM Herbarium (KEP; barcode numbers 223663–223665). Total genomic DNA was extracted from fresh leaves of *L. pumila* using a modified cetyltrimethylammonium bromide (CTAB) protocol (Murray and Thompson, 1980) and further purified using the High Pure PCR Template Preparation Kit (Roche Diagnostics GmbH, Penzberg, Germany).

A genomic library enriched for dinucleotide CT and GT was constructed following the approach of Kijas et al. (1994). Approximately 5 μg of genomic DNA was obtained from an individual of *L. pumila* var. *alata* from the Ethnobotanical Garden of FRIM. After digestion with *Nde*II (Promega Corporation, Madison, Wisconsin, USA), the digested fragments were electrophoresed on 2% agarose gels with a 100-bp DNA ladder (New England Biolabs, Ipswich, Massachusetts, USA). Fragments of 300–1000 bp were excised and ligated into *Sac*IIA1 cassettes (TaKaRa Bio, Otsu, Shiga, Japan). After ligation, the nicks were repaired using DNA polymerase I (TaKaRa Bio). The cassette-ligated DNA was enriched for microsatellite repeats via hybridization to 5′-biotinylated (CT)15 and (GT)15 probes and retrieved using magnetic beads coated with streptavidin (Promega Corporation). The selectively recovered hybrids were reamplified using C1 cassette primers, digested with *Nde*II, cloned into pUC118 Bam HI/BAP vector (TaKaRa Bio), and transformed into QIAGEN EZ Competent Cells (QIAGEN GmbH, Hilden, Germany). Insert-containing clones were selected by blue/white screening on Luria–Bertani (LB) agar plates containing 100 μg/mL ampicillin, 50 μM isopropyl-β-D-thiogalactopyranoside (IPTG), and 80 μg/mL X-gal. Plasmid DNAs of a total of 608 clones were amplified using the Illustra TempliPhi Amplification Kit (GE Healthcare, Piscataway, New Jersey, USA).
Piscataway, New Jersey, USA) and sequenced using BigDye Terminator Sequencing Kit version 3.1 (Applied Biosystems, Foster City, California, USA) on an ABI 3130xl Genetic Analyzer (Applied Biosystems) with the following cycling conditions: 4 min at 94°C; 35 cycles of 94°C for 30 s, 50°C for 30 s, and 72°C for 30 s; followed by a final extension of 30 min at 72°C. Twenty-nine primer pairs that showed specific amplification products of expected fragment size were selected for fluorescent labeling at the 5’-end of the forward primers with either 6-FAM or HEX. These primers were further screened using 25 samples of L. pumila var. lanceolata, L. pumila var. alata, and var. lanceolata, respectively (Table 2). H_e ranged from 0.039 to 0.857, 0.000 to 0.793, and 0.000 to 0.874 in L. pumila var. alata, var. pumila, and var. lanceolata, respectively. Notably, locus Lpu15 was found to be monomorphic in varieties pumila and lanceolata.

Note: T_a = annealing temperature.
*Monomorphic microsatellites.

TABLE 1. Description of 10 polymorphic and three monomorphic microsatellites screened in *Labisia pumila* var. alata.

Locus	Repeat motif	Primer sequence (5’→3’)	T_a (°C)	Allele size range (bp)	Fluorescent label	GenBank accession no.
Lpu02	(GT)_20	F: GCAGAAGGAGGTTAGTGTG	50	197–235	HEX	KF318311
		R: AAATTATAAGGCCCACAGAG				
Lpu08a	(GC)_15	F: AAGGAAATATTTATACCAACCT	100	103–132	HEX	KF318312
		R: AAGGAAATATTTATACCAACCT				
Lpu08b	(TC)_21	F: CTCTTGCTTCTTGTTGTTA	50	178–211	HEX	KF318312
		R: AAGGAAATATTTATACCAACCT				
Lpu13	(TG)_11	F: GCAGAAGGAGGTTAGTGTG	50	303–342	HEX	KF318313
		R: AAATTATAAGGCCCACAGAG				
Lpu15	(TTTC)_3	F: GCAGAAGGAGGTTAGTGTG	50	198–213	6-FAM	KF318314
		R: AAATTATAAGGCCCACAGAG				
Lpu16a	(CAG)_31	F: GCAGAAGGAGGTTAGTGTG	50	93–107	6-FAM	KF318315
		R: AAATTATAAGGCCCACAGAG				
Lpu16b	(GTAT)_20	F: CTAGGAGGTTAGTGTGTTA	50	69–112	6-FAM	KF318315
		R: TCAGGAGGTTAGTGTGTTA				
Lpu21a	(GA)_26	F: GCAGAAGGAGGTTAGTGTG	50	175–207	HEX	KF318316
		R: AAATTATAAGGCCCACAGAG				
Lpu21b	(GA)_15	F: GCAGAAGGAGGTTAGTGTG	50	388–415	6-FAM	KF318316
		R: AAATTATAAGGCCCACAGAG				
Lpu38	(CA)_30	F: TCCACTACTGCTCAGATGTCG	50	75–83	HEX	KF318317
		R: GCTTTGAAGGTTGCGGGTAGT				
Lpu06a	(CA)_20	F: TAAAGCCACACATATCAATC	50	148	HEX	KF318318
		R: GCTTTGAAGGTTGCGGGTAGT				
Lpu20a	(CTC)_30	F: CATCCGCTACCAATACGCA	50	315	6-FAM	KF318319
		R: GCTTTGAAGGTTGCGGGTAGT				
Lpu24a	(GGAATT)_31	F: CATATTGTGTGATGGATTAG	50	159	6-FAM	KF318320
		R: GCCAAATTCTACAAATTTATA				

were calculated for biallelic phenotypes (AAAB and AABB) (De Walt et al., 2011). Expected heterozygosity (H_e) was calculated using ATETRA 1.2 (Van Puyvelde et al., 2010), with 10,000 Monte Carlo simulations. A total of 84, 48, and 66 alleles were observed in L. pumila var. alata, var. pumila, and var. lanceolata, respectively (Table 2). H_e ranged from 0.039 to 0.857, 0.000 to 0.793, and 0.000 to 0.874 in L. pumila var. alata, var. pumila, and var. lanceolata, respectively. Notably, locus Lpu15 was found to be monomorphic in varieties pumila and lanceolata.

![Fig. 1. Electropherogram showing four alleles amplified from an individual at loci Lpu02 and Lpu21a.](http://www.bioone.org/loi/apps)

2 of 3
TABLE 2. Genetic properties of 10 microsatellites of Labisia pumila across varieties alata, pumila, and lanceolata.

Locus	A	H_e (min)	H_e (max)	H_o
Lpu02	11	0.940	0.953	0.857
Lpu08a	9	0.880	0.880	0.793
Lpu08b	11	0.940	0.940	0.834
Lpu13	10	0.706	0.753	0.848
Lpu15	2	0.020	0.027	0.039
Lpu16a	5	0.280	0.340	0.412
Lpu16b	10	0.973	0.973	0.853
Lpu21a	11	0.940	0.940	0.834
Lpu21b	10	0.972	0.972	0.843
Lpu38	5	0.806	0.820	0.731

Note: A = number of alleles; H_e = expected heterozygosity; H_o (min) = minimum observed heterozygosity; H_o (max) = maximum observed heterozygosity; n = number of individuals.

CONCLUSIONS

This is the first report on the development of microsatellites in L. pumila. The observed levels of polymorphism and genetic diversity suggest that, apart from monomorphic loci, these microsatellites can serve as useful tools for DNA profiling and population genetic studies of the species.

LITERATURE CITED

BEVER, J. D., AND F. FELBER. 1992. The theoretical population genetics of autopolyploidy. In J. Antonovics and D. J. Futuyama [eds.], Oxford surveys in evolutionary biology, 185–217. Oxford University Press, Oxford, United Kingdom.

BHORE, S. J., A. H. NURUL, AND F. H. SHAH. 2009. Genetic variability based on randomly amplified polymorphic DNA in Kacip Fatimah (Labisia pumila Benth & Hook f.) collected from Melaka and Negeri Sembilan states of Malaysia. Journal of Forest Science 25: 93–100.

BURKEL, I. H. 1966. A dictionary of the economic product of the Malay Peninsula, vol. II (I–Z), Government of Malaysia and Singapore by the Ministry of Agriculture and Cooperative, Kuala Lumpur, Malaysia.

DE WALT, S. J., E. SIEMANN, AND W. E. ROGERS. 2011. Geographic distribution of genetic variation among native and introduced populations of Chinese tallow tree, Triadica sebifera (Euphorbiaceae). American Journal of Botany 98: 1128–1138.

FARAH FAZWA, M. A., H. SITI SALWANA, H. MAIDEN, AND O. MOHAMAD. 2013. An assessment of genetic relationship among superior accessions of Labisia pumila analyzed by amplified fragment length polymorphism (AFLP) markers. Open Science Repository Agriculture. doi:10.7392/Agriculture.70081945

JAGANATH, N. L. 2000. Herbs: The green pharmacy of Malaysia. Vinpress Sdn. Bhd. in collaboration with the Malaysian Agricultural Research and Development (MARDI), Kuala Lumpur, Malaysia.

KIDAS, J. M., J. C. FOWLER, C. A. GARBIET, AND M. R. THOMAS. 1994. Enrichment of microsatellites from the citrus genome using biotinylated oligonucleotide sequences bound to streptavidin-coated magnetic particles. BioTechniques 16: 656–662.

LI, W., AND A. GODZIK. 2006. CD-HIT: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics (Oxford, England) 22: 1658–1659.

MURRAY, M., AND W. F. THOMPSON. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research 8: 4321–4325.

SUNARNO, B. 2005. Revision of the genus Labisia (Myrsinaceae). Blumea 50: 579–597.

THIEL, T., W. MICHALEK, R. K. VARSHNEY, AND A. GRANER. 2003. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theoretical and Applied Genetics 10: 411–422.

VAN PUYVELDE, K., A. VAN GEERT, AND L. TRIEST. 2010. ATETRA, a new software program to analyse tetraploid microsatellite data: Comparison with TETRA and TETRA\tilde{S}AT. Molecular Ecology Resources 10: 331–334.

WEISING, K., H. NYROM, K. WOLFF, AND G. KAHIL. 2005. DNA fingerprinting in plants: Principles, methods, and applications, 2nd ed. Taylor & Francis Group, Boca Raton, Florida, USA.