Book Chapter

DC Performance Variations of SOI FinFETs with Different Silicide Thickness

Jun-Sik Yoon* and Rock-Hyun Baek

Electrical Engineering, POSTECH, Republic of Korea

*Corresponding Author: Jun-Sik Yoon, Electrical Engineering, POSTECH, Pohang 37673, Republic of Korea

Published January 10, 2020

This Book Chapter is a republication of an article published by Jun-Sik Yoon at Advances in Condensed Matter Physics in May 2018. (Jun-Sik Yoon, “DC Performance Variations of SOI FinFETs with Different Silicide Thickness,” Advances in Condensed Matter Physics, vol. 2018, Article ID 2426863, 7 pages, 2018. https://doi.org/10.1155/2018/2426863.)

How to cite this book chapter: Jun-Sik Yoon, Rock-Hyun Baek. DC Performance Variations of SOI FinFETs with Different Silicide Thickness. In: Ibtissem BELGACEM, editor. Prime Archives in Physics. Hyderabad, India: Vide Leaf. 2020.

© The Author(s) 2020. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Data Availability: All the data analysed in this study are included in this published article.

Conflicts of Interest: The author declares that there is no conflict of interest regarding the publication of this paper.
Funding Statement: This work was supported in part by the Ministry of Science and ICT, South Korea, through the ICT Consilience Creative Program under Grant IITP-2017-R0346-16-1007 supervised by the Institute for Information and communications Technology Promotion.

Acknowledgments: The authors would like to thank SEMATECH for device fabrication.

Abstract

DC performance and the variability of n-type silicon-on-insulator dopant-segregated FinFETs with different silicide thickness (T_{sili}) are analyzed. DC parameters including threshold voltage, low-field-mobility-related coefficient, and parasitic resistance are extracted from Y-function method for the comparison of DC performance and variability, and the correlation analysis. All the devices show similar subthreshold characteristics, but the devices with thicker T_{sili} have greater threshold voltages. The devices with thicker T_{sili} suffer from the DC performance degradation and its greater variations because the Schottky barrier height at the NiSi/Si interface increases and fluctuates greatly. This effect is validated by greater threshold voltages, larger parasitic resistances, and high correlations among all the DC parameters for the thicker T_{sili}. The devices with thicker T_{sili} also has higher low-frequency noise because of larger parasitic resistances and their correlated mobility degradations. Therefore, the device with relatively-thin T_{sili} is expected to have better DC performance and variability concerns.

Introduction

Silicon-on-insulator (SOI) MOSFETs maintain short channel immunity successfully due to the absence of substrate leakage current [1]. SOI-based devices having fin-shaped [2], ultra-thin-body [3], or gate-all-around [4] channel regions attain great scalability without short channel degradation. Meanwhile, dopant-segregated SOI MOSFETs have been considered as one of the promising candidates due to their several advantages over
the planar bulk MOSFETs: low Schottky barrier height (SBH) at the silicide/semiconductor interface, possibility of low-temperature process, and near-abrupt junction formation [5-9]. Not only does MOSFETs, but also tunneling FETs also utilize abrupt doping profile to enhance the band-to-band tunneling transport at the source/channel junction [10,11].

Two-step anneal process during silicidation was suggested to decrease the lateral excursion of silicide into the channel region [12]. The influence of NiPt thickness prior to silicidation on the DC performance of SOI MOSFETs has been studied [13]. Increasing the NiPt thickness increased the contact resistance due to the decreased interfacial area between silicide and semiconductor, but decreased the variations of sheet resistance due to its full silicidation. In this regard, it is necessary to analyze both DC performance and its variability in the perspective of the silicidation for the nanoscale dopant-segregated SOI MOSFETs.

Thus, DC performance and variations of SOI FinFETs with different silicide thickness (T_{sili}) were investigated. Then, the variability sources inducing the drain current (I_{ds}) variations were studied using the correlation analysis. Low-frequency noise was also measured for the detailed analysis of the devices with different T_{sili}.

Materials and Methods

(100) undoped SOI with 140-nm-thick buried oxide (BOX) and 20-nm-thick top Si region was prepared. BOX over-etching process was performed to define omega-shaped fin structure as shown in Figure 1b of [13]. After the formation of gate stack (HfO_2, TiN, amorphous-Si), Arsenic dopants were implanted at extension regions to reduce the underlap resistance. After defining nitride spacer regions with the spacer length (L_{sp}) of 20 nm, low-energy implantation and annealing at 1070 °C and 1.5 s was done for the source/drain (S/D) regions. Different from [13] where the NiPt with different thickness of 5 or 10 nm was deposited, the same 10-nm-thick NiPt (4 % Pt) was deposited and annealed under two-step rapid thermal process (RTP).
conditions to remove the unreacted NiPt in the middle. Instead, different RTP temperature and time conditions were used to form the NiSi with different T_{sili} of 8 and 10 nm. Otherwise, all the measured devices have the equivalent number of fins (N_{fin}) of 2, fin width (W_{fin}) of 40 nm, fin height (H_{fin}) of 20 nm, extension length (L_{ext}) of 80 nm, and gate length (L_{g}) of 40 nm. The detailed process flow and device geometry are shown in [13].

Figure 1: 3D schematic diagram of the SOI FinFETs.

Geometrical parameters such as gate length (L_{g}), spacer length (L_{sp}), extension length (L_{ext}), silicide thickness (T_{sili}) are also specified. Top left figure describes the real device structure, and red-colored phrases indicate the possible variability sources.

All the devices have the active regions with equivalent size and structure, so the differences of DC performances and the variations are induced mostly by different T_{sili}. Figure 1 shows the possible variability sources of the S/D regions. Uneven NiSi/Si interface [14] and random dopant fluctuation (RDF) [15,16] can also fluctuate the contact resistivity and thus induce the DC performance variations. Different NiSi/Si contact area by different T_{sili} would also affect the DC performance and variations because typical transfer lengths, defined as the
distances that carriers below the contact travel before entering into the contact, of SOI devices are in the order of 100 nm [17,18], which is longer than the L_{ext}. Different RTP conditions involved with different T_{sili} can vary the device performance by statistical piping effect [19] or lateral encroachment of NiSi into the S/D extension regions [20]. To understand DC performance and its variations for different T_{sili}, their transfer characteristics were measured using Keithley 4200 semiconductor characterization system, whereas low-frequency noise was measured using HP 89410A vector signal analyzer.
Results and Discussion
DC Performance and Variations at Different Silicide Thickness

Figure 2: DC performance and variations of the SOI FinFETs with the T_{sil} of (a) 8 and (b) 10 nm at drain voltage (V_{ds}) of 0.05 V and (c) 1.0 V. The number of measured devices is 50 for each T_{sil}.

Ambipolar effect is negligible
I_{ds} and transconductances (g_m) of the 50 measured devices each with different T_{sili} of 8 and 10 nm are shown in Figure 2. Each wafer has a different T_{sili}, and the measured devices with each T_{sili} are at the same position of each wafer to minimize the die-to-die variations between two different T_{sili}. Gate voltage (V_{gs}) is swept from 0.0 to 1.3 V in steps of 0.02 V, and drain voltages (V_{ds}) are 0.05 and 1.0 V. Red lines indicate the averages of I_{ds} and g_m for each T_{sili}. In both linear and saturation regimes, the devices with the T_{sili} of 8 nm have greater DC performance by showing higher on-state currents (I_{on}), while the subthreshold characteristics for the T_{sili} of 8 and 10 nm are similar. Figure 2c shows that all the devices with the T_{sili} of 8 and 10 nm do not have ambipolar effects at high V_{ds} of 1.0 V near the off-state, validating the absence of Schottky contact [13].

R_{on} ($= V_{ds}/I_{on}$) values of the 20 measured devices each with different W_{fin} and T_{sili} are shown in Figure S1. The I_{on} are extracted at the gate overdrive voltage ($V_{gs} - V_{th, CCM}$) of 1.0 V, where $V_{th, CCM}$ is the threshold voltage (V_{th}) extracted from constant current method (CCM) at $I_{th} = W_{eff}/L_{g} \cdot 10^{-7}$ A ($W_{eff} = N_{fin}(2H_{fin}+W_{fin})$). The devices with the T_{sili} of 8 nm have smaller R_{on} for all the W_{fin}. But the difference of R_{on} between two different T_{sili} is smaller for greater W_{fin} because the ratio of the NiSi/Si contact area between two different T_{sili} decreases. Additionally, raised S/D structure would be beneficial to improve the DC performance by increasing the NiSi/Si contact area. But for raised S/D structure, likewise, thicker T_{sili} also decreases the contact area, increases the contact resistance, and thus degrades the DC performance [21].
Almost all the Y-functions satisfy the linearity condition in the strong inversion regime.

Several parameters from the transfer characteristics are extracted to analyze the DC performance variations: V_{th}, low-field-mobility-related coefficient (X_0), and parasitic resistance (R_{sd}). V_{th} values are extracted using CCM or Y-function method \cite{16, 22}. $V_{th_{-CCM}}$ is measured at $I_{th} = W_{eff}/L_g \cdot 10^{-8}$ A, whereas V_{th} from Y-function method ($V_{th_{-y}}$) is extracted from the x-axis intercept of the linearly-extrapolated curve as shown in Figure 3.

The simple and general expression of the I_{ds} at low V_{ds} in the strong inversion regime is given by

$$I_{ds} = X_0 \cdot (V_{gs} - V_{th_{-y}}) \cdot (V_{ds} - I_{ds}R_{sd})$$ \hspace{1cm} (1)$$

where X_0 is defined as $\mu_{eff}C_{ox}W_{eff}/L_g$ (μ_{eff} is effective mobility and C_{ox} is oxide capacitance). Y-function is simply expressed as

$$Y \equiv \frac{I_{ds}}{\sqrt{g_m}} = \sqrt{X_0 \cdot (V_{ds} - I_{ds}R_{sd}) \cdot (V_{gs} - V_{th_{-y}})}$$ \hspace{1cm} (2)$$

According to the equation 2, Y-function is linear in the strong inversion regime if X_0 or μ_{eff} does not depend on V_{gs}. In other words, the Y-function does not satisfy the linearity condition if
the devices suffer from surface roughness scattering greatly [22]. Other assumption is that $I_{ds} \cdot R_{sd}$ is almost invariant to V_{gs} and smaller than V_{ds} in the strong inversion regime, which is satisfied in this study. Almost all the measured devices also meet the linearity condition at the V_{ds} of 0.05 V (Figure 3) because all the devices have omega-shaped structure with ultra-thin fin channel, which induces volume inversion and thus attenuates the surface roughness scattering.

Figure 4: Average and standard deviations of dc parameters for the SOI FinFETs with the $T_{silicid}$ of 8 nm (black) and 10 nm (red) at different V_{ds}: V_{th_y}, X_0, and R_{sd}.

Figure 4 shows the V_{th_y}, X_0, and R_{sd} of the measured devices at the V_{ds} of 0.01, 0.02, 0.03, 0.04, and 0.05 V extracted from Y-function method. Average X_0 and R_{sd} are independent of V_{ds}, whereas V_{th_y} increases slightly as V_{ds} increases. V_{th_y} includes the band-bending by gate voltage as well as the body-effect expressed by $m/2 \cdot V_{ds}$, where m is the body-effect coefficient (m is simply approximated as 1 for fully-depleted devices), thus showing a slight increase of V_{th_y} with the slope of $V_{ds}/2$ as V_{ds} increases [23]. The devices with the $T_{silicid}$ of 8 nm show greater X_0 and smaller R_{sd} due to greater NiSi/Si contact area.
The devices with the T_{sil} of 10 nm have greater variations of $V_{th,y}$, X_0, and R_{sd} (Figure 4). Standard deviations (σ) of X_0 and R_{sd} for the T_{sil} of 10 nm increase by 62.4 and 48.5 %, respectively, with respect to those for the T_{sil} of 8 nm. Not only $V_{th,y}$ but also V_{th_CCM} variations are severer for the T_{sil} of 10 nm ($\sigma = 45 \text{ mV}$) than for the T_{sil} of 8 nm ($\sigma = 22 \text{ mV}$) at all different V_{ds}.

DC Performance Variability Analysis

Figure 5: Scatter plots of the I_{on_y} at $(V_{gs} - V_{th_y})$ of 0.8 V with respect to the DC parameters (I_{off}, V_{th_y}, X_0, and R_{sd}) for the SOI FinFETs at the V_{ds} of 0.05 V. All the linear regressions indicate the sensitivity of the I_{on_y} with respect to the DC parameters.

To investigate why the devices with the T_{sil} of 10 nm suffer from smaller DC performance and greater variations, correlation analysis of I_{on} with off-state currents (I_{off}), V_{th_y}, X_0, and R_{sd} is done in Figure 5. Spearman’s correlation is used to calculate the correlation coefficient (ρ) [15]. I_{off} values are the I_{ds} at the V_{gs} of 0.0 V, whereas all the I_{on} values are extracted at the gate overdrive voltage ($V_{gs} - V_{th_y}$) of 0.8 V (I_{on_y}) to neglect the V_{th_y} effect [24]. Since all the devices have similar SS and no gate-induced drain leakages, I_{off} is mostly determined by V_{th_y} ($\rho = -0.781$ and -0.907 for the T_{sil} of 8 and 10 nm, respectively). Due to these perspectives, therefore, a slight correlation between I_{on_y} and I_{off} along with V_{th_y} is expected.

Nonetheless, there are correlations between I_{off}, V_{th_y}, and I_{on_y} for the T_{sil} of 10 nm (left of Figure 5). In addition, V_{th_y} for the T_{sil} of 10 nm is correlated with X_0 ($\rho = -0.530$) and R_{sd} ($\rho = 0.491$), whereas V_{th_y} for the T_{sil} of 8 nm is independent of X_0 ($\rho = -0.077$) and R_{sd} ($\rho = 0.200$) at all different V_{ds}. X_0 is also correlated with R_{sd} for the T_{sil} of 10
nm ($\rho = -0.581$), whereas the correlation is small for the T_{sili} of 8 nm ($\rho = -0.162$).

These high correlations among all the DC parameters (I_{off}, V_{th}, X_0, R_{sd}) and I_{on} for the T_{sili} of 10 nm are related to the high SBH at the NiSi/Si interface. Higher SBH for thicker T_{sili} is expected due to greater lateral encroachment of NiSi into the S/D extension regions [19,25]. Greater $V_{th,CCM}$ (or V_{th}) and larger R_{sd} for the T_{sili} of 10 nm are the indicative of higher SBH according to the equation 2 in [26] and higher contact resistivity [27], respectively. Higher SBH for thicker T_{sili} requires much band-bending for the carrier injection from source (related with I_{off} and V_{th}) as well as impedes carrier flow under operation (related with X_0, R_{sd}, and thus I_{on}) [28]. For the low-SBH devices, the SBH variations induce the on-state performance variations, not the V_{th} variations [26]. Therefore, the V_{th} variations for the T_{sili} of 8 nm are dominantly induced by other variability sources (gate work function (WF) variation [24], RDF [15], interface traps [29]) except the SBH. And that is why the V_{th} for the T_{sili} of 8 nm is not correlated with X_0, R_{sd}, and I_{on}.

Greater variations of all the DC parameters for the T_{sili} of 10 nm can also explain the increased SBH and its variations. The R_{sd} variations for SOI FinFETs are dominantly affected by NiSi/Si contact resistance [20,27]. The NiSi/Si interface consists of NiSi crystal grains having different WF and surface roughness [14]. The extension regions suffer from RDF [15] along with the WF variations, having different SBH at each of NiSi crystal grains and also for each of the devices. And this induces the SBH variations greatly for the T_{sili} of 10 nm due to smaller contact area.
Figure 6: $I_{on,y}$ variations and variations of the dc parameters ($V_{th,y}$, X_0, and R_{sd}) contributing to the $I_{on,y}$ variations for the T_{sili} of 8 and 10 nm.

Figure 6 shows the relative contributions to the $I_{on,y}$ variations with respect to the DC parameters each. When the DC parameters are correlated each other, the contributions to the variations of $I_{on,y}$ for the correlated portion are calculated using the correlation coefficient, sensitivity (the slope of scatter plots in Figure 5), and standard deviations [24]. All the correlated portions are presented as the shaded area. All the three DC parameters are correlated each other and the X_0 variations affect the $I_{on,y}$ variations greatly for the T_{sili} of 10 nm, whereas they are independent and the R_{sd} variations affect the $I_{on,y}$ variations greatly for the T_{sili} of 8 nm.
Low-frequency Noise Analysis

Figure 7: Drain current noise spectral density (S_{Ids}) measured at the V_{ds} of 0.05 V and the overdrive voltage ($V_{ov} = V_{gs} - V_{th,CCM}$) of 0.3 V for the T_{sili} of (a) 8 and (b) 10 nm. The number of measured devices, close to the average I_{ds}, is 10 each.

Low-frequency noise was measured at the V_{ds} of 0.05 V and at the overdrive voltage ($V_{ov} = V_{gs} - V_{th,CCM}$) of 0.3 V (Figure 7). Frequency range was from 1 to 1000 Hz, and the 10 devices each with the T_{sili} of 8 and 10 nm, closest to the average I_{ds}, were
measured. All the results follow the 1/f trend except at the frequency near 1 Hz where Lorentzian-type noise plateau is observed due to the small-area devices. The devices with the $T_{\text{sil}i}$ of 10 nm have greater average S_{Ids} for all the frequency range.

Figure 8: Normalized S_{Ids} at 10 Hz with respect to the I_{ds} at different V_{ov}. Figure 8 shows the S_{Ids} normalized by I_{ds}^2 of the devices with different $T_{\text{sil}i}$ at the V_{ov} from 0.1 to 0.6 V in steps of 0.1 V measured at 10 Hz. In case of the V_{ov} from 0.3 to 0.6 V, the normalized S_{Ids} values are almost independent of V_{ov}, where the noise induced by R_{sd} (S_{Rsd}) is dominant to the device [30]. The noise within the channel (S_{Rch}) is from the Si/SiO$_2$ interface and the channel itself, whereas S_{Rsd} is from the S/D contact at NiSi/Si interface. But the quality of Si/SiO$_2$ interface is almost similar for all the devices because the only difference is RTP, performed under low temperature around 300~450 °C [13,19,20,31,32] enough not to induce the Si/SiO$_2$ interface damage. In spite of that, the devices with the $T_{\text{sil}i}$ of 10 nm have greater S_{Rch} because high SBH close to the lightly-doped extension region decreases the X_0 (related to μ_{eff}) which is correlated with the R_{sd}. Greater S_{Rch} for the $T_{\text{sil}i}$ of 10 nm is also explained by the lateral encroachment of NiSi into the S/D extension regions. More lateral encroachment of NiSi for thicker $T_{\text{sil}i}$ induces higher SBH, which impedes the carrier flow and decreases the channel length.
These physical phenomena increase the S_{Rch} according to the equation 3 of [30], thus the greater S_{Rch} for the T_{sili} of 10 nm is obtained (Figure 8). As a result, the devices with the T_{sili} of 10 nm have greater normalized S_{Ids} for all the V_{ov}.

Conclusions

DC performance and variability of the dopant-segregated SOI FinFETs with different T_{sili} are analyzed in terms of the DC parameters extracted from Y-function method and Spearman correlation, respectively. Thicker T_{sili} degrades DC performance by decreasing I_{on} and $g_{m,max}$, and fluctuates V_{th}, X_0, R_{sd}, and I_{on} greatly because the SBH increases greatly and varies along with WF variation and RDF at the S/D region. In addition, the devices with the T_{sili} of 10 nm suffer from large low-frequency noise due to high SBH, which is caused by greater lateral encroachment of NiSi into the S/D extension regions and related to greater variations and correlations of $V_{th,y}$, X_0, R_{sd}, and $I_{on,y}$. Therefore, the device with relatively-thin T_{sili} is promising to improve DC performance and minimize the variation.

This variability study would be helpful to design nanoscale devices having a few dopants and small contact area because the SBH values and variations of the devices depend on the T_{sili} greatly.

References

1. T Chiarella, L Witters, A Mercha, C Kerner. Benchmarking SOI and bulk FinFET alternatives for planar CMOS scaling succession. Solid-State Electron. 2010; 54: 855-860.
2. CH Lin, B Greene, S Narasimha, Jin Cai. High performance 14nm SOI FinFET CMOS technology with 0.0174μm2 embedded DRAM and 15 levels of Cu metallization. IEDM Tech. Dig. 2014; 74-76.
3. Q Liu, A Yagishita, N Loubet, Ali Khakifirooz. Ultra-thin-body and BOX (UTBB) fully depleted (FD) device integration for 22nm node and beyond. VLSI Tech. Dig. 2010; 61-62.
4. S Barraud, R Coquand, V Maffini-Alvaro, MP Samson. Scaling of Ω-gate SOI nanowire n- and p-FET down to 10nm gate length: size- and orientation-dependent strain effects. VLSI Tech. Dig. 2013; 230-231.

5. V Gudmundsson, PE Hellström, J Luo, Jun Lu. Fully depleted UTB and trigate n-channel MOSFETs featuring low-temperature PtSi Schottky-barrier contacts with dopant segregation. IEEE Electron Device Lett. 2009; 30: 541-543.

6. MJ Martin, E Pascual, R Rengel. RF dynamic and noise performance of metallic source/drain SOI n-MOSFETs. Solid-State Electron. 2012; 73: 64-73.

7. Marwan H Khater, Zhen Zhang, Jin Cai, Christian Lavoie, Christopher D'Emic, et al. High-k/metal-gate fully depleted SOI CMOS with single-silicide Schottky source/drain with sub-30-nm gate length. IEEE Electron Device Lett. 2010; 31: 275-277.

8. J Knoch, M Zhang, S Feste, S Mantl. Dopant segregation in SOI Schottky-barrier MOSFETs. Microelectron. Eng. 2007; 84: 2563-2571.

9. Z Zhang, F Pagette, C D’Emic, Zhen Zhang. Sharp reduction of contact resistivities by effective Schottky barrier lowering with silicides as diffusion sources. IEEE Electron Device Lett. 2010; 31: 731-733.

10. K Jeon, WY Loh, P Patel, Chang Yong Kang. Si tunnel transistors with a novel silicided source and 46mV/dec swing. VLSI Tech. Dig. 2010; 121-122.

11. L Hutin, C Le Royer, RP Oeflein, Julien Borrel, Vincent Delaye, et al. Detecting unintended Schottky junctions and their impact on tunnel FET characteristics. IEEE Trans. Electron Devices. 2016; 63: 2577-2582.

12. J Luo, D Wu, Z Qiu, Jun Lu. On different process schemes for MOSFETs with a controllable NiSi-based metallic source/drain. IEEE Trans. Electron Devices. 2011; 58: 1898-1906.

13. K Akarvardar, M Rodgers, V Kaushik, Corbet S Johnson. Impact of NiPt thickness scaling on contact resistance from thin-body FD SOI to trigate FETs. IEEE Electron Device Lett. 2012; 33: 631-633.
14. Z Zhang, J Lu, Z Qiu, Jun Lu. Performance fluctuation of FinFETs with Schottky barrier source/drain. IEEE Electron Device Lett. 2008; 29: 506-508.
15. JS Yoon, T Rim, J Kim, Kinyum Kim, Yoon Ha Jeong. Statistical variability study of random dopant fluctuation on gate-all-around inversion-mode nanowire field-effect transistors. Appl. Phys. Lett. 2015; 106: 103507-1-5.
16. JS Yoon, K Kim, T Rim, CK Baek. Variability study of Si nanowire FETs with different junction gradients. AIP Advances. 2016; 6: 015318-1-7.
17. SD Kim, S Narasimha, K Rim. An integrated methodology for accurate extraction of S/D series resistance components in nanoscale MOSFETs. IEDM Tech. Dig. 2005; 1-4.
18. SD Kim. Optimum location of silicide/Si interface in ultra-thin body SOI MOSFETs with recessed and elevated silicide source/drain contact structure. Solid-State Electron. 2009; 53: 1112-1115.
19. C Ortolland, E Rosseel, N Horiguchi, C Kerner. Silicide yield improvement with NiPtSi formation by laser anneal for advanced low power platform CMOS technology. IEDM Tech. Dig. 2009; 23-26.
20. T Matsukawa, Y Liu, K Endo, Junichi Tsukada. Variability origins of parasitic resistance in FinFETs with silicided source/drain. IEEE Electron Device Lett. 2012; 33: 474-476.
21. CW Sohn, CY Kang, MD Ko, Do-Young Choi. Analytic model of S/D series resistance in trigate FinFETs with polygonal epitaxy. IEEE Trans. Electron Devices. 2013; 60: 1302-1309.
22. RH Baek, CK Baek, SW Jung, Yun Young Yeoh. Characteristics of the series resistance extracted from Si nanowire FETs using the y-function technique. IEEE Trans. Nanotechnol. 2010; 9: 212-217.
23. Y Taur, TH Ning. MOSFET Devices. In Fundamentals of modern VLSI devices, 2nd ed. Singapore: Cambridge University Press. 2010; 148-175.
24. T Matsukawa, Y Liu, S O’uchi. Comprehensive analysis of Ion variations in metal gate FinFETs for 20nm and beyond. IEDM Tech. Dig. 2011; 517-520.
25. RA Vega, TJK Liu. A comparative study of dopant-segregated Schottky and raised source/drain double-gate MOSFETs. IEEE Trans. Electron Devices. 2008; 55: 2665-2677.

26. SF Feste, M Zhang, J Knoch, S Mantl. Impact of variability on the performance of SOI Schottky barrier MOSFETs. Solid-State Electron. 53: 418-423.

27. JS Yoon, EY Jeong, SH Lee. Extraction of source/drain resistivity parameters optimized for double-gate FinFETs. Jpn. J. Appl. Phys. 2015; 54: 04DC06-1-4.

28. S Xiong, TJ King, J Bokor. A comparison study of symmetric ultrathin-body double-gate devices with metal source/drain and doped source/drain. IEEE Trans. Electron Devices. 2005; 52: 1859-1867.

29. JS Yoon, K Kim, T Rim, CK Baek. Performance and variations induced by single interface trap of nanowire FETs at 7-nm node. IEEE Trans. Electron Devices. 2017; 64: 339-345.

30. JM Peransin, P Vignaud, D Rigaud, LKJ Vandamme. 1/f noise in MODFET’s at low drain bias. IEEE Trans. Electron Devices. 1990; 37: 2250-2253.

31. SJ Choi, JW Han, Skim. Dopant-segregated Schottky source/drain FinFET with a NiSi FUSI gate and reduced leakage current. IEEE Trans. Electron Devices. 2010; 57: 2902-2906.

32. M Christensen, V Eyert, C Freeman. Formation of nickel-platinum silicides on a silicon substrate: structure, phase stability, and diffusion from ab initio computations. J. Appl. Phys. 2013; 114: 033533-1-11.

33. T Yamaguchi, K Kashihara, T Okudaira, Masafumi Yoneda. Suppression of anomalous gate edge leakage current by control of Ni silicidation region using Si ion implantation technique. IEDM Tech. Dig. 2006; 1-4.
Figure S1: On-state resistance (R_{on}) as a function of fin width (W_{fin}) for different T_{sili} of 8 and 10 nm. The number of fins (N_{fin}) for each device is 20. As W_{fin} increases from 40 to 80 nm, the difference of R_{on} between two different T_{sili} decreases from 36 to 23 %.

$N_{fin} = 20$