THE ORDER OF THE NON-ABELIAN TENSOR PRODUCT OF GROUPS

R. BASTOS, I. N. NAKAOKA, AND N. R. ROCCO

Abstract. Let G and H be groups that act compatibly on each other. We denote by $[G, H]$ the derivative subgroup of G under H. We prove that if the set $\{g^{-1}g^h \mid g, h \in H\}$ has m elements, then the derivative $[G, H]$ is finite with m-bounded order. Moreover, we show that if the set of all tensors $T_\otimes(G, H) = \{g \otimes h \mid g, h \in H\}$ has m elements, then the non-abelian tensor product $G \otimes H$ is finite with m-bounded order. We also examine some finiteness conditions for the non-abelian tensor square of groups.

1. Introduction

Let G and H be groups each of which acts upon the other (on the right),

$$G \times H \to G, \ (g, h) \mapsto g^h; \quad H \times G \to H, \ (h, g) \mapsto h^g$$

and on itself by conjugation, in such a way that for all $g, g_1 \in G$ and $h, h_1 \in H$,

$$g^{(h^{g_1})} = \left((g^{g_1^{-1}})^h\right)^{g_1} \quad \text{and} \quad h^{(g^{h_1})} = \left((h^{h_1^{-1}})^g\right)^{h_1}.$$

In this situation we say that G and H act compatibly on each other. The derivative of G under (the action of) H, $[G, H]$, is defined to be the subgroup $[G, H] = \langle g^{-1}g^h \mid g \in G, h \in H \rangle$ of G. Similarly, the subgroup $[H, G] = \langle h^{-1}h^g \mid h \in H, g \in G \rangle$ of H is called derivative of H under G. In particular, if $G = H$ and all actions are conjugations, then the derivative $[G, H]$ becomes the derived subgroup G' of G.

Schur [15, 10.1.4] showed that if G is central-by-finite, then the derived subgroup G' is finite and thus, the group G is a BFC-group. Neumann [15, 14.5.11] improved Schur’s theorem in a certain way, showing that the group G is a BFC-group if and only if the derived subgroup G' is finite, and this occurs if and only if G contains only finitely many

\[2010 \mathbf{Mathematics \ Subject \ Classification.} \ 20E34, 20J06.\]
\[\text{Key words and phrases.} \ \text{Structure theorems; Finiteness conditions; Non-abelian tensor product of groups.}\]
commutators. Latter, Wiegold proved a quantitative version of Neumann’s result: if \(G \) contains exactly \(m \) commutators, then the order of the derived subgroup \(G' \) is finite with \(m \)-bounded order [20, Theorem 4.7]. Now, the next result can be viewed as a version of Wiegold’s result in the context of actions and derivatives subgroups \([G, H]\) and \([H, G]\), where \(G \) and \(H \) are groups acting compatibly on each other.

Theorem A. Let \(G \) and \(H \) be groups that act compatibly on each other. Suppose that the set \(\{g^{-1}g^h \mid g \in G, h \in H\} \subseteq [G, H] \) has exactly \(m \) elements. Then \([G, H]\) is finite, with \(m \)-bounded order.

It should be noted that the structure of derivative subgroups provides important information about the structure of the non-abelian tensor product of groups (see for instance [1, 11, 12, 19, 18]). In this direction, we want to describe quantitative results for the non-abelian tensor product of groups (cf. [1]).

Let \(H^\varphi \) be an extra copy of \(H \), isomorphic via \(\varphi : H \to H^\varphi, h \mapsto h^\varphi \), for all \(h \in H \). Consider the group \(\eta(G, H) \) defined in [11] as

\[
\eta(G, H) = \langle G, H^\varphi \mid [g, h^\varphi]^{g_1} = [g^{g_1}, (h^{g_1})^\varphi], [g, h^\varphi]^{h_1^\varphi} = [g^{h_1}, (h^{h_1})^\varphi], \forall g, g_1 \in G, h, h_1 \in H \rangle.
\]

We observe that when \(G = H \) and all actions are conjugations, \(\eta(G, H) \) becomes the group \(\nu(G) \) introduced in [16]:

\[
\nu(G) = \langle G \cup G^\varphi \mid [g_1, g_2^\varphi]^{g_3} = [g_1^{g_3}, (g_2^{g_3})^\varphi] = [g_1, g_2^\varphi]^{g_3^\varphi}, g_i \in G \rangle.
\]

It is a well known fact (see [11, Proposition 2.2]) that the subgroup \([G, H^\varphi]\) of \(\eta(G, H) \) is canonically isomorphic with the non-abelian tensor product \(G \otimes H \), as defined by Brown and Loday in their seminal paper [5], the isomorphism being induced by \(g \otimes h \mapsto [g, h^\varphi] \) (see also Ellis and Leonard [7]). It is clear that the subgroup \([G, H^\varphi]\) is normal in \(\eta(G, H) \) and one has the decomposition

\[
(2) \quad \eta(G, H) = ([G, H^\varphi] \cdot G) \cdot H^\varphi,
\]

where the dots mean (internal) semidirect products. For a deeper discussion of non-abelian tensor product and related constructions we refer the reader to [8, 13].

An element \(\alpha \in \eta(G, H) \) is called a tensor if \(\alpha = [a, b^\varphi] \) for suitable \(a \in G \) and \(b \in H \). We write \(T_\otimes(G, H) \) to denote the set of all tensors (in \(\eta(G, H) \)). When \(G = H \) and all actions are by conjugation, we simply write \(T_\otimes(G) \) instead of \(T_\otimes(G, G) \). The influence of the set of tensors in the general structure of the non-abelian tensor product and related constructions was considered for instance in [1, 2, 3, 9, 17]. In [1] the authors proved that if the set of all tensors \(T_\otimes(G, H) \) is finite,
then the non-abelian tensor product $[G, H^p]$ is finite. Here we obtain the following quantitative version:

Theorem B. Let G and H be groups that act compatibly on each other. Suppose that there exist exactly m tensors in $\eta(G, H)$. Then the non-abelian tensor product $[G, H^p]$ is finite with m-bounded order.

An immediate consequence of the above theorem is a quantitative version of the a well known result due to Ellis [6] concerning the finiteness of the non-abelian tensor product of finite groups (cf. [1, 9, 18]). See also Theorem 2.6 and Remark 2.7 below.

It is well known that the finiteness of the non-abelian tensor square $G \otimes G$, does not imply that G is a finite group (and so, the group $\nu(G)$ cannot be finite). A useful result, due to Parvizi and Niroomand [14, Theorem 3.1], provides a sufficient condition: if G is a finitely generated group in which the non-abelian tensor square is finite, then G is finite (see also [17, Remark 5] for more details). The following result is a quantitative version of the above result and is a refinement of Theorem B in the context of the non-abelian tensor square of groups.

Corollary C. Let G be a group. Suppose that there exist exactly m tensors in $\nu(G)$. Then,

- (a) The non-abelian tensor square $[G, G^p]$ is finite with m-bounded order. More specifically, $|[G, G^p]| \leq m^{m-n}$, where n is the order of the derived subgroup G';
- (b) Additionally, if the abelianization G^{ab} is finitely generated, then the group G is finite, with m-bounded order.

Note that the assumption of the abelianization G^{ab} to be finitely generated is necessary. For instance, the Prüfer group C_p^∞ is an infinite group such that $T_\otimes(C_p^\infty) = \{1\} = [C_p^\infty, C_p^\infty]$. We also obtain a list of equivalent conditions related to the finiteness of the non-abelian tensor square and the structure of the group $\nu(G)$ (see Theorem 2.9 below).

2. **Proofs**

The following result is a consequence of [5, Proposition 2.3].

Proposition 2.1. Let G and H be groups acting compatibly on each other. The following statements hold in $\eta(G, H)$:

- (a) There exists an action of the free product $G \ast H$ on $[G, H^p]$ so that for all $g \in G, h \in H, p \in G \ast H$:

 $[g, h^p]^p = [g^p, (h^p)^p]$;
of generality we may assume that \(G, H \) derived subgroup \(m \) has finite \(\in \delta \). Then \(\ker((g, h)) = g^{-1}h^{-1} \) for each \(g \in G \), \(h \in H \);

(c) The actions of \(G \) on \(\ker(\mu) \) and of \(H \) on \(\ker(\lambda) \) are trivial.

The next lemma is an immediate consequence from the definition of \(\eta(G, H) \) and Proposition 2.1(c).

Lemma 2.2. If \(G \) and \(H \) are groups that act compatibly on each other, then \(\ker(\mu) \cap \ker(\lambda) \) is a central subgroup of \(\eta(G, H) \);

For the reader’s convenience we restate Theorem A.

Theorem A. Let \(G \) and \(H \) be groups that act compatibly on each other. Suppose that the set \(\{g^{-1}h^x \mid g \in G, \ h \in H\} \subseteq [G, H] \) has exactly \(m \) elements. Then the derivative subgroup \([G, H] \) is finite with \(m \)-bounded order.

Proof. Put \(D = \{g^{-1}h^x \mid g \in G, \ h \in H\} \). For \(g \in G \) and \(h, k \in H \), let us write \([g, h] = g^{-1}h^g \) and \([g, h, k] = [[g, h], k] \). The compatibility of the actions gives us that \([g, h]^x = [g^x, h^x] \), for all \(x, g \in G \) and \(h \in H \). Thus, \(D \) is a normal subset of \([G, H] \) and, as \(|D| = m \), for each \(\delta \in D \) we have \([[G, H] : C_{[G, H]}(\delta)] \leq m \). Consequently, \(\bigcap_{\delta \in D} C_{[G, H]}(\delta) \) has finite \(m \)-bounded index in \([G, H] \) and, by [20] Theorem 4.7, the derived subgroup \([G, H] \) is finite with \(m \)-bounded order. Without loss of generality we may assume that \([G, H] \) is abelian. Since for all \(x, g \in G \), \(h, k \in H \), we have \([[g, h], k]^x = [[g^x, h^x], k^x] \) and

\[
[[g, h], k]^2 = ([g, h]^{-1}[g, h]^k)^2 = [g, h]^{-2}[g, h]^{2k} = [[g, h]^2, k] \in D,
\]

we conclude that the abelian finitely generated subgroup \([[G, H], H] \) is normal in \(G \) and each generator of this subgroup has \(m \)-bounded order. From this we deduce that \([[G, H], H] \) is finite with \(m \)-bounded order and we may assume that \(H \) acts trivially on \([G, H] \). Hence, for all \(g \in G \) and \(h \in H \),

\[
[g, h]^2 = [g, h][g, h]^h = g^{-1}h^{-1}g^{-1}h = [g, h^2] \in D.
\]

Since \(|D| = m \), it follows that every element \([g, h] \) has finite \(m \)-bounded order. We conclude that the order of the derivative subgroup \([G, H] \) is \(m \)-bounded. The proof is complete. \(\square \)

Remark 2.3. Since \([G, H] \) and \([H, G] \) are epimorphic images of the non-abelian tensor product \([G, H^\varphi] \), the finiteness of \([G, H^\varphi] \) implies that \([G, H] \) and \([H, G] \) are finite. However, the converse does not hold in general. In fact, let \(F_m \) and \(F_n \) be free groups of finite ranks \(m \)
and \(n \), respectively, where \(m, n \geq 1 \) and suppose that these groups act trivially on each other. Thus \([G, H] = \{1\}\) and \([H, G] = \{1\}\) are finite, but by [5, Proposition 2.4], \([F_m, (F_n)^\varphi] \cong (F_m)^{ab} \otimes \mathbb{Z} (F_n)^{ab}\), which is not finite.

Now we will deal with Theorem B: Let \(G \) and \(H \) be groups that act compatibly on each other. Suppose that there exist exactly \(m \) tensors in \(\eta(G, H) \). Then the non-abelian tensor product \([G, H^\varphi]\) is finite with \(m \)-bounded order.

Corollary 2.4. Let \(G \) and \(H \) be groups that act compatibly on each other. Suppose that the sets \(\{g^{-1}g^h \mid g \in G, h \in H\} \subseteq [G, H] \) and \(\{h^{-1}h^g \mid g \in G, h \in H\} \subseteq [H, G] \) have at most \(m \) elements. Then the index \(n = [[G, H^\varphi] : \ker(\lambda) \cap \ker(\mu)]\) is finite and \(m \)-bounded.

Proof. By Theorem A, both derivative subgroups \([G, H]\) and \([H, G]\) are finite groups with \(n \)-bounded orders. Since \([G, H^\varphi] : \ker(\lambda)] = [[G, H]]\) and \([H, H^\varphi] : \ker(\mu)] = [[H, G]]\), it follows that \(\ker(\lambda) \cap \ker(\mu)\) has index at most \([|G, H|] \cdot |H, G|\). The proof is complete. \(\square\)

Lemma 2.5. Let \(G \) and \(H \) be groups that act compatibly on each other. Suppose that there are exactly \(m \) tensors in \(\eta(G, H) \). Then for every \(x \in G \) and \(y \in H \) we can write:

\[
[x, y^\varphi]^{n+1} = [x, (y^2)^\varphi][x^y, y^\varphi]^{n-1},
\]

where \(n = [[G, H^\varphi]/(\ker(\mu) \cap \ker(\lambda))].\)

Proof. Since \(|T_{\otimes}(G, H)| = m \), each of the sets \(\{g^{-1}g^h \mid g \in G, h \in H\} \) and \(\{h^{-1}h^g \mid g \in G, h \in H\} \) has at most \(m \) elements. By Theorem A, the derivative subgroups \([G, H]\) and \([H, G]\) are finite with \(m \)-bounded order. Moreover, the index \([[[G, H^\varphi] : \ker(\mu) \cap \ker(\lambda)] = n\) is finite (Corollary 2.4). We conclude that for every \(x, y \in G \) the element \([x, y^\varphi]^n \in \ker(\mu) \cap \ker(\lambda) \). Thus, by Lemma 2.2, \([x, y^\varphi]^n \in \mathbb{Z}(\eta(G, H)) \) and so, \([x, y^\varphi]^{n+1} = x^{-1}(y^{-1})^\varphi x[x, y^\varphi]^n y^\varphi \). Further,

\[
[x, y^\varphi]^{n+1} = x^{-1}(y^{-1})^\varphi x[x, y^\varphi]^n y^\varphi = [x, (y^2)^\varphi](y^{-1})^\varphi[x, y^\varphi]^{n-1} y^\varphi = [x, (y^2)^\varphi]([x, y^\varphi]^{n-1}) y^\varphi = [x, (y^2)^\varphi][x^y, y^\varphi]^{n-1},
\]

by definition of \(\eta(G, H) \), which establishes the formula. \(\square\)

We are now in a position to prove Theorem B.

Proof of Theorem B. By Lemma 2.2, the subgroup \(\ker(\mu) \cap \ker(\lambda) \) is a central subgroup of \(\eta(G, H) \). Set \(N = \ker(\mu) \cap \ker(\lambda) \) and \(n =
By Corollary 2.4 the index n is m-bounded. We claim that every element in $[G, H^r]$ can be written as a product of at most $m \cdot n$ tensors. Indeed, suppose that an element $\alpha \in [G, H^r]$ can be expressed as a product of r tensors but cannot be written as a product of fewer tensors. If $r > m \cdot n$, then one of the tensors must appear in the product at least $n + 1$ times. In particular, since the set of tensors is normal and by definition of $\eta(G, H)$, $[g, h^r]^r = [g^r, (h^r)^r]$ and $[g, h^r]^{r+1} = [g^r, (h^r)^r]$, for all $g, x \in G$ and $h, y \in H$, we can write

$$\alpha = [a, b^\varphi]^{n+1}[a_{n+2}, b^\varphi_{n+2}] \ldots [a_r, b^\varphi_r],$$

where $a, a_{n+2}, \ldots, a_r \in G$ and $b, b_{n+2}, \ldots, b_r \in H$. By Lemma 2.5,

$$[a, b^\varphi]^{n+1} = [a, (b^2)^\varphi][a^b, b^\varphi]^{n-1}.$$

It follows that α can be rewritten as a product of $r - 1$ simple tensors, contrary to the minimality of r. From this we conclude that $r \leq m \cdot n$. Now, since there exists at most m simple tensors, we conclude that $|[G, H^r]| \leq m^{m-n}$, as well. In particular, $[G, H^r]$ is finite with m-bounded order. The proof is complete.

In [10], Moravec proved that if G and H are locally finite groups of finite exponent acting compatibly on each other, then there is a bound to the exponent of the non-abelian tensor product $G \otimes H$ in terms of the exponent of the involved groups. This bound depends to the positive solution of the restricted Burnside problem (Zel’manov, [21] [22]). Using the general description of the group $\eta(G, H)$ we present an explicit bound to the exponent of the non-abelian tensor product of groups, when G and H are finite groups. Moreover, we present another proof of Ellis’ result [6].

Theorem 2.6. Let G and H be finite groups that act compatibly on each other. Then the non-abelian tensor product $[G, H^r]$ is finite. Moreover, the exponent $\exp([G, H^r])$ is finite and $\{|G|, |H|\}$-bounded.

Proof. By Lemma 2.5 $\ker(\mu) \cap \ker(\lambda)$ is a central subgroup of $\eta(G, H)$. Set $n = |[G, H^r] : \ker(\mu) \cap \ker(\lambda)|$. Note that n divides $|G| \cdot |H|$, because $[G, H] \leq G$ and $[H, G] \leq H$. Since $|\eta(G, H)/(\ker(\mu) \cap \ker(\lambda))| = |G| \cdot |H| \cdot n$, it follows that the derived subgroup $\eta(G, H)'$ is finite and $\exp(\eta(G, H)')$ divides $|G| \cdot |H| \cdot n$ (Schur’s theorem [15, 10.1.4]). In particular, the non-abelian tensor product $[G, H^r]$ is finite and $\exp([G, H^r])$ divides $|G| \cdot |H| \cdot n$. The proof is complete.

Remark 2.7. Since the proof of the above result is based on the general structure of $\eta(G, H)$ (cf. [11]) and on Schur’s theorem [15, 10.1.4], it becomes evident that it provides only a crude bound to both, the order...
and the exponent of the non-abelian tensor product $[G, H^\varphi]$. However, the advantages of these results are the explicit limits and the elementary proofs (without using homological methods). See [10] for more details. Recently, other proofs of this result which are of non-homological nature have appeared (see for instance [11] [9] [18]).

The remainder of this section will be devoted to obtain finiteness conditions for the non-abelian tensor square of groups.

Lemma 2.8. [1] Theorem C, (a)] Let G be a group with finitely generated abelianization. Assume that the diagonal subgroup $\Delta(G)$ is periodic. Then the abelianization G^{ab} is finite. Moreover, G^{ab} is isomorphic to some subgroup of $\Delta(G)$.

For the reader’s convenience we restate Corollary C:

Corollary C. Let G be a group. Suppose that there exist exactly m tensors in $\nu(G)$. Then,

(a) The non-abelian tensor square $[G, G^\varphi]$ is finite, with m-bounded order. More specifically, $|[G, G^\varphi]| \leq m^{m-n}$, where n is the order of the derived subgroup G';

(b) Additionally, if the abelianization G^{ab} is finitely generated, then the group G is finite, with m-bounded order.

Proof. (a). Applying Theorem B to $[G, G^\varphi]$ we deduce that the order of the non-abelian tensor square is finite with m-bounded order. Arguing as in the proof of Theorem B we conclude that $|[G, G^\varphi]| \leq m^{m-n}$.

(b). By the previous item, the non-abelian tensor square $[G, G^\varphi]$ and the derived subgroup G' are finite with m-bounded orders. Now, it suffices to prove that the abelianization is finite with m-bounded order. By Lemma 2.8 the abelianization G^{ab} is isomorphic to a subgroup of the diagonal subgroup $\Delta(G)$. Since $\Delta(G) \leq [G, G^\varphi]$, it follows that $\Delta(G)$ is finite with m-bounded order. The proof is complete. □

It should be noted that the next result makes evident an interesting relation between the constructions $\nu(G)$ and the non-abelian tensor square $G \otimes G$. More precisely, we collect a list of equivalences which give a relation between the set of commutators of the group $\nu(G)$ and the set of tensors $T_\otimes(G)$.

Theorem 2.9. Let G be a group. The following properties are equivalents.

(a) $\nu(G)$ is a BFC-group;
(b) The set of all commutators $\{[\alpha, \beta] \mid \alpha, \beta \in \nu(G)\}$ is finite;
(c) The derived subgroup $\nu(G)'$ is finite;
(d) The non-abelian tensor square $[G, G^\varphi]$ is finite;
(e) G is a BFC-group and $G^{ab} \otimes \mathbb{Z} G^{ab}$ is finite;
(f) The set of tensors $T\otimes (G) = \{[g, h^\varphi] \mid g, h \in G\} \subseteq \nu(G)$ is finite.

Proof. The equivalences $(a) \iff (b) \iff (c)$ are immediate consequences of Newmann’s result [15, 14.5.11]. The equivalences $(d) \iff (e)$ and $(d) \iff (f)$ were proved in [1, Corollary 1.1] and [1, Theorem A], respectively. It is clear that (b) implies (f). Finally, if part (f) holds then, from the decomposition (2) and items (d), (e), we obtain (a). The proof is complete. □

Acknowledgements. The authors wish to thank I. Snopche for interesting discussions. This work was partially supported by FAPDF - Brazil, Grant: 0193.001344/2016.

References

[1] R. Bastos, I. N. Nakaoka and N. R. Rocco, Finiteness conditions for the non-abelian tensor product of groups, Monatsh. Math. 187 (2018) pp. 603–615.
[2] R. Bastos and N. R. Rocco, The non-abelian tensor square of residually finite groups, Monatsh. Math., 183 (2017) pp. 61–69.
[3] R. Bastos and N. R. Rocco, Non-abelian tensor product of residually finite groups, São Paulo J. Math. Sci., 11 (2017) pp. 361–369.
[4] R. D. Blyth, F. Fumagalli and M. Morigi, Some structural results on the non-abelian tensor square of groups, J. Group Theory, 13 (2010) pp. 83–94.
[5] R. Brown, and J.-L. Loday, Van Kampen theorems for diagrams of spaces, Topology, 26 (1987) pp. 311–335.
[6] G. Ellis, The non-abelian tensor product of finite groups is finite, J. Algebra, 111 (1987) pp. 203–205.
[7] G. Ellis and F. Leonard, Computing Schur multipliers and tensor products of finite groups, Proc. Royal Irish Acad., 95A (1995) pp. 137–147.
[8] L.-C. Kappe, Nonabelian tensor products of groups: the commutator connection, Proc. Groups St. Andrews 1997 at Bath, London Math. Soc. Lecture Notes, 261 (1999) 447–454.
[9] M. Ladra and V. Z. Thomas, Two generalizations of the nonabelian tensor product, J. Algebra, 369 (2012) pp. 96–113.
[10] P. Moravec, The exponents of nonabelian tensor products of groups, J. Pure Appl. Algebra, 212 (2008) pp. 1840–1848.
[11] I. N. Nakaoka, Non-abelian tensor products of solvable groups, J. Group Theory, 3 (2000) pp. 157–167.
[12] I. N. Nakaoka and N. R. Rocco, Nilpotent actions on non-abelian tensor products of groups, Matemática Contemporânea, 21 (2001) pp. 223–238.
[13] I. N. Nakaoka and N. R. Rocco, A survey of non-abelian tensor products of groups and related constructions, Bol. Soc. Paran. Mat., 30 (2012) pp. 77–89.
[14] M. Parvizi and P. Niromand, On the structure of groups whose exterior or tensor square is a p-group, J. Algebra, 352 (2012) pp. 347–353.
[15] D. J. S. Robinson, *A course in the theory of groups*, 2nd edition, Springer-Verlag, New York, 1996.

[16] N. R. Rocco, *On a construction related to the non-abelian tensor square of a group*, Bol. Soc. Brasil Mat., 22 (1991) pp. 63–79.

[17] N. R. Rocco, *A presentation for a crossed embedding of finite solvable groups*, Comm. Algebra 22 (1994) pp. 1975–1998.

[18] V. Z. Thomas, *The non-abelian tensor product of finite groups is finite: a Homology-free proof*, Glasgow Math. J. 52, (2010) pp. 473–477.

[19] M. P. Visscher, *On the nilpotency class and solvability length of nonabelian tensor products of groups*, Arch. Math. 73 (1999) pp. 161–171.

[20] J. Wiegold, *Groups with boundedly finite classes of conjugate elements*, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 238 (1957) pp. 389–401.

[21] E. Zel’manov, *The solution of the restricted Burnside problem for groups of odd exponent*, Math. USSR Izv., 36 (1991) pp. 41–60.

[22] E. I. Zel’manov, *The solution of the restricted Burnside problem for 2-groups*, Math. Sb., 182 (1991) pp. 568–592.

Departamento de Matemática, Universidade de Brasília, Brasília-DF, 70910-900 Brazil
E-mail address: (Bastos) bastos@mat.unb.br; (Rocco) norai@unb.br

Departamento de Matemática, Universidade Estadual de Maringá, Maringá-PR, 87020-900 Brazil
E-mail address: (Nakaoka) innakaoka@uem.br