Implementation of geographical information systems for the study of diseases caused by vector-borne arboviruses in Southeast Asia: A review based on the publication record

Ajib Diptyanusa, Lutfan Lazuardi, Retnadi Heru Jatmiko

1Department of Parasitology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Jalan Farmako, Sekip Utara; 2Department of Health Policy and Management, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Jalan Farmako, Sekip Utara; 3Centre for Remote Sensing and Geographical Information System (PUSPICS), Universitas Gadjah Mada, Sekip Utara, Yogyakarta, Indonesia

Abstract

The spread of mosquito-borne diseases in Southeast Asia has dramatically increased in the latest decades. These infections include dengue, chikungunya and Japanese Encephalitis (JE), high-burden viruses sharing overlapping disease manifestation and vector distribution. The use of Geographical Information Systems (GIS) to monitor the dynamics of disease and vector distribution can assist in disease epidemic prediction and public health interventions, particularly in Southeast Asia where sustained high temperatures drive the epidemic spread of these mosquito-borne viruses. Due to lack of accurate data, the spatial and temporal dynamics of these mosquito-borne viral disease transmission countries are poorly understood, which has limited disease control effort. By following studies carried out on these three viruses across the region in a specific time period revealing general patterns of research activities and characteristics, this review finds the need to improve decision-support by disease mapping and management. The results presented, based on a publication search with respect to diseases due to arboviruses, specifically dengue, chikungunya and Japanese encephalitis, should improve opportunities for future studies on the implementation of GIS in the control of mosquito-borne viral diseases in Southeast Asia.

Introduction

The expansion of mosquito-borne infections has increased dramatically since the 1970s along with an increasing number of clinical cases (Rossi et al., 2018). These diseases include dengue and chikungunya, the viruses that cause them are both transmitted by Aedes mosquitoes (Manore et al., 2014). Japanese Encephalitis (JE), caused by a yet another vector-borne virus, has drawn attention from the public health sector worldwide (Erlanger et al., 2009). Although this virus is primarily transmitted by Culex rather than Aedes mosquitoes, the geographical distribution of these mosquito species overlap, especially in Southeast Asian countries (Leta et al., 2018; Pearce et al., 2018; Lam-Phua et al., 2019). Since this region possesses the highest burden of these emerging and re-emerging diseases, large epidemics overburdening local healthcare systems may occur at any time (van Panhuis et al., 2015). In order to detect rapid changes in the incidence rate of infectious diseases, as well as identifying and characterizing the syndromes, disease surveillance and prompt management of epidemic potential are mandatory (Christaki, 2015). Given their mode of transmission, emerging and re-emerging mosquito-borne diseases may expeditiously overwhelm available healthcare facilities both at regional and global levels, hence the need of immediate preventive and control measures (Heymann and Rodier, 2001; Christaki, 2015). Disease emergence can be forecast by simulation or statistical modelling based on disease incidence, population density and environmental factors (Weiss and McMichael, 2004; Jones et al., 2008; Ajelli et al., 2010; Morse et al., 2012; Lipkin, 2013). Epidemic modelling is also commonly used in the control of vector-borne diseases (Barrios et al., 2012).

The use of spatial data and remote sensing to monitor the dynamics of diseases and vectors can assist in disease prediction and identification of hotspots where emerging pathogens are likely to occur (Ford et al., 2009; Morse et al., 2012). Risk-based approaches based on Geographical Information Systems (GIS) can improve the efficiency of disease surveillance and signal early warning for areas at increased risk for disease transmission (Christaki, 2015). In Southeast Asia where sustained high temper-
Transmission models, and decision support for disease intervention. Causal factors in disease distribution, disease risk mapping and mapping, vector distribution mapping, spatial relationships and on the various uses of health GIS including disease seroprevalence and were included in this review (Table 1). The analysis focused types. Finally, a total of 37 complete articles underwent analysis and abstract only (7). Following full-text review of 63 articles, 26 articles were excluded due to topic irrelevance (564), duplicate articles (10) identified a total of 644 publications. In the first step, we excluded grey literatures, unpublished data, review articles, letters to the editor and research articles not related to the use of GIS. Study flow chart is depicted in Figure 1. After the bibliographic search, we identified a total of 644 publications. In the first step, we excluded 581 articles due to topic irrelevance (564), duplicate articles (10) and abstract only (7). Following full-text review of 63 articles, 26 articles were excluded due to topic irrelevance and unfitting article types. Finally, a total of 37 complete articles underwent analysis and were included in this review (Table 1). The analysis focused on the various uses of health GIS including disease seroprevalence mapping, vector distribution mapping, spatial relationships and causal factors in disease distribution, disease risk mapping and transmission models, and decision support for disease intervention.

Discussion

The bibliographic search identified a total of 644 publications. Following title and abstract screening, 14 articles were excluded due to topic irrelevance and unfitting article type. Finally, a total of 37 complete articles underwent full-text review and were included in this review (Table 1).

Materials and Methods

We attempted to cover different types of implementation of GIS in studies related to mosquito-borne viral diseases, particularly dengue, chikungunya and Japanese encephalitis. In the initial step, we surveyed the titles and abstracts of electronic articles through (http://www.ncbi.nlm.nih.gov/pubmed/) database with search terms including: geographic information system, GIS, remote sensing, spatial, temporal, spatio-temporal, map, dengue, chikungunya, Japanese encephalitis. We included research articles published from January 2005 through September 2019 written in English. In the second step, we selectively included studies performed in Southeast Asian countries, including Indonesia, Singapore, Malaysia, Thailand, Myanmar, Laos, Vietnam, Cambodia, Philippines, and Brunei. We excluded grey literatures, unpublished data, review articles, letters to the editor and research articles not related to the use of GIS. Study flow chart is depicted in Figure 1. After the bibliographic search, we identified a total of 644 publications. In the first step, we excluded 581 articles due to topic irrelevance (564), duplicate articles (10) and abstract only (7). Following full-text review of 63 articles, 26 articles were excluded due to topic irrelevance and unfitting article types. Finally, a total of 37 complete articles underwent analysis and were included in this review (Table 1). The analysis focused on the various uses of health GIS including disease seroprevalence mapping, vector distribution mapping, spatial relationships and causal factors in disease distribution, disease risk mapping and transmission models, and decision support for disease intervention.
rate with age is important as it indicates disease transmission in an area (Toan et al., 2015; Villar et al., 2015). These profiles imply that existing vector control measures in study areas are inadequate, and that novel vector control strategies are urgently needed (Sasmono et al., 2018). Only few seroepidemiological studies along with utilisation of GIS have been identified in this review, possibly due to the difficulty and the cost of conducting long-term, cohort-based studies. Therefore, most of the available data regarding disease seroprevalence were derived from passive disease surveillance, leading to significant uncertainties in disease controllability, such as the basic reproductive rate \(R_0 \) that can be used to determine the critical vaccination fraction to eliminate disease transmission and lessen the economic burden (Johansson et al., 2011; Supadmi et al., 2019).

Disease vector distribution mapping

Other than mapping the disease distribution itself, several studies utilised GIS for mapping the vector distribution, which is essential in monitoring expansion of the disease into previously non-endemic areas (Ong et al., 2019). Studies on \textit{Aedes} mosquitoes distribution were mostly reported from Thailand (Chansang and Kittayapong, 2007; Sarfraz et al., 2012; Boonklong and Bhumiratana, 2016), and these studies mainly reported the types of water containers or habitats suitable for mosquito breeding. The ecology and the availability of potential breeding sites differs in urban and rural settings, and one study focused on that showing that the higher the urban-rural gradient, the greater the risk for seasonal and geographical spread of \textit{Aedes} mosquitoes, (Boonklong and Bhumiratana, 2016). Interestingly, another Thai study showed that \textit{Ae. aegypti} and \textit{Ae. albopictus} entomological indices (house index, Breteau index, container index) were found to be influenced by the season and land use (Sarfraz et al., 2012), whereas another study conducted in Malaysia showed the opposite (Aziz et al., 2014). This might be due to the latter study was based on urban dengue hotspots, while the former study was conducted in villages with different endemicities. In addition, a larval GIS-supported survey of \textit{Ae. aegypti} mosquitoes in Thailand showed a significant clustering of larvae within 10-20 m radius in the study area (Chansang and Kittayapong, 2007). Along with larval indices, dengue entomological indices may represent a fairly close scenario of vector habitat suitability, however the indices were seen to remain weak in predicting dengue cases (Sarfraz et al., 2012). The study details are described further in Table 3. A number of studies utilised geopositioned occurrence data of JE cases and its vectors in evaluating the spread of the vectors and their habitats. Several clusters of some \textit{Culex} species were observed in Vietnam, where small clusters were influenced by the presence of cattle, but not by the proximity of rice fields to the house compounds (Hasegawa et al., 2008). This might be due to local practice, in which people washed animal sheds and hence created polluted ground pools that served as potential breeding sites for these mosquitoes. A multinational study was conducted in several Asian countries in predicting the environmental suitability for \textit{Cx tritaeniorhynchus} distribution, which showed that countries in South Asia and East Asia were the primary locations for the distribution of this mosquito species (Longbottom et al., 2017). The study also predicted some spots of \textit{Cx. tritaeniorhynchus} distribution in Southeast Asian countries. However, due to the sparse availability of data for these countries, it remains unclear if these areas were already inhabited or have yet to be colonised by the species. When GIS and statistical models are combined, spatial distribution of disease vectors can be predicted. Particularly in the presence of a changing environment due to human disruptions or climate change, an impact on mosquito vectors is inevitable, hence longitudinal monitoring of vectors is necessary (Higa, 2011).

Table 1. Number of studies and countries of study origin.

Country	Dengue	Chikungunya	Japanese encephalitis	Multiple diseases	Total
Brunei	-	-	-	-	-
Cambodia	-	-	-	-	-
Indonesia	4	-	-	-	4
Lao PDR	-	-	-	***	1
Malaysia	6	1	-	-	7
Myanmar	-	-	-	-	-
Philippines	-	-	-	-	-
Singapore	2	-	-	-	2
Thailand	13	2	-	-	15
Vietnam	1	-	-	-	2
Multiple countries*	2	3	1***	-	6
Total	28	3	4	2	37

*Can involve several or all Southeast Asian countries; **Dengue, JE; ***Dengue, Chikungunya.

Table 2. Selected studies on disease seroprevalence mapping.

Author	Publication year	Country	Disease(s) studied	Core findings
Azami et al.	2013	Malaysia	Chikungunya	Anti-IgG seropositivity clustered in both rural and urban communities
Valle et al.	2009	Lao PDR	Dengue,	Anti-IgG positivity frequently found in the city centre with IgM-positivity
			Japanese encephalitis	more common in the periphery

[Geospatial Health 2020; 15:862]
Spatial relationships and causal factors in disease distribution

In order to understand the disease transmission dynamics and to plan vector control measures, identification of high-risk areas and seasonal variations of disease transmission is essential. A majority of the identified studies dealt with dengue, identifying disease distribution patterns and potential risk factors of transmission (Table 4). Varying results were reported, as different study sites had their own local profiles. A study conducted in remote villages in Sarawak, Malaysia showed the presence of dengue cases in the absence of *Aedes* entomological indices, and consequently also of the principal vector of dengue, with the niche probably occupied by *Ae. albopictus*, which is more widely distributed in Sarawak regardless of remoteness of the villages studied (Cheah et al., 2006). Another study performed in Vietnam suggested that the timing and magnitude of annual dengue epidemics were influenced by local biological and ecological drivers, including vector survival, biting behaviour and virus replication within the vector (Cuong et al., 2013).

Clustering of dengue cases was observed in many studies (Vanwambeke et al., 2006; Salje et al., 2012; Yoon et al., 2012; Thomas et al., 2015; Salje et al., 2017) demonstrating focal transmission due to the low flight range of *Aedes* mosquitoes (<100 m) (Bouzid et al., 2016). However, the roles of population growth, human travel and urbanisation have been suggested to drive dengue spatiotemporal clustering and spread in the Asia-Pacific region (Bana et al., 2014). Smaller clusters suggest that most of the cases were transmitted via short-distance human movement (Guzzetta et al., 2018) and that environmental factors might play a role in the development of such focal clusters (Auschincloss et al., 2012). This evidence is strengthened by a multinational study that have demonstrated a higher population density and shorter distances in countries were predominant factors, characterising both dengue and chikungunya outbreaks, reflect a higher probability of vectors and infected individuals moving between neighbouring countries with similar climatic conditions (Rossi et al., 2018). These traits infer that disease control strategies should be focused not only on peri-domestic environment surrounding index cases, but also in other gathering places following human movement (Stoddard et al., 2013).

The complexity of the spread of mosquito-borne viruses is further added by the presence of climate change manifested as either alteration in rainfall patterns, flooding or an increased chance of extreme events. Such changes cause an altered vector ecology and population dynamics leading to geographical expansion of disease vectors and increased threats of disease transmission (Baylis, 2017; Whitehorn and Yacoub, 2019). Spatial variations of dengue cases have been reported in several studies (Jeefoo et al., 2011; Aziz et al., 2012; Astuti et al., 2019; Husmina et al., 2019; Xu et al., 2019), and they show that dengue incidences are strongly associated with rainfall, temperature and humidity. One study also demonstrated that dengue case distribution had a tendency of increased clustering during periods of low rainfall, while heavy rainfall had the opposite effect (Aziz et al., 2012). Although most studies claimed that climatic factors are determinants of dengue, other study reported no significant correlation between climatic factors and dengue incidence (Kesetanyangshis et al., 2018). This might be due to difficulties in statistical analysis (Lai, 2018), as most of the climatic data used in the study performed by Kesetanyangshis et al. (2018) were range-type data (minimum-maximum value, mean value and cumulative value). Interestingly, a multinational study identified that the combination of climate, virus and population conditions in Southeast Asia might have initiated the spread of the dengue virus under the influence by particularly high temperatures during a strong El Niño episode (van Paasen et al., 2015). This inter-annual climate phenomenon may result in fluctuations of draught and flooding which directly increase the epidemics of mosquito-borne viruses, including dengue and chikungunya (Anyamba et al., 2019). Nevertheless, the relationship between climate change and mosquito-borne viruses expansion may not always be linear, for instance, heavy rainfall may also flush away aquatic stages of the vector in breeding places (Seidahmed and Eltahir, 2016; Whitehorn and Yacoub, 2019). The identification of dengue clusters and risk factors associated with disease clustering

Author	Publication year	Country	Disease(s) studied	Core findings
Aziz et al.	2014	Malaysia	*Ae. aegypti* *Ae. albopictus*	Mosquito hotspots of various density where land use does not affect mosquito populations
Boonldong et al.	2016	Thailand	*Ae. aegypti* *Ae. albopictus*	Seasonal distribution of vectors differing between urban and rural areas according to types of water container
Chansang et al.	2007	Thailand	*Ae. aegypti* *Ae. albopictus*	Clustering of larvae within 10-20 m radius of houses
Ong et al.	2019	Singapore	*Ae. aegypti* *Ae. albopictus*	Expansion into previously non-dengue areas with increasing *Ae. aegypti* habitat percentage
Sarfraz et al.	2012	Thailand	*Ae. aegypti* *Ae. albopictus*	Settlements around gasoline stations and in vicinity of marsh or rice paddy favourable areas for mosquito vector habitats
Longbottom et al.	2017	Indonesia, Malaysia, Philippines, Thailand, Vietnam	*Cx. tritaeniorynchus*	Environmental suitability for *Cx. tritaeniorynchus* primarily located across countries in South and East Asia
Hasegawa et al.	2008	Vietnam	*Cx. vishnui* subgroup *Cx. gelidus* *Cx. quinquefasciatus*	Mosquito clusters not observed at scales larger than house compound units; presence of cattle might influence abundance of the vectors
are essential tools to target suitable disease control policies, particularly in designing timely disease surveillance with a focus on intense disease control activities, such as insecticide spraying and active case-finding (Vincenti-Gonzalez et al., 2017; Guzzetta et al., 2018). As most of this study results demonstrated small disease clusters, the implementation of control interventions at the neighbourhood level may be significantly useful in reducing dengue transmission rather than random interventions.

Table 4. Studies on spatial relationships and causal factors in disease distribution.

Author	Publication year	Country	Studied disease(s)	Major findings
Astuti et al.	2019	Indonesia	Dengue	Incidence in children spatially varied and clustered at the village level; seasonal patterns of dengue incidence strongly associated with rainfall, temperature and humidity
Aziz et al.	2012	Malaysia	Dengue	Spatial distribution more clustered with low mean rainfall, while cases more dispersed during the rainy season
Banu et al.	2014	Indonesia, Lao PDR,	Dengue	Clusters of endemicity geographically expanded in Asia-Pacific over 50 years with most likely cluster in Vietnam, Lao PDR and Thailand, possibly due to population growth, travel, urbanisation and lack of effective vector control.
		Malaysia, Myanmar,		
		Philippines, Singapore,		
		Thailand, Vietnam		
Cheah et al.	2006	Malaysia	Dengue	Risk factors including container density, house density, egg count per positive ovitraps in and around houses not correlated with number of cases
Cuong et al.	2013	Vietnam	Dengue	Annual epidemics occurring later in Ho Chi Minh City than in other provinces with timing and magnitude correlated in nearby districts suggesting influence of local biological and ecological drivers
Hussnina et al.	2019	Indonesia	Dengue	Seasonal pattern closely related to minimum temperature and relative humidity with forest cover reduction associated with increasing risk of dengue in only one study area
Jeefoo et al.	2011	Thailand	Dengue	Case distribution clustered in villages with those on the urban fringe reporting higher incidences; outbreak, movement and spread patterns associated with climatic factors but not related to entomologic and epidemiologic factors
Kesetyaningsih et al.	2018	Indonesia	Dengue	Annual incidents in all sub-districts clustered with no environmental factors closely related to dengue incidence
Salje et al.	2012	Thailand	Dengue	Localised transmission within 1-km radius with clustering of particular dengue virus serotypes in the neighbourhood
Salje et al.	2017	Thailand	Dengue	Approximately 60% of case pairs separated <200 m from same virus transmission chain supporting focal transmission at neighbourhood level
Thomas et al.	2015	Thailand	Dengue	Focal spread of dengue virus within radius of 120 m from the index case was associated with the mosquito vector
van Panhuis et al.	2015	Cambodia, Thailand,	Dengue	Local climate, virus and population conditions may have ignited emergence and spread of dengue virus influenced by high temperatures during strong El Niño episode together with population movement in central Thailand, eastern Mekong and southern Philippines
		Lao PDR, Vietnam,		
		Malaysia, Singapore,		
		Thailand, Vietnam		
Vanwambekke et al.	2006	Thailand	Dengue	Weather pattern and dengue infection rate not correlated, whereas land cover playing important role in infection determinant by providing habitats
Yoon et al.	2012	Thailand	Dengue	Spatiotemporal clustering in children with mosquitoes detected within 100-m radius and transmission showing an over-dispersion pattern
Xu et al.	2019	Thailand	Dengue	Distinct seasonality of cases, mostly affected by climatic factors
Rossi et al.	2018	Brunei, Cambodia,	Dengue Chikungunya	Higher population density and shorter distances among countries with outbreaks predominant factors characterising both dengue and chikungunya outbreaks in Southeast Asian countries
		Indonesia, Lao PDR,		
		Malaysia, Myanmar,		
		Thailand, Vietnam		

[Geospatial Health 2020; 15:862]
Disease risk mapping and transmission models

Traditionally, maps were used only when identifying and monitoring associations between location, environment, and disease (Musa et al., 2013). However, the use of mapping with respect to diseases has evolved into transmission models predicting future disease distribution trends. Table 5 describes identified studies related to risk mapping and transmission models supported by georeferenced disease data. Risk mapping can be highly useful in guiding vector control programs, mainly for disease surveillance and epidemic mitigation efforts (Ong et al., 2018). In order to classify certain areas as of low or high risk for disease transmission, several factors need to be identified, e.g., a study on dengue risk prediction mapping conducted in Selangor, Malaysia identified human settlements coverage and non-agricultural areas as risk factors for dengue transmission (Cheong et al., 2014). Similarly, other studies also identified population density and types of land use as risk factors by dengue zone mapping (Nakhapakorn and Tripathi, 2005; Dom et al., 2013; Ong et al., 2018). Another study stratified regions according to vulnerability status of contracting dengue by using the Water-associated Disease Index (WADI) that comprises many elements including climate, land use, population density, type of housing, sanitation quality and sociodemographic factors (Dickin et al., 2013). However, the WADI might not represent all areas in the country equally well since the availability of detailed health data are lacking in some regions. To increase preparedness for potential dengue outbreaks, the public health sector in many

Table 5. Studies in disease risk mapping and transmission models.

Author	Publication year	Country	Studied disease(s)	Major findings
Cheong et al.	2014	Malaysia	Dengue	Prediction map derived from several factors including human settlements and non-agricultural areas, with large share of human settlements associated with higher numbers of dengue cases
Dickin et al.	2013	Malaysia	Dengue	WADI* integrating social and biophysical components classifying study areas into high and low vulnerability with urban environments particularly vulnerable
Dom et al.	2013	Malaysia	Dengue	Areas with different disseminations mainly influenced by land use and population density with urban areas of high and moderate-high risk areas when surrounded by massive developments
Nakhapakorn et al.	2005	Thailand	Dengue	Risk mapping generated by modelling with climatic factors as independent variables with built-up areas constituting highest risk followed by agricultural areas
Ong et al.	2018	Singapore	Dengue	Risk mapping indicating predicted risk levels in agreement with dengue case densities with numbers of clusters in high-risk areas almost 8 times that of low-risk areas, which represented 50% of residential areas
O’Reilly et al.	2019	Indonesia	Dengue	Predicted spatial concentration of cases with highest risk in urban regions of Java, West Kalimantan and northern Sumatra accounting for 15% of national dengue burden
Chadsuthi et al.	2016	Thailand	Chikungunya	Mathematical modelling showing speed of transmission and incidence in particular areas affected by climatic variations
Chadsuthi et al.	2018	Thailand	Chikungunya	Transmission model using human movement, temperature and rainfall maximum likelihood fit of transmission demonstrating importance of human movement and weather conditions for spread of the virus
Miller et al.	2012	Brunei, Cambodia, Indonesia, Lao PDR, Malaysia, Myanmar, Philippines, Singapore, Thailand, Vietnam	Japanese encephalitis	Ecological niche modelling based on environmental data demonstrating that Vietnam, Cambodia and Thailand have >50% of land area with >25% probability of JE vector presence, which is in line with observed risk of increased numbers of human cases
Samy et al.	2018	Brunei, Cambodia, Indonesia, Lao PDR, Malaysia, Myanmar, Philippines, Singapore, Thailand, Vietnam	Japanese encephalitis	Ecological model predicting an overlapping distribution of vectors and reservoirs in high-risk countries including Myanmar, Lao PDR, Thailand, Vietnam, Malaysia and Indonesia.

Water Associated Disease Index.
countries has developed dengue risk maps (Louis et al., 2014). By comparing risk-stratified areas for disease transmission over the years, identification of new or recurring risk areas can assist in prioritising areas for control efforts; hence effective deployment of resources (Ong et al., 2018). Furthermore, risk mapping or risk prediction mapping can potentially be implemented in other areas with similar environmental settings, particularly for diseases transmitted by similar vector species, such as dengue and chikungunya (Cheong et al., 2014). With the advancement of computational science, efforts of disease monitoring and epidemic simulation have been made possible by various types of modelling (Ajelli et al., 2010; Christaki, 2015). Mathematical modelling was used in estimating the burden of dengue in Indonesia (O’Reilly et al., 2019) finding a predicted highest risk of spatial concentration of dengue cases in the urban regions of Java, Kalimantan and Sumatra. The use of a transmission model of chikungunya virus spread in Thailand revealed that climatic variations and human movement affect the speed of virus transmission in particular areas (Chadsuthi et al., 2016; Chadsuthi et al., 2018). Ecological modelling was also used in predicting the risk of JE transmission in multinational studies (Miller et al., 2012; Samy et al., 2018) predicting an overlapping distribution of vectors and reservoirs in high-risk countries including Myanmar, Lao PDR, Thailand, Vietnam, Malaysia and Indonesia. Additionally, more than 25% probability of JE vector presence in over 50% of the land area of Vietnam, Cambodia and Thailand was predicted with an increasing risk of human JE cases in those areas. As mosquito-borne viruses are sensitive to climate fluctuations, modelling disease transmission in a series of unique climatic episodes, including an El Niño event, in Southeast Asia as done by Tipayamongkholgul et al. (2009) and Anyamba et al. (2019) will be very useful in future epidemic forecasting.

Disease transmission modelling improves our understanding of the role of disease mobility patterns and is an important instrument in assessing both past and current disease epidemics, which are needed for the preparation of future interventions (Christaki, 2015). However, mosquito-borne disease outbreaks are more challenging to predict due to the dynamics of mosquito ecology and human behaviour in different populations (Ford et al., 2009). As mosquito-borne viruses are sensitive to climate change (Ludwig et al., 2019), close monitoring of climatologic parameters is therefore essential to evaluate slight changes that may contribute to disease outbreak.

Decision support for disease intervention

By identifying high-risk areas and accurately modelling the flow of disease transmission, it is possible to target intervention efforts. Three such studies were identified and analysed in this review (Table 6). One of the studies was conducted in Indonesia and estimated the impact of releasing *Wolbachia*-infected mosquitoes. The results predicted that a nationwide *Wolbachia* campaign could avert up to 86% of dengue cases in areas with high transmission intensity, including urban areas of Java, Kalimantan and Sumatra (O’Reilly et al., 2019). In Thailand, two studies (Kittayapong et al., 2008; Thammapalo et al., 2012) adapted GIS for monitoring disease control interventions. One showed suppression of dengue transmission in treated areas by application of integrated vector control strategies, including source reduction, screening for water jars, application of *Bacillus thuringiensis* sub-species *israelensis* (Bti)-acting as biological pesticide, and insecticide-treated ovitraps (Kittayapong et al., 2008). The other study found that the coverage of space spraying was inadequate (<100 m radius from index case) as evidenced by spreading of dengue infections and increasing number of cases with secondary infection despite timely spraying (Thammapalo et al., 2012). In countries with persistent transmission of mosquito-borne viruses, failure of disease control program should be suspected. A better monitoring and evaluation of disease surveillance and resource allocation for control programs are hence mandatory.

The number of epidemiological studies employing GIS in Southeast Asian countries and elsewhere has increased sharply in the past decade. However, not all of Southeast Asian countries have independently performed and published study national outcomes, e.g., Brunei, Cambodia, Myanmar and Philippines, which have instead been involved in large-scale, multinational studies. Possibly, due to the proportion of national budget available, these countries focused more on case finding and case management than disease surveillance and outbreak mitigation (Caballero-Anthony et al., 2015). Cambodia, Lao PDR, Myanmar, and Vietnam, i.e. countries in the Greater Mekong sub-region, might be more concerned in other high-burden, lethal mosquito-borne diseases such as malaria (Cui et al., 2012; Geng et al., 2019), which would explain the lack of research activities regarding mosquito-borne viral diseases. Political constraints and resource allocation may thus also have played a role for the outcomes (Brian and Lawrence, 2001).

In general, most of the identified studies emphasised identification of spatial relationship, risk mapping and transmission model of dengue infection, while publications regarding the use of GIS for research on chikungunya and JE were somewhat limited. Dengue contributes substantially to the economic and disease burden in Southeast Asia; higher than other mosquito-borne viral diseases. Political constraints and resource allocation may thus also have played a role for the outcomes (Brian and Lawrence, 2001).

Author	Publication year	Country	Studied disease(s)	Major findings
O’Reilly et al.	2019	Indonesia	Dengue	Nationwide long-term *Wolbachia* campaign preventing up to 86% of cases in high-transmission areas
Kittayapong et al.	2008	Thailand	Dengue	Reduction of the number of *Ae. aegypti* mosquitoes in focal dengue-treated areas by screening for water jars, application of Bti*-bacteria acting as biological pesticide and insecticide-treated ovitraps
Thammapalo et al.	2012	Thailand	Dengue	Increased number of cases with secondary infection despite timely spraying due to inadequate coverage of space spraying

* *Bacillus thuringiensis* subspecies *concordans*
JE-related studies, could be that the disease burden due to these infections may be perceived to be less than other mosquito-borne diseases. Another reason could be that a majority of Southeast Asian countries have already deployed a national JE immunisation program (Heffelfinger et al., 2017), and that researchers focus on dengue and chikungunya as they assume that the epidemiology of these viruses is similar since they can share vectors.

Conclusions

GIS has shown great promise in location of high-risk areas and populations at risk, identification of areas in need of resources and allocation of effective resources for control. The current review has identified a number of published papers on the use of GIS in dengue, chikungunya, and JE in Southeast Asian countries. Independent studies in all countries should be encouraged, particularly with respect to chikungunya and JE considering the high burden and the overlapping distribution of their mosquito vectors. Only very limited seroprevalence studies and disease intervention monitoring based on GIS were identified. This is important as seropositive populations reflect a long-term burden and ongoing disease transmission in a given area. Monitoring of ongoing interventions using GIS is important as this can assist identifying areas with failed disease control strategies, thus optimising resource allocation in those areas. More focused control strategies are urgently needed yet challenging due to limited data (O’Reilly et al., 2019). There is a need for more integrated research activities with regard to all three diseases covered by this review, addressing knowledge gaps in the implementation of GIS in control strategies, including approaches from seroprevalence studies in determining target population for vaccination program to intervention monitoring.

References

Ajelli M, Gonçalves B, Balcan D, Colizza V, Hu H, Ramasco JJ, Merler S, Vespignani A, 2010. Comparing large-scale computational approaches to epidemic modeling: Agent-based versus structured metapopulation models. BMC Infect Dis 10:190. doi: 10.1186/1471-2334-10-190.

Anyamba A, Chretien J-P, Britich SC, Soebiyanto RP, Small JL, Jepsen R, et al, 2019. Global Disease Outbreaks Associated with the 2015-2016 El Niño Event. Sci Rep 9:1930. doi: 10.1038/s41598-018-38034-z.

Asthuti EP, Dhewantara PW, Prasetyowati H, Ipa M, Herawati C, Astuti EP, Dhewantara PW, Prasetyowati H, Ipa M, Herawati C, 2014. Dynamic spatiotemporal trends of dengue transmission in the Asia-Pacific region, 1955-2004. PLoS One 9:e89440. doi: 10.1371/journal.pone.0089440.

Barrios JM, Verstraeten WW, Maes P, Aerts J-M, Farithje H, Coppin P, 2012. Using the gravity model to estimate the spatial spread of vector-borne diseases. Int J Environ Res Public Health, 9:4346-64. doi: 10.3390/ijerph9124346.

Baylis M, 2017. Potential impact of climate change on emerging vector-borne and other infections in the UK. Environ Health 16:112. doi: 10.1186/s12940-017-0326-1.

Boonklong O, Blumiratana A, 2016. Seasonal and Geographical Variation of Dengue Vectors in Narathiwat, South Thailand. Can J Infect Dis Med Microbiol 8062360. doi: 10.1155/2016/8062360.

Bouzid M, Brainard J, Hooper L, Hunter PR, 2016. Public Health Interventions for Aedes Control in the Time of Zika Virus- A Meta-Review on Effectiveness of Vector Control Strategies. PLoS Negl Trop Dis 10:e0005176. doi: 10.1371/journal.pntd.0005176.

Brian EM, Lawrence AW, Jr, 2001. Geographic Information Systems in Developing Countries: Issues in Data Collection, Implementation and Management. Journal of Global Information Management (JGIM) 9:44-54. doi: 10.4018/jgim.2001100103.

Caballero-Anthony M, Cook A, Amul G, Sharma A, 2015. Health Governance and Dengue in Southeast Asia. Singapore: Centre for Non-Traditional Security Studies (NTS), Nanyang Technological University.

Carabali M, Lim JK, Velez DC, Trujillo A, Egurola J, Lee KS, et al, 2017. Dengue virus serological prevalence and seroconversion rates in children and adults in Medellin, Colombia: implications for vaccine introduction. Int J Infect Dis 58:27-36. doi: 10.1016/j.ijid.2017.02.016.

Chad subtype S, Althouse BM, Iamsirithaworn S, Triampo W, Grantz KH, Cummings DAT, 2018. Travel distance and human movement predict paths of emergence and spatial spread of chikungunya in Thailand. Epidemiol Infect 146:1654-62. doi: 10.1017/s0950268818001917.

Chad subtype S, Iamsirithaworn S, Triampo W, Cummings DAT, 2016. The impact of rainfall and temperature on the spatial progression of cases during the chikungunya re-emergence in Thailand in 2008-2009. Trans R Soc Trop Med Hyg 110:125-33. doi: 10.1093/trstmh/trv114.

Chansang C, Kittayapong P, 2007. Application of mosquito sampling count and geospatial methods to improve dengue vector surveillance. Am J Trop Med Hyg 77:897-902. doi: 10.4269/ajtmh.2007.77.897.

Cheah WL, Chang MS, Wang YC, 2006. Spatial, environmental and entomological risk factors analysis on a rural dengue outbreak in Lundu District in Sarawak, Malaysia. Trop Biomed 23:85-96.

Cheong YL, Leitão PJ, Lakes T, 2014. Assessment of land use factors associated with dengue cases in Malaysia using Boosted
Regression Trees. Spat Spatiotemporal Epidemiol 10:75-84. doi: 10.1016/j.sste.2014.05.002.

Christaki E, 2015. New technologies in predicting, preventing and controlling emerging infectious diseases. Virulence 6:558-65. doi: 10.1080/21505594.2015.1040975.

Cui L, Yan G, Sattabongkot J, Cao Y, Chen B, Chen X, et al, 2012. Malaria in the Greater Mekong Subregion: heterogeneity and complexity. Acta Trop 121:227-39. doi: 10.1016/j.actatropica.2011.02.016.

Cuong HQ, Vu NT, Cazelles B, Boni MF, Thai KTD, Rabaa MA, et al, 2013. Spatiotemporal dynamics of dengue epidemics, southern Vietnam. Emerg Infect Dis 19:945-53. doi: 10.3201/eid1906.121323.

Dickin SK, Schuster-Wallace CJ, Elliott SJ, 2013. Developing a vulnerability mapping methodology: applying the water-associated disease index to dengue in Malaysia. PLoS One 8:e63584. doi: 10.1371/journal.pone.0063584.

Dom NC, Ahmad AH, Latif ZA, Ismail R, 2013. Measurement of dengue epidemic spreading pattern using density analysis method: retrospective spatial statistical study of dengue in Subang Jaya, Malaysia, 2006–2010. Trans R Soc Trop Med Hyg 107:715-22. doi: 10.1093/trstmh/trt073.

Erlanger TE, Weiss S, Keiser J, Utzinger J, 2009. Using satellite images of environmental changes to predict infectious disease outbreaks. Emerg Infect Dis 15:1-7. doi: 10.3201/eid1501.080311.

Flasche S, Jit M, Rodríguez-Barraquer I, Coudeville L, Recker M, Koelle K, et al, 2016. The Long-Term Safety, Public Health Impact, and Cost-Effectiveness of Routine Vaccination with a Recombinant, Live-Attenuated Dengue Vaccine (Dengvaxia): A Model Comparison Study. PLoS Med 13:e1002181. doi: 10.1371/journal.pmed.1002181.

Ford TE, Colwell RR, Rose JB, Morse SS, Rogers DJ, Yates TL, 2008. Increased risk of endemic mosquito-borne diseases in Canada due to climate change. Can Commun Dis Rep 24:178-80. doi: 10.1186/1476-072X-13-50.

Geng J, Malla P, Zhang J, Xu S, Li C, Zhao Y, et al, 2019. Increasing trends of malaria in a border area of the Greater Mekong Subregion. Malar J 18:309. doi: 10.1186/s12936-019-2924-6.

Guzzetta G, Marques-Toledo CA, Rosà R, Teixeira M, Merler S, 2018. Quantifying the spatial spread of dengue in a non-endemic Brazilian metropolis via transmission chain reconstruction. Nature 557:25-35. doi: 10.1016/j.ijid.2017.11.026.

Hasegawa M, Tuno N, Yen NT, Nam VS, Takagi M, 2008. Determination of Environmental Factors Affecting Dengue Incidence in Slemian District, Yogyakarta, Indonesia. Afr J Infect Dis 12:13-25. doi: 10.2105/Ajijd.12v1s.3.

Husnina Z, Clements ACA, Wangdi K, 2019. Forest cover and climate as potential drivers for dengue fever in Sumatra and Kalimantan 2006-2016: a spatiotemporal analysis. Trop Med Int Health 24:888-98. doi: 10.1111/tmi.13248.

Jeefo P, Tripathi NK, Souris M, 2011. Spatio-temporal diffusion pattern and hotspot detection of dengue in Chachoengsao province, Thailand. Int J Environ Res Public Health 8:51-74. doi: 10.3390/ijerph8010051.

Johansson MA, Hombach J, Cummings DAT, 2011. Models of the impact of dengue vaccines: a review of current research and potential approaches. Vaccine 29:5860-8. doi: 10.1016/j.vaccine.2011.06.042.

Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, et al, 2008. Global trends in emerging infectious diseases. Nature 451:990-3. doi: 10.1038/nature06536.

Kesetaynongsis TW, Andarini S, Sudarto, Pramoedyo H, 2018. Determination of Environmental Factors Affecting Dengue Incidence in Sleman District, Yogyakarta, Indonesia. Afr J Infect Dis 12:13-25. doi: 10.2105/Ajijd.12v1s.3.

Kittayapong P, Yoksan S, Chansung C, Bhurimatana A, 2008. Suppression of dengue transmission by application of integrated vector control strategies at sero-positive GIS-based foci. Am J Trop Med Hyg 78:70-6. doi: 10.4269/ajtmh.2008.78.70.

Lai YH, 2018. The climatic factors affecting dengue fever outbreaks in southern Taiwan: an application of symbolic data analysis. Biomed Eng Online 17:148. doi: 10.1186/s12938-018-0575-4.

Lam-Phua SG, Yeo H, Lee RML, Chong CS, Png AB, Foo SY, et al, 2019. Mosquitoes (Diptera: Culicidae) of Singapore: Updated Checklist and New Records. J Med Entomol 56:103-19. doi: 10.1093/jme/tjy154.

Leta S, Beyene TJ, De Clercq EM, Amenu K, Kraemer MUG, Revie CW, 2018. Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus. Int J Infect Dis 67:25-35. doi: 10.1016/j.ijid.2017.11.026.

Lin K, 2013. The changing face of pathogen discovery and surveillance. Nat Rev Microbiol 11:133-41. doi: 10.1038/nrmicro2949.

Longbottom J, Browne AJ, Pigott DM, Sinka ME, Goldberg N, Hay SI, et al, 2017. Mapping the spatial distribution of the Japanese encephalitis vector, Culex tritaeniorhynchus Giles, 1901 (Diptera: Culicidae) within areas of Japanese encephalitis risk. Parasit Vectors 10:148. doi: 10.1186/s13071-017-2086-8.

Louis VR, Phalkey R, Horstick O, Ratanawong P, Wilder-Smith A, Revie CW, 2018. Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus. Int J Infect Dis 67:25-35. doi: 10.1016/j.ijid.2017.11.026.

Lipkin WI, 2013. The changing face of pathogen discovery and surveillance. Nat Rev Microbiol 11:133-41. doi: 10.1038/nrmicro2949.

Lohr JW, Davis CT, Cochran C, Dye C, 2013. The potential for dengue fever in Nevada. Am J Trop Med Hyg 88:491-7. doi: 10.4269/ajtmh.2011-02487.

Lutz RW, 2010. The changing face of dengue: epidemiology and geographic distribution. Br Med Bull 94:199-219. doi: 10.1093/bmb/dlq068.

Morse SS, Mazet JAK, Woolhouse M, Parrish CR, Carroll D,
Karesh WB, et al, 2012. Prediction and prevention of the next pandemic zoonosis. Lancet 380:1956-65. doi: 10.1016/S0140-6736(12)61684-5.

Musa GJ, Chiang P-H, Syll T, Baxley R, Keating W, Lake B, et al, 2013. Use of GIS Mapping as a Public Health Tool-From Cholera to Cancer. Health Serv Insights 6:111-6. doi: 10.4137/HSI.S10471.

Nakhapakom K, Tripathi NK, 2005. An information value-based analysis of physical and climatic factors affecting dengue fever and dengue haemorrhagic fever incidence. Int J Health Geogr 4:13. doi: 10.1186/1476-074X-4-13.

O’Reilly KM, Hendrickx E, Khairisma DD, Wilastonegoro NN, Carrington LB, Elyazar IFR, et al, 2019. Estimating the burden of dengue and the impact of release of wMel Wolbachia-infected mosquitoes in Indonesia: a modelling study. BMC Med 17:172. doi: 10.1186/s12916-019-1396-4.

Ong J, Liu X, Rajarethinam J, Kok SY, Liang S, Tang CS, et al, 2018. Mapping dengue risk in Singapore using Random Forest. PLoS Negl Trop Dis 12:e0006587. doi: 10.1371/journal.pntd.0006587.

Ong J, Liu X, Rajarethinam J, Yap G, Ho D, Ng LC, 2019. A novel entomological index, Aedes aegypti Breeding Percentage, reveals the geographical spread of the dengue vector in Singapore and serves as a spatial risk indicator for dengue. Parasit Vectors 12:17. doi: 10.1186/s13071-018-3281-y.

Pearce JC, Learoyd TP, Langendorf BJ, Logan JG, 2018. Japanese encephalitis: the vectors, ecology and potential for expansion. J Travel Med 25:S16-S26. doi: 10.1093/jtm/ tuy009.

Rossi G, Karki S, Smith RL, Brown WM, Ruiz MOH, 2018. The spread of mosquito-borne viruses in modern times: A spatio-temporal analysis of dengue and chikungunya. Spat Spatio-temporal Epidemiol 26:113-25. doi: 10.1016/j.ste.2018.06.002.

Salje H, Lessler J, Endy TP, Curriero FC, Gibbons RV, Nisalak A, et al, 2012. Revealing the microscale spatial signature of dengue transmission and immunity in an urban population. Proc Natl Acad Sci USA 109:9535-8. doi: 10.1073/pnas.1102621019.

Salje H, Lessler J, Maljkovic Berry I, Melendez MC, Endy T, Kalaynarooj S, et al, 2017. Dengue diversity across spatial and temporal scales: Local structure and the effect of host population size. Science 355:1302-6. doi: 10.1126/science.aaj3934.

Samy AM, Alikishe AA, Thomas SM, Wang L, Zhang W, 2018. Mapping the potential distributions of entologiwal agent, vectors, and reservoirs of Japanese Encephalitis in Asia and Australia. Acta Trop 188:108-17. doi: 10.1016/j.actatropica.2018.08.014.

Sarfraz MS, Tripathi NK, Tipdeo T, Thongbu T, Kerdthong P, Souris M, 2012. Analyzing the spatio-temporal relationship between dengue vector larval density and land-use using factor analysis and spatial ring mapping. BMC Public Health 12:853. doi: 10.1186/1471-2458-12-853.

Sasmono RT, Taurel A-F, Prayitno A, Sitompul H, Yohan B, Hayati RF, et al, 2018. Dengue virus serotype distribution based on serological evidence in pediatric urban population in Indonesia. PLoS Negl Trop Dis 12:e0006616. doi: 10.1371/journal.pntd.0006616.

Seidahmed OME, Eltahir EAB, 2016. A Sequence of Flushing and Drying of Breeding Habitats of Aedes aegypti (L.) Prior to the Low Dengue Season in Singapore. PLoS Negl Trop Dis 10:e0004842. doi: 10.1371/journal.pntd.0004842.

Shepard DS, Undurraga EA, Halasa YA, 2013. Economic and Disease Burden of Dengue in Southeast Asia. PLoS Negl Trop Dis 7:e2055. doi: 10.1371/journal.pntd.0002055.

Stoddard ST, Forshey BM, Morrison AC, Paz-Soldan VA, Vazquez-Prokopec GM, Astete H, et al, 2013. House-to-house human movement drives dengue virus transmission. Proc Natl Acad Sci USA 110:994-9. doi: 10.1073/pnas.1213349110.

Supadmi W, Suwantika AA, Perwitasari DA, Abdulah R, 2019. Economic Evaluations of Dengue Vaccination in the Southeast Asia Region: Evidence from a Systematic Review. Value Health 26:133-73. doi: 10.1128/cmrr.17.1.136-173.2004.

Thammapalo S, Meksawi S, Chongsuvivatwong V, 2012. Effectiveness of Space Spraying on the Transmission of Dengue/Dengue Hemorrhagic Fever (DF/DHF) in an Urban Area of Southern Thailand. J Trop Med 652564. doi: 10.1155/2012/652564.

Thomas SJ, Aldstadt J, Jarman RG, Buddhari D, Yoon I-K, Richardson JH, et al, 2015. Improving dengue virus capture rates in humans and vectors in Kamphaeng Phet Province, Thailand, using an enhanced spatiotemporal surveillance strategy. Am J Trop Med Hyg 93:24-32. doi: 10.4269/ajtmh.14-0242.

Tipayamongkholgul M, Fang C-T, Klinchan S, Liu C-M, King C-C, 2009. Effects of the El Niño-southern oscillation on dengue epidemics in Thailand, 1996-2005. BMC Public Health 9:422. doi: 10.1186/1471-2458-9-422.

Toan NT, Rossi S, Prisco G, Nante N, Viviani S, 2015. Dengue epidemiology in selected endemic countries: factors influencing expansion factors as estimates of underreporting. Trop Med Int Health 20:840-63. doi: 10.1111/tmi.12498.

Vallee J, Dubot-Peres A, Ounaphom P, Sayavong C, Bryant JE, Gonzalez JP, 2009. Spatial distribution and risk factors of dengue and Japanese encephalitis virus infection in urban settings: the case of Vientiane, Lao PDR. Trop Med Int Health 14:1134-42. doi: 10.1111/j.1365-3156.2009.02319.x.

van Panhuis WG, Choisy M, Xiong X, Chok NS, Akarasewi P, Iamsirithaworn S, et al, 2015. Region-wide synchrony and traveling waves of dengue across eight countries in Southeast Asia. Proc Natl Acad Sci USA 112:13069-74. doi: 10.1073/pnas.1501375112.

Vanwambeke SO, van Benthem BHB, Karesh WB, et al, 2012. The potential role of climate in the emergence of infectious diseases. Nature Med 18:132-44. doi: 10.1038/nm.12498.

Vazquez-Prokopec GM, Astete H, et al, 2013. House-to-house human movement drives dengue virus transmission. Proc Natl Acad Sci USA 110:994-9. doi: 10.1073/pnas.1213349110.

Villar LA, Rojas DP, Besada-Lombana S, Sarti E, 2015. Epidemiological trends of dengue disease in Colombia (2000-2011): a systematic review. PLoS Negl Trop Dis 9:e0003499. doi: 10.1371/journal.pntd.0003499.

Vincenti-Gonzalez MF, Grillet M-E, Velasco-Salas ZI, Lizarazo EF, Amarista MA, Sierra GM, et al, 2017. Spatial Analysis of Dengue Seroprevalence and Modeling of Transmission Risk Factors in a Dengue Hyperendemic City of Venezuela. PLoS Negl Trop Dis 11:e0005317. doi: 10.1371/journal.pntd.0005317.

Weiss RA, McMichael AJ, 2004. Social and environmental risk factors in the emergence of infectious diseases. Nature Med 10:S70. doi: 10.1038/nm1150.
Whitehorn J, Yacoub S, 2019. Global warming and arboviral infections. Clin Med 19:149-52. doi: 10.7861/clinmedicine.19-2-149.

WHO, 2018. Asia Pacific Strategy for Emerging Diseases (APSED) Evaluation Report (2005-2015). World Health Organization.

Xu Z, Bambrick H, Yakob L, Devine G, Lu J, Frentiu FD, et al, 2019. Spatiotemporal patterns and climatic drivers of severe dengue in Thailand. Sci Total Environ 656:889-901. doi: 10.1016/j.scitotenv.2018.11.395.

Yoon IK, Getis A, Aldstadt J, Rothman AL, Tannitisupawong D, Koenraadt CJM, et al, 2012. Fine scale spatiotemporal clustering of dengue virus transmission in children and Aedes aegypti in rural Thai villages. PLoS Negl Trop Dis 6:e1730. doi: 10.1371/journal.pntd.0001730.