Interplay between Fe 3d and Ce 4f magnetism and Kondo interaction in CeFeAs$_{1-x}$P$_x$O probed by 75As and 31P NMR

R Sarkar, M Baenitz, A Jesche, C Geibel and F Steglich

Max-Planck Institute for Chemical Physics of Solids, D-01187 Dresden, Germany

E-mail: rajib.sarkar@cpfs.mpg.de and rajibsarkarsinp@gmail.com

Received 21 December 2011, in final form 13 February 2012
Published 9 March 2012
Online at stacks.iop.org/JPhysCM/24/135602

Abstract

A detailed 31P ($I = 1/2$) and 75As ($I = 3/2$) NMR study on polycrystalline CeFeAs$_{1-x}$P$_x$O alloys is presented. The magnetism of CeFeAsO changes drastically upon P substitution on the As site. CeFePO is a heavy fermion system without long-range order whereas CeFeAsO exhibits an Fe 3d SDW type of ordering accompanied by a structural transition from tetragonal (TT) to orthorhombic (OT) structure. Furthermore, Ce 4f1 orders antiferromagnetically (AFM) at low temperature. At the critical concentration where the Fe magnetism is diminished the Ce–Ce interaction changes to a ferromagnetic (FM) type of ordering. Three representative samples of the CeFeAs$_{1-x}$P$_x$O ($x = 0.05, 0.3$ and 0.9) series are systematically investigated. (1) For the $x = 0.05$ alloy a drastic change of the linewidth at 130 K indicates the AFM-SDW type of ordering of Fe and the structural change from the TT to the OT phase. The linewidth roughly measures the internal field in the ordered state and the transition is most likely first order. The small and nearly constant shift from 31P and 75As NMR suggests the presence of competing hyperfine interactions between the nuclear spins and the 4f and 3d ions of Ce and Fe. (2) For the $x = 0.3$ alloy, the evolution of the Fe-SDW type of order takes place at around 70 K corroborating the results of bulk measurement and μSR. Here we found evidence for phase separation of paramagnetic and magnetic SDW phases. (3) In contrast to the heavy fermion CeFePO for the $x = 0.9$ alloy a phase transition is found at 2 K. The field-dependent NMR shift gives evidence of FM ordering. Above the ordering the spin–lattice relaxation rate $^{31}(1/T)$ shows unconventional, non-Korringa-like behaviour which indicates a complex interplay of Kondo and FM fluctuations.

(Some figures may appear in colour only in the online journal)

1. Introduction

The rare earth transition metal pnictides RTPnO (R: rare earth, T: transition metal, Pn: P or As) attracted considerable attention because of the startling discovery of superconductivity (SC) in the RFeAsO$_{1-x}$F$_x$ series of compounds at elevated temperatures above 50 K that are surpassed only in the cuprate superconductors [1–7]. In CeFeAsO, antiferromagnetic (AFM) ordering is achieved by the Ce moments at 3.7 K whereas the high-temperature region is dominated by the 3d magnetism of Fe which culminates in a SDW type of AFM order of Fe at ~ 145 K. Interestingly, there is a structural transition from a tetragonal (TT) to an orthorhombic (OT) phase at ~ 150 K. Neutron scattering and muon spin relaxation μSR experiments suggest that there is a sizeable interlayer coupling in CeFeAsO [12, 14, 15]. Recent studies of CeRuPO and CeOsPO [8–10], on the other hand, indicate that CeRuPO is a rare example of a ferromagnetic...
(FM) Kondo lattice showing FM order of Ce at $T_C = 15$ K and a Kondo energy scale of about $T_K \approx 10$ K. In contrast, CeOsPO shows AFM order at $T_N = 4.5$ K. However, recent studies of the Fe derivative CeFePO suggest that this is a heavy fermion metal close to a FM instability in which the magnetism is dominated by the 4f electrons [11].

The Fe 3d magnetism in these systems is very sensitive to the electronic environment. The interplay between SC and magnetism was vividly demonstrated by the electron doping studies in CeFeAsO$_{1-x}$F$_x$ ($T_C \approx 41$ K [16]) as well as in pressure studies on optimally doped CeFeAsO [17]. In this work we broaden investigations into electronic phenomena and the participation of electron superconductivity and magnetism in the CeFeAsO system by substituting As in CeFeAsO by the smaller P ion. This approach seems especially attractive as it involves strong electronic correlations in heavy fermion CeFePO. Theoretical work suggests that the Fe pnictide series, where P is progressively substituted for As, may present a route to magnetic quantum criticality [18]. In this context, the substitutional series CeFeAs$_{1-x}$P$_x$O appears to be especially attractive, presenting a crossover from AFM fluctuations to FM fluctuations. This is already shown by the recent research work done by Luo et al [19]. Additional work [13], from which the phase diagram shown in figure 1 has been reproduced, illustrates the appealing standoff between cooperative (SDW, AFM, FM) and correlational (Kondo) phenomena in doped CeFeAs$_{1-x}$P$_x$O, which is the topic of this work. The primary macroscopic investigations of these alloys suggest that, by increasing the P doping concentration, the Fe-SDW-type anomaly shifts to lower temperature and is completely suppressed at the critical concentration of $x_c \approx 0.35$ [20]. Here, in addition, the nature of the Ce 4f magnetism changed from AFM to FM. Between $x = 0.35$ and 0.9 the ground state is governed by the long-range Ce 4f-based FM. Fe magnetism is absent beyond $x = 0.35$. Above about $x = 0.9$ long-range FM Ce order disappears and makes way for the Kondo interaction. This is in line with our earlier findings [11] which conveyed the heavy fermion nature close to FM order in the $x = 1$ system, CeFePO. In fact, the system appears to be partial to FM order as is demonstrated by appropriately small elemental substitution (as on the P site or Ru on the Fe site) [8]. In this paper we report 31P ($I = 1/2$) and 75As ($I = 3/2$) NMR studies on CeFeAs$_{1-x}$P$_x$O with $x = 0.05$, 0.3 and 0.9 (see figure 1) as a function of field and temperature. Whereas there is already an abundance of research reported on NMR work on RFePnO-type Fe pnictides involving various elements in place of R, to our knowledge there exists at present only one paper concerning 75As-NMR studies specifically on the CeFeAsO compound. Moreover, the present work involving 31P-NMR provides an important advance on existing NMR studies by conspicuously addressing the role of the P dopant in CeFeAs$_{1-x}$P$_x$O. The rather complex $I = 3/2$ spectra did not enable clarification of the Fe AFM (SDW type) ordered state [24]—a topic which we sought to address in this work and hence this work involving 31P-NMR provides an important advance on existing NMR studies. A very small P substitution ($x = 0.05$) in CeFeAsO affords the opportunity to probe 31P as a favourable $I = 1/2$ nucleus with less complex spectra than those obtained in 75As-NMR, yet without impacting severely on the magnetism in CeFeAsO. Besides, employing an $I = 1/2$ nucleus obviates the need to account for quadrupolar interactions.

2. Experimental details

Polycrystalline CeFeAs$_{1-x}$P$_x$O samples were synthesized using a Sn-flux method in evacuated quartz tubes as described in [12, 13] (where x denotes the nominal phosphorus content). The phosphorus concentration was confirmed by EDX analysis. X-ray powder diffraction showed only tiny foreign phases and the determined lattice spacings allowed for an estimation of the P concentration by using Vegard’s rule. For NMR measurements, the powder samples were fixed in paraffin to ensure a crystallographically random orientation and to prevent signal reduction due to the skin-depth effect. 31P and 75As NMR measurements were performed with a standard pulsed NMR spectrometer (Tecmag) at the frequency 75 MHz (31P-NMR) and 48 MHz (75As-NMR) as a function of temperature. The field sweep NMR spectra were obtained by integrating the echo in the time domain and plotting the resulting intensity as a function of the field. Shift values are calculated from the resonance field H^* by $K(T) = (H_L - H^*)/H^*$ whereas the Larmor field H_L is given by using H$_3$PO$_4$ (31P-NMR) and GaAs (75As-NMR) as reference compounds. Spin–lattice relaxation time (T_1) measurements were carried out by the standard saturation recovery method. On the As-rich side of the phase diagram the very short T_1 lifetimes turned out to be too short to be measured, but no such difficulty was encountered at the P-rich side ($x = 0.9$). We profiled from this fact by additionally conducting field-dependent 31P-NMR in the $x = 0.9$ sample in order to probe the low-temperature Ce-based FM order.
3. Results

In this paper NMR results on the 31P and 75As nuclei on three different CeFeAs$_{1-x}$P$_x$O samples are presented. The first one ($x = 0.05$) is close to the undoped end-point compound CeFeAsO. The midpoint concentration ($x = 0.3$) is located at the border where Fe magnetism is suppressed. The P-rich composition ($x = 0.9$) was chosen close to the heavy fermion metal CeFePO as well as to enable detection of the FM order. Therefore, the three samples represent appropriate regions of interest on the complex phase diagram of this alloy system. In the following sections 31P and 75As NMR results are discussed in the context of magnetic and structural transitions in the As-rich sample in particular, and the Kondo interaction competing with the RKKY interaction in the As-poor samples.

3.1. 31P and 75As NMR for $x = 0.05$: the SDW transition region

Figure 2 shows the 31P field sweep NMR spectra at different temperatures. At high temperature a single narrow line is observed, as expected for a TT system. On lowering the temperature the overall features of the spectra remain largely invariant down to 132K. No significant shift is observed down to this temperature. With further lowering of temperature to 130 K, a weak signal-to-noise ratio develops because of enormous line broadening in the 31P NMR spectra. As a result we are unable to resolve 31P NMR spectra. This is ascribed to SDW-type AFM ordering that develops abruptly between 132 and 130 K, resulting in a reduction in T_I. Nevertheless, towards lower temperatures at around 5 K the 31P NMR line re-emerged as a half-square-like lineshape. The full width at half-maximum (FWHM) of powder spectra in the AFM ordered state provides a rough estimate of the prevailing internal field of the system as sensed by the nuclei being probed [21–23].

The horizontal double arrows in figure 2 show the internal field at FWHM. Approaching the ordered phase from the paramagnetic state evidently produces a rather drastic change of the internal field, although the overall spectra are hardly shifted with respect to the field upon lowering the temperature. This is in contrast to the 31P NMR finding for the pure CeFePO system [11]. The temperature-independent shift found for the sample $x = 0.05$ indicates a cancelling out of hyperfine field contributions originating from Ce and Fe at the P site. Furthermore, the cancellation could also be come by between the moments of the Fe sublattice themselves with P either occupying symmetric positions in the magnetic lattice or random positions in an incommensurate SDW. The vertical line in the right-hand side panel of figure 2 shows the position of the Larmor field.

Figure 3 shows the 75As field sweep NMR spectra at different temperatures for $x = 0.05$. The upper left panel shows the central transition with pronounced second-order quadrupolar split 75As NMR spectra above the SDW transition. Lower panel shows the 75As spectra at 150 and 132 K. Upper right panel shows the 75As spectra close to (132 and 130 K) and below (20 and 5 K) the SDW transition.
be found down to 130 K. Below this temperature the line broadening signals the SDW type of ordering, and one concludes that in a narrow temperature window below SDW ordering the paramagnetic phase and SDW ordered phase may coexist.

The splitting ΔH_Q of the central NMR resonance due to second-order quadrupolar interaction is given by [29, 30]:

$$\Delta H_Q = \frac{v_Q^2}{48\gamma_N^2 H}(25 - 22\eta + \eta^2), \quad (1)$$

where γ_N and v_Q represent the gyromagnetic ratio of 75As (7.292 MHz/10 kOe) and nuclear quadrupolar splitting frequency, respectively. ΔH_Q depends on v_Q^2, $1/H$ and η. ΔH_Q amounts to 0.132 T above the SDW transition. This is shown in figure 3 (top part of the left-hand panel).

The insets of figure 4 show 75As NMR spectra at 150 K and at 130 K together with the theoretical simulation. Simulation has been done considering the standard second-order perturbation effect of quadrupolar interaction incorporating the Knight-shift powder pattern. Furthermore we have introduced Gaussian line broadening effects [26, 27]. At 150 and 130 K the spectra are fitted reasonably well, taking into account the second-order quadrupolar perturbation contribution. The parameters obtained for 150 K are $v_Q = 9.57 \pm 0.2$ MHz and $\eta = 0.03$. These values are close to findings for other members of the paramagnetic pnictide family [24, 25, 28]. For 130 K the parameters obtained are different, namely $v_Q = 11.00 \pm 0.4$ MHz and $\eta = 0.1 \pm 0.02$. This change reflects the change of magnitude and direction of the electric field gradient due to the structural phase transition. Using equation (1), $v_Q = 9.56$ MHz is obtained, which is very close to the value obtained from a simulation of the entire 75As spectrum above the SDW transition.

If we assume that v_Q is roughly inversely proportional to the unit-cell volume associated with the structural change which is at most 5%, the change in v_Q gives a spectral broadening of at most 0.02 T at half the maximum intensity at 6.6 T [21]. It should be borne in mind that in this system the structural change does not accompany any unit-cell volume change, and therefore the structural change itself cannot be responsible for such a large line broadening at 130 K. The change in the v_Q value from 150 to 130 K is only around 1.43 MHz, which is rather unlikely to produce a change of the linewidth (in terms of field) by more than an order of magnitude. The changes in the internal field and the v_Q and η values at 130 K indicate that the SDW-type Fe AFM ordering and the structural transition from the TT phase to the OT phase occur near simultaneously. On the other hand, for the parent compound CeFeAsO the available results suggest that the structural and AFM Fe ordering take place at two distinctly different temperatures 150 K and 145 K, respectively.

As already discussed, the spectral width is an indication of the distribution of the internal field (ΔH_{int}) at the P or As site. Figure 4 (main panel) shows the variation of the internal field across the magnetic phase transition. A negligibly small internal field persists from 220 down to 132 K, but increases abruptly upon cooling through 130 K. It is evident that the internal field is nearly fully developed as soon as ordering sets in and very little growth in the internal field takes place upon cooling from 130 to 5 K. The discontinuous tendency of the magnetic internal field at 130 K indicates that the SDW transition is likely to be first order.

3.2. 31P and 75As NMR for $x = 0.3$: the critical region

A typical set of 31P field sweep NMR spectra is shown in figure 5 at different temperatures. In the left panel, figure 5 shows the 31P field sweep NMR spectra at three different temperatures. The right-hand panel shows the temperature variation of 31P field sweep NMR spectra in the temperature range 70–2 K. The NMR spectra change considerably over...
this temperature range. The vertical line indicates the position of the Larmor field. At high temperatures (inset in the left-hand panel) a narrow, single anisotropic line is observed as expected for a TT structure. A moderate anisotropy develops together with line broadening as the temperature is lowered, and at the same time there is an overall shift of the resonance towards lower fields.

The overall lineshape is not changed remarkably down to the temperature 70 K. However, with further lowering of temperature at around 60 K, all of a sudden a structure develops. This is more evident below 50 K. The line consists of a superposition of a smeared anisotropic broadened background and a narrow single line (at 4.35 T). Moreover, the smeared anisotropic broadened background is gaining intensity and anisotropy upon lowering the temperature down to 2 K, whereas the intensity of the single narrow line (at 4.35 T) is fading out and it is hardly traceable below 20 K. The small signals observed at around 4.75 T and 4.95 T are due to the presence of a small amount of Sn impurity, corresponding to the NMR signals of 119Sn and 117Sn isotopes, respectively. As the sample is prepared by the Sn-flux method, therefore it is likely to be the presence of small amounts of impurities in the sample.

The change of line shape in the 31P NMR spectra at around 60 K is evident due to a modified SDW type of Fe AFM ordering, although the effects of the structural transition from the TT phase to the OT phase cannot be excluded. However, this is unlikely because synchrotron XRD measurements do not suggest any structural transition. The effective width of the broadened line is about 0.6 T, which might be used as a first estimation of the internal field of the Fe ordered moment sensed by the P nuclei. The red dotted lines in figure 5 are guides to the eye and track the evolution of the internal field towards low temperatures. At 60 K and below, the presence of a narrow central peak along with the smeared broadened background suggest the coexistence of the paramagnetic and SDW type AFM ordered phases.

Figure 6 shows the 75As field sweep NMR spectra for the $x = 0.3$ compound at different temperatures. In the inset of the left-hand panel, the central part of the 75As spectra at 120 K is shown. The right-hand panel shows a series of 75As spectra in the low-temperature range and a number of interesting features are noted. At high temperature the spectra reveal typical second-order quadrupole splittings. For a single-phase As position, we would expect a second-order split central line as observed for the system $x = 0.05$. However, for $x = 0.3$ shown in figure 6, a relatively sharp narrow line along with the second-order split central line, at around 6.625 T, is also observed. This is indicated by the black arrow in the inset of figure 6 (left-hand panel). This resonance may conceivably originate from a tiny amount of As-rich impurity phase. To investigate this conjecture, we have compared these results (labelled sample A) with a second batch of sample material (sample B) believed to be of superior analytical quality. Figure 7 shows an overlay of the 75As field sweep NMR spectra taken at 60 K for two samples. The inset of figure 7 shows the central transition on a magnified scale. It is seen that the sharp narrow line at 6.625 T is absent in the spectrum of sample B and confirms the presence of As impurity content in sample A. Moreover, an impurity of this nature may itself contribute finite line broadening in the 75As NMR spectrum. Hence, we refrain from extracting further detailed information from figure 6, aside from noting that the quadrupolar split central transition suffers a loss of intensity towards low temperatures and eventually disappears below 20 K.

3.3. 31P and 75As NMR for $x = 0.9$: the Kondo region

A typical set of 31P field sweep NMR spectra at different temperatures is shown in figure 8. One single narrow 31P-NMR line as expected from the crystal structure was found at 200 K (right-hand panel of figure 8). The line develops strong asymmetry and increased linewidth towards lower temperature (left-hand panel of figure 8) at 75 MHz. Furthermore, and in contrast to the other samples in this study, the line shifts strongly with temperature. With increasing frequency, the onset of line broadening commences already
at high temperatures. The shape is characteristic of a powder pattern from a spin $I = 1/2$ nucleus in a TT symmetry. The 31P spectra could be simulated consistently at all temperatures with shift-tensor components $K_{ab}(T)$ and $K_c(T)$ corresponding to the $H \perp c$ and $H \parallel c$ directions, respectively (inset of figure 8). Similar to CeFePO $^{31}K_{ab}$ shows a strong temperature dependence whereas K_c is almost temperature-independent. Figure 10 shows the variation of $^{31}K_{ab}(T)$ with temperature for CeFePO [11] and CeFeAs$_{0.1}$P$_{0.9}$O. Above 30 K $^{31}K_{ab}$ for the $x = 0.9$ sample resembles $^{31}K_{ab}$ for the $x = 1$ sample. It shows CW-like $4f^{1}$ Ce magnetism. Here, a larger shift value indicates a large hyperfine field at the P site. However, below 30 K $^{31}K_{ab}$ for the $x = 0.9$ sample deviates significantly towards lower temperature. The inset shows the field dependence of $^{31}K_{ab}(T)$. Here, below 10 K a strong field dependence of the residual shift for $T \to 0$ is observed. $^{31}K_{ab}(T)$ is decreasing with increasing frequency (field). This indicates a FM ordered ground state. For a FM system, the magnitude of the susceptibility should decrease with increasing field due to progressive saturation of the magnetization. As the shift is following the susceptibility, the specific field dependence could be the indication that the system is FM-ordered. Furthermore, line broadening could be the indication of the onset of electronic correlations. This broadening towards lower temperature could also be associated with the Kondo effect.

Figure 9 shows the 75As field sweep NMR spectra at different temperatures. The obtained spectra are typical powder patterns with strong quadrupole coupling. With decreasing temperature the entire spectra are shifted towards lower fields. Moreover, the spectra become more anisotropic at lower temperature similar to the case of 31P spectra. All of the 75As spectra fit consistently in the whole temperature range and enable estimation of $^{75}K_{ab}$ and $^{75}K_c$. The arrows indicate the satellite transitions. The obtained fitting parameter is $\nu_0 = 9.27 \pm 0.20$ MHz. The lower inset of figure 10 shows $^{75}K(T)$ as a function of temperature. Similar to $^{31}K(T)$, highly anisotropic behaviour in $^{75}K(T)$ is observed. Here $^{75}K_{ab}$ is increased upon lowering the temperature, whereas $^{75}K_c$ remains almost independent of temperature. Similar values of $^{75}K_{ab}$ and $^{31}K_{ab}$ indicate that the hyperfine field is similar on the As and P sites.

In this section we present 31P spin–lattice relaxation ($^{31}(1/T_1)$) data on CeFeAs$_{0.1}$P$_{0.9}$O. T_1 measurements were performed at different temperatures at a frequency of 75 MHz at the $H \perp c$ position of the anisotropic NMR line (left arrow in the inset of figure 8). $^{31}(1/T_1)$ was obtained by fitting the nuclear magnetization ($m(t)$) recovery with a standard single
exponential function, for a $I = 1/2$ nucleus:

$$m(0) - m(t) = m(0) \exp(-t/T_1). \tag{2}$$

Figure 11 shows the temperature dependence of $31(1/T_1)$ for the $x = 0.9$ sample together with the pure system CeFePO [11]. At high temperatures $31(1/T_1)$ of both samples are found to merge whereas towards lower temperatures a strong increase with decreasing temperature was found. At around 10 K, $31(1/T_1)$ decreases to form a broad maximum. With further cooling at 2 K $31(1/T_1)$ is sharply decreased by an order of magnitude. The sharp decrease of $31(1/T_1)$ indicates the system undergoes a FM transition at about 2 K, consistent with bulk measurements.

The comparison of $31(1/T_1)$ with the parent compound CeFePO is noteworthy. In contrast to CeFePO, in CeFeAs$_{0.1}$P$_{0.9}$O the plateau-like region in $31(1/T_1)$ is absent and long-range FM order is observed. Crossover from a strong Kondo type of interaction to AFM order has been studied by NMR as a local probe in a number of cases. Good examples are systems such as CeCu$_2$(SiGe)$_2$ [36, 37] and Ce(Ru/Rh)$_2$Si$_2$ [38, 39]. On the other hand, systems where doping induces a crossover from a Kondo type of interaction to long-range FM order are rare. A distribution of Kondo temperatures or Kondo disorder is likely to exist in proximity to FM order. One example is CeRu$_2$(Si,Ge)$_2$ where the stoichiometric Si compound is a heavy fermion and the Ge end compound is a $T_c = 7.5$ K ferromagnet. For CeRu$_2$(Si$_{1-x}$Ge$_x$)$_2$ the phase diagram is rather complex and a complex AFM type of phase was found between the Kondo and the FM region ($0.06 \leq x \leq 0.65$) [40]. Another example is the 29Si NMR study in CeSi$_x$, where FM order shows up below $x = 1.83$ whereas Kondo interaction typifies the behaviour above $x = 1.82$ (±2). Here $^{29}(1/T_1)$ also shows a strong increase in the vicinity of the FM order [45]. For CeFeAs$_{0.1}$P$_{0.9}$O we do not have evidence for an AFM type of ordering, judging by field-dependent NMR investigations. Here, the Kondo interaction probably competes with FM clusters on a short timescale. The competition of Kondo and FM type interactions therefore could be responsible for the non-Korringa-like behaviour of CeFeAs$_{0.1}$P$_{0.9}$O.

Furthermore, it should be mentioned that, due to the strong field dependence of the ferromagnetism, a strong field dependence of $31(1/T_1)$ could be expected. Therefore a detailed study of $1/(T_1T)$ as a function of field is required to address this problem quantitatively. This topic is not the main concern of this paper. We would like to add that in a μSR study the magnetic volume fraction was found to start increasing from 10 K, i.e. well above T_c, which is consistent with our NMR findings [44]. Brüning et al compared NMR results of CeFePO with those of LaRuPO, LaFeAsO$_{−x}$F$_x$ and CeCu$_2$Si$_2$, to show that the $1/T_1$ is dominated by the 4f-electron contribution [11, 31−33]. In their analysis, they mentioned that a similar temperature dependence of the relaxation rate was found for the compounds CeFePO and CeCu$_2$Si$_2$ and concluded a similar spin fluctuation relaxation mechanism existed in both compounds. Furthermore, the strong correlation effects in CeFePO originate from the Ce 4f electrons rather than from the Fe 3d electrons.

From the fluctuation−dissipation theorem for a localized 4f-electron moment system the 1/T_1 can be written as [34]

$$1/T_1T \propto \chi^2 \sum_q A_{hf}(q, w) \chi''(q, w)$$

where A_{hf} is the effective hyperfine coupling and $\chi''(q, w)$ is the absorptive part of dynamical spin susceptibility.

In a simplified picture with a small number of Ce neighbouring atoms, a situation which prevails in the present system (P/As is coupled to four Ce neighbours), one may neglect the q-dependent contribution. Under these circumstances, $1/(T_1T)$ in a Kondo lattice should be dominated by the contribution of the 4f electrons, the latter which may be approximated as proportional to the ratio of the static susceptibility $\chi(T)$ and the effective relaxation rate $\Gamma(T)$ of the 4f electrons:

$$1/(T_1T)_{4f} \propto \chi(T)/\Gamma(T)$$

[35, 36, 41, 42]. Further, for Kondo systems $\Gamma(T) \propto \sqrt{T}$ is valid for $T > T_K$ [43], whereas for $T \ll T_K$ a constant value $\Gamma_0 \sim K_B T_K$ was found. We calculated the temperature dependence of

$$(1/T_1T)_{4f} = C_{4f} K_{ab}(T)/\sqrt{T}$$

where C is a temperature-independent parameter. We added a small temperature-independent contribution $(1/T_1T)_{CE} = 0.0001 \text{ (ms)}^{-1} \text{ K}^{-1}$ to account for the contribution of the conduction electrons at high temperature where the contribution of the 4f electrons becomes negligible. The solid line in figure 11 (right-hand side) illustrates our calculation. The experimental data of CeFeAs$_{0.1}$P$_{0.9}$O are adequately described by this approach. It seems obvious that the onset of Kondo interactions in this doped compound is similar to that in pure CeFePO. Additionally figure 11 shows that in the temperature range 40−2 K the magnitude of $31(1/T_1T)$ is higher than what is the case in CeFePO, which is consistent with the magnetic susceptibility and Knight-shift data.

Furthermore it should be mentioned that the $31(1/T_1)$ power law (equation (5)) observed here differs significantly.
from what was found for itinerant ferromagnets like ZrZn$_2$, where $1/T_1 T \sim \chi(T)$ is valid. This indicates that the system is not a typical Moriya-type ferromagnet.

In contrast to CeFePO, an additional long-range FM ordering of Ce takes place in the present As-doped system. The residual shift exhibits a strong field dependence which is characteristic of FM ordering at low temperature. This is consistent with $C_p(T)$ measurements where ordering at $T_c = 2$ K was found [46]. The line broadening in NMR data could be due to reduction of T_2 due to Kondo and/or FM interactions. To conclude, the P-rich $x = 0.9$ sample could be identified as a heavy fermion system with a FM ground state. This presents a rather unique situation among correlated electron systems.

3.4. Comparison and discussion

After presenting the detailed NMR results for three P concentrations of CeFeAs$_{1-x}$P$_x$O$_{y}$, we now compare and discuss our findings. Table 1 collects the important results obtained from the NMR study for three P concentrations. For $x = 0.05$: AFM (Fe) + structural transition at 130 K, with higher P content of $x = 0.30$: AFM (Fe) ordering suppressed to 70 K and no structural transition, $x = 0.90$: no AFM Fe ordering, no structural transition, FM ordering of Ce. In a recent study of de la Cruz et al it is claimed it is not possible to separate out the structural from the magnetic phase transition for $x \geq 0.05$ within experimental resolution [20]. The alloy system CeFeAs$_{1-x}$S$_x$P$_x$O becomes paramagnetic in the TT structure, like CeFePO, above $x \approx 0.4$. However, bulk measurements suggest that, above $x \approx 0.4$, Ce orders FM. Furthermore according to de la Cruz et al for $x = 0.05$ two transitions (magnetic and structural) take place at around 140 K, whereas our NMR investigations describe a similar occurrence, albeit at $T = 130$ K—a result which is in line with the resistivity data shows the anomaly close to $T = 130$ K [46]. The occurrence of both transitions (magnetic and structural) at the same temperature for the present system is in contrast to all other doping series where, with increased doping at the Fe/As site, the structural and magnetic transition is getting separated. Therefore present NMR results, apart from confirming the magnetic and structural transitions, additionally provide insightful information. Here it should be noted that NMR results describe the drastic change of internal field due to Fe 3d ordered moment at $T = 130$ K. Basically, this change of internal field is the consequence of a changing magnetic order parameter. Our data are supportive of the Fe AFM SDW-type transition to be first order.

According to neutron scattering results for $x = 0.3$, the structural transition and Fe AFM ordering (T_N) take place at ≈ 85 K, which is relatively higher than the suggested result from bulk measurements ≈ 70 K. On the other hand, NMR investigations, in line with μSR results [44], described this phase transition consistent with the findings of bulk measurements. From the 31P NMR study there is evidence for a phase separation in terms of paramagnetic and AFM-SDM-type phases. This rules out the possibility of termination to a quantum critical point with increasing P concentration at the $x = 0.3$ region.

In the following paragraph, we present a comparison of the relative change in internal field upon P doping ($0.05 \rightarrow 0.3$) as estimated from the 31P and 75As NMR study. The field ratios are given by

\[
\frac{(31 \Delta H_{\text{int}})_{0.05}}{(31 \Delta H_{\text{int}})_{0.3}} = \frac{1.132}{T} \approx 1.9, \\
\frac{(75 \Delta H_{\text{int}})_{0.05}}{(75 \Delta H_{\text{int}})_{0.3}} = \frac{1.9}{T} \approx 1.727.
\]

On the other hand, a relative change of the Fe static ordered moment, moving from $x = 0.05$ to 0.3, has been reported from neutron scattering and is as follows:

\[
\frac{(\mu_{\text{Fe}})_{0.05}}{(\mu_{\text{Fe}})_{0.3} \approx 0.8 \frac{\mu_B}{0.4 \mu_B} \approx 2}.
\]

Therefore the relative change of Fe static ordered moment for the two P concentration values ($x = 0.05$ and 0.3) and the relative change of the estimated internal field for the same P concentration are in close agreement.

The magnitude of the estimated internal field (in our approach) from powder 31P and 75As spectra, in principle, may vary because for 75As spectra, below the Fe ordering, satellites may introduce additional line broadening. This makes the 75As NMR spectra even more complicated. Therefore it is not possible to isolate the effect of internal field on the central transition. As a result, the estimated internal field from the 31P and 75As NMR spectra may vary for a specific P concentration. Nonetheless, the relative change of internal field for two different P concentrations should be independent of the probed nuclei, which is indeed the case here.

For the $x = 0.05$ and 0.3 compositions an additional line broadening accompanies the Ce magnetism at low temperatures. Well below the Fe AFM transition the Fe ordered moment should saturate. Thus, this cannot produce any additional line broadening in the spectra. Therefore the additional broadening in 75As spectra originates from the Ce.

Table 1. Comparison of results obtained from different P concentration.

x	T_N(Fe)	T_N(Ce)	Structural transition
0.05	130 K	Additional line broadening	130 K (TT \rightarrow OT)a
0.3	70 K	Additional line broadening	2 K (FM)
0.9	No Fe ordering	No transition	No transition (TT)

a TT—tetragonal phase, OT—orthorhombic phase.
magnetism for \(x = 0.05 \). A similar situation prevails in the case of the \(x = 0.3 \) sample.

In comparison, the magnetic transition at Fe AFM ordering is rather sharp in the \(x = 0.05 \) case, compared to \(x = 0.3 \). The lineshape changes rather drastically for the \(x = 0.05 \) sample, while a gradual evolution of lineshape is observed in \(x = 0.3 \). The magnetic transition in the \(x = 0.05 \) system is likely to be first order. For \(x = 0.3 \) the internal field does not affect the lineshape as strongly compared to the \(x = 0.05 \) system. In contrast, it suddenly develops a distinct structure at full width of the quarter-maximum position at around 70 K, and the intensity develops with lowering temperature in a manner which suggests either that the ordered moment of Fe is still not fully saturated and/or that not all of the Fe moments participate in ordering just below 70 K. This leads to the conjecture that paramagnetic and ordered phases may coexist in a presumably inhomogeneous distribution. The magnetic volume fraction of this compound just below the ordering temperature may be somewhat less than 1. Nonetheless, at sufficiently low temperatures a magnetic volume fraction of 1 is eventually achieved.

For \(x = 0.9 \) the TT phase persist throughout the entire temperature range. In contrast to the \(x = 1 \) sample a long-range FM order is likely to be confirmed by \(^{31}K \) measurements. Additionally, the \(31 \left(1/T_1 \right) \) results indicate a complex interplay of FM and Kondo types of fluctuations in the proximity of the long-range FM order. To study the very interesting crossover from the Kondo to FM type of interaction more detailed studies are required.

Next, we compare the three concentrations (\(x = 0.05, 0.3 \) and 0.9) in the context of shift results. The magnitude of the shift was found to increase with increasing P concentration. For \(x = 0.05 \) a near-temperature-independent shift is observed. For \(x = 0.3 \) the line position is shifted slightly with lowering the temperature, indicating a small shift value. A cancellation of hyperfine fields at the P/As site may be responsible for a weakly temperature-dependent shift. This is, in fact, very likely because the conduction electron polarization from the 4f \(^{11} \) ion produces a positive field whereas the core polarization from the 3d ion usually results in a negative hyperfine field. However, with increasing P concentration the effect of Fe 3d moments is reduced. This enhances the shift. Therefore it is clear that, on the As-rich side of the CeFeAs\(_{1-x}\)P\(_x\)O alloy, the contributions of Ce 4f and Fe 3d magnetism are significant, whereas on the P-rich side the Ce 4f magnetism dominates. Cancellation could also be possible to come by between the moments of the Fe-sublattice themselves with P/As either occupying symmetric positions in the magnetic lattice or random positions in an incommensurate SDW.

Comparing the \(^{31}\)P NMR spectra for three different concentrations at low temperature, a noticeable difference in the effective linewidth is observed close to 5 K. With increasing P concentration the linewidth decreases. This is consistent with the fact that the contribution of Fe magnetism is lowered with increasing P concentration.

4. Summary and conclusion

To conclude, we have prepared polycrystalline samples of CeFeAs\(_{1-x}\)P\(_x\)O by a Sn-flux technique. A systematic study of \(^{31}\)P and \(^{75}\)As NMR was conducted on the \(x = 0.05, 0.3 \) and 0.9 members of this series. (1) For the CeFeAs\(_{0.95}\)P\(_{0.05}\)O compound a drastic change of the linewidth at 130 K indicates AFM ordering of Fe and the structural change from TT to OT. Associating linewidth with the internal field of the system, a large change of the internal field shows an AFM (SDW type) transition which is likely to be first order. Small and nearly constant shift values are found in \(^{31}\)P and \(^{75}\)As NMR and ascribed to competing mechanisms of the 4f and 3d magnetism of Ce and Fe, respectively. Simulations of powder spectra are complex below the SDW transition because lineshapes are influenced by coinciding SDW-magnetic and structural phase transitions. (2) On the other hand, for the CeFeAs\(_{0.7}\)P\(_{0.3}\)O compound the evolution of the Fe-SDW-type order close to 70 K corroborates the results of bulk measurement and \(\mu \)SR. The complicated lineshapes in spectra of this system do not permit unambiguous fitting to be performed. The lineshape is, nonetheless, evidence of a phase separation (paramagnetic and ordered phase) taking place. A considerable anisotropy develops upon cooling. (3) In contrast to CeFePO, in CeFeAs\(_{0.1}\)P\(_{0.9}\)O additional magnetic ordering develops. Field-dependent shift results give evidence of FM ordering. Above the ordering \(31 \left(1/T_1 \right) \) shows unconventional, non-Korringa-like behaviour which indicates a complex interplay of Kondo and FM fluctuations.

The present system contributes valuable insights about incipient magnetic order in the presently intensively studied iron pnictide family of compounds, but warrants thorough investigations in its own right due to the unusual emergence of cooperative ferromagnetism within a Kondo lattice of local Ce moments that are generically coupled antiferromagnetically to the conduction electrons.

Acknowledgments

We are grateful to Dr C Krellner and Professor Q Si for stimulating discussion at the very beginning of this project. We are grateful to Professor A Strydom for carefully reading and considerably improving this paper.

References

[1] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
[2] Chen X H, Wu T, Wu G, Liu R H, Chen H and Fang D F 2008 Nature 453 761
[3] Zhao J et al 2008 Nature Mater. 7 953–9
[4] Ren Z A, Yang J, Lu W, Yi W, Che G-C, Dong X-L, Sun L-L and Zhao Z X 2008 Mater. Res. Innov. 12 105
[5] Chen G F, Li Z, Wu D, Li G, Hu W Z, Dong J, Zheng P, Luo J L and Wang N L 2008 Phys. Rev. Lett. 100 247002
[6] Yang J et al 2008 Supercond. Sci. Technol. 21 082001
[7] Bos J G, Penny G B S, Rodgers J A, Sokolov D A, Huxley A D and Antfield J P 2008 Chem. Commun. 31 3634
[8] Krellner C, Kni N S, Brüning E M, Koch K, Rosner H, Nicklas M, Baenitz M and Geibel C 2007 Phys. Rev. B 76 104418
[9] Krellner C and Geibel C 2007 J. Cryst. Growth 310 1875–80
[10] Krellner C, Förster T, Jeevan H, Geibel C and Sichtelschmidt J 2008 Phys. Rev. Lett. 100 066401
[11] Brüning E M, Krellner C, Baenitz M, Jesche A, Steglich F and Geibel C 2008 Phys. Rev. Lett. 101 117206
[12] Jesche A, Krellner C, Souza M de, Lang M and Geibel C 2009 New J. Phys. 11 103050
[13] Jesche A 2012 unpublished
[14] Chi S et al 2008 Phys. Rev. Lett. 101 217002
[15] Maeter H et al 2009 Phys. Rev. B 80 094524
[16] Chong S V, Mochiji T, Sato S and Kadowaki K 2008 Proc. Int. Symp. Fe-Pnictide Superconductors; J. Phys. Soc. Japan 77 27–31 (Suppl. C)
[17] Takeshita N, Miyazawa K, Iyo A, Kito H and Eisaki H 2009 J. Phys. Soc. Japan 78 065002
[18] Dai J, Si Q, Zhu J-X and Abrahams E 2009 Proc Natl Acad. Sci. 106 4118–21
[19] Luo Y, Li Y, Jiang S, Dai J, Cao G and Xu Z 2010 Phys. Rev. B 81 134422
[20] de la Cruz C et al 2010 Phys. Rev. Lett. 104 017204
[21] Fukuzawa H, Hirayama K, Kondo K, Yamazaki T, Kohori Y, Takeshita N, Miyazawa K, Kito H, Eisaki H and Iyo A 2008 J. Phys. Soc. Japan 77 093706
[22] Baek S H, Curro N J, Klimczuk T, Bauer E D, Ronning F and Thompson J D 2009 Phys. Rev. B 79 052504
[23] Baek S H, Lee H, Brown S E, Curro N J, Bauer E D, Ronning F, Park T and Thompson J D 2009 Phys. Rev. Lett. 102 227601
[24] Ghoshry A, Pahari B, Majumder M, Ghosh M, Ghoshray K, Bandopadhyay B, Dasgupta P, Poddar A and Mazumdar C 2009 Phys. Rev. B 79 144512
[25] Mukuda H et al 2008 J. Phys. Soc. Japan 77 093704
[26] Carter G C, Bennett L H and Kahan D J 1977 Metallic Shifts in NMR (Oxford: Pergamon)
[27] Kitagawa K, Katayama N, Ohgushi K, Yoshida M and Takigawa M 2008 J. Phys. Soc. Japan 77 114709
[28] Jeghié P, Bos J W G, Zorko A, Brunelli M, Koch K, Rosner H, Margadonna S and Aréon D 2009 Phys. Rev. B 79 094515
[29] Stauds George H 1964 J. Chem. Phys. 40 1988
[30] Tatsumi K, Fujiwara N, Okada H, Takahashi H, Kamihara Y, Hirano M and Hosono H 2009 J. Phys. Soc. Japan 78 023709
[31] Nakai Y, Ishida K, Kamihara Y, Hirano M and Hosono H 2008 J. Phys. Soc. Japan 77 073701
[32] Grafe H J et al 2008 Phys. Rev. Lett. 101 047003
[33] Aarts J, deBoer F and MacLaughlin D E 1983 Phys. Rev. B 121 (B+C) 162
[34] Pennington C H and Slichter C P 1990 Physical Properties of High Temperature Superconductors II ed D M Ginsberg (Singapore: World Scientific)
[35] Nakamura H, Shiga M, Kitaoka Y, Asayama K and Yoshimura K 1996 J. Phys. Soc. Japan 65 168 (Suppl. B)
[36] Büttgen N, Böhmer R, Krimmel A and Loidl A 1996 Phys. Rev. B 53 5557
[37] Büttgen N, Krug von Nidda H A and Loidl A 1997 Physica B 230–232 590–2
[38] Kohara T, Mishina S, Ueda K, Yamamoto Y and Miyako Y 2000 Physica B 284–288 1271–2
[39] Ueda K, Mishina S, Kohara T, Yamamoto Y and Miyako Y 1999 Physica B 259–261 83–4
[40] Haen P, Brioud H and Fukuhara T 1999 Physica B 259–261 85–6
[41] Kuramoto Y and Kitaoka Y 2000 Dynamics of Heavy Electrons (New York: Oxford Science)
[42] MacLaughlin D E 1989 Hyperfine Interact. 49 43
[43] Cox D L, Bickers N E and Wilkins J W 1985 J. Appl. Phys. 57 3166
[44] Spehling J et al 2012 unpublished
[45] Kohori Y, Kohra T, Asayama K, Satoh N, Yashima H, Mori H and Satoh T 1986 J. Magn. Magn. Mater. 54–57 437–8
[46] Jesche A 2011 PhD Thesis University of Dresden