The Economics of Missionary Expansion:
Evidence from Africa and Implications for Development
IIEP-WP-2019-10

Remi Jedwab
Department of Economics, George Washington University

Felix Meier zu Selhausen
Department of Economics, University of Sussex

Alexander Moradi
Free University of Bozen-Bolzano

May 2019
The Economics of Missionary Expansion:
Evidence from Africa and Implications for Development

Remi Jedwab and Felix Meier zu Selhausen and Alexander Moradi*

May 31, 2019

Abstract

How did Christianity expand in sub-Saharan Africa to become the continent’s dominant religion? Using annual panel data on all Christian missions from 1751 to 1932 in Ghana, as well as cross-sectional data on missions for 43 sub-Saharan African countries in 1900 and 1924, we shed light on the spatial dynamics and determinants of this religious diffusion process. Missions expanded into healthier, safer, more accessible, and more developed areas, privileging these locations first. Results are confirmed for selected factors using various identification strategies. This pattern has implications for extensive literature using missions established during colonial times as a source of variation to study the long-term economic effects of religion, human capital and culture. Our results provide a less favorable account of the impact of Christian missions on modern African economic development. We also highlight the risks of omission and endogenous measurement error biases when using historical data and events for identification.

JEL Codes: N3, N37, N95, Z12, O12, O15

Keywords: Economics of Religion; Religious Diffusion; Path Dependence; Economic Development; Compression of History; Measurement; Christianity; Africa

*Corresponding author: Remi Jedwab: Department of Economics, George Washington University, and Development Research Group, The World Bank, jedwab@gwu.edu. Felix Meier zu Selhausen: Department of Economics, University of Sussex, fm272@sussex.ac.uk. Alexander Moradi: Faculty of Economics and Management, Free University of Bozen-Bolzano, Alexander.Moradi@unibz.it. We gratefully thank Robert Barro, Sascha Becker, Matteo Cervellati, Denis Cogneau, James Fenske, Ewout Frankema, Laurence Iannaccone, Dany Jaimovich, Noel Johnson, Stephan Klasen, Mark Koyama, Stelios Michalopoulos, Priya Mukherjee, Nathan Nunn, Dozie Okoye, Elias Papaioannou, Jared Rubin, Felipe Valencia Caicedo, Leonard Wantchekon and Jan Luiten van Zanden for their helpful comments. We are grateful to seminar audiences at AEHN 2015 (Wageningen) and 2016 (Sussex), ASREC Europe 2017 (Bologna) and 2018 (Luxembourg), Bocconi, Bolzano, CSAE 2018 (Oxford), Dalhousie, EHESS 2017 (Tübingen), EHS 2018 (Keele), GDE 2018 (Zurich), George Mason, George Washington, Frankfurt, Göttingen, Ingolstadt, Munich, Namur, Passau, Belfast, Stellenbosch, Sussex, Tübingen, Utrecht, Warwick, WeHC 2018 (Boston). We also thank Julia Cagé and Valeria Rueda, as well as Morgan Henderson and Warren Whatley, for sharing their datasets. Meier zu Selhausen gratefully acknowledges financial support of the British Academy (Postdoctoral Fellowship no. pf160051 - Conversion out of Poverty? Exploring the Origins and Long-Term Consequences of Christian Missionary Activities in Africa).
One of the most powerful cultural transformations in modern history has been the rapid expansion of Christianity to regions outside Europe. Adoption has been particularly fast in sub-Saharan Africa. While the number of Christians was low in 1900, their share has grown to 61% in 2017 (Pew Research Center, 2017). This makes Africa the continent with the highest number of Christians (26% vs. 25% for Latin America and 24% for Europe). At current trends, Africans will comprise 42% of the global Christian population by 2060. Moreover, according to the World Values Survey, Sub-Saharan Africa is home to the world’s most observant Christians in terms of church attendance, making it “the future of the world’s most popular religion” (The Economist, 2015). What explains the unprecedented spread of Christianity in Africa? Why did it spread where it did? And what implications follow when studying the economic impact of Christianity?

The economics behind the expansion of Christianity, and church planting in particular, remains poorly understood. There are two potentially conflicting views supported by ample qualitative evidence. One narrative describes missionaries as explorers and adventurers crossing political boundaries and whose objective was to save souls no matter the costs (Oliver, 1952; Johnson, 1969; Cleall, 2009). Their knowledge of the area was limited and their locational choices were often erratic, but once settled, missions remained there permanently. Wantchekon et al. (2015, p. 714), for example, nicely describes how a series of historical accidents led missionaries to settle left rather than right of a river in Benin. An alternative view is that missionaries were following clear mission strategies designed by their own mission society (Johnson, 1967; Terry, 2015). Prior to settlement, missionaries thoroughly explored the area to assess the best locations and their locational choices included deep economic considerations. For example, Nunn (2010) lists as important local factors “access to a clean water supply, the ability to import supplies from Europe, and an abundance of fertile soil that could be used to grow crops.” There is no quantitative study that informs us as to which of the narratives holds for the entire missionary enterprise.

We focus on Ghana, for which we create a novel annual panel dataset on the locations of missions at a precise spatial level over almost two centuries: 2,091 grid cells of 0.1x0.1 degrees (11x11 km) in 1751-1932. During that period, the number of missions increased from about nil to 1,838. Today,

1In present-day Togo, missionary Thauren (1931, p. 19-20) laid out the strategy as follows: “The mission leadership knew that choosing suitable places would be crucial for missionizing the interior. Therefore, no effort was spared to get to know the interior better. Missionaries were sent out to explore the interior [...]. The mission society aimed to establish new stations in larger cities, so that few missionaries could spread the gospel to many. In particular, they preferred cities with regular markets. Furthermore, the places needed to be centrally located [...].”

2Existing studies focus on estimating the long-term economic effects of missions and study the placement of missions with a concern for the endogeneity of their estimates. Results are usually reported in one table and include few, and mostly geographical, controls. No attempt has been made to measure causal effects on missionary expansion.
Ghana is one of the most devout Christian countries, making it an ideal context to address our research question.3 Creating a new dataset on the geographical, political, demographic, and economic characteristics of locations in pre-1932 Ghana, we investigate the local determinants of missionary expansion and apply various identification strategies to obtain causal effects. We find that missionaries went to healthier, safer, more accessible, and richer areas, privileging these better locations first. They also invested more in these missions (with administrative functions, European missionaries or schools). Our findings seem to contradict the secularization hypothesis according to which religiosity declines with income. However, descriptive evidence suggests that mission societies expanded in more developed areas because they crucially depended on African contributions and Africans saw Christianization as a way to improve their economic well-being.

Secondarily, we show that these factors might spuriously explain why locations with past missions, and better missions in particular, are more developed today. The effects of colonial missions on present-day measures of economic development are strongly reduced when including controls for pre-1932 locational characteristics. Next, we replicate these results on the determinants of missions and their long-term effects using cross-sectional data from historical mission atlases for 203,574 cells of 0.1x0.1 degrees in 43 sub-Saharan African countries.

This paper adds to the literature on the determinants of religion (see McCleary and Barro (2006a) and Iyer (2016) for surveys). Existing studies concentrate on the role of religious markets (e.g., Bisin and Verdier, 2000; Barro and McCleary, 2005) or the secularization hypothesis which predicts that religiosity declines with income or education (e.g., McCleary and Barro, 2006b; Glaeser and Sacerdote, 2008; Becker and Woessmann, 2013; Buser, 2015; Becker et al., 2017).

To our knowledge, there are very few quantitative studies on religious diffusion. Cantoni (2012) studies the Reformation using data for German territories and finds that ecclesiastical territories, more powerful territories, and territories more distant from Luther’s town were less likely to become Protestant. Rubin (2014) uses data for European cities to show that the Reformation was linked to the spread of the printing press. Michalopoulos et al. (2018) finds that trade routes and ecological similarity to the birthplace of Islam predict today’s Muslim adherence across countries and ethnic groups. While these studies have greatly improved our understanding of religious diffusion, there remain some limitations. Given that these episodes of religious diffusion take place five centuries ago or more, the studies have limited localized data on their determinants.

3The Economist. \textit{True Believers: Christians in Ghana and Nigeria}. September 5th 2012.
Moreover, analyzes are cross-sectional in nature, except Cantoni (2012) who uses panel data on the dates of introduction of Protestantism for 74 territories. They also study conditional correlations, except Rubin (2014) who instruments for the printing press with a city’s distance to Mainz.

Next, while there is a large non-economics literature on missionary expansion in Africa (Johnson, 1967; Park, 1994), and the role of Western missionary personalities in particular (Kretzmann, 1923; Bartels, 1965; Ballard, 2008), there have been very few systematic attempts to quantify the economic factors behind the diffusion of Christianity outside Europe.

Studying the spatio-temporal diffusion of religion is challenging. It requires: (i) localized data on the establishments and closures of places of worship, (ii) localized data on the determinants of religious supply and demand; and (iii) identification strategies for these determinants. Most major religions spread out in earlier centuries, which makes data availability issues acute and complicates the search for identification strategies. We study Africa, where Christianity spread comparatively late. By constructing an annual panel data set of missions (N = 2,163) at the cell level (2,091) in Ghana from 1751 to 1932, we fulfill condition (i). Our data set is one the largest databases ever built on places of worship.4 Next, by obtaining data on numerous local characteristics in pre-1932 Ghana, we satisfy condition (ii). Lastly, we contribute to (iii).

Based on our findings, we revisit the question of the long-run impact of religion (see McCleary and Barro (2006a) and Iyer (2016) for surveys). Studies have focused on the effect of religion on economic development (Barro and McCleary, 2003; Guiso et al., 2006; Cantoni, 2015; Campante and Yanagizawa-Drott, 2015; Rubin, 2017; Andersen et al., 2017; Bryan et al., 2018), human capital (Becker and Woessmann, 2009; Dittmar, 2011; Chaney, 2016; Becker and Woessmann, 2018) and political and social attitudes (Guiso et al., 2003; Voigtländer and Voth, 2012; Cantoni et al., 2018).

A recent, but booming, strand of that literature explores the long-term effects of missions in the Global South. Web Appendix Table 1 gives details on 55 related studies. Most studies find strong effects, whether on economic development (Bai and Kung, 2015; Valencia Caicedo, 2019; Castelló-Climent et al., 2018; Michalopoulos et al., forthcoming), human capital (Nunn, 2014; Gallego and Woodberry, 2010; Wantchekon et al., 2015; Waldinger, 2017; Barro and McCleary, 2017), health (Cagé and Rueda, 2017; Menon and McQueeney, 2017; Calvi and Mantovanelli, 2018), social mobility (Wantchekon et al., 2015; Alesina et al., 2019), culture (Nunn, 2010; Fenske, 2015), or political participation (Woodberry, 2012; Cagé and Rueda, 2016).

4Other studies with panel data on missions – Valencia Caicedo (2019) (39 missions, 1609-1767) and Waldinger (2017) (1,145 missions, 1524-1810) – do not use their data to study religious diffusion and their panel is not annual.
To deal with endogeneity, many studies compare neighboring locations or add controls. In specific contexts, studies have been able to use innovative strategies to identify causal effects.5 We present evidence on the process driving missionary expansion. This contributes to the understanding as to what the contaminating factors may be, and how truly valid identification strategies may be.

In addition, most studies obtain their mission location data from mission atlases. Atlases typically used for Africa are the 1900 \textit{Atlas of Protestant Missions} (Beach, 1903) and the 1924 \textit{Ethnographic Survey of Africa} (Roome, 1925), which includes Catholic missions (Figure 1(a) shows their locations).6 If we use ecclesiastical census returns and other primary missionary sources instead, we uncover large discrepancies. Figure 1(b) shows that atlases omit most missions for most countries. Overall, 90\% of Africa’s missions are not reported. In Ghana, this share is 91-98\% and atlases miss most hinterland missions (see Figures 2(a)-2(b)). This issue is not limited to Africa. The \textit{World Atlas of Christian Missions} (Bartholomew et al., 1911) and the \textit{Atlas Hierarchicus} (Streit, 1913) miss 85-95\% of missions in China, India, Korea, and Japan. We use our detailed data for Ghana to show that atlases disproportionately capture the best missions, thus better locations.7

Our contribution is thus also methodological. Non-random omissions and their consequences for the analysis of path dependence are under-investigated. We draw attention to the risks of non-classical measurement error biases when using historical data and events for identification.8 In our particular context, we emphasize the importance of: (i) reliable sources for the mission data; (ii) relevant controls that capture the various stages and factors behind missionary expansion; and (iii) identification strategies that bypass issues related to the measurement of controls and/or the comparison of missions of different periods, types or denominations.

1. **Conceptual Framework: Determinants of Mission Location**

We approach the question of mission locations through the perspective of mission societies, their aims and constraints. This ultimately feeds into supply. We also take into account demand. This

5Wantchekon et al. (2015) study four villages with missions, using control villages that they identified as “as likely to be selected.” Cagé and Rueda (2016) compare Protestant missions with and without a printing press. Valencia Caicedo (2019) compares mission locations to locations that missions abandoned for exogenous reasons. Valencia Caicedo (2019), Waldinger (2017) and Barro and McCleary (2017) compare locations evangelized for exogenous reasons by different denominations. Waldinger (2017) exploits the initial directions of missionary expansion paths.

626 studies use Roome (1925), 6 use Bartholomew et al. (1911), 6 use Streit (1913), and 4 studies use Beach (1903).

7Fahs (1925, p.271) already pointed out that atlases provide a Eurocentric account of Christianization as they only show residence stations of European missionaries: “[...] mapping the Christian advance which puts a red underline under some place-name to indicate the residence of a British or Continental or American missionary, but does not indicate where an Azariah or a Kagawa serves his people, fails to give needful perspective.” Atlases thus ignore the contribution of African missionaries to the diffusion of Christianity (Frankema, 2012; Meier zu Selhausen et al., 2018).

8Measurement error in survey data, in contrast, has received a lot of attention (e.g. Bollinger, 1996; Mahajan, 2006).
framework helps to guide the selection of variables of interest in our analysis.

Locational Choice. Mission societies operate like not-for-profit organizations. They obtain utility from converting locals in various locations. Utility may be thought of as the maximum amount a mission society is willing to spend for a particular conversion. For example, if one objective was to abolish slavery, more efforts will be made towards conversions in slave-exporting locations. Utility is maximized under a cost constraint. Costs for a given membership depend on: (i) the number of missionaries needed, their salaries and training costs. Training costs are allocated over the years of service, hence their life expectancy should matter; (ii) land, buildings, and equipment needed (religious artifacts and books); (iii) communication costs to home and the capital (access to the coast). Many of the set-up costs - e.g. a church building - are lumpy. Thus, high population density reduces the average cost of conversions. Local donations and support (e.g. a chief granting land and protection) also relax the cost constraint. Moreover, mission societies differ in their utility functions and budgets (i.e., donations from the motherland); they may also behave strategically. Next, mission societies may purposely make specific investments in specific locations, such as opening a school. Demand for Christianity is less obvious. It can come from (i) spiritual needs in a changing world; (ii) benefits of aligning with the new colonial regime; (iii) access to education and training; and (iv) social networks. These may differ across locations.

Generally, a same determinant can affect both demand and supply. In our empirical analysis, we arbitrarily classify the locational factors into five groups proxying for geography (coastal proximity, malaria, rain, soils, altitude, ruggedness), political conditions (native resistance, colonial administrative cities), transportation (rivers, ports, trade routes, explorer routes, railroads, roads), population (urban and rural) and economic activities (slavery, cash crops, mining).

Expansion. The initial expansion is funded by donations from the motherland. But over time, local revenues are generated. The number of locations converted each year depends on the budget and the net benefits of the next best locations not converted yet. The society expands by converting the best locations first, followed by less optimal locations until it runs out of locations or money. The relative importance of locational factors, and the ranking of locations, may change over time.

2. **New Data on Ghana and Africa**

Web Appendix Section 1. provides more details on sources and data construction.

Missions in Ghana. We partition Ghana into 2,091 grid cells of 0.1 x 0.1 degrees (11x11 km).
and construct an annual panel data set from 1751 to 1932 (181 years). We recreate the history of every mission station (N = 2,163) for all mission societies (classified as Presbyterian, Methodist, Catholic and other) and geocode their locations. Our main source are the ecclesiastical returns published in the *Blue Books of the Gold Coast*, 1844-1932 (see Web Appx. Fig. 1 for an example). Each society was required to submit annual reports on its activities to the colonial administration, thereby listing all of their stations. Churches also received annual grants from the government for their pastoral services, hence a strong incentive to report. Our source thus represents an exhaustive census of missions. The early origins of mission societies are then well documented by society-specific anniversary reports, and we have no difficulties reconstructing missions before 1844.

Using the same sources, we identify if a mission was a main station or an out-station. Main stations are the principal centers of a “circuit” - a society’s administrative unit. Main stations are large and centrally located (Thauren, 1931); they are headed by an ordained, often European, missionary. Out-stations are located on average 20 km from a main station. Their congregations are smaller but still of significant size and taken together have more members than main stations (Web Appx. Table 4). We also identify if a mission station had a school. We focus on “assisted schools”, which followed the government school curriculum and certified quality standards (Williamson, 1952). As they received grants-in-aid, they were reported accurately. Figure 3 presents the respective evolutions of the total number of missions, main missions, and schools.

Missionaries in Ghana. We create a new data set of all 338 male European missionaries stationed in Ghana during 1751-1890 from a variety of sources (data not available post-1890). For the mortality analysis in section 3., we reconstructed dates of service and death in Ghana. African missionary careers are less well-documented. From the Blue Books 1846-1890, we retrieved the localities where European missionaries were permanently based and which missions they served occasionally. Figure 5(a) shows the evolution of the number of European missionaries.

Locational Factors for Ghana. We construct a GIS data set of factors at the same grid resolution:

(i) **Geography:** Historical malaria intensity (based on genetic data) comes from Depetris-Chauvin and Weil (2018). We compute distance to the coast and obtain ports c. 1850 from Dickson (1969); we find that the number of out-stations per main station increased over time. We also find that distance to the main station remained relatively stable over time (Web Appx. Tables 2 and 3). Therefore, the density of out-stations increased within a circuit. Finally, the number and borders of circuits are endogenous and change with the expansion of Christian missions (Web Appx. Fig. 2 shows for selected years the location of main stations and out-stations).

Women were also active in mission societies. We focus on men because they held formal positions, represent the vast majority of staff, and are consistently observable throughout.
(ii) Political conditions: Data on large pre-colonial cities before 1800 are from Chandler (1987) and headchief towns in 1901 are from Guggisberg (1908). From Dickson (1969), we derive the boundary of the Gold Coast Colony established by the British c. 1850; (iii) Transportation: We obtain from Dickson (1969) navigable rivers in 1850-1930 and trade routes ca. 1850. Railroads (1898-1932) and roads (1932) come from Jedwab and Moradi (2016); (iv) Population: Using census gazetteers, we compile a GIS database of towns above 1,000 inhabitants in 1891, 1901 and 1931. We also collect rural population data for 1901 and 1931. Because all cells have the same area, population levels are equivalent to densities; (v) Economic activities: Slave export and slave market data come from Nunn (2008) and Osei (2014) respectively. We obtain cash crop production areas from Dickson (1969) and total export value of cash crops from Frankema et al. (2018). Mines are from Dickson (1969); and (vi) Other: We control for land area, mean annual rainfall (mm) in 1900-1960, mean altitude (m), ruggedness (standard deviation of altitude), and soil fertility.

Contemporary Data for Ghana. We use satellite data on night lights in 2000/2001 as a proxy for economic development (NOAA, 2012). Census data on education, religion, urbanization and employment in industry/services in 2000 are from Ghana Statistical Service (2000).

Missions in Africa. We compile data for 203,574 grid cells of 0.1 x 0.1 degrees (11x11 km) for 43 sub-Saharan African countries. The Blue Books of the Gold Coast (Ghana) are exceptionally rich in detail. Blue Books of other British colonies do not list each station systematically over such a long period. Yearbooks of other colonies are completely silent. We thus use mission location data widely used in the literature. These stem from mission atlases. Fahs (1925, p. 271) writes that these atlases are based on “hundreds of documents” and “society field reports” and admits “problems of what to include in or to exclude (...). Various elements entered into the decision made in almost every case. No hard-and-fast rule was or could be applied.” For example, they followed the principle of showing stations where Europeans resided. With this caveat in mind, we use Beach (1903), compiled by Cagé and Rueda (2016), which reports the locations of 672 Protestant missions in 1900, and added the year of foundation. We then use Roome (1925), digitized by Nunn (2010), which shows the locations of Catholic (361) and Protestant missions (851) in 1924.

11While we have exhaustive urban data for all census years, we only have georeferenced rural population data for Southern Ghana in 1901. We thus include a dummy if any locality in the cell was surveyed by the 1901 census.
12We obtain soil suitability for the same cash crops from the 1958 Survey of Ghana Classification Map of Cocoa Soils for Southern Ghana, Survey of Ghana, Accra, as well as Gyasi (1992) and Globcover (2009).
13Climate data comes from Terrestrial Air Temperature and Precipitation: 1900-2007 Gridded Monthly Time Series (v1.01), 2007, University of Delaware. Topography comes from SRTM3 data and soil fertility from (FAO, 2015).
14Since we only have data for 10% of the population census, the most rural cells of our sample do not have enough observations to correctly estimate these shares. Data is available for 1,895 cells only (= 2,091 - 196 missing cells).
Locational Factors for Africa. We identify a number of locational factors: (i) Geography: Historical malaria intensity is from Depetris-Chauvin and Weil (2018) and tsetse fly ecology from Alsan (2015). We compute distance to the coast, and 19th century slave ports are from Nunn and Wantchekon (2011); (ii) Political conditions: Data on large pre-colonial cities before 1800 are from Chandler (1987). Data on the capital, largest and 2nd largest cities come from Jedwab and Moradi (2016). The year of colonization for each ethnic group is derived from Henderson and Whatley (2014). Using the Murdock (1967) map of ethnic boundaries from Nunn (2008), we then assign the year of colonization to each cell. From the same sources, we identify if the cell was in an ethnic area with a centralized state before colonization. We compute the distance to historical Muslim centers based on Ajayi and Crowder (1974) and Sluglett (2014); (iii) Transportation: We obtain navigable rivers and lakes from Johnston (1915), pre-colonial explorer routes from Nunn and Wantchekon (2011) and railroads from Jedwab and Moradi (2016); (iv) Population: We control for population density c. 1800 and log urban and rural population c. 1900 from HYDE (Klein Goldewijk et al., 2010), and log city population c. 1900 for towns above 10,000 from Jedwab and Moradi (2016) (who use colonial administrative sources); 15 (v) Economic activities: We know if slavery (and polygamy) was practiced before colonization (Murdock, 1967). The log number of slaves exported per land area is taken from Nunn and Wantchekon (2011). We obtain land suitability measures for seven major export crops (cocoa, coffee, cotton, groundnut, palm oil, tea and tobacco). We then obtain cash crops’ national export value c. 1900 and 1924. Mines in 1900 and 1924 come from Mamo et al. (2019); (vi) Other: We control for land area, mean annual rainfall (mm) in 1900-1960, mean altitude (m), ruggedness (the standard deviation of altitude), and soil fertility. We also add a dummy if the main ethnic group in the cell has data in the Murdock (1967) Atlas and a dummy if the underlying anthropological survey used to create this data precedes 1900 or 1924.

Contemporary Data for Africa. We use satellite data on night lights in 2000/2001 (NOAA, 2012). From the Demographic Health Surveys in 32 countries with GPS readings for the closest year to 2000, we obtain measures of education, religion and wealth at the individual or household level. We use their means at the cell level. 16 Finally, we obtain urban population (total population of cities above 10,000) from Jedwab and Moradi (2016), who rely on Africapolis (2012) and census data.

15Klein Goldewijk et al. (2010) do not rely on census data for earlier centuries (there were no censuses then). These population estimates are unreliable. We nonetheless use them when replicating controls used in the literature.

16Since we use survey data, data is only available for 3,110-6,387 cells depending on the outcome.
3. Background: Missionary Expansion in Ghana

Christianity grew rapidly in sub-Saharan Africa during the 20th century, at the expense of traditional African religions (Hastings, 1994), lifting the share of Christians from 9% in 1900 to 61% in 2017 (Pew Research Center, 2017). In this section, we focus on Ghana’s experience.

Colonization. The first mission station was established in 1751 at the port of Elmina (Figure 4(a) shows the localities mentioned in this paragraph). By that time, European powers had established trading posts along the coast. Beginning in 1850, Britain gradually annexed the coastal regions of Ghana into an informal protectorate called the Gold Coast Colony. In 1874, the British defeated the inland Ashanti Kingdom centered around its capital Kumasi. The ensuing peace treaty of 1875 transformed the Gold Coast into a formal British colony. In 1896, another war with the Ashanti forced the kingdom to become a British protectorate and protection was extended to the north in 1902. Railroad construction began in 1898, which helped the British to consolidate their control over Ghana and lowered transport costs for commodity exports. For our analysis, this motivates the choice of five turning points: 1751, 1850, 1875, 1897, and 1932 (our last year of data).

Missionary Expansion. Figure 3 shows the number of missions, main stations, and mission schools from 1840 (first year with 10 missions) to 1932. For a long time, Ghanaians showed little interest in Christianity. Evangelization efforts intensified when Presbyterian and Methodist missionaries reached the Gold Coast in 1828 and 1835, respectively. By 1850, only 904 Ghanaians had converted and 21 missions existed (Isichei, 1995, p. 169; Miller, 2003, p. 23). Mass-evangelization did not take off until the 1870s, when 67 Protestant missions served about 6,000 Ghanaians. Catholic missions started their conversion efforts from 1880 onwards. By 1932, the number of missions had expanded to 1,775 with about 340,000 followers (9% of Ghana’s population). The Christian share has since grown to 41% in 1960 (Ghana Census Office, 1960) and 71% in 2010 (Ghana Statistical Service, 2012). Missions viewed the provision of education as an effective way to attract new Christians. As such, they provided the bulk of formal schooling in colonial Ghana (Cogneau and Moradi, 2014). As indicated in Figure 3, early missions qualitatively differed from later missions in that many were main stations and had a school.

Constraints. Most missions were initially established along the coast (see Figures 4(a)-4(b)). Missionaries shunned away from creating inland stations before essential intelligence was gathered by missionaries actively traveling the country (Thauren, 1931, pp. 19-21; Engel, 1931, p. 14). The Ashanti Kingdom was hostile to Christian proselytizing. Thus, their territory acted
as an institutional barrier. Missions expanded into the hinterland only after the peace treaty of 1875 (Figures 4(b)-4(c)). Access to the interior was also facilitated by rail and road building from the early 20th century onwards. By 1932, missions covered large parts of Southern Ghana (Figure 4(d)). Malaria inhibited the diffusion of the gospel. Malaria struck Europeans soon after arrival, earning the West African coast its reputation as the “White Man’s Grave” (Curtin, 1961). This changed after the 1840s, when quinine became the standard cure and prophylaxis for malaria.\footnote{Fischer (1991, p. 73-76) notes that a missionary carried quinine in his medical chest as early as 1833. Curtin (1973, p. 355) explains that European soldiers in West Africa took quinine from 1847 onwards. Sill (2010, p. 86) mentions that quinine became a regular medication after 1854.}

Figure 5(a) confirms the high mortality rates among European missionaries. In the post-quinine era, defined here as post-1840, we observe a marked decline in European mortality. As shown in Figure 5(b), the likelihood of European missionaries surviving more than three years during the pre-quinine era in Ghana was about 30%, whereas in the post-quinine era it was about 80%. Simultaneously with quinine, missions increased their presence of European missionary staff (Figure 5(a)). However, despite quinine, the number of European missionaries remained always below 100 (Cardinall, 1932). With this small European representation, it is difficult to imagine how 340,000 and 1.2 million Ghanians were evangelized by 1932 and 1960 respectively. Indeed, employing African converts as missionaries and catechists was a cost-efficient strategy. Firstly, Africans acquired immunity to malaria during childhood (Curtin, 1973, p. 197). As Figure 5(b) reveals, African missionary mortality was significantly lower than for Europeans in both pre- and post-quinine eras. Secondly, their salaries were lower and they spread the gospel in the local vernaculars (Schlatter, 1916; Graham, 1976; Agbeti, 1986, p. 57). By 1890, there were four African missionaries for every European. By 1918, Europeans constituted 2% and 8% of total Methodist and Presbyterian mission staff respectively (Parsons, 1963, p. 4; Sundkler and Steed, 2000, p. 717).\footnote{Based on our data, the ratio of total mission stations to European missionaries increased substantially over time. These trends are consistent with patterns shown for the continent by Meier zu Selhausen (forthcoming).}

Financing the Mission. An obvious constraint to missionary expansion was funding. Protestant mission societies initially depended on the financial support from Western congregations and philanthropists (Miller, 2003; Quartey, 2007). Cash-strapped mission committees relied on print propaganda, which sensationalized images of tropical missionary activities and “uncivilized” West African culture to elicit funding from metropolitan readers (Pietz, 1999; Maxwell, 2015). Those donations paid for the missionaries’ training, the sea journey to Africa and initial set-up costs (Johnson, 1967). Metropolitan funding remained limited however. In order to expand, the
missionary budget had to be raised from within Ghana. Moreover, the mission societies’ declared ultimate goal was to develop self-financing African churches (Welbourn, 1971).

African congregations contributed to the costs in various ways (Schott, 1879, p. 18-19). First, the bulk of the construction and operation of missions was financed by the local community, often in conjunction with local chiefs (Johnson, 1967), who donated land, materials and labor to build the church and class room (Williamson, 1952; Summers, 2016). Second, congregations were responsible for providing housing and food to the missionaries (Smith, 1966, pp. 156-157; Debrunner, 1967, p. 249). Third, revenues were raised by donations from wealthier church members (Meyer, 1999, p. 17), and more generally through Sunday offerings. Furthermore, school fees constituted another substantial part of the mission budget (Frankema, 2012). For Africans, these sums were non-trivial, representing in 1926 about 20 days of unskilled wage labor.19

Missionary expansion also became associated with trade and the cash crop economy: cocoa, kola, palm oil/kernels and rubber (Debrunner, 1967, p. 54, 132 and 203). In particular, cocoa farming dramatically increased incomes from the 1890s onwards (Hill, 1963a; Austin, 2003). By 1911, Ghana had become the world’s leading cocoa producer. Ghanaians invested their cocoa revenues in their children’s education at mission schools (Foster, 1965; Meyer, 1999). Debrunner (1967, p. 54) made it clear: “Cocoa money helped the African Christians to pay school fees and church taxes and to pay off old debts from the building of schools and chapels”. Consequently, “Ghana Churches and the Christians became very dependent on cocoa for their economic support” (Sundkler and Steed, 2000, p. 216). More generally, various Protestant mission societies established trading companies that exported African cash crop produce and allocated portions of their profits to sustain missionary activities (Johnson, 1967; Gannon, 1983). Catholic missions, in contrast, were less constrained as they relied on the financial backing of the Vatican and its missionary associations across Europe (Schmidlin, 1933, pp. 560-564; Spitz, 1924; Debrunner, 1967).

4. Regression Framework for the Determinants of Missions

For both Ghana and Africa, we analyze the determinants of missionary expansion. Our main goal is to explore how missionary expansion was driven by economic considerations and forces.

Long-Difference Regressions for Ghana. For 2,091 cells and four periods 1751-1850, 1850-1875, 1875-1890, 1890-1910, 1910-1920, and 1920-1930, we estimated the following regression:

\[
\text{Missionaries} = \beta_0 + \beta_1 \text{Cocoa Production} + \beta_2 \text{Land Area} + \beta_3 \text{Trade} + \epsilon
\]

19Presbyterians introduced a church tax in 1876 which increased in 1880 and again in 1898 (Schott, 1879). In 1899, the ratio of monetary contributions from African congregations (church tax: 46%; subscriptions: 28%; Sunday offerings: 22%; school fees: 4%) to foreign donations was 2:3 (Basel Mission, 1900). In 1910, it was 2:1 (Schreiber, 1936, p. 258).
1875-1897, and 1897-1932, we first run repeated regressions of the form:

\[M_{c,t} = \alpha + \rho M_{c,t-1} + X_c \beta_t + u_{c,t} \]

(1)

\(M_{c,t} \) is a dummy equal to one if there is a mission in cell \(c \) in the last year of the period, \(t = \{1850, 1875, 1897, 1932\} \). \(X_c \) is our vector of time-invariant locational factors. As we control for missions in the first year of the period \(t-s \) (\(M_{c,t-s} \)), the coefficients \(\beta_t \) capture the long-difference effects of the factors on missionary expansion in each period. We then investigate the intensive margin of missionary activities. As outcomes, we use the log number of missions (+1 to avoid dropping cells with none) and dummies equal to one if there is: (i) a main station, (ii) a mission school and (iii) and European missionary, conditional on a dummy for having a mission in the same year \(t \).

Panel Regressions for Ghana. For the same 2,091 cells and selected time-varying locational factors \(X_{c,t} \), we run these regressions for the mission variable \(M_{c,t} \):

\[M_{c,t} = \alpha' + \beta' X_{c,t} + \omega_c + \lambda_t + u_{c,t} \]

(2)

\(\omega_c \) and \(\lambda_t \) are cell fixed effects and year fixed effects respectively. They control for time-invariant heterogeneity at the cell level and national trends. The cell fixed effects allow us to study what causes changes in missions within cells over time. Standard errors are clustered at the cell level.

Africa. For 203,574 cells \(c \) in 43 sub-Saharan African countries \(g \), we study the effects of time-invariant factors \(X_{c,g} \) on a dummy equal to one if there is a mission \((M_{c,g}) \) in 1900 or 1924:

\[M_{c,g} = \alpha'' + X_{c,g} \beta_{SSA} + \kappa_g + u_{c,g} \]

(3)

We include country fixed effects \((\kappa_g) \) to account for national characteristics.

Note that we do not necessarily capture causal effects with this analysis. Our goal is to identify factors that may have driven missionary expansion over time. We then develop identification strategies for selected factors within those long-difference and panel frameworks.

5. **Main Results on the Determinants of Missions**

We now study the factors that determined missionary expansion. In line with our conceptual framework, mission societies chose healthier, safer, more accessible, and more developed areas.

5.1. **Long-Difference Results for Ghana**

Table 1 presents the long-difference effects of the variables of interest on missionary expansion in four periods: 1751-1850 (column 1), 1850-1875 (2), 1875-1896 (3) and 1897-1932 (4).

Geography. In the earliest periods, missions avoided high-risk malaria areas and settled at their
port of entry, in close proximity to the coast (columns 1 and 2). While coastal proximity remained a crucial factor for missionary expansion throughout all periods (columns 1-4), consistent with a slow diffusion from the point of entry at the coast to the hinterland. Malaria ceased to be a significant barrier to missionary expansion in the late 19th century (columns 3-4).\(^{20}\)

Political Conditions. African resistance to British colonialism obstructed missionary advancement. It was only after the British had defeated the Ashanti Kingdom in 1874 that missionaries expanded northwards beyond the borders of Gold Coast Colony (columns 3-4). Once pacified, the cross followed the flag. Missionaries also avoided large pre-colonial cities.

Transportation. While earlier missions expanded along 19th century trade routes and ports (columns 1-2), later missions opened in proximity to railroads and roads, once they were in place (columns 3-4). The negative effects for navigable rivers in the early period (columns 1-2) mirror the effects for malaria, since river floodplains provide breeding grounds for mosquitoes.

Population. Missions concentrated in dense urban areas (columns 1-4). Missionary expansion appears to have followed urban population patterns of 1891, 1901 and 1931. Once urban demand was partly satisfied, missions spread into densely populated rural areas (columns 3-4).

Economic Activities. Former slave markets did not attract missions (columns 1-3). Instead, expansion took place in cash crop growing areas, around palm oil and kola plantations and cocoa farms. By the 20th century, missions also opened around mines (column 4).

Overall, results suggest that missionaries responded to economic opportunities when they arose. Furthermore, a handful of variables proxying for net benefits at the local level can account, to a large extent, for the geographic distribution of missions (R^2 as high as 0.61 in columns 2 and 4).

Intensive Margin. Missionary expansion generally followed a similar pattern at the intensive margin. Conditional on having a mission, we find more missions (Web Appx. Table 5), and higher probabilities of a European missionary (Web Appx. Table 7), a main station (Web Appx. Table 6) and a school (Web Appx. Table 8) in more accessible, populated and/or developed areas.\(^{21}\)

Denomination-Level Analysis. The analysis so far ignored strategic interactions between and potential heterogeneities across mission societies. We run the same regression but transform the

\(^{20}\)Malaria and the tsetse index from Alsan (2015) are strongly correlated (0.86). We thus do not test for tsetse.

\(^{21}\)Because of lacking data for the post-1890 period, we only study whether there was a European missionary at any point in time between 1846 and 1890. As expected, we find stronger effects for stations where Europeans reside vs. which they visit. The coefficients of correlation between European, main and school missions vary between 0.4 and 0.6, thus indicating that these attributes are not overly concentrated in the same mission locations.
data into a pooled data set of four denominations (N = 2,091 x 4 = 8,364): Methodist, Presbyterian, Catholic and other. This allows us to add denomination fixed effects. We model strategic choices by including four dummies for whether, in the start year of each period, a cell was occupied by the same denomination, a competing denomination, or neighbored by a cell with the same denomination or a competing one (Web Appx. Table 9). Results generally hold.

In addition, denominational differences confirm that economic considerations mattered for missionary expansion. Catholics had the financial support of the Vatican. We would thus expect Catholic missions to be relatively less associated with economic factors. We pool the data for the four denominations, add denomination fixed effects but also interact the cell characteristics with a dummy equal to one if the dependent variable captures Catholic expansion. Web Appendix Table 10 shows that Catholics are less likely to go to urban areas and possibly cash crop areas. They are more likely to go to areas historically associated with the slave trade, which is costly in that it does not bring direct economic benefits to the missions. Next, among Protestants, the expansion of Mainline Protestant missions (Presbyterians and Methodists) is taking place in more populated areas (Web Appx. Table 10). This is not surprising given that Mainline Protestants depended more on local contributions and valued entrepreneurship and education (Barro and McCleary, 2017).

5.2. Investigation of Causality

5.2.1. Cross-Sectional Results

Pre-Determined Variables. Most expansion occurred after 1875 (see Figure 3). By then, many variables in Table 1, such as historical malaria, coastal and hydrological geography, African resistance, historical trade routes or slave-exporting activities, were exogenous by construction (e.g., distance to the coast) or pre-determined (e.g., historical malaria).

Within-Ethnic Group Variation. We add 35 ethnic group fixed effects (from Murdock (1967)) to control for pre-colonial conditions (Michalopoulos and Papaioannou, 2014). Web Appx. Table 11 shows results hold when doing so. Because cells within ethnic homelands could still differ in unobservables, we use identification strategies for malaria, railroads, and cash crops.

22 Denominations were more likely to open a station in a cell if they already occupied the neighboring cell. Next, denominations avoided each other initially. As the market saturated, societies were more likely to enter areas with other denominations (col. 4). Since religious competition is not the focus of this paper, we leave this for future research.

23 Most trade routes in 1850 were surveyed by colonial administrators. One exception is a route surveyed by a missionary in 1886. Also, trade routes differed from slave routes, so they do not capture the effects of the slave trade. Results hold if we drop the route surveyed by a missionary and control for proximity to slave routes (Web Appx. Table 12). Results also hold if we exclude variables measured after the periods’ last year (not shown).

24 While historical malaria from Depetris-Chauvin and Weil (2018) was by construction determined before
Difference-in-Difference (DiD) for Malaria. Section 3. described how after quinine was introduced circa 1840 European missionary mortality dropped and their numbers increased. We test this more formally. For 2,091 cells c and 115 years t from 1783-1897, we regress a dummy if there is a mission in cell c and year t on the historical malaria index of cell c interacted with a post-quinine dummy (if year t is after 1840), while simultaneously including cell fixed effects and year fixed effects. We choose the end of our third period – 1897 – as the final year of the post-treatment window, and to ensure a pre-treatment window of equal length we choose 1783 as our start year. Due to the fixed effects, malaria and the post-quinine dummy are dropped from the regression.

Missions expanded in higher-risk malaria areas after 1840 (column 1, Table 2). In column 2, malaria is also interacted with a dummy if year t is between 1810 and 1839. This separates the pre-treatment window into two subperiods of 30 years. Malaria had no differential effect in 1810-1840, thus implying parallel trends. The effect holds but is lower when adding ethnic group-year or district (as of 1931)-year fixed effects to compare neighboring cells over time (col. 3-4).

If malaria was an impediment, do we observe Europeans increasingly entering malarial areas post-quinine? For the years 1846-90, we know whether stations were permanently inhabited or only monitored and visited by European personnel. We estimate the same DiD model as before. However, because we need enough pre-treatment years, we use 1850 as the cut-off year instead of 1840, thereby comparing cells in the early versus later years. Column (5), Table 2, confirms a general increase in the number of missionaries in malarial regions, which was partly driven by Europeans (column (6)). Column (7) shows that quinine had a positive but smaller effect for the expansion of European permanent residences. Column (8) then shows that quinine had a strong effect on where African missionaries were based. These results suggest that the expansion into malarial areas was driven by African missionaries. This is in line with relying on African missionaries being more cost-efficient. The introduction of quinine was nevertheless important because it allowed enough European missionaries to live on the coast, from where they could routinely visit and supervise African staff in areas that were previously too lethal.\(^{25}\)

Identification Strategies for Railroads. Once the British had consolidated their control in 1896, they sought to build transport infrastructure to permit military domination and boost trade (Gould, 1960; Luntinen, 1996). By 1932, they had built three railroad lines

\(^{25}\)For example, Spitz (1924, p. 372) explains that the “shortage of missionary priests makes a well-trained body of native catechists of paramount importance [...] After their training they work either at the central or secondary stations and are frequently visited by the [European] missionaries who superintend their work.”
(see Web Appx. Figure 3): (i) A western line in 1898-1903, which British capitalists lobbied for, to connect two gold fields in the interior to the port of Sekondi (Figure 4(a) maps the cities mentioned here). The line was later extended to Kumasi, the capital of the annexed Ashanti Kingdom, to facilitate quick dispatch of troops; (ii) An eastern line in 1908-1923, aimed at connecting the coastal, colonial capital Accra to Kumasi. Other motivations were cited for its construction: the export of cash crops, the exploitation of goldfields, and tourism; and (iii) A central line in 1927, which was built parallel to the coast to connect fertile land as well as a diamond mine. Evangelization as a determining factor was never mentioned nor missionaries acting as lobbyists.

Five alternative routes were proposed for the first line but not built. We can address concerns regarding endogeneity by using these lines as a placebo check of our identification strategy. Presumably random events such as a war and the retirement or premature death of colonial governors explain why the construction of these routes did not go ahead.26

We run the same regression model as in Table 1, but we now use a 0-30 km dummy (instead of a 0-10 km dummy).27 Panel A of Table 3, row 1 shows a baseline effect of 0.082**. There is no effect of the 0-30 km rail dummy in the periods before 1897-1932 (rows 2-4). The main result is robust to: (i) Adding 34 ethnic group or 38 district (1931) fixed effects (rows 5-6); (ii) Confining the rail dummy to the more exogenous western line only (row 7). Its goal was to connect a port, two mines, and the Ashanti capital Kumasi, without consideration for locations in between. Because we include the controls of Table 1 – dummies for whether there is a port, mine and large city – we capture the independent effects of these locations, and identification relies on cells connected by chance; (iii) Using cells within 0-30 km of a placebo line, for which no spurious effect is found (row 8); and (iv) Instrumenting the 0-30 km rail dummy by a dummy equal to 1 if the cell is within 30 km from the Euclidean minimum spanning tree between the main nodes of the triangular rail network: Sekondi, Kumasi and Accra (see Figure 4(a)). We drop the nodes and control for the log distance to those cities to rely on cells connected by chance (row 9).

Timing of Rail Building. In Panel B of Table 3, for 2,091 cells c in years 1897-1932, we study the

26Web Appx. Figure 3 maps their location. Cape Coast-Kumasi (1873): Proposed to link Cape Coast to Kumasi to send troops fight the Ashanti. The project was dropped because the war came to a halt. Saltpond-Kumasi (1893): Advocated by Governor Griffith who retired, and his successor had other ideas. Apam-Kumasi and Accra-Kumasi (1897): A conference was to be held in London to discuss the proposals by Governor Maxwell, but he died on the boat to London. Accra-Kpong (1898): Advocated by Governor Hodgson who retired, and his successor had other ideas.

27Web Appx. Table 14 motivates this choice. When including four dummies for whether the cell was within 0-10, 10-20, 20-30 and 30-40 km from a railroad built in 1897-1932, we find an effect until 30 km. The table also shows that railroads built after 1897 had no effect on missions in 1850, 1875 and 1897 (col. 2-4), thus confirming parallel trends.
effect of the 0-30 km rail dummy for cell c in year t on whether the same cell c has a mission in year t, while adding cell fixed effects and year fixed effects (standard errors clustered at the cell level). Row 1 shows a strong effect (0.179***). Rows 2-3 show there is no effect when adding one or two leads of the rail dummy. Rows 4-5 show that the contemporaneous effect of railroads in t on missions in t is captured by lags of the rail dummy, suggesting that missions followed railroads. Rows 6-7 show that results hold when adding 34 ethnic group or 38 district fixed interacted with year effects, to compare connected and unconnected neighboring cells over time.

Commodity Booms. Export commodities were an important source of income during the colonial era (Austin, 2003). Ghana experienced various commodity export booms and busts as a result of new crop diffusion and changing world demand (Dickson, 1969, p. 143-178): palm oil (1860s-1910s), rubber (1890s-1910s), kola (1900s-1920s), gold (1900s-1930s) and cocoa (1900s-1930s).\(^{28}\) We thus explore the relationship between cash crop cultivation, as a proxy for African incomes, and the expansion of missions. The fact that each boom happened at different times and affected different areas facilitates identification. We exclude gold in our baseline analysis because gold mines were owned by Europeans though part of that income trickled down to Africans.

In the absence of data on annual crop production at the cell level, we study the reduced-form effects of a Bartik-type instrumental variable predicting labor demand for each crop sector s in cell c and year t. Bartik IVs are used to generate exogenous labor demand shocks by averaging national employment growth across sectors using local sectoral employment shares as weights (Bartik, 1991; Goldsmith-Pinkham et al., 2018). We use a modified version of these: (i) We know the national export value of crop s (palm, rubber, kola and cocoa) in year t for the 1846-1932 period; (ii) We know in which cells c crop s was produced at any one point in 1846-1932; (iii) We know the number of producing cells for crop s; (iv) Assuming that each producing cell was producing an equal amount, we predict the export value of crops s in cell c in year t; (v) Our exogenous measure of crop income in cell s and year t is then log export value of all crops s in cell c and year t; and (vi) When studying its effects on missions, we add cell fixed effects, which capture the time-invariant production dummies, and year fixed effects, which capture changing national export values.

Row 1 of Table 4 shows a strong positive effect (0.028***\(^{28}\)) of log predicted cash crop export value at the cell level. Results hold if we: (i) Use each crop’s boom and bust one by one (palm oil, rubber, kola and cocoa; rows 2-5); and (ii) Substitute the production dummies with suitability dummies

\(^{28}\)Export statistics for the period 1846-1932 (no data available before) confirm this (see Web Appx. Fig. 4).
(no suitability map found for kola) when constructing the Bartik (row 6). No spurious effects are found when adding one or two leads of the Bartik (rows 7-8), but the contemporaneous effect of cash crops in t on missions in t are captured by lags of the Bartik (rows 9-10). This suggests missions followed cash crop incomes. Rows 11-12 show that results hold when adding ethnic group or 1931 district fixed effects interacted with year fixed effects. In row 13 we test whether booms and busts had an asymmetric effect. We use first-differences and interact the log change in cash crop value with a dummy if it is negative.29 Cash crop booms led to the establishment of missions. Once there was a bust, missions did not disappear, possibly due to sunk costs.30

Intensive Margin and Denominations. Applying the same cross-sectional identification strategies for railroads, we do not find any effects on the number of missions or the opening of main stations and schools once we control for whether the cell had a mission (see Web Appx. Table 15). The panel analysis, however, produces strong positive effects on these dimensions for both railroads and cash crops (same table). Using the same cross-sectional and panel strategies, Web Appendix Table 16 then confirms that railroads and cash crops have stronger effects on Mainline Protestant missions than on Catholic missions or Other Protestant Missions.

5.3. Dynamics of Missionary Expansion

This section highlights the dynamics of missionary expansion by documenting the changing locational characteristics in the stock of missions over time. We construct a measure that summarizes how “attractive” a location was to missionaries. More precisely, we regress the mission dummy in 1932, $M_{c,1932}$, on the determinants of mission placement X_{c} of Table 1. We then obtain the predicted probability $\hat{M}_{c,1932} = X_{c}B$, or locational score. We distinguish between four groups of cells in 1840-1932:31 (i) cells with a mission in both $t - 1$ and t (“remains 1”); (ii) cells with no missions in $t - 1$ but a mission opening in t (“becomes 1”); (iii) cells with a mission in $t - 1$ that exits in t (“becomes 0”); and (iv) cells with no missions in both $t - 1$ and t (“remains 0”). Figure 6(a) plots a quadratic fit of the average score for those four groups.

The pattern suggests that the best locations received missions first, and that marginally less good locations were increasingly added to the existing stock of mission locations. Indeed, cells with

29 We transform the fixed effects model into a first-difference model, keeping the year fixed effects, while the cell fixed effects are removed by the first-difference transformation.

30 Results hold if we (Web Appendix Table 19): (i) Add gold; (ii) Control for distance to the Presbyterian mission of Aburi (and the Presbyterian sphere of influence), which encouraged Ghanaians to grow cocoa (Hill, 1963a); (iii) Use other measures of suitability; and (iv) Use alternative deflator series to construct cash crop value at constant prices.

31 We use 1840 because it is the first year with 10 missions.
surviving missions (“remains 1”) rank consistently higher than cells that gain or lose missions (“becomes 1” or “becomes 0”) and their scores significantly exceed those of the “remains 0” group. Scores of all the four groups decrease over time. Scores of the “becomes 1” group decrease, because less and less attractive mission locations are added over time. Scores of the “remains 0” group decrease, because switchers are among the best locations of the cells with no missions.\footnote{When regressing the scores of the “remains 1”, “becomes 1”, “becomes 0”, and “remains 0” groups on the year, we find a significant negative effect: \(-0.003^{***} (R^2 = 0.90), -0.005^{***} (0.46), -0.006^{***} (0.44), \) and \(-0.001^{***} (0.89)\), respectively. The high \(R^2\) values imply that the best-ness of a location is predicted by the year it gained or lost a mission.}

The results are not mechanically driven by the choice of the year 1932 to determine the regression coefficients. Results hold if we (not shown, but available upon request): (i) Use the period 1751-1840 to estimate the importance of each factor and study the predicted scores in 1840-1932; and (ii) Use the urbanization rate in 1931 as the predicted variable instead of the mission dummy in 1932.

5.4. Results for Africa

We replicate the analysis for Africa as far as data availability allows. In Table 6, for 203,574 cells in 43 sub-Saharan African countries, we regress a dummy if there is a mission in the mission maps of Beach (1903), supposedly representing the year 1900 (col. 1), or Roome (1925), supposedly representing the year 1924 (col. 2), on characteristics proxying for geography, political conditions, transportation, population, and economic activities, as well as country fixed effects. From the year of foundation reported for 83% of Protestant missions in Beach (1903), we construct a quasi-panel.\footnote{Such data does not exist for Roome (1925) or other atlases for Africa.} We then examine in columns 3-5 how the effects vary across three periods defined around four turning points: 1792 (first year with a mission), 1850 (approximate date when anti-slavery efforts intensified), 1881 (start of Scramble for Africa), and 1900 (last year of data).

We find that: (i) Missionaries chose locations with healthier environments (malaria – especially in earlier periods – and tsetse);\footnote{We include the tsetse fly index of Alsan (2015) for Africa because the correlation between malaria and tsetse is weaker in Africa (0.46) than in Ghana (0.86).} (ii) Missionaries avoided large pre-colonial cities and ethnic homelands that were colonized later (especially before 1850), two potential measures of African resistance. They also avoided Muslim centers before 1850, our measure of religious resistance. They favored centralized ethnic areas in Beach (1903) (especially in later periods) but avoided them in Roome (1925); (iii) Transportation played an important role: ports and coastal proximity facilitated initial access, while navigable rivers, lake proximity, explorer routes, and railroads enabled internal diffusion; (iv) Missionaries preferred large colonial cities and dense urban areas.
throughout the period; and (v) We find positive effects for pre-colonial slavery and slave export intensity. Richer areas through cash crop exports and European mining also attracted missions.

Overall, missionaries chose healthier, safer, more accessible, populated, and developed areas. However, the adjusted R^2 are relatively low, at 0.03-0.04 in columns 1-2 vs. 0.35-0.61 for Ghana (Table 1). This is due to two reasons. First, the locations of the missions mapped in Beach (1903) and Roome (1925) are mismeasured due to inaccuracies in the georefencing of missions. This creates classical measurement error. When combining the cells into 3x3 cells, the adjusted R^2 increases to 0.15 (not shown). Second, our set of controls is incomplete. For Ghana, we compiled a rich data set, but such data do not exist for the whole of Africa. When using the all-Africa variables for the Ghana sample only, the R^2 remains low, at 0.12-0.21 (not shown). However, if we use 3x3 cells for Ghanaian observations, we get 0.39-0.46 (not shown).

Pre-Determined Variables and Within-Ethnic Group Variation. Some countries have seen major expansions of missions as early as the 1790s (Sierra Leone, South Africa), so the controls are not necessarily pre-determined for these. Web Appendix Table 17 shows most results hold when dropping the ten countries that we have identified as early mission fields (see the notes under the table for details). Another strategy is to include 1,158 country-ethnic group fixed effects. Most significant effects remain so and a few effects become insignificant (Web Appx. Table 17).

Causal Effects. With respect to malaria, we do not know when quinine became the regular treatment for each country. Regarding railroads, Web Appendix Table 20 shows that the results of Table 6 hold if we use a 0-30 km rail dummy and apply the same cross-sectional identification strategies as for Ghana (spatial fixed effects, military and mining lines, placebo lines, instrumentation with Euclidean minimum spanning tree between the major cities). We

35 For 109 missions reported in both Beach and Roome and digitized by Cagé and Rueda (2016) and Nunn (2010) respectively, we found an average distance of 2 cells between their georeferenced locations (Web Appx. Fig. 6).

36 For example, we use the pre-colonial explorer routes digitized by Nunn and Wantchekon (2011). This is an imperfect measure of pre-missionary era trade routes. For Ghana, this database returns 581 km of explorer routes (percentage of grids within 10 km of a route = 4.8%), whereas our sources indicate 6,526 km of trade routes (30.0%). For Madagascar, Nunn and Wantchekon (2011) do not record any explorer routes, whereas a contemporary ethnographer suggests that all mission stations are clustered along explorer routes and the coast (see Web Appendix Figure 5).

37 Results hold if we drop controls defined ex-post or cluster standard errors at the ethnic group level (not shown).

38 Most lines were built late, hence the larger (longer-term) effects for 1924. These effects hold if we (Web Appx. Table 20): (i) Include country-ethnic group or district (2000) fixed effects; (ii) Use military or mining lines only, since their goal was to connect two locations without consideration for locations in between, for example a large pre-colonial city/mine and a port. Since we add the controls of 6, we capture the independent effects of locations that mattered for military domination or mining, and identification relies on cells connected by chance; and (iii) Instrument the rail dummy by a dummy if the cell is within 30 km from the Euclidean minimum spanning tree between the capital, largest and second largest cities circa 1900, while simultaneously dropping these cities and controlling for the log distance to them. We also find no spurious effects when using placebo lines planned in 1916-1922 but never built (they have a significant
cannot do a panel analysis for railroads because the foundation year of mission is only available before 1900 and very few railroad lines were built before then. Regarding cash crops, we already use Bartik-based measures of log predicted cash crop export value. More precisely, for seven important cash crops in Africa (cocoa, coffee, cotton, groundnut, palm oil, tea and tobacco), we define each cell as suitable for cultivation if the land suitability index from IIASA and FAO (2012) reports a value higher than 0. We then proceed using the country’s total export value for each colony circa 1900 or 1924. Finally, we cannot do a panel analysis for cash crops because we do not have annual data on the production of each crop for each country over such a long period.

Denomination-Level Data. Web Appx. Table 18 shows that results hold if we repeat the analysis but transform the data set into a pooled data set of missionary expansion for two denominations (Protestants and Catholics) in 1924 (N = 203,574 x 2 = 407,148) or five Protestant denominations (Methodists, Presbyterians, Anglicans, Lutherans, Other) in 1900 (N = 203,574 x 5 = 1,017,870). This allows us to add denomination fixed effects. Using the same model, we then study locational differences between Catholics and Protestants in 1924 or Mainline Protestants (first four groups above) and Other Protestants in 1900 by interacting the locational characteristics with a dummy if the dependent variable captures Catholic / Non-Mainline Protestant expansion. The table shows that Catholics were differentially going to poorer areas (negative effects for railroads, cities, cash crops and mines), and likewise for Other Protestants (negative effects for cities and mines). When using the same cross-sectional strategies as before for railroads, we also find stronger effects for Mainline Protestants than for Catholics or Other Protestants (Web Appx. Table 21).

6. Christianity, Modernization, and Economic Development in Africa

Our results have several implications for the relationship between religion and development. While in Section 3, we discussed why mission societies sought to expand in more developed areas, i.e. why Christian supply increased, we now discuss why Africans in these locations may have been more receptive to evangelization efforts, i.e. why Christian demand was high.

According to the secularization hypothesis, religiosity decreases with education, urbanization, and

39 We estimate the export value of crop \(s \) in cell \(c \) in colony \(d \) in year \(t \) as the total export value of crop \(s \) in colony \(d \) in year \(t \) divided by the number of suitable cells for crop \(s \) in colony \(d \). We then obtain for each cell \(c \) in year \(t \) the sum of export values across all crops \(s \). One caveat is that land suitability is based on current conditions, so suitability has changed over time. However, it is unlikely that missions were behind such changes. Since the Bartiks are constructed using suitability maps, we verify results hold when simultaneously controlling for the suitability indexes of the seven crops (not shown). The country fixed effects then capture the aggregate effects of the export of each crop in each year.
economic development (Weber, 1905). Indeed, economic growth raises the opportunity costs of participating in time-intensive religious activities (McCleary and Barro, 2006b). We find the opposite in Ghana and in Africa: more developed places adopted Christianity first. Ghana was relatively poor at the start of Christianization. Since the late 19th century, incomes grew significantly as Ghana transformed into a cash-crop economy, stimulated by the increased demand from global markets (Hill, 1963b; Austin, 2007). Per capita incomes doubled between 1870 and 1913, and tripled by 1950. Entrepreneurial farmers migrated to new areas where cash crops could be grown, as well as to towns to exploit new economic opportunities (Hill, 1963b; Dickson, 1969). Various interpretations can reconcile our results with the secularization hypothesis.

First, our results do not exclude the possibility that it were the poorest individuals in the richest places who converted to Christianity. While we do not have data on who converted and why, this explanation seems unlikely. It may be true that in the beginnings, when the number of Christians was very small, converts were often ex-slaves and social outcasts (Hastings, 1994; Maxwell, 2016). By the mid-19th century, however, when evangelization efforts gradually led to mass conversions, Christianity had broadened its appeal, in particular among members of the commercial elite, such as cash crop farmers and merchants (Debrunner, 1967). Moreover, missionary expansion required financially capable members to contribute to church activities (see Section 3.).

Second, Barro and McCleary (2003) argue that if participating in religious activities increases wages, for example because religion and human capital are complements, growth and religiosity could go hand in hand. In Africa, colonial regimes ran few schools directly. Christian missions took on this role and provided the bulk of formal education (e.g., writing, reading and maths) which commanded a wage premium in the colonial economy (Frankema, 2012). However, we showed that the complementarity between Christianity and education weakened over time, as missions were increasingly opened without providing schooling, suggesting that Christianity spread without meeting African demand for formal education. Hence, this cannot be the full story. Missions also provided other services. For example, they expanded social networks for converts. In Christian communities of today, Glaeser and Sacerdote (2008) show how educated persons could be more religious if participating in religious services helps to build social capital. Similarly, Auriol et al. (2017) show how religious donations serve an insurance function.

Third, Christianity disrupted the monopoly of, and spread at the expense of, African traditional religions. By switching religious beliefs, people may have remained as religious as before,
consistent with the religion-market model (see McCleary and Barro (2006a) for a survey).

Fourth, African traditional religions reinforced the power of chiefs, making them the custodian of the well-being of the community. Christianity offered in its ideology of individualism and its alliance with colonial rule a legitimization to escape the chiefs’ authority (Ekechi, 1971; Der, 1974; Peel, 2000; Maxwell, 2016). Our results corroborate this interpretation. Christianity spread after the defeat of the Ashanti Kingdom in 1874, after which it became clear that colonial rule would define the long-term political status quo. Over time, Christianity became institutionalized and churches consolidated their grip on society by relying on African missionaries.\footnote{For example, chiefs owned and could allocate land use rights in any way they saw fit. Pauw (1996, p.375) writes: “Land is not individually owned, nor can land be sold by one individual to another. Land is the communal possession of all. The chief or leader is the custodian of the land who has the responsibility to designate portions for individual use. When no longer used, or if the land is abused, it reverts back to the leader for redistribution.”}

Finally, there are spiritual needs in a world where established systems of meaning were disrupted by changing social and economic circumstances, and not the least by new technologies (e.g., steam locomotives). Africans sought a measure of conceptual control over these forces by turning to the new ideas and tools offered by Christianity (Maxwell, 2016). It has been argued that African traditional religions, based on community and communitarian ownership, constrained individual ownership and restricted the pursuit of self-interest (Pauw, 1996; Alolo, 2007).\footnote{Pauw (1996, p.374) writes: “An individual’s behaviour is largely determined, one might even say pre-determined by the dictates of the community. [...] Ethical principles are spelt out in terms of the well being of the community and of the maintaining of harmony and equilibrium. Thus, taking too much initiative, or succeeding in reaping much better harvests than others, or becoming disproportionately rich through business enterprises, disturbs the cosmic balance.”}

Therefore, Christianity may have been for converts a more this-worldly religion, possibly the same way Protestantism challenged the political monopoly and economic conservatism of Catholicism during the Reformation (Weber, 1905; Ekelund et al., 2002; McCleary and Barro, 2006b).

Thus, Christianization was driven by economics and went along with modernization in Africa.

7. Implications for Long-Run Economic Development

We used an exhaustive census of missions and a comprehensive spatio-temporal database to shed light on the dynamics of missionary expansion. We documented that economic forces led to an early Christianization of more developed, accessible, and populated places. In particular, we showed how - with quinine and Africanization - malaria became less of an impediment and how transport infrastructure and income from export commodities attracted Christian missions. Over time, diffusion led churches to expand to less developed areas. What are the implications of those
findings for the study of long-run development? A large literature uses the historical presence of missions as a source of local variation in religion and human capital to study their long-term effects. We note that most studies retrieve mission location data from a source different from ours: Historical atlases (see Web Appx. Table 1). We first scrutinize this standard source.

7.1. Endogenous Measurement Error and Omitted Variable Bias

There are problems with atlases that have not been raised. In the literature, two atlases feature particularly prominently: Beach (1903) and Roome (1925). We examine them in detail.

First, atlases significantly underreport missions. For Ghana, atlases show far fewer missions than census returns: 26 vs. 304 (i.e., 91% are missing) in 1900 (Beach, 1903) and 23 vs. 1,213 (98%) in 1924 (Roome, 1925) (see Fig. 2(a)-2(b)). For Africa, we counted the number of missions from historical sources. The extent of misreporting is of a similar scale: Beach (1903) and Roome (1925) omitted 93% and 98% of missions (see Fig. 1(b)). Omissions may be random. If so, the resulting attenuation bias will lead to conservative estimates of the contemporary effect of missions.

Second, as Fahs (1925) hinted at, atlases overwhelmingly plot residence stations of European missionaries. However, evangelization in Africa was not a European enterprise. Moreover, the localities that Europeans preferred may have been highly selected, i.e. they were healthier, more urban and more developed. Europeans also tended to reside at mission stations that were founded early in the evangelization process. Because of this, it is important to adjust the timing and nature of control variables. Omitted variable biases may be consequential.

Selection. Using our census data for Ghana we uncover which missions found their way into atlases. Examining the geographic distribution of missions (see Fig. 2(a) and 2(b)) reveals two stylized facts pointing to non-random selection. First, the atlases miss most hinterland missions. Second, Roome (1925) does not capture the exponential growth of missions between 1900 and 1924. We study this further by plotting the coefficients of correlation between a dummy equal to one if there is an atlas mission (1900, 1924) and a dummy equal to one if there is a mission in our data in each year (1840-1932) for the 2,091 cells. Figure 6(b) shows that correlations are high for earlier years (about 0.8 for Beach (1903) and 0.4 for Roome (1925)). Atlases are misleading in that

42 The extent of omissions is relatively similar across movements and denominations: Beach (1903) misses 89% of Methodist missions and 92% of Presbyterian missions whereas Roome (1925) misses 97% of Protestant missions and 99% of Catholic missions. Other atlases compare as follows: 25 vs. 432 Protestant missions (i.e., 94% of missions are missing) in 1908 (Bartholomew et al., 1911) and 6 vs. 49 Catholic missions (88%) in 1913 (Streit, 1913).

43 When combining cells into 2x2 or 3x3 cells to account for inaccuracies in the geocoding of atlas missions, the correlation of earlier years is 0.9 for Beach (1903) and 0.7-0.8 for Roome (1925) (not shown but available upon request).
they pretend to show missions in 1900 and 1924, but they represent the early missions ca. 1850. Atlas missions also differ qualitatively. In Table 5 we regress a dummy equal to one if there is an atlas mission on cell-level mission characteristics derived from our data for the years 1900 and 1924. The correlations confirm that atlases capture early missions (col. 2 and 7) and/or main stations and schools (col. 3 and 8) and/or the residence of Europeans (col. 4 and 9; N = 2,069 due to missionaries’s identity being missing for some missions). Some characteristics are then correlated with each other (col. 5 and 10). Overall, atlases endogenously select better missions and may thus lead to upward-biased contemporary effects. Now, do atlases at least reliably select the best missions? The answer is no. If we define main / school / European missions (based on residence) as “best” missions, atlases still miss 68-83% (N = 48; 105) of them.

Omitted Variable Bias. Omitted variable bias becomes a concern for identification. Missionaries’ locational choices were time and context dependent. Because mission expansion was a dynamic process, careful thought needs to be put into the type and timing of control variables. The timing issue is particularly difficult to address in studies covering the entire continent. The onset of Christian expansion varied across countries and the distribution of missions at any given point in time reflects different stages of the diffusion process. This also relates to the study of denominations, which differ in characteristics, and thus locational strategies.

7.2. Omitted Variables, Measurement Error and Contemporary Effects in Ghana

How do endogenous measurement error and omitted variables affect the estimations of contemporary effects? Using our data we conduct a validation study for Ghana. We compare the estimated effect of mission locations retrieved from atlases vs. ecclesiastical censuses. We also study how the set of control variables affects the estimations and potential biases.

We run a regression analogous to earlier studies, correlating a dummy equal to one if the location had a mission \((M_{c,g})\) in 1900 or 1924 and present-day measures of local economic development \((D_{c,g,today})\):

\[
D_{c,g,today} = a^m + \rho M_{c,g} + X_{c,g} \zeta + \kappa_g' + w_c
\]

Given the lack of data on incomes at the local level, we use log average night light intensity in 2000-01 as development indicator.\(^{44}\) \(M_{c,g}\) represents the actual reflection of missions derived from census returns. We first examine how \(\rho\) varies if we include: (i) No controls \(X_{c,g}\); (ii) The controls

\(^{44}\)Nightlights have become a standard measure in the stream of literature that studies development at the local level (Henderson et al., 2012; Michalopoulos and Papaioannou, 2013).
commonly used in studies of Africa ("standard controls")45; and (iii) Our full set of determinants from Table 1 ("our controls"). We then examine how the coefficient ρ varies if we use instead of $M_{c,g}$ the construct $\tilde{M}_{c,g}$ derived from mission atlases and measured with error.

Table 7 presents the results. Using the mission dummy $M_{c,g}$ (row 1), we find large unconditional effects of 3.39-4.01 (columns 1 and 4). Alternatively, one standard deviation in the mission dummy is associated with a 0.39-0.46 increase in the standard deviation in log night lights. Adding the standard controls reduces the estimated effect by 20-30%, to 2.74-2.84 (columns 2 and 5). Finally, our controls further reduce the effect by 80-90%, to 0.41-0.68 (columns 3 and 6). This means that an early colonial mission increases night lights by 41-68%, or only 0.05-0.08 if expressed in terms of standard deviations. This long-term effect is positive, but relatively small.

When using $\tilde{M}_{c,g}$ (row 2), we typically obtain larger point estimates. Comparing the unconditional effects, atlas missions produce effects that are 25% (Beach (1903), column 1) and 40% (Roome (1925), column 4) larger. Note that exogenous measurement error would cause smaller estimates. In fact, using the methodology of Bound et al. (2001), we calculated that the coefficient should have been attenuated by 6% for Beach (1903) and 22% for Roome (1925). The difference implies endogenous measurement error. Adding the standard controls contributes to bridging the gap in the estimated effects between $\tilde{M}_{c,g}$ and $M_{c,g}$ (columns 2 and 5).46 Our controls further bridge the gap for Roome (1925) (column 6), but not for Beach (1903) (column 3).47

Overall, our controls lower the effects of both $M_{c,g}$ (row 1) and $\tilde{M}_{c,g}$ (row 2). Our controls thus appear to reduce both omitted variable bias and endogenous measurement error. The effects remain significant in columns (3) and (6) of row 1. Our controls are also incomplete and imperfectly measured so the effect might be even lower with better controls.

45We merge the lists of controls from Nunn (2010) and Cagé and Rueda (2016). Nunn (Table 1, 2010) follows Johnson (1967) and uses: (i) European explorer routes before colonization; (ii) 19th century railroads; (iii) soil quality; (iv) access to a water source; and (v) slave exports. For Ghana: (i) There were no explorers before official colonization, so there is no variation across cells; (ii) The first railroad was opened in 1901, so there is no variation across cells; (iii) We control for soil fertility; (iv) We add a dummy if the cell is within 10 km from a navigable river (there were no lakes then); and (v) We control for slave export intensity. Cagé and Rueda (Table 1, 2016) use the controls from Nunn (2010) and: (vi) rainfall; (vii) distance to the coast; (viii) malaria ecology; (ix) initial population density; and (x) dummies if large cities in 1400 or 1800. For Ghana: (vi) We control for rainfall; (vii) We control for distance to the coast; (viii) We control for malaria; (ix) We control for population density in 1800; and (x) We add a dummy if there was a large city in 1800 (none in 1400).

46With exogenous measurement error, adding controls should lead to an even stronger attenuation bias (Bound et al., 2001). When adding the standard controls, the calculated attenuation bias increases to 23% for Beach (1903) and 49% for Roome (1925). The smaller effects with the controls are thus also consistent with endogenous measurement error.

47Alternatively, if we simultaneously include the actual mission dummy and the atlas mission dummy, the atlas dummy shows a stronger effect, at 2.44***-2.97*** when no controls are included, 2.11-2.44*** when the standard controls are included, and 0.56***-0.63* when our controls are included (not shown, but available upon request).
Next, we explore whether contemporary effects vary with the foundation year of the mission. While the reference to the year 1900 and 1924 in the atlases is incorrect, it may be the case that missions founded earlier have a larger causal effect on subsequent development outcomes than the missions that followed later. For example, if missions promoted growth at the local level, cells with an early presence of missions would be able to accumulate growth effects over a longer period of time. Alternatively, early missions may have received relatively more investments, i.e. they could have been main / school / European missions, which caused development at the local level. We thus study how the effect of our mission dummy varies depending on the year in which it is defined, from 1840 (first year with 10 missions) to 1932. Figure 6(c) confirms that unconditional effects are higher for earlier years. However, once we add the controls from Table 1, the effects are much lower and not downward-sloping. Thus, the stronger effects for earlier missions could be because better locations received missions first.

Finally, one may wonder whether our effects are modest because ecclesiastical censuses include all missions, even those with few congregants. Web Appx. Table 4 reveals that out-stations were large, comprising between 69 and 180 congregants on average depending on the denomination (vs. 263-383 for main stations). We now compare the long-term effects of supposedly larger and supposedly smaller missions. Table 8 shows, for 1900 and 1924, the unconditional effects and the conditional effects of the true mission dummy when adding dummies for whether the missions in our data set were created in the two pre-1875 periods or were main stations, had a school or had European missionaries living on site or frequently visiting. Without controls (col. 1 and 5) and with the literature’s standard controls (col. 2 and 6), there are direct effects of some of these measures on night lights, suggesting that “better” missions had stronger effects. However, with our controls (col. 3 and 7), many of these become statistically insignificant, which suggests that our controls capture endogenous mission quality. Only missions established early have significantly higher effects, either because their effects accumulated over a longer period of time or were selected in ways that we cannot observe. We also verify that the non-effects for main / European / school missions are not due the inclusion of the early foundation dummies (col. 4 and 8).

Other Outcomes. Web Appendix Table 22 shows, for the years 1900 and 1924, the effects of \(M_{c,g} \) and \(\tilde{M}_{c,g} \) on other measures of local development in Ghana: (i) The urbanization rate (%) of the cell in 2000, here defined as the population share of cities of more than 1,000 inhabitants; and (ii) The share of employment in non-agriculture (%) in 2000. Unconditional effects are stronger when
using $\bar{M}_{c,g}$. Adding our controls significantly reduces the gap in the estimated effects when using $M_{c,g}$ and $\bar{M}_{c,g}$, consistent with endogenous measurement error and omitted variable bias.

The literature identified Christianity and education as important mechanisms by which colonial missions continue to affect present-day development. Are the effects on those proposed channels reduced as well? In Table 9, we examine for the years 1900 (columns 1-3) and 1924 (columns 4-6) the estimated effects when using $M_{c,g}$ (Panel A) and $\bar{M}_{c,g}$ (Panel B) on proxies of these mechanisms. Rows 1-2 show the effects on the population shares of Christians first including (mean = 53.3%) and then excluding Pentecostal denominations (mean = 28.2%), which rapidly spread in Africa during the late 20th century (Jenkins, 2016). We note that the contemporary effect on Christianity is weaker when including Pentecostal denominations (columns (3) and (6) of row 1 in Panel A) that must have spread in areas without historical missions. Rows 3-4 show the effects on present-day adult literacy (mean = 34.7%) and the share of adults having completed secondary education (mean = 7.5%). If measurement error were exogenous, the unconditional effects would be lower when using $\bar{M}_{c,g}$. On the contrary, they are not significantly different for Christianity and literacy and they are significantly higher for secondary education (see columns 1 and 4 of Panel B vs. columns 1 and 4 of Panel A), consistent with endogenous measurement error. Our controls again sharply reduce the effects, consistent with omitted variable bias.

7.3. Omitted Variables, Measurement Error and Contemporary Effects in Africa

We do not have census data on missions for the 43 African countries. We thus rely on atlas missions and study how contemporary effects vary when we add standard controls or our controls from Table 6 and country fixed effects (N = 203,574). Row 3 of Table 7 shows the results. The unconditional effects imply that a mission increases night lights by 2.1-2.2. Alternatively, one standard deviation in the mission dummy is associated with a 0.10-0.14 standard deviation in log night lights. Adding standard controls reduces the effects by 10-15%, to 1.83-1.90 (col. 2 and 5), whereas adding our controls reduces them by 40-45%, to 1.24-1.28 (col. 3 and 6). Having a mission increases night lights by 124-128%, which seems large. However, one standard deviation in the mission dummy is only associated with a 0.06 standard deviation in log night lights.

Overall, the unconditional effects with the atlas dummy are twice lower for Africa than for Ghana (2.1-2.2 vs. 4.7-5.0) but the conditional effects with our controls are higher (1.2-1.3 vs. 0.4-0.7). One reason could be the more imperfect set of controls for Africa.\footnote{Likewise, if we use our controls and for example, we use the pre-colonial explorer routes digitized by Nunn and Wantchekon (2011). This is an}
add two dummies for whether the mission was founded in 1792-1849 or 1850-1881, the effect of the mission dummy defined in 1900 is further reduced by one third (0.87***, not shown), whereas the early foundation dummies are positive and significant. However, we cannot tell whether this is due to a first-mover advantage or endogenous selection in ways that we cannot observe.

Other Outcomes. Unlike for Ghana, for Africa, we only have data on cities above 10,000 inhabitants in 2000. We thus use the log total population of 10,000+ cities, dropping cells without a city. We also do not have data on structural change, but know average household wealth in each cell circa 2000 from the DHS. Using these development outcomes instead (see Web Appendix Table 22) as well as the Christian share, literacy rates and secondary school completion (analogous to Ghana) to proxy for mechanisms (see Panel C of Table 9), we find that contemporary effects are also reduced or statistically insignificant for the Africa sample when adding our controls, consistent with endogenous measurement error and omitted variable bias.

7.4. Discussion of Colonial Missions and Long-Run Persistence

We have shown that the contemporary effects of missions in colonial Africa appear relatively small. We do not doubt that there were potential benefits at the individual level. During colonial times, education was linked to mission schools (Frankema, 2012) and Christian conversion was a factor of social mobility (Wantchekon et al., 2015; Meier zu Selhausen et al., 2018). While we still find positive correlations between historical missions and religion as well as educational levels today, there are forces at play against persistence. First, the post-World War II period saw the secularization and major expansion of public education. This weakened the position of Christian churches as the gatekeepers of education. Second, Pentecostalism has been on the rise in Africa, competing intensively with (former mission) Mainline churches (Jenkins, 2016). We find positive correlations between historical missions and Christianity today, but correlations are much weaker when using a measure of Christianity that includes Pentecostals. Persistence is therefore not transferred to new denominations. In addition, Pentecostalism places less emphasis on education than Mainline Protestantism (Barro and McCleary, 2017). Third, even if we find imperfect measure of pre-missionary era trade routes. For Ghana, this database returns 581 km of explorer routes (percentage of grids within 10 km of a route = 4.8%), whereas our sources indicate 6,526 km of trade routes (30.0%). For Madagascar, Nunn and Wantchekon (2011) do not record any explorer routes, whereas a different source suggests that all mission stations are clustered along explorer routes and the coast (see Web Appendix Figure 5).

49 Some studies use survey data to examine whether members from ethnic groups historically more exposed to missions have better outcomes today. Ethnic homelands in Africa vary in shape (mean: 260 cells; min: 1; max: 3,505), so it is unclear how to control for group-level differences determining missions. Some studies control for historical missions in the locations where individuals live, capturing the effect of missions through their ancestors. It endogenously selects migrants and does not address endogenous group-level differences in historical exposure.
positive correlations for the mechanisms, the link between those mechanisms and macroeconomic development is weak at the country level (Barro and McCleary, 2003). Strikingly, Pritchett (2001) does not find any effect of the post-independence expansion in education on GDP per capita, which stagnated or declined in Africa in the second half of the 20th century. The same can be said about Christianity. Despite the increase in Christianity, most African countries remained low-income countries. Certainly, most African countries have not experienced comparable economic transformations that resulted from the Reformation in 16th century Europe (e.g., Weber, 1905).

8. Conclusion

Extensive literature has emerged that uses the establishment of historical missions as a natural experiment to study the effects of human capital, religion and culture on economic outcomes today. This literature belongs to a broader literature studying the long-term effects of historical events and/or using historical shocks as a source of exogenous variation in institutions, human capital or culture. We show that missionary expansion was driven by various economic factors in Africa. The diffusion of religion, education and culture thus depends on spatial patterns of economic development, even at low income levels. Secondarily, the use of endogenously located missions as a historical shock, and their endogenous measurement, could lead to an overly optimistic account of the importance of missions for contemporary development.

References

Africapolis, Africapolis I: Western Africa; Africapolis II: Central and Eastern Africa. 2012.
Agbeti, J. Kofi, West African Church History, Leiden: E.J. Brill, 1986.
Ajayi, Jacob Festus Ade and Michael Crowder, History of West Africa, London: Longman, 1974.
Alesina, Alberto, Sebastian Hohmann, Stelios Michalopoulos, and Elias Papaioannou, “Intergenerational Mobility in Africa,” NBER Working Paper No. 25534, 2019.
Alolo, Namawu Alhassan, African Traditional Religion and Concepts of Development: A Background Paper 2007.
Alsan, Marcella, “The Effect of the TseTse Fly on African Development,” American Economic Review, 2015, 105 (1), 382–410.
Andersen, Thomas Barnebeck, Jeanet Bentzen, Carl-Johan Dalgaard, and Paul Sharp, “Pre-reformation Roots of the Protestant Ethic,” The Economic Journal, 2017, 127 (604), 1756–1793.
Auriol, Emmanuelle, Julie Lassebie, Amma Panin, Eva Raiber, and Paul Seabright, “God insures those who pay? Formal insurance and religious offerings in Ghana,” TSE Working Papers 17-831, Toulouse School of Economics (TSE), 2017.
Austin, Gareth, “African Rural Capitalism, Cocoa Farming and Economic Growth in Colonial Ghana,” in Toyin Falola, ed., Ghana in Africa and the world: essays in honor of Adu Boahen, Trenton, NJ: Africa World Press, 2003, pp. 437–453.
_ _, “Labour And Land In Ghana, 1874-1939: A Shifting Ratio And An Institutional Revolution,” Australian Economic History Review, 03 2007, 47 (1), 95–120.
Bai, Ying and James Kai sing Kung, “Diffusing knowledge while spreading God’s message: Protestantism and economic prosperity in China, 1840-1920,” Journal of the European Economic Association, 2015, 13 (4), 669–698.
Ballard, Martin, White men’s God: the extraordinary story of missionaries in Africa, Oxford: Greenwood World Pub., 2008.
Barro, Robert J. and Rachel M. McCleary, “Religion and Economic Growth across Countries,” American Sociological Review, 2003, 68 (5), 760–781.
c.18601899,” South African Historical Journal, 2009, 61 (2), 232–253.
Cogneau, Denis and Alexander Moradi, “Borders That Divide: Education and Religion in Ghana and Togo Since Colonial Times,” The Journal of Economic History, 2014, 74 (3), 694–729.
Curtin, Philip D., “‘The White Man’s Grave’, Image and Reality, 1780-1850,” Journal of British Studies, 1961, 1 (1), 94–110.
Debrunner, Hans W., A History of Christianity in Ghana, Accra: Waterville Publishing House, 1967.
Depeetris-Chauvin, Emilio and David N. Weil, “Malaria and Early African Development: Evidence from the Sickle Cell Trait,” The Economic Journal, 2018.
Der, Benedict, “Church-State Relations in Northern Ghana, 1906-1940,” Transactions of the Historical Society of Ghana, 1974, 15 (1), 41–61.
Dickson, Kwamina B., A historical geography of Ghana, London: Cambridge University Press, 1969.
Dittmar, Jeremiah E., “Information Technology and Economic Change: The Impact of The Printing Press,” The Quarterly Journal of Economics, 2011, 126 (3), 1133–1172.
Ekechi, F. K., “Colonialism and Christianity in West Africa: The Igbo Case, 1900-1915,” The Journal of African History, 1971, 12 (1), 103–115.
Ekelund, Robert B., Robert F. Hebert, and Robert D. Tollison, “An Economic Analysis of the Protestant Reformation,” Journal of Political Economy, June 2002, 110 (3), 646–671.
Engel, P. Alois, Die Missionsmethode der Missionare vom Hl. Geist auf dem afrikanischen Festland, Neuss: Missionshaus Knechtsteden, 1931.
Fahs, Charles H., “On Making a Missionary Atlas,” International Review of Mission, 1925, 14 (2), 260–273.
Glaeser, EdwardL. and BruceI. Sacerdote, “Education and Religion,” Journal of Monetary Economics, January 2003, 50 (1), 225–282.
Goldsmit-Pinkham, Paul, Isaac Sorkin, and Henry Swift, “Bartik Instruments: What, When, Why, and How,” Working Paper 24408, National Bureau of Economic Research 2018.
Goud, Peter R., The Development of the Transportation Pattern in Ghana 1960.
Graham, C.K., The History of Education in Ghana, Tema: Ghana Publishing Corporation, 1976.
Guggisberg, Frederick Gordon, Index to the 1:125,000 Map of the Gold Coast Colony and Ashanti, London: W. & A.K. Johnston Limited, 1908.
Guiso, Luigi, Paola Sapienza, and Luigi Zingales, “People’s opinion? Religion and economic attitudes,” Journal of Monetary Economics, January 2003, 50 (1), 225–282.
Hastings, Adrian, The Church in Africa, 1450-1950, Oxford: Clarendon Press, 1994.
Henderson, J. Vernon, Adam Storeygard, and N. Weil David, “Measuring Economic Growth from Outer Space,” American Economic Review, 2012, 102 (2), 994–1028.
Hill, Polly, *The migrant cocoa-farmers of southern Ghana: a study in rural capitalism*, Cambridge: Cambridge University Press, 1963.

___, *The Migrant Cocoa-Farmers of Southern Ghana: a Study in Rural Capitalism* 1963.

IIASA and FAO, “GAEZ Global Agro-Ecological Zones (GAEZ v3.0),” 2012.

Isichei, Elizabeth Allo, *A History of Christianity in Africa: From Antiquity to the Present*, London: SPCK, 1995.

Iyer, Sriya, “The new economics of religion,” *Journal of Economic Literature*, 2016, 54 (2), 395–441.

Jedwab, Remi and Alexander Moradi, “The Permanent Effects of Transportation Revolutions in Poor Countries: Evidence from Africa,” *Review of Economics and Statistics*, 2016, 98 (2), 268–284.

Jenkins, Philip, *How Africa Is Changing Faith Around the World* 2016.

Johnson, Hildegard Binder, “The Location of Christian Missions in Africa,” *Geographical Review*, 1967, 57 (2), 168–202.

___, “The Role of Missionaries as Explorers in Africa,” *Terrae Incognitae*, 1969, 1 (1), 68–76.

Johnston, Harry H., “The Political Geography of Africa before and after the War,” *The Geographical Journal*, 1915, 45 (4), 273–294.

Kretzmann, Paul E., *John Ludwig Krapf: the explorer-missionary of northeastern Africa*, Columbus (Ohio): The Book Concern, 1923.

Luntinen, Pertti, *Railway on the Gold Coast: A Meeting of Two Cultures : a Colonial History* 1996.

Mahajan, Aprajit, “Identification and Estimation of Regression Models with Misclassification,” *Econometrica*, May 2006, 74 (3), 631–665.

Mamo, Nemera, Sambit Bhattacharyya, Alexander Moradi, and Rabah Arezki, “Intensive and extensive margins of mining and development: Evidence from Sub-Saharan Africa,” *Journal of Development Economics*, 2019, 139, 28–49.

Maxwell, David, “The missionary movement in African and World History: Mission sources and religious encounter,” *Historical Journal*, 2015, 58 (4), 901–930.

___, *Christianity* 2016.

McCleary, Rachel M. and Robert J. Barro, “Religion and Economy,” *Journal of Economic Perspectives*, 2006, 20 (2), 49–72.

__ and __, “Religion and Political Economy in an International Panel,” *Journal for the Scientific Study of Religion*, 2006, 45 (2), 149–175.

Meier zu Selhausen, Felix, “Missions, Education and Conversion in Colonial Africa,” in Gabriele Cappelli and David Mitch, eds., *Globalization and Mass Education*, London: Palgrave Macmillan, forthcoming.

__ , Marco Van Leeuwen, and Jacob Weisdorf, “Social Mobility among Christian Africans: Evidence from Anglican Marriage Registers in Uganda, 1895-2011,” *Economic History Review*, 2018.

Menon, Nidhiya and Kathleen McQueeney, “Christianity and Infant Health in India,” *Unpublished manuscript Brandeis University*, 2017.

Meyer, Birgit, *Translating the Devil: Religion and Modernity among the Ewe in Ghana*, Edinburgh: Edinburgh University Press, 1999.

Michalopoulos, Stelios, Alireza Naghavi, and Giovanni Prarolo, “Trade and Geography in the Spread of Islam,” *The Economic Journal*, 2018, 128 (616), 3210–3241.

__ and Elias Papaioannou, “Pre-Colonial Ethnic Institutions and Contemporary African Development,” *Econometrica*, 2013, 81 (1), 113–152.

__ and __ , “National Institutions and Subnational Development in Africa,” *Quarterly Journal of Economics*, 2014, 129 (1), 151–213.

__ , Louis Putterman, and David N. Weil, “The Influence of Ancestral Lifeways on Individual Economic Outcomes in Sub-Saharan Africa,” *Journal of the European Economic Association*, forthcoming.

Miller, Jon, *Missionary zeal and institutional control: organizational contradictions in the Basel Mission on the Gold Coast, 1828-1917*, Grand Rapids, Michigan ; Cambridge, U.K.: William B. Eerdmans, 2003.

Murdock, George Peter, “Ethnographic Atlas: A Summary,” *Ethnology*, 1967, 6 (2), 109–236.

NOAA, “Average Visible, Stable Lights, and Cloud Free Coverages,” 2012.

Nunn, Nathan, “The Long-term Effects of Africa’s Slave Trades,” *Quarterly Journal of Economics*, 2008, 123 (1), 139–176.

__ , “Religious Conversion in Colonial Africa,” *American Economic Review Papers and Proceedings*, 2010, 100 (2), 147–152.

__ , “Gender and Missionary Influence in Colonial Africa,” in Emmanuel Akyeampong, Robert H. Bates, Nathan Nunn, and James Robinson, eds., *Africa’s Development in Historical Perspective*, New York: Cambridge University Press, 2014, pp. 489–512.

__ and Leonard Wantchekon, “The Slave Trade and the Origins of Mistrust in Africa,” *American Economic Review*, 2011, 101 (7), 3221–3252.

Oliver, Roland, *The Missionary Factor in East Africa* 1952.
Osei, Samuel Kwesi, “Combining Geo-Historical Information with GIS Techniques: An Example of the Historical Slave Route Heritage in Ghana,” in James Anquandah, Benjamin Kankpeyeng, and Wazi Apoh, eds., Current Perspectives in the Archeology of Ghana, Legon: University of Ghana Readers, 2014.

Park, Chris C., Sacred worlds: an introduction to geography and religion, London: Routledge, 1994.

Parsons, Robert Thomas, The Churches and Ghana Society 1918-1955, Leiden: E. J. Brill, 1963.

Pauw, Christoff M., “Traditional African Economies in Conflict With Western Capitalism,” Mission Studies, 1996, 14 (1), 203–222.

Peel, J. D. Y., Religious Encounter and the Making of the Yoruba, Bloomington: Indiana University Press, 2000.

Pew Research Center, The Changing Global Religious Landscape 2017.

Pietz, William, “The Fetish of Civilization,” in Peter Pels and Oscar Salemink, eds., Colonial Subjects: Essays on the Practical History of Anthropology, Ann Arbor: University of Michigan Press, 1999, pp. 53–81.

Pritchett, Lant, “Where has all the education gone?,” World Bank Economic Review, 2001, 15 (3), 367–391.

Quarter, Seth, Missionary practices on the Gold Coast, 1832-1895: discourse, gaze, and gender in the Basel Mission in pre-colonial West Africa, Youngstown, N.Y.: Cambria Press, 2007.

Roome, William R. M., Ethnographic Survey of Africa: Showing the Tribes and Languages; also the Stations of Missionary Societies, London: Edward Stanford Ltd., 1925.

Rubin, Jared, “Printing and Protestants: An Empirical Test of the Role of Printing in the Reformation,” The Review of Economics and Statistics, 2014, 96 (2), 270–286.

Rulers, religion, and riches: why the West got rich and the Middle East did not, New York: Cambridge University Press, 2017.

Schlatter, Wilhelm, Geschichte der Basler Mission, 1815-1915, Basel: Missionsbuchhandlung, 1916.

Schmidlin, D. Jospeh, Catholic Mission History, Techny (ILL): Mission Press S.V.D., 1933.

Schott, Otto, The Basel Mission on the Gold-Coast, Western Africa on the 1st January 1879: A Retrospect on Fifty Years of Mission Work, Basel: Felix Schneider, 1879.

Schreiber, D.A.W., Bausteine zur Geschichte der Norddeutschen Missions-Gesellschaft, Bremen: Verlag der Norddeutschen Missions-Gesellschaft, 1936.

Sill, Ulrike, Encounters in quest of Christian womanhood: the Basel Mission in pre- and early colonial Ghana Studies in Christian mission, Boston: Brill, 2010.

Sluglett, Peter, Atlas of Islamic History, New York: Routledge, 2014.

Smith, Noel T., The Presbyterian Church of Ghana, 1835-1960: a younger Church in a changing society, Accra: Ghana Universities Press, 1966.

Spitz, Maternus, “The Growth of Roman Catholic Missions in Africa,” International Review of Mission, 1924, 13 (3), 360–372.

Streit, Karl, Atlas Hierarchicus: descriptio geographica et statistica Sanctae Romanae Ecclesiae tum occidentis tum orientis juxta statum praesentum accedunt nonnullae notae historicae necnon ethnographicae, Paderborn: Typographiae Bonifacianae, 1913.

Summers, Carol, “Education and Literacy,” in John Parker and Richard Reid, eds., The Oxford Handbook of Modern African History, Oxford: Oxford University Press, 2016, pp. 319–337.

Sundkler, Bengt and Christopher Steed, A history of the church in Africa, Cambridge, UK: Cambridge University Press, 2000.

Terry, John Mark, Missiology: An Introduction to the Foundations, History, and Strategies of World Missions 2015.

Thauren, P. Johannes, Die Missionen der Gesellschaft des Götlichen Wortes in den Heidenländern, Vol. 1. Die Mission in der ehemaligen deutschen Kolonie Togo, Post Kaldenkirchen: Missionsdruckerei Steyl, 1931.

The Economist, “The future of the world’s most popular religion is African,” International Review of Mission, 2015, 14 (2), 260–273.

Voigtländer, Nico and Hans-Joachim Voth, “Persecution Perpetuated: The Medieval Origins of Anti-Semitic Violence in Nazi Germany,” The Quarterly Journal of Economics, 2012, 127 (3), 1339–1392.

Waldinger, Maria, “The long-run effects of missionary orders in Mexico,” Journal of Development Economics, 2017, 127, 355–378.

Wantchekon, Leonard, Natalija Novta, and Marko Klašnja, “Education and Human Capital Externalities: Evidence from Colonial Benin,” The Quarterly Journal of Economics, 2015, 130 (2), 703–757.

Weber, Max, The Protestant Ethic and the Spirit of Capitalism 1905.
Figure 1: Missions in Sub-Saharan Africa: Mission Atlases vs. Census Sources

(a) Missions Reported in Mission Atlases

(b) Share of Omitted Missions in Mission Atlases

Notes: Subfigure 1(a) shows for 43 sub-Saharan African countries the Protestant missions in 1900 from Beach (1903) (N = 677) and the Protestant and Catholic missions in 1924 from Roome (1925) (N = 1,212). Subfigure 1(b) shows when the data is available the share of missions in census sources that are missing in Beach (1903) (for Protestants only in 1900) and Roome (1925) (for both Protestants and Catholics in 1924). See Web Data Appendix for data sources.

Figure 2: Missions in Ghana: Mission Atlases vs. Census Sources

(a) Comparison in 1900

(b) Comparison in 1924

Notes: Subfigure 2(a) shows the 1900 missions in Beach (1903) (N = 24) and in our census data (304). Subfigure 2(b) shows the 1924 missions in Roome (1925) (N = 24) and in our census data (1,213). See Web Appendix for data sources.
Figure 3: Evolution of the Number of Missions and their Types in Ghana, 1840-1932

Notes: The figure shows for Ghana the evolution of the total number of missions / main mission stations / mission schools, annually from 1840 to 1932. Ghana consists of 2,091 cells. See Web Appendix for data sources.

Figure 4: Location of Missions in Ghana for Selected Years

(a) Missions in 1850
(b) Missions in 1875
(c) Missions in 1897
(d) Missions in 1932

Notes: The subfigures show the location of all missions (Protestant and Catholic) in Ghana for selected turning points in the history of Ghana: 1850, 1875, 1897 and 1932. See Web Data Appendix for data sources.
Figure 5: Mortality of European and Native Missionaries in Ghana, 1750-1890

(a) Mortality and Number of European Missionaries

(b) Kaplan-Meier Survival Analysis of Missionaries

Notes: Subfigure 5(a) shows mortality rates and the number of European male missionaries in 1751-1890. The post-quinine era is defined as post-1840. Subfigure 5(b) shows survival probabilities of European and African missionaries pre- and post-quinine (data for 1751-1890 period). See Web Appendix for data sources.

Figure 6: Omitted Variable Bias and Endogenous Measurement Error in Ghana

(a) Locational Factors and Likelihood of Having Missions

(b) Correlation between Atlas Missions and Our Missions

(c) Long-Term Effects of the True Mission Dummy

Notes: Subfigure 6(a) shows a quadratic fit of the mean predicted locational score for four groups of cells in each year. Subfigure 6(b) shows the coefficient of correlation between a dummy if there is a mission in the cell in 1900 in Beach (1903) or 1924 in Roome (1925) and the true mission dummy in year t. Subfigure 6(c) shows the effect of the true mission dummy defined in year t on log avg. night light intensity in 2000-01. See Web Appendix for data sources.
Table 1: CORRELATES OF MISSIONARY EXPANSION, LONG-DIFFERENCES

Dependent Variable: Dummy if Any Mission in ... / 1850 / 1875 / 1897	(1)	(2)	(3)	(4)
Dummy if Historical Malaria Index	-0.004**	-0.005**	0.008*	-0.010
	[0.002]	[0.002]	[0.005]	[0.006]
Log Distance to Coast	-0.017*	-0.027**	-0.035*	-0.102**
	[0.009]	[0.010]	[0.018]	[0.020]
Dummy if Large Pre-Colonial City 1800	0.018	-0.230*	0.001	-0.341***
	[0.043]	[0.121]	[0.152]	[0.047]
Dummy if Headchief Town 1901	-0.007	0.053	-0.011	0.008
	[0.032]	[0.041]	[0.044]	[0.038]
Dummy if Outside Gold Coast Colony 1850	0.004	0.009	0.040*	0.135***
	[0.008]	[0.008]	[0.022]	[0.036]
Dummy if Largest or 2nd Largest City 1901	0.761***	-0.327**	0.132	0.015
	[0.076]	[0.131]	[0.176]	[0.055]
Dummy if Port in the Cell 1850	0.166	0.212**	0.129	-0.159**
	[0.107]	[0.101]	[0.079]	[0.075]
Dummy if Navigable River 10 Km	-0.024***	-0.023***	0.037**	0.022
	[0.006]	[0.006]	[0.019]	[0.024]
Dummy if Ashanti Trade Route 1850 10 Km	0.011*	0.014**	-0.004	0.006
	[0.006]	[0.006]	[0.011]	[0.015]
Dummy if Non-Ashanti Trade Route 1850 10 Km	0.012***	0.012**	0.002	0.026*
	[0.004]	[0.005]	[0.011]	[0.015]
Dummy if Railroad 1932 10 Km	-0.018	-0.017	0.067*	0.079**
	[0.011]	[0.019]	[0.040]	[0.040]
Dummy if Road 1930 10 Km	-0.003	-0.004	0.010	0.034**
	[0.002]	[0.004]	[0.008]	[0.015]
Log Urban Population 1891	0.015***	0.026***	0.008	0.001
	[0.005]	[0.006]	[0.008]	[0.006]
Log Urban Population 1901	-0.000	0.007**	0.024***	-0.011*
	[0.003]	[0.003]	[0.006]	[0.006]
Log Urban Population 1931	0.001	0.001	0.007**	0.033***
	[0.001]	[0.001]	[0.003]	[0.004]
Log Rural Population 1901	0.001	0.000	0.017***	0.032**
	[0.002]	[0.002]	[0.004]	[0.006]
Log Rural Population 1931	-0.001**	-0.002***	-0.002*	0.016***
	[0.000]	[0.001]	[0.001]	[0.002]
Log Normalized Slave Exports 15th-19th Centuries	0.000	-0.004*	-0.004	0.041***
	[0.002]	[0.002]	[0.006]	[0.007]
Dummy if Slave Market 1800 50 Km	0.005	-0.008*	-0.035***	0.003
	[0.003]	[0.004]	[0.010]	[0.015]
Dummy if Palm Oil Plantation 1900-1936 50 Km	0.018	0.029*	0.089***	0.082**
	[0.013]	[0.017]	[0.033]	[0.036]
Dummy if Kola-Producing Cell 1932	-0.025***	-0.017	0.042*	0.073**
	[0.009]	[0.011]	[0.025]	[0.035]
Dummy if Rubber Plantation 1900-1936 50 Km	0.004	0.008	0.005	0.048
	[0.013]	[0.012]	[0.032]	[0.035]
Dummy if Cocoa-Producing Cell 1927	0.006	0.008	0.073***	0.096***
	[0.011]	[0.010]	[0.025]	[0.035]
Dummy if Mine (Central Location) 1932 50 Km	-0.016	-0.006	-0.042*	0.148***
	[0.011]	[0.013]	[0.025]	[0.036]

R-squared 0.35 0.61 0.50 0.61

Notes: For 2,091 cells and period [t-1, t], we regress a dummy if there is a mission in t on a dummy if there is a mission in t-1 and characteristics proxying for geography, political conditions, transportation, population, and economic activities (separated by dashed horizontal lines). We do not report the coefficients of land area, rainfall, altitude, ruggedness, soil fertility, and a dummy if it was surveyed by the 1901 Census. Robust SEs: * p<0.10, ** p<0.05, *** p<0.01. See Web Appendix for data sources.
Table 2: MALARIA AND MISSIONARY EXPANSION, INVESTIGATION OF CAUSALITY

Dep. Var.: Dummy if Mission in Cell \(c \) in Year \(t \):	Mission (Period: 1783-1897)	Missionary (Period: 1846-1890)
	(1)	(2)
Historical Malaria × Dummy Post-1840	0.018***	0.018***
	[0.002]	[0.002]
Historical Malaria × Dummy 1810-1840	0.000	0.006***
	[0.000]	[0.002]
Historical Malaria × Dummy Post-1850	0.008***	0.002***
	[0.001]	[0.001]

Cell Fixed Effects Y Y Y Y Y Y Y Y
Year Fixed Effects Y Y Y Y Y Y Y Y
34 Ethnic Group FE x 115 Year FE N N Y Y N N N N
38 District 1931 FE x 115 Year FE N N N Y N N N N

Notes: Columns (1)-(4): For 2,091 cells and 115 years (1783-1897) \(N = 240,465 \), we regress a dummy if there is a mission in cell \(c \) in \(t \) on historical malaria interacted with a dummy if the year is after 1840 (incl.). Column (2): We interact historical malaria with a dummy if \(t \) is between 1810 (incl.) and 1840 (excl.). Columns (5)-(8): For 2,091 cells and 40 years (1846-1890) \(N = 93,253 \), we regress a dummy if there is a missionary / European missionary ("Resid." indicates that a European missionary lives there permanently instead of only frequently visiting) / African missionary in cell \(c \) in \(t \) on historical malaria interacted with a dummy if the year is after 1850 (incl.). Robust SE’s clustered at the cell level: * \(p < 0.10 \), ** \(p < 0.05 \), *** \(p < 0.01 \). See Web Appendix for data sources.

Table 3: RAILROADS AND MISSIONARY EXPANSION, INVESTIGATION OF CAUSALITY

Panel A: Long-Differences

Dependent Variable: Dummy if Mission in 1932:

| Effect of Dummy Railroad 1932 0-30 Km (Including the Controls of Table 1 Incl. Dummy if Mission in 1897) |
|---|---|
| Coeff. SE Obs. | Coeff. SE Obs. |
| 1. Baseline | 0.082** [0.040] 2,091 |
| 2. Dep.Var.: Dummy Mission 1897, Ctrl Dummy Mission 1875 | -0.008 [0.015] 2,091 |
| 3. Dep.Var.: Dummy Mission 1875, Ctrl Dummy Mission 1850 | 0.008 [0.015] 2,091 |
| 4. Dep.Var.: Dummy Mission 1850, Ctrl Dummy Mission 1751 | -0.011 [0.028] 2,091 |
| 5. Including Ethnic Group Fixed Effects (N = 34) | 0.103** [0.045] 2,091 |
| 6. Including District in 1931 Fixed Effects (N = 38) | 0.092** [0.045] 2,091 |
| 7. Railroad 0-30 Km Dummy Defined Using Western Line Only | 0.119** [0.052] 2,091 |
| 8. Railroad 0-30 Km Dummy Defined Using Placebo Lines Only | 0.028 [0.037] 2,091 |
| 9. IV: 30 Km from Straight Lines (Drop+Ctrl Nodes; IV F=115) | 0.163* [0.087] 2,088 |

Panel B: Panel Analysis

Dependent Variable: Dummy if Mission in Year \(t \):

Effect of Dummy Railroad 0-30 Km in Year \(t \) (Including Cell Fixed Effects and Year Fixed Effects)

Coeff. SE Obs.	Coeff. SE Obs.
1. Baseline Effect in Year \(t \)	0.179*** [0.019] 75,276
2. Overall Effect of Leads if Adding 1 Lead	0.011 [0.019] 73,185
3. Overall Effect of Leads if Adding 2 Leads	0.014 [0.022] 71,094
4. Baseline Effect in Year \(t \) if Adding 1 Lag Overall Effect of Lags if Adding 1 Lag	0.010 [0.018] 73,185
5. Baseline Effect in Year \(t \) if Adding 2 Lags Overall Effect of Lags if Adding 2 Lags	0.006 [0.019] 71,094
6. Including Ethnic Group FE (N = 34) x Year FE (T = 36)	0.143** [0.021] 75,276
7. Including District in 1931 FE (N = 38) x Year FE (T = 36)	0.122*** [0.024] 75,276

Notes: Panel A: For 2,091 cells, we regress a dummy if there is a mission in 1932 on a dummy if there is a mission in 1897 and the other controls of Table 1. Row 9: The instrument is a dummy if the cell is within 30 km from the straight lines Sekondi-Kumasi and Accra-Kumasi (dropping these three nodes + controlling for log Euclid. distance to the nodes, hence \(N = 2,088 \)). Panel B: For 2,091 cells and 36 years \(t \) (1897-1932), we regress a dummy if there is a mission in cell \(c \) in \(t \) on a dummy if cell \(c \) is within 30 km of a railroad in \(t \) (cell FE and year FE included). Robust SE’s (clustered at the cell level in Panel B): * \(p < 0.10 \), ** \(p < 0.05 \), *** \(p < 0.01 \). See Web Appendix for data sources.
Table 4: CASH CROPS AND MISSIONARY EXPANSION, INVESTIGATION OF CAUSALITY

Effect of Log Predicted Cash Crop Export Value in Year t (Including Cell Fixed Effects and Year Effects)	Coeff.	SE	Obs.
1. Based on Palm Oil, Rubber, Kola & Cocoa Production	0.028***	[0.002]	181,917
2. Based on Palm Oil Production Only	0.031***	[0.005]	181,917
3. Based on Rubber Production Only	0.020***	[0.002]	181,917
4. Based on Kola Production Only	0.043***	[0.004]	181,917
5. Based on Cocoa Production Only	0.042***	[0.002]	181,917
6. Based on Palm Oil, Rubber & Cocoa Suitability	0.023***	[0.002]	181,917
7. Overall Effect of Leads when Leads Added: 1 Lead	-0.003	[0.002]	179,826
8. Overall Effect of Leads when Leads Added: 2 Leads	-0.002	[0.002]	177,735
9. Baseline Effect in Year t when Lags Added: 1 Lag	-0.001	[0.002]	179,826
Overall Effect of Lags when Lags Added: 1 Lag	0.030***	[0.002]	179,826
10. Baseline Effect in Year t when Lags Added: 2 Lags	-0.002	[0.002]	177,735
Overall Effect of Lags when Lags Added: 2 Lags	0.029***	[0.002]	177,735
11. Including Ethnic Group FE (N = 34) x Year FE (T = 87)	0.024***	[0.002]	181,917
12. Including District in 1931 FE (N = 38) x Year FE (T = 87)	0.027***	[0.003]	181,917
13. 1st Difference: Effect if Non-Negative Change	0.003***	[0.001]	179,826

Notes: For 2,091 cells c and 87 years t (1846-1932), we regress a dummy if there is a mission in cell c in t on log predicted cash crop export value in cell c in t (cell FE and year FE included). Rows 1-6: Using alternative ways to construct the predicted value of cash crop exports. Rows 7-10: Adding leads or lags of cash crop value. Row 13: Regressing the change in a dummy if there is a mission in cell c on the change in log predicted cash crop export value in cell c, interacting the change in cash crop value with a dummy if the change is negative. Robust SE’s clustered at the cell level: * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$. See Web Appendix for data sources.

Table 5: CORRELATES OF BEACH (1900) AND ROOME (1924) MISSIONS

Dummy if Any Atlas Mission in Cell c in...	Beach in 1900	Roome in 1924
(1)	(2)	(3)
(4)	(5)	(6)
(7)	(8)	(9)
(10)		
Mission in Year t	0.16***	0.04**
	[0.03]	[0.02]
Created 1751-1850	0.53***	0.11
	[0.11]	[0.12]
Created 1851-1875	0.21***	-0.04
	[0.08]	[0.05]
Main Station Year t	0.60***	0.60***
	[0.10]	[0.10]
School Year $t	0.03	0.02
	[0.06]	[0.06]
Euro Resid 1846-90	0.21**	0.10
	[0.10]	[0.07]
Euro Visit 1846-90	0.06	0.05
	[0.05]	[0.04]
R-squared	0.15	0.37
Observations	2,091	2,091

Notes: For 2,091 cells c, we regress a dummy if there is an atlas mission in cell c in Beach (1900) or Roome (1924) on the mission characteristics in the same cell the same year (1900 or 1924, unless otherwise indicated) in our census data. Col. (4)-(5) and (9)-(10): Identity of the missionary missing for 22 obs. Robust SE’s: * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$. See Web Appendix for data sources.
Table 6: CORRELATES OF MISSIONARY EXPANSION, LONG-DIFFERENCES, AFRICA

Dependent Variable: Dummy if Any Mission in ... 1850 / 1881	Beach in 1900	Roome in 1924	Col. (3)-(5) Beach in ... 1850	1881	1900
Historical Malaria Index	-0.025***	-0.048***	-0.004*	-0.015***	-0.006
	[0.006]	[0.011]	[0.002]	[0.003]	[0.005]
Tsetse Index	-0.003**	-0.008***	-0.000	-0.002*	-0.002*
	[0.001]	[0.002]	[0.001]	[0.001]	[0.001]
Log Distance to Coast	-0.003***	-0.003***	-0.001*	-0.001**	-0.002**
	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]
Dummy if Large Pre-Colonial City 1400	-0.031***	0.05	-0.008**	-0.013***	-0.010***
	[0.008]	[0.042]	[0.003]	[0.004]	[0.003]
Dummy if Large Pre-Colonial City 1800	0.015	0.068	0.006	0.022	-0.15***
	[0.026]	[0.044]	[0.017]	[0.022]	[0.004]
Dummy if Largest or 2nd Largest City 1901	0.058***	0.173***	0.026**	0.021	0.030**
	[0.020]	[0.029]	[0.009]	[0.013]	[0.015]
Year of Colonization	0	-0.000**	-0.000**	-0.000	0.000
	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]
Dummy if Centralized State (Murdock)	0.002***	-0.001**	0.000	0.001***	0.001***
	[0.000]	[0.001]	[0.000]	[0.000]	[0.000]
Log Distance to Muslim Center	-0.001	0.002***	0.000**	-0.000	-0.001*
	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]
Dummy if Slave Port in the Cell 1800-1900	0.046**	0.131***	0.012	0.024	0.007
	[0.022]	[0.031]	[0.012]	[0.016]	[0.012]
Dummy if Navigable River 10 Km	0.003***	0.012**	-0.000	-0.000	0.004**
	[0.001]	[0.002]	[0.000]	[0.000]	[0.000]
Dummy if Lake 10 Km	0.001	0.011***	0.000	0.001	0.001
	[0.002]	[0.003]	[0.001]	[0.001]	[0.001]
Dummy if Explorer Route 10 Km	0.001	0.002**	0.000	0.000	0.000
	[0.001]	[0.001]	[0.000]	[0.000]	[0.000]
Dummy if Railroad 1900 / 1924 10 Km	0.014***	0.023***	0.004**	0.001	0.005**
	[0.004]	[0.002]	[0.002]	[0.002]	[0.002]
Log Population Density 1800	0	0	-0.000	0.000	0.000
	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]
Log City Pop. ca 1900 (Loc.≥10,000)	0.011***	0.002	0.003**	0.003	0.004*
	[0.003]	[0.003]	[0.002]	[0.002]	[0.002]
Log Urban Population 1900	0.002***	0.006**	0.000**	0.001***	0.001***
	[0.000]	[0.001]	[0.000]	[0.000]	[0.000]
Log Rural Population 1900	0.001***	0.000**	0.000**	0.000**	0.000**
	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]
Dummy if Slavery (Murdock)	0.001**	0.003***	0.000	0.000	0.001*
	[0.001]	[0.001]	[0.000]	[0.000]	[0.000]
Log Norm. Slave Exports 15th-19th Cent.	0.001	0.006**	-0.000	0.001	0.001
	[0.001]	[0.001]	[0.000]	[0.000]	[0.000]
Log Pred. Cash Crop Export Val. 1900 / 1924	0.001***	0.000**	0.000**	0.000**	0.000**
	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]
Dummy if Mine 1900 / 1924 50 Km	-0.001	0.004*	0.003*	-0.001	-0.002
	[0.002]	[0.002]	[0.002]	[0.002]	[0.001]
Dummy if Polygamy (Murdock)	-0.001***	0.001**	-0.000	-0.001*	-0.001*
	[0.000]	[0.001]	[0.000]	[0.000]	[0.000]

Notes:
For 203,574 cells in 43 sub-Saharan African countries, we regress a dummy if there is an atlas mission in Beach in 1900 (col. (1)) or in Roome in 1924 (col. (2)) on characteristics proxying for geography, political conditions, transportation, population and economic activities. We do not report the coefficients of land area, rainfall, altitude, ruggedness, soil fertility, a dummy if the main ethnic group in the cell before colonization according to Murdock (1959) does not have information on state centralization, slavery and polygamy, a dummy if we know the year of the anthropological study used by Murdock (1959) to create his data, and a dummy if that year precedes 1900 / 1924. Col.(3)-(5): For Beach and period $[t-1,t]$, we regress a dummy if there is a mission in t on the characteristics and a dummy if there is a mission in $t-1$ (using the year of foundation). Robust SE’s: * p < 0.10, ** p < 0.05, *** p < 0.01. See Web Appx. for data sources.
Table 7: Long-Term Economic Effects of Missions for Mission Map Years, Ghana and Africa

Controls Included:	Dependent Variable: Log Night Light Intensity in the Cell c. 2000:
	None Standard Ours None Standard Ours None Standard Ours
	(1) (2) (3) (4) (5) (6)

Panel A: Effect of Actual Mission Dummy (Ghana):

	Col. (1)-(3): 1900	Col. (4)-(6): 1924
1. Ghana Sample (N = 2,091)	4.01*** 0.15	
	2.84*** [0.17]	0.41** [0.20]
	3.39*** [0.12]	2.74*** [0.14]
	0.68*** [0.17]	

Panel B: Effect of Atlas Mission Dummy (Ghana):

	Col. (1)-(3): 1900 (Beach, 1903)	Col. (4)-(6): 1924 (Roome, 1925)
2. Ghana Sample (N = 2,091)	4.98*** [0.23]	
	3.14*** [0.23]	
	0.69** [0.29]	
	4.68*** [0.25]	
	3.21*** [0.26]	
	0.67* [0.38]	

3. Africa Sample: All Countries (N = 203,574)

	2.12*** [0.11]
	1.83*** [0.10]
	1.28*** [0.09]
	2.18*** [0.08]
	1.90*** [0.08]
	1.24*** [0.07]

| Country Fixed Effects | Yes | Yes | Yes | Yes | Yes | Yes |

Notes:
- **Ghana sample:** Sample of 2,091 cells in Ghana.
- **Africa sample:** Sample of 203,574 cells in 43 sub-Saharan African countries.
- “Standard”: Controls identified as regularly used in the literature (see text for details).
- “Ours”: All controls of Table 1 for Ghana and all controls of Table 6 for Africa.
- Robust SE’s: * p < 0.10, ** p < 0.05, *** p < 0.01. See Web Appendix for data sources.

Table 8: Long-Term Economics Effects of Missions Depending on Their Type, Ghana

Controls Included:	Year 1900 (Same as Beach)	Year 1924 (Same as Roome)
	None Standard Ours None Standard Ours	
	(1) (2) (3) (4) (5) (6)	

Mission in Year t

	3.24*** [0.24]
	2.34*** [0.25]
	0.26 [0.22]
	0.28 [0.22]
	2.76*** [0.15]
	2.31*** [0.16]
	0.67*** [0.18]
	0.66*** [0.18]

Created 1751-1850

	1.35*** [0.45]
	0.6 [0.42]
	0.67* [0.36]
	1.09*** [0.40]
	0.64* [0.38]
	0.64** [0.32]
	0.63** [0.34]

Created 1851-1875

	1.36*** [0.49]
	0.78* [0.43]
	0.59* [0.34]
	1.25*** [0.42]
	0.88** [0.37]
	0.63** [0.31]
	0.63** [0.31]

Main Station Year t

	-0.06 [0.39]
	0.04 [0.37]
	-0.03 [0.30]
	0.16 [0.27]
	0.5 [0.43]
	0.26 [0.40]
	-0.25 [0.30]
	-0.08 [0.29]

School Year t

	-0.19 [0.32]
	0.08 [0.31]
	-0.01 [0.29]
	0.05 [0.29]
	0.87** [0.40]
	0.6 [0.43]
	-0.22 [0.30]
	0.12 [0.30]

Euro Resid 1846-90

	0.85* [0.51]
	0.65 [0.47]
	-0.19 [0.34]
	0.06 [0.32]
	0.84*** [0.29]
	0.7** [0.30]
	0.14 [0.24]
	0.14 [0.24]

Euro Visit 1846-90

	0.37 [0.49]
	0.24 [0.44]
	-0.19 [0.32]
	-0.07 [0.31]
	0.48 [0.30]
	0.56* [0.31]
	0.16 [0.31]
	0.19 [0.25]

| R-squared | 0.25 |
| Observations | 2,069 | 2,069 | 2,069 | 2,069 | 2,069 | 2,069 |

Notes:
- For 2,069 cells in Ghana (identity of the missionary missing for 2,091 – 2,069 = 22 obs.), we regress our main measure of local economic development, log mean night light intensity in the cell c. 2000, on the true mission dummy and mission characteristics in the cell, all defined in the same year (1900 / 1924) unless otherwise indicated. “Euro Resid 1846-90”: Mission stations where European missionaries permanently resided at one point in 1846-1890 (data not available for other years). “Euro Visit 1846-90”: Mission stations where European missionaries did not permanently reside but frequently visited at one point in 1846-1890. “Standard”: Controls identified as regularly used in the literature (see text for details). “Ours”: All controls of Table 1 for Ghana and all controls of Table 6 for Africa. Robust SE’s: * p<0.10, ** p<0.05, *** p<0.01. See Web Appendix for data sources.
Table 9: Long-Term Effects of Missions for Mission Map Years, Religion and Education

Controls Included:	None (1)	Standard (2)	Ours (3)	None (4)	Standard (5)	Ours (6)				
Panel A: Effect of Actual Mission Dummy (Ghana):										
1. Population Share of Christians (Broad) 2000	30.4*** 6.6*** 2.2	33.4*** 8.0*** 2.4*	13.4*** 6.8*** 5.5*** 13.6*** 6.4*** 6.8***	[1.0]	[1.4]	[1.5]	[0.7]	[1.0]	[1.2]	
2. Population Share of Christians (Strict) 2000	13.4*** 6.8*** 5.5***	30.0*** 13.7*** 4.1***	[1.0]	[1.4]	[1.6]	[0.7]	[0.9]	[1.1]		
3. Literacy Rate of Adults 2000	30.7*** 12.0*** 3.0*	30.0*** 13.7*** 4.1***	[1.0]	[1.4]	[1.6]	[0.7]	[0.9]	[1.1]		
4. Completion Rate Sec. Educ. of Adults 2000	8.6*** 5.5*** 1.9**	6.6*** 4.3*** 1.5***	[0.6]	[0.6]	[0.7]	[0.3]	[0.4]	[0.5]		
Panel B: Effect of Atlas Mission Dummy (Ghana):										
1. Population Share of Christians (Broad) 2000	30.0*** 4.8** 4.8	28.7*** 3.8 0.7	11.9*** 4.9** 1.5	14.0*** 7.0** 3.5	[2.0]	[2.5]	[2.9]	[3.0]	[3.4]	[3.2]
2. Population Share of Christians (Strict) 2000	11.9*** 4.9** 1.5	14.0*** 7.0** 3.5	[2.0]	[2.5]	[2.9]	[3.0]	[3.4]	[3.2]		
3. Literacy Rate of Adults 2000	30.8*** 8.3*** 3.4	30.1*** 10.4*** 4.8	[2.7]	[2.8]	[3.7]	[2.8]	[3.1]	[3.0]		
4. Completion Rate Sec. Educ. of Adults 2000	12.0*** 7.7*** 3.2	9.6*** 6.1*** 2.0	[1.8]	[1.7]	[2.1]	[1.5]	[1.4]	[1.3]		
Panel C: Effect of Atlas Mission Dummy (Africa):										
1. Population Share of Christians (Broad) 2000	10.7*** 7.1*** 3.7*	7.5*** 4.7*** 2.1	6.3*** 3.3 2.0	6.0*** 3.9*** 3.1**	[2.1]	[2.1]	[2.0]	[2.1]	[2.0]	[2.3]
2. Population Share of Christians (Strict) 2000	6.3*** 3.3 2.0	6.0*** 3.9*** 3.1**	[2.1]	[2.3]	[2.3]	[1.4]	[1.3]	[1.4]		
3. Literacy Rate of Adults 2000	23.8*** 10.5** -1.6	38.6*** 28.5*** 18.8***	[4.5]	[4.1]	[4.5]	[2.7]	[2.6]	[2.7]		
4. Completion Rate Sec. Educ. of Adults 2000	10.1*** 5.7*** 0.7	17.1*** 13.3*** 9.3***	[1.8]	[1.8]	[1.8]	[1.0]	[1.0]	[1.0]		

Notes: Panels A-B (Ghana): Sample of 1,895 cells (rows 1-4). Panel C (32 African countries): Sample of 5,967 cells (rows 1-2), 4,391 cells (row 3) and 6,387 cells (row 4). “Standard”: Controls identified as regularly used in the literature. “Ours”: Controls of Table 1 for Ghana and controls of Table 6 for Africa. Robust SE’s: * p<0.10, ** p<0.05, *** p<0.01. See Web Appendix for data sources.
1. **Web Data Appendix**

1.1. **Spatial Units for Ghana**

We assemble data for 2,091 grid cells of 0.1x0.1 degrees (11x11 km).

1.2. **Mission Location Data for Ghana**

Our main source of mission church data are the *Ecclesiastical Returns* that missionary societies submitted to the colonial administration on an annual basis and that were published in the *Blue Books of the Gold Coast* 1844-1932 (Coast, various years). Hence, the data refers to “officially” recognised mission stations. Figure 1 shows examples of Ecclesiastical Returns in 1867 and 1932.

Information is incomplete for some years and denominations:

Missing Ecclesiastical Returns. For certain years ecclesiastical returns are unavailable:

- 1751-1843: The Blue Books of the Gold Coast start in 1844. However, the early beginnings of missionary work in Ghana are particularly well-documented and we reconstructed the period 1751-1843 from a variety of secondary sources (Schlatter, 1916; Wiltgen, 1956; Bartels, 1965; Odamtten, 1978; Hastings, 1994; Isichei, 1995).

- 1862-66: Blue Books were not available at The National Archives in the United Kingdom. This was a time of a rather stable environment for missionary work - despite the Second Anglo-Ashanti War (1863-1864) that did not see much fighting. Most of the mission stations in 1861 also existed in 1867, which we took. We consulted Wesleyan Methodist Church (various years), Schlatter (1916) and Schreiber (1936) for the Methodist, Basel and Bremen Missions respectively, to confirm dates of new openings and closures.
• 1873-74: During the Third Anglo-Ashanti war (1873-74), many mission stations were abandoned and destroyed. We reconstructed the history of each mission station using a variety of sources (Hay, 1874; Schlatter, 1916; Debrunner, 1967).

• 1917-1919: The Blue Books did not publish ecclesiastical returns. It was impossible to reconstruct the history of each mission station from secondary sources. In 1916, the number of missions already exceeded 700. We therefore interpolated assuming that missions that existed in 1916 and 1920 also existed 1917-1919. The number of Methodist missions stagnated to 311 and 322 in 1916 and 1920 respectively. The assumption seems therefore unproblematic in this case. As for the Basel and Bremen Missions, German and Swiss priests and missionaries were interned during World War I and deported when the war came to an end. The Scottish Mission then took over their missions in 1920. We observe a fall in the number of missions between 1914 and 1915, from 302 to 215. However, we believe that most of these churches operated during the 1917-1919 period, even if under difficult conditions, under the supervision of African personnel. The number of Catholic missions, in contrast, increased from 154 to 256 in 1916 and 1920 respectively. In this case, we ignore the expansion underestimating the number of Catholic missions in 1917-1919.

Incomplete Ecclesiastical Returns. For some years, the Blue Books report the main stations but do not report the outstations (Basel Mission: 1882, 1885-1887, 1891-1896; Methodist Mission: 1847-56, 1880-1887, 1900-1903). We reconstructed the missing information following three simple rules. Firstly, we assume that missions exist if according to the Blue Books they existed in the year before and the year after the gap in the reporting.\footnote{For example, the Methodist mission of Komenda was listed in the ecclesiastical returns for the year 1899 and 1904, but not for 1900-1903, as it was an outstation of Elmina. It is likely that Komenda continued to exist, particularly because the period 1900-03 was a time of expansion.} Secondly, if any mission school was reported in the Blue Books, we assume that the corresponding mission station was also in operation.\footnote{The church data comes from the Ecclesiastical Returns published in the Blue Books. The school data is listed separately. In addition, the school data comes from the reports of the Education Department (Coast, various yearsb).} This assumption is unproblematic, because this is what we overwhelmingly observe: we only found 256 location-years where a school was reported without a mission station out of a total of 6,342 location-years where both a school and a mission were reported. Thirdly, we complemented the Blue Book data with information reported in the Minutes of the Methodist Conferences (Wesleyan Methodist Church, various years). We did not add more church locations from this source, but rather restricted the coding to those missions reported in the Blue Books at least once.

Obsolete Ecclesiastical Returns. We checked whether mission societies updated their returns on a yearly basis and found that this did apparently not occur for the Basel Mission 1911-1913 and the Methodist Mission for the years 1911-12, 1913-14, 1923-24, 1925-27 and 1930-31. We did not attempt to rectify this. In the case of the Basel Mission, 1911-1913 was a time of stagnation, hence measurement errors will be small. In the Methodist case, it was a time of expansion, hence the years 1912, 1914, 1924, 1926, 1927 and 1931 may suffer from underreporting.

Missing Mission Societies. The Catholic White Fathers in the Northern Territories started reporting only in 1930. We reconstructed their mission locations in 1906-1929 using detailed qualitative evidence provided in Debrunner (1967) and Der (1974).
British Togoland. German Togoland was occupied by British forces in 1914 and the Western part came under British administration in 1922. British Togoland were only included in the Gold Coast Blue Books from 1920 onwards. We reconstructed the mission stations located in later British Togoland from a wide range of German sources. For the years 1890, 1893-1896, 1899-1904, 1918 we used information from the “Deutsches Kolonialblatt” (des Auswärtigen Amtes, various years) and the “Deutsches Kolonial-Handbuch (Fitzner, 1901). For the year 1911, we used a map that showed the location of Bremen mission stations (Reimer, 1911). We assumed that all those mission stations also existed 1912-14. We complemented the remaining years using the information of when mission stations were established from Schreiber (1936). We assumed that mission stations existed unless Schreiber (1936) or the other sources such as Groves (1955) pointed to the contrary.

Data Quality Checks and Robustness. We assessed data quality by comparing our data with information in Bartels (1965), Debrunner (1967) and the Encyclopedia of Missions by Dwight et al. (1904) for the period 1840-1900. We were able to match 38 missions. The sources largely agree. The difference in the start-up year averages 3 years, which means that churches show up earlier in the Blue Books (the standard deviation being 10.7). We also compared the Blue Book data with stations recorded in the Minutes of the Wesleyan Methodist Conference in 1846, 1857, 1867 and 1879 for which the ecclesiastical returns in the Blue Books are complete. We found 104 agreements and 95 deviations, 79 of which are due to the Blue Books listing stations that the Minutes did not list and this is mostly due to the year 1879 when the Minutes stopped comprehensive reporting of out-stations. From the 18 stations that the Minutes reported (and the Blue Books did not), 9 were classified as “vacant, agent wanted”. This points to the Blue Books as a source of missions where clerical services were actually offered rather than planned to be offered. For the remaining 8 stations, the sources diverged in the start-up-year. Only one place was never listed in the Blue Books (Heginewah - which incidentally might rather be a misspelled place name).

Geographic Coordinates. We georeferenced the location of the churches using Agency (2016), a map indexing localities in the 1901 Census (Guggisberg, 1908) and map drawings of missionaries Mission (2016). Overall, we could identify 2,096 of the 2,161 church locations. The attrition rate of 3% is concentrated in the late years (27 mission stations with missing geographic coordinates were established after 1929) and is likely due to issues of changes and misspellings of location names, a frequent issue in Ghanaian Census taking (Cogneau and Moradi, 2014).

1.3. Main Mission Stations for Ghana

We retrieved main mission stations using the information in the ecclesiastical returns published in the Blue Books of the Gold Coast. The sources use the term “out-station” explicitly until the 1870s when terms like circuit or district became standard. Typically, the main station (“circuit town”, or “principal town of the area in which the other villages are situated”) is listed first and printed in capital letters. Mission circuits generally do not follow administrative boundaries. We find that the number of out-stations per main station generally increases over time. We also find that the average distance to the main station remains relatively stable over time. Hence, over time the system of out-stations becomes generally denser within the area of a circuit.
1.4. Mission Schools for Ghana

The data on mission schools 1846-1932 comes from the Blue Books and the annual reports of the Education Department. From 1878 until 1887 the Gold Coast administration supported schooling activities with lump sum payments to mission societies. Afterwards, grants were paid to schools individually (Williamson, 1952). As of the Education Ordinance of 1882, schools were inspected annually. From 1888 capitation grants were paid proportional to average attendance and students’ grades in “Reading and Writing of the English Language and Arithmetic” (Coast, 1920). Later on, more subjects had to be taught, the syllabus was regulated and teachers were required to have minimum qualifications. With the Education Ordinance No 21 of 1925 stricter requirements for “unassisted schools” came into effect in 1927. We created three school variables. The first variable includes all schools that were listed in the Blue Books 1844-1905. On the one hand, this variable is affected by omissions, because mission societies were not required to report to the government. On the other hand, it also includes schools of dubious quality - those that did not meet the minimum requirements and therefore remained unassisted. The second variable includes assisted schools only. In 1885 the Blue Books started to name the assisted schools of the Wesleyan Methodist Mission. In 1888 the Basel Mission, Catholic Mission and other missions followed. The data can be considered very reliable, grants were even stated for each assisted school separately. We combined the two school series at the starting date of the “assisted school only” variable. We dealt with a number of inconsistencies that arose. Between 1875 and 1879 the Methodist Mission reported a very large and implausible increase in schools. We believe that these were schools of poor quality. A low salary teacher was often listed as the only expense of those schools. Most of them disappeared in 1880 and they were not meeting minimum requirements to gain the assisted status in 1885. Hence, we dropped those Methodist mission schools that were not reported in 1872 and 1880. Similarly, in 1887 the Basel Mission reported 69 schools, but in 1888 only 39 became assisted. We dropped those schools that did not exist 1883-87 and were not assisted in 1888.3

1.5. European and African Missionaries in Ghana

We created a database of missionaries stationed in the Gold Coast 1751-1890 from a variety of sources (Schott, 1879; Reindorf and Christaller, 1895; Schlatter, 1916; Schreiber, 1936; Martin and Sheldon, 1964; Smith, 1966; Debrunner, 1967; Agbeti, 1986; Anderson, 1999; Altena, 2003; Miller, 2003; Sill, 2010; Société des Missions Africaines, 2016; Mission, 2016; Coast, various yearsa). In particular, we recorded male missionaries’ name, period of service, year of birth, year and country of death, and the mission society. Observations stop in 1890, because the Blue Books discontinue reporting names of missionaries. Data on every European missionary of the Methodist Mission, Basel Mission, Bremen Mission, Anglican Church SPG, United Brethren, Moravian Mission and the Roman Catholic SMA are complete. African missionaries (i.e. catechists, evangelists, teachers and priests/pastors) are less well-documented and possibly not entirely representative. Overall, we compiled a database of 338 European missionaries and 172 African missionaries.

3For the years 1847-1918 we did not find adequate sources to reconstruct school locations of those parts of German Togoland that became British Togoland.
1.6. Determinants of Mission Locations and Outcomes for Ghana

Geography

- **Disease Ecology:** We use the historical malaria index created by Depetris-Chauvin and Weil (2018) and the tsetse-fly suitability index created by Alsan (2015). Using GIS we estimate average historical malaria intensity and tsetse-fly suitability for each cell.

- **Ports:** The locations of ports circa 1850 are obtained from Dickson (1969). We create a dummy equal to one if a cell contains a port circa 1850.

- **Distance to the Coast:** We use GIS to obtain the Euclidean distance (km) to the coast.

Political Conditions

- **Pre-Colonial Cities:** Large pre-colonial cities circa 1800 are described in Chandler (1987). We create a dummy equal to one if the cell contains a large pre-colonial city circa 1800.

- **Headchief Town:** We obtain a map of head-chief towns in 1901 from Guggisberg (1908). We then create a dummy equal to one if the cell contains a head-chief town.

- **Colonial Boundaries:** From Dickson (1969) we derive the boundary of the Gold Coast Colony established by the British circa 1850. We create a dummy equal to one if the cell is outside the Gold Coast Colony circa 1850.

- **Largest Colonial Cities:** We obtain the largest and second largest cities from the 1901 *Population Census*. We create a dummy equal to one if the cell contains one of these cities.

Transportation

- **Rivers:** The southern part of Ghana is not short of water sources and almost every grid cell contains a river or stream. We therefore focused on measures that exhibit variation. We thus obtained and recreated in GIS a map of the “major rivers” of Ghana from Dickson (1969, p.237). As not all major rivers are in fact navigable, we then select in the map rivers that are classified as navigable using the transport technologies of 1850-1930 (steamship, canoe) all year or part of the year. Finally, we use GIS to calculate the Euclidean distance (km) from each grid cell centroid to the closest navigable river in 1890.

- **Historical Trade Routes:** We obtained from (Dickson, 1969) maps of Ashanti and non-Ashanti trade routes circa 1850. We then recreated these maps in GIS and calculated the Euclidean distances (km) from each cell centroid to the closest trade routes.

- **Colonial Railroads and Roads:** Roads and railroads are largely drawn from the GIS database used in (Jedwab and Moradi, 2016). For each railway line, we know when construction started and finished, and when each station was opened. From the same sources, we know the lines that were planned but not built. We calculate for each cell the Euclidean distance (km) from the cell centroid to each real or placebo line. We calculate for each cell the Euclidean distance (km) from the cell centroid to each real or placebo line. Lastly, we create a set of cell dummies equal to one if the cell centroid is less than X km away from the line: 0-10, 10-20, 20-30 and 30-40 km (or 0-30 km). We also create a dummy if the cell is within 30 km from the straight lines Sekondi-Kumasi and Accra-Kumasi. We also
have a GIS database of the road network circa 1930 (Survey H.Q. Accra 1930). We calculated
the distance from each grid cell’s centroid to a class 1/2/3 road.

Population

- **Population**: Population data is taken from Jedwab and Moradi (2016). Using census
gazetteers, we compiled a GIS database of towns above 1,000 inhabitants in 1891, 1901 and
1931. We also collected rural population data for 1901 and 1931. While we have exhaustive
urban data for all years, we only have georeferenced rural population data for Southern
Ghana in 1901. We thus create a dummy if any locality in the cell was surveyed by the 1901
census. We then used this data to obtain the urban population of each cell in 1891, 1901 and
1931 and the rural population of each cell in 1901 and 1931.\(^4\)

Economic Activities

- **Slavery**: We use the log number of slaves exported per land area during the Atlantic and
Indian Ocean slave trades from Nunn and Wantchekon (2011) and create dummies if the cell
is within 50 km of the location of slave markets in 1800 Ghana as mapped in Osei (2014). We
also compute the log distances to slave markets and slave routes from Osei (2014).

- **Cash Crops**: From the Government of the Gold Coast (1928a) we obtained a precise map
that displays dots for each 100 tons of cocoa production in 1927.\(^6\) We then use GIS to
reconstruct total cocoa production (tons) for each cell in 1927. We then create a dummy
if the cell produces cocoa. For the other crops, we obtain production areas from Dickson
(1969, p.149,p.153). For palm oil and rubber, we create a dummy equal to one if the cell is
within 50 km from an important palm oil/rubber plantation. For Kola, we know if the cell
belongs to a kola-producing area. We obtain soil suitability from the 1958 Survey of Ghana
Classification Map of Cocoa Soils for Southern Ghana, Survey of Ghana, Accra, as well as Gyasi
(1992, p.40) and Globcover (2009).\(^7\) Finally, their total export value (in constant 1932 British
Pounds) during the 1846-1932 period comes from Frankema et al. (2018).

- **Mining**: Location of mines is taken from Dickson (1969). The total export value (in constant
1932 British Pounds) of gold during the 1846-1932 period comes from Frankema et al. (2018).

Other Controls

- **Precipitation**: Climate data comes from *Terrestrial Air Temperature and Precipitation: 1900-

\(^4\)The 1891 census only reports towns of a certain size. Rural population is thus not available that year. For the
year 1901, we know for each cell the number of large towns, towns (more than 500 inhabitants), head chief towns,
large villages (100-500 inhabitants) and villages (less than 100 inhabitants). Using GIS, we can deduce for each cell
the number of villages that are less than 100 inhabitants, the number of villages that have 100-500 inhabitants and the
number of villages that have between 500-1,000 inhabitants. From the Ghana census, we know the average settlement
size for each category and we reconstruct total rural population for each cell in 1901. For 1931, we have a map of the
distribution of population for the whole country.\(^5\) This map displays at a very fine spatial level settlements that have
less than 500 inhabitants and settlements that have between 500 and 1,000 inhabitants. From the census, we know the
average settlement size for each category, and we can reconstruct total rural population for each cell in 1931.

\(^6\)We obtain 209,100 tons in total, which is very close to the national estimate of 210,600 tons (Gunnarsson, 1978).

\(^7\)Using the map, we defined a cell as suitable for cocoa if it contains cocoa soils and highly suitable if more than 50%
of its area consists of forest ochrosols, the best cocoa soils. Gyasi (1992, p.40) reproduces the “palm oil belt” from the
1935 Gold Coast Atlas: Agricultural Products sheet. Note that we also use the Global Agro-Ecological Zones (GAEZ) database
compiled by (FAO, 2015) to define an additional measure of land suitability for both cocoa and palm oil cultivation.
2007 Gridded Monthly Time Series, Version 1.01, University of Delaware (Matsuura and Willmott, 2015). We obtain mean annual precipitation (mms) in 1900-1960 for each cell.

- **Altitude and Ruggedness:** Topography comes from SRTM3 data and is measured at 3 arc-second resolution (ca. 90m x 90m). We estimate for each 0.1 x 0.1 grid cell the mean and standard deviation of altitude (meters). The standard deviation captures ruggedness.

- **Land Area:** We use GIS to obtain total land area in the cell.

- **Soil Fertility:** Soil fertility comes from (FAO, 2015). We use GIS to obtain the cell mean.

- **Ethnic Group:** The cells belong to 35 ethnic group boundaries using the Murdock (1967) map recreated in GIS by Nunn and Wantchekon (2011).

- **District (1931):** The cells belong to 38 districts based on the district boundaries reported in the reports of the 1931 Population Census. We recreate these boundaries in GIS.

- **Aburi and the Basel Mission:** We also create a dummy equal to one if the cell is within 50 km from the Basel Mission established at Aburi (ca 1856) or is located within the “sphere of influence”of the Basel Mission in 1873 (Riis, 1879).

Present-day Outcomes for Ghana

- **Satellite data on night lights:** The source of the satellite data on night lights is (NOAA, 2012). We then estimate average light intensity for each cell, for the year 2000-2001 (we use two years due to measurement errors coming from clouds).

- **Social and economic development:** We also derive various socio-economic development outcomes using mostly individual-level data from the 2000 Population Census (Ghana Statistical Service, 2000), including: (i) the urbanization rate (%) of the cell, here defined as the population share of cities of more than 1,000 inhabitants; (ii) the share of employment in non-agriculture for each cell; (iii) the population shares of Christians broadly defined (excluding evangelists) or strictly defined (included evangelists); (iv) the literacy rate of adults; and (v) the share of adults that have completed secondary education.\(^8\)

1.7. **Spatial Units for Sub-Saharan Africa**

We assemble data for 203,674 grid cells of 0.1x0.1 degrees (11x11 km) in 43 countries.

1.8. **Mission Location Data for Sub-Saharan Africa**

We derive the location of Christian mission stations in Sub-Saharan Africa from two mission atlases widely used in the literature: (1) Roome (1925) shows Protestant and Catholic European residence missions in 1924, digitized and geocoded by Nunn (2010). (2) Beach (1903) shows Protestant European residence missions in 1900, compiled by Cagé and Rueda (2016). We then create two dummies if there is a mission in a cell in mission map year 1900 and 1924.

\(^8\)Since we only have data for 10% of the population census, the most rural cells of our sample do not have enough observations to correctly estimate these shares. Data is available for 1,895 cells only (= 2,091 - 196 missing cells).
1.9. Number of Missions in Sub-Saharan Africa and in the World

Using multiple sources, we obtain the number of missions for 37 Sub-Saharan African countries circa 1900 and 1924 and 4 Asian countries circa 1911-13.

1.10. Determinants of Mission Locations and Outcomes for Sub-Saharan Africa

Geography

- **Disease Ecology**: We use the historical malaria index created by Depetris-Chauvin and Weil (2018) and the tsetse-fly suitability index created by Alsan (2015). Using GIS we estimate average historical malaria intensity and tsetse-fly suitability for each cell.
- **Slave Ports**: The location of slave ports in the 1800-1900 period is constructed from the 2016 version of the *Trans-Atlantic Slave Trade Database* in Nunn and Wantchekon (2011). We create a dummy equal to one if a cell contains a slave port.
- **Distance to the Coast**: We use GIS to obtain the Euclidean distance (km) to the coast.

Political Conditions

- **Pre-colonial Cities**: Large pre-colonial cities circa 1400 and 1800 are described in Chandler (1987). We create dummies if the cell contains a large pre-colonial city circa 1400 and 1800.
- **Major Cities**: Data on the capital, largest and second largest cities of each country circa 1900 comes from (Jedwab and Moradi, 2016). We then create for each cell a dummy equal to one if the cell contains the largest city, the second largest city or the capital city.
- **Year of Colonization**: The year of colonization of each ethnic group (Murdock, 1967) is derived from (Henderson and Whatley, 2014). Using the Murdock (1967) map of ethnic boundaries from Nunn (2008), we assign a year of colonization to each cell.
- **State Centralization**: We use the data from Murdock (1967) and create a dummy equal to one if the cell was in an ethnic area with a centralized state before colonization (using the same definition as Gennaioli and Rainer (2007)).
- **Distance to Muslim Centers**: The locations of historical Muslim centers (incl. jihad towns) are derived from Sluglett (2014) and Ajayi and Crowder (1974). We then use GIS to obtain the Euclidean distance from each cell centroid to a Muslim Center.

Transportation

- **Rivers and Lakes**: We create two dummies equal to one if the cell is within 10 km from a “major navigable river” and a lake as mapped by Johnston (1915).
- **Explorer Routes**: Pre-colonial explorer routes are taken from Nunn andWantchekon (2011). We create a dummy if the cell is within 10 km of an explorer route.
- **Railroads**: Railroads in 1900 and 1924 are obtained from Jedwab and Moradi (2016) who recreated a GIS database on the history of each railroad line that was built or planned but not built. We create a dummy equal to one if the cell is within 10 km of a railroad line.

Population

Sources: of Good Hope (various years), Coast (various years), Basutoland (various years), Bathurst (various years), Kenya (various years), Nigeria (various years), Rhodesia (various years), Nyasaland (various years), Leone (various years), Tanganyika (various years), Uganda (various years), Fitzner (1901), Dwight (1905), Belge (1925), of Nations (1925), Institut Géographique du Congo Belge (1949), Dunn (1992), Froise (1996), Bonfils (1999), Nangula (2013), Jones (2017) and Assoumou Nsi (2017).
• **Population Density:** We obtain population density circa 1800 and urban and rural population circa 1900 from the *History Database of the Global Environment* (HYDE 3.1) by Klein Goldewijk et al. (2010). Klein Goldewijk et al. (2010) do not rely on census data for earlier centuries, since there were no censuses then. Its population estimates are highly unreliable. We nonetheless use it for three controls to be consistent with the literature.

• **City Population:** We use the database of Jedwab and Moradi (2016) to obtain the list of cities above 10,000 inhabitants circa 1900. Jedwab and Moradi (2016) use colonial administrative sources. We then estimate the total urban population of each cell.

Economic Activities

• **Slavery:** We use the log number of slaves exported per land area during the Atlantic and Indian Ocean slave trades from Nunn and Wantchekon (2011). From Murdock (1967), we also know if slavery was practiced by the dominant ethnic group in the cell.

• **Predicted Cash Crop Export Value:** We obtain from the *Global Agro-Ecological Zones* (GAEZ) database compiled by (FAO, 2015) land suitability measures for seven major export crops: cocoa, coffee, cotton, groundnut, palm oil, rubber, tea and tobacco. We then obtain cash crops’ national export value (in British Pounds) circa 1900 and 1924 from of Nations (1925); Francais (1925); Jewsewicki (1977); Frankema et al. (2018); Alexopoulou (2018).

• **Mining:** The locations of mines in 1900 and 1924 come from Mamo et al. (2019). We create a dummy equal to one if the cell is within 50 km from a mine in 1900 and 1924.

Other Controls

• **Polygamy:** We create a dummy if the cell belongs to an ethnic group said to have practiced polygamy before colonization based on the data from Murdock (1967).

• **Murdock Data:** We create a dummy if the main ethnic group in the cell before colonization according to Murdock (1967) does not have information on state centralization, slavery and polygamy. We also create a dummy if we know the year of the anthropological study used by Murdock (1967) to create his data and two dummies for whether the anthropological survey he used to create his data strictly precedes 1900 or 1924.

• **Precipitation:** Climate data comes from *Terrestrial Air Temperature and Precipitation: 1900-2007 Gridded Monthly Time Series, Version 1.01*, University of Delaware (Matsuura and Willmott, 2015). We estimate average annual precipitation (mms) in 1900-1960 for each cell.

• **Altitude and Ruggedness:** Topography comes from SRTM3 data and is measured at 3 arc-second resolution (ca. 90m x 90m). We estimate for each 0.1 x 0.1 grid cell the mean and standard deviation of altitude (meters). The standard deviation captures ruggedness.

• **Land Area:** We use GIS to obtain total land area in the cell.

• **Soil Fertility:** Soil fertility comes from (FAO, 2015). We use GIS to obtain the cell mean.

Standard Historical Controls Used in the Literature:

• We merge the lists of controls from Nunn (2010) and Cagé and Rueda (2016) (see text above for a description of the sources used for each variable):

• **Nunn (Table 1, 2010):** (i) European explorer routes before colonization; (ii) 19th century railroads; (iii) soil quality; (iv) access to a water source; and (v) slave exports. For Ghana: (i) There were no
European explorers before official colonization, so there is no variation across cells; (ii) The first railroad was opened in 1901, so there is no variation across cells; (iii) We control for soil fertility; (iv) We include a dummy if the cell is within 10 km from a navigable river (there were no lakes in Ghana then); and (v) We control for slave export intensity.

- Cagé and Rueda (Table 1, 2016) use the controls from Nunn (2010) as well as: (vi) rainfall; (vii) distance to the coast; (viii) malaria ecology; (ix) initial population density; and (x) dummies if large cities in 1400 or 1800. For Ghana: (vi) We control for rainfall; (vii) We control for distance to the coast; (viii) We control for malaria ecology; (ix) We control for initial population density in 1800; and (x) We add a dummy if there was a large city in 1800 (none in 1400).

Present-day Outcomes for Sub-Saharan Africa

- **Satellite data on night lights:** The source of the satellite data on night lights is (NOAA, 2012). We then estimate average light intensity for each cell, for the year 2000-2001 (we use two years due to measurement errors coming from clouds).

- **Social and Economic Development:** We also derive various socio-economic development outcomes for each cell. First, we use the database of Jedwab and Moradi (2016) to obtain the population of all cities above 10,000 inhabitants circa 2000. We then recreate total urban population for each cell. Second, we use the DHS individual-level data. Second, we recreate cell-level outcomes using individual-level data from the Demographic and Health Surveys (DHS) of 32 sub-Saharan African countries with GPS readings for the closest year to 2000. The outcomes are the mean of the asset-based wealth index in the cell (the index goes from 1 to 5 where 1 is the poorest quintile and 5 is the richest quintile), the population shares of Christian (broadly and strictly defined, thus including and excluding evangelists), and the literacy rate and the secondary school completion rate of adults.

REFERENCES

Acemoglu, Daron, Francisco A. Gallego, and James A. Robinson, “Institutions, Human Capital, and Development,” *Annual Review of Economics*, 2014, 6 (1), 875–912.

Agbeti, J. Kofi, *West African Church History*, Leiden: E.J. Brill, 1986.

Agency, National Geospatial-Intelligence, “NGA GEOnet Names Server (GNS),” 2016.

Ajayi, Jacob Festus Ade and Michael Crowder, *History of West Africa*, London: Longman, 1974.

Alesina, Alberto, Sebastian Hohmann, Stelios Michalopoulos, and Elias Papaioannou, “Intergenerational Mobility in Africa,” *NBER Working Paper No. 25534*, 2019.

Alexopoulos, Kleoniki, “Local conditions and metropolitan visions. Fiscal policies and practices in Portuguese Africa, 1850s-1970s,” in Ewout Frankema and Anne Booth, eds., *Fiscal states in colonial Asia and Africa*, Cambridge: Cambridge University Press, 2018.

Alpino, Matteo and Eivind M. Hammersmark, “Lighting the Path: The Influence of Historical Christian Missions on Modern-day Development Aid Allocation in Africa,” *AidData Working Paper 47*, 2017.

Alsan, Marcella, “The Effect of the TseTse Fly on African Development,” *American Economic Review*, 2015, 105 (1), 382–410.

Altman, Thorsten, “Ein Häuflein Christen mitten in der Heidenwelt des dunklen Erdteils”: zum Selbst- und Fremdverständnis protestantischer Missionare im kolonialen Afrika 1884-1918 *Internationale Hochschulschriften*, Münster: Waxmann, 2003.

Anderson, Gerald H., *Biographical dictionary of Christian missions*, Grand Rapids, Michigan: W.B. Eerdmans Pub., 1999.

Anderson, Siwan, “Legal Origins and Female HIV,” *American Economic Review*, 2018, 108 (6), 1407–1439.

Bai, Ying and James Kai sing Kung, “Diffusing knowledge while spreading God’s message: Protestantism and economic prosperity in China, 1840-1920,” *Journal of the European Economic Association*, 2015, 13 (4), 669–698.

Barro, Robert J. and Rachel M. McCleary, “Protestants and Catholics and educational investment in Guatemala,” *AEI Economics Working Papers 928714*, American Enterprise Institute May 2017.

10Angola (2006), Benin (2000), Burkina Faso (1998), Burundi (2010), CAR (1994), Cameroon (2004), Chad (2014), Ivory Coast (1998), DRC (2007), Ethiopia (2000), Gabon (2012), Ghana (2003), Guinea (1999), Kenya (2003), Lesotho (2004), Liberia (2007), Madagascar (1997), Malawi (2000), Mali (2001), Mozambique (2009), Namibia (2000), Niger (1998), Nigeria (2003), Rwanda (2003), Senegal (1997), Sierra Leone (2008), Swaziland (2006), Tanzania (1999), Togo (1998), Uganda (2000), Zambia (2007), and Zimbabwe (1999).
Bartels, Francis L., *The Roots of Ghana Methodism*, Cambridge: Cambridge University Press, 1965.
Basutoland, *Blue Book*, Maseru: Government Printer, various years.
Baten, Jörg and Gabriele Cappelli, “The Evolution of Human Capital in Africa, 1730 -1970: A Colonial Legacy?”, *CEPR Discussion Papers* 11273, May 2016.
Bathurst, *Blue Book*, Bathurst: Government Printer, various years.
Beach, Harlan P., *A Geography and Atlas of Protestant Missions: their environment, forces, distribution, methods, problems, results and prospects at the opening of the twentieth century*, Vol. 2, New York: Student Volunteer Movement for Foreign Missions, 1903.
Belge, Gouvernement, *Rapport Ruanda-Urundi* 1924, Geneva: League of Nations, 1925.
Boateng, Godfred O., Dozie Okoye, Jonathan Amoyaw, and Isaac Luginaah, “Six decades after independence: the enduring influence of missionary activities on regional wealth inequalities in Ghana,” *Journal of Economic Geography*, forthcoming.
Bonfils, Jean, *La Mission Catholique en Republique Benin*, Paris: Karthala, 1999.
Buzasi, Katalin and Peter Foldvari, “The long-term roots of language development in Sub-Saharan Africa,” *Unpublished manuscript Utrecht University*, 2015.
Cagö, Julia and Valeria Rueda, “The Long-Term Effects of the Printing Press in Sub-Saharan Africa,” *American Economic Journal: Applied Economics*, 2016, 8 (3), 69–99.
— and —, “Sex and the Mission: The conflicting effects of early Christian Investments on sub-Saharan Africas HIV epidemic,” *CEPR Working Paper* DP12192, 2017.
Caicedo, Felipe Valencia, “The Mission: Human Capital Transmission, Economic Persistence and Culture in South America,” *The Quarterly Journal of Economics*, 2019, 134 (1), 507–556.
Calvi, Rossella and Federico G. Mantovaneli, “Long-Term Effects of Access to Health Care: Medical Missions in Colonial India,” *Journal of Development Economics*, 2018.
Castelló-Climent, Amparo, Latika Chaudhary, and Abhiroop Mukhopadhyay, “Higher Education and Prosperity: From Catholic Missionaries to Luminosity in India,” *The Economic Journal*, 2018, 128 (616), 3039–3075.
Chandler, Tertius, *Four Thousand Years of Urban Growth: An Historical Census*, Lewiston, NY: St. David’s University Press, 1987.
Chen, Yuyu, Hui Wang, and Se Yan, “The Long-Term Effects of Protestant Activities in China,” *CEH Discussion Papers*, 2014.
Coast, Gold, *Report of the Educationists’ committee 1919/20*, Accra: Government Press, 1920.
—, *Blue Book*, Accra: Government Printer, various years.
—, *Report on the Education Department*, London: Waterlow and Sons Limited, various years.
Cogneau, Denis and Alexander Moradi, “Borders That Divide: Education and Religion in Ghana and Togo Since Colonial Times,” *The Journal of Economic History*, 2014, 74 (3), 694–729.
Dalhun, Sirianne and Tore Wig, “Educating Demonstrators: Education and Mass Protest in Africa,” *Journal of Conflict Resolution*, 2019, 63 (1), 3–30.
Dalton, John T. and Tin Cheuk Leung, “Why Is Polygyny More Prevalent in Western Africa? An African Slave Trade Perspective,” *Economic Development and Cultural Change*, 2014, 62 (4), 599–632.
Debrunner, Hans W., *A History of Christianity in Ghana*, Accra: Waterville Publishing House, 1967.
Depetris-Chauvin, Emilio and David N. Weil, “Malaria and Early African Development: Evidence from the Sickle Cell Trait,” *The Economic Journal*, 2018.
Der, Benedict, “Church-State Relations in Northern Ghana, 1906-1940,” *Transactions of the Historical Society of Ghana*, 1974, 15 (1), 41–61.
edes Auswärtigen Amtes, Kolonialabteilung, *Deutsches Kolonialblatt. Amtsblatt für die Schutzgebiete des Deutschen Reichs*, Berlin: Ernst Siegfried Mittler & Sohn, various years.
Dickson, Kwamina B., *A historical geography of Ghana*, London: Cambridge University Press, 1969.
Dimico, Arcangelo, “Poverty trap and educational shock: evidence from missionary fields,” *QUCEH Working Paper* 7, 2014.
Dunn, Elwood, *A History of the Episcopal Church in Liberia 1821-1980*, London: The Scarecrow Press, 1992.
Dwight, Henry Otis, *The Blue Book of Missions for 1905*, Berlin: Hermann Paetel, 1901.
FAO, “Soil fertility index for Africa (GeoLayer),” 2015.
Fensing, James, “African polygamy: Past and present,” *Journal of Development Economics*, 2015, 117, 58–73.
— and Igor Zurimendi, “Oil and ethnic inequality in Nigeria,” *Journal of Economic Growth*, 2017, 22 (4), 397–420.
Fitzner, Rudolf, *Deutsches Kolonial-Handbuch*, Berlin: Hermann Paetel, 1901.
Fourie, Johan and Christie Swanepeol, “When selection trumps persistence. The lasting effect of missionary education in South Africa,” *The Low Countries Journal of Social and Economic History*, 2015, 117 (12), 1–30.
Français, Gouvernement, *Rapport Annuel du Commerce au Cameroun 1924*, Geneva: League of Nations, 1925.
Frankema, Ewout, Jeffrey G. Williamson, and Peter Woltjer, “An Economic Rationale for the West African Scramble? The Commercial Transition and the Commodity Price Boom of 1835-1885,” *The Economic History of West Africa*, 2015, 78 (2).
Gallo, Francisco A. and Robert D. Woodberry, “Christian Missionaries and Education in Former African Colonies: How Competition Mattered,” *Journal of African Economies*, 2010, 19 (3), 294–329.
Gennaioli, Nicola and Ilia Rainer, “The modern impact of precolonial centralization in Africa,” *Journal of Economic Growth*, 2007, 12 (3), 185–234.
Ghana Statistical Service, *Population & Housing Census* 2000, Accra: Government Printer, 2000.
Globcover, *Globcover Regional: Africa 2009*.
Goldewijk, Kees Klein, Arthur Beusen, and Peter Janssen, “Long-term dynamic modeling of global population and built-up
area in a spatially explicit way: HYDE 3.1,” "The Holocene, 2010, 20 (4), 565–573.
Groves, Charles P., The planting of Christianity in Africa 1840-1878, Vol. 2 of Lutterworth library, London: Lutterworth Press, 1955.
Guggisberg, Frederick Gordon, Index to the 1:125,000 Map of the Gold Coast Colony and Ashanti, London: W. & A.K. Johnston Limited, 1908.
Gunnarsson, Christoer, The Gold Coast Cocoa Industry 1900-1939: Production, Prices and Structural Change, Lund: Economic History Association, 1978.
Gyasi, E.A., “Emergence of a New Oil Palm Belt in Ghana,” Tijdschrift voor economische en sociale geografie, 1992, 83 (1), 39–49.
Hastings, Adrian, The Church in Africa, 1450-1950, Oxford: Clarendon Press, 1994.
Hay, John Charles Dalrymple, Ashanti and the Gold Coast: and what we know of it. A sketch, London: Stanford, 1874.
Henderson, Morgan and Warren Whatley, “Pacification and Gender in Colonial Africa: Evidence from the Ethnographic Atlas,” MPRA Paper 61203, 2014.
Institut Géographique du Congo Belge, “Carte des missions Catholiques: Ruanda-Urundi,” 1949.
Isichei, Elizabeth Allo, A History of Christianity in Africa: From Antiquity to the Present, London: SPCK, 1995.
Jedwab, Remi and Alexander Moradi, “The Permanent Effects of Transportation Revolutions in Poor Countries: Evidence from Africa,” Review of Economics and Statistics, 2016, 98 (2), 268–284.
Jewewiwicki, Bogumil, “The Great Depression and the Making of the Colonial Economic System in the Belgian Congo,” African Economic History, 1977, 4, 153–176.
Johnston, Harry H., “The Political Geography of Africa before and after the War,” The Geographical Journal, 1915, 45 (4), 273–294.
Jones, Hilary, “Fugitive slaves and Christian evangelism in French West Africa: a protestant mission in late nineteenth-century Senegal,” Slavery & Abolition, 2017, 38 (1), 76–94.
Jones, Lauren Eden, “Killing the Indian, Saving the Man: The Long-run Cultural, Health, and Social Effects of Canada’s Indian Residential Schools,” Working Paper, 2014.
Kenya, Blue Book, Nairobi: Government Printer, various years.
Kudo, Yuya, “Missionary Influence on Marriage Practices: Evidence from the Livingstonia Mission in Malawi,” Journal of African Economies, 2017, 26 (3), 372–431.
Lankina, Tomila and Lullit Getachew, “Mission or Empire, Word or Sword? The Human Capital Legacy in Postcolonial Democratic Development,” American Journal of Political Science, 2012, 56 (2), 465–483.
Larreguy, Horacia and Carlos Schmid-Fadilla, “Missionary Competition, Education, and Long-Run Political Development: Evidence from Africa,” Unpublished manuscript Harvard University, 2018.
Leone, Sierra, Blue Book, Freetown: Government Printer, various years.
Lowes, Sara and Eduardo Montero, “Concessions, Violence, and Indirect Rule: Evidence from the Congo Free State,” Unpublished manuscript Bocconi University, 2018.
Mamo, Nemera, Sambit Bhattacharyya, Alexander Moradi, and Rabah Arezki, “Intensive and extensive margins of mining and development: Evidence from Sub-Saharan Africa,” Journal of Development Economics, 2019, 139, 28–49.
Mantovaneli, Federico G., “Christian Missions, HIV and Sexual Behavior in Sub-Saharan Africa,” Unpublished manuscript Boston College, 2014.
and Rossella Calvi, “Literacy and Economic Development: Evidence from Indian Districts,” Unpublished manuscript Rice University, 2016.
Martin, James Henry and J. Bernard Sheldon, Ministers and probationers of the Methodist Church, formerly Wesleyan, Primitive, and United Methodist, with their appointments in chronological and alphabetical order; also lists of the presidents, vice-presidents, and the secretaries of the several conferences, together with an alphabetical list of deceased ministers, London: Methodist Pub. House, 1964.
Matsuura, Kenji and Cort J. Willmott, “Terrestrial Air Temperature and Precipitation: 1900-2007 Gridded Monthly Time Series, Version 4.01,” 2015.
Menon, Nidhiya and Kathleen McQueeney, “Christianity and Infant Health in India,” Unpublished manuscript Brandeis University, 2017.
Michalopoulos, Stelios, Louis Putteman, and David N. Weil, “The Influence of Ancestral Lifeways on Individual Economic Outcomes in Sub-Saharan Africa,” Journal of the European Economic Association, forthcoming.
Miller, Jon, Missionary zeal and institutional control: organizational contradictions in the Basel Mission on the Gold Coast, 1828-1917, Grand Rapids, Michigan ; Cambridge, U.K.: William B. Eerdmans, 2003.
Mission archives Basel, Basel Mission Archives in Basel (Switzerland), 2016.
Montgomery, Max, “Colonial Legacy of Gender Inequality: Christian Missionaries in German East Africa,” Politics & Society, 2017, 45 (2), 225–268.
Murdock, George Peter, “Ethnographic Atlas: A Summary,” Ethnology, 1967, 6 (2), 109–236.
Musona, Jacob, Nathan Nunn, and James A. Robinson, “Keeping it in the family: lineage organization and the scope of trust in sub-Saharan Africa,” American Economic Review: Papers & Proceedings, 2017, 107 (5), 565–571.
Nangula, Eino, “The role of the Evangelical Lutheran Church in Namibia (ELCIN) as a pioneer of social development through Education in Ovamboland (1870-1970): A Church Historical Study,” 2013.
Nigeria, Blue Book, Lagos: Government Printer, various years.
NOAA, “Average Visible, Stable Lights, and Cloud Free Coverages,” 2012.
Nsi, Michel Assoumou, L’Eglise catholique au Gabon: De l’entreprise missionnaire à la mise en place d’une église locale 1844-1982, Saint-Denis: Connaissances et Savoirs, 2017.
Nunn, Nathan, “The Long-term Effects of Africa’s Slave Trades,” Quarterly Journal of Economics, 2008, 123 (1), 139–176.
, “Religious Conversion in Colonial Africa,” American Economic Review Papers and Proceedings, 2010, 100 (2), 147–152.
Reindorf, Carl Christian and J. G. Christaller, *History of the Gold Coast and Asante: based on traditions and historical facts*.

Ricart-Huguet, Joan, "The Origins of Colonial Investments in former British and French Africa," *Unpublished manuscript*.

Blue Book

Rhodesia, Northern, *Blue Book*, Lusaka: Government Printer, various years.

Ricart-Huguet, Joan, “The Origins of Colonial Investments in former British and French Africa,” *Unpublished manuscript Princeton University*, 2019.

---, “Who Governs? Colonial Education and Regional Political Inequality,” *Unpublished manuscript Princeton University*, 2019.

Roome, William R. M., *Ethnographic Survey of Africa: Showing the Tribes and Languages; also the Stations of Missionary Societies*, London: Edward Stanford Ltd., 1925.

Schlatter, Wilhelm, *Geschichte der Basler Mission, 1815-1915*, Basel: Missionsbuchhandlung, 1916.

Schott, Otto, *The Basel Mission on the Gold-Coast, Western Africa on the 1st January 1879: A Retrospect on Fifty Years of Mission Work*, Basel: Felix Schneider, 1879.

Schreiber, D.A.W., *Bausteine zur Geschichte der Norddeutschen Missions-Gesellschaft*, Bremen: Verlag der Norddeutschen Missions-Gesellschaft, 1936.

Sill, Ulrike, *Encounters in quest of Christian womanhood: the Basel Mission in pre- and early colonial Ghana*.

Studies in Christian Archeology of Ghana

Sroemberger, Locher Hornberger Riis, Gouvernement Francais, 1925.

Tanganyika, *Blue Book*, Dar es Salam: Government Printer, various years.

Uganda, *Blue Book*, Entebbe: Government Printer, various years.

Waldinger, Maria, “The long-run effects of missionary orders in Mexico,” *Journal of Development Economics*, 2017, 127, 355–378.

Wanitchekon, Leonard, Natalija Novta, and Marko Klašnja, “Education and Human Capital Externalities: Evidence from Colonial Benin,” *The Quarterly Journal of Economics*, 2015, 130 (2), 703–757.

Wesleyan Methodist Church, *Minutes of Several Conversations at the ... Yearly Conference of the People Called Methodists*, London: Wesleyan Conference Office, various years.

Wietzke, Frank-Borge, “Historical Origins of Uneven Service Supply in Sub-Saharan Africa. The Role of Non-State Providers,” *Journal of Development Studies*, 2014, 50 (12), 1614–1630.

---, “Long-term consequences of colonial institutions and human capital investments: Sub-national evidence from Madagascar,” *World Development*, 2015, 66, 293–307.

Williamson, S.G., “Missions and Education in the Gold Coast,” *International Review of Missions*, 1952, 41 (3), 364–373.

Wiltgen, Ralph M., *Gold Coast mission history, 1471-1880*, Techny, Ill.: Divine Word Publications, 1956.

Woodberry, Robert D., “The Missionary Roots of Liberal Democracy,” *American Political Science Review*, 2012, 106 (2), 244–274.

Wuepper, David and Johannes Sauer, “Explaining the performance of contract farming in Ghana: The role of self-efficacy and social capital,” *Food Policy*, 2016, 62 (2), 11–27.

--- and ---, “Moving forward in rural Ghana: Investing in social and human capital mitigates historical constraints,” *Economic History of Developing Regions*, 2017, 32 (2), 177–209.
Notes: Ecclesiastical Returns submitted by the mission societies every year to the colonial government and published in the Blue Books are the main source of our mission data. They state the names of main and out-stations, where clerical services were offered. Earlier Blue Books detail other information including number of church members, name of the missionary, size of the chapel/church/cathedral and the number of persons attending. Names of mission stations were matched across years and coordinates of the locations were extracted from Gazetteers. See Section 1.2.
Figure 2: Main and their out-stations, 1875, 1897 and 1932

Notes: This figure shows for selected years the spatial relationship between main stations and out-stations by connecting them with a line. Overlaps mainly occur because “circuits” of the various denominations overlap. For example, what can be a main station for the Presbyterians can be an out-station for the Methodists. Also, some localities contain main stations for several denominations, e.g. Accra and Kumasi.
Figure 3: Built Railroads and Placebo Railroads in Ghana, 1897-1932

Notes: The map displays railroads in 1932: (i) The Western Line: The line connects two gold fields (Tarkwa and Obuasi) and the Ashante capital Kumasi to the port of Sekondi; (ii) The Eastern Line: The line connects the colonial capital Accra to Kumasi; and (iii) The Huni-Valley-Kade line built in 1926-27: The line was built parallel to the coast to connect fertile land and a diamond mine (Kade). There are five lines that were planned but not built: Cape Coast-Kumasi 1873, Saltpond-Kumasi 1893, Apam-Kumasi 1897, Accra-Kumasi 1897 and Accra-Kpong 1898. (W), (E) and (C) show the western route, the eastern route, and the central route respectively. See Web Data Appendix for data sources.

Figure 4: Export Revenues of the Five Main Primary Commodities in Ghana, 1846-1932

Notes: The figure shows the annual total export value of Ghana’s five main primary commodities in 1846-1932 (in constant British pounds; data not available for earlier years). See Web Data Appendix for data sources.
Figure 5: Explorer Routes and Mission Stations in 1924 in Madagascar

Notes: The figure shows the routes used by European explorers (dotted lines with an explorer’s name attached to it) and the location of the mission stations (circles) circa 1924 (taken from Roome (1925)).

Figure 6: Measurement Error in the Georeferencing of Mission Locations, sub-Saharan Africa

Notes: This graph shows for 109 sub-Saharan African missions the distribution of the Euclidean distance (in km) between the true locations (based on the country and the name of the missions) and the locations georeferenced in ArcGIS by Nunn (2010) and Cagé and Rueda (2016) based on the Beach (1903) and Roome (1925) atlas maps.
Study	Location	Unit	Correlation	Outcome	Mission Years
Nunn (2010, 2014)**	SSA	Individual	+	Christianity, years of educ., gender attitudes	1924
Gallego and Woodberry (2010)*	SSA	Regional	+	Literacy, years of educ.	1914, 1923
Nunn and Wantchekon (2011)**	SSA	Individual	o	Trust	1924
Woodberry (2012)*	SSA	Cross-country	+	Democracy	1923
Lankina and Getachew (2012)**	India	District	+	Literacy	1901, 1911, 1921, 1931
Cogneau and Norad (2014)**	Ghana	Individual	+	Literacy, religion, height	1902, 1919, 1923
Acemoglu et al. (2014)*	SSA, Asia, LAC	Cross-country	+	Historical polygamy	1924
Dalton and Leung (2014)**	SSA	Ethnic	-	GDP/c, years of educ., child mortality	1920
Chen et al. (2014)**	China	County	+	HIV infection rates, HIV-related sexual behavior	1908, 1911
Mantovanelli (2014)	SSA	Individual	+	Religion, marriage, fertility, etc.	1920-1985
Jones (2014)	Canada	Individual	+/-	Child malnutrition	1923
Dimico (2014)	SSA	Individual	+	Poligamy, matrilineal descent, land inheritance	1924
Henderson and Whatley (2014)**	SSA	District	o	Private schooling	1940
Wietzke (2014)**	SSA	Individual	o	Years of educ.	1849
Wietzke (2015)**	Madagascar	District	+/-	School supply, income	1904
Bai and Kung (2015)**	China	Province	+	Urbanization, industrial firms	1920
Buzasi and Foldvan (2015)**	SSA	Ethnic	+	Language development	1924
Okoye (2015)**	Nigeria	Ethnic	+	Trust	1924, 1928
Owolabi (2015)*	Nigeria	Ethnic	-	Literacy, democracy	1923
Wietchek et al. (2015)	Benin	Individual	+	Years of educ., social mobility, political activism, etc.	retrosp. interviews
Obikili (2016)	Nigeria	Individual	-	Literacy	1924
Mantovanelli and Calvi (2016)**	India	Cross-country	-	Performance of contract farming	1924
Wuepper and Sauer (2016)**	Ghana	Individual	-	Numeracy growth	1923
Baten and Cappelli (2016)*	SSA	Cross-country	+	Post-colonial minister shares	1923
Ricart-Huget (2019)**	SSA	District	+	Newspaper readership, trust, education, etc.	1900
Mantovanelli and Calvi (2016)**	India	Individual	o	Years of educ., wealth	1924
Cage and Rueda (2016)**	SSA	Individual	+	Poligamy, women's marriage age	1924
Boatong et al. (forthcoming)**	Ghana	Individual	+/-	Literacy, years of educ., religion	1542-1810
Waldinger (2017)	Mexico	Locality	+	Years of educ., self-employment	1924
Kudo (2017)**	Malawi	Individual	+/-	Rubber concession areas	1889, 1924, 1953
Ricart-Huget (2019a)**	SSA	Individual	+/-	Height-for-age z-scores	1906, 1911
Lowes and Montero (2018)**	DR Congo	Concession	o	Years of educ., occupational choices, wealth, etc.	1924, 1928
Menon and McQueeny (2017)**	India	Individual	+	Years of educ., literacy, wealth, urban etc.	1924, 1928
Okoye (2018)	Nigeria	Individual	+	Literacy, self-employment	1924, 1928
Okoye and Fongou (2017)**	Nigeria	Individual	+	Years of educ., literacy, wealth, urban etc.	1924, 1928
Okoye et al. (2018)**	Nigeria	Individual	+	Development aid project allocation	1901, 1924
Montgomery (2017)**	Tanzania	Individual	+	Social capital	1902, 1924, 1925, 1938
Alpinho and Hammersmark (2017)	SSA	Individual	-	Mass protests	1924
Wuepper and Sauer (2017)**	Ghana	Individual	+	Mass protests	1924
Dahlint and Wig (2019)**	SSA	Individual	+	Lineage system, trust	1924
Fenske and Zurimendi (2017)**	Nigeria	Individual	+	Educ., skills	1924
Musconha et al. (2017)**	SSA	Individual	na	Lineage system, trust	1924
Valencia Caicedo (2019)**	LAC	Municipality	+	Years of educ., literacy, income, skilled labor etc.	1669-1767
Bario and McCleary (2017)**	Guatemala	Department	+	HIV prevalence	1901, 1924
Castelló-Climent et al. (2018)**	India	District	+	Luminosity	1908, 1911
Alesina et al. (2019)**	SSA	Individual	+	Social mobility	1900
Michalopoulos et al. (forthcoming)**	SSA	Individual	+	Educ., wealth	1924
Calvi and Mantovanelli (2018)**	India	Individual	+	BMI, height, health status	1908, 1911
Anderson (2018)**	SSA	Grid cell	o	Common law	1924
Larreau and Schmidt-Padilla (2018)**	SSA	Individual	+	Educ., pol. participation	1911, 1924

Notes: * Study uses the share/number of European missionaries. ** Study uses mission locations. *** Study uses the share/number of Christian converts. † Study uses a mission atlas.
Table 2: Numbers and Ratio of Out-Stations to Main Stations (Selected Years)

	Number of Main Stations	Ratio of Out- to Main Stations
	1850 1875 1897 1932	1850 1875 1897 1932
Methodists	5 7 15 30	3.0 6.3 6.5 16.7
Presbyterians	4 9 17 48	0.0 1.3 8.7 7.1
Catholics	7 44	0.3 13.9
Other Protestants	1 2 45	0.0 0.0 4.8
Overall	9 17 41 167	1.7 3.3 6.0 10.0

Notes: This table shows for each denomination and Ghana as a whole the number of main stations and the average number of out-stations administered per main station.

Table 3: Mean Euclidean Distance between Out-Stations and Main Stations (in km, Selected Years)

Denomination	1850	1875	1897	1932
Methodists	24.0	22.1	21.7	25.0
Presbyterians	8.5	18.7	15.3	
Catholics	14.1	23.4		
Other Protestants	30.0			
Overall	24.0	19.2	19.9	23.0

Notes: This table shows for each denomination and Ghana as a whole the mean Euclidean distance (in km) between out-stations and the main station of their respective circuit. Catholics were not active in Ghana in 1850 and 1875. In 1850, Presbyterians were present but all stations were main stations. The same is true for Other Protestants in 1875 and 1897.

Table 4: Church Attendance in Main and Out-Stations (Selected Years)

	Main Stations	Out-Stations
	1861 1875 1896	1861 1875 1896
Methodists	263 (95) 563 (440) 360 (218)	133 (56) 136 (101) 97 (79)
Presbyterians	NA 346 (312) 263 (122)	NA NA 69 (68)
Catholics	383 (58)	180
Other Protestants	266 (22)	NA

Notes: This table shows for each denomination average church attendance for selected years for which information is available. Values in parentheses are standard deviations. “NA” means that the mission society did not report attendance, whereas empty cells mean that there were no missions present during that year.
Table 5: Correlates of the Total Number of Missions, Long-Differences

Dependent Variable:	Log Number of Missions in the Cell in Selected Year:	1850	1875	1897	1932
		(1)	(2)	(3)	(4)
Log Number of Mission in ... / 1850 / 1875 / 1897		0.302**	0.595***	0.440***	
		[0.121]	[0.076]	[0.050]	
Dummy if Mission in Selected Year		0.740***	0.772***	0.832***	0.983***
		[0.033]	[0.040]	[0.026]	[0.028]
Historical Malaria Index		-0.000	0.001	0.005***	-0.019***
		[0.000]	[0.001]	[0.002]	[0.006]
Dummy if Port in the Cell 1850		-0.014	0.078	-0.120	0.137
		[0.015]	[0.057]	[0.078]	[0.112]
Log Distance to Coast		-0.001	0.002	0.013	-0.068***
		[0.001]	[0.003]	[0.009]	[0.021]
Dummy if Large Pre-Colonial City 1800		-0.102	-0.138	-0.112	0.061
		[0.076]	[0.105]	[0.089]	[0.152]
Dummy if Headchief Town 1901		0.001	0.006	0.004	0.171**
		[0.004]	[0.024]	[0.027]	[0.072]
Dummy if Outside Gold Coast Colony 1850		-0.001	-0.004	-0.015*	0.212**
		[0.001]	[0.004]	[0.009]	[0.036]
Dummy if Largest or 2nd Largest City 1901		0.258***	0.194	0.132	0.365*
		[0.083]	[0.162]	[0.174]	[0.214]
Dummy if Navigable River 10 Km		-0.001	-0.004*	-0.004	0.030
		[0.000]	[0.002]	[0.007]	[0.022]
Dummy if Ashanti Trade Route 1850 10 Km		0.000	0.001	0.002	0.044***
		[0.001]	[0.003]	[0.005]	[0.015]
Dummy if Non-Ashanti Trade Route 1850 10 Km		0.000	0.002*	0.001	-0.007
		[0.000]	[0.001]	[0.005]	[0.014]
Dummy if Railroad 1932 10 Km		-0.001	0.001	-0.011	0.092*
		[0.001]	[0.006]	[0.018]	[0.049]
Dummy if Road 1930 10 Km		-0.000	-0.001	-0.001	-0.012
		[0.000]	[0.001]	[0.002]	[0.010]
Log Urban Population 1891		0.000	0.002	0.001	0.014
		[0.001]	[0.002]	[0.004]	[0.009]
Log Urban Population 1901		-0.000	-0.001	0.005*	-0.004
		[0.001]	[0.002]	[0.003]	[0.006]
Log Urban Population 1931		0.000	0.000	-0.002*	0.014***
		[0.000]	[0.001]	[0.001]	[0.004]
Log Rural Population 1901		-0.000	0.001	0.003*	0.023***
		[0.000]	[0.001]	[0.002]	[0.005]
Log Rural Population 1931		0.000	-0.000**	-0.001	0.003*
		[0.000]	[0.000]	[0.000]	[0.001]
Log Normalized Slave Exports 15th-19th Centuries		-0.000	-0.003**	-0.004	0.010
		[0.000]	[0.001]	[0.003]	[0.007]
Dummy if Slave Market 1800 50 Km		0.000	0.001	-0.003	0.005
		[0.000]	[0.002]	[0.004]	[0.012]
Dummy if Palm Oil Plantation 1900-1936 50 Km		0.000	0.006	-0.001	0.093**
		[0.001]	[0.006]	[0.014]	[0.037]
Dummy if Kola-Producing Cell 1932		-0.000	-0.009**	0.001	0.039
		[0.001]	[0.004]	[0.011]	[0.031]
Dummy if Rubber Plantation 1900-1936 50 Km		-0.000	-0.010	0.001	0.141***
		[0.002]	[0.007]	[0.014]	[0.035]
Dummy if Cocoa-Producing Cell 1927		-0.000	0.009*	0.029***	0.144***
		[0.002]	[0.005]	[0.011]	[0.032]
Dummy if Mine (Central Location) 1932 50 Km		-0.003*	-0.008*	-0.014	0.034
		[0.001]	[0.004]	[0.011]	[0.034]
R-squared		0.97	0.92	0.92	0.88

Notes: For 2,091 cells and period [t-1,t], we regress the log number of missions in t on the log number of missions in t-1, a dummy if there is a mission in t, and the variables of Table 1. We omit the coefficients of area, rainfall, altitude, ruggedness, soil fertility, and a dummy if it was surveyed by the 1901 Census. Robust SE’s: * p<0.10, ** p<0.05, *** p<0.01. See Web Appx. for data sources.
Table 6: CORRELATES OF THE MAIN MISSION STATIONS, LONG-DIFFERENCES

Dependent Variable:	Dummy if Main Station in the Cell in Selected Year:			
	1850	1875	1897	1932
Dummy if Main Station in ... / 1850 / 1875 / 1897		0.790***	0.673***	0.607***
		[0.064]	[0.090]	[0.067]
Dummy if Mission in Selected Year	0.308***	0.201***	0.073***	0.088***
	[0.110]	[0.064]	[0.022]	[0.018]
Historical Malaria Index	0.001	0.002	0.000	0.002
	[0.001]	[0.001]	[0.002]	[0.003]
Dummy if Port in the Cell 1850	-0.034	0.045	0.226**	0.110
	[0.053]	[0.084]	[0.101]	[0.113]
Log Distance to Coast	0.007*	0.003	0.019**	0.018
	[0.004]	[0.005]	[0.007]	[0.013]
Dummy if Large Pre-Colonial City 1800	-0.019	-0.182	0.172	-0.091*
	[0.013]	[0.138]	[0.154]	[0.054]
Dummy if Headchief Town 1901	-0.023*	0.047	0.028	0.088*
	[0.012]	[0.035]	[0.041]	[0.051]
Dummy if Outside Gold Coast Colony 1850	-0.009**	-0.007	0.006	-0.004
	[0.005]	[0.005]	[0.010]	[0.018]
Dummy if Largest or 2nd Largest City 1901	0.720***	-0.241*	0.247	-0.053
	[0.103]	[0.141]	[0.172]	[0.066]
Dummy if Navigable River 10 Km	0.001	0.007	-0.002	0.002
	[0.001]	[0.006]	[0.008]	[0.012]
Dummy if Ashanti Trade Route 1850 10 Km	-0.000	0.001	-0.002	-0.003
	[0.003]	[0.004]	[0.005]	[0.009]
Dummy if Non-Ashanti Trade Route 1850 10 Km	0.002	-0.000	0.006	0.008
	[0.001]	[0.002]	[0.004]	[0.009]
Dummy if Railroad 1932 10 Km	-0.008*	-0.003	-0.007	0.061*
	[0.004]	[0.010]	[0.017]	[0.034]
Dummy if Road 1930 10 Km	-0.001	0.001	-0.001	0.004
	[0.001]	[0.001]	[0.002]	[0.005]
Log Urban Population 1891	-0.001	0.001	0.004	0.013**
	[0.002]	[0.002]	[0.004]	[0.006]
Log Urban Population 1901	0.002	0.002	0.007**	0.014**
	[0.002]	[0.002]	[0.003]	[0.006]
Log Urban Population 1931	-0.000	-0.001	-0.001	0.007***
	[0.000]	[0.001]	[0.001]	[0.003]
Log Rural Population 1901	0.002*	-0.002	0.002	-0.003
	[0.001]	[0.002]	[0.002]	[0.003]
Log Rural Population 1931	-0.000*	0.000	-0.001**	-0.001
	[0.000]	[0.000]	[0.000]	[0.001]
Log Normalized Slave Exports 15th-19th Centuries	-0.000	-0.000	-0.000	-0.006
	[0.001]	[0.002]	[0.002]	[0.005]
Dummy if Slave Market 1800 50 Km	0.002	-0.004	-0.001	-0.001
	[0.001]	[0.003]	[0.004]	[0.008]
Dummy if Palm Oil Plantation 1900-1936 50 Km	0.008	-0.007	0.035***	-0.001
	[0.005]	[0.012]	[0.012]	[0.023]
Dummy if Kola-Producing Cell 1932	-0.008**	-0.001	-0.014	0.008
	[0.004]	[0.006]	[0.010]	[0.023]
Dummy if Rubber Plantation 1900-1936 50 Km	-0.011	-0.008	-0.013	0.026
	[0.008]	[0.008]	[0.013]	[0.022]
Dummy if Cocoa-Producing Cell 1927	0.014**	0.004	0.009	0.064***
	[0.006]	[0.006]	[0.011]	[0.021]
Dummy if Mine (Central Location) 1932 50 Km	-0.002	0.006	0.011	-0.041*
	[0.004]	[0.008]	[0.011]	[0.023]
R-squared	0.58	0.57	0.56	0.45

Notes: For 2,091 cells and period [t-1,t], we regress a dummy if there is a main station in t on a dummy if there is a main station in t-1, a dummy if there is a mission in t, and the variables of Table 1. We omit the coefficients of area, rainfall, altitude, ruggedness, soil fertility, and a dummy if it was surveyed by the 1901 Census. Robust SE’s: * p < 0.10, ** p < 0.05, *** p < 0.01. See Web Appendix for data sources.
Table 7: CORRELATES OF EUROPEAN MISSION STATIONS, LONG-DIFFERENCES

Dependent Variable: Dummy if European Missionary in the Cell in 1846-1890: Any with Europeans Place of Residence Frequently Visits It	(1)	(2)	(3)
Dummy if Mission in 1846-1890	\(0.563^{***}\)	\(0.233^{***}\)	\(0.331^{***}\)
Historical Malaria Index	\(0.004\)	\(-0.004^{*}\)	\(0.008^{***}\)
Dummy if Port in the Cell 1850	\(0.119\)	\(0.269^{**}\)	\(-0.151^{**}\)
Log Distance to Coast	\(0.000\)	\(-0.022^{**}\)	\(0.023^{*}\)
Dummy if Large Pre-Colonial City 1800	\(0.015\)	\(0.054\)	\(-0.038\)
Dummy if Headchief Town 1901	\(0.025\)	\(0.072\)	\(-0.047\)
Dummy if Outside Gold Coast Colony 1850	\(0.012\)	\(0.026^{**}\)	\(-0.013\)
Dummy if Largest or 2nd Largest City 1901	\(0.159^{**}\)	\(0.393^{***}\)	\(-0.233^{***}\)
Dummy if Navigable River 10 Km	\(-0.014\)	\(-0.014\)	\(-0.000\)
Dummy if Ashanti Trade Route 1850 10 Km	\(-0.003\)	\(0.015^{**}\)	\(-0.017^{**}\)
Dummy if Non-Ashanti Trade Route 1850 10 Km	\(0.008\)	\(0.003\)	\(0.005\)
Dummy if Railroad 1932 10 Km	\(0.035\)	\(0.014\)	\(0.021\)
Dummy if Road 1930 10 Km	\(0.006\)	\(-0.003\)	\(0.009^{***}\)
Log Urban Population 1891	\(0.025^{***}\)	\(0.023^{***}\)	\(0.002\)
Log Urban Population 1901	\(0.001\)	\(-0.000\)	\(0.001\)
Log Urban Population 1931	\(-0.001\)	\(-0.000\)	\(-0.001\)
Log Rural Population 1901	\(-0.002\)	\(-0.003^{*}\)	\(0.001\)
Log Rural Population 1931	\(-0.000\)	\(-0.001\)	\(0.000\)
Log Normalized Slave Exports 15th-19th Centuries	\(0.001\)	\(0.004\)	\(-0.002\)
Dummy if Slave Market 1800 50 Km	\(0.004\)	\(0.011^{**}\)	\(-0.007\)
Dummy if Palm Oil Plantation 1900-1936 50 Km	\(-0.052^{**}\)	\(-0.019\)	\(-0.033\)
Dummy if Kola-Producing Cell 1932	\(-0.022\)	\(-0.028^{**}\)	\(0.006\)
Dummy if Rubber Plantation 1900-1936 50 Km	\(0.030\)	\(0.024\)	\(0.005\)
Dummy if Cocoa-Producing Cell 1927	\(-0.001\)	\(0.004\)	\(-0.004\)
Dummy if Mine (Central Location) 1932 50 Km	\(-0.038^{**}\)	\(-0.029^{**}\)	\(-0.009\)
R-squared	0.68	0.50	0.33

Notes: For 2,069 cells, we regress a dummy if there is an European missionary at any point in 1846-1890 on a dummy if there is a mission at any point in 1846-1890, and the variables of Table 1. We lose 2,091 - 2,069 = 22 cells for which we know there was a mission but do not have information on whether an European missionary was present. Col. (2)-(3): We know whether the European missionary uses the station as his place of residence or frequently visits the station. We omit the coefficients of area, rainfall, altitude, ruggedness, soil fertility, and a dummy if it was surveyed by the 1901 Census. Robust SE’s: * \(p<0.10\), ** \(p<0.05\), *** \(p<0.01\). See Web Appendix for data sources.
Table 8: CORRELATES OF THE MISSION SCHOOLS, LONG-DIFFERENCES

Dependent Variable:	Dummy if Mission School in the Cell in Selected Year:			
	1850	1875	1897	1932
	(1)	(2)	(3)	(4)
Dummy if Mission School in ... / 1850 / 1875 / 1897	0.348**	0.351***	0.205***	0.074***
Dummy if Mission in Selected Year	0.677***	0.475***	0.198***	0.152***
Historical Malaria Index	-0.000	0.000	-0.006*	0.023***
Dummy if Port in the Cell 1850	0.113**	-0.028	0.283***	0.254***
Log Distance to Coast	-0.006	-0.000	0.005	0.052***
Dummy if Large Pre-Colonial City 1800	0.033*	-0.125	-0.100	-0.088
Dummy if Headchief Town 1901	0.022**	-0.016	0.085**	0.035
Dummy if Outside Gold Coast Colony 1850	0.003	-0.002	-0.013	0.053**
Dummy if Largest or 2nd Largest City 1901	0.289***	0.025	-0.073	0.309***
Dummy if Navigable River 10 Km	-0.000	0.001	0.011	0.035**
Dummy if Ashanti Trade Route 1850 10 Km	0.003	-0.004	-0.001	-0.006
Dummy if Non-Ashanti Trade Route 1850 10 Km	-0.003**	0.006*	-0.002	-0.011
Dummy if Railroad 1932 10 Km	0.007*	0.003	-0.001	0.005
Dummy if Road 1930 10 Km	0.000	0.002	-0.007	0.010
Log Urban Population 1891	0.000	0.005	0.018***	0.013*
Log Urban Population 1901	-0.005***	-0.001	0.004	0.023***
Log Urban Population 1931	0.001*	-0.001	0.001	0.008***
Log Rural Population 1901	-0.002**	0.001	0.002	0.008**
Log Rural Population 1931	0.000	-0.000	-0.001	-0.003***
Log Normalized Slave Exports 15th-19th Centuries	0.000	-0.002	-0.006**	0.003
Dummy if Slave Market 1800 50 Km	0.000	0.001	-0.003	-0.020**
Dummy if Palm Oil Plantation 1900-1936 50 Km	-0.011*	0.002	0.036*	0.029
Dummy if Kola-Producing Cell 1932	0.004	-0.010	0.009	0.020
Dummy if Rubber Plantation 1900-1936 50 Km	0.015*	-0.016*	-0.027	0.070***
Dummy if Cocoa-Producing Cell 1927	-0.003	0.009	-0.010	0.085***
Dummy if Mine (Central Location) 1932 50 Km	-0.008	-0.002	-0.027*	-0.050**
R-squared	0.79	0.65	0.57	0.45

Notes: For 2,091 cells and period [t-1,t], we regress a dummy if there is a school in t on a dummy if there is a school in t-1, a dummy if there is a mission in t, and the variables of Table 1. We omit the coefficients of area, rainfall, altitude, ruggedness, soil fertility, and a dummy if it was surveyed by the 1901 Census. Robust SE’s: * p<0.10, ** p<0.05, *** p<0.01. See Web Appendix for data sources.
Dependent Variable:	Dummy if Mission of Denomination in the Cell in Year:			
	(1) 1850	(2) 1875	(3) 1897	(4) 1932
Dummy Mission Same Denom. .../1850/1875/1897	0.607***	0.443***	0.396***	
Dummy Mission Other Denom. .../1850/1875/1897	-0.037	0.001	0.065**	
DummyMissionSameDenom.15Km.../1850/1875/1897	0.202***	0.278***	0.205***	
DummyMissionOtherDenom.15Km.../1850/1875/1897	-0.046	-0.020	-0.003	
Historical Malaria Index	-0.002*	-0.002	0.005***	-0.002
Dummy if Port in the Cell 1850	0.104*	0.089*	0.095**	0.043
Log Distance to Coast	-0.008*	-0.007	0.003	-0.018*
Dummy if Large Pre-Colonial City 1800	-0.054	-0.139*	-0.079***	-0.054
Dummy if Headchief Town 1901	-0.011	0.022	-0.003	0.077***
Dummy if Outside Gold Coast Colony 1850	0.002	-0.000	0.006	0.091***
Dummy if Largest or 2nd Largest City 1901	0.568***	-0.151	0.244***	-0.014
Dummy if Navigable River 10 Km	-0.012***	-0.008**	0.019**	0.012
Dummy if Ashanti Trade Route 1850 10 Km	0.006**	0.006**	-0.003	0.017**
Dummy if Non-Ashanti Trade Route 1850 10 Km	0.006**	0.005**	0.001	0.016
Dummy if Railroad 1932 10 Km	-0.007	-0.014	0.017	0.026
Dummy if Road 1930 10 Km	-0.001	-0.003	0.002	-0.003
Log Urban Population 1891	0.007***	0.013***	0.002	0.003
Log Urban Population 1901	0.002*	0.003	0.003	0.004
Log Urban Population 1931	0.001	0.000	0.002	0.003
Log Rural Population 1901	0.001	0.001	0.002	0.003
Log Rural Population 1931	-0.000	-0.001	-0.001	0.006***
Log Normalized Slave Exports 15th-19th Centuries	-0.000	-0.003**	-0.000	0.013***
Dummy if Slave Market 1800 50 Km	0.002	-0.004*	-0.013***	0.002
Dummy if Palm Oil Plantation 1900-1936 50 Km	0.007	0.010	0.022	0.053***
Dummy if Kola-Producing Cell 1932	-0.012***	-0.007	0.018*	0.058***
Dummy if Rubber Plantation 1900-1936 50 Km	0.004	0.003	0.000	0.044***
Dummy if Cocoa-Producing Cell 1927	0.003	0.008	0.033***	0.076***
Dummy if Mine (Central Location) 1932 50 Km	-0.010*	-0.002	-0.015	0.086***

Denomination Fixed Effects; Observations: Y; 4,182 Y; 4,182 Y; 6,273 Y; 8,364

Notes: Pooled regressions for potentially 2,091 cells x 4 denominations (Methodist, Presbyterian, Catholic, and other) = 8,364 observations. Col. (1)-(2): We only consider Methodists and Presbyterians since other mission societies were not present in Ghana then (2,091 cells x 2 = 4,182). Col. (3): We exclude Other Protestants because they were not present in Ghana then (2,091 cells x 3 = 6,273). We always add denomination fixed effects. We do not report the coefficients of land area, rainfall, altitude, ruggedness, soil fertility, and a dummy if it was surveyed by the 1901 Census. Robust SE’s clustered at the cell level. * p<0.10, ** p<0.05, *** p<0.01.
Table 10: CORRELATES OF MISSIONS, LONG-DIFF., DENOMINATION-SPECIFIC EFFECTS

Effect of Interaction with Dummy if:	Catholic 1897	Other Prot. 1932	Other Prot. 1932
Historical Malaria Index	-0.006**	-0.035***	-0.006
	[0.003]	[0.007]	[0.005]
Dummy if Port in the Cell 1850	0.351***	0.043	0.325**
	[0.128]	[0.099]	[0.134]
Log Distance to Coast	-0.007	-0.091***	0.003
	[0.011]	[0.022]	[0.019]
Dummy if Large Pre-Colonial City 1800	-0.208	-0.140***	0.153
	[0.230]	[0.053]	[0.112]
Dummy if Headchief Town 1901	0.021	0.095*	0.055
	[0.042]	[0.055]	[0.060]
Dummy if Outside Gold Coast Colony 1850	-0.008	0.160***	-0.078**
	[0.013]	[0.038]	[0.033]
Dummy if Largest or 2nd Largest City 1901	0.570**	-0.132*	-0.034
	[0.264]	[0.077]	[0.178]
Dummy if Navigable River 10 Km	-0.021*	0.054**	0.038*
	[0.013]	[0.026]	[0.020]
Dummy Ashanti Trade Route 1850 10 Km	0.003	-0.015	0.023
	[0.007]	[0.017]	[0.015]
Dummy Non-Ashanti Trade Route 1850 10 Km	-0.002	0.004	-0.026*
	[0.007]	[0.016]	[0.014]
Dummy if Railroad 1932 10 Km	-0.044*	-0.037	0.055
	[0.024]	[0.049]	[0.053]
Dummy if Road 1930 10 Km	-0.005	0.025*	-0.007
	[0.004]	[0.013]	[0.011]
Log Urban Population 1891	-0.006	-0.011	0.006
	[0.005]	[0.008]	[0.008]
Log Urban Population 1901	-0.013***	0.011	0.013**
	[0.004]	[0.007]	[0.006]
Log Urban Population 1931	-0.002	0.006	-0.010***
	[0.002]	[0.004]	[0.004]
Log Rural Population 1901	-0.012***	-0.002	-0.009*
	[0.003]	[0.005]	[0.005]
Log Rural Population 1931	0.001	0.011***	-0.003**
	[0.001]	[0.002]	[0.002]
Log Norm. Slave Exports 15th-19th Centuries	0.009***	0.044***	-0.009
	[0.004]	[0.007]	[0.007]
Dummy if Slave Market 1800 50 Km	0.027***	0.079***	-0.011
	[0.007]	[0.016]	[0.014]
Dummy if Palm Oil Plantation 1900-36 50 Km	-0.083***	-0.077*	0.021
	[0.023]	[0.040]	[0.041]
Dummy if Kola-Producing Cell 1932	-0.032*	-0.171***	0.057
	[0.016]	[0.036]	[0.037]
Dummy if Rubber Plantation 1900-36 50 Km	0.026	0.189***	0.060
	[0.022]	[0.040]	[0.037]
Dummy if Cocoa-Producing Cell 1927	-0.051***	0.044	-0.030
	[0.015]	[0.035]	[0.035]
Dummy if Mine (Central Loc.) 1932 50 Km	0.023	-0.066	-0.010
	[0.016]	[0.041]	[0.038]

Denomination FE; Observations Y; 6,723 Y; 8,364 Y; 6,273

Notes: Pooled regressions for 2,091 cells x 4 denominations (Methodist, Presbyterian, Catholic, Other). Col. (1): We focus on 1875-1897, when Other Protestants were not present (2,091 x 3 = 6,723). We interact the locational characteristics with a dummy equal to one if the dependant variable is for Catholic missions (Catholic). Col. (3): We interact the locational characteristics with a dummy equal to one if the dependant variable is for Other Protestant missions (Other Prot.). We drop Catholics to only compare Protestants (2,091 x 3 = 6,723). Col. (1)-(3): We add denomination fixed effects. We do not report the coefficients of the Catholic/Other Prot. dummy, the non-interacted characteristics, and the interactions of the Catholic/Other Prot. dummy with land area, rainfall, altitude, ruggedness, soil fertility, and a dummy if it was surveyed by the 1901 Census. Robust SE’s clustered at the cell level: * p<0.10, ** p<0.05, *** p<0.01.
Table 11: CORRELATES OF MISSIONARY EXPANSION, LONG-DIFFERENCES, ETHNIC FE

Dependent Variable	Dummy if Mission in the Cell in Selected Year:			
	1850	1875	1897	1932
(1)	(2)	(3)	(4)	
Any Mission in ... / 1850 / 1875 / 1897	0.573***	0.396***	0.211***	
Historical Malaria Index	-0.007***	-0.005	0.012	-0.025**
(0.003)	(0.004)	(0.008)	(0.012)	
Dummy if Port in the Cell 1850	0.158	0.200**	0.134	-0.137*
(0.102)	(0.101)	(0.083)	(0.073)	
Log Distance to Coast	-0.018	-0.037**	-0.018	-0.065**
(0.013)	(0.016)	(0.026)	(0.025)	
Dummy if Large Pre-Colonial City 1800	0.035	-0.216*	0.023	-0.311***
(0.047)	(0.116)	(0.163)	(0.047)	
Dummy if Headchief Town 1901	-0.007	0.058	-0.008	0.009
(0.029)	(0.040)	(0.044)	(0.036)	
Dummy if Outside Gold Coast Colony 1850	0.011	0.015*	0.039*	0.101***
(0.010)	(0.009)	(0.023)	(0.036)	
Dummy if Largest or 2nd Largest City 1901	0.742***	-0.318**	0.097	-0.049
(0.072)	(0.130)	(0.185)	(0.055)	
Dummy if Navigable River 10 Km	-0.015***	-0.018**	0.040**	0.034
(0.005)	(0.008)	(0.019)	(0.025)	
Dummy if Ashanti Trade Route 1850 10 Km	0.009	0.012**	-0.003	0.013
(0.006)	(0.006)	(0.011)	(0.016)	
Dummy if Non-Ashanti Trade Route 1850 10 Km	0.010***	0.010*	0.006	0.033**
(0.004)	(0.005)	(0.011)	(0.015)	
Dummy if Railroad 1932 10 Km	-0.012	-0.024	0.081**	0.076*
(0.012)	(0.018)	(0.041)	(0.042)	
Dummy if Road 1930 10 Km	-0.003	-0.002	0.003	0.009
(0.003)	(0.004)	(0.009)	(0.015)	
Log Urban Population 1891	0.014***	0.025***	0.008	0.004
(0.004)	(0.006)	(0.007)	(0.006)	
Log Urban Population 1901	-0.001	0.008**	0.023***	-0.010*
(0.003)	(0.003)	(0.006)	(0.006)	
Log Urban Population 1931	0.001	-0.001	0.019***	0.032**
(0.002)	(0.002)	(0.004)	(0.006)	
Log Rural Population 1901	0.001	0.001	0.007**	0.035***
(0.001)	(0.001)	(0.003)	(0.004)	
Log Rural Population 1931	-0.001	-0.001**	-0.001	0.015***
(0.001)	(0.001)	(0.001)	(0.002)	
Log Normalized Slave Exports 15th-19th Centuries	-	-	-	-
Dummy if Slave Market 1800 50 Km	0.005	-0.008	-0.032***	-0.004
(0.005)	(0.005)	(0.011)	(0.017)	
Dummy if Palm Oil Plantation 1900-1936 50 Km	0.010	0.027	0.078**	0.067*
(0.014)	(0.019)	(0.035)	(0.039)	
Dummy if Kola-Producing Cell 1932	-0.028***	-0.023*	0.031	0.114***
(0.010)	(0.012)	(0.025)	(0.036)	
Dummy if Rubber Plantation 1900-1936 50 Km	0.008	0.023*	-0.027	0.019
(0.015)	(0.014)	(0.033)	(0.039)	
Dummy if Cocoa-Producing Cell 1927	-0.003	0.007	0.059**	0.088**
(0.011)	(0.011)	(0.025)	(0.037)	
Dummy if Mine (Central Location) 1932 50 Km	-0.015	-0.014	-0.015	0.139***
(0.010)	(0.016)	(0.029)	(0.041)	

| Ethnic Group Fixed Effects (N = 34) | Y | Y | Y | Y |

Notes: For 2,091 cells and period [t-1; t], we regress a dummy if there is a mission in t on a dummy if there is a mission in t-1 and characteristics proxying for geography, political conditions, transportation, population and economic activities (separated by dashed horizontal lines). We do not report the coefficients of land area, rainfall, altitude, ruggedness, soil fertility, and a dummy if it was surveyed by the 1901 Census. Robust SE’s: * p<0.10, ** p<0.05, *** p<0.01. See Web Appendix for data sources.
Table 12: HISTORICAL TRADE ROUTES AND MISSIONARY EXPANSION, ROBUSTNESS

Dependent Variable: Dummy if Any Mission in the Cell in Selected Year:	(1) 1850	(2) 1875	(3) 1897	(4) 1932
Panel A: Excl. Trade Route Surveyed by Missionary + Extra Controls for Slave Trade				
Dummy if Ashanti Trade Route 1850 10 Km	0.011	0.012**	-0.007	0.005
	[0.0065]	[0.0059]	[0.0111]	[0.0156]
Dummy if Non-Ashanti Trade Route 1850 10 Km	0.013***	0.012**	0.000	0.030*
	[0.0045]	[0.0052]	[0.0109]	[0.0157]
Other Controls from Table 1	Y	Y	Y	Y

Notes: For 2,091 cells and each period \([t-1; t]\), we regress a dummy if there is a mission in \(t\) on a dummy if there is a mission in \(t-1\) and the variables of Table 1. We exclude a non-Ashanti trade route surveyed by a missionary (Ramseyer in 1886) and add log distances to slave markets and slave routes circa 1800 to the included “Dummy Slave Market 1800 50 Km”. Robust SE’s: * \(p<0.10\), ** \(p<0.05\), *** \(p<0.01\).

Table 13: MALARIA AND MISSIONARY EXPANSION, INTENSIVE MARGIN

Dependent Variable:	Dummy if / Number of Mission(s) in Cell \(c\) in Year \(t\) (Period: 1783-1897):	(1)	(2)	(3)	(4)	(5)	(6)
Hist. Malaria \(\times\) Post-1840	0.897***	0.897***	0.235***	0.235***	0.391***	0.391***	
	[0.022]	[0.022]	[0.039]	[0.039]	[0.033]	[0.033]	
Dummy if Mission in \(t\)	0.001***	0.001***	0.001**	0.001**	0.001***	0.001***	
	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]	
Hist. Malaria \(\times\) 1810-1840	-0.000	0.000	-0.000	0.000	0.000	0.000	

Notes: Col. (1)-(6): For 2,091 cells \(c\) and 115 years \(t\) (1783-1897) \((N = 240,465)\), we regress the log number of missions / a dummy if there is a main station / a dummy if there is a school in cell \(c\) in \(t\) on historical malaria interacted with a dummy if the year is after 1840 (incl.) and a dummy if there is a mission in the cell in year \(t\). Col. (2), (4) and (6): We interact historical malaria with a dummy if year is between 1810 (incl.) and 1840 (excl.). Robust SE’s clustered at the cell level: * \(p<0.10\), ** \(p<0.05\), *** \(p<0.01\). See Web Appendix for data sources.

Table 14: RAILROAD DUMMIES AND MISSIONARY EXPANSION, LONG-DIFFERENCES

Dependent Variable: Dummy if Mission in the Cell in Selected Year:	(1) 1932	(2) 1850	(3) 1875	(4) 1897
Panel A:				
Dummy Railroad 1932 0-10 Km	0.136***	-0.016	-0.006	0.026
	[0.051]	[0.020]	[0.022]	[0.047]
Dummy Railroad 1932 10-20 Km	0.028	-0.025	0.019	-0.091**
	[0.055]	[0.019]	[0.019]	[0.037]
Dummy Railroad 1932 20-30 Km	0.150***	-0.001	0.037	-0.019
	[0.052]	[0.023]	[0.023]	[0.041]
Dummy Railroad 1932 30-40 Km	0.070	-0.017	0.025	-0.043
	[0.055]	[0.023]	[0.027]	[0.038]
Panel B:				
Dummy Railroad 1932 0-30 Km	0.082**	-0.008	0.008	-0.011
	[0.040]	[0.015]	[0.015]	[0.028]
Other Controls from Table 1	Y	Y	Y	Y

Notes: For 2,091 cells and each period \([t-1; t]\), we regress a dummy if there is a mission in \(t\) on a dummy if there is a mission in \(t-1\) and characteristics proxying for geography, political conditions, transportation, population and economic activities (see Table 1). Since we include a lag of the dependent variable, these cross-sectional regressions can be interpreted as long-difference regressions. Panel A: Using four railroad dummies (0-10, 10-20, 20-30 and 30-40 Km) instead of one railroad dummy (0-10 Km) as in Table 1. Panel B: Using one railroad dummy based on 0-30 Km. Robust SE’s: * \(p<0.10\), ** \(p<0.05\), *** \(p<0.01\). See Web Appendix for data sources.
Table 15: RAILROADS, CASH CROPS AND MISSIONS, INTENSIVE MARGIN

Test	Baseline	Pre-Trend	EthnicFE	Dist.FE	Western	Placebo	IV Straight	Panel	Panel	
Panel A:										
Rail 0-30 Km	-0.026	-0.020	0.073*	0.021	0.062	0.048	0.027	0.137***	0.050***	0.001
Cash Crop Exp.	[0.035]	[0.013]	[0.038]	[0.042]	[0.0486]	[0.0373]	[0.0807]	[0.018]	[0.001]	[0.001]
Panel B:										
Rail 0-30 Km	-0.012	-0.010	-0.001	-0.001	-0.010	0.028	0.005	0.043***	0.000	0.000
Cash Crop Exp.	[0.027]	[0.013]	[0.027]	[0.032]	[0.0343]	[0.0232]	[0.0551]	[0.012]	[0.001]	[0.001]
Panel C:										
Rail 0-30 Km	-0.035	0.006	0.011	0.009	-0.049	-0.038	-0.017	0.043***	0.000	0.000
Cash Crop Exp.	[0.027]	[0.018]	[0.028]	[0.029]	[0.0355]	[0.0290]	[0.0607]	[0.013]	[0.001]	[0.001]
Obs.	2,091	2,091	2,091	2,091	2,091	2,091	75,276	181,917		

Notes: Col. (1) & (3)-(7): For 2,091 cells and period \([t-1,t]\), we regress the dep. var. on the same dep. var. defined in 1897, a dummy if a mission exists in 1932, and the controls of Table 1. Col. (2): We run the same regression for the period before the railroad was built (1875-1897). Col. (3)-(4): We add ethnic group / district (1931) FE. Col. (5): The rail dummy is defined using the Western Line only. Col. (6): We also include a rail dummy defined using placebo lines and only report the coefficient of that dummy. Col. (7): We instrument the rail dummy with a dummy if the cell is within 30 km from the straight lines Accra-Kumasi and Sekondi-Kumasi (IV F-Stat. = 153; 153; 152). Col. (8): For 2,091 cells \(c\) and 36 years \(t\) (1897-1932), we regress the dep. var. in cell \(c\) in \(t\) on a dummy if cell \(c\) is within 30 km of a railroad in \(t\). Col. (9): For 2,091 cells \(c\) and 87 years \(t\) (1846-1932), we regress the dep. var. in cell \(c\) in \(t\) on log predicted cash crop value in cell \(c\) in \(t\). Robust SE's (clustered at the cell level in Col. (8)-(9)): * \(p<0.10\), ** \(p<0.05\), *** \(p<0.01\). See Web Appx. for data sources.

Table 16: RAILROADS, CASH CROPS AND MISSIONS, DENOMINATION-SPECIFIC EFFECTS

Test	Baseline	Pre-Trend	EthnicFE	Dist.FE	Western	Placebo	IV Straight	Panel	Panel	
Panel A:										
Mainline Protestant Missions										
Rail 0-30 Km	0.098**	-0.009	0.106**	0.070*	0.155***	0.062	0.305***	0.145***	0.023***	0.002
Cash Crop Exp.	[0.039]	[0.028]	[0.044]	[0.045]	[0.0503]	[0.0379]	[0.0823]	[0.018]	[0.002]	[0.002]
Panel B:										
Catholic Missions										
Rail 0-30 Km	-0.028	-0.002	0.040	0.025	0.102*	0.016	-0.145	0.129***	0.011***	0.001
Cash Crop Exp.	[0.042]	[0.004]	[0.048]	[0.048]	[0.0568]	[0.0410]	[0.0950]	[0.017]	[0.001]	[0.001]
Panel C:										
Other Protestant Missions										
Rail 0-30 Km	0.042	0.002*	0.061	0.027	-0.020	0.0208	0.129	0.098***	0.004***	0.001
Cash Crop Exp.	[0.036]	[0.001]	[0.038]	[0.040]	[0.0522]	[0.0381]	[0.0880]	[0.013]	[0.001]	[0.001]
Obs.	2,091	2,091	2,091	2,091	2,091	2,091	75,276	181,917		

Notes: Col. (1) & (3)-(7): For 2,091 cells and period \([t-1,t]\), we regress a dummy if there is a Mainline Prot. / Catholic / Other Prot. mission in 1932 on a dummy if there is a Mainline Prot. / Catholic / Other Prot. mission in 1897, and the controls of Table 1. Col. (2): We run the same regression for the period before the railroad was built (1875-1897). Col. (3)-(4): We include ethnic group / district (1931) FE. Col. (5): The rail dummy is defined using the Western Line only. Col. (6): We also include a rail dummy defined using placebo lines and only report the coefficient of that dummy. Col. (7): We instrument the rail dummy with a dummy if the cell is within 30 km from the straight lines Accra-Kumasi and Sekondi-Kumasi (IV F-Stat. = 153; 153; 152). Col. (8): For 2,091 cells \(c\) and 36 years \(t\) (1897-1932), we regress the dep. var. in cell \(c\) in \(t\) on a dummy if cell \(c\) is within 30 km of a railroad in \(t\). Col. (9): For 2,091 cells \(c\) and 87 years \(t\) (1846-1932), we regress a dummy if there is a mission in cell \(c\) in \(t\) on log predicted cash crop value in cell \(c\) in \(t\). Robust SE's (clustered at the cell level in Col. (8)-(9)): * \(p<0.10\), ** \(p<0.05\), *** \(p<0.01\). See Web Appx. for data sources.
Table 17: CORRELATES OF MISSIONARY EXPANSION, AFRICA, ROBUSTNESS CHECKS

Dependent Variable: Dummy if Mission in the Cell in:	Beach in 1900	Roome in 1924		
	(1)	(2)	(3)	(4)
Historical Malaria Index	-0.01	0.032	-0.036***	-0.002
	[0.006]	[0.030]	[0.011]	[0.029]
Tsetse Index	0	-0.004	-0.005**	-0.011**
	[0.001]	[0.005]	[0.002]	[0.005]
Dummy if Slave Port in the Cell 1800-1900	0.054**	0.041*	0.141***	0.122***
	[0.028]	[0.022]	[0.045]	[0.031]
Log Distance to Coast	-0.002***	-0.003***	-0.002***	-0.003***
	[0.000]	[0.001]	[0.000]	[0.001]
Dummy if Large Pre-Colonial City 1400	-0.019***	-0.030***	0.02	0.047
	[0.006]	[0.009]	[0.051]	[0.037]
Dummy if Large Pre-Colonial City 1800	0.019	0.02	0.083	0.079*
	[0.049]	[0.021]	[0.080]	[0.043]
Dummy if Largest or 2nd Largest City 1901	0.058***	0.164***	0.173***	
	[0.018]	[0.020]	[0.033]	[0.024]
Year of Colonization	-0.000*	-0.000*		
	[0.000]	[0.000]		
Dummy if Centralized State (Murdock)	0			
	[0.000]			
Log Distance to Muslim Center	-0.001***	0	0.001	0.002**
	[0.000]	[0.001]	[0.000]	[0.001]
Dummy if Navigable River 10 Km	0.004***	0.003**	0.011***	0.011**
	[0.001]	[0.001]	[0.002]	[0.003]
Dummy if Lake 10 Km	0.001	0.001		
	[0.001]	[0.002]	[0.003]	[0.004]
Dummy if Explorer Route 10 Km	0.001	0.001*	0.001	0.001
	[0.000]	[0.001]	[0.001]	[0.001]
Dummy if Railroad 1900 / 1924 10 Km	0.011***	0.014***	0.026***	0.022***
	[0.005]	[0.005]	[0.003]	[0.003]
Log Population Density 1800	0	-0.000**	0.000**	0.000*
	[0.000]	[0.000]	[0.000]	[0.000]
Log City Pop. ca 1900 (Loc.≥10,000)	0.004	0.010***	0.001	0.002
	[0.003]	[0.003]	[0.005]	[0.003]
Log Urban Population 1900	0	0.002***	0.005***	0.007***
	[0.000]	[0.000]	[0.001]	[0.001]
Log Rural Population 1900	-0.000**	0.001***	0	0.001***
	[0.000]	[0.000]	[0.000]	[0.000]
Dummy if Slavery (Murdock)	0.001***		0.002**	
	[0.000]		[0.001]	
Log Normalized Slave Exports 15th-19th Centuries	0.001**		0.004***	
	[0.001]		[0.001]	
Log Predicted Cash Crop Export Value 1900 / 1924	0.001***	0.001*	0.001***	0
	[0.000]	[0.000]	[0.000]	[0.000]
Dummy if Mine 1900 / 1924 50 Km	-0.001	0	0.007***	0.003
	[0.002]	[0.002]	[0.003]	[0.002]
Dummy if Polygamy (Murdock)	0.001**		0.001**	
	[0.000]		[0.001]	

Notes: For 203,574 cells in 43 sub-Saharan Africa countries, we regress a dummy if there is a mission in Beach in 1900 (columns (1)-(2)) or a mission in Roome in 1924 (columns (3)-(4)) on characteristics proxying for geography, political conditions, transportation, population and economic activities (separated by dashed horizontal lines). In columns (1) and (3), we drop 10 countries that were early mission fields based on our own readings (Obs. = 167,179): Gambia, Ghana, Lesotho, Liberia, Madagascar, Mozambique, Nigeria, Senegal, Sierra Leone and South Africa. In columns (2) and (4), we include 1158 country-ethnic fixed effects. Variables defined at the country-ethnic group level are mechanically dropped from the regressions. Robust SE's: * p<0.10, ** p<0.05, *** p<0.01. See Web Appendix for data sources.
Table 18: CORRELATES OF MISSIONARY EXPANSION, AFRICA, MOVEMENT-LEVEL DATA

Dependent Variable:	Dummy if Any Mission in the Cell in ...					
	Room 1924 \times Catholic	Beach 1900 \times Other Prot.				
	Baseline	(1)	Baseline	(2)	(3)	(4)
Historical Malaria Index	-0.022***	0.036***	-0.008***	0.005*		
Tsetse Index	-0.004***	0.005***	-0.001***	0.003***		
Dummy if Slave Port in the Cell 1800-1900	0.062***	-0.002	0.005	-0.010		
Log Distance to Coast	-0.002***	0	-0.001***	0.000***		
Dummy if Large Pre-Colonial City 1400	0.032	-0.002	-0.011***	0.004		
Dummy if Large Pre-Colonial City 1800	0.044	0.007	0.010	-0.005		
Dummy if Largest or 2nd Largest City 1901	0.117***	-0.025	0.021**	0.003		
Year of Colonization	-0.000***	0	-0.000	-0.000		
Dummy if Centralized State (Murdock)	-0.001*	0.002***	0.001***	-0.000*		
Log Distance to Muslim Center	0.001***	0.001***	0.000	0.000		
Dummy if Navigable River 10 Km	0.006***	-0.003*	0.000*	0.003***		
Dummy if Lake 10 Km	0.005***	0.005*	0.000	0.000		
Dummy if Explorer Route 10 Km	0.001**	0.001	0.000	0.000		
Dummy if Railroad 1900 / 1924 10 Km	0.012***	-0.013***	0.005***	-0.002		
Log Population Density 1800	0	0	0.000	-0.000		
Log Urban Population 1900	0.004***	-0.003***	0.001***	0.000		
Log Rural Population 1900	0.000***	0	0.000***	0.000		
Dummy if Slavery (Murdock)	0.001***	-0.001	0.000	0.000		
Log Normalized Slave Exports 15th-19th Centuries	0.003***	-0.002***	0.000	0.001*		
Log Predicted Cash Crop Export Value 1900 / 1924	0.000**	-0.001***	0.000***	-0.000		
Dummy if Mine 1900 / 1924 50 Km	0.002*	-0.004*	0.000	-0.003***		
Dummy if Polygamy (Murdock)	0.001**	0	-0.000***	0.001***		
Fixed Effects						
Number of Obs.	407,148	407,148	407,148	407,148		

Notes: Col. (1)-(2): For 2 denominations (Protestant, Catholic) x 203,574 cells in 43 sub-Saharan African countries, we regress a dummy if there is a mission in 1924 on characteristics proxying for geography, political conditions, transportation, population and economic activities. We add denomination fixed effects. We use 1924 because only Roome has both Protestants and Catholics. In column (2), we also interact the characteristics with a dummy equal to one if the dependent variable is for Catholic missions (Catholic). Col. (3)-(4): For 2 types of denominations (Mainline Protestant, Other Protestant) x 203,574 cells in 43 sub-Saharan African countries, we regress a dummy if there is a mission in 1900 on characteristics proxying for geography, political conditions, transportation, population and economic activities. We add denomination fixed effects. We use 1900 because only Beach has detailed information on Protestants. In column (4), we also interact the characteristics with a dummy equal to one if the dependent variable is for Other Protestant missions (OtherProt.c). Robust SE’s clustered at the cell level: * p<0.10, ** p<0.05, *** p<0.01. See Web Appendix for data sources.
Table 19: CASH CROPS AND MISSIONARY EXPANSION, ROBUSTNESS CHECKS

Dependent Variable: Dummy if Mission in Year t:	Coeff.	SE	Obs.	
1. Baseline	0.028***	[0.002]	181,917	
2. Also Including Gold in Natural Resource Exports	0.033***	[0.002]	181,917	
3. Dummies if Aburi 50 Km & Basel’s Sphere of Influence	0.026***	[0.002]	181,917	
4. Using GAEZ Suitability for Cocoa and Palm Oil	0.031***	[0.002]	181,917	
5. Combined UK-Ghana Deflator	0.028***	[0.002]	181,917	
6. Ghana Deflator, Assuming No Inflation Pre-1900	0.025***	[0.002]	181,917	

Notes: For 2,091 cells c and 87 years t (1846-1932), we regress a dummy if there is a mission in cell c in t on the log of the predicted value of cash crop exports in cell c in t. Row 2: Including the predicted value of gold exports in year t in the predicted value of natural resource exports in year t. Row 3: Adding dummies if the cell is within 50 Km from the Basel Mission established at Aburi (ca 1856) or in the “sphere of influence” of the Basel Mission (map from 1873), both interacted with year fixed effects. Row 4: Using instead GAEZ data to define land suitability for both cocoa and palm oil cultivation. Rows 5-6: Using alternative deflator series to construct cash crop export value at constant prices. Robust SE’s clustered at the cell level: * p < 0.10, ** p < 0.05, *** p < 0.01. See Web Appendix for data sources.

Table 20: RAILROADS AND MISSIONS, AFRICA, INVESTIGATION OF CAUSALITY

Dependent Variable: Dummy if Mission Defined in 1900 Defined in 1924	Coeff.	SE	Coeff.	SE
1. Rail 0-30 Km	0.005***	[0.002]	0.023***	[0.002]
2. Including Country-Ethnic Group Fixed Effects (N = 1,158)	0.006**	[0.003]	0.022***	[0.003]
3. Including District ca 2000 Fixed Effects (N = 3,284)	0.006**	[0.003]	0.020**	[0.003]
4. Rail 0-30 Km Dummy Using Military-Mining Lines Only	0.006***	[0.002]	0.006***	[0.002]
5. Rail 0-30 Km Dummy Using 1916 & 1922 Placebo Lines Only	0.001	[0.001]	0.002**	[0.001]
6. IV: 30 Km from EMST Network (Drop+Ctrl Nodes; IV F = 558/899)	0.025*	[0.013]	0.048***	[0.009]

Notes: For 203,574 cells, we regress a dummy if there is an Atlas mission in 1900 (col. (1)-(2)) or 1924 (col. (3)-(4)) on characteristics proxying for geography, political conditions, transportation, population and economic activities (see Table 6, except that the railroad dummy is defined for 0-30 km instead of 0-10 km). Rows 2-3: Adding 1,158 ethnic group or 3,284 district (2000) FE. Row 4: Rail dummy based on lines built for military domination and mining only (note that the controls capture factors that make locations important for military domination or mining). Row 5: Rail dummy based on lines planned but never built (based on maps from 1916 and 1922). Row 6: The instrument is a dummy if the cell is within 30 Km from the Euclidean minimum spanning tree network based on 128 nodes being the capital, largest and second largest cities of each country ca 1900 (dropping the nodes + controlling for log Euclidean distance to the nodes of the same country) (IV F-Stat = 558). Robust SE’s: * p < 0.10, ** p < 0.05, *** p < 0.01. See Web Appx. for data sources.

Table 21: RAILROADS AND MISSIONS, AFRICA, DENOMINATION-SPECIFIC EFFECTS

Test: Protestant Missions in Roome ca. 1924	Rail 30 Km	Dummy if Mission in the Cell in Selected Year:					
Panel A:	Baseline	Ethnic FE	District FE	Military & Mining	Placebo 1916 & 1922	IV EMST Network	
(1)	0.008***	[0.001]	0.006***	0.005***	0.006***	0.002***	0.034***
(2)	0.006***	[0.001]	0.005***	0.006***	0.002***	0.034***	0.034***
(3)	0.005***	[0.001]	0.005***	0.006***	0.006***	0.034***	0.034***
(4)	0.006***	[0.002]	0.006***	0.006***	0.002***	0.034***	0.034***
(5)	0.006***	[0.002]	0.006***	0.006***	0.002***	0.034***	0.034***
(6)	0.006***	[0.002]	0.006***	0.006***	0.002***	0.034***	0.034***

Notes: Panels A-D: For 203,574 cells, we regress the dependent variable on characteristics proxying for geography, political conditions, transportation, population and economic activities (see Table 6, except that the railroad dummy is defined for 0-30 km instead of 0-10 km). Col.(1)-(6) are organized like rows 1-6 in Web Appx. Table 20 just above (see notes under the table). We use 1924 for Panels A-B because only Roome has information on both Protestants and Catholics. We use 1900 for Panels C-D because only Beach has detailed information on Protestants. Robust SE’s: * p < 0.10, ** p < 0.05, *** p < 0.01. See Web Appendix for data sources.
Table 22: Long-Term Economics Effects of Missions for Mission Map Years, Other Outcomes

Controls Included:	None (1)	Standard (2)	Ours (3)	None (4)	Standard (5)	Ours (6)
Panel A: Effect of True Mission Dummy (Ghana):	Col. (1)-(3): 1900	Col. (4)-(6): 1924				
1. Urbanization Rate 2000	43.2***	34.7***	5.3*	39.3***	37.3***	10.1***
	[2.2]	[2.5]	[3.1]	[1.6]	[1.9]	[2.4]
2. Employment Share Non-Agriculture 2000	27.9***	21.7***	3.4*	19.6***	18.3***	3.8***
	[1.7]	[1.7]	[1.9]	[1.1]	[1.1]	[1.2]
Panel B: Effect of Atlas Mission Dummy (Ghana):	Col. (1)-(3): 1900 (Beach, 1903)	Col. (4)-(6): 1924 (Roome, 1925)				
1. Urbanization Rate 2000	53.0***	36.8***	8.3	48.3***	35.8***	2.2
	[4.0]	[4.3]	[5.7]	[4.8]	[4.7]	[4.7]
2. Employment Share Non-Agriculture 2000	41.3***	30.1***	8.2*	33.2***	25.3***	3.9
	[3.9]	[3.4]	[4.3]	[4.3]	[3.8]	[3.4]
Panel C: Effect of Atlas Mission Dummy (Africa):	Col. (1)-(3): 1900 (Beach, 1903)	Col. (4)-(6): 1924 (Roome, 1925)				
1. Log Urban Population ca. 2000	0.9***	0.6***	0.1	1.1***	0.9***	0.6***
	[0.2]	[0.2]	[0.2]	[0.1]	[0.1]	[0.1]
2. Average DHS Wealth Index ca. 2000	0.8***	0.6***	0.1	1.0***	0.8***	0.4***
	[0.1]	[0.1]	[0.1]	[0.1]	[0.1]	[0.1]

Notes: Panels A-B (Ghana): Sample of 2,091 cells (row 1) and 1,895 cells (row 2). Panel C (Africa): Samples of 3,110 cells (row 1; 43 countries) and 6,387 cells (row 2; 32 countries). "Standard": Controls identified as regularly used in the literature. "Ours": Controls of Table 1 for Ghana and controls of Table 6 for Africa. Robust SE's: * p<0.10, ** p<0.05, *** p<0.01. See Web Appendix for data sources.