Morphometric variation of extant platyrrhine molars: taxonomic implications for fossil platyrrhines

Mónica Nova Delgado, Jordi Galbany, Alejandro Pérez-Pérez

The phylogenetic position of many fossil platyrrhines with respect to extant ones is not yet clear. Two main hypotheses have been proposed: the layered or successive radiations hypothesis suggests that Patagonian fossils are Middle Miocene stem platyrrhines lacking modern descendants, whereas the long lineage hypothesis argues for an evolutionary continuity of all fossil platyrrhines with the extant ones. Our geometric morphometric analysis of a 15 landmark-based configuration of platyrrhines' first and second lower molars suggest that morphological stasis, may explain the reduced molar shape variation observed. Platyrrhine lower molar shape might be a primitive retention of the ancestral state affected by strong ecological constraints throughout the radiation the main platyrrhine families. The Patagonian fossil specimens showed two distinct morphological patterns of lower molars, *Callicebus*-like and *Saguinus*-like, which might be the precursors of the extant forms, whereas the Middle Miocene specimens, though showing morphological resemblances with the Patagonian fossils, also displayed new, derived molar patterns, *Alouatta*-like and *Pitheciinae*-like, thereby suggesting that despite the overall morphological stasis of molars, phenotypic diversification of molar shape was already settled during the Middle Miocene.
Morphometric variation of extant platyrhine molars: taxonomic implications for fossil platyrhines

Mónica Nova Delgado, a Jordi Galbany, a–b and Alejandro Pérez-Pérez a

a Secció de Zoologia i Antropologia, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain.

b Center for the Advanced Study of Human Paleobiology, Department of Anthropology, George Washington University, 800 22nd Street NW, Ste 6000, Washington DC 20052, USA.

*Corresponding author:

Dr. Alejandro Pérez-Pérez

martinez.perez.perez@ub.edu

Tf. +34-934021460

Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona. Av. Diagonal 645, 08028 Barcelona – Spain.
ABSTRACT

The phylogenetic position of many fossil platyrhines with respect to extant ones is not yet clear. Two main hypotheses have been proposed: the layered or successive radiations hypothesis suggests that Patagonian fossils are Middle Miocene stem platyrhines lacking modern descendants, whereas the long lineage hypothesis argues for an evolutionary continuity of all fossil platyrhines with the extant ones. Our geometric morphometric analysis of a 15 landmark-based configuration of platyrhines' first and second lower molars suggest that morphological stasis, may explain the reduced molar shape variation observed. Platyrrhine lower molar shape might be a primitive retention of the ancestral state affected by strong ecological constraints thoughout the radiation the main platyrhine families. The Patagonian fossil specimens showed two distinct morphological patterns of lower molars, Callicebus-like and Saguinus-like, which might be the precursors of the extant forms, whereas the Middle Miocene specimens, though showing morphological resemblances with the Patagonian fossils, also diplayed new, derived molar patternss, Alouatta-like and Pitheciinae-like, thereby suggesting that despite the overall morphological stasis of molars, phenotypic diversification of molar shape was already settled during the Middle Miocene.
INTRODUCTION

Platyrrhine evolution is controversial. However, most researchers agree that they most likely constitute a monophyletic clade derived from African ancestors (Fleagle and Kay, 1997; Takai et al., 2000; Kay et al., 2004; Oliveira et al., 2009; Bond et al., 2015), although the phylogenetic position of some living taxa and the affinities of some fossil specimens are still uncertain. Currently, two different viewpoints have been proposed regarding the evolutionary history of the earliest platyrrhines and their overall relationships with extant forms. The “long lineages” hypothesis argues that the oldest known Patagonian fossils (16–20 Ma) are to be included within the extant Platyrhines (Rosenberger, 1979, 1980, 1981, 1984; Rosenberger et al., 2009; Tejedor, 2013), whereas the “layered or successive radiations” hypothesis suggests that these fossils constitute a geographically isolated stem group, phylogenetically unrelated to the crown platyrrhines, that went extinct (along with some Antillean species) (Kay, 2010; 2014; Kay and Fleagle, 2010; Kay et al., 2008). According to Kay (2014), the divergence of modern lineages occurred in the tropics. The Late Oligocene and Early Miocene platyrrhines would have branched off from the ancestral lineage when climatic conditions in Patagonia became unfavorable and the Andean uplift was a potential barrier to their dispersal. However, Tejedor (2013) has suggested that Chilecebus (20 Ma), a fossil specimen (Tejedor, 2013) from the western Andean cordillera, south of Santiago de Chile, indicates that the Andean mountains did not constitute a biogeographic barrier. Tejedor (2013) argued that a paleobiogeographic corridor throughout western South America would have allowed for a continental connectivity between the north and the southernmost fossil platyrrhines. Unfortunately, dating of the fossil specimens and fossil-based approaches for calibrating the molecular phylogeny support both models. Perez et al. (2013) have estimated a crown platyrrhine origin at around 29 Ma (27-31), which allows
for the inclusion of the fossil Patagonian primates into a crown Platyrrhini lineage showing evolutionary continuity with the Middle Miocene lineages. In contrast, Hodgson et al. (2009) have dated their origin between 16.8 and 23.4 Ma, suggesting an unlikely relationship of the early Miocene fossils with the crown platyrrhine clade (but see different temporal models in Goodman et al., 1998; Opazo et al., 2006; Chatterjee et al. 2009; Perelman et al. 2011; Wilkinson et al. 2011; Jameson Kiesling et al. 2014).

Molar morphology has been widely used to determine the phylogenetic positions of extinct specimens with respect to living forms (e.g., Kay, 1990; Rosenberger et al., 1991a, b; Benefit, 1993; Meldrum and Kay, 1997; Miller and Simons, 1997; Horovitz and MacPhee, 1999; Kay and Cozzuol, 2006; Kay et al., 2008), since tooth development is under strong genetic control (Jernvall and Jung, 2000). Recent studies have reported that molar shapes carries strong phylogenetic signals, and can be useful tool for establishing taxonomic affinities between extant and extinct catarrhine primates (Nova Delgado et al., 2015a; Gamarra et al., 2016), and also in some Platyrrine taxa (Nova Delgado et al., 2015b), with closely related species exhibiting common phenotypic traits.

Affinities of the fossil platyrrhine primates based on dental morphology

Until now, a total of 31 Early Miocene Platyrrhini fossil genera have been so far reported in the South American continent and the Caribbean: 13 in La Venta (Colombia), 8 in the Argentinian Patagonia, 5 in the Greater Antilles, 5 in Brazil, and 1 each in Chile, Bolivia and Peru (Tejedor, 2013; Bond et al., 2015). *Neosaimiri, Laventiana* (La Venta, Colombia) and *Dolichocebus* (Chubut Province, Argentina) have been included in Cebinae (Rosenberger, 2011). *Neosaimiri* is considered a direct ancestor of the extant *Saimiri* due to its similar molar shape.
(Rosenberger et al., 1990a; 1991a). Its molars exhibit sharp cusps, well-developed distal cusps, buccal cingulum, a strong buccal flare, and a distinct post-entoconid notch on molars only found in *Saimiri* and *Laventiana* (Rosenberger et al., 1991a, 1991b; Takai, 1994; Tejedor, 2008). *Laventiana* is sometimes considered a synonym of *Neosaimiri* (Takai, 1994; Meldrum and Kay, 1997), although it has been suggested to be more primitive than *Neosaimiri* (Rosenberger et al., 1991b). *Laventiana*’s teeth closely resemble those of *Saimiri* and *Cebus-Sapajus*; it shows thick-enamel bunodont molars exhibiting a small buccal cingulum and an angular cristid obliqua, lacking buccal flare (Rosenberger et al., 1991b). *Dolichocebus* has been suggested to be a member of the *Saimiri* lineage, mainly for its interorbital fenestra considered a derived feature in squirrel monkeys (Tejedor, 2008; Rosenberger et al., 2009; Rosenberger, 2010). However, Kay and colleagues (Kay et al., 2008; Kay and Fleagle, 2010) argued that *Dolichocebus* is a stem platyrrhine and that the description of the orbital region was probably affected by postmortem damage.

On the other hand, *Aotus dindensis* was first described as a sister taxon of extant *Aotus* (Setoguchi and Rosenberger, 1987), although Kay (1990) has suggested that it is probably conspecific with *Mohanamico hershkovitzi*, which may be closely related to the callitrichines, especially *Callimico*, due to their morphological similarities in the canine and the second premolar. *Aotus dindensis* is included into the Pitheciidae (Rosenberger et al., 1990a) within the Homunculinae subfamily, along with *Aotus, Callicebus* and some Argentinian and Caribbean fossil primates (Rosenberger, 1981, 2002, 2011). However, molecular phylogenetic analyses have repeatedly rejected a link between *Aotus* and Pitheciids (e.g Hodgson et al., 2009; Osterholz et al., 2009; Wildman et al., 2009), placing it as a basal cebid. Tejedor and Rosenberger (2008) proposed that *Homunculus* is likely an ancestral pitheciid because although
it shows a primitive dental morphology, it notably resembles that of *Callicebus*. The two taxa show rectangular-shaped molars, small incisors and non-projecting canines, a trait shared with *Carlocebus* (Fleagle, 1990). Nonetheless, unlike *Callicebus*, the molars of *Homunculus* exhibit well-marked crests and prominent cusps (Tejedor, 2013), and an unusual paraconid on the lower first molar (also found in *Dolichocebus*; Kay et al., 2008). Another fossil from the early Miocene known as *Soriacebus* was initially included by Rosenberger (1990) as an early Pitheciinae, due to its resemblance on the anterior dentition (Fleagle et al., 1987; Fleagle, 1990; Fleagle and Tejedor, 2002; Tejedor, 2005). However, some dental traits of *Soriacebus* (premolars-molars size, lower molar trigonid, and reduction hypocone) bear resemblance also with the callitrichines. Indeed, Kay (1990) argues that such similarities traits found between *Soriacebus* and pitheciines or with callitrichines are due to homoplasy, rather than phylogenetic relationships among such lineages (Kay, 1990). According to Kay (1990), *Soriacebus, Carlocebus, Homunculus* and all Patagonian fossils should be considered stem platyrrhines.

Xenothrix is a Late Pleistocene Caribbean fossil from Jamaica that shows a callitrichine-like dental formula (2132; MacPhee and Horovitz, 2004), low relief molars and a narrowing of intercuspal distance and augmentation of the mesial and distal crown breadths (Cooke et al., 2011), a feature also seen in *Insulacebus toussaintiana*, another Caribbean primate. Rosenberger (2002) argued that *Xenothrix* is closely related to *Aotus* and *Tremacebus* by the enlargement of the orbits and the central incisors, while MacPhee and Horovitz (2004) suggested a possible Pitheciidae affinity, due to its low relief molar pattern. Nonetheless, the puffed cusps and the lack of crenulation on the molar crown discriminate the Jamaican fossil from the Pitheciidae, suggesting that is likely that *Xenothrix* does not belong to crown platyrrhine group (Kay, 1990; Kinzey, 1992).
Cebupithecia and Nuciruptor, two Colombian Middle Miocene genera, also share some traits with the extant Pitheciidae family, mostly in the anterior dentition but also in their low molar cusps and poorly developed crests (Kay, 1990; Meldrum and Kay, 1997). Nuciruptor does not exhibit several of the shared traits among pitheciines (projecting canine and small or absent diastema). Cebupithecia, although considered to be more derived than Nuciruptor (Meldrum and Kay 1997), was interpreted by Meldrum and Kay (1997) as an example of convergent evolution, and thus, not a direct ancestor of extant pitheciines. Finally, Stirtonia (originally from Colombia but also recovered from Acre State, Brazil) exhibits similar dental size and morphology to extant Alouatta; showing molar teeth with sharp and well-formed crests, a long cristid oblique, small trigonid, and spacious talonid basin (Hershkovitz, 1970; Kay et al., 1987; Kay and Frailey, 1993; Kay and Cozzuol, 2006; Kay, 2014).

Numerous studies have examined landmark-based geometric morphometrics (GM) of molar shape for studying patterns of inter-specific variation and their implication in phylogeny and ecological adaptations (e.g., Bailey, 2004; Cook, 2011; Gómez-Robles et al., 2007, 2008, 2011; Martinón-Torres et al., 2006; Singleton et al., 2011; White, 2009; Nova Delgado et al., 2015a,b; Gamarra et al., 2016). However, in Platyrrhine primates, GM of molar shape has mainly focused on dietary adaptations (Cooke, 2011), rather than to predict the phylogenetic attribution of unclassified specimens (Nova Delgado et al., 2015a).

The aim of the present study is to use two-dimensional (2D) GM to quantify and analyze occlusal shape variation of lower molars (M₁ and M₂) of extant Platyrhini primates to assesses the affinities of the Patagonian, Colombian, and Antillanean fossil taxa with the extant forms and to estimating the efficiency of molar shape for discriminating fossil specimens.
MATERIAL AND METHODS

Images of the dental crowns, in occlusal view and including a scale line, of 12 holotypes fossil platyrrhine specimens and one fossil from Fayum (*Proteopithecus sylviae*), were obtained from the literature (Table 2). The platyrrhine fossil specimens included 12 genera (*Soriacebus*, *Dolichocebus*, *Homunculus*, *Carlocebus*, *Neosaimiri*, *Laventiana*, *Mohanamico*, *Aotus*, *Stirtonia*, *Nuciruptor*, *Cebupithecia*, and *Xenothrix*), discovered in Argentina, Colombia, and Jamaica, and dated to between Holocene and early Miocene (Table 1).

The extant comparative samples consisted in 802 adult individuals representing all recognized platyrrhine groups (3 families, 18 genera, 61 species; Table 2), whose 2D and 3D morphometric variability of lower molars has already been analysed in some platyrrine species (Nova Delgado et al., 2015b). Dental casts were obtained from original specimens housed at Museu de Zoologia Universidade de São Paulo (MZPS), Museu Nacional do Rio de Janeiro (MNRJ) in Brazil, and from Hacienda La Pacífica (HLP) in Costa Rica. The casts were made following published protocols (see Galbany et al., 2004, 2006). 2D images of molar occlusal surfaces of the extant specimens were taken with a Nikon D70 digital camera fitted with a 60-mm optical lens held horizontally on the stand base, at a minimum distance of 50 cm. The dental crown was imaged with a 0° of tilt with the cervical line perpendicular to the camera focus (Nova Delgado et al., 2015a). Images of fossil dental crowns were obtained from the literature and imported to Adobe Photoshop, where they were scaled to the same resolution (400 dpi). The images both for the extant and the fossil specimens were scaled to 5 mm and standardized to right side, with the mesial border facing to the right, the distal border to the left, and the lingual and buccal sides facing upward and downward, respectively. All images were saved at high resolution (1600 × 1200 pixel) in JPEG format.
Geometric morphometric analysis

Geometric Morphometrics (GM) quantifies shape differences between biological structures using a set of digitized homologous points (landmarks) in two-dimensional or three-dimensional spaces (Bookstein 1991; Adams et al. 2004; Slice 2005). Landmarks are numerical values (coordinates) that reflect the location and orientation of each specimen in the morphospace (Slice, 2007). A previously defined two-dimensional (2D) landmark protocol (Nova Delgado et al., 2015a, b; Gamarra et al., 2016) was adopted. The configuration consisted of 15 landmarks. Molar occlusal polygon was defined by the tips of the four main cusps (protoconid, metaconid, hypoconid, and entoconid). The crown outline was represented by eight landmarks, which included two landmarks on fissure intersections; four corresponding to maximum crown curvatures; and two in the mid mesio-distal line on the crown perimeter. Further, three landmarks were used to represent the positions of crests (Table 3 and Fig. 1) (Cooke, 2011). Landmark recording was performed with TPSDig v 1.40 (Rohlf, 2004) and landmark coordinates were then imported into MorphoJ (Klingenberg, 2011). The most commonly employed method to remove the information unrelated to shape variation is the generalized procrustes analysis (GPA) (Rohlf, 1999, 2005). GPA is based on a least squares superimposition approach that involves scaling, translation and rotation effect so that the distances between the corresponding landmarks are minimized (Rohlf and Slice, 1990; Goodall, 1991; Rohlf and Marcus 1993; Rohlf, 1999; Adams et al., 2004).

Intra-observer landmark digitizing error was measured in a subsample of 5 specimens representative of 5 different species including one fossil taxon (*Alouatta belzebul, Aotus dindensis, Callicebus personatus, Callithrix geoffroyi, Pithecia irrorata*). The landmarks were
digitized nine times during three non-consecutive days. Mean Procrustes distance between paired repetitions was 0.13328, with a standard deviation of 0.04644, and the average Pearson correlation between Procrustes distance matrices (Mantel test) of the repeated measurements was 0.9887. No significant differences in shape configurations among repetitions were obtained with a non-parametric MANOVA (Anderson, 2001): $F = 0.07729; P = 0.9997$). The inter-observed error rates were not computed since a single researcher (MND) made all the analyses.

![Figure 1. Set of landmarks used in the geometric morphometrics analyses. a) M_2: *Alouatta guariba* 23177 MNRJ; b) M_1: *Sapajus libidinosus* 23246 MNRJ.](image)

After the procrustes superimposition, the covariance matrix of all the compared shapes was used to derive a Principal Components Analysis (PCA) (Zelditch et al., 2004). The PCA of M_1 and M_2 morphometric variability of the extant species were used to explore phenetic dental similarities of fossil specimens within the extant comparative platyrrhine sample. The resulting
PCA scores were used to conduct a Linear Discriminant Function analysis (LDA) to classify fossil specimens, since PCA removes the irrelevant and redundant dimensions (Zelditch et al., 2004). LDA maximizes differences between groups but allows classifying isolated cases based on their distances to the group centroids of the extant taxa. The probability that a case belongs to a particular group is proportional to the distance to the group centroid (Kovarovic et al., 2011). The reliability of the classification was estimated from the post-hoc correct classification probability after cross-validation (pcc), and the a posteriori probability score was used as the probability that a fossil belongs to a particular group. Several LDAs were made considering different discriminant factors: 1) family (Cebidae, Atelidae, Pitheciidae), 2) the subfamily-level classification proposed by Groves (2005) (Subfamily G) (Cebinae, Saimiriinae, Callitrichinae, Pitheciinae, Callicebinae, Aotinae, Alouattinae), 3) the subfamily classification by Rosenberger (2011) (Subfamily R) (Cebinae, Callitrichinae, Pitheciinae, Homunculinae, Atelinae) (Table 4), and 4) a genus level (Cebus, Sapajus, Saimiri, Callithrix, Mico, Cebuella, Callimico, Leontopithecus, Saguinus, Aotus, Calliebus, Cacajao, Chiropotes, Pithecis, Lagothrix, Brachyteles, Atelles, Alouatta). The LDA analyses were carried out with SPSS v.15 (SPSS, Inc. 2006).

RESULTS

Principal components analyses

The first two PCs of the PCA analysis of M₁ for all platyrrhines (Fig. 2) explain 42.06 % of total shape variance (PC1 30.60%; PC2 11.46%). Positive scores on PC1 correspond to molars with a broad occlusal polygons and a mesiodistally rectangular outline; whereas a negative PC1 score are characterized by a relatively quadrangular outline and slight buccolingually rectangular
occlusal polygon resulted by displacement of distal cusps (entoconid and hypoconid) to mesio-lingually and mesial cusps (metaconid and protoconid) to distal-lingually side respectively. Positive scores on PC2 molar indicate a rectangular occlusal polygon and a mesiodistally rectangular outline, whereas negative score on PC2 reflect molars with relatively quadrangular outline and slight rectangular occlusal polygon more widely displaced to buccally side.

Figure 2. Scatterplot of the first two principal components (PCs) derived from the PCA of M1 shape variability of Platyrrhini. Grids indicate the deformations associated with the extreme values of each principal component. Ellipses represent the subfamily-level classification proposed by Groves (2005). The letters F and numbers in figure represent the fossils listed in Table 1.
Even though the PCA does not distinguish subfamilies, the plot of PC1 versus PC2 (Fig. 2, including 95% confidence ellipses of the subfamily groups) shows clear trends between subfamilies. Alouattinae clearly cluster on the positive scores of PC1, while Pitheciinae and Cebinae greatly overlap on the most negative score of PC1. The rest of the groups (Saimirinae, Callicebinae, Callitrichidae, Atellidae, and Aotinae) show intermediate values for PC1 and greatly overlap. For the second PC function (PC2), all groups greatly overlapped, though Saimirinae, Callitrichinae and Callicebinae show somewhat higher PC2 scores than the rest.

Most of the fossil specimens showed positive PC1 scores, except Carlocebus (F5) and especially Nuciruptor (F11) and Cebupithecia (F12) that had negative PC1 and positive PC2 scores. Most extinct forms overlapped with the extant platyrrhines, within Callicebinae, Callitrichinae, and Atellinae, except Xenothrix (F13), Nuciruptor and Cebupithecia, which do not.

The first two PCs for M2 (Fig. 3) accounted for 42.80% of the total variance (PC1: 28.58%; PC2: 14.22%). The molar shape changes for positive and negative PC1 scores for M2 were relatively similar to those observed for M1, whereas positive PC2 scores for M2 corresponded to the negative ones on PC2 for M1, and negative ones on PC2 for M2 were equivalent to the positive score of PC2 for M1. The PC1 versus PC2 plot (Fig. 3) showed similar distributions of the subfamilies to those for M1, although greater separations between groups were observed.

Alouattinae showed the largest, positive scores for PC1, and Pitheciinae and Cebinae the most negative scores, with the other groups showing again intermediate values. Callitrichinae and Saimiriinae were placed mainly on the negative score of the PC2 axis, although they overlapped somewhat with the other groups. Most fossil specimens again clustered on positive scores for PC1 and PC2, mainly within the dispersion of Callitrichinae, although Stirtonia (F10), and some specimens of Neosaimiri clearly fell within the Alouattinae clade, Dolichocebus (F3) within
Saimiriinae, and *Nuciruptor* (F11) was closer to Cebinae and Pitheciinae on the negative scores of PC1. *Homunculus* (F4) did not fall at all within any extant taxa, showing highly positive PC2 scores.

Figure 3. Scatterplot of the first two principal components (PCs) derived from the PCA of M\(^2\) shape variability of Platyrrhini. Grids indicate the deformations associated with the extreme values of each principal component. Ellipses represent the subfamily-level classification proposed by Groves (2005). The letters F and numbers in figure represent the fossils listed in Table 1.

Discriminant analyses of the fossil specimens

The post-hoc percentages of correct classification after cross-validation (*pcc*) were high both for M\(^1\) (Table 4a, range = [85.7–88.0%]) and M\(^2\) (Table 4b, range = [84.7–90.6%]). In both
cases the highest \textit{pcc} value was obtained when Groves' \textit{subfamily} factor was discriminated. The range of differences between \textit{pcc} values before and after cross-validation was [1.3−4.7] and in both teeth the \textit{genus} discriminant factor showed the highest decrease in \textit{pcc}. The difference in \textit{pcc} values between Groves' (Cebinae, Saimiriinae, Callitrichinae, Pitheciinae, Callicebinae, Aotinae, Atelinae, Alouattinae) and Rosenberger's (Cebinae, Callitrichinae, Pitheciinae, Homunculinae, Atelinae) \textit{pcc} values were 2.3\% for \textit{M}$_1$ and 1.6\% for \textit{M}$_2$ (Table 5). The percentage of total variance explained by the first two discriminant functions (DF1, DF2; Table 4) for all discriminant factors ranged from 63.3\% (\textit{genus}) to 100\% (\textit{family}) for \textit{M}$_1$, and from 66.1\% (\textit{genus}) to 100\% (\textit{family}) for \textit{M}$_2$. The highest percentage of total variance explained by DF1 was 56.0\% (\textit{family}) for \textit{M}$_1$ and 68.3\% (\textit{family}) for \textit{M}$_2$, and the highest one for DF2 was 44.0\% (\textit{family}) for \textit{M}$_1$ and 32.8\% (\textit{subfamily} \textit{R}) for \textit{M}$_2$.

Regarding the classification of the fossils specimens, the ranges of the \textit{a priori} classification probabilities varied depending on the discriminant factor used (Table 5; Fig. 4 shows the landmark configurations of the fossil specimens analysed). \textit{Mohanamico} showed a high probability of belonging to the callitrichines clade, as well as \textit{Carlocebus}, although the probability was smaller for \textit{M}$_2$. Both \textit{Neosaimiri} and \textit{Soriacebus} showed high probabilities of belonging to the callitrichines for \textit{M}$_1$, though to \textit{Callicebinae}/\textit{Homunculinae} for \textit{M}$_2$. \textit{Cebupithecia} (\textit{M}$_2$ not available) and \textit{Nuciruptor} neotypes showed a high probability of belonging to the pitheciid clade in LDAs. In contrast, \textit{Xenothrix} (\textit{M}$_2$ not available) likely belonged to \textit{Callithrix}, despite in the PCA this fossil specimen did not fall within Callitrichinae range. \textit{Stirtonia} was assigned to the Atelidae clade, and to \textit{Alouatta} at the genus level, except for Rosenberger' \textit{subfamily} factor for \textit{M}$_2$. \textit{Laventiana} was also classified into the atelids for \textit{M}$_1$, but was more closely related to callitrichines for \textit{M}$_2$. \textit{Aotus dindensis} showed a high probability of
belonging to *Aotus* taxa for M₁, but *Callicebus* was the group with the greatest affinity for M₂.

Finally, *Proteopithecus* showed a high resemblance with *Saimiri* for M₁, but with *Callimico* for M₂.

Figure 4. First and second molar shapes of the extinct fossil platyrhines used in this study.
DISCUSSION

The positions of the anthropoid form Proteopithecus sylviae (F1) in the morphospace and its molar shapes showed pattern resemblance to that of platyrrhines. However, because, many dental and postcranial features of P. sylviae are considered to be symplesiomorphic characters of all anthropoids, it is placed as the stem anthropoid (Kay, 1990, 2014). The recent discovery of Perupithecus ucaayaliensis, probably from the Late Eocene, suggests that this fossil exhibits similarities with Proteopithecus, also with Talahpithecus and Oligopithecidae (Bond et al., 2015). The upper molars of Perupithecus slightly resemble those of the callitrichines, but its morphology is more similar to Proteopithecus and Talahpithecus (Bond et al., 2015).

Proteopithecus sylviae differed from the extant and extinct platyrrhines in having a molar distomesially expanded, marked by a rectangular shape of the occlusal polygon (especially on M_2) (also seen in Xenothrix). Thus, if the Fayum form likely was a sister taxon to platyrrhines, the interspecific variation of shape would have shown relatively little change. This could mean that the main traits of molars shapes in platyrrhines represent retention of a primitive ancestral form. Moreover, the LDA showed a high probability of $P. sylviae$ belonging to the Cebidae clade, suggesting that the molar of the earliest ancestors of platyrrhines must have exhibited close similarity to Saimiri-Callimico. This resemblance matches with the description of an Oligocene primate fossil found in South America, Branisella (Rosenberger, 2002; Rosenberger et al., 2009), whose morphology indicates that the structural characteristics of M_2 may have been Saimiri-like, and the upper P^2 a Callimico-like (Rosenberger, 1980). However, both molar shapes of $P. sylviae$ more closely resembled Callimico than Saimiri. Furthermore, the subtriangular upper molars of Perupithecus, show relative similarity with Callimico (Bond et al., 2015). Thus,
if *P. sylviae* was a sister taxon of platyrrhines, is likely that the hypothetical ancestral molar shape of pre-platyrrhine would have been similar to a molar of *Callimico*. By contrast, if *P. sylviae* were a stem species, *Callimico* would show retention of primitive pre-anthropoid platyrrhine molar shape.

Early Miocene platyrrhines from Patagonia

Most of the traits used to identify phylogenetic affinities among Early Miocene platyrine fossils show high levels of homoplasy (Kay (1990, 2010, 2014). The present work alone cannot reject the successive radiations or the long lineages hypotheses, nor can confirm which is correct. However, the PCA showed clear trends at the subfamily level (Fig. 2 and 3). Although the fossils were not very spread out in the morphospace, many of them were located mainly within the Callicebinae and Callitrichinae range (except to *Homunculus* for M_2), showing phenetic similarities with these two extant subfamilies.

The Early Miocene fossils were mainly assigned to two taxa by the LDA; a *Callicebus*-shaped and a *Sagunus*-shaped. For example, *Dolichocebus* (F3) was classified as a pitheciid, mainly by having a square occlusal polygon (Table 4). However, although the PCA for M_1 placed this specimen in the Callicebinae range, a morphological similarity with Saimiriinae was seen for M_2 (Fig. 3a). In contrast, *Soriacebus* (F2) was related mainly to the callitrichine clade, but for M_2 the probability of belonging to this group was small (Table 4). Because, *Soriacebus* showed a rectangular occlusal polygon on M_2 and the ectoconid was inclined distolingually.

Regarding callitrichines, although *Soriacebus* also showed differences in cusp configuration, the callitrichines and *Soriacebus* share a C-shaped distal side and a somewhat straight lingual-side contour (mostly seen in *Saguinus*). Kay (1990) reported that many dental features of marmosets...
and *Soriacebus* were convergent. In contrast, Rosenberger et al. (1990b) suggested that there are some similarities with callitrichines (development of hypoconids and entoconids in the talonid), although, based on the anterior teeth, they concluded that *Soriacebus* represents the first branch of pitheciines. Although marmosets are considered derived lineages (e.g. Chatterjee et., 2009; Perelman et al., 2009; Jameson Kiesling et al., 2014), it is likely that the relation with *Soriacebus* may be due to the fact that callitrichines exhibit primitive traits on their molars, which means that both taxa share a retention of rectangular contour and occlusal polygon shape. In the case of *Carlocebus* (F5), it was classified as a Callitrichinae in the DFA. However, it has been shown to be more similar with *Callicebus* than marmosets, such as the shape contour and quadrate alignment of cusps in both molars. *Homunculus* (F4), was placed outside the range of Patagonian forms in the PCA (Fig. 2a), whereas the LDA indicated a high probability of belonging to Pitheciidae (ca. 91–99%; Table 4), and especially to *Calliebus*. Nonetheless, *Homunculus* molar showed an asymmetrical shape compared to pitheciid forms. Furthermore, unlike pitheciids, *Homunculus* cusps were predominantly inclined toward the distal side and the trigonid was almost as broad as the basin-like talonid, which means that although sharing some traits with pitheciids, its position is highly uncertain.

Middle Miocene platyrrhines from Colombia and the Caribbean Xenothrix

Many of these fossils were mostly catalogued as callitrichines, specifically into the *Saguinus* clade, except *Nuciruptor*, *Cebupithecia*, *Aotus dindensis*, and *Stirtonia*. One of the major differences between these primates and the extant forms (excep *Alouatta* and *Brachyteles*) was the rectangular-shaped molar (see *Xenothrix* below). This phenetic similarity among phyletically distinct groups of extinct primates indicates that a rectangular-shaped molar almost certainly
represents a plesiomorphy in the Patagonian fossils. Thus, the trend toward ovoid molar shape might be a derived feature in many living forms. *Laventania* (F7) exhibited distally oriented cusps on M$_1$, showing considerable resemblance with some atelid groups, which provided a confusing classification between atelids and *Callicebus* in the LDA (Table 5). Thus, the trend to rectangular shape for M$_1$ in *Laventania* differs notably from the phylogenetic relationship with Cebinae and Saimiriinae. Nonetheless, when M$_2$ was analyzed, the fossil was classified as member of the Callitrichinae clade. As with *Laventania*, some neotypes of *Neosaimiri* (F6) were classified in completely distant taxonomic groups (Table 4). However, despite these results, *Neosaimiri* was principally associated to the Cebidae family, although the molar shape was found to have more affinities with callitrichines than *Saimiri*. On the other hand, *Mohanamico* (F8) and *Aotus dindensis* (F9) have been considered by Kay and collaborators (Meldrum and Kay, 1997; Kay 2014) to belong to the same genus, despite Takai et al. (2009) have suggested that *A. dindensis* should be assigned to distinct genus. According to their molar shape, *Mohanamico* and *A. dindensis* may be classified into different species. Both fossils showed a relative rectangular shape of the outline, as well as in the occlusal polygon, although M$_2$ in both species was slightly square shaped. In fact, PCA for M$_1$ (Fig. 2a) showed that the two forms were placed closer to each other. Thus, similar molar shape might be due to the fact that the two forms must have shared relatively similar ecological niches, likely because *Mohanamico* and *A. dindensis* were found in the same locality and at the same stratigraphic level (Kay, 1990). However, the LDA indicated that the probability of classification was different for both groups. *Aotus dindensis* was mainly related to *Aotus/Callicebus*, whereas *Mohanamico* was assigned to Callitrichinae (Table 4). In the case of *Nuciruptor* (F11) and *Cebupithecia* (F12), the occlusal views in both species were relatively rounded, with a slightly rectangular alignment of cusps, and
buccally oriented, which resembles the condition in most extant Pitheciinae. Moreover, the LDA indicated that *Cebupithecia* and *Nuciruptor* had a close affinity with the Pitheciidae clade (Table 4). However, despite the two neotypes clustered close to the pitheciids, they were not placed into the extant species range (except *Nuciruptor* on M$_2$) (Fig. 2a). Several studies have suggested that, although there are important characteristics that have been associated with the living taxa, both fossils should be considered stem pitheciines (Meldrum and Kay, 1997; Kay et al., 2013; Kay, 2014).

The sister relationship between *Stirtonia* and *Alouatta* was classified in the LDA with a 99.9% probability for M$_1$ and 94.0% for M$_2$. Likewise, the PCA showed that *Stirtonia* was placed close to howler monkeys (Figs. 2a and 3a). However, differences between *Stirtonia* and *Alouatta* were mainly seen in the occlusal polygon of M$_2$. The metaconid of *Stirtonia* was located near the protoconid and the ectoconid was distolingually inclined, somewhat similar to the *Cebuella* configuration. This relationship was reflected in the high percentage of probability at the subfamily level, Callitrichinae (Table 5).

Finally, *Xenothrix* (F13), the Caribbean platyrrhine form, has been allied with pitheciids (Rosenberger, 2002; Horovitz and MacPhee, 1999). In the LDA, *Xenothrix* was mainly attributed to pitheciids, but at the genus level, it was assigned to *Callithrix* (Table 4). Thus, some resemblance with marmosets could be interpreted as convergent evolution. However, the relationship between *Xenothrix* and pitheciids was highly uncertain, given that its molar morphology (especially the occlusal configuration) differs from that of the pitheciids. It is likely that *Xenothrix* could be a single branch that evolved independently of crown platyrrhines, as was suggested by some investigations that proposed an early Antillen arrival (Iturralde-Vinent and...
MacPhee, 1999; MacPhee and Iturralde-Vinent, 1995; MacPhee and Horovitz, 2004; Kay et al., 2011; Kay, 2014).

The slow rate of phenotypic changes on molar shapes suggests that morphological stasis (different concept from long lineages hypothesis) explains the low interspecific variation between extinct and extant lineages and between Early Miocene platyrrhines (including P. sylviae) and forms from La Venta. This small phenotypic variation could be due to development and functional constraints, given the role in occlusion and mastication (Gómez-Robles and Polly 2012) and the reduced dietary diversification in platyrrhines. This ecological constraint may be related to the fact that the phenotypic adaptation of main platyrrhine families could have happened in Amazon rainforest (Jameson Kiesling et al. 2014). Following an African origin scenario, and taking into account the phenotypic similarity of the most recent discovered and oldest fossil found in Peru, *Perupithecus* (Bond et al., 2015), it is likely that the ancestor of extant platyrrhines could have exhibited a *Callimico*-like molar shape. We also observed that *Saguinus* and *Callicebus* were the main assigned groups for Patagonian fossils by the LDA, which suggests that there were both *Callicebus*-like and *Saguinus*-like morphologies in early stem platyrrhines, despite extant *Saguinus* might not represent an early branch according to molecular evidence. Currently, *Callicebus* and *Saguinus* present relatively high diversity of species and geographic range (Rylands and Mittermeier 2009). The *Callicebus* and *Saguinus* species richness probably are related to expansion and diversification of both clades in the Amazon basin, during the period of platyrrhine evolution (Ayres and Clutton-Brock, 1992; Boubli et al., 2015). Thus, it is feasible that *Callicebus*, as well as *Saguinus*, molar shape would be an ancestral precursor for the existing forms. Moreover, the Middle Miocene platyrrhines
indicate continuity in molar shape pattern with the early fossils, incorporating also new molar shapes not observed in the Patagonian forms: the *Alouatta*-like and the *Pitheciinae*-like forms.

CONCLUSIONS

This study develops a dental model based on molar shapes of M\(_1\) and M\(_2\) to explore phenotypic variation in extinct and extant platyrhines. Our results showed that morphological stasis explains the low phenotypic changes in extinct and extant platyrhine, probably due to the ecological constraint, causing by phenotypic adaptation of platyrhine in a relative narrow ecological niche. Early and Middle Miocene platyrhines shared a relative similar shape pattern, while other patterns as *Alouatta*-like and *Pitheciinae*-like were incorporated in the Colombian fossils. The relation between both fossil samples could be due to: 1. All platyrhine molar shapes share a primitive retention of the ancestral state. 2. An early divergence between two parallel shapes; a *Callicebus*-like and a *Saguinus*-like, which would be the ancestral precursors to all other forms. 3. A *Callicebus*-like and *Saguinus*-like morphology have also been seen in the early stem platyrhines.

ACKNOWLEDGEMENTS

We thank the curators and institutions for allowing us access to specimens and resources: Mario de Vivo and Juliana Gualda Barros (Museu de Zoologia Universidade de São Paulo), Leandro de Oliveira Salles, and we are especially grateful to Sergio Maia Vaz, who supported us with data acquisition (Museu Nacional do Rio de Janeiro). We also thank Mark Teaford and
Kenneth Glander for allowing us access to howler monkeys tooth molds from Hacienda La Pacífica (Costa Rica). We also thank Katarzyna Górka for helping in the teeth molding.
REFERENCES

Adams DC, Rohlf FJ, Slice D. 2004. Geometric morphometrics: ten years of progress following the ‘revolution’. Italian Journal of Zoology 71: 5-16.

Adams DC, Berns CM, Kozak KH, Wiens JJ. 2009. Are rates of species diversification correlated with rates of morphological evolution? Proceedings of the Royal Society B: Biological Sciences 276: 2729-2738.

Ayres JM, Clutton-Brock TH. 1992. River boundaries and species range size in Amazonian primates. The American Naturalist 140: 531-537.

Bailey SE. 2004. A morphometric analysis of maxillary molar crowns of Middle-Late Pleistocene hominins. Journal of Human Evolution 47: 183-198.

Benefit BR. 1993. The permanent dentition and phylogenetic position of Victoriapithecus from Maboko Island, Kenya. Journal of Human Evolution 25: 83-172.

Bond M, Tejedor MF, Campbell KE, Chornogubsky L, Novo N, Goin F. 2015. Eocene primates of South America and the African origins of New World monkeys. Nature doi:10.1038/nature14120

Bookstein FL. 1991. Morphometric tools for landmark data. Cambridge: Cambridge University Press.

Boubli JP, Ribas C, Lynch Alfaro J, da Silva MNF, Pinho GM, Farias IP. 2015. Spatial and temporal patterns of diversification in the Amazon: a test of the riverine hypothesis for all diurnal primates of Rio Negro and Rio Branco in Brazil. Molecular Phylogenetics and Evolution 82 (PB): 400-412.

Cardini A, Elton S. 2008. Does the skull carry a phylogenetic signal? Evolution and modularity in the guenons. Biological Journal of the Linnean Society 93: 813-834.

Chatterjee HJ, Ho S, Barnes I, Groves C. 2009. Estimating the phylogeny and divergence times of primates using a supermatrix approach. Evolutionary Biology 9: 259.
Collard M, Wood B. 2000. How reliable are human phylogenetic hypotheses? *Proceedings of the National Academy of Sciences* 97: 5003-5006.

Cooke SB. 2011. Paleodiet of extinct platyrrhines with emphasis on the Caribbean forms: three-dimensional geometric morphometrics of mandibular second molars. *The Anatomical Record* 294(12): 2073-91.

Cooke SB, Rosenberger AL, Turvey S. 2011. An extinct monkey from Haiti and the origins of the Greater Antillean primates. *Proceedings of the National Academy of Sciences* 108(7): 2699–704.

Goodman M, Porter CA, Czelusniak J, Page SL, Schneider H, Shoshani J, Gunnell G, Groves CP. 1998. Toward a phylogenetic classification of primates based on DNA evidence complemented by fossil evidence. *Molecular Phylogenetics and Evolution* 9: 585–598.

Fleagle JG. 1990. New fossil platyrrhines from the Pinturas Formation, southern Argentina. *Journal of Human Evolution* 19: 61-85.

Fleagle JG, Kay RF. 1997. Platyrrhines, catarrhines and the fossil record. In: Kinzey WG, ed. *New World Primates: Ecology, Evolution and Behaviour*. New York: Aldine, 3-24.

Fleagle JG, Tejedor MF. 2002. Early platyrrhines of southern South America. In: Hartwig WC, ed. *The primate fossil record*. Cambridge: Cambridge University Press, 161-173.

Fleagle JG, Powers DW, Conroy GC, Watters JP. 1987. New fossil platyrrhines from Santa Cruz Province, Argentina. *Folia Primatologica* 48: 65-77.

Flynn JJ, Guerrero J, Swisher III CC.1997. Geochronology of the Honda Group. In: Kay RF, Madden RH, Cifelli RL, Flynn JJ, ed. *Vertebrate Paleontology in the Neotropics*. Washington, D.C: Smithsonian Institution Press, 44-60.

Galbany J, Martínez LM, Pérez-Pérez A. 2004. Tooth replication techniques, SEM imaging and microwear analysis in Primates: methodological obstacles. *Anthropologie* XLII/. 1: 5-12.
Galbany J, Estebaranz F, Martínez LM, Romero A, De Juan J, Turbón D, Pérez-Pérez A. 2006. Comparative analysis of dental enamel polyvinylsiloxane impression and polyurethane casting methods for SEM research. *Microscopy Research and Technique* 69(4): 246-252.

Gamarra B, Nova Delgado M, Romero A, Galbany J & Pérez-Pérez A (2016, accepted) Phylogenetic signal in molar dental shape of extant and fossil catarrhine primates. *Journal of Human Evolution*

Gómez-Robles A, Polly PD. 2012. Morphological integration in the hominin dentition: evolutionary, developmental, and functional factors. *Evolution* 66: 1024-1043.

Gómez-Robles A, Martinón-Torres M, Bermúdez de Castro JM, Margvelashvili A, Bastir M, Arsuaga A., Pérez-Pérez A, Estebaranz F, Martínez LM. 2007. A geometric morphometric analysis of hominin upper first molar shape. *Journal of Human Evolution* 53: 272-285.

Gómez-Robles A, Martinón-Torres M, Bermúdez de Castro JM, Prado L, Sarmiento S, Arsuaga JL. 2008. Geometric morphometric analysis of the crown morphology of the lower first premolar of hominins, with special attention to Pleistocene *Homo*. *Journal of Human Evolution* 55: 627-638.

Gómez-Robles A, Martinón-Torres M, Bermúdez de Castro JM, Prado L, Arsuaga JL. 2011. A geometric morphometric analysis of hominin upper premolars: shape variation and morphological integration. *Journal of Human Evolution* 61: 688-702.

Goodall C. 1991. Procrustes methods in the statistical analysis of shape. J. R. *Proceedings of the Royal Society B: Biological Sciences* 53: 285-339.

Groves CP. 2005. Order primates. In: Wilson DE, Reeder DM, ed. *Mammal Species of the World: a Taxonomic and Geographic Reference*. Johns Hopkins University Press, 111-184.

Hershkovitz P. 1970 Notes on Tertiary platyrrhine monkeys and description of a new genus from the late Miocene of Colombia. *Folia Primatologica* 12: 1-37.

Hodgson JA, Sterner KN, Matthews LJ, Burrell AS, Rachana AJ, Raaum RL, Stewart CB, Disotell TR. 2009. Successive radiations, not stasis, in the South American primate fauna. *Proceedings of the National Academy of Sciences* 106: 5534-5539
Horovitz I, MacPhee RD. 1999. The quaternary cuban platyrrhine Paralouatta varonai and the origin of Antillean monkeys. *Journal of Human Evolution* 36(1): 33–68.

Iturralde-Vinent M, MacPhee RD. 1999. Paleogeography of the Caribbean region: Implications for Cenozoic biogeography. *Bulletin of the American Museum of Natural History* 238: 1-95.

Jameson Kiesling NM, Yi SV, Sperone G, Wildman DE. 2014. The tempo and mode of New World monkey evolution and biogeography in the context of phylogenomic analysis. *Molecular Phylogenetics and Evolution* http://dx.doi.org/10.1016/j.ympev.2014.03.027

Jernvall J, Jung HS. 2000. Genotype, phenotype, and developmental biology of molar tooth characters. *Yearbook of Physical Anthropology* 43: 171-190.

Kay RF. 1990. The phyletic relationships of extant and fossil Pitheciinae (Platyrrhini, Anthropoidea). *Journal of Human Evolution* 19: 175-208.

Kay RF. 2010. A new primate from the Early Miocene of Gran Barranca, Chubut Province, Argentina: paleoecological implications. In: Madden RH, Vucetich G, Carlini AA, Kay RF, ed. *The paleontology of Gran Barranca: evolution and environmental change through the Middle Cenozoic of Patagonia*. Cambridge: Cambridge University Press, 220-239.

Kay RF. 2014. Biogeography in deep time: What do phylogenetics, geology, and paleoclimate tell us about early platyrrhine evolution? *Molecular Phylogenetics and Evolution* http://dx.doi.org/10.1016/j.ympev.2013.12.002

Kay RF, Frailey CD. 1993. Large fossil platyrrhines from the Río Acre fauna, Late Miocene, western Amazonia. *Journal of Human Evolution* 25: 319-327.

Kay RF, Cozzuol MA. 2006. New platyrrhine monkeys from the Solimoes Formation (late Miocene, Acre State, Brazil). *Journal of Human Evolution* 50: 673-686.

Kay RF, Fleagle JG. 2010. Stem taxa, homoplasy, long lineages and the phylogenetic position of Dolichocebus. *Journal of Human Evolution* 59: 218-222.

Kay RF, Madden RH, Plavcan JM, Cifelli RL, Guerrero-Diaz J. 1987. *Stirtonia victoriae*, a new species of Miocene Colombian primate. *Journal of Human Evolution* 16: 173-196.
Kay RF, Williams BA, Ross CF, Takai M, Shigehara N. 2004. Anthropoid origins: a phylogenetic analysis. In: Ross CF, Kay RF, ed. Anthropoid Origins: New Visions. New York: Kluwer/Plenum, 91-136.

Kay RF, Fleage JG, Mitchell TRT, Colbert MW, Bown TM, Powers DW. 2008. The anatomy of Dolichocebus gaimanensis, a primitive platyrhine monkey from Argentina. Journal of Human Evolution 54, 323-382.

Kay RF, Hunt KD, Beeker CD, Conrad GW, Johnson CC, Keller J. 2011. Preliminary notes on a newly discovered skull of the extinct monkey Antillothrix from Hispaniola and the origin of the Greater Antillean monkeys. Journal of Human Evolution 60: 124–128.

Kay RF, Meldrum DJ, Takai M. 2013. Pitheciidae and other platyrhine seed predators. In: Veiga L, Barnett A, Ferrari S, Norconk M. ed. Evolutionary biology and conservation of titis, sakis and uacaris. Cambridge: Cambridge University Press, 3-12.

Hodgson JA, Sterner KN, Matthews LJ, Burrell IAS, Rachana AJ, Raaum RL, Stewart CB, Disotell TR, 2009. Successive radiations, not stasis, in the South American primate fauna. Proceedings of the National Academy of Sciences 106: 5534-5539

Kinzey WG. 1992. Dietary and dental adaptations in the Pitheciinae. American Journal of Physical Anthropology 88: 499-514.

Klingenberg CP. 2011. MorphoJ. Faculty of Life Sciences. Manchester, UK: University of Manchester.

Klingenberg CP, Gidaszewski NA, 2010. Testing and quantifying phylogenetic signals and homoplasy in morphometric data. Systematic Biology 59: 245-261.

Kovarovic K, Aiello LC, Cardini A, Lockwood CA. 2011. Discriminant functions analyses in archaeology: Are classification rates too good to be true?. Journal of Archaeological Science 38: 3006-3018.

MacPhee RDE, Iturralde-Vincent M. 1995. Origin of the Greater Antillean land mammal fauna: New Tertiary fossils from Cuba and Puerto Rico. American Museum Novitates 3141: 1-31
MacPhee RDE, Horovitz I. 2004. New craniodental remains of the Quaternary Jamaican monkey *Xenothrix mcgregori* (Xenotrichini, Callicebinae, Pitheciidae), with a reconsideration of the *Aotus* hypothesis. *American Museum Novitates* 3434: 1-51.

Martinón-Torres M, Bastir M, Bermudez de Castro JM, Gómez-Robles A, Sarmiento S, Muela A, Arsuaga JL. 2006. Hominin lower second premolar morphology: evolutionary inferences through geometric morphometric analysis. *Journal of Human Evolution* 50, 523-533.

Meldrum DJ, Kay RF. 1997. *Nuciruptor rubricae*, a new pitheciin seed predator from the Miocene of Colombia. *American Journal of Physical Anthropology* 102: 407-427.

Miller ER, Simons EL. 1997. Dentition of *Proteopithecus sylviae*, an archaic anthropoid from the Fayum, Egypt. *Proceedings of the National Academy of Sciences* 94: 13760–13764.

Nova Delgado M, Gamarra B, Nadal J, Mercadal O, Olesti O, Guàrdia J, Pérez-Pérez A, Galbany J. 2015a. Dental shape variability in cercopithecoid primates: A model for the taxonomic attribution of macaques from roman archaeological contexts. *Folia Primatologica* 85: 361-378.

Nova Delgado M, Galbany J, Górka K, Pérez-Pérez A. 2015b. Taxonomic Implications of Molar Morphology Variability in Capuchins. *International Journal of Primatology* doi:10.1007/s10764-015-9850-4

Oliveira FB, Molina ECE, Marroig G. 2009. Paleogeography of the South Atlantic: a route for primates and rodents into the New World? In: Garber PA, Estrada A, Bicca-Marques JC, Heymann EW, Strier K, ed. *South American Primates: Comparative Perspectives in the Study of Behavior Ecology and Conservation*. New York: Springer, 55–68.

Opazo JC, Wildman DE, Prychitko T, Johnson RM, Goodman M. 2006. Phylogenetic relationships and divergence times among New World monkeys (Platyrrhini, Primates). *Molecular Phylogenetics and Evolution* 40: 274–280.

Osterholz M, Walter L, Roos C. 2009. Retropositional events consolidate the branching order among New World monkey genera. *Molecular Phylogenetics and Evolution*: 507-513.
Perelman P, Johnson WE, Roos C, Seuanez HN, Horvath JE, Moreira MA, Kessing B, Pontius J, Roelke M, Rumpler Y, Schneider MP, Silva A, O’Brien SJ, Pecon-Slattery J. 2011. A molecular phylogeny of living primates. *PLOS Genetics* 3, e1001342.

Perez SI, Tejedor MF, Novo NM, Aristide L. 2013. Divergence times and the evolutionary radiation of New World monkeys (Platyrrhini, Primates): an analysis of fossil and molecular data. *PLoS One* 8(6), e68029. doi:10.1371/journal.pone.0068029

Rohlf FJ. 1999. Shape statistics: Procrustes superimpositions and tangent spaces. *Journal of Classification* 16: 197-223.

Rohlf FJ. 2004. TpsDig, version 1.40. TpsSeries. Department of Ecology and Evolution, SUNY, Stony Brook, New York.

Rohlf FJ. 2005. Geometric morphometrics simplified: review of “Geometric Morphometrics for Biologists: A Primer.” *Trends in Ecology and Evolution* 20: 13-14.

Rohlf FJ, Marcus LE. 1993. A revolution in morphometrics. *Trends in Ecology and Evolution* 8: 129-132.

Rohlf FJ, Slice D. 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. *Systematic Zoology* 39: 40-59.

Rosenberger AL. 1979. Cranial anatomy and implications of *Dolichocebus gaimanensis*, a late Oligocene ceboid primate. *Nature* 279: 416-418.

Rosenberger AL. 1980. Gradistic views and adaptive radiation of platyrrhine primates. *Zeitschrift für Morphologie und Anthropologie* 71: 157-163.

Rosenberger AL. 1981. Systematics: the higher taxa. In: Coimbra-Filho AF, Mittermeier RA, ed. *Ecology and behavior of neotropical primates*. Rio de Janeiro:Academia Brasileira de Ciencias, 9-28.

Rosenberger AL. 1984. Fossil New World monkeys dispute the molecular clock. *Journal of Human Evolution* 13: 737-742.
Rosenberger AL. 2002. Platyrrhine paleontology and systematics: the paradigm shifts. In: Hartwig WC, ed. *The primate fossil record*. Cambridge: Cambridge University Press, 151-159.

Rosenberger AL. 2010. Platyrrhines, PAUP, parallelism, and the Long Lineage Hypothesis: A replay to Kay et al. (2008). *Journal of Human Evolution* 59: 214-217.

Rosenberger AL. 2011. Evolutionary morphology, platyrrhine evolution, and systematics. *The Anatomical Record* 294: 1955–1974.

Rosenberger AL, Setoguchi T, Shigehara N. 1990a. The fossil record of callitrichine primates. *Journal of Human Evolution* 19: 209-236.

Rosenberger AL, Setoguchi T, Shigehara N. 1990b. Towards a paleontology of the New World callitrichine primates. *Journal of Human Evolution* 19: 209-236.

Rosenberger AL, Hartwig WC, Takai M, Setoguchi T, Shigehara N. 1991a. Dental variability in Saimiri and the taxonomic status of Neosaimiri fieldsi, an early squirrel monkey from La Venta, Colombia. *International Journal of Primatology* 12: 291-302.

Rosenberger AL, Setoguchi T, Hartwig WC. 1991b. Laventiana annectens, new genus and species: fossil evidence for the origins of callitrichine New World monkeys. *Proceedings of the National Academy of Sciences* 88: 2137-2140.

Rosenberger AL. Tejedor MF, Cooke SB, Halenar L, Pekkar S. 2009. Platyrrhine ecophylogenetics, past and present. In: Garber P, Estrada A, Bicca-Marques JC, Heymann EW, Strier KB, ed. *South American primates: comparative perspectives in the study of behavior, ecology and conservation*. New York: Springer, 69-113.

Rylands AB, Mittermeier RA. 2009. The diversity of the New World primates (Platyrrhini). In: Garber P, Estrada A, Bicca-Marques JC, Heymann EW, Strier KB, ed. *South American primates: comparative perspectives in the study of behavior, ecology and conservation*. New York: Springer, 23-54.

Setoguchi T, Rosenberger AL. 1987. A fossil owl monkey from La Venta, Colombia. *Nature* 326: 692-694.
Singleton M, Rosenberger AL, Robinson C, O’Neill R. 2011. Allometric and metameric shape variation in Pan mandibular molars: a digital morphometric analysis. *The Anatomical Record* 294: 322-334.

Slice DE. (Ed.), 2005. Modern Morphometrics in Physical Anthropology. Kluwer Academic/Plenum Publishers, New York.

Slice DE. 2007. Geometric morphometrics. *Annual Review of Anthropology* 36: 261-281.

SPSS, Inc., 2006. SPSS 15.0 Command Syntax Reference. SPSS Inc., Chicago IL.

Swindler DR. 2002. Primate dentition: An introduction to the teeth of non-human primates. Cambridge University Press, Cambridge.

Takai M. 1994. New specimens of *Neosaimiri fieldsi* from La Venta, Colombia: a Middle Miocene ancestor of the living squirrel monkeys. *Journal of Human Evolution* 27: 329-360.

Takai M. Anaya F, Shigehara N, Setoguchi T. 2000. New fossil materials of the earliest New World monkey, Branisella boliviana, and the problem of platyrrhine origins. *American Journal of Physical Anthropology* 111: 263-281.

Takai M. Nishimura T, Shigehara N, Setoguchi T. 2009. Meaning of the canine sexual dimorphism in fossil owl monkey Aotus dindensis, from the middle Miocene of La Venta, Colombia. In: Koppe T, Meyer G, Alt KW, ed. *Comparative Dental Morphology. Front Oral Biology*. Karger, Basel 13, 55-59.

Tejedor MF. 2003. New fossil primate from Chile. *Journal of Human Evolution* 44: 515-520.

Tejedor MF. 2005. New fossil platyrrhine from Argentina. *Folia Primatologica* 76: 146-150.

Tejedor MF. 2008. The origin and evolution of Neotropical primates. *Arquivos do Museu Nacional do Rio de Janeiro* 66(1): 251-269.

Tejedor MF. 2013. Sistemática, evolución y paleobiogeografía de los primates Platyrhini. *Revista del Museo de La Plata. Sección Zoología* 20: 20-39.
Tejedor MF, Rosenberger AL. 2008. A neotype for *Homunculus patagonicus* Ameghino, 1891, and a new interpretation of the taxon. *Paleoanthropology* 2008: 68–82.

Wildman, D.E., Jameson, N.M., Opazo, J.C., Yi, S.V., 2009. A fully resolved genus level phylogeny of Neotropical primates (Platyrhini). *Molecular Phylogenetics and Evolution* 53: 694-702.

Wilkinson RD, Steiper ME, Soligo C, Martin RD, Yang Z, Tavaré S. 2011. Dating primate divergences through an integrated analysis of palaeontological and molecular data. *Systematic Zoology* 60: 16-31.

Zelditch ML, Swiderski DL, Sheets HD, Fink WL. 2004. Geometric morphometrics for biologists: San Diego, California: Elsevier Academic Press.
Table 1: List of fossils used in the study.

Fossils	Location	Age (Ma)	Phylogenetic position	Specimen number and reference
F1 *Proteopithecus sylviae*	Fayum, Egypt	33.9 - 28.4^a	stem anthropoid^b	CGM 42209; Miller and Simons (1997)
F2 *Soriacebus* spp.	Pinturas Formation, Santa Cruz Province, Argentina	17^c	stem platyrhine^d/ Pitheciidae^e	MACN-SC 2¹, MACN-SC 5², MPM-PV 36³; Tejedor (2005)
F3 *Dolichocebus gaimanensis*	Gaiman, Chubut Province, Argentina	20^f	stem platyrhine/ sister to *Saimiri*^g	MPEF 5146; Kay et al. (2008)
F4 *Homunculus* spp.	Santa Cruz Formation, Roseemberger	16.5^b	stem platyrhine/	MACN-A5969; Tejedor and (2008)
F5 *Carlocebus* spp.	Santa Cruz Province, Argentina	18-19ⁱ	stem platyrhine/	MACN-SC 266; Fleagle (1990)
F6 *Neosaimiri fieldsi*	La Venta, Huila, Colombia	13.5 - 11.8^j sister to *Saimiri*^k		IGM-KU 89029⁴, IGM-KU 89019⁵, UCMP 39205⁶, IGM-KU 890027, IGM-KU 39034⁸, IGM-KU 89053⁹, IGM-KU 89130¹⁰; Takai (1994)
F7 *Laventiana annectens*	La Venta, Huila, Colombia	13.5 - 11.8 sister to *Saimiri*		IGM-KU 880; Roseemberger et al.,
	Species	Location	Range	Additional Information
---	----------------------------------	-------------------------	-------------	--
742	Colombia synonymy with			(1991b)
743	*Neosaimiri*			
744				
745	**F8 Mohanamico hershkouitzi**	La Venta, Huila,	13.5 -11.8	sister to *Callimico*
746		Colombia		IGM 181500; Kay (1990)
747				
748	**F9 Aotus dindensis**	La Venta, Huila,	13.5 -11.8	sister to *Aotus*; coespecific with *Mohanamico*
749		Colombia		IGM-KU 8601; Kay (1990)
750				
751	**F10 Stirtonia spp.**	La Venta, Huila,	13.5 -11.8	sister to *Alouatta*
752		Colombia		UCPM 38989; Kay et al. (1987)
753				
754	**F11 Nuciruptor rubricae**	La Venta, Huila,	13.5 -11.8	Pitheciidae; stem Pitheciinae
755	(1997)	Colombia		IGM 251074; Meldrum and Kay
756				
757	**F12 Cebupithecia sarmientoni**	La Venta, Huila,	13.5 -11.8	Pitheciidae; stem Pitheciinae
758	(1997)	Colombia		UCMP 38762; Meldrum and Kay
759				
760	**F13 Xenothrix macgregori**	Jamaica	Holocene	stem platyrhine; retaded to *Callicebus*
761				AMNHM 148198; MacPhee and Horovitz (2004)
762				

References used in the table: Miller and Simons 1997a; Kay 1990b; Fleagle et al., 1987c; (Kay, 2010; 2014d; Kay and Fleagle, 2010; Kay et al., 2008e; (Rosenberger, 1979f; Tejedor 2000g; Tejedor and Rosenberger, 2008h); Rosenberger, 1979i; Fleagle 1990j; Flynn et al., 1997k; Rosenberger et al., 1991l; (Takai, 1994; Meldrum y Kay 1997); Rosenberger et al., 1990m; (Setoguchi and
Rosenberger, 1987; Takai et al., 2009; Meldrum y Kay, 1997; (e.g., Hershkovitz P 1970; Kay et al., 1987; Cooke et al., 2011; MacPhee and Horovitz 2004).

Institutional abbreviations: CGM: Cairo Geological Museum; MPM-PV: Museo Regional Provincial Padre Manuel Jesús Molina, Río Gallegos, Argentina; MPEF: Museo Paleontológico E. Feruglio, Trelew, Chubut Province, Argentina; MACN, MACN-SC/A: Museo Argentino de Ciencias Naturales “Bernardino Rivadavia,” Buenos Aires, Argentina; SC/A denotes locality; IGM, IGM-KU: Museo Geologico del Instituto Nacional de Investigaciones Geológico-Mineras, Bogota, Colombia; KU denotes Kyoto University; UCPM: University of California Museum of Paleontology, Berkeley, California; AMNHM: Division of Vertebrate Zoology Mammalogy, American Museum of Natural History.
Table 2 List of the specimens included in this analysis of M_1 and M_2. The Subfamily-level classification was proposed by Groves (2005).

Genus / species	M_{1-2}	Collection	
Subfamily: Cebinae			
Cebus (gracile capuchins)			
1 *C. albifrons*	9	MZUSP, MNRJ	
2 *C. olivaceus*	6	MNRJ	
Sapajus (robust capuchins)			
3 *S. apella*	14	MZUSP	
4 *S. libidinosus*	15	MNRJ	
5 *S. nigritus*	15	MNRJ	
6 *S. robustus*	15	MNRJ	
7 *S. xanthosternos*	7	MNRJ	
Subfamily: Samiriinae			
Saimiri (squirrel monkeys)			
8 *S. boliviensis*	17	MZUSP, MNRJ	
9 *S. sciureus*	25	MZUSP, MNRJ	
10 *S. ustus*	18	MZUSP, MNRJ	
11 *S. vanzolinii*	8	MNRJ	
Subfamily: Callitrichinae			
Callithrix (marmosets from Atlantic Forest)			
12 *C. aurita*	11	MNRJ	
13 *C. geoffroyi*	15	MNRJ	
No.	Species	Quantity	Institution(s)
-----	------------------------	----------	----------------
801	*C. jacchus*	21	MZUSP
802	*C. kuhlii*	20	MNRJ
803	*C. penicillata*	14	MNRJ
804	*Mico* (marmosets from Amazon)		
805	*M. argentata*	21	MZUSP, MNRJ
806	*M. chrysoleuca*	16	MZUSP, MNRJ
807	*M. emiliae*	6	MZUSP
808	*M. humeralifer*	16	MZUSP
809	*M. melanurus*	8	MZUSP, MNRJ
810	*Cebuella* (pygmy marmoset)		
811	*C. pygmaea*	7	MZUSP
812	*Callimico* (goeldi’s marmoset)		
813	*C. goeldii*	4	MZUSP
814	*Leontopithecus* (lion tamarins)		
815	*L. chrysomelas*	5	MZUSP, MNRJ
816	*L. rosalia*	17	MZUSP, MNRJ
817	*Saguinus* (tamarins)		
818	*S. fuscicollis*	13	MZUSP
819	*S. imperator*	10	MZUSP
820	*S. labiatus*	9	MZUSP, MNRJ
821	*S. midas*	22	MZUSP, MNRJ
822	*S. mystax*	13	MZUSP, MNRJ
823	*S. niger*	14	MNRJ
Subfamily: Aotinae

Aotus (owl or night monkeys)

31 *A. azarae* 4 MZUSP, MNRJ
32 *A. nigriceps* 9 MZUSP, MNRJ
33 *A. trivirgatus* 21 MZUSP

Subfamily: Callicebinae

Callicebus (titi monkeys)

34 *C. bernhardi* 5 MNRJ
35 *C. cupreus* 14 MZUSP, MNRJ
36 *C. hoffmannsi* 12 MNRJ
37 *C. moloch* 16 MZUSP, MNRJ
38 *C. nigrifrons* 8 MNRJ
39 *C. personatus* 16 MZUSP, MNRJ

Subfamily: Pitheciinae

Cacajao (uakaris)

40 *C. calvus* 14 MZUSP, MNRJ
41 *C. melanocephalus* 9 MZUSP, MNRJ

Chiropotes (bearded sakis)

42 *C. albinasus* 18 MZUSP, MNRJ
43 *C. satanas* 15 MZUSP, MNRJ

Pithecia (sakis)

44 *P. irrorata* 17 MZUSP, MNRJ
45 *P. monachus* 7 MZUSP, MNRJ
Subfamily: Atelinae

Lagothrix (woolly monkeys)

47 L. cana 7 MNRJ
48 L. lagotricha 8 MZUSP

Brachyteles (muriquis)

49 B. arachoides 16 MZUSP, MNRJ
50 B. hypoxanthus 5 MNRJ

Ateles (spider monkeys)

51 A. belzebuth 2 RBINS
52 A. chamek 15 MNRJ
53 A. marginatus 20 MZUSP

Subfamily: Alouatinae

Alouatta (howler monkeys)

54 A. belzebul 15 MZUSP
55 A. caraya 15 MZUSP, MNRJ
56 A. discolor 10 MNRJ
57 A. guariba 5 MZUSP, MNRJ
58 A. g. clamita† 15 MNRJ
59 A. nigerrima 10 MNRJ
60 A. palliata 15 HLP
61 A. seniculus 15 MZUSP
62 A. ululata 7 MNRJ

† Subspecies of *Alouatta guariba*

* Institutional abbreviations: MZUSP: Museu de Zoologia Universidade de São Paulo (Brazil); MNRJ: Museu Nacional do Rio de Janeiro (Brazil); HLP: Hacienda La Pacífica.
Table 3. Landmarks considered for the geometric morphometrics analysis of dental crown shape.

Landmark	Type	Definition
1	2	Tip of the distolingual cusp (entoconid)
2	2	Tip of the mesiolingual cusp (metaconid)
3	2	Tip of the mesiobuccal cusp (protoconid)
4	2	Tip of the distobuccal cusp (hypoconid)
5	3	Most distal point of the mid mesiodistal line on the crown outline
6	2	Point of maximum curvature directly below the entoconid*
7	3	Point on the dental crown outline at the lingual groove
8	2	Point of maximum curvature directly below the metaconid*
9	3	Most mesial point of the mid mesiodistal line on the crown outline
10	2	Point of maximum curvature directly below the protoconid*
11	3	Point on the dental crown outline at the mesial groove
12	2	Point of maximum curvature directly below the hypoconid*
13	2	Midpoint between the preentocristid and postmetacristid*
14	2	Lowest point on the protocristid*
15	2	Lowest point on the crista oblique*

* Landmarks follow definitions by Cooke (2011)
Table 4. A comparison of platyrrhines at the subfamily level classifications

Genus	Subfamily by Groves (2005)	Subfamily by Rosenberger (2011)
Cebus	Ceboidea	Ceboidea
Sapajus		
Saimiri		
Callithrix		
Mico		
Cebuella	Callitrichidae	Callitrichidae
Callimico		
Leontopithecus		
Saguinus		
Aotus	Aotine	Homunculinae
Callicebus	Callicebidae	
Cacajao		
Chiropotes	Pithecinidae	Pithecinidae
Pithecia		
Lagothrix		
Brachyteles	Atelinae	Atelinae
Ateles		
Alouatta	Alouattidae	
Table 5. Summary of the LDA, including the percentage of variance for the two discriminant function (DF1 and DF2), the percentage of original grouped cases correctly classified and the percentage of cross-validated. Further, the percentage of probability that each case (fossil) belongs to the predicted group. Family: Pitheciidae, Cebidae, Atelidae; subfamily by Groves (2005) (Subfamily by G): Aotinae, Cebinae, Saimiriinae, Callitrichinae, Pitheciinae, Callicebinae, Atelinae, Alouattinae; subfamily by Rosenberger (2011) (Subfamily by R): Cebinae, Callitrichinae, Pitheciinae, Homunculinae, Atelinae; Genus: The names are listed in Table 2. Soriacebus1, 2, 3 and Neosaimiri4, 5, 6, 7, 8, 9, 10 corresponding to the holotypes numbered on Table 1.

(a) M1

Family	Subfamily by G %	Subfamily by R %	Genus %	
DF1	56.0	50.5	42.4	49.0
DF2	44.0	19.1	29.1	14.2
Classification	88.7	91.3	88.2	91.0
Cross-validation	87.4	88.0	85.7	86.3

(M1) Family % Subfamily by G % Subfamily by R % Genus %

Proteopithecus Cebidae 99.6 Saimiriinae 99.2 Cebinae 99.9 Saimiri 99.3

Soriacebus1 Cebidae 99.9 Callitrichinae 99.9 Callitrichinae 99.8 Saguinus 89.6

Soriacebus2 Cebidae 99.1 Callitrichinae 76.6 Callitrichinae 94.0 Callithrix 69.1

Dolichocebus Cebidae 86.5 Callicebinae 77.9 Homunculinae 67.4 Callicebus 86.4
Species	Family	Genus	Subfamily	Tribe	Genus	Subfamily	Tribe	Tribe	Tribe	Tribe	Tribe
Carlocebus	Cebidae	97.0	Callitrichinae	94.2	Callitrichinae	83.7	Callithrix	87.1			
Neosaimiri 4	Pitheciidae	48.5	Atelinae	48.8	Callitrichinae	52.2	Saginus	78.7			
Neosaimiri 5	Cebidae	98.4	Callitrichinae	97.5	Callitrichinae	97.3	Saginus	99.6			
Neosaimiri 6	Cebidae	97.0	Callitrichinae	76.5	Callitrichinae	94.6	Saginus	72.2			
Laventiana	Atelidae	94.6	Atelinae	44.5	Atelinae	94.9	Callicebus	53.0			
Mohanamico	Cebidae	96.2	Callitrichinae	87.3	Callitrichinae	70.3	Leontopithecus	65.4			
Aotus dindensis	Pitheciidae	59.0	Aotinae	99.7	Homunculinae	97.4	Aotus	98.7			
Stirtonia	Atelidae	98.9	Alouattinae	99.9	Atelinae	98.2	Alouatta	99.9			
Nuciruptor	Pitheciidae	99.7	Callicebinae	99.5	Homunculinae	83.6	Callicebus	63.3			
Cebupithecia	Pitheciidae	96.5	Pitheciinae	92.1	Pitheciinae	65.3	Chiroptotes	59.2			
Xenothrix	Pitheciidae	75.8	Callicebinae	30.5	Homunculinae	61.9	Callithrix	90.7			

b) M2
Family%	Subfamily by G %	Subfamily by R %	Genus %	
DF1	68.3	45.6	43.5	
DF2	31.7	29.0	22.6	
Classification	89.5	93.3	90.3	88.7
Cross-validation	88.2	90.6	89.0	84.7

(M2)	Family %	Subfamily by G %	Subfamily by R %	Genus %
Proteopithecus	Cebidae 99.4	Callitrichinae 82.3	Callitrichinae 80.3	Callimico 86.7
Soriacebus 1	Cebidae 65.6	Callicebinae 81.6	Homunculinae 58.4	Saguinus 74.6
Soriacebus 3	Atelidae 77.1	Callitrichinae 96.7	Callitrichinae 98.0	Saguinus 65.6
Dolichocebus	Cebidae 50.7	Callicebinae 92.6	Homunculinae 90.1	Callicebus 92.6
Homunculus	Pitheciidae 91.4	Callicebinae 93.7	Homunculinae 97.3	Callicebus 99.9
Carlocebus	Cebidae 55.6	Callitrichinae 58.8	Callitrichinae 50.4	Mico 72.5
Neosaimiri 7	Cebidae 98.3	Callicebinae 92.9	Cebinae 35.8	Callicebus 67.2
Neosaimiri 8	Cebidae 64.9	Callicebinae 61.2	Homunculinae 93.7	Saguinus 65.1
Neosaimiri 9	Cebidae 99.5	Callitrichinae 61.3	Callitrichinae 51.7	Saguinus 92.3
Neosaimiri 10	Cebidae 98.9	Callicebinae 84.6	Callitrichinae 71.9	Saguinus 98.3
Laventiana	Cebidae 99.9	Callitrichinae 99.8	Callitrichinae 99.7	Saguinus 40.8
Species	Family	Genus	Tribe	Subtribe
---	---	---	---	---
Mohanamico	Cebidae	Callitrichinae	94.9	Callitrichinae
Aotus dindensis	Cebidae	Callicebinae	88.9	Homunculinae
Nuciruptor	Pitheciidae	Pitheciinae	89.7	Pitheciinae
Stirtonia	Atelidae	Alouattinae	86.0	Callitrichinae