The balance of powers: Redox regulation of fibrogenic pathways in kidney injury

Daryl M. Okamura a,⁎, Subramaniam Pennathur b

a Seattle Children’s Research Institute, Department of Pediatrics, University of Washington, Seattle, WA, USA

b University of Michigan, Department of Medicine, Division of Nephrology, Ann Arbor, MI, USA

ARTICLE INFO

Article history:
Received 31 July 2015
Received in revised form 22 September 2015
Accepted 22 September 2015
Available online 26 September 2015

Keywords:
Oxidative stress
Oxidized amino acids
Mass spectrometry
Chronic kidney disease
Fibrosis

ABSTRACT

Oxidative stress plays a central role in the pathogenesis of diverse chronic inflammatory disorders including diabetic complications, cardiovascular disease, aging, and chronic kidney disease (CKD). Patients with moderate to advanced CKD have markedly increased levels of oxidative stress and inflammation that likely contribute to the unacceptable high rates of morbidity and mortality in this patient population. Moderate oxidative stress is defined as an imbalance of the generation of reactive oxygen species (ROS) in excess of the capacity of cells/tissues to detoxify or scavenge them. Such a state of oxidative stress may alter the structure/function of cellular macromolecules and tissues that eventually leads to organ dysfunction. The harmful effects of ROS have been largely attributed to its indiscriminate, stochastic effects on the oxidation of protein, lipids, or DNA but in many instances the oxidants target particular amino acid residues or lipid moieties. Oxidant mechanisms are intimately involved in cell signaling and are linked to several key redox-sensitive signaling pathways in fibrogenesis. Dysregulation of antioxidant mechanisms and overproduction of ROS not only promotes a fibrotic milieu but leads to mitochondrial dysfunction and further exacerbates kidney injury. Our studies support the hypothesis that unique reactive intermediates generated in localized microenvironments of vulnerable tissues such as the kidney activate fibrogenic pathways and promote end-organ damage. The ability to quantify these changes and assess response to therapies will be pivotal in understanding disease mechanisms and monitoring efficacy of therapy.

© 2015 Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.redox.2015.09.039
2213-2317/© 2015 Published by Elsevier B.V.

Contents

1. Background ... 496
2. Oxidative regulation of the fibrotic response .. 496
 2.1. NADPH oxidase ... 496
 2.2. Nox-dependent pathways in kidney injury .. 497
3. Neutralizing the oxidant response .. 499
 3.1. Protein thiols .. 499
 3.2. Reduction of hydrogen peroxide ... 499
 3.3. Redox regulation of mitochondrial ROS .. 499
4. Biomarkers of pathologic oxidant pathways .. 500
 4.1. Myeloperoxidase ... 500
 4.2. Mitochondrial electron transport ... 500
 4.3. Uncoupled eNOS ... 500
 4.4. Glycoxidation .. 500
 4.5. Glucose-polyunsaturated fatty acids ... 500
 4.6. Detection of oxidized biomolecules in vivo .. 500

Abbreviations: AGEs, advanced glycation end-products; ALE, advanced lipoxidation end-products; BH4, tetrahydrobiopterin; CML, N′-(carboxymethyl)lysine; eNOS, endothelial nitric oxide synthase; ESRD, end stage renal disease; MS, mass spectrometry; HO•, hydroxyl radical; HODE, hydroxyoctadecadienoic acid; H2O2, hydrogen peroxide; HOCl, hypochlorous acid; LDL, low density lipoprotein; MPO, myeloperoxidase; NEFA, non esterified fatty acid; NOX, NAD(P)H oxidase; NO•, nitric oxide; NO2•, nitrogen dioxide; ONOO−, peroxynitrite; PUFA, polyunsaturated fatty acid; RAGE, Receptor for AGE; RNase, ribonuclease; O2•−, superoxide anion

⁎ Corresponding author. Fax: +1 206 884 1407.
E-mail address: daryl.okamura@seattlechildrens.org (D.M. Okamura).
1. Background

Oxygen forms the basis of aerobic life but, it is well-recognized that it can be modified by cellular metabolism to form highly reactive free radicals termed as “reactive oxygen species” (ROS) which in turn can form a variety of intermediates including “reactive nitrogen species” (RNS). Oxidative stress may be viewed as an essential consequence related to the fundamental biological need for utilization of molecular oxygen (O2) for energy production from simple aerobic eukaryotes to more complex mammalian species [1]. While physiological levels of such oxidants have a beneficial role in energy production, cellular signaling and host defense, excess oxidants can lead to pathological consequences. Acute kidney injury (AKI) is characterized by the sudden deterioration of kidney function and is associated with a high incidence of morbidity and mortality [2]. Chronic kidney disease (CKD) affects approximately 26 million people in the US and premature death from cardiovascular disease and from all causes (CKD) affects approximately 26 million people in the US and premature death from cardiovascular disease and from all causes. Although once distinct, however, evidence from experimental models and recent epidemiological studies suggest that AKI and CKD are closely interconnected: AKI can result in end-stage kidney disease (ESKD), AKI is a risk factor for CKD, CKD is a risk factor for AKI, and both are risk factors for cardiovascular disease [2,4]. The exact mechanisms by which AKI initiates or accelerates CKD in humans are unknown and as a result there are currently no therapies to halt or reverse AKI or to address the relentless progression of CKD.

Fibrosis is characterized by maladaptive wound repair following tissue injury that leads to the progressive accumulation of interstitial matrix proteins with gradual destruction of renal tubules and functional nephrons. Increased oxidative stress is a consistent characteristic of both AKI and CKD. Although once conceptualized as a random process, it is now recognized that oxidant-mediated injury occurs along predictable pathways and through specific cell types. One of the ways that oxidant and antioxidants may affect disease pathogenesis is through the modulation of reversible oxidation-reduction (redox) processes. Redox is a dynamic process that involves the ROS/RNS to oxidize a critical protein, such as a kinase, phosphatase or enzyme, and an antioxidant, typically a thiol containing protein such as glutathione (GSH) to reduce the protein back to its original state [5,6]. Redox signaling is advantageous because ROS/RNS are diffusible, permitting action at a distance. In this review, we will discuss the major oxidant and redox sensitive pathways in kidney injury and fibrosis.

2. Oxidative regulation of the fibrotic response

Oxidative stress is commonly viewed as a disturbance in the balance between oxidant production and antioxidant defense mechanisms within the tissue. Both acute and chronic kidney injury are characterized by an over-production of oxidants in the presence of a diminished antioxidant reserve. This imbalance of pro-oxidants or free radicals can oxidize macromolecules such as proteins, lipids, and nucleic acids altering redox sensitive pathways resulting in subsequent cell and tissue injury (Fig. 1).
2.2. Nox-dependent pathways in kidney injury

Nox proteins are increasingly recognized as important mediators and modulators of specific intracellular signal transduction pathways by activating redox-sensitive kinases. Potential mediators include angiotensin II, endothelin-1, hypercholesterolemia, shear stress, non-esterified fatty acids, hyperglycemia, and growth factors that can also augment Nox activity. Angiotensin II may represent a pathophysiologically relevant pathway for stimulating the production of reactive intermediates in the kidney because inhibitors of this pathway lower the risk for renal progression [18].

Nox4 appears to produce a higher H$_2$O$_2$ to superoxide ratio compared to Nox1, Nox2, and Nox5. Studies strongly suggest that H$_2$O$_2$ formation occurs via the third extracytosolic loop (E-loop) of Nox4 that is 28 amino acids longer than that of Nox1 or Nox2. The E-loop of Nox4, in contrast to Nox1 and Nox2, contains highly conserved histidine that could serve as a source of protons to accelerate spontaneous dismutation of superoxide to form H$_2$O$_2$ [19].

Nox4 is the predominant form in the kidney due to its expression in proximal tubules and is up-regulated in renal tubular epithelial cell injury and diabetic nephropathy. Nox4 is also present in podocytes, mesangial cells, and microvascular endothelial cells making it a key oxidation complex in the kidney.

Mesangial cell hypertrophy and podocyte injury are two important disease promoting pathways in the progression of diabetic nephropathy and other glomerular diseases, the leading causes of chronic kidney disease and end-stage kidney disease. In cultured mesangial cells, glucose elicits a rapid upregulation in Nox4 protein levels, including in the mitochondrial fraction and is associated with an increase in cellular and mitochondrial ROS production [20–22]. In diabetic nephropathy and other kidney diseases, Angiotensin II (Ang II) activates glomerular mesangial cells and leads to hypertrophy and extracellular matrix accumulation. Ang II induces an increase in 3-phosphoinositide-dependent protein kinase-1 (PDK-1) kinase activity that requires phosphorylation on tyrosine 9 and 373/376. Mutation of these tyrosine sites blocks AngII-dependent mesangial cell hypertrophy and fibronectin accumulation. The tyrosine kinase Src is upstream of PDK-1 and is the site of redox regulation. Small interfering RNA for Nox4 inhibits Ang II-induced activation of Src and PDK-1 tyrosine phosphorylation [23].

Nox4 localizes to mitochondria in mesangial cells and the cortex of the kidney and silencing of Nox4 blocks glucose-induced mitochondrial superoxide generation [20]. In cardiac myocytes, over-expression of Nox4 leads to an increase in ROS oxidation of cysteine residues in mitochondrial proteins [24]. In endothelial cells, Nox4 depletion induced alterations in mitochondria morphology, stabilized mitochondrial membrane potential, and decreased production of H$_2$O$_2$ and that Nox4-derived ROS decreased mitochondrial function via disruption of the electron transport chain I. These findings suggest that mitochondrial electron transport chain may be a downstream effector of Nox4. In addition, two recent studies demonstrated that another important downstream target of Nox4-derived ROS is the uncoupling of endothelial nitric oxide synthase (eNOS) and a decrease in nitric oxide (NO) bioavailability [21,25]. Lee and colleagues demonstrated that mesangial cell fibronectin production induced by Ang II involved the reaction of Nox4-derived superoxide with eNOS-derived NO resulting in ONOO$^-$ that subsequently uncouples eNOS further promoting superoxide generation [25]. Eid and colleagues demonstrated in a rat model of diabetes that Nox4-dependent eNOS uncoupling induced by hyperglycemia not only eliminates the protective effect of eNOS-derived NO but enhances ROS generation and the mesangial cell fibrotic response. They further identified two novel upstream...
regulators of Nox4, Sestrin 2 and AMP-activated protein kinase (AMPK) [21]. Sestrin 2 and AMPK are important for the maintenance of metabolic homeostasis and also function as stress-inducible proteins that are critical for the suppression of ROS production from oxidative stress [26–29]. Sestrin 2 counteracts Nox4-derived ROS production by blocking the rapid upregulation of Nox4 protein elicited by hyperglycemia. AMPK mediates the inhibitory effects of Sestrin 2 on hyperglycemia-stimulated and Nox4-dependent eNOS dysfunction and extracellular matrix protein accumulation in mesangial cells. In summary, hyperglycemia promotes AMPK inactivation via downregulation of Sestrin 2, which leads to increased Nox4 and Nox4-derived ROS production followed by eNOS uncoupling and a decrease in NO bioavailability and enhancement of the mesangial cell fibrotic response.

Podocytes demand a high energy supply that is primarily derived from the respiratory chain of mitochondria to maintain cellular functions like the organization of cytoskeletal and other extracellular matrix proteins. Dysregulation in the metabolic homeostasis of the podocytes may result in podocyte injury and glomerular disease. In diabetic nephropathy and other chronic kidney diseases characterized by albuminuria there is an increase in Nox4 and ROS production especially in podocytes [30–32]. In human podocytes both Nox4 and Nox5 are expressed and upon exposure to hyperglycemia Nox4 mRNA expression significantly increases but has no effect on Nox5 mRNA expression [33]. Stimulation of human podocytes with Ang II upregulated Nox5 expression and increased ROS generation, while silencing of Nox5 blocked ROS and altered podocyte cytoskeleton and lead to a more motile phenotype [34]. As mice do not express Nox5, transgenic mice expressing human Nox5 in a podocyte-specific manner led to early onset albuminuria, podocyte foot process effacement, and elevated systolic blood pressure. Subjecting the mice to streptozotocin-induced diabetes further exacerbated these changes [34]. Even in nondiabetic kidney injury, ROS plays a major role in progressive glomerular injury. The cytosolic p47phox subunit is a key regulator of the assembly of Nox1 and Nox2 and its expression and phosphorylation are upregulated during kidney injury. Deletion of p47phox protected mice from albuminuria and glomerulosclerosis in experimental models of focal segmental glomerulosclerosis (FSGS) [35].

Hyperglycemia, transforming growth factor beta (TGFβ), and Ang II promote podocyte apoptosis. Hyperglycemia results in ROS production and podocyte apoptosis via sequential regulation of Nox oxidases by cytochrome P450 of the 4A family (CYP4A). Up-regulation of CYP4A leads to increased generation of 20-hydroxyecosatetraenoic acid (20-HETE) and subsequent increase in Nox1 and Nox4, and blocking 20-HETE production by inhibiting CYP4A not only inhibited podocyte apoptosis in vitro but decreased oxidative stress, podocyte apoptosis, and proteinuria in a diabetic model [36]. During hyperglycemia, Nox4 promotes podocyte cell death via activation of p53- and PUMA-dependent apoptotic pathways [32]. Furthermore, the oxidative stress triggered by hyperglycemia appears to be exacerbated by Nox4-derived ROS that affects the balance between oxidants and antioxidants through decreasing activity of key antioxidant enzymes such as glutathione peroxidase and catalase [37].

Myofibroblasts are the major matrix producing cells in fibrosis and are hallmarkd by their expression of α-smooth muscle actin (αSMA) and their contractile phenotype. The origins of myofibroblasts are strongly debated at present [38], and the role of oxidative stress in fibrotic cell transformation has been reported in all cells of origin [39–47]. Both Nox4 and Nox2 are expressed in kidney fibroblasts, and both homologs are upregulated by TGFβ1, implicating their importance and the role of ROS in activation of the profibrotic phenotype. Upon TGFβ1 activation, Nox4 expression levels greatly exceed Nox2 and siRNA inhibition of Nox4 substantially inhibits αSMA and extracellular matrix production [48,49]. TGFβ1 binds to a receptor on the cell surface and forms a complex of subunits called TGFRI and TGFRII. Both TGFRI and TGFRII activate serine/threonine kinases that subsequently signal through the Smad family of transcription factors [50,51]. However, unlike cardiac and lung myofibroblasts where Nox4 acts upstream of Smad2/3 [52,53], Nox4 is positioned downstream of Smad3 and proximal to ERK in kidney myofibroblast activation and extracellular matrix production [49]. A recent study by Manickam and colleagues demonstrated that in kidney myofibroblasts inhibition of RhoA and Rho A kinase (ROCK) reduced TGFβ1 stimulation of Nox4 protein, NADPH oxidase activity, and myofibroblast activation suggesting that RhoA/ROCK is upstream of Nox4 myofibroblast signaling. Interestingly, RhoA/ROCK seems to act via increasing the expression of polymerase (DNA-directed) δ-interacting protein 2 (Polydip2), a newly discovered Nox4 enhancer protein [43]. Furthermore, a recent study by Becker and colleagues suggests that the persistent fibrosis in aging may be related to a redox imbalance between Nox4 and the antioxidant response protein nuclear factor (erythroid derived-2)-related factor 2 (Nrf2). Lung fibroblasts from aged mice showed sustained expression levels of Nox4 and an impaired capacity to induce Nrf2. In fibroblasts from human subjects with idiopathic pulmonary fibrosis (IPF), Nox4 mediated a senescent and apoptotic resistant phenotype and genetic and pharmacologic targeting of Nox4 in aged mice showed a reversal of established tissue fibrosis [53]. You et al. recently showed that NOX4 is a major mediator of diabetes-associated glomerular dysfunction through targeting of renal fumarate hydrolase, which increases fumarate levels. These authors propose that fumarate is a key link connecting metabolic pathways to diabetic kidney disease pathogenesis, and measuring urinary fumarate levels may have application for monitoring renal NOX4 [54]. Thus, Nox4 may serve as a viable redox-sensitive target for modulation of fibrosis and diabetic kidney disease [55,56].

The role of Nox4 in renal tubular cells, however, has been more controversial. Several studies have demonstrated that tubular toxins such as glycated albumin and the uremic toxins indoxyl sulfate and p-cresyl sulfate, trigger Nox-dependent fibrogenic pathways [57–61]. During the progressive loss of glomerular filtration, there is increasing inability of the kidney to remove uremic toxins from the bloodstream. Particular attention has been paid to protein bound uremic toxins in the prototype group of phenols and indoles. Both indoxyl sulfate and p-cresyl sulfate have been shown to accumulate in patients with progressive chronic kidney disease and have been linked with increasing cardiovascular mortality [62–65]. A recent study by Watanabe and colleagues [60] demonstrated that Nox4- and p22phox-based NADPH oxidase derived ROS is a significant mediator of p-cresyl sulfate-dependent human tubular cell damage and increased expression of inflammatory cytokines and profibrotic factors. The study also showed that accumulation of p-cresyl sulfate contributes to renal tubular injury and extracellular matrix deposition in the 5/6 nephrectomized rat model of CKD. However, studies by Babelova and colleagues [66] and Nlandu Khodo and colleagues [67] demonstrated that global or cell-specific transgenic deletion of Nox4 in several experimental models of chronic kidney injury did not reduce fibrosis and in some cases resulted in increased tubular apoptosis and oxidative stress and suggested that Nox4 in certain instances of tubular injury was protective. Possible explanations to these conflicting results from the studies discussed above could be, at least in part, attributed to: (1) the importance of Nox4-dependent ROS in homeostasis and early response to injury; (2) different models of diabetes [33]; (3) the genetic manipulation used to generate the global or cell-specific knockouts; and (4) another example of where genetic mouse models do not accurately represent
the human condition. Therefore, use of pharmacologic inhibitors of Nox may be a preferred approach than genetic manipulation to study its utility in clinical studies.

3. Neutralizing the oxidant response

The ability to reduce or remove ROS and RNS by endogenous antioxidant enzymes is a key step in limiting tissue injury and modulating redox sensitive pathways. During both acute and chronic injury, many intracellular and extracellular antioxidant systems become depleted resulting in increased oxidative stress within the tissue. Several antioxidant defense systems have evolved to detoxify specific free radicals.

3.1. Protein thiols

A thiol is a compound that contains the functional group –SH (reduced) and can be oxidized to sulfenic acid resulting in disulfide formation (oxidized). Thiol groups react with almost all physiologic oxidants and serves as a key antioxidant buffer for both intracellular and tissue reduction/oxidation (redox) state [68]. Redox reactions of thiol proteins are thought to be a major mechanism by which reactive oxidants integrate into the cellular signal transduction pathways [69–73]. Thiol proteins are well suited as targets because cysteine residues are sensitive to oxidation, and changes in enzymatic activity or binding characteristics due to oxidation provide a mechanism for transmission of the signal. Reactive thiols (–SH) in proteins are subject to a wide array of modifications in oxidation state. Cysteine residues (HO2CCH(NH2)CH2–SH) in proteins and enzymes serve important roles in cell signaling, protein-protein interactions, substrate and metal binding, and catalysis. [5,68]. It has been proposed that approximately 0.5% of all cysteine residues in the proteome are subject to continuous and reversible oxidation–reduction cycles and that this redox cycling controls many aspects of structure and function in cells [74,75]. As our understanding of signaling networks has become more sophisticated, it has become evident that key regulators play essential roles in multiple outcomes that are context dependent. For example, a recent study by Numajiri and colleagues demonstrated that phosphatase with sequence homology to tensin (PTEN) is highly sensitive to relative low concentrations of NO and that its enzymatic activity is inhibited by the resulting S-nitrosylation (SNO) of Cys-83. The authors further demonstrated that at low physiological concentrations of NO, SNO-PTEN is formed and enhanced Akt phosphorylation, whereas high (pathologic) concentrations of NO, SNO-PTEN is formed and enzymatic activity is inhibited by the resulting S-nitrosylation (SNO) of Cys-83. The thioredoxin system (thioredoxin, thioredoxin reductase, and peroxiredoxin) are ubiquitous and abundant proteins, with different family members distributed throughout the cytoplasm, mitochondria, and other cell compartments [81]. These thioredoxin proteins are highly abundant in the renal tubules [82], but it’s role in CKD is not known. Catalase is also a key enzyme in antioxidant defense in the kidney during injury. Studies of progressive kidney disease in catalase-deficient mice demonstrated that loss of catalase buffering capacity leads to an increase in oxidative products and more severe renal fibrosis [47,83].

3.2. Reduction of hydrogen peroxide

Peroxiredoxins, glutathione peroxidase, thioredoxin reductase, and catalase represent an important group of enzymes that reduce hydrogen peroxide. Thiol proteins likely represent an important partner in the ability of these enzymes to limit the oxidative damage of H2O2. For example, intracellular recycling of oxidized glutathione peroxidase by GSH and oxidized peroxiredoxin by thioredoxin enable these enzymes to inactivate greater amounts of H2O2. The thioredoxin system (thioredoxin, thioredoxin reductase, and peroxiredoxin) are ubiquitous and abundant proteins, with different family members distributed throughout the cytoplasm, mitochondria, and other cell compartments [81]. These thioredoxin proteins are highly abundant in the renal tubules [82], but it’s role in CKD is not known. Catalase is also a key enzyme in antioxidant defense in the kidney during injury. Studies of progressive kidney disease in catalase-deficient mice demonstrated that loss of catalase buffering capacity leads to an increase in oxidative products and more severe renal fibrosis [47,83].

3.3. Redox regulation of mitochondrial ROS

After an ischemic or toxic insult, dysfunction of tubular epithelial cells plays a key role in the evolution of AKI. Central to tubular injury is mitochondrial dysregulation manifesting as a reduction in cell respiration and ATP production [84–86]. Mitochondrial function rests on a complex molecular machinery of finely tuned and balanced by regulatory proteins of two opposing forces fission and fusion [87,88]. In experimental AKI, fission predominates, resulting in mitochondrial fragmentation, outer membrane permeabilization, and release of apoptogenic factors which together with ROS overproduction determine tubular cell injury and apoptosis [85,89].

Homologs of the Saccharomyces cerevisiae, sirtuins, promote longevity in many organisms and are an evolutionarily conserved family comprising 7 proteins with NAD1-dependent deacetylase activity in mammals, 3 of which (SIRT3–SIRT5) are mainly localized in the mitochondrion [90]. SIRT3 is the major mitochondrial deacetylase that maintains basal ATP levels by direct physical association with complex I and the activation of F1FoATPase, as well as ROS homeostasis through the regulation of detoxifying enzymes [90–93]. SIRT3 overexpression protects cells against Bax-mediated apoptosis, acting on NF-kB downstream target genes such as manganese SOD (MnSOD) and Bcl2, thus making cells resistant to H2O2-mediated cell injury [94]. Elevated expression levels of SIRT3 in the kidney reduces ROS and ameliorates mitochondria dynamics that translate into the longevity phenotype in mice deficient for angiotensin II type 1 receptor [95]. In cisplatin tubular injury models, increased oxidative stress and mitochondrial fragmentation are associated with reduced levels of SIRT3. Treatment with an AMPK agonist or the antioxidant agent acetyl-l-carnitine (ALCAR) restored SIRT3 levels, improved renal function, and decreased tubular injury in wild-type animals but had no effect on SIRT3-deficient mice. SIRT3-deficient mice had more severe AKI than wild-type animals and died. In proximal tubular cells, SIRT3 is critical in preserving mitochondrial integrity by preventing dyna

min-related protein-dependent (DRP1-dependent) fission, loss of membrane potential, and PTEN-induced putative kinase 1-related (PINK1-related) mitophagy [96]. Therapeutic agents to augment...
SIRT3 to stabilize and preserve mitochondrial function hold great promise not only for AKI but also for CKD as well.

4. Biomarkers of pathologic oxidant pathways

During disease progression, there are several key oxidant pathways that lead to the excessive generation of oxidative intermediates. Amino acids and lipids serve as natural targets of these pathways and can serve as biomarkers of organ injury in addition to serving as a ROS/RNS intermediate.

4.1. Myeloperoxidase

Myeloperoxidase (MPO) which is present in phagocytes can be used to generate several oxidative intermediates: H₂O₂ can be used by MPO to convert chloride ion to hypochlorous acid (HOCl) [97,98]; and oxidation of NO* with oxygen yields nitrite (NO₂⁻) which MPO converts to nitrogen dioxide radical (NO₂*), a potent nitrating intermediate [99,100]. Lipoproteins oxidized by MPO have been detected in human atherosclerotic lesions [101]. Lipoproteins oxidized by MPO on proteins by a hydroxyl radical-dependent mechanism [125]. Glucose auto-oxidation has been reported to mediate covalent linkage of glucose to amino groups on proteins by a hydroxyl radical-dependent mechanism [125]. Glucose also reacts nonenzymatically with proteins to form the reversible Schiff base adduct, which subsequently can rearrange itself into the stable Amadori product and advanced glycosylation end products (AGE). In vitro, free metal ions catalyze steps in a nonenzymatic glycoxidation pathway that generates AGE products. Metal-catalyzed hydroxyl radical formation can peroxidize lipids and convert phenylalanine residues of proteins into isomers of tyrosine such as ortho-tyrosine and meta-tyrosine [126–128]. Reduced, redox-active metal ions (M²⁺) such as Fe²⁺ and Cu⁺ generate hydroxyl radical (HO*) when they react with H₂O₂. AGEs can damage tissues through a number of mechanisms, including generation of oxidizing intermediates, formation of immune complexes, interaction with a cellular receptor called RAGE (Receptor for AGE), and induction of cytokine release [129,130]. Although RAGE binds to AGE-modified proteins in vitro with high affinity, its ligands in vivo are unclear. High levels of AGEs accumulate in renal failure, even in nondiabetic patients, and this process reverses after renal transplantation, implicating the kidneys in AGE production and/or clearance [131–134]. Many studies have shown that age-adjusted levels of pentosidine and N-carboxymethyllysine, two known AGE products, correlate with the development of diabetic complications [127,135–138].

4.4. Glycoxidation

The glycoxidation pathway is particularly relevant in high-glucose states such as diabetes mellitus, a well-established cause of CKD. In its open-chain form, glucose has a carbonyl group that is a target of oxidative chemistry. Glucose auto-oxidation has been reported to mediate covalent linkage of glucose to amino groups on proteins by a hydroxyl radical-dependent mechanism [125]. Glucose also reacts nonenzymatically with proteins to form the reversible Schiff base adduct, which subsequently can rearrange itself into the stable Amadori product and advanced glycosylation end products (AGE). In vitro, free metal ions catalyze steps in a nonenzymatic glycoxidation pathway that generates AGE products. Metal-catalyzed hydroxyl radical formation can peroxidize lipids and convert phenylalanine residues of proteins into isomers of tyrosine such as ortho-tyrosine and meta-tyrosine [126–128]. Reduced, redox-active metal ions (M²⁺) such as Fe²⁺ and Cu⁺ generate hydroxyl radical (HO*) when they react with H₂O₂. AGEs can damage tissues through a number of mechanisms, including generation of oxidizing intermediates, formation of immune complexes, interaction with a cellular receptor called RAGE (Receptor for AGE), and induction of cytokine release [129,130]. Although RAGE binds to AGE-modified proteins in vitro with high affinity, its ligands in vivo are unclear. High levels of AGEs accumulate in renal failure, even in nondiabetic patients, and this process reverses after renal transplantation, implicating the kidneys in AGE production and/or clearance [131–134]. Many studies have shown that age-adjusted levels of pentosidine and N-carboxymethyllysine, two known AGE products, correlate with the development of diabetic complications [127,135–138].

4.6. Detection of oxidized biomolecules in vivo

ROS and RNS intermediates are difficult to detect in vivo because they are extremely short-lived due to their high reactivity with substrates; however, these oxidized substrates may serve as biomarkers for the activation of relevant oxidative pathways. Immunohistochemistry and dihydroethidium fluorescence have been extensively used to study oxidation-specific epitopes and oxidant
production. These techniques are highly sensitive, and their ability to provide epitope-specific structural data can localize oxidative events to cell types or to subcellular locations. However, they are nonspecific as antibodies can bind to structurally similar compounds and, at best, only semiquantitative. Mass spectrometry (MS) offers a highly sensitive and specific approach to quantify oxidative biomarkers. When combined with isotope dilution, in which a labeled internal standard which is identical to the target analyte except for the heavy isotope is added to the mixture, accurate quantification can be achieved.

4.7. Oxidized amino acid content correlates with degree of oxidative stress in vivo.

To understand the molecular mechanisms that promote oxidative stress in vivo, we first identified the patterns of oxidation products that are formed by well-characterized antioxidant-generating model systems. The phenylalanine residues in proteins when subjected to glycoxidation or hydroxyl radical damage form ortho-
tyrosine and meta-tyrosine. Oxidation reactions of tyrosine re-
sidues include cross-linking (to form oo–dityrosine; mediated by tyrosine radicals, ROS and RNS), chlorination (to form 3-chlor-
tyrosine; catalyzed by myeloperoxidase) and nitration (to from 3-nitrotyrosine; mediated by RNS). Quantifying these unnatural amino acids characterizes the underlying oxidative pathway oper-
ative in target tissue. Using a combination of free radical gener-
ating systems in vitro and studying biospecimens from animal models of disease and humans, we and others defined patterns of these oxidative biomarkers that accurately indicate pathways of ox-
idation that are activated [101,104,118,123,124,139–141]. Si-

5. Conclusions

Using a wide variety of different biomarkers of increased ox-
Idative stress status, numerous laboratories around the world have now unequivocally demonstrated that CKD and ESKD is a state of increased oxidative stress due to an overproduction of ROS and a diminished antioxidant reserve. This leads to a dysregulation in redox signaling pathways that augment kidney injury and pro-
mote fibrogenesis. Disappointingly, traditional approaches with broad antioxidants to reduce systemic oxidative stress have not resulted in significant alterations in limiting or reversing disorders in which oxidative stress has been implicated by model system studies. Such observations highlight the importance of doc-
umenting that a proposed antioxidant intervention actually in-
hbits oxidative reactions in vivo [160–162]. The ability to accu-
rently quantify amino acid and lipid oxidation markers in tissue samples, plasma, and urine can provide a means of monitoring the efficacy of therapeutic interventions, in addition to providing mechanistic insights into disease pathogenesis. Potential therapies interrupting only reactive pathways that are activated in target tissues are likely to be beneficial in modulating kidney injury and hold the promise of attenuating the relentless progression of CKD.

Acknowledgements

This work is supported in part by grants from the National Institutes of Health: HL094230 (SP); DK094292 (SP), DK089503 (SP), DK082841 (SP), DK081943 (SP), and DK097153 (SP); and from the Cystinosis Research Foundation (DO) (Date of award is from 9/1/13–8/31/15).

References

[1] V.J. Thanickal, Oxygen in the evolution of complex life and the price we pay, Am. J. Respir. Cell Mol. Biol. (2008) 507–510.
[2] L.S. Chawla, P.W. Eggers, R.A. Star, P.L. Kimmel, Acute kidney injury and chronic kidney disease as interconnected syndromes, New Engl. J. Med. 371 (2014) 38–66.
[3] P.A. McCullough, S. Li, C.T. Jurkovitz, L. Stevens, A.J. Collins, S.C. Chen, K. Block, A. Eid, K.K. Griendling, D.Y. Lee, Y. Gorin, Nox4 NAD(P)H oxidase restrains the matrix metalloproteinase activity of macrophages, J. Biol. Chem. 286 (15) (2011) 13312–13320.
[4] L.S. Chawla, P.W. Eggers, R.A. Star, P.L. Kimmel, Acute kidney injury and chronic kidney disease: an integrated clinical syndrome, Kidney Int. 82 (5) (2012) 516–524.
[5] H.J. Forman, J.M. Fukuto, M. Torres, Redox signaling: thioul chemistry defines which reactive oxygen and nitrogen species can act as second messengers, Am. J. Physiol. Cell Physiol. 287 (2) (2004) C246–C256.
[6] M. Kemp, Y.M. Go, D.P. Jones, Nonequilibrium thermodynamics of thioul/disulfide redox systems: a perspective on redox systems biology, Free Radic. Biol. Med. 44 (6) (2008) 921–937.
[7] D.M. Okamura, J. Himmelfarb, Tipping the redox balance of oxidative stress in fibrogenic pathways in chronic kidney disease, Pediatr. Nephrol. 24 (12) (2009) 2309–2315.
[8] S.C. Bhow, Y.S. Bae, S.R. Lee, J. Kwon, Hydrogen peroxide: a key messenger that modulates protein phosphorylation through cystine oxidation, Sci. STKE 2000 53 (2000) PE1.
[9] J.D. Lambert, NOX enzymes and the biology of reactive oxygen, Nat. Rev. Immunol. 4 (3) (2004) 181–189.
[10] K. Bedard, K.H. Krause, The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology, Physiol. Rev. 87 (1) (2007) 245–313.
[11] B.H. Segal, B.A. Davidson, A.D. Hutson, T.A. Russo, B.A. Holm, B. Mullan, M. Habirzruther, S.M. Holland, P.R. Knight 3rd, Acid aspiration-induced lung inflammation and injury are exacerbated in NADPH oxidase-deficient mice, Am. J. Physiol. Lung.: Cell Mol. Physiol. 292 (3) (2007) L760–L768.
[12] X.P. Gao, T.J. Standiford, A. Rahman, M. Newsome, S.T. Holland, M.C. Dinauer, Q.H. Liu, A.B. Malik, Role of NADPH oxidase in the mechanism of lung neu-
trophi sequestration and microvessel injury induced by Gram-negatives sepsis: studies in p47phox−/− and gp91phox−/− mice, J. Immunol. 168 (8) (2002) 3974–3982.
[13] D.E. Morgenstern, M.A. Gifford, L.L. Li, C.M. Doerschuk, M.C. Dinauer, Absence of respiratory burst in X-linked chronic granulomatous disease mouse leads to abnormalities in both host defense and inflammatory response to Aspergul-
lus fumigatus, J. Exp. Med. 185 (2) (1997) 207–218.
[14] S.Y. Kassim, X. Fu, W.C. Lines, S.D. Shapiro, W.C. Parks, J.W. Heinecke, NADPH oxidase restraints the matrix metalloproteinase activity of macrophages, J. Biol. Chem. 280 (34) (2005) 30201–30205.
[15] R.J. Snelgrove, L. Edwards, A.E. Williams, A.J. Rae, T. Hussell, In the absence of reactive oxygen species, T cells default to a Th1 phenotype and mediate protection against pulmonary Cryptococcus neoformans infection, J. Immunol. 177 (8) (2006) 5599–5616.
[16] I. Geiszt, T.L. Lento, The Nox family of NAD(P)H oxidases: host defense and beyond, J. Biol. Chem. 279 (50) (2004) 51715–51718.
[17] L.S. Terada, Specificity in reactive oxidant signaling: think globally, act lo-
 tally, J. Cell Biol. 174 (5) (2006) 615–625.
[18] J. Takacs, K. Schroder, L. Zhang, R. Lardy, N. Anilkumar, J.D. Lambert, A. M. Shah, F. Morel, R.P. Brandes, The E-loop is involved in hydrogen peroxide formation by the NADPH oxidase Nox4, J. Biol. Chem. 286 (15) (2011) 13304–13313.
[19] K. Block, Y. Gorin, H.E. Abboud, Subcellular localization of Nox4 and reg-
ulation in diabetes, Proc. Natl. Acad. Sci. USA 106 (14) (2009) 14385–14390.
[20] A.A. Eid, D.Y. Lee, I.J. Roman, K. Khazim, Y. Gorin, Sestrin 2 and AMPK con-
nect hyperglycemia to Nox4-dependent endothelial nitric oxide synthase uncoupling and matrix protein expression, Mol. Cell Biol. 33 (7) (2013) 3439–3460.
[21] A. Shah, L. Xia, H. Goldberg, K.W. Lee, S.E. Quaggin, I.G. Fantus, Thiorexin-
interacting protein mediates high glucose-induced reactive oxygen species generation by mitochondria and the NADPH oxidase, Nox4, in mesangial cells, J. Biol. Chem. 288 (10) (2013) 6385–6484.
[22] K. Block, A. Eid, K.K. Griendling, D.Y. Lee, Y. Wittrant, Y. Gorin, Nox4 NAD(P)H oxidase mediates Src-dependent tyrosine phosphorylation of PDK1 in re-
esponse to angiotensin II: role in mesangial cell hypertrophy and fibroenectin expression, J. Biol. Chem. 283 (35) (2008) 24061–24076.
[23] T. Ago, J. Kuroda, J. Pain, C. Fu, H. Li, J. Sadoshima, Upregulation of Nox4 by hypertrophic stimuli promotes apoptosis and mitochondrial dysfunction in cardiac myocytes, Circ. Res. 106 (7) (2010) 1253–1264.
[24] D.Y. Lee, F. Wauquier, A.A. Eid, L.J. Roman, G. Ghosh-Choudhury, K. Khazim, K. Block, Y. Gorin, Nox4 NADPH oxidase mediates peroxynitrite-dependent uncoupling of endothelial nitric-oxide synthase and fibronectin expression in response to angiotensin II: role of mitochondrial reactive oxygen species, J. Biol. Chem. 288 (40) (2013) 28686–28696.
[25] A.V. Budanov, Stress-responsive sestrins link p53 with redox regulation and mammalian target of rapamycin signaling, Antioxid. Redox Signal. 15 (6)
D.M. Okamura, S. Pennathur / Redox Biology 6 (2015) 495–504

(2011) 1679–1690.

A.V. Budanov, M. Karin, p53 target genes ste2rin1 and ste2rin2 connect genotoxic stress and mTORC signaling. Cell 134 (3) (2008) 451–460.

H. Lee, A.V. Budanov, S. Talukdar, E.J. Park, H.L. Park, H.W. Park, C. Bandopadhyay, L. Chen, W. Zhang, S. Alpagan, J. LaCount, Maintenance of metabolic homeostasis by Ste2rin2 and Ste2rin3, Cell Metab. 16 (3) (2012) 311–321.

T. Sanki, K. Linher-Melville, T. Tsakiridis, G. Singh, Ste2rin2 modulates AMPK subunit expression and its response to ionizing radiation in breast cancer cells. PLoS One 7 (2) (2012) e32035.

S. Ashraf, H.Y. Gee, S. Woerner, L.X. Xie, V. Vega-Sanwich, L. Sovric, H. Fang, X. Song, D.C. Catram, C. Avila-Casado, et al., ADCC4 mutations promote steroid-resistant nephrotic syndrome through CuG0 biosynthesis disruption. J. Clin. Investig. (2012) 5177–5188.

A.A. Eid, B.M. Ford, B. Bhandary, R. de Cassia Cavaglieri, K. Block, J.L. Barnes, Y. Gorin, Phosphorylation of kidney myosin light chain promotes diabetes and obesity. Kidney Int. 76 (2) (2009) 239–247.

A.A. Eid, B.M. Ford, B. Bhandary, R. de Cassia Cavaglieri, K. Block, J.L. Barnes, H.E. Abboud, AMP-activated protein kinase (AMPK) negatively regulates Nox4-dependent activation of p33 and epithelial cell apoptosis in diabetes, J. Biol. Chem. 285 (48) (2010) 37563–37572.

J.C. Jha, S.P. Gray, D. Barit, J. Okabe, A. El-Osta, T. Namikoshi, V. Thallas-Bonke, J.L. Barnes, Y. Gorin, Myo-

A.A. Eid, B.M. Ford, B. Bhandary, R. de Cassia Cavaglieri, K. Block, J.L. Barnes, H.E. Abboud, AMP-activated protein kinase (AMPK) negatively regulates Nox4-dependent activation of p33 and epithelial cell apoptosis in diabetes, J. Biol. Chem. 285 (48) (2010) 37563–37572.

J.C. Jha, S.P. Gray, D. Barit, J. Okabe, A. El-Osta, T. Namikoshi, V. Thallas-Bonke, J.L. Barnes, Y. Gorin, Myo-

A.A. Eid, B.M. Ford, B. Bhandary, R. de Cassia Cavaglieri, K. Block, J.L. Barnes, H.E. Abboud, AMP-activated protein kinase (AMPK) negatively regulates Nox4-dependent activation of p33 and epithelial cell apoptosis in diabetes, J. Biol. Chem. 285 (48) (2010) 37563–37572.

A.A. Eid, B.M. Ford, B. Bhandary, R. de Cassia Cavaglieri, K. Block, J.L. Barnes, H.E. Abboud, AMP-activated protein kinase (AMPK) negatively regulates Nox4-dependent activation of p33 and epithelial cell apoptosis in diabetes, J. Biol. Chem. 285 (48) (2010) 37563–37572.

A.A. Eid, B.M. Ford, B. Bhandary, R. de Cassia Cavaglieri, K. Block, J.L. Barnes, H.E. Abboud, AMP-activated protein kinase (AMPK) negatively regulates Nox4-dependent activation of p33 and epithelial cell apoptosis in diabetes, J. Biol. Chem. 285 (48) (2010) 37563–37572.

A.A. Eid, B.M. Ford, B. Bhandary, R. de Cassia Cavaglieri, K. Block, J.L. Barnes, H.E. Abboud, AMP-activated protein kinase (AMPK) negatively regulates Nox4-dependent activation of p33 and epithelial cell apoptosis in diabetes, J. Biol. Chem. 285 (48) (2010) 37563–37572.

A.A. Eid, B.M. Ford, B. Bhandary, R. de Cassia Cavaglieri, K. Block, J.L. Barnes, H.E. Abboud, AMP-activated protein kinase (AMPK) negatively regulates Nox4-dependent activation of p33 and epithelial cell apoptosis in diabetes, J. Biol. Chem. 285 (48) (2010) 37563–37572.

A.A. Eid, B.M. Ford, B. Bhandary, R. de Cassia Cavaglieri, K. Block, J.L. Barnes, H.E. Abboud, AMP-activated protein kinase (AMPK) negatively regulates Nox4-dependent activation of p33 and epithelial cell apoptosis in diabetes, J. Biol. Chem. 285 (48) (2010) 37563–37572.

A.A. Eid, B.M. Ford, B. Bhandary, R. de Cassia Cavaglieri, K. Block, J.L. Barnes, H.E. Abboud, AMP-activated protein kinase (AMPK) negatively regulates Nox4-dependent activation of p33 and epithelial cell apoptosis in diabetes, J. Biol. Chem. 285 (48) (2010) 37563–37572.
S. Pennathur, C. Bergt, B. Shao, J. Byun, S.Y. Kassim, P. Singh, P.S. Green, T. C. Bergt, S. Pennathur, X. Fu, J. Byun, K. O
C.S. Palmer, L.D. Osellame, D. Stojanovski, M.T. Ryan, The regulation of mi-
M. Zhan, C. Brooks, F. Liu, L. Sun, Z. Dong, Mitochondrial dynamics: reg-
J.P. Eiserich, M. Hristova, C.E. Cross, A.D. Jones, B.A. Freeman, B. Halliwell,
S.J. Klebanoff, R.A., Clark Amsterdam: North Holland Biochemical Press, 1978,
M. Morigi, L. Perico, C. Rota, L. Longaretti, S. Conti, D. Rottoli, R. Novelli,
A. Benigni, D. Corna, C. Zoja, A. Sonzogni, R. Latini, M. Salio, S. Conti,
A. Shayman, Establishing 3-nitrotyrosine as a biomarker for the vasculopathy
66 (2003) 524–533.
HJ. Zhao, S. Wang, H. Cheng, M.Z. Zhang, T. Takahashi, A.B. Fogo, M.D. Breyer, R.C. Harris, Endothelial nitric oxide synthase deficiency produces accelerated nephropathy in diabetic mice, J. Am. Soc. Nephrol. 18 (2) (2007) 539–550.
L. Shu, J.L. Park, J. Byun, S. Pennathur, J. Kollmeyer, J.A. Shayman, Decreased nitric oxide bioavailability in a mouse model of Fabry disease, J. Am. Soc. Nephrol. 20 (9) (2009) 1975–1985.
L. Shu, A. Vivekanandan-Giri, S. Pennathur, B.E. Smid, J.M. Aerts, C.E. Hollak, J. A. Shayman, Establishing 3-nitrotyrosine as a biomarker for the vasculopathy of Fabry disease, Kidney Int. 86 (1) (2014) 58–66.
J.V. Hunt, R.T. Dean, S.P. Wolff, Hydroxyl radical production and autoxidative glycosylation. Glucose autoxidation as the cause of protein damage in the experimental diabetic nephropathy, Methods Enzymol. 233 (1994) 67–76.
T.J. Guzik, D.G. Harrison, Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension, J. Clin. Investig. 111 (8) (2003) 1201–1209.
J. Vasquez-Vivar, B. Kalyanaraman, P. Martasek, N. Hogg, B.S. Masters, H. Karouz, P. Tordo, K.A. Pritchard Jr., Superoxide generation by endothelial nitric oxide synthase: the in vivo demonstration of a superoxide-producing form of endothelial nitric oxide synthase, Circ. Res. 96 (10) (2005) 818–822.
L. Shu, J.L. Park, J. Byun, S. Pennathur, J. Kollmeyer, J.A. Shayman, Decreased nitric oxide bioavailability in a mouse model of Fabry disease, J. Am. Soc. Nephrol. 20 (9) (2009) 1975–1985.
L. Shu, A. Vivekanandan-Giri, S. Pennathur, B.E. Smid, J.M. Aerts, C.E. Hollak, J. A. Shayman, Establishing 3-nitrotyrosine as a biomarker for the vasculopathy of Fabry disease, Kidney Int. 86 (1) (2014) 58–66.
J.V. Hunt, R.T. Dean, S.P. Wolff, Hydroxyl radical production and autoxidative glycosylation. Glucose autoxidation as the cause of protein damage in the experimental diabetic nephropathy, Methods Enzymol. 233 (1994) 67–76.
T.J. Guzik, D.G. Harrison, Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension, J. Clin. Investig. 111 (8) (2003) 1201–1209.
J. Vasquez-Vivar, B. Kalyanaraman, P. Martasek, N. Hogg, B.S. Masters, H. Karouz, P. Tordo, K.A. Pritchard Jr., Superoxide generation by endothelial nitric oxide synthase: the in vivo demonstration of a superoxide-producing form of endothelial nitric oxide synthase, Circ. Res. 96 (10) (2005) 818–822.
L. Shu, J.L. Park, J. Byun, S. Pennathur, J. Kollmeyer, J.A. Shayman, Decreased nitric oxide bioavailability in a mouse model of Fabry disease, J. Am. Soc. Nephrol. 20 (9) (2009) 1975–1985.
L. Shu, A. Vivekanandan-Giri, S. Pennathur, B.E. Smid, J.M. Aerts, C.E. Hollak, J. A. Shayman, Establishing 3-nitrotyrosine as a biomarker for the vasculopathy of Fabry disease, Kidney Int. 86 (1) (2014) 58–66.
J.V. Hunt, R.T. Dean, S.P. Wolff, Hydroxyl radical production and autoxidative glycosylation. Glucose autoxidation as the cause of protein damage in the experimental diabetic nephropathy, Methods Enzymol. 233 (1994) 67–76.
D.M. Stern, S.D. Yan, S.F. Yan, A.M. Schmidt, Receiver for advanced glycation endproducts (RAGE) and the complications of diabetes, Ageing Res. Expr. 1 (1)
13037.
110
diabetes nephropathy, Am. J. Physiol. Renal Physiol. 286 (6) (2004) 412–423.
1114,
1123.
1137.
1150.
1169.
1184,
1197.
1214.
1231.
1247.
1265.
1282.
1303.
1320.
1336.
1352.
1368.
1384.
1398.
1414.
1430.
1471.
1487.
1503.
1519.
1535.
1551.
1567.
1583.
1599.
1615.
1631.
1647.
1663.
1679.
1695.
1711.
1727.
1743.
1759.
1775.
1791.
1807.
1823.
1839.
1855.
1871.
1887.
1903.
1919.
1935.
1951.
1967.
1983.
1999.
2015.
2031.
2047.
2063.
2079.
2095.
2111.
2127.
2143.
2159.
2175.
2191.
2207.
2223.
2239.
2255.
2271.
2287.
2303.
2319.
2335.
2351.
2367.
2383.
2399.
2415.
2431.
2447.
2463.
2479.
2495.
2511.
2527.
2543.
2559.
2575.
2591.
2607.
2623.
2639.
2655.
2671.
2687.
2703.
2719.
2735.
2751.
2767.
2783.
2799.
2815.
2831.
2847.
2863.
2879.
2895.
2911.
2927.
2943.
2959.
2975.
2991.
3007.
3023.
3039.
3055.
3071.
3087.
3103.
3119.
3135.
3151.
3167.
3183.
3199.
3215.
3231.
3247.
3263.
3279.
3295.
3311.
3327.
3343.
3359.
3375.
3391.
3407.
3423.
3439.
3455.
3471.
3487.
3503.
3519.
3535.
3551.
3567.
3583.
3599.
3615.
3631.
3647.
3663.
3679.
3695.
3711.
3727.
3743.
3759.
3775.
3791.
3807.
3823.
3839.
3855.
3871.
3887.
3903.
3919.
3935.
3951.
3967.
3983.
4009.
4025.
4041.
4057.
4073.
4089.
4105.
4121.
4137.
4153.
