Priority Analysis of Lean Manufacturing Practices: A Fuzzy-AHP Approach in Automotive Industry

Masoud Rahiminezhad Galankashi¹, Muhammad Hisjam², Syed Ahmad Helmi¹, ³
¹Department of Materials, Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
²Department of Industrial Engineering, Faculty of Engineering, Sebelas Maret University, Surakarta, Indonesia
³Center for Engineering Education (CEE), Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia.

E-mail: Masoud.rahiminejad@yahoo.com

Abstract. The major aim of this research is to apply a Fuzzy Analytic Hierarchy Process (FAHP) approach to rank the importance of Lean Manufacturing (LM) practices in the automotive industry. Although lean concept is widely investigated in previous literature, highlighting the most important practices of LM in automotive industry is not considered. To fill the gap of previous literature, this study applies a FAHP to prioritize the LM practices in automotive industry. Mainly, the hierarchy structure of the addressed Multiple-Criteria Decision Making (MCDM) approach is as follows. The first level of decision making hierarchy aims to rank the best LM practices using three decision making criteria of the second level. These decision making criteria include application in industry, measurability and managerial acceptance. The third level of decision includes four major practices of LM namely, manufacturing management leanness, management responsibility leanness, workforce leanness and technology leanness. According to the obtained results, technology leanness is the best LM practice to be adopted by automotive manufacturers.

1. Introduction
Numerous concepts have been developed to deal with the growing competition of today’s competitive markets [1-2]. Managers, practitioners and researchers have acknowledged the necessity of improving their adopted practices with regard to functional and operative concepts such as Lean Manufacturing (LM) [3-4]. With the beginning and progress of LM, numerous studies have applied or developed its associated practices. However, although LM concept is widely investigated in previous studies, less attention has been paid to determine the most important practices of LM in automotive industry. Therefore, recognizing the LM practices, introducing the selection criteria, and ranking the LM practices is a challenge which is less investigated in the previous literature.

Therefore, applying a FAHP approach to rank the importance of LM practices in the automotive industry is the main goal of this research. The research scope is related to the automotive industry of a developing country. Nonetheless, the conceptual framework of the research, procedure, methodology,
and obtained results is beneficial to scholars, practitioners and managers to find and prioritize the best practices of LM. This research provides contributions by recognizing the LM practices, suggesting prioritization criteria, and ranking the LM practices using a FAHP.

2. Literature Review

Lean manufacturing (LM) target is to produce the products according to customers’ request and minimum waste [5]. The LM concept has been investigated in numerous areas including Supply Chain Management (SCM), manufacturing, construction management and service industry [6-14]. According to [14], LM practices includes manufacturing management leanness, management responsibility leanness, workforce leanness and technology leanness. This research investigated LM practices to recognize the critical factors for its success execution. In addition, this study applied a methodical tactic to the investigation of LM system, allowing for the leanness practices in an integrated approach.

Therefore, the conducted literature review showed that numerous studies have been conducted on LM. Though, none of the previous studies developed criteria and ranked the importance of LM practices in automotive industry. In addition, application of MCDM techniques to prioritize the importance of LM practices provides better results in terms of visibility and logic comparing to qualitative approaches such as survey or questionnaire.

3. Research Methodology

This research has been conducted in four phases as follows:

Phase 1: Identification of Lean Manufacturing (LM) practices

As mentioned, this study applies a Fuzzy-AHP approach to prioritize LM practices in Automotive Industry. The adopted LM practices of [14] are applied to be investigated and ranked in a developing country. According to this study, manufacturing management leanness, management responsibility leanness, workforce leanness and technology leanness are four major practices of LM.

Phase 2: Developing the Multiple-Criteria Decision Making (MCDM) Hierarchy

There are numerous decisions with concurrent consideration of different criteria. In this regard, MCDM methods are helpful to see all these criteria simultaneously [15-16]. In this study, the first level of decision making hierarchy aims to prioritize the different practices of LM. The second level determines the selection criteria which includes application in industry, measurability and managerial acceptance. In other words, these three criteria are used to rank manufacturing management leanness, management responsibility leanness, workforce leanness and technology leanness in the third level of decision making hierarchy. Figure 1 shows the decision hierarchy of this research.

Phase 3: Fuzzy Analytic Hierarchy Process

As mentioned, this study applied a FAHP model to rank the different practices of LM in automotive industry. The Chang’ extended analysis [17] is implemented in this research. The developed equations of Chang’s [17] FAHP are as follows.

\[M_q = (l_q, m_q, u_q) \]
\[l_q = \min \left(B_{q} \right) \]
\[m_j = \sqrt[n]{\prod_{k=1}^{n} B_{jk}} \]
\[u_j = \max(B_{jk}) \]

Where, Triangular Fuzzy Numbers (TFNs) are shown by L, M and K. \(K \) decision makers’ scores to compare the significance of \(C_i - C_j \) is shown by \(B_{ij} \). Therefore, \(C_i - C_j \) displays model’s considered criteria. The numerical calculations for each two TFN \(M_1 \) and \(M_2 \) can be defined as follows:

\[M_1 + M_2 = (l_1 + l_2, m_1 + m_2, u_1 + u_2) \]
\[M_1 * M_2 = (l_1 * l_2, m_1 * m_2, u_1 * u_2) \]

\[M_1^{-1} = \left[\frac{1}{l_1}, \frac{1}{m_1}, \frac{1}{u_1} \right], \quad M_2^{-1} = \left[\frac{1}{l_2}, \frac{1}{m_2}, \frac{1}{u_2} \right] \]

In which, the inverse values of \(M_1 \) and \(M_2 \) are displayed by \(M_1^{-1} \) and \(M_2^{-1} \). Equation 8 is applied to identify \(S_k \) as follows:

\[S_k = \sum_{j=1}^{n} M_{kj} \left[\sum_{i=1}^{m} \sum_{j=1}^{n} M_{ij} \right]^{-1} \]

After computing the \(S_k \), it is essential to calculate the possibility degrees of \(S_k \). Subsequently, computing the possibility degree of \(M_1 \) and \(M_2 \) can be done as follows:

\[\text{V} (M_1 \geq M_2) = 1 \quad \text{if} \quad M_1 \geq M_2 \]
\[\text{V} (M_1 \geq M_2) = 0 \quad \text{if} \quad L_1 \geq U_2 \]
\[\text{V} (M_1 \geq M_2) = \text{hgt} (M_1 \cap M_2) \quad \text{otherwise} \]

\[\text{hgt}(M_1 \cap M_2) = \frac{u_1 l_2}{(u_1 - l_1) + (m_2 - m_1)} \]

Calculation of the possibility degree of a convex fuzzy number which is required to be greater than \(k \) convex fuzzy numbers is as follows:

\[V(M_1 \geq M_1, ..., M_k) = V(M_1 \geq M_1) \ldots V(M_1 \geq M_k) \]
Next Equation is applied to calculate the weights of indices in pairwise matrices. Consequently $W(x_i)$ is computed using Equation 12.

$$W(x_i) = \text{Min} \{ V(S_i \geq S_j) \} \quad k = 1, 2, 3, \ldots, n \quad k \neq i$$

(12)

Thus, the $w(X_i)$ which is a weight vector can be calculated using Equation 13.

$$w(X_i) = [W(C_i), W(C_j), W(C_k)]^T$$

(13)

Next equation calculates the normal quantities w_i as follows:

$$w_i = \frac{w'_i}{\sum w'_i}$$

(14)

Phase 4: Calculation and Interpretation

Pairwise comparison matrices are required to develop the FAHP. Therefore, a questionnaire is developed to gather the required data. As mentioned, the first level of decision making hierarchy aims to rank the best LM practices using three decision making criteria of the second level. These decision criteria include application in industry, measurability and managerial acceptance.

The third level of decision includes four major practices of manufacturing management leanness, management responsibility leanness, workforce leanness and technology leanness. Therefore, these four practices should be compared based on three selection criteria of application in industry, measurability and managerial acceptance. Subsequently, three sections are assigned to gather the required information in the form of pairwise comparison matrices. The applied questionnaire and data collection approach are verified using pilot tests prior to the data collection stage.
4. Results and Discussion

Twelve experts were asked to fill the FAHP questionnaire. As discussed, pairwise comparison matrices are required to develop the FAHP. Therefore, the developed questionnaires were filled in the form of pairwise comparison matrices to ease the data collection procedure. Microsoft Excel 2013 software was applied to do the related calculation of FAHP. According to the obtained result, technology leanness is the most important LM practice to be adopted by automotive lean manufacturers. Manufacturing management leanness, management responsibility leanness and workforce leanness are next choices to be adopted by lean manufacturers.

LM Practice	Weight
Management responsibility leanness	0.24
Manufacturing management leanness	0.25
Technology leanness	0.31
Workforce leanness	0.20

5. Conclusion

This research applied a FAHP to prioritize the importance of LM practices in the automotive industry. The hierarchy structure of the addressed MCDM approach included three linked levels. The first level aimed to rank the best LM practices using three decision making criteria of the application in industry, measurability and managerial acceptance. These criteria were used in the second level of decision making hierarchy. The third level included four major practices of LM namely, manufacturing management leanness, management responsibility leanness, workforce leanness and technology leanness. According to the results, technology leanness is the best LM practice to be applied in the automotive industry. As a direction for future research, this study can be repeated in other industries. In addition, the suggested research methodology can be applied for other manufacturing strategies.

6. References

[1] Dargi A, Anjomshoae A, Galankashi MR, Memari A, Tap MB. Supplier selection: A fuzzy-ANP approach. *Procedia Computer Science*. 2014 Jan 1;31:691-700.

[2] Hemmati N, Rahiminezhad Galankashi M, Imani DM, Farughi H. Maintenance policy selection: a fuzzy-ANP approach. *Journal of Manufacturing Technology Management*. 2018 May 25.

[3] Galankashi MR, Helmi SA. Assessment of lean manufacturing practices: an operational perspective. *International Journal of Services and Operations Management*. 2017;28(2):163-84.

[4] Galankashi MR, Helmi SA, Hisjam M, Rahim AR. Leanness assessment in automotive industry: case study approach. *International Journal of Value Chain Management*. 2018;9(1):70-88.

[5] Shah R, Ward PT. Lean manufacturing: context, practice bundles, and performance. *Journal of operations management*. 2003 Mar 1;21(2):129-49.
[6] Nikakhtar A, Hosseini AA, Wong KY. Sensitivity analysis of construction processes using computer simulation: A case study. Advanced Science Letters. 2012 Jun 30;13(1):680-4.

[7] Nikakhtar A, Hosseini AA, Wong KY, Zavichi A. Application of lean construction principles to reduce construction process waste using computer simulation: a case study. International Journal of Services and Operations Management. 2015 Jan 1;20(4):461-80.

[8] Hosseini SA, Nikakhtar A, Ghoddousi P. Flow production of construction processes through implementing lean construction principles and simulation. International Journal of Engineering and Technology. 2012 Aug 1;4(4):475.

[9] Portioli-Staudacher A, Tantardini M. Lean implementation in non-repetitive companies: a survey and analysis. International Journal of Services and Operations Management. 2012 Jan 1;11(4):385-406.

[10] Thirunavukkarasu S, Bheeman BV, Ashwin R, Varadharajan M, Devadasan SR, Murugesh R. Lean implementation through value stream mapping: a case study in an Indian pump manufacturing company. International Journal of Services and Operations Management. 2013 Jan 1;16(4):506-24.

[11] Seyedhosseini SM, Ebrahimi-Taleghani A. Using cost-time profile to estimate the product direct cost in multi-production value stream. International Journal of Services and Operations Management. 2014 Jan 1;18(3):233-57.

[12] Abbasian-Hosseini SA, Nikakhtar A, Ghoddousi P. Verification of lean construction benefits through simulation modeling: A case study of bricklaying process. KSCE Journal of Civil Engineering. 2014 Jun 1;18(5):1248-60.

[13] Rahiminezhad Galankashi M, Helmi SA. Assessment of hybrid Lean-Agile (Leagile) supply chain strategies. Journal of Manufacturing Technology Management. 2016 May 3;27(4):470-82.

[14] Vinodh S, Joy D. Structural equation modelling of lean manufacturing practices. International Journal of Production Research. 2012 Mar 15;50(6):1598-607.

[15] Galankashi MR, Chegeni A, Soleimanyanadegany A, Memari A, Anjomshoae A, Helmi SA, Dargi A. Prioritizing green supplier selection criteria using fuzzy analytical network process. Procedia CIRP. 2015 Jan 1;26:689-94.

[16] Galankashi MR, Helmi SA, Hashemzahi P. Supplier selection in automobile industry: A mixed balanced scorecard–fuzzy AHP approach. Alexandria Engineering Journal. 2016 Mar 1;55(1):93-100.

[17] Chang DY. Applications of the extent analysis method on fuzzy AHP. European journal of operational research. 1996 Dec 20;95(3):649-55.