Pandemia covid-19: das máscaras de carnaval às máscaras cirúrgicas
Covid-19 pandemic: from carnival masks to surgical masks

Resumo

Dada a elevada transmissibilidade do SARS-CoV-2, a pandemia de covid-19 causa enorme impacto no Sistema de Saúde. Mesmo em países do primeiro mundo, recursos estratégicos logo se tornam insuficientes. Ainda que pessoas acima de 60 anos e portadoras de comorbidades, como hipertensão, corram maior risco de desenvolver formas graves, os mais jovens também podem requerer cuidados precisos e escassos. Daí a Organização Mundial da Saúde recomendar testes – PCR e sorológicos – para detecção de infectados em larga escala. Sintomas mais comuns são febre, fadiga, tosse seca e dispneia, sendo frequente o achado tomográfico de manifestações pulmonares, mesmo em casos assintomáticos. A Sociedade Brasileira de Nefrologia tem divulgado diretrizes para manejo de pacientes hipertensos, dialíticos e transplantados. Em seus alertas, cuidados e precauções em unidades de diálise também estão sendo detalhados, tanto para a equipe de saúde como para os pacientes. Embora ainda não se evidenciem manifestações renais importantes na admissão dos casos positivos, são arrolados aqui estudos recentes com pacientes renais e realizados em serviços de nefrologia. Essa pandemia nos obriga a aprender com seu avanço, a fim de enfrentarmos novos desafios nas clínicas de diálise, nas serviços de transplant e de terapia intensiva.

Palavras-chave: Infecções por Coronavírus; Covid-19; Betacoronavírus; SARS-CoV-2; Pandemias; Diálise; Nefrologia; Hipertensão; Comorbidade.

Abstract

Given the high transmissibility of SARS-CoV-2, COVID-19 pandemic has a huge impact on our health system. Even in developed countries, strategic resources soon become insufficient. Although people over 60 and with comorbidities are at greater risk of developing severe forms, younger people may also require precious and scarce care. Hence, the World Health Organization recommend tests - PCR and serological tests - for detecting infected people on a large scale. The most common symptoms are fever, fatigue, dry cough, anorexia, myalgia, and dyspnea, with tomographic pulmonary findings being frequent even in asymptomatic cases. The Brazilian Society of Nephrology has published guidelines for the management of hypertensive, diabetic, dialysis, and transplant patients. In its alerts, care and precautions in dialysis units are also being detailed, both for the health team and for the patients. Although important renal manifestations are not yet evident in the admission of positive cases, recent studies with renal patients and performed in nephrology services are listed here. This pandemic lead us to learn from its progress in order to face new challenges in dialysis clinics, transplant services, and intensive care services.

Keywords: Coronavirus Infections; COVID-19; Betacoronavirus; SARS-CoV-2; Pandemics; Dialysis; Nephrology; Hypertension; Comorbidity.

O mundo já viveu muitas epidemias ao longo da história. O Brasil enfrentou, em passado recente, a epidemia do HIV, gripe suína, dengue e zika. Entretanto, nenhuma delas impactou o Sistema de Saúde como a pandemia de covid-19, devido à sua alta transmissibilidade e largo tempo de recuperação.

Em 31 de dezembro de 2019, a Organização Mundial de Saúde (OMS) foi alertada sobre casos de pneumonia causada por uma nova cepa de coronavírus, infectando seres humanos, na cidade de Wuhan, na província de Hubei, na República Popular da China. Em 7 de janeiro de 2020, a China confirmou que havia identificado o vírus.
Ao longo das primeiras duas décadas deste século, foram identificados outros coronavírus, como o SARS-CoV (síndrome respiratória aguda grave) e o MERS-CoV (síndrome respiratória do Oriente Médio). Todavia, estamos diante de um novo patógeno responsável pela doença covid-19, nomeado inicialmente de 2019-nCoV e que, em 11 de fevereiro de 2020, recebeu a designação definitiva de SARS-CoV-2.2

Em 18 de fevereiro, após 48 horas da detecção do primeiro caso da doença no Brasil, a equipe de pesquisadoras do Instituto de Medicina Tropical da Universidade de São Paulo, coordenada pela médica brasileira Ester Sabino, em conjunto com o Instituto Adolfo Lutz, anunciou ter completado o sequenciamento do genoma do novo coronavírus.3

O surto que se iniciou na China e, a princípio, esperava-se que tivesse curta duração e se restringisse à Ásia, dada sua elevada transmissibilidade, alastrou-se para os quatro continentes, especialmente nos centros com maior densidade demográfica. Dessa forma, no dia 11 de março de 2020, a OMS decretou pandemia causada pelo SARS-CoV-2.1

No combate à doença, os recursos estratégicos, como materiais de proteção individual, ventiladores e leitos de cuidados intensivos, bem como o número de profissionais da saúde, mostram-se insuficientes mesmo em países do primeiro mundo.

Por ser uma nova pandemia, estamos aprendendo ao mesmo tempo que enfrentamos a disseminação. Aprendemos que quem têm maior risco de desenvolver sua forma mais grave são pessoas acima de 60 anos e portadores de comorbidades, como doença cardiovascular e hipertensão.4

No momento em que se redige este editorial, em 27 de março de 2020, temos confirmados 462.684 casos no mundo. Entretanto, esse número deve estar subestimado, pois uma grande parte de pessoas com sintomas leves ou assintomáticos, bem como o número de profissionais da saúde, mostram-se insuficientes mesmo em países do primeiro mundo.

No combate à doença, os recursos estratégicos, como materiais de proteção individual, ventiladores e leitos de cuidados intensivos, bem como o número de profissionais da saúde, mostram-se insuficientes mesmo em países do primeiro mundo.

O período de incubação, em geral, é de até 7 dias. Em ordem decrescente, os sintomas mais comuns são febre, fadiga, tosse seca, anorexia, mialgia e dispneia. A febre pode ser bem baixa (< 38 graus) em 20% dos casos. Após o início dos sintomas, a dispneia pode permanecer e a SARS se desenvolve em média 8 dias após o início, necessitando muitas vezes de ventilação mecânica prolongada (em média, 20 dias). O leucograma em geral é normal e a linfopenia, frequente, nos casos mais graves. O PCR é elevado com procalcitonina normal. As enzimas hepáticas se elevam em cerca de 20% dos casos. Alterações da função renal, na admissão, foram observadas em apenas 1,6% dos pacientes.4,8

Manifestações pulmonares são comuns no exame de tomografia, mesmo em casos assintomáticos. O achado mais frequente são imagens de opacidades em vidro fosco. Entretanto os padrões de imagem são diversos e mudam durante a evolução, alguns são similares aos da infecção por H1N1, bacteriana ou por vírus sincicial respiratório, portanto somente exames de imagem não fecham o diagnóstico.9

A OMS recomenda aplicar testes para detecção de pessoas infectadas em larga escala, como vêm sendo feito na Alemanha, Coreia do Sul, em Cingapura e em Hong Kong. Essa estratégia parece funcionar nesses países, pois estão sendo observadas menores taxas de morte secundárias ao coronavírus. Quem apresentar sintomas é testado e, se positivo, é isolado, bloqueando assim a transmissão. Nesse caso, são isolados apenas os indivíduos sintomáticos e positivos.1

O teste PCR teria a vantagem de ser o método mais sensível para o diagnóstico. É o padrão ouro, porém demanda infraestrutura mais complexa. Seu período de análise é longo e pode ser negativo devido à queda do título viral. Testes mais rápidos, real time, também estão sendo disponibilizados. Os testes sorológicos para detecção de anticorpos IgM/IgG são ineficientes para diagnóstico na fase aguda, mas têm a vantagem de serem rápidos e simples e são indicados para casos PCR negativos com sintomas de pneumonia por mais de 10 dias.6,7

O período de incubação, em geral, é de até 7 dias. Em ordem decrescente, os sintomas mais comuns são febre, fadiga, tosse seca, anorexia, mialgia e dispneia. A febre pode ser bem baixa (< 38 graus) em 20% dos casos. Após o início dos sintomas, a dispneia pode permanecer e a SARS se desenvolve em média 8 dias após o início, necessitando muitas vezes de ventilação mecânica prolongada (em média, 20 dias). O leucograma em geral é normal e a linfopenia, frequente, nos casos mais graves. O PCR é elevado com procalcitonina normal. As enzimas hepáticas se elevam em cerca de 20% dos casos. Alterações da função renal, na admissão, foram observadas em apenas 1,6% dos pacientes.4,8

No momento em que se redige este editorial, em 27 de março de 2020, temos confirmados 462.684 casos no mundo. Entretanto, esse número deve estar subestimado, pois uma grande parte de pessoas com sintomas leves ou assintomáticos, bem como o número de profissionais da saúde, mostram-se insuficientes mesmo em países do primeiro mundo.

O período de incubação, em geral, é de até 7 dias. Em ordem decrescente, os sintomas mais comuns são febre, fadiga, tosse seca, anorexia, mialgia e dispneia. A febre pode ser bem baixa (< 38 graus) em 20% dos casos. Após o início dos sintomas, a dispneia pode permanecer e a SARS se desenvolve em média 8 dias após o início, necessitando muitas vezes de ventilação mecânica prolongada (em média, 20 dias). O leucograma em geral é normal e a linfopenia, frequente, nos casos mais graves. O PCR é elevado com procalcitonina normal. As enzimas hepáticas se elevam em cerca de 20% dos casos. Alterações da função renal, na admissão, foram observadas em apenas 1,6% dos pacientes.4,8

Manifestações pulmonares são comuns no exame de tomografia, mesmo em casos assintomáticos. O achado mais frequente são imagens de opacidades em vidro fosco. Entretanto os padrões de imagem são diversos e mudam durante a evolução, alguns são similares aos da infecção por H1N1, bacteriana ou por vírus sincicial respiratório, portanto somente exames de imagem não fecham o diagnóstico.9

O que os nefrologistas precisam saber sobre a COVID-19

A Sociedade Brasileira de Nefrologia (SBN) tem utilizado a comunicação através de mídias digitais e se esforçado para manter atualizações periódicas desde o início da pandemia. Por meio delas, divulga diretrizes para manejo clínico de pacientes hipertensos, ambulatoriais, com doenças raras, em diálise aguda e crônica, adultos e pediátricos e pacientes transplantados. As recomendações são atualizadas conforme se adquirem mais conhecimentos sobre a nova doença e de acordo com diretrizes científicas internacionais e nacionais. As recomendações estão disponíveis com acesso livre no site da SBN (www.sbn.org.br).
Uma das primeiras polêmicas a surgir deu-se com relação à prescrição e manutenção de IECA (inibidor da enzima de conversão da angiotensina) e BRA (bloqueador de receptor de angiotensina). Um grande número de pacientes hipertensos, cardiopatas, diabéticos e com proteinúria utilizam tais medicamentos, o que resulta corriqueiro em nossa prática diária. O receptor ACE-2 está presente nos pneumócitos tipo 2 nos pulmões, mas também é comum no miocárdio, artérias, rins e intestinos. O vírus SARS-CoV-2 liga-se aos receptores ACE2 e é internalizado, dando início à replicação viral. Acarreta uma downregulation com elevação da angiotensina II e aumento da permeabilidade vascular pulmonar e, consequentemente, o aparecimento da síndrome de estresse respiratório agudo (SARS).

O uso dessas drogas ocasiona aumento do número de receptores ACE2, o que levantou a hipótese de que os pacientes em uso desses fármacos poderiam apresentar maior susceptibilidade por aumento dos alvos do vírus. Entretanto, faltam estudos que embasem essa hipótese, e tanto a American Heart Association como a Sociedade Brasileira de Nefrologia não recomendam a suspensão dessas drogas.

Fumantes apresentam uma expressão aumentada de receptores ACE2, o que levantou a hipótese de que os pacientes em uso desses fármacos poderiam apresentar maior susceptibilidade por aumento dos alvos do vírus. Entretanto, faltam estudos que embasem essa hipótese, e tanto a American Heart Association como a Sociedade Brasileira de Nefrologia não recomendam a suspensão dessas drogas.

Ainda não se sabe exatamente como o vírus afeta os rins. Aparentemente, é de forma multifatorial.

Uma das hipóteses é uma ação direta sobre as células renais. Estudos recentes demonstraram predominância de lesão tubular, possivelmente porque é o local com maior expressão de ACE-2 no rim. Verificou-se a presença do capsídeo proteico do vírus SARS-CoV-2 (nucleocapsid-protein SARS-CoV-2) nas células dos túbulos renais, entretanto ainda não está claro se essas células serviriam, também, como reservatório do vírus.

Outra causa de lesão renal é pela inflamação secundária à ativação linfocitária (linfócitos expressam ACE-2) com produção elevada de citocinas. Somada às acima, outra possibilidade é a ativação do complemento e da cascata de coagulação, maior agregação plaquetária e maior estresse oxidativo. Foram encontrados microtrombos, depósitos de hemossiderina e lesão endotelial em necropsias de pacientes falecidos com covid-19, entretanto esses achados muitas vezes não apresentaram correlação clínica, ou seja, os pacientes apresentavam exames de função renal inalterados. Muitos pacientes graves desenvolvem evidências de microangiopatia em outros órgãos, e alguns podem apresentar dor abdominal e hematuria, sugerindo infarto renal. A presença de proteinúria poderia ser explicada teoricamente pela replicação viral nos podocitos, e também já foram descritos alguns casos de glomerulopatia colapsante.

Um estudo recente chinês avaliando o prognóstico e as manifestações renais em 333 pacientes com covid-19 informou que 75,4% desses pacientes apresentaram proteinúria, hematuria e lesão renal aguda. A média de duração dos sintomas e sinais foi de 12 dias e cerca da metade dos pacientes com insuficiência renal recuperou a função em três semanas. Os pacientes que apresentaram comprometimento renal tiveram pior prognóstico, apresentando maior mortalidade.

Ainda não é conhecido o impacto renal em longo prazo e como deve ser realizado o monitoramento desses pacientes.

QUAL O IMPACTO POTENCIAL NOS PACIENTES E NOS PROFISSIONAIS?

Um estudo chinês realizado em Wuhan, China, com cerca de mil pacientes, revela que as manifestações renais não parecem ser importantes na admissão. Somente 0,7% dos pacientes apresentava doença renal crônica; a creatinina estava elevada em 1,6% dos pacientes; lesão renal aguda, em 0,5%; e apenas 0,8% dos pacientes necessitaram terapia renal substitutiva. A frequência de lesão renal aguda e uso de RRT foi de 4,3% e 5,2% nos pacientes com quadros mais graves.

Outro estudo multicêntrico chinês com 193 pacientes informou que 59% apresentaram proteinúria; 44%, hematuria; e somente 10% com creatinina elevada. Dados de uma única unidade de diálise no Renmin Hospital in Wuhan University, entre janeiro e fevereiro de 2020, revelaram contaminação de 37 pacientes entre 230 pacientes em hemodiálise (16%) e de 4 pessoas da equipe de um total de 33 (12%). A maioria apresentou sintomas leves ou moderados. Faleceram 7 pacientes no período de observação, sendo 6 por causa da covid-19.

Outro artigo sobre medidas de precaução realizadas em Wuhan nas clínicas de diálise cita dados não publicados de He F. e Xu G. de que apenas 10% dos pacientes em programa de diálise na cidade de Wuhan e 6,4% da equipe médica apresentaram infecção covid-19.
Esse percentual foi ainda menor na região da Lombardia, Itália, conforme dados apresentados pelo Dr. Brunori, Presidente da Sociedade Italiana de Nefrologia. Dentre os 3.318 pacientes em programa de hemodiálise crônica, que representam 75% dos pacientes em programa de diálise crônica na área, apenas 8% (206/3318) foram positivos para covid-19 e 1,8% (62/3318) faleceu.22

Outra questão importante refere-se aos cuidados e às precauções nas unidades de diálise. As recomendações da Sociedade Brasileira de Nefrologia estão alinhadas com as das demais sociedades médicas internacionais.

Algumas das medidas preconizadas são: medição da temperatura na chegada, tanto da equipe quanto dos pacientes, investigação de sintomas, especialmente os mais comuns, isolamento de pacientes sintomáticos ou com histórico de contato em turnos ou salas separadas, exames dos sintomáticos sempre que possível, educação e treinamento quanto ao uso de equipamentos de proteção individual, principalmente máscaras, luvas e óculos ou protetores faciais, assim como a higiene frequente das mãos com água e sabão.

Os quadros mais graves e a mortalidade mais elevada se observam entre idosos e adultos com comorbidades como hipertensão, doenças pulmonares e outras doenças crônicas. Pacientes com quadros mais graves podem apresentar insuficiência renal e falha de múltiplos órgãos.

Os casos positivos devem ser isolados até a melhora dos sintomas, em geral por duas semanas, e liberados após dois testes negativos coletados com intervalo de 24 horas.

A pandemia pode ser analisada do ponto de vista técnico-assistencial, humanitário e espiritual ou sob uma perspectiva econômica. Este editorial não tem a pretensão de abordar todas essas facetas e busca restringir-se a aspectos médicos. Entretanto, teremos uma nova ordem mundial após essa pandemia, que certamente afetará nossa prática. Home-office, telemedicina, investimentos em infraestrutura e pesquisa na saúde e recessão econômica estão agora sendo vistos de forma intensa e globalizada.

Espero que o aprendizado com essa pandemia seja duradouro e nos incentive a nos prepararmos para as próximas, pois elas certamente virão.

CONFLITO DE INTERESSE

Os autores declaram não haver conflitos de interesses.

REFERÊNCIAS

1. World Health Organization (WHO). Coronavirus disease (COVID-19). Events as they happen [Internet]. Geneva: WHO; 2020; [access in 2020 March 24]. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-happen

2. Centers for Disease Control and Prevention (CDC). Coronavirus – Human coronavirus types [Internet]. Atlanta: CDC; 2020; [access in 2020 March 24]. Available from: https://www.cdc.gov/coronavirus/types.html

3. Sabino EC, Faria NR. First cases of coronavirus disease (COVID-19) in Brazil, South America. Genome Rep [Internet]. 2020 Mar; [access in 2020 March 25]. Available from: http://virological.org/t/first-cases-of-coronavirus-disease-covid-19-in-brazil-south-america-2-genomes-3rd-march-2020/409

4. Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med [Internet]. 2020 Apr; [cited 2020 March 24]; 382:1708-20. Available from: https://www.nejm.org/doi/pdf/10.1056/NEJMoa200232

5. Ministério da Saúde (BR). Coronavirus – Brasil [Internet]. Brasília (DF): Ministério da Saúde; 2020; [access in 2020 March 24]. Available from: https://covid.saude.gov.br

6. Centers for Disease Control and Prevention (CDC). Coronavirus disease 2019 (COVID-19) – Information for laboratories about Coronavirus (COVID-19) [Internet]. Atlanta: CDC; 2020; [access in 2020 March 24]. Available from: https://www.cdc.gov/coronavirus/2019-ncov/lab/index.html

7. World Health Organization (WHO). Coronavirus disease (COVID-19). Technical guidance publications – Country & Technical Guidance – Coronavirus disease (COVID-19) [Internet]. Geneva: WHO; 2020; [access in 2020 March 24]. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/laboratory-guidance

8. Xiao-Wei X, Xiao-Xin W, Xian-Gao J, Kai-Jin X, Ling-Jun Y, Chun-Lian M, et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-CoV-2) outside of Wuhan, China: retrospective case series. BMJ. 2020 Feb;368:m606. DOI: https://doi.org/10.1136/bmj.m606

9. Zheng Y, Yun Z, Yi Wang, Huang Z, Song B. Chest CT manifestations of new coronavirus disease 2019 (COVID-19): a pictorial review. Eur Radiol. 2020 Mar;30:4381-9. DOI: https://doi.org/10.1007/s00330-020-06801-0

10. Hamming I, Timmens W, Bulthuis MLC, Lely AT, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2014 May;203(2):631-7. DOI: https://doi.org/10.1002/path.1570

11. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020 Apr;181(2):281-92.e6. DOI: https://doi.org/10.1016/j.cell.2020.02.058

12. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020 Mar;46:586-90. DOI: https://doi.org/10.1007/s00134-020-05985-9

13. Cai G. Bulk and single-cell transcriptomics identify tobacco-use disparity in lung gene expression of ACE2, the receptor of 2019-nCoV. Preprints. 2020;2020020051. DOI: https://doi.org/10.20944/preprints202002.0051.v2
14. Lippi G, Henry BM. Active smoking is not associated with severity of coronavirus disease 2019 (COVID-19). Eur J Intern Med. 2020;75:107-8. DOI: https://doi.org/10.1016/j.ejim.2020.03.014
15. Diao B, Wang CH, Wang RS, et al. Human Kidney is a target for novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. medRxiv. 2020 Apr 10; [Epub ahead of print]. DOI: https://doi.org/10.1101/2020.03.04.20031120
16. Batlle D, Soler MJ, Sparks MA, Heremath S, South AM, Welling PA, et al. Acute kidney injury in COVID-19: emerging evidence of a distinct pathophysiology. JASN. 2020 Jul;31(7):1380-3. DOI: https://doi.org/10.1681/ASN.2020040419
17. Larsen CP, Bourne TD, Wilson JD, Saqqa O, Sharshir MA. collapsing glomerulopathy in a patient with coronavirus disease 2019 (COVID-19). Kidney Int Rep. 2020 Apr;5:935-9. DOI: https://doi.org/10.1016/j.ekir.2020.04.002
18. Pei G, Zhang Z, Peng J, Liu L, Zhang C, Yu C, et al. Renal involvement and early prognosis in patients with COVID-19 pneumonia. JASN. 2020 Jun;31(6):1157-65. DOI: https://doi.org/10.1681/ASN.2020030276
19. Li Z, Wu M, Yao J, Guo J, Liao X, Song S, et al. Caution on kidney dysfunctions of COVID-19 patients. medRxiv. 2020 Mar 27; [Epub ahead of print]. DOI: https://doi.org/10.1101/2020.02.08.20021212
20. Ma Y, Diao B, Lv X, Zhu J, Liang W, Liu L, et al. COVID-19 in hemodialysis (HD) patients: report from one HD center in Wuhan, China. medRxiv. 2020 Jun 17; [Epub ahead of print]. DOI: https://doi.org/10.1101/2020.02.24.20027201
21. Li J, Xu G. Lessons from the experience in Wuhan to reduce risk of COVID-19 infection in patients undergoing long-term hemodialysis. CJASN. 2020 May;15(5):717-9. DOI: https://doi.org/10.2215/CJN.03420320
22. Brunori G. Presentazione del Presidente Giuliano Brunori. Roma: Società Italiana di Nefrologia (SIN); 2020; [access in 2020 April 06]. Available from: https://sinitaly.org/2020/04/01/presentazione-del-presidente-giuliano-brunori/