A fraction of barrier-to-autointegration factor (BAF) associates with centromeres and controls mitosis progression

Mònica Torras-Llort1,2,6✉, Sònia Medina-Giró1,2,6, Paula Escudero-Ferruz1,2,6, Zoltan Lipinszki3,4, Olga Moreno-Moreno1,2, Zoltan Karman3,4, Marcin R. Przewloka5 & Fernando Azorín1,2✉

Barrier-to-Autointegration Factor (BAF) is a conserved nuclear envelope (NE) component that binds chromatin and helps its anchoring to the NE. Cycles of phosphorylation and dephosphorylation control BAF function. Entering mitosis, phosphorylation releases BAF from chromatin and facilitates NE-disassembly. At mitotic exit, PP2A-mediated dephosphorylation restores chromatin binding and nucleates NE-reassembly. Here, we show that in Drosophila a small fraction of BAF (cenBAF) associates with centromeres. We also find that PP4 phosphatase, which is recruited to centromeres by CENP-C, prevents phosphorylation and release of cenBAF during mitosis. cenBAF is necessary for proper centromere assembly and accurate chromosome segregation, being critical for mitosis progression. Disrupting cenBAF localization prevents PP2A inactivation in mitosis compromising global BAF phosphorylation, which in turn leads to its persistent association with chromatin, delays anaphase onset and causes NE defects. These results suggest that, together with PP4 and CENP-C, cenBAF forms a centromere-based mechanism that controls chromosome segregation and mitosis progression.
Cell division involves major architectural rearrangements. Metazoa generally undergo open mitosis, which implies that the nuclear envelope (NE) disassembles at prometaphase and reassembles in telophase, after chromosome segregation is completed. A principal player in the regulation of NE dynamics during mitosis is barrier-to-autointegration factor (BAF)\(^1\). BAF is an essential 10 kDa chromatin-binding protein that is highly conserved in metazoan, being involved in multiple pathways including nuclear envelope reassembly (NER), chromatin epigenetics, DNA damage response, and defense against viral DNA infection (reviewed in ref. 9). Of great importance for its role in the regulation of NE dynamics, BAF interacts with the LEM-domain containing proteins LAP2, EMERIN, and MAN1\(^9\)–\(^15\) that, together with lamins, form the nuclear lamina (reviewed in ref. 16). These interactions help anchoring chromatin to the NE in interphase and, in late mitosis, are essential for the recruitment of membranes to the ensemble of decondensing chromosomes\(^1\).\(^2\). A poorly understood contribution of BAF to chromosome segregation has also been reported, since loss of BAF leads to strong chromosome segregation defects and high embryonic lethality in both C. elegans and Drosophila\(^1\),\(^2\),\(^17\).

Phosphorylation plays a key role in regulating BAF localization and function. The mitotic kinase VRK1/NHK1 phosphorylates BAF in mitosis and meiosis\(^1\),\(^8\)–\(^20\). This phosphorylation weakens the binding of BAF to both chromatin and the LEM-domain proteins\(^21\), and is required for NE disassembly\(^1\),\(^2\). BAF plays also a crucial role in postmitotic NER\(^7\)–\(^7\). At mitotic exit, BAF is dephosphorylated and reassociates with chromatin and the LEM-domain proteins, concentrating at the “core region” that surrounds the bulk of decondensing chromosomes, where its mobility and the mobility of the LEM-domain proteins decrease\(^3\), and nucleates NER. Two protein phosphatases, PP2A and PP4, have been shown to dephosphorylate BAF in different species\(^5\),\(^6\),\(^23\). In C. elegans and HeLa cells, PP2A is targeted to BAF by the LEM-domain protein Ankle/LEM4, which is required for BAF dephosphorylation\(^6\). Ankle/LEM4 also associates with VRK1/NHK1 and inhibits its activity, which enhances BAF dephosphorylation\(^5\). PP2A-mediated BAF dephosphorylation regulates BAF reassociation with chromatin at mitotic exit and is required for NER\(^5\),\(^6\). PP4 has also been shown to regulate BAF dephosphorylation during mitosis in HEK293 cells\(^3\).

Here we show that in Drosophila BAF is also a centromere-associated protein that is required for proper centromere assembly and function. Centromeric BAF (cenBAF) localization depends on the PP4 regulatory subunit Falafel (Ffil), which is recruited to centromeres by the constitutive centromeric protein CENP-C\(^24\). Our results suggest that, together with PP4/Fil and CENP-C, cenBAF forms a centromeric network that controls phosphorylation and association with chromatin of the bulk of BAF, and regulates mitosis progression.

Results

BAF associates with centromeres.

Others and we have identified BAF amongst the proteins co-purifying with centromeric chromatin enriched in the histone H3 variant CENP-A\(^{\text{CID}}\)\(^25\) (Supplementary Table 1) (see also “Methods” section). BAF also co-purified with canonical H3 containing chromatin\(^25\) and its binding to bulk chromatin has been reported\(^26\),\(^27\). Indeed, in interphase cells, we observed that BAF preferentially associated with heterochromatin, since it strongly co-localized with the heterochromatic HP1a variant (Fig. 1a, left), being largely excluded from regions enriched in the euchromatic HP1c isoform (Fig. 1a, center). However, unexpectedly, in metaphase chromosomes, BAF strongly overlapped with the constitutive centromeric protein CENP-C (Fig. 1b; see also Fig. 4d, e), suggesting that, in mitosis, chromosomal BAF localization was restricted to centromeres. The aBAF immunostaining detected in both interphase cells and metaphase chromosomes was specific, since it strongly decreased upon RNAi-mediated depletion of BAF (Supplementary Fig. 1). Chromatin fibers analysis confirmed centromeric localization of BAF since we detected BAF in ~80% of CENP-C-containing regions (N = 38) (one-tailed binomial test, p-value < 0.0001) (Fig. 1c). This strong co-localization suggests that BAF localizes at centromeres also in interphase since mitotic cells accounted for <5% of the total cells used in these analyses.

Co-immunoprecipitation experiments were consistent with the association of BAF with centromeres since aBAF antibodies immunoprecipitated CENP-C (Fig. 1d, left) and, vice versa, aCENP-C antibodies immunoprecipitated BAF (Fig. 1d, right). This interaction was resistant to treatment of the extract with DNase I prior to immunoprecipitation (Supplementary Fig. 2a, b), suggesting that it was not mediated by chromatin binding. Along the same lines, we did not detect co-immunoprecipitation with the centromeric H3 variant CENP-A\(^{\text{CID}}\), which is an intrinsic structural component of the nucleosome and, hence, is tightly bound to centromeric chromatin. Endogenous CENP-A\(^{\text{CID}}\) was difficult to detect by WB in co-IP experiments. Thus, for these experiments, we used a stable S2 cell line expressing a CENP-A\(^{\text{CID}}\)-YFP fusion protein that showed strong centromeric localization (Supplementary Fig. 2c). We observed that aBAF antibodies did not immunoprecipitate CENP-A\(^{\text{CID}}\)-YFP (Supplementary Fig. 2d, lane 4) and, similarly, neither BAF nor CENP-C could be immunoprecipitated with aGFP (Supplementary Fig. 2d, lane 3). The lack of CENP-C co-immunoprecipitation with CENP-A\(^{\text{CID}}\) has been previously reported\(^28\).

Altogether these results suggest that a fraction of BAF (cenBAF) stays associated with centromeres throughout the cell cycle.

BAF is required for functional centromere assembly.

We observed that depletion of BAF decreased centromeric CENP-C and CENP-A\(^{\text{CID}}\) levels in both metaphase chromosomes (Fig. 2a–c) and interphase cells (Supplementary Fig. 3a, b). We observed that reduction of CENP-A\(^{\text{CID}}\) levels was markedly weaker than that observed for CENP-C (Fig. 2c and Supplementary Fig. 3b), suggesting that BAF primarily affects centromeric CENP-C levels. Along the same lines, we observed that expression of a BAF:YFP construct decreased CENP-C levels, without significantly affecting centromeric CENP-A\(^{\text{CID}}\) levels (Kruskal–Wallis test, p-value = 0.215) (Supplementary Fig. 3c, d). Localization of BAF:YFP largely mimicked the pattern of immunolocalization of endogenous BAF since, in interphase cells, BAF:YFP overlapped with HP1a (Supplementary Fig. 4a), while it localized at centromeric regions in metaphase chromosomes (Supplementary Fig. 4b, c) and strongly overlapped with CENP-C in chromatin fibers (64%; N = 37) (one-tailed binomial test, p-value < 0.05) (Supplementary Fig. 4d). However, in contrast to endogenous BAF, BAF:YFP localization in metaphase chromosomes extended to pericentromeric heterochromatin (Supplementary Fig. 4c). Genetic analysis showed that BAF:YFP acts as a dominant negative mutation. In these experiments, baf\(^{\text{RNAi}}\) knockdown flies, which carry a UAS\(^{\text{GAL4}}\) construct expressing a synthetic hairpin from the baf-coding region, were crossed to nub\(^{\text{GAL4}}\) flies to specifically induced BAF depletion in the pouch region of wing imaginal disks. BAF depletion resulted in a strong wing phenotype in adult flies (Supplementary Fig. 3e, bottom left panel). This phenotype was partially rescued by expression of RNAi-resistant untagged BAF\(^{\text{R}}\) (Supplementary Fig. 3e, bottom center panel), but not by expression of an RNAi-resistant BAF::YFP\(^{\text{R}}\) construct (Supplementary Fig. 3e, bottom right panel).
Moreover, while overexpression of untagged BAF caused no detectable wing defects (Supplementary Fig. 3e, top center panel), overexpression of BAF::YFP in control wild-type flies mimicked the loss-of-function phenotype observed upon BAF depletion (Supplementary Fig. 3e, top right panel). In this regard, we observed that expression of BAF::YFP strongly reduced the levels of endogenous BAF, whereas several other chromosomal proteins were not affected (i.e., CENP-C, CENP-A^{CID}, HP1α) (Supplementary Fig. 3f). On the other hand, as discussed below, BAF::YFP showed an aberrant pattern of phosphorylation (Supplementary Fig. 5b). Impaired phosphorylation is likely affecting BAF::YFP function since phosphorylation regulates binding of BAF to both chromatin and the LEM-domain proteins²¹. Hence, the negative dominant character of BAF::YFP is likely associated with destabilization and replacement of endogenous BAF by a non-functional BAF::YFP form of altered chromatin-binding dynamics due to abnormal phosphorylation.

CENP-A^{CID} and CENP-C are conserved constitutive centromeric proteins that are essential for centromere/kinetochore assembly and chromosome segregation (reviewed in ref. ²⁹). Hence, their decrease upon BAF depletion suggest a contribution of BAF to centromere function. Consistent with this hypothesis, depletion of BAF increased the frequency of chromosome segregation defects (Fig. 2d, e). In particular, the frequency of mitoses showing misaligned metaphase chromosomes strongly increased from ~7% in control dsRNA^{1ac2} cells to ~31% in BAF-depleted cells (Fig. 2e). The frequency of anaphase chromatin bridges and lagging chromosomes also increased, though to a lesser extent (Fig. 2e). Expression of the dominant negative BAF::YFP form also induced strong segregation defects (~86%) (N = 14; two-tailed Fisher’s test, p-value < 0.0001) (Supplementary Fig. 3g). These results are in agreement with previous reports showing a high incidence of chromosome segregation defects upon BAF depletion in <i>C. elegans</i>^{3,12} and in <i>baf</i> null mutant flies¹⁷.

Altogether these observations suggest that BAF stabilizes centromeric association of the essential centromeric components CENP-A^{CID} and CENP-C and, thus, it is required for accurate chromosome segregation.

cenBAF localization depends on PP4 phosphatase. It has been shown that BAF is phosphorylated at mitosis by the mitotic kinase VRK1/NHK1^{1,5,19,20}. Phos-tag gel electrophoretic analyses confirmed BAF phosphorylation since we detected mono-(1pBAF) and di-phosphorylated (2pBAF) BAF species that migrated slower than non-phosphorylated BAF and were sensitive to treatment with alkaline phosphatase (AP) (Supplementary Fig. 5a). VRK1/NHK1 overexpression increased the proportion of 2pBAF, whereas VRK1/NHK1 depletion increased non-phosphorylated BAF (Supplementary Fig. 5a). Previous studies showed that, at mitosis, phosphorylation resolves the interaction of BAF with chromatin as well as with the NE LEM-domain proteins^{1,5,19,20}. In this regard, we observed that mitotic spreads had high non-chromosomal aBAF reactivity (Fig. 1b and Supplementary Fig. 1b, top panel), which likely reflects the bulk of free pBAF that exists during mitosis since this background was strongly reduced upon BAF depletion (Supplementary Fig. 1b, bottom panel). Noteworthy, the dominant negative BAF::YFP form showed an aberrant phosphorylation pattern (Supplementary Fig. 5b), suggesting that it was not properly phosphorylated by VRK1/NHK1. Impaired VRK1/NHK1 phosphorylation is likely responsible for the persistent binding of BAF::YFP to heterochromatin observed in mitosis (Supplementary Fig. 4c).
In light of these observations, we hypothesized that the fraction of BAF that remained bound to centromeres during mitosis was likely non-phosphorylated. In this regard, protein phosphatase 4 (PP4), which has been previously shown to regulate BAF phosphorylation23, is known to associate with centromeres through the interaction of its conserved regulatory 3 subunit, Flf, with CENP-C24. A short sequence-motif in CENP-C (Falafel Interacting Motif (FIM)) mediates this interaction24. Notably, deletion of this motif, which disrupts binding of PP4 to centromeres24, strongly reduced the levels of centromeric BAF (cenBAF). In these experiments, stable cell lines expressing RNAi-resistant constructs (Fig. 3a). Upon depletion of endogenous CENP-C, Flf recruitment to centromeres was impaired in cells expressing GFP::CENP-CΔFIM24 (Supplementary Fig. 6a, center and b) and, concomitantly, we observed that cenBAF levels were strongly reduced as determined by both IF (Fig. 3a, b) and co-IP experiments (Fig. 3c, d). As expected, in control GFP::CENP-C expressing cells, depletion of endogenous CENP-C did not affect Flf recruitment to centromeres (two-tailed Fisher’s test, \(p = 0.58 \)) (Supplementary Fig. 6a, left and b) and, consequently, cenBAF levels were not significantly affected (Fig. 3a–d). In addition, we observed that Flf depletion decreased cenBAF levels (Supplementary Fig. 7c–f), without affecting total BAF levels (Supplementary Fig. 7a, b). These results suggest that PP4 is required for centromeric localization of cenBAF.

We also analyzed localization of FLAG::BAF phosphomutants, in which the three putative VRK1/NHK1 phosphorylation sites (S2, T4, and S5)18,20,23 were mutated to A (phosphonull) and E (phosphomimetic) (Supplementary Fig. 5c, d). As expected, we observed that the phosphomimetic FLAG::BAF3E construct was not binding chromosomes (\(N = 238 \)) (Fig. 3e), while the phosphonull FLAG::BAF3A mutant showed persistent binding to chromosomes in mitosis (Fig. 3f). Nonetheless, although FLAG::BAF3A was generally binding across the entire chromosome (Fig. 3f, left), we observed that its localization was restricted to centromeres in ~15% of the mitoses (\(N = 123 \)) (two-tailed binomial test, \(p < 0.0001 \)) (Fig. 3f, right), which is consistent with cenBAF not being phosphorylated. In addition, BAF phosphorylation impaired BAF/ CENP-C co-immunoprecipitation, since VRK1/NHK1 overexpression decreased co-immunoprecipitation of CENP-C with aBAF, whereas VRK1/NHK1 depletion increased it (Fig. 3g, h). Altogether these results suggest that, during mitosis, cenBAF is maintained non-phosphorylated by the action of PP4.
free in the cytoplasm, reassociating with chromatin only after chromosomes start to decondense in telophase, an event that marks the formation of the "core region" and the initiation of NER3,5-7. However, we observed that, concomitant to decreased cenBAF, CENP-C depletion in GFP::CENP-CΔFIMR-expressing cells induced intense perichromosomal αBAF immunostaining in ~50% of the mitosis, which was infrequent when CENP-C depletion was performed in control GFP::CENP-CR-expressing cells (Fig. 4a, left and center, and 4b). WB analysis showed that total BAF levels did not change upon CENP-C depletion in both GFP::CENP-CΔFIMR-expressing cells and control GFP::CENP-CΔR-expressing cells (Supplementary Fig. 8). The presence of perichromosomal BAF correlated with the reduction of cenBAF since, in CENP-C-depleted GFP::CENP-CΔFIMR-expressing cells, mitoses showing perichromosomal αBAF immunostaining had lower cenBAF levels than mitoses without perichromosomal BAF (Fig. 4c). We also observed that, in comparison to control GFP::CENP-CΔR-expressing cells, cells expressing GFP::CENP-CΔFIMR had reduced cenBAF levels even without depletion of endogenous CENP-C in control dsRNAΔlacZ cells (Fig. 3a, b) and, concomitantly, they showed increased perichromosomal BAF (Fig. 4b).

Fig. 3 Centromeric cenBAF localization depends on Flfl. a Immunostainings with αBAF antibodies (red) are presented in cells expressing GFP::CENP-CR (left) and GFP::CENP-CΔFIMR (right) upon CENP-C depletion (dsRNAΔCENP-C) and in control dsRNAΔlacZ cells. GFP signals are direct fluorescence. DNA was stained with DAPI. Scale bars are 2.5 μm. b Quantitative analysis of the results shown in a. Mean grey values per centromere of αBAF fluorescence are presented for control dsRNAΔlacZ and dsRNAΔCENP-C cells expressing the indicated constructs. Values correspond to a representative experiment out of five independent experiments showing equivalent results (N > 48; Kruskal–Wallis test, p-value: ns > 0.05, **p < 0.01, ***p < 0.001). c co-IP experiments with αBAF antibodies in extracts from control dsRNAΔlacZ and dsRNAΔCENP-C cells expressing GFP::CENP-CΔR (left) and GFP::CENP-CΔFIMR (right) (lanes 4). Lanes 3 are mock IPs with preimmune serum. Lanes 1 and 2 are 2% and 5% of the input, respectively. IPs were analyzed by WB using αGFP and αBAF antibodies. The position of MW markers (in kDa) is indicated. d Quantitative analysis of the results shown in c. The ratio of αCENP-C and αBAF signals normalized with respect to the corresponding control dsRNAΔlacZ cells is presented for dsRNAΔCENP-C cells expressing the indicated constructs. Results are the average of two independent experiments (two-tailed t-test, ***p-value < 0.001). e Immunostaining with αFLAG antibodies (green) in metaphase chromosomes from cells transiently expressing FLAG::BAF3E. Immunostaining with αCENP-C antibodies (red) is also presented. DNA was stained with DAPI. Scale bar is 5 μm. f As in e but for cells transiently expressing FLAG::BAF3A. g co-IP experiments with αBAF antibodies in extracts from control dsRNAΔlacZ, VRK1/NHK1-depleted dsRNAΔNHK1 cells and pMT-NHK1 cells overexpressing VRK1/NHK1 (lanes 3). Lanes 2 are mock IPs with preimmune serum. Lanes 1 correspond to 3% of the input. IPs were analyzed by WB using αCENP-C and αBAF antibodies. The position of MW markers (in kDa) is indicated. h Quantitative analyses of the results shown in g. The ratio of αCENP-C and αBAF signals normalized respect to control dsRNAΔlacZ cells is presented for pMT-NHK1 and dsRNAΔNHK1 cells. Results are the average of three independent experiments (error bars are SD; two-tailed t-test, *p < 0.05, ****p < 0.0001).

had lower cenBAF levels than mitoses without perichromosomal BAF (Fig. 4c). We also observed that, in comparison to control GFP::CENP-CΔR-expressing cells, cells expressing GFP::CENP-CΔFIMR had reduced cenBAF levels even without depletion of endogenous CENP-C in control dsRNAΔlacZ cells (Fig. 3a, b) and, concomitantly, they showed increased perichromosomal BAF (Fig. 4b). Super-resolution microscopy analysis confirmed these results. In control CENP-C-depleted GFP::CENP-CΔR-expressing cells, the distribution of BAF was largely restricted to the centromere, showing a well-defined maximum that strongly overlapped with GFP::CENP-C (Fig. 4d, e). Instead, in CENP-C-depleted GFP::CENP-CΔFIMR-expressing cells, the distribution of BAF was radically different with the maximum in the perichromosomal layer surrounding the chromosome and a much-reduced overlapping with CENP-C at the centromere (Fig. 4f, g).
Within this perichromosomal layer, BAF was in direct association with the chromosome, though the maximum BAF concentration was detected beyond its surface (Fig. 4g).

Results reported above suggest that disrupting cenBAF localization induces the accumulation of BAF in a perichromosomal layer that wraps around chromosomes in mitosis. This phenotype depends on cenBAF since constitutive targeting of BAF to centromeres prevents the accumulation of perichromosomal BAF. For these experiments, we used a GBP::FLAG::BAF construct that was tethered to centromeres by specifically recognizing the GFP-moiety of the GFP::CENP-CR and GFP::CENP-CΔFIMR expressing cells (Supplementary Fig. 9a, b). Importantly, expression of GBP::FLAG::BAF in control GFP::CENP-CR-expressing cells caused no detectable defects (Supplementary Fig. 9c–h). Notably, we observed that expression of GBP::FLAG::BAF in CENP-C-depleted GFP::CENP-CΔFIMR-expressing cells strongly reduced perichromosomal BAF (Fig. 4a, right and b). Expression of GBP::FLAG::BAF also tended to reduce perichromosomal BAF in control dsRNAΔac2 GFP::CENP-CΔFIMR-expressing cells (two-tailed Fischer’s test, p-value = 0.07) (Fig. 4b).

The association of BAF with chromatin is regulated by PP2A phosphatase that, at mitotic exit, dephosphorylates free pBAF and restores its binding to chromatin.1,3,6,20 In this regard, we observed that formation of the perichromosomal BAF layer depended on PP2A. In these experiments, we used Fli1-depleted cells that, similar to CENP-C-depleted GFP::CENP-CΔFIMR-expressing cells, showed impaired cenBAF localization (Supplementary Fig. 7c–f) and, consequently, high perichromosomal BAF (Fig. 5a, b). Depletion of the Drosophila P2A catalytic subunit Microtubule star (MTS) in Fli1-depleted cells strongly reduced perichromosomal BAF (Fig. 5a, b). Depletion of the Drosophila P2A catalytic subunit Microtubule star (MTS) in Fli1-depleted cells strongly reduced perichromosomal BAF (Fig. 5a, b). Depletion of the Drosophila P2A catalytic subunit Microtubule star (MTS) in Fli1-depleted cells strongly reduced perichromosomal BAF (Fig. 5a, b). Depletion of the Drosophila P2A catalytic subunit Microtubule star (MTS) in Fli1-depleted cells strongly reduced perichromosomal BAF (Fig. 5a, b). Depletion of the Drosophila P2A catalytic subunit Microtubule star (MTS) in Fli1-depleted cells strongly reduced perichromosomal BAF (Fig. 5a, b). Depletion of the Drosophila P2A catalytic subunit Microtubule star (MTS) in Fli1-depleted cells strongly reduced perichromosomal BAF (Fig. 5a, b). Depletion of the Drosophila P2A catalytic subunit Microtubule star (MTS) in Fli1-depleted cells strongly reduced perichromosomal BAF (Fig. 5a, b). Depletion of the Drosophila P2A catalytic subunit Microtubule star (MTS) in Fli1-depleted cells strongly reduced perichromosomal BAF (Fig. 5a, b). Depletion of the Drosophila P2A catalytic subunit Microtubule star (MTS) in Fli1-depleted cells strongly reduced perichromosomal BAF (Fig. 5a, b). Depletion of the Drosophila P2A catalytic subunit Microtubule star (MTS) in Fli1-depleted cells strongly reduced perichromosomal BAF (Fig. 5a, b). Depletion of the Drosophila P2A catalytic subunit Microtubule star (MTS) in Fli1-depleted cells strongly reduced perichromosomal BAF (Fig. 5a, b). Depletion of the Drosophila P2A catalytic subunit Microtubule star (MTS) in Fli1-depleted cells strongly reduced perichromosomal BAF (Fig. 5a, b). Depletion of the Drosophila P2A catalytic subunit Microtubule star (MTS) in Fli1-depleted cells strongly reduced perichromosomal BAF (Fig. 5a, b). Depletion of the Drosophila P2A catalytic subunit Microtubule star (MTS) in Fli1-depleted cells strongly reduced perichromosomal BAF (Fig. 5a, b). Depletion of the Drosophila P2A catalytic subunit Microtubule star (MTS) in Fli1-depleted cells strongly reduced perichromosomal BAF (Fig. 5a, b). Depletion of the Drosophila P2A catalytic subunit Microtubule star (MTS) in Fli1-depleted cells strongly reduced perichromosomal BAF (Fig. 5a, b). Depletion of the Drosophila P2A catalytic subunit Microtubule star (MTS) in Fli1-depleted cells strongly reduced perichromosomal BAF (Fig. 5a, b).
To label the NE, we observed that, in comparison to control

cenBAF regulates progression through mitosis. Next, we ana-
yzed the effects of disrupting cenBAF localization on mitosis
progression. For this purpose, we performed live image anal-
ysis in cells expressing the nuclear pore component Nup-107::mRFP
to label the NE. We observed that, in comparison to control
dsRNALacZ cells, depletion of CENP-C in GFP::CENP-CAFIMR,
expressing cells significantly increased the overall duration of
mitosis (Fig. 6a, b, and Supplementary Movies 1 and 2). No such
effect was observed in GFP::CENP-CGFP-expressing cells, where the
length of mitosis was similar in control dsRNALacZ cells and after
CENP-C depletion (Fig. 6b). These results suggest that impairing
cenBAF localization delays mitosis progression. In particular, the
time from NEBD to AO was significantly increased (Fig. 6a, b,
and Supplementary Movies 1 and 2). The time from AO to NER
also showed a clear tendency to increase (Kruskal–Wallis test,
\(p < 0.0001 \)).

In CENP-C-depleted GFP::CENP-C\textsuperscript{CAFIMR}-expressing cells, we often observed that Nup-107::mRFP signal persisted through
mitosis (Supplementary Movies 2–4), suggesting incomplete NE
disassembly. Nuclear pore disassembly is a very early step in
NEBD. Thus, to further analyze the effects on NE assembly, we
performed IF experiments using aPS10 antibodies, which
recognize H3S10P in mitotic cells, and aLaminB antibodies to

Fig. 5 Perichromosomal BAF requires PP2A-mediated dephosphorylation of pBAF. a The patterns of immunolocalization with αBAF (green) and αCENP-
C (red) antibodies are presented for control dsRNALacZ cells and cells treated with dsRNA against Fl (dsRNAFl), MTS (dsRNAMTS), and both Fl and
MTS (dsRNAFl+MTS). DNA was stained with DAPI. Scale bars correspond to 5 μm. b The percentages of mitoses showing perichromosomal BAF are
presented for the indicated RNAi-treated cells. Depletion was carried out for 3 or 6 days as indicated. Values are the sum of 5
> 165; two-tailed Fischer
- test, *\(p < 0.05 \), **\(p < 0.01 \), ***\(p < 0.001 \).

cenBAF depletion slightly increased 2pBAF levels (Fig. 5e, f).

\(\Delta \) CENP-C depletion slightly increased 2pBAF levels
(Fig. 5e, f). We also observed that Fl depletion slightly increased 2pBAF levels
(Fig. 5e, f).

\(\mu \) In CENP-C-depleted GFP::CENP-CAFIMR-expressing cells, we often observed that Nup-107::mRFP signal persisted through
mitosis (Supplementary Movies 2–4), suggesting incomplete NE
disassembly. Nuclear pore disassembly is a very early step in
NEBD. Thus, to further analyze the effects on NE assembly, we
performed IF experiments using aPS10 antibodies, which
recognize H3S10P in mitotic cells, and aLaminB antibodies to

\(\alpha \) significantly increased total pBAF levels (Fig. 5e, f). Interestingly,
this effect was mainly constrained to 1pBAF (Fig. 5e, f), since the
levels of 2pBAF were not significantly affected (two-tailed t-test,
\(p = 0.268 \)) (Fig. 5e, f). These results suggest that PP2A
preferentially dephosphorylates 1pBAF. Conversely, and opposite
to what would be expected, Fl depletion decreased total pBAF
levels (Fig. 5e, f), strongly reducing 1pBAF levels (Fig. 5e, f),
which suggests that Fl depletion enhanced PP2A-mediated
dephosphorylation of 1pBAF. Consistent with this, depletion of
MTS in Fl-depleted cells restored 1pBAF levels (Fig. 5e, f). We
also observed that Fl depletion slightly increased 2pBAF levels
(Fig. 5e, f).
monitor NE status. In control dsRNA\textsubscript{LacZ} cells, αLaminB immunostaining marked the NE in interphase, became diffuse through the cytoplasm after NEBD in late prophase to relocate to the NE during NER in telophase (Fig. 6c, top). However, in CENP-C-depleted GFP::CENP-C\textsubscript{Δ} cells expressing αLaminB antibodies (magenta) and αPS10 (red) of control dsRNA\textsubscript{LacZ} and CENP-C-depleted dsRNA\textsubscript{CENP-C} cells (Fig. 6c, bottom). Moreover, the proportion of αPS10-positive cells showing NE-assembled αLaminB immunostaining increased upon CENP-C depletion in GFP::CENP-C\textsubscript{Δ} expressing cells in comparison with control GFP::CENP-C\textsubscript{R}-expressing cells (Fig. 6d). Altogether these results suggest that, upon disrupting cenBAF localization, the NE remains partially assembled during mitosis.

In addition, in comparison to control GFP::CENP-C\textsubscript{R}-expressing cells, we observed an increased frequency of NE morphology defects in CENP-C-depleted GFP::CENP-C\textsubscript{Δ} expressing cells (two-tailed Fischer’s test, \(p<0.0001\)) (Fig. 7a, b). These defects ranged from nuclear budding and the formation of micronuclei (Fig. 7c, image 3), to multinucleated cells (Fig. 7c, image 4) and cells with enlarged nucleus of irregular NE (Fig. 7c, images 5–7). In this regard, in CENP-C-depleted GFP::CENP-C\textsubscript{Δ} expressing cells, we detected aberrant mitoses that generated cells with abnormal nuclear morphology, often multinucleated (Supplementary Movies 3–6). Notably, these defects were significantly rescued when BAF was constitutively targeted to centromeres in cells expressing GFP::FLAG::BAF (Fig. 7a, b).

cenBAF, CENP-C, and PP4 localization is interdependent. Results reported above suggest a model by which CENP-C mediates recruitment of PP4 to centromeres, PP4 retains cenBAF at centromeres in mitosis, which in turn stabilizes CENP-C (Fig. 8a). Consistent with these interdependences, Fl\textsubscript{fl} depletion, which reduced centromeric cenBAF levels (Supplementary Fig. 7c, bottom panel), and, along with CENP-C, BAF depletion reduced centromeric levels of Fl\textsubscript{fl} (Fig. 8c). Moreover, depletion of CENP-C abolished centromeric localization of both Fl\textsubscript{fl} (Fig. 8d) and cenBAF (Fig. 8e). Noteworthy, like when cenBAF localization is disturbed in CENP-C-depleted GFP::CENP-C\textsubscript{Δ} expressing cells (Fig. 4a) or upon Fl\textsubscript{fl}-depletion (Fig. 5a), depletion of CENP-C induced the accumulation of perichromosomal BAF too (Supplementary Fig. 11). Altogether these results indicate that CENP-C, PP4, and BAF are interdependent for centromeric localization in mitotic chromosomes.
Interestingly, we also observed that targeting of GBP::FLAG::BAF to centromeres in CENP-C-depleted GFP::CENP-CΔFIMR-expressing cells significantly rescued centromeric Fl dynamics (Supplementary Fig. 6a, b), without affecting depletion of endogenous CENP-C (Supplementary Fig. 6c), suggesting that BAF also stabilizes centromeric PP4 independently of CENP-C.

Discussion

Here we have unveiled a novel centromere-based mechanism that controls mitosis progression. Central to this mechanism is the NE component BAF. We have shown that a fraction of BAF (cenBAF) associates with centromeres. BAF is known to bind across chromatin in interphase, but, in mitosis, VRRK1/NHK1 phosphorylates BAF, resulting in its release from chromatin. Our results suggest that, at the centromere, PP4 prevents phosphorylation and release of cenBAF in mitosis. cenBAF is a very small proportion of total BAF. In this regard, the vast majority of BAF is phosphorylated and free in mitosis, resulting in high non-chromosomal background that likely precluded the identification of cenBAF in previous IF studies.

cenBAF forms a functional network with PP4 and CENP-C, as all three factors are interdependent for their centromeric localization. Whether they physically interact to form a centromeric complex remains to be determined. In favor of this possibility, CENP-C interacts directly with Flil in vitro and, moreover, BAF and CENP-C co-immunoprecipitate, suggesting that, either directly or indirectly, CENP-C also interacts with BAF. Along the same lines, constitutive targeting of BAF to centromeres stabilizes centromeric Flil as well as CENP-C.

Our results suggest that cenBAF stabilizes CENP-C at centromeres and, thus, is required for accurate chromosome segregation. CENP-C connects centromeric chromatin with the outer kinetochore and loss-of-function mutations induce strong chromosome segregation defects, mostly chromosome misalignment in metaphase. Interestingly, metaphase misalignment is the most frequent chromosome segregation defect observed in BAF-depleted cells, supporting that destabilization of CENP-C is the principal cause. The mechanism by which BAF stabilizes CENP-C at centromeres remains unknown. It is possible that cenBAF modifies centromeric chromatin in a way that stabilizes CENP-C, since BAF has been shown to affect histone modifications and higher-order chromatin organization. It is also possible that the stabilization is through the action of PP4, since cenBAF is required for centromeric localization of Flil. On the other hand, CENP-C destabilization at centromeres likely involves tension exerted by spindle microtubules since, when centromeric localization of cenBAF and PP4 are impaired in CENP-CΔFIMR-expressing cells, CENP-C delocalizes to chromosomes and across the spindle in metaphase (see also Fig. 6c, metaphase in bottom panel). Our results also show that cenBAF is reciprocally stabilized by CENP-C via the recruitment of Flil. Altogether these observations suggest that the network of interactions between CENP-C, PP4, and cenBAF forms a positive feedback loop that reinforces assembly of centromeric chromatin and, hence, ensures faithful chromosome segregation. BAF depletion also affected centromeric CENP-A levels. This effect is likely a consequence of CENP-C destabilization, since CENP-A levels was reduced to a much lesser extent than CENP-C and it is known that CENP-A and CENP-C are interdependent for their centromeric localization.

The small fraction of cenBAF regulates the behavior of the large pool of free pBAF in mitosis. Disrupting cenBAF localization...
induces PP2A-mediated dephosphorylation of free pBAF in mitosis and the accumulation of BAF in a perichromosomal layer that surrounds chromosomes (Fig. 9). Normally, PP2A is inactivated at the entry into mitosis (reviewed in ref. 38). Thus, our results suggest that in the absence of cenBAF, PP2A remains active in mitosis. How might cenBAF regulate PP2A activity in mitosis remains to be determined. In this regard, PP4 could play a central role, since our results suggest that it regulates PP2A-mediated pBAF dephosphorylation. Whether the centromere-bound fraction of PP2A\(^{39}\) participates in this regulatory mechanism remains to be determined too.

PP2A selectively dephosphorylates 1pBAF, but not 2pBAF, suggesting that various phosphatases specifically target pBAF. In this regard, in Drosophila, a second unidentified phosphatase has been proposed to dephosphorylate pBAF at the exit from mitosis\(^{6}\). PP4 might be involved in 2pBAF dephosphorylation since, though weakly, Fl\(^{fl}\) depletion increased 2pBAF levels. Further work is required to clarify the actual phospho-sites in 1pBAF and

\[\text{cenBAF, PP4, and CENP-C form a centromeric network that prevents PP2A-mediated dephosphorylation and perichromosomal accumulation of BAF in mitosis.} \]

\[\text{a} \quad \text{Normally, centromeric localization of cenBAF and PP4, which depends on CENP-C, maintains PP2A inactive (in red) during mitosis and, consequently, the bulk of BAF stays phosphorylated and free.} \]

\[\text{b} \quad \text{Disrupting centromeric localization of cenBAF and PP4 causes ectopic PP2A activation (in green) in mitosis, which results in dephosphorylation of pBAF and the accumulation of perichromosomal BAF. Centromeric CENP-C is also destabilized. See text for details.} \]
2pBAF and the potential site-specific activity of the various phosphatases involved in BAF dephosphorylation. The cenBAF disruption compromises progression through mitosis, delaying AO and increasing total mitosis duration. Several factors could contribute to these effects. On one hand, defects in centromere and kinetochore assembly are known to delay or arrest mitosis progression, particularly before AO. Furthermore, altering PP2A activity could impact mitosis in many different ways. In this regard, impaired BAF phosphorylation was shown to affect mitosis progression, since VRK1 depletion in mammalian cells, which also prevents BAF phosphorylation and its release from chromatin during mitosis, delays AO and increases mitosis duration too. Delayed AO could reflect a defect in NEBD since BAF phosphorylation is important to weaken anchoring of chromatin to the NE. On the other hand, exiting mitosis, pBAF dephosphorylation is crucial for NER. Thus, it is also possible that, due to the ectopic activation of PP2A in mitosis, cenBAF disruption induces premature pBAF dephosphorylation and NER. The increased proportion of mitotic cells showing uncondensed NE, and the persistence of Nup-107-mRFP signal through mitosis support a contribution of cenBAF to NE disassembly/reassembly. Along the same lines, cenBAF disruption induces strong NE morphological defects. Altered nuclear morphology is widely associated with generic mitotic problems. However, the defects observed upon impairing cenBAF localization are rescued by constitutive targeting of BAF to centromeres, indicating that they are linked to cenBAF disruption. Moreover, BAF mutations that affect its ability to polymerize and crossbridge distant DNA sites, or when BAF phosphorylation is impeded by VRK1 depletion, induce similar nuclear morphology defects. Altogether these results suggest that cenBAF, although localized at centromeres, participates in the global regulation of the structural rearrangements that the NE undergoes during mitosis. Further work is required to reach a better understanding of this contribution.

In summary, our results suggest that, together with PP4 and CENP-C, cenBAF forms a functional centromeric network that is required for accurate chromosome segregation and controls mitosis progression by regulating PP2A-mediated BAF dephosphorylation. It is tempting to speculate that this network helps to coordinate chromosome segregation with the crucial NE rearrangements that mark mitosis progression. Interestingly, other NE components have also been reported to associate with the centromere/kinetochore during mitosis and contribute to spindle assembly, revealing the strong functional links that exist between the NE and the centromere/kinetochore.

Cultured cells used in these experiments were Schneider’s Drosophila Line 2 [D. Mel. (2), SL2] (ATCC CRL-1963®). To generate cell lines stably expressing RA2pBAF (i.e. pBAF-GFP-PP2A-CENP-C’MCS) we replaced the Acc65-EcoRI (420 bps) fragment in GFP::CENP-C and GFP::CENP-C’A/CIFM constructs to a codon modified version of the fragment (GeneArt gene synthesis) that encodes the same amino acids but is insensitive to RNAi targeting endogenous CENP-C. Stable lines expressing CENP-A3D, TAP, YFP::CENP-A3D, YFP::GBP, GBP::FLAG::BAF::GBP::CENP-C, GBP::FLAG::BAF::GBP::CENP-C’A/CIFM, Nup-107-mRFP::GBP::CENP-C’C, and Nup-107-mRFP::GBP::CENP-C’A/CIFM were obtained according to standard procedures.

Rabbit polyclonal aBAF, and rat and rabbit polyclonal cCENP-C antibodies were raised against bacterially expressed full length Drosophila CENP-C fragment (aa 505–1227), respectively. Specificity of the antibodies was determined by WB and/or immunostaining (IF) (Supplementary Figs. 1 and 8d). Rabbit polyclonal aCID, and rat polyclonal eHPla and eHPlc antibodies are described in refs. 44, 45. Rat polyclonal aHplc antibodies are described in ref. 46. Rabbit polyclonal aBAFpS3 antibodies raised against a phospho-peptide (Open Biosystems, CAB1001), mouse monoclonal aMTS (BD-Transduction Laboratories, 610555), mouse monoclonal aFLAG (Sigma F3165), rabbit purified aFLAG (Sigma F7425), mouse monoclonal aTubulin (Millipore, MAB3408), mouse monoclonal aLaminB (DSHB ADL67.10), mouse monoclonal aGFP (Roche 1181446001), rabbit polyclonal aGFP (Invitrogen A11122), rabbit polyclonal aH3 (Cell Signaling 9715), and rabbit polyclonal aS10 (Millipore 06-570).

Fly stocks and genetic procedures. nub-GAL4 flies were obtained from Bloomington Stock Center. bafRNAi corresponds to 102,013 stock from the Vienna Drosophila RNAi Center. Transgenic flies carrying the various UAS-BAF constructs described in the text were obtained by site-directed integration of the corresponding pUASTattb plasmids into chromosome 3 using 3R-86FB embryos. For experiments with knockdown bafRNAi flies, crosses were left at 25°C until third-instar larvae stage. For overexpression experiments, homozygous transgenic flies (the corresponding UAS-constructs are driven nub-GAL4 flies. To analyze the effects on wing development, flies were kept in 75% ethanol, 25% glyceral solution for at least 24 h at room temperature and washed in PBS. Then, wings were dissected and immediately mounted in Fauré’s medium under gentle pressure. Images were collected using a ×4 objective lens on a Nikon E-600 microscope equipped with an Olympus DP72 camera and Cell II software.

Identification of CENP-A3D chromatin-associated proteins. For the identification of proteins associated with CENP-A3D-enriched chromatin, a stable S2 cell line expressing CENP-A3D::TAP under the control of the CENP-A3D promoter was used. The pattern of CENP-A3D::TAP localization was determined by immunoprecipitation with αTAP antibodies (Supplementary Fig. 12a, b). TAP-affinity purification of proteins associated with CENP-A3D::TAP containing chromatin was performed as described in ref. 46. Briefly, nuclei were purified and digested with micrococcal nuclease (MNase) (Sigma). After digestion was stopped, the soluble chromatin fraction (SN1), which accounted for ~66% of total chromatin, was prepared by centrifugation at 10,000 × g for 15 min at 4°C. The remaining insoluble material was extracted at increasing EDTA concentration from 2 to 200 mM. Nucleosomal composition of each fraction was analyzed by agarose gel electrophoresis (Supplementary Fig. 12c). CENP-A3D::TAP and CENP-C content were determined by WB (Supplementary Fig. 12d, e). Then, the SN1, 2 and 20 mM EDTA fractions were subjected to conventional TAP-affinity purification using IgG-Dynabeads (Invitrogen). Bound proteins were eluted and analyzed by standard LC/MS at the Proteomics Unit of the “Institut de Recerca de la Vall d’Hebron” (Barcelona). Supplementary Table 1 summarizes the proteins identified in these studies, which included BAF (mascot score: 97; sequence coverage: 16.7%).

RNAs knockdown experiments. For RNAi-mediated BAF knockdown experiments, dsRNA encompassing the entire BAF-coding region was prepared using the Megascript T7 kit (Ambion). Then, cells were incubated with 20 µg of dsRNA at a concentration of 3 × 105 cells/ml and, after 3 days, cells were diluted 1:2 and treated with a second dose of 20 µg of dsRNA for 4 days. CENP-C, VRK1/NHK1, and Fill knockdown experiments were performed for 20 µg of dsRNA at 10,000 × g for 15 min at 4°C. The remaining insoluble material was extracted at increasing EDTA concentration from 2 to 200 mM. Nucleosomal composition of each fraction was analyzed by agarose gel electrophoresis (Supplementary Fig. 12c). CENP-A3D::TAP and CENP-C content were determined by WB (Supplementary Fig. 12d, e). Then, the SN1, 2 and 20 mM EDTA fractions were subjected to conventional TAP-affinity purification using IgG-Dynabeads (Invitrogen). Bound proteins were eluted and analyzed by standard LC/MS at the Proteomics Unit of the “Institut de Recerca de la Vall d’Hebron” (Barcelona). Supplementary Table 1 summarizes the proteins identified in these studies, which included BAF (mascot score: 97; sequence coverage: 16.7%).
Immunostaining experiments. Immunostaining experiments were performed as described elsewhere. Briefly, cells were treated for 6 h with 25 μM colchicine (Sigma, St. Louis, MO) to induce a cell cycle block at the metaphase–anaphase transition. Following a 10-min treatment, cells were fixed with 4% paraformaldehyde for 10 min, washed with PBS and blocked in 3% BSA, 0.5% Triton X-100 in PBS. Samples were then immunostained with aAbFAB5 (1:200), αE2EP (1:500), rat αtCENP-C (1:500), rabbit αcENP-C (1:300), αCENP-A^{3D} (1:500), αH3 (1:1000), αH2B (1:5000), αMAP1 (1:20000), αTubulin (1:5000), αGFP (1:2000), αFLAG (1:2500), αTAP (1:2500). For all WBs presented in main and supplementary figures, uncropped images are presented in Supplementary Fig. 13.

Western blot analysis. Western blot analysis was performed according to standard procedures using the following antibody dilutions: aAbFAB5 (1:2500), aAbFAB55 (1:1000), aAbCENP-C (1:300), aAbFLI (1:10000), αMTS (1:5000), αCENP-A^{3D} (1:2000), αH3 (1:2500), αTubulin (1:5000), αGFP (1:2000), αFLAG (1:2500), αTAP (1:2500). For all WBs presented in main and supplementary figures, uncropped images are presented in Supplementary Fig. 13.

Statistics and reproducibility. Statistical significance of the difference in the proportion of mitoses showing segregation defects, pericentromosomal BAF and centromeric Fl, and in the proportion of cells with aberrant NE morphology was assessed via two-tailed Fisher’s exact test. Statistical significance of the difference in the proportion of NE-assembled mitoses between GFP-CENP-C^{3D} and GFP-CENP-CAFIM^P-expressing cells was assessed via comparative Chi-square test using the cp-chisq.test function from the DiRTXTable package version 0.1.0 using R 3.5.19. One-tailed binomial test was used to assess the probability to find BAF and BAF-YFP co-localizing with CENP-C on the same chromatin fiber. Statistical significance of the centromeric localization of BAF phosphomutants was assessed by two-tailed binomial test. Statistical significance of the difference in centromeric intensity of BAF, CENP-C, and CENP-A^{3D} immunostaining was determined by Kruskal–Wallis test. Statistical difference in the extent of BAF/CENP-C co-IP and the changes in BAF phosphorylation was determined by two-tailed t-test comparison of the means. For each experiment, the number of independent biological replicates and sample sizes are indicated in the corresponding figure legend.

Data availability. All data and unique materials in this paper are available from the corresponding authors upon reasonable request. All data underlying the graphs described in the main and supplementary figures are presented in Supplementary Data 1.

Received: 18 November 2019; Accepted: 30 July 2020; Published online: 19 August 2020
16. Barton, L. J., Soshnev, A. A. & Geyer, P. K. Networking in the nucleus: a spotlight on LEM-domain proteins. *Curr. Opin. Cell Biol.* **34**, 1–8 (2015).

17. Furukawa, K. et al. Barrier-to-autointegration factor plays crucial roles in cell cycle progression and nuclear organization in *Drosophila*. *J. Cell Sci.* **116**, 3811–3823 (2003).

18. Bengtsson, L. & Wilson, K. L. Barrier-to-autointegration factor phosphorylation on Ser-4 regulates emerin binding to lamin A in vitro and emerin localization in vivo. *Mol. Biol. Cell* **17**, 1154–1163 (2006).

19. Lancaster, O. M., Cullen, C. F. & Ohkura, H. NHK-1 phosphorylates BAF to allow karyosome formation in the *Drosophila* oocyte nucleus. *J. Cell Biol.* **179**, 817–824 (2007).

20. Nichols, R. J., Wiebe, M. S. & Traktman, P. The vaccinia-related kinases phosphorylate the N terminus of BAF, regulating its interaction with DNA and its retention in the nucleus. *Mol. Biol. Cell* **17**, 2451–2464 (2006).

21. Margalit, A., Brachner, A., Gotzmann, J., Foisner, R. & Gruenbaum, Y. Barrier-to-autointegration factor—a BARFilling little protein. *Trends Cell Biol.* **17**, 202–208 (2007).

22. Molitor, T. P. & Traktman, P. Depletion of the protein kinase VRK1 disrupts nuclear envelope morphology and leads to BAF retention on mitotic chromosomes. *Mol. Biol. Cell* **25**, 891–903 (2014).

23. Zhuang, X., Semenova, E., Maric, D. & Craigie, R. Dephosphorylation of barrier-to-autointegration factor by protein phosphatase 4 and its role in cell mitosis. *J. Biol. Chem.* **289**, 1119–1127 (2014).

24. Lipinszki, Z. et al. Centromeric binding and activity of protein phosphatase 4. *Nat. Struct. Mol. Biol.* **6**, 894 (2015).

25. Barth, T. K. et al. Identification of novel *Drosophila* centromere-associated proteins. *Proteomics* **14**, 2167–2178 (2014).

26. Montes de Oca, R., Andreasen, P. R. & Wilson, K. L. Barrier-to-autointegration factor influences specific histone modifications. *Nucleus* **2**, 580–590 (2011).

27. Kind, J. & van Steensel, B. Stochastic genome–nuclear lamina interactions: modulating roles of Lamin A and BAF. *Nucleus* **5**, 124–130 (2014).

28. Mellone, B. G. et al. Assembly of *Drosophila* centromeric chromatin proteins during mitosis. *PLoS Genet.* **7**, e1002068 (2011).

29. Westermann, S. & Schleefller, A. Family matters: structural and functional conservation of centromere-associated proteins from yeast to humans. *Trends Cell Biol.* **23**, 266–275 (2013).

30. Rothbauer, U. et al. Targeting and tracing antigens in live cells with fluorescent nanobodies. *Nat. Methods* **2**, 380–390 (2011).

31. Przewlocka, M. R. et al. CENP-C is a structural platform for kinetochore complex formation. *Mol. Biol. Cell* **26**, 7539–7556 (2015).

32. Screpanti, E. et al. Direct binding of Cenp-C to the Mis12 complex joins the Cenp-C–Mis12–CtIP complex. *Curr. Biol.* **25**, 3561–3571 (2015).

33. screens, *Science* **341**, 417–421 (2007).

34. Heeger, S. et al. Genetic interactions of separase regulatory subunits reveal the diverged *Drosophila* Cenp-C homolog. *Genes Dev.* **19**, 2041–2053 (2005).

35. Kwon, M. S., Horii, T., Okada, M. & Fukagawa, T. CENP-C is involved in chromosome segregation, mitotic checkpoint function, and kinetochore assembly. *Mol. Biol. Cell* **18**, 2155–2168 (2007).

36. Erhardt, S. et al. Genome-wide analysis reveals a cell cycle-dependent mechanism controlling centromere propagation. *J. Cell Biol.* **183**, 805–818 (2008).

37. Yoshima, G. et al. Genes required for mitotic spindle assembly in *Drosophila* S2 cells. *Science* **316**, 417–421 (2007).

38. Castro, A. & Lorca, T. Greatwall kinase at a glance. *J. Cell Sci.* **131**, pii: jcs222364 (2018).

39. Vellard, G., Allan, L. A., Crozier, L. & Saurin, A. T. Division of labour between PP2A-B56 isoforms at the centromere and kinetochore. *Elife* **8**, e42619 (2019).

40. Güttinger, S., Laurell, E. & Kutay, U. Orchestrating nuclear envelope disassembly and reassembly during mitosis. *Nat. Rev. Mol. Cell Biol.* **10**, 178–191 (2009).

41. Kutay, U. & Hetz, M. W. Reorganization of the nuclear envelope during open mitosis. *Curr. Opin. Cell Biol.* **20**, 669–677 (2008).

42. Batzschlager, M. et al. Arabidopsis MZT1 homologs GIP1 and GIP2 are essential for centromere architecture. *Proc. Natl Acad. Sci. USA* **112**, 8656–8660 (2015).

43. Afonso, O. et al. Feedback control of chromosome separation by a misodine Aurora B gradient. *Science* **345**, 332–336 (2014).

44. Moreno-Moreno, O., Torras-Llort, M. & Azorin, F. Proteolysis restricts localization of CIN, the centromere–specific histone H3 variant of Drosophila, to centromeres. *Nucleic Acid Res.* **34**, 6247–6255 (2006).

45. Font-Burgada, J., Rossell, D., Auer, H. & Azorin, F. *Drosophila* HP1 isoforms interacts with the zinc-finger proteins WOC and relative-of-WOC (ROW) to regulate gene expression. *Genes Dev.* **22**, 3007–3023 (2008).

46. Foltz, D. R. et al. The human CENP—a centromeric nucleosome-associated complex. *Nat. Cell Biol.* **8**, 477–485 (2006).

47. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. *Nat. Methods* **9**, 676–682 (2012).

48. Sullivan, B. A. Optical mapping of protein–DNA complexes on chromatin fibers. *Methods Mol. Biol.* **659**, 99–115 (2010).

49. Song, M., Zhang, Y., Kazarroff, A. J., Edgar, B. A. & Butitta, L. Hunting complex differential gene interaction patterns across molecular contexts. *Nucleic Acids Res.* **42**, e57 (2014).

Acknowledgements

We are thankful to Dr. H. Maiato and Dr. R. Craigie for materials, Dr. E. Rebollo (IBMB Molecular Imaging Platform) for supervision of live-cell imaging, Anna Lladó, Lidia Barda, and Nikolaos Nikiforos Giaourakis (IRB Advanced Digital Microscopy Facility) for the acquisition of super-resolution images and the designing of ImageJ macros, Oscar Reina (IRB Statistics and Bioinformatics Facility) for help with statistical analysis, Marc García-Montolío for work related to this manuscript, and Esther Fuentes, Estefanía Freire, and Alicia Vera for technical assistance. This work was supported by grants from MICINN (BFU2015-65082-P and PGCI2018-94538-B+100), the Generalitat de Catalunya (SGR2009-2123, SGR2014-204) and the European Community FEDER program to F.A., and the Ministry for National Economy of Hungary (GINOP-2.3.2-15-2016-00032 and GINOP-2.3.2-15-2016-00001) and the Hungarian Academy of Sciences (LP2017-7/2017) to Z.L. Work in MRP lab is supported by The Wellcome Trust. This work was carried out within the framework of the "Centre de Referència en Biotecnologia" of the "Generalitat de Catalunya". S.M.-G. acknowledges receipt of an FPI fellowship from the MINECO. P.E. acknowledges receipt of an FPI fellowship from MINECO.

Author contributions

M.T.-L., S.M.-G., P.E.-F., Z.L., Z.K., and O.M.-M. performed the experiments. Z.L. and M.R.P. provided materials. M.T.-L., S.M.-G., P.E.-F., Z.L., O.M.-M., M.R.P. and F.A. designed the experiments, analyzed the data, and wrote the paper.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s42003-020-01182-y.

Correspondence and requests for materials should be addressed to M.T.-L. or F.A.

Reprints and permission information is available at http://www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.