The Contribution of Non-Conventional T Cells and NK Cells in the Mycobacterial-Specific IFNγ Response in Bacille Calmette-Guérin (BCG)-Immunized Infants

Christel Zufferey1, Susie Germano1, Binita Dutta1, Nicole Ritz1,2,3*, Nigel Curtis1,2,3*

1 Murdoch Children’s Research Institute, Parkville, Australia, 2 Department of Paediatrics, the University of Melbourne, Parkville, Australia, 3 The Royal Children’s Hospital, Melbourne, Parkville, Australia

Abstract

Background: The Mycobacterium bovis Bacille Calmette-Guérin (BCG) vaccine is given to >120 million infants each year worldwide. Most studies investigating the immune response to BCG have focused on adaptive immunity. However the importance of TCR-gamma/delta (γδ) T cells and NK cells in the mycobacterial-specific immune response is of increasing interest.

Methods: Participants in four age-groups were BCG-immunized. Ten weeks later, in vitro BCG-stimulated blood was analyzed for NK and T cell markers, and intracellular IFN gamma (IFNγ) by flow cytometry. Total functional IFNγ response was calculated using integrated median fluorescence intensity (iMFI).

Results: In infants and children, CD4 and CD4-CD8- (double-negative (DN)) T cells were the main IFNγ-expressing cells representing 43-56% and 27-37% of total CD3+ IFNγ+ T cells respectively. The iMFI was higher in DN T cells compared to CD4 T cells in all age groups, with the greatest differences seen in infants immunized at birth (p=0.002) or 2 months of age (p<0.0001). When NK cells were included in the analysis, they accounted for the majority of total IFNγ-expressing cells and, together with DN Vδ2 γδ T cells, had the highest iMFI in infants immunized at birth or 2 months of age.

Conclusion: In addition to CD4 T cells, NK cells and DN T cells, including Vδ2 γδ T cells, are the key populations producing IFNγ in response to BCG immunization in infants and children. This suggests that innate immunity and unconventional T cells play a greater role in the mycobacterial immune response than previously recognized and should be considered in the design and assessment of novel tuberculosis vaccines.

Introduction

The Mycobacterium bovis Bacille Calmette-Guérin (BCG) vaccine is given to more than 120 million children worldwide each year and remains a key intervention in the prevention of tuberculosis (TB) [1]. In infants it provides approximately 80% protection against severe forms of TB [2].

Understanding the immune response to BCG immunization provides important information in the search for immunological correlates of protection against TB. Surrogate biomarkers of protection against TB remain elusive but are important for the development of improved TB diagnostics and vaccines.

Most studies investigating the immune response to BCG and protection against TB have investigated adaptive immunity [3–5]. In recent years there has been increasing recognition of the importance of the innate immune response in early neonatal life [6–9]. T cells with a gamma-delta (γδ) TCR and NK cells play a key role in innate immunity. These cells increase in frequency during foetal development and represent major cell subsets in cord blood [10–12]. To date, only few
studies have investigated the innate immune response to BCG immunization in infants.

We have previously reported the CD4 and CD8 T cell responses 10 weeks after BCG immunization [3,13]. In this study we used samples from the same studies to investigate the role of CD4-CD8- double negative (DN) T cells, Vδ2 γδ T cells and NK cells in the mycobacterial-specific IFNγ response after BCG immunization.

Methods

Ethics Statement

The study was approved by the Human research ethics committees at the Mercy Hospital for Women (R07/16), the Royal Children’s Hospital (26191) and The University of Melbourne (0828435). Written informed consent was obtained from participants or parents.

Study participants

Infants were recruited at the Mercy Hospital for Women in Melbourne as part of a previous study [3]. Children aged between 10 and 24 months that needed BCG immunization for travel to high TB-prevalence countries were recruited at the Royal Children’s Hospital, Melbourne [13]. Adult volunteers were recruited from University of Melbourne medical students aged between 22 and 27 years who planned to work during their elective overseas in high TB-prevalence countries [13].

BCG vaccine

BCG Denmark, SSI-1331 (Statens Serum Institute, Copenhagen, Denmark) was used to immunize infants in the first week of life or at 2 months of age [3]. BCG Connaught (Sanofi Pasteur, Toronto, Canada) was used to immunize children older than 2 months and adult participant [13]. BCG vaccine was administered intradermally in the left deltoid region.

Whole blood assay

Blood was obtained 10 weeks after immunization for in vitro assays. To measure cytokine production, whole blood was stimulated with BCG (1.6 x 10⁶ CFU/ml of the same BCG vaccine strain used for immunization reconstituted with Roswell Park Memorial Institute medium) for 7 hours at 37°C in the presence of co-stimulatory antibodies CD49d and CD28 (1 µg/ml each; both from BD Biosciences, San Jose, USA) or left unstimulated (nil control). After addition of brefeldin A (Sigma-Aldrich, St. Louis, USA) at a concentration of 10 µg/ml cells were incubated for 5 additional hours, harvested with 2 mM EDTA (Sigma-Aldrich) then fixed with FACS lysis solution (BD Biosciences) and stored at -80 °C.

Flow cytometry

Stored blood samples were thawed at 37 °C, permeabilized with Perm 2 buffer for 10 minutes (BD Biosciences) and stained for 30 minutes in the dark with the following anti-human antibodies: CD4-allophycocyanin-efluor 780 (clone SK3; eBioscience, San Diego, USA), CD8-Qdot605 (3B5; Invitrogen, Carlsbad, USA), CD3-Pacific blue (UCHT1), V62 TCR-PE (B6), CD56-allophycocyanin (NCAM 16.2), IFNγ-AlexaFluor 700 (B27) (all BD Biosciences). Cells were acquired using LSRII flow cytometer (BD Biosciences) and analyzed with FlowJo 8.8 (TreeStar, Ashland, USA) and Prism 5 (GraphPad Software, La Jolla, USA). Cytometer setup and tracking beads (BD Biosciences) were used to define LSRII baseline and run daily measurements. CompBeads set anti-mouse Igk (BD Biosciences) was used to optimize fluorescence compensation settings.

Statistical analysis

A Kruskal-Wallis test and Dunn’s multiple comparison tests were used to compare groups. If the p-value was less than 0.05, a Wilcoxon signed rank test was done to compare two pairs. Graphs were generated and statistics calculated using Prism 5 (GraphPad Software, La Jolla, USA).

Results

Participants in four age-groups were immunized with BCG. After 10 weeks, blood samples from participants were stimulated with BCG or left unstimulated (nil control), and the mycobacterium-specific immune response was measured by flow cytometry. In children below two years of age, DN T cells represented between 3.4% (n=28) and 7.8% (n=26) of CD3 T cells (Table 1). Despite their small proportion, this subset was responsible for a large share of mycobacterial-specific IFNγ-expressing cells (Figure 1), comparable with the contribution from CD4 T cells. Notably, in contrast to the response observed in children, CD8 T cells were the major contributor of IFNγ-expressing cells in adults (n=5) (Figure 1).

DN T cells more frequently expressed IFNγ than CD4 T cells following BCG immunization. At birth (n=28), 1.69% (interquartile range (IQR) 0.8-2.4%) of DN T cells expressed IFNγ compared to 0.08% (IQR 0.04-0.18%) of CD4 T cells,
p<0.0001. Similarly at two months of age (n=26), 3% (IQR 0.7-6.2%) of DN T cells expressed IFNγ compared to 0.1% (IQR 0.04-0.16%) of CD4 T cells, p<0.0001 (Figure 2A).

Importantly, DN T cells also showed a higher IFNγ-producing capacity (median fluorescence intensity (MFI)) than CD4 T cells and the total functional IFNγ response (combining frequency of IFNγ-expressing cells and MFI) was higher in DN T cells than in CD4 T cells (Figure 2B and 2C).

In a next step, we analyzed the IFNγ expression of NK cells and the phenotypic subgroups of DN T cells (for this, only samples from infants BCG-immunized at birth and two months of age were available [3]). As shown in the gating strategy (Figure S2), NK cells were chosen from the CD56+CD3- population and DN T cells were selected from the CD56-CD3+CD4-CD8- population and then analyzed for their Vδ2 TCRγδ expression. The proportions of Vδ2 γδ T cells within the DN T cell population were 12.6% (IQR 6.5-19.7%) and 7.9% (IQR 4.8-12.3%) in blood taken from infants immunized with BCG at birth (n=21) and at two month of age (n=25) respectively. NK cells, DN Vδ2 TCRγδ+ and DN Vδ2 TCRγδ- T cells represented a substantial proportion of IFNγ-expressing cells, with NK cells alone contributing to more than half the measured total IFNγ-expressing cells in both age groups (Figure 3).

Up to 23% of NK cells and 11% of DN Vδ2 TCRγδ+ T cells expressed IFNγ compared to less than 1% of double positive (DP), CD8, CD4 and DN Vδ2 TCRγδ- T cells expressing IFNγ in infants BCG-immunized at birth (n=21) and at 2 months of age (n=25) (Figure 4A). The IFNγ-expressing capacity was comparable in all subsets with the exception of DP T cells, which had a lower IFNγ MFI in infants immunized at two months of age (Figure 4B). Consequently, the greatest IFNγ
Figure 2

Figure 2. DN (CD4-CD8-) T cells have a higher IFNγ functional response than CD4 T cells in blood taken from infants 10 weeks after BCG immunization. (A) Frequency and (B) median fluorescence intensity (MFI) of IFNγ-expressing CD4 (grey bars) and DN T cells (white bars), and (C) IFNγ total functional response (iMFI) in individuals given BCG at birth (n=28), at 2 months of age (2m; n=26), between 10 and 24 months of age (10-24m; n=7) and in adulthood (n=9). Box plots with lower quartile, median, upper quartile and Tukey whiskers are shown. **: p<0.001, ***: p<0.0001. DN: CD4-CD8- double negative T cells.

doi: 10.1371/journal.pone.0077334.g002

Discussion

Our study is the first to investigate in detail the importance of NK cells, γδ T cells and DN T cells in the mycobacterial-specific IFNγ response following BCG immunization in infants. We found that the key populations producing IFNγ in response to BCG in infants and children were NK cells and DN T cells, including Vδ2 γδ T cells, rather than CD4 T cells. This highlights the potential importance of the innate immune response and unconventional T cells in the immunoprotective response to BCG.

Previous studies of the immune response to BCG have largely focused on cell-mediated immunity. A CD4 T cell (Th1-type) response associated with IFNγ expression and cytotoxic activity is observed in infants and children after BCG immunization [3,13,15–19]. BCG also induces dendritic cell maturation and production of IL-12 that leads to Th1 differentiation [20–22]. Activation of CD8 T cells producing IFNγ, TNFα and perforin has also been demonstrated [23,24]. In our study, we found that in BCG-immunized adults, in contrast to infants, CD8 T cells were the main IFNγ-producing cells. This suggests that this subset is a crucial player in the immune response to TB in adults as previously proposed [23]. Another recent study in adults shows that CD4 T cells expressed lower IFNγ level than CD8 and DN T cells in TB patients [24] consistent with our results. Although it has been suggested that non-conventional T cells and innate immunity play a role in the response to BCG immunization [25], this aspect of TB immunity has been less well investigated.

Our results show that while DN T cells represent only a small proportion of T cells, this subset makes a considerable contribution to the IFNγ response in infants immunized with BCG that is greater than that made by CD4 T cells. These findings are consistent with a previous study in humans showing that DN T cells represent approximately 4% of T cells in PBMC and express 3 to 4 times more IFNγ than CD4 T cells [26]. It has been suggested that DN T cells play an immunoregulatory role as they can express perforin and suppress cytotoxic CD8 T cells [26]. In humans, DN T cells suppress CD4 and CD8 T cell responses [27]. Similarly in mice, DN T cells kill CD4 T cells, B cells and NK cells and down-regulate co-stimulatory molecules on mature dendritic cells thus contributing to immune tolerance [28]. In simian immunodeficiency virus infection, DN T cells develop CD4 T cell functions that parallel the loss of CD4 T cells and protect against viral dissemination [29]. DN T cells are also involved in the mycobacterial-specific immune response in mice [30,31] and develop a memory phenotype, potentially contributing to effective protection [30].

Within the DN T cell population, γδ T cells have long been known to constitute a “first line of defense” linking innate and adaptive immunity [32,33]. Their presence is necessary for the expansion of CD4 T cells and they can also act as antigen-
presenting cells and cross-present antigen to CD8 T cells [34,35]. In the early 1990s, γδ T cells were shown to be activated by phosphoantigens, which are abundant in Mycobacterium tuberculosis (MTB) [36,37]. In animal studies in mice and pigs immunized with attenuated MTB or BCG, γδ T cells are activated, expanded and express IFNγ [38–40]. These cells have cytotoxic activity for BCG-infected macrophages and are necessary to prime antigen-specific CD8 T cell responses through the enhanced production of IL-12 by lung dendritic cells [39,40]. TCR γδ T cell-deficient mice infected with BCG had markedly reduced IFNγ production, suggesting a role in immunity to BCG [39,41,42]. In neonates, when a mature TCRαβ immune system is still lacking, it has been proposed that γδ T cells are crucial for protection against infections [43]. Human γδ T cells have been shown to be activated by phosphoantigens when BCG-stimulated in vitro [41] and γδ T cells from BCG-immunized infants expand to comprise 60% of total T cells after in vitro restimulation [44]. However, the relationship between γδ T cells and protection is uncertain. In infants immunized with BCG at birth, the frequency of IFNγ-producing γδ T cells after immunization did not correlate with the protective immune response to BCG [45]. In contrast, in patients with severe TB, the frequency of total TN cells was increased compared to healthy donors, but the DN γδ T cells frequency was reduced. However, both DN and TN γδ T cells expressed IFNγ in patients with moderate disease suggesting a role in the immune response to TB [24]. TB patients with mild disease have a greater γδ T cell frequency compared to patients with advanced pulmonary and miliary TB, and therefore these cells may correlate with protective immunity [46].

NK cells are major players in the innate immune response and their function during M. tuberculosis infection has increasingly been investigated in the last decade. In BCG-immunized mice, NK cells play a key role in the control of bacterial replication and enhance T cell responses mediated by the secretion of IL-22 and IFNγ [47]. In addition, IFNγ produced by NK cells is crucial for the regulation of T cell-independent resistance to M. tuberculosis and neutrophil recruitment in lungs of M. tuberculosis-infected mice [48]. In humans, NK cells produce IFNγ, perforin and granzyme A when stimulated with BCG or PPD [49–51]. It has recently been shown that BCG induces the maturation of NK cells isolated from umbilical cord blood and enhances their cytotoxic activity against immature dendritic cells, suggesting a role in shaping adaptive immunity [52]. NK cells also play a major role in protection against TB by lysis of M. tuberculosis-infected monocytes and enhancement of CD8 T cell effector functions [53]. Furthermore, in patients with active TB, NK cell activity was diminished [53].

One potential limitation of our study is that different BCG vaccine strains were used for immunization. BCG-Connaught was the licensed vaccine strain for routine immunization in Australia during the study period, while BCG-Denmark was used in the randomized study. No study has compared the in vitro immune response to these two vaccines in humans, but a study in mice showed comparable proportions of cytokine-
Figure 4. NK and DN Vδ2 TCRγδ+ T cells have the highest IFNγ functional response in blood taken from infants 10 weeks after BCG immunization given at birth (n=21) or at 2 months of age (2m; n=25). (A) Frequency and (B) median fluorescence intensity (MFI) of IFNγ-expressing DP, CD8, CD4, DN Vδ2 TCRγδ+, DN Vδ2 TCRγδ+ T cells and NK cells, and (C) IFNγ total functional response (iMFI) in those subsets. Box plots with lower quartiles, median, upper quartiles and Tukey whiskers are shown. ***: p<0.0001. #: NK cells are different from all subsets except DN Vδ2 TCRγδ+ with a p ≤ 0.0012. *: DP MFI is different from all subset MFI except CD8 with a p ≤ 0.0007. DN: CD4-CD8- double negative T cells. DP: CD4+CD8+ double positive T cells.
doi: 10.1371/journal.pone.0077334.g004
producing CD4 and CD8 T cells in the lungs after immunization with either BCG-Connaught or Denmark [54].

The development of new improved TB vaccines is one of the WHO Stop TB priorities, and vaccines that rely on boosting BCG at birth are the most advanced. In a recent randomized controlled trial, the novel boosting vaccine MVA85A failed to show protection of infants despite having shown good mycobacterial-specific adaptive immune responses in previous trials [54]. This underlines the importance of investigating the effects of BCG on early life anti-mycobacterial immunity and the potential importance of other cells such as unconventional T cells and NK cells.

Our results highlight an important role for both DN Vδ2 γδ T cells and NK cells in the mycobacterial-specific IFNγ response to BCG immunization in infants. Recent studies in both mice [55] and humans [24,45] suggest there is not a simple relationship between IFNγ production from T cells and protection against TB. However, our study supports the concept that the role of the innate immune response and unconventional T cells should be considered in future investigation of the immunoprotective function of BCG and potential new TB vaccines.

Supporting Information

Figure S1. Gating strategy to select IFNγ-expressing cells within the CD3 T cell population. The IFNγ positive gate was set using Nil-stimulated samples (top right panel). In BCG-stimulated samples (bottom panels), CD8 and CD4 expression was then analyzed on CD3+ IFNγ+ cells. (TIF)

Figure S2. Gating strategy to select CD56- NK cells and CD56+CD3- T cells. Within the CD56+ CD3- cells, DN T cells were further gated into CD4+ and CD8+ T cells within CD56+CD3- gate is not shown. (TIF)

Acknowledgements

We thank Dr Pierre Smeesters for helpful discussion and comments on the manuscript.

Author Contributions

Conceived and designed the experiments: CZ SG BD NR NC. Performed the experiments: CZ SG. Analyzed the data: CZ SG. Wrote the manuscript: CZ NR NC.

References

1. Ritz N, Curtis N (2009) Mapping the global use of different BCG vaccine strains. Tuberculosis 89: 248-251. doi:10.1016/j.tube.2009.03.002. PubMed: 19540166.

2. Trunz BB, Fine P, Dye C (2006) Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: a meta-analysis and assessment of cost-effectiveness. Lancet 367: 1173-1180. doi:10.1016/S0140-6736(06)68507-3. PubMed: 16916560.

3. Ritz N, Dutta B, Donath S, Casalaz D, Connell TG et al. (2012) The influence of bacille Calmette-Guerin vaccine strain on the immune response against tuberculosis: a randomized trial. Am J Respir Crit Care Med 185: 213-222. doi:10.1164/rccm.201104-0714OC. PubMed: 22071384.

4. Davids V, Hanekom WA, Mansoor N, Gamieldien H, Gelderbloem SJ et al. (2006) The effect of bacille Calmette-Guerin vaccine strain and route of administration on induced immune responses in vaccinated infants. J Infect Dis 193: 531-536. doi:10.1086/499825. PubMed: 16425132.

5. Hanekom WA, Hughes J, Mavin Kurve M, Mendillo M, Watkins M et al. (2004) Novel application of a whole blood intracellular cytokine detection assay to quantitate specific T-cell frequency in field studies. J Immunol Methods 291: 185-195. doi:10.1016/j.jim.2004.06.010. PubMed: 15345316.

6. Levy O (2007) Innate immunity of the newborn: basic mechanisms and clinical correlations. Nat Rev Immunol 7: 379-390. doi:10.1038/nri2075. PubMed: 17457344.

7. Guilmore I, Hermann E, Brant VM, Carlier Y, Truyens C (2011) Natural killer cell responses to infections in early life. J Innate Immun 3: 280-298. doi:10.1159/000323934. PubMed: 21411072.

8. Reikie BA, Adams RC, Ruck CE, Ho K, Leiligowicz A et al. (2012) Ontogeny of Toll-Like Receptor Mediated Cytokine Responses of South African Infants throughout the First Year of Life. PLOS ONE 7: e44763. doi:10.1371/journal.pone.0044763. PubMed: 23028609.

9. Watkins ML, Semple PL, Abel B, Hanekom WA, Kaplan G et al. (2008) Exposure of cord blood to Mycobacterium bovis BCG induces an innate response but not a T-cell cytokine response. Clin Vaccine Immunol CVI 15: 1666-1673. doi:10.1128/CVI.00202-08.

10. Peakman M, Buggins AG, Nicolaidhes KH, Layton DM, Vergani D (1992) Analysis of lymphocyte phenotypes in cord blood from early gestation fetuses. Clin Exp Immunol 90: 345-350. PubMed: 1385028.

11. Phillips JH, Hori T, Nagler A, Bhat N, Spits H et al. (1992) Ontogeny of human natural killer (NK) cells: fetal NK cells mediate cytolytic function and express cytoplasmic CD3 epsilon,delta proteins. J Exp Med 175: 1055-1056. doi:10.1084/jem.175.4.1055. PubMed: 1372642.

12. Pérez A, Gurbindo MD, Resino S, Aguarón A, Muñoz-Fernández MA (2007) NK cell increase in neonates from the preterm to the full-term. Neonatology 92: 156-163. doi:10.1159/0000101567. PubMed: 17439221.

13. Ritz N, Strach M, Yau C, Dutta B, Tebruegge M et al. (2012) A comparative analysis of functional T cells and secreted cytokines induced by Bacille Calmette-Guerin immunization in children and adults. PLOS ONE 7: e37535. doi:10.1371/journal.pone.0037535. PubMed: 22899867.

14. Darrah PA, Patel DT, De Luca PM, Lindsay RW, Davey DF et al. (2007) Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat Med 13: 843-850. doi:10.1038/nm1592. PubMed: 17558415.
22. Hussey GD, Watkins ML, Goddard EA, Gottschalk S, Hughes EJ et al. (2002) Neonatal mycobacterial specific cytoxic T-lymphocyte and cytokine profiles in response to distinct BCG vaccination strategies. Immunology 106: 314-324. doi:10.1046/j.1365-2662.2002.01386.x. PubMed: 11918693.

23. Hoft DF, Kemp EB, Marinaro M, Cruz O, Kiyono H et al. (1999) A double-blind, placebo-controlled study of Mycobacterium-specific human immune responses induced by intradermal bacille Calmette-Guerin vaccination. J Lab Clin Med 134: 244-252. doi:10.1016/S0022-2143(99)00240-4. PubMed: 10482309.

24. Marchant A, Goetgebuer T, Ota MO, Wolfe I, Ceesay SJ et al. (1999) Newborns develop a Th1-type immune response to Mycobacterium bovis bacillus Calmette-Guerin vaccination. J Immunol 163: 2249-2255. PubMed: 10438968.

25. Yokoi T, Amakawa R, Tanijiri T, Sugimoto H, Tori Y et al. (2008) Mycobacterium bovis Bacillus Calmette-Guerin suppresses inflammatory Th2 responses by inducing functional alteration of TSLP-responding double-negative T cells. Eur J Immunol 41: 739-748. doi: 10.1002/eji.200741270. PubMed: 16707032.

26. Surekha Rani H, Vijaya Lakshmi V, Sumanlatha G, Murthy KJ (2005) Cell-mediated immune responses in children towards secreted proteins of Mycobacterium bovis BCG. Tuberculosis (Edinb) 85: 89-95. doi:10.1016/j.tube.2004.09.010. PubMed: 16587032.

27. Srisuwan S, Hagan J, Hsieh R, Koch R, Chen C et al. (2006) Double-negative T cells control intracellular bacterial infections both in vitro and in vivo. J Exp Med 202: 309-319. doi:10.1084/jem.20050596. PubMed: 16027239.

28. Coyle SC, Hamilton E, Frelinger JA, Su J, Forman J et al. (2005) CD4(-)CD8(-) T cells control intracellular bacterial infections both in vitro and in vivo. J Exp Med 202: 309-319. doi:10.1084/jem.20050596. PubMed: 16027239.

29. Derrick SC, Evering TH, Sambandamurthy VK, Jalapathy KV, Hsu T et al. (2007) Characterization of the protective T cell response generated in CD4-deficient mice by a live attenuated Mycobacterium tuberculosis vaccine. J Immunol 169: 8230-8237. doi: 10.4049/jimmunol.1102833. PubMed: 17593099.

30. Pfeffer K, Schoel B, Gulle H, Kaufmann SH, Wagner H (1990) Primary responses of human T cells to mycobacteria: a frequent set of gamma/alpha/delta-bearing T cells are stimulated by protease-resistant lipids. Eur J Immunol 20: 1175-1179. doi:10.1002/eji.1830200534. PubMed: 2524098.

31. Surekha Rani H, Iyer V, Kothari R, Reddy R, Sumanlatha G et al. (2005) Induction of granulysin and perforin cytolytic mediator responses of human gamma/delta T lymphocytes following intranasal infection with Mycobacterium bovis bacillus Calmette-Guerin. J Immunol 174: 7086-7093. doi:10.4049/jimmunol.174.12.7086. PubMed: 16001978.

32. Janis EM, Kaufmann SH, Schwartz RH, Pardoll DM (1989) Activation of gamma delta T cells in the primary immune response to Mycobacterium tuberculosis. Science 244: 713-716. doi:10.1126/science.2441570.

33. Abebe F (2012) Is interferon-gamma the right marker for bacille Calmette-Guerin-induced immune protection? The missing link in our understanding of tuberculosis immunology. Clin Exp Immunol 169: 219-219. doi:10.1111/j.1365-2249.2012.04614.x. PubMed: 22861361.

34. Van R, Boesen H, Pedersen BK, Andersen P (1997) Human T cell responses induced by vaccination with Mycobacterium bovis bacillus Calmette-Guerin. J Immunol 158: 1949-1955. PubMed: 9029137.

35. Dhiman R, Periasamy S, Barnes PF, Jaiswal AG, Paidipally P et al. (2007) Characterization of the protective T-cell response generated in CD4-CD8- T cells control intracellular bacterial infections both in vitro and in vivo. J Exp Med 202: 309-319. doi:10.1084/jem.20050596. PubMed: 16027239.

36. Pinheiro MB, Antonelli LR, Sathler-Avelar R, Vitelli-Avelar DM, Spindola-de-Miranda S et al. (2012) CD4-CD8-alpha/beta and gamma/delta T cells Display Immunological and Regulatory Potentials during Human Tuberculosis. PLOS ONE 7: e50923. doi: 10.1371/journal.pone.0050923. PubMed: 23239994.

37. Hillhouse EE, Lesage S (2012) A comprehensive review of the phenotype and function of antigen-specific immunoregulatory double negative T cells. J Autoimmun.

38. Sundaravaparan V, Mir KD, Sodora DL (2012) Double-negative T cells during HIV/SIV infections: potential pinch hitters in the T-cell lineup. J Immunol 187: 1578-1585. doi:10.4049/jimmunol.1102833. PubMed: 17593099.

39. Brandes M, Willmann K, Bioley G, Lévy N, Eberl M et al. (2009) Cross-presenting human gammadelta T cells induce robust CD8+ alpha/beta T cell responses. Proc Natl Acad Sci U S A 106: 2307-2312. doi:10.1073/pnas.0810059106. PubMed: 19171997.

40. Fujita T, Amakawa R, Tanijiri T, Sugimoto H, Torii Y et al. (2008) Contribution of alpha/beta and gamma/delta T lymphocytes to immunity against Mycobacterium bovis bacillus Calmette-Guerin: studies with T cell receptor-deficient mutant mice. Eur J Immunol 38: 838-846. doi:10.1002/eji.1830280311. PubMed: 7705416.

41. Gibbons DL, Haque SF, Silberzahn T, Hamilton K, Langford C et al. (2009) Neonates harbour highly active gammadelta T cells with selective impairments in preterm infants. Eur J Immunol 39: 1794-1806. doi:10.1002/eji.200939222. PubMed: 19544311.

42. Mazzola TN, Da Silva MT, Moreno YM, Lima SC, Carniel EF et al. (2007) Robust gammadelta+ T cell expansion in infants immunized at birth with BCG vaccine. Vaccine 25: 6315-6320. doi:10.1016/j.vaccine.2007.06.039. PubMed: 17643559.

43. Gavina BM, Abel B, Scriba TJ, Hughes EJ, Keyser A et al. (2010) Specific T cell frequency and cytokine expression profile do not correlate with proteus and actinomyces species of Mycobacterium tuberculosis vaccination of newborns. Am J Respir Crit Care Med 182: 1073-1079. doi:10.1164/rccm.201003-0334OC. PubMed: 20558627.

44. Dhiman R, Periasamy S, Barnes PF, Jaiswal AG, Paidipally P et al. (2012) NK1.1+ cells and IL-22 regulate vaccine-induced protective immunity against challenge with Mycobacterium tuberculosis. J Immunol 189: 897-905. doi:10.4049/jimmunol.1102833. PubMed: 22711885.

45. Feng CG, Kaviratne M, Rothfuchs AG, Cheever A, Hiery S et al. (2006) NK cell-derived IFN-gamma differentially regulates innate resistance and neutrophil responses in T cell-deficient hosts infected with Mycobacterium tuberculosis. J Immunol 177: 7068-7073. PubMed: 17082625.

46. Botani G, Esin S, Favilli F, Pardini M, Bottai D et al. (2005) Human CD8+CD8bright and CD8dim natural killer cell subsets respond differentially to direct stimulation with Mycobacterium bovis Calmette-Guerin. Scand J Immunol 62: 498-506. doi:10.1111/j.1365-3083.2005.01692.x. PubMed: 16316416.

47. Surekha Rani H, Iyer V, Kothari R, Reddy R, Sumanlatha G et al. (2005) Induction of analysis and perform cytokinergic mediator expression in 10-week-old infants vaccinated with BCG at birth. Clin Dev Immunol. 2011: 2011: 438463. PubMed: 21234358.

48. Smith SG, Laior MK, Gorak-Stolinska P, Birtz R, Beveridge NE et al. (2010) Mycobacterium tuberculosis PPD-induced immune biomarkers
measurable in vitro following BCG vaccination of UK adolescents by multiplex bead array and intracellular cytokine staining. BMC Immunol 11: 35. doi:10.1186/1471-2172-11-35. PubMed: 20609237.

52. Marras F, Bozzano F, Bentivoglio G, Ugolotti E, Biassoni R et al. (2012) Receptor modulation and functional activation of human CD34+ Lin- derived immature NK cells in vitro by Mycobacterium bovis Bacillus Calmette-Guerin (BCG). Eur J Immunol 42: 2459-2470. doi: 10.1002/eji.201242375. PubMed: 22736333.

53. Vankayalapati RaB PF (2009) Innate and adaptive immune responses to human Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 89: S77-S80. doi:10.1016/S1472-9792(09)70018-6.

54. Castillo-Rodal AJ, Castañón-Árreola M, Hernández-Pando R, Calva JJ, Sada-Díaz E et al. (2006) Mycobacterium bovis BCG substrains confer different levels of protection against Mycobacterium tuberculosis infection in a BALB/c model of progressive pulmonary tuberculosis. Infect Immun 74: 1718-1724. doi:10.1128/IAI.74.3.1718-1724.2006. PubMed: 16495544.

55. Connor LM, Harvie MC, Rich FJ, Quinn KM, Brinkmann V et al. (2010) A key role for lung-resident memory lymphocytes in protective immune responses after BCG vaccination. Eur J Immunol 40: 2482-2492. doi:10.1002/eji.200940279. PubMed: 20602436.
Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Zufferey, C; Germano, S; Dutta, B; Ritz, N; Curtis, N

Title:
The Contribution of Non-Conventional T Cells and NK Cells in the Mycobacterial-Specific IFN gamma Response in Bacille Calmette-Guerin (BCG)-Immunized Infants

Date:
2013-10-03

Citation:
Zufferey, C., Germano, S., Dutta, B., Ritz, N. & Curtis, N. (2013). The Contribution of Non-Conventional T Cells and NK Cells in the Mycobacterial-Specific IFN gamma Response in Bacille Calmette-Guerin (BCG)-Immunized Infants. PLOS ONE, 8 (10), https://doi.org/10.1371/journal.pone.0077334.

Persistent Link:
http://hdl.handle.net/11343/262824

File Description:
Published version

License:
CC BY