Photosystem genes in chloroplast and their interacting partners: A case for molecular adaptation to carnivory in *Nepenthaceae*.

Neeraja M Krishnan¹ and Binay Panda¹

¹ School of Biotechnology, Jawaharlal Nehru University, New Delhi, India

Correspondence: Neeraja M Krishnan (neeraja@jnu.ac.in) and Binay Panda (binaypanda@jnu.ac.in)

FUNDING

Department of Biotechnology, Government of India (BT/PR32828/BID/7/866/2019).

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTION

Conceptualization, Methodology, Investigation, Manuscript writing: N.M.K. and B.P.; Funding: B.P.; Data curation and analysis: N.M.K.
ABSTRACT

Molecular adaptations are prevalent in carnivorous plants in response to habitat and environmental stress. We used the chloroplast genome and characterized the specific adaptations in the photosystem genes and their interacting partners in *Nepenthes khasiana*, a carnivorous pitcher plant. When compared with the carnivorous and non-carnivorous groups across Caryophyllales, Lamiales, Poales, Ericales, and Oxalidales, we found *Nepenthes*-specific changes in psaA, psaB, psaC and psaH. Of these, only a single amino acid change each, G147 in the protein psaA and R40 in the protein ndhD, impacted the three-dimensional structural conformation of the corresponding proteins. Modeling the interaction between the psaA and the ndhD proteins identified group-specific changes between the models between *Nepentheceae* versus others. The least distance between the structure-impacting residues of psaA and ndhD was 25.9 Å for *Nepenthes* and 19.4 Å for non-*Nepenthes* models. Given that the chloroplast ndh and photosystem I subunits form a large super-complex with the light-harvesting carrier proteins from the nucleus to mediate cyclic electron transport, our observations may indicate specific adaptations in the cyclic electron transport arm of the photosynthetic machinery in the *Nepenthes* species.

INTRODUCTION

Carnivorous plants bear both plant and animal traits and typically grow on nutrient-poor soil or in dense habitats impermeable to sunlight. They passively prey on unsuspecting insects and small animals and digest nutrients from them with the help of modified tactile plant parts that function as traps. In carnivorous plants, the complex modifications represent sophisticated adaptations at structural and functional levels where the benefits surpass the metabolic costs (Adamec, 2002, Plachno et al., 2020, Thorogood and Bauer, 2020). Members of the carnivorous plant group *Nepenthaceae*, a monotypic family in the order
Caryophyllales, are spread throughout the old-world tropics except for *Nepenthes khasiana*. The group has 120 species of pitcher plants that grow in hot and humid areas with large modified leaves turned pitchers in nutrient-poor soil. Previous works suggested that *Nepenthaceae* group members originated from an ancient stock before moving to Indo-China and the Malay Archipelago (Biswal et al., 2018, Meimberg et al., 2006, Meimberg et al., 2001). Members of the group *Nepenthaceae* are a perfect example where heterotrophic adaptations are prevalent. In these plants, the animal dependence is only to supplement the nutrient requirements of the plant and not to do away with the photosynthetic machinery all together (Behie and Bidochka, 2013, Chou et al., 2014, Gorb and Gorb, 2006, Gray et al., 2017, Heubl et al., 2006, Krause, 2008, Meimberg and Heubl, 2006, Moran et al., 2013, Murphy et al., 2020, Owen and Lennon, 1999, Shen et al., 2021).

The photosynthetic genes encoded by chloroplasts in some carnivorous plants undergo a selection process that is comparatively relaxed with a skew in favor of non-synonymous to synonymous substitution rate ratios (Krause, 2008). This is relatively understudied in the group *Nepentheceae*. We obtained the sequence of the chloroplast genome of *Nepenthes khasiana* from GenBank (Accession NC_051455.1) in order to address specific changes in the photosystem genes coded by the chloroplast and their interacting partners. By comparing the photosystem gene subunits across species from five carnivorous plant orders, Caryophyllales, Lamiales, Ericales, Poales and Oxalidales, and eleven non-carnivorous control species in Caryophyllales and non-Caryophyllales, we analyzed the structural and functional impact of the changes unique to the *Nepenthaceae* group. We performed similar analyses in ndh genes, which interact with the photosystem genes during cyclic electron transport process (Endo et al., 2008, Florez-Sarasa et al., 2016, Ishikawa et al., 2016, Joet et al., 2002, Kato et al., 2021, Kouril et al., 2014, Laughlin et al., 2019, Pan et al., 2020, Peng
et al., 2011, Shikanai, 2014, Shikanai, 2016, Storti et al., 2020a, Storti et al., 2020b, Strand et al., 2017, Yin and Struik, 2018, Zhao et al., 2020).

We then studied the impact of Nepenthaceae-specific structural changes in \textit{psaA} and \textit{ndhD} on the interaction between these genes and observed Nepenthaceae-specific changes in \textit{psaA} and \textit{ndhD} to also impact interactions between them. The photosystem I (PSI) sub complex is known to form a super-complex with the NDH sub-complex along with other helper genes during the cyclic electron transport process (Shen et al., 2021, Yamori et al., 2016). This super complex stabilizes ndh and facilitates in achieving the necessary amount of ATP homeostasis required during the carnivorous aspects of prey feeding and retention (Pavlovic et al., 2010, Maurer et al., 2020, Shikania 2016). Piecing together these evidences from various carnivorous plants and study of chloroplast ndh in general (Shikania 2016, Peng et al., 2011), we postulate in this paper that the Nepenthaceae-specific structure impacting changes in \textit{psaA}, \textit{ndhD} and \textit{psaA—ndhD} interactions most likely point to adaptations facilitating the cyclic electron transport portion of the photosynthetic machinery, specific to this group.

MATERIALS AND METHODS

Chloroplast genomes used for comparison

The sequence and the assembly information on the chloroplast genome of \textit{Nepenthes khasiana} was obtained from NCBI (NC_051455.1). Both the carnivorous and non-carnivorous species, where complete chloroplast genomes were available, were considered for analyses. Table 1 lists all the species used for the analysis. The orders where carnivory evolved independently (Ellison and Gotelli, 2009), namely, Caryophyllales (Nepenthaceae (including \textit{Nepenthes khasiana} - NC_051455.1), Drosophyllaceae, Dioncophyllaceae and
Droseraceae), Lamiales (Lentibulariaceae, Ericales, Poales) and Oxalidales (Cephalotus) were considered for the comparative analyses. Non-carnivorous plants from these orders and various other non-carnivorous species including Arabidopsis thaliana, Ginkgo biloba, Epipactis helleborine, Dendrobium nobile, Neottia nidus-avis, Aneura mirabilis, Pogonia japonica, Monotropa uniflora, Cuscuta reflexa, Physcomitrium patens and Alsophila gigantea were included as controls.

Comparative analyses of Nepenthaceae-specific amino acid changes in photosystem and ndh genes

Amino acid sequences for chloroplast-encoded genes were downloaded in the FASTA format for all Caryophyllales as of November 2021 from the NCBI protein database (https://www.ncbi.nlm.nih.gov/protein). The sequences were further converted to a 2 line FASTA format using the online DNA/RNA sequence conversion tool by bugaco.com (http://sequenceconversion.bugaco.com/converter/biology/sequences/). They were then parsed through, using the gene name bearing fasta headers using LibreOffice Calc’s Text-to-Columns on ‘.’, ‘[’ and ‘]’ delimiters to extract sequences pertaining to photosystem I (psa), photosystem II (psb) and NADH dehydrogenase (ndh) subunits.

The amino acid sequences for photosystem and ndh subunits from Nepenthes khasiana were matched against the corresponding subunit sequences from other species using blastp (Altschul et al., 1990); https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins&PROGRAM=blastp&BLAST_PROGRAMS=blastp&PAGE_TYPE=BlastSearch&BLAST_SPEC=blast2seq&DATABASE=n/a&QUERY=&SUBJECTS=) with Align 2 or more sequences option, Max target sequences of 5000 and a word size of 2. From the BLAST hits, Nepenthaceae-specific changes were recorded.
The structural impact of mutations was assessed using the Missense3D server (http://missense3d.bc.ic.ac.uk/missense3d/;40) for all the Nepenthaceae-specific changes in photosystem and ndh proteins.

Extending comparison of Nepenthaceae-specific structure-impacting changes across other carnivorous and non-carnivorous plants

We extended the comparison of Nepenthaceae-specific changes in psaA and ndhD that were structure-impacting to other carnivorous and non-carnivorous plants listed in Table 1.

Modelling protein-protein interaction between psaA and ndhD

The GRAMM-X Protein-Protein Docking Web Server v.1.2.0 (http://vakser.compbio.ku.edu/resources/gramm/grammx; (Tovchigrechko and Vakser, 2006) was used to compute 300 models each of interactions between psaA and ndhD in Nepenthes and other species used for comparison. The models were individually visualized using iCn3D, a web-based structure viewer (https://www.ncbi.nlm.nih.gov/Structure/icn3d/full.html; (Wang et al., 2020) and the distance between 147 residue in psaA and 40th residue in ndhD were computed for these models. The distributions of these distances were then plotted as a frequency polygon using the Easy Frequency Polygon Maker tool provided by socscistatistics.com (https://www.socscistatistics.com/descriptive/polygon/default.aspx).

RESULTS

Nepenthaceae-specific changes across Caryophyllales in photosystem genes

We used the RefSeq curated sequences for Caryophyllales in the NCBI protein database. We used, out of a total of 84,732 chloroplast protein sequences, 3,392 sequences pertaining
to psa subunits (698 psaA, 654 psaB, 651 psaC, 671 psaI and 718 psaJ) and 14,287 pertained to psb subunits (3,058 psbA, 977 psbB, 662 psbC, 876 psbD, 698 psbE, 653 psbF, 732 psbH, 664 psbI, 1,228 psbJ, 710 psbK, 637 psbL, 880 psbM, 754 psbN, 965 psbT and 793 psbZ) that belonged to the Caryophyllales order (Appendix S1).

Only psaA, psbB, psbC and psbH gene subunits were found to harbor Nepenthaceae-specific amino acid changes. These changes were G147A in psaA, N72T and V199A in psbB, Q39E in psbC and R30K in psbH. Of these, only G147A in psaA was found to have an impact on the structure (Figure 1). The GLY to ALA difference represents a replacement of buried residue with a Relative Solvent Accessibility (RSA) of 3.5% with a buried residue with a higher RSA of 4.7%.

Nepenthaceae-specific changes across Caryophyllales in ndh genes

Out of the total of 84,732 chloroplast protein sequences for Caryophyllales in the NCBI protein database, 16,838 pertained to ndh subunits (606 ndhA, 1,232 ndhB, 633 ndhC, 587 ndhD, 608 ndhE, 1,624 ndhF, 606 ndhG, 603 ndhH, 606 ndhI, 662 ndhJ and 600 ndhK) that truly belonged to the Caryophyllales order (Appendix S2). Only ndhD gene subunit was found to harbor a structure impacting Nepenthaceae-specific amino acid change (Figure 2). This change was at residue 40 where the Nepenthes group alone has ARG as a buried charged residue, and is replaced by an uncharged residue in all other groups. The uncharged residue at this position varies between TRP for most Caryophyllales and non-carnivorous controls, LEU for some Basellaceae, some Droseraceae, and all Ancistrocladaceae among Caryophyllales and Lamiales, and SER for some Molluginaceae.

Nepenthaceae-specific changes in psaA and ndhD across other carnivorous plants
The specificity of observed structure-impacting 147GLY and 40ARG changes in *psaA* and *ndhD*, respectively to *Nepenthaceae* group only were confirmed after extending the comparison with four other orders within the carnivorous plants and 11 non-carnivorous plant species, for which *psaA* and *ndhD* protein sequences were present in the NCBI database. These included 40 *psaA* and 16 *ndhD* sequences (Appendix S3). In *psaA*, residue 147 is an ALA in all the 40 additional sequences, thus confirming the 147GLY change unique to *Nepenthaceae*. In *ndhD*, residue 40 is a LEU in the Lamiales and TRP in the other non-carnivorous control sequences. This confirms the 40ARG change to be unique to *Nepenthaceae*.

Impact of individual structure-impacting mutations on the interaction between psaA and ndhD

A frequency polygon comparison of the estimated distance between the structure-impacting residues of *psaA* and *ndhD* for 300 models of *Nepenthes* and other groups suggested a 2.67% greater frequency of non-*Nepenthes* models in the 43.4—51.3 range and a 5.33% greater frequency of *Nepenthes* models in 67.4—83.3 distance range. This suggested a marginal but specific change in the *psaA*—*ndhD* inter-residue distance distribution for the *Nepenthes* structures compared to the other groups. There are 29 *Nepenthes* models in the 43.4—51.3 distance range but 37 non-*Nepenthes* models in the same range, while there are only 79 non-*Nepenthes* models in the 67.4—83.3 distance range but 95 *Nepenthes* models in the same range (Figure 3A; Table 2). We observed that the minimum distance between the concerned residues of the interacting proteins, *psaA* and *ndhD*, was >6Å greater in *Nepenthes* than in the non-*Nepenthes* group: 25.9Å in *Nepenthes* and 19.4Å in the non-*Nepenthes*. Further, the overall conformations of interacting structures with least distances respectively in the *Nepenthes* and non-*Nepenthes* groups (25.9 Å and 19.4 Å) were vastly different from each other (Figure 3B). In both models, it can be seen that the structural conformation for *psaA*
shows no or marginal difference but that of \textit{ndhD} interacting with \textit{psaA} is significantly changed - \textit{ndhD} on the right side of \textit{psaA} for \textit{Nepenthes} and on top of \textit{psaA} for non-\textit{Nepenthes}.

DISCUSSION

Complex adaptations in plant carnivory

Plant carnivory is a classic example of adaptation for plants to survive in dense nutrient-poor habitats, with wet or sunny and occasionally dry soil extremes (Adamec, 2002, Paniw et al., 2017). Studying these adaptations at a molecular level has been made possible by the advances in high throughput DNA sequencing (Aranguen-Diaz et al., 2018; Murphy et al 2020, Butts et al., 2016, Jensen et al., 2015, He et al., 2015). These adaptive molecular changes generate a novel function or modify an existing function in carnivorous plants, primarily via gene duplication and divergence. The adaptive functions are specific to metabolism and nutrient absorption, digestion of animal prey, the evolution of biomechanical factors such as formation, texture, regulation, maintenance, and movements of specific traps (Lan et al., 2017, Silva et al., 2019, Whitney and Federle, 2013), and energy optimization for trap activation (Laakkonen et al., 2006, Jobson et al., 2004). Metabolomics methods have been proven to facilitate carnivory (Hatcher et al., 2020, Hatcher et al., 2021). It has been suggested that there could be taxon-specific functional convergence of molecular changes behind these complex adaptations (Wheeler and Carstens, 2018).

Nepenthes growth environment and trade-off between photosynthesis and carnivory

\textit{Nepenthes} species are unique among the carnivorous plants in producing a pitcher from the tip of an elongated leaf. These plants grow in abundant light or water conditions but nutrient-poor soil. Their prey ranges from Formicidae, Hymenoptera, Coleoptera to Diptera (Chin et
al., 2014), from which they absorb macronutrients such as nitrogen (Ellison, 2006, Moran et al., 2001, Schulze et al., 1997), phosphorus, potassium and magnesium (Adamec, 2002, Pavlovic et al., 2014). As per Givnish's cost and benefit model (Givnish et al., 1984), due to the growing conditions, the benefits of capturing and feeding on prey exceed the costs of carnivory, such as the development of non-photosynthetic structures like specialized traps, digestive glands and enzymes. However, Givnish's cost and benefit model is a conjecture at best because it fails to consider these plants' compromised root absorption capacity as a benefit (Ellison, 2006, Wakefield et al., 2005). There is also the cost of energy needed for the respiration of these carnivorous organs. Feeding on the prey is known to increase the efficiency of photosynthesis in carnivorous plants (Capo-Bauca et al., 2020, Pavlovic et al., 2014), although conflicting observations have been made (Pavlovic et al., 2010, Wakefield et al., 2005). Recent studies also provide some evidence of spatio-temporal changes in photosynthesis and respiration at the time of prey capture (Pavlovic, 2010).

What does cyclic electron transport do and what could this adaptation mean?

Evidence suggests that during prey retention, there might be a temporary slowing of photosynthesis to stimulate the carnivorous organs' respiration (Pavlovic et al., 2010), and a transient switch mediates this regulation from the linear to cyclic electron transport process (Maurer et al., 2020) for achieving ATP homeostasis. In cyclic electron transport, the photosystem I (PSI) subcomplex plays a key role (Yamori et al., 2016) by forming a super-complex with the NDH sub-complex (Shen et al., 2021) along with other helper genes. The PSI-NDH super complex stabilizes ndh, especially in high-stress conditions (Shikanai, 2016). Although discovered based on their homology with other genes in the respiratory complex, the chloroplast-encoded *ndh* genes play a vital role as part of the photosynthetic
machinery by regulating the ATP:NADPH ratio to offer photoprotection in strong light conditions (Shikanai, 2016).

*Nepenthaceae-*specific amino acid changes in psaA and ndhD

Our study found amino acid changes, one in *psaA* and one in *ndhD*, specific to *Nepenthaceae* that impacted their respective three-dimensional structures. Given that photosystem I and ndh subunits interact to form a super-complex, we tested the effect of these structure-impacting amino acid changes in *psaA* and *ndhD* on the structural interaction. We found that the interaction was also impacted (Figures 1-3). These observations suggest *Nepenthaceae-*specific changes in the psI-ndh super complex may aid the unique nature of the heterotrophic carnivory observed in these species. This is only a conjecture at present and can be confirmed by sampling across more *Nepenthes* species and sequencing their chloroplast genomes, and by modeling a complete super complex including the helper genes.

CONCLUSION

We observed *Nepenthes-*specific amino acid changes in the protein psaA and ndhD that impact their three-dimensional structures and the interactions between them. This may be responsible for *Nepenthaceae-*specific adaptations in the photosynthetic machinery involving cyclic electron transport process.

REFERENCES

ADAMEC, L. 2002. Leaf absorption of mineral nutrients in carnivorous plants stimulates root nutrient uptake. *New Phytol*, 155, 89-100.
ALTSCHUL, S. F., GISH, W., MILLER, W., MYERS, E. W. & LIPMAN, D. J. 1990. Basic local alignment search tool. *J Mol Biol*, 215, 403-10.

BEHIE, S. W. & BIDOCHKA, M. J. 2013. Insects as a Nitrogen Source for Plants. *Insects*, 4, 413-24.

BISWAL, D. K., DEBNATH, M., KONHAR, R., YANTHAN, S. & TANDON, P. 2018. Phylogeny and Biogeography of Carnivorous Plant Family Nepenthaceae With Reference to the Indian Pitcher Plant Nepenthes Khasiana Reveals an Indian Subcontinent Origin of Nepenthes Colonization in South East Asia During the Miocene Epoch. *Frontiers in Ecology and Evolution*, 6.

CAPO-BAUCA, S., FONT-CARRASCOSA, M., RIBAS-CARBO, M., PAVLOVIC, A. & GALMES, J. 2020. Biochemical and mesophyll diffusional limits to photosynthesis are determined by prey and root nutrient uptake in the carnivorous pitcher plant Nepenthes x ventrata. *Ann Bot*, 126, 25-37.

CHIN, L., CHUNG, A. Y. & CLARKE, C. 2014. Interspecific variation in prey capture behavior by co-occurring Nepenthes pitcher plants: evidence for resource partitioning or sampling-scheme artifacts? *Plant Signal Behav*, 9, e27930.

CHOU, L. Y., CLARKE, C. M. & DYKES, G. A. 2014. Bacterial communities associated with the pitcher fluids of three Nepenthes (Nepenthaceae) pitcher plant species growing in the wild. *Arch Microbiol*, 196, 709-17.

ELLISON, A. M. 2006. Nutrient limitation and stoichiometry of carnivorous plants. *Plant Biol (Stuttg)*, 8, 740-7.
ELLISON, A. M. & GOTELLI, N. J. 2009. Energetics and the evolution of carnivorous plants--Darwin's 'most wonderful plants in the world'. *J Exp Bot*, 60, 19-42.

ENDO, T., ISHIDA, S., ISHIKAWA, N. & SATO, F. 2008. Chloroplastic NAD(P)H dehydrogenase complex and cyclic electron transport around photosystem I. *Mol Cells*, 25, 158-62.

FLOREZ-SARASA, I., NOGUCHI, K., ARAUJO, W. L., GARCIA-NOGALES, A., FERNIE, A. R., FLEXAS, J. & RIBAS-CARBO, M. 2016. Impaired Cyclic Electron Flow around Photosystem I Disturbs High-Light Respiratory Metabolism. *Plant Physiol*, 172, 2176-2189.

GIVNISH, T. J., BURKHAARDT, E. L., HAPPEL, R. E. & WEINTRAUB, J. D. 1984. Carnivory in the Bromeliad Brocchinia reducta, with a Cost/Benefit Model for the General Restriction of Carnivorous Plants to Sunny, Moist, Nutrient-Poor Habitats. *The American Naturalist*, 124, 479-497.

GORB, E. V. & GORB, S. N. 2006. Physicochemical properties of functional surfaces in pitchers of the carnivorous plant Nepenthes alata Blanco (Nepenthaceae). *Plant Biol (Stuttg)*, 8, 841-8.

GRAY, L. K., CLARKE, C., WINT, G. R. W. & MORAN, J. A. 2017. Potential effects of climate change on members of the Palaeotropical pitcher plant family Nepenthaceae. *PLoS One*, 12, e0183132.

HATCHER, C. R., RYVES, D. B. & MILLETT, J. 2020. The function of secondary metabolites in plant carnivory. *Ann Bot*, 125, 399-411.

HATCHER, C. R., SOMMER, U., HEANEY, L. M. & MILLETT, J. 2021. Metabolomic analysis reveals reliance on secondary plant metabolites to
facilitate carnivory in the Cape sundew, Drosera capensis. *Ann Bot*, 128, 301-314.

HEUBL, G., BRINGMANN, G. & MEIMBERG, H. 2006. Molecular phylogeny and character evolution of carnivorous plant families in Caryophyllales--revisited. *Plant Biol (Stuttg)*, 8, 821-30.

ISHIKAWA, N., TAKABAYASHI, A., NOGUCHI, K., TAZOE, Y., YAMAMOTO, H., VON CAEMMERER, S., SATO, F. & ENDO, T. 2016. NDH-Mediated Cyclic Electron Flow Around Photosystem I is Crucial for C4 Photosynthesis. *Plant Cell Physiol*, 57, 2020-2028.

JOET, T., COURNAC, L., PELTIER, G. & HAVAUX, M. 2002. Cyclic electron flow around photosystem I in C(3) plants. In vivo control by the redox state of chloroplasts and involvement of the NADH-dehydrogenase complex. *Plant Physiol*, 128, 760-9.

KATO, Y., ODAHARA, M. & SHIKANAI, T. 2021. Evolution of an assembly factor-based subunit contributed to a novel NDH-PSI supercomplex formation in chloroplasts. *Nat Commun*, 12, 3685.

KOURIL, R., STROUHAL, O., NOSEK, L., LENOBEL, R., CHAMRAD, I., BOEKEMA, E. J., SEBELA, M. & ILIK, P. 2014. Structural characterization of a plant photosystem I and NAD(P)H dehydrogenase supercomplex. *Plant J.*, 77, 568-76.

KRAUSE, K. 2008. From chloroplasts to "cryptic" plastids: evolution of plastid genomes in parasitic plants. *Curr Genet*, 54, 111-21.

LAN, T., RENNER, T., IBARRA-LACLETTE, E., FARR, K. M., CHANG, T. H., CERVANTES-PEREZ, S. A., ZHENG, C., SANKOFF, D., TANG, H., PURBOJATI, R. W., PUTRA, A., DRAUTZ-MOSES, D. I., SCHUSTER,
S. C., HERRERA-ESTRELLA, L. & ALBERT, V. A. 2017. Long-read sequencing uncovers the adaptive topography of a carnivorous plant genome. *Proc Natl Acad Sci U S A*, 114, E4435-E4441.

LAUGHLIN, T. G., BAYNE, A. N., TREMPE, J. F., SAVAGE, D. F. & DAVIES, K. M. 2019. Structure of the complex I-like molecule NDH of oxygenic photosynthesis. *Nature*, 566, 411-414.

MAURER, D., WEBER, D., BALLERING, E., ALFARRAJ, S., ALBASHER, G., HEDRICH, R., WERNER, C. & RENNENBERG, H. 2020. Photosynthetic cyclic electron transport provides ATP for homeostasis during trap closure in Dionaea muscipula. *Ann Bot*, 125, 485-494.

MEIMBERG, H. & HEUBL, G. 2006. Introduction of a nuclear marker for phylogenetic analysis of Nepenthaceae. *Plant Biol (Stuttg)*, 8, 831-40.

MEIMBERG, H., THALHAMMER, S., BRACHMANN, A. & HEUBL, G. 2006. Comparative analysis of a translocated copy of the trnK intron in carnivorous family Nepenthaceae. *Mol Phylogenet Evol*, 39, 478-90.

MEIMBERG, H., WISTUBA, A., DITTRICH, P. & HEUBL, G. 2001. Molecular Phylogeny of Nepenthaceae Based on Cladistic Analysis of Plastid trnK Intron Sequence Data. *Plant Biology*, 3, 164-175.

MORAN, J. A., GRAY, L. K., CLARKE, C. & CHIN, L. 2013. Capture mechanism in Palaeotropical pitcher plants (Nepenthaceae) is constrained by climate. *Ann Bot*, 112, 1279-91.

MORAN, J. A., MERBACH, M. A., LIVINGSTON, N. J., CLARKE, C. M. & BOOTH, W. E. 2001. Termite Prey Specialization in the Pitcher Plant Nepenthes albomarginata — Evidence from Stable Isotope Analysis. *Annals of Botany*, 88, 307-311.
MURPHY, B., FOREST, F., BARRACLOUGH, T., ROSINDELL, J., BELLOT, S., COWAN, R., GOLOS, M., JEBB, M. & CHEEK, M. 2020. A phylogenomic analysis of Nepenthes (Nepenthaceae). *Mol Phylogenet Evol*, 144, 106668.

OWEN, T. P., JR. & LENNON, K. A. 1999. Structure and development of the pitchers from the carnivorous plant *Nepenthes alata* (Nepenthaceae). *Am J Bot*, 86, 1382-90.

PAN, X., CAO, D., XIE, F., XU, F., SU, X., MI, H., ZHANG, X. & LI, M. 2020. Structural basis for electron transport mechanism of complex I-like photosynthetic NAD(P)H dehydrogenase. *Nat Commun*, 11, 610.

PANIW, M., GIL-CABEZA, E. & OJEDA, F. 2017. Plant carnivory beyond bogs: reliance on prey feeding in *Drosophyllum lusitanicum* (Drosophyllaceae) in dry Mediterranean heathland habitats. *Ann Bot*, 119, 1035-1041.

PAVLOVIC, A. 2010. Spatio-temporal changes of photosynthesis in carnivorous plants in response to prey capture, retention and digestion. *Plant Signal Behav*, 5, 1325-9.

PAVLOVIC, A., DEMKO, V. & HUDAK, J. 2010. Trap closure and prey retention in Venus flytrap (*Dionaea muscipula*) temporarily reduces photosynthesis and stimulates respiration. *Ann Bot*, 105, 37-44.

PAVLOVIC, A., KRAUSKO, M., LIBIAKOVA, M. & ADAMEC, L. 2014. Feeding on prey increases photosynthetic efficiency in the carnivorous sundew *Drosera capensis*. *Ann Bot*, 113, 69-78.

PENG, L., YAMAMOTO, H. & SHIKANAI, T. 2011. Structure and biogenesis of the chloroplast NAD(P)H dehydrogenase complex. *Biochim Biophys Acta*, 1807, 945-53.
PLACHNO, B. J., ADAMEC, L., SWIATEK, P., KAPUSTA, M. & MIRANDA, V. F. O. 2020. Life in the Current: Anatomy and Morphology of Utricularia neottioides. *Int J Mol Sci*, 21.

RSTUDIO, I. 2014. http://shiny.rstudio.com.

SCHULZE, W., SCHULZE, E. D., PATE, J. S. & GILLISON, A. N. 1997. The nitrogen supply from soils and insects during growth of the pitcher plants Nepenthes mirabilis, Cephalotus follicularis and Darlingtonia californica. *Oecologia*, 112, 464-471.

SHEN, L., TANG, K., WANG, W., WANG, C., WU, H., MAO, Z., AN, S., CHANG, S., KUANG, T., SHEN, J. R., HAN, G. & ZHANG, X. 2021. Architecture of the chloroplast PSI-NDH supercomplex in Hordeum vulgare. *Nature*.

SHIKANAI, T. 2014. Central role of cyclic electron transport around photosystem I in the regulation of photosynthesis. *Curr Opin Biotechnol*, 26, 25-30.

SHIKANAI, T. 2016. Chloroplast NDH: A different enzyme with a structure similar to that of respiratory NADH dehydrogenase. *Biochim Biophys Acta*, 1857, 1015-22.

SILVA, S. R., MORAES, A. P., PENHA, H. A., JULIAO, M. H. M., DOMINGUES, D. S., MICHAEL, T. P., MIRANDA, V. F. O. & VARANI, A. M. 2019. The Terrestrial Carnivorous Plant Utricularia reniformis Sheds Light on Environmental and Life-Form Genome Plasticity. *Int J Mol Sci*, 21.

STORTI, M., PUGGIONI, M. P., SEGALLA, A., MOROSINOTTO, T. & ALBORESI, A. 2020a. The chloroplast NADH dehydrogenase-like complex influences the photosynthetic activity of the moss Physcomitrella patens. *J Exp Bot*, 71, 5538-5548.
STORTI, M., SEGALLA, A., MELLON, M., ALBORESI, A. & MOROSINOTTO, T. 2020b. Regulation of electron transport is essential for photosystem I stability and plant growth. New Phytol, 228, 1316-1326.

STRAND, D. D., FISHER, N. & KRAMER, D. M. 2017. The higher plant plastid NAD(P)H dehydrogenase-like complex (NDH) is a high efficiency proton pump that increases ATP production by cyclic electron flow. J Biol Chem, 292, 11850-11860.

THOROGOOD, C. & BAUER, U. 2020. Shedding light on photosynthesis in carnivorous plants. A commentary on: 'Nepenthes x ventrata photosynthesis under different nutrient applications'. Ann Bot, 126, iv-v.

TOVCHIGRECHKO, A. & VAKSER, I. A. 2006. GRAMM-X public web server for protein-protein docking. Nucleic Acids Res, 34, W310-4.

WAKEFIELD, A. E., GOTELLI, N. J., WITTMAN, S. E. & ELLISON, A. M. 2005. PREY ADDITION ALTERS NUTRIENT STOICHIOMETRY OF THE CARNIVOROUS PLANT SARRACENIA PURPUREA. Ecology, 86, 1737-1743.

WANG, J., YOUKHARIBACHE, P., ZHANG, D., LANCZYCKI, C. J., GEER, R. C., MADEJ, T., PHAN, L., WARD, M., LU, S., MARCHLER, G. H., WANG, Y., BRYANT, S. H., GEER, L. Y. & MARCHLER-BAUER, A. 2020. iCn3D, a web-based 3D viewer for sharing 1D/2D/3D representations of biomolecular structures. Bioinformatics, 36, 131-135.

WHEELER, G. L. & CARSTENS, B. C. 2018. Evaluating the adaptive evolutionary convergence of carnivorous plant taxa through functional genomics. PeerJ, 6, e4322.
WHITNEY, H. M. & FEDERLE, W. 2013. Biomechanics of plant-insect interactions. *Curr Opin Plant Biol*, 16, 105-11.

YAMORI, W., MAKINO, A. & SHIKANAI, T. 2016. A physiological role of cyclic electron transport around photosystem I in sustaining photosynthesis under fluctuating light in rice. *Sci Rep*, 6, 20147.

YIN, X. & STRUIK, P. C. 2018. The energy budget in C4 photosynthesis: insights from a cell-type-specific electron transport model. *New Phytol*, 218, 986-998.

ZHAO, L. S., HUOKKO, T., WILSON, S., SIMPSON, D. M., WANG, Q., RUBAN, A. V., MULLINEAUX, C. W., ZHANG, Y. Z. & LIU, L. N. 2020. Structural variability, coordination and adaptation of a native photosynthetic machinery. *Nat Plants*, 6, 869-882.
Table 1. List of species with available chloroplast genomes used for the study.

Carnivorous plant orders	Non-carnivorous plant controls			
Caryophyllales	Lamiales	Oxalidales	Poales	Ericales
Table 2. Frequency Table (A) and Polygon statistics (B) for analyses of the 300 predicted psA-ndhD interaction models, each for *Nepenthes* and for the others.

A	B
Frequency Table	**Polygon Statistics - Group specific**
Class	**Nepenthes**
Count	**Count**
Lowest Distance	**Nepenthes**
Highest Distance	**Others**
11.4-19.3	25.9
19.4-27.3	19.4
27.4-35.3	97.5
35.4-43.3	93.9
43.4-51.3	11.4
51.4-59.3	107.3
59.4-67.3	12
67.4-75.3	8
75.4-83.3	36
83.4-91.3	15
91.4-99.3	3
99.4-107.3	0
Figure 1. Characterization of structural impact of *Nepenthaceae*-specific amino acid changes in psaA.

Figure 2. Characterization of structural impact of *Nepenthaceae*-specific amino acid changes in ndhD.
A

![Graph showing frequency distribution of distances](image)

- **Nepenthaceae**
 - Model with inter-residue distance = 25.9A
- **Non-Nepenthaceae**
 - Model with inter-residue distance = 19.4A

B
Figure 3. Frequency polygon of distance (Angstroms) between structure impacting residues 147 in psaA and 40 in ndhD, in *Nepenthes* and other groups in 300 models of interactions between the proteins. Classes with a distance range of 8 were formed with the lowest class value being 11.4 and highest-class value being 107.3 (A), 3D structural visualization of protein-protein interactions for the conformation with the least distance between the structure impacting residues 147 in psaA and 40 in ndhD (B).