Understanding the “extracorporeal membrane oxygenation gap” in veno-arterial configuration for adult patients: Timing and causes of death

Maged Makhoul1,2 | Samuel Heuts1 | Abdulrahman Mansouri1 | Fabio Silvio Taccone3 | Amir Obeid2 | Belliato Mirko4 | Lars Mikael Broman5 | Maximilian Valentin Malfertheiner6 | Paolo Meani7 | Giuseppe Maria Raffa1,8 | Thijs Delnoij8,9 | Jos Maessen1,10 | Gil Bolotin2 | Roberto Lorusso1,10

1Department of Cardiothoracic Surgery, Maastricht University Medical Center+ (MUMC+), Maastricht, The Netherlands
2Cardiac Surgery Unit, Rambam Medical Centre, Haifa, Israel
3Department of Intensive Care Medicine, Clinique Universitaire de Bruxelles (CUB) Erasme, Université Libre de Bruxelles, Brussels, Belgium
4U.O.C. Anestesia e Rianimazione II Cardiopulmonare, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
5Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
6Department of Internal Medicine II, Cardiology and Pneumology, University Medical Center Regensburg, Regensburg, Germany
7Department of Cardiology, Maastricht University Medical Center+, Maastricht, The Netherlands
8Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT, Palermo, Italy
9Intensive Care Department, Maastricht University Medical Center+, Maastricht, The Netherlands
10Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands

Abstract

Timing and causes of hospital mortality in adult patients undergoing veno-arterial extracorporeal membrane oxygenation (V-A ECMO) have been poorly described. Aim of the current review was to investigate the timing and causes of death of adult patients supported with V-A ECMO and subsequently define the “V-A ECMO gap,” which represents the patients who are successfully weaned of ECMO but eventually die during hospital stay. A systematic search was performed using electronic MEDLINE and EMBASE databases through PubMed. Studies reporting on adult V-A ECMO patients from January 1993 to December 2020 were screened. The studies included in this review were studies that reported more than 10 adult, human patients, and no mechanical circulatory support other than V-A ECMO. Information extracted from each study included mainly mortality and causes of death on ECMO and after weaning. Complications and discharge rates were also extracted. Sixty studies with 9181 patients were included for analysis in this systematic review. Overall mortality was 38.0% (95% confidence intervals [CIs] 34.2%-41.9%) during V-A ECMO support (reported by 60 studies) and 15.3% (95% CI 11.1%-19.5%, reported by 57 studies) after weaning. Finally, 44.0% of patients (95% CI 39.8-52.2) were discharged from hospital (reported by 60 studies). Most common causes of death on ECMO were multiple organ failure, followed by cardiac failure and neurological causes. More than one-third of V-A ECMO patients die during ECMO support. Additionally, many of successfully weaned patients still decease during hospital stay, defining the “V-A ECMO gap.” Underreporting and lack of uniformity in reporting of important parameters remains problematic in ECMO research. Future studies should uniformly define timing and causes of death in V-A ECMO patients to better understand the effectiveness and complications of this support.
For several decades, extracorporeal membrane oxygenation (ECMO) has been used to support patients in the presence of acute refractory heart and/or lung dysfunction.1 In case of cardiogenic shock or cardiac arrest, the veno-arterial (V-A) configuration is used to support the cardio-circulatory system. The use of ECMO has been gaining popularity over the last years. According to the Extracorporeal Life Support Organization (ELSO), there have been more than 61.000 ECMO cases in adult patients in more than 450 centers worldwide.2 Recent reports have shown an exponential trend of ECMO use for adult respiratory compromise (veno-venous, [V-V] ECMO), increasing from 100 cases a year between 1996 and 2007 to more than 800 cases a year in the 2009-2012 period. This was mainly due to the H1N1 influenza pandemic in 20093 and the COVID-19 pandemic in 2020. However, use of adult V-A ECMO has also increased over the past years, particularly in the postcardiotomy setting.4,5

In-hospital mortality among V-A ECMO patients remains high. Previous reviews reported up to 50%-70% in-hospital mortality among adult patients.6,7 Despite the knowledge and skills that ECMO teams have gained during the last years regarding this technology, mortality rates have not declined,8 which might reflect the severity of illness, complexity of patient profile, or the older age of ECMO patients when compared with previous experiences.9 Moreover, in-hospital ECMO mortality has not been comprehensively described until now. In particular, data are limited on the timing of death (ie, during or after ECMO support) as well as on the main causes of death in this setting. Causes of death and complications on-ECMO are described relatively well, but in-hospital mortality rate and cause of death in-hospital, but after weaning, are poorly reported and not well understood. We defined this observation and patient group as the “V-A ECMO gap,” which describes the quote of patients with unfavorable in-hospital outcome despite successful ECMO weaning.

Still, it remains difficult to compare different studies to each other and to conduct systematic reviews and meta-analyses of separate trials as terminology, indications, and outcomes are reported without uniformity. Therefore, the present systematic review aims to investigate the timing and causes of death during the hospital stay in adult patients supported with V-A ECMO. Furthermore, it will make an attempt to give insight into reporting, underreporting, uniformity of reporting, and quality of reporting of indications and outcomes in adult V-A ECMO studies.

A predefined protocol was registered in PROSPERO (CRD42019130815).10 This systematic review was written in accordance with the Preferred Reporting in Systematic Reviews and Meta-analyses (PRISMA) statement.11

Potentially eligible studies were identified by searching the electronic MEDLINE and EMBASE databases through PubMed and Ovid, respectively. (The following search criteria were used: Adult, Veno-arterial, Extracorporeal Life Support, Extra-Corporeal Membrane Oxygenation, ECMO, ECLS, V-A ECMO.) All studies that reported on ECMO as a form of Mechanical Circulatory Support (MCS) in V-A configuration in adult patients were identified in the study selection. Additionally, reference lists of the prescreened studies were manually checked for additional eligible studies. Original studies from January 1993 to December 2020 were reviewed in order to include more modern ECMO technology.

Due to the emergent nature of the condition and the lack of randomized data, all observational studies and case series comprising >10 patients were considered for inclusion. Non-English studies and studies conducted in animal models or in pediatric cohorts were excluded. Studies with circulatory support other than V-A ECMO (V-V ECMO, combined ECMO modes, combination of ECMO, and ventricular assist devices) were excluded as well. In case several MCS devices (ie, left-ventricular or biventricular assist devices) were included in one study, results were included only if the V-A ECMO group was analysed separately. When multiple publications of the same research group were identified, the publication reporting on the largest cohort was used, if eligible. Studies including less than 10 patients, duplicates, editorials,
commentaries, letters to editor, opinion articles, reviews, or meeting abstracts were also excluded. Sample-size cutoffs were chosen pre-hoc in an attempt to limit the risks of imprecision and publication bias. Finally, studies that did not report on at least on-ECMO mortality and discharge rate were excluded from analysis as they could not provide valuable information regarding the ECMO-gap.

2.4 | Data extraction

The following key information was extracted from each publication: year of publication, mortality on ECMO, weaning rate, in-hospital mortality, number of discharged patients, cause of death on ECMO, cause of death after weaning, and in-hospital complications.

2.5 | End-point definition

The primary outcome is the reported mortality rate on-ECMO and mortality rate after weaning during the ECMO-related hospitalization. These findings are then used to define the V-A ECMO gap as follows: the difference between the rate of patients who were successfully weaned from ECMO and the rate of patients who were finally discharged at the end of the ECMO-related hospital admittance (ie, the in-hospital mortality rate after successful weaning). Secondary outcomes are, if available, causes of death either on-ECMO or after weaning, rate of hospital discharge, and complications of ECMO. Studies that included causes of death on-ECMO and after weaning were analyzed separately.

2.6 | Data synthesis

Data synthesis was performed by two researchers with extensive expertise in statistics and epidemiology. Given the large number of patients expected to be included, the potentially low quality of the studies, and an expected number of missing patient data, heterogeneity of results was expected, and these should be interpreted with caution. Still, to illustrate the mortality rates on- and after ECMO, these rates were reported per study with corresponding 95% confidence intervals (95% CIs). All studies were assigned a certain weight, based on their sample size and distribution of data. Eventually, these rates were also pooled and presented in the same fashion. The results of I² test for heterogeneity were also reported in which a result of >50%, in conjunction with a P value <.10 was considered significant. Complications and causes of death were reported as ranges. A freely available software package (OpenMetaAnalyst, http://www.cebm.brown.edu/openmeta) was used for data synthesis.

3 | RESULTS

3.1 | Included studies

The predefined literature search generated 12 436 studies (Figure 1). Sixty duplicates were removed after which 11 871 studies were excluded based on title, abstract, and keywords. Then, after careful full-text review, 415 studies were excluded for reasons specified in Figure 1 (PRISMA flow-chart). Eventually, 91 articles were included in our analysis. The selected articles provided a total number of 12 569 adult patients. The number of patients per article varied from 10 to 5263. However, only 60/91 studies reported on at least on-ECMO mortality and discharge rate. These 31 studies were excluded from analysis as they do not provide any valuable information on the ECMO-gap (Table S1). The 60 analyzed studies comprised 9181 patients (Table 1).

3.2 | Mortality rates, weaning, and discharge

On-ECMO mortality was reported by all 60 studies (n = 9181 patients). Overall, on-ECMO mortality rate was 38.0% (95% CI 34.2%-41.9%) (Table 1) ranging from 6.6% to 68.0%. After weaning, mortality rate was reported by 57 studies (n = 8814 patients). In-hospital mortality rate after weaning was 15.3% (95% CI 11.1%-19.5%), which represents the ECMO Gap. For both mortality rates, significant heterogeneity was noted (I² > 95%, P < .001). A minority of patients could not be weaned and received another form of MCS or transplantation. Weaning rate was reported by 59 studies (n = 9117 patients) and was reported to be 57.0% (95% CI 53.3%-60.7%). Eventually, 44.0% (95% CI 39.8%-52.2%) of patients were discharged home. Again, similar heterogeneity was noted (P < .001).

3.3 | Causes of death

Of the 60 articles, only 16 specifically reported in detail on cause of death on-ECMO and after ECMO weaning. In these studies, 675 adult patients were included, of which 37.5% (95% CI 31.2%-43.9%) died on-ECMO (Table 1) and 60.3% (95% CI 51.2-69.4) were weaned successfully. A small percentage was not weaned but received a form of permanent MCS or transplant, of which some patients were discharged. After analyzing the 16 papers, we found that the most common causes of death on ECMO (Table 2) were multiple organ failure (MOF, ranging from 27% to 100%), followed by cardiac failure (ranging from 15% to 80%), neurological causes (ranging from 3% to 50%), and bleeding (ranging from 8% to 20%). Although MOF was the most common cause of
death in most papers, some authors, like Smith et al.23 and Unosawa et al.25 show that conditions such as persistent heart failure can also be a common cause of death in these patients (Table 2). The most common causes of in-hospital death after ECMO weaning were MOF (ranging from 33\% to 100\%) followed by neurological causes, cardiac failure, and pneumonia (Table 2).

3.4 Complications in V-A ECMO

The cost-benefit ratio is a highly debated issue in ECMO research, especially in regard to complications and hospital stay.28,29 In the current study, complications were analyzed in 13 articles reporting on complications12-19,21,23-25,30 and presented in Table 3.

4 DISCUSSION

In-hospital mortality among V-A ECMO patients remains high. Despite the knowledge and skills that ECMO teams have gained during the last years regarding this technology, mortality rates have not declined. Furthermore, in-hospital ECMO mortality has not been comprehensively described until now. In particular, there are scarce data on the timing of death (ie, during or after ECMO support) as well as on the main causes of death in this setting. In our own experience, we observed a lot of patients to still decease after weaning of ECMO, in hospital. We defined this discrepancy as the “V-A ECMO-gap.” From our view, an underreporting, either in terms of uniformity or quality about ECMO-related fatal events, came clearly out. Indeed, only two thirds of selected papers provided information about timing of deaths and related causes.
TABLE 1

Study characteristics and ECMO outcomes, including on-ECMO mortality, weaning rate, and after weaning mortality rate and discharge rate

Author Year	Total number of	On-ECMO mortality (n) % 95% CI	Weaning (n) % 95% CI	Mortality after weaning (n) % 95% CI	Discharge (n) % 95% CI						
Acker 2001	37	10	27.0	12.7-41.3	27						
Ariyaratnam 2014	14	7	50.0	23.8-76.2	7						
Aso 2016	5263	1823	34.6	33.4-35.9	3389						
Aziza 2010	10	4	40.0	9.6-70.4	0						
Bednarczyk 2014	32	7	21.9	7.6-36.2	18						
Beurtheret 2013	87	48	55.2	44.7-65.6	39						
Borges Lima 2015	11	2	18.2	0-41.0	9						
Bouabdallaoui 2017	10	5	50.0	19.0-81.0	5						
Chena 2005	15	1	6.7	0-19.3	14						
Chou 2010	40	11	27.5	13.7-41.3	29						
Chung 2012	134	66	49.3	40.8-57.7	68						
Demondiona 2013	77	40	51.9	40.8-63.1	19						
Dinia 2015	14	6	42.9	16.9-68.8	8						
Esper 2015	18	3	16.7	0-33.9	15						
Fiser 2001	51	35	68.6	55.9-81.4	16						
George 2018	32	11	34.4	17.9-50.8	21						
Guenthera 2013	41	15	36.6	21.8-51.3	26						
Hei 2010	68	16	23.5	13.4-33.6	52						
Hsu 2010	51	24	47.1	33.4-60.8	27						
Kagawa 2010	77	40	51.9	40.8-63.1	19						
Kara 2016	24	9	37.5	18.1-56.9	15						
Kim GS 2017	61	34	55.7	43.3-68.2	27						
Kim DW 2010	38	17	44.7	28.9-60.5	21						
Kim Ha 2012	27	5	18.5	3.9-33.2	22						
Koa 2002	76	30	39.4	28.5-50.5	46						
Kosinska 2018	29	11	37.9	20.3-55.6	18						
Lazzara 1993	11	3	27.3	1.0-53.6	8						
Lee SN 2017	95	40	42.1	32.2-52.0	55						
Loforte 2014	228	84	36.8	30.6-43.1	107						
Luyt 2012	41	14	34.1	19.6-48.7	23						
Luyt 2014	5	0	0	0-7.7	2						
Luyt 2014	228	84	36.8	30.6-43.1	107						
Luyt 2014	5	0	0	0-7.7	2						
Luyt 2014	228	84	36.8	30.6-43.1	107						
Luyt 2014	5	0	0	0-7.7	2						
Author	Year	Total number of patients	On-ECMO mortality (n)	95% CI	Weaning rate (n)	95% CI	Mortality after weaning (n)	95% CI	Discharge rate (n)	95% CI	
-------------	------	--------------------------	----------------------	--------	-----------------	--------	---------------------------	--------	-------------------	--------	
Mikus	2013	14	7	50.0	23.8-76.2	6	42.9	16.9-68.8	6	42.9	16.9-68.8
Mirabel	2011	35	13	37.1	21.1-53.2	22	62.9	46.8-78.9	1	2.9	0.8-8.4
Muehrcke	1996	23	10	43.5	23.2-63.7	9	91.2	19.2-59.1	2	8.7	0-20.2
Pasrija	2018	56	1	1.8	0-5.3	14	25.0	13.7-56.3	5	8.9	1.5-16.4
Pokersnik	2012	49	22	44.9	31.0-58.8	27	55.1	41.2-69.0	11	22.4	10.8-34.1
Rastan	2010	517	190	36.8	32.4-40.9	327	63.2	59.1-67.4	199	38.5	34.3-42.7
Rubin6	2017	101	43	42.6	32.9-52.2	58	57.4	47.8-67.1	24	23.8	15.5-32.1
Saito	2007	91	34	37.4	27.4-47.3	56	61.5	51.5-71.5	17	18.7	10.7-26.7
Sakamoto	2012	98	44	44.9	35.1-54.7	54	55.1	45.3-64.9	22	22.4	14.2-30.7
Sangalli	2016	10	1	10.0	0-28.6	9	90.0	71.4-100.0	1	10.0	0-28.6
Saxena	2015	45	21	46.7	32.1-61.2	24	53.3	38.8-67.9	13	28.9	15.6-42.1
Shinn	2009	92	33	35.9	26.1-45.7	59	64.1	54.3-73.9	20	21.7	13.3-30.2
Slottosch	2013	77	29	37.7	26.8-48.5	48	62.3	51.5-73.2	11	14.3	6.5-22.1
Smedira	2001	202	83	41.1	34.3-47.9	71	35.1	28.6-41.7	NR	–	–
Smith	2001	17	6	35.3	12.6-58.0	11	64.7	42.0-84.5	4	23.5	3.4-43.7
Stubb	2015	24	11	45.8	25.9-65.8	13	54.2	34.2-74.1	1	4.1	0.1-12.2
Takayama	2015	101	40	39.6	30.1-49.1	24	23.8	15.5-32.1	NR	–	–
Tanaka	2016	84	34	40.5	30.0-51.0	50	59.5	49.0-70.0	14	16.7	8.7-24.6
Tarzia	2015	64	9	14.1	5.5-22.6	NR	–	NR	–	–	37
Tsai	2017	105	31	29.5	20.8-38.2	74	70.5	61.8-79.2	19	18.1	10.7-25.5
Unosawaya	2013	47	18	38.3	24.4-52.2	29	61.7	47.8-75.6	15	31.9	18.6-45.2
van den Brink	2017	12	4	33.3	6.7-60.0	8	66.7	40.0-93.3	0	0	0.1-12.2
Wang S	1996	18	9	50.0	26.9-73.1	9	50.0	26.9-73.1	3	16.7	0.3-33.9
Wang J	2013	87	36	41.4	31.0-51.7	51	58.6	48.3-69.0	8	9.2	3.1-15.3
Wong	2017	103	49	47.6	37.9-57.2	54	52.4	42.8-62.1	11	10.7	4.7-16.6
Wu	2010	110	43	39.1	30.0-48.2	67	60.9	51.8-70.0	21	19.1	11.7-26.4
Yeh	2018	99	71	71.7	62.8-80.6	28	28.3	19.4-37.2	15	15.2	8.1-22.2
Zhang	2006	32	18	56.2	39.1-73.4	14	43.7	26.6-60.9	6	18.8	5.2-32.3
Zhao	2015	24	8	33.3	14.5-52.2	16	66.7	47.8-85.5	8	33.3	14.5-52.2

| Total | | 9181 | 3385 | 38.0 | 34.2-41.9 | 5492 | 57.0 | 53.3-60.7 | 2659 | 15.3 | 11.1-19.5 |

n = 60

Abbreviations: CI, confidence interval; ECMO, extracorporeal membrane oxygenation; NR, not reported.

*aStudies that report on causes of death."
Author	Year	Cause of death on-ECMO (n, %)	Cause of death after weaning (n, %)
Aziz12	2010	MOF (2, 50%)	–
Bouabdallaoui13	2017	MOF (4, 80%)	–
Chen14	2005	MOF (1, 100%)	MOF (2, 67%)
Demondion15	2013	MOF (26, 65%)	Neurological (2, 50%)
		Cardiac failure (6, 15%)	Neurological (2, 50%)
		Bleeding (3, 8%)	Sepsis (1, 20%)
		Aortic dissection (1, 3%)	LV thrombosis (1, 3%)
Den Uil16	2017	MOF (17, 40%)	Neurological (12, 63%)
		Neurological (18, 39%)	Cardiac failure (3, 16%)
		Cardiac failure (10, 22%)	Neurological (4, 21%)
		ECMO dysfunction (1, 2%)	Cardiac failure (3, 16%)
Dini17	2015	MOF (4, 67%)	Cerebral hemorrhage (2, 33%)
Guenther18	2013	MOF (9, 60%)	MOF (5, 83%)
		Neurological (6, 40%)	Neurological (1, 17%)
Hsu19	2010	MOF (20, 83%)	Cardiac failure (4, 40%)
		Neurological (2, 8%)	Pneumonia (6, 60%)
		Bleeding (2, 8%)	
Kim H20	2012	Cardiac failure (4, 80%)	Cardiac failure (1, 17%)
		Bleeding (1, 20%)	Sepsis (2, 33%)
			Arrhythmia (3, 50%)
Ko21	2002	MOF (16, 53%)	MOF (17, 81%)
		Neurological (3, 10%)	Neurological (1, 45%)
		Circulatory shock (2, 7%)	Sudden death (4, 9%)
		Bleeding (5, 17%)	
		Arrhythmia (2, 7%)	
		Graft rejection (1, 3%)	
		Family request (1, 3%)	
Kosinski22	2018	MOF (11, 100%)	MOF (2, 100%)
Smith23	2001	Neurological (2, 33%)	Cardiac failure (2, 50%)
		Cardiac failure (4, 67%)	Neurological (2, 50%)
			Sepsis (2, 50%)
Stub24	2015	MOF (3, 27%)	Cardiac failure (1, 100%)
		Neurological (4, 36%)	
		Cerebral hemorrhage (2, 18%)	
		Bleeding (2, 18%)	
Unosawa25	2013	MOF (5, 28%)	MOF (8, 53%)
		Neurological (4, 22%)	Neurological (2, 13%)
		Cardiac failure (7, 39%)	Cardiac failure (2, 13%)
		Bleeding (2, 11%)	Cardiac rupture (2, 13%)
			Pneumonia (1, 7%)

(Continues)
DEFINING THE V- A ECMO GAP

It is still challenging to explain this ECMO-gap. Many factors can be considered, such as a weaning process that was initiated in a too early phase, and ethical factors should be recognized. Deaths also occur after weaning of support due to recognition of futility by health workers in order to facilitate a more humanized healthcare or by family members.

Overall, on-ECMO mortality was 38.0%, and weaning rate was 60.3%. Still, it remains difficult to interpret the discharge rate in respect to the weaning rate for the patients that could not be weaned. In some cases, they underwent some modality of other MCS (or transplant) and are in several studies included in the overall patients discharged from hospital, as other papers only report nontransplanted (or non-MCS) discharged patients.14,15

Many authors report on-ECMO and after weaning mortality rates, but most of them only provide partial details or do not provide causes of death. For example, Cheng et al report survival to discharge as a cumulative rate, although, they did not specify whether death occurred on-ECMO or after weaning.31 This provides another example of underreporting in V- A ECMO research.

The lack of reporting causes of death together (as illustrated by the merely 16 studies describing these findings) with the lack of reporting mortality rates of ECMO patients (as illustrated by the 30 initially excluded studies) makes comprehensive understanding of the “ECMO Gap” even more challenging.

4.1 Limitations

A number of limitations should be recognized when considering this review. During the course of composing this review, a large number of papers dealing mainly with adult V- A ECMO have been assessed. The reports included, however, were quite heterogeneous, meaning that not all outcomes were reported in all papers, making it difficult to interpret the results of a true meta-analysis. Therefore, as illustrated by the levels of heterogeneity, pooled rates should be interpreted with caution. Moreover, 30 of the studies, which were included in the systematic review, had to be excluded from analysis as they did not report on the most essential outcomes, further defining the ECMO-gap in reporting on ECMO outcomes.

It remains challenging to relate mortality to indication as there is no uniformity in reporting of indications and outcomes in ECMO research. Providing the certain causes of death is not always possible because autopsies are not routinely performed, for example, neurological complications and causes of death. However, it is believed that despite these potential issues, the main ideas and results of the review are preserved as the ECMO-gap is defined and a light is shed on the difference in reporting and underreporting of existing studies.

Author Year	Cause of death on-ECMO (n, %)	Cause of death after weaning (n, %)
Wang S26 1996	MOF (5, 56%) Sepsis (2, 22%) Tube rupture (1, 11%) ECMO dysfunction (1, 11%)	MOF (1, 33%) Sepsis (1, 33%) Cerebral hemorrhage (1, 33%)
Wang J27 2013	MOF (10, 28%) Neurological (1, 3%) Cardiac failure (22, 61%) DIC (3, 8%)	MOF (8, 100%)

Abbreviations: DIC, disseminated intravascular coagulation; ECMO, extracorporeal membrane oxygenation; LV, left ventricle; MOF, multiorgan failure.
5 | CONCLUSION

In-hospital mortality rate of adult V-A ECMO patients is still high. The detailed information about timing and causes of death are, however, not adequately reported in the literature. Identifying the extent and causes of death on-ECMO and after weaning revealed many of ECMO patients to still die after weaning, in hospital. Timing of death is related to different causes of death, of which bleeding on-ECMO is the most predominant one compared with after weaning mortality rate, while MOF remains the most important cause of death in both groups.

Underreporting and lack of uniformity in reporting of important parameters remains problematic in ECMO research. Future studies should fully and uniformly define timing and causes of death in V-A ECMO patients to better understand the effectiveness and complications of this support.

CONFLICT OF INTEREST

The authors have no financial disclosure and conflicts of interest to declare.

AUTHOR CONTRIBUTIONS

Study design: Makhoul, Heuts, Taccone, Obeid, Mirko, Broman, Malfertheiner, Meani, Raffa, Delnoij, Maessen, Bolotin, Lorusso
Data acquisition: Makhoul, Heuts, Mansouri, Lorusso
Data analysis: Makhoul, Heuts, Mansouri, Lorusso
Data interpretation: Makhoul, Heuts, Mansouri, Lorusso
Draft manuscript: Makhoul, Heuts, Lorusso

TABLE 3 Complication rates

Year	Complication	n	%	
Aziz12	2010			
	Bleeding	1	10	
	Hemolysis	1	10	
	Renal failure	1	10	
	Pneumonia	1	10	
	Sepsis	1	10	
Bouabdallaoui13	2017	Pulmonary edema	2	40
		Sepsis	1	20
		Bleeding	1	20
		Limb ischemia	1	20
Chen14	2005	Renal	4	26.6
		Neurological	3	20
		Respiratory	1	6.6
		Bleeding	3	20
Demondion15	2013	Pneumonia	40	51.3
		ARF	36	46.1
		Pulmonary edema	24	31.6
		Major bleeding	16	21.3
		Lower limb ischemia	7	9.2
		Wound infection	6	8
		Stroke	2	2.6
Den Uil16	2017	Bleeding	40	43.4
		Stroke	8	8.6
		Sepsis	11	11.9
		Limb ischemia	13	14.1
		Cannula change	20	21.7
Dini17	2015	Renal failure	7	100
Guenther18	2013	Cannula related	4	9.7
		Cannula site bleeding	2	4.8
		Cannula- wound healing	2	4.8
		Lower limb ischemia	5	12.1
		Pump thrombosis	1	2.4
Hsu19	2010	ARF	38	75
		Femoral bleeding	20	39
		Hematuria	17	33
		GI bleeding	13	25
		Pulmonary infection	11	22
		Compartment syndrome	5	9.8
		ARDS	5	9.8
		Limb ischemia	3	5.9
		Leg amputation	2	3.9
		Neurologic compiliation	3	5.9
		Catheter-related infection	3	5.9
		Pancreatitis	1	2

(Continues)

The abbreviations: ARDS, acute respiratory distress syndrome; ARF, acute renal failure; GI, gastrointestinal.
Revision of the work: Taccone, Obeid, Mirko, Broman, Malferttheiner, Meani, Raffa, Delnoij, Maessen, Bolotin, Lorusso

Supervision: Lorusso

ORCID

Maged Makhoul https://orcid.org/0000-0002-4487-1153
Samuel Heuts https://orcid.org/0000-0003-3531-9997
Abdulrahman Mansouri https://orcid.org/0000-0003-4338-3075
Belliatto Mirko https://orcid.org/0000-0002-3411-6293
Lars Mikael Broman https://orcid.org/0000-0003-4124-4581
Maximilian Valentin Malferttheiner https://orcid.org/0000-0002-6245-2614
Giuseppe Maria Raffa https://orcid.org/0000-0001-7141-2561
Roberto Lorusso https://orcid.org/0000-0002-1777-2045

REFERENCES

1. Abrams D, Combes A, Brodie D. Extracorporeal membrane oxygenation in cardiopulmonary disease in adults. J Am Coll Cardiol. 2014;63:2769–78.
2. International summary, Extracorporeal Life Support Organization; 2017 [cited 2020 Aug 15]. Available from: https://www.elso.org/Registry/Statistics/InternationalSummary.aspx
3. Peek GJ, Clemens F, Elbourne D, Firmin R, Hardy P, Hibbert C, et al. CESAR: conventional ventilatory support vs extracorporeal membrane oxygenation for severe adult respiratory failure. BMC Health Serv Res. 2006;6:163.
4. Paden ML, Rycus PT, Thiagarajan RR. Update and outcomes in extracorporeal life support. Semin Perinatol. 2014;38:65–70.
5. Flecher E, Anselmi A, Corbineau H, Langanay T, Verhoye J-P, Felix C, et al. Current aspects of extracorporeal membrane oxygenation in a tertiary referral centre: determinants of survival at follow-up. Eur J Cardiothorac Surg. 2014;46:665–71; discussion 71.
6. Tanaka D, Hirose H, Cavarocchi N, Entwistle JWC. The impact of vascular complications on survival of patients on venoarterial extracorporeal membrane oxygenation. Ann Thorac Surg. 2016;101:1729–34.
7. McCarthy FH, McDermott KM, Kini V, Gutsche JT, Wald JW, Xie D, et al. Trends in U.S. Extracorporeal Membrane Oxygenation Use and Outcomes: 2002-2012. Semin Thorac Cardiovasc Surg. 2015;27:81–8.
8. Gray BW, Haft JW, Hirsch JC, Annich GM, Hirschel RB, Bartlett RH. Extracorporeal life support: experience with 2,000 patients. ASAIO J. 2015;61:2–7.
9. Booth A, Clarke M, Dooley G, Ghersi D, Moher D, Petticrew M, et al. The nuts and bolts of PROSPERO: an international prospective register of systematic reviews. Syst Rev. 2012;1:2.
10. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535.
11. Aziz TA, Singh G, Papjes E, Stephenson E, Mulvey S, Pae W, et al. Initial experience with CentriMag extracorporeal membrane oxygenation for support of critically ill patients with refractory cardiogenic shock. J Heart Lung Transplant. 2010;29:66–71.
12. Bouabdallaoui N, Demondion P, Leprince P, Lebreton G. Short-term mechanical circulatory support for cardiogenic shock in severe peripartum cardiomyopathy: La Petite-Salpetriere experience. Interact Cardiovasc Thorac Surg. 2017;25:52–6.
13. Chen Y-S, Yu H-Y, Huang S-C, Chiu K-M, Lin T-Y, Lai L-P, et al. Experience and result of extracorporeal membrane oxygenation in treating fulminant myocarditis with shock: what mechanical support should be considered first? J Heart Lung Transplant. 2005;24:81–7.
14. Demondion P, Fournel L, Golmard J-L, Niculescu M, Pavie A, Leprince P. Predictors of 30-day mortality and outcome in cases of myocardial infarction with cardiogenic shock treated by extracorporeal life support. Eur J Cardiothorac Surg. 2014;45:47–54.
15. den Uil CA, Jewbali LS, Heeren MJ, Constantinescu AA, Van Mieghem NM, Reis Miranda DD. Isolated left ventricular failure is a predictor of poor outcome in patients receiving venoarterial extracorporeal membrane oxygenation. Eur J Heart Fail. 2017;19 Suppl 2:104–9.
16. Dini CS, Lazzeri C, Chiostrini M, Gensini GF, Valente S. A local network for extracorporeal membrane oxygenation in refractory cardiogenic shock. Acute Card Care. 2015;17:49–54.
17. Guenther S, Theiss HD, Fischer M, Sattler S, Peterss S, Born F, et al. Percutaneous extracorporeal life support for patients in therapy refractory cardiogenic shock: initial results of an interdisciplinary team. Interact Cardiovasc Thorac Surg. 2014;18:283–91.
18. Hsu PS, Chen JL, Hong GJ, Tsai YT, Lin CY, Lee CY, et al. Extracorporeal membrane oxygenation for refractory cardiogenic shock after cardiac surgery: predictors of early mortality and outcome from 51 adult patients. Eur J Cardiothorac Surg. 2010;37:328–33.
19. Kim H, Lim S-H, Hong J, Hong Y-S, Lee CJ, Jung J-H, et al. Efficacy of veno-arterial extracorporeal membrane oxygenation in acute myocardial infarction with cardiogenic shock. Resuscitation. 2012;83:971–5.
20. Ko W-J, Lin C-Y, Chen RJ, Wang S-S, Lin F-Y, Chen Y-S. Extracorporeal membrane oxygenation support for adult postcardiomyopathy. Ann Thorac Surg. 2002;73:538–45.
21. Kosiński S, Darocha T, Czerw A, Paal P, Pasquier M, Krawczyk P, et al. Cost-utility of extracorporeal membrane oxygenation re-warming in accidentally hypothermic patients—a single-centre retrospective study. Acta Anaesthesiol Scand. 2018;62:1105–11.
22. Smith C, Bellomo R, Raman JS, Matalanis G, Rosalion A, Buckmaster J, et al. An extracorporeal membrane oxygenation-based approach to cardiogenic shock in an older population. Ann Thorac Surg. 2001;71:1421–7.
23. Stub D, Bernard S, Pellegrino V, Smith K, Walker T, Sheldrake J, et al. Refractory cardiac arrest treated with mechanical CPR, hypothermia, ECMO and early reperfusion (the CHEER trial). Resuscitation. 2015;86:88–94.
24. Unosawa S, Sezai A, Hata M, Nakata K, Yoshitake I, Waku S, et al. Long-term outcomes of patients undergoing extracorporeal membrane oxygenation for refractory postcardiomyopathy cardiogenic shock. Surg Today. 2013;43:264–70.
26. Wang S-S, Chen Y-S, Ko W-J, Chu S-H. Extracorporeal membrane oxygenation support for postcardiotomy cardiogenic shock. Artif Organs. 1996;20:1287–91.
27. Wang J-G, Han J, Jia Y-X, Zeng W, Hou X-T, Meng XU. Outcome of veno-arterial extracorporeal membrane oxygenation for patients undergoing valvular surgery. PLoS ONE. 2013;8:e63924.
28. Lan C, Tsai P-R, Chen Y-S, Ko W-J. Prognostic factors for adult patients receiving extracorporeal membrane oxygenation as mechanical circulatory support—a 14-year experience at a medical center. Artif Organs. 2010;34:E59–64.
29. Cheng R, Hachamovitch R, Kittleson M, Patel J, Arabia F, Moriguchi J, et al. Complications of extracorporeal membrane oxygenation for treatment of cardiac shock and cardiac arrest: a meta-analysis of 1,866 adult patients. Ann Thorac Surg. 2014;97:610–6.
30. Parija C, Shah A, George P, Kronfli A, Raithel M, Boulos F, et al. Triage and optimization: a new paradigm in the treatment of massive pulmonary embolism. J Thorac Cardiovasc Surg. 2018;156:672–81.
31. Cheng R, Hachamovitch R, Kittleson M, Patel J, Arabia F, Moriguchi J, et al. Clinical outcomes in fulminant myocarditis requiring extracorporeal membrane oxygenation: a weighted meta-analysis of 170 patients. J Card Fail. 2014;20:400–6.
32. Fletcher Sandersjöö A, Bartek J, Thelin EP, Eriksson A, Elmi- terander A, Broman M, et al. Predictors of intracranial hemorrhage in adult patients on extracorporeal membrane oxygenation: an observational cohort study. J Intensive Care. 2017;5:27.
33. Chang W-W, Tsai F-C, Tsai T-Y, Chang C-H, Jenq C-C, Chang M-Y, et al. Predictors of mortality in patients successfully weaned from extracorporeal membrane oxygenation. PLoS ONE. 2012;7:e42687.
34. Safdar N, Dezfulian C, Collard HR, Saint S. Clinical and economic consequences of ventilator-associated pneumonia: a systematic review. Crit Care Med. 2005;33:2184–93.
35. Acker MA. Mechanical circulatory support for patients with acute-fulminant myocarditis. Ann Thorac Surg. 2001;71:S73–6; discussion S82–5.
36. Ariyaratnam P, McLean LA, Cale ARJ, Loubani M. Extracorporeal membrane oxygenation for the post-cardiomyopathy patient. Heart Fail Rev. 2014;19:717–25.
37. Aso S, Matsui H, Fushimi K, Yasunaga H. In-hospital mortality and successful weaning from venoarterial extracorporeal membrane oxygenation: analysis of 5,263 patients using a national in-patient database in Japan. Crit Care. 2016;20:80.
38. Bednarczyk JM, White CW, Ducas RA, Golian M, Nepomuceno R, Hiebert B, et al. Resuscitative extracorporeal membrane oxygenation for in hospital cardiac arrest: a Canadian observational experience. Resuscitation. 2014;85:1713–9.
39. Beurtheret S, Mordant P, Paoletti X, Marijon E, Cellermaier DS, Leger P. Emergency circulatory support in refractory cardiogenic shock patients in remote institutions: a pilot study (the cardiac-RESCUE program). Eur Heart J. 2013;34:112–20.
40. Lima EB, Cunha CRD, Barzilai VS, Ulhoa MB, Barros MRD, Moraes CS, et al. Experience of ECMO in primary graft dysfunction after orthotopic heart transplantation. Arq Bras Cardiol. 2015;105:285–91.
41. Chou NK, Chi NH, Wu IW, Huang SC, Chen YS, Yu HY, et al. Extracorporeal membrane oxygenation to rescue cardiopulmonary failure after heart transplantation: a single-center experience. Transplant Proc. 2010;42:943–5.
42. Chung S-Y, Sheu J-J, Lin Y-J, Sun C-K, Chang L-T, Chen Y-L, et al. Outcome of patients with profound cardiogenic shock after cardiopulmonary resuscitation and prompt extracorporeal membrane oxygenation support. A single-center observational study. Circ J. 2012;76:1385–92.
43. Esper SA, Bermudez C, Dueweke EJ, Kormos R, Subramaniam K, Mulukutla S, et al. Extracorporeal membrane oxygenation support in acute coronary syndromes complicated by cardiogenic shock. Catheter Cardiovasc Interv. 2015;86 Suppl 1:S45–50.
44. Fiser SM, Tribble CG, Kaza AK, Long SM, Zacour RK, Kern JA, et al. When to discontinue extracorporeal membrane oxygenation for postcardiotomy support. Ann Thorac Surg. 2001;71:210–4.
45. George B, Parazino M, Omar HR, Davis G, Guglin M, Gurlie J, et al. A retrospective comparison of survivors and non-survivors of massive pulmonary embolism receiving veno-arterial extracorporeal membrane oxygenation support. Resuscitation. 2018;122:1–5.
46. Hei F, Lou S, Li J, Yu K, Liu J, Feng Z, et al. Five-year results of 121 consecutive patients treated with extracorporeal membrane oxygenation at Fu Wai Hospital. Artif Organs. 2011;35:572–8.
47. Kagawa E, Inoue I, Kawagoe T, Ishihara M, Shimatani Y, Kurisu S, et al. Assessment of outcomes and differences between in- and out-of-hospital cardiac arrest patients treated with cardiopulmonary resuscitation using extracorporeal life support. Resuscitation. 2010;81:968–73.
48. Kara A, Akin S, dos Reis Miranda D, Strujs A, Caliskan K, van Thiel RJ, et al. Microcirculatory assessment of patients under VA-ECMO. Crit Care. 2016;20:344.
49. Kim GS, Lee KS, Park CK, Kang SK, Kim DW, Oh SG, et al. Nosocomial infection in adult patients undergoing veno-arterial extracorporeal membrane oxygenation. J Korean Med Sci. 2017;32:593–8.
50. Kim DW, Cho HJ, Kim GS, Song SY, Na KJ, Oh SG, et al. Predictive value of procalcitonin for infection and survival in adult cardiogenic shock patients treated with extracorporeal membrane oxygenation. Chonnam Med J. 2018;54:48–54.
51. Lazzara RR, Magovern JA, Benckart DH, Maher TD, Sakert T, Magovern GJ, et al. Extracorporeal membrane oxygenation for adult post cardiomyopathy cardiogenic shock using a heparin bonded system. ASAIO J. 1993;39:M444–7.
52. Lee SN, Jo MS, Yoo KD. Impact of age on extracorporeal membrane oxygenation survival of patients with cardiac failure. Clin Interv Aging. 2017;12:1347–53.
53. Loforte A, Marinelli G, Musumeci F, Folesani G, Pilato E, Martin Suarez S, et al. Extracorporeal membrane oxygenation support in refractory cardiogenic shock: treatment strategies and analysis of risk factors. Artif Organs. 2014;38:E129–E141.
54. Luyt C-E, Landivier A, Leprince P, Bernard M, Pavie A, Castre J, et al. Usefulness of cardiac biomarkers to predict cardiac recovery in patients on extracorporeal membrane oxygenation support for refractory cardiogenic shock. J Crit Care. 2012;27:524.e7–14.
55. Mikus E, Tripodi A, Calvi S, Gligio MD, Cavallucci A, Lamarra M. CentriMag venoarterial extracorporeal membrane oxygenation support as treatment for patients with refractory postcardiomyopathy cardiogenic shock. ASAIO J. 2013;59:18–23.
56. Mirabel M, Luyt C-E, Leprince P, Trouillet J-L, Léger P, Pavie A, et al. Outcomes, long-term quality of life, and psychologic assessment of fulminant myocarditis patients rescued by mechanical circulatory support. Crit Care Med. 2011;39:1029–35.
57. Muehrcke DD, McCarthy PM, Stewart RW, Foster RC, Ogella DA, Borsh JA, et al. Extracorporeal membrane oxygenation for postcardiotomy cardiogenic shock. Ann Thorac Surg. 1996;61:684–91.

58. Pokersnik JA, Buda T, Bashour CA, Gonzalez-Stawinski GV. Have changes in ECMO technology impacted outcomes in adult patients developing postcardiotomy cardiogenic shock? J Card Surg. 2012;27:246–52.

59. Rastan AJ, Dege A, Mohr M, Doll N, Falk V, Walther T, et al. Early and late outcomes of 517 consecutive adult patients treated with extracorporeal membrane oxygenation for refractory postcardiotomy cardiogenic shock. J Thorac Cardiovasc Surg. 2010;139:302–11.e1.

60. Rubino A, Costanzo D, Stanszus D, Valchanov K, Jenkins D, Sertic F, et al. Central venoarterial extracorporeal membrane oxygenation (C-VA-ECMO) after cardiothoracic surgery: a single-center experience. J Cardiothorac Vasc Anesth. 2018;32:1169–74.

61. Saito S, Nakatani T, Kobayashi J, Tagusari O, Bando KO, Niwaya K, et al. Is extracorporeal life support contraindicated in elderly patients? Ann Thorac Surg. 2007;83:140–5.

62. Sakamoto S, Taniguchi N, Nakajima S, Takahashi A. Oxygenation (C-VA-ECMO) after cardiothoracic surgery: a single-center experience. J Cardiothorac Vasc Anesth. 2018;32:1169–74.

63. Slottosch I, Liakopoulos O, Kuhn E, Deppe A-C, Scherner M, Sertic F, et al. Effects of levosimendan on endothelial function and hemodynamics during weaning from veno-arterial extracorporeal life support. J Cardiothorac Vasc Anesth. 2016;30:1449–53.

64. Saxena P, Neal J, Joyce LD, Greason KL, Schaff HV, Guru P, et al. Extracorporeal membrane oxygenation support in postcardiotomy elderly patients: the Mayo Clinic experience. Ann Thorac Surg. 2015;99:2053–60.

65. Shinn SH, Lee YT, Sung K, Min S, Kim WS, Park PW, et al. Efficacy of emergent percutaneous cardiopulmonary support in cardiac or respiratory failure: fight or flight? Interact Cardiovasc Thorac Surg. 2009;9:269–73.

66. Slottosch I, Liakopoulos O, Kuhn E, Deppe A-C, Scherner M, Madershahian N, et al. Outcomes after peripheral extracorporeal membrane oxygenation therapy for postcardiotomy cardiogenic shock: a single-center experience. J Surg Res. 2013;181:e47–e55.

67. Smedira NG, Moazami N, Golding CM, McCarthy PM, Apperson-Hansen C, Blackstone EH, et al. Clinical experience with 202 adults receiving extracorporeal membrane oxygenation for cardiac failure: survival at five years. J Thorac Cardiovasc Surg. 2001;122:92–102.

68. Takayama H, Landes E, Truby L, Fujita K, Kirtane AJ, Mongero L, et al. Feasibility of smaller arterial cannulas in venoarterial extracorporeal membrane oxygenation. J Thorac Cardiovasc Surg. 2015;149:1428–33.

69. Tarzia V, Bortolussi G, Bianco R, Buratto E, Bejko J, Carrozzini M, et al. Extracorporeal life support in cardiogenic shock: impact of acute versus chronic etiology on outcome. J Thorac Cardiovasc Surg. 2015;150:333–40.

70. Tsai T-Y, Tsai F-C, Fan P-C, Chang C-H, Lin C-Y, Chang W-W, et al. Application of the age, creatinine, and left ventricular ejection fraction score for patients on extracorporeal membrane oxygenation. Artif Organs. 2017;41:146–52.

71. van den Brink FS, Magan AD, Noordzij PG, Zivelonghi C, Agostoni P, Eefting FD, et al. Veno-arterial extracorporeal membrane oxygenation in addition to primary PCI in patients presenting with ST-elevation myocardial infarction. Heart J. 2018;26:76–84.

72. Wong JK, Melvin AL, Joshi DJ, Lee CY, Archibal JD, Angona RE, et al. Cannulation-related complications on veno-arterial extracorporeal membrane oxygenation: prevalence and effect on mortality. Artif Organs. 2017;41:827–34.

73. Wu M-Y, Lin P-J, Lee M-Y, Tsai F-C, Chu J-J, Chang Y-S, et al. Using extracorporeal life support to resuscitate adult postcardiotomy cardiogenic shock: treatment strategies and predictors of short-term and midterm survival. Resuscitation. 2010;81:1111–6.

74. Yeh T-C, Chang H-H, Ger L-P, Wang J-O, Kao S, Ho S-T. Clinical risk factors of extracorporeal membrane oxygenation support in older adults. PLoS ONE. 2018;13:e0195445.

75. Zhang R, Kofidis T, Kamiya H, Shrestha M, Tessmann R, Haverich A, et al. Creatine kinase isoenzyme MB relative index as predictor of mortality on extracorporeal membrane oxygenation support for postcardiotomy cardiogenic shock in adult patients. Eur J Cardiothorac Surg. 2006;30:617–20.

76. Zhao Y, Xing J, Du Z, Liu F, Jia M, Hou X. Extracorporeal cardiopulmonary resuscitation for adult patients who underwent post-cardiac surgery. Eur J Med Res. 2015;20:83.

77. Akin S, dos Reis Miranda D, Caliskan K, Soliman OI, Guven G, Struijs A, et al. Functional evaluation of sublingual microcirculation indicates successful weaning from VA-ECMO in cardiogenic shock. Crit Care. 2017;21:265.
oxygenation support after cardiac surgery. J Cardiothorac Vasc Anesth. 2010;24:946–51.
87. Giani M, Scaravilli V, Colombo SM, Confalonieri A, Leo R, Maggioni E, et al. Apnea test during brain death assessment in mechanically ventilated and ECMO patients. Intensive Care Med. 2016;42:72–81.
88. Hoefer J, Ulmer H, Kilo J, Margreiter R, Grimm M, Mair P, et al. Antithrombin III is associated with acute liver failure in patients with end-stage heart failure undergoing mechanical circulatory support. J Thorac Cardiovasc Surg. 2017;153:1374–82.
89. Iwashita Y, Yukimitsu M, Matsuduki M, Yamamoto A, Ishikura K, Imai H. Use of a fixed, body weight-unadjusted loading dose of unfractionated heparin for extracorporeal cardiopulmonary resuscitation. J Intensive Care. 2015;3:33.
90. Kimmoun A, Oulehri W, Sonneville R, Grisot P-H, Zogheib E, Amour J, et al. Prevalence and outcome of heparin-induced thrombocytopenia diagnosed under veno-arterial extracorporeal membrane oxygenation: a retrospective nationwide study. Intensive Care Med. 2018;44:1460–9.
91. Kuroki N, Abe D, Iwama T, Sugiyama K, Akashi A, Hamabe Y, et al. Prognostic effect of estimated glomerular filtration rate on survival in patients with cardiogenic shock or cardiac arrest undergoing percutaneous veno-arterial extracorporeal membrane oxygenation. J Cardiol. 2016;68:439–46.
92. Lee SH, Shin D-S, Kim JR, Kim H. Factors associated with mortality risk in critical care patients treated with veno-arterial extracorporeal membrane oxygenation. Heart Lung. 2017;46:37–42.
93. Li C-L, Wang H, Jia M, Ma N, Meng XU, Hou X-T. The early dynamic behavior of lactate is linked to mortality in postcardiotomy patients with extracorporeal membrane oxygenation support: a retrospective observational study. J Thorac Cardiovasc Surg. 2015;149:1445–50.
94. Lyu L, Yao G, Long C, Hei F, Ji B, et al. Incidence, risk factors, and outcomes of hyperbilirubinemia in adult cardiac patients supported by veno-arterial ECMO. Artif Organs. 2018;42:148–54.
95. Mazzefi MA, Sanchez PG, Herr D, Krause E, Evans CF, Rector R, et al. Outcomes of extracorporeal cardiopulmonary resuscitation for refractory cardiac arrest in adult cardiac surgery patients. J Thorac Cardiovasc Surg. 2016;152:1133–9.
96. Mohan B, Singh B, Gupta V, Ralhan S, Gupta D, Puri S, et al. Outcome of patients supported by extracorporeal membrane oxygenation for aluminum phosphide poisoning: an observational study. Indian Heart J. 2016;68:295–301.
97. Musial R, Moncznik P, Śmiałek P, Stoliński J, Sadowski J, Drwiła R. Veno-arterial extracorporeal membrane oxygenation for short-term mechanical circulation support in adults with cardiogenic shock: a single centre experience. Kardiol Pol. 2016;74:1477–84.
98. Narotsky DL, Mosca MS, Mochari-Greenberger H, Beck J, Liao M, Mongero L, et al. Short-term and longer-term survival after veno-arterial extracorporeal membrane oxygenation in an adult patient population: does older age matter? Perfusion. 2016;31:366–75.
99. Pozzebon S, Blandino Ortiz A, Franchi F, Cristallini S, Belliato M, Lheureux O, et al. Cerebral near-infrared spectroscopy in adult patients undergoing veno-arterial extracorporeal membrane oxygenation. Neurocrit Care. 2018;29:94–104.
100. Ranney DN, Benrashid E, Meza JM, Keenan JE, Bonadonna DK, Bartz R, et al. Central cannulation as a viable alternative to peripheral cannulation in extracorporeal membrane oxygenation. Semin Thorac Cardiovasc Surg. 2017;29:188–95.
101. Roth C, Schrutka L, Binder C, Kriechbaumer L, Heinz G, Lang IM, et al. Liver function predicts survival in patients undergoing extracorporeal membrane oxygenation following cardiovascular surgery. Crit Care. 2016;20:57.
102. Saeed D, Stosik H, Islamovic M, Albert A, Kamiya H, Maxhera B, et al. Femoro-femoral versus atrio-aortic extracorporeal membrane oxygenation: selecting the ideal cannulation technique. Artif Organs. 2014;38:549–55.
103. Schmidt M, Burrell A, Bailey M, Sheldrake J, Rycus PT, et al. Predicting survival after ECMO for refractory cardio- genic shock: the survival after veno-arterial-ECMO (SAVE)-score. Eur Heart J. 2015;36:2246–56.
104. Shin TG, Jo IJ, Sim MS, Song Y-B, Yang J-H, Hahn J-Y, et al. Two-year survival and neurological outcome of in-hospital cardiac arrest patients rescued by extracorporeal cardiopulmonary resuscitation. Int J Cardiol. 2013;168:3424–30.
105. Trenkalder T, Pellegrini C, Holzamer A, Rheude T, Riester J, Reinhard W, et al. Prophylactic ECMO during TAVI in patients with depressed left ventricular ejection fraction. Clin Res Cardiol. 2019;108:366–74.
106. Yeo HJ, Kim HJ, Jang JH, Kang LH, Cho WH, Kim D. Vascular complications arising from hemostasis with manual compression following extracorporeal membrane oxygenation decannulation. J Card Surg. 2016;31:123–6.

SUPPORTING INFORMATION
Additional Supporting Information may be found online in the Supporting Information section.

How to cite this article: Makhoul M, Heuts S, Mansouri A, Taccone FS, Obeid B, Mirko B, et al. Understanding the “extracorporeal membrane oxygenation gap” in veno-arterial configuration for adult patients: Timing and causes of death. Artif. Organs. 2021;00:1–13. https://doi.org/10.1111/aor.14006