Management of residual penile curvature after penile prosthesis placement

Denis V Krakhotkin¹, David J Ralph², Gideon A Blecher³,⁴, Volodymyr A Chernylovskyi⁵, Francesco Greco⁶, Evgeny E Bakurov⁷, Ruslan A Bugaev¹

Residual penile curvature is a common situation following the implantation of a penile prosthesis in patients with Peyronie’s disease. Currently, there is a variety of options for the correction of residual curvature, including penile modeling, plication techniques, as well as tunical incision/excision with or without grafting. A literature search of PubMed and Medline databases was conducted from 1964 until 2020, using search terms for all articles in the English language. In this article, we provide a review of the techniques and the outcomes, according to the published literature.

Asian Journal of Andrology (2021) 23, 129–134; doi: 10.4103/aja.aja_62_20; published online: 23 October 2020

Keywords: grafting; modeling; penile curvature; penile implant; penile prosthesis; Peyronie’s disease; tunical plication

INTRODUCTION

Residual curvature of the penis is a well-known phenomenon after implantation of a penile prosthesis.¹-² This may occur in the preexisting context of Peyronie’s disease (PD) or following other causes of end-stage erectile dysfunction, such as after radical prostatectomy.³ While it may not be anticipated that there exists a penile curvature in the latter situation, residual curvatures may be so significant and they prevent penetrative intercourse and thus may require treatment at the time of the inflatable penile prosthesis (IPP) or semirigid penile prosthesis insertion.⁴ While some mild curvatures may not require any correction, options for more severe curvatures range from modeling, then plication, to grafting. In this article, we review different available management options for residual penile curvature after penile prosthesis placement.

A literature review was performed with PubMed and Medline, for all articles written in the English language, from 1964 to 2020. The search terms incorporated were PD, residual penile curvature, penile prosthesis, penile modeling, incision/excision with grafting, tunical plication, and sliding technique.

It is a common finding for surgeons to note penile curvature during the insertion of penile implants. Curvature deformities may become apparent in the context of penile prosthesis implantation primarily due to PD or may appear somewhat de novo.⁵

PD is a chronic inflammatory disease characterized by excessive accumulation of collagen fibers and other extracellular matrix (ECM) components within the tunica albuginea (TA) of the corpora cavernosa.⁶ The prevalence of PD ranges from 0.4% to 20%, mainly in men aged between 40 years and 70 years.⁷ PD in the chronic phase frequently results in erectile dysfunction (ED), occurring in from 22% to 37.5% of cases.⁸ The cause of ED in this context may be related to several factors including infiltration of the plaque into the neurovascular bundle,⁹ as well as veno-occlusive dysfunction from corporal scarring.¹⁰ However, it is not only the initial disease process that causes ED. Treatments such as intracavernosal injections are well known to cause fibrosis, with possible subsequent curvature in some men.¹¹ Curvature correction surgeries such as tunical plication or lengthening/grafting techniques may themselves lead to ED.¹² Radical prostatectomy has also been associated with the development of penile curvature, possibly due to cavernosal denervation with subsequent fibrotic changes.¹³⁻¹⁴

Preoperatively, surgeons should be prepared for the likelihood of a curvature. This may be obtained either from the patient history or from an artificial erection test. While many surgeons may not measure penile dimensions perioperatively,¹⁵ it is the authors’ opinion that performing this is vital to plan the appropriate surgery for the individual patient and manage their expectations. The penile dimensions (either stretched or erect length) should be measured and note taken of any complexity. Mild curvatures may sometimes not require any treatment, as the implant will self-correct subtle deformities over time.¹⁶ However, when there are curvatures exceeding 45° or 60°, the requirement for correction increases up to 75%–100%.¹⁷⁻¹⁸ The surgeon must also have an understanding of the various options to correct a curvature in this setting.

MODELING MANEUVER OVER A PENILE PROSTHESIS

Modeling is a well-described maneuver for the correction of residual curvature after penile prosthesis placement.¹⁹ This technique involves the following steps: (1) full inflation of the device; (2) clamping of the exit tubing of the device for protection of the pump; (3) steady forceful...
bending of the penile shaft in the opposite direction of curvature for 90 s, this may result in a partial or complete rupture of the plaque; and (4) compression of corporotomy sites for the prevention of cylinder blowout during bending. Successful modeling is defined as an angle of <10°–20°. Modeling may need to be repeated until adequate straightening results.22,31,32 This method of straightening was originally described by Wilson and Delk in 1994.23 In his series of 138 patients, he demonstrated success in 118 patients (86%). Eleven patients (8%) required tunical relaxing incisions. Further publications have revealed adequate penile straightening and satisfaction with sexual intercourse ranging from 54%–100% to 88%–100% of cases, respectively (Table 1).25–29 Despite the high success rate, it should be borne in mind that this maneuver can lead to complications such as urethral perforation or laceration, which occurs in 2.5%–4% of cases.30 If this occurs, the offending cylinder should be removed and a urethral catheter was placed with delayed replacement of the ipsilateral cylinder after an adequate period of urethral healing, usually 4 weeks–6 weeks. Others have proposed leaving both cylinders in place and simply repairing the urethra directly over a Foley catheter and diverting the urine with a suprapubic cystostomy for 4 weeks–8 weeks before the prosthesis is activated.31,32 It is the authors’ opinion that surgeons should have a high threshold to perform this maneuver as it is likely to increase the prosthesis infection rate.

The retrospective review of 79 men (11 of whom had PD with intraoperative modeling) showed that the clamping of the tubing is required during modeling. Of the PD cohort, 3 of 11 (27%) patients had device failure, while 3 of 68 (4%) of the non-PD group exhibited device malfunction at an overall mean of 4.3 months.33 The exact nature of the mechanical failures was not reported. Another study comparing AMS 700 CX® versus Coloplast Titan® showed no difference in mechanical failure following modeling.34 There is limited and conflicting evidence when comparing semirigid and IPP devices. A prospective, nonrandomized cohort of patients who underwent either IPP (n = 30) or semirigid implants (n = 136) found no significant difference in the immediate end-of-procedure curvature correction. Satisfaction rates were similar with Likert satisfaction scores of 4.3 and 4.4, respectively.35 A retrospective review of 209 PD patients who underwent penile implant surgery concluded that modeling was more often successful (defined as curvature <10°–20°) with inflatable (84%) versus semirigid (54%) implants.36

PLICATION TECHNIQUES

Tunical plication is used in patients with residual curvature after implantation of a penile prosthesis after a failed attempt of modeling. It is possible when the patient has a persistent curve of 30°–60°. Ideally, these patients should not have a short penis nor complexities such as severe waisting. The principle of penile plication is shortening of the longer convex side. The tunica can be left untouched and sutures simply placed to plicate, or tunical excision or incision can occur, with subsequent closure of the defects.37 Several modifications of this concept have been published, including the original Nesbit’s procedure,38 Essed-Schroeder technique,39 16/24-dot,40 Heineke-Mikulicz-based repair (Yachia technique),41 as well as the Rolle et al.42 adaptation. The surgeon must consider the following nuances when correcting residual curvature over a penile prosthesis: incision, location of correction, and protection of the implant. If a penoscrotal incision is used, it is common to obtain good access and retraction to visualize most of the penile shaft tunica, if required. This obviously requires some further dissection. During an infrapubic approach, a second incision, either ventral, penoscrotal, or degloving, may need to occur to access the point of maximal curvature, depending on the location and direction of the curve. Once the site of curvature is identified by inflating the implant, the device should be deflated and pushed proximally or removed from the corpora.2,6,12,16,30,31,36–47 While it is possible to place sutures with an implant *in situ*, the possibility of puncture with subsequent mechanical failure exists.

This problem will clearly not occur when using a semirigid device. Plication sutures can then be placed opposite the angle of maximal curvature using the near-far-far-near technique.

One can consider replacing and inflating the IPP once the sutures are in place, but not tied. The sutures can then be tied and adjusted to optimize the degree of straightening. Outcomes of plication techniques after insertion of the penile prosthesis are summarized in Table 2.

TUNICAL SCRATCH TECHNIQUE FOR CORRECTING RESIDUAL PENILE CURVATURE

Perito and Wilson48 first described the scratch technique in 2013 as an effective complementary maneuver to modeling, performed

Table 1: Outcomes of manual modeling after insertion of penile prosthesis

Reference	Year of publication	Patients (n)	Penile prosthesis	Outcome (%)
Wilson et al.22	1994	138	AMS 700 CX	Penile straightening (86)
Montague et al.23	1996	34	AMS 700 CX	Penile straightening (100)
Carson24	2000	38	AMS 700 Ultrex	Penile straightening (73.6)
Usta et al.25	2003	31	AMS 700 CX	Penile straightening (93)
Chaudhary et al.2	2005	28	AMS 700 CX	Penile straightening (93.5)
Kadioglu et al.27	2008	60	NA	Penile straightening (88)
Levine et al.26	2010	90	AMS 700 CX	Penile straightening (79)
Garaffa et al.36	2011	129	AMS 700 CX, Titan	Penile straightening (84)
Chung et al.28	2013	138	AMS 600 Genesis	Penile straightening (54)
Yafi et al.29	2016	19	AMS 700 CX, Titan	Penile straightening (92)

NA: not available
The sliding technique was first developed by Rolle et al. in 2012. This approach includes ventrodorsal incisions of the tunica albuginea, penile implant placement, and double dorsal-ventral patch grafting. Its aim is to address simultaneously ED, curvature, and length correction. In the initial series of three patients, none suffered major intraoperative or postoperative complications and resumed sexual activity. In a further cohort of 28 men, the same author published their results of IPP and semirigid devices using porcine small intestinal submucosa and acellular porcine dermal matrix and TachoSil, respectively. There were no differences regarding penile lengthening or curvature correction between the groups. However, the operative time was less in the semirigid prosthesis group. Egydio described a modification of the procedure, using Buck’s fascia alone for closure, without the need to graft material. The same author more recently describes the multiple-slit technique, whereby multiple small tunical defects replace one large tunical incision. These techniques have been shown to be effective in correcting penis length and girth in other studies. The sliding techniques have demonstrated high rates of penile straightening ranging from 80% to 100% after insertion of the penile prosthesis. A summary is shown in Table 4.

COLLAGENASE CLOSTRIDIUM HISTOLYTICUM (CCH)

CCH is an enzyme, produced by the bacterium Clostridium histolyticum, that hydrolyses collagen, and was first used in 1982 for the treatment of PD. While CCH is ideally used as a sole treatment, when failure occurs, some men may choose to proceed with curvature correction surgery. There is limited literature available in this context. De Lay et al. reported on ten patients who underwent curvature corrective surgery, three of whom underwent IPP, following a mean of 5 months after CCH injections. Increased surgical difficulty was encountered in three patients, all of whom had CCH < 6 months before curvature surgery. The authors therefore also suggest that curvature correction surgery should be deferred by at least six months following the last injection of CCH. Despite the small sample size, they concluded that surgery following CCH was safe and feasible. There are no studies investigating the use of CCH following penile implants. While Fischer et al. reported an animal study whereby CCH reduced fibrotic changes around a silicon implant, one would imagine that the financial implications as well as the risk of damage to IPP cylinders would prevent many surgeons from choosing such an option.
Table 3: Outcomes of grafting techniques after insertion of penile prosthesis

Reference	Year of publication	Patients (n)	Penile prosthesis	Graft	Outcome (%)
Austoni et al.76	2005	80	Soft, axially rigid penile implants	Saphenous vein graft	Penile straightening (100)
Pathak et al.79	2005	15	IPP	Autologous rectus	Penile straightening (100)
Kadioglu et al.27	2008	20	IPP	Autologous rectus	Penile straightening (100)
Sansalone et al.75	2012	20	AMS 700 CX	InteXen	Penile straightening (90)
Silvani et al.77	2012	58	7F Virilis I, 7F Virilis II	Bovine pericardium graft	Penile straightening (100)
Zucchi et al.78	2013	60	7F Virilis prostheses	Bovine pericardium graft	Penile straightening (100)
Hatzichristodoulou4	2018	15	Coloplast Titan	TachoSil	Penile straightening (80)
Fernández-Pascual et al.61	2019	43	Semi-rigid MPP Genesis	TachoSil	Penile straightening (82.1)
Farrell et al.62	2019	18	Coloplast Titan	Hemostatic patches	Penile straightening (83.3)
				(Evarrest, Tachosil, Nu-Knit)	Satisfaction with sex (94.4)
				Coloplast, AMS 700 CX	Satisfaction with sex (94.9)
				AMS 700LGX IPP	
				Coloplast Titan	Penile straightening (86.7)
				InteXen	Satisfaction with sex (93.3)

Table 4: Outcomes of sliding techniques for correction residual penile curvature during insertion penile prosthesis

Reference	Year of publication	Patients (n)	Penile prosthesis	Outcome (%)
Rolle et al.66	2012	3	MPP, IPP	Penile straightening (100)
Egydio et al.69	2015	77	Promedon Tube	Penile straightening (100)
			Coloplast Genesis	Satisfaction with sex (100)
			Coloplast Titan	Penile straightening (100)
			AMS 700 CX	Satisfaction with sex (96)
Rolle et al.67	2016	28	Coloplast Genesis	Penile straightening (100)
			AMS 700 CX	Satisfaction with sex (96)
			Coloplast Titan	
			AMS Spectra	
Fang et al.71	2018	5	Coloplast Titan	Penile straightening (80)
Egydio et al.70	2018	83	Coloplast Titan	Penile straightening (100)
Clavell-Hernández et al.72	2018	12	Coloplast Titan	Penile straightening (100)
			Coloplast Genesis	

Table 5: Summary of techniques used for correction of residual penile curvature

Adjunct Maneuver	Residual Curvature indication	Comment
Nil	Minor: <10°–20°	Minor curves unlikely to be problematic and may straighten over time
Modeling	20°–60°	Small risk of urethral injury
Scratch technique	20°–60°	Can be performed with modeling
Plication	20°–60°, after failed modeling	Will lead to shortened length
Tunical incision		Can be used for waist or hourglass deformity, with or without grafting
Sliding technique	>60°	For severe penile shortening. Higher risk of tissue ischemia

TREATMENT ALGORITHM

Despite a variety of treatment options, there are no specific guidelines thus far for the management of residual curvature in penile prosthesis surgery. That said, we propose a fairly logical algorithm, which assumes that curvatures <20° will either not pose a functional issue or will self-correct over time. Modeling or scratch techniques should be employed for residual curvatures between 20° and 60°. Tunical plication should be performed for residual curvatures between 20° and 60° after failed
modeling/scratch. Tunical incisions with or without grafting is reserved for curvature >60°, complex changes such as waisting or hourglass deformities and in case when penile length is a significant concern. Summary and comments of techniques used for correction of residual penile curvature are shown in Table 5.

CONCLUSIONS
Following penile implant, a residual curvature is a common finding. While conservative options exist, the surgeon should be aware of the variety of treatment options at their disposal, with an understanding of their place and disadvantages.

AUTHOR CONTRIBUTIONS
DVK, RAB, and VAC performed literature searching and data collection. DVK prepared and designed the manuscript. RJD and GAB contributed to critically revising the manuscript. FG and EEB reviewed and edited the manuscript. All authors read and approved the final manuscript.

COMPETING INTERESTS
All authors declared no competing interests.

REFERENCES
1. Krishnappa P, Fernandez-Pascual E, Carballido J, Moncada I, Lledo-Garcia E, et al. Surgical management of Peyronie's disease with co-existent erectile dysfunction. Sex Med 2019; 7: 361–70.
2. Chaudhary M, Sheikh N, Asterling S, Ahmad I, Greene D. Peyronie's disease with erectile dysfunction: penile modeling over inflatable penis prosthesis. Urology 2005; 65: 760–4.
3. Corino L, Massenio P, Di Fino G, Lucarelli G, Mancini V, et al. Long-term results of combined tunica albuginea plication and penile prosthesis implantation for severe penile curvature and erectile dysfunction. Case Rep Urol 2014; 2014: 1–3.
4. Hatzichristodoulou G. The PICS technique: a novel approach for residual curvature correction during penile prosthesis implantation in patients with severe Peyronie's disease using the collagen fleece TachoSil. J Sex Med 2018; 15: 416–21.
5. Trost L, Wanzek P, Bailey G. A practical overview of considerations for penile prosthesis placement. Nat Rev Urol 2015; 13: 33–46.
6. Chung E, Ralph D, Kagioglu A, Garaffa G, Shamsodini A, et al. Evidence-based management guidelines on Peyronie's disease. J Sex Med 2016; 13: 905–23.
7. Carson CC, Levine LA. Outcomes of surgical treatment of Peyronie’s disease. BJU Int 2014; 113: 704–13.
8. Paulis G, Romano G, Paulis A. Prevalence, psychological impact, and risk factors of erectile dysfunction in patients with Peyronie’s disease: a retrospective analysis of 309 cases. Res Rep Urol 2016; 8: 95–103.
9. Mulhall JP, Schiff J, Gruhnig P. An analysis of the natural history of Peyronie's disease. J Urol 2006; 175: 2115–8.
10. Burri A, Porst H. The relationship between penile deformity, age, psychological bother, and erectile dysfunction in a sample of men with Peyronie's disease (PD). Int J Impot Res 2013; 25: 100–6.
11. Chung F, De Young L, Brock GB. Penile duplex ultrasonography in men with Peyronie’s disease: is it veno-occlusive dysfunction or poor cavernosal arterial inflow that contributes to erectile dysfunction? J Sex Med 2011; 8: 3446–51.
12. Chew KK, Stuckey BG, Earle CM, DhalIWAL SK, Keogh EJ. Penile fibrosis in intracavernosal prostaglandin E1 injection therapy for erectile dysfunction. Int J Impot Res 1997; 9: 225–30.
13. Flores S, Choi J, Alex B, Mulhall JP. Erectile dysfunction after plaque incision and grafting: short-term assessment of incidence and predictors. J Sex Med 2011; 8: 2031–7.
14. Tal R, Heck M, Teloken P, Siegrist T, Nelson CJ, et al. Peyronie's disease following radical prostatectomy: incidence and predictors. J Sex Med 2010; 7: 1254–61.
15. Ciancio S, Kim E. Penile fibrotic changes after radical retroperitoneal prostatectomy. BJU Int 2000; 85: 101–6.
16. Blecher GA, Vukina J, Ralph DJ. Penile dimensions: what are surgeons measuring? Int J Impot Res 2009; 21: 117–22.
17. Anaisse J, Yafi F. A review of surgical strategies for penile prosthesis implantation in patients with Peyronie's disease. Transl Androl Urol 2016; 5: 342–50.
18. Yafi FA, Sangkum P, McCaslin IR, Hellstrom WJ. Strategies for penile prosthesis placement in Peyronie's disease and corporal fibrosis. Curr Urol Rep 2015; 16: 21.
19. Mulhall J, Anderson M, Parker M. A surgical algorithm for men with combined Peyronie's disease and erectile dysfunction: functional and satisfaction outcomes. J Sex Med 2005; 2: 132–8.
Residual penile curvature after PP

DV Krakhotkin et al

64 Natali A, Olianas R, Fisch M. Penile implantation in Europe: successes and complications with 253 implants in Italy and Germany. J Sex Med 2008; 5: 1503–12.

54 Wilson SK, Mora-Estavés C, Egydio P, Ralph D, Habous M, et al. Glans necrosis following penile prosthesis implantation: prevention and treatment suggestions. Urology 2017; 107: 144–8.

2016; 117: 814–20.

2018; 15: 7799–801.

50 Antonini G, De Berardinis E, Del Giudice F, Busetto GM, Lauretti S, et al. Inflatable penile prosthesis placement, scratch technique and postoperative vacuum therapy as a combined approach to definitive treatment of Peyronie’s disease. J Urol 2018; 200: 642–7.

51 Garaffa G, Kuehhas FE, De Luca F, Ralph DJ. Long-term results of reconstructive surgery for Peyronie’s disease. Sex Med Rev 2015; 3: 113–21.

56 Lyons MD, Carson CC 3rd, Coward RM. Special considerations for placement of an inflatable penile prosthesis for the patient with Peyronie’s disease: techniques and patient preference. Med Devices (Auckl) 2015; 8: 331–40.

55 Segal RL, Cabrini MR, Bivalacqua TJ, Burnett AL. Penile straightening maneuvers employed during penile prosthesis surgery: technical options and outcomes. Int J Impot Res 2014; 26: 182–5.

52 Rigaud G, Berger RE. Corrective procedures for penile shortening due to Peyronie’s disease. J Urol 1995; 153: 368–70.

53 Salsalone S, Garaffa G, Djordjevic ML, Kojovic V. Penile prosthesis implantation and tunica albuginea incision reconstruction during placement of penile implant. BJU Int 2013; 111: 213–9.

54 Garaffa G, Kuehhas FE. The multiple-slit technique (MUST) for penile length and girth restoration. J Sex Med 2018; 15: 261–9.

55 Lyons MD, Carson CC 3rd, Coward RM. Special considerations for placement of an inflatable penile prosthesis for the patient with Peyronie’s disease: techniques and patient preference. Med Devices (Auckl) 2015; 8: 331–40.

56 Lyons MD, Carson CC 3rd, Coward RM. Special considerations for placement of an inflatable penile prosthesis for the patient with Peyronie’s disease: techniques and patient preference. Med Devices (Auckl) 2015; 8: 331–40.

57 Silvani M, Pecoraro S, Zucchi A. Corporoplasty for indurative penis plastica with soft axial tutors, single relaxing albuginial incision and safenous grafting. A 3-year follow-up. Arch Ital Urol Androl 2012; 84: B4–B8.

58 Zucchi A, Silvani M, Pecoraro S. Corporoplasty with small soft axial prostheses (VIRILIS®) and bovine pericardial graft (HYDRIX®) in Peyronie’s disease. Asian J Androl 2013; 15: 275–9.

59 Pathak AS, Chang JH, Parekh AR, Aboseif SR. Use of rectus fascia graft for corporeal reconstruction during placement of penile implant. Urology 2005; 65: 1198–201.

60 Djordjevic ML, Kovic V. Penile prosthesis implantation and tunica albuginea incision without grafting in the treatment of Peyronie’s disease with erectile dysfunction. Asian J Androl 2013; 15: 391–4.

61 Fernández-Pascual E, González-García FJ, Rodríguez-Monsalve M, Turo J, Martínez-Ballestros C, et al. Surgical technique for complex cases of Peyronie’s disease with implantation of penile prosthesis, multiple corporeal incisions, and grafting with collagen fleece. J Sex Med 2019; 16: 323–32.

62 Farrell MR, Abdelsayed GA, Ziegelmann MJ, Levine LA. A comparison of hemostatic patches versus pericardium allograft for the treatment of complex Peyronie’s disease with penile prosthesis and plaque incision. Urology 2019; 129: 113–8.

63 Falcone M, Preto M, Ceruti C, Timpano M, Garaffa G, et al. A comparative study between 2 different grafts used as patches after plaque incision and inflatable penile prosthesis implantation for end-stage Peyronie’s disease. J Sex Med 2018; 15: 848–52.

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

©The Author(s)(2020)