This paper considers a technique for modernizing the power plant (PP) of a regional aircraft. The modernization is based on the injection of water or a water-methanol mixture into the compressor or combustion chamber of a turboprop engine (TPE). An algorithm has been developed for the thermodynamic calculation of TPE parameters, taking into consideration the injected mixture; the mathematical model (MM) has been improved. Methodical studies of the operability and range of application of the improved MM were carried out. The results of mathematical modeling were validated. For verification, the AI-450M turboshaft engine produced by GP Ivchenko-Progress (Ukraine) was used as an object of research. Based on the improved MM, a software module has been developed to study the performance characteristics of a regional aircraft with a TPE. The influence of water injection and a water-methanol mixture on the TPE operating process and the operational characteristics of a regional passenger aircraft has been studied.

The proposed measures could be implemented in existing TPEs. This would allow the operation of aircraft without significant modernization of the airport infrastructure. For TPE, the injection of water and a water-methanol mixture is an alternative way of boosting in order to temporarily improve performance. A given modernization technique could improve the TPE power up to ~10 %, as well as reduce the amount of harmful emissions.

The results obtained showed a satisfactory convergence of estimated and experimental data. The error of the results under the accepted assumptions does not exceed 3 %. The calculation results demonstrate the advantages of injection at the take-off stage of the aircraft to reduce the take-off distance (up to 45 % in hot conditions TAMB=+30 °C) and reduce the time of climbing the echelon (~10 %).

Keywords: turboprop engine, boosting, performance characteristics, water, mathematical model, harmful emissions.
In this study, with their high strength-to-weight ratio, adaptability, and lack of corrosion, composite materials are widely used in aircraft construction and can be considered an acceptable metal substitute by all parties involved. Static load tests have been performed under identical conditions and stresses, but the layer sequence was changed. The Ansys workbench ACP-pre is utilized to analyze the data. Various deformations were found as a result of this. There are values of 14.265 and 0.1335 for the smallest Z-direction deformation and for the overall strain in the composite 3 examples. Boundary conditions have been confirmed with 1,500 N as a resultant force with the static condition. The simulation results have been analyzed as a static condition. Four materials have been employed in different order to be investigated and these materials are Sisal, Pineapple, Jute, and Kenaf. The numerical results have been undertaken using the static structure of Ansys 16.1 Version tool. Geometry has been modeled and meshed using Ansys workbench. The model has been verified using convergence test. As the output, total deformation and von Mises stresses were investigated and explained accordingly. Numerical results stated that the maximum deformation due applied load was at the Z-axis. The maximum total deformation value is 1.254 mm and the minimum is 2.5 mm. Furthermore, von Mises stresses of the entire body have been calculated. The numerical results have shown the maximum result due to 1,500 N is 1.1 mPa. Eventually, the main aim has been achieved by employing total deformation and von Mises stresses accordingly.

Keywords: natural fiber, natural composite, finite element method, static structure, cantilever.

References

1. Alsubari, S., Zuhri, M. Y. M., Sapuan, S. M., Ishak, M. R., Ilyas, R. A., Asyraf, M. R. M. (2021). Potential of Natural Fiber Reinforced Polymer Composites in Sandwich Structures: A Review on Its Mechanical Properties. Polymers, 13 (3), 423. doi: https://doi.org/10.3390/polym13030423
2. Birman, V., Kardomateas, G. A. (2018). Review of current trends in research and applications of sandwich structures. Composites Part B: Engineering, 142, 221–240. doi: https://doi.org/10.1016/j.compositesb.2018.01.027
3. Tran, P., Peng, C. (2020). Triply periodic minimal surfaces sandwich structures subjected to shock impact. Journal of Sandwich Structures & Materials, 23 (6), 2146–2175. doi: https://doi.org/10.1108/1099636209055331
4. Sugiyama, K., Matsuzaki, R., Ueda, M., Todoroki, A., Hirano, Y. (2018). 3D printing of composite sandwich structures using continuous carbon fiber and fiber tension. Composites Part A: Applied Science and Manufacturing, 113, 114–121. doi: https://doi.org/10.1016/j.compositesa.2018.07.029
5. Sergi, C., Sarasini, F., Russo, P., Vitiello, L., Barbero, E., Sanchi-Saez, S., Tirilli, J. (2021). Effect of temperature on the low-velocity impact response of environmentally friendly cork sandwich structures. Journal of Sandwich Structures & Materials, 24 (2), 1099–1121. doi: https://doi.org/10.1109/10996363211135421
6. Akhavan, H., Ghadir, M., Zajkani, A. (2019). A new model for the cantilever MEMS actuator in magnetorheological elastomer cored sandwich form considering the fringing field and Casimir effects. Mechanical Systems and Signal Processing, 121, 551–561. doi: https://doi.org/10.1016/j.ymssp.2018.11.046
7. Sharaf, H. K., Ishak, M. R., Sapuan, S. M., Yidris, N. (2020). Conceptual design of the cross-arm for the application in the transmission towers by using TRIZ-morphological chart-ANP methods. Journal of Materials Research and Technology, 9 (4), 9182–9188. doi: https://doi.org/10.1016/j.jmrt.2020.05.129
8. Raheemah, S. H., Fadheel, K. I., Hassan, Q. H., Aned, A. M., Turki Al-Taje, A. A., Sharaf, H. K. (2021). Numerical Analysis of the Crack Inspections Using Hybrid Approach for the Application the Circular Cantilever Rods. Pertamika Journal of Science and Technology, 29 (2), doi: https://doi.org/10.47868/pjt.29.2.22
9. Sharaf, H. K., Salman, S., Abdulaterfe, M. H., Magiroz, R. R., Trotskii, V. I., Mahmoud, Z. H. et al. (2021). Role of initial stored energy on hydrogen microalloying of ZrCoAl(Nb) bulk metallic glasses. Applied Physics A, 127 (1). doi: https://doi.org/10.1007/s00339-020-04191-0
10. Hamaded, N., Bouaziz, S., Bentati, H., Haddar, M., El Guerjouma, R., Yaakoubi, N. (2021). Numerical validation of experimental results for the dynamic behavior of sandwich structures.2021 18th International Multi-Conference on Systems, Signals & Devices (SSD). doi: https://doi.org/10.1109/ssd52085.2021.9429366
11. John, M., Schjual, R., Schlimper, R. (2018). Fatigue testing of sandwich structures using the single cantilever beam test at constant energy release rates. 12th International Conference on Sandwich
When separating (cleaning) lightweight seed mixtures with the help of vibratory machines, there is an issue related to the harmful effect of air movement in the gaps between parallel working surfaces of vibratory machine units. This factor is particularly harmful to seed material, which is sensitive to air movement (some medicinal and vegetable crops). To address this issue, the design of vibratory machines is changed while their operational regimes are configured accordingly. This requires many full-scale experiments and (or) time-consuming personal computer-based simulation of the working processes of the vibrational motion of such seed mixtures.

This paper proposes several regression models that make it possible to replace time-consuming numerical modeling with simple analytical expressions (regression equations). These equations are used for a quantitative assessment of the degree of influence of aerodynamic factors on the aerodynamic characteristics of three-dimensional figures of irregular shape. Visnyk Kharkivskoho natsionalnoho tekhnychnoho universytetu silskoho hospodarstva imeni Petra Vasylenka, 156, 459–464. doi.org/10.15587/1729-4061.2021.232508

Abstract and References. Engineering technological systems...
It is established that the maximum deviation of the value of fluctuation of vacuummetric pressure ΔP between the experimental and theoretical data within a predefined range of factors is 0.81 kPa. The correlation coefficient is 0.92, which indicates the adequacy of the constructed models. Owing to this, the task of the rational choice of milking equipment is resolved.

Keywords: milking machine, vacuum system, milk-air mixture, milk discharge speed, vacuummetric pressure.

References

1. Ivanova, L. (2017). Milk succession: current status and problems of solution. Agrosvit, 22, 23–27. Available at: http://www.agrosvit.info/index.php?op=1&z=2503&i=3
2. Pozzuolo, A., Cillo, D., Marinello, F., Sartori, L. (2017). Estimating efficiency in automatic milking systems. doi: https://doi.org/10.22616/erdev2017.16.n148
3. Palyi, A., Nanka, A., Marchenko, M., Bredykhin, V., Palyi, A., Negrebata, J. et. al. (2020). Establishing changes in the technical parameters of nipple rubber for milking machines and their impact on operational characteristics. Eastern-European Journal of Enterprise Technologies, 2 (1 (104)), 78–87. doi: https://doi.org/10.15587/1729-4061.2020.200635
4. Tremblay, M., Hess, J. P., Christensen, B. M., McIntyre, K. K., Smink, B., van der Kamp, A. J. et. al. (2016). Factors associated with increased milk production for automatic milking systems. Journal of Dairy Science, 99 (5), 3824–3837. doi: https://doi.org/10.3168/jds.2015-10152
5. Paliy, A. P., Handola, Yu. M., Shevchenko, I. O., Stotskyi, A. O., Stotskyi, O. G., Sereda, A. I. et. al. (2020). Assessment of cow lactation and milk parameters when applying various milking equipment. Ukrainian Journal of Ecology, 10 (4), 195–201. Available at: https://www. ujecology.com/articles/assessment-of-cow-lactation-and-milk-parameters-when-applying-various-milking-equipment.pdf
6. Palyi, A., Aliiev, E., Nanka, A., Bogomolov, O., Bredixin, V., Palyi, A. et. al. (2021). Identifying changes in the technical parameters of milking rubber under industrial conditions to elucidate their effect on the milking process. Eastern-European Journal of Enterprise Technologies, 3 (1 (111)), 21–29. doi: https://doi.org/10.15587/1729-4061.2021.231917
7. Achkevych, O. M., Achkevych, O. I. (2019). Vstanovlenia parametriv systemy transportuvannia moloka vid kolektora do molokoprovodu. Visnyk KNTUSH, 2, 28–37.
8. Galicheva, M. S., Dokhuzhev, Yu. G., Golovanov', V. T. (2009). Puti modernizatsii sochnikov doil'nogo aparatura s verkhnim otvodom moloka iz milochnogo konferentsiyi. Hlevakha – Kyiv, 106–108.
9. Ulyanov, V. M., Khrpina, V. A., Nabatchikov, A. V., Panferov, N. S., Khrpina, A. A. (2017). Oboznavanie konstruktivno-rezhimnykh parametrov doil’nogo apparata s verkhnim otvodom moloka iz kolektora. Vestnik Ruzanskogo gosudarstvennogo agrotehnologicheskogo universiteta im. P. A. Kostycheva, 3 (35), 106–113.
10. Vukolov, V. I., Boltianska, N. I. (2020). Suchazni piklkhody do doinnya vysokoproduktivnykh koriv. Tekhnichniy prohres u tvarynnytstvi ta kormovoyrobnistvi: materialy IX Mzhradnordnoi naukovo-tekhniichnoi konferentsiyi. Hlevakha – Kyiv, 106–108.
11. Dmytriv, V., Dmytriv, I., Lavryk, Y., Horodeckyy, I. (2018). Models of adaptation of the milking machines systems. BIO Web of Conferences, 10, 02004. doi: https://doi.org/10.1051/bioconf/20181002004
12. Shevchenko, I. A., Alexey, E. B. (2012). Pidvyshchennia yakosti vykonannia tekhnolohichnogo protsesu maslychnoho doinnya. Visnyk ahrarnoho nauky, 6, 57–59.
13. Lnyynyk, Yu. O., Pavlenko, S. I., Hrytsun, A. V. (2014). Doslidzhennia dynamikyi zmin kolyvky vacuummetrychnogo tysi v avtomatyzo-vanyi doinnyi ustanovtsi. Zb. nauk. prats Vinnytskoho natsionalnoho ahrarnoho universytetu, 1 (84), 104–108.
Clove essential oil (EO) has a high eugenol content. Fresh cloves need to go through a drying and distillation process to produce essential oils. However, sun drying cannot be done optimally during the rainy season. Therefore, some farmers (SMEs) use the oven drying method. The initial study found that the eugenol content after the drying process decreased. Therefore, this study aimed to maintain high eugenol content in dry cloves. After identifying the problem, it is solved using the TRIZ method, and research is continued for a new oven prototype. Three issues are found in drying cloves based on field surveys and literature studies. First, the clove moisture content is not uniform after the drying process. The second problem was that the clove was too dry after the drying process and the eugenol content decreased. And the third problem is the oven that has been used so far is still fuel-wasting. The literature studies also found several parameters to be a reference in designing a new oven: the number of trays in the oven, clove thickness, the space between the trays in the oven, and the steam gap on the tray. In addition, the appropriate oven coating material can also be determined (plywood, galvanized plate, and air). In the TRIZ method, several solutions were found to design a new oven. Eight things have been changed from the existing drying oven, including the number of trays in the oven, a steam gap in each tray, the size of the mesh used for the tray base, material for the drying oven, the thickness of the cloves on the tray, the temperature used in the drying process, installation of a thermostat to control the temperature in the oven, separate combustion chamber from the tray space (indirect heating), and without using a blower.

Keywords: clove, essential oil, eugenol content, SMEs, oven drying, TRIZ method.

References

1. Sun, Y., Guo, X., Xu, B., Wang, C., Wang, Y., Jiao, Y. et al. (2019). Design and test of a novel wheat drying oven based on the real-time utilization of diesel engine waste heat.Cogent Engineering, 6 (1). doi: https://doi.org/10.1080/23311916.2019.1673118
2. Ajala, A. S., Ngoddy, P. O., Ugajide, J. O. (1970). Milking performance evaluation and factors affecting milking claw performance on commercial automatic milking farms. Animal Science Journal, 88 (8), 1134–1140. doi: https://doi.org/10.15587/1729-4061.2021.224927
oil composition of clove (Syzygium aromaticum) from Toli-Toli. AIP Conference Proceedings. doi: https://doi.org/10.1063/1.4991188

10. Ghasemi Pirbalouti, A., Salehi, S., Craker, L. (2017). Effect of drying methods on qualitative and quantitative properties of essential oil from the aerial parts of coriander. Journal of Applied Research on Medicinal and Aromatic Plants, 4, 35–40. doi: https://doi.org/10.1016/j.jarmap.2016.07.006

11. Mansoor, M., Marian, N., AbhilWahab, N. I. (2017). Innovating problem solving for sustainable green roofs: Potential usage of TRIZ – Theory of inventive problem solving. Ecological Engineering, 99, 209–221. doi: https://doi.org/10.1016/j.ecoleng.2016.11.036

12. Emekli, I., Nebati, E. E. (2019). TRIZ Methodology and Applications. Procedia Computer Science, 158, 363–315. doi: https://doi.org/10.1016/j.procs.2019.09.056

13. Petrov, V. (2019). Review of TRIZ. TRIZ Theory of Inventive Problem Solving, 13–33. doi: https://doi.org/10.1007/978-3-030-04254-7_2

14. Russo, D., Schührer, M., Bersano, G. (2015). Supporting ECO-innovation in SMEs by TRIZ Eco-guidelines. Procedia Engineering, 131, 831–839. doi: https://doi.org/10.1016/j.proeng.2015.12.388

15. Irawan, B., Subagyo, S., Suyno, E. H. (2017). Numerical Solution and Scale Analysis Method of Nusselt Numbers for Vertical Flat Plate and Closed Cavity. International Review of Mechanical Engineering (IREME), 11 (12), 945. doi: https://doi.org/10.15866/ireme.v11i12.11881

16. Dewanti, B. S. D., Ismail, A. F., Yulian, E., Adesta, T. (2020). Alternative Drying Methods to Improve the Quality of Dried Cloves. Test Engineering and Management. TEST, 6928–6939. Available at: https://www.researchgate.net/publication/344827750_Algomation_of_Milling_on_a_CNC_Machine (p. 55–61)

Yuriy Petkovak
National Technical University of Ukraine
«Igor Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine
ORCID: https://orcid.org/0000-0002-0525-4769

Volodymyr Korenkov
National Technical University of Ukraine
«Igor Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine
ORCID: https://orcid.org/0000-0002-1911-9496

Artur Myhovych
National Technical University of Ukraine
«Igor Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine
ORCID: https://orcid.org/0000-0001-8687-8679

This paper reports a new technology for designing control programs for contour milling on CNC machines. The technology enables stabilization of the cutting process along the entire contour at the optimal level by controlling the feed, which ensures an increase in productivity when meeting the requirements for restrictions. Moreover, the effectiveness of using the technology improves with an increase in the complexity of the contour by changing the curvature of the surface. A mathematical model has been built for the interaction between the cutter and workpiece in the cutting zone when machining contours with variable curvature, which makes it possible to determine the main characteristic of the cutting process – the rate of cutting the allowance. The technology involves the use of a control program in G-codes designed in any CAM system. At the first stage, a shape-formation trajectory in the form of a two-dimensional digital array is derived from the program. At the second stage, the cuter workpiece engagement in the cutting area is modeled simulated while determining the main characteristic of the cutting process — an analog of the material removal rate. At the final stage, the simulation results are used to design a new control program, also in G-codes, with a new recorded law to control the feed, which enables the stabilization of the cutting process along the entire milling path. The software for the new technology has been developed, which automatically converts the preset control program in G-codes into a two-dimensional digital array, simulates the milling process, and designs a new control program in G-codes based on its results. The results of the experimental study into the milling of the preset contour using the developed simulation program showed an increase in productivity by 1.7 times compared to the original control program, designed in a conventional CAM system.

Keywords: contour milling, CNC machine, CAM-system, control program, G-codes.

References

1. Samariev, A. (2012). iMachining 3D Logicheskoe razvitie tekhnomologii. CADmaster, 2 (69). 52–58. Available at: https://www.cadmaster.ru/magazin/articles/cn_69_10.html

2. Petrov, Y. V., Myhovych, A. V. (2020). iMachining technology analysis for contour milling. Mechanics and Advanced Technologies, 2 (89). doi: https://doi.org/10.20535/2521-1943.2020.89.202065

3. Modul’ iMachining (2018). Zhurnal Vysokieh tekhnologii. 15.

4. Petrov, Y. V., Myhovych, A. V. (2020). iMachining technology analysis for contour milling. Mechanics and Advanced Technologies, 2 (89). doi: https://doi.org/10.20535/2521-1943.2020.89.202065

5. Park, H., Qi, B., Dang, D.-V., Park, D. Y. (2017). Development of smart machining system for optimizing feedrates to minimize machining time. Journal of Computational Design and Engineering, 5 (3), 299–304. doi: https://doi.org/10.1016/j.jcde.2017.12.004

6. Jacso, A., Szalay, T., Jauregui, J. C., Resendiz, J. R. (2018). A discrete simulation-based algorithm for the technological investigation of 2.5D milling operations. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233 (1), 78–90. doi: https://doi.org/10.1177/095440621875267

7. Dumitache, A., Borangiu, T., Dogar, A. (2010). Automatic Generation of Milling Toolpaths with Tool Engagement Control for Complex Part Geometry. IFAC Proceedings Volumes, 43 (4), 252–257. doi: https://doi.org/10.3182/20100701-2-p-4011.00044

8. Boz, Y., Erdim, H., Lazoglu, I. (2015). A comparison of solid model and three-orthogonal dxfedlief methods for cutter-workpiece engagement calculations in three- and five-axis virtual milling. The International Journal of Advanced Manufacturing Technology, 81 (5-8), 811–823. doi: https://doi.org/10.1007/s00170-015-7251-7

9. Altintas, Y., Kersting, P., Biernann, D., Budak, E., Denkena, B., Lazoglu, I. (2014). Virtual process systems for part machining operations. CIRP Annals, 63 (2), 655–665. doi: https://doi.org/10.1016/j.cirp.2014.05.007

10. Gong, X., Feng, H.-Y. (2015). Cutter-workpiece engagement determination for general milling using triangle mesh modeling. Journal of Computational Design and Engineering, 3 (2), 151–160. doi: https://doi.org/10.1016/j.jcd.e.2015.12.001

11. Petrov, Y., Matskovsky, A. (2015). Simulation of end mills milling. Visnyk NTUU «KPI». Seriya mashybozbudivannia, 1 (73), 78–83. Available at: https://ela.kpi.ua/handle/123456789/16944

12. Erdim, H., Lazoglu, I., Ozturk, B. (2006). Feedrate scheduling strategies for free-form surfaces. International Journal of Machine Tools and Manufacture, 46 (7-8), 747–757. doi: https://doi.org/10.1016/j.ijmachtools.2005.07.036

13. How to convert or simulate CNC NC G-code in PowerMill. Available at: https://knowledge.autodesk.com/ru/support/powermill/learn-explore/caas/sf/articles/sf/articles/RUS/How-to-simu-late-CNC-G-code-in-PowerMill.html

14. NC program editing, simulation and machine communication. Available at: https://www.cimco.com/documents/cimco_edit/brochures/en/cimco-edit-brochure-en.pdf
BEARING ROLLERS, CROSSES, PISTON RINGS, AND OTHERS. HIGH REQUIREMENTS ARE PUT FORWARD FOR THE ACCURACY AND SURFACE QUALITY OF THE END SURFACES. THE MOST EFFICIENT IS TO MACHINE THEM SIMULTANEOUSLY ON A DOUBLE-SIDED GRINDING MACHINE. TO IMPROVE THE QUALITY, GRINDING IS CARRIED OUT BY ORIENTED WHEELS. THE WHEEL'S ANGLE OF ROTATION IN THE VERTICAL PLANE IS CHOSEN SUBJECT TO THE UNIFORM DISTRIBUTION OF THE ALLOWANCE ALONG A WORKING SURFACE; THIS MAKES IT POSSIBLE TO REDUCE THE TEMPERATURE IN THE CUTTING ZONE AND IMPROVE MACHINING CONDITIONS. TO IMPROVE THE ACCURACY, GRINDING WHEELS ARE PROVIDED WITH A CONICAL CALIBRATION AREA WHERE THE RECTILINEAR GENERATRIX IS IN THE PLANE PASSING THROUGH THE AXIS OF WHEEL ROTATION AND IS PERPENDICULAR TO THE END OF THE PART. THE MINIMUM PERMISSIBLE LENGTH OF THE CALIBRATION AREA DEPENDS ON THE DIAMETER OF THE PARTS BEING MACHINED; THAT MAKES IT POSSIBLE TO UTILIZE THE WORK SURFACE MORE EFFICIENTLY. TWO WHEELS ARE DRESSED SIMULTANEOUSLY USING DIAMOND PENCILS THAT ARE SYMMETRICALLY INSTALLED IN A PART FEED DRUM. THE ANGULAR VELOCITY WHEN DRESSING THE ROUGH AREA OF THE WHEEL IS CONSTANT, WHICH ENSURES ITS DIFFERENT DEVELOPMENT, AND IT GRADUALLY DECREASES WHEN DRESSING THE CALIBRATION AREA TO PROVIDE FOR ITS CONSTANT ROUGHNESS. IN GENERAL, THIS PROLONGS THE LIFE OF GRINDING WHEELS AND THE QUALITY OF MACHINING. THE WHEELS ARE GIVEN AXIAL MOVEMENT TO ENSURE THE STRAIGHTLINE OF THE CONE CALIBRATION AREA. THE DRESSING TECHNIQUE REPORTED HERE CAN BE USED ON MACHINES EQUIPPED WITH A NUMERICAL SOFTWARE CONTROL SYSTEM AND WITHOUT IT. IT CAN BE USED ON MACHINES WITH TWO-SIDED GRINDING OF ROUND ENDS.

Keywords: double-sided grinding, crosswise axes, wheel dressing, conical calibration area, diamond pencil.

References

1. Škarlet, S., Kholavko, N., Dhubyna, M. (2019). Information economy: management of educational, innovation, and research determinants. Marketing and Management of Innovations, 3, 126–141. doi: https://doi.org/10.21272/mmi.2019.3-10

2. Lobov, S. B. (2016). Novye pokoleniya konstruktorskihnykh metallicheskih kompozitsionnykh materialov na osnove aluminioogo splava, armirovannogo nepresnymyami i diskretnymi voloknami Al2O3 (obzor). Trudy VIAM, 12 (48), 21–27. Available at: https://cyberninka.ru/article/n/novye-pokoleniya-konstruktorskihnykhmetallitcheskih-kompozitsionnyh-materialov-na-osnove-aluminioogo-splava-armirovannogo

3. Complete Machining Solution. Rotating tool lines. Tooling Systems. Catalogue (2019). ISCAR.

4. Shihzofal'nuye stanki zavod «Khaverst». Kharkov'st kankostroitel'nyi zavod «Khaverst», 20. Available at: https://harvest.com.ua/upload/files/Buklet_stanki_ru.pdf

5. Double-wheel surface grinding machines. Junker. Available at: https://www.junker-group.com/grinding-machines/product-category/double-wheel-surface-grinding-machines

6. Barinov, A. V., Platonov, A. V., Lebedeva, S. M., Samsonov, I. S. (2016). Study characteristics setting grinding machines for processing metal parts. Part 2. Features grinding wheel dressing. Privolzhskiy nauchny vestnik, 5 (57). Available at: https://cyberninka.ru/article/n/n/issledovanie-osobennostey-nastroyki-shihzofal'nyh-stankov-diya-obrabotki-metallitcheskih-detaley-2-issledovanie-osobennosti

7. Li, H., Axinte, D. (2016). Textured grinding wheels: A review. International Journal of Machine Tools and Manufacture, 109, 8–35. doi: https://doi.org/10.1016/j.ijmachtools.2016.07.001

8. Vayner, L. G., Flusov, N. I. (2013). Geometricheskaya modifikatsiya tortsehishlofval'nykh krugov v protsesse pravki. Vstavnik Tikhookeanskogo gosudarstvennogo universiteta, 17.

9. Vayner, L. (2019). Izmerenie i diagnostika parametrov tortsheishlofval'noy obrabotki. Vstavnik Tikhookeanskogo gosudarstvennogo universiteta, 2, 35–42.

10. Kalchenko, V., Kalchenko, V., Kalchenko, O., Sira, N., Kalchenko, D., Morochko, V., Vysoyuk, V. (2020). Development of a model of tool surface dressing when grinding with crossed wheel and cylindrical part axes. Eastern-European Journal of Enterprise Technologies, 3 (1 (105)), 23–29. doi: https://doi.org/10.15587/1729-4061.2020.204441

11. Zhou, W. H., Yao, W. F., Feng, M., Li, B. H., Deng, Q. F. (2013). The Polishing Process of Cylindrical Rollers by Using a Double-Side Lapping Machine. Key Engineering Materials, 589-590, 447–450. doi: https://doi.org/10.4028/www.scientific.net/KEM.589-590.447

12. Nguyen, D. N., Chau, N. L., Dao, T.-P., Prakash, C., Singh, S. (2019). Experimental study on polishing process of cylindrical roller bearings. Measurement and Control, 52 (9-10), 1272–1281. doi: https://doi.org/10.1177/0020294019864395

13. Kalchenko, V., Kalchenko, V., Sira, N., Yeroshenko, A., Kalchenko, D. (2020). Three-Dimensional Simulation of Machined Tool Surfaces and Shaping Process with Two-Side Grinding of Cylindrical Parts Ends. Advanced Manufacturing Processes, 118–127. doi: https://doi.org/10.1007/978-3-030-40724-7_12

14. Kalchenko, V., Kalchenko, V., Kolohoida, A., Yeroshenko, A., Kalchenko, D. (2022). Building a model of dressing the working surfaces of wheels during the two-side grinding of round end faces at CNC machines. Eastern-European Journal of Enterprise Technologies, 1 (1 (115)), 86–93. doi: https://doi.org/10.15587/1729-4061.2022.252642

DOI: 10.15587/1729-4061.2022.254555

FORMING THE GEOMETRIC ACCURACY AND ROUGHNESS OF HOLES WHEN DRILLING AIRCRAFT STRUCTURES MADE FROM POLYMERIC COMPOSITE MATERIALS (p. 71–80)

Kateryna Maiorova
National Aerospace University «Kharkiv Aviation Institute», Kharkiv, Ukraine

ORCID: https://orcid.org/0000-0003-3949-0791
The subject of this study is indicators of the quality, geometric accuracy, and roughness of holes in aviation structures (AS) made from polymeric composite materials (PCM) produced by drilling. The indicators of quality, geometric accuracy, and roughness of PCM holes were investigated by using kinematic hole drilling schemes and the creation of PCM chips. A kinematic scheme has been built of the cutting forces operating in PCM when drilling with the distribution of zones from 0° to 360°. Experimental studies on the establishment of characteristic shrinkage zones in the drilling of PCM, as well as their values, have been implemented. The methods used are the analysis of the quality indicators of PCM holes, and the method of expert assessments. The following results were obtained. Based on the analysis and synthesis, it was found that with incorrectly selected geometric parameters for drills involving the work accompanied by the wear of drills on the back surface, stratification, cracks, or chips of PCM may appear. It is shown that the decisive factor is a comprehensive assessment, which is determined not only by the quality, accuracy, and roughness but also by the condition of the holes at the input and output of the drill. Features and characteristic contact zones for PCM drilling were identified. It has been established that within the drill operating areas from 0° to 90° and from 180° to 270° the cutting forces are reduced while the indicators of surface quality, roughness, and geometric accuracy of a PCM hole are improved. In zones from 90° to 180° and from 270° to 360° – on the contrary, low quality of the machined surface is assumed. The calculation of the required cutting forces and calculation of the height of roughness of drilling holes in PCM have been proposed, taking into consideration the bearing of chips under the action of the wedge. The results of experimental studies on the establishment of characteristic shrinkage zones when drilling PCM confirmed the adequacy of the results of theoretical studies on the kinematic schemes of drill operation in PCM.

Keywords: aviation structure, polymeric composite materials, drilling, hole roughness, geometric accuracy, hole shrinkage.

References

1. Siblya, I. (2021). Advances in Machining of Composite Materials. Springer, 552. doi: https://doi.org/10.1007/978-3-030-71438-3

2. Bychkov, S. A, Kotsiuba, O. A. (2016). State and problems of using new construction materials in domestic civil aircraft in modern conditions. Report 1. Approaches to the choice of metal construction materials of aircrafts. Aviatsionno-kosmicheskaya tekhnika i technologiya, 5 (132), 4–14. Available at: http://nti.khai.edu:5772/esp/nauzquotes/Arhiv/AKT2016/AKT210596/Bychkov.pdf

3. Andrieiev, O. V. (2020). Naukovy osnovy pidvyshchennia efektyvnosti stvorennia konstruktsiy transportnykh litakiv iz polimernych kompozitsiynyk materialiv na etapakh zhyttevyoho tsylku vyroz. Kyiv, 333. Available at: https://cr.nau.edu.ua/handle/NAU/44706

4. Tjahjanti, P. H., Firdaus, R., Iswanto, Aham, M. F. (2020). Study of Crack Connections in Materials Composite Based on Polymer. IOP Conference Series: Materials Science and Engineering, 874 (1), 012026. doi: https://doi.org/10.1088/1757-899x/874/1/012026

5. Raskutin, A. E., Khurulkov, A. V., Girshe, R. I. (2016). Technological features of composite materials machining in manufacturing details of structures (review). Proceedings of VIAM, 9 (45). doi: https://doi.org/10.18577/2307-6046-2016-9-9-12-12

6. Globo, A. V., Bondarenko, A. S. (2009). Analysis of process of the aircraft materials drilling with three-wings drills in order to improve cutting part geometry. Visnyk NTUU «KPI». Prylabobuduvannya: zbirnyk naukovykh prats, 37, 92–97. Available at: https://ela.kpi.ua/handle/123456789/8835

7. Khavin, G. L. (2015). Obrazovanie defektov pri sverlentstvo ostroykh kompozitov i mekhanim poyavleniya rasravlyaniy. Visnyk NTU «KhPI», 4 (1113), 96–100. Available at: http://repository.kpi.kharkov.ua/bitstream/KhPI-Press/15182/1/vesnik_HPI_2015_4_Khavin_Obrazovanie.pdf

8. Yang, X.-Q., Chen, X., Tan, D., Li, R., Gao, H. (2021). Evolution of frictional damage of PTFE/Kevlar fiber braided materials. Surface Technology, 50 (8), 282–294. doi: https://doi.org/10.16490/j.cnki.issn.1001-3660.2021.08.026

9. Patel, P., Chaudhary, V. (2021). Delamination evaluation in drilling of composite materials – A review. Materials Today: Proceedings. doi: https://doi.org/10.1016/j.matpr.2021.09.267

10. Rahmè, P., Landon, Y., Lachaud, F., Piguet, R., Lagarrigue, P. (2010). Analytical models of composite material drilling. The International Journal of Advanced Manufacturing Technology, 52 (5-8), 609–617. doi: https://doi.org/10.1007/s00170-010-2773-5

11. Vorobiov, I., Nechyporenk, N., Maiorova, K. (2018). Experimental and numerical investigations on impulse self-pierce riveting of lightweight aircraft aluminium and mixed structures. Proceedings of 22nd International Scientific Conference Transport Means 2018. Trakai, 121–128. Available at: https://transportmeans.ktu.edu/wp-content/uploads/sites/307/2018/02/Transport-means-1-dals-2018-09-25.pdf

12. Vorobiov, I., Maiorova, K., Voronko, I., Boiko, M., Komisarov, O. (2022). Creation and Improvement Principles of the Pneumatic Manual Impulse Devices. Lecture Notes in Networks and Systems, 178–191. doi: https://doi.org/10.1007/978-3-030-94259-5_17

13. Hassan, M. H., Abdullah, J., Franz, G., Shen, C. Y., Mahmodian, R. (2021). Effect of Twist Drill Geometry and Drilling Parameters on Hole Quality in Single-Shot Drilling of CFRP/AI7075-T6 Composite Stack. Journal of Composites Science, 5 (7), 189. doi: https://doi.org/10.3390/jcs5070189

14. Tesfaye Jule, L., Ramaswamy, K., Nagaprasad, N., Shanmugam, V., Vignesh, V. (2021). Design and analysis of serial drilled hole in composite material. Materials Today: Proceedings. doi: https://doi.org/10.1016/j.matpr.2021.02.587

15. Chevychev, S. A., Snopkov, M. V., Bondartsev, I. V., Maslennev, A. V. (2017). Diagram of fixture for vibration drilling of holes in composite materials. Proceedings of the Southwest State University, 21 (6), 76–84. doi: https://doi.org/10.21866/2223-1560-2017-21-6-76-84

16. Hrechuk, A., Globo, A., Devin, L. (2017). Increasing the quality of drilling holes in fiber reinforcement composite materials. Bulletin of Kyiv Polytechnic Institute. Series Instrument Making, 54 (2), 80–85. doi: https://doi.org/10.20535/1970.54(2).2017.119556

17. Hocheng, H. (2012). Machining technology for composite materials. Woodhead Publishing. doi: https://doi.org/10.1533/9780857099514

18. Rakska, N. S., Melnychuk, P. P., Mamlik, O. V., Nikolaenko, T. P., Okhimenko, O. A. (2013). Osnovy formoutvorennia poverkhon pry
Abstract and References. Engineering technological systems

This paper considers directions to devise methods for restoring the operational suitability of reinforced concrete structures. Mistakes of designers and non-compliance with the concrete technology of monolithic reinforced concrete structures lead to the formation of cracks and deformations of unacceptable size in reinforced concrete beams and floor slabs, as well as to insufficient strength of the elements. Such structures require not only an increase in bearing capacity but also the restoration of the operational suitability of damaged structures. A technique for restoring the serviceability of bendable reinforced concrete structures with increased deformations and excessive crack opening is proposed. To restore bendable reinforced concrete structures, surface reinforcement with pre-stressed fiber-reinforced plastics is suggested, which is ensured by the creation of a building lift in the damaged elements. Fiber-reinforced plastics have a high strain modulus, elastic nature of the diagram, and increased frost resistance; they tolerate fatigue effects well and are resistant to the effects of chemically active substances. Unlike conventional reinforcement methods, surface reinforcement techniques are characterized by high gain efficiency, corrosion resistance, low labor intensity, and short terms of work; they ensure strength increase and provide for economic feasibility. This study’s results established that the use of fiber-reinforced plastics not only increases the bearing capacity of reinforced concrete structures but also helps reduce the width of the cracks formed. Thus, it is possible to avoid an increase in the cross-section of structures and reduce the time of operations, which could lead to additional costs.

Keywords: restoration of reinforced concrete structures, fiber-reinforced plastics, pre-stress, single-span reinforced concrete beam.

References

1. Bakis, C. E., Bank, L. C., Brown, V. L., Cjzenza, E. (2002). Fibre-Reinforced Polimer Composites for Construction-State of the Art Review. Journal of Composites in Construction.
2. Bespaev, A. A., Kuratalov, U. S., Altigenov, U. B. (2011). Usilenie zhelezobetonnykh konstruktsiy polimernymi materialami. Vestnik National’noy inzhenerny akademii RK, Almaty.
3. Yang, J., Haghani, R., Blanksvärd, T., Lundgren, K. (2021). Experimental study of FRP-strengthened concrete beams with corroded reinforcement. Construction and Building Materials, 301, 124076. doi: https://doi.org/10.1016/j.conbuildmat.2021.124076

DOI: 10.15587/1729-4061.2022.254728
STRENGTHENING AND RESTORATION OF DAMAGED REINFORCED CONCRETE STRUCTURES WITH COMPOSITE PLASTICS (p. 81–86)

Zhanna Mukhanbetzhanova
Satbayev University, Almaty, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0002-9672-4374

Aliy Bespayev
Kazakh Research and Design Institute of Construction and Architecture, Almaty, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0001-7279-2180

DOI: 10.15587/1729-4061.2022.255258
OBTAINING A FORMULA DESCRIBING THE INTERACTION OF FINE PARTICLES WITH AN EXPANDING GAS FLOW IN A FLUID LAYER (p. 87–97)

Yessenbay Alpeissov
S. Seifullin Kazakh Agro Technical University, Nur-Sultan, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0001-8917-0035

Ruslan Iskakov
S. Seifullin Kazakh Agro Technical University, Nur-Sultan, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0002-5948-2636

Sultanbek Issenov
S. Seifullin Kazakh Agro Technical University, Nur-Sultan, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0003-4576-4621

Aru Ukenova
L. N. Gumilyov Eurasian National University, Nur-Sultan, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0002-2797-672X

The interaction of fine particles with an expanding gas flow under fluidization conditions is considered. The objects of study are finely dispersed materials, their single particles, gas flow in a fluidized layer. The study used the laws of dynamics and hydrodynamics, the classical laws of mechanics, as well as mathematical methods for the analytical solution of equations. It is emphasized that when a particle moves upwards in a gas jet, three forces act on it: the resistance force F_r, the gravity force F_g, and the Archimedes force A. As a result, the motion of a fine particle in an expanding gas flow is described taking into account the law of dynamics. During the study, an analytical equation was obtained to determine the
velocity of a particle during its rise and fall in a gas jet. During the study, an analytical equation was obtained to find the height of the particle ascent depending on the gas flow rate for given geometric parameters of the gas flow. The obtained formulas can be used in the process of studying the process of convective drying of finely dispersed materials for various design parameters of the dryer. In practice, as a rule, there are various empirical formulas that describe such interactions of particles for specific parameters, which make it difficult to generalize them. In this work, the correctness of the assumed conditions necessary for the analytical solution of the differential equation of particle motion is proved. As a result, formulas were obtained that make it possible to determine the velocity of a particle in a gas jet and the height of its rise depending on the gas flow rate. On the basis of these formulas, graphic dependences of the gas velocity in the jet on the height \(V_g = f(Z) \), as well as the dependences of the height of the particle rise \(h_p \) on the air flow rate in the jet \(L \) at different jet expansion angles \(\alpha = 15^\circ; \alpha = 20^\circ; \alpha = 30^\circ \) are plotted. It was found that with an increase in the height \(Z \) in an expanding jet, the gas velocity in the jet \(V_g \) decreases, with an increase in the air flow rate in the jet \(L \), the height of the particle rise \(h_p \) increases. These formulas are the basis for further consideration of the movement of particles in a fluidized layer in the process of convective drying of fine materials for its intensification of the drying process.

Keywords: fluidized layer, convective drying, gas flows, fine particles, dryer, gas jet, heat and mass transfer.

References

1. Chasiotis, V. K., Tsemplikos, D. A., Filios, A. E. (2021). Assessment of constant and time-varying temperature schemes on the convective drying characteristics of hemp leaves. Case Studies in Thermal Engineering, 26, 101098. doi: https://doi.org/10.1016/j.csite.2021.101098

2. Kudra, T., Mujumdar, A. S. (2009). Advanced Drying Technologies. CRC Press, 438. doi: https://doi.org/10.1201/9781420073898

3. Mujumdar, A. S. (Ed.) (2006). Handbook of Industrial Drying. CRC Press, 1312. doi: https://doi.org/10.1201/9781420017618

4. Iskakov, R. M., Iskakova, A. M., Isenov, S. S., Beisebekova, D. M., Khaimuldinova, A. K. (2019). Technology of Multi-stage Sterilization of Raw Materials with the Production of Feed Meal of High Biological Value. Journal of Pure and Applied Microbiology, 13 (1), 307–312. doi: https://doi.org/10.22270/jpam.13.13.33

5. Isakov, R. M., Issenov, S. S., Iskakova, A. M., Halam, S., Beisebekova, D. M. (2015). Microbiological Appraisal of Feed Meal of Animal Origin, Produced by Drying and Grinding Installation. Journal of Pure and Applied Microbiology, 9 (1), 387–392. Available: https://www.scopus.com/record/display.uri?eid=2-s2.0-84930638169&origin-resultslist

6. Isakov, R. M., Iskakova, A. M., Nurusheev, M. Z., Khaimuldinova, A. K., Karbayev, N. K. (2021). Method for the Production of Fat from Raw Materials and Animal Waste. Journal of Pure and Applied Microbiology, 15 (2), 716–724. doi: https://doi.org/10.22270/jpam.15.22.3

7. Isakov, R. M., Issenov, S. S., Iskakova, A. M., Halam, S., Beisebekova, D. M. (2013). Heat-and-Moisture Transfer at the Feed Meal Particles Drying and Grinding. Life Science Journal, 10 (12s), 497–502. Available: http://www.lifesciencesite.com/ljs/life1012s/083_22175life1012s_497_502.pdf

8. Issenov, S., Iskakov, R., Tergemes, K., Issenov, Z. (2022). Development of mathematical description of mechanical characteristics of integrated multi-motor electric drive for drying plant. Eastern-European Journal of Enterprise Technologies, 1 (8 (115)), 46–54. doi: https://doi.org/10.15587/1729-4061.2021.251232

9. Wang, W., Lu, Y., Xu, K., Wu, K., Zhang, Z., Duan, J. (2021). Experimental and simulated study on fluidization characteristics of particle shrinkage in a multi-chamber fluidized bed for biomass fast pyrolysis. Fuel Processing Technology, 216, 106799. doi: https://doi.org/10.1016/j.fuproc.2021.106799

10. Li, J., Liu, Y. Y. (2008). Particle-wave duality and coherent instability control in dense gas–solid flows. Chemical Engineering Science, 63 (3), 732–750. doi: https://doi.org/10.1016/j.ces.2007.09.047

11. Wu, G., He, Y., Chen, W. (2018). Hydrodynamics of activated char in a novel multistage circulating fluidized bed for dry desulfurization. Chemical Engineering Journal, 351, 1104–1114. doi: https://doi.org/10.1016/j.cej.2018.06.177

12. Hou, Q. F., Zhou, Z. Y., Yu, A. B. (2013). Contact analysis of different flow regimes in gas fluidization. AIP Conference Proceedings. doi: https://doi.org/10.1063/1.4812129

13. Geng, Q., Wang, P., Zhu, X., You, X., Li, C. (2015). Flow dynamics and contact efficiency in a novel fast-turbulent fluidized bed with ring-feeder internals. Particulate Science and Technology, 21, 203–211. doi: https://doi.org/10.1080/02726351.2015.1052002

14. Zhou, Y., Ren, C., Wang, J., Yang, Y., Dong, K. (2013). Effect of hydrodynamic behavior on electrostatic potential distribution in gas–solid fluidized bed. Powder Technology, 235, 9–17. doi: https://doi.org/10.1016/j.powtec.2012.09.025

15. Gan, J., Zhou, Z., Zou, R., Yu, A. (2013). Discrete element modeling of gas fluidization of fine ellipsoidal particles. AIP Conference Proceedings. doi: https://doi.org/10.1063/1.4812135

16. Hou, Q. F., Zhou, Z. Y., Yu, A. B. (2012). Micromechanical modeling and analysis of different flow regimes in gas fluidization. Chemical Engineering Science, 84, 449–468. doi: https://doi.org/10.1016/j.ces.2012.08.051

17. Espín, M. J., Quintanilla, M. A. S., Valverde, J. M. (2015). Effect of particle size polydispersity on the yield stress of magnetofluidized beds as depending on the magnetic field orientation. Chemical Engineering Journal, 277, 269–285. doi: https://doi.org/10.1016/j.cej.2015.04.124

18. Strobel, A., Küniging, B., Remeis, S., Schott, F., Wirth, K.-E., Pentk, W. (2020). Assessing stress conditions and impact velocities in fluidized bed opposed jet mills. Particulate Science and Technology, 53, 12–22. doi: https://doi.org/10.1080/02726351.2020.2002006

19. Espín, M. J., Quintanilla, M. A. S., Valverde, J. M. (2017). Magnetic stabilization of fluidized beds: Effect of magnetic field orientation. Chemical Engineering Journal, 313, 1335–1345. doi: https://doi.org/10.1016/j.cej.2016.11.023

20. Chirmore, R., Poletto, M., Barletta, D., Lettieri, P. (2020). The effect of temperature on the minimum fluidization conditions of industrial cohesive particles. Powder Technology, 362, 307–322. doi: https://doi.org/10.1016/j.powtec.2019.11.102

21. Lepek, D., Valverde, J. M., Pfeffer, R., Dave, R. N. (2010). Enhanced Nanofluidization by Alternating Electric Fields. AIChE Journal, 56 (1), 54–65. doi: https://doi.org/10.1002/aic.11954

22. Kutsakova, V. E., Firolov, S. V., Alpeisov, E. A. (1994). Gyrodinamicheskaya osobennost ot potoka v skororomozhdnom apparate s napravlennyim psevdohizhennom sloyem. Sat. scientific tr. Theoretical, experimental studies of processes, machines, units, automation, management and economics of food technology, Saint Petersburg, 120–124.

23. Todes, O. M., Tsvitovich, O. B. (1981). Apparat s kipynshnym sloyom. Leningrad: Chemistry, 286.

24. Minaev, G. A., Mikhailin, V. D. (1982). Gyrodinamicheskiye i teploobmennyye osobennosty strunovogo psevdohizhennykh apparatov s napravlennym psevdohizhennym sloyem. Sat. scientific tr. Theoretical, experimental studies of processes, machines, units, automation, management and economics of food technology, Saint Petersburg, 120–124.

25. Kutsakova, V. E., Utkin, Yu. V., Markov, N. V. (1986). Raschet appara- tova s vyzhshennym sloyem ineritnykh tel pri suklke belkovosoder-zhshchikh rastvorov. Leningrad: LTIHP, 52–55.
Розглянуто способ модернізації силової установки (СУ) регіонального літака. Модернізація здійснена на основі впорскування води або водометанолової суміші до компресора або камери згоряння турбогвинтового двигуна (ТГвД). Розроблено алгоритм термодинамічного розрахунку параметрів ТГвД з урахуванням впорскування води або водометанолової суміші вдосконаленою математичної моделю інструменту Ansys 16.1. Геометрія була змодельована та побудована за допомогою Ansys. Модель була перевірена за допомогою тесту збіжності. В результаті були виявлені різні деформації. У зразках композитного матеріалу 3 значення найменшої деформації (з 3 значенням), деформації, експлуатаційні характеристики, впорскування води, шкідливі викиди.

Ключові слова: турбогвинтовий двигун, форсування, експлуатаційні характеристики, впорскування води, шкідливі викиди.

Ю. О. Ушечко, В. В. Логинов, І. Ф. Крачаненко, В. В. Попов, О. О. Растегрин, О. В. Єланський
Машини доїння корів є одним з основних технологічних процесів, від рівня його розвитку значною мірою залежить ефективність молочного скотарства загалом. Проводячи місце, при цьому, палерує доїльно-молочному обладнанню. На впливу розробки та застосування технічних засобів доїння виникають певні труднощі, пов’язані з недосконалістю що до відведення молока. Тому необхідність досліджень полягає у досліджені процесу переміщення молокоповітряної суміші в доїльному апараті.

Створена фізико-математична модель процесу переміщення двофазної молокоповітряної суміші молокопровідної лінією доїльного апарату. Математична модель зв’язала величину флуктуації вакуумметричного тиску ΔP швидкість виведення молока Q_M частоту пульсації ξ і величину робочого вакуумметричного тиску P_d, яка переміщує регламентоване значення (2,5 кПа). Для молокопровідної системи з відносним молокопроводом присутня велика флуктуація вакуумметричного тиску $\Delta P=1,02–4,69$ кПа, яка перевищує регламентоване значення (2,5 кПа).

Визначені закономірності зміни величини робочого тиску P_d частота пульсації ξ доїльних апаратів одноразової і харчової дії від швидкості виведення молока з вим’я.

Встановлено, що максимальне відхилення значення флуктуації вакуумметричного тиску ΔP між експериментальними і теоретичними даними в заданому діапазоні факторів складає 0,81 кПа. Коефіцієнт кореляції становить 0,92, що свідчить про адекватність розроблених моделей. Завдяки цьому вирішується задача з раціонального вибору молочно-доїльного устаткування.

Ключові слова: доїльний апарат, вакуумна система, молокоповітряна суміш, швидкість молоковіддачи, вакуумметричний тиск.

ДОІ: 10.15587/1729-4061.2022.253884

**ЗАСТОСУВАННЯ МЕТОДУ ТРІЗ ДЛЯ МОДИФІКАЦІЇ СУШКИ В ПЕЧІ ДЛЯ МАЛИХ ТА СЕРЕДНІХ ПІДПРИЄМСТВ З МЕТОЮ ПІДТРИМКИ ВМІСТУ ЕВГЕНОЛУ У СУШЕНІЙ ГВОЗДИЦІ (с. 47–54)

Beauty Suestining Diyah Dewanti, Erry Yulian Triblas Adesta, Ahmad Faris Ismail

Ефірна олія (ЕМ) гвоздики має високий вміст евгенолу. Для отримання ефірних масел свіжа гвоздика повинна пройти процес сушіння та дистилляції. Однак у сезон дощів неможливо виконати оптимальну сушку на сонці. Тому деякі фермери (МСП) використовують досі піч як і раніше витрачає багато палива. В даній роботі було виявлено параметри, на які слід орієнтуватися при проектуванні нової печі.

По-перше, нерівномірний вміст вологи у гвоздиці після процесу сушіння. Друга проблема полягала у тому, що гвоздика була занадто сухою після сушки, і вміст евгенолу зменшився. Третю проблемою є те, що в молокопровідному каналі виявлені три проблеми. По-перше, нерівномірній вміст вологи у гвоздиці після процесу сушіння. Друга проблема полягала у тому, що гвоздика була занадто сухою після сушки, і вміст евгенолу зменшився. Третю проблемою є те, що в молокопровідному каналі виявлені три проблеми.

Представлена нова технологія проєктування керуючих програм для контурного фрезерування на верстатах з числовим програмним контролем (ЧПК). Технологія забезпечує стабілізацію процесу різання по всьому контуру на оптимальному рівні за рахунок управління подачею, що забезпечує підвищення продуктивності при виконанні вимог щодо обмежень. Причому ефективність застосування технології підвищується з збільшенням експлуатацій контуру за зміною швидкості . Розроблено математичну модель взаємодії фрези з заготовкою в зоні різання при обробці контуру з зміною швидкості, яка дозволяє визначити головну характеристику процесу різання – швидкість здійснення припусків. Технологія передбачає використання керуючої програми в G-кодах, спроектованій в будь-якій САМ-системі. На першому етапі із програми витягується тракторограмма формоутворення в угліді двовимірного цифрового масиву. На другому етапі виконується моделювання взаємодії інструмента та заготовки в зоні різання з визначенням головної характеристики процесу різання – аналога швидкості здійснення припусків.

Ключові слова: гвоздика, ефірна олія, вміст евгенолу, МСП, сушка в печі, метод ТРІЗ.

ДОІ: 10.15587/1729-4061.2022.2535389

**ТЕХНОЛОГІЯ ПРОГРАМУВАННЯ КОНТУРНОГО ФРЕЗЕРУВАННЯ НА ВЕРСТАТІЗ ЧИСЛОВИМ ПРОГРАМНИМ КЕРУВАННЯМ (с. 55–61)

Ю. В. Петраков, В. М. Кореньков, А. В. Мигович

Представлено нову технологію проєктування керованих програм для контурного фрезерування на верстатах з числовим програмним контролем (ЧПК). Технологія забезпечує стабілізацію процесу різання по всьому контуру на оптимальному рівні за рахунок управління подачею, що забезпечує підвищення продуктивності при виконанні вимог щодо обмежень. Причому ефективність застосування технології підвищується з збільшенням експлуатацій контуру за зміною швидкості . Розроблено математичну модель взаємодії фрези з заготовкою в зоні різання при обробці контуру з зміною швидкості, яка дозволяє визначити головну характеристику процесу різання – швидкість здійснення припусків. Технологія передбачає використання керуючої програми в G-кодах, спроектованій в будь-якій САМ-системі. На першому етапі із програми витягується тракторограмма формоутворення в угліді двовимірного цифрового масиву. На другому етапі виконується моделювання взаємодії інструмента та заготовки в зоні різання з визначенням головної характеристики процесу різання – аналога швидкості здійснення припусків. А на завершальному етапі результати моделювання використовуються для проєктування нової керуючої програми, також у G-кодах, із записим новим законом управління подачею, що забезпечує стабілізацію процесу різання по всьому впливу швидкості фрезерування. Створено програмне забезпечення для нової технології, яке автоматично перетворює задану керкучу програму в G-кодах у двовимірний цифровий масив, виконує моделювання
Процес шліфування та за його результатами проектує нову керуючу програму в G-кодах. Результати експериментального до-
слідження фрезерування заданого контуру за допомогою створеної програми моделювання показали підвищення продуктивності в 1,7 рази в порівнянні з вихідною управляючою програмою, що спроектована в звичайній CAM-системі.

Ключові слова: контурні фрезерування, верстат з ЧПК, CAM-система, керуюча програма, G-коди.

DOI: 10.15587/1729-4061.2022.253660
РОЗРОБКА МОДЕЛІ ПРОЦЕСУ ФОРМОГРУВАННЯ КОНЧИНЬ КАБЛУРУВАЛЬНИХ ДІЯЛОК КРУТІВ
ПРИ ДВОСТОРОННЬОМУ ШЛІФУВАНИ МІЖОМ ВИКЛЮЧНИХ КРУТІВ (с. 62–70)
В. В. Кальченко, В. І. Кальченко, А. В. Кологоїда, О. М. Кальченко, Д. В. Кальченко

Проведено просторове моделювання процесу правки шліфувальних кругів з конічною калібрувальною ділянкою для забез-
печення двостороннього торцевого шліфування циліндричних деталей. В промисловості розповсюджено деталі з циліндрично-
ми торцями поверхнями, наприклад, ролики підшипників, хрестовини, поршнів пальці та інші. До точності й якості торцевих по-
верхностей ставлять високі вимоги. Найбільш продуктивною є одночасна зібранка обробки на двосторонньому торцевому шліфувальному верстаті.

Для підвищення якості, шліфування здійснюють орієнтованими кругами. Кут повороту круга у вертикальній площині обирають з умови рівномірного розподілу припусків від верхньої поверхні, це дозволяє зменшити температуру в зоні різання і покращити умови обробки. Для підвищення точності на шліфувальних кругах виконують конічну калібрувальну ділянку, прямолінійна твердина якої лежить у площині, що проходить через пів обертової кривої та перпендикулярна торцю деталі. Мінімізувати допустима довжина калібрувальної ділянки залежить від діаметру оброблюваних деталей, і дозволяє більш ефективно використовувати робочу поверхню. Правку двох кругів здійснюють одночасно, симетрично встановленними на барабан подачі вибірку, алмазними олівцями. Кутова швидкість при правці чорнової ділянки круга є постійною, що забезпечує рівну зона різання, і поступово зменшується при правці калібрувальної ділянки для забезпечення в зоні калібрувальної ділянки. Загалом це здійснюється ресурс шліфувальних кругів та якість обробки. Кругам надається особисте розсічення, для забезпечення прямокутної калібрувальної ділянки. Розроблений способ може використовуватися на верстатах, оснащених системою числового програмного керування та без неї. А також може за-
стосовуватися при обробці деталей з некруглими торцями.

Ключові слова: двостороннє шліфування, схрещені осі, права круга, конічна калібрувальна ділянка, алмазний олівець.

DOI: 10.15587/1729-4061.2022.254555
ФОРМУВАННЯ ГЕОМЕТРИЧНОЇ ТОЧНОСТІ ТА ШОРСТКОСТІ ОТВОРІВ СВЕРДЛІННЯМИ В АВІАЦІЙНИХ КОНСТРУКЦІЯХ ІЗ ПОЛІМЕРНИХ КОМПОЗИЦІЙНИХ МАТЕРІАЛІВ (с. 71–80)
К. В. Майорова, Ю. А. Воробьов, О. В. Андрєєв, Б. В. Лупкін, В. Т. Сікульський

Предметом дослідження є показники якості, геометричної точності та шорсткості отворів в авіаційних конструкціях (АК) із полімерних композиційних матеріалів (ПКМ). В наявності свердління оцінено рівень шорсткості та точності отворів ПКМ, з метою виявлення факторів, що впливають на рівень якості отворів ПКМ. Оцінено шорсткість отворів ПКМ, за допомогою розрахунку зусиль різання та шорсткості отворів.

Ключові слова: свердління, шорсткість отвору, геометрична точність, двостороннє свердління, схрещені осі, правка круга, конічна калібрувальна ділянка, алмазний олівець.

DOI: 10.15587/1729-4061.2022.254728
ПОСИЛЕННЯ ТА ВІДНОВЛЕННЯ ПОШКОДЖЕНИХ ЗАЛІЗОБЕТОННИХ КОНСТРУКЦІЙ КОМПОЗИТНИМИ ПЛАСТИКАМИ (с. 81–86)
Zhanna Mukhanbetzhanova, Aliy Bespayev

Формулюються напрямки розвитку методів відновлення експлуатаційної придатності залізобетонних конструкцій. Помітні впливи технологій бетонування монолітних залізобетонних конструкцій призводять до утворення в залізобетонних балках та плитах перекриттів тріщин та прогинів неприпустимої величини, а також до недостатньої міцності. Для таких конструкцій потребує не тільки збільшення несучої здатності, але й відновлення експлуатаційної придатності пошкоджених конструкцій. Для відновлення гіпіраллельних залізобетонних конструкцій пропонується проводити посилення попередньо напритягнути фіброармованими пластиками, що забезпечується створенням у пошкоджених елементах будівельного підйому. Фіброармовані пластикі вводять високим модулем деформацій, призводячи до зменшення зазначеної модифікації, короткі тріщини, підвищеної морозостійкості, здатності відновлювати високу якість, що забезпечується створенням у пошкоджених елементах будівельного підйому. Фіброармовані пластикі вводять високим модулем деформацій, пружним характером діаграм, підвищеною морозостійкістю, добре переносять вітмінні впливи, стійкі до дії хімічно активних речовин. На відміну від традиційних методів посилення, поверхневі методи посилення відірваність високо ефективною посилення, корозійної стійкості, низькою трудомісткістю, коротким
термінами виконання робіт та підвищення міцності, економічною доцільністю. В результаті досліджень встановлено, що застосування фіброармованих пластиків не тільки збільшує здатність залізобетонних конструкцій, але й сприяє зменшенню ширини тріщин, що утворилися. Тим самим можна уникнути збільшення перерізу конструкцій та скорочується термін виконання робіт, які могли б призвести до додаткових витрат.

Ключові слова: відновлення залізобетонних конструкцій, фіброармовані пластикі, попередня напруга, однопрогонова залізобетонна балка.

DOI: 10.15587/1729-4061.2022.255258

ОТРИМАННЯ ФОРМУЛИ, ЩО ОПИСУЄ ВЗАЄМНОДІЙНАХ ЧАСТИНОК З ПОТОКОМ ГАЗУ, ЩО РОЗШИРЮЄТЬСЯ, В ПСЕВДОЗРІДЖЕНОМУ ШАРИ (с. 87–97)

Yessenbay Alpeissov, Ruslan Iskakov, Sultanbek Issenov, Aru Ukenova

Розглянуто взаємодію дрібнодисперсних частинок з потоком газу, що розширюється, в умовах псевдозрідження. Об’єктом дослідження служили дрібнодисперсні матеріали, їх поодинокі частинки, потік газу в псевдозрідженому шарі. У дослідженні використані закони динаміки та гідродинаміки, класичні закони механіки, а також математичні методи аналітичного вирішення рівнянь. Робиться акцент на тому, що при русі частинки вгору в струмені газу на неї діють три сили: сила опору F_c, сила тяжіння P та сила Архімеда A.

В результаті отримано рух дрібнодисперсної частинки в газовому потоці, що розширюється, з урахуванням законів динаміки. Під час дослідження отримано аналітичне рівняння для визначення швидкості частки під час її підйому та падіння в струмені газу. Під час дослідження отримано аналітичне рівняння знаходження висоти підйому частки залежно від витрати газу при заданих геометричних параметрах газового потоку.

Одержані формули можуть бути використані під час дослідження процесу конвективного сушіння дрібнодисперсних матеріалів при різних конструктивних параметрах сушарки. Насправді, зазвичай, зустрічаються різні емпіричні формули, що описують подібні взаємодії частинок при конкретних параметрах, що утруднюють їх узагальнення. У цій роботі доведено коректність допущених умов, які необхідні для аналітичного рішення диференціального рівняння руху частинок. В результаті отримані формулі, що дозволяють визначити швидкість частинки струменя газу та висоти його підйому залежно від витрати газового потоку.

Якщо при підвищенні висоти Z в струмені, що розширюється, знижується швидкість газу в струмені V_G, при підвищенні витрати повітря L збільшується висота підйому частинки h_m. Ці формули є основою при подальшому розгляді руху частинок у псевдозрідженому шарі в процесі конвективного сушіння дрібнодисперсних матеріалів для інтенсифікації процесу сушіння.

Ключові слова: псевдозрідження шар, конвективне сушіння, потоки газу, дрібнодисперсні частинки, сушарка, струмінь газу, тепло-тамасообмін.