A variational approach to Navier–Stokes

Michael Ortiz1,2,6, Bernd Schmidt3,7,9 and Ulisse Stefanelli4,5,8

1 California Institute of Technology, Graduate Aeronautical Laboratories, M.S. 105-50, Pasadena, CA 91125, United States of America
2 Institute for Applied Mathematics, Universität Bonn, Endenicher Allee 60 D-53115 Bonn, Germany
3 Institut für Mathematik, Universität Augsburg, Universitätstr. 14, 86159 Augsburg, Germany
4 Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria
5 Istituto di Matematica Applicata e Tecnologie Informatiche E. Magenes, v. Ferrata 1, 27100 Pavia, Italy
6 E-mail: ortiz@aero.caltech.edu, bernd.schmidt@math.uni-augsburg.de and ulisse.stefanelli@univie.ac.at

Received 19 February 2018, revised 27 July 2018
Accepted for publication 10 October 2018
Published 15 November 2018

Recommended by Dr Alexander Kiselev

Abstract

We present a variational resolution of the incompressible Navier–Stokes system by means of stabilized weighted-inertia-dissipation-energy (WIDE) functionals. The minimization of these parameter-dependent functionals corresponds to an elliptic-in-time regularization of the system. By passing to the limit in the regularization parameter along subsequences of WIDE minimizers one recovers a classical Leray–Hopf weak solution.

Keywords: Navier–Stokes system, variational method, weak solutions, weighted-inertia-dissipation-energy functionals
Mathematics Subject Classification numbers: 35Q30, 76D05
1. Introduction

This note is concerned with the Navier–Stokes system
\[
\partial_t u + u \cdot \nabla u - \nu \Delta u + \nabla p = 0, \quad \text{div} \, u = 0,
\] (1.1)

describing the flow velocity \(u : \Omega \times (0, \infty) \to \mathbb{R}^3 \) of an incompressible viscous fluid in a container \(\Omega \subset \mathbb{R}^3 \). Note that we use the classical notation \(u \cdot \nabla u = u_\mu \partial_\mu u \) (sum over repeated indices). We advance a variational approach to the existence of classical Leray–Hopf weak solutions [63] to system (1.1) by minimizing the functionals \(F^\varepsilon \) on entire trajectories
\[
F^\varepsilon(u) = \int_0^\infty \int_\Omega \left[e^{-t/\varepsilon} \left\{ \frac{1}{2} |\partial_t u + u \cdot \nabla u|^2 + \frac{\sigma}{2} |u \cdot \nabla u|^2 + \frac{\nu}{2\varepsilon} |\nabla u|^2 \right\} \right] \, dx \, dt
\] (1.2)

under the incompressibility constraint \(\text{div} \, u = 0 \) and for given initial and (homogeneous Dirichlet) boundary conditions. Here, \(\sigma > 0 \) is a constant and \(\varepsilon > 0 \) is a small parameter, eventually tending to 0.

The relation between the minimization of \(F^\varepsilon \) and the Navier–Stokes system (1.1) is revealed by formally computing the Euler–Lagrange equation for \(F^\varepsilon \) at a critical point \(u^\varepsilon \), namely
\[
0 = \partial_t u^\varepsilon + u^\varepsilon \cdot \nabla u^\varepsilon - \nu \Delta u^\varepsilon + \nabla p
+ \varepsilon \left(- \partial_t (\partial_t u^\varepsilon + u^\varepsilon \cdot \nabla u^\varepsilon) - \text{div}((\partial_t u^\varepsilon + u^\varepsilon \cdot \nabla u^\varepsilon) \otimes u^\varepsilon) + (\nabla u^\varepsilon)^\top (\partial_t u^\varepsilon + u^\varepsilon \cdot \nabla u^\varepsilon) \right)
+ \varepsilon \sigma (- \text{div}((u^\varepsilon \cdot \nabla u^\varepsilon) \otimes u^\varepsilon) + (\nabla u^\varepsilon)^\top (u^\varepsilon \cdot \nabla u^\varepsilon)).
\] (1.3)

Note that the first line above is nothing but the first equation in (1.1). The term \(\nabla p \) is the Lagrangian multiplier corresponding to the constraint \(\text{div} \, u = 0 \). The second and third lines in (1.3) feature terms premultiplied by the small parameter \(\varepsilon \). By taking \(\varepsilon \to 0 \) in the Euler–Lagrange equation (1.3) one formally recovers a solution of (1.1). This paper is devoted to make this program rigorous. Our aim is to prove that

The functional \(F^\varepsilon \) admits minimizers \(u^\varepsilon \) for all \(\varepsilon > 0 \) (proposition 4.1) and, up to subsequences, such minimizers converge to a Leray–Hopf solution of the Navier–Stokes system as \(\varepsilon \to 0 \) (theorem 3.2).

The \(\varepsilon \)-dependent part of the Euler–Lagrange equation (1.3) features the term \(-\varepsilon \partial_t^2 u^\varepsilon \) as well. The minimization of \(F^\varepsilon \) hence corresponds to performing an elliptic regularization in time of the Navier–Stokes system (1.1). In particular, the minimizers \(u^\varepsilon \) of \(F^\varepsilon \) are more regular in time with respect to the limiting Leray–Hopf solutions.

Elliptic regularizations of evolution problems have been introduced by Lions [37] and then used by Kohn and Nirenberg [30] and Oleinik [48] in order to discuss regularity issues. The reader is referred to the book by Lions and Magenes [40] for an account of results in the linear setting. Nonlinear systems, yet under stronger growth assumptions on the viscosity, including an application to Navier–Stokes are investigated by Lions in [38, 39]. By way of contrast to our set-up, for the elliptic regularizations in these contributions no variational structure is available.

The novelty of our contribution is that of directly moving from a global-in-time variational perspective. The \(\varepsilon \)-dependent functionals \(F^\varepsilon \) correspond to the weighted inertia-dissipation-energy (WIDE) functionals for viscous-fluid flows. They are obtained as the weighted sum of inertia, dissipation, and energy of the fluid. We present an account of this derivation in section 2 below. Let us however stress that, in addition to the above-mentioned classical terms, we include in the analysis a \(\sigma \) stabilization term. This is instrumental in proving \textit{a priori} estimates and, as it is apparent from inspecting the Euler–Lagrange equation (1.3), has no influence...
on the limit system. We note that stabilization is a standard tool in numerical methods for compressible and incompressible flows (see, e.g. [28] for a review). The specific regularization employed in this work is referred to as ‘streamline-upwind/Petrov–Galerkin’ (SUPG) regularization in the numerical literature and was first introduced in [10].

The study of WIDE functionals started from the case of gradient flows (no inertia, quadratic dissipation) and has to be traced back at least to Ilmanen [29], who used a global-in-time variational method to tackle existence and partial regularity of the Brakke mean-curvature flow of varifolds. An application to existence of periodic solutions for gradient flows is given by Hirano in [27]. The variational nature of elliptic regularization is at the core of [16, problem 3, p 487] of the classical textbook by Evans. Two examples of relaxation related with microstructure evolution have been provided in [13] and the case of mean-curvature evolution of Cartesian surfaces is in [59]. The analysis of the WIDE approach for abstract gradient flows for λ-convex and nonconvex energies is in [5, 46] in the Hilbertian case and in [53, 54] in the metric case. Melchionna [42] extended the theory to classes of nonpotential perturbations and Bölgelein et al [9] recently used this variational approach to prove the existence of variational solutions to the equation

\[u_t - \nabla \cdot f(x, u, \nabla u) + \partial_x f(x, u, \nabla u) = 0 \]

where the field \(f \) is convex in \((u, \nabla u)\).

Doubly nonlinear parabolic evolution equations can be tackled by the WIDE variational formalism as well. The first result in this direction is in [44], where the case of rate-independent processes is addressed. The corresponding time discretization has been presented in the subsequent [45] and an application to crack-front propagation in brittle materials is in [32]. The rate-dependent case has been analyzed in [1–4]. See also Liero and Melchionna [33] for a stability result via \(\Gamma \)-convergence [14] and Melchionna [43] for an application to the study of symmetries of solutions.

In the dynamic case, De Giorgi conjectured in [15] that the WIDE functional procedure could be implemented in the setting of semilinear waves. This has been ascertained in [60] (for the finite-time case) and in Serra and Tili [57] (for the infinite-time case). The possibility of following this same variational approach in other hyperbolic situations has also been pointed out in [15]. Indeed, extensions to mixed hyperbolic-parabolic semilinear equations [35], to different classes of nonlinear energies [34, 58], and to nonhomogeneous equations [64] are also available. Here, we further develop De Giorgi’s approach by showing its applicability to fluids. When formulated in terms of the fluid motion \(\varphi : \Omega \times [0, \infty) \to \Omega \), fluid dynamics is hyperbolic. The corresponding WIDE functional (2.6) is derived in section 2. Such functional is then recast in form of \(I^\varepsilon \) by changing variables from the Lagrangian motion \(\varphi \) to the Eulerian velocity field \(u = \dot{\varphi} \circ \varphi^{-1} \).

The literature on the Navier–Stokes system is huge and we shall not attempt to review it here. The reader is referred to [52, 56, 63] for a collection of results. On the other hand, global-in-time variational approaches to (1.1) are just a few. A complete variational resolution has been provided by Ghoussoub within the theory of self-dual Lagrangians [20]. In particular, in [19, 21] the Navier–Stokes system is reformulated in terms of a so-called null-minimization principle, namely the attainment the value 0 of a specific nonnegative functional inspired by Fenchel’s duality. Such attainment is then ascertained in [19, 21], giving rise to a complete existence theory for periodic-in-time solutions.

In [49] Pedregal characterizes weak solutions as those \(u \) such that \(E(v) = 0 \) for a given error functional \(E \) computed on the function \(v = Tu \) where the mapping \(T \) is defined by minimizing a second functional parametrized by \(u \). This approach provides an existence theory in 2D only.

Solutions of the Navier–Stokes system are related by Gomes [24, 25] to critical points of a stochastic control problem on the group of area-preserving diffeomorphisms, see also
[6, 65] for some related discussion. Note however that the analysis in [24, 25] assumes sufficient smoothness. In particular, it does not directly originate an existence theory.

Moving from the transport-diffusion scheme by Pironneau [50], Gigli and Mosconi [22] present a variational time discretization based on minimizing movements and prove convergence as the fineness of the time-partition goes to 0. A saddle-point formulation in space-time is investigated from the numerical viewpoint by Schwab and Stevenson [55].

2. Weighted inertia-dissipation-energy functionals for viscous fluids

We devote this section to discuss the weighted inertia-dissipation-energy (WIDE) variational approach to general rate problems as well as its application to the motion of incompressible viscous fluids. This brings to a justification of the particular form of the functional I^ε.

Many physical systems are described by models in rate form: The state of the system is described by a trajectory $\varphi : [0, \infty) \to H$ in the Hilbert space H solving the nonlinear differential inclusion

$$0 \in \rho \ddot{\varphi}(t) + \partial \Psi(\varphi(t), \dot{\varphi}(t)) + \partial \varphi E(t, \varphi(t)), \quad (2.1a)$$

$$\varphi(0) = \varphi_0, \quad \dot{\varphi}(0) = \varphi^1.$$

Here, dots represent time derivation, $\rho > 0$, $\Psi : H \times H \to [0, \infty]$ is the dissipation potential which is convex in the second argument, and $E : [0, \infty) \times H \to \mathbb{R} \cup \{\infty\}$ is the time-dependent energy function. Relation (2.1a) results from the balance between the system of inertial forces $\rho \ddot{\varphi}$, the system of dissipative forces $\partial \varphi \Psi$, and that of conservative forces $\partial \varphi E$, where ∂ stands for the partial (sub)differential. The trajectory $t \mapsto \varphi(t)$ of the system is the result of this balance and of the initial conditions (2.1b).

A time discretization of Problem (2.1) is given by

$$\inf_{\varphi_{n+1} \in H} F_{n+1}(\varphi_{n+1}; \varphi_n), \quad n = 1, 2, \ldots, \quad (2.2)$$

for $\varphi_n = \varphi(t_n)$, where

$$F_{n+1}(\varphi_{n+1}; \varphi_n) = \frac{\tau}{2} \left\| \frac{\varphi_{n+1} - 2\varphi_n + \varphi_{n-1}}{\tau^2} \right\|^2_H + \Psi \left(\frac{\varphi_{n+1} - \varphi_n}{\tau} \right) - \Psi \left(\frac{\varphi_n - \varphi_{n-1}}{\tau} \right) + E(t_{n+1}, \varphi_{n+1}) - 2E(t_n, \varphi_n) + E(t_{n-1}, \varphi_{n-1})$$

and $\tau > 0$ is the time step. We verify that, indeed, the Euler–Lagrange equations of this problem are

$$0 \in \rho \frac{\varphi_{n+1} - 2\varphi_n + \varphi_{n-1}}{\tau^2} + \partial \Psi \left(\frac{\varphi_{n+1} - \varphi_n}{\tau} \right) + \partial \varphi E(t_{n+1}, \varphi_{n+1})$$

which may be regarded as a central-difference/backward-Euler time discretization of (2.1a). The causal nature of Problem (2.1) is reflected in the fact that the minimizations (2.2) are solved sequentially: problem $n = 1$ is solved first with initial conditions φ_0 and $\varphi_1 = \varphi_0 + \tau \varphi^1$ in order to compute φ_2; subsequently, problem $n = 2$ is solved to compute φ_3, taking the solution φ_2 of the preceding problem and φ_1 as initial conditions; and so on. Alternatively,
by following [44] we proceed to formulate a single minimum problem for the entire trajectory \(\varphi = \{ \varphi_2, \varphi_3, \ldots \} \) by stringing together all the incremental problems (2.2) with Pareto weights \(e^{-t/\varepsilon} \), where \(\varepsilon > 0 \) is a small parameter. The resulting functional is

\[
F^\varepsilon(\{\varphi_2, \varphi_3, \ldots \}; \tau) = \sum_{n=1}^{\infty} e^{-t_{n+1}/\varepsilon} \left\{ \frac{\rho}{2} \left\| \varphi_{n+1} - 2\varphi_n + \varphi_{n-1} \right\|_2^2 + \frac{1}{\tau} \left[\Psi \left(\frac{\varphi_{n+1} - \varphi_n}{\tau} \right) - \Psi \left(\frac{\varphi_n - \varphi_{n-1}}{\tau} \right) \right] + \frac{E(t_{n+1}, \varphi_{n+1}) - 2E(t_n, \varphi_n) + E(t_{n-1}, \varphi_{n-1})}{\tau^2} \right\} \tau.
\] (2.3)

In the causal limit of \(\varepsilon \to 0 \), the exponential weights accord disproportionately larger importance to the first incremental problem relative to the second, to the second incremental problem relative to the third, and so on, as required by causality. The functional (2.3) may formally be regarded as a time discretization of the continuous-time functional

\[
F^\varepsilon(\varphi) = \int_0^\infty e^{-t/\varepsilon} \left\{ \frac{\rho}{2} \left\| \dot{\varphi}(t) \right\|_2^2 + \frac{d}{dt} \Psi (\varphi(t), \dot{\varphi}(t)) + \frac{d^2}{dt^2} E(t, \varphi(t)) \right\} dt
\]

and integration by parts gives

\[
F^\varepsilon(\varphi) = \int_0^\infty e^{-t/\varepsilon} \left\{ \frac{\rho}{2} \left\| \dot{\varphi}(t) \right\|_2^2 + \frac{1}{\varepsilon} \Psi (\varphi(t), \dot{\varphi}(t)) + \frac{1}{\varepsilon^2} E(t, \varphi(t)) \right\} dt
+ \left[e^{-t/\varepsilon} \left(\Psi (\varphi(t), \dot{\varphi}(t)) + \dot{E}(t, \varphi(t)) \right) \right]_0^\infty + \frac{1}{\varepsilon} \left[e^{-t/\varepsilon} E(t, \varphi(t)) \right]_0^\infty.
\]

Assume that the terms \(e^{-t/\varepsilon} (\Psi (\varphi(t), \dot{\varphi}(t)) + \dot{E}(t, \varphi(t))) \) and \(e^{-t/\varepsilon} E(t, \varphi(t)) \) vanish at \(t = \infty \) and drop them at \(t = 0 \), for these just depend on the fixed initial conditions and do not affect the minimization. This leads to the general WIDE functional

\[
F^\varepsilon(\varphi) = \int_0^\infty e^{-t/\varepsilon} \left\{ \frac{\rho}{2} \left\| \dot{\varphi}(t) \right\|_2^2 + \frac{1}{\varepsilon} \Psi (\varphi(t), \dot{\varphi}(t)) + \frac{1}{\varepsilon^2} E(t, \varphi(t)) \right\} dt.
\] (2.4)

Assuming sufficient differentiability, the Euler–Lagrange equation of \(F^\varepsilon \) is

\[
\frac{d^2}{dt^2} \left(e^{-t/\varepsilon} \rho \dot{\varphi} \right) + e^{-t/\varepsilon} \frac{1}{\varepsilon} \partial_\varphi \Psi (\varphi, \dot{\varphi}) + \frac{d}{dt} \left(e^{-t/\varepsilon} \frac{1}{\varepsilon} \partial_{\dot{\varphi}} \Psi (\varphi, \dot{\varphi}) \right) + e^{-t/\varepsilon} \frac{1}{\varepsilon^2} \partial_{\dot{\varphi}} E(t, \varphi) \equiv 0
\]

which, upon simplification, reduces to

\[
0 \in \rho \ddot{\varphi} + \partial_\varphi \Psi (\varphi, \dot{\varphi}) + \partial_{\dot{\varphi}} E(t, \varphi)
- \frac{1}{\varepsilon} \left[2\rho \ddot{\varphi} - \partial_\varphi \Psi (\varphi, \dot{\varphi}) + \partial_\varphi \partial_{\dot{\varphi}} \Psi (\varphi, \dot{\varphi}) \dot{\varphi} + \dot{\varphi} \partial_{\dot{\varphi}} \Psi (\varphi, \dot{\varphi}) \dot{\varphi} \right] + e^2 \rho \ddot{\varphi}.
\]

The original problem (2.1a) is formally recovered in the limit of \(\varepsilon \to 0 \) as the terms in the second line drop. Note that the term \(e^2 \rho \ddot{\varphi} \) qualifies the latter as an elliptic regularization of relation (2.1a).

As mentioned in the Introduction, the above described variational procedure has been conjectured by De Giorgi [15] to be amenable for general functionals of the calculus of variations of the form (2.4) (actually \(\Psi = 0 \) is assumed in [15]). Our results confirm this possibility in the specific case of incompressible fluids. Let \(\varphi : \Omega \times [0, \infty) \to \Omega \subset \mathbb{R}^3 \) be the motion of a
Newtonian viscous fluid in a container Ω. For simplicity, we suppose that the fluid is free of body forces (these can easily be added) and the deformation mapping φ vanishes at the boundary $\partial \Omega$ of the container (no slip boundary conditions). Let $\rho : \Omega \rightarrow (0, \infty)$ denote the density of the fluid at time $t = 0$ and assume Newtonian viscosity, i.e. that the viscous part σ^v of the Cauchy stress tensor, and the rate of deformation tensor

$$d = \text{sym}(\dot{F}F^{-1}) = \frac{1}{2}((\dot{F}F^{-1}) + (\dot{F}F^{-1})^T)$$

obey the relation

$$\sigma^v = \lambda \text{tr}(d)I + 2\mu \text{dev}(d)$$

(2.5)

where $F = \nabla \varphi$ is the deformation gradient, $\text{dev}(d) = d - \text{tr}(d)/3$ is the deviatoric part of d, λ and μ are the bulk and the shear viscosity parameters, and I is the identity 2-tensor. The viscosity law (2.5) may be expressed explicitly as a function of \dot{F} and F in the form

$$\sigma^v(F, \dot{F}) = \lambda \text{tr}(\dot{F}F^{-1})I + \mu \text{dev}(\dot{F}F^{-1} + F^{-\top}\dot{F}^\top).$$

The corresponding viscous part of the first Piola-Kirchhoff stress tensor is

$$P^v(F, \dot{F}) = J\sigma^vF^{-\top},$$

where $J = \det(F)$. The total stress is then

$$P(F, \dot{F}) = -\pi I + P^v(F, \dot{F})$$

where π is the hydrostatic pressure of the fluid. A simple calculation reveals that the Newtonian viscosity law possesses the potential structure

$$P^v = \partial_\dot{F}\psi(F, \dot{F}),$$

where the viscous potential per unit undeformed volume is

$$\psi(F, \dot{F}) = J \left\{ \lambda \frac{1}{2} \text{tr}(d)^2 + \mu |\text{dev}(d)|^2 \right\}. $$

For later reference we also introduce the viscous potential per unit deformed volume as

$$\psi(d) = J^{-1}\psi(F, \dot{F}) = \frac{\lambda}{2} \text{tr}(d)^2 + \mu |\text{dev}(d)|^2,$$

which has the property that

$$\sigma^v = \partial_d\psi(d).$$

The viscous potential reads hence

$$\Psi(\varphi, \dot{\varphi}) = \int_\Omega \psi(\nabla \varphi, \nabla \dot{\varphi}) \, dx.$$

On the other hand, the energy is given by

$$E(\varphi) = \int_\Omega e(J) \, dx$$

where $e(J)$ is the internal energy density as a function of specific volume.

Let us now restrict our attention to incompressible fluids. In this case, the internal energy reduces to
\[e(J) = \begin{cases} 0 & \text{if } J = 1 \text{ a.e. in } \Omega, \\ \infty & \text{otherwise} \end{cases} \]

and we get \(\text{tr}(d) = 0 \) in (2.5), and let \(\rho = \rho_0 \) constant and \(\nu = \mu / \rho_0 \) be the kinematic viscosity coefficient. By using the Eulerian velocity field \(v = \dot{\varphi} \circ \varphi^{-1} \) we can transform the representation of the motion from Lagrangian to Eulerian. The incompressibility constraint \(J = 1 \) along the flow corresponds via Jacobi identity to \(\text{div} v = 0 \) and we can rewrite the viscous dissipation potential as

\[
\int_{\Omega} \psi(d) \, dx = \mu \int_{\Omega} |\text{dev}(\text{sym} \nabla v)|^2 \, dx = \mu \int_{\Omega} |\text{sym} \nabla v|^2 \, dx.
\]

Hence, the WIDE functional

\[
F^\varepsilon(\varphi) = \int_0^\infty e^{-t/\varepsilon} \left\{ \int_{\Omega} \left(\frac{\rho}{2} |\dot{\varphi}|^2 + \frac{1}{\varepsilon} \psi(\nabla \varphi, \nabla \dot{\varphi}) + \frac{1}{\varepsilon^2} e(J) \right) \, dx \right\} \, dt
\]

(2.6)

can be rewritten as

\[
\frac{1}{\rho_0} F^\varepsilon(\varphi) \equiv I_\varepsilon^0(v) := \begin{cases} \int_0^\infty e^{-t/\varepsilon} \int_{\Omega} \left\{ \frac{1}{2} |\partial_t v + v \cdot \nabla v|^2 + \frac{\varepsilon}{2} |\text{sym} \nabla v|^2 \right\} \, dx \, dt \\ \infty & \text{if } \text{div} v = 0 \text{ a.e. in } \Omega \times (0, \infty), \\
\text{otherwise}. \end{cases}
\]

Assuming sufficient differentiability, the corresponding Euler–Lagrange equations read as

\[
\begin{align*}
- \partial_t \left(e^{-t/\varepsilon} \rho_0 (\partial_j v_i + v_j \partial_i v_i) \right) + e^{-t/\varepsilon} \rho_0 (\partial_j v_k + v_j \partial_k v_k) \partial_i v_j \\
- \partial_i \left(e^{-t/\varepsilon} \rho_0 (\partial_j v_i + v_j \partial_i v_i) v_k \right) - \frac{1}{\varepsilon} e^{-t/\varepsilon} (\mu \Delta v_i - \partial_i \pi) = 0
\end{align*}
\]

(repeated indices to be summed) for \(i = 1, \ldots, n \), which, upon simplification, reduces to

\[
0 = (\partial_t v_i + v_j \partial_j v_i) - \nu \Delta v_i + \partial_i p \\
+ \varepsilon \left[- \partial_i ((\partial_j v_i + v_j \partial_i v_i)) + (\partial_k v_k + v_j \partial_j v_i) \partial_i v_k - \partial_k ((\partial_i v_i + v_j \partial_j v_i) v_k) \right]
\]

where \(p = \pi / \rho_0 \) is the pressure per unit mass. The incompressible Navier–Stokes system (1.1) can hence be formally recovered in the causal limit of \(\varepsilon \to 0 \).

The analysis of the functional \(I_\varepsilon^0 \) is quite challenging, for the nonlinear term \(\partial_t v + v \cdot \nabla v \) couples the time derivative \(\partial_t v \) and the nonlinear convection term \(v \cdot \nabla v \) and a separate control of these two terms seems not available. We hence resort in stabilizing \(I_\varepsilon^0 \) by augmenting it with the additional term

\[
\int_{\Omega} \frac{\sigma}{2} |v \cdot \nabla v|^2 \, dx.
\]

(2.7)

Up to the addition of such stabilization term, the functional \(I^\varepsilon \) from (1.2) and the WIDE functional \(I_\varepsilon^0 \) coincide (note that \(2||\text{sym} \nabla v||^2 = ||\nabla v||^2 \) on divergence-free fields vanishing at the boundary). The inclusion of the \(\sigma \) stabilizing term does not affect the limit \(\varepsilon \to 0 \) of the Euler–Lagrange equations. Indeed, any additional term of order one in \(\varepsilon \) which does not contain a time derivative will not appear to leading order in the Euler–Lagrange equations. In particular, such a term will vanish in the causal limit \(\varepsilon \to 0 \). Yet, as we will see, such stabilization allows for significantly improved \textit{a priori} estimates.

The specific form (2.7) for a stabilization term is not the only possibility. As will become clear from our analysis (see proposition 6.1), other choices would lead to the same \textit{a priori} estimates and, eventually, to the same convergence result.
As mentioned in the Introduction, the minimization of I^ε delivers an elliptic-in-time approximation of the incompressible Navier–Stokes system. In particular, the minimizers I^ε are more regular in time with respect to Leray–Hopf solutions. As it will be clear from the proof of our main result, such additional time regularity is lost as $\varepsilon \to 0$. This singular-perturbation procedure has indeed been pioneered by [38, 39], who proved existence of Leray–Hopf solutions by augmenting the incompressible Navier–Stokes system by $-\varepsilon \partial_t^2 v$ and taking the limit as $\varepsilon \to 0$. In constrast to the WIDE approach, Lions’ method is nonvariational, for the ε-approximating system is not an Euler–Lagrange equation of a functional.

Before moving on, let us mention that weak solutions of the incompressible Navier–Stokes system can be tackled by a variety of alternative methods. The classical approach to existence is via Faedo–Galerkin approximations [62, 63]. More specifically, finite elements [23] as well as spectral [11, 26], stabilized [10, 28], isogeometric [17], and collocation [7] approximations have been deeply studied. Time discretizations [41, 47], including parareal [18] and transport-diffusion schemes [22, 50] have been set forth, giving rise to space-time schemes [55, 63]. Finite differences [61] and finite volumes [31] schemes have been considered as well. Another option are regularization and iterative methods, possibly in combination with suitable reformulations of the problem [8, 12, 36, 51].

3. Statement of the main result

Let us start by setting up the functional frame. Let $\Omega \subset \mathbb{R}^3$ be an open bounded set with Lipschitz boundary $\partial \Omega$. In the following, we indicate with $\| \cdot \|_E$ the norm of the Banach space E and by $\| \cdot \|$ the norm of a square integrable function, regardless of the number of its components. Let $V := \{ v \in C^\infty_c(\Omega; \mathbb{R}^3) : \text{div} v = 0 \}$ be given and introduce the Hilbert spaces $V_s :=$ the closure of V in $H^s(\Omega; \mathbb{R}^3)$, $H :=$ the closure of V in $L^2(\Omega; \mathbb{R}^3)$, for $s \geq 1$. If $s = 1$ we simply write $V = V_1$. Identifying H with its dual H' we have the dense and continuous inclusions $V_s \hookrightarrow V \hookrightarrow H \equiv H' \hookrightarrow V'_s$.

Suppressing s, the dual pairing between V'_s and V_s is denoted by $\langle \cdot, \cdot \rangle : V'_s \times V_s \to \mathbb{R}$. We denote by $A : V \to V'$ ($\hookrightarrow V'_s, s \geq 1$) the Stokes operator given by

$$\langle A v, \psi \rangle = \int_\Omega \nabla v : \nabla \psi \, dx \quad \forall v, \psi \in V, \quad (3.1)$$

which satisfies

$$\|A v\|_{V'} \leq C \|\nabla v\| \quad \forall v \in V. \quad (3.2)$$

Let us now define the quadratic functional $B : V \to V'$ as

$$\langle B(v), \psi \rangle := \int_\Omega [v \cdot \nabla v] \cdot \psi \, dx = - \int_\Omega (v \otimes v) : \nabla \psi \, dx \quad \forall v, \psi \in V. \quad (3.3)$$

Note that $[v \cdot \nabla v] \cdot \psi \in L^{6/5}(\Omega)$ for all $v, \psi \in V$ and that we have

$$\|B(v)\|_{V'} \leq C \|v\|_{V_s}^2 \leq C \|v\|^2 \quad \forall v \in V \quad (3.4)$$

and, for all $s > 3/2$
\[\|B(v)\|_{V'} \leq C \|v \cdot \nabla v\|_{L^1(\Omega; \mathbb{R}^3)} \leq C \|v\|_{V}^3 \quad \forall v \in V, \tag{3.5} \]

where we have used that \(V \hookrightarrow L^\infty(\Omega; \mathbb{R}^3) \).

For a given initial condition \(u_0 \in H \) we choose a sequence \(u_0^\varepsilon \in V \) (by using, e.g. that \(V \) is dense in \(H \)) with
\[u_0^\varepsilon \to u_0 \quad \text{in} \quad H \quad \text{and} \quad \|\nabla u_0^\varepsilon\|^2 + \varepsilon \|u_0^\varepsilon \cdot \nabla u_0^\varepsilon\|^2 \leq C_0 \varepsilon^{-1} \tag{3.6} \]
for some constant \(C_0 > 0 \) and define the admissible set of trajectories as
\[U^\varepsilon := \{ u \in L^2_{\text{loc}}(0, \infty; V) : \partial_t u + u \cdot \nabla u, \sigma u \cdot \nabla u \in L^2_{\text{loc}}(0, \infty; L^2(\Omega; \mathbb{R}^3)), u(0) = u_0^\varepsilon \}. \]

Note that, for all \(u \in U^\varepsilon \), from \(u \in L^2_{\text{loc}}(0, \infty; V) \) one has that \(u \cdot \nabla u \in L^2_{\text{loc}}(0, \infty; L^{3/2}(\Omega; \mathbb{R}^3)) \). Hence \(\partial_t u \in L^2_{\text{loc}}(0, \infty; L^2(\Omega; \mathbb{R}^3)) \) as well, \(t \to u(t) \) is continuous in \(L^{3/2}(\Omega; \mathbb{R}^3) \), and the initial condition \(u(0) = u_0^\varepsilon \) in the definition of \(U^\varepsilon \) makes sense.

Definition 3.1 (Leray–Hopf solutions). We say that \(u \in L^2(0, \infty; V) \) is a *Leray–Hopf solution* of the Navier–Stokes system \((1.1)\) if \(\partial_t u \in L^1(0, \infty; V') \) and
\[\partial_t u + B(u) + \nu \Delta u = 0 \quad \text{in} \quad V', \quad \text{a.e. in} \quad (0, T), \tag{3.7} \]
\[u(0) = u_0 \quad \text{in} \quad H. \tag{3.8} \]

Existence of Leray–Hopf solutions is rather classical [63, theorem III.3.1]. These are actually weakly continuous from \([0, T]\) to \(H \) [63, theorem III.3.1] so that the initial condition \((3.8)\) makes sense. Moreover, the energy inequality \((3.9)\) can be guaranteed to hold true. In three dimensions they belong to \(L^{10/3}_{\text{loc}}(0, \infty; L^1(\Omega; \mathbb{R}^3)) \) if \(2r + 3/s = 3/2 \) and \(2 \leq s \leq 6 \) [52, lemma 3.5], with \(\partial_t u \in L^{10/3}_{\text{loc}}(0, \infty; V') \cap L^2(0, \infty; V'_{1/2}), B(u) \in L^{10/3}_{\text{loc}}(0, \infty; V') \) [63, theorem III.3.3], and \(u \in L^1_{\text{loc}}(\delta, \infty; W^2(\Omega; \mathbb{R}^3)) \cap W^1_{\text{loc}}(\delta, \infty; L^4(\Omega; \mathbb{R}^3)) \) for any \(\delta > 0 \) if \(2r + 3/s = 4 \) [56, theorem V.6.11]. Note that the pressure \(p \) plays the role of the Lagrange multiplier corresponding to the incompressibility constraint \(u(t) \in V \) and as such does not show up in \((3.7)\). Equivalently, one could reformulate the problem in the pair \((u, p)\), see [63, remark I.1.4 and equation (III.3.129)]. Leray–Hopf solutions are unique in two dimensions [63, theorem III.3.2]. In three dimensions, if \(u \in L^1_{\text{loc}}(0, \infty; L^4(\Omega; \mathbb{R}^3)) \) with \(2r + 3/s = 1 \) and \(s > 3 \) and \(u_0 \in V \), then \(u \) is unique among Leray–Hopf solutions satisfying the energy inequality [52, theorem 8.19].

For \(\sigma \geq 0 \) and \(\nu > 0 \) we consider the WIDE functionals \(I^\varepsilon : U^\varepsilon \to [0, \infty) \)
\[I^\varepsilon(u) = \int_0^\infty e^{-t/\varepsilon} \left\{ \frac{1}{2} \|\partial_t u + u \cdot \nabla u\|^2 + \frac{\sigma}{2} \|u \cdot \nabla u\|^2 + \frac{\nu}{2\varepsilon} \|\nabla u\|^2 \right\} dt, \]

taking values in \([0, \infty)\). (Note that any divergence-free Sobolev functions on which \(I^\varepsilon \) is finite necessarily belongs to \(U^\varepsilon \).

In proposition 4.1 below we will see that \(I^\varepsilon \) indeed admits a minimizer in \(U^\varepsilon \) for all \(\sigma \geq 0 \). For \(\sigma > 0 \) we compute the corresponding Euler–Lagrange equations in lemma 5.1 below. By assuming further that \(\sigma > 1/8 \), one can check the validity of the *a priori* bounds of proposition 6.1. These are instrumental for passing to the limit for \(\varepsilon \to 0 \). Our main result is the convergence of minimizers up to subsequences to Leray–Hopf solutions.

Theorem 3.2 (Variational approach to Navier–Stokes). Let \(\sigma > 1/8 \) and \(u^\varepsilon \in U^\varepsilon \) be a minimizer of \(I^\varepsilon \). Then there exists a subsequence (not relabeled) such that
$u^\varepsilon \rightharpoonup u$ in $L^2(0, \infty; V)$, \quad $\partial_t u^\varepsilon \rightharpoonup \partial_t u$ in $L^2(0, \infty; V')$,

$s > 5/2$, for some $u \in L^2(0, \infty; V) \cap L^\infty(0, \infty; H)$ with $u(0) = u_0$ where u is a Leray–Hopf solution of the Navier–Stokes system (1.1). Moreover, u satisfies the energy inequality

$$
\|u(T)\|^2 + 2\nu \int_0^T \|\nabla u(t)\|^2 \, dt \leq \|u_0\|^2 \quad \text{for a.e.} \ T > 0. \tag{3.9}
$$

The proof of the statement relies on a priori estimates on the Euler–Lagrange equations of I^ε. After deriving the Euler–Lagrange equations in section 5, we prove the a priori bounds in section 6. Eventually, the proof of theorem 3.2 is in section 7. An interesting open problem raised by our analysis is, if convergence to solutions of the Navier–Stokes system can also be obtained in the unstabilized case $\sigma = 0$.

Let us now comment on some possible variants of the statement. First of all, the convergence holds more generally for critical points u^ε of I^ε, as long as $I^\varepsilon(u^\varepsilon) \leq C \varepsilon^{-1}$. In case $u_0 \in V$ with $u_0 \cdot \nabla u_0 \in H$ we may choose $u_0^\varepsilon = u_0$ and no approximation as in (3.6) is needed. For general u_0 and $\sigma > 0$ this is not possible since $u \in U^\varepsilon$ implies that $u \in L^2(0, 1; V)$ and $\partial_t u \in L^2(0, 1; H)$ and hence $u(0) \in H^{1/2}(\Omega; \mathbb{R}^3)$. The occurrence of external forces can be considered as well.

A caveat on notation: In the following, we use the same symbol C for a positive constant, possibly depending on σ, ν, and C_0 but independent of ε and T. We warn the reader that the value of C may change from line to line.

4. Existence of minimizers

We start by checking that I^ε admits minimizers on U^ε for all $\sigma \geq 0$ and $\varepsilon > 0$, which are assumed to be fixed throughout this section.

Proposition 4.1 (Existence of minimizers). Let $\sigma \geq 0$. Then, there exists a minimizer u^ε of I^ε in U^ε and $I(u^\varepsilon) \leq C \varepsilon^{-1}$.

Proof. The set U^ε is not empty, as the constant-in-time trajectory $u \equiv u_0^\varepsilon$ belongs to it, see assumption (3.6). In this case one has that

$$
I^\varepsilon(u) = \int_0^\infty e^{-t/\varepsilon} \left\{ \frac{1 + \sigma}{2} \|u_0^\varepsilon \cdot \nabla u_0^\varepsilon\|^2 + \frac{\nu}{2\varepsilon} \|\nabla u_0^\varepsilon\|^2 \right\} \, dt \\
\leq \frac{(1 + \sigma)}{2} \|u_0^\varepsilon \cdot \nabla u_0^\varepsilon\|^2 + \frac{\nu}{2} \|\nabla u_0^\varepsilon\|^2 \leq C \varepsilon^{-1}.
$$

In particular, $\inf I^\varepsilon \leq C \varepsilon^{-1}$. Assume now $u_k \in U^\varepsilon$ to be a minimizing sequence for I^ε. By letting $v_k = \partial_t u_k + u_k \cdot \nabla u_k$ we have that $e^{-t/2\varepsilon} v_k$ are bounded in $L^2(0, \infty; L^2(\Omega; \mathbb{R}^3))$ and $e^{-t/2\varepsilon} u_k$ are bounded in $L^2(0, \infty; V)$. One can hence extract not relabeled subsequences such that $e^{-t/2\varepsilon}v_k \rightharpoonup e^{-t/2\varepsilon}v$ in $L^2(0, \infty; L^2(\Omega; \mathbb{R}^3))$ and $e^{-t/2\varepsilon}u_k \rightharpoonup e^{-t/2\varepsilon}u$ in $L^2(0, \infty; V)$.

Fix any $T > 0$ and note that u_k are bounded in $L^2(0, T; L^2(\Omega; \mathbb{R}^3))$ as $V \subset L^2(\Omega; \mathbb{R}^3)$. This entails that $u_k \cdot \nabla u_k$ are bounded in $L^1(0, T; L^{3/2}(\Omega; \mathbb{R}^3))$. As v_k are bounded in $L^2(0, T; L^2(\Omega; \mathbb{R}^3))$, we conclude that $\partial_t u_k$ are bounded in $L^1(0, T; L^{3/2}(\Omega; \mathbb{R}^3))$ as well. Hence, u_k are bounded in $C([0, T]; L^2(\Omega; \mathbb{R}^3))$ and, by interpolation, in $L^4(0, T; L^{12/5}(\Omega; \mathbb{R}^3))$. Eventually, both $u_k \cdot \nabla u_k$ and $\partial_t u_k$ are bounded in $L^{3/2}(0, T; L^{12/11}(\Omega; \mathbb{R}^3))$. By possibly extracting again we find a not relabeled subsequence such that
\[\partial_t u_k \to \partial_t u \text{ and } u_k \cdot \nabla u_k \to u \cdot \nabla u \text{ in } L^{4/3}(0, T; L^{12/11}(\Omega; \mathbb{R}^3)) \]

where for the last convergence we also used that \(u_k \to u \) in \(L^2(0, T; L^2(\Omega; \mathbb{R}^3)) \) strongly due to the Aubin–Lions lemma and thus \(u_k \cdot \nabla u_k \to u \cdot \nabla u \) in \(L^1(0, T; L^1(\Omega; \mathbb{R}^3)) \). This proves that \(v_k \to v = \partial_t u + u \cdot \nabla u \) in \(L^2(0, T; L^2(\Omega; \mathbb{R}^3)) \).

We now use convexity in order to check that
\[
\int_0^T e^{-t/\varepsilon} \left\{ \frac{1}{2} \| \partial_t u_k + u_k \cdot \nabla u_k \|^2 + \frac{\sigma}{2} \| u_k \cdot \nabla u_k \|^2 + \frac{\nu}{2\varepsilon} \| \nabla u_k \|^2 \right\} \, dt
\leq \liminf_{k \to \infty} \int_0^T e^{-t/\varepsilon} \left\{ \frac{1}{2} \| \partial_t u_k + u_k \cdot \nabla u_k \|^2 + \frac{\sigma}{2} \| u_k \cdot \nabla u_k \|^2 + \frac{\nu}{2\varepsilon} \| \nabla u_k \|^2 \right\} \, dt
\leq \liminf_{k \to \infty} I'(u_k) = \inf I'.
\]

It now suffices to take the limit as \(T \to \infty \) on the left-hand side above to conclude that \(I'(u) = \min I' \). \(\square \)

For later use we remark that for \(u \in U^\varepsilon \) with \(I'(u) < \infty \) it holds
\[
e^{-1/2\varepsilon}(\partial_t u + u \cdot \nabla u), \sigma e^{-1/2\varepsilon} u \cdot \nabla u \in L^2(0, \infty; L^2(\Omega; \mathbb{R}^3))
\]
and \(e^{-1/2\varepsilon} \nabla u \in L^2(0, \infty; L^2(\Omega; \mathbb{R}^{3\times 3})) \). (4.1)

5. Euler–Lagrange equations

Having established the existence of minimizers, we will now derive the corresponding Euler–Lagrange equations. The stabilization parameter \(\sigma > 0 \) is kept fixed throughout the section.

Lemma 5.1 (Euler–Lagrange equations). Let \(\sigma > 0 \) and \(u^\varepsilon \) be a minimizer of \(I' \). For any \(\varphi \in L^2_{\text{loc}}(0, \infty; V) \) with \(\partial_t \varphi \in L^2_{\text{loc}}(0, \infty; H) \), \(\varphi(0) = 0 \) and such that
\[
e^{-1/2\varepsilon} \partial_t \varphi, e^{-1/2\varepsilon} u^\varepsilon \cdot \nabla \varphi, e^{-1/2\varepsilon} u^\varepsilon \cdot \nabla \varphi, e^{-1/2\varepsilon} u^\varepsilon \cdot \nabla \varphi \in L^2(0, \infty; L^2(\Omega; \mathbb{R}^3))
\]
and \(e^{-1/2\varepsilon} \nabla \varphi \in L^2(0, \infty; L^2(\Omega; \mathbb{R}^{3\times 3})) \)

we have that
\[
\int_0^{\infty} e^{-t/\varepsilon} \int_\Omega \left(\partial_t u^\varepsilon + u^\varepsilon \cdot \nabla u^\varepsilon \right) : \left(\partial_t \varphi + u^\varepsilon \cdot \nabla \varphi + \varphi \cdot \nabla u^\varepsilon \right)
+ \sigma (u^\varepsilon \cdot \nabla u^\varepsilon) : \left(u^\varepsilon \cdot \nabla \varphi + \varphi \cdot \nabla u^\varepsilon \right) + \frac{\nu}{\varepsilon} \nabla u^\varepsilon \cdot \nabla \varphi \, dx \, dt = 0. \tag{5.1}
\]

In particular, any \(\varphi \in C^2_{\text{loc}}(0, \infty; V_s) \), \(s > 5/2 \), satisfies
\[
\int_0^{\infty} \int_\Omega \left(\partial_t u^\varepsilon + u^\varepsilon \cdot \nabla u^\varepsilon \right) : \left[\varphi + \varepsilon \partial_t \varphi + \varepsilon \varphi \cdot \nabla u^\varepsilon + \varepsilon u^\varepsilon \cdot \nabla \varphi \right]
+ \sigma \varepsilon (u^\varepsilon \cdot \nabla u^\varepsilon) : \left[\varphi \cdot \nabla u^\varepsilon + u^\varepsilon \cdot \nabla \varphi \right] + \nu \nabla u^\varepsilon \cdot \nabla \varphi \, dx \, dt = 0. \tag{5.2}
\]
Proof. The assumptions guarantee that \(u^{\varepsilon} + s \varphi \in U^{\varepsilon} \) and

\[
I^{\varepsilon}(u^{\varepsilon} + s \varphi) = \int_{0}^{\infty} e^{-t/\varepsilon} \left\{ \frac{1}{2} \| \partial_{t}(u^{\varepsilon} + s \varphi) + (u^{\varepsilon} + s \varphi) \cdot \nabla (u^{\varepsilon} + s \varphi) \|^{2} + \frac{\nu}{2 \varepsilon} \| \nabla (u^{\varepsilon} + s \varphi) \|^{2} \right\} dt
\]

is finite for any \(s \in \mathbb{R} \) and is minimized at \(t = 0 \). Indeed, by letting \(\zeta_{1} = \partial_{t} \varphi + u^{\varepsilon} \cdot \nabla \varphi + \varphi \cdot \nabla u^{\varepsilon} \), \(\zeta_{2} = \varphi \cdot \nabla \varphi \), and \(\xi_{1} = u^{\varepsilon} \cdot \nabla \varphi + \varphi \cdot \nabla u^{\varepsilon} \), \(\xi_{2} = \varphi \cdot \nabla \varphi \) one can write

\[
I^{\varepsilon}(u^{\varepsilon} + s \varphi) = \int_{0}^{\infty} e^{-t/\varepsilon} \left\{ \frac{1}{2} \| \partial_{t} u^{\varepsilon} + u^{\varepsilon} \cdot \nabla u^{\varepsilon} + s \xi_{1} + s^{2} \xi_{2} \|^{2} + \frac{\nu}{2 \varepsilon} \| \nabla u^{\varepsilon} + s \nabla \varphi \|^{2} \right\} dt.
\]

By assumption we have \(e^{-t/2 \varepsilon} \zeta_{1}, e^{-t/2 \varepsilon} \zeta_{2}, e^{-t/2 \varepsilon} \xi_{1}, e^{-t/2 \varepsilon} \xi_{2} \in L^{2}(0, \infty; L^{2}(\Omega; \mathbb{R}^{3})) \). In combination with (4.1) this shows that \(I^{\varepsilon}(u^{\varepsilon} + s \varphi) \) is differentiable with

\[
0 = \frac{d}{ds} \bigg|_{s=0} I^{\varepsilon}(u^{\varepsilon} + s \varphi) = \int_{0}^{\infty} e^{-t/\varepsilon} \int_{\Omega} \left(\partial_{t} u^{\varepsilon} + u^{\varepsilon} \cdot \nabla u^{\varepsilon} \right) \cdot \xi_{1} + \sigma(u^{\varepsilon} \cdot \nabla u^{\varepsilon}) \cdot \xi_{1} + \frac{\nu}{\varepsilon} \nabla u^{\varepsilon} \cdot \nabla \varphi \, dx \, dt
\]

as claimed.

Consider now \(\varphi \in C_{c}^{\infty}(0, \infty; V_{s}) \), \(s > 5/2 \), and let \(\psi = e^{t/\varepsilon} \varphi \) so that \(\partial_{t} \psi = e^{t/\varepsilon} \partial_{t} \varphi + e^{-t/\varepsilon} \varphi \in L^{2}(0, \infty; L^{2}(\Omega; \mathbb{R}^{3})) \). Since \(V_{s} \hookrightarrow W^{1,\infty}(\Omega; \mathbb{R}^{3}) \) and \(\varphi \) has compact support in \(\tau \) we infer from (4.1) that \(\psi \) satisfies the assumptions of the first part of the lemma. Equation (5.2) is now a direct consequence of (5.1) applied to \(\psi \). \(\Box \)

We may equivalently write equality (5.2) as

\[
\int_{0}^{\infty} \int_{\Omega} e \left[\partial_{t} u^{\varepsilon} + u^{\varepsilon} \cdot \nabla u^{\varepsilon} \right] \cdot \partial_{t} \varphi + \left[\partial_{t} u^{\varepsilon} + u^{\varepsilon} \cdot \nabla u^{\varepsilon} \right] \cdot \varphi
+ e \left[\partial_{t} u^{\varepsilon} + (1 + \sigma) u^{\varepsilon} \cdot \nabla u^{\varepsilon} \right] \cdot \varphi
+ \left[e \left(\partial_{t} u^{\varepsilon} + (1 + \sigma) u^{\varepsilon} \cdot \nabla u^{\varepsilon} \right) \otimes u^{\varepsilon} + \nu \nabla u^{\varepsilon} \right] \cdot \nabla \varphi
\, dx \, dt = 0
\]

which corresponds indeed to the weak formulation of (1.3). By using the quadratic function \(B \) introduced in (3.3) we furthermore set

\[
u^{\varepsilon} = \partial_{t} u^{\varepsilon} + B(u^{\varepsilon}) = \partial_{t} u^{\varepsilon} + u^{\varepsilon} \cdot \nabla u^{\varepsilon}
\]

where the latter equality follows from the fact that \(u^{\varepsilon} \cdot \nabla u^{\varepsilon} \in L^{2}(\Omega; \mathbb{R}^{3}) \). (More precisely, \(B(u^{\varepsilon}) \in H \subset V' \) is the \(L^{2} \)-orthogonal projection of \(u^{\varepsilon} \cdot \nabla u^{\varepsilon} \) onto \(H \).) Since \(u^{\varepsilon}, \partial_{t} u^{\varepsilon}, u^{\varepsilon} \cdot \nabla u^{\varepsilon} \in L^{2}_{\text{loc}}(0, \infty; L^{2}(\Omega; \mathbb{R}^{3})) \), \(\nabla u^{\varepsilon} \in L^{2}_{\text{loc}}(0, \infty; L^{2}(\Omega; \mathbb{R}^{3} \times \mathbb{R}^{3})) \), and \(V_{s} \hookrightarrow W^{1,\infty}(\Omega; \mathbb{R}^{3}) \) for \(s > 5/2 \), we have that \(f^{\varepsilon} \) and \(g^{\varepsilon} \), defined by

\[
\langle f^{\varepsilon}(t), \psi \rangle = \int_{\Omega} e \left(\nabla u^{\varepsilon} \right)^{T} \left[\partial_{t} u^{\varepsilon} + (1 + \sigma) u^{\varepsilon} \cdot \nabla u^{\varepsilon} \right] \cdot \psi \, dx,
\]
\[\langle g^\varepsilon(t), \psi \rangle = \int_{\Omega} \varepsilon \left[\partial_t u^\varepsilon + (1 + \sigma) u^\varepsilon \cdot \nabla u^\varepsilon \right] \otimes u^\varepsilon : \nabla \psi \, dx \] \tag{5.6}

for a.e. \(t \) for all \(\psi \in V \) are elements of \(L^1_{\text{loc}}(\Omega; V') \) with
\[
\|f^\varepsilon\|_{L^1(0,T;V')} \leq C \varepsilon \|\nabla u^\varepsilon\|_{L^1(0,T;L^2(\Omega;\mathbb{R}^3))} \|\partial_t u^\varepsilon + (1 + \sigma) u^\varepsilon \cdot \nabla u^\varepsilon\|_{L^1(0,T;L^2(\Omega;\mathbb{R}^3))}, \tag{5.7}
\]
\[
\|g^\varepsilon\|_{L^1(0,T;V')} \leq C \varepsilon \|\nabla u^\varepsilon\|_{L^1(0,T;L^2(\Omega;\mathbb{R}^3))} \|u^\varepsilon\|_{L^1(0,T;L^2(\Omega;\mathbb{R}^3))}. \tag{5.8}
\]

for any \(T > 0 \). By recalling the definition (3.1) of the Stokes operator \(A : V \to V' \hookrightarrow V' \), we obtain from lemma 5.1 the following.

Corollary 5.2 (Euler–Lagrange equations, strong form). Let \(u^\varepsilon \) be a minimizer of \(I^\varepsilon \) on \(U^\varepsilon \) and \(v^\varepsilon, f^\varepsilon, g^\varepsilon \) be defined in (5.4), (5.5) and (5.6), respectively. Then
\[
\int_0^\infty \left(\varepsilon \nabla v^\varepsilon \cdot \partial_t \varphi \right)_H + \langle v^\varepsilon + f^\varepsilon + g^\varepsilon + \nu Au^\varepsilon, \varphi \rangle \, dt = 0 \tag{5.9}
\]
for all \(\varphi \in C_0^\infty(0, \infty; V), s > 5/2 \). In fact, \(u^\varepsilon \) is a solution to the elliptic problem
\[
-\varepsilon \partial_t v^\varepsilon + \nu v^\varepsilon + f^\varepsilon + g^\varepsilon + \nu Au^\varepsilon = 0 \tag{5.10}
\]
in \(L^1_{\text{loc}}(0, \infty; V') \).

Proof. First note that relation (5.9) is an immediate consequence of the former (5.3). Hence, equation (5.10) holds in the sense of distributions \(D'(0, \infty; V') \) on \((0, \infty) \) with values in \(V' \). In particular, as \(v^\varepsilon, f^\varepsilon, g^\varepsilon, Au^\varepsilon \in L^1_{\text{loc}}(0, \infty; V') \) we have that \(\partial_t v^\varepsilon \in L^1_{\text{loc}}(0, \infty; V') \) as well. □

6. A priori estimates

In order to pass to the limit \(\varepsilon \to 0 \) in the Euler–Lagrange equations and prove theorem 3.2 we now provide estimates on the minimizers \(u^\varepsilon \). This requires \(\sigma > 1/8 \), which is assumed throughout this section. At first, moving from lemma 5.1 we prove in proposition 6.1 an energy estimate which formally consists in testing the Euler–Lagrange equations by \(u^\varepsilon \). Then, proposition 6.2 exploits the strong form of the Euler–Lagrange equations from corollary 5.2 in order to deduce bounds in dual spaces. Their derivation with the help of the convolution kernel \(K \) (see (6.5)) is inspired by a similar reasoning in [39].

Proposition 6.1 (Energy estimate). Let \(\sigma > 1/8 \). All minimizers \(u^\varepsilon \in U^\varepsilon \) of \(I^\varepsilon \) satisfy
\[
\|\partial_t u^\varepsilon\|_{L^1(0,\infty;H^1(\Omega;\mathbb{R}^3))} + \|u^\varepsilon\|_{L^\infty(0,\infty;L^2(\Omega;\mathbb{R}^3))} \leq C
\]
and
\[
\sqrt{\varepsilon}\|\partial_t u^\varepsilon\|_{L^2(0,\infty;L^2(\Omega;\mathbb{R}^3))} + \sqrt{\varepsilon}\|u^\varepsilon \cdot \nabla u^\varepsilon\|_{L^2(0,\infty;L^2(\Omega;\mathbb{R}^3))} \leq C.
\]

More explicitly, the following inequality holds.
\[\|u^\varepsilon(T)\|^2 + 2\nu \int_0^T (1 - e^{-t/\varepsilon}) \|\nabla u^\varepsilon(t)\|^2 \, dt \leq \|u_0^\varepsilon\|^2 \]

(6.1)

for all \(T > 0 \).

Proof. Let us start by estimating \(u^\varepsilon \) on the initial short-time interval \((0, \varepsilon)\). By letting \(\varepsilon = \min\{1, \sigma, \nu\}/(2e) > 0 \) we have

\[
\int_0^\varepsilon e^{-t/\varepsilon} \left\| \partial_t u^\varepsilon + u^\varepsilon \cdot \nabla u^\varepsilon \right\|^2 + e \left| u^\varepsilon \cdot \nabla u^\varepsilon \right| + \|\nabla u^\varepsilon\|^2 \, dt \\
\leq \int_0^\varepsilon e^{-t/\varepsilon} \left\{ \frac{1}{2} \|\partial_t u^\varepsilon + u^\varepsilon \cdot \nabla u^\varepsilon\|^2 + \frac{\sigma}{2} \left| u^\varepsilon \cdot \nabla u^\varepsilon \right|^2 + \frac{\nu}{2e} \|\nabla u^\varepsilon\|^2 \right\} \, dt \\
= I(u^\varepsilon) \leq C\varepsilon^{-1}
\]

by proposition 4.1, and thus

\[
\int_0^\varepsilon e^{-t/\varepsilon} \|\partial_t u^\varepsilon\|^2 + e \|u^\varepsilon \cdot \nabla u^\varepsilon\|^2 + \|\nabla u^\varepsilon\|^2 \, dt \leq C. \tag{6.2}
\]

In order to deduce an estimate on \([\varepsilon, T]\), for \(T > 0 \), we let \(\eta \in W^{1,\infty}(0, \infty) \) be defined as

\[
\eta(t) = \begin{cases}
\frac{e^{t/\varepsilon} - 1}{(e^{T/\varepsilon} - 1)} & \text{for } t \leq T, \\
\frac{e^{t/\varepsilon} - 1}{e^{T/\varepsilon} - 1} & \text{for } t \geq T.
\end{cases}
\]

and apply lemma 5.1 to \(\varphi = \eta u^\varepsilon \). We obtain

\[
0 = \int_0^\infty e^{-t/\varepsilon} \int_\Omega \eta(t) \left\{ (\partial_t u^\varepsilon + u^\varepsilon \cdot \nabla u^\varepsilon) \cdot (\partial_t u^\varepsilon + 2u^\varepsilon \cdot \nabla u^\varepsilon) \\
+ 2\sigma |u^\varepsilon \cdot \nabla u^\varepsilon|^2 + \frac{\nu}{\varepsilon} |\nabla u^\varepsilon|^2 \right\} + \eta'(t)(\partial_t u^\varepsilon + u^\varepsilon \cdot \nabla u^\varepsilon) \cdot u^\varepsilon \, dx \, dt \\
= \int_0^\infty e^{-t/\varepsilon} \eta(t) \left(\int_\Omega |\partial_t u^\varepsilon|^2 + 2|\partial_t u^\varepsilon|^2 + (u^\varepsilon \cdot \nabla u^\varepsilon)^2 \right) + \frac{2(1 + \sigma)}{\varepsilon} |\nabla u^\varepsilon|^2 \, dx \, dt \\
+ \int_0^T \frac{1}{\varepsilon} \int_\Omega |\partial_t u^\varepsilon \cdot u^\varepsilon \, dx \, dt,
\]

where we have also used the fact that \(\int_\Omega (u^\varepsilon \cdot \nabla u^\varepsilon) \cdot u^\varepsilon \, dx = 0 \). It follows that

\[
0 = \int_0^\infty e^{-t/\varepsilon} \eta(t) \int_\Omega \left(|\partial_t u^\varepsilon|^2 + \frac{2}{\varepsilon} |u^\varepsilon \cdot \nabla u^\varepsilon|^2 + \varepsilon(2\sigma - \frac{1}{4}) |u^\varepsilon \cdot \nabla u^\varepsilon|^2 + \nu|\nabla u^\varepsilon|^2 \right) \, dx \, dt \\
+ \frac{1}{2} \int_\Omega |u^\varepsilon(T)|^2 \, dx - \frac{1}{2} \int_\Omega |u^\varepsilon(0)|^2 \, dx.
\]

Since \(\eta(t) \geq 0 \) for all \(t \) and \(t \mapsto e^{-t/\varepsilon} \eta(t) = 1 - e^{-t/\varepsilon} \) increases on \([0, T]\), by defining \(c = \min\{1, 2\sigma - 1/4, \nu\} (1 - e^{-1}) > 0 \) we get
\[
c \int_\Omega \int_0^T \left(\frac{1}{2} \left| \partial_t u^\varepsilon \right|^2 + \varepsilon \left| u^\varepsilon \cdot \nabla u^\varepsilon \right|^2 + \varepsilon \left| \nabla u^\varepsilon \right|^2 \right) \, dx \, dt \\
\leq \int_0^T e^{-\varepsilon^{-1} \eta(t)} \int_\Omega \left(\left| \partial_t u^\varepsilon \right|^2 + \frac{3}{2} \left| u^\varepsilon \cdot \nabla u^\varepsilon \right|^2 + \varepsilon \left(2\sigma - \frac{1}{2} \right) \left| u^\varepsilon \cdot \nabla u^\varepsilon \right|^2 + \nu \left| \nabla u^\varepsilon \right|^2 \right) \, dx \, dt \\
\leq \frac{1}{2} \| u_0^\varepsilon \|^2 - \frac{1}{2} \| u^\varepsilon (T) \|^2. \tag{6.3}
\]

Combining (6.2), (6.3) and (3.6) we see that
\[
\| u^\varepsilon (T) \|^2 + \int_0^T \varepsilon \| \partial_t u^\varepsilon \|^2 + \varepsilon \| u^\varepsilon \cdot \nabla u^\varepsilon \|^2 + \| \nabla u^\varepsilon \|^2 \, dt \leq C.
\]

As \(T > 0 \) is arbitrary, this proves the statement. \(\square \)

Proposition 6.2 (Dual estimate). Let \(\sigma > 1/8 \) and \(s > 5/2 \). All minimizers \(u^\varepsilon \in U^\varepsilon \) of \(I^\varepsilon \) satisfy
\[
\| \partial_t u^\varepsilon \|_{L^2(0,\infty; V')} + \| B(u^\varepsilon) \|_{L^2(0,\infty; V')} \leq C.
\]

Proof. Let \(0 \leq \tau \leq T \). By proposition 6.1 and equations (5.7), (5.8) and (3.2) we have the estimates
\[
\| f^\varepsilon + g^\varepsilon \|_{L^1(0,\infty; V')} \leq C \sqrt{\varepsilon} \quad \text{and} \quad \| A u^\varepsilon \|_{L^2(0,\infty; V')} \leq C. \tag{6.4}
\]

Multiplying the Euler–Lagrange equation (5.10) by \(\varepsilon^{-1} e^{\varepsilon^{-t}/\varepsilon} \), integrating over \([\tau, T]\), and multiplying by \(e^{\varepsilon^{-t}/\varepsilon} \), we find that \(v^\varepsilon \) as defined in (5.4) satisfies
\[
v^\varepsilon (\tau) = e^{(\tau-T)/\varepsilon} v^\varepsilon (T) - \int_\tau^T \frac{e^{(\tau-t)/\varepsilon}}{\varepsilon} \left(f^\varepsilon (t) + g^\varepsilon (t) + \nu A u^\varepsilon (t) \right) \, dt.
\]

As \(v^\varepsilon \in L^2(0,\infty; H) \) by proposition 6.1 we may send \(T \to \infty \) along a sequence with \(v^\varepsilon (T) \to 0 \) in \(H \hookrightarrow V'_s \) and see that
\[
v^\varepsilon (\tau) = - \int_\tau^\infty \frac{e^{(\tau-t)/\varepsilon}}{\varepsilon} \left(f^\varepsilon (t) + g^\varepsilon (t) + \nu A u^\varepsilon (t) \right) \, dt.
\]

Extending \(f^\varepsilon, g^\varepsilon \) and \(A u^\varepsilon \) by 0 on \((\infty, 0)\) to all of \(\mathbb{R} \), this can be written as
\[
v^\varepsilon = K \ast (f^\varepsilon + g^\varepsilon + \nu A u^\varepsilon)
\]
on \([0, \infty)\) where the kernel \(K \) is given by
\[
K(t) = \begin{cases}
\varepsilon^{-1} e^{t/\varepsilon} & \text{for } t \leq 0, \\
0 & \text{for } t > 0.
\end{cases} \tag{6.5}
\]

This entails that
\[
\| v^\varepsilon \|_{L^2(0,\infty; V')} \leq C. \tag{6.6}
\]
since by Young’s inequality and (6.4) we can estimate
\[\| K \ast (f^\varepsilon + g^\varepsilon) \|_{L^2(\mathbb{R}, V')} \leq \| K \|_{L^1(\mathbb{R})} \| f^\varepsilon + g^\varepsilon \|_{L^1(\mathbb{R}, V')} \leq C \]
and
\[\| \nu K \ast Au^\varepsilon \|_{L^2(\mathbb{R}, V')} \leq \| K \|_{L^1(\mathbb{R})} \| \nu Au^\varepsilon \|_{L^2(\mathbb{R}, V')} \leq C, \]
where we have used that \(\| K \|_{L^1(\mathbb{R})} = 1 \) and \(\| K \|_{L^2(\mathbb{R})} = 1/\sqrt{2\varepsilon} \). As by proposition 6.1 and bound (3.5) one also has that
\[\| B(u^\varepsilon) \|_{L^2(0, \infty; V')} \leq C \| u^\varepsilon \cdot \nabla u^\varepsilon \|_{L^2(0, \infty; L^1(\Omega, \mathbb{R}^1))} \leq C \| u^\varepsilon \|_{L^\infty(0, \infty; L^2(\Omega, \mathbb{R}^1))} \| \nabla u^\varepsilon \|_{L^2(0, \infty; L^2(\Omega, \mathbb{R}^1))} \leq C, \]
the claim follows from this inequality and (6.6).

7. Convergence

This section is eventually devoted to the proof of theorem 3.2. Let \(u^\varepsilon \) be a minimizer of \(I^\varepsilon \) on \(U^\varepsilon \) and define \(v^\varepsilon \) as in (5.9). By the \textit{a priori} estimates of propositions 6.1 and 6.2 (recall that we assume here \(\sigma > 1/8 \)) there exists \(u \in L^3(0, \infty; V) \cap L^\infty(0, \infty; H) \) with \(\partial_t u \in L^3(0, \infty; V'_s) \), \(s > 5/2 \), such that, for a subsequence (not relabeled),
\[u^\varepsilon \rightharpoonup u \quad \text{in} \quad L^2(0, \infty; V), \quad u^\varepsilon \rightharpoonup u \quad \text{in} \quad L^\infty(0, \infty; H) \] (7.1)
as well as
\[\partial_t u^\varepsilon \rightharpoonup \partial_t u \quad \text{in} \quad L^2(0, \infty; V'_s). \] (7.2)
This, in particular, entails that
\[Au^\varepsilon \rightharpoonup Au \quad \text{in} \quad L^2(0, \infty; V'_s) \] (7.3)
as well, since \(A \) is bounded, see (3.2). Moreover, (5.4), (5.7) and (5.8) in combination with proposition 6.1 yield
\[\varepsilon \sigma^\varepsilon \rightharpoonup 0 \quad \text{in} \quad L^2(0, \infty; L^2(\Omega; \mathbb{R}^3)) \quad \text{and} \]
\[f^\varepsilon + g^\varepsilon \rightharpoonup 0 \quad \text{in} \quad L^1(0, \infty; V'_s). \] (7.4) (7.5)
By the Aubin–Lions lemma we obtain \(u^\varepsilon \rightharpoonup u \) strongly in \(L^2_{\text{loc}}(0, \infty; H) \) so that (7.1), proposition 6.2, and \(V_s \hookrightarrow L^\infty(\Omega) \) yield
\[B(u^\varepsilon) \rightharpoonup B(u) \quad \text{in} \quad L^2(0, \infty; V'_s). \] (7.6)
From (7.2) and (7.6) we thus get
\[v^\varepsilon \rightharpoonup \partial_t u + B(u) \quad \text{in} \quad L^2(0, \infty; V'_s). \] (7.7)
Recall now from corollary 5.2 that \(u^\varepsilon \) is a solution to (5.9) for any \(\varphi \in C^\infty_c((0, \infty); V_s) \). By using (7.4), (7.7), (7.5) and (7.3) we can now pass to the limit \(\varepsilon \to 0 \) in (5.9) and get
\[\int_0^\infty \langle \partial_t u + B(u) + \nu Au, \varphi \rangle \, dt = 0 \]
for any \(\varphi \in C^\infty_c((0, \infty); V_j) \) and so

\[
\partial_t u + B(u) + \nu Au = 0
\]

in \(L^2((0, \infty); V_j') \) and a.e. in time.

Since \(W^{1,1}((0, T), V_1') \hookrightarrow C([0, T], V_j') \) for any \(T > 0 \), we also have \(u^\varepsilon \rightharpoonup u \) in \(C([0, T], V_j') \) and \(u \) satisfies the initial condition \(u(0) = u_0 \) because of \((3.6) \). As \(u \in L^2(0, \infty; V) \), the bounds \((3.2) \) and \((3.4) \) entail that \(Au \in L^2(0, \infty; V') \) and \(B(u) \in L^1(0, \infty; V') \), respectively. By comparison in \((7.8) \) one has that \(\partial_t u \in L^1((0, \infty); V') \) as well so that the equation holds in \(V' \) for a.a. times and \(u \) is indeed a Leray–Hopf solution.

Eventually, the energy inequality \((3.9) \) follows by lower semicontinuity when passing to the limit \(\varepsilon \to 0 \) in inequality \((6.1) \) by using the convergence \(u_0^\varepsilon \rightharpoonup u_0 \) in \(H \) from \((3.6) \), \(u^\varepsilon(T) \rightharpoonup u(T) \) in \(L^2(\Omega; \mathbb{R}^3) \), and \((1 - e^{-t/\varepsilon})^{1/2} \nabla u^\varepsilon \rightharpoonup \nabla u \) in \(L^2((0, T); L^2(\Omega; \mathbb{R}^{3 \times 3})) \).

Acknowledgments

US is partly funded by the Vienna Science and Technology Fund (WWTF) through Project MA14-009 and by the Austrian Science Fund (FWF) projects F65, P27052, and I2375.

References

[1] Akagi G, Melchionna S and Stefanelli U 2017 Weighted energy-dissipation approach to doubly-nonlinear problems on the half line J. Evol. Equ. 18 49–74
[2] Akagi G and Stefanelli U 2010 A variational principle for doubly nonlinear evolution Appl. Math. Lett. 23 1120–4
[3] Akagi G and Stefanelli U 2011 Weighted energy-dissipation functionals for doubly nonlinear evolution J. Funct. Anal. 260 2541–78
[4] Akagi G and Stefanelli U 2014 Doubly nonlinear evolution equations as convex minimization problems SIAM J. Math. Anal. 46 1922–45
[5] Akagi G and Stefanelli U 2016 A variational principle for gradient flows of nonconvex energies J. Convex Anal. 23 53–75
[6] Arnaudon M and Cruzeiro A B 2012 Navier–Stokes diffusions on manifolds: variational principle and stability Bull. Sci. Math. 136 857–81
[7] Bassi F, Franchina N, Ghidoni A and Rebay S 2013 A numerical investigation of a spectral-type nodal collocation discontinuous Galerkin approximation of the Euler and Navier–Stokes equations Int. J. Numer. Methods Fluids 71 1322–39
[8] Berselli L C 2010 An elementary approach to the 3D Navier–Stokes equations with Navier boundary conditions: existence and uniqueness of various classes of solutions in the flat boundary case Discrete Continuous Dyn. Syst. S 3 199–219
[9] Bögelein V, Duzaar F and Marcellini P 2014 Existence of evolutionary variational solutions via the calculus of variations J. Differ. Equ. 256 3912–42
[10] Brooks A N and Hughes T J R 1982 Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations Comput. Methods Appl. Mech. Eng. 32 199–259
[11] Canuto C, Hussaini M Y, Quarteroni A and Zang T A 2007 Spectral Methods. Evolution to Complex Geometries and Applications to Fluid Dynamics. Scientific Computation (Berlin: Springer)
[12] Chorin A J 1968 Numerical solution of the Navier–Stokes equations Math. Comput. 22 745–62
[13] Conti S and Ortiz M 2008 Minimum principles for the trajectories of systems governed by rate problems J. Mech. Phys. Solids 56 1885–904
[14] Dal Maso G 1993 An Introduction to \(\Gamma \)-Convergence (Progress in Nonlinear Differential Equations and their Applications vol 8) (Boston, MA: Birkhäuser)
[15] De Giorgi E 1996 Conjectures concerning some evolution problems Duke Math. J. 81 255–68
[16] Evans L C 1998 Partial Differential Equations (Graduate Studies in Mathematics vol 19) (Providence, RI: American Mathematical Society)
[17] Evans J A and Hughes T J R 2013 Isogeometric divergence-conforming B-splines for the steady Navier–Stokes equations Math. Models Methods Appl. Sci. 23 1421–78
[18] Fischer P F, Hecht F and Maday Y 2005 A parareal in time semi-implicit approximation of the Navier–Stokes equations Domain Decomposition Methods in Science and Engineering (Lecture Notes in Computational Science and Engineering) vol 40 (Berlin: Springer) pp 433–40
[19] Ghoussoub N 2007 Antisymmetric Hamiltonians: variational resolutions for Navier–Stokes and other nonlinear evolutions Commun. Pure Appl. Math. 60 619–53
[20] Ghoussoub N 2009 Selfdual Partial Differential Systems and their Variational Principles (New York: Springer)
[21] Ghoussoub N and Moameni A 2009 Anti-symmetric Hamiltonians. II. Variational resolutions for Navier–Stokes and other nonlinear evolutions Ann. Inst. Henri Poincare 26 223–55
[22] Gigli N and Mosconi S J N 2012 A variational approach to the Navier–Stokes equations Bull. Sci. Math. 136 256–76
[23] Girault V and Raviart P A 1986 Finite Element Methods for Navier–Stokes Equations (Berlin: Springer)
[24] Gomes D A 2005 A variational formulation for the Navier–Stokes equation Commun. Math. Phys. 257 227–34
[25] Gomes D A 2007 On a variational principle for the Navier–Stokes equation. Mathematical analysis of random phenomena, (Singapore: World Scientific) pp 93–100
[26] Guo B Y 1985 Spectral method for solving Navier–Stokes equation Sci. Sin. A 28 1139–53
[27] Hirano N 1994 Existence of periodic solutions for nonlinear evolution equations Proc. Am. Math. Soc. 120 185–92
[28] Hughes T J R, Scovazzi G and Tezduyar T E 2010 Stabilized methods for compressible fluids Math. Models Methods Appl. Sci. 21 781–822
[29] Ilmanen T 1994 Elliptic regularization and partial regularity for motion by mean curvature Arch. Rat. Mech. Anal. 129 233–81
[30] Kohn J J and Nirenberg L 1965 Non-coercive boundary value problems Proc. Am. Math. Soc. 16 307–21
[31] Kohn J J and Nirenberg L 1965 Non-coercive boundary value problems Commun. Pure Appl. Math. 18 443–92
[32] Larson C J, Ortiz M and Richardson C L 2009 Fracture paths from front kinetics: relaxation and rate independence Arch. Ration. Mech. Anal. 193 539–83
[33] Liero M and Stefanelli U 2013 A new minimum principle for Lagrangian mechanics J. Nonlinear Sci. 23 179–204
[34] Liero M and Stefanelli U 2013 Weighted inertia-dissipation-energy functionals for semilinear equations Boll. Unione Mat. Ital. 6 1–27
[35] Lin P 1997 A sequential regularization method for time-dependent incompressible Navier–Stokes equations SIAM J. Numer. Anal. 34 1051–71
[36] Lions J L 1963 Equations différentielles opérationelles dans les espaces de Hilbert Centro Internazionale Matematico Estivo: Equazioni Differenziali Astratte vol 2 (Rome: Cremonese)
[37] Lions J L 1963 Singular perturbations and some non linear boundary value problems MRC Technical Summary Report 421 (University of Wisconsin)
[38] Lions J L 1965 Sur certaines équations paraboliques non linéaires. (French) Bull. Soc. Math. France 93 155–75
[39] Lions J L and Magenes E 1972 Non-Homogeneous Boundary Value Problems and Applications vol 1 (New York: Springer)
[40] Lubich C and Osterman A 1996 Runge–Kutta time discretization of reaction-diffusion and Navier–Stokes equations: nonsmooth-data error estimates and applications to long-time behaviour. Special issue celebrating the centenary of Runge–Kutta methods Appl. Numer. Math. 22 279–92
[41] Melchionna S 2016 A variational principle for nonpotential perturbations of gradient flows of nonconvex energies J. Differ. Equ. 262 3737–58
[42] Melchionna S 2016 A variational approach to symmetry, monotonicity, and comparison for doubly-nonlinear equations J. Math. Anal. Appl. J. Math. Anal. Appl. 456 1303–28
[43] Mielke A and Ortiz M 2008 A class of minimum principles for characterizing the trajectories and the relaxation of dissipative systems ESAIM Control Optim. Calc. Var. 14 494–516
[45] Mielke A and Stefanelli U 2008 A discrete variational principle for rate-independent evolution Adv. Calc. Var. 1 399–431
[46] Mielke A and Stefanelli U 2011 Weighted energy-dissipation functionals for gradient flows ESAIM Control Optim. Calc. Var. 17 52–85
[47] Müller S, Prohl A, Rannacher R and Turek S 1995 Implicit time-discretization of the nonstationary incompressible Navier–Stokes equations Fast Solvers for Flow Problems (Kiel, 1994) (Notes Numerical Fluid Mechanics vol 49) (Braunschweig: Friedr. Vieweg) pp 175–91
[48] Oleiník O A 1964 On a problem of G. Fichera. (Russian) Dokl. Akad. Nauk SSSR 157 1297–300
[49] Pedregal P 2012 A variational approach for the Navier–Stokes system J. Math. Fluid Mech. 14 159–76
[50] Pironneau O 1981/82 On the transport-diffusion algorithm and its applications to the Navier–Stokes equations Numer. Math. 38 309–32
[51] Rannacher R 1993 On the numerical solution of the incompressible Navier–Stokes equations Z. Angew. Math. Mech. 73 203–16
[52] Robinson J C, Rodrigo J L and Sadowski W 2016 The Three-Dimensional Navier–Stokes Equations (Cambridge: Cambridge University Press)
[53] Rossi R, Savaré G, Segatti A and Stefanelli U 2018 Weighted energy-dissipation functionals for gradient flows in metric spaces J. Math. Pures Appl. accepted
[54] Rossi R, Savaré G, Segatti A and Stefanelli U 2011 A variational principle for gradient flows in metric spaces C. R. Math. Acad. Sci., Paris 349 1224–8
[55] Schwab C and Stevenson R 2017 Fractional space-time variational formulations of (Navier-) Stokes equations SIAM J. Math. Anal. 49 2442–67
[56] Seregin G 2015 Lecture Notes on Regularity Theory for the Navier–Stokes Equations (Singapore: World Scientific)
[57] Serra E and Tilli P 2012 Nonlinear wave equations as limits of convex minimization problems: proof of a conjecture by De Giorgi Ann. Math. 175 1551–74
[58] Serra E and Tilli P 2016 A minimization approach to hyperbolic Cauchy problems J. Eur. Math. Soc. 18 2019–44
[59] Spadaro E N and Stefanelli U 2011 A variational view at mean curvature evolution for linear growth functionals J. Evol. Equ. 11 793–809
[60] Stefanelli U 2011 The De Giorgi conjecture on elliptic regularization Math. Models Methods Appl. Sci. 21 1377–94
[61] Strikwerda J C 1984 Finite difference methods for the Stokes and Navier–Stokes equations SIAM J. Sci. Stat. Comput. 5 56–68
[62] Tartar L 2006 An Introduction to Navier–Stokes Equation and Oceanography (Lecture Notes of the Unione Matematica Italiana vol 1) (Berlin: Springer)
[63] Temam R 1984 Navier–Stokes Equations. Theory and Numerical Analysis (Studies in Mathematics and its Applications vol 2) 3rd edn (Amsterdam: North-Holland)
[64] Tentarelli L and Tilli P 2017 De Giorgi’s approach to hyperbolic Cauchy problems: the case of nonhomogeneous equations Comm. Partial Differential Equations accepted
[65] Yasue K 1983 A variational principle for the Navier–Stokes equation J. Funct. Anal. 51 133–41