Learning *Multi-Scene* Absolute Pose Regression with Transformers

Yoli Shavit Ron Ferens Yosi Keller
Camera Pose Regression

Camera Pose Estimation

\[
p = (x, q)
\]

\(x \in \mathbb{R}^3 \) \hspace{1cm} \(q \in \mathbb{R}^4 \)

Position \hspace{1cm} Orientation

Absolute Camera Pose Regression

A learning-based method for solving the camera pose estimation problem
Camera Pose Estimation at Inference Time

Localization Pipelines

1. Image Retrieval
2. Feature Matching
 - 2D-3D matches
 - PnP + RANSAC
3. \(p = (x, q) \)

Absolute Pose Regressors (APRs)

1. Forward Pass
2. Trained model
3. \(p = (x, q) \)
Camera Pose Estimation at Inference Time

Localization Pipelines

1. Image Retrieval
2. Feature Matching
3. PnP + RANSAC

Remote Server

Forward Pass

- Fast (order of magnitude)
- Light-weight
- Standalone

Trained model

\[p = (x, q) \]

Absolute Pose Regressors (APRs)

Localisation Pipelines
The Cons of *Single*-Scene APRs

- ✔ Fast
- ✔ Light-weight
- ✔ Standalone
- ✗ Less accurate
- ✗ Trained per scene

For localizing images from N scenes we need to train, deploy and choose from N models.
Learning Multi-Scene Pose Regression with Transformers
Since position and orientation are related to different visual cues, we extract activation maps at different resolutions.

We extract visual features using a convolutional backbone and then encode, project and flatten activation maps.
Two Transformer Encoders attend to task-specific visual cues

- Attending to blobs and corners for position estimation
- Attending to elongated lines for orientation estimation
Decoder Attention maps when processing an image from the *Old Hospital* scene

(a) Kings C. (b) Old Hospital (c) Shop Facade (d) St. Mary
We concatenate the decoder outputs to in order to select the scene. Position and orientation are regressed from the selected outputs.
\[L_{\text{multi-scene}} = L_p + \text{NLL}(s, s_0) \]

Learned Pose Loss (Kendall et al., 2017)

\[L_p = L_x \exp(-s_x) + s_x + L_q \exp(-s_q) + s_q \]

Position Loss

Orientation Loss

\(\hat{s}_x \) and \(\hat{s}_q \) are learned parameters representing task uncertainty
Comparison with MSPN

Median position and orientation errors of our method and a recent multi-scene approach (MSPN) for the CambridgeLandmarks (top) and 7Scenes (bottom) datasets

Method	K. College	Old Hospital	Shop Facade	St. Mary
MSPN [3]	1.73/3.65	2.55/4.05	2.92/7.49	2.67/6.18
MS-Transformer (ours)	0.83/1.47	1.81/2.39	0.86/3.07	1.62/3.99

Method	Chess	Fire	Heads	Office	Pumpkin	Kitchen	Stairs
MSPN [3]	0.09/4.76	0.29/10.5	0.16/13.1	0.16/6.8	0.19/5.5	0.21/6.61	0.31/11.63
MS-Transformer (ours)	0.11/4.66	0.24/9.6	0.14/12.19	0.17/5.66	0.18/4.44	0.17/5.94	0.26/8.45
Comparison with Single-Scene APRs

Mean of median position and orientation errors and the respective ranks of our method, MSPN and state-of-the-art single-scene APRs on the CambridgeLandmarks (left) and 7Scenes (right) datasets.

Method	Average [m/deg]	Ranks
Single-scene APRs		
PoseNet [17]	2.09/6.84	10/11
BayesianPN [15]	1.92/6.28	8/10
LSTM-PN [35]	1.30/5.52	2/9
SVS-Pose [21]	1.33/5.17	3/7
GPoseNet [8]	2.08/4.59	6/3
PoseNet-Learnable [16]	1.43/2.85	5/2
GeoPoseNet [16]	1.63/2.86	6/3
MapNet [7]	1.63/3.64	6/5
IRPNet [29]	1.42/3.45	4/4
Multi-scene APRs		
MSPN [3]	2.47/5.34	11/8
MS-Transformer (Ours)	1.28/2.73	1/1
From Multi-Scene to Multi-Dataset

APR Method	CambridgeLand. [m/deg]	7Scenes [m/deg]
Single-scene [16]	1.43/2.85	0.24/7.87
Multi-scene (Ours)	1.28/2.73	0.18/7.28
Multi-dataset (Ours)	1.50/ 2.57	0.22/6.78

Our method is able to learn multiple scenes from datasets with different scales and properties.
Robustness and Scalability

Our method maintains state-of-the-art performance across architectural choices.

Encoder/Decoder # Layers	Position [meters]	Orientation [degrees]
2	0.19	7.48
4	0.18	6.94
6	0.18	7.28
8	0.18	6.92

Backbone	Position [meters]	Orientation [degrees]
Resnet50	0.19	8.6
EfficientNetB0	0.18	7.28
EfficientNetB1	0.17	7.26

Transformer Dimension	Position [meters]	Orientation [degrees]
64	0.18	8.06
128	0.19	7.56
256	0.18	7.28
512	0.18	7.19

Num. Scenes	Runtime [ms]	Memory [Mb]		
Num. Layers	2	6	2	6
1	18.8	34.6	40.8	74.6
4	18.8	35	40.8	74.6
7	19.2	35.2	40.8	74.6
10	19.2	35.2	40.8	74.6
100	19.6	35.4	41.0	74.8
500	21.0	41.0	41.8	75.6
1000	27.0	58.6	42.8	76.7

The memory footprint for a 1000 scenes with a single scene APR approach is ~5000Mb.
Conclusion

We propose a novel transformer-based approach for multi-scene absolute pose regression

- Two Transformer Encoders separately attend to position- and orientation-informative image cues
- Two Transformer Decoders attend to scene-specific information

Our approach is shown to provide a new state-of-the-art APR accuracy

- Outperforming single and multi-scene APRs across indoor and outdoor benchmarks
- Demonstrating robustness to specific architecture choices
Learning *Multi-Scene* Absolute Pose Regression with Transformers

https://github.com/yolish/multi-scene-pose-transformer