Linear Bandits on Uniformly Convex Sets

Thomas Kerdreux*1,2, Christophe Roux2, Alexandre d’Aspremont3,4, and Sebastian Pokutta1,2

1Zuse Institute, Berlin, Germany
2Technische Universität, Berlin, Germany
3CNRS, UMR 8548
4D.I., École Normale Supérieure, Paris, France

March 11, 2021

Abstract

Linear bandit algorithms yield $\tilde{O}(\sqrt{nT})$ pseudo-regret bounds on compact convex action sets $\mathcal{K} \subset \mathbb{R}^n$ and two types of structural assumptions lead to better pseudo-regret bounds. When \mathcal{K} is the simplex or an ℓ_p ball with $p \in [1, 2]$, there exist bandit algorithms with $\tilde{O}(\sqrt{nt})$ pseudo-regret bounds. Here, we derive bandit algorithms for some strongly convex sets beyond ℓ_p balls that enjoy pseudo-regret bounds of $\tilde{O}(\sqrt{nt})$, which answers an open question from [BC12, §5.5.]. Interestingly, when the action set is uniformly convex but not necessarily strongly convex, we obtain pseudo-regret bounds with a dimension dependency smaller than $O(\sqrt{nT})$. However, this comes at the expense of asymptotic rates in T varying between $\tilde{O}(\sqrt{T})$ and $\tilde{O}(T)$.

1 Introduction

We consider online linear learning with partial information, a.k.a. the linear bandit problem. At each round $t \leq T$, the player (the bandit algorithm) chooses $a_t \in \mathcal{K} \subset \mathbb{R}^n$ and an adversary simultaneously decides on a loss vector $c_t \in \mathbb{R}^n$ (loss is linear). The player then observes its loss $\langle c_t; a_t \rangle$ but does not have access c_t. The goal of the player is to minimize its cumulative loss $\sum_{t=1}^T \langle c_t; a_t \rangle$. The regret R_T compares this cumulative loss against the cumulative loss of the best single action in hindsight, i.e.,

$$R_T(\mathcal{K}) = \sum_{t=1}^T \langle c_t; a_t \rangle - \min_{a \in \mathcal{K}} T \sum_{t=1}^T \langle c_t; a \rangle.$$ (Regret)

Bandit algorithms use internal randomization to obtain sub-linear regret upper bounds. There exist several notions of regret to monitor the performance of bandit algorithms. The expected regret or an upper bound on (Regret) with high-probability are the most meaningful, yet challenging to obtain. Hence, the weaker notion of pseudo-regret is often considered as a good proxy for measuring the bandit performance [BC12]. It serves as a motivation to design new bandit algorithms. Let us write \mathbb{E} the expectation w.r.t. the randomness of the bandit action only, we have

$$\hat{R}_T(\mathcal{K}) = \mathbb{E} \sum_{t=1}^T \langle c_t; a_t \rangle - \min_{a \in \mathcal{K}} \mathbb{E} T \sum_{t=1}^T \langle c_t; a \rangle.$$ (Pseudo-Regret)

*Corresponding author, thomaskerdreux at gmail.com.
We make the bounded scalar loss assumption, i.e., c_t is such that $\langle c_t; a \rangle \leq 1$ for any $a \in \mathcal{K}$. In particular, it means that c_t belongs to the polar $\mathcal{K}^\circ \triangleq \{ d \in \mathbb{R}^n \mid \langle d; x \rangle \leq 1, \forall x \in \mathcal{K} \}$ of \mathcal{K}.

There exist bandit algorithms with $\tilde{O}(n\sqrt{T})$ upper bounds on the pseudo-regret for general compact convex sets \mathcal{K} [BC12]. However, since the loss is linear, it is not possible to leverage the lower curvature (e.g., the strong convexity) of the loss function to obtain improved pseudo-regret bounds. Instead, the bandit algorithm can only leverage the specific structure of the action set \mathcal{K}. To the best of our knowledge, only two structures are known to induce faster pseudo-regret bounds of $\tilde{O}(\sqrt{nT})$: when \mathcal{K} is a simplex or an ℓ_p ball with $p \in]1, 2]$ [BCL18]. In each of these cases, the analysis relies on explicit analytical formulas of the action set rather than on generic quantitative properties, e.g., the strong convexity of the set.

Our goal here is to design bandit algorithms that achieve pseudo-regret of $\tilde{O}(\sqrt{nT})$ (resp. $\tilde{O}(n^{1/q}T^{1/p})$) when the set \mathcal{K} is strongly convex (resp. q-uniformly convex with $q \geq 2$ and p s.t. $1/p + 1/q = 1$). The uniform convexity of a set is a measure of the set upper curvature that subsumes strong convexity. For instance, the ℓ_p balls are strongly convex (Definition 2.3) for $p \in]1, 2]$ but only uniformly convex (Definition 2.4) for $p \geq 2$.

Related Work. Linear bandit algorithms are applied in a variety of applications. We detail one of them, which was our initial research motivation. Linear Bandit algorithms are instrumental in solving minimax problems with convex-linear structure stemming from learning applications, see, e.g., SVMs [HKS11; CHW12] or Distributional Robust Optimization [ND16; Cur+20]. In these settings, the minimax variable's linear part is a probability distribution over the dataset of size n. The linear bandit algorithms provide a principled framework to adaptively sample a fraction of the dataset per iteration while ensuring the convergence to a minimax optimum. The iterations’ cost of the minimax algorithm is then favorably dependent on the size n of the dataset. However, the dimension dependency of the linear bandit algorithm’s regret bound now appears in the minimax method’s convergence rate, making it crucial to design linear bandit algorithms with favorable dimension-dependent regret bounds.

Significant focus has been dedicated to designing efficient algorithms (in the full and partial feedback setting) leveraging additional properties of the loss functions such as smoothness, strong convexity [ST11; HL14; GK20a; GK20b] with much less attention to the corresponding structural assumptions on the action sets. By studying the effect of uniform convexity of the action set in the bandit setting, we contribute to filling this gap. Note that some works recently relied on smoothness [LK19] or uniform convexity assumptions on the set in online linear learning [Hua+16; Hua+17; Mol20; KdP21b] or “online learning with a hint” [DHJ+17; Bhaa+20a; Bhaa+20b].

At a high level, our work shares some similarities with [dGJ18] for affine-invariant analysis of accelerated first-order methods or with [SST11; RS17] in the full-information setting. Indeed, they link regret bounds of online mirror descent algorithms with the Martingale type of the ambient space. Here, we instead rely on the uniform convexity of the action set. It is a more intuitive yet stronger requirement, for an explanation see, e.g., [KdP21a].

Contribution. Our contribution are three-fold.

1. We propose a barrier function $F_\mathcal{K}$ for the bandit problem with strongly convex sets (more generally uniformly convex sets), i.e., for $x \in \text{int}(\mathcal{K})$

 $$F_\mathcal{K}(x) \triangleq -\ln(1 - \|x\|_\mathcal{K}) - \|x\|_\mathcal{K},$$

 (Barrier)

 where $\| \cdot \|_\mathcal{K}$ is the gauge function to \mathcal{K}. For $x \in \mathbb{R}^n$, it is defined as

 $$\|x\|_\mathcal{K} = \inf\{\lambda > 0 \mid x \in \lambda\mathcal{K}\}.$$

 (Gauge)
2. In Theorem 3.3 we provide a pseudo-regret upper bound $O(\sqrt{nT})$ for a linear bandit algorithm on some strongly convex sets. To the best of our knowledge, this setting has never been studied except in the specific case of the ℓ_p balls with $p \in [1, 2]$. Importantly, this drastically extends the family of actions sets, i.e., besides the simplex and the ℓ_p balls with $p \in [1, 2]$, with such improved dimension dependency of the pseudo-regret bound in $O(\sqrt{n})$. This is an answer to the open question from [BC12, §5.5].

3. When the action set is (α, q)-uniformly convex with $q \geq 2$, we prove in Theorem 3.4 a pseudo-regret bound of $O(n^{1/q} T^{1/p})$ with $p \in [1, 2]$ s.t. $1/p + 1/q = 1$. This trade-off means that it is possible to obtain a pseudo-regret bound with dimension dependence faster than $O(\sqrt{n})$ balanced by a slower (w.r.t. $O(\sqrt{T})$) asymptotical regime in T. While counter-intuitive at first, this can be of interest, e.g., in minimax problems where the dataset is large.

Outline. In Section 2 we introduce the structural assumptions on the action sets K and provide some elementary results linking these structures with important quantities in the analysis. In Section 3.1 we describe the classical Mirror Descent type algorithm for bandits and our design of barrier function for uniformly convex sets. In Section 3.2, we then provide the convergence rates when the action sets are strongly convex (Theorem 3.3) and uniformly convex (Theorem 3.4). In Section 3.3, we present the main technical lemmas. Finally, in Appendix A we prove the main link between uniform convexity of the set K and upper bounds of the Bregman Divergence of a specific function.

Notations. Let \mathbb{R}^n be the ambient space and (e_i) its canonical basis. For a norm $\| \cdot \|$, we write $\|d\|^* = \sup_{\|x\| \leq 1} (x; d)$ for its dual norm. For a convex function f, we write $f^*(d) \triangleq \sup_{x \in \mathbb{R}^n} \langle x; d \rangle - f(x)$ its Fenchel conjugate. Let $\ell_\infty(R)$ be the infinity ball with radius $R > 0$ and $\ell_1(r)$ the norm ball of $\|x\|_1 = \sum_{i=1}^n |x_i|$ with radius $r > 0$. For an open set $\mathcal{D} \subset \mathbb{R}^n$, we write \mathcal{D} its closure. For a compact convex set K, we write ∂K its boundary and $\text{Int}(K)$ its interior. $N_K(x) \triangleq \{d \in \mathbb{R}^n \mid \langle x - y; d \rangle \geq 0 \ \forall y \in K\}$ is the normal cone of K at x. We consider fully-dimensional compact convex sets $K \subset \mathbb{R}^n$ s.t. $\ell_1(r) \subset K \subset \ell_\infty(R)$ for some $r, R > 0$ which are a priori numerical constant, in particular not depending on the dimension n. For $d \in \mathbb{R}^n$, we write $\sigma_K(d) \triangleq \sup_{x \in K} \langle x; d \rangle$ the support function σ_K of K. We have $\|\cdot\|_K^* = \sigma_K$. Recall that we write $K^\circ = \{d \in \mathbb{R}^n \mid \langle d; x \rangle \leq 1, \forall x \in K\}$ the polar of K. Note that we have $\|\cdot\|_{K^\circ} = \sigma_K$. We write $X \sim \text{Ber}(p)$ (resp. $\text{Rad}(p)$) a random variable X following a Bernoulli (a Rademacher), i.e., with values in $\{0, 1\}$ (resp. $\{-1, 1\}$) and $\mathbb{P}(X = 1) = p$.

2 Preliminaries

In this section, we introduce the structural assumption on K we will consider. Note that we will assume set smoothness (Definition 2.1) simply to ensure that (Barrier) is differentiable. On the contrary, the strong convexity (Definition 2.3) is the structure that allows for the \sqrt{n} acceleration in the pseudo-regret bounds. Then we review the link between the structure of K and the differentiability of the set gauge function (Gauge) which then allows us to study the properties of the proposed barrier. Finally, we link upper bounds on some Bregman distance with the strong convexity of some set in Lemma 2.7. This will be a key inequality in our analysis.

A convex differentiable function f is L-smooth on K w.r.t. $\|\cdot\|$ if and only if for any $(x, y) \in K \times K$

$$f(y) \leq f(x) + \langle \nabla f(x); y - x \rangle + \frac{L}{2} \|y - x\|^2.$$ \hspace{1cm} (Smoothness)
The Hölder smoothness of a function is a relaxation of (Smoothness). For \(p \in [1, 2] \), a convex differentiable function \(f \) is \((L, p)\)-Hölder smooth w.r.t. \(\| \cdot \| \) if and only if for any \((x, y) \in \mathcal{K} \times \mathcal{K} \)

\[
 f(y) \leq f(x) + \langle \nabla f(x); y - x \rangle + \frac{L}{p} \| y - x \|^p.
\]

(Hölder-Smoothness)

On the other hand, a set \(\mathcal{K} \) is smooth when there is exactly one supporting hyperplane at each point of its boundary \(\partial \mathcal{K} \) [Sch14]. This can be defined as follows.

Definition 2.1 (Smooth Set). A compact convex set \(\mathcal{K} \) is smooth if and only if \(|N_{\mathcal{K}}(x) \cap \partial \mathcal{K}^o| = 1 \) for any \(x \in \partial \mathcal{K} \).

One should be cautious not to confuse the smoothness of \(f \) as defined in (Smoothness) and the smoothness of \(\mathcal{K} \) as defined in Definition 2.1. Indeed, the smoothness of the set is a much weaker notion as, for instance, it implies only the differentiability of \(\sigma_{\mathcal{K}}(\cdot) \), see Lemma 2.5. Note that not all strongly convex set are smooth. For instance, the \(\ell_p \) or the \(p \)-Schatten balls for \(p \in [1, 2] \) are smooth and strongly convex but the \(\ell_{1,2} \) ball (Elastic-Net constraints) is strongly convex but not smooth. Also, the smoothness and strict convexity of a set are dual properties to each other in the following sense [Köt83, §26]

Lemma 2.2 (Duality Set Smoothness and Strict Sonvexity). Consider a compact convex set \(\mathcal{K} \subset \mathbb{R}^n \). Then, \(\mathcal{K} \) is strictly convex if and only if \(\mathcal{K}^o \) is smooth.

Proof. Let us recall the proof for completeness. Assume \(\mathcal{K} \) is strictly convex and let \(d \in \partial \mathcal{K}^o \). Let \(x_1, x_2 \in \partial \mathcal{K} \cap N_{\mathcal{K}^o}(d) \). By definition of the normal cone, we have \(\langle d; x_i \rangle \geq \langle d'; x_i \rangle \) for any \(d' \in \mathcal{K}^o \) and \(i = 1, 2 \). Hence, \(\langle d; x_i \rangle = \sup_{d' \in \mathcal{K}^o} \langle d'; x_i \rangle = \| x_i \|_{\mathcal{K}} = 1 \) so that

\[
 1 = \langle d; (x_1 + x_2)/2 \rangle \leq \| d \|_{\mathcal{K}^o} \| (x_1 + x_2)/2 \|_{\mathcal{K}} = \| (x_1 + x_2)/2 \|_{\mathcal{K}},
\]

and we conclude that \((x_1 + x_2)/2 \in \partial \mathcal{K} \) and by strict convexity of \(\mathcal{K}, x_1 = x_2 \) which concludes. Alternatively, assume that \(\mathcal{K}^o \) is smooth. Assume by the absurd that there exists distinct \(x_1, x_2 \in \partial \mathcal{K} \) s.t. \((x_1 + x_2)/2 \in \partial \mathcal{K} \) and let \(d \in N_{\mathcal{K}}((x_1 + x_2)/2) \cap \partial \mathcal{K}^o \). Then, by convexity \(d \in N_{\mathcal{K}}(x_i) \) for \(i = 1, 2 \) and \(\langle d; x_i \rangle = 1 \). In particular, this means that \(x_i \in N_{\mathcal{K}^o}(d) \cap \partial \mathcal{K} \) for \(i = 1, 2 \) and contradicts the smoothness of \(\mathcal{K}^o \).

Definition 2.3 (Set Strong Convexity). Let \(\mathcal{K} \) be a centrally symmetric set with non-empty interior and \(\alpha > 0 \). \(\mathcal{K} \) is \(\alpha \)-uniformly convex w.r.t. \(\| \cdot \|_{\mathcal{K}} \) if and only if for any \(x, y, z \in \mathcal{K} \) and \(\gamma \in [0, 1] \) we have

\[
 (\gamma x + (1 - \gamma)y + \frac{\alpha}{2}\gamma(1 - \gamma)\| x - y \|^2_{\mathcal{K}} z) \in \mathcal{K}.
\]

More generally, we can define the uniform convexity of a set \(\mathcal{K} \) which subsumes the strong convexity. For instance the \(\ell_p \) balls with \(p > 2 \) are uniformly convex but not strongly convex.

Definition 2.4 (Set Uniform Convexity). Let \(\mathcal{K} \) be a centrally symmetric set with non-empty interior, \(\alpha > 0 \), and \(q \geq 2 \). \(\mathcal{K} \) is \((\alpha, q) \)-uniformly convex w.r.t. \(\| \cdot \|_{\mathcal{K}} \) if and only if for any \(x, y, z \in \mathcal{K} \) and \(\gamma \in [0, 1] \) we have

\[
 (\gamma x + (1 - \gamma)y + \frac{\alpha}{q}\gamma(1 - \gamma)\| x - y \|^q_{\mathcal{K}} z) \in \mathcal{K}.
\]

We now recall the geometrical condition on \(\mathcal{K} \) that is equivalent to differentiability of \(\mathcal{K} \) [Sch14, Corollary 1.7.3.].

Lemma 2.5 (Gauge Differentiability). A gauge function \(\| \cdot \|_{\mathcal{K}} \) (Gauge) is differentiable at \(x \in \mathbb{R}^n \setminus \{0\} \) if and only if its support set

\[
 S(\mathcal{K}^o, x) \triangleq \{ d \in \mathcal{K}^o : \langle d; x \rangle = \sup_{d' \in \mathcal{K}^o} \langle d'; x \rangle \},
\]

(Support Set)

contains a single point \(d \). If this is the case, we have \(\nabla \| \cdot \|_{\mathcal{K}}(x) = d \). Besides, the following assertions are true
(a) $\left\| (\nabla \| \cdot \|_K(x)) \right\|_{K^\circ} = 1$, i.e., $\nabla \| \cdot \|_K(x) \in K^\circ$.

(b) For $\lambda > 0$, $\nabla \| \cdot \|_K(\lambda x) = \nabla \| \cdot \|_K(x)$.

(c) If K° is strictly convex then $\| \cdot \|_K$ is differentiable on $\mathbb{R}^n \setminus \{0\}$.

Proof. The differentiability result for $\| \cdot \|_K$ comes from [Sch14, Corollary 1.7.3.], where we used that $\| \cdot \|_K = \sigma_{K^\circ}$. (a) follows from the fact that the supremum in (Support Set) is attained at ∂K°. For $\lambda > 0$, we have $S(K^\circ, \lambda x) = S(K^\circ, x)$ and hence (b). Now assume that K° is strictly convex and consider $x \in \mathbb{R}^n \setminus \{0\}$. First remark as for (a) that $S(K^\circ, x) \subset \partial K^\circ$. Assume that $|S(K^\circ, x)| \neq 1$. Then, for d_1, d_2 distinct in $S(K^\circ, x)$, we have $|d_1, d_2| \subset S(K^\circ, x) \subset \partial K^\circ$ which then contradicts the strict convexity of K°. Hence $|S(K^\circ, x)| = 1$ which concludes (c). \qed

Definition 2.6 (Bregman Divergence). The Bregman divergence of $F : \mathcal{D} \rightarrow \mathbb{R}$ is defined for $(x, y) \in \mathcal{D} \times \mathcal{D}$ by

$$D_F(x, y) = F(x) - F(y) - \langle x - y; \nabla F(y) \rangle.$$

(Bregman Divergence)

The strong-convexity assumption on K appears in the analysis of Algorithm 1 via an upper bound on the (Bregman Divergence) of $\frac{1}{2} \| \cdot \|_K$. Indeed, when K is strongly convex, then K° is strongly smooth and hence σ_{K° is L-smooth with respect to $\| \cdot \|_K$, see [KdP21a, Theorem 4.1] that we recall in Theorem A.2 in the Appendix A. It then implies the following quadratic upper bound on its Bregman Divergence.

Lemma 2.7 (Upper-bound on the Bregman Divergence of $\frac{1}{2} \| \cdot \|_K^2$). Let $q \geq 2$ and $p \in [1, 2]$ s.t. $1/p + 1/q = 1$. Let K be a centrally symmetric set with non-empty interior. Assume K is (α, q)-uniformly convex with respect to $\| \cdot \|_K$. Then, for any $(u, v) \in \mathbb{R}^n$, we have

$$D_{\frac{1}{2} \| \cdot \|_K^2}(u, v) \leq 2p(1 + (q/(2\alpha))^{1/(q-1)})\|u - v\|_{K^\circ}.$$

(1)

Proof. For a (L, r)-Hölder smooth function f w.r.t. to $\| \cdot \|$ we immediately have $D_f(u, v) \leq \frac{L}{r}\|u - v\|_r$. Theorem A.2 implies that $\frac{1}{2} \| \cdot \|_K^2$ is (L, p)-Hölder Smooth on K° w.r.t. $\| \cdot \|_{K^\circ}$ where $L = 2p(1 + (\frac{q}{2\alpha})^{1/(q-1)})$. This concludes the proof. \qed

We immediately obtain the following corollary for the strongly convex case with $p = q = 2$.

Corollary 2.8 (Strongly Convex Case). Let K be a centrally symmetric set with non-empty interior. Assume K is α-strongly convex with respect to $\| \cdot \|_K$. Then for any $(u, v) \in \mathbb{R}^n$, we have

$$D_{\frac{1}{2} \| \cdot \|_K^2}(u, v) \leq 4\left(\frac{\alpha + 1}{\alpha}\right)\|u - v\|_{K^\circ}^2.$$

3 Pseudo-Regret Bounds of Linear Bandit on Strongly Convex Sets

In Section 3.1, we first present the algorithm and barrier function for linear bandits on uniformly convex sets. In Section 3.2, we then present the main pseudo-regret bounds and the proofs of the technical lemmas are relegated in Section 3.3.
3.1 Mirror Descent for Bandits

We propose to use a similar bandit algorithm to the one developed in [BC12] for linear bandits over the Euclidean ball. Namely, Algorithm 1 is an instantiation of Online Stochastic Mirror Descent (OSMD) with a carefully designed barrier function $F_K : \text{Int}(K) \to \mathbb{R}^+$. For any $x \in \text{Int}(K)$ we defined in (Barrier)

$$F_K(x) = -\ln(1 - \|x\|_K) - \|x\|_K.$$

Algorithm 1 keeps track of a sequence of vectors $x_t \in (1 - \gamma)K$ and at each iteration samples an action $a_t \in K$ as described in Lines 4-8. For some $r > 0$, we assume $\ell_1(r) \subset K$ so that $re_i \in K$. After playing action $a_t \in K$, the bandit receives the loss $\langle c_t; a_t \rangle$ associated to its action without observing the full vector $c_t \in K^\circ$. In Line 10, it then proposes an unbiased estimation \tilde{c}_t of c_t. Indeed, we have (because $\mathbb{P}(\xi_t = 0) = 1 - \|x\|_K$)

$$\mathbb{E}_{\xi_t,a_t,c_t}(\tilde{c}_t) = \mathbb{P}(\xi_t = 0) \sum_{i=1}^n \frac{n - 1}{2r^2} \frac{\langle re_i; c_t \rangle}{2(1 - \|x\|_K)} re_i + \frac{\langle -re_i; c_t \rangle}{2(1 - \|x\|_K)} (-re_i) = c_t.$$

The bandit then provides the vector \tilde{c}_t to an online learning algorithm that updates the x_t vector in Line 11. Importantly, because $x_t \in (1 - \gamma)K$ with $\gamma \in [1/2]$ we have $\|x_t\| < 1$ so that $\nabla F_K(x_t)$ is well defined.

\begin{algorithm}[ht]
\caption{Bandit Mirror Descent (BMD) on some Curved Sets $K \subset \mathbb{R}^n$}
\textbf{Input:} $\eta > 0$, $\gamma \in [0,1]$, K smooth and strictly convex s.t. $\ell_1(r) \subset K$.
\begin{enumerate}
\item \textbf{Barrier:} $F_K(\cdot) = -\ln(1 - \|\cdot\|_K) - \|\cdot\|_K$.
\item \textbf{Initialize:} $x_1 \in \arg\min_{x \in (1 - \gamma)K} F_K(x)$.
\item for $t \leftarrow 1, \ldots, T$
\begin{enumerate}
\item Sample $\xi_t \sim \text{Ber}(\|x_t\|_K)$, $i_t \sim \text{Uniform}(n)$ and $\epsilon_t \sim \text{Rademacher}(\frac{1}{T})$.
\item if $\xi_t = 1$ then
\item \hspace{1cm} $a_t \leftarrow x_t/\|x_t\|_K$. \hfill ($\triangleright$ Define bandit action.)
\item else
\item \hspace{1cm} $a_t \leftarrow re_i e_{i_t}$. \hfill ($\triangleright$ Estimate full loss vector c_t.)
\item end
\item $\tilde{c}_t \leftarrow \frac{n}{r^2} (1 - \xi_t) \frac{\langle a_t; c_t \rangle}{1 - \|x_t\|_K} a_t$. \hfill ($\triangleright$ Mirror Descent step.)
\item $x_{t+1} \leftarrow \arg\min_{y \in (1 - \gamma)K} \mathcal{D}_F_K(y, \nabla F_K^\ast(x_t - \eta \tilde{c}_t))$.
\end{enumerate}
\item \textbf{Output:} $\frac{1}{T} \sum_{t=1}^T a_t$
\end{enumerate}
\end{algorithm}

To ensure that Line 11 of Algorithm 1 is well defined, we need to check, e.g., that all x_t belong of $\text{Int}(K)$ (which we know is the case because $x_t \in (1 - \gamma)K$) or that $\nabla F_K(x_t) - \eta \tilde{c}_t$ belongs to \mathcal{D}_K^\ast the domain where F_K^\ast is defined. In Lemma 3.2 below, we guarantee that Algorithm 1 is well defined. We also prove that F_K is Legendre (Definition 3.1) which allows us to invoke classical convergence results as in [BC12].

\textbf{Definition 3.1 (Legendre Function).} A continuous function $F : \mathcal{D} \to \mathbb{R}$ is Legendre if and only if

(a) F is strictly convex and admits continuous first partial derivatives on \mathcal{D}.

(b) $\lim_{x \to \mathcal{D} \setminus \mathcal{D}} \|\nabla F(x)\| = +\infty$.

Lemma 3.2 (Barrier F_K for K). Consider a compact, smooth and strictly convex K. We consider for $x \in D_K \triangleq \{x \in \mathbb{R}^n \mid \|x\|_K < 1\}$ the following barrier function as defined in (Barrier)

$$F_K(x) = -\ln(1 - \|x\|_K) - \|x\|_K.$$

Then F is Legendre (Definition 3.1) with $D_K = \mathbb{R}^n$ and $K \subset D_K$.

Proof. From Lemma 3.6, because K is smooth and strictly convex, F_K (resp. F_K^*) is differentiable on Int(K) (resp. \mathbb{R}^n). Besides, we have $D_K = \mathbb{R}^n$. Finally, the strict convexity of F comes from the strict convexity of $\| \cdot \|_K$ when K is strictly convex. Hence F is Legendre. \hfill \square

3.2 Main Result

Although uniform convexity subsumes strong convexity, for the sake of clarity, we first state in Theorem 3.3 the pseudo-regret upper bounds of Algorithm 1 when the set is strongly convex. In Theorem 3.4, we then extend these convergence results to the case where the action set is more generally uniformly convex.

Theorem 3.3 (Linear Bandit on Strongly Convex Set). Consider a compact convex set K that is centrally symmetric with non-empty interior. Assume K is smooth and α-strongly convex set w.r.t. $\| \cdot \|_K$ and $\ell_2(r) \subset K \subset \ell_\infty(R)$ for some $r, R > 0$. Consider running BMD (Algorithm 1) with the barrier function $F_K(x) = -\ln(1 - \|x\|_K) - \|x\|_K$, and

$$\eta = \frac{1}{\sqrt{nT}}, \quad \gamma = \frac{1}{\sqrt{T}}.$$

(2)

For $T \geq 4n(\frac{R}{\eta})^2$ we then have

$$\bar{R}_T \leq \sqrt{T} + \sqrt{nT} \ln(T)/2 + L \sqrt{nT} = \tilde{O}(\sqrt{nT}),$$

(Pseudo-Regret Upper-Bound)

where \bar{R}_T is defined in (Pseudo-Regret) and $L = (R/r)^2(5\alpha + 4)/\alpha$.

Proof of Theorem 3.3. First note that with $T \geq 4n(\frac{R}{\eta})^2$ and $\eta = 1/\sqrt{nT}$, we have that $\eta \leq r/(2Rn)$ which allows to invoke Lemma 3.8. The proof follows that of [BC12, Theorem 5.8] but importantly leverages on our novel Lemma 3.8 that carefully upper bounds the terms $D_{F_K}^*(\nabla F_K(x_t) - \eta \tilde{c}_t, \nabla F_K(x_t))$ for the barrier function we designed. Because F_K is Legendre and \tilde{c}_t is an unbiased estimate of c_t, by [BC12, Theorem 5.5] applied on $K' \triangleq (1 - \gamma)K$, we have

$$\bar{R}_T(K') \leq \sup_{x \in (1 - \gamma)K} \frac{F_K(x) - F_K(x_1)}{\eta} + \frac{1}{\eta} \sum_{t=1}^{T} \mathbb{E} \left[D_{F_K^*}^*(\nabla F_K(x_t) - \eta \tilde{c}_t, \nabla F_K(x_t)) \right].$$

Also, by definition of the Pseudo-Regret, we have

$$\bar{R}_T(K) = \bar{R}_T(K') + \min_{a \in K} \sum_{i=1}^{T} \langle c_t; a \rangle - \min_{a \in K'} \sum_{i=1}^{T} \langle c_t; a \rangle.$$

Write $a^* \in K$ for which $\min_{a \in K} \sum_{i=1}^{T} \langle c_t; a \rangle$ is attained. We have that the $\min_{a \in K'} \sum_{i=1}^{T} \langle c_t; a \rangle$ is attained at $(1 - \gamma)a^*$, hence because $|\langle c_t; a^* \rangle| \leq 1$ for any t, we have

$$\bar{R}_T(K) = \bar{R}_T(K') + \sum_{i=1}^{T} \langle c_t; (1 - \gamma)a^* \rangle - \sum_{i=1}^{T} \langle c_t; a^* \rangle = \bar{R}_T(K') - \gamma \sum_{i=1}^{T} \langle c_t; a^* \rangle \leq \bar{R}_T(K') + \gamma T.$$
By the initialization of \(x_1 \) in Line 2 of Algorithm 1, we have \(F_K(x_1) = 0 \). Besides, by definition of \(F_K \), \(\sup_{x \in K} F_K(x) \leq \ln(1/\gamma) \), so that \(\sup_{x \in K} F(x) - F_K(x_1) \leq \ln(1/\gamma) \). Overall, we have
\[
\bar{R}_T(K) \leq \gamma T + \frac{\ln(1/\gamma)}{\eta} + \frac{1}{\eta} \sum_{t=1}^T \mathbb{E}\left[D_{F_K} (\nabla F_K(x_t) - \eta \tilde{c}_t, \nabla F_K(x_t)) \right].
\]
We have \(\eta \leq r/(2Rn) \) and hence Lemma 3.8 implies that
\[
\bar{R}_T(K) \leq \gamma T + \frac{\ln(1/\gamma)}{\eta} + \eta \left(1 + \frac{4(\alpha + 1)}{\alpha} \right) \sum_{t=1}^T \mathbb{E}\left(1 - \|x\|_K\|\tilde{c}_t\|_{K^0}^2 \right).
\]
Then, let us explicit \(\mathbb{E}\left(1 - \|x\|_K\|\tilde{c}_t\|_{K^0}^2 \right) \). Recall that \(K \subset \ell_\infty(R) \), so that \(\ell_\infty^o(R) = \ell_1(1/R) \subset K^0 \) and \(e_1/R \in K^0 \). Hence, we have that \(\|r e_i\|_{K^0} = r R / e_i / R \) \(K^0 \leq rR \). We obtain
\[
\mathbb{E}\left(1 - \|x\|_K\|\tilde{c}_t\|_{K^0}^2 \right) = \mathbb{P}(\xi_t = 0) \sum_{i=1}^n \frac{1}{r} (1 - \|x_t\|_K) n^2 \frac{\langle r e_i ; c_t \rangle^2}{r^2 (1 - \|x_t\|_K)^2} R^2 \|c_t\|_{K^0}^2 \leq (1 - \|x_t\|_K) \sum_{i=1}^n \frac{c_t^2}{1 - \|x_t\|_K} = nR^2 \|c_t\|_{K^0}^2.
\]
We have \(\ell_2(r) \subset K \). This implies \(K^0 \subset \ell_2(r)^o = \ell_2(1/r) \) so that with \(c_t \in K^0 \), we have \(\|c_t\|_{K^0}^2 \leq 1/\gamma^2 \). Hence
\[
\bar{R}_T(K) \leq \gamma T + \frac{\ln(1/\gamma)}{\eta} + \eta \left(1 + \frac{4(\alpha + 1)}{\alpha} \right) \frac{n R^2 \|c_t\|_{K^0}^2}{r} T,
\]
and we immediately obtain (Pseudo-Regret Upper-Bound) with the prescribed choice of \(\eta \) and \(\gamma \). ~\(\square \)

Theorem 3.4 (Linear Bandit on Uniformly Convex Sets). Let \(\alpha > 0, q \geq 2, \) and \(p \in [1,2] \) s.t. \(1/p + 1/q = 1 \). Consider a compact convex set \(K \) that is centrally symmetric with non-empty interior. Assume \(K \) is smooth and \((\alpha, q) \)-uniformly convex set w.r.t. \(\| \cdot \|_K \) and \(\ell_q(r) \subset K \subset \ell_\infty(R) \) for some \(r, R > 0 \). Consider running BMD (Algorithm 1) with the barrier function \(F_K(x) = -\ln(1 - \|x\|_K) - \|x\|_K \), and
\[
\eta = 1/(n^{1/q} T^{1/p}), \quad \gamma = 1/\sqrt{T}.
\]
Then we have for \(T \geq 2^p n \left(\frac{R}{r} \right)^p \)
\[
\bar{R}_T \leq \sqrt{T} + n^{1/q} T^{1/p} \ln(T) / 2 + \left((1/2)^{-2p} + L \right) \frac{R}{r} n^{1/q} T^{1/p} = \tilde{O}(n^{1/q} T^{1/p}),
\]
where \(\bar{R}_T \) is defined in (Pseudo-Regret) and \(L = 2p(1 + (q/(2\alpha))^{1/(q-1)}) \).

Proof. The proof is similar to Theorem 3.3 and hence to [BC12, Theorem 5.8]. The difference is that we now leverage Corollary 3.9. Note that with \(T \geq 2^p n (R/r)^p \) and \(\eta = n^{-1/q} T^{-1/p} \), we have \(0 \leq \eta \leq 1/(2n)(r/R) \). As in the proof of Theorem 3.3, we have
\[
\bar{R}_T(K) \leq \gamma T + \frac{\ln(1/\gamma)}{\eta} + \frac{1}{\eta} \sum_{t=1}^T \mathbb{E}\left[D_{F_K} (\nabla F_K(x_t) - \eta \tilde{c}_t, \nabla F_K(x_t)) \right].
\]
Now applying Corollary 3.9, we have with \(L = 2p(1 + (q/(2\alpha))^{1/(q-1)}) \)
\[
D_{F_K} (\nabla F_K(x_t) - \eta \tilde{c}_t, \nabla F_K(x_t)) \leq (1 - \|x_t\|_K)^p \|\tilde{c}_t\|_{K^0}^p ((1/2)^{-2p} + 2p(1 + (q/(2\alpha))^{1/(q-1)}))
\].
This hence implies

\[\tilde{R}_T(\mathcal{K}) \leq \gamma T + \frac{\ln(1/\gamma)}{\eta} + \eta^{p-1}((1/2)^{2-p} + L) \sum_{t=1}^T \mathbb{E} \left[(1 - \|x\|_\mathcal{K})\|\tilde{c}_t\|_{\mathcal{K}^\circ}^p \right]. \]

Let us now upper bound \(\mathbb{E} \left[(1 - \|x\|_\mathcal{K})\|\tilde{c}_t\|_{\mathcal{K}^\circ}^p \right] \). Since \(\mathcal{K} \subset \ell_\infty(R) \), we have \(\ell_1(1/R) \subset \mathcal{K}^\circ \) and \(e_i/R \in \mathcal{K}^\circ \) so that \(\|re_i\|_{\mathcal{K}^\circ} \leq rR \). Hence, we have

\[
\mathbb{E} \left(1 - \|x\|_\mathcal{K} \right) \|\tilde{c}_t\|_{\mathcal{K}^\circ}^p = \mathbb{P}(\xi_t = 0) = \sum_{i=1}^n \frac{1}{(1 - \|x_i\|_\mathcal{K})(\frac{n}{r^2})^{p}} \left(\frac{|\langle re_i; c_t \rangle|}{1 - \|x_i\|_\mathcal{K}} \right) \|re_i\|_{\mathcal{K}^\circ}^p \\
\leq (1 - \|x_i\|_\mathcal{K})^{2-p} \sum_{i=1}^n \eta^{p-1}R^p c_{t,i}^p \leq \eta^{p-1} R^p \|c_t\|_p^p.
\]

Then since \(\ell_q(r) \subset \mathcal{K} \), we have \(\mathcal{K}^\circ \subset \ell_q(r)^\circ = \ell_p(1/r) \) so that \(\|c_t\|_p \leq 1/r \) because \(c_t \in \mathcal{K}^\circ \). We ultimately obtain

\[\tilde{R}_T(\mathcal{K}) \leq \gamma T + \frac{\ln(1/\gamma)}{\eta} + \eta^{p-1}((1/2)^{2-p} + L) T n^{p-1} \left(\frac{R}{r} \right)^p. \]

Here, we choose \(\eta \) of the form \(T^{-\beta} n^{-\nu} \) with \(\beta \) and \(\nu \) such that the terms \(1/\eta \) and \(\eta^{p-1} T n^{p-1} \) exhibit the same asymptotic rate in \(n \) and \(T \) respectively. In particular, we choose \(\eta = 1/(n^{1/4} T^{1/p}) \) and obtain (with \(\gamma = 1/\sqrt{T} \))

\[\tilde{R}_T(\mathcal{K}) \leq \sqrt{T} + n^{1/4} T^{1/p} \ln(T)/2 + ((1/2)^{2-p} + L) \left(\frac{R}{r} \right)^p n^{1/4} T^{1/p}. \]

\[\square \]

Instantiating the regret bound in Theorem 3.4 with \(p = q = 2 \) results in the same regret bound as in Theorem 3.3. Indeed, the parameters in (3) with \(q = 2 \) correspond to (2).

Remark 3.5. Consider two compact convex sets \(\mathcal{K}_1 \) and \(\mathcal{K}_2 \). Their relative width is defined as follows

\[w(\mathcal{K}_1, \mathcal{K}_2) \triangleq \sup_{x \in \mathcal{K}_1, y \in \mathcal{K}_2} \langle x; y \rangle. \]

(Relative-Width)

Note that \(w(\mathcal{K}_1, \mathcal{K}_2) = \sup_{x \in \mathcal{K}_1} \|x\|_{\mathcal{K}_2} \) and \(\ell_q(r)^\circ = \ell_p(1/r) \), using the (Relative-Width) we could replace the condition \(\ell_q(r) \subset \mathcal{K} \) by \(w(\mathcal{K}^\circ, \ell_q(1)) \leq 1/r \).

3.3 Technical Lemmas

We now detail the lemmas invoked in the proofs of Theorems 3.3 and 3.4. Lemma 3.6 provides the expression for \(\nabla F_{\mathcal{K}} \) and \(\nabla F_{\mathcal{K}}^\circ \) and their differentiability domain. Lemma 3.7 is a technicality that notably explains why we constrain \(\eta \) in \([0, r/(2nR)]\). Lemma 3.8 (resp. Corollary 3.9) are instrumental in upper-bounding the terms \(D_{F_{\mathcal{K}}} (\nabla F_{\mathcal{K}}(x_t) - \eta \tilde{c}_t, \nabla F_{\mathcal{K}}(x_t)) \) when the set is strongly convex (resp. uniformly convex). Technically, we build the link between the uniform convexity of the set and upper bounds on the regret in these lemmas. Although uniform convexity is a weaker assumption than strong convexity, we distinguish the cases to stress the convergence results when the action sets are strongly convex. All lemmas are self-contained and stated independently from Algorithm 1.

Lemma 3.6 (Some Identities). Assume \(\mathcal{K} \subset \mathbb{R}^n \) is strictly convex compact and smooth set. Let \(x \in \mathcal{K} \) s.t. \(\|x\|_\mathcal{K} < 1 \) and \(d \in \mathbb{R}^n \setminus \{0\} \). With \(F_{\mathcal{K}}(x) = -\ln (1 - \|x\|_\mathcal{K}) - \|x\|_\mathcal{K} \), \(F_{\mathcal{K}} \) (resp. \(F_{\mathcal{K}}^\circ \)) is differentiable
on $\text{Int}(\mathcal{K})$ (resp. \mathbb{R}^n) and we have

$$
\begin{align*}
\nabla F_K(x) &= \frac{\|x\|_K}{1 - \|x\|_K} \nabla \|\cdot\|_K(x), \\
F_K^*(d) &= \|d\|_{K^0} - \ln(1 + \|d\|_{K^0}), \\
\nabla F_K^*(d) &= \frac{\|d\|_{K^0}}{1 + \|d\|_{K^0}} \nabla \|\cdot\|_{K^0}(d).
\end{align*}
$$

(4)

Proof. Let us first compute F_K^*. We have $F_K^*(d) = g^*(\|x\|_K)$ with $g(r) = -\ln(1 - r) - r$ for $r \in [0, 1]$. Note that $g(0) = 0$ and g is convex. Write $g^*(y) \triangleq \sup_{r \in [0, 1]} ry + \ln(1 - r) + r$ for $y \geq 0$. With simple analysis, we have $g^*(y) = y - \ln(1 + y)$. Then, with, e.g., [Sch14, p. 1.47], we have that $F_K^*(d) = g^* \circ \|d\|_{K^0} = \|d\|_{K^0} - \ln(1 + \|d\|_{K^0})$.

The gradient identities (4) are then immediate at points (x, d) s.t. $\|\cdot\|_K$ and $\|\cdot\|_{K^0}$ are differentiable. From Lemma 2.2 since \mathcal{K} is smooth, \mathcal{K}^0 is strictly convex. For $(x, d) \in \mathcal{K} \setminus \{0\} \times \mathbb{R}^n \setminus \{0\}$, by Lemma 2.5 (c), we have that $\|\cdot\|_K$ and $\|\cdot\|_{K^0}$ are differentiable. F_K and F_{K^0} are then also differentiable at $\{0\}$ because $\|\nabla F_K(x)\|$ and $\|\nabla F_{K^0}(d)\|$ converges to zero as x and d converge to zero (since $\nabla \|\cdot\|_K(x)$ is of norm one).

Lemma 3.7 (Lower Bound on Θ). Assume $\ell_1(r) \subset \mathcal{K} \subset \ell_{\infty}(R)$ for some $r, R > 0$. Let $x \in \mathcal{K}$ with $\|x\|_K < 1, \eta > 0$ and $c \in \mathcal{K}^0$. Consider the realizations of random variable $\xi \sim \text{Ber}(\|x\|_K)$, $i \sim \frac{1}{n} \mathbb{I}_n$, and $\epsilon \sim \text{Rad}(\frac{1}{4})$. We define $a \in \mathcal{K}$ (resp. \tilde{c}) similarly to a_i (resp. \tilde{c}_i) in Algorithm 1 with

$$
a = \begin{cases}
 x/\|x\|_K & \text{if } \xi = 1 \\
 r e_i & \text{otherwise},
\end{cases}
\quad \text{and} \quad \tilde{c} = \frac{n}{r^2}(1 - \xi)\frac{\langle a; c \rangle}{1 - \|x\|_K}a.
$$

(5)

Write $u = \nabla F_K(x) - \eta \tilde{c}$ and $v = \nabla F_{K^0}(x)$. Then, we have

$$
\frac{\|u\|_{K^0} - \|v\|_{K^0}}{1 + \|v\|_{K^0}} \geq -\eta \frac{R}{r}.
$$

(6)

Proof. Note that because $\ell_1(r) \subset \mathcal{K}$, we have $\pm r e_i \in \mathcal{K}$ and in particular $a \in \mathcal{K}$. We now follow the argument of [BC12]. With the expression of $\nabla F_K(x)$ in Lemma 3.6 and that $\|\nabla \|\cdot\|_K(x)\|_{K^0} = 1$ in Lemma 2.5, we have $\frac{1}{1 + ||\nabla F_K(x)||_{K^0}} = 1 - \|x\|_K$. So with the triangle inequality, we have $\|v - \eta \tilde{c}\|_{K^0} \geq \|v\|_{K^0} - \eta \|\tilde{c}\|_{K^0}$ so that we obtain

$$
\frac{\|v - \eta \tilde{c}\|_{K^0} - \|v\|_{K^0}}{1 + \|v\|_{K^0}} \geq -\eta \|\tilde{c}\|_{K^0}(1 - \|x\|_K).
$$

Then, since $\tilde{c} = \frac{n}{r^2}(1 - \xi)\frac{\langle a; c \rangle}{1 - \|x\|_K}a$, we have

$$
\frac{\|v - \eta \tilde{c}\|_{K^0} - \|v\|_{K^0}}{1 + \|v\|_{K^0}} \geq -\eta \frac{n}{r^2}(1 - \xi)\|a\|_{K^0} \cdot \|a\|_{K^0}.
$$

Because $\|\cdot\|_K$ and $\|\cdot\|_{K^0}$ are dual norms and $(a, c) \in \mathcal{K} \times \mathcal{K}^0$ we have $|\langle a; c \rangle| \leq \|a\|_K \|c\|_{K^0} \leq 1$, which leads to

$$
\frac{\|v - \eta \tilde{c}\|_{K^0} - \|v\|_{K^0}}{1 + \|v\|_{K^0}} \geq -\eta \frac{n}{r^2} \|a\|_{K^0}.
$$

When $\xi = 1$, (6) is already satisfied. Otherwise, $\xi = 0$ and by definition of a, we have $a = \epsilon r e_i$ with $i \in [n]$ and $\epsilon \in \{-1, 1\}$. Since $\mathcal{K} \subset \ell_{\infty}(R)$, we have $\ell_{\infty}(R)^0 = \ell_1(1/R) \subset \mathcal{K}^0$ and $e_i/R \in \mathcal{K}^0$. Hence, $\|r e_i\|_{K^0} = r R \|e_i/R\|_{K^0} \leq r R$. So finally, we obtain

$$
\frac{\|v - \eta \tilde{c}\|_{K^0} - \|v\|_{K^0}}{1 + \|v\|_{K^0}} \geq -\frac{\eta R}{r}.
$$

□
The following lemma is instrumental to obtaining the pseudo-regret bounds. Note that the distance of x_t to K is controlled by γ, see Line 11 in Algorithm 1. Finally, the sole difference with the bound obtained with the Euclidean ball is with the extra factor $1 + 4(\alpha + 1)/\alpha$ and the constraint in η that now depends on the ratio r/R which, e.g., equals 1 for any $\ell_q(1)$ ball.

Lemma 3.8 (One Term Upper Bound Strong Convexity). Consider K a α-strongly convex and centrally symmetric set with non-empty interior. Assume that $\ell_1(r) \subset K \subset \ell_\infty(R)$ for some $r, R > 0$. Let $x \in K$ s.t. $\|x\|_K < 1$ and \bar{c} as defined in (5). If $0 < \eta \leq \frac{1}{2 \alpha R}$, then we have

$$D_{F_K}(\nabla F_K(x) - \eta \bar{c}, \nabla F_K(x)) \leq (1 - \|x\|_K) \left(1 + \frac{4(\alpha + 1)}{\alpha} \right) \eta^2 \|\bar{c}\|^2_{K^\circ}.$$

Proof of Lemma 3.8. Let us write $u = \nabla F_K(x) - \eta \bar{c}$, $v = \nabla F_K(x)$, and $\Theta = \frac{\|u\|_{K^\circ} - \|v\|_{K^\circ}}{1 + \|v\|_{K^\circ}}$. Elementary manipulations combined with Lemma 3.6 give

$$D_{F_K}(u, v) = F_K^*(u) - F_K^*(v) - \langle \nabla F_K^*(v); u - v \rangle$$

$$= \|u\|_{K^\circ} - \|v\|_{K^\circ} - \ln \left(1 + \frac{1}{1 + \|v\|_{K^\circ}} \right) - \frac{\|v\|_{K^\circ}}{1 + \|v\|_{K^\circ}} \langle \nabla \rho \cdot \|v\|_{K^\circ}; u - v \rangle$$

$$= \|u\|_{K^\circ} - \|v\|_{K^\circ} - \ln (1 + \Theta) - \frac{\|v\|_{K^\circ}}{1 + \|v\|_{K^\circ}} \langle \nabla \rho \cdot \|v\|_{K^\circ}; u - v \rangle$$

$$= \frac{1}{1 + \|v\|_{K^\circ}} \left[(1 + \|v\|_{K^\circ}) ([\|u\|_{K^\circ} - \|v\|_{K^\circ}] - (1 + \|v\|_{K^\circ}) \ln (1 + \Theta) - \|v\|_{K^\circ} \langle \nabla \rho \cdot \|v\|_{K^\circ}; u - v \rangle \right]$$

$$= \Theta - \ln (1 + \Theta) + \frac{1}{1 + \|v\|_{K^\circ}} \left[\|u\|_{K^\circ} ([\|u\|_{K^\circ} - \|v\|_{K^\circ}] - \|v\|_{K^\circ} \langle \nabla \rho \cdot \|v\|_{K^\circ}; u - v \rangle \right]_{H \neq}.$$

Let us add and subtract $-\frac{1}{2} \|v\|_{K^\circ}^2$ in H. We obtain

$$H = \|v\|_{K^\circ} \|u\|_{K^\circ} - \frac{1}{2} \|v\|_{K^\circ}^2 - \frac{1}{2} \|u\|_{K^\circ}^2 - \frac{1}{2} \|v\|_{K^\circ}^2 - \frac{1}{2} \|u\|_{K^\circ}^2 - \langle \|v\|_{K^\circ} \nabla \rho \cdot \|v\|_{K^\circ}; u - v \rangle.$$

We note that $\nabla \frac{1}{2} \|\cdot\|_{K^\circ}^2 (v) = \|v\|_{K^\circ} \nabla \rho \cdot \|v\|_{K^\circ} (v)$. It is then crucial to observe that the Bregman divergence of $\frac{1}{2} \|\cdot\|_{K^\circ}$ appears as follows

$$H = \|v\|_{K^\circ} \|u\|_{K^\circ} - \frac{1}{2} \|v\|_{K^\circ}^2 - \frac{1}{2} \|u\|_{K^\circ}^2 + D_{\frac{1}{2} \|\cdot\|_{K^\circ}} (u, v)$$

$$= -\frac{1}{2} ([\|u\|_{K^\circ} - \|v\|_{K^\circ}]^2 + D_{\frac{1}{2} \|\cdot\|_{K^\circ}} (u, v)).$$

Overall, with careful rewriting, we obtain that for any $(u, v) \in \mathbb{R}^n$

$$D_{F_K}(u, v) = \Theta - \ln (1 + \Theta) - \frac{1}{2} \left(\frac{\|u\|_{K^\circ}^2 - \|v\|_{K^\circ}^2}{1 + \|v\|_{K^\circ}} \right)$$

$$= \frac{1}{1 + \|v\|_{K^\circ}} \left[\Theta - \ln (1 + \Theta) + \frac{1}{1 + \|v\|_{K^\circ}} D_{\frac{1}{2} \|\cdot\|_{K^\circ}} (u, v).$$

With $\frac{1}{1 + \|v\|_{K^\circ}} = 1 - \|x\|_K$ (Lemma 3.6 and $\nabla \rho \cdot \|\cdot\| (x)$ is norm 1) it follows

$$D_{F_K}(u, v) \leq \Theta - \ln (1 + \Theta) + (1 - \|x\|_K) D_{\frac{1}{2} \|\cdot\|_{K^\circ}} (u, v).$$

Then, to upper bound $\Theta - \ln (1 + \Theta)$, we note that $\ln (1 + \theta) \geq \theta - \theta^2$ for all $\theta \geq -\frac{1}{2}$. Hence, we need to choose η such that $\Theta \geq -\frac{1}{2}$. If $-\eta \beta \geq -\frac{1}{2}$, i.e., for $\eta \leq \frac{1}{2 \beta R}$, Lemma 3.7 implies that $\Theta \geq -\frac{1}{2}$. Thus,

$$D_{F_K}(u, v) \leq \left(\frac{\|u\|_{K^\circ}^2 - \|v\|_{K^\circ}^2}{1 + \|v\|_{K^\circ}} \right)^2 + (1 - \|x\|_K) D_{\frac{1}{2} \|\cdot\|_{K^\circ}} (u, v).$$
Although it is an extension.

Then, by the triangle inequality, and $1/(1 + \|v\|_{K^0}) = 1 - \|x\|_K$, we have

$$D_{F_K}(u, v) \leq (1 - \|x\|_K)^2 \|u - v\|_{K^0}^2 + (1 - \|x\|_K)D_{\|\cdot\|_{K^0}^2}(u, v). \quad (7)$$

Then, with Corollary 2.8, we have $D_{\|\cdot\|_{K^0}^2}(u, v) \leq \frac{4(\alpha + 1)}{\alpha} \|u - v\|_{K^0}^2$. Hence by combining it with (7), we obtain

$$D_{F_K}(u, v) \leq (1 - \|x\|_K)\|u - v\|_{K^0}^2 \left[1 + \frac{4(\alpha + 1)}{\alpha}\right].$$

□

With the very same technique, we obtain another form of upper bound when the set is uniformly convex. For the sake of clarity we write it as a corollary of Lemma 3.8 although it is an extension.

Corollary 3.9 (One Term Upper Bound Uniform Convexity). Let $q \geq 2$ and $p \in]1, 2]$ s.t. $1/p + 1/q = 1$. Consider K an (α, q)-uniformly convex and centrally symmetric with non-empty interior set. Assume that $\ell_1(r) \subset K \subset \ell_\infty(R)$ for some $r, R > 0$. Let $x \in K$ s.t. $\|x\|_K < 1$ and \tilde{c} as defined in (5). If $0 < \eta < \frac{1}{2\alpha}$, then we have

$$D_{F_K}(\nabla F_K(x) - \eta \tilde{c}, \nabla F_K(x)) \leq (1 - \|x\|_K)\eta^p \|\tilde{c}\|_{K^0}^p ((1/2)^{2-p} + L),$$

with $L \triangleq 2p(1 + (q/(2\alpha))^{1/(q-1)})$.

Proof of Corollary 3.9. The proof is exactly the same as Lemma 3.8 until (7). Here, by (1) in Lemma 2.7, we have $D_{\|\cdot\|_{K^0}^2}(u, v) \leq 2p (1 + (q/(2\alpha))^{1/(q-1)}) \|u - v\|_{K^0}^p$. Hence, we now have

$$D_{F_K}(u, v) \leq (1 - \|x\|_K)^2 \|u - v\|_{K^0}^2 + (1 - \|x\|_K)2p(1 + (q/(2\alpha))^{1/(q-1)}) \|u - v\|_{K^0}^p$$

$$\leq (1 - \|x\|_K)\|u - v\|_{K^0}^p \left[(1 - \|x\|_K)\|u - v\|_{K^0}^{2-p} + 2p(1 + (q/(2\alpha))^{1/(q-1)})\right].$$

We now simply need to bound the term $(1 - \|x\|_K)\|u - v\|_{K^0}^{2-p}$. We have $u - v = \eta \tilde{c}$, and by definition of \tilde{c} in (5), when $\xi = 0$, we have

$$(1 - \|x\|_K)\|u - v\|_{K^0}^{2-p} = (1 - \|x\|_K)^{p-1} \left[\frac{n\eta}{r^2} |\langle c; re_i\rangle| \cdot \|re_i\|_{K^0}\right]^{2-p}.$$

Then, since $\ell_1(r) \subset K$, $re_i \in K$ and $c \in K^\circ$, we have $|\langle c; re_i\rangle| \leq 1$. Also, since $K \subset \ell_\infty(R)$, we have $\ell_\infty(R)^0 = \ell_1(1/R) \subset K^\circ$ and $e_i/R \in K^\circ$, hence $\|re_i\|_{K^0} \leq rR$. Besides, by the choice of η, we have $n\eta \leq r/(2R)$. We now have (case $\xi = 1$ is immediate) with $\eta \leq r/(2nR)$ and because $(1 - \|x\|_K) \leq 1$ and $p - 1 > 0$

$$(1 - \|x\|_K)\|u - v\|_{K^0}^{2-p} \leq 1 \cdot \left[\frac{n\eta}{r^2} rR \right]^{2-p} \leq \left[\frac{r}{2R} \frac{rR}{r^2}\right]^{2-p} = 1/2^{2-p}.$$

Finally, we obtain

$$D_{F_K}(u, v) \leq (1 - \|x\|_K)\|u - v\|_{K^0}^p \left[(1/2)^{2-p} + 2p(1 + (q/(2\alpha))^{1/(q-1)})\right].$$

□
4 Conclusion

When the action set is strongly convex, we design a barrier function leading to a bandit algorithm with pseudo-regret in $\hat{O}(\sqrt{nT})$. We hence drastically extend the family of action sets for which such pseudo-regret hold, answering an open question of [BC12]. To our knowledge, a $\hat{O}(\sqrt{nT})$ bound was known only when the action set is a simplex or an ℓ_p ball with $p \in]1, 2]$. We are now interested in 1) providing lower-bound on the pseudo-regret bounds for strongly convex sets, 2) providing expected or high-probability regret bounds, 3) providing such guarantees in the starved bandit setting [BCL18].

When the set is (α, q)-uniformly convex with $q \geq 2$, in Theorems 3.3 and 3.4 we assume that $\ell_q(r)$ is contained in the action set K. It is restrictive but allows us to first prove improved pseudo-regret bounds outside the explicit ℓ_p case. Removing this assumption is an interesting research direction. However, it is not clear that the current classical algorithmic scheme with a barrier function is best adapted to leverage the strong convexity of the action set. Indeed, in the case of online linear learning, [Hua+17] show that the simple FTL allows obtaining accelerated regret bounds. Such projection-free schemes have several benefits, e.g., computational efficiency [CP21] but in the case of FTL they also do not require smoothness of the action set [Mol20] as opposed to Algorithm 1 which requires it to ensure differentiability of F_K and F_{K° simultaneously. Besides, they also exhibit adaptive properties to unknown structural assumptions, e.g., unknown parameters of Hölderian Error Bounds [KdP19; Ker20].

At a high level, this work is an example of the favorable dimension-dependency of the sets' uniform convexity assumptions for the pseudo-regret bounds. It is crucial for large-scale machine learning. Such observations have already been made, e.g., in constrained optimization [Pol66; DR70; Dun79; KdP21b; Ker+20], when the sets’ α-strong convexity leads to linear convergence rates of the Frank-Wolfe methods with a conditioning on the set that does not depend on the dimension. On the contrary, the linear convergence regimes for corrective versions of Frank-Wolfe on polytope with strongly convex functions suffer large dimension dependency, see, e.g., [LJ15; DCP20; Gar20; Car+21]. This difference between polytope structures and uniform convexity assumption is even more apparent with infinite-dimensional constraints. Besides, to our knowledge, the uniform convexity structures for the sets are much less developed and understood than their functional counterpart, see, e.g., [KdP21a]. Arguably, this stems from a tendency in machine learning to consider that constraints are theoretically interchangeable with penalization. It is often not quite accurate in terms of convergence results and the algorithmic strategies developed differ. The linear bandit setting is a simple example where such symmetry is structurally not relevant.
Acknowledgements. Research reported in this paper was partially supported through the Research Campus Modal funded by the German Federal Ministry of Education and Research (fund numbers 05M14ZAM, 05M20ZBM) as well as the Deutsche Forschungsgemeinschaft (DFG) through the DFG Cluster of Excellence MATH+. AA is at the département d’informatique de l’École Normale Supérieure, UMR CNRS 8548, PSL Research University, 75005 Paris, France, and INRIA. AA would like to acknowledge support from the ML and Optimisation joint research initiative with the fonds AXA pour la recherche and Kamet Ventures, a Google focused award, as well as funding by the French government under management of Agence Nationale de la Recherche as part of the "Investissements d’avenir" program, reference ANR-19-P3IA-0001 (PRAIRIE 3IA Institute).

References

[BC12] Sébastien Bubeck and Nicolo Cesa-Bianchi. “Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems”. In: Machine Learning 5.1 (2012), pp. 1–122.

[BCL18] Sébastien Bubeck, Michael Cohen, and Yuanzhi Li. “Sparsity, variance and curvature in multi-armed bandits”. In: Algorithmic Learning Theory. PMLR, 2018, pp. 111–127.

[Bha+20a] Aditya Bhaskara et al. “Online learning with imperfect hints”. In: International Conference on Machine Learning. PMLR. 2020, pp. 822–831.

[Bha+20b] Aditya Bhaskara et al. “Online Linear Optimization with Many Hints”. In: arXiv:2010.03082 (2020).

[Bor+09] J. Borwein et al. “Uniformly convex functions on Banach spaces”. In: Proceedings of the American Mathematical Society 137.3 (2009), pp. 1081–1091.

[Car+21] Alejandro Carderera et al. “Parameter-free Locally Accelerated Conditional Gradients”. In: arXiv:2102.06806 (2021).

[CHW12] Kenneth L. Clarkson, Elad Hazan, and David P Woodruff. “Sublinear optimization for machine learning”. In: Journal of the ACM (JACM) 59.5 (2012), pp. 1–49.

[CP21] Cyrille W Combettes and Sebastian Pokutta. “Complexity of Linear Minimization and Projection on Some Sets”. In: arXiv preprint arXiv:2101.10040 (2021).

[Cur+20] Sebastian Curi et al. “Adaptive sampling for stochastic risk-averse learning”. In: Advances in Neural Information Processing Systems 33 (2020).

[DCP20] Jelena Diakonikolas, Alejandro Carderera, and Sebastian Pokutta. “Locally accelerated conditional gradients”. In: International Conference on Artificial Intelligence and Statistics. PMLR. 2020, pp. 1737–1747.

[dGJ18] Alexandre d’Aspremont, Cristobal Guzman, and Martin Jaggi. “Optimal affine-invariant smooth minimization algorithms”. In: SIAM Journal on Optimization 28.3 (2018), pp. 2384–2405.

[DHJ+17] Ofer Dekel, Nika Haghtalab, Patrick Jailliet, et al. “Online learning with a hint”. In: Advances in Neural Information Processing Systems. 2017, pp. 5299–5308.

[DR70] V. F. Demyanov and A. M. Rubinov. “Approximate Methods in Optimization Problems”. In: Modern Analytic and Computational Methods in Science and Mathematics (1970).

[Dun79] Joseph C Dunn. “Rates of convergence for conditional gradient algorithms near singular and nonsingular extremals”. In: SIAM Journal on Control and Optimization 17.2 (1979), pp. 187–211.
[Gar20] Dan Garber. “Revisiting Frank-Wolfe for polytopes: Strict complementary and sparsity”. In: arXiv preprint arXiv:2006.00558 (2020).

[GK20a] Dan Garber and Ben Kretzu. “Improved regret bounds for projection-free bandit convex optimization”. In: International Conference on Artificial Intelligence and Statistics. PMLR. 2020, pp. 2196–2206.

[GK20b] Dan Garber and Ben Kretzu. “Revisiting Projection-free Online Learning: the Strongly Convex Case”. In: arXiv:2010.07572 (2020).

[HKS11] Elad Hazan, Tomer Koren, and Nathan Srebro. “Beating SGD: learning SVMs in sublinear time”. In: Proceedings of the 24th International Conference on Neural Information Processing Systems. 2011, pp. 1233–1241.

[HL14] Elad Hazan and Kfir Y Levy. “Bandit Convex Optimization: Towards Tight Bounds.” In: NIPS. 2014, pp. 784–792.

[Hua+16] Ruitong Huang et al. “Following the leader and fast rates in linear prediction: Curved constraint sets and other regularities”. In: Advances in Neural Information Processing Systems 29 (2016), pp. 4970–4978.

[Hua+17] Ruitong Huang et al. “Following the leader and fast rates in online linear prediction: Curved constraint sets and other regularities”. In: The Journal of Machine Learning Research 18.1 (2017), pp. 5325–5355.

[KdP19] Thomas Kerdreux, Alexandre d’Aspremont, and Sebastian Pokutta. “Restarting Frank-Wolfe”. In: The 22nd International Conference on Artificial Intelligence and Statistics. PMLR. 2019, pp. 1275–1283.

[KdP21a] Thomas Kerdreux, Alexandre d’Aspremont, and Sebastian Pokutta. “Local and Global Uniform Convexity Conditions”. In: arXiv:2102.05134 (2021).

[KdP21b] Thomas Kerdreux, Alexandre d’Aspremont, and Sebastian Pokutta. “Projection-Free Optimization on Uniformly Convex Sets”. In: International Conference on Artificial Intelligence and Statistics. PMLR. 2021.

[Ker+20] Thomas Kerdreux et al. “Affine Invariant Analysis of Frank-Wolfe on Strongly Convex Sets”. In: arXiv preprint arXiv:2011.03351 (2020).

[Ker20] Thomas Kerdreux. “Accelerating conditional gradient methods”. PhD thesis. Université Paris sciences et lettres, 2020.

[Köt83] Gottfried Köthe. “Topological vector spaces”. In: Topological Vector Spaces I. Springer, 1983, pp. 123–201.

[LJ15] Simon Lacoste-Julien and Martin Jaggi. “On the Global Linear Convergence of Frank-Wolfe Optimization Variants”. In: Proceedings of the Annual Conference on Neural Information Processing Systems 2015. 2015, pp. 496–504.

[LK19] Kfir Levy and Andreas Krause. “Projection free online learning over smooth sets”. In: The 22nd International Conference on Artificial Intelligence and Statistics. 2019, pp. 1458–1466.

[Mol20] Marco Molinaro. “Curvature of Feasible Sets in Offline and Online Optimization”. In: arXiv:2002.03213 (2020).

[ND16] Hongseok Namkoong and John C Duchi. “Stochastic gradient methods for distributionally robust optimization with f-divergences”. In: Advances in neural information processing systems 29 (2016), pp. 2208–2216.
A Consequences of Set Strong Convexity

We provide here a simplification of [Kdp21a, Theorem 4.1.], see also [Bor+09]. Let us first recall the scaling inequality that provide an equivalent characterization of uniformly convex sets [Kdp21a, Theorem 4.1.]. These inequalities quantify the behavior of the normal cone directions at the boundary of K. As such, they provide a more geometrical intuition on uniform convex than the algebraic Definition 2.4. Also, they are useful to prove Theorem A.2.

Lemma A.1 (Scaling Inequality). Let $\alpha > 0$ and $q \geq 2$. Assume K is (α, q)-uniformly convex. Then, for any $x, y \in K \times \partial K$ and $d \in N_K(y)$, we have

$$\langle d; y - x \rangle \geq \frac{\alpha}{q} \|x - y\|_K^q \|d\|_{K^*}. \quad (8)$$

Proof. We repeat the proof for completeness. Let (x, y, d) as in the lemma. In particular, $y \in \arg\max_{v \in K} \langle d; v \rangle$. By optimality of y and uniform convexity of K, for any $\gamma \in]0, 1[$ and z with $\|z\|_K \leq 1$ we have

$$\langle d; y \rangle \geq \langle d; \gamma x + (1 - \gamma)y + \frac{\alpha}{q} \gamma(1 - \gamma)\|x - y\|_K^q z \rangle.$$

After simplification, we obtain for any $\gamma \in]0, 1[, z \in K$

$$\langle d; y - x \rangle \geq \frac{\alpha}{q}(1 - \gamma)\|y - x\|_K^q \langle d; z \rangle.$$

Hence, by definition of the dual norm of $\|\cdot\|_K$ and $\|\cdot\|_{K^*} = \|\cdot\|_{K^\circ}$, we obtain

$$\langle d; y - x \rangle \geq \frac{\alpha}{q} \|y - x\|_K^q \|d\|_{K^\circ}.$$

\square

Theorem A.2 is slightly different from [Kdp21a, Theorem 4.1.] because we are interested in the smoothness property of $\frac{1}{q}\|\cdot\|_{K^\circ}^q$ instead of $\frac{1}{q} \|\cdot\|_{K^\circ}^q$ when the set K is (α, q)-uniformly convex. The proof is however very similar. The main different is that in [Kdp21a, Theorem 4.1.] the smoothness property was ensured on \mathbb{R}^n while here it is only true on bounded domains like K°.
Theorem A.2. Let \(\alpha > 0, q \geq 2 \) and \(p \in]1, 2] \) s.t. \(1/p + 1/q = 1 \). Consider \(\mathcal{K} \subset \mathbb{R}^n \) a centrally symmetric compact convex with non-empty interior. Assume \(\mathcal{K} \) is smooth and \((\alpha, q)\)-uniformly convex w.r.t. \(\| \cdot \|_{\mathcal{K}} \) (Definition 2.4), then
\[
\frac{1}{2} \| \cdot \|_{\mathcal{K}^\circ}^2 \text{ is } (L, p)\text{-Hölder Smooth on } \mathcal{K}^\circ,
\]
with
\[
L = 2p\left(1 + \left(\frac{q}{2\alpha}\right)^{1/(q-1)}\right).
\]

Proof. The proof follows [Kdp21a, Theorem 4.1]. We repeat it to obtain quantitative results. The proof proceed is two steps: first prove the Hölder-smoothness of \(\| \cdot \|_{\mathcal{K}^\circ} \) on \(\partial \mathcal{K}^\circ \) and then prove the Hölder-smoothness of \(\frac{1}{2} \| \cdot \|_{\mathcal{K}^\circ}^2 \) on \(\mathcal{K}^\circ \).

Smoothness of \(\| \cdot \|_{\mathcal{K}^\circ} \) on \(\partial \mathcal{K}^\circ \). Let \((d_1, d_2) \in \partial \mathcal{K}^\circ \times \partial \mathcal{K}^\circ \) and \((x_1, x_2) \in \partial \mathcal{K} \times \partial \mathcal{K} \) s.t. \(x_i \in \text{argmax}_{x \in \mathcal{K}} \langle d_i, x \rangle \) for \(i = 1, 2 \). Because \(\mathcal{K} \) is strictly convex (uniform convexity implies strict convexity), the \(x_i \) are unique and by Lemma 2.5, \(\nabla \| \cdot \|_{\mathcal{K}^\circ}(d_i) = x_i \) for \(i = 1, 2 \). Note that equivalently we have \(d_i \in N_\mathcal{K}(x_i) \). Applying the scaling inequalities (8) we have for any \(x \in \mathcal{K} \)
\[
\begin{cases}
\langle d_1; x_1 - x \rangle \geq \alpha/q \|d_1\|_{\mathcal{K}^\circ} \cdot \|x_1 - x\|_{\mathcal{K}}^q = \alpha/q \|x_1 - x\|_{\mathcal{K}}^q,
\langle d_2; x_2 - x \rangle \geq \alpha/q \|d_2\|_{\mathcal{K}^\circ} \cdot \|x_2 - x\|_{\mathcal{K}}^q = \alpha/q \|x_2 - x\|_{\mathcal{K}}^q.
\end{cases}
\]

Then, by summing the two inequalities evaluated respectively at \(x = x_2 \) and \(x = x_1 \), we have
\[
\langle d_1 - d_2; x_1 - x_2 \rangle \geq 2\alpha/q \|x_1 - x_2\|_{\mathcal{K}}^q.
\]

By Cauchy-Schwartz, we obtain
\[
\|d_1 - d_2\|_{\mathcal{K}^\circ} \cdot \|\nabla \| \cdot \|_{\mathcal{K}^\circ}(d_1) - \nabla \| \cdot \|_{\mathcal{K}^\circ}(d_2)\|_{\mathcal{K}} \geq 2\alpha/q \|\nabla \| \cdot \|_{\mathcal{K}^\circ}(d_1) - \nabla \| \cdot \|_{\mathcal{K}^\circ}(d_2)\|^q_{\mathcal{K}}
\]
and conclude that
\[
\|\nabla \| \cdot \|_{\mathcal{K}^\circ}(d_1) - \nabla \| \cdot \|_{\mathcal{K}^\circ}(d_2)\|_{\mathcal{K}} \leq \frac{1}{(2\alpha/q)^{1/(q-1)}} \|d_1 - d_2\|_{\mathcal{K}^\circ}^{1/(q-1)}.
\]

Smoothness of \(\frac{1}{2} \| \cdot \|_{\mathcal{K}^\circ}^2 \) on \(\mathcal{K}^\circ \). Let us first note that \(\nabla \frac{1}{2} \| \cdot \|_{\mathcal{K}^\circ}^2(d) = \|d\|_{\mathcal{K}^\circ} \nabla \| \cdot \|_{\mathcal{K}^\circ}(d) \). Hence, since \(\| \cdot \|_{\mathcal{K}^\circ} \) is norm 1, when \(d \) approaches 0, the limit of \(\nabla \frac{1}{2} \| \cdot \|_{\mathcal{K}^\circ}^2(d) \) is 0 and hence \(\frac{1}{2} \| \cdot \|_{\mathcal{K}^\circ}^2 \) is differentiable on \(\mathbb{R}^n \) (as opposed to \(\| \cdot \|_{\mathcal{K}^\circ} \) that is not differentiable at 0).

Similarly, consider non-zeros \((d_1, d_2) \in \mathcal{K}^\circ \times \mathcal{K}^\circ \) and the \((x_1, x_2) \in \partial \mathcal{K} \times \partial \mathcal{K} \) s.t. \(x_i \in \text{argmax}_{x \in \mathcal{K}} \langle d_i, x \rangle \) for \(i = 1, 2 \). Because of (b) in Lemma 2.5, we have \(\nabla \| \cdot \|_{\mathcal{K}^\circ}(d_1) = \nabla \| \cdot \|_{\mathcal{K}^\circ}(d_1/d_1 \|d_1\|_{\mathcal{K}^\circ}) \). Hence, with (9), we obtain
\[
\|\nabla \| \cdot \|_{\mathcal{K}^\circ}(d_1) - \| \cdot \|_{\mathcal{K}^\circ}(d_2)\|_{\mathcal{K}} \leq \frac{1}{(2\alpha/q)^{1/(q-1)}} \|d_1/d_1 \|d_1\|_{\mathcal{K}^\circ} - d_2/d_2 \|d_2\|_{\mathcal{K}^\circ}\|_{\mathcal{K}^\circ}^{1/(q-1)}.
\]

Write \(C \triangleq 1/(2\alpha/q)^{1/(q-1)} \) and \(I \triangleq \|\nabla \frac{1}{2} \| \cdot \|_{\mathcal{K}^\circ}^2(d_1) - \frac{1}{2} \| \cdot \|_{\mathcal{K}^\circ}^2(d_2)\|_{\mathcal{K}} \). Let us now consider
\[
\begin{align*}
I &= \|d_1|\mathcal{K}^\circ \nabla \| \cdot \|_{\mathcal{K}^\circ}(d_1) - d_2|\mathcal{K}^\circ \nabla \| \cdot \|_{\mathcal{K}^\circ}(d_2)\|_{\mathcal{K}} \leq \|\nabla \| \cdot \|_{\mathcal{K}^\circ}(d_1) - \nabla \| \cdot \|_{\mathcal{K}^\circ}(d_2)\|_{\mathcal{K}} + \|\nabla \| \cdot \|_{\mathcal{K}^\circ}(d_2)\|_{\mathcal{K}} + \|\nabla \| \cdot \|_{\mathcal{K}^\circ}(d_2)\|_{\mathcal{K}} \leq C \|\nabla \| \cdot \|_{\mathcal{K}^\circ}(d_1) - \nabla \| \cdot \|_{\mathcal{K}^\circ}(d_2)\|_{\mathcal{K}} + \|\nabla \| \cdot \|_{\mathcal{K}^\circ}(d_2)\|_{\mathcal{K}} \leq C \|\nabla \| \cdot \|_{\mathcal{K}^\circ}(d_1) - \nabla \| \cdot \|_{\mathcal{K}^\circ}(d_2)\|_{\mathcal{K}} + \|\nabla \| \cdot \|_{\mathcal{K}^\circ}(d_2)\|_{\mathcal{K}} \leq \frac{1}{(2\alpha/q)^{1/(q-1)}} \|d_1/d_1 \|d_1\|_{\mathcal{K}^\circ} - d_2/d_2 \|d_2\|_{\mathcal{K}^\circ}\|_{\mathcal{K}^\circ}^{1/(q-1)} + \|d_1 - d_2\|_{\mathcal{K}^\circ}.
\end{align*}
\]
For $i = 1, 2$, $d_i \in K^\circ$ so that $\|d_i\|_{K^\circ} \leq 1$. We then obtain

$$I \leq C \|d_1 - d_2\|_{K^\circ} / \|d_1\|_{K^\circ} \|d_2\|_{K^\circ}^{1/(q-1)} + 2\|d_1 - d_2\|_{K^\circ}^{1/(q-1)}.$$

Also, with the triangle inequality

$$\|d_1 - d_2\|_{K^\circ} \leq \|d_1 - d_2\|_{K^\circ} + \|d_2\|_{K^\circ} - \|d_1\|_{K^\circ} \leq \|d_1 - d_2\|_{K^\circ} + 2\|d_1 - d_2\|_{K^\circ}.$$

Hence, we finally obtain

$$\|\nabla \frac{1}{2} \cdot \|_{K^\circ} (d_1) - \frac{1}{2} \| \cdot \|_{K^\circ} (d_2) \|_{K^\circ} \leq 2(C + 1)\|d_1 - d_2\|_{K^\circ}^{1/(q-1)}.$$

This equivalently means that $\frac{1}{2} \cdot \|_{K^\circ}$ is $(2(C+1), 1+1/(q-1))$-Hölder smooth as defined in (Hölder-Smoothness). Hence, since $q - 1 = 1/(p - 1)$, we get that $\frac{1}{2} \cdot \|_{K^\circ}$ is $(2p(C + 1), p)$-Hölder smooth. □