Accepted Manuscript

Aedes aegypti vector competence studies: A review

Jayme A. Souza-Neto, Jeffrey R. Powell, Mariangela Bonizzoni

PII: S1567-1348(18)30715-9
DOI: https://doi.org/10.1016/j.meegid.2018.11.009
Reference: MEEGID 3708
To appear in: Infection, Genetics and Evolution

Received date: 17 September 2018
Revised date: 8 November 2018
Accepted date: 8 November 2018

Please cite this article as: Jayme A. Souza-Neto, Jeffrey R. Powell, Mariangela Bonizzoni, Aedes aegypti vector competence studies: A review. Meegid (2018), https://doi.org/10.1016/j.meegid.2018.11.009

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Aedes aegypti vector competence studies: a review

Jayme A. Souza-Neto¹,², Jeffrey R. Powell³, Mariangela Bonizzoni⁴

¹São Paulo State University (UNESP), School of Agricultural Sciences, Department of Bioprocesses and Biotechnology, Botucatu, Brazil
²São Paulo State University (UNESP), Institute of Biotechnology, Botucatu, Brazil
³Yale University, New Haven, CT USA
⁴Department of Biology and Biotechnology, University of Pavia, Pavia, Italy

Abstract

Aedes aegypti is the primary transmitter of the four viruses that have had the greatest impact on human health, the viruses causing yellow fever (YFV), dengue fever (DENV), chikungunya (CHIKV), and Zika fever (ZIKV). Because this mosquito is easy to rear in the laboratory and these viruses grow in laboratory tissue culture cells, many studies have been performed testing the relative competence of different populations of the mosquito to transmit many different strains of viruses. We review here this large literature including studies on the effect of the mosquito microbiota on competence. Because of the heterogeneity of both mosquito populations and virus strains used, as well as methods measuring potential to transmit, it very difficult to perform detailed meta-analysis of the studies. However, a few conclusions can be drawn: (1) Almost no population of Ae. aegypti is 100% naturally refractory to virus infection. Complete susceptibility to infection has been observed for Zika, Dengue and Chikungunya, but not Yellow Fever virus (2) The dose of virus used is directly correlated to the rate of infection. (3) Brazil populations of mosquito are particularly susceptible to DENV-2 infections. (4) The Asian lineage of ZIKV is less infective to Ae. aegypti populations from the American continent than is the African ZIKV lineage. (5) Virus adaptation to different species of mosquitoes has been demonstrated with CHIKV. (6) Co-infection with more than one virus sometimes causes displacement while in other cases has little effect. (7) The microbiota in the mosquito also has important effects on level of susceptibility to infection with these four viruses. (8) Resistance to virus infection due to the microbiota may be direct (e.g., bacteria producing antiviral proteins) or indirect in activating the mosquito host innate immune system. (9) Non-pathogenic insect specific virus (ISV) are also common in mosquitoes including genome insertions. These too have been shown to have an impact on the susceptibility of mosquitoes to pathogenic viruses.
One clear conclusion is that it would be a great advance in this type of research to implement standardized procedures in order to obtain comparable and reproducible results.

Background

There are hundreds of known arthropod-borne-viruses (arboviruses) of which about 30 are known to cause disease in humans (Cleton et al., 2012). Despite this diversity, only four arboviruses have caused by far the most human suffering, the viruses causing yellow fever, dengue, chikungunya and Zika. Not coincidentally, one mosquito, *Aedes aegypti*, has historically been the primary vector in almost all major human epidemics of these four viruses. “Not coincidently” because these viruses are native to Africa, humans are a native African primate, and *Ae. aegypti* is a native African mosquito. It has been suggested that this long history together has allowed the viruses, mosquito, and primate host to coevolve in their native Africa before spreading around the world (Powell 2018).

These four viruses are all single-stranded RNA viruses, known to have high mutation rates, which has likely aided their rapid evolution and adaptation to replicate in different hosts (Weaver 2006; Ruckert and Ebel, 2018). Three are flaviviruses, yellow fever virus (YFV), dengue viruses (DENVs), and Zika virus (ZIKV) and one an alphavirus, chikungunya virus (CHIKV). All cause similar symptoms in humans, high fever lasting 4-14 days and joint pain. Yet each has its unique pathology with high rates of mortality for YFV and sometimes DENVs, but rarely for CHIKV or ZIKV.

Fortuitously, *Ae. aegypti* is the easiest mosquito to rear and manipulate in the laboratory. The viruses can be grown in mosquito cell tissue cultures and either injected or added to blood used to feed females. This has led to a large number of laboratory studies of the relative competence (see definition below for vector competence) of mosquitoes from diverse geographic populations to transmit these viruses. The prevalence of diseases caused by these viruses is geographically heterogeneous likely, at least partly, due to variation in competence among local populations of *Ae. aegypti*.

Here we review studies of the ability of these four viruses to be transmitted by geographically diverse populations of *Ae. aegypti*. We struggle with the issue of heterogeneity in laboratory procedures and virus strains used in an attempt to detect underlying patterns. How genetic diversity that affects phenotypes, such as vector competence, varies among populations remains an open question. However, the fact that populations of *Ae. aegypti* are genetically distinct (e.g., Gloria-Soria et al. 2016) makes it more likely that they vary in vector competence compared to genetically uniform species. We also consider the contribution of
microbiota in vector competence. Microbiota is a normal part of the physiology of vectors and it is clear that these microbes can affect how mosquitoes react to infection with viruses. However, details of the interactions and how these interactions vary among genetically heterogeneous mosquito populations remain to be elucidated

Quantifying the epidemiological impact of *Ae. aegypti*

Aedes aegypti was first identified as vector for arbovirus in 1900 in Cuba by Walter Reed, Carlos Finlay and James Carroll (Reed and Carroll 1901). A few years later (1906), Thomas Bancroft demonstrated that *Ae. aegypti* is able to also transmit DENVs and linked frequency of transmission to the diurnal biting habits of *Ae. aegypti* (Bancroft, 1906). The identification of the role of mosquitoes in the transmission cycle of human pathogens led scientists to the concept of vector control, that is, the control of pathogen transmission through the control of vectors. To formulate epidemiological predictions and assess the impact of vector control strategies, objective parameters have been proposed since the early 1900s that would mathematically link mosquito behaviors and their biological properties to pathogen transmission (Smith et al., 2012). The basic elements of the mathematical model of mosquito-borne disease were first conceptualized in the Ross-MacDonald "vectorial capacity" equation (Smith et al., 2012). Vectorial capacity defines the transmission potentials of a mosquito population and equals to $VC=[ma^2bp^n]/ln(p)$ where “m” is the density of vectors in relation to the host; “a” is the daily probability that the vector feeds on a host, this variable is raised to the second power because a mosquito needs to bite twice to perpetuate pathogen transmission; “b” is the intensity of transmission in relation to the initial infection rate, also called vector competence; “p” is the daily survival rate of a vector; “n” is the days it takes for a pathogen to move from the point of entry in the mosquito body (i.e. the mosquito midgut) to the point of exit (i.e. saliva), a parameter called “extrinsic incubation period” (EIP); and “1/ln(p)” is the probability of vector’s surviving the EIP (Kauffman and Kramer, 2017; Rückert and Ebel, 2018).

Environmental and genetic factors of both the vector and the pathogen interact to influence the parameters of the VC equation. For instance, temperature influences EIP, the probability of mosquito survival, and may also indirectly affect adult density by impacting larval developmental time as amply discussed and reviewed elsewhere (Le Flohic et al., 2013; Gould and Higgs, 2009; Fish, 2008; Tabachnick, 2016; Kauffman and Kramer, 2017). Temperature also influences *Ae. aegypti* vector competence to DENVs (Carrington et al., 2013; Chepkorir et al., 2014; Gloria-Soria et al., 2017). *Vector competence* is defined as the capacity of a mosquito to acquire the pathogen and support its transmission; it is one of the most difficult parameters to
compare among studies because no standardized procedures have been proposed and agreed upon by workers in the field to define viral transmission. An attempt to reduce the variability in vector competence estimates based on the genetic variability of the mosquito populations under test is to measure the heritability of viral titers in half-sibling experiments (i.e. Garcia-Luna et al., 2018; Vezzeille et al., 2016).

It has been challenging to identify a proxy for transmission given the difficulties in developing animal models for arboviral diseases that mimic pathogenesis and immunity in humans (Zompi and Harris, 2012). For instance, for DENVs, ZIKV and CHIKV various mouse models have been developed by genetically suppressing the mouse immune systems to allow viral replication and manifestation of disease symptoms (Na et al., 2017; Morrison and Diamond, 2017). However, these models are not applicable to all DENV serotypes (Na et al., 2017). YFV infects Indian crown and rhesus macaques and were used to develop early YFV vaccines (Beck and Barrett, 2015). In older literature, vector competence is often expressed in terms of infection and/or dissemination rate, that is the percentage of engorged females with virus detected in the head (as a proxy for the salivary glands, which are located at the base of the mosquito head) and/or in the whole body or legs. In more recent literature, the percentage of engorged females with viral particles in the saliva following the EIP (i.e. transmission rate) is often reported (Supplementary Table 1). Viruses can be detected with various methods, primarily with RT-PCR using virus-specific primers and indirect immunofluorescent assays on head squashes. A few studies have tested transmission by inoculating tissue cultures (Aedes albopictus C6/36 and Ae. aegypti Aeg2 are the most used) with mosquito body extracts or saliva and doing plaque assays or testing for viral particles after an incubation period (Calvez et al., 2017; Agha et al., 2017); this confirms live virus particles are present in saliva, rather than simply viral RNA as detected by RT-PCR. Viral detection to test for transmission is mostly pursued between 7-14 days after viral infection (Supplementary Table 1). Shorter incubation periods are used for CHIKV as this virus has a faster dissemination rate than DENVs (Dubrulle et al., 2009; Rückert and Ebel, 2018).

Vector competence of Ae. aegypti populations for arboviruses

Despite the lack of uniformity in the procedures to test for vector competence and a focus on sampling mosquitoes in geographic areas with endemic arboviral infections or with significant epidemics (i.e. Thailand, Vietnam, New Caledonia, Mexico, Brazil, Florida, La Reunion island and Senegal), review of literature on infection, dissemination and transmission rates of arboviruses by *Ae. aegypti* mosquitoes support some general conclusions, data in
Table 1. (1) Cases of complete refractoriness to arboviral infection are rare (Kay et al., 1979; Rosen et al., 1985; Diallo et al., 2008; Dickson et al., 2014; Agha et al., 2017). (2) Complete susceptibility to infection has been detected for Ae. aegypti populations from New Caledonia, Thailand, Australia, South Africa for DENVs; for ZIKV Dominican Republic, Brazil, China and Singapore; for CHIV Mexico and Guadaloupe for CHIKV (Girod et al., 2011; Vega-Ruiz et al., 2014), but no completely susceptible for any population tested for YFV (Table 1); (3) Initial infection dose of virus positively correlates with infection rate. (4) Brazilian populations of Ae. aegypti are particularly susceptible DENV-2 (Goncalves et al., 2014; Carvalho-Leandro et al., 2012; Lourenco-de-Oliveira et al., 2004). (5) The African lineage of ZIKV was shown to be more infective to Ae. aegypti mosquitoes from the American continent than the ZIKV Asian lineage (Weger-Lucarelli et al., 2016; Roundy et al., 2017). (5) Virus adaptation different mosquito species appears an important evolutionary force for CHIKV, but its role in DENVs evolution is still controversial (Lambrechts et al., 2009; Tsetsarkin et al., 2011; Fansiri et al., 2016). The best-known example of vector-driven adaptation in an arbovirus is the emergence on La Reunion in 2005 of the A226V amino acid substitution in the E1 envelope glycoprotein of CHIKV that favors CHIKV replication in Aedes albopictus mosquitoes (Tsetsarkin et al., 2007). (6) Limited data are available on co-infections with different viruses or serotypes/genotypes of one viral species. Some co-infection experiments suggest competitive displacement of DENV-4 over DENV-1 (Vazeille et al., 2016) or superinfection interference (Muturi et al., 2017). Other studies indicate that Ae. aegypti infection with one arbovirus (i.e. CHIKV, DENV2 or ZIKV) only mildly affects infection with a subsequent infection with another (Rückert et al., 2017).

The most obvious and well accepted observation from reviewing literature on vector competence in Ae. aegypti is that there is great variability in susceptibility to arboviral infections across geographic populations and even for the same population with different viral species and strains; this variability includes comparisons between the domestic Ae. aegypti aegypti and the sylvatic Ae. aegypti formosus with respect to DENVs infections (Bosio et al., 1999; Gaye et al., 2014; Dickson et al., 2014). The great variation among geographic populations of mosquito is likely due to the fact that vector competence is a complex and evolving phenotype dependent on the tri-partite interaction among the host (i.e. mosquito), the pathogen, and other host symbionts (Vasilakis and Tesh, 2015; Hedge et al., 2015). The high genetic structure among Ae. aegypti populations is also a likely contributing factor. This variation across populations suggests that the co-evolution between Ae. aegypti and arboviruses did not favor a single pathway/factor in the mosquito, likely because exposure to arboviral infection is the accidental consequence of hematophagy the primary purpose of which is to support to egg development.
Furthermore, it is unclear how great, or even if there is, any fitness cost to mosquitoes to transmit these viruses (see e.g., Padilha et al. 2018). Selection-driven variation is more likely to be on the virus.

Specific physiological and genetic factors in mosquitoes contributing to vector competence has been thoroughly reviewed elsewhere (Franz et al., 2015; Pando-Robles and Batista, 2017; Wang et al., 2017; Palmer et al., 2018).

Microbiota and vector competence

The gut of mosquitoes is colonized by a resident microbiota which influences key physiological processes related to pathogen transmission (Guégan et al., 2018; Pike et al., 2017). In *Ae. aegypti*, DENVs replication is significantly affected by gut bacterial flora (Xi et al., 2008; Ramirez et al., 2014), the depletion of which by antibiotics renders mosquitoes more susceptible (Xi et al., 2008). Oral reintroduction of specific bacterial species into the adult mosquito midgut results in decreased viral load in the vector (Ramirez et al., 2012; 2014). Mosquito gut bacteria are presumed to exert antiviral activity through either direct or indirect mechanisms (Dennison et al., 2014; Saraiva et al., 2016; Guégan et al., 2018). While these mechanisms are not completely understood, recent studies have demonstrated that indirect mechanisms rely mainly on the basal level activation of innate antiviral responses and antimicrobial peptides (AMPs) by the gut microbiota (Xi et al., 2008; Ramirez et al., 2012). On the other hand, antiviral activity may be directly mediated by bacterial antiviral compounds (Ramirez et al., 2014). Indeed, a *Chromobacterium sp.* isolated from the *Ae. aegypti* midgut in Panama (*Csp_P*) produces an aminopeptidase that can bind to envelope protein of DENVs and prevent viral attachment and further invasion/replication within the host cell (Saraiva et al., 2018). Interestingly, the same bacterium has been shown to be pathogenic to both *Ae. aegypti* and *An. gambiae* (Ramirez et al., 2014) via the production of hydrogen cyanide (Short et al., 2018). Besides, it is important to consider the massive increase of bacteria in the midgut of mosquito vectors after a blood meal, and the interference with physiological processes related to the control of midgut homeostasis, such as the production of Reactive Oxygen Species (ROS) and the peritrophic matrix (Kumar et al., 2010; Oliveira et al., 2011; Rodgers et al., 2017). These processes may potentially affect mosquito vector competence and should be further investigated.

The environment, especially the larval breeding water, is pivotal in determining the mosquito gut microbiota composition (Coon et al., 2014; Duguma et al., 2015; Gimonneau et al., 2014), which varies considerably among local habitats of geographically distinct populations.
Most of the diversity found in the *Ae. aegypti* larvae gut is also present in the water where mosquitoes developed, with about half of it being transtadially transferred from larvae to adults (Coon et al., 2014). In addition to the environment, the mosquito genetic background also likely influences gut microbial diversity. While the mechanisms surrounding this interplay are largely unknown, concomitant decreases in both mosquito and bacterial genetic diversity have been observed in *Ae. albopictus* populations recently introduced in France (Minard et al., 2015).

It remains an open question of whether (and how) the gut microbial diversity influences mosquito competence to transmit human pathogenic arboviruses. Is the difference in vector competence among distinct mosquito populations due to their intrinsic microbiomes or genetic differences in the mosquitoes or, most likely, a combination/interaction of both factors? In this context, assessment of the gut bacteria repertoire of the genetically-selected DENV-resistant (MOYO-R) and -susceptible (MOYO-R) *Ae. aegypti* strains, identified some bacterial genera exclusively in either the resistant or in the susceptible strain (Charan et al., 2013). More recently, bacteria from the families *Rhodobacteriaceae* and *Desulfuromonadaceae* have been described as potential biomarkers of ZIKV infection in *Ae. aegypti* (Villegas et al., 2018).

Exposure of germ-free *Ae. aegypti* larvae to different microbiota-derived bacterial species has been shown to result in variation in several mosquito life-history traits, including the load of DENVs disseminated to the insect head (Dickson et al., 2017). While these studies provide important insights on the interplay between mosquito microbiomes and vector competence, the relative contribution of mosquito genetics and its microbiome in the control of vector competence remains to be elucidated, but it will almost certainly be key for understanding fundamental aspects of the variation in arbovirus transmission by different populations of *Ae. aegypti*.

Viriome and vector competence

The recent explosion of metagenomics studies led to the discovery of novel viral species, which are insect-specific and not able to replicate in vertebrate cells despite being phylogenetically-related to arboviruses (Vasilakis and Tesh, 2015; Bolling et al., 2015; Roundy et al., 2017). Insect-Specific Viruses (ISVs) identified so far in *Ae. aegypti* mosquitoes belong primarily to the *Flaviviridae* family, followed by the *Negoviridae* and *Bunyaviridae* families (Vasilakis and Tesh, 2015; Bolling et al., 2015, Hall et al., 2017). While the landscape of ISVs and their prevalence in natural mosquito populations vary greatly, the cell fusing agent virus (CFAV) appears to be the most common ISV in field-collected *Ae. aegypti* (Cook et al., 2006;
Interestingly, CFAV transmits vertically and is absent in saliva and salivary glands of *Ae. aegypti* (Guegan et al., 2018). The impact of CFAV on *Ae. aegypti* vector competence has not been investigated yet, but heterologous interference was seen between Eilat virus and CHIKV in *Ae. aegypti* (Nasar et al., 2015). Eilat virus is an ISV of the *Alphavirus* genus, which was first isolated in *Anopheles constani* mosquitoes from Israel (Nasar et al., 2012). It readily infects *Ae. aegypti* (Nasar et al., 2014) and when used to infect mosquitoes prior to CHIKV infection, it delays CHIKV dissemination by 3 days (Nasar et al., 2015). Furthermore, it is possible that ISVs influence, to some extent, the mosquito’s innate immune response, which could directly impact viral replication and the gut microbial diversity. These studies underscore the importance of expanding our knowledge of the viriome (the set of viruses in an organism) and highlight its possible application for the control of arboviral infections within mosquitoes (Hall et al., 2017).

Interaction between viruses and mosquitoes may include horizontal transfer of genetic material. The genome of *Ae. aegypti* is rich in sequences with similarities to ISVs of the *Flavivirus* and *Rhabdovirus* genera and Chuviruses (Chen et al., 2015; Palatini et al., 2017; Whitfield et al., 2017). Sequences of viral origin are statistically enriched in piRNA clusters and encode for piRNAs, suggesting that they may function analogously to transposable element fragments within the piRNA pathway (Palatini et al., 2017, Whitfield et al., 2017). In light of this, it has been proposed that viral integrations constitute a heritable immune signal and thus could be an additional factor shaping mosquito vector competence (Olson and Bonizzoni, 2017; Palatini et al., 2017, Whitfield et al., 2017).

Conclusions and perspective

The recent emergence and spread of Zika, the current re-emergence of YFV in Brazil and Africa, the emergence of dengue in Europe, and the expansion of chikungunya to the New World brought vector-borne diseases to public attentions and fostered research. Despite great progress in the understanding of the interplay between arboviruses and vectors, the genetic and environmental elements that control vector competence in *Ae. aegypti* populations have yet to be fully understood. Here we reviewed historical and modern data on factors influencing vector competence in *Ae. aegypti* populations to four of the most prevalent arboviruses (i.e. DENVs, YFV, ZIKV and CHIKV). We identified no clear-cut distinctive natural factors associated with variation in vector competence among mosquito populations and/or viral species due primarily to the heterogeneity of materials (strains of mosquito and virus) and methods used in different studies. This highlights the need to standardize surveillance and laboratory procedures for
assessing vector competence and to expand the range of mosquito populations and viral strains (and serotypes) tested (Fig. 1). While workers target populations and virus strains of interest to them, at the very least procedures to determine what are reported as infection rate, dissemination rate, and transmission rate should be standardized.

While there is a clear influence of the microbiota on arboviral infection, the relative importance of mosquito genetics and microbial diversity, including the interplay between these factors, on vector competence remains largely unknown and deserves attention from the scientific community.

Acquisition of arboviruses by mosquitoes is a by-product of blood-feeding, which is a necessary physiological process for egg production. Even during active arboviral epidemics, the frequency of mosquitoes infected with the pathogenic virus is usually around 1%, but can vary from 0.05% to >10% (Chow et al., 1998; Pham Thi et al., 2017; Perez-Castro et al., 2016; Medeiros et al., 2018). In addition to these human pathogenic viruses, blood-feeding exposes mosquitoes to a broad range of entities, including bacteria, fungi and other symbionts and parasites. Considering the essential role of blood-feeding, mosquitoes must be able to withstand these microbial challenges to survive. In this context, co-evolution between mosquitoes and viruses should be viewed as a by-product of diverse and possibly broad-range physiological processes. Some of these interactions may be deterministic and selection-driven while others may be stochastic (e.g., genetic drift) or indirect. In any case, it is clear that the genetic heterogeneity both within and among mosquito populations need to be considered in any attempts to identify genetic elements contributing to vector competence for arboviruses.

These studies have both basic science and applied importance. Unravelling the genetic components of vector competence means investigating the co-evolutionary processes between arboviruses and vectors, with the potential to identify factors that may be co-opted for genetic-based vector control strategies or identify steps in the transition from ISVs to arbovirus capable of infecting vertebrates. This should be possible in light of the fact that some ISVs are phylogenetically ancestral to arboviruses in the same virus family (Marklewitz et al., 2015). Additionally, a better knowledge of the variability and interaction between mosquitoes and their microbiota could lead to novel vector control methods based on native and introduced mosquito symbionts (i.e. *Asaia* and *Wolbachia* spp.) (Rossi et al., 2015; Ritchie et al., 2018).

Figure Subtitles
Figure 1. Natural and technical confounding factors related to arbovirus vector competence studies in *Aedes aegypti*. Despite progress in the understanding of the interplay between arboviruses and vectors, the genetic and environmental elements that control vector competence in *Ae. aegypti* populations have yet to be fully understood. Further elucidation is needed especially of co-evolutionary processes between arboviruses and vectors, as well as their symbionts. On the other hand, procedures used in vector competence studies should be standardized in order to improve reproducibility and comparability of scientific outputs. Together these will result in better understanding of genetic and microbial factors influencing arboviral transmission, which can lead to the development of new public health interventions.
References

Agha, S.B., Chepkorir, E., Mulwa, F., Tigoi, C., Arum, S., Guarido, M.M., et al., 2017. Vector competence of populations of *Aedes aegypti* from three distinct cities in Kenya for chikungunya virus. *PLoS Negl Trop Dis.* 11: e0005860.

Alto, B.W., Smartt, C.T., Shin, D., Bettinardi, D., Malicoate, J., Anderson, S.L., et al., 2014. Susceptibility of Florida *Aedes aegypti* and *Aedes albopictus* to dengue viruses from Puerto Rico. *J Vec Ecol* 39: 406–413.

Alto, B.W., Wiggins, K., Eastmond, B., Velez, D., Lounibos, L.P., et al., 2017. Transmission risk of two chikungunya lineages by invasive mosquito vectors from Florida and the Dominican Republic. *PLoS Neg Trop Dis* 11: e005724.

Bancroft, T.L., 1906. On the aetiology of dengue fever. *Aust Med Gaz* 25: 17–18.

Beck, A.S., Barrett, A.D., 2015. Current status and future prospects of yellow fever vaccines. *Expert Rev Vaccines* 14: 1479-1492.

Bennett, K., Olson, K., Muno, M., Fernandez-Salas, I., Farfan, J., et al., 2002. Variation in vector competence for dengue-2 virus among 24 collections of *Aedes aegypti* from Mexico and the United States. *Am J Trop Med Hyg* 67: 84–92.

Bolling, B.G., Weaver, S.C., Tesh, R.B., Vasilakis, N., 2015. Insect-Specific Virus Discovery: Significance for the Arbovirus Community. *Viruses* 7:4911-28.

Boorman, J.P., Porterfield, J.S., 1956. A simple technique for infection of mosquitoes with viruses; transmission of Zika virus. *Trans R Soc Trop Med Hyg* 50: 238–42

Boromisa, R.D., Rai, K.S., Grimstad, P.R., 1987. Variation in the vector competence of geographic strains of the *Aedes albopictus* for Dengue 1 virus. *J Am Mos Cont Ass* 3: 378–386.

Bosio, C.F., Beaty, B.J., Black, W.C., 1998. Quantitative genetics of vector competence for dengue-2 virus in *Aedes aegypti*. *Am J Trop Med Hyg* 59: 965–970.

Buckner, E.A., Alto, B.W., Lounibos, P.L., 2013. Vertical Transmission of Key West Dengue-1 Virus by *Aedes aegypti* and *Aedes albopictus* (Diptera: Culicidae) Mosquitoes from Florida. *J Med Entomol* 31: 1713–1723.

Calvez, E., Guillamaout, L., Girault, D., Richard, V., O’Connor, O., Paoaafaite, T., et al., 2017. Dengue-1 virus and vector competence of *Aedes aegypti* (Diptera: Culicidae) populations from New Caledonia. *Parasit Vectors* 10: 381.

Calvez, E., Mousson, L., Vazeille, M., O’Connor, O., Cao-Lormeau, V.M., Mathieu-Daudé, F., Pocquet, N., Failloux, A.B., Dupont-Rouzeyrol, M., 2018. Zika virus outbreak in the Pacific: Vector competence of regional vectors. *PLoS Negl Trop Dis* 12: e0006637.
Carrington, L.B., Seifert, S.N., Armijos, M.V., Lambrechts, L., Scott, T.W., 2013. Reduction of *Aedes aegypti* vector competence for dengue virus under large temperature fluctuations. *Am J Trop Med Hyg* 88: 689–697.

Carvalho-Leandro, D., Ayres, C.F.J., Guedes, D.R.D., Suesdek, L., Melo-Santos, M.A.V., Oliveira, C.F., et al., 2012. Immune transcript variations among *Aedes aegypti* populations with distinct susceptibility to dengue virus serotype 2. *Acta Tropica* 124: 113–119.

Charan, S.S., Pawar, K.D., Severson, D.W., Patole, M.S., Shouche, Y.S., 2013. Comparative analysis of midgut bacterial communities of *Aedes aegypti* mosquito strains varying in vector competence to dengue virus. *Parasitol Res* 112, 2627–2637.

Chen, X.G., Jiang, X., Gu, J., Xu, M., Wu, Y., Deng, Y., Zhang, C., Bonizzoni, M., Dermauw, W., Vontas, J., Armbruster, P., Huang, X., Yang, Y., Zhang, H., He, W., Peng, H., Liu, Y., Wu, K., Chen, J., Liraki, M., Topalis, P., Van Leeuwen, T., Hall, A.B., Jiang, X., Thorpe, C., Mueller, R.L., Sun, C., Waterhouse, R.M., Yan, G., Tu, Z.J., Fang, X., James, A.A., 2015. Genome sequence of the Asian Tiger mosquito, *Aedes albopictus*, reveals insights into its biology, genetics, and evolution. *Proc Natl Acad Sci USA* 112: E5907-15.

Chen, W.J., Wei, H.L., Hsu, E.L. Chen, E.R., 1993. Vector competence of *Aedes albopictus* and *Ae. aegypti* (Diptera: Culicidae) to dengue 1 virus on Taiwan: development of the virus in orally and parenterally infected mosquitoes. *J Med Entomol* 30: 524–530.

Chepkorir, E., Lutomiah, J., Mutisya, J., Mulwa, F., Orindi, B., et al., 2014. The vector competence of *Ae. aegypti* mosquito populations from Kilifi and Nairobi for dengue-2 virus and the effect of temperature. *Inter J Infect Dis* 21: 3–4.

Chouin-Carneiro, T., Vega-Rua, A., Vazeille, M., et al., 2016. Differential susceptibilities of *Aedes aegypti* and *Aedes albopictus* from the Americas to Zika virus. *PLoS Negl Trop Dis.* 10.

Chow, V.T., Chan, Y.C., Yong, R., Lee, K.M., Lim, L.K., Chung, Y.K., Lam-Phua, S.G., Tan, B.T., 1998 Monitoring of dengue viruses in field-caught *Aedes aegypti* and *Aedes albopictus* mosquitoes by a type-specific polymerase chain reaction and cycle sequencing. *Am J Trop Med Hyg* 58: 578-586.

Ciota, A.T., Bialosuknia, S.M., Zink, S.D., et al., 2017. Effects of Zika virus strain and *Aedes* mosquito species on vector competence. *Emerg Infect Dis.* 23: 1110–7.

Cleton, N., Koopmans, M., Reimerink, J., Godeke, G.J., Reusken, C., 2012. Come fly with me: review of clinically important arboviruses for global travelers. *J Clin Virol* 55: 191-203.

Cook, S., Bennett, S.N., Holmes, E.C., De Chesse, R., Moureau, G., de Lamballeri, X., 2006. Isolation of a new strain of the flavivirus cell fusing agent virus in a natural mosquito population from Puerto Rico. *J Gen Virol* 87: 735-48.
Coon, K.L., Vogel, K.J., Brown, M.R., Strand, M.R., 2014. Mosquitoes rely on their gut microbiota for development. *Mol Ecol* 23: 2727–2739.

Coon, K.L., Brown, M.R., Strand, M.R., 2016. Mosquitoes host communities of bacteria that are essential for development but vary greatly between local habitats. *Mol Ecol* 25: 5806–5826.

Cornet, M., Robin, Y., 1979. Transmission experimentale comparee du virus Zika chez *Aedes aegypti*. *Ent Med Parasitol* 17: 47–53.

Costa-Da-Silva, A.L., Ioshino, R.S., De Araújo, H.R.C., Kojin, B.B., De Andrade Zanotto, P.M., et al., 2017. Laboratory strains of *Aedes aegypti* are competent to Brazilian Zika virus. *PLoS ONE* 12: 1–13.

Couto-Lima, D., Madec, Y., Bersot, M.I., Campos, S.S., Motta, M.D.A., Dos Santos, F.B., et al., 2017. Potential risk of re-emergence of urban transmission of Yellow Fever virus in Brazil facilitated by competent *Aedes* populations. *Scientific Rep* 7: 1–12.

Da Moura, A.J.F., De Melo Santos, M.A.V., Oliveira, C.M.F., Guedes, D.R.D., De Carvalho-Leandro, D., et al., 2015. Vector competence of the *Aedes aegypti* population from Santiago island, Cape Verde, to different serotypes of dengue virus. *Parasit Vectors* 8: 1–9.

Dennison, N. J., Jupatanakul, N., Dimopoulos, G., 2014. The mosquito microbiota influences vector competence for human pathogens. *Curr Opin Insect Sci* 3, 6–13.

Diallo, M., Ba, Y., Faye, O., Soumare, M.L., Dia, I. and Sall, A.A., 2008. Vector competence of *Aedes aegypti* populations from Senegal for sylvatic and epidemic dengue 2 virus isolated in West Africa. *Trans of Royal Soc Trop Med Hyg* 102: 493–498.

Diagne, C.T., Diallo, D., Faye, O., et al., 2015. Potential of selected Senegalese *Aedes* spp. mosquitoes (Diptera: Culicidae) to transmit Zika virus. *BMC Infect Dis* 15: 492.

Dickson, L.B., Jiolle, D., Minard, G., Moltini-Conclois, I., Volant, S., Ghozlane, A., Bouchier, C., Ayala, D., Paupy, C., Valiente Moro, C., Lambrechts, L. 2017. Carryover effects of larval exposure to different environmental bacteria drive adult trait variation in a mosquito vector. *Sci Adv* 3:e1700585.

Dickson, L.B., Sanchez-Vargas, I., Sylla, M., Fleming, K., Black, W.C., 2014. Vector Competence in West African *Aedes aegypti* Is Flavivirus Species and Genotype Dependent. *PLoS Negl Trop Dis.* 8: e3153.

Di Luca, M., Severini, F., Toma, L., et al., 2016. Experimental studies of susceptibility of Italian *Aedes albopictus* to Zika virus. *Euro Surveill.* 21.

Dodson, B.L., Pujhari, S., Rasgon. J.L., 2018. Vector competence of selected North American *Anopheles* and *Culex* mosquitoes for Zika virus. *PeerJ* 6: e 4324.
Dubrulle, M., Mousson, L., Moutailler, S., Vazeille, M., Failloux, A.B., 2009. Chikungunya Virus and Aedes Mosquitoes: Saliva Is Infectious as soon as Two Days after Oral Infection. *PLoS ONE* 4: e5895.

Duguma, D., Hall, M.W., Rugman-Jones, P., Stouthamer, R., Terenius, O., Neufeld, J.D., Walton, W.E., 2015. Developmental succession of the microbiome of Culex mosquitoes. *BMC Microbiol* 15, 140.

Dupont-Rouzeyrol, M., Caro, V., Guillaumot, L., Vazeille, M., D’Ortenzio, E., et al., 2012. Chikungunya Virus and the Mosquito Vector *Aedes aegypti* in New Caledonia (South Pacific Region). *Vector-Borne Zoon Dis* 12: 1036–1041.

Dutra, H.L, Rocha, M.N., Dias, F.B., Mansur, S.B., Caragata, E.P. et al., 2016. Wolbachia blocks currently circulating Zika virus isolates in Brazilian *Aedes aegypti* mosquitoes. *Cell Host Microbe* 19: 771–4.

Ellis, B.R., Sang, R.C., Horne, K.M., Higgs, S. and Wesso, D.M., 2012. Yellow fever virus susceptibility of two mosquito vectors from Kenya, East Africa. *Trans Royal Soc Trop Med Hyg* 106: 387–389.

Fansiri, T., Pongsiri, A., Klunthong, C., Ponlawat, A., Thaisomboonsuk, B., Jarman, R.G. et al., 2016. No evidence for local adaptation of dengue viruses to mosquito vector populations in Thailand. *Evol Appl* 9: 608–618.

Fernandes, R.S., Campos, S.S., Ribeiro, P.S., Raphael, L.M., Bonaldo, M.C., Lourenço-de-Oliveira, R., 2017. *Culex quinquefasciatus* from areas with the highest incidence of microcephaly associated with Zika virus infections in the Northeast Region of Brazil are refractory to the virus. *Mem Inst Oswaldo Cruz* 112:577-579.

Fish, D., 2008. Why we do not understand the ecological connections between the environment and human health: the case for vector-borne disease. *Vector Borne Dis* 2008:65-69.

Franz, A.W.E., Kantor, A.M., Passarelli, A.L., Clem, R.J., 2015. Tissues barriers to arbovirus infection in mosquitoes. *Viruses* 7: 3741-3767.

Gaye, A., Faye, O., Diagne, C.T., Faye, O., Diallo, D., Weaver, S.C., et al., 2014. Oral susceptibility of *Aedes aegypti* (Diptera: Culicidae) from Senegal for dengue serotypes 1 and 3 viruses. *Trop Med Int Health*. 19: 1355–1359.

Garcia-Luna, S.M., Weger-Lucarelli, J., Rückert, C., Murrieta, R.A., Young, M.C., Byas, A.D., Fauver, J.R., Perera, R., Flores-Suarez, A.E., Ponce-Garcia, G., Rodriguez, A.D., Ebel, G.D., Black, W.C., 4th. 2018. Variation in competence for ZIKV transmission by *Aedes aegypti* and *Aedes albopictus* in Mexico. *PLoS Negl Trop Dis.* 12: e0006599.
Gimonneau, G., Tchioffo, M.T., Abate, L., Boissière, A., Awono-Ambene, P.H.,Nsango, S.E., Christen, R., Morlais, I., 2014. Composition of Anopheles coluzzii and Anopheles gambiae microbiota from larval to adult stages. Infect Genet Evol 28, 715–724.

Girod, R., Gaborit, P., Marrama, L., Etienne, M., Ramdini, C., et al., 2011. Viewpoint: High susceptibility to Chikungunya virus of Aedes aegypti from the French West Indies and French Guiana. Trop Med Int Health.16:134–139.

Gloria-Soria, A., Ayala, D., Bheecarry, A., Calderon-Arguedas, O., Chadee, D.D., Chiappero, M., Coetzee, M., bin Elahee, K.B., Fernandez-Salas, I., Kamal, H.A., Kamgang, B., Khater, E. I., Kramer, L.D., Kramer, V., Lopez-Solis, A., Lutomiah, J., Martins, A. Jr., Micieli, M.V., Paupy, C., Ponlawat, A., Rahola, N., Rasheed, S. B., Richardson, J. B., Saleh, A. A., Sanchez-Casas, R.M., Seixas, G., Sousa, C. A., Tabachnick, W.J., Troyo, A., Powell., J.R., 2016. Global genetic diversity of Aedes aegypti. Mol Ecol 25:5377-5395.

Gloria-Soria, A., Armstrong, P.M., Powell, J.R., Turner, P.E., 2017. Infection rate of Aedes aegypti mosquitoes with dengue virus depends on the interaction between temperature and mosquito genotype. Proc Biol Sci. 284: 1864.

Göertz, G.P., Vogels, C.B.F., Geertsema, C., Koenraadt, C.J.M., Pijlman, G.P., 2017. Mosquito co-infection with Zika and chikungunya virus allows simultaneous transmission without affecting vector competence of Aedes aegypti. PLoS Negl Trop Dis11: 1–22.

Gonçalves, C.M., Melo, F.F., Bezerra, J.M.T., Chaves, B.A., Silva, B.M., Silva, L.D., et al., 2014. Distinct variation in vector competence among nine field populations of Aedes aegypti from a Brazilian dengue-endemic risk city. Parasit Vectors 7: 1–8.

Gould, E.A., Higgs, S., 2009. Impact of climate change and other factors on emerging arbovirus diseases. Trans R Soc Trop Med Hyg 103:109-121.

Guedes, D.R., Paiva, M.H., Donato, M.M., et al., 2017. Zika virus replication in the mosquito Culex quinquefasciatus in Brazil. Emerg Microbes Infect: 6: 69.

Guégan, M., Zouache, K., Démichel, C., Minard, G., Van Tran Van, Potier, P., Mavingui, P., Moro, C.V., 2018. The mosquito holobiont: fresh insight into mosquito-microbiota interactions. Microbiome 6: 49.

Guo, X.X., Zhu, X.J., Li, C.X., Dong, Y., De Zhang, Y.M., Xing, D., et al., 2013. Vector competence of Aedes albopictus and Aedes aegypti (Diptera: Culicidae) for DEN2-43 and New Guinea C virus strains of dengue 2 virus. Acta Tropica 128: 566–570.

Hedge, S., Rasgon, J.L., Huges, G.L., 2015. The microbiome modulates arbovirus transmission in mosquitoes. Curr Opin Virol 15: 97-102.
Hall, R.A., Bielefeldt-Ohmann, H., McLean, B.J., O’Brien, C.A., Colmant, A.M., Piyasena, T.B., Harrison, J.J., Newton, N.D., Barnard, R.T., Prow, N.A., Deerain, J.M., Mah, M.G., Hobson-Peters, J., 2017. Commensal Viruses of Mosquitoes: Host Restriction, Transmission, and Interaction with Arboviral Pathogens. *Evol Bioinform Online* 12:35-44

Hall-Mendelin, S., Pyke, A.T., Moore, P.R., et al., 2016. Assessment of local mosquito species incriminates *Aedes aegypti* as the potential vector of Zika virus in Australia. *PLoS Negl Trop Dis.* 10:e004959.

Heitmann, A., Jansen, S., Luhken, R., et al., 2017. Experimental transmission of Zika virus by mosquitoes from Central Europe. *Euro Surveill.* 22.

Huber, K., Loan, L. Le, Hoang, T.H., Tien, T.K., Rodhain, F., Failloux, A.B., 2003. *Aedes aegypti* in South Vietnam: Ecology, genetic structure, vectorial competence and resistance to insecticides. *Southeast Asian J Trop Med Public Health* 34:81–86.

Johnson, B.W., Chambers, T. V., Crabtree, M.B., Filippis, A.M.B., Vilarinhos, P.T.R., et al., 2002. Vector competence of Brazilian yellow fever virus isolate *Aedes aegypti* and *Ae. abopictus* for a Brazilian yellow fever virus isolate. *Trans Royal Soc Trop Med Hyg* 611–613.

Jupp, P.G., Kemp, A., 1993. The potential for dengue in south africa: Vector competence tests with dengue 1 and 2 viruses and 6 mosquito species. *Trans Royal Soc Trop Med Hyg* 87:639–643.

Kauffman, E.B., Kramer, L.D, 2017. Zika Virus Mosquito Vectors: Competence, Biology, and Vector Control. *J Infect Dis* 216:976–990.

Kay, B.H., Carley, J.G., Fanning, I.D., Fillipic, C., 1979. Quantitative studies of the vector competence of *Aedes aegypti, Culex annulirostris* and other mosquitoes (Diptera: Culicidae) with Murray Valley. *J Med Entomol.* 16:59–60.

Kenney, J.L., Romo, H., Duggal, N.K., et al., 2017. Transmission incompetence of *Culex quinquefasciatus* and *Culex pipiens pipiens* from North America for Zika virus. *Am J Trop Med Hyg.* 96:1235–40.

Knox, T.B., Kay, B.H., Hall, R., Ryan, P.A., 2003. Enhanced vector competence of *Aedes aegypti* (Diptera: Culicidae) from the Torres Strait compared with mainland Australia for dengue 2 and 4 viruses. *J Med Entomol* 40:950–956.

Kramer, L.D., Scherer, W.F., 1976. Vector competence of mosquitoes as a marker to distinguish Central American and Mexican epizootic from enzootic strains of Venezuelan enceph. *Am J Trop Med Hyg.* 25:336–346.

Kumar, S., Molina-Cruz, A., Gupta, L., Rodrigues, J., Barillas-Mury, C., 2010. A peroxidase/dual oxidase system modulates midgut epithelial immunity in *Anopheles gambiae*. *Science* 327, 1644–1648.
Lambrechts, L., Chevillon, C., Albright, R.G., Thaisomboonsuk, B., Richardson, J.H., et al., 2009. Genetic specificity and potential for local adaptation between dengue viruses and mosquito vectors. *BMC Evol Biol* 9: 160.

Le Flohic, G., Porphyre, V., Barbazan, P., Gonzalez, J.P., 2013. Review of climate, landscape, and viral genetics as drivers of the Japanese encephalitis virus, ecology. *PLoS Negl Trop Dis*, 7: e2208.

Li, C.X., Guo, X.X., Deng, Y.Q., Xing, D., Sun, A.J., Liu, Q.M., Wu, Q., Dong, Y.D., Zhang, Y.M., Zhang, H.D., Cao, W.C., Qin, C.F., Zhao, T.Y., 2017. Vector competence and transovarial transmission of two *Aedes aegypti* strains to Zika virus. *Emerg Microbes Infect* 6: e23.

Li, M.I., Wong, P. S., Ng, L.C., Tan, C.H., 2012. Oral susceptibility of Singapore *Aedes* (Stegomyia) *aegypti* (Linnaeus) to Zika virus. *PLoS Negl Trop Dis*. 6: e1792.

Long, K.C., Ziegler, S.A., Thangamani, S., Hauser, N.L., Kochel, T.J., et al., 2011. Experimental transmission of Mayaro virus by *Aedes aegypti*. *Am J Trop Med Hyg*. 85: 750–757.

Lourenço-de-Oliveira, R., Vazeille, M., de Filippis, A.M., Failloux, A.B., 2004. *Aedes aegypti* in Brazil: genetically differentiated populations with high susceptibility to dengue and yellow fever viruses *Trans Royal Soc Trop Med Hyg*. 98: 43–44.

Lourenço-de-Oliveira, R., Rua, A.V., Vezzani, D., Willat, G., Vazeille, M., et al., 2013. *Aedes aegypti* from temperate regions of South America are highly competent to transmit dengue virus. *BMC Infect Dis* 13: 1–8.

Lourenço-de-Oliveira, R., Vazeille, M., Bispo de Filippis, A.M., Failloux, A.B., 2002. Oral susceptibility to yellow fever virus of *Aedes aegypti* from Brazil. *Mem Inst Oswaldo Cruz*. 97: 437–439.

Main, B.J., Nicholson, J., Winokur, O.C., Steiner, C., Riomersma, K.K., Stuart, J., Takeshita, R., Krasnec, M., Barker, C.M., Coffey, L.L., 2018. Vector competence of *Aedes aegypti*, *Culex tarsalis*, and *Culex quinquefasciatus* from California for Zika virus. *PLoS Negl Trop Dis*. 12: e0006524.

Marklewitz, M., Zirkel, F., Kurth, A., Drosten, C., Junglen, S., 2015. Evolutionary and phenotypic analysis of live virus isolates suggests arthropod origin of a pathogenic RNA virus family. *Proc Natl Acad Sci USA*. 112:7536-41.

Mbaika, S., Lutomiah, J., Chepkorir, E., Mulwa, F., Khayeka-Wandabwa, C., et al., 2016 Vector competence of *Aedes aegypti* in transmitting Chikungunya virus: Effects and implications of extrinsic incubation temperature on dissemination and infection rates. *Virol J* 13: 1–9.

Medeiros, A.S., Costa, D.M.P., Branco, M.S.D., Sousa, D.M.C., Monteiro, J.D., Galvao, S.P.M., Azevedo, P.R: M, Fernandes, J. V., Araujo, J.M.G., 2018. Dengue virus in *Aedes aegypti* and...
Aedes albopictus in urban areas in the state of Rio Grande do Norte, Brazil: Importance of virological and entomological surveillance. PLoS One 13: e0194108.

Minard, G., Tran, F.H., Van, V.T., Goubert, C., Bellet, C., Lambert, G., Kim, K.L.H., Thuy, T.H.T., Mavingui, P., Valiente Moro, C., 2015. French invasive Asian tiger mosquito populations harbor reduced bacterial microbiota and genetic diversity compared to Vietnamese autochthonous relatives. Front Microbiol 6: e2836–15.

Mitchell, C.J., Miller, B.R, Gubler, D. J., 1987. Vector competence of Aedes albopictus from Houston, Texas, for dengue serotypes 1to 4, yellow fever and Ross River viruses. J Am Mosquito Cont Ass 3: 460–465.

Morrison, T.E., Diamond, M.S., 2017. Animal models of Zika virus infection, pathogenesis and immunity. J Virol 91: e00009-17.

Muturi, E.J., Buckner, E., Bara, J., 2017. Superinfection interference between dengue-2 and dengue-4 viruses in Aedes aegypti mosquitoes. Trop Med Int Health 22: 399-406.

Nasar, F., Haddow, A.D., Tesh, R.B., Weaver, S.C., 2014. Eilat virus displays a narrow mosquito vector range. Parasit Vectors 7:595.

Nasar, F., Erasmus, J.H., Haddow, A.D., Tesh, R.B., Weaver, S.C., 2015. Eilat virus induces both homologous and heterologous interference. Virology 484:51-8.

Na, W., Yeom, M., Choi, I.K., Yook, H., Song, D., 2017. Animal models for dengue vaccine development and testing. Clin Exp Vaccine Res 6: 104-110.

Ngoagouni, C., Kamgang, B., Kazanji, M., Paupy, C. Nakouné, E., 2017 Potential of Aedes aegypti and Aedes albopictus populations in the Central African Republic to transmit enzootic chikungunya virus strains. Parasit Vectors 10: 164.

Oliveira, J.H.M., Gonçalves, R.L.S., Lara, F.A., Dias, F.A., Gandara, A.C.P., Menna-Barreto, R.F.S., Edwards, M.C., Laurindo, F.R.M., Silva-Neto, M.A.C., Sorgine, M.H.F., Oliveira, P.L., 2011. Blood meal-derived heme decreases ROS levels in the midgut of Aedes aegypti and allows proliferation of intestinal microbiota. PLoS Pathog 7, e1001320.

Olson, K.E., Bonizzoni, M., 2017. Nonretroviral integrated RNA viruses in arthropod vectors: an occasional event or something more? Curr Opin Insect Sci. 22:45-53.

Palatini, U., Miesen, P., Carballar-Lejarazu, R., Ometto, L., Rizzo, E., Tu, Z., van Rij, R.P., Bonizzoni, M., 2017. Comparative genomics shows that viral integrations are abundant and express piRNAs in the arboviral vectors Aedes aegypti and Aedes albopictus. BMC Genomics 18:512.

Palmer, W.H., Varghese, F., van Rij, R., 2018. Natural variation in resistance to virus infection in Dipteran insects. Viruses 10: 118.
Pando-Robles, V., Batista, C.V., 2017. Aedes-borne virus-mosquito interactions: mass spectrometry strategies and findings. Vector-borne Zoon Dis 17: 361-375.

Paupy, C., Chantha, N., Vazeille, M., Reynes, J.M., Rodhain, F., et al., 2003 Variation over space and time of Aedes aegypti in Phnom Penh (Cambodia): genetic structure and oral susceptibility to a dengue virus. Gen Res 82:171–182

Pesko, K., Westbrook, C.J., Mores, C.N., Lounibos, L.P, Reiskin, M.H., 2009 Effects of Infectious Virus Dose and Bloodmeal Delivery Method on Susceptibility of Aedes aegypti and Aedes albopictus to Chikungunya Virus. J Med Entomol 46: 395–399.

Pérez-Castro, R., Castellanos, J.E., Olano, V.A., Matiz, M.I., Jaramillo, J.F., Vargas, S.L., Sarmiento, D.M., Stenstrom, T.A., Overgaard, H.J., 2016 Detection of all four dengue serotypes in Aedes aegypti female mosquitoes collected in a rural area in Colombia. Mem Inst Oswaldo Cruz 111:233-240.

Pike, A., Dong, Y., Dizaji, N.B., Gacita, A., Mongodin, E.F., Dimopoulos, G., 2017. Changes in the microbiota cause genetically modified Anopheles to spread in a population. Science 357, 1396–1399.

Pham Thi, K.L., Briant, L., Gavotte, L., Labbe, L., Perriot-Sanguinet, M., et al., 2017 Incidence of dengue and chikungunya viruses in mosquitoes and human patients in border provinces of Vietnam. Parasit Vectors 10: 556.

Pongsiri, A., Ponlawat, A., Thaisomboonsuk, B., Jarman, R.G., Scott, T.W., et al., 2014. Differential susceptibility of two field Aedes aegypti populations to a low infectious dose of dengue virus. PLoS ONE 9: 3–8.

Poole-Smith, B.K., Hemme, R.R., Delorey, M., Felix, G., Gonzalez, A.L., et al., 2015. Comparison of Vector Competence of Aedes mediovittatus and Aedes aegypti for Dengue Virus: Implications for Dengue Control in the Caribbean. PLoS Negl Trop Dis 9: 1–11.

Powell, J.R., 2018. Mosquito-Borne Human Viral Diseases: Why Aedes aegypti? Am J Trop Med Hyg. 98:1563-1565.

Ramirez, J.L., Souza-Neto, J., Torres Cosme, R., Rovira, J., Ortiz, A., Pascale, J.M., Dimopoulos, G., 2012. Reciprocal tripartite interactions between the Aedes aegypti midgut microbiota, innate immune system and dengue virus influences vector competence. PLoS Negl Trop Dis 6: e1561.

Ramirez, J.L., Short, S.M., Bahia, A.C., Saraiva, R.G., Dong, Y., Kang, S., Tripathi, A., Mlambo, G., Dimopoulos, G., 2014. Chromobacterium Csp_P reduces malaria and dengue infection in vector mosquitoes and has entomopathogenic and in vitro anti-pathogen activities. PLoS Pathog 10: e1004398.

Reed, W., Carroll, J., 1901. The prevention of yellow fever. Public Health Pap Rep 27: 113–129.
Richard, V., Paooafaite, T., Cao-Lormeau, V.M., 2016. Vector Competence of French Polynesian Aedes aegypti and Aedes polynesiensis for Zika Virus. PLoS Negl Trop Dis. 10: e0005024.

Richard, V., Paooafaite, T., Cao-Lormeau, V.M., 2016. Vector Competence of Aedes aegypti and Aedes polynesiensis Populations from French Polynesia for Chikungunya Virus. PLoS Negl Trop Dis 10: e0004694.

Richards, S.L, Anderson, S.L, Alto, B.W., 2012. Vector competence of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) for dengue virus in the Florida Keys. J Med Entomol. 49: 942–946.

Ritchie, S.A., van den Hurk, A.F., Smout, M.J., Staunton, K.M., Hoffmann, A.A., 2018. Mission Accomplished? We Need a Guide to the ‘Post Release’ World of Wolbachia for Aedes-borne Disease Control. Trends Parasitol. 34:217-226.

Rodgers, F.H., Gendrin, M., Wyer, C.A.S., Christophides, G.K., 2017. Microbiota-induced peritrophic matrix regulates midgut homeostasis and prevents systemic infection of malaria vector mosquitoes. PLoS Pathog 13, e1006391–22.

Rosen, L., Roseboom, L.E., Gubler, D.J., Lien, J.C., Chaniotis, B.N., 1985. Comparative susceptibility of mosquito species and strains to oral and parenteral infection with dengue and Japanese encephalitis viruses. Am. J. Trop. Med. Hyg. 34: 603-615.

Roundy, C.M., Azar, S.R., Rossi, S.L, Huang, J.H., Leal, G., Yun, R., Fernandez-Salas, I., Vitek, C.J., Paploski, I.A., Kitron, U., Ribeiro, G.S., Hanley, K.A., Weaver, S.C., Vasilakis, N., 2017. Variation in Aedes aegypti Mosquito Competence for Zika Virus Transmission. Emerg Infect Dis. 23:625-632.

Rossi, P., Ricci, I., Cappelli, A., Damiani, C., Ulissi, U., Mancini, M.V., Valzano, M., Capone, A., Epis, S., Crotti, E., Chouaia, B., Scuppa, P., Joshi, D., Xi, Z., Mandrioli, M., Sacchi, L., O’Neill, S.L., Favia, G., 2015. Mutual exclusion of Asaia and Wolbachia in the reproductive organs of mosquito vectors. Parasit Vectors 8:278.

Ryckebusch, F., Berthet, M., Missé, D., Choumet, V., 2017. Infection of a French Population of Aedes albopictus and of Aedes aegypti (Paea Strain) with Zika Virus Reveals Low Transmission Rates to These Vectors’ Saliva. J Mol Sci 18: 2384.

Rückert, C., Ebel, G.D., 2018. How Do Virus-Mosquito Interactions Lead to Viral Emergence? Trends Parasitol. 34:310-321.

Rückert, C., Weger-Lucarelli, J., Garcia-Luna, S.M., Young, M.C., Byas, A.D., et al., 2017. Impact of simultaneous exposure to arboviruses on infection and transmission by Aedes aegypti mosquitoes. Nature Com 8: 1–9.
Saraiva, R.G., Kang, S., Simões, M.L., Angleró-Rodríguez, Y.I., Dimopoulos, G., 2016. Mosquito gut antiparasitic and antiviral immunity. *Dev Comp Immunol* 64: 53–64.

Saraiva, R.G., Fang, J., Kang, S., Angleró-Rodríguez, Y.I., Dong, Y., Dimopoulos, G., 2018. Aminopeptidase secreted by Chromobacterium sp. Panama inhibits dengue virus infection by degrading the E protein. *PLoS Negl Trop Dis* 12, e0006443.

Schneider, J.R., Mori, A., Romero-Severson, J., Chadee, D.D., Severson, D.W., 2007. Investigations of dengue-2 susceptibility and body size among *Aedes aegypti* populations. *Med Vet Entomol* 21: 370–376.

Short, S.M., van Tol, S., MacLeod, H.J., Dimopoulos, G., 2018. Hydrogen cyanide produced by the soil bacterium Chromobacterium sp. Panama contributes to mortality in *Anopheles gambiae* mosquito larvae. *Sci Rep* 8, 8358.

Serrato, I.M., Caicedo, P.A., Orobio, Y., Lowenberger, C. Ocampo, C.B., 2017. Vector competence and innate immune responses to dengue virus infection in selected laboratory and field-collected Stegomyia aegypti (= *Aedes aegypti*). *Med Vet Entomol* 31, 312–319.

Sim, S., Jupatanakul, N., Ramirez, J.L., Kang, S., Romero-Vivas, C.M., et al., 2013. Transcriptomic Profiling of Diverse *Aedes aegypti* Strains Reveals Increased Basal-level Immune Activation in Dengue Virus-refractory Populations and Identifies Novel Virus-vector Molecular Interactions. *PLoS Negl Trop Dis* 7, e2295.

Smith, D.L., Battle, K.E., Hay, S.I., Barker, C.M., Scott, T.W., McKenzie, F.E., 2012. Ross, Macdonald, and a theory for the dynamics and control of mosquito-transmitted pathogens. *PLoS Pathog* 8, e1002588.

Sylla, M., Bosio, C., Urdaneta-Marquez, L., Ndiaye, M., Black, IV W.C., 2009. Gene flow, subspecies composition, and dengue virus-2 susceptibility among *Aedes aegypti* collections in Senegal. *PLoS Negl Trop Dis.* 3: e408.

Tabachnick, W.J., Wallis, G.P., Aitken, T.H., Miller, B.R., Amato, G.D., et al., 1985. Oral infection of *Aedes aegypti* with yellow fever virus: geographic variation and genetic considerations. *Am J Trop Med Hyg* 34: 1219–1224.

Tabachnick, W.J., 2016. Ecological effects on arbovirus-mosquito cycles of transmission. *Curr Opin Virol.* 21:124-131.

Thongrungkiat, S., Jirakanjanaki, N., Apiwathnasorn, C., Prummongkol, S., Samung, Y., 2003. Comparative susceptibility to oral infection with dengue viruses among local strains of *Aedes aegypti* (Diptera: Culicidae) collected at different seasons of the year. *J Vector Ecol* 28:166–70.
Tran, K.T., Vazeille-Falcoz, M., Mousson, L., Tran, H.H., Rodhain, F., et al., 1999. *Aedes aegypti* in Ho Chi Minh City (Viet Nam): susceptibility to dengue 2 virus and genetic differentiation. Trans Royal Soc Trop Med Hyg. 93: 581–586.

Tsetsarkin, K.A., Chen, R., Sherman, M.B., Weaver, S.C., 2011. Chikungunya virus: evolution and genetic determinants of emergence. Curr Opin Virol 1: 310-317.

Turell, M.J., Guinn, M.L.O., Dohm, D.J., Jones J.W., 2001. Vector Competence of North American Mosquitoes (Diptera : Culicidae) for West Nile Virus. J Med Entomol 38: 130–134.

Turell, M.J., Lee, J.S., Richardson, J.H, Sang, R.C., Kioko, E.N., Agawo, M.O., Pecor, J., O’Guinn, M.L., 2007. Vector competence of Kenyan *Culex zombaensis* and *Culex quinquefasciatus* mosquitoes for Rift Valley fever virus. J Am Mosq Control Assoc 23:378–82.

Van Den Hurk, A.F., McElroy, K., Pyke, A.T., McGee, C.E., Hall-Mendelin S., et al., 2011. Vector competence of Australian mosquitoes for yellow fever virus. Am J Trop Med Hyg 85: 446–451.

Vasilakis, N., Tesh, R.B., 2015. Insect-specific viruses and their potential impact on arbovirus transmission. Curr Opin Virol 15: 69-74.

Vazeille, M., Gaborit, P., Mousson, L., Girod, R., Failloux, A.B., 2016. Competitive advantage of a dengue 4 virus when co-infecting the mosquito *Aedes aegypti* with a dengue 1 virus. BMC Infect Dis 16: 1–7.

Vazeille, M., Mousson, L., Rakatoarivony, I., Villeret, R., Rodhain, F., et al., 2001. Population genetic structure and competence as a vector for dengue type 2 virus of *Aedes aegypti* and *Aedes albopictus* from Madagascar. Am J Trop Med Hyg 65: 491–497.

Vega-Rua, A., Zouache, K., Girod, R., Failloux, A.B. and Lourenco-de-Oliveira, R., 2014. High Level of Vector Competence of *Aedes aegypti* and *Aedes albopictus* from Ten American Countries as a Crucial Factor in the Spread of Chikungunya Virus. J Virol 88: 6294–6306.

Villegas, L. E. M., Campolina, T. B., Barnabe, N. R., Orfanó, A. S., Chaves, B. A., Norris, D. E., et al. (2018). Zika virus infection modulates the bacterial diversity associated with Aedes aegypti as revealed by metagenomic analysis. PloS One, 13: e0190352–16.

Xi, Z., Ramirez, J.L, Dimopoulos, G., 2008. The *Aedes aegypti* toll pathway controls dengue virus infection. PLoS Pathog. 4: e1000098.

Wallis, G.P., Aitken, T.H., Beaty, B.J., Lorenz, L., Amato, G.D., et al., 1985. Selection for susceptibility and refractoriness of *Aedes aegypti* to oralinfection with yellow fever virus. Am J Trop Med Hyg 34: 1225–1231.

Wang, Y.H., Chang, M.M., Wang, X.L., Zheng, A.H., Zou, Z., 2017. The immune strategies of mosquito *Aedes aegypti* against microbial infection. Dev Comp Immunol 1-10.
Wang, Z., Zhang, X., Zhang, C., Xing, Y., Wu, D. Y., et al., 2012. Vector Competence of Five Common Mosquito Species in the People’s Republic of China for Western Equine Encephalitis Virus. *Vector-Borne Zoonotic Dis* 12: 605–608.

Weaver, S.C., 2006. Evolutionary influences in arboviral disease. *Curr Topics Microbiol Immunol* 299:285-314.

Weger-Lucarelli, J., Rückert, C., Chotiwan, N., Nguyen, C., Garcia Luna, S.M., Fauver, J.R., Foy, B.D., Perera, R., Black, W.C., Kading, R.C., Ebel, G.D., 2016. Vector Competence of American Mosquitoes for Three Strains of Zika Virus. *PLoS Negl Trop Dis.* 10: e0005101.

Watson, T.M., Kay, B.H., 1999. Vector competence of *Aedes notoscriptus* (Diptera: Culicidae) for Barmah Forest virus and of this species and *Aedes aegypti* (Diptera: Culicidae) for dengue 1-4 viruses in Queensland, Australia. *J Med Entomol.* 36: 508–514.

Whitfield, Z.J., Dolan, P.T., Kunitomi, M., Tassetto, M., Seetin, M.G., Oh, S., Heiner, C., Paxinos, E., Andino, R., 2017. The Diversity, Structure, and Function of Heritable Adaptive Immunity Sequences in the *Aedes aegypti* Genome. *Curr Biol.* 27:3511-3519.e7.

Ye, Y.H., Ng, T.S., Frentiu, F.D., Walker, T., Van Den Hurk, A.F., et al., 2014. Comparative susceptibility of mosquito populations in North Queensland, Australia to oral infection with dengue virus. *Am J Trop Med Hyg.* 90: 422–430.

Zompi, S., Harris, E., 2012. Animal models of dengue virus infection. *Viruses* 4:62-82.

Acknowledgements

We are grateful to Patrizia Chiari (University of Pavia) for providing assistance with the manuscript. This work was supported by the Human Frontier Science Program Research Grant RGP0007/2017 to M.B. and J.A.S.N.; by the Italian Ministry of Education, University and Research FARE project R1623HZAH5 to M.B.; by the São Paulo Research Foundation (FAPESP), Young Investigator Award 2013/11343-6 to J.A.S.N. J.R.P.’s research is supported by the US National Institutes of Health, NIAID.
Table 1. Summary of vector competence estimates across *Ae. aegypti* geographic populations to 1) DENVs, 2) ZIKV, 3) YFV; 4) CHIKV; 5) dual-infections and 6) infections with arboviruses other than DENVs, YFV, ZIKV and CHIKV. Abbreviations: BM, mosquitoes offered an infectious blood meal; IT, mosquitoes were infected by intrathoracic inoculation; dpi, days post infection; IR, percentage of engorged females with viral particles in the head, legs and/or salivary glands; TR, transmission rate calculated as percentage of engorged females with viral particles in the saliva at 14 dpi, unless otherwise stated; PFU, plaque forming units; FFU, fluorescent focus units; L, lentivirus; TCID, tissue culture infectious dose; MID, mosquito infectious dose for 50 of *Ae. aegypti* individuals; EIP, extrinsic incubation period; MX, Mexico; NC, New Caledonia; Col, Colombia; Viet, Vietnam; NG, New Guinea; FG, French Guiana; Thai, Thailand; S, S, FR, PR, BR, Brazil; Aus, Australia; Chi, China; Philippines, Phi, FL, Florida; South Africa, SA; Texas, TX; California, CA; isol., isolate; human serum, hs; lab. strain, laboratory strain.

Reference	Mosquito origin	Virus genotype and strain	Infection Route, virus dose	Vector Competence	
Calvez et al., 2018	Noumea, NC	DENV-1 NC14-17022014-806	BM, 10^6	IR in bodies 50 at 7 dpi, 60 at 7 dpi, 100 at 14 dpi; TR 35 at 21 dpi	
Ouvea, NC	DENV-1 NC14-17022014-806	BM, 10^6	IR in bodies 53 at 7 dpi, 100 at 7 dpi, 87 at 14 dpi; TR 13 at 21 dpi		
Poridemie, NC	DENV-1 NC14-17022014-806	BM, 10^6	IR in bodies 33 at 7 dpi, 70 at 7 dpi, 100 at 14 dpi; TR 13 at 21 dpi		
Papeete, Thaiti Island	DENV-1 NC14-17022014-806	BM, 10^6	IR in bodies 47 at 21 dpi		
Serrato et al., 2017	Valle Grande, Col	DENV-2 NG	BM, 10^6.1.10^7	IR 68 at 15dpi	
Paso del Comercio, Col	DENV-2 NG	BM, 10^6.1.10^7	IR 55 at 15 dpi		
Siloe, Col	DENV-2 NG	BM, 10^6.1.10^7	IR 52 at 15 dpi		
Mariano Ramos	DENV-2 NG	BM, 10^6.1.10^7	IR 52 at 15 dpi		
Ho Chi Minh City, Viet	DENV-2 strain 6H, Hanoi Viet	BM, 2.8x10^7	IR 4.2 at 25ºC; 9.1 at 27ºC		
Hanoi, Viet	DENV-2 strain 434S, Long An Province, Viet	BM, 3.77x10^7	IR 8.1 at 25ºC; 13 at 27ºC		
Vazeille et al., 2016^a	Center Cayenne, FG	DENV-2 strain 6H, Hanoi Viet	BM, 2.8x10^7	IR 10.8 at 25ºC; 2.8 at 27ºC	
	DENV-2 strain 434S, Long An Province, Viet	BM, 3.77x10^7	IR 24.6 at 25ºC; 9.8 at 27ºC		
	DENV-1 isol. from a 2009 patient living in Cayenne	BM, 10^6.10^6	IR 20 at 8dpi, 35 at 10dpi, 70 at 14dpi, 35 at 15dpi; TR 3 at 14dpi, 13 at 15dpi		
	DENV-4 isol. from a 2009 patient living in Cayenne	BM, 10^6.10^6	IR 40 at 8dpi, 60 at 10dpi, 13 at 14dpi, 100 at 15dpi; TR 0 at 14dpi, 3 at 15dpi		
	DENV-1 isol. from a 2009 patient living in Cayenne	BM, 10^6.10^6	IR 20 at 8dpi, 50 at 10dpi, 70 at 14dpi, 50 at 15dpi; TR 0 at 14dpi, 13 at 15dpi		
	DENV-4 isol. from a 2009 patient living in Cayenne	BM, 10^6.10^6	IR 20 at 8dpi, 50 at 10dpi, 70 at 14dpi, 50 at 15dpi; TR 0 at 14dpi, 13 at 15dpi		
Guo et al., 2016	Hainan province	DENV-2-FJ10	BM, 1.75x10^5	IR 0 (B3 viral strain, experiment 1); IR 0 (K1 viral strain, experiment 1); IR 10 (B76 viral strain, experiment 1)	
	Center Cayenne, FG	DENV-2-FJ11	BM, 2x10^5	IR 0 at 7dpi, 74.9 at 14dpi, 90 at 21dpi	
Fansiri et al., 2016	Bangkok, Thai	14 DENV-1 Thai isol.	BM, 1.5x10^5-8.5x10^6	IR 0 at 14dpi, 67.5 at 21 dpi	
Kamphaeng Phet Province, Thai	14 DENV-1 Thai isol.	BM, 1.5x10^5-8.5x10^6	IR 0 at 14dpi, 67.5 at 21 dpi		
Fernandes da Moura et al., 2015	Santiago Island, Cape Verde	DENV-1 42735/BR PE	BM, 5x10^5-2x10^5	IR 0 at 14dpi, 67.5 at 21 dpi	
Country	City	Virus Strain/Isolate	Log$_{10}$ (Mean)	IR	TR
-----------------------------	------------------------	----------------------	------------------	----	----
Kifili, Kenya					
Nairobi, Kenya					
Phet Province, Thai					
Key West, FL					
Dakar, S					
Bignona, S					
Mont Rolland, S					
Fatick, S					
Bignona, S					
Rufisque, S					
Sylvic Aedes aegypti formosus from Dakar, S	DENV-2 ET-300 strain isol. in Timor-Leste in 2000	6.8 ± 0.5	IR 28 at 7 dpi, 14 dpi in whole body	TR 55 at 14 dpi	
Sylvic Aedes aegypti formosus from Dakar, S	DENV-3 H87	7.1 ± 1.2	IR 28 at 7 dpi, 14 dpi in whole body	TR 55 at 14 dpi	
Sylvic Aedes aegypti formosus from Dakar, S	DENV-1 IbH28328	5x 10$^{-3.3}$	IR 40 at 7 dpi, 30 at 15 dpi		
DENV-3 ET-300 strain isol. in Timor-Leste in 2000	5x 10$^{-3.3}$	IR 40 at 7 dpi, 30 at 15 dpi			
DENV-2 ET-300 strain isol. in Timor-Leste in 2000	5x 10$^{-3.3}$	IR 40 at 7 dpi, 30 at 15 dpi			
DENV-2 ET-300 strain isol. in Timor-Leste in 2000	5x 10$^{-3.3}$	IR 40 at 7 dpi, 30 at 15 dpi			
DENV-2 ET-300 strain isol. in Timor-Leste in 2000	5x 10$^{-3.3}$	IR 40 at 7 dpi, 30 at 15 dpi			
Study/Strain/Location	Virus Strain	BM Concentration	Midgut Infection Rate	Abdominal Death Rate	Leg Death Rate
-----------------------	--------------	------------------	----------------------	---------------------	---------------
Guo et al., 2013	Haiku strain, Chi	DENV-2 NG C	$10^{8.08}$	0%	0%
Sim et al., 20133	Rockefeller strain	DENV-2 NG C strain	$10^{8.7}$	100%	0%
	Orlando strain	DENV-2 NG C strain	$10^{8.7}$	100%	0%
	Waco strain	DENV-2 NG C strain	$10^{8.7}$	100%	0%
	PR, field	DENV-2 NG C strain	$10^{8.7}$	100%	0%
	Saint Kitts, field	DENV-2 NG C strain	$10^{8.7}$	100%	0%
	Por Fin, field	DENV-2 NG C strain	$10^{8.7}$	100%	0%
	Puerto Triunfo, field	DENV-2 NG C strain	$10^{8.7}$	100%	0%
	Singapore, field	DENV-2 NG C strain	$10^{8.7}$	100%	0%
	Bangkok, field	DENV-2 NG C strain	$10^{8.7}$	100%	0%
Buckner et al., 2013	Key West, FL, Kamphaeng Phet Province, Thai	DENV-1 (strain BOLKW010)	$6.3 \pm 0.2 \times 10^5$	93%	80 in vivo
Carrington et al., 2013	Lourenco-de-Oliveira et al., 2013	DENV-1	3.09×10^5	28%	0%
	Corrientes, Argentina	DENV-2 Thai 1974	10^7	53.3%	6.7%
	Salto, Uruguay	DENV-2 Thai 1974	10^7	36.4%	17.9%
Richards et al., 2012	Key West, FL	DENV-1 isol. BOL-KW010	3.7×10^5	75 in the abdomen, 30% at 30°C	0%
	Key West, FL	DENV-1 isol. BOL-KW010	3.7×10^5	75 in the abdomen, 30% at 30°C	0%
	Stock Island, FL	DENV-1 isol. BOL-KW010	3.7×10^5	75 in the abdomen, 30% at 30°C	0%
	Stock Island, FL	DENV-1 isol. BOL-KW010	3.7×10^5	75 in the abdomen, 30% at 30°C	0%
Carvalho-Leandro et al., 20123	Petrolina, BR	DENV-2 3808/BR-PE	$10^{6.7}$	0 at 14 dpi, 100 at 21 dpi	0%
	Recife, BR	DENV-2 3808/BR-PE	$10^{6.7}$	0 at 14 dpi, 100 at 21 dpi	0%
	Rec-L Recife Lab. strain	DENV-2 3808/BR-PE	$10^{6.7}$	0 at 14 dpi, 100 at 21 dpi	0%
Sylla et al., 2009	D2MEB	DENV-2 JAM1409	$3.1 \times 10^{7.8}$	51.2%	0%
	D2S3	DENV-2 JAM1409	$3.1 \times 10^{7.8}$	92.3%	0%
Study	Location	Virus Strain	BM, ntd	IR Value	
-----------------------	--------------------	------------------------------------	---------	----------------	
Schneider et al., 2007	Bangkok, field	DENV-2 JaM1409	BM, ntd	32.22 +/- 8.56	
	DS3	DENV-2 JaM1409	BM, ntd	45.95 +/- 17.76	
Form, Flavivirus	Nigeria	DENV-2 JaM1409	BM, ntd	48.42 +/- 6.68	
refractory strC2:C83ain from		DENV-2 JaM1409	BM, ntd	27.44 +/- 6.03	
Ghana, field	Ibo 11, Dengue	DENV-2 JaM1409	BM, ntd	31.55 +/- 2.44	
refractory strain from	Nigeria	DENV-2 JaM1409	BM, ntd	30.23 +/- 3.14	
Mombasa, field	MOYO-R	DENV-2 JaM1409	BM, ntd	19.54 +/- 9.73	
MOYO-S, RED, mutant marker stock		DENV-2 JaM1409	BM, ntd	53.60 +/- 14.16	
Triniad, field	MOYO-R	DENV-2 JaM1409	BM, ntd	38.79 +/- 14.17	
				34.92 +/- 29.27	
Diallo et al., 2008	Barkedji, S	sylvatic DENV-2 AdR 140875	BM^4, 1.6x10^7-10^6.5	7.4	
	Dakar, S	epidemic DENV-2 ArA 6894	BM^3, 1.6x10^7-10^6.5	1.74	
	Ngoye, S	sylvatic DENV-2 AdR 140875	BM^3, 1.6x10^7-10^6.5	7.8	
	Ndougoubene, S	epidemic DENV-2 ArA 6894	BM^3, 1.6x10^7-10^6.5	0	
	Kedougou, S	sylvatic DENV-2 AdR 140875	BM^3, 1.6x10^7-10^6.5	9.3	
	Koung Koung, S	epidemic DENV-2 ArA 6894	BM^3, 1.6x10^7-10^6.5	1.57	
				1.46	
Knox et al., 2003	Torres Strait, Aus	DENV-2 92T	BM^3, 10^6.4	96 at 8 dpi, 100 at 12 dpi, 128 at 16 dpi	
	Charters Towers,	DENV-4 97B	BM^3, 10^7	80 at 8 and 12 dpi, 84 at 16 dpi, 84 at 20 dpi, 84 at 24 dpi, 96 at 32 dpi	
	Aus	DENV-2 92T	BM^3, 10^6.4	52 at 8 dpi, 60 at 8 dpi, 64 at 12 dpi, 64 at 16 dpi	
	Townsville, Aus	DENV-4 97B	BM^3, 10^7	36 at 8 dpi, 48 at 12 dpi, 48 at 16 dpi, 48 at 20 dpi, 48 at 24 dpi, 48 at 32 dpi	
	Cairns, Aus	DENV-2 92T	BM^3, 10^6.4	72 at 8 dpi, 90 at 8 dpi, 96 at 12 dpi, 96 at 16 dpi, 96 at 20 dpi, 96 at 24 dpi	
				1.85	

Huber et al., 2003

Study	Location	Virus Strain	BM, ntd	IR Value
	Ho Chi Minh City,	DENV-2, strain not defined	BM, ntd	94.8 +/- 3.61
	(mosquitoes			
	collected from 1975			
	to 1998)			
	Ho Chi Minh City,	DENV-2, strain not defined	BM, ntd	97.7 +/- 2.39
	(mosquitoes			
	collected from 1975			
	to 1998)			
Location	Virus Strain	BM, ntd	IR	
--	-----------------------	---------	----------	
Paea strain, Thaiti	DENV-2, strain not defined		93.84 +/-4.38	
Belém, BR	DENV-2 Bangkok 1974	BM, ntd	96.3	
Ananindeua, BR	DENV-2 Bangkok 1974	BM, ntd	94.23	
Rio Branco, BR	DENV-2 Bangkok 1974	BM, ntd	81.43	
Porto Velho	DENV-2 Bangkok 1974	BM, ntd	83.19	
Boa Vista, BR	DENV-2 Bangkok 1974	BM, ntd	95.75	
Salvador, BR	DENV-2 Bangkok 1974	BM, ntd	81.48	
Sao Luis, BR	DENV-2 Bangkok 1974	BM, ntd	97.38	
Feira de Santana, BR	DENV-2 Bangkok 1974	BM, ntd	74.74	
Milha, BR	DENV-2 Bangkok 1974	BM, ntd	25.79	
Pacuja, BR	DENV-2 Bangkok 1974	BM, ntd	73.62	
Quixeramobin, BR	DENV-2 Bangkok 1974	BM, ntd	82.10	
Represa dp Cigano, BR	DENV-2 Bangkok 1974	BM, ntd	98.24	
Tingua, BR	DENV-2 Bangkok 1974	BM, ntd	84.85	
Higienopolis, BR	DENV-2 Bangkok 1974	BM, ntd	75.32	
Moqueta, BR	DENV-2 Bangkok 1974	BM, ntd	93.40	
Rocinha, BR	DENV-2 Bangkok 1974	BM, ntd	92.86	
Comendador Soares, BR	DENV-2 Bangkok 1974	BM, ntd	91.15	
Cariacica, BR	DENV-2 Bangkok 1974	BM, ntd	81.81	
Potim, BR	DENV-2 Bangkok 1974	BM, ntd	83.62	
Leandro Ferreira, BR	DENV-2 Bangkok 1974	BM, ntd	85.95	
Foz de Iguacu, BR	DENV-2 Bangkok 1974	BM, ntd	62.43	
Maringa, BR	DENV-2 Bangkok 1974	BM, ntd	73.6	
Campo Grande, BR	DENV-2 Bangkok 1974	BM, ntd	72.73	
Paea Lab. strain	DENV-2 Bangkok 1974	BM, ntd	93.34 +/-4.63	

Paupy et al., 2003

- Phon Penh City Center (Cambodia), mosquitoes collected in February
- Phon Penh City Center (Cambodia), mosquitoes collected in July
- Phon Penh City suburbs north (Cambodia), mosquitoes collected in February
- Phon Penh City suburbs west (Cambodia), mosquitoes collected in February
- Phon Penh City suburbs south (Cambodia), mosquitoes collected in February

DENV-2 from a hs sample collected in Bangkok Thai in 1974

- BM 3, $10^{8.2}$, IR 79.39 +/-11.01
- BM 3, $10^{8.2}$, IR 77.76 +/-8.31
- BM 3, $10^{8.2}$, IR 90.65 +/-8.77
- BM 3, $10^{8.2}$, IR 87 +/-4.82
- BM 3, $10^{8.2}$, IR 95.30 +/-0.14
| Location | Strain | Virus Type | BM, 10^8.2 | BM, 10^8.1 | IR | TR |
|---------------------------|-------------------------|------------|------------|------------|----|----|
| Paea strain, Haiti | DENV-2 from a hs sample collected in Bangkok Thai in 1974 | BM, 10^8.2 | IR 78.52 +/- 7.64 |
| Chiang Rai, Thai | DENV-1 16007 | BM, 10^8.1 | IR 19.4 |
| | DENV-2 16681 | BM, 10^10 | IR 48.7 |
| | DENV-3 16562 | BM, 10^8.1 | IR 17.8 |
| | DENV-4 1036 | BM, 10^10 | IR 25 |
| Nakhon Phanom, Thai | DENV-1 16007 | BM, 10^8.1 | IR 16 |
| | DENV-2 16681 | BM, 10^10 | IR 15 |
| | DENV-3 16562 | BM, 10^8.1 | IR 15 |
| | DENV-4 1036 | BM, 10^10 | IR 15.6 |
| Satun, Thai | DENV-1 16007 | BM, 10^8.1 | IR 8.1 |
| | DENV-2 16681 | BM, 10^10 | IR 43.8 |
| | DENV-3 16562 | BM, 10^8.1 | IR 13.1 |
| | DENV-4 1036 | BM, 10^10 | IR 12.5 |
| Hermosillo, Sonora, MX | DENV-2 JAM1409 | BM, 10^7.5 to 10^8.5 | IR 45 |
| Guymas, Sonora, MX | DENV-2 JAM1409 | BM, 10^7.5 to 10^8.5 | TR 60 |
| Culiacan, Sinaloa, MX | DENV-2 JAM1409 | BM, 10^7.5 to 10^8.5 | TR 60 |
| Mazatlan, Sinaloa, MX | DENV-2 JAM1409 | BM, 10^7.5 to 10^8.5 | TR 65 |
| Puerto Valarta, Jalisco, MX | DENV-2 JAM1409 | BM, 10^7.5 to 10^8.5 | TR 30 |
| Manzanillo, Colima, MX | DENV-2 JAM1409 | BM, 10^7.5 to 10^8.5 | TR 55 |
| Lazaro Cardenas, Michoacan, MX | DENV-2 JAM1409 | BM, 10^7.5 to 10^8.5 | TR 45, with a large standard deviation |
| Ixtapa Zihuatanejo, Guerrero, MX | DENV-2 JAM1409 | BM, 10^7.5 to 10^8.5 | TR 42, with a large standard deviation |
| Coyuca de Benitez, Guerrero, MX | DENV-2 JAM1409 | BM, 10^7.5 to 10^8.5 | TR 70 |
| Puerto Excondido, Oaxaca, MX | DENV-2 JAM1409 | BM, 10^7.5 to 10^8.5 | TR 60 |

Thongrungkiet et al., 2003

Bennet et al., 2002\(^9\)
Tapachula, Chiapas, MX
Chetumal, Quintana Roo, MX
Cancun, Quintana Roo, MX
Merida, Yucatan, MX Campeche,
Ciudad del Carmen, Campeche, MX Villahermosa, Tabasco, MX
Moloacan, Veracruz, MX
Miguel Aleman, Tamaulipas, MX Nuevo Ladero, Tamaulipas, MX Monterey, Nuevo Leon, MX Huston, TX Tucson, Arizona Mahaleja,
Vazeille et al., 2001 Madagascar Jeffreville, Madagascar Paëa Lab. strain Durban, SA
Watson & Kay, 199912 Queensland, Aus Lab. strain Townsville in 1990
Tran et al., 1999 Ho Chi Minh City
Jupp & Kemp, 199312 Empangeni, SA Palm Beach, SA Durban, SA
Richards Bay, SA Ndumu, SA Skukuza, SA
Chen et al., 1993 Kaohsiung, southern
DENV-2 JAM1409 BM3, 107.5 to 108.5 TR 70 (two collections from 60, one of 80)
DENV-2 JAM1409 BM3, 107.5 to 108.5 TR 80
DENV-2 JAM1409 BM3, 107.5 to 108.5 TR 70
DENV-2 JAM1409 BM3, 107.5 to 108.5 TR 69
DENV-2 JAM1409 BM3, 107.5 to 108.5 TR 42
DENV-2 JAM1409 BM3, 107.5 to 108.5 TR 42
DENV-2 JAM1409 BM3, 107.5 to 108.5 TR 58
DENV-2 JAM1409 BM3, 107.5 to 108.5 TR 58
DENV-2 JAM1409 BM3, 107.5 to 108.5 TR 60
DENV-2 JAM1409 BM3, 107.5 to 108.5 TR 48
DENV-2 JAM1409 BM3, 107.5 to 108.5 TR 56
DENV-2 JAM1409 BM3, 107.5 to 108.5 TR 40, with a great standard deviation of 60, one of 80)
DENV-2 JAM1409 BM3, 107.5 to 108.5 TR 68
DENV-2 Bangkok 1974 BM3, 108.2 TR 27.8
DENV-2 Bangkok 1974 BM3, 108.2 TR 32.5
DENV-2 Bangkok 1974 BM3, 108.2 TR 94
DENV-1 from hs of a patient in Townsville in 1990 BM3, 0.6-3.6 Log10 TR 31 +/- 23.34
DENV-1 from hs of a patient in Townsville in 1992 BM3, 1.2-4.2 Log10 TR 35.5 +/- 25.67
DENV-3 h87 BM3, 0.9-3.9 Log10 TR 42 +/- 27.72
DENV-4 h241 BM3, 0.6-3.6 Log10 TR 36 +/- 22.02
DENV-1 Cassim strain from Durban, SA BM3, 7.2 Log10 TR 100 at 8-10 dpi
DENV-1 Cassim strain from Durban, SA BM, 6.1-7.1 Log10 TR 10 at 17-19
DENV-2 BC 5007 strain from Taipei BM3, 7.2-7.9 Log10 TR 15.5 and TR 50 at 17-19
DENV-1 Cassim strain from Durban, SA BM3, 6.3-7.1 Log10 TR 62.8, TR 92 at 17-19
DENV-2 BC 5007 strain from Taipei BM, 7-7.5 Log10 TR 46, TR 75 at 14-15 dpi
DENV-1 Cassim strain from Durban, SA BM3, 6.1-7.1 Log10 TR 38, TR 69.5 at 17-19
DENV-2 BC 5007 strain from Taipei BM3, 7.2-7.5 Log10 TR 29.5; TR 69 at 14-20
DENV-1 Cassim strain from Durban, SA BM3, 6.3-7.1 Log10 TR 36.5; TR 75 at 18-19
DENV-2 BC 5007 strain from Taipei BM, 7.1 Log10 TR 41.67; TR 82 at 14-15
DENV-1 Cassim strain from Durban, SA BM3, 6.9-8.4 Log10 TR 12.5; TR 100 at 14-20
DENV-2 BC 5007 strain from Taipei BM3, 7-7.9 Log10 TR 28; TR 66.5 at 16-19
DENV-1 from a dengue patient IT TR 50 at 14 dpi, 83.3 at
2) ZIKV

Calvez et al., 2018
French Polynesia
NC-2014-5132, NC
NC
BM, 10^7.6 TCID50/mL
IR: 53 at 6 dpi; 94 at 9 dpi; 96 at 14 dpi.

Main et al., 2018
Los Angeles, CA
PRVABC59, PR
BM, 5.4-6.4 log10
IR: 86 at 6 dpi; 96 at 14 dpi; 100 at 21 dpi.

Garcia-Luna et al., 2018
Apodaca, MX
PRVABC59, PR
BM, 1.5-1.8x10^5
IR: 97 at 7 dpi; 93 at 14 dpi; 99 at 21 dpi.

San Nicolas, MX
PRVABC59, PR
BM, 4x10^5-2x10^7
IR: 84 at 14 dpi; 87 at 21 dpi.
Location	Strain	Source	Midgut Titer	Salivary Gland Titer	Notes
Monterey, MX	PRVABC59, PR	BM, 8x10⁵-4x10⁷			IR 83 at 7 dpi; 63 at 14 dpi
					7 dpi; 14 at 14 dpi
					IR 53 at 7 dpi; 60 at 14 dpi
					7 dpi; 17 at 14 dpi
					IR 100 at 7-14 dpi; DR 52 at 14 dpi
					IR 91 at 7 dpi, 81 at 14 dpi
					7 dpi; 29 at 14 dpi
					IR 92 at 7 dpi, 98 at 14 dpi
					7 dpi; 51 at 14 dpi
					IR 99 at 7 dpi, 96 at 14 dpi
					7 dpi; 42 at 14 dpi
					IR 100 at 7-14dpi; DR 93 at 14 dpi
					23 at 14 dpi
					IR 98 at 7, 93 at 14dpi
					42 at 14 dpi
Cd. Madero, MX	PRVABC59, PR	BM, 6.2-8x10⁵			
Poza Rica, MX	PRVABC59, PR	BM, 1.4x10⁵-1.8x10⁷			
Minatitlan, MX	PRVABC59, PR	BM, 6.2x10⁵-1.6x10⁶			
Coatzacoalcos, MX	PRVABC59, PR	BM, 1.4x10⁵-1.7x10⁶			
Merida, MX	PRVABC59, PR	BM, 8x10⁵-4.4x10⁷			
Mazatan, MX	PRVABC59, PR	BM, 1.12-4.4x10⁷			
Guerrero, MX	PRVABC59, PR	BM, 2x10⁶-1.8x10⁷			
Dobson et al., 2018	Rockefeller strain	PRVABC59, PR	2x10⁸		
Roundy et al., 2017	Salvador, BR	DAK AR 41525, S	BM/murine², 10⁴-6		IR 100; TR100
		FSS 13025, Cambodia			IR 75; TR 0
Dominican Republic	DAK AR 41525, S	BM, 2x10⁶			IR 75; TR 0
		FSS 13025, Cambodia	BM, 2x10⁶		IR 75; TR 0
		MEX1-7, MX	BM, 2x10⁶		IR 75; TR 0
Rio Grande Valley	DAK AR 41525, S	BM, 2x10⁶			IR 75; TR 0
		FSS 13025, Cambodia	BM, 2x10⁶		IR 75; TR 0
		MEX1-7, MX	BM, 2x10⁶		IR 75; TR 0
Poza Rica, MX, Lab.	PRV ABC59	IT, 10⁶			IR 100; TR 67
strain					
Bayer company, Lab.					
strain					
Kenney et al., 2017					
Heitmann et al., 2017					
Fernandes et al., 2017					
Guedes et al., 2017					
Ciota et al., 2017					
Li et al., 2017⁹					
Ryckebush et al., 2017	Paea strain, Thaiti	PF-25013-18	BM², 2.5 x 107		IR midguts 100 at 2, 4, 6, 8, 10,12, 14, 16, 18, 20 dpi
					IR salivary glands 60 at 2, 4, 6, 8, 10, 12, 14, 18, 20 dpi
					IR salivary glands 60 at 2, 4, 6, 8, 10, 12, 14, 18, 20 dpi
					TR 11 at 8 dpi, 33 at 10 dpi
Authors	Location	Strain/Description	BM Concentration	Results	
-----------------------	-------------------	---	------------------	---	
Costa-da-Silva et al., 2017	Rockefeller lab. strain	ZIKVBR Isolated from a clinical case	BM: 2.2×10^6	IR 95 in body and head dpi, IR 60 in body, 50 in head dpi, TR 0 at 7dpi, 35 at 14dpi, IR 95 in body and 70 heads dpi, TR 0 at 7 dpi, 5 at 14 dpi	
	HWE Lab. strain		BM: 2.2×10^6		
	RED lab. strain		BM: 2.2×10^6		
Weger-Lucarelli et al., 2016	Poza Rica, MX	PRV ABC59, PR	BM, fresh $10^6.3$	IR 95, TR 70	
		PRV ABC59, PR	BM, frozen 4hr $10^6.3$	IR 95, TR 65	
		PRV ABC59, PR	BM, frozen 1 week $10^6.3$	IR 60, TR 22	
		DAKAR 41525, S	BM, frozen $0^7.2$	IR 75, TR 55	
		MR 766, Uganda	BM, frozen $10^7.2$	IR 58, TR 37	
Richard et al., 2016	Poza Rica, MX	PRV ABC59, PR	BM: 10^7	IR 85; TR 36	
Hall-Mendelin et al., 2016		PRV ABC59, PR	BM: $10^6.7$	IR 57; TR 27	
		PRV ABC59, PR	BM: $10^6.4$	IR 40; TR 40	
Di Luca et al., 2016		PRV ABC59, PR	BM, fresh 5×10^6	IR 100, TR 100	
Dutra et al., 2016		PRV ABC59, PR	BM: $10^6.8$	IR 100; TR 24	
Aliota el., 2016		PRV ABC59, PR	BM: $10^6.46$	IR 50; TR 38	
Boccoli et al., 2016		H/PF/2013 French Polynesia	BM: 10^7	7 dpi: IR 100, TR 0	
Chouin-Carneiro et., 2016	FG, Guadeloupe	NC-2014-5132, NC	BM: 10^7	7 dpi: IR 87, TR 0	
	Martinique	NC-2014-5132, NC	BM: 10^7	7 dpi: IR 90, TR 0	
	Orlando, FL	NC-2014-5132, NC	BM: 10^7	7 dpi: IR 93, TR nd	
	Tubiacacanga, BR	NC-2014-5132, NC	BM: 10^7	7 dpi: IR 83, TR nd	
Li et al., 2012		MR 766, Uganda	BM: 10^7	IR 100; TR 100	
Diagne et al., 2015		ArD 128000 and 132912, Kedougou	BM 6.4-7.6 log$_{10}$	IR+, DR+, TR 0	
		IT dose unknown 7-28 dpi	BM 6.4-7.6 log$_{10}$	IR+, DR+, TR 0	
Cornet et al., 1979		ArD 24280, S	BM, $10^6.7$ LD50 60 dpi	IR 100; TR 50	
Boorman & Porterfield, 1956	Dakar, S, domestic	Kedougou	BM, 10^6	IR 0 at 3dpi, 25 at 7dpi, TR 0 at 3dpi, 0 at 7dpi, 0 at 14dpi, 0 at 14dpi	
		Kedougou	BM, 10^6	IR 0 at 3dpi, 25 at 7dpi, TR 0 at 3dpi, 0 at 7dpi, 0 at 14dpi, 0 at 14dpi	
		IT dose unknown 7-28 dpi	BM, 10^6	IR 0 at 3dpi, 25 at 7dpi, TR 0 at 3dpi, 0 at 7dpi, 0 at 14dpi, 0 at 14dpi	
Dickson et al., 2014		Fatick	BM, 10^6	IR 59	
		DAK -1279- West African Genotype I, Nigeria	BM, 7.9×10^6	IR 17	
		DAK -1279- West African Genotype II, S	BM, 10^6	IR 13	
		DAK -1279- West African Genotype I, Nigeria	BM, 6.1×10^7	IR 33	
		BA-55- West African Genotype I, Nigeria	BM, 2×10^6	IR 10	
Location	Genotype	Virus Strain	BM	IR	
-------------------	----------------------------------	----------------------	-------	-----	
Richard Toll	Genotype II, S	BM, 7.9 x10^5	IR 57		
Goudiry	Genotype II, S	BM, 10^6	IR 0		
Ae aegypti formosus PK10, S, sylvatic	BA-55- West African Genotype I, Nigeria	BM, 2x10^5	IR 0		
Ae aegypti formosus PK10, S, sylvatic	DAK-1279- West African Genotype I, S, BM	BM, 7.9 x10^5	IR 10		
PK10, S, sylvatic	Genotype II, S	BM, 7.9 x10^5	IR 10		
PK10, S, sylvatic	Genotype II, S	BM, 10^6	IR 3		
Mont Rolland	Genotype II, S	BM, 2x10^6	IR 0		
Rufisque	Genotype II, Senegal	BM, 7.9 x10^5	IR 11		
Ellis et al., 2012	Nairobi, Kenya	BM, 6.7–7.5 log10	IR 7		
Mariakani, Kenya	East African genotype (Sudan 2003)	BM, 6.7–7.5 log10	IR 41		
Kerio Valley, Kenya	East African genotype (Sudan 2003)	BM, 6.7–7.5 log10	IR 11		
van den Hurk et al., 2011	Cairns, Aus	BM, 6.7–7.5 log10	IR 23		
Johnson et al., 2002	Santos, Brazil	BM, 7-7.8 log10	IR 35, TR 25.5		
Lourenco-de-Oliveira et al., 2002	Feira de Santana, BR	FIOCRUZ 74018/MG/01	BM^3, 10^8.7	IR 0	
Soares, BR	FIOCRUZ 74018/MG/01	BM^3, 10^8.7	IR 0.9		
Quixeramobim, BR	FIOCRUZ 74018/MG/01	BM^3, 10^8.7	IR 0.9		
Rocinha, BR	FIOCRUZ 74018/MG/01	BM^3, 10^8.7	IR 3.3		
Tinguá, BR	FIOCRUZ 74018/MG/01	BM^3, 10^8.7	IR 4.9		
Pacuia, BR	FIOCRUZ 74018/MG/01	BM^3, 10^8.7	IR 5.6		
Salvador, BR	FIOCRUZ 74018/MG/01	BM^3, 10^8.7	IR 6.3		
Higienópolis, BR	FIOCRUZ 74018/MG/01	BM^3, 10^8.7	IR 6.7		
Moquetá, BR	FIOCRUZ 74018/MG/01	BM^3, 10^8.7	IR 7.6		
Feira de Santana, BR	FIOCRUZ 74018/MG/01	BM^3, 10^8.7	IR 10.6		
Rio Branco, BR	FIOCRUZ 74018/MG/01	BM^3, 10^8.7	IR 11.1		
Leandro Ferreira, BR	FIOCRUZ 74018/MG/01	BM^3, 10^8.7	IR 12.0		
Caraciaca, BR	FIOCRUZ 74018/MG/01	BM^3, 10^8.7	IR 12.8		
Boa Vista, BR	FIOCRUZ 74018/MG/01	BM^3, 10^8.7	IR 12.9		
Represa do Cigano, BR	FIOCRUZ 74018/MG/01	BM^3, 10^8.7	IR 16.1		
Location	Source Code	Resistance Level	IR Value		
---------------------	----------------------	------------------	----------		
São Luis, BR	FIOCRUZ 74018/MG/01	BM, 10^8.7	19.6		
Maringá, BR	FIOCRUZ 74018/MG/01	BM, 10^8.7	22.7		
Porto Velho, BR	FIOCRUZ 74018/MG/01	BM, 10^8.7	24.4		
Campo Grande, BR	FIOCRUZ 74018/MG/01	BM, 10^8.7	25		
Potim, BR	FIOCRUZ 74018/MG/01	BM, 10^8.7	27.1		
Belém, BR	FIOCRUZ 74018/MG/01	BM, 10^8.7	33.9		
Ananindeua, BR	FIOCRUZ 74018/MG/01	BM, 10^8.7	46.4		
Foz do Iguaçu, BR	FIOCRUZ 74018/MG/01	BM, 10^8.7	48.6		
Maringá, BR	FIOCRUZ 74018/MG/01	BM, 10^8.7	22.7		
Porto Velho, BR	FIOCRUZ 74018/MG/01	BM, 10^8.7	24.4		
Campo Grande, BR	FIOCRUZ 74018/MG/01	BM, 10^8.7	25		
Potim, BR	FIOCRUZ 74018/MG/01	BM, 10^8.7	27.1		
Belém, BR	FIOCRUZ 74018/MG/01	BM, 10^8.7	33.9		
Ananindeua, BR	FIOCRUZ 74018/MG/01	BM, 10^8.7	46.4		
Foz do Iguaçu, BR	FIOCRUZ 74018/MG/01	BM, 10^8.7	48.6		
Phnom Penh, Cambodia	FIOCRUZ 74018/MG/01	BM, 10^8.7	64.4		
Ho Chi Minh	FIOCRUZ 74018/MG/01	BM, 10^8.7	48.05		
Maracay, Venezuela	FIOCRUZ 74018/MG/01	BM, 10^8.7	13.6		
West Palm Beach, FL	FIOCRUZ 74018/MG/01	BM, 10^8.7	24.8		
Ae. aegypti formosus	FIOCRUZ 74018/MG/01	BM, 10^8.7	3.3		

Mitchel et al., 1987
Rexville strain from PR
Soufriere, Dominica West Africa Sylvan,
Dakar S, lab. strain West Africa Sylvan,
N'Gove S, lab. strain West Africa Sylvan,
Gambia, lab. strain West Africa Sylvan,
Kampala Uganda lab. strain East Africa Sylvan,
East Africa Sylvan, Kombeni, Kenya; lab. strain East Africa Sylvan,
East Africa Domestic, Kwa Dzivo Kenya; isofemale lines East Africa Domestic, Majengo Kenya; isofemale lines East Africa Domestic, Kwa Dzivo Kenya; isofemale lines
Asibi strain BM, ntd IR 11
Asibi strain BM, ntd IR 7
Asibi strain BM, ntd IR 27
Asibi strain BM, ntd IR 8
Asibi strain BM, ntd IR 34
Asibi strain BM, ntd IR 57
Asibi strain BM, ntd IR 29
Asibi strain BM, ntd IR 11
Asibi strain BM, ntd IR 23
Asibi strain BM, ntd IR 21
Asibi strain BM, ntd IR 32
Asibi strain BM, ntd IR 30
Asibi strain BM, ntd IR 28
Asibi strain BM, ntd IR 22
Asibi strain BM, ntd IR 29
Asibi strain BM, ntd IR 16

Wallis et al., 1985
Soufriere, Dominica West Africa Sylvan,
Dakar S, lab. strain West Africa Sylvan,
N'Gove S, lab. strain West Africa Sylvan,
Gambia, lab. strain West Africa Sylvan,
Kampala Uganda lab. strain East Africa Sylvan,
East Africa Sylvan, Kombeni, Kenya; lab. strain East Africa Sylvan,
East Africa Domestic, Kwa Dzivo Kenya; isofemale lines East Africa Domestic, Majengo Kenya; isofemale lines East Africa Domestic, Kwa Dzivo Kenya; isofemale lines
Asibi strain BM, ntd IR 11
Asibi strain BM, ntd IR 7
Asibi strain BM, ntd IR 27
Asibi strain BM, ntd IR 8
Asibi strain BM, ntd IR 34
Asibi strain BM, ntd IR 57
Asibi strain BM, ntd IR 29
Asibi strain BM, ntd IR 11
Asibi strain BM, ntd IR 23
Asibi strain BM, ntd IR 21
Asibi strain BM, ntd IR 32
Asibi strain BM, ntd IR 30
Asibi strain BM, ntd IR 28
Asibi strain BM, ntd IR 22
Asibi strain BM, ntd IR 29
Asibi strain BM, ntd IR 16

Tabachnick et al., 1985
West Palm Beach, FL Ae. aegypti formosus
Boulbinet Guinea Rexville strain from PR
788379 BM, 5.0-6.7 Log10 IR 61 at 11 dpi, 80 at 14 dpi
Asibi strain BM, ntd IR 17,17 +/- 13,50
Asibi strain BM, ntd IR 11
Asibi strain BM, ntd IR 7
Asibi strain BM, ntd IR 27
Asibi strain BM, ntd IR 8
Asibi strain BM, ntd IR 34
Asibi strain BM, ntd IR 57
Asibi strain BM, ntd IR 29
Asibi strain BM, ntd IR 11
Asibi strain BM, ntd IR 23
Asibi strain BM, ntd IR 21
Asibi strain BM, ntd IR 32
Asibi strain BM, ntd IR 30
Asibi strain BM, ntd IR 28
Asibi strain BM, ntd IR 22
Asibi strain BM, ntd IR 29
Asibi strain BM, ntd IR 16
Domestic Location	Strain Type	Observed Units	
Huston, TX	Asibi strain	BM, ntd	IR 21
Welasco, Texas USA	Asibi strain	BM, ntd	IR 15
Victoria, MX	Asibi strain	BM, ntd	IR 20
Abbeville, Louisiana USA	Asibi strain	BM, ntd	IR 12
Beaumont, TX	Asibi strain	BM, ntd	IR 26
Vero Beach, FL	Asibi strain	BM, ntd	IR 41
Esquitla, Guatemala	Asibi strain	BM, ntd	IR 2
Malaga, Colombia	Asibi strain	BM, ntd	IR 46
Santa Cruz, Bolivia	Asibi strain	BM, ntd	IR 31
Trinidad, West Indies	Asibi strain	BM, ntd	IR 42
Limestone Bay, Anguilla	Asibi strain	BM, ntd	IR 34
Plymouth, Montserrat	Asibi strain	BM, ntd	IR 39
Arecibo, Puerto Rico	Asibi strain	BM, ntd	IR 53

4) CHIKV

Location	Strain Details	Observed Units
Mombasa, Kenya	Lamu001 strain of and East/Central/South Africa lineage	BM, 10^5.6
		BM, 10^5.9
		BM, 10^6.9
		BM, 10^7.5
Kisumu, Kenya	ArB10262 South/Central Africa and Indian Ocean Genotype (Group III), subgroup IIIa and b	BM; 108
		IR 0 at 5-7 dpi; IR tested in Midgut at 26ºC
		IR 6 at 5-7 dpi and 17 at 10 dpi; IR tested in Midgut at 32ºC
		IR 62 at 5-7 dpi and 75 at 10 dpi; IR tested in legs at 26ºC
		IR 100 at 5-7 dpi and 75 at 10 dpi; IR tested in legs at 32ºC
		IR 0 at 5-7 dpi and 17 at 10 dpi; IR tested in legs at 26ºC
		IR 40 at 5-7 dpi: 50 at 9 dpi; IR tested in legs at 32ºC
Nairobi, Kenya	ArB10262 South/Central Africa and Indian Ocean Genotype (Group III), subgroup IIIa and b	BM, 10^5.6
		BM, 10^5.9
		BM, 10^6.9
		BM, 10^7.5
		IR 0 at 5-7 dpi and 17 at 10 dpi; IR tested in legs at 26ºC, 32ºC
		IR 7 at 5-7 dpi and 10 at 9 dpi; IR tested in legs at 26ºC, 32ºC
		IR 50 at 5-7 dpi and 57 at 9 dpi; IR tested in legs at 26ºC, 32ºC
		IR 71 at 5-7 dpi and 89 at 9 dpi; IR tested in legs at 26ºC, 32ºC
		IR in legs 37 at 2dpi, 71 at 5 dpi, 24 at 12 dpi; IR tested in legs at 32ºC
		IR in legs 90 at 2dpi, 20 at 5 dpi, 50 at 12 dpi; IR tested in legs at 32ºC
		IR in legs 71 at 2dpi, 68 at 5 dpi, 51 at 12 dpi; IR tested in legs at 32ºC
		IR in legs 35 at 2dpi, 22 at 5 dpi, 15 at 12 dpi; IR tested in legs at 32ºC
		IR tested in Midgut at 26ºC; IR tested in legs at 26ºC
		IR tested in Midgut at 32ºC; IR tested in legs at 32ºC

Location	Strain Details	Observed Units
Indian River/ St.		BM, 8 log10
Lucie County, FL		BM, 8 log10
Monroe County, FL		BM, 8 log10
Manatee county, FL		BM, 8 log10
Dominican Republic		BM, 8 log10
Bangui, Central		BM; 108
African Republic		IR 50 at 7 dpi, 27 at 14 dpi
		IR tested in Midgut at 26ºC, 32ºC; IR tested in legs at 26ºC, 32ºC

Location	Strain Details	Observed Units	
Coastal Kenya		BM; 7.9 x10^5	
		IR tested in Midgut at 26ºC, 32ºC; IR tested in legs at 26ºC, 32ºC	
Location	Virus Strain	TCID50/mL	IR Tested
---------------------------	--------------	-----------	-----------
Western Kenya		BM; 7.9 x10⁵	
Ocean Genotype (Group III), subgroup IIIa and b			
Belford Roxo, BR	CHIKV 06.21	BM 10⁻⁵	IR 100 at 7 and 10 dpi
Vaz Lobo, BR	CHIKV 05.115	BM 10⁻⁵	IR 100 at 7 and 10 dpi
Campos Belos, BR	CHIKV 06.21	BM 10⁻⁵	IR 100 at 7 and 10 dpi
Campos Grande, BR	CHIKV 06.21	BM 10⁻⁵	IR 100 at 7 and 10 dpi
Jurujuba, BR	CHIKV 05.115	BM 10⁻⁵	IR 100 at 7 and 10 dpi
Paqueta, BR	CHIKV 06.21	BM 10⁻⁵	IR 100 at 7 and 10 dpi
Vaz Lobô, BR	CHIKV 06.21	BM 10⁻⁵	IR 100 at 7 and 10 dpi
Belford Roxo, BR	CHIKV 06.21	BM 10⁻⁵	IR 100 at 7 and 10 dpi
Santos, BR	CHIKV 06.21	BM 10⁻⁵	IR 100 at 7 and 10 dpi
Monteagudo, Bolivia	CHIKV 06.21	BM 10⁻⁵	IR 100 at 7 and 10 dpi
Salto del Guaira, Paraguay	CHIKV 06.21	BM 10⁻⁵	IR 100 at 7 and 10 dpi
Asuncion, Paraguay	CHIKV 06.21	BM 10⁻⁵	IR 100 at 7 and 10 dpi
Salto, Uruguay	CHIKV 05.115	BM 10⁻⁵	IR 100 at 7 and 10 dpi
Corrientes, Argentina	CHIKV 06.21	BM 10⁻⁵	IR 100 at 7 and 10 dpi
Buenos Aires, Argentina	CHIKV 05.115	BM 10⁻⁵	IR 100 at 7 and 10 dpi
Noumea, NC, mosquitoes had a 92% susceptibility to pyrethroids (pop 163/11)	CHIKV 05.115	BM 10⁻⁵	IR 53.3 at 3 dpi; 54.5 at 10 dpi
Noumea, New Caledonia,	CHIKV 05.115	BM 10⁻⁵	IR 50 at 3 dpi; 64.3 at 8 dpi
	PF14/300914-109	BM 7 log10	IR 100 at 7 and 10 dpi
	NC/2011-568	TCID50/mL	IR 100 at 7 and 10 dpi
mosquitoes had an 85% susceptibility to pyrethroids (pop 174/11)
Noumea Laboratory strain, New Caledonia (pop 282/10)

Noumea, NC, mosquitoes had a 92% susceptibility to pyrethroids (pop 163/11)

Noumea, NC, mosquitoes had an 85% susceptibility to pyrethroids (pop 174/11)
Noumea Lab.strain, NC (pop 282/10)

Location	Arbovirus	BM at 3 dpi	IR at 3 dpi	BM at 7 dpi	IR at 7 dpi	BM at 14 dpi	IR at 14 dpi
Girod et al., 2011	CHIKV 06.21	BM 10^7.5	IR 40 at 3 dpi; 58.8 at 8 dpi	BM 10^7.5	IR 33.3 at 3 dpi; 57.1 at 8 dpi		
Guadaloupe							
Poit a Pitre, Carenage, Guadaloupe							
Fort de France, Ermitage, Martinique Robert, Cafe, Martinique Cayenne, Centre Ville FG Cayenne, Madeleine, FG	CHICK LR2006-OPY1, La Reunion Island	BM 10^7.5	IR 98 at 14 dpi in 2008; 95.8 at 14 dpi in 2009	BM 10^7.5	IR 97.4 at 14 dpi in 2008		
Pesko et al., 2009	Palm Beach, FL	BM 6.1 log10	IR at 6 dpi 18.8 and 57.1 for mosquitoes feeding on pletdgets or water jackets membranes, respectively	BM 5.2 log10	IR at 6 dpi 4.5 and 23.8 for mosquitoes feeding on pletdgets or water jackets membranes, respectively		
5) dual-infections							
Ruckert et al., 2017	CHIKV (strain 99659)	BM 3.1x10^7-1.9 x 10^8	IR 87; TR 20 at 3dpi, 30 at 7 dpi	BM 3x10^7-7.4 x 10^5	IR 87; TR 0 at 3 dpi, 15 at 7 dpi		
Poza Rica, Mexico	DENV-2 (strain Merida)	BM 1.7 x 10^5-5.4x10^5	IR 48; TR 0 at 3 dpi, 8 at 7 dpi	DENV-2 BM, as single	IR CHIKV 87; DENV-2 IR CHIKV 38; DENV 10; CHIKV 90; ZIKV 45; CHIKV 45; ZIKV 8; at 14 dpi		
ZIKV (strain PRVABC59)	CHIKV (strain 99659)+DENV-2 (strain Merida)	BM, as single	IR CHIKV 50; DENV-2 80; DENV 20; ZIKV 0; at 14 dpi	BM, as single	IR ZIKV 50; DENV-2 80; DENV 20; ZIKV 0; at 14 dpi		
Goertz et al., 2017	CHIKV strain 37997	BM 2 x 10^6	IR 47.9, TR 10.4	BM 2 x 10^6	IR 66.7, TR 5.9	BM 2 x 10^6	IR 81.2, TR 21.2
Rockefeller strain	ZIK Suriname strain 011V-01621	BM 2 x 10^6	IR 65.3, TR 34.7	BM 2 x 10^6	IR 92.2, TR 68.6	BM 2 x 10^7	IR 100, TR 68.3
ZIKV Suriname strain 011V-01621	CHIKV (strain 37997)+ZIKV	BM, as single	IR 84.4; TR 11.5	BM, as single	IR 65 at 6 dpi; 80 at 6 dpi; 80 at 9 dpi-12 dpi; 80 at 15 dpi-18 dpi; 80 at 21 dpi-24 dpi		
6) infections with arboviruses other than DENVs, YFV, ZIKV and CHIKV	Mayaro virus, Trinidad strain TRVL 4675	BM 7.5 log10	IR 40 at 3 dpi; 57.1 at 8 dpi	BM 7.5 log10	IR 40 at 3 dpi; 57.1 at 8 dpi	BM 7.5 log10	IR 40 at 3 dpi; 57.1 at 8 dpi
Wiggins et al., 2018	Miami, FL						
Author et al., Year	Location	Virus/Strain Details	TCID₅₀ or Log ID₅₀	Infection Rate	Transmission Rate		
---------------------	----------	----------------------	---------------------------------	----------------	-----------------		
Wang et al., 2012	Haikou strain, China	Western equine encephalomyelitis virus (WEEV), McMillian strain	BM, ntd	IR 25; TR 45			
Long et al., 2011	Iquitos, Peru	Maroyo virus, strain IQT4235	BM, 5.59-7.34 Log10	IR 46.67 +/-21.13; TR 8.67 +/- 1.13;			
Turell et al., 2008	Kenya, collected as eggs in 1982	Rift Valley Fever (RVFV) ZH501 from an Egyptian patient	BM, 10^{-7.8}	IR 100 at 3-10 dpi; 33 at 11-16 dpi			
Turell et al., 2001	Rockefeller strain	Rift Valley Fever ZH501 from an Egyptian patient	BM, 10⁻⁸	IR 85 at 3-10 dpi; 75 at 11-16 dpi			
Kay et al., 1979	Townsville colony, from northern Queensland in 1957	Sindbis MRM39	BM, 4-6.5 Log ID₅₀	IR 64, TR 28.5, EIP 20			
		Getah N544	BM, 4.9 Log ID₅₀	IR 100, TR 69, EIP 12			
		Ross River T78	BM, 5.1 Log ID₅₀	IR 96, TR 95, EIP 7-10			
		Murray Valley Encephalitis MRM66	BM, >6.5 Log ID₅₀	IR 46, TR 38, EIP 20-23			
		Kunji MRM16	BM, 2.7 Log ID₅₀	IR 100, TR 100, EIP 12			
		Kokobera MRM32	BM, 2.1-2.9 Log ID₅₀	IR 100, TR 5, EIP 10-15			
Kramer & Sherer, 1976	Laboratory strain	Venezuelan Encephalitis virus, epizootic strain subytoe I, variety B, 69T1597	IT or BM	TR 60 at 14 dpi, 100 at 7 dpi			
Kramer & Sherer, 1976	Laboratory strain	Venezuelan Encephalitis virus, enzootic strain subytoe I, variety E, 63Z1	IT or BM	TR 60 at 14 dpi, 100 at 7 dpi			

1 PFU/ml unless otherwise stated; 2 FFU/ml; 3 MID50/ml; 4 TCID50/mL; 5 CCID50/ml; 6 PFU ingested per mosquito; 7 expressed in unless otherwise stated; 8 mosquitoes were tested for infections within the 9th generation after laboratory colonization; 9 infection and transmission rates reported here were extrapolated from a figure; 10 wild-caught mosquitoes were adapted to the laboratory and tested at generation F10-15; 11 infection rates for DENV2 AdR 140875 are mean over two infections experiments; 12 results are mean over different experiments; 13 mosquitoes were infected by all virus strains and dissemination was studied for both strains; 14 CHIKV 06.21 is the strain with the E1-226V mutation and CHIKV 05.115 is the strain with the E1-226A mutation; 15 experiments were carried out in two consecutive years (2008 and 2009); 16 in 2009, two different concentrations of CHIKV were compared for infection rates at 7 dpi; only data for the highest concentration are shown here; 17 mosquitoes of the F12_F14 after laboratory colonization were used in experimental infections.
Figure 1

Natural determinants of vector competence

- Mosquito genetics
- Virus genetics
- Symbionts

Confounding factors of vector competence studies

- Virus
 - Origin and preparation of stocks
 - Dose at blood meal
 - Quantification method

- Mosquito
 - Route of infection
 - Tissues and body parts surveyed
 - Time-point of dissections

Need scientific elucidation

Need standardization

Improved reproducibility and comparability