Endoplasmic Reticulum Localization of Sec12p Is Achieved by Two Mechanisms: Rerlp-dependent Retrieval That Requires the Transmembrane Domain and Rerlp-independent Retention That Involves the Cytoplasmic Domain

Miyuki Sato, Ken Sato, and Akihiko Nakano
Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan

Abstract. Yeast Sec12p is a type II transmembrane protein in the ER, which is essential for the formation of transport vesicles. From biochemical and morphological lines of evidence, we have proposed that Sec12p is localized to the ER by two mechanisms: static retention in the ER and dynamic retrieval from the early Golgi compartment. We have also shown that Rerlp, a membrane protein in the Golgi, is required for correct localization of Sec12p. In the present study, we have performed a systematic analysis to determine the ER localization signals in Sec12p corresponding to these two mechanisms. Both the transmembrane domain (TMD) and the NH2-terminal cytoplasmic domain of Sec12p show the ability to localize the protein to the ER. The effect of the TMD is potent and sufficient by itself for the ER localization and is strongly dependent on Rerlp. On the other hand, the cytoplasmic domain shows a moderate ER-localization capability which is independent of Rerlp. The rate of mannosyl modification has been measured to distinguish between retention and retrieval. The cytoplasmic domain significantly delays the transport from the ER to the cis-Golgi. In contrast, the TMD shows only a subtle retardation in the transport from the ER to the cis-Golgi but strictly prevents the transport beyond there. From these observations, we conclude that the TMD mainly acts as the retrieval signal and the cytoplasmic domain contains the retention signal. This study not only supports the two-mechanisms hypothesis but also provides powerful tools to dissect the two.

The secretory pathway of eukaryotic cells consists of a series of membrane-bound organelles. The correct sorting of proteins is essential to maintain complex structure and function of these organelles and requires a specific localization signal in each protein. To date, a few examples of such signals have been identified for ER proteins. One is the COOH-terminal Lys-Asp-Glu-Leu (KDEL, mammals) or His-Asp-Glu-Leu (HDEL, yeast) sequence (Munro and Pelham, 1987; Pelham et al., 1988). The cis-Golgi receptor for this K(H)DEL sequence, Erd2p, has also been identified (Semenza et al., 1990; Lewis and Pelham, 1990). Other signals are the COOH-terminal di lysine motif of type I transmembrane proteins (Jackson et al., 1990) and the NH2-terminal di arginine motif of type II transmembrane proteins (Schutze et al., 1994). It is believed that the ER proteins harboring the K(H)DEL or di lysine motifs are retrieved from the early Golgi to the ER (Pelham, 1988; Dean and Pelham, 1990; Hsu et al., 1991; Lewis and Pelham, 1992; Jackson et al., 1993).

Yeast Sec12p is a type II transmembrane glycoprotein and is essential for formation of transport vesicles from the ER (Nakano et al., 1988; d'Enfert et al., 1991; Rexach and Schekman, 1991; Oka and Nakano, 1994). Most of Sec12p is localized to the ER in the steady state (Nakano et al., 1988; Nishikawa and Nakano, 1993) and not detected on the purified transport vesicles (T. Oka and A. Nakano, unpublished; Barlowe et al., 1994). However, a significant portion of Sec12p receives α1–6 mannose modification on its N-linked oligosaccharide, which takes place in the early Golgi (Nakano et al., 1988; d'Enfert et al., 1991; Nishikawa and Nakano, 1993). Based on these observations, we have proposed that the ER localization of Sec12p involves two different mechanisms: static retention in the ER and dynamic retrieval from the early Golgi. Sec12p molecules are largely excluded from the transport vesicles during budding from the ER, and those escaping from this retention are sent back from the Golgi to the ER by the retrograde pathway (Nishikawa and Nakano, 1993; Sato et al., 1995).

In order to understand molecular mechanisms underlying these sorting events, we designed a screening to isolate mutants that mislocalize Sec12p beyond the early Golgi. A fusion protein of Sec12p and the precursor of α-mating
factor (Sec12-Mfa1p) was used as a marker protein. If this fusion protein is mislocalized to the late Golgi, the Mfa1 moiety is processed to mature α-factor, which is then secreted to the medium. Using this trick, we have isolated two rer mutants (Nishikawa and Nakano, 1993). The RER1 gene encodes a protein of 188 amino acid residues (Rer1p) containing four putative transmembrane domains. The null mutant of RER1 is viable, and even in this mutant, a significant portion of Sec12p is still localized in the ER. Immunofluorescence microscopy and subcellular fractionation experiments demonstrated that Rer1p is mainly localized to the Golgi complex. This suggests that Rer1p functions at the retrieval step (Sato et al., 1995).

On the other hand, little is known about structural requirements for Sec12p to be localized to the ER. According to our hypothesis, Sec12p should possess two localization signals corresponding to the two mechanisms, retention and retrieval. To identify these signals, we performed a systematic analysis on Sec12p localization using chimeric proteins between Sec12p and Dap2p. Dap2p is a type II transmembrane protein in the vacuole and has been claimed to have no particular localization information in itself (Roberts et al., 1992). In this paper, we report the results of our analysis on the chimeric proteins and present evidence that two different regions of Sec12p are important for the ER localization.

Materials and Methods

Yeast Strains and Culture Conditions

Saccharomyces cerevisiae strains used in this study are listed in Table 1. Yeast cells were grown in YPD [1% (wt/vol) Bacto yeast extract (Difco Laboratories, Inc., Detroit, MI), 2% (wt/vol) polypeptone (Nippon Seiyaku, Tokyo, Japan), and 2% (wt/vol) glucose] or in MVD [0.67% yeast nitrogen base without amino acids (Difco Laboratories) and 2% (wt/vol) glucose] or in MVD [0.67% yeast nitrogen base without amino acids (Difco Laboratories) and 2% (wt/vol) glucose] or in MVD [0.67% yeast nitrogen base without amino acids (Difco Laboratories) and 2% (wt/vol) glucose] or in MVD [0.67% yeast nitrogen base without amino acids (Difco Laboratories) and 2% (wt/vol) glucose] or in MVD [0.67% yeast nitrogen base without amino acids (Difco Laboratories) and 2% (wt/vol) glucose] or in MVD [0.67% yeast nitrogen base without amino acids (Difco Laboratories) and 2% (wt/vol) glucose].

Yeast Strains and Culture Conditions

Saccharomyces cerevisiae strains used in this study are listed in Table 1. Yeast cells were grown in YPD [1% (wt/vol) Bacto yeast extract (Difco Laboratories, Inc., Detroit, MI), 2% (wt/vol) polypeptone (Nippon Seiyaku, Tokyo, Japan), and 2% (wt/vol) glucose] or in MVD [0.67% yeast nitrogen base without amino acids (Difco Laboratories) and 2% (wt/vol) glucose] or in MVD [0.67% yeast nitrogen base without amino acids (Difco Laboratories) and 2% (wt/vol) glucose] or in MVD [0.67% yeast nitrogen base without amino acids (Difco Laboratories) and 2% (wt/vol) glucose] or in MVD [0.67% yeast nitrogen base without amino acids (Difco Laboratories) and 2% (wt/vol) glucose] or in MVD [0.67% yeast nitrogen base without amino acids (Difco Laboratories) and 2% (wt/vol) glucose] or in MVD [0.67% yeast nitrogen base without amino acids (Difco Laboratories) and 2% (wt/vol) glucose].

Plasmid Construction

A yeast monocopy plasmid, pSQ326, has been described elsewhere (Qadota et al., 1992). pSQ326 and pSQ326-2 were digested by XbaI and ApII and substituted for the XbaI-ApII region of pSSS-1, respectively. These chimeric genes were also subcloned into pSQ326 to yield pSSS-2, which contains the 5'5% casamino acids (Difco Laboratories Inc.).

The pStal to Sall fragment of Mfa1 was subcloned into pBluescript II SK+ (Stratagene Cloning Systems, La Jolla, CA) and pSQ326, respectively (Nishikawa and Nakano, 1991). The ApII to Sall (in vector) fragment of pSQ326 was used to replace the corresponding fragments of pSSS-1, pDS5-1, and pDS6-1 to produce pSSD-1, pDS5-1, and pDS6-1, respectively. These chimeric genes were subcloned into pSQ326 to yield pXXX-2, which contains the 0.5% casamino acids (Difco Laboratories Inc.).

Plasmid Construction

A yeast monocopy plasmid, pSQ326, has been described elsewhere (Qadota et al., 1992). pSQ326 and pSQ326-2 were digested by XbaI and ApII and substituted for the XbaI-ApII region of pSSS-1, respectively. These chimeric genes were also subcloned into pSQ326 to yield pSSS-2, which contains the 5'5% casamino acids (Difco Laboratories Inc.).

Table 1. Yeast Strains Used in This Study

Strain	Genotype	Source
SNY9	MATα mfa1::ADE2 mfa2::TRP1 bar1::HIS3 ura3 trp1 ade2 his3 leu2 lys2	A
SKY7	MATα mfa1::ADE2 mfa2::TRP1 bar1::HIS3 ura3 trp1 ade2 his3 leu2 lys2	B
SMY6-9C	MATα dap1::LEU2 mfa1::ADE2 mfa2::TRP1 bar1::HIS3 ura3 trp1 ade2 his3 leu2 lys2	C
SMY8-1B	MATα dap1::LEU2 mfa1::ADE2 mfa2::TRP1 bar1::HIS3 ura3 trp1 ade2 his3 leu2 lys2	C
SMY8-4C	MATα dap1::LEU2 mfa1::ADE2 mfa2::TRP1 bar1::HIS3 ura3 trp1 ade2 his3 leu2 lys2	C

1. Abbreviations used in this paper: endo H, endoglycosidase H; TMD, transmembrane domain.

The Journal of Cell Biology, Volume 134, 1996
fied anti-Dap2p antibody was kindly provided by Y. Wada of the University of Tokyo and Y. Amaya of Yokohama City University. To amplify the fluorescent signals, the system using biotinylated goat anti-rabbit antibody and streptavidin-fluorescein (Sato et al., 1995) was employed.

Pulse-chase Experiments

Metabolic labeling of yeast cells, preparation of cell extracts, and immunoprecipitation were performed as described previously (Nishikawa and Nakano, 1991). In each immunoprecipitation, affinity-purified anti-Dap2p antibody or anti-Sec12p antiserum was added to the cell extract equivalent to 4 × 10^7 cells. The first immunoprecipitates were dissolved in 210 μl of 1% SDS, divided into three aliquots, diluted with 10X volume of 2% Triton X-100, and subjected to the second immunoprecipitation with either the same antibody, anti-α1→6 mannose antiserum or anti-α1→3 mannose antiserum. Endoglycosidase H (Endo H) treatment and analysis by SDS-PAGE and fluorography were performed as described (Nishikawa et al., 1990). Radioimage was also observed and quantified with an image analyzer (model BAS-1000; Fuji Photo Film Co., Tokyo, Japan).

Other Methods

Halo assays were performed on MCD plates with a tester MATα sst2 strain as described previously (Nishikawa and Nakano, 1993). Four to ten independent spots were examined to quantify the amount of α-factor secreted. Expression levels of various chimeras were always analyzed by SDS-PAGE and immunoblotting using antibodies against Sec12p, Dap2p, or α-factor. In the case of α-factor fusions, the density of each band was evaluated by scanning and used to normalize the secretion of α-factor.

Results

Construction of Chimeric Proteins between Sec12p and Dap2p

To determine which region of Sec12p is important for the ER localization, we planned to construct chimeric proteins between Sec12p and an appropriate passenger protein that is innocent for its destination. As such a passenger protein, we chose Dap2p (dipeptidyl aminopeptidase B), a vacuolar membrane protein. Dap2p is a transmembrane protein with the same topology as Sec12p (type II) but is transported to the vacuole quickly after biosynthesis (Roberts et al., 1989). It has been shown that Dap2p has no particular localization signal in itself and thus is transported to the vacuole by default (Roberts et al., 1992). This gives us a nice opportunity to identify the ER localization signal(s) of Sec12p by examining which chimeric constructs are localized to the ER. We dissected Sec12p and Dap2p into three parts: the NH2-terminal cytoplasmic domain, the TMD, and the COOH-terminal lumenal domain by introducing appropriate restriction sites in their corresponding genes. For convenience, we refer to the constructs with three letters composed of S and D. S stands for Sec12p and D is for Dap2p. The first letter indicates the NH2-terminal domain, the second is for the TMD, and the third is for the COOH-terminal domain. For example, SDD refers to the N (Sec12p)-TMD (Dap2p)-C (Dap2p) chimera. All the combinations of the three parts of the two proteins were made and named by this nomenclature (Fig. 1). They were all placed under the SEC12 promoter.

Analysis Using the α-factor Fusion

The subcellular localization of these chimeras was examined in three different ways: halo assay, indirect immunofluorescence, and pulse-chase experiments. First, we undertook the halo assay method that was used to isolate *rer* mutants (Nishikawa and Nakano, 1993). As illustrated in Fig. 2, this method utilizes fusions containing Mfalp in the lumenal domain. If a particular fusion protein is transported to the late Golgi, Mfalp moiety would be processed by the Kex2 protease leading to the secretion of mature α-factor. Cells secreting α-factor form a halo when placed on an agar plate with a lawn of tester α strain as a result of the growth arrest of the α cells (Halo⁺). Accordingly, the Halo⁺ phenotype should indicate that the fusion is retained in the ER or the early Golgi. Sec12p-Mfalp (SSSm) behaves very much like the authentic Sec12p. It is mostly localized in the ER and does not yield a halo in the wild-type cells (Nishikawa and Nakano, 1993; Fig. 2, black arrows; see also Fig. 3, A and B, and Fig. 4, upper spot 1).
We constructed a Dap2-Mfa1 fusion protein (DDDm) and tested whether the wild-type cells expressing this fusion (WT/DDDm) secrete α-factor by the halo assay. As shown in Fig. 4, upper spot 2, WT/DDDm produced a large halo, indicating that this fusion protein was transported to the late Golgi quite efficiently. Furthermore, DDDm was found to be subject to degradation in the vacuole. Immunoblotting using the anti-Mfa1p antibody showed that the amount of DDDm was higher than in the wild-type cells when the major vacuolar proteolytic activities were disrupted (Apep4) (data not shown). The band densities were quantified by image scanning and used for further analysis (see below).

The result of the halo assay is shown in Fig. 4, spots 3–8. Using the synthetic pure α-factor as the standard, the amounts of secreted α-factor were calculated by measuring the radii of halos and their relative proportions to WT/DDDm (upper spot 2). These results are summarized in Table II. Considering the different levels of chimeras as measured by immunoblotting, the relative values were corrected by normalization. The corrected values are shown in parentheses in Table II. This normalization does not affect our argument henceforth.

Among the six chimeras that are composed of both Sec12p and Dap2p fragments, DSSm, SDSm, and SSDm did not produce any detectable halo in the wild-type cells (see Fig. 4, spots 5, 6, and 8). This indicates that these proteins were retained in the cells before they reach the Kex2 compartment of the late Golgi. All these constructs contain the TMD of Sec12p (SRFFTNFILVLLSYILQFSL). It is striking that the DSDm chimera, whose only part from Sec12p is the TMD, is completely retained before the late Golgi. Complementary to this result, SDSm secreted α-factor in the wild-type cells (see Fig. 4, spot 3), indicating that the TMD region of Sec12p is very important for its localization. The same interpretation can be made for SDDm (compare with SSDm). By replacing the Sec12p TMD by the Dap2p TMD, the retention of the molecule was seriously impaired. It should be noted, however, that the amount of the α-factor secreted by SDSm or SDDm is only 27–38% (12–13% if corrected by normalization of expression levels) as compared to DDDm, suggesting that another mechanism of retention operates for these proteins (see below). It seems that the luminal domain of Sec12p has no effect on the localization as long as we could test by this halo assay. DDSm and SSDm were almost indistinguishable from DDDm and SSSm, respectively, in α-factor secretion.

To further examine the effect of the Sec12p TMD on localization, we performed indirect immunofluorescence microscopy on DDSm in Δdap2 cells. As shown in Fig. 5 A, staining with the anti-Dap2p antibody exhibited the typical ER pattern (nuclear envelope and peripheral ER) as...
Figure 3. Subcellular localization of SSSm (Sec12-Mft1p) and DDDm (Dap2-Mft1p). Wild-type cells (SNY9) expressing SSSm (A and B) and Δdap2 Δpep4 cells (SMY8-1B) expressing DDDm (C–E) were fixed and prepared for immunofluorescence microscopy with anti-Sec12p and anti-Dap2p antibodies, respectively. (A and C) DNA staining with 4',6-diamidino-2-phenylindole (DAPI) to locate nuclei. (B and D) Fluorescence images with the antibodies. (E) Nomarski image to visualize vacuole. The SNY9 cells contain one copy of the authentic SEC12 in the chromosome but its product's fluorescence signal is not detectable under this condition.

seen with the authentic Sec12p or SSSm (see Fig. 3 B). No indication of vacuolar or Golgi staining was observed. Thus, we conclude that the TMD of Sec12p has sufficient information to localize the molecule to the ER.

The disruption of the RER1 gene showed various effects on the chimeric proteins (see Fig. 4, Table II). The three constructs, DSSm, DSDm, and SSDm, which contain the Sec12p TMD, secreted significant amounts of α-factor in the Δrer1 cells like SSSm. This indicates that Rerlp is very important for the retention of these proteins in the early compartments. In contrast, the secretion of α-factor by SDSm or SDDm was not markedly affected by the RER1 disruption. In the case of SDDm, the amount of the secreted α-factor was about 35–38% (12–13% if corrected) of that of DDDm, regardless of RER1+ or Δrer1. In other words, a significant amount of the molecule is still retained in the early compartments independent of the Rerlp function.

Sec12p Cytoplasmic Domain Contains an Rer1p-independent ER Localization Signal

It is evident that the TMD region of Sec12p is sufficient to localize the chimeric proteins to the ER in the RER1+ cells. However, is it solely necessary for the ER localization of Sec12p? The answer is obviously no. Even with the Dap2p TMD, SDSm and SDDm constructs secrete only 30–40% (10–15% if corrected) of α-factor as compared to...
Table II. Secretion of α-Factor by Sec12/Dap2-Mfa1p Fusion Proteins

Chimera	Relative amount of α-factor secreted	
	Wild-type %	Δerel
SSSm (Sec12-Mfa1p)	<5 (<2)	33 (13)
DDDm (Dap2-Mfa1p)	100 (100)	95 (101)
SDSm	>100 (12)	39 (16)
DSSm	100 (71)	105 (81)
DDSrm	<5 (<3)	4,1 (23)
DSSm	<5 (<3)	56 (31)
SDDm	38 (13)	35 (12)
SSDm	<5 (<2)	35 (15)

The amounts of secreted α-factor in Fig. 4 were quantified and expressed as proportions relative to that secreted by DDDm in the wild-type cells. A value below 5 means that it was below the detection limit. The figures in parentheses are after correction, considering the amount of each chimera estimated by immunoblotting.

DDDm, leaving a considerable amount of the protein retained in the early compartment(s). In fact, these chimeric genes were able to complement the lethality of the SEC12 gene disruption on a multicopy plasmid. Since the NH2-terminal cytoplasmic domain is the only region originating from Sec12p in the case of SDDm, these observations strongly suggest that this domain also has a signal to localize the protein.

To examine whether SDDm is in fact retained in the ER, we performed immunofluorescence microscopy. As shown in Fig. 5 C, the anti-Dap2p antibody again stained the ER in the Δdap2 cells expressing SDDm. This led us to conclude that the cytoplasmic domain of Sec12p also has an ability to localize the protein to the ER. The efficiency of the ER localization attained by the cytoplasmic domain appears to be lower than that of the TMD because the secretion of α-factor from the Mfa1p fusion is not completely prevented by this domain alone. The effect of the cytoplasmic domain does not require the presence of Rer1p. This raises an intriguing possibility that the retention by the cytoplasmic domain may be due to the static mechanism at the exit from the ER. It should also be noted that, in the absence of Rer1p, the cytoplasmic domain is not the only region that causes the retention. As seen in Table II, the Sec12p TMD also has an effect in the Δerel cells (see DSSm and DSDm). This Rer1p-independent mechanism may involve both the cytoplasmic and TMD regions.

It is known that the ER retention of the proteins could also result from the quality control of the ER. The Dap2-Mfa1p (DDDM) construct showed no enzymatic activity of dipeptidyl aminopeptidase. The Mfa1p moiety might hinder correct folding of the luminal domain of Dap2p and thus activate the potent quality control system in the ER for some of the chimeric proteins. Although the fact that DSDm forms a large halo in the Δerel cells strongly argues against this possibility, we decided to test the ER localization effects of the TMD and the cytoplasmic domain in more native forms. We constructed DSD and SDD, which contain the complete COOH-terminal luminal domain of Dap2p devoid of the Mfa1p moiety. This version of the chimeric proteins expressed in the Δdap2 cells showed full dipeptidyl aminopeptidase activities as the authentic Dap2p (data not shown). SDD is also completely functional as Sec12p since it could complement the Δsec12 mutant on a single-copy plasmid. Immunofluorescence microscopy (Fig. 6, A and B) showed that, like DSDm, DSD was strictly localized to the ER. SDD was mainly localized to the ER, but weak vacuolar staining was also observed (Fig. 6, C–E). This is consistent with the fact that SDDm had less ability of retention than DSDm as measured by the halo assay. Because DSD and SDD retain the full activity as Dap2p and SDD functions like the

Figure 5. Subcellular localization of DSDm and SDDm. Δdap2 Δpep4 (SMY8-1B) cells harboring DSDm (A and B) or SDDm (C and D) were analyzed by immunofluorescence microscopy using the anti-Dap2p antibody. (A and C) Fluorescence images with the antibody. (B and D) DNA staining (with DAPI) of the same fields.
authentic Sec12p, it is unlikely that these proteins invoke the quality control of the ER as unfolded proteins.

We also observed immunofluorescence of DSD in Δrer1 cells. As shown in Fig. 7, D–F; the ER staining was still obvious in most cells, although the vacuolar staining was also seen (compare with DDD, Fig. 7, A–C). This indicates that the TMD of Sec12p has an ability of ER localization even in the absence of Rer1p, supporting the aforementioned possibility that it is involved in both Rer1p-dependent and independent mechanisms.

Rate of Mannosyl Modification Distinguishes between Retention and Retrieval

To determine which mechanism of ER localization, retention or retrieval, utilizes these two domains in Sec12p, we carried out metabolic pulse-labeling and chase experiments on the chimeric proteins. Since Ochlp, yeast α1→6 mannosyl transferase, is located in the early Golgi compartment, the rate of α1→6 mannosyl modification should reflect the rate of transport from the ER to the early Golgi.

First, as a control, the cells harboring SEC12 or DAP2 on a multicopy plasmid were pulse-labeled for 10 min and chased for 0–60 min. Sec12p and Dap2p were immunoprecipitated with the anti-Sec12p or anti-Dap2p antibody and then subjected to the second immunoprecipitation with either the same antibody, anti-α1→6 mannosyl antibody, or anti-α1→3 mannosyl antibody (Fig. 8). To avoid ambiguity due to heterogeneous glycosylation, a half of each sample was treated with endo H. After SDS-PAGE, the radioactivity of each band was quantified by radioimaging analysis. The relative amounts of α1→6 and α1→3 mannosyl modifications are shown in Table III as percentage over the second Sec12p or Dap2p immunoprecipitate. As described previously (d'Enfert et al., 1991; Nishikawa and Nakano, 1993), Sec12p acquires a significant amount of α1→6 mannosyl modification after synthesis, 18% at 60 min chase in this particular experiment (Fig. 8 A). This modification is obvious, but its rate is much slower than those of typical secretory proteins. This indicates that the exit from the ER is rate limiting for Sec12p. Furthermore, modification by α1→3 linkage was hardly detected even at 60 min chase, indicating that the retrieval process operates quite efficiently as well.

In contrast, mannosyl modification of Dap2p is very fast (Fig. 8 B). Dap2p appeared as the 110-kD ER form containing 5–8 N-linked oligosaccharide chains and underwent further modification to the 120-kD mature (vacuolar) form during chase (Roberts et al., 1989). Endo H treatment unveiled emergence of a smaller species, which is perhaps due to the degradation in the vacuole. Quantification of mannosyl modification indicates that 29% of Dap2p already acquired the α1→6 mannosyl linkage during 10-min pulse, and the proportion increased to 70% at 60 min chase (see Table III). The modification with α1→3 linkage was also evident even at 0 min and extended during chase.

A similar pulse–chase experiment was performed on DSD and SDD using anti-Dap2p and anti–Sec12p anti-
Figure 7. Subcellular localization of DDD and DSD in arerl cells. SKY7 cells expressing DDD (A–C) or DSD (D–F) were fixed and prepared for immunofluorescence microscopy with the anti-Dap2p antibody. (A and D) DAPI staining. (B and E) Fluorescence images with the antibody. (C and F) Nomarski images.

bodies, respectively (Fig. 9). DSD was detected as triplet bands at around 110 kD (Fig. 9 A). This heterogeneity is due to the N-linked oligosaccharides because they coalesced to a single band by endo H treatment. Apparently, the rate of α₁→6 modification of DSD was much faster than that of Sec12p. 40% of DSD became precipitable by the α₁→6 mannos antibody at 60 min. Even at 0 min, a population (~6%) that was modified with α₁→6 linkage was detectable after endo H treatment. DSD was little modified with α₁→3 mannosyl linkage, indicating that this chimera efficiently arrives at the early Golgi but does not go beyond there. Considering the fact that DSD is exclusively localized to the ER as observed by immunofluorescence, this result strongly suggests that it is the retrieval from the Golgi to the ER that operates predominantly to localize DSD to the ER.

SDD was detected as a 152-kD band (Fig. 9 B). In contrast to DSD, the rate of α₁→6 mannosyl modification on SDD was very slow. Only 19% was modified with the α₁→6 linkage after 60 min, which is very similar to the case of Sec12p (see Table III). It appears that the acquisition of the α₁→3 modification of SDD (8% at 60 min) is significantly faster than either Sec12p or DSD. Since the ER localization of SDD does not require Rer1p, which is involved in the retrieval, it may be reasonable that the SDD molecules are not sent back to the ER efficiently once they have left. In fact, the immunofluorescence of SDD (see Fig. 6 D) indicates that some population of SDD is transported to the vacuole. The results of the halo assay on SDDm also supports this. All these observations are consistent with the idea that SDD is localized to the ER by moderate static retention. A small portion escapes from this mechanism, and the molecules that depart from the ER do not return but reach the vacuole.

Mutational Analysis of the TMD

We tried to determine which residues in the TMD of Sec12p are important for the ER localization. The TMD of Sec12p contains several polar and aromatic amino acid residues. These residues were first changed to alanine in a variety of combinations (Fig. 10). The mutations were introduced into DSDm, whose ER localization was fulfilled only by virtue of the Sec12p TMD, and the effect was tested by the halo assay. F-A (F355A, F356A, and F359A) and SY-A (S366A, Y367A, and S372A) mutants did not produce any halo in the wild-type cells, indicating that they were completely retained in the ER/cis-Golgi. FSY-A (F-A plus SY-A), N-A (N358A), and Q-A (Q370A) formed very small halos. The halo of NQ-A (N-A plus Q-A) was slightly larger than that of either N-A or Q-A. These mutants appear to be leaking out of the ER, but the majority is still localized to the ER. Even the A10 mutant, in which all of the polar and aromatic residues were replaced by alanine, is mostly located in the ER in the wild-type cells. It appears that none of these alanine mutants disrupts the
Figure 8. Mannosyl modification of Sec12p and Dap2p. Wild-type (SNY9) cells expressing Sec12p (A) and Δdap2 (SMY6-9C) cells expressing Dap2p (B) were labeled with tran35S-label at 30°C for 10 min and chased for the indicated times. Sec12p and Dap2p were first immunoprecipitated with the respective antibodies. The immunoprecipitates were dissolved in 1% SDS, divided into three aliquots, and subjected to the second immunoprecipitation with the antibodies against Sec12p or Dap2p, α1→6 mannosyl linkages (α1,6), and α1→3 mannosyl linkages (α1,3). Each sample was further divided into two, treated with or without endo H, and analyzed by SDS-PAGE and radioimaging.

Table III. Rate of Mannosyl Modification of Sec12/Dap2 Chimeras

Chimera	α1→6	α1→3				
	0	30	60	0	30	60 min
Sec12p	<2	<2	<2	<2	<2	
Dap2p	29	54	70	11	40	22
DSD	6	19	40	<2	<2	<2
SDD	<2	7	19	<2	3	8

Radioactivity of each band was quantified from the +endo H panels of Figs. 8 and 9.

ER localization information in the TMD completely, although some mutations resulted in the decrease of efficiency. Interestingly, all these alanine mutants kept the Rerlp dependency. In the Δerl1 cells, the mutants produced halos as large as DSDm did. Upon this surprising result, we decided to construct another series of replacement using leucine instead of alanine. The result is also shown in Fig. 10. N-L (N358L), Q-L (Q370L), and NQ-L (N-L plus Q-L) mutations formed larger halos than the corresponding alanine mutants, indicating that hydrophobicity of these residues is an important parameter. The Rerlp dependency was still seen with these mutants but became less apparent, especially with NQ-L. With the L7 mutant, in which serine, threonine, asparagine, and glutamine residues were all replaced by leucine, the Rerlp dependency finally disappeared. The difference between the alanine and leucine mutants suggests that the distribution of hydrophobicity in the TMD somehow affects its ability to localize the protein to the ER in the Rerlp-dependent manner. On the other hand, even with this L7 mutant, the secretion of α-factor was not as efficient as DDDm. We further proceeded to construct the LeuX19 mutant, which contains only 19 leucine residues in the TMD. This artificial TMD showed Rerlp-independent halo formation, but again the efficiency was not as good as DDDm. Since the expression levels of these mutant proteins were almost the same as DSDm and DDDm as determined by immunoblotting (data not shown), the decrease of the size of halos was not due to their reduced synthesis. In fact, immunofluorescence observation of the cells expressing L7 or LeuX19 showed staining of both the ER and the vacuoles (data not shown). The ER localization was not as strict as with the Sec12p TMD, but it was still obvious. The length of the stretch of leucine (LeuX13, LeuX15, LeuX17, LeuX21, LeuX23, and LeuX26) did not affect its localization property as long as we could test by the halo assay (M. Sato, unpublished data). We also introduced some of these mutations in the TMD of SSSm and performed the halo assay. Similar tendencies were observed, though the halos were smaller because the defect was partly masked by the reten-
tion effect of the Sec12p cytoplasmic domain (data not shown).

ER Localization Signals of Other ER Membrane Proteins

We further examined whether any parts of other ER membrane proteins could act as a signal to localize Dap2p to the ER. Sed4p and Sec20p are also type II transmembrane proteins in the ER but have the HDEL sequence at their COOH terminus, unlike Sec12p (Hardwick et al., 1992; Gimeno et al., 1995; Sweet and Pelham, 1992). Sed4p shows a striking structural similarity to Sec12p in the NH2-terminal cytoplasmic domain and the TMD (45% identical) but not in the COOH-terminal lumenal domain. Sec20p has no homology to Sec12p. It has been shown that the HDEL sequence of Sec20p is important for its ER localization (Sweet and Pelham, 1992). We constructed D4Dm and D20Dm (Fig. 11 A) by replacing the TMD of Dap2p by that of Sed4p or Sec20p. The behavior of these chimeras in wild-type and drerl cells was tested by the halo assay (Fig. 11 B). D4Dm did not produce any halo in the wild-type cells, indicating that the TMD of Sed4p is sufficient for the ER localization. Subcellular localization of D4Dm was also examined by immunofluorescence microscopy, which showed strict ER staining similar to that of DSDm (Fig. 12 B). This effect was dependent on Rer1p because D4Dm produced a halo in drerl (Fig. 11 B). Thus, the Rer1p-dependent mechanism of ER localization commonly operates on the TMD of Sec12p and Sed4p. In contrast, D20Dm formed a large halo in either wild-type or drerl cells (Fig. 11 B). This clearly indicates that the Rer1p-dependent system is not effective to all transmembrane ER proteins. It apparently discriminates Sec20p from Sec12p and Sed4p. In the case of Sec20p, other motifs including the HDEL sequence might decide the localization.

Since the cytoplasmic domain of Sed4p is homologous to that of Sec12p, we tested its effect on the ER localization as well. 4DDm (Fig. 12 A) was expressed in wild-type cells, and indirect immunofluorescence microscopy was performed (Fig. 12 B). 4DDm was mainly located in the ER, but weak vacuolar staining was also observed in some cells. This is very similar to SDDm and SDD, suggesting that the cytoplasmic domain of Sed4p also has an ability to localize the molecule in the ER in a similar manner to that of Sec12p.

Discussion

Two ER Localization Signals of Sec12p

Signals, or special structural motifs, are essential for correct sorting of proteins in a cell. During membrane traffic...
in the secretory pathway, vesicles dynamically cycle between organelles. The sorting processes in such vesicular traffic should also be understood from the viewpoint of recognition of signals.

We have been investigating how yeast Sec12p is localized to the ER. Sec12p is a pivotal membrane component required for vesicle budding from the ER and needs to be strictly localized to the ER membrane, but there is also evidence that it recycles between the ER and the Golgi apparatus (Nakano et al., 1998; Nishikawa and Nakano, 1993; Oka and Nakano, 1994). We have shown in this paper that such localization of Sec12p is achieved by two mechanisms: static retention in the ER that involves the NH2-terminal cytoplasmic domain of Sec12p and dynamic retrieval from the Golgi to the ER that requires the TMD. We shall call the structural motifs contained in these domains the retention and retrieval signals, respectively. A Golgi membrane protein, Rerlp, plays an important role in the retrieval process (Sato et al., 1995). The retrieval by the TMD signal depends on the presence of Rerlp in the Golgi, whereas the retention by the cytoplasmic signal is Rerlp-independent (Fig. 13).

Retention and Retrieval

The above conclusion has been obtained from the experiments using chimeric fusions between Sec12p and a reporter protein Dap2p. Since Dap2p, a vacuolar membrane protein, is believed to be innocent for its destination and is transported to the vacuole by default under normal conditions (Roberts et al., 1992), the effects of the Sec12p domains on localization can be directly tested on chimeric proteins. The results of biochemical and morphological experiments demonstrate that either the TMD or the cytoplasmic domain of Sec12p causes ER localization when included in the chimera. The actions of these two domains are independent of each other. The TMD alone can localize the protein to the ER quite efficiently, while the cytoplasmic domain can retain the majority of the molecules in the ER as well.

The fact that the effect of the TMD is Rerlp-dependent suggests that this is due to the retrieval mechanism. In a previous study, we showed that Rerlp is an integral membrane protein in the Golgi apparatus, most probably residing in the cis region of the Golgi (Sato et al., 1995). Rerlp could serve for ER localization of Sec12p either by directly sending back the molecule to the ER or by preventing its progression to the later compartments of the Golgi. The role of Rerlp in such retrieval processes is in good agreement with the biochemical observations in this study. On DSD, a chimeric construct whose ER localization is achieved by the Rerlp-dependent effect of the TMD, the rate of α1→6 mannosyl modification is quite fast, unlike Sec12p, whereas that of α1→3 mannosyl modification is strictly inhibited. Since the α1→6 and α1→3 modifications take place in the cis and medial compartments of the Golgi apparatus, respectively (Nakayama et al., 1992; Graham et al., 1994), this observation indicates that DSD is rapidly reaching the cis-Golgi but does not move on to the medial-Golgi because it is returned to the ER (see Fig. 13). This has led us to conclude that the signal contained in the TMD is for retrieval.

In contrast, the effect of the NH2-terminal cytoplasmic domain is quite different. It does not require the presence of Rerlp and appears to be less efficient than the TMD for ER localization. The analysis on mannosyl modification...
Figure 12. (A) Chimeras between Sed4p and Dap2p. (B) Subcellular localization of D4Dm and 4DDm.

Dissection of Signals

Increasing numbers of reports suggest that some membrane proteins have multiple signals for localization. For example, Graham and Krasnov (1995) showed that the COOH-terminal lumenal domain and the TMD of yeast Mnl1p are important for the Golgi localization; Itin et al. (1995) reported that both the lumenal and cytoplasmic domains of human ERGIC-53 are involved in ER-ERGIC-cis-Golgi recycling; and Szczesna-Skorupa et al. (1995) claimed that the TMD and the COOH-terminal cytoplasmic domain of rabbit cytochrome P450 2C1 and 2C2 contain signals for the ER localization. However, the functional differentiation of these signals remains unclear. In this paper, we have shown for the first time that yeast Sec12p contains two distinct signals that correspond to two different mechanisms, retention and retrieval. Previously, Boehm et al. (1994) implied the importance of the Sec12p TMD by comparing the secretion of invertase from Sec22-α-factor-invertase and Sec22/12-α-factor-invertase fusions. They showed that secretion of the invertase activity was suppressed by introduction of the Secp TMD and that this...
effect was diminished by the deletion of RER1. In this context, their findings are consistent with our study, although the effect of the TMD was only partial in their work. In normal cells, the retention mechanism would mask the retrieval effect and vice versa. Successful dissection of two such signals has become possible by the systematic analysis of chimeric proteins and the use of the ∆rer1 mutant in the present study. Further determination of the signals of Sec12p has been attempted at the level of amino acid residues. We have performed an extensive mutational analysis on the residues in the TMD and obtained a surprising result: Even the mutant TMD that has had all the polar and aromatic residues replaced by alanine (A10 of Fig. 12) can still localize the DSD molecule to the ER in an Rer1p-dependent manner. Since this TMD contains only alanine, valine, leucine, and isoleucine residues, one might argue that the recognition of the TMD signal by the retrieval system is not quite strict in terms of structure. However, we have also realized that the dependency on Rer1p is completely lost when most of these polar residues are replaced by leucine (L7 of Fig. 12). Apparently, there is a difference between leucine and alanine residues in the Rer1p-dependent localization effect of the mutant TMD. One obvious difference between these two amino acids is the bulkiness of the side chain. In other words, they differ in the degree of hydrophobicity. By scrutinizing the Sec12p TMD and its mutant versions that retain the Rer1p dependency, we find that there is a gradient of hydrophobicity which peaks in the middle of the TMD. The hydrophobic core in the center that is flanked by less hydrophobic residues appears to be a feature of the Rer1p-dependent signals. From such a point of view, the Rer1p-dependent TMD of Sed4p has a similar profile, whereas the Rer1p-independent TMDs of Dap2p and Sec20p do not. In support of this idea, the artificial TMD consisting of 19 leucine residues does not show the Rer1p-dependent localization effect. Further experimental tests are possible and will be necessary to prove or disprove this hypothesis.

Apart from the Rer1p dependency, it is also puzzling that even the LeuX19 TMD can localize the protein to the ER to some extent. Although weak, this artificial TMD has an ability to retain the chimeric protein in the ER, which is not present in the Dap2p TMD. How could this observation be explained? Let us presume here that this is due to the retention in the ER because it is Rer1p-independent. Possibly, the introduction of this artificial stretch of leucines interferes with the assembly of the DSDm protein into the transport vesicles and thus retards the ER-to-Golgi traffic. The quality control system of the ER might be somehow involved in this process. Alternatively, the partial ER retention may take place without any particular signal, and the fast exit of Dap2p from the ER may depend on a selective mechanism that positively transports the protein to the Golgi apparatus. This is a revival of the selectivity model of Lodish (1988) and may be consistent with the arguments that cargo molecules are selectively concentrated in transport vesicles (Mizuno and Singer, 1993; Balch et al., 1994). Of course, we cannot exclude the possibility that the effect of the LeuX19 TMD in ER localization is due to another retrieval mechanism that does not require Rer1p.

It is known that many Golgi membrane proteins are localized by virtue of the TMD signals. However, the structural requirements of such signals are still unclear (Swift and Machamer, 1991; Bretscher and Munro, 1993; Nilsson et al., 1993; Weisz et al., 1993). If the TMD alone can distinguish ER and Golgi proteins, what is the difference between them? Munro (1995) has recently demonstrated that the length of the TMD is critical for the Golgi retention in the case of sialyltransferase and suggested the importance of the lipid-based sorting. In his experiment, the LeuX17 TMD functions as a Golgi localization signal. We have performed a similar experiment to test whether such a length effect of the TMD could be involved in the case of Sec12p as well. The result indicates that all of the leucine-only TMDs we have examined show a partial retention ability that is independent of Rer1p. There was no special preference to the length of leucine stretch (M. Sato, unpublished data). The different requirement of similar hydrophobic TMD between the ER and the Golgi localization remains to be clarified experimentally.

Mechanism of Retention

We have also tried to determine which part of the cytoplasmic domain of Sec12p is important for the ER retention by a systematic deletion analysis. However, most of the constructed mutant proteins are unstable in the yeast cells, and we have been unable to narrow down the region that is ascribed to for the retention mechanism. The cytoplasmic domain of Sec12p contains the catalytic site of the protein that functions as the guanine-nucleotide exchange factor toward the Sar1 GTPase (Barlowe and Schekman, 1993). Mutations in this region may hamper the interaction with Sar1p and other molecules that are essential for vesicle budding and thus accelerate the degradation of the mutant protein. It is also conceivable that the interaction of the cytoplasmic domain of Sec12p with other component(s) of the budding machinery may be the mechanism of the static retention. If so, the signal in this domain may require its overall conformation rather than particular residues.
A hint on this possibility comes from the result on Sec4p. Sed4p shares high homology with Sec12p in the cytoplasmic domain and the TMD (Hardwick et al., 1992). In fact, both of these domains are capable of localizing the Dap2p chimeras in the ER as those of Sec12p do. If the ER retention by the cytoplasmic domain of Sec12p is fulfilled by interaction with other molecules, is it also the case with the cytoplasmic domain of Sed4p? If so, are there common partners with which Sec12p and Sed4p can interact? Sed4p has been shown not to possess the guanine-nucleotide exchanger activity toward Sar1p despite the high similarity to Sec12p (Barlowe and Schekman, 1993). However, Gimeno et al. (1995) reported that synthetic lethal interaction exists between one mutant allele of SAR1 and the disruptant of SED4 and suggested the possibility that their products may function in a multisubunit complex in the wild-type cells. Sed4p has also been shown to interact with Sec16p (Gimeno et al., 1995). Since SAR1 has a strong suppressor activity on sec12 and sec16 ts mutants (Nakano and Muramatsu, 1989), there may be a link between Sec12p and Sec16p. Sar1p and Sec16p could be somehow involved in the ER retention of Sec12p and Sed4p. How Sar1p and Sec16p are associated with the ER membrane is totally unknown. To solve this kind of chicken-and-egg problem, further efforts to dissect the structural requirements of the cytoplasmic domains of Sec12p (and Sed4p) will be necessary.

Role of Rer1p

The analyses of signals are always complementary to the analyses of receptors. In the case of the KDEL/HDEL signal, Erd2p has been identified as its receptor (Semenza et al., 1990). In the retrieval of membrane proteins with the di-lysine motifs, the coatamer (COP I) binds to this signal and executes the Golgi-to-ER retrograde transport (Cosson and Letourneur, 1994; Letourneur et al., 1994). What about the Sec12p signals? If the recognition of these signals is a receptor-mediated process, massive overproduction of the signals would give rise to saturation and over-flow of the sorting mechanism. In the case of the authentic Sec12p, enormous overproduction does not lead to its mis-sorting but rather complex phenomena including proliferation of the ER membrane, inhibition of ER-to-Golgi antergrade transport, and formation of the BiP bodies in the lumen of the ER (Nishikawa et al., 1994). Such consequences are probably due to the imbalance of the Sar1p GTPase cycle caused by the increase of the catalytic sites of Sec12p as the guanine nucleotide exchange factor. Since the TMD of Sec12p does not have such an effect on Sar1p, we could test the effect of its overproduction. In fact, when the DSDm construct was expressed by the strong promoter of the gyceraldehyde-3-phosphate dehydrogenase gene on a multicopy plasmid, secretion of α-factor was clearly observed, indicating that this chimeric protein was mislocalized to the late Golgi (M. Sato, unpublished data). This suggests that the retrieval of Sec12p by the TMD signal is a saturable process, again implying the existence of a receptor.

On the other hand, the structural requirement of the TMD remains to be clarified as discussed above. While the Sec12p TMD accepts rather extensive alterations, a distri-

References

Balch, W.E., J.M. McCaffery, H. Plutner, and M.G. Farquhar. 1994. Vesicular stomatitis virus glycoprotein is sorted and concentrated during export from the endoplasmic reticulum. Cell. 76:841–852.
Barlowe, C., and R. Schekman. 1993. SECl2 encodes a guanine nucleotide ex-
change factor essential for transport vesicle budding from the ER. Nature (Lond.), 365:347-349.
Barlowe, C., L. Orci, M.H. Yeung, S. Hanamoto, N. Salama, M.F. Rexach, M. Ravazzola, M. Anherdt, and R. Schekman. 1994. COPII: a membrane coat formed by Sec proteins that drive vesicles budding from the endoplasmic reticulum. Cell, 77:895-907.
Boehm, J., H.D. Ulrich, R. Ossig, and H.D. Schmitt. 1994. Kex2-dependent invertase secretion as a tool to study the targeting of transmembrane proteins which are involved in ER–Golgi transport in yeast. EMBO (Eur. Mol. Biol. Organ.) J., 13:3696-3710.
Breitsch, M.S., and S. Munro. 1993. Cholesterol and the Golgi apparatus. Science (Wash. DC), 261:1280-1281.
Builloc, W.O., J.M. Fernandez, and J.M. Short. 1987. XL1-blue: a high efficiency plasmid transforming recombinant Escherichia coli strain with beta-galactosidase selection. Biotechniques, 5:376.
Cosson, P., and F. Letourneur. 1994. Coatamer interaction with d lysine endoplasmic reticulum retention motifs. Science (Wash. DC), 263:1629-1631.
Dean, N., and H.R.B. Pelham. 1990. Recycling of proteins from the Golgi compartment to the ER in yeast. J. Cell Biol. 111:369-377.
d’Enfert, C., C. Barlowe, S. Nishikawa, A. Nakano, and R. Schekman. 1991. Structural and functional detection of a membrane glycoprotein required for vesicle budding from the endoplasmic reticulum. Mol. Cell. Biol. 11:5727-5734.
Gaynor, E.C., S. te Heesen, T.R. Graham, M. Aebi, and S.D. Emr. 1994. Signal-mediated retrieval of a membrane protein from the Golgi to the ER in yeast. J. Cell Biol. 127:653-665.
Gimeno, R.E., P. Espenshade, and C. Kaiser. 1995. SED4 encodes a yeast endoplasmic reticulum protein that binds Sec1p and participates in vesicle formation. J. Cell Biol. 129:355-388.
Graham, T.R., and V.A. Krasnov. 1995. Sorting of α1,3-mannosyltransferase is mediated by a luminal domain interaction, and a transmembrane domain signal that can confer clathrin-dependent Golgi localization to a secreted protein. Mol. Biol. Cell 6:809-824.
Graham, T.R., M. Seeger, G.S. Payne, V.L. MacKay, and S.D. Emr. 1994. Clathrin-dependent localization of α1,3-mannosyltransferase to the Golgi complex of Saccharomyces cerevisiae. J. Cell Biol. 127:667-678.
Hardwick, K.G., J.C. Booytoud, A.D. Radner, and H.R.B. Pelham. 1992. Genes that allow yeast cells to grow in the absence of the HDEL receptor. EMBO (Eur. Mol. Biol. Organ.) J., 11:4187-4195.
Hsu, V.W., L.C. Yuan, J.G. Nuchtten, J. Lippschitz-Scharpe, G.J. Hammel, and R.D. Krauser. 1991. A recycling pathway between the endoplasmic reticulum and the Golgi apparatus for retention of unassembled MHC class I molecule. Nature (Lond.). 352:441-444.
Ilin, C., R. Schindler, and H.P. Haurn. 1995. Targeting of protein ERGIC-53 to the ER/Golg/ERGIC/Gol Golgi recycling pathway. J. Cell Biol. 131:57-67.
Jackson, M.R., T. Nilsson, and P.A. Peterson. 1990. Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. EMBO (Eur. Mol. Biol. Organ.) J. 9:3153-3162.
Jackson, M.R., T. Nilsson, and P.A. Peterson. 1993. Retrieval of transmembrane proteins to the endoplasmic reticulum. J. Cell Biol. 121:317-333.
Keszenman-Pereyra, D., and K. Hieda. 1988. A colony procedure for transformation of Saccharomyces cerevisiae. Curr. Genet. 15:21-23.
Letourneur, F., E.C. Gaynor, S. Hennecke, R. Duden, S.D. Emr, H. Riezman, and P. Cosson. 1994. Coatamer is essential for retrieval of d lysine-tagged proteins to the endoplasmic reticulum. Cell. 79:1199-1207.
Lewis, M.J., and H.R.B. Pelham. 1980. A human homologue of the yeast HDEL receptor. Nature (Lond.). 348:162-163.
Lewis, M.J., and H.R.B. Pelham. 1992. Ligation induced redistribution of a human KDEL receptor from the Golgi complex to the endoplasmic reticulum. Cell, 70:353-364.
Lodish, H.F. 1988. Transport of secretory and membrane glycoproteins from the rough endoplasmic reticulum to the Golgi. A rate-limiting step in protein maturation and secretion. J. Biol. Chem. 263:2027-2110.
Mizuno, M., and S.J. Singer. 1993. A soluble secretory protein is first concentrated in the endoplasmic reticulum before transfer to the Golgi apparatus. Proc. Natl. Acad. Sci. USA. 90:5732-5736.
Munro, S., and H.R.B. Pelham. 1987. A C-terminal signal prevents secretion of luciferase ER protein. Cell, 48:899-907.
Munro, S. 1995. An investigation of the role of transmembrane domains in Golgi protein retention. EMBO (Eur. Mol. Biol. Organ.) J. 14:4695-4704.
Nakano, A., and M. Maramatsu. 1989. A novel GTP-binding protein, SAR1, is involved in transport from the endoplasmic reticulum to the Golgi appara-...