INTRODUCTION

The major histocompatibility complex (MHC) refers to as human leukocyte antigen (HLA). The loss of HLA antigens by neoplastic cells is considered important for tumor growth and metastasis[1-3]. Since tumor neoantigens on the surface of aberrant cells are recognized by T-cells only in the context of the HLA "self" antigens, loss of the HLA antigens may allow the tumors to escape immunosurveillance[4]. HLA system is a kind of genetic marker of human being, and the most complicated human genetic polymorphic system with hereditary features of haplotype inheritance and allele polymorphism and linkage disequilibrium. It played an important role in the event of antigen recognition and presentation, immune response and modulation, destroying foreign antigen targeted cells. The alleles of the HLA system control a variety of immune functions and influence the susceptibility to more than 40 diseases, many of which have an autoimmune component[5-17], esophageal cancer is a complex, probably multifactorial disease[18-41]. Association of a particular HLA allele with a disease implies that the frequency of the allele is different in the patient population as compared with that of an ethnically matched control population. However, there has been no report on the association between HLA alleles and esophageal carcinoma.

In this study, we used polymerase chain reaction with sequence-specific primers (PCR-SSP) and DNA sequence analysis techniques on HLA-DRB1 alleles typing to investigate the genetic susceptibility of HLA allele polymorphisms in esophageal carcinoma of Hubei Han Chinese. This may be beneficial to the early prevention and surveillance, thus setting up gene therapy basis for esophageal carcinoma.

MATERIALS AND METHODS

Subjects

Included in our study were healthy controls and patients with esophageal carcinoma. The control group consists of one hundred and thirty-six unrelated donors or healthy individuals by physical examination, including 62 men and 74 women, ranging 22-48 years, in age, with a mean of 36±6 years. The esophageal carcinoma group includes forty-two unrelated patients with esophageal squamous cell carcinoma, 35 men and 7 women, ranging in age 41-80 years, with a mean age of 60±5 years, who were evaluated endoscopically and surgically. And all were tested by histopathology at Zhongnan Hospital of Wuhan University, between August 1998 and June 1999.

DNA extraction

Genomic DNA was isolated from leukocytes obtained from anticoagulated peripheral blood of patients and controls using the salting-out procedure[42,43], or QIAPhen Blood Kit (QIAGEN GmbH, Germany) with which DNA was obtained through solid phase affinity columns.

HLA-DRB1 alleles PCR-SSP typing

For HLA-DRB1 "low solution" typing by PCR-SSP, 23 separate PCR reactions were performed for each sample. PCR-SSP typed system: each PCR reaction mixture contained 2-4 allele- or group-specific - DRB1 primers and the internal positive control primer pair. Allele sequence specific primers (2pmol), designed on the basis of published sequences[43,44], were used in multiple amplification reaction. HLA-DRB1 alleles PCR-SSP typed system consisted of 60 ng genomic DNA, 0.5 U Taq DNA polymerase (Ampli Taq DNA polymerase, Roche Diagnostic System, Inc. USA), 20 µmol.

Abstract

AIM: To probe into the genetic susceptibility of HLA-DRB1 alleles to esophageal carcinoma in Han Chinese in Hubei Province.

METHODS: HLA-DRB1 allele polymorphisms were typed by polymerase chain reaction with sequence-specific primers (PCR-SSP) in 42 unrelated patients with esophageal cancer and 136 unrelated normal control subjects and the associated HLA-DRB1 allele was measured by nucleotide sequence analysis with PCR.SAS software was used in statistics.

RESULTS: Allele frequency (AF) of HLA-DRB1*0901 was significantly higher in esophageal carcinoma patients than that in the normal controls (0.2500 vs 0.1397, P=0.028, the odds ratio 2.053, etiologic fraction 0.1282). After analyzed the allele nucleotide sequence of HLA-DRB1*0901 which approaches to the corresponded exon 2 sequence of the allele in genebank. There was no association between patients and controls in the rested HLA-DRB1 alleles.

CONCLUSION: HLA-DRB1*0901 allele is more common in the patients with esophageal carcinoma than in the healthy controls, which is positively associated with the patients of Hubei Han Chinese. Individuals carrying HLA-DRB1*0901 may be susceptible to esophageal carcinoma.

Lin J, Deng CS, Sun J, Zheng XG, Huang X, Zhou Y, Xiong P, Wang YP. HLA-DRB1 allele polymorphisms in genetic susceptibility to esophageal carcinoma. World J Gastroenterol 2003; 9(3): 412-416

http://www.wjgnet.com/1007-9327/9/412.htm
each deoxyadenosine triphosphate (dATP), deoxycytidine triphosphate (dCTP), deoxyguanosine triphosphate (dGTP), deoxythymidine triphosphate (dTTP), 10 mmol/L Tris-HCl pH 8.3, 50 mmol·L\(^{-1}\) KCl (kalium chloride), 1.5 mmol·L\(^{-1}\) MgCl\(_2\) (magnesium chloride). PCR amplifications were carried out in PTC-100 thermal cycler (MJ Research, Inc, USA) according to the method of Olerup et al\(^{[5,42,43]}\).

Initial denaturation was made at 94 °C for 5 min; with 30 cycles each consisting of denaturation at 94 °C for 30 s, annealing at 65 °C for 1 min and extension at 72 °C for 1 min. The HLA-DRB1 alleles typed visualization of amplification was observed using medium resolution PCR-SSP products by 20 g·L\(^{-1}\) gels agarose(Boehringer Mannhein GmbH, Germany) electrophoresis. The gels were run for 20 min at 15 V·cm\(^{-1}\) in 0.5xTBE buffer and visualized using UV illumination and keeping file copies in computer.

Positive control, false negative allele

The most common form of individual PCR reaction failure is where random individual reactions fail to produce allele or control bands. This occurred on average in 1 % of all PCR-SSP amplification. In each PCR reaction, a pair primers were included which specifically amplify the exon 2 of HLA-DRB1 alleles. These two primers matched non-allelic sequences and thus functioned as an internal positive amplification control. We used human growth hormone gene as a intra-positive control, in which primer\(^{[5]}\) is 5'-primer, 21 mer, 5' GCC TTC CCA ACC ATT CCC TTA 3', Tm64 °C; 3'-primer, 22 mer, 5' TCA CGG ATT TCT GTT GTG TTT C 3', terminal concentration 0.15 µmol·L\(^{-1}\), product 429 base pair (bp) fragment. Control failure is not a problem if the genotype obtained is heterozygous for all alleles and the type is unequivocal. Homozygous samples, in which the control failed, normally would require typing with a new DNA sample once again. Individual false negative allele amplifications where the control amplification worked but an expected allele was not amplified, did occur, the same be required repeated typing.

DNA sequence analysis of PCR-SSP products

Specific PCR-SSP products of amplification were obtained from agarose gels electrophoresis, then purified with glassmilk kit (Clontech Laboratories, Inc, USA), and the base sequence was examined by PCR sequence analysis with ABI prism 310 (Perkin-Elmer, USA) with the addition of a terminal deoxytransferase extension step at the end of the chain termination reaction.

Statistical analysis

SAS (6.12 for Win), including \(\chi^2\) analysis or Fisher’s Exact Test, was used to compare the allele frequency (AF) of HLA-DRB1 between the patients with esophageal carcinoma and the controls.

RESULTS

HLA-DRB1*0901 was present at increased frequency in patients with esophageal squamous cell carcinoma, 0.2500 vs 0.1397, \(P=0.028\), odds ratio 2.053, etiologic fraction 0.1282 (Table 1). The rested HLA-DRB1 alleles frequencies showed no significant difference in comparison between patients and the controls, i.e., there was positive association between HLA-DRB1*0901 and the patients of Hubei Hans. The HLA-DRB1*0901 nucleotide sequence, was analyzed in this study, approachs to the corresponded exon 2 of the allele sequence in genebank. Esophageal carcinoma was associated with HLA genotype: individuals carrying HLA-DRB1*0901 may be susceptibilitive to esophageal carcinoma in Hubei Hans.

Table 1

HLA-DRB1 alleles	Control group	Esophageal cancer group	\(P\)				
	N1	AF\((n_1=272)\)	PF\((n_2=136)\)%	N2	AF\((n_1=84)\)	PF\((n_2=42)\)%	
0101-2	13	0.0478	9.5588	2	0.0238	4.7619	>0.05
0103	0	0.0000	0.0000	0	0.0000	0.0000	>0.05
150X	46	0.1691	32.3529	9	0.1071	21.4286	>0.05
160X	9	0.0331	6.6176	3	0.0356	7.1429	>0.05
0301	19	0.0699	13.9706	6	0.0714	14.2857	>0.05
0302	2	0.0074	1.4706	0	0.0000	0.0000	>0.05
040X	30	0.1103	20.5882	12	0.1429	26.1905	>0.05
0701-2	13	0.0478	9.5588	3	0.0357	7.1429	>0.05
080X	22	0.0809	15.4412	4	0.0476	9.5238	>0.05
0901	38	0.1397	26.4706	21	0.2500	45.2400	0.028*
1001	11	0.0404	7.3529	2	0.0238	4.7619	>0.05
11OX	18	0.0662	12.5000	7	0.0833	16.6667	>0.05
12OX	17	0.0625	12.5000	11	0.1310	26.1905	>0.05
1301-2	15	0.0551	11.0294	1	0.0119	2.3810	>0.05
1303-4	4	0.0147	2.9412	0	0.0000	0.0000	>0.05
1305	1	0.0037	0.7353	0	0.0000	0.0000	>0.05
1305-6	0	0.0000	0.0000	0	0.0000	0.0000	>0.05
140X	15	0.0551	11.0294	3	0.0357	0.0357	>0.05

AF: allele frequency, PF: phenotype frequency;
\(P\): Fishers exact test (2-tail) or \(\chi^2\), compared with the control with AF;
*Odds ratio=2.053, etiologic fraction=0.12820.
DISCUSSION

Familial aggregation of esophageal cancer is common. There is an approximate increase in abnormal chromosome ratio of this cancerous relatives as compared with the general population, although the inheritance patterns clearly fit no simple Mendelian patterns. However, the illness may exist in the same family at a higher frequency than expected by chance alone.[24-27] This suggests that there may be an internal environment susceptible to malignant and a genetic component in the patients’ families, which supports the concept that heredity may play an important role in the pathogenesis of esophageal cancer.[2, 9, 46-53]

Major histocompatibility complex (MHC) is a genetic name describing alleles encoding antigens first discovered because they determine in a major way the fate of a graft, i.e., histocompatibility. In many species, the MHC has an additional name such as HLAs for humans, H-2 for mice, SLAs for swine, etc. The HLA alleles are located in a 3500-4000 kilobase region of chromosome 6; and the allele encoding β2-microglobulin, a related protein in the system, is on chromosome 15. The major classes of HLA alleles are class I (HLA-A, -B, and -C) and class II (HLA-DR, -DQ, and -DP). Between the class I and II alleles, there are many other alleles, some with immune-related functions that could also be associated with diseases, tumor necrosis factor A and B genes being among them. Class II HLA presents peptides derived from extracellular antigens. The HLA polymorphism appears to be responsible for variations in the immune response of different individuals to different antigens, and may contribute to the susceptibility to diseases and autoimmune disorders.[13, 15-17]. The loss of HLA antigens by neoplastic cells is considered important to tumor growth and metastasis, and for tumor escape immune surveillance. HLA class I molecules are required for the presentation of tumor neoantigens to cytotoxic T-lymphocytes. There is evidence that tumor cells with reduced expression or lack of such antigens could evade an immune response and selected for tumor progression. It can be considered that either extensive abnormalities in the regulation of the HLA alleles occurred or substantial chromosomal damage took place in the short arm of chromosome 6, where the human HLA allele complex is located. It was demonstrated that oncogenes may suppress the expression of HLA class I alleles, such as the activation of oncogenes or the inactivation of suppressor-genes.[53, 54-56]. The data presented here demonstrate that HLA-DRB1*0901/01.14 increased in the patients with esophageal cancer compared with that in healthy controls (0.2500 vs 0.1397, \(P = 0.028, \) OR = 2.053, EF = 1.028), but none of the rested HLA-DRB1 alleles occurred at markedly altered frequency between the patients and the normal individuals we investigated, indicating that HLA-DRB1*0901 is positively associated with esophageal cancer.

The nucleotide sequence of HLA-DRB1*0901 allele which was measured in our research approachs to the corresponded exon 2 gene sequence of genebank[54, 45]. The AF of HLA-DRB1*0901 was also increased in both Japanese patients with lung cancer and prostate cancer. It is the allele that is associated with genetic susceptibility of various tumors, but why? It was entirely unclear up to now. Pathogenesis of genetic association may be linkage disequilibrium (nonrandom association) and/or changing in the recognized procession of the specific antigen. It is still controversial whether or not HLA antigen expression in carcinomas correlates with the development of carcinoma and prognosis. The immune responses involving HLA antigens expressed on carcinoma cells are thought to play an important role in eliminating mutated cells or suppressing carcinoma progression.[51-53, 57-59]. As reported in some studies, the reduced expression of HLA antigens in malignant tissues has been proposed as a mechanism thereby tumor-associated proteins cannot be presented in the T cells, therefore the tumor cell proliferates are unperturbed by the immune system and carcinomas protect themselves from hosts’ immunosurveillance. There is a possibility that HLA allele genetic association and expression on carcinoma may provide a clue to the understanding of the therapeutic mechanisms of biological response modifiers or immunotherapy which may cut through the induction of HLA antigens on carcinoma cells.[56, 60-63]. The cells of a given individual may express HLA alleles, which altered binding to tumor peptides, thereby leading to a modified immune response to the tumor. Identification of the mechanism associating HLA-DRB1*0901 with esophageal cancer could ultimately help target individuals most likely to benefit from cancer screening and prevention programs, and could facilitate novel therapeutic strategies for cancer immunoprevention.

REFERENCES

1. Geertsen R, Hofbauer G, Kamarashev J, Yue FY, Dummer R. Immune escape mechanisms in malignant melanoma. Int J Mol Med 1999; 3: 49-57
2. Jimenez P, Canton J, Conch A, Cabrera T, Fernandez M, Real LM, Garcia A, Serrano A, Garrido F, Ruiz-Cabello F. Microsatellite instability analysis in tumors with different mechanisms for total loss of HLA expression. Cancer Immun Immunother 2000; 48: 694-696
3. Ramal LM, Maleno I, Cabrera T, Collado A, Ferron A, Lopez Nevot MA, Garrido F. Molecular strategies to define HLA haplotype loss in microdissected tumor cells. Hum Immunol 2000; 61: 1001-1012
4. Facioletti A, Capelli E, Nano R. HLA class I molecules expression: evaluation of different immunocytochemical methods in malignant lesions. Anticancer Res 2001; 21: 2435-2440
5. Lin J, Deng CS, Sun J, Zou Y, Xiong P, Wang YP. Study on the genetic susceptibility of HLA-DRB1 alleles in esophageal cancer of Hubei Chinese Hans. Shijie Huan yiren Xuehua Zazhi 2000; 8: 965-968
6. Noble A. Review article: molecular signals and genetic reprogramming in peripheral T-cell differentiation. Immunology 2000; 101: 289-292
7. Douek DC, Altmann DM. T-cell apoptosis and differential human leucocyte antigen class II expression in human thymus. Immunology 2000; 99: 240-256
8. Boyton RJ, Lohmann T, Londei M, Kelbacher H, Halder T, Frazer AJ, Douek DC, Leslie DG, Flavell RA, Altmann DM. Glutamic acid decarboxylase T lymphocyte responses associated with susceptibility or resistance to type 1 diabetes: analysis in disease discordant human twins, non-obese diabetic mice and HLA-DQ transgenic mice. Int Immunol 1998; 10: 1765-1776
9. Koriyama C, Shinkura R, Hamae Y, Fujiyoshi T, Eizuru Y, Tokunaga M. Human leucocyte antigens related to Epstein-Barr virus-associated gastric carcinoma in Japanese patients. Eur J Clin Invest 2001; 31: 69-75
10. Chatzipetrou MA, Tarasi KE, Konstadoulakis MM, Pappas HE, Zafirreli KD, Anthanassiades TE, Papadopoulos SA, Panoussopoulos DG, Golematis BC, Papateriades CA. Human leucocyte antigens as genetic markers in colorectal carcinoma. Dis Colon Rectum 1999; 42: 66-70
11. Ishigami S, Aikou T, Natsugoe S, Hokita S, Iwashige H, Tokushige M, Sonoda S. Prognostic value of HLA antigens in malignant tumors of esophageal cancer. Cancer Immunol Immunother 2000; 48: 2435-2440
12. Hanifi Moghaddam P, de Knijf P, Roep BO, Van der Auwera B, de Klerk P, Nauta K, Halbertsma R, van den Berg L, de Bruin E, van der Lei T, de Man K, Franke L, Coeckelbergh D, Wirtz D, Giacomini MJ, Nelen W, de Groot R, van der Walt J, van Gils C, van de Locht M, van der Vlist M, Van der Auwera B. Novel sequence variation of the gene encoding HLA class I antigen. Hum Immunol 1998; 55: 65-69
13. Zamani M, Cassiman JJ. Reevaluation of the importance of polymorphic HLA class II alleles and amino acids in the susceptibility of individuals of different populations to type I diabetes. Am J Med Genet 1998; 76: 183-194
14. Hanifi Moghaddam P, de Knijf P, Roep BO, Van der Auwera B, Naqwaal A, Gorius F, Schuit F, Giphart MJ. Genetic structure of IDDM1: two separate regions in the major histocompatibility complex contribute to susceptibility or protection. Belgian Diabetes Registry. Diabetes 1998; 47: 263-269
15. Rigby AS, MacGregor AJ, Thomson G. HLA haplotype sharing
in rheumatoid arthritis sibships: risk estimates subdivided by proband genotype. Genet Epidemiol 1998; 15: 403-418
15 Azuma T, Ito S, Sato F, Yamazaki Y, Miyaji H, Ito Y, Suto H, Kuriyama M, Kato T, Kohli Y. The role of the HLA-DQA1 gene in resistance to atrophic gastritis and gastric adenocarcinoma induced by Helicobacter pylori infection. Cancer 1998; 82: 1013-1018
16 Zavaglia C, Martinneti M, Silini E, Bottelli R, Daelli C, Asti M, Airoldi A, Salvaneschi L, Monedelli MU, Iode G. Association between HLA class II alleles and protection from or susceptibility to chronic hepatitis C. J Hepatol 1998; 28: 1-7
17 Weisshenker BG, Santrach P, Bissonton AS, McDonnell SK, Schaid D, Moore SB, Rodriguez M. Major histocompatibility complex class II alleles and the course and outcome of MS: a population-based study. Neurology 1998; 51: 742-747
18 Wu MY, Chen MH, Liang YR, Meng GZ, Yang HX, Zhuang CX. Experimental and clinicopathologic study on the relationship between transcription factor Egr-1 and esophageal carcinoma. World J Gastroenterol 2001; 7: 490-495
19 Kawaguchi H, Ohno S, Araki K, Miyazaki M, Saeki H, Watanabe M, Tanaka S, Sugimachi K. p53 polymorphism in human papillomavirus-associated esophageal carcinoma. Cancer Res 2000; 60: 2753-2755
20 Wijnhoven BP, Nollet F, De Both NJ, Tilanus HW, Dinjens WN. Genetic alteration involving exon 3 of the 8-bcatenin gene not play a role in adenocarcinomas of the esophagus. Int J Cancer 2000; 86: 533-537
21 Takubo K, Nakamura K, Sawabe M, Araki T, Esaki Y, Miyashita M, Mafune K, Tanaka Y, Sasajima K. Primary undifferentiated small cell carcinoma of the esophagus. Hum Pathol 1999; 30: 216-221
22 Fong LY, Pegg AE, Magee PN. a-difluoromethylornithine inhibits N-nitrosomethylbenzylamine-induced esophageal carcinogenesis in zinc-deficient rats: effects on esophageal cell proliferation and apoptosis. Cancer Res 1998; 58: 5380-5386
23 Arber N, Gammon MD, Hisbosh B, Britton JA, Zhang Y, Schonberger LA, Priestley JF, Puthoff H, Paul C, Weinstain IB. Overexpression of cyclin D1 occurs in both squamous carcinomas and adenocarcinomas of the esophagus and in adencarcinomas of the stomach. Hum Pathol 1999; 30: 1087-1092
24 Van Lieshout EM, Roelofs HM, Dekker S, Mulder CJ, Wobbes T, Jansen JB, Peters WH. Polymorphic expression of the glutathione S-transferase T1 gene and its susceptibility to Barrett’s esophagus and esophageal carcinoma. Cancer Res 1999; 59: 506-509
25 Zhou Y, Liu G, Shi ST, Yang GY, Zhuang CX. Expression of p53 in esophageal squamous cell carcinoma in patients with esophageal cancer in high-risk northern China. Shijie Huanren Xiaohua Zazhi 1999; 7: 280-284
26 Liu J, Su Q, Zhang W. Relationship between HPV-E6 p53 protein and esophageal squamous cell carcinoma. Shijie Huanren Xin Xiang Zazhi 2000; 6: 494-496
27 Qin HY, Shu Q, Wang D, Ma QF. Study on genetic polymorphisms of DCC gene VNTR in esophageal cancer. Shijie Huanren Xin Xiang Zazhi 2000; 6: 782-785
28 Mori M, Mimori K, Shirashi T, Alder H, Inoue H, Tanaka Y, Sugimachi K, Huebner K, Croce CM. Altered expression of Fhit in carcinoma and precarcinomatous lesion of the esophagus. Cancer Res 2000; 60: 1177-1182
29 Dolan K, Garde J, Walker SJ, Sutton R, Gosney J, Field JK. LOH at the sites of the DCC, APC, and TP53 tumor suppressor genes occurs in Barrett’s metaplasia and dysplasia adjacent to adenocarcinoma of the esophagus. Hum Pathol 1999; 30: 1508-1514
30 Zur Hausen A, Sarbia M, Heep H, Willers R, Gabbett HE, Retinooblomastin-proto (prb) expression and prognosis in squamous-cell carcinomas of the esophagus. Int J Cancer 1999; 84: 618-622
31 Shen ZY, Shen J, Li QS, Chen CY, Chen JY, Zeng Y. Morphological and functional changes of mitochondria in apoptosis esophageal carcinoma cells induced by arsenic trioxide. World J Gastroenterol 2002; 8: 31-35
32 Xu CT, Yan XJ, p53 anti-cancer gene and digestive system carcinoma. Shijie Huanren X xiaohua Zazhi 1999; 7: 77-79
33 Gu HP, Shang PZ, Su H, Li ZG. Association of CD15 antigen expression with cathepsin D in esophageal carcinoma tissues. Shijie Huanren X Xiaohua Zazhi 2000; 8: 259-261
Itakura M, Tamura K. Plant polysaccharide PSK: cytostatic effects on growth and invasion; modulating effect on the expression of HLA and adhesion molecules on human gastric and colonic tumor cell surface. Anticancer Res 2003; 21: 1007-1013

Kim C, Matsumura M, Saio K, Ohno T. In vitro induction of HLA-A2402-restricted and carcinoembryonic antigen-specific cytotoxic T lymphocytes on fixed autologous peripheral blood cells. Cancer Immunol Immunother 1998; 47: 90-96

Savoie CJ, Kamikawaji N, Sudo T, Furuse M, Shirasawa S, Tanaka T, Saezuki T. MHC class I bound peptides of a colon carcinoma cell line a Ki-ras gene-targeted progeny cell line and a B cell line. Cancer Lett 1998; 123: 193-197

Tanaka H, Tsuoda T, Nukaya I, Sette A, Matsuda K, Umano Y, Yamaue H, Takesako K, Tanimura H. Mapping the HLA-A24-restricted T-cell epitope peptide from a tumour-associated antigen HER2/neu: possible immunotherapy for colorectal carcinomas. Br J Cancer 2001; 84: 94-99

Wang RF, Johnston SL, Zeng G, Topalian SL, Schwartzentruber DJ, Rosenberg SA. A breast and melanoma-shared tumor antigen: T cell response to antigenic peptides translated from different open reading frames. J Immunol 1998; 161: 3598-3606

Nagorsen D, Keliholz U, Rivoltini L, Schmittel A, Letsch A, Asemissen AM, Berger G, Buhr HJ, Thiel E, Scheibenbogen C. Natural T-cell response against MHC class I epitopes of epithelial cell adhesion molecule, her-2/neu, and carcinoembryonic antigen in patients with colorectal cancer. Cancer Res 2000; 60: 4850-4854

Sato N, Nabeto Y, Kondo H, Sahara H, Hirohashi Y, Kashiwagi K, Kanaseki T, Sato Y, Rong S, Hirai I, Kamiguchi K, Tamura Y, Matsuru A, Takahashi S, Torigoe T, Ikeda H. Human CD8 and CD4 T cell epitopes of epithelial cancer antigens. Cancer Chemother Pharmacol 2000; 46 (Suppl): 586-90

Nabeta Y, Sahara H, Suzuki K, Kondo H, Nagata M, Hirohashi Y, Sato Y, Wada Y, Sato T, Wada T, Yamashita T, Kikuchi K, Sato N. Induction of cytotoxic T lymphocytes from peripheral blood of human histocompatibility antigen (HLA)-A31(+) gastric cancer patients by in vitro stimulation with antigenic peptide of signet ring cell carcinoma. Jpn J Cancer Res 2000; 91: 616-621

Schirle M, Keliholz W, Weber B, Gouttefangeas C, Dumrese T, Becker HD, Stevanovic S, Rammensee HG. Identification of tumor-associated MHC class I ligands by a novel T cell-independent approach. Eur J Immunol 2000; 30: 2216-2225

Novellino PS, Trejo YG, Beviaquca M, Bordenave RH, Rumi LS. Regulation of HLA-DR antigen in monocytes from colorectal cancer patients by in vitro treatment with human recombinant interferon-gamma. J Invest Allergol Clin Immunol 2000; 10: 90-93

Novellino PS, Trejo YG, Beviaquca M, Bordenave RH, Rumi LS. Cisplatin containing chemotheraphy influences HLA-DR expression on monocytes from cancer patients. J Exp Clin Cancer Res 1999; 18: 481-484

Edited by Ma JY