Dark Matter Production from Goldstone Boson Interactions and Implications for Direct Searches and Dark Radiation

Camilo A. Garcia Cely
Technische Universität München

Université Libre de Bruxelles
30 Oct 2013

Based on arXiv:1310.6256 in collaboration with Alejandro Ibarra and Emiliano Molinaro
Outline

• Motivation
• Description of the Model
• Dark Matter Production
• Constraints from Direct Detection Experiments
• Goldstone Bosons as Dark Radiation
• Conclusions
Motivation
• Numerous observations support the hypothesis that the 85% of the matter content of the Universe is in the form of a new particle.
Numerous observations support the hypothesis that the 85% of the matter content of the Universe is in the form of a new particle.

\textit{Dark} \quad \textit{Stable}
• Numerous observations support the hypothesis that the 85% of the matter content of the Universe is in the form of a new particle.

\[\text{Dark} \quad \text{Stable} \quad \overset{\rightarrow}{\text{Z}_2 \text{ Symmetry?}} \]
• Numerous observations support the hypothesis that the 85% of the matter content of the Universe is in the form of a new particle.

\[\text{Dark} \quad \text{Stable} \quad \leftarrow Z_2 \text{ Symmetry?} \]

• If a global $U(1)$ symmetry is spontaneously broken by a scalar field with charge 2 under that symmetry, a discrete Z_2 symmetry automatically arises in the Lagrangian.

\[
\begin{align*}
U(1) & \longrightarrow Z_2 \\
\text{Odd Charge} & \quad -1 \\
\text{Even Charge} & \quad +1
\end{align*}
\]

Krauss and Wilczek 1989
• Numerous observations support the hypothesis that the 85% of the matter content of the Universe is in the form of a new particle.

\[\text{Dark} \quad \text{Stable} \quad \leftarrow \quad Z_2 \quad \text{Symmetry?} \]

• If a global $U(1)$ symmetry is spontaneously broken by a scalar field with charge 2 under that symmetry, a discrete Z_2 symmetry automatically arises in the Lagrangian.

\[U(1) \quad \longrightarrow \quad Z_2 \]

| Odd Charge | -1 |
| Even Charge | +1 |

Krauss and Wilczek 1989

• The spontaneous breaking of a global continuous symmetry, as is well known, gives rise to massless Goldstone bosons in the spectrum.
• Numerous observations support the hypothesis that the 85% of the matter content of the Universe is in the form of a new particle.

\[\text{Dark} \quad \text{Stable} \quad \leftarrow \quad Z_2 \text{ Symmetry?} \]

• If a global $U(1)$ symmetry is spontaneously broken by a scalar field with charge 2 under that symmetry, a discrete Z_2 symmetry automatically arises in the Lagrangian.

\[U(1) \quad \longrightarrow \quad Z_2 \]

\begin{align*}
\text{Odd Charge} & \quad -1 \\
\text{Even Change} & \quad +1
\end{align*}

– Krauss and Wilczek 1989

• The spontaneous breaking of a global continuous symmetry, as is well known, gives rise to massless Goldstone bosons in the spectrum.

• Could these Goldstone bosons be Dark Radiation? Weinberg 2013
What is Dark Radiation?

Radiation Density of the Universe

$$\rho_R = \frac{\pi^2}{30} \left(2 \cdot (T_\gamma^0)^4 + 2 \cdot \frac{7}{8} \cdot N_\nu (T_\nu^0)^4 + (T_\eta^0)^4 \right)$$
What is Dark Radiation?

Radiation Density of the Universe

\[\rho_R = \frac{\pi^2}{30} \left(2 \cdot (T_\gamma^0)^4 + 2 \cdot \frac{7}{8} \cdot N_\nu (T_\nu^0)^4 + (T_\eta^0)^4 \right) \]

Two polarization states
What is Dark Radiation?

Radiation Density of the Universe

\[\rho_R = \frac{\pi^2}{30} \left(2 \cdot (T^0_{\gamma})^4 + 2 \cdot \frac{7}{8} \cdot N_\nu (T^0_\nu)^4 + (T^0_\eta)^4 \right) \]
What is Dark Radiation?

Radiation Density of the Universe

\[\rho_R = \frac{\pi^2}{30} \left(2 \cdot (T_\gamma^0)^4 + 2 \cdot \frac{7}{8} \cdot N_\nu (T_\nu^0)^4 + (T_\eta^0)^4 \right) \]

Number of neutrinos.
In our case \(N_\nu = 3 \)

Two polarization states

Fermi-Dirac distribution
What is Dark Radiation?

Radiation Density of the Universe

\[\rho_R = \frac{\pi^2}{30} \left(2 \cdot (T_\gamma^0)^4 + 2 \cdot \frac{7}{8} \cdot N_\nu (T_\nu^0)^4 + (T_\eta^0)^4 \right) \]

- Two polarization states
- Fermi-Dirac distribution
- Number of neutrinos. In our case \(N_\nu = 3 \)
- Dark Radiation?
What is Dark Radiation?

Radiation Density of the Universe

\[\rho_R = \frac{\pi^2}{30} \left(2 \cdot \left(T_\gamma^0 \right)^4 + 2 \cdot \frac{7}{8} \cdot N_\nu \left(T_\nu^0 \right)^4 + \left(T_\eta^0 \right)^4 \right) \]

Two polarization states

Fermi-Dirac distribution

Number of neutrinos. In our case \(N_\nu = 3 \)

Dark Radiation?

\[\rho_R = \frac{\pi^2}{30} \left(2 \cdot \left(T_\gamma^0 \right)^4 + 2 \cdot \frac{7}{8} \cdot N_{eff} \left(T_\nu^0 \right)^4 \right) \]

\[N_{eff} = 3 + \frac{4}{7} \left(\frac{T_\eta^0}{T_\nu^0} \right)^4 \]
P/P_{max} vs N_{eff}

- Planck + WP + highL
- +BAO
- $+H_0$
- $+\text{BAO} + H_0$

Planck Collaboration 2013
What happens if the Goldstones decouple before muon annihilation?

\[\gamma e^\pm \mu^\pm \nu \bar{\nu} \eta \]
What happens if the Goldstones decouple before muon annihilation?

\[
\gamma e^\pm \mu^\pm \nu \bar{\nu} \eta \quad \gamma e^\pm \mu^\pm \nu \bar{\nu} \\
T^d_\eta \quad \eta
\]
What happens if the Goldstones decouple before muon annihilation?

\[\gamma e^\pm \mu^\pm \nu \bar{\nu} \eta \quad \gamma e^\pm \mu^\pm \nu \bar{\nu} \quad \gamma e^\pm \nu \bar{\nu} \]

\[T^d_\eta \]

\[\mu^\pm \text{annihilation} \]

\[\eta \]
What happens if the Goldstones decouple before muon annihilation?
What happens if the Goldstones decouple before muon annihilation?
What happens if the Goldstones decouple before muon annihilation?

Entropy conservation per unit of comoving volume

\[s \propto g_* T^3 \]
What happens if the Goldstones decouple before muon annihilation?

Entropy conservation per unit of comoving volume

\[s \propto g_* T^3 \]
What happens if the Goldstones decouple before muon annihilation?

\[g_* = 2 + \frac{7}{8} (2 + 2) = \frac{11}{2} \]

\[g_* = 2 \]

\[\gamma e^\pm \mu^\pm \nu \bar{\nu} \eta \quad \gamma e^\pm \mu^\pm \nu \bar{\nu} \quad \gamma e^\pm \nu \bar{\nu} \quad \gamma e^\pm \gamma \]

\[T^d_{\eta} \quad \mu^\pm \text{annihilation} \quad T^d_{\nu} \quad \nu \bar{\nu} \quad e^\pm \text{annihilation} \]

Entropy conservation per unit of comoving volume

\[s \propto g_* T^3 \]
What happens if the Goldstones decouple before muon annihilation?

\[g_* = 2 + \frac{7}{8} (2 + 2) = \frac{11}{2} \]

\[g_* = 2 \]

\[\gamma e^\pm \mu^\pm \nu \bar{\nu} \eta \]

\[\gamma e^\pm \mu^\pm \nu \bar{\nu} \]

\[\gamma e^\pm \nu \bar{\nu} \]

\[\gamma e^\pm \]

\[\gamma \]

\[T^d_\eta \]

\[\mu^\pm \text{annihilation} \]

\[T^d_\nu \]

\[\nu \bar{\nu} \]

\[e^\pm \text{annihilation} \]

\[\frac{T^0_\nu}{T^0_\gamma} = \left(\frac{g^\text{after}_*}{g^\text{before}_*} \right)^{1/3} = \left(\frac{4}{11} \right)^{1/3} \]

Entropy conservation per unit of comoving volume

\[s \propto g_* T^3 \]
What happens if the Goldstones decouple before muon annihilation?

\[
\begin{align*}
\gamma e^\pm \mu^\pm \nu \bar{\nu} \eta & \quad \gamma e^\pm \mu^\pm \nu \bar{\nu} \quad \gamma e^\pm \nu \bar{\nu} \\
\mu^\pm \text{annihilation} & \quad T^d_{\eta} \\
\text{Entropy conservation per} & \quad T^d_{\nu} \\
\text{unit of comoving volume} & \quad \nu \bar{\nu} \\
\end{align*}
\]

\[
\frac{T^0_{\nu}}{T^0_{\gamma}} = \left(\frac{g^\text{after}_*}{g^\text{before}_*} \right)^{1/3} = \left(\frac{4}{11} \right)^{1/3}
\]

\[
T^0_{\nu} = 1.945 \text{ } K
\]

\[
s \propto g_* T^3
\]
What happens if the Goldstones decouple before muon annihilation?

\[g_* = 2 + \frac{7}{8}(2 + 2 + 2 + 2 + 3(1 + 1)) = \frac{57}{4} \]

\[\gamma e^\pm \mu^\pm \nu \bar{\nu} \eta \quad \gamma e^\pm \mu^\pm \nu \bar{\nu} \quad \gamma e^\pm \nu \bar{\nu} \quad \gamma e^\pm \gamma \]

\[T_\eta^d \quad \mu^\pm \text{annihilation} \quad T_\nu^d \quad \nu \bar{\nu} \quad e^\pm \text{annihilation} \]

Entropy conservation per unit of comoving volume

\[s \propto g_* T^3 \]

\[\frac{T_\nu^0}{T_\gamma^0} = \left(\frac{g_*^{\text{after}}}{g_*^{\text{before}}}\right)^{1/3} = \left(\frac{4}{11}\right)^{1/3} \]

\[T_\nu^0 = 1.945 \text{ K} \]
What happens if the Goldstones decouple before muon annihilation?

\[g_* = 2 + \frac{7}{8} (2 + 2 + 2 + 3(1 + 1)) = \frac{57}{4} \]

\[g_* = 2 + \frac{7}{8} (2 + 2 + 3(1 + 1)) = \frac{43}{4} \]

\[\gamma e^\pm \mu^\pm \nu \bar{\nu} \eta \quad \gamma e^\pm \mu^\pm \nu \bar{\nu} \quad \gamma e^\pm \nu \bar{\nu} \quad \gamma e^\pm \gamma \]

\[T^d_\eta \]

\[\mu^\pm \text{annihilation} \quad T^d_\nu \]

\[\eta \quad \nu \bar{\nu} \quad e^\pm \text{annihilation} \]

\[\frac{T^0_\nu}{T^0_\gamma} = \left(\frac{g^\text{after}_*}{g^\text{before}_*} \right)^{1/3} = \left(\frac{4}{11} \right)^{1/3} \]

Entropy conservation per unit of comoving volume

\[s \propto g_* T^3 \]

\[T^0_\nu = 1.945 \, K \]
What happens if the Goldstones decouple before muon annihilation?

\[g_\ast = 2 + \frac{7}{8} (2 + 2 + 2 + 2 + 3(1 + 1)) = \frac{57}{4} \]

\[g_\ast = 2 + \frac{7}{8} (2 + 2 + 3(1 + 1)) = \frac{43}{4} \]

\[\gamma e^\pm \mu^\pm \nu \bar{\nu} \eta \]

\[\gamma e^\pm \mu^\pm \nu \bar{\nu} \]

\[\gamma e^\pm \nu \bar{\nu} \]

\[\gamma e^\pm \gamma \]

\[T^d_\eta \]

\[\mu^\pm \text{annihilation} \]

\[T^d_\nu \]

\[\nu \bar{\nu} \]

\[e^\pm \text{annihilation} \]

Entropy conservation per unit of comoving volume

\[s \propto g_\ast T^3 \]

\[T^0_\nu = 1.945 \, K \]

\[\left(\frac{T_\eta}{T_\nu} \right)_{T^d_\nu} = \left(\frac{g_\ast \text{after}}{g_\ast \text{before}} \right)^{1/3} = \left(\frac{43}{57} \right)^{1/3} \]

\[\left(\frac{T_\eta}{T_\nu} \right) = \left(\frac{4}{11} \right)^{1/3} \]
What happens if the Goldstones decouple before muon annihilation?

\[g_* = 2 + \frac{7}{8} (2 + 2 + 2 + 2 + 3(1 + 1)) = \frac{57}{4} \]

\[g_* = 2 + \frac{7}{8} (2 + 2 + 3(1 + 1)) = \frac{43}{4} \]

\[\gamma e^\pm \mu^\pm \nu \bar{\nu} \eta \quad \gamma e^\pm \mu^\pm \nu \bar{\nu} \quad \gamma e^\pm \nu \bar{\nu} \quad \gamma e^\pm \gamma \]

\[T^d_\eta \quad \mu^\pm \text{annihilation} \quad T^d_\nu \quad \nu \bar{\nu} \quad e^\pm \text{annihilation} \]

Entropy conservation per unit of comoving volume

\[s \propto g_* T^3 \]

\[\frac{T_\nu^0}{T_\gamma^0} = \left(\frac{g^\text{after}_*}{g^\text{before}_*} \right)^{1/3} = \left(\frac{4}{11} \right)^{1/3} \]

\[T_\nu^0 = 1.945 \, K \]

\[\frac{T_\eta^0}{T_\nu^0} = \left(\frac{T_\eta}{T_\nu} \right) T^d_\nu = \left(\frac{g^\text{after}_*}{g^\text{before}_*} \right)^{1/3} = \left(\frac{43}{57} \right)^{1/3} \]
What happens if the Goldstones decouple before muon annihilation?

\[\gamma e^\pm \mu^\pm \nu \bar{\nu} \eta \quad \gamma e^\pm \mu^\pm \nu \bar{\nu} \quad \gamma e^\pm \nu \bar{\nu} \quad \gamma e^\pm \gamma \]

\[T_d^d \quad \mu^\pm \text{annihilation} \quad T_d^d \quad \nu \bar{\nu} \quad e^\pm \text{annihilation} \]

Entropy conservation per unit of comoving volume

\[s \propto g_* T^3 \]

\[\frac{T^0_\nu}{T^0_\gamma} = \left(\frac{g^\text{after}_*}{g^\text{before}_*} \right)^{1/3} = \left(\frac{4}{11} \right)^{1/3} \]

\[T^0_\nu = 1.945 \, K \]

\[\frac{T^0_\eta}{T^0_\nu} = \left(\frac{T_\eta}{T_\nu} \right)_{T^d_\nu} = \left(\frac{g^\text{after}_*}{g^\text{before}_*} \right)^{1/3} = \left(\frac{43}{57} \right)^{1/3} \]

\[T^0_\eta = 1.771 \, K \]

\[N_{\text{eff}} - 3 = \frac{4}{7} \left(\frac{43}{57} \right)^{4/3} \approx 0.39 \]

Weinberg 2013
Planck, + WP, + high L, + BAO, + H_0, + BAO + H_0.
$N_{eff} = 3.39$
Description of the Model
Description of the Model

Field	$SU(3)$	$SU(2)$	$U(1)_Y$	$U(1)_{DM}$
ϕ	1	1	0	2
ψ	1	1	0	1
H	1	2	$\frac{1}{2}$	0
Description of the Model

Field	$SU(3)$	$SU(2)$	$U(1)_Y$	$U(1)_{DM}$
ϕ	1	1	0	2
ψ	1	1	0	1
H	1	2	$\frac{1}{2}$	0

\[
\mathcal{L} = (D_\mu H)\dagger (D^\mu H) + \mu_H^2 H\dagger H - \lambda_H (H\dagger H)^2 \\
+ \partial_\mu \phi^* \partial^\mu \phi + \mu_\phi \phi^* \phi - \lambda_\phi (\phi^* \phi)^2 - \kappa (H\dagger H) (\phi^* \phi) + \mathcal{L}_{DM}
\]
Description of the Model

Field	$SU(3)$	$SU(2)$	$U(1)_Y$	$U(1)_{DM}$
ϕ	1	1	0	2
ψ	1	1	0	1
H	1	2	$\frac{1}{2}$	0

\[\mathcal{L} = (D_\mu H)\dagger (D^\mu H) + \mu^2_H H\dagger H - \lambda_H (H\dagger H)^2 \]
\[+ \partial_\mu \phi^* \partial^\mu \phi + \mu_\phi^2 \phi^* \phi - \lambda_\phi (\phi^* \phi)^2 - \kappa (H\dagger H) (\phi^* \phi) + \mathcal{L}_{DM} \]

\[\mathcal{L}_{DM} = i\bar{\psi} \gamma^\mu \partial_\mu \psi - M\bar{\psi} \psi - \left(\frac{f}{\sqrt{2}} \phi \bar{\psi} \psi^c + \text{h.c.} \right) \]

Weinberg 2013
After symmetry breaking in the scalar sector

\[
H = \left(\begin{array}{c} G^+ \\ \frac{v_H + \tilde{h} + iG^0}{\sqrt{2}} \end{array} \right), \\
v_H \simeq 246 \text{ GeV}
\]

\[
\phi = \frac{v_\phi + \tilde{\rho} + i\eta}{\sqrt{2}}
\]
After symmetry breaking in the scalar sector

\[H = \begin{pmatrix} \frac{G^+}{\sqrt{2}} \\ \frac{v_H + \tilde{h} + iG^0}{\sqrt{2}} \end{pmatrix}, \quad \phi = \frac{v_\phi + \tilde{\rho} + i\eta}{\sqrt{2}} \]

\[v_H \simeq 246 \text{ GeV} \]

\[
\begin{pmatrix} \tilde{h} \\ \tilde{\rho} \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} h \\ \rho \end{pmatrix}
\]

\[m_h^2 = 2 \lambda_H v_H^2 \cos^2 \theta + 2 \lambda_\phi v_\phi^2 \sin^2 \theta - \kappa v_H v_\phi \sin 2\theta \]

\[m_\rho^2 = 2 \lambda_H v_H^2 \sin^2 \theta + 2 \lambda_\phi v_\phi^2 \cos^2 \theta + \kappa v_H v_\phi \sin 2\theta \]
After symmetry breaking in the scalar sector

\[H = \left(\begin{array}{c} G^+ \\ \frac{v_H + \tilde{h} + iG^0}{\sqrt{2}} \end{array} \right), \quad \phi = \frac{v_\phi + \tilde{\rho} + i\eta}{\sqrt{2}} \]

\[v_H \simeq 246 \text{ GeV} \]

\[\begin{pmatrix} \tilde{h} \\ \tilde{\rho} \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} h \\ \rho \end{pmatrix} \]

\[m_h^2 = 2 \lambda_H v_H^2 \cos^2 \theta + 2 \lambda_\phi v_\phi^2 \sin^2 \theta - \kappa v_H v_\phi \sin 2\theta \]

\[m_\rho^2 = 2 \lambda_H v_H^2 \sin^2 \theta + 2 \lambda_\phi v_\phi^2 \cos^2 \theta + \kappa v_H v_\phi \sin 2\theta \]

Brout-Englert-Higgs Boson \(m_h = 125 \text{ GeV} \)
After symmetry breaking in the scalar sector

\[H = \left(\frac{G^+}{\sqrt{2}} \right) \]

\[v_H \simeq 246 \text{ GeV} \]

\[
\begin{pmatrix}
\tilde{h} \\
\tilde{\rho}
\end{pmatrix} =
\begin{pmatrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{pmatrix}
\begin{pmatrix}
h \\
\rho
\end{pmatrix}
\]

\[
m_h^2 = 2 \lambda_H v_H^2 \cos^2 \theta + 2 \lambda_\phi v_\phi^2 \sin^2 \theta - \kappa v_H v_\phi \sin 2\theta
\]

\[
m_\rho^2 = 2 \lambda_H v_H^2 \sin^2 \theta + 2 \lambda_\phi v_\phi^2 \cos^2 \theta + \kappa v_H v_\phi \sin 2\theta
\]

Brout-Englert-Higgs Boson \(m_h = 125 \text{ GeV} \)

The field \(\eta \) corresponds to the Goldstone boson that arises from the spontaneous breaking of the global \(U(1)_{DM} \) symmetry.
After symmetry breaking in the fermionic sector

$$\psi_+ = \frac{\psi + \psi^c}{\sqrt{2}}, \quad \psi_- = \frac{\psi - \psi^c}{\sqrt{2i}}$$

$$\mathcal{L} = \frac{1}{2} \left(i\bar{\psi}_+ \gamma^\mu \partial_\mu \psi_+ + i\bar{\psi}_- \gamma^\mu \partial_\mu \psi_- - M_+ \bar{\psi}_+ \psi_+ - M_- \bar{\psi}_- \psi_- \right)$$

$$- \frac{f}{2} \left((-\sin \theta \, h + \cos \theta \, \rho)(\bar{\psi}_+ \psi_+ - \bar{\psi}_- \psi_-) + \eta (\bar{\psi}_+ \psi_- + \bar{\psi}_- \psi_+) \right)$$

$$M_\pm = |M \pm f \nu_\phi|$$
After symmetry breaking in the fermionic sector

\[\psi_+ = \frac{\psi + \psi^c}{\sqrt{2}}, \quad \psi_- = \frac{\psi - \psi^c}{\sqrt{2i}} \]

\[\mathcal{L} = \frac{1}{2} \left(i \bar{\psi_+} \gamma^\mu \partial_\mu \psi_+ + i \bar{\psi_-} \gamma^\mu \partial_\mu \psi_- - M_+ \bar{\psi_+} \psi_+ - M_- \bar{\psi_-} \psi_- \right) \]

\[- \frac{f}{2} \left((- \sin \theta \ h + \cos \theta \ \rho)(\bar{\psi_+} \psi_+ - \bar{\psi_-} \psi_-) + \eta \ (\bar{\psi_+} \psi_- + \bar{\psi_-} \psi_+) \right) \]

\[M_\pm = |M \pm f \nu_\phi| \]

Invariance under the \(Z_2 \) transformation \(\psi_\pm \rightarrow -\psi_\pm \)
After symmetry breaking in the fermionic sector

\[\psi_+ = \frac{\psi + \psi^c}{\sqrt{2}} , \quad \psi_- = \frac{\psi - \psi^c}{\sqrt{2i}} \]

\[\mathcal{L} = \frac{1}{2} \left(i \bar{\psi}_+ \gamma^\mu \partial_\mu \psi_+ + i \bar{\psi}_- \gamma^\mu \partial_\mu \psi_- - M_+ \bar{\psi}_+ \psi_+ - M_- \bar{\psi}_- \psi_- \right) \]

\[- \frac{f}{2} \left((- \sin \theta \, h + \cos \theta \, \rho) (\bar{\psi}_+ \psi_+ - \bar{\psi}_- \psi_-) + \eta (\bar{\psi}_+ \psi_- + \bar{\psi}_- \psi_+) \right) \]

\[M_\pm = |M \pm f \nu_\phi| \]

Invariance under the \(Z_2 \) transformation \(\psi_\pm \to -\psi_\pm \)

The lightest Majorana fermion is stable and, consequently, a dark matter candidate
Constraints from Invisible Higgs Decays

\[\Gamma_{h}^{\text{tot}} = \cos^2 \theta \Gamma_{h}^{\text{SM}} + \Gamma (h \rightarrow \eta \eta) \]
Constraints from Invisible Higgs Decays

\[\Gamma_{h}^{\text{tot}} = \cos^2 \theta \, \Gamma_{h}^{\text{SM}} + \Gamma (h \rightarrow \eta \eta) \]

\[B_{\text{inv}} \approx 20\% \quad \Gamma_{h}^{\text{SM}} \approx 4 \text{ MeV} \]
Constraints from Invisible Higgs Decays

\[\Gamma_{h}^{\text{tot}} = \cos^2 \theta \Gamma_h^{\text{SM}} + \Gamma (h \rightarrow \eta \eta) \]

\[B_{\text{inv}} \simeq 20\% \quad \Gamma_h^{\text{SM}} \simeq 4 \text{ MeV} \]

\[|\tan \theta| \lesssim 2.2 \times 10^{-3} \left(\frac{v_\phi}{10 \text{ GeV}} \right) \]

Weinberg 2013
Dark Matter Production
Contribution from the different channels

\[m_\rho = 500 \text{ MeV} \]
Contribution from the different channels

$m_\rho = 250$ GeV

micrOMEGAs 3.1
Dark Matter Coupling

![Graph showing the relationship between f and M_π (GeV)].
Process

Process	Diagram
Annihilation $\psi_+ \psi_- \rightarrow \rho \rho$![Diagram](image)
Annihilation $\psi_- \psi_- \rightarrow \eta \eta$![Diagram](image)
Annihilation $\psi_- \psi_+ \rightarrow \rho \rho$![Diagram](image)
Annihilation $\psi_+ \psi_+ \rightarrow \eta \eta$![Diagram](image)
Coannihilation $\psi_- \psi_+ \rightarrow \rho \eta$![Diagram](image)

Case $\theta \ll 1$
Case $\theta \ll 1$

Process	Diagram	Condition
Annihilation $\psi_-\psi_- \rightarrow \rho\rho$![Diagram](image1)	Open if $m_{\rho} < M_-$ or equivalently if $r < 1$
Annihilation $\psi_-\psi_- \rightarrow \eta\eta$![Diagram](image2)	
Annihilation $\psi_+\psi_+ \rightarrow \rho\rho$![Diagram](image3)	Open if $m_{\rho} < M_+$ or equivalently if $r < z$
Annihilation $\psi_+\psi_+ \rightarrow \eta\eta$![Diagram](image4)	
Coannihilation $\psi_-\psi_+ \rightarrow \rho\eta$![Diagram](image5)	Open if $m_\rho < (M_- + M_+)$ or equivalently if $r < 1 + z$

\[r = \frac{m_{\rho}}{M_-} \quad z = \frac{M_+}{M_-} \]
Threshold Effects

Resonances

\[
r = \frac{m_{\rho}}{M_-} \quad z = \frac{M_+}{M_-}
\]

Process	Condition
Annihilation $\psi_-\psi_- \rightarrow \rho\rho$	Open if $m_{\rho} < M_-$ or equivalently if $r < 1$
Annihilation $\psi_-\psi_- \rightarrow \eta\eta$	Always open, resonantly enhanced $r \gtrsim 2$
Annihilation $\psi_+\psi_+ \rightarrow \rho\rho$	Open if $m_{\rho} < M_+$ or equivalently if $r < z$
Annihilation $\psi_+\psi_+ \rightarrow \eta\eta$	Always open, resonantly enhanced $r \gtrsim 2z$
Coannihilation $\psi_-\psi_+ \rightarrow \rho\eta$	Open if $m_{\rho} < (M_- + M_+)$ or equivalently if $r < 1 + z$
Case $\theta \ll 1$

Threshold Effects

Resonances

$$r = \frac{m_\rho}{M_-} \quad z = \frac{M_+}{M_-}$$

We can avoid this for $r \lesssim 0.8$

Process	Description
Annihilation $\psi^- \psi^- \rightarrow \rho \rho$	Open if $m_\rho < M_-$ or equivalently if $r < 1$
![Diagram](image1)	
Annihilation $\psi^- \psi^- \rightarrow \eta \eta$	Always open, resonantly enhanced $r \gtrsim 2$
![Diagram](image2)	
Annihilation $\psi^+ \psi^+ \rightarrow \rho \rho$	Open if $m_\rho < M_+$ or equivalently if $r < z$
![Diagram](image3)	
Annihilation $\psi^+ \psi^+ \rightarrow \eta \eta$	Always open, resonantly enhanced $r \gtrsim 2z$
![Diagram](image4)	
Coannihilation $\psi^- \psi^+ \rightarrow \rho \eta$	Open if $m_\rho < (M_- + M_+)$ or equivalently if $r < 1 + z$
![Diagram](image5)	
Case $\theta \ll 1$

Process	Condition
Annihilation $\psi_- \psi_- \rightarrow \rho \rho$	$m_\rho < M_-$ or equivalently if $r < 1$
Annihilation $\psi_- \psi_- \rightarrow \eta \eta$	Always open, resonantly enhanced $r \gtrsim 2$
Annihilation $\psi_+ \psi_+ \rightarrow \rho \rho$	Open if $m_\rho < M_+$ or equivalently if $r < z$
Annihilation $\psi_+ \psi_+ \rightarrow \eta \eta$	Always open, resonantly enhanced $r \gtrsim 2z$
Coannihilation $\psi_- \psi_+ \rightarrow \rho \eta$	Open if $m_\rho < (M_- + M_+)$ or equivalently if $r < 1 + z$

- **p-waves**
- **s-wave**
Regime $r < 0.8$
Resonance effects

Regime $r < 0.8$
Resonance effects
Co-annihilation limit

Regime \(r < 0.8 \)

Annihilations proceed via p-waves → Large \(f \)
Co-annihilations proceed via s-waves → Small \(f \)

\[
f \bigg|_{z \to 1} \approx \left(\frac{1.07 \times 10^{11} \text{ GeV}^{-1} x_f}{g_*(x_f)^{1/2} m_{\text{Pl}} \Omega_{\text{DM}} h^2} \right)^{1/4} M_-^{1/2}
\]
CP Analysis of Annihilations

\[\psi_+ \psi_+ \rightarrow \rho \rho \text{ and } \psi_- \psi_- \rightarrow \eta \eta \]
CP Analysis of Annihilations

\[\psi^- \psi^- \rightarrow \rho \rho \text{ and } \psi^- \psi^- \rightarrow \eta \eta \]

Initial State

\[CP \quad (-1)^{L+1} \]
CP Analysis of Annihilations

\[\psi_+ \psi_+ \rightarrow \rho \rho \text{ and } \psi_- \psi_- \rightarrow \eta \eta \]

Initial State Final State

\[CP \quad (-1)^{L+1} \quad (-1)^{L_f} = (-1)^J \]
CP Analysis of Annihilations

\[\psi_- \psi_- \rightarrow \rho \rho \text{ and } \psi_- \psi_- \rightarrow \eta \eta \]

Initial State \hspace{1cm} Final State

\[CP \quad (-1)^{L+1} \quad (-1)^{L_f} = (-1)^J \]

\[|J - L| = 1, 3, 5... \]
CP Analysis of Annihilations

\[\psi_- \psi_- \rightarrow \rho \rho \text{ and } \psi_- \psi_- \rightarrow \eta \eta \]

Initial State \hspace{1cm} Final State

\[CP \quad (-1)^{L+1} \quad (-1)^{L_f} = (-1)^J \]

\[|J - L| = 1, 3, 5... \]

If \(L = 0 \) then \(S = J = 1 \). Symmetric initial state!!!
CP Analysis of Annihilations

\[\psi_- \psi_- \rightarrow \rho \rho \text{ and } \psi_- \psi_- \rightarrow \eta \eta \]

Initial State \quad Final State

\[CP \quad (-1)^{L+1} \quad (-1)^{L_f} = (-1)^J \]

\[|J - L| = 1, 3, 5... \]

If \(L = 0 \) then \(S = J = 1 \). Symmetric initial state!!!
CP Analysis of Annihilations

\[\psi_+ \psi_- \rightarrow \rho \rho \text{ and } \psi_+ \psi_- \rightarrow \eta \eta \]

Initial State | Final State

\[CP \quad (-1)^{L+1} \quad (-1)^{L_f} = (-1)^J \]

\[|J - L| = 1, 3, 5... \]

If \(L = 0 \) then \(S = J = 1 \). Symmetric initial state!!!

\[L > 0 \]
CP Analysis of Co-annihilations

\[\psi_- \psi_+ \rightarrow \eta \rho \]
CP Analysis of Co-annihilations

\[\psi_- \psi_+ \rightarrow \eta \rho \]

Initial State

\[CP \quad (-1)^L \]
CP Analysis of Co-annihilations

\[\psi_- \psi_+ \rightarrow \eta \rho \]

Initial State Final State

\[CP \quad (-1)^L \quad (-1)^{L_f+1} = (-1)^{J+1} \]
CP Analysis of Co-annihilations

\[\psi_- \psi_+ \rightarrow \eta \rho \]

Initial State \hspace{1cm} Final State

\[CP \hspace{1cm} (-1)^L \hspace{1cm} (-1)^{L_f+1} = (-1)^{J+1} \]

\[|J - L| = 1, 3, 5... \]
CP Analysis of Co-annihilations

\[\psi_- \psi_+ \rightarrow \eta \rho \]

Initial State \hspace{1cm} **Final State**

CP \hspace{1cm} \((-1)^L\) \hspace{1cm} \((-1)^{L_f+1} = (-1)^{J+1}\)

\[|J - L| = 1, 3, 5... \]

If \(L = 0 \) then \(J = S = 1 \). No problem! s-waves are possible
Constraints from Direct Detection Experiments
Constraints from Direct Detection Experiments

Relevant Feynman diagrams for dark matter direct detection experiments.

\[
\sigma_{\psi_- N} = C^2 \frac{m_N^4 M_-^2}{4\pi v_H^2 (M_- + m_N)^2} \left(\frac{1}{m_h^2} - \frac{1}{m_\rho^2} \right)^2 (f \sin 2\theta)^2
\]
Constraints from Direct Detection Experiments

Relevant Feynman diagrams for dark matter direct detection experiments.

\[
\sigma_{\psi^- N} = C'^2 \frac{m_N^4 M_-^2}{4\pi v_H^2 (M_- + m_N)^2} \left(\frac{1}{m_h^2} - \frac{1}{m_\rho^2} \right)^2 (f \sin 2\theta)^2
\]
XENON100 limits
XENON100 limits

Using the co-annihilation limit!
Goldstone Bosons as Dark Radiation
Analysis of the decoupling of the Goldstone Bosons
The decoupling takes place when

\[\frac{n_{\eta}^{eq} \sum_f \langle \sigma v \rangle_{\eta \rightarrow f \bar{f}}}{H} \bigg|_{T=T_{\eta}^d} = 1 \]
Analysis of the decoupling of the Goldstone Bosons

\[\frac{\text{i}m^2_h}{2v_\phi} \sin \theta \quad \eta \quad \rightarrow \quad h \quad \rightarrow \quad f \quad \bar{f} \quad - \quad \frac{\text{i}m_f}{v_H} \cos \theta \]

\[- \quad \frac{\text{i}m^2_\rho}{2v_\phi} \cos \theta \quad \eta \quad \rightarrow \quad \rho \quad \rightarrow \quad f \quad \bar{f} \quad - \quad \frac{\text{i}m_f}{v_H} \sin \theta \]

The decoupling takes place when

\[\eta^e_q \sum_f \langle \sigma v \rangle_{\eta \rightarrow ff} \quad \frac{n_H}{H} \quad \bigg|_{T=T^d_\eta} = 1 \]

Our goal is to calculate the values of \(|\sin \theta| \) for which \(T^d_\eta \approx m_\mu \).
$m_\rho \gtrsim 4$ GeV excluded!
$M_- = 100$ GeV

![Graph showing $|\sin\theta|$ vs. m_ρ (GeV) with XENON100 Upper Limit and Dark Radiation Lower Limit indicated.]
Higgs invisible decay width

m_ρ(GeV)

M_ρ(GeV)
Conclusions

• The stability of the dark matter particle could be attributed to the remnant Z_2 symmetry that arises from the spontaneous breaking of a global $U(1)$ symmetry.

• This plausible scenario contains a Goldstone boson which is a strong candidate for dark radiation.

• This Goldstone boson, together with the CP-even scalar associated to the spontaneous breaking of the global $U(1)$ symmetry, plays a central role in the dark matter production.

• The mixing of the CP-even scalar with the Brout-Englert-Higgs boson leads to novel decay channels and to interactions with nucleons, thus opening the possibility of probing this scenario at the LHC and in direct dark matter search experiments.

• There are good prospects to observe a signal at the future experiments LUX and XENON1T provided the dark matter particle was produced thermally and has a mass larger than ~ 25 GeV.