Phellinus noxius: molecular diversity among isolates from Taiwan and its phylogenetic relationship with other species of Phellinus based on sequences of the ITS region

Jyh-Nong Tsai¹, Pao-Jen Ann¹, Ruey-Fen Liou², Wen-Hsui Hsieh³ and Wen-Hsiung Ko³*

Abstract

Background: Analysis of phylogenetic relationship of 91 isolates of Phellinus noxius obtained from 46 plant species in Taiwan did not show distinct grouping based on ITS sequences.

Results: However, the ITS nucleotides showed 20 different kinds of variations including single nucleotide polymorphisms, deletion and insertion in ITS1 and ITS2, but none in 5.8 S. The Taiwanese isolates of P. noxius were dividable into long (type L), median (type M) and short (type S) groups based on ITS sequence length. Two isolates with identical ITS sequence belonged to types L. Type M with 72 isolates was further divided into 33 subtypes, while types S with 17 isolates was further divided into two subtypes.

Conclusion: Phylogenetic analysis of ITS sequences among Phellinus species showed that isolates of P. noxius were in the same clade distinctly separated from other Phellinus species.

Keywords: Deletion, Insertion, ITS sequence, Nucleotide variation, Sequence length, Single nucleotide polymorphism

Background

Brown root rot caused by Phellinus noxius (Corner) G. H. Cunn. is widespread among tropical countries in Southeast Asia, Africa, Oceania, Central America and the Caribbean (Pegler and Waterston 1968). In China, it has been reported from the tropical Hainan Island (Tai 1979). In Japan, it was found on the subtropical island of Okinawa (Abe et al. 1995). The pathogen attacks more than 120 species of fruit and ornamental trees in both tropical and subtropical districts in Taiwan (Ann et al. 1999; Chang and Yang 1998). Among the approximately 200 plant species listed as hosts of P. noxius in the world, about half of them were reported for the first time from Taiwan (Ann et al. 2002). Even though the fungus lacks air-borne spores for efficient dissemination, it is very widespread and occurs on so many kinds of hosts at very different geographic locations on the island of Taiwan (Ann et al. 2002). It is, therefore, conceivable that P. noxius may be an ancient residence of the island where diverse isolates of this fungus may have existed. There are very few morphological characters in P. noxius available for testing this hypothesis because the fungus rarely produces basidiocarps on diseased trees in the fields (Ann et al. 1999; Chang 1995, 1996).

In this study, molecular variation in the ITS (ITS1, 5.8S and ITS2) region among isolates of P. noxius from Taiwan was investigated and compared with the ITS sequences reported from other countries available in the GenBank. We also investigated the ITS phylogenetic relationship of
P. noxius with other species of *Phellinus*. Details of the study are reported herein.

Methods

Isolation and storage of the pathogen

Main roots of trees showing quick or slow decline symptoms (Ann et al. 2002) were exposed and examined. Those showing typical brown discoloration were cut and brought back to the laboratory. Small pieces (5 × 2 × 1 mm) of tissue were obtained from the advancing margins of the diseased roots, surface-sterilized with 0.5% NaClO for 1 min, plated on potato dextrose agar (PDA) supplemented with 100 ppm streptomycin sulfate and 10 ppm benomyl for inhibition of growth of bacteria and other fungi, and incubated at room temperature (24–30 °C). Fungal mycelia growing from diseased tissue were transferred to 2% water agar. Single-hyphal tips obtained from the fungus growing on water agar were cultured on PDA and stored in sterile distilled water in test tubes at room temperature (Boesewinkle 1976; Ko 2003). From each diseased tree only one isolate was saved for the study. The cultures were identified as *P. noxius* based on the production of brown colonies with irregular dark brown zone lines on PDA and formation of arthrospores and trichocysts (Ann and Ko 1992).

DNA extraction, amplification and sequencing

Each isolate of *P. noxius* was grown on cellophane placed on PDA (Ko et al. 2011). After incubation at 25 °C for 10 days, mycelia were harvested, lyophilized and stored at −20 °C until use. About 20 mg lyophilized mycelia were ground in liquid nitrogen and used for extraction of DNA using the genomic DNA extraction kit (GenMark Technology Co., Taichung, Taiwan). The ITS (ITS1-5.8S-ITS2) region was amplified with primer pair of ITS4 and ITS5 (White et al. 1990). The 25 μl reaction mixture consisting of 0.2 μg template DNA, 0.2 μM each primer, 200 μM each dNTP, 2 μl 2X polymerase chain reaction (PCR) buffer and 1.0 U ZyM Taq DNA polymerase (Zymeset, Taiwan) was subjected to thermal cycling in a Perkin-Elmer Thermal Cycler 9700 (Perkin-Elmer Applied Biosystem, USA). Cycling conditions for amplification were an initial denaturation at 94 °C for 3 min, followed by 35 cycles at 94 °C for 45 s, 50 °C for 45 s, 72 °C for 45 s, and a final elongation at 72 °C for 7 min. The PCR products were electrophoresed on a 1.5% agarose gel. Direct sequencing of the PCR products was performed by the Seeing Bioscience Company (Taipei, Taiwan), using ITS4, ITS5 (White et al. 1990), PN-5.8S-1 (5′-GCA GCG AAA TGC GAT AAG TA-3′), or PN-5.8S-2 (5′-CAT GAC ACT CAA ACA GGC AT-3′) as the primer.

The sequences of ITS region obtained from the sequencing process were assembled, trimmed and edited using the Vector NT1 software v. 10.0 (InforMax Inc., USA). The sequence of ITS tail was determined using the ITS 2 annotation tool (Keller et al. 2009). The polymorphic portions were marked by IUPAC ambiguity codes. The ITS sequences of 36 isolates of *P. noxius*, representing all ITS types found in Taiwan, were submitted to NCBI (National Center for Biotechnology Information; http://www.ncbi.nlm.nih.gov).

Phylogenetic analysis

The ITS sequences of 91 isolates of *P. noxius* from Taiwan were analyzed in order to understand the phylogenetic relationship among these isolates. Multiple alignments and minor adjustments of the sequences of these isolates were performed using clustal X 1.81 (Thompson et al. 1997) followed by BioEditor software. Sequence alignment was deposited at TreeBase (http://purl.org/phylo/treebase/phylows/study/TB2:516384). Phylogenetic relationships were analyzed using the Philip 3.67t software (Phylogeny Inference Package, Version 3.67) and the neighbor joining program with 1000 bootstrap replicates. The program of Treeview was used to view phylogenetic trees.

In order to study the phylogenetic relationship between isolates of *P. noxius* from Taiwan and other countries and other *Phellinus* species, the ITS sequences of all *Phellinus* species in the GenBank were retrieved. A total of 58 isolates belonging to 39 species of *Phellinus* was obtained and used for phylogenetic analysis (Table 1). The ITS types L, M and S divided based on ITS length were used as local strains for analysis. The method described above was used for phylogenetic relationship analysis.

Results

Phylogenetic relationship among Taiwanese isolates of *P. noxius*

A total of 91 isolates of *P. noxius* was obtained from 46 species of plants distributed in different geographic locations in Taiwan from 1991 to 2009 (Table 2). Analysis of the phylogenetic relationship of these Taiwanese isolates did not show distinct grouping based on ITS sequences. The bootstrap values on the branches were very low and were all below 50% (data not shown) with accession number JN836346-JQ003229 (Tables 1, 2).

Nucleotide variation in ITS region among Taiwanese isolates of *P. noxius*

The examination of ITS nucleotide variation revealed the existence of 20 different kinds of variants, designated...
Table 1 List of taxa of *Phellinus noxius* and related species from GenBank used for phylogenetic analysis

Species	Geographic origin	Strain no.	ITS sequence length (bp)	Accession no.
1. *Phellinus alni*	TW322	610		AY340041
2. *P. badius*	CBS 449.76	663		AY558609
3. *P. baumii*	MPNU 7006	711		AF200231
4. *P. bicuspidatus*	KCTC 6651	621		AY558610
5. *P. calcitratus*		584		JF894115
6. *P. chrysosoma*		644		AF055370
7. *P. cinereus*	OS-37	620		AM931248
8. *P. conchatus*	CBS 167.29	708		AY558614
9. *P. ferrugineovelutinus*	CBS 218.48	542		AY558618
10. *P. gilvus*	ATCC26729	613		AF250932
11. *P. hartiï*	CBS 162.30	692		AY558621
12. *P. l. p. paehoeicola*	CBS 252.50	705		AY558622
13. *P. igniarius*	CFMR 5609	609		AY558623
P. igniarius	KCTC6228	598		AF056192
14. *P. igniarius* var. *trivialis*	CBS 512.63	596		AY558624
15. *P. johnsonianus*	ATCC60051	702		AF250931
16. *P. laevigatus*	CFMR 5640	588		AY558626
17. *P. linteus*	MPNU 7002	670		AF200228
18. *P. lundelii*	CBS 540.72	605		AY558630
19. *P. merrillii*	PMS0703-1	707		EU035310
20. *P. niger*	CBS 213.48	611		AY558631
21. *P. noxius*	Taiwan PN72.1	613-L		JQ005239
P. noxius	Taiwan PN1.2	609-M		JN836344
P. noxius	Taiwan PN29.1	609-M		JN836346
P. noxius	Taiwan PNA4.1	609-M		JN836346
P. noxius	Taiwan PNS.2	608-M		JQ003233
P. noxius	Taiwan PN4.2	607-M		JQ029276
P. noxius	Taiwan PN22.1	601-S		EF065630
P. noxius	CBS170.32	601-S		EF065631
P. noxius	Taiwan TF666	601-S		JQ003238
P. noxius	Malasia FRIM638	610-M		HQ400698
P. noxius	Malaysia FRIM618	602-S		HQ400699
P. noxius	Malaysia FRIM613	602-S		HQ400700
P. noxius	Malaysia FRIM551	603-S		HQ400702
P. noxius	Malaysia FRIM154	601-S		HQ400703
P. noxius	Malaysia FRIM147	599-S		HQ400704
P. noxius	–	608-M		AB639002
22. *P. occidentalis*	CBS 196.55	706		AY558634
23. *P. pachyphloeus* = *Inonotus pachyphloeus*	CBS 193.37	571		AY558635
24. *P. pini*	ATCC12240	635		AF250930
25. *P. pini* var. *cancriformans*	IMSNU 32031	636		AF200242
26. *P. pomaceus*	CBS 616.89	658		AF340765
27. *P. populus*	CBS 498.76	636		AY558638
28. *P. punctatus*	CBS 282.77	714		AY558642
29. *P. repandus*	CBS 167.29	663		AY558640
30. *P. rhabarbarinus*	CBS 162.30	499		AY558640
31. *P. ribis f. ulicis*	CB5 579.50	653		AY558644
32. *P. rimosus*	MDJCBS586	608		DQ103885
Table 1 continued

Species	Geographic origin	Strain no.	ITS sequence length (bp)	Accession no.
33. *P. robustus*	KCTC 6657	679	AY558645	
34. *P. senex*	CBS 442.76	578	AY558647	
35. *P. spiculosus*	KTCC 6658	641	AY558648	
36. *P. tremulae*	CBS 123.40	595	AY558650	
37. *P. tropicalis*	CBS 123.40	595	AY558650	
38. *P. tuberculosus*	CBS 617.89	636	AF534077	
39. *P. weirii*	CNU 6017	620	AF251438	

a The country where *P. noxius* was isolated

b CBS Centraalbureau voor Schimmelcultures, NPMU National Programme Management Unit, KCTC Korean Collection for Type Cultures, ATCC American Type Culture Collection, CFMR Colegiul Fizicienilor Medicali din România, FRIM Forest Research Institute Malaysia, IMSNU Institute of Microbiology, Seoul National University, CNU Collection of Newcastle University

c L: ITS type L; M: ITS type M; S: ITS type S

Table 2 List of hosts, locations, ITS information, GenBank accession no. of strains of *Phellinus noxius* from Taiwan used in the study

Scientific name (common name)	Isolate	Location	Year of isolation	GenBank accession no.	Sequence ITS1/5.8S/ITS2 (bp)	ITS type
1. *Annona squamosa* (custard apple)	PNA4.1	Taitung County	1996	JN836346	609	M6
2. *Araucaria cunninghamii* (hook pine)	PN29.1	Taichung City	2004	JN836344	609	M4
A. cunninghamii	PN30.1	Taichung City	2004	609	M4	
3. *Averrhoa carambola* (carambola)	PNS1.1	Tainan City	1992	607	M32	
4. *Bauhinia × hybrid* (butterfly tree)	PN40.2	Hualien County	2005	JQ003235	606	M33
5. *Bauhinia variegata* (orchid tree)	PN7.1	Nantou County	1996	609	M6	
6. *Calocedrus formosana* (Taiwan incense cedar)	PN35.1	Hualien County	2005	JN836349	609	M9
7. *Casuarina equisetifolia* (ironwood tree)	PN35.2	Hualien County	2005	609	M9	
8. *Cinnamomum kotoensis* (botel tobago cinnamon tree)	PN74.2	Taitung County	2009	608	M24	
C. kotoensis	PN74.1	Taitung County	2009	JQ029271	608	M27
9. *C. osmophloeum* (Taiwan cinnamon)	PN50.1	Nantou County	2006	601	S1	
10. *Cinnamomum camphora* (camphor)	PN51.1	Nantou County	2006	608	M24	
C. camphora	PN32.1	Taichung City	2005	608	M24	
C. camphora	PN32.2	Taichung City	2005	608	M24	
11. *Citrus limon* (lemon)	PN1.1	Tainan City	2003	609	M1	
C. limon	PN1.2	Tainan City	2003	609	M1	
C. limon	PN4.1	Chiayi County	2006	607	M32	
Scientific name (common name)	Isolate	Location	Year of isolation	GenBank accession no.	Sequence ITS1/5.8S/ITS2 (bp)	ITS type
---	---	---	---	---	---	---
12. Delonix regia (flame tree)	PN37.1	Hualian County	2005		601	S1
D. regia	PN37.2	Hualian County	2005	JQ029275	607	M31
D. regia	PN42.1	Hualian County	2005		601	S1
13. Dimocarpus longan (longan)	PNLn5.1	Tainan City	1992	JQ003236	601	S1
D. longan	PNLn9.2	Changhua County	1998	JQ003226	608	M17
D. longan	PNLn10.1	Tainan City	2003	JQ003222	609	M6
D. longan	PNLn10.2	Tainan City	2003	JQ003222	609	M13
D. longan	PNLn14.2	Changhua County	2006		601	S1
14. Diospyros kaki (persimmon)	PNPe1.1	Chiayi County	1991		609	M1
15. Duranta repens (creeping sky flower)	PN3.1	Nantou County	1996	JQ003231	608	M22
16. Enodotrya japonica (loquat)	PNLo3.1	Taitung County	1997		601	S1
17. Eucalyptus citriodora (lemon gum eucalyptus)	PN6.1	Nantou County	1996		608	M22
18. Ficus microcarpa (small-leafed banyan)	PN21.1	Miaoli County	2003		608	M24
F. microcarpa	PN21.2	Miaoli County	2003		608	M24
F. microcarpa	PN12.1	Taichung City	1996	JQ029274	607	M30
F. microcarpa	PN26	Nantou County	2003		608	M24
F. microcarpa	PN28.2	Taichung City	2004		608	M19
F. microcarpa	PN49.2	Taichung City	2005	JQ003227	608	M18
F. microcarpa	PN57.1	Taichung City	2005		609	M7
F. microcarpa	PN75.1	Taichung City	2009		607	M30
F. microcarpa	PN76.1	Taichung City	2009		609	M4
19. Ficus pumila var. awkeotsang (jellyfig)	PN10.1	Chiayi County	1991	JQ029272	608	M28
20. F. religiosa (botree fig)	PN90.1	Taichung	2009	JN836342	609	M2
21. Juniperus chinensis var. kaizuka (dragon juniper)	PN65.1	Nantou County	2007		609	M4
22. Kigelia pinnata (sausage tree)	PN14.1	Nantou County	1998	JN836348	609	M8
23. Koelreuteria henryi (flame gold-rain tree)	PN94.1	Taichung City	2009	JQ003237	601	S2
K. henryi	PN33.2	Hualian County	2005	JQ003223	609	M14
K. henryi	PN41.1	Hualian County	2005		609	M14
K. henryi	PN41.2	Hualian County	2005		609	M14
24. Liquidambar formosana (maple)	R9218	New Taipei city	1992		608	M15
25. Litchi chinensis (litchi)	PN2.1	Chiayi County	1992	JN836347	609	M7
L. chinensis	PN2.2	Chiayi County	1992		601	S1
L. chinensis	PN5.1	Kaohsiung City	2003	JQ029273	607	M29
L. chinensis	PN5.2	Kaohsiung City	2003		607	M29
26. Mangifera indica (mango)	PN4.1	Changhua County	2009		609	M6
27. Melaleuca bracteata 'Revolution Gold' (white cloud tree)	PN73.2	Taichung City	2009		609	M6
Scientific name (common name)	Isolate	Location	Year of isolation	GenBank accession no.	Sequence ITS1/ITS2 (bp)	ITS type
-------------------------------	---------	----------	-------------------	-----------------------	-------------------------	----------
M. bracteata ‘Revolution Gold’	PN73.1	Taichung City	2009	609	M6	
28. *Murraya paniculata* (orange jasmine)	PN5.1	Nantou County	1996	608	M24	
M. paniculata	PN5.2	Nantou County	1996	JQ003233	608	M24
M. paniculata	PN25.1	New Taipei City	2004	601	S1	
M. paniculata	PN25.2	New Taipei City	2004	601	S1	
29. *Oncidium* Gower Ramsey	PN44	Yungling County	2005	601	S1	
30. *Osmanthus fragrans* (osmanthus)	PN140.1	Changhua County	2009	JQ003221	609	M12
31. *Psidium guajava* (guava)	PN98007	Koahsiung City	2009	JQ029270	608	M26
32. *Podocarpus macrophyllus* (long-leaved podocarpus)	PN98.3	Taichung City	2009	601	S1	
33. *Prunus armeniaca* (apricot)	PN72.1	Taichung City	2009	JQ003239	613	L1
P. armeniaca	PN72.2	Taichung City	2009	613	L1	
34. *Prunus campanulata* (Taiwan cherry)	PN71.1	Taichung City	2009	JN386350	609	M10
P. campanulata	PN71.2	Taichung City	2009	609	M10	
35. *Prunus mume* (plum)	PN12.1	Koahsiung City	1991	JN836341	609	M1
P. mume	PN12.2	Koahsiung City	1991	JN836345	609	M5
36. *Prunus persica* (peach)	PN109.1	Nantou County	1996	JQ003228	608	M19
P. persica	PN10.1	Changhua County	2005	JQ003225	608	M16
37. *Pterocarpus indicus* (rose wood)	PN104.1	Taichung City	2009	JQ003220	609	M11
38. *Pyrus pyrifolia* (pear)	PN4.1	Miaoli County	2003	601	S1	
P. pyrifolia	PN4.2	Taichung City	1998	JQ029276	607	M32
P. pyrifolia	PN9.1	Nantou County	2004	JN836343	609	M3
39. *Schinus terebinthifolius* (Brazilian peppertree)	PN48.1	Taichung City	2005	601	S1	
S. terebinthifolius	PN48.2	Taichung City	2005	601	S1	
40. *Spathodea campanulata* (African tulip tree)	PN147	Changhua County	2009	601	S1	
41. *Sterculia nobilis* (ping-pong)	PN17.1	Nantou County	1999	JQ003224	608	M15
S. nobilis	PN84.1	Taichung City	2009	607	M32	
S. nobilis	PN124.1	Taichung City	2009	609	M6	
42. *Syzygium samarangense* (wax apple)	PNW1.1	Chiayi County	1991	JQ003234	608	M25
43. *Terminalia catappa* (Indian almond)	PN2.1	Chiayi County	1996	609	M4	
T. catappa	PN63.1	Changhua County	2007	607	M32	
45. *Toona sinensis, Cedrela sinensis* (Chinese cedar)	PN64.1	Taichung City	2007	JQ003230	608	M21
46. *Vitis vinifera* (grape)	PNG1.1	Nantou County	1999	609	M6	
Zizyphus mauritiana (Indian jujube)	PNZ2.1	Koahsiung City	2001	JQ003229	608	M20
as V1 to V20 in ITS1 and ITS2 but not 5.8S in the 91 Taiwanese isolates of P. noxius obtained in this study (Table 3). The variation included insertion, deletion and single nucleotide polymorphism. Some isolates showed single nucleotide polymorphism among chromosomes in the same isolate.

Grouping based on ITS sequence length

The examination of ITS nucleotide variation also revealed the possible division into three distinct groups based on sequence length among the 91 isolates of P. noxius from Taiwan (Table 4). Isolates with long sequence of 613 bp were termed type L. Only two isolates belonged to this type. Isolates with median sequence length of 606–609 bp were termed type M. The majority of the Taiwanese isolates with a total of 72 isolates belonged to this type. Type M was further divided into 33 subtypes based on single nucleotide polymorphisms, single nucleotide deletion (V12), double nucleotide deletion (V19) and single nucleotide insertion (V20) (Tables 3, 4). Isolates with short sequence of 601 bp were termed type S. Type S was further divided into two subtypes as a result of a single nucleotide polymorphism at position 114. Seventeen isolates belonged to this type.

Isolates of P. noxius from GenBank fitted or nearly fitted the M or S ITS types (in Taiwan; Table 1). Isolate CBS170.32 of unknown origin belonged to type S, so was the Japanese isolate. The isolate from India belonged to type M. Among the six isolates from Malaysia, isolate FRIM154 fitted the type S and isolate FRIM 638 nearly fitted the type M with 1 bp more than the Taiwanese type M. Isolates FRIM 618, FRIM 613 and FRIM 551 nearly fitted type S with 1–2 bp more than the Taiwanese type S, while isolates FRIM 147 was also close to type S with 2 bp less than the Taiwanese type S. However no isolates from other countries were founded to fit the Taiwanese type L in this study.

Relation between ITS types and hosts and locations from where P. noxius was found in Taiwan

Type L was detected only in Taichung City (Fig. 1). Type M was found in three cities and seven counties, while type S was found in two cities and eight counties. P. noxius was not found in Yilan County, Taoyuan County, Hsinchu Tounty and Pingtung County during this study.

Subtype S1 was found on 12 plant species located in three cities and seven counties, while subtype S2 was found only on flame gold-rain tree in Taichung City (Table 2). Other isolates found on flame gold-rain tree in

Table 3 Nucleotide variation in ITS detected among isolates of Phellinus noxius in Taiwan

Kind of variant	Sequence position	Nucleotide variation
ITS1		
V1/V1*	19	G, A/R
V2	31	T, C
V3/V3*	32	G, C/S
V4	114	G, C
V5	116–117	GGAGAG
V6	117–118	TG, AT
V7	125–126	TC, AT
V8/V8*	129	T, A/C
V9	135–142	ATTTATTC
V10	152	A, G
V11	168	C, T
V12	193	A
V13	197	T, C
ITS2		
V14/V14*	420	T, C/Y
V15/V15*	442	G, A/R
V16/V16*	469	A, G/R
V17/V17*	546	A, G/R
V18/V18*	593	C, G/S
V19	594–595	AC
V20	600–601	C

The variants with an asterisk symbol represent isolates with single nucleotide polymorphisms among chromosomes in the same isolate.
Hualian County belonged to subtype M14. This study also revealed that isolates of *P. noxius* obtained from the same plant species in the same location may belong to different subtypes. In Taichung City, isolates of *P. noxius* found on small-leafed banyan consisted of subtypes M4, M7, M18, M19 and M30. Similarly, isolates obtained from longan in Tainan City contained subtypes S1, M6 and M13. It was also found that isolates obtained from the same host in different locations may belong to the same subtype. For examples, subtype S1 on longan was found in Tainan City and Changhua County, while subtype M24 on small-leaved banyan was found in Miaoli County and Nantou County. Isolates obtained from different hosts in different locations may also belong to the same subtype. For examples, subtype M1 was found on lemon in Tainan City and on persimmon in Chiayi County, while subtype M6 was found

| **Table 4** ITS types and subtypes among *Phellinus noxius* isolates from Taiwan |
|---------------------------------|---|-------------------|-----------------|
| **ITS type and subtype** | **ITS sequence length (bp)** | **Nucleotide variation** | **Representative isolate (total no.)** |
| **Type L** | | | |
| L1 | 613 | V1, V3, V5, V15, V16, V19 | PN72.1 (2) |
| **Type M** | | | |
| M1 | 609 | | PNP1.2 (5) |
| M2 | 609 | V16 | PN90.1 (1) |
| M3 | 609 | V17 | PNP9.1 (1) |
| M4 | 609 | V18 | PN29.1 (5) |
| M5 | 609 | V1, V3 | PNP2.1 (1) |
| M6 | 609 | V14, V15 | PNA4.1 (8) |
| M7 | 609 | V15, V16 | PNL2.1 (2) |
| M8 | 609 | V3, V14, V15 | PN14.1 (1) |
| M9 | 609 | V1, V3, V16, V17 | PN35.1 (2) |
| M10 | 609 | V1, V3, V11, V15, V17 | PN71.1 (2) |
| M11 | 609 | V15*, V18* | PN104.1 (1) |
| M12 | 609 | V1, V15*, V16 | PN140.1 (1) |
| M13 | 609 | V14*, V15, V17* | PNLn102.1 (1) |
| M14 | 609 | V1*, V3*, V15*, V16* | PN33.2 (3) |
| M15 | 608 | V3, V12 | PN17.1 (2) |
| M16 | 608 | V3, V12, V17 | PNP10.1 (1) |
| M17 | 608 | V10, V12, V15, V16 | PNLn9.1 (1) |
| M18 | 608 | V1, V3, V11, V12 | PN14.2 (1) |
| M19 | 608 | V1, V3, V8, V11, V12, V16 | PN14.1 (2) |
| M20 | 608 | V1, V3, V6, V11, V12, V15 | PNZ2.1 (1) |
| M21 | 608 | V1, V2, V3, V11, V12, V15, V16 | PNL4.1 (1) |
| M22 | 608 | V1, V2, V3, V8, V11, V12, V13, V16 | PN3.1 (2) |
| M23 | 608 | V1, V2, V3, V6, V7, V11, V12, V15, V16 | PN70.2 (1) |
| M24 | 608 | V15, V16, V19, V20 | PNS.2 (9) |
| M25 | 608 | V1, V3, V15, V16, V19, V20 | PNP1.1 (1) |
| M26 | 608 | V3, V12, V15*, V16* | PN98007 (1) |
| M27 | 608 | V15, V16*, V19, V20 | PN74.1 (1) |
| M28 | 608 | V1, V3*, V15, V19, V20 | PNP10.1 (1) |
| M29 | 607 | V19 | PNL5.1 (2) |
| M30 | 607 | V16, V19 | PN12.1 (2) |
| M31 | 607 | V15, V16, V19 | PNP3.2 (1) |
| M32 | 607 | V1, V3, V15, V16, V19 | PNP4.2 (7) |
| M33 | 606 | V1, V2, V3, V6, V7, V11, V12, V15, V16, V19 | PNP40.2 (1) |
| **Type S** | | | |
| S1 | 601 | V3 | PNLn5.1 (16) |
| S2 | 601 | V4, V9 | PNP9.1 (1) |

The variants with an asterisk symbol represent isolates with single nucleotide polymorphisms among chromosomes in the same isolate.
Phylogenetic analysis based on ITS sequences among *Phellinus* species

The ITS sequences of 58 isolates belonging to 39 species of *Phellinus* retrieved from GenBank and seven *P. noxius* isolates representing type L, type M and type S of ITS sequences from Taiwan were used in the analysis of the phylogenetic relationship among *Phellinus* species. The result showed that all the isolates of *P. noxius* including isolates from Taiwan and other countries were in the same clade with 100% bootstrap support (Fig. 2). The sequence similarity between *P. noxius* and other *Phellinus* species was less than 85%. The species most closely related to *P. noxius* was *P. pachphloeus* with 83% similarity, whereas the most distant species was *P. badius* with only 67% similarity.

Discussion

Results from this study showed that the isolates of *P. noxius* from Taiwan can be divided into type L, type M and type S based on ITS sequence length. From 1991 to 2009, 2 type L isolates, 82 type M isolates and 17 type S isolates were found on 46 plant species in Taiwan (Table 2). To our best knowledge, this is the first report of division of isolate from the same fungal species into different groups based on ITS length. *P. noxius* was reported from Taiwan as early as 1928 (Sawada 1928). It is conceivable that type M and type S may have existed in Taiwan for a very long period of time and that type M may have evolved in Taiwan earlier and became the predominant type. Only two isolates of type L was obtained from apricot at Taichung City. It is possible that type L may be a recent mutation from subtype M25 through an 6 bp insertion at position 116–117 (V5), and deletion at position 600–601 (V20) (Tables 3, 4). However, the possibility that it may be due to host specificity of type L has not been ruled out.

The results also suggested the possibility that type S may originate from type M through an 8 bp deletion at the position between 135 and 142 (V9) (Tables 3, 4). After the deletion, the ITS sequences seem to become stable because there were only two subtypes among 17 isolates of type S obtained in this study. Moreover, the difference between subtype S1 and subtype S2 was the occurrence of a single nucleotide polymorphism at sequence position 114 (V4) in the latter.

Phellinus noxius is one of the plant pathogens with a very wide host range. Among the more than 200 plant species representing 59 families listed as hosts of *P. noxius* in the world, about half of them were reported for the first time from Taiwan (Ann et al. 2002). This is compatible with the discovery of great nucleotide variation in ITS region among isolates of *P. noxius* found in Taiwan in this study. The variation included 15 kinds of single nucleotide polymorphisms, three kinds of deletions and two kinds of insertions (Table 3).

Analysis of the ITS sequences of the Taiwanese isolates of *P. noxius* revealed that the 5.8 S region was identical in all isolates, while significant sequence variation was observed in ITS regions. This is in agreement with those reported with powdery mildews (Hirata and Takamatsu 1996) and *Fusarium* species (Naqvi et al. 2013). Our studies showed that the ITS1 was more variable than ITS 2 (Table 3). The former contained 10 single nucleotide polymorphisms, one 8 bp deletion, one 1 bp deletion and one 6 bp insertion, while the latter consisted of only five single nucleotide polymorphisms, one 2 bp deletion and one 1 bp insertion.

Phylogenetic analysis of ITS sequences among *Phellinus* species showed that isolates of *P. noxius* were in the same clade distinctly separated from other *Phellinus* species (Fig. 2). Phylogenetic relationship among *Phellinus* species based on ITS sequences has been reported previously (Shin 2001; Wagner and Fischer 2002; Jeong et al. 2005; Decock et al. 2006). However, none of them
Fig. 2 The (unrooted) distance tree of phylogenetic relationship of 17 Phellinus noxius isolates and other 38 species in Phellinus spp. based on the internal transcribed spacer (ITS1-5.8Sr DNA-ITS2) region of nuclear ribosomal DNA. Branch lengths and bootstrap (1000 replicates) were displayed in the distance tree by using neighbor-joining and bootstrap methods of Philip 3.67 software. The distance bar is corresponded to 10 substitutions per 100 nucleotide sites.
has included *P. noxius* in their studies. *P. noxius* has been transferred to *Phellinidium noxium* (Corner) Bondartseva & S. Herrera in 1992 (Bondartseva et al. 1992). However, *Phellinidium noxium* was distinctly separated phylogenetically from other *Phellinidium* species (Dai 2010), indicating that more study is needed in the future.

During this study, *P. noxius* was not found in the counties of Yilan, Taoyuan, Hsinchu and Pingtung (Fig. 1). This does not mean that the fungus was not present in those areas because detection of *P. noxius* in those counties had been reported previously (Ann et al. 2002).

Conclusion

The 91 isolates of *Phellinus noxius* obtained from 46 plant species in Taiwan showed 20 different kinds of variation including single nucleotide polymorphisms, deletion, insertion in ITS1 and ITS2, but none in 5.8S. The Taiwanese isolates of *P. noxius* were divisible into long (type L), median (type M) and short (type S) groups based on ITS sequence length. Phylogenetic analysis of ITS sequence among *Phellinus* species showed the isolate of *P. noxius* were in the same clade distinctly separated from other *Phellinus* species.

Authors’ contributions

WHK designed the experiments and wrote the manuscript; PJA, RFL and WHH conceived the experiments; JNT performed the experiments. All authors read and approved the final manuscript.

Author details

1 Division of Plant Pathology, Taiwan Agricultural Research Institute, Wufeng, Taichung, Taiwan. 2 Department of Plant Pathology and Microbiology, National Chung Hsing University, Taichung, Taiwan. 3 Department of Plant Pathology, National Taiwan University, Taipei, Taiwan.

Acknowledgements

The study was supported by the Grants from Council of Agriculture (101N‑10.2.1‑N‑C7(3)) and Ministry of Science and Technology (NSC 101‑2321‑B‑005‑004) of Taiwan.

Competing interests

The authors declare that they have no competing interests.

Received: 29 August 2016 **Accepted**: 8 January 2017 **Published online**: 16 January 2017

References

Abe Y, Kobayashi T, Onuki M, Hatton T, Tsurumachi M (1995) Brown root rot of trees caused by *Phellinus noxius* in windbreaks on Ishigaki Island, Japan: incidence of disease, pathogen and artificial inoculation. Ann Phytopathol Soc Jpn 61:425–433

Ann PJ, Ko WH (1992) Decline of longan trees: association with brown root rot caused by *Phellinus noxius*. Plant Pathol Bull 1:19–25

Ann PJ, Lee HL, Tsai JN (1999) Survey of brown root disease of fruit and ornamental trees caused by *Phellinus noxius* in Taiwan. Plant Pathol Bull 8:51–60

Ann PJ, Chang TT, Ko WH (2002) *Phellinus noxius* brown root rot of fruit and ornamental trees in Taiwan. Plant Dis 86:820–826

Boesewinkel HJ (1976) Storage of fungal cultures in water. Trans Br Mycol Soc 66:183–185

Bondartseva MA, Herrera SD, Sandoval FC (1992) Taxonomical problems of the Cuban Hymenochaetaceous fungi. Mikologia i Fitoapalotogi 26:1–13

Chang TT (1995) Decline of nine tree species associated with brown root rot caused by *Phellinus noxius* in Taiwan. Plant Dis 79:962–965

Chang TT (1996) Survival of *Phellinus noxius* in soil and in the roots of dead host plants. Phytopathology 86:272–276

Chang TT, Yang WW (1998) *Phellinus noxius* in Taiwan: distribution, host plants and the pH and texture of the rhizosphere soils of infected host. Mycol Res 102:1085–1088

Dai YC, Zhou LW, Cui BK, Chen YQ, Decock C (2010) Current advances in *Phellinus* sensu lato: medicinal species, functions, metabolites and mechanisms. Appl Microbiol Biotechnol 87:1587–1593

Decock C, Figueroa SH, Robledo G, Castillo G (2006) *Phellinus canbarea-querceolus* sp. nov. parasitic on Quercus cubana: taxonomy and preliminary phylogenetic relationships. Mycologia 98:265–274

Hirata T, Takamatsu S (1996) Nucleotide sequence diversity of rDNA internal transcribed spacers extracted from conidia and cleistothecia of several powdery mildew fungi. Mycoscience 39:283–288

Jeong WJ, Lim YW, Lee JS, Jung HS (2005) Phylogeny of *Phellinus* and related genera inferred from combined data of ITS and mitochondrial SSU rDNA sequences. J Microbiol Biotechnol 15:1028–1038

Keller A, Schleicher T, Schultz J, Müller T, Dandekar T, Wolf M (2009) 5.8S-28S rRNA interaction and HMM-based ITS2 annotation. Gene 430:50–57

Ko WH (2003) Long-term storage and survival structure of three species of *Phytophthora* in water. J Gen Plant Pathol 69:186–188

Ko WH, Yang CH, Lin MJ, Chen CY, Tsai YJ (2011) *Humicola phialophorides* sp. nov. from soil with potential for biological control of plant diseases. Bot Stud 52:197–202

Naqvi SKB, Ahmed S, Rauf CA, Naqvi SMS (2013) Application and sequencing of interval transcribed regions 1 & 2, and 5.8S rDNA from local isolates of *Fusarium* species. Pak J Bot 45:301–307

Pegler DN, Waterston JM (1968) *Phellinus noxius* No. 195. In: Descriptions of pathogenic fungi and bacteria. Commonwealth Mycological Institute, Kew

Sawada K (1928) Camphor tree decline. Descri Catal Formos Fungi 4:86–91

Shin KS (2001) Identification of some *Phellinus* spp. Mycobiology 29:190–195

Tai FL (1979) Syllode fungorum sinicorum. Science Press, Peking

Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882. doi:10.1093/nar/25.24.4876

Wagner T, Fischer M (2002) Proceeding towards a natural classification of the worldwide taxa *Phellinus* s. l. and *Inonotus* s. l., and phylogenetic relationships of allied genera. Mycologia 94:998–1016

White TJ, Bruns T, Lee S, Taylor J (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

Submit your manuscript to a SpringerOpen journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

submit your next manuscript at springeropen.com