BRAIDING SURFACE LINKS WHICH ARE COVERINGS OF A TRIVIAL TORUS KNOT

INAoA Nakamura

Abstract. We consider surface links in the 4-space which can be deformed to simple branched coverings of a trivial torus knot, which we call torus-covering-links. Torus-covering-links contain spun T^2-knots, turned spun T^2-knots, symmetry-spun tori and torus T^2-knots. In this paper we study the braid indices of torus-covering-links. In particular we show that the turned spun T^2-knot of the torus $(2, p)$-knot has the braid index four.

0. Introduction

Locally flatly embedded closed 2-manifolds in the 4-space \mathbb{R}^4 are called surface links. It is known that any oriented surface link can be deformed to the closure of a simple surface braid, that is, a simple branched covering of the 2-sphere ([10]).

As surface knots of genus one which can be made from classical knots, there are spun T^2-knots, turned spun T^2-knots, symmetry-spun tori and torus T^2-knots. Consider \mathbb{R}^4 as obtained by rotating \mathbb{R}^3_+ around the boundary \mathbb{R}^2. Then a spun T^2-knot is obtained by rotating a classical knot ([2]), a turned spun T^2-knot by turning it once while rotating ([2]), a symmetry-spun torus by turning a classical knot with periodicity rationally while rotating ([16]), and a torus T^2-knot is a surface knot on the boundary of a neighborhood of a solid torus in \mathbb{R}^4 ([6]). Symmetry-spun tori include spun T^2-knots, turned spun T^2-knots and torus T^2-knots. We call the link version of a symmetry-spun torus, a spun T^2-link, a turned spun T^2-link and a torus T^2-link respectively.

Now we consider surface links in the 4-space which can be deformed to simple branched coverings of a trivial torus knot, which we define as torus-covering-links ([14]). By definition, a torus-covering-link is described by a torus-covering-chart, which is a chart on the trivial torus knot. Torus-covering-links include symmetry T^2-links (and spun T^2-links, turned spun T^2-links, and torus T^2-links). A torus-covering-link has no 2-knot component. Each component of a torus-covering-link is of genus at least one.

In this paper we deform the torus-covering-link associated with a torus-covering-chart of degree m to the closure of a simple surface braid. Then we obtain its (surface link) chart description, which is of degree $2m$, and gives an upper estimate of its braid index (Theorem 3.1). In particular, we show that the turned spun T^2-knot of the torus $(2, p)$-knot has the braid index four (Corollary 3.3).

Key words and phrases. surface link, 2-dimensional braid, braid index.
The author would like to thank professors Takashi Tsuboi and Elmar Vogt for suggesting this problem, and professor Akio Kawauchi for advising about titles.

1. Definitions and Preliminaries

Definition 1.1. A locally flatly embedded closed 2-manifold in \mathbb{R}^4 is called a surface link. A surface link with one component is called a surface knot. A surface link whose each component is of genus zero (resp. one) is called a 2-link (resp. T^2-link). In particular a surface knot of genus zero (resp. one) is called a 2-knot (resp. T^2-knot).

An orientable surface link F is trivial (or unknotted) if there is an embedded 3-manifold M with $\partial M = F$ such that each component of M is a handlebody.

An oriented surface link F is called pseudo-ribbon if there is a surface link diagram of F whose singularity set consists of double points and ribbon if F is obtained from a trivial 2-link F_0 by 1-handle surgeries along a finite number of mutually disjoint 1-handles attaching to F_0. By definition, a ribbon surface link is pseudo-ribbon.

Two surface links are equivalent if there is an ambient isotopy or an orientation-preserving diffeomorphism of S^4 or \mathbb{R}^4 which deforms one to the other.

Definition 1.2. A compact and oriented 2-manifold S embedded properly and locally flatly in $D^2_1 \times D^2_2$ is called a braided surface of degree m if S satisfies the following conditions:

(i) $\text{pr}_2|_S : S \longrightarrow D^2_2$ is a branched covering map of degree m,
(ii) ∂S is a closed m-braid in $D^2_1 \times \partial D^2_2$, where D^2_1, D^2_2 are 2-disks, and $\text{pr}_2 : D^2_1 \times D^2_2 \rightarrow D^2_2$ is the projection to the second factor.

A braided surface S is called a surface braid if ∂S is the trivial closed braid. Moreover, S is called simple if every singular index is two.

Two braided surfaces are equivalent if there is a fiber-preserving ambient isotopy of $D^2_1 \times D^2_2$ rel $D^2_1 \times \partial D^2_2$ which carries one to the other.

There is a theorem which corresponds to Alexander’s theorem for classical oriented links.

Theorem 1.3 (Kamada [10]). Any oriented surface link can be deformed by an ambient isotopy of \mathbb{R}^4 to the closure of a simple surface braid.

There is a chart which represents a simple surface braid.

Definition 1.4. Let m be a positive integer, and Γ be a graph on a 2-disk D^2_2. Then Γ is called a surface link chart of degree m if it satisfies the following conditions:

(i) $\Gamma \cap \partial D^2_2 = \emptyset$.
(ii) Every edge is oriented and labeled, and the label is in $\{1, \ldots, m - 1\}$.
(iii) Every vertex has degree 1, 4, or 6.
(iv) At each vertex of degree 6, there are six edges adhering to which, three consecutive arcs oriented inward and the other three outward, and those six edges are labeled i and $i + 1$ alternately for some i.

2
(v) At each vertex of degree 4, the diagonal edges have the same label and are oriented coherently, and the labels i and j of the diagonals satisfy $|i - j| > 1$.

Vertices of degree 1 and 6 are called a black vertex and a white vertex. A black vertex (resp. white vertex) of a chart corresponds to a branch point (resp. triple point) of the simple surface braid associated with the chart.

An edge without end points is called a loop. An edge whose end points are black vertices is called a free edge, and a configuration consisting of a free edge and a finite number of concentric simple loops such that the loops are surrounding the free edge is called an oval nest.

An unknotted chart is a chart presented by a configuration consisting of free edges. A trivial oriented surface link is presented by an unknotted chart (10).

A ribbon chart is a chart presented by a configuration consisting of oval nests. A ribbon surface link is presented by a ribbon chart (10).

A chart with a boundary represents a simple braided surface. There is a notion of C-move equivalence (10) between two charts of the same degree. The following theorem is well-known:

Theorem 1.5 (10). Two charts of the same degree are C-move equivalent if and only if their associated simple braided surfaces are equivalent.

2. Torus-covering-links

We give the definition of torus-covering-links in \mathbb{R}^4 (cf. [14]).

Definition 2.1. First, embed $D^2 \times S^1 \times S^1$ into \mathbb{R}^4 naturally, and identify $D^2 \times S^1 \times S^1$ with $D^2 \times I_3 \times I_4 / \sim$, where $(x, 0, v) \sim (x, 1, v)$ and $(x, u, 0) \sim (x, u, 1)$ for $x \in D^2$, $u \in I_3 = [0, 1]$ and $v \in I_4 = [0, 1]$.

Let us consider a surface link S embedded in $D^2 \times S^1 \times S^1$ such that $S \cap (D^2 \times I_3 \times I_4)$ is a simple braided surface. We call such a surface link a torus-covering-link.

A torus-covering-link S can be described by a chart on the trivial torus knot, i.e. by a chart Γ_T on $D^2_3 = I_3 \times I_4$ with $\Gamma_T \cap (I_3 \times \{0\}) = \Gamma_T \cap (I_3 \times \{1\})$ and $\Gamma_T \cap (\{0\} \times I_4) = \Gamma_T \cap (\{1\} \times I_4)$. Let us denote the classical braids described by $\Gamma_T \cap (I_3 \times \{0\})$ and $\Gamma_T \cap (\{0\} \times I_4)$ by Γ_T^v and Γ_T^h respectively. We will call Γ_T a torus-covering-chart with boundary braids Γ_T^v and Γ_T^h.

Let $b(\Gamma_T)$ be the number of black vertices in the torus-covering-chart Γ_T. Then let us consider the case $b(\Gamma_T) = 0$. In this case the torus-covering-link associated with Γ_T is determined by the boundary braids Γ_T^v and Γ_T^h. We
will call such a Γ_T a torus-covering-chart \textit{without black vertices and with boundary braids} Γ_T^v and Γ_T^b.

\textbf{Remark.} In the case $b(\Gamma_T) = 0$, the boundary braids Γ_T^v and Γ_T^b are commutative.

By definition, torus-covering-links contain symmetry-spun tori (and spun T^2-knots, turned spun T^2-knots and torus T^2-knots).

As we stated in Theorem 1.5 if there are two surface link charts of the same degree, their associated surface links are equivalent if and only if their charts are C-move equivalent. It follows that if two torus-covering-charts are C-move equivalent, their associated torus-covering-links are equivalent.

A torus-covering-link has no 2-knot component. In particular, if a torus-covering-chart has no black vertices, then each component of the associated torus-covering-link is of genus one.

Let Γ_T be a torus-covering-chart of degree m and with the trivial boundary braids. Let F be the surface link associated with Γ_T by assuming Γ_T to be a surface link chart. Then the torus-covering-link associated with the torus-covering-chart Γ_T is obtained from F by applying m trivial 1-handle surgeries.

\textbf{Example 2.2.} (Example 2.2 in [14])

(2.2.1) Let Γ_T be a torus-covering-chart of degree 2 without black vertices and with boundary braids σ_1^3 and e (the trivial braid). Then the torus-covering-knot associated with Γ_T is the spun T^2-knot of a right-handed trefoil.

(2.2.2) Let Γ_T be a torus-covering-chart of degree 2 without black vertices and with boundary braids σ_1^3 and σ_1^3 (or σ_1^3 and σ_1^{-3}). Then the torus-covering-knot associated with Γ_T is the turned spun T^2-knot of a right-handed trefoil.

(2.2.3) Let Γ_T be a torus-covering-chart without black vertices and with boudary braids β^2 and β. Then the torus-covering-knot associated with Γ_T is a symmetry-spun torus.
3. Braiding torus-covering-links over the 2-sphere

For a (classical) braid β, let $\iota_k(\beta)$ be the braid obtained from β by adding k (resp. l) trivial strings before (resp. after) β, and

\[
\Pi_i = \sigma_{m+1}\sigma_{m+2}\cdots\sigma_{m+i},
\Pi_i^{\Lambda} = \sigma_{m-1}\sigma_{m-2}\cdots\sigma_{m-i},
\Delta_m = \Pi_{m-1}\Pi_{m-2}\cdots\Pi_1,
\Delta'_m = \Pi_{m-1}\Pi_{m-2}\cdots\Pi_1,
\Theta_m = \sigma_m \cdot \Pi_{m-1} \cdot \Pi_{m-2} \cdots \sigma_m \cdot \Pi_{m} \cdot \sigma_m.
\]

Remark. Let Δ be Garside’s Δ for the braid group B_m. Then $\iota_m(\Delta) = \Delta_m$ (cf. [4]).

Theorem 3.1. Let Γ_T be a torus-covering-chart of degree m with boudary braids a and b. Then the torus-covering-link associated with Γ_T can be described by a surface link chart Γ_S of degree $2m$ as in Fig. 3.1 where H_b is a chart describing the simple braided surface as follows:

\[
i_0^m(b) \to (\Delta'_m)^{-1} \cdot \Delta_m^{-1} \cdot \Delta'_m \cdot \Delta_m \to i_0^m(b) \cdot (\Delta'_m)^{-1} \cdot \Delta_m^{-1} \cdot \Theta_m \to (\Delta'_m)^{-1} \cdot \Delta_m^{-1} \cdot i_0^m(b^*) \cdot \Theta_m \to (\Delta'_m)^{-1} \cdot \Delta_m^{-1} \cdot \Theta_m \cdot i_0^m(b^*) \to i_0^m(b^*),
\]

where \to means an isotopy transformation and \to a hyperbolic transformation along bands corresponding to the m σ_m’s (Fig. 3.2), and $-(H_b)^*$ is the orientation-reversed mirror image of H_b, and b^* is the braid obtained from the classical braid b by taking its mirror image and reversing all the crossings (Fig. 3.3).

Definition 3.2. Let us call H_b the 1-handle chart of Γ_T, and its corresponding braided surface the 1-handle braided surface of Γ_T.

Remark. The surface link chart Γ_S is of degree $2m$ and well-defined, for the edges representing $i_0^m(a)$ have labels at most $m - 1$ and the edges representing $i_0^m(b^*)$ have labels at least $m + 1$. Note the 1-handle chart H_b has $2m$ black vertices.

proof. (Step 1) Let us consider a trivial torus knot T^2 in \mathbb{R}^4 as the result of 1-handle surgeries of $S_1 \cup S_2$ along $h_1 \cup h_2$, where S_1 (resp. S_2)
Figure 3.2. The 1-handle braided surface of Γ_T

Figure 3.3. The classical braid \overline{b}^*

is a 2-sphere in \mathbb{R}^4 with a positive (resp. negative) orientation such that S_1 contains S_2, and h_1 (resp. h_2) is a 1-handle attaching to the two spheres trivially in a neighborhood of the north (resp. south) pole (Fig. 3.4).

(Step 2) Deform the two 1-handles and the inner sphere $h_1 \cup h_2 \cup S_2$ by an ambient isotopy of \mathbb{R}^4 to make S_2 have a positive orientation as in Fig. 3.5 where the 1-handle h_1 is as in Fig. 3.6 which has a double point curve with a branch point for each end, and the other 1-handle h_2 is the orientation-reversed mirror image of h_1.

(Step 3) Slide the 1-handle h_2 to the neighborhood of the north pole to make both h_1 and h_2 be in the neighborhood of the north pole, and cut off the two southern hemispheres to obtain the surface braid and the surface link chart of degree 2 as in Fig. 3.7.
Figure 3.8.

Figure 3.9.

(Step 4) Now, consider the trivial torus knot T^2 as the torus-covering-link associated with Γ_T (of degree m) by drawing Γ_T on T^2 (Fig. 3.8). Let us denote the m 1-handles corresponding to h_1 (resp. h_2) by H_1 (resp. H_2). Then H_1 can be deformed to the 1-handle braided surface as in Fig. 3.2, and H_2 to the orientation-reversed mirror image of H_1, and the surface braid will be as in Fig. 3.9. Hence we obtain the surface link chart Γ_S of degree $2m$ as in Fig. 3.1.

The braid index of an oriented surface link F is the minimum degree of simple closed surface braids in \mathbb{R}^4 which are equivalent to F. Kamada showed in [8] that surface links whose braid index is at most three are indeed ribbon, and Shima showed in [15] that the turned spun T^2-knot of a non-trivial classical knot is not ribbon. Hence we obtain the following corollary:

Corollary 3.3. Let S be the torus-covering-link associated with a torus-covering-chart of degree m. Then the braid index of S is equal or less than $2m$. In particular, the braid index of the turned spun T^2-knot of the torus $(2, p)$-knot is four.

Remark. Hasegawa in [5] (10, Part3 “Chart description of twist-spun surface-links”) showed that for the turned spun T^2-link of a closed m-braid, its braid index is at most $3m$.

Example 3.4. Let us consider the torus-covering-chart Γ_T of Example 2.2.2 (Fig. 3.10).
Figure 3.10. The torus-covering-chart Γ_T

Figure 3.11. The 1-handle chart H_b, where $b = \sigma_1^{-3}$

Figure 3.12. The surface link chart Γ_S obtained from Γ_T (degree 4)

The torus-covering-chart Γ_T describes the turned spun T^2-knot of the right-handed trefoil. Its 1-handle chart is as in Fig. 3.11 and the surface link chart Γ_S obtained from Γ_T is as in Fig. 3.12.
REFERENCES

[1] J. Birman, *Braids, links, and mapping class groups*, Ann.Math.Studies 82 (1974) Princeton Univ.Press, Princeton,N.J.
[2] J. Boyle, *The turned torus knot in S^4*, J.Knot Theory Ramifications, 2(1993),239–249
[3] J.S. Carter and M. Saito, *Knotted surfaces and their diagrams*, Mathematical Surveys and Monographs 55(1998) Amer.Math.Soc.
[4] F.A. Garside, *The braid group and other groups*, Quart.J.Math.Oxford(2) 20(1969)235–254
[5] I. Hasegawa, *Chart descriptions of monodromy representations on oriented closed surfaces*, D.Phil. Thesis, Univ.of Tokyo, (2005)
[6] Z. Iwase, *Dehn-surgery along a torus T^2-knot*, Pacific J.Math. 133 (1988) 289–299
[7] Z. Iwase, *Dehn-surgery along a torus T^2-knot II*, Japan.J.Math 16 (1990)171–196
[8] S. Kamada, *Surfaces in R^4 of braid index three are ribbon*, J.Knot Theory Ramifications, 1, No.2 (1992)137–160
[9] S. Kamada, *An observation of surface braids via chart description*, J.Knot Theory Ramifications 4 (1996) 517–529
[10] S. Kamada, *Braid and Knot Theory in Dimension Four*, Math.Surveys and Monographs 95, Amer.Math.Soc., 2002
[11] A. Kawauchi, *A Survey of Knot Theory*, (1996) Birkhäuser Verlag, originally *Knot Theory*, (1990) Springer-Verlag, Tokyo
[12] A. Kawauchi, *On pseudo-ribbon surface-links*, J.Knot Theory Ramifications, 11 No.7(2002) 1043–1062
[13] J.M. Montesinos, *On twins in the four-space I*, Quart.J.Math.Oxford(2), 34 (1983) 171–199
[14] I. Nakamura, *Surface links which are coverings of a trivial torus knot*, arXiv:math.GT/0905.0048v1
[15] A. Shima, *Knotted Klein bottles with only double points*, Osaka.J.Math., 40 (2003), 779–799
[16] M. Teragaito, *Symmetry-span tori in the four sphere*, Knots90, 163–171

Graduate School of Mathematical Sciences, the University of Tokyo
E-mail address: inasa@ms.u-tokyo.ac.jp

10