Risk factors and short and medium-term survival after open and endovascular repair of abdominal aortic aneurysms

Fatores de risco associados e sobrevida em curto e médio prazo de pacientes submetidos a correção aberta e endovascular de aneurisma de aorta abdominal

Seleno Glauber de Jesus-Silva¹, Victor Rodrigues de Oliveira², Melissa Andreia de Moraes-Silva¹, Arturo Eduardo Krupa¹, Rodolfo Souza Cardoso¹

Abstract

Background: Infrarenal abdominal aortic aneurysms (AAA) are responsible for high rates of rupture-associated morbidity and mortality and can be treated by open or endovascular surgery. Objectives: To analyze risk factors and survival associated with surgical and endovascular AAA treatment methods. Methods: A retrospective, longitudinal study involving 41 patients who underwent endovascular or open AAA repair, whether elective or emergency, over a 48-month period, with analysis of preoperative comorbidities, 30-day and 1-year survival, in-hospital mortality, length of hospital stay, transfusion of blood products, duration of surgery, and development of acute kidney failure. Inferential statistics and survival analysis considered a 95% CI and p < 0.05 as significant. Results: Twelve of the 41 patients were treated with open surgery and 29 with endovascular techniques. The majority were male (75%), with an average age of 71 (range: 56 – 90 years). There were no differences in demographic or risk factors between the groups. Overall survival rates for open and endovascular repair were different for both 30 days (37 vs. 72%, p = 0.01) and 360 days (37 vs. 67%, p = 0.01). However, survival rates in elective cases were similar at 30 days (71 vs. 76%, p = 0.44) and 360 days (both 71%, p = 0.34). Endovascular repair showed shorter length of hospital stay (3.0 vs. 4.4 days; p = 0.02) and duration of surgery (111 vs. 163 min; p < 0.01) compared to open repair. Conclusions: There was no difference in short- or medium-term survival of AAA patients treated electively with endovascular or open surgery. Hospital stays and duration of surgery were both shorter with minimally invasive treatment.

Keywords: abdominal aortic aneurysm; risk factors; blood vessel prosthesis implantation; survival analysis.

Resumo

Contexto: Os aneurismas de aorta abdominal (AAA) infrarrenal apresentam alta morbimortalidade associada à ruptura e podem ser tratados por cirurgia aberta ou endovascular. Objetivos: Analisar os fatores de risco e a sobrevida associados aos métodos cirúrgico e endovascular no tratamento do AAA. Métodos: Estudo retrospectivo e longitudinal envolvendo 41 pacientes submetidos à correção endovascular ou aberta do AAA, de forma eletiva ou emergencial, no período de 48 meses. Foi realizada análise de comorbidades pré-operatórias, sobrevida em 30 dias e 1 ano, mortalidade hospitalar, tempo de internação, hemotransfusões, duração da cirurgia e ocorrência de insuficiência renal aguda. A estatística inferencial e a análise de sobrevida foram realizadas considerando intervalo de confiança de 95% e p < 0.05 como significante. Resultados: Dos 41 pacientes, 12 foram submetidos à correção aberta e 29, à endovascular. A maioria eram homens (75%), com média de idade de 71 anos (min. 56, máx. 90 anos). Não houve diferenças de fatores de risco entre os grupos. A sobrevida global dos pacientes foi diferente para os tratamentos aberto e endovascular, tanto em 30 dias (37 vs. 72%; p = 0.01) quanto em 360 dias (37 vs. 67%; p = 0.01), respectivamente. A sobrevida dos casos eletivos em 30 dias (71 vs. 76%; p = 0.44) e 360 dias (ambas 71%; p = 0.34) foram semelhantes. O reparo endovascular apresentou menor tempo de internação (3.0 vs. 4.4 dias; p = 0.02) e duração da cirurgia (111 vs. 163 min; p = 0.005) quando comparado à cirurgia aberta. Conclusões: Não houve diferença na sobrevida em curto e médio prazo dos pacientes com AAA tratados de forma eletiva pelas técnicas endovascular e cirúrgica. Menor tempo de internação e duração da cirurgia foram observados no tratamento minimamente invasivo.

Palavras-chave: aneurisma da aorta abdominal; fatores de risco; implante de prótese vascular; análise de sobrevida.
INTRODUCTION

Infrarenal abdominal aortic aneurysms (AAA) are the most common type and occur in around 2.3% of the general population,1 and as much as 5.96% of men over the age of 60 years. Furthermore, there is a possibility of complications including rupture, when mortality can be as high as 80 to 90%.2 Some risk factors associated with development of AAA are well-defined, such as advanced age, male sex, smoking, family history, and presence of other aneurysms in large vessels.3,4

Open surgical repair is considered effective and definitive and has been performed since 1951. However, this technique is associated with non-negligible morbidity and mortality rates, long periods in hospital, and a need for blood transfusion. Mortality rates associated with elective surgery can range from 5 to 10%.5,6 Endovascular treatments have been in development since 1991 as an alternative option for high-risk patients who cannot be subjected to open surgery. Nowadays, with the accumulation of experience and development of safer and more flexible prostheses, endovascular treatment can be considered the method of choice, even for patients whose surgical risk assessments and anatomic characteristics are favorable for the conventional open surgical technique.6,7 Controlled trials and cohort studies have shown lower short-term perioperative morbidity and mortality with endovascular repair than with open surgical repair. However, the long-term survival curves for the two techniques are similar. The incidence of reinterventions is also higher after endovascular repair than after open surgical repair.6,11

In view of the scarcity of published data from Brazil on the comparative outcomes of the two techniques used to manage AAA, the objective of this study is to analyze the main risk factors and the short (up to 30 days) and medium-term (up to 1 year) survival of patients treated with open and endovascular repair in a quaternary hospital. The study was approved by the institution’s Research Ethics Committee under protocol number 2.069.326.

METHODS

This is a retrospective study conducted by analysis of the medical records of 45 patients treated with open or endovascular repair of infrarenal AAA from March 2013 to March 2017 in a quaternary hospital. There was no formal randomization of the patients treated at this service to choose the method employed (open or endovascular repair). However, the decision of which technique to use was taken in team meetings after analysis of tomographic anatomy, comorbidities, and surgical risk assessments. Elective patients with favorable anatomy (proximal neck > 25 mm in length or angle < 60° and external iliac arteries with diameter > 7 mm) or those with borderline anatomy (proximal neck from 15 to 25 mm in length or angle from 60° to 70°), but with a high surgical risk, were treated using the minimally invasive technique. The remaining elective cases were treated with open surgery. For urgent cases (ruptured or acutely expanding aneurysms), the technique was chosen based on stability of clinical status, favorability of anatomy, and immediate availability of endoprostheses.

Each patient studied only underwent one aneurysm repair procedure. Data on a total of 10 preoperative clinical variables and eight postoperative clinical variables were collected and input to an electronic spreadsheet. Four medical records for surgical patients were incomplete (two did not contain data on duration of surgery, one did not have complete laboratory test results, and one did not have an accessible imaging exam that could be used to analyze aneurysm diameter) and were excluded from the study, leaving a total of 41 medical records for analysis. Correlations between the anatomic characteristics of the aneurysms and their outcomes were not studied because there was incomplete availability of examinations that could be used for reconstruction.

Systemic arterial hypertension was defined as pressure greater than 140 × 90 mmHg or continuous use of antihypertensive; diabetes mellitus as fasting glycemia > 106 mg/dL or use of hypoglycemics; smoking as prior or current use of tobacco or derivatives; kidney failure as creatinine clearance < 60 mL/min or serum creatinine > 1.5 mg/dL.; and peripheral arterial occlusive disease as an ankle-brachial index < 0.9 or evident clinical signs of arterial occlusion. Other parameters analyzed were history of acute myocardial infarction less than 6 months previously, stroke, angina, abdominal pains, and aneurysm diameter. Ruptured AAA were diagnosed with imaging exams (ultrasound or computed tomography). The data collected for variables after AAA repair were hospital mortality (occurring during the surgical procedure or in the immediate postoperative period), overall mortality (death from any cause, outside of the hospital setting, after discharge), time in an intensive care unit for less than 24 hours, need for blood transfusion intraoperatively or postoperatively, acute kidney failure (increase of 0.5 mg/dL or increase of 25% over baseline), length of hospital stay after AAA repair, and duration of surgery. The follow-up period chosen for survival analysis was up to 360 days.

The descriptive statistics calculated were means and standard deviations. Intergroup inferential analysis...
(open surgery vs. endovascular repair) was conducted using Student’s t test for independent samples, the Mann-Whitney test or Fisher’s exact test. Survival was analyzed using Kaplan-Meier curves with the log-rank test for comparison between groups. Graphpad Prism version 7.0c was used, with 95% confidence interval (CI) and statistical significance to p < 0.05.

RESULTS

Twenty-nine of the 41 patients treated for AAA underwent endovascular repair and 12 underwent open surgery. The majority were male (n = 29; 70.7%) and the mean age of the patients was 71 (range 56-90 years). Fourteen patients died during the study period. Nine cases (22%) involved ruptured AAA, among whom two out of four patients treated with endovascular procedures survived, while four out of five patients treated with open surgery died in the immediate postoperative period. Up to the end of the period studied, just one of the open surgery cases and nine endovascular treatment cases were still in outpatient follow-up.

Table 1 lists the risk factors for both groups of patients. No statistical differences between the groups were detected. Table 2 shows the comparison between the postoperative characteristics of the groups of patients treated with open and endovascular surgery. It was observed that overall hospital mortality, length of hospital stay, and duration of surgery were all statistically lower in the endovascular treatment group. The length of hospital stay analysis only included patients who were actually discharged from hospital, with a median of 4 days for open surgery (range: 3-6 days) and 2 days for endovascular treatment (range: 1-10 days).

Table 1. Preoperative risk factors observed in open surgery and endovascular repair groups.

Risk factors	Open		Endovascular		p
	n	%	n	%	
Sex					
Male	8	67	23	79	0.44
Female	4	33	6	21	
Age (years)	69	7.2 (SD)	72	9.5 (SD)	0.32
SAH	10	83	23	79	0.99
Diabetes mellitus	1	8.3	6	20.7	0.65
Smoking	10	83	6	55	0.15
CKF	1	8.3	7	24	0.40
AMI < 6 m	0	0	2	8.3	0.54
Angina	2	17	2	6.9	0.56
Stroke	0	0	1	3.6	0.99
PAOD	1	8.3	5	18	0.64
Abdominal pain	7	58	13	44	0.50
Ruptured AAA	5	42	4	14	0.09
Aneurysm diameter (cm)	6.8	2.3 (SD)	6.1	1.7 (SD)	0.30

AAA, abdominal aortic aneurysm; PAOD, peripheral arterial occlusive disease; SD, standard deviation; SAH, systemic arterial hypertension; AMI, acute myocardial infarction; CKF, chronic kidney failure.

Table 2. Comparison of outcome variables in treatment groups (open surgery and endovascular repair).

Outcomes	Open		Endovascular		p
	n	%	n	%	
Hospital mortality	7	58	4	14	0.006
Overall mortality (1 year)*	7	58	7	24	0.06
Hospital mortality (elective patients)	2	29	2	8	0.18
ICU < 24 h	1	6.7	5	31	0.17
Blood transfusion	6	60	10	34	0.26
Post-procedure AKF	2	20	6	21	0.99
Length of hospital stay (days)*	4.4	1.1 (SD)	3.0	1.9 (SD)	0.02
Duration of surgery (min)	163	36 (SD)	115	46 (SD)	0.005

SD, standard deviation; AKF, acute kidney failure; ICU, intensive care unit; *Excluding in-hospital deaths.
Survival was analyzed both for the entire sample (combining urgent and elective cases) and for elective cases only, for short (up to 30 days) and medium term (up to 1 year), and for both types of treatment, open and endovascular (Figure 1). A significant difference in global survival was observed for patients treated with endovascular techniques, irrespective of follow-up period. However, when only the elective cases were analyzed there was no difference in short or medium-term survival. Thirty-day survival among elective cases was 71% after open surgery and 76% after endovascular repair ($p = 0.44$), and at 360 days the rates were both 71% ($p = 0.34$). In the analysis of all patients treated, 30-day survival was 37% for open repair and 72% for endovascular repair ($p = 0.01$) and 360-day survival rates were 37% and 67%, respectively ($p = 0.01$).

DISCUSSION

Whereas open AAA repair was first achieved in 1951 by Dubost and has remained a standard treatment ever since, endovascular repair was not conducted successfully until 1990, by Parodi et al. Since then it has become an alternative option to open surgery. The endovascular procedure was developed with the objective of offering a less traumatic treatment for aneurysm repair, as an option for use in the elderly, high risk patients, and those with concurrent diseases that impact on the risk of the conventional procedure. It has a high success rate and fewer perioperative complications than open surgical repair. Complications are generally related to technical issues, such as difficulty with vascular access or with placement of the prosthesis, structural integrity, migration of the prosthesis, and endoleaks. However, conversion to open repair is rare and when late complications occur they can also be treated with endovascular techniques. Currently, the preferred indication is the minimally invasive technique and open surgery is reserved for those patients in whom the anatomic conditions for implantation of an endoprosthesis are not present or who have an unstable, ruptured AAA. This is corroborated by our findings showing no statistical differences between the epidemiological characteristics of the two groups.

Even when treated with open surgical repair, patients with ruptured AAA have mortality of approximately...
50%, a rate that has not changed over recent years.15 Patients with AAA with maximum transverse diameters from 5.5 to 5.9 cm have an annual rupture rate of 9.4%, which can rise up to 32.5% if the aneurysm reaches 7 cm.16 However, open surgical repair involves prolonged recovery times and non-negligible perioperative mortality rates,17 with variable rates, for example, 3.1% in the United Kingdom.18 Some Brazilian publications report similar results, with rates of 3.3 to 5.3%.19,21 However, depending on the anatomic configuration of the aorta and the access arteries, in cases with a short proximal neck, tortuosity, and dilatation, or where iliac vessels are tortuous or narrow, open repair is necessary.

A retrospective Brazilian study of patients who received endovascular treatment from June 1996 to February 2004, based on analysis of a database from the European Collaborators on Stent-graft Techniques for Abdominal Aortic Aneurysm Repair (EUROSTAR) project, found that mean duration of the procedure was 137 minutes (25 to 287 min) and mean hospital stay was 6 days (0 to 163).22 In the present study, the median length of hospital stay was shorter for endovascular treatment (2 days) than for open surgery (4 days) and both were shorter than the study just cited. This could be because of improved techniques and materials and consolidation of the surgical team’s organization. The mean duration of the endovascular procedure was also shorter (115 min), for similar reasons. In the more recent EVAR-1 study,23 duration of endovascular treatment was also no longer than for open repair, in agreement with what was observed in our study.

After the EVAR-1 study was conducted,21 reduced perioperative mortality was confirmed (4.7% for open repair vs. 1.7% for endovascular repair). Another controlled and randomized study reported a lower rate for the endovascular technique (1.2 vs. 4.6%).24 In Brazil, Mendonça et al.25 compared open treatment with endovascular repair for AAA with favorable anatomy. Mortality was 6.45% for open treatment and 5.55% for endovascular treatment, with no statistically significant difference. In the present study we also did not observe a difference in in-hospital mortality between open and endovascular elective cases (29 vs. 8%, respectively; p = 0.18) or any difference in 30-day mortality (71 vs. 76%; p = 0.44).

Goshima et al.26 claim that the standard result for open repair should be 3.1% and in their study there was zero mortality with endovascular treatment. Nevertheless, when the same authors presented results for complex cases, they reported hospital mortality of 14.1%, similar to our study, which included patients with ruptured aneurysms. In the EVAR-2 study27,28 patients who were not suitable for open repair were randomized to endovascular treatment or clinical follow-up and 30-day mortality in the operated group was 9% (5-15%; 95%CI). This reinforces the idea that more complex cases can have higher mortality rates even when treated with endovascular repair. In our study, we found a similar situation, with a high 30-day mortality rate, even among elective cases and those treated with endovascular methods. In addition to taking into account the fact that we treat patients with high surgical risk, referred from other towns and without adequate control of risk factors, the fact that this is a teaching hospital with a multidisciplinary learning curve for treatment of aortic disease also introduces a bias that should not be ignored.

The Dutch multicenter DREAM study24 also showed a tendency for lower operative mortality (within 30 days) with endovascular treatment when compared with open surgery. However, in our study it was observed that patients treated electively in both groups did not exhibit differences in survival at 30 days or at 360 days. The nonrandomized technique selection will have played a fundamental role in the similar survival rates in both groups.

Notwithstanding, 2 and 4-year follow-up results from the DREAM and the EVAR-1 studies showed similar long-term mortality in both groups.27,29 In our study, there was a difference in overall survival between the two groups (ruptures + elective patients) during the first 30 days, but over the medium term the results equaled out, in common with the study mentioned above.

Points that could be considered negative in relation to this retrospective study include the small number of cases, the loss to follow-up of patients who live in other micro-regions and the missing information on risk factors in some of the medical records analyzed. To improve understanding of the subject covered in this study, it is necessary to conduct studies with larger numbers of patients, preferably with multicenter collaborations, defining prospective protocols and conducting long-term follow-up (5 years).

\section*{CONCLUSIONS}

We observed that patients who underwent elective endovascular treatment exhibited short and medium-term survival that was similar to those treated with elective open surgery. Length of hospital stay, duration of surgery, and in-hospital mortality were lower in the endovascular group. There were no differences in epidemiological characteristics or in the presence of risk factors between patients treated with the two types of techniques and the choice of treatment was based on anatomic criteria and the surgeon’s judgment.
REFERENCES

1. Puech-Leão P, Molnar LJ, Oliveira IR, Cerri GG. Prevalence of abdominal aortic aneurysms—a screening program in São Paulo, Brazil. Sao Paulo Med J. 2004;122(4):158-60. http://dx.doi.org/10.1590/S1516-31802004000400005. PMid:15543370.

2. Gawenda M, Brunkwall J. Ruptured abdominal aortic aneurysm: the state of play. Dtsch Arztebl Int. 2012;109(43):727-32. http://dx.doi.org/10.3238/arztebl.2012.0727. PMid:23181137.

3. Chaikof EL, Brewster DC, Dalman RL, et al. The care of patients with an abdominal aortic aneurysm: The Society for Vascular Surgery practice guidelines. J Vasc Surg. 2009;50(4):52-549. http://dx.doi.org/10.1016/j.jvs.2009.07.002.

4. Moll FL, Powell JT, Faederich G, et al. Management of abdominal aortic aneurysms clinical practice guidelines of the European Society for Vascular Surgery. Eur J Vasc Endovasc Surg. 2011;41(5):S51-58. http://dx.doi.org/10.1016/j.ejvs.2010.09.011.

5. Novero ER, Metzger PB, Angelieri F, et al. Correção endovascular do aneurisma da aorta abdominal: análise dos resultados de único centro. Radiol Bras. 2012;45(1):1-6. http://dx.doi.org/10.1590/S0140-6736(12)0001000003.

6. Mastracci TM, Cinà CS. Canadian Society for vascular surgery. Screening for abdominal aortic aneurysm in Canada: review and position statement of the Canadian Society for Vascular Surgery. J Vasc Surg. 2007;45(6):1268-76. http://dx.doi.org/10.1016/j.jvxs.2007.02.041. PMid:17543696.

7. Chuter TA, Reilly LM, Faruqi RM, et al. Endovascular aneurysm repair in high-risk patients. J Vasc Surg. 2000;31(1Pt 1):122-33. http://dx.doi.org/10.1016/S0741-5214(00)70074-7. PMid:10642715.

8. Sicard GA, Zwołak RA, Sidaway AN, White RA, Siami FS. Society for Vascular Surgery Outcomes Committee. Endovascular abdominal aortic aneurysm repair: long-term outcome measures in patients at high-risk for open surgery. J Vasc Surg. 2006;44(2):229-36. http://dx.doi.org/10.1016/j.jvxs.2006.04.034. PMid:16690242.

9. Matsumura JS, Brewster DC, Makaroun MS, Nafte1 DC. A multicenter controlled clinical trial of open versus endovascular treatment of abdominal aortic aneurysm. J Vasc Surg. 2003;37(2):262-71. http://dx.doi.org/10.1016/S0741-5214(02)01076-7. PMid:12563194.

10. Alsac JM, Houballah R, Francis F, et al. Impact of the introduction of the endograft for abdominal aortic aneurysm: a review of causes, incidence, results, and surgical techniques of reconstruction. J Endovasc Ther. 2010;17(6):694-702. http://dx.doi.org/10.1583/1545-1550.17.6.694. PMid:21142475.

11. Hoornweg LL, Storm-Versloot MN, Lubinski OT, Koelmay-M Legemate DA, Balm R. Meta-analysis on mortality of ruptured abdominal aortic aneurysms. Eur J Vasc Endovasc Surg. 2008;35(5):S58-S70. http://dx.doi.org/10.1016/j.ejvs.2007.11.019. PMid:18226567.

12. Lederle FA, Johnson GR, Wilson SE, et al. Rupture rate of large abdominal aortic aneurysms in patients refusing or unfit for elective repair. JAMA. 2002;287(22):2968-72. http://dx.doi.org/10.1001/jama.287.22.2968. PMid:12052126.

13. Lee WA, Carter JW, Upchurch G, Seeger JM, Huber TS. Perioperative outcomes after open and endovascular repair of intact abdominal aortic aneurysms in the United States during 2001. J Vasc Surg. 2004;39(3):491-6. http://dx.doi.org/10.1016/j.jvxs.2003.12.001. PMid:14981436.

14. Watson S, Johal A, Heikkela K, Cromwell D, Lofthus J, Boyle JR. National Vascular Registry: 2017 Annual Report. London: The Royal College od Surgeons of England; 2017.

15. Becker M, Bonamigdo TP, Faccini FP. Avaliação da mortalidade cirúrgica em aneurismas infra-renais da aorta abdominal. J Vasc Bras. 2002;1(1):15-21.

16. Menezes FH, Luccas CG, Matsui IA. Sobrevivida tardia de pacientes submetidos à correção aberta eletiva de aneurisma de aorta abdominal. J Vasc Bras. 2007;6(3):178-83. http://dx.doi.org/10.1590/S1677-54492007000300004.

17. Carvalho AT, Santos VP, Razuk AV Fo, et al. Morbidity and mortality factors in the elective surgery of infrarenal abdominal aortic aneurysm: a case study with 134 patients. J Vasc Bras. 2008;7(3):1-14.

18. Koning GG, Vallaebhneni SR, Van Marrewijk CJ, Leurs Lj, Laheij RJ, Buth J. Mortalidade relacionada ao tratamento endovascular do aneurisma da aorta abdominal com o uso dos modelos revisados. Rev Bras Cir Cardiovasc. 2007;22(1):7-13. http://dx.doi.org/10.1590/S1677-54492007000300004.

19. Prinsen M, Verhoeven EL, Bush J, et al. A randomised trial comparing conventional and endovascular repair of abdominal aortic aneurysms ("DREAM"). N Engl J Med. 2004;351(16):1607-18. http://dx.doi.org/10.1056/NEJMoa042002. PMid:15483279.

20. Mendonça CT, Moreira RCR, Timi JRR, et al. Comparaçãο entre os tratamentos aberto e endovascular dos aneurismas da aorta abdominal em pacientes de alto risco cirúrgico. J Vasc Bras. 2005;4(3):160-7. http://dx.doi.org/10.1590/S1677-54492005000300004.

21. Greenhalgh RM, Brown LC, Kwong GR, Powell JT, Thompson SG. Comparison of endovascular aneurysm repair with open repair in patients with abdominal aortic aneurysm (EVAR trial 1). 30-day operative mortality results: randomised controlled trial. Lancet. 2004;364(9437):843-8. http://dx.doi.org/10.1016/S0140-6736(04)61979-1. PMid:15351191.

22. Parodi JC, Palmaz JC, Barone HD. Transfemoral intraluminal graft implantation for abdominal aortic aneurysms. Ann Vasc Surg. 1999;15(6):491-9. http://dx.doi.org/10.1007/BF02015271. PMid:1837729.

23. Gabrielli L, Baudo M, Molinari A, Domanin M. Early complications in endovascular treatment of abdominal aortic aneurysm. Acta Chir Belg. 2004;104(5):519-26. http://dx.doi.org/10.1080/000154 S2004.11679608. PMid:15571017.

24. Moulaokal KG, Dalainas I, Mylonas S, Giannakopoulos TG, Avgineros ED, Liapis CD. Conversion to open repair after endografting for abdominal aortic aneurysm: a review of causes, incidence, results, and surgical techniques of reconstruction. J Endovasc Ther. 2005;67(2):228-34. http://dx.doi.org/10.1590/S1677-54492005000300004.

25. Goshima KR, Mills JL Sr, Awarl K, Pike SL, Hughes JD. Measure what matters: institutional outcome data are superior to the use of surrogate markers to define “center of excellence” for abdominal aortic aneurysm repair. Ann Vasc Surg. 2008;22(3):328-34. http://dx.doi.org/10.1016/j.jvxs.2007.09.013. PMid:18411029.

26. EVAR trial participants. Endovascular aneurysm repair and outcome in patients unfit for open repair of abdominal aortic aneurysm (EVAR trial 2): randomised controlled trial. Lancet. 2005;365(9478):2187-92. http://dx.doi.org/10.1016/S0140-6736(05)66628-7. PMid:15978926.

27. Greenhalgh RM, Brown LC, Powell JT, Thompson SG, Epstein D. Endovascular repair of aortic aneurysm in patients physically ineligible for open repair. N Engl J Med. 2010;362(20):1872-80. http://dx.doi.org/10.1056/NEJMoa0911056. PMid:20382982.
29. Blankensteijn JD, de Jong SE, Prinssen M, et al. Two-year outcomes after conventional or endovascular repair of abdominal aortic aneurysms. N Engl J Med. 2005;352(23):2398-405. http://dx.doi.org/10.1056/NEJMoa051255. PMid:15944424.
Fatores de risco associados e sobrevida em curto e médio prazo de pacientes submetidos a correção aberta e endovascular de aneurisma de aorta abdominal

Risk factors and short and medium-term survival after open and endovascular repair of abdominal aortic aneurysms

Seleno Glauber de Jesus-Silva¹, Victor Rodrigues de Oliveira², Melissa Andreia de Moraes-Silva¹, Arturo Eduardo Krupa¹, Rodolfo Souza Cardoso¹

Resumo

Contexto: Os aneurismas de aorta abdominal (AAA) infrarrenal apresentam alta morbimortalidade associada à ruptura e podem ser tratados por cirurgia aberta ou endovascular. Objetivos: Analisar os fatores de risco e a sobrevida associados aos métodos cirúrgico e endovascular no tratamento do AAA. Métodos: Estudo retrospectivo e longitudinal envolvendo 41 pacientes submetidos à correção endovascular ou aberta do AAA, de forma eletiva ou emergencial, no período de 48 meses. Foi realizada análise de comorbidades pré-operatórias, sobrevida em 30 dias e 1 ano, mortalidade hospitalar, tempo de internação, hemotransfusões, duração da cirurgia e ocorrência de insuficiência renal aguda. A estatística inferencial e a análise de sobrevida foram realizadas considerando intervalo de confiança de 95% e p < 0.05 como significante.

Resultados: Dos 41 pacientes, 12 foram submetidos à correção aberta e 29, à endovascular. A maioria eram homens (75%), com média de idade de 71 anos (min. 56, máx. 90 anos). Não houve diferenças de fatores de risco entre os grupos. A sobrevida global dos pacientes foi diferente para os tratamentos aberto e endovascular, tanto em 30 dias (37 vs. 72%; p = 0.01) quanto em 360 dias (37 vs. 67%; p = 0.01), respectivamente. A sobrevida dos casos eletivos em 30 dias (71 vs. 76%; p = 0.44) e 360 dias (ambas 71%; p = 0.34) foram semelhantes. O reparo endovascular apresentou menor tempo de internação (3.0 vs. 4.4 dias; p = 0.02) e duração da cirurgia (111 vs. 163 min; p = 0.005) quando comparado à cirurgia aberta. Conclusões: Não houve diferença na sobrevida em curto e médio prazo dos pacientes com AAA tratados de forma eletiva pelas técnicas endovascular e cirúrgica. Menor tempo de internação e duração da cirurgia foram observados no tratamento minimamente invasivo.

Palavras-chave: aneurisma da aorta abdominal; fatores de risco; implante de prótese vascular; análise de sobrevida.

Abstract

Background: Infrarenal abdominal aortic aneurysms (AAA) are responsible for high rates of rupture-associated morbidity and mortality and can be treated by open or endovascular surgery. Objectives: To analyze risk factors and survival associated with surgical and endovascular AAA treatment methods. Methods: A retrospective, longitudinal study involving 41 patients who underwent endovascular or open AAA repair, whether elective or emergency, over a 48-month period, with analysis of preoperative comorbidities, 30-day and 1-year survival, in-hospital mortality, length of hospital stay, transfusion of blood products, duration of surgery, and development of acute kidney failure. Inferential statistics and survival analysis considered a 95% CI and p < 0.05 as significant. Results: Twelve of the 41 patients were treated with open surgery and 29 with endovascular techniques. The majority were male (75%), with an average age of 71 (range 56 – 90 years). There were no differences in demographic or risk factors between the groups. Overall survival rates for open and endovascular repair were different for both 30 days (37 vs. 72%; p = 0.01) and 360 days (37 vs. 67%, p = 0.01). However, survival rates in elective cases were similar at 30 days (71 vs. 76%, p = 0.44) and 360 days (both 71%, p = 0.34). Endovascular repair showed shorter length of hospital stay (30 vs. 4.4 days; p = 0.02) and duration of surgery (111 vs. 163 min; p < 0.01) compared to open repair. Conclusions: There was no difference in short- or medium-term survival of AAA patients treated electively with endovascular or open surgery. Hospital stays and duration of surgery were both shorter with minimally invasive treatment.

Keywords: abdominal aortic aneurysm; risk factors; blood vessel prosthesis implantation; survival analysis.
INTRODUÇÃO

Os aneurismas de aorta abdominal (AAA) infrarrenal são os mais comuns e ocorrem em cerca de 2,3% da população geral,1 podendo chegar a 5,96% em homens acima de 60 anos. Além disso, há chance de complicações como ruptura, cuja mortalidade pode chegar de 80 a 90%.2 Alguns fatores de risco associados ao desenvolvimento do AAA já são bem definidos, como idade avançada, sexo masculino, tabagismo, história familiar e presença de outros aneurismas em grandes vasos.3,4

A correção cirúrgica aberta é considerada efetiva e definitiva, sendo realizada desde 1951. No entanto, a técnica possui taxas de morbimortalidade não desprezíveis, com internação prolongada e necessidade de hemotransfusão. A mortalidade na cirurgia eletiva pode alcançar de 5 a 10%.5,6 O tratamento endovascular desenvolveu-se a partir de 1991 como uma alternativa para os pacientes de alto risco que não poderiam se submeter à cirurgia aberta. Atualmente, com a experiência acumulada e o desenvolvimento de próteses mais seguras e flexíveis, o tratamento endovascular pode ser considerado como o de escolha, mesmo em pacientes de risco cirúrgico e características anatômicas favoráveis à técnica cirúrgica aberta convencional.6,7 Ensaio controlado e estudos de coorte têm mostrado menor morbidade e mortalidade perioperatoriais em curto prazo da correção endovascular em relação ao reparo cirúrgico aberto. Entretanto, a curva de sobrevida em longo prazo de ambas as técnicas tem se mostrado semelhante. Nota-se ainda maior incidência de reintervenções no reparo endovascular quando comparado ao reparo cirúrgico aberto.6,11

Em virtude da escassez de dados na literatura nacional a respeito da evolução comparativa entre as duas técnicas empregadas no manejo do AAA, o presente estudo tem como objetivo analisar os principais fatores de risco associados e as sobrevidas em curto (até 30 dias) e médio prazo (até 1 ano) dos pacientes submetidos à correção aberta e endovascular em hospital quaternário. O estudo foi aprovado pelo Comitê de Ética em Pesquisa da instituição sob o número 2.069.326.

MÉTODOS

Este estudo retrospectivo foi realizado por meio de análise de prontuários de 45 pacientes submetidos a correção aberta ou endovascular de AAA infrarrenal no período de março de 2013 a março de 2017, em hospital quaternário. Não houve randomização formal dos pacientes tratados no serviço para escolha do método, aberto ou endovascular. Entretanto, a decisão da técnica foi tomada em conjunto com os membros da equipe, após análise da anatomia tomográfica, das comorbidades e do risco cirúrgico. Os pacientes eletivos com anatomia favorável (colo proximal > 25 mm de extensão ou ângulo < 60º e artérias ilíacas externas com diâmetro > 7 mm) ou aqueles com anatomia limitrofe (colo proximal entre 15 e 25 mm de extensão ou ângulo entre 60º e 70º), mas com risco cirúrgico elevado foram submetidos à técnica minimamente invasiva. Os demais casos eletivos foram submetidos à cirurgia aberta. Os casos urgentes (aneurismas rotos ou em expansão aguda) tiveram a indicação da técnica baseada na estabilidade do quadro clínico, anatomia favorável e disponibilidade imediata da endoprótese. Cada paciente estudado foi submetido a somente um procedimento de correção de aneurisma. Foram pesquisados 10 dados clínicos pré-operatórios e oito dados clínicos pós-operatórios, que foram inseridos em planilha eletrônica. Quatro prontuários de pacientes cirúrgico foram incompletos (dois não possuíam dados de tempo de cirurgia, um não possuía exames laboratoriais completos disponíveis e um não possuía exame de imagem acessível para análise do diâmetro do aneurisma) e foram excluídos do estudo, totalizando 41 prontuários para serem analisados. A correlação entre as características anatômicas dos aneurismas tratados e sua evolução não foi estudada devido à indisponibilidade de exames completos para reconstrução em todos os casos.

A hipertensão arterial sistêmica foi definida como pressões maiores que 140 x 90 mmHg ou uso contínuo de anti-hipertensivos; diabetes melito como glicemia de jejum > 106 mg/dL ou uso de hipoglicemiantes; tabagismo como uso prévio ou atual de tabaco ou derivados; insuficiência renal como clearance de creatinina < 60 mL/min ou creatinina sérica > 1,5 mg/dL; e doença arterial obstrutiva periférica como índice tornozelo-braquial < 0,9 ou sinais clínicos evidentes de oclusão arterial. Outros parâmetros pesquisados foram história de infarto agudo do miocárdio inferior a 6 meses, acidente vascular cerebral, angina, dor abdominal e diâmetro do aneurisma. O AAA roto foi diagnosticado por meio de exame de imagem (ultrassom ou tomografia computadorizada).

As características de evolução após a correção do AAA pesquisadas foram mortalidade hospitalar (ocorrida durante o procedimento cirúrgico ou no pós-operatório imediato), mortalidade geral (morte por qualquer causa, fora de ambiente hospitalar, após a alta), tempo em unidade de terapia intensiva menor que 24 horas, necessidade de transfusão sanguínea no intra e pós-operatório, insuficiência renal aguda (aumento de 0,5 mg/dL ou aumento em 25% no valor basal), tempo de internação hospitalar após realização da correção do AAA e duração da cirurgia. O tempo...
de seguimento proposto para o cálculo de sobrevida foi de até 360 dias.

A estatística descritiva foi obtida por média e desvio padrão. A análise inferencial intergrupos (cirurgia aberta e endovascular) foi realizada pelos testes t de Student para amostras independentes, Mann-Whitney ou exato de Fisher. A análise de sobrevida foi obtida pela curva de Kaplan-Meier com teste de log-rank para comparação entre os grupos. Foi utilizado o software Graphpad Prism, versão 7.0c, com intervalo de confiança (IC) de 95% e significância estatística com p < 0,05.

RESULTADOS

Do total de 41 pacientes submetidos ao tratamento do AAA, 29 fizeram correção endovascular e 12 fizeram correção aberta. A maioria era do sexo masculino (n = 29; 70,7%) e a média de idade dos pacientes foi de 71 anos (mín. 56, máx. 90 anos). Do total dos procedimentos realizados, 14 pacientes foram a óbito no período de estudo. Nove casos (22%) eram AAA rotos, sendo que dois de quatro pacientes sobreviveram após o procedimento endovascular, enquanto quatro de cinco pacientes submetidos à cirurgia aberta faleceram no pós-operatório imediato. Até o período estudado, somente um caso de cirurgia aberta e nove de tratamento endovascular ainda mantinham acompanhamento ambulatorial.

A Tabela 1 mostra os diferentes fatores de risco presentes em ambos os grupos de pacientes tratados. Não foi possível observar diferença estatística entre os grupos. A Tabela 2 mostra a comparação entre as características pós-operatórias presentes nos grupos de pacientes submetidos à cirurgia aberta e endovascular. Foi observado que mortalidade hospitalar geral, tempo de internação e tempo de

Tabela 1. Fatores de risco pré-operatórios observados nos grupos de cirurgia aberta ou endovascular.
Fatores de risco
Sexo
Masculino
Feminino
Idade (anos)
HAS
HAS
Diabetes melito
Tabagismo
Dor abdominal
AAA roto
Diâmetro aneurisma (cm)

AAA, aneurisma de aorta abdominal; AVC, acidente vascular cerebral; DAOP, doença arterial obstrutiva periférica; DP, desvio padrão; HAS, hipertensão arterial sistêmica; IAM, infarto agudo do miocárdio; IRC, insuficiência renal crônica.

Tabela 2. Comparação das variáveis pós-operatórias entre os grupos tratados (cirurgia aberta e endovascular).
Evolução
Mortalidade hospitalar
Mortalidade geral (em 1 ano)*
Mortalidade hospitalar (eletivos)
UTI < 24 h
Transfusão sanguínea
IRA pós-procedimento
Tempo de internação (dias)*
Tempo de cirurgia (min)

DP, desvio padrão; IRA, insuficiência renal aguda; UTI, unidade de terapia intensiva; *Excluding os óbitos intra-hospitalares.
Sobrevida no tratamento do AAA

A sobrevida dos pacientes tratados foi analisada de forma global (agrupando todos os casos eletivos e urgentes) e somente com os casos eletivos, tanto no curto (até 30 dias) quanto no médio prazo (até 1 ano), para ambos os tipos de tratamento, aberto ou endovascular (Figura 1). Foi observada uma diferença significativa na sobrevida global dos pacientes tratados por via endovascular, independentemente do tempo de acompanhamento. Entretanto, quando analisados somente os casos eletivos, não houve diferença na sobrevida em curto ou médio prazo. A sobrevida dos casos eletivos em 30 dias foi de 71% na cirurgia aberta e 76% na endovascular (p = 0,44), enquanto em 360 dias ambas foram de 71% (p = 0,34), respectivamente. Na análise de todos os pacientes tratados, a sobrevida em 30 dias foi de 37% para o reparo aberto e 72% para o endovascular (p = 0,01), enquanto em 360 dias foi de 37% e 67%, respectivamente (p = 0,01).

DISCUSSÃO

Apesar de a correção aberta do AAA ter sido iniciada em 1951 com Dubost e ter se mantido como terapia padrão ao longo dos anos, o reparo endovascular foi realizado com êxito somente em 1990 por Parodi et al. Desde então, tem sido alternativa ao reparo cirúrgico aberto. O procedimento endovascular foi desenvolvido com a finalidade de oferecer um tratamento menos traumático para correção de aneurismas, como uma opção para idosos, pacientes de alto risco e com doenças associadas que interfeririam no risco do procedimento convencional. Apresenta uma alta taxa de sucesso e menores complicações perioperatorias em comparação ao reparo cirúrgico aberto. Suas complicações geralmente estão relacionadas a algum aspecto técnico, como dificuldade no acesso vascular e na colocação da prótese, integridade estrutural, migração da prótese e endoleaks (vazamentos). Entretanto, a conversão para o reparo cirúrgico aberto é rara e, quando ocorrem, as complicações tardias podem ser tratadas por técnicas endovasculares. Atualmente, a indicação preferencial é pela técnica minimamente invasiva, sendo a cirurgia aberta restrita àqueles pacientes sem condições anatômicas para o implante de endoprótese.

Figura 1. Curvas de sobrevida de Kaplan-Meier com teste log-rank para os pacientes tratados. Em a e b, a curva de sobrevida global para todos os pacientes (eletivos e urgentes), para 30 e 360 dias, evidencia diferença significativa entre os grupos. Em c e d, a análise isolada dos pacientes eletivos não aponta diferença de sobrevida relacionada à técnica de tratamento empregada.
ou aos portadores de AAA roto instáveis. Isso corrobora os nossos achados de inexistência de diferença estatística entre as características epidemiológicas entre os dois grupos.

Mesmo quando submetidos ao reparo cirúrgico aberto, os pacientes com AAA roto apresentam mortalidade de aproximadamente 50%, taxa esta que não tem se alterado ao longo dos últimos anos.15 Pacientes com AAA cujo diâmetro transverso médio mede entre 5,5 e 5,9 cm apresentam taxa anual de ruptura de 9,4%, que pode chegar a 32,5% quando o aneurisma atinge 7 cm.16 No entanto, o reparo cirúrgico aberto envolve recuperação prolongada e mortalidade perioratória não desprezível,17 com taxas variáveis, apresentando valor médio de 3,1% no Reino Unido.18 Entre alguns autores brasileiros, encontramos resultados semelhantes com taxas de 3,3 a 5,3%.19-21 Porém, dependendo da configuração anatômica da aorta e das artérias de acesso, em caso de colo proximal mais curto, tortuoso e dilatado, bem como também vasos ilíacos tortuosos e estreitos, há a necessidade de correção aberta.

Em um estudo brasileiro retrospectivo de pacientes que foram submetidos ao tratamento endovascular entre junho de 1996 e fevereiro de 2004, com base na análise de banco de dados do projeto European Collaborators on Stent-graft Techniques for Abdominal Aortic Aneurysm Repair (EUROSTAR), mostrou-se uma duração média do procedimento de 137 minutos (25 a 287 min) e internação hospitalar média de 6 dias (0 a 163).22 No presente estudo, foi possível observar uma mediana do tempo de internação menor no tratamento endovascular (2 dias) em comparação à cirurgia aberta (4 dias), ambas menores que no estudo acima citado. Isso pode ser indicativo de melhoria das técnicas, materiais e consolidação da organização da equipe cirúrgica. O tempo médio de procedimento endovascular também foi menor (115 min), acompanhando o mesmo raciocínio. No estudo EVAR-1,23 mais recentemente, a duração do tratamento endovascular também não foi superior à correção aberta, o que concorda com o que foi observado no nosso estudo.

Após a realização do EVAR-1,23 ficou comprovada a redução da mortalidade perioratória (4,7% para o reparo aberto vs. 1,7% para o endovascular). Em outro estudo controlado e randomizado, a taxa foi menor com a técnica endovascular (1,2 vs. 4,6%).24 Em nosso meio, Mendonça et al.25 compararam o tratamento aberto com o endovascular para o AAA com anatomia favorável. A mortalidade foi de 6,45% para o tratamento aberto e de 5,55% para o tratamento endovascular, não havendo uma diferença estatisticamente significativa. No presente trabalho, não observamos diferença na mortalidade intra-hospitalar entre os casos eletivos aberto e endovascular (29 vs. 8%, respectivamente; \(p = 0,18 \)), assim como não observamos diferença na mortalidade em 30 dias (71 vs. 76%; \(p = 0,44 \)).

Goshima et al.26 afirmam que o resultado padrão para reparação aberta deve ser de 3,1% e, em seu estudo, a mortalidade do tratamento endovascular foi nula. Mas os mesmos autores, ao apresentar os casos complexos, relacionam uma mortalidade hospitalar de 14,1%, semelhante ao nosso estudo, que incluiu pacientes com aneurisma roto. No estudo EVAR-2,27,28 no qual os pacientes inadapados para o reparo aberto foram randomizados para o tratamento endovascular ou acompanhamento clínico, a mortalidade de 30 dias do grupo operado foi de 9% (5-15%; IC95%). Isso reforça a ideia de que casos mais complexos, mesmo quando submetidos ao tratamento endovascular, podem apresentar taxa de mortalidade mais elevada. Em nosso estudo, nos confrontamos com uma situação semelhante, de alta taxa de mortalidade em 30 dias mesmo nos casos eletivos e por via endovascular. Além de considerarmos que tratamos pacientes com alto risco cirúrgico, oriundos de outros municípios e sem controle adequado dos fatores de risco, o fato de se tratar de hospital de ensino, com curva de aprendizado multiprofissional para o tratamento da doença aórtica, certamente gera um viés que não pode ser menosprezado.

O estudo multicêntrico holandês DREAM24 também demonstrou tendência de menor mortalidade operatória (até 30 dias) no tratamento endovascular quando comparado à cirurgia aberta. Entretanto, no nosso estudo, foi observado que pacientes de ambos os grupos, tratados eletivamente, não apresentaram diferença na sobrevida em 30 dias ou 360 dias. A escolha não aleatorizada da técnica a ser empregada deve ter tido papel fundamental na sobrevida semelhante entre os grupos.

No entanto, foi possível observar que no seguimento de 2 e 4 anos do DREAM e do EVAR-1, foi demonstrada mortalidade semelhante nos dois grupos em longo prazo.27,28 No nosso estudo, houve diferença entre os dois grupos na sobrevida geral (rotos + eletivos) nos primeiros 30 dias, mas em médio prazo os resultados se igualam, compatível com o estudo acima citado. Entre os pontos que podem ser considerados negativos do presente estudo retrospectivo está o número pequeno de casos, a perda de acompanhamento de pacientes que moram em outras microrregiões e a ausência de informações sobre fatores de risco em alguns prontuários analisados. Para uma melhor compreensão do assunto abordado neste trabalho, faz-se necessário realizar estudos com maior número de pacientes, de preferência por meio de colaboração...
multicêntrica, estabelecer protocolos prospectivos de acompanhamento e seguir em longo prazo (5 anos).

■ CONCLUSÃO

Observamos que pacientes submetidos ao tratamento endovenoso eletivo apresentaram sobrevida em curto e médio prazo semelhante àqueles submetidos à cirurgia aberta eletiva. Tempo de internação, tempo de cura e mortalidade hospitalar foram menores no grupo endovenoso. Não houve diferença nas características epidemiológicas e na presença de fatores de risco entre os pacientes submetidos a ambas as técnicas, sendo os critérios anátomicos e o julgamento do cirurgião utilizados para definir o tratamento a ser instituído.

■ REFERÊNCIAS

1. Puech-Leão P, Molnar LJ, Oliveira IR, Cerri GG. Prevalence of abdominal aortic aneurysms—a screening program in São Paulo, Brazil. Sao Paulo Med J. 2004;122(4):158-60. http://dx.doi.org/10.1590/S1516-31802004000400005. PMid:15543370.
2. Gawenda M, Brunck Wall J. Ruptured abdominal aortic aneurysm: the state of play. Dtsch Arztebl Int. 2012;109(43):227-32. http://dx.doi.org/10.3238/arztebl.2012.0727. PMid:23181137.
3. Chai kof EL, Brewster DC, Dalman RL, et al. The care of patients with an abdominal aortic aneurysm: The Society for Vascular Surgery practice guidelines. J Vasc Surg. 2009;50(4):52-59. http://dx.doi.org/10.1016/j.jvs.2009.07.002.
4. Moll FL, Powell JT, Fraelrich G, et al. Management of abdominal aortic aneurysms clinical practice guidelines of the European Society for Vascular Surgery. Eur J Vasc Endovasc Surg. 2011;41(1):S1-58. http://dx.doi.org/10.1016/j.jvs.2010.09.011.
5. Novero ER, Met zger PB, Angelieri F, et al. Controle endovenoso do aneurisma da aorta abdominal: análise dos resultados de um único centro. Radiol Bras. 2012;45(1):1-6. http://dx.doi.org/10.1590/S0100-39842012000100003.
6. Mastracci TM, Cinà CS. Canadian Society for vascular surgery. Screening for abdominal aortic aneurysm in Canada: review and position statement of the Canadian Society for Vascular Surgery. J Vasc Surg. 2007;45(6):1268-76. http://dx.doi.org/10.1016/j.jvs.2007.02.041. PMid:17543696.
7. Chuter TA, Reilly LM, Faruqui RM, et al. Endovenous aneurysm repair in high-risk patients. J Vasc Surg. 2000;31(1Pt 1):122-33. http://dx.doi.org/10.1016/S0741-5214(00)70074-7. PMid:10642715.
8. Siccard GA, Zvolak RM, Sidaway AN, White RA, Siani FS. Society for Vascular Surgery Outcomes Committee. Endovenous abdominal aortic aneurysm repair: long-term outcome measures in patients at high-risk for open surgery. J Vasc Surg. 2006;44(2):229-36. http://dx.doi.org/10.1016/j.jvs.2006.04.034. PMid:16690242.
9. Matsumura JS, Brewer DC, Makaroun MS, Nafel DC. A multicenter controlled clinical trial of open versus endovenous treatment of abdominal aortic aneurysm. J Vasc Surg. 2003;37(2):262-71. http://dx.doi.org/10.1016/S0741-5214(03)01406-7. PMid:12563194.
10. Alas JC, Houballah M, Francis F, et al. Impact of the introduction of endovenous aneurysm repair in high risk patients on our practice of elective treatment of infrarenal abdominal aortic aneurysms. Ann Vasc Surg. 2008;22(6):829-33. http://dx.doi.org/10.1016/j.avsg.2008.03.007. PMid:18804949.
25. Mendonça CT, Moreira RCR, Timi JRR, et al. Comparação entre os tratamentos aberto e endovascular dos aneurismas da aorta abdominal em pacientes de alto risco cirúrgico. J Vasc Bras. 2005;4(3):232-42. http://dx.doi.org/10.1590/S1677-54492005000300004.

26. Goshima KR, Mills JL Sr, Awari K, Pike SL, Hughes JD. Measure what matters: institutional outcome data are superior to the use of surrogate markers to define “center of excellence” for abdominal aortic aneurysm repair. Ann Vasc Surg. 2008;22(3):328-34. http://dx.doi.org/10.1016/j.avsg.2007.09.013. PMid:18411029.

27. EVAR trial participants. Endovascular aneurysm repair and outcome in patients unfit for open repair of abdominal aortic aneurysm (EVAR trial 2): randomised controlled trial. Lancet. 2005;365(9478):2187-92. http://dx.doi.org/10.1016/S0140-6736(05)66628-7. PMid:15978926.

28. Greenhalgh RM, Brown LC, Powell JT, Thompson SG, Epstein D. Endovascular repair of aortic aneurysm in patients physically ineligible for open repair. N Engl J Med. 2010;362(20):1872-80. http://dx.doi.org/10.1056/NEJMoa0911055. PMid:20382982.

29. Blankensteijn JD, de Jong SE, Prinssen M, et al. Two-year outcomes after conventional or endovascular repair of abdominal aortic aneurysms. N Engl J Med. 2005;352(23):2398-405. http://dx.doi.org/10.1056/NEJMoa051255. PMid:15944424.

Correspondência
Seleno Glauber de Jesus-Silva
Hospital de Clínicas de Itajubá – HC
Av. Miguel Viana, 420 - Morro Chic
CEP 37500-080 - Itajubá (MG), Brasil
Tel.: (35) 3629-7602 / (35) 99931-0929
E-mail: selenoglauber@gmail.com

Informações sobre os autores
SGJS - Professor Assistente, Faculdade de Medicina de Itajubá (FMIT); Cirurgião vascular; radiologista intervencionista; mestrando em Ciências, Universidade Federal de São Paulo (Unifesp).
VRO - Médico residente, Programa de Residência Médica (PRM) em Cirurgia Geral (MEC), Hospital de Clínicas de Itajubá (HC).
MAMS - Professora Assistente, Faculdade de Medicina de Itajubá (FMIT); Cirurgiã vascular; ultrassonografista vascular; Mestre em Ciências, Universidade Federal de São Paulo (Unifesp); Supervisora, Programa de Residência Médica (PRM) em Cirurgia Vascular (MEC), Hospital de Clínicas de Itajubá (HC).
AEK - Cirurgião vascular; Professor Titular, Faculdade de Medicina de Itajubá (FMIT).
RSC - Professor Titular, Faculdade de Medicina de Itajubá (FMIT); Cirurgião vascular; radiologista intervencionista; chefe do Serviço de Cirurgia Vascular e Endovascular, Hospital de Clínicas de Itajubá (HC).

Contribuições dos autores
Concepção e desenho do estudo: SGJS, VRO
Análise e interpretação dos dados: SGJS, VRO
Coleta de dados: VRO, SGJS
Redação do artigo: VRO, SGJS
Revisão crítica do texto: MAMS
Aprovação final do artigo*: SGJS, VRO, AEK, MAMS, RSC
Análise estatística: SGJS
Responsabilidade geral pelo estudo: SGJS

*Todos os autores leram e aprovaram a versão final submetida ao J Vasc Bras.