Deuterons extraction from vacuum-arc plasma

A.E. Shikanov*, B.Y. Bogdanovich, K.I. Kozlovsky, A.V. Nesterovich, V.L. Shatokhin, E.D. Vovchenko

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe shosse 31, 115409, Moscow, Russia

Abstract

The problems of deuteron extraction from the plasma of a vacuum arc were examined. The experimental dependence of the deuterons yield on the voltage of the pulse was obtained. The effects of Langmuir waves in plasma on the deuteron current were shown. An expression for the deuteron current from pulsed plasma source was obtained.

Keywords: emission current; deuteron extraction; Langmuir oscillation; vacuum arc.

At present sources of deuterons based on an arc discharge in a vacuum are used in a small-sized pulse neutron generators. They contain a small-sized pulsed ion diode placed in a sealed vacuum containing hollow cylindrical anode and cathode. Between them deuterons are accelerated to the maximum energy not exceeding 150 keV by a pulse electrostatic field. The operating pressure in diode’s volume comprises about 10^{-2} Pa. Fig. 1 shows the schematic section in one embodiment of the vacuum arc deuteron source (VADS) described in work, see paper by Lebedev et al. (2012). The anode and cathode of the source in question are made of deuterated zirconium.

The processes of deuterium plasma formation are defined by properties of an arc discharge in a vacuum, see book by Lafferty (1982). The formation of an arc is preceded by high voltage discharge in the interelectrode space.

* Corresponding author. Tel.: +7-916-170-7376; fax: +7-499-324-2111.
E-mail address: aeshikanov14@mail.ru
During the build-up of the discharge current under the influence of a self-generated magnetic field, pinching of the discharge channel occurs in the cathode and anode regions where current densities can exceed 10^{10} A/m2. Fast local heating of electrodes, deuterium desorption and evaporation of the metal carrier (Zirconium) take place in the pinch zones. And in this medium the formation of an arc occurs. An ignitor discharge over the surface of a hollow disk shaped insulator is used for the enhancement of an arc.

![Diagram of VADS](image)

Fig. 1. A three-electrode VADS: 1- insulators; 2- anode; 3- cathode; 4- semiconducting coating; 5- igniter electrode; 6- shielding electrode.

This discharge arises due to intensive field emission in the region of the triple point (insulator-metal-vacuum) characterized by abnormally high value of the electric field intensity. The breakdown of a vacuum gap between cathode and igniter electrode leads to the heating of the cathode’s part followed by deuterium desorption. As a result, a partially ionized cloud of deuterium vapour rapidly spreading into the space between the cathode and anode of an ion source is formed.

The process of an arc formation is accompanied by the establishment of anode and cathode spots in the regions of its pinching over a period of time about 10^{-8} s.

The temperature of electrode spots can reach several thousand degrees. This provides a continuous deuterium desorption and evaporation of the metal carrier. After filling the discharge gap by metal pairs, they become the base medium of arcing since the ionization potential of the metal carrier is sufficiently lower than the deuterium potential. Therefore it should be assumed that the main suppliers of deuterons to VADS are not the body of an arc but its cathode and anode spots. Plasma is injected by electrode spots of an arc in the form of jets moving at a velocity of shock wave propagating in a vacuum. Estimates and the experimental data show that this velocity is equal to $\sim 10^4$ m/s.

The emission of plasma flows by the electrode spots is a random process. There is also a significant variance of plasma streams directions from pulse to pulse. However, as a result of internal anode reflections of a VAT (Vacuum acceleration tube) diode system, a plasma flow is partially symmetrized.

The formation of a voltage pulse on an igniter electrode of an ion source is initiated synchronously with the formation of a high voltage pulse on the accelerating diode gap.

The extraction of deuterons from VADS and their subsequent acceleration are generally carried out in a quasi stationary state when a flight time of a deuteron in the diode gap and a characteristic time of a voltage change are substantially less than a pulse duration of the deuteron current.

The kinetic energy of a deuteron T on the cathode is proportional to potential differences U between the anode and cathode electrodes: $T = eU$, where e is the elementary electrical charge. The maximum attainable energy is defined by the dielectric strength of a diode system and does not exceed 0.15 MeV. Deuterons in an extending plasma cloud fly at the forefront getting ahead of heavier ions of the metal carrier.

Two factors are responsible for the process of extracting deuterons from the VADS plasma. The first factor is the thermal agitation of deuterons determining the dependence of the thermocurrent density on the time t at the VADS output, see book by Gabovich (1972):

$$ j_T(t) = en(t)\langle V_\perp(t) \rangle $$

(1)
where

\[n(t) = \frac{N_d}{\pi R_A^2 (b_0 + V_{dt})} \] \hspace{1cm} (2)

is the electron density in the region of a plasma edge, \(V_d \) is the initial velocity of a plasma front determined by the velocity of shock wave propagating in a vacuum \(-10^4\), \(N_d \) is the total number of deuterons in plasma at the cooling stage of its ionization state depending on the energy stored in the tank capacitor of an ion source circuit: \(w_i = C_i U_i^2 / 2 \). Here \(C_i \approx (10^{-8}-10^{-7}) \text{F} \) is the tank capacitor in the VADS circuit, \(U_i \approx \text{kV} \) its charge voltage. The cooling of an ionization state corresponds to the stage of plasma extension when a balance between the processes of recombination and ionization in its volume is established and further the number of deuterons remains more or less constant. The parameter \(b_0 = 10d_0 \) estimates the characteristic initial size of plasma formation corresponding to the completion of its ionization state cooling, \(a_0 \) the characteristic size of an electrode spot, \(R_A \) the radius of an anode electrode,

\[\langle V_{\perp}(t) \rangle = 0.4 \sqrt{2e\theta(t) / M_d} \] \hspace{1cm} (3)

is the average, according to the Maxwell distribution, projection on normal to a plasma surface of deuteron’s thermal velocity; \(M_d \) the mass of deuteron; \(\theta \) the plasma temperature on the energy scale, eV.

Fig. 2 depicts the set of experimental dependencies \(N_d(C_i, U_i) \), obtained for VADS with electrodes from ZrD\(_{1.3}\) during the measurement of VAT current characteristics and built after processing the experimental data by the method of least squares.

![Figure 2](image_url)

Fig. 2. The characteristic set of experimental dependencies \(N_d(U_i) \): 1 – \(C_i = 4 \times 10^8 \text{F} \); 2 – \(3 \times 10^8 \text{F} \); 3 – \(2 \times 10^8 \text{F} \); 4 – \(1 \times 10^8 \text{F} \).

The measurement error calculated using Student’s distribution with the 0.95 confidence level did not exceed 20%.

By taking a single-atomic plasma and its adiabatic expansion we find the following expression for temperature-time dependence:

\[\theta(t) = \theta_0 (1 + \frac{V_{dt}}{b_0})^{-2/3} \] \hspace{1cm} (4)

where \(\theta_0 \) - the initial plasma temperature.

The second factor is related to Langmuir waves in the region being adjacent to a plasma edge, see paper by A.N. Didenko et al (2011).
Forming a plasma jet in the region of an electrode spot, every particle of plasma will account for about an equal share of kinetic energy:

\[
\frac{mV_e^2}{2} = \frac{M_dV_d^2}{2} = \frac{M_{Zr}V_{Zr}^2}{2}
\]

(5)

Here \(m, V_e; M_{Zr}, V_{Zr} \) are the masses and maximum velocities of electrons and zirconium ions, respectively.

At first electrons in the region of a plasma edge are emitted getting ahead of deuterons and forming a double layer. After being stopped, they turn back accelerating in the region of a deuteron front and rush into the depth of a plasma cloud exposing deuterons and forming a new double layer with the opposite polarization. After being stopped, electrons accelerate in the field of this double layer and run ahead again. This process is further repeated. That is the mechanism of Langmuir waves in the region of a plasma edge.

The initial length of polarization \(L_0 \) at the completion stage of an ionization state cooling can be estimated, taking into account (2), from the equation of potential (electrostatic) and kinetic energies of electrons constituting the mentioned double layer and constraints of the plasma quasi-neutrality. As a result, we have the following expression:

\[
L_0 = \frac{V_dR_A}{e} \sqrt{\frac{\pi e_0 M_d b_0}{2}} \frac{N_d}{N_d}
\]

(6)

where \(e_0 \) is the electric constant.

The frequency of Langmuir waves at any given time \(t \) can be estimated using the well-known formula:

\[
\omega_L(t) = e \frac{n(t)}{m e_0} \sqrt{\frac{N_d}{R_A \sqrt{\pi n e_0 (b_0 + V_d t)}}}
\]

(7)

To estimate the change of a polarization length \(L \) in the process of a plasma expansion an adiabatic invariant can be used: \(L^2 \omega_L \). As a result, we have:

\[
L(t) = L_0 \left(1 + \frac{V_d t}{b_0}\right)^{1/4}
\]

(8)

At the negative phase of Langmuir waves in the region of a plasma formation front \(N_dL(t)/(b_0 + V_d t) \) deuterons are exposed which can be involved in the process of acceleration. The time-averaged density of an emission current related to Langmuir waves can be estimated:

\[
j_L(t) = \frac{e N_d L(t) \omega_L(t)}{\pi^2 R_A^2 (b_0 + V_d t)}
\]

(9)

Therefore, the total density of a VADS emission current according to formulae (1)-(4) and (6)-(9) will be defined as follows:

\[
j_3(t) = j_T(t) + j_L(t) = \frac{e N_d}{\pi R_A^2 b_0} \left(0.4 \sqrt{\frac{2 e \theta_0}{M_d \pi} + \frac{V_d}{b_0}} \right) \left(1 + \frac{V_d t}{b_0}\right)^{-5/4} \left[1 + (1 + \frac{V_d t}{b_0})^{-1/12}\right]
\]
Acknowledgements

This work was performed under Agreement № 15-19-00151 between the Russian Research Foundation, National Research Nuclear University MEPhI, and the project manager A.V. Nesterovich on the financing of fundamental and pilot research studies.

References

Didenko, A.N., Rashchikov, V.I., Ryzhkov, V.I., Shikanov, A.E., 2011. Peculiarities of hydrogen ion extraction from pulsed plasma plumes. Technical Physics Letters 37(11), 1021 - 1023.
Gabovich, M.D., 1972. “Physics and technology of plasma ion sources”. Atomizdat, Moscow.
Lafferty, J., 1982. “Vacuum arcs”. Mir, Moscow.
Lebedev, G.V., Petrov, V.V., Bobylev, V.T., Butov, R.I., Zhukov, A.M., Sladkov, A.A., 2012. Measurement of subcriticality at operation of reactors of nuclear power plants using the neutron fctivation method. Proceeding of the International Scientific & Technical Conference Portable Neutron Generators & Technologies on their Basis. VNIIA, Moscow, pp. 105 – 114.