Genome-Wide Linkage Analysis and Association Study Identifies Loci for Polydactyly in Chickens

Yanfa Sun,*†,‡ Ranran Liu,*§ Guiping Zhao,*∥ Maiqing Zheng,*∥ Yan Sun,*
Xiaoqiong Yu,* Peng Li,* and Jie Wen*†,‡

*Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China; †College of Life Science, Longyan University, Longyan, Fujian 364012, P.R. China; ‡State Key Laboratory of Animal Nutrition, Beijing 100193, P.R. China; and ∥Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Longyan, Fujian 364012, P.R. China

ABSTRACT Polydactyly occurs in some chicken breeds, but the molecular mechanism remains incompletely understood. Combined genome-wide linkage analysis and association study (GWAS) for chicken polydactyly helps identify loci or candidate genes for the trait and potentially provides further mechanistic understanding of this phenotype in chickens and perhaps other species. The linkage analysis and GWAS for polydactyly was conducted using an F2 population derived from Beijing-You chickens and commercial broilers. The results identified two QTLs through linkage analysis and seven single-nucleotide polymorphisms (SNPs) through GWAS, associated with the polydactyly trait. One QTL located at 35 cM on the GGA2 was significant at the 1% genome-wide level and another QTL at the 1% chromosome-wide significance level was detected at 39 cM on GGA19. A total of seven SNPs, four of 5% genome-wide significance (P < 2.98 × 10−5) and three of suggestive significance (5.96 × 10−5) were identified, including two SNPs (GGaluGA132178 and Gga_rs14135036) in the QTL on GGA2. Of the identified SNPs, the eight nearest genes were sonic hedgehog (SHH), limb region 1 homolog (mouse) (LMBR1), dipeptidyl-peptidase 6, transcript variant 3 (DPP6), thyroid-stimulating hormone, beta (TSHB), sal-like 4 (Drosophila) (SALL4), par-6 partitioning defective 6 homolog beta (Caenorhabditis elegans) (PARD6β), co-enzyme Q5 (COQ5), and tyrosine 3-monoxygenase/tryptophan 5-monoxygenase activation protein, etapolyepetide (YWHAH). The GWAS supports earlier reports of the importance of SHH and LMBR1 as regulating genes for polydactyly in chickens and other species, and identified others, most of which have not previously been associated with limb development. The genes and associated SNPs revealed here provide detailed information for further exploring the molecular and developmental mechanisms underlying polydactyly.

KEYWORDS chicken polydactyly linkage analysis GWAS candidate genes

Polydactyly is a common limb malformation in human, mouse, chicken, and other vertebrates characterized by supernumerary digits. In chickens, where the usual number is four, polydactyly is the phenotype with a fifth digit on one or both feet (Warren 1944). Five digits is a breed characteristic in some chickens, including Beijing-You, Silkie, Dorking, Houdan, and Sultan. The chicken polydactyly locus was mapped to chromosome 2 (GGA2) through linkage analysis, in a region homologous to human Chr7q36 and mouse Chr5 (Pitel et al. 2000). This region is known to be important for human and mouse polydactyly traits and other limb malformation (Dundar et al. 2001; Dobbs et al. 2005; Lettice and Hill 2005). Huang et al. (2006) found that the T1254C polymorphism in exon 13 of LMBR1 was strongly associated with polydactyly in chickens. Another study has shown complete association of this same single-nucleotide polymorphism (SNP; ss161109890) with the polydactyly phenotype in a manner that was concordant with the dominant and incompletely penetrant nature of this trait (Dorshorst et al. 2010). This study also searched the highly conserved zone of polarizing activity regulatory sequence (ZRS) for other SNPs that might explain this trait and found none. Several
polydactyly breeds were compared, with the Silkie and Sultan breeds both having this SNP whereas three other breeds with polydactyly did not (Faverolle, Houdan, and Dorking). Due to the history of these breeds, the authors suggested there may be more than one allele or locus controlling polydactyly in the chicken, although in all of these breeds polydactyly still behaves as a single gene trait (Dorshorst et al. 2010).

The causality of the ss161109890 SNP located within the ZRS was subsequently demonstrated using SHHI allelic imbalance and electroporation of mutant ZRS experiments. The ectopic expression of SHHI in the anterior zone of polarizing activity is consistent with known causes of polydactyly in other species (Dunn et al. 2011; Maas et al. 2011).

The related genes for polydactyly were identified to better understand the molecular and developmental mechanisms underlying polydactyly. Genes related to hedgehog signaling, sonic hedgehog (SHH), and limb region 1 homolog (mouse) (LMBRI) are important regulatory genes for limb development (Lettice et al. 2012) and polydactyly traits in human, mouse, and chicken (Clark et al. 2001; Maas and Fallon 2004; Sagai et al. 2004, 2005; Huang et al. 2006; Albuisson et al. 2010; Dunn et al. 2011). Other candidate genes (e.g., EN2, HOXA10-13, GLI3, WNT2, and WNT16) for the polydactyly trait were also found in different species (Gorbach et al. 2010). Quinn et al. (2012) identified a previously unrecognized role for Zic3 in regulating limb digit number via its modifying effect on GLI3 and SHH expression levels in mice. Kalsoom et al. 2013 have identified a novel zinc-finger gene (ZNF141) associated with autosomal-recessive postaxial polydactyly type A through whole-genome sequencing combined with homoyzgosity mapping and array comparative genomic hybridization analysis. These studies found the gene for one polydactyly allele/locus, but the molecular mechanism and other polydactyly alleles/loci remain incompletely understood (Robb and Delany 2012).

Both linkage analysis and genome-wide association studies (GWAS) can be used to map the quantitative trait loci (QTL) underlying complex traits. The GWAS, based on high-throughput SNP genotyping technologies, has revealed loci underlying a variety of interesting traits in domestic animals (Pearson and Manolio 2008) and it is more powerful than traditional linkage analysis in detecting genetic variants. In chickens, GWAS have been performed for growth and meat quality (Gu et al. 2011; Xie et al. 2012; Liu et al. 2013; Sun et al. 2013), egg production and quality (Liu et al. 2011), and other traits.

In the present study, both linkage analysis and GWAS were performed for the polydactyly trait using the Chinese Academy of Agricultural Science (CAAS) chicken F2 resource population derived from the cross between a local Chinese chicken breed (Beijing-You; BJY) and a commercial broiler line (Cobb-Vantress; CB) (Sun et al. 2013) to identify and provide information for allele/locus for polydactyly in chickens.

MATERIALS AND METHODS

Animals and phenotypes

This research complied with the Guidelines for Experimental Animals established by the Ministry of Science and Technology (Beijing, China). The CAAS chicken F2 resource population was derived from a cross between BJY and CB chickens. The BJY is a Chinese indigenous breed with a 25–31% incidence of five digits on one or both feet. The CB (Cobb-Vantress) is a commercial broiler breed with four digits on each foot. Six BJY males were each mated to 12 CB females. Six males and 20 females of their offspring, the F1 generation, then produced the F2 chickens via artificial insemination and only nonrelated females to avoid inbreeding. The chickens from the three generations were raised in stair-step cages under the same routine conditions of nutrition and management at the conservation farm of the Institute of Animal Sciences (Sun et al. 2013).

A total of 400 chickens from three generation (including 367 F2 chickens from 20 full-sib families in five batches) were used. Blood was collected into acid citrate dextrose anticoagulant tubes from the brachial vein on d 56. The number of digits, four or five on one or both feet, was recorded. Two of six BJY males in the F0 generation had polydactyly. The pedigrees with polydactyly traits are shown in Supporting Information, Table S1.

Genotyping and SNP quality

Genomic DNA was extracted from blood samples using the phenol-chloroform method. Genotyping was performed with 50 ng/μL genomic DNA using the Illumina 60K Chicken SNP Beadchip by DNA LandMarks Inc. (Saint-Jean-sur-Richelieu, PQ, Canada). A total of 39 were excluded due to sample call rate <90%. A total of 13,985 SNPs were removed for failing to meet one or more of the following conditions: SNP call rate <90%, minor allele frequency <3%, Hardy-Weinberg test P of <10−6 and SNPs with no assigned chromosome or linkage group. After quality control measures, 42,585 SNPs distributed among 29 chromosomes (including the Z chromosome) and one linkage group (LGE22) remained (all SNP’s information see File S1). The average physical distance between two neighboring SNPs was approximately 20.4 kb (Sun et al. 2013).

Linkage analysis

The genetic linkage map was constructed using 19 full-sib families (six males and 12 females from F0, five males and 20 females from F1, and 148 males and 152 females from F2) and 42,585 SNPs with the improved version of CRI-MAP (2.503a, run in a 64-bit Unix system). This method has been described in previous studies (Grogen et al. 2009; Efferink et al. 2010). In genetic map construction, one full-family was excluded due to a computational problem.

To reduce the effect of linkage disequilibrium (LD) on the results, 6518 independent SNPs were acquired in all autosomal chromosomes using the indep-pairwise option, with a window size of 25 SNPs, a step of 5 SNPs, and r2 threshold of 0.2 (Sun et al. 2013). QTL analysis for the polydactyly trait used these same SNPs and web-based GridQTL software (Allen et al. 2012). A least-squares regression model was used for single QTL analysis, including the fixed effects of sex, hatch, and family, along with additive and dominance coefficients for the putative QTL. Significance thresholds were calculated using a permutation test (Churchill and Doerge 1994). A total of 10,000 permutations were computed to determine 5% and 1% chromosome-wide significance levels. 5% and 1% genome-wide significance levels were calculated following the Bonferroni correction:

\[
P_{\text{genome-wide}} = 1 - (1 - P_{\text{chromosome-wide}})^{Ga/Gc}
\]

Where Ga is the length genetic map of each chromosome and Gc is the length of the genetic map of all autosomal chromosomes. Confidence intervals for QTL positions were estimated by bootstrapping, as presented by Visscher et al. (1996).

Statistical analysis for GWAS

The population structure was assessed by multidimensional scaling (MDS) analysis using PLINK software 1.07 (Purcell et al. 2007), as described previously in detail (Gu et al. 2011 and Sun et al. 2013). Pairwise
identity-by-state distances were calculated between all individuals using the 6518 independent SNP markers, and MDS components were obtained using the mds-plot option based on the identity-by-state matrix.

The GWAS for polydactyly with 328 chickens from the F2 generation, and 42,585 SNPs were performed using the compressed mixed linear model (Zhang et al. 2010) and carried out using Tassel 3.0 software (Bradbury et al. 2007). The statistical model was:

\[Y_{ijklmn} = m_i + C_1j + S_k + B_l + G_m + K_n + e_{ijklmn}, \]

where \(Y_{ijklmn} \) are phenotypic values, \(m_i \) is the common mean, \(C_1j \) is the effect of the first principal component, \(S_k \) is the effect of sex, \(B_l \) is the effect of batch of hatching (\(l = 1 \) – 5), \(G_m \) is the effect of the SNP, \(K_n \) is the random effect of the relative kinship matrix, which was constructed by matrix simple matching coefficients based on the independent SNPs, and this step was followed by compression (Zhang et al. 2010), and \(e_{ijklmn} \) is the random residual effect.

The genome-wide significance P-value threshold was determined by the "LD adjusted" Bonferroni method (Duggal et al. 2008), which was calculated on the basis of the estimated number of independent markers and LD blocks in all chromosomes. The F2 population was estimated to have 16,760 "independent" tests, based on the "solid spine of LD" algorithm with a minimum \(D^2 \) value of 0.8 calculated by Haploview 4.1 (Barrett et al. 2005). The two threshold P-values were established as \(5.96 \times 10^{-5} \) (1/16,760) for suggestive significance, and \(2.98 \times 10^{-6} \) (0.05/16,760) for 5% genome-wide significance. The Manhattan plot, showing genome-wide P-values of GWAS, was produced using R 2.13.2 software with the "gap" package (Zhao 2007).

Table 1 Linkage map lengths and recombination rates

Chromosome	Length, Mb*	Sex-Average, cM	Sex-Specific, cM	Recombination Rate, cM/Mb
		Female	Male	
GGA1	200.9	460.5	440.8	2.2
GGA2	154.8	328.7	288.5	2.0
GGA3	113.6	269.9	237.3	2.2
GGA4	94.2	211.2	188.7	2.1
GGA5	62.2	163.3	148.6	2.5
GGA6	37.3	110.2	95.3	2.8
GGA7	38.3	102.8	105.2	2.7
GGA8	30.6	92.5	89.4	3.0
GGA9	25.5	107.1	90.1	3.9
GGA10	22.5	86.2	78.3	3.7
GGA11	21.9	68.2	59.6	2.9
GGA12	20.5	79.5	70.7	3.7
GGA13	18.9	66.3	55.6	3.2
GGA14	15.8	71.3	64.4	4.3
GGA15	13.0	58.1	49.4	4.1
GGA16	0.4	0.0	0.0	–
GGA17	11.2	51.5	48.2	4.4
GGA18	10.9	48.7	47.4	4.4
GGA19	9.9	55.9	46.8	4.4
GGA20	13.9	56.1	52.5	3.9
GGA21	6.9	48.4	48.7	7.0
GGA22	3.9	52.0	51.3	13.2
GGA23	0.6	48.9	54.1	8.6
GGA24	6.4	44.3	51.5	7.5
GGA25	2	63.6	54.1	29.2
GGA26	5.1	47.5	49.2	9.5
GGA27	4.7	47.6	51.6	10.5
GGA28	4.5	53.1	44.4	10.8
LGE22	0.9	35.5	40.5	41.8
GGZ2	74.6	228.3	228.3	–
Total autosomal	956.7	2929.2	2702.0	2.9
Total length	1031.3	2930.3		

* Physical length of the chromosome was based on the position of the last marker in the WASHUC2 build (2006).

Table 2 Polydactyly trait loci mapped in the chicken CAAS F2 resource population

Location, cM/Mb	Confidence Interval, cM/Mb	F Ratios	A ± SE	D ± SE	PV (%)
GGA2 (35/0.8)	23.0–63.0/0.5–2.2	15.88**	0.17 ± 0.03	0.05 ± 0.04	9.34
GGA19 (39/0.5)	22.0–45.0/0.3–0.7	9.06*	0.03 ± 0.03	0.18 ± 0.06	5.35

CAAS, Chinese Academy of Agricultural Science; A, additive; D, dominance; PV, percent of phenotypic variance explained by the QTL; PV%, \(\left[\frac{\text{MSR} - \text{MSF}}{\text{MSR}}\right] \times 100 \) where MSR is residual mean square in the reduced model and MSF is the residual mean square in the full model; QTL, quantitative trait loci.

* 1% chromosome-wide significance.
** 1% genome-wide significance.
RESULTS

Linkage analysis

Before linkage analysis, the genetic linkage map was constructed using the CAAS chicken F2 population. A total of 42,585 SNP markers (each marker had 4–603 informative meiosis, average of 254), about 74% of all markers on the SNP beadchip, and 337 individuals from three generation and 19 full-sib families were used to construct the linkage map. As shown in Table 1, the total length of the sex-average map was 3040.8 cM, and there was no significant difference in total length between the male and female sex-specific maps (2929.2 and 2930.3 cM). The recombination rate of the map was 2.9 cM/Mb. The detailed information for the map is shown in Table S2.

A total of three hundred chickens from the F2 generation and 6518 independent SNPs (Table S3) in autosomal chromosomes were used in the linkage analysis for polydactyly. Quantitative trait loci locations and effects for the polydactyly trait are shown in Table 2. One QTL in the linkage analysis for polydactyly. Quantitative trait loci locations map was 3040.8 cM, and there was no signiﬁcance association between these traits on the y-axis (as shown -log10 P-value). The black line indicates genome-wise signiﬁcance of suggestive association (P = 5.96 × 10⁻⁵), and the red line indicates genome-wise 5% signiﬁcance with a P-value threshold of 2.98 × 10⁻⁵.

GWAS results

After 39 samples were excluded because of low sample call rate and one lost phenotypic record, 327 chickens (286 with four digits, and 41 with five digits) from the F2 generation were used for further analysis. The MDS analysis of the 16,760 SNPs using the first two MDS components showed that the chickens within each full-sib family were clustered together (Sun et al. 2013). To correct for population stratification, the first MDS component was used as a covariate in the model as suggested (Price et al. 2006; Gu et al. 2011; Sun et al. 2013).

As shown in Figure 1 and Table 3, four SNPs associated with polydactyly were of genome-wide signiﬁcance, and three SNPs had suggestive signiﬁcance. These SNPs explained 6–9% of the phenotypic variation.

The most signiﬁcant SNP, GGaluGA132178, was located on GGA2 at 6641.2 kb (P = 7.94 × 10⁻⁷), 9.5 kb downstream of dipetidyl-peptidase 6, transcript variant 3 (DPP6). Another SNP, Gga_rs14135036, located on GGA2 at 7628.2 kb was suggestively associated with polydactyly (P = 5.96 × 10⁻⁵). This SNP was in close proximity to other candidate genes for polydactyly, 113.9 kb downstream of sonic hedgehog (SHH) and 240.7 kb upstream of limb region 1 homolog (mouse) (LMBR1).

The SNP Gga Rs13606164, located at 2579.1 kb on GGA26, is 35.6 kb downstream of the thyroid stimulating hormone, beta (TSHB) gene, had highly signiﬁcant association with the polydactyly (P < 2.98 × 10⁻⁵). Two other SNPs (GGaluGA181512 and Gga Rs16175635), located within a 13.3-kb segment on GGA20, were of genome-wide signiﬁcance (P < 2.98 × 10⁻⁵); one was 176.3 kb upstream of the Sal-like 4 (Drosophila) (SALL4) gene and the other was 176.4 kb from the Par-6 partitioning defective 6 homolog beta (C. elegans), (PARD6b) gene.

Two SNPs (Gga Rs15023766 and Gga Rs14093104) with suggestive association (both p-values were 2.74 × 10⁻⁵) with polydactyly were located within a 484.99-kb segment on GGA15; one was 22.9 kb downstream of coenzyme Q5 (COQ5), and the other was 2.8 kb upstream of tyrosine 3-monoxygenase/tryptophan 5-monoxygenase activation protein, etapolyptide, (YWHAH).

Table 3 Significant SNPs associated with chicken polydactyly

Chromosome	SNPs	Position, bp	P Value*	P Adjustb	MAF	R²	Nearest Gene
2	GGaluGA132178	6641213	7.94E-07	0.01	C/A-0.10	0.09	DPP6 D 9.5 kb
2	Gga Rs14135036	7628179	5.96E-05	1.00	A/G-0.31	0.06	SHH D 113.9 kb; LMBR1 U 240.7 kb
15	Gga Rs15023766	9240112	2.74E-05	0.46	C/A-0.17	0.07	COQ5 U 22.9 kb
15	Gga Rs14093104	8755174	2.74E-05	0.46	G/A-0.17	0.07	YWHAH U 2.8 kb
20	GGaluGA181512	12887215	2.08E-06	0.03	C/A-0.19	0.09	SALL4 U 176.3 kb
20	Gga Rs16175635	12900524	2.08E-06	0.03	A/G-0.19	0.09	PARD6b D 176.4 kb
26	Gga Rs13606164	2579119	1.47E-06	0.02	A/G-0.14	0.09	TSHB U 35.6 kb

SNP, single-nucleotide polymorphism; MAF, minor allele frequency of the ﬁrst allele; R², the proportion of phenotypic variation explained by the SNP; U, the SNP is upstream of the gene and D is downstream.
* P value from mixed linear model models.
b LD-adjusted Bonferroni P value.
DISCUSSION

In the present study, the QTLs and candidate genes for polydactyly were identified in chickens by the use of both linkage analysis and GWAS. A high-density genetic linkage map is the basis for linkage analysis. The current map is comprised of 29 chromosomes and one linkage group, with a total size of 3040.8 cM. The map size was similar with the high-resolution chicken genetic map using 13340 SNPs and 1619 chickens (Elferink et al. 2010). The present map ensures accuracy and precision of linkage analysis. In the present study, two QTLs (one located at 35 cM on GGA2 and another located at 39 cM on GGA19) were identified through linkage analysis. The QTL on GGA2 was also found in previous studies in chicken (Dunn et al. 2011; Yang et al. 2013) and other species.

For GWAS analysis, the compressed mixed linear model was one of the most effective methods for controlling false-positive results in GWAS (Huang et al. 2010; Zhang et al. 2010) and ensured reliability of the results. The population-based GWAS has more power than traditional family-based linkage analysis (Klein 2007) and it can detect more SNPs of interest that are in or near potential candidate genes. The GWAS results obtained here were in accord with the linkage analysis on GGA2 and obtained more detail of relevant SNPs. The GWAS also found additional potential loci on other chromosomes. Seven significant SNPs were identified near the potential candidate genes or the important regulatory genes for polydactyly. The genes, SHH and LMBR1 on GGA2, already known to be important for polydactyly in chickens and other species, were identified again here. Variations of LMBR1 were found to influence digits numbers in chickens (Huang et al. 2006; Hang et al. 2007). Both LMBR1 and SHH, were shown to be essential for normal development of the chicken limb (Lettice et al. 2003; Lettice and Hill 2005; Dunn et al. 2011). The SHH and LMBR1 were also in the QTL region identified here by linkage analysis. Another gene DPP6, near the QTL peak in GGA2, was also identified here. Mutations of DPP6 produce human disease and cause movement disorders (Tanaka et al. 2011).

The gene SALL4 encodes a putative zinc finger transcription factor and plays a role in modulating embryonic stem cell pluripotency and early embryonic development (Zhang et al. 2006). Variations of SALL4 are associated with upper limb abnormality in humans (Kohlhase et al. 2002; Paradisi and Arias 2007). Given what is known of the roles of this gene in limb development, the present GWAS findings suggest that it is a potential candidate gene for polydactyly in chickens.

Four other genes, TSHB, PARDB6, COQ5, and YWHAH, are involved in growth and development, cell differentiation, or signal transduction (Dibrov et al. 1997; Phillips 2004; Nolan et al. 2008; Grover et al. 2009; Alarcon 2010), but there has been no suggestion that they are involved in limb development. The present results indicate that they might be potential candidate genes for polydactyly and so they are deserving of further study in this regard.

In conclusion, two QTLs and eight genes (SHH, LMBR1, DPP6, TSHB, SALL4, PARDB6, COQ5, and YWHAH) were identified through combined linkage analysis and GWAS for the polydactyly phenotype in chickens. In addition to confirming earlier studies in chickens and other species that SHH and LMBR1 are important regulating genes for polydactyly, the other genes identified here provide additional information for potentially exposing the molecular mechanisms and developmental biology underlying polydactyly in chickens. As new candidate genes, especially the SALL gene, they will be targets for future work.

ACKNOWLEDGEMENTS

We acknowledge W. Bruce Currie (Emeritus Professor, Cornell University) for his suggestions on presentation. The research was supported by grants: National Key Technology R&D Program (2011BAD2B03), National High-tech R&D Program (2011AA100301), the Agricultural Science and Technology Innovation Program (ASTIP-IAS04), and Longyan University Scientific Research Fund for the Doctoral Young Scholars.

LITERATURE CITED

Alarcon, V. B., 2010 Cell polarity regulator PARDB6 is essential for trophotoderm formation in the preimplantation mouse embryo. Biol. Re- prod. 83: 347–358.

Albußion, J., B. Isidor, M. Giraud, O. Pichon, T. Marsaud et al., 2010 Identification of two novel mutations in Shh long-range regulator associated with familial pre-axial polydactyly. Clin. Genet. 79: 371–377.

Allen, J., D. Scott, M. Illingworth, B. Dobrzeniecki, D. Virdée et al., 2012 CloudQTL: evolving a bioinformatics application to the cloud. Digital Research, September 10–12, pp. 1-4, Oxford, UK.

Barrett, J., B. Fry, J. Maller, and M. Daly, 2005 Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21: 263–265.

Bradbury, P. J., Z. Zhang, D. E. Kroon, T. M. Casstevens, Y. Ramdoss et al., 2011 TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23: 2633–2635.

Churchill, G. A., and R. W. Doerge, 1994 Empirical threshold values for quantitative trait mapping. Genetics 138: 963–971.

Clark, R. M., P. C. Marker, E. Roessler, A. Dutra, J. C. Schimenti et al., 2001 Reciprocal mouse and human limb phenotypes caused by gain- and loss-of-function mutations affecting Limb1. Genetics 159: 715–726.

Dibrov, E., K. M. Robinson, and B. D. Lemire, 1997 The COQ5 gene encodes a yeast mitochondrial protein necessary for ubiquinone bio- synthesis and the assembly of the respiratory chain. J. Biol. Chem. 272: 9175–9181.

Dobbs, M. B., F. R. Dietz, C. A. Gurnett, J. A. Morcuende, C. M. Steyers et al., 2005 Localization of dominantly inherited isolated tripalangeal thumb to chromosome region 7q36. J. Orthop. Res. 18: 340–344.

Dorshorst, B., R. Okimoto, and C. Ashwell, 2010 Genomic regions associated with dermal hyperpigmentation, polydactyly and other morpho- logical traits in the Silkie chicken. J. Hered. 101: 339–350.

Duggal, P., E. M. Gillanders, T. N. Holmes, and J. E. Bailey-Wilson, 2008 Establishing an adjusted p-value threshold to control the family-wide type 1 error in genome wide association studies. BMC Genomics 9: 516.

Dundar, M., T. M. Gordon, I. Ozuyazgan, F. Oguzkaya, Y. Ozkul et al., 2001 A novel acrocentric syndrome map to chromosome 7q36. J. Med. Genet. 38: 304–309.

Dunn, I. C., I. R. Paton, A. K. Clelland, S. Sebastian, E. J. Johnson et al., 2011 The chicken polydactyly (Po) locus causes allelic imbalance and ectopic expression of Shh during limb development. Dev. Dyn. 240: 1163–1172.

Elferink, M. G., P. van As, T. Veenendaal, R. P. Crooijmans, and M. A. Groenen, 2010 Regional differences in recombination hotspots between two chicken populations. BMC Genet. 11: 11.

Gorbach, D., B. Mote, L. Totir, R. Fernando, and M. Rothschild, 2010 Polydactyl inheritance in the pig. J. Hered. 101: 469–475.

Groenen, M. A., P. Wahlberg, M. Foglio, H. H. Cheng, H. J. Megens et al., 2009 A high-density SNP-based linkage map of the chicken genome reveals sequence features correlated with recombination rate. Genome Res. 19: 510–519.

Grover, D., R. Verma, F. S. Goes, P. L. B. Mahon, E. S. Gershon et al., 2009 Family-based association of YWHAH in psychotic bipolar disor- der. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 150: 977–983.

Gu, X., C. Feng, L. Ma, C. Song, Y. Wang et al., 2011 Genome-wide associ- ation study of body weight in chicken F2 resource population. PLoS ONE 6: e21872.

Hang, Y., W. Chen, X. Deng, N. Li, X. Qiu et al., 2007 The association of single nucleotide polymorphisms in chicken Lmbri1 intron with chicken polydactyly. Scientia Agricultura Sinica 40: 1254–1259.

Huang, X., X. Wei, T. Sang, Q. Zhao, Q. Feng et al., 2010 Genome-wide association studies of 14 agronomic traits in rice landraces. Nat. Genet. 42: 961–967.
Huang, Y. Q., X. M. Deng, Z. Q. Du, X. Qiu, X. Du et al., 2006 Single nucleotide polymorphisms in the chicken Lmbr1 gene are associated with chicken polydactyly. Gene 374: 10–18.
Kalsoom, U. E., E. Klopotcki, N. Wasif, M. Tariq, S. Khan et al., 2013 Whole exome sequencing identified a novel zinc-finger gene ZNF141 associated with autosomal recessive postaxial polydactyly type A. J. Med. Genet. 50: 47–53.
Klein, R. J., 2007 Power analysis for genome-wide association studies. BMC Genet. 8: 58.
Kohlhase, J., M. Heinrich, L. Schubert, M. Liebers, A. Kispert, 2010 Long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. Hum. Mol. Genet. 19: 1725–1735.
Lettice, L. A., I. Williamson, J. H. Wiltshire, S. Peluso, P. S. Devenney et al., 2012 Opposing functions of the ETS factor family define Shh spatial expression in limb buds and underlie polydactyly. Dev. Cell 22: 459–467.
Lettice, L. A., and R. E. Hill, 2005 Preaxial polydactyly: a model for defective long-range regulation in congenital abnormalities. Curr. Opin. Genet. Dev. 15: 294–300.
Liu, W., D. Li, J. Liu, S. Chen, L. Qu et al., 2011 A genome-wide SNP scan reveals novel loci for egg production and quality traits in white leghorn and brown-egg dwarf layers. PLoS One 6: e28600.
Maas, S. A., and J. F. Fallon, 2004 Isolation of the chicken Lmbr1 coding sequence and characterization of its role during chick limb development. Dev. Dyn. 229: 520–528.
Maas, S. A., T. Suzuki, and J. F. Fallon, 2011 Identification of spontaneous mutations within the long-range limb-specific Sonic hedgehog enhancer (ZRS) that alter Sonic hedgehog expression in the chicken limb mutants oligozeugodactyly and silkie breed. Dev. Dyn. 240: 1212–1222.
Nolan, M. E., V. Aranda, S. Lee, B. Lakshmi, S. Basu et al., 2008 The polarity protein Par6 induces cell proliferation and is overexpressed in breast cancer. Cancer Res. 68: 8201–8209.
Paradisi, I., and S. Arias, 2007 IVIC syndrome is caused by a c. 2607 delA mutation in the SALL4 locus. Am. J. Med. Genet. A. 143: 326–332.
Pearson, T. A., and T. A. Manolio, 2008 How to interpret a genome-wide association study. JAMA 299: 1335–1344.
Phillips, J. A., 2004 Genetics of growth retardation. J. Pediatr. Endocrinol. Metab. 17: 385–399.
Pitel, F., R. Bergé, G. Coquerelle, R. Crooijmans, M. A. M. Groenen et al., 2000 Mapping the Naked Neck (NA) and Polydactyly (PO) mutants of the chicken with microsatellite molecular markers. Genet. Sel. Evol. 32: 73–86.
Price, A. L., N. J. Patterson, R. M. Plenge, M. E. Weinblatt, N. A. Shadick et al., 2006 Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38: 904–909.
Porcelli, S., B. Neale, K. Todd-Brown, L. Thomas, M. A. Ferreira et al., 2007 PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81: 559–575.
Quinn, M. E., A. Haaning, and S. M. Ware, 2012 Preaxial polydactyly caused by Gli3 haploinsufficiency is rescued by Zic3 loss of function in mice. Hum. Mol. Genet. 21: 1888–1896.
Robb, E., and M. Delany, 2012 The expression of preaxial polydactyly is influenced by modifying genetic elements and is not maintained by chromosomal inversion in an avian biomedical model. Cytogenet. Genome Res. 136: 50–68.
Sagai, T., H. Masuya, M. Tamura, K. Shimizu, Y. Yada et al., 2004 Phylogenetic conservation of a limb-specific, cis-acting regulator of Sonic hedgehog (Shh). Mamm. Genome 15: 23–34.
Sagai, T., M. Hosoya, Y. Mizushima, M. Tamura, and T. Shiroishi, 2005 Elimination of a long-range cis-regulatory module causes complete loss of limb-specific Shh expression and truncation of the mouse limb. Development 132: 797–803.
Sun, Y., G. Zhao, R. Liu, M. Zheng, Y. Hu et al., 2013 The identification of 14 new genes for meat quality traits in chicken using a genome-wide association study. BMC Genomics 14: 458.
Tanaka, S., A. Syu, H. Ishiguro, T. Inada, Y. Horiuchi et al., 2011 DPP6 as a candidate gene for neuroleptic-induced tardive dyskinesia. Pharmacogenomics J. 13: 27–34.
Visscher, P. M., R. Thompson, and C. S. Haley, 1996 Confidence intervals in QTL mapping by bootstrapping. Genetics 143: 1013–1020.
Warren, D., 1944 Inheritance of polydactylism in the fowl. Genetics 29: 217.
Xie, L., C. Luo, C. Zhang, R. Zhang, J. Tang et al., 2012 Genome-wide association study identified a narrow chromosome 1 region associated with chicken growth traits. PLoS ONE 7: e30910.
Yang, K., Y. Chen, C. Gu, Z. Zhou, C. He et al., 2013 Polydactyly mutation is linked with chromosome 2p region in Beijing fatty chicken. Anim. Genet. 44: 118–119.
Zhang, J. W., L. Tam, G. Q. Tong, Q. Wu, H. Y. Chan et al., 2006 Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1. Nat. Cell Biol. 8: 1114–1123.
Zhao, J. H., E. Lorzo, C. Q. Lai, R. J. Todhunter, H. K. Tiwari et al., 2010 Mixed linear model approach adapted for genome-wide association studies. Nat. Genet. 42: 355–360.
Zhao, J. H., 2007 gap: Genetic analysis package. J. Stat. Softw. 23: 1–18.

Communicating editor: D.-J. De Koning