Time and length scales in spin glasses

L. Berthier†‡ and A. P. Young§

†Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, UK
‡Laboratoire des Verres, Université Montpellier II, 34095 Montpellier, France
§Department of Physics, University of California, Santa Cruz, California 95064

Abstract. We discuss the slow, nonequilibrium, dynamics of spin glasses in their glassy phase. We briefly review the present theoretical understanding of the spectacular phenomena observed in experiments and describe new numerical results obtained in the first large-scale simulation of the nonequilibrium dynamics of the three dimensional Heisenberg spin glass.

1. Why do we study spin glass dynamics?

Spin glasses can be seen as one of the paradigms for the statistical mechanics of impure materials. Experimentally, however, the spin glass phase is always probed via nonequilibrium dynamic experiments, because the equilibration time of macroscopic samples is infinite. Simulations can probe equilibrium behaviour for very moderate sizes only, so that the thermodynamic nature of the spin glass phase is still a matter of debate. It is also as a model system that the glassy dynamics of spin glasses has been studied very extensively in experiments, simulations, and theoretically in the last two decades [1, 2]. Although many theories account for the simplest experimental results, such as the aging phenomenon, early experiments revealed several other spectacular phenomena (rejuvenation, memory, etc.) that are harder to explain, allowing one to discriminate between various approaches [3].

In recent years, several theoretical descriptions of the slow dynamics of spin glasses described the physics in terms of a distribution of length scales whose time, \(t \), and temperature, \(T \), evolution depends on the specific experimental protocol, as reviewed in Ref. [3]. Aging is described as the slow growth of a coherence length, \(\ell_T(t) \), reflecting quasi-equilibrium/nonequilibrium at shorter/larger length scales. Sensitivity to perturbations of quasi-equilibrated length scales accounts then for rejuvenation effects, while the strong temperature dependence of the growth law \(\ell_T(t) \) explains memory effects [4, 5, 6, 7, 8]. If early numerical studies revealed the existence of such a distribution of length scales [9], its physical relevance was critically discussed only relatively recently [10, 11]. A major problem, however, is that most studies focused on the Edwards-Anderson model of an Ising spin glass, defined by the Hamiltonian

\[
H = - \sum_{<i,j>} J_{ij} S_i S_j,
\] (1)
where $S_i = \pm 1$, the sum is over pairs of nearest neighbours of the chosen lattice, and J_{ij} is a quenched random interaction, drawn from a symmetric distribution. The interest of the model (1) is that it has been studied very extensively so that some—but only very few!—issues have been settled, most notably the existence, for space dimensions $d \geq 3$, of a second order phase transition to a spin glass phase [12, 13]. The nonequilibrium dynamics of the Ising spin glass has also been quite extensively studied. Unfortunately, for $d = 3$, some of the key experimental observations are not reproduced [11, 14], although simulations in $d = 4$ have been more successful [11]. This may not be too surprising, since real spin glasses are made not of Ising spins but vector spins. When the interaction between spins is isotropic, the system is therefore best described by the Heisenberg spin glass Hamiltonian

$$H = -\sum_{<i,j>} J_{ij} S_i \cdot S_j,$$

where the S_i are now three-component vectors of unit length. The Heisenberg spin glass has been far less studied than the Ising one, both statically and dynamically, presumably because it was hoped that the understanding of the apparently simpler Ising case would be sufficient to interpret experiments. Very recent experiments systematically comparing Ising (i.e. very anisotropic) and Heisenberg samples have shown substantial quantitative differences between the two types of samples, the nonequilibrium effects being indeed much clearer in Heisenberg samples [15, 16].

Hence, it can reasonably be hoped that dynamic studies of the Heisenberg spin glass in $d = 3$ will reproduce the key experimental effects, so that deeper theoretical knowledge of the nature of the nonequilibrium dynamics of spin glasses can be gained.

In this paper, we extract some preliminary results from the first large-scale numerical simulation of the nonequilibrium dynamics of the three-dimensional Heisenberg spin glass [17].

2. Simulation details

We simulate the Heisenberg spin glass (2) in $d = 3$. The sum in (2) runs over nearest neighbours of a cubic lattice with periodic boundary conditions. We use a heat-bath algorithm [18] in which the updated spin has the correct Boltzmann distribution for the instantaneous local field. This method has the advantage that a change in the spin orientation is always made. We use a rather large simulation box of linear size $L = 60$, and study several temperatures $T = 0.16, 0.15, 0.14, 0.12, 0.10, 0.08, 0.04$ and 0.02. Although all the quantities we shall study are self-averaging, we use several realizations of the disorder, typically 15, to increase the statistics of our data.

Contrary to the Ising case, the phase transition of the Heisenberg spin glass is still an open problem. A decoupling between spin and chiral degrees of freedom was theoretically suggested [19], while early simulations even questioned the mere existence of a phase transition [18]. Very recent simulations involving the most efficient tools used to study the Ising spin glass, conclude that the model is characterized by a phase...
transition, at $T_c \simeq 0.16$, where both spins and chirality simultaneously freeze \cite{20}. This motivates our choice for the upper temperature studied in our dynamical approach and our use of spin variables as dynamical objects of study.

3. What has to be measured?

Before embarking in the complex phenomenology of spin glasses, it is worth discussing the simplest protocol one can think of to probe the spin glass phase. A ‘simple aging’ experiment consists of a sudden quench at initial time $t_w = 0$ from a temperature well in the paramagnetic phase, $T \gg T_c$, to a constant, low temperature below the spin glass transition, $T < T_c$. Aging means a very slow evolution with time t_w (called ‘age’) of the physical properties of the system. To study this behaviour, we record two types of quantities. First, ‘one-time’ quantities can be studied, such as the energy density of the spin glass,

$$e(t_w) = \frac{1}{N} H.$$ \hfill (3)

The time evolution of $e(t_w)$ for various low temperatures is presented in Fig. 1, from which the slow decrease of the energy towards an asymptotic equilibrium value is indeed observed, the sign that the dynamics is non-stationary.

We also study ‘two-time’ dynamic quantities. While experiments usually record response functions, it is easier to measure the corresponding correlation functions in numerical work. Here, we record the spin-spin autocorrelation function defined as

$$C(t + t_w, t_w) = \frac{1}{N} \sum_i S_i(t + t_w) \cdot S_i(t_w).$$ \hfill (4)

The qualitative behaviour of this function is well-known, and a prototypical example is shown in Fig. 2. As usual, the time decay of $C(t + t_w, t_w)$ can be decomposed into two
Time and length scales in spin glasses

parts. For short time separations, $t \ll t_w$, the dynamics is almost independent of t_w, while the later decay, $t \gg t_w$, becomes slower the larger t_w. Non-stationarity is reflected in the fact that $C(t + t_w, t_w) \neq C(t)$. The physical interpretation is simple: since the relaxation time of the sample is infinite, the only relevant time scale is the age of the sample t_w which imposes an age-dependent relaxation time: the older the sample, the slower its relaxation becomes. A careful analysis of short and large time behaviours of $C(t + t_w, t_w)$ and comparison to experimental data is described in Ref. [17].

4. Understanding aging in real space

The key problem is to understand the subtle slow changes that the system undergoes: what does ‘old’ or ‘young’ really mean for the sample? The answer necessarily connects to equilibrium, since the system eventually equilibrates for $t_w \to \infty$. Moreover, the decomposition of the decay $C(t + t_w, t_w)$ between a fast stationary process and a slow non-stationary one directly suggests the existence of some sort of local equilibrium within the sample: a spin appears locally equilibrated (short-time dynamics) although the sample as a whole is still far from equilibrium and evolves towards equilibrium (long-time dynamics).

It is possible to illustrate this last statement, as was done in the Ising case [9]. Because of the disorder, the spin orientations in an equilibrium configuration are random, so that it is impossible to detect any domain growth by simply looking at the spin directions. However, two systems, (a, b), evolving independently but with the same realization of the disorder will reach correlated equilibrium configurations [13], so that the orientation of the spins in the two copies will be similar, up to a global rotation. In Fig. 3 we present pictures where the ‘orientation’ variable

$$\cos \theta_i(t) = S^a_i(t) \cdot S^b_i(t)$$

(5)
The orientation variable $\cos \theta_i$ defined in Eq. (5) is encoded on a grey scale in a $60 \times 60 \times 60$ simulation box at three different times $t_w = 2, 27$ and 57797 (from left to right) and temperature $T = 0.04$. The growth of a local random ordering is evident.

Comparing three successive times, it becomes clear that aging involves the growth with time of a local random ordering imposed by the disorder of the Hamiltonian.

It is of course possible to go beyond simple pictures of black and white domains and measure the growing coherence length $\ell_T(t)$ corresponding to the mean domain size. For this purpose, the spatial decay of the following correlation function is recorded:

$$C_4(r, t) = \frac{1}{N} \sum_i S^a_i(t) \cdot S^a_{i+r}(t) S^b_i(t) \cdot S^b_{i+r}(t).$$

This function is a straightforward generalization of the two-spin, two-replica correlation function studied in the Ising case which measures spatial correlations of the random relative orientation of two spins [9]. In Fig. 4, we show this function for the same parameters as the correlators of Fig. 2. The spatial decay of $C_4(r, t)$ is clearly slower for larger t, in agreement with the pictures in Fig. 3. Physically, this means that a larger time t_w implies a slower relaxation due to a larger coherence length, very much as in standard coarsening phenomena.

Note that due to periodic boundary conditions, the function (6) in Fig. 4 is symmetric about $L/2 = 30$. In Ref. [19], it was argued that spin and chirality degrees of freedom undergo different aging dynamics because they are statically decoupled. The numerical support for this statement was the observation, for a system of linear size $L = 15$, that the autocorrelation (4) becomes stationary at large t_w. From Fig. 6, we immediately recognize that the data of Ref. [19] are plagued by severe finite size effects, so that the conclusions of previous aging studies of the Heisenberg spin glass [19, 21] must be taken with some care and justifies our numerical effort of simulating a very large system, $L = 60$. The scaling properties of $C_4(r, t)$ and the properties of the coherence length are further discussed in Ref. [17]. We make here the important remark that much larger length scales can be reached in the same numerical time window for the
Heisenberg spin glass than for the Ising case, which may indicate that richer behaviour can be seen in non-equilibrium simulations of the Heisenberg spin glass than the Ising one.

5. Conclusion

We have motivated the need for large-scale numerical simulations of the three dimensional Heisenberg spin glass in order to fill the gap between spatial theoretical descriptions of spin glass dynamics and experimental observations. The results presented here for the dynamics of the model (2) show that spin variables qualitatively follow the same type of aging behaviour as in the Ising case, which is due to the slow growth with time of a dynamic coherence length. In Ref. [17], we analyze in detail the scaling properties of the dynamic functions reported here. The observation that very large length scales can be reached in the numerical time window, see Fig. 4 gives us the hope, also confirmed by preliminary work, that the model will allow us to reproduce most of the experimental effects, with the advantage that simulations have direct access to the distributions of length scales involved in phenomenological theories, gaining further understanding of spin glass dynamics.

References

[1] E. Vincent, J. Hamman, M. Ocío, J.-P. Bouchaud, and L. F. Cugliandolo, in Complex behavior of glassy systems, Ed.: M. Rubi (Springer Verlag, Berlin, 1997); P. Nordblad and P. Svendsen, in Spin glasses and random fields, Ed.: A. P. Young (World Scientific, Singapore, 1998).
[2] J.-P. Bouchaud, L. F. Cugliandolo, J. Kurchan, and M. Mézard, in Spin glasses and random fields, Ed.: A. P. Young (World Scientific, Singapore, 1998).
[3] L. Berthier, V. Viasnoff, O. White, V. Orlyanchik, and F. Krzakala, in Slow relaxation and
nonequilibrium dynamics in condensed matter, Eds: J.-L. Barrat, J. Dalibard, M. Feigelman, J. Kurchan (Springer, Berlin, 2003).

[4] D. S. Fisher and D. A. Huse, Phys. Rev. Lett. 56, 1601 (1986); Phys. Rev. B 38, 373 (1988); ibid. 38, 386 (1988).

[5] J.-P. Bouchaud, in Soft and fragile matter: nonequilibrium dynamics, metastability and flow, Eds.: M. E. Cates and M. R. Evans (Institute of Physics Publishing, Bristol, 2000).

[6] J.-P. Bouchaud, V. Dupuis, J. Hammann, and E. Vincent, Phys. Rev. B 65, 024439 (2001).

[7] H. Yoshino, A. Lemaître, and J.-P. Bouchaud, Eur. Phys. J. B 20, 367 (2001).

[8] L. Berthier and P. C. W. Holdsworth, Europhys. Lett. 58, 35 (2002).

[9] J. Kisker, L. Santen, M. Schreckenberg, and H. Rieger, Phys. Rev. B 53, 6418 (1996).

[10] T. Komori, H. Yoshino, and H. Takayama, J. Phys. Soc. Jpn 68, 3387 (1999); 69, 1192 (2000); 69, Suppl. A 228 (2000).

[11] L. Berthier and J.-P. Bouchaud, Phys. Rev. B 66, 054404 (2002); Phys. Rev. Lett. 90, 059701 (2003).

[12] H. G. Ballesteros, A. Cruz, L. A. Fernandez, V. Martin-Mayor, J. Pech, J. J. Ruiz-Lorenzo, A. Tarancon, P. Tellez, C. L. Ullod, and C. Ungil, Phys. Rev. B 62, 14237 (2000).

[13] E. Marinari, G. Parisi, and J. J. Ruiz-Lorenzo, in Spin glasses and random fields, Ed.: A. P. Young (World Scientific, Singapore, 1998).

[14] M. Pico, F. Ricci-Tersenghi, and F. Ritort, Phys. Rev. B 63, 174412 (2001).

[15] V. Dupuis, E. Vincent, J.-P. Bouchaud, J. Hammann, A. Ito, and H. A. Katori, Phys. Rev. B 64, 174204 (2001).

[16] P. E. Jönnsson, R. Mathieu, P. Nordblad, H. Yoshino, H. Aruga Katori, and A. Ito, preprint condmat/0307640.

[17] L. Berthier and A. P. Young (in preparation).

[18] J. A. Olive, A. P. Young, and D. Sherrington, Phys. Rev. B 34, 6341 (1986).

[19] H. Kawamura, Phys. Rev. Lett. 80, 5421 (1998).

[20] L. W. Lee and A. P. Young, Phys. Rev. Lett. 90, 227203 (2003).

[21] F. Matsubara, T. Shirakura, and S. Endoh, Phys. Rev. B 64, 092412 (2001).