Diagnosis of the jejunoileal lymphoma by double-balloon endoscopy

Takashi Ibuka, Hiroshi Araki, Tomohiko Sugiyama, Takayuki Nakanishi, Fumito Onogi, Masahito Shimizu, Takeshi Hara, Tsuyoshi Takami, Hisashi Tsurumi, Hisataka Moriwaki

Takashi Ibuka, Hiroshi Araki, Tomohiko Sugiyama, Takayuki Nakanishi, Fumito Onogi, Masahito Shimizu, Takeshi Hara, Hisashi Tsurumi, Hisataka Moriwaki, First Department of Internal Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
Hiroshi Araki, Department of Gastroenterology, Gifu University School of Medicine, Gifu 501-1194, Japan
Tsuyoshi Takami, Department of Immunopathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan

Author contributions: Ibuka T, Araki H, Sugiyama T, Nakanishi T, Onogi F and Shimizu M carried out double-balloon endoscopy; Hara T and Tsurumi H clinically managed the lymphoma patients; Takami T made histopathological diagnosis of lymphoma; Ibuka T, Araki H and Moriwaki H designed the study, analyzed the data and prepared the manuscript.

Correspondence to: Hiroshi Araki, MD, Department of Gastroenterology, Gifu University School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan. araara@gifu-u.ac.jp
Telephone: +81-58-2306308 Fax: +81-58-2306310
Received: April 8, 2012 Revised: August 14, 2012
Accepted: January 23, 2013
Published online: March 16, 2013

Abstract

AIM: To investigate the feasibility of double-balloon endoscopy (DBE) to detect jejunoileal lymphoma, compared with fluorodeoxyglucose positron emission tomography (FDG-PET).

METHODS: Between March 2004 and January 2011, we histologically confirmed involvement of malignant lymphoma of the jejunoileum in 31 patients by DBE and biopsy. In 20 patients of them, we performed with FDG-PET. We retrospectively reviewed the records of these 20 patients. Their median age was 64 years (range 50-81). In the 20 patients, the pathological diagnosis of underlying non-Hodgkin’s lymphoma (NHL) comprised follicular lymphoma (FL, \(n = 2\)), enteropathy associated T cell lymphoma (ETL, \(n = 1\)) and anaplastic large cell lymphoma (ALCL, \(n = 1\)).

RESULTS: Ten cases showed accumulation by FDG-PET (50%). FDG-PET was positive in 3 of 12 FL cases (25%) while in 7 of 8 non-FL cases (88%, \(P < 0.05\)). Intestinal FL showed a significantly lower rate of positive FDG-PET, in comparison with other types of lymphoma. Cases with endoscopically elevated lesions (\(n = 10\)) showed positive FDG-PET in 2 (20%), but those with other type NHL did in 8 of 10 (80%, \(P < 0.05\)). When the cases having elevated type was compared with those not having elevated type lesion, the number of cases that showed accumulation of FDG was significantly smaller in the former than in the latter.

CONCLUSION: In a significant proportion, small intestinal involvement cannot be pointed out by FDG-PET. Especially, FL is difficult to evaluate by FDG-PET but essentially requires DBE.

© 2013 Baishideng. All rights reserved.

Key words: Double-balloon endoscopy; Non-Hodgkin’s lymphoma; Jejunoileum; Fluorodeoxyglucose positron emission tomography; Follicular lymphoma

Ibuka T, Araki H, Sugiyama T, Nakanishi T, Onogi F, Shimizu M, Hara T, Takami T, Tsurumi H, Moriwaki H. Diagnosis of the jejunoileal lymphoma by double-balloon endoscopy. World J Gastrointest Endosc 2013; 5(3): 111-116 Available from: URL: http://www.wjgnet.com/1948-5190/full/v5/i3/111.htm DOI: http://dx.doi.org/10.4253/wjge.v5.i3.111

INTRODUCTION

The clinical stage of non-Hodgkin’s lymphoma (NHL) is usually determined by imaging modalities such as com-
MATERIALS AND METHODS

Patients
Between March 2004 and January 2011, we histologically confirmed involvement of malignant lymphoma of the jejunoileum in 31 patients by DBE and biopsy. In 20 patients of them, we performed with FDG-PET. We retrospectively reviewed the records of these 20 patients. Their median age was 64 years (range 50-81 years). Their demographic and clinical characteristics are summarized in Table 1. In the 20 patients, the pathological diagnosis of underlying NHL comprised follicular lymphoma (FL, n = 12), diffuse B cell lymphoma (DLBCL, n = 4), mantle cell lymphoma (MCL, n = 2), enteropathy associated T cell lymphoma (ETL, n = 1) and anaplastic large cell lymphoma (ALCL, n = 1) (Table 2).

Eligibility criteria for DBE in lymphoma patients
Eligibility criteria for DBE in lymphoma patients were: (1) lymphoma infiltration of the stomach, duodenum or colon proven by gastrointestinal endoscopy or colonoscopy which are routine evaluation of lymphoma patients in our institution; (2) intraabdominal lesion suspected from CT or gallium-scintigraphy/FDG-PET imaging; or (3) any gastrointestinal symptoms such as a bloated sensation in the abdomen, abdominal pain, diarrhea, constipation, protein-losing syndrome or hematochezia. Exclusion criterion was poor performance status of grade 3 or 4 assessed by Eastern Cooperative Oncology Group classification[7]. We conducted DBE from both oral and anal routes in principle. However, in the patients who did not give consent to this dual approach mainly due to the examination burden, we selected only one-sided insertion according to the information of preceding gastrointestinal endoscopy and colonoscopy.

Locations and multiplicity of lymphoma lesions confirmed by DBE
We observed jejunum and ileum in 11 cases by the combination of both oral and anal approach, only jejunum in 4 cases by oral approach, and only ileum in 5 cases by anal approach. Six, five and nine patients had lesions in the jejunum, ileum, and in both, respectively. We observed multiple lesions in 16 cases, solitary lesion in 2 cases, and diffuse lesion in 2 cases.

DBE
DBE was carried out in the Endoscopy Unit of Gifu University Hospital using a Fujinon system (EN450-T5/W, Fujinon Corporation, Saitama, Japan). The whole procedure is similar to that described in detail elsewhere[8-10]. In brief, the system comprises an endoscope and a flexible overtube that are both provided with soft latex balloons connected through a built-in air route to a controlled pump system. Patients ingested 2 L of a polyethylene glycol-based solution on the day before the examination. The small intestine was examined endoscopically using a combination of anterograde (oral) and retrograde (anal) DBEs. We obtained biopsy specimens of all lesions detected during the procedure.

Statistical analysis
Pretreatment characteristics were compared between FDG-PET-positive and -negative patients by the Fisher’s exact test or Student’s t-test. P values of < 0.05 indicated significance.
In the 10 cases that showed accumulation of FDG, 4 tumors were classified as ulcerative type (Figure 1), 2 as MLP type, 1 as elevated type (Figure 2), 1 as diffuse-infiltrating type, 1 as diffuse infiltration+ulcerative and 1 as elevated + MLP type. In other 10 cases that did not show accumulation of FDG, 4 tumors were classified as elevated type (Figure 3), 1 as ulcerative type, 1 as MLP type, and 4 as elevated + MLP type. When the cases having elevated type was compared with those not having elevated type lesion, the number of cases that showed accumulation of FDG was significantly smaller in the former than in the latter (P < 0.05) (Table 2).

Other parameters
Clinical stage, abdominal symptom, B symptom, other gastrointestinal tract lesions, performance status (PS), lactate dehydrogenase (LDH), hemoglobin (Hb) or soluble interleukin-2 receptor (sIL-2R) did not produce significant difference in the accumulation of FDG (Table 2).

Adverse events of DBE
We had no complications associated with DBE in all twenty cases.

DISCUSSION
NHL frequently involves the gastrointestinal tract and forms multiple tumors. Since the small intestine is a preferential site of such involvement and could be complicated with perforation following chemotherapy, it is important to diagnose NHL invasion into the small intestine in advance. For this aim, DBE is invasive while FDG-PET is not. Thus, FDG-PET is now a routine measure for staging and follow-up of patients with malignant lymphoma, since it has been proven as useful to clinically evaluate these patients. In our study, however, FDG-PET could not detect small intestinal involvement in 10 (50%) of the 20 patients with confirmed small intestinal involvement. Therefore, we emphasize that DBE is essential for the diagnosis of such involvement of lymphoma and for the subsequent management of the patients. Less invasive capsule endoscopy can image the 10 cases, histopathological classification was FL in 3 cases, DLBCL in 3, MCL in 2, ETL in 1 and ALC in 1. In the cases which did not show FDG accumulation, histopathological classification was FL in 9 cases and DLBCL in 1. Thus, intestinal FL showed a significantly lower rate of positive FDG-PET, in comparison with other types of lymphoma (P < 0.05) (Table 2).

Table 2 Characteristics of fluorodeoxyglucose positron emission tomography-positive or -negative patients

	FDG-PET	P value	
	All cases	Positive	Negative
Histology			
FL	20	10	10
DLBCL	4	3	1
MCL	2	2	0
ETL	1	1	0
ALC	1	1	0
FL	12	3	9 < 0.05
Others	8	7	1
Endoscopic findings			
Elevated	5	1	4
Ulcerative	5	4	1
MLP	3	2	1
Diffuse infiltration	1	1	0
Diffuse infiltration + ulcerative	1	1	0
Elevated + MLP	5	1	4
Including elevated	10	2	8 < 0.05
Not including elevated	10	8	2
Clinical Stage			
I	1	1	1
II	5	3	2
III	3	1	2
IV	9	5	5
I / II	6	4	3
III / IV	12	6	7
Abdominal symptom			
Present	6	5	1
Absent	14	5	9
B symptom			
Present	10	5	5
Absent	10	5	5
Other gastrointestinal tract lesions			
Absent	10	6	4
Present	10	4	6
Esophagus	2	2	0
Stomach	6	4	2
Duodenum	12	5	7
Colon	2	2	0
PS			
0	18	9	9
1	2	1	1
Hemoglobin (g/dL)			
Median	13.7	13.1	14.1
(range)	(7.8-17.1)	(7.8-16.3)	(12.1-17.1)
Lactate dehydrogenase (IU/L)			
Median	196	197	187
(range)	(108-1195)	(108-342)	(126-1195)
Soluble interleukin-2 receptor (U/mL)			
Median	1350	2302	802
(range)	(363-7410)	(371-6880)	(363-7410)

1By Fisher’s exact test. FDG-PET: Fluorodeoxyglucose positron emission tomography; DLBCL: Diffuse large B-cell lymphoma; FL: Follicular lymphoma; MCL: Mantle cell lymphoma; ETL: Enteropathy associated T-cell lymphoma; ALC: Anaplastic large cell lymphoma; MLP: Multiple lymphomatous polyposis; PS: Performance status; NS: Not significant.

RESULTS

Histopathological classification
Ten of 20 cases with malignant lymphoma confirmed by DBE showed accumulation by FDG-PET (50%). In these 10 cases, histopathological classification was FL in 3 cases, DLBCL in 3, MCL in 2, ETL in 1 and ALC in 1. In the cases which did not show FDG accumulation, histopathological classification was FL in 9 cases and DLBCL in 1. Thus, intestinal FL showed a significantly lower rate of positive FDG-PET, in comparison with other types of lymphoma (P < 0.05) (Table 2).
tions of 18F-FDG in the primary lesions, giving a low diagnostic sensitivity of 12.5%. In our study, the proportion of patients with positive FDG-PET was significantly lower in FL cases when compared to other types of lymphoma (Table 2). On the other hand, it is reported that FDG-PET detected disease on at least one site in 98% of FL patients [5] supporting its usefulness for staging of patients with FL [24]. However, in another report of duodenal FL, 18F-FDG accumulated in the mesenteric lymph nodes but not in the primary duodenal site [25]. Hoffmann et al [26] also reported that FDG-PET is not useful for clinical assessment of primary duodenal FL. Higuchi et al [27] further reported that increased uptake of 18F-FDG was not observed in the confirmed jejunoileal FL lesions in their 6 patients. We also experienced FL case that 18F-FDG accumulated in the intraabdominal lymph nodes, whereas there was no obvious uptake in the jejunoileal site (Figure 3). We thus think that FDG-PET is not useful for clinical assessment of jejunoileum FL and DBE is essential to diagnose the gastrointestinal involvement of FL. Thus, as reported by Tanaka et al [28], intestinal FL seems to have distinct clinicopathological characteristics from other intestinal lymphoma.

The morphological features of small intestinal involvement were basically the same as those in the stomach or duodenum [11-14]. We identified a variety of morphologies, such as ulcerative, MLP, diffuse infiltration, entire gastrointestinal tract and thus might also be useful to detect small intestinal involvement of lymphoma [16,17]. However, application of this method is limited, because biopsy specimens cannot be obtained. Although invasive, DBE is the sole endoscopic approach that enables biopsy of small intestine.

The good diagnostic ability of FDG-PET for extranodal lymphoma lesions has been demonstrated with sensitivity of 67%-100% [18-22]. Our sensitivity of FDG-PET was lower than previous reports, probably because the number of FL cases was large. Yamamoto et al [23] reported that in 14 of 16 FL cases of the small intestine, there were no obvious accumula-
and elevated types. The most typical finding in FL was multiple whitish small nodules. Nakamura et al. showed that endoscopic findings of primary intestinal FL by DBE were varied, including mass formation, swelling of folds, and stenosis of intestine. In our analysis, multiple whitish small nodules, mass formation and swelling of folds were included in elevated type.

In the cases including elevated type, accumulation of FDG appeared in significantly fewer cases than in those without elevated type (Table 2). For the reason, we suppose that majority of FL patients showed elevated type of small intestinal involvement.

Although we had no complications associated with DBE in all twenty cases, it is reported that 40 adverse events were experienced in 2362 DBE procedure (1.7%) [30], including pancreatitis in 7 patients (0.3%), bleeding in 19 patients (0.8%), perforation in 6 patients (0.3%), and others in 8 (0.3%). However, only regarding diagnostic DBE (1728 patients), the incidence of complication was 0.8% [30]. We think that DBE is a safe and well-tolerated method, but it is necessary to take care about adverse events.

In conclusion, in a significant proportion of lymphoma cases, small intestinal involvement cannot be pointed out by FDG-PET. Especially, the small intestinal FL is difficult to evaluate by FDG-PET but essentially requires DBE.

Figure 3 In other 10 cases that did not show accumulation of fluorodeoxyglucose, 4 tumors were classified as elevated type. A: In a 64-year-old female with follicular lymphoma, we identified abnormally increased fluorodeoxyglucose uptake only in the intraabdominal lymph nodes, but not in the small intestine; B: However, small intestinal involvement was confirmed by double-balloon endoscopy.

REFERENCES
1. Kumar R, Maillard L, Schuster SJ, Alavi A. Utility of fluorodeoxyglucose-PET imaging in the management of patients with Hodgkin’s and non-Hodgkin’s lymphomas. Radiol Clin North Am 2004; 42: 1083-1100 [PMID: 15488559 DOI: 10.1016/j.rcl.2004.08.008]
2. Rosenberg SA, Diamond HD, Jaslowitz B, Craver LF. Lymphosarcoma: a review of 1269 cases. Medicine (Baltimore) 1961; 40: 31-84 [PMID: 13743408 DOI: 10.1097/00005792-19610200-00002]
3. Freeman C, Berg JW, Cutler SJ. Occurrence and prognosis of extranodal lymphomas. Cancer 1972; 29: 252-260 [PMID: 5007387]
4. Bush RS. Primary lymphoma of the gastrointestinal tract. [AMA 1974; 228: 1291-1294 [PMID: 4406525 DOI: 10.1001/jama.1974.02300350061041]
5. Elstrom R, Guan L, Baker G, Nakhooda K, Vergilio JA, Zhuang H, Pitsilos S, Bagg A, Downs L, Mehrotra A, Kim S, Alavi A, Schuster SJ. Utility of FDG-PET scanning in lymphoma by WHO classification. Blood 2003; 101: 3875-3876 [PMID: 12531812 DOI: 10.1182/blood-2002-09-2778]
6. Yamamoto H, Sekine Y, Sato Y, Higashizawa T, Miyata T, Iino S, Ido K, Sugano K. Total enteroscopy with a non-surgical steerable double-balloon method. Gastrointest Endosc 2001; 53: 216-220 [PMID: 11174299 DOI: 10.1067/mge.2001.112181]
7. Oken MM, Creech RH, Torney DC, Horton J, Davis TE, McFadden ET, Carbone PP. Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am J Clin Oncol 1982; 5: 649-655 [PMID: 7168009 DOI: 10.1097/00000421-19821200-00014]
Ibuka T et al. Malignant lymphoma of the jejunouilem

May A, Nachbar L, Wardak A, Yamamoto H, Ell C. Double-balloon enteroscopy: preliminary experience in patients with obscure gastrointestinal bleeding or chronic abdominal pain. Endoscopy 2003; 35: 985-991 [PMID: 14648408 DOI: 10.1055/s-2003-443822]

Yamamoto H, Kita H, Sunada K, Hayashi Y, Sato H, Yano T, Iwamoto M, Sekine Y, Miyata T, Kuno A, Ajibe H, Ido K, Sugano K. Clinical outcomes of double-balloon endoscopy for the diagnosis and treatment of small-intestinal diseases. Clin Gastroenterol Hepatol 2004; 2: 1010-1016 [PMID: 1555124 DOI: 10.1016/S1542-3565(04)00453-7]

Yamamoto H, Kita H. Double-balloon enteroscopy. Curr Opin Gastroenterol 2005; 21: 573-577 [PMID: 16093772 DOI: 10.1097/01.mog.0000176440.03280.2a]

Yoshino T, Miyake K, Ichimura K, Mannami T, Ohara N, Hamazaki S, Akagi T. Increased incidence of follicular lymphoma in the duodenum. Am J Surg Pathol 2000; 24: 688-693 [PMID: 10800987 DOI: 10.1097/00000478-200005000-00007]

Shia J, Teruya-Feldstein J, Pan D, Hegde A, Klimstra DS, Chaganti RS, Qin J, Portlock CS, Filippa DA. Primary follicular lymphoma of the gastrointestinal tract: a clinical and pathologic study of 26 cases. Ann Surg Oncol 2002; 26: 216-224 [PMID: 11812943 DOI: 10.1097/01.sno.00000478-200206000-00008]

Damaj G, Verkarre V, Delmer A, Solal-Celigny P, Yakoub-Agha I, Cellier C, Maurschaufer F, Bouabdallah R, Leblond V, Lefrère B, Bouscary D, Audouin J, Coiffier B, Varet B, Molina T, Brousse N, Hermine O. Primary follicular lymphoma of the gastrointestinal tract: a study of 25 cases and a literature review. Ann Oncol 2003; 14: 623-629 [PMID: 12649110 DOI: 10.1093/annonc/mdg168]

Nakamura S, Matsumoto T, Iida M, Yao T, Tsucheyoshi M. Primary gastrointestinal lymphoma in Japan: a clinicopathologic analysis of 455 patients with special reference to its time trends. Cancer 2003; 97: 2462-2473 [PMID: 12733145 DOI: 10.1002/cncr.11415]

Schüder H, Meta J, Yap C, Ariannejad M, Rao J, Phelps ME, Valk PE, Sayre J, Czernin J. Effect of whole-body [(18)F]-FDG PET imaging on clinical staging and management of patients with malignant lymphoma. J Nucl Med 2001; 42: 1139-1143 [PMID: 11483671]

Iddan G, Meron G, Glukhovsky A, Swain P. Wireless capsule endoscopy. Nature 2000; 407: 417 [PMID: 10839527 DOI: 10.1038/35013140]

Flieger D, Keller R, May A, Ell C, Fischbach W. Capsule endoscopy in gastrointestinal lymphomas. Endoscopy 2005; 37: 1174-1180 [PMID: 16329013 DOI: 10.1055/s-2005-921045]

Bangerter M, Moog F, Buchmann I, Klotzerke J, Griesshammer M, Hafner M, Elsner K, Frickhofen N, Reske SN, Bergmann L. Whole-body [(18)F]-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) for accurate staging of Hodgkin’s disease. Ann Oncol 1998; 9: 1117-1122 [PMID: 9854825]

Jerusalem G, Warland V, Najjar F, Paulus P, Fassotte MF, Filliet G, Rigo P. Whole-body [(18)F]-FDG PET for the evaluation of patients with Hodgkin’s disease and non-Hodgkin’s lymphoma. Nucl Med Comm 1999; 20: 13-20 [PMID: 9949048]

Buchmann I, Reinhardt M, Elsner K, Bunjes D, Altheofer C, Finke J, Moser E, Glatting G, Klotzerke J, Guldmann CA, Schirrmeister H, Reske SN. 2-[(fluorine-18)]fluoro-2-deoxy-D-glucose positron emission tomography in the detection and staging of malignant lymphoma. A bicenter trial. Cancer 2001; 91: 889-899 [PMID: 11251940 DOI: 10.1002/1097-0142(200103)91:1<889::AID-CAN2>3.0.CO;2-7]

Moog F, Bangerter M, Diederichs CG, Guldmann A, Merkle E, Frickhofen N, Reske SN. Extranodal malignant lymphoma: detection with FDG PET versus CT. Radiology 1998; 206: 475-481 [PMID: 9457202]

Sasaki M, Kuwabara Y, Koga H, Nakagawa M, Chen T, Kaneko K, Hayashi K, Nakamura K, Masuda K. Clinical impact of whole body FDG-PET on the staging and therapeutic decision making for malignant lymphoma. Ann Nucl Med 2002; 16: 337-345 [PMID: 12230093]

Yamamoto S, Nakase H, Yamashita K, Matsura M, Takada M, Kawanami C, Chiba T. Gastrointestinal follicular lymphoma: review of the literature. J Gastroenterol 2010; 45: 370-388 [PMID: 20884529 DOI: 10.1007/s00535-009-0182-z]

Le Dortz L, De Guibert S, Bava S, Devillers A, Houtou R, Rolland Y, Cugia M, Le Jeune F, Bahri H, Barge ML, Lamy T, Garin E. Diagnostic and prognostic impact of 18F-FDG PET/CT in follicular lymphoma. Eur J Nucl Med Mol Imaging 2010; 37: 2307-2314 [PMID: 20717826 DOI: 10.1007/s00259-010-1359-5]

Tanaka F, Tominaga K, Ochi M, Yamada T, Sasaki E, Shiba M, Watanabe T, Fujiyara W, Uchida T, Oshitani N, Higuchi K, Arakawa T. Primary duodenal lymphoma: successful rituximab treatment and evaluation by FDG-PET. Hepatogastroenterology 2007; 54: 1658-1661 [PMID: 18019688]

Hoffmann M, Chott A, Püspök A, Jäger U, Kletter K, Raderer M. 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET) does not visualize follicular lymphoma of the duodenum. Ann Hematol 2004; 83: 276-278 [PMID: 15060746 DOI: 10.1007/s00277-003-0827-4]

Higuchi N, Sumida Y, Nakamura K, Itaba S, Yoshinaga S, Mizutani T, Honda K, Taki K, Murao H, Ogino H, Kanayama K, Akihoo H, Goto A, Segawa Y, Yao T, Takayagnan R. Impact of double-balloon endoscopy on the diagnosis of jejunoileal involvement in primary intestinal follicular lymphomas: a case series. Endoscopy 2009; 41: 175-178 [PMID: 19214900 DOI: 10.1055/s-0028-1119467]

Takata K, Okada H, Ohmiya N, Nakamura S, Kitadai Y, Tari A, Akamatsu T, Kawai H, Tanaka S, Araki H, Yoshiida T, Okumura H, Nishihsaki H, Sagawa T, Watanabe N, Arima N, Takatsu N, Nakamura M, Yanai S, Kayo H, Marito T, Sato Y, Moriwaki H, Nakamoto C, Niwa Y, Goto H, Chiba T, Matsumoto T, Ennishi D, Kinoshita T, Yoshino T. Primary gastrointestinal follicular lymphoma involving the duodenal second portion is a distinct entity: a multicenter, retrospective analysis in Japan. Cancer Sci 2011; 102: 1532-1536 [PMID: 21561531 DOI: 10.1111/j.1349-7006.2011.01980.x]

Nakamura S, Matsumoto T, Umeno J, Yanai S, Shono Y, Suekane H, Hirahashi M, Yao T, Iida M. Endoscopic features of intestinal follicular lymphoma: the value of double-balloon enteroscopy. Endoscopy 2007; 39 Suppl 1: E26-E27 [PMID: 17285496 DOI: 10.1055/s-2007-966223]

Mensk PB, Haringsma J, Kucharzik T, Cellier C, Pérez-Cuadrado E, Mönkemüller K, Gasbarrini A, Kaffes AJ, Nakamura K, Yen HH, Yamamoto H. Complications of double-balloon enteroscopy: a multicenter survey. Endoscopy 2007; 39: 613-615 [PMID: 17516287 DOI: 10.1055/s-2007-966444]

P-Reviewers Yan SL, Girelli CM S-Editor Song XX L-Editor A E-Editor Zhang DN