Efficient 2-Nitrophenol Chemical Sensor Development Based on Ce$_2$O$_3$ Nanoparticles Decorated CNT Nanocomposites for Environmental Safety

Mohammad M. Hussain$^{1,2}$, Mohammed M. Rahman$^{1,2,*}$, Abdullah M. Asiri$^{1,2}$

$^{1}$ Chemistry Department, King Abdulaziz University, Faculty of Science, Jeddah, Saudi Arabia, $^{2}$ Center of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia

* mmrahman@kau.edu.sa, mmrahmanh@gmail.com

Abstract

Ce$_2$O$_3$ nanoparticle decorated CNT nanocomposites (Ce$_2$O$_3$.CNT NCs) were prepared by a wet-chemical method in basic medium. The Ce$_2$O$_3$.CNT NCs were examined using FTIR, UV/Vis, Field-Emission Scanning Electron Microscopy (FESEM), X-ray electron dispersive spectroscopy (XEDS), X-ray photoelectron spectroscopy (XPS), and powder X-ray diffraction (XRD). A selective 2-nitrophenol (2-NP) sensor was developed by fabricating a thin-layer of NCs onto a flat glassy carbon electrode (GCE, surface area = 0.0316 cm$^2$). Higher sensitivity including linear dynamic range (LDR), long-term stability, and enhanced electrochemical performances towards 2-NP were achieved by a reliable current-voltage (I-V) method. The calibration curve was found linear ($R^2 = 0.9030$) over a wide range of 2-NP concentration (100 pM ~ 100.0 mM). Limit of detection (LOD) and sensor sensitivity were calculated based on noise to signal ratio (~3N/S) as 60 ± 0.02 pM and 1.6 × 10$^{-3}$ μAμM$^{-1}$cm$^{-2}$ respectively. The Ce$_2$O$_3$.CNT NCs synthesized by a wet-chemical process is an excellent way of establishing nanomaterial decorated carbon materials for chemical sensor development in favor of detecting hazardous compounds in health-care and environmental fields at broad-scales. Finally, the efficiency of the proposed chemical sensors can be applied and utilized in effectively for the selective detection of toxic 2-NP component in environmental real samples with acceptable and reasonable results.

1. Introduction

The importance of safety (Environment and health) is a great concern of using semiconductor materials for the detection of toxic chemicals through a well-organized technique. Nanostructure materials are very much efficient and sensitive due to having exceptional properties such as large and active surface area, and spherical size toward volume ratio in comparison with traditional materials in a micro to nano ranges. Generally metal-oxide nanostructures has been attracted great concentration due to their excellent criteria such as higher dynamic surface...
region, permeability, high porosity, easy fabrication, quantum confinement effect, and stability [1, 2]. Metal oxide conjugated carbon material composites based sensors are broadly using for the detection of poisonous pollutants, in process control of chemicals, and monitoring of air or water pollution in the environment. Removing of toxic compounds from industrial waste water is one of the most important issues in the environmental and health science. Different methods have been developed for the removing of carcinogenic chemicals from industrial waste water effluent. But some issues are still remained unsolved such as preparation of the green NCs at a facile, inexpensive, removing of hazardous compounds in efficiently, and reusability of the stable NCs. In addition, the mesoporous characteristics of the NCs substance allow its superficial recycle without major failure of sensor potentiality and effectiveness. Based on the outstanding adsorption or absorption capability of hybrid NCs and additional recompenses (easy separation, environmentally friendly composition, and reusability), it was already designed a suitable sensor for removing of target toxins from the environmental and industrial wastes. The investigation of phenols and phenolic derivatives in normal water, and effluents is a major significance intended for environmental management, and safety owing toward their existence or emergence from a broad range of human performances. These phenolic derivatives or compound having toxic effect on animals, humans, plants, and they provide an unwanted taste, and odor to consumption water, even at very low concentration. Here, 2-NP is an organic compound under nitro-aromatic group and is widely used in the production of chemical intermediates, explosives, fungicides, gas, herbicides, insecticides, pharmaceuticals, pesticides, petroleum, pigments, rubber chemicals, synthetic dyes, textile and wood [3, 4]. The aromatic nitro-compounds are the toxic substances as well as the detoxification of contaminated water with nitro-aromatic molecules. 2-NP is the most persistent and hazardous organic pollutant of industrial wastewater and exhibits high toxicity or mutagenicity directly or through of its catabolic metabolites for living organisms [5, 6]. Based on conducting polymers, composites and semiconductor oxides, development of selective and efficient chemical sensor is an important issue for the detection and quantification of toxic chemicals and materials [7, 8]. Although traditional techniques have the advantages of sensitivity and accuracy, but most of them suffer difficulties with sample preparation or necessity of molecules derivatization, which limit their utility. Besides that, the electrochemical approach has been attempted for 2-NP determination because of low-cost, simple operation, fast response, sensitive and economical. Nanomaterials had been used in catalytic cracking of naphtha in order to increase the yield of ethylene and propylene [9–10], oxidation of CO [11], antibacterial activity study [12], improvement of electro-catalytic activity and stability of PbO2 electrode [13], hydrogen production [14], counter electrode for dye-sensitized solar cells [15], catalyst [16], CO conversion [17], degradation of phenol [18], photocatalytic activity [19], synthesis of spherical YAG [20], catalytic reduction of NO [21], removing of CO [22], catalytic wet-oxidation of 2,4-dichlorophenol solutions [23], enhancement of quantum yield [24], interrelated functionalities of hierarchically nanostructured layers [25], oxidation of methane [26], conversion of a dimensionally mixed ternary NCs [27], waste water treatments [28], and various applications [29–34]. Till to date, various nanostructure or composite materials based electrochemical chemical sensors have been established for the detection of hazardous phenolic compounds. The aim of this study was to synthesize Ce2O3.CNT NCs by a facile wet-chemical process and fabrication with conducting coating agent towards the detection of 2-NP using dependable I-V technique. It was recognized that the Ce2O3.CNT NCs fabricated electrode is an efficient and unique approach for the detection of 2-NP using I-V method with short response time in ultrasonically.
2. Experimental Section

2.1 Materials and Methods

Analytical grade of cerium (III) sulfate, sodium hydroxide (NaOH), disodium phosphate (Na₂HPO₄), monosodium phosphate (NaH₂PO₄), nafion (5% ethanolic solution), 2-nitrophenol (2-NP), 3-methoxyphenol (3-MP), 4-aminophenol (4-AP), 4-methoxyphenol (4-MP), acetic acid (Ac), bisphenol A (Bis A), ethanol (EtOH), hydrazine (Hy), melamine (Mel), methanol (MeOH), ammonium hydroxide (NH₄OH), carbon nanotube (CNT) were purchased from Sigma-Aldrich and used without further purification. FT-IR spectra of the dried Ce₂O₃,CNT NCs were performed on a Thermo scientific NICOLET iS50 FT-IR spectrometer (Madison, USA). UV/Vis studies were characterized using evolution 300 UV/Visible spectrophotometer (Thermo scientific). The XPS experiment was conducted on K-α spectrometer (Thermo scientific, K-α 1066) with AlKα radiation as an excitation resource (Spot-size of beam = 300.0 μm, pressure ~ 10⁻⁸ Torr, pass energy = 200.0 eV) for the evaluation of binding energy (KeV) of Ce, O, and C. The arrangement, structure, morphology, and elemental size of Ce₂O₃,CNT NCs were also investigated by FESEM (JEOL, JSM-7600F, Japan). XRD was conducted to analyze the crystalline pattern of Ce₂O₃,CNT NCs under ambient conditions. I-V technique was executed in order to detect 2-NP with fabricated Ce₂O₃,CNT NCs by Keithley electrometer (6517A, USA) at normal temperature, where two electrodes (working and counter) directly connected with electrometer.

2.2 Preparation of nanocomposites from Ce₂O₃ nanoparticles and CNT

The wet-chemical is a conventional and solid-state synthesis method, and widely used in the synthesis of undoped or doped nonmaterial. The products (solids) in this process achieved the smaller grains having shorter duration of phase formation at lower temperature. Based on the wet-chemical procedure [35, 36], active reacting agents such as cerium (III) sulphate [Ce₂(SO₄)₃], CNT and NaOH were used in the preparation of Ce₂O₃,CNT NCs. Accordingly, Ce₂(SO₄)₃ (0.1 M, 5.7 g) was dissolved in distilled water (100.0 mL) at an erlenmeyer flask (250.0 mL) and CNT (1.0 wt %, 0.25 μg) was then added in constant stirring. The pH of the resultant solution was controlled at over 10.29 by adding NaOH, and kept for continuous stirring at 90.0°C. After continuous stirring (6 h), the flask washed thoroughly with water and acetone consequently, and then kept for exposure to air (26 h) at room temperature. The resultant greenish product (Ce₂O₃,CNT NCs) was dried in the oven at 60.0°C for 24 h, grinding into powders, again dried at 60.0°C in the oven (24 h), and then used for characterizations such as elemental, morphological, optical and structural property, and applied for chemical sensing using I-V technique. The cerium oxide nanoparticles (Ce₂O₃ NPs) without CNT were also prepared using the similar procedure under identical conditions. The probable reaction mechanisms for the formation of Ce₂O₃,CNT NCs are shown in the reaction (i) to (iv).

\[
NaOH_{(aq)} \rightarrow Na^+_{(aq)} + OH^-_{(aq)} \quad (i)
\]
\[
Ce_2(SO_4)_3 \rightarrow 2Ce^{3+}_{(aq)} + 3SO_4^{2-}_{(aq)} \quad (ii)
\]
\[
6Na^{+}_{(aq)} + 6OH^-_{(aq)} + 2Ce^{3+}_{(aq)} + 3SO_4^{2-}_{(aq)} \rightarrow 2Ce(OH)_3(s) + 3Na_2SO_4(s) \quad (iii)
\]
\[
2Ce(OH)_3(s) + CNT(dispersed) \rightarrow Ce_2O_3,CNT(s) + 3H_2O_{(aq)} \quad (iv)
\]

According to the Ce₂O₃,CNT NCs growth mechanism, initially nucleus growth takes place by itself and mutual-aggregation, nano-crystal re-aggregated and formed aggregated Ce₂O₃ nanocrystal using Ostwald-Ripening method. Nano crystals crystallized and re-aggregated with each other counter parts through Vander-Waals forces in presence of dispersed CNT and Ce₂O₃,CNT NCs porous morphology had been reformed (Fig 1).
2.3 Fabrication of glassy carbon electrode with Ce$_2$O$_3$.CNT NCs

Phosphate buffer, PB (0.1 M, pH = 7) was prepared with addition of Na$_2$HPO$_4$ (0.2 M) and NaH$_2$PO$_4$ (0.2 M) in distilled water (200.0 mL). The GCE was fabricated with Ce$_2$O$_3$.CNT NCs using EtOH and conducting binding agent, nafion. After that it was kept for 3 h until completely dried with uniform thin film formation at room temperature. The fabricated NCs/GCE and platinum wire (Pt) were used as a working and counter electrode respectively.

3. Results and Discussion

3.1. Choice of nanocomposite materials

Ce$_2$O$_3$ nanoparticles decorated CNT nanocomposites have employed a great deal of consideration due to their chemical, physical, and optical properties in terms of large-active surface area, high-stability, high porosity, and permeability (porous-tubers nature of CNT), which directly dependent on the structural morphology prepared by uni-molar ratio by reactant precursors [Ce$_2$(SO$_4$)$_3$ and CNT] for making Ce$_2$O$_3$.CNT NCs in alkaline phase. The Ce$_2$O$_3$.CNT NCs were synthesized by a wet-chemical method using NaOH as a reducing agent. This technique has several advantages including facile preparation, accurate control the reactant temperature, easy to handle, one-step reaction, and high-porosity as well as porous tube natures both Ce$_2$O$_3$ and CNT materials. Optical, morphological, electrical, and chemical properties of Ce$_2$O$_3$.CNT NCs materials are of huge significant from the scientific aspect, compared to other un-doped materials. Non-stoichiometry, mostly oxygen vacancies, makes it conducting nature in the nanocomposites. The formation energy of oxygen vacancies and metal interstitials in semiconductor is very low and thus these defects form eagerly, resulting in the experimental elevated conductivity of Ce$_2$O$_3$.CNT NCs compared to other un-doped materials. Ce$_2$O$_3$.CNT NCs materials have also attracted considerable interest owing to their potential applications in fabricating optoelectronics, electro-analytical, selective detection of bioassays, biological devices, hybrid-composites, electron-field emission sources for emission exhibits, biochemical detections, and surface-enhanced Raman properties etc. Further adsorption and incorporation of cerium oxide nanoparticles into the porous carbon nanotube material offers improved performance due to the increase of conductivity and active surface area of the Ce$_2$O$_3$.CNT NCs.

3.2. Evaluation of optical and structural properties

The optical characteristic is one of the significant criteria of the assessment of the photo-catalytic activity of the greenish-grown Ce$_2$O$_3$.CNT NCs. In UV/Vis. phenomena, the external
electrons of the atom can absorb radiant energy undergoing transition to higher energy level. The spectrum can be obtained due to the optical absorption of radiant energy in order to achieve band-gap energy of the metal oxide. The UV/Vis. absorption band of the Ce$_2$O$_3$.CNT NCs was measured in the range of 200 ~ 800 nm (Fig 2A). Based on the maximum level band absorption, the band-gap energy of the Ce$_2$O$_3$.CNT NCs was calculated using Eq (v), and according to the Tauc’s equation [direct band-gap rule, (vi)], $(ahv)^2$ vs $hv$ were plotted and then extrapolated to the x-axis. From the extrapolated curve, the band-gap energy of the Ce$_2$O$_3$.CNT NCs was found as ~ 2.8 eV (Fig 2B). Where, $E_{bg}$: Band-gap energy, $\lambda_{max}$: Maximum absorption wavelength, $\alpha$: Absorption coefficient, A: Constant related to the effective mass of the electrons, r: 0.5 (Direct transition), h: Plank’s constant, v: Frequency [37].

$$E_{bg} = 1240/\lambda_{max} \; (eV) \tag{v}$$

$$(ahv)^{1/r} = A \; (hv - E_{bg}) \tag{vi}$$

The greenish grown Ce$_2$O$_3$.CNT NCs were characterized in points of atomic and molecular vibration. In order to identify the functional properties, FTIR spectra were recorded under normal condition in the region of 400 ~ 4000 cm$^{-1}$. The FT-IR spectrum of the Ce$_2$O$_3$.CNT NCs (Fig 3A) shows peaks at 3301 (br), 2187 (w), 1489 (w), 1267 (m), 1133 (m), 862 (w), and 613 (w) cm$^{-1}$ which indicated the presence of O$^{-}$H, $-$C=C-, C = O, C$-$H, $>$C = C$<$, C$-$H, $-$Ce = O respectively in the NCs. The observed peak at 613 cm$^{-1}$ demonstrated the formation of metal-oxide bond ($-$Ce = O) which denoted the configuration of the Ce$_2$O$_3$.CNT NCs [38].

The XRD spectrum was recorded to study the crystalline and crystal properties of the synthesized Ce$_2$O$_3$.CNT NCs. All the peaks found in the spectrum were assigned by using the JCPDS file (34–0394) that was a pure cubic phase (Fm3m). The observed characteristics peaks with denoted for 2$\theta$ values at 22.5 (002), 28.5 (111), 32 (200), 48 (220), 57 (311), 70 (400) and 78 (331) degrees (Fig 3B). The found Ce$_2$O$_3$ lattice constant, 5.418 Å was almost same with theoretical value 5.411 Å. Here peak at 002 is denoted for CNT. So, these parameters indicated

---

**Fig 2.** (a-b) UV/Vis. spectrum and regarding band gap energy plot of Ce$_2$O$_3$.CNT NCs.
doi:10.1371/journal.pone.0166265.g002
that a significant quantity of crystalline $\text{Ce}_2\text{O}_3$ with CNT is presented in the nanocomposites [39, 40].

### 3.3 Characterization of morphological and elemental properties

FESEM is one of the excellent techniques to characterize the morphology of nanocomposite and nanostructure compounds. The elemental and morphological properties of the black CNT and greenish grown $\text{Ce}_2\text{O}_3$ NPs and $\text{Ce}_2\text{O}_3$.CNT NCs were examined using FESEM equipped with XEDS respectively. The typical shape of black CNT, $\text{Ce}_2\text{O}_3$ NPs and greenish grown $\text{Ce}_2\text{O}_3$.CNT NCs at low to high magnified images were recorded using FESEM (Fig 4A–4D). The magnified images indicated that $\text{Ce}_2\text{O}_3$ was aggregated with a bright contrast and well dispersed on the surface of CNT (Fig 4C and 4D). The conductance of CNT could be increased with the incorporation of $\text{Ce}_2\text{O}_3$, which correlated the calculation of $E_{bg}$ of two samples.

According to the XEDS analysis, carbon (C), oxygen (O) and cerium (Ce) were present in the synthesized greenish grown $\text{Ce}_2\text{O}_3$ NPs and $\text{Ce}_2\text{O}_3$.CNT NCs (Fig 5A–5C). It was clearly revealed that the prepared NPs contains O (22.06), Ce (77.94) and NPs consist of C (52.19), O (25.65) and Ce (22.15) wt% respectively (Fig 5B–5D). Based on the elemental analysis, carbon was absent in NPs but present in the NCs that meant CNT was properly dispersed with bright contrast on $\text{Ce}_2\text{O}_3$ NPs. There was no additional peaks found associated with impurities in the FESEM attached with XEDS, which indicated that the NCs composed of C, O and Ce only. A comparison in weight (%) among CNT, $\text{Ce}_2\text{O}_3$ NPs, and $\text{Ce}_2\text{O}_3$.CNT NCs is given in Table 1.

### 3.4. Examination of binding energy

XPS is a significant spectroscopic method for quantitative evaluation which indicated that the presence the chemical nature of the element within NCs. XPS spectrum can be achieved by irradiating materials under X-ray beam and concurrently measures the kinetic energy as well as electrons number of the sample [1]. According to the XPS spectra, carbon, oxygen and cerium were present in the prepared NCs (Fig 6A). The C1s spectrum recognized the main peak at 290.0 eV for carbon (Fig 6B). A major peak at 532.0 and 883.0 eV were found for lattice oxygen (O1s) and spin orbit cerium (Ce 3d5/2), which denoted that oxygen (O2-) and cerium
(Ce$^{3+}$) were present in the Ce$_2$O$_3$.CNT NCs (Fig 6C and 6D). A comparison of the binding energies among C, O, and Ce in the CNT, NPs and NCs are presented in Table 1.

4. Applications

4.1. Detection of 2-NP using Ce$_2$O$_3$.CNT nanocomposites

The vital application of Ce$_2$O$_3$.CNT NCs assembled onto an electrode as a chemical sensor has been explored for the identification of chemicals that are environmentally toxic. The NCs materials have been reported earlier as chemical sensors [41–42]. The Ce$_2$O$_3$.CNT NCs sensors have many advantages such as chemically stable, consistent in air, nontoxic, large surface area, biologically safe and simple to assemble. The current response of the Ce$_2$O$_3$.CNT NCs considerably changed during adsorption 2-NP as target analyte in the I-V technique. On the basis of potential range (0.0 ~ 1.5 V), the current responses for the uncoated bare GCE, and coated with Ce$_2$O$_3$.CNT NCs on the working electrode surface are shown in Fig 7A. In comparison, the current signal was much affected with coated GCE which indicated that the differences of the current responses between bare and coated GCE (Fig 7A). The changes of current without 2-NP (blue-dotted) and with 2-NP (green-dotted) of the Ce$_2$O$_3$.CNT NCs modified electrode are shown in Fig 7B. A significant enhancement of current was achieved with 2-NP owing to the existence of NCs which give a high surface area, better absorption and adsorption capacity onto the porous NCs surfaces. The responses of the Ce$_2$O$_3$.CNT NCs modified electrode were
examined with the different concentration of 2-NP (100 pM ~ 100 mM) which shown the changes of current of the fabricated electrode as a function of 2-NP concentration under normal condition (SD = 0.006, RSD = 13.26%, and n = 10). It was observed that the current responses enhanced regularly from lower to higher concentration of the target analyte (Fig 5).

Fig 5. (a-f) Elemental composition of CNT, Ce$_2$O$_3$ NPs and Ce$_2$O$_3$.CNT NCs.

doi:10.1371/journal.pone.0166265.g005

Table 1. Comparison of weight, and binding energies among materials.

| Materials         | C     | O     | Ce    | C1s   | O1s   | Ce 3d$\text{5/2}$ |
|-------------------|-------|-------|-------|-------|-------|------------------|
| CNT               | 94.55 | 5.45  | -     | 285.0 | -     | -                |
| Ce$_2$O$_3$ NPs   | -     | 22.6  | 77.94 | -     | 537.0 | 888.0            |
| Ce$_2$O$_3$.CNT NCs | 52.19 | 25.65 | 22.15 | 290.0 | 532.0 | 883.0            |

doi:10.1371/journal.pone.0166265.t001
A good range of the analyte concentrations were examined from the lower to higher potential (0.0 ~ 1.5 V) to observe the possible analytical limit. The calibration curve at 1.4 V was plotted from the final concentration range (100 pM ~ 100 mM) of 2-NP. Regression coefficient ($R^2 = 0.9030$), LOD (60 ± 0.02 pM) and sensitivity ($\sim 1.6 \times 10^{-3} \mu\text{A}\mu\text{M}^{-1}\text{cm}^{-2}$) at signal to noise ratio = 3, and LDR (100.0 pM ~ 100.0 μM) were calculated from the calibration curve (Fig 7D).

Due to the important characteristics of the NCs material, the resistance value of the $\text{Ce}_2\text{O}_3$.CNT NCs modified GCE chemical sensor can be decreased with enhancing of active surface area [43, 44]. Actuality, adsorption of oxygen ($\text{O}_2$) displayed a significant liability in the electrical quality of the $\text{Ce}_2\text{O}_3$.CNT NCs. Adsorption of oxygen ion ($\text{O}_2^-$) eradicated the conduction of electrons, and enhanced the resistance of $\text{Ce}_2\text{O}_3$.CNT NCs. Active oxygen species ($\text{O}_2^-$, and $\text{O}^-$) may be adsorbed onto the surfaces of NCs at normal condition, and the amount of such chemically adsorbed oxygen species strongly depended on the porous property. At normal condition, $\text{O}_2^-$ is chemically adsorbed, while in NCs morphology, oxygen species ($\text{O}_2^-$, and $\text{O}^-$) that are chemically adsorbed vanishes rapidly [45, 46]. 2-NP sensing method of $\text{Ce}_2\text{O}_3$. 

Fig 6. XPS spectra: (a) $\text{Ce}_2\text{O}_3$.CNT NCs, (b) C1s, (c) O1s, and (d) Ce3d$_{5/2}$ level achieved with Ka1 radiation.

doi:10.1371/journal.pone.0166265.g006
CNT NCs chemical sensor based on doped Ce$_2$O$_3$, that is shown due to the redox reaction of the NCs. Based on the dissolved oxygen in electrolyte solution or air surface of the neighbouring environment, the reactions [(vii)–(ix)] may be consummated as follows.

$$2e^- (\text{Ce}_2\text{O}_3\cdot\text{CNT NCs}) + \text{O}_2 \rightarrow \text{O}_2^{2^-} \quad \text{(vii)}$$

$$2e^- (\text{Ce}_2\text{O}_3\cdot\text{CNT NCs}) + \text{O}_2^{2^-} \rightarrow 2\text{O}^{2^-} \quad \text{(viii)}$$

$$2\text{O}^{2^-} \rightarrow \text{O}_2 + 2e^- \quad \text{(ix)}$$

The above reactions were generalized in the electrolyte system or air/liquid interface or nearer environment due to the tiny carrier concentration that increased the resistance. 2-NP sensitivity towards Ce$_2$O$_3$-CNT NCs can be recognized to the higher oxygen lacking conducts to increase the oxygen adsorption. More oxygen adsorbed on the Ce$_2$O$_3$ doped NCs sensor surface, more oxidizing potentiality, and faster oxidation of 2-NP can be occurred. The action of 2-NP can be extremely immense as compare to other toxic chemicals with the surface under identical conditions [47, 48]. 2-NP can be converted into cyclohexa-3, 5-diene-1, 2-dione.
under reduction and subsequently oxidation onto the surface of Ce$_2$O$_3$.CNT NCs whether in exterior or interior of particle-surface or interior-tube. Then subsequent oxidation reaction is held by releasing of free electrons towards the conduction band of Ce$_2$O$_3$.CNT NCs, which enhanced the current responses against the selective voltages. These free electrons are the main factors to increase the resultant I-V responses in electrochemical approaches (Fig 8) [49, 50].

The sensing performances (selectivity) of Ce$_2$O$_3$.CNT NCs/GCE were performed with different chemicals such as 2-NP, 3-MP, 4-AP, 4-MP, Ac, Bis A, EtOH, Hy, Mel, MeOH, and NH$_4$OH, 2-NP shown maximum current responses, and hence it had been noticeably reported that the sensor was more selective toward 2-NP compared with other chemicals (Fig 9A). Response time (R. t. = 10 s) of the Ce$_2$O$_3$.CNT NCs/GCE sensor towards 2-NP was calculated from the convenient concentration deviation graph (Fig 9B). In order to identify the reproducibility and storage capacity, the I-V responses of the Ce$_2$O$_3$.CNT NCs coated electrode was performed up to 2 weeks. In this regards, a series of seven consecutive measurements of 2-NP concentration (1.0 μM) were recorded and found good reproducible responses towards the Ce$_2$O$_3$.CNT NCs/GCE sensor under different conditions [SD = 0.03, RSD = 2.91%, and n = 7 (Fig 9C)]. The fabricated Ce$_2$O$_3$.CNT NCs electrode substrate washed gently after each experiment, and it was reported that the current responses were not significantly changed. The sensitivity retained almost similar as the preliminary responses up to 2 weeks, and after that the responses of the fabricated electrode decreased steadily. From the above results it is clearly suggested that the fabricated sensor can be used without any significant loss of sensitivity for...
several weeks. On a further increase the sensitivity of 2-NP analyte concentration onto Ce$_2$O$_3$ CNT NCs film, which has low-dimensional crystallite size and low lattice disorder of Ce$_2$O$_3$ onto decorated CNT, presents a more rapid increase the response due to much larger surface covered by analyte onto the NCs/GCE sensor surface. Due to high specific surface area, the Ce$_2$O$_3$.CNT NCs provide a favorable micro-environment for the 2-NP analyte detection with good quantity [51,52]. The high sensitivity of NCs/Nafion/GCE provides high electron communication features which enhanced the direct electron transfer between the active sites of Ce$_2$O$_3$ conjugated CNT NCs onto GCE. The high sensitivity of the fabricated NCs/Nafion/GCE can be attributed to the excellent absorption (porous surfaces in NCs/Nafion/GCE) and adsorption ability, high catalytic-decomposition activity, and good biocompatibility of the NCs. For these reasons, the estimated sensitivity of the fabricated sensor is relatively higher and detection limit is comparatively lower than previously reported 2-NP sensors based on other nano-composite or nano-materials modified electrodes. Control experimentation was conducted using CNT/GCE, Ce$_2$O$_3$/GCE, and Ce$_2$O$_3$.CNT NCs/GCE with 2-NP concentration (100 nM) and a considerable increase of current response observed for the Ce$_2$O$_3$.CNT

Fig 9. I-V responses of Ce$_2$O$_3$.CNT NCs coated electrode for 2-NP sensing: (a) Selectivity, (b) Reproducibility study, and (c) Control experiment.

doi:10.1371/journal.pone.0166265.g009
NCs/GCE compared with Ce$_2$O$_3$/GCE, and CNT/GCE (Fig 9D). A comparison of the sensor performances for 2-NP detection using different modified electrodes by electrochemical approach is presented in Table 2 [53–61].

### 4.2. Real sample analysis

Regarding confirmation of the validity of I-V method, the Ce$_2$O$_3$.CNT NCs/GCE had been used to find out the 2-NP in various real samples. In real sample study, a standard addition method was used to estimate the concentration of 2-NP in water samples that were collected from different sources. A fixed amount (~25.0 μL) of each real sample was mixed and analyzed in PB (10.0 mL) using fabricated Ce$_2$O$_3$.CNT NCs/GCE. The found results regarding 2-NP detection are presented in Table 3, and apparently confirmed that the proposed Ce$_2$O$_3$.CNT NCs/GCE approach is satisfactory, reliable, and suitable for analyzing real samples using I-V system.

### 5. Conclusion

Ce$_2$O$_3$.CNT NCs were prepared using active reducing agents by a wet-chemical process, which was simple, efficient, reliable, and economical. The elemental, morphological, optical, and structural properties were examined using various conventional methods, such as FTIR, XEDS, XRD, FESEM, XPS, and UV/visible spectroscopy. Ce$_2$O$_3$.CNT NCs electrode was fabricated by an easy fabrication method, which exhibited higher sensitivity towards 2-NP.

---

### Table 2. Sensor performances towards 2-NP detection using different electrochemical approaches.

| Materials                  | Methods | LDR (pM – μM) | DL (nM) | Sensitivity (μA μM$^{-1}$ cm$^{-2}$) | Linearity ($R^2$) | Ref. |
|----------------------------|---------|---------------|---------|-------------------------------------|-------------------|------|
| Mn-ZnS QDs                 | CL      | 0.1 – 40 μM   | 76.0    | -                                   | -                 | [53] |
| Ag$_2$O NPs/AuE            | I-V     | 1.0 μM – 0.5 mM | 0.19 μM | 0.0474                             | 0.9873            | [54] |
| CuO Nanohybrids            | I-V     | 1.0 nM – 1.0 mM | 0.07 | 0.9880                             | 0.7941            | [55] |
| Poly(safranine) Film Electrode | CV/LSV | 8.0 × 10$^{-8}$ – 4.0 × 10$^{-8}$ M | 3.0×10$^{-8}$ M | -     | 0.9991   | [56] |
| Spinel ZnMn$_2$O$_4$       | I-V     | 50.0 μM – 0.05 M | 20.0 μM | 1.5     | 0.7599   | [57] |
| Immunoassay                | FS      | 5, 1000 μg/L  | 3.5     | 5.7 mg/L                           | -                 | [58] |
| GO sensors                 | CV      | 0.1 – 120 μM  | 0.02 μM | -                                   | -                 | [59] |
| B-Diamond Electrodes       | SWV     | -             | 8.4 mM  | 0.3943                            | 0.9991            | [60] |
| Mn$_2$O$_3$.ZnO NPs/AgE    | I-V     | 100 – 50.0    | -0.83   | -0.6667                          | 0.9773            | [61] |
| Ce$_2$O$_3$.CNT NCs        | I-V     | 100 – 100     | 60 ± 0.02 pM | 1.6×10$^{-3}$ | 0.9030 | This work |

CL: Chemiluminescence, FS: Fluorescence Spectroscopy.

doi:10.1371/journal.pone.0166265.t002

### Table 3. Determination of 2-NP concentration at different real samples using modified Ce$_2$O$_3$.CNT NCs/GCE.

| Real samples          | Observed current (μA) | Conc. (μM) | SD (n = 3) |
|-----------------------|-----------------------|------------|------------|
|                       | R1       | R2       | R2         | Average   |           |
| Industrial effluent   | 18.58    | 15.72    | 14.83      | 16.38     | 3.84      | 1.96     |
| PC baby bottle        | 20.09    | 15.39    | 13.75      | 16.41     | 3.84      | 3.29     |
| PC bottle safa        | 13.78    | 10.42    | 9.58       | 11.26     | 2.64      | 2.22     |
| PVC food packaging bag| 17.95    | 20.23    | 16.92      | 18.37     | 4.30      | 1.69     |
| Red sea water         | 18.74    | 15.39    | 14.51      | 16.21     | 3.80      | 2.23     |
| Tape water            | 14.41    | 11.00    | 10.00      | 11.80     | 2.76      | 2.31     |

R: Reading, SD: Standard deviation.

doi:10.1371/journal.pone.0166265.t003
selective and sensitive 2-NP sensor based on electrode embedded with Ce$_2$O$_3$.CNT NCs having conducting coating binder was prepared successfully. The analytical parameters of the fabricated 2-NP sensor were excellent in terms of LOD, LDR, sensitivity, and short response time. The Ce$_2$O$_3$.CNT NCs electrode reflects higher sensitivity ($\sim 1.6 \times 10^{-3}$ μAμM$^{-1}$cm$^{-2}$) and lower detection limit ($60 \pm 0.02$ pM) using a reliable I-V method. Ce$_2$O$_3$.CNT NCs sensor was finally tested with few real samples and obtained satisfactory results. A well-organized technique can be introduced from this novel approach for the development of efficient chemical sensor for the detection of hazardous materials in the environmental and health care arena at a wide range.

**Acknowledgments**
Center of Excellence for Advanced Materials Research (CEAMR), Chemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia is highly acknowledged for instrumental support.

**Author Contributions**

- **Conceptualization**: MMH MMR.
- **Data curation**: MMH.
- **Formal analysis**: MMH MMR.
- **Funding acquisition**: AMA.
- **Investigation**: MMH MMR.
- **Methodology**: MMH MMR.
- **Project administration**: MMR AMA.
- **Resources**: MMR AMA.
- **Software**: MMH MMR.
- **Supervision**: MMR AMA.
- **Validation**: MMH MMR.
- **Visualization**: MMH MMR.
- **Writing – original draft**: MMH.
- **Writing – review & editing**: MMR AMA.

**References**

1. Rahman M.M., Asiri A.M., Fabrication of highly sensitive ethanol sensor based on doped nanostructure materials using tiny chips, RSC Adv. 5 (2015) 63252–63263.
2. Xu J.Q., Han J.J., Zhang Y., Sun Y.A., Xie B., Studies on alcohol sensing mechanism of ZnO based gas sensors, Sens. Actuat. B: Chem. 132 (2008) 334–339.
3. Ischei T.O., Okieimen F.E., Adsorption of 2-nitrophenol onto water hyacinth activated carbon-kinetics and equilibrium studies, Environ. Pollution 3 (2014) 99–111.
4. Zhu Z., Tao L., Li F., 2-Nitrophenol reduction promoted by S. putrefaciens 200 and biogenic ferrous iron: The role of different size-fractions of dissolved organic matter, J. Hazardous Mater. 279 (2014) 436–443.
5. Ammar S., Oturan N., Oturan M.A., Electrochemical oxidation of 2-nitrophenol in aqueous medium by electro-fenton technology, J. Environ. Eng. Manage. 17 (2007) 89–96.
1. Ribeiro R.S., Silva A.M.T., Figueiredo J.L., Faria J.L., Removal of 2-nitrophenol by catalytic wet peroxide oxidation using carbon materials with different morphological and chemical properties, App. Catal. B: Environ. 140–141 (2013) 356–362.

2. Wang C.C., Weng Y.C., Chou T.C., Acetone sensor using lead foil as working electrode, Sens. Actuat. B. 122 (2007) 591–595.

3. Wang F., Hu S., Electrochemical sensors based on metal and semiconductor nanoparticles, Microchim. Acta. 165 (2009) 1–22.

4. Keyvanloo K., Mohamadalizadeh A., Towfighi J., A novel CeO2 supported on carbon nanotubes coated with SiO2 catalyst for catalytic cracking of naphtha, App. Catal. A: Gen. 417–418 (2012) 53–58.

5. Dahle J.T., Liví K., Aral Y., Effects of pH and phosphate on CeO2 nanoparticle dissolution, Chemosphere 119 (2015) 1365–1371. doi: 10.1016/j.chemosphere.2014.02.027 PMID: 24630459

6. Gad Y., Xue X., Yang H., Luan C., Preparation and characterization of ZnO/CeSO4-2-doped titania nano-materials with antibacterial activity, App. Sur. Sci. 292 (2014) 608–614.

7. Duan X., Zhao Y., Liu W., Chang L., Li X., Electrochemical degradation of p-nitrophenol on carbon nanotube and Ce-modified-PbO2 electrode, J. Taiwan Inst. Chem. Engr. 45 (2014) 2975–2985.

8. Baneshi J., Haghighi M., Jodeiri N., Abdollahifar M., Ajamein H., Urea-nitrate combustion synthesis of ZrO2 and CeO2 doped CeO3/Al2O3 nanocatalyst used in steam reforming of biomethanol for hydrogen production, Ceramic Intl. 40 (2014) 14177–14184.

9. Shin H.J., Jeon S.H., Lee B.N., Lou J.C., Yen P.C., Catalytic wet oxidation of 2,4-Dichlorophenol solutions: Activity of the catalysts, Appl. Catal. B: Environ. 140–141 (2013) 356–362.

10. Tao H., Jian Y., Jun Z., Danjun W., Huanling S., Lingjun C., Preparation of a Cu-Ce-O catalyst by urea combustion for removing CO from hydrogen, Chin. J. Catal. 28 (2007) 844–846.

11. Lee B.N., Lou J.C., Yen P.C., Catalytic wet oxidation of 2,4-Dichlorophenol solutions: Activity of the manganese-cerium composite catalyst and biodegradability of the effluent stream, Water Environ. Res. 74 (2002) 28–32. PMID: 11995864

12. Fang J., Guo Y., Lu G., Raston C.L., Iyer K.S., Enhancement of quantum yield of LaPO4: Ce3+: Tb3+ nanocrystals by carbon nanotube induced suppression of the 1-dimensional growth. Dalton Trans. 40 (2011) 3122–3124. doi: 10.1039/c0dt01651a PMID: 21359281

13. Aoul A.T., Mohamadi M. Interrelated functionalities of hierarchically CNT/CeO2/Pt nanostructured layers: synthesis, characterization, and electroactivity. Phys. Chem. Chem. Phys. 14 (2012) 4463–4474. doi: 10.1039/c2cp24069f PMID: 22354156

14. Wu H., Pantaleo G., Carlo G.D., Guo S., Marci G., Concepcion P., Venezia A.M., Liotta L.F., CeO2 particles grown over nanocrystalline CeO2: Influence of precipitation agents and calcination temperature on the catalytic activity for methane oxidation. Catal. Sci. Technol. 5 (2015) 1888–1901.

15. Rajedran R., Shrestha L.K., Minami K., Subramanian M., Jayavel R., Ariga K., Dimentionally integrated nanoarchitecture for a novel composite from 0D, 1D, and 2D nanomaterials: RGO/CNT/CeO2 ternary nanocomposites with electrochemical performance, J. Mater. Chem. A. 2 (2014) 18480–18487.

16. Barton L.E., Auffan M., Olivi L., Bottero J.Y., Wiesner M.R., Heteroaggregation, transformation and fate of CeO2 nanoparticles in waste water treatment, Environ. Pollution. 203 (2015) 122–129.
29. Hölken I., Neubüser G., Postica V., Bumke L., Lupan O., Baum M., Mishra Y.K., Kienle L., Adelung R.. Sacrificial Template Synthesis and Properties of 3D Hollow-Silicon Nano- and Microstructures. ACS Applied Materials & Interfaces 8 (2016) 20491–20498.

30. Cretu V., Postica V., Mishra A. K., Hoppe M., Tiginyanu I., Mishra Y. K., Chow L., de Leeuw Nora H., Adelung R. and Lupan O.. Synthesis, characterization and DFT studies of zinc-doped copper oxide nanocrystals for gas sensing applications. Journal of Materials Chemistry A 4 (2016) 6527–6539.

31. Lupan O., Cretu V., Postica V., Ababi N., Polonskyi O., Kaidas V., Schütt F., Mishra Y.K., Monoico E., Tontea V., Strunskus T., Faupel F., Adelung R.. Enhanced ethanol vapour sensing performances of copper oxide nanocrystals with mixed phases. Sensors and Actuators B: Chemical 224 (2016) 434–448.

32. Lupan O., Postica V., Mecklenburg M., Schulte K., Mishra Y. K., Fiedler B., Adelung R.. Low powered, tunable and ultra-light aerographite sensor for climate relevant gas monitoring. Journal of Materials Chemistry.

33. Pawar R.C., Shaikh J.S., Moholkar A.V., Pawar S.M., Kim J.H., Patil J.Y., Suryavanshi S.S., Patil P.S.. Surfactant assisted low temperature synthesis of nanocrystalline ZnO and its gas sensing properties. Sens. Actuator B. Chem. 151 (2010) 212–218.

34. Rajgure A.V., Tarwal N.L., Patil J.Y., Chikhale L.P., Pawar R.C., Lee C.S., Mulla I.S., Suryavanshi S.S.. Ceramic International 40 (2014) 5837–5842.

35. Hussain M.M., Rahman M.M., Asiri A.M., Ultrasensitive and selective 4-amino phenol chemical sensor development based on nickel oxide nanoparticles decorated carbon nanotube nanocomposites for green environment. J. Environ. Sci. (2016)

36. Hussain M.M., Rahman M.M., Asiri A.M., Non-enzymatic simultaneous detection of L-glutamic and uric acid using mesoporous Co3O4 nanosheets, RSC Adv. 6 (2016) 80511–80521.

37. Rahman M.M., Hussain M.M., Asiri A.M., A novel approach towards hydrazine sensor development using SrO.CNT nanocomposites, RSC Adv. 6 (2016) 65338–65348.

38. Santos M.L.D., Lima R.C., Riccardi C.S., Tranquilar R.L., Bueno P.R., Varela J.A., Longo E., Preparation and characterization of ceria nanospheres by microwave-hydrothermal method, Mater. Lett. 62 (2008) 4509–4511.

39. Periyat A., Laffir F., Tofail S.A.M., Magner E., A facile aqueous sol-gel method for high surface area nanocrystalline CeO2, RSC Adv. 1 (2011) 1794–1798.

40. Li L., Song L., Wang H., Chen C., She Y., Zhan Y., Lin X., Zheng Q., Water-gas shift reaction over CuO/CeO2 catalysts: Effect of CeO2 supports previously prepared by precipitation with different precipitants, Int. J. Hydrogen Energy 36 (2011) 8839–8849.

41. Khan S.B., Rahman M.M., Marwani H.M., Asiri A.M., Alamry K.A., Exploration of silver oxide nanoparticles as a pointer of lanthanum for environmental applications, J. Taiwan Inst. Chemical Engr. 45 (2014) 2770–2776.

42. Sarycheva A.S., Semenova A.A., Parshina E.Y., Brazhe N.A., Polyakov A.Y., Kozmenkova A., Grigorieva A.V., Maksomov G.V., Goodilin E.A., Ultrasonic silver rain preparation of SERS substrates, Mater Lett. 121 (2014) 66–69.

43. Ahmad T., Wani I.A., Al-Hartomy O.A., Al-Shihri A.S., Kalam A., Low temperature chemical synthesis and comparative studies of silver oxide nanoparticles, J. Mol. Struct. 1084 (2015) 9–15.

44. Lu W., Shu J., Wang Z., Haung N., Song W., The intrinsic oxidase-like activity of Ag2O nanoparticles and its application for colorimetric detection of sulfate, Mater Lett. 154 (2015) 33–36.

45. Faisal M., Khan S.B., Rahman M.M., Jamal A., Asiri A.M., Abdullah M.M., Smart chemical sensor and active photo-catalyst for environmental pollutants, Chemical Engr. J. 173 (2011), 178–184.

46. Zhang Y., Cui Z., Li L., Guo L., Yang S., Two-dimensional structure Au nanosheets are super active for the catalytic reduction of 4-nitrophenol, Phys. Chem. Chem. Phys. 17 (2015) 14656–14661. doi: 10.1039/c5cp00373c PMID: 25971868
51. Vilian A.T.Z., Veeramani V., Chen S-M., Madhu R., Huh Y. S., Han Y-K., Preparation of a reduced graphene oxide/poly-L-glutathione nanocomposite for electrochemical detection of 4-aminophenol in organic juice samples. Anal. Methods 7 (2015) 5627–5634.

52. Scandurra G., Antonella A., Ciofi C., Saitta G., Lanza M., Electrochemical detection of p-aminophenol by flexible devices based on multi wall carbon nanotubes dispersed in electrochemically modified nafion. Sensors 14 (2014) 8926–8939. doi: 10.3390/s140508926 PMID: 24854357

53. Liu J., Chen H., Lin Z., Lin J.M., Preparation of Surface Imprinting Polymer Capped Mn-Doped ZnS Quantum Dots and Their Application for Chemiluminescence detection of 4-Nitrophenol in Tap Water, Anal. Chem. 82 (2010) 7380–7386. doi: 10.1021/ac101510b PMID: 20701302

54. Rahman M.M., Khan S.B., Asiri A.M., Al-Sehemi A.G., Chemical sensor development based on polycrystalline gold electrode embedded low-dimensional Ag2O nanoparticles, Electrochim. Acta 112 (2013) 422–430.

55. Khan S.B., Rahman M.M., Akhtar K., Asiri A.M., Alamry K.A., Seo J., Han H., Copper Oxide Based Polymer Nanohybrid for Chemical Sensor Applications, Int. J. Electrochem. Sci. 7 (2012) 10965–10975

56. Liu X.Y., A Novel Sensor Based on Electropolymerization Poly(safranine) Film Electrode for Voltammetric Determination of 4-Nitrophenol, Bull. Korean Chem. Soc. 31 (2010) 1182–1186.

57. Khan S.B., Rahman M.M., Akhtar K., Asiri A.M., Rub M.A., Nitrophenol Chemi-Sensor and Active Solar Photocatalyst Based on Spinel Hetaerolite Nanoparticles. PLoS ONE 9 (2014) e85290. doi: 10.1371/journal.pone.0085290 PMID: 24465525

58. Nistor C., Oubiña A., Marco M.P., Barceló D., Emnéus J., Competitive flow immunoassay with fluorescence detection for determination of 4-nitrophenol, Anal. Chim. Acta 426 (2001) 185–195.

59. Li J., Kuang D., Feng Y., Zhang F., Xu Z., Liu M., A graphene oxide-based electrochemical sensor for sensitive determination of 4-nitrophenol, J. Hazard Mater. 201–202 (2012) 250–259. doi: 10.1016/j.jhazmat.2011.11.076 PMID: 22178284

60. Pedrosa V.A., Codognoto L., Avaca L.A., Electroanalytical determination of 4-nitrophenol by square wave voltammetry on diamond electrodes, J. Braz. Chem. Soc. 14 (2003) 530–535.

61. Rahman M.M., Gruner G., Al-Ghamdi M.S., Daous M.A., Khan S.B., Asiri A.M., Chemo-sensors development based on low-dimensional codoped Mn2O3-ZnO nanoparticles using flat-silver electrodes, Chem. Cent. J. 7 (2013) 60. doi: 10.1186/1752-153X-7-60 PMID: 23537000