Digital patient-centred learning in medical education: A national learning platform with virtual patients as part of the DigiPaL project

Abstract

Background: Due to the coronavirus pandemic, the medical faculties in the Federal Republic of Germany converted their curricula to digital formats on a large scale and very quickly in spring 2020 as an emergency measure. At the same time, a start was made on the nationwide exchange of digital teaching/learning materials via the online platform “LOOOP share” in order to save local resources. Among other things, virtual patient cases (VP) were shared across faculties for case-based learning, through which students can acquire clinical decision-making skills.

Objectives: Within the framework of the cooperation project “National Learning Platforms for Digital Patient-Related Learning in Medical Studies” (DigiPaL), the usability of VPs for students and teachers should be improved, and the spectrum of disease patterns that are covered by VPs should be systematically expanded.

Results: With the participation of many locations, a total of 150 VPs were developed by 96 case authors from 16 faculties, in addition to the existing 403 VPs. The thematic selection was made on the basis of criteria oriented to the National Competence Based Catalogue of Learning Objectives for Undergraduate Medical Education (NKLM). After completion, these VPs were also made available to all faculties for free use via “LOOOP share” and the CASUS learning platform.

Discussion: Even after the pandemic, these developed VPs should be available to the faculties and thus make a lasting contribution to improve medical training in Germany – especially in light of digital teaching formats being expressly advocated on the basis of the adapted current Medical Licensure Act (ÄApprO). A possible application is interdisciplinary learning of clinical decision-making with the help of blended learning formats within the framework of a longitudinal curriculum.

The large number of involved colleagues and faculties shows that the nationally coordinated development of VPs across faculties was commonly seen as useful.

Keywords: competency based education, curriculum mapping, virtual patients, problem solving

1. Introduction

In the course of the restrictions imposed by the coronavirus pandemic, the “Act on the Protection of the Population in the Event of an Epidemic Situation of National Importance” was passed, which was intended to ensure the training of doctors, among other things [http://www.bgbli.de/xaver/bgbli/start.xav?startbk=Bundesanzeiger_BGBI&jumpTo=bgbli120s0587.pdf]. Based on this, §2 of the “Deviations from the Medical Licensing Act” explicitly created the legal option to use digital teaching formats as a substitute for theoretical face-to-face teaching formats and as a supplement for practical teaching formats in human medicine degree programmes [https://www.gesetze-im-internet.de/epi_appro2002abwv/index.html]. However, the use of this option posed great challenges for the medical faculties in the spring of 2020:

1. many digital learning materials (“resources”) were needed at each faculty at short notice,
2. the use of these resources had to be aligned with the content of their own curriculum; and
3. in particular, the core competence “Clinical Decision-Making” should be acquirable digitally if possible.
All three of the above challenges were addressed by the team of authors in a two-step process. In a first step, the faculties were supported in the short term in the implementation of teaching during the pandemic. This step was the basis for step 2 presented in this project report. Step 2 ensures the sustainability of the project – especially with regard to the requirements of the new Medical Licensure Act (ÄApprO), which enters into force is currently planned for 2025.

1.1. Step 1: Short-term nationwide provision of already existing online resources

The aim of this first step was to make already existing online resources available for use by faculties nationwide as quickly as possible. This should be possible free of charge via standard browsers as well as mobile devices. In addition, the faculties should be enabled to easily compare the resources offered with their own curricula in order to be able to identify suitable supplements to their own face-to-face courses. One focus was the integration of virtual patient cases (VP) with regard to learning clinical decision-making as an important medical competence.

1.1.1. Networking of existing online resources (addressing challenge (1))

In March 2020, the internationally used LOOOP online platform was adapted by the team of developers at Charité – Universitätsmedizin Berlin so that digital resources can be shared and used by all faculties nationwide (see [https://looop-share.charite.de]). For this purpose, the faculties can upload links to their online accessible digital resources on “LOOOP share” and control the access rights to these resources. The platform was adapted in close consultation with the Association of Medical Faculties in Germany (MFT).

Since June 2020, access to “LOOOP share” has been possible via the authentication and authorisation infrastructure of the German Research Network (DFN-AAI, see [https://doku.tid.dfn.de/de:aaia:about]) on a uniform nationwide basis within the framework of a “Single Sign On”. This low-threshold control of access rights was made possible by a grant from the Federal Ministry of Health (BMG), which has been in place since 01 June 2020, as part of the cooperation project “National Learning Platforms for Digital Patient-Related Learning in Medical Studies” (DigiPal).

1.1.2. Use of online resources for own curriculum (addressing challenge (2))

To enable content-based navigation through the online resources linked in “LOOOP share”, each resource was individually mapped to the content of the National Competence Based Catalogue of Learning Objectives for Undergraduate Medical Education (NKLM, version 1.0) [1] published in 2015. This mapping was carried out according to a concept for curricular mapping that has been developed since 2004 under the leadership of the Charité – Universitätsmedizin Berlin within the framework of the international LOOOP research network [2]. The basis of this concept, which is currently being used to map approx. 140 degree programs in 22 countries (see [https://looop.charite.de]), includes preliminary work by Harden [3] and Willett [4].

Faculties that have already mapped their own curricula against the NKLM 1.0 as part of the LOOOP research network will automatically be shown the resources that match their courses (linked to the same NKLM content). Faculties that do not map using LOOOP can identify suitable resources in “LOOOP share” via the navigation within the thematically structured NKLM.

1.1.3. Virtual patient cases (addressing challenge (3))

VPs are an effective way to learn, train and test clinical reasoning and, in particular, clinical decision-making [5], [6], [7]. The CASUS learning platform has been used for case-based learning using VPs since 1993 [8] and has been continuously developed (see [https://www.instruct.eu/#casus_software]). For example, special functions for clinical decision-making were added as part of a separate EU-funded project (see [https://www.foliospaces.org/view/view.php?id=56393]). In the CASUS learning environment, a comprehensive pool of VPs was available in spring 2020, which had been created by six medical faculties.

As part of step 1 at the beginning of the pandemic, the faculties deposited 403 completed VPs mapped against the NKLM 1.0 on “LOOOP share”, for which cross-site use was possible under consideration of legal framework conditions (e.g. copyright) and for which case creators saw no need for revision. These VPs addressed 94 diseases of the NKLM - primarily addressing internal medicine, surgery and paediatrics. Since May 2020, those VPs have been accessible nationwide free of charge via DFN-AAI in CASUS. Table 1 shows the increasing number of accesses to these VPs during the period between the summer semester 2020 and the summer semester 2021.

1.2. Step 2: Content coverage for patient-related teaching by means of VPs and assurance of medium- and long-term usability

The amendments to the currently valid ÄApprO [http://www.bgbl.de/xaver/bgbl/start.xav?startbk=Bundesanzeiger_BGBl&jumpto=bgbl121s4335.pdf] published in September 2021 and the drafts for the new ÄApprO, which is planned to come into force in 2025, explicitly allow the use of digital teaching formats and thus enable sustainable use of the innovations described in step 1 even beyond the pandemic. The DigiPal project is intended to support the faculties in using this possibility.

To this end, the number of already existing VPs should be increased in order to align the content of the VP pool,
Table 1: Number of virtual patient case usages in CASUS

	summer term 2020	winter term 2020/21	summer term 2021
93,500 cases	155,000 cases	176,000 cases	

which can be used nationwide, specifically with the requirements of the new ÄApprO.

1.2.1. Content requirements of the new Medical Licensure Act and NKLM 2.0

When the new ÄApprO comes into force, the content of the curricula at the medical faculties is to be based approx. 80% on the then available version of the NKLM (so-called "core curricula"). Therefore, between 2018 and 2021, the NKLM 1.0 was further developed into the interim version NKLM 2.0 in a nationwide process involving many hundreds of experts from medical faculties and professional societies and published in April 2021 [https://www.nklm.de]. This further development of the NKLM took place within the framework of a standardised process [https://nklm.de/zend/objective/list/orderBy/ @objectivePosition/modul/200557] together with the development of the Competence-Oriented Subject Catalogue and was coordinated by the NKLM office (GSt.) at the MFT.

Due to the complexity of the NKLM, only the relevant NKLM sections and detailed information are described below:

The NKLM 2.0 defines a selection of diseases relevant for the core curricula of the faculties. These are in turn considered on the basis of individual clinical aspects (so-called "descriptors"), such as diagnostics, therapy, emergency treatment and management. Not all descriptors were marked as "relevant" for each disease in the NKLM. This is mainly due to two reasons: Firstly, certain aspects simply do not exist for some diseases, e.g. not every disease requires an emergency treatment. Secondly, only those aspects were marked as "relevant" in the NKLM which should already be learned by medical students. Additionally, a decision was made for each descriptor classified as "relevant" as to whether a cognitive (for example, the preparation of a patient-related diagnostic or therapy plan) or practical action competence should be acquired. Furthermore, for each disease it was marked whether it was a rare disease.

Cross-links from each individual disease to other chapters of the NKLM were then used to define which diagnostics, therapy, etc. should be learned in the context of this disease. The diseases listed in the NKLM thus play a central role both in defining the clinical content of medical studies and in selecting the aspects of clinical decision-making relevant to the degree programme.

2. Project description

2.1. Establishing the decision-making and organisational structures

After approval of the DigiPaL project application by the BMG, which in addition to the project described here also included the development of a digital virtual emergency department (DIVANA), an "editorial board" was set up. This board was to approve the NKLM-based criteria to be developed for the purpose of selecting the disease topics for the VPs and also decide on the subsequent case allocation to the faculties. The case allocation was carried out by the MFT, the coordination of the VP revision or new development was taken over by the Institute of Medical Education at LMU Munich.

2.2. Development of standardised criteria for VP revision/creation

Standardised criteria for the selection of the most important diseases (and their descriptors) to be covered by VPs were developed by the GST on the basis of the NKLM 2.0. If one or more of the criteria shown in table 2 were met, a disease was included in the selection. The basic requirement was that it was not marked as a rare disease.

In the criteria, emphasis was generally placed on marking an action competence in order to take account of the VP’s goal of acquiring competence in the area of “clinical decision-making”.

The combination of the descriptors “diagnostics” and “therapy” in criterion 1 was due to the fact that a clinical process can be represented very well, if action competence is required with regard to both descriptors. The same applies to the combination of the descriptors “diagnostics” and “management” in criterion 3.

The descriptor “emergency therapy” includes both emergency diagnostics (or first of all the recognition of an emergency situation) and the initiation of first therapeutic steps – which is why this descriptor was considered in criterion 2. Here, however, the other descriptors were not relevant in combination, as there are many diseases for which it is only important for students to recognise...
the acute situation and initiate measures – but not to be able to carry out the general diagnostics and therapy of these sometimes complex diseases by themselves.

2.3. Analysis of required VPs and comparison with the already published VP pool

Using the criteria presented in 2.2, those diseases and descriptors of the NKLM 2.0 were filtered out that should be covered by VPs. With the help of the successor relationships to NKLM 1.0 defined in NKLM 2.0, the diseases of both catalogue versions were then compared with each other and the respective coverage by VPs already published in “LOOOP share” was analysed. The “gaps” identified in this coverage analysis could refer both to diseases not yet covered by VPs and to descriptors of already existing diseases not yet covered in published VPs. Based on these analyses, an existing pool of previously unpublished or no longer used older VPs (with extensive need for revision) was first searched for 75 suitable cases to cover the necessary topics. Subsequently, 75 new VPs were defined to be created in order to close the then remaining “gaps”. In addition, a standardised procedure was adopted by the Editorial Board to determine how to proceed before applying the above criteria if – as is to be expected – not exactly 75 VPs needing revision and 75 new VPs are identified.

1. If too few VPs are identified from the analyses, “multifaceted diseases” should be added, even if they are already addressed in an existing CASUS case. These VPs should then cover an alternative disease focus.
2. If too many VPs were identified, the Editorial Board could exclude VPs that a) were less suitable for implementation as VPs from a content perspective or b) were already covered by enough similar VPs.

2.4. Tendering of the VPs and assignment to faculties

The 11 case packages (corresponding to the organ system chapters of the NKLM 2.0) were then tendered nationwide and distributed by the Editorial Board to preferably two applying faculties. These faculties were each to work on half of the advertised VPs and be available to each other as review partners. The faculties received an allowance of 1,200 € for each newly created VP and 600 € for each VP needing revision. The reciprocal case review was included in this amount.

2.5. Creation of the VPs

The case authors received comprehensive training from the LMU, which included both the didactic design of VPs and the use of the CASUS authoring system. The 96 authors were individually accompanied throughout the entire process of case development, and all VPs received a formative didactic review with detailed revision suggestions after their first completion.

2.6. Provision of the VPs nationwide

After finalising the respective VPs, the authors were asked to provide short summaries for “LOOOP share”. In addition, a mapping of the new/revised VPs against the NKLM 1.0, supported by the GST, took place so that these VPs can also be easily integrated into the curriculum by the faculties on the basis of the summaries and the previous mapping.

3. Results

3.1. VPs needing revision and new VPs to be created

3.1.1. Selection of the VPs needing revision

From the pool of VPs needing revision, 50 suitable cases were identified with the help of the criteria described under 2. The number of suitable VPs per disease to be covered was between 1 and 4 (see table 3) and a maximum of 2 VPs per disease were selected (finally 44 VPs needing revision were identified). Subsequently, further VPs needing revision were defined according to 2.3.1. and thus, the target of 75 VPs needing revision was reached.

3.1.2. Definition of the new VPs to be created

Within the framework of the procedure described under 2., a total of 81 diseases were identified that were neither covered by VPs already published nor by VPs needing revision. As described in 2.3.2., these diseases were then reduced to 75. Table 4 presents the six diseases (incl. the respective justification) for which no VPs were created.

3.2. Distribution of the VP revision and redrafting among the faculties

A total of 16 faculties applied in the tender process and were assigned to the 11 organ-related thematic packages.
Table 3: Number of available virtual patient cases per disease

1 VP per disease	2 VPs per disease	3 VPs per disease	4 VPs per disease
22 times	14 times	2 times	2 times

VP: virtual patient case

Table 4: Diseases for which no virtual patient cases were created

a) less suitable from a content point of view
b) covered by similar cases

- umbilical cord complications
- atone secondary haemorrhage
- suicide
- diabetes mellitus type 1
- diabetes mellitus type 2
- reactive arthritis

Table 5: Overview of the participating faculties

Medizinische Fakultät der Universität Augsburg
Charité - Universitätsmedizin Berlin
Medizinische Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn
Medizinische Fakultät Carl Gustav Carus der Technischen Universität Dresden/Chemnitz
Universitätsklinikum der Friedrich-Alexander-Universität Erlangen-Nürnberg
Medizinische Fakultät der Universität Duisburg-Essen
Universitätsklinikum der Goethe Universität Frankfurt/M
Medizinische Fakultät der Ruprecht-Karls-Universität Heidelberg
Medizinische Fakultät der Christian-Albrechts-Universität zu Kiel
Medizinische Fakultät der Universität Leipzig
Fachbereich Medizin der Philipps-Universität Marburg
Klinikum der Ludwig-Maximilians-Universität München (LMU)
Klinikumsrechts der Isar der Technischen Universität München (TUM)
Medizinische Fakultät Münster
Medizinische Fakultät der Eberhard Karls Universität Tübingen
Medizinische Fakultät der Julius-Maximilians-Universität Würzburg

Bold terms are used as abbreviations in table 6

Table 6: Overview of the virtual patient cases covered by the faculties

Case package	Number of VPs [new + to be revised = total]	Mainly responsible faculties	Partner faculties
1) Cardiovascular	5 + 13 = 18	Marburg	Münster
2) Musculoskeletal system	7 + 9 = 16	Frankfurt/M	Marburg
3) Hormones and metabolism	6 + 13 = 19	München (LMU)	Würzburg
4) Respiratory system	4 + 8 = 12	München (TUM)	Berlin
5) Blood and immunology	4 + 7 = 11	München (LMU)	Leipzig
6) Urogenital system	5 + 6 = 11	Erlangen	Essen
7) Digestive system	8 + 10 = 18	Frankfurt/M	Marburg, Würzburg
8) Skin and skin appendages	4 + 1 = 5	Bonn	Augsburg, Frankfurt/M, Kiel
9) Sensory systems	7 + 2 = 9	Dresden/Chemnitz	München (LMU)
10) Nerves and psyche	18 + 6 = 24	München (LMU)	Heidelberg
11) Pregnancy, fetal, peri- and neonatal period	7 + 0 = 7	Tübingen	Würzburg

This table shows the abbreviations of the participating faculties. The full names can be found in table 5. VP: virtual patient case

3.3. Created VPs

All 150 VPs needing revision and new VPs were created between 01.11.2020 and 12.12.2021, peer reviewed and linked in “LOOOP share.”

(see table 5). Table 6 provides an overview of the thematic allocation of the faculties.
4. Discussion

The pool of VP's available free of charge nationwide was expanded within the framework of the DigiPaL project so that the most important aspects of the diseases listed in the NKLM are now covered by VP's. These VP's are accessible via the DFN-AAI with the help of the "LOOOP share" platform, which is also available free of charge, and can now be used for decentralised and supplementary teaching by the faculties.

The format of the VP is particularly suitable for training of clinical decision-making (regarding diagnosis and therapy decisions). Thematically self-contained case collections represent a particular added value. The case collection on occupational and environmental medicine, which has been used at many faculties since 2007, is a successful example of this cross-faculty use of VP's [9]. However, VP's can generally only be used to illustrate cognitive action competence (i.e., for example, the independent creation of diagnostic and/or therapy plans) [10]. Therefore, supplementary teaching of procedural and manual skills (handling; practice through simulations) is necessary to enable successful implementation of what has been learned [10], [11].

Mapping the VP's to the NKLM made sense considering the NKLM is expected to become the binding basis for the nationwide core curricula after a further revision in 2025. The conception of the criteria was based on the assumption that initially only those diseases should be considered that students regularly encounter. The VP situation was intended as a “complaint-related consultation” and not in the sense of a preventive medical presentation. Furthermore, special importance was attached to a required “competence to act”, since a certain independent action is expected of the students at the end of their studies.

The criteria were developed and applied on the basis of the interim status of the NKLM at the end of 2020. It would be possible to compare whether the VP's to be included would have changed after finalisation of the NKLM 2.0 by April 2021. In view of the further development of the NKLM planned until 2025, however, it seems reasonable to carry out a review of the VP's selected by the developed criteria on the basis of a later version of the NKLM (e.g. version 2.1 planned for 2024) in order to adjust the pool of VP's according to the core curricular content. In addition, the development of VP's on the basis of the other NKLM diseases (which do not fit the criteria mentioned) is of course also possible in order to give students the opportunity to deal with these topics.

One limitation of the DigiPaL project could be the focus of the VsP on diseases (instead of, for example, on consultation occasions in the sense of “leading symptoms”). This approach was due to the time pressure in the course of the pandemic, in order to enable rapid usability of the VP's. A focus on consultation causes would have meant that the lecturers would have had to look through all the published VP's with a suitable symptom to see whether they were actually related to the diagnosis they were to teach. In the context of the “re-mapping” of the VP's against the NKLM version 2.1 already considered above, however, an additional marking of the consultation occasions addressed in a VP would make sense.

5. Conclusion

The nationwide participation of 17 faculties reflects the great interest in the format of the VP as a component of a canon of methods for teaching clinical decision-making skills, which was certainly increased in the course of the special demands during the coronavirus pandemic. Considering the low expense allowance for the participating faculties, a certain intrinsic motivation of the participants can be assumed. Additionally, a certain amount of faculty and specialization visibility may also be a motivating factor. In our view, this shows that the expected resource-saving synergy effects of cross-faculty planning and use of VP's have been accepted by many faculties. The rising usage of VP's also implies that the anticipated importance of VP's (especially during the decentralised teaching situation) was correctly assessed.

Since all relevant aspects of the diseases defined in the project are now covered by VP's, the faculties already have a VP pool that can be used across the board as a methodological supplement to the established patient-related teaching formats (e.g. in the context of blended learning). This can also be used specifically for learning clinical decision-making after returning to face-to-face teaching, and can be easily adapted to each new version of the NKLM with the help of the developed criteria. As part of the DigiPaL project, the foundation was thus laid for a significant expansion of digital teaching within the framework of the new ÄApprO on the basis of the NKLM.

Authors contributions

Jacqueline Jennebach and Olaf Ahlers contributed equally.

Acknowledgements

The authors would like to thank – also on behalf of the students and lecturers at the medical faculties – all colleagues who have made this extensive project possible through their commitment.

Funding

DigiPaL was supported by the German Ministry of Health on the basis of a resolution of the German Bundestag under the funding code 2S20COR200.
Competing interests

The authors declare that they have no competing interests.

References

1. Fischer MR, Bauer D, Mohn K; NKLM-Projektgruppe. Finally finished! National Competence Based Catalogues of Learning Objectives for Undergraduate Medical Education (NKLM) and Dental Education (NKLZ) ready for trial. GMS Z Med Ausbild. 2015;32(3):Doc35. DOI: 10.3205/zma000977

2. Balzer F, Hautz WE, Spies C, Bietenbeck A, Dittmar M, Sugiharto F, Lehmann L, Eisenmann D, Bubser F, Hanfler S, Georg W, Tekian A, Ahlers O. Development and alignment of undergraduate medical curricula in a web-based, dynamic Learning Opportunities, Objectives and Outcome Platform (LOOOP). Med Teach. 2016;38(4):369-377. DOI: 10.3109/0142159X.2015.1035054

3. Harden R. AMEE Guide No. 21: Curriculum mapping: a tool for transparent and authentic teaching and learning. Med Teach. 2001;23(2):123-137. DOI: 10.1080/01421590129036547

4. Willett TG. Current status of curriculum mapping in Canada and the UK. J Med Educ. 2008;42(8):786-793. DOI: 10.1111/j.1365-2923.2008.03093.x

5. Berman NB, Durning SJ, Fischer MR, Huwendiek S, Triola MM. The Role for Virtual Patients in the Future of Medical Education. Acad Med. 2016;91(9):1217-1222. DOI: 10.1097/ACM.0000000000001146

6. Cook D, Triola MM. Virtual patients: a critical literature review and proposed next steps. Med Educ. 2009;43(4):303-311. DOI: 10.1111/j.1365-2923.2008.03286.x

7. Kunina-Habenicht O, Hautz WE, Knigge M, Spies C, Ahlers O. Assessing clinical reasoning (ASCLRE): Instrument development and validation. Adv Health Sci Educ Theory Pract. 2015;20(5):1205-1224. DOI: 10.1007/s10459-015-9596-y

8. Fischer MR, Aulinger B, Baehring T. Computer-based-Training (CBT), Fallo-rientiertes Lernen am PC mit dem CASUS/ProMediWeb-System. Dtsch Med Wochenschr. 1999;124(46):1401. DOI: 10.1055/s-2007-1024550

9. Radon K, Kolb S, Reichert J, Baumeister T, Fuchs R, Hege L, Praml G, Fischer M, Nowak D. Case-based e-learning in occupational medicine–The NetWoRM Project in Germany. Ann Agric Environ Med. 2006;13(1):93-98.

10. Konowonowicz AA, Woodham LA, Edelbring S, Stathakarou N, Davies D, Saxena N, Tudor Car L, Carlstedt-Duke J, Car J, Zary N. Virtual Patient Simulations in Health Professions Education: Systematic Review and Meta-Analysis by the Digital Health Education Collaboration. J Med Internet Res. 2019;21(7):e14676. DOI: 10.2196/14676

11. Pennafort T, Moussa A, Loeve N, Charlin B, Audéat M. Exploring a New Simulation Approach to Improve Clinical Reasoning Teaching and Assessment: Randomized Trial Protocol. JMIR Res Protoc. 2016;5(1):e26. DOI: 10.2196/resprot.4938

Corresponding author:

PD Dr. med. Olaf Ahlers
Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Klinik für Anästhesiologie m.S. operative Intensivmedizin CCM/CVK, LOOOP-Projekt, Augustenburger Platz 1, D-13353 Berlin, Germany olaf.ahlers@charite.de

Please cite as

Jennebach J, Ahlers O, Simonsohn A, Adler M, Özkaya J, Raupach T, Fischer MR. Digital patient-centred learning in medical education: A national learning platform with virtual patients as part of the DigiPaL project. GMS J Med Educ. 2022;39(4):Doc47. DOI: 10.3205/zma001568, URN: urn:nbn:de:0183-zma0015684

This article is freely available from https://doi.org/10.3205/zma001568

Received: 2022-01-23
Revised: 2022-06-28
Accepted: 2022-07-05
Published: 2022-09-15

Copyright

©2022 Jennebach et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License. See license information at http://creativecommons.org/licenses/by/4.0/.
Digitales Patienten-bezogenes Lernen im Medizinstudium: Eine nationale Lernplattform mit virtuellen Patient*innen im Rahmen des DigiPaL-Projektes

Zusammenfassung

Hintergrund: Auf Grund der Coronavirus-Pandemie haben die Medizinalen Fakultäten in der Bundesrepublik Deutschland ihre Curricula im Frühjahr 2020 großflächig und sehr rasch im Sinne eines Notfallplans auf digitale Formate umgestellt. Parallel wurde damit begonnen, digitale Lehr-/Lernangebote über die bereitgestellte Online-Plattform „LOOOP share“ bundesweit auszutauschen, um lokale Ressourcen zu schonen. Unter anderem wurden auch virtuelle Patient*innen-Fälle (VP) für das fallbasierte Lernen fakultätsübergreifend geteilt, durch welche die Studierenden klinische Entscheidungskompetenzen erwerben können.

Ziele: Im Rahmen des zu dieser Zeit initiierten Kooperationsprojektes „Nationale Lernplattformen für digitales patientenbezogenes Lernen im Medizinstudium“ (DigiPaL) sollte u.a. die Nutzbarkeit von VP für Studierende und Lehrende verbessert und das Spektrum der verbindlich für die Lehre verfügbaren Krankheitsbilder systematisch erweitert werden.

Ergebnisse: Unter Beteiligung vieler Standorte wurden ergänzend zu den bereits bestehenden 403 VP von 96 Fallautor*innen aus 16 Fakultäten insgesamt weitere 150 VP entwickelt. Die thematische Auswahl erfolgte auf Basis von am Nationalen Kompetenzbasierten Lernzielkatalog Medizin 2.0 (NKLM) orientierten Kriterien. Diese VP wurden dann nach Fertigstellung ebenfalls über LOOOP share und die Lernplattform CASUS allen Fakultäten zur freien Nutzung zur Verfügung gestellt.

Diskussion: Auch nach der Pandemie sollen diese entwickelten VP den Fakultäten zur Verfügung stehen und so nachhaltig zur Verbesserung der medizinischen Ausbildung in der Bundesrepublik Deutschland beitragen – insbesondere vor dem Hintergrund, dass auf Basis der angepassten aktuellen Approbationsordnung (ÄApprO) digitale Lehrformate ausdrücklich befürwortet werden. Denkbar ist perspektivisch das gezielte interdisziplinäre Erlernen klinischer Entscheidungsfindung mithilfe von Blended Learning Formaten im Rahmen eines longitudinalen Curriculums. Die große Zahl beteiligter Kolleg*innen und Fakultäten zeigt, dass die fakultätsübergreifende, national abgestimmte Entwicklung von VP als sinnvoll angesehen wurde.

Schlüsselwörter: kompetenzbasierte Ausbildung, curriculare Kartierung, virtuelle Patient*innen, Problemlösung

1. Einleitung

Im Zuge der Einschränkungen durch die Coronavirus-Pandemie wurde das „Gesetz zum Schutz der Bevölkerung bei einer epidemicischen Lage von nationaler Tragweite“ erlassen, welches u.a. die Ausbildung von Ärzt*innen sicherstellen sollte [http://www.bgbli.de/xaver/bgbli/start.xav?startbk=Bundesanzeiger_BGBI&jumpto=bgbl120s0587.pdf]. Hierauf aufbauend schaffte der §2 der „Abweichungen zur Approbationsordnung für Ärztinnen und Ärzte“ explizit die rechtliche Möglichkeit, digitale Unterrichtsformate als Ersatz für theoretische Präsenzlehrformate und als Ergänzung für praktische Lehrformate in den humanmedizinischen Studiengängen einzusetzen [https://www.gesetze-im-internet.de/epi_appr2002 abw/index.html]. Die Nutzung dieser Option stellte die medizinischen Fakultäten allerdings im Frühjahr 2020 vor große Herausforderungen:
1. an jeder Fakultät wurden kurzfristig viele digitale Lernmaterialien („Ressourcen“) benötigt.
2. der Einsatz dieser Ressourcen musste auf die Inhalte des eigenen CURRICULUMS abgestimmt sein und
3. insbesondere die Kernkompetenz „Klinische Entscheidungsfindung“ sollte digital soweit möglich erworben werden können.

Alle drei o.g. Herausforderungen wurden durch das Autor*innen-Team im Rahmen eines zweischrittigen Prozesses adressiert. Die Fakultäten wurden in einem ersten Schritt kurzfristig bei der Durchführung der Lehre während der Pandemie unterstützt. Dieser Schritt war die Grundlage für den in diesem Projektbericht dargestellten Schritt 2. Schritt 2 stellt die Nachhaltigkeit des Projektes - insbesondere auf Blick auf die Anforderungen der neuen ÄRZTlichen Approbationsordnung (ÄApprO) - sicher, deren Inkrafttreten aktuell für 2025 geplant ist.

1.1. Schritt 1: Kurzfristige bundesweite Bereitstellung bereits vorhandener Online-Ressourcen

Ziel dieses ersten Schrittes war es, bereits vorhandene Online-Ressourcen schnellstmöglich bundesweit zur Nutzung für die Fakultäten zur Verfügung zu stellen. Dies sollte sowohl über Standardbrowser als auch über mobile Endgeräte kostenfrei möglich sein. Zudem sollte den Fakultäten ein niedrigschwelliger Abgleich der angebotenen Ressourcen mit dem eigenen Curriculum ermöglicht werden, um geeignete Ergänzungen der eigenen Präsenzveranstaltungen identifizieren zu können. Ein Schwerpunkt lag dabei auf der Einbindung virtueller Patient*innen-Fälle (VP) im Hinblick auf das Erlernen klinischer Entscheidungsfindung als wichtiger ärztlicher Kompetenz.

1.1.1. Vernetzung vorhandener Online-Ressourcen (adressiert Herausforderung (1))

Im März 2020 wurde die international genutzte LOOOP-Onlineplattform durch das Entwickler*innen-Team der Charité – Universitätsmedizin Berlin so angepasst, dass hierüber digitale Ressourcen bundesweit von allen Fakultäten geteilt und damit gemeinsam genutzt werden können (siehe [https://looop.share.charite.de/]). Hierzu können die Fakultäten Links zu ihren online zugänglichen digitalen Ressourcen auf LOOOP share hinterlegen und die Zugriffsschritte auf diese Ressourcen selbst steuern. Die Anpassung der Plattform erfolgte in enger Abstimmung mit dem Medizinischen Fakultätentag der Bundesrepublik Deutschland e.V. (MFT).

Seit Juni 2020 ist der Zugang zu LOOOP share über die Authentifikations- und Autorisierungs-Infrastruktur des Deutschen Forschungsnetzes (DFN-AAI, siehe [https://doku.tid.dfn.de/de/aaia/about]) bundesweit einheitlich im Rahmen eines „Single Sign On“ möglich. Diese niedrigschwellige Steuerung der Zugriffsschritte wurde durch eine seit dem 01. Juni 2020 bestehende Förderung des Bundesministeriums für Gesundheit (BMG) im Rahmen des Kooperationsprojektes „Nationale Lernplattform für digitales patientenbezogenes Lernen im Medizinstudium“ (DiPiLaL) ermöglicht.

1.1.2. Nutzung der Online-Ressourcen für das eigene Curriculum (adressiert Herausforderung (2))

Um eine inhaltliche Navigation durch die in LOOOP share verlinkten Online-Ressourcen zu ermöglichen, wurde jede Ressource einzeln mit den Inhalten des 2015 veröffentlichten Nationalen Kompetenzbasierten Lernzielkatalogs Medizin (NKLM, Version 1.0) [1] verknüpft. Diese Verknüpfung erfolgte nach einem Konzept für curriculare Kartierung, das seit 2004 unter Federführung der Charité – Universitätsmedizin Berlin im Rahmen des internationalen LOOOP-Forschungsnetzwerks entwickelt wurde [2]. Grundlage dieses Konzeptes, das aktuell zur Kartierung von ca. 140 Studiengängen in 22 Ländern genutzt wird (siehe [https://looop.charite.de/]), sind unter anderem Vorarbeiten von Harden [3] und Willett [4]. Fakultäten, die ihre eigenen CURRICULA bereits im Rahmen des LOOOP-Forschungsnetzwerks gegen den NKLM 1.0 kartiert haben, bekommen automatisch die zu ihren Lehrveranstaltungen passenden (mit den gleichen NKLM-Inhalten verknüpften) Ressourcen angezeigt. Fakultäten, die nicht mit LOOOP kartieren, können geeignete Ressourcen in LOOOP share über die Navigation innerhalb des thematisch strukturierten NKLM identifizieren.

1.1.3. Virtuelle Patient*innen-Fälle (adressiert Herausforderung (3))

VP stellen eine effektive Möglichkeit dar, klinisches Denken und insbesondere klinische Entscheidungsfindung zu erlernen, zu trainieren und zu prüfen [5], [6], [7]. Bereits seit 1993 wird die Lernplattform CASUS für das von 1997 bis 2004 geförderte Kooperationsprojekt „Nationale Lernplattform für digitales patientenbezogenes Lernen im Medizinstudium“ (DigiPaL) ermöglicht.

Um eine effektive Navigation durch die in LOOOP share verlinkten Online-Ressourcen zu ermöglichen, wurde jede Ressource einzeln mit den Inhalten des 2015 veröffentlichten Nationalen Kompetenzbasierten Lernzielkatalogs Medizin (NKLM, Version 1.0) [1] verknüpft. Diese Verknüpfung erfolgte nach einem Konzept für curriculare Kartierung, das seit 2004 unter Federführung der Charité – Universitätsmedizin Berlin im Rahmen des internationalen LOOOP-Forschungsnetzwerks entwickelt wurde [2]. Grundlage dieses Konzeptes, das aktuell zur Kartierung von ca. 140 Studiengängen in 22 Ländern genutzt wird (siehe [https://looop.charite.de/]), sind unter anderem Vorarbeiten von Harden [3] und Willett [4]. Fakultäten, die ihre eigenen CURRICULA bereits im Rahmen des LOOOP-Forschungsnetzwerks gegen den NKLM 1.0 kartiert haben, bekommen automatisch die zu ihren Lehrveranstaltungen passenden (mit den gleichen NKLM-Inhalten verknüpften) Ressourcen angezeigt. Fakultäten, die nicht mit LOOOP kartieren, können geeignete Ressourcen in LOOOP share über die Navigation innerhalb des thematisch strukturierten NKLM identifizieren.

1.1.3. Virtuelle Patient*innen-Fälle (adressiert Herausforderung (3))

VP stellen eine effektive Möglichkeit dar, klinisches Denken und insbesondere klinische Entscheidungsfindung zu erlernen, zu trainieren und zu prüfen [5], [6], [7]. Bereits seit 1993 wird die Lernplattform CASUS für das von 1997 bis 2004 geförderte Kooperationsprojekt „Nationale Lernplattform für digitales patientenbezogenes Lernen im Medizinstudium“ (DigiPaL) ermöglicht.

1.1.3. Virtuelle Patient*innen-Fälle (adressiert Herausforderung (3))

Um eine inhaltliche Navigation durch die in LOOOP share verlinkten Online-Ressourcen zu ermöglichen, wurde jede Ressource einzelnen mit den Inhalten des 2015 veröffentlichten Nationalen Kompetenzbasierten Lernzielkatalogs Medizin (NKLM, Version 1.0) [1] verknüpft. Diese Verknüpfung erfolgte nach einem Konzept für curriculare Kartierung, das seit 2004 unter Federführung der Charité – Universitätsmedizin Berlin im Rahmen des internationalen LOOOP-Forschungsnetzwerks entwickelt wurde [2]. Grundlage dieses Konzeptes, das aktuell zur Kartierung von ca. 140 Studiengängen in 22 Ländern genutzt wird (siehe [https://looop.charite.de/]), sind unter anderem Vorarbeiten von Harden [3] und Willett [4]. Fakultäten, die ihre eigenen CURRICULA bereits im Rahmen des LOOOP-Forschungsnetzwerks gegen den NKLM 1.0 kartiert haben, bekommen automatisch die zu ihren Lehrveranstaltungen passenden (mit den gleichen NKLM-Inhalten verknüpften) Ressourcen angezeigt. Fakultäten, die nicht mit LOOOP kartieren, können geeignete Ressourcen in LOOOP share über die Navigation innerhalb des thematisch strukturierten NKLM identifizieren.

1.1.3. Virtuelle Patient*innen-Fälle (adressiert Herausforderung (3))

Um eine inhaltliche Navigation durch die in LOOOP share verlinkten Online-Ressourcen zu ermöglichen, wurde jede Ressource einzeln mit den Inhalten des 2015 veröffentlichten Nationalen Kompetenzbasierten Lernzielkatalogs Medizin (NKLM, Version 1.0) [1] verknüpft. Diese Verknüpfung erfolgte nach einem Konzept für curriculare Kartierung, das seit 2004 unter Federführung der Charité – Universitätsmedizin Berlin im Rahmen des internationalen LOOOP-Forschungsnetzwerks entwickelt wurde [2]. Grundlage dieses Konzeptes, das aktuell zur Kartierung von ca. 140 Studiengängen in 22 Ländern genutzt wird (siehe [https://looop.charite.de/]), sind unter anderem Vorarbeiten von Harden [3] und Willett [4]. Fakultäten, die ihre eigenen CURRICULA bereits im Rahmen des LOOOP-Forschungsnetzwerks gegen den NKLM 1.0 kartiert haben, bekommen automatisch die zu ihren Lehrveranstaltungen passenden (mit den gleichen NKLM-Inhalten verknüpften) Ressourcen angezeigt. Fakultäten, die nicht mit LOOOP kartieren, können geeignete Ressourcen in LOOOP share über die Navigation innerhalb des thematisch strukturierten NKLM identifizieren.
1.2. Schritt 2: Inhaltliche Abdeckung für patientenbezogene Lehre mittels VP und Sicherstellung der mittel- und langfristigen Nutzbarkeit

Die im September 2021 verabschiedeten Anpassungen der aktuell gültigen ÄpprO [http://www.bgbl.de/xaver/bgbl/start.xav?startbk=Bundesanzeiger_BGBl&jumpTo= bgbl121s4335.pdf] sowie die Entwürfe zur neuen ÄpprO, deren Inkrafttreten für 2025 geplant ist, erlauben explizit den Einsatz digitaler Lehrformate und ermöglichen damit eine nachhaltige Nutzung der in Schritt 1 beschriebenen Innovationen auch über die Pandemie hinaus. Durch das DigiPaL-Projekt sollen die Fakultäten bei der Nutzung dieser Möglichkeit unterstützt werden. Hierzu sollten die bereits bestehenden VP aufgestockt werden, um den bundesweit nutzbaren VP-Pool inhaltlich gezielt den Erfordernissen der neuen ÄpprO auszurichten.

1.2.1. Inhaltliche Vorgaben der neuen Ärztlichen Approbationsordnung und NKLM 2.0

Im Rahmen des Inkrafttretens der neuen ÄpprO soll sich der Inhalt der Curricula an den medizinischen Fakultäten jeweils zu ca. 80% verbindlich an der dann vorliegenden Fassung des NKLM orientieren (sog. „Kerncurricula”). Deshalb wurde zwischen 2018 und 2021 der NKLM 1.0 in einem bundesweiten Prozess unter Beteiligung vieler hundert Expert*innen aus medizinischen Fakultäten und Fachgesellschaften zur Zwischenversion NKLM 2.0 weiterentwickelt und im April 2021 veröffentlicht [https://www.nklm.de]. Diese Weiterentwicklung des NKLM erfolgte im Rahmen eines standardisierten Prozesses [https://nklm.de/zend/objective/list/orderBy/@objective Position/modul/200557] gemeinsam mit der Entwicklung des kompetenzorientierten Gegenstandskatalogs und wurde durch die NKLM-Geschäftsstelle (GSt.) am MFT koordiniert.

Auf Grund der Komplexität des NKLM werden im Folgenden nur die für dieses Projekt relevanten NKLM-Abschnitte bzw. -Detailinformationen beschrieben: Der NKLM 2.0 definiert eine für die Kerncurricula der Fakultäten relevante Auswahl von Erkrankungen. Diese werden wiederum anhand einzelner klinischer Aspekte (sog. „Deskriptoren”) betrachtet, wie z.B. Diagnostik, Therapie, Notfallmaßnahmen und Management. Nicht alle Deskriptoren wurden im NKLM für jede Erkrankung als „relevant” markiert. Dies hat hauptsächlich zwei Ursachen: Zum einen existieren bestimmte Aspekte bei einigen Erkrankungen schlechtweg nicht, z.B. gibt es nicht bei jeder Erkrankung Notfälle bzw. Notfallmaßnahmen. Zum anderen wurden im NKLM nur diejenigen Aspekte als „relevant” markiert, welche bereits im Rahmen des Studiums erlernt werden sollten. Daran anknüpfend wurde für jeden als „relevant” eingestuften Deskriptor entschieden, ob eine kognitive (beispielsweise die Erstellung eines patientenbezogenen Diagnostik- bzw. Therapieplans) oder praktische Handlungskompetenz erworben werden soll. Ergänzend wurde bei jeder Erkrankung auch markiert, ob es sich um eine seltene Erkrankung handelt. Über Querverbindungen von jeder einzelnen Erkrankung zu anderen Kapiteln des NKLM wurde dann definiert, welche Diagnostik, Therapie, etc. im Kontext dieser Erkrankung erlernt werden soll. Die im NKLM aufgeführten Erkrankungen spielen also eine zentrale Rolle sowohl bei der Definition der klinischen Inhalte des Medizinstudiums als auch bei Auswahl der für das Studium relevanten Aspekte klinischer Entscheidungsfindung.

1.2.2. Projektziele

Als Teil des BMG-geförderten DigiPaL-Projekts zur Entwicklung von Ressourcen für das digitale Patienten-bezogene Lernen sollte der im 2020 bundesweit über LOOOP share geteilte VP-Pool so erweitert werden, dass er nach der Erweiterung die Erkrankungen mit relevanten klinischen Handlungskompetenzen im NKLM 2.0 abdeckt. Die Entscheidung, welche VP hierzu ergänzend benötigt werden, sollte dabei auf Basis standardisierter Kriterien (siehe 2.2) anhand einer Analyse der bereits in LOOOP share vorhandenen VP stattfinden. Zur Identifikation der entsprechenden Erkrankungen sollten standardisierte Kriterien hinsichtlich der Handlungskompetenzen entwickelt werden und anschließend sollten sich bundesweit alle medizinischen Fakultäten koordiniert durch den MFT am Erstellungsprozess beteiligen können.

2. Projektbeschreibung

2.1. Etablierung der Entscheidungs- und Organisationsstrukturen

Nach Bewilligung des DigiPaL-Projektauftrages durch das BMG, welcher zusätzlich zum hier beschriebenen Projekt auch die Entwicklung einer digitalen virtuellen Notaufnahme (DIVANA) umfasste, wurde ein „Editorial Board” eingesetzt. Dieses sollte die zu entwickelnden NKLM-basierten Kriterien zwecks Auswahl der Erkrankungsthemen für die VP verabschieden und auch die darauffolgende Fall-Vergabe an die Fakultäten beschließen. Die Fall-Vergabe erfolgte durch die GSt. am MFT, die Koordination der VP-Überarbeitung bzw. -Neuentwicklung wurde durch das Institut für Didaktik und Ausbildungsforschung in der Medizin der LMU München übernommen.
2.2. Entwicklung standardisierter Kriterien zur VP-Überarbeitung bzw. -Erstellung

Es wurden durch die GST, auf Basis des NKLM 2.0 standardisierte Kriterien zur Auswahl der wichtigsten Erkrankungen (und derer Deskriptoren) entwickelt, die durch VP abgedeckt sein sollten. Bei Erfüllung eines oder mehrerer dieser in Tabelle 2 dargestellten Kriterien wurde eine Erkrankung in die Auswahl aufgenommen. Grundvoraussetzung war, dass es sich nicht um eine „seltene Erkrankung“ handelte.

Bei den Kriterien wurde generell auf die Markierung einer Handlungskompetenz Wert gelegt, um dem Ziel des Kompetenzerwerbs im Bereich der „klinischen Entscheidungsfindung“ durch die VP Rechnung zu tragen. Die Kombination der Deskriptoren „Diagnostik“ und „Therapie“ bei Kriterium 1 rührte daher, dass sich hier ein klinischer Prozess sehr gut darstellen lässt, wenn hinsichtlich beider Deskriptoren eine Handlungskompetenz gefordert wird. Gleiches gilt für die Kombination der Deskriptoren „Diagnostik“ und „Management“ bei Kriterium 3. Der Deskriptor „Notfallmaßnahmen“ umfasst sowohl die Notfalldiagnostik (bzw. erst einmal das Erkennen einer Notfallsituation) als auch das Einleiten erster therapeutischer Schritte – weshalb dieser Deskriptor in Kriterium 2 betrachtet wurde. Hier waren die anderen Deskriptoren jedoch nicht in Kombination relevant, da es viele Erkrankungen gibt, bei denen es für Studierende nur wichtig ist, die akute Situation zu erkennen und Maßnahmen einzuleiten – jedoch nicht die generelle Diagnostik und Therapie dieser z.T. komplexen Erkrankungen selbst durchführen zu können.

2.3. Analyse benötigter VP und Abgleich mit dem bereits veröffentlichten VP-Pool

Anhand der unter 2.2 dargestellten Kriterien wurden diejenigen Erkrankungen und Deskriptoren des NKLM 2.0 herausgefiltert, die durch VP abgedeckt werden sollten. Mit Hilfe der im NKLM 2.0 definierten Nachfolgebeziehungen zum NKLM 1.0 wurden dann die Erkrankungen beider Katalogversionen miteinander verglichen und die jeweilige Abdeckung durch bereits veröffentlichte VP in LOOOP share analysiert. Die in dieser Abdeckungsanalyse ermittelten „Lücken“ konnten sich sowohl auf bisher noch nicht über VP abgedeckte Erkrankungen als auch auf in veröffentlichten VP bisher nicht abgedeckte Deskriptoren sowie auf vorhandeneren VP beziehen.

Auf Grundlage dieser Analysen wurde zuerst ein vorhandener Pool bisher nicht veröffentlichter oder nicht mehr eingesetzter älterer VP (mit umfangreichem Überarbeitungsbedarf) nach 75 geeigneten Fällen zur Abdeckung der notwendigen Themen durchsucht. Anschließend wurden 75 neu zu erstellende VP definiert, um die dann noch verbliebenen „Lücken“ zu schließen. Ergänzend wurde ein standardisiertes Vorgehen durch das Editorial Board verabschiedet, um bereits vor der Anwendung der o.g. Kriterien festzulegen, wie verfahren werden sollte, wenn – wie zu erwarten – nicht exakt 75 zu überarbeitende und 75 neu zu erstellende VP identifiziert werden.

1. Falls anhand der Analysen zu wenige VP identifiziert werden, sollten „facettenreiche Erkrankungen“ ergänzend mit aufgenommen werden, auch wenn diese bereits in einem bestehenden CASUS-Fall adressiert werden. Diese VP sollten dann einen alternativen Erkrankungs-Schwerpunkt abdecken.

2. Falls zu viele VP identifiziert werden, konnte das Editorial Board VP ausschließen, die a) aus inhaltlicher Sicht für die Umsetzung als VP weniger geeignet oder b) bereits durch genügend ähnliche VP abgedeckt waren.

2.4. Ausschreibung der VP und Vergabe

Die 11 Fallpakete (entsprechend den Organsystemkapiteln des NKLM 2.0) wurden daraufhin bundesweit ausgeschrieben und durch das Editorial Board jeweils auf möglichst zwei sich bewerbende Fakultäten verteilt. Diese Fakultäten sollten jeweils hälftig die ausgeschriebenen VP erarbeiten und sich gegenseitig als Review-Partner zur Verfügung stehen. Die Fakultäten erhielten eine Aufwandsentschädigung von 1.200 € für jeden neu erstellten VP und von 600 € für jeden zu überarbeitenden VP. Das gegenseitige Fall-Review war in diesem Betrag enthalten.

2.5. Erstellung der VP

Die Fallautor*innen erhielten durch die LMU ein umfassendes Schulungsangebot, das sowohl die didaktische Gestaltung von VP als auch die Anwendung des CASUS-Autorensystems beinhaltete. Die insgesamt 96 Autor*innen wurden im gesamten Prozess der Fallentwicklung individuell begleitet und alle VP erhielten nach der ersten Fertigstellung ein formatives didaktisches Review mit detaillierten Überarbeitungsvorschlägen.

2.6. Bereitstellung der VP bundesweit

Nach Finalisierung der jeweiligen VP wurden die Autor*innen um Kurzzusammenfassungen für LOOOP share gebeten. Außerdem fand eine durch die GST. unterstützte
3. Ergebnisse

3.1. Zu überarbeitende und neu zu erstellende VP

3.1.1. Auswahl der zu überarbeitenden VP

Aus dem Pool der zu überarbeitenden VP wurden mit Hilfe der unter 2. beschriebenen Kriterien 50 geeignete Fälle identifiziert. Dabei lag die Anzahl der geeigneten VP pro abzudeckender Erkrankung zwischen 1 und 4 (siehe Tabelle 3) und es wurden maximal 2 VP pro Erkrankung ausgewählt (schlussendlich wurden 44 zu überarbeitende VP identifiziert). Anschließend wurden entsprechend 2.3.1. weitere zu überarbeitende VP definiert und so das Ziel von 75 zu überarbeitende VP erreicht.

3.1.2. Definition der neu zu erstellenden VP

Im Rahmen des unter 2. beschriebenen Verfahrens wurden insgesamt 81 Erkrankungen identifiziert, die weder durch bereits veröffentlichte noch durch zu überarbeitende VP abgedeckt waren. Wie unter 2.3.2. beschrieben, wurden diese Erkrankungen dann auf 75 reduziert. Tabelle 4 stellt die sechs Erkrankungen (inkl. der jeweiligen Begründung) dar, für die keine VP erstellt wurden.

3.2. Verteilung der VP-Überarbeitung und -Neuerstellung auf die Fakultäten

Insgesamt 16 Fakultäten haben sich im Rahmen des Ausschreibungsverfahrens beworben und werden den 11 organbezogenen Themenpaketen zugeordnet (siehe Tabelle 5). Tabelle 6 gibt einen Überblick über die thematische Zuordnung der Fakultäten.

3.3. Erstelle VP

Alle 150 zu überarbeitenden und neu zu erstellenden VP wurden in der Zeit vom 01.11.2020 bis 12.12.2021 erstellt, einem Peer-Review unterzogen und in LOOOP share verlinkt.

4. Diskussion

Der Pool der bundesweit kostenlos zur Verfügung stehenden VP konnte im Rahmen des DigiPaL-Projektes so erweitert werden, dass nun die wichtigsten Aspekte der im NKLM aufgeführten Erkrankungen durch VP abgedeckt werden. Diese VP sind mit Hilfe der ebenfalls kostenlos nutzbaren Plattform LOOOP share über das DFN-AAI zugänglich und können ab sofort zur dezentralen und ergänzenden Lehre der Fakultäten genutzt werden.

Das Format der VP eignet sich besonders gut zum Trainieren von klinischer Entscheidungsfindung (hinsichtlich Diagnosestellung und Therapieentscheidungen). Thematisch abgeschlossene Fallsammlungen stellen dabei einen besonderen Mehrwert dar. Die seit 2007 an vielen Fakultäten genutzte Fallsammlung zur Arbeits- und Umweltmedizin ist ein erfolgreiches Beispiel für diese fakultätsübergreifende Nutzung von VP [9]. Jedoch können VP generell nur zur Abbildung „kognitiver Handlungskompetenz“ (also zum Beispiel der selbstständigen Erstellung von Diagnosis- und/ oder Therapieplänen) genutzt werden [10]. Daher ist die ergänzende Lehre hinsichtlich prozeduraler und manueller Fähigkeiten (Handhabung; Einüben durch Simulationen) notwendig, um eine erfolgreiche Umsetzung des Gelernten zu ermöglichen [10], [11].

Eine Orientierung der VP am NKLM war vor dem Hintergrund sinnvoll, dass der NKLM nach einer weiteren Überarbeitung voraussichtlich 2025 zur verbindlichen Grundlage der bundesweiten Kerncurricula wird. Die Konzeption der Kriterien beruhte dabei auf der Annahme, dass zunächst nur solche Erkrankungen betrachtet werden sollten, die den Studierenden regelhaft begegnen. Die VP-Situation war dabei als „beschwerdebedingte Konsultation“ gedacht und nicht im Sinne einer präventiven ärztlichen Vorstellung. Des Weiteren wurde einer geforderten „Handlungskompetenz“ eine besondere Wichtigkeit beigemessen, da hier von den Studierenden ein gewisses selbstständiges Handeln am Ende des Studiums erwartet wird.

Die Kriterien wurden auf Basis des Zwischenstandes des NKLM Ende 2020 erarbeitet und angewendet. Ein Abgleich, ob sich letztendlich bei der Finalisierung des NKLM 2.0 bis April 2021 noch etwas an den zu inkludierenden

Tabelle 3: Anzahl der verfügbaren virtuellen Patient*innen-Fälle pro Erkrankung

VP pro Erkrankung	1	2	3	4
Anzahl	22x	14x	2x	2x

VP: Virtuelle Patient*innen-Fälle

Tabelle 4: Anhand der Kriterien identifizierte Erkrankungen, für die keine Fälle erstellt wurden

a) aus inhaltlicher Sicht weniger geeignet	b) durch ähnliche Fälle abgedeckt
Nabelschnurkomplikationen	Diabetes mellitus Typ 1
atone Nachblutung	Diabetes mellitus Typ 2
Suizid	Reaktive Arthritis

Jennebach et al.: Digitales Patienten-bezogenes Lernen im Medizinstudium:...
Tabelle 5: Übersicht über die beteiligten Fakultäten

Fakultät	
Medizinische Fakultät der Universität Augsburg	
Charité - Universitätsmedizin Berlin	
Medizinische Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn	
Medizinische Fakultät Carl Gustav Carus der Technischen Universität Dresden/Chemnitz	
Universitätsklinikum der Friedrich-Alexander-Universität Erlangen-Nürnberg	
Medizinische Fakultät der Universität Duisburg-Essen	
Universitätsklinikum der Goethe Universität Frankfurt/M	
Medizinische Fakultät der Ruprecht-Karls-Universität Heidelberg	
Medizinische Fakultät der Christian-Albrechts-Universität zu Kiel	
Medizinische Fakultät der Universität Leipzig	
Fachbereich Medizin der Philipps-Universität Marburg	
Klinikum der Ludwig-Maximilians-Universität München (LMU)	
Klinikum rechts der Isar der Technischen Universität München (TUM)	
Medizinische Fakultät Münster	
Medizinische Fakultät der Eberhard Karls Universität Tübingen	
Medizinische Fakultät der Julius-Maximilians-Universität Würzburg	

Die fett gedruckten Standorte werden als Kürzel in Tabelle 6 verwendet.

Tabelle 6: Übersicht über die durch die Fakultäten abgedeckten virtualen Patient*innen-Fälle

Fallpaket	Anzahl der VP [neu + zu überarbeiten = gesamt]	Hauptverantwortliche Fakultäten	Partnerfakultäten
1) Kardiovaskulär	5 + 13 = 18	Marburg	Münster
2) Musculoskeletales System	7 + 9 = 16	Frankfurt/M	Marburg
3) Hormone und Stoffwechsel	6 + 13 = 19	München (LMU)	Würzburg
4) Respiratorisches System	4 + 8 = 12	München (TUM)	Berlin
5) Blut und Immunologie	4 + 7 = 11	München (LMU)	Leipzig
6) Urogenitales System	5 + 6 = 11	Erlangen	Essen
7) Verdauungssystem	8 + 10 = 18	Frankfurt am Main	Marburg, Würzburg
8) Haut und Hautanhang	4 + 1 = 5	Bonn	Augsburg, Frankfurt/M, Kiel
9) Sinnessysteme	7 + 2 = 9	Dresden/Chemnitz	München (LMU)
10) Nerven und Psyche	18 + 6 = 24	München (LMU)	Heidelberg
11) Schwangerschaft, Fetal-, Peri- und Neonatalzeit	7 + 0 = 7	Tübingen	Würzburg

In dieser Tabelle sind die Kürzel der beteiligten Fakultäten dargestellt. Die vollständigen Namen finden Sie in Tabelle 5.

VP: virtuelle Patient*innen-Fälle

VP verändert hat, wäre möglich. In Anbetracht der bis 2025 geplanten Weiterentwicklung des NKLM liegt es allerdings nahe, eine erneute Überprüfung der durch die erarbeiteten Kriterien selektierten VP auf Basis einer späteren Version des NKLM (z.B. der für 2024 geplanten Version 2.1) vorzunehmen, um den Pool der VP entsprechend der kerncurricularen Inhalte anzupassen. Darüber hinaus ist natürlich auch eine Entwicklung von VP auf Basis der übrigen NKLM-Erkrankungen (welche nicht in die genannten Kriterien fallen) sinnvoll, um den Studierenden die Möglichkeit zu geben, sich mit diesen Themen auseinanderzusetzen.

Eine Limitation des DigiPal-Projektes könnte in der Fokussierung der Fälle auf Erkrankungen (statt beispielsweise auf Konsultationsanlässe im Sinne von „Leitsymptomen“) liegen. Dieses Vorgehen war dem Zeitdruck im Zuge der Pandemie geschuldet, um eine schnelle Nutzung der VP zu ermöglichen. Eine Fokussierung auf Konsultationsanlässe hätte bedeutet, dass die Dozierenden alle veröffentlichten Fälle mit einem passenden Symptom daraufhin hätten durchschauen müssen, ob sie die von ihnen zu lehrende Diagnose tatsächlich tangieren. Im Rahmen der oben bereits erwogenen „Nachkategorierung“ der VP gegen die NKLM-Version 2.1 wäre aber eine zusätzliche Markierung der in einem VP adressierten Konsultationsanlässe sinnvoll.

5. Schlussfolgerung

Die bundesweite Beteiligung von 17 Fakultäten spiegelt das große Interesse am Format der VP als Bestandteil eines Methodenkanons zur Vermittlung klinischer Entscheidungskompetenzen wider, welches sicherlich im Zuge der besonderen Anforderungen an die Lehre im Rahmen der Corona-Pandemie noch gesteigert wurde. In
Anbetracht der geringen Aufwandsentschädigung für die beteiligten Standorte ist neben der Fakultäts- und Fachersichtbarkeit auch von einer gewissen intrinsischen Motivation der Beteiligten auszugehen. Dies zeigt aus unserer Sicht, dass die erwarteten ressourcenparenden Synergieeffekte einer fakultätsübergreifenden Planung und Nutzung von VP von vielen Fakultäten angenommen wurden. Auch die steigenden Nutzungszenahlen implizieren, dass die bei der Beantragung des DigiPaL-Projektes antizipierte Wichtigkeit der VP (vor allem während der dezentralen Lehnsituation) korrekt eingeschätzt wurde. Da nun alle im Rahmen des Projektes definierter Aspekte der im NKLM aufgeführten Erkrankungen durch VP abgedeckt sind, steht den Fakultäten bereits jetzt ein flächendeckend einsetzbarer VP-Pool als methodische Ergänzung zu den etablierten patientenbezogenen Lehrformaten (z.B. im Rahmen des Blended Learnings) zur Verfügung. Dieser kann auch nach der Rückkehr zum Präsenzunterricht gezielt zum Erlernen klinischer Entscheidungsfindung genutzt und mit Hilfe der erarbeiteten Kriterien problemlos an jede neue Version des NKLM anpassen werden.
Im Rahmen des DigiPaL-Projektes wurde damit der Grundstock für einen deutlichen Ausbau der digitalen Lehre im Rahmen der neuen ÄApprO auf Basis des NKLM gelegt.

Beteiligung der Autoren
Jacqueline Jennebach und Olaf Ahlers haben zu gleichen Teilen beigetragen.

Danksagung
Die Autor*innen möchten – auch im Namen der Studierenden und Dozierenden an den medizinischen Fakultäten – allen Kolleg*innen danken, die durch ihr Engagement dieses umfangreiche Projekt ermöglicht haben.

Förderung
DigiPaL wurde aufgrund eines Beschlusses des Deutschen Bundestages durch das BMG unter dem Förderkennzeichen 2520COR200 unterstützt.

Interessenkonflikt
Die Autor*innen erklären, dass sie keinen Interessenkonflikt im Zusammenhang mit diesem Artikel haben.

Literatur
1. Fischer MR, Bauer D, Mohn K; NKLM-Projektgruppe. Finally finished! National Competence Based Catalogues of Learning Objectives for Undergraduate Medical Education (NKLM) and Dental Education (NKLZ) ready for trial. GMS Z Med Ausbild. 2015;32(3):Doc35. DOI: 10.3205/zma000977
2. Balzer F, Hauze WT, Spies C, Bietenbeck A, Dittmar M, Sugiharto F, Lehmann L, Eisenmann D, Hubser F, Stieg M, Hanfle S, Georg W, Tekian A, Ahlers O. Development and alignment of undergraduate medical curricula in a web-based, dynamic Learning Opportunities, Objectives and Outcome Platform (LOOOP). Med Teach. 2016;38(4):369-377. DOI: 10.3109/0142159X.2015.1035054
3. Harden R. AMEE Guide No. 21: Curriculum mapping: a tool for transparent and authentic teaching and learning. Med Teach. 2001;23(2):123-137. DOI: 10.1080/01421590120036547
4. Willett TG. Current status of curriculum mapping in Canada and the UK. J Med Educ. 2008;42(8):786-793. DOI: 10.1111/j.1365-2923.2008.03093.x
5. Berman NB, Durnin SJ, Fischer MR, Hwendaiek S, Triola MM. The Role for Virtual Patients in the Future of Medical Education. Acad Med. 2016;91(9):1217-1222. DOI: 10.1097/ACM.000000000001146
6. Cook D, Triola MM. Virtual patients: a critical literature review and proposed next steps, Med Educ. 2009;43(4):303-311. DOI: 10.1111/j.1365-2923.2008.03286.x
7. Kunina-Habencicht O, Hauze WT, Knige M, Spies C, Ahlers O. Assessing clinical reasoning (ASCLIRE); Instrument development and validation. Adv Health Sci Educ Theory Pract. 2015;20(5):1205-1224. DOI: 10.1007/s10459-015-9596-y
8. Fischer MR, Aulinger B, Baehringer, T. Computer-based Training (CBT). Fallo-rientiertes Lernen am PC mit dem CASUS/ProMediWeb-System. Dtsch Med Wochenschr. 1999;124(46):1401. DOI: 10.1055/s-2007-1024550
9. Radon K, Kolb S, Reichert J, Baumeister T, Fuchs R, Hege I, Pram G, Fischer M, Nowak D. Case-based e-learning in occupational medicine–The NetWoRM Project in Germany. Ann Agric Environ Med. 2006;13(1):93-98.
10. Kononowicz AA, Woodham LA, Edefbrings S, Statthakroru N, Davies-D, Saxena N, Tudor Car L, Carlstedt-Duke J, Car J, Zary N. Virtual Patient Simulations in Health Professions Education: Systematic Review and Meta-Analysis by the Digital Health EducationCollaboration. J Med Internet Res. 2019;21(7):e14676. DOI: 10.2196/14676
11. Pennaforte T, Moussa A, Loye N, Charlin B, Audeté M. Exploring a New Simulation Approach to Improve Clinical Reasoning Teaching and Assessment: Randomized Trial Protocol. JMIR Res Protoc. 2016;5(1):e26. DOI: 10.2196/resprot.4938

Korrespondenzadresse:
PD Dr. med. Olaf Ahlers
Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Klinik für Anästhesiologie m.S. operative Intensivmedizin CCM/CVK, LOOOP-Projekt, Augustenburger Platz 1, 13355 Berlin, Deutschland
olaf.ahlers@charite.de

GMS Journal for Medical Education 2022, Vol. 39(4), ISSN 2366-5017
14/15
