The High-Spin Heme b_L Mutant Exposes Dominant Reaction Leading to the Formation of the Semiquinone Spin-Coupled to the $[2\text{Fe}-2\text{S}]^+$ Cluster at the Q_0 Site of $\text{Rhodobacter capsulatus}$ Cytochrome bc_1

Marcin Sarewicz, Sebastian Pintscher, Łukasz Bujnowicz, Małgorzata Wolska and Artur Osyczka *

Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland

Cytochrome bc_1 (mitochondrial complex III) catalyzes electron transfer from quinols to cytochrome c and couples this reaction with proton translocation across lipid membrane; thus, it contributes to the generation of protonmotive force used for the synthesis of ATP. The energetic efficiency of the enzyme relies on a bifurcation reaction taking place at the Q_0 site which upon oxidation of ubiquinol directs one electron to the Rieske $2\text{Fe}2\text{S}$ cluster and the other to heme b_L. The molecular mechanism of this reaction remains unclear. A semiquinone spin-coupled to the reduced $2\text{Fe}2\text{S}$ cluster ($\text{SQ}_0-2\text{Fe}2\text{S}$) was identified as a state associated with the operation of the Q_0 site. To get insights into the mechanism of the formation of this state, we first constructed a mutant in which one of the histidine ligands of the iron ion of heme b_L $\text{Rhodobacter capsulatus}$ cytochrome bc_1 was replaced by asparagine ($\text{H}198\text{N}$). This converted the low-spin, low-potential heme into the high-spin, high-potential species which is unable to support enzymatic turnover. We performed a comparative analysis of redox titrations of antimycin-supplemented bacterial photosynthetic membranes containing native enzyme and the mutant. The titrations revealed that $\text{H}198\text{N}$ failed to generate detectable amounts of $\text{SQ}_0-2\text{Fe}2\text{S}$ under neither equilibrium (in dark) nor nonequilibrium (in light), whereas the native enzyme generated clearly detectable $\text{SQ}_0-2\text{Fe}2\text{S}$ in light. This provided further support for the mechanism in which the back electron transfer from heme b_L to a ubiquinone bound at the Q_0 site is mainly responsible for the formation of semiquinone trapped in the $\text{SQ}_0-2\text{Fe}2\text{S}$ state in $R. \text{capsulatus}$ cytochrome bc_1.

Keywords: cytochrome bc_1 (complex III), electron transfer, quinol oxidation, semiquinone, electron paramagnetic resonance

Abbreviations: $\text{Cyt}bc_1$, cytochrome bc_1; Q, quinone (general); QH_2, quinol (general); UQ, ubiquinone; UQH$_2$, ubihydroquinone; RC, reaction center; $2\text{Fe}2\text{S}$, $[2\text{Fe}-2\text{S}]$ Rieske iron–sulfur cluster; SQ_0, semiquinone at the Q_0 site; $\text{SQ}_0-2\text{Fe}2\text{S}$, semiquinone spin-coupled to the reduced $2\text{Fe}2\text{S}$.
INTRODUCTION

The cytochrome b_{1} complex (Cytc$_{1}$) is one of the enzymes involved in energy conversion that takes place in mitochondria and many prokaryotic respiratory chains and anoxygenic photosynthesis (Berry et al., 2000; Crofts, 2004; Sarewicz and Osyczka, 2015). Structurally and functionally very similar to Cytc$_{1}$—cytochrome b_{f} is a central enzyme of oxygenic photosynthesis in cyanobacteria and plants (Darrouzet et al., 2004; Baniulis et al., 2008; Hasan et al., 2013; Cramer and Hasan, 2016). Cytc$_{1}$ catalyzes electron transfer from membrane-soluble electron carriers—quinoine (Q) derivatives (usually ubiquinones) (Al-Attar and de Vries, 2013) to water-soluble electron carrier: cytochrome c (Berti et al., 2006). The energy released during enzymatic reduction of cytochrome c by ubiquinol (UQH$_{2}$) is used to transfer protons across the membrane, contributing to building up the protonmotive force (Hunte et al., 2003). Cytc$_{1}$ is not operating as a typical proton pump that uses special proton channels but it utilizes quinone molecules to transport protons across the lipid bilayers (Al-Attar and de Vries, 2013). This transport is carried out by coupling two opposite redox reactions of quinones at the two catalytic sites that are located within the enzyme structure at the opposite sides of the membrane (Mitchell, 1975; Crofts et al., 1983). The UQH$_{2}$ oxidation site (Q$_{o}$ site) is located close to the p side of the membrane (the positively charged side), while the UQ-reduction site (Q$_{i}$ site) is located close to the n side of the membrane (the negatively charged side) (Xia et al., 1997; Crofts and Berry, 1998). The Q$_{o}$ and Q$_{i}$ sites are electronically connected by two low-potential, low-spin hemes b: heme b_{1} ($E_{m,n}$ \sim -120 mV in R. capsulatus (Zhang et al., 2008)), which is adjacent to the Q$_{o}$ site and heme b_{11} ($E_{m,n}$ \sim $+60$ mV), which is adjacent to the Q$_{i}$ site. The oxidation of UQH$_{2}$ at the Q$_{o}$ site is accompanied by the release of two protons to the bulk water at the p side. Oppositely, the reduction taking place at the Q$_{i}$ site is associated with uptake of two protons from the n side of the membrane. This way the protons are transported through the membrane along with pairs of diffusing UQH$_{2}$/UQ molecules.

The reduction of UQ at the Q$_{i}$ site is a sequential process, involving two consecutive electron transfers from the same cofactor (heme b_{f}). A stable semiquinone is an intermediate of this reaction (Robertson et al., 1984; Jünnemann et al., 1998; Dikanov et al., 2004) and, as implicated from recent studies, a mechanism of its stabilization might involve polarization of charges within the ring (Pintscher et al., 2020). On the other hand, the oxidation of UQH$_{2}$ at the Q$_{o}$ site directs two electrons derived from the UQH$_{2}$ into two separate cofactor chains. In this so-called electron bifurcation reaction one electron is transferred on the Rieske [2Fe-2S] cluster (2Fe2S) and further, through cytochrome c_{1} onto a water-soluble cytochrome c (or c_{2} in some bacteria, such as the Rhodobacter strains). The second electron is transferred to heme b_{1} and subsequently through heme b_{11} it reaches the Q$_{i}$ site where UQ is reduced first to semiquinone form (USQ$_{o}$) and then to UQH$_{2}$.

Despite a long history of studying the mechanism of electron bifurcation, the involvement of a semiquinone intermediate (USQ$_{o}$) in this reaction is still unclear and thus a matter of intense discussion (Osyczka et al., 2004; Osyczka et al., 2005; Cape et al., 2007; Zhang et al., 2007; Zhu et al., 2007; Crofts et al., 2013; Sarewicz et al., 2013; Crofts et al., 2017; Sarewicz et al., 2021). A general agreement has been reached that a superoxide generation by Cytc$_{1}$ results from a reaction of USQ$_{o}$ with molecular oxygen (Boveris and Cadenas, 1975; Ksenzenko et al., 1983; Muller et al., 2002; Borek et al., 2008; Dröse and Brandt, 2008; Sarewicz et al., 2010; Pagacz et al., 2021). However, trapping the intermediate USQ$_{o}$ radical during the UQH$_{2}$ oxidation and its detection by electron paramagnetic resonance (EPR) has been proven difficult and obtained results have often been disputable or contradictory (de Vries et al., 1981; Júnnemann et al., 1998; Cape et al., 2006; Cape et al., 2007; Zhang et al., 2007; Zhu et al., 2007; Sarewicz et al., 2013; Vennam et al., 2013; Victoria et al., 2013; Pietras et al., 2016; Crofts et al., 2017; Sarewicz et al., 2017; Sarewicz et al., 2018; Bujnowicz et al., 2019). Additionally, the inability to generate USQ$_{o}$ in the equilibrium redox titrations (Takamiya and Dutton, 1979; Sarewicz et al., 2018) implicated a concept of a high instability of the semiquinone and its reactivity was proposed to be a reason for superoxide production by Cytc$_{1}$.

Detection of a small amount of USQ$_{o}$ under nonequilibrium conditions in isolated, antimycin-inhibited Cytc$_{1}$ has been reported in a few studies (Cape et al., 2007; Zhang et al., 2007; Vennam et al., 2013; Victoria et al., 2013). The presence of USQ$_{o}$ in Cytc$_{1}$ samples was assigned to a stigmatellin-sensitive, X-band EPR signal which is typical of an organic radical with a nearly isotropic g value \sim2.0 (Cape et al., 2007; Vennam et al., 2013). Although experimental evidences were not presented, generation of this signal was assumed to be associated with the oxidation of UQH$_{2}$ by the 2Fe2S cluster under conditions in which the resulting USQ$_{o}$ was unable to donate electron to heme b_{1} as this heme, in antimycin-inhibited enzyme, was expected to be in the reduced state after two consecutive electron transfers from the Q$_{o}$ site (Cape et al., 2007; Crofts et al., 2017).

Our previous work reported an unusual EPR signal with an average g value less than 2, which originated from the Q$_{o}$ site of the antimycin-inhibited Cytc$_{1}$, isolated from Rhodobacter capsulatus (Sarewicz et al., 2013; Sarewicz et al., 2017; Bujnowicz et al., 2019). This signal was detected only when the Q$_{o}$ site was able to catalyze the UQH$_{2}$ oxidation and the cytochrome c reduction before the system reached equilibrium. The signal was not present in the samples containing specific inhibitors of the Q$_{o}$ site (stigmatellin, myxothiazol, famoxadone, azoxystrobin, kresoxim-methyl, etc.), nor in the mutants with disabled Q$_{o}$ site (like, for example, cytb: G158W). Simulations of the EPR spectra suggested that this signal results from the spin-spin exchange interactions between USQ$_{o}$ and the reduced 2Fe2S (it is thus referred to as SQ$_{o}$-2Fe2S) with approximated J constant \sim3.6 GHz (Sarewicz et al., 2013). This suggestion was further supported by the observations that the g values of the SQ$_{o}$-2Fe2S state were frequency-dependent—they changed upon increasing the microwave frequency from X-band \sim 9.4 to Q-band \sim 33.5 GHz. At X-band, the most prominent “derivative-shaped” transition of SQ$_{o}$-2Fe2S in Cytc$_{1}$ was detected at g = 1.94 and was found to shift to \sim1.96 at Q-band. Remarkably, the SQ$_{o}$-2Fe2S signal was also detected in isolated but non-inhibited spinach cytochrome b_{f} during the
oxidation of synthetic decylplastoquinol and the reduction of plastocyanin (Sarewicz et al., 2017).

Our subsequent work revealed that the SQo-2Fe2S signal can be generated in antimycin-supplemented native chromatophores membranes isolated from R. capsulatus, in which the reactions at the Qo site are triggered by the photosynthetic reaction center (RC) (Sarewicz et al., 2018). In these experiments, the characteristic transitions of the SQo-2Fe2S state with a readily detectable 2Fe2S generation in chromatophores in dark or illuminated by SQo-2Fe2S state is detected in samples in which heme maximum in continuous wave X-band spectra at \(g = 1.95 \) were detected during the redox titration of chromatophores in relatively narrow ranges of the external redox potential (\(E_b \)). However, the signal appears only when the chromatophores are illuminated by continuous light during the titrations, which keeps the RC activated to supply substrates for the Qo site. Similar titrations performed in dark, i.e. without activation of RC (equilibrium conditions), do not lead to the generation of SQo-2Fe2S. Clearly, in membranes, similarly to isolated Cytb1, the SQo-2Fe2S state corresponds to one of the states of the enzyme that can be populated to detectable levels only under nonequilibrium conditions.

One of the most important observations regarding the enzymatic state of *Rhodobacter capsulatus* Cytb1 is that the SQo-2Fe2S state is detected in samples in which heme \(b_1 \) remains oxidized (Sarewicz et al., 2013; Sarewicz et al., 2018). This suggests that in those experiments, the reaction sequence leading to the formation of the SQo-2Fe2S state begins with the electron transfer from the reduced heme \(b_1 \) to the UQ molecule bound at the Qo site. The resulting SQo then interacts with the reduced 2Fe2S that is present at the Qo site. However, a direct evidence supporting this mechanism has not yet been provided. Furthermore, the SQo can, in principle, also be formed in another reaction: electron transfer from UQH2 to oxidized 2Fe2S, which would also result in the formation of the SQo-2Fe2S state if the subsequent electron transfer from SQo to heme \(b_1 \) is (somehow) blocked. In this work, we addressed this issue with a series of experiments performed with the histidine ligand mutant of *R. capsulatus* in which the heme \(b_1 \) was inactivated. The mutation of choice was patterned after the previous study with closely related *Rhodobacter sphaeroides* where replacing the histidine ligand with asparagine (cytb1H198N) was found to result in a loss of spectral properties of heme \(b_1 \) typical of WT Cytb1 and in a complete loss of the enzymatic activity (Yang et al., 2008). We found that in *R. capsulatus* the H198N mutation converted the low-spin heme \(b_1 \) into the high-spin heme unable to transfer electron from SQo to heme \(b_1 \), and such conditions were tested for the efficiency of SQo-2Fe2S generation in chromatophores in dark or illuminated by light. The tests failed to detect the spin–spin–coupled SQo-2Fe2S state in H198N even in chromatophores activated by light, which we considered an indication that electron transfer from heme \(b_1 \) to the UQ molecule at the Qo site is mainly responsible for creating conditions that ultimately lead to the formation of *R. capsulatus*.

MATERIALS AND METHODS

Construction of the H198N Mutant

The H198N mutant of *Rhodobacter capsulatus* containing the H198N mutation in cytochrome b subunit was generated using the genetic system described previously (Atta-Asafo-Adjei and Daldal, 1991). Mutation H198N was constructed by the QuikChange site-directed mutagenesis kit from Stratagene using pPET1-ST (Czapla et al., 2012b) as the template, and the mutagenic forward H198N-F: 5′-TTT TTG GTG CAC TAT CTC GTC CCC TTT G-3′ and reverse H198N-R 5′-AAG CGC CAG CAT ATG GTT CAG CGA GAA GGA GGG G-3′ oligonucleotides. After sequencing, the Xmal/Sfu fragment of pPET1-ST-H198N plasmid bearing the desired mutation and no other mutations was exchanged with its wild-type counterparts in pMTS1. This created the expression vector pMTS1-ST-H198N that was introduced into *R. capsulatus* MT-RBC1 strain (*pet*ABC-operon deletion background) via triparental crosses (Atta-Asafo-Adjei and Daldal, 1991). The presence of H198N mutation was confirmed by sequencing the plasmid DNA isolated from the mutated *R. capsulatus* strain (H198N mutant).

Isolation of Chromatophores

Chromatophores from *R. capsulatus* strains were prepared as described in detail by Sarewicz et al. (2018). Briefly, bacterial cultures were grown heterotrophically under semiaerobic conditions on the MPYE medium. After 48 h of growing the bacteria cells were centrifuged for 30 min at 6,641 g and the pellet resuspended in buffer containing 50 mM MOPS (pH 7), 100 mM KCl, and 1 mM EDTA, followed by the addition of protease inhibitors (benzamidine, PMSF, and 6-aminocaproic acid). The cells’ suspension was then passed two times through French Press® with pressure maintained between 11 and 15 MPa. Bacterial lysate was then centrifuged for 30 min at 24,104 g and the obtained supernatant was then ultra-centrifuged at 244,062 g for 1.5 h. The pellet containing isolated chromatophores was resuspended and homogenized in 50 mM bicine buffer (pH 8) containing 100 mM KCl and 1 mM EDTA.

Redox Titrations

The prepared chromatophores membranes containing WT and mutant H198N Cytb1 were supplemented with antimycin at a final concentration of 0.15 mM and redox titrated under anaerobic conditions in dark. The solutions contained the following redox mediators: 50 μM 2,3,5,6-tetramethyl-1,4-phenylenediamine (DAD), 50 μM 1,2-naphthoquinone (NQ), 50 μM 1,2-naphthoquinone-4-sulfonate (NQS), 12.5 μM phenazine ethosulfate (PES), 25 μM phenazine methosulfate (PMS), 50 μM duroquinone (DQ), 12.5 μM indigotri сульфат (ITS), 50 μM anthraquinone-2-sulfonic acid (AQS), 50 μM 2-hydroxy-1,4-naphthoquinone (HNQ), and 50 μM benzyl viologen (BV). The external redox potential (\(E_b \)) of the buffer was adjusted by injection of small volumes of sodium dithionite or potassium ferricyanide solutions. In dark equilibrium redox titration for each \(E_b \) about ~200 μL of the chromatophore solution was collected and injected to an argon-flushed EPR quartz tube and then subsequently frozen in cold isopentane. The illuminated samples were prepared by inserting the EPR tube containing chromatophores to a home-built cylindrical chamber blocked at the bottom with a piston connected to an
electromagnet. The chamber contained 43 diodes (OSRICA313A by Optosupply), having a single emission band at 850 nm, that were built in the walls of the chamber. The tubes were illuminated for 5 s and then were released to cold isopentane bath by pulling the piston of the electromagnet. A freezing time was estimated to be ~1–2 s. With this method a maximum level of SQo-2Fe2S is reached after 2 s of illumination, as determined for chromatophores containing antimycin-inhibited WT Cytb6. A decay time constant of the SQo-2Fe2S state after switching off the light is about 1.8 s⁻¹, which means that not more than ~60% of the SQo-2Fe2S state can be trapped after 1–2 s of the deadtime associated with the freezing of the samples.

We note that isolation of chromatophores required special care to prevent loss of cytochrome c2 during the cell centrifugations with an excessive RCF. This is because the formation of the SQo-2Fe2S center in light-activated chromatophores was found to be sensitive to the coupling of RC with Cytb6 by cytochrome c2. This effect is illustrated in Supplementary Figure S1, which demonstrates a decrease or even complete disappearance of the SQo-2Fe2S state in chromatophores having a shortage of cytochrome c2. A partial restoration of the signal is possible upon the addition of external horse cytochrome c to the chromatophores followed by the sonication of the samples.

Preparation of Isolated WT and H198N Enzymes

Cytb6 complexes were isolated from detergent-solubilized chromatophores by Strep-tag® affinity chromatography, using the procedure described by Czapla et al. (2012a). Purity of the isolated proteins was checked with SDS-PAGE (Supplementary Figure S2). Cytb6 samples were concentrated on centrifugal filter units and dialyzed against buffer composed of 50 mM Tris (pH 8), 100 mM NaCl, 1 mM EDTA, 20% glycerol (v/v), and 0.01% (m/m) DDM. The concentration of the isolated cytochrome b6 was determined as described by Valkova-Valchanova et al. (1998).

EPR Measurements

All the measurements were performed using a Bruker ElexSys E580 spectrometer equipped with a super-high-Q (SQHE0511) resonator and ESR900 cryostat unit (Oxford Instruments). The chromatophore membranes were measured using the parameters described by Sarewicz et al. (2018). Briefly, the temperature of the measured samples was 20 K, microwave power of 2 mW and frequency 9.4 GHz, modulation amplitude of 14.36 G, sweep width of 926.8 G, sweep time of 40.96 s, and time constant of 81.92 ms. The number of scans was usually 1–3 depending on the signal-to-noise (S/N) ratio. The registered spectra were processed and analyzed using the Eleana EPR program.

The isolated WT and H198N Cytb6 complexes were measured as follows. The X-band EPR spectra of low- and high-field transitions of hemes were measured at 10 K, with 2 mW microwave power, frequency of 9.4 GHz, and modulation amplitude of 6 G. The X-band EPR spectra of the 2Fe2S cluster was measured at 30 K with 0.65 mW microwave power and modulation amplitude of 16 G.

RESULTS AND DISCUSSION

H198N Mutant Incorporates a High-Potential, High-Spin Heme bL

Cytb6 contains the low-potential \([E_{m} = \sim ~120 \text{mV}] \) (Zhang et al., 2008), low-spin (L-S) heme \(b_{L} \) which is axially coordinated by two histidine side chains: H97 and H198 (Rsphaeroides numbering of cyt b subunit) (Berry et al., 2004). This heme is diamagnetic in the reduced state and, together with a higher potential \([E_{m} = +60 \text{mV}] \) heme \(b_{H} \) contributes to the absorbance band with a maximum at \(\sim 560 \text{nm} \) of the fully reduced WT Cytb6 (Figure 1A, left, black). A replacement of histidine 198 to non-liganding asparagine is expected to significantly alter properties of heme \(b_{L} \) or even prevent its incorporation into the protein, as previously reported for the ligand mutants of hemes \(b \) in R. capsulatus and R. sphaeroides (Yang et al., 2008). Indeed, the optical spectrum of the H198N mutant in R. capsulatus constructed in this work \((560 \text{nm}) \) exhibits a significant decrease in the absorbance at \(\sim 560 \text{nm} \) (Figure 1A, right, black), consistent with the previous observation on the analogical H198N mutant in Rhodobacter sphaeroides \((RcH198N) \) (Yang et al., 2008). Such a decrease suggests that one of the L-S hemes \(b \) might be missing, as was concluded for the RcH198N mutant. However, along with the disappearance of the absorption band at \(\sim 560 \text{nm} \) we note an additional absorption maximum at \(\sim 590 \text{nm} \) present in both the ascorbate- and dithionite-reduced samples containing RcH198N. This band was not seen in WT and suggested that it is associated with a change in the heme ligand in the RcH198N mutant.

Low-temperature X-band EPR spectra for isolated WT and the H198N mutant for air-oxidized samples are compared in Figure 1B. WT Cytb6 shows the \(g_{\text{b}} \) transitions typical of highly anisotropic low-spin (HALS) hemes at \(g = 3.77 \) and 3.45 (Figure 1B, black), originating from the oxidized, low-spin hemes \(b_{L} \) and \(b_{H} \), respectively (Salerno, 1984; Finnegan et al., 1996). From those two transitions, only the \(g = 3.45 \) originating from heme \(b_{3} \) was detected in H198N mutant (Figure 1B, gray), indicating that this heme was properly assembled into the protein core and retained its native bis–his axial ligation. The missing \(g = 3.77 \) transition was consistent with the expected lack of HALS heme \(b_{3} \) with his–his axial ligation. Instead, a relatively intense transition at \(g = 5.96 \) and a much weaker at \(g = 5.96 \) were detected revealing that in RcH198N, the R. sphaeroides \(b_{3} \) was converted into an axial, high-spin (H-S) form. Given the fact that other centers contribute to the EPR signal in the region of \(g = 5.96 \), the heterogeneity, if any, of the spin state of heme \(b_{3} \) in the mutant cannot be evaluated.

To get insights into the redox properties of hemes \(b \) in the H198N mutant, we analyzed the relaxation properties of a semiquinone formed at the Qi site, which, as reported recently, strongly depend on whether the electron preferentially stays on heme \(b_{H} \) or heme \(b_{L} \), thus can be used to estimate the relative difference in equilibrium redox potentials between these hemes (Pintscher et al., 2018). The results, discussed in detail in SI (Supplementary Figures S3 and S4), revealed that heme \(b_{3} \) in
the mutant has a redox potential much more positive than the native HALS heme b_H (Pintscher et al., 2018). Furthermore, the $g = 5.96$ transition disappeared when the $^{\text{Rc}}$H198N Cytbc$_1$ was reduced by a synthetic substrate—decylubiquinol (Supplementary Figure S5), which suggests that heme b_L in $^{\text{Rc}}$H198N mutant has a much higher redox midpoint potential than heme b_L of the wild type.

H198N Mutant Binds Properly UQ to the Q$_o$ Site

The shape of the CW EPR spectra of the reduced 2Fe2S cluster in chromatophores is sensitive to the type of molecule that occupies the Q$_o$ site. In particular, the relatively narrow g_x transition at 1.80 indicates that UQ is bound at this site and interacts with the cluster, whereas a more broad $g_x = 1.77$ indicates the presence of UQH$_2$ in the Q$_o$ site (Robertson et al., 1993; Ding et al., 1995; Cooley et al., 2004; Sharp et al., 1999). This change in g_x transition is so characteristic that it was often used in evaluating the effects of mutations on the binding of ubiquinone molecules to the catalytic site, or in the redox titrations of ubiquinones in the membranes (Cooley et al., 2004; Osyczka et al., 2006). As shown in Figure 2A, the CW EPR spectra of the ascorbate-reduced 2Fe2S cluster in chromatophores containing WT and H198N Cytbc$_1$ were similar and both exhibited clear $g_x = 1.80$ transition when the Q pool was fully oxidized (at high E_h). Furthermore, reducing the Q pool, upon decreasing the external redox potential, changed the g_x from 1.80 to \sim1.77 in both WT and the mutant protein (Figure 2B). These observations indicate that UQ and UQH$_2$ can bind to the Q$_o$ site of the mutant in the same way as in WT [see references Cooley et al. (2004), Osyczka et al. (2006) for details]. This feature, along with the specifically altered redox properties of heme b_L described earlier, made H198N an attractive mutant for the mechanistic analysis of the formation of the SQ$_o$-2Fe2S state.

Controlling the Efficiency of SQ$_o$-2Fe2S Generation in Illuminated Chromatophores

In our previous studies we established a general methodology for monitoring the formation of the SQ$_o$-2Fe2S state in chromatophore membranes (Sarewicz et al., 2018). We found that this state can be
detected by CW EPR during the redox titrations of chromatophores containing antimycin-inhibited Cytbc1 only under nonequilibrium conditions when the photosynthetic reaction center and allied Cytbc1 were kept activated by continuous light during the titration. The same experiments performed in dark (equilibrium conditions) do not lead to the formation of SQo-2Fe2S at detectable levels (Sarewicz et al., 2018).

Given that in these experiments, the formation of SQo-2Fe2S strongly depends on the activation level of RC, any comparative redox titrations of chromatophores illuminated by continuous light (nonequilibrium conditions) require careful controls to assure that conditions for the generation of the SQo-2Fe2S signal and its detection were equally met in each of the studied cases. We found that the most important factor influencing the efficiency of SQo-2Fe2S generation in chromatophores was the optical transparency for the light that activates RC. This effect is shown in Figure 3, which compares the two EPR spectra obtained for the concentrated (gray) and diluted (black) samples of the same batch of chromatophores (containing 40 and 20 μM cytochrome c1, respectively).

This example emphasizes that the SQo-2Fe2S signal (g ≈ 1.95) can be lost in the more concentrated sample despite improvement in the signal-to-noise ratio, and this is related to the fact that the activation of RC is much weaker due to increased opacity of the solution. The weaker light activation of RC in the more concentrated samples was also reflected in the measured UQ/UQH2 average redox midpoint potential, which, despite illumination of the sample, approached those detected in dark. Thus, the titrations of the SQo-2Fe2S signal on illuminated chromatophores required sufficiently diluted samples. However, after diluting the samples, a measurement of the redox state of hemes b by EPR is compromised due to the fact that the amplitudes of these hemes are relatively very weak. We found that at the concentrations of Cytbc1 at which hemes b became clearly detectable by EPR, the SQo-2Fe2S signal started to disappear due to increase of the opacity of the samples. Therefore, the experiments were limited to a relatively narrow range of Cytbc1 concentrations that allowed efficient activation of RC and, at the same time, a detection of relatively good-quality EPR spectra.

Light-Activated RC Interacts With H198N in Chromatophores and Imposes a Shift in Apparent Midpoint Potential of the 2Fe2S Cluster

In view of the observation that the efficiency of SQo-2Fe2S generation in the light-activated WT chromatophores strongly
depends on the optical transparency of the samples (see the paragraph above), it became apparent that prior to comparing WT and the H198N mutant, it was necessary to verify that RC in both WT and the H198N mutant containing chromatophores were sufficiently well activated by light and, consequently, both the systems were pushed out of equilibrium. Furthermore, it was necessary to apply a verification method that was independent of the analysis of the SQ\textsubscript{2}-2Fe2S signal. One such possibility relates to the fact that light activation affects the redox state of the membranous Q pool. Changes in the redox state of the Q pool can be monitored by measuring a progressive decrease in the amplitude of the normalized \(g_\delta \) transition of the 2Fe2S cluster of WT Cyt\textsubscript{bc}1, which is proportional to the amount of UQ in the Q pool in dark (closed circles) and in illuminated samples (open circles). The experiential data points were simulated using an appropriate Nernst equation with \(n = 2 \).

Figure 4A shows that in chromatophores containing WT Cyt\textsubscript{bc}1 at a concentration equal to 20 \(\mu \)M cytochrome \(c_1 \) (corresponding to black spectrum of Figure 3), the obtained equilibrium redox potential of UQ/UQH\textsubscript{2} couple in dark shifts by approximately +60 mV upon the activation of RC by light. Clearly, the optical transparency of the chromatophores in this case was enough to allow sufficient RC activation. In a more concentrated sample (corresponding to the gray spectrum of Figure 3) the measured UQ/UQH\textsubscript{2} average redox midpoint potential was similar in light and in dark, and the lack of the shift (lack of activation of RC) was concomitant with the lack of the SQ\textsubscript{2}-2Fe2S signal (data not shown).

In the case of the H198N mutant, the expression level of Cyt\textsubscript{bc}1 was found to be lower by approximately 2–3 folds than WT (data not shown). Thus, after concentrating the H198N chromatophores to reach 20 \(\mu \)M of cytochrome \(c_1 \), the samples became too opaque to allow efficient activation of RC. As a result, the illumination of the samples did not lead to a shift of the UQ/UQH\textsubscript{2} Nernst curve toward a higher value (data not shown). Therefore, the chromatophores containing H198N must have been diluted to 10 \(\mu \)M of cytochrome \(c_1 \) to reach the optical transparency similar to that of WT chromatophores. This, in turn, exerted a negative effect of the quality of the measured EPR spectra of 2Fe2S cluster, and the reliable measurement of \(g_\delta \) transition was not possible, precluding the possibility of monitoring activation level by determining the shift in the redox state of Q pool.

Instead, we monitored the extent of 2Fe2S oxidation upon activation of RC by comparing the amplitude of the relatively strong \(g_y \) transition of the 2Fe2S cluster, as a function of \(E_h \) for illuminated chromatophores with those measured in dark. Illumination of H198N chromatophores imposed a shift of the Nernst curve with the midpoint potential of the 2Fe2S cluster from approximately +300 mV (in dark) to approximately +180 mV (in light) (Figure 4B, dashed and solid lines, respectively). This shift was an expected effect if RC had been efficiently activated and able to oxidize the whole chain of high-potential cofactors connecting RC and Cyt\textsubscript{bc}1 (i.e., cytochrome \(c_2/c_1 \) and 2Fe2S). We note that similar shift in the 2Fe2S cluster can be observed in WT chromatophores; however, Cyt\textsubscript{bc}1 must be inhibited by myxothiazol (i.e., it is not observed in non-inhibited Cyt\textsubscript{bc}1). This inhibitor binds at the Q\textsubscript{0} site and prevents oxidation of UQH\textsubscript{2} at this site; however, it does not impair the movement of the 2Fe2S cluster nor its interaction with other components of the high-potential chains (Kim et al., 1998; Darrouzet et al., 2000; Esser et al., 2004; Osyczka et al., 2004; Sarewicz et al., 2009; Cieluch et al., 2010). Thus, the observed shift in H198N chromatophores not only confirms the activation of RC, but also indicates that the components of the high-potential chain in this mutant are functionally linked with RC. At the same time, these components remain decoupled from the low-potential chain of Cyt\textsubscript{bc}1 because of the enzymatic incompetence of mutated heme \(b_L \) (with the net effect similar to the presence of myxothiazol in the Q\textsubscript{0} site of the native enzyme). We note that the observed shift in the 2Fe2S cluster induced by light activation of RC is interesting itself, and it will be discussed elsewhere.
H198N Fails to Generate Detectable Amounts of SQ\textsubscript{o}-2Fe2S Spin-Coupled State

Having established the conditions for meaningful comparison of WT and H198N chromatophores (see the previous paragraphs), we performed a series of redox titrations that screened for the SQ\textsubscript{o}-2Fe2S state in the H198N mutant.

The results for WT chromatophores were consistent with the previous observations (Sarewicz et al., 2018) (Figure 5A). When titrations were performed in light at pH 8, the SQ\textsubscript{o}-2Fe2S was detected within the range of E_h below +150 mV and above 0 mV (with the maximum amplitude at $E_h \sim +66$ mV) (closed circles). The SQ\textsubscript{o}-2Fe2S was not detected in this range of E_h when similar titrations were performed in dark (open circles).

Remarkably, in titrations performed with chromatophores containing H198N instead of WT Cyt\textsubscript{bc1}, the SQ\textsubscript{o}-2Fe2S was not detected at all, regardless of whether the experiment was conducted in light or in dark (Figure 5B). A corollary of this result on the mechanisms of the formation of the SQ\textsubscript{o}-2Fe2S state in antimycin-inhibited WT Cyt\textsubscript{bc1} is discussed below.

The H198N Mutation Implicates That Semireverse Mechanisms of SQ\textsubscript{o}-2Fe2S Formation Are Dominant in WT Cyt\textsubscript{bc1}

Let us consider two possible mechanisms of the formation of SQ\textsubscript{o}-2Fe2S in antimycin-inhibited Cyt\textsubscript{bc1} shown schematically in Figure 6. In each of these two scenarios it is assumed that heme b_1 is already reduced after the oxidation of the first UQH\textsubscript{2} molecule at the Q\textsubscript{o} site. This heme cannot be reoxidized by electron transfer to the Q\textsubscript{o} site, because this site is occupied by antimycin.

The first mechanism assumes the sequence of reactions schematically shown in Figure 6A. The UQH\textsubscript{2} binds at the Q\textsubscript{o} site where it undergoes one-electron oxidation by 2Fe2S forming an unstable semiquinone, SQ\textsubscript{o} (transition 1a). This semiquinone immediately donates electron to heme b_1 and the resulting UQ molecule is then replaced with next UQH\textsubscript{2} (transition 2a in Figure 6A). As the Q\textsubscript{o} site is blocked by antimycin, both hemes b_1 and b_2 cannot be reoxidized by electron transfer to the Q\textsubscript{o} site. Thus, SQ\textsubscript{o} formed upon the oxidation of the second UQH\textsubscript{2} molecule by the 2Fe2S cluster is unable to donate electron to heme b_1 and SQ\textsubscript{o}, and the reduced cluster forms spin-coupled state (transition 3a). Because this reaction corresponds to uncompleted oxidation of UQH\textsubscript{2} in the forward direction of the operation of the Q\textsubscript{o} site, it is referred to as a semiforward reaction.

The second scenario assumes the sequence of reactions schematically shown in Figure 6B. The UQH\textsubscript{2} molecule at the Q\textsubscript{o} site undergoes oxidation and two electrons are transferred to the 2Fe2S cluster and heme b_1, leading to UQ bound at the Q\textsubscript{o} site. Since the electron transfer from heme b_1 to heme b_2 is not possible, the electron from heme b_1 is transferred back to the UQ molecule forming SQ\textsubscript{o}. At the same time the reduced 2Fe2S cluster is still at the position close to the Q\textsubscript{o} site and is able to interact with SQ\textsubscript{o}. As a result the SQ\textsubscript{o}-2Fe2S state is generated. Because this reaction corresponds to uncompleted reduction of UQH\textsubscript{2} in the reverse direction of the operation of the Q\textsubscript{o} site, it is referred to as a semireverse reaction.

The role of heme b_2 in the formation of SQ\textsubscript{o}-2Fe2S is different for both the mechanisms. The semiforward reaction occurs when heme b_1 is unable to accept the electron from SQ\textsubscript{o}; thus, the redox-active heme b_2 is not required for the formation of the SQ\textsubscript{o}-2Fe2S state. Conversely, the semireverse reaction obligatorily requires presence of the redox-active heme b_2 to enable back electron transfer to the Q\textsubscript{o} site to form the SQ\textsubscript{o}-2Fe2S.

In view of these considerations, H198N provided an attractive opportunity to test the contribution of the semireverse reaction to the formation of the SQ\textsubscript{o}-2Fe2S state. The high-spin, high-potential heme b_2 in this mutant, once accepting the electron, will preferably stay reduced, and thus is unable to pass electron further to heme b_1 at a significant rate. This means that its redox activity required for the catalytic turnover is lost. At the same time, this heme is unable to transfer electron back to the Q\textsubscript{o} site. It...
follows that the H198N mutant provides conditions that should favor the formation of the SQo-2Fe2S if the semireverse reaction is a dominant mechanism, but should discourage the formation of SQo-2Fe2S if the semiforward reaction is dominant. Thus, if the SQo-2Fe2S state was detected in the H198N mutant of Cytbc1, then both semiforward and semireverse would be potentially responsible for the formation of this state. This was clearly not the case. The observation that the H198N mutation leads to complete disappearance of the SQo-2Fe2S signal under the tested conditions implies that the semireverse reaction can be considered the dominant mechanism for the formation of this state in WT Cytbc1. This mechanism involves electron transfer from heme bL back to the ubiquinone bound to the Qi site followed by its interaction with the reduced 2Fe2S cluster.

We note that this scenario prevails even if heme bL was able to pass electron to heme bH at a significant rate in H198N, which, given that antimycin was present at the Qi site, would eventually lead to a reduction of both hemes bL and bH. In this case, as long as heme bL was unable to transfer electron back to the Qi site, the SQo-2Fe2S signal would still be absent if occurrence of the semireverse reaction was required to generate it.

We also note that our conclusion requires an assumption that proton paths and proton transfers are not different in the H198N mutant and WT Cytbc1. In addition, one should bear in mind that there is still a possibility that the SQo-2Fe2S state can be generated in the H198N mutant but it was not detected in our experiments. This would mean that either the efficiency of its formation, i.e., contribution of the semiforward mechanism is much lower than the contribution of the semireverse mechanism, or the lifetime of the SQo-2Fe2S state under conditions of altered ligand of heme bL is much shorter than the lifetime of this state in WT. If so, then the decay of the SQo-2Fe2S state must have taken place within the deadtime of the method (i.e., before a sample became frozen, see the Materials and Methods). If this alternative explanation was true, it would immediately suggest a change in a mechanism of SQo-2Fe2S formation when properties of heme bL were altered in the mutant. In other words, the presence of oxidized heme bL in antimycin-inhibited Cytbc1 from R. capsulatus would greatly stabilize the SQo-2Fe2S state, whereas the reduced or disabled heme bL would eliminate or greatly destabilize this state.

SUMMARY AND CONCLUSION

In this work we constructed a mutant H198N that targeted one of the His ligands of heme bL. We found that this mutation leads to the conversion of HALS heme bL into the high-spin and high-potential form, which was indicated from the analysis of optical and EPR spectra of isolated enzymes. While H198N binds properly the substrates at the Qi site, the specific redox properties of heme bL in this mutant made the heme unable to transfer electrons to heme bH on a catalytically relevant timescale. Consequently, the enzymatic activity of Cytbc1 in H198N was lost. We then used this mutant to test the formation of the SQo-2Fe2S state under nonequilibrium conditions (light-activated chromatophores) when heme bL cannot perform normal electron-relay function between the Qi site and heme bH.

Careful analysis of various chromatophore samples established that the SQo-2Fe2S signal can be efficiently generated in illuminated chromatophores containing antimycin-inhibited WT Cytbc1, provided that the samples are optically transparent and cytochrome c2 molecules were not lost during the preparation of the chromatophores. Monitoring of the apparent shift in the midpoint potential of the UQ/UQH2 couple induced by light...
activation of RC provides convenient means for verifying the effectiveness of setting the nonequilibrium conditions in the analyzed samples, independently of the analysis of the SQo-2Fe2S signal. In H198N chromatophores, for which this method turned out to be unsuitable, imposing the nonequilibrium conditions was found to result in a large, negative shift of the apparent E_m of the 2Fe2S cluster (a similar shift in the apparent redox midpoint potential of the 2Fe2S cluster was observed in WT Cytbc1 inhibited by myxothiazol). This provided an alternative method for verifying the effectiveness of light activation of RC and additionally confirmed their efficient coupling with Cytbc1 via cytochrome c_2 resulting in the oxidation of 2Fe2S.

Comparative redox titrations of light-induced WT and H198N chromatophores revealed that the H198N mutant failed to form detectable amounts of the SQo-2Fe2S state under the same conditions at which WT Cytbc1 generated a large amount of SQo-2Fe2S. This failure implicates that the semireverse mechanism that leads to the SQo-2Fe2S state is the dominant over the semireverse reaction in WT Cytbc1 (Sarewicz et al., 2010). According to the semireverse mechanism, the electron transfer from the low-spin heme b_6 to the UQ bound at the Qo site (semireverse reaction) results in the formation of the semiquinone that is spin-coupled to the reduced 2Fe2S, forming the SQo-2Fe2S state detectable by EPR.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusion of this article will be made available by the authors, without undue reservation.

REFERENCES

Al-Attar, S., and de Vries, S. (2013). Energy Transduction by Respiratory Metallo-Enzymes: From Molecular Mechanism to Cell Physiology. *Coord. Chem. Rev.* 257, 64–80. doi:10.1016/j.ccr.2012.05.022

Atta-Asafio-Adjei, E., and Daldal, F. (1991). Size of the Amino Acid Side Chain at Position 158 of Cytochrome B is Critical for an Active Cytochrome Bc1 Complex and for Photosynthetic Growth of Rhodobacter Capsulatus. *Proc. Natl. Acad. Sci. USA.* 88, 492–496. doi:10.1073/pnas.88.2.492

Baniulis, D., Yamashita, E., Zhang, H., Hasan, S. S., and Cramer, W. A. (2008). Structure-Function of the Cytochrome b6f Complex. *Photochem. Photobiol. Sci.* 84, 1349–1358. doi:10.1111/j.1751-1097.2008.00444.x

Berry, E. A., Guergova-Kuras, M., Huang, L.-S., and Crofts, A. R. (2000). Structure and Function of CytochromeBComplexes. *Annu. Rev. Biochem.* 69, 1005–1075. doi:10.1146/annurev.biochem.69.1.1005

Berry, E. A., Huang, L.-S., Saechao, L. K., Pon, N. G., Valkova-Valchanova, M., and Daldal, F. (2004). X-Ray Structure of Rhodobacter Capsulatus Cytochrome Bc1: Comparison with its Mitochondrial and Chloroplast Counterparts. *Photosynth. Res.* 81, 251–275. doi:10.1023/b:phys.0000036888.18223.0e

Berti, L, Cavallaro, G., and Rosato, A. (2006). Cytochrome C: Occurrence and Functions. *Chem. Rev.* 106, 90–115. doi:10.1021/cr050241v

Borek, A., Sarewicz, M., and Oszyczka, A. (2008). Movement of the Iron–Sulfur Core Domain of Cytochromebc1Transientsly Opens the Catalytic QoSite for Reaction with Oxygen. *Biochemistry* 47, 12365–12370. doi:10.1021/bi801207f

Boveris, A., and Cadenas, E. (1975). Mitochondrial Production of Superoxide Anions and its Relationship to the Antimycin Ininsensitve Respiration. *FEBS Lett.* 54, 311–314. doi:10.1016/0014-5793(75)80928-8

Bujnowicz, L., Borek, A., Kuleta, P., Sarewicz, M., Oszyczka, A., and Oszyczka, A. (2019). Suppression of Superoxide Production by a Spin-spin Coupling between Semiquinone and the Rieske Cluster in Cytochrome bc1, *FEBS Lett.* 593, 3–12. doi:10.1002/1873-3468.13296

Cape, J. L., Bowman, M. K., and Kramer, D. M. (2007). A Semiquinone Intermediate Generated at the Qo Site of the Cytochrome bc1 Complex: Importance for the Q-Cycle and Superoxide Production. *Proc. Natl. Acad. Sci. USA.* 104, 7887–7892. doi:10.1073/pnas.0702621104

Cape, J. L., Bowman, M. K., and Kramer, D. M. (2006). Understanding the Cytochrome bc Complexes by what They Don’t Do. The Q-Cycle at 30. *Trends Plant Sci.* 11, 46–55. doi:10.1016/j.tplants.2005.11.007

Cieluch, E., Pietyra, K., Sarewicz, M., and Oszyczka, A. (2010). Visualizing Changes in Electron Distribution in Coupled Chains of Cytochrome bc1(1) by Modifying Barrier for Electron Transfer between the FeS Cluster and Heme c1. *Biochim. Biophys. Acta (Bba) - Bioenerg.* 1797, 296–303. doi:10.1016/j.bbabio.2009.11.003

Cooley, J. W., Roberts, A. G., Bowman, M. K., Kramer, D. M., and Daldal, F. (2004). The Raised Midpoint Potential of the [2Fe2S] Cluster of Cytochrome bc is Mediated by Both the QoSite Occupants and the Head Domain Position of the Fe–S Protein Subunit. *Biochemistry* 43, 2217–2227. doi:10.1021/bi035938u

Cramer, W. A., and Hasan, S. S. (2016). “Structure-Function of the Cytochrome B 6 F Lipoprotein Complex,” in *Cytochrome Complexes Evol. Struct. Energy Transduction, Signal*. Editors W. A. Cramer and T. Kallas (Dordrecht: Springer), 177–207. doi:10.1007/978-94-017-7481-9_9

Crofts, A. R., and Berry, E. A. (1998). Structure and Function of the Cytochrome Bc1 Complex of Mitochondria and Photosynthetic Bacteria. *Curr. Opin. Struct. Biol.* 8, 501–509. doi:10.1016/s0959-440x(98)00129-2

Crofts, A. R., Hong, S., Wilson, C., Burton, R., Victoria, D., Harrison, C., et al. (2013). The Mechanism of Ubihydroquinone Oxidation at the Qo-Site of the Cytochrome bc Complex. *Biochim. Biophys. Acta (Bba) - Bioenerg.* 1827, 1362–1377. doi:10.1016/j.bbabio.2013.01.009

AUTHOR CONTRIBUTIONS

MS designed experiments, performed EPR measurements, contributed to construction of illumination chamber, analyzed data, and wrote the manuscript. SP isolated and analyzed spectral properties of the mutant protein, and participated in writing the manuscript. LB designed electronic parts of illumination chamber and performed EPR measurements. MW isolated chromatophores and performed redox titrations. AO discussed data and wrote the manuscript.

FUNDING

This work was funded by National Science Centre, Poland, Grant No. 2015/18/A/ NZ1/00046 to A.O.

ACKNOWLEDGMENTS

We would like to thank Dr. Ewelina Cieluch for preparing the H198N mutant of cytochrome bc1. We would like to thank Dr. Robert Ekiert for SDS page analysis of isolated proteins.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fchem.2021.658877/full#supplementary-material

Sarewicz et al. SQo-2Fe2S Results from Ubiquinone Reduction

Frontiers in Chemistry | www.frontiersin.org May 2021 | Volume 9 | Article 658877

10 May 2021 | Volume 9 | Article 658877
Sarewicz, M., Pintscher, S., Pietras, R., Borek, A., Bujnowicz, L., Hanke, G., et al. (2021). Catalytic Reactions and Energy Conservation in the Cytochrome Bc1 and B 6 F Complexes of Energy-Transducing Membranes. Chem. Rev. 121, 2020–2108. doi:10.1021/acs.chemrev.0c00712

Sharp, R. E., Palmitessa, A., Gibney, B. R., White, J. L., Moser, C. C., Daldal, F., et al. (1999). Ubiquinone Binding Capacity of the Rhodobacter capsulatus Cytochrome bc1 Complex: Effect of Diphenylamine, a Weak Binding QO Site Inhibitor. Biochemistry 38, 3440–3446. doi:10.1021/bi982639+ Takamiya, K.-I., and Dutton, P. L. (1979). Ubiquinone in Rhodopseudomonas Sphaeroides. Some Thermodynamic Properties. Biochim. Biophys. Acta (Bba) - Bioenerg. 546, 1–16. doi:10.1016/0005-2728(79)90166-x Valkova-Valchanova, M. B., Saribas, A. S., Gibney, B. R., Dutton, P. L., and Daldal, F. (1998). Isolation and Characterization of a Two-Subunit Cytochrome bc1 Subcomplex from Rhodobacter capsulatus and Reconstitution of its Ubihydroquinone Oxidation (Qo) Site with Purified Fe-S Protein Subunit. Biochemistry 37, 16242–16251. doi:10.1021/bi981651z Vennam, P. R., Fisher, N., Krzyaniak, M. D., Kramer, D. M., and Bowman, M. K. (2013). A Caged, Destabilized, Free Radical Intermediate in the Q Cycle. ChemBioChem. 14, 1745–1753. doi:10.1002/cbc.201300265 Victoria, D., Burton, R., and Crofts, A. R. (2013). Role of the -PEWY-Glutamate in Catalysis at the Qo Site of the Cyt Bc1 Complex. Biochim. Biophys. Acta (Bba) - Bioenerg. 1827, 365–386. doi:10.1016/j.bbabio.2012.10.012 Xia, D., Yu, C.-A., Kim, H., Xia, J.-Z., Kachurin, A. M., Zhang, L., et al. (1997). Crystal Structure of the Cytochrome bc1Complex from Bovine Heart Mitochondria. Science 277, 60–66. doi:10.1126/science.277.5322.60

Yang, S., Ma, H.-W., Yu, L., and Yu, C.-A. (2008). On the Mechanism of Quinol Oxidation at the QP Site in the Cytochrome Bc1 Complex. J. Biol. Chem. 283, 28767–28776. doi:10.1074/jbc.m803013200 Zhang, H., Chobot, S. E., Osyczka, A., Wright, C. A., Dutton, P. L., and Moser, C. C. (2008). Quinone and Non-quinone Redox Couples in Complex III. J. Bioenerg. Biomembr. 40, 493–499. doi:10.1007/s10863-008-9174-6 Zhang, H., Osyczka, A., Dutton, P. L., and Moser, C. C. (2007). Exposing the Complex III Qo Semiquinone Radical. Biochim. Biophys. Acta (Bba) - Bioenerg. 1767, 883–887. doi:10.1016/j.bbabio.2007.04.004 Zhu, J., Egawa, T., Yeh, S.-R., Yu, L., and Yu, C.-A. (2007). Simultaneous Reduction of Iron-Sulfur Protein and Cytochrome bl during Ubiquinol Oxidation in Cytochrome Bc1 Complex. Proc. Natl. Acad. Sci. 104, 4864–4869. doi:10.1073/pnas.0607812104

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Sarewicz, Pintscher, Bujnowicz, Wolska and Artur Osyczka. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.