Overview of Building Information Modelling (BIM) adoption factors for construction organisations

W N S Wan Mohammad¹, M R Abdullah², S Ismail³ and R Takim⁴

¹,²,³ Centre of Studies for Postgraduate Studies, Faculty of Architecture, Planning and Surveying, Universiti Teknologi MARA (UiTM), Seri Iskandar Campus, Seri Iskandar, 32610 Perak, Malaysia.
⁴ Centre of Studies for Construction Management, Faculty of Architecture, Planning and Surveying, Universiti Teknologi MARA (UiTM), Shah Alam, Malaysia

E-mail: wannur956@perak.uitm.edu.my

Abstract. Improvement and innovation in building visualization, project coordination and communication are the major benefits generated by Building Information Modelling (BIM) for construction organisations. Thus, as many firms across the world would adopt BIM, however they do not know the clear direction in which path they are moving as there is no specific reference available for them to refer to. Hence, the paper seeks to identify the factors of BIM adoption from previous research. The methodology used in this paper is based on literature review from various sources such as conference articles and journals. Then, the findings were analysed using content analysis. The findings show that there are 24 factors found from literature that influence the adoption of BIM and four (4) factors such as vendor, organisational vision, knowledge, and implementation plan are among the least factors mentioned by previous researchers.

1. Introduction

Building Information Modelling (BIM) is an innovation approach in architectural, engineering and construction industry as a modelling technology which encompasses AEC digital data throughout the construction life cycle. Succar [1] added that this digital data is integrated with policies, processes and technologies. In addition, all the digital data involve human activity of BIM software or other related software, hardware and technologies in order to build the digital model [2]. Hence, from various definitions, BIM can be concluded as a digital data in the form of 3-dimensional model as it is able to create a better understanding for construction team.

In worldwide, the adoption rate of BIM has been increasing over the past years especially by commercial contractors [3]. The level of adoption rate in North America has increased from 28% (2007) to 71% (2012) where contractors gave the highest adoption rate (74%) as compared to the architects (70%) and the engineers (64%) [4]. In 2016, in the United Kingdom, the government mandated the application of BIM. Therefore, the adoption rate is has increased from 60% to 95% for last three years [5]. In Malaysia, even though the adoption rate of BIM among construction organisations or known as contractors, is only 5.2% from 2007 to 2013 [6], the number will increase as Construction Industry Development Board (CIDB) has enhanced a lot of seminar, talks and conferences regarding BIM adoption. According to Wong et al. [7] many firms across the world adopt BIM, however they do not
have a clear direction of path they are moving to. Moreover, during the adoption, some firms failed to adopt BIM and the rest succeeded [7].

Thus, the identification of BIM adoption factor is essential to assist the companies to continue adopting BIM in real practices. Nevertheless, it is found that BIM adoption model are insufficient especially on organisational adoption perspective. Hence, the objective of this research is to explicate the BIM adoption factors from various literature, as a basis to develop a research framework that will then fill the existing gap.

1.1. BIM in worldwide scenario

Globally, BIM has already existed more than twenty years [8]. The idea of BIM was led by the United States where the US General Services Administration or GSA was responsible to promote and provide strategic implementation to US public projects [9]. In United Kingdom, the common strategic framework which consists of four strategies such as leadership, vision, collaborative framework and client and industry capability and capacity is developed in order to assist public sectors to implement BIM successfully [5].

Other leaders in BIM adoption and implementation are Norway, Finland, and Denmark [9]. There are various activities organised by these three government bodies in order to increase the BIM adoption. Singapore is active in BIM agenda as its Construction and Real Estate Network (CORENET) provides various strategies in BIM implementation [10]. In Japan, the engagement and the implementation of BIM showed a positive return in investment or ROI especially for the contractors [9]. Meanwhile, the Australian government rigorously implement various strategies in BIM implementation through proposed work programs [11]. However, currently there are mandates of BIM noted from the Australian government [9]. In Hong Kong, the Hong Kong Housing Authority has its standards and requirements in BIM adoption and implementation such as collaboration, incentive and proven benefit, standard and common practice, legal and insurance, information sharing and handover, promotion and education, compliant BIM tool, audit and risk management and global competitiveness.

Hence, the experience by prior BIM industries is necessary to identify and avoid the shortcoming problems especially for new BIM comers such as Malaysia. The Malaysian Public Work and Department (PWD) introduces BIM into the construction industry early 2007. However, the adoption and implementation of BIM in Malaysia took a long time. Only in 2010 it first took place, where the National Cancer Institute construction project was to be built [12]. As it is the national agenda to embrace new technology, recently many private sectors also have taken actions by adopting and implementing BIM in their organisations. Moreover, to promote this new technology, CIDB organises various programmes in order to improve the adoption rate in the construction organisations.

In 2014, CIDB developed BIM roadmap which focused into seven pillars (see table 1) such as Standard and Accreditation (P1), Collaboration and Incentives (P2), Education and Awareness (P3), National BIM Library (P4), BIM Guidelines and Legal Issues (P5), Special Interest Group (P6) and Research and Development (P7). The Seven pillars were constructed by CIDB in order to facilitate many organisations in adopting and implementing BIM.

1.2. Definition of adoption

According to Rogers [14] and Arpaci [15], adoption is the decision to use an innovation with available action. For new innovation, there are five decision making processes which are knowledge, persuasion, decision, implementation and confirmation [14]. Thus, Rogers [14] affirmed that adoption is under decision process. Furthermore, Winch [16] and Hosseini et al. [17] found that adoption for the construction context is the decision made to use the innovation by professionals in that organisation.
Hence, this paper aims to identify the gap between decision and implementation process where the adoption occurs in two situations which is continued adoption and discontinued adoption.

Table 1. Summary of seven pillars for Malaysian BIM Roadmap [13].

Item No.	Pillars	Activities
1	Standard and Accreditation (P1)	BIM standard and common practices, guidelines, reference documents, accreditation for certification of BIM projects.
2	Collaboration and Incentives (P2)	Collaboration with other bodies and vendors, BIM funds and supports including cost software, hardware and training.
3	Education and Awareness (P3)	BIM conference, competition, promotion, award, training modules and syllabus.
4	National BIM Library (P4)	BIM library standard, cloud computing, national BIM library
5	BIM Guidelines and Legal Issues (P5)	National BIM guide, legal issues
6	Special Interest Group (P6)	BIM committee to share the information
7	Research and Development (P7)	Research fund and sponsor

1.3. BIM adoption factors

From previous studies, BIM factors have been identified and presented in table 1. It is discovered that there are 24 factors of BIM adoption available. Table 2 will be an initial basis for an ongoing PhD research to construct preliminary conceptual framework. In prior study by Gu and London [18], BIM adoption is grouped into two main areas which are the technical tool, functional requirements and need, and the non-technical strategic issues. The finding shows the development of the collaborative BIM decision framework with three associated aspects; product, process, and people produced.

According to Eadie et al. [19] relative advantages, government pressure and competitive pressure are the factors influencing BIM adoption especially for UK construction contractors. A recent study by Zakaria et al. [20] have identified four categories in BIM adoption such as organisational culture, people (training, education), technology (interoperability, infrastructure, equipment) and government recognition (external support). Furthermore, Zakaria et al. [21] support the findings with the preliminary survey where nine factors such as policy, process, people, organisational strategy, management, training, education, external pressure and external supports are discussed.

These factors were also agreed by Enegbuma [22] where people, technology (relative advantages, data management, infrastructure) and process are the main adoption elements in their article. Besides, Succar [23] also discussed policy, process and technology (infrastructure, vendor, relative advantages, data management, equipment) as the factors of BIM adoption. On the contrary, Osman et al [24] found that technology (compatibility, interoperability, complexity, relative advantages) organisational (management, training, financial resources, BIM risks) and environment (external pressure, external supports and subcontractor relationship) are the factors in BIM adoption. In addition, Yaakob et al. [25] affirmed that BIM adoption especially for organisational level are focusing on four categories such as technology, organisation, process and legal.

Meanwhile, Ahn et al. [26] classified BIM adoption to be sorted under 15 main categories: Benefits of BIM adoption, organisational structure, BIM experts education background, BIM education and training, BIM implementation cost, project type of BIM implementation, BIM software, BIM risks, BIM contract method, BIM fee structure, BIM implementation plan, BIM at the construction phase, subcontractor relationship, future direction of BIM and new employees. Nevertheless, Son [27] et al. and Jusoh [6] reviewed the literature on BIM adoption and suggested that perceived usefulness and perceived ease of use are the main elements in influencing behavioral intention of BIM adoption. Hence, all the variables mentioned above will be gathered and discussed in section 3.

Subsequently, all the variables found in table 1 are tabulated in table 3 to identify which variables are insufficient according to Seven Pillars of BIM Roadmap.
2. Research Method
An existing BIM factors are identified from various previous literatures. Then, all the adoption variables are analysed through content analysis as a basis of to develop a preliminary framework.

3. Findings and Discussions
From table 2, the highest adoption factor cited by previous literature is people. Nine (9) researchers or 12% agree that people is the most factors in adopting BIM. This shows that, mentality, attitude and resistance of people are the key elements in adopting and implementing of BIM. The second highest in this table is relative advantages. According to Rogers [14], relative advantages is the real advantages of BIM as compared to other products. Thus, six researchers agreed that the advantages of BIM will influence the adoption of BIM.

Next, compatibility of software is also recorded as the most frequent cited factors from previous research. The researchers believe that the ability of BIM software to work together with other components would also contribute to BIM adoption. In addition, management, training and education are also listed among top ten most important factors. From the literature, there are 5 researchers mentioned about this factor. In terms of management factor, encouragement and support from top management or company leaders are necessary as they will influence the development of organisations. Meanwhile, training and education from professional bodies also enable the organisations to be conversant with BIM.

Having the similar score which is 4 researchers cited are policy, external pressure and support. In organisation, a good policy will deliver good result. Moreover, the policy will show a clear guideline of how the implementation of BIM in that organization should be. Nevertheless, these situations would not happen if there are no external pressure and support from various respective bodies. In this case, government plays vital roles in order to enhance the implementation of BIM.

In the context of Malaysian researchers, none of the researchers discussed the variables such as vendor, organisation vision, implementation plan and knowledge. However, most of Malaysian researchers discussed the top ten factors.

The next section discusses the comparison of available variables in table 2 with Seven Pillars of BIM Roadmap for Malaysia’s Construction Industry. The comparison was tabulated in table 3 below. From the table 3, P4, and P5 show the least factors cited by previous researchers. Moreover, there is only one researcher from Malaysia who discussed both pillars. On the contrary, most researchers discussed P2, in their study, followed with P3 and P1. There is only one factor discussed P6 and P7. From table 2, none of the researchers discussed knowledge in their study, however, according to BIM Roadmap for Malaysia’s Construction Industry, knowledge is categorised under P6. In Special interest group (SIG) (P6) encourages people to have more discussion and sharing of ideas and knowledge through training. Thus, knowledge is one of variables in P6.

Hence, it could be deduced that these variables found from the literature are necessary to be included and evaluated develop adoption framework.
Table 2. Summary of studies related to BIM adoption factors.

Item No.	BIM adoption factors	Malaysia	Korea	Australia	Nigeria	United Kingdom	Total numbers of literature
1	People	x	x	x	x	x	9
2	Relative advantage	x	x	x	x	x	6
3	Compatibility	x	x	x	x	x	5
4	Management	x	x	x	x	x	5
5	Training	x	x	x	x	x	5
6	Education	x	x	x	x	x	5
7	Policy	x	x	x	x	x	4
8	External pressure	x	x	x	x	x	4
9	External supports	x	x	x	x	x	4
10	Infrastructure	x	x	x	x	x	3
11	Interoperability	x	x	x	x	x	3
12	Data management	x	x	x	x	x	3
13	Equipment and Peripherals	x	x	x	x	x	3
14	Vendor	x	x	x	x	x	2
15	Process	x	x	x	x	x	2
16	Organisational strategy	x	x	x	x	x	2
17	Financial resources	x	x	x	x	x	2
18	BIM risk	x	x	x	x	x	2
19	Security	x	x	x	x	x	2
20	Complexity	x	x	x	x	x	2
21	Organisational vision	x	x	x	x	x	2
22	Implementation plan	x	x	x	x	x	2
23	Subcontractor relationship	x	x	x	x	x	2
24	Knowledge	x	x	x	x	x	2

Note: The table indicates the presence or absence of factors in the studies for each country. "x" indicates the factor is present in the study.
Table 3. Summary of studies related to BIM adoption and Seven Pillars of BIM Roadmap for Malaysia’s Construction Industry.

Item No.	Seven Pillars of BIM Roadmap	BIM adoption factors
1	Standard and Accreditation (P1)	Process [21]; [22]
		Policy [21]; [23]; [28]; [25]
		Implementation plan [26]
2	Collaboration and Incentives (P2)	Infrastructure [20]; [23]; [22]
		Compatibility [23]; [28]; [24]; [25]; [6]
		Interoperability [20]; [24]; [25]
		Vendor [27]; [23]
		Complexity [24]
		Equipment and Peripherals [20]; [23]; [26]
		People [20]; [19]; [21]; [28]; [27]; [22]; [25]; [26]; [6]
		Organisational strategy [21]; [26]
		Organisational vision [26]
		Financial resources [24]; [26]
		BIM risk[24]; [26]
		External pressure [24]; [28]; [21]; [9]
		External supports [24]; [28]; [21]; [20]
		Subcontractor relationship [24]
3	Education and awareness (P3)	Training [20]; [21]; [24]; [25]; [6]
		Education [20]; [21]; [27]; [26]; [6]
4	National BIM Library (P4)	Data management [18]; [22]; [23]
5	BIM Guidelines and Legal Issues (P5)	Security [18]; [25]
6	Special Interest Group (P6)	Management [27]; [21]; [24]; [25]; [6]
7	Research and Development (P7)	Relative advantage [19]; [28]; [23]; [24]; [22]; [26]
4. Conclusion
In a nutshell, this research reveals the factors of BIM adoption across various literature. This research found 24 variables which are the most frequent variables cited by previous researchers. Various factors identified from literatures can be references to many organisations in adopting BIM. Hence, the next research will explain the detail of these variables as a basis to develop BIM adoption framework.

Nevertheless, regardless of many factors identified, the most important factor in encouragement of BIM in Malaysia is government’s roles and supports. Without supports from, the development of BIM in Malaysia will be ineffective and remain as uncompetitive country compared to others.

5. References
[1] Succar B 2009 Building information modelling framework: A research and delivery foundation for industry stakeholders Automation in Construction 18(3) 357
[2] Conover D, Crawley D, Knight D, Barnaby C S, Gulledge C and Wilkins C 2009 An Introduction To Building Information Modeling (BIM) (Atlanta: American Society of Heating Refrigerating and Air-Conditioning Engineers, Inc.) p 5
[3] Beveridge S 2012 Best Practices Using BIM in Commercial Construction Master Thesis (Utah: Brigham Young University) p 2
[4] McGraw Hill Construction 2012 The Business Value of BIM in North America SmartMarket Report (Massachusetts: McGraw Hill Construction) pp 1-72
[5] Waterhouse R and Philp D 2016 National BIM Report 2017 (United Kingdom: National BIM Library) pp 1–28
[6] Jusoh H B 2017 Factors Influencing Clients’ Behavioural Intention on BIM Adoption in Malaysia Construction Industry Master Thesis (Shah Alam: Universiti Teknologi MARA) pp 21
[7] Wong J, Lee G, Dossick C and Messner J 2013 Where to Focus for Successful Adoption of Building Information Modeling (BIM) within organisation J. Constr. Eng. Management 139 1
[8] Hadzaman N A, Roshana T and Nawawi A H 2015 Implementation of Building Information Modeling (BIM) in Malaysia construction projects life-cycle Austral J. of Basic and Applied Sciences 9(7) 121
[9] Smith P 2014 BIM implementation - Global strategies Procedia Engineering 85 482–492.
[10] Teo E A L and Cheng T F 2006 Building Smart - A strategy for implementing BIM Solution in Singapore Synthesis Journal 5 117
[11] BuildingSMART Australasia 2012 National Building Information Modelling Initiative (Sydney: buildingSMART Australasia Incorporated) pp 1-64
[12] Latiffi A A, Brahim J and Fathi M S 2016 Transformation of Malaysian Construction Industry with Building Information Modelling (BIM) The 4th International Building Control Conference 2016 (IBCC 2016) vol 66 (Paris: EDP Sciences) pp 1-8
[13] CIDB 2014 Building Information Modeling Roadmap for Malaysia’s Construction Industry, Workshop Report (Series 2) (Kuala Lumpur: Construction Industry Development Board Malaysia (CIDB)) pp 1–21
[14] Rogers E M 1995 Diffusion of Innovations (The Fee Press New York) pp 204-251
[15] Arpaci I 2013 Organizational Adoption of Mobile Communication PhD Tesis (Ankara: Middle East Technical University) pp 7-8
[16] Winch G 1998 Zephyrs of creative destruction: understanding the management of innovation in construction Building Research & Information 26 268
[17] Hosseini M R, Banishahemi S, Chileshe N and Namzadi M O 2016 BIM adoption within Australian Small and Medium-sized Enterprises (SMEs): an innovation diffusion model. Construction Economics and Building 16(3) 71
[18] Gu N and London K 2010 Understanding and facilitating BIM adoption in the AEC industry. Automation in Construction 19(8) 988
[19] Eadie R, Odeyinka Henry, Mike Browne C M and Yohanis M 2013 An Analysis of the D Rivers for Adopting Building Information Modelling J. of Information Technology in Construction 18 338

[20] Zakaria Z, Mohamed Ali N, Haron A T, Ponting A M and Abd Hamid Z 2013 Exploring the adoption of Building Information Modelling (BIM) in the Malaysian construction industry: A qualitative approach. IJERT: Int. J. of Research in Eng. and Tech. 2(8) 384

[21] Zakaria Z, Mohamed Ali N, Haron A T, Ponting A M and Abd Hamid Z 2014 Exploring the barriers and driving factors in implementing Building Information Modeling (BIM) in the Malaysian Construction Industry: A Preliminary Study The J. of The Institution of Engineers, Malaysia 75(1) 384

[22] Enegbuma W I, Aliagha G U and Ali K N 2015 Effects of perceptions on BIM adoption in Malaysian construction industry Jurnal Teknologi 77(15) 69

[23] Succar B 2009 Building Information Modelling Maturity Matrix Handbook of Research on Building Information Modeling and Construction Informatics: Concepts and Technologies: Concepts and Technologies eds Underwood J and Isikdag U (Hershey: Information Science Reference) Chapter 4 pp 65-103

[24] Osman J, Mazlina S, Khuzzan S, & Razaksapian A 2015 Building Information Modelling: Proposed Adoption Model for Quantity Surveying Firms Proc. of IC-ITS 2015, Int. Conf. on Information Technology & Society (Kuala Lumpur) pp 151–165

[25] Yaakob M, Wan Ali W N A and Radzuan K 2016 Identifying critical success factors (CSFs) of implementing building information modeling (BIM) in Malaysian construction industry Int. Conf. on Applied Science and Technology 2016 (ICAST) vol 1761 (New York: AIP Publishing) pp 1–6

[26] Ahn Y H, Kwak Y H and Suk S J 2016 Contractors’ Transformation strategies for Adopting Building Information Modeling J. of Management in Engineering 32(1) 1

[27] Son H, Lee S, Hwan, N, and Kim C 2014 The adoption of building information modeling in the design organization: An empirical study of architects in Korean design firms. 31st Int. Symp. on Automation and Robotics in Construction and Mining, ISARC 2014 (Sydney, Australia) pp 194–201

[28] Abubakar M., Ibrahim Y M, Kado D and Bala K 2014 Contractors perception of the factors affecting Building Information Modelling (BIM) adoption in the Nigerian construction industry The Sixth Annual Int. Conf. on Computing in Civil and Building Engineering (Florida, USA) pp 455–462

Acknowledgements
Encouragement and support from Centre of Postgraduate Studies, Universiti Teknologi MARA, Seri Iskandar Campus, Seri Iskandar is highly appreciated in pursuing of the study.