Diversification of the type IV filament super-family into machines for adhesion, secretion, DNA transformation and motility

Rémi Denise1,2,*, Sophie S Abby$^{3,+}$, Eduardo PC Rocha$^{1,+}$

1 Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, Paris, 75015, France.

2 Sorbonne Université, Collège doctoral, F-75005 Paris, France

3 Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, 38000 Grenoble, France

* Corresponding author.
+ Co-last authors

Keywords: Molecular evolution, functional innovation, protein secretion, Prokaryotes, pilus
Abstract

Processes of molecular innovation require tinkering and co-option of existing genes. How this occurs in terms of molecular evolution at long evolutionary scales remains poorly understood. Here, we analyse the natural history of a vast group of membrane-associated molecular systems in Bacteria and Archaea – type IV filament super-family (TFF-SF) – that diversified in systems involved in flagellar or twitching motility, adhesion, protein secretion, and DNA natural transformation. We identified such systems in all phyla of the two domains of life, and their phylogeny suggests that they may have been present in the last universal common ancestor. From there, two lineages, a Bacterial and an Archaeal, diversified by multiple gene duplications of the ATPases, gene fission of the integral membrane platform, and accretion of novel components. Surprisingly, we find that the Tad systems originated from the inter-kingdom transfer from Archaea to Bacteria of a system resembling the Epd pilus. The phylogeny and content of ancestral systems suggest that initial bacterial pili were engaged in cell motility and/or DNA transformation. In contrast, specialized protein secretion systems arose much later, and several independent times, in natural history. All these processes of functional diversification were accompanied by genetic rearrangements with implications for genetic regulation and horizontal gene transfer: systems encoded in fewer loci were more frequently exchanged between taxa. Overall, the evolutionary history of the TFF-SF by itself provides an impressive catalogue of the variety of molecular mechanisms involved in the origins of novel functions by tinkering and co-option of cellular machineries.
Introduction

New complex forms, functions, and molecular systems arise by co-option of elements that may have evolved to tackle different adaptive needs [1]. At the molecular level, this involves tinkering pre-existing molecular structures by diverse processes including mutation, recombination, gene fusion and fission [2]. These variants are ultimately subject to natural selection and may eventually become fixed in populations [3]. In Prokaryotes, this is facilitated by the constant income of novel genetic information by horizontal gene transfer [4-6]. Complex adaptations can evolve through series of small adaptive steps. For example, metabolic networks evolve stepwise to accommodate novel reactions at their edges [7]. Innovation may also arise by processes of neo-functionalization or sub-functionalization following the duplication of genes encoding proteins with multiple functions or the acquisition of a genetic system with homologs in the genome. This mechanism may have been at the origin of the bacterial flagellum [8]. It has been proposed that non-adaptive processes acting on redundant genes in species with small effective population sizes provide substrates for the secondary evolution of complex traits by natural selection [9]. Less is known about how key macromolecular complexes can evolve novel functions, or specialize in one of several initial functions, thanks to a combination of mutational processes and horizontal gene transfer [10].

The appendages of bacteria are striking examples of functional diversification. They are complex macromolecular machineries encoded by many genes and spanning several cellular compartments that can evolve towards novel functions. For example, the type III protein secretion system (T3SS) evolved from the secretion apparatus of the bacterial flagellum [11], the T4SS from the conjugation apparatus [12], and the T6SS possibly from co-option of phage structures [13, 14]. A particularly remarkable
The TFF-SF nanomachines assemble filaments composed of subunits with an N-terminal sequence motif named class III signal peptide, generically named type IV pilins [17]. These systems are involved in functions typically associated with extracellular pili in Prokaryotes, including adherence, cell-cell attachment, the formation of biofilms, and are exploited by phages for cell infection [21-23]. The T4aP, T2SS, T4bP, and Tad, are also important virulence factors in pathogenic bacteria [24-29]. Nevertheless, and in spite of their homology, the different families of the TFF-SF have evolved specific biological functions. The T4aP and T4bP allow bacteria to move by twitching motility (a form of surface movement promoted by repeated cycles of extension-retraction of the pilus) [30, 31]. Tad are involved in efficient adherence to abiotic surfaces facilitating the formation of biofilms [32]. T2SS
secrete proteins from the periplasm across the outer membrane [19]. Some Com, T4aP, and Archaeal-T4P facilitate the uptake of extracellular DNA into the cell [33, 34]. In Bacteria, these systems are by far the most frequent appendages involved in natural transformation. Archaeal-T4Ps include the archaellum involved in motility by rotation of the appendage, pili involved in sugar uptake (Bindosome, or Bas), the Ups pilus involved in establishing cell-cell contacts to enable DNA repair under stress conditions, and several pili with poorly characterized functions [35-37].

The functional diversification of the super-family is not clade-specific since different types of systems are present in the same clades. This suggests frequent horizontal transfer and/or an ancient origin of the super-family. T4aP and the Tad pilus can be found in most bacterial phyla [38, 39] and Archaeal-T4Ps in most Archaea [37]. The T2SS, T4bP and MSH have only been described in diderms [40, 41]. The distribution of the competence pilus is poorly known. Within diderms, a T4aP is often necessary but not sufficient for competence, which requires a specific machinery for DNA transport across the inner membrane into the cytoplasm [34]. Furthermore, a single T4aP can play other roles in addition to natural transformation (e.g. adhesion, motility, aggregation). In monoderms (bacteria with a single cell membrane), it is also currently unknown how many Competence pilus (ComM) systems are involved in this process. In summary, the TFF-SF has diversified into several different functions by co-option processes using a common set of homologous components identifiable across Prokaryotes.

Previous studies dedicated to the evolution of the AAA+ ATPases, Tad, T4aP and the T2SS date from the previous decade [15, 39, 42, 43], when data were scarce and phylogenetic methods less sophisticated. Archaeal systems were studied in detail recently [37, 44], but independently of the evolution of bacterial systems. More recent
works only briefly studied the phylogenies of some of the components of these systems [45]. Importantly, there is a lack of studies integrating all the systems and all available genomic data, a pre-requisite to understand the processes of functional diversification of the super-family. Here, we identified the typical systems of TFF-SF and their variants using specific annotation tools on all complete genomes of Prokaryotes. These systems were analysed using phylogenetic techniques to characterize the history of the TFF-SF, clarify the relationships among its members, and decipher the molecular evolution mechanisms underlying its functional diversification. Finally, we characterized their genetic organizations, and how they relate to the rates of horizontal gene transfer. This integrative analysis provided a consistent scenario for the diversification of the super-family involving processes of duplication, fission, transfer, accretion, and mutation.
Results

Relations of homology between the key components of the machineries

We started our study by building stringent MacSyFinder models [46] for the identification of the systems of the TFF-SF in the complete genomes of Bacteria and Archaea. Briefly, these models give a detailed account of the genetic composition and organization of the systems and are used by MacSyFinder to identify novel occurrences of the systems in genomes using HMM protein profiles and a list of rules concerning genetic organization. At this stage, our goal was to identify systems with high stringency that would allow us to perform phylogenetic and comparative genomics analyses. We adapted previously published models of T4aP (including the Com systems of diderms), T2SS, and Tad [41, 47], to which we incorporated additional components and stricter rules in terms of genetic composition and organization (Fig S1). We used the available literature to produce equivalent models, and associated hidden Markov models (HMM) protein profiles, for the Com pilus of monoderms designated as ComM, and for the Archaeal-T4P. For the latter, we used 66 arCOGs identified from [37], after a step of re-analysis of the initial 191 arCOGs to remove redundancy. We could not build equivalent models for T4bP and MSH systems at this point because too few systems were described in the literature. This resulted in five initial models, of which two are novel, including 154 HMM protein profiles, of which 17 are novel (Table S1).

To establish precisely the relations of homology between the components of the different systems, we made pairwise profile-profile alignments of their HMM protein profiles using HHsearch v3.0.3 [48] (p-value threshold of 0.001). These alignments are very sensitive and highlight more distant relations of homology than typical
sequence alignment methods [48]. We obtained a graph with 10 components (sets of connected nodes), representing the significant relations of reciprocal similarity between the profiles (Fig. 2). The five largest components include the proteins known to be homologous and represent each individual key function: secretins, prepilin peptidases, ATPases, integral membrane platforms (IM platform), pilins (major and minor). The ATPase component includes TadZ, a protein from another subfamily of P-loop ATPases (FleN) with an atypical Walker-A motif that retains ATP binding capacity while displaying low ATPase activity [49, 50]. It localizes at the pole at early stages of pili biogenesis and functions as a hub for recruiting other Tad pili components, contrary to the ATPases involved in pilus assembly or retraction.

These results establish a precise and extensive network of sequence similarity between the key components of the systems of the TFF-SF, systematizing previous descriptions. The largest component of the graph includes the major and minor pilins. These proteins are small and very diverse. Many HMM profiles have been built for their correct identification, especially in Archaea [37]. Their profile-profile alignments suggest that these pilins are all evolutionarily related. It is for the moment unclear if all these archaeal pilin protein profiles are associated with families with different functions, but they are often similar and their profiles match the same proteins. This suggests that future work could reduce their number and produce a more parsimonious set of profiles for annotation, eventually revealing broader functional groups.
The phylogenies of the components of the type IV filament super-family

The presence of homologs of the major functional components of the TFF-SF in most types of systems raises the question of how their functional diversification took place from a common ancestor. To study this, we added to the models described above a very simple generic model to identify all systems that have a minimal number of essential components (the ATPase, the integral membrane platform, and a major pilin) (Fig. S1). The search for systems using the MacSyFinder models resulted in the identification of 6652 systems in 3700 genomes (1486 species) (Fig S2), of which 1584 were classed as generic systems, reflecting the conservative character of the initial models. This dataset was too large to analyse using sophisticated phylogenetic methods and included many systems that were very similar, e.g. from different strains of the same species. We reduced this redundancy by clustering very similar systems. We then picked one representative per cluster, thus preserving most of the diversity of the dataset. In this process, we prioritized the inclusion of experimentally validated systems, including MSH (1), and T4bP (5) for which models were not available (see Methods). This non-redundant set contains 309 representative systems (33 T4aP, 47 Archaeal-T4P, 29 T2SS, 5 T4bP, 1 MSH, 31 ComM, 72 Tad, 101 generic) (Table S2). Hence, the systems used in the subsequent analyses are associated with a (sometimes large) number of other very similar systems that are from the same cluster.

We inferred the phylogeny of each of the five key protein components (AAA+ ATPase, IM platform, major pilin, secretin and prepilin peptidase) by maximum likelihood with IQ-Tree [51]. We made ten reconstructions per component with the most thorough mode of topological search to account for the stochasticity of the
method. The detailed analysis of key events revealed by these trees can be found in Table S3 (the trees themselves are in Table S4). The ATPase trees are very well supported at most of the key nodes, they are consistent across replicated inferences, and they clearly separate the different types of systems (Fig. S3). The trees include two system-specific duplication events of the ATPases, one ancestral to the large clade including T4aP, T4bP, MSH, T2SS, and ComM (PilT/PilB), and another within a clade of T4aP (PilT/PilU). The IM platform also discriminates the different systems. It includes the well-known paralogs TadB/TadC in the Tad system and some duplications in the Archaea. Apart from these duplications that span large numbers of systems, there were other duplicates in the systems that were rare (present in 8% of the representatives’ dataset) and dealt with a de-replication procedure (see Methods). The prepilin peptidase tree is poorly supported and shows scattered distribution of the different types of systems. Since prepilin peptidases from one type of systems can be used by different systems [52-54], we have excluded them from further analyses. The secretin and major pilin trees have some poorly supported branches, but they separate well the different systems. Overall, the protein components’ trees show that the ATPase, the IM platform and the major pilin are phylogenetic markers that provide significant information about the evolution of the super-family. The secretin tree, even if relatively well supported, is less informative to infer the global evolutionary scenario because this component is absent from several types of systems (those from bacterial monoderms and archaea).

The root of the type IV filament super-family

The ATPase tree is the only one that can be rooted, since this is the only ubiquitous component with well-conserved homologs in distinct machineries [42, 43]. We
selected the family of FtsK proteins as an outgroup to root the tree. It represents an
ideal candidate outgroup because it is very conserved in sequence, single-copy, and
present in most bacterial phyla. It has a close homolog, HerA, which is the sister-
clade among the family of P-loop ATPases from which it diverged concomitantly with
the archaeal–bacterial division after the last universal common ancestor [43].
Furthermore, FtsK is essential (for chromosome segregation [55, 56]) and shows little
evidence of horizontal transfer [43]. We retrieved the sequences of FtsK from a
previous study [12], aligned them with the ATPase sequences of the investigated
systems, and inferred a maximum likelihood tree. This tree shows that the FtsK
sequences are monophyletic (100% UF-Boot support) and branch between two large
clades: the Tad and Archaeal-T4P on one side (100% UF-boot) and a clade grouping
the T2SS, T4aP, ComM and T4bP on the other side (100% UF-boot) (Fig S4). The
overall rooted topology is very similar to that of the unrooted tree in eight out of ten
trees (Table S3). The inclusion of the ubiquitous ATPase of T4SS (VirB4) as an
outgroup with FtsK also showed a split between the archaeal and the bacterial
branches of the tree (Fig S5). This confirms that this ATPase family is also an
outgroup of the TFF-SF. We rooted the trees of the IM platform and major pilin using
the root of the ATPase trees, since all three proteins showed a consistent split
between Tad/T4P-Archaea on one side and the remaining systems on the other (Figs
S6, S7).

The analysis of gene duplications provides additional information on the possible
roots of the super-family phylogenetic tree because placing duplication events on a
tree corresponds to set as ancestral the node where the duplications occurred, and
as descendants those with the duplication [57, 58]. The duplications of the ATPases
exclude the root from the group T4aP, T4bP, ComM, MSH and T2SS. The
duplication of the IM platform in the Tad system, also present in some Archaeal-T4P, excludes the root from within these groups. Hence, the analyses of duplication events are consistent with the root as defined above by the tree of ATPases.

Producing a concatenate tree

Since the two major components (ATPase and IM platform) have phylogenetic trees that are broadly consistent (Table S3), we computed a phylogenetic tree of their concatenate using a partition model (best model for each gene partition, as computed by IQ-Tree). The major pilin was excluded from the concatenate because it shows less consistent and less supported topologies. Concatenation required the use of a procedure to deal with paralogs (to have one marker per component per system). For paralogs present in a few taxa, we chose in each system the protein most similar in sequence to the most closely related systems lacking paralogs (see Methods). For the ATPases, we used PilB, because this ATPase is responsible for the assembly of the pilus, which is a function that is essential in all families, contrary to the function of PilT/PilU (retraction). There was no good argument to pick TadB or TadC platform proteins and we therefore made phylogenetic reconstructions with each of them in parallel (Fig. 3, S10). As expected, the concatenate trees showed relationships similar to those of the ATPase and the IM platform. We then tested the congruence between the two concatenate trees (PilB/TadB and PilB/TadC) and the individual protein alignments (PilB and TadB for the first, and PilB and TadC for the second) using the AU test implemented in IQ-Tree (v1.6.7.2) [59]. This showed that the best trees of each individual protein were not significantly different from the best tree of the concatenate (p>0.05, Table S7). Furthermore, after correction for multiple comparisons, only two of the 40 comparisons between the individual trees and the
concatenate tree were significantly incongruent. Overall, these analyses strongly suggest that the TFF-SF derived from an ancestral system, which diversified initially into an archaeal system ancestor of the Tad/Archaeal-T4P and a bacterial system ancestor of the T4aP/T4bP/T2SS/MSH/ComM.

The archaeal systems and the emergence of Tad

The ATPase, IM platform and concatenate trees are broadly consistent with five groups within Archaea (Fig. 3, S3, S6, S10), of which four replicate previous findings [37]. All experimentally validated archaella are part of a highly-supported clade (100% UF-boot, group 3 in [37]) that is the sister clade to another highly supported clade containing two pili involved in surface adhesion in Halobacteria (group 2 in [37]). They are sister-groups of a clade gathering the Aap, Bindosome, and Ups (pili described in *Sulfolobus*), as well as other non-characterized pili from Crenarchaeota and Thaumarchaeota (group 4 in [37]). The rooted tree shows that the basal clade of Archaeal-T4P includes systems mostly found in methanogens (group 1 from [37]). The systems at the base of the tree make a distinct clade but have unknown functions.

Unexpectedly, the position of the root places Tad as a system derived from Archaeal-T4P systems. This feature is found in the trees of the three key components with high confidence. Furthermore, all these trees showed a monophyletic clade including the Tad and the Epd pilus (clade “Epd-like”), whose major pilins have similarly short sequence lengths when compared to the others from Archaeal-T4P (Fig. S7). Both Epd-like pili and Tad have two homologous genes encoding the IM platform, suggesting that their common ancestor already contained them both. We examined
the domain structure of these two genes and found that each has one “T2SSF”
domain, where most other Archaeal-T4Ps have two such domains and longer IM
platform proteins. This strongly suggests that TadB and TadC were derived from an
ancestral event of gene fission. To confirm this observation, we aligned the TadB and
TadC profiles with the archaeal IM platforms containing two T2SSF domains. In
these cases, TadC aligned best with the N-terminal domain, while TadB aligned best
with the C-terminal domain of the archaeal proteins. This further supports the gene
fission scenario. Finally, the Tad systems have a protein – TadZ – which has
significant HMM-HMM profile alignments with Archaeal-T4P components
(arCOG00589 and arCOG05608) including those from the Epd-like clade (group 1
from [37]), but not with profiles from the bacterial systems. Altogether, these results
strongly suggest that an ancestral Archaeal-T4P harbouring two genes encoding the
IM platform diversified into Epd-like systems in Archaea and was transferred
horizontally, apparently only once, to Bacteria, leading to the extant Tad systems.
The transfer of the system from Archaea to Bacteria was very ancient. Tad systems
were frequently transferred among Bacteria since then (see below), and it is not
possible to infer the precise bacterial taxa that acquired the original system.
However, the Tad systems at the basis of the clade are from Proteobacteria in 18 out
of 20 concatenate trees, often with very good support (Table S3). The two odd
concatenate trees place Firmicutes at the base of the Tad clade, but with very low
support. This suggests that the ancestor of the Tad system was acquired by a diderm
bacterium, and the accretion of the outer-membrane, pore-forming secretin to the
Tad system may have been the founding event of these systems. This would fit with
the few descriptions of Epd systems that highlight functional similarities with Tad
systems [60]. Interestingly, it has been shown that TadD is essential to the assembly
of the Tad secretin in *Aggregatibacter actinomycetemcomitans* [61]. While it was originally thought that TadD had no homologs in other systems of the TFF-SF, we observed that it has a homolog in MSH systems (MshN, Fig. 2). It is tempting to speculate that co-option of this component from MSH was determinant to the recruitment of the secretin in the ancestral Tad system arriving at a bacterial diderm.

The diversification of the bacterial TFF-SF

The other major clade of the TFF-SF only has bacterial systems (T4aP, T4bP, ComM, MSH, T2SS). The vast majority of the concatenate and component trees place T4bP at the basal position in the clade (in the others some generic systems take this position). This is followed by a split between ComM on one side and the T4aP, MSH and T2SS on the other. The T4aP are polyphyletic in all the phylogenetic reconstructions with experimentally validated systems often clustering in the tree (Fig. 3). Some of these systems are in monoderms like Firmicutes and Actinobacteria. The MSH and the T2SS are both clearly distinct and derived from the T4aP. The MSH system falls in a highly-supported clade (100% UF-boot) with other systems of very similar gene composition. T2SS show two exceptions to monophyly. First, the position of Chlamydial T2SS systems next to the other T2SS is highly supported in the ATPase and in the concatenate tree (> 95% UF-boot), but not in the trees of the secretin, major pilin and IM platform. This suggests a chimeric origin for this system where different components were recruited from different types of systems. This may result from the impact of the peculiar developmental cycle and intracellular lifestyle of *Chlamydia* on its envelope [62]. Second, the so-called T2SS of Bacteroidetes (represented by *Cytophaga*, [63]) always cluster away from the
remaining T2SS, most often with T4aP, suggesting that they emerged as specialized protein secretion systems independently from the other T2SS.

The key early event in the ATPase trees of the bacteria-only T4P large clade was the amplification leading to the paralogs PilB (the assembly ATPase) and PilT (the retraction ATPase). This event appears as a simple duplication at the base of the tree in certain of the ATPase trees, but also shows more complex scenarios in others (Table S3). In the PilB part of the ATPase tree, the T4bP is basal and the other systems are regrouped with T4aP. This scenario is consistent with that of the secretin tree, where if one places the root between T4aP and T4bP one finds the T2SS deriving from a T4aP system, as in the PilB trees. This is also sustained, albeit with low support, by the major pilin tree, where one finds at basal positions the T4aP and the T4bP. The presence of PilT in very early parts of the tree suggests that the most ancient systems were able to retract the pilus. This is consistent with the ability of both T4aP and T4bP systems to promote twitching motility.

One of the most interesting functions of the super-family, from the evolutionary point of view, is the involvement of some of its systems in natural transformation. The ComM system is commonly found in Firmicutes, even if it is unclear whether it is always involved in transformation. It is monophyletic in all the phylogenetic reconstructions we made, usually with very high support (≥95%). In the concatenate trees, ComM branches apart from a group gathering T4aP, MSH and T2SS, after the divergence with T4bP. The trees of individual components show similar scenarios once one accounts for the effects of the ATPase paralogs, and for the low support of some parts of the IM platform trees. Interestingly, the major pilin trees show ComM branching within T4aP, with poor resolution, close to systems that are known to be involved in natural transformation. This evidence is weak, but suggests a link
between the major pilin and transformation. In summary, these results suggest that ComM arose early and only once in the history of the TFF-SF. The T4P systems experimentally linked to natural transformation in diderms were systematically identified as T4aP, and also tend to cluster together in the tree.

TFF-SF elements are ubiquitous in the prokaryotic world

We used the rooted concatenate tree to class the numerous generic systems that we had previously identified. We assumed that clades where all systems were either generic or of a single type (of which at least one validated experimentally) could be tentatively assigned to that type. Generic systems in clades lacking experimentally validated systems were left unassigned. Only two types of systems were paraphyletic in the tree - T4aP and Archaeal-T4P - and were thus treated differently. T4aP were split in a few monophyletic clades, and systems within each clade were re-assigned using the method above. The Archaeal-T4P systems, from which the Tad derives, can be easily distinguished from the latter, and thus re-assigned, using a taxonomic criterion. This analysis significantly clarified the systems’ assignment (compare Fig S2 with Fig. S11): 1795 out of the 2031 generic systems were re-assigned to classical systems, mostly T2SS (479) and T4aP (748).

We used these tentatively assigned systems to produce more sensitive MacSyFinder models. First, we changed the HMM profiles to account for the genetic diversity introduced by the re-assigned systems. Second, we created models to detect the T4bP and the MSH pilus, since we now had a much larger number of examples of these systems. Finally, we searched for genes systematically associated with the systems’ loci, in a neighbourhood of ±20 genes, that were not matched by any of the HMM profiles of the models. We clustered the proteins by sequence similarity and
analysed the largest families. This “guilt-by-association” approach failed to show other proteins systematically associated with a particular type of system (Table S5), suggesting that our models already encompass their most frequent components. This process resulted in more sensitive models that accounted for all known types of systems and correctly identified the 81 experimentally validated systems of bacteria analysed in Table S2, except the T2SS of Chlamydia and Bacteroidetes (shown above to be peculiar).

Using the novel improved models, we found 9026 systems within 4610 genomes, including 1728 T2SS, 2021 Tad, 2558 T4P, 908 ComM, 559 Archaeal-T4P, 177 T4bP, 191 MSH and 884 generic systems (Fig. 4, Table S6). A few systems classed in a given type with the initial conservative models - 14 T2SS, 10 T4P, 5 Tad, 1 ComM – are classed as generic with the new models. However, the inverse is much more frequent, since we re-classified 1114 generic systems as: 1408 T4aP, 338 T2SS, 670 Tad, 4 ComM, 226 Archaeal-T4P. The large number of generic systems re-assigned to T4aP is not surprising, since these systems are encoded in multiple loci, are very diverse and are present in several clades in the tree. This makes them harder to detect using the initial model. The many reassignments of generic systems as T2SS reflects a posteriori the excessive stringency of our initial model (based on existing knowledge of systems in Proteobacteria), and the existence of these systems in clades for which there is little or no experimental evidence. The reassignment led to identification of T2SS in a much broader set of taxa including Armatimonadetes, Deferribacteres, Clostridia (presumably diderms, since they include a secretin), Spirochaetes [64], and Aquificae. We also observe many new Tad systems in Elusimicrobia, Actinobacteria, Bacilli and Clostridia (Fig. 4 vs Fig. S2). Our phylogenetics-driven approach for designing new models allowed us to
detect diverse putative MSH and T4bP. These systems were so far only described as such in (Gamma) proteobacteria. These are now found for example in Chrysiogenetes and Epsilonproteobacteria for MSH, and in Acidithiobacillia and Nitrospirae for T4bP.

In certain cases, the phylogenetic annotation identified some systems that we missed using novel models and this explains the large number of generic systems in certain clades. For example, the new model misses the T2SS in *Chlamydiae* [62] that were annotated with the phylogeny leading to a high number of systems classed as generic in this clade. This is because this system has a small number of components, and we fail systematically to identify members of several families, including the minor pilins and assembly proteins GspLM [62]. Most generic systems in *Chlamydiae* seem to be T2SS given their composition and their location in the concatenate phylogenetic trees. The *Cytophaga* T2SS-like systems could not be identified by the models, which fits the results of the phylogenetic analysis indicating that these are not T2SS *sensu stricto*. Many of the systems of Actinobacteria remain classed as generic systems. A large fraction of them are classed as Tad by proximity to experimentally validated systems in the phylogeny, but they lack identifiable homologs of some usual components such as the minor pilins and TadC (their TadB does not contain two domains like those of homologs in some Archaea, showing this is not the result of a gene fusion). Finally, the Clostridial systems are classed as generic by the models, but phylogenetically they tend to be close to the remaining ComM systems.

In conclusion, the final models classify more systems and assign them classifications that are in most cases consistent with the phylogenetic analysis. Some discrepancies subsist that can be due to systems very divergent from the models (missed by the models) or inactive systems (spuriously picked by the generic model). Remarkably,
this refined annotation shows that all represented phyla of Bacteria and Archaea have at least one system from the TFF-SF, underlying the huge evolutionary success of this potentially very ancient type of machinery.

Genetic organization is associated with differences in rates of horizontal transfer

The systems differ strikingly in terms of genetic organization (Fig. 5). ComM and T4aP are usually found in multiple loci, whereas MSH and Tad are almost exclusively encoded in a single locus. Hence, as systems diverged their genetic organization also changed. To detail the prototypical genetic organizations of each type of system, we built a graph where nodes represent components and edges link components that are encoded contiguously in the genome. The edges are weighted by the frequency of contiguity: genes that are systematically contiguous are linked by thick edges. This graph reveals prevailing genetic organizations for most types of system (Fig. 5, S12).

The operon comG[ABCDEFG] is usually conserved and apart from the other components in ComM. The T4P genes are usually scattered in four operons. The T2SS is typically encoded on a single locus usually in a conserved order, with some exceptions exemplified by the Legionella system, and the Tad has a large locus with some elements showing some local permutations of gene order. No clear genetic organization or prototypical repertoire emerged from the contiguity graph built for Archaeal-T4P, which is partly a consequence of the large number of homologous families in the system (Fig. S12), and partly of their diversity in terms of gene content and function. The analysis of the representative Archaella systems shows more conserved genetic organization, even if many variants exist [37, 44] (Fig. S13).

Interestingly, the genetic organization of Epd is very similar to the Tad: the two IM
platform genes are contiguous and followed by the major ATPase and the secondary one (TadZ in Tad and FlaH (arCOG04148) in Epd) (see Fig. 5). Hence, the core genetic organization of Tad evolved in Archaea before the transfer of the system to Bacteria.

The patterns of genetic organization of the homologous components differ between systems. For example, T4aP shows a conserved triplet of genes pilBCD of which the pair pilBC is often conserved in other types of systems but pilCD is not. In general, pilins tend to be encoded together, but can vary in their co-localization with the rest of the genes: they can be apart (T4aP), at the edge of the locus (ComM, Tad) or in the middle (T2SS, T4bP). In archaea, all cases were found. Interestingly, many duplicated genes tend to be contiguous. This is the case of many pilins, of the pilUT genes encoding the ATPases, and of the integral membrane platform genes tadBC. This is consistent with models suggesting a bias towards gene duplication in tandem [65]. The variability between types of systems and the conservation within types, suggest that genetic organization is under selection within types, but changes rapidly upon functional innovation.

The genetic organization of the loci can also reflect the action of horizontal gene transfer. If the systems are often gained or lost within lineages, as it was shown for Tad [66] but much less so for the Achaellum [44], then systems encoded in a single locus are much more likely to be successfully transferred because all the necessary genetic information can be transferred in one event [67]. Systems scattered in different distant loci cannot be transferred in a single event (although parts of the system can presumably be exchanged if the recipient genome encodes the system). We thus hypothesized that systems encoded in single loci are more likely to undergo horizontal gene transfer. To test this hypothesis, we compared the phylogenetic tree
of each system, a sub-tree of the larger phylogenetic reconstruction, with a maximum
likelihood tree of the 16S rRNA sequences of the species carrying the systems (Fig.
S14). We excluded the archaeal systems from these analyses because their loci are
harder to define precisely (sometimes scattered and multiple systems per genome)
and their functions are still poorly delimited in most cases (complicating the definition
of the clade to use in the analysis). We found that systems encoded systematically in
a single locus are more frequently transferred than those encoded in several loci
(Fig. 6). These results are reinforced by the analysis of the frequency with which
systems are encoded in plasmids, which follows closely the trends observed for the
frequency of transfer (highest in Tad and lowest in ComM, Fig. 6). The contrast is
especially interesting between the Tad and T4aP systems that are both present in
many different clades and are encoded almost exclusively in one locus (Tad) or
many loci (T4aP). This association between rates of transfer and organization
suggests that systems that are frequently gained and lost endure a selective
pressure for being encoded in a single locus.
We used comparative genomics and phylogenetics to produce models and protein profiles that identify TFF-related systems in genomic data of all Prokaryotes. They are publicly available and provide a significant advance relative to our previous work, since they are more sensitive and cover more types of systems (Archaeal-T4P, ComM, MSH and T4bP). We used them to quantify the frequency and taxonomic distribution of the different systems. Strikingly, every inspected phylum of Prokaryotes has some type, and often several types, of systems from the TFF-SF. Some types are more widespread (e.g. T4aP, Tad) than others within the limitations of the taxonomic coverage provided by current genome databases. Notably, the MSH and T4bP, for which few experimentally validated systems are known, are abundant in Proteobacteria, but absent from most other phyla. For the archaeal systems, most clades outside of archaella are associated to a very limited number of characterized systems with distinct functions, highlighting the large genetic and functional diversity of Archaeal-T4P. Further experimental study of these systems is required to produce reliable MacSyFinder models for each of them.

Our approach may be regarded as conservative. First, some components of the systems are not sufficiently conserved in sequence for reliable phylogenetic analyses at this large time-scale and were not used in the phylogenetic inference. The minor pilins are a particularly important set of proteins that were ignored because they produced short and very poor multiple alignments. Second, we rely on the existence of experimentally validated systems and on monophyletic clades having such systems to build the models. If the systems have been described in few species, or in a small number of phyla, then this limits our ability to identify them, especially when they are very different in terms of gene repertoires and protein sequences. This may
explain why our models missed the T2SS of Chlamydiae: they carry few components and these are of different origins. Notably, its major pilin is atypical with a disulphide bond and presumably lacking the Ca-binding site. In other cases, systems may actually differ from the descriptions in the literature. This is probably the case of the so-called T2SS of Bacteroidetes. This system is involved in protein secretion [63], but consistently branches apart from T2SS in all analysis of the phylogenetic markers. The major pilin of this system is very divergent compared to major pseudopilins from proteobacteria. Our analysis raises the exciting possibility that it might represent a novel type of secretion system derived from the T4aP independently of the T2SS. Actually, all trees show that the widely studied T4aP systems are very diverse and form several different clades in the tree, where the one with the PilU ATPase, the most widely studied, accounts for a minority of the identified systems. Most of the other T4aP are poorly characterised and may represent systems with novel properties. Finally, the results obtained with the final improved models showed few systems identified as generic (once we exclude the systems resembling T2SS in Chlamydiae, the ComM in Clostridia and the Tad in Actinobacteria). This suggests that there may be few, if any, radically novel systems to be discovered in the superfamily that contain the three key components (ATPase, IM platform, major pilin). On the other hand, the diversity of certain types of systems – like the T4aP - may still reveal surprising novel functionalities.

The phylogeny of the key components of the TFF-SF revealed an initial split between archaeal and bacterial systems, suggesting that these structures may have pre-dated the last common ancestor of all cellular organisms (Fig. 7). This ancestral system presumably had one ATPase for its assembly (the function performed by PilB in T4aP), an integral membrane platform, pilins and a prepilin peptidase. Among these
key components, only the ATPase has identifiable sequence homologs outside the super-family. The PFAM domain of the prepilin peptidase of T4P belongs to the PFAM clan CL0130 with other signal-peptide inner membrane-associated peptidases, several of which are found in Bacteria, Eukaryotes (the presenillin family proteases), and Archaea [68]. However, we cannot exclude that other protease(s) might perform this function. Hence, an enzyme able to mature pilins should already have been available in the organism encoding the ancestral system. The protein profiles of the integral membrane platform match those of some ABC transporters, and the protein is structurally very similar to one of the V-type ATP synthase subunits [69]. This suggests that the original component may have been co-opted from these ubiquitous membrane-associated systems. The pilins are small and evolve fast; it is impossible to trace their evolution using sequence analysis at deep time scales. Fast evolution of pilin globular domains may be associated with the variability of essential inner membrane components that promote pilin targeting to the assembly site, or connect the inner and the outer membrane sub-complexes [70, 71]. It is also difficult to detail if there were other components in the ancestral system of the super-family, since they either evolve fast or are present in only a small number of systems. A recent study showed that a minimal set of eight genes was sufficient to produce assembly of the T4aP of *Neisseria meningitidis* [72]. Four of them, PliMNOP, are essential for the assembly but are lacking in our list of ancestral genes because their homologs could not be found in any or in the vast majority of genes neighbouring T4bP, ComM, Tad and Archaeal-T4P. They were found in MSH and T2SS (Fig. 2, Table S5), suggesting that they arose more recently and that other systems do not require these proteins for assembly (Fig. 7). In short, our results are consistent with the idea that the ancestral system was able to energise its assembly and build up a
pilus with matured pilins on top of an assembly platform, the basic molecular architecture of all extant systems.

Ours and previous data on the genetic composition and organization of archaeal systems [37], reveal processes of functional diversification leading to several families, tentatively associated with different functions, including a system – precursor of the Tad and resembling extant Epd systems– that was transferred to Bacteria. Archaeal-T4P are present in many clades of Archaea. The Sulfolobus genus alone counts systems from four of the seven different archaeal-T4P types studied experimentally (Aap, Bindosome, Ups, and archaellum). Even though horizontal transfers might be frequent among Archaea, our approach places the root of Archaeal-T4P within systems of methanogens from the Euryarchaeota phylum (group 1 of Makarova et. al [37]) - consistent with a proposed rooting for the archaeal tree of life within methanogens [73]. Only performing experiments on more diverse systems and species would enable to elucidate the wide range of functions of the Archaeal-T4P.

The Epd-like systems share the closest ancestry with Tad systems among all elements of the TFF-SF. They were only characterized in Methanococcus maripaludis, where they are involved in surface attachment, a trait they share with the Tad pilus [60]. The Archaeal origin of Tad is consistently suggested by the rooted phylogenetic analyses and the specific shared characteristics of pilins, IM platform and TadZ-like proteins in Tad and archaeal-T4P. The literature often classes Tad pilus as T4bP [74]. Our study shows that these systems are very different in terms of components and genetic organization and distantly related from the evolutionary point of view. This is in accordance with recent works proposing to clearly separate Tad from T4bP and to name them as T4cP [45]. A striking trait of Tad (and Epd) is
the systematic presence of two genes (\textit{tadB} and \textit{tadC}) encoding the IM platform.

This has been regarded as the result of a gene duplication [39], but the size and domain content of these genes is more parsimoniously explained by a gene fission event, e.g. by a mutation integrating a stop codon within the ancestral gene. This produces a complex evolutionary scenario: the original IM platform has two homologous domains, suggesting a duplication before the last common ancestor of the TFF-SF. In the Epd and Tad clades this was followed by a fission event. The adaptive relevance of these successive events in the light of emerging structural data could be an interesting topic of future research.

The concatenate tree suggests that Tad’s ancestor was transferred from Archaea to a diderm Bacteria where it acquired a secretin and then diversified and transferred throughout the bacterial domain. The secretin tree provides some information of when the initial transfer took place. This tree places Tad’s secretin within those of T4aP systems with high confidence and typically close to Proteobacteria. The functions of this ancestral system should resemble the ones of extant ones, since the closely related Epd systems in Archaea have similar genetic organization (this work) and are also involved in similar functions [60]. This suggests that the co-option of the secretin upon transfer of the ancestor to a diderm was the founding event of Tad systems. It occurred at a time when most types of systems (T4aP, T4bP, ComM, and possibly MSH and T2SS) were already in place. This hypothesis is reinforced by the secretin tree showing one single monophyletic clade for Tad’s secretin, suggesting that accretion of the secretin to this system only happened once. Co-options of a secretin from other systems are very common. They were observed multiple times in the evolution of T3SS (e.g., from Tad and from T2SS) and in filamentous phages [11]. If this scenario is correct, then the adaptation of Tad to monoderms, which
occurs at several places independently in the tree, involved the loss of the secretin. This event of loss seems very common since it is also found once in the initial evolution of ComM and several times at the emergence of T4aP of monoderms. Finally, the widespread distribution of Tad, in spite of its relatively recent origin is in agreement with the very high observed frequency of horizontal transfer for this system.

The T4bP is the most basal system among Bacteria. T4aP and T4bP are usually distinguished based on their molecular size and sequences of their leader signal peptides [75]. The T4aP constitutes a thin pilus (5-8nm diameter), whereas the T4bP pilins are longer [76, 77]. The peptide signal of T4bP pilins tends to be larger than those of the T4aP [78]. These differences match the early divergence observed for T4aP and T4bP. Subsequently, a split separated ComM from T4aP, and the latter then diversified into T2SS and MSH. Recent works suggest that the last common ancestor of Bacteria was a diderm [79]. Our analysis shows that Tad, T2SS and T4aP are monophyletic clades in the phylogeny of the secretin, in agreement with previous works [80], suggesting that there was little transfer of the secretin between systems. Furthermore, if one roots the secretin tree between T4bP and T4aP (in agreement with the concatenate tree of the TFF-SF), then the tree of the secretin largely recapitulates the tree of the concatenate of the super-family (except for Tad). This is in line with a very ancient acquisition of the secretin by the TFF-SF. Since T4bP are the most basal systems in the tree and are only found in diderms, this strongly suggests that the original bacterial system had a secretin and was present in a diderm.

Until recently, it was thought that only systems encoding PilT were capable of pilus retraction. This would suggest that the ability to retract the pilus resulted from the
neo-functionalization of one of the copies (PilB in T4aP) of the protein at the moment of the duplication of the ATPase leading to PilB/PilT in T4P. Surprisingly, it was recently shown that the Tad system of *Caulobacter crescentus* is also able to retract the pilus [45]. As these authors, we only identified one copy of the ATPase in this system, in agreement with the data that PilB can also retract the pilus. It is thus possible that the original ATPase of the ancestor system of T4bP and T4aP could perform both activities — assembly and retraction/disassembly — and that the duplication led to the sub-functionalization of these functions. In support of this model, the T4aP in *Vibrio cholerae* was shown to retract with low speed in the absence of PilT [81]. Interestingly, even though not demonstrated, it was previously suggested that Archaeal-T4P retraction might be required to explain some archaeal communities’ behaviour, like transition from sessile to swimming stages [82]. Overall, there is now a large set of results pointing to the ability of a single ATPase (PilB in T4aP) to make extension and retraction of the pili. Some overlap between the functions of PilT and PilB may also explain why PilT is frequently lost (e.g. in T2SS and ComM). It is tempting to speculate that other independent duplications of PilT/PilB scattered in the phylogenetic tree represent further specialization of the activities of the ATPases.

The increase in the diversity of systems able to retract the pilus opens the possibility that many other pili could be involved in natural transformation, since the pilus role is to attach the DNA and bring it to the cell surface. Actually, a number of arguments are in favour of the hypothesis that the ancestor of the bacterial systems might have been able to facilitate natural transformation. First, ComM, T4bP and T4aP have all been associated with this mechanism and they are among the most basal bacterial systems in the tree. Second, the predicted repertoire of genes of the last common
ancestor of these types of systems could suffice for DNA attachment and retraction towards the cell envelope necessary for transformation. Third, systems that emerged within Archaea are able to facilitate transformation. The Ups pilus in *Sulfolobus* is highly expressed under UV light, mediates cell aggregation and facilitates natural transformation mediated by the independent *ced* system [83, 84]. A Tad locus (Archaea-derived like all Tad) from *Micrococcus luteus* has recently been shown to be required for natural transformation [85]. We identified this system within the Tad clade and its gene repertoire includes one single ATPase. Fourth, it has been previously shown that other key components of the transformation machinery – DprA and ComEC – are widespread across Bacteria [34, 86]. It has been known that the DNA uptake machinery required for transformation is encoded in many bacteria that were never shown to be naturally transformable [87, 88]. For example, *Escherichia coli* and other enterobacteria contain functional T4aP genes coregulated with the competence machinery [70, 89], which are required for natural transformation [90]. If many of the elements of the TFF-SF can pair with this machinery to make a cell naturally transformable, then a vast majority of Bacteria could potentially be naturally transformable. Interestingly ComM and T4aP systems known to be involved in natural transformation tend to cluster in the phylogenetic tree of the concatenate. This suggests that even though many T4P might facilitate transformation, those effectively involved in transformation have evolved certain traits improving this function. One such feature is the presence of two disulphide bonds, which may stabilize the structure and improve retraction force-resistance of *Acinetobacter* [91] and enterobacterial T4aP major pilins [70], or of the competence-specific minor pilins in Neisseria [92].
Our study has revealed how a small set of proteins with different functions evolved to produce different adaptive functions involved in different types of motility, adherence, DNA acquisition and protein secretion. This process involved: 1) Accretion of accessory proteins, such as the secretin and secretin-associated proteins to cope with the existence of an outer membrane in diderms. 2) Duplication and sub-functionalization of key components, such as pilins and ATPases. 3) Gene fission in TadBC. 4) Several cases of gene loss, notably for the IM platform paralogs in Tad and some archaeal systems, for the PilT ATPase, and for the secretin in monoderms. 5) Gene transfer between distant clades, including a rare example of a large macromolecular system (Tad) transferred from Archaea to Bacteria. 6) These events were accompanied by rearrangements of the genetic loci. TFF-SF systems were frequently transferred horizontally, which certainly accelerated their evolution, since genetic exchanges break clonal interference and accelerate innovation processes by recombination [93]. Interestingly, we observed that genetic organization and horizontal transfer were intimately associated, with systems encoded in one single locus showing higher rates of transfer. This may be a general pattern in the molecular evolution of complex systems in Prokaryotes. Strong genetic linkage facilitates positive selection in physically interacting proteins [94], and facilitates the spread of the system to other species [67]. Novel genetic contexts may in turn select for further changes in the systems. Once functions remain a long period of time in the lineage, as seems to be the case for ComM and some T4aP, major adaptive changes in the systems may become rare and rearrangements splitting the initial locus may be eventually fixed. Radical changes among split loci are less likely to be spread by horizontal transfer, unless the recipient cell has already a copy of the system with similar genetic organisation. As a result, a tight association is
established between genetic organization and the ability of a system to evolve and spread by the action of horizontal gene transfer.
Methods

Data

We analysed 5768 complete bacterial and archaeal genomes from NCBI RefSeq (ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/, last accessed in November 2016), representing 2268 species of Bacteria and 168 species of Archaea.

Detection of the TFF super-family

All the systems of the family were detected using MacSyFinder v1.0.2 [46]. This program uses a model to identify a type of system in a DNA sequence (typically a replicon). The model specifies the components of the system, each represented by a HMM profile, and how their systems are organized in the sequence. A full description of the program and the models can be found in: http://macsfinder.readthedocs.io/en/latest/index.html. Briefly, the components can be mandatory, accessory, or forbidden. A system is only validated if it fulfils a quorum of mandatory (MMGR: minimum mandatory genes required) and/or mandatory + accessory genes (MGR: minimum genes required). A locus is excluded if it contains a forbidden gene (these are useful to discriminate between closely related systems with a few specific components). Components are expected to be clustered in the genome at a short distance (defined in the model). Yet, some components can be defined as “loner” and be encoded apart. A component can be set as “exchangeable”, in which case several HMM profiles can be used to detect it (for example the same prepilin peptidase is used by T2SS and T4P in some cases [52-54], and both profiles can be used to identify the prepilin peptidase of each of the two types of systems).
For this work, we could use the models previously proposed by TXSScan [41] for T2SS, T4P, and Tad, but we wished to add a few components that were missing there. For the Archaeal-T4P and for ComM we did not have an initial model. We proceeded in two steps. First, we made conservative initial models that matched the archetypal systems, but sometimes were too strict for some atypical systems. This resulted in a list of systems in which we had strong confidence. However, it also missed many systems. To identify these systems, we built a model called generic that had only the basic building blocks of these systems, with all the homologous proteins set as “exchangeable”. Following the comparative and phylogenetic analyses we re-defined all the models to make less-initial models that could identify a larger number of systems. Both sets of models are made available in Dataset S1. The table with all protein profiles is given in Table S4.

Generic. We defined the model called generic to search for variants of the TFF-SF that include the key components but do not fit the strict definitions of the more specific models (T4aP, T2SS, etc). This model assumes that all the HMM profiles of the same connected component in the profile-profile graph of similarity can fill in for the function. Hence, it can identify very divergent or minimalistic systems as well as chimeric systems with components that match profiles from different types. A cluster of components is classed as generic if it does not fit any of the more specific models and contains an ATPase, an integral membrane platform, and a major pilin. In addition to these three proteins, the generic model also includes the prepilin peptidase and the secretin that are not deemed essential for the system because the
former may be recruited from other systems in the genome [54] and the latter is specific to diderms.

Tad. The *initial model* of Tad followed closely the definitions proposed in [41]. This model includes all the known key components of the system and assumes that they are all encoded together, with the exception of *tadV*, the prepilin peptidase gene that can be encoded apart (loner) and be exchangeable with a number of homologous components from the T4P (*pilD*) and ComM (*comC*).

The *final model* includes *tadD*, *rcpB* and *rcpC* as new accessory components. The prepilin peptidase TadV is no longer exchangeable. The model defines the Tad pilus as multi_loci to allow for the existence of systems encoded in loci scattered in the genome (even if this is very rare).

T4aP. The *initial model* of T4aP was significantly improved from the model in [41]. It is more precise in the annotation of the retraction ATPases (*pilT* et *pilU*), the major (*pilA*) and minor pilins (*pilE*, *pilX* and *fimT*), accounting for five novel components: *pilT*, *pilE*, *pilA* and *fimT* set as mandatory, and *pilU* and *pilX* set as accessory, according to their occurrence in the systems. Accordingly, the number of MGR and MMGR were increased to 8. The prepilin peptidase *pilD* was changed to mandatory, loner and exchangeable with a number of homologous components from the T2SS (*gspO*) and ComM (*comC*) according to its localization that could be found alone in the genome and the fact that the HMM profile of these two genes often have better e-value than the one of the T4aP.

The *final model* of T4P includes *pilW*, *pilX* and *pilY* as new accessory components. We decreased MMGR to 4 and MGR to 5, which fits better the data. We set *fimT*,...
pilM, pilP and pilA as accessory, to help MacSyFinder to search more complete T4P in the genome. We also removed the forbidden genes gspN, tadZ and gspC.

T2SS. The *initial model* of T2SS Tad followed closely the definitions proposed in [41], where we increased the MGR to 8 and set the pre pilin peptidase *gspO* as mandatory, loner and exchangeable with a number of homologous components from the T4aP (*pilD*).

The *final model* was relaxed to identify a larger fraction of the systems. We reduced the MMGR to 4 and the MGR to 5. To fit the data better, we added the pre pilin peptidase of ComM (*comC*) as another exchangeable gene of *gspO*. We set *gspC* gene as mandatory, *gspM* as accessory and *gspD* was set as loner to fit better the data.

ComM. In this *initial model* only the genes that compose the pilus were used in the model without the genes that encode DNA uptake system, such as *comEA*, *comEB* and *comEC* [34, 95-98]. The minimal distance between genes was set to 5. The MMGR was set to 3 and the MGR to 5. And the system was set as multi_loci as some genes are loner. The genes *comC*, *comGA*, *comGB*, *comGC* and *comGD* were set as mandatory and the other ones were set as accessory in relation with their presence in experimentally validated systems, curated with an exploratory phase to know the relative abundance of the genes in the systems (the genes with more than 80% of presence in the detected systems were set as mandatory and the other as accessory). *comC* was set as loner and exchangeable with *pilD* of the T4aP because we found case where the HMM profile of *pilD* was better in e-value than the *comC*,
same for the comGA was set as exchangeable with pilB of T4aP. The genes comB, comK and comX were set as loner because they are often found alone in the genome.

In the final model we changed the number of genes for the MMGR and MGR to 4. We also added the genes encoding the DNA uptake system in the plasma membrane (comEC, comEB, comEA). comEC was set as mandatory and comEB and comEA was set as accessory, and comEC and comEB were set as loner. Changing the gene comGD to accessory allowed us to search for loner gene without changing the MGR number.

Archaeal-T4P. Initial model. We here describe the first tool to detect archaeal T4P. We extracted the sequences from the 200 arCOG families (2014 version, [99]) deemed to be associated to archaeal T4P by Makarova and colleagues [37]. We built HMM profiles for each of these families: sequences were aligned with MAFFT v7.273, linsi algorithm, and the alignment extremities were trimmed based on the results of BMGE with BLOSUM40 matrix [100, 101]. HMM profiles were generated using Hmmer version 3.1b2 [102]. These profiles were compared to profiles of Tad, T4P, and T2SS from TXSScan [41] using HHsearch (e-value and p-value threshold of 0.001 for the family cutoff), in order to define supra-families of components [48]. Core “mandatory” components were defined based on the literature and experimentally validated systems. Other components were set as “accessory”. The arCOG families that matched the same component were defined as exchangeable. The prepilin peptidase was set as a loner gene that can be part of multiple systems. This initial model asked for a minimal number of mandatory genes and overall number of genes of 4. Of 14 experimentally validated systems found in the literature,
10 were detected with this initial model (Table S1). After counting the occurrence of the different arCOG in the detected Archaeal-T4P, we removed those without any occurrence, to reduce the number to 109 arCOG families.

Final model. The number of genes for MMGR and MGR was reduced to 3, which fits better the data.

T4bP. **Final model.** This class includes the R64 thin pilus, toxin-coregulated pilus, bundle-forming pilus, longus pilus and Cof pilus [29]. As we do not have many experimentally validated systems for the T4bP, we used the phylogenetic information of the TFF-SF trees to have a set of T4bP-related proteins to create the HMM profiles and the definition of the model. We created 8 HMM profiles, the MMGR was set to 4 and the MGR to 4. The system was set as multi_loci as some genes are loners. The genes pilD, pilB, pilA, pilC and pilQ were set as mandatory and the other ones were set as accessory, according to their occurrence in the detected systems. The prepilin peptidase pilD was set as loner. The pilA was set as exchangeable with pilA of the T4aP because we found cases where the HMM profile of pilA of T4aP had a better e-value in matches to T4bP than the pilA of T4bP.

MSH. **Final model.** As we do not have many experimentally validated systems for the MSH, we used the phylogenetic information of the TFF-SF system tree to have a set of MSH-related proteins to create the HMM profiles and the definition of the model. We created 20 HMM profiles, the MMGR was set to 3 and the MGR to 4. The system was set as multi_loci as some genes are loner. The genes mshA, mshE, mshG, mshL and mshM were set as mandatory and the others were set as accessory,
according to their occurrence in the detected systems. The gene $mshA$ was set as loner, according to detected systems found in the genomes. The $mshB$ was set as exchangeable with $pilA$ of the T4bP because we found cases where the HMM profile of $pilA$ of T4bP provided better e-values when matching MSH systems than the $mshB$ of MSH. For similar reasons, $mshC$ was set as exchangeable with $fimT$ of T4aP.

Retrieval and construction of protein profiles

We retrieved 37 profiles for T2SS, T4aP and Tad from TXSScan [41]. For two HMM profiles of T4aP that combine the detection of two proteins paralogs (T4P_pilT_pilU and T4P_pilAE), we decided to separate from the original alignment of this profile the sequence of the different proteins to generate five separate HMM profiles (T4P_pilT, T4P_pilU, T4P_pilA, T4P_fimT and T4P_pilE).

To create the HMM profiles, we used the following methodology. For the genes that had few representatives in the experimentally validated dataset, we used BLASTP v 2.5.0+ (default settings, e-value < 10^{-6}) [103] to search for homologs among complete genomes. To remove very closely related proteins, we performed an all-against-all BLASTP v2.5.0+ analysis and clustered the proteins with at least 80% sequence similarity using SiLiX v1.2.10-p1 (default settings) [104]. We selected the one sequence from each family as a representative. We aligned all the representatives using MAFFT v7.273 (--auto, automatic selection of the parameters depending of the size of the alignment, default values for the other parameters) [100]. With SEAVIEW [105], the poorly aligned regions at the extremities were manually
trimmed in the alignment. The trimmed alignment was used to build the HMM profile using hmmbuild (default parameters) from HMMER package v3.1b2 [106].

For the HMM profiles of the final model, we used the sequences of the profiles described above. Using the information of the phylogeny of the systems, we added sequence of systems that was annotated as generic but that clustered in a group of experimentally validated systems. We aligned all the representatives using MAFFT v7.273 (--auto, automatic selection of the parameters depending of the size of the alignment, default values for the other parameters) [100]. With SEAVIEW [105], the poorly aligned regions at the extremities were manually trimmed in the alignment. The trimmed alignment was used to build the HMM profile using hmmbuild (default parameters) from HMMER package v3.1b2 [106].

Phylogenetic inference

Phylogenetic analyses based on protein sequences involved an initial alignment of the sequences using MAFFT v7.273 (“linsi” algorithm) [100]. Multiple alignments were analysed using Noisy v1.5.12 (default parameters) [107] to select the informative sites. We inferred maximum likelihood trees from the curated alignments, or their concatenates, using IQ-TREE v 1.6.7.2 [51] (options -allnni, -nstop 1000, -nm 100000). We evaluated the node supports using the options -bb 1000 for ultra-fast bootstraps and -alrt 1000 for SH-aLRT [108]. The best evolutionary model was selected with ModelFinder (option -MF, BIC criterion) [109]. We used the option -wbtl to conserve all optimal trees and their branch lengths.
The phylogenetic trees of 16S rRNA sequences were built from a dataset including one sequence per genome of 5776 genomes. The 16S sequences were retrieved from genome sequences using RNamer v1.2 [110] (options -S set to bac and the -m to ssu). We aligned separately archaeal and bacterial 16S rRNA using the secondary structure models with SSU_Align v0.1.1 (http://eddylab.org/software/ssu-align/, default options). Poorly aligned positions were masked with ssu-mask. The alignment was trimmed with trimAl v1.4rev15 [111] (-noallgaps, that allow to remove from the alignment regions that are only composed of gaps). The maximum likelihood trees were inferred using IQ-TREE v1.6.7.2 [51] (using the best-selected model SYM+R6 for the archaeal tree and SYM+R10 for the bacterial tree, -bb 10000 ultrafast bootstrap [108], -wbtl to conserve all optimal trees and their branch lengths).

Reference systems dataset

The dataset with all the systems identified in the genomes is too large to make phylogenetic inferences. It also contains many very closely related systems that may provide little additional information to infer the deeper nodes of the tree. Hence, we developed a method to remove redundancy in the dataset while maximising its genetic diversity. The method prioritizes the inclusion of systems that were experimentally validated to facilitate the analysis of the results. The method consists of several sequential steps (Figure S15).

1) We inferred the maximum likelihood tree for each key components’ family as mentioned above and extracted the matrices of patristic distances (using the R function “cophenetic_phylo” of the package ape) between all leaves of the trees. This resulted in a set of distance matrices between systems.
2) When there were multiple copies of family of clade-specific paralogs the system was represented multiple times in the phylogeny and in the distance matrix. To solve the problem and to have only one distance between two systems, we chose the minimal distance between the two systems between paralogs.

3) Each core protein family has a different rate of evolution. To compare them, we normalized each matrix by the sum of all the branch lengths in the tree of the family. We then built a matrix that is the average of all normalized matrices. This average matrix was used to infer a tree with bioNJ [112]. The tree was rooted at midpoint.

4) We used the bioNJ tree to define monophyletic groups of similar systems. We iteratively used the R function "cutree" from the stats package by gradually decreasing or increasing the heights where the tree should be “cut” until we obtained between 200 and 300 groups.

5) At this stage in the method, we had obtained a set of monophyletic groups of closely related systems. To pick the representative system of each group, we had the following order of priorities: i) inclusion of systems validated experimentally, ii) inclusion of the systems with fewest paralogs. In some rare cases, a given type of systems (e.g., T2SS) had less than 20 instances after this procedure. In this case, and to increase the statistical power of the analyses, we modified the height of the "cutree" function for the specific subtree of the systems lacking representative to obtain a minimum of 20 systems for each group if possible. The systems selected to make the phylogeny are named "representative systems".
6) We removed some complex systems from the reference ones (6/39 Archaeal-
T4P and 10/101 generic) because they had two paralogs of all the genes or
were punctual generic systems with components from different types (for
example: T2SS_gspE and T4P_pilB).

De-replicated dataset

To reduce the number of paralogs in each system, we used the following method
(Fig. S16).

1) We inferred the maximum likelihood tree for each key components’ family
of the representative dataset as mentioned above and extracted the
matrices of patristic distances (using the R function “cophenetic_phylo” of
the package ape) between all leaves of the trees. This resulted in a set of
distance matrices between proteins.

2) For each system with more than one copy per gene, we found the nearest
system based on patristic distances extracted from the ATPase or the
integral membrane platform tree (depending on the number of copies of
the ATPase), which had only one copy of this gene.

3) We use this nearest system to choose the copy of the duplicate gene with
the smallest distance to its homolog in this nearest system.

4) In the end, each system is represented by a single instance of each of the
core proteins and we called this set of selected sequences and systems
the “dereplicated dataset”.

Concatenate trees and ML topology tests

The Tad pilus and T4P both show cases of system-wide duplications: some of their gene families harbour paralogs issued from ancestral duplications, as supported from individual gene trees analyses. That is the case of the IM-platform for the Tad pilus (TadB and TadC are paralogs derived from an ancestral duplication) and of the ATPase for the T4P (PilB and PilT/PilU are paralogs). Candidate systems’ trees were generated based on the concatenation of all possible combinations of putative sets of orthologs, i.e., each paralog was picked one after the other to represent their system in phylogenetic analyses. For instance, for the IM-platform, a first set of orthologs would consist of TadB sequences for Tad systems together with IM-platform sequences from all other systems, and another would consist of TadC sequences for Tad systems together with IM-platform sequences from all other systems. For the ATPase, we decided to only focus on the functional orthologous gene, the PilB sequences for T4aP systems.

Therefore, there were two possible combinations of the mandatory genes to generate concatenates of the ATPase, IM-platform. In total, we generated two concatenates, and used IQ-Tree to compute maximum-likelihood phylogenetic trees, using partition models (option -spp, the location of the genes in the concatenation define the partitions, the model for each partition corresponds to the model found previously for the individual analyses).

In order to assess the congruence between the concatenate trees and the individual protein trees, a maximum-likelihood topology test (AU for “Approximately Unbiased”, [59] was performed using IQ-Tree. Each protein alignment was used as an input to assess the congruence of its ML tree with those of the ten concatenate trees. The parameters of the model were estimated on the initial parsimony tree (option -n 0).
correction for multiple tests was applied to the p-values (sequential Bonferroni per batch of ten concatenate trees).

Analysis of the neighborhood of the systems

We searched for genes systematically associated with a given type of systems by analysing the neighborhood of each system. For each locus of a system we identified its first gene (position X_{First}) and last gene (position X_{End}). We then took all the genes in a neighborhood of 10 (i.e. between $X_{\text{First}-10}$ and $X_{\text{End}+10}$). When a system was encoded in multiple loci in the genome, each locus was analysed in the same way. We then clustered all these proteins by sequence similarity using BLASTP v. 2.5.0+ (default settings, e-value < 10^{-6}) [103] and Silix v1.2.10-p1 (minimal percentage of identity to accept blast hits for building families at 0.5) [104]. We kept the clusters if they had proteins represented in systems of different leaves in the tree. The proteins of each cluster were aligned with MAFFT and used to build HMM protein profiles as described above.

To annotate the protein clusters we used two methods. First, we searched for similarities of their HMM profiles with the profiles used to identify the TFF-SF components using HHsearch (v3.0.3, p-value < 10^{-5}). Second, we searched for homologies between the remaining clusters and the profiles of the PFAM database (v31.0, same method).

To test if a given cluster is significantly positively associated with a given type of system, we made the following analysis. We counted the occurrences of the elements of the cluster associated with a given type and made a contingency table
where the columns are the type versus all other types and the lines are presence or absence of an element from the cluster. To test statistical significance, we used a Fisher's exact test on the contingency table. Since this implicates many statistical tests – one test per type per cluster and this for many clusters and several types – we adjusted the p-values for multiple tests using the Bonferroni correction. We kept the association between a given cluster and a given type of system if the number of elements in the cluster neighbouring systems of that type was higher than expected by chance and if the corrected p-value < .0.05. The resulting matrix of presence/absence for genes positively associated with the systems can be found in the Table S5.

Inferring transfers of systems

We took the phylogenetic tree of all systems and picked the sub-trees of each type of system. For each of these trees, we pruned the 16S rRNA tree such that it only includes species present in the system tree. We used ALE v0.4 (default parameters) a reconciliation program which introduces events of duplications, transfers and losses (DTL) in a gene tree, and amalgamate most frequent subtrees in a sample distribution of the gene tree to improve it, and make it congruent with the species (reference) tree in a maximum-likelihood framework [113]. Using ALE we computed a number of DTL events introduced in each system's trees given 16S rRNA tree as a reference. We then collected the number of transfers for each type of system and divided this number by the number of branches in the sub-trees of each type of system to have the proportion of transfers.
Analysis of genetic organisation

We identified all pairs of contiguous components of the systems (for a gene X_p in the
cluster we look at the genes X_{p-1} and X_{p+1}). We constructed an adjacency matrix
using this information, and we used it to construct a graph of the genetic organisation
of the systems. We normalized the association between two genes to represent two
different types of information:

1) To know how frequently two genes are contiguous, we divided the number of
 contiguous occurrences by the number of occurrences of the rarest of the two
genomes. This corresponds to edges’ width in Fig 5.

2) To know how many times the contiguity is found in the system, we divided the
 number of times the contiguity is observed by the number of systems
detected. This corresponds to edges’ colour in Fig 5.

Data and software availability

The data produced by these analyses are available at:
https://gitlab.pasteur.fr/rdenise/diversification-of-tff-sf-data, accessed March 2019.

Author contributions:

Conceptualization: RD, SA, EPCR
Data curation: RD
Funding acquisition: RD, EPCR
Investigation: RD, SA, EPCR
Methodology: RD, SA, EPCR
Software: RD, SA

Supervision: SA, EPCR

Writing – original draft: RD, SA, EPCR

Writing – review & editing: RD, SA, EPCR

Funding

Doctoral school Complexité du vivant (ED515) (contract number 2449/2016).

INCEPTION project (PIA/ANR-16-CONV-0005).

Acknowledgements

We are much indebted to Olivera Francetic for comments, encouragement and guidance during the development of this study. We thank Simonetta Gribaldo for comments and suggestions on a previous version of the manuscript, Bertrand Néron for continuous support of MacSyFinder. We also thank Panagiotis Adam for providing a comprehensive phylogenetic tree of the archaeal and bacterial domains to be used as support for Figs. 4, S2 and S11.
References

1. Gould SJ, Vrba ES. Exaptation - a Missing Term in the Science of Form. Paleobiology. 1982;8(1):4-15.
2. Pal C, Papp B, Lercher MJ. An integrated view of protein evolution. Nat Rev Genet. 2006;7:337-48.
3. Jacob F. Evolution and tinkering. Science. 1977;196(4295):1161-6.
4. Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature of bacterial innovation. Nature. 2000;405(6784):299-304.
5. Gogarten JP, Townsend JP. Horizontal gene transfer, genome innovation and evolution. Nat Rev Microbiol. 2005;3(9):679-87.
6. Jain R, Rivera MC, Moore JE, Lake JA. Horizontal gene transfer accelerates genome innovation and evolution. Mol Biol Evol. 2003;20(10):1598-602.
7. Szappanos B, Fritzemeier J, Csorgo B, Lazar V, Lu X, Fekete G, et al. Adaptive evolution of complex innovations through stepwise metabolic niche expansion. Nat Commun. 2016;7:11607.
8. Liu R, Ochman H. Stepwise formation of the bacterial flagellar system. Proc Natl Acad Sci U S A. 2007;104(17):7116-21.
9. Lynch M, Conery JS. The origins of genome complexity. Science. 2003;302(5649):1401-4.
10. Rocha EPC. Neutral Theory, Microbial Practice: Challenges in Bacterial Population Genetics. Mol Biol Evol. 2018;35(6):1338-47.
11. Abby SS, Rocha EP. The non-flagellar type III secretion system evolved from the bacterial flagellum and diversified into host-cell adapted systems. PLoS Genet. 2012;8(9):e1002983.
12. Guglielmini J, de la Cruz F, Rocha EP. Evolution of conjugation and type IV secretion systems. Mol Biol Evol. 2013;30(2):315-31.
13. Pell LG, Kanelis V, Donaldson LW, Howell PL, Davidson AR. The phage lambda major tail protein structure reveals a common evolution for long-tailed phages and the type VI bacterial secretion system. Proc Natl Acad Sci U S A. 2009;106(11):4160-5.
14. Leiman PG, Basler M, Ramagopal UA, Bonanno JB, Sauder JM, Pukatzki S, et al. Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci U S A. 2009;106(11):4154-9.
15. Peabody CR, Chung YJ, Yen MR, Vidal-Ingigliardi D, Pugsley AP, Saier MH, Jr. Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella. Microbiology. 2003;149(Pt 11):3051-72.
16. Jarrell KF, Albers SV. The archaellum: an old motility structure with a new name. Trends Microbiol. 2012;20(7):307-12.
17. Berry JL, Pelicic V. Exceptionally widespread nanomachines composed of type IV pilins: the prokaryotic Swiss Army knives. FEMS Microbiol Rev. 2015;39(1):134-54.
18. Gold V, Kudryashev M. Recent progress in structure and dynamics of dual-membrane-spanning bacterial nanomachines. Curr Opin Struct Biol. 2016;39:1-7.

19. Korotkov KV, Sandkvist M, Hol WG. The type II secretion system: biogenesis, molecular architecture and mechanism. Nat Rev Microbiol. 2012;10(5):336-51.

20. Korotkov KV, Gonen T, Hol WG. Secretins: dynamic channels for protein transport across membranes. Trends Biochem Sci. 2011;36(8):433-43.

21. Jouravleva EA, McDonald GA, Marsh JW, Taylor RK, Boesman-Finkelstein M, Finkelstein RA. The Vibrio cholerae mannose-sensitive hemagglutinin is the receptor for a filamentous bacteriophage from V. cholerae O139. Infect Immun. 1998;66(6):2535-9.

22. Marsh JW, Taylor RK. Genetic and transcriptional analyses of the Vibrio cholerae mannose-sensitive hemagglutinin type 4 pilus gene locus. J Bacteriol. 1999;181(4):1110-7.

23. Fitzgerald LA, Petersen ER, Ray RI, Little BJ, Cooper CJ, Howard EC, et al. Shewanella oneidensis MR-1 Msh pilin proteins are involved in extracellular electron transfer in microbial fuel cells. Process Biochemistry. 2012;47(1):170-4.

24. Wairuri CK, van der Waals JE, van Schalkwyk A, Theron J. Ralstonia solanacearum needs Flp pili for virulence on potato. Mol Plant Microbe Interact. 2012;25(4):546-56.

25. Hirst TR, Sanchez J, Kaper JB, Hardy SJ, Holmgren J. Mechanism of toxin secretion by Vibrio cholerae investigated in strains harboring plasmids that encode heat-labile enterotoxins of Escherichia coli. Proc Natl Acad Sci U S A. 1984;81(24):7752-6.

26. Sikora AE, Zielke RA, Lawrence DA, Andrews PC, Sandkvist M. Proteomic analysis of the Vibrio cholerae type II secretome reveals new proteins, including three related serine proteases. J Biol Chem. 2011;286(19):16555-66.

27. Cadoret F, Ball G, Douzi B, Voulhoux R. Txc, a new type II secretion system of Pseudomonas aeruginosa strain PA7, is regulated by the TtsS/TtsR two-component system and directs specific secretion of the CbpE chitin-binding protein. J Bacteriol. 2014;196(13):2376-86.

28. DebRoy S, Dao J, Soderberg M, Rossier O, Cianciotto NP, Legionella pneumophila type II secretome reveals unique exoproteins and a chitinase that promotes bacterial persistence in the lung. Proc Natl Acad Sci U S A. 2006;103(50):19146-51.

29. Roux N, Spagnolo J, de Bentzmann S. Neglected but amazingly diverse type IVb pili. Res Microbiol. 2012;163(9-10):659-73.

30. Mazariiego-Espinosa K, Cruz A, Ledesma MA, Ochoa SA, Xicohtencatl-Cortes J. Longus, a type IV pilus of enterotoxigenic Escherichia coli, is involved in adherence to intestinal epithelial cells. J Bacteriol. 2010;192(11):2791-800.

31. Skerker JM, Berg HC. Direct observation of extension and retraction of type IV pili. Proc Natl Acad Sci U S A. 2001;98(12):6901-4.

32. Kachlany SC, Planet PJ, Bhattacharjee MK, Kollia E, DeSalle R, Fine DH, et al. Nonspecific adherence by Actinobacillus actinomycetemcomitans requires genes widespread in bacteria and archaea. J Bacteriol. 2000;182(21):6169-76.
33. Wagner A, Whitaker RJ, Krause DJ, Heilers JH, van Wolferen M, van der Does C, et al. Mechanisms of gene flow in archaea. Nat Rev Microbiol. 2017;15(8):492-501.

34. Johnston C, Martin B, Fichant G, Polard P, Claverys JP. Bacterial transformation: distribution, shared mechanisms and divergent control. Nat Rev Microbiol. 2014;12(3):181-96.

35. Patenge N, Berendes A, Engelhardt H, Schuster SC, Oesterhelt D. The fla gene cluster is involved in the biogenesis of flagella in Halobacterium salinarum. Mol Microbiol. 2001;41(3):653-63.

36. Ng SY, Chaban B, Jarrell KF. Archaeal flagella, bacterial flagella and type IV pili: a comparison of genes and posttranslational modifications. J Mol Microbiol Biotechnol. 2006;11(3-5):167-91.

37. Makarova KS, Koonin EV, Albers SV. Diversity and Evolution of Type IV pili Systems in Archaea. Front Microbiol. 2016;7:667.

38. Pelicic V. Type IV pili: e pluribus unum? Mol Microbiol. 2008;68(4):827-37.

39. Tomich M, Planet PJ, Figurski DH. The tad locus: postcards from the widespread colonization island. Nat Rev Microbiol. 2007;5(5):363-75.

40. Pugsley AP. The complete general secretory pathway in gram-negative bacteria. Microbiol Rev. 1993;57(1):50-108.

41. Abby SS, Cury J, Guglielmini J, Neron B, Touchon M, Rocha EP. Identification of protein secretion systems in bacterial genomes. Sci Rep. 2016;6:23080.

42. Planet PJ, Kachlany SC, DeSalle R, Figurski DH. Phylogeny of genes for secretion NTPases: identification of the widespread tadA subfamily and development of a diagnostic key for gene classification. Proc Natl Acad Sci U S A. 2001;98(5):2503-8.

43. Iyer LM, Makarova KS, Koonin EV, Aravind L. Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging. Nucleic Acids Res. 2004;32(17):5260-79.

44. Desmond E, Brochier-Armanet C, Gribaldo S. Phylogenomics of the archaeal flagellum: rare horizontal gene transfer in a unique motility structure. BMC Evol Biol. 2007;7:106.

45. Ellison CK, Kan J, Dillard RS, Kysela DT, Ducret A, Berne C, et al. Obstruction of pilus retraction stimulates bacterial surface sensing. Science. 2017;358(6362):535-8.

46. Abby SS, Neron B, Menager H, Touchon M, Rocha EP. MacSyFinder: a program to mine genomes for molecular systems with an application to CRISPR-Cas systems. PLoS ONE. 2014;9(10):e110726.

47. Abby SS, Rocha EPC. Identification of Protein Secretion Systems in Bacterial Genomes Using MacSyFinder. Methods Mol Biol. 2017;1615:1-21.

48. Soding J. Protein homology detection by HMM-HMM comparison. Bioinformatics. 2005;21(7):951-60.
49. Xu Q, Christen B, Chiu HJ, Jaroszewski L, Klock HE, Knuth MW, et al. Structure of the pilus assembly protein TadZ from Eubacterium rectale: implications for polar localization. Mol Microbiol. 2012;83(4):712-27.

50. Perez-Cheeks BA, Planet PJ, Sarkar IN, Clock SA, Xu Q, Figurski DH. The product of tadZ, a new member of the parA/minD superfamily, localizes to a pole in Aggregatibacter actinomycetemcomitans. Mol Microbiol. 2012;83(4):694-711.

51. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32(1):268-74.

52. Nunn DN, Lory S. Product of the Pseudomonas aeruginosa gene pilD is a prepilin leader peptidase. Proc Natl Acad Sci U S A. 1991;88(8):3281-5.

53. Pepe CM, Eklund MW, Strom MS. Cloning of an Aeromonas hydrophila type IV pilus biogenesis gene cluster: complementation of pilus assembly functions and characterization of a type IV leader peptidase/N-methyltransferase required for extracellular protein secretion. Mol Microbiol. 1996;19(4):857-69.

54. Marsh JW, Taylor RK. Identification of the Vibrio cholerae type 4 prepilin peptidase required for cholera toxin secretion and pilus formation. Mol Microbiol. 1998;29(6):1481-92.

55. Sherratt DJ, Arciszewska LK, Crozat E, Graham JE, Grainge I. The Escherichia coli DNA translocase FtsK. Biochem Soc Trans. 2010;38(2):395-8.

56. Nolivos S, Touzain F, Pages C, Coddeville M, Rousseau P, El Karoui M, et al. Co-evolution of segregation guide DNA motifs and the FtsK translocase in bacteria: identification of the atypical Lactococcus lactis KOPS motif. Nucleic Acids Res. 2012;40(12):5535-45.

57. Iwabe N, Kuma K, Hasegawa M, Osawa S, Miyata T. Evolutionary relationship of archaeabacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc Natl Acad Sci U S A. 1989;86(23):9355-9.

58. Gogarten JP, Kibak H, Dittrich P, Taiz L, Bowman EJ, Bowman BJ, et al. Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. Proc Natl Acad Sci U S A. 1989;86(17):6661-5.

59. Shimodaira H. An approximately unbiased test of phylogenetic tree selection. Syst Biol. 2002;51(3):492-508.

60. Nair DB, Uchida K, Aizawa S, Jarrell KF. Genetic analysis of a type IV pili-like locus in the archaeon Methanococcus maripaludis. Arch Microbiol. 2014;196(3):179-91.

61. Clock SA, Planet PJ, Perez BA, Figurski DH. Outer membrane components of the Tad (tight adherence) secreton of Aggregatibacter actinomycetemcomitans. J Bacteriol. 2008;190(3):980-90.

62. Nguyen BD, Valdivia RH. Virulence determinants in the obligate intracellular pathogen Chlamydia trachomatis revealed by forward genetic approaches. Proc Natl Acad Sci U S A. 2012;109(4):1263-8.

63. Wang X, Han Q, Chen G, Zhang W, Liu W. A Putative Type II Secretion System Is Involved in Cellulose Utilization in Cytophaga hutchisonii. Front Microbiol. 2017;8:1482.
64. Zeng L, Zhang Y, Zhu Y, Yin H, Zhuang X, Zhu W, et al. Extracellular proteome analysis of Leptospira interrogans serovar Lai. OMICS. 2013;17(10):527-35.

65. Achaz G, Rocha EP, Netter P, Coissac E. Origin and fate of repeats in bacteria. Nucleic Acids Res. 2002;30(13):2987-94.

66. Planet PJ, Kachlany SC, Fine DH, Desalle R, Figurski DH. The Widespread Colonization Island of Actinobacillus actinomycetemcomitans. Nat Genet. 2003;34(2):193-8.

67. Lawrence JG, Roth JR. Selfish operons: horizontal transfer may drive the evolution of gene clusters. Genetics. 1996;143(4):1843-60.

68. El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019;47(D1):D427-D32.

69. Iwata M, Imamura H, Stambouli E, Ikeda C, Tamakoshi M, Nagata K, et al. Crystal structure of a central stalk subunit C and reversible association/dissociation of vacuole-type ATPase. Proc Natl Acad Sci U S A. 2004;101(1):59-64.

70. Luna Rico A, Zheng W, Petiot N, Egelman EH, Francetic O. Functional reconstitution of the type IVa pilus assembly system from enterohaemorrhagic Escherichia coli. Mol Microbiol. 2018.

71. Nivaskumar M, Santos-Moreno J, Malosse C, Nadeau N, Chamot-Rooke J, Tran Van Nhu E, et al. Pseudopilin residue E5 is essential for recruitment by the type 2 secretion system assembly platform. Mol Microbiol. 2016;101(6):924-41.

72. Goosens VJ, Busch A, Georgiadou M, Castagnini M, Forest KT, Waksman G, et al. Reconstitution of a minimal machinery capable of assembling periplasmic type IV pili. Proc Natl Acad Sci U S A. 2017;114(25):E4978-E86.

73. Raymann K, Brochier-Armanet C, Gribaldo S. The two-domain tree of life is linked to a new root for the Archaea. Proc Natl Acad Sci U S A. 2015;112(21):6670-5.

74. O'Connell Motherway M, Zomer A, Leahy SC, Reunanen J, Bottacini F, Claesson MJ, et al. Functional genome analysis of Bifidobacterium breve UCC2003 reveals type IVb tight adherence (Tad) pili as an essential and conserved colonization factor. Proc Natl Acad Sci U S A. 2011;108(27):11217-22.

75. Giltner CL, Nguyen Y, Burrows LL. Type IV pilin proteins: versatile molecular modules. Microbiol Mol Biol Rev. 2012;76(4):740-72.

76. Chang YW, Rettberg LA, Treuner-Lange A, lwasa J, Sogaard-Andersen L, Jensen GJ. Architecture of the type IVa pilus machine. Science. 2016;351(6278):aad2001.

77. Giron JA, Gomez-Duarte OG, Jarvis KG, Kaper JB. Longus pilus of enterotoxigenic Escherichia coli and its relatedness to other type-4 pili--a minireview. Gene. 1997;192(1):39-43.

78. Kim SR, Komano T. The plasmid R64 thin pilus identified as a type IV pilus. J Bacteriol. 1997;179(11):3594-603.

79. Antunes LC, Poppleton D, Klingl A, Criscuolo A, Dupuy B, Brochier-Armanet C, et al. Phylogenomic analysis supports the ancestral presence of LPS-outer membranes in the Firmicutes. Elife. 2016;5.
80. Nickerson NN, Abby SS, Rocha EP, Chami M, Pugsley AP. A Single Amino Acid Substitution Changes the Self-Assembly Status of a Type IV Piliation Secretin. J Bacteriol. 2012;194(18):4951-8.

81. Ellison CK, Dalia TN, Vidal Ceballos A, Wang JC, Biais N, Brun YV, et al. Retraction of DNA-bound type IV competence pili initiates DNA uptake during natural transformation in Vibrio cholerae. Nat Microbiol. 2018;3(7):773-80.

82. Pohlschroder M, Esquivel RN. Archaeal type IV pili and their involvement in biofilm formation. Front Microbiol. 2015;6:190.

83. van Wolferen M, Wagner A, van der Does C, Albers SV. The archaeal Ced system imports DNA. Proc Natl Acad Sci U S A. 2016;113(9):2496-501.

84. Frols S, Ajon M, Wagner M, Teichmann D, Zolghadr B, Folea M, et al. UV-inducible cellular aggregation of the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by pili formation. Mol Microbiol. 2008;70(4):938-52.

85. Angelov A, Bergen P, Nadler F, Horning P, Lichev A, Ubelacker M, et al. Novel Fip pilus biogenesis-dependent natural transformation. Front Microbiol. 2015;6:84.

86. Pimentel ZT, Zhang Y. Evolution of the Natural Transformation Protein, ComEC, in Bacteria. Front Microbiol. 2018;9:2980.

87. Claverys J-P, Martin B. Bacterial ‘competence’ genes: signatures of active transformation, or only remnants? Trends in Microbiology. 2003;11(4):161-5.

88. Oliveira PH, Touchon M, Rocha EP. The interplay of restriction-modification systems with mobile genetic elements and their prokaryotic hosts. Nucleic Acids Res. 2014;42(16):10618-31.

89. Sinha S, Cameron AD, Redfield RJ. Sxy induces a CRP-S regulon in Escherichia coli. J Bacteriol. 2009;191(16):5180-95.

90. Sinha S, Redfield RJ. Natural DNA uptake by Escherichia coli. PLoS ONE. 2012;7(4):e35620.

91. Ronish LA, Lillehoj E, Fields JK, Sundberg EJ, Piepenbrink KH. The structure of PilA from Acinetobacterbaumannii AB5075 suggests a mechanism for functional specialization in Acinetobacter type IV pili. J Biol Chem. 2019;294(1):218-30.

92. Cehovin A, Simpson PJ, McDowell MA, Brown DR, Noschese R, Pallett M, et al. Specific DNA recognition mediated by a type IV pilin. Proc Natl Acad Sci U S A. 2013;110(8):3065-70.

93. Cooper TF. Recombination speeds adaptation by reducing competition between beneficial mutations in populations of Escherichia coli. PLoS Biol. 2007;5(9):e225.

94. Stahl FW, Murray NE. The evolution of gene clusters and genetic circularity in microorganisms. Genetics. 1966;53(3):569-76.

95. Provvedi R, Dubeau D. ComEA is a DNA receptor for transformation of competent Bacillus subtilis. Mol Microbiol. 1999;31(1):271-80.
96. Laurenceau R, Pehau-Arnaudet G, Baconnais S, Gault J, Malosse C, Dujeancourt A, et al. A type IV pilus mediates DNA binding during natural transformation in Streptococcus pneumoniae. PLoS Pathog. 2013;9(6):e1003473.

97. Burrows LL. Pseudomonas aeruginosa twitching motility: type IV pili in action. Annu Rev Microbiol. 2012;66:493-520.

98. Craig L, Li J. Type IV pili: paradoxes in form and function. Curr Opin Struct Biol. 2008;18(2):267-77.

99. Makarova KS, Wolf YI, Forterre P, Prangishvili D, Krupovic M, Koonin EV. Dark matter in archaeal genomes: a rich source of novel mobile elements, defense systems and secretory complexes. Extremophiles. 2014;18(5):877-93.

100. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772-80.

101. Criscuolo A, Gribaldo S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol. 2010;10:210.

102. Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 2011;39(Web Server issue):W29-37.

103. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421.

104. Miele V, Penel S, Duret L. Ultra-fast sequence clustering from similarity networks with SiLiX. BMC Bioinformatics. 2011;12:116.

105. Gouy M, Guindon S, Gascuel O. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol. 2010;27(2):221-4.

106. Eddy SR. Accelerated Profile HMM Searches. PLoS Comput Biol. 2011;7(10):e1002195.

107. Dress AW, Flamm C, Fritzsch G, Grunewald S, Kruspe M, Prohaska SJ, et al. Noisy: identification of problematic columns in multiple sequence alignments. Algorithms Mol Biol. 2008;3:7.

108. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol Biol Evol. 2018;35(2):518-22.

109. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14(6):587-9.

110. Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007;35(9):3100-8.

111. Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25(15):1972-3.

112. Gascuel O. BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol. 1997;14(7):685-95.
113. Szollosi GJ, Davin AA, Tannier E, Daubin V, Boussau B. Genome-scale phylogenetic analysis finds extensive gene transfer among fungi. Philos Trans R Soc Lond B Biol Sci. 2015;370(1678):20140335.
Figures and legends

Fig 1. Schematic representation of the different systems and associated genes.

Homologous components are represented in the same colour. The table below the drawing indicates the colour code and the name of the different components in each type of system. SDA stand for secretin-dynamic associated and IM stand for integral membrane. For the Archaeal-T4P the representation of the systems is based on the representation of the Archaellum and the genes mentioned in the legend are the names of the genes used in the literature not the arCOG names.
Fig 2. Results of the HMM-HMM alignments (HHSearch) between all the components of the TFF-SF.

The colour of the nodes represents the known or predicted function of the protein. The outline of the node is proportional to the presence of the profile in the detected systems: the thinner the outline is, the less frequent the profile is found in the systems. The size of the outlines is proportional to the frequency of the profiles in the detected systems (thicker outlines indicate higher frequencies).
Fig 3. Rooted phylogeny of the TFF-SF.

The tree was built with the concatenate of the IM platform (using TadC) and the AAA+ ATPase (using PilB). The colour of the label of the leaves indicates the taxonomic group of the species. The branches are in green if the Ultra-Fast bootstrap is >95%. The supports of the significant nodes are indicated in text. The different coloured strips
indicate the classification of the systems with the MacSyFinder annotation (with the initial model and with the final one) and the annotation of the systems in the literature. The systems known to be implicated in natural transformation are indicated in dark purple. Known sub-types of Archaeal-T4P are indicated by a text in red. The tree was built using IQ-Tree, 10000 replicates of UF-Boot, with a partition model.

![Taxonomic distribution of the systems in Bacteria and Archaea with the final models.](image)
Cells indicate the number of genomes with at least one detected system. The cell’s colour gradient represents the proportion of genomes with at least one system in the clade. The bar plot shows the total number of detected systems. The bars are separated in two categories: Alpha-, Beta-, Gamma-proteobacteria versus the other clades. The cladogram symbolizes approximated relationships between the bacterial and archaeal taxa analysed in this study.

Fig 5. Genetic organization of the detected systems.

For each detected system (those indicated in Fig. 4), the edge width represents the number of times the two genes are contiguous divided by the number of times the rarest gene is present in the system. The colour of the edge represents the number of times the two genes are contiguous in the system divided by the number of systems.
Fig 6. Association between organization and horizontal transfer of the different systems.

For each system, we compared the subtree of the systems with the 16S tree of the same species using ALE v0.4 [113] to obtain the proportion of transfers. We also show the proportion of systems in single locus and the proportion of systems on chromosomes (the others being found on plasmids).
Fig 7. Evolutionary scenario of the TFF-SF.

The tree was based on the information of the trees of the concatenate and simplified to highlight the key clades and events. The colour of the triangles indicates the type of the systems. Each vertical bar on the branch indicates a numbered potential evolutionary event, whose details are specified under the corresponding number in the list “Key events”. The hypotheses for the composition of the last common ancestor of the TFF-SF are indicated at the root, and the distant homologs of these systems are indicated in the list “Homologous of ancestral components”, where homology was observed by sequence (“aa”) or structural (“struct”) similarity.
Supplemental Fig legends

Fig S1. Representation of the initial and final models of the systems. Homologous genes are indicated by a same colour. Mandatory genes are indicated with a full outline, accessory genes are indicated with a dash outline and forbidden genes are indicated with a red cross. The exchangeable genes are indicated by an arrow. The loner genes are indicated by a star below the gene. For the Archaeal-T4P the aCXXX name indicates that all the homologous arCOGs for this function (they are set as exchangeable). The empty box in the genetic model indicates that the genes are exchangeable with all the homologous genes of the other models.

Fig S2. Taxonomic distribution of the systems in Bacteria and Archaea with the initial models. Cells indicate the number of genomes with at least one detected system. The cell’s colour gradient represents the proportion of genomes with at least one system in the clade. The bar plot shows the total number of detected systems. The bars are separated in two categories: Alpha-, Beta-, Gamma-proteobacteria versus the other clades. The cladogram symbolizes approximated relationships between the bacterial and archaeal taxa analysed in this study.

Fig S3. Rooted phylogeny of the ATPase. The colour of the label of the leaves indicates the taxonomic group of the species. The different coloured strips indicate the classification of the systems with the MacSyFinder annotation (with the initial model and with the final one) and the annotation of the systems in the literature. The systems known to be implicated in natural transformation are indicated in dark purple. Known
sub-types of Archaeal-T4P are indicate by a text in red. The annotation of the domains of the proteins using are also added. The tree was built using IQ-Tree, 10000 replicates of UF-Boot, model LG+10.

Fig S4. Rooted phylogeny of the ATPase with FtsK as external group. The colour of the label of the leaves indicates the taxonomic group of the species. The different coloured strips indicate the classification of the systems with the MacSyFinder annotation (with the initial model and with the final one) and the annotation of the systems in the literature. The systems known to be implicated in natural transformation are indicated in dark purple. Known sub-types of Archaeal-T4P are indicate by a text in red. The annotation of the domains of the proteins using are also added. The tree was built using IQ-Tree, 10000 replicates of UF-Boot, model LG+R10.

Fig S5. Rooted phylogeny of the ATPase with FtsK and virB4 as external group. The colour of the label of the leaves indicates the taxonomic group of the species. The different coloured strips indicate the classification of the systems with the MacSyFinder annotation (with the initial model and with the final one) and the annotation of the systems in the literature. The systems known to be implicated in natural transformation are indicated in dark purple. Known sub-types of Archaeal-T4P are indicate by a text in red. The annotation of the domains of the proteins using are also added. The tree was built using IQ-Tree, 10000 replicates of UF-Boot, model LG+R9.

Fig S6. Rooted phylogeny of the integral membrane platform. The colour of the label of the leaves indicates the taxonomic group of the species. The different coloured
strips indicate the classification of the systems with the MacSyFinder annotation (with
the initial model and with the final one) and the annotation of the systems in the
literature. The systems known to be implicated in natural transformation are indicated
in dark purple. Known sub-types of Archaeal-T4P are indicate by a text in red. The
annotation of the domains of the proteins using are also added. The tree was built
using IQ-Tree, 10000 replicates of UF-Boot, model LG+F+R8.

Fig S7. Rooted phylogeny of the major pilin. The colour of the label of the leaves
indicates the taxonomic group of the species. The different coloured strips indicate the
classification of the systems with the MacSyFinder annotation (with the initial model
and with the final one) and the annotation of the systems in the literature. The systems
known to be implicated in natural transformation are indicated in dark purple. Known
sub-types of Archaeal-T4P are indicate by a text in red. The annotation of the domains
of the proteins using are also added. The tree was built using IQ-Tree, 10000 replicates
of UF-Boot, model LG+F+R7.

Fig S8. Unrooted phylogeny of the prepilin peptidase. The colour of the label of the
leaves indicates the taxonomic group of the species. The different coloured strips
indicate the classification of the systems with the MacSyFinder annotation (with the
initial model and with the final one) and the annotation of the systems in the literature.
The systems known to be implicated in natural transformation are indicated in dark
purple. Known sub-types of Archaeal-T4P are indicate by a text in red. The annotation
of the domains of the proteins using are also added. The tree was built using IQ-Tree,
10000 replicates of UF-Boot, model VT+F+R6.
Fig S9. Unrooted phylogeny of the secretin. The colour of the label of the leaves indicates the taxonomic group of the species. The different coloured strips indicate the classification of the systems with the MacSyFinder annotation (with the initial model and with the final one) and the annotation of the systems in the literature. The systems known to be implicated in natural transformation are indicated in dark purple. Known sub-types of Archaeal-T4P are indicate by a text in red. The annotation of the domains of the proteins using are also added. The tree was built using IQ-Tree, 10000 replicates of UF-Boot, model LG+F+R8.

Fig S10. Rooted phylogeny of the TFF-SF. The was built with the concatenate of the IM platform (using TadB) and the AAA+ ATPase (using PilB). The colour of the label of the leaves indicates the taxonomic group of the species. The different coloured strips indicate the classification of the systems with the MacSyFinder annotation (with the initial model and with the final one) and the annotation of the systems in the literature. The systems known to be implicated in natural transformation are indicated in dark purple. Known sub-types of Archaeal-T4P are indicate by a text in red. The tree was built using IQ-Tree, 10000 replicates of UF-Boot, with a partition model.

Fig S11. Taxonomic distribution of the systems in Bacteria and Archaea using the phylogenetic clustering to annotate generic systems. Cells indicate the number of genomes with at least one detected system. The cell’s colour gradient represents the proportion of genomes with at least one system in the clade. The bar plot shows the total number of detected systems. The bars are separated in two
categories: Alpha-, Beta-, Gamma-proteobacteria versus the other clades. The cladogram symbolizes approximated relationships between the bacterial and archaeal taxa analysed in this study.

Fig S12. Genetic organization of the Archaeal-T4P in genomes. The edge width represents the number of times the two genes are contiguous divided by the number of times the rarest gene is present in the system. The colour of the edge represents the number of times the two genes are contiguous in the system divided by the number of systems.

Fig S13. Genetic organization of the Archaellum in genomes. The edge width represents the number of times the two genes are contiguous divided by the number of times the rarest gene is present in the system. The colour of the edge represents the number of times the two genes are contiguous in the system divided by the number of systems.

Fig S14. 16S tree used to infer horizontal transfers. The colour of the leaves represents the phyla of the bacteria. The tree was built using IQ-Tree, 1000 replicates of UF-Boot, model SYM+R10.

Fig S15. Schema of the workflow used to choose the representative systems.

Fig S16. Schema of the workflow used to choose the species-specific paralogs.
Supplemental Table legends

Table S1. List of all the profiles of the TFF-SF used in the analysis.

Table S2. Experimentally validated systems used in the analysis.

Table S3. Description of all the genes and concatenate trees inferred in this study.

Table S4. All trees inferred in this study in newick format.

Table S5. Matrix of presence/absence of neighbouring genes positively associated with the systems (Family of genes are in columns and systems are in rows).

Table S6. All the systems detected by Macsyfinder with the search using the final models.

Table S7. Tree topology tests (AU) using IQ-TREE between concatenated trees and the genes that compose the concatenate.