Running Head: cis-inhibition of the S-locus receptor kinase

Author for correspondence: June B. Nasrallah
Section of Plant Biology
School of Integrative Plant Sciences
Cornell University
Ithaca, NY 14853

Email: jbn2@cornell.edu
Tel: 607-255-8189
Ligand-Mediated cis-Inhibition of Receptor Signaling in the Self-Incompatibility Response of the Brassicaceae

Titima Tantikanjana and June B. Nasrallah

Section of Plant Biology
School of Integrative Plant Sciences
Cornell University
Ithaca, NY 14953

Summary: Co-expression of the receptor and ligand that function in crucifer self-incompatibility inhibits receptor signaling and abrogates the ability of stigma epidermal cells to arrest self pollen
Financial Source:

The results described in this study are based upon work supported by the National Science Foundation (http://www.nsf.gov) under Grant IOS-1146725.
ABSTRACT

The inhibition of self-pollination in self-incompatible Brassicaceae is based on allele-specific trans-activation of the highly polymorphic S-locus receptor kinase (SRK), which is displayed at the surface of stigma epidermal cells, by its even more polymorphic pollen coat-localized ligand, the S-locus cysteine-rich protein (SCR). In an attempt to achieve constitutive activation of SRK and thus facilitate analysis of self-incompatibility (SI) signaling, we co-expressed an Arabidopsis lyrata SCR variant with its cognate SRK receptor in the stigma epidermal cells of Arabidopsis thaliana plants belonging to the C24 accession, in which expression of SRK and SCR had been shown to exhibit a robust SI response. Contrary to expectation, however, co-expression of SRK and SCR was found to inhibit SRK-mediated signaling and to disrupt the SI response. This phenomenon, called cis-inhibition, is well documented in metazoans but has not as yet been reported for plant receptor kinases. We demonstrate that cis-inhibition of SRK, like its trans-activation, is based on allele-specific interaction between receptor and ligand. We also show that stigma-expressed SCR causes entrapment of its SRK receptor in the endoplasmic reticulum, thus disrupting the proper targeting of SRK to the plasma membrane where the receptor would be available for productive interaction with its pollen coat-derived SCR ligand. Although based on an artificial cis-inhibition system, the results suggest novel strategies of pollination control for the generation of hybrid cultivars and large-scale seed production from hybrid plants in Brassicaceae seed crops, and more generally, for inhibiting cell surface receptor function and manipulating signaling pathways in plants.
INTRODUCTION

Ligand-receptor signaling plays important roles in cell-cell communication between neighboring cells in a variety of developmental and physiological processes. This communication typically relies on the interaction of transmembrane receptors displayed on the surface of signal-receiving cells with their cognate ligands derived from signal-sending neighboring cells, which in turn leads to the activation of receptor-mediated signaling cascades that modify intracellular activities of the signal-receiving cell. Such is the case with communication between pollen grains and stigma epidermal cells, a process that has an important role in directing reproductive success and determining pollination modes (i.e. selfing or outcrossing) in the Brassicaceae. In this family, outcrossing is enforced by self-incompatibility (SI), a mechanism controlled by haplotypes of the \(S \) locus, by which the stigma epidermal cells of a plant recognize and reject “self” pollen grains (i.e. those derived from the same flower, the same plant, or plants expressing the same \(S \)-locus haplotype), thus preventing self-pollination, while allowing the growth of tubes from non-self pollen grains (i.e. those derived from plants expressing a different \(S \)-locus haplotype) (Nasrallah and Nasrallah, 2014a). Inhibition of self pollen in the SI response is initiated by allele-specific interaction between two highly polymorphic proteins encoded at the \(S \) locus: the \(S \)-locus receptor kinase (SRK), which is localized at the plasma membrane of stigma epidermal cells (Stein et al., 1991; Stein et al., 1996), and its ligand, the \(S \)-locus cysteine-rich protein (SCR), which accumulates in the pollen coat and diffuses onto the stigma surface upon pollen-stigma contact (Schopfer et al., 1999; Takayama et al., 2000; Shiba et al., 2001). The interaction of the SRK extracellular domain, or \(S \) domain, with its cognate SCR ligand is thought to activate downstream signaling cascades in stigma epidermal cells, which lead to inhibition of pollen germination on the stigma surface and/or pollen tube penetration through the stigma epidermal cell wall. The \(SRK \) and \(SCR \) genes are the primary determinants of the transition between the outcrossing and selfing modes of mating in the Brassicaceae, as demonstrated by the observation that transformation of \(SRK \) and \(SCR \) gene pairs derived from self-incompatible \textit{Arabidopsis lyrata} or \textit{Capsella grandiflora} restored SI in several accessions of the normally self-fertile \textit{Arabidopsis thaliana} (Nasrallah et al., 2002; Nasrallah et al., 2004; Boggs et al., 2009).

Tight regulation of the SI response is critical for ensuring reproductive success in self-incompatible plants. Activation of SRK signaling must be triggered only by pollen-derived cognate SCR ligand upon interaction of stigma epidermal cells with self pollen grains, because
constitutive activation of SI signaling in stigma epidermal cells would result in inhibition of non-
self as well as self pollen grains and would result in female sterility. This adverse outcome is
averted by tight regulation of the SCR gene, which is expressed exclusively in the anthers of self-
incompatible plants and whose protein products are localized exclusively in the pollen coat
(Schopfer and Nasrallah, 2000; Shiba et al., 2001). For experimental studies of SI, however,
constitutive activation of SRK-mediated signaling in stigma epidermal cells would be useful, as
it might provide a convenient means of identifying components of the poorly understood SRK-
mediated signaling pathway.

A reaction that resembles a constitutive SI response, in which stigma epidermal cells inhibit
both self and non-self pollen grains has been obtained by manual application of purified
recombinant SCR proteins produced in bacteria (Kachroo et al., 2001; Chookajorn et al., 2004)
or synthetic SCR (Takayama et al., 2001) to stigmas that express their cognate SRK receptors.
Unlike the highly-localized activation induced by pollen-derived SCR at the site of pollen-stigma
contact, treatment of the stigma surface with SCR protein can clearly cause global activation of
SRK in most, if not all, epidermal cells of a stigma. However, treating stigmas in the numbers
required for analysis of SRK signaling is extremely laborious, can damage stigmas, and produces
inconsistent results. Therefore, a method that circumvents these problems would be
advantageous. In metazoans, constitutive activation of receptor kinases has been shown to result
not only from receptor mutations that cause constitutive kinase activity (Webster and Donoghue,
1996; Hirota et al., 1998) and mutations in signaling components that cause ligand-independent
activation of downstream cascades (Wang et al., 2012; Roberts et al., 2013; Han, 2014; Wang et
al., 2014), but also from ectopic expression of ligands within the same cells as their receptors, as
occurs in several pathological conditions (Sporn and Roberts, 1985; Castellano et al., 2006;
Krasagakis et al., 2011).

Accordingly, an attempt was made to generate A. thaliana plants having a stable constitutive
stigma SI response by co-expressing an SRK variant and its cognate SCR in stigma epidermal
cells, which should, in principle, constitutively activate the SI response in these cells. This report
shows that, while pollen-derived SCR trans-activates the SRK-mediated SI response, stigma-
expressed SCR inhibits the activity of its cognate SRK by causing entrapment of the receptor in
the endoplasmic reticulum. This phenomenon is similar in its outcome to the ligand-mediated
cis-inhibition phenomenon that had previously been observed in metazoans for some signaling
systems that use transmembrane proteins as ligands (Yaron and Sprinzak, 2012), but had not
been described for plant receptor-like kinases (RLKs). The results suggest novel strategies for
control of RLK activity and manipulation of signaling pathways in plants and for pollination control in hybrid breeding programs and seed production from hybrid plants in the Brassicaceae.
RESULTS

Stigma-expressed SCR ligand inhibits the activity of its cognate SRK receptor

To co-express an SRK variant with its cognate SCR in stigma epidermal cells, we used the SRKb and SCRb alleles, which are derived from the A. lyrata Sb haplotype (Kusaba et al., 2001), and the C24 accession of A. thaliana, which was previously shown to exhibit a robust and developmentally stable SI response upon transformation with the SRKb-SCRb gene pair (Nasrallah et al., 2004; Boggs et al., 2009; Nasrallah and Nasrallah, 2014b). As shown in Figure 1A, the self-incompatible phenotype of C24[SRKb-SCRB] plants is manifested by the production of unexpanded siliques lacking seed and severe inhibition of pollen grains at the surface of self-pollinated stigmas. These phenotypes, which faithfully recapitulate the phenotypes observed in naturally self-incompatible Brassicaceae, reflect strong trans-activation of SRKb by its SCRb ligand. By contrast, untransformed C24 plants are characterized by the production of abundant seed in fully expanded siliques and by prolific pollen tube growth in self-pollinated pistils (Figure 1A).

To express SCRb in stigma epidermal cells, the SCRb transcriptional unit was inserted downstream of the AtS1 promoter, which is active specifically in stigma epidermal cells (Dwyer et al., 1994). Transformation of C24 plants with the AtS1pr:SCRb transgene produced 16 independent transformants. From these, three independent AtS1pr:SCRb homozygous lines, each of which contained T-DNA fragments that had integrated at a single locus and exhibited appreciable SCRb expression (as determined by RT-PCR; Supplemental Figure 1A), were selected for further analysis. Each of the three lines, designated AtS1pr:SCRb(b1), AtS1pr:SCRb(b2), and AtS1pr:SCRb(b3), was crossed with the previously-described C24[AtS1pr:cYFP-SRKb] line (Kitashiba et al., 2011; Rea and Nasrallah, 2015), which is homozygous for a single integration of a transgene designed to express a tagged version of SRKb carrying the Citrine variant of yellow fluorescent protein (cYFP) at its N terminus. As shown previously (Kitashiba et al., 2011; Rea and Nasrallah, 2015), the AtS1pr:cYFP-SRKb transgene conferred a strong SI response in C24 stigmas: in manual pollination assays, C24[AtS1pr:cYFP-SRKb] stigmas exhibited severe inhibition of the SCRb-expressing pollen derived from C24[SRKb-SCRb] plants, hereafter referred to as SCRb-pollen (Figure 1B, top row). However, C24[AtS1pr:cYFP-SRKb] plants produced abundant seed because they lack the SCRb gene.

Stigma-expressed SCR protein will hereafter be designated cis-SCRb in order to distinguish it from SCR protein that originates from the pollen coat or recombinant SCR protein purified...
from bacteria, both of which will be referred to as *trans*-SCR. Due to the presence of an N-terminal signal sequence in *SCR* transcriptional units (Kusaba et al., 2001; Schopfer et al., 1999), *cis*-SCR proteins are expected to be secreted and to be localized in the stigma epidermal cell
Consequently, in stigmas expressing both SRKb and SCRb, SCRb might potentially interact with the extracellular domain of SRKb, possibly resulting in activation of SRK and SI signaling. We reasoned that if cis-SCRb is able to activate the SRKb receptor, F1 plants containing both the AtS1pr:cYFP-SRKb and AtS1pr:SCRb transgenes would not set seed, despite the fact that the pollen grains of these plants lack SCRb protein. A total of eight AtS1pr:cYFP-SRKb + AtS1pr:SCRb F1 plants derived from each of the AtS1pr:SCRb b1, b2, and b3 transgenic lines were analyzed. Contrary to our expectation, all F1 plants produced large amounts of seed, indicating that their stigma epidermal cells did not exhibit a constitutive SI response.

To understand why a constitutive SI response was not observed, F1 stigmas were pollinated with SCRb-pollen. As shown in Figure 1B, Supplemental Figure 1A, and Supplemental Table 1, F1 stigmas were found to be fully receptive to SCRb-pollen, indicating that the SI response was not operational in these plants. Importantly, the breakdown of SI co-segregated with the AtS1pr:SCRb transgene in F2 plants. As shown in Supplemental Table 2 for F2 plants derived from the AtS1pr:SCRb b1 and b2 transgenic lines, among F2 plants that inherited the AtS1pr:cYFP-SRKb transgene, the breakdown of SI was observed only in the plants that also inherited the AtS1pr:SCRb transgene. This result demonstrates that the disruption of SI in AtS1pr:cYFP-SRKb + AtS1pr:SCRb stigmas was not due to some defect in the SRKb transgene that might have been introduced during the generation of F1 plants, but was rather caused by the AtS1pr:SCRb transgene.

Thus, instead of activating the SRKb-mediated SI response, the cis-SCRb protein disrupted this response. To determine if the inhibitory effect of cis-SCRb on SRKb-mediated SI signaling was correlated with the expression level of the AtS1pr:SCRb transgene, the AtS1pr:SCRb(b1) highly-expressing line was compared to a fourth AtS1pr:SCRb line, designated AtS1pr:SCRb(b4), whose stigmas exhibited a 12-fold lower level of SCRb transcripts than AtS1pr:SCRb(b1) (Figure 1C). Each of the AtS1pr:SCRb(b1) and AtS1pr:SCRb(b4) lines was crossed with a self-incompatible C24 transgenic line that was homozygous for a single integration of the SRKb-SCRb gene pair, exhibited a strong and stable SI response, and, as a result, produced no seed (Figure 1A; Nasrallah et al., 2004). Analysis of the SRKb-SCRb + AtS1pr:SCRb F1 plants showed that F1 plants derived from crossing the SRKb-SCRb line with AtS1pr:SCRb(b1), which exhibit high levels of cis-SCRb transcripts, produced fully-elongated seed-filled siliques (35.6 ± 4.3 seed, N=10) and their stigmas were fully compatible with SCRb-pollen (Figure 1D and Supplemental Figure 1B). By contrast, F1 plants derived from the SRKb-SCRb x AtS1pr:SCRb(b4) cross, which exhibit low levels of cis-SCRb transcripts, produced short
siliques containing some seed (9.3 ± 5.6 seed, N=10) and their stigmas showed partial breakdown of the SI response (Figure 1D and Supplemental Figure 1B). These phenotypes indicate that cis-SCRb protein exerts an inhibitory effect on the SI response in a concentration-dependent manner.

To confirm that the contrasting effects of pollen-derived SCRb and stigma-expressed SCRb on the SI response are not caused by aberrant modification of the SCRb proteins in stigma epidermal cells, the biological activity of stigma-expressed SCRb was investigated using a pollination bioassay modified from Kachroo et al. (2001). Total proteins were extracted from stigmas of an AtS1pr:SCRb highly-expressing line and applied to the stigmas of SRKb-SCRb homozygous plants (see Materials and Methods). As shown in Figure 1E, this treatment induced the SI response and caused the stigma epidermal cells to inhibit the germination of the SCRb-lacking pollen grains of untransformed C24 plants, allowing on average only ~ 6 pollen tubes to penetrate through the stigma cell wall (6.7± 4.1; N=18). By contrast, pretreatment of SRKb-SCRb stigmas with stigma extracts from C24 untransformed plants did not cause inhibition of SCRb-lacking pollen grains (Figure 1E). This result indicates that stigma-expressed SCRb is biologically active and is as able to activate the SI response as pollen coat-derived SCRb. Taken together, our results indicate that the SCR ligand can act as an activator or a repressor of SI signaling, depending on whether it originates from outside (i.e. trans-SCR) or from inside (i.e. cis-SCR) the stigma epidermal cell. The inhibitory effect of cis-SCR will be called cis-inhibition, a term that has been used for similar phenomena in metazoans (Yaron and Sprinzak, 2012).

SCR-mediated cis-inhibition of SI signaling depends on allele-specific interaction between SRK and its SCR ligand

To determine if the inhibitory effect of cis-SCR is allele specific, transgenic lines were generated, which expressed the A. lyrata SCRa variant (Kusaba et al., 2001) under control of the AtS1 promoter. Three independent AtS1pr:SCRa transgenic lines exhibiting appreciable levels of stigma-expressed SCRa transcripts (Supplemental Figure 1C) were each crossed with the AtS1pr:cYFP-SRKb transgenic line described above. Manual pollination of F1 stigmas with SCRb-pollen demonstrated that, unlike stigmas that expressed cYFP-SRKb and SCRb, stigmas that expressed cYFP-SRKb and SCRa exhibited an SI response towards SCRb-pollen that was as strong as that exhibited by stigmas that expressed only cYFP-SRKb (Figure 2A, Supplemental Figure 1C, and Supplemental Table 3). This allelic specificity suggests that, like trans-activation
Figure 2. Allele-specific interaction of cis-SCRb with SRKb and the levels of SRKb proteins in SCRb-expressing stigmas. (A) Effects of cis-SCRb and cis-SCRa on the SRKb-mediated SI response. Pollination assays using SCRb-pollen grains and stigmas expressing only cYFP-SRKb (left), cYFP-SRKb and cis-SCRb (middle), or cYFP-SRKb and cis-SCRa (right) demonstrate that the SRKb-mediated SI response is disrupted by expression of cis-SCRb but is not affected by expression of cis-SCRa. (B) Confocal images of stigma epidermal cells expressing only cYFP-SRKb (top) or expressing both cYFP-SRKb and cis-SCRb (bottom). Note that the overall cYFP signal intensities, which report on the localization of all three SRKb protein products (full-length SRKb, cSRKb, and tSRKb) are equivalent in the two types of stigmas. (C) Protein immunoblot analysis of extracts from untransformed C24 stigmas, stigmas expressing only cYFP-SRKb from an AtS1pr:cYFP-SRKb hemizygous plant, and stigmas expressing both cYFP-SRKb and cis-SCRb from an AtS1pr:cYFP-SRKb + AtS1pr:SCRb F1 plant derived from the AtS1pr:SCRb(b1) line. Each sample was obtained by extracting 25 stigmas from one plant. Note that the levels of full-length SRKb, cSRKb, and tSRKb proteins are not affected by expression of cis-SCRb. (A),(B) Bar=0.1mm.

of SRK-mediated SI signaling, the cis-inhibition phenomenon described here is based on allele-specific interaction between SRK and its cognate SCR.

SCR-mediated cis-inhibition is not caused by degradation of SRK
Several transmembrane receptors undergo endocytosis followed by protein degradation after interacting with their ligands (Sorkin and Goh, 2008; Bar and Avni, 2014). For example, in plants, the plasma membrane-localized pattern-recognition receptor FLS2 is degraded after prolonged incubation of cells with its flg22 ligand (Robatzek et al., 2006). To determine if disruption of the SI response in the presence of cis-SCRb might be caused by degradation of SRKb protein, the levels of cYFP-SRKb proteins in stigmas that express cis-SCRb were compared to those that lacked cis-SCRb. To avoid differences in cYFP-SRKb expression levels resulting from different AtSIpr:cYFP-SRKb transgene dosage, protein levels were compared in F1 plants containing one copy of the AtSIpr:cYFP-SRKb transgene that were generated either by crossing an AtSIpr:cYFP-SRKb homozygote with the AtSIpr:SCRb(b1) homozygous line or by crossing the same AtSIpr:cYFP-SRKb homozygote with a C24 untransformed plant.

It should be noted that SRK genes produce three types of proteins: (1) the full-length transmembrane SRK signaling receptor, which consists of the extracellular S domain, a single-pass transmembrane domain, and a cytoplasmic kinase domain (Stein et al., 1991); (2) a soluble protein (designated eSRK), which consists of only the S domain and is produced from a short SRK transcript (Stein et al., 1991; Giranton et al., 1995); and (3) a membrane-anchored truncated form of SRK (designated tSRK), which lacks the kinase domain and is generated by proteolytic cleavage of the full-length receptor (Shimosato et al., 2007). Because of their identical N termini, the three SRKb protein species produced in AtSIpr:cYFP-SRKb stigmas carry the cYFP tag and are therefore detectable both by confocal microscopy of live stigma epidermal cells and by protein immunoblot analysis using anti-GFP antibodies. As shown in Figures 2B and 2C, the stigmas of AtSIpr:cYFP-SRKb hemizygous plants were found to exhibit the same overall cYFP-SRKb signal by live imaging of epidermal cells (Figure 2B) and to accumulate equivalent levels of the three SRKb protein products by protein gel blot analysis (Figure 2C), irrespective of the presence or absence of cis-SCRb. Thus, the SCR-mediated cis-inhibition of SRK signaling is not caused by degradation of the full-length SRKb protein or its eSRK and tSRK isoforms.

cis-SCR causes mis-localization of the SRKb protein

To investigate further the mechanism by which cis-SCR disrupts the SRK-mediated SI response, the possible effect of cis-SCRb on the subcellular localization of SRKb was investigated. In order to visualize only the full-length SRKb signaling receptor without interference from the eSRKb and tSRKb proteins, a version of SRKb carrying a C-terminal cYFP tag (designated SRKb-cYFP), which confers a strong incompatible response towards
SCRb pollen (Yamamoto et al., 2014; Rea and Nasrallah, 2015) was used. As shown in Figure 3A, imaging of stigma epidermal cells lacking cis-SCRb showed the SRKb-cYFP signal to be localized primarily at the cell periphery, consistent with the previously-demonstrated plasma membrane localization (Rea and Nasrallah, 2015). (C)-(F) Distribution of SRKb-cYFP in stigma epidermal cells expressing cis-SCRb. The SRKb-cYFP signal is observed in cytoplasmic structures (C; arrow), but is not detected in the Hechtian strands of plasmolyzed cells (D) except when image brightness is increased (Supplemental Figure 2A). (E) Cell-surface images of stigma epidermal cells lacking cis-SCRb showing uniform distribution of full-length SRKb at the cell surface (left) and of stigma epidermal cells expressing cis-SCRb showing a reticulate pattern of SRKb-cYFP distribution (right). (F) Co-localization of SRKb-cYFP and an mCherry-labeled ER marker (mC-ER) in the presence of cis-SCRb. The images show stigma epidermal cells of plants containing the AtSIpr:SRKb-cYFP, AtSIpr:SCRb, and AtSIpr:mC-HDEL transgenes. Note the perfect overlap of the SRKb-cYFP signal with the mC-HDEL signal. (A-D), (E) Bar=10 μm. (F) Bar=5 μm.
membrane-localization of the receptor (Yamamoto et al., 2014; Rea and Nasrallah, 2015).

Moreover, as is typical of plasma membrane-localized proteins in plants and previously shown for SRKb-cYFP (Rea and Nasrallah, 2015), upon plasmolysis of stigma epidermal cells, the SRKb-cYFP signal was observed in the stretched portions of the plasma membrane called Hechtian strands, which form upon retraction of the protoplast from the cell wall following plasmolysis (Figure 3B). By contrast, in the presence of cis-SCRb, the SRKb-cYFP signal accumulated primarily within the protoplast (Figure 3C) rather than at the plasma membrane. Consistent with this conclusion, and despite the roughly equivalent overall SRKb-cYFP signal intensities observed in the presence and absence of cis-SCRb, cYFP-labeled Hechtian strands were not observed in plasmolyzed stigma epidermal cells under our standard visualization parameters (Figure 3D). Indeed, it was only when the confocal images were manipulated by increasing overall brightness that cYFP-labeled positive Hechtian strands became faintly visible (Supplemental Figure 2A).

The different distribution of SRKb-cYFP in the absence and presence of cis-SCRb was particularly evident in surface views of stigma epidermal cells, in which the cYFP signal exhibited a relatively uniform distribution at the cell surface in the absence of cis-SCRb but a reticulate pattern in the presence of cis-SCRb (Figure 3E). Because a reticulate pattern of localization is characteristic of proteins localized in the cortical endoplasmic reticulum (ER), the possibility that SRKb-cYFP might be primarily localized in the ER of stigmas expressing cis-SCRb was investigated. Towards this goal, the AtS1pr:SRKb-cYFP homozygous line was re-transformed with an AtS1pr:mC-HDEL transgene designed for stigma epidermal cell-expression of the mCherry (mC) variant of red fluorescent protein fused at its C terminus to the ER retention signal HDEL (Nelson et al., 2007; Rea and Nasrallah, 2015; see Materials and Methods). As shown in Figure 3F, in the presence of cis-SCRb, the bulk of the SRKb-cYFP signal co-localized with the ER marker. This result indicates that cis-SCRb disrupts the proper localization of SRKb by causing the receptor to be retained in the ER.

To determine if cis-SCRb also affects the localization of other SRKb isoforms, plants homozygous for the AtS1pr:cYFP-SRKb transgene described above were used for confocal microscopy. In plasmolyzed stigma epidermal cells, the cYFP-SRKb signal was detected in the apoplast (i.e. the expected location of eSRK proteins) in the absence (Figure 4A) but not in the presence of cis-SCRb (Figure 4B). Therefore, cis-SCRb affects the distribution of the eSRK isoform in addition to that of the full-length SRKb receptor, suggesting that cis-SCRb interacts with both eSRKb and full-length SRKb in the ER. Because tSRK has been shown to accumulate
in the ER of stigma epidermal cells that lack cis-SCRb (Rea and Nasrallah, 2015), this study cannot determine if cis-SCRb affects tSRK localization.
DISCUSSION

The SRK/SCR-mediated signaling that occurs upon contact between a stigma epidermal cell and a pollen grain conforms to the classical view of cell contact-dependent receptor-based cell-to-cell signaling, in which the directionality of signaling is defined by expression of a receptor in the signal-receiving cell and of its cognate ligand in a signal-sending adjacent cell. The co-expression of SRK and SCR in stigma epidermal cells and the resulting cis-inhibition of SRK signaling described in this study simulate the situation observed for some contact-dependent receptor-ligand systems in metazoans. The phenomenon of cis-inhibition of a receptor by its co-expressed ligand has been well documented for several signaling pathways in metazoans, such as the Notch signaling pathway that functions in cell fate specification (Shaya and Sprinzak, 2011; Yaron and Sprinzak, 2012), the semaphorin and ephrin signaling pathways that function in axon pathfinding/guidance (Yaron and Sprinzak, 2012), and the MHC signaling cascades that underlie immune responses (Held and Mariuzza, 2008).

Mechanism of cis-inhibition of SRK by its cognate SCR

Despite similar outcomes, cis-inhibition of SRK by its soluble SCR ligand differs mechanistically from cis-inhibition of the Notch, semaphorin, and ephrin receptors. In the case of these metazoan receptors, all of which have membrane-bound ligands (Yaron and Sprinzak, 2012), it has been suggested that cis-interactions, like trans-interactions, of the receptors with their ligands occur at the cell surface (Carvalho et al., 2006; Glittenberg et al., 2006; Haklai-Topper et al., 2010). For example, in cis-inhibition of the Notch receptor, the amount of receptor at the cell surface is not affected by co-expression of ligand; rather, cis- and trans-interactions utilize different combinations of ligand-interacting domains resulting in different effects on signaling outcomes (Glittenberg et al., 2006; Fleming et al., 2013). By contrast, cis-SCRb was found to interfere with proper targeting of the SRKb protein to the plasma membrane by causing the receptor to be trapped in the ER. Because the severity of cis-inhibition was positively correlated with the level of SCRb expression in stigma epidermal cells, the disruption of the SI response by cis-SCRb may be ascribed to the reduced number of SRKb molecules at the cell surface, and therefore to their reduced availability for productive interaction with pollen-derived trans-SCRb.
The entrapment of SRKb in the ER, together with the observation that SCR exerts its cis-inhibitory effect in an allele-specific manner (i.e. resulting from co-expression of self SCRb but not of non-self SCRa), suggests that export of SRKb from the ER is prevented by interaction of the receptor with cis-SCRb in the secretory pathway, likely via its extracellular domain, which is the SCR-binding domain (Kachroo et al., 2001). In this respect, cis-inhibition of SRK is similar to cis-inhibition of the low-density lipoprotein receptor-related protein 1 (LRP1) by secreted forms of its ligands (Willnow et al., 1996; Sakamoto et al., 2011). It has been shown that, in the absence of the specific chaperone RAP (receptor-associated protein), cis-inhibition of LRP1 is caused by premature binding of the receptor to ligand in the secretory pathway, resulting in the formation of receptor aggregates that are trapped in the ER (Willnow et al., 1996; Sakamoto et al., 2011). However, unlike cis-inhibition of LRP1, which causes reductions of ~75% in receptor abundance (Willnow et al., 1995), SCRb-mediated cis-inhibition did not cause a discernible change in the overall level of SRKb in any of its three isoforms. Further analysis is required to determine if entrapment of SRKb in the ER is caused by cis-SCRb-induced receptor aggregation and to understand why ER-trapped SRKb molecules are not subject to endoplasmic reticulum-associated degradation. In any case, the mechanistic similarity of cis-inhibition of SRKb and LRP1 on the one hand and of the Notch, ephrin, and semaphorin receptors on the other hand suggests that the site of receptor-ligand cis-interactions (i.e. in the ER or at the cell surface) and the mechanism of cis-inhibition might depend on whether the ligand is secreted or membrane bound.

Ligand-mediated cis-inhibition of SRK signaling also differs from cis-inhibition of signaling in metazoans with respect to the importance of these interactions and of their interplay with trans-interactions for normal developmental or physiological processes. While ligand-mediated cis-inhibition of signaling pathways in metazoans was first observed by over-expression of a ligand in the same cell as its receptor (Klein et al., 1997), this phenomenon is now recognized as an endogenous regulatory mechanism that is important for robust signaling and proper orchestration of cellular functions (Shaya and Sprinzak, 2011). By contrast, cis-inhibition of SRK by SCR has no physiological role in fine-tuning the response of the stigma epidermal cell to incoming pollen grains. Rather, it must be avoided for the SI system to function properly. Clearly, the integrity of the SI response must depend on tight regulation of the SCR gene and its exclusive expression in anthers, because even a relatively low level expression of SCRb transcripts in stigma epidermal cell was found to be sufficient for weakening the SI response and allowing the growth of SCRb-pollen tubes. Therefore, cis-inhibition might provide a safeguard
against the sterility that would be caused by constitutive activation of the SI response in stigmas,
should the tight developmental regulation of the SCR gene be disrupted by mutation.

Ligand-mediated cis-inhibition as a strategy for inhibiting cell surface receptor function

and manipulating signaling pathways in plants

By providing the first example of cis-inhibition of a plant receptor, our results suggest that at least some plant receptors that are trans-activated by protein ligands may also be subject to ligand-mediated cis-inhibition. The *A. thaliana* genome contains more than 1000 genes encoding putative peptide ligands (Lease and Walker, 2006), most of which have no known function. The most common approach used to assess the potential roles of these peptides in signaling has been to overexpress the peptide (Strabala et al., 2006; Jun et al., 2010), an approach that avoids complications stemming from possible functional redundancy of closely related peptide ligands. The cis-inhibition phenomenon described in this study suggests that any phenotypic changes that might be observed in plants that overexpress a given peptide ligand may not reflect gain-of-function phenotypes as is typically assumed, but rather may be caused by cis-inhibition of the receptor by its co-expressed ligand. It should be noted, however, that ligand-mediated cis-inhibition of receptors is unlikely to apply to all receptor-ligand pairs in plants. In metazoans, the LRP receptor, which interacts with several ligands, is trapped in the ER by only a few of these ligands (Willnow et al., 1996). Moreover, overexpression of a ligand in receptor-expressing cells and exogenous application of ligand to these cells produced the same result for some ligands but opposite effects for other ligands (Strabala, 2008), likely due to the trans-activation of signaling pathways in the former case and cis-inhibition of signaling in the latter case.

Should cis-inhibition be observed in plant receptor-ligand systems other than the SRK-SCR system described here, it will be important to determine on a case-by-case basis if this phenomenon might have a physiological role in plants. In any case, the discovery of SCR-mediated cis-inhibition of SRK suggests a novel and potentially powerful strategy for inhibiting cell surface receptor function and manipulating signaling pathways in plants. Such a strategy would entail co-expressing a ligand in the same cell as its receptor, and in some cases may also require addition of an ER retention signal to the ligand in order to ensure entrapment of the receptor in the ER. Inactivation of receptors by ligand-mediated cis-inhibition may be used as an alternative to conventional gene silencing methods, which target transcript production or stability. Like gene silencing methods, ligand-mediated cis-inhibition can result in phenotypes of varying strengths, as demonstrated by our observation that the severity of SRK cis-inhibition
depends on the amount of SCR produced in stigma epidermal cells. However, a *cis*-inhibition strategy has several advantages over conventional gene silencing approaches, which can suffer from off-target effects (Jackson et al., 2003; Scacheri, et al., 2004) and the generation of epigenetic marks that may persist into subsequent generations (Cuzin et al., 2008; Paszkowski and Grossniklaus, 2011; Borges and Martienssen, 2013). By contrast, in *cis*-inhibition, the interaction between a receptor and its cognate ligand is highly specific, the distribution of the ligand may be controlled by use of cell type-specific promoters, and the suppression of signaling is easily reversed by segregation of the ligand-encoding transgene in transgenic progenies.

Ligand-mediated *cis*-inhibition of SRK as a strategy for hybrid seed production

In the particular case of SI, *cis*-inhibition of SRK signaling has potential for use in SI-based schemes designed for production of hybrid cultivars and seeds. These hybrids are commercially desirable because of their superior performance relative to their non-hybrid counterparts, but their efficient production requires the use of genetic pollination control systems that prevent selfed seed production while allowing outcrossed seed production. Although SI clearly fulfills this requirement, several issues complicate its utilization in practice. All SI-based hybrid-seed production schemes that have been implemented or proposed to date employ one or more self-incompatible inbred lines as parental lines (Figure 5), the maintenance of which requires the use of some method to overcome SI. However, the strategies that are currently available for overcoming SI, including manual self-pollination in young floral buds before the onset of SI in developing stigmas, treatments with sodium chloride or carbon dioxide, and micro-propagation, are all laborious and inefficient (Gray, 1993; Ockendon and Smith, 1993; Nasrallah, 2004). Furthermore, a large proportion of hybrid plants generated by currently-used SI-based breeding programs remain self-incompatible (Figure 5). This fact is a major impediment for the use of SI-based hybridization schemes in Brassicaceae seed crops such as oilseed rape, because seed production in self-incompatible hybrids can only occur when pollinators transfer pollen from other self-incompatible plants carrying different SI alleles or pollen from self-fertile plants. Consequently, seed production in these crops is adversely impacted by environmental conditions that are not suitable for insect pollination and by the reduced pollinator populations that are increasingly observed in the field.

These problems may be overcome by the development of breeding and seed production schemes in which transgenes designed for stigma-expression of specific SCR variant proteins are used as suppressors of the SI response. The use of *cis*-SCR transgenes, or “SRK-Off Switches”,...
is expected to provide a robust method for both maintenance of self-incompatible parental lines and large-scale production of hybrids and their seed. In the following, two cis-SCR-based strategies are outlined, which may be used separately or in combination depending on whether the crop is a vegetable or root crop, for which only an efficient strategy for the maintenance of self-incompatible parental lines is required, or a seed crop, which additionally requires a strategy for large-scale seed production from hybrid plants in the field. In all cases, SRK-Off Switches would be tailored to the particular S haplotypes harbored by elite inbred lines already used in current hybrid breeding programs (compare Figures 5 and 6B). Moreover, the proposed cis-SCRb-based schemes are applicable to both naturally self-incompatible inbred lines and transgenic self-incompatible plants that are generated by transformation with matched alleles of the SRK and SCR genes.
For the maintenance of elite self-incompatible inbred parental lines in vegetable and seed Brassicaceae crops, a practical approach is to control expression of cis-SCR using a conditional promoter, such as a heat-inducible promoter (Figure 6A). The heat-inducible cis-SCR transgene would be introduced into these elite inbred lines and the resulting transformants would be grown in polythene tunnels or greenhouses, as is common practice for hybrid production in Brassica crops. The transformants would express SI in normal ambient temperatures, but would become self-fertile when expression of the SRK-Off Switch is induced by exposure to higher temperatures during seed production (Figure 6A). Because the process of pollen germination and pollen tube penetration through the wall of stigma epidermal cells occurs within a few minutes of pollen-stigma contact during compatible pollinations in the Brassicaceae, this strategy would require only brief daily heat treatments during the flowering phase and is therefore not expected to have negative effects on flower and seed development.

For large-scale seed production from hybrid plants in seed crops, the SRK-Off Switch must function only in F1 hybrids and not in their parental inbred lines. Therefore, the SRK-Off Switch for a particular SRK variant would not be introduced directly into the parental line that expresses this SRK variant, but into the other parental inbred line used in the cross, whether the cross involves only self-incompatible parental lines or a combination of self-incompatible and self-fertile inbred lines (Figure 6B). For example, in a cross between the self-incompatible inbred parental lines SaSa and ShSb, the SRKa-Off Switch would be introduced into the ShSb inbred and the SRKb-Off Switch would be introduced into the SaSa inbred (Figure 6B). These two modified inbred lines would still express SI because they carry an SRK-Off Switch that does not inactivate the function of the resident SRK variant. However, the hybrid progenies produced by crossing these two modified parental lines would be self-fertile because the SRKa-Off Switch suppresses SRKa function and the SRKb-Off Switch suppresses SRKb function (Figure 6B). Moreover, a major advantage of these schemes is that all produced hybrid plants will be self-fertile, unlike conventional SI-based hybrid breeding programs, in which a large proportion of hybrid plants retains SI (compare Figures 5 and 6B). As a result, the cis-inhibition approach will produce crops that exhibit increased seed production and a reduced requirement for high pollinator activity.

MATERIALS AND METHODS
Figure 6

A

Heat inducible promoter

SCR transcriptional unit

35°C for 1-2 hours/day during flowering

Self-fertile plants for selfed-seed production

Conditional SI inbred lines

20-25°C

SI plants for hybrid seed production

B

	E1[SaSoChCh] X E2[ShShCaCa]
1	E1E2[SaShChCh] self-fertile 100%

	E1[ShSo] X E1[SY/F]
2	E1[ShSo] X E2[SY/F]
	E1E2[ShSoCaCa] self-fertile 100%

Figure 6. Novel cis-SCR-based strategies for the maintenance of self-incompatible inbred lines and generation of self-fertile hybrids. (A) An inducible cis-SCR strategy using a heat-inducible promoter for the maintenance of self-incompatible inbred lines. The diagram shows a heat-inducible cis-SCR encoding transgene (top) and seed production in conditionally self-incompatible plants under inducing and non-inducing conditions (bottom). (B) Novel schemes for the generation of self-fertile hybrids that may be incorporated into current breeding programs. (1) A scheme modified from the conventional hybrid breeding method illustrated in Figure 5A: a transgene containing the “SRKb-Off Switch”, AtSIpr-SCRb (Cb), is introduced into an elite self-incompatible inbred line carrying the Sa haplotype (E1[SoSo]) to generate E1[SoSoChCb], and a transgene containing the “SRKb-Off Switch”, AtSIpr-SCRa (Ca), is introduced into an elite self-incompatible inbred line carrying the Sh haplotype (E2[ShSh]) to generate E2[ShShCaCa]. All hybrid progenies derived from a cross between these two modified parental lines are self-fertile. (2) A scheme modified from the conventional method illustrated in Figure 5C: a transgene containing the “SRKb-Off Switch” (Ca) is introduced into an elite self-fertile inbred line (E2[SY/F]) to generate E2[SY/FCaCa]. All hybrid progenies derived from crossing the self-incompatible E1[SoSo] line with the E2[SY/FCaCa] line are self-fertile. Both schemes produce self-fertile hybrids that set seed autonomously and do not require pollinator activity, Sa, Sh, and SY as in Figure 5.
All experiments described in this study were performed using plants of the *A. thaliana* C24 accession. Plants were grown at 22°C and a photoperiod of 16 hours. The self-incompatible C24[SRKb-SCRb] transgenic plants were described previously (Nasrallah et al., 2004).

The *AtSIpr:SCRb* and *AtSIpr:SCRa* transformation plasmids were generated as follows. The *SCRb* and *SCRa* exons with intervening intron and 3’ regulatory sequences were amplified from previously-described bacterial artificial chromosome (BAC) clones of the *A. lyrata* Sb and Sa haplotypes (Kusaba et al., 2001), using forward primers located immediately upstream of the start codon and containing KpnI restriction sites together with reverse primers containing SmaI restriction sites. The following gene-specific primers were used: for *SCRb*, 5’-

```
GGGGTACCATTTTTTCTTGATTATCATGA-3’ and 5’-
CCCCCCGGGACAGATTTGATTGTTAGTT-3’; for *SCRa*, 5’-
GGGGTACCAGAATACTAGGAGTATGTAAT-3’ and 5’-
CCCCCGGGAGTTCTAGTAAT-3’.
```

PCR products were then ligated into the pGEMTeasy vector (Promega, Madison, WI). The absence of PCR-generated sequence errors in the *SCRb* and *SCRa* genomic fragments in these pGEMTeasy derivatives were confirmed by sequencing. The *AtSIpr:SCRb* transgene was assembled in the pCAMBIA1300 binary vector by inserting a 0.55 kb *KpnI-EcoRI* fragment containing the *SCRb* genomic region excised from the pGEMTeasy derivative, and subsequently inserting a 1.2-kb *BamHI-KpnI* fragment containing the *AtSI* promoter into the *BamHI-KpnI* sites located at the 5’ end of the *SCRb* genomic fragment. To generate the *AtSIpr:SCRa* construct, the *SCRb* genomic fragment in the *AtSIpr:SCRb* construct was excised as a *KpnI-XmaI* fragment and replaced with a *KpnI-SmaI* fragment containing the *SCRa* sequence.

The construction of the *AtSIpr:cYFP-SRKb* and *AtSIpr:SRKb-cYFP* chimeric genes was described previously (Rea and Nasrallah, 2015). In brief, the *cYFP* coding sequence together with a linker sequence, which serves to minimize improper folding of the *cYFP*-tagged SRKb protein, was inserted using a recombinant polymerase chain reaction (PCR) strategy into a pCAMBIA1300 derivative containing the *AtSIpr:SRKb* gene. The *cYFP* coding sequence was inserted either directly upstream of the stop codon to express C-terminally tagged SRKb or directly downstream of the signal sequence to express N-terminally tagged SRKb (Yamamoto et al., 2014; Rea and Nasrallah, 2015). To generate the *AtSIpr:mC-HDEL* construct, the previously-described *35Spr:mC-HDEL* construct (Nelson et al., 2007) was modified by replacing the double CaMV 35S promoter with the *AtSI* promoter by recombinant PCR (Rea and Nasrallah, 2015).
All plasmid constructs were introduced into *Agrobacterium tumefaciens* strain GV3101 and transgenic plants were generated in the C24 accession using the floral dip method (Clough and Bent, 1998). Seeds were germinated on MS medium (Sigma, St. Louis, MO) containing 25 µg/ml Kanamycin sulfate for selection of plants carrying the SRKb-SCRb transgene, 50 µg/ml Hygromycin for selection of plants carrying the AtS1pr:SCRb, AtS1pr:cYFP-SRKb, or AtS1pr:SRKb-cYFP transgenes, and 10 µg/ml Glufosinate-ammonium for selection of plants carrying the AtS1pr:mC-HDEL transgene.

For each construct, several independent transformants were generated, and unless specifically noted, all transgenic plants used for the analyses described herein were homozygous plants in which the T-DNA fragment had integrated at a single chromosomal location as determined by segregation analysis in transgenic progenies. To identify the presence of SRKb, SCRb, and SCRa in transgenic plants, genomic DNA was subjected to PCR using the following gene-specific primers: SRKb, 5’-TGGGTTGGGATGTCAAGAAAG-3’ and 5’-CAACCTTCATCTTTTCAGGCACAA-3’; SCRb, 5’-TGCTACTTTTCTTCATTGTTTTT-3’ and 5’-CGTCTCCTCCTTCGGTTTGT-3’; SCRa, 5’-CAGACACAAAATCATGAGGTGTAGTG-3’ and 5’-ACATCCCCAAAACCTTCGCAATCAC-3’.

Pollination Assays and Bioassay of Stigma-Expressed SCRb

Pollination assays were performed using the stigmas of stage-12 flower buds (Smyth et al., 1990), which is the final bud stage before anthesis. These stigmas and their epidermal cells are fully developed as shown by the confocal images in Figures 3 and 4. Stigmas were manually pollinated with wild-type pollen or with SCRb-pollen, and were left for 2-4 hours before fixation in a solution consisting of three parts ethanol and one part acetic acid for at least 30 minutes. The fixed stigmas were then softened in 1N NaOH at 65°C for 15 minutes, washed in water, and stained in decolorized aniline blue before observing pollen tube growth by epifluorescence microscopy (Kho and Baër, 1968). For each plant tested, the pollination assay was performed on at least three stigmas and was repeated on at least two different dates.

To assess the biological activity of stigma-expressed SCRb, 50 stigmas of plants homozygous for the AtS1pr:SCRb transgene were ground in 5 µl of water containing 0.05% (v/v) Tween 20 (Research Organics, Cleveland, Ohio). After centrifugation, the clarified stigma extract was applied to stage-12 flower buds of C24[SRRk-b-SCRb] homozygotes. The treated stigmas were allowed to dry for one hour, after which they were pollinated with wild-type pollen grains. Stigma extracts prepared from C24 wild-type plants were used as control in the assays.
For each assay, six stigmas from C24[SRKb-SCRb] plants were used per treatment (i.e. six stigmas for the cis-SCRb extract and six stigmas for the C24 wild-type extract), and three independent repeats were performed.

RNA Analysis

Total RNA was isolated from 40 stigmas of stage-12 flower buds using the Trizol reagent (Invitrogen, Carlsbad, CA), and 0.5 µg of total RNA was treated with DNaseI (Invitrogen, Carlsbad, CA) according to the manufacturer’s instructions. RT-PCR was carried out using SuperScript™ III One-step RT-PCR System (Invitrogen, Carlsbad, CA) and the following gene-specific primers: *SCRb*, 5'-TGCTACTTTCTTCATTGTTTTT-3' and 5'-CGTCTCCTCTCCGTTGTT-3'; *SCRa*, 5'-GTTTTGTTTGTGGTTTCTTATGTT-3' and 5'-GTCCCGTTTGCACTGTTTCG-3'.

For the quantification of *SCRb* transcripts by real-time quantitative PCR, DNase-treated total RNA was reverse-transcribed with oligo(dT) and the First-Strand cDNA Synthesis Kit for real-time PCR (Affymetrix, Santa Clara, CA). The following gene-specific primers were used: *SCRb*, 5’-TGCTACTTTCTTCATTGTTTTT-3’ and 5’-CGTCTCCTCTCCGTTGTT-3’; *ACTIN2*, 5’-GCACCCTGTTCTTCTTACCG-3’ and 5’-AACCCTCGTAGATTGGCACA-3’. Real-time quantitative PCR was performed using the HotStart-IT SYBR Green qPCR Master Mix (Affymetrix, Santa Clara, CA) in an Applied Biosystems ViiA 7 Real-Time PCR System at 55°C annealing temperature for 40 cycles. Relative transcript levels in three replicates for each sample were calculated by the comparative Ct (ΔΔCt) method using the ViiA software.

Protein Gel Blot Analysis

For analysis of cYFP-tagged SRKb proteins, total protein was extracted from 25 stigmas of stage-12 flower buds, subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) using a 7.5% (w/v) polyacrylamide gel (Laemmli, 1970), and transferred to Immobilon polyvinylidene fluoride (PVDF) membrane as described (Towbin et al., 1979). The membranes were treated with α-GFP mouse monoclonal primary antibody (1:3,000 dilution; Covance®, Princeton, NJ) followed by peroxidase-conjugated α-mouse monoclonal secondary antibody (1:6,000 dilution; Sigma-Aldrich, St Louis, MO). The cYFP-tagged SRKb proteins were detected using the Amersham™ ECL™ Plus Western Blotting detection kit (GE Healthcare Life Science, Pittsburgh, PA).
Laser Scanning Confocal Microscopy

Stigmas from stage-12 flower buds were imaged at the Plant Cell Imaging Center (PCIC) of the Boyce Thompson Institute (Ithaca, NY) using a Leica TCS SP5 Laser Scanning Confocal Microscope equipped with a hybrid detection system. Stigmas were observed with 10X or 63X objectives. cYFP was excited with the argon laser (15% 514 nm) and emitted fluorescence was collected from 522-550 nm, while mCherry was exited with the Diode-Pumped Solid State laser (15% 561 nm) and emitted fluorescence was collected from 598-644 nm. For plasmolysis experiments, stigmas were placed in 5% (w/v) NaCl for at least 5 minutes before imaging.

Accession Numbers: Sequence data described in this paper may be found in GenBank (http://www.ncbi.nlm.nih.gov) under the following accession numbers: AlSCRa (BAB40984.1); AlSCRb (BAB40985); AlSRKb (BAB40987).

ACKNOWLEDGEMENTS

We thank Pei Liu for pGEMTeasy derivatives containing SCRb and SCRa genomic fragments lacking promoter regions. The results described in this study are based upon work supported by the National Science Foundation (http://www.nsf.gov) under Grant IOS-1146725.
FIGURE LEGENDS

Figure 1. The SRK-mediated SI response in self-incompatible *Arabidopsis thaliana* transgenic plants and its inhibition by stigma-expressed SCRb. (A) The SI response exhibited by C24[SRKb-SCRb] [C24(Sb)] is manifested by severe inhibition of self pollen at the stigma surface resulting in unexpanded siliques lacking seeds (left panels). By contrast, self-pollinated stigmas of a self-compatible untransformed C24 plant allow profuse pollen tube growth resulting in the production of seed-filled siliques (right panels). (B) Effect of the *AtS1pr:SCRb* transgene on the SI response in *AtS1pr:cYFP-SRKb* transgenic plants. The top panels show the stigmas of an *AtS1pr:cYFP-SRKb* plant exhibiting a compatible response towards pollen grains from an untransformed C24 plant (left) and an incompatible response towards SCRb-pollen grains (right). The bottom panels show the stigmas of an *AtS1pr:cYFP-SRKb+AtS1pr:SCRb* plant exhibiting compatible responses towards both untransformed C24 pollen grains and SCRb-pollen grains. (C) Expression levels of stigma-expressed *SCRb*. The histogram shows the results of quantitative RT-PCR analysis of the relative levels of stigma-expressed *SCRb* transcripts in two independent *AtS1pr:SCRb* transgenic lines, b1 and b4, and untransformed C24(Sb) control. (D) Concentration-dependent effects of stigma-expressed *SCRb* on the growth of SCRb-pollen tubes and on seed production in *SRKb-SCRb* (Sb) transformants. Note that F1 plants produced by crossing *SRKb-SCRb* with *AtS1pr:SCRb*(b1) (Sb x b1) exhibited complete breakdown of SI (seed-filled fully-expanded siliques and profuse SCRb-pollen tube growth at the stigma surface), while F1 plants produced by crossing *SRKb-SCRb* with *AtS1pr:SCRb*(b4) (Sb x b4) exhibited partial breakdown of SI (partially elongated siliques and a relatively small number of SCRb-pollen tubes at the stigma surface). Whole-stigma images of the pollinated stigmas in this panel are shown in Supplemental Figure 1B. (E) Biological activity of stigma-expressed SCRb. A pollination assay of stigmas that express SRKb showing that application of a stigma extract from *AtS1pr:SCRb* plants induces the SI response, resulting in the inhibition of the majority of pollen grains from untransformed C24 plants, with only a few pollen tubes extending into the pistil (top). By contrast, a control treatment of SRKb-expressing stigmas with a stigma extract from untransformed C24 plants does not activate the SI response as demonstrated by the numerous wild-type C24 pollen grains that germinate and invade the walls of stigma epidermal cells (bottom). (A),(B),(D) Bar=0.1mm.
Figure 2. Allele-specific interaction of cis-SCRb with SRKb and the levels of SRKb proteins in SCRb-expressing stigmas. (A) Effects of cis-SCRb and cis-SCRa on the SRKb-mediated SI response. Pollination assays using SCRb-pollen grains and stigmas expressing only cYFP-SRKb (left), cYFP-SRKb and cis-SCRb (middle), or cYFP-SRKb and cis-SCRa (right) demonstrate that the SRKb-mediated SI response is disrupted by expression of cis-SCRb but is not affected by expression of cis-SCRa. (B) Confocal images of stigma epidermal cells expressing only cYFP-SRKb (top) or expressing both cYFP-SRKb and cis-SCRb (bottom). Note that the overall cYFP signal intensities, which report on the localization of all three SRKb protein products (full-length SRKb, eSRKb, and tSRKb) are equivalent in the two types of stigmas. (C) Protein immunoblot analysis of extracts from untransformed C24 stigmas, stigmas expressing only cYFP-SRKb from an AtS1pr:cYFP-SRKb hemizygous plant, and stigmas expressing both cYFP-SRKb and cis-SCRb from an AtS1pr:cYFP-SRKb + AtS1pr:SCRb F1 plant derived from the AtS1pr:SCRb(b1) line. Each sample was obtained by extracting 25 stigmas from one plant. Note that the levels of full-length SRKb, eSRKb, and tSRKb proteins are not affected by expression of cis-SCRb. (A),(B) Bar=0.1mm.

Figure 3. Aberrant localization of the full-length SRKb receptor in stigmas expressing cis-SCRb. (A) and (B) Distribution of SRKb-cYFP in stigma epidermal cells lacking cis-SCRb. The SRKb-cYFP signal, which reports exclusively on the full-length SRKb receptor, is detected primarily at the periphery (arrow) of stigma epidermal cells (A) and in the Hechtian strands (arrow) of plasmolyzed stigma epidermal cells (B), consistent with plasma-membrane localization (Rea and Nasrallah, 2015). (C)-(F) Distribution of SRKb-cYFP in stigma epidermal cells expressing cis-SCRb. The SRKb-cYFP signal is observed in cytoplasmic structures (C; arrow), but is not detected in the Hechtian strands of plasmolyzed cells (D) except when image brightness is increased (Supplemental Figure 2A). (E) Cell-surface images of stigma epidermal cells lacking cis-SCRb showing uniform distribution of full-length SRKb at the cell surface (left) and of stigma epidermal cells expressing cis-SCRb showing a reticulate pattern of SRKb-cYFP distribution (right). (F) Co-localization of SRKb-cYFP and an mCherry-labeled ER marker (mC-ER) in the presence of cis-SCRb. The images show stigma epidermal cells of plants containing the AtS1pr:SRKb-cYFP, AtS1pr:SCRb, and AtS1pr:mC-HDEL transgenes. Note the perfect overlap of the SRKb-cYFP signal with the mC-HDEL signal. (A-D), (E) Bar=10 µm. (F) Bar=5 µm.
Figure 4. Effect of cis-SCRb on the localization of SRKb isoforms in stigma epidermal cells.

The confocal images show plasmolyzed stigma epidermal cells expressing only cYFP-SRKb (A) or both cYFP-SRKb and cis-SCRb (B). (A) In the absence of cis-SCRb, the cYFP-SRKb signal observed in the apoplast (arrow) likely represents eSRKb, while the cYFP-SRKb signal detected in cytoplasmic structures (arrowhead) represents the localization of the eSRK/tSRK within the ER, as previously demonstrated (Rea and Nasrallah, 2015). Note that cYFP-positive Hechtian strands are obscured by the apoplastic signal emanating from cYFP-eSRKb proteins but are visible when image brightness is increased (Supplemental Figure 2B). (B) In the presence of cis-SCRb, the cYFP-SRKb signal is observed exclusively in intracellular compartments but not in the apoplast (arrow). (A-B) Bar=10 µm.

Figure 5. Examples of conventional SI-based methods for the generation of hybrids in the Brassicaceae. Three strategies for SI-based hybrid breeding are shown (modified from Nasrallah, 2004). (A) A strategy that uses two different elite self-incompatible inbred lines (E1[SaSa] and E2[SbSb]). This method requires intensive labor for the maintenance of parental inbred lines and it generates only self-incompatible hybrid plants, which is an undesirable outcome for seed crops. (B) and (C) Two strategies that incorporate isogenic elite self-fertile lines (E[SfSf]) into the crossing scheme. These strategies were developed to reduce the labor associated with the maintenance of self-incompatible inbred lines and to produce populations of hybrid plants that contain some self-fertile plants. In (B), two elite self-incompatible inbred lines (E1[SaSa] and E2[SbSb]) are each pollinated with an isogenic self-fertile line (E1[SfSf] and E2[SfSf], respectively), and the self-incompatible progenies from each cross are then used to generate hybrid plants. In (C), an elite self-incompatible inbred line (E1[SaSa]) is pollinated with an isogenic self-fertile line (E1[SfSf]). The self-incompatible progenies are then pollinated with another elite self-fertile inbred line (E2[SfSf]) for hybrid production. Sa: the Sa haplotype containing the SRKa and SCRa genes; Sb: the Sb haplotype containing the SRKb and SCRb genes; Sf: a non-functional S haplotype.

Figure 6. Novel cis-SCR-based strategies for the maintenance of self-incompatible inbred lines and generation of self-fertile hybrids. (A) An inducible cis-SCR strategy using a heat-inducible promoter for the maintenance of self-incompatible inbred lines. The diagram shows a heat-inducible cis-SCR-encoding transgene (top) and seed production in conditionally self-incompatible plants under inducing and non-inducing conditions (bottom). (B) Novel schemes
for the generation of self-fertile hybrids that may be incorporated into current breeding programs.

(1) A scheme modified from the conventional hybrid breeding method illustrated in Figure 5A: a transgene containing the “SRKb-Off Switch”, *AtS1pr:SCRb* (*Cb*), is introduced into an elite self-incompatible inbred line carrying the *Sa* haplotype (E1[*SaSa*]) to generate E1[*SaSaCbCb*], and a transgene containing the “SRKa-Off Switch”, *AtS1pr:SCRa* (*Ca*), is introduced into an elite self-incompatible inbred line carrying the *Sb* haplotype (E2[*SbSb*]) to generate E2[*SbSbCaCa*]. All hybrid progenies derived from a cross between these two modified parental lines are self-fertile.

(2) A scheme modified from the conventional method illustrated in Figure 5C: a transgene containing the “SRKa-Off Switch” (*Ca*) is introduced into an elite self-fertile inbred line (E2[*SfSf*]) to generate E2[*SfSfCaCa*]. All hybrid progenies derived from crossing the self-incompatible E1[*SaSa*]) line with the E2[*SfSfCaCa*] line are self-fertile. Both schemes produce self-fertile hybrids that set seed autonomously and do not require pollinator activity. *Sa*, *Sb*, and *Sf* as in Figure 5.
Bar M, Anvi A (2014) Endosomal trafficking and signaling in plant defense responses. Curr Opin Plant Biol 22: 86-92

Boggs NA, Dwyer KG, Shah P, McCulloch AA, Bechsgaard J, Schierup MH, Nasrallah ME, Nasrallah JB (2009) Expression of distinct self-incompatibility specificities in Arabidopsis thaliana. Genetics 182: 1313-1321

Borges F, Martienssen RA (2013) Establishing epigenetic variation during genome reprogramming. RNA Biol 10: 490-494

Carvalho RF, Beutler M, Marler KJ, Knöll B, Becker-Barroso E, Heintzmann R, Nq T, Drescher U (2006) Silencing of EphA3 through a cis interaction with ephrinA5. Nat Neurosci 9: 322-330

Castellano G, Reid, JF, Alberti P, Carcanqiu ML, Tomassetti A, Canevari S (2006) New potential ligand-receptor signaling loops in ovarian cancer identified in multiple gene expression studies. Cancer Res 66: 10709-10719

Chookajorn T, Kachroo A, Ripoll DR, Clark AG, Nasrallah JB (2004) Specificity determinants and diversification of the Brassica self-incompatibility pollen ligand. Proc Natl Acad Sci USA 101: 911-917

Clough S, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735-743

Cuzin F, Grandjean V, Rassoulzadegan M (2008) Inherited variation at the epigenetic level: paramutation from the plant to the mouse. Curr Opin Genet Dev 18: 193-196

Dwyer KG, Kandasamy MK, Mahosky DI, Acciai J, Kudish BI, Miller JE, Nasrallah ME, Nasrallah JB (1994) A superfam ily of S Locus-Related sequences in Arabidopsis: Diverse structures and expression patterns. Plant Cell 6: 1829-1843

Fleming RJ, Hori K, Sen A, Filloramo GV, Langer JM, Obar RA, Artavanis-Tsakonas S, Maharaj-Best AC (2013) An extracellular region of Serrate is essential for ligand-induced cis-inhibition of Notch signaling. Development 140: 2039-2049

Giranton J-L, Ariza MJ, Dumas C, Cock JM, Gaude T (1995) The S locus receptor kinase gene encodes a soluble glycoprotein corresponding to the SRK extracellular domain in Brassica oleracea. Plant J 8: 827-834

Glittenberg M, Pitsouli C, Garvey C, Delidakis C, Bray S (2006) Role of conserved intracellular motifs in Serrate signalling, cis-inhibition and endocytosis. EMBO J 25: 4697-4706

Gray AR (1993) Broccoli Brassica oleracea L. (Italica group). In: G Kalloo, BO Bergh, eds, Genetic Improvement of vegetable crops. Pergamon Press, New York, pp 61-86

Haklai-Topper L, Mlechkovich G, Savariego D, Gokhman I, Yaron A (2010) Cis interaction between semaphorin6A and Plexin-A4 modulates the repulsive response. EMBO J 29: 2633-2645
Han X (2014) Constitutive active chemokine CXC receptors. Adv Pharmacol 70: 265-301

Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, Li B, Cavet G, Linsley PS (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 21: 635-637

Jun J, Fiume E, Roeder AH, Meng L, Sharma VK, Osmont KS, Baker C, Ha CM, Meyerowitz EM, Feldman LJ, Fletcher JC (2010) Comprehensive analysis of CLE polypeptide signaling gene expression and overexpression activity in Arabidopsis. Plant Physiol 154: 1721-1736

Held W, Mariuzza RA (2008) Cis interactions of immunoreceptors with MHC and non-MHC ligands. Nat Rev Immunol 8: 269-278

Hirota S, Isozaki K, Moriyama Y, Hashimoto K, Nishida T, Ishiiguro S, Kawano K, Hanada M, Kurata A, Takeda M, Muhammad Tunio G, Matsuzawa Y, Kanakura Y, Shinomura Y, Kitamura Y (1998) Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 279: 577-580

Kachroo A, Schopfer CR, Nasrallah ME, Nasrallah JB (2001) Allele-specific receptor-ligand interactions in Brassica self-incompatibility. Science 293: 1824-1826

Kho YO, Baër J (1968) Observing pollen tubes by means of fluorescence. Euphytica 17:298-302

Kitashiba H, Liu P, Nishio T, Nasrallah JB, Nasrallah ME (2011) Functional test of Brassica self-incompatibility modifiers in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 108: 18173-18178

Klein T, Brennan K, Arias AM (1997) An intrinsic dominant negative activity of serrate that is modulated during wing development in Drosophila. Dev Biol 189: 123-134

Krasagakis K, Fragiadaki I, Metaxari M, Krüger-Krasagakis S, Tzanakakis GN, Stathopoulos EN, Eberle J, Tavernarakis N, Tosca AD (2011) KIT receptor activation by autocrine and paracrine stem cell factor stimulates growth of merkel cell carcinoma in vitro. J Cell Physiol 226: 1099-1109

Kusaba M, Dwyer K, Hendershot J, Vrebalov J, Nasrallah JB, Nasrallah ME (2001) Self-incompatibility in the Genus Arabidopsis: Characterization of the S locus in the outcrossing A. lyrata and its autogamous relative A. thaliana. Plant Cell 13: 627-643

Lämmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685

Lease KA, Walker JC (2006) The Arabidopsis unannotated secreted peptide database, a resource for plant peptidomics. Plant Physiol 142: 831-838

Nasrallah JB, Nasrallah ME (2014a) S-locus receptor kinase signaling. Biochem. Soc. Trans. 42: 312-319
Nasrallah JB and Nasrallah ME (2014b) Robust self-incompatibility in the absence of a functional ARC1 gene in Arabidopsis thaliana. Plant Cell 26: 3838-3841

Nasrallah ME, Liu P, Nasrallah JB (2002) Generation of self-incompatible Arabidopsis thaliana by transfer of two S locus genes from A. lyrata. Science 297: 247-249

Nasrallah, ME (2004) Biotechnology for pollination control in crucifer oilseed crops. In: EC Pua, CJ Douglas, eds, Biotechnology in Agriculture and Forestry, Vol 54. Springer-Verlag, Heidelberg, pp 65-80

Nasrallah ME, Liu P, Sherman-Broyles S, Boggs N, Nasrallah JB (2004) Natural variation in expression of self-incompatibility in Arabidopsis thaliana: Implications for the evolution of selfing. Proc Natl Acad Sci USA 101: 16070-16074

Nelson BK, Cai X, Nebenführ A (2007) A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J 51: 1126-1136

Ockendon DJ, Smith BM (1993) Brussels sprouts Brassica oleracea var. gemmifera DC. In G Kalloo, BO Bergh, eds. Genetic improvement of vegetable crops. Pergamon Press, New York, pp 87-110

Paszkowski J, Grossniklaus U (2011) Selected aspects of transgenerational epigenetic inheritance and resetting in plants. Curr Opin Plant Dev 14: 195-203

Rea AC, Nasrallah JB (2015) In vivo imaging of the S-locus receptor kinase, the female specificity determinant of self-incompatibility, in transgenic self-incompatible Arabidopsis thaliana. Ann Bot 115: 789-805

Robatzek S, Chinchilla D, Boller T (2006) Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. Genes Dev 20: 537-542

Roberts M, Tang S, Stallmann A, Dangl JL, Bonardi V (2013) Genetic requirements for signaling from an autoactive plant NB-LRR intracellular innate immune receptor. Plos Genet 9: e1003465

Sakamoto K, Bu G, Chen S, Takei Y, Hibli K, Kodera Y, McCormick LM, Nakao A, Noda M, Muramatsu T, Kadoshima K (2011) Premature ligand-receptor interaction during biosynthesis limits the production of growth factor Midkine and its receptor LDL receptor-related protein 1. J Biol Chem 286: 8405-8413

Scacheri PC, Rozenblatt-Rosen O, Caplen NJ, Wolfsberg TG, Umayam L, Lee JC, Hughes CM, Shannugam KS, Bhattacharjee A, Meyerson M, Collins FS (2004) Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc Natl Acad Sci USA 101: 1892-1897

Schopfer CR, Nasrallah JB (2000) Self-incompatibility. Prospects for a novel putative peptide-signaling molecule. Plant Physiol 124: 935-940
Schopfer CR, Nasrallah ME, Nasrallah JB (1999) The male determinant of self-incompatibility in Brassica. Science 286: 1697-1700

Shaya O, Sprinzak D (2011) From Notch signaling to fine-grained patterning: Modeling meets experiments. Curr Opin Genet Dev 21: 732-739

Shiba H, Takayama S, Iwano M, Shimosato H, Funato M, Nakagawa T, Che FS, Suzuki G, Watanabe M, Hinata K, Isogai A (2001) A pollen coat protein, SP11/SCR, determines the pollen S-specificity in the self-incompatibility of Brassica species. Plant Physiol 125: 2095-2103

Shimazato H, Yokota N, Shiba H, Iwano M, Entani T, Che FS, Watanabe M, Isogai A, Takayama S (2007) Characterization of the SP11/SCR high-affinity binding site involved in self/nonself recognition in Brassica self-incompatibility. Plant Cell 19: 107-117

Smyth DR, Bowman JL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell 2: 755-762

Sorkin A, Goh LK (2008) Endocytosis and intracellular trafficking of ErbBs. Exp Cell Res 314: 3093-3106

Sporn MB, Roberts AB (1985) Autocrine growth factors and cancer. Nature 313: 745-747

Stein JC, Howlett B, Boyes DC, Nasrallah ME, Nasrallah JB (1991) Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatibility locus of Brassica oleracea. Proc Natl Acad Sci USA 88: 8816-8820

Stein JC, Dixit R, Nasrallah ME, Nasrallah JB (1996) SRK, the stigma-specific S locus receptor kinase of Brassica, is targeted to the plasma membrane in transgenic tobacco. Plant Cell 8: 429-445

Strabala TJ (2008) CLE genes in plant development. Plant Signal Behav 3: 457-459

Strabala TJ, O’donnell PJ, Smit AM, Ampomah-Dwamena C, Martin EJ, Netzler N, Nieuwenhuizen NJ, Quinn BD, Foote HC, Hudson KR (2006) Gain-of-function phenotypes of many CLAVATA3/ESR genes, including four new family members, correlate with tandem variations in the conserved CLAVATA3/ESR domain. Plant Physiol 140: 1331-1344

Takayama S, Shiba H, Iwano M, Shimosato H, Che FS, Kai N, Watanabe M, Suzuki G, Hinata K, Isogai A (2000) The pollen determinant of self-incompatibility in Brassica campestris. Proc Natl Acad Sci USA 97: 1920-1925

Takayama S, Shimosato H, Shiba H, Funato M, Che FS, Watanabe M, Iwano M, Isogai A (2001) Direct ligand-receptor complex interaction controls Brassica self-incompatibility. Nature 413: 534-538

Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from
Wang JQ, Jeelall YS, Ferguson LL, Horikawa K (2014) Toll-like receptors and cancer: MYD88 mutation and inflammation. Front Immunol 5: 367

Wang ZY, Bai MY, Oh E, Zhu JY (2012) Brassinosteroid signaling network and regulation of photomorphogenesis. Annu Rev Genet 46: 701-724

Webster MK, Donoghue DJ (1996) Constitutive activation of fibroblast growth factor receptor 3 by the transmembrane domain point mutation found in achondroplasia. EMBO J 15: 520-527

Willnow TE, Armstrong SA, Hammer RE, Herz J (1995) Functional expression of low density lipoprotein receptor-related protein is controlled by receptor-associated protein in vivo. Proc Natl Acad Sci USA 92: 4537-4541

Willnow TE, Rohlmann A, Horton J, Otani H, Braun JR, Hammer RE, Herz J (1996) RAP, a specialized chaperone, prevents ligand-induced ER retention and degradation of LDL receptor-related endocytic receptors. EMBO J 15: 2632-2639

Yamamoto M, Tantikanjana T, Nishio T, Nasrallah ME, Nasrallah JB (2014) Site-specific N-glycosylation of the S-locus receptor kinase and its role in the self-incompatibility response of the Brassicaceae. Plant Cell 26: 4749-4762

Yaron A, Sprinzak D (2012) The cis side of juxtacrine signaling: a new role in the development of the nervous system. Trends Neurosci 35: 230-239