Rh2(CF3CONH)4: THE FIRST BIOLOGICAL ASSAYS OF A RHODIUM (II) AMIDATE

Breno Pannia Espósito1, Szulim Ber Zyngier2, Aparecido Ribeiro de Souza3 and Renato Najjar1

1 Institute of Chemistry, University of São Paulo, Av. Lineu Prestes 748, 05508-900, São Paulo, Brazil <bpesp@quim.iq.usp.br>, 2 Institute of Biomedical Sciences - I, University of São Paulo, Av. Lineu Prestes 1524, 05508-900, São Paulo, Brazil; 3 Institute of Chemistry, Federal University of Goiás, Campus II, P.O. Box 131, 74001-970, Goiânia, Brazil.

ABSTRACT

The rhodium (II) complexes Rh2(tfa)4·2(tfac) and Rh2(tfacam)4 (tfacam = CF3CONH·tfa = CF3COO·tfac = CF3CONH2) were synthesized and characterized by microanalysis and electronic and vibrational spectroscopies. Rh2(tfacam)4 was tested both in vitro (U937 and K562 human leukemia cells and Ehrlich ascites tumor cells) and in vivo for cytostatic activity and lethal dose determination, respectively. This is the first rhodium tetra-amidate to have its biological activity evaluated. The LD50 value for Rh2(tfacam)4 is of the same order as that of cisplatin, and it was verified that the rhodium complex usually needs lower doses than cisplatin to promote the same inhibitory effects.

INTRODUCTION

In 1969, Rosenberg and coworkers studied the effect of electric fields on the growth of Escherichia coli and noted that platinum compounds of cis configuration showed cytostatic activity [1]. Today, platinic derivatives are widely used in tumor therapy, specially against testicular or ovarian carcinomas, and bladder, head and neck tumors [2]. The biological activity of cisplatin and other platinum derivatives has already been the scope of numerous reviews [3].

Following the pioneering work of Rosenberg, complexes of transition metals other than platinum such as titanium, ruthenium [2], iridium [4] and rhodium have been and are still being tested for antitumor activity. The rhodium carboxylates, whose dimeric structure is shown in Figure 1 (R = bridging ligand substituent group; L = axial coordinating ligand which may be absent), are particularly noteworthy among the rhodium compounds.

The antitumor activity of rhodium complexes was first reported by Bear and coworkers [5]. Rhodium butyrate (R = C3H7 in Figure 1) showed high in vitro cytostatic potential and in vivo antitumoral activity but with toxicity higher than that of cisplatin [2,6,7]. For this reason, this class of dinuclear complexes remains under study, and it is expected that structures may be found that ideally would have maximum antineoplastic effect with minimum or no toxic effect. Several dinuclear rhodium (II) complexes have been synthesized with this objective [8].

The hopes regarding the chemotherapeutic potential of rhodium amidates (Figure 2) are based on the pioneering work described by Bear [9] and on previous findings for platinum and other metal compounds.
which show that one of the main factors determining biological activity is the presence of at least one free NH group in the molecule in order to establish hydrogen bonds with nucleotide phosphate groups. A number of rhodium tetra-amidates have been synthesized and characterized [11] and in this work we report some chemical properties and the pharmacological parameters IC50 and LD50 of the complex, Rh2(tfacam)4 (Figure 2; R = CF3; L can be a water molecule. To our knowledge, this is the first time that a rhodium tetra-amidate has had its biological activities reported [12].

MATERIALS AND METHODS

Reagents: RhCl3.xH2O was purchased from Fluka. Chloroform and trifluoroacetamide (tfac) were from Aldrich Chemicals. A commercial solution of cisplatin (Platinol 10) was from Quiral Quimica do Brasil S/A and TweenTM80 was from Baker. Using previously described methods, we obtained rhodium acetate, Rh2(ac)4 [13]. Rhodium trifluoroacetate (R = CF3 and L is absent in Figure 1) was obtained in yields of ~60% through dropwise addition of ethanolic solutions of RhCl3 over NaOOCF3, a slight modification of a method described earlier [8c].

Melting reaction: The synthesis of the complex Rh2(CF3CONH)4 was adapted from the literature [11a,b]. The starting reagents Rh2(ac)4 and tfac were previously treated in order to achieve the desired reaction course. The amide (~2 g; 17.7 mmol) was dried under vacuum for 30 minutes, at temperatures between 20 and 40°C, to eliminate any trace of water or trifluoroacetic acid. 200 mg (0.45 mmol) of Rh2(ac)4 were heated to 100°C for 30 minutes in a stopped 50 mL round flask with a magnetic stirrer bar. This system was immersed in a 144 to 148°C silicon oil bath for 2 hours. The flask was sealed with TeflonTM tape after inner pressure compensation, which occurred after some seconds. After cooling, the crystals were sublimed during 10 hours in an Abderhalden equipment heated to 56°C with acetone. An amorphous and hygroscopic purple solid was obtained whose elemental analysis was consistent with the stoichiometry Rh2(CF3CONH)4(CF3CONH2). (Calculated: C = 16.38%; H = 0.59%; N = 9.55%; Experimental: C = 16.12%; H = 1.59%; N = 9.27%).

Rh2(tfacam)4.2(tfac) (L = CF3CONH2 in Figure 1): The adduct between Rh2(tfacam)4 and tfac was prepared by refluxing the reagents in chloroform for 10 minutes, followed by slow solvent evaporation in air. (Calculated: C = 16.31%; H = 0.46%; N = 3.17%; Experimental: C = 16.23%; H = 0.63%; N = 2.91%).

Electronic Spectroscopy: The electronic spectra in the range of 190 to 700 nm were registered with a Hitachi U-3000 Spectrophotometer, with 1 cm quartz cells using W and D2 lamps. The aqueous solutions were 10-3 and 10-4 M for visible and ultraviolet (UV) spectrometry, respectively.

Vibrational Spectroscopy: The infrared spectra in the range of 500 to 4000 cm-1 were obtained with a Perkin-Elmer FT-IR equipment, in KBr pellets. The Raman spectra of the rhodium complexes were obtained in a Renishaw Ramascope equipment, with Ar+ (488 nm; Rh2(tfacam)4.2(tfac)) or He/Ne (633 nm; Rh2(tfacam)4.2(tfac)) laser excitation.

In vitro Biological Assays: Cisplatin 1x10-3 M and Rh2(tfacam)4 0.8 M aqueous solutions were prepared. U937 and K562 human leukemia cells were cultivated in RPMI-1640 medium and kept in tissue culture flasks at 37°C. Ehrlich ascitic cells were kept in Balb-c mice, sacrificed at the time of experiment, and from which 1 mL of intraperitoneal liquid was extracted. Inside a laminar flow cabinet, these cells were transferred to centrifuge tubes that were sealed and centrifuged at 1400 rpm for 5 minutes. The cell pellet was resuspended in a mixture of culture medium and PBS buffer solution. Cell counting was performed in Neubauer plates, working typically in the range of 3 to 4 x 105 cells/mL.

In vivo Biological Assays: After preliminary tests, a 2.5x10-3 M aqueous solution of Rh2(tfacam)4 containing 5% w/w of TweenTM80 was prepared, in order to achieve adequate solubilization of the inorganic compound. This solution was prepared by dissolving 0.071 g (0.079 mmol) of Rh2(tfacam)4.2(tfac) in the minimum possible amount of an acetone-ethanol mixture (~10:1) in a 25 mL flask, forming a deep red solution characteristic of axial coordination with acetone. Then 1.25 g of TweenTM80 was added, followed by manual homogenization and elimination of the organic solvents through N2 bubbling for 1 to 1.5 hours. After evaporation, distilled water was carefully added to complete 25 mL. This final solution was purple. Volumes of this solution ranging from 0.2 to 0.5 mL were injected intraperitoneally in groups of 10 to 11 male Balb-c mice (average weight: 22.5 g). The dead animals were counted after 6 days.

RESULTS AND DISCUSSION

Melting Reaction: The yield of the reaction between Rh2(ac)4 and tfac was quantitative and the described method is reproducible. Drying of the amide proved to be important since traces of trifluoroacetic
acid, the tfac hydrolysis product, could be involved in reduction processes of Rh(II) to Rh⁰, a phenomenon observed during our early tests.

Rh₂(tfacam)₄ is insoluble in chloroform, soluble in acetone, methanol and ethanol and moderately soluble in water. Under prolonged heating its solubility decreases significantly, a behavior similar to some Rh binuclear compounds such as citrate and other alkanoates [14]. In such situations, the molecules probably undergo polymerization, in which some of the oxygen atoms of the bridging ligands coordinate at the axial position of a neighboring molecule forming chains.

Methanol solutions of Rh₂(tfacam)₄·₂(tfac) were prepared and mixed with an excess of several ligands that could, in principle, displace the tfac molecules and occupy the axial positions. The aim in this case was a qualitative verification of the chemical properties of this complex. Table I reports the results. These data show that the axial positions are passive to ligand exchange, giving rise to new adducts with color patterns different from that of Rh carboxylates. These usually show blue or green adducts for coordination through O, pink or red for coordination through N and orange through S or P. In the case of Rh₂(tfacam)₄, adducts coordinated axially through O are reddish or purple and are yellow for coordination with pyridine, DMSO or R₃P, reflecting changes in the energy levels of the molecular orbitals of the compounds [11a,e].

In crystals, it was observed [11b] that the Rh₂(tfacam)₄ complex can display hydrogen bonds between the amide H atom and one of the F atoms of the CF₃ group, which would be approximately in the NCO plane (Figure 3). Whether or not this interaction is more important than that of NH groups with proteic substrates in biologic environments is an issue for future research.

For the tetra-amidates there are four possible geometric isomers, according to the position of the NH groups. Generally, the isomer with Rh-N bonds in cis, as in Figure 2, is preferentially obtained (~ 94% [11b,c]), a fact that led Bear and coworkers to suggest the restriction that “the nitrogen of the entering amide ion cannot bind trans to any other nitrogen on the same rhodium atom” [11d].

**Electronic Spectroscopy:** Table II summarizes the visible and UV spectral data in aqueous solutions. The electronic transitions of rhodium carboxylates have already been the scope of a number of reports [15a-c], with the assignments shown in Table II being widely accepted.

The electronic spectra of rhodium carboxylates and tetra-amidates (as Rh₂(CH₃CONH)₄ and Rh₂(CF₃CONH)₄) are qualitatively similar [15d], although rhodium amidates possess a band at ~350 - 400 nm which sometimes cannot be observed, due to an overlap with UV absorption, and was tentatively assigned to a π*Rh-Rh to σ*Rh-O or σ*Rh-N transition [11b].

**Table I: Effect of ligand addition to Rh₂(tfacam)₄·₂(tfac)**

| Ligand          | λ₁ (nm) |
|-----------------|---------|
| Pyridine        | 472     |
| Dimethyl sulfoxide (DMSO) | 482     |
| Imidazole       | 480 (shoulder) |
| Acetonitrile    | 508     |
| Dimethylformamide | 540     |

*λ₁ is a typical absorption band of the Rh dimeric compounds (~500-600 nm). Its position is altered by axial substitution and defines the apparent color of the adducts.*

**Table II: λ (nm) and ε (M⁻¹cm⁻¹) for some rhodium complexes in water solution**

| Complex       | λ₁  | λ₄  | ε₁    | ε₄    |
|---------------|-----|-----|-------|-------|
| Rh₂(tfac)₄    | 581 | 169 | 442   | 115   |
| Rh₂(tfacam)₄  | 552 | 43.9|       |       |

λ₁: π*Rh-Rh → σ*Rh-Rh; λ₄:  ε*Rh-Rh → σ*Rh-Rh; (shoulder): σ*Rh-O → σ*Rh-Rh (s) shoulder —— not observed

**Vibrational Spectroscopy:** In KBr pellets, primary amidies have several characteristic infrared (IR) frequencies: (NH₃ at ~3330 and (NH₄ at ~3180 cm⁻¹; a band at ~1650 cm⁻¹ corresponding to (CO (Amide I band); a δ(NH) (Amide II band) at 1515 - 1650 cm⁻¹ and weak one at ~1400 cm⁻¹ from (CN. Amide I and Amide II bands may sometimes overlap. (CF usually falls in the 1000-1400 cm⁻¹ range [16]. Table III summarizes the relevant IR data for the free ligand tfac and some rhodium complexes. Table IV lists the main bands observed in the 100 to 500 cm⁻¹ range. The Rh-Rh bond stretching frequency is practically independent of substitutions in the bridge ligands, but depends strongly on the nature and influence of the axial ligands. Its assignment has already been the subject of some controversy [cfr 17-21]. Using normal coordinate analysis, Pruchnik and coworkers [17] concluded that both of the reported bands (in the ~170 -
180 and in the ~ 280 - 300 cm⁻¹ region) show a component of the Rh-Rh vibration, not as pure bands but instead coupled with Rh-Obridge vibrations, for example.

| Table III: Main IR bands for the complexes (cm⁻¹), in KBr pellets |
|---------------------------------------------------------------|
| **Compound** | **Bands / cm⁻¹** | **Proposed assignment** |
| tfac(free ligand) | 3370 (s) | νNH,as |
| | 3192 (s) | νNH,SH |
| | 1644 (broad) | overlap Amide I/Amide II |
| | 1458 (m) | νCN |
| | 1153 (s) | νCF |
| Rh₂(tfac)₄ | 1668 (s) | νCO,as |
| | 1461 (w) | νCO,SH |
| | 1194 (s) | νCF |
| Rh₂(tfacam)_4.2(tfac), see Figure 6 | 3330 (broad) | νNH (overlap as/s) |
| | 1659 (s) | overlap Amide I/Amide II |
| | 1431 (m) | νCN |
| | ~1178(s) | νCF |
| Rh₂(tfacam)_4.2(tfac) | 3446(s) | νNH (overlap as/s) |
| | 1663(s) | (Am.I/Am.II) or νCO,carbox ¹ |
| | 1459(m) | νCO,SH or νCN ? |
| | 1192(s) | νCF |

¹: νCO,carbox = CO stretching from rhodium carboxylate
s = strong; m = medium; w = weak

With amidates as bridging ligands, the Rh-Rh bond will be subject to a different environment. Rh₂(CH₃CONH)₄ or Rh₂(CF₃CONH)₄ have Rh-Rh distances about 0.4 nm greater and νRh-Rh around 15 cm⁻¹ [23]'smaller than Rh₂(ac)₄. These effects could be explained either by steric reasons (the amidate O-C-N angles are slightly bigger than the O-C-O angle of the carboxylates) or by electronic reasons (amidates are better π-acceptors than carboxylates, and so they can remove electron density from the Rh-Rh bond) [15,22].

A tentative assignment of the Rh-Rh vibration was carried out for the compounds Rh₂(tfacam)_4.2(tfac) and Rh₂(tfacam)_4.2(tfac). The νRh-Rh value for Rh₂(tfacam)_4 was reported as being 332 cm⁻¹ [8h]. Axial coordination inserts electrons in antibonding levels of the Rh-Rh bonding molecular orbitals, so we would expect a slight weakening of this bonding and a consequent decrease of the νRh-Rh value when comparing Rh₂(tfacam)_4 with Rh₂(tfacam)_4.2(tfac). This is indeed observed if we consider the predominant Rh-Rh vibrational band as being at that 327 cm⁻¹ in Table IV. There is also a trend towards weakening the Rh-Rh bond if one compares Rh₂(tfacam)_4.2(tfac) with Rh₂(tfacam)_4.2(tfac). This is in fact observed if we consider the band at 313 cm⁻¹ in the Raman spectrum for the complex Rh₂(tfacam)_4.2(tfac) (Table IV) to be mainly Rh-Rh in character.

| Table IV: Main Raman bands for the complexes |
|---------------------------------------------|
| **Complex** | **Absorption / cm⁻¹** |
| Rh₂(tfacam)_4.2(tfac) | 157 (s); 192 (m); 282 (w); 327 (m); 464 (w); 541 (w) |
| Rh₂(tfacam)_4.2(tfac) | 173 (w); 179 (w); 313 (s); 432 (w); 502 (w); 524 (m) |

In vitro Biological Assays: After counting the live and dead cells of the different lines exposed to the two tested drugs, we built the suitable dose-response curves using probit transformation, a statistical treatment that changes values of a normal curve into a straight line. The IC₅₀ parameter was determined from all these curves and the final values are presented in Table V. Both in this case and in the LD₅₀ determinations, all values reported were calculated under the assumption that the axial L positions were occupied with water molecules after solubilization of Rh₂(tfacam)_4.

| Table V: Average IC₅₀ (x10⁻⁵M) values of the assayed drugs |
|-------------------------------------------------------------|
| **Tumor lineage** | **Rh₂(tfacam)_4** | **Cisplatin** |
| U937 | 4.8 | 13.0 |
| K562 | 7.8 | 7.9 |
| Ehrlich | 3.0 | 6.4 |
Analysing the comparative data of IC50 we see that the rhodium drug usually requires half of the molar dose of cisplatin to achieve the same inhibitory effect. Nevertheless, with respect to K562 cells, both act in the same concentration ranges.

**In vivo Biological Assays:** Table VI shows the results of LD50 determinations employing male Balb-c mice.

We obtained LD50 of the rhodium complex as being 4.8 x 10^-5 mol/kg (fiducial limits: 6.1 x 10^-5 and 3.7 x 10^-5 mol/kg). LD10, the lethal dose for 10% of the population, is a good first approach for tumor therapy tests. For Rh2(tfacam)4, its value is 2.4 x 10^-5 mol/kg (fiducial limits: 3.7 x 10^-5 and 1.5 x 10^-5 mol/kg). In their review, Hydes and Russell [23a] reported the LD50 of intraperitoneally administered cisplatin in Swiss white female mice [23b] as being 4.32 x 10^-5 mol/kg. Assuming that this value can be compared with our results, we see that Rh2(tfacam)4 has the same order of toxicity as cisplatin.

**CONCLUDING REMARKS**

These findings encourage us to continue research with the Rh2(tfacam)4 complex. Presently, we are undertaking survival rate determinations and anatomopathological experiments in Balb-c mice, in order to explore the potential of our compounds in cancer treatment. Another line of research will involve the interaction of this complex with selected proteins.

**ACKNOWLEDGEMENTS**

The authors are grateful to Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support. We would like to thank Prof. Márcia Temperini from the Molecular Spectroscopy Laboratory (LEM-IQUSP) for the Raman spectra. One of the authors (BPE) is also grateful to the CNPq for a MSc fellowship grant.

**REFERENCES**

[1] a) Rosenberg, B., Van Camp, L. Nature 1969, 222, 385 b) Rosenberg, B., Van Camp, L. Cancer Res. 1970, 30, 1799 c) Rosenberg, B. Cancer Chemother. Rep. (1), 1975, 59, 589 d) Rosenberg, B. Interdisc. Sci. Rev. 1978, 3, 134 e) Rosenberg, B. Biochimie 1978, 60, 859 f) Kociba, R.J.; Sleight, S.; Rosenberg, B. Cancer Chemother. Rep. (1), 1970, 54, 325
[2] Keppler, B.K. New J. Chem. 1990, 14, 389
[3] a) Reedik, J Pure & Appl. Chem. 1987, 92, 181 b) Umapathy, P. Coord. Chem. Rev. 1989, 95, 129 c) Zamble, D.B.; Lippard, S.J. Trends in Biochem. Sci. 1995, 20(10), 435 d) Wang, K.; Lu, J.; Li, R. Coord. Chem. Rev. 1996, 151, 53
[4] a) Craciunescu, D.G. et al. An. Real Acad. Farm. 1990, 56, 469 b) Craciunescu, D.G. et al. An. Real Acad. Farm. 1991, 57, 15
[5] a) Hughes, R.G.; Bear, J.L., Kimball, A.P. Proc. Am. Assoc. Cancer Res. 1972, 13, 120 b) Erck, A.; Rainer, L.; Whiteleyman, J.; Chang, I.M.; Kimball, A.P.; Bear, J.L. Proc. Soc. Exp. Biol. Med. 1974, 145, 1278 c) Bear, J.L.; Gray, H.B.; Rainer, L.; Chang, I.M.; Howard, R.; Serio, G.; Kimball, A.P. Cancer Chemother. Rep. 1975, 59, 611
[6] Kain, W.; Schwederski, B. Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life, John Wiley & Sons, Sussex, 1994.
[7] Boyar, E.B.; Robinson, S.D. Coord. Chem. Rev. 1983, 50, 109
[8] See for example, a) Znygier, S.B.; Kimura, E.; Najjar, R. Braz. J. Med. Biol. Res. 1989, 22, 397 b) Piraino, P.; Fimiani, V.; Ainis, T.; Cavallaro, A. J. Chemother. 1990, 2, 319 c) Nothenberg, M.S.; Takeda, K.G.F.; Najjar, R. J. Inorg. Biochem. 1991, 42(3), 217 d) Piraino, P.; Tresoldi, G.; Lo Schiavo, S. Inorg. Chimica Acta 1995, 203, 101 e) Lo Schiavo, S.; Sineri, M.S.; Tresoldi, G.; Arena, C.G.; Piraino, P. J. Chem. Soc. Dalton Trans. 1994, 10, 1517 f) Joesten, H.D.; Najjar, R.; Hebrank, G.P. Polyhedron 1982, 1(7-8), 637 g) Farrell, N.P.; Williamson, J.; McLaren, D.J.M. Biochem. Pharmacol. 1984, 33(7), 961 h) Souza, A.R., Ph.D. dissertation, Rhodium (II) cycloalcanocarboxylates: synthesis, spectroscopic and thermodiagromic studies and antitumor potential evaluation [Portuguese], Instituto de Química, Universidade de São Paulo, 1995 i) Pruchnik, F.; Du., D. J. Inorg. Biochem. 1996, 61, 55 j) Pruchnik, F.; Robert, F.; Jeannin, Y.; Jeannin, S. Inorg. Chem. 1997, 35, 4261 k) Souza, A.R.; Najjar, R.; Glikmanas, S.; Znygier, S.B. J. Inorg. Biochem. 1996, 64, 1 l) Souza, A.R.; Najjar, R.; Oliveira, E.; Znygier, S.B. Metal Based Drugs 1997, 4(1), 39-41
[9] Bear, J.L. Precious Met. Proc. Int. Prec. Met. Inst. Conf, 9th 1985, 337
[10] Rukk, N. S.; Allikberova, L.Y.; Savinkina, E.V.; Sokolova, A.S.; Stepin, B.D. Russ. J. Inorg. Chem. 1990, 35(2), 311
Rh$_2$(CF$_3$CONH)$_4$: The First Biological Assays of a Rhodium(II) Amidate

[11]  a) Dennis, A.M.; Howard, R.A.; Lançon, D.; Kadish, K.M.; Bear, J.L. J. Chem. Soc., Chem. Commun. 1982, 399  b) Dennis, A.M.; Korp, J.D.; Bernal, I.; Howard, R.A.; Bear, J.L. Inorg. Chem. 1983, 22(10), 1522  c) Schelokov, R.N.; Maiorova, A.G.; Kuznetsova, G.N.; Golovanova, I.F.; Evstafeva, O.N. Russ. J. Inorg. Chem. 1984, 29(5), 766  d) Ashan, M.Q.; Bernal, I.; Bear, J.L. Inorg. Chem. 1986, 25, 260  e) Johnson, S.A.; Hunt, H.R.; Neumann, H.M. Inorg. Chem. 1963, 2(5), 960  f) Zoroddu, M.A.; Dallochio, R. Trans. Metal Chem. 1989, 14(4), 267

[12]  Clarke, M.J.; Stubbs, M. Metal Ions Biol. Systems 1996, 32, 727

[13]  Rempel, G.A.; Legzdins, P.; Smith, H.; Wilkinson, G. Inorg. Synth. 1971, 13, 90

[14]  Poizat, O.; Strommen, D.P.; Maldivi, P., Giroud-Godquin, A.M.; Marchon, J.C. Inorg. Chem. 1990, 29, 4851

[15]  a) Norman, J.G.; Kolari, H.J. J. Am. Chem. Soc. 1978, 100 (3), 791  b) Miskowski, V.M.; Schaefer, W.P.; Sadeghi, B.; Santarsiero, B.D.; Gray, H.B. Inorg. Chem. 1984, 23, 1154  c) Martin Jr., D.S.; Webb, T.R.; Robbins, G.A.; Fanwick, P.E. Inorg. Chem. 1979, 18, 475  d) Best, S.P.; Chandlely, P.; Clark, R.J.H.; McCarthy, S.; Hursthouse, M.B.; Bates, P.A. J. Chem. Soc., Dalton Trans. 1989, 581

[16]  Silverstein, R.M.; Bassler, G.C.; Morrill, T.C. Spectrometric identification of organic compounds, John Wiley & Sons, 5th ed, 1991.

[17]  Pruchnik, F.; Hanuza, J.; Hermanowicz, K.; Wajda-Hermanowicz, K.; Pasternak, H.; Zubar, M. Spectrochimica Acta, 1989, 45A(8), 835.

[18]  San Filippo, J.; Sniadoch, H.T. Inorg. Chem. 1973, 12, 2326

[19]  Clark, R.J.H.; Hempleman, A.J.; Flint, C.D. J. Am. Chem. Soc. 1986, 108, 518

[20]  Clark, R.J.H.; Hempleman, A.J. Inorg. Chem. 1989, 28, 746

[21]  Miskowski, V.M.; Dallinger, R.F.; Christoph, G.G.; Morris, D.E.; Spies, G.H.; Woodruff, W.H. Inorg. Chem. 1987, 26, 2127

[22]  Best, S.P.; Clark, R.J.H.; Nightingale, A.J. Inorg. Chem. 1990, 29, 1383

[23]  a) Hydes, P.C.; Russell, M.J.H. Cancer Metast. Rev. 1988, 7, 67-89  b) Cleare, M.J.; Hoeschele, J.D. Bioinorg. Chem. 1973, 2, 187

Received: October 20, 1997 - Accepted: December 3, 1997 - Received in revised camera-ready format: December 4, 1997