A NOTE ON CLASSICAL AND P-ADIC FRÉCHET FUNCTIONAL EQUATIONS WITH RESTRICTIONS

J. M. ALMIRA

ABSTRACT. Given X, Y two \mathbb{Q}-vector spaces, and $f : X \to Y$, we study under which conditions on the sets $B_k \subseteq X$, $k = 1, \ldots, s$, if $\Delta_{h_1 h_2 \cdots h_s} f(x) = 0$ for all $x \in X$ and $h_k \in B_k$, $k = 1, 2, \ldots, s$, then $\Delta_{h_1 h_2 \cdots h_s} f(x) = 0$ for all $(x, h_1, \ldots, h_s) \in X^{s+1}$.

1. Introduction

Let X, Y be two \mathbb{Q}-vector spaces and let $f : X \to Y$. We say that f satisfies Fréchet’s functional equation of order $s - 1$ if

\[\Delta_{h_1 h_2 \cdots h_s} f(x) = 0 \quad (x, h_1, h_2, \ldots, h_s \in X), \]

where $\Delta_h f(x) = f(x + h) - f(x)$ and $\Delta_{h_1 h_2 \cdots h_s} f(x) = \Delta_{h_1} (\Delta_{h_2 \cdots h_s} f)(x)$, $s = 2, 3, \ldots$. In particular, after Fréchet’s seminal paper \cite{Fr}, the solutions of this equation are named “polynomials” by the Functional Equations community, since it is known that, under very mild regularity conditions on f, if $f : \mathbb{R} \to \mathbb{R}$ satisfies (1), then $f(x) = a_0 + a_1 x + \cdots + a_{s-1} x^{s-1}$ for all $x \in \mathbb{R}$ and certain constants $a_i \in \mathbb{R}$. For example, in order to have this property, it is enough for f being locally bounded \cite{Fr, Almira}, but there are stronger results \cite{Gar, Ger, Ger2}. The general solutions of (1) are characterized as functions of the form $f(x) = A_0 + A_1(x) + \cdots + A_n(x)$, where A_0 is a constant and $A_k(x) = A^k(x, x, \ldots, x)$ for a certain k-additive symmetric function $A^k : X \to Y$ (we say that A_k is a diagonalization of A^k). Furthermore, it is known that $f : X \to Y$ satisfies (1) if and only if it satisfies the (apparently less restrictive) equation

\[\Delta^s_h f(x) := \sum_{k=0}^{s} \binom{s}{k} (-1)^{s-k} f(x + kh) = 0 \quad (x, h \in X). \]

A proof of this fact follows directly from \cite[Theorem 9.2, p. 66]{Sch}, where it is proved that the operators $\Delta_{h_1 h_2 \cdots h_s}$ satisfy the equation

\[\Delta_{h_1 h_2 \cdots h_s} f(x) = \sum_{\varepsilon_1, \ldots, \varepsilon_s = 0}^{1} (-1)^{\varepsilon_1 + \cdots + \varepsilon_s} \Delta^s_{\alpha_{\varepsilon_1, \ldots, \varepsilon_s}(h_1, \ldots, h_s)} f(x + \beta_{\varepsilon_1, \ldots, \varepsilon_s}(h_1, \ldots, h_s)), \]

where $\alpha_{\varepsilon_1, \ldots, \varepsilon_s}(h_1, \ldots, h_s) = (-1) \sum_{r=1}^{s} \varepsilon_r h_r$ and $\beta_{\varepsilon_1, \ldots, \varepsilon_s}(h_1, \ldots, h_s) = \sum_{r=1}^{s} \varepsilon_r h_r$. (Note that $\Delta^s_h f(x)$ results from $\Delta_{h_1 h_2 \cdots h_s} f(x)$ by imposing $h_1 = \cdots = h_s = h$.)

Given $D \subseteq X$, the function $f : D \to Y$ is named a “polynomial on D” if f satisfies (2) for a certain $s \in \mathbb{N}$ and all $x, h \in X$ such that $\{x, x + h, \ldots, x + sh\} \subseteq D$. A natural problem, that has been solved by R. Ger \cite{Ger}, is to study the conditions under which a

2010 Mathematics Subject Classification. 39B22.

Key words and phrases. Fréchet functional equation, p-adic analysis.
polynomial f on D can be extended (and how to make this) to a polynomial on X. In this paper we study the analogous problem when we try to extend not the function f, which is assumed to be defined on all the space X, but the domain of validity of the equation (1) for the steps h_1, h_2, \cdots, h_s. We prove our results for the special cases $X = \mathbb{R}$ and $X = \mathbb{Q}_p$, where \mathbb{Q}_p denotes the field of p-adic numbers (which is, of course, a very special \mathbb{Q}-vector space). We also consider the case of X being a topological vector space in a more general setting.

2. The case $X = \mathbb{R}$

In this section we assume that $f : \mathbb{R} \to Y$ for a certain \mathbb{Q}-vector space Y.

Lemma 2.1. Let us assume that $I = (a, b)$ is a nonempty open interval of the real line. If $\Delta_h f(x) = 0$ for all $x \in \mathbb{R}$ and $h \in I$ then $\Delta_h f(x) = 0$ for all $x, h \in \mathbb{R}$.

Proof. We assume, with no loss of generality, that $0 \leq a < b$. Obviously, $\Delta_h f(x) = 0$ for all $x, h \in \mathbb{R}$ if and only if f is a constant function. As a first step, we prove that f is constant on an interval of the form (α, ∞) for a certain real number α.

Given $x_0 \in \mathbb{R}$, we know that $\Delta_h f(x_0) = f(x_0 + h) - f(x_0) = 0$ for all $h \in (a, b)$. Hence $f_{x_0+I} = f(x_0)$. What is more, if $k \in \mathbb{N}$ and $h \in (a, b)$, then

$$0 = \Delta_h f(x_0 + (k - 1)h) = f(x_0 + kh) - f(x_0 + (k - 1)h),$$

$$0 = \Delta_h f(x_0 + (k - 2)h) = f(x_0 + (k - 1)h) - f(x_0 + (k - 2)h),$$

$$\vdots$$

$$0 = \Delta_h f(x_0 + (k - 1)h) = f(x_0 + h) - f(x_0),$$

so that $f(x_0) = f(x_0 + kh)$. This implies that $f(x)$ is constant on the set $M = x_0 + \bigcup_{k=1}^{\infty} (ka, kb)$. Now, the intervals (ka, kb) and $((k+1)a, (k+1)b)$ overlap for all $k \geq k_0$ for a certain $k_0 \in \mathbb{N}$, since $0 \leq a/b < 1$ and $k/(k+1)$ converges monotonically to 1. Hence, there exists a real number α such that $f_{(\alpha, \infty)} = f(x_0)$.

Let us prove that f is constant on all the real line. We know that $f(x) = C$ for a certain constant C and all $x \in (\alpha, \infty)$. On the other hand, the same argument we used for the first part of the proof shows that, for all $x_1 \leq \alpha$, if $h \in (a, b)$ and $k \in \mathbb{N}$ is big enough, then $x_1 + kh > \alpha$ and $f(x_1) = f(x_1 + kh) = C$.

Theorem 2.2. Let us assume that $I_k = (a_k, b_k)$ are nonempty open intervals of the real line, $k = 1, 2, \cdots, s$. If $\Delta_{h_1h_2\cdots h_s} f(x) = 0$ for all $x \in \mathbb{R}$ and $h_k \in I_k$, $k = 1, 2, \cdots, s$, then $\Delta_{h_1h_2\cdots h_s} f(x) = 0$ for all $(x, h_1, \cdots, h_s) \in \mathbb{R}^{s+1}$.

Proof. By hypothesis, given $(h_2, h_3, \cdots, h_s) \in I_2 \times I_3 \times \cdots \times I_s$, the function $F(x) = \Delta_{h_2h_3\cdots h_s} f(x)$ satisfies the hypothesis of Lemma 2.1 with $a = a_1, b = b_1$. It follows that $\Delta_{h_1h_2\cdots h_s} f(x) = \Delta_{h_1} (\Delta_{h_2h_3\cdots h_s} f(x)) = 0$ for all $x \in \mathbb{R}$ and $(h_1, h_2, \cdots, h_s) \in \mathbb{R} \times I_2 \times \cdots \times I_s$. On the other hand, it is well known [2, Corollary 9.1, p. 66] that, for any permutation σ of the indices $\{1, 2, \cdots, s\}$, we have that $\Delta_{h_1h_2\cdots h_s} = \Delta_{h_{\sigma(1)}h_{\sigma(2)}\cdots h_{\sigma(s)}}$. Thus, if we take $\sigma_2 = (12)$ (i.e., the transposition of the indices $\{1, 2\}$, see [7, p. 49] for the definition) and we apply the argument above to $\Delta_{h_{\sigma_2(1)}h_{\sigma_2(2)}\cdots h_{\sigma_2(s)}}$, we will get $\Delta_{h_1h_2\cdots h_s} f(x) = 0$ for all $x \in \mathbb{R}$ and $(h_1, h_2, \cdots, h_s) \in \mathbb{R} \times \mathbb{R} \times I_3 \times \cdots \times I_s$. The proof follows by repetition of the argument, taking into account the transpositions $\sigma_k = (1k), k = 3, 4, \cdots, s$. □
Theorem 2.3. Let $I = (−δ, 0)$ for a certain $δ > 0$. If $\Delta_k^n f(x) = 0$ for all $x \in \mathbb{R}$ and $h \in I$, then $\Delta_{h, h, \ldots, h} f(x) = 0$ for all $(x, h, \ldots, h) \in \mathbb{R}^{s+1}$. An analogous result holds for $I = (0, δ)$.

Proof. Let us assume that $−\delta/s ≤ h_k ≤ 0$ for $k = 1, 2, \ldots, s$. Take $(\epsilon_1, \ldots, \epsilon_s) \in \{0, 1\}^s$ and set $\alpha(\epsilon_1, \ldots, \epsilon_s)(h_1, \ldots, h_s) = (−1)^s \sum_r \epsilon_r h_r$. Then

$$0 ≤ \alpha(\epsilon_1, \ldots, \epsilon_s)(h_1, \ldots, h_s) = (−1)^s \sum_r \epsilon_r h_r ≤ \frac{1}{s} \left(\sum_r \epsilon_r \right) \delta ≤ \delta.$$

and, taking into account the equation (3) above, it follows that we can use Theorem 2.2 with $I_k = (−\delta/s, 0)$ for $k = 1, \ldots, s$.

The last claim of the theorem follows from the relation that exists between the operators $\Delta^n_{−h}$ and Δ^n_{h}:

$$\Delta^n_{−h} f(x) = (−1)^n \Delta^n_{h} f(x − sh).$$ \hfill \blacksquare

Remark 1. Take $f(x) = x$ for $x \in \mathbb{Q}$ and $f(x) = x^2$ for $x \in \mathbb{R} \setminus \mathbb{Q}$. Then $\Delta_{h, h, h_3} f(x) = 0$ for all $x \in \mathbb{R}$ and all $(h_1, h_2, h_3) \in \mathbb{Q}^3$. On the other hand, f can not be a solution of Fréchet’s equation $\Delta^n_{h} f(x) = 0$ for all $x \in \mathbb{R}$ and all $h \in \mathbb{R}$ for any $s \in \mathbb{N}$, since f is not a polynomial function (in the ordinary sense) and f is locally bounded. This shows that, in order to extend the set of validity of the parameters h_i (as in Theorems 2.2, 2.3 above), it is quite natural to assume that the equation holds true for h_i in a certain open set.

Remark 2. Let $f : X → Y$, where X, Y are \mathbb{Q}-vector spaces and X admits a topology τ_X with the property that all neighborhoods of the origin are “naturally absorbent” sets (we say that B is naturally absorbent if for each $x \in X$ there exists $k \in \mathbb{N}$ such that $x \in kB = \{kz : z \in B\}$). If we assume that $\Delta_{h} f(x) = 0$ for all $x \in X$ and $h \in B$ for a certain neighborhood B of the origin, then the arguments of the first part of the proof of Lemma 2.1 lead to the conclusion that $\Delta_{h} f(x) = 0$ for all $x, h \in X$, since $X = \bigcup_{k \geq 1} kB$. It follows that Theorems 2.2, 2.3 admit the following natural generalizations:

Theorem 2.4. Let $f : X → Y$, where X, Y are \mathbb{Q}-vector spaces and X admits a topology τ_X with the property that all neighborhoods of the origin are naturally absorbent sets. Let B be a neighborhood of the origin. If $\Delta_{h, h, \ldots, h} f(x) = 0$ for all $x \in X$ and $h_k \in B$, $k = 1, 2, \ldots, s$, then $\Delta_{h, h, \ldots, h} f(x) = 0$ for all $(x, h_1, \ldots, h_s) \in X^{s+1}$.

Theorem 2.5. Let $f : X → Y$, where X, Y are \mathbb{Q}-vector spaces and X is a real normed vector space. Let $B = B(0, \varepsilon) = \{x : \|x\|_X < \varepsilon\}$ be an open ball centered in the origin of X. If $\Delta_{h} f(x) = 0$ for all $x \in X$ and $h \in B$, then $\Delta_{h, h_2, \ldots, h_s} f(x) = 0$ for all $(x, h_1, \ldots, h_s) \in X^{s+1}$.

3. The p–adic case

Let \mathbb{Q}_p denote the field of p-adic numbers, which are expressions of the form

$$x = a_m p^m + a_{m+1} p^{m+1} + \cdots + a_0 + a_1 p + a_2 p^2 + \cdots + a_n p^n + \cdots = \sum_{n \geq m} a_n p^n,$$

where $m \in \mathbb{Z}$, $1 ≤ a_n ≤ p − 1$ and $0 ≤ a_k ≤ p − 1$ for all $k > m$ (see, for example, [6], [10] for the definition and basic properties of these numbers and their field extensions.
Given x as in (4), its p-adic absolute value is given by $|x| = p^{-m}$. The set of p-adic numbers with $|x|_p ≤ 1$ is denoted by \mathbb{Z}_p. Obviously, $|x|_p ≤ p^n$ if and only if $x ∈ p^{-n}\mathbb{Z}_p := \{p^{-n}h : h ∈ \mathbb{Z}_p\}$. An important property of the absolute value $|\cdot|_p$ we will use is the following one:

$$ (|x|_p > |y|_p) \Rightarrow (|x + y|_p = |x|_p) $$

In this section we assume that $f : \mathbb{Q}_p → Y$, where Y is a \mathbb{Q}-vector space. Previous to any work about the extension of Fréchet functional equation in this context, it would be appropriate to say something about the equation in the context of p-adic analysis. In particular, we show that Fréchet’s original result has a natural extension to this new setting:

Theorem 3.1 (p-adic version of Fréchet’s theorem). Let $(\mathbb{K}, | \cdot |_\mathbb{K})$ be a valued field such that $\mathbb{Q}_p ⊆ \mathbb{K}$ and the inclusion $\mathbb{Q}_p → \mathbb{K}$ is continuous. Let us assume that $f : \mathbb{Q}_p → \mathbb{K}$ is continuous. Then f satisfies $Δ^{n+1}_f(x) = 0$ for all $x, h ∈ \mathbb{Q}_p$ if and only if $f(x) = a_0 + \cdots + a_nx^n$ for certain constants $a_k ∈ \mathbb{K}$.

Proof. Assume $Δ^{n+1}_f(x) = 0$ for all $x, h ∈ \mathbb{Q}_p$. Let $x_0, h_0 ∈ \mathbb{Q}_p$ and let $p_0(t) ∈ \mathbb{K}[t]$ be the polynomial of degree $≤ n$ such that $f(x_0 + kh_0) = p_0(x_0 + kh_0)$ for all $k ∈ \{0, 1, \cdots, n\}$ (this polynomial exists and it is unique, thanks to Lagrange’s interpolation formula). Then

$$ 0 = Δ^{n+1}_f(x_0) = \sum_{k=0}^{n} \binom{n+1}{k} (-1)^{n+1-k}f(x_0 + kh_0) + f(x_0 + (n+1)h_0) $$

$$ = p_0(x_0 + (n+1)h_0) + f(x_0 + (n+1)h_0) $$

since $0 = Δ^{n+1}_f(x_0) = \sum_{k=0}^{n} \binom{n+1}{k} (-1)^{n+1-k}p_0(x_0 + kh_0)$. This means that $f(x_0 + (n+1)h_0) = p_0(x_0 + (n+1)h_0)$. In particular, $p_0 = q$, where q denotes the polynomial of degree $≤ n$ which interpolates f at the nodes $\{x_0 + kh_0\}_{k=1}^{n+1}$. This argument can be repeated (forward and backward) to prove that p_0 interpolates f at all the nodes $x_0 + h_0\mathbb{Z}$.

Let $m ∈ \mathbb{Z}$ and let us use the same kind of argument, taking $h_0^* = h_0/p^m$ instead of h_0. Then we get a polynomial p_0^* of degree $≤ n$ such that p_0^* interpolates f at the nodes $x_0 + h_0^*\mathbb{Z}$. Now, $p_0 = p_0^*$ since the set

$$ \frac{h_0}{p^m}\mathbb{Z} ∩ h_0\mathbb{Z} = \begin{cases} h_0\mathbb{Z} & \text{if } m ≥ 0 \\ h_0^*\mathbb{Z} & \text{if } m < 0 \end{cases} $$

is infinite. Thus, we have proved that p_0 interpolates f at all the points of

$$ Γ_{x_0, h_0} := x_0 + \bigcup_{m=-∞}^{∞} \frac{h_0}{p^m}\mathbb{Z} $$

Now, $Γ_{0,1}$ is a dense subset of \mathbb{Q}_p, so that the continuity of f implies that $f = p_0$ everywhere. □

Corollary 3.2 (Local p-adic version of Fréchet’s theorem). Let $(\mathbb{K}, | \cdot |_\mathbb{K})$ be a valued field such that $\mathbb{Q}_p ⊆ \mathbb{K}$ and the inclusion $\mathbb{Q}_p → \mathbb{K}$ is continuous. Let us assume that
Fréchet functional equation with restrictions

3.1 $f : \mathbb{Q}_p \to \mathbb{K}$ is continuous and let $N \in \mathbb{N}$. If f satisfies $\Delta_{p^N}^{n+1} f(x) = 0$ for all $x \in \mathbb{Q}_p$, then for each $a \in \mathbb{Q}_p$ there exists constants $a_k \in \mathbb{K}$ such that $f(x) = a_0 + \cdots + a_n x^n$ for all $x \in a + p^N \mathbb{Z}_p$.

Proof. Just repeat the argument of the first part of the proof of Theorem 3.1 with $x_0 = a$ and $h_0 = p^N$. This will show that there exists a polynomial of degree $\leq n$, $p_0 \in \mathbb{K}[t]$ such that $(p_0)(u+p^N Z) = f|_{u+p^N Z}$. Now, f is continuous and $a + p^N \mathbb{Z}_p$ is a dense subset of $a + p^N \mathbb{Z}_p$. □

It is well known that there are non constant locally constant functions $f : \mathbb{Q}_p \to Y$. In particular, the characteristic function associated to \mathbb{Z}_p, given by $\phi(x) = 1$ for $x \in \mathbb{Z}_p$ and $\phi(x) = 0$ otherwise, is continuous, non-constant, and $\Delta_k \phi(x) = 0$ for all $x \in \mathbb{Q}_p$ and h such that $|h|_p \leq 1$. Furthermore, $\Delta_p \phi(0) = \phi(p^{-1}) - \phi(0) = -1 \neq 0$. This is in contrast with the results we got for $X = \mathbb{R}$.

Lemma 3.3. Let $f : \mathbb{Q}_p \to Y$ and let $N \in \mathbb{Z}$, $a \in \mathbb{Q}_p$ be such that $\Delta_a f(x) = 0$ for all $x \in \mathbb{Q}_p$ and all $h \in \mathbb{Q}_p \setminus (a + p^{-N} \mathbb{Z}_p)$ then $\Delta_h f(x) = 0$ for all $x, h \in \mathbb{Q}_p$.

Proof. We divide the proof in two cases:

Case 1: $a = 0$. Given $x_0 \in \mathbb{Q}_p$, we know that $\Delta_{h} f(x_0) = f(x_0 + h) - f(x_0) = 0$ for all $h \in \mathbb{Q}_p \setminus p^{-N} \mathbb{Z}_p$. Let us take $h \in p^{-N} \mathbb{Z}_p$. Then there exists $m \in \mathbb{N}$ such that $\frac{h}{p^m} \notin p^{-N} \mathbb{Z}_p$ and

$$0 = \Delta_{\frac{h}{p^m}} f(x_0) = f(x_0 + \frac{(p^m - 1)h}{p^m}) - f(x_0 + \frac{(p^m - 1)h}{p^m})$$

$$0 = \Delta_{\frac{h}{p^m}} f(x_0) = f(x_0 + \frac{(p^m - 2)h}{p^m}) - f(x_0 + \frac{(p^m - 2)h}{p^m})$$

$$\vdots$$

$$0 = \Delta_{\frac{h}{p^m}} f(x_0) = f(x_0 + \frac{h}{p^m}) - f(x_0)$$

so that $f(x_0) = f(x_0 + h)$.

Case 2: $a \neq 0$. Let $k_0 \in \mathbb{Z}$ be such that $|a|_p = p^{k_0}$ and let $h \in \mathbb{Q}_p$ be such that $|h|_p = p^n$. If $m \neq k_0$ then $|h - a|_p = \max\{p^{k_0}, p^n\}$, so that the imposition of $m \geq M = \max\{N, k_0\} + 1$ implies that $|h - a|_p = p^n > p^N$. Hence $\mathbb{Q}_p \setminus p^{-M} \mathbb{Z}_p \subseteq \mathbb{Q}_p \setminus (a + p^{-N} \mathbb{Z}_p)$ and we are again in Case 1. □

Remark 3. Another proof of Case 1 above reads as follows: Take $x \in \mathbb{Q}_p$ and $h \in p^{-N} \mathbb{Z}_p$. We want to show that $\Delta_h f(x) = 0$ or, in other words, that $\Delta_h f(x + h) = f(x)$. Let $u \in \mathbb{Q}_p \setminus p^{-N} \mathbb{Z}_p$. Then $f(x + h + u) = f(x + h)$ because $\Delta_u f(x + h) = 0$. On the other hand, $u + h \in \mathbb{Q}_p \setminus p^{-N} \mathbb{Z}_p$, so that $f(x) = f(x + u + h)$ because $\Delta_{u+h} f(x) = 0$. This ends the proof.

Theorem 3.4. Let $f : \mathbb{Q}_p \to Y$ and let $(N_1, \cdots, N_s) \in \mathbb{Z}^s$, $(a_1, \cdots, a_s) \in \mathbb{Q}_p^s$ be such that $\Delta_{h_1 h_2 \cdots h_s} f(x) = 0$ for all $x \in \mathbb{Q}_p$ and all $(h_1, \cdots, h_s) \in (\mathbb{Q}_p \setminus (a_1 + p^{-N_1} \mathbb{Z}_p)) \times \cdots \times (\mathbb{Q}_p \setminus (a_s + p^{-N_s} \mathbb{Z}_p))$. Then $\Delta_{h_1 h_2 \cdots h_s} f(x) = 0$ for all $(x, h_1, \cdots, h_s) \in \mathbb{Q}_p^{s+1}$.

Proof. It is enough to apply the same arguments we used for the proof of Theorem 2.2, just replacing Lemma 2.1 by Lemma 3.3. □
REFERENCES

[1] J. M. Almira, A. J. López-Moreno, On solutions of the Fréchet functional equation, J. Math. Anal. Appl. 332 (2007), 1119–1133.
[2] S. Czerwik, Functional equations and inequalities in several variables, World Scientific, 2002.
[3] M. Fréchet, Une definition fonctionelle des polynomes, Nouv. Ann. 9 (1909), 145-162.
[4] R. Ger, On some properties of polynomial functions, Ann. Pol. Math. 25 (1971) 195-203.
[5] R. Ger, On extensions of polynomial functions, Results in Mathematics 26 (1994), 281-289.
[6] F. G. Gouvêa, p-adic numbers: an introduction, UniversityText, Springer, 1997.
[7] N. Jacobson, Basic Algebra I, Freeman, New York, 1985.
[8] M. Kuczma, On measurable functions with vanishing differences, Ann. Math. Sil. 6 (1992) 42-60.
[9] M. A. Mckiernan, On vanishing n-th ordered differences and Hamel bases, Ann. Pol. Math. 19 (1967) 331-336.
[10] A. M. Robert, A course in p-adic analysis, Graduate Texts in Mathematics 198, Springer-Verlag, New-York, 2000.