Light Singlino Dark Matter at the LHC

Arnab Roy
DHEP, TIFR

Based on, Phys.Rev.D 102 (2020) 7, 075023,
arxiv:2005.05190

M. Guchait, A. Roy
Light Dark matter

Different evidences from astrophysics and cosmology \(\Rightarrow \) DM exists..

\[
\Omega h^2 = 0.12 \pm 0.001 \quad \Rightarrow \quad \text{Natural for WIMP} \quad \Rightarrow \quad \text{strong exclusion from different experiments}
\]

Focus on 2 – 20 GeV range of DM mass

- Not MSSM
 - Rough **Lower mass bound** on MSSM neutralino DM is \(\sim 34 \text{ GeV} \)

 (Phys. Rev. D 95, 095018 (2017))

- What then?
 - Maybe DM is SM **singlet**, inert to SM fermions or gauge bosons
 - This is natural in NMSSM when DM is **singlino-like neutralino**
 - The **singlino-like LSP** can be **very light** in the allowed parameter space of NMSSM

Different evidences from astrophysics and cosmology \(\Rightarrow \) DM exists..
NMSSM, Physical States and relevant parameters

NMSSM Superpotential

\[W_{\text{MSSM}}(\mu = 0) + \lambda S H_u H_d + \frac{1}{3} \kappa S^3 \]

- **Seven Physical Higgs States**
 - \(H_1, H_2, H_3, A_1, A_2, H^\pm \)
 - 3 neutral scalars
 - 2 neutral pseudo-scalars
 - Two charged Higgs

- **Important parameters**
 - \(\lambda, \kappa, \tan\beta, A_\lambda, A_\kappa, \mu_{\text{eff}} \)

- **Five neutralino states** comes from linear combination of:
 - \(\tilde{B}, \tilde{W}, \tilde{H}_u, \tilde{H}_d, \tilde{S} \)

- **LSP**:
 \[\chi_1^0 = N_{11} \tilde{B} + N_{12} \tilde{W} + N_{13} \tilde{H}_u + N_{14} \tilde{H}_d + N_{15} \tilde{S} \]

- **Important parameters**
 - \(M_1, M_2, \mu_{\text{eff}}, \lambda, \kappa, \tan\beta \)

- **Singlino-like**
 - \(\tilde{\chi}_1^0 \rightarrow |2\kappa v_s| << \mu_{\text{eff}}, M_1, M_2 \)
 - \(M_{\tilde{\chi}_1} \simeq 2\kappa v_s = 2\frac{\kappa}{\lambda} \mu_{\text{eff}} \)
We need **singlet-like light Higgs boson** for DM annihilation:

\[m_{A_1/H_1} \sim 2m_{\chi_1} \]

Approximate coupling:

\[g_{\chi_1 \chi_1 H_1} \sim \sqrt{2} S_{13} (\lambda N_{13} N_{14} - \kappa N_{15}^2) \sim -\sqrt{2} S_{13} \kappa N_{15}^2 \]

\[g_{\chi_1 \chi_1 A_1} \sim -\sqrt{2} P_{12} \kappa N_{15}^2 \]

kappa plays a important role to satisfy DD bounds

For a **low mass DM-compatible** scenario

\[|\kappa| \sim 10^{-3} - 10^{-2}, \quad \lambda \sim 10^{-1}, \]

\[|A_\kappa| \sim 10 - 100 \text{ GeV}, \quad A_\lambda \sim 1 \text{ TeV} \]

\[\kappa A_\kappa < 0 \]
Find allowed parameter spaces

- Scanned all the parameters using **NMSSMTools-5.5.0**

\[0.1 \leq \lambda \leq 0.65, \quad -0.01 \leq \kappa \leq 0.01, \quad 1.5 \leq \tan \beta \leq 20, \quad 100 \text{ GeV} \leq \mu_{\text{eff}} \leq 1000 \text{ GeV}, \]
\[500 \text{ GeV} \leq A_\lambda \leq 3500 \text{ GeV}, \quad -100 \text{ GeV} \leq A_\kappa \leq 100 \text{ GeV}. \]

Ranges comes out to be consistent with our arguments

Selected BPs consistent with all relevant constraints

- **Features of Branching Ratios**

 - \(\text{BR}(H_{SM} \to H_1 H_1/A_1 A_1) \) is at most 11-12%

 - Light Higgs bosons primarily decays to \(b\bar{b}/\tau\tau \) and \(\tilde{\chi}_1^0\tilde{\chi}_1^0 \)
Ranges of important parameters
How to search at the LHC

- Singlino DM \textbf{indirectly} produced via production of \textbf{light singlet Higgs bosons}

- \textbf{Light singlet Higgs bosons} act as \textbf{portal} between visible and dark sector

- Features of the \textbf{fermions} and the \textbf{extra jet} helps to characterise the MET as coming from DM

\[
\Delta R(f, \bar{f}) \simeq \frac{m_{A_1}/H_1}{z(z-1)p_T}
\]

- \(m_{H_1/A_1} \leq 10 \text{ GeV}\) \hspace{1cm} \text{(Low mass region)}

- \(10 \text{ GeV} \leq m_{H_1/A_1} \leq 30 \text{ GeV}\) \hspace{1cm} \text{(Moderate mass region)}

- \(30 \text{ GeV} \leq m_{H_1/A_1} \leq 60 \text{ GeV}\) \hspace{1cm} \text{(High mass region)}
Decay products from these light Higgs bosons emerge as a **single fat jet**

Signal & background (high and moderate mass region)

\[J_{bb} + E_T + \geq 1j \]

- a) with \(m_{J_{bb}} < 30 \) GeV for lower mass range
- b) with \(30 < m_{J_{bb}} < 60 \) GeV for high mass range

Signal

- \(t\bar{t}, Wb\bar{b} + \text{jets}, Zb\bar{b} + \text{jets} \)

Dominating backgrounds

Also checked \(WH_{SM} + \text{jets}, ZH_{SM} + \text{jets}, WZ + \text{jets}, ZZ + \text{jets} \)

Generated using

- MADGRAPH +
- PYTHIA +
- Delphes
Kinematic variables and other selections

Mass of Higgs-jet

\[m_{J_{b\bar{b}}} < 30 \text{ GeV} \]

\[30 \text{ GeV} < m_{J_{b\bar{b}}} < 60 \text{ GeV} \]

Other requirements:

➢ Missing pT
➢ lepton veto
➢ Exactly one Higgs-jet
➢ At least one other jet

Transverse mass of Higgs-jet and MET

\[m_T(J_{b\bar{b}}, \slashed{E_T}) \leq 140 \text{ GeV} \]

\[R(n_j^{\text{min}}) = \frac{\sum_{i=1}^{n_j^{\text{min}}}}{H_T} \]

\[R > 0.5 \]
Low mass region

- **ττ decay mode** of light Higgs get enhanced
- At this very low pT, hadronic decay mode of τ suffers from large background of QCD
- We consider **leptonic decay mode of τ**

Signal

\[\ell^+ \ell^- + \not{E}_T + \geq 1 \text{jets} \]

Dominating backgrounds

Drell – Yan, t\bar{t}, W + jets, WW + jets, WZ + jets

- We also checked Υ and J/ψ, ZZ + jets, ZH_{SM} + jets backgrounds, having negligible contributions
Summary

- NMSSM can provide this light DM solution **allowed by all relevant theoretical and experimental constraints** if the DM is singlino-like.

- Light singlino-like DM comes along with **singlet-like light Higgs bosons** which are also allowed in this scenario.

- **DM annihilation** takes place through these singlet-like Higgs bosons.

- Devised a process by which singlino DM and the singlet Higgs bosons can be searched at the LHC.

- We observed **reasonable signal sensitivity for high luminosity options** at LHC.

	BP1	BP2	BP3	BP4	BP5	BP6
$\frac{S}{\sqrt{B}} (\mathcal{L} = 300 \text{ fb}^{-1})$	6	11	14	8	7	3.5
$\frac{S}{\sqrt{B}} (\mathcal{L} = 3000 \text{ fb}^{-1})$	19	35	44	25	22	11
Backup Slides
Flow of cuts (moderate mass region)

	BP2	BP3	bbZ + jets	bbW + jets	t\(\bar{t}\)
\(\sigma (pb)\)	12.4	12.4	152.8	139.8	597.9
\(\sigma \times \epsilon_{BR}\)	0.7	0.9	152.8	139.8	597.9
lepton veto	0.6	0.8	108.5	97.6	298.2
\(n_j \geq 1\)	0.5	0.7	107.4	96.3	297.7
\(E_T > 40.0\ GeV\)	0.3	0.4	32.8	24.4	109.4
No. of J\(b\bar{b}\) = 1	0.05	0.06	1.8	3.0	4.9
\(m_{J\bar{b}} < 30.0\ GeV\)	0.05	0.05	0.3	1.0	1.3
\(m_T(J\bar{b}, E_T) \leq 140\ GeV\)	0.04	0.04	0.2	0.8	0.9
\(R > 0.5\)	0.034	0.04	0.08	0.6	0.4
\(\sigma \times \text{K-factor} \times \epsilon^2_b\)	0.018	0.022	0.04	0.47	0.24

K-factors:
- signal \(\rightarrow 1.8\)
- bbZ + jets \(\rightarrow 1.7\)
- bbW + jets \(\rightarrow 2.6\)
- t\(\bar{t}\) \(\rightarrow 1.4\)

Used MCFM

Additional b-tagging efficiency
\[
\epsilon_b = \begin{cases}
0.66 & \text{for } t\bar{t} \\
0.55 & \text{otherwise}
\end{cases}
\]

(CMS Collaboration, JINST 13 no. 05, (2018) P05011)
Flow of cuts (High mass region)

Cut Description	BP4	BP5	BP6	bbZ + jets	bbW + jets	tt
σ (pb)	12.4	12.4	12.4	152.8	139.8	597.9
$\sigma \times \epsilon_{BR}$	1.3	1.2	1.0	152.4	139.8	597.9
Lepton veto	1.3	1.1	0.9	108.6	97.6	298.2
$n_j \geq 1$	1.2	1.0	0.9	108.0	97.3	297.8
$E_T > 35.0$ GeV	0.9	0.6	0.4	39.4	30.4	127.9
No. of $J_{b\bar{b}} = 1$	0.05	0.04	0.03	3.0	2.9	7.8
$30.0 < m_{J_{b\bar{b}}} < 60.0$ GeV	0.03	0.03	0.01	0.6	0.8	1.8
$m_T(J_{b\bar{b}}, E_T) \leq 140$ GeV	0.03	0.03	0.01	0.5	0.5	1.2
$R > 0.5$	0.024	0.02	0.01	0.26	0.4	0.5
$\sigma \times K$-factor$\times \epsilon_b^2$	0.013	0.011	0.0055	0.13	0.3	0.3
Flow of cuts (Low mass region)

	BP1	tt	DY + jets	W+jets	WW+jets	WZ+jets
$\sigma \times \epsilon_{BR}$ (pb)	1.2	598	4242	5×10^4	116	51
$E_T > 30$ GeV	0.8	371.7	314.2	10771	46.8	23.7
$n_j \geq 1$	0.74	371.1	301.7	10516	45.2	23.3
$N(\text{lepton}) = 2$	0.005	15.2	16.5	0.2	1.1	0.4
$M_{\ell \ell} < 10$ GeV	0.0032	0.08	0.11	0.07	0.01	0.001
b-veto	0.0032	0.024	0.11	0.07	0.01	0.001
$\sigma \times$ K-factor	0.006	0.034	0.14	0.1	0.02	0.002

K-factors:
- $\text{DY + jets} \rightarrow 1.3$ (arXiv:2001.11377)
- $\text{W + jets} \rightarrow 1.4$ Phys. Rev. Lett. 115 no. 6, (2015) 062002
- $\text{WW + jets} \rightarrow 1.8$ Phys. Rev. Lett. 113 no. 21, (2014) 212001
- $\text{WZ + jets} \rightarrow 2.07$ Phys. Lett. B 761 (2016) 179–183
Next-to Minimal Supersymmetric Standard Model

- **NMSSM Superpotential**
 \[W_{\text{MSSM}}(\mu = 0) + \lambda S H_u H_d + \frac{1}{3} \kappa S^3 \]

 \(S \) gets a VEV:
 \[v_s = \langle S \rangle \]

 We get an effective \(\mu \)-term:
 \[\lambda v_s H_u H_d \]
 with
 \[\mu_{\text{eff}} = \lambda v_s \rightarrow \text{Solves } \mu\text{-problem} \]

- Also in NMSSM, SM-Higgs mass comes out more naturally than MSSM without requirement of much fine tuning

 \[m^2_H \sim M_Z^2 \cos^2 2\beta + \lambda^2 v_s^2 \sin^2 2\beta + \Delta m^2_H \]

 Nucl. Phys. B860 (2012) 207–244
Light singlino LSP

\[M_N = \begin{pmatrix}
M_1 & 0 & -g_1 v s_\beta & g_1 v c_\beta & 0 \\
0 & M_2 & \frac{g_2 v s_\beta}{\sqrt{2}} & \frac{-g_2 v c_\beta}{\sqrt{2}} & 0 \\
\frac{-g_1 v s_\beta}{\sqrt{2}} & \frac{g_2 v s_\beta}{\sqrt{2}} & 0 & -\mu_{\text{eff}} & -\lambda v c_\beta \\
\frac{g_1 v c_\beta}{\sqrt{2}} & \frac{-g_2 v c_\beta}{\sqrt{2}} & -\mu_{\text{eff}} & 0 & -\lambda v s_\beta \\
0 & 0 & -\lambda v s_\beta & -\lambda v c_\beta & 2\kappa v_s
\end{pmatrix} \]

- \(\tilde{\chi}_1^0 \) becomes more singlino-like, as: \(|2\kappa v_s| \ll \mu_{\text{eff}}, M_1, M_2\)

- In singlino limit: \(M_{-0}^{\tilde{\chi}_1} \approx 2\kappa v_s = 2\frac{\kappa}{\lambda} \mu_{\text{eff}} \)

- For very light singlino: \(|\frac{\kappa}{\lambda}| \sim 10^{-2} - 10^{-1}, \text{ for } \mu_{\text{eff}} > 100 \text{GeV} \) (Due to LEP limit on chargino mass)
Implication to Higgs sector

- Need a light singlet-like Higgs for DM annihilation
- Pseudoscalar Mass Matrix

\[
M_{P,11}^2 = \frac{2\mu_{\text{eff}}}{\sin 2\beta} (A_\lambda + \kappa \nu_s), \\
M_{P,22}^2 = \lambda^2 \nu_s^2 \frac{\sin 2\beta}{2\mu_{\text{eff}}} (A_\lambda + 4\kappa \nu_s) - 3A_\kappa \kappa \nu_s, \\
M_{P,12}^2 = \lambda \nu (A_\lambda - 2\kappa \nu_s)
\]

Decoupling type of scenario

\[M_{P,11}^2 \gg M_{P,12}^2, M_{P,22}^2\]

- \(\mu_{\text{eff}} = \lambda \nu_s\) can not be very large to keep singlino light
- \(A_\lambda\) has to be very large
Implication to Higgs sector (contd.)

- Lighter CP odd state \(A_1 \rightarrow \) singlet-like

\[
m_{A_1}^2 \simeq -3 A_\kappa \kappa \nu_s
\]

\(A_\kappa \) should not be very large in order to accommodate a light Higgs

- A nice sum rule

\[
m_{H_1}^2 + m_{H_2}^2 \sim M_Z^2 + \frac{1}{2} \kappa \nu_s (4 \kappa \nu_s + \sqrt{2} A_\kappa)
\]

When \(H_2 \) becomes SM-like

\(H_1 \) can be very light for moderate \(A_\kappa \)

- We get a light CP-even Higgs boson, which can be shown to be singlet-like for large \(A_\lambda \)
Constraints

- $M_{H_2} = 125 \pm 3$ GeV
- $0.108 < \Omega h^2 < 0.132 \ (\Omega h^2 (\text{exp.}) = 0.12)$
- Direct and Indirect detection constraints
- Constraints from collider experiments like LEP, LHC, Tevatron
- Flavour Physics constraints, etc.
Higgs Fat Jet and MDT

- Decay products from these light Higgs bosons emerge as a single fat jet

Use Mass Drop Tagger and find two subjets

- Undo the last step of clustering to find 2 subjets
- Take them as final subjets if,

\[
\frac{\max(m_{j_1}, m_{j_2})}{m_j} < \mu \quad \text{and} \quad \frac{\min(p_{T}^2(j_1), p_{T}^2(j_2))}{m_j^2} \Delta R_{j_1,j_2}^2 > \gamma_{\text{cut}}
\]

- Else define j1 to j and repeat
Illustrative Benchmark Points

	BP1	BP2	BP3	BP4	BP5	BP6
λ	0.34195	0.17783	0.22140	0.24670	0.24980	0.29853
κ	0.00080	0.00241	-0.00564	0.00520	-0.00690	0.00438
$\tan\beta$	8.46	5.99	4.79	5.85	4.96	4.63
A_λ	3114.53	793.52	1201.50	1654.39	1968.95	1528.60
A_κ	-46.48	-29.91	36.66	-57.21	69.65	-60.15
μ_{eff}	340.39	150.68	232.94	290.40	378.55	364.86
m_{H_2}	123	126	126	126	123	127
m_{H_1}	43	14	28	36	44	56
m_{A_1}	8	12	24	31	47	30
$m_{\tilde{\chi}_1^0}$	3	5	10	14	20	13
Ωh^2	0.1115	0.1188	0.1188	0.1255	0.1180	0.1098

BR Process	BP1	BP2	BP3	BP4	BP5	BP6
$\text{BR}(H_2 \rightarrow H_1H_1)$	0.0001	0.06	0.01	0.11	0.08	0.07
$\text{BR}(H_2 \rightarrow A_1A_1)$	0.10	0.004	0.06	0.001	0.02	0.01
$\text{BR}(H_1 \rightarrow bb)$	0.81	0.57	0.75	0.22	0.50	0.50
$\text{BR}(H_1 \rightarrow \tilde{\chi}_1^0\tilde{\chi}_1^0)$	0.07	0.31	0.18	0.75	0.45	0.44
$\text{BR}(H_1 \rightarrow \tau\tau)$	0.07	0.08	0.06	0.02	0.04	0.05
$\text{BR}(A_1 \rightarrow bb)$	-	0.35	0.32	0.55	0.18	0.73
$\text{BR}(A_1 \rightarrow \tilde{\chi}_1^0\tilde{\chi}_1^0)$	0.22	0.13	0.64	0.40	0.80	0.19
$\text{BR}(A_1 \rightarrow \tau\tau)$	0.69	0.42	0.03	0.05	0.01	0.06
Event generation and selection of different objects

- Matrix elements are generated in Madgraph5aMC@NLO-2.6.4
- Showering and Hadronizations are done using PYTHIA8
- Detector effects are taken into account using Delphes-3.4.2

Missing pT

\[\vec{p}_T = - \sum \vec{p}_T^i \]

where i runs over all constructed collection from the Detector

- Delphes stores of each events taking into account detector detector effects

Leptons : Used Delphes leptons with

\[p_T^\ell > 10 \text{ GeV} \quad |\eta| < 2.5 \]

Needed to veto out events with any leptons
Selection of Jets

Fat jet reconstruction
- Used Fastjet3.3.2 and Delphes e-flow objects
- CA algorithm, $R=1.0$ (moderate mass region) and $R=1.6$ (High mass region)
- $p_T(\text{jet}) > 40$ GeV, $|\eta| < 4.0$

Identify Higgs Fat jet
- Use MDTagger to get tagged fat jet with two subjets
- Subjets are matched with b-quarks of the event
- Used $\Delta R < 0.3$, $|\eta| < 2.5$
 - Call it “Higgs Jet” (HJ) if matching is successful

“Ordinary” jets
- If a fat jet is not HJ, get back all its constituents
- Recluster using Anti-kT algorithm, with $R=0.5$
- $p_T(\text{jet}) > 20$ GeV, $|\eta| < 4.0$
Exclusion Plots
F, D and soft terms

$$H_u = \begin{pmatrix} H_u^+ \\ H_u^0 \end{pmatrix}, \quad H_d = \begin{pmatrix} H_d^0 \\ H_d^- \end{pmatrix}, \quad S.$$

$$V_F = |\lambda S|^2(|H_u|^2 + |H_d|^2) + |\lambda H_u H_d + \kappa S^2|^2,$$

$$V_D = \frac{1}{8}g^2(|H_d|^2 - |H_u|^2)^2 + \frac{1}{2}g^2|H_u^+H_d|^2,$$

$$V_{\text{soft}} = m_{H_u}^2 |H_u|^2 + m_{H_d}^2 |H_d|^2 + m_S^2 |S|^2 + [\lambda A \lambda S H_u H_d + \frac{1}{3} \kappa A \kappa S^3 + \text{h.c.}]$$

$$\bar{g} = \sqrt{g^2 + g'^2}, \quad \text{where } g \text{ and } g' \text{ are gauge couplings of } SU(2)_{L} \text{ and } U(1) \text{ interactions}$$

MSSM Superpotential

$$W_{\text{MSSM}} = \bar{u}y_u Q H_u - \bar{d}y_d Q H_d - \bar{e}y_e L H_d + \mu H_u H_d .$$
Couplings to fermions

\[g_{t\bar{t}H_1/c\bar{c}H_1} = -\frac{m_{t/c} S_{12}}{\sqrt{2} v \sin \beta}, \]

\[g_{b\bar{b}H_1/\tau\tau H_1} = \frac{m_{b/\tau} S_{11}}{\sqrt{2} v \cos \beta} \]

\[g_{b\bar{b}A_1/\tau\tau A_1} = \frac{\text{im}_{b/\tau} P_{11}}{\sqrt{2} v \cos \beta} \]
Branching Ratios
CP-even mass matrix

\[M^2_{S,11} = M_Z^2 \sin^2 \beta + \mu_{\text{eff}} \cot \beta (A_\lambda + \kappa v_s), \]
\[M^2_{S,22} = M_Z^2 \cos^2 \beta + \mu_{\text{eff}} \tan \beta (A_\lambda + \kappa v_s), \]
\[M^2_{S,33} = \frac{\lambda^2 v^2 A_\lambda \sin 2\beta}{2\mu_{\text{eff}}} + \kappa v_s (A_\kappa + 4\kappa v_s), \]
\[M^2_{S,12} = (\lambda^2 v^2 - \frac{M_Z^2}{2}) \sin 2\beta - \mu_{\text{eff}} (A_\lambda + \kappa v_s), \]
\[M^2_{S,13} = \lambda v (2\mu_{\text{eff}} \sin \beta - (A_\lambda + 2\kappa v_s) \cos \beta), \]
\[M^2_{S,23} = \lambda v (2\mu_{\text{eff}} \cos \beta - (A_\lambda + 2\kappa v_s) \sin \beta). \]
Ycut and Lepton pT