Analytic Study of Magnetic Catalysis in Holographic QCD

Song Hea,b, Yi Yangc,d, Pei-Hung Yuane,f

a Center for Theoretical Physics and College of Physics, Jilin University, Changchun 130012, People’s Republic of China
b Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, 14476 Golm, Germany
c Department of Electrophysics, National Chiao Tung University, Hsinchu, ROC
d Physics Division, National Center for Theoretical Sciences, Hsinchu, ROC
e School of physics, University of Chinese Academy of Sciences, Beijing 100049, China
f Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

E-mail: hesong@jlu.edu.cn, yiyang@mail.nctu.edu.tw, phy.pro.phy@gmail.com

Abstract: We explore the effect of the magnetic field on the QCD phase transition through AdS/CFT correspondence. By introducing an anisotropic magnetic field in the Einstein-Maxwell-Scalar system, a family of analytic solutions is obtained by the potential reconstruction method where the contribution of the magnetic field in the blackening background can be analytically derived. After imposing the kinetic gauge function by requesting the linear Regge spectrum of J/ψ mesons, the contribution of the magnetic field phase diagram can be demonstrated. The results show that the transition temperature will be raising as the magnetic field increases, which is the so-call magnetic catalysis effect. However, if the system is in a strong magnetic environment, the transition temperature will be cool down.
1 Introduction

The recent experiments of heavy ion collision at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) have produced a strongly coupled quark-gluon plasma (QGP) and explored the QCD phase structure under finite baryon density and strong magnetic fields \[1-4\]. In addition, strong magnetic fields are present in neutron stars and magnetars \[5, 6\], as well as in the cosmological phase transition during the early stages of the universe \[7\]. Therefore, understanding the effect of magnetic field on QCD phase transition is an important task in fundamental physics.

The early investigation by lattice QCD showed that the phase transition temperature increases with the external magnetic field, i.e. magnetic catalysis (MC) \[8-10\]. The MC phenomenon has been confirmed by many effective QCD theories \[11-30\] as well as holographic QCD (hQCD) models \[31, 32\]. See \[26\] for a review. However, later lattice simulations revealed the opposite results by considering the physics quark mass that the phase transition temperature decreases with the external magnetic field, i.e. inverse magnetic catalysis (IMC) \[33-43\]. The IMC phenomenon has been investigated in numerous literature \[44-65\]. Theoretically, we still don’t fully understand the response of the microscopic mechanism for the magnetic field effects. The one interpretation is that the effect of magnetic field can reduce the number of the effective dimensions of the quarks, which leads to the chiral condensation \[26, 51\]. Comparing with the heavy quark, increasing temperature, the light sea quarks can be excited easily which induces chiral condensation of the light quarks. Furthermore, it is believed that the corresponding effects are due to the competition between the direct valence effect and the indirect sea effect \[33, 37, 66, 67\]. The valence effect induces dynamical mass generation and always causes MC phenomenon. While including the back-reaction
of the sea quarks on the gauge fields and the screening effect of the gluon interactions will suppress the phase transition and causes the IMC phenomenon. On the other hand, the recent lattice simulations have demonstrated that the magnetic effect depends on quark mass. For light quarks, the sea effect wins the competition and induces IMC phenomenon. While for heavy quarks, the valence effect becomes more important and the phase transition behaves as MC phenomenon \[66, 67\].

Investigating the QCD phase transitions has been a long crusade to understand the fundamental physics and astrophysics for decades. Since most perturbative QCD calculations and effective models suggest MC, people believe that IMC is due to the strongly coupled dynamics near the phase transition. However, the standard perturbative method can not treat the issue well because of the strongly coupled region. In addition, the non-perturbative techniques such as lattice QCD are facing the sign problem for finite baryon densities. In order to reveal the whole picture in the ”temperature-chemical potential” plane, the holographic framework \[68–70\] is a good candidate to solve the puzzle. In hQCD, phase transitions in the presence of external magnetic field has been widely studied for both confinement-deconfinement phase transition \[71–77\] and chiral condensation \[31, 32, 48, 73, 78–92\].

In this work, we investigate the magnetic effect on phase transition in QCD for heavy quarks by holographic correspondence. We study a hQCD model by considering an uniform but anisotropic external magnetic field in the 5-dimensional Einstein-Maxwell-Scalar (EMS) system, which is dual to a 4-dimensional QCD theory. This background is a magnetic generalization of the EMS frameworks considered in \[93–98\], in which a family of analytic solutions were obtained, and the phase diagram and the equations of states in QCD have been extensively studied. To ensure the stability of the gravitational background, we check the Null energy condition (NEC), which induces a constraint for the profile of scalar field. To study heavy quarks, we fit our parameters by the Regge linear spectrum of \(J/\psi\) mesons. By calculating the phase transition temperature for different chemical potentials under the varied magnetic field to obtain the phase structure of QCD. We find the MC/IMC phenomenon for the small/large external magnetic field. In addition, we locate the critical end point (CEP) for the QCD phase transition in \((T, \mu, B)\) 3-dimensional space. We discover the CEP moves to the lower chemical potential with a growing magnetic field. Besides, the CEP forms a closed boundary in the \((\mu, B)\), which implies the phase transition becomes crossover beyond the boundary.

The organization of the remaining parts of this paper is as follows. The hQCD model with anisotropic constant magnetic field has been constructed and a class of analytic gravitational background solutions have been presented in Sec. 2. The holographic phase transition and CEP with magnetic effects have been investigated in Sec. 3. Finally, we devote to the conclusions and discussions.

2 Holographic Model

The precise correspondence between gauge theory and gravity is addressed as \(\mathcal{N} = 4\) SYM \(\iff\) type IIB superstring theory on \(AdS_5 \times S_5\). For the purpose of identifying the transition line in the phase diagram, one get used to extend the rule to a blackening version, which replaced a pure \(AdS_5\) by a black hole in
AdS\textsubscript{5}. Whereas the QCD phase diagram is usually plotted in the $T-\mu$ plane. Therefore, we would expect that the black hole will behave as a \textit{AdS}–\textit{RN} black hole. Where the finite temperature is defined through the Hawking temperature, and the chemical potential μ, or baryon density, is introduced from the temporal component of the $U(1)$ gauge field according to the \textit{AdS}/\textit{CFT} dictionary.

Einstein–Maxwell-Scalar (EMS) QCD model was established from \cite{99,100}, and has been improved in \cite{93–95,101}. EMS is one of the fundamental frameworks to build a holographic model to effectively describe the phenomena of the strongly coupled field theory on the boundary. In the theoretical viewpoint, EMS is a simplified system for the type IIB supergravity.

We would start from the milestone of the fundamental system, and analytically study the phase transition within the external magnetic field. Hopefully we can shed a light on this puzzle and deliver deeper insights for numerical simulations and experiments.

2.1 Holographic EMS System with Magnetic Field

We consider a 5-dimensional EMS system as a thermal background for the corresponding QCD, which is constructed in Einstein frame as

$$S_B = \frac{1}{16\pi G_5} \int d^5x \sqrt{-g} \left[R - \frac{f(\phi)}{4} F^2 - \frac{1}{2} (\partial \phi)^2 - V(\phi) \right], \quad (2.1)$$

where G_5 labels the 5-dimensional Newtonian constant, R refers to the Riemann scalar, ϕ represents a neutral scalar field, and $F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu$ is the field strength originated from the gauge field A_μ. $f(\phi)$ is the gauge kinetic function and $V(\phi)$ is the potential of the ϕ. The equations of motion are obtained by varying the Eq. (2.1)

$$\nabla^2 \phi = \frac{\partial V}{\partial \phi} + \frac{F^2}{4} \frac{\partial f}{\partial \phi}, \quad (2.2)$$

$$\nabla_\mu \left[f(\phi) F^{\mu\nu} \right] = 0, \quad (2.3)$$

$$R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = \frac{f(\phi)}{2} \left(F_{\mu\nu} F^{\rho\sigma} - \frac{1}{4} g_{\mu\nu} F^2 \right) + \frac{1}{2} \left[\partial_\mu \phi \partial_\nu \phi - \frac{1}{2} g_{\mu\nu} (\partial \phi)^2 - g_{\mu\nu} V(\phi) \right]. \quad (2.4)$$

To take account of external magnetic field, we consider the following ansatz of the background blackening metric and (ϕ, A_μ) fields in Einstein frame

$$ds^2 = w_E(z)^2 \left[-b(z) dt^2 + g_{11}(z) dx_1^2 + g_{22}(z) (dx_2^2 + dx_3^2) + \frac{dz^2}{b(z)} \right], \quad (2.5)$$

$$\phi = \phi(z), \quad A_\mu = (A_t(z), 0, 0, A_3(x_2), 0), \quad (2.6)$$

where $w_E(z) = \frac{d(z)}{d(z)}$ is the warped factor with the sub-index E labeling the Einstein frame, $d(z)$ is the deformed factor which describes the warping geometry deformed from \textit{AdS} spacetime, and $b(z)$ stands for the blackening factor which formulates the black hole background. Conventionally, $z = 0$ corresponds to
the conformal boundary of the 5-dimensional space-time, and we have set the radial of AdS_5 to be unit by scale invariant.

We consider two components in the gauge field A_μ as Eq. (2.6). The temporal component $A_t(z)$ associates with the chemical potential μ and the spatial component $A_3 = Bx_2$ introduces an external magnetic field along the x_1 direction. The metric becomes magnetic field dependent and anisotropic. We assume that

$$
g_{11} = e^{c_1 C(B) z^2}, \quad g_{22} = e^{c_2 C(B) z^2},
$$

(2.7)

where the coefficients $c_{1,2}$ are two constants and $C(B)$ is an arbitrary function of B. Note that, at the boundary $z \to 0$, $b = g_{11} = g_{22} = 1$.

The black hole entropy and temperature for this ansatz are well defined as

$$s(z_h) = \frac{w E g_{22}}{4} \bigg|_{z = z_h},$$

(2.8)

$$T(z_h) = -\frac{\partial_z b}{4\pi} \bigg|_{z = z_h}.$$

(2.9)

Before we start to solve the equations of motion, it is worth to verify the null energy condition (NEC) to guarantee the consistency of the gravitational model. The NEC can be expressed as

$$T_{\mu\nu} N^\mu N^\nu \geq 0,$$

(2.10)

where $T_{\mu\nu}$ is the energy-momentum tensor of the matter fields. The null vector N^μ satisfies the condition $g_{\mu\nu} N^\mu N^\nu = 0$ and could be chosen as

$$N^\mu = \frac{1}{\sqrt{b(z)}} N^t + \frac{\sin \theta \cos \theta}{\sqrt{g_{11}}} N^{x_1} + \frac{\sin^2 \theta}{\sqrt{2g_{22}}} (N^{x_2} + N^{x_3}) + \cos \theta \sqrt{b(z)} N^z,$$

(2.11)

for arbitrary parameter θ. Then the NEC Eq. (2.10) becomes

$$\left(A_t^2 + \frac{B^2 \sin^2 \theta}{e^{2c_2 C(z^2)}} \right) \frac{f \sin^2 \theta}{2w_E^2} + \frac{b \phi'^2 \cos^2 \theta}{2w_E^2} \geq 0,$$

(2.12)

which demands that the kinetic gauge function f and ϕ'^2 should be positive. (Which is the positive energy definite through the Legendre transformation of Lagrange density.)
Plugging the ansatz Eq. (2.5) and Eq. (2.6) into Eqs. (2.2 - 2.4), the equations of motion reduce to

\begin{equation}
A''_t + \left(\frac{f'}{f} + \frac{u'_E}{w_E} + (c_1 + 2c_2) C z \right) A'_t = 0, \tag{2.13}
\end{equation}

\begin{equation}
\phi'^2 + \frac{6w'_E}{w_E} - \frac{12w'_E}{w_E^2} + 2(c_1 + 2c_2) C + 2(c_1^2 + 2c_2^2) C^2 z^2 = 0, \tag{2.14}
\end{equation}

\begin{equation}
b'' + \left(\frac{3u'_E}{w_E} + c_1 C z \right) b' - 2c_2 C \left(1 + (c_1 + 2c_2) C z^2 + \frac{3z w'_E}{w_E} \right) b - \frac{f}{w_E^2} \left(A'^2_t + \frac{B^2}{e^{2c_2 z^2}} \right) = 0, \tag{2.15}
\end{equation}

\begin{equation}
V + \frac{3bw''}{w_E^2} + \frac{6bw'^2}{w_E^4} + \left(3bC(c_1 + 4c_2) z + \frac{9b'}{2} \right) \frac{w'_E}{w_E^3}
+ \frac{fB^2}{2w_E^4 e^{2c_2 z^2}} + \frac{b'' + (c_1 + 6c_2) C z b' + 4c_2 C \left(1 + (c_1 + 2c_2) C z^2 \right) b}{2w_E^2} = 0, \tag{2.16}
\end{equation}

\begin{equation}
\phi'' + \left(\frac{3u'_E}{w_E} + \frac{b'}{b} + (c_1 + 2c_2) C z \right) \phi' + \left(A'^2_t - \frac{B^2}{e^{2c_2 z^2}} \right) \frac{f'(\phi)}{2bw_E^2} - \frac{w'^2_E}{b} V'(\phi) = 0. \tag{2.17}
\end{equation}

Since there are four physical quantities A_t, ϕ, b, V so we only need four equations of motion Eqs. (2.13 - 2.16). The last Eq. (2.17) is the redundancy one because of the Bianchi identity. (It is clear that the combination $c_1 + 2c_2 = 0$ could slightly simplify the equations of motion. However it is still hard to analytic solve the differential equation in b.)

In order to solve the equations of motion, we need to consider boundary conditions for the second order ODEs. The asymptotic AdS condition in the UV limit at the conformal boundary $z \to 0$, and the regular condition in the IR limit at the black hole horizon $z \to z_h$ are imposed.

(i) $z \to 0$:

\begin{equation}
d(0) = \phi(0) = 0, \quad b(0) = 1, \quad A_t(0) = \mu. \tag{2.18}
\end{equation}

(ii) $z = z_h$:

\begin{equation}
A_t(z_h) = b(z_h) = 0, \tag{2.20}
\end{equation}

where μ is the chemical potential. According to the holographic dictionary of the gauge/gravity correspondence,

\begin{equation}
A_t(z) = \mu - \rho z^2 + ... \tag{2.21}
\end{equation}

In addition, as the magnetic field shrinks to zero, the spatial symmetry should restore and return to the asymptotic AdS near the boundary,

\begin{equation}
g_{11} = g_{22} = 1. \tag{2.22}
\end{equation}
2.2 Analytical Solution

The equations of motion Eqs. (2.13 - 2.17) are very complicated. However, we found that the equations system can be analytically solved if we set $c_2 = 0$. With this choice, the equations reduces to

\[A''_t + \left(\frac{f'}{f} + \frac{w'_E}{w_E} + c_1 Cz \right) A'_t = 0, \]
(2.23)

\[\phi'^2 + \frac{6w''_E}{w_E} - \frac{12w'^2_E}{w_E^2} + 2c_1 C (1 + c_1 Cz^2) = 0, \]
(2.24)

\[b'' + \left(\frac{3w'_E}{w_E} + c_1 Cz \right) b' - \frac{f}{w_E^2} (A''_t + B^2) = 0, \]
(2.25)

\[V + \frac{3bw''_E}{w_E^2} + \frac{bw'^2_E}{w_E^2} + \left(3bc_1 Cz + \frac{9b'}{2} \right) \frac{w'_E}{w_E} + \frac{b'' + c_1 Cz b'}{2w_E^2} + \frac{fB^2}{2w_E^4} = 0. \]
(2.26)

The fields A_t, ϕ' and b can be analytically integrated from the Eqs. (2.23 - 2.25) as

\[A_t(z) = \mu \left[1 - \frac{I_2(z)}{I_2(z_h)} \right], \]
(2.27)

\[\phi' = \sqrt{-\frac{6w''_E}{w_E} + \frac{12w'^2_E}{w_E^2} - 2c_1 C (1 + c_1 Cz^2)}, \]
(2.28)

\[b(z) = 1 - \frac{I_1(z)}{I_1(z_h)} + \frac{\mu^2}{I_2(z_h)I_1(z_h)} \left[I_1(z_h) I_1(z_h) \left| \begin{array}{c} I_1(z) \ I_1(z) \\ I_2(z_h) \ I_2(z_h) \end{array} \right| + \frac{B^2}{I_1(z_h)} \left| \begin{array}{c} I_1(z_h) \ I_1(z_h) \\ I_1(z) \ I_1(z) \end{array} \right| \right], \]
(2.29)

with the help of the following integrals,

\[I_1(z) = \int_0^z \frac{dy}{w'_E e^{\frac{1}{2}c_1 Cy^2}}, \]
(2.30)

\[I_2(z) = \int_0^z \frac{dy}{w_E f e^{\frac{1}{2}c_1 Cy^2}}, \]
(2.31)

\[I_3(z) = \int_0^z w_E f e^{\frac{1}{2}c_1 Cy^2} dy, \]
(2.32)

\[I_{12}(z) = \int_0^z I'_1(y) I_2(y) dy = I_1(z)I_2(z) - \bar{I}_{12}(z), \]
(2.33)

\[I_{13}(z) = \int_0^z I'_1(y) I_3(y) dy = I_1(z)I_3(z) - \bar{I}_{13}(z). \]
(2.34)

It is apparent that the blackening factor b receives the contribution from chemical potential μ and magnetic field B respectively.\(^1\) In addition, if the magnetic field is turned off, the family of solutions will reduce to the original EMS system [93].

\(^1\)Note that the integrals depend on the magnetic field.
The potential $V(z)$ can be obtained from Eq. (2.26). It is straightforward to reconstruct the potential $V(\phi)$ termwise by z-expansion of both potential $V(z)$ and scalar field $\phi(z)$,

$$V(\phi) = -12 + \frac{(-3)}{2} \phi^2 + ..., \quad (2.35)$$

with the coefficient -3 being exactly the m^2 of the scalar field ϕ, which satisfies the BF bound implying that the gravitational background is stable. This process is the so-called potential reconstruction.

To consider meson spectrum, we add a matter action of a probe vector field V into the background,

$$S_m = -\frac{1}{16\pi G_5} \int d^5x \sqrt{-g} f(\phi) F_V^2. \quad (2.36)$$

The equation of motion for the vector field reads

$$\nabla_\mu [f(\phi) F_{\mu\nu}^V] = 0. \quad (2.37)$$

We use the gauge invariance to fix the gauge $V_z = 0$ and write $V_i(\vec{x}, z) = \phi(\vec{x}) v_i(z)$ with $\nabla^2 \phi(\vec{x}) = m^2 \phi(\vec{x})$. The equation of motion of the transverse vector field $V_\mu \ (\partial^\mu V_\mu = 0)$ in the background Eq. (2.5) is

$$v_i'' + \left(\frac{b'}{b} + \frac{wE}{w_E} + \frac{f'}{f} - c_1 C z\right) v_i' + \frac{m^2}{b} v_i = 0, \quad (2.38)$$

which can be brought to the Schrödinger equation

$$\psi''_i + U(z) \psi + m^2 \psi_i = 0, \quad (2.39)$$

where the potential is

$$U(z) = \frac{X''}{X} - \frac{2X^2}{X^2}, \quad (2.40)$$

with

$$X = \left(\frac{e^{c_1 C z^2/2}}{bf w_E}\right)^{1/2} \quad (2.41)$$

In the following sections, we choose the function as

$$f(z) = e^{-\left(R_{gg} + \frac{1}{2} C\right) z^2 - d(z)}. \quad (2.42)$$

At $T = \mu = B = 0$,

$$f(z) = \frac{e^{\pm R_{gg} z^2}}{2 w_E}, \quad (2.43)$$
which implies
\[U(z) = \frac{3}{4} z^2 + R_{gg}^2 z^2. \quad (2.44) \]
and leads to the linear mass spectrum \(m_n^2 = 4R_{gg} n \). where \(R_{gg} \) refers to the Regge trajectories and the deform factor \(d(z) \) will be related to \((R_{gg}, p) \). The parameter \(R_{gg} \) will be fitting from Regge spectra. The parameters \(p \) recalls the transition point at \(\mu = B = 0 \) which is fitting from lattice QCD. All the parameter \((R_{gg}, p) \) are addressed in \([93, 96]\) as magnetic field is turning off for the heavy quark branch, for instance the \(J/\psi \) meson, the parameter \(R_{gg} = 1.16 \) and the deformed factor \(d(z) = -\frac{R_{gg}}{3} z^2 - pz^4 \) where \(p = 0.273 \).

With the above choice, the integrals Eqs. \((2.30 - 2.34)\) are monotonously growing functions of \(z \) from zero, and the integrals Eq. \((2.31)\) and Eq. \((2.32)\) do not depend on the magnetic field \(B \).

In addition, to investigate the magnetic effects on the phase diagram, we need to explicitly fix the function \(C(B) \) in the component of the metric \(g_{11} = e^{c_1 C(B) z^2} \). From dimension analysis, we take \(C(B) = B \), and \(c_1 \leq 0 \) to ensure the monotonous behavior in entropy as the size of BH changes. Our choice is consistent with the NEC constraints Eq. \((2.12)\) that requests the field \(\phi \) to be a real function. For simplicity, we set \(c_1 = -1 \) in the later calculations.

3 Phase Transition in QCD

In this section, we study the phase structure for the black hole background which we have obtained in the last section. The phase transition of the black hole corresponds to the confinement-deconfinement phase transition in the dual holographic QCD theory \([93]\).

In the presence of magnetic field, the QCD phase diagram is sensitive to the background magnetic field. It has been showed that the effect of background magnetic field on the transition temperature depends on the masses of the dynamical quarks. For light quarks with physical mass, lattice simulation reveals the IMC phenomenon for small chemical potential\([34, 35, 37, 39, 42, 43]\). While for heavy quarks, the MC phenomenon is observed \([8–10]\). In this work, we focus on the model of heavy quarks, since we have fixed the model parameters in terms of linear Regge behavior of \(J/\psi \) meson and these parameters capturing the dynamics of the heavy quarks sector.

3.1 Magnetic Effects on Temperature

Using the solutions Eqs. \((2.27 - 2.29)\), the BH entropy density and the Hawking temperature are straightforwardly calculated,
\[s(z_h) = \frac{1}{4I_1'(z_h)}, \quad (3.1) \]
\[T(z_h) = T_0 \left(1 + \mu^2 T_\mu + B^2 T_B \right), \quad (3.2) \]
where
\[T_0 = \frac{I_1'(z_h)}{4\pi I_1(z_h)}, \quad T_\mu = -\frac{I_{12}(z_h)}{I_2'(z_h)}, \quad T_B = -\frac{I_{13}(z_h)}{I_3'(z_h)}. \quad (3.3) \]
Figure 1. Temperature vs horizon. From left to right: $\mu = 0$, $\mu = 0.5$, $\mu = \mu_{CEP}(B)$, $\mu = 1.0$. In each figure, from top to bottom: $B = 0, 0.2, 0.4, 0.6$. Interestingly, the Hawking-Page transition only happens in $\mu = B = 0$.

From the explicit expression of the integral $I_1(z)$, we can show that

$$T_0 = \frac{I_1'(z_h)}{4\pi I_1(z_h)} = \frac{1}{4\pi w_E^2(z_h) \int_0^{z_h} e^{-\frac{1}{2} B (z_h^2 - y^2)} \frac{dy}{w_E(y)}} \geq \frac{1}{4\pi w_E^2(z_h) \int_0^{z_h} \frac{dy}{w_E(y)}} = T_0|_{B=0}, \quad (3.4)$$

which implies that magnetic field will enhance the BH temperature $T(z_h)$ by T_0. On the other hand, both T_μ and T_B are negative due to the positive integrals. The effect from T_μ and T_B grows for larger magnetic B and bigger horizon z_h, so that magnetic field will reduce the BH temperature eventually for large B. The two effects compete each other as we changing the magnetic field.

The black hole temperature in the presence of the background magnetic field B for heavy quarks at different chemical potential are plotted in Fig.1. For small chemical potential $\mu < \mu_{CEP}$, the temperature is a multiple-valued function of the black hole horizon, which indicates that there would be a first-order phase transition between the large and the small sizes of black holes. For $\mu > \mu_{CEP}$, the temperature becomes monotonous and the phase transition could reduces to a crossover. At the critical point $\mu = \mu_{CEP}$, we expect a second-order phase transition.

The influence of magnetic field on temperature can be read from Fig.1. The temperature is enhanced at small horizon z_h due to the effect from T_0, while is reduced at large z_h due to the effect from T_μ and T_B. To investigate the magnetic effect in detail, we take the derivative of the temperature with magnetic field,

$$\frac{dT}{dB} = \frac{I_1'(z_h)}{8\pi I_1} \left(H(z_h) - \frac{\mu^2}{I_2^2} \int_0^{z_h} \left[H(z_h) + \frac{I_{1y}(y)}{I_1(y)}\right] I_1(y) I_2'(y) dy\right)$$

$$- \frac{B^2 I_1'}{8\pi I_1} \int_0^{z_h} \left[H(z_h) + \frac{I_{1y}(y)}{I_1(y)}\right] I_1(y) I_3'(y) dy - \frac{BI_1' \tilde{I}_{13}}{2\pi I_1}, \quad (3.5)$$

where

$$H(z_h) = z_h^2 - \frac{I_{1y}(z_h)}{I_1(z_h)}$$

and

$$I_{1y}(z_h) = \int_0^{z_h} y^2 I_1' dy. \quad (3.6)$$
It is easy to show that \(H(z_h) \geq 0 \) by using the monotonicity of the integral \(I_1(z) \).

For small magnetic field, we can neglect the last term in Eq. (3.5),

\[
\frac{dT}{dB} \simeq \frac{I_1'}{8\pi I_1} \left(H(z_h) - \frac{\mu^2}{I_2} \int_0^{z_h} \left[H(z_h) + \frac{I_{1Y}(y)}{I_1(y)} \right] I_1(y) I_2'(y) dy \right),
\]

which is positive for not too large chemical potential \(\mu \) since \(I_1 \geq 0 \). This implies the MC behavior for small chemical potential.

On the other hand, for large magnetic field \(B \), only the last term in Eq. (3.5) is important,

\[
\frac{dT}{dB} \simeq -B^2 \frac{I_1'}{8\pi I_1} \int_0^{z_h} \left[H(z_h) + \frac{I_{1Y}(y)}{I_1(y)} \right] I_1(y) I_3'(y) dy - \frac{BI_1' \tilde{I}_{13}}{2\pi I_1} < 0,
\]

which implies the IMC behavior for large magnetic field.

3.2 Magnetic Effects on QCD Phase Diagram

As we argued in the previous section, the rough structure of QCD phase transition can be read from the behavior of black hole temperature. However, to obtain the exact phase diagram, we need to calculate the free energy of the thermodynamic system. The free energy in grand canonical ensemble can be obtained from the first law of thermodynamics,

\[
F = \epsilon - Ts - \mu \rho - MB,
\]

where \(\rho = \frac{\mu}{2I_2(z_h)} \) is the baryon density, \(M \) represents the magnetization which is associated to \(B \), and \(\epsilon \) labels the internal energy density. Comparing the free energies of BHs at the same temperature for certain finite value of chemical potential, we are able to obtain the phase structure of BHs which gives the phase diagram of the holographic QCD due to AdS/CFT correspondence. At fixed volume, the differential of the free energy is defined as [43]

\[
dF = -sdT - \rho d\mu - MdB.
\]

For the fixed chemical potential \(\mu \) and magnetic field \(B \), the free energy can be evaluated by the following integral,

\[
F = -s \int dT = \int_{z_h}^{\infty} s(z_h) T'(z_h) dz_h
\]

where we have normalized the free energy to vanish at \(z_h \to \infty \).

The thermodynamic properties for heavy quarks without magnetic field has been studied in [93]. The temperature vs horizon is plotted in the left figure of Fig.2. At \(\mu = 0 \), the temperature has a minimum value which implies the Hawking-Page phase transition. For a finite but small \(\mu \), the temperature drops to zero at certain horizon, but a first order phase transition still happens at a finite temperature between the local minimum and maximum temperatures. From the local minimum and maximum for each chemical
potential \(\mu < \mu_{CEP} \), we can partition a region where the phase transition could happen. The CEP of the phase diagram will take place at the specific temperature \(T_{CEP} \) where the local minimum and maximum temperature are degenerated at characteristic chemical potential \(\mu_{CEP} \). When the chemical potential is beyond a critical value \(\mu > \mu_{CEP} \), the temperature becomes monotonous and the phase transition reduces to a crossover. The exact phase transition temperature can be obtained from the free energy. The free energy vs temperature is demonstrated in the middle figure of Fig. 2. The intersection of the swallow-type patterns labels the first order phase transition temperature at each chemical potential where the free energy and temperature are equal at different horizons. As the chemical potential increasing, the swallow-type gradually compresses and eventually becomes a singular point where character the second order phase transition. When \(\mu > \mu_{CEP} \), the free energy becomes smooth function with respect to temperature that implies the phase transition is weaken to a crossover. The phase diagram is delivered in the right figure of Fig. 2. The shadow region is enclosed by the curves of the local minimum and maximum temperatures, which shrink to the CEP. The phase transition line is within the shadow region. We should remark that the behavior of the heavy quarks is in contrast to that of the light quarks, in which crossover occurs at small chemical potential and becomes phase transition for \(\mu > \mu_{CEP} \).

In the presence of magnetic field \(B \), the behavior of free energy are qualitatively the same as that with zero magnetic field as showed in the middle figure of Fig. 2. The exact values of the phase transition temperature changes with both chemical potential \(\mu \) and magnetic field \(B \) are plotted in Fig. 3.

For fixed \(B \) fields, phase transition extends from \(\mu = 0 \) to finite chemical potentials and terminates at a CEP, the red dots, as showed in the left figure of Fig. 3. Increasing the magnetic field from zero enhances the phase transition temperature. This confirms the MC behavior as we expected from the behavior of the temperature. The MC phenomenon we found for the heavy quarks is consistent with the recent lattice simulations \cite{66, 67}. Furthermore, it shows that the CEP of the phase transition moves towards to the lower chemical potential when the magnetic field increases, that is consistent with the recent works using PNJL model \cite{61, 64, 104}.

Figure 2. Left: temperatures vs horizon. From top to bottom: \(\mu = 0, 0.5, \mu_{CEP}, 1 \). Middle: free energies vs temperature for the corresponding \(\mu \). The intersection of the swallow-type patterns labels the first order phase transition. Right: QCD phase diagram for heavy quarks. The phase transition line is within the shadow region which is enclosed by the curves of the local minimum and maximum temperatures that shrink to the CEP at \((\mu_{CEP}, T_{CEP}) = (0.714, 0.528) \).
We plot the phase transition temperature vs magnetic field for different chemical potentials in the middle figure of Fig. 3. For small magnetic field, it clearly shows that the phase transition temperature increases along the magnetic field, i.e. MC phenomenon as we have discussed. On the other hand, when the magnetic field B become large enough, we observe that the phase transition temperature reduces with the increasing magnetic field. This justifies our conclusion of IMC behavior at large magnetic field by the argument of the competition between the contributions from T_0 and T_B to the temperature in Eq. (3.2). In our case, the flipping magnetic field $B \sim 0.96$ if $\mu = 0$, Which magnitude is very close to $[34, 71]$. We also notice that the phase transition will reach CEP before it turns to IMC from MC if the chemical potential is too large $\mu \gtrsim 0.6 GeV$. For each chemical potential, there exists a critical magnetic field $B_{CEP}(\mu)$ beyond that the phase transition becomes crossover. The CEPs for different chemical potentials are along the red dashed line with the shadow region standing for the crossover zone.

The full phase transition structure including both chemical potential and magnetic field is combined in a 3-dimensional phase diagram as plotted in the right figure of Fig. 3. The left two diagrams are the 3-dimensional phase diagram projected on the $T - \mu$ and $T - B$ planes, respectively. The four lines with the fixed magnetic fields in the $T - \mu$ diagram are put with the corresponding colors in the 3-dimensional phase diagram. In addition, the red dashed line in the 3-dimensional phase diagram indicates the 3-dimensional CEP boundary, beyond which the phase transition becomes crossover.

3.3 Critical End Point

It is crucial to locate the CEP of the phase transition [102–105]. It has been showed that the QCD phase transition temperature gradually cools down as QCD matter being more and more dense, i.e. increasing chemical potential. The CEP of the first order phase transition can be evaluated by the free energy Eq. (3.11).
Figure 4. The CEPs on $T-\mu$, $T-B$ and $\mu-B$ planes. We can observe that the CEP temperature are linear with the magnetic field. On the other hand, as magnetic field increasing, the chemical potential gradually decreases and eventually vanishes at $B \sim 1.31 \text{ GeV}^2$ which implies that the whole transition line is weaken to a transition point. We can demonstrate this tendency in the $T-\mu$ plane. As the imposing magnetic field become stronger, the CEP temperature become higher but CEP baryon density become looser. Another words, the first order phase transition line become shorter, the crossover region become wider, as the magnetic field is stronger.

The authors of [61, 64, 104] have studied confinement-deconfinement phase transition by using PNJL model. They showed that the CEP moves towards lower chemical potentials with increasing magnetic field if considering a magnetic field dependent coupling $G(B)$, and the CEP could eventually approaches to the zero chemical potential for large enough magnetic field. Their result is only for light quarks, here we show that the similar behavior preserves for heavy quarks.

The tendency of CEP with magnetic field is plotted in the left figure of Fig.4. When the magnetic field increasing, the CEP moves to the lower chemical potential and approaches to $T \sim 0.613 \text{ GeV}$ at $\mu = 0$. The CEP on $T-B$ plane is plotted in the middle figure of Fig.4. When the chemical potential increasing, the CEP moves to the smaller magnetic filed and returns to the original CEP at $B = 0$. It is interesting to observe that the CEP temperature are linear with the magnetic field. Furthermore, the CEP forms a closed boundary on $\mu-B$ plane as plotted in the right figure of Fig.4. Beyond the boundary the phase transition becomes crossover.

4 Conclusion

In this paper, we constructed an analytical holographic QCD model with magnetic field for heavy quarks in the Einstein-Maxwell-Scalar system by potential reconstruction approach. We introduced both electrical and magnetic fields in a single bulk $U(1)$ gauge field. The electrical component is interpreted as the global baryon number conservation symmetry on the boundary theory by holography. While the magnetic component corresponds to the boundary external magnetic field. In this holographic setup, we have checked the null energy condition to ensure that the gravitational background is a stable. In addition, in this background, we have also realized the linear Regge spectrum of J/ψ mesons. Since the parameters are fixed by the heavy mesons spectrum, the holographic model captures the characters of the heavy quarks sector.
We calculated the free energy to obtain the phase transition temperatures for heavy quarks at different chemical potentials and magnetic fields in the holographic QCD model. For small magnetic field, we found MC phenomenon that is consistent with the recent lattice results [66, 67]. While for large enough magnetic field, we found IMC phenomenon due to the competition between the contributions from T_0 and T_B to the temperature in Eq. (3.2). Thus the phase transition will change from MC to IMC as the magnetic field growing. However, we noticed that the phase transition will reach its critical end point before it turns to IMC if the chemical potential is large enough $\mu \gtrsim 0.6 \text{GeV}$. See Fig. 3 for the phase diagrams at different chemical potentials and magnetic fields.

In addition, there exists a extreme point for the phase transition for either chemical potential or magnetic field, i.e. the CEP. Beyond CEP, the phase transition becomes to crossover. We found that, for fixed magnetic fields, the CEP moves to the lower chemical potential and eventually approaches to $\mu = 0$. While for fixed chemical potentials, the CEP decreases with the magnetic field growing. It is interesting to observe that the CEP temperature are linear with the magnetic field. We don’t understand the reason of this linear behavior and it is deserved to study in the future. See Fig. 4 for the CEP at different chemical potentials and magnetic fields.

Since we only focus on the free energy which tell us the phase transition happen in the hQCD model. It is also interesting topic to investigate the definite order parameters to obtain further information associated with the phase transition. For chiral phase transition, the transition temperature will decrease up to a certain turning point with increasing magnetic field and then increase gradually. While for deconfining phase transition, the transition temperature will always decrease with raising the magnetic field. The two kinds of phase transitions will show different characteristic behaviors with respect to the magnetic field. We would like to study these corresponding order parameters to confirm such phenomenon in terms of holographic approach. We leave this part in the future.

Acknowledgements

We would like to thank Danning Li, Xiaoning Wu, Lang Yu for useful discussion. S.H. also would like to appreciate the financial support from Jilin University and Max Planck Partner group. This work of Y.Y is supported by the Ministry of Science and Technology (MOST 106-2112-M-009 -005 -MY3) and National Center for Theoretical Science, Taiwan. The work of P.H.Y. was supported by the University of Chinese Academy of Sciences.

References

[1] V. Skokov, A. Illarionov, V. Toneev, "Estimate of the magnetic field strength in heavy-ion collisions", arXiv:0907.1396 [nucl-th].

[2] V. Voronyuk, V.D Toneev, W. Cassing, E.L. Bratkovskaya, V.P. Konchakovski, S.A. Voloshin, "Electromagnetic field evolution in relativistic heavy-ion collisions", arXiv:1103.4239 [nucl-th].
[3] Adam Bzdak, Vladimir Skokov, "Event-by-event fluctuations of magnetic and electric fields in heavy ion collisions", arXiv:1111.1949 [hep-ph].

[4] Wei-Tian Deng, Xu-Guang Huang, "Event-by-event generation of electromagnetic fields in heavy-ion collisions", arXiv:1201.5108 [nucl-th].

[5] Robert C. Duncan, Christopher Thompson, "Formation of very strongly magnetized neutron stars - implications for gamma-ray bursts", Astrophysical Journal Letters v.392 (1992), p.L9.

[6] Sandro Mereghetti, "The strongest cosmic magnets: Soft Gamma-ray Repeaters and Anomalous X-ray Pulsars", arXiv:0804.0250 [astro-ph].

[7] K. Enqvist, P. Olesen, "On Primordial Magnetic Fields of Electroweak Origin", arXiv:hep-ph/9308270.

[8] M. D’Elia, S. Mukherjee and F. Sanfilippo, "QCD Phase Transition in a Strong Magnetic Background", arXiv:1005.5365 [hep-lat].

[9] E.-M. Ilgenfritz, M. Kalinowski, M. Muller-Preussker, B. Petersson, A. Schreiber, "Two-color QCD with staggered fermions at finite temperature under the influence of a magnetic field", arXiv:1203.3360 [hep-lat].

[10] M. D’Elia, "Lattice QCD Simulations in External Background Fields", arXiv:1209.0374 [hep-lat].

[11] V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, "Catalysis of Dynamical Flavor Symmetry Breaking by a Magnetic Field in 2+1 Dimensions", arXiv:hep-ph/9405262.

[12] V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, "Dimensional Reduction and Dynamical Chiral Symmetry Breaking by a Magnetic Field in 3+1 Dimensions", arXiv:hep-ph/9412257.

[13] V. P. Gusynin, V. A. Miransky, I. A. Shovkovy, "Dimensional Reduction and Catalysis of Dynamical Symmetry Breaking by a Magnetic Field", arXiv:hep-ph/9509320.

[14] G. W. Semenoff, I. A. Shovkovy, L. C. R. Wijewardhana, "Universality and the magnetic catalysis of chiral symmetry breaking", arXiv:hep-th/9905116.

[15] J. Alexandre, K. Farakos, G. Koutsoumbas, "Magnetic catalysis in QED_3 at finite temperature: beyond the constant mass approximation", arXiv:hep-th/0010211.

[16] V. A. Miransky, I. A. Shovkovy, "Magnetic catalysis and anisotropic confinement in QCD", arXiv:hep-ph/0205348.

[17] A. A. Osipov, B. Hiller, A. H. Blin, J. da Providencia, "Dynamical chiral symmetry breaking by a magnetic field and multi-quark interactions", arXiv:hep-ph/0701090.

[18] E. S. Fraga and A. J. Mizher, "Can a strong magnetic background modify the nature of the chiral transition in QCD?", arXiv:0810.3693 [hep-ph].

[19] Kenji Fukushima, Marco Ruggieri, Raoul Gatto, "Chiral magnetic effect in the PNJL model", arXiv:1003.0047 [hep-ph].

[20] A. J. Mizher, M. N. Chernodub, E. S. Fraga, "Phase diagram of hot QCD in an external magnetic field: possible splitting of deconfinement and chiral transitions", arXiv:1004.2712 [hep-ph].

[21] Raoul Gatto, Marco Ruggieri, "Deconfinement and Chiral Symmetry Restoration in a Strong Magnetic Background", arXiv:1012.1291 [hep-ph].
[22] Kouji Kashiwa, "Entanglement between chiral and deconfinement transitions under strong uniform magnetic background field", arXiv:1104.5167 [hep-ph].
[23] Bogdan V. Galilo, Sergei N. Nedelko, "Impact of the strong electromagnetic field on the QCD effective potential for homogeneous Abelian gluon field configurations", arXiv:1107.4737 [hep-ph].
[24] V. Skokov, "Phase diagram in an external magnetic field beyond a mean-field approximation", arXiv:1112.5137 [hep-ph].
[25] Kenji Fukushima, Jan M. Pawlowski, "Magnetic catalysis in hot and dense quark matter and quantum fluctuations", arXiv:1203.4330 [hep-ph].
[26] Igor A. Shovkovy, "Magnetic Catalysis: A Review", arXiv:1207.5081 [hep-ph].
[27] Eduardo S. Fraga, "Thermal chiral and deconfining transitions in the presence of a magnetic background", arXiv:1208.0917 [hep-ph].
[28] M. Ferreira, P. Costa, D. P. Menezes, C. Providencia and N. Scoccola, "Deconfinement and chiral restoration within the SU(3) Polyakov–Nambu–Jona-Lasinio and entangled Polyakov–Nambu–Jona-Lasinio models in an external magnetic field", arXiv:1305.4751 [hep-ph].
[29] E. S. Fraga, B. W. Mintz, J. Schaffner-Bielich, "A search for inverse magnetic catalysis in thermal quark-meson models", arXiv:1311.3964 [hep-ph].
[30] M. Ferreira, P. Costa, C. Providencia, "Deconfinement, chiral symmetry restoration and thermodynamics of (2+1)-flavor hot QCD matter in an external magnetic field", arXiv:1312.6733 [hep-ph].
[31] Stefano Bolognesi, David Tong, "Magnetic Catalysis in AdS4", arXiv:1110.5902 [hep-th].
[32] D. Dudał, D. R. Granado, T. G. Mertens, "No inverse magnetic catalysis in the QCD hard and soft wall models", arXiv:1511.04042 [hep-th].
[33] M. D’Elia and F. Negro, "Chiral Properties of Strong Interactions in a Magnetic Background", arXiv:1103.2080 [hep-lat].
[34] G. S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S. D. Katz, S. Krieg, A. Schafer, K. K. Szabo, "The QCD phase diagram for external magnetic fields", arXiv:1111.4956 [hep-lat].
[35] G. S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S. D. Katz, A. Schafer, "QCD quark condensate in external magnetic fields", arXiv:1206.4205 [hep-lat].
[36] G. S. Bali, F. Bruckmann, G. Endrodi, F. Gruber, A. Schaef er, "Magnetic field-induced gluonic (inverse) catalysis and pressure (an)isotropy in QCD", arXiv:1303.1328 [hep-lat].
[37] F. Bruckmann, G. Endrodi, T. G. Kovacs, "Inverse magnetic catalysis and the Polyakov loop", arXiv:1303.3972 [hep-lat].
[38] E.-M. Ilgenfritz, M. Muller-Preussker, B. Petersson, A. Schreiber, "Magnetic catalysis (and inverse catalysis) at finite temperature in two-color lattice QCD", arXiv:1310.7876 [hep-lat].
[39] V. G. Bornyakov, P. V. Buividovich, N. Cundy, O. A. Kochetkov and A. Schfer, "Deconfinement transition in two-flavour lattice QCD with dynamical overlap fermions in an external magnetic field", arXiv:1312.5628 [hep-lat].
[40] Gergely Endrodi, "Critical point in the QCD phase diagram for extremely strong background magnetic fields", arXiv:1504.08280 [hep-lat].

[41] C. Bonati, M. D’Elia, M. Mariti, M. Mesiti, F. Negro, A. Rucci and F. Sanfilippo, "Magnetic field effects on the static quark potential at zero and finite temperature", arXiv:1607.08160 [hep-lat].

[42] Akio Tomiya, Heng-Tong Ding, Swagato Mukherjee, Christian Schmidt, Xiao-Dan Wang, "Chiral phase transition of three flavor QCD with nonzero magnetic field using standard staggered fermions", arXiv:1711.02884 [hep-lat].

[43] V. V. Braguta, M. N. Chernodub, A. Yu. Kotov, A. V. Molochkov, A. A. Nikolaev, "Finite-density QCD transition in magnetic field background", arXiv:1909.09547 [hep-lat].

[44] N. O. Agasian, S. M. Fedorov, "Quark-hadron phase transition in a magnetic field", arXiv:0803.3156 [hep-ph].

[45] Eduardo S. Fraga, Leticia F. Palhares, "Deconfinement in the presence of a strong magnetic background: an exercise within the MIT bag model", arXiv:1201.5881 [hep-ph].

[46] Raoul Gatto, Marco Ruggieri, "Quark Matter in a Strong Magnetic Background", arXiv:1207.3190 [hep-ph].

[47] Eduardo S. Fraga, Jorge Noronha, Leticia F. Palhares, "Large Nc Deconfinement Transition in the Presence of a Magnetic Field", arXiv:1207.7094 [hep-ph].

[48] Florian Preis, Anton Rebhan, Andreas Schmitt, "Inverse magnetic catalysis in field theory and gauge-gravity duality", arXiv:1208.0536 [hep-ph].

[49] M. N. Chernodub, "Electromagnetic superconductivity of vacuum induced by strong magnetic field", arXiv:1208.5025 [hep-ph].

[50] Kenji Fukushima, Yoshimasa Hidaka, "Magnetic Catalysis vs Magnetic Inhibition", arXiv:1209.1319 [hep-ph].

[51] Dmitri E. Kharzeev, Karl Landsteiner, Andreas Schmitt, Ho-Ung Yee, "Strongly interacting matter in magnetic fields": an overview", arXiv:1211.6245 [hep-ph].

[52] Jingyi Chao, Pengcheng Chu, Mei Huang, "Inverse magnetic catalysis induced by sphalerons", arXiv:1305.1100 [hep-ph].

[53] M. Ferreira, P. Costa, O. Loureno, T. Frederico, C. Providencia, "Inverse magnetic catalysis in the (2+1)-flavor Nambu–Jona-Lasinio and Polyakov–Nambu–Jona-Lasinio models", arXiv:1404.5577 [hep-ph].

[54] Lang Yu, Hao Liu, Mei Huang, "Spontaneous generation of local CP violation and inverse magnetic catalysis", arXiv:1404.6969 [hep-ph].

[55] Alejandro Ayala, M. Loewe, Ana Julia Mizher, R. Zamora, "Inverse magnetic catalysis for the chiral transition induced by thermo-magnetic effects on the coupling constant", arXiv:1406.3885 [hep-ph].

[56] Alejandro Ayala, M. Loewe, R. Zamora, "Inverse magnetic catalysis in the linear sigma model with quarks", arXiv:1406.7408 [hep-ph].

[57] E. J. Ferrer, V. de la Incera, X. J. Wen, "Quark Antiscreening at Strong Magnetic Field and Inverse Magnetic Catalysis", arXiv:1407.3503 [nucl-th].

[58] Jens O. Andersen, William R. Naylor, Anders Tranberg, "Inverse magnetic catalysis and regularization in the quark-meson model", arXiv:1410.5247 [hep-ph].
[59] Bo Feng, Defu Hou, Hai-cang Ren, "(Inverse) Magnetic Catalysis in Bose-Einstein Condensation of Neutral Bound Pairs", arXiv:1412.1647 [cond-mat.quant-gas].

[60] Niklas Mueller, Jan M. Pawlowski, "Magnetic catalysis and inverse magnetic catalysis in QCD", arXiv:1502.08011 [hep-ph].

[61] MM. Ferreira, P. Costa and C. Providncia, "The QCD phase diagram in the presence of an external magnetic field: the role of the inverse magnetic catalysis", arXiv:1509.01181 [hep-ph].

[62] Aftab Ahmad, Alfredo Raya, "Inverse magnetic catalysis and confinement within a contact interaction model for quarks", arXiv:1602.06448 [hep-ph].

[63] R. L. S. Farias, V. S. Timoteo, S. S. Avancini, M. B. Pinto, G. Krein, "Thermo-magnetic effects in quark matter: Nambu–Jona-Lasinio model constrained by lattice QCD", arXiv:1603.03847 [hep-ph].

[64] M. Ferreira, P. Costa and C. Providncia, "Magnitized QCD phase diagram", arXiv:1712.08384 [hep-ph].

[65] Hardik Bohra, David Dudal, Ali Hajioulou, Subhash Mahapatra, "Anisotropic string tensions and inversely magnetic catalyzed deconfinement from a dynamical AdS/QCD model", arXiv:1907.01852 [hep-th].

[66] M. D’Elia, F. Manigrasso, F. Negro and F. Sanfilippo, "QCD phase diagram in a magnetic background for different values of the pion mass", arXiv:1808.07008 [hep-lat].

[67] Gergely Endrodi, Matteo Giordano, Sandor D. Katz, Tomas G. Kovacs, Ferenc Pittler, "Magnetic catalysis and inverse catalysis for heavy pions", arXiv:1904.10296 [hep-lat].

[68] Juan M. Maldacena, "The Large N Limit of Superconformal Field Theories and Supergravity", arXiv:hep-th/9711200.

[69] S.S. Gubser, I.R. Klebanov, A.M. Polyakov, "Gauge Theory Correlators from Non-Critical String Theory", arXiv:hep-th/9802109.

[70] Edward Witten, "Anti De Sitter Space And Holography", arXiv:hep-th/9802150.

[71] Kiminad A. Mamo, "Inverse magnetic catalysis in holographic models of QCD", arXiv:1501.03262 [hep-th].

[72] Romulo Rougemont, Renato Critelli, Jorge Noronha, "Holographic calculation of the QCD crossover temperature in a magnetic field”, arXiv:1505.07894 [hep-th].

[73] Kaddour Chelabi, Zhen Fang, Mei Huang, Danning Li, Yue-Liang Wu, "Realization of chiral symmetry breaking and restoration in holographic QCD", arXiv:1511.02721 [hep-ph].

[74] Si-wen Li, Tuo Jia, "Dynamically flavored description of holographic QCD in the presence of a magnetic field”, arXiv:1604.07197 [hep-th].

[75] Diego M. Rodrigues, Eduardo Folco Capossoli, Henrique Boschi-Filho, "Deconfinement phase transition in a magnetic field in 2+1 dimensions from holographic models”, arXiv:1709.09258 [hep-th].

[76] Diego M. Rodrigues, Eduardo Folco Capossoli, Henrique Boschi-Filho, "Magnetic catalysis and inverse magnetic catalysis in (2+1)-dimensional gauge theories from holographic models”, arXiv:1710.07310 [hep-th].

[77] Umut Gursoy, Matti Jarvinen, Govert Nijs, Juan F. Pedraza, "Inverse Anisotropic Catalysis in Holographic QCD”, arXiv:1811.11724 [hep-th].
[78] Veselin G. Filev, Radoslav C. Rashkov, "Magnetic Catalysis of Chiral Symmetry Breaking. A Holographic Prospective", arXiv:1010.0444 [hep-th].

[79] Florian Preis, Anton Rebhan, Andreas Schmitt, "Inverse magnetic catalysis in dense holographic matter", arXiv:1012.4785 [hep-th].

[80] N. Callebaut, D. Dudal, "On the transition temperature(s) of magnetized two-flavour holographic QCD", arXiv:1303.5674 [hep-th].

[81] Alfonso Ballon-Bayona, "Holographic deconfinement transition in the presence of a magnetic field", arXiv:1307.6498 [hep-th].

[82] Brett McInnes, "Inverse Magnetic/Shear Catalysis", arXiv:1511.05293 [hep-th].

[83] Kaddour Chelabi, Zhen Fang, Mei Huang, Danning Li, Yue-Liang Wu, "Chiral Phase Transition in the Soft-Wall Model of AdS/QCD", arXiv:1512.06493 [hep-ph].

[84] M. Ruggieri, G. X. Peng, "Quark Matter in a Parallel Electric and Magnetic Field Background: Chiral Phase Transition and Equilibration of Chiral Density", arXiv:1602.09989 [hep-ph].

[85] Nick Evans, Carlisson Miller, Marc Scott, "Inverse Magnetic Catalysis in Bottom-Up Holographic QCD", arXiv:1604.06307 [hep-ph].

[86] Danning Li, Mei Huang, Yi Yang, Pei-Hung Yuan, "Inverse Magnetic Catalysis in the Soft-Wall Model of AdS/QCD", arXiv:1610.04618 [hep-th].

[87] Conrad Chan, Alexander Heger, "Combined Nucleosynthetic Yields of Multiple First Stars", arXiv:1610.06339 [astro-ph.SR].

[88] U. Grsoy, I. Iatrakis, M. Jrvinen and G. Nijs, "Inverse Magnetic Catalysis from improved Holographic QCD in the Veneziano limit", arXiv:1611.06339 [hep-th].

[89] Alfonso Ballon-Bayona, Matthias Ihl, Jonathan P. Shock, Dimitrios Zoakos, "A universal order parameter for Inverse Magnetic Catalysis", arXiv:1706.05977 [hep-th].

[90] Umut Gursoy, Matti Jarvinen, Govert Nijs, "Holographic QCD in the Veneziano limit at finite Magnetic Field and Chemical Potential", arXiv:1707.00872 [hep-th].

[91] Diego M. Rodrigues, Danning Li, Eduardo Folco Capossoli, Henrique Boschi-Filho, "Chiral Symmetry Breaking and Restoration in (2+1) Dimensions from Holography: Magnetic and Inverse Magnetic Catalysis", arXiv:1807.11822 [hep-th].

[92] Diego M. Rodrigues, Danning Li, Eduardo Folco Capossoli, Henrique Boschi-Filho, "Holographic Description of Chiral Symmetry Breaking in a Magnetic Field in 2+1 Dimensions with an Improved Dilaton", arXiv:1811.04117 [hep-ph].

[93] Song He, Shang-Yu Wu, Yi Yang, Pei-Hung Yuan, "Phase Structure in a Dynamical Soft-Wall Holographic QCD Model", arXiv:1301.0385 [hep-th].

[94] Yi Yang, Pei-Hung Yuan, "A Refined Holographic QCD Model and QCD Phase Structure", arXiv:1406.1865 [hep-th].

[95] Yi Yang, Pei-Hung Yuan, "Confinement-Deconfinment Phase Transition for Heavy Quarks", arXiv:1506.05930 [hep-th].
[96] Meng-Wei Li, Yi Yang, Pei-Hung Yuan, "Approaching Confinement Structure for Light Quarks in a Holographic Soft Wall QCD Model", arXiv:1703.09184 [hep-th].

[97] Yi Yang, Pei-Hung Yuan, "Universal Behaviors of Speed of Sound from Holography", arXiv:1705.07587 [hep-th].

[98] Meng-Wei Li, Yi Yang, Pei-Hung Yuan, "Imprints of Early Universe on Gravitational Waves from First-Order Phase Transition in QCD", arXiv:1812.09676 [hep-th].

[99] Oliver DeWolfe, Steven S. Gubser, Christopher Rosen, "A holographic critical point", arXiv:1012.1864 [hep-th].

[100] Oliver DeWolfe, Steven S. Gubser, Christopher Rosen, "Dynamic critical phenomena at a holographic critical point", arXiv:1108.2029 [hep-th].

[101] R. G. Cai, S. He and D. Li, "A hQCD model and its phase diagram in Einstein-Maxwell-Dilaton system", JHEP 1203, 033 (2012) [arXiv:1201.0820 [hep-th]].

[102] Z. Fodor, S.D. Katz, "Lattice determination of the critical point of QCD at finite T and µ", arXiv:hep-lat/0106002.

[103] Yoshitaka Hatta, Takashi Ikeda, "Universality, the QCD critical/tricritical point and the quark number susceptibility", arXiv:hep-ph/0210284.

[104] M. Ferreira, P. Costa and C. Providencia, "Multiple critical end points in magnetized three flavor quark matter", arXiv:1712.08378 [hep-ph].

[105] Xun Chen, Danning Li, Defu Hou, Mei Huang, "Quarkyonic phase from quenched dynamical holographic QCD model", arXiv:1908.02000 [hep-ph].