Abstract

We address here the treatment of metonymic expressions from a knowledge representation perspective, that is, in the context of a text understanding system which aims to build a conceptual representation from texts according to a domain model expressed in a knowledge representation formalism. We explain how we use the domain model to handle metonymy dynamically, and more generally, to underlie semantic composition, using the knowledge descriptions attached to each concept of our ontology as a kind of concept-level, multiple-role qualia structure. We rely for this on a heuristic path search algorithm that exploits the graphic aspects of the conceptual graphs formalism. The methods described have been implemented and applied on French texts in the medical domain.

1 Introduction

Under the compositional assumption, semantic analysis relies on the combination of the meaning representations of parts to build the meaning representations of a whole. However, this composition often needs to call on implicit knowledge which helps to link the two meaning representations. This is the case, for instance, in metonymic expressions, where a word is used to express a notion closely related to its central meaning. A well-known stream of work addressing this phenomenon is the Generative Lexicon theory (Pustejovsky, 1991). At the heart of this theory is a lexical semantic representation called “qualia structure”. Metonymies are considered to correspond to changes in the semantic types of the words involved, and the qualia structure provides the basis for performing type coercion in a generative way.

We address here the treatment of metonymic expressions from a knowledge representation perspective, in the context of the MENELAS medical text understanding system (Zweigenbaum et al., 1993). One of the goals of the overall system is to assign standardised, medical nomenclature codes to the input texts (patient discharge summaries). Semantic analysis starts from a syntactic representation of each sentence and produces a conceptual representation. It is then used by several language-independent, knowledge-based components to perform inferences (pragmatic enrichment) and then code assignment (Delamarre et al., 1995). Therefore, the conceptual representation output by the semantic analyser must be normalised: it must conform to a knowledge representation canon in which the target nomenclature codes can be mapped. The specification of this canon relies on the description of a rich model of the domain in a knowledge representation formalism, here Conceptual Graphs (CG) (Sowa, 1984).

We focus in this paper on the part of the semantic analyser that deals with semantic composition. The conceptual representation built must be abstracted from initial linguistic variation, metonymy being a typical problem to be addressed. We explain how we use the domain model to handle metonymy, and more generally, to underlie semantic composition, using the knowledge descriptions attached to each concept of our ontology as a kind of concept-level, multiple-role qualia structure. The methods described have been implemented and applied on French texts.

We first recall the problem addressed (section 2). Then, the proposed method is described (section 3) and illustrated on an example. We give some information on the implementation and the...
results of the analyser (section 3), and discuss the relative merits of the method (section 2).

2 Metonymy and type coercion

A classical example of metonymy (Pustejovsky, 1991, p. 428ff) is

(1) John began a novel.

where predicate ‘began’ expects an event as its second argument, so that some way must be found to relate the object ‘novel’ to an event such as ‘to read a novel’ or ‘to write a novel’. In our domain (coronary diseases), one often finds expressions such as

(2) une angioplastie du segment II (an angioplasty of segment II)
(3) une angioplastie d’une artère coronaire (an angioplasty of a coronary artery)
(4) l’angioplastie de Monsieur X (the angioplasty of Mr X)
(5) une angioplastie de la sténose (an angioplasty of the stenosis)

where ‘angioplasty’ is an action performed on a segment of an artery to enlarge its diameter, while ‘stenosis’ is the state of an artery which has a reduced diameter. These four phrases involve the object (or “theme”) of action ‘angioplasty’, i.e., what the angioplasty operates upon. If one considers that this theme must be a physical object, then examples (2)–(4) conform to the selectional restrictions of ‘angioplasty’, while (5) violates them. The mechanism of type coercion (Pustejovsky, 1991) consists in converting a word type into another so that semantic composition can work properly. (5) is then handled as a metonymy, where the stenosis and the stenosed object enter a state/thing alternation: ‘stenosis’ is turned into an ‘object’. However, it appears that this phenomenon is dependent on the underlying types (or “sorts”) under consideration. For instance in our ontology, ‘segment’, ‘artery’, ‘stenosis’ and ‘human’ have four different types, and are not comparable by the IS-A relation, e.g. nothing can be both a segment and an artery. This is a voluntary, methodological choice (Bouaud et al., 1995), motivated by the fact that these objects give rise to different inferences and must not be confused by the reasoning component. Additionally, in the target normalised conceptual representation, what constitutes the specific theme (in our conceptual model, the purported obj) of action ‘angioplasty’ must be precisely defined. In the context of our application, ‘angioplasty’ acts on an artery segment, a physical object corresponding to a part of an artery, which happens not to be comparable to any of the four preceding themes of ‘angioplasty’.

Therefore, all four examples (2)–(5) must be considered as metonymies.

To handle metonymy, Fass (1988) proposes a method based on a list of alternations implemented as specific metonymy rules: Part_for_Whole, Container_for_Contents, etc. Sowa (1992) considers metonymies around the term “Prix Goncourt”, originally introduced by Kayser (1988): this term undergoes different meaning shifts in each of seven example sentences, ranging from the author who won the prize to the amount of money received. Sowa discusses how background knowledge could help to process these metonymies, based on a knowledge description of what “Prix Goncourt” involves.

In our system, the target conceptual representation is defined by a domain model expressed with CGs. This same model constitutes the resource which enables the analyser to handle metonymies. We explain below how results similar to Pustejovsky’s type coercion may be obtained with a method based on this domain model instead of a qualia structure.

3 Method

3.1 Rationale

The input to the semantic analyser is the syntactic representation of a sentence produced by a previous large coverage syntactic analyser (Berard-Dugourd et al., 1989). This representation connects words, or predicates, with grammatical relations such as subject, object, oblique object, modifier, etc. The output of the semantic analyser is a conceptual graph on which pragmatic inferences are performed to enrich the representation.

In the semantic lexicon, each word points to one or more conceptual representations. The grammatical link between two words in a sentence expresses a conceptual link between their two associated conceptual counterparts. The task of the semantic analyser is to identify this conceptual link. Rather than including the knowledge needed for this task in the semantic lexicon, or in a specific rule base, the program will examine the domain

\footnote{Notice, though, that these types are strongly linked (by relations other than IS-A) through the knowledge base models. The semantic analyser precisely recovers these links thanks to the mechanism presented in this paper.}
knowledge to resolve the link. The method relies on a heuristic path search algorithm that exploits the graphic aspects of the conceptual graphs formalism.

3.2 Domain knowledge

The main domain knowledge elements consist of the domain ontology (Fig. 1) which is a subsumption hierarchy of concept types (henceforth simply ‘types’) and of relation types, and of a set of reference models attached to the main types.

The reference model of a type represents knowledge about this type as a conceptual graph (Fig. [2]). Basically, a conceptual graph is a bipartite graph with concept nodes (or concepts) labeled with a type plus an optional referent, and relation nodes labeled with relation types (Chein and Mugnier, 1992). A model of a given type has an identified head concept with the same type, and the network of its related concepts represents its associated knowledge. Since types are organised in an IS-A hierarchy, this knowledge is also inherited.

Model Angioplasty(*x) is

\[
\text{Angioplasty: *x} \rightarrow \text{Patient}\rightarrow \text{Medical Subfunction} \rightarrow \text{Medical Function} \rightarrow \text{Medical Concept} \rightarrow \text{Medical Domain} \rightarrow \text{Human Concept} \rightarrow \text{Human Role} \rightarrow \text{Person} \rightarrow \text{Person Concept} \rightarrow \text{Person Domain} \rightarrow \text{Type}\rightarrow \text{Type Concept} \rightarrow \text{Type Domain}.
\]

Figure 2: An extract of reference model for type Angioplasty.

3.3 Semantic lexicon

The semantic analyser relies on a two-tier semantic lexicon: one for predicates, the other for grammatical relations. Predicates map to conceptual graphs; most of them are reduced to one concept, since most of the words in the lexicon are technical terms for which a type exists. Figure 3 reports some lexical entries.

It is difficult to map grammatical relations to static, predefined conceptual representations, since their meaning in the domain depends on their context of use, and mostly on the predicates they link. Besides, one cannot think of envisioning all the possible uses of such a relation, partly because of the use of metonymy. The conceptual representation of an actual grammatical link will therefore be computed dynamically by the semantic analyser using its context: the linked predicates and domain knowledge. However, every grammatical relation may have conceptual preferences for types or for conceptual relations. These preferences are associated with the grammatical relation. Our grammatical relations include oblique complements, so that prepositions in our semantic lexicon are expressed under this second paradigm (Fig. 3).

Figure 3: Some semantic lexicon entries for predicates and a grammatical relation.

3.4 Algorithm

Given an input triple predicate, grammatical relation, predicate \(P_1; Gr; P_2\), the semantic analyser first replaces the two predicates with their semantic entries — two conceptual graphs. It then endeavours to link them, that is, to find a concept-level relation between their two head concepts \(C_1\) and \(C_2\) that, first, is compatible with the semantic preferences of grammatical relation \(Gr\), and, second, conforms to the representational canon made of the reference models.

3.4.1 Design principle.

The basic idea is to project the two head concepts onto the domain knowledge and find a plausible concept-level relation between the two. We implement this by heuristic graph traversal through the reference models and the type hierarchy, looking for a chain made of concepts and conceptual relations (i.e. a linear conceptual graph), which could link concepts of the same types as \(C_1\) and \(C_2\) and at the same time would satisfy the conceptual preferences of \(Gr\). Semantic analysis then consists in solving recursively every grammatical link starting from the sentence head predicate and then joining the obtained conceptual chains to build the conceptual representation of the whole sentence. We focus here only on the link resolution algorithm.
3.4.2 Chain production methods.

We consider that each predicate P_i is associated with the head concept C_i of a model M_i. Let T_i be the type of C_i. We also assume a partial order on types. We focus here only on the strategy for producing the set of all possible chains between C_1 and C_2. We can use three methods of increasing complexity to find chains to link C_1 and C_2:

1. **Concept fusion:** the two concepts may be redundant.

 If $T_1 \leq T_2$ or $T_1 > T_2$, then C_1 and C_2 could be merged, and an empty chain is returned.

2. **Concept inclusion:** a concept may be “included” in the other’s model.

 (a) For every concept C' of type T' in M_1 such that $T' \geq T_2$, every path between C_1 and C' in M_1 is a returned chain.

 (b) For every concept C' of type T' in M_2 such that $T' \geq T_1$, every path in M_2 between C' and C_2 is a returned chain.

3. **Model join:** two arbitrary concepts in the two models could be joined.

 For every pair of concepts (C_1', C_2') where C_1' of type T_1' is in M_1, and such that $T_1' \leq T_2'$ or $T_1' > T_2'$, all the paths $Paths_1$ between C_1 and C_1' in M_1 and $Paths_2$ between C_2' and C_2 in M_2 are produced. Then, for every pair (p_1, p_2) in $Paths_1 \times Paths_2$, the chain made of the two paths where $last(p_1)$ is joined to $first(p_2)$ is returned.

At this point, we are provided with all chains extracted from the pair of models (M_1, M_2).

3.4.3 Model identification.

The models that associate knowledge to a given predicate P can be ranked according to their level of generality. The most specific model is the predicate definition in the semantic lexicon. The next one is the reference model associated with the type T of the head concept of the definition. Then, the following models are the reference models inherited along the ontology through supertypes of T.

As the type hierarchy is, in our system, a tree [Bonard et al., 1995], the models for a predicate are strictly ordered. Considering two grammatically linked predicates, the product of their models constitutes as many model pairs that can be potentially used to look for possible chains. Such pairs are structured by a partial order based on the generality rank of their members.

3.4.4 Heuristic chain selection.

At this stage, we are provided with all the possible chains between P_1 and P_2 extracted from their models. The remaining problem is to choose the most appropriate chain to substitute for Gr. After some experimentation, we chose the following scheme. The best chain is selected according to five heuristic criteria: (1) satisfiability of Gr preferences; (2) most specific model pair, i.e., the use of most specific knowledge associated with words is preferred; (3) simplest chain production method (see 3.4.2); (4) most specific or highest priority of Gr preferences; (5) shorter chain length. When multiple chains remain in competition, one is selected randomly.

To reduce search, the link resolution strategy does not consider all possible chains, and implements the first two criteria directly in the chain production step. Chains that violate Gr preferences are discarded, and model pairs are explored starting from the most specific pair.

3.5 An example

Let us illustrate the resolution on example 2 (an angioplasty of segment II). The input triple is (angioplasty,ifice,segment,II). The corresponding types, Angioplasty and Segment,II, are not compatible and the “fusion” method fails. The “inclusion” method also fails since no model for angioplasty includes a concept compatible with Segment,II, and no model for segment,II includes a concept compatible with Angioplasty. A

As noted, the models are ranked according to their level of generality. The most specific model is the definition in the semantic lexicon. The next one is the reference model associated with the type T of the head concept of the definition. Then, the following models are the reference models inherited along the ontology through supertypes of T. The type hierarchy is such that each concept can be associated with a model, and these models can be ranked according to their level of generality.

In the context of the example, we consider an angioplasty of segment II. The input triple is (angioplasty,ifice,segment,II). The corresponding types, Angioplasty and Segment,II, are not compatible and the “fusion” method fails. The “inclusion” method also fails since no model for angioplasty includes a concept compatible with Segment,II, and no model for segment,II includes a concept compatible with Angioplasty.
However, with the “join” method, the algorithm identifies 6063 possible chains that satisfy the preferences attached to preposition de (Fig. 1). The selected chain uses the reference model of angioplasty (Fig. 2) and the definition graph for segment II (Fig. 3) which are connected on concept Artery Segment. The resulting conceptual representation joins the two corresponding paths:

\[
\text{[Angioplasty]} \rightarrow \text{(purported_obj)} \rightarrow \text{[Artery Segment].}
\]

\[
\text{[Artery Segment]} \rightarrow \text{(zone of)} \rightarrow \text{[Spatial Object]} \rightarrow \text{(spatial role)} \rightarrow \text{[Segment II].}
\]

This representation reflects the fact that in the context of an ‘angioplasty’, ‘segment II’ is considered from the point of view of the physical artery segment the angioplasty is to act upon (instead of the spatial notion Segment II expresses).

4 Implementation and results

This analyser has been implemented on top of a conceptual graph processing package embedded in Common Lisp. In the current state, the ontology contains about 1,800 types and 300 relation types; over 500 types have their own reference model; the lexicon defines over 1,000 predicates and about 150 grammatical relations and prepositions. The analyser correctly handles typical expressions found in our texts, including examples (2)–(5) (see table 1). The complete processing chain has been tested on a set of 37 discharge summaries (393 sentences, 5,715 words) (Zweigenbaum et al., 1995). This corpus included development texts, so the results are somewhat optimistic; on the other hand, the system is in an incomplete state of development. The test consisted in code assignment and answering a fixed questionnaire, the gold standard being given by health care professionals. Overall recall and precision were measured at 48 % and 63 % on the coding task, and 66 % and 77 % on the questionnaire task.

No evaluation has been performed on more basic components of the system; we can however provide statistics drawn from the global test for the semantic analyser. For 274 sentences received, the link resolution procedure was called on 8,749 grammatical links and explored 247,877 chains, with an average of 28 chains per call and 904 per sentence. The number of paths found depends heavily on the richness of the models used, which varies with the types involved. For instance, the model for type angioplasty (involved in table 1) is central in the domain. It is the most complex in the knowledge base and contains 54 concepts and 78 relations, which accounts for the greater number of paths found in these examples.

However, inadequate expansions are sometimes made due to lack of models, or to their complexity, which makes the heuristic principles not selective enough. Such limitations also stem from a lack of “actual” semantic knowledge. The semantic analyser goes directly from grammatical relations to conceptual relations without any intermediate semantic representation. Useful information, such as the argumental or thematic structure of predicates (e.g., Mel’čuk et al. (1995), Pugeault et al. (1994)), could probably overcome some of its shortcomings.

5 Discussion

One could compare this approach to a concept-based, multi-role qualia structure. The semantic definition of a word is here the reference model of its head concept type; each relation path starting from the head concept of this reference model is similar to a qualia role, in that it describes one of the semantic facets or possible uses of the word. In the context of a predicate, one of the concepts in the reference model is selected as the incoming point of a link from the predicate’s meaning representation. The concept-oriented domain-model approach advocated here hypothesizes that the behaviour of words is driven by their conceptual roles in the domain. This has the advantage of factoring knowledge at the conceptual level, rather than having to distribute it at the level of words. This knowledge can then be shared by several words. Sharing even occurs across languages (e.g. Dutch (Spyns and Willems, 1993)).

Moreover, the type hierarchy allows concepts, hence words, to inherit reference models from more abstract concepts, thus enabling more sharing and modularity. The distinction between local information and information inherited through the hierarchy is furthermore exploited when ranking different chains between two concept types.

Another difference resides in the way flexibility is obtained. In Pustejovsky’s coercion mechanism (Pustejovsky, 1991), the argument’s semantic type changes for a semantic type found in one of its qualia. In a variant approach (Mineur and Buitevanger, 1995), a word has no a priori semantic type; it is selected at composition time among the types found in the qualia. In our approach, the head concept type associated with an argument does not change. The chain found between this concept and the predicate’s head concept only brings...
forward intermediate concepts and relations which are actualised in the presence of the predicate, and lead to a particular representation of their meaning. As a side-effect, this approach is able to handle sentences like \(6\) \(7\).

(6) *John bought a long novel* (Godard and Jayez, 1993)

(7) *an angioplasty of a severe stenosis*

Since the modifier (long, severe) and the action (verb ‘bought’, noun ‘angioplasty’) require incompatible types of the same noun (novel: event vs object, stenosis: state vs object), type changing via coercion cannot work on such sentences. This problem does not occur in our approach.

Type coercion assumes that the predicate drives semantic composition, and that the semantic representation of the argument must adapt to it. In our method, both predicate and argument can make a step towards finding their semantic link. The resulting conceptual chain, as a whole, represents both the specific facet of the argument which is involved in the sentence and the conceptual role it plays in the predicate.

The preferences that grammatical relations assign to conceptual relations drive path selection, taking into account the specific syntactic context in which a semantic composition is to occur. This is crucial to let, e.g., prepositions, influence the choice of the conceptual link and the resolution of the metonymy.

6 Conclusion

The overall goal of the MENELAS text understanding system was to build a normalised conceptual representation of the input text. The aim of semantic analysis, in this context, is to build a representation which conforms to a domain model. We therefore experimented how this domain model could help semantic analysis to go from the flexibility of natural language to a constrained conceptual representation, a typical problem encountered being metonymy. The approach presented here shows how this can be performed. It has been fully implemented, and used with a reasonable size knowledge base as a part of the MENELAS text understanding system.

Metonymy processing is based on the domain model. Provided a new domain and task, with the corresponding domain model, this enables the generic method to adapt directly to this new domain and give results that are specific to it. Building such a domain model is generally feasible in sufficiently limited domains, typically, technical domains. Much of the strength of the method then hinges on the quality of the domain model: the concept type hierarchy and the attached reference models must be built in a principled way (Bouaud et al., 1995).

References

[Bérard-Dugourd et al.1989] A. Bérard-Dugourd, J. Fargues, M.-C. Landau, and J.-P. Rogala. 1989. Un système d’analyse de texte et de question/réponse basé sur les graphes conceptuels. In P. Degoulet, J.-C. Stéphan, A. Venot, and P.-J. Yvon, editors, *Informatique et Gestion des Unités de Soins, Informatique et Santé*, chapter 5, pages 223–233. Springer-Verlag, Paris.

[Bouaud et al.1995] Jacques Bouaud, Bruno Bachimont, Jean Charlet, and Pierre Zweigenbaum. 1995. Methodological principles for structuring an “ontology”. In *IJCAI’95 Workshop on “Basic Ontological Issues in Knowledge Sharing”*, August.

[Chein and Mugnier1992] M. Chein and M.-L. Mugnier. 1992. Conceptual graphs: fundamental notions. *Revue d’Intelligence Artificielle*, 6(4):365–406.

[Delamarre et al.1995] Denis Delamarre, Anita Burgum, Louis-Paul Seka, and Pierre Le Beux. 1995. Automated coding system of patient discharge summaries using conceptual graphs.
Methods of Information in Medicine, 34:345–351.

[Fass1988] Dan Fass. 1988. Metonymy and metaphor: What's the difference? In Proceedings of the 12th COLING, pages 177–181, Budapest, Hungary.

[Godard and Jayez1993] Danielle Godard and Jacques Jayez. 1993. Towards a proper treatment of coercion phenomena. In Proceedings of the 6th EACL, pages 168–177, Utrecht, The Netherlands.

[Kayser1988] Daniel Kayser. 1988. What kind of thing is a concept? Computational Intelligence, 4(2):158–165.

[Mel’čuk et al.1995] Igor A. Mel’čuk, André Clas, and Alain Polguère. 1995. Introduction à la lexicologie explicative et combinatoire. Duculot, Louvain-la-Neuve.

[Mineur and Buitelaar1995] Anne-Marie Mineur and Paul Buitelaar. 1995. A compositional treatment of polyseous arguments in categorial grammar. CLAUS Technical Report 49, University of the Saarland. Also available by ftp on xxx.lanl.gov as cmp-lg/papers/9508/9508002.

[Pugeault et al.1994] F. Pugeault, P. Saint-Dizier, and M.G. Monteil. 1994. Knowledge extraction from texts: a method for extracting predicate-argument structures from texts. In proc. Coling 94, Kyoto.

[Pustejovsky1991] James Pustejovsky. 1991. Towards a generative lexicon. Computational Linguistic, 17(3):409–441.

[Sowa1984] John F. Sowa. 1984. Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley, London.

[Sowa1992] John F. Sowa. 1992. Logical structures in the lexicon. In James Pustejovsky and Sabine Bergler, editors, Lexical Semantics and Knowledge Representation, Lecture Notes in Artificial Intelligence, pages 39–60. Springer-Verlag, Paris.

[Spyns and Willems1995] Peter Spyns and Jos L. Willems. 1995. Dutch medical language processing: Discussion of a prototype. In Robert A. Greenes, Hans E. Peterson, and Denis J. Protti, editors, Proc MEDINFO 95, pages 37–40, Vancouver.

[Zweigenbaum et al.1995] Pierre Zweigenbaum, Bruno Bachimont, Jacques Bouaud, Jean Charlet, and Jean-François Boisvieux. 1995. A multi-lingual architecture for building a normalised conceptual representation from medical language. In Reed M. Gardner, editor, Proc 17th Annu Symp Computer Applications in Medical Care, New Orleans, November.