Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
COVID-19 impacts on residential occupancy schedules and activities in U.S. Homes in 2020 using ATUS

Debrudra Mitra, Yiyi Chu, Kristen Cetin *
Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States

HIGHLIGHTS
• Time spent at home increased 1.2–1.9 h per day during the pandemic.
• 1-member households spent less time at home.
• 2+ member households spent more time at home.
• Office and kitchen space usage increased during the pandemic.
• Changes to occupancy have strong implications on home energy use.

ARTICLE INFO
Keywords:
Occupancy schedules
COVID-19
Residential building
Space utilization
Household income

ABSTRACT
Many aspects of the daily lives of those living in the United States were substantially impacted by the COVID-19 pandemic in the year 2020. A broad diversity of measures was implemented to curb the spread of the virus, many of which included adjustments to where and how people worked, went to school, and otherwise conducted their daily lives compared to pre-pandemic times. This has impacted how residential buildings are used, how much time people spend in their homes, and as a result, how much energy these buildings consume. The main objective of this study is to analyze, at a national scale, the differences in the occupancy schedules and activities conducted in homes in the U.S., as compared to pre-pandemic. 15 years of American Time Use Survey and Current Population Survey data, from 2006 to 2020, was used in this study to analyze the occupancy schedules for both pandemic (2020) and pre-pandemic (2006–2019) times. These impacts were also analyzed with respect to variables including, weekday/weekend, month of the year, age of the occupants, household income, and household size. The impact of the pandemic on occupant schedules were most substantial in the initial months, whereas as the months progressed, these occupancy profiles slowly changed. Across 2020, people spent, on average, 8 % more time (1.9 h) in their home on weekdays, and 3–6 % (1.2 h) on weekend days. The percentage of time spent for different activities and locations within homes were also studied. For 1-member households, their time spent at home decreased whereas for 2-, 3-, and 4- member households, they spent more time at home. Overall, people spent around 45% more time doing office- and work-related activities at home compared to pre-pandemic, which is likely due to increased remote working and schooling. This research helps to improve the understanding of the occupancy presence and absence profiles in U.S. residential buildings due to the pandemic and provides new insights as to modified profiles for researchers, building designers, and policy makers.

1. Introduction
The World Health Organization (WHO) declared COVID-19 to be a global pandemic in March 2020 as the world population faced a new crisis in the form of the spread of the coronavirus [1]. The pandemic has had substantial impacts on peoples’ lives. More than 532 million cases have been reported, with more than 6.3 million deaths worldwide (as of June 2022) [2]. Along with the detrimental effects on human health, the global economy also has faced a 7 % loss due to pandemic, as reported in April 2022 [3,4]. This impact on the world economy is expected to be seen for many years; for lower-wealth areas, GDP (gross domestic types) may never fully recover to pre-pandemic levels [5,6]. A significant
amount of the workforce lost jobs globally in 2020 compared to what would have been expected without the occurrence of the pandemic [7]. The United Nations also reported that the pandemic resulted in significant reductions in development efforts intended to reduce poverty [8]. The service sector, specifically tourism, was also heavily affected by the pandemic [9,10]. In summary, there were multidimensional detrimental impacts of the pandemic on all the components of people’s daily life. To curb the spread of the virus, different countries took various measures at varying times. Common approaches included lockdowns and stay-home orders which impacted the way people lived [11–13]. Most K-12 schools and many colleges and universities were shifted to remote learning methods where students learned at home, remotely via computer [14–16]. In addition, many people also switched to remote work, where they worked from home instead of in an office, representing an estimated 35% of the workforce [6], which was significantly higher than pre-pandemic [17]. A study analyzing phone data in 2020 found that people tended to spend more time in their homes during periods when there were restrictions on travel and gathering, and cancellations of most public events [18].

Although the pandemic forced people to temporarily adapt to a new way of living during these restriction periods, some of the changes in lifestyle have continued well after the measures have been lifted. For example, a global survey of the workforce that worked from home due to COVID [19] found that this shift in working patterns improved workers’ performance in many situations [20]. A survey from October 2020 showed that 54% of employees wanted to continue working from home even after the COVID pandemic whereas pre-pandemic only 20% of the employees surveyed worked remotely [21]. Respondents also preferred to have flexible work schedules, which were more commonly implemented during the work-from-home periods [22–26].

Given these changes, as expected, the use of residential buildings and their corresponding energy consumption behavior has also changed. As occupant behavior is one of the six key parameters which dictates building energy consumption, particularly in residential buildings, it is therefore important to study how COVID has impacted residential occupancy and occupant behaviors [27]. Several studies have discussed the importance and level of uncertainty in energy consumption in residential buildings due to occupant behavior [28–30]. One study found that residential electricity consumption can vary from 0 to 14 kWh/m² for buildings with similar characteristics in Beijing, China [31]. Plug load and appliance consumption was found to vary by a factor of 10 across homes when occupants have the control over this equipment [32]. Another study showed that the overall energy consumption in similar residential buildings can vary by 3 times due to interaction of occupants with the building systems [33]. Energy consumption patterns also vary significantly based on occupant behavior, particularly in residential buildings [34–38].

Specifically, during the pandemic, various studies have reported utility-level consumption impacts. Overall electricity consumption in Italy had decreased by 28% 1.5 months after the lockdown started [39]. As the number of COVID cases in China reached its peak during the month of March 2020, the maximum reduction in electricity demand was seen during this time [40]. In India, the electricity demand decreased in May 2020 as the number of COVID cases was rising [39]. In the United Kingdom, overall electricity demand decreased by 15% within weeks of the lockdown announcement [41]. Similar trends were also seen in the United States where overall electricity demand fell 19% during the first few weeks of the lockdown in April 2020 [42]. The major electric grids in U.S. experienced a reduction in consumption during the first few months of the pandemic, ranging from 3% to 8% for ERCOT (Electric Reliability Council of Texas), PJM (Pennsylvania, New Jersey and Maryland) and MISO (Midcontinent Independent System Operator) [42–44]. The likely reason for reduction in overall consumption is due to the decreased use of commercial and industrial buildings.

Different outcomes are seen when comparing the consumption for residential buildings across different countries. A study of 2,000 households in the United Kingdom showed that the electricity consumption increased by 17% during working hours in the initial stage of lockdown [42]. In Ireland, residential energy consumption increased by 11–20% [45]. In Nigeria, the projected share of electricity demand from residential buildings compared to the overall consumption increased from 43% to 49% during lockdown periods in 2020 [46]. In Melbourne, Australia, weather adjusted electricity consumption increased by 14% for residential buildings [47]. Similar trends were seen in the United States. A study in Austin, Texas showed 32% higher electricity use in residential buildings in March 2020 compared to last week of February [48]. This increased consumption in the residential sector can be explained by people spend more time in their homes, and therefore using more electricity for their various activities.

This increased use of energy-consuming appliances and devices was also observed. Internet usage increased due to the increased remote working, and escalated use of streaming and social media services [49–51], resulting in increased use. A recent survey showed that during pandemic, people preferred to cook more at home and eat out less, which also would result in more energy consumption [52]. Another study compared heating, ventilation, and air conditioning (HVAC) and non-HVAC consumption in residential building during pandemic and pre-pandemic times showed increased use of weather-normalized HVAC use, as well as increased non-HVAC use [53]. Both of these changes are likely due to changes in occupant behavior, and in occupancy in residential buildings. However, there is limited study of national-level characterization of occupant behavioral changes across U.S. residential buildings as compared to pre-pandemic. Many of the above-mentioned studies include smaller sample sizes and are not representative of the U.S. population as a whole. Studying occupancy patterns in residential buildings and how they differ during the pandemic is therefore needed, to better understand how residential households, overall, have adjusted their occupancy and in-home activities.

Such schedules are also important to building energy modeling applications. In current engineering practices, a majority of the building related energy modeling software use existing and predefined schedules based on the Reference Building and Prototype Building models [54,55], ASHRAE 90.1–1989 and the ASHRAE Advanced Energy Design Guide [56,57], and the Building American Housing Simulation Protocol [60–62]. These schedules were developed pre-pandemic, and some were also based on engineering judgement. However, as it was mentioned in IEA Annex 53, Annex 79 and ISO 18523, occupancy schedules play a significant role in evaluating the energy performance of buildings [27,58,59]. While it is recognized that occupancy schedules that result from data collected in 2020 may not be representative of long-term future occupancy post-pandemic, they provide insight into the relative impacts and variations across different segments of the population, as well as overall, based on the most recent available data. In addition, given that trends are more toward remote work in the foreseeable future, studying COVID-19 impacts on residential occupancy provides a preview of potential occupancy trends moving forward, or in the event of another similar type of event [19–26].

The main objective of this study is to evaluate, for the U.S. overall, the typical occupancy schedules of residential building in the United States during the pandemic and compare these results with pre-pandemic occupancy profiles across different timescales and population segments. The results of this analysis can help building designers and energy modelers to understand the pandemic-related changes in occupant behaviors and schedule patterns in the residential building sector, which might help them to implement modified control and demand-response strategies. This research consists of five sections. Following this introduction, the next section describes the dataset utilized in this research. The third section discusses overall methodology for this study, while the results and discussion are in the fourth section. The final section includes the conclusions and a discussion about limitations of this study and possible future work.
2. Dataset

To study the occupancy profiles of residential buildings in the United States, it is beneficial to use a dataset that is representative of the overall population. The American Time Use Survey (ATUS) and Current Population Survey (CPS) are two datasets collected on an annual basis, that are statistically representative of the U.S. population [60,61]. Both these surveys are administered and managed by the U. S. Bureau of Labor Statistics and the U.S. Census Bureau and published every year. CPS collects information related to employment, economic, and other characteristics of the U.S. population. Selected households from those who were participated for 8 months or more in the CPS, are selected for participation in the ATUS. Each participant’s data is then weighted using a weighting factor, for use in collectively representing the overall U.S. population. The objective of the ATUS is to collect data on how the U.S. population spends their time, in particular what activities they perform and where they perform them. This survey also is linked with additional data on financial, economic, and social characteristics of the participants.

In the ATUS, participants self-report their location and activity information for a single day at 5-minute intervals, over a 24-hour period, from 4:00 am to 3:59 am the following day. The activities reported are classified into 470 types across 3 major tiers. Only primary activities are stored; secondary activities, i.e., the activities occurred concurrently with the primary activities, are not reported. This survey was first published in the year 2003 and has continued to be publish annually. However, since the method used to calculate the weighting factor was changed in 2006, only data from 2006 to 2020 (15 years) has been used in this research. It should be noted that the ATUS data collection was, like many efforts, impacted by the pandemic. No data was collected during the start of the lockdown, from mid-March to mid-May 2020. The unavailability of data for these 2 months makes it difficult to evaluate how occupancy profiles were impacted in the initial stage of the pandemic using this dataset. However, the ATUS data, after mid-May 2020, provides an important source of household activity and occupancy schedules for use in exploring the impact of the pandemic on the daily lives of the U.S. population.

3. Methodology

From each year of ATUS data, occupant activity and location information and their characteristics including age, number of household members, day of the week, and month of the year of the collected data were extracted. Similarly, from the CPS, household income information was extracted. Both the datasets have an occupant identifier for use in linking the surveys. After extracting and combining the data from these two datasets, location and activities were mapped to the presence/absence of the participant in a residential building. After the mapping, the presence and absence of occupants from home (residential spaces) was divided into 5-minute timesteps, and translated to a 0 or 1, where 0 represents absence and 1 implies presence within a residential building. It was assumed that the reported location and activity remained constant throughout the 5-minute time intervals between reports. Both the location and activity information were also converted to a schedule from 12:00 am to 11:59 pm in order to be compatible with a typical day, and with the required format of schedules used in energy modeling tools.

As the objective of the study is to analyze how occupancy schedules were impacted by various variables including month of the year, day of the week, occupant age, household income, and number of household members, the processed and converted mapped occupancy data were subdivided into multiple groups. To do so, first, averaged occupancy profiles were subdivided into weekdays and weekends. These occupancy data were also divided by month across 2018, 2019 and 2020 for comparison. Occupancy information was also divided based on occupant age, including 7 age groups: under 25, 25 to 34, 35 to 44, 45 to 54, 55 to 64, 65 to 74 and over 75, which is consistent with the Residential Energy Consumption Survey (RECS) data [62]. This is driven by findings from other studies that suggest that age groups were likely impacted differently by the pandemic [63-65]. As occupancy profiles also vary with the number of household members, as shown in previous studies [62,64], households were also studied based on the number of members.

Household income was also evaluated, as recent literature has suggested differential impacts from the pandemic on households across different income levels [63,66]. This was evaluated by dividing the data into three income groups, low income (LIH), middle income (MIH) and high-income households (HIH). Since the number of household members is important for this calculation, in addition to household income, this is also reported in Table 1 [63,66]. The thresholds for LIH and HIHs were selected based on recommendations given by U.S. Office of the Assistant Secretary for Planning and Evaluation (ASPE) and previous studies [63,67,68]. MIHs included all households with incomes in between these two thresholds.

After the calculating average profiles for different household types, more detailed analysis was done on the monthly variation in occupant schedules. To identify the specific type of profiles, cluster analysis was performed across all months on weekdays and weekends. To group the time series profiles, a Dynamic Time Wrapping (DTW) cluster algorithm was used, as the advantage of DTW is that it can group the profiles based on patterns even if they are not time synchronized [69,70]. Several studies have used DTW algorithm to predict occupant behavior and their influence on building consumption [71-73]. To implement the algorithm, the `dtwclust` package was used in R where three clusters were used, recognizing that prior studies have identified 3 major occupancy patterns in ATUS data [74]. Patterns were analyzed and are discussed across each of the clusters.

The location distribution of occupants within their home was also evaluated. To do so, all activities defined as being in a residential building were divided into 7 different groups, specifically those located in the bedroom, bathroom, living room, kitchen/dining room, office room, garage, and other areas (e.g. laundry, storeroom). All activities reported in the ATUS were then mapped to all the 7 indoor locations. As an example, sleeping activities were mapped to bedroom, whereas food preparation and kitchen cleaning activities were mapped to the kitchen or dining room. This mapping is done as ATUS data does not the specific location within their home. The percentage of time distribution was then calculated for occupants based on the time when occupant was present in their home. This analysis represents how people spent their time in residential space prior to and during the pandemic.

4. Results and discussion

4.1. Overall percentage presence in home

Percentage presence time (PPT) in residential spaces for people on both weekdays and weekends for the overall population as well as

Table 1	Threshold household incomes for LIH and HIH income households in 2020 [Note: Total gross incomes are considered here].			
Number of members	1-person	2-person	3-person	4-person
Low Income Household (LIH) Threshold	< $15,000	< $20,000	< $25,000	< $30,000
High Income Household (HIH) Threshold	> $75,000	> $100,000	> $125,000	> $150,000
different age groups is shown in Fig. 1. These percentage values are compared across the years from 2018 to 2020. The Y-axis represents percentage of the day people spent at home where 100 represents people staying at home for 24 h whereas 0 represents the absence of people from their home throughout this period. As shown in Fig. 1.a, on weekdays, PPT for all the age groups are notably higher in 2020 compared to the two previous years. For those under 25, the average PPT during the pandemic time is 80%, which is 12% higher than in 2018 and 2019. During the pandemic, as most of the school and colleges were switched to remote learning method, students spent most of their time in their home which likely resulted in the higher PPT value. Similarly, as majority of the workplaces switched to work from home, the difference in PPT of people 25 to 54 is around 10%. However, for older people, this value is lower, at 5% and 2% for those 65 to 74 and over 75, respectively. Overall, for all the population, average PPT value increased by around 8% on weekdays (approximately 1.9 h). A similar trend of higher PPT is also seen on weekends as shown in Fig. 1.b. However, unlike weekdays, the difference in the PPT during the pandemic compared to the previous 2 years were almost identical across all age groups, at approximately 3% to 6%. On average, people spent around 1.2 h more in their homes on a weekend day during the pandemic (2020).
4.2. Variation in occupancy on weekdays and weekends

Average profiles for weekdays and weekends prior to and during 2020 are shown in Fig. 2 where the y-axis represents the occupancy fraction, i.e., the fraction of people in a home with respect to total number of people in the studied group. The higher the value of the occupancy fraction (OF), the higher the probability of people being in a residential building. An OF 1.0 implies that all occupants are at home, whereas 0.0 OF represent no one at home. The x-axis represents the time of day, starting at midnight.

As shown in Fig. 2, for pre-pandemic periods, for both weekday and weekends the OF is high in the early morning, decreases slowly until around noon, then increased gradually to its maximum at night. This also indicates that people stay at home more on weekends compared to weekdays, as to be expected. The change in residential occupancy is substantial compared to the consistency of the prior years. From 2006 to 2019, the calculated occupancy profiles from ATUS data have remained almost identical, with a minimum OF of around 0.4 in weekdays. This increased to approximately 0.55 during the pandemic. Overall distribution of the average profiles is also compared and shown in Fig. 3. From Fig. 3, both the mean and variance of the OF remained almost constant for past 14 years, from 2006 to 2019. However, in 2020, mean of average OF increased significantly from 0.7 to 0.8 and the variance also reduced. This signifies that, during weekdays of pandemic, people spent more time at home and the variation throughout the day is smaller. Similar results can also be seen on weekends as the difference between the minimum OF was more than 0.1 (Fig. 2) along with the higher mean and lower variance (Fig. 3). This indicates that more people

Fig. 4. Average daily occupancy profile for months of (a) January, (b) February, (c) March (partial month), (d) May, (e) June, (f) July, (g)August, (h) September, (i) October, (j) November, (k) December, for 2018, 2019 and 2020 based on ATUS data.
stayed at home throughout the week during the pandemic. For both weekdays and weekends, the OF reached its peak at an earlier time in 2020, compared to previous years, which signifies that nearly all people were at home for a longer duration during this period.

4.3. Monthly variation

The variation in the OF across the months of 2020 in comparison to 2019 and 2018 is shown in Fig. 4. Due to the unavailability of data for April 2020 in the ATUS, the OF value for April is not shown in this Figure. As shown, for the first three months, from January to March, average OF values were similar across all three years, which is expected given the pandemic began in mid-March and given that prior analysis of ATUS data indicated high levels of consistency in derived occupancy data [64].

A significant difference is noted in the average OF profile in 2020 as compared to the previous years is noted in Fig. 4.d to 4.k, from May to December. A paired t-test was used across the years for each month during and before pandemic, resulting in p-values is less than 2*e-16. This suggests that the average occupancy profile for each month is significantly different during pandemic compared to pre-pandemic years. As shown, for all months before pandemic, the minimum average OF values was around 0.5. However, in the months after the pandemic began, i.e., in May 2020, the monthly average OF values was close to 0.8. The difference in the minimum OF was more than 0.25 for approximately 5 h. This suggests that people spent significant larger amounts of time at home. In May 2020, the OF value reached its second peak around 8:00 pm which is 2.5 h earlier than the previous years, which peaked at approximately 10:30 pm. This suggests that if people left their home, they came back home earlier compared to pre-pandemic.

A similar trend to May can be seen in June (Fig. 4.e). However, the minimum OF value decreased slightly to 0.7 compared the 0.8 observed in April. This suggests that more people began to go out more as time continued, although they continued to return earlier than pre-pandemic. The minimum OF values then gradually decreased from 0.7 to 0.6 between June and September 2020. In addition, during these months, the time in evening that the peak OF values gradually shifted to later. This implies that people slowly began to go out of their homes for longer periods, staying out later in the day. For the last three months of the year, however, this trend leveled off, with the average OF values remaining similar in terms of the OF value and the time of day when those OF values occurred. The minimum OF was close to 0.7, and the
evening peak occurred around 9:00 pm, as compared to minimum OFs of 0.6–0.7 and evening peaks at 11:00 pm pre-pandemic. In summary, the overall occupancy schedules in 2020 varied substantially from that of other years, however these differences between years varied depending on the month of the year, as the pandemic progressed.

4.4. Variation by household size

The occupancy schedule variation of households of different sizes (1-to 4-members) is shown in Fig. 5 for both weekdays and weekends, representing more than 90% of households in the U.S. [64]. Subfigures in the left column depicted weekday profiles, whereas weekends are on the right. The red dashed line indicates the average OF in 2020, whereas the solid lines represented the profiles for other years.

To compare the two samples, Wilcoxon Signed Rank Test, which is a non-parametric hypothesis test based on the location of population of data, was conducted for households with different numbers of members for both weekdays and weekends across the pandemic and pre-pandemic years (Table 2). To analyze the result, the smaller sum of positive and negative ranks was evaluated and compared with respect to the sample size. For a sample size of 48 and significance level of 0.005, the critical value (alpha) is 318. This is higher than the test statistics for all type of households (268 for 1-member household and 0 for others), indicating the difference in the profiles is statistically significant for all households.

Table 2

	1-member	2-member	3-member	4-member
Smaller sum of positive and negative ranks (Wilcoxon T)	268.00	0.00	0.00	0.00
Sample size (number of ranks)	48	48	48	48

Fig. 6. Variation in occupancy schedule for different age group before the pandemic (solid lines) and during the pandemic (dashed lines).
sizes due to the pandemic. This thus justifies the difference in occupancy pattern during 2020 compared to previous years. As shown in the Fig. 5, for both weekdays and weekends, the OF changed notably during the pandemic compared to the previous years. In addition, a higher deviation in minimum OF was seen on weekdays compared to weekends. For households of all sizes, the OF value increased throughout the day for both weekdays and weekends and the amount of increase varied with time of day and type of days. For these types of households, the difference increased from early morning and reached its maximum value during the daytime, between 9:00 am and 3:00 pm, then slowly decreased until midnight. As such, the occupancy profile was impacted most from 9:00 am to 3:00 pm, which would typically, pre-pandemic, be a working period outside of the home. On weekdays, the difference in occupancy profile compared to pre-pandemic was similar for 3- and 4-member households whereas it was slightly smaller for 2-member households. This may be because having a larger household increased the likelihood of the presence of children who require care at home. Specifically for 3- and 4-member households, people also left their home later in morning and returned home earlier in night on both weekdays and weekends.

However, the variation in occupancy profile for 1-member households was different compared to other household sizes. For 1-member households, the OF pattern was similar before and during the pandemic. The main difference was that the profiles were shifted slightly toward the right, suggesting that people left their home later in the morning and returned home later in the evening. On weekends, the first half of the day is very similar, whereas for the second half people stayed out of their home more compared to pre-pandemic. In summary, this analysis suggests that different type of households reacted differently to the pandemic and lockdown measures.

4.5. Variation by occupant age group

The ATUS was then divided into 7 age groups, and for each the average of the OF was evaluated in 2020 compared to prior years (Fig. 6), including both weekdays and weekends. Fig. 6.a shows a comparison of pre-2020 and 2020 average OF for age groups under 45; Fig. 6.b shows age groups 45–64, and Fig. 6.c shows those over 65. For all age groups, the average OF increased notably in 2020 across all days. Schedules for those under 25 were impacted significantly, as shown in Fig. 6.a. For this age group, people were at home more often during pandemic, likely because most schools and colleges were remote. A similar trend is seen for the other age groups. The maximum difference in average OF for people between ages 25 to 64 was around 0.25 for both weekdays and weekends whereas for those younger than 25 and older than 64, it was around 0.3. Also, for all age groups, on average people left their homes later and returned earlier compared to pre-pandemic.

4.6. Variation by household income

The average OF values comparison across years among LIH, MIH and HIHs for both weekday and weekend are shown in Fig. 7. In 2018 and 2019, irrespective of weekdays or weekends, the average OF for LIHs is higher than MIHs and HIHs. On weekends, people from LIHs spent around 21 h at home whereas this value was around 17.5 h on weekdays. However, for HIHs, these values are 19 h and 16 h, respectively, for weekends and weekdays. This suggests that those belonging to HIHs spent the least time at home, whereas those in LIH stayed at home the most compared to other income groups. However, this pattern changed significantly during 2020.

During weekdays of 2020, average OF for MIH and HIHs are similar, and they are higher than the OF of LIH for the majority of the day. People in HIHs, and MIHs spent around 20.8 h and 19 h at home in
residential building is also evaluated. A single family prototype resi
ture and similarly, for cooling, the setback setpoint is 5°C.

For LIH, they still needed to leave their home during the
pandemic. In addition, interestingly, they spent more time outside their
home in 2020 compared to previous years. On weekdays, however, the
average OF of LIH is slightly lower midday, from 6:00 am to 6:00 pm
compared to MIH and HIH. This may be because low-income households
may include those working in service positions on weekdays that
require in-person work without the option for remote work or less likely
to switch to remote working [75,76]. During weekends of 2020, the
average OF for all three income groups are similar without much vari-
ation between them.

The impact of the 2020 occupancy scenarios on the energy use of a
residential building is also evaluated. A single family prototype resi-
dential building is selected as a case study. Weather data for Lansing,
Michigan is used, which is a heating dominated climate and located in
ASHRAE Climate Zone 5A. Occupancy-based setback temperature
method is used for HVAC control, where when occupant(s) are present,
the system runs at the specified setpoint temperature. However, when
no occupants are present, the system runs using a 5°C setback, i.e.,
heating setback setpoint is 5°C less than the heating setpoint tempera-
ture and similarly, for cooling, the setback setpoint is 5°C higher than
the baseline setpoint temperature. From the average occupancy
schedule, when the occupancy fraction is below 50 %, the space
was assumed to be empty and for other scenarios, occupants are present in
the space. EnergyPlus was used to evaluate the building performance
and the impact on the HVAC energy consumption is shown in Fig. 8. As
shown, there is negligible variation in consumption for lower income
households. However, for MIH and HH, energy consumption increased
significantly during the pandemic. For MIH, overall HVAC consumption
increased by around 10 %. For HIH, the cooling energy consumption
increased by more than 50 %. Total HVAC consumption is also increased
by 15 % for HH along with total increase in electricity consumption is
around 10 %.

4.7. Indoor location variation

The indoor location and primary activity variations of people on both
weekdays and weekends were next studied and compared across years as
shown in Fig. 9, as well as Table 3. Indoor locations include bedroom
(BR), bathroom (BT), living room (LR), dining room/kitchen (DR), office/
study room (OR), other (OT), and garage (GR); corresponding
mapping between the primary activities and the indoor location is given
in Appendix A.

From Table 3, it can be seen that the usage of OR space in 2020
increased by around 45 % compared to year 2019. Total time spent in
DR space also increased slightly in 2020. However, it is important to
note that this percentage distribution is calculated based on the total
time people spent at home. Thus, as people spent more time at home in
2020 compared to previous years, the change in total time duration in
these spaces are even higher. As shown in Fig. 8, the overall distribution
of time spent varies in 2020 compared to previous years. On weekdays in
2020, the most significant increase can be seen in OR usage. Pre-2020,
on weekdays, OR usage remained consistent, at around 5 – 7 %
throughout the day (8 am to 8 pm). However, this value increased to
around 20 % in 2020 from 8 am to 5 pm and then reduced to around 7 %. As
a significant amount of people worked and went to school remotely,
this led to increase in the usage of at-home office spaces. The usage of
the dining room/kitchen space also increased slightly to 13 % during 12
to 1 pm in 2020, as compared to from 9 to 10 % in prior years. This may
due to people having lunch at home. The use of this space also
increased during dinner time to 26 % in 2020 from 20 % in the previous
years, likely due to similar reason. The impact of increased usage of OR
and DR space also resulted in reduced usage of the BR space on
weekdays.

The use pattern of indoor spaces also changed during weekends in
2020 (Fig. 8.b). In the morning pre-2020, the living room space was used
by around 30 % of people, whereas this reduced to 20 % during 2020.
Usage of the dining room/kitchen space also decreased in 2020. As in
previous years, the usage of this space remained consistently uniform
with two small spikes during the typical lunch and dinner periods.
However, in 2020, the dining room/kitchen space usage decreased in
the morning and again in between lunch and dinner time. At the same
time, it can be seen that for the office space, percentage distribution of
time on weekends is smaller in 2020 compared previous years. As these

	2020	2019	2018
Bed (BR)	58.7	60.6	60.8
Bath (BT)	3.0	3.7	3.5
Living (LR)	22.7	22.9	22.8
Dining/kitchen (DR)	7.4	6.9	6.9
Office (OR)	6.2	4.3	4.2
Other (OT)	1.7	1.5	1.6
Garage (GT)	0.2	0.2	0.2

Fig. 9. Average time spent in different locations within a home on weekdays for all people in (a) weekdays and (b) weekends for year (1) 2020, (2) 2019 and (3) 2018 (Note: percentages are based on those people reported to be at home, and does not include those outside of the home in the calculation.)

Table 3
Percentage time distribution, by room type, that people spent in their home.

Location	2020	2019	2018
BR (Bedroom)	58.7%	60.6%	60.8%
BT (Bathroom)	3.0%	3.7%	3.5%
LR (Living Room)	22.7%	22.9%	22.8%
DR (Dining/Kitchen)	7.4%	6.9%	6.9%
OR (Office)	6.2%	4.3%	4.2%
OT (Other)	1.7%	1.5%	1.6%
GT (Garage)	0.2%	0.2%	0.2%
Fig. 10. Average time spent in different locations within a home on weekdays in 2020 for people (a) under 25, (b) 25–34, (c) 35–44, (d) 45–54, (e) 55–64, (f) 65–74 and (g) over 75 (Note: percentages are based on those people reported to be at home, and does not include those outside of the home in the calculation).
percentage values are evaluated based on total time people spent at home, and during 2020 people spent more time in home compared to 2018 and 2019, total time duration spent in office space is higher during the pandemic. Detailed analysis of space usage for people of different age group is also evaluated for year 2020 and shown in Fig. 9 and Appendix B1 for weekdays and weekend respectively.

As shown in Fig. 10, starting from midnight to early morning, irrespective of the age group, people spent most of their time in the bedroom, sleeping. In the early morning, the percent of time spent in the bedroom increases, and other locations increase. For people under 25, the percentage of time spent in their home office is greater in the morning; in the afternoon and evening the living room utilization is greatest. This differs from pre-pandemic (Appendix B2 and B3), where the living room usage dominated throughout the day. This difference may be because of the prevalence of remote learning for schools and colleges, perhaps concentrated more in the mornings and early afternoon.

For those age 25 to 64, the time spent in the dining room is comparatively higher in the mornings, likely for breakfast, which then switched to the office space until early evening. The percent time spent in the living room area is low until around 4:00 pm, then increases, likely due to finishing work and transitioning to other activities. Compared to pre-pandemic activity schedules, the usage of living room remains consistent from morning to evening whereas the office space usage is significantly lower for all age groups. Also, unlike 2020, only one spike in dining room usage can be seen during dinner time.

For those 65 and older, the time spent in the living room was comparatively higher throughout the day, with the maximum amount for those over 75. Similarly, people in this age range spent significant more time in the dining room/kitchen area, making and eating food, preparing meals, and related activities, during the lunch and dinner time periods. The amount of time spent for meals in the dining/kitchen area is greater for those in older age groups. Compared to pre-pandemic, the major difference is seen in the increased usage of dining/kitchen area spaces.

Overall, in 2020, less variation in indoor space usage is seen on weekends, with the primary difference being less time spent in office/study spaces. Those in younger age groups spent more time in the office/study rooms, likely due to work and/or school related activities requiring work on weekends. Overall, the percentage of time spent in the living room, dining room, and bathroom were also higher on weekends compared to weekdays.

5. Conclusions

As the COVID-19 pandemic began in the middle of March 2020, it impacted peoples’ lives substantially. This included how people use their homes, the amount of time spent in their homes, and what activities occurred, where, when, and for how long. Previous research has shown that this, as a result, has impacts how buildings use energy and their energy use patterns. This study works towards quantifying what this impact on occupancy and activities occurring in homes has been using a combination of ATUS and CPS data for 2020, compared to the pre-pandemic years of 2006 to 2019. The impact of different time, occupant-related, and household characteristics on occupancy during the pandemic was evaluated in this study and compared pre-pandemic times. For time variables, the variation in weekday and weekend profiles and across months were evaluated. The impact by age group was also analyzed. For household characteristics, the differential impact across different household incomes and household sizes were assessed. Finally, the activities and indoor locations used throughout a typical day were compared on weekdays and weekends, to pre-pandemic times. The major findings of this study are as follows:

- During the pandemic in 2020, people spent more time at home. Across this period, the average occupancy fraction on weekends and weekdays was 0.15 higher, and 0.1 higher, respectively, throughout the majority of the day. Overall, people spent around 1.9 and 1.2 h more time at home on weekdays and weekends, respectively, which also varies with people’s age. On average, people also came back home earlier on both weekdays and weekends during pandemic period.
- Considering variations across the different months of 2020, in the beginning of the pandemic (May) a maximum occupancy fraction difference of 0.3 was observed compared to pre-pandemic. This decreased slowly throughout the remainder of the year, to 0.15 in September, then remained approximately 0.2 for the last three months of 2020.
- For 2-, 3- and 4- member households, the pandemic resulted in an increase from 17.8 (pre-pandemic) to 19.9 h of time spent at home on weekdays and 20 (pre-pandemic) to 21.1 h spent at homes on weekends. 3- and 4-member households were more impacted. However, 1-person households were comparatively less impacted, where time spent on weekends were similar, and on weekdays they spent on average 32 min less in their home. On weekdays, the time at which people most commonly left their home was also delayed slightly. On weekends, people spent more time outside their home in the evening.
- Across age groups, although different age groups follow different typical occupancy profiles, the overall impact was similar. On average, the occupancy dropped by 0.07–0.08 across a typical 24-hour day, with a maximum difference in occupancy fraction of 0.25 and 0.3 on weekdays and weekends respectively, typically occurring mid-day.
- Across different household incomes, the average occupancy profiles on weekends were similar in 2020. However, on weekdays, people in low-income households spent less time at home during the day compared to the other two income groups. Pre-pandemic, people in the higher income group spent the least time at home (~16 h) and people from low-income households spent the most (~20 h). This pattern reversed during the pandemic where people from low-income households spent around 18.6 h at home which is 0.5 h less than people from the high income group.
- Regarding activities and locations that people spent time in their homes, during the pandemic on weekdays, most time in the morning before noon was spent in office areas, primarily doing remote working and schooling; in the afternoon people continued to work and then transitioned more towards leisure activities, mostly corresponding to the living room area. On weekends, the living room and dining room/kitchen were the two most used spaces across all age groups, whereas younger age groups also used the office/study spaces during this time. Compared to pre-pandemic, the office and kitchen/dining space usage increased significantly whereas the living room and bedroom usage decreased.
There are several limitations associated with this study. The ATUS is based on self-reported data and has followed a consistent methodology for data collection since 2006. The ATUS data is not collected specifically to understand COVID-related impacts on occupant behavior. Therefore, direct correlation between COVID and people’s behavior cannot be confirmed. Further research is needed to confirm the specific reasons for changes in people’s behavior in 2020, including but not limited to the impacts of COVID. Also, as the ATUS is self-reported data, it can be subjected to human error. In addition, the survey contains activity data for individual household members for individual, representative days. The availability activity data for multiple days and for multiple household members is not currently available using existing nation-wide survey mechanisms, however this would be helpful for future work to better understand variation in occupancy schedules within households. In addition, some activities reported in the ATUS also include location information while others are assumed based on the nature of the activity.

In general, this study provides a detailed analysis of occupancy profiles and how people’s activities and occupancy have been impacted by the pandemic in 2020. The impact of different variables due to the pandemic provides detailed insights that can help in understanding how the pandemic may impact the use of residential buildings long-term, and how these profiles vary across different population segments. For future work, as the availability of ATUS data for 2021 becomes available, it would be highly insightful to conduct further analysis to link what has been found in the 2020 data to understand longer term trends in residential occupancy and how they have varied in the various stages of the pandemic.

CRediT authorship contribution statement

Debrudra Mitra: Conceptualization, Methodology, Data curation, Writing – original draft, Writing – review & editing.
Yiyi Chu: Conceptualization. Kristen Cetin: Conceptualization, Methodology, Writing – review & editing, Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0001288. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. The authors also acknowledge the support of the Alfred P. Sloan Foundation.

Appendix A. . Mapping between indoor locations and primary activities from ATUS.

TRCODE	Activity Description	TRCODE	Activity Description
BED	LIVING	10,501	Personal emergencies
10,101	Sleeping	10,599	Personal emergencies
10,102	Sleeplessness	20,101	Home cleaning
10,199	Sleeping *	20,103	Interior cleaning
10,401	Personal/Private activities	20,103	Sewing, repairing, & maintaining textiles
10,499	Personal activities, n.e.c.*	20,199	Housework, n.e.c.*
30,101	Physical care for hh children	20,301	Interior arrangement, decoration, & repairs
30,102	Reading to/with hh children	20,302	Building and repairing furniture
30,103	Playing with hh children, not sports	20,303	Heating and cooling
30,104	Arts and crafts with hh children	20,399	Interior maintenance, repair, & decoration, n.e.c.*
30,106	Talking with/listening to hh children	20,601	Care for animals and pets (not veterinary care)
30,199	Caring for & helping hh children, n.e.c.*	20,602	Walking / exercising / playing with animals
30,301	Providing medical care to hh children	20,699	Home security
30,302	Activities related to hh child’s health, n.e.c.*	20,905	Household management, n.e.c.*
30,401	Physical care for hh adults	20,999	Household activities, n.e.c.*
30,402	Looking after hh adult (as a primary activity)	29,999	Playing sports with hh children
30,403	Providing medical care to hh adult	30,105	Looking after hh children (as a primary activity)
30,499	Caring for household adults, n.e.c.*	30,109	Waiting for/with hh children
30,599	Helping household adults, n.e.c.*	30,111	Home schooling of hh children
40,101	Physical care for nonhh children	30,203	Waiting associated with hh children’s education
40,102	Reading to/with nonhh children	30,204	Waiting associated with hh children’s health
40,103	Playing with nonhh children, not sports	30,303	Waiting associated with caring for household adults
40,104	Arts and crafts with nonhh children	30,405	Waiting associated with helping hh adults
40,105	Talking with/listening to nonhh children	30,504	Waiting associated with helping nonhh adults
40,109	Caring for and helping nonhh children, n.e.c.*	40,109	Looking after nonhh children (as primary activity)
40,301	Providing medical care to nonhh children	40,111	Waiting for/with nonhh children
40,399	Activities related to nonhh child’s health, n.e.c.*	40,203	Home schooling of nonhh children
40,401	Physical care for nonhh adults	40,405	Waiting associated with caring for nonhh adults
40,402	Looking after nonhh adult (as a primary activity)	40,503	Waiting associated with helping nonhh adults
40,403	Providing medical care to nonhh adult	40,508	Waiting associated with working
40,499	Caring for nonhh adults, n.e.c.*	50,104	Socializing, relaxing, and leisure as part of job
40,508	Helping nonhh adults, n.e.c.*	50,201	Income-generating hobbies, crafts, and food
49,999	Caring for & helping nonhh members, n.e.c.*	50,301	Waiting associated with other income-generating activities
80,402	Using in-home health and care services	50,305	Waiting associated with medical services
80,499	Using medical services, n.e.c.*	80,403	Waiting associated w/personal care services
90,103	Using clothing repair and cleaning services	80,502	Using interior cleaning services
120,301	Relaxing, thinking	90,101	

(continued on next page)
TRCODE	Activity Description	TRCODE	Activity Description
120,302	Tobacco and drug use	90,104	Waiting associated with using household services
120,312	Reading for personal interest	90,199	Using household services, n.e.c.*
120,313	Writing for personal interest	90,201	Using home maint/repair/dec/or/constr svcs
130,109	Dancing	90,202	Waiting associated w/ home main/repair/dec/or constr
150,103	Reading	90,299	Using home maint/repair/dec/or constr services, n.e.c.*
150,105	Writing	90,301	Using pet services
150,203	Providing care	90,302	Waiting ass w pet services, n.e.c.*
10,201	Washing, dressing and grooming oneself	90,402	Waiting associated with using lawn & garden services
10,299	Grooming, n.e.c.*	90,502	Waiting associated with vehicle main. or repair svcs
10,301	Health-related self care	99,999	Using household services, n.e.c.*
10,399	Self care, n.e.c.*	100,101	Using police and fire services
80,501	Using personal care services	100,102	Using social services
80,599	Using personal care services, n.e.c.*	100,304	Waiting associated with using government services
100,299	Waiting associated with eating	100,299	Listening to the radio
90,102	Using meal preparation services	120,306	Listening to/music (not radio)
110,101	Eating and drinking	120,307	Playing games
110,199	Eating and drinking	120,311	Hobbies, except arts & crafts and collecting
110,299	Waiting associated w/eating & drinking	120,399	Relaxing and leisure, n.e.c.*
119,999	Eating and drinking	120,501	Waiting assoc. w/socializing & communicating
150,201	Food preparation, presentation, & clean-up	120,502	Waiting assoc. w/attending/hosting social events
40,501	Housework, cooking, & shopping assistance	120,503	Waiting associated with relaxing/leisure
50,202	Eating and drinking as part of job	120,305	Listening to the radio
90,203	Waiting associated w/eating & drinking	120,307	Playing games
20,904	HH & personal e-mail and messages	120,311	Hobbies, except arts & crafts and collecting
30,201	Organization & planning for hh children	120,321	Watching equestrian sports
30,202	Homework (hh children)	120,322	Watching equestrian sports
30,299	Activities related to hh child’s education	130,205	Watching baseball
30,302	Obtaining medical care for hh children	130,206	Watching baseball
30,604	Obtaining medical and care services for hh adult	130,207	Watching bowling
30,501	Helping hh adults	130,208	Watching baseball
30,502	Organization & planning for hh adults	130,209	Watching dancing
40,108	Organization & planning for nonh children	130,210	Watching equestrian sports
40,201	Homework (nonhh children)	130,211	Watching equestrian sports
40,204	Waiting related to nonhh child’s educ., n.e.c.*	130,212	Watching equestrian sports
40,299	Activities related to nonhh child’s educ., n.e.c.*	130,213	Watching football
40,302	obtain medical care for nonhh children	130,214	Watching golfing
40,303	Waiting related to nonhh child’s health	130,215	Watching gymnastics
40,404	Obtaining medical and care services for nonh adult	130,216	Watching hockey
40,505	Financial management assistance for nonh adults	130,217	Watching martial arts
40,506	Household management & paperwork assistance	130,218	Watching rodeo competitions
50,101	Work, main job	130,219	Watching running
50,102	Work, other job(s)	130,220	Watching running
50,199	Working, n.e.c.*	130,221	Watching running
50,299	Work-related activities, n.e.c.*	130,222	Watching running
50,302	Income-generating services	130,223	Watching skiing, ice skating, snowboarding
50,303	Income-generating services	130,224	Watching soccer
50,304	Income-generating rental property activities	130,225	Watching softball
50,399	Other income-generating activities, n.e.c.*	130,227	Watching volleyball
50,401	Job search activities	130,228	Watching running
50,403	Job interviewing	130,229	Watching water sports
50,404	Waiting associated with job search or interview	130,230	Watching wrestling
50,405	Security procedures rel. to job search/photo/ interview	130,231	Watching wrestling
59,999	Work and work-related activities, n.e.c.*	130,232	Watching wrestling
60,101	Taking class for degree, certification, or licensure	140,103	Watching associated w/religious & spiritual activities
60,102	Taking class for personal interest	140,105	Religious education activities
60,103	Waiting associated with taking classes	150,102	Organizing and preparing
60,199	Taking class, n.e.c.*	150,104	Telephone calls (except hotline counseling)
60,201	Extracurricular club activities	150,202	Collecting & delivering clothing & other goods
60,204	Waiting associated with extracurricular activities	150,204	Teaching, leading, counseling, mentoring

(continued on next page)
TCODE	Activity Description	TCODE	Activity Description
60,299	Education-related extracurricular activities, n.e.c.*	150,302	Indoor & outdoor maintenance, repair, & clean-up
60,301	Research/homework for class for degree, certification, or license	150,399	Indoor & outdoor maintenance, building & clean-up activities, n.e.c.*
60,302	Research/homework for pers. interest	150,401	Performing
60,399	Research/homework n.e.c.*	150,499	Participating in performance & cultural activities, n.e.c.*
60,401	Administrative activities: class for degree, certification, or license	150,701	Waiting associated with volunteer activities
60,402	Administrative activities: class for personal	150,799	Waiting associated with volunteer activities, n.e.c.*
60,403	Waiting associates w admin activities	150,801	Waiting associated with volunteer activities
60,499	Administrative for education, n.e.c.*	159,999	Volunteer activities, n.e.c.*
69,999	Education, n.e.c.*	160,101	Telephone calls to/from family members
70,104	Shopping, except groceries, food and gas	160,102	Telephone calls to/from friends, neighbors, or acquaintances
70,105	Waiting associated with shopping	160,103	Telephone calls to/from education services providers
70,199	Shopping, except groceries, food and gas	160,104	Telephone calls to/from salespeople
70,201	Comparison shopping	160,105	Telephone calls to/from professional or personal care svcs providers
70,299	Comparison shopping	160,106	Waiting associated with volunteer activities
70,301	Security procedure related to purchase	160,107	Waiting associated with volunteer activities
70,399	Security procedure related to purchase	160,108	Telephone calls to/from paid child or adult care providers
80,101	Using paid childcare services	160,109	Telephone calls to/from government officials
80,102	Paid childcare	160,119	Telephone calls to (or from), n.e.c.*
80,199	use paid childcare service	160,201	Waiting associated with telephone calls
80,201	Banking	160,202	Telephone calls, n.e.c.*
80,202	Using other financial services	OTHER	Laundry
80,203	Waiting associated w/banking/financial services	20,102	Appliance, tool, and toy set-up, repair, & maintenance (by self)
80,299	Using other financial services	20,801	Appliances and tools, n.e.c.*
80,301	Using legal services	20,899	Sports and exercise as part of job
80,302	Waiting associated with legal services	50,203	Security procedure as part of job
80,399	Using legal services	50,204	Security procedure as part of job
80,601	Activities rel. to purchasing/selling real estate	60,104	Extracurricular music & performance activities
80,602	Waiting associated w/purchasing/selling real estate	60,202	Extracurricular student govt activities
80,699	Activities rel. to purchasing/selling real estate	60,203	Waiting associated with telephone calls
80,701	Using veterinary services	120,309	Telephone calls, n.e.c.*
80,702	Waiting associated with veterinary services	120,310	Arts and crafts as a hobby
80,799	Using veterinary services	130,101	Collecting as a hobby
80,801	Security procedure related to service	130,104	Doing aerobics
80,899	Security procedure related to service	130,124	Running
89,999	Professional and personal services, n.e.c.*	130,128	Using cardiovascular equipment
100,103	Obtaining licenses & paying fines, fees, taxes	130,131	Walking
100,109	Using government services, n.e.c.*	130,132	Weightlifting/strength training
100,401	Security procedure related to civic obligation	130,134	Working out, unspecified
100,499	Security procedure related to civic obligation	130,136	Doing yoga
109,999	Government services, n.e.c.*	130,199	Playing sports, n.e.c.*
120,308	Computer use for leisure (exc. Games)	140,102	Participation in religious practices
120,405	Security related to art	149,999	Religious and spiritual activities, n.e.c.*
140,104	Security related to religious activities	149,999	Waiting associated with religious activities, n.e.c.*
150,101	Computer use	20,701	Vehicle repair and maintenance (by self)
150,106	Fundraising	20,799	Vehicles, n.e.c.*
150,199	Administrative & support activities, n.e.c.*	40,504	Vehicle & appliance maintenance/repair assistance for nonrhh adults
150,299	Social service & care activities, n.e.c.*	90,501	Using vehicle maintenance or repair services
150,501	Attending meetings, conferences, & training	90,599	Using vehicle maint. & repair svcs, n.e.c.*
150,599	Attending meetings, conferences, & training, n.e.c.*	90,599	

Appendix B1

(see Fig. B1).
Fig. B1. Average time spent in different locations within a home on weekends in 2020 for people (a) under 25, (b) 25–34, (c) 35–44, (d) 45–54, (e) 55–64, (f) 65–74 and (g) over 75 (Note: percentages are based on those people reported to be at home, and does not include those outside of the home in the calculation).
Appendix B2

(see Fig. B2).

Fig. B2. Average time spent in different locations within a home on weekdays in 2019 for people of different age group.
Appendix B3

(see Fig. B3).

Fig. B3. Average time spent in different locations within a home on weekends in 2019 for people of different age group.
References

[1] Coronavirus Disease (COVID-19) – Events as they happen.. World Health Organization (WHO). [https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-happen (accessed Sep 29, 2020)].

[2] “Coronavirus World Map: Tracking the Global Outbreak”, [https://www.nytimes.com/interactive/2021/world/covid-cases.html].

[3] Bozic, M., Managing Divergent. “WORLD ECONOMIC OUTLOOK” (2021).

[4] Yeati, E. L., Filippini, F., 2021. “Social and economic impact of COVID-19”, June 8, 2021, [https://brookings.edu/research/social-and-economic-impact-of-COVID-19/].

[5] Djanjouk, S., Panizza, U., 2020. “COVID-19 in developing economics.” Centre for Economic Policy Research.

[6] “Effects of the coronavirus COVID-19 pandemic (CPS)”, U.S. Bureau of Labor Statistics. Accessed: Sep. 26, 2020. [Online]. Available: https://www.bls.

[7] Monitor, I. L. O. 2020. “Recoveries, Managing Divergent.”

[8] Donohue JM, Miller E. COVID-19 and school closings. American Medical Association, JAMA 2020;324(9):845–7.

[9] Davenport, T. H., Redman, T. C., 2021.

[10] Deru, M., Field K., Studer D., Benne K., Griffith B., Torcellini P., Liu B., et al. 2011.

[11] ISO 18523-2, ASHRAE 90.1 User Standard 90.1 prototype building models Part 2: Residential

[12] Savills. 2020. COVID-19 restrictions changing the daily patterns of energy consumption, [https://www.savills.us/insight-and-opinion/savills-news/-29070/-covid-19-restrictions-changing-the-daily-patterns-of-energy-consumption].

[13] Cohen J. 2020. “Data Usage has Increased 47 Percent during COVID-19 Quarantine”, PCMag. Available, [https://www.pcmag.com/news/data-usage-has-increased-47-percent-during-covid-19-quarantine].

[14] Yuan, E.S. 2021. “A Year Later: reflecting and Looking Ahead, Blog, Zoom”, Available, [https://blog.zoom.us/reflecting-looking-ahead/].

[15] Remner, B., Cook, J., Rogers, S. 2021 “Surprise Ingredients in the Post-pandemic Food Story: consumers Cooking up Concern for Restaurants’ Return, Deloitte”, Available, [https://www2.deloitte.com/us/en/pages/consumer-business/articles/food-service-restaurant-business-trends-post-covid.html].

[16] Kavka E, Cetin K. Impacts of COVID-19 on residential building energy use and performance. Build Environ 2021:20108200.

[17] Deru, M., Field K., Studer D., Benne K., Griffith B., Torcellini P., Liu B., et al. 2011. “U.S. Department of Energy commercial reference building models of the national building stock.” Nrel/Tp-5500-46861, no. February 2011: 1–5.

[18] Göel, R., Adhaye, X., Wang, H., Zhang, M. 2014. “Enhancements to ASHRAE standard 90.1 prototype building models,” No. PNLI-25269. Pacific Northwest National Lab (PNL), Richland, WA (United States).

[19] ASHRAE 90.1 User’s Manual ANSI/ASHRAE/IESNA Standard 90.1-1989, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, GA (1989).

[20] Advanced Energy Design Guides, 2018. 724 (accessed October 10, 2020).

[21] Annex 7: ANNEX, EBC. “Occupant-centric Building Design and Operation.”

[22] ISO 18523-2, “Energy performance of buildings — Schedule and condition of building, zone and space usage for energy calculation — Part 2: Residential buildings”.

[23] U.S. Bureau of Labor Statistics, American Time Use Survey, (2009). [http://www.bls.gov/]

[24] U.S. Bureau of Labor Statistics, Current Population Survey, [https://www.bls.gov/]

[25] Energy Information Administration, Residential Energy Consumption Survey, (2015).
[63] Mitra D, Chu Y, Cetin K, Wang Y, Chen CF. Variation in residential occupancy profiles in the United States by household income level and characteristics. J Build Perform Simul 2021;14(6):692–711. https://doi.org/10.1080/19401493.2021.2001572.

[64] Mitra D, Steinmetz N, Chu Y, Cetin KS. Typical occupancy profiles and behaviors in residential buildings in the United States. Energy Build 2020;210:109713. https://doi.org/10.1016/j.enbuild.2019.109713.

[65] Martins Van Jaarsveld G. The Effects of COVID-19 Among the Elderly Population: A Case for Closing the Digital Divide. Front Psychiatry 2020;11. https://doi.org/10.3389/fpsyt.2020.577427.

[66] Mitra, D, Yiyi Chu, Cetin, K. 2021. Characteristics of Residential Occupancy Profiles for Different Income Groups in the United States. ASHRAE Transactions, v127, 91–99.

[67] Office of ASPE, U.S. Department of Health & Human Services, 2018. Poverty Guidelines. https://aspe.hhs.gov/poverty-guidelines.

[68] Kochhar, R., Fry R., and Rohal M. 2016. “America’s Shrinking Middle Class: A Close Look at Changes Within Metropolitan Areas.” Pew Research Center.

[69] Berndt DJ, Clifford J. Using dynamic time warping to find patterns in time series. In KDD workshop 1994;10(16):359–70.

[70] Lawrence R, Rosenberg A, Levinson S. Considerations in dynamic time warping algorithms for discrete word recognition. IEEE Trans Acoust Speech Signal Process 1978;26(6):575–82.

[71] Singh G, Bansal D, Sofat S. A smartphone based technique to monitor driving behavior using DTW and crowdsensing. Pervasive Mob Comput 2017;40:56–70.

[72] Engelbrecht, J., Rooyen, M.J., Rooyen, G.J. and Bruwer, F.J., 2015. “Performance comparison of dynamic time warping (DTW) and a maximum likelihood (ML) classifier in measuring driver behavior with smartphones.” In 2015 IEEE Symposium Series on Computational Intelligence, pp. 427-433. IEEE, 2015.

[73] Sakakura, Y. 2014. “Household power consumption simulator with compact representation of occupant behaviors.” In 2014 IEEE International Conference on Smart Grid Communications (SmartGridComm), pp. 170-175. IEEE, 2014.

[74] Sarda-Espinosa A. 2019. “dtwclust: Time Series Clustering Along with Optimizations for the Dynamic Time Warping Distance.” R package version 5.5.6, https://CRAN.R-project.org/package=dtwclust.

[75] Helppie-McFall B, Hsu JW. Financial Profiles of Workers Most Vulnerable to Coronavirus-Related Earnings Loss in the Spring of 2020. Finan Econ Discussion Ser 2020;2020(093):1–27. https://doi.org/10.17016/FEDS.2020.093.

[76] McNicholas C, Poydock M. Who are essential workers? A comprehensive look at their wages, demographics, and unionization rates. Econ Policy Inst 2020;15.