Influence of specimen dimensions on ductile-to-brittle transition temperature in Charpy impact test

S Rzepa¹, T Bucki², P Konopík³, J Džugan³, M Rund³ and R Procházka³

¹AGH University of Science and Technology, Kraków, Poland, EU
²Kielce University of Technology, Kielce, Poland, EU
³COMTES FHT a.s., Dobřany, Czech Republic, EU

E-mail: sylwrz94@gmail.com

Abstract. This paper discusses the correlation between specimen dimensions and transition temperature. Notch toughness properties of Standard Charpy-V specimens are compared to samples with lower width (7.5 mm, 5 mm, 2.5 mm) and sub-size Charpy specimens with cross section 3x4. In this study transition curves are correlated with lateral ductile part of fracture related ones for 5 considered geometries. Based on the results obtained, correlation procedure for transition temperature determination of full size specimens defined by fracture appearance of sub-sized specimens is proposed.

1 Introduction
Charpy test is one of the basic material tests used for material properties characterization. In order to avoid brittle failure under service conditions, transition temperature based on Charpy impact tests is determined for the materials exhibiting transition behavior. The size of the experimental material does not allow in all cases application of standard full size specimens (10x10 mm) and sub-size specimens have to be used. Although, some of sub-sized geometries are standardized, procedures for comparison of results obtained for various specimen geometries are not standardized due to ambiguous relations for different applications. Therefore, relations for specific areas have to be individually established.

The use of Charpy specimen geometry with different dimensions leads to development of correlation procedure of the results. A review of the literature shows the efforts to correlate results for standard Charpy with different width [1,2] and standard Charpy with sub-size Charpy [3-14]. Small specimen method is also used in another mechanical testing techniques [15,16, 17] to minimalize the size of tested material.

The aim of presented work was to study influence of Charpy specimen dimensions on ductile-to-brittle transition temperature. Standard Charpy-V specimens are compared to samples with reduced widths (7.5 mm, 5 mm, 2.5 mm) and sub-size Charpy specimens with cross section 3x4 mm. The paper proposes the correlation procedure for transition temperature determination of full size specimens based on fracture appearance of sub-sized specimens.

2 Experiment description
The fracture appearance transition temperatures (FATT) were investigated for Chromium steel P-AK1TD (10,5% Cr, 1.5-1.8% Ni, 1.6-2% W, 0.35-0.5% Mo). Figure 1 shows the microstructure of the steel investigated.
The tests were performed by using standard Charpy-V and sub-size Charpy specimens. Standardized Charpy-V specimens with various widths (10 mm, 7.5 mm, 5 mm, 2.5 mm) [18] and sub-size Charpy specimens with cross-section 3x4 mm [18], shown on the figure 2, were tested. Impact tests were conducted using a 300 J pendulum with striking edge radius 2 mm for standard specimens and 15 J pendulum with striking edge radius 2 mm for sub-size Charpy.

FATT (FATT 50) were determined for each batch by testing of 18 test pieces. Tests were carried out at about 10 testing temperatures for each batch. Fracture appearance and lateral ductile part thickness, marked x on the figure 3a were determined by microscopic measurements. The x-value was obtained by dividing ductile part area at lateral edges of fracture by its length, as shown in figure 3b.
3 Results and discussion

Figure 4 presents the fracture faces of specimens tested at various temperatures. Results suggest that lateral ductile part thickness - x is similar for all Standard Charpy specimens at the same temperature.

![Figure 4. Fractures of tested specimens.](image-url)

Table 1 and figure 5 present the relationship between temperature and x-thickness for standard Charpy and for sub-size Charpy. These dependences can be approximated by fourth-degree terms shown in the figure 5.

Table 1. Measurements of x-thickness for standard Charpy and sub-size Charpy.

Temperature (°C)	x in standard Charpy (mm)	x in sub-size Charpy (mm)
-120	0.04; 0.06	0.08
-110	0.07	0.07
-100	0.09; 0.11	0.07
-90	0.13	0.18; 0.11
-80	0.15; 0.16	0.16
-70	0.18; 0.20	0.16; 0.30
-50	0.28	0.41; 0.55
-40	0.35; 0.36	0.64
-20	0.64; 0.82	-
0	1.53; 1.74	-
Figure 5. Relationship between temperature and x-thickness for standard Charpy and sub-size Charpy

FATT and x-thickness at corresponding transition temperature for each batch of specimens were measured and compared. Results are shown in table 2. Figure 6 presents dependence of FATT on x-thickness for standard Charpy. It was found, that x-thickness at FATT for standard Charpy is linearly proportional to sample width. In other words, fracture appearance transition in this material occurs, when x-thickness is about 8.5% of specimen width.

Table 2. Measurements of FATT and x-thickness in FATT.

Specimen dimensions (mm)	FATT (°C)	x (mm)	x/W
10x10	-17.3	0.88	0.088
10x7.5	-24.4	0.66	0.088
10x7.5	-24.4	0.61	0.081
10x5	-31.6	0.46	0.092
10x5	-31.6	0.45	0.090
10x2.5	-68.3	0.20	0.080
10x2.5	-68.3	0.19	0.078
Average:	**0.085 (8.5%)**	**0.21**	**0.070**

Figure 6. The dependence of FATT on x-thickness for standard Charpy.
The assumption, that \(x/W \) ratio in FATT is constant for each standard Charpy gives a possibility to approximate FATT based on \(x \)-measurements of specimens with different widths. FATT depends on specimens’ width, which can be calculated from \(x \)-thickness using simple equation (1). Figure 7 shows discussed dependence calculated from \(x \)-thickness measurements (figure 5). The correlations between standard Charpy width and transition temperature can be find in literature [1,2]. Figure 7 confirms, that presented correlation procedure gives similar results to correlations from the literature. Different trends for standard and sub-size Charpy seem to suggest influence of other parameters. Literature [20] confirms effect of notch depth, notch root radius and specimen height on transition temperature appearance, what can be observable at presented chart. The advantage of proposed correlation procedure, comparing to constant correlation curves is a possibility to find the relationship between FATT and specimens width for non-standard Charpy specimens and more precise results for non-standard steel.

\[
W = \frac{x}{\text{average} \left(\frac{x}{W} \right)}
\]

(1)

![Figure 7. Correlations between Charpy width and FATT.](image)

4 Conclusions

The correlation procedure for transition temperature determination of full size specimens based on fracture appearance of specimens with different width is proposed here. The correlation procedure assumes that the thickness of ductile part located on the edges of fracture in fracture appearance transition temperature is proportional to sample width. Using proposed procedure, there is possibility to approximate FATT temperature for each width of standard Charpy. Correlation for sub-size Charpy comparing to standard Charpy suggests the influence of specimens width, height, notch depth and notch root radius on transition temperature.

The advantage of proposed correlation procedure, comparing to constant correlation curves from the literature is a possibility to find the relationship between FATT and specimens width for non-standard Charpy specimens and more precise results for non-standard steel.

References

[1] Towers O L 1986 Testing of sub-size Charpy specimens: Part 1 - the influence of thickness on the ductile/brittle transition Metal Construction 18(3) pp 171-176

[2] Wallin K 1994 Methodology for selecting Charpy toughness criteria for thin high strength steels: Part 1 - determining the fracture toughness Jernkontorets Forskning, Report from Working Group 4013(89) p 28
[3] Konopik P, Dzugan J and Rund M 2015 Determination of fracture toughness in the upper shelf region using small sample test techniques *METAL 2015* **6**(5) pp 710-715

[4] Sokolov M A and Alexander D J 1997 An Improved Correlation Procedure for Subsize and Full-Size Charpy Impact Specimen Data *NUREG 6379*

[5] Schubert L E, Kumar A S, Rosinski S T and Hamilton M L 1995 Effect of Specimen Size on the Impact Properties of Neutron Irradiated A533B Steel *J. Nucl. Mat.* **225** pp 231-237

[6] Konopik P, Dzugan J and Prochazka R 2013 Evaluation of local mechanical properties of steel weld by miniature testing technique *Materials Science & Technology* **27**(31) pp 2404-2411

[7] Corwin W R and Houghland A M 1986 Effect of Specimen Size and Material Condition on the Charpy Impact Properties of 9Cr1MoVNb Steel *ASTM, STP 888* pp 325-338

[8] Louden B S, Kumar A S, Garner F A, Hamilton M L and Hu W L 1988 The Influence of Specimen Size on Charpy Impact Testing *J. Nucl. Mat.* **155**(157) pp 662-667

[9] Lucon E, Chaouadi R, Puzzolante J-L and Van Walle E 1999 Characterizing Material Properties by the Use of Full-Size and Sub-Size Charpy Tests: An Overview of Different Correlation Procedures *ASTM, STP 1380*

[10] Sainte Catherine C, Hourdequin N, Galon P and Forget P 2002 Finite Element Simulations of Charpy-V and Sub-Size Charpy Tests for a Low Alloy RPV Ferritic Steel *Small Specimen Test Techniques* **1418** pp 107-136

[11] Schill R, Forget P and Sainte Catherine C 2002 Correlation between Charpy-V and Sub-Size Charpy Tests Results for an Un-Irradiated Low Alloy RPV Ferritic Steel *ECF 13 1418* pp 54-68

[12] Lucon, E, Puzzolante J, Roebben G, and Lamberty A 2005 Impact Characterization of Sub-Size Charpy V-Notch Specimens Prepared from Full-Size Certified Reference Charpy V-Notch Test Pieces *Journal of ASTM International, 2*(7) pp 1-9

[13] Curll C H 1959 Subsize Charpy correlation with standard Charpy Watertown Arsenal Laboratories, *Technical Report 112(95)*

[14] Sainte Catherine C, Poussard C, Vodinh J, Schill R, Hourdequin N, Galon P, Forget P 2002 Finite Element Simulations and Empirical Correlation For Charpy-V and Subsize Charpy Tests on an Unirradiated Low-Alloy RPV Ferritic Steel, *Small Specimen Test Techniques* **4** p 1418

[15] Džugan J, Procházk R and Konopik P 2014 Micro-Tensile Test Technique Development and Application to Mechanical Property Determination *Small Specimen Test Techniques* **6** pp 12-29

[16] Rund M, Procházk R, Konopik P, Džugan J and Folgar H 2015 Investigation of Sample-size Influence on Tensile Test Results at Different Strain Rates *Procedia Engineering* **114** pp 410-415

[17] Dzugan J, Konopik P., Rund M and Prochazka R 2015 *ASME Pressure vessels and piping conf. - 2015* Determination of local tensile and fatigue properties with the use of sub-sized specimens, *Volume 1A: Codes and Standards* (New York: Amer. Soc. Mech. Eng.)

[18] ASTM E23-94b 1995 *Annual Book of ASTM Standards* **03**(01) pp 137-156

[19] ESIS TC 5 2000 Proposed Standard Method for Instrumented Impact Testing of Sub-Size Charpy-V Notch Specimens of Steel *European Structural Integrity Society, Technical Committee n5 on Dynamic Testing Standards* 9

[20] Sokolov M A, Nanstad R K 1996 On impact testing of subsize Charpy V - notch type specimens *Effect of Radiation on Materials* **17** pp 384-414