Genetic polymorphisms and gastric cancer risk: a comprehensive review synopsis from meta-analysis and genome-wide association studies

Jie Tian*, Guanchu Liu*, Chunjian Zuo, Caiyang Liu, Wanlun He, Huanwen Chen
Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China

ABSTRACT

Objective: In the past few decades, more than 500 reports have been published on the relationship between single nucleotide polymorphisms (SNPs) on candidate genes and gastric cancer (GC) risk. Previous findings have been disputed and are controversial. Therefore, we performed this article to summarize and assess the credibility and strength of genetic polymorphisms on the risk of GC.

Methods: We used Web of Science, PubMed, and Medline to identify meta-analyses published before July 30th, 2018 that assessed associations between variants on candidate genes and the risk of GC. Cumulative epidemiological evidence of statistical associations was assessed combining Venice criteria and a false-positive report probability (FPRP) test.

Results: Sixty-one variants demonstrated a significant association with GC risk, whereas 29 demonstrated no association. Nine variants on nine genes were rated as presenting strong cumulative epidemiological evidence for a nominally significant association with GC risk, including APE1 (rs1760944), DNMT1 (rs16999593), ERCC5 (rs751402), GSTT1 (null/presence), MDM2 (rs2278744), PPARG (rs1801282), TLR4 (rs4986790), IL-17F (rs763780), and CASP8 (rs3834129). Eleven SNPs were rated as moderate, and 33 SNPs were rated as weak. We also used the FPRP test to identify 13 noteworthy SNPs in five genome-wide association studies.

Conclusions: Sixty-one variants are significantly associated with GC risk, and 29 variants are not associated with GC risk; however, five variants on five genes presented strong evidence for an association upgraded from moderate. Further study of these variants may be needed in the future. Our study also provides referenced information for the genetic predisposition to GC.

KEYWORDS
Gastric cancer; genetic variants; susceptibility; meta-analysis; genome-wide association study

Introduction

Gastric cancer (GC) is a malignant carcinoma of the digestive tract and has become the third highest cause of carcinoma-associated deaths worldwide1. Although advances in diagnoses and treatment may reduce mortality and morbidity, the 5-year survival rate remains poor2. In 2016, 26,370 patients had GC, and 10,730 patients died from GC in the United States3. Because the carcinogenic mechanism of GC is not fully understood, GC has affected public health and has become a common concern. As with other complex diseases, the development of GC is a complicated, multistep, multifactorial process, with various potential risk factors, including tobacco use, diet, alcohol consumption, Helicobacter pylori (HP) infection, obesity, and a history of stomach disorder4. In addition, the development of GC may be related to genetic susceptibility factors5-8,12-14. Single nucleotide polymorphisms (SNPs), a common type of genetic mutation, may accelerate the development of GC. Genome-wide association studies (GWAS) may be able to identify sequence variations in the human genome, screen SNPs related to human diseases5, and extend our understanding of associations between genetic variations and cancer risk6. To date, two-stage GWAS (discovery and replication) have discovered millions of SNPs and identified relationships between candidate-gene SNPs and disease susceptibility7,8. There are two limitations associated with the study of candidate genes: small sample size and low statistical power. A more precise and true association can be observed via a meta-analysis using previously available results9,10.
2008, Dong et al.11 performed a meta-analysis and reported that six variants were significantly associated with the risk of GC. Subsequently, more GC-related genes or loci have been discovered in research on genetic variants and identified in GWAS. In 2010, Abnet et al.12 identified two identified GC-related loci (3q13.31 and 5p13.1). In 2011, Jin et al.13 found a locus (6p21.1) associated with GC in a GWAS. Later, Hu et al.14 identified a new locus (1q22) associated with GC, and Wang et al.15 found two novel loci (5q14.3 and 8q24.3) associated with GC. Recently, the results of most meta-analyses for same variant have been inconsistent, suggesting the possibility of false positive associations. Although meta-analyses involving large numbers of patients may reflect true associations between genetic variants and GC risk, the credibility and strength of these associations need to be further assessed16.

Therefore, a comprehensive review associated with genetic susceptibility to GC is needed. Our study assesses the credibility and strength of significant associations between candidate-gene SNPs and GC risk and provides comprehensive information for further investigation.

\section*{Methods}

\subsection*{Literature search}

Web of Science, PubMed, and Medline were searched to identify relevant meta-analyses published on before July 30th, 2018 using the following terms: (“gastric”) and (“cancer” or “carcinoma” or “adenocarcinoma” or “tumor” or “malignant” or “malignancy” or “neoplasm” or “neoplasia” or “oncology”) and (“genetic” or “gene” or “polymorphism” or “SNP” or “single nucleotide polymorphism” or “genetic variant”) and (“meta-analysis”). Additionally, we examined all relevant references to identify potential meta-analyses that could offer relevant data.

\subsection*{Criteria for selection}

We used the following criteria to screen meta-analyses: (i) publications were in English, (ii) cancer type was GC, (iii) patients with GC were pathologically or histologically confirmed, (iv) the sample size was not fewer than 1,000, and (v) the studies were on GC incidence (rather than mortality or survival rate). Meta-analyses of GWAS were obtained from PubMed. We used the following criteria for GWAS-related articles: (i) publications were in English; (ii) cancer type was GC, which includes all GC subtypes; (iii) patients with GC were pathologically or histologically confirmed; (iv) the studies were on GC incidence (rather than mortality or survival rate); and (v) the studies included two phases (discovery and replication).

\section*{Data extraction}

Two authors (J.T. and G.L.) worked together to extract all data. Any disagreement was resolved by further discussion. The publication details collected included: first author, publication year, gene name, genetic variant, odds ratio (OR), and 95\% confidence intervals (CIs) under the additive model, number of studies, number of subjects (cases and controls), ethnicity of participants, I-square (I^2), heterogeneity (Q test)17, and publication bias (Egger’s test)18.

For GWAS, the following inclusion criteria were reported for SNPs: (i) the results contained two stages (discovery and replication), (ii) the OR and 95\% CI could be collected, and (iii) the P value was less than the cutoff of 5×10^{-8}. The publication details collected for each eligible qualified SNP included: PubMed identifier (PMID) number, first author, publication year, gene name, genetic variant, ethnicity of participants, number of subjects (cases and controls), minor allele frequency (MAF), OR and 95\% CI, and P-value.

The eligible studies reported two major ethnicities: Asian and Caucasian. Twenty meta-analyses reported a single ethnicity; however, several others reported “diverse populations” indicative of two or more ethnicities. Some studies grouped their results by ethnicity, providing data on subgroup analyses. If the same genetic variant was reported in more than one study, we selected the most recently published study with the greatest number and most integrated participants. Current gene names were used to identify the different variants. A P-value of 0.05 or less was considered significant. Many studies utilized different genetic models; we selected the additive model (\textbf{Supplementary Table S1}) as our unified model to extract data and mitigate selection bias. As we were unable to use certain SNPs ($n = 20$) in the additive model, dominant, recessive, and homozygous models were also used where necessary.

\section*{Evaluation of cumulative evidence}

We employed the Venice criteria to assess the epidemiological credibility of significant associations identified by the meta-analyses25. Credibility was rated as strong, moderate, or weak (grade A, B, or C, respectively) according to three factors: amount of evidence, replication of association, and protection from bias. Evidence was evaluated by summing the number of alleles or genotypes...
among cases and controls and divided into three groups: greater than 1000, 100–1000, and less than 100, representing grades A, B, and C, respectively. Certain test allele numbers or genotype amounts could not be extracted; in these cases, we searched the MAF from the NCBI SNP database (dbSNP) to calculate the amounts. Association replication was calculated using heterogeneity statistics assigning one of three grades: grade A ($I^2 < 25\%$), grade B ($25\% < I^2 < 50\%$), or grade C ($I^2 > 50\%$). Bias was evaluated using the P-value for publication bias; grade A indicated no observed publication bias ($P > 0.05$), grade B indicated bias accompanied by a lack of information for identification of evidence, and grade C indicated that bias was statistically evident ($P < 0.05$). The magnitude of association was related to protection from bias; a summary OR less than 1.15 was graded as a C for an association, unless several studies had identified that the association was replicated prospectively with an absence of publication bias. Cumulative epidemiological evidence of significant associations was assigned one of three levels: strong (A was assigned to all three grades), weak (C was assigned to any grade), or moderate (all other combinations).

We performed a false positive report probability (FPRP) assay with a prior probability of 0.001 and an FPRP cut-off value of 0.2 to uncover potential false positive results among significant associations, and to evaluate whether these associations should be omitted, as suggested by Wacholder et al.19. Statistical power and FPRP values were calculated by the Excel spreadsheet offered on website (http://jncicancerspectrum.oupjournals.org/jnci/content/vol96/issue6). If the calculated FPRP value was below the prespecified noteworthiness value of 0.2, we would consider the association noteworthy, indicating that the association might be true. FPRP evidence was categorized according to three levels: strong (FPRP < 0.05), moderate (0.2 ≤ FPRP ≤ 0.05), or weak (FPRP > 0.2). An FPRP less than 0.05 triggered an upgrading of cumulative evidence from moderate to strong or from weak to moderate. Conversely, an FPRP greater than 0.2 triggered a downgrading of cumulative evidence from strong to moderate or from moderate to weak.

Results

Characteristics of the articles included in our study

Our search yielded 1,041 articles (Figure 1). Of these, 308 articles were excluded as duplicates, 457 articles were excluded as irrelevant (not related to genetic variants or GC) after screening the titles and abstracts; the remaining 276 eligible articles were assessed for full-text review. We further excluded 33 non-meta-analyses, 19 non-genetic polymorphisms, 18 mortality or survival studies, 14 studies without an overall meta-analysis, and 28 studies with insufficient data. Twenty-two studies were screened from the reference publication. Subsequently, 186 meta-analyses were eligible for review; these identified 61 variants associated with the risk of GC. In addition, 18 variants (29.5%) were discovered in 2017.

PubMed was used to identify GWAS related to GC etiology, resulting in a total of five GWAS. All 13 SNPs identified were located within eight genes.

Significant associations in meta-analyses and GWAS

Among the main meta-analyses, cumulative epidemiological evidence was graded for 61 significant associations (Table 1). We assessed these associations using Venice criteria. With regards to the amount of evidence, 41 SNPs were Grade A, 13 Grade B, and 0 Grade C. Based on replication of association, 19 were Grade A, 13 were Grade B, and 28 were Grade C. Regarding protection from bias, 52 were Grade A, 7 Grade B,
Gene (variant)	Cancer type (year)*	Comparison	Ethnicity	OR (95% CI)	Publication bias/ heterogeneity F(%)	No. of studies	Sample size (cases/ control)	Number of test allele or genotype (calculated value according to MAF)	Maf	Venice criteria#	Venice grade	Power OR of 1.5 FPRP values at prior probability of 0.001 at power OR of 1.5	Cumulative epidemiological evidence#		
ALDH2 (rs671)	GC (2017)*	A vs G	Asian	1.17 (1.01–1.36)	No/0.325	0	2	2982 (1153/1829)	1618	0.2674	AAA	Strong	0.999	0.976	Moderate
APE1 (rs1760944)	GC (2017)*	G vs T	Diverse	1.77 (1.40–2.24)	>0.05/0.29	19	4	2113 (802/1311)	1779	0.3863	AAA	Strong	0.084	0.023	Strong
APEX1 (rs1130409)	GC (2015)*	Asp vs Glu	Diverse	1.42 (1.09–1.83)	No/0.016	71	4	2114 (803/1311)	1779	0.3756	AAA	Strong	0.999	0.084	Strong
BIRC5 (rs9904341)	GC (2013)*	Asp vs Glu	Diverse	1.42 (1.09–1.83)	0.16/0.016	71	4	2114 (803/1311)	1779	0.3756	AAA	Strong	0.999	0.084	Strong
CD95 (rs2234767)	GC (2013)*	Recessive	Diverse	1.42 (1.09–1.83)	0.16/0.016	71	4	2114 (803/1311)	1779	0.3756	AAA	Strong	0.999	0.084	Strong
COX-2 (rs20417)	GC (2013)*	Dominant	Diverse	1.58 (1.06–2.35)	0.05/0.000	85.4	10	7096 (2198/4898)	1157	0.0779	ACA	Weak	0.399	0.984	Weak
COX-2 (rs689466)	GC (2013)*	Dominant	Diverse	1.24 (1.06–1.45)	0.69/0.000	68.8	11	7723 (2500/5223)	6123	0.516	ACA	Weak	0.991	0.876	Weak
DNM1 (rs1052559)	GC (2012)*	Recessive	Diverse	1.36 (1.15–1.60)	0.98/0.720	0	3	2647 (999/1675)	2558	0.8194	AAA	Strong	0.881	0.191	Strong
DNM3 (rs1550117)	GC (2016)*	Dominant	Diverse	1.20 (1.01–1.42)	0.049/0.000	69	3	2996 (1104/1892)	416	0.1841	AAA	Weak	0.988	0.979	Weak
EGF (rs4444903)	GC (2015)*	G vs A	Diverse	1.18 (1.00–1.39)	0.109/0.009	65.6	7	5194 (1992/2102)	6524	0.6071	ACA	Weak	0.988	0.979	Weak
ERCC2 (rs1052559)	GC (2012)*	Recessive	Asian	2.41 (1.69–3.43)	0.989/0.701	0	5	3246 (1267/1979)	143	0.1266	BAA	Moderate	0.002	0.055	Moderate
ERCC2 (rs1799793)	GC (2012)*	Recessive	Diverse	1.48 (1.12–1.97)	0.045/0.272	19.2	9	5144 (1715/1429)	416	0.2528	BAC	Weak	0.537	0.931	Weak

Continued
Gene (variant)	Cancer type (year)	Comparison	Ethnicity	OR (95% CI)	Publication bias/heterogeneity	P (%)	No. of studies	Sample size (cases/control)	Number of test allele or genotype (calculated value according to MAF)	Maf	Venice criteriaa	Venice grade	Power OR of 1.5	FPRP values at prior probability of 0.001 at power OR of 1.5	Cumulative epidemiological evidenceb
GSTP1 (rs1051766)	GC (2012)	GG vs AA	Asian	2.013 (1.197–3.837)	0.776/0.0000	71.8	10	5605 (16/64/3941)	335	0.1926	BCA	Weak	0.134	0.984	Weak
GSTT1 (null/presence)	GC (2014)	Null vs presence	Diverse	1.21 (1.11–1.32)	0.475/0.0005	44	42	24294 (9029/15265)	9285	0.1787	ABA	Moderate	1.000	0.017	Strong
hMLH1 (rs1800734)	GC (2017)	A vs G	Asian	1.14 (1.02–1.28)	0.585c	0e	4	2578 (12/50/338)	2992	0.5644	AACc	Weak	1.000	0.964	Weak
HOTAIR (rs4759314)	GC (2016)	G vs A	Diverse	1.29 (1.10–1.51)	0.350/Na9	43.5	4	5590 (22/90/2980)	646	0.052	BBA	Moderate	0.97	0.611	Weak
HOTAIR (rs920778)	GC (2017)	T vs C	Diverse	1.372 (1.26–1.560)	0.05/0.68	3	2716 (907/1809)	1377	0.2338	ACA	Weak	0.913	0.002	Moderate	
IL-1B (511C>T)	GC (2015)	Recessive	Diverse	1.15 (1.03–1.29)	>0.1/<0.0001	58	45	20258 (9066/11192)	4005	0.4200	ACA	Weak	1.000	0.945	Weak
Asian	1.14 (1.01–1.29)	Na													

Notes:
- **OR** (Odds Ratio)
- **95% CI** (95% Confidence Interval)
- **Publication bias/heterogeneity**
- **P (%)**
- **No. of studies**
- **Sample size (cases/control)**
- **Number of test allele or genotype**
- **Maf**
- **Venice criteriaa**
- **Venice grade**
- **Power OR of 1.5**
- **FPRP values at prior probability of 0.001 at power OR of 1.5**
- **Cumulative epidemiological evidenceb**
| Gene (variant) | Cancer type | Comparison | Ethnicity | OR (95% CI) | Publication Bias/ heterogeneity | P(%) | No. of studies | Sample size (cases/ control) | Number of test allele or genotype (calculated value according to MAF) | Maf | Venice criteriaa | Venice grade | Power OR of 1.5 | FPRP values at prior probability of 0.001 at power OR of 1.5 | Cumulative epidemiological evidenceb |
|---------------|-------------|------------|-----------|-------------|-------------------------------|------|---------------|-------------------------------|---------------------------------|-----|----------------|-------------|----------------|------------------------|-------------------|
| IL-4 (rs1042522) | T vs C | Caucasian | 1.32 | Na | ABA | Moderate | 1.00 | 0.97 | Moderate |
| IL-8 (rs2275913) | A vs G | T vs C | 1.24 | No/0.00 | 67 | 16 | 14255 | 11647 | 0.3836 | ACA | Weak | 1.00 | 0.05 | Moderate |
| MMP7 (rs11568818) | G vs T | Asian | 1.35 | No/0.21 | 30 | 7 | 5400 | 5438 | 0.4848 | ABA | Moderate | 0.992 | 0.00 | Moderate |
| MT-HFR (rs1801133) | T vs C | T vs C | 1.15 | 0.045/0 | 71.3 | 27 | 18206 | 8935 | 0.2454 | ACC | Weak | 1.00 | 0.67 | Weak |
| NAD (pH) | T vs C | T vs C | 1.38 | 0.22/0.001 | 79.8 | 8 | 4037 | 3104 | 0.3672 | ACA | Weak | 0.76 | 0.82 | Weak |
| P53 (rs1042522) | GC | Dominant | 1.18 | >0.05/0.183 | 26.7 | 12 | 9726 | 7991 | 0.6001 | ABA | Moderate | 1.00 | 0.85 | Weak |

a. Includes only studies with two alleles.

b. Strength of epidemiological evidence: Strong (P<0.05), Moderate (0.05<P<0.10), Weak (P>0.10).
Gene (variant)	Cancer type (year)	Comparison	Ethnicity	OR (95% CI)	Publication bias/heterogeneity	F(%)	No. of studies	Sample size (cases/ control)	Number of test allele or genotype (calculated value according to MAF)	Maf	Venice criteriaa	Venice grade	Power OR of 1.5	FPRP values at prior probability of 0.001 at power OR of 1.5	Cumulative epidemiological evidenceb		
PARP-1 (rs1136410)	GC (2016)	C vs T	Asian	1.29 (1.11–1.49)	0.01	52	5	3889 (4292/4600)	2949	0.3599	ACA	Weak	0.98	0.353	Weak		
PI3K (rs2274223)	GC (2014)	G vs A	Diverse	1.21 (1.08–1.36)	0.00001	88	11	37245 (1.3676/2356.9)	0.2985d	ACA	Weak	1.00	0.381	Weak			
PPARG (rs1801282)	GC (2015)	G vs C	Diverse	1.37 (1.11–1.45)	0.0202/0.909	0	5	1418 (546/872)	241	0.0728	BAA	Moderate	0.003	0.012	Strong		
PRKAA1 (rs13361707)	GC (2018)	C vs T	Diverse	1.26 (1.09–1.44)	0.574/0.01	76	4	33026 (1.4615/18143)	33026	0.3703	ACA	Weak	1.00	0.000	Moderate		
PSCA (rs2976392)	GC (2017)	A vs G	Diverse	1.24 (1.08–1.41)	0.842/0.0000	86	13	35616	35616	0.3855	ACA	Weak	1.00	0.002	Moderate		
TGF-β1 (rs1800470)	GC (2015)	C vs T	Diverse	1.38 (1.11–1.73)	0.015	87	11	5703 (2730/2973)	5435	0.4601	ACA	Weak	0.765	0.872	Weak		
TLR4 (rs4986790)	GC (2014)	G vs A	Diverse	1.64 (1.37–1.95)	0.322/0.065	42	6	5321 (1.888/3433)	391	0.0501	BBA	Moderate	0.156	0.000	Strong		
TLR4 (rs4986791)	GC (2014)	T vs C	Diverse	1.36 (1.08–1.72)	0.365/0.219	25	3	4128 (1.304/2824)	373	0.0439	BBA	Moderate	0.793	0.928	Weak		
TNF-α (rs1800629)	GC (2014)	A vs G	Diverse	1.15 (1.07–1.30)	0.015	39	32	19128 (7003/12119)	5095	0.1027	ABA	Moderate	1.00	0.447	Weak		
TNF-α (rs1799724)	GC (2016)	T vs C	Diverse	1.12 (1.01–1.25)	0.06/0.46	0	9	5089 (1.870/3.219)	1828	0.1741	AAC	Weak	1.00	0.977	Weak		
TNF-α (rs361525)	GC (2013)	A vs G	Diverse	1.32 (1.02–1.72)	0.002	59	15	7795 (Na/Na)	7795	0.669d	XCA	Na	Na	Na	Weak		
XRCC1 (rs1799782)	GC (2012)	Recessive	Diverse	1.31 (1.04–1.65)	0.40/0.101c	40	9	5652 (2.124/3.528)	242	0.1977	BBA	Moderate	0.875	0.961	Weak		
BRCA1 (rs799917)	GC (2018)	T vs C	Asian	0.76 (0.65–0.88)	0.934/Na	1	1	1460 (660/800)	1066	0.3944	AXA	Na	Na	Na	Weak		
Gene	Cancer type (year)	Comparison Ethnicity	Gene (variant)	OR (95% CI)	Publication bias/heterogeneity I²(%)	No. of studies	Sample size (cases/controls)	Number of test allele or genotype (calculated value according to MAF)	Maf	Venice criteria a	Venice grade	Power OR of 1.5	FPPR values at prior probability of 0.001 at power OR of 1.5	Cumulative epidemiological evidence b			
--------	-------------------	---------------------	----------------	---------------	-------------------------------------	---------------	-----------------------------	---	-----	-----------------	-------------	----------------	---	-------------------------------------			
CASP8	GC (2017) a b c d	Del vs Ins Diverse	ZBTB20 (rs2384129)	0.73 (0.62–0.86)	0c 3	1701 (616/1085)	1083	0.3645	AAA	Strong	0.861	0.163	Strong				
DNM3T3	GC (2016) a b c d	Dominant Asian	TIMP-2 (rs4072037)	0.727/0.000 c d	0c	3	3014	(1225/1789)	Na	XCD	Na	Na					
GSTM1	(null/present) (2017) a b c d	null vs present Diverse	MMP2 (rs243865)	0.725–0.857	0.000/0.000	546 70	28549	(11208/17341)	0.541	ACC	Weak	1.000	0.971	Moderate			
IL-10	(rs1050871)	T vs C Asian	MiR-34 (rs1995719)	0.79–0.99	0.70/0.18	28	5021	(1908/3053)	Na	(0.506–0.838)	Na	Na					
IL-10	(592A/C)	Recessive Asian	MUC1 (rs4072037)	0.001/0.0001	0.000/0.0000	0.62	5154	(1792/3335)	Na	(0.305–0.337)	0.189	Strong					
IL-10	(1082G>A)	A vs G Diverse	TIAL2 (rs1007203)	0.335–0.713	0.861	0.000	15860	0.7609	ACA	Weak	0.054	0.789	Weak				
MIR-34	GC (2012) a b c d	C vs T Asian	X RCC3 (rs615139)	0.506–0.838	0.87	1382	(616/691)	0.869	BAA	Moderate	0.938	0.496	Weak				
MMP2	(rs243865) (2013) a b c d	Dominant Diverse	ZBTB20 (rs941304)	0.643–0.893	0.677/0.843	0	2	1382	(616/691)	0.869	BAA	Moderate	0.938	0.496	Weak		
MUC1	(rs4072037) (2017) a b c d	G vs A Diverse	ZBTB20 (rs941304)	0.47–0.99	0.072/0.00001	84	8	1382	(616/691)	0.869	BAA	Moderate	0.938	0.496	Weak		
TMP-2	(300G/A) (2016) a b c d	A vs G Diverse	ZBTB20 (rs941304)	0.74–0.97	0.85	0.001	2738	(12373/15008)	0.148	ACA	Weak	1.000	0.941	Weak			
X RCC3	(rs615139) (2015) a b c d	Thr vs Met Asian	ZBTB20 (rs941304)	0.68–0.93	0.80	>0.05/0.034	0	4	1883	(948/935)	0.860	0.245	BAA	Moderate	0.991	0.787	Weak
ZBTB20	GC (2017) a b c d	G vs C Diverse	ZBTB20 (rs941304)	0.40–0.96	0.055/0.000	0.85	4	1883	(948/935)	0.860	0.245	BAA	Moderate	0.991	0.787	Weak	

Notes:
- Na: Not available.
- No: significant publication bias/heterogeneity was found.
- Diverse: two or more ethnicities were reported in the meta-analysis.
- A: recessive model.
- AA: additive model.
- T: dominant model.
- OR: odds ratio.
- **Publication bias/heterogeneity I²(%)**: The I² value indicates the percentage of the total variation across studies that is due to heterogeneity rather than chance.
- **No. of studies**: The number of studies included in the meta-analysis.
- **Sample size (cases/controls)**: The total number of cases and controls in the meta-analysis.
- **Number of test allele or genotype (calculated value according to MAF)**: The number of test alleles or genotypes and the calculated value according to the minor allele frequency (MAF).
- **Maf**: The minor allele frequency.
- **Venice criteria**: The grade of evidence according to the Venice criteria:
 - Weak: Evidence from a single study.
 - Moderate: Evidence from multiple studies.
 - Strong: Evidence from a combination of results from multiple studies.
- **Venice grade**: The grade of evidence according to the Venice criteria:
 - Weak: Evidence from a single study.
 - Moderate: Evidence from multiple studies.
 - Strong: Evidence from a combination of results from multiple studies.
- **Power OR of 1.5**: The power of observing an OR of 1.5.
- **FPPR values at prior probability of 0.001 at power OR of 1.5**: The False Positive Probability Rate (FPPR) values at a prior probability of 0.001 at power OR of 1.5.
- **Cumulative epidemiological evidence**: The cumulative evidence as graded by combination of results from the Venice criteria and FPPR.
 - Weak: Evidence from a single study.
 - Moderate: Evidence from multiple studies.
 - Strong: Evidence from a combination of results from multiple studies.

The information is calculated according to the data provided in the article since the article did not present (such as I², OR, publication bias and heterogeneity). The MAF is obtained from dbSNP database. The grade of C is given because the OR value is less than 1.15 and the association is not replicated by GWAS or GWAS meta-analysis.
and 0 Grade C. Evidence for association with GC risk was thereby considered strong for seven SNPs, moderate for 17 SNPs, and weak for 29 SNPs based on Venice criteria.

We then evaluated the probability of a true association with GC risk for the nominally significant variants by calculating their FPRP values. Associations with GC risk showed an FPRP value of less than 0.05 for 12 variants (GSTT1 null/presence, MDM2 rs2278744, PPARγ rs1801282, TLR4 rs4986790, IL-17F rs763780, HOTAIR rs920778, IL-17A rs2275913, PRKAA1 rs13361707, PSCA rs2294008, MMP1 rs1799750, ZBTB20 rs9841504, and GSTM1 null/present), 0.05–0.2 for 27 variants, and greater than 0.2 for the remaining 14 variants. Finally, nine variants on nine genes were rated as demonstrating strong cumulative epidemiological evidence of association with GC risk after combining Venice criteria and FPRP results, including APEI (rs1760944), DNMT1 (rs16999593), ERCC5 (rs751402), GSTT1 (null/presence), MDM2 (rs2278744), PPARγ (rs1801282), TLR4 (rs4986790), IL-17F (rs763780), and CASP8 (rs3834129). A moderate association with risk was found for 11 variants, and weak association for 33 variants. Eight variants in our study could not be graded because of significant differences between calculated and true amounts. Calculated amounts of less than 3,000 were not included for assessment in MAFs obtained from the dbSNP.

In five GWAS, 13 variants were significantly associated with GC risk (Table 2). Eight variants were significantly associated with an increased risk of GC. The opposite associations were found in five variants, all of which were regarded as significant following the FPRP assay. Venice criteria were not applicable to GWAS.

Table 2 Statistically significant variants from GWAS

PMID	Gene	Variant	Ethnicity	Year	OR (95% CI)	MAF*	P*	Sample size (cases/ control)	Power OR of 1.5	FPRP values at prior probability of 0.001 at power OR of 1.5	References	
26701879	ASH1L	rs80142782	Asian	2017	0.62	(0.56–0.69)	Na	15191 (5572/9619)	0.120	0.000	15	
26701879	MUC1	rs4072037	Asian	2017	0.74	(0.69–0.79)	Na	15191 (5572/9619)	0.996	0.000	15	
26701879	LOC 105379076	rs7712641	Asian	2017	0.84	(0.80–0.88)	Na	15191 (5572/9619)	1.000	0.000	15	
26701879	PSCA	rs2294008	Asian	2017	1.20	(1.15–1.28)	Na	15191 (5572/9619)	1.000	0.000	15	
26129866	PRKAA1	rs10074991	Asian	2016	0.80	(0.77–0.83)	Na	20014 (9758/10256)	1.000	0.000	14	
23103227	LRFN2	rs2494938	Asian	2012	1.18	(1.12–1.25)	0.26/0.23	4.91E-09	17721 (4332/13399)	1.000	0.000	13
22037551	ZBTB20	rs9841504	Asian	2011	0.76	(0.69–0.83)	0.11/0.15	1.760E-09	10176 (4294/5882)	0.998	0.000	76
22037551	PRKAA1	rs13361707	Asian	2011	1.41	(1.32–1.49)	0.57/0.48	7.60E-09	10176 (4294/5882)	0.915	0.000	76
20729852	PLCE1	rs2274223	Asian	2010	1.31	(1.19–1.43)	0.209/0.259	8.40E-09	5542 (3302/2240)	0.999	0.000	12
20729852	PLCE1	rs3765524	Asian	2010	1.31	(1.20–1.44)	0.207–0.259	5.32E-09	5542 (3302/2240)	0.997	0.000	12
20729852	PLCE1	rs3781264	Asian	2010	1.36	(1.23–1.50)	0.152/0.199	3.76E-09	5542 (3302/2240)	0.975	0.000	12
20729852	PLCE1	rs11187842	Asian	2010	1.34	(1.21–1.49)	0.147/0.190	2.53E-08	5542 (3302/2240)	0.981	0.000	12
20729852	PLCE1	rs753724	Asian	2010	1.34	(1.21–1.49)	0.147/0.190	1.74E-08	5542 (3302/2240)	0.981	0.000	12

Na: Not available. * Minor allele frequency (MAF) in case/control. b The P values are all less than 5.00E-08.
Non-significant associations in meta-analyses

We performed power analyses to determine the stability of associations. Based on our meta-analysis results, 29 variants were not significantly associated with GC risk\(^{24,25,27,32,33,38,63,77-93}\). Four variants with sample sizes greater than 10,000 were not significantly associated with GC; further investigations into these variants may not be necessary, including hOGG1 Ser326Cys\(^{85}\), IL-1B rs1143627\(^{38}\), miR-146a rs2910164\(^{90}\), and TGF-β1 rs1800469\(^{58}\). Certain variants presented relatively small sample sizes; as such, the evidence for non-association (Supplementary Table S2) was considered unstable.

Inconsistency among meta-analyses

Controversial results were obtained for 23 variants (Supplementary Table S3). Overall, 16 variants were found to be significantly associated with GC, as follows: Birc5 rs9904341, EGF rs4444903, ERCC5 rs2296147, IL-4 rs2243250, IL-8 251T/A, IL-17F rs763780, MMP7 rs11568818, MMP1 rs1799750, MMP9 -1562C > T, TGF-β1 rs1800470, TNF-α rs361525, DNMT3B rs1596986, GSTM1 null/active, IL-10 -592C > A, IL-10 1082G > A, and MMP2 rs243865. Seven variants were found to be non-significant: CDH1 rs16260, CDH1 +54T > C, hOGG1 Ser726Cys, IL-1B rs1143627, miR-146a rs2910164, miR-196a2 rs11614913, and TGF-β1 rs1800469.

Discussion

In this study, we collated epidemiological evidence demonstrating significant associations between genetic variants and GC risk. We extracted related useful information from meta-analyses and GWAS to support a comprehensive assessment for further evaluation. Using FPRP tests and Venice criteria, we evaluated the credibility of this cumulative epidemiological evidence of nominally significant associations. Nine variants on nine genes were rated as demonstrating strong evidence of association with GC risk, including APEI rs1760944, DNMT1 rs16999593, ERCC5 rs751402, GSTTI null/presence, MDM2 rs2278744, PPARG rs1801282, TLR4 rs4986790, IL-17F rs763780, and CASP8 rs3834129. Eleven variants presented moderate evidence of association with GC risk, and 33 variants presented weak evidence.

Apurinic/apyrimidinic endonuclease 1 (APEI), located on chromosome 14q11.2, participates in DNA base excision repair and has been associated with human carcinogenesis\(^{94-96}\). Our analysis provides strong evidence for an association between the G allele of the APEI polymorphism and GC risk via an additive model, with a 1.77-fold increased risk of GC in a diverse population with a total sample size of 2,113. This variant promotes the development of cancer by impeding DNA repair activity\(^{97}\). In our subgroup analysis, the mutant G allele also increased the risk of GC compared with the wild-type T allele. However, this study was performed exclusively on the Asian population. One reason that concentrated on single (Asian) population could be the small sample size of this meta-analysis, which made subgroup analyses challenging. Therefore, further investigations into this variant are necessary.

DNMT1, located on human chromosome 19p13.2, encodes a protein comprising 1,632 amino acids, which may be associated with the development of carcinoma\(^{98}\). Some studies have suggested that DNA methylation contributes to the progression of GC and that over-expression of DNMT1 may be associated with GC risk. The AKT-NFκB and STAT3 signaling pathways have been implicated in the over-expression of DNMT1, which may cause aberrant DNA methylation on tumor suppressor genes, thereby promoting the progression of GC\(^{99,100}\). There was strong evidence for an association between SNP rs16999593 and GC risk in a sample of 2,647 Asians; this polymorphism occurs on the C allele of DNMT1 (OR = 1.36, 95% CI = 1.15–1.60). This variant results in a histidine to arginine substitution at position 97 (His97Arg) of the translated sequence, which may disrupt the function of DNMT1, thus increasing susceptibility to GC. This study sample was limited to Asian populations, and involved a large proportion of Chinese patients. Further studies should investigate this polymorphism in other ethnic groups.

ERCC5, also known as XPG, is an endonuclease that may prevent carcinogenesis by excising damaged DNA during the DNA repair process\(^{101}\). A polymorphism (rs751402) is found in the promoter region of ERCC5 and controls its expression and function during transcription in healthy human cells\(^{102}\). The present study showed that this SNP in a dominant model was strongly associated with increased risk of GC; rs751402, which contains a C to T transition, may alter the transcription domain-associated repair capacity of ERCC5 that could account for its correlation with GC cancer risk in Asians (n = 9,814). However, all studies were performed on a single ethnic group (Asian), and we recommend expanding studies on this polymorphism to other populations.

Human CASP8, located on chromosome 2q33–q34, participates in cell cycle regulation\(^{103,104}\). This SNP (rs3834129), located in the promoter region of CASP8\(^{105}\),
leads to reduced expression of this gene. Impaired CASP8 expression can decrease T lymphocyte-induced cell death105. In the additive model, this SNP was strongly associated with GC, with a 1.14-fold decreased risk of GC in the sample population ($n = 1,701$). The variant inhibits CASP8 transcription by inactivating the binding site of transcription factor stimulatory protein 11105, potentially altering immune surveillance and decreasing the risk of GC. Although this SNP was only evaluated in case-control studies (not in GWAS), its association with GC risk in the meta-analysis was well established, with an overall schema of AAA. We assigned this SNP a rating of strong evidence because of an FPRP value of less than 0.05. This polymorphism could present a novel target for gene therapy of GC and lead to new drug developments against GC.

Five variants were upgraded from moderate to strong because of an FPRP value less than 0.05, including GSTT1 null/presence, MDM2 rs2278744, PPARG rs1801282, TLR4 rs4986790, and IL-17F rs763780. Homozygous deletion (null genotype) of GSTT1 (null/presence) leads to GST enzymatic inactivation and was associated with GC progression in a population of over 20,00035,106,107. Based on these inconsistent results, we assigned strong evidence for the association of this SNP with GC risk, even though this SNP was not evaluated by GWAS. Total samples for the four remaining SNPs were less than 8,000, with 5,400 for MDM2 rs2278744, 1,418 (546/872) for PPARG rs1801282, 5,321 for TLR4 rs4986790, and 7,346 for IL-17F rs763780. According to the results of the FPRP and Venice criteria evaluations, evidence for an association with GC for these four SNPs was not statistically convincing. These results are potentially due to the use of Venice criteria, which accounts for potential bias such as genotyping errors, phenotype misclassifications, and population stratification. Some of the SNPs were difficult to assess using a meta-analysis. It is possible that the results would be more convincing if different weights were assigned to the different categories included in the Venice criteria.

Three SNPs, ALDH2 rs671, FASL rs763110, and IL-4 rs2243250, were rated as being moderately associated with GC risk; all were downgraded from strong to moderate based on an FPRP greater than 0.2. The FPRP method considers the P value, prior probability, and statistical power of the test; as we calculated FPRP at a prior probability of 0.001 and used the statistical power to detect an odds ratio of 1.5 for alleles with an elevated risk in FPRP calculations, some otherwise significant associations may have been excluded. Previous studies using different prior probabilities have classified their results as more noteworthy. Further investigations on these three variants may be necessary to analyze their associations in greater depth.

Seven variants (HOTAIR rs920778, IL-17A rs2275913, PRKAA1 rs13361707, PSCA rs2294008, MMP1 rs1799750, ZBTB20 rs9841504, and GSTM1 null/present) were rated as being moderately associated with GC risk, after being upgraded from weak to moderate based on their FPRP values (< 0.05). Among these variants, rs13361707 on PRKAA1, rs2294008 on PSCA, and rs9841504 on ZBTB20 were evaluated by meta-analysis and GWAS. A high degree of heterogeneity may explain how all three variants were graded “ACA” overall; these variants were designated as having moderate associations with GC. Two SNPs (rs13361707 and rs2294008) increased GC risk by 1.34- and 1.26-fold in the overall study population, respectively. No statistical data were presented for ethnicity subgroups; which could explain the heterogeneity in the data. We recommend subdividing populations by ethnicity to identify potential differences in the association between these two variants and GC. The variant rs9841504 was associated with a 1.26-fold decreased risk of GC in the overall population based on a total sample size of 15,694; this sample included a large number of Asian individuals but relatively few individuals of other ethnicities. We found stronger evidence to support an association for this variant in the Asian population based on the large sample size, but not in the smaller mixed-ethnicity group. While ethnicity may be one factor affecting heterogeneity, other factors such as methodology, GC subtypes, and environmental factors may also account for variation in the data. Further investigations of this and two further variants (MMP1 rs1799750 and HOTAIR rs920778) are necessary, due to a lack of power in the smaller sample sizes.

Twenty-nine variants were not significantly associated with GC risk, including eight variants on five genes and two miRNAs in a sample of approximately 4,000 patients, at approximately 95% power to detect an OR of 1.15 in an additive model for a variant with MAF of 20%. Most of the MAFs of those eight variants exceeded 0.2, despite sample sizes greater than 4,000. We can therefore conclude, that these eight variants are unlikely to be associated with GC (Supplementary Table S4). It is probable that further investigations evaluating these eight variants will not yield meaningful results with regards to GC.

Of the remaining variants, 23 presented inconsistent associations with GC risk, 16 variants were nominally associated with GC risk, and seven variants were conclusively not associated with GC risk. Many studies analyzing the same SNP from this group yielded inconsistent results, due to variation in sample size, selection of association models, and
ethnicity. If the same genetic variant was reported in more than one article and the results were not consistent, we selected the most recently published meta-analysis to obtain the highest number or most integrated participants. When selecting association models, the additive one was the model of choice; others were employed only when the additive model was unusable. We extracted information from subgroup analyses based on ethnicity and found that some results for the same variant differed by ethnicity, which may have contributed to inconsistency in the results (Supplementary Table S5). Of note, we found that all GWAS and most of the meta-analyses included in our review were performed in Asian populations. Approximately 40% of all patients with GC worldwide are Asians, with a high proportion found in China. Studies in western populations performed with smaller sample sizes may exist but were not included in our study because of low statistical power. Additional studies on other ethnicities with larger sample groups are strongly recommended for the future.

Certain limitations apply to this report. Although we performed a comprehensive literature search, it is possible that some articles may have been missed. Variability in sample size was found among different studies; smaller sizes may have affected the credibility of the data. We evaluated data extracted from a single source, which may have introduced a critical bias. Finally, we only evaluated the susceptibility to, and incidences of association between genetic variants and GC risk; the involvement of genetic polymorphisms as they contribute to tumor progression, metastasis, and drug resistance in GC were not assessed due to a lack of data or information. Despite these limitations, we believe that our study, which provides an updated summary and evaluation of existing literature on the genetic predisposition to GC, will be of value in informing future genetic studies.

This paper evaluated the cumulative epidemiological evidence of significant associations between genetic variants and GC risk by combining Venice criteria and a FPRP assay. Nine SNPs presented strong evidence for an association with GC, of which five variants on five genes were upgraded from moderate to strong evidence based on their FPRP values, and should be further assessed in future studies. If these nine variants are confirmed to be associated with GC risk, they may explain the partial effect of the genetic variant on GC risk. In summary, our study summarizes current literature on the genetic architecture of GC susceptibility, and provides useful data for designing future studies aiming to assess genetic factors for GC risk.

Acknowledgements

Part of the suggestion for the discussion on statistics and proofreading of English grammar were provided by Dr. Shengping Hou (The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, Chongqing Key Laboratory of Ophthalmology, Chongqing, China).

Conflicts of interest statement

No potential conflicts of interest are disclosed.

References

1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015; 65: 87-108.
2. Xu LM, Wu W, Cheng GL, Qian MJ, Hu KW, Yin GJ, et al. Enhancement of proliferation and invasion of gastric cancer cell by KDM5C via decrease in p53 expression. Technol Cancer Res Treat. 2017; 16: 141-9.
3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016; 66: 7-30.
4. Woo HD, Lee J, Choi JJ, Kim CG, Lee JY, Kwon O, et al. Dietary flavonoids and gastric cancer risk in a Korean population. Nutrients. 2014; 6: 4961-73.
5. Chang J, Wei LX, Miao XP, Yu DK, Tan W, Zhang XM, et al. Two novel variants on 13q22.1 are associated with risk of esophageal squamous cell carcinoma. Cancer Epidemiol Biomarkers Prev. 2015; 24: 1774-80.
6. Chung CC, Chanock SJ. Current status of genome-wide association studies in cancer. Hum Genet. 2011; 130: 59-78.
7. Hardy J, Singleton A. Genomewide association studies and human disease. New Engl J Med. 2009; 360: 1759-68.
8. Bush WS, Moore JH. Genomewide association studies. PLoS Comput Biol. 2012; 8: e1002822.
9. Glass GV. Primary, secondary, and meta-analysis of research. Educ Res. 1976; 5: 3-8.
10. Lau J, Ioannidis JP, Schmid CH. Summing up evidence: one answer is not always enough. Lancet. 1998; 351: 123-7.
11. Dong LM, Potter JD, White E, Ulrich CM, Cardon LR, Peters U. Genetic susceptibility to cancer: the role of polymorphisms in candidate genes. JAMA. 2008; 299: 2423-36.
12. Abnet CC, Freedman ND, Hu N, Wang ZM, Yu K, Shu XO, et al. A shared susceptibility locus in PLCE1 at 10q23 for gastric adenocarcinoma and esophageal squamous cell carcinoma. Nat Genet. 2010; 42: 764-7.
13. Jin GF, MaHX, Wu C, Dai JC, Zhang RY, Shi YY, et al. Genetic variants at 6p21.1 and 7p15.3 are associated with risk of multiple cancers in Han Chinese. Am J Hum Genet. 2012; 91: 928-34.
14. Hu N, Wang ZM, Song X, Wei LX, Kim BS, Freedman ND, et al.
Genome-wide association study of gastric adenocarcinoma in Asia: a comparison of associations between cardia and non-cardia tumours. Gut. 2016; 65: 1611-8.

15. Wang ZM, Dai JC, Hu N, Miao XP, Anuet CC, Yang M, et al. Identification of new susceptibility loci for gastric non-cardia adenocarcinoma: pooled results from two Chinese genome-wide association studies. Gut. 2017; 66: 581-7.

16. Ioanidis JPA, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG. Replication validity of genetic association studies. Nat Genet. 2001; 29: 306-9.

17. Cochrane WG. The combination of estimates from different experiments. Biometrics. 1954; 10: 101-29.

18. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997; 315: 629-34.

19. Wacholder S, Chanock S, Garcia-Closas M, El Ghormli L, Rothman N. Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst. 2004; 96: 434-42.

20. Jiang Y, Zhang J, Wu Y, Wang J, Li L. Association between ALDH2 rs671 G>A polymorphism and gastric cancer susceptibility in Eastern Asia. Oncotarget. 2017; 8: 102401-12.

21. Dai ZJ, Shao YP, Kang HF, Tang W, Xu D, Zhao Y, et al. Relationship between apurinic endonuclease 1 Asp148Glu polymorphism and gastrointestinal cancer risk: an updated meta-analysis. World J Gastroenterol. 2015; 21: 5081-9.

22. Hu D, Lin XD, Zhang HJ, Zheng XW, Niu WQ. APEX nuclease (multifunctional DNA repair enzyme) 1 gene Asp148Glu polymorphism and cancer risk: a meta-analysis involving 58 articles and 48903 participants. PLoS One. 2013; 8: e83527.

23. Liu Y, Li L, Qi HY, Gao Y, Liu S, Xu CA. Survivin -31G>C polymorphism and gastrointestinal tract cancer risk: a meta-analysis. PLoS One. 2013; 8: e54081.

24. Li F, Liu YL, Fu T, Tong WD, Zhang AP. Associations of three common polymorphisms in CD95 and CD95L promoter regions with gastric cancer risk. Tumor Biol. 2013; 34: 2293-8.

25. Yan WF, Sun PC, Nie CF, Wu G. Cyclooxygenase-2 polymorphisms were associated with the risk of gastric cancer: evidence from a meta-analysis based on case-control studies. Tumor Biol. 2013; 34: 3232-30.

26. Zhang XW, Li J, Jiang YX, Chen YX. Association between COX-2 -1195G>A polymorphism and gastrointestinal cancer risk: a meta-analysis. World J Gastroenterol. 2017; 23: 2234-45.

27. Li H, Liu JW, Sun LP, Yuan Y. A meta-analysis of the association between DNMT1 Polymorphisms and cancer risk. Biomed Res Int. 2017; 2017: 3971259.

28. Li HJ, Li W, Liu SS, Zong SQ, Wang WB, Ren JL, et al. DNMT1, DNMT3A and DNMT3B polymorphisms associated with gastric cancer risk: a systematic review and meta-analysis. EBioMedicine. 2016; 13: 125-31.

29. Wu SJ, Jiang SY, Wu J, Xiong GL. Association between EGF +61 A>G polymorphism and gastric cancer risk: a meta-analysis. J Huazhong Univ Sci Technol Med Sci. 2015; 35: 327-32.

30. Xue HP, Lu Y, Lin B, Chen JX, Tang F, Huang G. The effect of XPD/ERCC2 polymorphisms on gastric cancer risk among different ethnicities: a systematic review and meta-analysis. PLoS One. 2012; 7: e43431.

31. Zhou HX, Shi TY, Zhang WW, Li QW, Zhu JH, He J, et al. XPG gene rs751402 C>T polymorphism and cancer risk: evidence from 22 publications. Oncotarget. 2017; 8: 53613-22.

32. Namazi A, Forat-Yazdi M, Jafari MA, Foroughi E, Farahnak S, Nasiri R, et al. Association between polymorphisms of ERCC5 gene and susceptibility to gastric cancer: a systematic review and meta-analysis. Asian Pac J Cancer Prev. 2017; 18: 2611-7.

33. Tian J, Pan F, Li J, Ma Y, Cen H, Pan HF, et al. Association between the FAS/FASL polymorphisms and gastric cancer risk: a meta-analysis. Asian Pac J Cancer Prev. 2012; 13: 945-51.

34. Bao LD, Niu JX, Song H, Wang Y, Ma RL, Ren XH, et al. Association between the GSTP1 codon 105 polymorphism and gastric cancer risk: an updated meta-analysis. Asian Pac J Cancer Prev. 2012; 13: 3687-93.

35. Meng YB, Cai XY, Lu WQ, Yang LH, Gan TQ, Drummen GPC. Meta-analysis of the association of glutathione S-transferase T1 null/presence gene polymorphism with the risk of gastric cancer. Mol Biol Rep. 2014; 41: 639-49.

36. Li S, Zheng Y, Tian T, Wang M, Liu XH, Liu K, et al. Pooling-analysis on hMLH1 polymorphisms and cancer risk: evidence based on 31,484 cancer cases and 45,494 cancer-free controls. Oncotarget. 2017; 8: 93063-78.

37. Zhang J, Liu X, You LH, Zhou RZ. Significant association between long non-coding RNA HOTAIR polymorphisms and cancer susceptibility: a meta-analysis. Onco Targets Ther. 2016; 9: 3335-43.

38. Ge YT, Jiang RZ, Zhang M, Wang H, Zhang L, Tang J, et al. Analyzing 37,900 samples shows significant association between HOTAIR polymorphisms and cancer susceptibility: a meta-analysis. Int J Biol Markers. 2017; 32: 231-42.

39. Park MJ, Hyun MH, Yang JP, Yoon JM, Park S. Effects of the interleukin-1β-511 C/T gene polymorphism on the risk of gastric cancer in the context of the relationship between race and H. pylori infection: a meta-analysis of 20,000 subjects. Mol Biol Rep. 2015; 42: 119-34.

40. Jia YX, Xie XC, Shi XH, Li SW. Associations of common IL-4 gene polymorphisms with cancer risk: a meta-analysis. Mol Med Rep. 2017; 16: 1927-45.

41. Zhang YF, Zeng XL, Lu HW, Li YM, Ji H. Association between the GSTP1 codon 105 polymorphism and gastric cancer risk: an updated meta-analysis. Onco Targets Ther. 2019; 12: 3566-79.
43. Dai ZM, Zhang TS, Lin S, Zhang WG, Liu J, Cao XM, et al. Role of IL-17A rs2275913 and IL-17F rs763780 polymorphisms in risk of cancer development: an updated meta-analysis. Sci Rep. 2016; 6: 20439.

44. Peng QS, Xu Y. Association between promoter polymorphisms of matrix metalloproteinase-1 and risk of gastric cancer. Onco Targets Ther. 2015; 8: 2519-26.

45. Chen WF, Wu QL, Ren HB. Meta-analysis of associations between MDM2 SNP309 polymorphism and gastric cancer risk. Biomed Rep. 2014; 2: 105-11.

46. Yang TF, Guo L, Wang Q. Meta-analysis of associations between four polymorphisms in the matrix metalloproteinases gene and gastric cancer risk. Asian Pac J Cancer Prev. 2014; 15: 1263-7.

47. Peng ZH, Jia JH, Gong WJ, Gao XH, Ma PR, Jin ZC, et al. The association of matrix metalloproteinase-9 promoter polymorphisms with gastric cancer risk: a meta-analysis. Oncotarget. 2017; 8: 99024-32.

48. Wu SS, Yuan WY, Shen Y, Lu X, Li Y, Tian T, et al. The miR-608 rs4919510 polymorphism may modify cancer susceptibility based on type. Tumour Biol. 2017;.

49. Xu W, Cheng YL, Zhu HR. Evaluation of an association of blood homocysteine levels with gastric cancer risk from 27 case-control studies. Medicine (Baltimore). 2016; 95: e3700.

50. Hu WG, Hu JJ, Cai W, Zheng MH, Zang L, Wang ZT, et al. The NAD(P)H: quinone oxidoreductase 1 (NQO1) gene 609 C>T polymorphism is associated with gastric cancer risk: evidence from a case-control study and a meta-analysis. Asian Pac J Cancer Prev. 2014; 15: 2363-7.

51. Tang WR, Zhou XH, Nie SJ, Yang Z, Zhu H, Wu XM, et al. Association of p53 Arg72Pro polymorphism with gastric cancer: a meta-analysis. Biomarkers. 2012; 17: 597-603.

52. Hu Y, Zhou M, Li K, Zhang K, Kong XQ, Zheng YM, et al. Two DNA repair gene polymorphisms on the risk of gastrointestinal cancers: a meta-analysis. Tumor Biol. 2014; 35: 1715-25.

53. Liu XY, Zhang XW, Wang ZC, Chang JJ, Wu Z, Zhang Z, et al. Genetic polymorphism of the phospholipase C epsilon 1 gene and risk of gastric cancer. Chin Med J (Engl). 2014; 127: 2511-7.

54. Wang YF, Chen Y, Jiang HP, Tang WF, Kang MQ, Liu TY, et al. Peroxisome proliferator-activated receptor gamma (PPARG) rs1801282 C>G polymorphism is associated with cancer susceptibility in Asians: an updated meta-analysis. Int J Clin Exp Med. 2015; 8: 12661-73.

55. Cai J, Ye Q, Luo S, Zhuang Z, He K, Zhuo ZJ, et al. CASP8 -652 6N insertion/deletion polymorphism and overall cancer risk: evidence from 49 studies. Oncotarget. 2017; 8: 56780-90.

56. Wang M, Wang XJ, Ma YF, Ma XB, Dai ZM, Lv Y, et al. PSCA rs2294008 C>T polymorphism contributes to gastric and bladder cancer risk. Ther Clin Risk Manage. 2015; 11: 237-45.

57. Qin ZQ, Tang JY, Li X, Yu YJ, Zhang CJ, Han P, et al. Association between PSCA gene polymorphisms and the risk of cancer: an updated meta-analysis and trial sequential analysis. Oncotarget. 2017; 8: 51766-78.

58. Gu YY, Wang H, Wang S. TGF-J1 C-509T and T869C polymorphisms and cancer risk: a meta-analysis. Int J Clin Exp Med. 2015; 8: 17932-40.

59. Zhou Q, Wang CC, Wang XF, Wu XY, Zhu ZG, Liu BY, et al. Association between TLR4 (+896A/G and +1196C/T) polymorphisms and gastric cancer risk: an updated meta-analysis. PLoS One. 2014; 9: e109605.

60. Yang JP, Hyun MH, Yoon JM, Park MJ, Kim D, Park S. Association between TNF-α -308 G/A gene polymorphism and gastric cancer risk: a systematic review and meta-analysis. Cytokine. 2014; 70: 104-14.

61. Yang P, Wang JE, Yu MX, Li ZQ. Tumor necrosis factor-α T-857C (rs1799724) polymorphism and risk of cancers: a meta-analysis. Dis Markers. 2016; 2016: 4580323.

62. Yu JY, Li L, Ma H, Liu K, Cheng XR, Li YL, et al. Tumor necrosis factor-α 238 GA polymorphism and gastric cancer risk: a meta-analysis. Tumor Biol. 2013; 34: 3859-63.

63. Chen B, Zhou Y, Yang P, Wu XT. Polymorphisms of XRCC1 and gastric cancer susceptibility: a meta-analysis. Mol Biol Rep. 2012; 39: 1305-13.

64. Xu GP, Zhao Q, Wang D, Xie WY, Zhang LJ, Zhou H, et al. The association between BRCA1 gene polymorphism and cancer risk: a meta-analysis. Oncotarget. 2018; 9: 8681-94.

65. Cai JR, Ye QJ, Luo SL, Zhuang Z, He K, Zhuo ZJ, et al. CASP8 -652 6N insertion/deletion polymorphism and overall cancer risk: evidence from 49 studies. Oncotarget. 2017; 8: 56780-90.

66. Ribeiro RX, Nascimento CILL, Silva AMTC. Genotype association GSTM1 null and gastric cancer: evidence-based meta-analysis. Arq Gastroenterol. 2017; 54: 101-8.

67. Yu ZB, Liu Q, Huang C, Wu MH, Li GY. The interleukin 10 -819C/T polymorphism and cancer risk: a HuGE review and meta-analysis of 73 studies including 15,942 cases and 22,336 controls. OMICS. 2013; 17: 200-14.

68. Xue HP, Wang YC, Lin B, An JF, Chen L, Chen JX, et al. A meta-analysis of interleukin-10 -592 promoter polymorphism associated with gastric cancer risk. PLoS One. 2012; 7: e39868.

69. Pan F, Tian J, Pan YY, Zhang Y. Association of IL-10-1082 promoter polymorphism with susceptibility to gastric cancer: evidence from 22 case-control studies. Mol Biol Rep. 2012; 39: 7143-54.

70. Li H, Diao SL, Li JS, Ma BX, Yuan SH. An updated meta-analysis of 23 case-control studies on the association between mir-34b/c polymorphism and cancer risk. Oncotarget. 2017; 8: 28888-96.

71. Li XY, Qu LX, Zhong Y, Zhao YJ, Chen HY, Daru L. Association between promoters polymorphisms of matrix metalloproteinases and risk of digestive cancers: a meta-analysis. J Cancer Res Clin Oncol. 2013; 139: 1433-47.

72. Ye Y, Yang C, Xu L, Fang DL. MUC1 rs4072037 polymorphism is associated with decreased risk of gastric cancer: a meta-analysis.
86. Ying HY, Yu BW, Yang Z, Yang SS, Bo LH, Shan XY, et al. *Interleukin-1B* 31 C>T polymorphism combined with *Helicobacter pylori*-modified gastric cancer susceptibility: evidence from 37 studies. J Cell Mol Med. 2016; 20: 526-36.

87. Yin YW, Sun QQ, Hu AM, Wang Q, Liu HL, Hou ZZ, et al. Associations between interleukin-6 gene -174C/G and -572C/G polymorphisms and the risk of gastric cancer: a meta-analysis. J Surg Oncol. 2012; 106: 987-93.

88. Li XF, Shen M, Cai JW, Zeng YQ, Li M, Yang GL, et al. Association of interleukin-17 gene polymorphisms and *Helicobacter pylori* infection with gastric cancer susceptibility: a cumulative and comprehensive meta-analysis. Int J Clin Exp Med. 2015; 8: 17623-33.

89. Chen MX, Fang WP, Wu XK, Bian SC, Chen GD, Lu LQ, et al. Distinct effects of rs895819 on risk of different cancers: an update meta-analysis. Oncotarget. 2017; 8: 75336-49.

90. Hao X, Xia LZ, Qu RY, Yang XL, Jiang M, Zhou BS. Association between miR-146a rs2910164 polymorphism and specific cancer susceptibility: an updated meta-analysis. Fam Cancer. 2018; 17: 459-68.

91. Ni Q, Ji AL, Yin JF, Wang XJ, Liu XN. Effects of two common polymorphisms rs2910164 in miR-146a and rs11614913 in miR-196a2 on gastric cancer susceptibility. Gastroenterol Res Pract. 2015; 2015: 764163.

92. Xia LZ, Liu Y, Xu XZ, Jiang PC, Ma G, Bu XF, et al. Methylene tetrahydrofolate reductase C677T and A1298C polymorphisms and gastric cancer susceptibility. World J Gastroenterol. 2014; 20: 11429-38.

93. Liu H, Wang SC, Huang C. VEGFA+936C/T and -634C/G polymorphisms and gastric cancer risk: a meta-analysis. Asian Pac J Cancer Prev. 2011; 12: 1979-83.

94. Li MX, Wilson III DM. Human apurinic/apyrimidinic endonuclease 1. Antioxid Redox Signal. 2014; 20: 678-707.

95. Tell G, Damante G, Caldwell D, Kelley MR. The intracellular localization of APE1/Ref-1: more than a passive phenomenon? Antioxid Redox Signal. 2005; 7: 367-84.

96. Tell G, Fantini D, Quadrifoglio F. Understanding different functions of mammalian AP endonuclease (APE1) as a promising tool for cancer treatment. Cell Mol Life Sci. 2010; 67: 3589-608.

97. Dai ZJ, Wang XJ, Kang AJ, Ma XB, Min WL, Lin S, et al. Association between APE1 single nucleotide polymorphism (rs1760944) and cancer risk: a meta-analysis based on 6,419 cancer cases and 6,781 case-free controls. J Cancer. 2014; 5: 253-9.

98. Turek-Plewa J, Jagodziński PP. The role of mammalian DNA methyltransferases in the regulation of gene expression. Cell Mol Biol Lett. 2005; 10: 631-647.

99. Zhang BG, Hu L, Zang MD, Wang HX, Zhao W, Li JF, et al. Lack of *CDH1*-160C>A gene polymorphism is an ethnicity-dependent risk factor for gastric cancer. Cytokine. 2011; 55: 266-73.

100. Cheng SD, Wang LY, Wang L, Wang ZT. Association of *XRCC3* gene rs861539 polymorphism with gastric cancer risk: evidence from a case-control study and a meta-analysis. Int J Clin Exp Pathol. 2015; 8: 1911-9.

101. Shi JZ, Li WZ, Ding XP. Assessment of the association between ZBTB20 rs9841504 polymorphism and gastric and esophageal cancer susceptibility: a meta-analysis. Int J Biol Markers. 2017; 32: 96-101.
Blood. 2006; 108: 1058-64.

101. Clarkson SG. The XPG story. Biochimie. 2003; 85: 1113-21.

102. Blomquist TM, Crawford EL, Willey JC. Cis-acting genetic variation at an E2F1/YY1 response site and putative p53 site is associated with altered allele-specific expression of ERCC5 (XPG) transcript in normal human bronchial epithelium. Carcinogenesis. 2010; 31: 1242-50.

103. Grenet J, Teitz T, Wei T, Valentine V, Kidd VJ. Structure and chromosome localization of the human CASP8 gene. Gene. 1999; 226: 225-32.

104. Ho PK, Hawkins CJ. Mammalian initiator apoptotic caspases. FEBS J. 2005; 272: 5436-53.

105. Sun T, Gao Y, Tan W, Ma SF, Shi YK, Yao JR, et al. A six-nucleotide insertion-deletion polymorphism in the CASP8 promoter is associated with susceptibility to multiple cancers. Nat Genet. 2007; 39: 605-13.

106. Hayes JD, Strange RC. Glutathione S-transferase polymorphisms and their biological consequences. Pharmacology. 2000; 61: 154-66.

107. Strange RC, Spiteri MA, Ramachandran S, Fryer AA. Glutathione-S-transferase family of enzymes. Mutat Res. 2001; 482: 21-6.

Cite this article as: Tian J, Liu G, Zuo C, Liu C, He W, Chen H. Genetic polymorphisms and gastric cancer risk: a comprehensive review synopsis from meta-analysis and genome-wide association studies. Cancer Biol Med. 2019; 16: 361-76. doi: 10.20892/j.issn.2095-3941.2018.0290
Supplementary materials

Table S1 The complete data structure of genetic polymorphism study

Genotype type	Case group	Control group
AA	a_n	d_n
AB	b_n	e_n
BB	c_n	f_n

AA:Wild homozygous AB: Heterozygous mutant BB: Mutant homozygous n: indicating the N_n study. For a SNP, two alleles, A and B, could be presented. Specifically, A was considered as wild type, meanwhile, B was considered mutant type. Therefore, there may be three genotypes, AA, AB, BB, respectively, in population. Suppose there were three genotypes of the subjects, we could assign a, b, c to AA, AB, BB in case group, and d, e, f to AA, AB, BB in control group, respectively. The table above could offer additional explanation. In meta-analysis for SNPs, polygenic model was used to decrease probabilities of type I error. The following genetic models may be used in our study: 1) Additive model (i.e. B vs. A); 2) Dominant model (BB+BA vs. AA); 3) Recessive model (BB vs. BA+AA); 4) Homozygous model (BB vs. AA). Specifically, the additive model was used first, and the rest models were also used when additive model was not usable.

Table S2 Non-significant association in meta-analysis

PMID	Gene (variant)	Cancer type	Year	Comparison	Ethnicity	OR (95% CI)	Publication bias/ heterogeneity	I² (%)	No. of studies	Cases/ control	Maf	
25154002	ACE1 (rs4646994)	GC	2015	DD+DI vs II	Diverse	1.06 (0.92–1.21)	0.791/0.317	15.1	6	4262	(1311/2951)	0.3746
27623072	CCND1 (rs603965)	GC	2016	A vs G	Diverse	1.07 (0.88–1.30)	>0.05/<0.0001	77	9	3986	(1813/2173)	0.512
24978812	CD14 (rs2569190)	GC	2014	Dominant	Diverse	0.99 (0.77–1.26)	0.144/0.005	63	12	51304	(2968/2336)	0.4991
23681795	CD95L (rs763110)	GC	2013	Dominant	Diverse	1.02 (0.83–1.25)	No/Na	Na	8	4558	(NA/NA)	0.4696*
23681795	CD95 (rs1800682)	GC	2013	Dominant	Diverse	1.00 (0.87–1.15)	Na/Na	Na	8	3967	(NA/NA)	0.4534*
21570316	CDH1 (-616 G>C)	GC	2011	Recessive	Diverse	1.27 (0.86–1.88)	Na/Na	Na	3	1962	(565/1397)	0.2466
25599647	CDH1 (rs16260)	GC	2015	AA vs CC	Diverse	1.19 (0.89–1.58)	0.323/0.001	55	22	9679	(4218/9679)	0.2545
21570316	CDH1 (+54 T>C)	GC	2011	Recessive	Diverse	1.00 (0.75–1.34)	Na/Na	Na	5	2280	(996/1284)	0.2667
23775011	COX-2 (−587 G>A)	GC	2013	A vs G	Diverse	0.56 (0.19–1.70)	Na/>0.01	Na	3	3585	(885/2700)	0.0313
24443269	CYP1A1 (rs646903)	GC	2014	Dominant	Diverse	0.950 (0.800–1.128)	0.017/0.163	30.7	10	3460	(923/2537)	0.2237
24443269	CYP1A1 (rs1048943)	GC	2014	Dominant	Diverse	0.936 (0.786–1.114)	0.113/0.876	0	8	4773	(1754/3019)	0.1577
27284439	CYP2E1 (RsaI/PstI)	GC	2016	C2 vs C1	Diverse	1.02 (0.86–1.19)	No/0.0001	61.4	26	9237	(3727/5510)	0.1529
27284439	CYP2E1 (Dral)	GC	2016	C vs D	Diverse	1.05 (0.91–1.20)	No/0.784	0	6	2595	(1225/1370)	0.1861
29332452	DNM3B (rs2424913)	GC	2017	T vs C	Asian	1.25 (0.89–1.76)	Na/0.81	0	5	3040	(1320/1720)	0.9706
28473984	DNM1 (rs2228611)	GC	2017	Dominant	Asian	1.02 (0.83–1.26)	0.505/0.618	0	3	1469	(652/817)	0.7173

Continued
PMID	Gene (variant)	Cancer type	Year	Comparison	Ethnicity	OR (95% CI)	Publication bias/heterogeneity	I² (%)	No. of studies	Cases/control	Maf
29072052	ERCC5 (rs2094258)	GC	2017	T vs C	Asian	1.076 (0.926–1.251)	0.234/<0.001	76.21	7	7989	0.3973
29072052	ERCC5 (rs1047768)	GC	2017	C vs T	Asian	0.95 (0.880–1.025)	0.301/0.074	50.13	6	6477	0.3415
22631677	FAS (rs1800682)	GC	2012	G vs A	Diverse	1.025 (0.913–1.151)	0.856/0.735	0	5	2523	0.416
28415729	hOGG1 (Ser326Cys)	GC	2017	C vs G	Diverse	1.02 (0.92–1.12)	0.344/0.046	40.6	15	10046	0.6283
26805397	IL-1B (rs1143627)	GC	2016	Dominant	Diverse	1.02 (0.91–1.15)	0.398/0.001	48.3	37	15088	0.4724*
22711691	IL-6 (rs1800795)	GC	2011	C vs G	Diverse	1.09 (0.76–1.53)	0.70/<0.00001	83	9	3598	0.3372
26770352	IL-17A (rs3748067)	GC	2015	T vs C	Asian	1.30 (0.84–2.03)	0.23/Na	92	5	4583	0.4144
29088869	MiR-27a (rs895819)	GC	2017	Dominant	Diverse	0.97 (0.72–1.31)	0.085/<0.001	91.2	8	8798	0.3638*
29127520	miR-146a (rs2910164)	GC	2017	C vs G	Diverse	0.984 (0.903–1.072)	>0.05/0.005	57.3	13	12773	0.5632
25983750	miR-196a2 (rs11614913)	GC	2015	C vs T	Diverse	1.25 (0.97–1.60)	present/Na	Na	9	9410	0.4862
25170232	MTHFR (rs1801131)	GC	2014	C vs A	Diverse	0.97 (0.83–1.14)	No/0.03	Na	13	5686	0.2134
26770387	TGF-β1 (rs1800469)	GC	2015	T vs C	Diverse	0.95 (0.86–1.03)	No/<0.01	82	31	28474	0.4097
22292637	VEGF (+936C>T)	GC	2011	T vs C	Diverse	1.08 (0.90–1.27)	Na/0.49	Na	9	5101	0.1739
21604176	XRCC1 (rs25487)	GC	2012	Recessive	Diverse	1.04 (0.89–1.21)	0.93/Na	Na	16	9279	0.3051

Na: Not available, No: significant publication bias/heterogeneity was not found, Diverse: two or more ethnicities were reported in the meta-analysis. *The MAF is obtained from dbSNP database.
Gene/PMID	Gene (variant)	Cancer type	Year	Comparison	Ethnicity	OR (95% CI)	Publication bias/ heterogeneity	P (%)	No. of studies	Cases/ control	Number of test allele or genotype	Maf
BIRC5-31G/C						2.88 (0.55–15.00)	0.525/Na	Na	3	707 (363/344)	Na (0–275)	0.3886^a
CDH1						1.75 (1.07–2.86)	0.948/0.053	Na^	4	1147 (583/564)	293	0.4752
CDH1						2.21 (1.06–4.64)	0.317/0.013	72.4	4	1275 (451/824)	Na (0–495)	0.3886^a
CDH1						1.03 (0.86–1.22)	0.114/0.005	Na^	15	6196 (2509/3687)	2909	0.2719
CDH1						1.16 (0.83–1.63)	0.606/0.004	Na^	14	6421 (3723/2698)	488	0.2732
CDH1						1.50 (1.03–2.19)	0.54/Na	Na^	17	8337 (3511/4826)	586	0.2582
CDH1						1.11 (0.95–1.30)	No/0.026	48.3	13	6412 (2722/3690)	Na	0.2356^b
DNMT3B						0.75 (0.30–1.88)	>0.05/0.00	91	2	1928 (706/1222)	356	0.0953
EGFR						0.74 (0.61–0.90)	Na/0.000	81	5	3014 (1225/1789)	Na	0.2762^b
EGFR						1.69 (1.36–2.10)	Na/0.48	0	3	1891 (769/1122)	3342	0.8614

Continued
Gene/PMID	Gene (variant)	Cancer type	Year	Comparison	Ethnicity	OR (95% CI)	Publication bias/heterogeneity	No. of studies	Cases/control	Number of test allele or genotype (calculated value according to MAF)	Maf
26072068	EGF 61A>G	GC	2015	G vs. A	Diverse	1.18 (1.00–1.39)	0.106/0.009 66.61 7	5194 (1992/3202)	6524	0.6071	
ERCC5	ERCC5 (rs2296147)	GC	2017	C vs. T	Asian	1.268 (1.049–1.532)	0.355/<0.001 82.38 5	7589 (3699/3890)	3205	0.2121	
GSTM1	GSTM1 (null/active)	GC	2010	null vs. active	Diverse	1.26 (1.14–1.39) Na*/<0.0001 53 49	20976 (7746/13230)	10977	0.2536		
hOGG1	hOGG1 (Ser326Cys)	GC	2012	Dominant	Diverse	0.91 (0.81–1.03) 0.005/0.24 22 11	6165 (2180/3985)	3435	0.3536		
IL-1B	IL-1B (rs1143627)	GC	2011	Recessive	Diverse	0.88 (0.80–0.97) No*/0.158 21.9 25	11211 (4392/6819)	Na (0–5296)	0.4724a		
IL-4	IL-4 (rs2243250)	GC	2013	T vs. C	Diverse	1.00 (0.84–1.19) 0.884/Na* 18	4226 (1813/2413)	3284	0.3174		
	IL-4 (rs2243250)	GC	2014	T vs. C	Diverse	0.94 (0.83–1.06) No*/0.49 8	4252 (2454/1978)	3390	0.4780		

Continued
Gene/PMID	Gene (variant)	Cancer type	Year	Comparison	Ethnicity	OR (95% CI)	Publication bias/heterogeneity	P(%)	No. of studies	Cases/control	Number of test allele or genotype (calculated value according to MAF)	Maf
27143935	IL-4 (rs2243250)	GC	2016	T vs. C	Diverse	1.05 (0.95–1.17)	0.57/0.51	0.11	11	5617 (2247/3370)	0.57/0.51	0.4470
28656227	IL-4 (rs2243250)	GC	2017	T vs. C	Diverse	1.15 (1.01–1.32)	0.28/0.21	0.7	7	3887 (1475/2412)	0.57/0.51	0.3178
19777350	IL-8 (251T/A)	GC	2010	AA vs. TT	Diverse	1.363 (1.199–1.527)	>0.1/<0.001	Na*	10	5700 (2195/3505)	Na	Na
20363644	IL-8 (251A/T)	GC	2010	TT+TA vs. AA	Diverse	0.88 (0.69–1.12)	0.23/<0.01	Na*	12	6905 (3012/3893)	Na	0.6115
21681427	IL-8 (251T/A)	GC	2012	AA+TA vs. TT	Diverse	1.17 (1.01–1.36)	>0.05/<0.0001	65	18	10722 (4274/6498)	53	0.4025
22279522	IL-8 (251A/T)	GC	2012	AA vs. TT	Diverse	1.32 (1.05–1.66)	0.03/0.001	66.7	17	6860 (3036/3824)	4190	0.3957
26885219	IL-8 (251A/T)	GC	2015	A vs. T	Diverse	1.16 (1.05–1.27)	>0.05/<0.0000001	66	26	13286 (5286/8000)	10933	0.4038
20087693	IL-10 (-592C>A)	GC	2011	CC+CA vs. AA	Diverse	1.16 (0.92–1.46)	0.63/Na*	Na*	12	6521 (2285/4236)	5302	0.6289
22859944	IL-10 (-592A/C)	GC	2012	recessive	Diverse	0.88 (0.74–1.05)	0.914/0.020	46	17	8729 (2999/5730)	2108	0.4333
23311038	IL-10 (1082G>A)	GC	2012	A vs. G	Diverse	0.489 (0.335–0.713)	0.961/0.000	94.9	22	10254 (4289/5965)	15860	0.7609
Gene/PMID | Gene (variant) | Cancer type | Year | Comparison | Ethnicity | OR (95% CI) | Publication bias/heterogeneity | P(%) | No. of studies | Cases/control | Number of test allele or genotype (calculated value according to MAF) | Maf |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 22335769 | IL-10 (rs243865) | GC | 2012 | Dominant | Diverse | 1.41 (1.13–1.76) | 0.249/0.000 | 72.9 | 20 | 10062 (3631/6431) | 4278 | 0.2862 |
| | | | | | Asian | 1.81 (1.44–2.27) | Na |
| | | | | | Caucasian | 1.01 (0.77–1.33) | Na |
| IL-17F | 24913709 | IL-17F (rs24606450) | GC | 2014 | C vs. T | Asian | 1.29 (1.13–1.47) | 0.018/0.320 | 12.3 | 3 | 3360 (1500/1860) | 1084 | 0.1371 |
| | 24965422 | IL-17F (rs23644699) | GC | 2014 | C vs. T | Asian | 1.29 (1.14–1.46) | 0.102/Na | 0 | 4 | 4122 (1760/2362) | 1269 | 0.1319 |
| | 25338088 | IL-17F (rs25983750) | GC | 2014 | Dominant | Asian | 1.30 (1.12–1.50) | Na/0.4 | 0 | 4 | 4122 (1760/2362) | 1269 | 0.1319 |
| | 25500254 | IL-17F (rs24528016) | GC | 2015 | C vs. T | Asian | 1.30 (1.15–1.47) | 0.860/0.528 | 0 | 5 | 4376 (1784/2592) | Na | 0.0935a |
| | 26770352 | IL-17F (rs2593882) | GC | 2015 | C vs. T | Asian | 1.08 (0.81–1.44) | 0.83/Na | 86.3 | 8 | 6693 (2917/3776) | 4944 | 0.337 |
| | 26843459 | IL-17F (rs763780) | GC | 2016 | C vs. T | Asian | 1.37 (1.25–1.51) | No/0.17 | 31 | 9 | 7346 (3244/4102) | 2187 | 0.1273 |
| miR-146a | 21947843 | miR-146a (rs29101664) | GC | 2012 | Dominant | Asian | 1.15 (0.88–1.50) | No/0.325 | 73 | 3 | 4077 (1439/2638) | 2498 | 0.3945 |
| | 25326754 | miR-146a (rs29101664) | GC | 2014 | C vs. G | Asian | 0.87 (0.81–0.93) | No/Na | 47.6 | 4 | 6346 (3003/3343) | 6543 | 0.5316 |
| | 25983750 | miR-146a (rs29101664) | GC | 2015 | Dominant | Diverse | 1.07 (0.914–1.155) | 0.355/0.000 | 72.5 | 9 | 11243 (4507/6736) | 10440 | 0.4463 |
| | 26337564 | miR-146a (rs29101664) | GC | 2015 | C vs. G | Diverse | 0.88 (0.80–0.97) | 0.481/0.12 | 36 | 9 | 11132 (4468/6844) | 8695 | 0.5595 |
| | 29127520 | miR-146a (rs29101664) | GC | 2017 | C vs. G | Diverse | 0.984 (0.903–1.072) | >0.05/0.005 | 57.3 | 13 | 12773 (5831/6942) | 14129 | 0.5632 |
| miR-196a2 | 23160898 | miR-196a2 (rs11614913) | GC | 2013 | CC vs. TT | Asian | 2.19 (1.23–3.91) | Na/0.07 | 68.5 | 2 | 1709 (782/927) | Na | 0.3327 |
| | 25983750 | miR-196a2 (rs11614913) | GC | 2015 | C vs. T | Diverse | 1.25 (0.97–1.60) | present/Na | Na | 9 | 9410 (3992/5418) | 9305 | 0.4862 |
| MMP2 | 23644699 | MMP2 (rs243865) | GC | 2013 | Dominant | Diverse | 0.68 (0.47–0.99) | 0.072/<0.00001 | 84 | 8 | 5154 (1792/3353) | 1298 | 0.1506 |
| | 24606450 | MMP2 (rs243865) | GC | 2014 | T vs. C | Diverse | 1.042 (0.496–2.186) | Na*/0.107 | 40.7 | 8 | 5770 (1926/3844) | 1468 | 0.1316 |
| MMP7 | 23644699 | MMP7 (rs11568818) | GC | 2013 | Dominant | Diverse | 1.49 (1.17–1.91) | 0.368/0.6 | 0 | 5 | 1999 (757/1242) | 547 | 0.1369 |

Continued
Gene/PMID	Gene (variant)	Cancer type	Year	Comparison	Ethnicity	OR (95% CI)	Publication bias/heterogeneity	I² (%)	No. of studies	Cases/control	Number of test allele or genotype (calculated value according to MAF)	Maf
23893803	MMP7 (rs11568818)	GC	2013	A vs. G	Diverse	0.91 (0.78–1.06)	Na/0.006	76	4	1891 (686/1205)	371	0.1025
24606450	MMP7 (rs11568818)	GC	2014	Recessive	Diverse	1.768 (1.153–2.712)	Na*0.54	0	5	2175 (701/1474)	606	0.1547
23725125	MMP7 (rs11568818)	GC	2013	Recessive	Diverse	1.13 (1.01–1.26)	Na/0.711	Na	6	2893 (1039/1854)	Na	0.3582b
MMP1												
23893803	MMP1 (rs1799750)	GC	2013	2G vs. 1G	Asian	1.03 (0.94–1.12)	Na/0.118	53.2	3	1412 (644/768)	2070	0.7356
24606450	MMP1 (rs1799750)	GC	2014	2G vs. 1G	Asian	0.927 (0.480–1.791)	Na*0.134	55.5	2	914 (398/516)	533	0.2926
26392779	MMP1 (rs1799750)	GC	2015	2G vs. 1G	Asian	1.05 (1.01–1.06)	0.964/0.101	45.7	6	2920 (1377/1543)	3952	0.664
MMP9												
24606450	MMP9 (-1562C>T)	GC	2014	T vs. C	Diverse	1.615 (0.872–2.991)	Na*0.847	0	4	2116 (636/1480)	693	0.1632
29228747	MMP9 (-1562C>T)	GC	2017	C vs. T	Diverse	1.150 (1.014–1.304)	>0.1/0.231	23.9	9	3555 (1345/2210)	Na	0.1552b
TGF-β1												
24254308	TGF-β1 (rs1800469)	GC	2014	Recessive	Diverse	1.23 (1.09–1.38)	No/0.13	35.7	10	6522 (2990/3532)	1623	0.4561
26770187	TGF-β1 (rs1800469)	GC	2015	T vs. C	Diverse	0.95 (0.86–1.03)	No/0.001	82	31	28474 (12940/15530)	22729	0.4097
TGF-β1												
24254308	TGF-β1 (rs1800470)	GC	2014	C vs. T	Diverse	1.11 (0.90–1.35)	No/Na*	Na*	6	4884 (2260/2624)	4676	0.4703
26770187	TGF-β1 (rs1800470)	GC	2015	C vs. T	Diverse	1.38 (1.11–1.73)	No/0.01	87	11	5703 (2730/2973)	5435	0.4601
TNF-α												
22748850	TNF-α (rs909253)	GC	2012	Dominant	Diverse	1.11 (0.93–1.36)	Na*0.001	Na*	16	8189 (2758/3411)	6498	0.5831
23900678	TNF-α (rs361525)	GC	2013	A vs. G	Diverse	1.32 (1.02–1.72)	No/0.002	59.2	15	7795 (Na/Na*)	Na	0.0609b

Na: Not available, No: significant publication bias/heterogeneity was not found, Diverse: two or more ethnicities were reported in the meta-analysis. aThe information is calculated according to the data provided in the article since the article did not present (such as I², OR, publication bias and heterogeneity) bThe MAF is obtained from dbSNP database.
Gene/PMID	Gene (variant)	Cancer type	Year	Comparison	Ethnicity	OR (95% CI)	No. of studies	The sample size is more than 4000	Maf	Power (%)	The value of power (%) if the MAF is 0.2	The value of power (%) if the MAF is 0.1
ACE1 (insertion/deletion)												
25154002	ACE1 (rs4646994)	GC	2015	DD+DI vs. II	Diverse	1.06 (0.92–1.21)	6	4262 (1311/2951)	0.3746	85.63	85.68	70.67
27623072	CCND1 (G870A)	GC	2016	A vs. G	Diverse	1.07 (0.88–1.30)	9	3986 (1813/2173)	0.512	99.28	95.01	77.79
24978812	CD14 (rs2569190)	GC	2014	Dominant	Diverse	0.99 (0.77–1.26)	12	5304 (2968/2336)	0.4991	78.82	85.68	70.67
CD95												
23681795	CD95L (rs763110)	GC	2013	Dominant	Diverse	1.02 (0.83–1.25)	8	4563 (Na/Na)	0.4696	78.96	85.68	70.67
CYP1A1												
24443269	CYP1A1 (rs1048943)	GC	2014	Dominant	Diverse	0.936 (0.786–1.114)	8	4773 (1754/3019)	0.1577	82.03	85.68	70.67
CYP2E1												
27284439	CYP2E1 (RsaI/PstI)	GC	2016	C2 vs. C1	Diverse	1.02 (0.86–1.19)	26	9237 (3727/5510)	0.1529	90.25	95.01	77.79
ERCC5												
29072052	ERCC5 (rs2094258)	GC	2017	T vs. C	Asian	1.076 (0.926–1.251)	7	7989 (3812/4177)	0.3973	99.16	95.01	77.79
ERCC5												
29072052	ERCC5 (rs1047768)	GC	2017	C vs. T	Asian	0.95 (0.880–1.025)	6	6477 (3064/3413)	0.3415	98.84	95.01	77.79
IL-17A												
26770352	IL-17A (rs3748067)	GC	2015	T vs. C	Asian	1.30 (0.84–2.03)	5	4583 (2160/2423)	0.4144	99.21	95.01	77.79
MiR-27a												

Continued
Gene/PMID	Gene (variant)	Cancertype	Year	Comparison	Ethnicity	OR (95% CI)	No. of studies	The sample size is more than 4000	Maf	Power (%)	The value of power (%) if the MAF is 0.2	The value of power (%) if the MAF is 0.1
29088869	MiR-27a (rs895819)	GC	2017	Dominant	Diverse	0.97 (0.72–1.31)	8	8798 (4016/4782)	0.3638a	86.08	85.68	70.67
MTHFR												
25170232	MTHFR (rs1801131)	GC	2014	C vs. A	Diverse	0.97 (0.83–1.14)	13	5686 (2007/3679)	0.2134	95.82	95.01	77.79
VEGF												
22292637	VEGF (+936C>T)	GC	2011	T vs. C	Diverse	1.08 (0.90–1.27)	9	5101 (2281/2820)	0.1739	92.84	95.01	77.79
XRCC1												
21604176	XRCC1 (rs25487)	GC	2012	Recessive	Diverse	1.04 (0.89–1.21)	16	9279 (3216/6063)	0.3051	46.33	24.4	9.86
CDH1												
25599647	CDH1 (rs16260)	GC	2015	AA vs. CC	Diverse	1.19 (0.89–1.58)	22	9679 (4218/9679)	0.2545	97.45	95.01	77.79
hOGG1												
28415729	hOGG1 (Ser326Cys)	GC	2017	C vs. G	Diverse	1.02 (0.92–1.12)	15	10046 (4024/6022)	0.6283	98.83	95.01	77.79
IL1B												
26805397	IL-1B (rs1143627)	GC	2016	Dominant	Diverse	1.02 (0.91–1.15)	37	15088 (6108/8980)	0.4724a	78.69	85.68	70.67
miR-146a												
29127520	miR-146a (rs2910164)	GC	2017	C vs. G	Diverse	0.984 (0.903–1.072)	13	12773 (5831/6942)	0.5632	99.17	95.01	77.79
miR-146a												
25983750	miR-196a2 (rs11614913)	GC	2015	C vs. T	Diverse	1.25 (0.97–1.60)	9	9410 (3992/5418)	0.4862	99.29	95.01	77.79
TGF-β1												
26770387	TGF-β1 (rs1800469)	GC	2015	T vs. C	Diverse	0.95 (0.86–1.03)	31	28474 (12940/15530)	0.4097	99.20	95.01	77.79
Gene/PMID	Gene (variant)	Cancertype	Year	Comparison	Ethnicity	OR (95% CI)	No. of studies	The sample size is more than 4000	Maf	Power (%)	The value of power (%) if the MAF is 0.2	The value of power (%) if the MAF is 0.1
-----------	----------------	-------------	------	------------	-----------	-------------	----------------	----------------------------------	-----	------------	-----------------------------------	-----------------------------------
CD95	CD95 (rs1800682)	GC	2013	Dominant	Diverse	1.00 (0.87–1.15)	8	3970 (Na/Na)	0.4543a	80.09	85.43	70.35
CDH1	CDH1 (-616 G>C)	GC	2011	CC vs. CG+GG	Diverse	1.27 (0.86–1.88)	3	1962 (565/1397)	0.2466	19.02	14.36	7.36
COX-2	COX-2 (-587 G>A)	GC	2013	A vs. G	Diverse	0.56 (0.19–1.70)	3	3585 (885/2700)	0.0313	32.49	92.7	73.23
CYP1A1	CYP1A1 (rs4646903)	GC	2014	Dominant	Diverse	0.950 (0.800–1.128)	10	3460 (923/2537)	0.2237	81.64	80.36	64.38
CYP2E1	CYP2E1 (DraI)	GC	2016	C vs. D	Diverse	1.05 (0.91–1.20)	6	2595 (1225/1370)	0.1861	80.81	82.8	59.34
DNMT3B	DNMT3B (rs2424913)	GC	2017	T vs. C	Asian	1.25 (0.89–1.76)	5	3040 (1320/1720)	0.9706	24.24	88.18	66.12
DNMT1	DNMT1 (rs2228611)	GC	2017	Dominant	Asian	1.02 (0.83–1.26)	3	1469 (652/817)	0.7173	16.94	44.99	32.93
FAS	FAS (rs1800682)	GC	2012	G vs. A	Diverse	1.025 (0.913–1.151)	5	2523 (1065/1458)	0.416	93.5	81.7	58.1
IL-6	IL-6 (rs1800795)	GC	2011	C vs. G	Diverse	1.09 (0.76–1.53)	9	3598 (1249/2349)	0.3372	97.94	92.79	73.39
CDH1	CDH1 (+54 T>C)	GC	2011	CC vs. CT+TT	Diverse	1.00 (0.75–1.34)	5	2280 (996/1284)	0.2667	23.93	15.92	7.75

aThe MAF is obtained from dbSNP database
PMID	Gene (variant)	Cancer type	Year	Comparison	Ethnicity	OR (95% CI)	Publication bias/ heterogeneity	I² (%)	No. of studies	Cases/ control
24077840	BIRC5 (rs9904341)	GC	2014	CC vs. GG	Asian	2.36 (0.28–20.27)	0.392/<0.001	83.8	2	603 (316/287)
24077840	BIRC5 (rs9904341)	GC	2014	CC vs. GG	European	2.33 (1.22–4.47)	Na/Na	Na	1	568 (88/480)
24077840	BIRC5 (rs9904341)	GC	2014	CC vs. GG	Mixed	1.18 (0.38–3.67)	Na/Na	Na	1	104 (47/57)
CDH1	CDH1 (rs16260)	GC	2015	AA vs. CC	Asian	0.92 (0.61–1.38)	0.323/0.008	Na	14	5724/3027
CDH1	CDH1 (rs16260)	GC	2015	AA vs. CC	Caucasian	1.25 (0.97–1.61)	0.323/0.106	Na	8	3729/2305
CDH1	CDH1 (+54 T>C)	GC	2011	CC vs. CT+TT	Asian	0.78 (0.52–1.16)	Na/Na	Na	3	2219/226
CDH1	CDH1 (+54 T>C)	GC	2011	CC vs. CT+TT	Caucasian	1.35 (0.87–2.08)	Na/Na	Na	2	446/226
EGF	EGF 61A>G (rs4444903)	GC	2015	G vs. A	Asian	1.23 (1.04–1.46)	0.106/0.028	61.48	6	3976/2218
EGF	EGF 61A>G (rs4444903)	GC	2015	G vs. A	Caucasian	0.91 (0.71–1.15)	Na/Na	Na	1	1155/948
GSTM1	GSTM1 (null/present)	GC	2017	null vs. present	Asian	0.736 (0.670–0.809)	Na/<0.0001	50	Na	Na
GSTM1	GSTM1 (null/present)	GC	2017	null vs. present	America	0.866 (0.549–1.364)	Na/<0.0292	5	Na	Na
GSTM1	GSTM1 (null/present)	GC	2017	null vs. present	Eurasia	0.671 (0.456–0.988)	Na/<0.6637	3	Na	Na
GSTM1	GSTM1 (null/present)	GC	2017	null vs. present	Europe	1.033 (0.873–1.222)	Na/<0.0189	12	Na	Na
hOGG1	hOGG1 (Ser326Cys)	GC	2017	C vs. G	Asian	0.98 (0.88–1.09)	No/0.121	38.8	8	6472/3680
hOGG1	hOGG1 (Ser326Cys)	GC	2017	C vs. G	Caucasian	1.08 (0.79–1.48)	No/0.052	61.2	4	2467/1647
hOGG1	hOGG1 (Ser326Cys)	GC	2017	C vs. G	Others	1.07 (0.84–1.37)	No/0.265	24.3	4	1107/695
IL1B	IL-1B (rs1143627)	GC	2016	Dominant	Asian	0.99 (0.85–1.15)	0.398/0.005	51.2	20	8518/4824
IL1B	IL-1B (rs1143627)	GC	2016	Dominant	Caucasian	1.08 (0.90–1.30)	0.398/0.036	41.8	17	6570/4156
IL-4	IL-4 (rs2243250)	GC	2017	C vs. T	Asian	1.07 (0.88–1.31)	0.837/0.089	58.6	3	1607/938

Continued
PMID	Gene (variant)	Cancer type	Year	Comparison	Ethnicity	OR (95% CI)	Publication bias/heterogeneity	I^2 (%)	No. of studies	Cases/ control
28656227	IL-4 (rs2243250)	GC	2017	C vs T	Caucasian	0.98 (0.82–1.17)	0.837/0.0707	61.1	3	2358 (686/1622)
28656227	IL-4 (rs2243250)	GC	2017	C vs T	Mixed	0.71 (0.47–1.06)	0.837/Na	Na	1	331 (122/209)
IL-8										
26885219	IL-8 (251A/T)	GC	2015	A vs T	Asian	1.23 (1.10–1.37)	>0.05/0.0005	61	17	8585 (3818/4767)
26885219	IL-8 (251A/T)	GC	2015	A vs T	European	1.01 (0.87–1.17)	>0.05/0.03	54	9	4701 (1468/2233)
IL-10										
22859944	IL-10 (-592A/C)	GC	2012	Recessive	Asian	0.81 (0.68–0.97)	0.914/0.163	31.8	9	4008 (1526/2482)
22859944	IL-10 (-592A/C)	GC	2012	Recessive	Caucasian	1.03 (0.64–1.65)	0.914/0.029	59.8	6	3872 (1240/2632)
IL-10										
23311038	IL-10 (1082G>A)	GC	2012	A vs G	Asian	0.651 (0.506–0.838)	Na	Na	Na	Na
23311038	IL-10 (1082G>A)	GC	2012	A vs G	Caucasian	0.365 (0.140–0.949)	Na	Na	Na	Na
miR-146a										
29127520	miR-146a (rs2910164)	GC	2017	C vs G	Asian	0.94 (0.81–1.09)	0.719/<0.0001	85.4	9	10146 (5056/5090)
29127520	miR-146a (rs2910164)	GC	2017	C vs G	Caucasian	0.85 (0.72–1.01)	0.719/0.864	0	4	2627 (775/1852)
miR-196a2										
25983750	miR-196a2 (rs11614913)	GC	2015	C vs T	Asian	1.08 (0.91–1.28)	0.015/<0.0001	83.6	7	8054 (3466/4588)
25983750	miR-196a2 (rs11614913)	GC	2015	C vs T	Caucasian	2.15 (0.43–10.66)	0.015/<0.0001	98.7	2	1356 (526/830)
MMP2										
23644699	MMP2 (rs243865)	GC	2013	Dominant	Asian	0.62 (0.40–0.97)	0.124/<0.0001	87.8	6	4713 (1578/3126)
23644699	MMP2 (rs243865)	GC	2013	Dominant	European	0.92 (0.61–1.40)	0.124/0.802	0	2	441 (214/227)
MMP7										
24606450	MMP7 (rs11568818)	GC	2014	Recessive	Asian	2.13 (1.30–3.50)	Na/0.807	0	4	1764 (632/1132)
24606450	MMP7 (rs11568818)	GC	2014	Recessive	European	1.00 (0.42–2.44)	Na/0.000	0	1	248 (79/169)
MMP9										
29228747	MMP9 (-1562C>T)	GC	2017	C vs T	Asian	1.170 (1.003–1.364)	0.706/0.234	24.5	8	3307 (1266/2041)
29228747	MMP9 (-1562C>T)	GC	2017	C vs T	European	0.84 (0.49–1.45)	0.706/Na	Na	1	248 (79/169)
PMID	Gene (variant)	Cancer type	Year	Comparison	Ethnicity	OR (95% CI)	Publication bias/ heterogeneity	I² (%)	No. of studies	Cases/control
------------	----------------	-------------	------	------------	-----------	-------------	---------------------------------	--------	----------------	---------------
26770387	TGF-β1 (rs1800470)	GC	2015	C vs. T	Asian	1.18 (0.90–1.54)	No/0.23	89	6	4245 (2060/2185)
26770387	TGF-β1 (rs1800470)	GC	2015	C vs. T	Caucasian	1.70 (1.46–1.98)	No/<0.01	16	5	1458 (670/788)
23900678	TNF-α (rs361525)	GC	2013	A vs. G	Asian	1.59 (1.29–1.97)	No/<0.001	45.1	10	3825 (Na/Na)
23900678	TNF-α (rs361525)	GC	2013	A vs. G	Caucasian	0.93 (0.74–1.15)	No/0.488	39.9	5	3970 (Na/Na)

Na: Not available, No: significant publication bias/heterogeneity was not found, Diverse: two or more ethnicities were reported in the meta-analysis. The information is calculated according to the data provided in the article since the article did not present(such as I², OR, publication bias and heterogeneity)