What is Cook’s theorem?

JianMing ZHOU, Yu LI

(1) MIS, Université de Picardie Jules Verne, 33 rue Saint-Leu, 80090 Amiens, France
(2) Institut of computational theory and application, Huazhong University of Science and Technology, Wuhan, China

Abstract

In this paper, we make a preliminary interpretation of Cook’s theorem presented in [1]. This interpretation reveals cognitive biases in the proof of Cook’s theorem that arise from the attempt of constructing a formula in \(CNF \) to represent a computation of a nondeterministic Turing machine. Such cognitive biases are due to the lack of understanding about the essence of \(nondeterminism \), and lead to the confusion between different levels of \(nondeterminism \) and \(determinism \), thus cause the loss of \(nondeterminism \) from the \(NP \)-completeness theory. The work shows that Cook’s theorem is the origin of the loss of \(nondeterminism \) in terms of the equivalence of the two definitions of \(NP \); the one defining \(NP \) as the class of problems solvable by a nondeterministic Turing machine in polynomial time, and the other defining \(NP \) as the class of problems verifiable by a deterministic Turing machine in polynomial time. Therefore, we argue that fundamental difficulties in understanding \(P \) versus \(NP \) lie firstly at cognition level, then logic level.

Keywords: Cook’s theorem; \(CNF \); \(P \) versus \(NP \); \(NDTM \) (NonDeterministic Turing Machine); \(DTM \) (Deterministic Turing Machine); oracle; query machine; \(NDTM \) model; equivalence of the two definitions of \(NP \)

1 Introduction

The notion of \(nondeterminism \) is lost from the current definition of \(NP \), which is reflected in the equivalence of the two definitions of \(NP \) commonly accepted in the academic community [2][3][4][5], the one is the solvability-based definition that defines \(NP \) as the class of problems solvable by a nondeterministic Turing machine in polynomial time, and the other is the verifiability-based definition that defines \(NP \) as the class of problems verifiable by a deterministic Turing machine in polynomial time. Due to this equivalence, the verifiability-based definition has been accepted as the standard definition of \(NP \), which has led to the disappearance of nondeterminism from \(NP \), and caused ambiguities in understanding \(NP \), thus \(P \) versus \(NP \) [6].

In the paper entitled \textit{What is \(NP \)? - Interpretation of a Chinese paradox: White horse is not horse} [7], we questioned this equivalence. With the help of a famous Chinese paradox \textit{White...}
horse is not horse, we interpreted some well-known arguments supporting this equivalence, and revealed cognitive biases that cause the confusion between different levels of nondeterminism and determinism from the view of recognition of problem.

In this paper, we make a preliminary interpretation of Cook’s theorem presented in [1] from the view of representation of problem, and reveal cognitive biases in the proof of Cook’s theorem.

The paper is organized as follows. In Section 2, we present an overview of Cook’s theorem. In Section 3, we interpret Cook’s theorem based on query machine. In Section 4, we interpret Cook’s theorem based on NDTM model. In Section 5, we propose to rectify Cook’s theorem, and in Section 6 we conclude the paper.

2 Overview of Cook’s theorem

Cook’s theorem is usually stated as [8]:

Any problem in \(NP\) can be reduced in polynomial time by a deterministic Turing machine to the problem of determining whether a formula in \(CNF\) is satisfiable (SAT).

However, the original statement of Cook’s theorem was presented in Cook’s paper entitled The complexity of theorem proving procedures as [1]:

Theorem 1 If a set \(S\) of strings is accepted by some nondeterministic Turing machine within polynomial time, then \(S\) is \(P\)-reducible to \{\(DNF\) tautologies\}.

The main idea of the proof of Theorem 1 was described in [1]:

Suppose a nondeterministic Turing machine \(M\) accepts a set \(S\) of strings within time \(Q(n)\), where \(Q(n)\) is a polynomial. Given an input \(w\) for \(M\), we will construct a propositional formula \(A(w)\) in conjunctive normal form (CNF) such that \(A(w)\) is satisfiable iff \(M\) accepts \(w\). Thus \(\neg A(w)\) is easily put in disjunctive normal form (using De Morgans laws), and \(\neg A(w)\) is a tautology if and only if \(w \notin S\). Since the whole construction can be carried out in time bounded by a polynomial in \(|w|\) (the length of \(w\)), the theorem will be proved.

Here \(S\) refers to a set of all instances of an \(NP\) problem that have solutions, and finding the tautology of \(\neg A(w)\) in \(DNF\) is transformed into finding the satisfiability of \(A(w)\) in \(CNF\).

Concerning \(P\)-reducibility, it was explained in [1]:

Here "reduced" means, roughly speaking, that the first problem can be solved deterministically in polynomial time provided an oracle is available for solving the second.

That is, Cook attempted to construct a formula \(A(w)\) in \(CNF\) to represent a computation of a nondeterministic Turing machine in order to achieve the objective of representing an \(NP\) problem as \(SAT\) problem, however the construction of \(A(w)\) is a deterministic and polynomial time process, that is, a computation of a deterministic Turing machine. Therefore, how to construct \(A(w)\) constitutes the proof of Theorem 1.

We interpret this proof and reveal cognitive biases hidden in it.
3 Interpretation of Cook’s theorem based on Query Machine

3.1 Query Machine and P-reduciblility

In order to provide a reasonable basis for *P-reduciblility* in Theorem 1, Cook introduced a tool called *query machine*, which is a mix of an oracle and a deterministic Turing machine, to replace a nondeterministic Turing machine. It is this *query machine* that sows the seeds of confusion of *NDTM* (NonDeterministic Turing Machine) and *DTM* (Deterministic Turing Machine) in the proof of Theorem 1.

Let us analyze this query machine. A query machine was defined in [1]:

A query machine is a multitape Turing machine with a distinguished tape called the query tape, and three distinguished states called the query state, yes state, and no state, respectively. If \(M \) is a query machine and \(T \) is a set of strings, then a \(T \)-computation of \(M \) is a computation of \(M \) in which initially \(M \) is in the initial state and has an input string \(w \) on its input tape, and each time \(M \) assures the query state there is a string \(u \) on the query tape, and the next state \(M \) assumes is the yes state if \(u \in T \) and the no state if \(u \not\in T \). We think of an ‘oracle’, which knows \(T \), placing \(M \) in the yes state or no state.

Then the concept of *P-reduciblility* was defined based on query machine [1]:

Definition. A set \(S \) of strings is *P*-reducible (\(P \) for polynomial) to a set \(T \) of strings iff there is some query machine \(M \) and a polynomial \(Q(n) \) such that for each input string \(w \), the \(T \)-computation of \(M \) with input \(w \) halts within \(Q(|w|) \) steps (\(|w| \) is the length of \(w \)) and ends in an accepting state iff \(w \in S \).

It is not hard to see that *P*-reducibility is a transitive relation. Thus the relation \(E \) on sets of strings, given by \((S,T) \in E \) iff each of \(S \) and \(T \) is *P*-reducible to the other, is an equivalence relation. The equivalence class containing a set \(S \) will be denoted by \(\deg(S) \) (the polynomial degree of difficulty of \(S \)).

In addition, five \(NP \) problems were given as examples to illustrate \(S \) and \(T \) [1]:

We now define the following special sets of strings.

1. The subgraph problem is the problem given two finite undirected graphs, determine whether the first is isomorphic to a subgraph of the second. A graph \(G \) can be represented by a string \(G \) on the alphabet \(\{0,1,*\} \) by listing the successive rows of its adjacency matrix, separated by *s. We let subgraph pairs denote the set of strings \(G_1*G_2 \) such that \(G_1 \) is isomorphic to a subgraph of \(G_2 \).

2. The graph isomorphism problem will be represented by the set, denoted by \(\{ \text{isomorphic graph pairs} \} \), of all strings \(G_1*G_2 \) such that \(G_1 \) is isomorphic to \(G_2 \).

3. The set \(\{ \text{Primes} \} \) is the set of all binary notations for prime numbers.

4. The set \(\{ \text{DNF tautologies} \} \) is the set of strings representing tautologies in disjunctive normal
5. The set D_3 consists of those tautologies in disjunctive normal form in which each disjunct has at most three conjuncts (each of which is an atom or negation of an atom).

Fig. 1: (a) A query machine accepts w; (b) A deterministic Turing machine accepts w

We interpret how a query machine M accepts an instance w of an NP problem in polynomial time, which is illustrated in Fig. 1(a).

S refers to a set of strings that represents all instances that have solutions, for example, S refers to a set of instances $G_1 \ast G_2$ of the graph isomorphism problem such that G_1 is isomorphic to G_2. T refers to a set of formulas in DNF that are tautologies.

Initially, M is in the initial state q_0 and has w representing an instance of a NP problem as input. Then, M assures the query state q_{Query} where there is a string u representing a formula in DNF as input for an oracle and this oracle instantly determines whether $u \in T$, that is, whether u is tautology. Finally, according to the obtained reply, if $u \in T$ then the oracle places M in the yes state q_Y and accepts w; or if $u \notin T$ then the oracle places M in the no state q_N and refuses w.

In this way, S is said to be P-reducible to T.

Therefore, a query machine is in fact a formalized oracle. But it should pay special attention to the essence of oracle. The existence of an oracle is just a hypothesis rather than a fact, so it is just theoretically valid, but not in practice, while a deterministic Turing machine is either theoretically or practically valid. That is, oracle and DTM are two concepts situated at different levels (see Fig. 1).

Unfortunately, it seems that Cook did not realize this fundamental difference, when he interpreted P-reducibility in [1]:

By reduced we mean, roughly speaking, that if tautology hood could be decided instantly (by an "oracle") then these problems could be decided in polynomial time. In order to make this notion precise, we introduce query machines, which are like Turing machines with oracles in [1].

In other words, Cook made a direct logic deduction between oracle and DTM, but this is a question begging, because the existence of an oracle itself needs to be proved. It is this cognitive
bias that leads to the confusion of query machine and DTM, thus the confusion of NDTM and DTM in the proof of Theorem 1.

3.2 Proof of Theorem 1

The proof of Theorem 1 consists in constructing \(u \) from \(w \), where \(w \) is an instance of an \(NP \) problem and \(u \) is a formula \(A(w) \) in \(CNF \) (see Fig. 1(a)), through representing a computation of a nondeterministic Turing machine for \(w \).

This idea was explained in [1]:

Suppose a nondeterministic Turing machine \(M \) accepts a set \(S \) of strings within time \(Q(n) \), where \(Q(n) \) is a polynomial. Given an input \(w \) for \(M \), we will construct a propositional formula \(A(w) \) in conjunctive normal form (CNF) such that \(A(w) \) is satisfiable iff \(M \) accepts \(w \).

However, the construction of \(A(w) \) is a deterministic and polynomial time process, so Cook discretely replaced a nondeterministic Turing machine by a deterministic Turing machine through a query machine (see Fig. 1).

We interpret how it could happen.

Originally the above \(M \) refers to a nondeterministic Turing machine, but this \(M \) has discretely changed in the following [1]:

We may as well assume the Turing machine has only one tape, which is infinite to the right but has a left-most square. Let us number the squares from left to right 1, 2, ..., Let us fix an input \(w \) to \(M \) of length \(n \), and suppose \(w \in S \). Then there is a computation of \(M \) with input \(w \) that ends in an accepting state within \(T = Q(n) \) steps. The formula \(A(w) \) will be built from many different proposition symbols, whose intended meaning, listed below, refer to such a computation.

That is, \(A(w) \) is built to represent a computation of \(M \). Let us interpret the meaning of this computation through the analysis of the construction of \(A(w) \) [1]:

Suppose the tape alphabet for \(M \) is \(\{ \sigma_1, \ldots, \sigma_l \} \) and the set of states is \(\{ q_1, \ldots, q_r \} \). Notice that since the computation has at most \(T = Q(n) \) steps, no tape square beyond \(T \) is scanned.

Proposition symbols:

- \(P_{i,s,t} \) for \(1 \leq i \leq l, \; 1 \leq s, t \leq T \). \(P_{i,s,t} \) is true iff tape square number \(s \) at step \(t \) contains the symbol \(\sigma_i \).
- \(Q_{i,t} \) for \(1 \leq i \leq r, \; 1 \leq t \leq T \). \(Q_{i,t} \) is true iff at step \(t \) the machine is in state \(q_i \).
- \(S_{s,t} \) for \(1 \leq s, t \leq T \). \(S_{s,t} \) is true iff at step \(t \) square number \(s \) is scanned by the tape head.

The formula \(A(w) \) is a conjunction \(B \land C \land D \land E \land F \land G \land H \land I \) formed as follows. Notice \(A(w) \) is in conjunctive normal form.

\(B \) will assert that at each step \(t \), one and only one square is scanned. \(B \) is a conjunctive \(B_1 \land B_2 \land \ldots \land B_T \), where \(B_t \) asserts that at time \(t \) one and only one square is scanned:

\[
B_t = (S_{1,t} \lor S_{2,t} \lor \ldots \lor S_{T,t}) \land \left[\bigwedge_{1 \leq i < j \leq Q(n)} (\neg S_{i,t} \lor \neg S_{j,t}) \right].
\]
For $1 \leq s \leq T$ and $1 \leq t \leq T$, $C_{s,t}$ asserts that at square s and time t there is one and only one symbol. C is the conjunction of all the $C_{s,t}$.

D asserts that for each t there is one and only one state.

E asserts the initial conditions are satisfied:

$$E = Q_1^0 \land S_{1,1} \land P_{1,1}^{i_1} \land P_{2,1}^{i_2} \land \ldots \land P_{n,1}^{i_n} \land P_{T,1}^1 \land \ldots$$

Where $w = \sigma_{i_1}, \ldots, \sigma_{i_n}$, q_0 is the initial state and σ_1 is the blank symbol.

F, G, and H assert that for each time t the values of the P's, Q's and S's are updated properly. For example, G is the conjunction over all t, i, j of $G_{i,j}^t$, where $G_{i,j}^t$ asserts that if at time t the machine is in state q_i scanning symbol σ_j, then at time $t+1$ the machine is in the state q_k, where q_k is the state given by the transition function for M.

$$G_{i,j}^t = \bigwedge_{s=1}^{T}(\neg Q_s^t \lor \neg S_s \lor \neg P_s^t \lor Q_{s+1}^t).$$

Finally, the formula I asserts that the machine reaches an accepting state at some time. The machine M should be modified so that it continues to compute in some trivial fashion after reaching an accepting state, so that $A(w)$ will be satisfied.

Firstly, let us clarify M. Notice that B, C, D and I refer to just the physical structure of M; F, G and H refer to the transition function of M; and E concerns the initial condition of a computation of M.

Such a computation proceeds as below. Starting from E, the assignment of the proposition symbols corresponding to following steps are deduced out according to $B \land C \land D \land F \land G \land H$, finally the truth of I is deduced out in polynomial time. Since this computation ends in polynomial time $Q(n)$, and F, G and H represent the transition function of M in terms of $G_{i,j}^t = \bigwedge_{s=1}^{T}(\neg Q_s^t \lor \neg S_s \lor \neg P_s^t \lor Q_{s+1}^t)$, then this computation is in fact a computation of a deterministic Turing machine M. In other words, the original nondeterministic Turing machine M has been discretely transformed into a deterministic Turing machine M!

Then, we interpret the meaning of such a computation by clarifying E. E refers to the assignment of the proposition symbols corresponding to the initial time $t = 1$, $E = Q_1^0 \land S_{1,1} \land P_{1,1}^{i_1} \land P_{2,1}^{i_2} \land \ldots \land P_{n,1}^{i_n} \land P_{T,1}^1 \land \ldots$ where Q_1^0 means that M is in the initial state q_0, $S_{1,1}$ means that the tape head scans square number 1, $P_{n+1,1}^1 \ldots P_{T,1}^1$ refers to the blank symbols σ_1 after $\sigma_{i_1}, \ldots, \sigma_{i_n}$, and $P_{1,1}^{i_1} \land P_{2,1}^{i_2} \land \ldots \land P_{n,1}^{i_n}$ refers to a string $\sigma_{i_1}, \ldots, \sigma_{i_n}$ on the tape that is claimed to refer to an instance w of a problem.

That is to say, given an instance w of an NP problem, a deterministic Turing machine M determines whether to accept w in polynomial time, and $A(w)$ is built to represent this computation (see Fig. 1(b)).

In other words, the proof of Theorem 1 claims that a deterministic Turing machine can accept w like a nondeterministic Turing machine, that is, NTM is confused with DTM by means of query machine!
4 Interpretation of Cook’s theorem based on NDTM model

Later researchers must have noticed something wrong in the above proof, since they completely abandoned the concept of query machine, and proposed a NDTM (NonDeterministic Turing Machine) model (see [5], p. 30):

The NDTM model we will be using has exactly the same structure as a DTM (Deterministic Turing Machine), except that it is augmented with a guessing module having its own write-only head.

A computation of such a machine takes place in two distinct stages (see [5], p. 30-31):

The first stage is the ”guessing” stage. Initially, the input string x is written in tape squares 1 through $|x|$ (while all other squares are blank), the read-write head is scanning square 1, the the write-only head is scanning square -1, and the finite state control is ”inactive”. The guessing module then directs the write-only head, one step at a time, either to write some symbol from Γ in the tape square being scanned and move one square to left, or to stop, at which point the guessing module becomes inactive and the finite state control is activated in state q_0. The choice of whether to remain active, and, if so, which symbol from Γ to write, is made by the guessing module in a totally arbitrary manner. Thus the guessing module can write any string from Γ^* before it halts and, indeed, need never halt.

The ”checking” stage begins when the finite state control is activated in state q_0. From this point on, the computation proceeds solely under the direction of the NDTM program according to exactly the same rules as for a DTM. The guessing module and its write-only head are no longer involved, having fulfilled their role by writing the guessed string on the tape. Of course, the guessed string can (and usually will) be examined during the checking stage. The computation ceases when and if the finite state control enters one of the two halt states (either q_Y or q_N) and is said to be an accepting computation if it halts in state q_Y. All other computations, halting or not, are classed together simply as non-accepting computations.

That is, for a given instance x of an NP problem, a guessing module finds a certificate s of solution, then s is checked by a deterministic Turing machine. If s is a solution, the computation halts in state q_Y and it is said to be an accepting computation; if s is not a solution, the computation halts in state q_N and it is said to be a non-accepting computation (see Fig. 2(a)).
However, this non-accepting computation is completely different from the refusing computation of a nondeterministic Turing machine (see Fig. 2(b)), because this non-accepting computation has no sense, that is, a deterministic Turing machine with a guessing module cannot determine whether w is accepted or refused in this case. In other words, the $NDTM$ model is not $NTDM$.

Unfortunately, it seems that these researchers did not really realize the fundamental difference between the $NDTM$ model and $NTDM$, and still attempted to construct a formula $A(w)$ in CNF to represent a computation of a nondeterministic Turing machine through a machine of the $NDTM$ model. Consequently, the cognitive bases in Cook’s theorem have been hidden more deeply in terms of the equivalence of the solvability-based definition and the verifiability-based one (see [3] section 7.3).

5 Rectification of Cook’s theorem

In fact, a formula $A(w)$ in CNF can only represent a computation of a deterministic Turing machine, specially a polynomial time verification for any problem in NP as well as in P (see Fig. 3).

![Fig. 3: A deterministic Turing machine verifies a certificate s of solution](image)

Let us rectify the proof of Theorem 1.

At the initial time $t = 1$, a certificate s of solution for an instance w is put on the tape squares, then E refers to the assignment of the proposition symbols concerning the initial time $t = 1$. From E, the assignment of the proposition symbols concerning other times are deduced out according to $B \land C \land D \land F \land G \land H$, and finally the truth of I is deduced out. If $I = 1$, it means that s is a solution for w; otherwise if $I = 0$, s is not a solution for w.

Therefore, E consists of two parts : $E = E_1 \land E_2$, where $E_1 = Q_1^{0} \land S_{1,1}$ and $E_2 = P_{1,1}^{i_1} \land P_{2,1}^{i_2} \land \ldots \land P_{n,1}^{i_n} \land P_{n+1,1}^{i_{n+1}} \ldots \land P_{T,1}^{i_T}$. E_1 refers to the initial state q_0 of M as well as the tape head scanning square number 1, while E_2 refers to a given certificate s.

Here, it should pay special attention to E_2. Since E_2 represents the assignment of the proposition symbols concerning s and $E_2 = 1$, then E_2 should not appear in $A(w)$. Unfortunately, this key point has never been discussed in the literature [1][5], so that it prevents from interpreting correctly the meaning of $A(w)$.

Therefore, $B \land C \land D \land E_1 \land F \land G \land H \land I$ refers to the verification about the truth of any
certificate, not limited to a given certificate \(s \). Just in this sense, \(B \land C \land D \land E_1 \land F \land G \land H \land I \) becomes a function of \(w \), and it can be denoted as \(A(w) = B \land C \land D \land E_1 \land F \land G \land H \land I \).

In other words, it is \(B \land C \land D \land E_1 \land F \land G \land H \land I \), rather than \(B \land C \land D \land E \land F \land G \land H \land I \), that is intended to represent an instance \(w \) of a problem in terms of \(A(w) \).

Now, we can clarify the real meaning of \(A(w) \), denoted in Theorem 0:

Theorem 0 Any problem verifiable by a deterministic Turing machine in polynomial time can be represented as \(A(w) \).

Since an \(NP \) problem is polynomially verifiable according to the definition of \(NDTM \), so an \(NP \) problem can be represented as \(A(w) \). Note that any \(P \) problem is polynomially verifiable, so it can be also represented as \(A(w) \) in the same way.

Furthermore, determining the satisfiability of \(A(w) \) corresponds to determining the existence of solution for an \(NP \) problem, thus it deduces out Theorem 1’ in terms of the usual expression of Cook’s theorem:

Theorem 1’ Any problem solvable by a nondeterministic Turing machine in polynomial time can be represented as a \(SAT \) problem.

Theorem 1’ consists of the rectification of the original statement Theorem 1 of Cook’s theorem including its proof. Therefore, Theorem 1 is just a corollary of Theorem 0, and the relation between Theorem 0 and Theorem 1 is the cause-effect relationship. In other words, the two definitions of \(NP \), the verifiability-based definition corresponding to Theorem 0 and the solvability-based one to Theorem 1, are not equivalent, because they are situated at different levels of concept and have the cause-effect relationship.

6 Conclusion

In this paper, we give preliminary interpretation of Cook’s theorem in [1] and reveal the cognitive biases in the proof of Cook’s theorem, which leads to the confusion between different levels of nondeterminism and determinism, thus the confusion of the solvability-based definition and the verifiability-based one of \(NP \), finally causes the loss of nondeterminism from \(NP \).

The work argues again that the difficulty in understanding \(P \) versus \(NP \) lies at firstly cognition level, then logic level [9]. A similar opinion is also suggested in [10].

We hope that this work can evoke reflections from different angles about some fundamental problems in cognitive science, and contribute to the understanding of \(P \) versus \(NP \). Furthermore, we hope that this work can help to understand the complementarity of Chinese thought and Western philosophy.
References

[1] Stephen Cook, The complexity of theorem proving procedures. Proceedings of the Third Annual ACM Symposium on Theory of Computing. pp. 151-158 (1971).
[2] http://en.wikipedia.org/wiki/NP_(complexity)
[3] Michael Sipser, Introduction to the Theory of Computation, Second Edition. International Edition (2006).
[4] Stephen Cook, The P versus NP Problem. Clay Mathematics Institute. http://www.claymath.org/millennium/P_vs_NP/pvsnp.pdf.
[5] Michael R. Garey, David S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and company (1979).
[6] William I. Gasarch. The P=?NP Poll. SIGACT News Complexity Theory Column 74. http://www.cs.umd.edu/~gasarch/papers/poll2012.pdf.
[7] Yu Li, What is NP? - Interpretation of a Chinese paradox white horse is not horse. (to appear)
[8] http://en.wikipedia.org/wiki/Cook–Levin_theorem
[9] JianMing Zhou, Computability vs. Nondeterministic and P vs. NP. http://arxiv.org/abs/1305.4029.
[10] Scott Aaronson, Why Philosophers Should Care About Computational Complexity, Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 108 (2011).