Fractional Derivative Regularization in QFT

Vasily E. Tarasov

Skobeltsyn Institute of Nuclear Physics,
Lomonosov Moscow State University,
Moscow 119991, Russia
E-mail: tarasov@theory.sinp.msu.ru

Abstract

In this paper, we propose new regularization, where integer-order differential operators are replaced by fractional-order operators. Regularization for quantum field theories based on application of the Riesz fractional derivatives of non-integer orders is suggested. The regularized loop integrals depend on parameter that is the order $\alpha > 0$ of the fractional derivative. The regularization procedure is demonstrated for scalar massless fields in $\varphi^4$-theory on $n$-dimensional pseudo-Euclidean space-time.

1 Introduction

A characteristic feature of quantum field theories, which are used in high-energy physics, is ultraviolet divergence [1, 2]. These divergences arise in momentum space from modes of very high moment, i.e. the structure of the field theories at very short distances. In the narrow class of quantum theories, which are called "renormalizable", the divergences can be removed by a singular redefinition of the parameters of the theory. This process is called the renormalization [3], and it defines a quantum field theory as a non-trivial limit of theory with a ultraviolet cut-off.

The renormalization requires the regularization of the loop integrals in momentum space. These regularized integrals depend on parameters such as the momentum cut-off, the Pauli-Villars masses, the dimensional regularization parameter, which are used in the corresponding regularization procedure. This regularized integration is ultraviolet finite.

We suggest a regularization procedure based on fractional-order derivatives of the Riesz type. In momentum space these derivatives are represented by power functions of momentum.

Fractional calculus and fractional differential equations [4, 5] have a wide application in mechanics and physics. The theory of integro-differential equations of non-integer orders is a powerful tool to describe the dynamics of systems and processes with power-law non-locality, long-range memory and/or fractal properties.

Recently the spatial fractional-order derivatives have been actively used in the space-fractional quantum mechanics [7, 8], the quantum field theory and gravity for fractional space-time [9], the fractional quantum field theory at positive temperature [10, 11].

Fractional calculus allows us to take into account fractional power-law nonlocality of continuously distributed systems and classical fields. Using the fractional calculus, we can consider
space-time fractional differential equations in the quantum field theory. For the first time, the fractional-order Laplace and d’Alembert operators have been suggested by Riesz in [12]. Then non-integer powers of d’Alembertian are considered in different works (for example, see Section 28 in [4] and [13, 14, 15]). The fractional Laplace and d’Alembert operators of the Riesz type are the basis for the fractional field theory in multidimensional spaces.

As it was shown in [16, 17, 18, 19, 20], the continuum equations with fractional derivatives of the Riesz type can be directly connected to lattice models with long-range properties. A connection between the dynamics of lattice system with long-range properties and the fractional continuum equations are proved by using the transform operation [16, 17, 18, 19].

There are different definitions of fractional derivatives such as Riemann-Liouville, Caputo, Grünwald-Letnikov, Marchaud, Weyl, Sonin-Letnikov, Riesz [4, 5]. Unfortunately all these fractional derivatives have a lot of unusual properties. For example, the well-known Leibniz rule does not hold for differentiation of non-integer orders [26].

It should be noted that the use of the fractional derivative of non-integer order is actually equivalent to using an infinite number of derivatives of all integer orders. For example, the Riemann-Liouville derivative $^{RL}D^\alpha_{a+}$ can be represented in the form of the infinite series

$$
(^{RL}D^\alpha_{a+}f)(x) = \sum_{k=0}^{\infty} \frac{\Gamma(\alpha + 1)}{\Gamma(k + 1)\Gamma(\alpha - k + 1)} \frac{(x - a)^{k-\alpha}}{\Gamma(k - \alpha + 1)} \frac{d^k f(x)}{dx^k}
$$

for analytic (expandable in a power series on the interval) functions on $(a, b)$, (see Lemma 15.3 of [4]). Therefore, an application of fractional derivatives means that we take into account a contribution of derivatives of all integer orders with the power-law weight.

In the suggested FD-regularization we use fractional derivatives of non-integer orders $\alpha$ close to integer values. The use of these fractional derivatives of non-integer orders $\alpha$ close to integer values in the regularization procedure means that we consider a weak nonlocality, i.e. a slight deviation from the locality.

2 Fractional Laplacian for Euclidean space $\mathbb{R}^n$

2.1 Fractional integration in the Riesz form

The Riesz fractional integral of order $\alpha$ for $\mathbb{R}^n$ is defined [12] (see also Section 25 of [4]) by equation

$$
^{R}I^\alpha f(P) = \frac{1}{H_n(\alpha)} \int_{\mathbb{R}^n} f(Q) r_Q^{\alpha-n} dQ,
$$

where $P$ and $Q$ are points of the space $\mathbb{R}^n$, and

$$
H_n(\alpha) = \frac{\pi^{n/2} 2^n \Gamma(\alpha/2)}{\Gamma((n-\alpha)/2)}.
$$

Let us give some properties of the Riesz fractional integral that are proved in [12]:


1. The semi-group property of the Riesz fractional integration

\[ R^{\alpha_1} (R^{\alpha_2} f(P)) = R^{\alpha_1 + \alpha_2} f(P), \]  

(4)

where \( \alpha_1 > 0, \alpha_2 > 0, \alpha_1 + \alpha_2 < n. \)

2. The action of the Laplace operator on the Riesz fractional integral

\[ \Delta R^{\alpha} f(P) = -R^{\alpha} f(P), \]  

(5)

and we also have

\[ \Delta^k R^{\alpha+2k} f(P) = (-1)^k R^\alpha f(P), \quad (k \in \mathbb{N}). \]  

(6)

3. The Riesz fractional integration of exponential function does not change this function

\[ R^{\alpha} e^{ix_j} = e^{ix_j}, \]  

(7)

\[ R^{\alpha} e^{i \sum_{j=1}^{n} a_j x_j} = \left( \sum_{j=1}^{n} a_j x_j \right)^{-\alpha/2} e^{i \sum_{j=1}^{n} a_j x_j}. \]  

(8)

There is the following important property

\[ R^{\alpha} f(P) = (-1)^m R^{\alpha+2m} \Delta^m f(P). \]  

(9)

This property allows us to use an analytic continuation of \( R^\alpha f(P) \) for negative values of \( \alpha > -2m \), where \( m \in \mathbb{R} \) (see [12]). In this case, the semigroup property (4) can be used for \( \alpha_1 > -2m, \alpha_2 > -2m, \alpha_1 + \alpha_2 > -2m \), and \( m \in \mathbb{R} \). Analogously, we can consider the property (6) in the form

\[ \Delta^k R^\alpha f(P) = (-1)^k R^{\alpha-2k} f(P), \quad (k \in \mathbb{N}). \]  

(10)

2.2 Fractional Laplacian in the Riesz form

For the first time fractional Laplace operators have been suggested by Riesz in [12] (see also Section 25 of [4]). The fractional Laplacian \((-\Delta)^{\alpha/2}\) in the Riesz form for \( n \)-dimensional Euclidean space \( \mathbb{R}^n \) can be considered [4] as an inverse Fourier’s integral transform \( \mathcal{F}^{-1} \) of \(|k|^\alpha\) by

\[ ((-\Delta)^{\alpha/2} \varphi)(x) = \mathcal{F}^{-1} \left( |k|^\alpha \mathcal{F} \varphi(k) \right), \]  

(11)

where \( \alpha > 0 \) and \( x \in \mathbb{R}^n \).

For \( \alpha > 0 \), the fractional Laplacian of the Riesz form can be defined [4] as the hypersingular integral

\[ ((-\Delta)^{\alpha/2} \varphi)(x) = \frac{1}{d_n(m, \alpha)} \int_{\mathbb{R}^n} \frac{1}{|z|^{\alpha+n}} (\Delta_z^m \varphi)(z) \, d^4 z, \]  

(12)
where \( m > \alpha \), and \( (\Delta^m_z \varphi)(z) \) is a finite difference of order \( m \) of a field \( \varphi(x) \) with a vector step \( z \in \mathbb{R}^n \) and centered at the point \( x \in \mathbb{R}^n \):

\[
(\Delta^m_z \varphi)(z) = \sum_{j=0}^{m} (-1)^j \frac{m!}{j!(m-j)!} \varphi(x - jz).
\]

The constant \( d_n(m, \alpha) \) is defined by

\[
d_n(m, \alpha) = \frac{\pi^{1+n/2} A_m(\alpha)}{2^{\alpha}(1+\alpha/2)\Gamma((n+\alpha)/2)\sin(\pi\alpha/2)},
\]

where

\[
A_m(\alpha) = \sum_{j=0}^{m} (-1)^{j-1} \frac{m!}{j!(m-j)!} j^\alpha.
\]

Note that the hypersingular integral [12] does not depend on the choice of \( m > \alpha \). The Fourier transform \( \mathcal{F} \) of the fractional Laplacian is given by \( \mathcal{F}\{(-\Delta)^{\alpha/2} \varphi\}(k) = |k|^\alpha \mathcal{F}(\varphi)(k) \). This equation is valid for the Lizorkin space \([4]\) and the space \( C^\infty(\mathbb{R}^n) \) of infinitely differentiable functions on \( \mathbb{R}^n \) with compact support.

### 2.3 Fractional Laplacian in the Riesz-Trujillo form

Using the property [9], we can define the fractional Laplace operator by the equation

\[
^{RT}_\Delta \alpha/2 f(P) = (-1)^m R I^{2m-\alpha} \Delta^m f(P),
\]

where \( m > \alpha/2 \) and \( m \in \mathbb{R} \). This form of definition of the fractional Laplacian has been suggested by J.J. Trujillo in 2012 (see also [25]).

It is important that the semi-group property holds for these operators

\[
^{RT}_\Delta \alpha_1/2^{RT}_\Delta \alpha_2/2 f(P) =^{RT}_\Delta (\alpha_1+\alpha_2)/2 f(P),
\]

where \( 0 < \alpha_1 < 2m, 0 < \alpha_2 < 2m, \alpha_1 + \alpha_2 < 2m \).

We can see that

\[
^{RT}_\Delta \Delta^k f(P) = (-1)^k \Delta^k f(P),
\]

where \( k \in \mathbb{N} \). In the Riesz’s notation [12], this equation means that

\[
R I^{-2k} f(P) = (-1)^k \Delta^k f(P).
\]

We also have a generalization in the form

\[
R I^{\alpha-2k} f(P) = (-1)^k \Delta^k R I^\alpha f(P).
\]

Note that the value of \( m \) can be chosen sufficiently large to fulfill all the conditions on the fractional order \( \alpha \) in the property [14].
Fractional d’Alembertian for pseudo-Euclidean space-time $\mathbb{R}_{1,n-1}^n$

For the first time the fractional d’Alembertian has been suggested by Riesz in [12] (see also [25]). Note that in the Riesz paper [12], the d’Alembertian $\Box$ is denoted by $\Delta$ and it is called for the Laplace operator for $\mathbb{R}_{1,n-1}^n$. We will use the generally accepted notation.

For the pseudo-Euclidean space-time $\mathbb{R}_{1,n-1}^n$, we use
\[ r_{QP}^2 = (x_1 - y_1)^2 - \sum_{j=2}^{n} (x_j - y_j)^2, \]  
and the operator
\[ \Box = \frac{\partial^2}{\partial x_1^2} - \sum_{j=2}^{n} \frac{\partial^2}{\partial x_j^2}. \]  
\[ (18) \]

The Riesz fractional integral is defined as
\[ ^R I^\alpha f(P) = \frac{1}{H_n(\alpha)} \int_{\mathbb{R}_{1,n-1}^n} f(Q) r_{PQ}^{\alpha-n} dQ, \]  
\[ (20) \]
where $H_n(\alpha)$ is defined by the equations (see Eq. 20 and 88 of [12])
\[ H_n(\alpha) = \pi^{(n-2)/2} 2^{\alpha-1} \Gamma(\alpha/2) \Gamma((\alpha + 2 - n)/2) = \pi^{(n-1)/2} \frac{\Gamma((\alpha + 2 - n)/2) \Gamma(\alpha)}{\Gamma((\alpha + 1)/2)}. \]  
\[ (21) \]
This expression of $H_n(\alpha)$ does not coincide with the Euclidean case [3]. To ensure the convergence of the integral, we should assume that the parameter $\alpha$ satisfies the condition $\alpha - n > -2$, i.e. $\alpha > n - 2$.

There is the following important property (see Eq. 67 of Chapter 3 in [12])
\[ ^R I^\alpha f(P) = ^R I^{\alpha+2m} \Box^m f(P), \]  
\[ (22) \]
that allows us to use an analytic continuation of $^R I^\alpha f(P)$ for negative values of $\alpha$ if
\[ \alpha > n - 2 - 2m. \]

Using the property (22), we can define the fractional d’Alembertian for $n$-dimensional pseudo-Euclidean space-time $\mathbb{R}_{1,n-1}^n$ by the equation
\[ \Box^{\alpha/2} f(P) = ^R I^{2m-\alpha} \Box^m f(P), \]  
\[ (23) \]
where $m > (\alpha + n - 2)/2$ and $m \in \mathbb{R}$.  

5
It is important that the semi-group property
\[ \Box^{\alpha_1/2} \Box^{\alpha_2/2} f(P) = \Box^{(\alpha_1 + \alpha_2)/2} f(P), \] (24)
holds for operators (23) if \( 0 < \alpha_1 < 2m + 2 - n, \) \( 0 < \alpha_2 < 2m + 2 - n, \) and \( \alpha_1 + \alpha_2 < 2m + 2 - n. \)

The fractional d’Alembertian \( \Box^{\alpha/2} \) for \( n \)-dimensional pseudo-Euclidean space-time \( \mathbb{R}^n_{1,n-1} \) can be considered as an inverse Fourier’s integral transform \( \mathcal{F}^{-1} \) of \( |\mathbf{k}|^{\alpha} \) by
\[ (\Box^{\alpha/2} \varphi)(x) = \mathcal{F}^{-1} \left( |\mathbf{k}|^{\alpha} (\mathcal{F} \varphi)(\mathbf{k}) \right), \] (25)
where \( \alpha > 0 \) and \( x \in \mathbb{R}^n_{1,n-1}. \)

4 Scalar field in pseudo-Euclidean space-time

Let us consider a scalar field \( \varphi(x) \) in the \( n \)-dimensional pseudo-Euclidean space-time \( \mathbb{R}^n_{1,n-1} \) that is described by the field equation
\[ (\Box + m^2) \varphi(x) = J(x), \] (26)
where \( \Box \) is the d’Alembert operator, \( \varphi(x) \) is a real field, and \( x \in \mathbb{R}^n_{1,n-1} \) is the space-time vector with components \( x_\mu, \) where \( \mu = 0, 1, 2, ..., n. \) Suppose that the scalar field \( \varphi(x) \) has a source \( J(x), \) and we have put \( \hbar = 1. \) Field equation (26) follows from stationary action principle, \( \delta S[\varphi] = 0, \) where the action \( S[\varphi] \) has the form
\[ S[\varphi] = \int_{\mathbb{R}^n_{1,n-1}} d^n x \mathcal{L}[\varphi(x)] \] (27)
with the Lagrangian
\[ \mathcal{L}[\varphi(x)] = -\frac{1}{2} \varphi(x) \left( \Box + m^2 \right) \varphi(x). \] (28)

The solution of (28) can be represented in the form
\[ \varphi(x) = -\int \Sigma_F(x - y) J(y) d^n y, \] (29)
where \( \Sigma_F(x - y) \) is the so-called Feynman propagator, obeying
\[ (\Box + m^2 - i\varepsilon) \Sigma_F(x - y)(x) = -\delta(x). \] (30)
Here \( \delta(x) \) is the Dirac delta-function. It is easy to see that \( \Sigma_F(x - y) \) has the Fourier representation
\[ \Sigma_F(x - y)(x) = \int \frac{d^n k}{(2\pi)^n} \frac{e^{-ikx}}{k^2 - m^2 + i\varepsilon}. \] (31)
We can consider \( \varphi^4 \) theory with an interaction constant \( g \). It is known that \( \Sigma_F(0) \) is a divergent quantity, which modifies the free particle propagator and contributes to the self-energy. In momentum space it corresponds to the loop integral
\[
g \Sigma_F(0) = g \int \frac{d^nq}{(2\pi)^n} \frac{1}{q^2 - m^2}. \tag{32}
\]
There are \( n \)th powers of \( q \) in the numerator and two in the denominator, so the integral diverges quadratically at large \( q \), i.e. it is ultra-violet divergent. Expression (32) corresponds to a one-loop diagram Feynman that has the order \( g \). Another divergent diagram is the \( O(g^2) \) graph. The corresponding expression of the Feynman integral is
\[
g^2 \int \frac{d^nq_1}{(2\pi)^n} \frac{d^nq_2}{(2\pi)^n} \frac{\delta(q_1 + q_2 - p_1 - p_2)}{(q_1^2 - m^2)(q_2^2 - m^2)} = g^2 \int \frac{d^nq}{(2\pi)^n} \frac{1}{(q^2 - m^2)((p_1 + p_2 - q)^2 - m^2)}. \tag{33}
\]
Here there are \( n \)th powers of \( q \) in numerator and the four powers in denominator. For \( n = 4 \), we have four powers of \( q \) in both numerator and denominator, so we get a logarithmic divergence.

## 5 Regularization

Regularization is a method of isolating the divergences. There are several techniques of regularization. The most intuitive one is to introduce a lattice regularization \[21\].

1. The Pauli-Villars regularization modifies the quadratic terms by subtraction off the same quadratic terms with a much larger mass
\[
\frac{1}{2} \partial_\mu \varphi \partial_\mu \varphi - \frac{1}{2} m^2 \varphi^2 - \left( \frac{1}{2} \partial_\mu \phi \partial_\mu \phi - \frac{1}{2} M^2 \phi^2 \right). \tag{34}
\]
The Pauli-Villars regularization is a contribution of another field (the Pauli-Villars field \( \phi \)) with the same quantum numbers as the original field, but having the opposite statistics. For example, in the \( \varphi^4 \)-theory, the Pauli-Villars field \( \phi \) is used, and the Pauli-Villars regularization changes the propagator as
\[
\frac{1}{p^2 + m^2} \rightarrow \frac{1}{p^2 + m^2} - \frac{1}{p^2 + m^2} \frac{e^{-\nu^2/\Lambda^2}}{\nu^2 + M^2}. \tag{35}
\]

2. The Gaussian cutoff regularization is implemented by the modified kinetic term in the form
\[
\frac{1}{2} \partial_\mu \varphi e^{\Box/\Lambda^2} \partial_\mu \varphi, \tag{36}
\]
which changes the propagator
\[
\frac{1}{p^2 + m^2} \rightarrow \frac{e^{-\nu^2/\Lambda^2}}{p^2 + m^2}. \tag{37}
\]
3. The higher derivative regularization also modifies the quadratic terms such as
\[
\frac{1}{2} \partial_\mu \varphi \left(1 - \frac{\Box}{\Lambda^2}\right) \partial_\mu \varphi + \frac{1}{2} m^2 \varphi \left(1 - \frac{\Box}{\Lambda^2}\right) \varphi.
\] (38)

Then the propagator is modified
\[
\frac{1}{p^2 + m^2} \rightarrow \left(1 + \frac{p^2}{\Lambda^2}\right) \frac{1}{p^2 + m^2}.
\] (39)

6 Regularization by fractional derivatives

We propose a new regularization, where integer-order differential operators are replaced by fractional-order operators. For example, we can replace \(\Box\), which is the d’Alembert operator in the field equations, by the fractional d’Alembert operator \(\Box^\alpha\):
\[
\Box \rightarrow \Box^{\alpha/2}.
\] (40)

Here we use the dimensionless coordinates.

The fractional derivative regularization modifies the quadratic terms such as
\[
-\frac{1}{2} \varphi(x) \left(\Box + m^2\right) \varphi(x) \rightarrow -\frac{1}{2} \varphi(x) \left(\Box^{\alpha/2} + m^2\right) \varphi(x).
\] (41)

Using the fractional d’Alembertian for pseudo-Euclidean space-time \(\mathbb{R}_n^{1,n-1}\), we can replace field equation (26) by the equation
\[
\left(\Box^{\alpha/2} + m^2\right) \varphi(x) = J(x),
\] (42)

where \(\Box^{\alpha}\) is the fractional d’Alembert operator, \(\varphi(x)\) is a real field, and \(x \in \mathbb{R}_n^{1,n-1}\) is the space-time vector with components \(x_\mu\), where \(\mu = 0, 1, 2, ..., n\).

The solution of (42) is
\[
\varphi(x) = -\int \Sigma_F(x - y) J(y) d^n y,
\] (43)

where \(\Sigma_F(x - y)\) is the Feynman propagator, obeying
\[
\left(\Box^{\alpha/2} + m^2 - i\varepsilon\right) \Sigma_F(x - y)(x) = -\delta(x).
\] (44)

Using (25), it is easy to see that \(\Sigma_F(x - y)(x)\) has the Fourier representation
\[
\Sigma_F(x) = \int \frac{d^n k}{(2\pi)^n} \frac{e^{-ikx}}{(k^2)^{\alpha/2} - m^2 + i\varepsilon}.
\] (45)
In this case, $\Sigma_F(0)$ is a divergent quantity, which modifies the free particle propagator and contributes to the self-energy. In momentum space it corresponds to the loop integral

$$g \Sigma_F(0) = g \int \frac{d^n q}{(2\pi)^n} \frac{1}{(q^2)^{\alpha/2} - m^2}. \quad (46)$$

There are $n$th powers of $q$ in the numerator and $\alpha$ in the denominator. Another divergent diagram is the $O(g^2)$ graph. The corresponding expression of the Feynman integral is

$$g^2 \int \frac{d^n q_1 d^n q_2}{(2\pi)^n (2\pi)^n} \frac{\delta(q_1 + q_2 - p_1 - p_2)}{((q_1^2)^{\alpha/2} - m^2)((q_2^2)^{\alpha/2} - m^2)} = g^2 \int \frac{d^n q}{(2\pi)^n} \frac{1}{(q^2)^{\alpha/2} - m^2} \cdot \frac{1}{((p_1 + p_2 - q)^2)^{\alpha/2} - m^2}. \quad (47)$$

Here there are $n$th powers of $q$ in numerator and the $2\alpha$ powers in denominator.

### 7 FD-regularization for massless theory

For simplification, we will consider a massless scalar field theory. For this case, expression (33) with $m = 0$ has the form

$$g^2 \int \frac{d^n q_1 d^n q_2}{(2\pi)^n (2\pi)^n} \frac{\delta(q_1 + q_2 - p_1 - p_2)}{((q_1^2)^{\alpha/2} - m^2)((q_2^2)^{\alpha/2} - m^2)} = g^2 \int \frac{d^n q}{(2\pi)^n} \frac{1}{(q^2)^{\alpha/2} - m^2} \cdot \frac{1}{((p_1 + p_2 - q)^2)^{\alpha/2} - m^2}. \quad (48)$$

The denominators in the integrand of (33) are combined by using the Feynman’s parametric integral formula

$$\frac{1}{A^a B^b} = \frac{\Gamma(a + b)}{\Gamma(a) \Gamma(b)} \int_0^1 dz \frac{z^{a-1}(1-z)^{b-1}}{[Az + B(1-z)]^{a+b}}. \quad (49)$$

Changing the variables $q \to p$ and $p_1 + p_2 \to q$, the integral (48) takes the form

$$I(q) = g^2 \int \frac{d^n p}{(2\pi)^n} \frac{1}{(p^2)^{\alpha/2}} \cdot \frac{1}{((p - q)^2)^{\alpha/2}}. \quad (50)$$

Using formula (49), we get

$$\frac{1}{(p^2)^{\alpha/2}} \cdot \frac{1}{((p - q)^2)^{\alpha/2}} = \int_0^1 dz \frac{z^{\alpha/2-1} (1-z)^{\alpha/2-1}}{[p^2 - 2pq(1-z) + q^2(1-z)]^\alpha}. \quad (51)$$

As a result, we have

$$I(q) = g^2 \int_0^1 z^{\alpha/2-1} (1-z)^{\alpha/2-1} dz \int \frac{d^n p}{(2\pi)^n} \frac{1}{[p^2 - 2pq(1-z) + q^2(1-z)]^\alpha}. \quad (52)$$
Using \( p = (p_0, \mathbf{r}) \) and the polar coordinates, we get that momentum integral of (52) is

\[
I[n, \alpha, q] = \int \frac{d^n p}{(p^2 - 2pQ + M^2)^{\alpha}} = \frac{2\pi^{(n-1)/2}}{\Gamma((n-1)/2)} \int_{-\infty}^{\infty} dp_0 \int_0^\infty \frac{r^{n-2} dr}{[p_0^2 - r^2 - 2pQ + M^2]^{\alpha}},
\]

(53)

where

\[
Q = q(1 - z), \quad M^2 = q^2(1 - z) .
\]

This integral is Lorentz invariant, so we evaluate it in the frame \( q_\mu = (\mu, 0) \). Then \( 2pQ = 2\mu(1 - z)p_0 \). Changing variables to \( p'_\mu = p_\mu - q_\mu(1 - z) \), which implies that

\[
p_0^2 - 2q(1 - z)p_0 = p_0^2 - 2\mu(1 - z)p_0 = (p'_0)^2 - q^2(1 - z)^2,
\]

(55)

we have

\[
I[n, \alpha, q] = \frac{2\pi^{(n-1)/2}}{\Gamma((n-1)/2)} \int_{-\infty}^{\infty} dp'_0 \int_0^\infty \frac{r^{n-2} dr}{[(p'_0)^2 - r^2 + q^2z(1 - z)]^{\alpha}},
\]

(56)

where we use \( q^2(1 - z) - q^2(1 - z)^2 = q^2z(1 - z) \).

Using the beta function

\[
2 \int_0^\infty \frac{t^{2x-1}}{(1 + t^2)^{x+y}} = B(x, y) = \frac{\Gamma(x) \Gamma(y)}{\Gamma(x + y)},
\]

(57)

we get

\[
\int_0^\infty \frac{s^\beta \, ds}{(s^2 + M^2)^\alpha} = \frac{\Gamma((1 + \beta)/2) \Gamma(\alpha - (1 + \beta)/2)}{2(M^2)^{\alpha-(1+\beta)/2} \Gamma(\alpha)},
\]

(58)

where we can use

\[
M^2 = -(p'_0)^2 - q^2z(1 - z), \quad \beta = n - 2.
\]

(59)

Using (58) with (59), equation (56) gives

\[
I[n, \alpha, q] = \pi^{(n-1)/2} \frac{\Gamma(\alpha - (n - 1)/2)}{\Gamma(\alpha)} \int_{-\infty}^{+\infty} \frac{dp'_0}{[-(p'_0)^2 - q^2z(1 - z)]^{\alpha-(n-1)/2}} =
\]

\[
= (-1)^{-\alpha+(n-1)/2} \pi^{(n-1)/2} \frac{\Gamma(\alpha - (n - 1)/2)}{\Gamma(\alpha)} \int_{-\infty}^{+\infty} \frac{dp'_0}{[(p'_0)^2 + q^2z(1 - z)]^{\alpha-(n-1)/2}}.
\]

Using (58), we get

\[
I[n, \alpha, q] = i \pi^{n/2} \frac{\Gamma(\alpha - n/2)}{\Gamma(\alpha)} \frac{1}{[-q^2z(1 - z)]^{\alpha-n/2}}.
\]

(60)

As a result, we obtain

\[
I[n, \alpha, q] = \int \frac{d^n p}{[p^2 - 2pq(1 - z) + q^2(1 - z)]^\alpha} = i \pi^{n/2} \frac{\Gamma(\alpha - n/2)}{\Gamma(\alpha)} \frac{1}{[-q^2z(1 - z)]^{\alpha-n/2}}.
\]

(61)
Using (61), expression (52) has the form
\[ I(q) = ig^2 \pi^{n/2} \frac{\Gamma(\alpha - n/2)}{\Gamma(\alpha)} \int_0^1 \frac{z^{\alpha/2-1} (1 - z)^{\alpha/2-1}}{[-q^2 z (1 - z)]^{\alpha-n/2}} \, dz. \] (62)

Then we have
\[ I(q) = ig^2 \pi^{n/2} \frac{1}{\Gamma(\alpha)} \frac{\Gamma(\alpha - n/2)}{[-q^2]^{\alpha-n/2}} \int_0^1 z^{(n-\alpha)/2 - 1} (1 - z)^{(n-\alpha)/2 - 1} \, dz. \] (63)

For \( n = 4 \) and \( \alpha = 2 + \varepsilon \), we get
\[ \frac{1}{[-q^2]^{\alpha-n/2}} = (-1)^{n/2-\alpha} \left( 1 + \varepsilon \ln(q^2) + O(\varepsilon^2) \right). \] (64)

Here we can use
\[ (-1)^{n/2-\alpha} = (-1)^{-\varepsilon} = e^{i\pi \varepsilon} = 1 + i\pi \varepsilon. \] (65)

We can introduce the function
\[ A(n, \alpha) = \int_0^1 z^{(n-\alpha)/2 - 1} (1 - z)^{(n-\alpha)/2 - 1} \, dz. \] (66)

For \( n = 4 \) and \( \alpha = 2 + \varepsilon \), expression (66) takes the form
\[ A(4, 2 + \varepsilon) = \int_0^1 (z(1 - z))^{-\varepsilon/2} \, dz = 1 - \frac{\varepsilon}{2} \int_0^1 \ln(z(1 - z)) \, dz + O(\varepsilon^2). \] (67)

Using
\[ \int_0^1 \ln(z(1 - z)) \, dz = -2, \] (68)
equation (67) is written as
\[ A(4, 2 + \varepsilon) = 1 + \varepsilon + O(\varepsilon^2). \] (69)

For 4-dimensional space time,
\[ \frac{\Gamma(\alpha - n/2)}{\Gamma(\alpha)} = \frac{1}{(\alpha - 1)(\alpha - 2)}. \] (70)

For \( n = 4 \) and \( \alpha = 2 + \varepsilon \), equation (70) gives
\[ \frac{\Gamma(\alpha - n/2)}{\Gamma(\alpha)} = \frac{1}{(1 + \varepsilon) \varepsilon} = \frac{1}{\varepsilon} - 1. \] (71)

Then integral (63) with \( n = 4 \) and \( \alpha = 2 + \varepsilon \), has the form
\[ I(q) = ig^2 \pi^2 \left( \frac{1}{\varepsilon} - 1 \right) (1 + \varepsilon) \left( 1 + i\pi \varepsilon \right) \left( 1 + \varepsilon \ln(q^2) \right). \] (72)

As a result, we get
\[ I(q) = \frac{ig^2 \pi^2}{\varepsilon} + ig^2 \pi^2 \ln(q^2) - \pi^3 g^2 + O(\varepsilon). \] (73)
Remarks
For the special cases, we have

\[ A(2, 1) = \pi, \quad A(4, 1) = \frac{\pi}{8}, \quad A(4, 2) = 1, \quad A(3, 1) = 1. \] (74)

The well-known asymptotic expression for the gamma-function is

\[ \Gamma(\varepsilon) = \frac{1}{\varepsilon} - \gamma + \frac{1}{2} \left( \gamma^2 + \frac{\pi^2}{6} \right) \varepsilon + O(\varepsilon^2) \quad (\varepsilon \to 0). \] (75)

For 2-dimensional space-time,

\[ \frac{\Gamma(\alpha - n/2)}{\Gamma(\alpha)} = \frac{1}{\alpha - 1}. \] (76)

If \( \alpha = 1 + \varepsilon \), then

\[ \frac{\Gamma(\alpha - n/2)}{\Gamma(\alpha)} = \frac{1}{\varepsilon}. \] (77)

For 4-dimensional space time (n=4),

\[ \frac{\Gamma(\alpha - n/2)}{\Gamma(\alpha)} = \frac{1}{(\alpha - 1)(\alpha - 2)}. \] (78)

If \( \alpha = 1 + \varepsilon \), then

\[ \frac{\Gamma(\alpha - n/2)}{\Gamma(\alpha)} = \frac{1}{\varepsilon (\varepsilon - 1)} = -\frac{1}{\varepsilon} - 1. \] (79)

If \( \alpha = 2 + \varepsilon \), then

\[ \frac{\Gamma(\alpha - n/2)}{\Gamma(\alpha)} = \frac{1}{(1 + \varepsilon) \varepsilon} = \frac{1}{\varepsilon} - 1. \] (80)

Remark. By changing variables to \( p' = p - q(1 - z) \), we see that the denominator in the integrand of equation (51) is the square of \( (p')^2 - m^2 + q^2 z(1 - z) \). But \( d^n p' = d^n p \), so relabelling \( p' \to p \), expression (48) becomes

\[ I(q) = g^2 \int_0^1 z^{\alpha/2 - 1} (1 - z)^{\alpha/2 - 1} \, dz \int \frac{d^n p}{(2\pi)^n [p^2 + q^2 z(1 - z)]^\alpha}. \] (81)

Conclusion
In this paper, we proposed a new regularization of quantum field theories, which is based on the Riesz fractional derivatives of non-integer order \( \alpha > 0 \). The fractional derivatives of non-integer order are characterized by nonlocality, the proposed FD regularization is actually a regularization by space-time nonlocality.
Note that the Riesz fractional derivatives of non-integer order \([12, 25]\) can be used not only for FD regularization. An application of fractional calculus in quantum field theory allows us to take into account space and time nonlocality \([28, 29, 10, 11, 21]\). It should be noted that we can use the Riesz fractional derivatives \([12, 25]\), the fractional Laplacian and d’Alembertian in the lattice quantum field theories \([21]\). Using the exact discretization of the fractional Laplacian d’Alembertian \([20]\), we can consider exact discrete analogs \([27]\) of the quantum field theories. The fractional derivatives of the Riesz type \([12, 25]\) are directly connected to the long-range properties and nonlocal interactions \([18, 19, 27]\). Because of this, this tool can be used not only for regularization, but also for constructing new quantum theories in high-energy physics and condensed matter physics.

Appendix

For the fractional case, we should consider the integrals

\[
K[\alpha, \beta, \gamma, M^2] = \int_0^\infty \frac{s^\gamma ds}{(s^\alpha + M^2)^\beta} \tag{82}
\]

instead of the integrals of equation \((58)\). Using new variable \(z\) such that \(z^2 = s^\alpha\), and

\[
z = s^{\alpha/2}, \quad s = z^{2/\alpha},
\]

\[
ds = (2/\alpha) z^{2/\alpha-1} dz, \quad s^\gamma = z^{2\gamma/\alpha},
\]

equation \((82)\) gives

\[
\frac{2}{\alpha} K[\alpha, \beta, \gamma, M^2] = \int_0^\infty dz \frac{z^{(\gamma+1)/\alpha - 1}}{(z^2 + M^2)^\beta}. \tag{85}
\]

Then using equation \((58)\), we obtain

\[
K[\alpha, \beta, \gamma, M^2] = \frac{2 \Gamma((\gamma + 1)/\alpha) \Gamma(\beta - (\gamma + 1)/\alpha)}{2 \alpha (M^2)^{\beta-(\gamma+1)/\alpha} \Gamma(\beta)}. \tag{86}
\]

Conflict of Interests

The author declares that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

This work was partially supported by grant NSh-7989.2016.2




References

[1] N.N. Bogoliubov, D.V. Shirkov, *Introduction to Theory of Quantized Fields* Third edition (John Wiley and Sons, New York, 1980) 638 pages.

[2] L.H. Ryder, *Quantum Field Theory* (Cambridge University Press, Cambridge, 1985). 487 pages.

[3] J.C. Collins, *Renormalization: An Introduction to Renormalization, the Renormalization Group and the Operator-Product Expansion* (Cambridge University Press, Cambridge, 1984). 392 pages.

[4] S.G. Samko, A.A. Kilbas, O.I. Marichev, *Fractional Integrals and Derivatives Theory and Applications* (Gordon and Breach, New York, 1993) 1006 pages.

[5] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, *Theory and Applications of Fractional Differential Equations* (Elsevier, Amsterdam, 2006) 353 pages.

[6] V.E. Tarasov, *Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media* (Springer, New York, 2011). 450 pages.

[7] V.E. Tarasov, ”Weyl quantization of fractional derivatives”, Journal of Mathematical Physics. Vol.49. No.10. (2008) 102112. 6 pages. (arXiv:0907.2699)

[8] V.E. Tarasov, ”Quantum Mechanics of Non-Hamiltonian and Dissipative Systems” (Elsevier Science, 2008) 540 pages.

[9] G. Calcagni, ”Quantum field theory, gravity and cosmology in a fractal universe”, Journal of High Energy Physics. Vol.2010. March (2010) 120. 38 pages. (arXiv:1001.0571)

[10] S.C. Lim, ”Fractional derivative quantum fields at positive temperature”, Physica A. Vol.363. No.2. (2006) 269-281.

[11] S.C. Lim, L.P. Teo, ”Casimir effect associated with fractional Klein-Gordon field”, in the book J. Klafter, S.C. Lim, R. Metzler (Eds.), *Fractional Dynamics. Recent Advances* (World Scientific, Singapore, 2011). pp.483-506. (arXiv:1103.1673)

[12] M. Riesz, ”L’intégrale de Riemann-Liouville et le problème de Cauchy”, Acta Mathematica. Vol.81. No.1. (1949) 1-222. in French.

[13] C.G. Bollini, J.J. Giambiagi, ”Arbitrary powers of D’Alembertians and the Huygens’ principle”, Journal of Mathematical Physics. Vol.34. No.2. (1993) 610-621.

[14] D.G. Barci, C.G. Bollini, L.E. Oxman, M.C. Rocca, ”Lorentz-invariant pseudo-differential wave equations”, International Journal of Theoretical Physics. Vol.37. No.12. (1998) 3015-3030.

[15] R.L.P.G. do Amaral, E.C. Marino, ”Canonical quantization of theories containing fractional powers of the d’Alembertian operator”, Journal of Physics A. Vol.25. No.19. (1992) 5183-5202.

[16] V.E. Tarasov, ”Continuous limit of discrete systems with long-range interaction”, Journal of Physics A. Vol.39. No.48. (2006) 14895-14910. (arXiv:0711.0826)

[17] V.E. Tarasov, ”Map of discrete system into continuous”, Journal of Mathematical Physics. Vol.47. No.9. (2006) 092901. 24 pages. (arXiv:0711.2612)
[18] V.E. Tarasov, ”Toward lattice fractional vector calculus”, Journal of Physics A. Vol.47. No.35. (2014) 355204. 51 pages.

[19] V.E. Tarasov, ”Lattice fractional calculus”, Applied Mathematics and Computation. Vol.257. (2015) 12-33.

[20] V.E. Tarasov, ”Exact discretization of fractional Laplacian”, Computers and Mathematics with Applications. 2017. Vol.73. No.5. P.855863. DOI: 10.1016/j.camwa.2017.01.012

[21] V.E. Tarasov, ”Fractional quantum field theory: From lattice to continuum”, Advances in High Energy Physics. Vol.2014. (2014) Article ID 957863. 14 pages.

[22] G. ’t Hooft, M. Veltman, ”Regularization and renormalization of gauge fields”, Nuclear Physics B. Vol.44. No.1. (1972) 189-213.

[23] G. Leibbrandt, ”Introduction to the technique of dimensional regularization”, Reviews of Modern Physics. Vol.47. No.4. (1975) 849-876.

[24] K. Svozil, ”Quantum field theory on fractal spacetime: a new regularization method”, Journal of Physics A. Vol.20. No.12. (1987) 3861-3875.

[25] H. Prado, M. Rivero, J.J. Trujillo, M.P. Velasco, ”New results from old investigation: A note on fractional m-dimensional differential operators. The fractional Laplacian”, Fractional Calculus and Applied Analysis. Vol.18. No.2. (2015) 290-306. DOI: 10.1515/fca-2015-0020

[26] V.E. Tarasov, ”No violation of the Leibniz rule. No fractional derivative”, Communications in Nonlinear Science and Numerical Simulation. Vol.18. No.11. (2013) 2945-2948.

[27] V.E. Tarasov, ”Exact discretization by Fourier transforms”, Communications in Nonlinear Science and Numerical Simulation. Vol.37. (2016) 3161.

[28] G.V. Efimov, ”Non-local quantum theory of the scalar field”, Communications in Mathematical Physics. Vol.5 (1). (1967)4256. DOI: 10.1007/BF01646357

[29] G.V. Efimov, The problems of the quantum theory of nonlocal interactions. Moscow: Nauka, 1985. 216p.