Common and separable neurofunctional dysregulations characterize obsessive-compulsive, substance use, and gaming disorders – evidence from an activation likelihood meta-analysis of functional imaging studies

Benjamin Klugah-Brown¹, PhD, Xinqi Zhou¹, MSC, Basant K. Pradhan³, MD, Jana Zweerings⁴,⁵, PhD, Klaus Mathiak⁴,⁵, MD, PhD, Benjamin Becker¹*, PhD, Bharat Biswal¹,²*, PhD

¹The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, No.2006, Xiyuan Avenue, West Hi-Tech Zone, Chengdu, Sichuan 611731, China
²Department of Biomedical Engineering, New Jersey Institute of Technology, 619 Fenster Hall, Newark, NJ 07102, USA
³Department of Psychiatry and Pediatrics, Cooper University Hospital and Cooper Medical School of Rowan University, 401 Haddon Avenue, Camden, NJ, 08103, USA
⁴Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Pauwelstrasse 30, 52074, Aachen, Germany
⁵JARA Translational Brain Medicine, RWTH Aachen, Pauwelstrasse 30, 52074, Aachen, Germany

*Corresponding authors
Bharat Biswal
ORCID ID 0000-0002-3710-3500
Email: bbiswal@gmail.com

Benjamin Becker
ORCID ID 0000-0002-9014-9671
Email: ben_becker@gmx.de
Abstract

Compulsivity and loss of behavioral control represent core symptoms in obsessive-compulsive disorder (OCD), substance use disorder (SUD), and internet gaming disorder (IGD). Despite elaborated animal models suggesting that compulsivity is mediated by cortico-striatal circuits and a growing number of neuroimaging case-control studies common and distinct neurofunctional alterations in these disorders have not been systematically examined. The present activation likelihood estimation (ALE) meta-analysis capitalized on previous case-control fMRI studies to determine shared and disorder-specific neurofunctional alterations among the three disorders. Task-based fMRI studies employing case-control designs in individuals with SUD, OCD or IGD were obtained. Coordinate-based meta-analyses (ALE) were performed within each disorder. Next subtraction and conjunction meta-analyses were performed to determine differential and common neurofunctional alterations between the disorders. Task-paradigm classes were group according to RDoC domains to determine contributions of underlying behavioral domains. 144 articles were included representing data from individuals (SUD=2418, controls=2332; IGD=361, controls=360; OCD=715, controls=711) from case-control. Comparative and conjunction meta-analyses revealed shared alterations in insular-prefrontal circuits in SUD and OCD, with SUD exhibiting additionally pronounced dorsal striatal alterations as compared to both, OCD and IGD. IGD and SUD exhibited shared prefrontal alterations, with IGD demonstrating pronounced temporal alterations compared to both, SUD and OCD. No robust overlap between IGD and OCD was observed. Across the disorders, neurofunctional alterations were mainly contributed to by the cognitive systems and positive valence RDoC domains. The present findings indicate that neurofunctional dysregulations in prefrontal regions engaged in regulatory control represent shared neurofunctional alterations across substance and behavioral addictions, while neurofunctional dysregulations in the anterior insula may mediate compulsivity substance addiction and obsessive-compulsive disorders.

Keywords: obsessive-compulsive disorder, substance use disorder, internet gaming disorder, activation likelihood estimation, functional magnetic resonance imaging
Introduction

Compulsivity refers to maladaptive repetitive and irrational behaviors, which are driven by strong urges in the context of a loss of behavioral control and which are repeated despite adverse consequences. Compulsivity is a core symptom of obsessive-compulsive disorder (OCD) characterized by intrusive thoughts or images and an uncontrollable urge to perform repetitive rituals but is also increasingly recognized as a core symptomatic domain in substance and behavioral addictions. In addictive disorders, the transition from initial voluntary and impulsive use towards compulsive use has been considered as a core pathological mechanism promoting the loss of behavioral control and continued use despite negative consequences. In line with the symptomatologic overlap and the course of the development of the Research Domain Criteria (RDoC) framework overarching conceptualizations have proposed that compulsivity may represent a transdiagnostic dimension across these disorders.

Animal models and experimental research in humans suggest that dysregulations in habit formation and reward processing, as well as impaired regulatory control and cognitive flexibility, promote the development of compulsive behavior. In line with these conceptualizations previous meta-analyses of case-control studies comparing either patients with OCD or substance use disorders (SUD) with healthy controls reported partly overlapping dysregulations in the domains of reward-related processes, associative learning and goal-directed behavior underlying habit formation as well as marked deficits in executive control and cognitive flexibility. On the neural level compulsivity has been tightly linked to the structural and functional integrity of segregated yet interacting cortico-striatal loops that neurally mediate habit formation, reward processing and executive control. A growing number of recent meta-analysis covering case-control studies in
either OCD and SUD have demonstrated robust and partly overlapping neurofunctional alterations in the intrinsic communication and task-related activation in cortico-striatal circuits (17–21), suggesting partly overlapping neuropathological pathways between these disorders.

Based on increasing prevalence rates (22,23), internet gaming disorder (IGD) has been recently included as an emerging behavioral addiction in the Diagnostic and Statistical Manual of Mental Disorders-Fifth Edition (DSM-5, APA) (24) and the International Classification of Diseases 11 (ICD 11, WHO) (25). The proposed IGD symptoms in both diagnostic systems are strongly aligned with symptoms for SUD and include compulsive and recurrent engagement in gaming and progressively impaired loss of behavioral control leading to continued gaming despite negative consequences (26). Based on the symptomatic overlap with SUDs, recent overarching models of IGD propose that the development of compulsive use and the loss of behavioral control in IGD are mediated by mal-adaptations in behavioral domains and cortico-striatal circuits that also drive the development of substance-based addictions (27,28). A rapidly growing number of experimental studies suggest functional impairments in IGD, including behavioral characteristics of compulsivity (29–31), deficient executive and inhibitory control (32) and to a lesser extend alterations in reward processing (33). Previous meta-analyses covering case-control functional imaging studies in subjects with problematic internet use and IGD suggest robust neurofunctional alterations during cognitive and reward processing in frontal and insular regions, yet less robust evidence for functional alterations in striatal regions (34–36).

Despite overlapping compulsive symptoms between IGD, SUD and OCD on the clinical level and initial studies suggesting that compulsivity across these disorders is driven by shared dysregulations in underlying behavioral domains (31), common and distinct neurobiological mal-adaptations between these disorders have not been systematically determined. While compulsivity
is not an explicit dimensional construct or domain in the RDoC framework, it can be conceptualized by various RDoC constructs including positive and negative valence systems and cognitive control. Given that compulsivity is increasingly recognized as transdiagnostic underlying behavioral dysregulation across IGD, SUD an OCD the present comparative meta-analysis aimed at determining common neural alterations in these disorders by capitalizing on previous fMRI case-control studies conducted in individuals with obsessive-compulsive disorder (OCD), substance use disorders (SUD) and internet gaming disorder (IGD). Based on the currently prevailing disorder models and the previous literature we hypothesize shared transdiagnostic alterations in frontal and striatal regions.

Methods

This meta-analysis adheres to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) (37) guidelines and the principles of conducting coordinate-based meta-analyses (38). The meta-analytic approach and analyses were pre-registered on the Open Science Framework (DOI 10.17605/OSF.IO/J8WCT, https://osf.io/j8wct/). We initially conducted a literature search on task-based fMRI studies in SUD, IGD, and OCD using four relevant databases and additionally identified relevant studies in pertinent reviews. Titles and abstracts returned by the search were examined for subsequent full-text screening and inclusion. The screening process resulted in a total of 152 peer-reviewed original articles of which 99, 35 and 18 employed case-control designs in SUD, OCD, and IGD respectively. Articles that passed the inclusion criteria were further grouped based on the task paradigm according to RDoC domains as described e.g. in (3). Finally, coordinates from the original studies in the three diagnostic categories were extracted and analyzed utilizing activation likelihood estimation (ALE) (39).
Literature search and databases

Task-based fMRI studies reporting results on the whole-brain level, employing case-control designs in SUD, OCD and IGD samples that were published in English language between January 1st, 2000 to January 31st, 2020 were included. The following search terms were applied: “functional magnetic resonance imaging” OR “fMRI” AND “substance use disorder” OR “obsessive-compulsive disorder” OR “internet gaming disorder” on four databases (PubMed, Web of Science, Neurosynth and Scopus). Only articles with case-control designs reporting differences between the respective diagnostic group with a healthy reference group were included. Additional exclusion criteria were as follows: 1. Articles reporting only region-of-interest (ROI) results (if the study additionally reported whole-brain corrected findings these were included), 2. Articles with poly-drug users or conducted in samples with comorbidity (severe psychiatric or somatic disorders, e.g. schizophrenia or HIV), 3. Articles focusing on parental substance use exposure, and 4. Articles reporting results from the same dataset previously published previous. A flow chart depicting the article selection for the main and sub-meta-analysis is shown in Figure 1.

Activation likelihood estimation (ALE)

All coordinates (either provided in Talairach or Montreal Neurological Institute, MNI, standard space) and sample size were manually extracted from the original articles and next subjected to the current version of ALE (39–41) for meta-analytic analyses. ALE uses the convergence of whole-brain coordinates from experiments under a non-random spatial distribution to create clusters formed by equal probabilities of voxels. The ALE map indicates clusters of convergence. In line with recent recommendations, cluster-level familywise error-corrected (FWE) with a cluster forming threshold of p<0.05 and p<0.001 (42) respectively, were employed. The p-value accounts for the proportion of the random spatial relation between the various experiments.
under the null distribution. In line with the aim of the study we mainly focused differences (subtraction) and overlap (conjunction) among the three diagnostic groups in the following way: first, ALEs were calculated separately for each diagnostic category and next the pooled coordinates between any two groups were created yielding six permutations. Finally, for the six permutations, three results are expected, i.e. one between each pair. At each computation, significant clusters were estimated by applying 5,000 Monte-Carlo simulations (43). Corresponding voxel probabilities, as well as the contribution from the RDoC domains, were extracted from the obtained modeled activation maps which were used for further analysis using the Kruskal-Wallis test.

Contrast and conjunction analyses

The major aim of the present study was to determine divergent (disorder-specific) and convergent (transdiagnostic) neurofunctional alterations between the diagnostic categories in comparison to their respective healthy reference groups. Firstly, in the contrast analysis, we used the subtraction method to uncover significant clusters characterizing each diagnostic group. Next, using the corrected maps of the individual ALEs, voxel differences were computed to determine significant neurofunctional alterations within each disorder relative to the respective healthy reference group by means disorder-specific meta-analyses. Null distributions were generated from the ALE scores using random permutation of all experiments, after which the ALE score of the equal-sized group similar to the individual computed maps were randomly permuted for all voxels in the represented brain. Secondly, we aimed at determining divergent neurofunctional alterations between the disorder categories and thus computed differential contrasts between two of the diagnostic categories. Thirdly, we aimed to identify common neurofunctional alterations between diagnostic categories. To this end, we computed conjunction contrasts between two diagnostic categories. The expected results represent the intersections for shared neurofunctional alterations
in these disorders. For all analyses a cluster-level FWE, with p< 0.05 and an initial cluster forming threshold p<0.001 was employed.

Exploratory analysis

To further map the determined disorder-specific and common transdiagnostic alterations on the underlying behavioral domains the experimental paradigms were mapped onto the proposed RDoC domains, specifically the cognitive systems (n=63), positive valence systems (n=41), negative valence systems (n=14), cross-domain systems (14), and social processing (n=12) domains (for detailed overview of specific task paradigms associated with RDoC domains, see supplementary section of (3)). Additionally, to test for effect sizes in publications, we computed Egger’s test within each of the diagnostic group to determine heterogeneity (44). For each of the main, differential and conjunction effects, the probability of functional changes was extracted per-voxel and the contributions from each RDoC domain were subjected to Kruskal-Wallis tests (Bonferroni corrected for the number of comparisons). This analysis aimed at resolving a potential bias related to different task paradigms employed in the diagnostic categories as well as to account for the heterogeneous nature of the different task paradigms included in the present analysis (for a similar approach see (45)).

Results

Literature search, screening, and evaluation according to our criteria resulted in a total of 144 articles. In line with our recent meta-analysis 46 using the same SUD dataset to determine common and substance-specific neurofunctional alterations across SUDs and revealing convergent alterations in fronto-striatal regions across different SUDs, data from studies of different SUDs were included (Alcohol, 19.31%; Cocaine, 15.86%; Cannabis, 15.17%; and Nicotine, 12.41%) and
pooled for the present analysis. IGD and OCD each contributed to 13.1% and 24.13% of the included studies, respectively. The RDoC domain classification yielded four categories: Positive Valence Systems (PVS), Cognitive Systems (CS), Negative Valence Systems (NVS), and Social Processes (SP), the distribution of the various domains across each disorder shown in Table S8. There was no publication bias in the reported sample size related to the reported foci (p=0.49) (see also Figure S1 displaying the respective funnel plot). There were no significant differences among the four RDoC domains for the three disorders as examined by chi-square tests (PVS: $\chi^2 = 24, p = 0.24$, CS: $\chi^2 = 20, p = 0.24$ NVS: $\chi^2 = 12, p = 0.28$, and SP $\chi^2 = 18, p = 0.26$). In total, data from n = 3494 patients (mean age = 31.76, SD=11.54) and n = 3403 controls (mean age = 29.80, SD= 11.10) were included (details see also the PRISMA flow diagram provided in Figure 1).

Disorder-specific meta-analyses and contributions of RDoC domains

The first meta-analyses examined data from the three diagnostic categories separately to determine clusters most likely determined for each diagnostic group relative to the healthy reference groups. Moreover, the percentage distribution of the classified RDoC domains was computed for each cluster in each diagnostic category. Resembling the results from our previous SUD-focused meta-analysis (46) the main effect across all SUDs primarily revealed clusters located in (dorsal) striatal regions as well as frontal and insular regions (Figure 2A1, A2). For all clusters (total number of clusters N=6) contribution of cognitive systems (RDoC construct: attention, cognitive control, working memory, and memory encoding) were the highest, followed by contributions of the positive valence systems (RDoC construct: approach/motivation and reward attainment). For OCD robust alterations were observed in prefrontal and insular regions, although a similar pattern of RDoC contribution as in SUD was observed (Figure 2 B1, B2). For
IGD, robust alterations were determined in a widespread network encompassing cortical midline and temporal regions, including superior and middle frontal regions as well as middle, inferior and superior temporal regions, the posterior cingulate and lingual gyrus. With respect to the RDoC domain contributions, cognitive systems, and positive valence systems contributed equally to the alterations in IGD with some contributions from negative valence system (RDoC contrast: acute threat, i.e. fear conditioning or symptom provocation, frustrated non-reward including monetary delay paradigms with punishment) (Figure 2 C1, C2).

Meta-analytic determination of differences between the diagnostic categories

A subtraction approach was employed to determine significant meta-analytic differences between the three diagnostic categories by means of directly comparing the meta-analytic maps of two disorder categories. The corresponding spatial maps represent areas exhibiting stronger alterations in one diagnostic category as compared to the other diagnostic category. Comparing SUD and IGD meta-analytic maps revealed greater alterations in SUD in dorsal striatal and prefrontal as well as anterior cingulate and insular regions, whereas IGD showed greater alterations in temporal regions as well as the middle frontal gyrus in direct comparison with SUD (Figure 3 A1, Table S2). The identified regions exhibited mainly contributions of cognitive and positive valence RDoC systems for both, SUD and IGD, respectively (Figure 3 A2, A3). The direct comparison of SUD with OCD (Figure 3 B1, Table S3) revealed relative greater alterations in SUD in dorsal striatal and prefrontal areas, as well as anterior cingulate and thalamic regions whereas OCD showed greater neurofunctional alterations in posterior frontal and parietal regions. Positive valence and cognitive systems contributed to the alteration in SUD and OCD, respectively (Figure 3 B2, B3). Meta-analytic comparison of IGD and OCD revealed stronger alterations in the bilateral insula, posterior parietal, and middle frontal regions in OCD relative to IGD, whereas
IGD exhibited stronger alterations in inferior and middle temporal, cingulate and hippocampal regions (Figure 3 C1). Alterations in OCD were mainly contributed by cognitive and to a lesser extent positive valence RDoC systems, whereas alterations in IGD were mainly contributed by negative and positive valence systems (e.g. particularly from reward attainment or motivation and delay incentive leading to punishment representing positive valence and negative valence systems respectively) (Figure 3 C2, C3, Table S4).

Meta-analytic conjunction analyses: shared neurofunctional alterations

The conjunction analysis between SUD and IGD revealed shared alterations in prefrontal regions, specifically in the medial frontal gyrus spreading into the adjacent anterior cingulate and the inferior frontal gyrus (Figure 4 A1, Table S5) which were predominately contributed by the cognitive systems RDoC domain (Figure 4 A2). The conjunction between SUD and OCD revealed shared alterations primarily in the bilateral anterior insular cortex and the precentral gyrus which were mainly contributed by the RDoC cognitive systems domain and to a lesser extent the positive valence domain (Figure 4 B1, B2). The detail peaks are presented in Table S6. The conjunction analysis between IGD and OCD did not reveal regions exhibiting consistent meta-analytic alterations across the two diagnostic categories.

Exploratory analysis: contribution of RDoC domains

Finally, to examine whether the RDoC domain targeted by the case control studies may have affected the determination of the differential and shared alterations we examined the heterogeneity of the functional paradigms by means of extracting the voxel-wise probabilities for the clusters from the conjunction analysis and subjecting these to Kruskal-Wallis tests. No significant influence of the RDoC domain categorized paradigms on the conjunction (common) or disorder-
specific neurofunctional alterations was observed following adjustment for multiple comparisons (Table S7).

Discussion

Based on symptomatic overlap and emerging transdiagnostic models for OCD, SUD, and IGD, we aimed at systematically determining shared and disorder-specific neurofunctional alterations between these psychiatric disorders. To this end, we employed a series of coordinate-based meta-analyses that capitalized on the large number of previous case control fMRI studies in these diagnostic entities. Separately examining neurofunctional alterations within each diagnostic category revealed robust alterations in insular-prefrontal circuits in SUD and OCD, with SUD exhibiting additional alterations in (dorsal) striatal regions, while IGD was characterized by widespread alterations in temporal and posterior cingulate regions as well as middle frontal regions. Across the three diagnostic entities, the identified neurofunctional alterations were predominately contributed by task-paradigms tapping into the cognitive and positive valence systems RDoC domains. In line with the descriptive findings from the separate meta-analyses, direct comparisons between the diagnostic categories revealed that SUD individuals exhibited pronounced dorsal striatal and prefrontal alterations as compared to both, OCD and IGD, whereas OCD subjects exhibited pronounced neurofunctional alterations in the anterior insular cortex (and left dIPFC) and IGD presented pronounced alterations in widespread temporal regions as compared to both other diagnostic categories. Finally, examining the common alterations via meta-analytic conjunction analyses revealed shared alterations between SUD and OCD in the bilateral anterior insular cortex and the precentral gyrus while SUD and IGD shared neurofunctional alterations in right inferior frontal and bilateral medial frontal regions. In contrast to our expectations, no robust shared alterations between OCD and IGD were observed which indicates that IGD, despite having
compulsivity as a shared behavioral commonality with OCD, is actually closer to SUD from functional neuroimaging perspectives. Across analyses and diagnostic category, the alterations were predominantly contributed by the RDoC cognitive systems domain and to a lesser extent the positive valence domain. One exception was observed with respect to the pronounced temporal alterations in IGD which were partly contributed to by the RDoC negative valence system and by a possible indirect role of the temporal lobe in impulse dyscontrol.

The results from the initial meta-analyses that aimed at mapping robust neurofunctional alterations within each disorder category generally align with previous disorder-specific meta-analyses. In line with our SUD-focused previous meta-analysis (46) individuals with chronic substance abuse exhibited robust alterations in striatal, primary dorsal striatal (47), and frontal regions. These findings resonate with several previous meta-analytic findings in substance users demonstrating altered striatal processing of drug-associated and non-drug associated rewards (20,21,46,48) and altered frontal processing during executive and regulatory functions (49,50). Specifically, neurofunctional alterations in the dorsal striatum have been associated with the development of compulsive drug use in humans (51,52) and animal models demonstrated that drug-induced neuroplastic alterations in cortico-striatal circuits critically mediate the formation of habitual and ultimately compulsive patterns of drug use (15,16). In line with previous meta-analyses covering case-control fMRI studies in OCD, we observed robust alterations in frontal and insular networks, primarily during cognitive and positive valence paradigms, in OCD. However, in contrast to these previous meta-analyses, no robust alterations in striatal regions were observed in the present meta-analysis (19,53,54). Partly resembling previous meta-analyses in IGD we observed robust neurofunctional alterations in frontal and temporal regions in IGD subjects, yet no robust alterations in striatal regions ((34,55,56) however, see also (57)).
The major aim of the present study was to systematically determine shared and disorder-specific neurofunctional alterations between these three diagnostic and symptomatic categories. Directly comparing the meta-analytic maps revealed that SUD was characterized by pronounced alterations in dorsal striatal-prefrontal circuits compared to both, OCD and IGD. These findings emphasize the importance of drug-induced neurofunctional alterations in these circuits which may promote the transition to addictive and ultimately compulsive use. OCD presented stronger alterations in the anterior insular cortex compared to both other diagnostic categories and neurofunctional alterations in the anterior insular cortex were shared between SUD and OCD. The anterior insular cortex has been implicated in a variety of functions ranging from basal interoceptive functions, affective empathy and salience processing to higher-order cognitive functions such as risky decision making (58–61). Lesion studies have demonstrated a critical role of the anterior insula cortex in interoceptive accuracy and drug craving (62), suggesting that the insula integrates bodily sensations with emotion and motivation and thus mediates the conscious awareness of urges (63). In contrast to cortico-striatal circuits, the insula has only recently been conceptualized as a core region of the circuitry that promotes the development of compulsive behavior, with initial results from animal lesion models suggesting a causal role of the anterior insula in the formation of compulsive behavior (64). In contrast to both other diagnostic categories IGD was characterized by widespread neurofunctional alterations in the temporal cortex and to a lesser extent frontal regions. Temporal lobe regions have not been robustly identified in previous meta-analyses of either OCD or SUD (19,21,46,53,54,65,66), while some previous meta-analysis on IGD reported temporal as well as frontal alterations, specifically during higher-level cognitive processes such as executive control (34,55). The findings of IGD-specific alterations in temporal lobe regions are in line with initial studies comparing IGD and SUD samples reporting opposing intrinsic
communication alterations between prefrontal regulatory control nodes and temporal regions in IGD and SUD (67) as well as a recent report suggesting opposite associations between impulsivity and temporal lobe thickness in IGD and SUD (67,68), thus further emphasizing the possible regulatory role of temporal lobe in impulse dyscontrol by its interaction with the prefrontal cortex. In line with several previous cross-sectional meta-analytic and prospective studies reporting functional and structural alterations in IGD (34,52,55,56) the present meta-analysis found altered prefrontal activation in IGD, of which alterations in inferior frontal and medial frontal regions were shared with SUD. The integrity of these prefrontal cortex regions critically mediates executive and inhibitory control functions and the shared alterations may reflect marked deficits in these domains as previously reported in individuals with both disorders (69,70).

In contrast to our hypotheses, IGD did not demonstrate robust shared neurofunctional alterations with OCD. Together with the overlapping prefrontal alterations between IGD and SUD as well as the pronounced temporal alterations in IGD relative to both disorders the pattern of results may indicate that prefrontal deficits potentially related to common inhibitory and executive deficits represent shared neurofunctional alterations across substance and behavioral addictions, while neural alterations in the anterior insular cortex potentially related to compulsivity are shared between substance addiction and OCD yet do not represent a characteristic of IGD. These findings may indicate that the compulsive symptoms observed on the behavioral level in IGD are either less dominant in this disorder or mediated by different neuropathological pathways.

Although the present meta-analysis revealed important insight in common and distinct neurofunctional alterations across the disorders, the influence of potentially confounding factors could only be analyzed to a certain extent due to the nature of the original studies. For example, studies within each disorder group presented different indices of substance use such that some
studies recorded the duration of dependency for substances while others reported the amount of substances or medication used or no corresponding indices. Moreover, the original studies included in this meta-analysis employed cross-sectional case control designs, which limits conclusions of whether the observed neurofunctional alterations represent pre-disposing risk factors or represent a consequence of the underlying disorder.

Conclusion

To our knowledge this is the first study that takes advantage of the currently available fMRI case control studies to determine common and separable neurofunctional alterations in SUD, OCD and IGD, thus taking an important step forward in this rather unexplored territory. The alterations within each diagnostic category emphasize that neurofunctional alterations in frontal regions characterize the disorders, with OCD and SUD presenting pronounced alterations in the insula, and additional dorsal striatal alterations in SUD. IGD and SUD exhibited shared neurofunctional alterations in prefrontal regions engaged in inhibitory and executive control, while IGD and SUD did not exhibit common neurofunctional alterations. The identified neurofunctional alterations across the three diagnostic entities, were predominately contributed by task-paradigms tapping into the cognitive and positive valence systems RDoC domains and may suggest shared cognitive and reward-related processing behavioral alterations underlying the three disorders. If replicated in future studies, this may pave the path towards neuroimaging informed targeted interventions such as non-invasive brain stimulation/neuromodulation interventions for these often chronic and difficult to treat conditions.
Funding statement

This work was supported by the National Key Research and Development Program of China (Grant No. 2018YFA0701400), National Natural Science Foundation of China (NSFC, No 91632117), and Science, Innovation and Technology Department of the Sichuan Province (2018JY0001). The authors report no conflict of interest.

Data availability statement

The data is available from the corresponding authors upon reasonable request.
References

1. Fgiee M, Pattij T, Willuhn I, et al. (2015): Compulsivity in obsessive-compulsive disorder and addictions: *Eur Neuropsychopharmacol*. doi:10.1016/j.euroneuro.2015.12.003.

2. El-Guebaly N, Mudry T, Zohar J, Tavares H, Potenza MN (2012): Compulsive features in behavioural addictions: The case of pathological gambling. *Addiction*. doi:10.1111/j.1360-0443.2011.03546.x.

3. Insel T, Cuthbert B, Garvey M, et al. (2010): Research Domain Criteria (RDoC): Toward a. *Am J Psychiatry Online*. doi:10.1176/appi.ajp.2010.09091379.

4. Brooks SJ, Lochner C, Shoptaw S, Stein DJ (2017). Using the research domain criteria (RDoC) to conceptualize impulsivity and compulsivity in relation to addiction. In: Progress in Brain Research. doi:10.1016/bs.pbr.2017.08.002.

5. Robbins TW, Gillan CM, Smith DG, de Wit S, Ersche KD (2012): Neurocognitive endophenotypes of impulsivity and compulsivity: Towards dimensional psychiatry. *Trends Cogn Sci*. 16(1):81-91. doi:10.1016/j.tics.2011.11.009.

6. Fineberg NA, Chamberlain SR, Goudriaan AE, et al. (2014): New developments in human neurocognition: Clinical, genetic, and brain imaging correlates of impulsivity and compulsivity. *CNS Spectr*. doi:10.1017/S1092852913000801.

7. Vaghi MM, Cardinal RN, Apergis-Schoute AM, Fineberg NA, Sule A, Robbins TW (2019): Action-Outcome Knowledge Dissociates From Behavior in Obsessive-Compulsive Disorder.
Following Contingency Degradation. Biol Psychiatry Cogn Neurosci Neuroimaging. 2019.
doi:10.1016/j.bpsc.2018.09.014.

8. Ersche KD, Gillan CM, Simon Jones P, et al. (2016): Carrots and sticks fail to change behavior in cocaine addiction. Science (80-). doi:10.1126/science.aaf3700.

9. Kluwe-Schiavon B, Viola TW, Sanvicente-Vieira B, et al. (2010): Substance related disorders are associated with impaired valuation of delayed gratification and feedback processing: A multilevel meta-analysis and meta-regression. Neurosci Biobehav Rev. doi:10.1016/j.neubiorev.2019.11.016.

10. Baldacchino A, Balfour DJK, Passetti F, Humphris G, Matthews K (2012). Neuropsychological consequences of chronic opioid use: A quantitative review and meta-analysis. Neurosci Biobehav Rev. doi:10.1016/j.neubiorev.2012.06.006.

11. Chamberlain SR, Fineberg NA, Blackwell AD, Robbins TW, Sahakian BJ (2006). Motor inhibition and cognitive flexibility in obsessive-compulsive disorder and trichotillomania. Am J Psychiatry. doi:10.1176/ajp.2006.163.7.1282.

12. Shin NY, Lee TY, Kim E, Kwon JS (2014). Cognitive functioning in obsessive-compulsive disorder: A meta-analysis. Psychol Med. doi:10.1017/S0033291713001803.

13. Haber SN (2016): Corticostriatal circuitry. In: Neuroscience in the 21st Century: From Basic to Clinical, Second Edition. doi:10.1007/978-1-4939-3474-4_135.
14. Heuvel OA Van Den, Wingen G Van, Soriano-mas C, et al. (2016): Brain circuitry of compulsivity. Eur Neuropsychopharmacol. 26(5):810-827.

15. Everitt BJ, Giuliano C, Belin D (2018): Addictive behaviour in experimental animals: Prospects for translation. Philos Trans R Soc B Biol Sci. doi:10.1098/rstb.2017.0027

16. Robbins TW, Vaghi MM, Banca P (2019): Obsessive-Compulsive Disorder: Puzzles and Prospects. Neuron. 102(1):27-47.

17. Thorsen AL, Hagland P, Radua J, et al. (2018): Emotional Processing in Obsessive-Compulsive Disorder: A Systematic Review and Meta-analysis of 25 Functional Neuroimaging Studies. Biol Psychiatry Cogn Neurosci Neuroimaging. 3(6):563-571.

18. Harrison BJ, Soriano-Mas C, Pujol J, et al. (2009): Altered corticostriatal functional connectivity in obsessive-compulsive disorder. Arch Gen Psychiatry. 2009. doi:10.1001/archgenpsychiatry.2009.152.

19. Norman LJ, Taylor SF, Liu Y, et al. (2019): Error Processing and Inhibitory Control in Obsessive-Compulsive Disorder: A Meta-analysis Using Statistical Parametric Maps. Biol Psychiatry.85(9):713-725.

20. Schacht JP, Anton RF, Myrick H (2013): Functional neuroimaging studies of alcohol cue reactivity: A quantitative meta-analysis and systematic review. Addict Biol. 18(1):121-133.

21. Luijten M, Schellekens AF, Kühn S, MacHielse MWJ, Sescousse G (2017): Disruption of reward processing in addiction: An image-based meta-analysis of functional magnetic resonance
imaging studies. JAMA Psychiatry. 74(4):387-398.

22. Fam JY (2018): Prevalence of internet gaming disorder in adolescents: A meta-analysis across three decades. Scand J Psychol. doi:10.1111/sjop.12459.

23. Mihara S, Higuchi S (2017): Cross-sectional and longitudinal epidemiological studies of Internet gaming disorder: A systematic review of the literature. Psychiatry Clin Neurosci. doi:10.1111/pcn.12532.

24. American Psychiatric Association (2013): Diagnostic and Statistical Manual of Mental Disorders (5th Ed.). Washington, DC: American Psychiatric Publishing.

25. WHO. World Health Organization (WHO). ICD-11 mortality and morbidity statistics. Mental, behavioural or neurodevelopmental disorders. https://icd.who.int/browse11/l-m/en. Accessed March 15, 2020.

26. King DL, Potenza MN (2019): Not Playing Around: Gaming Disorder in the International Classification of Diseases (ICD-11). J Adolesc Heal. doi:10.1016/j.jadohealth.2018.10.010.

27. Dong G, Potenza MN (2014): A cognitive-behavioral model of Internet gaming disorder: Theoretical underpinnings and clinical implications. J Psychiatr Res. doi:10.1016/j.jpsychires.2014.07.005.

28. Brand M, Wegmann E, Stark R, et al.(2019): The Interaction of Person-Affect-Cognition-Execution (I-PACE) model for addictive behaviors: Update, generalization to addictive behaviors
beyond internet-use disorders, and specification of the process character of addictive behaviors. Neurosci Biobehav Rev. doi:10.1016/j.neubiorev.2019.06.032.

29. Lee SY, Lee HK, Jeong H, et al. (2017): The hierarchical implications of internet gaming disorder criteria: Which indicate more severe pathology? Psychiatry Investig. doi:10.4306/pi.2017.14.3.249.

30. Tiego J, Lochner C, Ioannidis K, et al. (2019): Problematic use of the Internet is a unidimensional quasi-Trait with impulsive and compulsive subtypes. BMC Psychiatry. doi:10.1186/s12888-019-2352-8.

31. Albertella L, Chamberlain SR, Le Pelley ME, et al. (2019): Compulsivity is measurable across distinct psychiatric symptom domains and is associated with familial risk and reward-related attentional capture. CNS Spectr. doi:10.1017/s1092852919001330.

32. Ioannidis K, Hook R, Goudriaan AE, et al. (2019): Cognitive deficits in problematic internet use: meta-analysis of 40 studies. Br J Psychiatry. doi:10.1192/bjp.2019.3.

33. Vargas T, Maloney J, Gupta T, Damme KSF, Kelley NJ, Mittal VA (2019): Measuring facets of reward sensitivity, inhibition, and impulse control in individuals with problematic Internet use. Psychiatry Res. doi:10.1016/j.psychres.2019.03.032.

34. Meng Y, Deng W, Wang H, Guo W, Li T (2015): The prefrontal dysfunction in individuals with Internet gaming disorder: A meta-analysis of functional magnetic resonance imaging studies. Addict Biol. doi:10.1111/adb.12154.
35. Zheng H, Hu Y, Wang Z, Wang M, Du X, Dong G (2019): Meta-analyses of the functional neural alterations in subjects with Internet gaming disorder: Similarities and differences across different paradigms. Prog Neuro-Psychopharmacology Biol Psychiatry.94(January). doi:10.1016/j.pnpbp.2019.109656.

36. Yao YW, Liu L, Ma SS, et al. (2017): Functional and structural neural alterations in Internet gaming disorder: A systematic review and meta-analysis. Neurosci Biobehav Rev. 83(August):313-324. doi:10.1016/j.neubiorev.2017.10.029.

37. Moher D, Liberati A, Tetzlaff J, et al. (2014): Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Rev Esp Nutr Humana y Diet. doi:10.14306/renhyd.18.3.114.

38. Müller VI, Cieslik EC, Laird AR, et al. (2018): Ten simple rules for neuroimaging meta-analysis. Neurosci Biobehav Rev. 84(November 2017):151-161.

39. Eickhoff SB, Bzdok D, Laird AR, Kurth F, Fox PT (2012): Activation likelihood estimation meta-analysis revisited. Neuroimage. 59(3):2349-2361.

40. Eickhoff SB, Laird AR, Grefkes C, Wang LE, Zilles K, Fox PT (2009): Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: A random-effects approach based on empirical estimates of spatial uncertainty. Hum Brain Mapp. 30(9):2907-2926.

41. Turkeltaub PE, Eickhoff SB, Laird AR, Fox M, Wiener M, Fox P (2012): Minimizing within-
experiment and within-group effects in activation likelihood estimation meta-analyses. Hum Brain Mapp. doi:10.1002/hbm.21186.

42. Eickhoff SB, Nichols TE, Laird AR, et al. (2016): Behavior, sensitivity, and power of activation likelihood estimation characterized by massive empirical simulation. Neuroimage. 137:70-85.

43. Engelmann JM, Versace F, Robinson JD, et al. (2012): Neural substrates of smoking cue reactivity: A meta-analysis of fMRI studies. Neuroimage. doi:10.1016/j.neuroimage.2011.12.024.

44. Egger M, Smith GD, Schneider M, Minder C (1997): Bias in meta-analysis detected by a simple, graphical test measures of funnel plot asymmetry. Bmj. doi:10.1136/bmj.315.7109.629.

45. Janiri D, Moser DA, Doucet GE, et al. (2020): Shared Neural Phenotypes for Mood and Anxiety Disorders: A Meta-analysis of 226 Task-Related Functional Imaging Studies. JAMA Psychiatry. doi:10.1001/jamapsychiatry.2019.3351.

46. Klugah-Brown B, Di X, Zweerings J, Mathiak K, Becker B, Biswal B (2020): Common and separable neural alterations in substance use disorders: evidence from coordinate-based meta-analyses of functional neuroimaging studies in human. bioRxiv. 2020.

47. Volkow ND, Koob GF, McLellan AT (2011): Neurobiologic advances from the brain disease model of addiction. N Engl J Med. doi:10.1056/NEJMra1511480.

48. Chase HW, Eickhoff SB, Laird AR, Hogarth L (2011): The neural basis of drug stimulus
processing and craving: An activation likelihood estimation meta-analysis. Biol Psychiatry. 70(8):785-793.

49. Blest-Hopley G, Giampietro V, Bhattacharyya S (2019): Regular cannabis use is associated with altered activation of central executive and default mode networks even after prolonged abstinence in adolescent users: Results from a complementary meta-analysis. Neurosci Biobehav Rev. doi:10.1016/j.neubiorev.2018.10.026.

50. Zilverstand A, Huang AS, Alia-Klein N, Goldstein RZ (2018): Neuroimaging Impaired Response Inhibition and Salience Attribution in Human Drug Addiction: A Systematic Review. Neuron. 98(5):886-903.

51. Vollstädt-Klein S, Wichert S, Rabinstein J, et al. (2010): Initial, habitual and compulsive alcohol use is characterized by a shift of cue processing from ventral to dorsal striatum. Addiction. doi:10.1111/j.1360-0443.2010.03022.x.

52. Zhou F, Montag C, Sariyska R, et al. (2019): Orbitofrontal gray matter deficits as marker of Internet gaming disorder: converging evidence from a cross-sectional and prospective longitudinal design. Addict Biol. doi:10.1111/adb.12570.

53. Thorsen AL, Hagland P, Radua J, et al. (2018): Emotional Processing in Obsessive-Compulsive Disorder: A Systematic Review and Meta-analysis of 25 Functional Neuroimaging Studies. Biol Psychiatry Cogn Neurosci Neuroimaging. doi:10.1016/j.bpsc.2018.01.009.

54. Picó-Pérez M, Moreira PS, de Melo Ferreira V, et al. (2020): Modality-specific overlaps in
brain structure and function in obsessive-compulsive disorder: Multimodal meta-analysis of case-control MRI studies. Neurosci Biobehav Rev. doi:10.1016/j.neubiorev.2020.01.033

55. Zheng H, Hu Y, Wang Z, Wang M, Du X, Dong G (2019): Meta-analyses of the functional neural alterations in subjects with Internet gaming disorder: Similarities and differences across different paradigms. Prog Neuro-Psychopharmacology Biol Psychiatry. doi:10.1016/j.pnpbp.2019.109656.

56. Yao YW, Liu L, Ma SS, et al. (2017): Functional and structural neural alterations in Internet gaming disorder: A systematic review and meta-analysis. Neurosci Biobehav Rev. doi:10.1016/j.neubiorev.2017.10.029.

57. Starcke K, Antons S, Trotzke P, Brand M (2018): Cue-reactivity in behavioral addictions: A meta-analysis and methodological considerations. J Behav Addict. doi:10.1556/2006.7.2018.39.

58. Li J, Xu L, Zheng X, et al. (2019): Common and dissociable contributions of alexithymia and autism to domain-specific interoceptive dysregulations: A dimensional neuroimaging approach. Psychother Psychosom. doi:10.1159/000495122.

59. Xu X, Dai J, Liu C, et al. (2020): Common and Disorder-Specific Neurofunctional Markers of Dysregulated Empathic Reactivity in Major Depression and Generalized Anxiety Disorder. Psychother Psychosom. doi:10.1159/000504180.

60. Uddin LQ (2015): Salience processing and insular cortical function and dysfunction. Nat Rev Neurosci. doi:10.1038/nrn3857.
61. Craig AD (2009): How do you feel - now? The anterior insula and human awareness. Nat Rev Neurosci. doi:10.1038/nrn2555.

62. Naqvi NH, Rudrauf D, Damasio H, Bechara A (2007): Damage to the insula disrupts addiction to cigarette smoking. Science (80-). 2007. doi:10.1126/science.1135926.

63. Naqvi NH, Bechara A (2009): The hidden island of addiction: the insula. Trends Neurosci. doi:10.1016/j.tins.2008.09.009.

64. Belin-Rauscent A, Daniel ML, Puaud M, et al. (2016): From impulses to maladaptive actions: The insula is a neurobiological gate for the development of compulsive behavior. Mol Psychiatry. doi:10.1038/mp.2015.140.

65. Chase HW, Eickhoff SB, Laird AR, Hogarth L (2011): The neural basis of drug stimulus processing and craving: An activation likelihood estimation meta-analysis. Biol Psychiatry. doi:10.1016/j.biopsych.2011.05.025.

66. Schacht JP, Anton RF, Myrick H (2013): Functional neuroimaging studies of alcohol cue reactivity: A quantitative meta-analysis and systematic review. Addict Biol. doi:10.1111/j.1369-1600.2012.00464.x.

67. Han JW, Han DH, Bolo N, Kim BA, Kim BN, Renshaw PF (2015): Differences in functional connectivity between alcohol dependence and internet gaming disorder. Addict Behav. doi:10.1016/j.addbeh.2014.09.006.
68. Zsidó AN, Darnai G, Inhóf O, et al. (2019): Differentiation between young adult Internet addicts, smokers, and healthy controls by the interaction between impulsivity and temporal lobe thickness. J Behav Addict. doi:10.1556/2006.8.2019.03.

69. Fernández-Serrano MJ, Pérez-García M, Verdejo-García A (2011): What are the specific vs. generalized effects of drugs of abuse on neuropsychological performance? Neurosci Biobehav Rev. doi:10.1016/j.neubiorev.2010.04.008.

70. Smith JL, Mattick RP, Jamadar SD, Iredale JM (2014): Deficits in behavioural inhibition in substance abuse and addiction: A meta-analysis. Drug Alcohol Depend. doi:10.1016/j.drugalcdep.2014.08.009.
Figures and legends to figures

Figure 1 Flow-chart of the selection procedure. Number of experiments included in the analysis of interest.

- Identification
 - Records identified through database search N=321
 - Additional records selected from other references such as systematic reviews N=83
 - Records after duplicate removal N=389

- Screening
 - Records screened N=389
 - Records excluded N=200

- Eligibility
 - Full-text articles assessed for inclusion
 - Full-text articles excluded
 - Non-English articles N=5
 - Non-control group comparison N=11
 - Only ROI study (studies did not report whole-brain) N=22
 - Coordinates are not reported in the paper N=7

- Included
 - Final articles included for meta-analysis N=144 fMRI studies
Figure 2 Disorder-specific meta-analysis. Separate meta-analyses on the case control studies in the three disorders revealed A1) the altered regions activated across all SUD studies, B) the RDoC classification contributing to the altered regions with percentage of the contribution in the bars, B1) the altered regions activated across all OCD studies, B2) the RDoC classification contributing to the altered regions with percentage of the contribution in the bars, C1) the altered regions activated across all IGD studies, C2) the RDoC classification contributing to the altered regions with percentage of the contribution in the bars. Results thresholded at cluster-level FWE, p< 0.05 and initial cluster forming threshold p<0.001.
Figure 3 Meta-analytic comparison of alterations in each diagnostic group A1) contrast reflecting relative differences between SUD and IGD A2) the RDoC percentage contribution to pronounced alterations in SUD relative to IGD (clusters N=7), and A3) the RDoC percentage contribution to pronounced alterations in IGD relative to SUD (clusters N=4). Color codes: Red = stronger alterations in SUD, Yellow = stronger alterations in IGD. B1) contrast reflecting relative differences between SUD and OCD B2) the RDoC percentage contribution to pronounced alterations in SUD (clusters N=10), and B3) the RDoC domain percentage contribution to stronger alterations in OCD relative to SUD (clusters N=3). Color codes: Red = stronger alterations in SUD, Yellow = stronger alterations in OCD. C1) contrast reflecting relative differences between IGD and SUD C2) the RDoC percentage contribution to pronounced alterations in (clusters N=2), and C3) the RDoC domain percentage contribution to stronger alterations in IGD relative to OCD (clusters N=3). Color codes: Red = stronger alterations in IGD, Yellow = stronger alterations in OCD. Results thresholded at cluster-level FWE, p< 0.05 and initial cluster forming threshold p<0.001.
Figure 4 Meta-analytic conjunction analysis A1) Shared alterations between SUD and IGD, A2) percentage distribution of the RDoC contribution to the clusters (N=2). Results thresholded at cluster-level FWE, p< 0.05. B1) Shared alterations between SUD and OCD, B2) the percentage distribution of RDoC contribution to the clusters (N=3). Results thresholded at cluster-level FWE, p< 0.05 and initial cluster forming threshold p<0.001.
Common and separable neurofunctional dysregulations characterize obsessive-compulsive, substance use, and gaming disorders – evidence from an activation likelihood meta-analysis of functional imaging studies

Benjamin Klugah-Brown¹, Xinqi Zhou¹, Basant K. Pradhan³, Jana Zweerings⁴,⁵, Klaus Mathiak⁴,⁵, Benjamin Becker¹*, Bharat Biswal¹,²*

¹The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, No.2006, Xiyuan Avenue, West Hi-Tech Zone, Chengdu, Sichuan 611731, China
²Department of Biomedical Engineering, New Jersey Institute of Technology, 619 Fenster Hall, Newark, NJ 07102, USA
³Department of Psychiatry and Pediatrics, Cooper University Hospital and Cooper Medical School of Rowan University, 401 Haddon Avenue, Camden, NJ, 08103, USA
⁴Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Pauwelstrasse 30, 52074, Aachen, Germany
⁵JARA Translational Brain Medicine, RWTH Aachen, Pauwelstrasse 30, 52074, Aachen, Germany

*Corresponding authors
Bharat Biswal
ORCID ID 0000-0002-3710-3500
Email: bbiswal@gmail.com

Benjamin Becker
ORCID ID 0000-0002-9014-9671
Email: ben_becker@gmx.de

Supplementary material
Methods

Inclusion and exclusion criteria
Only articles with case-control designs reporting differences between the respective diagnostic group and healthy control subjects were included. Additional exclusion criteria were as follows: 1. Articles reporting only region-of-interest (ROI) results (if the study additionally reported whole-brain corrected findings these were included), 2. Articles with poly-drug users and high comorbidities with psychiatric or severe somatic disorders (e.g. schizophrenia or HIV), 3. Articles focusing on parental exposure, and 4. Articles reporting results from the same dataset from previous studies.

Literature search
Literature search, screening, and evaluation according to our criteria resulted in a total of 144 articles. In line with our recent meta-analysis using the same SUD dataset to determine common and substance-specific neurofunctional alterations across SUDs and revealing convergent alterations in frontostriatal regions across different SUDs, data from studies of different SUDs were included (Cocaine, 15.86%; Cannabis, 15.17%; Alcohol, 19.31% and; Nicotine, 12.41%) and pooled for the present analysis. IGD and OCD each contributed to 13.1% and 24.13% of the included studies, respectively. There were no significant differences among the four RDoC domains for the three disorders using chi-square tests (PVS: $\chi^2 = 24, p = 0.24$, CS: $\chi^2 = 20, p = 0.24$ NVS: $\chi^2 = 12, p = 0.28$, and SP $\chi^2 = 18, p = 0.26$). All articles included in the meta-analysis are shown in supplementary Table S1.

Table S1: Subject characteristics of studies in each disorder group

Study source	Participants (N)	Age, Mean (SD)	RDoC Domain		
	Disorder	Disorder			
	HC	HC			
Cocaine studies					
2	16	16	34.38(7.15)	34.2(8.86)	Cognitive systems
3	30	28	35.9(6.31)	38.89(10.5)	Positive Valence Systems
4	15	15	32.4(7.56)	34.2(8.86)	Cognitive systems
5	219	87	34.9(8.08)	32.15(9.07)	Cross Domain Tasks
6	51	32	32(8)	33(9)	Cross Domain Tasks
7	18	18	34.3(7.2)	32.7(6.9)	Cognitive Systems
8	75	88	39.9(7.6)	38.7(10.9)	Cognitive Systems
9	40	51	31.3(7.9)	31(8.5)	Negative Valence Systems
---	---	---	---	---	
10	22	28	29.73 (7.99)	28.2 (6.72)	Cross Domain Tasks
11	30	73	43.78 (13.06)	32.22 (11.06)	Negative Valence Systems
12	13	10	37.4 (5.3)	35.2 (7.3)	Cognitive Systems
13	45	22	43.42 (7.04)	42.05 (8.4)	Cognitive Systems
14	15	15	39 (10.4)	40.9 (7.4)	Cognitive Systems
15	19	14	40.8 (8.4)	34.5 (1.8)	Cognitive Systems
16	37	55	43.62 (6.7)	40.28 (7.44)	Cognitive Systems
17	33	20	43.55 (8.3)	39.6 (5.5)	Cross Domain Tasks
18	40.8 (8.4)	43.1 (7.2)	Positive Valence Systems		
19	30	36	36.9 (6.4)	31.2 (9)	Positive Valence Systems
20	20	8	38.75 (4.77)	32.8 (4.74)	Positive Valence Systems
21	13	13	37.7 (6.8)	36.6 (7.3)	Positive Valence Systems
22	20	21	38.6 (9.29)	34.57 (11.99)	Positive Valence Systems
23	100	100	40.3 (7.4)	38 (10.6)	Cognitive Systems

Cannabis studies

24	14	14	19.5 (0.8)	19.7 (1.4)	Cognitive Systems
25	16	17	21.15 (1.9)	20.27 (2.3)	Cognitive Systems
26	24	19	28.77 (2.81)	30.57 (1.83)	Cognitive Systems
27	32	41	21.65 (2.4)	22.25 (2.35)	Cognitive Systems
28	15	41	16.4 (7.3)	16 (1.2)	Positive Valence Systems
29	15	15	26.33 (2.94)	27.13 (8.85)	Positive Valence Systems
30	53	68	30.66 (7.48)	31.41 (10.2)	Social Processes
31	20	23	20.6 (2.5)	21.6 (1.9)	Social Processes
32	15	15	25 (8.8)	26 (9.0)	Cognitive Systems
33	20	20	19.84 (1.45)	20.51 (1.26)	Negative Valence Systems
34	12	10	37.9 (7.4)	27.8 (7.9)	Cognitive Systems
35	8	18	36 (7.5)	37.2 (5.6)	Cognitive Systems
36	24	24	18.2 (0.7)	18 (1.9)	Cognitive Systems
37	23	23	28.2 (3.5)	28.7 (3.7)	Cognitive Systems
38	49	52	23.35 (0.95)	23.05 (0.85)	Cognitive Systems
39	15	17	18 (10.7)	17.9 (1.0)	Cognitive Systems
40	22	63	14.12 (0.33)	14.21 (0.37)	Cognitive Systems
41	14	15	28.16 (0.69)	28.16 (0.71)	Cognitive Systems
42	14	13	24.5 (4.45)	24 (2.7)	Positive Valence Systems
43	16	16	26.4 (3.6)	26.6 (6.1)	Cross Domain Tasks
44	23	23	23.36 (3.36)	23.67 (2.88)	Social Processes
45	23	20	21.24 (2.59)	21.1 (3.61)	Cross Domain Tasks
Alcohol studies

46	9	9	34.6(6.5)	36.2(7.2)	Cognitive Systems
47	18	18	36.5(5.0)	35.2(3.7)	Cognitive Systems
48	34	26	44.73(8.3)	41.92(9.6)	Positive Valence Systems
49	22	16	17.93(0.7)	17.42(0.7)	Positive Valence Systems
50	24	24	47.8(7.7)	45.5(6.6)	Cognitive Systems
51	23	33	18.9(0.6)	18.7(0.4)	Cognitive Systems
52	13	14	45.08(6)	43.86(9.2)	Positive Valence Systems
53	18	18	37.7(7.8)	34.5(8.0)	Positive Valence Systems
54	38	27	23.8(3.0)	24.3(2.8)	Positive Valence Systems
55	24	22	36.41(14)	32.29(9.9)	Positive Valence Systems
56	17	17	32.25(6.9)	27.72(4.3)	Positive Valence Systems
57	10	10	36(11.0)	41(8.0)	Cognitive Systems
58	12	12	39(7.0)	40(8.0)	Positive Valence Systems
59	24	70	38.7(8.3)	35.1(9.9)	Social Processes
60	20	20	43.5(6.0)	44.5(7.4)	Cognitive Systems
61	39	39	41.64(8.6)	44.06(11.0)	Cross Domain Tasks
62	11	13	41.9(7.0)	43.2(9.5)	Cross Domain Tasks
63	12	12	24.2(4.5)	23.4(4.2)	Cognitive Systems
64	9	9	23.22(2.5)	23(2.6)	Positive Valence Systems
65	43	35	44.42(10.21)	42.00(10.49)	Positive Valence Systems
66	31	19	48.5(8.5)	47.7(11.0)	Positive Valence Systems
67	40	55	17.9(0.9)	17.88(1.0)	Cognitive Systems
68	24	11	33.3(8.4)	28.8(7.8)	Cognitive Systems
69	40	20	18.4(2.1)	18.3(1.4)	Cognitive Systems
70	19	21	23.21(3.52)	24.14(3.13)	Negative Valence Systems
71	16	16	42.38(7.52)	39.94(8.59)	Positive Valence Systems
72	15	15	42.3(7.1)	45.5(8.5)	Negative Valence Systems
73	12	12	32(5.2)	31(6.2)	Cognitive Systems

Nicotine studies

74	13	13	26(4.0)	24(4.0)	Cognitive Systems
75	23	19	35(10)	30.2(7.2)	Social Processes
76	21	21	28(4.3)	25.7(6.1)	Positive Valence Systems
77	18	25	19.47(1.33)	19.08(1.15)	Positive Valence Systems
78	17	16	39.9(4.9)	39.2(5.2)	Negative Valence Systems
79	27	33	41.3(7.9)	41.3(7.9)	Positive Valence Systems
80	17	17	37.65(9.4)	35.8(10.95)	Social Processes
Obsessive-compulsive disorder	Cognitive Systems	Social Processes	Positive Valence Systems	Negative Valence Systems	Cross Domain Tasks
-------------------------------	-------------------	-----------------	--------------------------	-------------------------	-------------------
81	19	19	29.5(10.7)	22.7(4.4)	Cognitive Systems
82	24	20	35.8(9.9)	30.4(7.2)	Positive Valence Systems
83	5	5	21.7(3.8)	21.7(3.8)	Social Processes
84	25	23	22.56(2.84)	21.74(1.82)	Cognitive Systems
85	35	36	34.1(7.9)	31.3(7.1)	Positive Valence Systems
86	39	19	21.95(3.5)	24(3)	Cross Domain Tasks
87	28	28	32.68(10.02)	30.11(7.83)	Negative Valence Systems
88	12	12	16(1.4)	16(1.4)	Positive Valence Systems
89	17	17	23.1(NA)	21.4(NA)	Social Processes
90	81	38	59(1.5)	61(1.36)	Cognitive Systems
91	15	15	28.3(3.7)	27(5.01)	Cognitive Systems
92	11	14	15.64(2.01)	15.79(1.93)	Cognitive Systems
93	33	33	29.4(8.19)	29.42(7.98)	Social Processes
94	51	49	33(9.73)	30.92(7.31)	Cognitive Systems
95	33	34	23.4(9.5)	24.5(11.2)	Positive Valence Systems
96	18	16	34(6.8)	36(9.4)	Positive Valence Systems
97	16	16	31.4(10.1)	32.6(5.8)	Cross Domain Tasks
98	20	21	25.5(5.4)	22.6(4.5)	Cross Domain Tasks
99	16	17	25.1(8.6)	26.7(9.7)	Cognitive Systems
100	21	21	33.1(10.8)	33.1(10.1)	Social Processes
101	15	12	31.67(11.44)	30.92(8.98)	Negative Valence Systems
102	21	21	33.8(2.5)	26.4(1.1)	Negative Valence Systems
103	18	18	24.9(5.9)	24.7(2.7)	Cognitive Systems
104	18	18	14(2.6)	14(2.6)	Cognitive Systems
105	12	17	14(2.4)	13(2.3)	Cognitive Systems
106	10	10	36.1(9.36)	39.6(10.48)	Positive Valence Systems
107	10	11	39.1(10.2)	34.1(10.1)	Cognitive Systems
108	11	19	32.4(10.6)	32.7(7.1)	Cognitive Systems
109	11	11	32.64(7.17)	33.73(15.29)	Cross Domain Tasks
110	12	14	37.8(13.2)	34.9(13.2)	Cognitive Systems
111	20	27	34(10.8)	32(7.7)	Positive Valence Systems
112	8	7	27.4(8.5)	30(8.6)	Cognitive Systems
113	21	21	23.6(4.5)	24.8(3.7)	Cognitive Systems
114	73	73	33.1(8.3)	32.6(10.3)	Social Processes
115	19	19	34.8(11)	34.9(11)	Positive Valence Systems
116	12	12	27(5.8)	25.08(3.32)	Cross Domain Tasks
----	---	---	------------	------------	--------------------------
117	24	14	33.9(8.08)	30.2(5.13)	Cognitive Systems
118	40	25	33.3(8.9)	30.9(7.1)	Cognitive Systems
119	22	22	34.4(8.6)	29.9(7.4)	Cognitive Systems
120	11	11	34.1(9.6)	34.8(9.7)	Cognitive Systems
121	19	19	33.7(10.7)	30.6(7.2)	Cognitive Systems
122	22	22	32.3(8.6)	30.8(8.5)	Cognitive Systems
123	18	19	34.8(8.3)	32.6(6.6)	Positive Valence Systems
124	16	15	27.5(5.33)	26.0(6.45)	Negative Valence Systems
125	13	13	25.5(1)	27(0.5)	Positive Valence Systems
126	20	20	25.7(6.99)	24.75(3.68)	Cognitive Systems

Internet gaming disorder

127	29	23	22.59(2.24)	23.09(2.13)	Positive Valence Systems
128	27	43	21(1.33)	21.47(1.32)	Positive Valence Systems
129	18	19	21.5(2.01)	22.26(1.82)	Cognitive Systems
130	18	21	22.1(3.2)	23.1(2)	Positive Valence Systems
131	39	23	22.64(2.12)	23.09(2.13)	Positive Valence Systems
132	16	15	21.4(3.1)	22.1(3.6)	Positive Valence Systems
133	13	10	14.5(1.1)	14.2(1.3)	Cognitive Systems
134	17	17	13.76(0.83)	13.76(0.83)	Cognitive Systems
135	8	9	25(7.4)	24.8(6.9)	Negative Valence Systems
136	10	10	19.7(2.5)	20.3(0.67)	Negative Valence Systems
137	24	23	22.13(1.45)	22(1.81)	Cross Domain Task
138	15	17	28.73(7.73)	24.94(4.16)	Social Processes
139	19	21	22.2(3.1)	22.8(2.4)	Positive Valence Systems
140	15	15	21.2(3.2)	22.1(3.6)	Cognitive Systems
141	14	13	23.4(3.3)	24.1(3.2)	Negative Valence Systems
142	19	19	21.4(1)	20.8(1.1)	Positive Valence Systems
143	24	24	24.8(2.8)	24.3(2.6)	Cognitive Systems
144	19	21	22.2(3.08)	22.8(3.5)	Positive Valence Systems
145	17	17	16.41(3.2)	16.29(2.95)	Cognitive Systems

Activation likelihood estimation

ALE algorithm examines whether the spatial distribution of experimental peak coordinates in the brain included in meta-analysis is different from the random distribution. The peak coordinate
(foci) of each included experiments is then modeled as the center of the three-dimensional Gaussian distribution, taking into account the uncertainty associated with each focus (146–148). ALE uses the convergence of whole-brain coordinates from experiments under nonrandom spatial distribution to create clusters formed by equal probabilities of voxels. The ALE is outputted as clusters where the convergence is located. In line with recent recommendations cluster-level familywise error-corrected and cluster formation threshold at \(p<0.05 \) and \(p<0.001 \) (146), respectively, were employed. The \(p \)-value accounts for the proportion of the random spatial relation between the various experiments under the null distribution.

We analyzed the difference and overlaps (conjunction) among the three groups in the following way: first, ALEs were calculated separately, then a pooled coordinate between any two groups was created yielding six permutations. For the six permutations three results are expected, that is between each pair. At each computation, significant clusters were estimated by applying 5,000 Monte-Carlo simulation values\(^{149} \). Corresponding voxel probabilities, as well as the contribution from the RDoC groupings, were extracted from the obtained modeled activation maps which were used for further analysis using Kruskal-Wallis test.

Table S2 Peaks of convergence of activation for the contrast meta-analysis comparing SUD and IGD

Cluster #	x	y	z	Volume (mm\(^3\))	Z	Label
SUD > IGD						
1	-0.3	6.8	-1.5	7872	0	Left Cerebrum. Limbic Lobe. Anterior Cingulate.
1	14	0	-2		3.090232	Right Cerebrum.Sub-lobar. Lentiform Nucleus.
1	-4	-4	8		2.575829	Left Cerebrum.Sub-lobar. Thalamus.
1	-6	-12	12		2.408916	Left Cerebrum.Sub-lobar. Thalamus.
1	22	-2	4		2.365618	Right Cerebrum.Sub-lobar. Lentiform Nucleus. Gray Matter. Putamen
1	-6	-14	6		2.257129	Left Cerebrum.Sub-lobar. Thalamus.
1	20	1.3	-6		2.096927	Right Cerebrum.Sub-lobar. Lentiform Nucleus. Gray Matter. Putamen
1	22	0	0		2.17009	Right Cerebrum.Sub-lobar. Lentiform Nucleus. Gray Matter. Putamen
1	8	-10	10		2.096927	Right Cerebrum.Sub-lobar. Thalamus.
1	9	12	16		1.926837	Right Cerebrum.Sub-lobar. Caudate.
1	4	-12	10		1.895698	Right Cerebrum.Sub-lobar. Thalamus.
1	14	-10	16		1.838424	Right Cerebrum.Sub-lobar. Thalamus.
1	12	6	18		1.786613	Right Cerebrum.Sub-lobar. Caudate.
2	32.7	15.8	2.2	4984	3.290527	Right Cerebrum.Sub-lobar. Insula.
2	33.9	18.7	4.9		3.090232	Right Cerebrum.Sub-lobar. Insula.
2	44	18	0		2.747781	Right Cerebrum. Frontal Lobe. Inferior Frontal Gyrus.
2	50	0	10		2.457264	Right Cerebrum. Frontal Lobe. Precentral Gyrus.
Cluster #	x	y	z	Volume (mm³)	Z	Label
----------	-----	-----	-----	--------------	------	--
3	-2	8.7	46.7	3888	2.512144	Left Cerebrum. Medial Frontal Gyrus.
3	-0.3	7.7	47.4		2.290368	Left Cerebrum. Medial Frontal Gyrus.
3	4	8	50		2.512144	Right Cerebrum. Superior Frontal Gyrus.
3	2	16	57		2.326348	Right Cerebrum. Superior Frontal Gyrus.
3	4	18	60		2.326348	Right Cerebrum. Superior Frontal Gyrus.
3	4	-6	40		2.257129	Right Cerebrum. Limbic Lobe. Cingulate.
4	21.9	51.7	18	3200	0	Right Cerebrum. Medial Frontal Gyrus.
4	32.6	49.9	18.4		3.090232	Right Cerebrum. Middle Frontal Gyrus.
4	22	48	22		2.878162	Right Cerebrum. Superior Frontal Gyrus.
5	-2	32	26	3144	3.090232	Left Cerebrum. Limbic Lobe. Cingulate.
5	-2	32	30		2.747781	Left Cerebrum. Medial Frontal Gyrus.
5	1	44	23		1.716886	Left Cerebrum. Medial Frontal Gyrus.
5	8	52.7	18		2.144411	Right Cerebrum. Medial Frontal Gyrus.
5	3	45	21		1.644854	Right Cerebrum. Medial Frontal Gyrus.
5	-2	46	8		2.074855	Left Cerebrum. Limbic Lobe. Anterior Cingulate.
5	0	42	2		1.959964	Right Cerebrum. Limbic Lobe. Anterior Cingulate.
5	-6	34	10		1.750686	Left Cerebrum. Limbic Lobe. Anterior Cingulate.
6	41	24	39	896	0	Right Cerebrum. Middle Frontal Gyrus.
6	40	30	42		2.290368	Right Cerebrum. Middle Frontal Gyrus.
7	-52	10	31	800	2.326348	Left Cerebrum. Inferior Frontal Gyrus.
7	-50	-1	30		1.977369	Left Cerebrum. Frontal Lobe. Precentral Gyrus.

IGD > SUD

Cluster #	x	y	z	Volume (mm³)	Z	Label
1	-40.3	-42	5.1	2512	2.65207	Left Cerebrum. Temporal Lobe. Superior Temporal Gyrus.
1	-45	-52	2		2.575829	Left Cerebrum. Inferior Temporal Gyrus.
1	-54.8	-54	-8.4		2.408916	Left Cerebrum. Middle Temporal Gyrus.
1	-56	-48	-12		2.365618	Left Cerebrum. Inferior Temporal Gyrus.
1	-42	-62	2		2.290368	Left Cerebrum. Middle Temporal Gyrus.
1	-42	-48	2		2.257129	Left Cerebrum. Limbic Lobe. Parahippocampal Gyrus.
2	-30	-56	22	1584	2.878162	Left Cerebrum. Middle Temporal Gyrus.
2	-33	-54	23		2.512144	Left Cerebrum. Middle Temporal Gyrus.
2	-37.3	-58.3	26.7		2.575829	Left Cerebrum. Superior Temporal Gyrus.
3	24	26	28	928	3.090232	Right Cerebrum. Middle Frontal Gyrus.
4	-35.3	-57.3	-8	400	2.074855	Left Cerebrum. Posterior Lobe.Declive.
4	-36	-56	-14		1.995393	Left Cerebellum. Posterior Lobe.Declive.

Table S3 Peaks of convergence of activation for the meta-analytic comparison between SUD and OCD
SUD > OCD

Cluster #	x	y	z	Volume (mm3)	Z	Label (Nearest Gray Matter within 5mm)
1	8.3	52.3	18.8	3096	3.290527	Right Cerebrum. Frontal Lobe. Medial Frontal Gyrus.
1	-8	38	10	3.090232	2.408916	Left Cerebrum. Limbic Lobe. Anterior Cingulate.
1	-6	36	11	2.457264	2.362348	Left Cerebrum. Frontal Lobe. Medial Frontal Gyrus.
1	-4	2	-8	2.457264	2.362348	Left Cerebrum. Frontal Lobe. Medial Frontal Gyrus.
1	2	13	2	2.878162		Right Cerebrum.Sub-lobar. Caudate.
2	14.8	10.5	-0.7	2.878162		Right Cerebrum.Sub-lobar. Lentiform Nucleus. Gray Matter. Putamen
3	15	13	2	2.878162		Right Cerebrum. Frontal Lobe. Middle Frontal Gyrus.
3	46	8	36	2.575829	2.940726	Right Cerebrum. Frontal Lobe. Middle Frontal Gyrus.
3	48	12	34	2.512144	2.120072	Right Cerebrum. Frontal Lobe. Middle Frontal Gyrus.
4	38	4	38	2.120072		Right Cerebrum. Frontal Lobe. Inferior Frontal Gyrus.
4	-2	8	36	2.65207	2.359816	Left Cerebrum. Limbic Lobe. Cingulate Gyrus.
4	-4	-2	38	2.408916		Left Cerebrum. Limbic Lobe. Cingulate Gyrus.
5	2	10	46	1.786613	1.727934	Right Cerebrum. Frontal Lobe. Medial Frontal Gyrus.
5	4	-6	42	1.727934		Right Cerebrum. Limbic Lobe. Cingulate Gyrus.
5	41	22	10	2.512144	2.457264	Right Cerebrum. Frontal Lobe. Inferior Frontal Gyrus.
6	46	22	12	2.512144	2.457264	Right Cerebrum. Frontal Lobe. Inferior Frontal Gyrus.
6	11	35	34	1.750686	2.575829	Right Cerebrum. Frontal Lobe. Inferior Frontal Gyrus.
6	14	30	26	2.878162		Right Cerebrum. Limbic Lobe. Cingulate Gyrus.
6	3.3	32.7	38.7	2.512144		Right Cerebrum. Frontal Lobe. Medial Frontal Gyrus.
7	8	40	28	2.457264	2.457264	Right Cerebrum. Frontal Lobe. Medial Frontal Gyrus.
7	-8	14	-4	2.512144	2.457264	Left Cerebrum.Sub-lobar. Caudate.
8	4	0	60	2.65207	2.65207	Right Cerebrum. Frontal Lobe. Medial Frontal Gyrus.
9	28	54	11	2.512144	2.512144	Right Cerebrum. Frontal Lobe. Superior Frontal Gyrus.
9	24	50	12	1.77009	2.226212	Right Cerebrum. Frontal Lobe. Superior Frontal Gyrus.
10	2	-12	10	2.457264	2.457264	Right Cerebrum.Sub-lobar. Thalamus. Gray Matter. Medial Dorsal Nucleus

OCD > SUD

Cluster #	x	y	z	Volume (mm3)	Z	Label (Nearest Gray Matter within 5mm)
1	19.3	-62	37	1152	3.290527	Right Cerebrum. Parietal Lobe. Precuneus.
2	-28	20	6	832	2.878162	Left Cerebrum.Sub-lobar. Insula.
3	-34	18	30	216	2.290368	Left Cerebrum. Frontal Lobe. Middle Frontal Gyrus.

Table S4 Peaks of convergence of activation for contrast meta-analysis for IGD and OCD

Cluster #	x	y	z	Volume (mm3)	Z	Label (Nearest Gray Matter within 5mm)
IGD > OCD						
1	-42.7	-59.5	3.6	5432	3.290527	Left Cerebrum. Temporal Lobe. Middle Temporal Gyrus.
1	-40.7	-51.8	-2.7	3.090232		Left Cerebrum. Limbic Lobe. Parahippocampal Gyrus.
1	-49	-62	-4	2.878162		Left Cerebrum. Temporal Lobe. Inferior Temporal Gyrus.
Cluster #	x	y	z	ALE	Volume (mm³)	Label
---------	------	------	------	-------	--------------	--
1	-28	-46	-4	2.747781	1424	Left Cerebrum. Limbic Lobe. Parahippocampal Gyrus.
1	-40.7	-55.1	-6.8	2.65207		Left Cerebrum. Temporal Lobe. Fusiform Gyrus.
1	-48.7	-52	-0.7	2.575829		Left Cerebrum. Temporal Lobe. Middle Temporal Gyrus.
1	-33.6	-60	14.8	2.290368		Left Cerebrum. Occipital Lobe. Middle Temporal Gyrus.
1	-34	-58	-6	2.326348		Left Cerebellum. Posterior Lobe. Declive.
1	-50	-56	-10	2.17009		Left Cerebrum. Temporal Lobe. Inferior Temporal Gyrus.
1	-36	-60	22	2.120072		Left Cerebrum. Temporal Lobe. Fusiform Gyrus.
1	-38	-62	-8	1.799118		Left Cerebrum. Temporal Lobe. Superior Temporal Gyrus.
2	16	22	26	3.090232	2512	Right Cerebrum. Limbic Lobe. Anterior Cingulate.
2	18.9	23.4	29.9	2.512144		Right Cerebrum. Limbic lobe. Cingulate Gyrus.
2	22	22	34	2.06927		Right Cerebrum. Frontal Lobe. Middle Frontal Gyrus.
2	30	28	26	2.05927		Right Cerebrum. Limbic lobe. Cingulate Gyrus.

OCD > IGD

Cluster #	x	y	z	ALE	Volume (mm³)	Label
1	33.3	14.7	5.3	3.090232	2048	Right Cerebrum.Sub-lobar. Insula.
1	31.3	12.4	4.4	2.575829		Right Cerebrum.Sub-lobar. Insula.
1	30	19	6	2.575829		Right Cerebrum.Sub-lobar. Insula.
2	-27	22	9	2.326348	192	Right Cerebrum. Limbic lobe. Cingulate Gyrus.
2	-29	24	6	2.257129		Right Cerebrum.Sub-lobar. Insula.
2	-30	24.5	-1	2.053749		Right Cerebrum.Sub-lobar. Insula.
3	17.5	-67.5	37.5	936		Right Cerebrum. Parietal Lobe. Precuneus.
3	22.2	-60.9	35.1	457264		Right Cerebrum. Parietal Lobe. Precuneus.
3	16	-62	36	408916		Right Cerebrum. Parietal Lobe. Precuneus.
4	-36	26	30	240	197286	Left Cerebrum. Frontal Lobe. Middle Frontal Gyrus.

Table S5 Peaks of convergence of activation for conjunction meta-analysis for SUD and IGD

Table S6 Peaks of convergence of activation for conjunction meta-analysis for SUD and OCD
Exploratory analysis

To further map the determined disorder-specific and common transdiagnostic alterations on the underlying behavioral domains the experimental paradigms were mapped onto the proposed RDoC domains, specifically the cognitive systems, positive valence systems, negative valence systems, cross-domain systems, and social processing domains. For each of the main, differential and conjunction effects, the probability of functional changes was extracted per-voxel and the contributions from each RDoC domain were subjected to Kruskal-Wallis test (Bonferroni corrected for the number of comparisons). This analysis aimed to examine whether the RDoC domain targeted by the case control studies may have affected the determination of the differential and shared alterations we examined the heterogeneity of the functional paradigms by means of extracting the voxel-wise probabilities for the clusters from the conjunction analysis and subjecting these to Kruskal-Wallis tests (for a similar approach see (150)).

Table S7 Kruskal-Wallis test computed using the probabilities of functional changes for each voxel and the RDoC contributors. The p-value was Bonferroni-corrected to account for the number of expected comparisons

Analysis of interest	χ^2	$p_{\text{corrected}} < 0.006$
Contrast analysis		
SUD > IGD	11.63	0.02
IGD > SUD	6.94	0.007
SUD > OCD	10.18	0.03
OCD > SUD	3.66	0.55
IGD > OCD	1.55	0.45
OCD > IGD	5.76	0.012
Conjunction		
SUD \cap IGD	1	0.9
SUD \cap OCD	6.07	0.19

Intersection

Table S8 Distribution of RDoC domain in each disorder group

Disorder category	Cognitive Systems	Cross Domain tasks	Positive Valence Systems	Negative Valence Systems	Social Processes	Total in Disorder category
Cocaine	10	4	6	2	0	22
Cannabis	13	2	2	2	3	22
Alcohol	11	2	12	2	1	28
Nicotine	5	1	6	2	4	18
IGD	6	1	8	3	1	19
OCD	18	4	7	3	3	35
Figure S1 Heterogeneity test. Egger's test for bias of publication for all diagnostic group. Statistically significant set to p<0.05.
References

1. Klugah-Brown B, Di X, Zweerings J, Mathiak K, Becker B, Biswal B. Common and separable neural alterations in substance use disorders: evidence from coordinate-based meta-analyses of functional neuroimaging studies in human Benjamin Klugah-Brown. bioRxiv. 2020.

2. Barrós-Loscertales A, Bustamante JC, Ventura-Campos N, Llopis JJ, Parcet MA, Ávila C. Lower activation in the right frontoparietal network during a counting Stroop task in a cocaine-dependent group. Psychiatry Res - Neuroimaging. 2011;194(2):111-118. doi:10.1016/j.pscychresns.2011.05.001

3. Barrós-Loscertales A, Costumero V, Rosell-Negre P, Fuentes-Claramonte P, Llopis-Llacer J, Bustamante JC. Motivational factors modulate left frontoparietal network during cognitive control in cocaine addiction. Addict Biol. 2019;(July). doi:10.1111/adb.12820

4. Bustamante JC, Barrós-Loscertales A, Ventura-Campos N, et al. Right parietal hypoactivation in a cocaine-dependent group during a verbal working memory task. Brain Res. 2011;1375:111-119. doi:10.1016/j.brainres.2010.12.042

5. Caldwell BM, Harenski CL, Harenski KA, et al. Abnormal frontostriatal activity in recently abstinent cocaine users during implicit moral processing. Front Hum Neurosci. 2015;9(October):1-17. doi:10.3389/fnhum.2015.00565

6. Crunelle CL, Kaag AM, Van den Munkhof HE, et al. Dysfunctional amygdala activation and connectivity with the prefrontal cortex in current cocaine users. Hum Brain Mapp. 2015;36(10):4222-4230. doi:10.1002/hbm.22913

7. Ersche KD, Bullmore ET, Craig KJ, et al. Europe PMC Funders Group Influence of Compulsivity of Drug Abuse on Dopaminergic Modulation of Attentional Bias in Stimulant Dependence. 2013;67(6):632-644. doi:10.1001/archgenpsychiatry.2010.60.Influence

8. Ide JS, Hu S, Zhang S, Mujica-Parodi LR, Li CSR. Power Spectrum Scale Invariance as a Neural Marker of Cocaine Misuse and Altered Cognitive Control. Vol 11. Elsevier B.V.; 2016. doi:10.1016/j.jneurol.2016.03.004

9. Kaag AM, Levar N, Woutersen K, et al. Hyperresponsiveness of the neural fear network during fear conditioning and extinction learning in male cocaine users. Am J Psychiatry. 2016;173(10):1033-1042. doi:10.1176/appi.ajp.2016.15040433

10. Kirschnner M, Sladky R, Haugg A, et al. Self-regulation of the dopaminergic reward circuit in cocaine users with mental imagery and neurofeedback. EBioMedicine. 2018;37:489-498. doi:10.1016/j.ebiom.2018.10.052

11. Kober H, Lacadie CM, Wexler BE, Malison RT, Sinha R, Potenza MN. Brain Activity during Cocaine Craving and Gambling Urges: An fMRI Study. Neuropsychopharmacology. 2016;41(2):628-637. doi:10.1038/npp.2015.193

12. Ma L, Steinberg JL, Cunningham KA, et al. Inhibitory behavioral control: A stochastic dynamic causal modeling study comparing cocaine dependent subjects and controls. NeuroImage Clin. 2015;7:837-847. doi:10.1016/j.nicl.2015.03.015

13. McHugh MJ, Gu H, Yang Y, Adinoff B, Stein EA. Executive control network connectivity strength protects against relapse to cocaine use. Addict Biol. 2017;22(6):1790-1801. doi:10.1111/adb.12448

14. Marci R. Mitchell, Iris M. Balodis, Elise E. DeVito, Cheryl M. Lacadie, Jon Yeston, Dustin Scheinost, R. Todd Constable, Kathleen M. Carroll and MNP. A preliminary investigation of Stroop-related intrinsic connectivity in cocaine dependence: Associations with treatment
outcomes. *Am J Drug Alcohol Abus.* 1998;8(1):8. doi:10.1044/vvd8.1.8

15. Moeller FG, Steinberg JL, Schmitz JM, et al. Working memory fMRI activation in cocaine-dependent subjects: Association with treatment response. *Psychiatry Res - Neuroimaging.* 2010;181(3):174-182. doi:10.1016/j.pscychresns.2009.11.003

16. Moeller SJ, Beebe-Wang N, Schneider KE, et al. Effects of an opioid (proenkephalin) polymorphism on neural response to errors in health and cocaine use disorder. *Behav Brain Res.* 2015;293:18-26. doi:10.1016/j.bbr.2015.07.004

17. Moeller SJ, Konova AB, Parvaz M a, Lane RD, Fort C, Goldstein RZ. Functional, structural, and emotional correlates of impaired insight in cocaine addiction. 2015;71(1):61-70. doi:10.1001/jamapsychiatry.2013.2833.Functional

18. Moeller SJ, Zilverstand A, Konova AB, et al. Neural Correlates of Drug-Biased Choice in Currently Using and Abstinent Individuals With Cocaine Use Disorder. *Biol Psychiatry Cogn Neurosci Neuroimaging.* 2018;3(5):485-494. doi:10.1016/j.bpsc.2017.11.001

19. Potenza M.N., Hong K.-I.A., Lacadie C.M., Fulbright R.K., Tuit K.L. SR. Neural Correlates of Stress-Induced and Cue-Induced Drug Craving: Influences of sex and cocaine dependence. *Am J Psychiatry.* 2012;406-414.

20. Sinha R, Lacadie C, Skudlarski P, et al. Neural activity associated with stress-induced cocaine craving: A functional magnetic resonance imaging study. *Psychopharmacology (Berl).* 2005;183(2):171-180. doi:10.1007/s00213-005-0147-8

21. Tau GZ, Marsh R, Wang Z, et al. Neural correlates of reward-based spatial learning in persons with cocaine dependence. *Neuropsychopharmacology.* 2014;39(3):545-555. doi:10.1038/npp.2013.189

22. Yip SW, DeVito EE, Kober H, Worhunsky PD, Carroll KM, Potenza MN. Anticipatory reward processing among cocaine-dependent individuals with and without concurrent methadone-maintenance treatment: Relationship to treatment response. *Drug Alcohol Depend.* 2016;166:134-142. doi:10.1016/j.drugalcdep.2016.07.006

23. Zhang S, Hu S, Sinha R, Potenza MN, Malison RT, Li C shan R. Cocaine dependence and thalamic functional connectivity: a multivariate pattern analysis. *NeuroImage Clin.* 2016;12:348-358. doi:10.1016/j.nicl.2016.08.006

24. Abdullaev Y, Posner MI, Nunnally R, Dishion TJ. Functional MRI evidence for inefficient attentional control in adolescent chronic cannabis abuse. *Behav Brain Res.* 2010;215(1):45-57. doi:10.1016/j.bbr.2010.06.023

25. Ames SL, Grenard JL, W. Stacy A, et al. Functional imaging of implicit marijuana associations during performance on an Implicit Association Test (IAT). *Behav Brain Res.* 2013;256:494-502. doi:10.1016/j.bbr.2013.09.013

26. Chang L, Yakupov R, Cloak C, Ernst T. Marijuana use is associated with a reorganized visual-attention network and cerebellar hypoactivation. *Brain.* 2006;129(5):1096-1112. doi:10.1093/brain/awl064

27. Cousijn J, Wiers RW, Ridderinkhof KR, van den Brink W, Veltman DJ, Goudriaan AE. Effect of baseline cannabis use and working-memory network function on changes in cannabis use in heavy cannabis users: A prospective fMRI study. *Hum Brain Mapp.* 2014;35(5):2470-2482. doi:10.1002/hbm.22342

28. De Bellis MD, Wang L, Bergman SR, Yaxley RH, Hooper SR, Huettel SA. Neural mechanisms of risky decision-making and reward response in adolescent onset cannabis use disorder. *Drug Alcohol Depend.* 2013;133(1):134-145. doi:10.1016/j.drugalcdep.2013.05.020
29. Enzi B, Lissek S, Edel MA, et al. Alterations of monetary reward and punishment processing in chronic cannabis users: An fMRI study. *PLoS One*. 2015;10(3):1-13. doi:10.1371/journal.pone.0119150

30. Filbey FM, Dunlop J, Ketcherside A, et al. fMRI study of neural sensitization to hedonic stimuli in long-term, daily cannabis users. *Hum Brain Mapp*. 2016;37(10):3431-3443. doi:10.1002/hbm.23250

31. Gilman JM, Schuster RM, Curran MT, Calderon V, van der Kouwe A, Evins AE. Neural mechanisms of sensitivity to peer information in young adult cannabis users. *Cogn Affect Behav Neurosci*. 2016;16(4):646-661. doi:10.3758/s13415-016-0421-8

32. Gruber SA, Rogowska J, Yurgelun-Todd DA. Altered affective response in marijuana smokers: An FMRI study. *Drug Alcohol Depend*. 2009;105(1-2):139-153. doi:10.1016/j.drugalcdep.2009.06.019

33. Heitzeg MM, Cope LM, Martz ME, Hardee JE, Zucker RA. Brain activation to negative stimuli mediates a relationship between adolescent marijuana use and later emotional functioning. *Dev Cogn Neurosci*. 2015;16:71-83. doi:10.1016/j.dcn.2015.09.003

34. Kanayama G, Rogowska J, Pope HG, Gruber SA, Yurgelun-Todd DA. Spatial working memory in heavy cannabis users: A functional magnetic resonance imaging study. *Psychopharmacology (Berl)*. 2004;176(3-4):239-247. doi:10.1007/s00213-004-1885-8

35. Li CSR, Milivojevic V, Constable RT, Sinha R. Recent cannabis abuse decreased stress-induced BOLD signals in the frontal and cingulate cortices of cocaine dependent individuals. *Psychiatry Res Neuroimaging*. 2005;140(3):271-280. doi:10.1016/j.pscychresns.2005.09.002

36. Lopez-Larson MP, Rogowska J, Bogorodzki P, Bueler CE, McGlade EC, Yurgelun-Todd DA. Cortico-cerebellar abnormalities in adolescents with heavy marijuana use. *Psychiatry Res Neuroimaging*. 2012;202(3):224-232. doi:10.1016/j.pscychresns.2011.11.005

37. Ma L, Steinberg JL, Bjork JM, et al. Fronto-striatal effective connectivity of working memory in adults with cannabis use disorder. *Psychiatry Res Neuroimaging*. 2018;278(June):21-34. doi:10.1016/j.pscychresns.2018.05.010

38. Nestor L, Roberts G, Garavan H, Hester R. Deficits in learning and memory: Parahippocampal hyperactivity and frontocortical hypoactivity in cannabis users. *Neuroimage*. 2008;40(3):1328-1339. doi:10.1016/j.neuroimage.2007.12.059

39. Schweinsburg AD, Nagel BJ, Schweinsburg BC, Park A, Theilmann RJ, Tapert SF. Abstinent adolescent marijuana users show altered fMRI response during spatial working memory. *Psychiatry Res Neuroimaging*. 2008;163(1):40-51. doi:10.1016/j.pscychresns.2007.04.018

40. Tervo-Clemmens B, Simmonds D, Calabro FJ, Day NL, Richardson GA, Luna B. Adolescent cannabis use and brain systems supporting adult working memory encoding, maintenance, and retrieval. *Neuroimage*. 2018;169(December 2017):496-509. doi:10.1016/j.neuroimage.2017.12.041

41. Tervo-Clemmens B, Simmonds D, Calabro FJ, et al. Early Cannabis Use and Neurocognitive Risk: A Prospective Functional Neuroimaging Study. *Biol Psychiatry Cogn Neurosci Neuroimaging*. 2018;3(8):713-725. doi:10.1016/j.bpsc.2018.05.004

42. van Hell HH, Vink M, Ossewaarde L, Jager G, Kahn RS, Ramsey NF. Chronic effects of cannabis use on the human reward system: An fMRI study. *Eur Neuropsychopharmacol*. 2010;20(3):153-163. doi:10.1016/j.euroneuro.2009.11.010

43. Wesley MJ, Hanlon CA, Porrino LJ. Poor decision-making by chronic marijuana users is
associated with decreased functional responsiveness to negative consequences. *Psychiatry Res - Neuroimaging*. 2011;191(1):51-59. doi:10.1016/j.pscychresns.2010.10.002

44. Zimmermann K, Kendrick KM, Scheele D, et al. Altered striatal reward processing in abstinent dependent cannabis users: Social context matters. *Eur Neuropsychopharmacol*. 2019;29(3):356-364. doi:10.1016/j.euroneuro.2019.01.106

45. Zimmermann K, Walz C, Derckx RT, et al. Emotion regulation deficits in regular marijuana users. *Hum Brain Mapp*. 2017;38(8):4270-4279. doi:10.1002/hbm.23671

46. Akine Y, Kato M, Muramatsu T, et al. Altered brain activation by a false recognition task in young abstinent patients with alcohol dependence. *Alcohol Clin Exp Res*. 2007;31(9):1589-1597. doi:10.1111/j.1530-0277.2007.00453.x

47. Bagga D, Singh N, Singh S, et al. Assessment of abstract reasoning abilities in alcohol-dependent subjects: An fMRI study. *Neuroradiology*. 2014;56(1):69-77. doi:10.1007/s00234-013-1281-3

48. Beylergil SB, Beck A, Deserno L, et al. Dorsolateral prefrontal cortex contributes to the impaired behavioral adaptation in alcohol dependence. *NeuroImage Clin*. 2017;15(December 2016):80-94. doi:10.1016/j.nicl.2017.04.010

49. Brumback T, Squeglia LM, Jacobus J, Pulido C, Tapert SF, Brown SA. Adolescent heavy drinkers’ amplified brain responses to alcohol cues decrease over one month of abstinence. *Addict Behav*. 2015;46:45-52. doi:10.1016/j.addbeh.2015.03.001

50. Chanraud S, Leroy C, Martelli C, et al. Episodic memory in detoxified alcoholics: Contribution of grey matter microstructure alteration. *PLoS One*. 2009;4(8). doi:10.1371/journal.pone.0006786

51. Dager AD, Jamadar S, Stevens MC, et al. FMRI response during figural memory task performance in college drinkers. *Psychopharmacology (Berl)*. 2014;231(1):167-179. doi:10.1007/s00213-013-3219-1

52. Deserno L, Beck A, Huys QJM, et al. Chronic alcohol intake abolishes the relationship between dopamine synthesis capacity and learning signals in the ventral striatum. 2014:1-10. doi:10.1111/ejn.12802

53. Gilman JM, Smith AR, Bjork JM, Ramchandani VA, Momenan R, Hommer DW. Cumulative gains enhance striatal response to reward opportunities in alcohol-dependent patients. *Addict Biol*. 2015;20(3):580-593. doi:10.1111/adb.12147

54. Gorka SM, Kreutzer KA, Petrey KM, Radoman M, Phan KL. Behavioral and neural sensitivity to uncertain threat in individuals with alcohol use disorder: Associations with drinking behaviors and motives. *Addict Biol*. 2019;(October 2018):1-10. doi:10.1111/adb.12774

55. Grodin EN, Lim AC, MacKillop J, Karno MP, Ray LA. An examination of motivation to change and neural alcohol cue reactivity following a brief intervention. *Front Psychiatry*. 2019;10(JUN):1-10. doi:10.3389/fpsyt.2019.00408

56. Grodin EN, Steckler LE, Momenan R. Altered striatal response during effort-based valuation and motivation in alcohol-dependent individuals. *Alcohol Alcohol*. 2016;51(6):638-646. doi:10.1093/alcalc/agw003

57. Grüsser SM, Wrase J, Klein S, et al. Cue-induced activation of the striatum and medial prefrontal cortex is associated with subsequent relapse in abstinent alcoholics. *Psychopharmacology (Berl)*. 2004;175(3):296-302. doi:10.1007/s00213-004-1828-4

58. Heinz A, Wrase J, Kahnt T, et al. Brain activation elicited by affectively positive stimuli is associated with a lower risk of relapse in detoxified alcoholic subjects. *Alcohol Clin Exp
59. Hu S, Ide JS, Zhang S, Sinha R, Li CSR. Conflict anticipation in alcohol dependence - A model-based fMRI study of stop signal task. *NeuroImage Clin*. 2015;8:39-50. doi:10.1016/j.nicl.2015.03.008

60. Jang DP, Namkoong K, Kim JJ, et al. The relationship between brain morphometry and neuropsychological performance in alcohol dependence. *Neurosci Lett*. 2007;428(1):21-26. doi:10.1016/j.neulet.2007.09.047

61. Jansen JM, Van Den Heuvel OA, Van Der Werf YD, et al. Emotion processing, reappraisal, and craving in alcohol dependence: A functional magnetic resonance imaging study. *Front Psychiatry*. 2019;10(APR):1-10. doi:10.3389/fpsyt.2019.00227

62. Kienast T, Schlagenhauf F, Rapp MA, et al. Dopamine-modulated aversive emotion processing fails in alcohol-dependent patients. *Pharmacopsychiatry*. 2013;46(4):130-136. doi:10.1055/s-0032-1331747

63. Maurage P, Bestelmeyer PEG, Rouger J, Charest I, Belin P. Binge drinking influences the cerebral processing of vocal affective bursts in young adults. *NeuroImage Clin*. 2013;3:218-225. doi:10.1016/j.nicl.2013.08.010

64. Park M-S, Sohn J-H, Suk J-A, Kim S-H, Sohn S, Sparacio R. Brain substrates of craving to alcohol cues in subjects with alcohol disorder. *Alcohol Alcohol*. 2007;42(5):417-422. doi:10.1093/alcalc/agl117

65. Reiter AMF, Deserno L, Kallert T, Heinze HJ, Heinz A, Schlagenhauf F. Behavioral and neural signatures of reduced updating of alternative options in alcohol-dependent patients during flexible decision-making. *J Neurosci*. 2016;36(43):10935-10948. doi:10.1523/JNEUROSCI.4322-15.2016

66. Sjoerds Z, De Wit S, Van Den Brink W, et al. Behavioral and neuroimaging evidence for overreliance on habit learning in alcohol-dependent patients. *Transl Psychiatry*. 2013;3(July). doi:10.1038/tp.2013.107

67. Squeglia LM, Schweinsburg AD, Pulido C, Tapert SF. Adolescent binge drinking linked to abnormal spatial working memory brain activation: Differential gender effects. *Alcohol Clin Exp Res*. 2011;35(10):1831-1841. doi:10.1111/j.1530-0277.2011.01527.x

68. Wesley MJ, Lile JA, Fillmore MT, Porrino LJ. Neurophysiological capacity in a working memory task differentiates dependent heavy drinkers and controls. *Drug Alcohol Depend*. 2017;175:24-35. doi:10.1016/j.drugalcdep.2017.01.029

69. Wetherill RR, Castro N, Squeglia LM, Tapert SF. Atypical neural activity during inhibitory processing in substance-naive youth who later experience alcohol-induced blackouts. *Drug Alcohol Depend*. 2013;128(3):243-249. doi:10.1016/j.drugalcdep.2012.09.003

70. Worbe Y, Irvine M, Lange I, et al. Neuronal correlates of risk-seeking attitudes to anticipated losses in binge drinkers. *Biol Psychiatry*. 2014;76(9):717-724. doi:10.1016/j.biopsych.2013.11.028

71. Wrase J, Schlagenhauf F, Kienast T, et al. Dysfunction of reward processing correlates with alcohol craving in detoxified alcoholics. *Neuroimage*. 2007;35(2):787-794. doi:10.1016/j.neuroimage.2006.11.043

72. Yang H, Devous MD, Briggs RW, et al. Altered Neural Processing of Threat in Alcohol-Dependent Men. *Alcohol Clin Exp Res*. 2013;37(12):2029-2038. doi:10.1111/accr.12187

73. Yoon HW, Chung JY, Oh JH, et al. Differential activation of face memory encoding tasks in alcohol-dependent patients compared to healthy subjects: An fMRI study. *Neurosci Lett*. 2009;450(3):311-316. doi:10.1016/j.neulet.2008.12.011
74. Artiges E, Ricalens E, Berthoz S, et al. Exposure to smoking cues during an emotion recognition task can modulate limbic fMRI activation in cigarette smokers. *Addict Biol*. 2009;14(4):469-477. doi:10.1111/j.1369-1600.2009.00167.x

75. Carroll AJ, Sutherland MT, Salmeron BJ, Ross TJ, Stein EA. Greater externalizing personality traits predict less error-related insula and anterior cingulate cortex activity in acutely abstinent cigarette smokers. *Addict Biol*. 2015;20(2):377-389. doi:10.1111/adb.12118

76. Bühler M, Vollstädt-Klein S, Kobiella A, et al. Nicotine Dependence Is Characterized by Disordered Reward Processing in a Network Driving Motivation. *Biol Psychiatry*. 2010;67(8):745-752. doi:10.1016/j.biopsych.2009.10.029

77. Galván A, Schonberg T, Mumford J, Kohno M, Poldrack RA, London ED. Greater risk sensitivity of dorsolateral prefrontal cortex in young smokers than in nonsmokers. *Psychopharmacology (Berl)*. 2013;229(2):345-355. doi:10.1007/s00213-013-3113-x

78. Hong JS, Kim SM, Jung HY, Kang KD, Min KJ, Han DH. Cognitive avoidance and aversive cues related to tobacco in male smokers. *Addict Behav*. 2017;73(July 2016):158-164. doi:10.1016/j.addbeh.2017.05.003

79. Kobiella A, Ripke S, Kroemer NB, et al. Acute and chronic nicotine effects on behaviour and brain activation during intertemporal decision making. *Addict Biol*. 2014;19(5):918-930. doi:10.1111/adb.12057

80. Okuyemi KS, Powell JN, Savage CR, et al. Enhanced cue-elicited brain activation in African American compared with Caucasian smokers: An fMRI study. *Addict Biol*. 2006;11(1):97-106. doi:10.1111/j.1369-1600.2006.00007.x

81. Lawn W, Mithchener L, Freeman TP, et al. Value-based decision-making of cigarette and nondrug rewards in dependent and occasional cigarette smokers: An FMRI study. *Addict Biol*. 2019. doi:10.1111/adb.12802

82. Lesage E, Aronson SE, Sutherland MT, Ross TJ, Salmeron BJ, Stein EA. Neural signatures of cognitive flexibility and reward sensitivity following nicotinic receptor stimulation in dependent smokers a randomized trial. *JAMA Psychiatry*. 2017;74(6):632-640. doi:10.1001/jamapsychiatry.2017.0400

83. Liberman K, Van Schuerbeek P, Herremans S, Meysman M, De Mey J, Buls N. The effect of nicotine patches on craving in the brain: A functional MRI study on heavy smokers. *Med (United States)*. 2018;97(39). doi:10.1097/MD.00000000000012415

84. Luijten M, Veltman DJ, Hester R, et al. The role of dopamine in inhibitory control in smokers and non-smokers: A pharmacological fMRI study. *Eur Neuropsychopharmacol*. 2013;23(10):1247-1256. doi:10.1016/j.euroneuro.2012.10.017

85. Luo S, Ainslie G, Giragosian L, Monterosso JR. Striatal hyposensitivity to delayed rewards among cigarette smokers. *Drug Alcohol Depend*. 2011. doi:10.1016/j.drugalcdep.2010.11.012

86. Maynard OM, Brooks JCW, Munafò MR, Leonards U. Neural mechanisms underlying visual attention to health warnings on branded and plain cigarette packs. *Addiction*. 2017;112(4):662-672. doi:10.1111/add.13699

87. Rose EJ, Ross TJ, Salmeron BJ, et al. Acute nicotine differentially impacts anticipatory valence- and magnitude-related striatal activity. *Biol Psychiatry*. 2013;73(3):280-288. doi:10.1016/j.biopsych.2012.06.034

88. Rubinstein ML, Luks TL, Dryden WY, Rait MA, Simpson G V. Adolescent smokers show decreased brain responses to pleasurable food images compared with nonsmokers. *Nicotine
Wagner DD, Cin SD, Sargent JD, Kelley WM, Heatherton TF. Spontaneous action representation in smokers when watching movie characters smoke. *J Neurosci*. 2011;31(3):894-898. doi:10.1523/JNEUROSCI.5174-10.2011

Yalachkov Y, Kaiser J, Görres A, Seehaus A, Naumer MJ. Smoking experience modulates the cortical integration of vision and haptics. *Neuroimage*. 2012;59(1):547-555. doi:10.1016/j.neuroimage.2011.07.041

Bohon C, Weinbach N, Lock J. Performance and brain activity during the Wisconsin Card Sorting Test in adolescents with obsessive–compulsive disorder and adolescents with weight-restored anorexia nervosa. *Eur Child Adolesc Psychiatry*. 2020. doi:10.1007/s00787-019-01350-4

Theiss JD, McHugo M, Zhao M, Zald DH, Olatunji BO. Neural correlates of resolving conflict from emotional and nonemotional distracters in obsessive-compulsive disorder. *Psychiatry Res - Neuroimaging*. 2019. doi:10.1016/j.psychresns.2019.01.001

Heinzel S, Kaufmann C, Grüttmann R, et al. Neural correlates of working memory deficits and associations to response inhibition in obsessive compulsive disorder. *NeuroImage Clin*. 2018. doi:10.1016/j.nic.2017.10.039

Hauser TU, Iannaccone R, Dolan RJ, et al. Increased fronto-striatal reward prediction errors moderate decision making in obsessive-compulsive disorder. *Psychol Med*. 2017. doi:10.1017/S0033291716003035

Luigjes J, Figee M, Tobler PN, et al. Doubt in the insula: Risk processing in obsessive-compulsive disorder. *Front Hum Neurosci*. 2016. doi:10.3389/fnhum.2016.00283

Jang IS, Kim GW, Jeong GW. Neuroanatomical assessment of the impact of negative emotion on explicit memory in patients with obsessive-compulsive disorder. *Neuroreport*. 2017. doi:10.1097/WNR.0000000000000707

Han HJ, Jung WH, Yun JY, et al. Disruption of effective connectivity from the dorsolateral prefrontal cortex to the orbitofrontal cortex by negative emotional distraction in obsessive-compulsive disorder. *Psychol Med*. 2016. doi:10.1017/S0033291715002391

Olson CA, Hale LR, Hamilton N, Powell JN, Martin LE, Savage CR. Altered source memory retrieval is associated with pathological doubt in obsessive-compulsive disorder. *Behav Brain Res*. 2016. doi:10.1016/j.bbr.2015.08.031

Simon D, Adler N, Kaufmann C, Kathmann N. Amygdala hyperactivation during symptom provocation in obsessive-compulsive disorder and its modulation by distraction. *NeuroImage Clin*. 2014. doi:10.1016/j.nic.2014.03.011

Gonçalves OF, Soares JM, Carvalho S, et al. Brain activation of the defensive and appetitive survival systems in obsessive compulsive disorder. *Brain Imaging Behav*. 2015. doi:10.1007/s11682-014-9303-2

Milad MR, Furtak SC, Greenberg JL, et al. Deficits in conditioned fear extinction in obsessive-compulsive disorder and neurobiological changes in the fear circuit. *JAMA Psychiatry*. 2013. doi:10.1001/jamapsychiatry.2013.914

Kang DH, Jang JH, Han JY, et al. Neural correlates of altered response inhibition and dysfunctional connectivity at rest in obsessive-compulsive disorder. *Prog Neuro-Psychopharmacology Biol Psychiatry*. 2013. doi:10.1016/j.pnpbp.2012.11.001
frontal cortex in pediatric obsessive-compulsive disorder. *Biol Psychiatry*. 2010. doi:10.1016/j.biopsych.2010.08.018

105. Britton JC, Stewart E, Killgore WDS, et al. Amygdala activation in response to facial expressions in pediatric obsessive-compulsive disorder. *Depress Anxiety*. 2010. doi:10.1002/da.20718

106. Freyer T, Klöppel S, Tüscher O, et al. Frontostriatal activation in patients with obsessive-compulsive disorder before and after cognitive behavioral therapy. *Psychol Med*. 2011. doi:10.1017/S0033291710000309

107. Page LA, Rubia K, Deeley Q, et al. A functional magnetic resonance imaging study of inhibitory control in obsessive-compulsive disorder. *Psychiatry Res - Neuroimaging*. 2009. doi:10.1016/j.pscychresns.2009.05.002

108. Nabeyama M, Nakagawa A, Yoshiura T, et al. Functional MRI study of brain activation alterations in patients with obsessive-compulsive disorder after symptom improvement. *Psychiastry Res - Neuroimaging*. 2008. doi:10.1016/j.psychresns.2007.11.001

109. Henseler I, Gruber O, Kraft S, Krick C, Reith W, Falkai P. Compensatory hyperactivations as markers of latent working memory dysfunctions in patients with obsessive-compulsive disorder: An fMRI study. *J Psychiatry Neurosci*. 2008.

110. Roth RM, Saykin AJ, Flashman LA, Pixley HS, West JD, Mamourian AC. Event-Related Functional Magnetic Resonance Imaging of Response Inhibition in Obsessive-Compulsive Disorder. *Biol Psychiatry*. 2007. doi:10.1016/j.biopsycho.2006.12.007

111. Remijnse PL, Nielen MMA, Van Balkom AJLM, et al. Reduced orbitofrontal-striatal activity on a reversal learning task in obsessive-compulsive disorder. *Arch Gen Psychiatry*. 2006. doi:10.1001/archpsyc.63.11.1225

112. Fitzgerald KD, Welsh RC, Gehring WJ, et al. Error-related hyperactivity of the anterior cingulate cortex in obsessive-compulsive disorder. *Biol Psychiatry*. 2005. doi:10.1016/j.biopsycho.2004.12.007

113. Gu BM, Park JY, Kang DH, et al. Neural correlates of cognitive inflexibility during task-switching in obsessive-compulsive disorder. *Brain*. 2008. doi:10.1093/brain/awm277

114. Harrison BJ, Pujol J, Soriano-Mas C, et al. Neural correlates of moral sensitivity in obsessive-compulsive disorder. *Arch Gen Psychiatry*. 2012. doi:10.1001/archgenpsychiatry.2011.2165

115. Kaufmann C, Beucke JC, Preuß F, et al. Medial prefrontal brain activation to anticipated reward and loss in obsessive-compulsive disorder. *NeuroImage Clin*. 2013. doi:10.1016/j.nicl.2013.01.005

116. Koçak OM, Özpolutl AY, Atbaşoğlu C, Çiçek M. Cognitive control of a simple mental image in patients with obsessive-compulsive disorder. *Brain Cogn*. 2011. doi:10.1016/j.bandc.2011.03.020

117. Nakao T, Nakagawa A, Yoshiura T, et al. A functional MRI comparison of patients with obsessive-compulsive disorder and normal controls during a Chinese character Stroop task. *Psychiatry Res - Neuroimaging*. 2005. doi:10.1016/j.psychresns.2004.12.004

118. Nakao T, Nakagawa A, Nakatani E, et al. Working memory dysfunction in obsessive-compulsive disorder: A neuropsychological and functional MRI study. *J Psychiatr Res*. 2009. doi:10.1016/j.jpsychires.2008.10.013

119. Van Den Heuvel OA, Veltman DJ, Groenewegen HJ, et al. Frontal-striatal dysfunction during planning in obsessive-compulsive disorder. *Arch Gen Psychiatry*. 2005. doi:10.1001/archpsyc.62.3.301
120. Van Der Wee NJA, Ramsey NF, Jansma JM, et al. Spatial working memory deficits in obsessive compulsive disorder are associated with excessive engagement of the medial frontal cortex. *Neuroimage*. 2003. doi:10.1016/j.neuroimage.2003.05.001

121. Yücel M, Harrison BJ, Wood SJ, et al. Functional and biochemical alterations of the medial frontal cortex in obsessive-compulsive disorder. *Arch Gen Psychiatry*. 2007. doi:10.1001/archpsyc.64.8.946

122. Grüttmann R, Endrass T, Kaufmann C, Allen E, Eichele T, Kathmann N. Presupplementary Motor Area Contributes to Altered Error Monitoring in Obsessive-Compulsive Disorder. *Biol Psychiatry*. 2016. doi:10.1016/j.biopsych.2014.12.010

123. Figee M, Vink M, De Geus F, et al. Dysfunctional reward circuitry in obsessive-compulsive disorder. *Biol Psychiatry*. 2011. doi:10.1016/j.biopsych.2010.12.003

124. Marsh R, Tau GZ, Wang Z, et al. Reward-based spatial learning in unmedicated adults with obsessive-compulsive disorder. *Am J Psychiatry*. 2015. doi:10.1176/appi.ajp.2014.13121700

125. Admon R, Bleich-Cohen M, Weizmant R, Poyurovsky M, Faragian S, Hendler T. Functional and structural neural indices of risk aversion in obsessive-compulsive disorder (OCD). *Psychiatry Res - Neuroimaging*. 2012. doi:10.1016/j.pscychresns.2012.02.002

126. Jung WH, Kang DH, Han JY, et al. Aberrant ventral striatal responses during incentive processing in unmedicated patients with obsessive-compulsive disorder. *Acta Psychiatr Scand*. 2011. doi:10.1111/j.1600-0447.2010.01659.x

127. Ma SS, Worhunsky PD, Xu JS, et al. Alterations in functional networks during cue-reactivity in Internet gaming disorder. *J Behav Addict*. 2019. doi:10.1556/2006.8.2019.25

128. Dong G, Wang L, Du X, Potenza MN. Gaming Increases Craving to Gaming-Related Stimuli in Individuals With Internet Gaming Disorder. *Biol Psychiatry Cogn Neurosci Neuroimaging*. 2017. doi:10.1016/j.bpsc.2017.01.002

129. Wang L, Zhang Y, Lin X, Zhou H, Du X, Dong G. Group independent component analysis reveals alternation of right executive control network in Internet gaming disorder. *CNS Spectr*. 2018. doi:10.1017/S1092852917000360

130. Wang Y, Wu L, Zhou H, et al. Impaired executive control and reward circuit in Internet gaming addicts under a delay discounting task: independent component analysis. *Eur Arch Psychiatry Clin Neurosci*. 2017. doi:10.1007/s00406-016-0721-6

131. Liu L, Yip SW, Zhang JT, et al. Activation of the ventral and dorsal striatum during cue reactivity in Internet gaming disorder. *Addict Biol*. 2017. doi:10.1111/adb.12338

132. Dong G, Hu Y, Lin X. Reward/punishment sensitivities among internet addicts: Implications for their addictive behaviors. *Prog Neuro-Psychopharmacology Biol Psychiatry*. 2013;46:139-145. doi:10.1016/j.pnpbp.2013.07.007

133. Kim SM, Han DH, Lee YS, Kim JE, Renshaw PF. Changes in brain activity in response to problem solving during the abstinence from online game play. *J Behav Addict*. 2012. doi:10.1556/JBA.1.2012.2.1

134. Y.-R. K, J.-W. S, S.-I. L, et al. Abnormal brain activation of adolescent internet addict in a ball-throwing animation task: Possible neural correlates of disembodiment revealed by fMRI. *Prog Neuro-Psychopharmacology Biol Psychiatry*. 2012.

135. Lorenz RC, Krüger JK, Neumann B, et al. Cue reactivity and its inhibition in pathological computer game players. *Addict Biol*. 2013. doi:10.1111/j.1369-1600.2012.00491.x

136. Sun Y, Ying H, Seetohul RM, et al. Brain fMRI study of crave induced by cue pictures in online game addicts (male adolescents). *Behav Brain Res*. 2012.
137. Yip SW, Gross JJ, Chawla M, et al. Is Neural Processing of Negative Stimuli Altered in Addiction Independent of Drug Effects? Findings from Drug-Naïve Youth with Internet Gaming Disorder. *Neuropsychopharmacology*. 2018;43(6):1364-1372. doi:10.1038/npp.2017.283

138. Dieter J, Hill H, Sell M, et al. Avatar’s neurobiological traces in the self-concept of massively multiplayer online role-playing game (MMORPG) addicts. *Behav Neurosci*. 2015. doi:10.1037/bne0000025

139. Zhang Y, Lin X, Zhou H, Xu J, Du X, Dong G. Brain activity toward gaming-related cues in internet gaming disorder during an addiction Stroop task. *Front Psychol*. 2016. doi:10.3389/fpsyg.2016.00714

140. Dong G, Lin X, Zhou H, Lu Q. Cognitive flexibility in internet addicts: FMRI evidence from difficult-to-easy and easy-to-difficult switching situations. *Addict Behav*. 2014. doi:10.1016/j.addbeh.2013.11.028

141. Dong G, Huang J, Du X. Enhanced reward sensitivity and decreased loss sensitivity in Internet addicts: An fMRI study during a guessing task. *J Psychiatr Res*. 2011. doi:10.1016/j.jpsychires.2011.06.017

142. Liu J, Li W, Zhou S, et al. Functional characteristics of the brain in college students with internet gaming disorder. *Brain Imaging Behav*. 2016. doi:10.1007/s11682-015-9364-x

143. Lee D, Lee J, Yoon KJ, Kee N, Jung YC. Impaired anterior insular activation during risky decision making in young adults with internet gaming disorder. *Neuroreport*. 2016. doi:10.1097/WNR.0000000000000584

144. Lin X, Zhou H, Dong G, Du X. Impaired risk evaluation in people with internet gaming disorder: fMRI evidence from a probability discounting task. *Prog Neuro-Psychopharmacology Biol Psychiatry*. 2015. doi:10.1016/j.pnpbp.2014.08.016

145. Ding W, Sun J, Sun Y, et al. Trait impulsivity and impaired prefrontal impulse inhibition function in adolescents with internet gaming addiction revealed by a Go/No-Go fMRI study. *Behav Brain Funct*. 2014. doi:10.1186/1744-9081-10-20

146. Eickhoff SB, Nichols TE, Laird AR, et al. Behavior, sensitivity, and power of activation likelihood estimation characterized by massive empirical simulation. *Neuroimage*. 2016;137:70-85. doi:10.1016/j.neuroimage.2016.04.072

147. Eickhoff SB, Laird AR, Grefkes C, Wang LE, Zilles K, Fox PT. Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: A random-effects approach based on empirical estimates of spatial uncertainty. *Hum Brain Mapp*. 2009;30(9):2907-2926. doi:10.1002/hbm.20718

148. Eickhoff SB, Bzdok D, Laird AR, Kurth F, Fox PT. Activation likelihood estimation meta-analysis revisited. *Neuroimage*. 2012;59(3):2349-2361. doi:10.1016/j.neuroimage.2011.09.017

149. Engelmann JM, Versace F, Robinson JD, et al. Neural substrates of smoking cue reactivity: A meta-analysis of fMRI studies. *Neuroimage*. 2012. doi:10.1016/j.neuroimage.2011.12.024

150. Janiri D, Moser DA, Doucet GE, et al. Shared Neural Phenotypes for Mood and Anxiety Disorders: A Meta-analysis of 226 Task-Related Functional Imaging Studies. *JAMA Psychiatry*. 2020. doi:10.1001/jamapsychiatry.2019.3351