Nonunital Operator Systems and Noncommutative Convexity

Nicholas Manor

University of Waterloo

May 10, 2021
Unital Commutative C*-algebras

This is joint work with Matthew Kennedy and Se Jin Kim.
Unital Commutative C*-algebras

This is joint work with Matthew Kennedy and Se Jin Kim.

Perhaps the most famous duality result in operator theory is:
Unital Commutative C*-algebras

This is joint work with Matthew Kennedy and Se Jin Kim.

Perhaps the most famous duality result in operator theory is:

Theorem (Gelfand-Naimark)

Unital commutative C-algebras are dual to compact Hausdorff spaces.*
Unital Commutative C^*-algebras

This is joint work with Matthew Kennedy and Se Jin Kim.

Perhaps the most famous duality result in operator theory is:

Theorem (Gelfand-Naimark)

Unital commutative C^*-algebras are dual to compact Hausdorff spaces. The mutually inverse functors are given by

\[
A \mapsto \text{Spec}(A) \\
X \mapsto C(X).
\]
Unital Commutative C^*-algebras

This is joint work with Matthew Kennedy and Se Jin Kim.

Perhaps the most famous duality result in operator theory is:

Theorem (Gelfand-Naimark)

Unital commutative C^-algebras are dual to compact Hausdorff spaces. The mutually inverse functors are given by*

\[
A \mapsto \text{Spec}(A) \\
X \mapsto C(X).
\]

Notice that the zero map is omitted as a representation, otherwise this duality would not hold.
Nonunital Commutative C*-algebras

If we include the zero map as an irreducible representation, Theorem (Nonunital Gelfand-Naimark) Commutative C*-algebras are dual to pointed compact Hausdorff spaces \((X, z)\). The mutually inverse functors are given by

\[A \mapsto \text{Spec}(A) \cup \{0\}, \quad (X, z) \mapsto C_0(X \setminus \{z\}). \]

We may identify \(C_0(X \setminus \{z\})\) with the C*-algebra \(C(X, z) := \{f \in C(X) | f(z) = 0\}\).

Remark \(C(X, z)\) is unital if and only if \(z\) is an isolated point.
If we include the zero map as an irreducible representation,
If we include the zero map as an irreducible representation,

Theorem (Nonunital Gelfand-Naimark)

Commutative C^-algebras are dual to pointed compact Hausdorff spaces (X, z).***
Nonunital Commutative C*-algebras

If we include the zero map as an irreducible representation,

Theorem (Nonunital Gelfand-Naimark)

Commutative C-algebras are dual to pointed compact Hausdorff spaces* \((X, z)\). *The mutually inverse functors are given by*

\[
A \mapsto (\text{Spec}(A) \cup 0, 0) \\
(X, z) \mapsto C_0(X \setminus \{z\}).
\]
Nonunital Commutative C*-algebras

If we include the zero map as an irreducible representation,

Theorem (Nonunital Gelfand-Naimark)

Commutative C-algebras are dual to **pointed** compact Hausdorff spaces* \((X, z)\). *The mutually inverse functors are given by*

\[
A \mapsto (\text{Spec}(A) \cup 0, 0) \\
(X, z) \mapsto C_0(X \setminus \{z\}).
\]

We may identify \(C_0(X \setminus \{z\})\) with the C*-algebra \(C(X, z) := \{f \in C(X) \mid f(z) = 0\}\).
If we include the zero map as an irreducible representation,

Theorem (Nonunital Gelfand-Naimark)

Commutative C-algebras are dual to **pointed** compact Hausdorff spaces \((X, z)\). The mutually inverse functors are given by*

\[
\begin{align*}
A & \mapsto (\text{Spec}(A) \cup 0, 0) \\
(X, z) & \mapsto C_0(X \setminus \{z\}).
\end{align*}
\]

We may identify \(C_0(X \setminus \{z\})\) with the C-algebra \(C(X, z) := \{f \in C(X) \mid f(z) = 0\}\).*

Remark

\(C(X, z)\) is unital if and only if \(z\) is an isolated point.
Function Systems

Definition
A closed subspace $E \subseteq C^0(X)$ is a function system if $E^* = E$.

Example
The space $A([-1,1])$ of continuous affine function on $[-1,1]$ has elements all of the form $f(x) = ax + b$ for $a, b \in \mathbb{C}$.

The space $A([-1,1], 0) := \{f \in A([-1,1]) | f(0) = 0\}$ of continuous affine functions vanishing at zero has elements all of the form $f(x) = ax$ for $a \in \mathbb{C}$.
Definition

A closed subspace $E \subseteq C_0(X)$ is a **function system** if $E^* = E$.
Definition

A closed subspace $E \subseteq C_0(X)$ is a **function system** if $E^* = E$.

Example

The space $A([-1, 1])$ of continuous affine function on $[-1, 1]$ has elements all of the form $f(x) = ax + b$ for $a, b \in \mathbb{C}$.
Function Systems

Definition
A closed subspace \(E \subseteq C_0(X) \) is a function system if \(E^* = E \).

Example
The space \(A([−1, 1]) \) of continuous affine function on \([−1, 1]\) has elements all of the form \(f(x) = ax + b \) for \(a, b \in \mathbb{C} \).
The space \(A([−1, 1], 0) := \{ f \in A([−1, 1]) \mid f(0) = 0 \} \) of continuous affine functions vanishing at zero has elements all of the form \(f(x) = ax \) for \(a \in \mathbb{C} \).
Unital Function Systems

Theorem (Kadison's duality)

Unital function systems are dual to compact convex sets.

The mutually inverse functors are given by

\[E \mapsto \rightarrow S(E) \]

\[K \mapsto \rightarrow A(K) \].

Example

The C*-algebra \(C^*_2 \) has state space \(S(C^*_2) \sim [\mathbb{R}, 1] \). Therefore,

\[A([\mathbb{R}, 1]) \sim = C^*_2. \]
Theorem (Kadison’s duality)

Unital function systems are dual to compact convex sets.
Unital Function Systems

Theorem (Kadison’s duality)

Unital function systems are dual to compact convex sets. The mutually inverse functors are given by

\[E \mapsto S(E) \]
\[K \mapsto A(K). \]
Theorem (Kadison’s duality)

Unital function systems are dual to compact convex sets. The mutually inverse functors are given by

\[
E \mapsto S(E) \\
K \mapsto A(K).
\]

Example

The C*-algebra \(\mathbb{C}^2 \) has state space \(S(\mathbb{C}^2) \cong [-1, 1] \). Therefore, \(A([-1, 1]) \cong \mathbb{C}^2 \).
Nonunital Function Systems

Definition

Let $E \subseteq C_0(X)$ be a function system. A positive linear functional $\phi: E \to \mathbb{C}$ is called a quasistate if $\|\phi\| \leq 1$.

We denote the quasistate space of E by $Q(E)$.

Theorem (Nonunital Kadison’s duality)

Function systems are dual to “pointed” compact convex sets. The mutually inverse functors are given by $E \mapsto (Q(E), 0)$ $(K, z) \mapsto A(K, z)$.
Definition

Let $E \subseteq C_0(X)$ be a function system. A positive linear functional $\phi : E \to \mathbb{C}$ is called a quasistate if $\|\phi\| \leq 1$.
Definition

Let $E \subseteq C_0(X)$ be a function system. A positive linear functional $\phi : E \to \mathbb{C}$ is called a quasistate if $\|\phi\| \leq 1$. We denote the quasistate space of E by $Q(E)$.
Nonunital Function Systems

Definition

Let $E \subseteq C_0(X)$ be a function system. A positive linear functional $\phi : E \to \mathbb{C}$ is called a **quasistate** if $\|\phi\| \leq 1$. We denote the quasistate space of E by $Q(E)$.

Theorem (Nonunital Kadison’s duality)

Function systems are dual to “pointed” compact convex sets.
Nonunital Function Systems

Definition
Let $E \subseteq C_0(X)$ be a function system. A positive linear functional $\phi : E \to \mathbb{C}$ is called a quasistate if $\|\phi\| \leq 1$. We denote the quasistate space of E by $Q(E)$.

Theorem (Nonunital Kadison’s duality)
Function systems are dual to “pointed” compact convex sets. The mutually inverse functors are given by

$$E \mapsto (Q(E), 0)$$

$$(K, z) \mapsto A(K, z).$$
Remark

If E is unital, $Q(E)$ can be abstractly obtained from $S(E)$ by adding an “affinely independent” point.
Remark

If E is unital, $Q(E)$ can be abstractly obtained from $S(E)$ by adding an “affinely independent” point.

Figure: Compact convex set
If E is unital, $Q(E)$ can be abstractly obtained from $S(E)$ by adding an “affinely independent” point.
Noncommutative Setting

Definition

A closed subspace $E \subseteq B(H)$ is an operator system if $E^* = E$.

Definition

A compact noncommutative (nc) convex set over a dual operator space Y is a graded subset $K = \bigoplus_{n \geq 1} K_n$ such that

1. all K_n are compact in the dual space topology on $M_n(Y)$ and
2. K is closed under nc convex combinations: if $\alpha_i \in M_n$, n_i and $x_i \in K_{n_i}$ for all i such that $\sum_i \alpha_i \alpha_i^* = 1$, then $\sum_i \alpha_i x_i \alpha_i^* \in K$.
A closed subspace $E \subseteq B(H)$ is an operator system if $E^* = E$.

Definition
Definition

A closed subspace $E \subseteq B(H)$ is an operator system if $E^* = E$.

Definition

A compact noncommutative (nc) convex set over a dual operator space Y is a graded subset $K = \bigcup_{n \geq 1} K_n$ with $K_n \subseteq M_n(Y)$ such that
Noncommutative Setting

Definition

A closed subspace $E \subseteq B(H)$ is an **operator system** if $E^* = E$.

Definition

A **compact noncommutative (nc) convex set** over a dual operator space Y is a graded subset $K = \bigsqcup_{n \geq 1} K_n$ with $K_n \subseteq M_n(Y)$ such that

1. all K_n are compact in the dual space topology on $M_n(Y)$ and...
Definition

A closed subspace $E \subseteq B(H)$ is an operator system if $E^* = E$.

Definition

A **compact noncommutative (nc) convex set** over a dual operator space Y is a graded subset $K = \bigcup_{n \geq 1} K_n$ with $K_n \subseteq M_n(Y)$ such that

1. all K_n are compact in the dual space topology on $M_n(Y)$ and
2. K is closed under nc convex combinations:
Noncommutative Setting

Definition

A closed subspace \(E \subseteq B(H) \) is an **operator system** if \(E^* = E \).

Definition

A **compact noncommutative (nc) convex set** over a dual operator space \(Y \) is a graded subset \(K = \bigcup_{n \geq 1} K_n \) with \(K_n \subseteq M_n(Y) \) such that

1. all \(K_n \) are compact in the dual space topology on \(M_n(Y) \) and
2. \(K \) is closed under nc convex combinations:

 if \(\alpha_i \in M_{n_i} \) and \(x_i \in K_{n_i} \) for all \(i \) such that \(\sum_i \alpha_i \alpha_i^* = 1 \), then

 \[
 \sum_i \alpha_i x_i \alpha_i^* \in K.
 \]
Example

Let E be a unital operator system. Let $S_n(E)$ denote the set of ucp maps from E into M_n. The **nc state space** of E is $S(E) := \bigsqcup_n S_n(E)$. It is a compact nc convex set over E^d.
Let E be a unital operator system. Let $S_n(E)$ denote the set of ucp maps from E into M_n. The **nc state space** of E is $S(E) := \bigsqcup_n S_n(E)$. It is a compact nc convex set over E^d.

If E is not necessarily unital, then we instead take $Q_n(E)$ to be the space of cpcc maps from E into M_n. The **nc quasistate space** of E is $Q(E) := \bigsqcup_n Q_n(E)$.
Noncommutative Setting

Example

Let E be a unital operator system. Let $S_n(E)$ denote the set of ucp maps from E into M_n. The **nc state space** of E is $S(E) := \bigcup_n S_n(E)$. It is a compact nc convex set over E^d.

If E is not necessarily unital, then we instead take $Q_n(E)$ to be the space of cpcc maps from E into M_n. The **nc quasistate space** of E is $Q(E) := \bigcup_n Q_n(E)$.

Example

The set $\bigcup_n \{ \alpha \in (M_n)_{sa} : -1 \leq \alpha \leq 1 \}$ is a compact nc convex set over \mathbb{C}. This is the nc state space of \mathbb{C}^2.
Noncommutative Setting

Definition

Let K be a compact nc convex set. Let $\mathcal{M} := \bigsqcup_n M_n$. We say a graded function $f := \bigsqcup_n f_n : K \to \mathcal{M}$ is an **affine nc function** if f preserves nc convex combinations:

$$f(\sum_i \alpha_i x_i \alpha_i^*) = \sum_i \alpha_i f(x_i) \alpha_i^*. $$
Noncommutative Setting

Definition

Let K be a compact nc convex set. Let $\mathcal{M} := \bigsqcup_n M_n$. We say a graded function $f := \bigsqcup_n f_n : K \to \mathcal{M}$ is an affine nc function if f preserves nc convex combinations:

$$f\left(\sum_i \alpha_i x_i \alpha_i^*\right) = \sum_i \alpha_i f(x_i) \alpha_i^*.$$

Let $A(K)$ denote the unital operator system of continuous affine nc functions on K.
Theorem (Webster-Winkler, Davidson-Kennedy)

Compact nc convex sets are dual to unital operator systems.

The mutually inverse functors are given by

\[E \mapsto \mathcal{S}(E) \]
\[K \mapsto \mathcal{A}(K) \]
Unital Operator Systems

Theorem (Webster-Winkler, Davidson-Kennedy)

Compact nc convex sets are dual to unital operator systems.
Theorem (Webster-Winkler, Davidson-Kennedy)

Compact nc convex sets are dual to unital operator systems. The mutually inverse functors are given by

\[E \mapsto S(E) \]

\[K \mapsto A(K) \]
Nonunital Operator Systems

Example
Let K be a compact nc convex set and fix a point $z \in K$. The space $A(K, z) := \{ f \in A(K) : f(z) = 0 \} \subseteq A(K)$ is an operator system.

Example (Communications with C.K. Ng)
There is a large class of (nonunital) operator systems arising as duals of "well understood" operator systems, said to have the bounded decomposition property. These include the duals of all C^*-algebras and all unital operator systems.
Example

Let K be a compact nc convex set and fix a point $z \in K_1$. The space $A(K, z) := \{ f \in A(K) : f(z) = 0 \} \subseteq A(K)$ is an operator system.
Example

Let K be a compact nc convex set and fix a point $z \in K_1$. The space $A(K, z) := \{f \in A(K) : f(z) = 0\} \subseteq A(K)$ is an operator system.

Example (Communications with C.K. Ng)

There is a large class of (nonunital) operator systems arising as duals of “well understood” operator systems, said to have the bounded decomposition property.
Example
Let K be a compact nc convex set and fix a point $z \in K_1$. The space $A(K, z) := \{ f \in A(K) : f(z) = 0 \} \subseteq A(K)$ is an operator system.

Example (Communications with C.K. Ng)
There is a large class of (nonunital) operator systems arising as duals of “well understood” operator systems, said to have the bounded decomposition property. These include the duals of all C^*-algebras and all unital operator systems.
In the nonunital case, we cannot take *arbitrary* pairs \((K, z)\) where \(K\) is a compact nc convex subset and \(z \in K_1\) is any point.
In the nonunital case, we cannot take arbitrary pairs \((K, z)\) where \(K\) is a compact nc convex subset and \(z \in K_1\) is any point.

The obstruction: \(E \mapsto (Q(E), 0)\) and \((K, z) \mapsto A(K, z)\) are not mutually inverse functors.
In the nonunital case, we cannot take *arbitrary* pairs \((K, z)\) where \(K\) is a compact nc convex subset and \(z \in K_1\) is any point.

The obstruction: \(E \mapsto (Q(E), 0)\) and \((K, z) \mapsto A(K, z)\) are not mutually inverse functors.

Example

We have \(A([-1/2, 1], 0) \cong A([-1, 1], 0)\).

In fact, \(Q(A([-1/2, 1], 0)) = Q(A([-1, 1], 0)) =([-1, 1], 0)\).
Nonunital Operator Systems

In the nonunital case, we cannot take arbitrary pairs \((K, z)\) where \(K\) is a compact nc convex subset and \(z \in K_1\) is any point.

The obstruction: \(E \mapsto (Q(E), 0)\) and \((K, z) \mapsto A(K, z)\) are not mutually inverse functors.

Example

We have \(A([-1/2, 1], 0) \cong A([-1, 1], 0)\).

In fact, \(Q(A([-1/2, 1], 0)) = Q(A([-1, 1], 0)) = \([-1, 1], 0)\).
Nonunital Operator Systems

Definition

We call a pair \((K, z)\) a **pointed** compact nc convex set if the nc quasistate space \(Q(A(K, z))\) is equal to \((K, z)\).
Definition

We call a pair \((K, z)\) a **pointed** compact nc convex set if the nc quasistate space \(Q(A(K, z))\) is equal to \((K, z)\).

Theorem (Kennedy-Kim-M)

Operator systems are dual to pointed compact nc convex sets.
Definition

We call a pair \((K, z)\) a **pointed** compact nc convex set if the nc quasistate space \(Q(A(K, z))\) is equal to \((K, z)\).

Theorem (Kennedy-Kim-M)

Operator systems are dual to pointed compact nc convex sets.

The mutually inverse functors are given by

\[
E \mapsto (Q(E), 0) \\
(K, z) \mapsto A(K, z).
\]
Consequences of the Duality

Let \((K, z)\) be a pointed compact nc convex set. We denote by \(\partial K\) the set of extreme points of \(K\).

Theorem (Kennedy-Kim-M)

The space \((K, z)\) corresponds to a unital operator system iff there is some \(e \in A(K, z)\) such that \(e(x) = 1\) for all \(x \in \partial K \setminus \{z\}\).

Theorem (Kennedy-Kim-M)

The operator system \(A(K, z)\) generates a simple C*-algebra iff for every nonzero \(x \in \partial K\), \(K\) is the smallest pointed nc convex set containing \(x\).
Let \((K, z)\) be a pointed compact nc convex set. We denote by \(\partial K\) the set of extreme points of \(K\).
Consequences of the Duality

Let \((K, z)\) be a pointed compact nc convex set. We denote by \(\partial K\) the set of extreme points of \(K\).

Theorem (Kennedy-Kim-M)

The space \((K, z)\) corresponds to a unital operator system iff there is some \(e \in A(K, z)\) such that \(e(x) = 1\) for all \(x \in \partial K \setminus \{z\}\).
Let \((K, z)\) be a pointed compact nc convex set. We denote by \(\partial K\) the set of extreme points of \(K\).

Theorem (Kennedy-Kim-M)

The space \((K, z)\) corresponds to a unital operator system iff there is some \(e \in A(K, z)\) such that \(e(x) = 1\) for all \(x \in \partial K \setminus \{z\}\).

Theorem (Kennedy-Kim-M)

The operator system \(A(K, z)\) generates a simple \(C^\)-algebra iff for every nonzero \(x \in \partial K\), \(K\) is the smallest pointed nc convex set containing \(x\).*
A Dynamical Consequence

Theorem (Kennedy-Kim-M)

Let G be a second countable group. The following are equivalent:

1. G has property (T).
2. For every unital G-C*-algebra A, $S^1(A)^G$ is the state space of some C*-algebra.
3. For every G-C*-algebra A, $(Q^1(A)^G, 0)$ is the pointed quasistate space of some C*-algebra.

Thank you!
A Dynamical Consequence

Theorem (Kennedy-Kim-M)

Let G be a second countable group. The following are equivalent:

1. G has property (T).

Thank you!
A Dynamical Consequence

Theorem (Kennedy-Kim-M)

Let G be a second countable group. The following are equivalent:

1. G has property (T).
2. For every unital G-C^*-algebra A, $S_1(A)^G$ is the state space of some C^*-algebra.

Thank you!
A Dynamical Consequence

Theorem (Kennedy-Kim-M)

Let G be a second countable group. The following are equivalent:

1. G has property (T).
2. For every unital G-C*-algebra A, $S_1(A)^G$ is the state space of some C*-algebra.
3. For every G-C*-algebra A, $(Q_1(A)^G, 0)$ is the pointed quasistate space of some C*-algebra.
A Dynamical Consequence

Theorem (Kennedy-Kim-M)

Let G be a second countable group. The following are equivalent:

1. G has property (T).
2. For every unital G-C^*-algebra A, $S_1(A)^G$ is the state space of some C^*-algebra.
3. For every G-C^*-algebra A, $(Q_1(A)^G, 0)$ is the pointed quasistate space of some C^*-algebra.

Thank you!