Non-contiguous finished genome sequence of *Anoxybacillus flavithermus subsp. yunnanensis* type strain (E13ᵀ), a strictly thermophilic and organic solvent-tolerant bacterium

Ying Wang, Yunyun Zheng, Min Wang, Yi Gao, Yazhong Xiao, Hui Peng*

Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, School of Life Sciences, Anhui University, Anhui, P.R. China

*Correspondence: Hui Peng (pph0259@126.com)

Keywords: *Anoxybacillus flavithermus subsp. yunnanensis*, genome, solvent tolerance, thermophile

Anoxybacillus flavithermus subsp. yunnanensis is the only strictly thermophilic bacterium that is able to tolerate a broad range of toxic solvents at its optimal temperature of 55-60°C. The type strain E13ᵀ was isolated from water-sediment slurries collected from a hot spring. This study presents the draft genome sequence of *A. flavithermus subsp. yunnanensis* E13ᵀ and its annotation. The 2,838,393bp long genome (67 contigs) contains 3,035 protein-coding genes and 85 RNA genes, including 10 rRNA genes, and no plasmids. The genome information has been used to compare with the genomes from *A. flavithermus subsp. flavithermus* strains.

Introduction

Solvent-tolerant bacteria are a relatively new group of extremophilic microorganisms. They are able to overcome the toxic and destructive effects of organic solvents due to their unique adaptive mechanisms. Most of the reported solvent-tolerant bacteria are mesophilic bacteria that have an optimal temperature of between 25-37°C [1]. So far, *Anoxybacillus flavithermus subsp. yunnanensis* is the only strictly thermophilic bacterial species known to tolerate a broad range of solvents at its optimal temperature of 55-60°C [2,3]. The strains show unusual physiological features in the presence of solvents, such as a higher cell yield [2], an observable incrasation of electron-transparent intracellular material and a distorted cytoplasm [3]. However, mechanisms of solvent tolerance in thermophilic species have not been proposed.

The type strain E13ᵀ (=CCTCC AB2010187ᵀ =KCTC 13759ᵀ) and the additional strain PGDY12 were isolated from water-sediment slurries collected from a hot spring in Yunnan Province of China in our lab, and are most closely related to *A. flavithermus subsp. flavithermus*, first discovered in a hot spring in New Zealand [4]. At present, a total of 19 species and two subspecies of *Anoxybacillus* with validly published names have been reported [5]. None of these *Anoxybacillus* strains is reported to tolerate solvents except *A. flavithermus subsp. yunnanensis*. To understand the molecular basis of the ability to tolerate solvents under high temperature conditions, we sequenced and annotated a draft genome of the type strain E13ᵀ of *A. flavithermus subsp. yunnanensis*.

Classification and features

Anoxybacillus flavithermus subsp. yunnanensis E13ᵀ (Table 1) was isolated in 2008 by static cultivation in rich Luria-Bertani (LB) medium supplemented with 10% ethanol [2]. This strain is a facultatively aerobic, Gram-positive, motile, spore-forming rod that is capable of utilizing a wide range of carbon sources, such as arabinose, cellobiose, galactose, maltose, trehalose and xylose. The strain E13ᵀ not only exhibited a remarkable ability to grow in ethanol concentrations reaching 13% at 55°C, but can also tolerate highly toxic solvents including toluene, benzene, xylene, chloroform and cyclohexane. Because *A. flavithermus subsp. yunnanensis* is the only strictly thermophilic bacterium that is able to tolerate toxic solvents, the effect of temperature on solvent tolerance has not yet been studied. The reports of the effect of temperature on ethanol (a much less toxic solvent) tolerance indicated that ethanol tolerance decreased with increasing temperature [20,21]. The comparison of the growth of...
Anoxybacillus flavithermus subsp. yunnanensis

strain E13T at different temperatures showed that a temperature increase of 20°C, from 45 to 65°C, resulted in a decrease of the critical inhibitory toluene concentration from 0.56 to 0.31%. A similar sharp decrease occurred in the cases of benzene, xylene, chloroform and cyclohexane. The results suggested that temperature plays a vitally important role in determining solvent tolerance in bacteria, which may explain why such thermophilic bacteria are rare in nature.

Currently, more than 30 solvent-tolerant mesophilic bacteria have been reported, and 8 genomes are available in GenBank. The phylogenetic position of Anoxybacillus flavithermus subsp. yunnanensis E13T among these typical solvent-tolerant bacteria is shown in Figure 1. This strain is most closely related to Bacillus species. The genomes of B. cereus strain E33L and strain ATCC 10987 might provide valuable guidance in a genetic analysis of the solvent tolerance of Anoxybacillus flavithermus subsp. yunnanensis E13T.

Table 1. Classification and general features of Anoxybacillus flavithermus subsp. yunnanensis E13T according to the MIGS recommendations [6]

MIGS ID	Property	Term	Evidence codea	
			Domain Bacteria	TAS [7]
			Phylum Firmicutes	TAS [8-10]
			Class Bacilli	TAS [11,12]
			Order Bacillales	TAS [13,14]
			Family Bacillaceae	TAS [13,15]
			Genus Anoxybacillus	TAS [16,17]
			Species Anoxybacillus flavithermus	TAS [16]
			Subspecies Anoxybacillus flavithermus subsp. yunnanensis	TAS [2,18]
			Type strain E13T	TAS [2]
	Gram stain		positive	TAS [2]
	Cell shape		rod	TAS [2]
	Motility		motile	TAS [2]
	Sporulation		sporulating	TAS [2]
	Temperature range		30-66°C	TAS [2]
	Optimum temperature		60°C	TAS [2]
	Carbon source		carbohydrates	TAS [2]
	Energy source		heterotrophic	TAS [2]
MIGS-6	Habitat		hot spring	TAS [2]
MIGS-6.3	Salinity		optimum 0.3% (w/v) NaCl	TAS [2]
MIGS-22	Oxygen requirement		facultative anaerobe	TAS [2]
MIGS-15	Biotic relationship		free-living	TAS [2]
MIGS-14	Pathogenicity		non-pathogenic	NAS
MIGS-4	Geographic location		Yunnan, China	TAS [2]
MIGS-5	Sample collection time		2008	IDA
MIGS-4.1	Latitude		N 4°56.5951’	IDA
MIGS-4.2	Longitude		W 98°26.2032’	IDA
MIGS-4.3	Depth		water-sediment slurry (shallow)	IDA
MIGS-4.4	Altitude		1,457 m above sea level	NAS

aEvidence codes - IDA: Inferred from Direct Assay (first time in publication); TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from the Gene Ontology project [19]. If the evidence code is IDA, then the property was directly observed by one of the authors or an expert mentioned in the acknowledgements.
Figure 1. Phylogenetic tree highlighting the position of *A. flavithermus* subsp. *yunnanensis E13\(^\top\)* relative to other typical solvent-tolerant bacteria. The 16S rRNA sequences were aligned using ClustalX2, and phylogenetic inferences obtained using the neighbor-joining method with the MEGA program. Species and GenBank accession numbers are indicated. Bootstrap values based on 1,000 replicates show the robustness of the branching. Scale bar represents 0.02 substitutions per nucleotide position. Strains with genome sequencing projects registered in GenBank are shown in bold.

Genome sequencing information

Genome project history

The organism was selected based on its unique characteristics as a solvent-tolerant thermophile and in order to investigate new mechanisms of solvent tolerance. The genome was sequenced at BGI-Shenzhen (Shenzhen, China) and deposited in Genbank under the accession number AVGH00000000. The version described in this paper is version AVGH01000000. To our knowledge, it was the first genome of *A. flavithermus* subsp. *yunnanensis*, the 8th genome of an *Anoxybacillus* species and the 9th genome of solvent-tolerant bacteria to be sequenced. A summary of the project information associated with MIGS version 2.0 compliance [6] is shown in Table 2.

Growth conditions and DNA isolation

A. flavithermus subsp. *yunnanensis* strain E13\(^\top\)* was grown in LB medium at 60°C for 8 h. The cells were harvested by centrifugation at 12,000 g, and washed twice with distilled water. Genomic DNA from the strain E13\(^\top\)* was extracted with a Genomic DNA Mini Preparation Kit (Beyotime, Shanghai, China) according to the method for extracting genomic DNA from Gram-positive bacteria. The quality and concentration of the genomic DNA were measured by spectrophotometric analysis using a biophotometer (Eppendorf BioPhotometer Plus, Eppendorf, Germany).
Anoxybacillus flavithermus subsp. yunnanensis

Table 2. Project information

MIGS ID	Property	Term
MIGS-31	Finishing quality	High-quality Draft
MIGS-28	Libraries used	One 454 shotgun library and two paired-end Illumina HiSeq 2000 libraries
MIGS-29	Sequencing platforms	454 GS FLX Titanium, Illumina HiSeq 2000 sequencing platform
MIGS-31.2	Fold coverage	52.5×454 Titanium, 368.5× Illumina
MIGS-30	Assemblers	Newbler version 2.6
MIGS-32	Gene calling method	Glimmer 3.02
Genbank ID		AVGH00000000
Genbank Date of Release		August 01, 2014
GOLD ID		Gi0037576
MIGS-13	Project relevance	Strictly thermophilic and organic solvent-tolerant strain

Genome sequencing and assembly

The genome of *A. flavithermus subsp. yunnanensis* was sequenced using a combination of 454 GS FLX Titanium (Roche) with a shotgun library (1.8-kb insert size), and Illumina HiSeq2000 sequencing platform with two paired-end libraries (0.5 and 6-kb insert size). The 454 shotgun library was constructed with 500 ng of DNA as described by the manufacturer with the GS Rapid library Prep kit (Roche), and the details of Illumina paired-end library construction and sequencing can be found at the Illumina web site. For the genome, we constructed and sequenced a 454 shotgun library which generated 352,901 reads totaling 148.6 Mb, and 2 Illumina paired-end libraries which generated 1,182 Mb raw data. The final assembly was based on 148.6 Mb of 454 draft data, which provides an average 52.5× coverage of the genome and 1,043 Mb of Illumina draft data, which provides an average 368.5× coverage of the genome. These sequences were assembled using Newbler software with 90% identity and 40 bp as overlap. The resulting 67 contigs were scaffolded via read-pairing relationships with SSPACE [22] using all available libraries of high quality reads. The final assembly identified 67 contigs arranged in 24 scaffolds and generated a genome size of 2,838,393 bp.

Genome properties

The genome is 2,838,393 bp long (1 chromosome, no plasmids) with a 41.4% G+C content (Figure 2 and Table 3). Of the 3,120 predicted genes, 3,035 were protein-coding genes, and 85 were RNAs. In addition, ten rRNA genes (two 16S rRNA, one 23S rRNA and seven 5S rRNA) and 75 predicted tRNA genes were identified in the genome. A total of 2,267 genes (72.66%) were assigned a putative function. The remaining genes were annotated as hypothetical proteins. The properties and the statistics of the genome are summarized in Table 3. The distribution of genes into COGs and KEGG functional categories is presented in Table 4.
Figure 2. Graphical circular map of the chromosome. From the outside to the center: RNA genes (tRNA red, rRNAs purple and sRNA black) on the forward strand, genes on the forward strand (colored by COG categories), genes on the reverse strand, RNA genes on the reverse strand, G+C content, and GC skew (purple negative values, olive positive values).

Table 3. Nucleotide content and gene count levels of the genome

Attribute	Value	% of total²
Genome size (bp)	2,838,393	100
DNA G+C content (bp)	1,176,230	41.44
DNA Coding region (bp)	2,555,544	90.03
Total genes	3,120	100
RNA genes	85	2.72
Protein-coding genes	3,035	97.28
Genes with protein function prediction	2,267	72.66
Genes assigns to KEGG pathways	1,936	62.05
Genes assigned to KEGG Orthology	1,012	32.43
Genes assigned to COGs	1,886	60.44
Genes with signal peptides	99	3.17
Genes with transmembrane helices	716	22.94

²The total is based on either the size of the genome in base pairs or the total number of protein coding genes in the annotated genome.

http://standardsingenomics.org
Code
J
A
K
L
B
D
Y
V
T
M
N
Z
W
U
O
C
G
E
F
H
I
P
Q
R
S
-

- Number of genes associated with the 25 general COG functional categories

Code	Value	%ate
J	148	4.88
A	0	0.00
K	131	4.32
L	153	5.04
B	1	0.03
D	27	0.89
Y	0	0.00
V	17	0.56
T	93	3.06
M	85	2.80
N	52	1.71
Z	0	0.00
W	0	0.00
U	34	1.12
O	91	2.99
C	137	4.51
G	144	4.74
E	200	6.59
F	63	2.08
H	103	3.39
I	79	2.60
P	122	4.02
Q	32	1.05
R	231	7.61
S	169	5.57

- 1,234 40.66 Not in COGs

a) The total is based on the total number of protein coding genes in the annotated genome.
Comparison with other *Anoxybacillus flavithermus* genomes

As of this moment, six genome sequences from *Anoxybacillus* species are available in GenBank database, including four *A. flavithermus* subsp.*flavithermus* strains, one *A. kamchatkensis* strain and one *Anoxybacillus* sp. strain. Only *A. flavithermus* subsp.*flavithermus* strain WK1 and strain TNO-09.006 have complete genome sequences [30,31]. Here we compare the genome sequence of *A. flavithermus* subsp.*yunnanensis* E13\(^\top\) with those of the four *A. flavithermus* subsp.*flavithermus* strains. The draft genome of *A. flavithermus* subsp.*yunnanensis* E13\(^\top\) is similar in size to that of *A. flavithermus* subsp.*flavithermus* strain WK1 (2.83 vs 2.84 Mb, respectively), but larger than that of strain TNO-09.006, strain AK1 and strain NBRC 109594 (2.65, 2.63 and 2.77 Mb, respectively). The G+C content of *A. flavithermus* subsp.*yunnanensis* E13\(^\top\) is similar to those of *A. flavithermus* subsp.*flavithermus* strain WK1, strain TNO-09.006 and strain NBRC 109594 (41.4, 41.7, 41.8 and 41.7%, respectively), but slightly less than that of strain AK1 (42.7%). The gene content of *A. flavithermus* subsp.*yunnanensis* E13\(^\top\) is greater than those of *A. flavithermus* subsp.*flavithermus* strain WK1, strain TNO-09.006, strain AK1 and strain NBRC 109594 (3,120, 2,954, 2,819, 2,799 and 2,963 genes, respectively). In addition, *A. flavithermus* subsp.*yunnanensis* E13\(^\top\) shared a mean genome sequence similarity of 90% (range 80-99%), 90% (79-100%), 86% (73-99%) and 91% (71-100%) with *A. flavithermus* subsp.*flavithermus* strain WK1, strain TNO-09.006, strain AK1 and strain NBRC 109594, respectively.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31270081, 31140061, 30800010).

References

1. Kongpol A, Kato J, Vangnai AS. Isolation and characterization of *Deinococcus geothermalis* T27, a slightly thermophilic and organic solvent-tolerant bacterium able to survive in the presence of high concentrations of ethyl acetate. *FEMS Microbiol Lett* 2008; **286**:227-235. PubMed http://dx.doi.org/10.1111/j.1574-6968.2008.01273.x

2. Dai J, Liu Y, Lei Y, Gao Y, Han F, Xiao Y, Peng H. A new subspecies of *Anoxybacillus flavithermus* ssp. *yunnanensis* ssp. nov. with very high ethanol tolerance. *FEMS Microbiol Lett* 2011; **320**:72-78. PubMed http://dx.doi.org/10.1111/j.1574-6968.2011.02294.x

3. Gao Y, Dai J, Peng H, Liu Y, Xu T. Isolation and characterization of a novel organic solvent-tolerant *Anoxybacillus* PGDY12, a thermophilic Gram-positive bacterium. *J Appl Microbiol* 2011; **110**:472-478. PubMed http://dx.doi.org/10.1111/j.1365-2672.2010.04903.x

4. Heinen W, Lauwers AM, Mulders JWM. *Bacillus flavothermus*, a newly isolated facultative thermophile. *Antoni van Leeuwenhoek* 1982; **48**:265-272. PubMed http://dx.doi.org/10.1007/BF00400386

5. Goh KM, Kahar UM, Chai YY, Chong CS, Chai KP, Ranjani V, Md R, Chan KG. Recent discoveries and applications of *Anoxybacillus*. *Appl Microbiol Biotechnol* 2013; **97**:1475-1488. PubMed http://dx.doi.org/10.1007/s00253-012-4663-2

6. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Thomson N, Allen MJ, Angiuoli SV, *et al*. The minimum information about a genome sequence (MIGS) specification. *Nat Biotechnol* 2008; **26**:541-547. PubMed http://dx.doi.org/10.1038/nbt1360

7. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. *Proc Natl Acad Sci USA* 1990; **87**:4576-4579. PubMed http://dx.doi.org/10.1073/pnas.87.12.4576

8. Garrity GM, Holt JG. The Road Map to the Manual. In: Garrity GM, Boone DR, Castenholz RW (eds), *Berger’s Manual of Systematic Bacteriology*, Second Edition, Volume 1, Springer, New York, 2001, p. 119–169.

http://standardsingenomics.org
Anoxybacillus flavithermus subsp. yunnanensis

9. Murray RGE. The Higher Taxa, or, a Place for Everything...? In: Holt JG (ed), Bergey's Manual of Systematic Bacteriology, First Edition, Volume 1, The Williams and Wilkins Co., Baltimore, 1984, p. 31–34.

10. Gibbons NE, Murray RGE. Proposals Concerning the Higher Taxa of Bacteria. Int J Syst Bacteriol 1978; 28:1-6. http://dx.doi.org/10.1099/00207713-28-1-1

11. List of new names and new combinations previously effectively, but not validly, published. List no. 132. Int J Syst Evol Microbiol 2010; 60:469-472. http://dx.doi.org/10.1099/ijs.0.022855-0

12. Ludwig W, Schleifer KH, Whitman WB. Class I. Bacillia class nov. In: De Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (eds), Bergey's Manual of Systematic Bacteriology, Second Edition, Volume 3, Springer-Verlag, New York, 2009, p. 19-20.

13. Skerman VBD, Sneath PHA. Approved list of bacterial names. Int J Syst Bact 1980; 30:225-420. http://dx.doi.org/10.1099/00207713-30-1-225

14. Prévot AR. Dictionnaire des bactéries patho-gens. In: Hauduroy P, Ehringer G, Guillot G, Magrou J, Prevot AR, Rosset, Urbain A (eds). Paris, Masson, 1895; p.1-692.

15. Fischer A. Untersuchungen über bakterien. Jahrbücher für Wissenschaftliche Botanik 1895; 27:1-163.

16. Pikuta E, Lysenko A, Chuivilskaia N, Mendrock U, Hippe H, Suzina N, Nikitin D, Osipov G, Laurinavichius K. Anoxybacillus pushchiniensis gen. nov., sp. nov., a novel anaerobic, alkaliphilic, moderately thermophilic bacterium from manure, and description of Anoxybacillus flavithermuscomb. nov. Int J Syst Evol Microbiol 2000; 50:2109-2117. PubMed http://dx.doi.org/10.1099/00207713-50-6-2109

17. Pikuta E, Cleland D, Tang J. Aerobic growth of Anoxybacillus pushchiniensis K1: emended descriptions of A. pushchiniensis and the genus Anoxybacillus. Int J Syst Evol Microbiol 2003; 53:1561-1562. PubMed http://dx.doi.org/10.1099/ijs.0.02643-0

18. List of new names and new combinations previously effectively, but not validly, published – Validation List No. 141. Int J Syst Evol Microbiol 2011; 61:2025-2026. http://dx.doi.org/10.1099/ijs.0.036640-0

19. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene Ontology: tool for the unification of biology. Nat Genet 2000; 25:25-29. PubMed http://dx.doi.org/10.1038/75556

20. Baskaran S, Ahn HJ, Lynd LR. Investigation of ethanol tolerance of Clostridium thermosaccharolyticum in continuous culture. Biotechnol Prog 1995; 11:276-281. http://dx.doi.org/10.1021/bp00033a006

21. Georgieva TI, Skidas IV, Ahring BK. Effect of temperature on ethanol tolerance of a thermophilic anaerobic ethanol producer Thermoaeranaerobacter A10: modeling and simulation. Biotechnol Bioeng 2007; 98:1161-1170. PubMed http://dx.doi.org/10.1002/bit.21536

22. Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 2011; 27:578-579. PubMed http://dx.doi.org/10.1093/bioinformatics/btq683

23. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsmra K, Gerdes S, Glass EM, Kubal M, et al. The RAST server: Rapid Annotations using Subsystems Technology. BMC Genomics 2008; 9:75. PubMed http://dx.doi.org/10.1186/1471-2164-9-75

24. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 2007; 23:673-679. PubMed http://dx.doi.org/10.1093/bioinformatics/btm009

25. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rogness T, Ussery DW. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100-3108. PubMed http://dx.doi.org/10.1093/nar/gkm160

26. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997; 25:95-96. PubMed http://dx.doi.org/10.1093/nar/25.5.955

27. Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, Bateman A. Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res 2005; 33:D121-D124. PubMed http://dx.doi.org/10.1093/nar/gki081

28. Bendtsen JD, Nielsen H, Von Heijne G, Brunak S. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 2004; 340:783-795. PubMed http://dx.doi.org/10.1016/j.jmb.2004.05.028

29. Krogh A, Larsson B, Von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology...? In: Holt JG (ed), Bergey's Manual of Systematic Bacteriology, First Edition, Volume 1, The Williams and Wilkins Co., Baltimore, 1984, p. 31–34.
with a hidden Markov model: application to complete genomes. *J Mol Biol* 2001; 305:567-580. PubMed http://dx.doi.org/10.1006/jmbi.2000.4315

30. Saw JH, Mountain BW, Feng L, Omelchenko MV, Hou S, Saito JA, Stott MB, Li D, Zhao G, Wu J, et al. Encapsulated in silica: genome, proteome and physiology of the thermophilic bacterium *Anoxybacillus flavithermus* WK1. *Genome Biol* 2008; 9:R161. PubMed http://dx.doi.org/10.1186/gb-2008-9-11-r161

31. Caspers MPM, Boekhorst J, Abee T, Siezen RJ, Kort R. Complete genome sequence of *Anoxybacillus flavithermus* TNO-09.006, a thermophilic sporeformer associated with a dairy-processing environment. *Genome Announc* 2013; 1(1).