Is grand-parental smoking associated with adolescent obesity? A three-generational study

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

Citation
Dougan, M M, A E Field, J W Rich-Edwards, S E Hankinson, R J Glynn, W C Willett, and K B Michels. 2015. “Is Grand-Parental Smoking Associated with Adolescent Obesity? A Three-Generational Study.” International Journal of Obesity 40 [3] (September 21): 531–537. doi:10.1038/ijo.2015.186.

Published Version
doi:10.1038/ijo.2015.186

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:28993613

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Is grand-parental smoking associated with adolescent obesity? A three-generational study.

Marcelle M. Dougan, ScD1, Alison E. Field, ScD1,2,3, Janet W. Rich-Edwards, ScD1,2,4, Susan E. Hankinson, ScD1,2,5, Robert J. Glynn, PhD6,7, Walter C. Willett, MD, DrPH1,2,8, Karin B. Michels, ScD, PhD1,2,9

Corresponding Author:
Karin B. Michels
Department of Obstetrics, Gynecology and Reproductive Biology
Brigham & Women's Hospital
221 Longwood Avenue
Boston, MA 02115
kmichels@research.bwh.harvard.edu

Word count (excluding Abstract, Acknowledgements, References, and Tables): 3285

1 Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA
2 Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
3 Division of Adolescent Medicine, Department of Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA
4 Connors Center for Women's Health and Gender Biology, Brigham and Women's Hospital, Harvard Medical School, United States
5 Division of Biostatistics and Epidemiology, University of Massachusetts School of Public Health and Health Sciences, Amherst, MA, USA
6 Center for Cardiovascular Disease Prevention, Division of Preventive Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
7 Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA
8 Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA
9 Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
ABSTRACT

Background/Objectives: Data from previous studies consistently suggest that maternal smoking is positively associated with obesity later in life. Whether this association persists across generations is unknown. We examined whether grand-parental smoking was positively associated with overweight status in adolescence.

Subject/Methods: Participants were grandmother-mother-child triads in the Nurses’ Health Study II (NHS II), the Nurses Mothers’ Cohort Study, and the Growing up Today Study (GUTS). Grandmothers provided information on their and their partner’s smoking during pregnancy with the child’s mother. Information on child's weight and height at ages 12 (N = 3094) and 17 (N = 3433) was obtained from annual or biennial GUTS questionnaires. We used logistic regression to estimate ORs of being overweight or obese, relative to normal weight.

Results: Grand-maternal smoking during pregnancy was not associated with overweight status in adolescence. After adjusting for covariates, the OR of being overweight or obese relative to normal weight at age 12 years in girls whose grandmothers smoked 15+ cigarettes daily during pregnancy was 1.21 (95% CI 0.74-1.98; \(p_{\text{trend}} = 0.31 \)) and 1.07 (0.65-1.77; \(p_{\text{trend}} = 0.41 \)) in boys. Grand-paternal smoking during pregnancy was associated with being overweight or obese at age 12 in girls only, but not at age 17 for either sex: the OR for being overweight or obese at age 12 was 1.38 (95% CI 1.01-1.89; \(p_{\text{trend}} = 0.03 \)) in girls, and 1.31 (95% CI 0.97-1.76; \(p_{\text{trend}} = 0.07 \)) in boys. Among children of non-smoking mothers, the OR for granddaughter obesity for grand-paternal smoking was attenuated and no longer significant [OR 1.28 (95% CI 0.87-1.89; \(p_{\text{trend}} = 0.18 \)].
Conclusions: Our findings suggest that the association between maternal smoking and offspring obesity may not persist beyond the first generation. However, grand-paternal smoking may affect overweight status of the granddaughter, likely through the association between grand-paternal smoking and maternal smoking.
INTRODUCTION

Childhood and adolescent overweight and obesity continue to be a major public health concern in the United States and worldwide. Consequences of childhood and adolescent obesity include increased risk of metabolic diseases (1, 2), cardiovascular disease (3, 4), and some cancers (5, 6). While there has been an appreciable decline in prevalence of overweight and obesity among children aged 2-5 in recent years, there has been little change in older children and adolescents (7). Recent data from the United States suggest that 35% of adolescents were overweight or obese in 2011-2012 (7), compared to 11% just two decades earlier (8).

Determinants of adolescent obesity include physical inactivity (9, 10) and diet (11, 12); however, the intra-uterine environment may also play a role in the development of obesity (13). Data from previous studies consistently suggest that exposure to maternal smoking in utero is associated with a 40-60% increased odds of obesity in the offspring (14-16). Whether this association persists in subsequent generations is unknown.

Female oocytes develop in utero and the process is complete prior to birth. Prenatal exposure to smoking may affect the development of these oocytes as the vaso-constrictive effects of nicotine and cotinine may impair blood flow to the developing fetal ovary (17, 18). This may lead to phenotypic or inherited maladaptations that could influence the development of obesity in the second generation. In animal models, perturbations during pregnancy such as protein or caloric restriction have been linked to obesity and other metabolic diseases in the second and subsequent generations (19-21), but data in humans are sparse.

Grand-maternal smoking has been previously examined in relation to birth weight and childhood asthma. Findings from studies on the association between grand-maternal smoking and birth
weight suggest that any association may be modest (22-25). For childhood asthma, a positive
association was reported in a study where only maternal in utero exposure was assessed (26),
whereas in another study (27), a positive association was observed among offspring of men who
were exposed in utero, but not among offspring of women. To our knowledge, the association
between grand-maternal smoking and body size during adolescence has not been previously
studied.

Understanding whether a link exists between grand-maternal smoking and body size can further
elucidate our understanding of the development of obesity, and suggest potential pathways for
interrupting this process. About 12% of all women continue to smoke into their third trimester
(28), despite all widely available information about the dangers of smoking during pregnancy,
making understanding this question important.

Therefore, we examined the association between grand-parental smoking and overweight and
obesity in the offspring in a three-generation study, including the Nurses’ Mother’s Cohort
Study, the Nurses’ Health Study II, and the Growing Up Today Study.

METHODS

Study population

Participants in this study are grandmother-mother-child triads from the Nurses’ Mothers’ Cohort
Study, the Nurses’ Health Study II (NHS II), and the Growing Up Today Study (GUTS). The
NHS II is a prospective cohort study that began in 1989 with 116,430 female registered nurses
residing in the USA. Participants provided information on health and lifestyle factors in 1989,
and then every 2 years thereafter. In 1996, participants of the NHS II were asked if their children could participate in a follow-up study, the Growing Up Today Study (GUTS). After receiving consent, invitation letters were sent to 25,000 children who were aged between 9 and 14 years (29). In 2001, participants of the NHS II were asked permission to contact their mothers to invite them to participate in the Nurses’ Mothers Cohort Study, a study designed to obtain information about the nurse’s early life exposures (30).

This study was approved by the Committee on the Use of Human Subjects in Research at Brigham and Women’s Hospital and the Harvard Chan School of Public Health (Boston, Massachusetts). Completion of the self-administered questionnaires was taken to imply informed consent.

Assessment of grand-parental smoking during pregnancy

Participants in the Nurses’ Mothers’ Cohort Study were asked whether they smoked cigarettes during their pregnancy with the nurse, and if so, how many cigarettes they smoked daily, and whether they quit smoking during pregnancy. The nurses’ mothers were also asked whether the nurse’s father or their partner smoked cigarettes during their pregnancy with the nurse, and how many they smoked daily.

The reliability of self-reported smoking during pregnancy has been previously assessed. Participants of the National Collaborative Perinatal Project were asked to recall pregnancy-related events from 30 or more years previously (31). Recall was accurate for smoking (sensitivity = 0.84, specificity = 0.94), suggesting that long-term maternal recall of smoking is a reliable method of assessing smoking status.

Assessment of Body Mass Index at Ages 12 and 17
Information on weight and height was obtained annually via self-report from participants in GUTS from 1996-2001 and then biennially until 2013. Body mass index (BMI) was calculated as weight in kilograms divided by the square of height in meters. For boys and girls who reached age 12 or 17 years during a year in which no questionnaire was completed, we estimated their BMI at that age by averaging the BMI reported in the prior and subsequent years (e.g., at ages 11 and 13).

We used the age and sex-specific cut-offs from the International Obesity Task Force to classify participants as normal weight, overweight, and obese at baseline, age 12, and age 17 (32). For girls, the BMI cut points for overweight and obese at age 12 were 21.68 and 26.67 kg/m2, respectively, and at age 17 were 24.70 and 29.69 kg/m2, respectively. For boys, the BMI cut points for overweight and obese at age 12 were 21.22 and 26.02 kg/m2, respectively, and at age 17 were 24.46 and 29.41 kg/m2, respectively. Self-reported height and weight have been found to be reasonably accurate in children and adolescents (33), although reliability increases with age (34, 35).

Assessment of covariates

From the Nurses’ Mothers’ questionnaire, we obtained grand-maternal age at time of mother’s birth, grand-maternal pre-pregnancy BMI, and grandmother’s education. In a validation study, pre-pregnancy height and weight were found to be recalled with high accuracy ($r = 0.95$), even after decades (31). We obtained information on maternal smoking from the Nurses’ Health Study II questionnaire. From the GUTS questionnaires, we obtained Tanner stage of development, weekly hours of vigorous physical activity, and weekly hours of TV viewing. If available, the previous year’s covariate information was substituted for information needed for
years in which no questionnaire was returned, or if the information was missing. Missing indicators were then used for participants remaining information for any covariates. Less than 8% of participants had missing covariates for any variable, except Tanner stage of development at age 12 in boys (11% missing).

Boys and girls were analyzed separately in this study due to differences in growth patterns in both sexes. A total of 3,960 grandmother-mother-girl and 3,473 grandmother-mother-boy triads participated in all three studies. We excluded children who were adopted (girls: n = 5, boys: n = 4), children whose mothers were adopted (girls: n = 7, boys: n = 3), and children whose grandmothers did not report their smoking behavior (girls: n = 290, boys: n=264) to form the base population.

For the analyses at age 12, we further excluded children missing information on BMI at age 12 (girls: n = 1929; boys: n = 1672). We also excluded children whose BMIs were considered outliers using the extreme studentized deviate (ESD) many outlier procedure(36) (girls: n = 3, boys: n = 4). To eliminate correlation between siblings, when there was more than one child with the same mother (5% of the cohort), we randomly selected one sibling for participation.

Among the girls, there were 1555 single-child groups, 84 two-sibling groups, and 1 three-sibling group. Among the boys, there were 1382 single-child groups, 72 two-sibling groups and no three-sibling groups. After randomly selecting one child per family, 1640 girls and 1454 boys remained in the Age 12 population.

For the analyses of BMI at age 17, we excluded those with missing information on BMI at age 17 (girls: n = 1466; boys: n = 1619) and those considered outliers (girls: n = 24; boys: n = 10) from the base population. Among the girls, there were 1792 single-child groups, 179 two-sibling
groups, and 6 three-sibling groups. Among the boys, there were 1344 single-child groups, 107
two-sibling groups, and 5 three-sibling groups. After randomly selecting one child per family,
1977 girls and 1456 boys remained in the Age 17 population.

Our study population was slightly younger than the original GUTS population. For example, for
the Age 12 population, the average age was 10.9 years, compared with 12.2 years in the original
population. However, ethnicity (percent white; study population 97% versus 96% for those not
included) and household income distribution (percent ≥ $75,000 annually; 63% for both) were
similar in both populations.

Statistical Analysis

Follow-up began at GUTS baseline in 1996 and ended in 2004, when all participants were at
least 17 years of age. We analyzed the association between grand-parental smoking and offspring
BMI at ages 12 and 17 using logistic regression. Exposure was assessed in 3 ways: grand-
maternal smoking, grand-paternal smoking, and grand-parental smoking. Grand-maternal
smoking during pregnancy was categorized as none, quit during pregnancy, 1-14 cigarettes/day,
or ≥ 15 cigarettes/day. Grand-paternal smoking was categorized as none, 1-14 cigarettes/day, or
≥15 cigarettes/day. Grand-parental smoking was categorized as none, one grandparent, or both
grandparents. Because of the relatively low proportion of obese children in each population (5%
or less), we combined the overweight and obese groups and modeled BMI at ages 12 and 17 as
binary outcomes, corresponding to normal weight versus overweight or obese.

The first model was adjusted for the child’s age at baseline (1996). The second model was
further adjusted for covariates associated with the grandmother, and the third model was further
adjusted for covariates related with the grandchild (see footnotes in Tables 2-5).
We also examined the association between grand-parental smoking and body size among boys and girls whose mothers never smoked.

We included all participants of the study population that met our inclusion criteria. Based on a 20% overweight/obese status in the unexposed population, and a 3:1 ratio of unexposed to exposed, we require a minimum sample size of 1351 participants to detect an odds ratio of 1.50 with 80% power (37).

All statistical tests were two-sided. The data distribution meets the standard assumptions underlying logistic regression models.

Code Availability

Specific code cannot be accessed externally.

RESULTS

In the Age 12 study population, 2314 (75%) of grandmothers reported not smoking during pregnancy with their grandchild’s mother, 138 (4%) reported quitting during pregnancy, while 411 (13%) smoked 1-14 cigarettes per day, and 231 (7%) smoked 15+ cigarettes per day throughout the pregnancy. With the exception of heavy smokers (i.e. grandmothers who smoked 15 or more cigarettes/day) smokers were more highly educated than non-smokers (Table 1).

Grandmothers who were smokers were generally more likely to have daughters who were also smokers. The average age (standard deviation) at baseline (1996) for girls was 11.0 (0.9) years and 10.9 (0.9) years for boys. The average BMI (standard deviation) at baseline for girls was 18.2 (3.1) kg/m²; 16% were overweight, and 3% were obese. The average BMI at baseline for
boys was 18.4 (3.2) kg/m2; 16% were overweight and 4% were obese. The distribution of
participant characteristics in the Age 17 population was similar (data not shown).

At age 12, 18% of girls were either overweight or obese. Exposure to grand-maternal smoking
during pregnancy with the mother was not associated with body size at age 12 in the age- or
covariate-adjusted analyses (Table 2). After adjusting for grand-parental and child covariates,
the odds ratio of being overweight or obese, comparing girls whose grandmothers smoked 15 or
more cigarettes per day throughout pregnancy to non-smokers was 1.21 (95% CI 0.74-1.98; p_{trend}
= 0.31). Results were similar among the subset of girls whose mothers never smoked.

Grand-paternal smoking while the grandmother was pregnant during pregnancy with the mother was associated
with increased odds of being overweight or obese at age 12 (Table 2). After adjusting for
grandparent and child covariates, the odds ratio of being overweight or obese for girls whose
grandfathers smoked 15 cigarettes or more a day compared to girls whose grandfathers did not
smoke was 1.38 (95% CI 1.01-1.89; p_{trend} = 0.03). After restricting to the girls whose mothers
never smoked, the associations for grand-paternal smoking were attenuated and no longer
statistically significant.

In secondary analyses, we also examined the association between grand-paternal smoking and
obesity in girls at age 12 among girls whose fathers never smoked. The associations were
largely unchanged compared to those observed among all mothers (data not shown).

At age 17, 17% of girls were either overweight or obese. Exposure to grand-parental smoking
during pregnancy with the mother was unrelated to weight status at age 17 in girls, in both the
crude and adjusted analyses (Table 3). After adjusting for grandparent and child covariates, the
OR of being overweight or obese at age 17 for girls whose grandmothers smoked 15 or more
cigarettes/day during pregnancy compared to girls whose grandmothers did not smoke during pregnancy was 0.91 (95% CI 0.56-1.48; \(p_{\text{trend}} = 0.81 \)). Results were similar among daughters of non-smoking mothers. Grand-paternal smoking and grand-parental smoking overall were also unrelated to overweight or obesity at age 17.

At age 12, 22% of boys were either overweight or obese. Grand-maternal smoking during pregnancy with the mother was not associated with weight status at age 12 (Table 4). After adjusting for child-related covariates, the OR was 1.07 (95% CI 0.65-1.77; \(p_{\text{trend}} = 0.41 \)). After restricting the population to boys whose mothers never smoked, grand-maternal smoking remained unrelated to body size at age 12. Similarly, grand-paternal smoking was not associated with being overweight or obese at age 12. After adjusting for child covariates, the OR was 1.31 (95% CI 0.97-1.76; \(p_{\text{trend}} = 0.07 \)). After restricting to boys whose mothers never smoked, the association remained non-significant. Similarly, grand-parental smoking was unrelated to body size at age 12.

At age 17, 21% of boys were either overweight or obese. Grand-maternal smoking during pregnancy with the mother was not associated with body size at age 17 (Table 5). After adjusting for grand-parental and child covariates, the OR of being overweight or obese for boys whose grandmothers smoked 15 or more cigarettes daily compared to boys whose grandmothers did not smoke, was 0.79 (95% CI 0.46-1.33; \(p_{\text{trend}} = 0.47 \)). Among sons of non-smoking women, grand-maternal smoking remained unrelated to weight status at age 17. Similarly, grand-paternal and grand-parental smoking were unrelated to body size at age 17, in both the crude and adjusted analyses.
In this three-generational cohort study, exposure to grand-maternal smoking during pregnancy with the mother was not associated with being overweight or obese at age 12 or age 17 in girls or boys. However, grand-paternal smoking was positively associated with being overweight or obese at age 12 in girls, although the positive association was attenuated when the population was restricted to children of non-smoking women.

To our knowledge, this is the first study to examine grand-parental smoking in pregnancy and body size during adolescence. Four previous studies have examined grand-parental smoking with respect to birth weight in the offspring and the results have been conflicting. In the Michigan Bone Health and Metabolism Study, grand-maternal smoking was associated with a statistically significant but small increase in birth weight, which was limited to grandmothers who were born between 1929 and 1945, suggesting that birth cohort effects may play a role (25). In the Baltimore cohort of the National Collaborative Perinatal Project, grand-maternal smoking was associated with a statistically significant, small reduction in birth weight (24). In the Avon Longitudinal Study of Parents and Children, grand-maternal smoking was associated with a small increase in birth weight in girls only, and there was no association between grand-paternal smoking and birth weight in boys or girls (23). However, in a United Kingdom-based population study, there was no association between grand-maternal smoking and birth weight (22). Taken together, these findings suggest that, in the absence of residual confounding, any association between grand-maternal smoking and birth weight is modest.

We also observed that grand-paternal smoking and grand-parental smoking were associated with increased odds of being overweight or obese in early adolescence, in girls but not in boys. Data
from studies of the epigenetic changes due to in utero exposure to smoking suggest that these changes can persist over time (38, 39), at least from birth through late adolescence in the first generation; however, studies are limited on how these changes manifest in the second or subsequent generations. In a review of the dynamics of epigenetic phenomena across and within generations, Burggren hypothesized that epigenetic effects could persist across one generation, and gradually decline within or across subsequent generations (40), which is consistent with our finding that grand-paternal smoking was associated with obesity at age 12 years but not at age 17 in girls. Additional epidemiological studies should be conducted to better elucidate these processes across multiple generations. Nevertheless, this finding was unexpected since grand-maternal smoking was unrelated to adolescent body size at any age. Moreover, after the population was restricted to children of non-smoking mothers, the associations were attenuated and no longer significant, suggesting that the association between grand-paternal smoking and body size may be due to the correlation between grand-paternal smoking and maternal smoking. In some studies (41, 42) but not all (43), parental smoking was associated with offspring smoking. In our population, grand-maternal and grand-paternal smoking were associated with 40% and 60% increased odds of maternal smoking, respectively. We may not have observed an association between grand-parental smoking and adolescent obesity overall, if the effect of smoking on obesity in the second filial generation is conveyed via only the father’s in utero exposure. In a follow-up study of those exposed in utero to the Dutch famine in 1941, the offspring of men, but not women, were heavier compared with the unexposed (44). Since our study involves the offspring of female participants only, we did not have the opportunity to examine such an association. Therefore, future studies on the effects of
grand-parental smoking should also examine outcomes in the second filial generation from paternal exposure to *in utero* smoking.

Our study has some limitations. At around 20%, the proportion of overweight or obese children in our population is significantly less than the 35% in the United States population currently (7), limiting generalizability. Differences in ethnicity and socioeconomic status, for example 97% Caucasian and 63% with a family income of ≥$75,000 compared with US population proportions of 78% (45) and 35% (46) respectively, may explain this disparity in weight status (7, 47). Although participants in our sample are on average slightly younger than those in the original population, participant characteristics in our study sample do not differ from the original population with respect to important covariates like family income, and ethnicity. Grand-parental smoking during pregnancy was recalled from up to several decades earlier, introducing the possibility of misclassification. However, although some misclassification is likely, another study that used this measure reported significant associations (14). Finally, we may not have detected an association with body size in early adolescence after restricting to non-smoking mothers because of the smaller sample size and subsequently lower power. Therefore, an independent association between grand-paternal smoking and offspring obesity cannot be ruled out.

Strengths of our study include unique three generations’ worth of high quality and rarely available data, providing an opportunity to examine exposures and outcomes over an extended time frame. Because we had detailed information on grand-maternal smoking during pregnancy, we were able to evaluate the effect of different levels of smoking. Finally, to our knowledge, this is the first study to examine the association between grand-parental smoking and obesity in adolescence.
Our findings suggest that grand-maternal smoking during pregnancy with the mother is not associated with obesity in the grandchild, and that trans-generational effects of maternal smoking may not progress beyond the first generation.
ACKNOWLEDGEMENTS

The Nurses' Mothers Cohort Study was funded by the Intramural Research Program of the National Cancer Institute research contract N02-RC-17027, and by PO 263 MQ 411027 from the National Cancer Institute, National Institutes of Health, US Department of Health and Human Services.

The Nurses' Health Study II is supported by Public Health Service grant CA50385 and by infrastructure grant UM1 CA176726 from the National Cancer Institute, National Institutes of Health, US Department of Health and Human Services.

The Growing Up Today Study is supported by DK084001, MH087786, and HL096905 from the National Institutes of Health, US Department of Health and Human Services.

We thank the participants of the Nurses’ Mothers Cohort Study, the Nurses’ Health Study II, and the Growing Up Today Study for their participation and dedication.

The authors have no conflicts of interest to disclose.
REFERENCES

1. Vilmann LS, Thisted E, Baker JL, Holm JC. Development of Obesity and Polycystic Ovary Syndrome in Adolescents. Hormone Research in Paediatrics. 2012;78(5-6):269-78.

2. In-Iw S, Biro FM. Adolescent Women and Obesity. Journal of Pediatric and Adolescent Gynecology. 2011;24(2):58-61.

3. Doyon A, Schaefer F. The prodromal phase of obesity-related chronic kidney disease: early alterations in cardiovascular and renal function in obese children and adolescents. Nephrology Dialysis Transplantation. 2013;28(suppl 4):iv50-iv7.

4. Must A, Jacques PF, Dallal GE, Bajema CJ, Dietz WH. Long-Term Morbidity and Mortality of Overweight Adolescents. New England Journal of Medicine. 1992;327(19):1350-5.

5. Bjørge T, Engeland A, Tverdal A, Smith GD. Body Mass Index in Adolescence in Relation to Cause-specific Mortality: A Follow-up of 230,000 Norwegian Adolescents. American Journal of Epidemiology. 2008;168(1):30-7.

6. Stolzenberg-Solomon RZ, Schairer C, Moore S, Hollenbeck A, Silverman DT. Lifetime adiposity and risk of pancreatic cancer in the NIH-AARP Diet and Health Study cohort. The American Journal of Clinical Nutrition. 2013;98(4):1057-65.

7. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of childhood and adult obesity in the United States, 2011-2012. JAMA. 2014;311(8):806-14.

8. Ogden CL, Carroll MD. Prevalence of Obesity Among Children and Adolescents: United States, Trends 1963–1965 Through 2007–2008 2010. Available from: Available at
9. Ghavamzadeh S, Khalkhali HR, M. A. TV viewing, independent of physical activity and obesogenic foods, increases overweight and obesity in adolescents. J Health Popul Nutr. 2013;31(3):334-42.

10. Committee on Public Education. Children, Adolescents, and Television. Pediatrics. 2001;107(2):423-6.

11. Berkey CS, Rockett HR, Field AE, Gillman MW, GA. C. Sugar-added beverages and adolescent weight change. Obes Res 2004 12(5):778-88.

12. Taveras EM, Rifas-Shiman SL, Berkey CS, Rockett HR, Field AE, Frazier AL, et al. Family dinner and adolescent overweight. Obes Res. 2005;13(5):900-6.

13. Gillman MW. Developmental Origins of Health and Disease. New England Journal of Medicine. 2005;353(17):1848-50.

14. Harris HR, Willett WC, Michels KB. Parental smoking during pregnancy and risk of overweight and obesity in the daughter. Int J Obes. 2013;37(10):1356-63.

15. Mattsson K, Källén K, Longnecker MP, Rignell-Hydbom A, Rylander L. Maternal smoking during pregnancy and daughters’ risk of gestational diabetes and obesity. Diabetologia. 2013;56(8):1689-95.

16. Oken E, Levitan EB, Gillman MW. Maternal smoking during pregnancy and child overweight: systematic review and meta-analysis. Int J Obes. 2007;32(2):201-10.

17. Lassila R, Seyberth HW, Haapanen A, Schweer H, Koskenvuo M, KE. L. Vasoactive and atherogenic effects of cigarette smoking: a study of monozygotic twins discordant for smoking. BMJ. 1988;297(6654):955-7.
18. Birnbaum SC, Kien N, Martucci RW, Gelzleichter TR, Witschi H, Hendrickx AG, et al. Nicotine- or epinephrine-induced uteroplacental vasoconstriction and fetal growth in the rat. Toxicology. 1994;94(1-3):69-80.

19. Jimenez-Chillaron JC, Isganaitis E, Charalambous M, Gesta S, Pentinat-Pelegrin T, Faucette RR, et al. Intergenerational Transmission of Glucose Intolerance and Obesity by In Utero Undernutrition in Mice. Diabetes. 2009;58(2):460-8.

20. Thamotharan M, Garg M, Oak S, Rogers LM, Pan G, Sangiorgi F, et al. Transgenerational inheritance of the insulin-resistant phenotype in embryo-transferred intrauterine growth-restricted adult female rat offspring. Am J Physiol Endocrinol Metab. 2007;292(5):1270-9.

21. Zambrano E, Martínez-Samayoa PM, Bautista CJ, Deás M, Guillén L, Rodríguez-González GL, et al. Sex differences in transgenerational alterations of growth and metabolism in progeny (F2) of female offspring (F1) of rats fed a low protein diet during pregnancy and lactation. The Journal of Physiology. 2005;566(1):225-36.

22. Hyppönen E, Smith GD, Power C. Effects of grandmothers' smoking in pregnancy on birth weight: intergenerational cohort study. BMJ. 2003;327(7420):898.

23. Miller LL, Pembrey M, Davey Smith G, Northstone K, Golding J. Is the Growth of the Fetus of a Non-Smoking Mother Influenced by the Smoking of Either Grandmother while Pregnant? PLoS ONE. 2014;9(2):e86781.

24. Misra DP, Astone N, CD. L. Maternal smoking and birth weight: interaction with parity and mother's own in utero exposure to smoking. Epidemiology. 2006;16(3):288-93.
25. Rillamas-Sun E, Harlow S, Randolph J, Jr. Grandmothers’ Smoking in Pregnancy and Grandchildren’s Birth Weight: Comparisons by Grandmother Birth Cohort. Matern Child Health J. 2013:1-8.

26. Li Y-F, Langholz B, Salam MT, Gilliland FD. Maternal and grandmaternal smoking patterns are associated with early childhood asthma. CHEST Journal. 2005;127(4):1232-41.

27. Miller LL, Henderson J, Northstone K, Pembrey M, Golding J. Do grandmaternal smoking patterns influence the aetiology of childhood asthma? CHEST Journal. 2013.

28. Tong VT, Dietz PM, Morrow B, D’Angelo DV, Farr SL, Rockhill KM, et al. Trends in smoking before, during, and after pregnancy--Pregnancy Risk Assessment Monitoring System, United States, 40 sites, 2000-2010. MMWR Surveill Summ. 2013;62(6):1-19.

29. Rockett HRH, Berkey CS, Field AE, Colditz GA. Cross-Sectional Measurement of Nutrient Intake among Adolescents in 1996. Preventive Medicine. 2001;33(1):27-37.

30. Michels KB, Willett WC, Graubard BI, Vaidya RL, Cantwell MM, Sansbury LB, et al. A longitudinal study of infant feeding and obesity throughout life course. Int J Obes. 2007;31(7):1078-85.

31. Tomeo CA, Rich-Edwards JW, Michels KB, Berkey CS, Hunter DJ, Frazier AL, et al. Reproducibility and Validity of Maternal Recall of Pregnancy-Related Events. Epidemiology. 1999;10(6):774-7.

32. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ. 2000;320(7244):1240.
33. Strauss RS. Comparison of measured and self-reported weight and height in a cross-sectional sample of young adolescents. International Journal of Obesity & Related Metabolic Disorders. 1999;23(8):904.

34. Himes JH, Faricy A. Validity and reliability of self-reported stature and weight of US adolescents. American Journal of Human Biology. 2001;13(2):255-60.

35. Goodman E, Hinden BR, Khandelwal S. Accuracy of Teen and Parental Reports of Obesity and Body Mass Index. Pediatrics. 2000;106(1):52-8.

36. Rosner B. Percentage Points for a Generalized ESD Many-Outlier Procedure. Technometrics. 1983;25(2):165-72.

37. Dean AG, Arner TG, Sunki GG, Friedman R, Lantinga M, Sangam S, et al. Epi Info™, a database and statistics program for public health professionals. In: CDC, editor. Atlanta, GA, USA, 2011.

38. Richmond RC, Simpkin AJ, Woodward G, Gaunt TR, Lyttleton O, McArdle WL, et al. Prenatal exposure to maternal smoking and offspring DNA methylation across the lifecourse: findings from the Avon Longitudinal Study of Parents and Children (ALSPAC). Human Molecular Genetics. 2015;24(8):2201-17.

39. Lee KWK, Richmond R, Hu P, French L, Shin J, Bourdon C, et al. Prenatal Exposure to Maternal Cigarette Smoking and DNA Methylation: Epigenome-Wide Association in a Discovery Sample of Adolescents and Replication in an Independent Cohort at Birth through 17 Years of Age. Environmental Health Perspectives. 2015;123(2):193-9.

40. Burggren WW. Dynamics of epigenetic phenomena: intergenerational and intragenerational phenotype ‘washout’. The Journal of Experimental Biology. 2015;218(1):80-7.
41. Bono R, Arossa W, Scursatone E, Meineri V, Gilli G. Tobacco Smoke Habits in a Group of Adolescents: Responsibility of the Cohabitants in the Active and Passive Exposure. Environmental Research. 1997;75(2):95-9.

42. Taylor AE, Howe LD, Heron JE, Ware JJ, Hickman M, Munafò MR. Maternal smoking during pregnancy and offspring smoking initiation: Assessing the role of intrauterine exposure. Addiction. 2014:[Epub ahead of print].

43. Boomsma DI, Koopmans JR, Van Doornen LJP, Orlebeke JF. Genetic and social influences on starting to smoke: a study of Dutch adolescent twins and their parents. Addiction. 1994;89(2):219-26.

44. Veenendaal MVE, Painter RC, de Rooij SR, Bossuyt PMM, van der Post JAM, Gluckman PD, et al. Transgenerational effects of prenatal exposure to the 1944–45 Dutch famine. BJOG: An International Journal of Obstetrics & Gynaecology. 2013;120(5):548-54.

45. United States Census Bureau. Selected Economic Characteristics, 2009-2013 American Community Survey 5-Year Estimates, 2009-2013. Available at http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_13_5YR_DP03&src=pt. Accessed 7 July, 2015.

46. Bureau. USC. State & County QuickFacts. Available at http://quickfacts.census.gov/qfd/states/00000html. Accessed 7 July 2015.

47. Frederick CB, Snellman K, Putnam RD. Increasing socioeconomic disparities in adolescent obesity. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(4):1338-42.
Table 1. Age-standardized characteristics of participants of the Growing Up Today Study (GUTS) according to their grandmother’s smoking status during pregnancy

Grandmother’s smoking during pregnancy	Age 12 population				
	Non-smoker	Quit during pregnancy	1-14 cigarettes/day	15+ cigarettes/day	
BOYS	1454	1084	68	197	105
	n				
Age at baseline, years\(^1\)	10.9 (0.9)	11.1 (0.9)	10.9 (0.9)	11.0 (0.8)	
BMI at baseline	18.4 (3.2)	17.9 (2.8)	18.6 (3.2)	18.7 (3.3)	
- Normal weight, %	80	88	75	76	
- Overweight, %	16	11	20	18	
- Obese, %	4	1	5	5	
From Grandmother’s (Nurses’ Mother’s Cohort) Questionnaire	Age at time of nurse's birth, years	26.7 (5.1)	25.7 (4.8)	25.9 (4.4)	25.1 (4.0)
Mean pre-pregnancy BMI, kg/m\(^2\)	21.5 (2.7)	21.0 (2.1)	21.2 (2.6)	21.7 (3.1)	
Education – some college or graduate, %	38	50	50	38	
From Mother’s (NHS II) Questionnaire	Mother ever a smoker, %	27	38	34	41
From Boys’ (GUTS) Questionnaire	Weekly hours of TV viewing	16.5 (10.3)	16.3 (10.4)	16.5 (9.5)	17.1 (9.9)
	Weekly hours of vigorous physical activity	16.5 (10.3)	16.3 (10.4)	16.5 (9.5)	17.1 (9.9)
	Ever tried cigarettes, %	4	4	4	4
GIRLS	1640	1230	70	214	126
	n				
Age at baseline, years\(^1\)	11.0 (0.9)	10.9 (1.0)	11.0 (0.9)	10.9 (0.9)	
BMI at baseline	18.2 (3.0)	18.0 (2.8)	18.0 (3.4)	18.2 (3.1)	
- Normal weight, %	80	83	83	79	
- Overweight, %	17	16	12	18	
- Obese, %	3	2	2	2	
From Grandmother’s (Nurses’ Mother’s Cohort) Questionnaire	Age at time of mother's birth, years	26.4 (4.9)	25.8 (4.6)	26.1 (4.8)	25.8 (2.4)
	Pre-pregnancy BMI, kg/m\(^2\)	21.3 (2.5)	21.0 (2.2)	20.7 (2.2)	21.1 (2.4)
	Education – some college or graduate, %	38	55	46	38
	Grandmother’s smoking during pregnancy	Age 12 population			
--------------------------------	--	-------------------			
		Non-smoker	Quit during pregnancy	1-14 cigarettes/day	15+ cigarettes/day
From Mother’s (NHS II) Questionnaire					
Mother ever a smoker, %		27	30	36	30
From Girls’ (GUTS) Questionnaire					
Weekly hours of TV viewing		14.2 (9.4)	14.6 (8.7)	14.1 (8.8)	14.8 (9.2)
Weekly hours of vigorous physical activity		7.8 (5.9)	8.7 (5.8)	8.1 (6.7)	8.2 (6.0)
Ever tried cigarettes, %		3	2	2	2

Values are means (standard deviations) or percentages, and standardized to the age distribution of the population.

1 Value not age-standardized
	All Mothers			Non-smoking Mothers Only				
	N	Age-adjusted\(^2\)	Grand-maternal covariate-adjusted\(^3\)	Child covariate-adjusted\(^4\)	N	Age-adjusted\(^2\)	Grand-maternal covariate-adjusted\(^3\)	Child covariate-adjusted\(^4\)
Grand-maternal smoking								
None	1230	Ref	Ref	Ref	893	Ref	Ref	
Quit during pregnancy	70	1.21	1.31 (0.71-2.43)	1.37 (0.73-2.58)	49	1.00	1.09 (0.49-2.40)	0.99 (0.44-2.24)
1-14 cig/day	214	1.01	1.12 (0.76-1.65)	1.14 (0.76-1.69)	137	0.74	0.82 (0.48-1.42)	0.85 (0.48-1.48)
15+ cig/day	126	1.14	1.16 (0.72-1.86)	1.21 (0.74-1.98)	88	1.14	1.20 (0.67-2.14)	1.33 (0.73-2.43)
\(P_{\text{trend}}\)			0.63	0.40			0.78	0.91
Grand-paternal smoking								
None	732	Ref	Ref	Ref	559	Ref	Ref	
1-14 cig/day	373	1.58	1.68 (1.21-2.34)	1.65 (1.18-2.32)	254	1.33	1.45 (0.97-2.18)	1.35 (0.89-2.06)
15+ cig/day	535	1.35	1.38 (1.02-1.87)	1.38 (1.01-1.89)	354	1.24	1.27 (0.88-1.85)	1.28 (0.87-1.89)
\(P_{\text{trend}}\)			0.04	0.03			0.22	0.17
Grand-parental smoking								
None	638	Ref	Ref	Ref	491	Ref	Ref	
One grandparent	686	1.36	1.39 (1.03-1.87)	1.38 (1.02-1.87)	470	1.23	1.28 (0.90-1.83)	1.28 (0.89-1.84)
Both grandparents	316	1.42	1.55 (1.08-2.22)	1.58 (1.09-2.28)	206	1.12	1.25 (0.79-1.97)	1.24 (0.77-1.98)

\(^1\) GUTS: Growing Up Today Study

\(^2\) Adjusted for age at 1996 baseline

\(^3\) Adjusted for grand-maternal pre-pregnancy BMI [<19.9, 20-22.3, 22.3-24.9, ≥25.0 kg/m\(^2\)], grandmother’s age during pregnancy with nurse [<25, 25-30, 30-35, ≥35 years], grandmother’s education at time of pregnancy with nurse [<high school, high school graduate, some college, college graduate] (Model 2)

\(^4\) Model 2 + TV viewing [<7, 7-<13, 13-<21, ≥21 hours/week], vigorous activity [<4, 4-<6.5, 6.5-10.4, ≥10.4 hours/week], Tanner stage of development [Stage 1 (reference), 2, 3, 4+]
Table 3. Associations (odds ratios and 95% CI) between grand-parental smoking during pregnancy and overweight or obesity among GUTS' girls at age 17 (1996-2004)

	All Mothers	Non-smoking Mothers Only				
	N Age-adjusted\(^2\)	Grand-maternal covariate-adjusted\(^3\)	Child covariate-adjusted\(^4\)	N Age-adjusted\(^2\)	Grand-maternal covariate-adjusted\(^3\)	Child covariate-adjusted\(^4\)
Grand-maternal smoking						
None	1484 Ref	0.79 (0.42-1.48)	0.77 (0.41-1.45)	1086 Ref	0.83 (0.38-1.78)	0.77 (0.36-1.68)
Quit during pregnancy	97 0.74	1.02 (0.70-1.49)	1.04 (0.71-1.53)	67 0.78	0.98 (0.60-1.61)	1.02 (0.62-1.67)
1-14 cig/day	246 0.96	0.90 (0.56-1.45)	0.91 (0.57-1.48)	158 0.93	0.87 (0.48-1.57)	0.88 (0.49-1.60)
15+ cig/day	150 0.91	0.90 (0.56-1.45)	0.91 (0.57-1.48)	110 0.84	0.87 (0.48-1.57)	0.88 (0.49-1.60)
P\(_{\text{trend}}\)	0.58	0.74	0.81	0.50	0.66	0.73
Grand-paternal smoking						
None	882 Ref	1.10 (0.80-1.51)	1.10 (0.80-1.52)	674 Ref	1.01 (0.68-1.50)	1.03 (0.69-1.54)
1-14 cig/day	451 1.13	1.23 (0.93-1.64)	1.25 (0.94-1.67)	314 1.05	1.12 (0.79-1.59)	1.14 (0.80-1.62)
15+ cig/day	644 1.29	1.27 (0.97-1.68)	1.28 (0.97-1.69)	443 1.22	1.25 (0.89-1.74)	1.26 (0.90-1.76)
P\(_{\text{trend}}\)	0.07	0.15	0.12	0.26	0.53	0.48
Grand-parental smoking						
None	763 Ref	1.27 (0.97-1.68)	1.28 (0.97-1.69)	591 Ref	1.25 (0.89-1.74)	1.26 (0.90-1.76)
One grandparent	840 1.32	1.04 (0.72-1.48)	1.06 (0.74-1.52)	578 1.30	0.91 (0.58-1.43)	0.93 (0.59-1.46)
Both grandparents	374 1.03	1.04 (0.72-1.48)	1.06 (0.74-1.52)	252 0.92	0.91 (0.58-1.43)	0.93 (0.59-1.46)

\(^1\) GUTS: Growing Up Today Study

\(^2\) Adjusted for age at 1996 baseline (Model 1)

\(^3\) Model 1 + grand-maternal pre-pregnancy BMI [<19.9, 20-22.3, 22.3-24.9, \geq 25.0 kg/m\(^2\)], grandmother’s age during pregnancy with nurse [<25, 25-30, 30-35, \geq 35 years], grandmother’s education at time of pregnancy with nurse [<high school, high school graduate, some college, college graduate] (Model 2)

\(^4\) Model 2 + TV viewing [<4, 4-13, \geq 13 hours/week], vigorous activity [<4, 4-<6.5, 6.5-10.4, \geq 10.4 hours/week]
Table 4. Associations (odds ratios and 95% confidence intervals) between grand-parental smoking during pregnancy and overweight or obesity in grandchild among GUTS\(^1\) boys at age 12 (1996-2004)

Grand-maternal smoking	All Mothers	Non-smoking Mothers Only						
		Age-adjusted\(^2\)	Grand-maternal covariate-adjusted\(^3\)	Child covariate-adjusted\(^4\)	Age-adjusted\(^2\)	Grand-maternal covariate-adjusted\(^3\)	Child covariate-adjusted\(^4\)	
None		Ref	Ref	Ref	791	Ref		
Quit during pregnancy	68	0.79	0.89 (0.47-1.70)	0.77 (0.39-1.51)	43	0.37	0.42 (0.15-1.20)	0.34 (0.12-1.00)
1-14 cig/day	197	1.14	1.22 (0.85-1.76)	1.26 (0.86-1.83)	129	1.04	1.09 (0.69-1.71)	1.08 (0.67-1.72)
15+ cig/day	105	1.08	1.11 (0.68-1.80)	1.07 (0.65-1.77)	62	1.05	1.08 (0.58-2.03)	0.93 (0.48-1.79)
\(P_{\text{trend}}\)		0.56	0.37	0.41	0.98	0.82	0.86	
Grand-paternal smoking								
None	662	Ref	Ref	Ref	503	Ref		
1-14 cig/day	282	1.42	1.45 (1.04-2.04)	1.42 (1.00-2.02)	199	1.48	1.49 (1.01-2.21)	1.40 (0.93-2.11)
15+ cig/day	510	1.29	1.30 (0.98-1.73)	1.31 (0.97-1.76)	323	1.09	1.11 (0.78-1.58)	1.09 (0.76-1.58)
\(P_{\text{trend}}\)		0.07	0.07	0.07	0.51	0.46	0.55	
Grand-parental smoking								
None	590	Ref	Ref	Ref	457	Ref		
One grandparent	566	1.25	1.23 (0.92-1.64)	1.25 (0.93-1.68)	380	1.19	1.19 (0.85-1.67)	1.22 (0.85-1.73)
Both grandparents	298	1.30	1.39 (0.99-1.96)	1.36 (0.95-1.94)	188	1.08	1.14 (0.75-1.75)	1.03 (0.66-1.60)

\(^1\) GUTS: Growing Up Today Study

\(^2\) Adjusted for age at 1996 baseline (Model 1)

\(^3\) Model 1 + grand-maternal pre-pregnancy BMI [\(<19.9, 20-22.3, 22.3-24.9, \geq 25.0\) kg/m\(^2\)], grandmother’s age during pregnancy with nurse [\(<25, 25-30, 30-35, \geq 35\) years], grandmother’s education at time of pregnancy with nurse [\(<\) high school, high school graduate, some college, college graduate] (Model 2)

\(^4\) Model 2 + TV viewing [\(<7, 7\leq 13, 13\leq 21, \geq 21\) hours/week], vigorous activity [\(<4, 4\leq 6.5, 6.5-10.4, \geq 10.4\) hours/week], Tanner stage of development [Stage 1 (reference), 2, 3, 4+]
Table 5. Associations (Odds ratios and 95% confidence intervals) between grand-parental smoking during pregnancy and overweight or obesity in grandchild among GUTS\(^1\) boys at age 17 (1996-2004)

	All Mothers	Non-smoking Mothers Only						
	N	Age-adjusted\(^2\)	Grand-maternal covariate-adjusted\(^3\)	Child covariate-adjusted\(^4\)	N	Age-adjusted\(^2\)	Grand-maternal covariate-adjusted\(^3\)	Child covariate-adjusted\(^4\)
Grand-maternal smoking								
None	1098	Ref	Ref	Ref	833	Ref	Ref	Ref
Quit during pregnancy	63	0.76	0.80 (0.41-1.57)	0.84 (0.46-1.66)	40	0.29	0.29 (0.09-0.95)	0.31 (0.09-1.03)
1-14 cig/day	192	0.92	1.00 (0.68-1.47)	0.99 (0.67-1.46)	125	0.90	0.95 (0.59-1.53)	0.93 (0.58-1.51)
15+ cigs/day	103	0.77	0.76 (0.45-1.30)	0.79 (0.46-1.35)	67	0.56	0.57 (0.28-1.19)	0.63 (0.30-1.31)
\(P_{\text{trend}}\)	0.29	0.43	0.47		0.09	0.14	0.19	
Grand-paternal smoking								
None	674	Ref	Ref	Ref	532	Ref	Ref	Ref
1-14 cigarettes/day	293	0.94	0.97 (0.69-1.38)	0.97 (0.68-1.38)	210	0.85	0.87 (0.58-1.32)	0.89 (0.59-1.35)
15+ cigarettes/day	489	1.09	1.09 (0.82-1.46)	1.11 (0.83-1.49)	323	0.90	0.91 (0.64-1.30)	0.93 (0.65-1.32)
\(P_{\text{trend}}\)	0.59	0.56	0.49		0.51	0.58	0.65	
Grand-parental smoking								
None	598	Ref	Ref	Ref	483	Ref	Ref	Ref
One grandparent	576	0.96	0.96 (0.72-1.28)	0.97 (0.73-1.29)	399	0.89	0.90 (0.65-1.26)	0.92 (0.66-1.29)
Both grandparents	282	0.92	0.98 (0.68-1.40)	0.99 (0.69-1.42)	183	0.69	0.71 (0.45-1.12)	0.74 (0.47-1.16)

\(^1\) GUTS: Growing Up Today Study

\(^2\) Adjusted for age at 1996 baseline (Model 1)

\(^3\) Model 1 + grand-maternal pre-pregnancy BMI [<19.9, 20-22.3, 22.3-24.9, ≥25.0 kg/m\(^2\)], grandmother’s age during pregnancy with nurse [<25, 25-30, 30-35, ≥35 years], grandmother’s education at time of pregnancy with nurse [≤high school, high school graduate, some college, college graduate] (Model 2)

\(^4\) Model 2 + TV viewing [<4, 4-13, ≥13 hours/week], vigorous activity [≤4, 4-<6.5, 6.5-10.4, ≥10.4 hours/week]