On the Zariski–Lipman Conjecture for normal algebraic surfaces

Indranil Biswas, R. V. Gurjar and Sagar U. Kolte

Abstract

We consider the Zariski–Lipman Conjecture on a free module of derivations for algebraic surfaces. Using the theory of non-complete algebraic surfaces, and some basic results about ruled surfaces, we will prove the conjecture for several classes of affine and projective surfaces.

1. Introduction

The following is a well-known Conjecture due to Zariski and Lipman.

\textbf{Conjecture 1.1.} Let V be an algebraic variety over a field k of characteristic 0, let p be a (closed) point of V and let R be the local ring of V at p. If the module of k-derivations $\text{Der}_k(R)$ is a free R-module, then V is smooth at p.

Lipman proved in \cite{14} that if $\text{Der}_k(R)$ is R-free, then R is normal. In view of this, an equivalent formulation of this conjecture (obtained by shrinking V) is the following.

\textit{Assume that V is normal and the tangent bundle of the smooth locus of V is a trivial bundle. Then V is smooth.}

To see the equivalence of the two statements, we can assume that V is affine. It is well known that $\text{Der}_k(R)$ is a reflexive R-module (being the dual of $\Omega_k(R)$). Hence, if R is normal, then any element of $\text{Der}_k(R)$ is determined by its restriction to the smooth locus of V. If the tangent bundle of the smooth locus of V is trivial, then a free basis of the module of cross sections of the tangent bundle of the smooth locus of V gives a free basis of $\text{Der}_k(R)$ as an R-module. Similarly, any free basis of $\text{Der}_k(R)$ as an R-module gives a trivialization of the tangent bundle on the smooth locus of V if V is a sufficiently small Zariski-open neighborhood of p.

Without the normality assumption, this conjecture is false even for dimension $V = 1$. In \cite{10}, Hochster proved the conjecture for positively graded domains over k. Scheja and Storch proved the conjecture for hypersurfaces in \cite{22}. A similar proof was given by the second author around 1975 (unpublished). We mention here that, by a result of Artin, any normal germ of a complex variety (V,p) with an isolated singularity at p is algebraic. Becker \cite{1} showed that the Zariski–Lipman Conjecture is true if it can be shown to be true when the singularities of V are isolated. Van Straten and Steenbrink \cite{23} settled the conjecture for isolated singularities of dimension 3 or more. Flenner \cite{4} proved the conjecture for non-isolated singularities of dimension 3 or more, assuming that the singularities are of codimension at least 3. Recently, a few more cases of the conjecture have been proved.

(1) Källström \cite{12} proved the conjecture for all complete intersections.
(2) Druel \cite{3} proved the conjecture for local rings with log canonical singularities.
(3) Independently, Graf \cite{7} also proved (2) by a different method.
As far as we can see, none of these results imply our results.

Given a smooth algebraic surface V and a projective completion \overline{V} of it such that $D := \overline{V} - V$ is a divisor whose only singularities are nodes, the logarithmic Kodaira dimension of V, denoted by $\overline{\kappa}(V)$, is defined as the supremum of the dimensions of the images of \overline{V} under the rational maps defined by $H^0(\overline{V}, n(K + D))$, $n \geq 1$. If this linear system is trivial for all $n \geq 1$, then we define $\overline{\kappa}(V) = -\infty$ (see [11]).

Our approach to this conjecture in this paper is global and it uses the theory of non-complete algebraic surfaces developed by Iitaka, Kawamata, Fujita, Miyanishi, Sugie, Tsunoda and other Japanese mathematicians. This theory has proved to be very effective in the solution of many problems about non-complete algebraic surfaces, and the arguments in this paper are just one more instance of this. We also use some results from the theory of vector bundles on smooth projective curves. Although some of our arguments are valid assuming only projectivity of the module of derivations, for many arguments we need the full force of the assumption that the tangent bundle of the smooth locus is trivial. As can be seen from the somewhat involved proofs in this paper, this stronger hypothesis is justified by the difficulty of the general conjecture. In this paper we verify the conjecture for all affine surfaces V such that $\overline{\kappa}(V - \text{Sing}(V)) \leq 1$, and prove the conjecture in almost all the cases when V is projective. In particular, we prove that if V is projective, the tangent bundle of $V - \text{Sing}(V)$ is trivial and $\overline{\kappa}(V - \text{Sing}(V)) = 0$ or 1, then V is smooth.

All the varieties in this paper will be assumed to be over an algebraically closed field k of characteristic 0. If V is an algebraic surface, then by V^0 we denote the smooth locus of V.

We now state the results of this paper.

Theorem 1.2. Let V be an algebraic surface defined over k. Assume that the tangent bundle of V^0 is trivial. The following statements hold.

1. If V is an affine algebraic surface such that $\overline{\kappa}(V^0) \leq 1$, then V is smooth.
2. If V is a projective surface, then $\overline{\kappa}(V^0) \leq 0$ and V has at most one singularity.
3. If V is a projective surface such that $\overline{\kappa}(V^0) = 0$, then V is smooth.
4. Assume that V is a projective surface such that $\overline{\kappa}(V^0) = -\infty$. Let p be the unique singular point of V. Then there exists a resolution of singularities $\pi : W \to V$ such that there is a \mathbb{P}^1-fibration $W \to C$, where C is a smooth projective curve. If the genus of C is at least 2, then V is smooth.
5. With the notation in (4), if C is a rational curve, then V is smooth.
6. With the notation in (4), let C be an elliptic curve. If at least one singular fiber of $W \to C$ has a non-reduced feather (defined later), then V is smooth.

Remark 1.3. We have not been able to settle the Zariski–Lipman Conjecture completely for the projective case when $\overline{\kappa}(V^0) = -\infty$. If the exceptional divisor is a smooth elliptic curve, then we have proved the conjecture using arguments from the theory of rank 2 vector bundles. Similarly, if the \mathbb{P}^1-fibration has at least one non-reduced fiber, then we have proved the conjecture. But if the base of the \mathbb{P}^1-fibration is an elliptic curve and the exceptional divisor has many irreducible components, and only reduced feathers, then we have not been able to settle the conjecture. We believe that this case is rare and hope to be able to settle it in future.

2. **Preliminaries**

Let X be a smooth projective surface. For a (possibly reducible) reduced curve A on X, by a component of A we mean an irreducible component of A. An irreducible smooth rational curve A on X with $A^2 = -n$ is called a $(-n)$-curve. We will mainly use this terminology when $n > 0$.

We also recall that a reduced effective divisor $D = D_1 + D_2 + \cdots + D_r$ on a smooth surface is called a divisor with simple normal crossings (SNC, for short) if every component D_i is smooth and the only singularities of D are simple nodes.

Let $f : X \to C$ be a morphism from a smooth surface X onto a smooth curve C. Let $\sum_i a_i A_i$ be a scheme-theoretic fiber of f. Then $\text{GCD} \{a_1, a_2, \ldots\}$ is called the multiplicity of the fiber. The integer a_i is called the multiplicity of A_i in the fiber.

With f, X, C as above, an irreducible curve $S \subset X$ is called a cross section of f if $f : S \to C$ is an isomorphism.

We will implicitly use the following easy consequence of the Hodge Index Theorem (called Zariski’s Lemma).

Let $\pi : X \to B$ be a morphism on a smooth projective surface X onto a smooth projective curve B such that a general fiber of π is irreducible. Let $F_0 : \Sigma a_i C_i$ be a singular fiber of π (that is, F_0 is scheme-theoretically not isomorphic to a general fiber of π). If F_0 is not irreducible, then the intersection form on a union of any proper subset of the set of components $\{C_i\}$ is negative definite. The intersection form on $\{C_i\}$ has exactly one eigenvalue that is equal to 0. In fact, the only rational divisors supported on $\{C_i\}$ with self-intersection 0 are rational multiples of F_0.

In our proofs, some well-known properties of a singular fiber of a \mathbb{P}^1-fibration on a smooth projective surface will be implicitly used. We state this result for the sake of completeness; see [16, Chapter I, § 4.4.1].

Lemma 2.1. Let $f : X \to C$ be a \mathbb{P}^1-fibration on a smooth projective surface X onto a smooth projective curve C. Let $F := a_1 A_1 + \cdots + a_r A_r$ be a scheme-theoretic fiber of f, where A_i are the components of F. Then we have the following conditions.

1. $\text{GCD} \{a_1, \ldots, a_r\} = 1$.
2. The reduced divisor F_{red} is SNC. Further, F is a tree of smooth rational curves.
3. At least one A_i is a (-1)-curve. If $a_i = 1$ for some i, then there is a (-1)-curve A_j in F such that $j \neq i$. Any (-1)-curve in F meets at most two other components of F.

In connection with a \mathbb{P}^1-fibration, we will use another notion, namely that of a feather. Let W be a smooth quasi-projective surface with an open embedding into a smooth projective surface X such that $D := X - W$ is a connected SNC divisor. Suppose that there is a \mathbb{P}^1-fibration $f : X \to C$ which restricts to an \mathbb{A}^1-fibration on W. Then D contains a unique component, say A_1, which meets every fiber of f exactly once. This is because a general fiber of the morphism f restricted to W is isomorphic to \mathbb{A}^1 which has only one place at infinity and it is the point of intersection of A_1 and the closure of this \mathbb{A}^1.

Let F be a singular fiber of f. Since A_1 is the only component of D that does not lie in a fiber of f, from the connectedness of D we see that $D \cap F$ is also connected.

Assume also that every component of F intersects D (this happens, for example, if W is affine) and let A_i be a component of F that is not contained in D. We claim that $D \cap A_i$ is a single point. If A_i intersected D in more than one point, then the connectedness of $D \cap F$ would imply that F is not a tree of smooth rational curves. We call such a component A_i of F a feather.

We will state the following result, which combines works due to Hochster [10] (see also [21]), Scheja–Storch [22] and Källström [12].

Theorem 2.2. (1) Let V be an affine algebraic variety such that the algebraic tangent bundle of V^0 is trivial. If the coordinate ring of V is a positively graded domain, then V is smooth.
(2) If V is a complete-intersection singularity such that the tangent bundle of V^0 is trivial, then V is smooth.

(3) If V is a non-smooth algebraic surface with at most rational singularities, then the tangent bundle of V^0 is not trivial.

To see part (3) of Theorem 2.2, note that if the algebraic tangent bundle of V^0 is trivial and V is a surface, then the singularities are Gorenstein. Gorenstein rational singularities are rational double points. This implies that the singularities are hypersurface singularities. By Theorem 2.2(2), V is smooth.

We will frequently reduce our problem to cases that can be answered by the above theorem. Wagreich [25, §1.8] defined the notion of an elliptic singularity.

Definition 2.3. Let p be a normal singularity of a two-dimensional analytic space V with $\mathcal{O}_{V,p}$ the local ring at p. Let $\pi : M \to V$ be the minimal resolution of p. Let $E = \pi^{-1}(p)$ be the exceptional divisor. By $P_a(D)$, we denote the arithmetic genus of the divisor D, defined as $(D^2 + D \cdot K)/2 + 1$. Then the arithmetic genus of $\mathcal{O}_{V,p}$, denoted by $P_a(\mathcal{O}_{V,p})$, is defined as $\max\{P_a(D)\}$, where D ranges over all positive divisors whose support is contained in E. If the arithmetic genus is 1, then the singularity is called an elliptic singularity.

Let V be a smooth quasi-projective surface and let X be a smooth projective completion of V such that $D := X - V$ is SNC.

We will need several notions from the theory of Zariski–Fujita decomposition of pseudo-effective divisors [6, §6].

Recall that an integral divisor Δ on a smooth projective surface X is pseudo-effective if $\Delta \cdot H \geq 0$ for every ample divisor H on X. Let K denote the canonical divisor of X. If $\kappa(X - D) \geq 0$, then some multiple of $|K + D|$ is an effective divisor. Hence, in this case $K + D$ is pseudo-effective. This remark will be implicitly used in what follows.

Suppose that $K + D$ is pseudo-effective. Then there is a unique decomposition $K + D \cong P + N$, where \cong denotes numerical equivalence, P is a nef \mathbb{Q}-divisor, N is an effective \mathbb{Q}-divisor such that the intersection form on the components of N is negative definite and $P \cdot D_i = 0$ for any component D_i in the support of N.

Let S be a smooth complete surface and let D be an effective reduced divisor on it. For any irreducible component Y of D, we denote $Y \cdot (D - Y)$ by $\beta(Y)$. This $\beta(Y)$ is called the branching number of Y in D.

The component Y is called a tip of D if $\beta(Y) = 1$. It is called a rational tip if $Y = \mathbb{P}^1$. A sequence C_1, \ldots, C_r of components of D is called a rational twig of D if each C_i is a rational normal curve, $\beta(C_1) = 1$, $\beta(C_j) = 2$ and $C_{j-1} \cdot C_j = 1$ for $2 \geq j \geq r$. The curve C_1 is called the tip of this twig T.

Since $\beta(C_r) = 2$, there is a component C of D, not in T, such that $C_r \cdot C = 1$. If C is a rational tip of D, then $T' = T + C$ is a connected component of D and it will be called a rational club of D.

When the above C is isomorphic to \mathbb{P}^1 and $\beta(C) = 2$, then T' is a rational twig of D. Otherwise, T is called a maximal rational twig of D and C is called the branching component of T.

If the intersection form on the components of T is negative definite, then T is said to be contractible. Assume that T is a maximal rational contractible twig of D. The element $N \in \mathbb{Q}(T)$ such that $N \cdot C_1 = -1$ and $N \cdot C_j = 0$ for $j \geq 2$ is called the bark of T. If $T' = C_1 + \cdots + C_r + C$ is a contractible rational club of D, then the bark of T' is defined to be the \mathbb{Q}-divisor N' in $\mathbb{Q}(T')$ such that $N' \cdot C_1 = N' \cdot C = -1$ and $N' \cdot C_j = 0$ for $2 \leq j \leq r$. For a connected component Y of D which is a rational normal curve, its bark is defined to be $2(-Y^2)^{-1}Y$.

THE ZARISKI–LIPMAN CONJECTURE
Fujita proved that if $\bar{\kappa}(V_0) \geq 0$, then all the rational twigs of D are contractible [6, Lemma 6.13]. Let $\text{Bk}(D)$ denote the sum of all the barks of maximal rational contractible twigs of D. In view of Theorem 2.2(3), we can assume that none of the singular points of V is a rational singular point. In particular, in Fujita’s terminology no singular point is an ‘abnormal rational club’. Hence, we do not have to consider the ‘thicker bark’ of D.

Let $P + N$ be the Zariski–Fujita decomposition of D. We now state a result due to Fujita [6, Lemma 8.7] about the divisor D when $\bar{\kappa}(V_0) = 0$.

Lemma 2.4. Assume $\bar{\kappa}(V^0) = 0$. Assume also that any $(−1)$-curve in D meets at least three other components of D. If $\text{Bk}(D) = N$, then any connected component of D is one of the following:

1. a minimal resolution of a quotient singular point;
2. a tree of smooth rational curves with exactly two branch points such that the branch points are connected by a (possibly empty) linear chain of smooth rational curves and each branch point meets exactly two other $(−2)$-curves which are tips of D;
3. a simple loop of smooth rational curves;
4. a tree of smooth rational curves with a unique branch point which meets three linear trees defining cyclic quotient singular points at one of their end points; further, the absolute values d_1, d_2, d_3 of the determinants of the three trees satisfy $\Sigma 1/d_i = 1$;
5. a tree of five smooth rational curves with a unique branch point which intersects the other four curves transversally in one point each, and such that the four curves are all $(−2)$-curves;
6. a smooth elliptic curve.

Lemma 2.5 [6, Lemma 6.20]. Suppose $\bar{\kappa}(V) \geq 0$. In the case when $N \neq \text{Bk}(D)$, one of the following assertions is true.

1. There exists a $(−1)$-curve L on V such that $L \cap D = \emptyset$.
2. There exists a $(−1)$-curve L on V not contained in D such that L meets a rational twig of D transversally in one point and no other curve of D.
3. There exists a $(−1)$-curve L on V which meets a rational twig of D in one point transversally and a tip of a rational club in one point transversally and no other point of D.

In all these cases, L is a component of N.

Moreover, $\bar{\kappa}(V − D − L) = \bar{\kappa}(V − D)$.

Finally, a normal surface singularity S with minimal resolution $\pi : X \to S$ is called minimally elliptic if $(K + Z) \cdot E_i = 0$ for every irreducible component E_i of the exceptional curve E of the resolution; here Z is the fundamental cycle of the resolution, and K is the canonical divisor of X.

3. **Proof of Theorem 1.2(1)**

For this part, V is affine. We will verify the conjecture for the three cases $\bar{\kappa}(V^0) = −\infty, 0, 1$.

3.1. **The case $\bar{\kappa}(V^0) = −\infty$**

If the smooth surface V^0 is affine ruled (that is, it contains an open set of the type $\mathbb{A}^1 \times U_0$), then the \mathbb{A}^1-fibration extends to V (see [17, §1.3.1]). All the singularities on V are therefore rational singularities [8, Lemma 2.7]. Hence, V is smooth by Theorem 2.2. If V^0 is not affine ruled, then we have the following result of Miyanishi–Tsunoda.
Theorem 3.1 [17, Theorems 2.5.3 and 2.5.4]. Let V^0 be a smooth open algebraic surface defined over an algebraically closed field k of characteristic 0 with $\kappa(V^0) = -\infty$. Suppose that V^0 is not affine ruled. Suppose furthermore that there exists an open embedding of V^0 into a smooth projective surface \bar{V} such that the following conditions hold.

1. The divisor $\bar{V} - V^0$ is reduced, effective and has simple normal crossings.
2. If we write $\bar{V} - V^0 = \bigcup C_i$ with components C_i, then the intersection matrix $((C_i \cdot C_j))_{1 \leq i, j \leq r}$ is not negative definite.

Then there exist a Zariski-open subset U of V^0 and a proper birational morphism $\phi : U \to T'$ onto a smooth algebraic surface T' such that the following conditions hold.

1. Either $U = V^0$ or $V^0 - U$ has pure codimension 1.
2. The surface T' is the quotient $\mathbb{A}^2/G - \text{Sing}(\mathbb{A}^2/G)$, where G is a finite subgroup of $\text{GL}(2,k)$.

First, we note that since D supports an ample divisor for a projective compactification for V, the intersection form on the components of D has one positive eigenvalue. Hence, the condition Theorem 3.1(2) is satisfied for $D \cup E$. Thus, if V^0 is not affine ruled, then it contains an open set $U \subset V^0$ isomorphic to $\mathbb{A}^2/G - (0,0)$ because the map ϕ is proper and birational and V is affine (so that U cannot contain any complete curve). The tangent bundle of U is trivial as U is a subset of V^0. Hence, the tangent bundle of $\mathbb{A}^2/G - (0,0)$ is trivial, but $\Gamma(\mathbb{A}^2/G)$ is positively graded. By Theorem 2.2, the quotient \mathbb{A}^2/G is smooth, and hence isomorphic to \mathbb{A}^2. This implies that \mathbb{A}^2/G contains a cylinder-like open subset. Hence, so does U. This contradicts the earlier assumption that V^0 is not affine ruled. Therefore, we conclude that V is smooth.

3.2. The case $\bar{\kappa}(V^0) = 0$

In this section, we will prove the following lemma.

Lemma 3.2. Let V be an affine surface such that the following conditions hold.

1. The surface V^0 has a trivial tangent bundle.
2. The logarithmic Kodaira dimension of V^0 is 0.

Then V is smooth.

Let p_1, p_2, \ldots, p_r be the singular points of V. Let $\pi : \bar{V} \to V$ be a resolution of singularities such that $\pi^{-1}(p_1, p_2, \ldots, p_r) = E$ is an SNC divisor. We can assume without loss of generality that any (-1)-curve in E meets at least three other components of E. Let X be a smooth projective completion of \bar{V} such that $D' = X - \bar{V}$ is an SNC divisor. Let $D = D' + E$. Clearly, D is the disjoint union of D' and E.

Let $P + N = K + D$ be the Zariski–Fujita decomposition of $K + D$, where P is the positive part and N is the negative part of the decomposition. Because $\bar{\kappa}(V^0) = 0$, by an important result due to Kawamata [3, Lemma 6.11], P is numerically equivalent to 0. Thus, $K + D \approx N$. We now state a claim whose proof we postpone till the end of this subsection.

Claim 3.3. $N = 0$.

Assuming the above claim, we break the proof of the lemma into two cases.

1. The bark of D satisfies: $\text{Bk}(D) = N$.
2. The bark of D satisfies: $\text{Bk}(D) \neq N$.

Case 1: $\text{Bk}(D) = N$. The bark of D is defined as the sum of the barks of all rational clubs and maximal twigs. By the claim, $\text{Bk}(D) = 0$, hence D can have no twig or rational club. Hence, by
Lemma 2.4, every connected component of D is either a loop of rational curves or an elliptic curve. It follows that $K + D \approx 0$. Hence, $|nK| = 0$ for all $n \geq 1$. Thus, X has a \mathbb{P}^1-fibration. Let l be a general fiber of the \mathbb{P}^1-fibration. By the arithmetic genus formula, $K \cdot l = -2$. Hence, $D \cdot l = 2$. The divisor D is a disjoint union of D' and E. Neither D' nor E can be contained in a fiber of the \mathbb{P}^1-fibration because the connected components of both are either a loop of rational curves or an elliptic curve. If D' (respectively, E) contains a loop of rational curves, then $D' \cdot l \geq 2$ (respectively, $E \cdot l \geq 2$) and $E \cdot l \geq 1$ (respectively, $D' \cdot l \geq 1$). This contradicts the fact that $D \cdot l = 2$.

Hence, we conclude that D' and E are smooth elliptic curves and that both D' and E are cross sections of the \mathbb{P}^1-fibration. Next we claim that the \mathbb{P}^1-fibration is actually a \mathbb{P}^1-bundle. Indeed, if a fiber F has two components l_1 and l_2 such that l_1 meets D' and l_2 meets E, then l_2 must also meet D' as V is affine and contains no complete curves. This is a contradiction because D' is a cross section of the \mathbb{P}^1-fibration.

Thus, we can think of the two disjoint cross sections of the \mathbb{P}^1-bundle as being 0 and ∞. Because the two sections of the bundle are disjoint, there is a trivialization of this bundle where the transition functions are the Möbius transforms that leave 0 and ∞ fixed. The only Möbius transforms that leave 0 and ∞ fixed are those acting by scalar multiplication. These transforms commute with the natural action of k^* on each of the trivializations. Thus, we have a k^*-action on the bundle and hence V is a positively graded domain. We know the conjecture to be true for positively graded domains by Theorem 2.2.

Case 2: $\text{Bk}(D) \neq N$. By Lemma 2.5, we have a (-1)-curve L on \bar{V}, not in D, which meets D as in Lemma 2.5. We claim that L can only meet D'. Indeed, if L meets E, then it has to meet D' because V is affine and cannot contain a complete curve. Thus, L meets two connected components of D. By Lemma 2.5, we know that one of the components is a contractible rational club, which gives a rational singularity when contracted. This is not possible by Theorem 2.2. Hence, we now know that L can only intersect D'. We contract L and successively any other curves which become (-1)-curves as a result and meet the new D as above; this process will stop before all the curves in D' are contracted because the intersection form on the components of D' has a positive eigenvalue. None of the contracted curves meet E so that E is unchanged in this process. This way we ensure that there are no exceptional curves on \bar{V} meeting D as in Lemma 2.5. Hence, by Lemma 2.5, we are reduced to the case $\text{Bk}(D) = N$.

We now give a proof of the claim that $N = 0$. Suppose $N \neq 0$. By Fujita [6, § 6.16], N is a divisor with positive rational coefficients, each coefficient being strictly less than 1. As seen above, $|nK| = \phi$ for all $n > 0$, so that X has a \mathbb{P}^1-fibration $f : X \to C$. If $N \neq 0$, then, by Lemma 2.4, either D' or E is a tree of smooth rational curves. This easily implies that C is a rational curve, and hence X is a rational surface. Therefore, numerical and rational equivalence on X are the same. The following Lemma 3.4 will show that there are no rational equivalence relations between the components of D, so that the expression of a canonical divisor as a linear combination of components of D is unique. We know that $K + D \approx N$. Since the tangent bundle of V^0 is trivial, there is a canonical divisor of X that is supported on D. It follows that if $N \neq 0$, then the divisor K will have two distinct expressions as a linear combination of the irreducible components of D. One expression will involve only integral coefficients and the other will be $K \approx N - D$. Here $N - D$ has at least one non-integral coefficient as all the coefficients of N are strictly less than 1. Thus, $N = 0$.

Lemma 3.4. If $\kappa(V^0) = 0$ and the tangent bundle of V^0 is trivial, then there is no non-constant invertible regular function on V^0.

Proof. If u is an invertible non-constant regular function on V^0, then we have a morphism $u : V^0 \to k^*$. By the Stein Factorization Theorem, there exists a curve B and morphisms
\(u' : V^0 \to B \) and \(\phi : B \to k^* \) such that the following conditions hold.

1. The composition \(\phi \circ u' = u \).
2. The general fibers of \(u' \) are irreducible.

The curve \(B \) is affine because \(k^* \) is affine. For the morphism \(u' \), we have Kawamata’s inequality: \(\kappa(V^0) \geq \kappa(B) + \kappa(F) \) (see \([13]\)), where \(F \) is a general fiber of \(u' \). Thus, \(0 \geq \kappa(B) + \kappa(F) \). There is a dominant morphism \(\phi : B \to k^* \), hence \(\kappa(B) \geq 0 \). Therefore, \(0 \geq \kappa(B) + \kappa(F) \). If \(\kappa(F) = -\infty \), then \(\kappa(V^0) = -\infty \), because by Iitaka’s easy addition theorem, \(\kappa(V^0) \leq \kappa(F) + 1 \) (see \([11]\), Theorem 10.4)). Hence, \(\kappa(F) = 0 \). Thus, the morphism \(u' : V^0 \to B \) is a \(k^* \)-fibration. Because the codimension of \(V - V^0 \geq 2 \) and \(V \) is affine, \(u' \) extends to \(V \) (see \([11]\), Theorem 2.18)). Thus, \(V \) has a \(k^* \)-fibration. Hence, the singularities of \(V \) will be rational, since it is well known \([8]\), Lemma 2.7] that any connected subtree of a singular fiber of a \(\mathbb{P}^1 \)-fibration on a smooth projective surface contracts to a rational singular point. This contradicts Theorem 2.2.

This completes the proof of Lemma 3.2.

3.3. The case \(\kappa(V^0) = 1 \)

In this subsection, we will prove the following.

Lemma 3.5. Let \(V \) be an affine surface such that the following conditions hold.

1. The surface \(V^0 \) has a trivial tangent bundle.
2. The logarithmic Kodaira dimension of \(V^0 \) is 1.

Then \(V \) is smooth.

By a result of Kawamata \([16]\), Chapter II, Theorem 2.3], there is a \(k^* \)-fibration on \(V^0 \). Hence, we have the following possibilities.

1. The \(k^* \)-fibration extends to \(V \).
2. The \(k^* \)-fibration does not extend to \(V \).

In this case, by Gurjar and Miyani [8, Lemma 2.7], the singularities of \(V \) are rational. Then, by Theorem 2.2, the tangent bundle of \(V^0 \) cannot be trivial.

Any base point of the linear pencil in \(V \) is at a singularity of \(V \) because the base point lies outside \(V^0 \). If a singular point of \(V \) is not a base point, then it lies inside a fiber of a \(\mathbb{P}^1 \)-fibration. By Gurjar and Miyani [8, Lemma 2.7], it is a rational singularity. Hence, by Theorem 2.2 the tangent bundle of \(V^0 \) cannot be trivial. Let \(\pi : V \to V \) be a minimal resolution of singularities such that the \(k^* \)-fibration extends to the surface \(V \). Let \(X \) be a smooth projective completion of \(V \). The divisor \(D' = X - \tilde{V} \) is not contained in a fiber of the \(\mathbb{P}^1 \)-fibration on \(X \). The divisor \(E \) is in at least one component horizontal to the \(\mathbb{P}^1 \)-fibration on \(X \).

Any singular fiber of the \(\mathbb{P}^1 \)-fibration on \(X \) will contain components of \(E \) or \(D' \). Indeed, if \(F \) is a singular fiber such that no component of \(F \) is in \(E \), then let \(l_1 \) be the components of \(F \) meeting \(E \). Since \(V \) is affine, \(l_1 \) also meets \(D' \). If there is no component of \(D' \) in \(F \), then \(l_1 \) meets the horizontal component of \(D' \). If \(l_2 \) is another component of \(F \), then \(l_2 \) also meets the horizontal components of \(D' \). This means that the horizontal component of \(D' \) is not a cross section, which is a contradiction. Thus, \(l_1 \) is the only component of \(F \), that is, \(F \) is a smooth fiber.

Next we claim that all the singular fibers of the \(\mathbb{P}^1 \)-fibration on \(X \) are linear chains of rational curves. Every singular fiber \(F \) contains a unique rational curve which intersects both \(D' \) and \(E \).
Indeed, this follows from the observations that D', E contain cross sections of the \mathbb{P}^1-fibration and F is a tree of rational curves. We may assume that there are no (-1)-curves in F which intersect only D', or only E, as such curves can be contracted without affecting the triviality of the tangent bundle of V^0. Also, there are no (-1)-curves in D' or E which are in F, as they too can be contracted. Using Lemma 2.1, we deduce that the unique rational curve in F which meets both D' and E has self-intersection -1. By Fujita [6, Lemma 7.6], the fiber F is linear.

The components of this fiber can be contracted successively to give a \mathbb{P}^1-bundle with two sections, which we can call 0 and ∞. On each trivialization of this bundle we have a k^*-action. Since the sections do not intersect after the trivializations have been glued together, the transition functions are multiplication by a scalar. These commute with the multiplication action of k^*, proving that there is a k^*-action on the \mathbb{P}^1-bundle that leaves the two sections invariant. We can now blow up at the two sections to reverse the blowing-down process. Any point of intersection of two irreducible components of the new singular fiber is fixed for the k^*-action. Hence, the action extends to the blow-up \bar{V}. This proves that the surface V is a graded domain, in which case we know the conjecture to be true by Theorem 2.2. This completes the proof of Lemma 3.5.

4. Proof of Theorem 1.2(2)

Lemma 4.1. Let V be a normal projective surface. If the tangent bundle of V^0 is trivial, then $\tilde{\kappa}(V^0) \leq 0$.

Proof. Let p_1, p_2, \ldots, p_r be the singular points of V. Let $\pi : M \rightarrow V$ be a minimal resolution with the exceptional divisor $E = \pi^{-1}\{p_1, \ldots, p_r\}$. Let K be the canonical divisor of M.

We claim that $K \cdot E_i \geq 0$ for all components E_i of E. Suppose $K \cdot E_i < 0$ for some E_i. By the adjunction formula, $(E_i^2 + E_i \cdot K)/2 + 1 \geq 0$; this forces $E_i^2 = -1$. This contradicts the assumption that the resolution π is minimal. Thus, $K \cdot E_i \geq 0$. Since E has a negative-definite intersection form, we deduce that K is a negative divisor supported on E. Thus, $-K \geq 0$ and $-K \cdot E_i \leq 0$. If K is equivalent to the zero divisor, then p is a rational double point; in that case, by Theorem 2.2 the tangent bundle of V^0 cannot be trivial. Hence, $-K \geq Z$, where Z is the fundamental cycle of E. Therefore, the support of K is the union of all the components of E. We perform further blow-ups on M,

$$\pi_1 : M_1 \rightarrow M,$$

so that $E_{M_1} := \pi_1^{-1}(E)$ is an SNC divisor and π_1 is minimal with respect to this property. Note that K_{M_1} is negative, and the support of K_{M_1} contains $|\pi_1^{-1}(E)|$. Hence, $K_{M_1} + E_{M_1} \leq 0$. If $K_{M_1} + E_{M_1} < 0$, then $\tilde{\kappa}(V^0) = -\infty$. If $K_{M_1} + E_{M_1} = 0$, then $\tilde{\kappa}(V^0) = 0$. \hfill \Box

In view of the above lemma, it is enough to verify the conjecture for the cases $\tilde{\kappa}(V^0) = 0$ and $\tilde{\kappa}(V^0) = -\infty$.

We also have the following lemma.

Lemma 4.2. Let V be a normal projective surface with $\tilde{\kappa}(V^0) \leq 0$. If the tangent bundle of V^0 be trivial, then V has at most two singularities.

Proof. The canonical bundle of V^0 is trivial because its tangent bundle is trivial. Thus, a canonical divisor of V is supported on $E = \pi^{-1}\{p_1, p_2, \ldots, p_n\}$, where p_i are the singular points of V and

$$\pi : \tilde{V} \rightarrow V$$
is a minimal resolution. We know that the support of K contains E since $K < 0$ and $-K \geq Z$. Thus, $\kappa(V) = -\infty$. Hence, we have a \mathbb{P}^1-fibration on V. Let l be a general fiber of the \mathbb{P}^1-fibration. By the adjunction formula, $K \cdot l = -2$. We claim that E has at least one irreducible component that is not contained in any fiber. For, if this is false, then we would have $K \cdot l = 0$ since K is supported on E. But $K \cdot l = -2$. This contradiction proves the claim. Now E has components that are not contained in any fiber. Hence, there can be at most two such components of E that are horizontal. Any connected component of E that lies entirely in a fiber contracts to a rational double point. Such a singularity cannot exist because the tangent bundle of V_0 is trivial. Hence, every connected component of E has a component that is horizontal to the \mathbb{P}^1-fibration. It follows that the number of singularities is at most 2.

Since the tangent bundle of V^0 is trivial, V^0 cannot contain a smooth projective rational curve. Indeed, if Δ is a smooth projective rational curve in V^0, then it cannot have positive or zero self-intersection as it would violate the adjunction formula. If the self-intersection is negative, then by the adjunction formula this self-intersection is an even number. In this case, the curve is contractible to a rational singularity. This is not possible by Theorem 2.2.

We now state a proposition proved in [25, §6.2] about curves with negative self-intersection. The proof of this result assumes $k = \mathbb{C}$. Using complete local rings and a suitable application of the Lefschetz Principle, then, Lemma 4.4, which uses this result, is valid for any algebraically closed field of characteristic 0.

Theorem 4.3. Suppose that p is an isolated singularity of V and $\pi : M \to V$ is the minimal resolution, $\pi^{-1}(p) = E$ is a non-singular curve of genus g and $E \cdot E < 4 - 4g$. Let N be the normal bundle of E in M. Then there is a neighborhood (in the complex topology) U of E in M and a neighborhood U' of E in the total space of N and an analytic isomorphism $\sigma : U \to U'$, such that σ is the identity on E.

Using Theorem 4.3, we strengthen Lemma 4.2 as follows.

Lemma 4.4. With the hypothesis as in Lemma 4.2, the surface V can have at most one singularity.

Proof. Suppose that p_1 and p_2 are two distinct singular points. Let $E = E_1 \cup E_2$. From the arguments in the proof of Lemma 4.2, it follows that each E_i contains a unique component which is a cross section for the \mathbb{P}^1-fibration on X. It follows for $i = 1, 2$ that the part of E_i contained in a singular fiber is connected.

Claim 4.5. The divisors E_1 and E_2 do not contain any components that are vertical to the \mathbb{P}^1-fibration.

Suppose that F is a singular fiber of the \mathbb{P}^1-fibration that contains a component of E_1 (a similar proof works for E_2). Then F is reducible and every component of F has negative self-intersection. Now E_1 and E_2 are disjoint and the fibers of the fibration are connected. The intersection form on a fiber cannot be negative definite. Hence, there exists a smooth rational curve h, not contained in E_1, E_2, such that $h \subset F$ and $h \cdot E_1 \neq 0$ or $h \cdot E_2 \neq 0$. That cannot exist a complete smooth rational curve on V^0. Hence, any component h' of F must meet at least one of E_1, E_2.

For the proof of Claim 4.5, we need the following.

Claim 4.6. The fiber F contains at most two rational curves h_1 and h_2 that are not contained in E.
For, if this is not true, then let \(h_1, h_2, h_3, \ldots \) be components of \(F \) that are not contained in \(E_1 \cup E_2 \). Each \(h_i \) is a \((-1)\)-curve. Let \(h_1 \) meet a component of \(E_1 \) whose coefficient in \(K \) is \(-a\), where \(a > 0 \). Then by the adjunction formula, we deduce \(h_1 \cdot h_1 = -1 \) (since \(h_1 \cdot h_1 < 0 \)). This also proves that \(h_1 \) cannot meet both \(E_1, E_2 \). Finally, by connectedness of \(F \) it follows that there exist \(h_i \neq h_j \) such that they meet. But then \(h_i \cup h_j \) is a full singular fiber since \((h_i + h_j) \cdot (h_i + h_j) = 0 \). This proves Claim 4.6, and also Claim 4.5 when \(F \) contains exactly two rational curves which lie outside \(E \).

Finally, suppose that there is exactly one component \(h \) outside \(E \) and inside \(F \). Again, connectedness of \(F \) implies that \(h \) meets both \(E_1 \) and \(E_2 \). As above, by the adjunction formula \(h \cdot h = 0 \). This is because \(K \cdot h = -2 \). But then \(h \) is a full fiber.

This proves Claim 4.5 that there are no vertical components in \(E \).

Because \(E \) consists of two disjoint sections both with negative self-intersection, the \(\mathbb{P}^1 \)-fibration is not a bundle. This is because it is well known that on a \(\mathbb{P}^1 \)-bundle there is at most one curve that has a negative self-intersection. By an argument similar to the one above, we see that every singular fiber is a union of two rational curves with self-intersection \((-1)\), meeting each other transversally. Let \(E_1^2 = -m \) and \(E_2^2 = -n \). For every singular fiber, we contract the \((-1)\)-curve meeting \(E_2 \). In the minimal model, \(E_1^2 = -m \) and \(E_2^2 = m \), where \(E_2 \) is the image of \(E_2 \). This can be seen by writing \(E_2 \) as \(\theta_1 \mathcal{E}_1 + \theta_2 f \).

We claim that the genus of \(E_1 \) (and hence also of \(E_2 \)) is at most 1. We know that \(K + E \leq 0 \), where \(E \) is supported on \(E_1 \cup E_2 \). If \(K + E = 0 \), then \(K = -E_1 - E_2 \). As \(E_1 \cdot E_2 = 0 \), by the adjunction formula \(E_1 \) is an elliptic curve. If \(K + E < 0 \), then \(K = -aE_1 - bE_2 \), where \(a, b \) are positive integers. By the adjunction formula, we have \((E_2^2 + E_2(-aE_1 - bE_2))/2 + 1 \geq 0, E_2^2 > 0 \). Thus, the genus of \(E_2 \) is at most 1.

If the genus of \(E_1 \) and \(E_2 \) is 0, then the two singularities are rational, which is not possible by Theorem 2.2.

Finally, \(E_1 \) and \(E_2 \) cannot have genus 1. Indeed, if \(E_1 \) is a smooth elliptic curve, then by Theorem 4.3 we can embed a neighborhood \(U \) of \(E_1 \) in the normal bundle of \(E_1 \). The normal bundle of \(E_1 \) has a \(k^* \)-action because its completion has two disjoint sections. The tangent bundle of \(U - E_1 \) inside the normal bundle is trivial, hence the tangent bundle of the complement of \(E_1 \) in the normal bundle is trivial. But the completion of the normal bundle has two disjoint sections and hence, by an argument similar to that in Lemma 3.2, the completion has a \(k^* \)-action which leaves the two sections fixed, hence the coordinate ring of the normal bundle is a positively graded domain. Now \(E_1 \) is a curve with negative self-intersection in the normal bundle which can be contracted to a singularity. By Theorem 2.2(1), the tangent bundle of the complement of \(E_1 \) cannot be trivial, proving the claim.

\[\square \]

5. Proof of assertion (3) of Theorem 1.2

In this section, we will prove the following lemma.

Lemma 5.1. Let \(V \) be a projective surface over \(k \) such that

(1) The surface \(V^0 \) has a trivial tangent bundle and
(2) The logarithmic Kodaira dimension of \(V^0 \) is 0.

Then \(V \) is smooth.

By the results in the previous section, we know that if \(V \) is singular, then there is a unique singular point, which we will denote by \(p \), of \(V \). Let \(\tilde{V} \to V \) be a resolution of the singularity \(p \) such that \(\pi^{-1}(p) = E \) to be the exceptional divisor \(E \) is SNC.
To prove that V is smooth, we have to consider the following two cases.

1. The bark of E satisfies: $\text{Bk}(E) = N$.
2. The bark of E satisfies: $\text{Bk}(E) \neq N$.

Here N is the negative part of $K + D$.

In the case when $\text{Bk}(E) \neq N$, there is a (-1)-curve L on V, not contained in E, such that L meets a unique rational twig of E transversally in one point. We contract L and any other (-1)-curve that arises in the image of \overline{V} as a result and that plays the role of L. Continuing this process, we are reduced to the case when $\text{Bk}(E) = N$.

We may thus assume $\text{Bk}(E) = N$.

We now state a claim whose proof we postpone till the end of this section.

Claim 5.2. The divisor E is either a smooth elliptic curve or a loop of rational curves.

We will show that even the above two possibilities can be ruled out, thus proving that V is smooth.

The divisor E cannot be an elliptic curve. For otherwise, by Theorem 4.3, a small Euclidean neighborhood of E in \overline{V} is biholomorphic to a neighborhood of E in the total space P of the normal bundle of E in \overline{N}. Then $P - E$ has trivial tangent bundle. After contracting the zero-section of the normal bundle, we get a positively graded affine surface such that its smooth locus has a trivial tangent bundle. This contradicts Theorem 2.2(1).

If E is a loop of rational curves, then it contracts to a cuspidal singularity. It was proved by Neumann and Wahl [19, Proposition 4.1] that, given a germ of cuspidal singularity (W, q), there exists a germ of a hypersurface cuspidal singularity $(\overline{W}, \overline{Q})$ with a finite map $(\overline{W}, \overline{Q}) \rightarrow (W, q)$ which is ramified only at the singular point. Thus, we have a hypersurface singularity whose smooth locus has trivial tangent bundle. By Theorem 2.2, the surface is smooth. This is a contradiction.

We now complete this section by proving Claim 5.2.

Lemma 5.3. Let V be a normal projective surface. Assume that the tangent bundle of V^0 is trivial. Let $\pi : M \rightarrow V$ be a resolution of singularities such that the exceptional divisor E is SNC. Further assume $N = \text{Bk}(E)$, where N is the negative part of the Zariski–Fujita decomposition of $K + E$. Then $\text{Bk}(E) = \emptyset$.

Proof. Since $\kappa(V^0) = 0$, the positive part of the Zariski–Fujita decomposition is zero. Thus,

$$K \approx N - E. \quad (5.1)$$

If N is non-zero, then all the coefficients of N are positive and less than 1. The coefficients of E and K are integers. The components of E are also the support of K because the tangent bundle of V^0 is trivial. Also, because E is negative definite, the components of E are numerically independent. But the coefficients on the left-hand side of (5.1) are integers and on the right-hand side of (5.1) are fractions. This is a contradiction.

Lemmas 2.4 and 5.1 imply that when $\text{Bk}(E) = N$, each component of E is either a smooth elliptic curve or a loop of rational curves, because, for all the other possibilities in Lemma 2.4, Bk is non-empty.
6. Proof of Theorem 1.2 (4)–(6)

By Theorem 1.2(2), the surface V can have at most one singularity. Let p be the unique singular point of V. Let $\pi : W \to V$ be a resolution of the singular point p such that $E = \pi^{-1}(p)$ is an SNC divisor. Thus, $V^0 = W - E$. By hypothesis, $\bar{\kappa}(W - E) = -\infty$. Hence, we have a \mathbb{P}^1-fibration $f : W \to C$ [16, Chapter I, §3.13] and there exists an A^1-fibration on V^0 because $\bar{\kappa}(V^0) = -\infty$. Let S denote the irreducible component of E which is a cross section to f.

We prove the following.

Lemma 6.1. If C is a rational curve, then V is smooth.

Proof. If $g(C) = 0$, then the irregularity q of W is 0. Let P_g denote the geometric genus of the singularity p. By a theorem of Umezu [24, Theorem 1], $P_g(p) = 1$. The singularity p is Gorenstein, hence p is minimally elliptic. It is proved by Okuma [20, Theorem 4.3] that if (X,o) is a minimally elliptic singularity, then there exists a finite cover $(Y,o') \to (X,o)$ ramified precisely at the singularity o such that (Y,o) is a complete-intersection singularity. Because the covering is unramified outside o, the tangent bundle of $Y - o$ is also trivial. The conjecture is known to be true for complete intersections (Theorem 2.2). This completes the proof.

The case $g(C) \geq 2$. Let F be a singular fiber of the fibration f. Assume that F has a feather with multiplicity 1. Such a feather is called a reduced feather. By the negativity of the canonical divisor and the adjunction formula, we see that every feather is a (-1)-curve. On such a singular fiber with a reduced feather, we perform a contraction process as follows: because the feather is reduced, there is another (-1)-curve in F. We contract this (-1)-curve distinct from the reduced feather and continue contracting any (-1)-curves that arise till we are left with only the feather as the unique irreducible component of the fiber. Note that when a (-1)-curve different from the reduced feather is contracted, we are in effect removing from V^0 some curve. Clearly, this open subset of V^0 also has a trivial tangent bundle.

We consider two cases.

(1) Every singular fiber has a reduced feather.

(2) There is a singular fiber F such that all feathers of F are multiple.

We first consider the first case.

Case 1. We perform the contraction process on every singular fiber keeping the reduced feather till the end and denote the new ruled surface by the same symbols: $f : W \to C$. As every feather lies outside the support of the canonical divisor, the canonical divisor K_W is now supported on the section S of the ruling. By the general theory of ruled surfaces, $K_W^2 = 8(1 - g(C))$. Hence, S has negative self-intersection. Since the complement of S has trivial tangent bundle by the above remark, we only have to prove that V is smooth when $E = S$.

Lemma 6.2. If $E = S$, then V is smooth.

Remark 6.3. The proof below works even when genus $C = 1$ if $S^2 < 0$. In the following arguments, we sometimes assume the field $k = \mathbb{C}$. An application of the Lefschetz Principle will enable us to deduce the result for an algebraically closed field k of char. 0.
6.1. Proof of Lemma 6.2

Let C be an irreducible smooth projective curve of genus g, with $g \geq 1$. Let V be a vector bundle of rank 2 over C. Let

$$f : W := \mathbb{P}(V) \longrightarrow C$$

be the \mathbb{P}^1–bundle parametrizing lines in the fibers of V. Let

$$T_f \subset TW$$

be the line subbundle given by the kernel of the differential $df : T_W \longrightarrow f^*T_C$.

Line subbundles of V are in bijection with the sections of f.

We will prove the result in several steps.

Step 1. Let $L \subset V$ be a line subbundle, and let

$$\sigma : C \longrightarrow W$$

be the section corresponding to L. Let $E := \sigma(C)$ be the image. Let $Q := V/L$. The normal bundle $N_{E/W} \cong \mathcal{O}(E)|_E \cong L^* \otimes Q$. In particular,

$$(\sigma(C))^2 = \text{degree}(L^* \otimes Q).$$

This is proved in [15, Proof of Lemma 1.15].

We assume that there is a section

$$\sigma : C \longrightarrow W$$

of f such that

$$(\sigma(C))^2 < 0.$$ \hfill (6.3)

Let

$$E := \sigma(C) \subset W$$

be the divisor in (6.3). Note that E is identified with C using the map σ.

Let

$$L \subset V$$

be the line subbundle corresponding to the section σ in (6.3). We have a short exact sequence of vector bundles

$$0 \longrightarrow L \longrightarrow V \longrightarrow Q := V/L \longrightarrow 0.$$ \hfill (6.5)

From (6.2) and (6.3), we have degree $L > \text{degree } Q$.

Step 2. There is an isomorphism $T_f|E \cong N$.

To see this, we observe that $\bigwedge^2 T_W|_E \cong T_E \otimes N$. Similarly, $\bigwedge^2 T_W|_E \cong T_f \otimes T_E$. Hence, $T_f|E \cong N$.

Let K_W be the canonical line bundle of W. The complement $W \setminus E$ will be denoted by W_0.

Step 3. Assume that the restriction of K_W to W_0 is algebraically trivial. Then

$$T_E \cong L^* \otimes Q \cong N.$$
Step 4. Assume that $E^2 < 0$. Then there are no non-constant regular functions on W_0.

For this, we assume $k = \mathbb{C}$. By Grauert’s theorem, E can be contracted to a normal singular point p on a compact complex surface W'. Then $W' - p$ is biholomorphic to W_0. Any regular function on W_0 extends to W' by Hartog’s theorem, hence it has to be a constant.

Step 5. This is the most crucial step in the proof.

For the line bundle T_f,

$$\dim H^0(W, T_f) \geq g \geq 2. \quad (6.6)$$

Consider the restrictions of T_f and $\mathcal{O}_W(2)$ to any fiber of f. Both these restrictions are of degree 2. Therefore, by the see–saw theorem, there is a line bundle ζ on C such that

$$T_f = \mathcal{O}_W(2) \otimes f^*\zeta.$$

We noted in Step 2 that $(T_f)|_E = L^* \otimes Q$. The restriction of $\mathcal{O}_W(2)$ to E is $Q^\otimes 2$ after we identify C with E (see [9, Chapter V, Proposition 2.6]). Therefore, $\zeta = L^* \otimes Q^*$. So,

$$T_f = \mathcal{O}_W(2) \otimes f^*(L \otimes Q)^* \quad (6.7)$$

By the projection formula,

$$f_*T_f = f_*(\mathcal{O}_W(2) \otimes (L \otimes Q)^*) = \text{Sym}^2(V) \otimes (L \otimes Q)^*.$$

The line bundle L^2 is a subbundle of $\text{Sym}^2(V)$. Therefore,

$$K_C = L \otimes Q^* = L^2 \otimes (L \otimes Q)^* \subset \text{Sym}^2(V) \otimes (L \otimes Q)^* = f_*T_f,$$

where K_C is the canonical line bundle of C. This implies

$$H^0(C, K_C) \subset H^0(C, f_*T_f) = H^0(W, T_f).$$

But $\dim H^0(C, K_C) = g \geq 2$ (see the remark after Step 2). This completes the proof of (6.6).

Step 6. The tangent bundle T_{W_0} is not trivial.

Assume that T_{W_0} is trivial. Then the canonical line bundle K_{W_0} is also trivial. Hence, $T_C = L^* \otimes Q$ by Step 3, and also we have $g \geq 2$.

Since T_{W_0} is the trivial vector bundle, it is generated by its global sections. Since the rank of T_{W_0} is 2, from Step 4 we know

$$\dim H^0(W_0, TW_0) = 2. \quad (6.8)$$

On the other hand, from Step 4 we have

$$\dim H^0(W_0, (T_f)|_{W_0}) \geq \dim H^0(W, T_f) \geq 2. \quad (6.9)$$

Since $(T_f)|_{W_0} \subset T_{W_0}$, we have $H^0(W_0, (T_f)|_{W_0}) \subset H^0(W_0, T|_{W_0})$. Therefore, we conclude that

$$H^0(W_0, (T_f)|_{W_0}) = H^0(W_0, T|_{W_0}).$$

But this contradicts the earlier observation that $T|_{W_0}$ is generated by its global section. In view of this contradiction, the proof is complete for Case 1.
Remark 6.5. Suppose that C is an elliptic curve and V is an indecomposable rank 2 vector bundle over C with invariant $e = 0$. Let $f : W := \mathbb{P}(V) \to C$ be the corresponding \mathbb{P}^1-bundle. There is a cross section E of f such that $E^2 = 0$. It can be shown that the tangent bundle of the complement $W - E$ is trivial, $W - E$ has no non-constant regular functions and $H^1(W - E, \Omega^1) = (0)$. For the last assertion, see [18].

Finally, we deal with Case 2.

Case 2. Now there is a singular fiber F of f such that all the feathers of the fiber are multiple. Let F_1, F_2, \ldots, F_n be singular fibers such that no feather is reduced. Now contract all but one multiple fiber in each F_i so that the multiple fiber is the only (-1)-curve in F_i. Let m_1, m_2, \ldots, m_n be the multiplicities of the unique feather of each singular fiber. By the solution of Fenchel’s Conjecture due to Nielsen–Bundagaard and Fox [5] (see also [2]), there exists a curve C' and a Galois map $g : C' \to C$ which is ramified precisely at $f(F_i)$, $1 \leq i \leq n$ with ramification index m_i. The normalized fiber product $W \times_C C'$ is again a \mathbb{P}^1-fibration such that each singular fiber has at least one reduced feather. We are now reduced to Case 1.

Theorem 1.2(6) can be proved in a similar way. Because C is an elliptic curve, we can construct a finite Galois cover $C' \to C$ with prescribed ramification over only the points such that the corresponding fiber has only non-reduced feathers and take the fiber product $W \times_C C'$ (which will then be a finite etale cover of W), etc.

Acknowledgements. The authors would like to thank the referee for reading the paper carefully and making useful suggestions for improving the presentation.

References
1. J. Becker, ‘Higher derivations and integral closure’, Amer. J. Math. 100 (1978) 495–521.
2. T. C. Chau, ‘A note concerning Fox’s paper on Fenchel’s conjecture’, Proc. Amer. Math. Soc. 88 (1983) 584–586.
3. S. Druel, ‘The Zariski–Lipman conjecture for log canonical spaces’, Preprint, 2013, arXiv:1301.5910v1.
4. H. Flenner, ‘Extendability of differential forms on nonisolated singularities.’, Invent. Math. 94 (1988) 317–326.
5. R. H. Fox, ‘On Fenchel’s conjecture about F-groups’, Math. Tidsskr. B (1952) 61–65.
6. T. Fujita, ‘On the topology of non-complete algebraic surfaces’, J. Fac. Sci., Univ. Tokyo, Sect. 1 A, Math. 29 (1982) 503–566.
7. P. Graf, ‘An optimal extension theorem for 1-forms and the Lipman–Zariski conjecture’, Preprint, 2013, arXiv:1301.7315.
8. R. V. Gurjar and M. Miyanishi, ‘On the Jacobian conjecture for \mathbb{Q}-homology planes’, J. reine angew. Math. 516 (1999) 115–132.
9. R. Hartshorne, Algebraic geometry. Graduate Texts in Mathematics 52 (Springer, Berlin, 1997).
10. M. Hochster, ‘The Zariski–Lipman conjecture in the graded case’, J. Algebra 47 (1977) 411–424.
11. S. Iitaka, Algebraic geometry: An introduction to the birational geometry of algebraic varieties (Springer, Berlin, 1971).
12. R. Kållström, ‘The Zariski–Lipman conjecture for complete intersections’, J. Algebra 337 (2011) 169–180.
13. Y. Kawamata, ‘Addition formula of logarithmic Kodaira dimensions for morphisms of relative dimension one’, Proc. Internat. Symp. on Algebraic Geometry at Kyoto, 1977 (Kinokuniya, 1978) 201–217.
14. J. Lipman, ‘Free derivation modules on algebraic varieties’, Amer. J. Math. 87 (1965) 874–898.
15. M. Maruyama, On classification of ruled surfaces, Kyoto University, Lectures in Mathematics 36 (Kinokuniya, Tokyo, 1970).
16. M. Miyanishi, Theory of non-complete algebraic surfaces, Lecture Notes in Mathematics 857 (Springer, Berlin, 1981).
17. M. Miyanishi, Open algebraic surfaces, CRM Monograph Series 12 (American Mathematical Society, Providence, RI, 2001).
18. N. Mohan Kumar, ‘Affine-like surfaces’, J. Algebraic Geom. 2 (1993) 689–703.
19. W. D. Neumann and J. Wahl, ‘Universal abelian covers of quotient-cusps’, Math. Ann. 326 (2003) 75–93.
20. T. Okuma, ‘Universal abelian covers of certain surface singularities’, Math Ann. 334 (2006) 753–773.
21. E. Platte, ‘Ein elementarer Beweis des Zariski-Lipman-Problems für graduierte analytische Algebren’, Arch. Math. 31 (1979) 143–145.
22. G. Scheja and U. Storch, ‘Differentielle Eigenschaften der Lokalisierungen analytischer Algebren’, Math. Ann. 197 (1972) 137–170.
23. D. van Straten and J. Steenbrink, ‘Extendability of holomorphic differential forms near isolated hypersurface singularities’, Abh. Math. Sem. Univ. Hamburg 55 (1985) 97–110.
24. Y. Umezu, ‘On normal projective surfaces with trivial dualizing sheaf’, Tokyo J. Math. 4 (1981) 343–354.
25. P. Wagreich, ‘Elliptic singularities of surfaces’, Amer. J. Math. 92 (1970) 419–454.

Indranil Biswas, R. V. Gurjar
School of Mathematics
Tata Institute of Fundamental Research
Homi-Bhabha Road
Mumbai 400005
India
indranil@math.tifr.res.in
gurjar@math.tifr.res.in

Sagar U. Kolte
School of Mathematics
Tata Institute of Fundamental Research
Homi-Bhabha Road
Mumbai 400005
India
sagar@math.tifr.res.in

Current address:
School of Mathematics
Korea Institute for Advanced Study
Seoul 130-722
Korea
sagar@kias.re.kr