Confused web-services for biomedical document annotation

Sérgio Matos

Abstract

The need to efficiently find and extract information from the continuously growing biomedical literature has led to the development of various annotation tools aimed at identifying mentions of entities and relations. Many of these tools have been integrated in user-friendly applications facilitating their use by non-expert text miners and database curators. In this paper we describe the latest version of Neji, a web-services ready text processing and annotation framework. The modular and flexible architecture facilitates adaptation to different annotation requirements, while the built-in web services allow its integration in external tools and text mining pipelines. The evaluation of the web annotation server on the technical interoperability and performance of annotation servers track of BioCreative V.5 further illustrates the flexibility and applicability of this framework.

Keywords: Named entity recognition, Biomedical text mining, Web-services
recognition service configured for annotating eight concept types through five dictionaries and three machine-learning models.

Methods

The web services platform was built over Neji, providing a RESTful API that facilitates the use of the framework’s document annotation functionalities and an easy and intuitive web interface to define and manage annotation services. The distributed software package includes an embedded web server, easing its deployment.

Neji

Neji is an open source framework for biomedical concept recognition built around four crucial characteristics: modularity, scalability, speed and usability [9]. Neji can be used as a software library or as a tool through its command line interface (CLI). It integrates several state-of-the-art methods for biomedical natural language processing (NLP), namely methods for sentence splitting, tokenization, lemmatization, POS, chunking and dependency parsing. The concept recognition tasks are performed using dictionary matching or machine learning techniques with normalization through dictionaries. The machine learning component makes use of MALLET [10] for training and applying conditional random fields (CRF) models [11], and provides simple regular-expression based methods for feature extraction which can be easily modified or extended. Dictionary-matching is based on efficient regular expression matching with Deterministic Finite Automatons (DFAs), using the implementation in [12]. Neji dictionaries are tab-separated files with two fields, as illustrated by the example in Listing 1: concept identifier, following the format "source:identifier:type:group", and the list of synonyms for that concept, concatenated with a pipe ("|"). The semantic types and groups may follow a reference taxonomy such as the UMLS Metathesaurus or be user-defined. This simple format facilitates the creation of custom dictionaries, which can be compiled from any domain vocabulary, ontology or other lexical resource according to the user needs. The composed identifier facilitates grouping or filtering the matched terms at various levels: by concept identifier, by semantic type or by semantic group.

The architecture of Neji allows users to configure the processing of documents according to their specific objectives and goals, for example by simply combining existing or new modules for reading, processing and writing data, or by selecting the appropriate dictionaries or machine learning models according to the concept types of interest. Input (Reader) and output (Writer) modules offer off-the-shelf support for several formats including the most popular ones in biomedical text mining, such as IeXML, Pubmed XML, A1, CONLL and BioC, and facilitate extension to other formats.

The latest version of the framework includes various additions and improvements, namely:

- Neji web server—allows easy creation and management of several annotation services and provides a REST API for each service
- Machine learning module—now integrates Gimli [13] for training CRF models, eliminating the need to use a separate tool
- New input and output formats, including BioC and PDF files
- Improvements in performance, stability, and SDK usability

Neji web services

The Neji web services platform facilitates the use and access to Neji functionalities by providing an easy and intuitive web solution to manage and use annotation services. The RESTful API allows developers and researchers to send their input documents and receive the annotation results. Besides Neji features, the web services platform offers also some other features:

- Management of concurrent annotation services. Allows an admin to create, edit and delete one or more annotation services;
- Flexible configuration of annotation services. Each service has its own resources (dictionaries and ML models) and properties;
- Pre-loading of resources: When a resource is added to the server, it is immediately loaded into the server memory. Therefore, on an annotation request it is not

Listing 1 Example of a dictionary file.

```
UMLS: C0000744: T047: DISO: acanthocytosis | bassen kornzweig disease |
UMLS: C0001342: T047: DISO: acute periodontitis | acute pericementitis
```
needed to wait for the load of any resource because they are already ready to be used, reducing the annotation time;

- Simple and intuitive user interface for management and annotation;
- Cross-platform and cross-browser support.

Figure 1 illustrates the architecture of Neji web services platform. A light database is used to store the web service configurations and the dictionary and machine learning resources available in the server. Figure 2 shows the data structure that stores this information.

In the provided web interface, an administrator and a common user have different permissions. An administrator can add, edit and remove resources from the server, create and manage new annotation services, and annotate documents using the provided web services or annotation interface. A common user can not add resources or create new annotation services, but can use any of the provided annotation services, using both the web services and annotation interface.

Resources

In the dictionaries page (Fig. 3) administrators can see a list of all dictionaries loaded in the server. For each dictionary the following information is provided: name, original file name, list of services that use it in the annotation process and list of models that use it in the normalization process. New dictionaries can be added and deleted in this page. When a new dictionary is added, the dictionary file is uploaded to the server and assigned with the name provided by the user.

Similarly, in the machine-learning (ML) models page (Fig. 4) administrators can see a list of all loaded ML models in the server. For each model the following information is provided: name, original file name, list of normalization dictionaries and list of services that use it in the annotation process. New models can be trained with Neji, through the programming API or command line interface [9] and added to the server. When a new model is added, the model files are uploaded to the server and associated with the selected normalization dictionaries.

Services

The services page allows administrators to see and edit all active services running in the server. To add a new annotation service an administrator needs to select the dictionaries and models to be used in the annotation process, selected from the list of resources available in the server, and define the level of linguistic parsing (from tokenization to dependency parsing) according to the type of features used by the ML models selected (Fig. 5). Additionally, the service name, an image or logo to identify the service, and if the annotation result should include the annotations that could not be normalized to an identifier, should be defined. Since the dictionary and ML normalization add a semantic group identifier to the annotations, an optional mapping is provided to map the resulting group identifiers to the desired name. One a new service is set up, it it automatically started and available for use.
Annotation

The annotation service page can be accessed by anyone. These are accessed through a general hyperlink, composed by the website domain and the service name. For example, if the name of the service is 'Chemicals', then the hyperlink for that page is https://neji-web-services-domain.com/annotate/Chemicals. The annotation page, based on the interface of Becas annotation tool [14], is presented in Fig. 6 and contains two major areas:

- Semantic groups control: allows the selection of the entity groups that should be recognized and annotated. One semantic group needs to be selected in order to perform the annotation. Once the annota-
tion is performed, these buttons toggle the highlighting of each semantic group;

- Text box and input/output controls: allows selecting a PubMed article identifier, uploading a file, or pasting text to annotate, and displays the annotation result. The annotation results can be exported to a number of formats.

Web services
The developed RESTful API offers a set of web services that allow an easy and fast annotation of plain texts and PDF documents.

Annotate text web service The annotate text web service can be accessed through an endpoint like https://neji-web-domain.com/annotate/[servicename]/annotate/, where [service name] is the name of the service that should be used to annotate the text. Table 1 contains the service parameters. The response is a JSON object structured as shown in Table 2.

Annotate PDF document web service The annotate PDF document web service can be accessed through an endpoint like https://neji-web-domain.com/annotate/pdf/[servicename]/annotate/, where [service name] is the name of the service that should be used to annotate the text. Table 3 contains the service parameters.

Export web service Export web service can be accessed through a endpoint like https://neji-web-domain.com/annotate/[servicename]/export/, or https://neji-web-domain.com/annotate/pdf/[servicename]/export/ for PDF documents, where [service name] is the name of the service that should be used to annotate the text. The service parameters are the same as for the corresponding annotation service, plus an additional parameter format (type string) to identify the output format. The response are the annotation results in the selected output format.

Extract PDF text web service An additional service is provided through an endpoint like https://neji-web-domain.com/annotate/pdf/extract/ to extract the full text of a PDF file, which is the only service parameter.

Figure 7 shows an example of using the plain text annotation web service.

These functionalities are also available through the programming API, provided by the developed Java library and Python module. Listing 2 presents an example of using the Java library to annotate a PDF document.

Listing 2 Snippet of using the Neji Java library to annotate a PDF document.

```java
ServicesClient client = new ServicesClient(url, port);

String service = "Chemicals";
File pdfFile = new File("pdf_document.pdf");
List<String> groups = new ArrayList();
groups.add("CHEM");

JSONObject response = client.annotatePdf(service, pdfFile, groups);
```
We evaluated the flexibility and applicability of Neji web services in the technical interoperability and performance of annotation servers task [8]. For this, we developed four new writer modules to support all the output formats proposed in the task, namely TSV, JSON, BioC and BioC JSON. Additionally, the REST API was extended and adapted according to the task requirements.

An annotation service was configured that allows annotating the following concept types: Anatomic Component, Diseases, Subcellular structure, Tissue and Organ, Chemicals and Genes/Proteins, through machine learning models trained on the BioCreative V CHEMDNER corpus [15], and Mutations, using an ML model trained on the tmVar corpus [16]. The server accepts raw text as input, as well as PubMed and PubMedCentral identifiers, which are used for obtaining the documents to be processed. The output format and annotated concept types can be configured by using the custom API parameters, as shown below. By default, all concept types are returned.

TIPS task

![Fig. 5](image-url) Neji web services new service form. A simple form is provided to define new annotation services using the dictionary and ML models previously added to the server.

and Organism, through dictionaries compiled from the UMLS Metathesaurus, as described in [9].
Results and discussion

Neji has been evaluated on several corpora, covering different concept types [9, 17, 18]. Table 4 shows a summary of the concept identification performance.

The annotation service for participating in the TIPS task was configured to run with 23 threads and was deployed on a Docker container with 32 GB of memory running on a server with 24 processing cores.

We performed a simple evaluation in terms of processing times by submitting several requests to the server, with different number of documents. We followed the procedure defined for the TIPS task [8], in which the document text is obtained from the BeCalm abstract and patent servers, and measured the time since the request was submitted to the Neji annotation service until the annotation results were returned. We observed average processing times ranging from 11.5 s for abstracts and 9.35 s for patents when annotating a single document, to 0.347 s per abstract and 0.173 s per patent when annotating sets of 1000 documents (Table 5).

We also measured the processing time for documents sent directly to the annotation server, that is, without request to the BeCalm document servers. In these tests, the full Craft corpus [26], composed of 67 full text documents containing more than 560,000 tokens in total, was annotated in 15 minutes, which corresponds to an average processing time of 13.55 s per document and a processing speed over 600 tokens per second. Documents were sent to the annotation service one at a time and as raw text.
Various biomedical information extraction tools have been proposed and made publicly available to the community, some of which are offered as open-source. Nevertheless, there are still difficulties when these tools need to be used by non-experts or integrated in text mining pipelines. Furthermore, while some web-services are available that allow annotating texts without the need for complex setups or computational resources [14, 27], the fact that these are centrally managed constitutes a limiting factor for some types of users.

This paper describes an open-source solution, part of the Neji framework for biomedical text processing and concept recognition, for easily configuring, deploying, and using text annotation services. Using the provided framework, expert and non-expert users can easily add their own dictionaries, following a simple tabular structure, and trained models, and configure web services that use any combination of these resources for annotating text, export the results to a number of formats or integrate the services in their annotation pipelines. Extensibility of the solution is provided by the modular architecture of Neji, that serves as processing backend.

Neji achieves high annotation accuracy for different semantic groups, as evaluated in several standard corpora and demonstrated in previous works [9, 17, 18]. The web services were evaluated through participation

Table 4 Neji concept recognition results on a variety of corpora and concept types

Corpus	Concept type	F-score (%)	Method
CRAFT [19]	Species [9]	95	D
	Cell [9]	92	D
	Gene and protein [9]	76	ML
	Chemicals [9]	65	D
	Cellular component [9]	83	D
	Biological process and molecular function [9]	63	D
NCBI Disease [20]	Disorders [9]	85	D
Anem [21]	Anatomy [9]	82	D
BC II gene mention [22]	Gene and protein [13]	87	ML
tmVar [16]	Genetic variants [18]	86	ML
BC IV ChemdNER [15]	Chemicals [17]	87	ML
BC V5 CEMP [23, 24]	Chemicals [25]	87	ML

D dictionary; ML machine-learning

Table 5 Average processing times, in seconds, for documents obtained from the BeCalm document servers

No. documents	Abstracts	Patents
1	11.5	9.35
100	0.421	0.236
1000	0.347	0.173
in the TIPS task, achieving annotation speeds of nearly 3 abstracts per second when annotation eight different concept types using five dictionaries and three machine-learning models.

Abbreviations

CUI: command line interface; CRF: conditional random field; DFA: deterministic finite automaton; ML: machine-learning; NLP: natural language processing; TIPS: technical interoperability and performance of annotation servers.

Authors’ contributions

SM developed the work and wrote the manuscript. All authors read and approved the final manuscript.

Acknowledgements

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Availability of data and materials

Neji is available from https://github.com/BMDSoftware/neji. A working demo of the Neji web services is accessible from http://bioinformatics.ua.pt/nejiws/annotate/demo

Funding

This work was partially funded by the ERDF—European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation—COMPETE 2020 Programme, by National Funds through the FCT—Fundação para a Ciência e a Tecnologia, under project PTDC/EEI-ESS/6815/2014, and by the Integrated Programme of SR&TD “SOCA” (Ref. CENTRO-01-0145-FEDER-000010), co-funded by Centro 2020 program, Portugal 2020.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 12 July 2018 Accepted: 4 December 2018 Published online: 21 December 2018

References

1. U S National Library of Medicine (2018) Detailed indexing statistics: 1965–2017. U.S. National Library of Medicine. http://www.nlm.nih.gov/bsd/index_stats_comp.html
2. Yeh AS, Hirschman L, Morgan AA (2003) Evaluation of text data mining for database curation: lessons learned from the KDD Challenge Cup. Bioinformatics 19(suppl 1):i331–i339
3. Rebolzh-Schuhmann D, Kirsch H, Couto F (2005) Facts from text—Is text mining ready to deliver? PLoS Biol 3(2):e65
4. Neves M, Leser U (2012) A survey on annotation tools for the biomedical literature. Brief Bioinform 15(2):327–340
5. Arghiri CN, Carterette B, Cohen KB, Krallinger M, Wilbur WJ, Fey P et al (2013) An overview of the BioCreative 2012 workshop track III: interactive text mining task. In: Database 2013:bas056
6. BioCreative, critical assessment of information extraction systems in biology. http://www.biocreative.org
7. Hirschman L, Yeh A, Blaschke C, Valencia A (2005) Overview of BioCreative: critical assessment of information extraction for biology. BMC Bioinf 6(Suppl 1):S1
8. Pérez-Pérez M, Pérez-Rodríguez G, Blanco-Migüez A, Fdez-Riverola F, Valencia A, Krallinger M et al (2018) Next generation community assessment of biomedical entity recognition web servers. metrics, performance, interoperability aspects of BeCalm. J Cheminform (in press)
9. Campos D, Matos S, Oliveira JL (2013) A modular framework for biomedical concept recognition. BMC Bioinform 14(1):281
10. McCallum AK (2002) Mallet: a machine learning for language toolkit. http://mallet.cs.umass.edu. Accessed 28 Nov 2018
11. Lafferty JD, McCallum A, Pereira FCN (2001) Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proceedings of the eighteenth international conference on machine learning. Morgan Kaufmann Publishers Inc, San Francisco, CA, USA, pp 282–289
12. Gerner M, Nenadic G, Bergman CM (2010) LINNAEUS: a species name identification system for biomedical literature. BMC Bioinform 11(1):85
13. Campos D, Matos S, Oliveira JL (2013) Glimp: open source and high-performance biomedical name recognition. BMC Bioinform 14(1):54
14. Nunes T, Campos D, Matos S, Oliveira JL (2013) BeCAS: biomedical concept recognition services and visualization. Bioinformatics 29(15):1915–1916
15. Krallinger M, Rabal O, Leitner F, Vazquez M, Salgado D, Lu Z et al (2015) The CHEMDNER corpus of chemicals and drugs and its annotation principles. J Cheminform 7(1):52
16. Wei CH, Harris BR, Kao HY, Lu Z (2013) tmVar: a text mining approach for extracting sequence variants in biomedical literature. Bioinformatics 29(1):1433–1439
17. Campos D, Matos S, Oliveira JL (2015) A document processing pipeline for annotating chemical entities in scientific documents. J Cheminform 7(1):1
18. Matos S, Campos D, Pinho R, Silva RM, Mort M, Cooper DN et al (2016) Mining clinical attributes of genomic variants through assisted literature curation in Ega. In: Database 2016:baw096
19. Bada M, Eckert M, Evans D, Garcia K, Shipley K, Stitnik D et al (2012) Concept annotation in the CRAFT corpus. BMC Bioinform 13(1):1
20. Doğan RI, Leaman R, Lu Z (2014) NCBi disease corpus: a resource for disease name recognition and concept normalization. J Biomed Inform 47:1–10
21. Ohta T, Pyskal S, Tsuji J, Ananiadou S (2012) Open-domain anatomical entity mention detection. In: Proceedings of the workshop on detecting structure in scholarly discourse. Association for Computational Linguistics, pp 27–36
22. Smith L, Tanabe LK, nee Ando RJ, Kuo CJ, Chung IF, Hus CN et al (2008) Overview of BioCreative II gene mention recognition. Genome Biol 9(2):S2
23. Pérez-Pérez M, Rabal O, Pérez-Rodríguez G, Vazquez M, Fdez-Riverola F, Oyarzabal J et al (2017) Evaluation of chemical and gene/protein entity recognition systems at BioCreative V. 5: the CEMP and GPRO patents tracks. In: Proceedings of the BioCreative V. 5 challenge evaluation workshop, pp 11–18
24. Rabal O, Pérez-Pérez M, Pérez-Rodríguez G, Vazquez M, Fdez-Riverola F, Oyarzabal J et al (2018) Comparative assessment of named entity recognition strategies on medicinal chemistry patents for systems pharmacology. J Cheminform (in press)
25. Santos A, Matos S (2017) Neji: recognition of chemical and gene mentions in patent texts. In: Proceedings of the BioCreative V. 5 challenge evaluation workshop, pp 54–60
26. Verspoor K, Cohen KB, Lanfranchi A, Warner C, Johnson HL, Roeder C et al (2012) A corpus of full-text journal articles is a robust evaluation tool for revealing differences in performance of biomedical natural language processing tools. BMC Bioinform 13(1):207
27. Wei CH, Kao HY, Lu Z (2013) PubMed: a web-based text mining tool for assisting biocuration. Nucleic Acids Res 41(W1):WS18–WS22

Ready to submit your research? Choose BMC and benefit from:

- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more: biomedcentral.com/submissions