The Natural Operators Similar to the Twisted Courant Bracket One

Włodzimierz M. Mikulski

Abstract. Given natural numbers \(m \geq 3 \) and \(p \geq 3 \), all \(\mathcal{M}_f^m \)-natural operators \(A_H \) sending \(p \)-forms \(H \in \Omega^p(M) \) on \(m \)-manifolds \(M \) into bilinear operators \(A_H : (\mathcal{X}(M) \oplus \Omega^1(M)) \times (\mathcal{X}(M) \oplus \Omega^1(M)) \to \mathcal{X}(M) \oplus \Omega^1(M) \) transforming pairs of couples of vector fields and 1-forms on \(M \) into couples of vector fields and 1-forms on \(M \) are founded. If \(m \geq 3 \) and \(p \geq 3 \), then that any (similar as above) \(\mathcal{M}_f^m \)-natural operator \(A \) which is defined only for closed \(p \)-forms \(H \) can be extended uniquely to the one \(A \) which is defined for all \(p \)-forms \(H \) is observed. If \(p = 3 \) and \(m \geq 3 \), all \(\mathcal{M}_f^m \)-natural operators \(A \) (as above) such that \(A_H \) satisfies the Leibniz rule for all closed 3-forms \(H \) on \(m \)-manifolds \(M \) are extracted. The twisted Courant bracket \([−, −]_H\) for all closed 3-forms \(H \) on \(m \)-manifolds \(M \) gives the most important example of such \(\mathcal{M}_f^m \)-natural operator \(A \).

Mathematics Subject Classification. 58A 99, 58A 32.

Keywords. Natural operator, Twisted Courant bracket, Leibniz rule.

1. Introduction

The “doubled” tangent bundle \(T \oplus T^* \) over \(m \)-dimensional manifolds (\(m \)-manifolds) is full of interest because it has the natural inner product, and the Courant bracket, see [1]. Besides, generalized complex structures are defined on \(T \oplus T^* \), generalizing both (usual) complex and symplectic structures, see e.g. [3, 4].

In Sect. 2, the description from [2] of all \(\mathcal{M}_f^m \)-natural bilinear operators

\[
A : (\mathcal{X}(M) \oplus \Omega^1(M)) \times (\mathcal{X}(M) \oplus \Omega^1(M)) \to \mathcal{X}(M) \oplus \Omega^1(M),
\]

transforming pairs of couples of vector fields and 1-forms on \(m \)-manifolds \(M \) into couples of vector fields and 1-forms on \(M \) will be shortly cited. The most important example of such \(\mathcal{M}_f^m \)-natural bilinear operator \(A \) is given by the Courant bracket \([−, −]_H\) for all closed 3-forms \(H \) on \(m \)-manifolds \(M \) gives the most important example of such \(\mathcal{M}_f^m \)-natural operator \(A \).

This Courant bracket was used in [1] to define the concept of Dirac structures being hybrid of both symplectic and Poisson structures.
In Sect. 2 we also deduce that the “trivial” Lie algebroid $(TM \oplus T^*M, 0, 0)$ is the only $\mathcal{M}f_m$-natural Lie algebroid $(EM, [[-,-]], a)$ with $EM := TM \oplus T^*M$.

In Sect. 3, using essentially the results from [2], if $m \geq 3$ and $p \geq 3$, we find all $\mathcal{M}f_m$-natural operators A sending p-forms $H \in \Omega^p(M)$ on m-manifolds M into bilinear maps

$$A_H : (\mathcal{X}(M) \oplus \Omega^1(M)) \times (\mathcal{X}(M) \oplus \Omega^1(M)) \to \mathcal{X}(M) \oplus \Omega^1(M).$$

The most important example of such A is given by the H-twisted Courant bracket $[-,-]_H$ for all 3-forms H on m-manifolds M, see Example 3.2. Properties of $[−,−]_H$ (as the Leibniz rule for closed 3-forms H) were used in [7,8] to define the concept of exact Courant algebroid.

In Sect. 4, we observe that if $m \geq 3$ and $p \geq 3$, then any (similar as above) $\mathcal{M}f_m$-natural operator A which is defined only for closed p-forms H can be extended uniquely to the one A which is defined for all p-forms H.

In Sect. 5, if $p = 3$ we extract all $\mathcal{M}f_m$-natural operators A as above satisfying the Leibniz rule

$$A_H(\rho_1, A_H(\rho_2, \rho_3)) = A_H(A_H(\rho_1, \rho_2), \rho_3) + A_H(\rho_2, A_H(\rho_1, \rho_3)), $$

for any closed $H \in \Omega^3(M)$, $\rho_1, \rho_2, \rho_3 \in \mathcal{X}(M) \oplus \Omega^1(M)$ and $M \in \text{obj}(\mathcal{M}f_m)$.

From now on, $(x^i) (i = 1, \ldots, m)$ denote the usual coordinates on \mathbb{R}^m and $\partial_i = \frac{\partial}{\partial x^i}$ are the canonical vector fields on \mathbb{R}^m.

All manifolds considered in this paper are assumed to be finite dimensional second countable Hausdorff without boundary and smooth (of class C^∞). Maps between manifolds are assumed to be smooth (of class C^∞)

2. The Natural Bilinear Operators Similar to the Courant Bracket

The general concept of natural operators can be found in the fundamental monograph [5]. In the paper, we need two particular cases of natural operators presented in Definitions 2.1 (below) and 3.1 (in the next section).

Let $\mathcal{M}f_m$ be the category of m-dimensional C^∞ manifolds as objects and their immersions of class C^∞ as morphisms ($\mathcal{M}f_m$-maps).

Definition 2.1. A natural (called also $\mathcal{M}f_m$-natural) operator A sending pairs of couples of vector fields and 1-forms on m-manifolds M into couples of vector fields and 1-forms on M is a $\mathcal{M}f_m$-invariant family of operators (functions)

$$A : (\mathcal{X}(M) \oplus \Omega^1(M)) \times (\mathcal{X}(M) \oplus \Omega^1(M)) \to \mathcal{X}(M) \oplus \Omega^1(M),$$

for all m-manifolds M, where $\mathcal{X}(M) \oplus \Omega^1(M)$ is the vector space of couples (X, ω) of vector fields X on M and 1-forms ω on M. Such $\mathcal{M}f_m$-natural operator A is called bilinear if A is bilinear (i.e., $A(\rho^1, \cdot)$ and $A(\cdot, \rho^2)$ are linear (over the field \mathbb{R} of real numbers) functions $\mathcal{X}(M) \oplus \Omega^1(M) \to \mathcal{X}(M) \oplus \Omega^1(M)$ for any fixed $\rho^1, \rho^2 \in \mathcal{X}(M) \oplus \Omega^1(M)$) for any m-manifold M. Such $\mathcal{M}f_m$-natural operator A is called skew-symmetric if A is skew-symmetric for any m-manifold M.

The \mathcal{M}_f^m-invariance of A means that if $(X^1 \oplus \omega^1, X^2 \oplus \omega^2)$ and $(\overline{X}^1 \oplus \overline{\omega}^1, \overline{X}^2 \oplus \overline{\omega}^2)$ are φ-related by an \mathcal{M}_f^m-map $\varphi : M \rightarrow \overline{M}$ (i.e., $\overline{X}^i \circ \varphi = T\varphi \circ X^i$ and $\overline{\omega}^i \circ \varphi = T^*\varphi \circ \omega^i$ for $i = 1, 2$), then so are $A(X^1 \oplus \omega^1, X^2 \oplus \omega^2)$ and $A(\overline{X}^1 \oplus \overline{\omega}^1, \overline{X}^2 \oplus \overline{\omega}^2)$.

The most important example of such \mathcal{M}_f^m-natural bilinear operator A is given by the (skew-symmetric) Courant bracket $[-,-]^C$ for any m-manifold M.

Example 2.2. On the vector bundle $TM \oplus T^*M$ there exist canonical symmetric and skew-symmetric pairings

$$\langle X^1 \oplus \omega^1, X^2 \oplus \omega^2 \rangle_\pm = \frac{1}{2}(i_{X^2}\omega^1 \pm i_{X^1}\omega^2)$$

for any $X^1 \oplus \omega^1, X^2 \oplus \omega^2 \in \mathcal{X}(M) \oplus \Omega^1(M)$, where i is the interior derivative. Further, the (skew-symmetric) Courant bracket is given by

$$[X^1 \oplus \omega^1, X^2 \oplus \omega^2]^C = [X^1, X^2] \oplus \left(\mathcal{L}_{X^2}\omega^1 - \mathcal{L}_{X^1}\omega^2 + d\langle X^1 \oplus \omega^1, X^2 \oplus \omega^2 \rangle_-\right)$$

for any $X^1 \oplus \omega^1, X^2 \oplus \omega^2 \in \mathcal{X}(M) \oplus \Omega^1(M)$, where $[-, -]$ is the usual bracket on vector fields, \mathcal{L} is the Lie derivative and d is the exterior derivative.

Theorem 2.3 [2]. If $m \geq 2$, any \mathcal{M}_f^m-natural bilinear operator A in the sense of Definition 2.1 is of the form

$$A(\rho^1, \rho^2) = a[X^1, X^2] \oplus \left(b_1\mathcal{L}_{X^2}\omega^1 + b_2\mathcal{L}_{X^1}\omega^2 + b_3 d\langle \rho^1, \rho^2 \rangle_+ + b_4 d\langle \rho^1, \rho^2 \rangle_-\right)$$

for (uniquely determined by A) real numbers a, b_1, b_2, b_3, b_4, where $\rho^i = X^i \oplus \omega^i \in \mathcal{X}(M) \oplus \Omega^1(M)$ for $i = 1, 2$ are arbitrary, and where $\langle -, - \rangle_+$ and $\langle -, - \rangle_-$ are as in Example 2.2.

Corollary 2.4 [2]. If $m \geq 2$, any \mathcal{M}_f^m-natural skew-symmetric bilinear operator A in the sense of Definition 2.1 is of the form

$$A(X^1 \oplus \omega^1, X^2 \oplus \omega^2) = a[X^1, X^2] \oplus (b(\mathcal{L}_{X^1}\omega^2 - \mathcal{L}_{X^2}\omega^1) + cd\langle X^2 \oplus \omega^1, X^1 \oplus \omega^2 \rangle_-)$$

for (uniquely determined by A) real numbers a, b, c.

Roughly speaking, Corollary 2.4 says that if $m \geq 2$, then any \mathcal{M}_f^m-natural skew-symmetric bilinear operator A in the sense of Definition 2.1 coincides with the one given by Courant bracket $[-,-]^C$ up to three real constants.

Definition 2.5. A \mathcal{M}_f^m-natural bilinear operator A in the sense of Definition 2.1 satisfies the Leibniz rule if

$$A(\rho_1, A(\rho_2, \rho_3)) = A(A(\rho_1, \rho_2), \rho_3) + A(\rho_2, A(\rho_1, \rho_3))$$

for all $\rho_1, \rho_2, \rho_3 \in \mathcal{X}(M) \oplus \Omega^1(M)$ and all m-manifolds M.

Of course, in the case of skew-symmetric bilinear A the Leibniz rule is equivalent to the Jacobi identity $\sum_{\text{cycl}(\rho_1, \rho_2, \rho_3)} A(\rho_1, A(\rho_2, \rho_3)) = 0$. Machines
Example 2.6. The (not skew-symmetric) Courant bracket given by

\[[X^1 \oplus \omega^1, X^2 \oplus \omega^2]_0 \]

\[:= [X^1, X^2] \oplus (\mathcal{L}_{X^1} \omega^2 - i_{X^2} \omega^1), \]

where \(X^i \oplus \omega^i \in \mathcal{X}(M) \oplus \Omega^1(M) \), satisfies the Leibniz rule, see [7,8].

The Courant bracket \([-,-]_C\) from Example 2.2 does not satisfy the Leibniz rule.

Theorem 2.7 [2]. If \(m \geq 2 \), any \(\mathcal{M}_{f_m} \)-natural bilinear operator \(A \) in the sense of Definition 2.1 satisfying the Leibniz rule is one of the following ones:

\begin{align*}
A^{(1,a)}(\rho^1, \rho^2) &= a[X^1, X^2] \oplus 0, \\
A^{(2,a)}(\rho^1, \rho^2) &= a[X^1, X^2] \oplus (\mathcal{L}_{X^1} \omega^2 - i_{X^2} \omega^1), \\
A^{(3,a)}(\rho^1, \rho^2) &= [\pi \rho_1, \pi \rho_2], \\
A^{(4,a,0)}(\rho^1, \rho^2) &= a[X^1, X^2] \oplus (\mathcal{L}_{X^1} \omega^2 - i_{X^2} \omega^1),
\end{align*}

where \(a \) is an arbitrary real number, and where \(\rho^1 = X^1 \oplus \omega^1 \) and \(\rho^2 = X^2 \oplus \omega^2 \).

Corollary 2.8. If \(m \geq 2 \), the Courant bracket \([-,-]_0\) from Example 2.6 for \(m \)-manifolds \(M \) is the unique \(\mathcal{M}_{f_m} \)-natural bilinear operator \(A \) in the sense of Definition 2.1 satisfying the conditions:

(A1) \(A(\rho_1, A(\rho_2, \rho_3)) = A(\rho_1, A(\rho_2, \rho_3)) + A(\rho_2, A(\rho_1, \rho_3)), \)

(A2) \(\pi A(\rho_1, \rho_2) = [\pi \rho_1, \pi \rho_2], \)

(A3) \(A(\rho_1, \rho_1) = i_0 \delta (\rho_1, \rho_1)_+, \)

for all \(\rho_1, \rho_2, \rho_3 \in \mathcal{X}(M) \oplus \Omega^1(M) \) and all \(m \)-manifolds \(M \), where \(\langle -,- \rangle_+ \) is the pairing of Example 2.2, \(\pi : TM \oplus T^*M \to TM \) is the fibred projection given by \(\pi(v, \omega) = v \) and \(i_0 : T^*M \to TM \oplus T^*M \) is the fibred embedding \(i_0(\omega) = (0,0) \).

Consequently, if \(m \geq 2 \), then a \(\mathcal{M}_{f_m} \)-natural bilinear operator \(A \) in the sense of Definition 2.1 satisfying the conditions (A1)–(A3) satisfies the conditions:

(A4) \(\pi \rho_1 \langle \rho_2, \rho_3 \rangle_+ = \langle A(\rho_1, \rho_2), \rho_3 \rangle_+ + \langle \rho_2, A(\rho_1, \rho_3) \rangle_+, \)

(A5) \(A(\rho_1, f \rho_2) = \pi \rho_1 (f) \rho_2 + f A(\rho_1, \rho_2) \)

for all \(\rho_1, \rho_2 \in \mathcal{X}(M) \oplus \Omega^1(M) \), all \(f \in C^\infty(M) \) and all \(m \)-manifolds \(M \) (i.e., putting \(\llbracket -,- \rrbracket : A \to \ker \delta \llbracket -,- \rrbracket \) := \(E = (TM \oplus T^*M, \llbracket -,- \rrbracket, \langle -,- \rangle_+, \pi, i_0 \) in the sense of [8] for any \(m \)-manifold \(M \)).

Proof. By Theorem 2.7, the conditions (A1) and (A2) imply that \(A = A^{(1,1)} \) or \(A = A^{(2,1)} \) or \(A = A^{(3,1)} \) or \(A = A^{(4,1,0)} \). On the other hand if \(\rho_1 = X \oplus \omega, \) then \(i_0 \delta (\rho_1, \rho_1)_+ = 0 \oplus d_i X \omega \) and \(A^{(1,1)}(\rho_1, \rho_1) = 0 \oplus 0 \) and \(A^{(2,1)}(\rho_1, \rho_1) = 0 \oplus 0 \) and \(A^{(3,1)}(\rho_1, \rho_1) = 0 \oplus \mathcal{L}_X \omega \) and \(A^{(4,1,0)}(\rho_1, \rho_1) = 0 \oplus d_i X \omega \). Then \(A = A^{(4,1,0)}. \) \(\square \)

Corollary 2.9. If \(m \geq 2 \), any \(\mathcal{M}_{f_m} \)-natural Lie algebra brackets on \(\mathcal{X}(M) \oplus \Omega^1(M) \) (i.e., \(\mathcal{M}_{f_m} \)-natural skew-symmetric bilinear operator satisfying the
Lemma 2.10. \ni

The Natural Operators Similar to the Twisted Page 5 of 15

Theorem (Leibniz rule) is the constant multiple of the one of the following two Lie algebra brackets:

\[[[X^1 \otimes \omega^1, X^2 \otimes \omega^2]]_1 = [X^1, X^2] \oplus 0, \]
\[[[X^1 \otimes \omega^1, X^2 \otimes \omega^2]]_2 = [X^1, X^2] \oplus (\mathcal{L}_{X^1}\omega^2 - \mathcal{L}_{X^2}\omega^1). \]

At the end of this section we are going to describe completely all Lie algebroids \((TM \otimes T^*M, [[-,-]], a)\) which are invariant with respect to immersions \((\mathcal{M}f_m\text{-maps})\). The concept of Lie algebroids can be found in the fundamental book [6].

Of course, the anchor \(a : TM \oplus T^*M \to TM\) for all \(m\)-manifolds \(M\) must be \(\mathcal{M}f_m\)-natural transformation \(\text{i.e.}, Tf \circ a = a \circ (Tf \oplus T^*f)\) for any \(\mathcal{M}f_m\)-map \(f : M \to M^1\) and fibre linear. By Corollary 2.9, \([[,-,-]] = \mu[[[-,-]]_1 or [[-,-]] = [\mu[[[-,-]]_2 for some \(\mu \in \mathbb{R}\).

Lemma 2.10. Any \(\mathcal{M}f_m\)-natural transformation \(a : TM \oplus T^*M \to TM\) which is fibre linear is the constant multiple of the fibre projection \(\pi : TM \oplus T^*M \to TM\).

Proof. Clearly, \(a\) is determined by the values \(< \eta, a_x(v, \omega) > \in \mathbb{R}\) for all \(\omega, \eta \in T^*_xM, v \in T_xM, x \in M, M \in \text{Obj}(\mathcal{M}f_m)\). By the standard chart arguments, we may assume \(M = \mathbb{R}^m, x = 0, \eta = d_0x^n\). We can write \(< d_0x^1, a_0(v, \omega) > = \sum_{\alpha} \alpha_i v^i + \sum_{\beta} \beta^j \omega_j\), where \(v^i\) are the coordinates of \(v\) and \(\omega_j\) are the coordinates of \(\omega\), and where \(\alpha_i\) and \(\beta^j\) are the real numbers determined by \(a_0\). Then using the invariance of \(a_0\) with respect to the maps \((\tau^1x^1, ..., \tau^m x^m)\) for \(\tau^1 > 0, ..., \tau^m > 0\) we deduce that \(\alpha_2 = \cdots = \alpha_m = 0\) and \(\beta_1 = \cdots = \beta_m = 0\). Then the vector space of all \(a\) in question is at most 1-dimensional. Thus the dimension argument completes the proof.

\[a = k\pi \]

So, \(a = k\pi\) for some real number \(k\). It must be \(a([[X^1 \oplus 0, X^2 \oplus 0]]) = [a(X^1 \oplus 0), a(X^2 \oplus 0)]\) for any vector fields \(X^1\) and \(X^2\) on \(M\). This gives the condition \(k\mu[1, X^2] = k^2[X^1, X^2]\). Then \(k\mu = k^2\), and then \((k = 0\) and \(\mu = k\)) or \((k \neq 0\) and \(\mu = k\)). Consider two cases:

1. \([[,-,-]] = \mu [[-,-]]_1. Let \(\rho^1 = X^1 \oplus \omega^1\) and \(\rho^2 = X^2 \oplus \omega^2\). It must be \([[\rho^1, f\rho^2]] = a(\rho^1(f)\rho^2 + f[[\rho^1, \rho^2]]). \) Considering the \(\Omega^1(M)\)-parts of both sides of this equality we get \(0 = kX^1(f)\omega^2 + 0\) for any vector fields \(X^1, X^2\) on \(M\) any map \(f : M \to \mathbb{R}\) and any \(\omega^1, \omega^2 \in \Omega^1(M)\). Then \(k = 0\). Then considering the \(\mathcal{X}(M)\)-parts we get \(\mu[X^1, fX^2] = f\mu[X^1, X^2]\). Then \(\mu X^1(f)X^2 = 0\) for all vector fields \(X^1\) and \(X^2\) on \(M\) and all maps \(f : M \to \mathbb{R}\), i.e., \(\mu = 0\).

2. \([[,-,-]] = \mu [[-,-]]_2. Let \(\rho^1 = 0 \oplus \omega^1\) and \(\rho^2 = X^2 \oplus 0\). It must be \([[\rho^1, f\rho^2]] = a(\rho^1(f)\rho^2 + f[[\rho^1, \rho^2]]). \) Considering the \(\Omega^1(M)\)-parts of both sides of this equality we get \(-\mu\mathcal{L}_{fX^2}\omega^1 = -\mu f\mathcal{L}_{X^2}\omega^1\). Then \(\mu = 0\) or \(d_i fX^2\omega^1 + i_{dX^2} f\omega^1 = f d_i X^2\omega^1 + f i_{X^2} \omega^1\). Putting \(\omega^1 = dg\) we get \(\mu = 0\) or \(d_i fX^2\omega^1 = f d_i X^2\omega^1\). Then \(\mu = 0\) or \(d_i X^2 g = f d_i X^2 g\). Then \(\mu = 0\) or \(X^2 g \odot f = 0\) for any \(X^2, g, f\) in question. Putting \(X^2 = \frac{\partial}{\partial x}r\) and \(f = g = x^1\) we get \(\mu = 0\) or \(dx^1 = 0\). Then \(\mu = 0\), and then \(k = \mu = 0\).

On the other hand one can directly show that \((TM \oplus T^*M, 0 [[-,-]]_1, 0 \pi)\) is a Lie algebroid. Thus we have
Proposition 2.11. If $m \geq 2$, $(TM \otimes T^*M, 0, 0)$ is the only invariant with respect to $\mathcal{M}f_m$-maps Lie algebroid $(EM, [[-,-]], a)$ with $EM = TM \oplus T^*M$.

3. The Natural Operators Similar to the Twisted Courant Bracket

Definition 3.1. A $\mathcal{M}f_m$-natural operator A sending p-forms $H \in \Omega^p(M)$ on m-manifolds M into bilinear operators

$$A_H : (\mathcal{X}(M) \oplus \Omega^1(M)) \times (\mathcal{X}(M) \oplus \Omega^1(M)) \to \mathcal{X}(M) \oplus \Omega^1(M),$$

is a $\mathcal{M}f_m$-invariant family of regular operators (functions)

$$A : \Omega^p(M) \to \text{Lin}_2((\mathcal{X}(M) \oplus \Omega^1(M)) \times (\mathcal{X}(M) \oplus \Omega^1(M)), \mathcal{X}(M) \oplus \Omega^1(M))$$

for all m-manifolds M, where $\text{Lin}_2(U \times V, W)$ denotes the vector space of all bilinear (over \mathbb{R}) functions $U \times V \to W$ for any real vector spaces U, V, W.

The $\mathcal{M}f_m$-invariance of A means that if $H^1 \in \Omega^p(M)$ and $H^2 \in \Omega^p(M)$ are φ-related and $(X^1 \oplus \omega^1, X^2 \oplus \omega^2)$ and $(\overline{X}^1 \oplus \overline{\omega}^1, \overline{X}^2 \oplus \overline{\omega}^2)$ are φ-related by an $\mathcal{M}f_m$-map $\varphi : M \to \overline{M}$, then so are $A_{H^1}(X^1 \oplus \omega^1, X^2 \oplus \omega^2)$ and $A_{H^2}(\overline{X}^1 \oplus \overline{\omega}^1, \overline{X}^2 \oplus \overline{\omega}^2)$.

The regularity of A means that it transforms smoothly parametrized families $(H_t, X^i_t \oplus \omega^i_t, X^j_t \oplus \omega^j_t)$ into smoothly parametrized families $A_{H_t}(X^i_t \oplus \omega^i_t, X^j_t \oplus \omega^j_t)$.

Example 3.2. The most important example of $\mathcal{M}f_m$-natural operator in the sense of Definition 3.1 for $p = 3$ is given by the H-twisted Courant bracket

$$[X^1 \oplus \omega^1, X^2 \oplus \omega^2]_H := [X^1, X^2] \oplus (L_{X^1} \omega^2 - i_{X^2} d\omega^1 + i_{X^1} i_{X^2} H)$$

for all 3-forms $H \in \Omega^3(M)$ and all m-manifolds M. We call this $\mathcal{M}f_m$-natural operator the twisted Courant bracket $\mathcal{M}f_m$-natural operator.

Example 3.3. The operator given by $[-,-]_{dH}$ for all $H \in \Omega^2(M)$ and all m-manifolds M is a $\mathcal{M}f_m$-natural operator in the sense of Definition 3.1 for $p = 2$.

The main result of this section is the following

Theorem 3.4. Assume $m \geq 3$. Then we have:

1. Any $\mathcal{M}f_m$-natural operator A in the sense of Definition 3.1 for $p = 2$ such that $A_H = A_{H + dH}$ for any $H \in \Omega^2(M)$ and any $H^1 \in \Omega^1(M)$ is of the form

$$A_H(\rho^1, \rho^2) = a[X^1, X^2]$$

$$\oplus \left(b_1 L_{X^2} \omega^1 + b_2 L_{X^1} \omega^2 + b_3 d\langle \rho^1, \rho^2 \rangle_+ + b_4 d\langle \rho^1, \rho^2 \rangle_- + ci_{X^1} i_{X^2} dH \right),$$

for (uniquely determined by A) reals $a, b_1, ..., c$, where 2-forms $H \in \Omega^2(M)$, pairs $\rho^i = X^i \oplus \omega^i \in \mathcal{X}(M) \oplus \Omega^1(M)$ for $i = 1, 2$ and m-manifolds M are arbitrary.
2. Any \(Mf_m \)-natural operator (not necessarily satisfying \(A_H = A_{H + dH^1} \)) in the sense of Definition 3.1 for \(p = 3 \) is of the form

\[
A_H(\rho^1, \rho^2) = a[X^1, X^2] \oplus \left(b_1\mathcal{L}X_2 \omega^1 + b_2\mathcal{L}X_1 \omega^2 + b_3d(\rho^1, \rho^2)_+ + b_4d(\rho^1, \rho^2)_- + c_i X_i X_2 H \right),
\]

for \(\rho \in \mathcal{A} \), where 3-forms \(H \in \Omega^3(M) \), pairs \(\rho^i = X^i \oplus \omega^i \in \mathcal{X}(M) \oplus \Omega^1(M) \) for \(i = 1, 2 \) and manifolds \(M \) are arbitrary.

3. If \(p \geq 4 \), any \(Mf_m \)-natural operator (not necessarily satisfying \(A_H = A_{H + dH^1} \)) in the sense of Definition 3.1 is of the form

\[
A_H(\rho^1, \rho^2) = a[X^1, X^2] \oplus \left(b_1\mathcal{L}X_2 \omega^1 + b_2\mathcal{L}X_1 \omega^2 + b_3d(\rho^1, \rho^2)_+ + b_4d(\rho^1, \rho^2)_- \right)
\]

for \(\rho \in \mathcal{A} \), where \(p \)-forms \(H \in \Omega^p(M) \), pairs \(\rho^i = X^i \oplus \omega^i \in \mathcal{X}(M) \oplus \Omega^1(M) \) for \(i = 1, 2 \) and manifolds \(M \) are arbitrary.

Proof. Clearly, \(A_0 \), where 0 is the zero \(p \)-form, can be treated as the bilinear operator in the sense of Definition 2.1. Then \(A_0 \) is described in Theorem 2.3. So we can replace \(A \) by \(A - A_0 \). In other words, we have assumption \(A_0 = 0 \).

By the invariance, \(A \) is determined by the values \(A_H(X^1 \oplus \omega^1, X^2 \oplus \omega^2)|_0 \) for all \(H \in \Omega^p(R^m), X^i \oplus \omega^i \in \mathcal{X}(R^m) \oplus \Omega^1(R^m) \). Put

\[
A_H(X^1 \oplus \omega^1, X^2 \oplus \omega^2)|_0 = \left(A_{H}^{1}(X^1 \oplus \omega^1, X^2 \oplus \omega^2)|_0, A_{H}^{2}(X^1 \oplus \omega^1, X^2 \oplus \omega^2)|_0 \right),
\]

where \(A_{H}^{1}(\ldots)|_0 \in T_0 R^m \) and \(A_{H}^{2}(\ldots)|_0 \in T^* R^m \). Then \(A \) is determined by

\[
\langle A_{H}^{1}(X^1 \oplus \omega^1, X^2 \oplus \omega^2)|_0, \eta \rangle \in \mathbb{R} \quad \text{and} \quad \langle A_{H}^{2}(X^1 \oplus \omega^1, X^2 \oplus \omega^2)|_0, \mu \rangle \in \mathbb{R}
\]

for all \(H \in \Omega^p(R^m), X^i \oplus \omega^i \in \mathcal{X}(R^m) \oplus \Omega^1(R^m), \eta \in T_0^* R^m, \mu \in T_0 R^m, i = 1, 2 \).

By the non-linear Peetre theorem, see [5], \(A \) is of finite order. It means that there is a finite number \(r \) such that from \((j^i_x H = j^i_x \mathcal{H}, j^i_x(\rho^i) = j^i_x(\rho^i)), i = 1, 2 \) it follows \(A_H(\rho^1, \rho^2)|_x = A_{\mathcal{H}}(\rho^1, \rho^2)|_x \). So, we may assume that \(H, X^1, X^2, \omega^1, \omega^2 \) are polynomials of degree not more than \(r \).

Using the invariance of \(A \) with respect to the homotheties and the bilinearity of \(A_H \) (for given \(H \)) we obtain homogeneity condition

\[
\left\langle A_{(\frac{1}{t} \text{id})_*}^{1} H(t(\frac{1}{t} \text{id})_* X^1 \oplus t(\frac{1}{t} \text{id})_* \omega^1, t(\frac{1}{t} \text{id})_* X^2 \oplus t(\frac{1}{t} \text{id})_* \omega^2)|_0, \eta \right\rangle \quad = \quad t\left\langle A_{H}^{1}(X^1 \oplus \omega^1, X^2 \oplus \omega^2)|_0, \eta \right\rangle.
\]

Then, by the homogeneous function theorem, since \(A \) is of finite order and regular and \(A_0 = 0 \) and \(p \geq 2 \), we have \(\left\langle A_{H}^{1}(X^1 \oplus \omega^1, X^2 \oplus \omega^2)|_0, \eta \right\rangle = 0. \)
Using the same arguments we get homogeneity condition

\[
\left\langle A^2_{\left(\frac{1}{t}id\right)_*} H \left(t \left(\frac{1}{t}id \right)_* X^1 \oplus t \left(\frac{1}{t}id \right)_* \omega^1, t \left(\frac{1}{t}id \right)_* X^2 \right) \right\rangle_{\omega^1, \mu} = t^3 \left\langle A^2_H (X^1 \oplus \omega^1, X^2 \oplus \omega^2)_{\omega^1, \mu} \right\rangle.
\]

Then, if \(p = 2 \), by the homogeneous function theorem and the bilinearity of \(A_H \) and the assumptions \(A_0 = 0 \) and \(A_H = A_{H+1}H \), the value \(\left\langle A^2_H (X^1 \oplus \omega^1, X^2 \oplus \omega^2)_{\omega^1, \mu} \right\rangle \) depends quadrilinearly on \(X^1_{\omega^1}, X^2_{\omega^1}, j^0 \) and \(\mu \), only. By \(m \geq 3 \) and the regularity of \(A \), we may assume that \(X^1_{\omega^1}, X^2_{\omega^1} \) and \(\mu \) are linearly independent. Then by the invariance we may assume \(X^1_{\omega^1} = \partial_1_{\omega^1}, X^2_{\omega^1} = \partial_2_{\omega^1} \) and \(\mu = \partial_3_{\omega^1} \). Then \(A \) is determined by the values \(\left\langle A^2_{x_{1,i_1}x_{2,i_2}\lambda d_{x_{1,i_3}}} (\partial_1 \oplus 0, \partial_2 \oplus 0), \partial_3_{\omega^1} \right\rangle \) for all \(i_1 = 1, \ldots, m \) and \(i_2, i_3 \) with \(1 \leq i_2 < i_3 \leq m \). Then using the invariance of \(A \) with respect to \(\tau^i \) for \(\tau^i > 0 \) we deduce that only \(v := \left\langle A^2_{x_{1,i_1}x_{2,i_2}\lambda d_{x_{1,i_3}}} (\partial_1 \oplus 0, \partial_2 \oplus 0), \partial_3_{\omega^1} \right\rangle, \ w := \left\langle A^2_{x_{1,i_1}x_{2,i_2}\lambda d_{x_{1,i_3}}} (\partial_1 \oplus 0, \partial_2 \oplus 0), \partial_3_{\omega^1} \right\rangle, \ z := \left\langle A^2_{x_{1,i_1}x_{2,i_2}\lambda d_{x_{1,i_3}}} (\partial_1 \oplus 0, \partial_2 \oplus 0), \partial_3_{\omega^1} \right\rangle \) may be not-zero. But \(x^1dx^1 \vee dx^2 = -x^2dx^1 \vee dx^3 + d(...) \). So, \(v = -w \). Similarly, \(v = -z \). Therefore the vector space of all \(A \) in question with \(A_0 = 0 \) and \(A_H = A_{H+1}H \) is at most one-dimensional. The part (1) of the theorem is complete. If \(p = 3 \), then (by almost the same arguments as for \(p = 2 \)) \(A \) is determined by the values \(\left\langle A^2_{x_{1,i_1}x_{2,i_2}\lambda d_{x_{1,i_3}}} (\partial_1 \oplus 0, \partial_2 \oplus 0), \partial_3_{\omega^1} \right\rangle \in \mathbb{R} \) for all \(i_1, i_2, i_3 \) with \(1 \leq i_1 < i_2 < i_3 \leq m \). Then using the invariance with respect to \((\tau^1x^1, \ldots, \tau^m x^m) \) for \(\tau^i > 0 \) we deduce that only the value \(\left\langle A^2_{x_{1,i_1}x_{2,i_2}\lambda d_{x_{1,i_3}}} (\partial_1 \oplus 0, \partial_2 \oplus 0), \partial_3_{\omega^1} \right\rangle \in \mathbb{R} \) may be not-zero. Therefore the vector space of all \(A \) in question with \(A_0 = 0 \) is one-dimensional (generated by the natural operator \(0 \oplus i_{X^1}i_{X^2}H \)).

If \(p \geq 4 \), then (similarly as for \(p = 2 \)) \(\left\langle A^2_H (X^1 \oplus \omega^1, X^2 \oplus \omega^2)_{\omega^1, \mu} \right\rangle = 0 \).

Theorem 3.4 is complete. \(\square \)

Corollary 3.5. If \(m \geq 3 \), any \(\mathcal{M}f_m \)-natural operator \(A \) in the sense of Definition 3.1 for \(p = 3 \) such that \(A_H \) is skew-symmetric for any \(H \in \Omega^2(M) \) and any \(m \)-manifold \(M \) is of the form

\[
A_H(X^1 \oplus \omega^1, X^2 \oplus \omega^2) = a[X^1, X^2] \oplus \left(b(L_{X^1}\omega^1 - L_{X^2}\omega^1) + cd \right) (X^2 \oplus \omega^1, X^1 \oplus \omega^2) + ei_{X^1}i_{X^2}H,
\]

for (uniquely determined by \(A \)) real numbers \(a, b, c, e \).

Roughly speaking, Corollary 3.5 says that any \(\mathcal{M}f_m \)-natural operator \(A \) in the sense of Definition 3.1 such that \(A_H \) is skew-symmetric for any \(H \in \Omega^2(M) \) and any \(m \)-manifold \(M \) coincides with the “skew-symmetrization” of the twisted Courant bracket \(\mathcal{M}f_m \)-natural operator up to four real constants \(a, b, c, e \).

Corollary 3.6. If \(m \geq 3 \), then the twisted Courant bracket \(\mathcal{M}f_m \)-natural operator from Example 3.2 is the unique \(\mathcal{M}f_m \)-natural operator \(A \) in the sense of Definition 3.1 for \(p = 3 \) satisfying the following properties:
Corollary 4.2. We have

\[
\text{(B1) } A_0(\rho_1, \rho_2) = [\rho_1, \rho_2]_0,
\]

\[
\text{(B2) } A_H(X \oplus 0, Y \oplus 0) = [X, Y] \oplus i_X i_Y H
\]

for all closed \(H \in \Omega^3_{cl}(M) \), all \(\rho_1, \rho_2, X \oplus 0, Y \oplus 0 \in \mathcal{X}(M) \oplus \Omega^1(M) \) and all \(m \)-manifolds \(M \), where \([\cdot, \cdot]_0\) is the \(\mathcal{M}_f\)-natural bilinear operator given by the (not skew-symmetric) Courant bracket as in Example 2.6.

Proof. Clearly, the twisted Courant bracket \(\mathcal{M}_f\)-natural operator satisfies (B1) and (B2). Consider \(A \) in question satisfying (B1) and (B2). Then by Theorem 3.4, there exist uniquely determined reals \(a, b_1, \ldots, c \) such that for all \(H \in \Omega^3(M) \) and \(m \)-manifolds \(M \)

\[
A_H(\rho^1, \rho^2) = a[X^1, X^2]
\]

\[
\oplus \left(b_1 L_{X^2} \omega^1 + b_2 L_{X^1} \omega^2 + b_3 d \langle \rho^1, \rho^2 \rangle_+ + b_4 d \langle \rho^1, \rho^2 \rangle_- + ci_{X^1} i_{X^2} H \right),
\]

where \(\rho^i = X^i \oplus \omega^i \in \mathcal{X}(M) \oplus \Omega^1(M) \) are arbitrary. Putting \(\omega^1 = \omega^2 = 0 \) we get \(A_H(\rho^1, \rho^2) = a[X^1, X^2] \oplus ci_{X^1} i_{X^2} H \). Then condition (B2) implies \(c = 1 \). Putting \(H = 0 \) we get

\[
A_0(\rho^1, \rho^2) = a[X^1, X^2] \oplus \left(b_1 L_{X^2} \omega^1 + b_2 L_{X^1} \omega^2 + b_3 d \langle \rho^1, \rho^2 \rangle_+ + b_4 d \langle \rho^1, \rho^2 \rangle_- \right)
\]

for all \(\rho^i = X^i \oplus \omega^i \in \mathcal{X}(M) \oplus \Omega^1(M) \) and all \(m \)-manifolds \(M \). But \(A_0 \) is a \(\mathcal{M}_f\)-natural bilinear operator in the sense of Definition 2.1. Then \(a, b_1, b_2, b_3, b_4 \) are uniquely determined because of Theorem 2.3. Then \(a, b_1, \ldots, c \) are uniquely determined. So, \(A \) is uniquely determined by conditions (B1) and (B2). \(\square \)

4. The Natural Operators Similar to the Twisted Courant Bracket and Defined for Closed \(p \)-Forms Only

In the previous section, we considered \(\mathcal{M}_f\)-natural operators \(A \) which are defined for all \(p \)-forms \(H \). In this section, we observe what happens if \(A \) are defined for closed \(p \)-forms \(H \), only. We start with the following

Definition 4.1. A \(\mathcal{M}_f\)-natural operator \(A \) sending closed \(p \)-forms \(H \in \Omega^p_{cl}(M) \) on \(m \)-manifolds \(M \) into bilinear operators

\(A_H : (\mathcal{X}(M) \oplus \Omega^1(M)) \times (\mathcal{X}(M) \oplus \Omega^1(M)) \rightarrow \mathcal{X}(M) \oplus \Omega^1(M) \),

is a \(\mathcal{M}_f\)-invariant family of regular operators (functions)

\(A : \Omega^p_{cl}(M) \rightarrow \text{Lin}_2((\mathcal{X}(M) \oplus \Omega^1(M)) \times (\mathcal{X}(M) \oplus \Omega^1(M)), \mathcal{X}(M) \oplus \Omega^1(M)) \),

for all \(m \)-manifolds \(M \).

We have the following corollary of Theorem 3.4.

Corollary 4.2. Assume \(m \geq 3 \). Then we have:

1. If \(p = 3 \), any \(\mathcal{M}_f\)-natural operator in the sense of Definition 4.1 is of the form

\[
A_H(\rho^1, \rho^2) = a[X^1, X^2]
\]

\[
\oplus (b_1 L_{X^2} \omega^1 + b_2 L_{X^1} \omega^2 + b_3 d \langle \rho^1, \rho^2 \rangle_+ + b_4 d \langle \rho^1, \rho^2 \rangle_- + ci_{X^1} i_{X^2} H),
\]
for uniquely determined by A reals a, b_1, \ldots, c, where closed 3-forms $H \in \Omega^3_{cl}(M)$, pairs $\rho^i = X^i \oplus \omega^i \in \mathcal{X}(M) \oplus \Omega^1(M)$ for $i = 1, 2$ and m-manifolds M are arbitrary.

2. If $p \geq 4$, any $\mathcal{M}f_m$-natural operator in the sense of Definition 4.1 is of the form

$$A_H(\rho^1, \rho^2) = a[X^1, X^2]$$

$$\oplus \left(b_1 \mathcal{L}_{X^2}\omega^1 + b_2 \mathcal{L}_{X^1}\omega^2 + b_3 d\langle \rho^1, \rho^2 \rangle_+ + b_4 d\langle \rho^1, \rho^2 \rangle_- \right)$$

for uniquely determined by A reals a, b_1, \ldots, b_4, where closed p-forms $H \in \Omega^p_{cl}(M)$, pairs $\rho^i = X^i \oplus \omega^i$ for $i = 1, 2$ and m-manifolds M are arbitrary.

Proof. Let A be a $\mathcal{M}f_m$-natural operator in the sense of Definition 4.1 for p. Define a $\mathcal{M}f_m$-natural operator A^1 in the sense of Definition 3.1 for $p-1$ by $A^1_H = A_{d\tilde{H}}$. Then $A^1_{H+dH_1} = A^1_{\tilde{H}}$ for any $\tilde{H} \in \Omega^{p-1}(M)$ and $H_1 \in \Omega^{p-2}(M)$.

If $p = 3$, then by Theorem 3.4, A^1 is of the form

$$A^1_H(\rho^1, \rho^2) = a[X^1, X^2]$$

$$\oplus \left(b_1 \mathcal{L}_{X^2}\omega^1 + b_2 \mathcal{L}_{X^1}\omega^2 + b_3 d\langle \rho^1, \rho^2 \rangle_+ + b_4 d\langle \rho^1, \rho^2 \rangle_- + c_i X^1 i X^2 d\tilde{H} \right)$$

for uniquely determined reals a, b_1, \ldots, c and all $\tilde{H} \in \Omega^2(M)$, where $\rho^i = X^i \oplus \omega^i$ for $i = 1, 2$. Then

$$A_H(\rho^1, \rho^2) = a[X^1, X^2]$$

$$\oplus \left(b_1 \mathcal{L}_{X^2}\omega^1 + b_2 \mathcal{L}_{X^1}\omega^2 + b_3 d\langle \rho^1, \rho^2 \rangle_+ + b_4 d\langle \rho^1, \rho^2 \rangle_- + c_i X^1 i X^2 H \right)$$

for all exact 3-forms H, where $\rho^i = X^i \oplus \omega^i$ for $i = 1, 2$. But by the locality of A and the Poincare lemma we may replace the phrase “all exact 3-forms” by “all closed 3-forms”.

If $p \geq 4$, then by Theorem 3.4, A^1 is of the form

$$A^1_H(\rho^1, \rho^2) = a[X^1, X^2]$$

$$\oplus \left(b_1 \mathcal{L}_{X^2}\omega^1 + b_2 \mathcal{L}_{X^1}\omega^2 + b_3 d\langle \rho^1, \rho^2 \rangle_+ + b_4 d\langle \rho^1, \rho^2 \rangle_- + c_i X^1 i X^2 d\tilde{H} \right)$$

for uniquely determined reals a, b_1, \ldots, c (with arbitrary c if $p = 4$ and with $c = 0$ if $p \geq 5$) and all $\tilde{H} \in \Omega^{p-1}(M)$, where $\rho^i = X^i \oplus \omega^i$ for $i = 1, 2$. The condition $A^1_H = A^1_{H+dH_1}$ implies $c_i X^1 i X^2 dH_1 = 0$ for any $H_1 \in \Omega^{p-2}(M)$. If $p = 4$, putting $X^2 = \partial_1$, $X^2 = \partial_2$ and $H_1 = x^1 dx^2 \land dx^3$, we get $c(-dx^3) = 0$, i.e., $c = 0$. If $p \geq 5$, then $c = 0$, see above. Next, we proceed similarly as in the case $p = 3$. □

The above corollary and Theorem 3.4 imply

Theorem 4.3. If $m \geq 3$ and $p \geq 3$ then any $\mathcal{M}f_m$-natural operator in the sense of Definition 4.1 can be extended uniquely to a $\mathcal{M}f_m$-natural operator in the sense of Definition 3.1.

Roughly speaking, if $m \geq 3$ and $p \geq 3$, then any $\mathcal{M}f_m$-natural operator in the sense of Definition 4.1 can be treated as the $\mathcal{M}f_m$-natural operator in the sense of Definition 3.1, and vice-versa.
5. The Natural Operators Similar to the Twisted Courant Bracket and Satisfying the Leibniz Rule for Closed 3-Forms

Definition 5.1. A \mathcal{M}_m-natural operator A in the sense of Definition 3.1 (or equivalently in the sense of Definition 4.1) satisfies the Leibniz rule for closed p-forms if

$$A_H(\rho_1, A_H(\rho_2, \rho_3)) = A_H(A_H(\rho_1, \rho_2), \rho_3) + A_H(\rho_2, A_H(\rho_1, \rho_3))$$

for all $\rho_1, \rho_2, \rho_3 \in \mathcal{X}(M) \oplus \Omega^1(M)$, all closed p-forms $H \in \Omega^p_{\text{cl}}(M)$ and all m-manifolds M.

Example 5.2. The twisted Courant bracket \mathcal{M}_m-natural operator presented in Example 3.2 satisfies the Leibniz rule for closed 3-forms, see [3,8].

Theorem 5.3. If $m \geq 3$, any \mathcal{M}_m-natural operator A in the sense of Definition 3.1 (or equivalently of Definition 4.1) for $p = 3$ satisfying the Leibniz rule for closed 3-forms is one of the \mathcal{M}_m-natural operators:

$$
\begin{align*}
A_H^{(1,a)}(\rho_1, \rho_2) &= a[X^1, X^2] \oplus 0, \\
A_H^{(2,a)}(\rho_1, \rho_2) &= a[X^1, X^2] \oplus (a(L_{X^1}\omega^2 - L_{X^2}\omega^1)), \\
A_H^{(3,a)}(\rho_1, \rho_2) &= a[X^1, X^2] \oplus (a(L_{X^1}\omega^2), \\
A_H^{(4,a,e)}(\rho_1, \rho_2) &= a[X^1, X^2] \oplus (a(L_{X^1}\omega^2 - i_{X^2}d\omega^1) + ei_{X^1}i_{X^2}H),
\end{align*}
$$

where $\rho_1 = X^1 \oplus \omega^1$ and $\rho_2 = X^2 \oplus \omega^2$, and a and e are arbitrary real numbers.

Proof. Let A be a \mathcal{M}_m-natural operator in the sense of Definition 3.1 for $p = 3$ such that A_H satisfies the Leibniz rule for any closed $H \in \Omega^3_{\text{cl}}(M)$. By Theorem 3.4, A is of the form

$$
A_H(X^1 \oplus \omega^1, X^2 \oplus \omega^2) = a[X^1, X^2] \\
\oplus (b_1 L_{X^2}\omega^1 + b_2 L_{X^1}\omega^2 + c_1 d_i X^2\omega^1 + c_2 d_i X^1\omega^2 + e i_{X^1}i_{X^2}H),
$$

for (uniquely determined by A) real numbers a, b_1, b_2, c_1, c_2, e. Then for any $X^1, X^2, X^3 \in \mathcal{X}(M)$ and $\omega^1, \omega^2, \omega^3 \in \Omega^1(M)$ we have

$$
\begin{align*}
A_H(X^1 \oplus \omega^1, A_H(X^2 \oplus \omega^2, X^3 \oplus \omega^3)) &= a^2[X^1, [X^2, X^3]] \oplus \Omega, \\
A_H(A_H(X^1 \oplus \omega^1, X^2 \oplus \omega^2), X^3 \oplus \omega^3) &= a^2[[X^1, X^2], X^3] \oplus \Theta, \\
A_H(X^2 \oplus \omega^2, A_H(X^1 \oplus \omega^1, X^3 \oplus \omega^3)) &= a^2[X^2, [X^1, X^3]] \oplus \mathcal{T},
\end{align*}
$$
where
\[
\Omega = b_1\mathcal{L}_{a[X^2,X^3]}\omega^1 + c_1 di a[X^2,X^3]\omega^1 + ei X^1 i a[X^2,X^3]H
\]
\[
+ b_2 L_{X^1}(b_1 L_{X^2}\omega^2 + b_2 L_{X^2}\omega^3 + c_1 di X^3\omega^2 + c_2 di X^2\omega^3 + ei X^2 i X^3 H)
\]
\[
+ c_2 di X^1(b_1 L_{X^3}\omega^2 + b_2 L_{X^2}\omega^3 + c_1 di X^3\omega^2 + c_2 di X^2\omega^3 + ei X^2 i X^3 H),
\]
\[
\Theta = b_2 L_{a[X^1,X^2]}\omega^3 + c_2 di a[X^1,X^2]\omega^3 + ei a[X^1,X^2]i X^3 H
\]
\[
+ b_1 L_{X^2}(b_1 L_{X^2}\omega^1 + b_2 L_{X^1}\omega^2 + c_1 di X^3\omega^1 + c_2 di X^1\omega^2 + e X^1 i X^2 H)
\]
\[
+ c_1 di X^3(b_1 L_{X^2}\omega^1 + b_2 L_{X^1}\omega^2 + c_1 di X^3\omega^1 + c_2 di X^1\omega^2 + e X^1 i X^2 H),
\]
\[
T = b_1 L_{a[X^1,X^3]}\omega^3 + c_1 di a[X^1,X^3]\omega^3 + ei X^2 i a[X^1,X^3]H
\]
\[
+ b_2 L_{X^2}(b_1 L_{X^3}\omega^1 + b_2 L_{X^1}\omega^3 + c_1 di X^3\omega^1 + c_2 di X^1\omega^3 + e X^1 i X^3 H)
\]
\[
+ c_2 di X^2(b_1 L_{X^3}\omega^1 + b_2 L_{X^1}\omega^3 + c_1 di X^3\omega^1 + c_2 di X^1\omega^3 + e X^1 i X^3 H).
\]
The Leibniz rule of A_H is equivalent to $\Omega = \Theta + T$.

Putting $H = 0$, we are in the situation of Theorem 2.7. Then by Theorem 2.7 (i.e., by Theorem 3.2 in [2]) we get $(b_1, b_2, c_1, c_2) = (0, 0, 0, 0)$ or $(b_1, b_2, c_1, c_2) = (a, 0, 0, 0)$ or $(b_1, b_2, c_1, c_2) = (−a, a, 0, 0)$ or $(b_1, b_2, c_1, c_2) = (−a, a, 0, 0)$. More, A_0 for such (b_1, b_2, c_1, c_2) satisfies the Leibniz rule.

Therefore (as $c_2 = 0$) the Leibniz rule of A_H is equivalent to the equality
\[
eai X^1 i a[X^2,X^3]H + b_2 e L_{X^1} i X^2 i X^3 H
\]
\[
eai X^1 i a[X^2,X^3]H + b_2 e L_{X^1} i X^2 i X^3 H + c_1 e di X^3 i X^1 i X^2 H
\]
\[
eai X^1 i a[X^2,X^3]H + b_2 e L_{X^1} i X^2 i X^3 H.
\]

If $(b_1, b_2, c_1, c_2) = (0, 0, 0, 0)$, the above equality is equivalent to
\[
eai X^1 i a[X^2,X^3]H = eai [X^1,X^2] i X^3 H + eai X^2 i [X^1,X^3] H.
\]

Putting $X^1 = \partial_1$, $X^2 = \partial_2$ and $X^3 = \partial_3$ we have $[X^2, X^3] = 0$, $[X^1, X^2] = 0$ and $[X^1, X^3] = 0$ and then $0 = eai \partial_1 i \partial_2 H$ for any closed H (for example $H = dx^1 \wedge dx^2 \wedge dx^3$). Consequently $a = 0$ or $a = 0$.

If $(b_1, b_2, c_1, c_2) = (0, a, 0, 0)$, the above equality is equivalent to
\[
eai X^1 i a[X^2,X^3]H + a L_{X^1} i X^2 i X^3 H
\]
\[
eai X^1 i a[X^2,X^3]H + a L_{X^1} i X^2 i X^3 H + a L_{X^2} i X^1 i X^3 H.
\]

Putting $X^1 = \partial_1$, $X^2 = \partial_2$ and $X^3 = \partial_3$ and $H = x^2 dx^1 \wedge dx^2 \wedge dx^3$ (it is closed) we have $[X^2, X^3] = 0$, $[X^1, X^2] = 0$, $[X^1, X^3] = 0$, $L_{X^2} i X^1 i X^3 H = L_{\partial_2} x^2 dx^2 = dx^2$ and $L_{X^1} i X^2 i X^3 H = L_{\partial_1} (−x^2 dx^1) = 0$. Then $e ad x^2 = 0$. So, $a = 0$ or $e = 0$.

If $(b_1, b_2, c_1, c_2) = (−a, a, 0, 0)$, the above equality is equivalent to
\[
eai X^1 i a[X^2,X^3]H + a L_{X^1} i X^2 i X^3 H
\]
\[
eai X^1 i a[X^2,X^3]H + a L_{X^1} i X^2 i X^3 H + a L_{X^1} i X^2 i X^3 H.
\]

Putting $X^1 = \partial_1$, $X^2 = \partial_2$ and $X^3 = \partial_3$ and $H = x^2 dx^1 \wedge dx^2 \wedge dx^3$ we have (see above) $[X^2, X^3] = 0$, $[X^1, X^2] = 0$, $[X^1, X^3] = 0$, $L_{X^2} i X^1 i X^3 H = dx^2$, $L_{X^1} i X^2 i X^3 H = 0$ and $L_{X^3} i X^1 i X^2 H = L_{\partial_3} (−x^2 dx^3) = 0$. Then $e ad x^2 = 0$. So, $a = 0$ or $e = 0$.

If \((b_1, b_2, c_1, c_2) = (-a, a, a, 0)\), the above equality is equivalent to
\[
e a \sum \left\{ i_{X_1} i_{[X_2, X_3]} H + \mathcal{L}_{X_1} i_{X_2} i_{X_3} H \right\} = e a d i_{X_1} i_{X_2} i_{X_3} H,
\]
where \(\sum\) is the cyclic sum \(\sum_{cyclic}(X_1, X_2, X_3)\). Then \(e\) is arbitrary real number because from \(dH = 0\) it follows
\[
\sum \left\{ i_{X_1} i_{[X_2, X_3]} H + \mathcal{L}_{X_1} i_{X_2} i_{X_3} H \right\} = di_{X_1} i_{X_2} i_{X_3} H.
\]
Indeed, using \(dH = 0\) and \(i_{[X_1, X_4]} = \mathcal{L}_{X_1} i_{X^4} - i_{X^4} \mathcal{L}_{X_1}\) and the well-known formula expressing \(dH(X^1, X^2, X^3, X^4)\), we have
\[
\sum \left\{ i_{X_4} i_{X_1} i_{[X_2, X_3]} H + i_{X_4} \mathcal{L}_{X_1} i_{X_2} i_{X_3} H \right\}
= \sum \left\{ i_{X_4} i_{X_1} i_{[X_2, X_3]} H + \mathcal{L}_{X_1} i_{X_4} i_{X_2} i_{X_3} H - i_{[X_1, X_4]} i_{X_2} i_{X_3} H \right\}
= 6 \sum \{ H([X^2, X^3], X^1, X^4) + X^1 H(X^3, X^2, X^4)
- H(X^3, X^2, [X^1, X^4])\}
= -24dH(X^1, X^2, X^3, X^4) + 6X^1 H(X^3, X^2, X^1) = i_{X^4} di_{X_1} i_{X_2} i_{X_3} H.
\]
Summing up, given a real number \(a \neq 0\) we have \((b_1, b_2, c_1, c_2, e) = (0, 0, 0, 0, 0)\) or \((b_1, b_2, c_1, c_2, e) = (-a, a, 0, 0, 0)\) or \((b_1, b_2, c_1, c_2, e) = (-a, a, a, 0, e)\), where \(e\) may be arbitrary real number. If \(a = 0\) we have \((b_1, b_2, c_1, c_2, e) = (0, 0, 0, 0, e)\), where \(e\) may be arbitrary. Theorem 5.3 is complete. \(\square\)

Corollary 5.4. If \(m \geq 3\), then the twisted Courant bracket \(\mathcal{M}f_m\)-natural operator from Example 3.2 is the unique \(\mathcal{M}f_m\)-natural operator \(A\) in the sense of Definition 3.1 for \(p = 3\) satisfying the following conditions:

\[(C1)\quad A_H(\rho_1, A_H(\rho_2, \rho_3)) = A_H(A_H(\rho_1, \rho_2), \rho_3) + A_H(\rho_2, A_H(\rho_1, \rho_3)),\]

\[(C2)\quad A_H(X \oplus 0, Y \oplus 0) = [X, Y] \oplus i_{X^1 Y} H\]

for all \(\rho_1, \rho_2, \rho_3, X \oplus 0, Y \oplus 0 \in X(M) \oplus \Omega^1(M), \) all closed \(H \in \Omega^3_M\) and all \(m\)-manifolds \(M\).

Proof. Indeed, the condition \((C1)\) and Theorem 5.3 imply that \(A = A^{(1, a)}\) or \(A = A^{(2, a)}\) or \(A = A^{(3, a)}\) or \(A = A^{(4, a, e)}\) for some real numbers \(a\) and \(e\). Then \((C2)\) implies that \(A = A^{(4, a, e)}\) and \(a = 1\) and \(e = 1\) because \(A^{(1, a)}_H(X \oplus 0, Y \oplus 0) = a[X, Y] \oplus 0\) and \(A^{(2, a)}_H(X \oplus 0, Y \oplus 0) = a[X, Y] \oplus 0\) and \(A^{(3, a)}_H(X \oplus 0, Y \oplus 0) = a[X, Y] \oplus 0\) and \(A^{(4, a, e)}_H(X \oplus 0, Y \oplus 0) = a[X, Y] \oplus e i_{X^1 Y} H.\) \(\square\)

Corollary 5.5. If \(m \geq 3\), any \(\mathcal{M}f_m\)-natural operator \(A\) in the sense of Definition 3.1 for \(p = 3\) such that \(A_H\) is a Lie algebra bracket (i.e., it is skew-symmetric, bilinear and satisfying the Leibniz rule) for all closed 3-forms \(H \in \Omega^3_M\) and all \(m\)-manifolds \(M\) is one of the \(\mathcal{M}f_m\)-natural operators:

\[
A^{(1, a)}_H(\rho_1, \rho_2) = a[X^1, X^2] \oplus 0,
A^{(2, a)}_H(\rho^1, \rho^2) = a[X^1, X^2] \oplus (a(L_{X^1} \omega^2 - L_{X^2} \omega^1)),
A^{(4, a, e)}_H(\rho^1, \rho^2) = 0 \oplus e i_{X^1} i_{X^2} H,
\]

where \(\rho^1 = X^1 \oplus \omega^1\) and \(\rho^2 = X^2 \oplus \omega^2\), and \(a\) and \(e\) are arbitrary real numbers.
Corollary 5.6. If \(m \geq 3 \), any \(\mathcal{M}f_m \)-natural operator \(A \) in the sense of Definition 3.1 for \(p = 3 \) satisfying the Leibniz rule for all 3-forms \(H \) (or for all closed 3-forms and at least one non-closed 3-form) is one of the \(\mathcal{M}f_m \)-natural operators:

\[
\begin{align*}
A_H^{(1,a)}(\rho_1, \rho_2) &= a[X^1, X^2] \oplus 0, \\
A_H^{(2,a)}(\rho_1, \rho_2) &= a[X^1, X^2] \oplus (a(\mathcal{L}_{X^1} \omega^2 - \mathcal{L}_{X^2} \omega^1)), \\
A_H^{(3,a)}(\rho_1, \rho_2) &= a[X^1, X^2] \oplus (a \mathcal{L}_{X^1} \omega^2), \\
A_H^{(4,a,0)}(\rho_1, \rho_2) &= a[X^1, X^2] \oplus (a(\mathcal{L}_{X^1} \omega^2 - i_{X^2} d\omega^1)), \\
A_H^{(4,0,e)}(\rho_1, \rho_2) &= 0 \oplus e i_{X^1} i_{X^2} H,
\end{align*}
\]

where \(\rho_1 = X^1 \oplus \omega^1 \) and \(\rho_2 = X^2 \oplus \omega^2 \), and \(a \) and \(e \) are arbitrary real numbers.

Proof. It follows from Theorem 5.3. \(\square \)

Remark 5.7. It is well-known that given closed 3-form \(H \in \Omega^3_{cl}(M) \) on a \(m \)-manifold \(M \), the twisted Courant bracket \([\cdot, \cdot]_H : \mathcal{X}(M) \oplus \Omega^1(M) \times \mathcal{X}(M) \oplus \Omega^1(M) \rightarrow \mathcal{X}(M) \oplus \Omega^1(M) \) is bilinear and satisfies the properties (A1)–(A5) from Corollary 2.8 for all \(\rho_1, \rho_2, \rho_3 \in \mathcal{X}(M) \oplus \Omega^1(M) \) and all \(f \in C^\infty(M) \), see [3,8], but \([\cdot, \cdot]_H \neq [\cdot, \cdot]_0 \) if \(H \neq 0 \). Is it a contradiction with the uniqueness from Corollary 2.8? No, it is not. Indeed, \([\cdot, \cdot]_H \) is not extendable to a \(\mathcal{M}f_m \)-natural bilinear operator in the sense of Definition 2.1 because it is invariant only with respect to \(\mathcal{M}f_m \)-maps \(\varphi : M \rightarrow M \) preserving \(H \), in fact.

Remark 5.8. By Corollary 5.5, given a closed 3-form \(H \) on \(M \), the skew-symmetric bracket \([[X^1 \oplus \omega^1, X^2 \oplus \omega^2]](H) := 0 \oplus i_{X^1} i_{X^2} H \) satisfies the Leibniz rule. One can easily directly verify that \((TM \oplus T^* M, e[[\cdot, \cdot]](H), 0\pi) \) for arbitrary fixed \(e \in \mathbb{R} \) and closed 3-form \(H \) is a Lie algebroid canonically depending on \(H \). So, if we have a closed 3-form \(H \) on a \(m \)-manifold \(M \), we can construct canonical (in \(H \)) Lie algebroids \((EM, [[\cdot, \cdot]](H), a(H)) \) with \(EM = TM \oplus T^* M \) different than the one from Proposition 2.11.

Acknowledgements

I would like to thank the reviewer for valuable suggestions. By one of them I was inspired to study the problem given in Proposition 2.11.

Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References

[1] Courant, T.: Dirac manifolds. Trans. Am. Math. Soc. 319(631), 631–661 (1990)

[2] Doupovec, M., Kurek, J., Mikulski, W.M.: The natural brackets on couples of vector fields and 1-forms. Turk. J. Math. 42(2), 1853–1862 (2018)

[3] Gualtieri, M.: Generalized complex geometry. Ann. Math. 174(1), 75–123 (2011)

[4] Hitchin, N.: Generalized Calabi–Yau manifolds. Q. J. Math. 54(3), 281–308 (2003)

[5] Kolář, I., Michor, P.W., Slovák, J.: Natural Operations in Differential Geometry. Springer, Berlin (1993)

[6] Mackenzie, K.C.H.: General Theory of Lie Groupoids and Lie Algebroids. London Math. Soc., Lecture Note 213. Cambridge University Press, Cambridge (2005)

[7] Liu, Z.J., Weinstein, A., Xu, P.: Main triples for Lie bialgebroids. J. Differ. Geom. 45, 547–574 (1997)

[8] Ševera, P., Weinstein, A.: Poisson geometry with a 3-form background. Progr. Teoret. Phys. Suppl., 145–154 (2001)

Włodzimierz M. Mikulski
Institute of Mathematics
Jagiellonian University
ul. Łojasiewicza 6
30-348 Kraków
Poland

e-mail: Wlodzimierz.Mikulski@im.uj.edu.pl

Received: January 24, 2019.
Revised: February 11, 2019.
Accepted: June 10, 2019.