Optimized Operation of Available Energy Resources
Based on Energy Consumption

Parvathy S
Robert Bosch
Bangalore, India
parvathy2202sobha@gmail.com

Nita R Patne
Electrical Engineering Department
VNIT, Nagpur, India
nrpatne.eee@vnit.ac.in

Abstract— Energy consumption and energy analytics has gained increased focus and consideration in industrial applications especially process lines to upgrade their performance and efficiency in the competitive world. A competent analytics method will be highly advantageous to provide the correct direction of energy saving for an industry. Energy analytics method was introduced into energy consumption time analysis model and is developed in this paper. Energy consumption of a camplate production plant was analysed as a case study. The result shows that energy utilization is dependent on the time of operation of the equipments in the plant. Energy sparing obtained via technical innovation in unit process maybe misplaced due to the expanding time of operation within the plant. Energy loss and the distribution of energy loss in the camplate production plant were analysed and the probable energy saving methods were identified from the results.

Keywords—process line, energy consumption, statistical methods, energy optimization, consumption ratio, statistical analysis

I. INTRODUCTION

The format of power generation capacity is planned to capture the peak demand to guarantee unwavering quality in supply. India still faces challenges in assembling its developing request for control and solid supply of growing energy demand, the World Bank said in a report. With a growing population, quick urbanization and an economy that's anticipated to develop at a normal rate of 7% each year, request for power in India will nearly triple between 2018 & 2040, World Bank said, citing projections from International Energy Agency [1]-[3].

In this scenario, this drastic increase in the energy consumption of the industrial sector in the recent years possess a serious threat to the power grid. With the same production rate or slight increase in production, the energy demand has risen in this sector. The production rate cannot be manipulated to address this issue. On the other hand, measures must be made in the efficient handling of the production lines in order to achieve energy efficiency in industries [3]. Variables influencing energy utilization of an industry must be evaluated through their life cycle. Those factors majorly include the equipments employed in production line and their time of operation. These components have a coordinate effect on the energy effectiveness of buildings and comes about in an expanded outflows of carbon dioxide[4].

Energy optimization in the production line can be achieved through various ways. Many parameters/factors decide the energy consumption hence the optimization of energy is a tedious process Energy optimization of industrial sector has been studied since 1950s. Conventional analysis employees Life Cycle Costing (LCC) and Life Cycle Assessment (LCA). These have been employed to assess the environmental impacts and costs of the energy of industrial process lines since a very long time [5-7].

Barry Hyman and Tracy Reed has developed a more generic approach to assess the energy-intensity of manufacture process lines [9]. Many other methods including Standard Material Flow Diagram was developed to analyze the energy usage and production in various industrial fields [10-11]. But all these conventional methods cannot be implemented in all developing countries. In these nations one major aspect to be considered is the constrained information of the workforce within the generation unit. Significant extent of work drive driving or regulating the loads in units is semi-skilled, this may quicken toward energy wastage through incorrect operation of equipments and device breakdown. Subsequently there are tall chances of energy wastage within the generation unit.

The work presented in this paper introduces a competent analytics method including the operating time of equipments in the process line. This strategy will be exceedingly profitable to supply the right course of energy sparing for an industry by lessening energy wastage. The paper is organized as follows: Section II defines the objective of the work. Section III details the methodology followed in the work. Section IV includes the discussions and recommendations from analysis. Section V corporates the conclusions drawn from the analysis.

II. OBJECTIVE

The existing literature[12]-[15] commonly does not include the consumption time owing to the lack of skilful workers in the production line. Authors have employed various optimization models and different learning algorithms in production line [16-22]. But the use of various statistical analysis in are not explore in depth. The work presented in this paper compares and analyze the ideal operating time to the actual operating time of various equipments in the production line. Within the work, a diesel infusion pump fabricating unit in India is the test location considered. The operation of Camplate Process Line in the plant is investigated. The collected data from various installed meters are analyzed to find anomalous operating points in the process line.

III. SYSTEM DETAILS

Camplate Process Line

A cam is a turning or drifting piece in a mechanical linkage utilized particularly in changing rotating movement into straight movement. It is frequently a portion of a pivoting wheel (e.g. an eccentric wheel) or shaft (e.g. a barrel with an sporadic shape) that beats a lever at one or more focuses on its circular way. In camplate process, raw camplate from foundry are reformed to finished camplate through eight distinct processes as
shown in Fig. 1. This figure describes the process line, all the components in the process line, the function of each component, the ideal operating time of equipment and their rating. The major components include:

1. Kadia – employed for honing the raw camplate. It is an acerbic machining process by which precision surface is developed on the raw camplate by rubbing a casuistic material against it along a controlled path.
2. Jumat – employed for grinding the raw camplate
3. ECM – employed for grinding off the claw base of the raw camplate
4. MS-19 – employed for grinding the can profile
5. Supfina – employed for shim face grinding
6. Cleaning – cleans the finished camplate
7. Shot peening – employed for relieving stress developed while grinding the camplate
8. Trowalising – employed for deburring the sharp edges of the camplate

From eight processes, two processes with the least operating time and two processes with the highest operating time are...
Further investigated which includes shot peening, cascade camplate cleaning, trowalising (two loads: trowalising 510 and trowalising 370).

IV. METHODOLOGY

Camplate process is a batch process. Hence every process in the line should adhere to the rated process time. To investigate this, the T_{on} time and number of instances corresponding to this T_{on} time are determined and analyzed. The results of Statistical analysis of data are explained in the below sections.

For camplate cleaning process, the ideal T_{on} time is 15 minutes. Fig. 2 illustrates the results of T_{on} analysis. It’s observed that the number of instances with T_{on} duration comparable to ideal T_{on} time is less i.e. 37 instances (out of 645 instances) with operating time between 13-18 minutes. In majority cases the T_{on} time is much less than the ideal operating time. Hence occurrences of operational anomalies are detected in the process load.

For shot peening, the ideal T_{on} time is 15 minutes. Fig. 3 shows the results of T_{on} analysis. It’s been observed that majority of instances (2738 out of 4589 instances) complete the operation with in rated operating time. Hence currently, no operational anomalies are present in the process load.

For trowalising 370, the ideal T_{on} time is 150 minutes. Fig. 4 illustrates the results of T_{on} analysis. It’s observed that the number of instances with T_{on} duration comparable to ideal T_{on} time is less i.e. 37 instances (out of 645 instances) with operating time between 13-18 minutes. In majority cases the T_{on} time is much less than the ideal operating time. Hence occurrences of operational anomalies are detected in the process load.
time is much less i.e. 5 instances (out of 1526 instances) with operating time between 151-155 minutes. In majority cases the T_{on} time is much less than the ideal operating time. Hence occurrences of operational anomalies are detected in the process load. For trowalising 510, the ideal T_{on} time is 150 minutes.

Fig. 5 illustrates the results of T_{on} analysis. It’s observed that the number of instances with T_{on} duration comparable to ideal T_{on} time is much less i.e. 8 instances (out of 1199 instances) with operating time between 151-155 minutes. In majority cases the T_{on} time is much less than the ideal operating time. Hence occurrences of operational anomalies are detected in the process load. Apart from shot peening, the three other loads exhibit abnormalities in operating duration.

For further analysis the scatter plots of the operating time of the loads are analyzed. In the scatter plots illustrated,

- μ_E represents mean of load energy consumption
- $\mu_{T_{on}}$ represents mean of T_{on} time
- σ_T represents standard deviation of T_{on} time
- μ_E represents mean of load energy consumption

Fig. 6 illustrates the scatter plot of cascade camplate cleaning. The presence of anomaly is validated by the mean and standard deviation of process T_{on} duration. The y axis represents the energy consumption of the load during corresponding T_{on} time. Undoubtedly, it’s the energy wasted during prolonged operating time of the load.

The average energy consumption is 2.43 kWh where the maximum consumption goes till 7.5 kWh with a considerable standard deviation in energy consumption (of 2.89 kWh). Fig. 7 illustrates the scatter plot of shot peening. The standard deviation of energy consumption is as low as 0.87 and the mean of operating time is 13 minutes, close to ideal operating duration of 15 minutes. Hence shoot peening pursues normal operating duration.

The scatter plot of trowalising 370 is illustrated by Fig. 8. The mean and standard deviation of T_{on} duration confirms abnormal operation in the system. The mean of T_{on} duration is 50 minutes where the rated T_{on} time is 150 minutes. The process shows abnormal operating pattern. The lowered operating duration leads to reduced production quality. Prior to energy wastage production quality is affected by this anomaly. Fig. 9 illustrates the scatter plot of trowalising 510. The mean of T_{on} time is 130 minutes where ideal duration is 150 minutes. Operational anomalies are shown by the load like trowalising 370.
V. DISCUSSION AND RECOMMENDATION

Anomalous operations are detected in three process loads. While reporting to the FM, the probable source of abnormalities suggested includes,

- the process being operated in under load or over load
- enhanced machine down time during process cycle
- human error during manual operations of the load
- machine exceeding thermal limits
- supply problems
- sudden change in batch size

Proposed remedies include,

- routine maintenance checks
- Keep suggested batch size
- aversion of sudden changes in batch size (in case to meet production target)
- standardization of work: fool proofing, bench marking

VI. CONCLUSION

The camplate process line comprises of several stages. The erroneous operating points at different stages are determined through data analysis. These findings are reported to the Facility Manager of the plant. The probable causes of these abnormalities and the remedies for these faulty operations are communicated. A little increase in operational proficiency comes about in noteworthy energy savings. Thus the proposed strategy progresses the generation quality, amount with diminished operational cost.

REFERENCES

[1] Growth of Electricity Sector in India from 1947-2015, Central Electricity Authority of India, June 2015.

[2] P. H. Jayantilal and N. Shah, “A review on electrical energy management techniques for supply and consumer side in industries,” Int. J. Sci. Eng. Technol. Res., vol. 3, pp. 550–556, Apr. 2014.

[3] P. Samadi, H. Mohsenian-Rad, V. Wong, and R. Schober, “Tackling the load uncertainty challenges for energy consumption scheduling in smart grid,” IEEE Trans. Smart Grid, vol. 4, no. 2, pp. 1007–1016, Jun. 2013.

[4] Ayman Khalid Elsadig, “Energy Efficiency in Commercial Buildings,” June, 2005.

[5] Prof. Svend Svendsen, Prof. Manfred Sakulin, “Optimisation of Energy Efficiency Methods in Buildings regarding Life Cycle Costs,” Technical University of Denmark and Graz University of Technology 2000.

[6] Kara S et al. An integrated methodology to estimate the external environmental costs of products. CIRP Annals, 2007, 56 : 9–12.

[7] Jan z D, Sihn W. Product redesign using value-oriented Life Cycle Costing. CIRP Annals, 2005, 54:9-12.

[8] Kaebernick Hetal. Simplified Life Cycle Assessment for the early design stages of industrial products. CIRP Annals, 2003 , 54:25-28.

[9] Hyman B, Reed T. Energy intensity of manufacturing processes. Energy, 1995, 20: 593-606 238.

[10] Lu Z W et al. Study on the influence of material flows on energy intensity of steel manufacturing process. Acta Metallurgica Sinica, 2000, 36: 370–378.

[11] Oladiran M T, Meyer J P. Energy and exergy analyses of energy consumptions in the industrial sector in South Africa. Applied Energy, 2007, 84 :105 6–106 7.

[12] S. Kilicote, M. Piette, and D. Hansen, “Advanced controls and communications for demand response and energy efficiency in commercial buildings,” in Proc. 2nd Carnegie Mellon CEP, Pittsburgh, PA, USA, Jan. 2006, pp. 1–10.
[13] M. Ghamkhari and H. Mohsenian-Rad, “Energy and performance management of green data centers: A profit maximization approach,” IEEE Trans. Smart Grid, vol. 4, no. 2, pp. 1017–1025, Jun. 2013.

[14] Smart Grid Technol., Washington, DC, USA, Feb. 2013, pp. 1–6.

[15] Energy Performance of Buildings—Calculation of Energy Use for Space Heating and Cooling, ISO 13790:2008

[16] A. Bego, L. Li, and Z. Sun, “Identification of reservation capacity in critical peak pricing electricity demand response program for sustainable manufacturing systems,” Int. J. Energy Res., vol. 38, no. 6, pp. 728–736, May 2014.

[17] Eskin E., Arnold A., Prerau M., Portnoy L., Stolfo S. "A geometric framework for unsupervised anomaly detection: Detecting intrusions in unlabeled data", Applications of data mining in computer security, vol. 6, no. 1, pp. 77-102, May, 2002.

[18] Görnitz N., Kloft M. M. , Rieck K. and Brefeld U., “Toward supervised anomaly detection”, Journal of Artificial Intelligence Research, vol. 46, pp. 235-262, Feb. 2013

[19] John E. Seem, “Using intelligent data analysis to detect abnormal energy consumption in buildings,” Elsevier Journal on Energy and Buildings, vol. 39, no. 1, pp. 52-58, Jan. 2007.

[20] D. Wijayasekara, O. Linda, M. Manic, and C. Rieger, “Mining building energy management system data using fuzzy anomaly detection and linguistic descriptions,” IEEE Transactions on Industrial Informatics, vol. 10, no. 3, pp. 1829-1840, Aug. 2014.

[21] Ashok, S., and Rangan Banerjee. "An optimization mode for industrial load management." IEEE Transactions on Power Systems, vol. 16, no. 4, pp. 518-529, Nov 2001.

[22] Nguyen, Anh-Tuan, Sigrid Reiter, and Philippe Rigo. "A review on simulation-based optimization methods applied to building performance analysis.” Applied Energy, vol. 113, pp. 1043-1058, Dec 2010.