A *Trichosporon asahii* Bloodstream Infection in a Preterm Newborn with a Successful Outcome: A Case Report

Bukhari MA**, Abdelrazek SAM1,2, Abeer H El-Shalakany2,3 and Faiz A2

1Department of Clinical Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
2Microbiology Unit, Laboratory of Maternity and Children Hospital, Makkah, Saudi Arabia
3Department of Clinical Pathology, Faculty of Medicine, El-Menoufia University, El-Menoufia, Egypt
4Public Health Laboratory, Makkah, Saudi Arabia

Abstract

Trichosporon asahii is a rare opportunistic fungal pathogen that causes fatal systemic infections in immunocompromised patients. We have reported a case of *T. asahii* fungemia in a low birth weight preterm newborn baby in the neonatal intensive care unit (NICU). This case of *T. asahii* fungemia was unresponsive to treatment with a combination of Amphotericin B and Fluconazole. However, Treatment with a combination of Voriconazole and Caspofungin was successfully eliminated the fungus from the blood of the infected patient.

Keywords: *Trichosporon asahii*; Bloodstream infection; Preterm newborn

Background

The mortality rate among patients with fungal bloodstream infection is high, ranging from 50% to 80% [1]. Candida species are usually susceptible to standard antifungal agents. Whereas, the treatment of non-candida yeasts is more difficult because they have innate resistance to standard antifungal agents which limits treatment options [2]. *Trichosporon asahii* (previously known as *T. beigelli*) is an emerging, opportunistic non-candida yeast pathogen that causes superficial dermatologic infections (white piedra and onychomycosis) in immunocompetent individuals, however, among immunocompromised patients, it causes severe complications, disseminated disease with poor prognosis and fatal infections for neonatal [3]. Prematurity is an important predisposing factors for invasive *Trichosporon* infections [4].

Case presentation

A 30 weeks, low birth weight (about 1500 g), preterm girl baby was delivered by Cesarean Section (due to maternal antepartum hemorrhage) in the Maternity and Children Hospital, Makkah, Saudi Arabia. Immediately after delivery, the baby suffered from respiratory distress and cardiac arrest and lifesaving resuscitation was done successfully and the baby was admitted to the Nursery Intensive Care Unit (NICU) where the baby developed manifestations of hemorrhage (Hemoglobin: 8.7 g/dL), thrombocytopenia (Platelets: 70,000/μL), prolonged prothrombin time (PT: 17 seconds), metabolic and respiratory acidosis. For the isolation of *T. asahii*, blood culture bottles were incubated inside the automated Bact/Alert blood culture System (BacT/ALERT® 3D; BioMérieux, Marcy-l’Etoile, France). On positive signal, blood samples from positive bottles were examined directly under light microscope (oil lens X 1000) and showed yeast like fungi and elongated blastococidia. In the same time, blood samples from positive bottles were cultured on Sabouraud's dextrose agar (SDA), blood agar and chocolate agar (nasal and groin swabs were cultured on the same media). After 48 h of incubation at 37°C, colonies of yeast-like fungi were isolated. Even though, colonies needed 7 days at 37°C to reach the characteristic white, rosette- shaped, wrinkled colonies with radiating furrows and umbonate centers.

Microscopic examination of gram-stained smears of these colonies, demonstrated round to oval, budding yeast-like cells, elongated blastococidia, septate pseudohyphae and cylindrical arthroconidia. Identification of the isolate as *T. asahii* as well as antifungal susceptibility testing were done by the Vitek 2 automated system (BioMérieux, Marcy-l’Etoile, France) using the card kits for yeast identification (AST-YST) and sensitivity (AST-YST07). Minimum Inhibitory Concentrations (MICs) were as follows: Amphotericin B 2 μg/mL; Fluconazole 1 μg/mL; Voriconazole ≤ 0.12 μg/mL; Micafungin ≤ 0.06 μg/mL; Caspofungin ≤ 0.25 μg/mL and Fluconitosol ≤ 1 μg/mL (Figures 1 and 2).

Discussion

Over the last two decades, *Trichosporon* species have been increasingly reported as opportunistic pathogens that can cause invasive infections. *Trichosporon* species were isolated from different types of clinical specimens, including blood, urine and skin specimens. Moreover, they were recognized in colonization of the gastrointestinal tract of patients with hematological and solid malignancies. Moreover, the mortality rate among patients with fungal bloodstream infection is high, ranging from 50% to 80% [1]. Candida species are usually susceptible to standard antifungal agents. Whereas, the treatment of non-candida yeasts is more difficult because they have innate resistance to standard antifungal agents which limits treatment options [2]. *Trichosporon asahii* (previously known as *T. beigelli*) is an emerging, opportunistic non-candida yeast pathogen that causes superficial dermatologic infections (white piedra and onychomycosis) in immunocompetent individuals, however, among immunocompromised patients, it causes severe complications, disseminated disease with poor prognosis and fatal infections for neonatal [3]. Prematurity is an important predisposing factors for invasive *Trichosporon* infections [4].

The case reported here is the first demonstration of a *Trichosporon asahii* bloodstream infection in a preterm baby. Furthermore, the case report demonstrates that *T. asahii* appears to have innate resistance to standard antifungal agents which limits treatment options [2]. *Trichosporon asahii* is an emerging, opportunistic non-candida yeast pathogen that causes superficial dermatologic infections (white piedra and onychomycosis) in immunocompetent individuals, however, among immunocompromised patients, it causes severe complications, disseminated disease with poor prognosis and fatal infections for neonatal [3]. Prematurity is an important predisposing factor for invasive *Trichosporon* infections [4].

Despite the treatment, the fungus continued to be isolated again from blood cultures on 29th, 34th, 37th, 43rd, 50th, 54th, 59th days. On the 60th day, Amphotericin B and Fluconazole were replaced by a combination of Voriconazole and Caspofungin. From the 74th day of life and onward, *T. asahii* could not be isolated from blood cultures. Routine laboratory investigations were within normal values for anemia (Hemoglobin: 8.7 g/dL), thrombocytopenia (Platelets: 70,000/μL), prolonged prothrombin time (PT: 17 seconds), metabolic and respiratory acidosis. For the isolation of *T. asahii*, blood culture bottles were incubated inside the automated Bact/Alert blood culture System (BacT/ALERT® 3D; BioMérieux, Marcy-l’Etoile, France). On positive signal, blood samples from positive bottles were examined directly under light microscope (oil lens X 1000) and showed yeast like fungi and elongated blastococidia. In the same time, blood samples from positive bottles were cultured on Sabouraud's dextrose agar (SDA), blood agar and chocolate agar (nasal and groin swabs were cultured on the same media). After 48 h of incubation at 37°C, colonies of yeast-like fungi were isolated. Even though, colonies needed 7 days at 37°C to reach the characteristic white, rosette- shaped, wrinkled colonies with radiating furrows and umbonate centers.

Microscopic examination of gram-stained smears of these colonies, demonstrated round to oval, budding yeast-like cells, elongated blastococidia, septate pseudohyphae and cylindrical arthroconidia. Identification of the isolate as *T. asahii* as well as antifungal susceptibility testing were done by the Vitek 2 automated system (BioMérieux, Marcy-l’Etoile, France) using the card kits for yeast identification (AST-YST) and sensitivity (AST-YST07). Minimum Inhibitory Concentrations (MICs) were as follows: Amphotericin B 2 μg/mL; Fluconazole 1 μg/mL; Voriconazole ≤ 0.12 μg/mL; Micafungin ≤ 0.06 μg/mL; Caspofungin ≤ 0.25 μg/mL and Fluconitosol ≤ 1 μg/mL (Figures 1 and 2).

Discussion

Over the last two decades, *Trichosporon* species have been increasingly reported as opportunistic pathogens that can cause invasive infections. *Trichosporon* species were isolated from different types of clinical specimens, including blood, urine and skin specimens. Moreover, they were recognized in colonization of the gastrointestinal tract of patients with hematological and solid malignancies. Moreover, the mortality rate among patients with fungal bloodstream infection is high, ranging from 50% to 80% [1]. Candida species are usually susceptible to standard antifungal agents. Whereas, the treatment of non-candida yeasts is more difficult because they have innate resistance to standard antifungal agents which limits treatment options [2]. *Trichosporon asahii* (previously known as *T. beigelli*) is an emerging, opportunistic non-candida yeast pathogen that causes superficial dermatologic infections (white piedra and onychomycosis) in immunocompetent individuals, however, among immunocompromised patients, it causes severe complications, disseminated disease with poor prognosis and fatal infections for neonatal [3]. Prematurity is an important predisposing factor for invasive *Trichosporon* infections [4].

The case reported here is the first demonstration of a *Trichosporon asahii* bloodstream infection in a preterm baby. Furthermore, the case report demonstrates that *T. asahii* appears to have innate resistance to standard antifungal agents which limits treatment options [2]. *Trichosporon asahii* is an emerging, opportunistic non-candida yeast pathogen that causes superficial dermatologic infections (white piedra and onychomycosis) in immunocompetent individuals, however, among immunocompromised patients, it causes severe complications, disseminated disease with poor prognosis and fatal infections for neonatal [3]. Prematurity is an important predisposing factor for invasive *Trichosporon* infections [4].

Despite the treatment, the fungus continued to be isolated again from blood cultures on 29th, 34th, 37th, 43rd, 50th, 54th, 59th days. On the 60th day, Amphotericin B and Fluconazole were replaced by a combination of Voriconazole and Caspofungin. From the 74th day of life and onward, *T. asahii* could not be isolated from blood cultures. Routine laboratory investigations were within normal values for anemia (Hemoglobin: 8.7 g/dL), thrombocytopenia (Platelets: 70,000/μL), prolonged prothrombin time (PT: 17 seconds), metabolic and respiratory acidosis. For the isolation of *T. asahii*, blood culture bottles were incubated inside the automated Bact/Alert blood culture System (BacT/ALERT® 3D; BioMérieux, Marcy-l’Etoile, France). On positive signal, blood samples from positive bottles were examined directly under light microscope (oil lens X 1000) and showed yeast like fungi and elongated blastococidia. In the same time, blood samples from positive bottles were cultured on Sabouraud's dextrose agar (SDA), blood agar and chocolate agar (nasal and groin swabs were cultured on the same media). After 48 h of incubation at 37°C, colonies of yeast-like fungi were isolated. Even though, colonies needed 7 days at 37°C to reach the characteristic white, rosette- shaped, wrinkled colonies with radiating furrows and umbonate centers.
weight are thought to be the main factors that facilitated colonization and subsequent sepsis of the preterm baby because of the deficiency of normal flora that competes with the opportunistic pathogens and by the fact that components of body defense systems are still immature enough in the preterm babies especially those with low birth weight.

In the present case of T. asahii fungemia, no specific clinical manifestations were registered on the preterm baby, however, regarding the laboratory investigations, there were anemia, thrombocytopenia, prolonged prothrombin time, metabolic and respiratory acidosis. Our results are nearly consistent with a previous case study by Pereira et al., [14,15] who reported anemia, thrombocytopenia and metabolic acidosis in a low birth weight preterm baby with T. asahii fungemia [16] recently reported severe thrombocytopenia, lethargy, feeding intolerance, bleeding manifestations in cases of T. asahii fungemia in preterm babies with low birth weight. Unexplained thrombocytopenia was again reported by John et al., [17] in an immunocompetent adult patient with T. asahii fungemia.

Treatment for invasive Trichosporon infections is still difficult and controversial. Few and variable data are available on the in vitro and in vivo activities of antifungal drugs against clinically relevant species of Trichosporon. In addition, the in vitro activity of antifungal drugs does not always correlate with good clinical response. Accordingly, No optimal therapy regimen for trichosporonosis has been identified. Amphotericin B has limited activity against Trichosporon species in vitro and in vivo while echinocandins are nearly not effective as a mono-therapy for invasive Trichosporon infections [18].

Triazoles are the drug of choice for antifungal treatment and Trichosporon infections in particular. Studies have shown that Voriconazole is highly active against T. asahii isolates in vitro and in vivo; including isolates with reduced susceptibility to Amphotericin B, Itraconazole, and Fluconazole. However, a case of breakthrough of T. asahii infection has been reported recently against Voriconazole [19].

Several studies and clinical trials have strongly recommended the use of combined antifungal synergistic therapy for Trichosporon infections as these combinations increase clinical efficacy e.g. the combination of Amphotericin B with Azoles and the combination of Echinocandins with Azoles or Amphotericin B [20]. In the present case, the treatment was initiated with failure by using a combination of Amphotericin B and Ketoconazole for 4 weeks. After that the treatment was replaced by a combination of Voriconazole and Caspofungin which eradicated T. asahii from the blood of the patient by the end of 2nd week of treatment.

Conclusion

We have described a rare case of T. asahii invasive infection in a low birth weight preterm newborn baby in the neonatal intensive care unit (NICU), Maternity and Children Hospital, Makkah, Saudi Arabia. T. asahii was isolated from the patient nasal swabs, groin swabs and then from blood cultures. No specific clinical manifestations could be detected on the preterm baby. Thrombocytopenia was the most prominent laboratory finding. This case of T. asahii fungemia was resistant to treatment with a combination of Amphotericin B and Fluconazole. However, the case was successfully treated using a combination of Voriconazole and Caspofungin.

Conflicts of Interest

All authors declare no conflict of interests in this work.

Figure 1: Direct microscopic examination of blood sample from positive blood culture bottles show oval elongated yeast-like cells, elongated blastoconidia of T. asahii (light microscope oil lens X 1000).

Figure 2: T. asahii colonies on SDA after incubation at 37°C for 7 days.
References

1. Alonso-Valle H, Acha O, Garcia-Palomar JD, Farinas-Alvarez C, Fernandez-Mazaraza C, et al. (2003) Candidemia in a tertiary care hospital: epidemiology and factors influencing mortality. Eur J Clin Microbiol Infect Dis 22: 254-257.

2. Miceli MH, Diaz JA, Lee SA (2011) Emerging opportunistic yeast infections. Lancet Infect Dis 11: 142-151.

3. Colombo AL, Padovan AC, Chaves GM (2011) Current knowledge of Trichosporon spp. and Trichosporonosis. Clin Microbiol Rev 24: 682-700.

4. Ahmad S, Al-Mahmeed M, Khan ZU (2005) Characterization of Trichosporon species isolated from clinical specimens in Kuwait. J Med Microbiol 54: 639-46.

5. Falk R, Wolf DG, Shapiro M, Polacheck I (2003) Multidrug-resistant Trichosporon asahii isolates are susceptible to voriconazole. J Clin Microbiol 41: 911.

6. Itoh T, Hosokawa H, Kohdera U, Toyazaki N, Asada Y (1996) Disseminated infection with Trichosporon asahii. Mycoses 39: 19569.

7. Li H, Lu Q, Wan Z, Zhang J (2010) In vitro combined activity of amphotericin B, Caspofungin and Voriconazole against clinical isolates of Trichosporon asahii. Int J Antimicrob Agents 35: 550-552.

8. Miceli MH, Diaz JA, Lee SA (2011) Emerging opportunistic yeast infections. Lancet Infect Dis 11: 142-151.

9. Osoba AO, Al-Mowallad AW, McAlear DE, Hussein BA (2003) Candidemia and the susceptibility pattern of Candida isolates in blood. Saudi Med J: 1060-1063.

10. Vazquez JA (2010) Trichosporon infection. Curr Fungal Infect Rep 4: 52-58.

11. Papilou NI, Ostrosky-Zeichner L, Paetznick VL, Rodriguez JR, Chen E, et al. (2002) In vitro antifungal susceptibilities of Trichosporon species. Antimicrob Agents Chemother. 46: 1144-1146.

12. Al-Hedaily SSA (2003) The yeast species causing fungemia at a university hospital in Riyadh, Saudi Arabia, during a 10-year period. Mycoses 46: 275-280.

13. Yamamoto M, Takakura S, Hotta G, Matsumura A, Matsushima A, et al. (2013) Clinical characteristics and risk factors of non-candida fungemia. BMC Infect Dis 13: 247.

14. Biasoli MS, Carlson D, Chiganer GJ, Parodi R, Greca A, et al. (2008) Systemic infection caused by Trichosporon asahii in a patient with liver transplant. Med Mycol 46: 719-23.

15. Pereira DN, Nader SS, Nader P, Martins PG, Furlan SP, et al. (2009) Disseminated Trichosporon spp infection in preterm newborns: a case report. J Pediatr (Rio J) 85: 459-461.

16. Basu S, Tilak R, Kumar A (2015) Multidrug-resistant Trichosporon: an unusual fungal sepsis in preterm neonates. Pathog Glob Health 109: 202-206

17. John R, Ebright, Marilyn R, Fairfax, Jose A (2001) Vazquez. Trichosporon asahii, a Non-Candida Yeast That Caused Fatal Septic Shock in a Patient without Cancer or Neutropenia. BRIEF REPORTS 33: P29.

18. Denning DW (2003) Echinocandin antifungal drugs. Lancet 362: 1142-1151.

19. Chen J, Chen F, Wang Y, Yang L, Miao M, et al. (2014) Use of combination therapy to successfully treat breakthrough Trichosporon asahii infection in an acute leukemia patient receiving Voriconazole. Medical Mycology Case Reports 6: 55-57.

20. Bassetti M, Bisio F, Di Biagio A, Pierri I, Balocco M, et al. (2004) Trichosporon asahii infection treated with Caspofungin combined with liposomal Amphotericin B. J. Antimicrob. Chemother 54: 575-577.