Communication

The Influence of Variety and Climatic Year on the Phenology of Blueberry Grown in the Banat Area, Romania

Sina Cosmulescu 1,⁎, Maria Marina Merca Laies 2 and Veronica Sărățeanu 3

1 Department of Horticulture and Food Science, Faculty of Horticulture, University of Craiova, 13 A.I. Cuza Street, 200585 Craiova, Romania
2 Doctoral School of Plant and Animal Resources Engineering, Faculty of Horticulture, University of Craiova, 13 A.I. Cuza Street, 200585 Craiova, Romania
3 Department of Agricultural Technologies, Faculty of Agriculture, University of Life Sciences “King Michael I of Romania” from Timișoara, Calea Aradului Street, no. 119, 300645 Timișoara, Romania
⁎ Correspondence: sina.cosmulescu@edu.ucv.ro

Abstract: This paper’s aim was to investigate the influence of variety and the climatic year on vegetation phenophases in blueberries grown in southwest Romania, the Banat region. This study was carried out during the growing season of 2020–2022 in a blueberry plantation, for ‘Duke’, ‘Hannah’s Choice’ and ‘Elliott’ varieties. In the study, phenological traits were recorded using the BBCH phenological scale and the observation of phenotypic data was recorded as in Julian days. Thus, it is found that the duration of each phenophase characterized each variety. The calendar periods for the onset of vegetation and the duration of spring phenological development stages in varieties have differed from year to year and depended on weather conditions. In the case of the phenological stage, depending on variety, the maximum amplitude was recorded for BBCH 87 stage (75% blue fruits) of 51 days, and the minimum amplitude, of 25 days, for BBCH 51 stage (bud swell) and BBCH 59 (late pink bud). The coefficient of variation, depending on climatic year, for generative phenophases, had values between 6.5% (BBCH 67-petal fall) and 21.1% (BBCH 51-bud swell). It was found that the variety and the climatic year influence the development of vegetation phenophases. The results indicate that blueberry cultivars have demonstrated a high degree of phenotypic plasticity to respond to gradual changes in environmental conditions and are important for the evaluation of cultivar cultivation prospects in the studied area.

Keywords: ANOVA; BBCH; phenophases; Julian day; Vaccinium corymbosum

1. Introduction

A major aspect in assuring successful blueberry cultivation and good productivity is the knowledge of the cycle of growth and fruiting and of the biology of the plant and how it adapts to the environmental conditions existing in different cultivation regions, with influence on the total income. Considering these aspects, it is important to monitor and forecast plant phenology. Additionally, considering that blueberry varieties are partially self-sterile, it is important to find varieties that bloom simultaneously in the same plantation, in order to obtain cross-pollination that leads to the binding of a large number of fruits and implicitly to a large increase in crops [1]. This aspect is one of the most important reasons for knowing the phenology of each variety cultivated in each plantation. Abiotic factors, especially temperature and humidity, do influence the date on which different phenophases appear and their duration, for example: bud swelling (bursting), flowering, fruit ripening and leaf fall [2–4]. Monitoring these environmental factors can be particularly important for farmers who want to introduce management practices at various stages of crop development. Diez-Rodriguez et al. [5] consider that the knowledge of the entomofauna associated with the blueberry, together with the similarity of composition with the phenological stages and the evaluated sites, contributes to the development of integrated...
pest management and the establishment of a crop production system. Additionally, for studying the impact of climate change on plants, researchers have used phenology as a particularly important tool, especially in troubled ecosystems [6]. The variations that appear from one year to another in the occurrence and duration of phenological stages can be used as a biological indicator in the ecology of various species, as their response to the climatic variations that occur [7]. Blueberry culture is of increasing interest due to the nutritional qualities of fruits and the therapeutic virtues of both fruits and leaves [8–10]. In general, the characteristics of a cultivar are defined by the environmental conditions in which it was obtained, but which may be quite different from those of the production area [11]. Taking into account the fact that the global environment is changing, with higher global temperature and extreme precipitation fluctuations, it is very important for farmers to know the adaptation of genotypes to different crop areas [12–16], as it is known that environmental factors require different development of vegetation phenophases [7,17,18]. The study of growth and development patterns of blueberry cultivars introduced under new environmental conditions is of great importance for evaluating their prospects because the rate of plant development has changed as a result of the spread of each species in different climatic and ecological conditions. Data on newly introduced blueberry cultivars for Central and Eastern Europe are fragmented and adapted to different climatic conditions [19,20] which differ significantly from the meteorological and climatic conditions in Romania. In many growing areas, blueberries are affected by late hoar frost and spring frosts. Thus, a means of reducing crop losses caused by frost damage would have an immediate economic impact, and as a result, studies are needed on the development of spring phenophases. The identification of cultivars adapted to the different cultivation areas in Romania will also trigger the expansion of blueberry cultivation. The objective of this was to evaluate the influence of the variety and the climatic year on the spring-summer phenophases of blueberries grown in southwestern Romania, the Banat region.

2. Materials and Methods

Experimental site and plant material. The experiment was organized in Ghereniș town (45°25′48″ N 21°34′55″ E), Caraș-Severin County, Banat region, located in the southwest of Romania, in a plantation established in 2015 (Figure 1). The culture system is super intensive, and the density is 4700 bushes per surface unit. The planting was done on bins covered with black agrotextile-type foil, and the planting distance is 3 × 0.7 m. Due to its location in the southwestern part of Romania, not far from the Adriatic Sea and sheltered by the Carpathians, the Caraș-Severin area has a moderate temperate-continental climate, with sub-Mediterranean nuances. During the research period, in the experimental plantation, the average annual temperature was 12.3 °C, while the average temperature in July was 22.5 °C, and in January it was 0.9 °C; the sum of annual rainfall was 828 mm. The soil has a medium clay-clay texture, with a clay content between 35–45% and a humus content between 2.3–2.7%.

Figure 1. Experimental site (Ghereniș town; 45°25′48″ N 21°34′55″ E, Caraș-Severin County).

The study was carried out over the period 2020–2022 on ‘Duke’, ‘Hannah’s Choice’ and ‘Elliott’ varieties.

Methods. The phenology of varieties was monitored according to BBCH (Biologische Bundesanstalt, Bundessortenamt und CHEmosche Industrie) scale, according to those described by Longstroth [21]. For the experiment, 30 shrubs were marked, in three repetitions
The study was carried out over the period 2020–2022 on ‘Duke’, ‘Hannah’s Choice’, and ‘Elliot’ blueberry varieties (Table 1) and the climatic conditions of the Banat area in Romania during 2020–2022. It can be seen that, according to the minimum number of days required for the development of phenophases, the ‘Elliot’ variety was the latest in the assortment, followed by ‘Duke’ and ‘Hannah’s Choice’, which highlights the influence of variety on the development of phenophases. The flowering phenology has shown that the varieties studied are different in regard to the start of vegetation, flowering moments and ripening of fruits [22]. Additionally, Kirk & Isaacs [23] suggest that flowering phenology of highbush blueberries differs significantly by variety and is predictable based on air temperature. In the case of the phenological stage, depending on variety, the maximum amplitude was recorded for BBCH 87 stage (75% blue fruits) of 51 days, and the minimum amplitude, of 25 days, for BBCH 51 stage (bud swell) and BBCH 59 (late pink bud). From the analysis of maximum and minimum phenophase development data, it appears that the first phenophases (BBCH 51-BBCH 67) unfold much more grouped (the amplitude depending on variety is between 25 and 31 days), while for the late phenophases, the amplitude was much longer, between 44 and 51 days.

The coefficient of variation, for the studied generative phenophases, had values below 15%, highlighting the stability of conditions of growth and development. It can be considered that blueberry population in the study is homogeneous, the phenological stages are quite grouped in the analysed variety, only for the BBCH 51 stage, in the ‘Hannah’s Choice’ which highlights the influence of variety on the development of phenophases. The flowering phenology has shown that the varieties studied are different in regard to the start of vegetation, flowering moments and ripening of fruits [22]. Additionally, Kirk & Isaacs [23] suggest that flowering phenology of highbush blueberries differs significantly by variety and is predictable based on air temperature. In the case of the phenological stage, depending on variety, the maximum amplitude was recorded for BBCH 87 stage (75% blue fruits) of 51 days, and the minimum amplitude, of 25 days, for BBCH 51 stage (bud swell) and BBCH 59 (late pink bud). From the analysis of maximum and minimum phenophase development data, it appears that the first phenophases (BBCH 51-BBCH 67) unfold much more grouped (the amplitude depending on variety is between 25 and 31 days), while for the late phenophases, the amplitude was much longer, between 44 and 51 days.

The coefficient of variation, for the studied generative phenophases, had values below 15%, highlighting the stability of conditions of growth and development. It can be considered that blueberry population in the study is homogeneous, the phenological stages are quite grouped in the analysed variety, only for the BBCH 51 stage, in the ‘Hannah’s Choice’ variety, which highlights the influence of variety on the development of phenophases.
Choice' variety, the values were higher (14.9%) (Table 1). It is found that the duration of each phenophase has characterized each variety. Thus, the results obtained in the field trials indicate that the length of the period from the bud swells (BBCH 51) to 75 blue (BBCH 87) of highbush blueberry varied from 180.6 to 222.3 Julian days (Table 1). In the case of the study carried out, the earliest phenophases were recorded in the 'Hannah’s Choice' variety, especially for the early phenophases (BBCH 51–81), so that the colouration of fruits started earlier in the ‘Duke’ variety (BBCH 83–87). The beginning of flowering is a very important parameter because of the possible damage to flowers by late spring frost [24], and the duration of phenological stages was influenced by the microclimate [25].

Table 1. Descriptive statistics regarding the influence of variety on generative phenophases of blueberries grown in the low hilly area of Banat (2020–2022).

Phenophase	Variety	Mean	SD	CV (%)	Shapiro–Wilk	p-Value	Minimum	Maximum
BBCH 51 (Bud swell)	‘Duke’	52.0	3.66	6.9	0.942	0.537	49	56
	‘Elliott’	62.0	2.00	3.2	1.000	1.000	60	64
	‘Hannah’s Choice’	44.6	6.65	14.9	0.953	0.583	39	52
BBCH 57 (Early pink bud)	‘Duke’	99.3	2.08	2.1	0.923	0.463	97	101
	‘Elliott’	111.3	5.50	4.9	0.997	0.900	106	117
	‘Hannah’s Choice’	85.3	4.72	5.5	0.907	0.407	80	89
BBCH 59 (Late pink bud)	‘Duke’	106.6	4.93	4.6	0.832	0.194	101	110
	‘Elliott’	118.0	2.64	2.2	0.893	0.363	116	121
	‘Hannah’s Choice’	97.6	1.52	1.6	0.964	0.637	96	99
BBCH 61 (Early bloom)	‘Duke’	113.0	5.29	4.7	0.893	0.363	107	117
	‘Elliott’	123.6	3.78	3.1	0.855	0.253	121	128
	‘Hannah’s Choice’	103.6	5.13	5.0	0.949	0.567	98	108
BBCH 67 (Petal fall)	‘Duke’	127.00	6.08	4.8	0.818	0.157	120	131
	‘Elliott’	142.3	4.04	2.8	0.750	<0.001	140	147
	‘Hannah’s Choice’	121.3	4.72	3.9	0.907	0.407	116	125
BBCH 71 (Early green fruit)	‘Duke’	133.3	6.42	4.8	0.871	0.298	126	138
	‘Elliott’	155.3	10.40	6.7	0.923	0.463	147	167
	‘Hannah’s Choice’	128.6	6.68	5.2	0.953	0.583	123	136
BBCH 81 (Fruit colouring)	‘Duke’	155.0	8.71	5.6	0.842	0.220	145	161
	‘Elliott’	178.0	9.84	5.5	0.930	0.490	167	186
	‘Hannah’s Choice’	147.3	11.84	8.0	0.786	0.081	140	161
BBCH 83 (10% Blue)	‘Duke’	160.3	8.08	5.0	0.750	<0.001	151	165
	‘Elliott’	192.6	1.52	0.8	0.964	0.637	191	194
	‘Hannah’s Choice’	162.6	5.50	3.4	0.997	0.900	157	168
BBCH 87 (75% Blue)	‘Duke’	180.6	4.50	2.5	0.996	0.878	176	185
	‘Elliott’	222.3	4.50	2.0	0.996	0.878	218	227
	‘Hannah’s Choice’	182.3	6.50	3.6	0.998	0.915	176	189

SD = standard deviation; CV = coefficient of variation.

The beginning of flowering (BBCH 61) occurred at 103.6 Julian days for the ‘Hannah’s Choice’ variety, and 123.6 Julian days for the ‘Elliott’ variety. The difference between the beginning of the vegetation period and the start of flowering was from 59 to 61.6 days. The flowering period (BBCH 61–67) occurred at 103.6–121.3 Julian days. The beginning of fruit ripening (BBCH 83) started on the 47th day after the beginning of flowering for the ‘Duke’
variety, and on the 69th day for the ‘Elliott’ variety. A duration of 41–51 days between the beginning of flowering and the beginning of fruit ripening was found by Sterne and Liepniece [24] in some highbush blueberry cultivars in Latvia. The time of fruit ripening (BBCH 81–87) fluctuated from 147.3 to 222.3 Julian days; the longest fruit ripening period was observed in the ‘Elliott’ variety at 44 days.

Table 2. Descriptive statistics regarding the influence of experimental year on generative phenophases of blueberry cultivated in the low hilly area of Banat (2020–2022).

Phenophase	Year	Mean	SD	CV (%)	Shapiro–Wilk p-Value	Minimum	Maximum	
BBCH 51 (Bud swell)	2020	56.6	5.03	8.9	0.987	52	62	
	2021	50.0	10.53	21.1	0.993	39	60	
	2022	52.0	10.81	20.8	0.942	43	64	
BBCH 57 (Early pink bud)	2020	96.0	15.52	16.2	0.997	80	111	
	2021	101.3	15.04	14.8	0.994	87	117	
	2022	98.6	8.73	8.9	0.947	89	106	
BBCH 59 (Late pink bud)	2020	104.6	10.97	10.5	0.916	96	117	
	2021	109.6	11.01	10.0	0.997	99	121	
	2022	108.0	9.16	8.5	0.964	98	116	
BBCH 61 (Early bloom)	2020	109.0	12.12	11.1	0.980	98	122	
	2021	117.0	10.14	8.7	0.971	108	128	
	2022	114.3	8.32	7.3	0.923	105	121	
BBCH 67 (Petal fall)	2020	125.3	12.85	10.3	0.871	116	140	
	2021	131.3	8.50	6.5	0.999	123	140	
	2022	134.0	11.53	8.6	0.910	125	147	
BBCH 71 (Early green fruit)	2020	132.0	13.07	9.9	0.842	123	147	
	2021	139.0	12.53	9.0	0.995	127	152	
	2022	146.3	17.89	12.2	0.750	<0.001	136	167
BBCH 81 (Fruit colouring)	2020	151.0	14.00	9.3	0.862	141	167	
	2021	160.6	20.50	12.8	1.000	140	181	
	2022	168.6	15.04	9.9	0.805	159	186	
BBCH 83 (10% Blue)	2020	166.3	21.57	13.0	0.860	151	191	
	2021	173.6	16.77	9.7	0.800	163	193	
	2022	175.6	15.94	9.1	0.827	165	194	
BBCH 87 (75% Blue)	2020	192.0	22.71	11.8	0.855	176	218	
	2021	193.0	25.23	13.1	0.830	176	222	
	2022	200.3	23.18	11.6	0.821	185	227	

A longer duration, 56–66 days, was found by Sterne and Liepniece [24] between the phenophase beginning of fruit ripening and full ripeness in ‘Jersey’ and ‘Bluecrop’ cultivars. Based on the Shapiro–Wilk test, it can be seen that, in general, the distribution of data regarding the generative phenophases is normal with a few exceptions, namely the phenophase BBCH 67 (petal fall) in the ‘Elliot’ variety and BBCH 87 (75% blue) in the ‘Duke’ variety (Shapiro–Wilk p-value < 0.001).

Regarding the influence of climatic year on the development of generative phenophases in the blueberries cultivated in the low hilly area of Banat, the results are presented in Table 2. It is found that the calendar periods for the beginning of vegetation and the dura-
tion of spring phenological development stages in the cultivars differ considerably from year to year and depend on weather conditions, a fact also supported by Sava et al. [26]. Additionally, Valdés et al. [27], in his study, shows that the phenology of flowering and fruiting was rather variable and clearly depends on temperature variations throughout the year. The relative values of bloom parameters determined here will also help managers plan their plantings of varieties that require crosspollination with compatible varieties. The flowering season, associated with chilling requirements, and harvesting season are important traits for the adaptation of the cultivars to different environments [12]. The coefficient of variation, depending on climatic year, for generative phenophases, had values between 6.5% (BBCH 67-petal fall, 2021) and 21.1% (BBCH 51-bud swell, 2021). In the case of the study carried out, in 2021, the earliest BBCH 51 phenophase was recorded, on average 50 days from 1 January. Depending on the evolution of environmental factors, the following phenophases unfolded differently, so that the earliness of 2021, from the BBCH 51 phenophase, was not preserved in the following phenophases. For fruit ripening, BBCH 81–87 phenophases occurred earlier in 2020, followed by 2021 and 2022 (Table 2): BBCH 81 (fruit colouring) at 151–192 Julian days; BBCH 83 (10% blue) at 166.3–175.6 Julian days; BBCH 87 (75% blue) at 192–200.3 Julian days. It was found that blueberry varieties demonstrated a high degree of phenotypic plasticity from one year to another. The conclusions are similar to those obtained by Drozd [28], who says that the rhythmic plasticity of blueberry varieties introduced in Belarus appeared in the ability to change the phenomenon due to different weather conditions during the years of observation and was reflected in the variation of the dates of the onset of the main phenological phases. Paulouski [29] considers that cultivation differences in blueberry development manifest themselves more vividly during the flowering period and especially during the fruit ripening stage. Regarding the influence of experimental year on generative phenophases of blueberries grown in the low hilly area of Banat, the distribution of data analysed from a statistical point of view is normal, with one exception, namely the BBCH 71 phenophase (early green fruit) in 2022, when the Shapiro–Wilk p-value < 0.001.

To determine whether the number of days required for each generative phenophase influences the duration of subsequent phenophases, Bravais-Pearson correlation coefficients (r calc) were calculated (Table 3).

Table 3. Matrix of correlations between BBCH generative phenophases in blueberries cultivated in the low hilly area of Banat.

BBCH 51	57	59	61	67	71	81	83	87	
51	1	0.72**	0.74**	0.62*	0.68**	0.69**	0.67**	0.65*	0.77**
57	1	0.96***	0.97***	0.85***	0.76**	0.81***	0.78**	0.77**	
59	1	0.98***	0.92***	0.84***	0.86***	0.85***	0.84***		
61	1	0.91***	0.81***	0.83***	0.83***	0.78**			
67	1	0.97***	0.94***	0.94***	0.94***	0.90***			
71	1	0.97***	0.92***	0.92***	0.92***	0.90***			
81	1	0.89***	0.90***	0.90***	0.90***	0.90***			
83	1	0.97***							

Pearson r calc value; df = 7 (two-tailed test); α = 0.05; n = 9; df = n − 2 two-tailed; p 0.1 = 0.582 *; p 0.05 = 0.666 **; p 0.01 = 0.798 ***.

The obtained results are presented in the matrix of correlations between BBCH generative phenophases in blueberries cultivated in the low hilly area of Banat. As can be seen from Table 3, all the phenophases correlate with each other, and in most cases, the distinctly significant correlations were calculated (r value ranged from 0.67 to 0.78) and, respectively, very significantly positive (r value ranged from 0.81 to 0.98). Regarding correlations, Baptista et al. [30] found that the flowering period was highly correlated with the
number of days to floral budbreak (r value ranged from 0.94 to 0.84), but not with floral budbreak-to-flowering interval. In other research, it has been observed that flowering time significantly correlates with harvest time in highbush blueberries [31,32]. In conclusion, we can state that these positive correlations obtained have highlighted the fact that with the increase in the number of days required for an early generative phenophase, there is generally an increase in the number of days required to reach the later phenophases in blueberries cultivated in the low hilly area of Banat.

ANOVA analysis was performed comparing between varieties and between years (Tables 4 and 5). It appears that the number of days required for the various phenophases is generally different between the cultivars compared, so it can be stated that they are genetically determined and differ by cultivar. This statement is supported by the statistical significance determined for each of the phenophases analysed, because in each of them there are significant differences between at least two of the three varieties compared to each other (Table 4). However, in the case of comparing the three experimental years, the identified situation is diametrically opposed. Thus, very high significance thresholds were obtained, which shows us that there are no significant differences between climatic years in any of the analysed blueberry phenophases (Table 5).

Table 4. Analysis of variance (ANOVA) on phenology under cultivar influence.

Phenophase	Compared Varieties	Mean Difference	SE	t	Pukey
BBCH 51 (Bud swell)	‘Duke’ ‘Elliott’	−10.000	3.692	−2.709	0.078
	‘Elliott’ ‘Hannah’s Choice’	7.333	3.692	1.986	0.196
	‘Hannah’s Choice’	17.333	3.692	4.695	0.008 **
BBCH 57 (Early pink bud)	‘Duke’ ‘Elliott’	−12.000	3.559	−3.372	0.035 *
	‘Elliott’ ‘Hannah’s Choice’	14.000	3.559	3.934	0.018 *
	‘Hannah’s Choice’	26.000	3.559	7.305 <0.001 ***	
BBCH 59 (Late pink bud)	‘Duke’ ‘Elliott’	−11.333	2.735	−4.143	0.014 *
	‘Elliott’ ‘Hannah’s Choice’	9.000	2.735	3.290	0.038 *
	‘Hannah’s Choice’	20.333	2.735	7.434 <0.001 ***	
BBCH 61 (Early bloom)	‘Duke’ ‘Elliott’	−10.667	3.906	−2.731	0.076
	‘Elliott’ ‘Hannah’s Choice’	9.333	3.906	2.889	0.118
	‘Hannah’s Choice’	20.000	3.906	5.120	0.005 **
BBCH 67 (Petal fall)	‘Duke’ ‘Elliott’	−15.333	4.101	−3.739	0.022 *
	‘Elliott’ ‘Hannah’s Choice’	5.667	4.101	1.382	0.407
	‘Hannah’s Choice’	21.000	4.101	5.121	0.005 **
BBCH 71 (Early green fruit)	‘Duke’ ‘Elliott’	−22.000	6.566	−3.351	0.035 *
	‘Elliott’ ‘Hannah’s Choice’	4.667	6.566	0.711	0.766
	‘Hannah’s Choice’	26.667	6.566	4.061	0.016 *
BBCH 81 (Fruit colouring)	‘Duke’ ‘Elliott’	−23.000	8.344	−2.756	0.074
	‘Elliott’ ‘Hannah’s Choice’	7.667	8.344	0.919	0.649
	‘Hannah’s Choice’	30.667	8.344	3.675	0.024 *
BBCH 83 (10% Blue)	‘Duke’ ‘Elliott’	−32.333	4.667	−6.929	0.001 **
	‘Elliott’ ‘Hannah’s Choice’	−2.333	4.667	−0.500	0.874
	‘Hannah’s Choice’	30.000	4.667	6.429	0.002 **
BBCH 87 (75% Blue)	‘Duke’ ‘Elliott’	−41.667	4.295	−9.702 <0.001 ***	
	‘Elliott’ ‘Hannah’s Choice’	−1.667	4.295	0.388	0.921
	‘Hannah’s Choice’	40.000	4.295	9.314 <0.001 ***	

Note. p-value adjusted for comparing a family of 3; * p < 0.05, ** p < 0.01, *** p < 0.001.

From a practical point of view, these results can also be used in the zoning of blueberry varieties according to climatic characteristics, since climate change affects blueberry culture [33–35]. For example, the fewer the days the early generative phenophases need to manifest, the shorter the time to obtain the first blueberry harvest, and vice versa, i.e., if the first generative phenophases require a higher number of days, it is possible that the
formation of actual fruit production will be delayed, this being susceptible to being affected, for example, by high temperatures in summer [36].

Table 5. Analysis of variance (ANOVA) on phenology under the influence of year.

Phenophase	Compared Years	Mean Difference	SE	t	P_{tukey}
BBCH 51 (Bud swell)	2020 2021	6.667	7.503	0.889	0.667
	2020 2022	4.667	7.503	0.622	0.814
	2021 2022	−2.000	7.503	−0.267	0.962
BBCH 57 (Early pink bud)	2020 2021	−5.333	10.992	−0.485	0.881
	2020 2022	−2.667	10.992	−0.243	0.968
	2021 2022	2.667	10.992	0.243	0.968
BBCH 59 (Late pink bud)	2020 2021	−5.000	8.507	−0.588	0.832
	2020 2022	−3.333	8.507	−0.392	0.920
	2021 2022	1.667	8.507	0.196	0.979
BBCH 61 (Early bloom)	2020 2021	−8.000	8.424	−0.950	0.632
	2020 2022	−5.333	8.424	−0.633	0.808
	2021 2022	2.667	8.424	0.317	0.947
BBCH 67 (Petal fall)	2020 2021	−6.000	9.076	−0.661	0.793
	2020 2022	−8.667	9.076	−0.955	0.629
	2021 2022	−2.667	9.076	−0.294	0.954
BBCH 71 (Early green fruit)	2020 2021	−7.000	12.003	−0.583	0.834
	2020 2022	−14.333	12.003	−1.194	0.498
	2021 2022	−7.333	12.003	−0.611	0.820
BBCH 81 (Fruit colouring)	2020 2021	−9.667	13.684	−0.706	0.769
	2020 2022	−17.667	13.684	−1.291	0.450
	2021 2022	−8.000	13.684	−0.585	0.833
BBCH 83 (10% Blue)	2020 2021	−7.333	14.915	−0.492	0.878
	2020 2022	−9.333	14.915	−0.626	0.812
	2021 2022	−2.000	14.915	−0.134	0.990
BBCH 87 (75% Blue)	2020 2021	−1.000	19.381	−0.052	0.999
	2020 2022	−8.333	19.381	−0.430	0.905
	2021 2022	−7.333	19.381	−0.378	0.925

4. Conclusions

It was found that the variety and the climatic year do influence the development of vegetation phenophases. The differences in phenology recorded between varieties are caused by different accumulation of the amount of temperature necessary for the development of a certain phenophase and in correlation with the requirements of variety. The results indicate that blueberry varieties demonstrated a high degree of phenotypic plasticity to respond to gradual changes in environmental conditions.

Author Contributions: Conceptualization, S.C.; methodology, V.S. and M.M.M.L.; software, V.S.; investigation, M.M.M.L.; resources, M.M.M.L.; writing—original draft preparation, S.C.; writing—review and editing, S.C.; supervision, S.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.
References

1. Kendall, L.K.; Gagic, V.; Evans, L.J.; Cutting, B.T.; Scalzo, J.; Hanusch, Y.; Rader, R. Self-compatible blueberry cultivars require fewer floral visits to maximize fruit production than a partially self-incompatible cultivar. J. Appl. Ecol. 2020, 57, 2454–2462. [CrossRef]

2. Beaubien, E.; Johnson, D. Flowering plant phenology and weather in Alberta, Canada. Int. J. Biometeorol. 1994, 38, 23–27. [CrossRef]

3. Schaber, J.; Bradeck, F. Evaluation of methods for the combination of phenological time series and outlier detection. Tree Physiol. 2002, 22, 973–982. [CrossRef] [PubMed]

4. Cosmulescu, S.; Calusaru, F.G. Influence of temperature on blackthorn (Prunus spinosa L.) phenophases in spring season. J. Agric. Meteorol. 2020, 76, 53–57. [CrossRef]

5. Diez-Rodriguez, G.I.; Sosinski, E.E.; Hübner, L.K.; Antunes, L.E.; Nava, D.E. Entomofauna associated to different phenological stages on blueberry crop. Rev. Bras. Frutic. 2017, 39. [CrossRef]

6. Denny, E.; Gerst, K.; Miller-Rushing, A.; Tierney, G.; Crimmins, T.; Weltzin, J. Standardized phenology monitoring methods to track plant and animal activity for science and resource management application. Int. J. Biometeorol. 2014, 58, 591–601. [CrossRef]

7. Cosmulescu, S.; Ionescu, M.B. Phenological calendar in some walnut genotypes grown in Romania and its correlations with air temperature. Int. J. Biometeorol. 2018, 62, 2007–2013. [CrossRef]

8. Moze, S.; Polak, T.; Gasperlin, L.; Koron, D.; Vanzo, A.; Poklar Ulrijh, N.; Abram, V. Phenolics in Slovenian bilberries (Vaccinium myrtillus L.) and blueberries (Vaccinium corymbosum L.). J. Agric. Food Chem. 2011, 59, 6998–7004. [CrossRef]

9. Tundis, R.; Tenuta, M.C.; Loizzo, M.R.; Bonesi, M.; Finetti, F.; Trabalzini, L.; Deguin, B. Vaccinium species (Ericaceae): From chemical composition to bio-functional activities. Appl. Sci. 2021, 11, 565. [CrossRef]

10. Cera-Campos, J.I.; Jacobo-Cuellar, J.L.; Rodriguez-Roque, M.J.; Parra-Quezada, R.A.; Soto-Caballero, M.C.; Perez-Leal, R.; Oscar, C.A. Vegetative growth and quality of blueberry fruit cultivated in Chihuahua, Mexico. Not. Bot. Horti Agrobot. 2019, 47, 450–457. [CrossRef]

11. Frias-Moreno, M.N.; Olivas-Orozco, G.I.; Gonzalez-Aguilar, G.A.; Benitez-Enriquez, Y.E.; Paredes-Alonso, A.; Jacobo-Cuellar, J.L.; Parra-Quezada, R.A. Yield, quality and phytochemicals of organic and conventional raspberry cultivated in Chihuahua, Mexico. Not. Bot. Horti Agrobot. 2019, 47, 522–530. [CrossRef]

12. Campa, A.; Ferreira, J.J. Genetic diversity assessed by genotyping by sequencing (GBS) and for phenological traits in blueberry cultivars. PLoS ONE 2018, 13, e0206361. [CrossRef] [PubMed]

13. Merca (Laies), M.M.; Cosmulescu, S.N. The diversity of some phenological features in blueberry cultivars (Vaccinium corymbosum L.) grown in Banat area, Romania. Sci. Pap. Ser. B Hortic. 2022. accepted.

14. Leposavić, A.; Jevremović, D.; Popović, B.; Mitrović, O.; Đurović, D.; Keserović, Z. Phenological properties of highbush blueberry (Vaccinium corymbosum L.) cultivars grown in Western Serbia. Voćarstvo 2017, 51, 21–29.

15. Medeiros, J.G.; Biasi, L.A.; Bona, C.M.D.; Cuquel, F.L. Phenology, production and quality of blueberry produced in humid subtropical climate. Rev. Bras. Frutic. 2018, 40, e-520. [CrossRef]

16. Caterenciuc, C.; Sava, P. Phenological research in the development of blueberry plants in the republic of Moldova. Fruit Grow. Res. 2018, XXXIV, 14–17. [CrossRef]

17. Cosmulescu, S.; Stefănescu, D.; Stoenescu, A.M. Variability of phenological behaviours of wild fruit tree species based on discriminant analysis. Plants 2022, 11, 45. [CrossRef]

18. Asănică, A.; Popescu, D.; Stănică, F.; Temocico, G. First year reaction of some early highbush blueberry varieties grown in containers to organic fertilizers and pest control. Sci. Pap. Ser. B Hortic. 2020, 64, 20–21. [CrossRef]

19. Atroschchenko, G.P.; Shcherbakova, G.V.; Koshman, M.E. Economic and biological assessment of tall blueberry varieties in the conditions of the Leningrad region Sovrem. 2016, 2, 1–7.

20. Shlapak, V.P. Peculiarities of the passage of phenological phases of introduced varieties in tall blackberry (Vaccinium corymbosum L.) in the minds of the right-bank forest-steppe of Ukraine.Navuk. Pratsi Lisiomichoy Acad. Sci. Ukar. 2013, VI, 11–S, 93–96.

21. Longstroth, M. Michigan Blueberries. Fruit Growth Stages References—Blueberries. 2008. Available online: https://www.canr.msu.edu/news/annual-growth-cycle-of-northern-highbush-blueberry (accessed on 18 May 2022).

22. Kotrotsios, I.; Slav, M.; Hoza, D. Preliminary study in regards to the culture of blueberry in containers. Sci. Pap. Ser. Hortic. 2017, 60, 163–167.

23. Kirk, A.K.; Isaacs, R. Predicting flower phenology and viability of highbush blueberry. HortScience 2012, 47, 1291–1296. [CrossRef]

24. Sterne, D.; Liepniece, M. Preliminary observations of phenology development, yield and yield quality of some highbush blueberry cultivars in Latvia. In International Scientific Conference; University of Agriculture: Jelgava, Latvia, 2010; p. 60.

25. Steyn, J.; Lötze, E.; Hoffman, E.W. The seasonal progression of the reproductive phenology of two southern highbush blueberry (V. corymbosum L. interspecific hybrids) cultivars in the Western Cape, South Africa. Sci. Hortic. 2023, 307, 111493. [CrossRef]

26. Sava, P.; Caterenciuc, C. Study on the adaptability of some blueberry cultivars in the Republic of Moldova. Rom. J. Horticult. 2021, 79, 79–84. [CrossRef]

27. Valdés, B.; Parra, R.; Díaz Lifante, Z. Blueberry selection in SW Spain. Acta Hortic. 2006, 715, 41–54. [CrossRef]

28. Drozd, O.V. Seasonal rhythm of growth and development of new cultivars of highbush blueberry (Vaccinium corymbosum L.) introduced into the Belarusian Polesie. Proc. Natl. Acad. Sci. Belarus Biol. Ser. 2018, 63, 472–485. [CrossRef]
29. Paulouski, M.B. Phenological development of highbush blueberry various cultivars in Belarus. Восточно-европейский научный журнал 2017, 1-1, 12–22.

30. Baptista, M.C.; Oliveira, P.B.; Lopes da Fonseca, L.; Oliveira, C.M. Early ripening of southern highbush blueberries under mild winter conditions. Acta Hortic. 2006, 715, 191–196. [CrossRef]

31. Galletta, G.J.; Ballington, J.R. Blueberries, cranberries, and lingonberries. In Fruit Breeding Volume II Vine and Small Fruits; Janick, J., Moore, J.N., Eds.; John Willey & Sons: Hoboken, NJ, USA, 1996; pp. 1–65.

32. Nagasaka, K.; Yamane, H.; Tao, R. Evaluation of the effects of pollination on fruit size and quality of highbush blueberry. Acta Hortic. 2021, 1312, 25–30. [CrossRef]

33. Bădescu, A.; Asănică, A.; Stănică, F.; Bădescu, C.; Ungurenus, M. Climate change affects blueberry production in Romania. Acta Hortic. 2017, 1180, 299–304. [CrossRef]

34. Tasnim, R.; Drummond, F.; Zhang, Y.J. Climate change patterns of wild blueberry fields in Downeast, Maine over the past 40 years. Water 2021, 13, 594. [CrossRef]

35. Barai, K.; Tasnim, R.; Hall, B.; Rahimzadeh-Bajgiran, P.; Zhang, Y.J. Is drought increasing in Maine and hurting wild blueberry production? Climate 2021, 9, 178. [CrossRef]

36. Yang, F.H.; Bryla, D.R.; Strik, B.C. Critical temperatures and heating times for fruit damage in northern highbush blueberry. HortScience 2019, 54, 2231–2239. [CrossRef]