Digital model of the oil spill process on the Earth’s surface

Georgy Dorrer and Sergey Yarovoy
Reshetnev Siberian State University of Science and Technology, 31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037, Russian Federation

E-mail: g_a_dorrer@mail.ru

Abstract. The Fourth Industrial Revolution currently taking place has an impact on human interaction with the environment, which must move to a new level, ensuring the harmonization of the needs of mankind. Cyber-physical systems can play an important role in the environmental sphere. The possibility of creating a digital model of the process of oil spills with their penetration into the ground and the adjacent water body, which causes significant damage to the environment and the economy, especially in the northern regions, is being considered. An approach to solving this problem is proposed, based on the representation of the soil contamination area in the form of a set of flat layers, each of which is calculated by the method of movable grids.

1. Introduction
The ongoing Fourth Industrial Revolution (Industry 4.0) being created at the same time, imply the massive introduction of cyber physical systems (CPS) in the production and service of human needs, including everyday life, labor, security, and leisure. It is expected that the changes caused by this revolution will cover the most diverse aspects of life: the labor market, living environment, political systems, technological order, human identity, and others. Human interaction with the environment will not be left aside, which should move to a new level, ensuring the harmonization of humanity’s needs.

Cyber-physical systems can play an important role in the environmental sphere. Is of interest to create digital models of one class of wild objects, which are called dynamic processes on the Earth’s surface [1]. In the general case, such a process can be called any phenomenon (natural or anthropogenic), which can be represented in the form of a moving region, contour or traveling wave propagating over the surface of the Earth. Examples of such processes are desertification, floods, mudflows, landslides, natural fires, oil spills on the surface of the earth and water bodies [2-9]. These objects have a different physical nature, but they have many common features. Due to these features, their dynamics and control can be described using a single mathematical apparatus. Such a device, in turn, allows you to create digital data models of objects, which are an indispensable part of all cyber-physical systems. In this paper, we consider the possibility of creating a digital model of one of the types of dynamic processes - the process of oil spill and their penetration into the ground and the adjacent reservoir. The processes of spills of polluting liquids on the surface of the Earth and water bodies occur quite often and harm the environment. The relevance of creating such models became obvious after an environmental disaster, a federal emergency that occurred on May 29, 2020, when the diesel fuel tank was depressurized at Power station-3 in Kayerkan (Norilsk region) [9]. This is one of the largest oil spills in the history of the Arctic zone, posing a threat to the ecosystem of the Arctic Ocean.
Therefore, the creation of digital models of such processes can contribute to the creation of decision support systems for the design of storage facilities for hazardous liquids and their operation. Present work proposes approach to solving this problem, based on the representation of the soil contamination area in the form of a set of flat layers, each of which is calculated by the method movable nets.

2. Model of the process of spreading liquid that has got into the ground

We will consider the process of liquid propagation in the soil in a three-dimensional region D, each point of which is determined by the vector $A = (x, y, z) \in D$, where the coordinates x, y are the projection of the point onto the horizontal plane, z is the depth of the point location. The polluting liquid trapped in the ground spreads in accordance with the law of liquid filtration in a porous medium. In accordance with Darcy's law \(\| \cdot \| \), the velocity vector filtration rate is determined by the equation

$$w = -k_\varphi \frac{dh}{dt} = -k_\varphi grad \ p \ [m/s],$$

(1)

where k_φ – filtration coefficient $k_\varphi = \frac{\rho g k_\mu}{\mu} \ [m/s]$,

ρ – density of the liquid [kg/m3],

g – acceleration due to gravity [kg/m2],

μ – coefficient of dynamic viscosity [kg/m s],

k – coefficient of permeability of the medium [m2],

$grad \ p = p_0 = \begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix}$ – vector of the slope of the terrain [m/m].

The process contour (its outer boundary) at each moment of time is considered as a continuous differentiable surface, the equation of which is given in an implicit form \(\| \cdot \| \):

$$\phi(x, y, z, t) = 0, \ (x, y, z) \in D.$$

(2)

At each point of the process boundary, the continuity condition must be satisfied, which is determined by the ratio $\frac{d\phi}{dt} = 0$. Since $x=x(t), y=y(t), z=z(t)$, the total derivative $\frac{d\phi}{dt} = 0$ can be represented in the following form

$$\frac{d\phi}{dt} = \frac{\partial \phi}{\partial t} + \frac{\partial \phi}{\partial x} \frac{dx}{dt} + \frac{\partial \phi}{\partial y} \frac{dy}{dt} + \frac{\partial \phi}{\partial z} \frac{dz}{dt} = 0.$$

(3)

Let’s use the matrix representation of the written expression and denote:

$$v = \begin{bmatrix} \frac{dx}{dt} \\ \frac{dy}{dt} \\ \frac{dz}{dt} \end{bmatrix}$$ – velocity vector,

$grad\phi = \begin{bmatrix} \frac{\partial \phi}{\partial x} \\ \frac{\partial \phi}{\partial y} \\ \frac{\partial \phi}{\partial z} \end{bmatrix}$ – process gradient,

whence the Hamilton-Jacobi equation follows \(\| \cdot \| \):

$$\frac{d\phi}{dt} + v^T grad\phi = 0,$$

(4)

where the T sign stands for transposition.

The expression $H = v^T grad\phi$ is called the Hamilton function of the given process.

You can enter the normal speed of the border movement

$$v_n = \frac{\left(grad\phi \right)^T}{\left| grad\phi \right|} \cdot v$$

(5)

where $\left(grad\phi \right)^T = n$ is the unit normal vector to the boundary of the process.

Considering (3), the equation of motion of the boundary takes the form
\[
\frac{d\varphi}{dt} = v_n |\nabla \varphi|, \quad (6)
\]
with initial conditions:
\[
t = 0 \quad \varphi(x, y, z, 0) = \varphi_0(x, y, z). \quad (7)
\]
Here \(\varphi_0(x, y, z) = 0\) is the equation of the outer boundary of the region \(D(0)\) at the initial moment of time.

In the model under consideration, the normal velocity vector \(v_n\) is the defining parameter of the process. This vector at each point of the boundary depends on the filtration velocity vector \(w\) and the direction of the normal to the process boundary - the vector \(n\). This dependency can be represented as follows:

\[
v_n = w \cdot \chi(\alpha). \quad (8)
\]

The function \(\chi(\alpha)\) is called the indicatrix of the normal speed of the propagation process (figurotrix). It shows how the speed of propagation of the process changes depending on the direction of the normal \(n\) [15]. In formula (8) \(\alpha\) is the angle between the direction of the normal to the process boundary and the direction of the vector \(p_0\), or \(\alpha = \arccos (w^*n)\), where the * sign denotes the scalar product of vectors. Figurotrix has the following properties:

1. \(0 \geq \chi(\alpha) \geq 1\).
2. \(\chi(0) = 1\) – the highest propagation speed of the process occurs when the direction of the normal \(n\) coincides with the direction of the filtration velocity vector \(w\).
3. \(\chi(\alpha) = \chi(-\alpha), \quad 0 \geq \alpha \geq \pi\) – the figurotrix is symmetric with respect to the sign of the angle \(\alpha\).

3. Digital terrain model

To solve practical problems of modeling the process under consideration, a digital terrain model should be prepared using a GIS system, where this process takes place, which was designated as area \(D\). The basis of the terrain model is an electronic map of the area of interest to us with the topology of layers and soil characteristics plotted on it to the required depth. It is also necessary to select homogeneous soil areas and for them determine the filtration coefficients \(k_\varphi\), the slope vectors of the terrain \(p_0\) and figurotrix \(\chi(\alpha)\).

The characteristics of the spilled liquid should be determined, the initial contour of the spill and its debit indicated. A detailed analysis of the process of filtration of oil products through the soil is contained in works [3,4]. In this work, an approximate estimate of the filtration coefficient \(k_\varphi\) is used based on the tabular data below (table 1), which may be sufficient for solving engineering problems (http://sdspmk.ru/dvizeniepw).

Rock characteristics	Filtration coefficient \(k_\varphi\) m/day
Very well permeable pebbles with coarse sand	100–1000 and more
Well-permeable pebbles and gravel with fine sand, coarse sand, clean medium-grained sand	100–10
Permeable pebbles and gravels with fine sand, medium and fine sands	10–1
Low-permeability fine-grained sands, sandy loam	1–0.1
Low-permeability loams	0.1–0.001
Clays, marls, monolithic rocks	less than 0.001

Table 1. Filtration coefficient for some rock characteristics
4. Algorithm for modeling the process of liquid propagation in soil

The algorithm is based on the use of the Darcy equation and the solution of the Hamilton-Jacobi equation by the method of moving grids [5,6] considering the three-dimensional space.

It is assumed that a polluting liquid with a volume of V_0 has spilled on the surface of the soil, which penetrates the soil and spreads in it.

At the same time, the hypothesis is accepted that the propagation process can be represented as a set of flat horizontal layers C_k, $k = 0, 1, ..., N$, located one below the other at different depths.

The propagation process is calculated in discrete time $t = 0, 1, ..., N$ with a step Δt, while the C_k layers are displayed on the terrain map.

The speed of fluid movement in the soil is determined by Darcy’s law, considering the slope of the terrain, determined by the vector \mathbf{p}_0, and the characteristics of the soil. The figurotrix of the propagation process $\chi(\alpha)$ is determined by the slope of the terrain, the characteristics of the soil and the intensity of the process.

At the zero step at $t = 0$, the initial contour of the liquid spill C_0 is placed on the soil surface. Further, using the method of movable grids, the process contours are calculated for subsequent layers.

When passing from layer C_k to the next layer C_{k+1} at time $t + 1$, for all nodes of the process contour C_k, the normal vectors p_i are determined as for the two-dimensional problem, and all points of the layer $C_{k+1})$. The new layer C_{k+1} is "lowered" to the required depth. The distance between adjacent layers in depth is equal to $\Delta z = w \frac{z}{\rho} \Delta t$, so the layer C_{k+1} turns out to be at the depth $z_{k+1} = w \frac{z}{\rho} \Delta t (k+1)$.

For each layer, its area S_k and the volume of the liquid entering the layer $V_k = S_k \Delta z$ are calculated, as well as its total volume:

$$V_{ok} = \sum_{i=1}^{k} V_i. \quad (9)$$

The modeling process stops at the N step either when the specified limiting calculation depth z_{max} is reached, or when the total volume of the liquid that has fallen into the ground becomes equal to the volume of the source $V_0 : V_{0N} \geq V_0$.

If the process of spreading a liquid meets an aquifer or an open reservoir, the rate of spread of the pollution spot is determined by the laws of hydrodynamics. This issue is not considered in this paper.

5. An example of modeling the process of liquid propagation in soil

Below is a simple example of calculating the process of spreading oil products in the ground.

Figure 1 shows a sketch of the situation. The terrain model D contains three homogeneous ground areas, as well as one water object (river). The soil on the plots consists of gravel of various compositions and slopes towards the river.

Initial data for simulation:

- liquid - diesel fuel, density at $20^{\circ}C$ – 800 kg/m3
- kinematic viscosity at $20^{\circ}C$ - 0.08 cm2/s,
- soil - homogeneous area: gravel with fine sand, filtration coefficient for different areas is $k_\varphi = 10$ m/day, $k_\varphi = 15$ m/day and $k_\varphi = 20$ m/day,
- the value of the slope of the terrain $|p_0| = 0.1$ m/m,
- filtration rate for different areas $w = k_\varphi |p_0| = 1$ respectively is 1, 1.5, and 2 m/day,
- figurotrix $\chi(\varphi) = (1 - e)/(1 - e \cos \varphi)$ – ellipse with eccentricity $e = 0.5$,
- time step $\Delta t = 1$ day,
- distance between adjacent layers $\Delta z = 0.1$ m,
- maximum number of layers $N = 4$.
Figure 1. Schematic diagram of the situation with an oil product spill and its penetration into the ground. It is shown a source of liquid C_0 and projections on the horizontal plane of the 3 contours of layers C_k located one below the other at different depths.

On diagram: (a) – initial spill on surface of ground C_0; (b) – the spill on second day C_2 on depts 0.2 m; (c) - the spill on third day C_3 on depts 0.3 m, the spilled fuel reaches the water; (d) – the spill on fourth day C_4 on depts 0.4 m.

The area of the layers and their volume in ground obtained by numerical simulation are shown in table 2.

t, days	Liquid spill	Spill depths z_t, m	Spill area, m²	Spill volume, m³
0	C_0	0	267	26.7
1	C_1	0.1	823	82.3
2	C_2	0.2	2702	270.2
3	C_3	0.3	3470	347.0
4	C_4	0.4	6371	637.1
	Total volume, m³			1383.3

6. Conclusion
The article proposes a new approach to solving the urgent problem of creating a digital model of the process of spilling a polluting liquid on the Earth's surface. A mathematical model of the process has been developed and an algorithm for solving this problem, based on the representation of the soil contamination area has been proposed, in the form of a set of flat layers, each of which is calculated by the method of moving meshes. With the further development of this direction, there is a lot of work to be done on the creation on the basis of GIS technologies of three-dimensional digital terrain models for
various types of soils, as well as databases containing the characteristics of soils and pollutants. These models should also include a description of the spread of pollution in aquifers and on the surface of water bodies. In addition, it is necessary to improve the mathematical and software tools to predict the process of spillage and filtration of polluting liquids in complex soils, including aquifers.

References

[1] Dorrer G A, Yarovoy S V and Kazakovtseva O B 2018 Multi-agent system for modeling dynamic processes on the Earth’s surface In: Control systems and information technologies 2(72) 2018 42-7 (in Russian)
[2] GOST R22.1.09-99 1999 Safety in emergencies. Monitoring and forecasting forest fires. General requirements. Introduction. 05.25.99 (M.: Publishing house of standards) 18
[3] Abdulkasimov A A 2006 Global and regional problems of desertification in arid and semi-arid landscapes In: proceedings of Voronezh state university. Ser. Geography. Geocology (Voronez) 20-4
[4] Knizhinikov Yu F, Kravtsova V I and Tutubalina O V 2004 Aerospace methods of geographical research: textbook (Moscow: Academy) 336
[5] 2010 Satellite monitoring of oil pollution in the Gulf of Mexico [Electronic resource] IKI RAN. Electron. dan. URL: http://www.iki.rssi.ru/asp/dep_mexi.html
[6] Sarkisov A A, Sivintsev Yu V, Vysotsky V L and Nikitin V S 2015 The atomic legacy of the Cold War at the bottom of the Arctic Radioecological and technical and economic problems of radiation rehabilitation of the seas In: Institute of problems of safe development of nuclear power of the Russian Academy of Sciences 699 ISBN 978-5-9907220-0-2 (translated).
[7] 1996 Dynamics of high-energy geophysical formations (fronts, landslides, mudflows, density currents): research report Moskov. physical and technical in-t; In: RFBR Information Bulletin (M.: MIPT) 4(5) 385 (RFBR: 96-05-65052-a)
[8] 2010 ESRI. GIS software that gives you the geographic advantage Gulf of Mexico Oil Spill Timeline-map ESRI Access mode: http://www.esri.com/services/disaster-response/gulf-oil-spill-2010/timeline-map.html
[9] Hisamtudinov R M 2020 Technologies for the use of unmanned aerial vehicles for monitoring potentially dangerous areas and responding to emergencies: final qualification work In: Siberian Fire and Rescue Academy of State Fire Service of the Ministry of Emergency Situations of Russia 135
[10] Guseinov D A et al. 1964 Technological calculations of oil refining processes (Moscow: “Chemistry”) 300
[11] Elfimov N V et al. 2018 Model of the spread of oil pollution on the soil cover for predicting the development of emergencies at the facilities of the oil and gas complex In: Journal “Environmental protection in the oil and gas complex” 6 5-12
[12] Balkin S V and Ryabchenko A K 2005 Natural emergency – flood In: Vologda readings 55 54-6
[13] Borisova T A 2016 Mapping of natural risks from floods on the rivers of the Lake Baikal basin. In: Successes of modern natural science 4 121-5 URL: http://www.natural-sciences.ru/ru/article/view?id=35874
[14] Godunov S K and Prokopov G P 1972 On the use of movable grids in gas-dynamic calculations In: Zhurn. calculated mat. and mat. physics. 12(2) 429-39
[15] Dorrer G A 2008 Dynamics of forest fires (In: Publishing house of the SB RAS, Novosibirsk) 404