NORM INFLATION FOR THE BOUSSINESQ SYSTEM

ZONGYUAN LI
Department of Mathematics, Rutgers University
Hill Center - Busch Campus 110 Frelinghuysen Road
Piscataway, NJ 08854, USA

WEINAN WANG
Department of Mathematics, University of Arizona
617 N Santa Rita Ave
Tucson, AZ 85721, USA

(Communicated by Shouhong Wang)

Abstract. We prove the norm inflation phenomena for the Boussinesq system on \mathbb{T}^3. For arbitrarily small initial data (u_0, ρ_0) in the negative-order Besov spaces $\dot{B}_{-1}^{-1, \infty} \times \dot{B}_{-1}^{-1, \infty}$, the solution can become arbitrarily large in a short time. Such largeness can be detected in ρ in Besov spaces of any negative order: $\dot{B}_{-s}^{-1, \infty}$ for any $s > 0$.

1. Introduction. In this paper, we consider the Boussinesq system on $\mathbb{T}^3 = \mathbb{R}^3 / \mathbb{Z}^3$

\begin{align*}
 u_t - \Delta u + u \cdot \nabla u + \nabla P &= \rho e_3, \\
 \rho_t - \Delta \rho + u \cdot \nabla \rho &= 0, \\
 \nabla \cdot u &= 0.
\end{align*}

Here, u is the velocity satisfying the 3D Navier-Stokes equations driven by ρ (cf. [10, 20]), which represents the density or temperature of the fluid, depending on the physical context. Also P denotes the pressure while $e_3 = (0, 0, 1)$ is the unit vector.

In recent years, there has been extensive research on the 2D Boussinesq equations. Researchers have been studying the global existence of solutions and persistence of regularity since the seminal work of Chae [5] and of Hou and Li [13], who proved the global existence and uniqueness of solutions. In [4, 19], the authors addressed the global well-posedness in Sobolev spaces H^s. Kukavica and the second author of this paper addressed the global Sobolev persistence of regularity in $W^{s,q} \times W^{s,q}$ for the fractional Boussinesq system in [15] and the long time behavior of solutions in [16], respectively. For other global well-posedness results on the Boussinesq equations, cf. [12, 21, 22, 23, 24, 26].

The 3D Boussinesq system possesses a natural scaling, i.e., for $\lambda > 0$,

\[u_\lambda(x, t) = \lambda u(\lambda x, \lambda^2 t), \quad \rho_\lambda(x, t) = \lambda^3 \rho(\lambda x, \lambda^2 t) \]

2020 Mathematics Subject Classification. Primary: 35B40; Secondary: 76D33.

Key words and phrases. Boussinesq system, norm inflation, ill-posedness, negative order Besov spaces, plane waves.

The second author was supported in part by NSF grant DMS-1907992.
are again solutions with initial data
\[u_\lambda(x,0) = \lambda u(\lambda x), \quad \rho_\lambda(x,0) = \lambda^3 \rho(\lambda x). \]

Note that \(L^3 \times L^1 \) is scaling invariant space for the initial data:
\[
\| u_\lambda(\cdot,0) \|_{L^3} = \| \lambda u_0(\lambda \cdot) \|_{L^3}, \quad \| \rho_\lambda(\cdot,0) \|_{L^1} = \| \lambda^3 \rho_0(\lambda \cdot) \|_{L^3} = \| \rho_0 \|_{L^1}.
\]

Much effort has been made in search for the largest initial data space for the local and global well-posedness. For the Navier-Stokes equations, Koch and Tataru in [14] obtained the local well-posedness result with small \(BMO^{-1} \) initial data. Such space is the largest scaling critical space for the local well-posedness of the NSE. In fact, [1] and [27] showed the local ill-posedness for initial spaces close to \(BMO^{-1} \):
\[
B_{-1,\infty}^{\infty}, \quad q \in (2, \infty].
\]
It is worth mentioning that, for supercritical initial data spaces, we can still discuss some well-posedness results, only in the sense of “almost surely”. See for example, [18, 25].

Back to the 3D Boussinesq system (1)-(3). Let us first mention some results in the positive direction. As mentioned in [2], by adapting Kato’s method, the local well-posedness result can be proved for scaling invariant \(L^3 \times L^1 \) initial data, given that the initial data is sufficiently small. The mild solution formulation for the Boussinesq system is given in (5). One can also find some discussions of the uniqueness and long time behaviors in [2] and [3].

In this paper, we show a local ill-posedness result for the 3D Boussinesq system. Our initial data space is \(u_0 \in \dot{B}_{-1,\infty}^{-1} \) (cf. (7)) which is the largest possible scaling invariant space for the mild formulation, and \(\rho_0 \in \dot{B}_{-1,\infty}^{-1} \) which is scaling subcritical. Specifically, we show the existence of a smooth space-periodic solution with arbitrarily small initial data \((u_0, \rho_0) \in \dot{B}_{-1,\infty}^{-1} \times \dot{B}_{-1,\infty}^{-1} \) that becomes arbitrarily large in \(\dot{B}^{-s}_{-\infty,\infty} \) for all \(s > 0 \) immediately. This type of result is called the “norm inflation”. This phenomenon was discovered by Bourgain and Pavlović in [1], concerning the local ill-posedness for the 3D Navier-Stokes equations. The main idea of their approach is to construct initial data \(u_0 \) in \(\dot{B}_{-\infty,\infty}^{-1} \) so that when they evolve in time, one particular frequency will accumulate while others will dissipate.

There have been many other analogous norm inflation results on different fluid models. In [9], Dai, Qing, and Schonbek proved norm inflation for the MHD equations. In [7, 8], Cheskidov and Dai proved the norm inflation occurrence for the generalized Navier-Stokes and the generalized MHD equations. In this paper, we prove the ill-posedness result for the Boussinesq system by constructing initial data which leads to the norm inflation. To the best knowledge of the authors, this is the first result addressing the norm inflation for the Boussinesq equations. Note that the ill-posedness results obtained in [6, 11] are for a dispersive type system which is different from the equations considered in this paper. The main result of this paper is the following.

Theorem 1.1. For sufficiently small \(\epsilon > 0 \), there exists a solution \((u(t), \rho(t))\) to the system (1)–(3) such that
\[
\| u(0) \|_{\dot{B}^{-1}_{-\infty,\infty}} + \| \rho(0) \|_{\dot{B}^{-1}_{-\infty,\infty}} < \epsilon
\]
and
\[
\| \rho(T) \|_{\dot{B}^{-s}_{-\infty,\infty}} > 1/\epsilon,
\]
where \(0 < T < \epsilon \) and \(s > 0 \).
The organization of this paper goes as follows. In Section 2, we introduce our notation and the mild formulation. The rest of the paper is devoted to the proof of Theorem 1.1. In Section 3, we first construct the initial data as a combination of plane waves with very lacunary frequencies and then compute their interactions. The estimates are given in Section 3.3 and 3.4. In Section 4, we choose the parameters and close the estimates.

2. Preliminaries and mild formulation. Recall the Leray projector
\[\mathbb{P} = I + \nabla(-\Delta)^{-1}\nabla, \]
or using the Fourier transform
\[\hat{(\mathbb{P} u)}_j(\xi) = \left(\delta_{jk} - \frac{\xi_j \xi_k}{|\xi|^2} \right) \hat{u}_k(\xi), \quad j = 1, 2, 3. \]
We start from the mild formulation of \((u, \rho)\) and rewrite the Boussinesq system (1)–(3) as in [2]:
\[
\begin{align*}
 u &= e^{t\Delta} (u_0 + t \mathbb{P} \rho_0 \hat{e}_3) + B_1(u, u) + B_2(u, \rho), \\
 \rho &= e^{t\Delta} \rho_0 + B_3(u, \rho),
\end{align*}
\]
Here the bilinear forms are given by
\[
\begin{align*}
 B_1(u, v) &= -\int_0^t e^{(t-s)\Delta} \mathbb{P} \nabla \cdot (u \otimes v) \, ds, \\
 B_2(u, \theta) &= -\int_0^t e^{(t-s)\Delta} (t-s) \mathbb{P} (\nabla \cdot (u \theta)) \hat{e}_3 \, ds, \\
 B_3(u, \theta) &= -\int_0^t e^{(t-s)\Delta} \nabla \cdot (u \theta) \, ds.
\end{align*}
\]
Such mild formation is equivalent to the original system. It can be obtained as follows. We first rewrite (1) and (2) in the integral form, by applying the Leray projection and the Duhamel principle. Then we replace the linear term in the equation of \(u\) by the integral form equation of \(\rho\) to make all the integral terms to be bilinear. For details, cf. [2]. Next, we define the Besov norms for \(s > 0\) as in [17]:
\[
\begin{align*}
 \|f\|_{B^{s}_{\infty, \infty}} &= \sup_{t > 0} t^s \|e^{t\Delta} f\|_{L^\infty} \quad \text{and} \quad \|f\|_{\dot{B}^{s}_{\infty, \infty}} = \sup_{0 < t < 1} \frac{t^s}{s} \|e^{t\Delta} f\|_{L^\infty}. \quad (7)
\end{align*}
\]
Note that they are equivalent on torus. Now we state the estimates for the bilinear operator. The following lemma plays a key role when estimating terms involving the Leray projector.

Lemma 2.1. There exists a constant \(C\) such that
\[
\|\nabla e^{t\Delta} \mathbb{P} f\|_{L^\infty} \leq C t^{-1/2} \|f\|_{L^\infty},
\]
for \(t > 0\) and \(f \in L^\infty\).

As shown in [17], the following bilinear estimate follows.

Lemma 2.2. [17] For any \(u, v \in L^1((0, T); L^\infty)\), \(B_1\) satisfies
\[
\|B_1(u, v)\|_{L^\infty} \leq C \int_0^t \frac{1}{(t-s)^{1/2}} \|u\|_{L^\infty} \|v\|_{L^\infty} \, ds.
\]
In the same spirit, we can also bound B_2 and B_3 as
\[\|B_2(u, \theta)\|_{L^\infty} \leq C \int_0^t (t - s)^{1/2} \|u\|_{L^\infty} \|\theta\|_{L^\infty} \, ds \quad (8) \]
and
\[\|B_3(u, \theta)\|_{L^\infty} \leq C \int_0^t \frac{1}{(t - s)^{1/2}} \|u\|_{L^\infty} \|\theta\|_{L^\infty} \, ds. \quad (9) \]

The proof for (8) is the same as that of Lemma 2.2, by using Lemma 2.1. The proof for (9) is more straightforward since there is no Leray projector in B_3. For details, we refer to [17].

Throughout this paper, we use notation $\lesssim, \gtrsim,$ and \approx when we have the inequality in the corresponding direction with constants independent of the parameters that we are interested in, e.g., r and t.

3. Interaction of plane wave.

3.1. The first approximation in Picard’s iteration. Similarly to [1], we decompose the solution as
\[u = g + u_1 + y, \]
\[\rho = \theta + \rho_1 + z, \quad (10) \]
where
\[g := e^{t\Delta}(u_0 + t\mathbb{P} \rho_0 e_3), \]
\[\theta := e^{t\Delta} \rho_0, \]
\[u_1 := B_1(g, g) + B_2(g, \theta), \]
\[\rho_1 := B_3(g, \theta). \]

The terms y and z can be further decomposed as
\[y = y_0 + y_1 + y_2, \quad z = z_0 + z_1 + z_2, \]
where
\[y_0 = 2B_1(g, u_1) + B_1(u_1, u_1) + B_2(g, \rho_1) + B_2(u_1, \theta) + B_2(u_1, \rho_1), \]
\[y_1 = 2B_1(g, y) + 2B_1(u_1, y) + B_2(g, z) + B_2(y, \theta) + B_2(y, \rho_1) + B_2(u_1, z), \]
\[y_2 = B_1(y, y) + B_2(y, z), \]
\[z_0 = B_3(g, \rho_1) + B_3(u_1, \theta) + B_3(u_1, \rho_1), \]
\[z_1 = B_3(g, z) + B_3(y, \theta) + B_3(y, \rho_1) + B_3(u_1, z), \]
\[z_2 = B_3(y, z). \quad (12) \]

3.2. Choice of initial data and its diffusion. We construct the initial data (u_0, ρ_0) as
\[u_0 = r^{-\beta} \sum_{s=1}^{r} |k_s| v_s \cos (k_s \cdot x) \quad \text{and} \quad \rho_0 = r^{-\beta} \sum_{s=1}^{r} |k'_s| \cos (k'_s \cdot x), \]
where r is a large enough number to be chosen at the end and $\beta > 0$. The frequencies k_s and k'_s are chosen as follows. We first fix a large number $K > 0$, and then for $i \in \mathbb{N}^+$ we define
\[k_i = 2^{i-1} K, \quad k'_i = (0, 0, k_i'), \quad k_i = k_i' + \eta, \quad (13) \]
where \(\eta = (0, 1, 0) \). The vector \(v_i \) is given as
\[
v_i = \left(0, \frac{1}{2}, -1/(2k_i') \right).
\]
Clearly
\[
v_i \cdot k_i = 0, \quad v_i \cdot k_i' = -1/2, \quad \text{and} \quad v_i \cdot k_j' = -|k_j'|/2|k_i'| \approx v_i \cdot k_j.
\] (14)

From our construction, we have
\[
\text{div}(u_0) = 0, \quad \text{and} \quad P(\rho_0 \vec{e}_3) = 0.
\]
The following lemma contains useful properties which are used in our computation below. The proof is by direct computation, which can be found in [7].

Lemma 3.1. [7] For \(\gamma > 0 \) and \(k_i \) constructed as above, we have the following relations:
\[
\sum_{j<i} |k_j|\gamma \sim |k_i|\gamma
\]
and
\[
\sum_{i=1}^{r} |k_i|\gamma e^{-|k_i|^2t} \lesssim t^{\gamma/2}.
\]

Note that the diffusion of a plane wave \(v \cos (k \cdot x) \) under the Laplacian \(\Delta \) is given by
\[
e^{t\Delta} v \cos (k \cdot x) = e^{-|k|^2t} v \cos (k \cdot x).
\]
Therefore, we may write the diffusion of the initial data as
\[
e^{t\Delta} u_0 = r^{-\beta} \sum_{s=1}^{r} |k_s| e^{-|k_s|^2t} v_s \cos (k_s \cdot x)
\] (15)
and
\[
e^{t\Delta} \rho_0 = r^{-\beta} \sum_{s=1}^{r} |k_s'| e^{-|k_s'|^2t} \cos (k_s' \cdot x).
\] (16)

To complete this section, we provide some estimates for the initial data and their diffusion.

Lemma 3.2. For \(\beta > 0 \), the inequalities
\[
\|u_0\|_{\dot{B}^{-1,\infty}_{\infty,\infty}} \approx r^{-\beta}, \quad \|\rho_0\|_{\dot{B}^{-1,\infty}_{\infty,\infty}} \approx r^{-\beta},
\]
\[
\|e^{t\Delta} u_0\|_{L_\infty} \lesssim r^{-\beta} t^{-1/2}, \quad \|e^{t\Delta} \rho_0\|_{L_\infty} \lesssim r^{-\beta} t^{-1/2},
\]
hold for all \(t \in (0, 1) \).

Proof. Noting \(|v_s| \approx 1 \) and using Lemma 3.1, we have
\[
|e^{t\Delta} u_0| = \left| r^{-\beta} \sum_{s=1}^{r} e^{-t|k_s|^2} |k_s| v_s \cos (k_s \cdot x) \right|
\]
\[
\lesssim r^{-\beta} t^{-1/2} \sum_{s=1}^{r} e^{-t|k_s|^2} (|k_s| t^{1/2}) \lesssim r^{-\beta} t^{-1/2},
\]
and similarly,

$$|e^{t\Delta} \rho_0| = |r^{-\beta} \sum_{s=1}^{r} e^{-t|k'_s|^2} |k'_s| \cos (k'_s \cdot x)|$$

$$\lesssim r^{-\beta} t^{-1/2} \sum_{s=1}^{r} e^{-t|k'_s|^2} |k'_s| t^{1/2} \lesssim r^{-\beta} t^{-1/2}.$$

Hence the estimates follows.

3.3. **Estimate for** u_1 **and** ρ_1. In this section, we estimate the most important terms in (10), u_1 and ρ_1 by computing the three bilinear terms directly. Recall the definitions of u_1 and ρ_1 in (11) and the bilinear forms in (6).

Estimate of $B_1(e^{t\Delta} u_0, e^{t\Delta} u_0)$. This term only involves the interactions between $\cos (k_i \cdot x)$ and $\cos (k_j \cdot x)$. From (15), we further compute

$$e^{t\Delta} u_0 \cdot \nabla e^{t\Delta} u_0 = -r^{-2\beta} \sum_{i,j=1}^{r} |k_i||k_j| (v_i \cdot k_j) e^{-t(|k_i|^2+|k_j|^2)} v_j \cos (k_i \cdot x) \sin (k_j \cdot x)$$

$$= -r^{-2\beta} 2 \sum_{i,j=1}^{r} |k_i||k_j| (v_i \cdot k_j) e^{-t(|k_i|^2+|k_j|^2)} v_j \sin ((k_i + k_j) \cdot x)$$

$$- r^{-2\beta} 2 \sum_{i,j=1}^{r} |k_i||k_j| (v_i \cdot k_j) e^{-t(|k_i|^2+|k_j|^2)} v_j \sin ((k_i - k_j) \cdot x),$$

where we used the fact: $\cos a \sin b = ((\sin(a + b) - \sin(a - b))/2$. Furthermore, we have

$$\mathbb{P} e^{t\Delta} u_0 \cdot \nabla e^{t\Delta} u_0 = -r^{-2\beta} 2 \sum_{i,j=1}^{r} |k_i||k_j| (v_i \cdot k_j) e^{-t(|k_i|^2+|k_j|^2)} w_{i,j} \sin ((k_i + k_j) \cdot x)$$

$$- r^{-2\beta} 2 \sum_{i,j=1}^{r} |k_i||k_j| (v_i \cdot k_j) e^{-t(|k_i|^2+|k_j|^2)} \tilde{w}_{i,j} \sin ((k_i - k_j) \cdot x)$$

$$= E_1 + E_2,$$

where $w_{i,j}$ is the projection of v_j onto the orthogonal to $k_i + k_j$ and $\tilde{w}_{i,j}$ is the projection of v_j onto the orthogonal to $k_i - k_j$. Therefore,

$$B_1(e^{t\Delta} u_0, e^{t\Delta} u_0) = \int_0^t e^{(t-s)\Delta} E_1 \, ds + \int_0^t e^{(t-s)\Delta} E_2 \, ds = F_1 + F_2.$$

For F_1, we have

$$F_1 = \frac{r^{-2\beta}}{2} \sum_{i,j=1}^{r} |k_i||k_j| (v_i \cdot k_j) e^{-t(|k_i|^2+|k_j|^2)}$$

$$\times w_{i,j} \sin ((k_i + k_j) \cdot x) \frac{1 - e^{-t(|k_i+k_j|^2-|k_i|^2-|k_j|^2)}}{|k_i + k_j|^2 - (|k_i|^2 + |k_j|^2)}. $$

By the facts that $(1-e^{-x})/x$ and xe^{-x} are bounded for $x > 0$ and $|v_i \cdot k_j| \approx |k_j|/|k_i|$, we obtain

$$|F_1| \lesssim \frac{r^{-2\beta}}{2} \sum_{j=1}^{r} \sum_{i \leq j} t e^{-t|k_i|^2} |k_j|^2 e^{-t|k_j|^2} + \frac{r^{-2\beta}}{2} \sum_{i=1}^{r} \sum_{j < i} t e^{-t|k_i|^2} |k_j|^2 e^{-t|k_j|^2}.$$
We next bound \(\rho \) Lemma 3.3. rewrite where

\[\sum_{i=1}^{r} t e^{-t|k_i|^2} |k_i|^2 \lesssim r^{-2\beta} |\log t| \lesssim r^{-2\beta} t^{-\delta}. \]

From here on, we fix the constant \(0 < \delta \ll 1 \). The estimates of \(F_2 \) follow similarly and we omit the details here. Hence, we have

\[\|B_4(e^{t\Delta}u_0, e^{t\Delta}u_0)\|_{L^\infty} \lesssim r^{-2\beta} t^{-\delta}. \]

The estimate of \(B_2(e^{t\Delta}u_0, e^{t\Delta}u_0) \) and \(B_3(e^{t\Delta}u_0, e^{t\Delta}u_0) \). Both terms concern the interactions between \(\cos(k_i \cdot x) \) and \(\cos(k_j' \cdot x) \). Here we first compute for \(B_3 \), since it contains the most important term in which the accumulation occurs.

From (16), we deduce

\[e^{t\Delta}u_0 \cdot \nabla e^{t\Delta}u_0 = -r^{-2\beta} \sum_{i,j=1}^{r} |k_i||k_j'|((v_i \cdot k_j')e^{-t|k_i|^2+|k_j'|^2}) \cos(k_i \cdot x) \sin(k_j' \cdot x) \]

\[= -r^{-2\beta} \sum_{i,j=1}^{r} |k_i||k_j'|((v_i \cdot k_j')e^{-t|k_i|^2+|k_j'|^2}) \sin((k_i - k_j') \cdot x) \]

\[- r^{-2\beta} \sum_{i,j=1}^{r} |k_i||k_j'|((v_i \cdot k_j')e^{-t|k_i|^2+|k_j'|^2}) \sin((k_i + k_j') \cdot x) \]

\[= -r^{-2\beta} \sum_{i=1}^{r} |k_i||k_j'|((v_i \cdot k_j')e^{-t|k_i|^2+|k_j'|^2}) \sin(\eta \cdot x) \]

\[- r^{-2\beta} \sum_{i,j=1, i \neq j}^{r} |k_i||k_j'|((v_i \cdot k_j')e^{-t|k_i|^2+|k_j'|^2}) \sin((k_i - k_j') \cdot x) \]

\[- r^{-2\beta} \sum_{i,j=1}^{r} |k_i||k_j'|((v_i \cdot k_j')e^{-t|k_i|^2+|k_j'|^2}) \sin((k_i + k_j') \cdot x). \]

Now, substituting back to (11), computing the integration, and noting (14), we rewrite \(\rho_1 \) as

\[\rho_1 = \rho_{1,0} + \rho_{1,1} + \rho_{1,2}, \]

where

\[\rho_{1,0} := \frac{r^{-2\beta}}{4} \sum_{i=1}^{r} e^{-t|\eta|^2} |k_i|^2 \left(1 - e^{-t(|k_i|^2+|k_j'|^2)} \right) \frac{1}{|k_i|^2 + |k_j'|^2 - 1} \sin(\eta \cdot x) \]

\[\rho_{1,1} := -\frac{r^{-2\beta}}{2} \sum_{i=1, i \neq j}^{r} e^{-t|k_i-k_j'|^2} |k_i||k_j'|((v_i \cdot k_j') \frac{1}{|k_i|^2 + |k_j'|^2 - 1} \sin((k_i - k_j') \cdot x) \]

\[\rho_{1,2} := -\frac{r^{-2\beta}}{2} \sum_{i,j=1}^{r} e^{-t|k_i+k_j'|^2} |k_i||k_j'|((v_i \cdot k_j') \frac{1}{|k_i|^2 + |k_j'|^2 - 1} \sin((k_i + k_j') \cdot x). \]

We next bound \(\rho_{1,0} \) from both below and above.

Lemma 3.3.

\[\|\rho_{1,0}(\cdot,t)\|_{L^\infty_{x,t}} \gtrsim r^{1-2\beta}, \quad \forall t \in [K^{-2}, 1], \]

\[\|\rho_{1,0}(\cdot,t)\|_{L^\infty_{x,t}} \lesssim r^{1-2\beta}, \quad \forall t \in (0, 1]. \]
Proof. For \(t \geq K^{-2} \), we have \(-t(|k_i|^2 + |k_j'|^2) \lesssim -2^{i-1}\). Noting that \(|\eta| = 1\), we have

\[
\|\rho_{1,0}(\cdot, t)\|_{B_{\infty, \infty}^-} = \frac{r^{-2\beta}}{4} \left| \sum_{i=1}^{r} e^{-t|\eta|^2} |k_i|^2 \frac{1 - e^{-t(|k_i|^2 + |k_j'|^2)}}{|k_i|^2 + |k_j'|^2 - 1} \right| \| \sin(\eta \cdot x) \|_{B_{\infty, \infty}^-} \\
\gtrsim r^{-2\beta} \sum_{i=1}^{r} e^{-t(1 - e^{-2^{i-1}})} \gtrsim r^{1-2\beta}.
\]

Here we used

\(|k_i|^2 \approx |k_i|^2 + |k_j'|^2 - 1\) and \(e^{-t} \approx 1\), for \(t \in [0, 1]\).

Similarly, if we simply bound \(1 - e^{-t(|k_i|^2 + |k_j'|^2)}\) by 1, then

\[
\|\rho_{1,0}(\cdot, t)\|_{L^\infty} \lesssim r^{-2\beta} \left(\sum_{i=1}^{r} 1 \right) \lesssim r^{1-2\beta}.
\]

\(\square\)

For \(\rho_{1,1}\) and \(\rho_{1,2}\), we only estimate the upper bound.

Lemma 3.4.

\[
\|\rho_{1,1}(\cdot, t)\|_{L^\infty} \lesssim r^{-2\beta} t^{-\delta}, \quad \|\rho_{1,2}(\cdot, t)\|_{L^\infty} \lesssim r^{-2\beta} t^{-\delta}, \quad t \in (0, 1).
\]

Proof. Here we only prove the inequality for \(\rho_{1,1}\), since the computation for \(\rho_{1,2}\) is similar. First,

\[
|\rho_{1,1}| \lesssim r^{-2\beta} \sum_{i=1}^{r} \sum_{j < i} |k_i| |k_j'| (v_i \cdot k_j') e^{-t|k_i-k_j'|^2} \\
\times \frac{1 - e^{-((|k_i|^2 + |k_j'|^2) - |k_i-k_j'|^2)t}}{|k_i|^2 + |k_j'|^2 - |k_i-k_j'|^2} |\sin(k_i - k_j') \cdot x| \\
+ r^{-2\beta} \sum_{j=1}^{r} \sum_{i < j} |k_i| |k_j'| (v_i \cdot k_j') e^{-t|k_i-k_j'|^2} \\
\times \frac{1 - e^{-((|k_i|^2 + |k_j'|^2) - |k_i-k_j'|^2)t}}{|k_i|^2 + |k_j'|^2 - |k_i-k_j'|^2} |\sin(k_i - k_j') \cdot x|.
\]

Using the relation \(|1 - e^{-x}| \lesssim |x|, |\sin((k_i - k_j') \cdot x)| \leq 1, \text{ and } |(v_i \cdot k_j')| \approx |k_j'| / |k_i|\), we have

\[
|\rho_{1,1}| \lesssim r^{-2\beta} \sum_{i=1}^{r} |k_i|^2 e^{-t|k_i-k_j'|^2} t + r^{-2\beta} \sum_{j=1}^{r} \sum_{i < j} |k_j'|^2 e^{-t|k_i-k_j'|^2} t.
\]

Noting that \(|k_i| \approx |k_j'|, |k_i - k_j'| \approx |k_i|\) for \(j < i \), \(|k_i - k_j'| \approx |k_j'|\) for \(j > i \), and \(\sum_{j<i} |k_j|^s \approx |k_i|^s\) for all \(s > 0 \), we get

\[
|\rho_{1,1}| \lesssim r^{-2\beta} \sum_{i=1}^{r} |k_i|^2 e^{-t|k_i|^2} t + r^{-2\beta} \sum_{j=1}^{r} j |k_j'|^2 e^{-t|k_j'|^2} t \lesssim r^{-2\beta} t^{-\delta}.
\]

Here the last inequality follows similar steps as in (19). The lemma is proved. \(\square\)
In particular,
\[|\rho_1| \leq |\rho_{1,0}| + |\rho_{1,1}| + |\rho_{1,2}| \lesssim t^{1-2\beta} + r^{-2\beta} t^{-\delta}, \text{ for } t \in (0, 1]. \] (21)

From this, we obtain
\[|B_2(e^{t\Delta} u_0, e^{t\Delta} \rho_0)| \lesssim t |B_3(e^{t\Delta} u_0, e^{t\Delta} \rho_0)| = t |\rho_1| \lesssim t^{1-2\beta} t + r^{-2\beta} t^{1-\delta}, \text{ for } t \in (0, 1]. \] (22)

One can simply check this by comparing \(B_2 \) and \(B_3 \) and by noting that
\[|\mathbb{P} \sin(k \cdot x) G_\delta| \lesssim |\sin(k \cdot x)|. \] (23)

Combining (20) and (22), we obtain that for \(t \in (0, 1] \),
\[\|u_1(\cdot, t)\|_{L^\infty} \lesssim |B_1(e^{t\Delta} u_0, e^{t\Delta} u_0)| + |B_2(e^{t\Delta} u_0, e^{t\Delta} \rho_0)| \lesssim r^{-2\beta} t^{-\delta} + r^{1-2\beta} t + r^{-2\beta} t^{1-\delta} \lesssim r^{-2\beta} t^{-\delta} + r^{1-2\beta} t^{1-\delta}. \] (24)

3.4. Analysis of \(y \) and \(z \)
In this section, we estimate \(y \) and \(z \). Throughout this section, we denote
\[M(t) := \sup_{s \in (0, t)} \{ s^\delta \|y(\cdot, s)\|_{L^\infty} \} + t \sup_{s \in (0, t)} \{ s^\delta \|z(\cdot, s)\|_{L^\infty} \}. \]

The main result of this section is the following estimate.

Proposition 1. For some \(\nu > 0 \), let \(T := r^{-\nu} \). Then for sufficiently large \(r \),
\[M(t) \lesssim r^{-3\beta} + r^{1-3\beta} t^{1+\delta} + r^{2-4\beta} t^{5/2+\delta}, \text{ for } t \in (0, T], \] (25)

provided that
\[\beta > \max\{0, \frac{1}{2} - \frac{3}{4} \nu\}. \] (26)

In particular,
\[\|z(\cdot, t)\|_{L^\infty} \lesssim r^{-3\beta} t^{-1-\delta} + r^{1-3\beta} + r^{2-4\beta} t^{3/2} \]

for any \(t \in (0, T) \).

Proof. We first estimate \(\|y(\cdot, t)\|_{L^\infty} \) and \(\|z(\cdot, t)\|_{L^\infty} \). For this, we apply the bilinear estimates in Lemma 2.2, (8), and (9) to each term in (12), with the help of (18), (21), and (24).

Estimating \(y \). Recall \(y = y_0 + y_1 + y_2 \) and their expressions (12). We first estimate \(y_0 \) which does not contain \(y \) or \(z \), term by term. Noting (18) and (24), we have
\[\|B_1(g, u_1)\|_{L^\infty} \lesssim \int_0^t \frac{1}{(t-s)^{1/2}} \|e^{t\Delta} u_0\|_{L^\infty} \|u_1\|_{L^\infty} \, ds \]
\[\lesssim \int_0^t \frac{1}{(t-s)^{1/2} s^{1/2-r^{-2\beta} s^{-\delta}}} \, ds \]
\[\lesssim r^{-3\beta} t^{-\delta} + r^{1-3\beta} \int_0^t \frac{1}{(t-s)^{1/2} s^{1/2}} \, ds. \] (27)
Using (24), we obtain

\[\|B_1(u_1, u_1)\|_{L^\infty} \lesssim \int_0^t \frac{1}{(t-s)^{1/2}} \|u_1\|_{L^\infty} \|u_1\|_{L^\infty} \, ds \]
\[\lesssim \int_0^t \frac{1}{(t-s)^{1/2}} \left((r^{-2\beta} s^{-\delta})^2 + (r^{1-2\beta} s^2) \right) \, ds \]
\[\lesssim r^{-4\beta t^{1/2} - 2\delta} + r^{2-4\beta t^{5/2}}. \] (28)

Similarly, using (8), (18), (21), and (24), we obtain the \(B_2 \) terms estimates

\[\|B_2(g, \rho_1)\|_{L^\infty} \lesssim \int_0^t (t-s)^{1/2} \|e^{t \Delta} u_0\|_{L^\infty} \|\rho_1\|_{L^\infty} \, ds \]
\[\lesssim \int_0^t (t-s)^{1/2} r^{-\beta} s^{-1/2} (r^{-2\beta} s^{-\delta} + r^{1-2\beta}) \, ds \]
\[\lesssim r^{-3\beta t^{1/2} - 1/2} + r^{-3\beta t}, \] (29)

\[\|B_2(u_1, \theta)\|_{L^\infty} \lesssim \int_0^t (t-s)^{1/2} \|u_1\|_{L^\infty} \|e^{t \Delta} \rho_0\|_{L^\infty} \, ds \]
\[\lesssim \int_0^t (t-s)^{1/2} (r^{-2\beta} s^{-\delta} + r^{1-2\beta} s) r^{-\beta} s^{-1/2} \, ds \]
\[\lesssim r^{-3\beta t^{1/2} - 1/2} + r^{-3\beta t^2}, \] (30)

and

\[\|B_2(u_1, \rho_1)\|_{L^\infty} \lesssim \int_0^t (t-s)^{1/2} \|u_1\|_{L^\infty} \|\rho_1\|_{L^\infty} \]
\[\lesssim \int_0^t (t-s)^{1/2} (r^{-2\beta} s^{-\delta} + r^{1-2\beta} s) (r^{-2\beta} s^{-\delta} + r\tilde{u}_2 s^{-\delta}) \, ds \]
\[\lesssim r^{3\beta t^{3/2} - \delta} + r^{2-4\beta t^{5/2}} + r^{-4\beta t^{3/2} - 2\delta}. \] (31)

Again, in the last inequality we use \(t \in (0, 1] \). Therefore, combining the above estimates (27)–(31) yields

\[\|y_0\|_{L^\infty} \lesssim r^{-3\beta t^{1-\delta} + r+1-3\beta t^5/2}, \quad t \in (0, 1]. \] (32)

Next, we estimate \(y_1 \) which contains linear combinations of \(y \) and \(z \). This is

\[\|y_1\|_{L^\infty} \leq ||B_1(g, y)||_{L^\infty} + ||B_1(u_1, y)||_{L^\infty} + ||B_2(g, z)||_{L^\infty} + ||B_2(y, \theta)||_{L^\infty} \]
\[+ ||B_2(u_1, z)||_{L^\infty} \] (33)

Similarly to the estimates of (27) and (28), we get

\[||B_1(g, y)||_{L^\infty} \lesssim \int_0^t \frac{1}{(t-s)^{1/2}} \|e^{t \Delta} u_0\|_{L^\infty} \|y\|_{L^\infty} \, ds \]
\[\lesssim r^{-\beta} \int_0^t \frac{1}{(t-s)^{1/2}} s^{-1/2 - \delta} \, ds \sup_{0<s<t} \{s^\delta \|y\|_{L^\infty} \} \]
\[\lesssim r^{-\beta} L^{-\delta} \sup_{0<s<t} \{s^\delta \|y\|_{L^\infty} \}, \] (34)
Similarly to (29)-(31), we obtain
\[
\|B_1(u_1, y)\|_{L^\infty} \lesssim \int_0^t \frac{1}{(t-s)^{1/2}} \|u_1\|_{L^\infty} \|y\|_{L^\infty} \, ds \\
\lesssim \int_0^t \frac{1}{(t-s)^{1/2}} (r^{-2\beta}s^{-\delta} + r^{1-2\beta}s^{-\delta}) \, ds \sup_{0<s<t} \{s^\delta \|y\|_{L^\infty}\} \quad (35)
\]

Similarly to (29)-(31), we obtain
\[
\|B_2(g, z)\|_{L^\infty} \lesssim \int_0^t (t-s)^{1/2} \|e^{t\Delta} u_0\|_{L^\infty} \|z\|_{L^\infty} \, ds \\
\lesssim r^{-\beta} \int_0^t (t-s)^{1/2} s^{-1/2-\delta} \, ds \sup_{0<s<t} \{s^\delta \|z\|_{L^\infty}\} \quad (36)
\]
\[
\|B_2(y, \theta)\|_{L^\infty} \lesssim \int_0^t (t-s)^{1/2} \|y\|_{L^\infty} \|e^{t\Delta} \rho_0\|_{L^\infty} \, ds \\
\lesssim r^{-\beta} \int_0^t (t-s)^{1/2} s^{-1/2-\delta} \, ds \sup_{0<s<t} \{s^\delta \|y\|_{L^\infty}\} \quad (37)
\]
\[
\|B_2(y, \rho_1)\|_{L^\infty} \lesssim \int_0^t (t-s)^{1/2} \|\rho_1\|_{L^\infty} \|y\|_{L^\infty} \, ds \\
\lesssim \int_0^t (t-s)^{1/2} (r^{-2\beta}s^{-2\delta} + r^{1-2\beta}s^{-\delta}) \, ds \sup_{0<s<t} \{s^\delta \|y\|_{L^\infty}\} \quad (38)
\]
\[
\|B_2(u_1, z)\|_{L^\infty} \lesssim \int_0^t (t-s)^{1/2} \|u_1\|_{L^\infty} \|z\|_{L^\infty} \, ds \\
\lesssim \int_0^t (t-s)^{1/2} (r^{-2\beta}s^{-2\delta} + r^{1-2\beta}s^{1-\delta}) \, ds \sup_{0<s<t} \{s^\delta \|z\|_{L^\infty}\} \quad (39)
\]

Therefore, combining the above estimates (33)-(39) yields
\[
\|y_1\|_{L^\infty} \lesssim (r^{-\beta}t^{-\delta} + r^{1-2\beta}t^{3/2-\delta}) \times \sup_{0<s<t} \{s^\delta \|y\|_{L^\infty}\} + \sup_{0<s<t} \{s^\delta \|y\|_{L^\infty}\} \quad (40)
\]

Next, we treat \(y_2\), i.e., the quadratic combinations in terms of \(y\) or \(z\),
\[
\|y_2\|_{L^\infty} \lesssim \|B_1(y, y)\|_{L^\infty} + \|B_2(y, z)\|_{L^\infty} \\
\lesssim \int_0^t \frac{1}{(t-s)^{1/2}} \|y\|_{L^\infty}^2 \, ds + \int_0^t (t-s)^{1/2} \|y\|_{L^\infty} \|z\|_{L^\infty} \, ds
\]
\[
\leq t^{1/2-2\delta} \left(\sup_{0<s<t} \{ s^\delta \| y \|_{L^\infty} \} \right)^2 \\
+ r^{3/2-2\delta} \sup_{0<s<t} \{ s^\delta \| y \|_{L^\infty} \} \sup_{0<s<t} \{ s^\delta \| z \|_{L^\infty} \}.
\]

(41)

Combining (32), (40), and (41), for \(t \in (0, 1) \) we obtain

\[
\| y \|_{L^\infty} \lesssim r^{-3\beta} t^{-\delta} + r^{1-3\beta} t + r^{2-4\beta} t^{5/2} + (r^{-\beta} t^{-\delta} + r^{-1-2\beta} t^{3/2-\delta}) M(t) + t^{1/2-2\delta} M(t)^2.
\]

Hence, for any \(t \in (0, 1) \),

\[
\sup_{0<s<t} \{ s^\delta \| y \|_{L^\infty} \} \lesssim r^{-3\beta} + r^{1-3\beta} t^{1+\delta} + r^{2-4\beta} t^{5/2+\delta} + (r^{-\beta} + r^{-1-2\beta} t^{3/2}) M(t) \\
+ t^{1/2-\delta} M(t)^2.
\]

(42)

Estimating \(z \). Again, recall that \(z = z_0 + z_1 + z_2 \) along with their expressions in (12). For \(z_0 \) we have

\[
\| z_0 \|_{L^\infty} \leq \| B_3(g, \rho_1) \|_{L^\infty} + \| B_3(u_1, \theta) \|_{L^\infty} + \| B_3(u_1, \rho_1) \|_{L^\infty}.
\]

Noting \(|B_3(f, g)| \leq t^{-1} |B_2(f, g)| \) and the estimates (29), (30), and (31), we obtain

\[
\| B_3(g, \rho_1) \|_{L^\infty} \lesssim t^{-1} \| B_2(g, \rho_1) \|_{L^\infty} \lesssim r^{-2\beta-\beta t^{-\delta}} + r^{1-3\beta},
\]

\[
\| B_3(u_1, \theta) \|_{L^\infty} \lesssim t^{-1} \| B_2(u_1, \theta) \|_{L^\infty} \lesssim r^{-3\beta t^{-\delta}} + r^{1-3\beta} t,
\]

and

\[
\| B_3(u_1, \rho_1) \|_{L^\infty} \lesssim t^{-1} \| B_2(u_1, \rho_1) \|_{L^\infty} \lesssim r^{-4\beta} t^{1/2-\delta} + r^{2-4\beta} t^{3/2}.
\]

Therefore,

\[
\| z_0 \|_{L^\infty} \lesssim r^{-3\beta} t^{-\delta} + r^{1-3\beta} + r^{2-4\beta} t^{3/2}.
\]

(43)

Next we treat the linear term \(z_1 \):

\[
\| z_1 \|_{L^\infty} \leq \| B_3(g, z) \|_{L^\infty} + \| B_3(y, \theta) \|_{L^\infty} + \| B_3(y, \rho_1) \|_{L^\infty} + \| B_3(u_1, z) \|_{L^\infty}.
\]

Similarly to the estimates for \(z_0 \), noting (36), (37), (38), and (39), we obtain

\[
\| B_3(g, z) \|_{L^\infty} \lesssim t^{-1} B_2(g, z) \lesssim r^{-\beta} t^{-\delta} \sup_{0<s<t} \{ s^\delta \| z \|_{L^\infty} \},
\]

\[
\| B_3(y, \theta) \|_{L^\infty} \lesssim t^{-1} B_2(y, \theta) \lesssim r^{-\beta} t^{-\delta} \sup_{0<s<t} \{ s^\delta \| y \|_{L^\infty} \},
\]

\[
\| B_3(y, \rho_1) \|_{L^\infty} \lesssim t^{-1} B_2(y, \rho_1) \|_{L^\infty} \lesssim (r^{-2\beta t^{1/2-\delta}} + r^{-1-2\beta t^{3/2-\delta}}) \sup_{0<s<t} \{ s^\delta \| y \|_{L^\infty} \},
\]

and

\[
\| B_3(u_1, z) \|_{L^\infty} \lesssim t^{-1} B_2(u_1, z) \|_{L^\infty} \lesssim (r^{-2\beta t^{1/2-\delta}} + r^{-1-2\beta t^{3/2-\delta}}) \sup_{0<s<t} \{ s^\delta \| z \|_{L^\infty} \}.
\]

Therefore, by combining the above estimates, we have

\[
\| z_1 \|_{L^\infty} \lesssim (r^{-\beta} t^{-\delta} + r^{-1-2\beta} t^{1/2-\delta}) \sup_{0<s<t} \{ s^\delta \| y \|_{L^\infty} \} \\
+ (r^{-\beta} t^{-\delta} + r^{-1-2\beta} t^{3/2-\delta}) \sup_{0<s<t} \{ s^\delta \| z \|_{L^\infty} \}.
\]

(44)
Next we treat the quadratic term z_2 as
\[
\|z_2\|_{L^\infty} = \|B_3(y, z)\|_{L^\infty} \lesssim \int_0^t \frac{1}{(t-s)^{1/2}} \|y\|_{L^\infty} z\|_{L^\infty} ds \\
\lesssim t^{1/2-\delta} \sup_{0<s<t} \{s^\delta \|y\|_{L^\infty}\} \sup_{0<s<t} \{\|s^\delta z\|_{L^\infty}\}.
\] (45)

Summing (43), (44), and (45), multiplying t^δ, and taking sup in t, we obtain
\[
\sup_{0<s<t} \{s^\delta \|z\|_{L^\infty}\} \lesssim r^{-2\beta} + r^{1-3\beta} t^{\delta} + r^{2-4\beta} t^{3/2+\delta} \\
+ (r^{-\beta} + r^{1-2\beta} t^{1/2}) \sup_{0<s<t} \{s^\delta \|y\|_{L^\infty}\} \\
+ (r^{-\beta} + r^{1-2\beta} t^{3/2}) \sup_{0<s<t} \{s^\delta \|z\|_{L^\infty}\} \\
+ t^{1/2-\delta} \sup_{0<s<t} \{s^\delta \|y\|_{L^\infty}\} \sup_{0<s<t} \{\|s^\delta z\|_{L^\infty}\}.
\] (46)

Now, multiplying (46) by t, then adding to (42), for any $t \in (0, 1]$ we have
\[
M(t) \lesssim r^{-2\beta} + r^{1-3\beta} t^{1+\delta} + r^{2-4\beta} t^{5/2+\delta} + (r^{-\beta} + r^{1-2\beta} t^{3/2}) M(t) + t^{1/2-\delta} M(t)^2.
\]

The following lemma should be read as part of the proof.

Lemma 3.5. Suppose for $0 < t < T$, the non-negative continuous function $M(t)$ satisfies $M(0) = 0$ and
\[
M(t) \lesssim C_1(t) + C_2(t) M(t) + C_3(t) M(t)^2,
\]
where $C_1(t), C_2(t)$, and $C_3(t)$ are all non-negative. Then for any $t \in (0, T)$
\[
M(t) \lesssim C_1(t),
\]
provided that $C_1(t), C_2(t)$, and $C_3(t)$ satisfy
\[
\sup_{t<T} \{C_2(t) + C_1(t) C_3(t)\} \ll 1.
\] (47)

The proof is by a standard absorbing argument which we will omit here. Next we return to the proof of the proposition. The estimate (25) can be obtained by applying Lemma 3.5 with
\[
C_1 = r^{-2\beta} + r^{1-3\beta} t^{1+\delta} + r^{2-4\beta} t^{5/2+\delta}, \quad C_2 = r^{-\beta} + r^{1-2\beta} t^{3/2}, \quad \text{and} \quad C_3 = t^{1/2-\delta}.
\]

Hence, we only need to check the condition (47). We see that $C_1, C_2,$ and C_3 are all increasing in t. Thus it suffices to check
\[
C_2(T) + C_1(T) C_3(T) \ll 1.
\]

Substituting $T = r^{-\nu}$ in, we can rewrite it as
\[
r^{-\beta} + r^{1-2\beta-\frac{1}{2}\nu} + r^{-3\beta-(-\frac{1}{2}-\delta)\nu} + r^{1-3\beta-\frac{1}{2}\nu} + r^{2-4\beta-3\nu} \ll 1.
\]

One can check that all the exponents are negative, given (26). Hence the condition (47) holds if we choose r sufficiently large. \qed
4. Closing the estimates. In this section, we close the estimates and prove our main theorem.

Proof of Theorem 1.1. First, from (17), we can choose r sufficiently large to achieve
\[\|u_0\|_{B_{∞,1}^{-1}} \leq \epsilon, \quad \|\rho_0\|_{B_{∞,∞}^{-1}} \leq \epsilon. \]
It remains to prove (4). If $\beta > \text{max}\{0, \frac{1}{2} - \frac{3}{2}\nu\}$ and $r \gg 1$, we have the estimate in Proposition 1. As in Proposition 1, we choose $T = r^{-\nu}$. Furthermore, in (13) we choose $K = r^{\nu/2}$ so that Lemma 3.3 holds for $t = r^{-\nu}$. Now, applying Lemma 3.3, Lemma 3.4, and Proposition 1 at the time $t = r^{-\nu}$, we obtain
\[
\|\rho\|_{B_{∞,∞}^{-1}} \gtrsim \|\rho_0\|_{B_{∞,∞}^{-1}} - \|\epsilon^\Delta \rho_0\|_{L^∞} - \|\rho_{11}\|_{L^∞} - \|\rho_{12}\|_{L^∞} - \|z\|_{L^∞} \\
\gtrsim r^{1-2\beta} - r^{-\beta} t^{-1/2} - r^{-2\beta} t^{-\delta} - r^{-3\beta} t^{-1-\delta} - r^{1-3\beta} - r^{2-4\beta} r^{3/2} \\
\gtrsim r^{1-2\beta}(1 - r^{-1+\beta} t^{-1/2} - r^{-1-\beta} t^{-1-\delta} - r^{1-\beta} t^{-1-\delta} - r^{1-2\beta} r^{3/2}) \\
\gtrsim r^{1-2\beta}(1 - r^{-1+\beta - \nu/2} - r^{-1+\nu\delta} - r^{-1-\beta + \nu + \nu\delta} - r^{-\beta} - r^{1-2\beta - (3/2)\nu}).
\]
In order to make
\[1 - r^{-1+\beta - \nu/2} - r^{-1+\nu\delta} - r^{-1-\beta + \nu + \nu\delta} - r^{-\beta} - r^{1-2\beta - (3/2)\nu} \approx 1 \quad \text{and} \quad r^{1-2\beta} \gg 1 \]
for sufficiently large r, we need to choose parameters satisfying
\[
-1 + \beta - \nu/2 < 0, \quad -1 + \nu\delta < 0, \\
-1 - \beta + \nu + \nu\delta < 0, \quad 1 - 2\beta - (3/2)\nu < 0, 1 - 2\beta > 0.
\]
(48)
Once this holds, we may choose sufficiently large r so that $\|\rho\|_{B_{∞,∞}^{-1}} > 1/\epsilon$. Indeed, there exist parameters satisfying (26) and (48). Recall that $0 < \delta \ll 1$ is fixed. Here we can choose
\[\beta = 1/2 - \nu/2, \quad \text{and} \quad \nu \ll 1. \]
In particular, for such choice of parameters, we have
\[T = r^{-\nu} \approx \|\rho\|_{B_{∞,∞}^{-1}}^{-1} < \epsilon, \]
which completes the proof. \qed

Acknowledgments. Z. Li would like to thank his advisor Hongjie Dong for comments and support and W. Wang would like to thank his advisor Igor Kukavica for useful discussions and suggestions. W. Wang was supported in part by the NSF grant DMS-1907992.

REFERENCES

[1] J. Bourgain and N. Pavlović, Ill-posedness of the Navier-Stokes equations in a critical space in 3D, J. Funct. Anal., 255 (2008), 2233–2247.
[2] L. Brandolese and J. He, Uniqueness theorems for the Boussinesq system, Tohoku Math. J. (2), 72 (2020), 283–297.
[3] L. Brandolese and C. Mouzouni, A short proof of the large time energy growth for the Boussinesq system, J. Nonlinear Sci., 27 (2017), 1589–1608.
[4] C. Cao and J. Wu, Global regularity for the two-dimensional anisotropic Boussinesq equations with vertical dissipation, Arch. Ration. Mech. Anal., 208 (2013), 985–1004.
[5] D. Chae, Global regularity for the 2D Boussinesq equations with partial viscosity terms, Adv. Math., 203 (2006), 497–513.
[6] R. M. Chen and Y. Liu, On the ill-posedness of a weakly dispersive one-dimensional Boussinesq system, J. Anal. Math., 121 (2013), 299–316.
[7] A. Cheskidov and M. Dai, Norm inflation for generalized Navier-Stokes equations, Indiana Univ. Math. J., 63 (2014), 869–884.
[8] A. Cheskidov and M. Dai, Norm inflation for generalized magneto-hydrodynamic system, \textit{Nonlinearity}, \textbf{28} (2015), 129–142.

[9] M. Dai, J. Qing and M. E. Schonbek, Norm inflation for incompressible magneto-hydrodynamic system in $\dot{B}_{\infty,\infty}^{-1}$, \textit{Adv. Differential Equations}, \textbf{16} (2011), 725–746.

[10] C. R. Doering and J. D. Gibbon, \textit{Applied Analysis of the Navier-Stokes Equations}, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 1995.

[11] D.-A. Geba, A. A. Himonas and D. Karapetyan, Ill-posedness results for generalized Boussinesq equations, \textit{Non. Anal.}, \textbf{95} (2014), 404–413.

[12] T. Hmidi and S. Keraani, On the global well-posedness of the two-dimensional Boussinesq system with a zero diffusivity, \textit{Adv. Differential Equations}, \textbf{12} (2007), 461–480.

[13] T. Y. Hou and C. Li, Global well-posedness of the viscous Boussinesq equations, \textit{Discrete Contin. Dyn. Syst.}, \textbf{12} (2005), 1–12.

[14] H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations, \textit{Adv. Math.}, \textbf{157} (2001), 22–35.

[15] I. Kukavica and W. Wang, Global Sobolev persistence for the fractional Boussinesq equations with zero diffusivity, \textit{Pure Appl. Funct. Anal.}, \textbf{5} (2020), 27–45.

[16] I. Kukavica and W. Wang, Long time behavior of solutions to the 2D Boussinesq equations with zero diffusivity, \textit{J. Dynam. Differential Equations}, \textbf{32} (2020), 2061–2077.

[17] P. G. Lemarié-Rieusset, \textit{Recent Developments in the Navier-Stokes Problem}, Chapman & Hall/CRC Research Notes in Mathematics, 431. Chapman & Hall/CRC, Boca Raton, FL, 2002.

[18] A. R. Nahmod, N. Pavlović and G. Staffilani, Almost sure existence of global weak solutions for supercritical Navier-Stokes equation, \textit{SIAM J. Math. Anal.}, \textbf{45} (2013), 3431–3452.

[19] A. Stefanov and J. Wu, A global regularity result for the 2D Boussinesq equations with critical dissipation, \textit{J. Anal. Math.}, \textbf{137} (2019), 269–290.

[20] R. Temam, \textit{Navier-Stokes Equations}, AMS Chelsea Publishing, Providence, RI, 2001, Theory and numerical analysis, reprint of the 1984 edition.

[21] W. Wang, On the global regularity for a 3D Boussinesq model without thermal diffusion, \textit{Z. Angew. Math. Phys.}, \textbf{70} (2019), Paper No. 174, 6 pp.

[22] W. Wang, \textit{Regularity Problems for the Boussinesq Equations}, Ph.D. Dissertation, University of Southern California, 2020.

[23] W. Wang, On the analyticity and Gevrey regularity of solutions to the three-dimensional inviscid Boussinesq equations in a half space, submitted for publication.

[24] W. Wang, On the global stability of large solutions for the Boussinesq equations with Navier boundary conditions, submitted for publication.

[25] W. Wang and H. Yue, Time decay of almost-sure global weak solutions to the Navier-Stokes and the MHD equations with initial data in negative-order Sobolev spaces, submitted for publication.

[26] W. Wang and H. Yue, Almost sure existence of global weak solutions for the Boussinesq equations, \textit{Dyn. Partial Differ. Equ.}, \textbf{17} (2020), 165–183.

[27] T. Yoneda, Ill-posedness of the 3D Navier–Stokes equations in a generalized Besov space near BMO^{-1}, \textit{J. Func. Anal.}, \textbf{258} (2010), 3376–3387.

Received for publication February 2020.

\textit{E-mail address}: zongyuan.li@rutgers.edu
\textit{E-mail address}: weinanwang@math.arizona.edu