An Emergency Mitigation System for Safer Lunar Surface Exploration

Morris Vanegas, Northeastern University, Boston, MA, USA
Kyle Kotowick, Paul LaTour, Mike Curry, Jordan Foley, Jeffrey Hoffman, Massachusetts Institute of Technology, Cambridge, MA, USA
Samuel Schreiner, Timothy Setterfield, NASA Jet Propulsion Laboratory, Pasadena, CA, USA
Lynn Geiger, Lockheed Martin, Bethesda, MD, USA
David Barmore, Stanford University, Stanford, CA, USA
Daniel Roberson, Boeing Company, Chicago, IL, USA
Benjamin Putbrese, US Navy, Washington, DC, USA
Aleksandra Stankovic, Charles Stark Draper Laboratory, Cambridge, MA, USA

INTRODUCTION

One of the central achievements of the Apollo program was the development of rover vehicles which significantly increased the range and scientific capabilities of lunar surface exploration. Given the mission specifications of the Apollo program—which generated a combined total of 3 days and 6 hours of lunar surface Extra-Vehicular Activity (EVA) time—the Apollo 15, 16, and 17 mission vehicles were designed primarily for short-duration exploration. However, as proposed future space exploration looks ahead to longer duration missions, and perhaps even to the establishment of a permanent manned lunar presence [1], the capabilities of unpressurized rover vehicles must be expanded, not only in terms of surface range, but also in their ability to tolerate unexpected emergency scenarios.

Since longer intervals of surface exploration result in increased risk exposure, the level of risk acceptable during Apollo will not be acceptable for more frequent, longer duration missions. Therefore, the ability of rover vehicles to meet unexpected mission contingencies and to mitigate risk will be integral to sustaining extended lunar surface exploration. To this end, this paper presents the conceptual design and analysis of a rover-based, single-day mission emergency mitigation system for manned lunar surface exploration.

During the Apollo missions, a major constraint on the rover excursions was the crew required to remain within “walk-back” range of the Lunar Excursion Module (LEM) [2]. If the rover was disabled for any reason, the crew had to be able to walk back to the lunar lander within the time limit given by their current Environment Control and Life Support System (ECLSS) consumables levels. This constraint limited the distance away from base that the astronauts could explore.

The work presented in this report is set within the context of the next generation of lunar surface exploration. The earliest future lunar missions are assumed to be comparable in capability and scope to the later Apollo missions, with modest advances. Rather than the large pressurized
roving vehicles like SPRITE [3] and permanent base envisioned under the Constellation program [4], this paper assumes sortie missions with a modest increase in landing mass and surface duration compared to the Apollo missions with the use of inflatable structures [5]. One of the assumed capabilities of these missions is having two rovers on the lunar surface. This will be a critical development because it will eliminate the walk-back constraint on lunar surface exploration, dramatically increasing the reachable exploration area. This paper details the conceptual design of a system that can be integrated into the design of these lunar rovers to significantly increase exploration and scientific capabilities with a modest increase in system mass, volume, and power.

TOP-LEVEL SYSTEM DESIGN OVERVIEW

The system presented herein, called the “emergency system,” is aimed at mitigating mission risk and increasing system tolerance limitations during lunar surface exploration in open, unpressurized rovers. It was developed to mitigate risks associated with the use of space-resilient inflatable structures as possible bases during sortie Moon missions [6] by providing a proposed design that utilizes the rover itself, rather than the base, as an emergency system. This section provides a brief design overview of the emergency system, for which detailed subsystem specifications are presented in Section “EMERGENCY PASSENGER CHAIR DESIGN.”

The first significant subsystem of the emergency mitigation system is an inflatable structure, shown in its inflated, deployed configuration in Figure 1. This inflatable structure stows around the passenger seat of the rover and can be quickly inflated to provide a safe, habitable volume for an astronaut in the case of a suit puncture or other loss of suit environmental control.

The second subsystem is an ECLSS on the lunar rover that essentially replicates the functionality of the space suit portable life support system (PLSS). The rover ECLSS contains a sublimator (or evaporator) to reject excess heat, two CO₂ scrubbing cartridges to remove carbon dioxide from the atmosphere, a “slurper” to remove humidity from the atmosphere, an oxygen tank to supply oxygen for respiration,
a water tank to feed the sublimator (or evaporator) and provide crew hydration, and a backup power system. All these items are stored beneath the passenger seat for easy access.

EMERGENCY SCENARIOS AND REQUIREMENTS

Requirements for the proposed emergency mitigation system were derived from mission and environmental challenges encountered during space exploration through the last 50 years [7]. This analysis revealed the need for redundancy against four major failure categories: suit failures, medical emergencies, rover failures, and environmental concerns (see Figure 2). It is evident that all four of these major categories could occur during a lunar rover mission. The results of this analysis show that potential failures result in two main categories of hardware and consumables requirements:

1. **Rover failure:** if the rover becomes nonfunctional (for instance, due to a power system or drive train failure, or a driving accident), the crew must be able to survive long enough for the second rover to be dispatched from the base, arrive at their location, and return to the base. They are assumed to remain in their EVA suits and obtain additional consumables via an umbilical connection to the emergency system mounted on the rover.

2. **Suit failure or medical emergency:** if one of the crew’s suit sustains substantial damage and loses life support capability, or if that crew member remove their suit to access injuries, that crew member must be able to survive in the pressurized emergency shelter long enough for the second crew member to drive the rover back to the base. The crew member with the injury or suit failure is expected to utilize the emergency system for ECLSS requirements, while the other crew member continues to use his or her suit PLSS and drives the rover back to base.

A set of conceptual emergency scenarios in the context of future lunar exploration was generated to determine the worst-case scenarios for the purpose of designing the emergency mitigation system. The worst-case scenario is related to the maximum travel distance at the time of the emergency. Assuming an 8-h total one-day EVA, two astronauts may drive the rover for 3 h directly away from the lunar base to the exploration site, conduct up to 2 h of science, and plan to return directly. Emergencies at this point in time comprise the set of worst-case scenarios.

In the case that the rover is compromised and the astronauts must await rescue, the ECLSS on the rover can interface with the suit PLSS’s to support both astronauts for the extended mission duration. For this failure scenario, the worst-case timeline occurs 5 h into the mission (at the maximum distance from base with the least consumables remaining). It would involve two astronauts driving the rover for 3 h to the exploration site, conducting up to 2 h of science, and, when attempting to return, finding the rover to be nonfunctional, preventing them from returning to base. At this point in time, the crew would contact the
second rover for rescue and begin trickle charging their PLSS using the rover ECLSS. The second rover would take approximately 1 h to dispatch (in theory, this rover can already be prepared for dispatch prior to mission start, but this adds a more conservative estimate of requirements), 3 h to reach the exploration site, 2 h to prepare to return to base, and 4 h to drive back to base. The timeline below was used to generate the requirements for the emergency mitigation system.

- **T+0:** Mission begins with astronauts driving rover to operation site. Second rover prepared.
- **T+3:** Team arrives at operation site.
- **T+5:** Site operations complete.
- **T+6:** Backup rover departs base:
 - Assumes 1 h required to prepare second rover for departure; stranded astronauts trickle charge their PLSS using rover.
- **T+9:** Backup rover arrives:
 - 1 hr spent on scientific transfer or attempted rover repairs.
- **T+10:** Backup rover departs with three astronauts:
 - Third astronaut has trickled charged their PLSS and sits in deploy-able third seat in the rear.
 - Does not use rover ECLSS.
- **T+14:** Rover arrives at base:
 - Assumes 1 h extra travel time due to increased rover load.

From this timeline, it can be seen that the initial crew would each require 6 h of life support beyond their PLSS capability, in addition to 1 h of life support for the rescue crew member beyond his PLSS capability, for a total of 13 crew-member-hours (CM-h) of life support requirements. It is assumed that both the main and rescue rovers will have identical emergency systems, allowing those 13 CM-h to be split evenly between the two rovers. This gives a requirement for 6.5 CM-h of life support consumables per rover. This timeline assumes the remaining ECLSS in the failed rover is no longer accessible once all the crew is onboard the rescue rover. It should also be noted that the travel time and extra crew weight still fall below the Lunar Roving Vehicle’s longest traverse of 4 h 26 min total drive time using its two 30 V, 121 amp-h batteries during the Apollo 17 mission [8].

In the case that one of the space suits becomes compromised, the emergency mitigation system can be used to return the astronaut safely back to base. For this suit failure or medical emergency scenario, the worst-case scenario also happens at a mission time of 5 h. During this scenario, the astronaut can sit in the passenger seat of the rover, deploy the inflatable structure, zip it closed, and open the O² tank valve to fill the inflatable structure with breathable oxygen. In case of a modest-sized suit puncture, the suit’s emergency oxygen supply should be able to maintain pressure until the emergency structure is deployed and pressurized. Connecting the ECLSS on the rover to the emergency inflatable provides critical life support functionality for the 3-h return trip to the lunar base. Additional consumables would also be provided for the driver for any unplanned mission extension related to the initial suit malfunction. The second timeline below was also used to generate the requirements for the emergency mitigation system.

- **T+0:** Mission begins with astronauts driving rover to operation site.
- **T+3:** Team arrives at operation site.
- **T+5:** Site operations complete.
- **T+9:** Suit damage noticed.
- **T+5:** Astronaut at base notified of emergency, possibility of driving backup rover out to help.
- **T+5.5:** Emergency shelter/chair operational, rover departs for base.
- **T+8.5:** Rover arrives at base.

From this timeline, it can be seen that the crew member with the functioning suit would be on EVA for 30 min longer than planned, which is within the emergency safety margin of the suit PLSS. It can also be seen that the emergency system must be able to support the other crew member for 3.5 h in the emergency shelter. This gives a total requirement of 3.5 CM-h of life support consumables on the rover, in addition to the oxygen required to inflate the emergency shelter. In this scenario, the backup rover could possibly also be dispatched to meet enroute for additional support, but that does not affect the requirements of the primary rover and so is not included in the timeline.

The human life support requirements for various substances (consumed and produced) for EVA in Table 1 are all directly provided or derived from [9] and [10]. The total life support consumables requirements for a single-day excursion shown in Table 2 for these two scenarios were calculated using the volume of the emergency shelter (0.94 m³), the CM-h of life support required, and the baseline consumable values from Table 1. It is important to note that although these requirements do not include any margin to account for the low maturity of the design, the resulting predicted total mass and volumes described in Section “RESULTS AND DISCUSSION” fall well within the loose constraints of the Apollo lunar roving vehicle carrying capacity.
In the case of a suit or medical emergency, the emergency inflatable shelter will be deployed with the impaired astronaut inside. The ECLSS on the rover is connected to the emergency inflatable shelter as shown in Figure 3. The unimpaired astronaut will continue to draw PLSS-based consumables as normal while driving back to base. Only one inflatable shelter is proposed for the rover, which means that the astronauts might have to switch places in case of an emergency.

The emergency inflatable shelter is mounted and stowed around the base of the rover passenger chair, as seen in Figure 4. For our design calculations, we assumed a fabric made up of layers in a similar configuration to the outer surface of the Apollo A7L Space Suits, minus the Liquid Cooling Garment (LCG) and comfort layer [11]. Starting from the outside thermal garment and moving inward, the first layer of the emergency inflatable shelter fabric is woven from glass fibers (Beta fabric) and coated with Teflon. An insulation layer composed of sandwiched Beta fabric between two aluminized Kapton surfaces lies beneath the outer surface and above layers of Mylar film and nonwoven Dacron (as spacer material). The pressure portion (bladder layer) is Neoprene-coated Nylon. Finally, the innermost layer is composed of lightweight Nomex fabric and is used primarily as abrasion protection for the bladder layer. The fabric is folded in accordion form around the astronaut’s seat. It is covered with a nomex fabric cover and uses Velcro to hold the entire folded inflatable shelter in place while stowed.

To inflate, the Velcro is pulled off and the inflatable fabric is lifted up over the astronaut. A double-headed, airtight zipper, similar to what was used to seal the Apollo space suits, located directly in front of the astronaut is pulled from top (head) to bottom (near the knees). This is to ensure that the astronaut inside the emergency inflatable

Compound	EVA (per CM-h)	
	mol	kg
O₂	2.344	0.075
CO₂	−2.114	−0.093
H₂O (hydration)	20.278	0.365
H₂O (res-/perspiration)	−16.343	−0.294
H₂O (urine)	−3.935	−0.071

Compound	Emergency	Rover Failure	Suit Failure
O₂	0.4875 kg	0.4989 kg	
CO₂ Scrubbing	0.6045 kg	0.3255 kg	
H₂O (hydration)	2.3725 kg	1.2775 kg	
H₂O vapor removal	1.911 kg	1.029 kg	

Figure 3.
Configuration of connections during an emergency requiring the use of the Emergency Inflatable Shelter.
shelter can visually check that the zipper has closed all the way. Incorporating a double-headed zipper allows the healthy astronaut to zip up the emergency inflatable shelter in the event that the injured astronaut is physically unable. Once sealed, the bag is inflated using \(\text{O}_2 \) from the rover ECLSS through a valve coming out of the base between the astronaut’s legs (see Figure 4).

The total volume inside the empty inflatable shelter is 0.94 m\(^3\). The shelter was designed to take up the same amount of surface area on the rover as the original seats on the Apollo rover. Using this baseline, the height of the shelter was adjusted to reach a volume that satisfied the human life support requirements to sustain one astronaut inside this volume for the amount of time specified in the requirements in Section “EMERGENCY SCENARIOS AND REQUIREMENTS.” The surface area, calculated from computer-aided design models of the inflatable shelter, is 5.12 m\(^2\).

The packed volume of the stowed shelter is 0.05 m\(^3\) and was determined using the surface area of the inflatable shelter, using the thickness of the layers that comprise the fabric, and using a conservative packing factor of two. This packed volume assumes the shelter is folded in an accordion form for easy deployment and storage around the seat. Finally, the total mass of the shelter of 6 kg was calculated using the surface density of the material and the total surface area obtained from the computer-aided design models. The total volume inside the emergency inflatable shelter satisfies the human life support consumables found in Table 2 for the worst-case scenario of each failure mode described in Section “EMERGENCY SCENARIOS AND REQUIREMENTS.”

CHAIR BASE AND CONNECTIONS

During nominal operations, the astronaut not driving the rover will step over the stowed emergency inflatable, sit on the solid base, and connect to the rover ECLSS to trickle charge his \(\text{O}_2 \) tank and batteries (see Figure 4). The driving astronaut’s \(\text{O}_2 \) and power lines are fixed to the side of the passenger chair base, allowing the driving astronaut to remain connected and continue trickle charging whether the emergency inflatable is deployed or not. The passenger astronaut’s \(\text{O}_2 \) and power lines are fixed to the top of the base of the emergency chair. This allows the stowed inflatable to be deployed without the need to disconnect from the rover ECLSS. This is particularly useful in the event that an emergency happens near the end of an EVA when the astronaut’s consumables are running low. The ability to stay connected to the rover ECLSS...
while the emergency shelter is inflated provides the astronaut the ability to continue using any working functions of his damaged suit, which may include the LCG and communication system. Of course, if the driver needs to use the emergency inflatable, then the two will have to change places, which will require temporary hose reconfiguration.

ROVER ECLSS SYSTEM DESIGN

The design of the proposed system relies heavily on a deep understanding of the requirements for human life support. These requirements dictate acceptable temperature ranges, pressure levels, O2 levels, relative humidity, etc. These requirements vary greatly based on the level of activity. However, for this paper, we focused on EVA. (For ECLSS System requirements on longer, overnight missions, refer to [5]). Values for EVA (and other scenarios) have been published by NASA in its Advanced Life Support Baseline Values and Assumptions Document [9] and its Human Integration Design Handbook [10].

BASELINE CONSUMABLE VALUES

Table 1 gives the human life support requirements for various substances for EVA. In addition, food requirements were also considered but not included in this paper due to the scope of a one-day EVA mission (Although NASA provides a food stick inside the space suit, our personal communication with NASA astronauts suggested that not eating for 8 h was common if enough drink was provided and a good breakfast was had).

An additional role of the ECLSS system is to provide a tolerable atmosphere for humans to live in. The habitable ranges for the three most important gasses in an artificial atmosphere as well as the habitable range of total pressure are shown in Table 3. These values come from the Human Integration Design Handbook [10].

Compound	Minimum (kPa)	Preferred (kPa)	Maximum (kPa)
O2	17.2	22.1*	60.7
CO2	0	0.653	1.03
H2O	0.827	1.31	1.86
Total	20.7	29.6	117.2

*Nominal value used on the Space Shuttle.

CARBON DIOXIDE REMOVAL

OVERVIEW—LIOH VERSUS METOX VERSUS RCA

The CO2 produced through respiration must be scrubbed from the atmosphere in order to maintain acceptable CO2 levels for the astronauts. NASA has developed two CO2 scrubbing technologies, or Contaminant Control Cartridges (CCC): a single EVA lithium hydroxide (LiOH) CCC which can be replaced between EVAs and a reusable metal oxide (MetOx) CCC which can be regenerated using a special oven, which requires considerable power and would most likely be situated on the lander/habitat. Both systems have canister life spans of 8 to 12 h. A third option currently under development is Rapid Cycle Amine (RCA), which is a continuous-operation system that does not require canister replacement. These three CO2 scrubbing technologies are discussed and compared in the following sections.

LITHIUM HYDROXIDE (LIOH)—SPECIFICATIONS AND DRAWBACKS

Lithium Hydroxide technology utilizes a chemical reaction in which carbon dioxide reacts with lithium hydroxide to form water and an innocuous compound, lithium carbonate. Using this technology, carbon dioxide is removed from the atmosphere by flowing carbon dioxide laden air through a canister containing a packed bed of lithium hydroxide granules. The spent LiOH is not regenerated and the canisters are returned to Earth for replenishment with fresh absorbent.

The amount of LiOH required to remove the average daily output of carbon dioxide by one person is 1.35 kg/day. The removal capacity of one LiOH CCC is 0.55 kg of carbon dioxide with an enthalpy change of –100 834 J/mol carbon dioxide [12]. The dimensions of one EMU LiOH canister are: 25.4 cm height × 3 34.19 cm width × 8.71 cm depth, and the mass of one full/mission-ready LiOH CCC is 2.9 kg. The mission timeline was analyzed to determine the total amount of CO2 that needed to be scrubbed. Using the size, mass, and enthalpy change for the LiOH CCC’s listed above, a total requirement of four LiOH CCC’s was calculated. This total includes the two CCC’s in the suit PLSS, which results in only two CCC’s being located on the rover (and thus inside the system boundary). This corresponds to a mass of 16.13 kg for the four LiOH CCC’s.

METAL OXIDE (METOX)—SYSTEM SPECIFICATIONS AND DRAWBACKS

MetOx is an on-orbit regenerative carbon dioxide removal system. The MetOx flight system consists of two assemblies: a metal oxide sorbent canister and a regeneration assembly. The canister removes the carbon dioxide and also contains charcoal to remove the trace contaminants.
from the vent loop, the same as the LiOH system. After the canister is spent, it can be placed in a MetOx regenerator. This regenerator is a special oven housed at a central location with a mass of 47.63 kg [12]. This requires crew time and significant power (over 1 kW for up to 14 h), and the enthalpy of reaction is \(-81 491 \text{ J/mol } \text{CO}_2\) for MetOx.

The metal oxide canister consists of metal sheet assemblies, a charcoal bag containing active charcoal, and a cover panel. The charcoal and bag construction are the same as those used in the LiOH CCC, meaning that the MetOx canisters designed for the Extravehicular Mobility Unit (EMU) are interchangeable with the EMU LiOH CCC’s. However, the MetOx CCC is significantly heavier than the LiOH CCC at 14.52 kg per container. The scrubbing capacity is nearly identical at 0.54 kg/CCC before recharging [12]. The mission timeline was analyzed to determine the total amount of CO\(_2\) that needed to be scrubbed. Using the size, mass, and enthalpy change for the MetOx CCC’s listed above, a total requirement of four CCC’s was calculated. This total includes the two CCC’s in the suit PLSS, which results in only two CCC’s being located on the rover (and thus inside the system boundary). This corresponds to a mass of 62.6 kg for the four MetOx CCC’s.

RAPID CYCLE AMINE (RCA)—SYSTEM SPECIFICATIONS AND DRAWBACKS

RCA is currently being developed by NASA as a new technology for carbon dioxide scrubbing and humidity control. The RCA design consists of alternating absorbing and desorbing beds that contain amine coated pellets mounted in an aluminum foam substrate. This alternating design allows a single RCA CCC to continuously scrub CO\(_2\) without need for replacement. The amine used in the swing bed also removes water vapor from the suit ventilation loop, eliminating the need for a condensing heat exchanger, slurper, and rotary separator. The weight of one RCA CCC is 7.26 kg and does not require replacement during the mission.

Due to the continuous operation capability, each astronaut and the rover only require one RCA CCC, for a total of three canisters. Each CCC has a CO\(_2\) scrubbing rate of 0.15 kg CO\(_2\)/h. The dimensions of one RCA canister are the same as MetOx and LiOH. Thus, the interchangeability of all three systems still remains an option for future missions.

SYSTEMS COMPARISON AND INTEGRATION

Overall, the RCA and LiOH systems have significantly lower weight than the regenerative MetOx system. At 14.52 kg as opposed to 2.9 kg per CCC and a life-span no longer than LiOH, MetOx is the definitive third choice for this mission. However, the ability for regeneration during the mission makes MetOx a superior system to LiOH in long duration missions such as on the ISS, where the mass of the regeneration oven is not a significant drawback. For shorter missions, there are no significant benefits to having the MetOx system over LiOH. However, since the LiOH and MetOx canisters are interchangeable in the same ECLSS system, this decision could be easily changed later if mission duration increases. Alternatively, although LiOH is a proven technology to ensure carbon dioxide is removed from the environment, the canisters are not rechargeable, so empty canisters (0.75 kg/canister) are cumbersome to return to Earth if they are to be replenished. Finally, one of the drawbacks of RCA is that the presence of a faint ammonia smell in the ventilation loop occasionally causes discomfort to the astronaut.

There are benefits to using LiOH over MetOx for this type of mission and RCA over both LiOH and MetOx, but it is important to remain flexible. In the future, should there be some change in mission requirements or operational capabilities, this flexibility gives decision makers and mission planners more options. RCA weighs more than LiOH, but the advantage of not needing to change cartridges during EVA, eliminating the need for a time-consuming activity that is potentially dangerous and difficult, is more important than the additional mass required (4.36 kg additional/CCC). RCA is the better choice for the ECLSS system, but as a next-generation technology that is still under development and has not yet been flight-tested, this paper uses LiOH for the chosen system in all mass estimates and the concept of operations. The interchangeability of the systems means that it will be easy to switch to RCA later if/when the technology becomes mature.

SUBLIMATOR DESIGN

While cooling is typically the main concern for lunar exploration mission, during certain times of the lunar day a situation may arise that requires heat transfer to keep the astronauts warm. To allow the water running through the LCG to be heated, rather than cooled, a bypass valve in the LCG transport loop can be actuated by the astronauts. A diagram of this setup (Thermal Control Unit) is shown inside the Rover ECLSS in Figure 3. This setup is similar to the design used in the Apollo PLSS backpack which allowed different bypass levels depending on the amount of cooling needed by the astronauts. The PLSS bypass line simply allowed a lower flow of the LCG water over the sublimator. In our design, the bypass valve will allow water to bypass the sublimator hot plate and instead flow to a heat exchanger which is exposed to direct sunlight.

The internal design of the sublimator housing and its components, shown in Figure 5, is very similar to the Apollo PLSS design [13] and was taken to be the base model for this analysis. While future missions may use an
alternate means of heat rejection, such as evaporators, basing this analysis upon proven technology provides an upper bound on mission mass while minimizing technology requirements for real world application.

The size of the sublimator is based primarily on the maximum and minimum heat loads it will have to handle. The sublimator is sized such that the ice layer will not melt at the maximum heat load, which would cause a “blowby” effect of the feedwater through the porous plate. Further, at the minimum heat load, the ice layer in the sublimator must not exceed the separation distance from the porous plate, or else the expansion of the ice would crack the sublimator housing. The sublimator sizing equations used to develop this sizing model were based on [14]. Here, we consider the following to be variables that the sublimator designer can set: overall heat rejection rate (Q), heat flux from cooling loop to sublimator (q_{A}), thickness of the porous plate (t), and temperature of the water coming from the cooling garment to the sublimator (T_{0}). The output of the model provides approximate volume and mass of sublimator system in addition to the expendable water supply requirements. Applying the above equations, we can generate a point design for both the operational and emergency missions.

OXYGEN STORAGE SYSTEM ON ROVER

The oxygen storage system consists of one large tank that holds gaseous oxygen and supporting connection hoses. The design specifications of the oxygen storage tank were adapted from the oxygen tank design detailed in the Space Shuttle EMU Handbook [12]. The oxygen storage tank was designed as a cylinder with hemispherical end caps. To simplify the analysis, the ratio of tank height to diameter was set at three (that is, the tank height was three times the diameter of the tank). Given this assumption, for a given volume (V), the diameter of the tank (D) can be calculated as:

$$D = 2 \cdot \left(\frac{3 \cdot V}{16 \cdot \pi} \right)^{\frac{1}{3}}.$$
(1)

Equation (1) allows the oxygen tank to be adaptively sized given the volume of oxygen required for the mission. The tank wall was assumed to be 0.65 mm thick and made out of 301 stainless steel, in accordance with the Space Shuttle EMU Handbook [12].

For this emergency system design, the total oxygen requirement was translated to tank mass and volume using the tank specifications described above. Two additional assumptions made (from the Space Shuttle EMU Handbook [12]) were the internal tank pressure (6.2 MPa) and temperature (295.15 K). An internal tank temperature of 295.15 K was determined to be achievable given the thermal environment. Radiation from the regolith and sun can be mitigated via multilayer insulation (MLI). The thermal balance on the O$_2$ tank confirmed the initial assumption that it could maintain an internal temperature of 295.15 K. A summary of O$_2$ tank mass and volume can be found in Table 4.

To account for the valves, pressure regulators, and piping associated with the oxygen storage system, a margin of 20% was added to the mass and volume of the system [15]. These margins are not shown in Table 4 for clarity.

Table 4.

Oxygen and Water Requirements with Relevant Storage System Sizing	O$_2$	H$_2$O
Amount Required (kg)	0.50	4.65
Tank Mass (kg)	1.33	1.71
Tank Volume (L)	6.17	4.65

WATER STORAGE SYSTEM ON ROVER

The water storage system was designed in a manner similar to the oxygen storage system. That is, the water tank was designed to have a height-to-diameter ratio of three and a 301 stainless steel, 1.0 mm thick wall. Table 4 shows the H$_2$O storage system mass and volume for the emergency system.

To account for the valves, pressure regulators, and piping associated with the water storage system, a margin of 20% was also added to the mass and volume of the
system [15]. These margins are not shown in Table 4 for clarity.

RESULTS AND DISCUSSION

The total mass breakdown for the emergency system described in Sections “EMERGENCY PASSENGER CHAIR DESIGN” and “ROVER ECLSS SYSTEM DESIGN” can be found in Figure 6. The right side of Figure 6 shows a detailed breakdown of the “ECLSS Consumables” slice, which includes the \(\text{CO}_2 \) scrubbing system, the water and oxygen storage tanks, the sublimator, a margin to account for pumps and hoses, and the mass of food and packaging.

The mass of the proposed emergency mitigation system was estimated to be 26.91 kg. It is important to note that this estimate does not include any margin to account for the low maturity of the design. With that said, the predicted mass of 26.91 kg fits well within the loose constraint imposed by the limits of the carrying capacity of the Apollo lunar roving vehicle (~105 kg) [7], indicating that the proposed emergency system would not place any additional mass carrying capacity requirements on the new lunar rover design.

In addition, the volume of the emergency system breaks down to 33.14 L (ECLSS), 1.77 L (Power), and 51.20 L (Emergency Inflatable Seat, Stowed). It should be noted that, even when not inflated, the inflatable shelter accounts for a majority of the system volume. However, the ECLSS and ECLSS consumables slices shown in Figure 6 (all of the components typically included in a portable life support system) account for three-fourth of the system mass. Thus, the inflatable structure did not play as large a role in system mass as it did in system volume. This may be due to the conservative estimate of an inflatable packing factor of two. Further research could focus on designing an inflatable structure that is thinner and has a lower packing factor, to reduce the volume occupied by the stowed inflatable system. Additionally, future designs should incorporate lunar dust mitigation techniques, such as using multiple bladder layers during entry [5].

Besides the reduction of the inflatable structure thickness and packing factor, an area of future work of this emergency system would be the design of the system and the conops for transferring the astronaut from the inflatable structure into the safety of the LEM upon return of the mission. A return from mission after a rover failure scenario would simply require all three astronauts to enter the LEM under existing conops. However, a return from mission after a suit failure or a medical emergency that requires the injured astronaut to remain in the safety of the inflatable structure is beyond the scope of the design of this emergency system and requires further investigation.

CONCLUSION

The analysis presented in this paper provides a preliminary assessment of a proposed system to extend safe lunar surface EVA range and scientific capabilities. The approach detailed herein described an emergency mitigation system. This system contains an ECLSS on the rover and a small inflatable shelter around the passenger seat that can be inflated with an astronaut inside if necessary. The proposed emergency system has the potential to expand EVA capabilities by providing single-fault tolerance in the face of a wide variety of suit and rover failure modes.

The viability of this proposed system was evaluated and found to be compatible with the Apollo lunar roving vehicle design. Assuming that future rovers have a larger
carrying capacity than the Apollo era rovers, this demonstrates that both the mass and volume of these proposed systems can be accommodated by the rover to greatly increase the range and capability of science and exploration missions on the lunar surface.

ACKNOWLEDGEMENTS

The authors would like to thank Bruce Cameron for his guidance on the project direction.

REFERENCES

[1] R. M. J. Lightfoot, “National aeronautics and space administration fiscal year 2019 presidential budget request summary,” 2018, p. 764. [Online]. Available: https://www.nasa.gov/sites/default/files/atoms/files/fy19_nasa_budget_estimates.pdf
[2] S. F. Morea, “The lunar roving vehicle: Historical perspective,” Lunar Bases Space Activities 21st Century, vol. 1, pp. 619–632, 1992.
[3] D. Akin and M. Bowden, “A small pressurized rover concept for extended lunar and mars exploration,” in Proc. Space, Aug. 2005. [Online]. Available: https://doi.org/10.2514/6.2005-6737
[4] M. Rudisill, L. D. Toups, and K. J. Kennedy, Constellation Architecture Team-Lunar Scenario 12.0 Habitation Overview. Reston, VA, USA: Amer. Soc. Civil Eng., 2010, ch. 91, pp. 989–1011. [Online]. Available: http://ascelibrary.org/doi/abs/10.1061/41096%28366%2992
[5] S. Schreiner et al., “An overnight habitat for expanding lunar surface exploration,” Acta Astronautica, vol. 112, p. VII, 2015.
[6] M. Z. Naser and A. I. Chehab, “Materials and design concepts for space-resilient structures,” Progress Aerosp. Sci., vol. 98, pp. 74–90, 2018. [Online]. Available: https://doi.org/10.1016/j.paerosci.2018.03.004
[7] J. J. Zakrzewski et al., “Exploration rover concepts and development challenges,” in Proc. 1st Space Exploration Conf., Continuing Voyage Discovery, 2005, pp. 1–23. [Online]. Available: https://www.nasa.gov/sites/default/files/atoms/files/exploration_rover_concepts_grc.pdf
[8] D. R. Williams, “The Apollo Lunar Roving Vehicle.” May 2016 [Online]. Available: https://nssdc.gsfc.nasa.gov/planetary/lunar/apollo_lrv.html
[9] M. Anderson, M. Ewert, J. Keener, and S. Wagner, “National aeronautics and space administration advanced life support baseline values and assumptions document (nasa/tp-2015-218570),” 2015. [Online]. Available: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150002905.pdf
[10] D. Liskowsky and W. Seitz, “National aeronautics and space administration human integration design handbook (nasa/sp-2010-3407/rev1),” Jun. 2014. [Online]. Available: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150002905.pdf
[11] K. S. Thomas and H. J. McMann, US Spacesuits, 2006.
[12] “Nasa extravehicular mobility unit (emu) LSS/SSA data book: Rev. h,” Dec. 2008.
[13] K. Thomas, “Hamilton sundstrand portable life support & space suit experience: Rev. d,” Dec. 2006.
[14] J. P. Shero, Porous Plate Sublimator Analysis by James Phillip Shero. [1970], 2012. [Online]. Available: http://hdl.handle.net/1911/14662
[15] J. R. Wertz, D. F. Everett, and J. J. Puschell, Space Mission Engineering: The New SMAD. Cleveland, OH, USA: Microcosm Press, 2011.