Abstract

People must have been queuing up at service places like banks, hospitals, etc. For now most of the queues are still conventional. The queue is done manually, the customer takes the queue number and waits until it's his turn. In computer systems people are familiar with queuing theory, such as FIFO, LIFO, PQ, etc. Sometimes, it combines several queue theories to execute the program. This study, queuing system will adopt from queue theory which is used by computer system. Hybrid system from FCFS and PQ will serve customers according to their needs. This study was conducted at the service place of one of the government hospital in Surakarta city. The sample queue data will be analyzed and compared when using the conventional queue and after using this queue system. This queuing system utilizes cloud technology to be accessible anywhere and display results in real time. The average waiting time in the hospital service using a conventional queue system is 2-5 hours, while using this system is 10-30 minutes.
References

1. Takagi, H., 2014, From Computer Science to Service Science: Queues with Human Customers And Servers, Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba Science City, Ibaraki 305-8573, Japan.
2. Gross, D., and Harris, C., 1998, Fundamental of Queuing Theory, Third Edition, USA: McGraw Hill, pp. 28-30.
3. Platz, T., and Osterdal, L., 2015, The Curse of The First-in First-out Queue Discipline, University of Southern Denmark, pp. 80-85.
4. Pinedo, M., 2016, Scheduling: Theory, Algorithms, and Systems. NYU Stern School of Business, New York, pp. 57-58.
5. Erl, T., and Puttini, R., 2013, Cloud Computing: concepts, technology and Architecture, Prentice Hall.
6. Hao, T., and Yifei, T., 2011, Study on Queuing System Optimization of Bank Based on BPR, Nanjing University of Science and Technology, School of Mechanical Engineering 402, 210094 Nanjing, Republic of China.
7. Taufemback, C., dan Da Silva, S., 2012, Queuing Theory Applied to The Optimal Management of Bank Excess Reserves. Program in Economics, Federal University of Santa Catarina, Florianopolis SC88049-970, Brazil.
8. Walraevens, J., dan Bruneel, H., 2017, Delay analysis of multiclass queues with correlated train arrivals and a hybrid priority/FIFO scheduling discipline. Department of Telecommunication and Information Processing, Ghent University, Belgium.
9. Pinedo, M., 2016, Scheduling: Theory, Algorithms, and Systems. NYU Stern School of Business, New York, pp. 87-90.
10. Aminudin, 2005, Principal of Research Operation, Jakarta : Erlangga.
11. Platz, T., and Osterdal, L., 2015, The Curse of The First-in First-out Queue Discipline, University of Southern Denmark, 92-95.
12. Gross, D., and Harris, C., 1998, Fundamental of Queuing Theory, Third Edition, USA: McGraw Hill, 101-110.
13. Gross, D., and Harris, C., 1998, Fundamental of Queuing Theory, Third Edition, USA: McGraw Hill, 115-120.
14. Arina, S., and Harahap, R., 2014, Analysis of Queue Service System in PT BNI, Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Sumatera Utara.
15. Erl, T., and Puttini, R., 2013, Cloud Computing: concepts, technology and Architecture, Prentice Hall.

Index Terms

Computer ScienceApplied Mathematics

Keywords
Information system, Queue system, Scheduling algorithm, FCFS, Priority queue, Cloud computing