Remarks on the extended Brauer quotient

Tiberiu Coconet
Faculty of Economics and Business Administration, Babeş-Bolyai University, Str. Teodor Mihali, nr.58-60, 400591 Cluj-Napoca, Romania

Andrei Marcus
Faculty of Mathematics, Babeş-Bolyai University, Cluj-Napoca, Romania

Abstract

Keywords: G-algebras, G-interior algebras, group graded algebras, pointed groups.
2000 MSC: 20C20, 20C05

1. Introduction

Let G be a group, and let A be a G-algebra over a complete discrete valuation ring \mathcal{O} with residue field k of characteristic $p > 0$. The well-known Brauer quotient $A(P)$ with respect to a p-subgroup P of G (introduced by M. Broué and L. Puig, see [8, §11]) is an $N_G(P)$-algebra. If moreover, A is G-interior (that is, A is endowed with a unitary algebra homomorphism $\mathcal{O}G \to A$), then $A(P)$ becomes a $C_G(P)$-interior $N_G(P)$-algebra. This means that one may construct, as in [5, Chapter 9], the $N_G(P)/C_G(P)$-graded $N_G(P)$-interior algebra $A(P) \otimes_{C_G(P)} N_G(P)$, so $A(P)$ is extended by automorphisms of P given by conjugation with elements of G.

L. Puig and Y. Zhou [6] extended $A(P)$ by all automorphisms of P, obtaining the so-called extended Brauer quotient $\tilde{N}_A^{\text{Aut}(P)}(P)$ as an $N_G(P)$-interior k-algebra. The interiority assumption is necessary, because the main feature used is the $\mathcal{O}(P \times P)$-module structure of A. This construction was further generalized by T. Coconet and C.-C. Todea [3] to the case of H-interior G-algebras, where H is a normal subgroup of G.

Our aim here is to unify and generalize these constructions, by introducing an extended Brauer quotient of a group graded algebra. The main ingredients of our construction are
a \tilde{G}-graded algebra A, a group homomorphism $P \to \tilde{G}$ (which induces a \tilde{G}-grading on the group algebra $\mathcal{O}P$), and a homomorphism $\mathcal{O}P \to A$ of \tilde{G}-graded algebras.

In Section 2 below we recall the Puig and Zhou definition of $N_{A}^{\text{Aut}(P)}(P)$, pointing out its $\text{Aut}(P)$-graded algebra structure. Our alternative construction in Section 3 is based on the easy observation that if A is a \tilde{G}-graded P-algebra with identity component B such that the action of P on \tilde{G} is trivial, then the Brauer quotient $A(P)$ inherits the \tilde{G}-grading such that the identity component of $A(P)$ is $B(P)$. Here we apply the classical Brauer quotient to the $\text{Aut}(P)$-graded algebra $A = A \otimes _{\mathcal{O}} \text{Aut}(P)$, and we get that $A(P)$ is isomorphic to $N_{A}^{\text{Aut}(P)}(P)$ as $\text{Aut}(P)$-graded algebras. In Section 4 we construct the extended Brauer quotient of a \tilde{G}-graded P-interior algebra A as mentioned above, this time with P acting nontrivially on \tilde{G}. We also discuss the exact relationship to the construction from [3]. Section 5 investigates the extended Brauer quotient of tensor products of P-interior algebras, in Section 6 we give an application towards correspondences for covering blocks.

Our general notations and assumptions are standard, and closely follow [8], [5] and [4].

2. The extended Brauer quotient

2.1. The construction of Puig and Zhou

We begin with a p-group P and a P-interior algebra A. Let $\varphi \in \text{Aut}(P)$, and as in [6], we consider the φ-twisted diagonal

$$\Delta_{\varphi}(P) = \{(u, \varphi(u)) \mid u \in P\}.$$

Then the set of $\Delta_{\varphi}(P)$-fixed elements, is the following \mathcal{O}-submodule of A:

$$A^{\Delta_{\varphi}(P)} = \{a \in A \mid ua = a\varphi(u) \text{ for any } u \in P\}.$$

Further, we consider $Q < P$ and denote by $A_{\Delta_{\varphi}(Q)}^{\Delta_{\varphi}(P)}$ the \mathcal{O}-module consisting of elements of the form

$$\text{Tr}_{\Delta_{\varphi}(Q)}^{\Delta_{\varphi}(P)}(c) = \sum_{u \in [P/Q]} u^{-1} c\varphi(u),$$

where $c \in A^{\Delta_{\varphi}(Q)}$. At last, we denote by $A(\Delta_{\varphi}(P))$ the quotient

$$A(\Delta_{\varphi}(P)) = A^{\Delta_{\varphi}(P)}/ \sum_{Q < P} A_{\Delta_{\varphi}(Q)}^{\Delta_{\varphi}(P)}.$$
and we obtain the usual Brauer homomorphism
\[\text{Br}_{\Delta \phi}(P) : A^{\Delta \phi(P)} \to A(\Delta \phi(P)). \]

If \(K \) is a subgroup of \(\text{Aut}(P) \), it is easily checked that the external direct sum \(\bigoplus_{\phi \in K} A^{\Delta \phi(P)} \) is an algebra, while its subset \(\bigoplus_{\phi \in K} \sum_{Q \prec P} A^{\Delta \phi(Q)} \) is a two-sided ideal, hence we have the following definition.

Definition 2.1 ([6]). The *extended Brauer quotient* associated to the \(P \)-interior algebra \(A \) and the subgroup \(K \) of \(\text{Aut}(P) \) is the external direct sum
\[
\tilde{N}^K_A(P) := \bigoplus_{\phi \in K} A^{\Delta \phi(P)} / \bigoplus_{\phi \in K} \sum_{Q \prec P} A^{\Delta \phi(Q)} \simeq \bigoplus_{\phi \in K} A(\Delta \phi(P)).
\]

Remark 2.2. Note that in this case, one deduces easily from the details given in [6, Section 3] and [7, Section 3] that \(\tilde{N}^K_A(P) \) is a \(K \)-graded algebra, and the map \(\text{Br}_P := \bigoplus_{\phi \in K} \text{Br}_{\Delta \phi(P)} \) is a homomorphism of \(K \)-graded algebras. This fact will become even more transparent in the next section.

2.2. The case of \(G \)-interior algebras

In addition to the situation of subsection 2.1, we assume the \(A \) is a \(G \)-interior algebra, where \(G \) is a (not necessarily finite) group, and \(P \) is a \(p \)-subgroup of \(G \). Conjugation induces the group homomorphisms
\[N_G(P) \to \text{Aut}(P) \quad \text{and} \quad N_G(P)/C_G(P) \to \text{Aut}(P), \quad (1) \]
and for the subgroup \(K \) in \(\text{Aut}(P) \), \(N^K_G(P) \) denotes the inverse image of \(K \) in \(N_G(P) \). If \(x \in N_G(P) \), we use denote by \(\phi_x \) the automorphism of \(P \) given by \(\phi_x(u) = u^x = x^{-1}ux \) for all \(u \in P \).

In this setting, we obtain some additional properties of the extended Brauer quotient (the details are left to the reader).

Proposition 2.3. With the above notation, the following statements hold:

1) \(\tilde{N}^K_A(P) \) is a \(K \)-graded \(N^K_G(P) \)-interior algebra;
2) If \(K = N_G(P)/C_G(P) \), then we have the isomorphism
\[\tilde{N}^K_A(P) \simeq A(P) \otimes_{kC_G(P)} kN_G(P) \]
of \(N_G(P)/C_G(P) \)-graded \(N_G(P) \)-interior algebras.
Proof. 1) We only need to notice that any \(x \in \mathbb{N}_K(P) \) verifies \(u^{-1}x\varphi_x(u) = x \).

2) We define the \(N_G(P)/C_G(P) \)-graded map

\[
A(P) \otimes_{kC_G(P)} kN_G(P) \to \tilde{N}_A^K(P), \quad \tilde{a} \otimes x \mapsto \tilde{a}x,
\]

whose restriction to the identity component is an isomorphism. \(\square \)

Remark 2.4. Note that if \(K = N_G(P)/C_G(P) \), then \(\tilde{N}_A^K(P) \) is just the group algebra \(kN_G(P) \) considered with the obvious \(K \)-grading. Moreover, the construction of \(\tilde{N}_A^K(P) \) is clearly functorial in \(A \), so the \(N_G(P) \)-interior algebra structure of \(\tilde{N}_A^K(P) \) comes from applying the construction to the algebra map \(\mathcal{O}G \to A \).

3. An alternative construction

3.1. The \(\mathcal{O}P \)-interior algebra \(A \) admits an obvious \((\mathcal{O}P, \mathcal{O}P) \)-bimodule structure. Consider the group algebra \(\mathcal{O}[P \rtimes \text{Aut}(P)] \), of the semidirect product \(P \rtimes \text{Aut}(P) \). This algebra is also a left \(\mathcal{O}P \)-module, hence it makes sense to consider the \(\text{Aut}(P) \)-graded \((\mathcal{O}P, \mathcal{O}P) \)-bimodule

\[
\tilde{A} := A \otimes_{\mathcal{O}} \mathcal{O}(P \rtimes \text{Aut}(P)).
\]

We may also use the isomorphism

\[
\tilde{A} \simeq A \otimes_{\mathcal{O}} \mathcal{O} \text{ Aut}(P)
\]

of \(\mathcal{O} \)-modules, which becomes an isomorphism of \((\mathcal{O}P, \mathcal{O}P) \)-bimodules, by defining the bimodule structure of \(A \otimes_{\mathcal{O}} \mathcal{O} \text{ Aut}(P) \) as follows:

\[
u(a \otimes \phi)v = u \cdot a \cdot \phi(v) \otimes \phi,
\]

for \(u, v \in P \) and \(\phi \in \text{Aut}(P) \). Then we regard \(A \otimes_{\mathcal{O}} \mathcal{O} \text{ Aut}(P) \) as an \(\text{Aut}(P) \)-graded \(P \)-algebra with \(P \)-action given by

\[
(a \otimes \phi)^u = u^{-1} \cdot a \cdot \phi(u) \otimes \phi,
\]

With the notations of Sections 2 and 3 we have:

Theorem 3.2. There is an isomorphism

\[
\tilde{A}(P) \simeq \tilde{N}^{\text{Aut}(P)}_A(P)
\]

of \(\text{Aut}(P) \)-graded algebras, where \(\tilde{A}(P) \) is the usual Brauer quotient of \(\tilde{A} \).
Proof. As the p-group P is a normal subgroup of $P \rtimes \text{Aut}(P)$, we get the decomposition
\[
\tilde{A}(P) = \bigoplus_{\varphi \in \text{Aut}(P)} (A \otimes (1, \varphi))(P).
\]
If $a \otimes (1, \varphi) \in (A \otimes (1, \varphi))^P$, then
\[
u^{-1} \cdot a \otimes (1, \varphi) \cdot u = u^{-1} \cdot a \otimes (1, \varphi)(u, 1) = u^{-1} a \varphi(u) \otimes (1, \varphi) = a \otimes (1, \varphi).
\]
Then $a \in A^{\Delta \varphi(P)}$, and consequently
\[(A \otimes (1, \varphi))(P) \rightarrow \tilde{N}^\varphi_A(P), \quad a \otimes (1, \varphi) \mapsto \tilde{a},
\]
is a well-defined map of \mathfrak{O}-modules for every $\varphi \in \text{Aut}(P)$. We extend this map to a $\text{Aut}(P)$-graded map between these two modules and we notice that, with all the above identifications, it is actually an isomorphism of algebras.

Remark 3.3. We often use subgroups of P, and we obviously have the isomorphism
\[(A \otimes \mathfrak{O}_Q \mathfrak{O}[Q \rtimes K])(Q) \simeq \tilde{N}^K_A(Q)
\]
of K-graded algebras, for any subgroups $Q \leq P$ and $K \leq \text{Aut}(Q)$.

4. The extended Brauer quotient of a group graded algebra

In this paragraph we set $\tilde{G} := G/H$, where H is a normal subgroup of the finite group G, P is a p-subgroup of G, and let
\[A := B \otimes_{\mathfrak{O}H} \mathfrak{O}G
\]
for some H-interior G-algebra B, so A is the G-interior \tilde{G}-graded algebra induced from B.

The following lemma says that we restrict ourselves, without loss, to a certain subgroup of $\text{Aut}(P)$.

Lemma 4.1. Let $\varphi \in \text{Aut}(P)$, and let $O(\tilde{x})$ be the orbit of $\tilde{x} \in \tilde{G}$ under the action of $\Delta \varphi(P)$ on \tilde{G}. If $| O(\tilde{x}) | \neq 1$ then $(\bigoplus_{z \in O(\tilde{x})} B \otimes z)(\Delta \varphi(P)) = 0$.

Proof. Consider the element $a = \sum b_{z_i} \otimes z_i$ such that $u^{-1} a \varphi(u) = a$. Since the elements z_i are all representatives of the classes of an orbit, we can choose them such that for any $u \in P$ we obtain $u^{-1} z_i \varphi(u) = z_{i'}$. It follows that $b_{z_i}^u = b_{z_{i'}}$, and then there is one element, say b_z, such that $b_{z_i}^u = b_z$ for any i and any $u \in P$. Hence
\[a = \text{Tr}_{\Delta \varphi(Q)}(b_z \otimes z),
\]
where Q is the stabilizer of $b_z \otimes z$ in P. \qed
4.2. The above lemma gives the motivation to introduce two subgroups of \(\text{Aut}(P) \), because it implies that \((A \otimes \phi)(P) = 0\) for \(\phi \in \text{Aut}(P) \) not satisfying \(\phi(u) = \bar{u}g \) in \(\bar{G} \), for some \(g \in G \). So let

\[
\text{Aut}_\bar{G}(P) = \{ \phi \in \text{Aut}(P) \mid \phi(u) = \bar{u}g \text{ for some } \bar{g} \in \bar{G} \text{ and for any } u \in P \}
\]

and

\[
\text{Aut}_1(P) = \{ \phi \in \text{Aut}(P) \mid \phi(u) = \bar{u} \text{ for any } u \in P \}.
\]

Denote also

\[
K := \text{Aut}_\bar{G}(P), \quad K_1 := \text{Aut}_1(P),
\]

and let \(\bar{A} := A \otimes \sigma_P \mathcal{O}[P \rtimes K] \) as in Section 3.

Finally, let \(N^K_G(\bar{P}) \) denote the subgroup of \(N_G(\bar{P}) \) whose elements define an element of \(K \) and let \(U \) be the inverse image of \(N^K_G(\bar{P}) \) in \(G \). Also let \(U' \) be the inverse image of \(C_G(\bar{P}) \) in \(G \). Observe that \(N^K_G(P) = N_G(P) \) and \(N^K_1(P) = N_G(P) \cap U' \).

Lemma 4.3. The group \(\text{Aut}_1(P) \) is a normal subgroup of \(\text{Aut}_\bar{G}(P) \), hence \(U' \) is normal in \(U \). Furthermore, we have the isomorphisms

\[
\text{Aut}_\bar{G}(P)/\text{Aut}_1(P) \simeq N^K_G(\bar{P})/C_G(\bar{P}) \simeq U/U'.
\]

Proof. If \(\phi_1 \in \text{Aut}_1(P) \) then \(\phi(u) = \bar{u} \) for all \(u \in P \). Hence, if \(\phi \in \text{Aut}_\bar{G}(P) \) with \(\phi(u) = \bar{u}g \), we get

\[
(\phi^{-1} \circ \phi_1 \circ \phi)(u) = (\phi_1 \circ \phi)(u)g^{-1} = \phi(u)g^{-1} = \bar{u}.
\]

Further if \(x \in \bar{g} \) then \(\phi(u) = \bar{u}g = \bar{u}x \) and then \(g^{-1}x \in C_G(\bar{P}) \). With all of the above, the map

\[
\text{Aut}_\bar{G}(P) \ni \phi \mapsto \bar{g} \in N_G(\bar{P})
\]

gives the first isomorphism. The second isomorphism is obvious. \(\square \)

We will denote by \(\bar{\phi} \) the image of \(\phi \) in the quotient group \(\text{Aut}_\bar{G}(P)/\text{Aut}_1(P) \).

Theorem 4.4. The algebra \(\bar{N}^\text{Aut}(P)_A \), as constructed in [2.1] is the \(U/U' \)-graded \(N_G(P) \)-interior algebra \(\bar{N}^K_P \) with identity component the \(N^K_1(P) \)-interior algebra

\[
\bar{N}^K_1(P) = \bigoplus_{g' \in U/H} \bar{N}^K_{B \otimes g'}(P),
\]

6
and for any $\tilde{g} \in U/U'$ (corresponding to $\tilde{\phi}$), the \tilde{g}-component is

$$\tilde{N}^K_A(P)_{\tilde{g}} = \bigoplus_{\varphi \in \tilde{\phi}, \tilde{z} \in \tilde{g}} (B \otimes z)(\Delta_{\varphi}(P)),$$

where $\varphi \in \tilde{\phi}$ satisfies $\overline{\varphi(u)} = \overline{u^g}$, for any $u \in P$.

Proof. By Lemma 4.1, we obtain the following decomposition of the extended Brauer quotient

$$\tilde{N}^{Aut(P)}_A(P) = \left(\bigoplus_{\phi \in K_1} \tilde{N}^\phi_A(P) \right) \oplus \tilde{N}^{K\setminus K_1}_A(P)$$

$$= \left(\bigoplus_{\tilde{g} \in U'/H} \tilde{N}^{K_1}_{B \otimes \tilde{g}}(P) \right)$$

$$\oplus \bigoplus_{\phi \in K/K_1} \left(\bigoplus_{\varphi \in \tilde{\phi}, \tilde{z} \in \tilde{g}} (B \otimes z)(\Delta_{\varphi}(P)) \right),$$

where in the second sum $\tilde{\phi}$ corresponds to \tilde{g}.

We see that, for any \tilde{g} and any $\tilde{z} \in \tilde{g}$,

$$B \otimes z = B \otimes z\cdot x^{-1} \cdot x = (B \otimes z\cdot x^{-1}) \cdot (B \otimes x),$$

for any $x \in U'$. Then

$$\tilde{N}^K_A(P)_{\tilde{g}} \cdot \tilde{N}^{K_1}_A(P) = \tilde{N}^{K_1}_A(P) \cdot \tilde{N}^K_A(P)_{\tilde{g}} = \tilde{N}^K_A(P)_{\tilde{g}}.$$

The fact that this algebra is $N_G(P)$-interior is immediate since for any $x \in N_G(P)$ the element $1 \otimes x$ is $\Delta_{\varphi}(P)$-invariant.

Remark 4.5. 1) The fact that in the above theorem every \tilde{g}-component of $\tilde{N}^K_A(P)$ is a direct sum suggests that this algebra actually has a finer grading than stated. Indeed, it is not difficult to see that $\tilde{N}^{K_1}_A(P)$ is graded by the group

$$\tilde{K}_1 := \{ (\phi, \tilde{g}) \mid \phi \in K_1, \tilde{g} \in U'/H \text{ such that } \overline{\phi(u)} = \overline{u^g} \},$$

and in general, $\tilde{N}^K_A(P)$ is graded by the group

$$\tilde{K} := \{ (\phi, \tilde{g}) \mid \phi \in K, \tilde{g} \in U/H \text{ such that } \overline{\phi(u)} = \overline{u^g} \}.$$
2) Applying the construction to the group algebra $\mathcal{O}G$ yields $\tilde{N}_{\mathcal{O}G}^K(P) = kN_G(P)$. The map
\[N_G(P) \to \tilde{K}, \quad g \mapsto (\phi_g, \tilde{g}), \]
where $\phi_g(u) = gu^{-1}$, is a group homomorphism with kernel $C_H(P)$. The \tilde{G}-graded algebra map $\mathcal{O}G \to A$ induces by functoriality the \tilde{K}-graded algebra map
\[kN_G(P) \to \tilde{N}_{A}^K(P). \]

3) Observe finally that the construction of $\tilde{N}_{A}^K(P)$ does not require the G-interiority of A. We only need a \tilde{G}-graded algebra A, a group homomorphism $P \to \tilde{G}$ inducing a \tilde{G}-grading on the group algebra $\mathcal{O}P$, and a homomorphism $\mathcal{O}P \to A$ of \tilde{G}-graded algebras.

4.6. Next, we establish the connection between $\tilde{N}_{A}^K(P)$ $\simeq \tilde{A}(P)$ and the extended Brauer quotient $\tilde{N}_{B}^{K_1}(P)$ of the H-interior G-algebra B, introduced in [3]. Recall that $\tilde{N}_{B}^{K_1}(P)$ is a $N_H^{K_1}(P)$-interior $N_G(P)$-algebra constructed formally as in Section 1 above. One can easily see from the definition in [3, Section 2] that $\tilde{N}_{B}^{K_1}(P)$ is actually a K_1-graded $N_G^{K_1}(P)$-interior $N_G(P)$-algebra.

Let $Q := P \cap H$. Then, as in Section 3, let
\[\tilde{B} := B \otimes_{\mathcal{O}Q} \mathcal{O}(Q \rtimes K_1) \simeq B \otimes_{\mathcal{O}} \mathcal{O}K_1. \]

Proposition 4.7. The \mathcal{O}-module \tilde{B} is a $\mathcal{O} \Delta(P \times P)$-module via
\[
(b \otimes (1, \varphi))(u, v) = b^u \otimes v^{-1} \cdot (1, \varphi) \cdot u = b^u \otimes (u^{-1} \varphi(u), \varphi) = b^u u^{-1} \varphi(u) \otimes (1, \varphi),
\]
for any $u \in P, b \in B$ and $\varphi \in K_1$. Furthermore, we have the isomorphism
\[\tilde{B}(\Delta(P \times P)) \simeq \tilde{N}_{B}^{K_1}(P) \]

of K_1-graded $N_G^{K_1}(P)$-interior $N_G(P)$-algebras with identity component $B(P)$.

Proof. It is clear that for any $\varphi \in K_1$ we have $\varphi(u) \in Q$ for any $u \in Q$, hence K_1 acts on Q and \tilde{B} is a well-defined $\Delta(P \times P)$-module and we have
\[\tilde{B}(\Delta(P \times P)) = \bigoplus_{\varphi \in K_1} (B \otimes (1, \varphi))(\Delta(P \times P)). \]

For any $\varphi \in K_1$ the map
\[
(B \otimes (1, \varphi))(\Delta(P \times P)) \ni b \otimes (1, \varphi) \mapsto \tilde{b} \in \tilde{N}_{B}^{\varphi}(P)
\]
is an isomorphism of k-vector spaces. The direct sum of these maps is the required algebra isomorphism. \qed
Remark 4.8. 1) According to Theorem 3.2 and Theorem 4.4, we have the decompositions
\[
\tilde{\mathcal{A}}(P) \simeq \tilde{\mathcal{N}}_1^K(P) = \tilde{\mathcal{N}}_B^{K_1}(P) \oplus \tilde{\mathcal{N}}_A^{K\setminus K_1}(P)
\]
\[
= \tilde{\mathcal{N}}_B^{K_1}(P) \oplus \left(\bigoplus_{\bar{x} \in U'/H, \, x \notin H} \tilde{\mathcal{N}}_B^K(P) \right) \oplus \tilde{\mathcal{N}}_A^{K\setminus K_1}(P).
\]

The above statements show that the \(N_1^K(P)\)-interior algebra \(\tilde{\mathcal{B}}(P)\) can be identified with a unitary subalgebra of \(\tilde{\mathcal{A}}(P)\), and even of \(\tilde{\mathcal{N}}_A^K(P)\), such that the \(N_1^G(P)\)-action and the \(K_1\)-grading are preserved. For the particular case of the \(H\)-interior \(G\)-invariant group algebra \(B = \mathcal{O}_H\), the component \(\tilde{\mathcal{N}}_B^{K_1}(P)\) is the \(N_1^G(P)\)-algebra studied in [2, Section 5].

2) The Brauer quotient \(B(P)\) of \(B\) is a \(C_H(P)\)-interior \(N_1^G(P)\)-algebra. The argument of Proposition 2.3 implies that the induced algebra
\[
B(P) \otimes_{kC_H(P)} kN_1^G(P)
\]
is isomorphic to a \(\tilde{\mathcal{K}}\)-graded subalgebra of \(\tilde{\mathcal{N}}_A^K(P)\), while
\[
B(P) \otimes_{kC_H(P)} kC_G(P)
\]
is isomorphic to a \(\tilde{\mathcal{K}}_1\)-graded subalgebra of \(\tilde{\mathcal{N}}_B^K(P)\).

5. Tensor products of algebras

Recall that if \(A\) and \(A'\) are two \(G\)-graded algebras, then the diagonal subalgebra of the \(G \times G\)-graded algebra \(A \otimes A'\) is the \(G\)-graded subalgebra
\[
\Delta(A \otimes A') := \bigoplus_{g \in G} (A_g \otimes A'_g).
\]
The following result is an extension of [6, Proposition 3.9]

Theorem 5.1. Assume that \(A\) and \(A'\) are two \(G\)-interior algebras such that \(A'\) has a \(P \times P\)-invariant \(\mathcal{O}\)-basis, and let \(K\) be a subgroup of \(\text{Aut}(P)\).

1) There is an isomorphism
\[
\tilde{\mathcal{N}}_A^K(P) \otimes_{\mathcal{O}P} \tilde{\mathcal{N}}_A^{K'}(P) \simeq \Delta(\tilde{\mathcal{N}}_A^K(P) \otimes_k \tilde{\mathcal{N}}_A^{K'}(P))
\]
of \(K\)-graded \(N_1^K(P)\)-interior algebras.
2) Assume in addition that, as \(K \)-graded \(N_G^K(P) \)-interior algebras,

\[
\tilde{N}_A^K(P) \simeq A(P) \otimes_k kK.
\]

Then

\[
\bar{N}_{A \otimes \sigma A'}^K(P) \simeq A(P) \otimes_k \bar{N}_{A'}^K(P)
\]

as \(K \)-graded \(N_G(P) \)-interior algebras.

Proof. 1) We consider the \(K \times K \)-graded \(N_G^K(P) \)-interior algebra

\[
\tilde{N}_A^K(P) \otimes_k \tilde{N}_{A'}^K(P) = \bigoplus_{\phi, \psi \in K} \tilde{N}_A^\phi(P) \otimes_k \tilde{N}_{A'}^\psi(P),
\]

whose diagonal subalgebra

\[
\Delta(\tilde{N}_A^K(P) \otimes_k \tilde{N}_{A'}^K(P)) = \bigoplus_{\phi \in K} \tilde{N}_A^\phi(P) \otimes_k \tilde{N}_{A'}^\phi(P)
\]

is an \(N_G^K(P) \)-interior \(K \)-graded algebra. Due to the inclusion

\[
A^\Delta_{\phi}(P) \otimes_{\sigma} (A')^\Delta_{\phi}(P) \subseteq (A \otimes_{\sigma} A')^\Delta_{\phi}(P),
\]

we obtain an \(\sigma \)-module map

\[
A^\Delta_{\phi}(P) \otimes_{\sigma} (A')^\Delta_{\phi}(P) \to \tilde{N}_A^\phi(P)
\]

sending \(a \otimes a' \) to \(\overline{a \otimes a'} \). If \(c \in A^\Delta_{\phi}(Q) \) and \(c' \in (A')^\Delta_{\phi}(R) \), for some subgroups \(Q \) and \(R \) of \(P \) then

\[
\text{Tr}_{\Delta_{\phi}(Q)}(c) \otimes \text{Tr}_{\Delta_{\phi}(R)}(c') = \text{Tr}_{\Delta_{\phi}(Q)}(c \otimes \text{Tr}_{\Delta_{\phi}(R)}(c')) = \text{Tr}_{\Delta_{\phi}(Q)}(\text{Tr}_{\Delta_{\phi}(Q)}(c) \otimes c') \\
\subseteq (A \otimes_{\sigma} A')^\Delta_{\phi}(P) \cap (A \otimes_{\sigma} A')^\Delta_{\phi}(Q).
\]

This determines an \(\sigma \)-module homomorphism

\[
\tilde{N}_A^\phi(P) \otimes \tilde{N}_{A'}^\phi(P) \to \tilde{N}_{A \otimes \sigma A'}^\phi(P), \quad \bar{a} \otimes \bar{a}' \mapsto \overline{a \otimes a'}
\]
for every \(\phi \in K \). The direct sum of all these homomorphisms is a \(K \)-graded algebra homomorphism between \(\Delta(\tilde{N}_A^K(P) \otimes_k \tilde{N}_{A'}^K(P)) \) and \(\tilde{N}_A^K(P) \otimes_{\tilde{G}} \tilde{N}_{A'}^K(P) \), which is in fact an isomorphism of interior \(N_G^K(P) \)-algebras since by our assumptions we have

\[
(A \otimes_{\tilde{G}} A')(P) \simeq A(P) \otimes_k A'(P).
\]

2) By the additional assumption we obtain

\[
\Delta(\tilde{N}_A^K(P) \otimes_k \tilde{N}_{A'}^K(P)) = \bigoplus_{\phi \in K} (A(P) \otimes_k k \phi) \otimes \tilde{N}_{A'}^\phi(P).
\]

We define the \(k \)-linear map

\[
A(P) \otimes_k \tilde{N}_{A'}^\phi(P) \to (A(P) \otimes_k k \phi) \otimes \tilde{N}_{A'}^\phi(P), \quad \tilde{a} \otimes \tilde{a}' \mapsto (\tilde{a} \otimes \phi) \otimes \tilde{a}',
\]

for every \(\phi \in K \). The sum of these maps determine the required isomorphism of \(K \)-graded interior \(N_G(P) \)-algebras between \(A(P) \otimes_k \tilde{N}_A^K(P) \) and \(\Delta(\tilde{N}_A^K(P) \otimes_k \tilde{N}_{A'}^K(P)) \).

Remark 5.2. 1) Statement 2) of the previous theorem applies in the situation of [6, Proposition 3.8]. More precisely, let

\[
A = \text{End}_{\tilde{G}}(N)
\]

for an indecomposable endopermutation \(\tilde{G}P \)-module \(N \), such that \(A(P) \neq 0 \). Let \(Q \leq P \), and let \(\delta \) be the unique local point of \(Q \) on \(A \). Let \(K := F_{\bar{A}}(Q_\delta) \). Then [6, Proposition 3.8] says that there is an isomorphism

\[
\tilde{N}_A^K(Q) \simeq A(Q) \otimes_k kK
\]

of \(N_G^K(Q) \)-interior \(K \)-graded algebras.

2) Assume in addition that \(A' \) is \(\tilde{G} \)-graded \(G \)-interior as in Section 4, and has a \(P \times P \)-invariant \(\tilde{G} \)-basis consisting of \(\bar{G} \)-homogeneous elements. Then, by Remark 4.5, the isomorphism in Theorem 5.1 2) is in fact an isomorphism of \(\tilde{K} \)-graded \(N_G(P) \)-interior algebras.

6. A correspondence for covering points

In this section we establish a correspondence between covering points in the case of a \(G \)-interior algebra that has a stable basis.
6.1. We keep the notations of Section 4 and we assume that the G-interior \tilde{G}-graded algebra $A := B \otimes_{\mathcal{O}H} \mathcal{O}G$ has a $G \times G$-stable \mathcal{O}-basis consisting of \tilde{G}-homogeneous elements. Further, we assume that A is projective regarded as a left and as a right $\mathcal{O}G$-module. By these assumptions, B is an H-interior permutation G-algebra, and it is projective both as a left and a right $\mathcal{O}H$-module.

6.2. We fix a normal subgroup N of G that contains P and a point β of N on B with defect group P. Then our assumptions and [3, Theorem 3.1] imply that $\tilde{\beta} := \text{Br}_P(\beta)$ is a point of $N_N(P)$ on $\tilde{B}(P)$ with defect group P.

We adopt here the definition of covering points from [1]. We say that the point α of G on A covers β if α has defect group P and for any $i \in \alpha$ there is an idempotent $j_1 \in A^N$ that lies in the conjugacy class of β and there is a primitive idempotent $f \in A^N$ belonging to a point with defect group P such that $j_1 f = f j_1 = f$ and $i f = f i = f$.

Clearly in this case we consider a particular setting in which a defect group of the points that are covered coincides with a defect group of the points that cover the given ones.

Now we can state our result.

Theorem 6.3. The Brauer homomorphism

$$\text{Br}_P : A^P \rightarrow A(P)$$

determines a bijective correspondence between the points of A^G with defect group P that cover β and the points of $\tilde{A}(P)^{N_G(P)}$ with defect group P that cover $\tilde{\beta}$.

Proof. Theorem 3.2 and [6, Proposition 3.3] already provide a bijection between the points of G on A and the points of $N_G(P)$ on $\tilde{A}(P)$ with the same defect group P. Even more, this bijection coincides with the bijection determined by the epimorphism given by the restriction of the Brauer homomorphisms

$$\text{Br}_P : A^G_P \rightarrow A(P)^{N_G(P)}_P.$$

Since N is normal in G, hence $N_N(P)$ is also normal in $N_G(P)$, the fact that this bijection restricts to a bijection between the points that cover β and $\tilde{\beta}$ is an easy verification given by [1, Theorem 3.5].

References
References

[1] T. Coconet, Covering points in permutation algebras. Arch. Math, 100 (2013), 107–113.

[2] T. Coconet, A. Marcus, Group graded basic Morita equivalences. arXiv:1607.02262v1 [math.RT].

[3] T. Coconet, C.-C. Todea, The extended Brauer quotient of N-interior G-algebras. J. Algebra 396 (2013), 10–17.

[4] A. Marcus, Representation Theory of Group Graded algebras, Nova Science Publishers, 1999.

[5] L. Puig, Blocks of finite groups: The Hyperfocal subalgebra of a Block, Springer Verlag Berlin Heidelberg, 2002.

[6] L. Puig, Y. Zhou, A local property of basic Morita equivalences, Math. Z. 256 (2007), 551–562.

[7] L. Puig, Y. Zhou, A local property of basic Rickard equivalences, J. Algebra 322 (2009), 1946–1973.

[8] J. Thévenaz, G-algebras and modular representation theory, Oxford Math. Monogr., Clarendon Press, Oxford 1995.)