Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
A Systematic Review and Meta-Analysis Of Outcomes for Patients with COVID-19 and Acute Kidney Injury

Shelief Y. Robbins-Juarez, BA, Long Qian, MD, Kristen L. King, MPH, Jacob S. Stevens, MD, S. Ali Husain, MD, MPH, Jai Radhakrishnan, MD, Sumit Mohan, MD, MPH

PII: S2468-0249(20)31336-X
DOI: https://doi.org/10.1016/j.ekir.2020.06.013
Reference: EKIR 1018

To appear in: Kidney International Reports

Received Date: 12 June 2020
Accepted Date: 17 June 2020

Please cite this article as: Robbins-Juarez SY, Qian L, King KL, Stevens JS, Husain SA, Radhakrishnan J, Mohan S, A Systematic Review and Meta-Analysis Of Outcomes for Patients with COVID-19 and Acute Kidney Injury Kidney International Reports (2020), doi: https://doi.org/10.1016/j.ekir.2020.06.013.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Inc. on behalf of the International Society of Nephrology.
Conclusions:

Kidney dysfunction is common among patients with COVID-19, and patients who develop AKI have inferior outcomes. Additional research into management and potential mechanism of this association is needed.
A Systematic Review and Meta-Analysis

Of Outcomes for Patients with COVID-19 and Acute Kidney Injury

Authors:
Shelief Y. Robbins-Juarez BA1, Long Qian MD1,2, Kristen L. King MPH1,2,3, Jacob S. Stevens MD1,2, S. Ali Husain MD, MPH1,2, Jai Radhakrishnan MD1, Sumit Mohan MD, MPH1,2,3

Affiliations:
1. Department of Medicine, Division of Nephrology, Columbia University College of Physicians & Surgeons and New York Presbyterian Hospital, New York, NY
2. The Columbia University Renal Epidemiology (CURE) Group, New York, NY
3. Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY

Corresponding Author:
Sumit Mohan, MD, MPH
Division of Nephrology, Department of Medicine
622 W 168th St PH4-124, New York, NY, 10032
+1 (212) 305-6469
sm2206@cumc.columbia.edu

Word count abstract: 250

Word count text: 2620

Running Headline: COVID-19 Kidney
Abstract:

Introduction: There is limited data on the association of kidney dysfunction with prognosis in COVID-19, and the extent to which acute kidney injury (AKI) predisposes patients to severe illness and inferior outcomes is unclear. We aim to assess the incidence of AKI among patients with COVID-19 and examine their associations with patient outcomes as reported in the available literature thus far.

Methods: We systematically searched MEDLINE, EMBASE, SCOPUS, and MedRxiv databases for full-text articles available in English published from December 1, 2019 to May 24, 2020. Clinical information was extracted and examined from 20 cohorts that met inclusion criteria, covering 13137 mostly hospitalized patients confirmed to have COVID-19. Two authors independently extracted study characteristics, results, outcomes, study-level risk of bias, and strength of evidence across studies. Neither reviewer was blind to journal titles, study authors, or institutions.

Results: Median age was 56 years, with 55% male patients. Approximately 43% of patients had severe COVID-19 infection, and approximately 11% died. Prevalence of AKI was 17%; 77% of patients with AKI experienced severe COVID-19 infection, and 52% died. AKI was associated with increased odds of death among COVID-19 patients (pooled odds ratio 15.27, 95% CI 4.82-48.36), although there was considerable heterogeneity across studies and among different regions in the world. Approximately 5% of all patients required use of renal replacement therapy (RRT).

Conclusions: Kidney dysfunction is common among patients with COVID-19, and patients who develop AKI have inferior outcomes. Additional research into management and potential mechanisms of this association is needed.
Key words: COVID-19, acute kidney injury, renal replacement therapy, mortality, systematic review, meta-analysis
Introduction:

Following the emergence of a cluster of infections causing respiratory failure in Wuhan, Hubei Province, China in December 2019, researchers identified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as the causative pathogen for the respiratory disease later named COVID-19 by the World Health Organization.1 Morbidity and mortality from COVID-19 have been primarily attributed to respiratory failure and acute respiratory distress syndrome (ARDS), often in the setting of multi-organ failure.2,3,4

The incidence of acute kidney injury and impact on the patient outcomes with COVID-19 remains unclear but is of particular interest given the need to plan for deploying limited renal replacement therapy options in an acute clinical setting and questions about prognosis. Reports from previous outbreaks of SARS and MERS-CoV described notable rates of acute renal failure, ranging from 5-15\% of total cases and utilization of continuous renal replacement therapy (CRRT) for 5-58\% of critically ill patients.5,6,7,8 The extent to which pre-existing chronic kidney disease (CKD), including end-stage kidney disease (ESKD), or the development of acute kidney injury (AKI), are associated with severe COVID-19 and inferior outcomes is not clear either given their association with relative immune dysregulation and exaggerated inflammatory responses.9 Acute kidney injury can lead to impaired acid-base, fluid, and electrolyte homeostasis, all of which may contribute to worse outcomes for patients with COVID-19. Given the high prevalence of kidney disease in the United States, which currently has more cases of COVID-19 than any other nation, an improved understanding of the associated risks as well as the need for the resources and the impact on outcomes are needed to inform clinical management and resource planning during the pandemic. Given the relative paucity of reports focused on
kidney-related outcomes, in this systematic review we assess the incidence of AKI among
patients with COVID-19 and examine their associations with patient outcomes as reported in the
available literature thus far.

Methods:

Data Source and Searches

The review was conducted in accordance with the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) statement (Supplemental Figure 1). Literature for this
review was identified by searching MEDLINE, SCOPUS, EMBASE, and medRxiv databases.
The following search terms were used: (“COVID” OR "SARS-COV-2") AND (“outcomes” OR
“clinical features” OR “clinical characteristics”) AND (“acute kidney injury" OR "acute renal
injury" OR "acute kidney failure" OR "acute renal failure" OR "chronic kidney disease" OR
"chronic renal disease" OR "chronic kidney insufficiency" OR "chronic renal insufficiency").
The search was limited to original research published between December 1, 2019 and May 24,
2020 with full text available in English.

Study Selection

Articles were initially screened by title and abstract to assess for relevance; those with
specialized populations such as pediatric, pregnant, transplant, ESKD, or cancer patients were
excluded, as were reviews, case reports, cross-sectional studies, and randomized controlled trials
for drug therapies. The full texts of the remaining studies were then assessed for the following
inclusion criteria: retrospective and prospective cohort studies and case series with more than 20
patients, with extractable quantitative data on patient demographics, as well as data on acute
kidney injury (AKI), chronic kidney disease (CKD), interventions used, and outcomes. We stringently excluded all studies that did not specify use of the Kidney Disease Improving Global Outcomes (KDIGO) criteria to define AKI. When multiple studies were published from the same institution with data from similar time periods with likely overlapping cohorts, we selected one study for inclusion in the meta-analysis, based on the following criteria in order of priority: the most general population, most detailed extractable kidney-related data, and largest number of patients included. Two authors independently screened all retrieved studies and assessed full text articles for inclusion; disagreements were resolved through consensus. Neither reviewer was blind to journal titles, study authors, or institutions.

Data Extraction and Quality Assessment

Clinical information including cohort demographics and prevalence of comorbidities including CKD were extracted. Similarly, information on all kidney related complications and outcomes including incidence of AKI, need for renal replacement therapy (RRT), and mortality, were identified and extracted. The primary outcomes of interest were mortality and severe illness, each modeled as a binary outcome. Definitions of severe COVID-19 infection were inconsistent across studies, with European and U.S. studies using admission to an intensive care unit (ICU) to stratify patients, while most studies from China used the National Health Commission of the People’s Republic of China (NHC of PRC) Clinical Severity Definitions. We defined “severe illness” as either admitted to an ICU or categorized as severe or critical based on the NHC of PRC criteria. The quality of individual studies was assessed based on the National Heart, Lung, and Blood Institute (NHLBI) Study Quality Assessment Tool for Case Series Studies.
(Supplementary Table 1). Small-study effects and publication bias were assessed visually using a random-effects model funnel plot (Supplementary Figure 3).

Data Synthesis and Analysis

Medians, interquartile ranges, and overall ranges were calculated for continuous demographic and clinical variables from all reported study-level values among the 20 studies meeting inclusion criteria. Random-effects meta-analyses were performed to obtain pooled prevalence, pooled odds ratio estimates, and 95% confidence intervals for categorical variables as well as for severe illness and mortality outcomes using the meta and metaprop commands. After the initial analysis, heterogeneity in mortality outcomes was investigated by excluding cohorts with particularly high mortality, as well as by conducting stratified analyses. We stratified studies based on pre-print versus peer-reviewed status, geographic location (Europe, Asia, or United States), and illness severity (<50% or ≥50% of the cohort severely ill). All analyses were performed using Stata 16 (College Station, TX), and an alpha of 0.05 determined statistical significance.

Results

We screened a total of 512 articles, of which 59 full-text articles were assessed for eligibility and 30 met our inclusion criteria (Figure 1). The included studies encompassed 21,591 patients from hospitals in Asia, Europe, and the United States, and took place in a time period spanning from Dec 11, 2019 through May 24, 2020. All studies included only hospitalized patients except for Guan, et. al, which included both outpatients and inpatients. Four studies were limited to patients admitted to the ICU only. Five studies included only deceased
and/or discharged patients. After accounting for potential overlapping patient cohorts in these smaller studies, we identified 20 unique cohorts encompassing 13,137 patients with available kidney disease related information. Of these 20 cohorts included in the statistical analysis, 13 were from China, 1 was from Korea, 3 were from the U.S., and 3 were from Europe. The quality of peer-reviewed studies and pre-print studies were similar (Supplemental Table 1).

Across the 20 cohorts, the median age was 56 years (range 43 to 72 years) with 55% male patients (Table 1). Forty-three percent (range 13.3-100%) of patients either required an ICU admission or were reported to have severe infection, and 11% (range 0-52.4%) of patients died. Only 5% (range 0.6-57.1%) of all patients were reported to have evidence of CKD at baseline; however, one ICU cohort from the United States reported a CKD prevalence of 57.1%. The prevalence of diabetes was 17% (range 6-33.3%) and the prevalence of hypertension was 33% (range 11.5-64.7%). Only one study, Pei et al, reported presence of proteinuria (43.9%) or hematuria (26.7%) on admission. Four studies reported the prevalence of use of renin-angiotensin-aldosterone-system (RAAS) inhibition prior to admission (24%, range 11.5-32%).

The prevalence of AKI across the 20 cohorts was 17% with a range of 0.5 to 80.3% (Table 2). Six studies provided a breakdown of the severity of AKI using KDIGO staging (15% stage 1, 7% stage 2, 11% stage 3), with Xiao et al not differentiating between stage 2 and stage 3 (data was only used for stage 1). Approximately 77% (range 39.3-100%) of patients with AKI either had evidence of severe infection or needed ICU level of care according to the 14
studies that reported on the association of AKI and severity of illness. Among the 8 studies that reported use of RRT for any indication, 5% (range 0.8-14.7%) of total patients required RRT.

Nine studies provided enough details in their reported outcomes to determine the association of AKI with subsequent mortality (Figure 2). The mortality rate of patients with AKI was 52% (range 7-100%). Across the 9 studies, AKI was associated with significantly higher mortality among COVID-19 patients, with a pooled odds ratio of 15.27 (95% CI 4.82 – 48.36) compared to patients without AKI. A sensitivity analysis that excluded data from three cohorts with particularly high mortality (among 64 patients with AKI from the Pei et al, Wang et al, and Zhou et al cohorts, only 4 survived) showed a higher mortality associated with AKI albeit with a lower OR of 6.20 (95% CI 3.63-10.59). Heterogeneity was high across studies (I^2 97.9%), although lower after stratifying based on the proportion of severely ill patients (Figure 3). Cohorts with \geq50% severely or critically ill patients had a higher pooled OR (14.18, 95% CI 1.91-105.44) with more heterogeneity (I^2 87.7%), compared to cohorts with <50% severely or critically ill patients (pOR 9.66, 95% CI 8.23-11.34, I^2 31.4%). Heterogeneity was also reduced after stratifying studies by region (Figure 2). Studies conducted in China had very high heterogeneity (I^2 89.7%), compared to those from Europe or from the U.S. (I^2 of 0% and 31.4%, respectively). Studies from China had a high pooled OR (39.0, 95% CI 5.34-284.97) and heterogeneity (I^2 89.7%), whereas those from Europe (3.56, 95% CI 2.19-5.8, with I^2 0.0%) or the U.S. (9.66, 95% CI 8.23-11.34, with I^2 31.4%) were considerably lower. Subgroup analysis conducted using only pre-printed studies found a similar OR of 6.62 (95% CI 3.33-13.15) with less heterogeneity compared to peer-reviewed studies only (I^2 77.4% versus 93.8%; Figure 4). Figure 5 shows a funnel plot including all 9 studies used to calculate the OR of death among patients with AKI.
Discussion:

Across 20 cohorts encompassing 13,137 patients with confirmed COVID-19 infection from Asia, Europe, and the United States, we identified a wide range of AKI prevalence and associated mortality. AKI prevalence was 17%, but ranged from 0.5 to 80.3%, perhaps reflecting varied disease severity thresholds for hospitalization across the globe as well as potential differences in clinical practices in monitoring for renal dysfunction. Nine cohorts reported data on mortality and AKI, with a pooled odds ratio of 15.27 (95% CI 4.82 – 48.36) for death compared to those without AKI. Although heterogeneity across all studies was extremely high, it was reduced after excluding cohorts with particularly high mortality, and the association between patient mortality and AKI persists even after elimination of these studies. While the development of AKI among patients with COVID-19 portended a worse prognosis across all the cohorts, the extent to which this represented an increased risk for mortality was somewhat variable. This variability may result from differences in the severity of the AKI observed as well as differences in the availability of RRT resources for those with the most severe forms of AKI.

Differences in COVID-19 disease severity likely also contribute to the observed heterogeneity. We found a stronger association between AKI and death among cohorts reporting a higher proportion of severely ill patients, suggesting that AKI may have a more pronounced adverse effect for patients with more severe pulmonary disease, as opposed to patients who are not critically ill. However, it is worth noting that what defines “severe” disease varied across the studies, with most studies from China classifying severity by the NHC of PRC Clinical Severity Definitions 7th Edition, while others used the American Thoracic Society Guidelines for
Community-Acquired Pneumonia definitions, or ICU admission itself, and some studies did not specify what “severe” meant. Such inconsistent definitions of “severe” disease likely contributed to the high heterogeneity that persisted in the subgroup of cohorts with ≥50% severe or critical patients. The absence of adequately granular details on several aspects of the AKI that patients experienced including information on severity, treatment choices as well as temporal relationship to pulmonary disease limited our ability to draw further conclusions about the prognostic implication of varying degrees of AKI.

We also observed a substantial need for RRT among hospitalized patients with COVID-19. Among the 8 cohorts that reported use of RRT, 5% of all patients required RRT. However, it is unclear from these studies whether RRT was used to treat AKI alone, or for other indications such as volume overload or ESKD, as demonstrated by in the Guan et al. study where the number of patients who needed RRT exceeded the combined number of patients with CKD or AKI. Additionally, it is unclear how utilization rates for RRT were influenced by local resource availability or local clinical practices such as the thresholds at which RRT is initiated (or not) for patients with AKI. The high proportion of patients with AKI requiring RRT across the cohorts underscores the need for resource planning to focus on the ability to provide adequate renal support as well during the pandemic particularly given the grim prognosis associated with AKI among patients with COVID-19.

Further investigation is needed to elucidate the risk conferred by AKI among patients with specific comorbidities of interest, such as diabetes or hypertension. Among the cohorts we identified, such data was extremely limited. Data for proteinuria, hematuria, or home use of
RAAS inhibitors were also extremely limited, despite current clinical interest and their potential to affect clinical outcomes. In addition, we were only able to study the association between renal disease and severe illness or death; other pertinent clinical questions including the apparent temporal association of AKI with intubation or the association of AKI with time to extubation, hospitalization time, and overall disease-related morbidity could not be examined using the currently available data. Absent data about renal recovery from the cohorts prevented any estimation of the extent of renal recovery among patients who survived to discharge.

Our study has several limitations. While our inclusion criteria requiring explicit adherence to the KDIGO definition of AKI enabled us to compute meaningful analyses across cohorts, this also resulted in excluding studies that did not specify using the KDIGO definition from our final analysis. In addition, given the rapid continuous expansion of the COVID-19 literature, many cohorts had relatively short follow up periods and limitations in their description of details, and there are new cohorts being reported continuously. Furthermore, as with any review, despite a detailed, comprehensive search strategy by 2 independent reviewers, it remains possible that some studies were missed. Finally, we allowed non-peer-reviewed literature to be more inclusive. However, the lack of peer review of these analyses may adversely impact the stability of our estimates. Nevertheless, analysis based on the NHLBI Study Quality Assessment Tool showed similar quality among the pre-print and peer-reviewed studies, and heterogeneity among the 4 pre-print studies used for meta-analysis was actually lower than that of the peer-reviewed studies.
In conclusion, there is a growing body of evidence that AKI occurs in a substantial number of COVID-19 cases, and that developing AKI is associated with significantly worse outcomes for patients with COVID-19. Given the extent of the adverse impact of AKI, it is imperative that future studies provide more detailed information the extent and severity of the renal injury as well as the need for RRT to allow for a more nuanced understanding of the prognosis for patients with COVID-19 and appropriate resource planning in this pandemic.

Disclosure:

All the authors declared no competing interests

Author Contributions:

SRJ, AH, JS, and SM conceived of the study. SRJ and LQ collected the data. SRJ, LQ, KK, JS, SAH, JR, and SM interpreted the data. SRJ, LQ, KK, JS, SAH, JR, and SM prepared the manuscript and approved the submitted version of the manuscript.
References:

1. Jiang S, Shi Z, Shu Y, et al. A distinct name is needed for the new coronavirus. *Lancet.* 2020;395(10228):949.

2. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. *Lancet.* 2020;395(10223):507-513.

3. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. *Lancet.* 2020;395(10223):497-506.

4. Guan WJ, Ni ZY, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. *N Engl J Med.* 2020.

5. Arabi YM, Al-Omari A, Mandourah Y, et al. Critically Ill Patients With the Middle East Respiratory Syndrome: A Multicenter Retrospective Cohort Study. *Crit Care Med.* 2017;45(10):1683-1695.

6. Chu KH, Tsang WK, Tang CS, et al. Acute renal impairment in coronavirus-associated severe acute respiratory syndrome. *Kidney Int.* 2005;67(2):698-705.

7. Lee N, Hui D, Wu A, et al. A major outbreak of severe acute respiratory syndrome in Hong Kong. *N Engl J Med.* 2003;348(20):1986-1994.

8. Naicker S, Yang CW, Hwang SJ, Liu BC, Chen JH, Jha V. The Novel Coronavirus 2019 epidemic and kidneys. *Kidney Int.* 2020.

9. Kurts C, Panzer U, Anders HJ, Rees AJ. The immune system and kidney disease: basic concepts and clinical implications. *Nat Rev Immunol.* 2013;13(10):738-753.

10. Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. *Nephron Clin Pract.* 2012;120(4):c179-184.
11. Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia (Trial Version 7). *Chin Med J (Engl).* 2020;133(9):1087-1095.

12. Arentz M, Yim E, Klaff L, et al. Characteristics and Outcomes of 21 Critically Ill Patients With COVID-19 in Washington State. *Jama.* 2020.

13. Brill SE, Jarvis H, Ozcan E, et al. COVID-19: a retrospective cohort study with focus on the over-80s and hospital-onset disease. *medRxiv.* 2020.

14. Cai Q, Huang D, Ou P, et al. COVID-19 in a designated infectious diseases hospital outside Hubei Province, China. *Allergy.* 2020.

15. Chan L, Chaudhary K, Saha A, et al. Acute Kidney Injury in Hospitalized Patients with COVID-19. *medRxiv.* 2020.

16. Chen T, Wu D, Chen H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. *Bmj.* 2020;368:m1091.

17. Chen G, Wu D, Guo W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. *The Journal of Clinical Investigation.* 2020;130(5):2620-2629.

18. Cheng Y, Luo R, Wang K, et al. Kidney impairment is associated with in-hospital death of COVID-19 patients. *Kidney Int.* 2020.

19. Hirsch JS, Ng JH, Ross DW, et al. ACUTE KIDNEY INJURY IN PATIENTS HOSPITALIZED WITH COVID-19. *Kidney Int.* 2020.

20. Hong KS, Lee KH, Chung JH, et al. Clinical Features and Outcomes of 98 Patients Hospitalized with SARS-CoV-2 Infection in Daegu, South Korea: A Brief Descriptive Study. *Yonsei Med J.* 2020;61(5):431-437.
21. Jiang X, Tao J, Wu H, et al. Clinical features and management of severe COVID-19: A retrospective study in Wuxi, Jiangsu Province, China. *medRxiv*. 2020.

22. Pei G, Zhang Z, Peng J, et al. Renal Involvement and Early Prognosis in Patients with COVID-19 Pneumonia. *J Am Soc Nephrol*. 2020.

23. Qiu C, Deng Z, Xiao Q, et al. Transmission and clinical characteristics of coronavirus disease 2019 in 104 outside-Wuhan patients, China. *J Med Virol*. 2020.

24. Regina J, Papadimitriou-Olivgeris M, Burger R, et al. Epidemiology, risk factors and clinical course of SARS-CoV-2 infected patients in a Swiss university hospital: an observational retrospective study. *medRxiv*. 2020.

25. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. *Jama*. 2020.

26. Rubin S, Orieux A, Prevel R, et al. Characterisation of Acute Kidney Injury in Critically Ill Patients with Severe Coronavirus Disease-2019 (COVID-19). *medRxiv*. 2020.

27. Shi S, Qin M, Shen B, et al. Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China. *JAMA Cardiol*. 2020.

28. Shi Q, Zhao K, Yu J, et al. Clinical characteristics of 101 COVID-19 nonsurvivors in Wuhan, China: a retrospective study. *medRxiv*. 2020.

29. Wang D, Hu B, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. *Jama*. 2020.

30. Wang D, Yin Y, Hu C, et al. Clinical course and outcome of 107 patients infected with the novel coronavirus, SARS-CoV-2, discharged from two hospitals in Wuhan, China. *Crit Care*. 2020;24(1):188.
31. Wang L, He W, Yu X, et al. Coronavirus disease 2019 in elderly patients: Characteristics and prognostic factors based on 4-week follow-up. *J Infect.* 2020;80(6):639-645.

32. Xiao G, Hu H, Wu F, et al. Acute kidney injury in patients hospitalized with COVID-19 in Wuhan, China: A single-center retrospective observational study. *medRxiv.* 2020

33. Yan S, Song X, Lin F, et al. Clinical Characteristics of Coronavirus Disease 2019 in Hainan, China. *medRxiv.* 2020

34. Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. *Lancet Respir Med.* 2020.

35. Zhang J, Wang X, Jia X, et al. Risk factors for disease severity, unimprovement, and mortality in COVID-19 patients in Wuhan, China. *Clin Microbiol Infect.* 2020.

36. Zhao W, Yu S, Zha X, et al. Clinical characteristics and durations of hospitalized patients with COVID-19 in Beijing: a retrospective cohort study. *medRxiv.* 2020

37. Zheng Y, Sun L, Xu M, et al. Clinical characteristics of 34 COVID-19 patients admitted to ICU in Hangzhou, China. *medRxiv.* 2020

38. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. *Lancet.* 2020.

39. Zhou F, Yu X, Tong X, Zhang R. Clinical features and outcomes of 197 adult discharged patients with COVID-19 in Yichang, Hubei. *medRxiv.* 2020.
Table 1. Demographic characteristics of cohorts selected for quantitative or qualitative analysis

Cohort/Study	Hospital and Location	Population	N	Demographics	ICU or Severe CoV (%)*	Creatinine	Comorbidities	Other	Home RAAS Inhibitor (%)*						
				Age (median)	Sex (% male)	All	ICU or Severe CoV	CKD (%)	HTN (%)	DM (%)	Proteinuria (%)	Hematuria (%)			
Arentz et al, JAMA	Evergreen, Washington, USA	ICU	21	70	52	21 (100)**	1.45	1.45	12 (57.1)	-	7 (33.3)	-			
Brill et al., preprint	Barnett Hospital, London, UK	Hospitalized	450	72	60.4	-	-	-	(195) 43	(134) 30	-	-	-		
Cai et al, Eur J All & Clinical Immunology	Third People’s, Shenzhen, China	Hospitalized	298	47	49	58 (20) imaging	0.71	0.81	41 (15.8)	18 (6)	-	-	-		
Chan et al., NEJM	Mt. Sinai, New York, USA	Hospitalized	3235	66.5	57.7	815 (25.2)	0.95	-	(323) 10	(1193) 36.9	(800) 24.7	-	-	-	
Guan et al, NEJM	522 hospitals, China	All	1099	47	58.1*	173 (15.7)	-	-	8 (0.7)	165 (14.9)	81 (7.4)	-	-	-	
Hirsch et al, KI	13 hospitals, New York, USA	Severe + Critical	5449	64	60.9	1395 (25.6)	1.01	-	-	3037 (55.7)	1797 (33)	-	-	1556 (28.6)	
Hong et al, YMJ	Yeungnam, Daegu, Korea	Hospitalized + ICU	98	55.4	38.8	13 (13.3)**	0.9	1.0	-	30 (30.6)	9 (9.2)	-	-	-	
Jiang et al., preprint	Wuxi 5th People’s Hospital, Jiangsu, China	Hospitalized	55	45	49.1	8 (14.5)**	0.63	0.75	(1) 1.8	(17) 30.9	(9) 16.4	-	-	-	
Pei et al, JASN	Tongji (Sino-French), Wuhan, China	Hospitalized, CKD excluded	333	56.3	54.7	189 (56.8)**	0.80	0.88	-	107 (32.2)	76 (22.9)	219 (65.8)	139 (41.7)	37/321 (11.5)	
Qiu et al, JMV	2 hospitals, Hunan, China	Hospitalized	104	43	47.1	16 (15.4)**	0.75	-	(12) 11.5	(15) 14.4	-	-	-		
Regina et al., preprint	Lausanne University Hospital, Switzerland	Hospitalized	200	70	60	-	1.01	-	(28) 14	(87) 43.5	(43) 21.5	-	-	51 (26.2)	
Rubin et al., preprint	University Hospital of Bordeaux, France	ICU	71	61.2	77	71 (100)**	1.31	1.31	(4) 6	(43) 61	(21) 30	-	-	23 (32)	
Cohort/Study	Hospital and Location	Population	N	Demographics	Creatinine	Comorbidities	Other	Home RAAS Inhibitor (%)							
--------------	-----------------------	------------	---	--------------	------------	---------------	-------	------------------------							
Chen et al, BMJ	Tongji, Wuhan, China	Deceased + Discharged	274	62	62	-	0.86	-	4 (1)	93 (34)	47 (17)	-	-	-	
Chen et al, JCI	Tongji, Wuhan, China	Hospitalized	21	56	81	11 (52.4)	0.92	0.93	-	5 (23.8)	3 (14.3)	-	-	-	
Cheng et al, KI	Tongji & Huazhong, Wuhan, China	Hospitalized	701	63	52.4	297 (42.4)	0.88	-	101 (14.4)	233 (33.4)	100 (14.3)	194/442 (43.9)	118/442 (26.7)	33 (4.7)	
Huang et al, Lancet	Jinyintan, Wuhan, China	Hospitalized	41	49	73	13 (31.7)	0.84	0.9	4 (9.8)	6 (14.6)	8 (19.5)	-	-	-	
Richardson et al, JAMA	12 hospitals, New York, USA	Hospitalized	5700	63	60.3	1281 (22.5)	-	-	454 (8.0)	3026 (56.6)	1808 (33.8)	-	-	456/2411 (18.9)	
Shi et al, Renmin	Hospitalized	Deceased + Discharged	416	64	49.3	-	0.67	-	14 (3.4)	127	60 (14.4)	-	-	-	
Wang et al, Crit Care	Zhongnan & Xishui, Wuhan, China	Deceased + Discharged	107	51	53.3	-	0.81	-	3 (2.8)	26 (24.3)	11 (10.3)	-	-	-	
Xiao et al., preprint	Hankou Hospital, Wuhan, China	Hospitalized	287	62	55.7	124 (43)	-	-	(5) 1.7	(87) 30.3	(45) 15.7	-	-	-	
Yan et al., preprint	Multiple hospitals, Hainan, China	Hospitalized	168	51	48.2	36 (21.4)	0.7	0.65	(1) 0.6	(24) 14.3	(12) 7.1	-	-	-	
Zhang et al, Clin Micr Inf	Renmin, Wuhan, China	Hospitalized	663	55.6	48.4	409 (61.7)	-	-	-	-	-	-	-		
Zhao et al., preprint	You’an Hospital, Beijing, China	Hospitalized	77	52	44.2	20 (26)	0.72	0.77	(5) 6.5	(16) 20.8	(6) 7.8	-	-	-	
Zheng et al, J Zhejiang University	1st Aff. Hosp. of Zhejiang U. Coll. of Medicine, Hangzhou, China	ICU	34	66	67.6	34 (100)	0.95	0.95	(2) 5.9	(22) 64.7	(8) 23.5	-	-	-	
Zhou et al, Lancet	Jinyintan, Wuhan, China	Deceased + Discharged	191	56	62	119 (62.3)	-	-	2 (1)	58 (30.4)	36 (18.8)	-	-	-	
Zhou et al, preprint	2 Hospitals, Yichang, China	Discharged	197	56	50.3	56 (28.4)	1.21	(3) 1.5	-	(18) 9.1	-	-	-		

Cohorts for qualitative analysis only
Table 1 Notes:
Some studies separated cohorts into ICU or non-ICU hospitalized populations, while other studies separated cohorts based on the National Health Commission of the People’s Republic of China (NHC of PRC) COVID-19 clinical guidelines, where severe disease was defined as any one of the following: tachypnea with RR >=30, SpO2 <= 93% at rest, or PaO2/FiO2 <= 300mmHg. Cai et al. used imaging criteria to define severity, while Guan et al., used the American Thoracic Society (ATS) community-acquired pneumonia (CAP) guidelines.

Table 2. Outcomes of cohorts selected for quantitative or qualitative analysis
Study	Setting	Sample Size	Stage 0 (%)	Stage 1 (%)	Stage 2 (%)	Stage 3 (%)	ICU (%)	Mortality Rate (%)
Cai et al, Eur J all & Clinical Imm	Hospitalized	298	3 (1)	17 (5.7)	13 (22.4)	-	-	-
Chan et al., preprint	Hospitalized	3235	771 (23.8)	1406 (44)	39.3	638 (45)	323 (10)	-
Guan et al, NEJM	All	1099	15 (1.4)	6 (0.5)	5 (83.3)	-	8 (0.7)	3 (37.5)
Hirsch et al, KI	Severe + Critical	5449	888 (16.3)	1993 (37)	1060 (53.2)	694 (34.8)	-	285 (5.2)
Hong et al, YMJ	Hospitalized + ICU	98	5 (5.1)	9 (9.2)	8 (88.9)	-	-	3 (3.1)
Jiang et al., preprint	Hospitalized	55	0 (0)	3 (69.5)	66.7	-	1 (1.8)	-
Pei et al, JASN	Hospitalized , CKD excluded	333	29 (8.7)	22 (6.6)	-	3 (13.6)	-	-
Qiu et al., JMV	Hospitalized	104	1 (1)	2 (1.9)	-	-	-	-
Regina et al., preprint	Hospitalized	200	25 (12.5)	48 (24)	-	28 (14)	-	-
Rubin et al., preprint	ICU	71	4 (6)	57 (80)	100	4 (7)	4 (6)	4 (100)
Wang et al, Crit Care	Deceased + Discharged	107	19 (17.8)	14 (13.1)	-	14 (100)	3 (2.8)	-
Xiao et al., preprint	Hospitalized	287	19 (6.6)	55 (19)	61.8	12 (22)	5 (1.7)	-
Yan et al., preprint	Hospitalized	168	6 (3.6)	6 (3.6)	50	-	1 (0.6)	1 (100)
Zhang et al, Clin Micr Inf	Hospitalized	663	25 (3.8)	68 (10)	56 (82.3)	5 (7.4)	-	-
Zhao et al., preprint	Hospitalized	77	5 (6.5)	2 (2.6)	50	-	5 (6.5)	-
Zheng et al., J Zheijang University	ICU	34	0 (0)	7 (20.6)	100	-	2 (5.9)	2 (100)
Zhou et al, Lancet	Deceased +	191	54 (28.3)	28 (14.7)	28 (100)	27 (96.4)	2 (1)	2 (100)
Cohorts for qualitative analysis only

Cohort/Study	Population	N	Mortality (%)	AKI	CKD	RRT Used (%)
AKI (ICD)						
ICU or Severe CoV (% total AKI)						
Death (% total AKI)						
ICU or Severe CoV (% total CKD)						
Death (% total CKD)						

Chen et al, BMJ	Deceased + Discharged	274	113 (14)	29 (11)	28 (96.6)	4 (1)	-	
Chen et al, JCI	Hospitalized	21	4 (19)	2 (9.5)	101 (14.4)	-	-	
Cheng et al, KI	Hospitalized	701	113 (16.1)	36 (5.1)	101 (14.4)	-	-	
Huang et al, Lancet	Hospitalized	41	6 (14.6)	3 (7.3)	4 (9.8)	-	3 (7.3)	
Richardson et al, JAMA	Hospitalized	5700	553 (9.7)	1370 (24)	-	454 (8.0)	-	225 (3.9)
Shi et al, JAMA	Hospitalized	416	57 (13.7)	8 (1.9)	14 (3.4)	-	2 (0.5)	
Shi et al, preprint	Deceased	101	101 (100)	24 (23.8)	10 (9.9)	-	5 (5)	
Wang et al, Infection	Hospitalized + age >60	339	65 (19.2)	27 (8.1)	17 (3.9)	-	4 (30.8)	
Wang et al, JAMA	Hospitalized	138	6 (4.3)	5 (3.6)	4 (2.9)	2 (50)	-	
Yang et al, Lancet	ICU	52	32 (61.5)	15 (28.8)	12 (80)	-	9	
Records identified through database searching (n = 558)

Records after duplicates removed (n = 512)

Titles and abstracts screened (n = 512)

Excluded based on title or abstract (n = 453)

Full-text articles assessed (n = 59)

Full-text articles excluded:
- Not using KDIGO definition of AKI (n=21)
- Insufficient relevant data (n=8)

Studies included in qualitative synthesis (n = 30)

Duplicate cohorts excluded for quantitative meta-analysis (n=10)

Studies included in quantitative synthesis (meta-analysis) (n = 20)
ICU/Severe <50%

Study	AKI Dead	AKI Alive	No AKI Dead	No AKI Alive	OR with 95% CI	Weight (%)
Hirsch et al., KI	694	1,299	194	3,262	8.98 [7.57, 10.67]	19.87
Chan et al., preprint	638	768	133	1,696	10.59 [8.63, 13.01]	19.84

Heterogeneity: $\tau^2 = 0.00$, $I^2 = 31.39\%$, $H^2 = 1.46$

Test of $\theta_i = \theta$: $Q(1) = 1.46$, $p = 0.23$

ICU/Severe ≥50%

Study	AKI Dead	AKI Alive	No AKI Dead	No AKI Alive	OR with 95% CI	Weight (%)
Pei et al., JASN	19	3	10	301	190.63 [48.39, 750.94]	16.93
Zhou et al., Lancet	27	1	27	136	136.00 [17.72, 1044.04]	14.33
Zhang et al., Clin Micr Inf	5	63	20	575	2.28 [0.83, 6.29]	18.17
Rubin et al., preprint	4	53	0	14	2.44 [0.12, 47.97]	10.86

Heterogeneity: $\tau^2 = 5.20$, $I^2 = 88.52\%$, $H^2 = 8.71$

Test of $\theta_i = \theta$: $Q(3) = 32.33$, $p = 0.00$

Overall

Heterogeneity: $\tau^2 = 2.77$, $I^2 = 98.49\%$, $H^2 = 66.27$

Test of $\theta_i = \theta$: $Q(5) = 34.70$, $p = 0.00$

Test of group differences: $Q_a(1) = 0.38$, $p = 0.54$

Random-effects REML model
Study	AKI	No AKI	OR with 95% CI	Weight (%)		
	Dead	Alive	Dead	Alive		
Peer-Reviewed						
Pei et al., JASN	19	3	10	301	190.63 [48.39, 750.94]	11.37
Wang et al., Crit Care	14	0	5	88	466.64 [24.48, 8896.20]	7.19
Zhou et al., Lancet	27	1	27	136	136.00 [17.72, 1044.04]	9.52
Zhang et al., Clin MicroInf	5	63	20	575	2.28 [0.83, 6.29]	12.26
Hirsch et al., Kl	694	1,299	194	3,262	8.98 [7.57, 10.67]	13.51
Heterogeneity: $\tau^2 = 4.38$, $I^2 = 93.78\%$, $H^2 = 16.09$					38.32 [5.30, 276.88]	
Test of $\theta_1 = \theta_2$: $Q(4) = 39.61$, $p = 0.00$						
Preprint						
Chan et al., preprint	638	768	133	1,696	10.59 [8.63, 13.01]	13.49
Brill et al., preprint	54	31	119	246	3.60 [2.20, 5.90]	13.22
Rubin et al., preprint	4	53	0	14	2.44 [0.12, 47.97]	7.12
Xiao et al., preprint	12	43	7	225	8.97 [3.34, 24.08]	12.32
Heterogeneity: $\tau^2 = 0.30$, $I^2 = 77.43\%$, $H^2 = 4.43$					6.62 [3.33, 13.15]	
Test of $\theta_1 = \theta_2$: $Q(3) = 16.43$, $p = 0.00$						
Overall					15.27 [4.82, 48.36]	
Heterogeneity: $\tau^2 = 2.55$, $I^2 = 97.90\%$, $H^2 = 47.61$						
Test of $\theta_1 = \theta_2$: $Q(8) = 56.13$, $p = 0.00$						
Test of group differences: $Q_m(1) = 2.70$, $p = 0.10$						

Random-effects REML model
