Effect of Nano Fertilizers on Growth, Yield and Economics of Tomato Variety Arka Rakshak

Babita Mishra1, G.S. Sahu2, L.K. Mohanty3, B.C. Swain4 and S. Hati5
1,3,4Krishi Vigyan Kendra, Jajpur, Odisha
2Department of Vegetable Science, College of Agriculture, OUAT, Bhubaneswar, Odisha, 751003, India
5IFFCO, Jajpur, Odisha
*Corresponding Author E-mail: babitamishra1972@yahoo.com
Received: 2.10.2020 | Revised: 11.11.2020 | Accepted: 19.11.2020

ABSTRACT
The experiment was conducted by Krishi Vigyan Kendra, Jajpur in collaboration with IFFCO, Jajpur in the farmer’s field of village Dihaakurana, Block Rasulpur of Jajpur District of Odisha to study the effect of Nano fertilizers on growth, yield and economics of Tomato variety Arka Rakshak in Rabi season 2019. The experiment was laid out in randomized block design (RBD) with five treatments and five replications. Treatments involved were T1 - Farmers Practice (FP) (100% NPK + 100% Zn application), T2 - FP (50% N +100% PK +50% Zn) + two sprays of Nano N, T3 - FP (100% NPK + 50% Zn) + two sprays of Nano Zinc, T4 - FP (100% NPK + 100% Zn) + two sprays of Nano Cu, T5 - FP (50% N + 100% PK + 50% Zn) + 1st spray Nano N + 2nd spray Nano Zn + 3rd spray Nano Cu @ 4ml/lit water each. First spraying was done 20 days after transplanting, 2nd spraying at 15 days after 1st spraying and 3rd spraying was done 10 days after 2nd spraying. From the experiment it was observed that application of T5 produced maximum plant height (122.45cm), No. of branches per plant (12.4), fruit length (7.15cm), fruit girth (5.32cm), maximum number of fruits per plant (64.03), individual fruit weight (66.48g) and highest Yield per ha. (425.24t) followed by T2 (414.32 t/ha), T3 (409.28 t/ha) and T4 (407.42 t/ha). Lowest yield was found in T1 (398.20 t/ha) where RDF was 175:150:75 kg NPK per ha. Application of T5 i.e. FP (50% N + 100% PK + 50% Zn) + 1st spray Nano N + 2nd spray Nano Zn + 3rd spray Nano Cu recorded highest gross income of Rs 2,12,620/ha with net return Rs 1,59,720/ha and maximum benefit cost ratio 4.01.
N- Nitrogen, P- Phosphorus, K- Potash, Zn- Zinc, Cu-Copper.

Keywords: Nano fertilizers, Growth, Yield, Economics and Tomato.

INTRODUCTION
Tomato (Lycopersicon esculentum Mill.) belonging to Family Solanaceae (2n =24) is one of the most important and third most consumed vegetables worldwide. As it is a relatively short duration crop and gives a high yield, it is economically attractive and the area under cultivation is increasing daily (Naika et al., 2005).

Cite this article: Mishra, B., Sahu, G. S., Mohanty, L. K., Swain, B. C., & Hati, S. (2020). Effect of Nano fertilizers on growth, yield and Economics of Tomato variety Arka Rakshak, Ind. J. Pure App. Biosci. 8(6), 200-204. doi: http://dx.doi.org/10.18782/2582-2845.8420
Fruit is rich in minerals, vitamins, essential amino acids, sugars and dietary fibres with much vitamin B and C, iron and phosphorus. Tomato fruits are consumed fresh in salads or cooked in sauces, soup and meat or fish dishes. They can be processed into purées, juices and ketchup. Canned and dried tomatoes are economically important processed products. The growth and yield of vegetable crops are mainly depends on the quality and quantity of fertilizers used. Loss of mineral nutrients through leaching and runoff to surface and ground water along with abundant volatilization constitute growing concerns owing to economic losses and environmental pollution. The recent use of chemical fertilizers has resulted in many serious, environmental problems such as accumulation of heavy metals in soil and plant systems. (Abdel Wahab et al., 2017). Conventional application techniques are resulting in seriously overdosing of chemical fertilizers.

Nanotechnology is a promising field of research which utilizes nano materials of less than 100 nm size, may offer an unprecedented opportunity to develop concentrated sources of plant nutrients having higher-absorption rate, utilization efficacy, and minimum losses. One of the most important uses of nano technology is nanofertilizer, which improves the ability of the plants to absorb nutrients (Mousavi & Rezai (2011), Srilatha (2011), Ditta (2012)). Nano fertilizers are being prepared by encapsulating plant nutrients into nano materials, employing thin coating of nano materials on plant nutrients, and delivering in the form of nano-sized emulsions. Nano-pores and stomatal openings in plant leaves facilitate nanomaterial uptake and their penetration deep inside leaves leading to higher nutrient use efficiency (NUE). Nano fertilizers have higher transport and delivery of nutrients through plasmodesmata, which are nano sized (50–60 nm) channels between cells. The higher NUE and significantly lesser nutrient losses of nano fertilizers lead to higher productivity (6–17%) and nutritional quality of field crops.

**MATERIALS AND METHODS**

One field experiment was conducted by Krishi Vigyan Kendra, Jajpur in collaboration with IFFCO, Jajpur in the farmer’s field of village Dihakuransa, Block Rasulpur of Jajpur District to study the effect of Nano fertilizers on growth, yield and economics of Tomato variety Arka Rakshak in Rabi season 2019. The experiment was laid out in randomized block design (RBD) with five treatments and five replications. Treatments involved were T1 - Farmers Practice (FP) (100% NPK + 100 % Zn application), T2 - FP (50% N+100% PK +100% Zn) + two sprays of Nano N, T3 – FP (100 % NPK + 50 % Zn) + two sprays of Nano Zinc, T4 – FP (100% NPK + 100% Zn) + two sprays of Nano Cu , T5 - FP (50 % N + 100 % PK + 50 % Zn) + 1st spray Nano N + 2nd spray Nano Zn + 3rd spray Nano Cu @ 4ml / lit water each where , RDF was recommended dose of fertilizers (175:150:175 NPK kg/ha.). The land was brought to a fine tilth through ploughing and tillage. Irrigation channels and bunds were prepared according to layout. The twenty five days old seedlings were planted in the field with a spacing of 1m x 1m directly. Light irrigation was given just after transplanting. Organic manures were applied one week before transplanting. Full dose of phosphorus, potassium and half dose of nitrogen as per treatments were applied just before transplanting. The remaining half dose of nitrogen was applied twenty five days after sowing. First spraying was done 20 days after transplanting, 2nd spraying at 15 days after 1st spraying and 3rd spraying was done 10days after 2nd spraying. All cultural practices were followed regularly during crop growth and observations were recorded on yield and yield attributing characters. The data on these parameters were subjected to statistical analysis to draw logical conclusions.

**RESULTS AND DISCUSSION**

It was observed that yield as well as yield attributing characters like plant height, fruit length, fruit girth, fruit number, fruit weight and yield were significantly influenced by different treatments. Application of nutrients through soil application and foliar application in form of nano fertilizers were proved
beneficial increasing growth and yield of tomato.

The plant height was found maximum in T_5 (122.45 cm) where 50 % N + 100 % PK + 50 % Zn was applied inorgamically to soil along with 1\textsuperscript{st} foliar spray with Nano N, 2\textsuperscript{nd} spray with Nano Zn and 3\textsuperscript{rd} spray with Nano Cu and was significantly differed from all other treatments. The plant height was found lowest in T_1 (94.18cm) where (FP) (100% NPK + 100 % Zn) was applied. The present findings corroborate with the findings of Abdel wahab et al. (2019) in red radish, Ekinci et al. (2012) in tomato, Khave et al. (2015) in corn plant, Tantawy et al. (2014) in tomato.

Maximum number of branches was observed in T_5 (12.4) followed by T_3 (11.8) and T_4 (11.6) respectively. For this character T_5, T_3 and T_2 were found to have maximum number of branches in that order. Maximum number of branches was found in T_1 (10.2). Highest fruit length (7.15cm) and fruit girth (5.32cm) were observed in T_3 whereas lowest fruit length (5.72 cm) and fruit girth (4.32cm) were recorded in T_1. There was no significant differences between the treatments except T_1 so far as fruit length is concerned. But for fruit girth T_3 and T_2 were found to have maximum fruit girth in that order. Lowest yield was found in T_6 (398.20 q/ha) respectively. Lowest yield was found in T_5 (398.20 q/ha). T_3 was significantly differed from all other treatments. This is due to the fact that nano fertilizers hold potential to fulfill plant nutrition requirements along with imparting sustainability to crop production systems. Nano-pores and stomatal openings in plant leaves facilitate nano material uptake and their penetration deep inside leaves leading to higher nutrient use efficiency (NUE). Nano fertilizers have higher transport and delivery of nutrients through plasmodesmata, which are nano sized (50–60 nm) channels between cells. The higher NUE and significantly lesser nutrient losses of nano fertilizers lead to higher productivity (6–17%) and nutritional quality of vegetable crops. (Muhammad Aamir Iqbal, 2019). The present finding is in accordance with same type of results obtained by Ferbanat, 2013 who found that Ferbanat application increased yield of cabbage with 38-42% and in potatoes with 35-40% compared to control. The high concentration of nano fertilizer led to increased yield of corn (Khave et al., 2015). Wang et al., 2001 reported that nano preparation coated nitrogen fertilizer increased the yield of rice. Zareabynael et al. 2015 reported that the treatment of nano-nitrogen chelate, sulphur coated nano-nitrogen chelate, sulphur coated urea fertilizers led to increased potato yield by 56.10, 59.61, 49.76% respectively compared to urea application. Similar findings were also reported by, Khanm et al. (2017) in tomato, Jyothi et al. (2017) in cereals, Davarpanah et al. (2017) in pomegranate, Gajc-wolska et al. (2018) in sweet pepper, Rathnayaka et al. (2018) in rice and Meghany et al. (2019) in cucumber.

| Treatment | Plant height (cm) | No. of branches | Fruit length (cm) | Fruit girth (cm) | Fruit weight (g) | No. of Fruits/plant | Yield (q/ha) |
|-----------|------------------|-----------------|------------------|-----------------|-----------------|-------------------|-------------|
| T_1       | 94.18            | 10.2            | 7.52             | 5.12            | 63.28           | 62.92             | 398.20      |
| T_2       | 116.62           | 11.8            | 7.01             | 5.12            | 65.14           | 63.60             | 414.32      |
| T_3       | 112.42           | 11.6            | 6.94             | 4.82            | 64.12           | 63.85             | 409.28      |
| T_4       | 106.32           | 10.7            | 6.84             | 4.67            | 63.94           | 63.75             | 407.42      |
| T_5       | 122.45           | 12.4            | 7.15             | 5.32            | 66.48           | 64.03             | 425.24      |
| SE(m)     | 1.34             | 0.42            | 0.11             | 0.13            | 0.67            | 0.74              | 2.77        |
| CD(0.05)  | 3.92             | 1.24            | 0.31             | 0.37            | 1.96            | 2.18              | 8.11        |

| Growth and yield of Tomato as affected by Nano fertilizers |  |  |  |  |  |  |  |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|

Copyright © Nov.-Dec., 2020; IJPAB 202
Economics:
Maximum cost of Rs.53,800/ ha was incurred in T₄ where 100% NPK + 100% Zn were applied inorganically to soil with two foliar sprays of Nano Cu. Whereas, minimum cost of Rs. 52,000/ ha was incurred in T₂ where 50% N+100% PK+100% Zn were applied inorganically to soil with two foliar sprays of Nano N. Highest gross income of Rs.2,12,620/ ha were obtained in treatment T₅ whereas lowest of Rs.1,79,190/ ha were obtained in T₁. Similarly highest net return of Rs. 1,59,720/ ha were obtained in T₅ and was followed by T₂ (Rs1,55,160/ ha). Whereas, lowest of Rs.1,26,590/ ha were obtained in T₁ where 100% NPK + 100% Zn were applied inorganically to soil. This might be due to that application of 50% N + 100 % PK + 50 % Zn inorganically to soil along with 1st foliar spray of Nano N, 2nd spray of Nano Zn and 3rd spray of Nano Cu recorded significantly higher yield, which resulted in higher economic return. Highest B: C ratio (4.01) was observed in T₅ followed by T₂ (3.98) and T₃ (3.83). The lowest B: C ratio of 3.40 was observed in T₁ (Farmer practice). The increase in B: C ratio and other crop economic parameters might be due to increase in yield which fetched more prices in market. This findings is in accordance with the findings of Panda et al. (2020).

| Treatment | Cost of cultivation (Rs / ha) | Gross return (Rs / ha) | Net return (Rs / ha) | B:C ratio |
|-----------|-------------------------------|------------------------|----------------------|------------|
| T₁        | 52,600                        | 1,79,190               | 1,26,590             | 3.40       |
| T₂        | 52,000                        | 2,07,160               | 1,55,160             | 3.98       |
| T₃        | 53,400                        | 2,04,640               | 1,51,240             | 3.83       |
| T₄        | 53,800                        | 2,03,500               | 1,49,700             | 3.78       |
| T₅        | 52,900                        | 2,12,620               | 1,59,720             | 4.01       |

CONCLUSION
From the experimental result it was observed that application of 50% N + 100% PK + 50% Zn inorganically to soil along with 1st foliar spray with Nano N, 2nd spray with Nano Zn and 3rd spray with Nano Cu was found best in producing more plant height, more no, of branches, fruit length, fruit girth, number of fruits per plant, fruit weight and also higher yield.

REFERENCES
Abdel, W. M. M., Abdelaziz, S. M., El-mogy, M. M., & Adeldaym, E. A. (2019). Effect of foliar ZnO and FeO nano particles application on growth and nutritional quality of red radish and assessment of their accumulation on human health Agriculture (Polnohospodarstvo), 65(1): 16-29.

Abdel, W. M. M., El-attar, A. B., & Mahmoud, A. A. (2017). Economic evaluation of nano and organic fertilizers as an alternative source to chemical fertilizers on Carum carvi L. plant yield and components. Agriculture (Polnohospodarstvo), 63(1), 33-49.

Davarpanah, S., Tehranifar, A., Davarynejad, G., Aran, M., Abadia, J., & Khorassani, R. (2017). Effects of foliar nano- nitrogen and urea fertilizers on the physical and chemical properties of pomegranate Punica granatum cv. Ardestani fruits. Horticultural Science. 522, 288-294.

Ditta, A. (2012). How helpful is nanotechnology in agriculture? ADVANCES IN Natural Sciences: Nanoscience and nanotechnology. 3, 10.

Ekinci, M., Dursun, A., Yildirim, E., & Parlakova, F. (2012). The effects of nano technological liquid fertilizers on plant growth and yield in tomato. 9 Ulusal Sebze Tarimi Sempozyumu, 326–329, 14–12 Eylül, Konya, (Turkish).
Ekinci, M., Dursun, A., Yildirim, E., & Parlakova, F. (2014). Effects of nanotechnology liquid fertilizers on the plant growth and yield of cucumber (Cucumis sativus L.). Acta Sci. Pol., Hortorum Cultus. 13(3), 135-141.

Gajc-Wolska, J., Mazur, K., Niedzinska, M., Kowalczky, K., & Zolnierczyk, P. (2018). The influence of foliar fertilizers on the quality and yield of sweet pepper (Capsicum annuum L.). Folia Horticulturae. 30(2), 183-190.

Iqbal, M. A. (2019). https://www.intechopen.com/books/sustainable-crop-production/nano-fertilizers-for-sustainable-crop-production-under-changing-climate-a-global-perspective.

Jyothi, T. V., & Hebsur, N. S. (2017). Effect of nanofertilizers on growth and yield of selected cereals – A review. Agricultural Reviews. 382, 112-120.

Khanm, H., Vaishnavi, B. A., Namratha, M. R., & Shankar, A. G. (2017). Nano zinc oxide boosting growth and yield in Tomato: the rise of “nano fertilizer era.” International Journal of Agricultural Science and Research. 73, 197–206.

Khaveh, M. T., Alahdadi, I., & Hoseinzadeh, B. E. (2015). Effect of slow-release nitrogen fertilizer on morphologic traits of corn (Zea mays L.). Journal of Biodiversity and Environmental Sciences (JBES), 6(2), 546-559.

Merghany, M., Merghany, Mohamed, M., Shahein, Mahmoud, A., Sliem, Karima, F., & Abdelgawad & Radwan, A. F. (2019). Effect of nanofertilizers on cucumber plant growth, fruit yield and its quality. Plant Archives, 19(2), 165-172.

Mousavi, S. R., & Rezaei, M. (2011). Nanotechnology in agriculture and food production. Journal of Applied Environmental and Biological Sciences. 1(10), 414-419.

Naika, S., Van Lidte de Jeude, J., De Goffau Hilmi, M., & Van Dam, B. (2005). Cultivation of tomato - production, processing and marketing. Agromisa Foundation and CTA, Wageningen, pp 1-92.

Panda, J., Nandi, A., Mishra, S. P., Pal, A. K., Pattanaik, A. K., & Jena, N. K. (2020). Effects of nano Fertilizer on Yield, Yield Attributes and Economics in Tomato (Solanum lycopersicum L.). International Journal of Current Microbiology and Applied Sciences. 5, 2583-2591.

Rathnayaka, R. M. N. N., Mahendran, S., Iqbal, Y. B., & Rifnas, L. M. (2018). Influence of urea and nano nitrogen fertilizers on the growth and yield of rice Oryza sativa L. cultivar “Bg 250”. International Journal of Research Publications. 52, 1-7.

Srilatha, B. (2011). Nanotechnology in agriculture. Journal of Nanomed. Nanotechnol. 2, 5-7.

Tantawy, A. S., Salama, Y. A. M., Abdel Mawgoud, A. M. R., & Ghoname, A. A. (2014). Comparison of chelated calcium with nano calcium on alleviation of salinity negative effect on tomato plants. Middle East Journal of Agriculture Research. 34, 912–916.

Wang, X., Song, H., Liu, Q., Rong, X., Peng, J., Xie, G., Zhang, Z., & Wang, S. (2011). Effects of nano- preparation coated nitrogen fertilizer on nutrient absorption and yield of early rice. http://enki.com/en/Article_en_.htm.

Yassen, A., Abdallah, E., Gaballah, M., & Zaghoul, S. (2017). Role of silicon dioxide nano fertilizer in mitigating salt stress on growth, yield and chemical composition of cucumber Cucumis sativus L. International Journal of Agricultural Research. 12, 130-135.

Zareabyaneh, H., & Bayatvarkeshi, M. (2015). Effects of slow release fertilizers on nitrate leaching, its distribution in soil profile, N- use efficiency and yield in potato crop. Environmental Earth Sciences. 74(4), 3385-3393.