Effect of carbon and manganese content on the microstructure and mechanical properties of high manganese austenitic steel

U. Gürol a, S. Can Kurnaz a

a Sakarya University, Engineering Faculty, Department of Metallurgical & Materials Engineering, Esentepe Campus, 54187, Sakarya/TURKEY
ugur.gurol@yahoo.com
ckurnaz@sakarya.edu.tr

(Received 11 November 2019; accepted 11 February 2020)

ABSTRACT

In the present work, the influence of carbon and manganese on the microstructure and the mechanical properties of high manganese austenitic steel were investigated. Increased carbon and manganese content increased the grain size and amount of carbides in the as-cast condition. The solution annealing fully dissolved the carbides in alloys with lower carbon content (1 wt%) and resulted a homogeneous austenitic microstructure. The yield strength, ultimate strength, Charpy and elongation increased by a combination of carbon and manganese. Optimal results were obtained in solution annealed 1.0C-17Mn alloy, respectively, 415.0±4.1MPa 865.6±1.5 MPa, 65.2±0.8% and 258±3 J. The wear tests were performed under loads of 2.5N, 5N, 10N and 15N with a ball-on-disc wear testing machine at constant speed of 0.2 ms⁻¹ for sliding distance of 500m, were revealed that 1C-21Mn alloy could be applied to relatively high-stress wear conditions while the 1.3C-17Mn alloy could be only used under low-stress wear conditions.

Keywords: Hadfield steel, Microstructure characterization, Tensile properties, Charpy-V-Notch, Wear resistance
1. INTRODUCTION

Hadfield manganese steel was invented by Sir Robert Hadfield in 1882 and first patented in Britain in 1883 with patent number 200 [1], and consequently, in 1884 the patents 303150 and 303151 were granted in the United States [2]. Most of the steels which were used prior to the invention of Hadfield steel were of much lower alloy content, showing an inverse relationship between hardness and toughness [3]. Hence, the invention of these alloys was based on adding a large percentage of manganese to the molten iron which yields a steel product with an outstanding combination of strength, ductility and strain hardening compared to early ones [4,5]. The basic chemical composition of Hadfield steel includes 1.0-1.4wt% carbon and 10-14wt% manganese in a 1:10 ratio [6]. This steel, with small changes in its chemical composition or heat treatment, is widely used in various fields of industry such as in mining, earthmoving, quarrying, oil-well drilling, steel-making, cement clay products, rail-roading, dredging, naval, lumbering excavators and crushers [6-8].

It is well known that a high manganese austenitic steel is too brittle in the as-cast condition due to precipitation of carbides in the grain boundaries which limits its applications in the fields requiring high ductility and toughness [9,10]. Hence, these steels have to be heat treated above the A_{cm}-line of the phase diagram, a procedure referred to as solution annealing, followed by rapid water quenching [11]. This process dissolves the carbides precipitated as a result of eutectic transformation of the liquid-rich in carbide forming elements at the end of solidification and ensures a fully austenitic microstructure with a face-centered cubic crystal lattice with interstitial carbon and manganese atoms [12,13]. The solution temperature should be chosen to be more than 1000°C followed by water quenching in order to dissolve carbides into the austenite matrix [9], but not more than 1100°C to avoid carbon segregation that may cause incipient melting, scaling and decarburization [14].

There are two significant stages during producing desirable parts from high manganese steels: first melting and developing of appropriate composition, and secondly proper heat treatment of the cast parts [15]. In this context, a wide range of research has been carried out for improving the mechanical properties of the high manganese steels for long service. These include the addition of chromium [16], molybdenum [1], vanadium [17], niobium [18], titanium [19], aluminum [20] and cerium [11] in combination with heat treatment. Moreover, the mechanical properties of high manganese steels are very dependent on carbon and manganese contents [21]. These two elements play an essential role in promoting precipitation strengthening and therefore strongly influence the mechanical properties such as tensile properties, impact toughness and wear resistance [22]. Lu Dingshan et al. [23] studied the influence of carbon content on microstructure and mechanical properties of Mn13Cr2 and Mn18Cr2 steel. They reported that the proportions of carbide in these two steels increased with increased carbon content, while the impact toughness of the as-cast and water quenched Mn13Cr2 and Mn18Cr2 steels decreased. However, this research was carried out in a small scope of carbon concentration range (1.25wt% - 1.45wt%), and hence it did not show the effect of lower carbon amount on mechanical properties. Torabi et al. [24] investigated the effect of manganese content (7.55wt%, 13.1wt%, and 16.5wt%) on the properties of high manganese austenitic steels and concluded that with increasing manganese from 7.55wt% to 16.5wt%, the ultimate tensile strength and wear resistance showed 11% and 29% increases, respectively, due to solid solution strengthening of the matrix with manganese. In their study, the manganese content was limited to 16.5wt%.

However, no extensive research has been reported for the effect of simultaneous addition of carbon and manganese to optimize the microstructure and mechanical properties of high manganese austenitic steels. Optimization of ultimate tensile, impact toughness and wear resistance of the high manganese steel is a key factor to increase the service life of critical engineering components. The current aimed to produce a high-performance manganese steel...
with a fully austenitic microstructure without carbide precipitation and to obtain excellent mechanical properties in terms of wear resistance without sacrificing the toughness and tensile properties by adjusting the manganese content (13wt%, 17wt%, and 21wt%) and carbon percentages (0.7wt%, 1.0wt%, and 1.3wt%). The specific adjustment of the manganese and carbon content can reduce the premature failures and part replacement of such steels in the industry.

2. MATERIALS AND METHODS

The alloys were obtained by adjusting the chemical composition in conventional melting using classified steel scraps and standard silicon, manganese and molybdenum ferroalloys. An industrial-scale induction furnace with a maximum capacity of 3000 kg was used to heat raw materials up to 1480°C. When the raw material was fully melted, the proper amount of ferroalloys were added and left the furnace 15 minutes to homogenize and to achieve required alloy compositions. Then, molten steel was transferred to the ladle at 1480°C and chemical analysis was performed by the ARL optical emission spectrometer according to the ASTM E2209 standard from chilled samples taken from the inside of transferred ladle. Finally, ten test coupons with dimensions of 60x60x300mm³ were cast into a chromite sand mold at the pouring temperatures of 1440°C and 1450°C. The identification and composition of alloys are given in Table 1.

Table 1 Chemical composition of alloys (wt%)						
Alloy	C	Mn	Si	Mo	P, S	Fe
0.7C-17Mn	0.70	17.13	0.56	1.18	<0.05	Balance
1.0C-13Mn	1.00	13.11	0.53	1.15	<0.05	Balance
1.0C-17Mn	1.00	17.11	0.53	1.16	<0.05	Balance
1.0C-21Mn	1.03	20.79	0.56	1.18	<0.05	Balance
1.3C-17Mn	1.27	17.02	0.51	1.16	<0.05	Balance

A heat treatment process which included heating the specimens to 650°C and holding at this temperature for 3 hours was performed with an oxygen-controlled custom-built automatic heat treatment furnace (Sistem Teknik Industrial Furnaces). This mid-process reduced the amount of pearlite in the as-cast condition and prevented internal crack formation during heating. This was because as the pearlite transformed, the austenization rate accelerated and contributed to increased carbon dissolution into the austenite matrix. After holding, specimens were heated to 1100°C at the rate of 1.67°C/min and subjected to solution annealing for 3 hours and then quenched in 90 tonnes of the circulated water tank at 27°C. The heat treatment process is shown in Fig 1.

![Figure 1. Heat treatment process of the alloys](image-url)
Metallographic examination was performed according to ASTM E3-11 (metallographic sample preparation) and ASTM E407-07 (metal micro-etching) standards. The sectioned specimens for metallography were ground, polished and etched with 4wt% Nital solution for 10s. The microstructures of the as-cast and solution annealed specimens were characterized using an optical microscope (OM, Olympus PME Tokyo) and a scanning electron microscope (SEM, FEI Quanta FEG 450) equipped with energy disperse spectrometry (EDS, EDAX Octane Plus). The fracture surface of the Charpy-V-notch samples was further analyzed by means of SEM. In addition, X-Ray diffraction spectrometry (XRD, Rigaku DMax 2200) using CoKα radiation was performed to analyze the phases and precipitates of the alloys. The average grain size of each alloy was measured utilizing the intercept method according to the ASTM standard E112-13 (standard test methods for determining average grain size) by using the Image-J software (version 1.51k) which was also used to determine the carbide volume fraction of the alloys. The solidus and liquidus temperatures were calculated using the JMatPro simulation software for the alloys as predicted by the thermodynamic calculation.

The surface hardness of the samples was measured using a Brinell hardness tester at an applied load of 30 kgf and loading times of 20 seconds at room temperature in compliance with ASTM E10-18 standard. Tensile testing was performed with an Instron test machine, model 300LX employing an average of three specimens for each sample with the respect to ASTM E8/E8M. The impact test of the samples was carried on 10x10x55mm³ at room temperature, using a 300J capacity test machine, with the Charpy V-notch test method according to ASTM E23. The ball-on-disc wear test was carried out in accordance with ASTM G99-05 standard. The tests were performed at room temperature with a 10 mm diameter alumina ball as the counter body. The weight loss of each sample was measured under 2.5N, 5N, 10N and 15N normal loads at 0.2ms⁻¹ sliding speed with 500 m sliding distance without stopping the tests.

3. RESULTS AND DISCUSSION

3.1. Characterization of the as-cast structures

Fig. 2a-e illustrates the effect of carbon and manganese content on the as-cast microstructure of the alloys by an OM. The 0.7C-17Mn alloy had an austenite matrix with a small fraction of carbide while other as-cast alloys showed the austenite matrix surrounded by a dispersed lamellar carbide. The presence of austenite was due to the high level of carbon and manganese, and carbide was due to the presence of high carbon and carbide forming elements such as manganese, molybdenum, and iron. The carbides formed during slow cooling which started near grain boundaries and proceeded into the former grains.

| Table 2 Volume fraction of carbides and austenite in as-cast alloys (%) |
|--------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| | 0.7C-17Mn | 1.0C-13Mn | 1.0C-17Mn | 1.0C-21Mn | 1.3C-17Mn |
| Carbides | <1 | 7.5 ± 1.7 | 6.1 ± 2.5 | 18.6 ± 2.6 | 23.9 ± 2.3 |
| Austenite | Balance | Balance | Balance | Balance | Balance |

XRD results of as-cast alloys in Fig.2f indicated that austenite (γ) was the major phase with (FeMn)₃C carbide precipitation which is consistent with the micrographs in Fig. 2a-e. The volume fractions of the carbides for as-cast alloys generated within the grains and at the boundaries were obtained by Image-J software and presented in Table 2. Increased carbon content from 1.0wt% to 1.3wt% for the same level of manganese content (17wt%) significantly increased the amount of carbides from 6.1±2.5% to 23.9±2.3%. Similarly, as the manganese content increased from 13wt% to 21wt%, the carbide content increased from 7.5±1.7% to
18.6±2.6%, approximately 2.5 times. This can be explained by the fact that the addition of Mn or C increases the carbide solvus temperature and therefore carbide solubility decreases.

Table 3 Grain size of alloys in as-cast and solution annealed condition

	0.7C-17Mn	1.0C-13Mn	1.0C-17Mn	1.0C-21Mn	1.3C-17Mn
As-Cast Steels	197 ± 3 µm	172 ± 11 µm	243 ± 20 µm	412 ± 29 µm	427 ± 24 µm
Solution Annealed	281 ± 18 µm	215 ± 10 µm	338 ± 26 µm	619 ± 27 µm	589 ± 38 µm

Table 4 Comparison of liquidus and solidus temperature of alloys (with Jmat-Pro Software)

	0.7C-17Mn	1.0C-13Mn	1.0C-17Mn	1.0C-21Mn	1.3C-17Mn
Liquidus Temp.	1400	1405	1390	1375	1355
Solidus Temp.	1245	1215	1200	1185	1125
Freezing Range	155	190	190	190	230

The austenite grain size of the produced alloys was measured by the linear intercept method by counting the grain boundaries and the results are shown in Table 3. The grain size of as-cast alloys ranged from 172±11µm to 427±24µm. Increased carbon and manganese content led to grain coarsening which had a direct influence on the mechanical properties. Increasing the carbon content extended the freezing range and consequently led to longer solidification, which may have caused the larger grain size. As an example, as shown in Table 4, increasing the carbon content from 0.7wt% to 1.3wt% decreased the liquidus and solidus temperatures by an average of 45°C and 120°C respectively. This resulted in the freezing range of 1.3C-17Mn alloy to increase ~1.5 times compared to 0.7C-17Mn alloy. Consequently, the grain size of 1.3C-17Mn alloy was two times larger than 0.7C-17Mn alloy. Moreover, liquidus and solidus temperature decreased by 5°C with the addition of per 1wt% manganese, although this did not change the freezing range. In this case, the reason for the larger grains with increased manganese can be explained that the manganese is conducive to the growth of coarse grains [23].

Figure 2. Optical micrographs showing the as-cast microstructure of alloys: (a) 0.7C-17Mn, (b) 1.0C-13Mn, (c) 1.0C-17Mn, (d) 1.0C-21Mn, (e) 1.3C-17Mn and (f) XRD patterns of the as-cast alloys.
The detailed microstructural characteristics of the secondary precipitates were revealed in Fig. 3 by means of SEM. Such observations showed that 0.7C-17Mn alloy had a very thin grain boundary carbides while the 1.0C-17Mn and 1.3C-17Mn alloys had two-phase lamellar carbides along the grain boundaries. Energy dispersive spectroscopy (EDS) was used to determine the composition of secondary precipitates and were revealed two distinct carbides: (Fe,Mn)\textsubscript{3}C and MoC [25]. Molybdenum carbides, which were not found in XRD due to its small volume fraction in the microstructures, were mainly distributed in the grain boundaries and surrounded by lamellar carbides. Since molybdenum has a high affinity to absorb carbon [26], first there were more stable molybdenum carbides instead of iron manganese carbide at the grain boundaries. Furthermore, the ternary phosphorus eutectic of a Fe-(Fe,Mn)\textsubscript{3}C-(Fe,Mn)\textsubscript{3}P type was found in the center of lamellar carbides as previously reported with ASTM A128/A128M Gr. B3 manganese steel (1.2\%wt C, 13\%wt Mn and 0.027\%wt P) [27], which can also be seen in the microstructures in ASM Handbook Vol.9, where the mottled area in the centers of lamellar carbides was identified as phosphide eutectic [28]. This ternary eutectic was mostly blocky and not elongated along the grain boundaries (point 2 in both Fig. 3b and 3c). However, when the castings are heated at the correct solution temperature, this ternary eutectic re-dissolves into the austenitic matrix and loses its harmful effect [29].

Figure 3. SEM micrograph (BSE mode) and EDS results of alloys in as-cast condition: (a) 0.7C-17Mn (b) 1.0C-17Mn, (c) 1.3C-17Mn, (d) 1.3C-17Mn showing the detailed two-phase lamellar carbide precipitation
3.2. Characterization of solution annealed structures

Fig. 4 show the microstructures of the alloys after solution annealing at 1100°C for 3 hours. The SEM micrograph of the 1.0C-17Mn sample showed a fully austenitic microstructure which indicates that the designed solution annealing and subsequent rapid quenching had been successful in dissolving all the precipitates into the matrix (Fig. 5a). However, the grain size of the alloys had increased. Moreover, the 1.3C-17Mn alloy had grain boundary carbides and phosphide eutectic as shown in Fig. 5b. Compared to the 1.0C-17Mn sample, the higher level of carbon in the 1.3C-17Mn alloy required higher temperatures or longer times for the dissolution of the carbides and phosphide eutectic. However, the high manganese steels suffer from a sharp decline of the mechanical properties at high temperatures, and therefore temperatures above 1100°C should be avoided [14].

Figure 4. Optical micrographs showing the solution annealed microstructure of alloys: (a) 0.7C-17Mn, (b) 1.0C-13Mn, (c) 1.0C-17Mn, (d) 1.0C-21Mn, (e) 1.3C-17Mn and (f) XRD patterns of the alloys after solution annealing

Point	Fe (wt%)	C (wt%)	Mn (wt%)	Mo (wt%)	P (wt%)
1	76.1	4.1	18.0	1.45	-

Figure 5. SEM micrographs (BSE mode) of alloys in solution annealed condition: (a) 1.0C-17Mn and (b) 1.3C-17Mn

Point	Fe (wt%)	C (wt%)	Mn (wt%)	Mo (wt%)	P (wt%)
1	-	11.8	8.7	79.5	-
2	52.9	9.5	34.4	3.1	-
3	50.8	7.7	27.0	6.5	8.0
3.3. Mechanical Properties

Hardness measurements before and after solution annealing are given in comparison with carbide contents in Fig. 6. Increased carbon and manganese increased the hardness of all as-cast alloys. For example, the hardness of the as-cast 1.3C-17Mn alloy was almost 27% higher than the as-cast 0.7C-17Mn alloy due to the existence of 23.9±2.3% volume fraction of carbides. A similar trend was observed for the increase of the hardness with carbon for the solution annealed samples. The underlying strengthening mechanism was the carbide precipitation and solid solution strengthening of the matrix by these elements. Moreover, the solution annealed samples showed higher hardness values compared to their cast states, except for the 1.3C-17Mn and 1.0C-21Mn alloys. The increase in hardness can be attributed to the fairly uniform distribution of the carbide phase in the austenite phase [5]. The decrease in the hardness of the solution annealed 1.3C-17Mn and 1.0C-21Mn alloys compared to the cast ones can also be explained by heterogeneous carbide distribution. Hence, for these two alloys, a high amount of grain boundary carbides in the as-cast structure acted as a hard phase in the soft austenite matrix and increased overall hardness value.

Figure 6. Hardness test results of alloys in as-cast and solution annealed condition in comparison with as-cast carbide content

The room temperature tensile test results of the alloys before and after solution annealing, including the yield strength (Rp0.2), ultimate strength (Rm) and elongation (%) are listed in Table 5. Increasing the carbon and manganese content caused an increase in the yield strength despite grain coarsening which is in opposition to the Hall-Petch effect [30]. The strengthening effect can be due to the solid solution strengthening as previously reported [23-24].

Fig. 7a shows that, except for the 0.7C-17Mn alloy, the engineering stress-strain curves of as-cast alloys were quite different from their solution annealed conditions. The presence of carbide and phosphorus eutectic in the as-cast states led to steep strain hardening during the plastic regime, followed with an abrupt rupture and a very low macroscopic deformation. Accordingly, the highest ultimate tensile and elongation, 804.6±13.9MPa and 60.8±3.4%, respectively, were obtained with 0.7C-17Mn sample which had thin grain boundary carbides observed at high magnification by SEM (see Fig.3a). Thin carbides are less stable and have a good lattice match and cohesion with the austenite matrix because of their small size and low energy [29]. As shown in Fig. 7b, solution annealed alloys showed a continuous yielding behavior followed by considerable strain hardening. Compared to the as-cast ones, they also showed increased ultimate tensile and elongation. All the solution annealed alloys showed
excellent plastic deformation, above 40%. Fig. 4 compared to Fig. 2 showed that this was due to carbide re-solution into the austenite matrix. In other words, the reduced carbide content at the grain boundaries increased the deformability of the samples.

Table 5 Room temperature tensile test results of alloys in as-cast and solution annealed conditions.

Alloys	Process	Rp0.2 (MPa)	Rm (MPa)	Elongation (%)
0.7C-17Mn	As-cast	349.6 ± 2.2	804.6 ± 13.9	60.8 ± 3.4
	Solution annealed	369.9 ± 4.4	852.7 ± 5.4	77.4 ± 2.5
1.0C-13Mn	As-cast	374.1 ± 4.3	516.9 ± 3.3	10.3 ± 0.1
	Solution annealed	395.4 ± 5.2	827.3 ± 2.8	54.6 ± 0.3
1.0C-17Mn	As-cast	398.1 ± 2.4	601.6 ± 2.9	17.3 ± 0.4
	Solution annealed	415.0 ± 4.1	865.6 ± 1.5	65.2 ± 0.8
1.0C-21Mn	As-cast	408.1 ± 5.2	500.7 ± 16.3	7.0 ± 0.5
	Solution annealed	411.3 ± 6.3	728.9 ± 11.6	47.9 ± 1.5
1.3C-17Mn	As-cast	421.6 ± 3.0	537.1 ± 1.4	4.4 ± 0.3
	Solution annealed	437.1 ± 7.1	743.8 ± 28.1	40.6 ± 3.6

The 1.0C-17Mn alloy showed the highest tensile strength (865.6±1.5MPa) and elongation (65.2±3.4%). By increasing carbon up to 1.3wt% with the same manganese content (17wt%), it was increasingly difficult to dissolve all of the carbon in solid solution, hence elongation and ultimate tensile slightly decreased. On the other hand, by increasing the manganese content from 13wt% to 17wt% Mn, the stacking fault energy was increased and therefore the shear stress needed for sliding increased [31]. This has led to increased ultimate tensile and elongation. However, at 21wt% Mn, the austenite grain size sharply increased from 338±26µm to 619±27µm, almost two times. This resulted in the ultimate tensile and elongation decreasing compared to 1.0C-17Mn. Since the grain boundaries help to prevent further dislocation propagation, smaller grain sizes led to higher yield and tensile strength [9,30].

Figure 7. Engineering stress-strain curves: (a) as-cast and (b) solution annealed alloys

Fig. 8 shows optical micrographs of solution annealed alloys 1.0C-17Mn and 1.3C-17Mn after tensile testing. The main deformation mechanism was assumed to be twinning induced deformation in both alloys. The twin boundaries act as strong barriers to dislocation motion which leads to work hardening and an increase of elongation and ultimate tensile strength [32-33]. There were fewer twins in the 1.3C-17Mn alloy compared to the 1.0C-17Mn alloy. This was due to the presence of undissolved carbides along the grain boundaries of the 1.3C-17Mn alloy (arrows in Fig. 8b). Black areas in both Fig.8a and Fig.8b show the cavities
left behind by dissolved phosphide eutectic [29]. With increased carbon content, twinning energy weakened and carbides along the grain boundaries caused crack initiation and grain detachment by crack growth occurred during the tensile testing and hereby resulted in low elongation and tensile strength.

Toughness is another main characteristic feature of high manganese steel under severe load conditions [34], which should be considered as one of the important factors in the optimization of these cast steels. It is already known that most metals, especially with FCC structure such as high manganese steels have a ductile fracture at ambient temperature. The brittle fracture for high manganese steels can be attributed to the existence of continuous carbide networks at grain boundaries [35].

![Figure 8](image)

Figure 8. Optical micrographs of solution annealed alloys after fracture in the tensile test: (a) 1.0C-17Mn and (b) 1.3C-17Mn

Fig. 9 shows the Charpy impact test results of alloys in as-cast and solution annealed conditions. The impact toughness of the as-cast alloys, except 0.7C-17Mn, was about 12 to 27 Joules at room temperature, which seems to be insufficient for most of the engineering applications such as crusher jaws where the impact load is applied [36]. Since the brittle carbides, segregated along the austenite grain boundaries which cause stress built-up in the austenite matrix, leading to dislocation pile-up, crack initiation, propagation and crack growth and subsequently low impact toughness in as-cast condition [37]. Only as-cast 0.7C-17Mn alloy which showed very thin grain boundary carbides, showed a high impact toughness value reaching up to 206±19 Joules which allows for the mining and earthmoving applications.

It is already seen that the solution annealing considerably increased the impact toughness of the alloys compared to the as-cast ones. The largest improvement was for the 1C-17Mn alloy with an almost ~930% increase in toughness. The reason for such a high value was complete austenization of structure and absence of carbide re-precipitation along the grain boundaries. The lowest impact energy in the solution annealed samples was for the 1.3C-17Mn alloy at 137±6 Joules because of undissolved carbides and phosphide eutectic along the grain boundaries.
Figure 9. Charpy impact test results of alloys in as-cast and solution annealed conditions

Fig. 10a shows the fraction surface of 1.0C-17Mn alloy after the Charpy impact test, revealing a typical ductile fracture model. A large number of dimples existed in the fracture surface. Since the 1.3C-17Mn alloy showed a mixture of ductile and brittle fracture with a characteristic of dimples and quasi-cleavage facets (Fig.10b). Increased carbon content resulted a serious decrease in dimples and increased cleavage facets which accelerated crack propagation and decreased the impact energy [38]. The reason for the simultaneous activation of ductile and brittle fracture mechanism was due to the presence of undissolved carbides in the austenite grain boundaries as shown previously in Fig.5b. In high manganese steels, the most important parameter for controlling the fracture mode is the volume fraction of carbides along the grain boundaries [35]. By increasing the volume fraction of carbide in austenite matrix, the crack growth in austenite grain boundaries reaches the critical value before the shear stress causes plastic deformation of the austenite phase, resulting in a brittle fracture [35].

Figure 10. SEM micrograph (SE mode) of Charpy V-notch impact samples of alloys in solution annealed condition (a) 1.0C-17Mn and (b) 1.3C-17Mn

Fig. 11 shows the SEM micrographs of worn surface of the experimental 1.0C-17Mn alloy after wear test under applied loads of 2.5N, 5N, 10N and 15N. It was observed that increased load caused an increase in the deformation on the sliding surfaces. For loads of 2.5N, 5N and 10N, the main wear mechanisms were cutting furrows and pits. Increasing the load up to 10N, the amount of cutting furrows and pits increased due to the repeated plastic deformation. Since the toughness of the alloy was high and the impact load was low, chips were not easy to form and only cutting furrows and pits occurred. Fig. 11d shows that increased load from 10 N to 15 N reduced the amount of cutting furrows and pits, and changed the wear mechanism to
micro-cut marks which indicated that the plastic deformation severely accelerated. The higher deformation of friction surfaces occurred because of the presence of interface metal oxide particles (wear debris) of deformed materials as shown in Fig. 12. These particles were free to roll in the interface between alumina ball and base metal during the test and rolled particles pressed in the interface led to severe plastic deformation on the worn surface as it was reported in previous study ref. [31] and [39].

Figure 11. SEM micrograph (SE mode) of worn surface for solution annealed 1.0C-17Mn alloy under normal loads of: (a) 2.5N, (b) 5N, (c) 10N and (d) 15N

Figure 12. Detailed SEM micrograph (SE mode) of worn surface for solution annealed 1.0C-17Mn alloy under 15N
Fig. 13 illustrates wear rates of the experimental alloys after 500m sliding under varying loads at 0.2 m s\(^{-1}\) sliding speed. The trends for all the samples were roughly the same and there was a general decrease in wear rate with increased carbon (Fig. 13a) and manganese (Fig. 13b) content. Up to 10N, the wear rate decreased. However, when the load was increased to 15N, the wear rate of all alloys sharply increased due to wear debris caused by repeated plastic deformation. On the other hand, the severity of the wear process could be placed in two categories: first is low-stress wear which involves the passage of the abrasive material once over the surface of the sample, and second is high-stress wear which involves cutting marks between two surfaces [40]. In this case, it can be concluded the wear test was a high-stress condition when the applied load was higher than 10N, while for loads lower than 10N, the test can be considered to be low stress wear.

At low-stress conditions, slight work hardening of the worn surface occurred because the amount of plastic strain of the surface was very low. Therefore, the initial surface hardness and the yield strength of the alloys controlled the wear rate and the frictional wear occurred more often than shearing wear [41]. Since carbon and manganese increased the hardness and yield strength of alloys, they reduced the wear rate. Hence, the 1.3C-17Mn alloy showed better wear resistance at the low-stress wear condition due to its higher surface hardness and yield strength caused by the existence of hard carbides dispersed within the austenite matrix, respectively, 437.1±7.1MPa and 208±2HB.

At the high-stress wear condition, severe plastic deformation of the worn surface occurred because the scratching of the worn surface was too high that the wear debris was removed. Although the higher results in terms of toughness, tensile strength and elongation were obtained in 1.0C-17Mn alloy, 1.0C-21Mn alloy showed superior wear resistance, especially under high-stress wear of a 15N normal load, which was about 21% better than 1.0C-17Mn alloy. This was due to an increase in austenite stability resulted from increased manganese content. Moreover, the wear rate of 1.3C-17Mn sharply increased in contrast with that 1.0C-21Mn alloy when the applied load was raised to 15N, the wear rate of 1.3C-17Mn was 23% higher than that of 1.0C-21Mn. Therefore, 1C-21Mn alloy could be applied to relatively high-stress wear conditions, while the 1.3C-17Mn alloy could be only used under low-stress wear conditions due to their insufficient impact toughness.
4. CONCLUSIONS

The microstructure of the as-cast alloys consisted of an austenite matrix with two main \((\text{Fe,Mn})_3\text{C}\) and MoC complex carbides along the grain boundaries. The carbon and manganese in the as-cast state increased the carbide content. They also increased the grain size of the as-cast alloys due to extending the freezing range of the alloys. In the samples with the fixed manganese content of 17wt%, increasing the carbon content transformed the tiny grain boundary carbides to the lamellar ones. The net effect of increasing carbon content was improved yield strength and hardness of the alloys. The as-cast states showed brittle failure during tensile tests with limited plastic deformation and low ductility.

The solution annealing fully dissolved the carbides of the alloy with lower carbon content (1wt%) and yielded a fully austenitic microstructure, however, it did not fully dissolve the grain boundary carbides of alloys with carbon content up to 1.3wt%. Higher solution temperature may dissolve the carbides, however, it will increase the grain size and may deteriorate the mechanical properties. The designed solution annealing improved the hardness of all the as-cast alloys, except for the 1.3C-17Mn and 1.0C-21Mn. The decrease in hardness was dependent on the morphology and distribution of the carbides in the as-cast and solution annealed states. The solution annealing increased the ductility of the as-cast alloys by the dissolution of the brittle carbides in the austenite matrix. However, the highest tensile strength and ductility was observed in 1.0C-17Mn alloy.

The main deformation mechanism was twinning which is easily formed in 1.0C-17Mn alloy, while it was absent in 1.3C-17Mn alloy. The solution annealing significantly increased the toughness of the as-cast alloys with the highest improvement at almost ~930% increase in the 1.0C-17Mn. The less pronounced effect in the alloys with higher carbon content was due to incomplete dissolution of the carbides.

Increasing carbon and manganese contents resulted in a decrease in wear rate. The 1.3C-17Mn alloy showed better wear resistance at the low-stress wear condition due to its higher surface hardness and yield strength. However, under the high-stress condition, the 1.0C-21Mn alloy showed superior wear resistance which is about 27% and 18% better than 1.0C-17Mn and 1.3C-17Mn steels, respectively. Therefore, 1C-21Mn alloy could be applied in relatively high impact abrasive conditions while the 1.3C-17Mn alloy could be only used under low impact abrasive conditions due to their insufficient impact toughness.

Acknowledgments
The authors are grateful to the Sakarya University and Silvan Sanayi A.Ş. for the support of this research and for the provision of laboratory facilities.
REFERENCES

[1] H. Mauouche, A. Hadji, K. Bouhamla, Effect of inoculation by molybdenum and nickel on hardening phenomenon and wear behavior of high manganese steel, Metall. Min. Ind., 3 (2016) 75-82.

[2] S. W. Bhero, B. Nyembe, K. Lentsoana. Common failures of Hadfield steel in application. ICMMME, 15-16 April, Johannesburg, South Africa, 2014, p. 17-19.

[3] B. J. Sutton, Solidification behavior and hot cracking susceptibility of high manganese steel weld metals, Masters Thesis, Columbus, The Ohio State University, 2013.

[4] C. S. Mahlami, X. Pan, An overview on high manganese steel casting. Proc. 71st World Foundry Congress, 19-21 May, Bilbao, Spain, 2014.

[5] J. O. Agunsoye, S. I. Talabi, O. Bello, Wear characteristics of heat-treated Hadfield austenitic manganese steel for 80 application, Adv. Produc. Eng. Manag., 10 (2) (2015) 97-107.

[6] B. Bal, A study of different microstructural effects on the strain hardening behavior of Hadfield steel, Int. J. Steel Struct., 18 (1) (2018) 13-23.

[7] N. D. Nam, L.T. Chieu, N.M. Truc, P. M. Khanh, Investigation of phase transformation mechanism of high manganese steel Mn15Cr2 heat-treated by subzero temperature process, Int. J. Sci. Eng. Res., 7 (4) (2016) 1527-1530.

[8] A. K. Srivastava, K. Das, Microstructural characterization of Hadfield austenitic manganese steel, J. Mater. Sci., 43 (2008) 5654–5658.

[9] S. H. M. Anjidan, M. Sabzi, The effect of heat treatment process parameters on mechanical properties, precipitation, fatigue life, and fracture mode of an austenitic Mn Hadfield steel, J. Mater. Eng. Perform, 27 (10) (2018) 5246-5253.

[10] M. Azadi, A. M. Pazuki, M. J. Olya, The effect of new double solution heat treatment on the High manganese Hadfield steel properties, Metallogr. Microstruct. Anal., 7 (2018) 618-626.

[11] F. Haakonsen, Optimizing of Stromhard austenitic manganese steel, Ph.D. Thesis, Trondheim, Norwegian University of Science and Technology, 2009.

[12] Y. S. Ham, J. K. Kim, S. Y. Kwak, J. K. Choi, W.Y. Yoon, Critical cooling rate on carbide precipitation during quenching of austenitic manganese steel. China Foundry, 7 (2) (2010) 178-182.

[13] F. Nurjaman, F. Bahfie, W. Astuti, A. Shofi, The effect of solid solution treatment on the hardness and microstructure of 0.6%wt C-10.8%wt Mn – 1.44%wt Cr austenitic manganese steel, 2nd International Symposium on Frontier of Applied Physics, 817 (2017) 1-7.

[14] S. A. Balogun, D. E. Esezobor, J.O. Agunsoye, Effect of melting temperature on the wear characteristics of austenitic manganese steel, J. Min. Mater. Char. Eng., 7 (3) (2008) 277-289.

[15] H. Hosseini, M. Limooei, Optimization of heat treatment to obtain desired mechanical properties of high Carbon Hadfield steels, World Appl. Sci. J., 15 (10) (2011) 1421-1424.

[16] I. El-Mahallawi, R. Abdel-Karim, A. Naguib, Evaluation of effect of chromium on wear performance of high manganese steel, Mater. Sci. Tech-Lond., 17 (2001) 1385-1390.

[17] M. K. Pham, D. N. Nguyen, A. T. Hoang, Influence of Vanadium content on the microstructure and mechanical properties of high-manganese steel, Int. J. Mechanical & Mechatronics Eng., 18 (2) (2018) 141-147.

[18] J. L. Cao, A. M. Zhao, J. X. Liu, J. G. He, R. Ding, Effect of Nb on microstructure and mechanical properties in non-magnetic high manganese steel, J. Iron Steel Res. Int., 21 (6) (2014) 600-605.

[19] G. Tęcza, A. G. Klemptka, Microstructure of cast high-manganese steel containing Titanium, Arch. Foundry Eng., 16 (4) (2016) 163-168.
[20] J. O. Agunsoye, T. S. Isaac, A. A. Abiona, On the comparison of the abrasive wear behavior of aluminum alloyed and standard Hadfield steels, J. Miner. Mater. Char. Eng., 1 (2013) 24-28.
[21] F. Maratray, High, Carbon Manganese Austenitic Steel, International Manganese Institute, Paris, France, 1995.
[22] X. Yuan, L. Chen, Y. Zhao, H. Di, F. Zhu, Influence of annealing temperature on mechanical properties and microstructures of a high manganese austenitic steel, J. Mater. Process Tech., 217 (2015) 278-285.
[23] L. Dingshan, L. Zhongyi, L. Wei, Influence of carbon content on microstructure and mechanical properties of Mn13Cr2 and Mn18Cr2 cast steels, China Foundry, 11 (3) (2014) 173-178.
[24] S. A. Torabi, K. Amini, M. Naseri, Investigating the effect of manganese content on the properties of high manganese austenitic steels, Int. J. Adv. Design Manuf. Tech., 10 (1) (2017) 75-83.
[25] L. G. Korshunov, I. I. Kositsina, V. V. Sagaradze, and N. L. Chernenko, Effect of the carbide phase on the tribological properties of high manganese anti-ferromagnetic austenitic steels alloyed with vanadium and molybdenum, Phys. Met. Metallogr., 112 (1) (2011) 90-100.
[26] M. Mohammadnezhad, V. Javaheri, M. Naseri, Effect of the molybdenum on the microstructural and mechanical properties of Hadfield austenitic manganese steel, The Second International and the Seventh Joint Conference of Iranian Metallurgical Engineering and Iranian Foundaryman Seintific Societies, 12816 (2013) https://www.civilica.com/Paper-IMES07-IMES07_406.html
[27] S. Kuyucak, R. Zavadil, On the heat treatment of Hadfield’s austenitic manganese steels, Part II: metallographic studies, AFS Trans.108, Paper No.00-126, 2000.
[28] D. K Subramanyam, A. E. Swansiger, H. S. Avery, Metallography and Microstructures: Austenitic manganese steel castings, ASM Handbook, Vol. 9 (1991), p. 240.
[29] S. Kuyucak, R. Zavadil, On the heat treatment of Hadfield’s austenitic manganese steels, Part III: heat transfer model, macro segregation and phosphide eutectic, AFS Trans.109, Paper No. 01-117, 2001.
[30] B. N. Venturelli, E. Albertin, C. R. F. Azevedo, The effect of the austenite grain refinement on the tensile and impact properties of cast Hadfield steel, Mater. Res., 21 (5) (2018).
[31] U. Lee, S. S. Sohn, S. Hong, B. C. Suh, S. K. Kim, B. J. Lee, N. J. Kim, and S. Lee, Effects of Mn addition on tensile and Charpy impact properties in austenitic Fe-Mn-C-Al-based steels for cryogenic applications, Metall. Mater. Trans. A, 45 (A) (2014) 5419-5430.
[32] D. Canadinc, H. Sehitoglu, H. J. Maier, D. Niklasch and Y.I. Chumlyakov, Orientation evolution in Hadfield steel single crystals under combined slip and twinning, Int. J. Solids Struct., 44 (2007) 34–50.
[33] N. K. Tewary, S. K. Ghosh and S. Chatterjee, Deformation behavior of low carbon high Mn twinning-induced plasticity steel, J. Mech., 0 (0) (2017) 1–9.
[34] C. Okechukwu, O. A. Dahunsi, P. K. Oke, I. O. Oladele and M. Dauda, Prominence of Hadfield steel in mining and minerals industries: A review, Int. J. Eng. Tech., 3 (2) (2017) 83-90.
[35] M. Sabzi, S. M. Dezfuli, Post weld heat treatment of hypereutectoid Hadfield steel: Characterization and control of microstructure, phase equilibrium, mechanical properties and fracture mode of welding joint, J. Manuf. Process, 34 (2018) 313-328.
[36] J. O. Olawale, S. A. Ibitoye, M. D. Shittu, Workhardening behavior and microstructural analysis of failed austenitic manganese steel Crusher Jaws, Mater. Res., 16 (6) (2013) 1274-1281

[37] J. O. Agunsoye, T. S. Isaac, A. A. Abiona, On the comparison of microstructure characteristics and mechanical properties of high chromium white iron with the Hadfield austenitic manganese steel, J. Miner. Mater. Char. Eng., 1 (2013) 24-28

[38] X. J. Wang, X. J. Sun, C. Song, H. Chen, S. Tong, W. Han and F. Pan, Grain size-dependent mechanical properties of a high-manganese austenitic steel, Acta Metall. Sin. Engl., 32 (16) (2019) 746-754

[39] P. C. Astudillo, A. F. Soriano, G. M. B. Osorio, H. S. Sthepa, J. Ramos, J. F. Duran, G. A. P. Alcazar, Comparative study of the mechanical and tribological properties of a Hadfield and a Fermanal steel, Hyperfine Interact, 238 (56) (2017) 1-12

[40] D. R. Marsano, Grain refinement and optimization of Hadfield steel casting liners for mineral crushing, Masters Thesis, Golden, Colorado School of Mines, 2000.

[41] M. M. Atabaki, S. JafariIv, H. Abdollah-pour, Abrasive wear behavior of high chromium cast iron and Hadfield steel-A comparison, J. Iron Steel Res. Int., 19 (4) (2012) 43-50
FIGURE CAPTIONS

Figure 1. Heat treatment process of the alloys

Figure 2. Optical micrographs showing the as-cast microstructure of alloys: (a) 0.7C-17Mn, (b) 1.0C-13Mn, (c) 1.0C-17Mn, (d) 1.0C-21Mn, (e) 1.3C-17Mn and (f) XRD patterns of the as-cast alloys

Figure 3. SEM micrograph (BSE mode) and EDS results of alloys in as-cast condition: (a) 0.7C-17Mn, (b) 1.0C-17Mn, (c) 1.3C-17Mn, (d) 1.3C-17Mn showing the detailed two-phase lamellar carbide precipitation

Figure 4. Optical micrographs showing the solution annealed microstructure of alloys: (a) 0.7C-17Mn, (b) 1.0C-17Mn, (c) 1.0C-17Mn, (d) 1.0C-21Mn, (e) 1.3C-17Mn and (f) XRD patterns of the alloys after solution annealing

Figure 5. SEM micrographs (BSE mode) of alloys in solution annealed condition: (a) 1.0C-17Mn and (b) 1.3C-17Mn

Figure 6. Hardness test results of alloys in as-cast and solution annealed condition in comparison with as-cast carbide content

Figure 7. Engineering stress-strain curves: (a) as-cast and (b) solution annealed alloys

Figure 8. Optical micrographs of solution annealed alloys after fracture in the tensile test: (a) 1.0C-17Mn and (b) 1.3C-17Mn

Figure 9. Charpy impact test results of alloys in as-cast and solution annealed conditions

Figure 10. SEM micrograph (SE mode) of Charpy V-notch impact samples of alloys in solution annealed condition (a) 1.0C-17Mn and (b) 1.3C-17Mn

Figure 11. SEM micrograph (SE mode) of worn surface for solution annealed 1.0C-17Mn alloy under normal loads of: (a) 2.5N, (b) 5N, (c) 10N and (d) 15N

Figure 12. Detailed SEM micrograph (SE mode) of worn surface for solution annealed 1.0C-17Mn alloy under 15N

Figure 13. Wear rate of solution annealed alloys in the various loads as a function of (a) Carbon and (b) Manganese content
TABLE CAPTIONS

Table 1. Chemical composition of alloys (wt%)
Table 2. Volume fraction of carbides and austenite in as-cast alloys (%)
Table 3. Grain size of alloys in as-cast and solution annealed condition
Table 4. Comparison of liqudus and soludius temperature of alloys (with Jmat-Pro Software)
Table 5. Room temperature tensile test results of alloys in as-cast and solution annealed conditions.