Mendelian randomization implies no direct causal association between leukocyte telomere length and amyotrophic lateral sclerosis

Yixin Gao¹, Ting Wang¹, Xinghao Yu¹, International FTD-Genomics Consortium (IFGC)*, Huashuo Zhao¹,² & Ping Zeng¹,²

We employed Mendelian randomization (MR) to evaluate the causal relationship between leukocyte telomere length (LTL) and amyotrophic lateral sclerosis (ALS) with summary statistics from genome-wide association studies (n = ~38,000 for LTL and ~81,000 for ALS in the European population; n = ~23,000 for LTL and ~4,100 for ALS in the Asian population). We further evaluated mediation roles of lipids in the pathway from LTL to ALS. The odds ratio per standard deviation decrease of LTL on ALS was 1.10 (95% CI 0.93–1.31, p = 0.274) in the European population and 0.75 (95% CI 0.53–1.07, p = 0.116) in the Asian population. This null association was also detected between LTL and frontotemporal dementia in the European population. However, we found that an indirect effect of LTL on ALS might be mediated by low density lipoprotein (LDL) or total cholesterol (TC) in the European population. These results were robust against extensive sensitivity analyses. Overall, our MR study did not support the direct causal association between LTL and the ALS risk in neither population, but provided suggestive evidence for the mediation role of LDL or TC on the influence of LTL and ALS in the European population.

Amyotrophic lateral sclerosis (ALS) is an adult-onset fatal multisystem neurodegenerative disease, leading to substantial public health threat although it is relatively rare worldwide. However, the cause and pathogenesis underlying ALS mostly remains unknown, with few replicable and definitive risk factors and scarce drugs available¹–⁴. The number of ALS cases is predicted to increase dramatically due to population aging in the coming years⁵, which would further aggravate the ALS-associated social and economic burden. Therefore, the identification of its risk factors can provide better understanding of ALS and has the potential to pave the way for therapeutic intervention.

In the past few years the role of telomere in various complex diseases has attracted much attention⁶. Progressive telomere shortening occurs in all dividing normal cells due to incomplete synthesis of DNA lagging-strand, oxidative damage and other factors, which ultimately leads to cellular growth arrest or apoptosis that is thought to be an initial proliferative barrier to tumor development in humans⁷. Indeed, recent studies suggested that leukocyte telomere length (LTL) was widely relevant to age-related diseases and disorders (e.g. many types of cancer and coronary heart disease)⁸–¹¹. In particular, it was demonstrated that shorter LTL was associated with various neurodegenerative disorders. For example, a latest study showed LTL at baseline and 18 months was shorter in patients of Parkinson's disease (PD) compared to healthy controls¹², although prior studies found nonsignificant association between LTL and PD (Table 1). In addition, telomere shortening was recognized as an indicator of progression for Alzheimer’s disease (AD) (Table 1).

However, the knowledge about the relationship between LTL and ALS is very limited. Previous studies proposed that telomerase inhibition could be a pathogenetic contributor to the neurodegeneration in ALS¹³. A recent study¹⁴, along with ALS animal models¹⁵, offered some evidence that shorter LTL likely decreased the risk...
of ALS (Table 1). However, it remains uncertain whether such association is causal or not. Because it is rather challenging to determine causal relationship between LTL and ALS via observational studies or randomized controlled trials (RCT), in this study we resort to another novel statistical approach called Mendelian randomization (MR)16,17. Briefly, depending on single nucleotide polymorphisms (SNPs) as instrumental variables, MR can infer the causal association between an exposure (e.g. LTL) and an outcome (e.g. ALS)17,18. The basic idea behind MR is that the two alleles of a genetic variant are randomly allocated during the process of gamete formation under the Mendel’s law; such allocation is analogous to the randomization of subjects in RCT and hence has a powerful control for reverse causality and confounders19 (Supplementary Fig. S1). Furthermore, the recent success of large-scale genome-wide association studies (GWAS)20–24 allows us to choose appropriate SNPs as valid instrumental variables for a variety of exposures for causal inference in MR25–27.

In this study we aim to investigate whether there exists a causal association between LTL and the risk of ALS. To achieve such goal, we conducted the two-sample MR analysis with summary statistics publicly available from GWAS with ~38,000 individuals for LTL and ~81,000 individuals for ALS in the European population, and with ~23,000 individuals for LTL and ~4,100 individuals for ALS in the Asian population. Additionally, we further explored the mediation role of lipids in the relationship between LTL and ALS with network MR analysis given the evidence that blood lipids may be relevant to ALS.

Materials and methods

GWAS data sources for LTL, ALS and other relevant traits. We first obtained genetic data for LTL from the ENGAGE Telomere Consortium21, where a total of ~2.3 million SNPs for 37,684 individuals of European ancestry were contained after quality control (Supplementary Text). In this study LTL was measured as a continuous variable, and the linear additive regression was implemented for each genetic variant to detect independent associated index SNPs ($p < 5.00E−8$) were selected as candidate instrumental variables for LTL. To minimize the pleiotropic bias of instruments, we applied a conservative manner28 that was previously undertaken in many MR studies29–32. Specifically, we would remove index SNPs that were located within 1 Mb of ALS-associated locus (Supplementary Table S1) and that may be potentially related to ALS if their Bonferroni-adjusted \(p \) values were less than 0.05. Finally, we reserved seven SNPs to serve as instrumental variables. To estimate the causal effect of LTL on ALS, we obtained summary statistics from the largest ALS GWAS that contained ~10 million SNPs on 80,610 European individuals (20,806 ALS cases and 59,704 controls)20 (https://als.umn.edu/). The summary statistics (e.g. marginal effect size, standard error and effect allele) of these instruments are shown in Table 2.

In addition, since ALS and frontotemporal dementia (FTD) often represent a continuous disease spectrum with comorbidity in up to 50% cases, and share common genetic mechanisms33–35, we also explored the causal association between LTL and FTD with MR approaches (Table 3). We removed index SNPs that were associated with FTD26 and reserved six instruments as one instrument was missing in the FTD GWAS data set (Supplementary Tables S2–S3). Furthermore, we attempted to validate whether the identified relationship between LTL and ALS in the European population also holds in the Asian population. Therefore, we performed additional MR analyses with another two GWAS datasets in which both LTL22 and ALS37 were conducted on the Asian individuals (Supplementary Text). Note that, the two sets of index SNPs of LTL from the two populations share no common instruments (Table 2 and Supplementary Table S4).

We note that the ALS cases were sporadic and the European–ALS GWAS adjusted the effect of age in the association analysis (Supplementary Text). The latter indicates that the confounding effect due to age on the

NDD	OR/HR (95% CI, p)	N (case/control)	Country	References
PD	0.70 (0.38–1.28, 0.246)	956/1,284	EUR and Asian	74
PD	0.91 (0.71–1.16, 0.450)	96/712	USA	75
PD	0.99 (0.77–1.27, 0.535)	131/115	Finland	76
PD	0.99 (0.88–1.12, 0.875)	408/809	USA	77
PD	1.30 (0.76–2.17, 0.340)	28/27	Japan	78
FTD	0.89 (0.68–1.16, 0.400)	6,100/7,125	EUR	79
ALS	0.92 (0.87–0.97, 0.008)	1,241/335	UK	80
AD	1.03 (1.01–1.05, 0.012)	71,880/383,378	EUR	81
AD	1.05 (1.01–1.09, 0.010)	71,880/383,378	EUR	82
AD	1.19 (1.02–1.41, 0.030)	17,008/37,154	EUR	83
AD	1.35 (1.12–1.67, 0.002)	25,580/48,466	EUR	84
AD	1.35 (1.11–1.67, 0.003)	25,580/48,466	EUR	85
AD	2.70 (1.69–4.17, 1.47E–05)	860/2,022	Multiethnic	86
Dementia	1.20 (1.00–1.47, 0.058)	190/1,469	Multiethnic	87
Dementia	5.26 (1.85–14.3, 0.002)	20/151	UK	88

Table 1. Estimated effect sizes of shorter LTL on neurodegenerative diseases in previous studies. NDD neurodegenerative disease, PD Parkinson’s disease, ALS amyotrophic lateral sclerosis, AD Alzheimer’s disease, OR odds ratio, HR hazard ratio, CI confidence interval, p value, N sample size, EUR European.
Table 2. Summary information of instrumental variables for LTL and ALS in the European population. SNP, the label of single-nucleotide polymorphism that served as instrumental variable, CHR chromosome, BP base position, A1 effect allele, indicates the allele that is associated with shorter LTL, explaining why all the BETA estimates are negative, A2 alternative allele, BETA SNP effect size, SE standard error of the SNP effect size, p and N are respectively the p value and sample size. PVE proportion of variance explained by the SNP (i.e. \(PVE_i = (\hat{\beta}_i^2) / ((\hat{\beta}_i^2) + \text{var}(\hat{\beta}_i) \times N_i) \)), where \(\hat{\beta}_i \) and \(\text{var}(\hat{\beta}_i) \) are the estimated effect size and variance for instrument \(i \); F- F statistic (i.e. \(F_i = PVE_i(N_i - 1 - k) / (k - k \times PVE_i) \)), \(N_i \) is the sample size for instrument \(i \) and \(k \) is the number of instruments). Both of PVE and F statistic are calculated to validate the issue of weak instruments.

Table 3. GWAS data sets used in our MR analysis in the present study. Here \(k_i \) is the final number of instruments employed in the analysis while \(k_0 \) is the number of candidate instruments. ALS amyotrophic lateral sclerosis, FTD frontotemporal dementia, HDL high density lipoprotein, LDL low density lipoprotein, TC total cholesterol, TG triglycerides, LTL leukocyte telomere length, Pop population, EUR European, AVS the ALS Variant Server, IFGC International FTD-Genomics Consortium, GLGC Global Lipids Genetics Consortium, ENGAGE European Network for Genetic and Genomic Epidemiology, SCHS Singapore Chinese Health Study.

Causal effect estimation via two-sample Mendelian randomization. We implemented the two-sample MR to estimate the causal effect of LTL on ALS via inverse-variance weighted (IVW) methods (Supplementary Text). We also employed the weighted median method, likelihood-based approach, leave-one-out (LOO) analysis, MR-PRESSO test and MR-Egger regression as part of sensitivity analyses to validate the robustness of our results. As a supplementary analysis, we further implemented the generalized summary based Mendelian Randomization (GSMR) method by leveraging possible linkage disequilibrium among instruments, and applied the HEIDI-outlier approach to detect pleiotropic instrumental variables.
Mediation analysis to explore the mediation effect of lipids between LTL and ALS/FTD. In our MR analysis, we attempted to provide deeper insight into the relationship between LTL and ALS/FTD by conducting mediation analysis although non-significant causal associations were identified in neither population. Because previous studies showed LTL was associated with blood lipid levels (as would be also confirmed by our results; see below for details), and because there existed evidence for potential causal associations between lipids and ALS, we further investigated whether the effect of LTL on ALS/FTD might be mediated through lipid mediators. Because previous studies showed LTL was associated with blood lipid levels (as would be also confirmed by our results; see below for details), and because there existed evidence for potential causal associations between lipids and ALS, we further investigated whether the effect of LTL on ALS/FTD might be mediated through lipid mediators. We selected six or eight index association SNPs to serve as instrumental variables for LTL on lipids in the European and Asian populations, respectively. In the European population, these two lipids are causally associated with ALS: the ORs per SD decrease of LTL (~ 30 base pair per year) on ALS is 0.81 (95% CI 0.44–1.48, p = 0.498) and on FTD 0.75 (95% CI 0.53–1.07, p = 0.116) (Table 4). We also fail to detect statistically significant causal relationships per SD decrease of LTL on HDL and TG in the Asian population (Table 4). All the selected instruments collectively explain about 1.26% phenotypic variation of LTL and all the F statistics are above 10 (ranging from 31.4 to 147.0 with an average of 62.3) (Table 2), which rules out the possibility of weak instrument bias. With the fixed-effects IVW method, we observe that the odds ratio (OR) per standard deviation (SD) decrease of LTL (~ 30 base pair per year) on ALS is 1.10 (95% confidence interval [CI] 0.93–1.31, p = 0.274) in the European population and 0.75 (95% CI 0.53–1.07, p = 0.116) in the Asian population (Table 4). We also fail to detect statistically significant causal relationship between LTL and FTD in the European population, with the OR per SD decrease of LTL on FTD estimated to be 0.81 (95% CI 0.44–1.48, p = 0.498) (Table 4).

We now validated the causal effect of LTL on ALS estimated above through various sensitivity analyses. Here, we mainly focused on the relationship between LTL and ALS in the European population (Table 4). The weighted median and maximum likelihood methods generate similar null causal effect estimates. In particular, the OR is estimated to be 1.06 (95% CI 0.85–1.32, p = 0.624) by the weighted median method and 1.10 (95% CI 0.92–1.32, p = 0.290) by the maximum likelihood approach. Both the LOO (Supplementary Table S10) and MR-PRESSO analyses indicate that no instrument outliers exist (see also Fig. 1). The MR-Egger regression provides little evidence of horizontal pleiotropy as its intercept is not significantly deviated from zero (0.006, 95% CI = 0.079–0.090, p = 0.872). The results of sensitivity analyses for LTL and ALS in the Asian population as well as for LTL and FTD in the European population are summarized in Supplementary Tables S11-S12.

Finally, we conducted GMSR with genotypes of 503 European individuals or 504 Asian individuals in the 1,000 Genomes Project as reference panel. It is shown that GMSR generates consistent causal effect estimates with previous results (Table 4), again supporting the null association between LTL and ALS/FTD. In addition, the HEIDI-outlier approach does not detect any instruments that exhibit apparent pleiotropic effects, implying the observed association between LTL and ALS/FTD would not be confounded by pleiotropy.

Mediation analysis of the role between LTL, lipids and ALS/FTD. Although we do not find statistically significant evidence that LTL causally influences ALS/FTD in the direct biological pathway, we cannot fully exclude the probability that LTL may impact ALS/FTD via other indirect pathways. We selected six or eight index association SNPs to serve as instrumental variables for LTL on lipids in the European and Asian populations, respectively. In the European population, the causal effects per SD decrease of LTL on HDL and TG are 0.08 (95% CI 0.03–0.14, p = 0.005) and −0.10 (95% CI −0.15 to −0.04, p = 0.001), respectively (Table 5). However, HDL and TG are not associated with ALS, implying there may be no indirect effects of LTL on ALS mediated by HDL or TG.

On the other hand, the causal effect per SD decrease of LTL on LDL and TC are −0.06 (95% CI −0.12–0.00, p = 0.057) and −0.06 (95% CI −0.12–0.00, p = 0.052), respectively, both of which are marginally significant at the level of 0.05. Moreover, in the European population these two lipids are causally associated with ALS: the ORs per SD decrease of LDL (~ 37.0 mg/dL) and TC (~ 42.6 mg/dL) on ALS are ~0.11 (95% CI 0.10 to −0.05, p = 3.41E–04) and −0.10 (95% CI −0.16 to −0.04, p = 0.002), respectively. Therefore, based on the basic

Method	ALS-european	FTD-european	ALS-asian
IVW-random	1.10 (0.92–1.32, 0.284)	0.81 (0.44–1.48, 0.498)	0.75 (0.53–1.07, 0.116)
IVW-fixed	1.10 (0.93–1.31, 0.274)	0.81 (0.44–1.48, 0.498)	0.75 (0.53–1.07, 0.116)
MR-Egger	1.02 (0.32–3.29, 0.964)	0.40 (0.01–14.71, 0.516)	0.61 (0.24–15.6, 0.241)
Weighted Median	1.06 (0.85–1.32, 0.624)	0.73 (0.35–1.52, 0.400)	0.67 (0.43–1.05, 0.082)
Likelihood	1.10 (0.92–1.32, 0.290)	0.81 (0.44–1.48, 0.496)	0.75 (0.53–1.07, 0.115)
GSMR	1.10 (0.93–1.31, 0.274)	0.81 (0.44–1.48, 0.498)	0.73 (0.51–1.05, 0.086)

Table 4. Association of LTL with the risk of ALS or FTD in the European and Asian populations. The intercept of the MR-Egger regression is 0.006 (95% CI −0.079–0.090, p = 0.872), 0.055 (95% CI 0.214–0.323, p = 0.601) or 0.026 (95% CI 0.076–0.128, p = 0.552), respectively. Seven instruments were finally employed because the genotype of rs41309367 on gene RTEL1 was missing in the 1,000 Genomes Project.
principle of the classical mediation inference, we can reasonably state that there likely exists potential indirect effect of LTL on ALS mediated by LDL ($ab = 0.007$ and $p = 0.079$) or TC ($ab = 0.006$ and $p = 0.092$) (Table 6). More specifically, in terms of the suggestive evidence of mediation effects displayed above, in the European population we can conclude that shorter LTL can reduce the LDL/TC level, which in turn results in the lower risk of ALS. However, we fail to repeat such mediation association for ALS in the Asian population or for FTD in the European population (Tables 5, 6).

Finally, we examined whether the lack of detectable non-zero causal effect of LTL on ALS is due to the lack of statistical power. We calculated the statistical power to detect an OR of 1.10 or 1.20 (approximately equal the estimated causal effects above) per SD decrease of LTL on the risk of ALS following an analytic approach (https://cnsgenomics.shinyapps.io/mRnd/)\(^4\). It is shown the estimated statistical power is only 15% or 44% (Fig. 2), indicating we have low to moderate power to identify such causal effect with current sample sizes if LTL is indeed causally associated with the risk of ALS.

Discussion

In the present study we have implemented a comprehensive two-sample MR analysis to dissect whether there exists causal relationship between LTL and the risk of ALS. To our knowledge, this is the first MR study to investigate the relationship between LTL and ALS using statistical genetic approaches via summary statistics available from large-scale GWAS. We found that an indirect effect of LTL on ALS might be mediated by LDL or TC, although our MR analysis did not support the existence of direct causal association between LTL and ALS.

![Figure 1](https://example.com/figure1.png)

Table 5. Three directions of the relation with exposure to mediator, mediator to outcome and exposure to outcome. Pop population, EUR European, LTL leukocyte telomere length, HDL high density lipoprotein, LDL low density lipoprotein, TC total cholesterol, TG triglycerides, ALS amyotrophic lateral sclerosis, FTD frontotemporal dementia, p p value, The effect size and the standard error of the relationship with Exposure to Mediator, Mediator to Outcome and Exposure to Outcome are denoted as a, b, c and $SE(a)$, $SE(b)$, $SE(c)$, respectively. The marginally significant causal association between LTL and LDL/TC and the significant causal association between LDL/TC and ALS in the European population are shown in bold.

Pop	Exposure	Mediator	a	SE (a)	p	Mediator	Outcome	b	SE (b)	p	Exposure	Outcome	c	SE (c)	p
EUR	LTL	HDL	0.082	0.029	0.005	HDL	ALS	0.013	0.039	0.743	LTL	ALS	0.097	0.089	0.274
	LTL	LDL	−0.060	0.031	0.057	LDL	ALS	−0.110	0.031	3.41E−04	LTL	ALS	0.097	0.089	0.274
	LTL	TC	−0.059	0.031	0.052	TC	ALS	−0.098	0.032	0.002	LTL	ALS	0.097	0.089	0.274
	LTL	TG	−0.095	0.028	0.001	TG	ALS	−0.045	0.044	0.309	LTL	ALS	0.097	0.089	0.274
	LTL	HDL	0.082	0.029	0.005	HDL	FTD	−0.035	0.125	0.786	LTL	FTD	−0.208	0.308	0.498
	LTL	LDL	−0.060	0.031	0.057	LDL	FTD	−0.139	0.107	0.196	LTL	FTD	−0.208	0.308	0.498
	LTL	TC	−0.059	0.031	0.052	TC	FTD	−0.142	0.104	0.172	LTL	FTD	−0.208	0.308	0.498
	LTL	TG	−0.095	0.028	0.001	TG	FTD	−0.018	0.140	0.898	LTL	FTD	−0.208	0.308	0.498
Asian	LTL	HDL	−0.020	0.022	0.366	HDL	ALS	0.108	0.129	0.404	LTL	ALS	−0.284	0.180	0.116
	LTL	LDL	0.003	0.023	0.888	LDL	ALS	−0.234	0.131	0.073	LTL	ALS	−0.284	0.180	0.116
	LTL	TC	−0.022	0.014	0.911	TC	ALS	−0.276	0.214	0.197	LTL	ALS	−0.284	0.180	0.116
	LTL	TG	0.018	0.014	0.214	TG	ALS	0.160	0.195	0.414	LTL	ALS	−0.284	0.180	0.116
ALS/FTD. These findings were robust to the choice of statistical methods and were carefully validated through various sensitivity analyses.

Our results are not fully consistent with those in previous studies (Table 1). For example, previous studies displayed distinct association in direction and magnitude between LTL and ALS in the European population.

Compared to those prior work, our study has the advantage of larger sample size (20,806/59,804 vs. 6,100/7,125 and 1,241/335) and thus holds higher power. In addition, we recognize that the estimated causal effect of shorter LTL on ALS had an opposite direction in the two populations although they were non-significant in neither population. Given the substantial difference of ALS in clinical features and molecular mechanisms between European and Asian populations, this finding may not be unexpected. As little has been known about the causal factors for ALS to date, our study therefore contributes considerably to the research area on the relationship between LTL and the risk of ALS, and has potential implication for the therapeutic intervention of ALS.

Besides revealing the null causal relationship between LTL and ALS in the two populations, our study also, at least in part, offers empirical evidence for several questions that were previously unanswered. First, we also validated that the causal association did not hold between LTL and FTD, which might be partly due to the fact that FTD and ALS share extensive similarities in clinical manifestation and genetic foundation. Secondly, unlike previous studies, the mediation analysis was performed, which provided suggestive evidence supporting the mediation role of LDL or TC in the causal pathway from LTL to ALS in the European population. Therefore, interventions by targeting LDL or TC can be considered as a potential promising manner to counteract the effect of LTL changes on the risk of ALS.

Table 6. Mediation analysis of the role between telomere length, lipids and ALS/FTD. Pop: population, EUR: European, LTL: leukocyte telomere length, HDL: high density lipoprotein, LDL: low density lipoprotein, TC: total cholesterol, TG: triglycerides, ALS: amyotrophic lateral sclerosis, FTD: frontotemporal dementia. \(\delta \): the mediation effect, \(\delta \): standard error of the mediation effect, CI, Z and \(p \) represent confidence interval, Z statistic and \(p \) value, respectively. The marginally significant mediated effect of LTL on the risk of ALS by LDL or TC are shown in bold.

Pop	Exposure	Mediator	Outcome	\(\delta \) (\(\delta \))	95% CI	Z	\(p \)
EUR	LTL	HDL	ALS	0.001 (0.003)	–0.005–0.007	0.354	0.724
EUR	LTL	LDL	ALS	0.007 (0.004)	–0.001–0.014	1.754	0.079
EUR	LTL	TC	ALS	0.006 (0.003)	–0.001–0.013	1.682	0.092
EUR	LTL	HG	ALS	0.008 (0.007)	–0.005–0.022	1.194	0.232
EUR	LTL	TC	FTD	0.008 (0.007)	–0.005–0.022	1.227	0.220
EUR	LTL	HG	FTD	0.002 (0.013)	–0.023–0.027	0.134	0.893
Asian	LTL	HDL	ALS	–0.002 (0.002)	–0.006–0.002	–1.048	0.295
Asian	LTL	LDL	ALS	–0.001 (0.004)	–0.009–0.008	–0.157	0.875
Asian	LTL	TC	ALS	0.001 (0.002)	–0.004–0.005	0.223	0.824
Asian	LTL	TG	ALS	0.003 (0.003)	–0.003–0.009	0.916	0.360

Figure 2. Statistical power calculation for the causal effect of LTL on ALS estimated with the method proposed in. In the calculation, the total phenotypic variance explained by instrumental variables was 1.26% and the proportion of ALS cases varied from 0.1 to 0.5, the significance level was 0.05, the sample size was 20,000, 37,684, 80,610 or 100,000, and the OR = 1.10 or 1.20.
Of course, our study is not without drawbacks. In addition to the general MR limitations similar to other work (e.g. the linear effect assumption), other potential shortcomings should be mentioned17,18,79. First, in our study telomere length measured in blood leukocytes was employed; however, LTL may be not representative of telomere length in tissues that are most relevant to ALS. Second, we note that the Asian-ALS GWAS and the European-FTD GWAS did not adjust the effect of age in their association analyses (Supplementary Text), which may bias our estimates because telomere length would become shorter with age. However, we cannot examine the causal effect between LTL and ALS/FTD stratified by the age group14,17 as it is impossible for us to obtain individual-level GWAS datasets due to privacy concerns. Third, as C9orf72, TARDBP and FUS are known to be the most common mutated genes in ALS71–73. Removing ALS patients with mutations in those genes and performing additional sensitivity analysis can shed new lights on the relationship between LTL and ALS in more general population of sporadic ALS cases (note that excluding those special ALS cases might lead to the reduction of statistical power because of decreased sample size). Again, we cannot conduct such analysis as individual datasets are not accessible. Fourth, as shown above, our MR analysis has only limited statistical power; in addition, our mediation analysis showed that the mediated effect of LTL on the risk of ALS by LDL or TC was only marginally significant. Therefore, studies with larger sample size are required to validate our results in both the European and Asian populations.

Conclusions

Our MR study did not support the causal association between LTL and the risk of ALS in neither the European population nor the Asian population, but provided suggestive evidence supporting the mediation role of LDL or TC on the influence of LTL and ALS in the European population.

Received: 13 January 2020; Accepted: 2 July 2020
Published online: 22 July 2020

References

1. Al-Chalabi, A. & Hardiman, O. The epidemiology of ALS: a conspiracy of genes, environment and time. Nat. Rev. Neurol. 9, 617–628 (2013).
2. Armon, C. Smoking is a cause of amyotrophic lateral sclerosis. High low-density lipoprotein cholesterol levels? Unsure. Ann. Neurol. 85, 465–469 (2019).
3. Bandres-Ciga, S. et al. Shared polygenic risk and causal inferences in amyotrophic lateral sclerosis. Ann. Neurol. 85, 470–481 (2019).
4. Zhan, Y. & Fang, F. Smoking and amyotrophic lateral sclerosis: a mendelian randomization study. Ann. Neurol. 85, 482–484 (2019).
5. Arthur, K. C. et al. Projected increase in amyotrophic lateral sclerosis from 2015 to 2040. Nat. Commun. 7, 12408 (2016).
6. Kong, C. M., Lee, X. W. & Wang, X. Telomere shortening in human diseases. FEBS J. 280, 3180–3193 (2013).
7. Shy, J. W. & Wright, W. E. Telomeres and telomerase: three decades of progress. Nat. Rev. Genet. 20, 299–309 (2019).
8. Zhu, H., Belcher, M. & van der Harst, P. Healthy aging and disease: role for telomere biology? Clin. Sci. (Lond.) 120, 427–440 (2011).
9. Haycock, P. C. et al. Association between telomere length and risk of cancer and non-neoplastic diseases a Mendelian randomization study. Jama Oncol. 3, 636–651 (2017).
10. Zhang, C. et al. Genetic determinants of telomere length and risk of common cancers: a mendelian randomization study. Hum. Mol. Genet. 24, 5356–5366 (2015).
11. Zhan, Y. et al. Exploring the causal pathway from telomere length to coronary heart disease: a network mendelian randomization study. Circ. Res. 121, 214–219 (2017).
12. Martín-Ruiz, C. et al. Senescence and inflammatory markers for predicting clinical progression in Parkinson’s disease: the ICICLE-PD study. J. Parkinsons Dis. 10, 193–206 (2020).
13. De Felice, B. et al. Telomerase expression in amyotrophic lateral sclerosis (ALS) patients. J. Hum. Genet. 59, 555–561 (2014).
14. Al Kheifa, A. et al. Telomere length is greater in ALS than in controls: a whole genome sequencing study. Amyotroph. Lateral. Scler. Frontotemporal. Degener. 20, 1–6 (2019).
15. Linkus, B. et al. Telomere shortening leads to earlier age of onset in ALS mice. Aging (Albany N. Y.) 8, 382–393 (2016).
16. Fall, T. et al. The role of adiposity in cardiometabolic traits: a mendelian randomization analysis. PLoS Med. 10, e1001474 (2013).
17. Sliepman, P. M. & Grant, S. F. Mendelian randomization in the era of genomewide association studies. Clin. Chem. 56, 723–728 (2010).
18. Paternoster, L., Tilling, K. & Davey Smith, G. Genetic epidemiology and mendelian randomization for informing disease therapeutics: conceptual and methodological challenges. PLoS Genet. 13, e1006944 (2017).
19. Haycock, P. C. et al. Best (but oft-forgotten) practices: the design, analysis, and interpretation of mendelian randomization studies. Am. J. Clin. Nutr. 103, 965–978 (2016).
20. Nicolas, A. et al. Genome-wide analyses identify KIF5A as a novel ALS gene. Neuron 97, 1268–1283 (2018).
21. Codd, V. et al. Identification of seven loci affecting mean telomere length and their association with disease. Nat. Genet. 45, 422–427 (2013).
22. Dorajoo, R. et al. Loci for human leukocyte telomere length in the Singaporean Chinese population and trans-ethnic genetic studies. Nat. Commun. 10, 2491 (2019).
23. Visscher, P. M. et al. 10 Years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet. 101, 5–22 (2017).
24. Welter, D. et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 42, D1001-1006 (2014).
25. Zeng, P., Wang, T., Zheng, J. & Zhou, X. Causal association of type 2 diabetes with amyotrophic lateral sclerosis: new evidence from mendelian randomization using GWAS summary statistics. BMC Med. 17, 225 (2019).
26. Yu, X. et al. Relationship between birth weight and chronic kidney disease: evidence from systematics review and two-sample mendelian randomization analysis. Hum. Mol. Genet. ddaa074 (2020).
27. Yu, X. et al. Alcohol drinking and amyotrophic lateral sclerosis: an instrumental variable causal inference. Ann. Neurol. 88, 195–198 (2020).
28. Zeng, P. & Zhou, X. Causal association between birth weight and adult diseases: evidence from a mendelian randomization analysis. Front. Genet. 10, 618 (2019).
29. Zhao, J. V. & Schooling, C. M. Effect of linoleic acid on ischemic heart disease and its risk factors: a mendelian randomization study. BMC Med. 17, 61 (2019).

https://doi.org/10.1038/s41598-020-68848-9
30. Tyrrell, J. et al. Height, body mass index, and socioeconomic status: mendelian randomisation study in UK Biobank. Br. Med. J. 352, i582–i582 (2016).
31. Larsson, S. C., Burgess, S. & Michaelsson, K. Association of genetic variants related to serum calcium levels with coronary artery disease and myocardial infarction. JAMA 318, 371–380 (2017).
32. Ahmad, O. S. et al. A Mendelian randomization study of the effect of type-2 diabetes on coronary heart disease. Nat. Commun. 6, 1–11 (2015).
33. Diekstra, F. P. et al. C9orf72 and UNC13A are shared risk loci for amyotrophic lateral sclerosis and frontotemporal dementia: a genome-wide meta-analysis. Ann. Neurol. 76, 120–133 (2014).
34. Lattante, S., Ciura, S., Rouleau, G. A. & Kabashi, E. Defining the genetic connection linking amyotrophic lateral sclerosis (ALS) with frontotemporal dementia (FTD). Trends Genet. 31, 263–273 (2015).
35. Karch, C. M. et al. Selective genetic overlap between amyotrophic lateral sclerosis and diseases of the frontotemporal dementia spectrum. JAMA Neurol. 75, 860–875 (2018).
36. Ferrari, R. et al. Frontotemporal dementia and its subtypes: a genome-wide association study. Lancet Neurol. 13, 686–699 (2014).
37. Benyamin, B. et al. Cross-ethnic meta-analysis identifies association of the G9PR3-TNIP1 locus with amyotrophic lateral sclerosis. Nat. Commun. 8, 611 (2017).
38. Bowden, J. et al. Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: the role of the 1-2 statistic. Int. J. Epidemiol. 45, 1961–1974 (2016).
39. Burgess, S., Small, D. S. & Thompson, S. G. A review of instrumental variable estimators for Mendelian randomization. Stat. Methods Med. Res. 26, 2333–2355 (2017).
40. Hartwig, F. P., Davey Smith, G. & Bowden, J. Robust inference in summary data Mendelian randomization via the zero modal assumption. Ann. Stat. 44, 397–421 (2016).
41. Yavorska, O. O. & Burgess, S. Mendelian randomization: an R package for performing Mendelian randomization analyses using summarized data. Int. J. Epidemiol. 46, 1734–1739 (2017).
42. Bowden, J., Smith, G. D., Haycock, P. C. & Burgess, S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet. Epidemiol. 40, 304–316 (2016).
43. Burgess, S., Butterworth, A. & Thompson, S. G. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet. Epidemiol. 37, 658–665 (2013).
44. Noyce, A. L. et al. Estimating the causal influence of body mass index on risk of Parkinson disease: a Mendelian randomisation study. PLoS Med. 14, e1002314 (2017).
45. Verbanck, M., Chen, C.-Y., Neale, B. & Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 50, 693–698 (2018).
46. Burgess, S. & Thompson, S. G. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur. J. Epidemiol. 32, 377–389 (2017).
47. Zhu, Z. et al. Causal associations between risk factors and common diseases inferred from GWAS summary data. Nat. Commun. 9, 224 (2018).
48. Laimer, M. et al. Telomere length increase after weight loss induced by bariatric surgery: results from a 10 year prospective study. Int. J. Obes. (Lond.) 40, 773–778 (2016).
49. Rehkopf, D. H. et al. Leukocyte telomere length in relation to 17 biomarkers of cardiovascular disease risk: a cross-sectional study of US adults. PLoS Med. 13, e1002188 (2016).
50. Revesz, D., Milaneschi, Y., Verhoeven, J. E. & Penninx, B. W. J. H. Telomere length as a marker of cellular aging is associated with prevalent and progression of metabolic syndrome. J. Clin. Endocrinol. Metab. 99, 4607–4615 (2014).
51. Al-Attas, O. S. et al. Age at onset of amyotrophic lateral sclerosis in China. JAMA Neurol. 72, 860–875 (2015).
52. Weng, Q. et al. Leukocyte telomere length, lipid parameters and gestational diabetes risk: a case-control study in a Chinese population. Sci. Rep. 9, 8483 (2019).
53. Zeng, F. & Zhou, X. Causal effects of blood lipids on amyotrophic lateral sclerosis: a Mendelian randomization study. Hum. Mol. Genet. 28, 688–697 (2019).
54. Dupuis, L. et al. Dyslipidemia is a protective factor in amyotrophic lateral sclerosis. Neurology 70, 1004–1009 (2008).
55. MacKinnon, D. P., Fairchild, A. J. & Fritz, M. S. Mediation analysis. Annu. Rev. Psychol. 58, 593–614 (2007).
56. MacKinnon, D. P. Introduction to statistical mediation analysis (Routledge, London, 2008).
57. MacKinnon, D. P. & Fairchild, A. J. Current directions in mediation analysis. Curr. Dir. Psychol. Sci. 18, 16–20 (2009).
58. Richards, L., Bellocro, R. & Zugna, D. Mediation analysis in epidemiology: methods, interpretation and bias. Int. J. Epidemiol. 42, 1511–1519 (2013).
59. VanderWeele, T. J. Mediation analysis: a Practitioner’s guide. Annu. Rev. Publ. Health 37, 17–32 (2016).
60. Burgess, S., Daniel, R. M., Butterworth, A. S., Thompson, S. G. & Consortium, E-P. I. Network Mendelian randomization: using genetic variants as instrumental variables to investigate mediation in causal pathways. Int. J. Epidemiol. 44, 484–495 (2015).
61. Willer, C. J. et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 45, 1274–1283 (2013).
62. Cragg, J. G. & Donald, S. G. Testing identifiability and specification in instrumental variable models. Econom. Theor. 9, 222–240 (1993).
63. The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 526, 68–74 (2015).
64. Brion, M.-J.A., Shaikhzadov, K. & Visscher, P. M. Calculating statistical power in Mendelian randomization studies. Int. J. Epidemiol. 42, 1497–1501 (2013).
65. Chiuo, A. et al. Global epidemiology of amyotrophic lateral sclerosis: a systematic review of the published literature. Neuroepidemiology 41, 118–130 (2013).
66. Liu, M. S., Cui, L. Y., Fan, D. S. & Assoc, C. A. Age at onset of amyotrophic lateral sclerosis in China. Acta Neurol. Scand. 129, 163–167 (2014).
67. Ogaki, K. et al. Analysis of C9orf72 repeat expansion in 563 Japanese patients with amyotrophic lateral sclerosis. Neurobiol. Aging 33, 2527–2529 (2012).
68. Diez Roux, A. V. et al. Race/ethnicity and telomere length in the Multi-Sudy of Atherosclerosis. Aging Cell 8, 251–257 (2009).
69. Davidson, E. M. et al. Consideration of ethnicity in guidelines and systematic reviews promoting lifestyle interventions: a thematic analysis. Eur. J. Public Health 24, 508–513 (2014).
70. Sheehan, M. A., Didelez, V., Burton, P. R. & Tobin, M. D. Mendelian randomisation and causal inference in observational epidemiology. PLoS Med. 5, e177 (2008).
71. Zou, Z. Y. et al. Genetic epidemiology of amyotrophic lateral sclerosis: a systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry 88, 540–549 (2017).
72. Renton, A. E., Chio, A. & Traynor, B. J. State of play in amyotrophic lateral sclerosis genetics. Nat. Neurosci. 17, 17–23 (2014).
73. Onesto, E. et al. Gene-specific mitochondria dysfunctions in human TARDBP and C9ORF72 fibroblasts. Acta Neuropathol. Commun. 4, 47 (2016).
74. Forero, D. A. et al. Telomere length in Parkinson’s disease: a meta-analysis. Exp. Gerontol. 75, 53–55 (2016).
75. Wang, H. et al. Telomere length and risk of Parkinson’s disease. Mov. Disord. 23, 302–305 (2008).
Acknowledgements
We thank the ENGAGE Telomere Consortium, AVS, IFGC and all other GWAS consortium studies for making summary statistics datasets publicly available for us and are grateful to all the investigators and participants who contributed to those studies. Further acknowledgements for IFGC can be found in the Supplementary Acknowledgment. This study was supported by Youth Foundation of Humanity and Social Science funded by Ministry of Education of China (18YJC910002), the Natural Science Foundation of Jiangsu (BK20181472), the China Postdoctoral Science Foundation (2018M630607 and 2019T120465), the QingLan Research Project of Jiangsu for Outstanding Young Teachers (2018KJA727), the Six-Talent Peaks Project in Jiangsu of China (WSN-087), the China Postdoctoral Science Foundation (2018M630607 and 2019T120465), the Statistical Science Research Project from National Bureau of Statistics of China (2014LY112) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) for Xuzhou Medical University.

Author contributions
P.Z. and H.Z. conceived the idea for the study. P.Z. and Y.G. obtained the data. P.Z. and Y.G. cleared up the datasets. P.Z., T.W. and Y.G. performed the data analyses. P.Z., T.W., Y.G. and X.Y. interpreted the results of the data analyses. The IFGC Consortium provided the FTD summary data that was used in this study. All the authors reviewed the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-68848-9.

Correspondence and requests for materials should be addressed to H.Z. or P.Z.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020
International FTD-Genomics Consortium (IFGC)

Raffaele Ferrari7, Dena G. Hernandez4,5, Michael A. Nalls4, Jonathan D. Rohrer6,6, Adaikalaran Ramasamy5,7,7, John B. J. Kwok5,10, Carol Dobson-Stone9,10, William S. Brooks9,11, Peter R. Schofield9, Glenda M. Halliday9, John R. Hodges9, Olivier Piguet9, Lauren Bartley9, Elizabeth Thompson12,13, Eric Haan12,13, Isabel Hernández14, Águstin Ruiz14, Mercè Boada14, Barbara Borroni15, Alessandro Pavodani15, Carlos Cruchaga2,17,18, Nigel J. Cairns17,18, Luisa Benussi19, Giuliano Binetti20, Roberta Ghidoni19, Gianluigi Forloni21, Diego Albani21, Daniela Galimberti22,23, Chiara Fenoglio22,23, Maria Serpente22,23, Elio Scarpini21, Jordi Clarimón19,24,25, Alberto Lleo4,25, Rafael Blesa4,25, Maria Landquist Waldö26, Karin Nilsson26, Christer Nilsson27, Ian R. A. Mackenzie28, Gine-Yuek R. Hsiung29, David M. A. Mann30, Jordan Graff-Radford30,31, Christopher M. Morris33,34, Johannes Attems35, Timothy D. Griffiths35, Ian G. McKeith34, Alan J. Thomas34, Pietro Pietrini36, Edward D. Huse37, Eric M. Wasserman38, Atik Baboor39, Evelyn Jaros40, Michael C. Tierney38, Pau Pastor41,42, Cristiana Razquin41, Sara Ortega-Cubero25,41, Elena Alonso41, Robert Bernecky43,44, Janine Diehl-Schmidt45, Panagiotis Alexopoulos45, Alexander Kurz45, Innocenzo Rainero46,47, Elisa Rubino46,47, Lorenzo Pinessi46,47, Ekaterina Rogavec48, Peter St George-Hyslop48,49, Giacoma Rossi50, Fabrizio Tagliavini50, Giorgio Giaccone50, James B. Rowe51,52,53, Johannes C. M. Schlachetzki54, James Uphill55, John Collinge55, Simon Mead55, Adrian Danek56,57, M. Wassermann38, Atik Baborie39, Evelyn Jaros40, Michael C. Tierney38, Pau Pastor41,42, Didier Hannequin67, Véronique Golfer68, Martine Vercelletto69, Alexis Brice63,64,65,66, Benedetta Nacmias70, Sandro Sorbi71, Silvia Bagnoli72, Irene Piaceri72, Lena E. Hjermind72,73, Matthias Riemenschneider74,75, Manuel Mayhaus76, Bernd Ibach76, Gilles Gasparoni77, Sabrina Pichler77, Wei Gu77,79, Martin N. Rosso8, Nick C. Fox9, Jason D. Warren9, Maria Grazia Spillantini78, Huw R. Morris9, Patrizia Rizzu79, Peter Heutink79, Julie S. Snowden80, Sara Rollinson80, Anna Richardson81, Alexander Gerhard82, Amalia C. Bruni83, Raffaele Maletta83, Francesca Frangipane84, Chiara Cupidi84, Livia Bernardi84, Maria Anfossi83, Maura Gallo83, Maria Elena Conidi83, Nicoletta Smirne83, Rosa Rademakers84, Matt Baker84, Dennis W. Dickson85, Neill R. Graff-Radford85, Ronald C. Petersen86, David Knopman86, Keith A. Josephs86, Bradley F. Boeve86, Joseph E. Parisi87, William W. Seeley88, Bruce L. Miller89, Anna M. Karydas89, Howard Rosen89, John C. van Swieten90,91, Elise M. A. Mann92, Jordan Graff93, Ian R. A. Mackenzie94,95,96, Caroline Graff93,94,95,96, Florence Pasquier97, Adeline Rollin97, Vincent Deramecourt98, Thibaud Lebouvier99, Dimitrios Kapogiannis100, Luigi Ferrucci101, Stuart Pickering-Brown100, Andrew B. Singleton101, John Hardy102 & Parastoo Momen103

3Department of Molecular Neuroscience, UCL, Russell Square House, 9-12 Russell Square House, London WC1B 5EH, UK. 4Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Building 35, Room 1A215, 35 Convent Drive, Bethesda, MD 20892, USA. 5Reta Lila Weston Research Laboratories, Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK. 6Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK. 7Department of Medical and Molecular Genetics, King’s College London Tower Wing, Guy’s Hospital, London SE1 9RT, UK. 8The Jenner Institute, University of Oxford, Roosevelt Drive, Oxford OX3 7BO, UK. 9Neuroscience Research Australia, Sydney, NSW 2031, Australia. 10School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia. 11Prince of Wales Clinical School, University of New South Wales, Sydney, NSW 2052, Australia. 12South Australian Clinical Genetics Service, SA Pathology (at Women’s and Children’s Hospital), North Adelaide, SA 5006, Australia. 13Department of Paediatrics, University of Adelaide, Adelaide, SA 5000, Australia. 14Research Center and Memory Clinic of Fundació ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain. 15Neurology Clinic, University of Brescia, Brescia, Italy. 16Department of Psychiatry, Washington University, St. Louis, MO, USA. 17Hope Center, Washington University School of Medicine, St. Louis, MO, USA. 18Department of Pathology and Immunology, Washington University, St. Louis, MO, USA. 19Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy. 20MAC Memory Clinic, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy. 21Biography of Neurodegenerative Disorders, IRCCS Istituto di Ricerche Farmacologiche, “Mario Negri”, Milan, Italy. 22University of Milan, Milan, Italy. 23Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, via F. Sforza 35, 20122 Milan, Italy. 24Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain. 25Center for Networker Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain. 26Unit of Geriatric Psychiatry, Department of...
93Department of Basic Medical Sciences, Neurosciences and Sense Organs of the "Aldo Moro" University of Bari, Bari, Italy. 94Medical Genetics Unit, Fondazione Policlinico Universitario A. Gemelli, Rome, Italy. 95Cardiovascular Research Unit, IRCCS Multimedica, Milan, Italy. 96Department of Medicine and Surgery, University of Salerno, Baronissi, SA, Italy. 97Neurology Department, IRCCS Multimedica, Milan, Italy. 98Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy. 99Geriatric Center Frullone- ASL Napoli 1 Centro, Naples, Italy. 100UCL Genomics, Institute of Child Health (ICH), UCL, London, UK. 101Dept NVS, Alzheimer Research Center, Karolinska Institutet, Novum, 141 57 Stockholm, Sweden. 102Department of Geriatric Medicine, Genetics Unit, M51, Karolinska University Hospital, 14186 Stockholm, Sweden. 103Univ Lille, Inserm 1171, DISTALZ, CHU, 59000 Lille, France. 104National Institute on Aging (NIA/NIH), 3001 S. Hanover St, NM 531, Baltimore, MD 21230, USA. 105Clinical Research Branch, National Institute on Aging, Baltimore, MD, USA. 106Laboratory of Neurogenetics, Department of Internal Medicine, Texas Tech University Health Science Center, 4th street, Lubbock, TX 79430, USA.