Hepatocellular carcinoma (HCC) is the third leading cause of death worldwide with increasing incidence and mortality in the United States. High HCC-associated mortality is in part due to the high proportion of patients diagnosed with advanced stage HCC and historical lack of effective systemic therapies for HCC.

HCC staging is unique because liver function and functional status, in addition to tumor burden, are integral determinants of stage and prognosis. Although staging systems vary, parameters that define advanced stage HCC eligible for therapy include presence of portal vein tumor invasion and/or extrahepatic metastases, with relatively preserved liver function and functional status. Generally, systemic therapy trials excluded patients with Child Pugh class B and C cirrhosis, largely because of the competing risk for mortality with cirrhosis. Thus, for many therapies, there are little data on efficacy and tolerability in patients with more advanced liver disease. Systemic therapies may also be appropriate in those patients with unresectable HCC who are not eligible for or are unlikely to benefit from locoregional therapies, although the decision on timing of when to initiate systemic therapy in a patient with intermediate HCC who is eligible for recurrent locoregional therapy remains an open question. In this review, we discuss contemporary approaches and ongoing studies for the treatment of patients with advanced HCC.
Multikinase Inhibitors

Until recently, sorafenib has been the only US Food and Drug Administration (FDA)-approved first-line agent for advanced HCC. Sorafenib has been associated with modest improvement in overall survival (OS) as compared with placebo in patients with Child-Pugh A cirrhosis and an Eastern Cooperative Oncology Group (ECOG) performance status of 0 to 1 in both a trial setting (10.7 versus 7.9 months [hazard ratio (HR), 0.73; 95% confidence interval (CI), 0.58-0.92]) in the phase 3 sorafenib hepatocellular carcinoma assessment randomized protocol (SHARP) trial and 6.5 versus 4.2 months in the Asia-Pacific trials, respectively) and in multiple real-world observational cohorts that included patients with varying liver function. Adverse events (AEs), including diarrhea, fatigue, and palmar-plantar erythrodysthesia, are frequent (80%) and led to drug discontinuation in approximately 20% of patients in the global investigation of therapeutic decisions in hepatocellular carcinoma and of its treatment with sorafenib (GIDEON) observational cohort study. Lenvatinib was recently shown to be noninferior to sorafenib (13.6 versus 12.3 months; HR, 0.92; 95% CI, 0.79-1.06) in the REFLECT study with similar side effects (hypertension, diarrhea, fatigue, weight loss, palmar-plantar erythrodysthesia) and frequency of grade ≥3 AEs (75%), resulting in the recent first-line approval of lenvatinib for HCC by the FDA. Compared with sorafenib, lenvatinib is also associated with higher rates of proteinuria (25%) and dysphonia (24%). Secondary endpoints of time to progression (HR, 0.60; 95% CI, 0.51-0.71) and objective response (HR, 3.13; 95% CI, 2.15-4.56) were superior in the lenvatinib arm; however, in subgroup analysis, this effect appears to be mostly driven by the impact in Asian patients.

Until 2017, there were no approved agents for patients who did not respond positively to sorafenib. The results of the phase 3 RESORCE trial (OS for regorafenib: 10.6 versus 7.8 months in placebo; HR, 0.63; 95% CI, 0.50-0.79) led to FDA approval of regorafenib as a second-line therapy for patients with advanced HCC who progressed with sorafenib. (Fig. 1) Notably, patients enrolled in the RESORCE trial were required to have tolerated sorafenib at a dose of at least 400 mg daily and maintain Child-Pugh A cirrhosis and an ECOG status of 0 despite progression with sorafenib, which, when applied in clinical practice, is a highly selected population. Forty-six percent of patients experienced grade ≥3 AEs in the trial; however, there was no meaningful difference in quality of life compared with placebo.

Cabozantinib, another tyrosine kinase inhibitor, was shown to improve OS in patients who did not respond positively to first- and/or second-line therapies in the phase 3 CELESTIAL trial. Cabozantinib also showed increased OS compared with placebo in patients with Child-Pugh A with an ECOG of 0 to 1 (10.2 versus 8.0 months; HR, 0.76; 95% CI, 0.63-0.92) and will be considered for approval as a second- or third-line agent. Finally, the phase 3 REACH-2 trial showed that ramucirumab improved OS as a second-line agent in patients with preserved liver function and functional status who progressed or were intolerant to sorafenib with an alpha-fetoprotein >400 ng/mL (OS, 8.5 versus 7.3 months; HR, 0.71; 95% CI, 0.53-0.95) and thus will also be considered for approval in this setting in the coming months.

Checkpoint Inhibitors

Checkpoint inhibitors, a form of immunotherapy, are increasingly being used in several solid malignancies, and they have been studied in HCC, with several trials scheduled to report results in the coming months. Nivolumab, a programmed death receptor-1 (PD-1) inhibitor, was studied in sorafenib-naive and experienced patients in the phase 1/2 CheckMate-040 trial with Child-Pugh A liver function and an ECOG status of 0 to 1, which led to its FDA approval as a second-line treatment for advanced HCC in 2017. The observed overall tumor response rate was 16%, with three or more AEs reported in 25% of patients. Nivolumab and other immunotherapy agents have the potential to induce immune-mediated AEs, including autoimmune hepatitis, colitis, pneumonitis, and uveitis; however, the incidence of severe immune-mediated reactions in the CheckMate-040 was less than 5%. Nivolumab is not currently approved for use for patients with HCC in other countries, including throughout Europe, because of surrogate endpoint reporting in CheckMate-040. A phase 3 clinical trial comparing nivolumab and sorafenib as first-line therapy (CheckMate-459) in patients with advanced HCC has enrolled and is pending full reporting (NCT02576509). Notably, the second-line approval of nivolumab is contingent on the results of this trial showing superiority to sorafenib.

Pembrolizumab is another PD-1 inhibitor that has recently attained conditional approval from the FDA for use as...
a second-line treatment for advanced HCC (NCT02702401) (Table 2). Finally, a large phase 3 study of another checkpoint inhibitor, durvalumab, with and without tremelimunab (CTLA-4 inhibitor), compared with sorafenib in the first-line setting is currently recruiting (NCT03298451).

LOCOREGIONAL THERAPY

Systemic therapy is recommended as the standard of care for advanced HCC in practice guidelines worldwide. However, liver-directed locoregional therapies have been explored in advanced stage patients with portal vein tumor thrombus without extrahepatic disease. Observational cohort studies and early-phase clinical trials with transarterial chemoembolization (TACE; with/without concurrent radiation therapy), hepatic arterial infusion chemotherapy (HAIC), and transarterial radioembolization with 90Y-loaded resin microspheres (selective internal radiation therapy [SIRT]) showed improvement in patient survival as compared with sorafenib.12 (Table 2) However, the recently completed phase 3 sorafenib versus radioembolization in advanced hepatocellular carcinoma (SARAH)
TABLE 1. STUDIES FOR FIRST- AND SECOND-LINE TREATMENT FOR ADVANCED HCC

Author (Year)	Trial	Intervention	Control	Design	Patients (n)	Child-Pugh Class A/B Score (%)	BCLC A/B/C (%)	Outcome	Outcome	P Value
First-Line Treatment										
Llovet3 (2008)	SHARP	Sorafenib	Placebo	RCT, phase 3	299 versus 303	95/5	0/17/83	Median OS	10.7 versus 7.9; HR, 0.69 (95% CI, 0.55-0.87)	<0.001
Cheng15 (2009)	Asia-Pacific	Sorafenib	Placebo	RCT, phase 3	150 versus 76	97/3	0/5/95	Median OS	6.5 versus 4.2; HR, 0.68 (95% CI, 0.50-0.93)	0.014
Cheng16 (2013)	Sunitinib	Sorafenib	Sunitinib	RCT, phase 3	530 versus 544	100/0	0/13/87	Median OS	7.9 versus 10.2; HR, 1.3 (95% CI, 1.13-1.5)	0.99
Johnson17 (2013)	BRISK-FL	Brivanib	Sorafenib	RCT, phase 3	577 versus 578	92/8	6/17/77	Median OS	9.5 versus 9.9; HR, 1.06 (95% CI, 0.93-1.22)	0.37
Cairap18 (2015)	Lenvatinib	Sorafenib	Lenvatinib	RCT, phase 3	514 versus 521	95/5	0/15/85	Median OS	9.1 versus 9.8; HR, 1.046 (95% CI, 0.89-1.22)	NS
Kudo6 (2018)	REFLECT	Lenvatinib	Sorafenib	RCT, phase 3	478 versus 476	99/1	0/21/79	Median OS	13.6 versus 12.3; HR, 0.92 (95% CI, 0.79-1.06)	NS
In process										
CheckMate 459	Nivolumab	Sorafenib	RCT, phase 3	726	100/0	Pending	Median OS	In process	In process	In process
CheckMate 459	Durvulomab	Sorafenib	RCT, phase 3	1200*	100/0	Pending	Median OS	In process	In process	In process
Second-Line Treatment (Sorafenib Failure or Intolerance)										
Llovet3 (2013)	BRISK-PS	Brivanib	Placebo	RCT, phase 3	263 versus 162	92/8	3/9/88	Median OS	9.4 versus 8.2 months; HR, 0.89 (95% CI, 0.69-1.15)	0.104
Zhu19 (2014)	EVOLVE-1	Everolimus	Placebo	RCT, phase 3	362 versus 184	98/2	0/14/86	Median OS	7.6 versus 7.3 months; HR, 0.93 (95% CI, 0.75-1.15)	0.68
Zhu20 (2015)	REACH	Ramucirumab	Placebo	RCT, phase 3	283 versus 282	98/2	0/12/88	Median OS	9.2 versus 7.6 months; HR, 0.87 (95% CI, 0.72-1.05)	0.14
Bruix7 (2017)	RESORCE	Regorafenib	Placebo	RCT, phase 3	379 versus 194	98/2	0/14/86	Median OS	10.6 versus 7.8 months; HR, 0.63 (95% CI, 0.50-0.79)	<0.0001
El-Khoueiry11	CheckMate-040	Nivolumab	Sorafenib	Phase 1/2	262	98/2	BCLC-C	ORR	15%-20%	NA
Rimassa21 (2018)	Metiv-HCC	Tivantinib	Placebo	RCT, phase 3	226 versus 114	95/5	7/12/81	Median OS	8.4 versus 9.1 months; HR, 0.97 (95% CI, 0.75-1.25)	0.81
Abou-Alfa9 (2018)	CELESTIAL	Cabozantinib	Placebo	RCT, phase 3	311 versus 466	100/0	BCLC-C	Median OS	10.2 versus 8 months; HR, 0.76; 95% CI, 0.63-0.92	0.005
Zhu10 (2018)	REACH-2	Ramucirumab	Placebo	RCT, phase 3	197 versus 95	100/0	NR	Median OS	8.5 versus 7.3 months; HR 0.71; 95% CI, 0.53-0.95	0.02
In process										
KEYNOTE-240	Pembrolizumab	Placebo	RCT, phase 3	408 (21)	A, B7	BCLC-C	Median OS	In process	In process	In process

*Projected.
†Sorafenib failure only.
Author (Year)	Intervention	Control	Design	Patients (n)	Child-Pugh Score (%)	BCLC A/B/C (%)	MVI/EHS (%)	Survival, HR (95% CI)	P Value	Disease Control, HR (95% CI)	P Value
Yang22 (2012)	Cryo+ Sorafenib	Sorafenib	RCT	52 versus 52	79/21	0/0/100	100/NA	Median OS 12.5 versus 8.6 months; Median OS 7.1 versus 4.1 months;	0.01	TTP 9.5 versus 5.3 months	0.02
Luo23 (2011)	TACE	Conservative	Observational	84 versus 80	100/0	0/0/100	100/15	Median OS 9.2 versus 7.4 months; NA	<0.001	NA	NA
Pinter24 (2012)	TACE	Sorafenib	Observational	34 versus 63	59/41	0/0/100	32/41	Median OS 5.9 versus 4.4 months; 0.57 (0.39-0.83)	0.377	TTP 5.3 months	0.73
Kim25 (2015)	TACE	Sorafenib	Observational	295 versus 66	83/17 versus 66/34	0/0/100	100/11-50	Surv. rate 12.8 versus 10.0 months; 0.61; (0.38-0.98)	0.003	TTP 3.4 versus 1.8 months; 0.32 (0.19-0.55)	<0.001
Yoon26 (2018)	TACE/RT	Sorafenib	Randomized, phase 2	45 versus 45	0	0/0/100	100/0	Median OS 12.8 versus 10.0 months; 0.61; (0.38-0.98)	0.04	TTP 7.2 versus 2.7 months; 0.28 (0.17-0.46)	<0.001
Kulik27 (2008)	TACE	Conservative	Phase 2	108	54/27	0/66/33	37/12	Median OS 16 months	NA	Partial response rate 42%-70%	NA
D’Aoola28 (2009)	TACE	Control	Observational	35 versus 43	94/6	3/51/46	46/NA	Median OS 16 versus 8 months; 0.377	<0.001	NA	NA
Mazzaferro29 (2013)	TACE	Sorafenib	Observational	34 versus 107	82/18	0/0/100	53/NA	Median OS 26.2 versus 8.7 months; 0.4 (0.19-0.82)	0.054	Response rate 78% versus 27%	0.003
Vilgrain13 (2017)	TACE	Sorafenib	Observational	237 versus 222	84/16	4/28/68	60/0	Median OS 8 versus 9 months; 1.15 (0.94-1.41)	0.18	PFS 4.1 versus 3.7 months; 1.03 (0.85-1.25)	0.76
Chow14 (2018)	TACE	Sorafenib	Observational	182 versus 178	NA	NA	NA	Median OS 8.8 versus 10 months; 1.1 (0.9-1.4)	0.36	NA	NA
Song31 (2015)	TACE	HAIC (LFP)	Control	60 versus 50	84/16	0/0/100	100/33	Median OS 7.1 versus 5.5 months	0.011	TTP 3.2 versus 2.1 months	0.034
Moriguchi12 (2017)	TACE	HAIC (LFP) + Sorafenib	Observational	32 versus 14	100/0	0/0/100	100/22-35	Median OS 10.3 versus 4 months	0.009	TTF 3.6 versus 1.2 months	0.002
Bujold34 (2013)	TACE	Sorafenib	Observational	55	80/20	0/33/67	69/89	Median OS 19.9 months	NA	NA	NA
Nakazawa35 (2014)	3D CRT	Sorafenib	Observational	36 versus 28	59/41	0/0/100	19/19	Median OS 4.3 versus 5.9 months; NA	0.12	Local control at 1 year 87%	NA

* SARAH study. ** SIRveNIB study.
and selective internal radiation therapy versus sorafenib in locally advanced hepatocellular carcinoma (SIRveNIB) trials failed to demonstrate OS benefits of SIRT as compared with sorafenib in patients with Child-Pugh A liver function and advanced HCC.13,14 (Table 2) Even though these studies were negative, limitations related to the study designs (e.g., main portal vein invasion, limited ability to provide boosted radiation) may allow for further study of radioembolization in select patients with advanced stage HCC.

SURGERY

Surgical resection can be an effective curative option in highly selected patients with portal vein tumor thrombus and preserved liver function. In observational studies from Asia, resection in patients with segmental or branch portal vein tumor thrombus show that 5-year recurrence-free survival rate can exceed 75\%.36,37 This approach warrants further study.

BEST SUPPORTIVE CARE

Advanced HCC in the setting of decompensated cirrhosis and/or poor performance is terminal stage disease, and systemic therapies have not shown to be effective or safe in this population. Palliative care with the goal of symptom control should be discussed with all patients with advanced HCC and in particular in those patients without options for therapy.

CONCLUSIONS AND FUTURE DIRECTIONS

Systemic therapies with sorafenib or lenvatinib are first-line options in patients with advanced HCC, with several medications available or pending FDA review in the second and third line for first-line failures (Fig. 1). We lack serum or tissue biomarkers to aid in therapy selection and lack adequate information on lines of therapy. Numerous clinical trials are due to report in the coming months that may expand treatment options for advanced HCC. In addition, there are planned or recently opened trials using combination therapy, including lenvatinib + pembrolizumab (NCT03713593) and cabozantinib + nivolumab. Finally, several adjuvant trials currently accruing are combining resection, ablation, or radiation therapy with immunotherapy to determine whether immunotherapy can enhance the effectiveness of these therapies or improve recurrence-free survival. An open question remains whether immunotherapy can be safely used in patients who are being considered for liver transplantation and, if so, the optimal timing between receipt of immunotherapy and transplant.

Further understanding of comparative effectiveness of these therapies alone and possibly in combination will aid in developing evidence-based treatment algorithms for patients with advanced HCC. Ultimately, precision medicine with development of biomarkers that can better direct therapy selection will be critical in the treatment of advanced HCC.

CORRESPONDENCE

Neehar D. Parikh, M.D., Division of Gastroenterology and Hepatology, University of Michigan Health System, 3912 Taubman Center, 1500 E. Medical Center Drive, Ann Arbor, MI. E-mail: ndparikh@med.umich.edu

REFERENCES

1) Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015;136:E359-E386.

2) Tapper EB, Parikh ND. Mortality due to cirrhosis and liver cancer in the United States, 1999–2016: observational study. BMJ 2018;362:k2817.

3) Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008;359:378-390.

4) Marrero JA, Kudo M, Venook AP, et al. Observational registry of sorafenib use in clinical practice across Child-Pugh subgroups: The GIDEON study. J Hepatol 2016;65:1140-1147.

5) Parikh ND, Marshall VD, Singal AG, et al. Survival and cost-effectiveness of sorafenib therapy in advanced hepatocellular carcinoma: An analysis of the SEER-Medicare database. Hepatology 2017;65:122-133.

6) Kudo M, Finn RS, Qin S, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: A randomised phase 3 non-inferiority trial. Lancet 2018;391:1163-1173.

7) Bruix J, Qin S, Merle P, et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017;389:56-66.

8) Parikh ND, Singal AG, Hutton DW. Cost effectiveness of regorafenib as second-line therapy for patients with advanced hepatocellular carcinoma. Cancer 2017;123:3725-3731.

9) Abou-Alfa GK, Meyer T, Cheng AL, et al. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N Engl J Med 2018;379:54-63.

10) Zhu AX, Galle PR, Kudo M, et al. A study of ramucirumab (LY3009806) versus placebo in patients with hepatocellular
carcinoma and elevated baseline alpha-fetoprotein (REACH-2). J Clin Oncol 2018;36(Suppl. 4):TPS538.

11) El-Khoueiry AB, Sangro B, Yau T, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): An open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017;389:2492-2502.

12) Edeline J, Crouzet L, Campillo-Gimenez B, et al. Selective internal radiation therapy compared with sorafenib for hepatocellular carcinoma with portal vein thrombosis. Eur J Nucl Med Mol Imaging 2016;43:635-643.

13) Vilgrain V, Pereira H, Assenat E, et al. Efficacy and safety of selective internal radiation therapy with yttrium-90 resin microspheres compared with sorafenib in locally advanced and inoperable hepatocellular carcinoma (SARAH): An open-label randomised controlled phase 3 trial. Lancet Oncol 2017;18:1624-1636.

14) Chow PKH, Gandhi M, Tan SB, et al. SIRveNIB: Selective internal radiation therapy versus sorafenib in Asia-Pacific patients with hepatocellular carcinoma. J Clin Oncol 2018;36:1913-1921.

15) Cheng AL, Kang YK, Chen Z, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: A phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol 2009;10:25-34.

16) Cheng AL, Kang YK, Lin DY, et al. Sunitinib versus sorafenib in advanced hepatocellular cancer: results of a randomized phase III trial. J Clin Oncol 2013;31:4067-4075.

17) Johnson PJ, Qin S, Park JW, et al. Brivanib versus sorafenib as first-line therapy in patients with unresectable, advanced hepatocellular carcinoma: results from the randomized phase III BRISK-FL study. J Clin Oncol 2013;31:3517-3524.

18) Cainap C, Qin S, Huang WT, et al. Linifanib versus Sorafenib in patients with advanced hepatocellular carcinoma: results of a randomized phase III trial. J Clin Oncol 2015;33:172-179.

19) Zhu AX, Kudo M, Assenat E, et al. Effect of everolimus on survival in advanced hepatocellular carcinoma after failure of sorafenib: The EVOLVE-1 randomized clinical trial. JAMA 2014;312:57-67.

20) Zhu AX, Park JO, Ryoo BY, et al. Ramucirumab versus placebo as second-line treatment in patients with advanced hepatocellular carcinoma following first-line therapy with sorafenib (REACH-A): A randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol 2015;16:859-870.

21) Rimassa L, Assenat E, Peck–Radosavljevic M, et al. Tivantinib for second-line treatment of MET-high, advanced hepatocellular carcinoma (METIV-HCC): A final analysis of a phase 3, randomised, placebo-controlled study. Lancet Oncol 2018;19:682-693.

22) Yang Y, Lu Y, Wang C, et al. Cryotherapy is associated with improved clinical outcomes of Sorafenib therapy for advanced hepatocellular carcinoma. Cell Biochem Biophys 2012;63:159-169.

23) Luo J, Guo RP, Lai ECH, et al. Transarterial chemoembolization for unresectable hepatocellular carcinoma with portal vein tumor thrombosis: A prospective comparative study. Ann Surg Oncol 2011;18:413-420.

24) Pinter M, Huckle F, Graziadei I, et al. Advanced-stage hepatocellular carcinoma: transarterial chemoembolization versus sorafenib. Radiology 2012;263:590-599.

25) Kim GA, Shim JH, Yoon SM, et al. Comparison of chemoembolization with and without radiation therapy and sorafenib for advanced hepatocellular carcinoma with portal vein tumor thrombosis: A propensity score analysis. J Vasc Interv Radiol 2015;26:320-329 e6.

26) Yoon SM, Ryoo BY, Lee SJ, et al. Efficacy and safety of transarterial chemoembolization plus external beam radiotherapy vs sorafenib in hepatocellular carcinoma with macroscopic vascular invasion: A randomized clinical trial. JAMA Oncol 2018;4:661-669.

27) Kulik LM, Carr BI, Mulcahy MF, et al. Safety and efficacy of 90Y radiotherapy for hepatocellular carcinoma with and without portal vein thrombosis. Hepatology 2008;47:71-81.

28) D-Avola D, Inarraireagui M, Bilbao JJ, et al. A retrospective comparative analysis of the effect of Y90-radioembolization on the survival of patients with unresectable hepatocellular carcinoma. Hepatogastroenterology 2009;56:1683-1688.

29) Mazzaferro V, Sposito C, Bhouri S, et al. Yttrium-90 radioembolization for intermediate-advanced hepatocellular carcinoma: A phase 2 study. Hepatology 2013;57:1826-1837.

30) Kulik L, Vouche M, Koppe S, et al. Prospective randomized pilot study of Y90+-sorafenib as bridge to transplantation in hepatocellular carcinoma. J Hepatol 2014;61:309-317.

31) Song DS, Song MJ, Bae SH, et al. A comparative study between sorafenib and hepatic arterial infusion chemotherapy for advanced hepatocellular carcinoma with portal vein tumor thrombosis. J Gastroenterol 2015;50:445-454.

32) Moriguchi M, Aramaki T, Nishiofuku H, et al. Sorafenib versus hepatic arterial infusion chemotherapy as initial treatment for hepatocellular carcinoma with advanced portal vein tumor thrombosis. Liver Cancer 2017;6:275-286.

33) Hatooka M, Kawaoka T, Aikata H, et al. Hepatic arterial infusion chemotherapy followed by sorafenib in patients with advanced hepatocellular carcinoma (HICS 55): An open label, non-comparative, phase II trial. BMC Cancer 2018;18:633.

34) Bujold A, Massey CA, Kim JJ, et al. Sequential phase I and II trials of stereotactic body radiotherapy for locally advanced hepatocellular carcinoma. J Clin Oncol 2013;31:1631-1639.

35) Nakazawa T, Hidaka H, Shibuya A, et al. Overall survival in response to sorafenib versus radiotherapy in unresectable hepatocellular carcinoma with major portal vein tumor thrombosis: propensity score analysis. BMC Gastroenterol 2014;14:84.

36) Peng ZW, Guo RP, Zhang YJ, et al. Hepatic resection versus transcatheter arterial chemoembolization for the treatment of hepatocellular carcinoma with portal vein tumor thrombus. Cancer 2012;118:4725-4736.

37) Shi J, Lai EC, Li N, et al. Surgical treatment of hepatocellular carcinoma with portal vein tumor thrombus. Ann Surg Oncol 2010;17:2073-2080.