Effects of dietary supplementation of probiotic, Clostridium butyricum, on growth performance, immune response, intestinal barrier function, and digestive enzyme activity in broiler chickens challenged with Escherichia coli K88

Ling Zhang¹,², Lingling Zhang², Xiu’an Zhan¹, Xinfu Zeng³, Lin Zhou¹, Guangtian Cao¹, An’guo Chen¹ and Caimei Yang²*

Abstract

Background: Colibacillosis caused by enterotoxigenic Escherichia coli (E. coli) results in economic losses in the poultry industry. Antibiotics are usually used to control colibacillosis, however, E. coli has varying degrees of resistance to different antibiotics. Therefore the use of probiotics is becoming accepted as an alternative to antibiotics. In this study, we evaluated the effects of Clostridium butyricum (C. butyricum) on growth performance, immune response, intestinal barrier function, and digestive enzyme activity in broiler chickens challenged with Escherichia coli (E. coli) K88.

Methods: The chickens were randomly divided into four treatment groups for 28 days. Negative control treatment (NC) consisted of birds fed a basal diet without E. coli K88 challenge and positive control treatment (PC) consisted of birds fed a basal diet and challenged with E. coli K88. C. butyricum probiotic treatment (CB) consisted of birds fed a diet containing 2 × 10⁷ cfu C. butyricum/kg of diet and challenged with E. coli K88. Colistin sulfate antibiotic treatment (CS) consisted of birds fed a diet containing 20 mg colistin sulfate/kg of diet and challenged with E. coli K88.

Results: The body weight (BW) and average day gain (ADG) in the broilers of CB group were higher (P < 0.05) than the broilers in the PC group overall except the ADG in the 14-21 d post-challenge. The birds in CB treatment had higher (P < 0.05) concentration of tumor necrosis factor-α (TNF-α) at 3 and 7 d post-challenge, and higher (P < 0.05) concentration of interleukin-4 (IL-4) at 14 d post-challenge than those in the PC treatment group. The concentration of serum endotoxin in CB birds was lower (P < 0.05) at 21 d post-challenge, and the concentrations of serum diamine oxidase in CB birds were lower (P < 0.05) at 14 and 21 d post-challenge than in PC birds. Birds in CB treatment group had higher (P < 0.05) jejunal villi height than those in PC, NC, or CS treatment at 7, 14, and 21 d post-challenge. In comparison to PC birds, the CB birds had lower (P < 0.05) jejunal crypt depth during the whole experiment. The birds in CB or CS treatment group had higher (P < 0.05) activities of amylase and protease at 3, 7, and 14 d post-challenge, and higher (P < 0.05) activity of lipase at 3, 7 d post-challenge than PC birds.

* Correspondence: yangcaimei2012@163.com
²College of Animal Science and Technology, Zhejiang A & F University, 88 North Huancheng Road, Lin’an, Zhejiang 311300, China
Full list of author information is available at the end of the article

© 2016 Zhang et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Conclusions: In all, these results indicate that dietary supplementation with *C. butyricum* promotes immune response, improves intestinal barrier function, and digestive enzyme activities in broiler chickens challenged with *E. coli* K88. There is no significant difference between the *C. butyricum* probiotic treatment and the colistin sulfate antibiotic treatment. Therefore, the *C. butyricum* probiotic may be an alternative to antibiotic for broiler chickens.

Keywords: Broiler chickens, *Clostridium butyricum*, Digestive enzyme activity, *Escherichia coli* K88, Growth performance, Immune response, Intestinal barrier

Background
Colibacillosis caused by enterotoxigenic *Escherichia coli* (*E.coli*) is a serious infection that results in huge economic losses in the poultry industry worldwide [1–4]. Although antibiotics are usually used to control colibacillosis, various reports have demonstrated that pathogenic *E. coli* has varying degrees of resistance to different antibiotics [5, 6]. Additionally, resistance genes extended-spectrum beta-lactamases (ESBL) and/or plasmid-mediated Amp-C beta-lactamases (Amp-C) in commercial *E. coli* may pose a human health hazard. [7] Therefore, there is an urgent need to identify sustainable alternatives to antibiotics for animal production.

The use of probiotics in the poultry industry is quickly becoming accepted as a potential alternative to antibiotics for use as growth-promoters, and in some cases, for control of specific enteric pathogens [8–15].

Clostridium butyricum (*C. butyricum*) is a butyric-acid producing Gram-positive anaerobe found in soil and intestines of healthy animals and humans. *C. butyricum* increases the concentrations of n-butyric acid in caecaldigesta of birds [16], and butyric acid is of particular importance because of its nutritional properties for epithelial cells and pathogen inhibitory effects in the gut [17]. *C. butyricum* also survives at low pH and high temperature, which renders it a good feed additive [18]. Previous studies demonstrated that *C. butyricum* promoted growth performance [16, 19–21], balanced intestinal microflora [16, 17, 19, 20], improved intestinal morphology [16, 19], stimulated the immune system [19, 20], improved meat quality and fatty acid profiles [21–23], and influenced the digestive tract [23] in broiler chickens. In addition, *C. butyricum* prevented *E.coli*-induced intestinal disorders through inhibiting *E.coli* viability and mediating *E.coli*-induced apoptosis [24]. However, there are few published reports on the effects of *C. butyricum* on *E.coli*-challenged animals. The present study was conducted to investigate the effects of *C. butyricum* on the immune response, intestinal barrier function, and digestive enzyme activities in broiler chickens challenged with *E. coli* K88.

Methods

Ethics statement
All procedures were approved by the Institutional Animal Care and Use Committee of Zhejiang University.

Birds, diets, and experimental design

Three hundred and sixty 1-d-old male Cobb broiler chickens purchased from a commercial hatch (Charoen Pokphand Group, Haining, China) were randomly assigned to four treatment groups. Negative control treatment (NC) consisted of birds fed a basal diet without challenging with *E. coli* K88. Positive control treatment (PC) consisted of birds fed a basal diet and orally challenged with 0.5 mL *E. coli* K88 (2 × 10⁸ cfu/mL) on d 7. The *C. butyricum* treatment (CB) probiotic group consisted of birds fed a diet containing 2 × 10⁷ cfu *C. butyricum*/kg of diet and orally challenged with 0.5 mL *E. coli* K88 (2 × 10⁸ cfu/mL) on d 7. Colistin sulfate treatment (CS) antibiotic group consisted of birds fed a diet containing 20 mg colistin sulfate/kg of diet and orally challenged with 0.5 mL *E. coli* K88 (2 × 10⁸ cfu/mL) on d 7. Each treatment consisted of 6 replicate pens with 15 birds per pen. Birds in NC treatment were housed in one room, while the birds in other three *E. coli*-challenged treatment groups were housed in another room to prevent cross-contamination. The two rooms were of the same configuration and the previous growth studies revealed no significant contamination room effects.

Chickens were placed in the wire cages and all birds were offered the same antibiotic-free basal diets and provided ad libitum access to water and diet. The nutrient levels of the diets met the NRC (1994) broiler recommendations (Table 1). The temperature was adjusted to 32 °C in the first week and gradually lowered to 25 °C.

The *C. butyricum* strain (HJCB998) was obtained from Zhejiang Huijia Biological Technology Ltd., Anji, China. The probiotic strain was grown anaerobically in a liquid fermentation tank at 37 °C for 48 h, and then the cells were harvested by centrifugation and dried by spray-drying technology. Colistin sulfate was obtained from Zhejiang Qianjiang Biochemical Ltd., Haining, China.
Table 1 The composition and nutrients of basal dietα

Ingredient	Content, %	Chemical composition	Content
Corn	55.23	CP, %	20.90
Soybean meal	30.67	ME, Mcal/kg	3.00
Wheat shorts	4.00	Calcium, %	1.00
Fish mealb	3.00	Total P, %	0.65
Soybean oilc	2.90	Available P, %	0.45
DL-Methionine	0.27	Methionine + cysteine, %	0.90
NaCl	0.27	Lysine, %	1.05
Limestone	1.33	Calcium phosphate	1.33
Calcium phosphate	1.33		
Vitamin-mineral premixd	1.00		

αNutrient level of the diets was based on NRC (1994)
bCrude protein content is 62.5% and metabolizable energy is 2.79 Mcal/kg
cMetabolizable energy is 8.8 Mcal/kg

Oral challenge

The E. coli K88 strain was obtained from College of Animal Sciences, Zhejiang University (Hangzhou, China) and grown at 37 °C. The birds in different treatments were fed the corresponding diet for the first 6 d. On d 7, birds in PC, CB, and CS treatments were orally fed with 0.5 mL (2 × 10⁸ cfu/mL) E. coli K88 inoculants by using a polyethylene tube attached to a syringe. The birds in NC treatment were administered the same amount of sodium chloride solution as control.

Sample collection

Birds were weighed individually at 3, 7, 14, and 21 d post-challenge to evaluate BW and ADG. Feed consumption and feed-to-gain ratio could not be determined because of an indeterminate amount of feed wastage.

Six birds per treatment (1 bird per pen) were randomly selected for sample collection at 3, 7, 14, and 21 d post-challenge. Blood samples were taken from the wing vein and centrifuged (3,000 x g, 10 min) at 4 °C, and then the serum was harvested and stored at -20 °C until analysis. The birds were then killed by CO₂ inhalation and the jejunal mucosa was weighed out, diluted into 4.5 mL of 0.9 % salt solution, and centrifuged at 6,000× g for 15 min. The homogenate was kept on sterile ice and the supernatant was harvested into 1.5 mL sterile microcentrifuge tubes. The concentrations of interleukin-4 (IL-4) and tumor necrosis factor-α (TNF-α) were respectively measured using IL-4 (1042-09) and TNF-α (1041-09) ELISA kits (GBD Ltd, USA) specific for chicken.

Serum endotoxin and diamine oxidase

The concentrations of serum endotoxin were measured using a limulus amoebocyte lysate (LAL)-based kit (LAL QCL-1000 kit, Lonza, Walkersville, MD). The samples were heated for 10 min at 70 °C. Internal control for recovery calculation was included in the assessment. Standards and samples were incubated for 10 min at 37 °C with LAL and then for another 6 min with colorimetric substrate. The reaction was stopped with 25 % acetic acid and then the absorbance was read at 405 nm. Diamine oxidase (DAO) activity (1 ml) was examined by a spectrophotometric assay. The DAO standard (batch number D7876-250) was purchased from Sigma.

Jejunal morphology analysis

Jejunal segments were flushed with a 0.9 % salt solution, and then fixed with 10 % formaldehyde-phosphate buffer for 48 hours. The formalin-fixed, paraffin-embedded tissues were embedded into Leica EG1160, fixed upon Rotary Microtome (Leica RM2153) and then cut to a thickness of 6 μm. The tissue segments were dehydrated with Leica H11220. Slides were stained with hematoxylin and eosin (H&E; Leica Autostain BRXL) and covered by cover slides. Images were analyzed using software Qwin. Then the 10 longest jejunal villi and lowest jejunal crypts were measured with Olympus AX70 microscope (Olympus Corporation, Tokyo, Japan) and the mean value was calculated. The villus height was measured from the villus-crypt junction to the tip of villus, whereas crypt depth was measured from the root of villus to the lamina propria.

Digestive enzyme activities

Amylase, lipase, and protease were analyzed using the corresponding kit provided by Jiancheng Bioengineering Institute (Nanjing, China). In brief, the jejunal mucosa was transferred into sterilized tubes containing 10 mL PBS (7.4 pH), then ultrasonic treatment was applied for 4 min to dissociate the tissues. The later procedure was accomplished by centrifugation (5,000 x g for 25 min). Then the supernatant was used to determine the enzymatic activities following the manufacturer's instructions.
Table 2 Effects of Clostridium butyricum on growth performance in broilers

Items	Age of (post-ch)	Experimental treats	Statistics				
		NC	PC	CB	CS	SEM	P-value
BW, g	3d	351.71a	319.83b	342.23a	339.95a	3.588	<0.01
	7d	401.16a	354.00b	402.71a	398.81a	4.479	<0.01
	14d	747.33ab	649.00c	774.83a	738.16b	11.161	<0.01
	21d	1283.5a	1064.8b	1265.8a	1275.2a	26.491	<0.01
ADG, g	3-7d	12.36b	8.54c	15.12a	14.71a	0.651	<0.01
	7-14d	49.45a	42.14b	53.16a	48.47a	1.117	<0.01
	14-21d	76.60	59.40	70.13	76.72	2.831	0.089
	3-21d	51.76a	41.38b	51.30a	51.95a	1.365	<0.01

*Means in the same row with different superscript letters differ significantly (P < 0.05)

Table 3 Effects of Clostridium butyricum on jejunal mucosa cytokines in broilers

Items	Age of (post-ch)	Experimental treats	Statistics				
		NC	PC	CB	CS	SEM	P-value
TNF-α, ng/L	3d	53.80a	48.88b	76.66a	65.09ab	7.19	0.030
	7d	65.29ab	53.88b	69.32a	61.51b	4.72	0.040
	14d	63.39	50.22	62.92	61.23	6.88	0.220
	21d	50.56	35.28	54.46	56.92	6.92	0.110
IL-4, ng/L	3d	52.52	50.9	68.7	67.51	5.78	0.140
	7d	68.23a	52.16b	62.91ab	57.03ab	3.55	0.030
	14d	70.65a	50.46b	69.79a	59.78ab	4.26	0.010
	21d	52.64	42.59	56.38	57.09	6.41	0.350

*Means in the same row with different superscript letters differ significantly (P < 0.05)

Statistical analysis
One-way ANOVA was performed using SPSS 16.0 Software. Mean values of treatment groups were compared using Duncan’s multiple range test with P < 0.05 considered statistically significant.

Results
Birds in the PC (positive control) treatment group had less (P < 0.05) BW than the NC (negative control), CB (Clostridium butyricum), and CS (colistin sulfate) birds from 3 to 21 d post-challenge (Table 2). There were no significant differences among the BW of NC, CB, and CS groups. The birds of CB group had higher ADG than those fed the PC diet during 3-7, 7-14, and 3-21 d post-challenge. No significant differences in BW and ADG were observed among the birds of NC, CB, and CS groups except that the ADG of CB and CS broilers was higher than the broilers of the NC groups in 3-7 d post-challenge.

Birds in CB treatment had higher (P < 0.05) concentration of jejunal mucosa TNF-α than those in NC or PC treatment at 3 d post-challenge, and higher (P < 0.05) concentration of TNF-α than PC birds at 7 d post-challenge (Table 3). There was no significant difference in the concentration of TNF-α between CB and CS birds during the whole experiment. In comparison to PC birds, CB birds had greater (P < 0.05) concentration of jejunal mucosa IL-4 on 14 d post-challenge. No significant differences were observed in the concentration of IL-4 among CB, NC, and CS treatments during the whole experiment.

The E. coli challenge significantly increased the concentration of serum DAO during the entire experimental period. Birds in CB treatment had lower (P < 0.05) concentration of serum DAO than those in PC treatment at 14 and 21 d post-challenge. No significant differences were found in the concentration of serum DAO between CB and CS treatment group during the course of the experiment.

Birds fed CB had higher (P < 0.05) jejunal villi height than PC, NC, or CS birds at 7, 14, and 21 d post-challenge (Table 5). In comparison to the broilers in PC treatment, broilers in CB treatment had lower (P < 0.05) jejunal crypt depth throughout the experiment. Birds fed CS had lower (P < 0.05) jejunal crypt depth compared to PC birds at 7, 14, and 21 d post-challenge.

The E. coli challenge significantly decreased the activity of jejunal mucosa amylase; however, broilers fed with CB or CS had increased (P < 0.05) amylase activity.

The E. coli challenge significantly increased the concentration of serum endotoxin during the experiment. Birds in CB treatment had lower (P < 0.05) concentration of serum endotoxin at 7 d post-challenge compared to PC birds. There were no significant differences in the concentrations of serum endotoxin between CB and CS treatment during the whole experiment. The E. coli challenge significantly increased the concentration of serum DAO during the entire experimental period. Birds in CB treatment had lower (P < 0.05) concentration of serum DAO than those in PC treatment at 14 and 21 d post-challenge. No significant differences were found in the concentration of serum DAO between CB and CS treatment group during the course of the experiment.

Birds fed CB had higher (P < 0.05) jejunal villi height than PC, NC, or CS birds at 7, 14, and 21 d post-challenge (Table 5). In comparison to the broilers in PC treatment, broilers in CB treatment had lower (P < 0.05) jejunal crypt depth throughout the experiment. Birds fed CS had lower (P < 0.05) jejunal crypt depth compared to PC birds at 7, 14, and 21 d post-challenge.

The E. coli challenge significantly decreased the activity of jejunal mucosa amylase; however, broilers fed with CB or CS had increased (P < 0.05) amylase activity.
compared with broilers in the PC treatment group from 3 to 14 d post-challenge (Table 5). No significant differences were found in the activity of lipase between CB and CS treatments during the whole experiment. Compared with PC treatment, the activity of lipase in the CB and CS treatments had higher (P < 0.05) activity of lipase from 3 to 14 d post-challenge. There were no significant differences in the activity of protease among the four treatment groups at 21 d post-challenge. Moreover, there were no significant differences between CB and NC treatments in the activity of lipase at 3 and 7 d post-challenge, but those two treatment groups had higher (P < 0.05) activity of lipase than PC treatment; and no significant differences in the activity of lipase among the four treatments at 14 and 21 d post-challenge.

Discussion

Many reports have showed that probiotics can promote growth performance and improve nutrient utilization efficiency in chickens [6, 25–27], although other studies have also reported that probiotics have no effect on growth performance [28–30]. In contrast, *Clostridium butyricum* is a probiotic that has been shown to improve growth performance and nutrient utilization efficiency in chickens [20, 21, 31] although Zhang et al. reported that *C. butyricum* had no effect on broiler performance [16]. In this study we showed that *C. butyricum* improved the BW and ADG of chickens challenged with *E. coli* K88 compared with broilers in the PC group, and the broilers in the CB group showed no significant differences compared to the CS groups on the BW and ADG overall.

Previous reports had shown that probiotics stimulate the immune response [20, 27, 32–34]. Specifically, *C. butyricum* has been shown as capable of influencing the host immune system by modulating cytokine expression [19, 35–37]. *C. butyricum* could induce the sensitization of the host by increasing pro-inflammatory cytokines such as IL-8, IL-6, and TNF-α, and provide beneficial effects to the host by synthesizing the immunosuppressive cytokines such as IL-10 [19, 36, 37]. IL-4 and TNF-α were also secreted by an intracellular signaling cascade in the immune response to *C. butyricum* [38]. Huang et al. [39] reported that *Bacillus* induced TNF-α in spleens and mesenteric lymph nodes of mice [39]. Lee et al. [30] showed that IL-4 transcripts were increased by *B. subtilis* strains LSSAO1, Bs278, and Avicor in broiler chickens [30]. However, Fujiiwa et al. [28] reported that supplementation with *Bacillus subtilis* var. natto fermented soybean did not affect IL-4 gene expression in spleens in broiler chickens [28]. In the present study, chickens fed with *C. butyricum* had higher concentrations of TNF-α and IL-4. This indicated

Table 4 Effects of *Clostridium butyricum* on the concentrations of serum LPS and DAO in broilers

Items	Age of (post-ch)	Experimental treatments	Statistics
Endotoxin, EU/mL	3d	NC 0.460b 0.378a 0.704* 0.734a 0.025 < 0.01	
	7d	PC 0.455b 0.640a 0.586a 0.578a 0.027 < 0.01	
	14d	CB 0.327b 0.413* 0.335* 0.347* 0.024 0.070	
	21d	CS 0.252a 0.380* 0.304* 0.332* 0.023 < 0.01	
DAO, U/mL	3d	NC 2.559b 8.823a 7.493a 8.056a 0.498 < 0.01	
	7d	PC 1.570* 8.649* 7.121a 7.496a 0.617 < 0.01	
	14d	CB 1.250a 6.254a 4.194b 4.201b 0.527 < 0.01	
	21d	CS 0.819b 3.952a 2.419b 3.060ab 0.424 < 0.01	

*Means in the same row with different superscript letters differ significantly (P < 0.05)

1 Each mean represents 6 birds. NC = birds fed a basal diet without challenged with *E. coli* K88; PC = birds fed a basal diet and challenged with *E. coli* K88.

CB = birds fed a basal diet including 2 × 10⁷ CFU *C. butyricum*/kg of diet and challenged with *E. coli* K88; CS = birds fed a basal diet including 20 mg colistin sulfate/kg of diet and challenged with *E. coli* K88.

2 The days after challenging

Table 5 Effects of *Clostridium butyricum* on Jejunum morphometry in broilers

Items	Age of (post-ch)	Experimental treatments	Statistics
Villi height, m	3d	NC 264.35 259.81 275.71 253.01 5.69 < 0.01	
	7d	PC 267.65bc 287.54a 346.75a 254.41c 7.91 < 0.01	
	14d	CB 429.41b 433.6b 531.09a 407.26b 9.37 < 0.01	
	21d	CS 429.41b 433.6b 531.09a 407.26b 9.37 < 0.01	
Crypt depth, m	3d	NC 50.22a 47.01ab 33.68c 42.9b 2.08 < 0.01	
	7d	PC 50.06b 60.3a 39.44c 38.2c 2.17 < 0.01	
	14d	CB 66.07b 73.96a 56.51c 59.95c 1.87 < 0.01	
	21d	CS 82.5b 115.46a 84.04b 76.03b 3.29 < 0.01	

*Means in the same row with different superscript letters differ significantly (P < 0.05)

1 Each mean represents 6 birds. NC = birds fed a basal diet without challenged with *E. coli* K88; PC = birds fed a basal diet and challenged with *E. coli* K88.

CB = birds fed a basal diet including 2 × 10⁷ CFU *C. butyricum*/kg of diet and challenged with *E. coli* K88; CS = birds fed a basal diet including 20 mg colistin sulfate/kg of diet and challenged with *E. coli* K88.

2 The days after challenging
that *C. butyricum* influenced the immune response in broiler chickens challenged with *E. coli* K88.

Lipopolysaccharide (LPS) is an integral component of the outer cell membranes of Gram-negative bacteria which are shed from the bacteria when cell lysis occurs [40]. *E. coli* K88 produces LPS [41], which induced endotoxic shock by triggering the systemic inflammatory response [42–45]. The endotoxins from LPS induce a degenerative morphology and the destruction of lymphocytes in birds [46]. Moreover, endotoxin is associated with intestinal permeability [47–49]. When gut permeability is increased, the endotoxin will translocate from the gut into circulation. Ait-Belgnaoui et al. [48] reported that *Lactobacillus farcininis* treatment prevented stress-induced peripheral endotoxin in rats [48]. DAO is localized mainly in the small intestinal mucosa, particularly near the tips of villi and reflects small intestinal integrity and maturity [50–52]. Intestinal mucosal damage causes leakage of DAO from small intestinal villus tips into the circulation, so DAO is an index of intestinal mucosal barriers [52–54]. Zhang et al [35] reported that the serum level of DAO in allergic mice was markedly higher than that in control mice [35]. Synbiotic therapy prevented HR-related decrease of intestinal integrity that was indicated by the reduction in serum DAO activity [55] and returned serum DAO activities to normal levels after hepatectomy in humans [56]. Zhou et al. reported that *Lactobacillus plantarum* significantly lowered the plasma DAO activities in the bile duct ligation rat model [57]. Sun et al [58] reported that probiotics relatively decreased the levels of LPS and DAO in rats compared with the cardiopulmonary bypass (CPB)-operated ones [58]. In this study, dietary supplementation of *C. butyricum* decreased serum endotoxin and DAO in *E. coli* K88-challenged birds. Our results indicated that CB benefits the intestinal barrier function in broiler chickens challenged with *E. coli* K88.

The length of villi and the depth of crypt are the important morphological parameters, and are considered as indicators of optimal intestinal functions. The previous studies showed that dietary supplementation with probiotics increased the villus height and villus height: crypt depth ratio, decreased the crypt depth in broiler chickens [59–64]. Our previous research also showed that birds fed *C. butyricum* had higher ileal villus height and lower ileal crypt depth [31]. The present study showed that dietary supplementation with CB increased the jejunal villus height and decreased the crypt depth in broiler chickens challenged with *E. coli* K88. The current result demonstrated that *C. butyricum* improved the structure and function of intestinal mucosa in *E. coli* infected condition.

Amylase, lipase, and protease play very important roles in the digestion of nutrient materials. Reports on the efficacy of probiotics on the digestive enzymes have been varied. Rajput et al. [34, 65] reported that *Saccharomyces boulardii* supplementation increased the activity of lipase, but had no significant improvement in amylase and trypsin in the jejunum of broiler chickens [65]. Wang and Gu [26] reported that the probiotic *Bacillus coagulans* NJ0516 increased the activities of protease and amylase but had no effect on the activities of lipase in

Table 6 Effects of *Clostridium butyricum* on digestive enzyme activities in broilers	Items	Age of (day post-ch)	Experimental treats	Statistics
Amylase, U/mgprot	3d	NC	0.94a	0.058 <0.01
		PC	0.33c	
		CB	0.70b	
		CS	0.74ab	
	7d	NC	0.96a	
		PC	0.45b	
		CB	0.88a	
		CS	0.83a	
	14d	NC	0.80a	
		PC	0.60b	
		CB	0.87a	
		CS	0.78a	
	21d	NC	0.91a	
		PC	0.75b	
		CB	0.79ab	
		CS	0.85ab	
Protease, U/mgprot	3d	NC	106.86a	
		PC	54.66c	
		CB	76.92b	
		CS	80.10b	
	7d	NC	103.76a	
		PC	65.29b	
		CB	93.32a	
		CS	89.39a	
	14d	NC	98.17a	
		PC	67.04b	
		CB	93.60a	
		CS	91.46a	
	21d	NC	130.76	
		PC	109.06	
		CB	133.03	
		CS	125.01	
Lipase, U/mgprot	3d	NC	190.87ab	
		PC	105.14c	
		CB	154.02b	
		CS	205.53a	
	7d	NC	193.84a	
		PC	106.65b	
		CB	186.09a	
		CS	155.90ab	
	14d	NC	183.76	
		PC	167.93	
		CB	205.40	
		CS	195.76	
	21d	NC	194.07	
		PC	177.85	
		CB	197.87	
		CS	203.41	

*Means in the same row with different superscript letters differ significantly (P < 0.05)

1Each mean represents 6 birds. NC = birds fed a basal diet without challenged with *E. coli* K88; PC = birds fed a basal diet and challenged with *E. coli* K88. CB = birds fed a basal diet including 2 × 10⁷ CFU *C. butyricum* /kg of diet and challenged with *E. coli* K88. CS = birds fed a basal diet including 20 mg colistin sulfate/kg of diet and challenged with *E. coli* K88

2The days after challenging
broilers [26]. However, de Lima et al. [29] reported that the addition of the probiotic Bacillus subtilis in the diet did not affect digestive enzymes activities in broiler chickens [29]. The present study indicated that dietary supplementation of C. butyricum promoted digestive enzyme activities in broiler chickens challenged with E. coli K88. This was likely due to C. butyricum-induced protection of the intestinal integrity by inhibiting the activities of E. coli K88 and LPS, so augmented the activities of these enzymes. It is also possible that C. butyricum is capable of directly producing digestive enzymes in the gut of animals.

Conclusion

The results of our study indicated that E. coli K88 challenge lowered the BW and ADG, decreased the intestinal barrier function and digestive enzyme activities, but dietary supplementation of C. butyricum reversed these observations and promoted the immune response, improved intestinal barrier function and digestive enzyme activities in broiler chickens challenged with E. coli K88. Our results suggest that including C. butyricum in poultry diets has the potential for rearing healthier birds. There was no significant difference between the C. butyricum probiotic treatment and the colistin sulfate antibiotic treatment on the effect of growth performance, immune response, intestinal barrier function, and digestive enzyme activity in broiler chickens challenged with Escherichia coli. Therefore, the C. butyricum probiotic may be an alternative to antibiotic for animal production.

Abbreviations

C. butyricum: Clostridium butyricum; E. coli K88: Escherichia coli K88; NC: negative control treatment; PC: positive control treatment; CB: C. butyricum probiotic treatment; CS: Colistin sulfate antibiotic treatment; BW: body weight; ADG: average daily gain; TNF: tumor necrosis factor; IL-4: interleukin-4; DAO: Diamine oxidase.

Competing interests

The authors have declared that no competing interests exist.

Acknowledgements

This work was supported by the International Cooperation Project of Zhejiang Province (No. 2012C14031) and Innovative Research Team Program of Zhejiang Province (No. 2011R50025).

Author details

1. College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
2. College of Animal Science and Technology, Zhejiang A & F University, 88 North Huancheng Road, Lin’an, Zhejiang 311300, China.
3. Zhejiang Huijia Biological Technology Ltd., Anji 313307, China.

Received: 24 August 2015 **Accepted:** 11 January 2016

References

1. Huff WE, Huff GR, Rath NC, Bagol JM, Donoghue AM. Prevention of Escherichia coli infection in broiler chickens with a bacteriophage aerosol spray. Poult Sci. 2010;89(10):1486–91.
2. Abu-Basha EA, Gharabeh SM, Thabet AM. In vitro susceptibility of resistant Escherichia coli field isolates to antimicrobial combinations. J Appl Poult Res. 2012;21(3):595–602.
3. Barros MR, da Silveira WD, de Araujo JM, Costa EP, Oliveira AAD, Santos APOF, et al. Antimicrobial resistance and plasmidial profile of Escherichia coli strain isolated from broilers and commercial layers in the state of Pernambuco, Brazil. Pesq Vet Bras. 2012;32(5):405–10.
4. Zhang T, Wang CJ, Lv JC, Wang RS, Zhong XH. Survey on tetracycline resistance and antibiotic-resistant genotype of avian Escherichia coli in North China. Poult Sci. 2012;91(11):2774–7.
5. Al-Bahry SN, Al-Mashani BM, Al-Ansari AS, Elshafei AE, Mahmoud YJ. Escherichia coli tetracycline efflux determinants in relation to tetracycline residues in chicken. Asian Pac J Trop Med. 2013;6(9):718–22.
6. Zhang C, Li FY, Liu WH, Zou L, Yan C, Lu K, et al. T4-Like Phage Bp7, a Potential Antimicrobial Agent for Controlling Drug-Resistant Escherichia coli in Chickens. Appl Environ Microbiol. 2013;79(18):5559–65.
7. Laube H, Frierie A, von Salviati C, Guernair B, Kabohter A, Kreinbrock L, et al. Longitudinal Monitoring of Extended-Spectrum-Beta-Lactamase / AmpC-Producing Escherichia coli at German Broiler Chicken Fattening Farms. Appl Environ Microbiol. 2013;79(16):4815–20.
8. Anadon A, Martinez-Llanaraga MR, Avanzazu Martinez M. Probiotics for animal nutrition in the European Union. Regulation and safety assessment. Regul Toxicol Pharmacol. 2006;45(1):91–5.
9. Huff GR, Huff WE, Rath NC, Solis De Los Santos F, Farnell MB, Donoghue AM. Influence of hen age on the response of turkey pouls to cold stress, Escherichia coli challenge, and treatment with a yeast extract antibiotic alternative. Poult Sci. 2007;86(6):636–42.
10. Cartman ST, La Ragione RM, Woodward MJ. Bacillus subtilis spores germinate in the chicken gastrointestinal tract. Appl Environ Microbiol. 2008;74(16):5254–8.
11. Williams LD, Burdock GA, Jimenez G, Castillo M. Literature review on the safety ofoyococin, a non-toxicigenic and non-pathogenic Bacillus cereus var. toyoi preparation. Regul Toxicol Pharmacol. 2009;55(2):236–46.
12. Higgins JP, Higgins SE, Wolfenden AD, Henderson SN, Torres-Rodriguez A, Vicente JL, et al. Effect of lactic acid bacteria probiotic culture treatment timing on Salmonella Enteritidis in neonatal broilers. Poult Sci. 2010;89(2):2437–43.
13. Higgins SE, Wolfenden AD, Tellez G, Hargis BM, Porter TE. Transcriptional profiling of cecal gene expression in probiotic-and Salmonella-challenged neonatal chicks. Poult Sci. 2011;90(4):901–13.
14. Tellez G, Pixley C, Wolfenden RE, Layton SL, Hargis BM. Probiotics and probiotics/short chain fatty acids signal in poultry. Food Res Int. 2012;45(2):628–33.
15. Huff GR, Huff WE, Jaksar S, Oppy J, Rath NC, Packalakshmi B. The effects of yeast feed supplementation on turkey performance and pathogen colonization in a transport stress/Escherichia coli challenge. Poult Sci. 2013;92(6):655–62.
16. Zhang BK, Yang X, Guo YM, Long F. Effects of dietary lipids and Clostridium butyricum on the performance and the digestive tract of broiler chickens. Arch Anim Nutr. 2011;65(4):329–39. a.
17. Meimandipour A, Shuhami M, Soleimani AF, Sazhar K, Hair-Bejo M, Kabeir BM, et al. Selected microbial groups and short-chain fatty acids profile in a simulated chicken cecum supplemented with two strains of Lactobacillus. Poult Sci. 2010;89(3):470–6.
18. Kong Q, He GQ, Jia JL, Zhu QL, Ruan H. Oral administration of Clostridium butyricum for modulating gastrointestinal microflora in mice. Curr Microbiol. 2011;62(2):512–7.
19. Gao QX, QI LL, Wu TX, Wang JB. Clostridium butyricum activates TLR2-mediated MyD88-independent signaling pathway in HT-29 cells. Mol Cell Biochem. 2012;361(1-2):31–7. b.
20. Yang CM, Cao GT, Ferket PR, Liu TT, Zhou L, Zhang L, et al. Effects of probiotic, Clostridium butyricum, on growth performance, immune function, and cecal microflora in broiler chickens. Poult Sci. 2012;91(9):2121–9.
21. Zhao X, Guo YM, Guo SS, Tan JZ. Effects of Clostridium butyricum and Enterococcus faecium on growth performance, lipid metabolism, and cecal microbiota of broiler chickens. Appl Microbiol Biotechnol. 2013;97(14):6477–88.
22. Yang X, Zhang B, Guo Y, Jiao P, Long F. Effects of dietary lipids and Clostridium butyricum on fat deposition and meat quality of broiler chickens. Poult Sci. 2010;89(2):254–60.

23. Zhang B, Yang X, Guo Y, Long F. Effects of dietary lipids and Clostridium butyricum on serum lipids and lipid-related gene expression in broiler chickens. Animal. 2011;5(12):1909–15.

24. Gao QX, Qi LL, Wu TX, Wang JB. Ability of Clostridium butyricum to inhibit Escherichia coli-induced apoptosis in chicken embryo intestinal cells. Vet Microbiol. 2012;160(3):395–402. a.

25. Alkhalf A, Alhaj M, Al-Homidan I. Influence of probiotic supplementation on blood parameters and growth performance in broiler chickens. Saudi J Biol Sci. 2010;17(3):219–25.

26. Wang Y, Gu Q. Effect of probiotic on growth performance and digestive enzyme activities of Arbor Acres broilers. Res Vet Sci. 2010;89(2):163–7.

27. Salim HM, Kang HK, Akter N, Kim DW, Kim JH, Kim MJ, et al. Supplementation of direct-fed microbials as an alternative to probiotic on growth performance, immune response, cecal microbial population, and ileal morphology of broiler chickens. Poult Sci. 2013;92(8):2084–90.

28. Fujiwara K, Yamazaki M, Abe H, Nakashima K, Yakabe Y, Otsuka M, et al. Effect of Bacillus subtilis var. natto fermented soybean on growth performance, microbial activity in the caeca and cytokine gene expression of domestic meat type chickens. J Poult Sci. 2009;46(2):116–22.

29. Lima ACF, Piazzol-Junior JM, Macari M, Malheiros EB. Effect of probiotic supplementation on performance and digestive enzymes activity of broiler chickens(J). Rev Bras Zootec. 2003;32(1):200–7.

30. Lee JI, Lee M, Lee J, Lee Y, Sun J, Lee Y, et al. Effect of Bacillus subtilis on intestinal morphology and immune characteristics of broiler chickens. Poult Sci. 2010;89(2):203–16.

31. Cao GT, Yang CM, Chen AG, Liu TT, Zhou L, et al. Effects of clindamycin butyricum on growth performance, nitrogen metabolism, intestinal morphology and cecal microflora in broiler chickens. J Anim Vet Adv. 2012;11(15):2665–71.

32. Rajput IR, Li WF, Li YL, Jian L, Wang MQ. Application of probiotic (Bacillus subtilis) to enhance immunity, antioxidation, digestive enzymes activity and hematological profile of Shaoying duck. Pakistan Veterinary Journal. 2012;33(1):69–72.

33. Cao GT, Zeng XF, Chen AG, Zhou L, Zhang L, Xiao YP, et al. Effects of a probiotic, Enterococcus faecium, on growth performance, intestinal morphology, immune response, and cecal microflora in broiler chickens challenged with Escherichia coli K88. Poult Sci. 2013;92(2):2949–55.

34. Rajput IR, Li YF, Li YL, Jia LN, Wang MQ. Effect of probiotic (Bacillus subtilis) in enhancing growth performance, gut morphology, and immune characteristics in broiler chickens. Poult Sci. 2010;89(2):203–16.

35. Zhang HQ, Ding TT, Zhao JS, Yang X, Zhang HX, Zhang JJ, et al. Therapeutic effects of Clostridium butyricum on experimental colitis caused by oxazolone in rats. World J Gastroenterol. 2009;15(15):1821–8.

36. Hua MC, Lin TY, Lai MW, Kong MS, Chang HJ, Chen CC. Probiotic Bio-Three Lactic acid bacteria (Lactobacillus acidophilus, Lactobacillus plantarum and Enterococcus faecium) elicits anti-inflammatory activity in porcine intestinal epithelial cells by modulating negative regulators of the Toll-like receptor signaling pathway. Infect Immun. 2012;80(1):2768–88.

37. Shini S, Kaiser P, Shini A, Bryden WL. Differential alterations in ultrastructural morphology of chicken heterophils and lymphocytes induced by corticosterone and lipopolysaccharide. Vet Immunol Immunopathol. 2008;122(1):83–93.

38. Opal SM, Scannan PJ, Vincent JL, White M, Carroll SF, Paleardy JE, et al. Relationship between plasma levels of lipopolysaccharide (LPS) and LPS-binding protein in patients with severe sepsis and septic shock. J Infect Dis. 1999;180(5):1584–9.

39. Alt-Beligenau A, Durand H, Carrier C, Chaumaz G, Eutamene H, Ferrier L, et al. A Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology. 2012;37(11):1885–99.

40. Bose S, Jeon S, Bomb T, Song MY, Kim H. Evaluation of the in vitro and in vivo protective effects of unfermented and fermented Rizhomacoptidis formulations against lipopolysaccharide insult. Food Chem. 2012;135(2):452–9.

41. Hesterberg R, Sadieb J, Lorenz W, Stahlknecht CD, Barth H, Crombach M, et al. Histamine content, diamine oxidase activity and histamine methyl transferase activity in human tissues: Fact or fictions? Agents Actions. 1984;14(3):324–34.

42. Dengstino L, Daniele B, Pignata S, Greco L, Mazzacca G. Postheparin plasma diamine oxidase in subjects with small bowel disease, diagnostic efficiency of a simplified test. Digestion. 1988;41(1):46–54.

43. Wolvekamp MCJ, De Bruin RWF. Diamine oxidase: an overview of historical, biochemical and functional aspects. Dig Dis. 1994;12(1):12–14.

44. Moriyama K, Kouchi Y, Morinaga H, Irimura K, Hayashi T, Ohuchida A, et al. Diamine oxidase, a plasma biomarker in rats to GI tract toxicity of oral fluorouracil anti-cancer drugs. Toxicology. 2006;217(2):233–9.

45. Tsunooka N, Maeyama K, Nakagawa H, Doi T, Horuchi A, Miyaochi K, et al. Localization and changes of diamine oxidase during cardiopulmonary bypass in rabbits. J Surg Res. 2006;131(1):58–63.

46. Usami M, Miyoshi M, Kanbara Y, Aoyama M, Sakaki H, Shuno K, et al. Effects of perioperative probiotic treatment on infectious complications, intestinal integrity, and fecal flora and organic acids in hepatic surgery with or without cirrhosis. J Parent Enter Nutr. 2011;35(3):317–28.

47. Sugawara G, Nagino M, Nishio H, Ebata T, Takagi K, Ashara T, et al. Perioperative probiotic treatment to prevent postoperative infectious complications in biliary cancer surgery: a randomized controlled trial. Ann Surg. 2006;244(5):706–14.

48. Zhou YK, Qin HL, Zhang M, Shen TY, Chen HQ, Ma YL, et al. Effects of Lactobacillus plantarum on gut barrier function in experimental obstructive jaundice. World J Gastroenterol. 2012;18(30):3977–91.

49. Sun YJ, Cao HJ, Song DD, Diao YQ, Zhou J, Zhang TZ. Probiotics Can Alleviate Cardiopulmonary Bypass-Induced Intestinal Mucosa Damage in Rats. Dig Dis Sci. 2013;58(8):1528–36.

50. Gural N, Mayil G, Kaya O, Karahan N, Sulak O. The effects of antibiotic growth promoter, probiotic or organic acid supplementation on performance, intestinal microflora and tissue of broilers. Int J Poutry Sci. 2006;5(2):149–55.

51. Samii HE, Senkoulu N, Koc F, Kanter M, Agama A. Effects of Enterococcus faecium and dried whey on broiler performance, gut histomorphometry and intestinal microbiota. Arch Anim Nutr. 2007;61(2):121–6.

52. Awad WA, Ghareeb K, Abdel-Raheem S, Böhm J. Effects of dietary inclusion of probiotic and synbiotic on growth performance, organ weights, and intestinal histomorphology of broiler chickens. Poult Sci. 2009;88(1):149–56.

53. Taheir HR, Moravej H, Malekzadeh A, Tabandeh F, Zaghari M, Shavazad M, et al. Efficacy of Pediococcusacidilactici-based probiotic on intestinal Coliforms and villus height. serum cholesterol level and performance of broiler chickens. Afr J Biotechnol. 2010;9(44):7564–7.

54. Kim JS, Ingale SL, Kim YM, Kim KH, Sen S, Ryu MH, et al. Effect of supplementation of multi-microbe probiotic product on growth performance, apparent digestibility, cecal microbiota and small intestinal morphology of broilers. J Anim Physiol Anim Nutr. 2012;96(4):518–26.
64. Sen S, Ingale SL, Kim YW, Kim JS, Kim KH, Lohakare JD, et al. Effect of supplementation of Bacillus subtilis LS 1-2 to broiler diets on growth performance, nutrient retention, caecal microbiology and small intestinal morphology. Res Vet Sci. 2012;93(1):264–8.

65. Rajput IR, Li YL, Xu X, Huang Y, Zhi WC, Yu DY, et al. Supplementary effects of Saccharomyces boulardii and Bacillus subtilis B10 on digestive enzyme activities, antioxidation capacity and blood homeostasis in broiler. International Journal of Agriculture & Biology. 2013;15(2):231–7.