The Effectiveness of Case-management Rehabilitation Intervention in Facilitating Return to Work and Maintenance of Employment After Myocardial Infarction: Results of a Randomized Controlled Trial

Oren Zack1*, Samuel Melamed1, Haim Silber2, Tali Cinamon3, Doron Levy4, and Shlomo Moshe1,4

Abstract

Objective: To study the long-term effectiveness of case-management rehabilitation intervention on vocational reintegration of patients after myocardial infarction (MI).

Design: Blinded simple randomization was used to construct an intervention and control groups that were followed up for two years.

Subjects and setting: 151 patients, aged 50.3 ± 5.9 years, who experienced uncomplicated MI and were enrolled in a cardiac rehabilitation program were recruited.

Interventions: included an early referral to an occupational physician, tailoring an occupational rehabilitation program, based on individual patient needs, coordination with relevant parties, psychosocial intervention, intensive follow-up sessions during a two-year follow-up.

Main measures: Return to work within six months of hospitalization and maintenance of employment at one and two years of follow-up.

Results: Return-to-work (RTW) rate in the intervention group was 89% and nearly all maintained employment at one year of follow-up (92%) and two years of follow-up (87%). Moreover, almost all of them returned to and maintained their previous jobs. The corresponding figures were: 98%, 94% and 98%, respectively. The figures for the RTW and employment maintenance for the control group were: 74%,

1Department of Environmental and Occupational Health, The School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
2Marom Cardiology Center, Kefar Sava, Israel
3The Authority of Public Complaints, Maccabi Healthcare Services, Tel Aviv, Israel
4The Department of Occupational Medicine, Hashfela and Jerusalem District, Maccabi Healthcare Services, Rishon Letzion, Israel

Corresponding author:
Oren Zack, 16 Kochvan St, Hod-Hasharon, 4522400, Israel.
Email: orenzack@gmail.com
75%, and 72%, respectively. Only about 75%, in this group kept their previous job. The case-management intervention was associated with increased odds of maintaining employment at follow-up of one year (OR = 5.89, 95% CI 1.42–24.30) and two years (OR = 3.12, 95% CI 1.01–10.03).

Conclusions: The extended case-management rehabilitation intervention had a substantial positive impact on both the RTW of MI patients and their maintenance of employment at one and two years of follow-up.

Trial Registration: This trial is registered at US National Institutes of Health #NCT04934735.

Keywords
Myocardial infarction, case-management, rehabilitation, return to work, randomized controlled trial

Introduction
Cardiac rehabilitation is a recommended aftercare for patients with established coronary heart disease,
 with return-to-work being one of its major goals.
Long-term follow-up studies of cardiac patients indicate that although the initial rate of return-to-work may be high, ranging between 67–93% during the first year, adverse changes in employment status may occur later. Nearly a quarter of the patients may be detached from employment due to cardiac and non-cardiac reasons.
After 2–3 years from the event, about 70–76% of patients are employed and only 64% of those still employed, are working full time.

Mounting evidence suggests that vocational reintegration of cardiac patients is not necessarily associated with cardiac functions but rather determined by demographic (e.g. age and gender), occupational (e.g. blue-collar work), and psychological factors (such as depression and expectations concerning work). The significance of occupational assessment, provision of individualized clinical data, physical possibilities and vocational information has been shown to increase the return-to-work rate, promote early return-to-work, and reduce medical costs.
In their study, Froom et al. have shown the importance of early intervention by showing a 30% decrease in the chance for full employment 24 months after an acute myocardial infarction for each month’s delay in referral.

This study draws upon the principles of disability management in the industry, in which case management plays a major role. To date, there is no study that documented the effectiveness of case management for the vocational rehabilitation of cardiac patients. We examined the efficacy of a two-year occupational rehabilitation intervention, provided by a single case manager within an occupational health clinic, aimed to optimize work integration of post-acute myocardial infarction patients. Elements of this intervention included: planning an occupational rehabilitation program, coordinating between all relevant parties, and providing psychosocial support and guidance in coping with the negative medical, occupational, and personal changes that might occur during this period.

The effectiveness of the intervention in facilitating return-to-work, specifically to the same job, and long-term maintenance of employment after a cardiac event was assessed through a randomized controlled trial conducted for acute myocardial infarction patients, who were employed before the event, and enrolled in a cardiac rehabilitation program.

Methods
This trial conforms to the CONSORT statement guidelines (Consolidated Standards of Reporting Trials) and the protocol has been registered in the US National Institute of Health (ClinicalTrials.gov) registry #NCT04934735. The study, conducted between 2007–2011, received ethical approval from the Maccabi Healthcare Services review board, serial number 2006038. This study was supported by the Social Security Services of Israel, “The Fund for Demonstrating Projects”, The Ministry of Labor and Social Affairs, Jerusalem, Israel (Budget item number 21020201), and
Maccabi Healthcare Services, Israel. It was supervised by a steering committee, appointed by the supporting fund, and headed by a senior rehabilitating cardiologist.

This is a randomized, controlled, and comparative study with parallel groups conducted among patients who experienced an uncomplicated acute myocardial infarction (see Results section) that were either hospitalized for acute myocardial infarction or undergoing cardiac rehabilitation in either private healthcare or a public health fund. Each participant signed a written informed consent before enrollment in the study.

The study was designed to prospectively assess the effectiveness of case-management rehabilitation intervention conducted within an occupational medicine clinic. The effectiveness of the intervention was measured by the participants' return-to-work rate within six months after the event, and by their maintenance of employment at one and two years of follow-up.

During hospitalization or immediately upon entering a cardiac rehab program, eligible patients were given a description (verbal and written) of the rehabilitation program by the program nurse, were asked to sign an informed consent form, and complete a baseline questionnaire as provided by a research assistant. Two weeks after hospitalization patients were referred to an examination by a cardiologist (to obtain a standardized clinical examination for all participants). Following this examination, the patients were assigned to an intervention group and a control group using blinded simple randomization based on a computer-generated random sequence of numbers. The intervention group received an extensive case-management rehabilitation program (described below). The control group received the standard care of cardiac rehabilitation which focuses on improving daily function and reducing cardiovascular risk factors, namely: lowering blood pressure, improving lipid and diabetes control, nutrition counseling, and smoking cessation. The study participants were followed up (through a phone interview) at 6, 12, 18, 24 months after entering the study. The follow-up was conducted by the case manager for patients in the intervention group, and by a research assistant for patients in the control group. Medical data were retrieved from the computerized medical records in the relevant hospitals.

Baseline data included demographic data, occupational characteristics before the event,

Table 1. Sociodemographic, occupational, and psychological characteristics of intervention and control groups.

Sociodemographic characteristics	Intervention (n = 74)	Control (n = 77)	p-Value
Age (mean ± SD) (years)	50.1 ± 5.6	50.5 ± 6.1	0.695
Gender - men (N [%])	68 (92.3%)	71 (92.2%)	0.276
Marital status - Married (N [%])	63 (85.1%)	57 (74.0%)	0.108
Education (mean ± SD) (years)	12.8 ± 2.7	13.5 ± 3.2	0.308
Seniority (mean ± SD) (years)	16.5 ± 11.2	14.1 ± 11.4	0.212
Average working hours/week prior to MI (mean ± SD)	50.3 ± 5.9	48.9 ± 5.4	0.131
Blue collar workers (N [%])	42 (56.8%)	48 (62.4%)	0.511
Physical exertion (N [%])	45 (60.8%)	51 (66.2%)	0.547
High, strenuous (N [%])	29 (39.2%)	26 (33.8%)	0.547
Occupational status - Employees	60 (81.0%)	62 (80.5%)	0.547
Independent contractors (N [%])	14 (19.0%)	15 (19.5%)	0.999
Managerial role – managers (N [%])	27 (36.5%)	31 (40.0%)	0.735
Psychological characteristics			
Negative expectations- work (mean ± SD)	2.05 ± 0.65	1.96 ± 0.68	0.407
Negative expectations – daily life functioning (mean ± SD)	2.66 ± 0.76	2.47 ± 0.77	0.129
Depressive symptoms (mean ± SD)	1.76 ± 0.63	1.66 ± 0.64	0.335

SD: standard deviation; MI: myocardial infarction.
psychological factors, and medical data. The list of variables studied appears in Tables 1 and 2. Depressive symptoms were assessed by the validated measure of the Patient Health Questionnaire 8 (PHQ-8, Cronbach’s α coefficient = 0.86). Patients’ subjective expectations (during hospitalization or immediately thereafter) of personal outcome after myocardial infarction, were measured by a 14 items scale, adopted from the 29 items questionnaire of expectations for future functioning. It was comprised of two subscales (7 items each): negative expectation concerning the capability of functioning in daily life, and ability of return-to-work ($\alpha = 0.84$ and 0.87, respectively). Medical data included: number and severity of myocardial infarction assessed by the New-York Heart Association (NYHA) functional class, ejection fraction, signs of heart failure, and time of angioplasty. Follow-up data were obtained through a short phone questionnaire concerning: working status (yes/no), time of return-to-work from the myocardial infarction, employment in the same job (yes/no), employment status (full time, part-time job), meeting with an occupational physician (yes/no), the occurrence of cardiac events during the preceding six months.

The case-management rehabilitation program was conducted using face-to-face meetings, by a clinical social worker within the occupational medicine clinic and included several components:

(a) Intake by a case manager covering information relevant for tailoring the rehabilitation program according to the needs of individual patients, assessing the patients’ perception of their illness and the impact of the event on their life and family. Also included were: familiarization with the patient’s occupational background, assessment of motivation, expectations, perceived efficacy and difficulties concerning return-to-work, and the identification of areas of intervention. Referral to further evaluation and treatment by a psychologist/psychiatrist was up to the case manager’s discretion.

Table 2. Clinical characteristics of the intervention and control groups.
Characteristics
Myocardial Infarction number (N [%])
First MI
Recurrent MI
Missing data
MI severity by NYHA (N [%]):
Class I
Class II
Ejection fraction (N [%]):
Normal (>55)
50–55
41–49
<40
Heart failure (N [%])
Angioplasty (N [%])
Primary PCI (N [%])
Within admission (N [%])
CR participation (N [%])

Data are presented as mean ± standard deviation or percentage where appropriate.
MI: Myocardial infarction; NYHA: New York Heart Association functional class; PCI: Percutaneous coronary intervention; CR: Cardiac rehabilitation.
Referral to an occupational physician was within one week of the intake.

Charting an occupational rehabilitation program and timing the return-to-work date, not later than 35 days from hospital discharge. This time period was chosen being the earliest possible intervention window after the clinical rehabilitation. Before their return-to-work date, patients were invited for an additional meeting with the case manager to facilitate their readiness to return to work and make any necessary arrangements.

Coordinating between the patients and their family, treating physicians, the employer, community services, and meeting with the patient’s family – all on a needful basis.

Provision of a guidance booklet for employers, produced by the National Institute of Environmental and Occupational Health, on the return-to-work of cardiac patients. Patients could read it by themselves and/or hand it to their employer.

The psychosocial intervention was tailored to the patient’s emotional state, occupational needs, and specific requests. When needed, short-term (up to four sessions) psychotherapeutic treatment was provided by the case manager to help alleviate anxiety and other debilitating concerns, illness misconceptions, family issues, and occupational wavering regarding when to and if to return to the same work.

Intensive follow-up sessions, by the case manager aimed to ensure that the rehabilitation program was carried out as planned, were conducted two, four, and six weeks after the beginning of the psychosocial intervention.

Intervention during follow up included:

Patients who had return-to-work within three months after discharge from the hospital, received follow-up calls as follows: two weeks from the start of the case-management intervention, every two months during the first six months, and once every six months thereafter (as outlined above). If needed, one or more of the above interventions were applied.

1. Patients who had not returned to work within six months after discharge, due to psychosocial or employer-related issues received up to 12 intensive intervention sessions, in which the relevant parties were involved. Upon successful return to work, the six months follow-up calls were resumed.

2. Patients who had not returned to work after six months for the above reasons and were assessed as having rehabilitation potential (were physically capable and expressed an explicit desire to return to work), were referred to the National Social Security rehabilitation services and were followed up monthly for one year. The case-management intervention was ended for patients without rehabilitation potential. For both groups, follow-up calls continued for six months.

Results are presented as mean ± standard deviation (SD) for continuous variables and as frequencies for categorical variables. Data were analyzed using the SPSS statistical package (Version 26, SPSS Inc., Chicago, IL). Student’s t-test was used to test for a difference between the means of two groups on a continuous dependent variable. The Chi-square test of homogeneity was used to test for a difference between two proportions. For small groups, it was replaced by Fisher’s exact test.

A multiple logistic regression model was used to investigate the relationship between employment status (employed/unemployed) at one year and two years of follow-up and case-management program participation. Adjustments were made for factors that were found in previous studies to be associated with vocational re-integration and that could have confounded the findings of this study. A list of the possible confounders is presented in Table 4. Statistical significance was determined by \(p < 0.05 \).
Results

A total of 151 patients completed the study. The baseline sociodemographic, occupational, and psychological data are shown in Table 1, and the flow of patients is shown in Figure 1. Out of 168 patients identified for recruitment, 153 patients have met the inclusion criteria and opted to take part in the study. Patients were randomized into an intervention group (n = 74) and a control group (n = 79) of whom 2 were lost to follow-up (deceased).

Comparisons of sociodemographic (Table 1) and medical variables (Table 2) showed no statistically significant differences between the two groups supporting adequate randomization. Samples were diverse and included white- and blue-collar workers, independent contractors, and executives with an average education of more than 12 schooling years. Judging by the medical parameters, patients had undergone uncomplicated myocardial infarction, and in the majority of the cases, it was their first myocardial event. More than half of the patients had an intact ejection fraction (EF > 50%) and a New-York Heart Association (NYHA)-1 classification. No NYHA-3 or -4 patients were found. Only a few of the patients exhibited signs of heart failure.

The majority of study participants were enrolled in a cardiac rehabilitation program. The rates in the intervention and control groups did not differ statistically. During the first three months of follow-up, no statistically significant differences were found between the groups regarding occupational physician visitations (45% in the intervention group vs. 40% in the control group).

Table 3 summarizes the results for the outcome variables in this study. A clear difference emerged between the two study groups regarding the extent of work re-integration within six months of discharge from the hospital. Eighty-nine percent of the patients in the intervention group returned to work, and the majority of them (98%) resumed the same position/role. Eighty percent of those who returned to work were working full time. The corresponding figures for patients in the control group were: 74%, 73%, and 63%, respectively. All differences were found to be statistically significant (p = 0.0105, p < 0.0001, p = 0.0275, respectively). We found that the main reasons for not returning to work in the study group within the first six months were mainly medical.

Also appearing in this table are the rates of those who maintained employment at one year and two years of follow-up. For sake of brevity, we do not present the figures for 18 months of follow-up. They are set in between the rates presented in the table and have no incremental value (but available from the authors upon request). In the intervention group, 92% were employed at one year of follow-up; of those, 94% retained the previous position/role, and 84% were working full time. The figures for the control group were notably lower and statistically significant with rates of 75% (p = 0.0053), 75% (p = 0.0036), and 71% (p = 0.039), respectively. The same trend was observed in the data from 2 years of follow-up. In the intervention group, 87% were employed at two years of follow-up of those 98% retained the previous position/role and 87% were working full time. The figures for the control group were notably lower with rates of 72% (p = 0.0162), 76% (p = 0.0002), and 64% (p = 0.0022), respectively.

No statistically significant difference was found between the intervention group and the control group regarding medical events that occurred during follow-up (diagnostic catheterization, percutaneous transluminal coronary angioplasty (PTCA), and hospitalizations).

The next step of the data analysis was to examine the value of baseline demographic, occupational, psychological, and clinical characteristics in predicting employment maintenance at one and two years of follow-up. The results are presented in Tables 4 and 5. Several of the sociodemographic variables were statistically significant predictors of this outcome at one year, two years of follow-up, or both (Table 4). The employed patients compared with the non-employed had a higher proportion of males and married patients. They had higher seniority, a higher average of working hours per week prior to the infarct, and were employed in jobs with mild or moderate physical exertion. Interestingly, only a low percentage of these patients occupied managerial roles. Furthermore, all three psychological variables were found to be
Figure 1. Flow chart of The study design.

- **Patients identified for recruitment (n=168)**
 - Patients who declined participation (n=12)
 - Baseline questionnaire administration
 - **Excluded (n=10)**
 - Age over 57y (n=7)
 - Not working 6 months before the event (n=2)
 - Receiving treatment elsewhere (n=1)
 - **Dropouts (n=5)**
 - Declined to participate
 - Not contactable
 - Randomized into two study groups
 - **Intervention group (n=74)**
 - CM rehabilitation intervention
 - 6 months follow-up by the CM\(^a\)
 - Intervention when needed
 - 12 months follow-up by the CM\(^a\)
 - Intervention when needed
 - 18 months follow-up by the CM\(^a\)
 - Intervention when needed
 - 24 months follow-up by the CM\(^a\)
 - Final intervention group (n=74)
 - **Control group (n=79)**
 - Receiving standard care
 - 6 months follow-up by a RA\(^b\)
 - 12 months follow-up by a RA\(^b\)
 - 18 months follow-up by a RA\(^b\)
 - 24 months follow-up by a RA\(^b\)
 - Final control group (n=77)
 - Patients who have died during the follow-up period (n=2)

\(^a\) CM – case management / case manager
\(^b\) RA – research assistant
predictors of the studied outcome. The employed patients had lower mean scores of negative expectations concerning return-to-work and functioning in daily life. Furthermore, they had a lower level of depressive symptoms.

Except for one variable, none of the medical variables turned out to be statistically significant (Table 5). Employed patients had a significantly higher proportion of mild myocardial infarction (NYHA class I). Finally, no difference between the groups was found in the percentage of patients attending the cardiac rehabilitation program. The rates at one year of follow-up were 78.6% and 84.0% for employed and non-employed patients, respectively. The respective corresponding percentages for two years of follow-up were 78.5% and 83.3%.

Table 6 presents the results of logistic regression analysis testing the relationship between employment status at follow-up and case manager intervention while adjusting for potential confounding variables. The case manager intervention was associated with increased odds of maintaining employment at follow-up of one year (OR = 5.89, 95% CI 1.42–24.30) and two years (OR = 3.12, 95% CI 1.01–10.03), after adjustment for sociodemographic, occupational, psychological, and clinical variables.

Discussion

This randomized controlled trial was aimed to prospectively assess the effectiveness of an extended case-management rehabilitating intervention on vocational reintegration of patients who underwent an uncomplicated acute MI. The findings indicated that 89% of the patients in the intervention group returned to work within six months, which was significantly higher than the rate for the control group (74%). Moreover, 98% of the former group have returned to the same job, at a significantly higher rate than in the latter group (73%). The high RTW rate in the intervention group was similar to the 96% reported in another study in which a comprehensive rehabilitation program was employed.7 These rates were higher than those reported in other studies of long-term follow-up of over 12 months, which added psychological intervention to the usual care. In the intervention groups, the median RTW rate was 75.5% whereas in the usual care groups it was 66.6%.18–24

The effectiveness of the case management program, as outlined above, can be attributed to
several factors such as early intervention (during hospitalization or immediately thereafter); an early referral to the occupational medicine clinics; and charting an occupational rehabilitation program, all in addition to the provision of brief psychosocial intervention. The early return-to-work prevented the phenomena often observed for patients with long sick leave, having their job modified or replaced by other workers and we believe this explains the high rate of return to the same job observed here.

The major findings of this study were that case management was associated with 5.9-fold increased odds of maintaining employment during one year of follow-up, even after adjusting for demographic, occupational, psychological, and clinical factors. Ninety-two percent of the patients were employed at this time and of these, 94% remained in the same job. The corresponding figures for the control group were 75% and 75%, respectively. An encouraging finding in our study was the effectiveness of the intervention that persisted for two years after the event (OR = 3.1, 95% CI: 1.01–10.0). Eighty-seven percent of the intervention group were employed, and 98% of these have retained the same job. The corresponding figures for the control group were 72% and 76%, respectively. Not unexpected, the

Table 4. Differences of the sociodemographic, occupational, and psychological variables by employment status at one and two years of follow-up (n = 151).

Sociodemographic characteristics	One-year follow-up	Two-year follow-up				
	Employed (n = 126)	Non-employed (n = 25)	p-Value	Employed (n = 121)	Non-employed (n = 30)	p-Value
Age (mean ± SD) (years)	50.3 ± 5.8	50.4 ± 5.6	0.936	50.5 ± 5.8	49.4 ± 5.7	0.351
Gender ((N [%]) males)	120 (95.2%)	23 (92.0%)	0.620	117 (96.7%)	26 (86.7%)	0.05
Marital status- married (N [%])	108 (85.7%)	14 (56.0%)	0.002	106 (87.6%)	16 (53.3%)	0.001
Education (M ± SD) (years)	13.3 ± 3.2	12.5 ± 2.6	0.185	13.2 ± 3.3	12.7 ± 2.6	0.377
Seniority (M ± SD) (years)	15.9 ± 11.7	12.4 ± 11.1	0.162	16.3 ± 11.6	11.4 ± 11.0	0.036
Working hours/week prior to the infarct (M ± SD) (years)	50.6 ± 9.5	44.5 ± 12.1	0.024	50.6 ± 9.6	45.8 ± 12.3	0.058
Blue collar workers (N [%])	71 (56.3%)	19 (76.0%)	0.077	71 (58.7%)	19 (63.3%)	0.801
Physical exertion (N [%])						
Mild, moderate (N [%])	89 (70.5%)	11 (44.0%)	0.007	82 (67.8%)	19 (63.3%)	0.746
High, strenuous (N [%])	37 (29.5%)	14 (56.0%)	0.018	39 (32.2%)	11 (36.7%)	0.746
Employee (N [%])	103 (81.8%)	20 (80.0%)	0.784	99 (81.8%)	24 (80.0%)	0.797
Managerial role (N [%])	58 (46.0%)	17 (68.0%)	0.051	58 (47.9%)	17 (56.7%)	0.510
Negative expectations-work (M ± SD)	1.90 ± 0.70	2.53 ± 0.80	0.001	1.91 ± 0.90	2.38 ± 1.05	0.03
Negative expectations – daily life functioning (M ± SD)	2.51 ± 0.82	2.82 ± 0.61	0.035	2.51 ± 0.80	2.79 ± 0.59	0.035
Depressive symptoms (M ± SD)	1.66 ± 0.60	1.92 ± 0.51	0.03	1.64 ± 0.70	1.97 ± 0.52	0.005

M ± SD: Mean ± Standard deviation.
employment rate of patients in the control group, is very similar to that observed in other studies in which typically short-term cardiac rehabilitation was employed.4,6,26

Table 5. Differences of the medical parameters at one and two years of follow-up, employed vs. non-employed subgroups.

Sociodemographic characteristics	One-year follow-up	Two-year follow-up				
	Employed (n = 126)	Non-employed (n = 25) p-Value	Employed (n = 121)	Non-employed (n = 30) p-Value		
First MI (%)	94.0	95.5	1.000	94.6	92.3	1.000
Second MI (%)	6.0	4.5	1.000	5.4	7.2	1.000
NYHA (%):						
Class I	93.7	81.0	0.042	92.5	88.0	0.291
Class II	6.3	19.0	0.074	7.5	12.0	0.291
Normal Ejection fraction (≥50) (%)	55.5	50.0	0.776	53.5	58.6	0.766
Risk factors (%):						
Hypertension (%)	32.5	36.0	0.915	33.9	29.6	0.817
Diabetes (%)	22.8	16.0	0.626	24.1	11.1	0.133
Dyslipidemia (%)	50.9	48.0	0.963	51.8	44.4	0.602
Smoking (%)	58.8	72.0	0.312	58.0	74.1	0.158
Heart Failure (%)	5.0	9.5	0.680	6.1	4.2	1.000
Angioplasty (%)						
Primary PCI (%)	56.1	52.4	0.905	56.9	50.0	0.634
Within admission (%)	57.0	47.6	0.520	56.9	43.1	0.249
CR participation (%)	78.6	84.0	0.69	78.5	83.3	0.801

Mi: Myocardial infarction; NYHA: New York Heart Association functional class; PCI: Percutaneous coronary intervention; CR: Cardiac rehabilitation.

Table 6. Results of logistic regression analysis of employment status at one and two years of follow-up by CM intervention, adjusting for potential confounding variables.

Employment status at one year	Adj OR	95% CI	Employment status at two years	Adj OR	95% CI
CM intervention	5.89	1.42–24.30		3.12	1.01–10.03
Socio-demographic variables					
Age	0.98	0.85–1.04		1.02	0.94–1.11
Marital status - married	3.21	0.78–13.25		7.34	2.08–25.6
Blue-collar	0.83	0.18–3.08		1.82	1.82–5.6
Self-employed	1.97	0.36–10.20		1.13	0.33–3.80
High physical exertion	0.56	0.28–1.14		0.90	0.51–1.59
Psychological variables					
Negative expectations - work	0.39	0.14–1.04		0.74	0.33–1.68
Negative expectations- daily life	0.54	0.18–1.61		0.86	0.33–2.12
Depressive symptoms	0.98	0.28–4.67		0.38	0.60–1.11
Clinical variables					
Ejection fraction: Normal/intact	1.16	0.31–4.25		1.32	0.43–4.04
NYHA Class I	3.52	0.57–2.17		1.51	0.23–9.61
The success of the comprehensive case-management program in facilitating long-term maintenance of employment may be explained, in addition to the factors mentioned above, by containing other components of disability management/vocational rehabilitation programs, suggested by rehabilitation specialists as important for enhancing work reintegration, namely: occupational counseling, monitoring and providing support and alleviating any difficulties during work reintegration, addressing personal and work related-obstacles that might affect an individual’s decision to return-to-work, and providing coordination between all relevant parties.6,7,27,28

The majority of the participants in this study participated in a regular cardiac rehab program (see Methods). However, the findings here showed that rehab participation had no effect on employment status either at one year or two years of follow-up. No difference was found between the study groups in the participation rates in cardiac rehab programs. No or little effect of cardiac rehab enrollment on employment status was observed in many other studies,6,28 and was also the overall finding of Hegewald et al.27 who conducted a systematic review of 39 randomized controlled trials that aimed to evaluate the effects of interventions intended to enhance return-to-work in patients with coronary heart disease compared to usual vs. no care. To illustrate, they found that person-directed combined interventions, applying both psychological counseling and physical conditioning versus usual care, may have increased return-to-work for up to six months. However, there was low-certainty evidence that such interventions increased the proportion of participants working in the long term (follow-up of 1 to 5 years, RR = 1.14, 95% CI 0.96–1.37). Furthermore, they even found that work-directed counseling by family physicians, nurses, and other clinicians, did not have a better impact on return-to-work. Thus, although the general expectation is that cardiac rehab programs, in addition to their benefits to health status and quality of life, would also facilitate return-to-work of patients with coronary heart disease, often this expectation was not met. It appears that these programs, which focus primarily on improving daily function and reducing cardiovascular risk factors, usually lacked many of the components that are directly relevant to work reintegration as listed above such as psychosocial and occupational counseling.

Consistent with findings of other studies,3,7–9 long-term employment in our study was not related to cardiac state or cardiovascular risk factors, nor was it associated with occupational factors. Rather, it has been shown to be related to the same demographic factors that were found to be positively related to return-to-work in the literature: male gender, married status, longer tenure, low intensity of physical effort, and higher income prior to the cardiac event.3,7 Moreover, our study shows that negative psychological factors turned out to be determinants of the detachment from employment at one- and two years of follow-up: negative expectations concerning return-to-work, daily functioning, and depressive symptoms, all congruent with the findings of other studies.8,16,29,30 Nonetheless, the intervention programs proved to be a powerful determinant of long-term employment over and above the demographic, occupational, and psychological factors.

The current prospective case-management intervention study has several strengths. To the best of our knowledge, it is the first study to examine the impact of such an intervention on return-to-work and maintenance of employment after acute myocardial infarction. The intervention was carried out by a single clinical social worker within the occupational medicine clinic for patients with acute myocardial infarction who participated in a cardiac rehabilitation program. It started very early, before the loss of fitness for work and adoption of the sick role, and in an effort to sustain the same employment. It commenced before or during the cardiac rehab program - timing which is consistent with the new guidelines on cardiac rehabilitation that strongly advise initiating return-to-work support during rehab and not after it has concluded.27 The intervention was oriented towards vocational rehabilitation and contained many of the
components, listed above, that are often missing in
the regular rehab programs, including the one
employed in the current study. As part of the inter-
vention, the case manager coordinated simultan-
eously between all relevant parties, preventing
the bouncing of patients from one body or one
professional to another, and thus saving a lot of
time. Patients continued to receive guidance and
support long after the cardiac rehab program was
completed, they were monitored every six
months and had the case manager intervene
when various difficulties (personal and occupa-
tional) arose during work reintegration. This has
resulted in a prolonged period of maintaining
employment. Moreover, these patients kept the
same job they held before the event, at least for
the duration of the follow-up – an outcome that
is in contrast to the adverse changes in employ-
ment reported in the literature for coronary heart
disease patients. Another important strength of
this study is that the case management program
helped facilitate work adjustment and re-integration of patients with coronary heart
disease who were employed at different work-
places and was not dependent on the initiative
and willingness of a given workplace to undertake
case management of workers after a cardiac event.
This study also contributed to the paucity of data
regarding long-term work re-integrating of
patients with coronary heart disease. The majority
of the relevant studies in the literature (not
reviewed here) were limited to no more than one
year of follow-up.

The present study has several limitations. It
was conducted for patients with uncomplicated
(largely first) acute myocardial infarction, and
we do not know how effective the case manage-
ment program would be for patients with a more
severe cardiac state. The case manager monitored
the patients in the intervention group every six
months during the follow-up period (see
methods) and at the same time collected the
follow-up data. Thus, stemming from the study
design both the case manager and research assist-
ant could not be blinded to their designated study
group. Yet, both used the exact same standard
follow-up phone questionnaire. Most of the
patients participated in cardiac rehabilitation in
conjunction with the case management interven-
tion. It remains to be tested if case management
intervention would be as effective for patients
who do not participate in rehab. There are many
patients with coronary heart disease who do not
attend rehab programs despite a recommendation
by their cardiologist to do so. Unfortunately,
the small number of subjects in the intervention
group (n = 17) who did not participate in cardiac
rehabilitation, did not provide sufficient statistical
power to examine this issue here. Finally, the
study participants’ place of work was not recorded
in the data. This prevented us from testing,
whether the benefits of the intervention were
obtained irrespective of the place of work.

Clinical implications

Extensive case-management rehabilitation inter-
vention program that starts before or during
cardiac rehab and continues for two years after
hospitalization may have a considerable positive
impact on the return-to-work of cardiac patients
to the same employer and the same jobs and
more importantly, their long-term maintenance
of employment. This intervention should start
early and include coordination between the rele-
vant parties, provision of occupational counseling
before resuming work and providing long-term
psychosocial support before and after return-to-
work. We recommend integrating a case
manager in rehabilitation programs of post-
acute-myocardial infarction patients as a means
to encourage the return to full and gainful
employment.

Future intervention studies aimed at enhancing
the reintegration of patients with coronary heart
disease in work could explore the possibility of
incorporating into the classical cardiac rehabilitation
programs various disability management compo-
nents that are more directed towards the occupa-
tional rehabilitation of such patients. Alternatively,
the application of long-term case management strat-
egies may be provided by external occupational
medicine professionals during and after the cardiac
rehabilitation programs.

Clinical messages

- A long-term case-management program among myocardial infarction patients that coordinates between relevant parties and provides psychosocial support alongside occupational counseling may facilitate their return to work and maintenance of their previous jobs.
- It can be provided by occupational medicine professionals and included in the classical cardiac rehab programs.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Social Security Services of Israel, “The Fund for Demonstrating Projects”, The Ministry of Labor and Social Affairs, Jerusalem, Israel (grant number Budget item number 21020201), and Maccabi Healthcare Services, Israel.

ORCID iD

Zack Oren https://orcid.org/0000-0003-2639-5234

References

1. Piepoli MF, Hoes AW, Agewall S, et al. 2016 European guidelines on cardiovascular disease prevention in clinical practice: the sixth joint task force of the European society of cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of 10 societies and by invited experts)Developed with the special contribution of the European association for cardiovascular prevention & rehabilitation (EACPR). Eur Heart J 2016; 37: 2315–2381.
2. Smedegaard L, Nume AK, Charlot M, et al. Return to work and risk of subsequent detachment From employment after myocardial infarction: insights From danish nationwide registries. J Am Heart Assoc 2017; 6: e006486.
3. Reibis R, Salzwedel A, Abreu A, et al. The importance of return to work: how to achieve optimal reintegration in ACS patients. Eur J Prev Cardiol 2019; 26: 1358–1369.
4. Froom P, Cohen C, Rashcupik J, et al. Referral to occupational medicine clinics and resumption of employment after myocardial infarction. J Occup Environ Med 1999; 41: 943–947.
5. Martin MHT, Nielsen MBD, Madsen IEH, et al. Effectiveness of a coordinated and tailored return-to-work intervention for sickness absence beneficiaries with mental health problems. J Occup Rehabil 2013; 23: 621–630.
6. Olsen SJ, Schirmer H, Wilsgaard T, et al. Employment status three years after percutaneous coronary intervention and predictors for being employed: a nationwide prospective cohort study. Eur J Cardiovasc Nurs 2020; 19: 433–439.
7. De Sutter J, Kacenelenbogen R, Pardaens S, et al. The role of cardiac rehabilitation in vocational reintegration Belgian working group of cardiovascular prevention and rehabilitation position paper. Acta Cardiol 2020; 75: 388–397.
8. Fiabane E. Return to work after an acute cardiac event: the role of psychosocial factors. Prevention & Research 2014; 3: 137–141.
9. Stendardo M, Bonci M, Casillo V, et al. Predicting return to work after acute myocardial infarction: socio-occupational factors overcome clinical conditions. PLoS One 2018; 13: e0208842.
10. Dennis C, Houston-Miller N, Schwartz RG, et al. Early return to work after uncomplicated myocardial infarction. Results of a randomized trial. JAMA 1988; 260: 214–220.
11. Monpere C, Francois G, Rondeau du Noyer C, et al. Return to work after rehabilitation in coronary bypass patients. Role of the occupational medicine specialist during rehabilitation. Eur Heart J 1988; 9 Suppl L: 48–53.
12. Picard MH, Dennis C, Schwartz RG, et al. Cost-benefit analysis of early return to work after uncomplicated acute myocardial infarction. Am J Cardiol 1989; 63: 1308–1314.
13. Shrey DE and Lacerte M. Principles and practices of disability management in industry. Winter Park, Fla: GR Press, 1995.
14. Servey JT and Stephens M. Cardiac rehabilitation: improving function and reducing risk. Am Fam Physician 2016; 94: 37–43.
15. Koenke K, Strine TW, Spitzer RL, et al. The PHQ-8 as a measure of current depression in the general population. J Affect Disord 2009; 114: 163–173.
16. Maeland JG and Havik OE. Psychological predictors for return to work after a myocardial infarction. J Psychosom Res 1987; 31: 471–481.
17. Criteria Committee of the New York Heart Association. Nomenclature and criteria for diagnosis of diseases of the heart and great vessels. 9th ed. Boston, Massachusetts: Little, Brown & Co, 1994.
18. P.RE.COR. Group. Comparison of a rehabilitation programme, a counselling programme and usual care after an acute myocardial infarction: results of a long-term randomized trial. Eur Heart J 1991; 12: 612–616.
19. Andersson A, Sundel KL, Unden AL, et al. A five-year rehabilitation programme for younger women after a coronary event reduces the need for hospital care. Scand J Public Health 2010; 38: 566–573.

20. Bengtsson K. Rehabilitation after myocardial infarction. A controlled study. Scand J Rehabil Med 1983; 15: 1–9.

21. Engblom E, Korpilahti K, Hamalainen H, et al. Quality of life and return to work 5 years after coronary artery bypass surgery. Long-term results of cardiac rehabilitation. J Cardiopulm Rehabil 1997; 17: 29–36.

22. Hanssen TA, Nordrehaug JE, Eide GE, et al. Does a telephone follow-up intervention for patients discharged with acute myocardial infarction have long-term effects on health-related quality of life? A randomised controlled trial. J Clin Nurs 2009; 18: 1334–1345.

23. Hofman-Bang C, Lisspers J, Nordlander R, et al. Two-year results of a controlled study of residential rehabilitation for patients treated with percutaneous transluminal coronary angioplasty. A randomized study of a multifactorial programme. Eur Heart J 1999; 20: 1465–1474.

24. Rahe RH, Ward HW and Hayes V. Brief group therapy in myocardial infarction rehabilitation: three- to four-year follow-up of a controlled trial. Psychosom Med 1979; 41: 229–242.

25. Kushnir T and Luria O. Supervisors’ attitudes toward return to work after myocardial infarction or coronary artery bypass graft. J Occup Environ Med 2002; 44: 331–337.

26. Cauter JVD, Bacquier DD, Clays E, et al. Return to work and associations with psychosocial well-being and health-related quality of life in coronary heart disease patients: results from EUROASPIRE IV. Eur J Prev Cardiol 2019; 26: 1386–1395.

27. Hegewald J, Wegewitz UE, Euler U, et al. Interventions to support return to work for people with coronary heart disease. Cochrane Database Syst Rev 2019; 3: CD010748.

28. Shanfield SB. Return to work after an acute myocardial infarction: a review. Heart Lung 1990; 19: 109–117.

29. Salzwedel A, Reibis R, Heidler MD, et al. Determinants of return to work after multicomponent cardiac rehabilitation. Arch Phys Med Rehabil 2019; 100: 2399–2402.

30. Samkange-Zeeb F, Altenhoner T, Berg G, et al. Predicting non-return to work in patients attending cardiac rehabilitation. Int J Rehabil Res 2006; 29: 43–49.

31. McMahon SR, Ades PA and Thompson PD. The role of cardiac rehabilitation in patients with heart disease. Trends Cardiovasc Med 2017; 27: 420–425.