Original article

Effect of lipid lowering tablet on blood lipid in hyperlipidemia model rats

Xuejun Kong, Yanling Gao, Xiuli Geng *, Guoqi Xie, Shaojun Hao, Yan Li, Zhengchen Zhang

The 371st Central Hospital of PLA, Xinxiang 453000, China

A R T I C L E I N F O

Article history:
Received 16 August 2017
Revised 30 November 2017
Accepted 3 December 2017
Available online 5 December 2017

Keywords:
Lipid-lowering tablet
Hyperlipidemia
Body weight
Liver index
Serum biochemical index
Rats

A B S T R A C T

Observe the effect of lipid-lowering tablets on body weight, liver index and serum biochemical indexes of hyperlipidemia rats. The hyperlipidemia rat model was replicated successfully. Compared with the model group, high, medium and low dose lipid-lowering tablets group could significantly increase the body weight of rats with hyperlipidemia (P < 0.01, P < 0.05); High and middle dose lipid-lowering tablets group could significantly reduce the liver index of high fat rat (P < 0.01); High, medium and low dose lipid-lowering tablets group could significantly decrease levels of TC, TG, LDL-C, AST, ALT, ALP, Y-GT in serum (P < 0.01, P < 0.05), and significantly increase the level of HDL-C (P < 0.01). Lipid-lowering tablets can effectively regulate the body lipid metabolism of rats, and have a certain therapeutic effect on hyperlipidemia.

© 2018 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

With the rapid development of social productivity and social economy, people's living standard has been improved to some extent. The gradual intake of high-sugar, high-fat and high-protein foods has changed people's dietary structure, so that the body lipid metabolism disordered, antioxidant capacity reduced, lipid oxidation products increased, resulting in atherosclerotic vascular injury (Ye et al., 2014). Hyperlipidemia can lead to atherosclerosis, and then lead to coronary heart disease, stroke, diabetes complications, myocardial infarction and other diseases, and many other diseases of other systems of the body are also closely related to it, being the first killer of human health. By 2030, cardiovascular disease will still be the leading cause of death in humans, and nearly 23 million 600 thousand people will die from cardiovascular disease (Wang et al., 2013; Gao et al., 2017). As a traditional feature of our country, the traditional Chinese medicine has its unique effect and obvious advantages in prevention and treatment of hyperlipidemia (Gohar et al., 2017). We should take comprehensive measures to give full play to the advantages of combining traditional Chinese and Western medicine, to prevent and reduce the risk factors of atherosclerosis, and this is also an important aspect of cardiovascular disease research in China (Ge et al., 2016; He et al., 2016). This model of hyperlipidemia was established by compound factor modeling of high fat diet and fat emulsion, to observe the intervention effect of lipid-lowering tablets on body weight, liver index and serum biochemical indexes of hyperlipidemia rats.

1.1. Animals

Rat, Species: Wistar, Grade: SPF, male, 180–220 g, Certificate Number: 3700920001785, Provide Unit: Shandong Lukang Pharmaceutical Co. Ltd. License No. SCXK (Lu) 2014005.

1.2. Experimental drugs and reagents

Lipid-lowering tablets, preparation room of the 371st Central Hospital of PLA in Xinxiang, batch number 20150806; Xuezhihikang Capsule, Beijing Beida Weixin biotechnology Co. Ltd., batch number: 20150718; Propylene glycol, Tianjin Zhiyuan Chemical Reagent Co. Ltd., batch number: 20150320; Twain -80, Tianjin Fu Yu Fine Chemical Co. Ltd., batch number: 20150410.

Sodium deoxycholate, Beijing Aoboxing biotechnology limited liability company, batch number: 20160112; Propylthiouracil...
Tablets, Shanghai Zhaohui Pharmaceutical Co. Ltd., batch number: 1506N18; Cholesterol, Zhengzhou Paini chemical reagent factory, batch number: 20151220; Saline, Beverly Henan Shuanghe Pharmaceutical Co. Ltd., batch number: 20160108; T-CHO test kit, batch number: A111-1; TG test kit, batch number: A110-1; ALT test kit, batch number: C009-2; Y-GT test kit, batch number: C017. The test kit was purchased Nanjing Jiancheng Institute of biological engineering.

High fat emulsion configuration: oil phase: lard 25 g, cholesterol 10 g, propylthiouracil tablets 1 g, polysorbate 80 20 ml; aqueous phase: distilled water 30 ml, propylene glycol 20 ml, sodium deoxycholate 2 g. Preparation method: oil phase: add lard 25 g into a 200 ml beaker, heat to 100 °C, add cholesterol 10 g to melt, add propylthiouracil tablets 1 g, and after a fully mix, add polysorbate 80 20 ml; aqueous phase: add distilled water 30 ml to a 200 ml beaker, bath with a temperature of 60 °C, add propylene glycol 20 ml, sodium deoxycholate 2 g to fully dissolve; then add aqueous phase into the oil phase, stir, and cool down in the 4 °C refrigerator for further use (Muhammad et al., 2017a).

High fat diet configuration: 10% lard, 1% cholesterol, 5% egg yolk powder, 0.2% propylthiouracil, 0.5% sodium deoxycholic acid, 5% sucrose, 78.3% basic feed for proportion.

2. Experimental instrument

FA (N)JA (N) series electronic balance, Shanghai Mingqiao Precision Instrument Co. Ltd.; HWS12 type electric thermostatic water bath, Shanghai Hengyi Scientific Instrument Co. Ltd.; KDC-160HR high-speed refrigerated centrifuge, Zhongjia branch of Keda Instrument Co. Ltd.; HWS12 type electric thermostatic water bath with 60°C-80°C for further use (Muhammad et al., 2017a).

3. Results

As can be seen from Table 1, for the first time, there was no difference among groups, meaning that grouping was uniform (Yu and Gao, 2016). Compared with the control group, rats in the model group had significantly slower weight growth in one week, two weeks, and three weeks, having significant differences in body weight with the blank control group (P < 0.01), which showed that the model of hyperlipidemia was successful. Compared with the model group, in the first week, high, medium and low dose lipid-lowering tablets group and Xuezhikang group could significantly increase the body weight of hyperlipidemia rats (P < 0.01); in second weeks, high dose lipid-lowering tablets group and Xuezhikang group could significantly increase the body weight of hyperlipidemia rats (P < 0.05); in third weeks, the high and middle dose lipid-lowering tablets group and Xuezhikang group could significantly increase the body weight of hyperlipidemia rats (P < 0.01). As can be seen from Table 2, compared with the blank control group, the liver index of model group significantly increased.

Table 2
Effect of lipid lowering tablet on liver index of hyperlipidemia model rats.

Group	n	Liver index (mg/g)
Control group	12	28.33 ± 2.36
Mode group	12	33.80 ± 1.64
Xuezhikang group	12	29.37 ± 2.20
High dose group	12	30.38 ± 1.73
Middle dose group	12	30.59 ± 1.86
Low dose group	12	31.33 ± 3.28

Notes: Compared with model group.
** p < 0.05.
*p < 0.01.

Table 1
Effect of lipid lowering tablet on body weight of hyperlipidemia model rats (N = 12).

Group	First time	One week	Two weeks	Three weeks
Control group	211.53 ± 7.62	280.68 ± 13.12	312.68 ± 13.69	347.43 ± 17.97
Model group	209.26 ± 6.48	249.90 ± 9.75	258.18 ± 14.02	256.79 ± 16.87
Xuezhikang group	210.00 ± 9.49	264.02 ± 10.38	271.38 ± 12.87	274.98 ± 15.13
High dose group	207.68 ± 5.02	270.36 ± 10.73	274.42 ± 11.11	276.08 ± 9.92
Middle dose group	208.73 ± 6.41	273.55 ± 14.70	270.58 ± 9.63	272.72 ± 10.72
Low dose group	210.61 ± 6.12	269.44 ± 9.99	266.27 ± 9.92	259.00 ± 10.47

Notes: Compared with model group.
** p < 0.05.
*p < 0.01.
Effect of lipid lowering tablet on serum biochemical index of hyperlipidemia model rats (N = 12).

Our results show that the high, medium and low dose lipid-lowering tablets group could significantly increase the body weight of hyperlipidemia rats; could significantly decrease the liver index of hyperlipidemia rats (p < 0.01). The results of this study provide a scientific basis for the good clinical efficacy of lipid lowering tablets, and lay the foundation for further research of related preparations.

Acknowledgements

This research was financially supported by the Key Scientific and Technological Research project of Xinxiang in Henan (Grant No. ZG14015).

References

Chen, H., Miao, H., Tian, T., 2014. Application of metabolomics technology in researches on hyperlipidemia. Chin. J. Pharmaceut. Anal., 563–569.
Gao, W., Wang, Y., Wang, W., Shi, L., 2017. The first multiplexation atom-bond connectivity index of molecular structures in drugs. Saudi Pharm. J. 23 (4), 548–555.
Ge, S., Liu, Z., Li, R., Furuta, Y., Peng, W., 2016. Desulphurization characteristics of bamboo charcoal from sulfur solution. Saudi J. Biol. Sci.
Gohar, S., Abbas, G., Sajid, S., Sarfraz, M., Ashraf, M., Aslam, R., Yaseen, K., 2017. Prevalence and antimicrobial resistance of Listeria monocytogenes isolated from raw milk and dairy products. Matrix Sci. Med. 1 (1), 10–14.
Guo, F.C., Li, Y., Sun, C.H., 2011. Effects of high fat diet on blood lipid in rats. J. Hygiene Res., Harbin, China, 40-42.
He, L., Gong, H., Zhang, J., Zhong, C., Huang, Y., Zhang, C., Ashraf, M.A., 2016. Interaction of exposure concentration and duration in determining the apoptotic rate in rats after cigarette smoke inhalation. Saudi J. Biol. Sci. 23 (4), 531–541.
Li, W., Chen, S., Zhou, G., Li, H., Zhong, L., Liu, S., 2016. Potential role of cyanidin 3-glucoside (C3G) in diabetic cardiomyopathy in diabetic rats: an in vivo approach. Saudi J. Biol. Sci.
Liu, H.B., Liu, Z.L., 2010. Recycling utilization patterns of coal mining waste in China. Resour. Conserv. Recycl. 54 (12), 1331–1340.
Muhammad, G., Rashid, I., Fiyrol, S., Saqib, M., 2017a. Successful treatment of idiothetic generalized subcutaneous emphysema in kajli a ram by large bore injection needle. Matrix Sci. Medica. 1 (1), 01–02.
Muhammad, G., Rashid, I., Fiyrol, S., 2017b. Practical aspects of treatment of organophosphate and carbamate insecticide poisoning in animals. Matrix Sci. Pharma. 1 (1), 10–11.
Nawaz, S., Shareef, M., Shahid, H., Mushtaq, M., Sajid, S., Sarfraz, M., 2017. Lipid lowering effect of synthetic phenolic compound in a high-fat diet (HFD) induced hyperlipidemic mice. Matrix Sci. Pharma. 1 (1), 12–16.
Peng, W.X., Wang, L.S., Zhang, M.L., Lin, Z., 2014. Separation characteristics of lignin from Eucalyptus camaldulensis lignin-celluloses for biomedical cellulose. Pakistan J. Pharm. Sci. 27, 723–728.
Peng, W.X., Zhang, Z.F., Lin, Z., Ohkoshi, M., Chang, J.B., Gu, F.L., Zhu, X.W., 2013. Molecular characteristics of biomedical and bacteriostasis extracts of illicium verum fruit. J. Pure Appl. Microbiol. 7 (3), 2017–2024.
Sarfraz, M., Ashraf, Y., Ashraf, S., 2017. A review: prevalence and antimicrobial susceptibility profile of listeria species in milk products. Matrix Sci. Medica. 1 (1), 03–09.

Shen, Y., Song, Z.J., 2015. Experimental study on the effect of water decoction on blood lipid metabolism in hyperlipidemia mice. J. Gansu College Tradit. Chin. Med., 5–7.

Wang, J.G., Meng, B.G., Bao, Q.H., 2013. Effects of Lactobacillus plantarum LIP on on the blood lipids of hyperlipidemia rats. Chin. J. Food Sci., 6–12.

Wang, S., Liu, Q., Han, J.T., 2014. Effect of green radish on hyperlipidemia rats. Pharmacol. Clinics Chin. Materia Medica, 84–87.

Yan, Z.S., Song, K., 2011. Research progress of prevention and treatment of hyperlipidemia with traditional Chinese medicine. Prevent. Treat. Cardiovascular Diseases, 116–118.

Yang, S.J., Mou, Y.L., Li, S., 2013. Effects of Welsh onion on total cholesterol and triglyceride in serum of hyperlipidemia mice. Shandong Med. J., 36–37.

Yang, Z.J., Hu, J.C., Luo, L., 2012. Experimental study on the fat regulation of Weicao capsule in rats with hyperlipidemia. Modern J. Integr. Tradit. Chin. Western Med., 1051–1053.

Ye, Z.N., Li, N., Sheng, D.D., 2014. The Effect of Cyclocarya Paliurus Polysaccharide on Blood Lipid and Antilipid Peroxidation in Hyperlipidemia Rats. Modern Food Science and Technology, Nanchang, p. 16.

Yu, D.J., Gao, H.Y., 2016. Effect of propofol on mitochondrial ATP content and ATPase activity in hippocampus of rats with cerebral ischemia-reperfusion injury. Saudi J. Biol. Sci.