Study of Nitrofurantoin Susceptibility in Bacterial Isolates from Patient of Urinary Tract Infection Attending Tertiary Care Centre

Saurabh Jain*, Saurabh G. Agarwal, Sanyogita Jain, Atul Rukadikar and Mamta Sarwaria

Department of Microbiology, Chirayu Medical College and Hospital Bhopal, MP, India

*Corresponding author

A B S T R A C T

Increasing resistance rates of bacteria against standard antibiotics has become great problem for the treatment of UTI. To fight with this problem, an old drug Nitrofurantoin getting good attraction. Action at multiple sites and achieving levels in urine is the major strength of Nitrofurantoin as well as tolerated orally well and Side-effects are very less. Methodology: Study was conducted in Microbiology Department from April 2016 to April 2017. Urine samples were collected from patient admitted in various wards and attending O.P.D. and transport to laboratory. Every urine specimen received in the Microbiology laboratory was processed according to the recommended procedures for the isolation and identification of bacterial isolates. Bacteria were identified by colony morphology, gram staining and biochemical test from the primary isolation plates. Antibiotic susceptibility testing done for each isolates by DDT of Kirby Bauer on Muller Hinton Agar according to CLSI guideline. 357 urinary isolates were recovered with significant count in study period. E. coli 213 (59.66%) was the commonest organism isolated followed by Klebsiella pneumoniae 46 (12.89%), Enterococcus spp 33 (9.24%). Nitrofurantoin susceptibility in our study for E. coli was 72.3%, Klebsiella spp. 30.6%, Enterococcus 69.71%, Staphylococcus aureus 85.71%, Enterobacter 60% and CONS 100%. However Mariraj et al., (2016) found 80-90% susceptibility for all urinary isolates and Rajesh et al., (2010) found E. coli was 82%, Klebsiella spp. 92 %, Enterococcus 00.00%. In the present era of antibiotic resistance urinary isolates show very good susceptibility for nitrofurantoin as compare to other commonly use antibiotic for treatment.

Key words
Nitrofurantoin, Urinary Tract Infection, Antibiotic susceptibility, E. coli.

Accepted: 26 May 2017
Available Online: 10 June 2017

Introduction

Urinary tract Infections are among the most common infectious diseases in humans.¹ the source of organisms producing UTI is the flora of Intestine tract.² ³ ⁴ Non-judicial use of antibiotic therapy lead to resistance in the flora of intestinal bacteria.³ this will also lead to spread of antimicrobial resistance among bacteria.⁵ Increasing resistance rates of bacteria against standard antibiotics has become great problem for the treatment of UTI (Alicem Tekin et al., 2012). To fight with this problem, an old drug Nitrofurantoin getting good attraction. >50 years extensive use worldwide on uropathogens, there has been virtually no acquired resistance to Nitrofurantoin (Rizvi et al., 2011).
Action at multiple sites and achieving levels in urine is the major strength of Nitrofurantoin. This include inhibition of bacterial enzymes involved in carbohydrate synthesis and blocking of DNA, RNA, and total protein synthesis in higher concentration.\(^6,7\) Nitrofurantoin is metabolized in renal tissue and rapidly excreted in the urine. Due to this rapid excretion, the urinary concentration of nitrofurantoin is more than 100 µg/mL (up to 250 µg/mL).

This higher concentration in urine makes it an ideal choice for treatment of urinary tract infection (UTI). Nitrofurantoin is usually well tolerated orally. Side-effects occur are very less.\(^8\) Macrocrystal formulations used to reduce gastrointestinal side effects such as nausea and vomiting.

In glucose-6-phosphate deficiency patients Haemolytic anaemia can occur. But serious adverse effects are rare and can be seen only with prolonged medication (>6 months).\(^6\) these includes chronic pulmonary reactions, interstitial fibrosis, peripheral neuropathy and hepatic injury. Nitrofurantoin can be given safely in pregnancy (pregnancy category B).\(^9\)

Nitrofurantoin cannot use in patients with renal failure with creatinine clearance rate of 60 mL/min. However, some recent studies indicate its use can be expanded to creatinine clearance as low as 40 mL/min.\(^10\)

The main aim and objectives of present study is to determine the susceptibility of Nitrofurantoin in the isolates recovered from patients with significant bacteriuria, Isolation and Speciation of bacteria and to determine the antimicrobial susceptibility profile.

Inclusion criteria

All urine specimens having bacterial growth of all age group.

Exclusion criteria

All urine specimens not having bacterial growth.

All urinary isolates for which Nitrofurantoin susceptibility not recommended by CLSI\(^13\)

Materials and Methods

Study was conducted in Microbiology Department from April 2016 to April 2017. Urine samples were collected from patient admitted in various wards as well as patient attending O.P.D. and transport to laboratory.\(^11\)

Every urine specimen received in the Microbiology laboratory was processed according to the recommended procedures for the isolation and identification of bacterial isolates.\(^11\)

Bacteria was identified by colony morphology, gram staining, biochemical test from the primary isolation plates.\(^11\)

Antibiotic susceptibility testing done for each isolates by DDT of Kirby Bauer on Muller Hinton Agar according to CLSI guideline.\(^12\)

Results and Discussion

357 urinary isolates were recovered with significant count in study period. *E. coli* 213 (59.66%) was the commonest organism isolated followed by *Klebsiella pneumoniae* 46 (12.89%), *Enterococcus spp* 33 (9.24%), *Pseudomonas spp* 20 (5.60%), *S. aureus* 14 (3.92%), *Enterobacter* 10 (2.8%), *Citrobacter spp*. 6(1.68%), *Acinetobacter baumannii* 5 (1.4%), *Klebsiella oxytoca* 3 (0.84%), Coagulase negative Staphylococcus 3 (0.84%), *Proteus mirabilis* 3 (0.84%) and *Providencia rettgeri* 1 (0.28%). *Pseudomonas spp.,* *Acinetobacter baumannii,* *Proteus mirabilis* and *Providencia rettgeri* were...
excluded from our study due to Nitrofurantoin susceptibility not recommended by CLSI13.

Most susceptible antibiotic for \textit{E. coli} was Nitrofurantoin 72.3\% followed by Carbapenams 69.48\% and Amikacin 63.85\%. Klebsiella pneumoniae showing susceptibility for Carbapenams 50\%, Amikacin 43.48\%, Piperacillin-Tazobactum 41.3\%, Nitrofurantoin 30.43\%.

Susceptibility of Nitrofurantoin for \textit{Enterococcus} 69.7\% just after Linezolid, Teicoplanin and Vancomycin. In \textit{Staphylococcus aureus} Susceptibility of Nitrofurantoin become equal to Linezolid, Vancomycin i.e. 85.71\%. Highest susceptibility for Nitrofurantoin also shown in \textit{Citrobacter} spp. (60\%) (Also see tables 1 and 2; chart 1).

\textit{E. coli} was the commonest organism isolated in our study followed by \textit{Klebsiella pneumonia} and \textit{Enterococcus} spp., \textit{Pseudomonas} spp., \textit{S. aureus}, \textit{Enterobacter} spp., \textit{Citrobacter} spp., \textit{Acinetobacter baumannii}, \textit{Klebsiella oxytoca}, Coagulase negative \textit{Staphylococcus}, \textit{Proteus mirabilis} and \textit{Providencia rettgeri}. Mariraj \textit{et al.}, (2016) and Rajesh \textit{et al.}, (2010) also report \textit{E. coli} as a commonest organism followed by \textit{Klebsiella spp.}, \textit{Enterococcus spp.}, \textit{Pseudomonas spp.}, \textit{S. aureus} in their study.

Resistant pattern in urinary isolates were high in our study. Mariraj \textit{et al.}, (2016) and Rajesh \textit{et al.}, (2010) also report high resistance in their study. In this study, the treatment option is either injectable and/or costly antibiotics for the treatment of urinary tract infection. In such scenario Nitrofurantoin is an orally available and cost effective good alternative.

\begin{table}
\centering
\caption{Distribution of antimicrobial susceptibility for gram negative urinary isolates}
\begin{tabular}{|l|c|c|c|c|c|}
\hline
Antibiotics & \textit{E. coli} (n=213) & \textit{Klebsiella pneumonia} (n=46) & \textit{Klebsiella oxytoca} (n=3) & \textit{Enterobacter} spp. (n=10) & \textit{Citrobacter} spp. (n=6) \\
\hline
Ampicillin & 5 (2.35\%) & 3 (6.52\%) & 0 & 0 & 0 \\
Amoxycillin-clavunate & 23 (10.80\%) & 4 (8.70\%) & 0 & 0 & 0 \\
Piperacillin & 27 (12.68\%) & 7 (15.22\%) & 0 & 3 (30\%) & 0 \\
Cefotaxime & 29 (13.62\%) & 7 (15.22\%) & 0 & 1 (10\%) & 0 \\
Ceftriaxone & 32 (15.02\%) & 9 (19.57\%) & 0 & 2 (20\%) & 0 \\
Piperacillin- Tazobactum & 33 (15.49\%) & 9 (19.57\%) & 0 & 0 & 0 \\
Cefepime & 114 (53.52\%) & 19 (41.30\%) & 0 & 4 (40\%) & 0 \\
Ampicillin- Sulbactum & 24 (11.27\%) & 6 (13.04\%) & 0 & 1 (10\%) & 0 \\
Amikacin & 65 (30.52\%) & 15 (32.61\%) & 0 & 3 (30\%) & 0 \\
Gentamicin & 166 (78.19\%) & 20 (43.48\%) & 1 (33.33\%) & 4 (40\%) & 0 \\
Cotrimoxazole & 109 (51.17\%) & 15 (32.61\%) & 0 & 3 (30\%) & 0 \\
Ciprofloxacin & 48 (22.54\%) & 12 (26.09\%) & 1 (33.33\%) & 2 (20\%) & 1 (16.67\%) \\
Imipenem & 28 (13.15\%) & 11 (23.91\%) & 0 & 2 (20\%) & 0 \\
Meropenem & 148 (69.48\%) & 23 (50.00\%) & 2 (66.67\%) & 4 (40\%) & 0 \\
Ertapenem & 148 (69.48\%) & 23 (50.00\%) & 2 (66.67\%) & 4 (40\%) & 0 \\
Nitrofurantoin & 154 (72.30\%) & 14 (30.43\%) & 1 (33.33\%) & 6 (60\%) & 0 \\
Norfloxacin & 30 (14.08\%) & 10 (21.74\%) & 0 & 1 (10\%) & 0 \\
Nalidixic acid & 14 (6.57\%) & 6 (13.04\%) & 0 & 0 & 0 \\
\hline
\end{tabular}
\end{table}
Table 2: Distribution of antimicrobial susceptibility for Gram positive urinary isolates

Antibiotics	*Staphylococcus aureus* (n=14)	Coagulase Negative *Staphylococcus* (n=3)	*Enterococcus* spp. (N=33)
Ampicillin	2 (14.29%)	0	9 (27.2%)
Amoxicillin-clavunate	3 (21.43%)	2 (66.67%)	-
Amikacin	12 (85.71%)	3 (100%)	-
Gentamicin	9 (64.29%)	3 (100%)	-
Cotrimoxazole	7 (50.00%)	1(33.33%)	-
Ciprofloxacin	4 (28.57%)	0	2 (6.06%)
Nitrofurantoin	12 (85.71%)	3 (100.00%)	23(69.7%)
Norfloxacin	3 (21.43%)	1(33.33%)	1 (3.03%)
Nalidixic acid	1 (7.14%)	0	0
Penicillin-G	1 (7.14%)	0	0
Oxacilline	4 (28.57%)	2 (66.67%)	-
Cefazoline	1 (7.14%)	0	-
Chloramphenicol	8 (57.14%)	2 (66.67%)	-
Erythromycin	5 (35.71%)	1(33.33%)	-
Clindamycin	7 (50.00%)	2 (66.67%)	-
Tetracyclline	6 (42.86%)	1(33.33%)	3 (9.09%)
Teicoplanin	14 (100.00%)	3 (100.00%)	28(84.8%)
Linezolid	12 (85.71%)	3 (100.00%)	33(100%)
High Level Gentamicin	-	-	7 (21.2%)
Vancomycin	-	-	27(81.8%)

Chart 1: Showing distribution of nitrofurantoin susceptibility for urinary isolates

Nitrofurantoin susceptibility in our study for *E. coli* was 72.3%, *Klebsiella* spp. 30.6%, Enterococcus 69.71%, *Staphylococcus aureus* 85.71%, *Enterobacter* 60% and CONS 100%. However, Mariraj et al., (2016) found 80-90% susceptibility for all urinary isolates and Rajesh (2010) found *E. coli* was 82%, *Klebsiella* spp. 92%, *Enterococcus* 00.00% (Chart 1). In the present era of antibiotic resistance urinary isolates show very good susceptibility for nitrofurantoin as compare to other commonly use antibiotic for treatment. Amikacin, Carbapenams, Piperacillin-Tazobactum for gram negative and Vancomycin and Linezolid...
are also a good option in spite of emerging of highly resistant strain worldwide, but on the basis of pharmokinetic and dynamic Nitrofurantoin is the better option. Similarly for UTI in pregnancy nitrofurantoin is safe and effective option.

References

Azad, U., Khan and Mohd, S., Zaman. 2006. Biomedical Research, Multidrug resistance pattern in Urinary Tract Infection patients in Aligarh, Vol 17, No: 3.

Bauer, A.W., Kirby, W.M., Sherris, J.C., Turck, M. 1966. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol., 45(4): 493-6.

Cattell, W.R., Mc Sherry, M.A., North East, A., Powell, E., Brooks, H.J.L. and O’ Grady, F. 1974. Periurethral enterobacterial carriage in pathogenesis of recurrent urinary infection. British Med. J., 4: 248-252.

Clinical and Laboratory Standards Institute antimicrobial susceptibility testing standards. M100-S25, Vol. 35, No. 3

Color Atlas and textbook of Microbiology by Koneman. 5th edition page 597-599.

Duff, P. 2002. Antibiotic selection in obstetrics: Making cost-effective choices. Clin. Obstet. Gynecol., 45: 59-72.

Guay, D.R. 2001. An update on the role of nitrofurans in the management of urinary tract infections. Drugs, 61: 353-6.

Mariraj, J., S. Sadiqa Begum, S. Krishna and Qurath Saba, et al., Nitrofurantoin Susceptibility in Urinary Tract Infections (UTIs) in an Era of Drug Resistance. Int. J. Curr. Microbiol. App. Sci., 5(7): 206-209.

Mc Osker, C.C., Fitzpatrick, P.M. 1994. Nitrofurantoin: Mechanism of action and implications for resistance development in common uropathogens. J. Antimicrob. Chemother., 33 Suppl A: 23-30.

Munoz-Davila, M.J. 2014. Role of old antibiotics in the era of antibiotic resistance. Highlighted nitrofurantoin for the treatment of lower urinary tract infections. Antibiotics, 3: 39-48.

Oplinger, M., Andrews, C.O. 2013. Nitrofurantoin contraindication in patients with a creatinine clearance below 60 mL/min: Looking for the evidence. Ann. Pharmacother., 47: 106-11.

Rajesh, K.R., S. Mathavi, R. Indra Priyadarsini, et al. 2010. Prevaence of Antimicrobial Resistance in uropathogens and determining empirical therapy for Urinary tract infections. Int. J. Basic Med. Sci., Vol: 1, Issue: 5.

Senewiratne, B., Senewiratne, K., Hettiarachchi, J. 1973. Bacteriology and antibiotic sensitivity in acute urinary tract infection in Ceylon. Lancet, I: 222-225.

Sleigh, J.D. and Timbury, M.C. 1986. Notes on Medical Bacteriology. 2nd edition. pp. 212 –218. Churchill Livingstone Inc., 1560 Broadway, New York.

Williams, D.N. 1996. Urinary Tract Infection: Emerging insights into appropriate Management. Postgrad. Med., 99(4): 189-99.

How to cite this article:

Saurabh Jain, Saurabh G. Agarwal, Sanyogita Jain, Atul Rukadikar and Mamta Sarwaria. 2017. Study of Nitrofurantoin Susceptibility in Bacterial Isolates from Patient of Urinary Tract Infection Attending Tertiary Care Centre. Int.J.Curr.Microbiol.App.Sci. 6(6): 2611-2615.
doi: https://doi.org/10.20546/ijcmas.2017.606.312