Quantum Control of the States of Light in a Mach-Zehnder Interferometer

Z Blanco-Garcia
Physics Department, Cinvestav, A.P. 14-740, 07000, México City, Mexico
E-mail: iblanco@fis.cinvestav.mx

Abstract. The experiment proposed by Elitzur and Vaidman is modified by replacing the fully absorbing obstacle (the ‘bomb’) with a non-linear optical medium. In this form the involved Mach-Zehnder interferometer works as a quantum beam splitter that produces NOON states which can be controlled if the input is the appropriate linear combination of two-mode Fock states.

1. Introduction

In a previous work [1] we have shown that the probabilities of detection in the well known Elitzur-Vaidman experiment [2] can be manipulated if the fully absorbing obstacle (the ‘bomb’) is substituted by a semitransparent object. Moreover, we found that the transparency of the obstacle determines either the particle-like or the wave-like behavior of the test photon as this occurs in the ‘delayed choice’ experiment proposed by Wheeler [3].

In the present contribution we follow the idea of a quantum beam splitter (QBS) discussed in [4] and include this in the Elitzur-Vaidman experiment to analyze the case when the obstacle is substituted by a non-linear optical medium. Our point is that the QBS works as a refinement of the Elitzur-Vaidman experiment and permits the manipulation of the photon-states that are injected into a Mach-Zehnder interferometer. Indeed, injecting N photons into one of the channels of a conventional beam splitter one obtains a superposition of two-mode Fock states at the output [5]. In contrast, a QBS produces the NOON states [6]

$$|\psi\rangle = \frac{1}{\sqrt{2}} \left(|N, 0\rangle + e^{i\xi} |0, N\rangle \right),$$

where ξ is a phase. Remarkably, the entangled states (1) are very useful to obtain high-precision phase measurements; they have been generated up to $N = 5$ by multi-photon interference of down-converted light with a classical coherent state [7].

We are interested in the case when the following state is used as the input in a QBS

$$|\psi_{in}\rangle = |\psi_b, 0\rangle = \sum_{n=0}^{r} c_n |n, 0\rangle,$$

where r is a non-negative integer defining the number $(r + 1)$ of Fock states $|n\rangle$ involved in the superposition. Hereafter the two-mode Fock states $|n, m\rangle := |n\rangle \otimes |m\rangle$ correspond to the
biphoton states formed by \(n \) photons in the horizontal arm, and \(m \) photons in the vertical arm of the Mach-Zehnder interferometer shown in Fig. 1. For details and properties of the tensor product ‘\(\otimes \)’ see, e.g. [8]. As we are going to see, the non-linear medium used instead the fully absorbing obstacle of the Elitzur-Vaidman experiment would be useful to steering the state (2) to a destination.

2. The modified Elitzur-Vaidman experiment

The setup shown in Fig. 1 represents a QBS, this is a Mach-Zehnder interferometer with a non-linear medium \(O_{\chi} \) in its upper horizontal arm which plays the role of a refined ‘bomb’ in the Elitzur-Vaidman experiment. The operators representing the different devices in the optical-bench are as follows [4,9]:

\[
\begin{align*}
BS &= \exp[i\theta(b \otimes a^\dagger + b^\dagger \otimes a)], \\
M &= \exp\left[i\frac{\pi}{2}(b \otimes a^\dagger + b^\dagger \otimes a)\right], \\
\Phi &= \exp[i\phi(N_H \otimes I)], \\
O_{\chi} &= e^{-i\pi(b^\dagger b)^2/2}.
\end{align*}
\] (3)

The straightforward calculation shows that the output state is given by

\[
|\psi_{\text{out}}\rangle = \frac{e^{i\pi/4}}{\sqrt{2}} \left(|0, \psi_b^\prime\rangle + |\psi_{b^\prime\prime}, 0\rangle \right)
\] (4)

where

\[
|\psi_b^\prime\rangle = \sum_{n=0}^{r} c_n t^n |n\rangle, \\
|\psi_{b^\prime\prime}\rangle = \sum_{n=0}^{r} c_n t^{2n-1} |n\rangle.
\] (5)

The above expressions depend explicitly on the coefficients \(c_n \) that define the initial state (2). The probability of finding the output (4) in the initial state acquires the form

\[
P_{\psi_{b^0},0} = \frac{1}{2} \left(|c_0|^2 + \sum_{n=0}^{r} \sum_{m=0}^{r} |c_n|^2 |c_m|^2 (-1)^{n+m} \right).
\] (6)

In turn, the probability of the transition \(|\psi_{\text{in}}\rangle \rightarrow |k, 0\rangle \) is given by

\[
P_{k,0} = \begin{cases}
|c_0|^2 & \text{if } k = 0, \\
\frac{|c_k|^2}{2} & \text{if } k \neq 0.
\end{cases}
\] (7)
3. Applications

Let us take the coefficients c_n such that

$$|c_n|^2 = \binom{r}{n} p^n (1-p)^{r-n}, \quad 0 \leq p \leq 1, \quad n \leq r. \quad (8)$$

Then, the superposition (2) is an optimized binomial state [10] which is parameterized by p and r. In Fig. 2 we show the behavior of the probability (6) for this case. At $p = 0$ the probability is maximum since only the coefficient c_0 is different from zero and the initial state is the vacuum. At $p = 1$ the superposition (2) is equal to the Fock state $|r\rangle$ because only the coefficient c_r is different from zero. The output (4) is the entangled NOON state with $N = r$.

![Figure 2](image.png)

Figure 2. The probability $P_{\psi,b,0}$ defined in (6) as a function of p for the coefficients (8). The superposition (2) is an optimized binomial state.

On the other hand, the probability (7) is shown in Fig. 3 for three different values of the parameter p. As we can see, the maximum of the probability is shifted to the right as p increases and reaches its highest value in the vicinities of either $p = 0$ or $p = 1$.

![Figure 3](image.png)

Figure 3. The probability $P_{k,0}$ of finding k photons in the horizontal arm at the output of the Mach-Zehnder interferometer for the coefficients defined in (8) with $p = 0.1$ (a), $p = 0.5$ (b) and $p = 0.9$ (c).

Another useful linear combination (2) is obtained by taking

$$c_n = \exp(-|\alpha|^2/2) \frac{\alpha^n}{\sqrt{n!}}, \quad \alpha \in \mathbb{Z}, \quad (9)$$

at the limit $r \to \infty$. Then the distribution of the Fock states in the horizontal channel is ruled by the Poisson distribution so that the input is $|\alpha,0\rangle$, with $|\alpha\rangle$ a coherent state [10]. The output (4) is reduced to the two-mode coherent state

$$|\psi_{\text{out}}\rangle = \frac{\cos^{\pi/4}}{\sqrt{2}} |0, -\alpha\rangle + \frac{\sin^{\pi/4}}{\sqrt{2}} |0, i\alpha\rangle, \quad (10)$$
Figure 4. The probability (11) of finding the output (10) in the initial state $|\alpha,0\rangle$ as a function of the mean number of photons \bar{n}.

which has been already reported in, e.g [11–13]. The probability (6) of finding the output in the initial state is now given by

$$P_{\alpha,0} = \frac{1}{2} e^{-2|\alpha|} \left(e^{-2|\alpha|} + 1\right),$$

and depends on the mean number of photons involved in the initial superposition $|\alpha|^2 = \bar{n}$. Indeed, $P_{\alpha,0}$ decays exponentially as $\bar{n} \to \infty$, see Fig. 4.

In turn, the probability (7) of finding k photons in the horizontal arm of the interferometer is depicted in Fig. 5 for $\bar{n} = 10$. As expected, the probability is maximum in the vicinity of $k = 10$

Figure 5. The probability $P_{k,0}$ of finding k photons in the horizontal arm at the output of the Mach-Zehnder interferometer for the coefficients defined in (9) with $\bar{n} = 10$.

4. Conclusions

We have shown that using different linear combinations of two-mode Fock states as the input in the Elitzur-Vaidman experiment give rise to output states which can be controlled if the fully absorbing obstacle is changed by a non-linear optical medium. The NOON states as well the two-mode coherent states already reported in the literature on the matter have been recovered as particular cases. Further insights are in progress and will be reported elsewhere.

Acknowledgments

The author is indebted to Prof. Oscar Rosas-Ortiz for illuminating discussions. The funding received through a CONACyT scholarship is acknowledged.

References

[1] Blanco-Garcia Z and Rosas-Ortiz O 2016 J Phys: Conf Ser 698 012013
[2] Elitzur A C and Vaidman L 1993 Found Phys 23 987
[3] Wheeler J A and Zurek W H (Eds.) 1983 Quantum Theory and Measurement (Princeton: Princeton University Press) pp 182-213

[4] Dunningham J and Kim T 2006 J Mod Opt 53 557

[5] Kim M S, Son W, Buzek V and Knight P L 2002 Phys Rev A 65 032323

[6] Kok P, Boto A N, Abrams D S, et al, 2001 Phys Rev A 63 063407.

[7] Afek I, Ambar O and Silberberg Y 2010 Science 328 879

[8] Enríquez M and Rosas-Ortiz O 2013 Ann. Phys. 339 218

[9] Gerry C and Knight P 2005 Introductory Quantum Optics (Cambridge: Cambridge University Press)

[10] Zelaya K D and Rosas-Ortiz O 2016 J Phys Conf Ser 698 012026

[11] Sanders B C 1992 Phys Rev A 45 6811

[12] Gerry C C, Benmoussa A and Campos R A 2002 Phys Rev A 66 013804

[13] Sanders B C 2012 J Phys A: Math Theor 45 244002