Sn-Doped Rutile TiO$_2$ Hollow Nanocrystals with Enhanced Lithium-Ion Batteries Performance

Shilong Jiao,†,‡,§ Gang Lian,*†,§,∥ Laiying Jing,† Zhenghao Xu,† Qilong Wang,‡ Deliang Cui,*† and Ching-Ping Wong*§∥

†State Key Lab of Crystal Materials and §Key Laboratory for Special Functional Aggregated Materials of Education Ministry, School of Chemistry & Chemical Engineering, Shandong University, Jinan 250100, P. R. China

∥School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States

Supporting Information

1. INTRODUCTION

Development of high-performance lithium-ion batteries (LIBs) with wider work-temperature range, increased power density, and improved safety is highly demanded for future portable electronics and electric and hybrid vehicles.14 Among various anode materials, TiO$_2$ has been considered as a potential anode candidate because of excellent Li-ion insertion/extraction reversibility with a neglectable volume expansion (3–4%) and a high operating voltage (>1 V vs Li$^+$/Li$^-$),3–7 which reduces the excessive formation of solid electrolyte interphase (SEI) on anodes. In addition, TiO$_2$ is suitable for large-scale application because of its natural abundance, low cost, and nontoxicity.8 Therefore, various polymorphs of TiO$_2$ (rutile, anatase, brookite, and bronze) have recently been studied as active materials for LIBs. Among them, rutile TiO$_2$ is the most thermodynamically stable form.10 Unfortunately, the lithium storage performance of rutile TiO$_2$ is still unsatisfactory, which is mainly derived from its highly anisotropic diffusion of Li$^+$ in bulk rutile (10^{-6} cm2 s$^{-1}$ along c-axis; 10^{-15} cm2 s$^{-1}$ along ab-plane)11,12 and intrinsic limitation of storage capacity.13,14 To enhance the rate capacity, enormous researches have been devoted to overcome its intrinsic disadvantages. One of those effective approaches focuses on preparing nanosized hollow rutile TiO$_2$ to shorten the transport path for both Li$^+$ ions and electrons in TiO$_2$ nanostructures.15–17 The hollow interior also provides an extra free space that can alleviate the structural strain and accommodate the volume variation. It is associated with the repeated Li$^+$ ions insertion/extraction process, leading to the improved cycling stability.16,19 Another effective strategy is to dope alien atoms (e.g., C, N, B, Fe, Nb, Mn, Sn, etc.) in TiO$_2$.8,20–27 The doping method is attracting more attention because it not only benefits the electron-transfer process but also offers more channels for Li$^+$ diffusion due to the slightly modified lattice of the doped TiO$_2$.24 Sn$^{4+}$ is taken as an example because the theoretical capacity of SnO$_2$ (\approx790 mA h g$^{-1}$) is much higher than that of rutile TiO$_2$.28,29,30 Sn(IV)-ion doping into rutile TiO$_2$ at the atomic level can anticipate improved electrochemical performance with increased capacity and higher retention.

Although many kinds of rutile TiO$_2$ nanostructures with different morphologies have been intensively investigated, synthesis of hollow nanocrystals is still a great challenge by a template-free method.30 Herein, we report the preparation of Sn-doped rutile TiO$_2$ hollow nanocrystals by a facile template-free hydrothermal method. When measured as anode in lithium-ion batteries, the Sn-doped rutile TiO$_2$ hollow nanocrystals exhibit a greatly improved electrochemical performance, including a high specific capacity, an excellent rate property, and a long-life cycling stability. This material showed a much enhanced capacity of 251.3 mA h g$^{-1}$ after 150 cycles under 0.1 A g$^{-1}$. Furthermore, a reversible capacity of \approx110 mA h g$^{-1}$ after 500 cycles at 5 A g$^{-1}$ (30 C) can still be retained and the Coulombic efficiency (CE) maintained almost 100% during the 500 cycles, confirming the excellent rate property of the Sn-

Received: September 10, 2017
Accepted: October 24, 2017
Published: January 31, 2018

DOI: 10.1021/acsomega.7b01340
ACS Omega 2018, 3, 1329–1337

This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
doped rutile TiO$_2$ hollow nanocrystals. The excellent lithium-ion storage performance benefits from hollow nanostructures, high crystallinity, and uniform Sn-ion doping.

2. EXPERIMENTAL SECTIONS

2.1. Preparation of the Sn-Doped Rutile TiO$_2$ Hollow Nanocrystals. The Sn-doped rutile TiO$_2$ hollow nanocrystals were obtained via a facile template-free hydrothermal method. In a typical process, 4 mmol SnCl$_4$·5H$_2$O was dissolved in 20 mL tetrabutyl titanate (TBOT) and vigorously stirred for 10 min. 4.5 mL HF solution (30%) was then added drop by drop in it. The solution was then transferred into a 40 mL Teflon tube and sealed into the autoclave, which was heated to 200°C for 24 h. The obtained products were washed several times with ethanol and water after cooling to the room temperature. Finally, they were annealed at 500°C for 2 h to remove the impurities. To investigate its growth process, time-dependent experiments were carried out for 10, 18, and 24 h, respectively. In addition, different amounts (0, 1, 2, 4, 6, and 8 mmol) of SnCl$_4$·5H$_2$O were also introduced to illustrate the formation of pure Sn-doped rutile TiO$_2$ hollow nanocrystals.

2.2. Electrochemical Characterization. Electrochemical measurements were carried out by using LIR2032 coin cells. The working electrode consisted of active material, acetylene black (super-P) and poly(vinylidene fluoride) with the weight ratio of 8:1:1. The assembly of the coin cells was performed in a glove box full of Ar. The Celgard 2400 film was used as separator. The electrolyte was composed of ethylene carbonate, dimethyl carbonate (DMC), and ethylene methyl carbonate, with the volume ratio of 1:1:1 as solvent and LiPF$_6$ as solute with the concentration of 1 mol L$^{-1}$. The counter electrode of the coin cells was mainly composed of pure lithium foil. The galvanostatic charge/discharge curve of the coin cells was obtained on a LAND Cell Test system in a setting voltage range (2001A, Wuhan, China). A CHI760D electrochemical working station was used to carry out the cyclic voltammetry (CV) tests in the same setting voltage range with the charge/discharge test rate of 0.2 mV s$^{-1}$. Electrochemical impedance spectroscopy (EIS) patterns were studied by using the same working station in the CV tests. The frequency range was set from 100 kHz to 0.01 Hz, with an amplitude of 5 mV. After the cycle performance test, the coin cells were disassembled and washed with dimethyl carbonate (DMC) to remove the electrolyte from the electrode surface. After that, the sample was dried at 80°C for 24 h before examination.

2.3. Characterization Methods. X-ray powder diffraction (XRD) patterns of the as-obtained samples were recorded on a Rigaku D/Max-γ A X-ray diffractometer with the scanning rate of 4° min$^{-1}$. Morphologies of the samples were examined with scanning electron microscope (SEM, Hitachi S-4800), transmission electron microscope (TEM, JEOL H-7000), and high-resolution transmission electron microscope (HRTEM, JEOL JEM-2100). The element analysis was carried out by X-ray photoelectron spectrometer (XPS, ESCALAB 250). The Accelerated Surface Area and Porosimeter 2000 analyzer was
used to measure the Brunauer−Emmett−Teller specific surface area of the sample.

3. RESULTS AND DISCUSSION

The phase composition of Sn-doped TiO₂ sample was confirmed by XRD (Figure 1a). All of the diffraction peaks can be indexed to rutile TiO₂ (JCPDS No. 21-1276), and no other peaks corresponding to SnO₂ were observed in the XRD pattern, preliminary indicating effective doping of tin in rutile TiO₂ lattice. It is noted that the peaks slightly shifted to smaller angles, as observed by Rogach et al.³² The lattice expansion is attributed to a substitution of the Ti site in the rutile by Sn due to a larger ionic radius of Sn⁴⁺ (55 pm) than that of Ti⁴⁺ (42 pm).³³ Figure 1b–d shows the typical TEM images of Sn-doped rutile TiO₂ with a size of 100−150 nm. The nanocrystals have clear hollow interior voids, with some holes on their surfaces (Figure S1), which is possibly derived from the etching of TiO₂ nanosheets. The selected area electron diffraction (SAED) pattern corresponding to the single hollow nanocrystal demonstrates its single-crystalline nature (inset in Figure 1e). The HRTEM image exhibits clear lattice fringes, indicating high crystallinity of the nanocrystal (Figure 1e). The lattice spacing is ~0.33 nm, corresponding to the (110) plane of rutile TiO₂.¹³

Actually, when no Sn precursor was added to the starting solution, only anatase TiO₂ nanosheets were prepared (Figures 2a and S2). Incorporation of Sn element into TiO₂ lattice was accompanied with a phase transformation from anatase to rutile (Figure 2b,c). When 2 mmol SnCl₄·5H₂O was dissolved in TBOT, it is noticed that some hollow nanocrystals (labeled by arrow in Figure 2b) appeared in the sample of anatase TiO₂ nanosheets. The analysis of phase composition reveals the coexistence of anatase and rutile TiO₂ (Figure S2). Furthermore, the anatase nanosheets were completely converted into Sn-doped rutile hollow nanocrystals with the injection of 4 mmol SnCl₄·5H₂O, which was also supported by the XRD pattern in Figure S2. Only rutile TiO₂ sample was synthesized in the condition. However, excessive Sn precursor easily resulted in phase separation of TiO₂ and SnO₂. As shown in Figure 2d–f, a large amount of SnO₂ nanocrystals uniformly dispersed on the surfaces of TiO₂ nanosheets. The emergence of TiO₂ nanosheets instead of hollow nanocrystals means that the rutile TiO₂ returned back to anatase phase. The
corresponding XRD patterns in Figure S2 supported the reverse transformation and the appearance of SnO\(_2\). The quantum dots, uniformly deposited on anatase TiO\(_2\) nanosheets, were measured by HRTEM (Figure 2f). The lattice spacing was \(~0.339\) nm, corresponding to the (110) plane of SnO\(_2\). Therefore, a Sn precursor, however, with very narrow range of Sn\(^{4+}\) concentration, plays a crucial role in the formation of pure Sn-doped rutile TiO\(_2\) hollow nanocrystals. In addition, for eliminating the effect of Cl\(^-\) for the formation of rutile TiO\(_2\) hollow nanocrystals, several kinds of metal chlorides were introduced instead of SnCl\(_4\) in this reaction. As a result, only anatase TiO\(_2\) products could be synthesized (Figure S3), which further illustrates the effect of doping of Sn.

To further validate the Sn doping in rutile TiO\(_2\) hollow nanocrystals, a STEM image of single nanocrystal was recorded (Figure 3a). The corresponding EDS elemental mappings were conducted to reveal the elemental composition and distribution status in the hollow nanocrystal. Figure 3b–d confirms that Sn element was homogeneously dispersed into the TiO\(_2\) hollow nanocrystal. As mentioned above, the as-obtained rutile TiO\(_2\) hollow nanocrystals have smooth surfaces and clear lattice fringes (Figure S4). Therefore, it can be concluded that the Sn element was well doped into the rutile TiO\(_2\) lattice.

The molar ratio of Sn element in TiO\(_2\) sample was 8.7\%, as calculated by fitting of XPS spectra. The peaks centered at 487.0 and 494.9 eV can be indexed to Sn 3d peaks (Figure 4a),\(^{34,35}\) corresponding to Sn\(^{4+}\) bound to oxygen in the Sn-doped rutile TiO\(_2\). Because of the structural similarity between the rutile SnO\(_2\) and TiO\(_2\) (Figure S5 and Table S1),\(^{10,14,36}\) the Sn elements would occupy a part of the Ti sites in the doping process. In Figure 4b, the slightly asymmetric spectrum of O 1s can be resolved into three peaks. The O 1s peaks centered at 529.5 and 530.1 eV can be typically assigned to Ti–O bond in the rutile TiO\(_2\) structure\(^{37,38}\) and the Sn–O bond,\(^{31}\) respectively. The peak at 532.05 may result from the band of the adsorbed hydroxyl (–OH) groups on the nanomaterial surface.\(^{31}\) Ti 2p peaks (Figure 4c) of the Sn-doped rutile TiO\(_2\) show two peaks, corresponding to Ti\(^{4+}\) (Ti 2p\(_{1/2}\) at 464.6 eV and Ti 2p\(_{3/2}\) at 458.7 eV).\(^{37−39}\) The UV–vis spectrum of Sn-doped rutile TiO\(_2\) presented a narrowed band gap of \(~0.1\) eV compared to that of pure rutile TiO\(_2\) (Figure S6), which was consistent with the theoretical simulation (Figures S7 and S8).

To shed light on the formation process of the rutile TiO\(_2\) hollow nanocrystals, experiments were carried out at 200 °C for different reaction times to monitor the morphology evolution of nanoparticles. As shown in Figure 5a, solid nanocrystals were...
obtained for 10 h, which were indexed to be TiOF2 (JCPDS No. 08-0060) by the corresponding XRD pattern (Figure 5b). When the reaction time was extended to 18 h (Figure 5c,d), some new diffraction peaks, corresponding to the rutile TiO2, also appeared besides the peaks of TiOF2, indicating the conversion from TiOF2 precursor to rutile TiO2. This is possibly due to the hydrolysis of TiOF2.40-43 More importantly, a part of solid TiOF2 nanocrystals transformed into hollow structures, which still kept the similar external morphologies. The conversion process reflected that the formation of hollow nanocrystals through in situ transformation of TiOF2 precursor.43 The phase transformation from TiOF2 to rutile TiO2 was completed within 24 h. Then, uniform TiO2 hollow nanocrystals were obtained (Figure 5e,f).

Furthermore, a sacrificial self-template mechanism was proposed to illustrate the formation process of rutile TiO2 hollow nanocrystals.44,45 First, the Sn-doped TiOF2 crystallites (Figures 6 and S9) were gradually hydrolyzed to form Sn-doped TiO2 nanocrystals in a hydrothermal reaction.42 These primary nanocrystals uniformly deposited on the surfaces of Sn-doped TiOF2 crystallites (Figure S10) and then formed TiO2 shells. Because of the restriction from the template, the as-obtained rutile TiO2 showed the same shape with the TiOF2 precursor. The TiO2 shells became thicker with the increasing reaction time, whereas the solid TiOF2 templates were continually consumed inward. Finally, the TiOF2 precursor completely disappeared. Therefore, the template-engaged topotactic transformation mechanism is responsible for the formation of rutile TiO2 hollow nanocrystals.46,47 When no SnCl4 was added in the reaction system, only anatase TiO2 nanosheets can be obtained. Excessive SnCl4 easily led to the formation of SnO2 quantum dots instead of doping in the rutile TiO2 hollow nanocrystals.

The lithium storage properties of the Sn-doped rutile TiO2 hollow nanocrystals were then evaluated. Figure 7a shows the representative discharge–charge curves of the crystals during the 1st, 2nd, 5th, and 150th cycle at a voltage range from 0.01 to 3.0 V with a current rate of 0.1 A g−1. Two major voltage plateaus at ∼1.4 and ∼1.0 V vs Li/Li+ are presented in the first discharge curve, consistent with other rutile TiO2 electrodes.22,48 The results were also supported by the CV results (Figure S11), which are related to the Li+ insertion into the octahedral sites of the TiO6 octahedrons.49 Despite the two major peaks in the CV patterns, some unknown peaks have also been observed, which are possibly derived from some side reactions in the electrode. In addition, the absence of peaks at ∼0.6 and ∼1.3 V, which are characteristic of the dealloying process of LixSn and the partially reversible reaction of SnO2 with Li+,50−53 thus, indicates the uniform doping of tin in the rutile TiO2 lattice. A high initial capacity of 596.9 mA h g−1 is exhibited in the initial discharge process, which is much higher than the theoretical capacity of the pure rutile TiO2 (TiO2 + xLi + xe− → LixTiO2 (x ≤ 1)).54 The hollow structures with a high specific surface area and a large pore volume (Figure S12) and doping of tin offer more active sites for Li+ storage.18,54,55 In the following process, a capacity of 337.9 mA h g−1 was
obtained. The irreversible capacity loss is about 43.4%. This can be derived from the deep trapping of inserted Li\(^+\) after large volume strain in the crystal structure, as well as the formation of SEI film.\(^{48}\) After the first several cycles, the specific capacity of the Sn-doped rutile TiO\(_2\) hollow nanocrystals electrode is stabilized (Figure 7b). In the second charge/discharge cycle, a discharge capacity of 337.9 mA h g\(^{-1}\) is delivered, followed by a charge capacity of 333.9 mA h g\(^{-1}\), leading to a high Coulombic efficiency (CE) of about 98.8%. The discharge capacity sustains at about 251.3 mA h g\(^{-1}\) after 150 cycles at a current rate of 0.1 Ag\(^{-1}\), which is superior to most other nanostructured rutile TiO\(_2\)-based anode materials (Table S2). Because SnO\(_2\) has a higher theoretical capacity than TiO\(_2\), Sn\(^{4+}\) doping in the rutile TiO\(_2\) lattice naturally leads to an enhanced reversible capacity (Li\(^+\) + SnO\(_2\) → Sn + Li\(_2\)O; Sn + xLi → Li\(_x\)Sn (x < 4.4)).\(^{51,53}\) In addition, annealing treatment also benefited the increase in Li\(^+\) storage property in the prepared Sn-doped TiO\(_2\) hollow nanocrystals (Figure 7b). This is due to the improved crystallinity and absence of side reactions, related with the oxygen vacancies, after annealing. In comparison, the undoped TiO\(_2\) nanosheets were also synthesized via a similar hydrothermal method without SnCl\(_4\) in the reaction system, which exhibited inferior electrochemical activity (Figure S13). Electrochemical impedance spectroscopy (EIS) measurement is carried out to study the charge-transfer impedance of Sn-doped rutile TiO\(_2\) hollow nanocrystals electrode (Figure 7c). The Nyquist plots of the annealed and unannealed hollow nanocrystals are obtained with the amplitude of 5 mV and a frequency ranging from 0.01 Hz to 100 kHz. It is clear that the semicircle of the annealed Sn-doped rutile TiO\(_2\) hollow nanocrystals is smaller than that of the unannealed ones, demonstrating a smaller solid-state interface resistance of the sample after annealing. Inset in Figure 7c shows an equivalent circuit. The small intercept (\(R_s\)) at the \(Z'\) axis represents the total resistance of the electrolyte, separator, and electrical contacts.\(^{53}\) The semicircle corresponds to \(R_1\), representing charge-transfer impedance on the electrode–electrolyte interface.\(^{5}\) The sloping line, corresponding to \(W\) (Warburg impedance), indicates the diffusion of Li\(^+\) into the active materials.\(^{2}\) The CPE\(_1\) is the constant phase-angle element, involving double-layer capacitance, which is relevant with the surface property of the electrode.\(^{52}\) C\(_1\) represents the capacitance caused by Li\(^+\) transport process in the electrode material.\(^{16}\) The \(R_1\) of annealed Sn-doped TiO\(_2\) hollow nanocrystals was 64.11 Ω cm\(^{-2}\), which is much smaller than that of unannealed electrode (160.9 Ω cm\(^{-2}\)) and means well charge transport property on the electrode–electrolyte surface. It is due to the doping of Sn\(^{4+}\) and high crystallinity. The improved conductivity benefits the electrons and Li\(^+\) transport in the electrode.\(^{5}\) Meanwhile, the hollow nanostructures can
offer more sites for ions insertion. Therefore, a high specific capacity can be expected.

The excellent rate behavior of the sample was further investigated at different current rates (0.1–5 A g−1; Figure 7d). Ten charge/discharge cycles were tested at each step from 0.1 to 5 A g−1. Obviously, the Sn-doped rutile TiO2 hollow nanocrystals exhibited much more improved rate performances than unannealed sample at each current rate. The specific capacities for Sn-doped rutile TiO2 hollow nanocrystals are 313.4, 291.4, 256.5, 235.5, and 201.4 mA h g−1 at the rate of 0.1, 0.2, 0.5, 1, and 2 A g−1, respectively. Moreover, even at the highest current of 5 A g−1, a high capacity of 155.6 mA h g−1 is still obtained. Furthermore, the capacity can be returned to the initial value of 295.6 mA h g−1 after measuring at high current rate of 30 C, indicating their good structural stability. To evaluate the cyclability at a high current rate, the Sn-doped rutile TiO2 hollow nanocrystals electrode was discharged–charged at 30 C over 500 cycles. It is clear that this sample retained a reversible capacity of ~110 mA h g−1 after 500 cycles at about 30 C (Figure 7e). The CE remained almost 100% during the 500 cycles, indicating excellent stability of the electrode. More importantly, the hollow structure of Sn-doped rutile TiO2 nanocrystals was well maintained after 100 cycles under 1 A g−1, which further illuminates the stability of the electrode31 (Figure S14). In comparison with the reported rutile TiO2, the Sn-doped rutile TiO2 hollow nanocrystals exhibited significant rate capabilities and cycling stability (Table S2).

4. CONCLUSIONS

In summary, Sn-doped rutile TiO2 hollow nanocrystals were successfully synthesized by a facile hydrothermal method. The hollow nanostructures were transformed from solid TiOF2 nanocrystals by hydrolysis. Owing to tin doping, uniform hollow structure, and high crystallinity, the TiO2 products demonstrated remarkable rate capabilities and excellent long-life cycling stability at a high current rate. They delivered a high reversible specific capacity of 251.3 mA h g−1 at the current rate of 0.1 A g−1. Moreover, they still exhibited as high as ~110 mA h g−1 over 500 cycles at the current rate of 5 A g−1 (30 C). These electrochemical performances are superior to those of most rutile TiO2, reported so far. Therefore, it is expected that the Sn-doped rutile TiO2 hollow nanocrystals will be a potential candidate as the anode material.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsomega.7b01340.

Figures S1–S14; Tables S1 and S2; references (PDF)

AUTHOR INFORMATION

Corresponding Authors
*E-mail: liangang@sdu.edu.cn (G.L.).
*E-mail: cui@2008@sdu.edu.cn (D.C.).
*E-mail: cwong@cuhk.edu.hk (C.-P.W.).

ORCID

Ching-Ping Wong: 0000-0003-3556-8053

Author Contributions

S.J. and G.L. contributed equally.

Author Contributions

The manuscript was written through contributions of all of the authors. All of the authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by NSFC (grant numbers 51372143, 51102151, and 50990061) and Natural Science Foundation of Shandong Province (2013GGX10208).

REFERENCES

(1) Malik, R.; Zhou, F.; Ceder, G. Kinetics of Non-Equilibrium Lithium Incorporation in LiFePO4. Nat. Mater. 2011, 10, 587–590.
(2) Yang, L.; Wang, S.; Mao, J.; Deng, J.; Gao, Q.; Tang, Y.; Schmidt, O. G. Hierarchical MoS2/polyaniline Nanowires with Excellent Electrochemical Performance for Lithium-Ion Batteries. Adv. Mater. 2013, 25, 1180–1184.
(3) Myung, S.-T.; Kukuchi, M.; Yoon, C. S.; Yashiro, H.; Kim, S.-J.; Sun, Y.-K.; Scosati, B. Black Anatase Titania Enabling Ultra High Cycling Rates for Rechargeable Lithium Batteries. Energy Environ. Sci. 2013, 6, 2609.
(4) Chen, X.; Li, C.; Grätzel, M.; Kostecki, R.; Mao, S. S. Nanomaterials for Renewable Energy Production and Storage. Chem. Soc. Rev. 2012, 41, 7909.
(5) Song, T.; Paik, U. TiO2 as an Active or Supplemental Material for Lithium Batteries. J. Mater. Chem. A 2016, 4, 14–31.
(6) Wang, S.; Guan, B. Y.; Yu, L.; Lou, X. W. D. Rational Design of Three-Layered TiO2@Carbon@MoS2 Hierarchical Nanotubes for Enhanced Lithium Storage. Adv. Mater. 2017, 29, No. 1702724.
(7) Guan, B. Y.; Yu, L.; Li, J.; Lou, X. W. (David). A Universal Cooperative Assembly-Directed Method for Coating of Mesoporous TiO2 Nanoshells with Enhanced Lithium Storage Properties. Sci. Adv. 2016, 2, No. e1501554.
(8) Jiao, W.; Li, N.; Wang, I.; Wen, L.; Li, F.; Liu, G.; Cheng, H.-M. High-Rate Lithium Storage of Anatase TiO2 Crystals Doped with Both Nitrogen and Sulfur. Chem. Commun. 2013, 49, 3461–3463.
(9) Liu, G.; Yang, H. G.; Pan, J.; Yang, Y. Q.; Lu, G. Q. M.; Cheng, H. M. Titanium Dioxide Crystals with Tailored Facets. Chem. Rev. 2014, 114, 9559–9612.
(10) De Angelis, F.; Di Valentino, C.; Fantacci, S.; Vittadini, A.; Selloni, A. Theoretical Studies on Anatase and Less Common TiO2 phases: Bulk, Surfaces, and Nanomaterials. Chem. Rev. 2014, 114, 9708–9753.
(11) Ramamoorthy, M.; Vanderbilt, D.; King-Smith, R. D. First-Principles Calculations of the Energetics of Stoichiometric TiO2 Surfaces. Phys. Rev. B 1994, 49, 16721–16727.
(12) Parker, R. A.; Wasilik, J. H. Dielectric Constant and Dielectric Loss of TiO2 (Rutile) at Low Frequencies. Phys. Rev. 1960, 120, 1631–1637.
(13) Wang, Y.-Q.; Gu, L.; Guo, Y.-G.; Li, H.; He, X.-Q.; Tsukimoto, S.; Ikuhara, Y.; Wu, L.-J. Rutile-TiO2 Nanocoating for a High-Rate Lithium-Ion Battery. J. Am. Chem. Soc. 2012, 134, 7874–7879.
(14) Gligor, F.; de Leeuw, S. W. Lithium Diffusion in Rutile Structured Titania. Solid State Ionics 2006, 177, 2741–2746.
(15) Wang, S.; Yang, Y.; Qian, W.; Hong, Y.; Zhang, Z.; Tang, Z.; Li, J. Ti3+-Free Three-Phase LiTi5O12/TiO2 for High-Rate Lithium Ion Batteries: Capacity and Conductivity Enhancement by Phase Boundaries. Nano Energy 2017, 32, 294–301.
(16) Li, X.; Wu, G.; Liu, X.; Li, W.; Li, M. Orderly Integration of Porous TiO2(B) Nanosheets into Bunchy Hierarchical Structure for High-Rate and Ultralong-Lifespan Lithium-Ion Batteries. Nano Energy 2017, 31, 1–8.
(17) Xin, X.; Zhou, X.; Wu, J.; Yao, X.; Liu, Z. Scalable Synthesis of TiO2/graphene Nanostructured Composite with High-Rate Performance for Lithium Ion Batteries. ACS Nano 2012, 6, 11035−11043.
(18) Zhang, G.; Wu, H.; Bin; Song, T.; Paik, U.; Lou, X. W. TiO2 Hollow Spheres Composed of Highly Crystalline Nanocrystals Exhibit Superior Lithium Storage Properties. Angew. Chem., Int. Ed. 2014, 53, 12590−12593.
(19) Li, D.; Qin, Q.; Duan, X.; Yang, J.; Guo, W.; Zheng, W. General One-Pot Template-Free Hydrothermal Method to Metal Oxide Hollow Spheres and Their Photocatalytic Activities and Lithium Storage Properties. ACS Appl. Mater. Interfaces 2013, 5, 9095−9100.
(20) Fang, W. Q.; Hau, Z.; Liu, P.; Wang, X. L.; Manna, L.; Zaccaria, R. P.; Leung, M. K. H.; Zboril, R.; Niu, C.; Rogach, A. L. Synthesis and Characterization of Tin Titanate Nanotubes: Precursors for Nanoparticulate Sn-Doped TiO2 Anodes with Synergistically Improved Electrochemical Performance. ChemElectroChem 2014, 1, 1563−1569.
(21) Wang, Y.; Smarsly, B. M.; Djerdj, I. Niobium Doped TiO2 with Mesoporosity and Its Application for Lithium Insertion. Chem. Mater. 2010, 22, 6624−6631.
(22) Lan, T.; Zhang, W.; Wu, N.-L.; Wei, M. Nb-Doped Rutile TiO2 Mesocrystals with Encapsulated High Capacity for Lithium Ion Bathery. Chem.-Eur. J. 2017, 23, 5059−5065.
(23) Zhou, X.; Lan, L. J.; Guo, Y. G. Binding SnO2 Nanocrystals in Nitrogen-Doped Graphene Sheets as Anode Materials for Lithium-Ion Batteries. Adv. Mater. 2013, 25, 2152−2157.
(24) Guan, C.; Wang, X.; Zhang, Q.; Fan, Z.; Zhang, H.; Fan, H. J. Highly Stable and Reversible Lithium Storage in SnO2 Nanowires Surface Coated with a Uniform Hollow Shell by Atomic Layer Deposition. Nano Lett. 2014, 14, 4852−4858.
(25) Sun, Y.; Fu, A. P.; Li, H. L.; Liu, J. Q.; Guo, P. Z.; Wang, Y. Q.; Zhao, X. O. One-Step Solvothermal Preparation of Fe2O3/graphene Composites at Elevated Temperature and Their Application as Anode Materials for Lithium-Ion Batteries. RSC Adv. 2014, 4, 59981−59989.
(26) Wang, H.; Xi, L.; Tucek, J.; Zhan, Y.; Huang, T. F.; Kershaw, S. V.; Zboril, R.; Chung, C. Y.; Rogach, A. L. Hierarchical Assembly of Ti(IV)/Sn(II) Co-Doped SnO2 Nanosheets along Sacrifical Titanate Nanowires: Synthesis, Characterization and Electrochemical Properties. Nanoscale 2013, 5, 9101−9109.
(27) Shannon, R. D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallogr., Sect. A: Found. Adv. 1976, 32, 751−767.
(28) Wang, X.; Cao, X.; Bourgeois, L.; Guan, H.; Chen, S.; Zhong, Y.; Tang, D.-M.; Li, H.; Zhai, T.; Li, L.; Bando, Y.; Golberg, D. N-Doped Graphene-SnO2 Sandwich Paper for High-Performance Lithium-Ion Batteries. Adv. Funct. Mater. 2012, 22, 2682−2690.
(29) Bing, X.; He, S.; Miao, S.; Jorgensen, M. R.; Leubner, S.; Yan, C.; Hickey, S. G.; Eychmüller, A.; Xu, J.; Schmidt, O. G. Ultrasmall SnO2 Nanocrystals: Hot-Bubbling Synthesis, Encapsulation in Carbon Layers and Applications in High Capacity Li-Ion Storage. Sci. Rep. 2014, 4, No. 4647.
(30) Müller, W.; Kearley, G. J.; Ling, C. D. Ab Initio Parametrized Polarizable Field for Rutile-Type SnO2. Theor. Chem. Acc. 2012, 131, 1216.
(31) Gordon, T. R.; Cardinello, D.; Paik, T.; Mangolini, F.; Weber, R. T.; Fornasiero, P.; Murray, C. B. Nonaqueous Synthesis of TiO2 Nanocrystals Using TiF4 to Engineer Morphology, Oxygen Vacancy Concentration, and Photocatalytic Activity. J. Am. Chem. Soc. 2012, 134, 6751−6761.
(32) Etacheri, V.; Yourey, J. E.; Bartlett, B. M. Chemically Bonded TiO2-Bronze Nanosheet/reduced Graphene Oxide Hybrid for High-Power Lithium-Ion Batteries. ACS Nano 2014, 8, 1491−1499.
(33) Yuan, Q.; Wu, Z.; Jin, Y.; Xu, L.; Xiong, F.; Ma, Y.; Huang, W. Photocatalytic Cross-Coupling of Metalup and Formaldehyde on a Rutile TiO2(110) Surface. J. Am. Chem. Soc. 2013, 135, S212−S219.
(34) Goriparti, S.; Miele, E.; Prato, M.; Scarpellini, A.; Mariş, S.; Monaco, S.; Toma, A.; Messina, G. C.; Alabastri, A.; De Angelis, F.; Manna, L.; Capiglia, C.; Zaccaria, R. P. Direct Synthesis of Carbon-Doped TiO2-Bronze Nanowires as Anode Materials for High Performance Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2015, 7, 25139−25146.
(35) Ding, X.; Hong, Z.; Wang, Y.; Lai, R.; Wei, M. Synthesis of Square-like Anatase TiO2 Nanocrystals Based on TiOF4 Quantum Dots. J. Alloys Compd. 2013, 550, 475−478.
(36) Huang, Z.; Wang, Z.; Lv, K.; Zheng, Y.; Deng, K. Transformation of TiOF4 Cube to a Hollow Nanoblock Assembly from Anatase TiO2 Nanosheets with Exposed [001] Facets via Solvothermal Strategy. ACS Appl. Mater. Interfaces 2013, 5, 8663−8669.
(37) Wang, Z. Y.; Huang, B. B.; Dai, Y.; Zhang, X. Y.; Qin, X. Y.; Li, Z.; Zheng, K. Z.; Cheng, H. F.; Guo, L. W. Topotactic Transformation of Single-Crystalline TiO2F2 Nanocubes to Ordered Arranged 3D Hierarchical TiO2 Nanoblocks. CrystEngComm 2012, 14, 4578−4581.
(38) Yang, J.; Qi, L.; Lu, C.; Ma, J.; Cheng, H. Morphosynthesis of Rhombododecahedral Silver Cages by Self-Assembly Coupled with Precursor Crystal Templating. Angew. Chem., Int. Ed. 2005, 44, 598−603.
(39) Jiao, S.; Xu, L.; Jiang, K.; Xu, D. Well-Defined Non-Spherical Copper Sulfide Mesocages with Single-Crystalline Shells by Shape-Controlled Cu2O Crystal Templating. Adv. Mater. 2006, 18, 1174−1177.
(40) Li, L.; Sun, N.; Huang, Y.; Qin, Y.; Zhao, N.; Guo, J.; Li, M.; Zhou, H.; Qi, L. Topotactic Transformation of Single-Crystalline Precursor Discs into Disc-like Bi2S3 Nanorod Networks. Adv. Funct. Mater. 2008, 18, 1194−1201.
(41) Guo, C. F.; Cao, S.; Zhang, J.; Tang, H.; Guo, S.; Tian, Y.; Liu, Q. Topotactic Transformations of Superstructures: From Thin Films to Two-Dimensional Networks to Nested Two-Dimensional Networks. J. Am. Chem. Soc. 2011, 133, 8211−8215.
(42) Yu, X.-Y.; Wu, H. B.; Yu, L.; Ma, F.-X.; Lou, X. W. D. Rutile TiO2 Submicrocombs with Superior Lithium Storage Properties. Angew. Chem., Int. Ed. 2015, 54, 4001−4004.
(43) Long, L.; Zhang, H.; Ye, M.; Fang, Z. Ammonia Cation-Assisted Bubble Template for Synthesizing Hollow TiO2 Nanospheres and Their Application in Lithium Ion Storage. RSC Adv. 2015, 5, 12224−12229.
(44) Chen, J. S.; Lou, X. W. D. SnO2-Based Nanomaterials: Synthesis and Application in Lithium-Ion Batteries. Small 2013, 9, 1877−1893.
Composite Anodes for Lithium Ion Batteries. *ACS Nano* 2013, 7, 6001–6006.

(54) Ren, H.; Yu, R.; Wang, J.; Jin, Q.; Yang, M.; Mao, D.; Kisailus, D.; Zhao, H.; Wang, D. Multishelled TiO$_2$ Hollow Microspheres as Anodes with Superior Reversible Capacity for Lithium Ion Batteries. *Nano Lett.* 2014, 14, 6679–6684.

(55) Wang, Z.; Zhou, L.; Lou, X. W. Metal Oxide Hollow Nanostructures for Lithium-Ion Batteries. *Adv. Mater.* 2012, 24, 1903–1911.

(56) Han, C.; Yang, D.; Yang, Y.; Jiang, B.; He, Y.; Wang, M.; Song, A.-Y.; He, Y.-B.; Li, B.; Lin, Z. Hollow Titanium Dioxide Spheres as Anode Material for Lithium Ion Battery with Largely Improved Rate Stability and Cycle Performance by Suppressing the Formation of Solid Electrolyte Interface Layer. *J. Mater. Chem. A* 2015, 3, 13340–13349.