Protecting health care workers from COVID-19 remains a priority during the ongoing pandemic. Accurate assessment of the risk for infection among health care workers is important in determining the effectiveness of infection control plans. In late March 2020, a total of 591 U.S. Army personnel from three units were deployed from areas in which COVID-19 incidence was low to the Javits New York Medical Station (JMS), a 452-bed Federal Emergency Management Agency Federal Medical Station in New York City (NYC), to provide care to COVID-19 patients. Army personnel followed a rigorous infection control plan and remained largely isolated from the surrounding community while in NYC. During April 3–25, a total of 1,095 COVID-19 patients were admitted from NYC area hospitals to the JMS ward or intensive care unit (ICU).

A cross-sectional study of the prevalence of SARS-CoV-2 infection among 336 active duty soldiers enrolled in a prevalence study identified an infection rate of 1.7% overall and 0.9% in the 223 (66.4%) enrolled soldiers who provided direct care to COVID-19 patients. A well-designed and well-implemented infection control plan can mitigate the risk for SARS-CoV-2, the virus that causes COVID-19, in health care settings, including nontraditional settings.

All patients transferred to JMS had received a positive SARS-CoV-2 polymerase chain reaction (PCR) test result or a clinical diagnosis of COVID-19 when evaluated at the transferring hospital, were clinically stable or improving, and did not have other complex medical conditions. Upon arrival, patients were admitted to a 452-bed patient care area converted from an exhibition space. The ventilation in the JMS patient care area was adjusted to create a negative pressure differential related to all other JMS spaces. Beds were contained within 8-foot square pods separated by temporary dividers with open ceilings. Personnel were placed in their hotel rooms as much as possible when off duty; meals were available at JMS, through food delivery services, or by take-out from restaurants within short walking distances of the hotels. The chain of command enforced mask wearing and physical distancing at all times. Personnel were placed in command-directed isolation if they reported experiencing any COVID-19–associated symptoms.

To assess the prevalence of SARS-CoV-2 infection among active duty soldiers deployed to JMS, researchers recruited soldiers for the study in late April. Among 591 eligible soldiers who deployed to NYC beginning on March 24, a total of 336 (56.8%) consented to participate in the prevalence study during April 28–30. Among the enrolled soldiers, 298 (88.7%) originated from an area where the 3-day average COVID-19 incidence was <10 cases per 100,000 persons; in contrast, the 3-day average incidence in NYC during March 30–April 1, 2020, was 519 per 100,000.* All enrolled soldiers completed an anonymous study questionnaire that asked about demographic characteristics, duties at JMS, and history of COVID-19 symptoms, isolation, and testing. During April 28–30, nasopharyngeal swabs were collected from all enrolled

* https://github.com/nytimes/covid-19-data
participants and were tested using the TaqPath™ COVID-19 Combo Kit (Thermo Fisher Scientific). All participants also received enzyme-linked immunosorbent assay (ELISA) immunoglobulin G (IgG) and multiplex microsphere-based immunoassay (MMIA) IgG and immunoglobulin M (IgM) testing. Although not authorized for clinical diagnostic purposes at the time, MMIA can test simultaneously for antibodies to multiple antigens using an extremely small sample volume, in this case, <2 μL. SARS-CoV-2 antibody presence and titer were ascertained by using ELISA and MMIA (1).§

Enrolled soldiers were considered to have been infected if SARS-CoV-2 viral RNA was detected on nasopharyngeal PCR tests or if SARS-CoV-2 IgG antibodies were detected by ELISA. MMIA serologic testing was used to improve the sensitivity of antibody detection. Medians were compared by Wilcoxon-rank sum test using SPSS Statistics (version 22.0; IBM).

This study was approved by the Uniformed Services University Institutional Review Board. The activities were reviewed by CDC and were conducted consistent with applicable federal law and CDC policy.¶

Among the 336 soldiers who participated in the study, 304 (90.5%) had arrived in NYC before the first COVID-19 patient was admitted to JMS (Figure). During April 3–25, a total of 1,095 COVID-19 patients were admitted to JMS. Throughout that time, 77 (13.0%) of 591 soldiers were tested for SARS-CoV-2 by PCR because of reported COVID-19–compatible symptoms, including four who received positive SARS-CoV-2 PCR test results. Among the 336 soldiers enrolled in the study, 45 (13.3%) were tested because of symptoms; two had a positive SARS-CoV-2 PCR result.

The 336 soldiers enrolled in the SARS-CoV-2 prevalence study included 100 registered nurses (29.7%), 99 medical support staff members (27.9%), 25 physicians and physician assistants (7.4%), and 117 other staff members (34.7%) (Table 1). Direct contact with COVID-19 patients was reported by 223 (66.4%) enrolled soldiers, for a self-estimated median of 240 hours at the time of enrollment and testing.

During the SARS-CoV-2 prevalence study, six of 336 (1.7%) soldiers received a positive SARS-CoV-2 test result, either by nasopharyngeal swab PCR (two), ELISA (five), or both (one) (Table 2). The five soldiers with positive IgG test results had titers of 1:80 (three), 1:160 (one), and 1:2,880 (one). Two (0.6%) soldiers had detectable IgG antibodies to the spike protein and receptor binding domain by MMIA testing; both soldiers also had positive ELISA test results (titers = 1:160 and 1:2880). The three soldiers with ELISA titers of 1:80 had negative MMIA results. Both soldiers with positive MMIA IgG results also had detectable IgM to SARS-CoV-2 spike protein; all other IgM results were negative.

The median age of the soldiers with positive SARS-CoV-2 test results (22 years) was significantly younger than that of all enrolled soldiers (32 years) (p = 0.02). Among the six soldiers with positive PCR or ELISA test results, two reported directly caring for COVID-19 patients, four reported having

FIGURE. Admission of COVID-19 patients, arrival of deployed U.S. Army personnel enrolled in prevalence study, and dates of positive SARS-CoV-2 test results — Javits New York Medical Station (JMS), New York City (NYC), March 24–April 30, 2020

Abbreviation: PCR = polymerase chain reaction.
COVID-19 symptoms, and two were isolated for symptomatic SARS-CoV-2 infection that was previously detected by PCR while the soldiers were at JMS. The SARS-CoV-2 infection rate among those involved in direct patient care to COVID-19 patients at JMS and serologic tests for COVID-19 and other potential antibody tests among soldiers who had positive SARS-CoV-2 test results — Javits New York Medical Station, New York City, April 2020

TABLE 1. Characteristics of active duty military members enrolled in a cross-sectional prevalence study of SARS-CoV-2 infection — Javits New York Medical Station (JMS), New York City (NYC), April 2020

Characteristic	All (N = 336)	SARS-CoV-2–positive (n = 6)
Median age, yrs (IQR)	32 (25.3–40.0)	22 (20.3–23.0)
Sex		
Female	315 (40.2)	2 (33.3)
Male	201 (59.8)	4 (66.7)
Professional role		
Registered nurse	100 (29.7)	1 (16.7)
Medical support	25 (7.4)	0 (—)
Other	117 (34.7)	4 (66.7)
Median no. of days in NYC (IQR)	31 (30.0–32.0)	31 (31.0–31.8)
Symptoms and isolation		
Fever	16 (4.8)	2 (33.3)
Cough	32 (9.5)	2 (33.3)
Shortness of breath	14 (4.2)	1 (16.7)
Diarrhea	55 (16.4)	1 (16.7)
Anosmia	7 (2.1)	2 (33.3)
Sore throat	52 (15.5)	3 (50.0)
Rhinorrhea	81 (24.1)	3 (50.0)
Median duration of symptoms, when present, days (IQR)		
Fever	2 (2.0–3.3)	3.5 (3.3–3.8)
Cough	4 (2.0–7.0)	8 (7.5–8.5)
Shortness of breath	5 (2.0–6.0)	8 (—)
Diarrhea	2 (1.0–4.0)	1 (—)
Anosmia	2 (2.0–3.0)	4 (4.0–4.0)
Sore throat	3 (2.0–4.0)	3 (3.0–6.0)
Rhinorrhea	4.5 (2.0–7.0)	3 (3.0–5.0)

TABLE 2. Molecular test and serologic assay results among soldiers with positive SARS-CoV-2 test results (N = 6) — Javits New York Medical Station, New York City, April 2020

Soldier	PCR	ELISA IgG	Titer	MMIA IgG	MMIA IgM
A	Pos	Pos	1:160	Pos	Pos
B	Neg	Pos	1:800	Pos	Pos
C	Neg	Pos	1:80	Neg	Neg
D	Neg	Pos	1:80	Neg	Neg
E	Neg	Pos	1:80	Neg	Neg
F	Pos	Neg	N/A	Neg	Neg

Abbreviations: ELISA = enzyme-linked immunosorbent assay; IgG = immunoglobulin G; IgM = immunoglobulin M; MMIA = multiplex microsphere-based immunoassay; N/A = not available; Neg = negative; PCR = polymerase chain reaction; Pos = positive.

Discussion

This study of active duty military personnel deployed to care for COVID-19 patients demonstrates that a low rate of SARS-CoV-2 infection among health care personnel in a field hospital is achievable when appropriate resources are coupled with robust infection control measures. Deployed military personnel were from geographic regions with low COVID-19 incidence and were relatively isolated from the community after arriving in NYC. The overall SARS-CoV-2 infection rate among soldiers was <2%, and among those involved in direct patient care, the rate was <1%, which is lower than rates in health care personnel reported in previous studies (2–5). These findings underscore the importance of use of adequate PPE and rigorous infection control plans for the protection of health care personnel, especially in a field hospital that lacks the standard physical barriers and infrastructure of a traditional health care setting.

JMS protocols and practices highlight the need to ensure compliance with infection control best practices such as assisted donning and doffing of PPE (6). Cohorting all COVID-19 patients helped to conserve PPE and reduced the frequency of doffing, thereby limiting risk to medical staff members for exposure to contaminated PPE surfaces during doffing. However, wearing PPE during long shifts can be uncomfortable for staff members. Appropriate monitoring and enforcement can be implemented in any health care setting, but the military command structure is especially well suited for this purpose.

The findings in this report are subject to at least three limitations. First, the patients admitted to JMS were transferred from a hospital in the NYC area with known COVID-19 and were stable or improving before transfer. This resulted in a lower likelihood of these patients being infectious than the typical COVID-19 patient evaluated in a hospital emergency department. Second, the interval between exposure of health care personnel to COVID-19 patients at JMS and serologic
Summary
What is already known about this topic?
Health care workers caring for patients with COVID-19 are at risk for infection.

What is added by this report?
In April 2020, U.S. military personnel were deployed to a New York City field hospital to care for COVID-19 patients. A robust infection control plan was implemented and enforced. Among 336 soldiers participating in an infection risk study, the overall infection rate was 1.7%; the rate among those involved in direct patient care was 0.9%.

What are the implications for public health practice?
A well-designed and well-implemented infection control plan and use of adequate personal protective equipment can mitigate the risk for SARS-CoV-2 transmission in health care settings, including nontraditional settings.

testing was relatively short. Because SARS-CoV-2 IgG increases during the first 4 weeks after infection, this short interval reduced the sensitivity of SARS-CoV-2 serologic testing (7). Finally, soldiers volunteered to participate and might have had different risk factors and infection rates than did those who did not participate.

The SARS-CoV-2 infection rate among soldiers deployed to NYC was low compared with the rate for other health care personnel cohorts, for both those who cared directly for patients and those who did not. This experience demonstrates that a well-designed, well-resourced infection control plan implemented with fidelity to best practices as well as adequate PPE and isolation of health care personnel from community-based exposures can mitigate the risk for SARS-CoV-2 infection in health care settings, including nontraditional health care settings.

Acknowledgments
Kimberlee Aiello; Sebastian Alarcon; Exelia Buchanan; Gustavo Casimiro; Zenaida Cofie; Tameka Crawford; Keejane Franklin; Julie Fuleky; Dwight Gillis; David Hamilton; Rawa Hassan; Alvaro Hernandez; Stephanie Kovack; Skyler Lawrence; David Lawton; Khalid Lewis; Sara Mandell; T.G. Nessler; Tara Ortiz; Kyle Paulsen; Shreshtha Phogat; Cyntina Pollard-Roberson; Brandon Pretlow; Darrell Rayos; Kyle Reed; Emily C. Samuels; Camilla Sauceda; Christopher Scott; Daniel Seif; Justin Thran; Daniel Vinray; Dylan Witmer; Rene Zehr; Isa Zho.

References
1. Amanat F, Stadlbauer D, Sroehmeier S, et al. A serological assay to detect SARS-CoV-2 seroconversion in humans. Nat Med 2020;26:1033–6. PMID:32398876 https://doi.org/10.1038/s41591-020-0913-5
2. Moscola J, Sembajwe G, Jarrett M, et al.; Northwell Health COVID-19 Research Consortium. Prevalence of SARS-CoV-2 antibodies in health care personnel in the New York City area. JAMA 2020;324:893–5. PMID:32780804 https://doi.org/10.1001/jama.2020.14765
3. Steensels D, Oris E, Coninx L, et al. Hospital-wide SARS-CoV-2 antibody screening in 3056 staff in a tertiary center in Belgium. JAMA 2020;324:195–7. PMID:32539107 https://doi.org/10.1001/jama.2020.11160
4. Hunter E, Price DA, Murphy E, et al. First experience of COVID-19 screening of health-care workers in England. Lancet 2020;395:e77–8. PMID:32333843 https://doi.org/10.1016/S0140-6736(20)30970-3
5. Sikkema RS, Pas SD, Nieuwenhuijse DF, et al. COVID-19 in health-care workers in three hospitals in the south of the Netherlands: a cross-sectional study. Lancet Infect Dis 2020;20:1273–80. PMID:32622380 https://doi.org/10.1016/S1473-3099(20)30527-2
6. Okamoto K, Rhee Y, Schoeny M, et al.; CDC Epicenters Program. Impact of doffing errors on healthcare worker self-contamination when caring for patients on contact precautions. Infect Control Hosp Epidemiol 2019;40:559–65. PMID:30890193 https://doi.org/10.1017/ice.2019.33
7. Guo L, Ren L, Yang S, et al. Profiling early humoral response to diagnosis novel coronavirus disease (COVID-19). Clin Infect Dis 2020;71:778–85. PMID:32198501 https://doi.org/10.1093/cid/ciaa310

Corresponding author: Guy T. Clifton, Guy.t.clifton.mil@mail.mil.