Networking of differentially expressed genes in human cancer cells resistant to methotrexate

Elisabet Selga, Carlota Oleaga, Sara Ramírez, M Cristina de Almagro, Véronique Noé and Carlos J Ciudad

Address: Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, Diagonal Avenue, E-08028 Barcelona, Spain.

Correspondence: Carlos J Ciudad. Email: cciudad@ub.edu

Abstract

Background: The need for an integrated view of data obtained from high-throughput technologies gave rise to network analyses. These are especially useful to rationalize how external perturbations propagate through the expression of genes. To address this issue in the case of drug resistance, we constructed biological association networks of genes differentially expressed in cell lines resistant to methotrexate (MTX).

Methods: Seven cell lines representative of different types of cancer, including colon cancer (HT29 and Caco2), breast cancer (MCF-7 and MDA-MB-468), pancreatic cancer (MIA PaCa-2), erythroblastic leukemia (K562) and osteosarcoma (Saos-2), were used. The differential expression pattern between sensitive and MTX-resistant cells was determined by whole human genome microarrays and analyzed with the GeneSpring GX software package. Genes deregulated in common between the different cancer cell lines served to generate biological association networks using the Pathway Architect software.

Results: Dikkopf homolog-1 (DKK1) is a highly interconnected node in the network generated with genes in common between the two colon cancer cell lines, and functional validations of this target using small interfering RNAs (siRNAs) showed a chemosensitization toward MTX. Members of the UDP-glucuronosyltransferase 1A (UGT1A) family formed a network of genes differentially expressed in the two breast cancer cell lines. siRNA treatment against UGT1A also showed an increase in MTX sensitivity. Eukaryotic translation elongation factor 1 alpha 1 (EEF1A1) was overexpressed among the pancreatic cancer, leukemia and osteosarcoma cell lines, and siRNA treatment against EEF1A1 produced a chemosensitization toward MTX.

Conclusions: Biological association networks identified DKK1, UGT1As and EEF1A1 as important gene nodes in MTX-resistance. Treatments using siRNA technology against these three genes showed chemosensitization toward MTX.
Background

The large amount of information obtained with high-throughput technologies like expression microarrays needs to be processed in order to be comprehensible to molecular biologists. In this regard, many computational methods have been developed to facilitate expression data analysis. Gene clustering, gene ontology and pathway analyses are commonly used [1,2]. Pathways are manually generated diagrams that represent knowledge on molecular interactions and reactions [3] and they can be used to visualize the involvement of the differentially expressed genes in specific molecular, cellular or biological processes. However, the complexity of higher organisms cannot be explained solely as a collection of separate parts [4]; in organisms, pathways never exist in isolation, they are part of larger networks, which are more informative and real [5]. Gene networks are capable of describing a large number of interactions in a concise way, and provide a view of the physiological state of an organism at the mRNA level. Biochemical networks can be constructed at several levels and can represent different types of interactions. Literature mining allows the extraction of meaningful biological information from publications to generate networks [6]. Taking into account the progress in gene expression profiling, elucidating gene networks is an appropriate and timely step on the way to uncovering the complete biochemical networks of cells [5].

In this work, we use biological association networks (BANs) as a tool to define possible targets for gene therapy in combination with methotrexate (MTX). This approach could serve to minimize the development of MTX resistance acquired by cancer cells, which remains a primary cause of therapy failure in cancer treatment [7]. A role in MTX resistance was established for the three node genes selected, namely those encoding Dikkopf homolog 1 (DKK1), UDP-glucuronosyltransferases (UGTs; UGT1As) and Eukaryotic translation elongation factor 1A1 (EEF1A1).

Methods

Cell lines

Cell lines representative of five types of human cancer were used: HT29 and Caco-2 for colon cancer, MCF-7 and MDA-MB-246 for breast cancer, MIA PaCa-2 for pancreatic cancer, K562 for erythroblastic leukemia, and Saos-2 for osteosarcoma. These cell lines are sensitive to MTX, with IC50s of 1.67 \times 10$^{-8}$ M MTX for HT29, 4.87 \times 10$^{-8}$ M MTX for MDA-MB-468 and 1.16 \times 10$^{-8}$ M MTX for MIA PaCa-2 cells. IC50 values were calculated using GraphPad Prism 5 version 5.0a for Macintosh (GraphPad Software, San Diego, CA, USA). Resistant cells were obtained in the laboratory upon incubation with stepwise concentrations of MTX (Lederle) as previously described [8]. HT29, Caco-2 and K562 resistant cells were able to grow in 10$^{-5}$ M MTX; MIA PaCa-2, Saos-2, MCF-7 and MDA-MB-246 cells were resistant to 10$^{-6}$ M MTX.

Cell culture

Human cell lines were routinely grown in Ham’s F12 medium supplemented with 7% fetal bovine serum (both from Gibco/Invitrogen, Grand Island, NY, USA) at 37°C in a 5% CO2 humidified atmosphere. Resistant cells were routinely grown in selective DHFR medium lacking glycine, hypoxanthine and thymidine (-GHT medium; Gibco), the final products of dihydrofolate reductase (DHFR) activity. This medium was supplemented with 7% dialyzed fetal bovine serum (Gibco).

Microarrays

Gene expression was analyzed by hybridization to the GeneChip® Human Genome U133 PLUS 2.0 from Affymetrix, containing over 54,000 transcripts and variants. Total RNA for oligo arrays was prepared from triplicate samples of every sensitive and resistant cell line using the RNAeasy Mini kit (Qiagen, Germantown, Maryland, USA) following the recommendations of the manufacturer. Labeling, hybridization and detection were carried out following the manufacturer’s specifications.

Microarray data analyses

Gene expression analyses were performed using three samples of both sensitive and resistant cells for each of the seven cell lines studied. These analyses were carried out with the GeneSpring GX software v 7.3.1 (Agilent Technologies, Santa Clara, CA, USA), using the latest gene annotations available (March 2009). This software package allows multi-filter comparisons using data from different experiments to perform the normalization, generation of restriction (filtered) lists and functional classifications of the differentially expressed genes. Normalization was applied in two steps: ‘per chip normalization’, by which each measurement was divided by the 50th percentile of all measurements in its array; and ‘per gene normalization’, by which all the samples were normalized against the median of the control samples (sensitive cells). The expression of each gene was reported as the ratio of the value obtained for each condition relative to the control condition after normalization of the data. Then, data were filtered using the control strength, a control value calculated using the Cross-Gene Error model on replicates [9] and based on average base/proportional value. Measurements with higher control strength are relatively more precise than measurements with lower control strength. Genes that did not reach this value were discarded. Additional filtering was performed to determine differentially expressed genes. A first filter was performed by selecting the genes that displayed a P-value corrected by false discovery rate (Benjamini and Hochberg false discovery rate) of less than 0.05. The output of this analysis was then filtered by fold expression. Thus, lists of genes differentially expressed by at least twofold were generated for each of the seven resistant cell lines.
Customized analyses were performed to select relevant neighbors resulting from the expanded interaction. Even including entities not present in the original list, how the entities in a list could be interacting with each other, gathers all that information to construct novel views as to that have at least three NLP references. Pathway Architect are given the maximum quality score, as are any interactions like BIND (Biomolecular Interaction Network Database) and MINT (Molecular INTeraction) [11]. Interactions in the interaction database are scored according to five categories: maximum, medium, low and minimal. Curated interactions (BIND and MINT sources) are given the maximum quality score, as are any interactions that have at least three NLP references. Pathway Architect gathers all that information to construct novel views as to how the entities in a list could be interacting with each other, even including entities not present in the original list (neighbors resulting from the expanded interaction). Customized analyses were performed to select relevant interaction networks with an associated high confidence index since such networks are likely to mirror biological significance. One-step expansion (using the expand network command) of the original set of entities with maximum score interaction were then analyzed by setting an advanced filter that included the categories of binding, expression, metabolism, promoter binding, protein modification and regulation. This procedure gives a final representation formed of a collection of nodes with different degrees of inter-relationship. Some gene products from the original lists were not significantly connected with other members or neighbors and, therefore, were removed from the final view. Finally, members of the network were matched with expression levels.

Transfection of small interfering RNAs against selected genes
HT29 cells (30,000) were plated in 1 ml of -GHT medium and transfection was performed 18 hours later. For each well, Lipofectamine™ 2000 (Invitrogen, Carlsbad, CA, USA) in 100 µl of serum free -GHT medium was mixed in Eppendorf tubes with 100 nM of small interfering RNA (siRNA) in 100 µl of serum free -GHT medium. The mixture was incubated at room temperature for 20 minutes before addition to the cells. MTX (2 x 10^-8 M) was added 48 hours after siRNA treatment and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays [12] were performed 3 days after MTX addition. Treatment of MDAMB-468 and Mia PaCa-2 cells was performed following the same protocol but using Metafectene™ (Biontex, Martinsried, Germany). A non-related siRNA was used as negative control; it was transfected in parallel with the other siRNAs and used to normalize the results.

The siRNAs were designed using the software iRNAi v2.1. (The Netherlands Cancer Institute, Amsterdam, The Netherlands) Among the possible alternatives, sequences rich in A/T at the 3' end of the target were chosen. Then, BLAST resources in NCBI were used to assess the degree of specificity of the sequence recognition for these siRNAs. Only the siRNAs that reported the target gene as the only mRNA hit, or some family members in the case of siUGT1A, were selected. The sequences for the sense strand of all siRNAs used are available in Table 1.

Heat map generation
A global comparison of all cell lines was performed using GeneSpring GX v 7.3.1. The triplicate samples for each condition in each of the seven cell lines (42 samples) were imported into one single experiment. Normalization was performed in two steps: ‘per chip normalization’ (as described above) and ‘per gene normalization’, by which the samples were normalized against the median of all samples. Lists of genes displaying a false discovery rate-corrected P-value <0.05 were generated for each cell line. As a filter, these values had to appear in at least two out of the seven cell lines. A hierarchical clustering method in GeneSpring was used to group genes on the basis of similar expression patterns over all samples. The distance matrix used was Pearson correlation, and average linkage was used as clustering.
algorithm. The same clustering method was used to group the cell lines on the basis of similar patterns of gene expression.

Real-time RT-PCR

Gene mRNA levels were determined by real-time RT-PCR. Total RNA was extracted from cells using Ultraspec™ RNA reagent (Biotecx, Houston, TX, USA) following the recommendations of the manufacturer. For determining gene-node mRNA levels upon siRNA treatment, cells were treated as described above and total RNA was prepared 48 hours after transfection using the same reagent. In either case, complementary DNA was synthesized in a total volume of 20 µl by mixing 500 ng of total RNA and 125 ng of random hexamers (Roche, Mannheim, Germany) in the presence of 75 mM KCl, 3 mM MgCl₂, 10 mM dithiothreitol, 20 units of RNasin (Promega, Madison, WI, USA), 0.5 mM dNTPs (AppliChem, Darmstadt, Germany), 200 units of M-MLV reverse transcriptase (Invitrogen) and 50 mM Tris-HCl buffer, pH 8.3. The reaction mixture was incubated at 37°C for 60 minutes. The cDNA product was used for subsequent real-time PCR amplification using an ABI Prism 7000 Sequence Detection System (Applied Biosystems, Foster City, CA, USA) with 25 ng of the cDNA mixture, the assays-on-demand from Applied Biosystems Hs00758822_s1 for DHFR and Hs009999901_s1 for 18S were used for real-time PCR amplification.

Preparation of total extracts for western blotting

Total extracts from cells, either sensitive or MTX-resistant, were used to assay DHFR protein levels. Cells were washed twice with ice-cold phosphate-buffered saline and scraped in 200 ml lysis buffer (50 mM Heps, 500 mM NaCl, 1.5 M MgCl₂, 1 mM EGTA, 10% glycerol (v/v), 1% Triton X-100 and protease inhibitor cocktail). Cells were incubated in ice for 1 hour with vortexing every 15 minutes and then centrifuged at 14,000 rpm at 4°C for 10 minutes. Five microliters of the extract were used to determine protein concentration by the Bradford assay (Bio-Rad, Munich, Germany). The extracts were frozen in liquid N₂ and stored at -80°C. Fifty micrograms of both sensitive and resistant cell total extracts were resolved by 15% SDS-PAGE. Transference to PVDF membranes (Immobilon P, Millipore, Bedford, MA, USA) using a semidry electroblotter was followed by incubation with an antibody against DHFR (Davids Biotechnologie, Regensburg, Germany), and detection was accomplished using secondary horseradish peroxidase-conjugated antibody and enhanced chemiluminescence, as recommended by the manufacturer (Amersham/GE Healthcare, Buckinghamshire, UK). To normalize the results, blots were re-probed with an antibody against actin (Sigma, St. Louis, MO, USA).
HT29 cells, either sensitive or MTX-resistant, were seeded into six-well plates the day before transfection at a density of 1×10^5 cells/well in Ham’s F12 medium containing 7% fetal bovine serum. Transfection was performed using FUGENE™ HD (Roche). For each well, 6 µl of TOPFLASH was mixed together with 2 µg of pBATEM2-CDH before the addition of FUGENE™ HD in serum-free medium. The total amount of DNA was kept constant at 3 µg, adding empty vector when necessary. Luciferase activity was assayed 30 hours after transfection.

In all cases, cell extracts were prepared by lysing the cells with 200 µl of freshly diluted 1x Reporter Lysis Buffer (Promega). The lysate was centrifugated at 13,000 g for 2 minutes to pellet the cell debris and the supernatants were transferred to a fresh tube. A 15-µl aliquot of the extract was added to 15 µl of the luciferase assay substrate (Promega) and the luminescence of the samples was read immediately on a GloMax 20/20 luminometer (Promega); light production (relative light units) was measured for 10 s. Each transfection was performed in triplicate. Protein concentration was determined by the Bradford assay and used to normalize the results.

Table 2

Cell line	Microarray	RT-PCR validation	Copy number	Protein
HT29	7.1	10.8 ± 0.7	16.1 ± 1.4	++
Caco-2	46.7	49.7 ± 1.1	83.4 ± 8.1	ND
MCF-7	31.1	33.2 ± 0.7	58.1 ± 0.8	++++
MDA-MB-468	1.8	3.4 ± 0.1	0.9 ± 0.1	ND
MIA PaCa-2	9.5	8.2 ± 1.1	32.2 ± 2.2	+++
K562	9.4	9.8 ± 0.2	1.9 ± 0.1	++++
Saos-2	4.1	4.1 ± 1.1	0.6 ± 0.1	+

The overexpression of DHFR was validated at the mRNA and protein levels by real-time RT-PCR and western blotting using a specific antibody, respectively. DHFR expression levels are presented both as the values found in the microarrays and as validated by RT-PCR. dhfr copy number was determined by real-time PCR. Values are the mean (in fold change relative to the sensitive cells) of three independent experiments ± SE. Protein levels were qualitatively assessed (+ to ++++) from the western blot images. ND, non-determined.

Statistical analyses

Data are presented as mean ± standard error (SE). Statistical analyses were performed using the unpaired t-test option in GraphPad InStat version 3.1a for Macintosh (GraphPad Software). P-values <0.05 were considered to be statistically significant.

Results

Genes deregulated in methotrexate-resistant cancer cell lines

In a previous study, we analyzed the differential gene expression between sensitive and MTX-resistant cells derived from the human colon cancer cell line HT29 [13]. In the present work we extend the study of gene expression profiles associated with MTX resistance by including another six MTX-resistant cell lines. Together, the studied cell lines represent colon cancer (CaCo2 and HT29), breast cancer (MCF-7 and MDA-MB-468), pancreatic cancer (MIA PaCa-2), erythroblastic leukemia (K562) and osteosarcoma (SaOs-2). Total RNA was extracted for the seven pairs of sensitive and MTX-resistant cell lines, and the expression profile of the 54,700 transcripts and variants included in the HG U133 PLUS 2.0 microarray from Affymetrix was compared between each pair using GeneSpring GX software v7.3.1. Upon normalization and statistical filtering of the data, lists of genes differentially expressed by at least twofold were built as described in Methods. These lists are presented as Additional data files 1 to 7. The data discussed in this report have been deposited in the Gene Expression Omnibus (GEO) [14] and are accessible through GEO series accession number [GSE16648].

Hierarchical clustering of genes and cell lines

We compared the gene expression patterns of all the studied cell lines together. Lists of genes displaying a false discovery rate-corrected P-value <0.05 were generated for each cell line. Then, hierarchical clustering in GeneSpring GX was used to construct a heat map displaying both a gene tree and a sample tree (Figure 1), as described in Methods. Two facts could be extracted from this representation. First, there is a high correlation between cell lines sharing the same tissue origin. The two colon cancer cell lines studied (HT29 and Caco-2) are more highly correlated in gene expression with each other than with all the other cell lines. The breast cancer cell lines studied (MCF-7 and MDA-MB-468) also showed similar gene expression, although the degree of correlation is slightly lower than that for the colon cancer cell lines. The other three cell lines studied (MIA PaCa-2, K562 and Saos-2) displayed different gene expression from the colon or the breast cancer cell lines, and thus cluster apart from them. Second, gene expression of the resistant cells is more closely correlated with that of their sensitive cell counterparts than with any other sample or cell line.

Table 2: Validation of dhfr overexpression and copy number determination in the different cell lines

Cell line	Microarray	RT-PCR validation	Copy number	Protein
HT29	7.1	10.8 ± 0.7	16.1 ± 1.4	++
Caco-2	46.7	49.7 ± 1.1	83.4 ± 8.1	ND
MCF-7	31.1	33.2 ± 0.7	58.1 ± 0.8	++++
MDA-MB-468	1.8	3.4 ± 0.1	0.9 ± 0.1	ND
MIA PaCa-2	9.5	8.2 ± 1.1	32.2 ± 2.2	+++
K562	9.4	9.8 ± 0.2	1.9 ± 0.1	++++
Saos-2	4.1	4.1 ± 1.1	0.6 ± 0.1	+

The overexpression of DHFR was validated at the mRNA and protein levels by real-time RT-PCR and western blotting using a specific antibody, respectively. DHFR expression levels are presented both as the values found in the microarrays and as validated by RT-PCR. dhfr copy number was determined by real-time PCR. Values are the mean (in fold change relative to the sensitive cells) of three independent experiments ± SE. Protein levels were qualitatively assessed (+ to ++++) from the western blot images. ND, non-determined.
Table 3

GenBank ID	Gene name	Description	Ratio HT29	Ratio Caco-2
AI144299	DHFR	Dihydrofolate reductase	7.25	46.35
BC005238	FXYD3	FXYD domain containing ion transport regulator 3	7.24	2.20
BC003584	DHFR	Dihydrofolate reductase	6.96	50.23
BC000192	DHFR	Dihydrofolate reductase	6.89	38.31
NM_002380	MATN2	Matrilin 2	6.62	4.70
BU078629	ZFYE16	Zinc finger, FYVE domain containing 16	6.06	22.73
NM_001975	ENO2	Enolase 2 (gamma, neuronal)	5.98	2.04
NM_017954	CADPS2	Ca2+-dependent activator protein for secretion 2	5.60	2.27
AI991103	AXIIR	Similar to annexin II receptor	5.14	2.03
NM_000791	DHFR	Dihydrofolate reductase	4.71	21.17
U05598	AKR1C2	Aldo-keto reductase family 1, member C2	4.63	10.15
M33376	AKR1C2	Aldo-keto reductase family 1, member C2	4.41	8.89
NM_012242	DKK1	Dickkopf homolog 1	4.25	2.56
NM_014867	KBTBD11	Kelch repeat and BTB (POZ) domain containing 11	4.22	2.14
AB037848	KIAA1427	Synaptotagmin XIII	4.13	9.56
NM_014733	ZFYE16	Zinc finger, FYVE domain containing 16	4.11	15.6
NM_001353	AKR1C1	Aldo-keto reductase family 1, member C1	3.94	8.87
NM_002439	MSH3	MutS homolog 3	3.87	4.00
S68290	AKR1C1	Aldo-keto reductase family 1, member C1	3.66	9.45
J04810	MSH3	MutS homolog 3	3.27	8.23
NM_000691	ALDH2A1	Aldehyde dehydrogenase 3 family, member A1	2.86	3.81
AI718385	SLC26A2	Solute carrier family 26 member 2	2.76	2.02
NM_003069	SMARCA1	SWI/SNF related, regulator of chromatin a1	2.60	2.49
AB029026	TACC1	Transforming, acidic coiled-coil containing protein 1	2.35	3.89
NM_006283	TACC1	Transforming, acidic coiled-coil containing protein 1	2.31	3.26
AF188298	DAB2	Disabled homolog 2	2.29	2.11
NM_020299	AKR1B10	Aldo-keto reductase family 1, member B10	2.26	22.95
BC006471	MLLT11	Myeloid/lymphoid or mixed-lineage leukemia	2.18	2.60
W93554	SH3PD2A	SH3 and PX domains 2A	2.14	3.45
NM_014778	NUPL1	Nucleoporin like 1	0.46	0.43
NM_006033	LIPG	Lipase, endothelial	0.40	0.42
NM_012338	TM4SF12	Transmembrane 4 superfamily member 12	0.39	0.38
NM_007150	ZNF185	Zinc finger protein 18 (LIM domain)	0.38	0.42
AB014605	MAGI2	Membrane associated guanylate kinase	0.38	0.30
AB033831	SCDGF	Platelet derived growth factor C	0.35	0.35
NM_021021	SNTPB1	Syntrophin, beta 1	0.35	0.23
NM_021822	APOBEC3G	Apolipoprotein B, catalytic polypeptide-like 3G	0.30	0.08
AB039791	ARP1I	Actin-related protein Arp1 I	0.29	0.46
NM_013352	SART2	Squamous cell carcinoma antigen	0.22	0.31

Continued overleaf
As DHFR is the target for MTX, and was upregulated in MTX-resistant cells, we validated its overexpression in all cell lines studied. Real-time RT-PCR was used to quantify the mRNA levels, and DHFR protein levels were determined by western blotting in both sensitive and MTX-resistant cell lines (Table 2). Copy number determination revealed dhfr amplification only in HT29, Caco-2, MCF-7 and MIA PaCa-2 resistant cells (Table 2).

Identification of genes differentially expressed in common among different cell lines resistant to MTX

Lists of genes differentially expressed by at least twofold between sensitive and resistant cell lines were generated for each cell line. Each list was split in two, one group including the overexpressed genes and the other including the underexpressed genes. Then, Venn diagrams were used to compare the lists of overexpressed and underexpressed genes between HT29 and Caco-2 cells, between MCF-7 and MIA PaCa-2 resistant cells (Table 2).

Detection of nodes upon generation of biological association networks

BANs were constructed using the Pathway Architect software as described in Methods starting with the lists of genes differentially expressed in common between both colon cancer cell lines, both breast cancer cell lines and among the pancreas cancer, leukemia and osteosarcoma cell lines (Figure 2a,b,c, respectively). In the BANs generated, DKK1 is a highly interconnected node in the colon cancer cell lines, UGT1A family members formed a network of genes differentially expressed in breast cancer, and EEF1A1 was commonly overexpressed in pancreatic cancer, leukemia and osteosarcoma. A BAN including all the genes of the three lists of differentially expressed genes was constructed (Figure 3).

Effect on MTX sensitivity of siRNAs designed against the mRNAs of node genes

Given that the node genes DKK1, UGT1As and EEF1A1 were overexpressed in cells resistant to MTX (Table 6), we investigated the effect of decreasing their mRNA levels by means of siRNAs on the sensitivity to this chemotherapeutic agent. We also performed treatments with siDHFR in order to assess the role of DHFR in MTX resistance. HT29 and MDA-MB-468 cell lines were used as models of colon and breast cancer, respectively, and MIA PaCa-2 cells were selected as the model for the other three cell lines. Previously, it was confirmed that the mRNA levels of the three genes were decreased 48 hours after siRNA treatment (Figure 4a-c). Cells were pre-incubated with individual siRNAs for 48 hours before the addition of methotrexate. The presence of 100 nM of either siKK1 or siDHFR caused increases in MTX cytotoxicity in HT29 cells of 50% and 65%, respectively.
pared to MTX alone (Figure 4d). Incubation with 100 nM of either siUGT1A or siDHFR in MDA-MB-468 cells caused increases in cytotoxicity of 36% and 50%, respectively, compared to MTX alone (Figure 4e). Treatment of MIA PaCa-2 cells with 30 nM of either siEEF1A1 or siDHFR resulted in increased cytotoxicity of 35% and 65%, respectively, compared to MTX alone (Figure 4f). The same approach was conducted in the resistant counterparts of the HT29, MDA-MB-468 and MIA PaCa-2 cell lines, but no significant changes in cytotoxicity were observed ($P > 0.05$; data not shown).

Given that the UGT1A family is involved in the metabolism of other drugs, we also performed combination treatments with siUGT1A and SN38, the active metabolite of the anticancer drug irinotecan. Transfection of the siRNA was performed as described above, and 1 nM SN38 was added 48 hours after siRNA treatment. These incubations led to a significant ($P < 0.01$) increase of 46% in SN38 sensitivity.

A non-related siRNA against the luciferase gene was used as a negative control in all experiments. Transfection of this siRNA was performed in parallel with the other siRNAs, and was used to normalize the results.

Table 4

Genes differentially expressed in common among breast cancer cell lines resistant to MTX

GenBank 468	Gene name	Description	Ratio MCF7	Ratio MDA-MB-468
NM_019093	UGT1A1/3/4/5/6/7/8/9/10	UDP glucuronosyltransferase 1, polypeptides A1/3/4/5/6/7/8/9/10	24.36	27.93
NM_000463	UGT1A1/4/6/8/9/10	UDP glucuronosyltransferase 1, polypeptides A1/4/6/8/9/10	15.31	17.66
NM_021027	UGT1A1/4/6/8/9/10	UDP glucuronosyltransferase 1, polypeptides A1/4/6/8/9/10	13.55	17.05
NM_001072	UGT1A1/3/4/5/6/7/8/9/10	UDP glucuronosyltransferase 1, polypeptides A1/3/4/5/6/7/8/9/10	13.21	16.88
AV691323	UGT1A1/4/5/6/7/8/9/10	UDP glucuronosyltransferase 1, polypeptides A1/4/5/6/7/8/9/10	13.05	16.82

Genes differentially expressed by at least twofold with a P-value <0.05 including multiple testing correction were compared between MCF7 and MDA-MB-468 cells as described in Table 3.

Table 5

Genes differentially expressed in common among colon cancer cell lines resistant to MTX

GenBank 468	Gene name	Description	Ratio MIA PaCa-2	Ratio K562	Ratio Saos-2
BC003584	DHFR	Dihydrofolate reductase	16.97	17.78	4.06
BC000192	DHFR	Dihydrofolate reductase	12.56	13.57	5.28
AI144299	DHFR	Dihydrofolate reductase	12.1	9.45	8.94
NM_000791	DHFR	Dihydrofolate reductase	9.66	6.76	5.57
BE622627	PIK3R3	Phosphoinositide-3-kinase, regulatory subunit 3	5.23	2.09	4.44
AW469790	EEF1A1	Eukaryotic translation elongation factor 1 alpha 1	2.29	2.75	2.05
NM_012446	SSBP2	Single-stranded DNA binding protein 2	2.2	5.04	2.03
AF318326	APG10L	ATG10 autophagy related 10 homolog	2.08	7.39	2.19

Genes differentially expressed by at least twofold with a P-value <0.05 including multiple testing correction were compared between MIA PaCa-2, K562 and Saos-2 cells as described in Table 3.

DKK1 is overexpressed in HT29 MTX-resistant cells due to higher activation of the Wnt pathway

As DKK1 is known to be transcriptionally regulated by the Wnt pathway, we investigated the degree of activation of this signaling pathway in MTX-resistant HT29 cells compared with their sensitive counterpart. Cells were transiently transfected with the reporter plasmid TOPFLASH, bearing three T-cell factor (TCF) binding sites. A transcriptional activation of 26-fold resulted from the transfection of TOPFLASH in the resistant cells, while no significant activation was observed upon transfection in the sensitive cells (Figure 5). Additionally, co-transfections of TOPFLASH with an expression plasmid for E-cadherin (pBATEM2-CDH) were performed in both cell lines. As shown in Figure 5, overexpression of E-cadherin in the resistant cells led to a marked decrease in TOPFLASH activity, down to basal activity. No significant changes in transcriptional activity were observed when these co-transfections were performed in the sensitive cells.
Figure 2
BANs of differentially expressed genes in common between cell lines. The lists of common genes between both colon cancer cell lines, between both breast cancer cell lines, and among the other three cell lines studied (representative of pancreatic cancer, leukemia and osteosarcoma) were used to construct BANs with the Pathway Architect software. Expanded networks were constructed for each list - (a) colon cancer, (b) breast cancer and (c) the other three cell lines - by setting an advanced filter that included the categories of binding, expression, metabolism, promoter binding, protein modification and regulation (see legend). Only proteins are represented. Overlapping of the expression levels was also performed (red for overexpressed genes and green for underexpressed genes; translucent shading represents genes that were not in the list and were added by the program from the interactions database). The BANs show some node genes that were studied further (those with arrows pointing to them).
Figure 3
BAN of all common genes. A BAN was constructed as previously described with all the genes included in any of the three lists of common genes (encircled in blue). Genes added by the program from the interaction database are not outlined. Node genes are those with arrows pointing to them.
MIA PACA-2 resistant cells display an increased resistance \[15-17\], or by an increase of described in this work, the overexpression of contribute to modulation of the resistance phenotype. As that may be direct or indirect regulators of cell proliferation, caused by any of the other known mechanisms for MTX resistance in MDA-MB-468, K562 and Saos-2 cells may be.

\(\text{dhfr} \)

number. Indeed, amplification of the 5q14 locus, including flanking genes, has been described in HT29 MTX-resistant cells [13]. On the other hand, the other cell lines studied bear no changes in \(\text{dhfr} \) copy number. Thus, drug resistance in MDA-MB-468, K562 and Saos-2 cells may be caused by any of the other known mechanisms for MTX resistance [18-22]. Additionally, one has to take into account that MTX causes the differential expression of many genes that may be direct or indirect regulators of cell proliferation, survival or apoptosis, and that this expression pattern can contribute to modulation of the resistance phenotype. As described in this work, the overexpression of DKK1, UGT1A1s or EEF1A1 could represent a mechanism, parallel to DHFR overexpression, that plays a role in MTX resistance; the possible contribution of the overexpression of each of these genes is addressed below. Other work has determined genes that correlate with the capability of parental cells to resist treatment using concentrations assessed to be clinically achievable in tumor tissue [23]. Although this approach is different to the goal of our work, to identify genes differentially expressed in cells with acquired resistance to high concentrations of MTX, we compared the results obtained by Győrfi et al. [23] with ours and found only six genes in common, namely CD99, CKMT1, DHRS2, IGFBP7, MAP7 and MYO1E.

Hierarchical clustering of all samples indicated that the MTX-resistant cells and their sensitive counterparts were highly correlated with regards to gene expression with each other. This is in accordance with reports showing that two breast tumor samples from the same patient before and after treatment with doxorubicin pair together in a hierarchical clustering [24]. Moreover, the same authors proposed that the molecular program of a primary tumor could generally be retained in its metastases. Similar results were obtained with leukemic cells from patients [25].

Interestingly, as shown in Figure 1, the gene expression patterns for the cell lines from the same tissue origin were very similar. Sets of coordinately expressed genes provide gene expression signatures that can indicate where to find targets suitable for gene therapy. Thus, we generated a list of genes differentially expressed in common between the two colon cancer cell lines. This list included, among others, genes encoding DHFR, the target for MTX, three members of the AKR family and ENO2, which we have previously studied as modulators of MTX resistance [8,13], and DKK1.

Table 6
Validation of DKK1, UGT1A and EEF1A1 overexpression in the resistant cells
Gene
DKK1
Caco-2
UGT1A
MDA-MB-468
EEF1A1
K562
Saos-2

The expression levels for the three node genes (DKK1, UGT1A and EEF1A1) derived from both the microarray data (average of the overexpressed UGT1A family members) and real-time RT-PCR are given. All the results are expressed as fold changes relative to the sensitive cells and values are the mean of triplicate experiments ± SE.

Discussion

The main objective of this work was to explore whether node genes could be identified from BANs constructed starting from genes differentially expressed in MTX-resistant cells from different human cancer cell lines, representative of five tissues. Those putative node genes may then be used as targets to increase the sensitivity toward MTX.

We started by determining and comparing the patterns of differential gene expression associated with MTX resistance in seven cell lines. The only differentially expressed gene in common among all the cell lines studied was \(\text{dhfr} \). Its overexpression, at both the mRNA and protein levels, was confirmed in the MTX-resistant cells studied. The mRNA upregulation can be explained either by gene amplification of the \(\text{dhfr} \) locus, a well recognized mechanism for MTX resistance [15-17], or by an increase of \(\text{dhfr} \) transcription rate. In accordance with this, HT29, CaCo-2, MCF-7 and MIA PACA-2 resistant cells display an increased \(\text{dhfr} \) copy number. Indeed, amplification of the 5q14 locus, including \(\text{dhfr} \) and flanking genes, has been described in HT29 MTX-resistant cells [13]. On the other hand, the other cell lines studied bear no changes in \(\text{dhfr} \) copy number. Thus, drug resistance in MDA-MB-468, K562 and Saos-2 cells may be caused by any of the other known mechanisms for MTX resistance [18-22]. Additionally, one has to take into account that MTX causes the differential expression of many genes that may be direct or indirect regulators of cell proliferation, survival or apoptosis, and that this expression pattern can contribute to modulation of the resistance phenotype. As described in this work, the overexpression of DKK1, UGT1A1s or EEF1A1 could represent a mechanism, parallel to DHFR overexpression, that plays a role in MTX resistance; the possible contribution of the overexpression of each of these

http://genomemedicine.com/content/1/9/83 Genome Medicine 2009, Volume 1, Issue 9, Article 83 Selga et al. 83.11
against DKK1 mRNA showed a chemosensitization toward MTX. In keeping with this, Katula and collaborators [37] showed that folate deficiency led to the downregulation of DKK1, and that MTX inhibited DKK1 expression. Thus, DKK1 overexpression in HT29 MTX-resistant cells could constitute a mechanism to overcome the transcriptional repression exerted by MTX.

It is worth noting that we had previously proposed the activation of the Wnt/β-catenin pathway to be an important step in MTX resistance in HT29 colon cancer cells [13]. In this cell line, E-cadherin is chromosomically lost and underexpressed, thus allowing β-catenin to play its function in gene transcription. In order to shed some light on the possible role of the Wnt pathway in the overexpression of DKK1 in HT29 resistant cells, we performed transient transfection experiments with a luciferase reporter of β-catenin-mediated transcriptional activation. These experiments showed that the Wnt pathway was more active in the HT29 resistant cells than in HT29 sensitive cells, and that re-expression of E-cadherin in the resistant cells resulted in lower β-catenin-mediated transcriptional activation, probably due to recruitment of β-catenin to the adherent junctions. Interestingly, DKK1 is transcriptionally regulated by Wnt/β-catenin signaling, Thus, constitutive activation of this signaling pathway through β-catenin, downstream of adenomatous polyposis coli, could represent a mechanism for DKK1 overexpression in HT29 MTX-resistant cells.
leads to DKK1 overexpression. HT29 cells, either sensitive or resistant, to that of pGL3 basic vector (mean ± standard error of the mean for normalize the luciferase activity for each sample and is expressed relative (relative light units (RLU)) was assayed. The protein content was used to normalize the luciferase activity for each sample and is expressed relative to that of pGL3 basic vector (mean ± standard error of the mean for triplicate wells). *P < 0.05.

Figure 5
Transcriptional activation of the Wnt pathway in MTX-resistant cells leads to DKK1 overexpression. HT29 cells, either sensitive or resistant, were transiently transfected with 1 μg of a luciferase reporter of b-catenin-mediated transcriptional activation (TOPFLASH) using Fugene™ HD in the presence or absence of 2 μg of E-cadherin expression vector (pBATEM2-CDH). Thirty hours after transfection, luciferase activity (relative light units (RLU)) was assayed. The protein content was used to normalize the luciferase activity for each sample and is expressed relative to that of pGL3 basic vector (mean ± standard error of the mean for triplicate wells). *P < 0.05.

UGT1As were the only genes differentially expressed in common between both breast cancer cell lines analyzed. UGTs comprise a family of membrane glycoproteins that come from one single gene located on chromosome 2q37, rendering nine functional UGT1A proteins by alternative splicing of 13 different first exons with the common exons 2 to 5 [38]. UGTs are involved in phase II metabolism of a wide range of metabolites, both endogenous and exogenous [39]. Glucuronidation is an important metabolic process, as it carries out the biotransformation of lipophilic substrates into hydrophilic glucuronides, which can be more easily removed from the body. Among the different products that can undergo glucuronidation, we find analogues, sex hormones, flavonoids, rifampicin, bilirubin and tobacco-specific carcinogens [40,41]. Some anticancer drugs, such as topotecan, irinotecan, SN-38 (the active metabolite of irinotecan), doxorubicin and 4-hydroxymitoxantrone, have also been described to be substrates of UGT1A activity [42-47]. Metabolism by UGT1A family members has been described to induce resistance toward daunorubicin (in both cell lines and rat hyperplastic liver nodules) [48,49], mycophenolic acid [50,51], mitoxantrone [52], SN-38 [53,54], camptothecin [55] and other drugs [56,57]. Indeed, drug inactivation by metabolism within tumor cells is recognized as an important mechanism of drug resistance, and, specifically, glucuronidation by UGT enzymes has been proposed to contribute to multidrug resistance of several chemotherapeutic drugs [56]. From our results using a siRNA against UGT1A mRNA we can point out a role for this family of genes in MTX resistance in MDA-MB-468 breast cancer cells. In fact, Hanioka et al. [58] reported that β-naphthoflavone induced UGT1A mRNA levels. This could be a feasible explanation for the UGT1A overexpression we observed in the breast cancer MTX-resistant cells used in our study.

EEF1A1 was overexpressed in common among MIA PaCa-2, K562 and Saos-2 resistant cell lines. EEF1A1 is a ubiquitously expressed protein elongation factor that recruits amino-acetylated tRNAs to the A site of the ribosome (see [59] for a review). Although it has been traditionally described as a cellular housekeeping enzyme, overexpression of EEF1A1 is found in melanomas and tumors of the pancreas, breast, lung, prostate and colon [59,60]. It has been demonstrated that EEF1A expression is related to increased cell proliferation [61,62], oncogenic transformation [63], delayed cell senescence [64] and metastasis [65]. Moreover, increased EEF1A1 expression has been related to cisplatin [66], doxorubicin [67] and MTX resistance [68], maybe due to its ability to inhibit apoptosis [69]. It has been proposed that EEF1A overexpression promotes cell growth and replication by contributing to an overall increase in protein translation. Antisense-mediated abrogation of EEF1A1 expression inhibits tumorigenesis and anchorage-independent cell replication in prostate tumor cells [70]. Our functional analyses using siRNA technology against EEF1A1 are in keeping with these results, and show a chemosensitization of MIA PaCa-2 cells, thus stating a role for EEF1A1 in MTX resistance in this cell line.

In summary, our results provide evidence that node genes can be identified by constructing BANs with lists of genes differentially expressed in common between cell lines resistant to MTX. RNA interference technology has enabled us to demonstrate a role for DKK1, UGT1As and EEF1A1 in MTX resistance.

Conclusions
BANs were constructed using genes differentially expressed in common between cells resistant to MTX from seven human cancer cell lines representative of five tissues. We have been able to identify important node genes in the BANs, namely DKK1 in colon cancer cells, UGT1As in breast cancer cells and EEF1A1 in pancreatic cancer, leukemia and osteosarcoma cells. These three genes were functionally validated using siRNAs against their respective mRNAs, which resulted in increased sensitivity to MTX.
Abbreviations

APRT = Adenine Phosphoribosyltransferase; BAN = biological association network; DHFR = dihydrofolate reductase; DKKi = Dikkopf homolog 1; EEF1A1 = eukaryotic translation elongation factor 1 alpha 1; MTT = 3-(4,5-Dimethy!l!azol-2-yl)-2,5-diphenyltetrazolium bromide; MTX = methotrexate; NLP = Natural Language Processing; SE = standard error; siRNA = small interfering RNA; TCF = T-cell factor; UGT = UDP glucuronosyl transferase.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

ES participated in microarray data analyses, BAN generation and cell treatment with siRNAs. CO carried out the determination of DHFR mRNA levels, dhyfr copy number and protein levels. SR performed the luciferase experiments. CA conceived the study, participated in microarray data analyses and in BAN generation. All authors read and approved the final manuscript.

Additional data files

The following additional data are available with the online version of this paper: a table listing of genes differentially expressed at least twofold in HT29 MTX-resistant cells (Additional data file 1); a table listing genes differentially expressed at least twofold in Caco-2 MTX-resistant cells (Additional data file 2); a table listing genes differentially expressed at least twofold in MCF-7 MTX-resistant cells (Additional data file 3); a table listing genes differentially expressed at least twofold in MDA-MD-468 MTX-resistant cells (Additional data file 4); a table listing genes differentially expressed at least twofold in MDA-MD-468 MTX-resistant cells (Additional data file 5); a table listing genes differentially expressed at least twofold in K562 MTX-resistant cells (Additional data file 6); a table listing genes differentially expressed at least twofold in Saos-2 MTX-resistant cells (Additional data file 7).

Acknowledgements

This work was supported by grants SAF05-247 and SAF08-00043 from 'Plan Nacional de I+D+i', and I3CiL-RETIC RD06/0020. Our research group holds the 'quality distinction' from the 'Generalitat de Catalunya' SGRO9-118. ES was a recipient of a fellowship from the 'Ministerio de Ciencia y Tecnología' (MCYT), CA is a recipient of a fellowship from the 'Generalitat de Catalunya', and CO is a recipient of a fellowship from 'Fundación Española del Café'. pBATEM2-CDH was a kind gift of Dr. Duñach, Universitat Autonoma de Barcelona, Spain.

References

1. Huttunenower C, Flamholz AI, Landis JN, Sahi S, Myers CL, Olszewski KL, Hibbs MA, Siemens NO, Troyanskaya OG, Celler HA: Nearest Neighbor Networks: clustering expression data based on gene neighborhoods. BMC Bioinformatics 2007, 8:250.
2. Yu X, Siewers AM, Zhang Y, Martens JW, Smid M, Klijn JG, Wang Y, Foekens JA: Pathway analysis of gene signatures predicting metastasis of node-negative primary breast cancer. BMC Cancer 2007, 7:182.
3. Kyoto Encyclopedia of Genes and Genomes [http://www.genome.jp/kegg/]
4. Doher S, Klingenhoff A, Malher H, Hrabé de Angelis M, Werner T, Schneider R: Linking disease-associated genes to regulatory networks via promoter organization. Nucleic Acids Res 2005, 33:864-872.
5. Bazarzhnik P, de la Fuente A, Mendes P: Genes networks: how to put the function in genomics. Trends Biotechnol 2002, 20:467-472.
6. Natarajan J, Berrar D, Dubitzky W, Hack C, Zhang Y, DeSessa C, Van Brocklyn JR, Bremer EG: Text mining of full-text journal articles combined with gene expression analysis reveals a relationship between sphenoidine-1-phosphate and invasiveness of a glioblastoma cell line. BMC Bioinformatics 2006, 7:273.
7. Melera PW: Versus additional intrinsic resistance to methotrexate: diversity of the drug-resistant phenotype in mammalian cells. Semin Cancer Biol 1991, 2:245-255.
8. Selga E, Noe V, Ciudad CJ: Transcriptional regulation of aldo-keto reductase 1CI in HT29 human colon cancer cells resistant to methotrexate: role in the cell cycle and apoptosis. Biochem Pharmacol 2008, 78:414-426.
9. Rocke DM, Durbin B: A model for measurement error for gene expression arrays. J Comput Biol 2001, 8:557-569.
10. Bader GD, Donaldson I, Wolting C, Ouellette BF, Pawson T, Hogue CW: MIPS - The Biomolecular Interaction Network Database. Nucleic Acids Res 2001, 29:242-245.
11. Zannoni A, Montecchi-Palazzi L, Quondam M, Ausiello G, Helmer-Citterich M, Cesareni G: MINT: a molecular INTERaction database. FEBS Lett 2002, 512:135-140.
12. Mosmann T: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983, 65:55-63.
13. Selga E, Morales C, Noe V, Peinado MA, Ciudad CJ: Role of Careolin 1, E-Cadherin, Enolase 2 and PKCalpha on resistance to methotrexate in human HT29 colon cancer cells. BMC Genomics 2008, 9:35.
14. Gene Expression Omnibus [http://www.ncbi.nlm.nih.gov/geo/]
15. Carman MD, Schorrangel JS, Rives RT, Srimatkandada S, Portlock CS, Duffy T, Bertino JR: Resistance to methotrexate due to gene amplification in a patient with acute leukemia. J Clin Oncol 1984, 2:616-20.
16. Curt GA, Cowan KH, Chabner BA: Gene amplification in drug resistance: mice of men. J Clin Oncol 1984, 2:62-64.
17. Alt FW, Kellens RE, Schmitke RT: Synthesis and degradation of folate reductase in sensitive and methotrexate-resistant lines of S-180 cells. Biochem Pharmacol 1976, 25:3063-3074.
18. Yu M, Melera PW: Allelic variation in the dihydrofolate reductase gene at amino acid position 95 contributes to antifolate resistance in Chinese hamster cells. Cancer Res 1993, 53:6031-6035.
19. Srimatkandada S, Schweitzer BI, Moroson BA, Dube S, Bertino JR: A structurally altered human reduced folate carrier with increased folic acid transport mediates a novel mechanism of antifolate resistance. J Biol Chem 1998, 273:3524-3528.
20. Jansen G, Mauritz R, Drori S, Sprecher H, Kathmann I, Bunni M, Priest DG, Noordhuizen P, Schorrangel JH, Pinedo HM, Peters GJ, Assafar YG: A structurally altered human reduced folate carrier with increased folic acid transport mediates a novel mechanism of antifolate resistance. J Biol Chem 1998, 273:30189-30198.
21. Roy K, Tolker B, Chiao JH, Sirotnak FM: A single amino acid difference within the folate carrier encoded by the murine RFC-1 gene selectively alters its interaction with folate analogues. Implications for intrinsic antifolate resistance and directional orientation of the transporter within the plasma membrane of tumor cells. J Biol Chem 1998, 273:2526-2531.
22. Zhao R, Sharma IG, Goldman LD: Pattern of mutations that results in loss of reduced folate carrier function under antifolate selective pressure augmented by chemical mutagenesis. Mol Pharmacol 1999, 56:68-76.

Genome Medicine 2009, Volume 1, Issue 9, Article 83 Selga et al. 83.14
23. Gyoryf B, Surowiaik P, Kiesslich O, Denkert C, Schafer R, Dietel M, Lage H: Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer 2006, 118:1699-1712.

24. Perou CM, van de Rijn M, Eisen MB, van't Veer LJ, Sausen M, B展 MS, Anticancer Drug Mechanisms Group: Molecular portraits of human breast tumours. Nature 2000, 406:747-752.

25. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X, Powell J, Jiang Y, L. Marti GE, Moore T, Hudson J Jr, Lu L, Lewis DB, Tibshirani R, Sherlock G, Chan WC, Greiner TC, Weisenburger DD, Armitage JO, Warnke R, Levy R, Wilson W, Grever MR, Byrd JC, Botstein D, Brown PO, et al.: Distinct types of diffuse large B-cell lymphomas identified by gene expression profiling. Nature 2000, 403:503-511.

26. Forget MA, Turcotte S, Beausoleil D, Godin-Ethier J, Pellotier S, Martin J, Tanguay S, Lapointe R: The Wnt pathway regulator DKK1 is preferentially expressed in hormone-resistant breast tumours and in some common cancer types. Br J Cancer 2007, 96:646-653.

27. Rothbacher U, Lemaire P: Cremer деле ля Крема и фенол сопряжено с экспрессией в остеосаркомах. J Cell Biochem 2002, 84:172-173.

28. Nelson WJ, Nussle R: Convergence of Wnt, beta-catenin, and cadherin pathways. Science 2004, 303:1483-1487.

29. Polakis P: Wnt signaling in health and disease. Curr Opin Cell Biol 2000, 14:1837-1851.

30. Gonzalez-Sancho J, Aguilera O, Garcia JM, Mendas-Franco N, Pena C, Cal S, Garcia de Herreros A, Bonilla F, Munoz A: The Wnt antagonist Dickkopf-1 gene is a downstream target of beta-catenin/TCF and is dysregulated in human colon cancer. Oncogene 2005, 24:1098-1103.

31. Semenov MV, Tamao K, Brotki BK, Muhl K, Sokol S, He X: Head inducer Dickkopf-1 is a ligand for Wnt co-receptor LRXP. Curr Biol 2001, 11:951-961.

32. Mao B, Wu W, Davidson G, Marhold J, Li M, Mechler BM, Delius H, Niehrs C: Dickkopf genes are cooperatively expressed in somadental lineages. Dev Cell 1999, 7:45-56.

33. Gregory CA, Singh H, Perry AS, Prockop DJ: The Wnt signaling inhibitor bone matrix protein is required for cessation of the cell cycle of human adult stem cells from bone marrow. J Biol Chem 2003, 278:28067-28078.

34. Kutala KS, Heinloth AN, Paules RS: Folate deficiency in normal human fetal liver leads to altered expression of genes primarily linked to cell signaling, the cytoskeleton and extracellular matrix. J Nutr Biochem 2007, 18:541-552.

35. Mackenzie PJ, Owens IS, Burchell B, Bock KW, Barchio A, Belanger A, Fournier-Gilegeux S, Green M, Hum DW, Iyaghi T, Lancel D, Louist P, Magdalou J, Chowdhury JR, Ritter JK, Schachter H, Tephly TR, Meijerman I, Beijnen JH, Schellens JH: Combined action and regulation of phase II enzymes and multidrug resistance proteins in multidrug resistance in cancer. Cancer Res 2000, 60:525-528.

36. Zembutsu H, Ohnishi Y, Tsunoda T, Furukawa Y, Katagiri T, Ueyama M, Murua Y: Genome-wide cDNA microarray screening to correlate genes with expression of cell cycle-related human cancer xenografts to anticancer drugs. Cancer Res 2002, 62:518-527.

37. Haniola N, Obika N, Nishimura M, Jinno H, Tanaka-Kagawa T, Saito K, Kiryu K, Saito N, Narimatsu S: Inducibility of UDP-glucuronosyltransferase IAs by benzo[a]pyrene in HepG2 cells. Food Chem Toxicol 2006, 44:1251-1260.

38. Thorton S, Anand N, Purcell D, Lee J: Not just for housekeeping: protein initiation and elongation factors in cell growth and tumorigene

39. Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D, Levine AJ: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci U S A 1999, 96:6745-6750.

40. Hassell JA, Engelhardt DL: The regulation of protein synthesis in animal cells by secretory factors. Biochemistry 1976, 15:1375-1381.

41. Grassi G, Scaggiante B, Farra D, Pasos A, Bagolino F, Baiz D, Ross O, Tiribelli C: The expression levels of the translational factors eIF1A 1/2 correlate with cell growth but not apoptosis in hepatocellular carcinoma cell lines with different differentiation grade. Biochimie 2007, 89:151-152.

42. Tatsuka M, Mitsui H, Wada M, Nagata A, Nogima H, Ohayama H: Elongation factor-1 alpha gene determines susceptibility to transformation. Nature 1992, 359:333-336.

43. Shepherd JC, Woldfard U, Hug P, Gehring WJ: Fruit flies with additional expression of the elongation factor EF-1 alpha live longer. Proc Natl Acad Sci U S A 1989, 86:7520-7521.

44. Edmonds BT, Wyckoff J, Yeung YG, Wang Y, Stanley ER, Jones J, Segall J, Condeelis J: Elongation factor-1 alpha is an overexpressed
66. Johnsson A, Zeelenberg I, Min Y, Hilinski J, Berry C, Howell SB, Los G: Identification of genes differentially expressed in association with acquired cisplatin resistance. Br J Cancer 2000, 83:1047-1054.

67. Bertram J, Pallner K, Hiddemann W, Kneba M: Overexpression of ribosomal proteins L4 and L5 and the putative alternative elongation factor PTI-I in the doxorubicin resistant human colon cancer cell line LoVoDoR. Eur J Cancer 1998, 34:731-736.

68. Beyer-Sehlmeyer G, Hiddemann W, Wormann B, Bertram J: Suppressive subtractive hybridisation reveals differential expression of seryglycin, soretin, bone marrow proteoglycan and prostate-tumour-inducing gene I (PTI-I) in drug-resistant and sensitive tumour cell lines of haematopoietic origin. Eur J Cancer 1999, 35:1735-1742.

69. Talapatra S, Wagner JD, Thompson CB: Elongation factor-I alpha is a selective regulator of growth factor withdrawal and ER stress-induced apoptosis. Cell Death Differ 2002, 9:856-861.

70. Su Z, Goldstein NI, Fisher PB: Antisense inhibition of the PTI-I oncogene reverses cancer phenotypes. Proc Natl Acad Sci U S A 1998, 95:1764-1769.