Cirafici, Michele

Quantum line defects and refined BPS spectra. (English) Zbl 1453.14132

Lett. Math. Phys. 110, No. 3, 501-531 (2020).

Summary: In this note, we study refined BPS invariants associated with certain quantum line defects in quantum field theories of class S. Such defects can be specified via geometric engineering in the UV by assigning a path on a certain curve. In the IR, they are described by framed BPS quivers. We study the associated BPS spectral problem, including the spin content. The relevant BPS invariants arise from the K-theoretic enumerative geometry of the moduli spaces of quiver representations, adapting a construction by Nekrasov and Okounkov. In particular, refined framed BPS states are described via Euler characteristics of certain complexes of sheaves.

MSC:

14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebrao-geometric aspects)
81T13 Yang-Mills and other gauge theories in quantum field theory
81T60 Supersymmetric field theories in quantum mechanics

Keywords:
supersymmetric field theory; Wilson-'t Hooft line operators; Donaldson-Thomas invariants; K-theory; quiver representation theory

Full Text: DOI arXiv

References:

[1] Alim, M.; Cecotti, S.; Cordova, C.; Espahbodi, S.; Rastogi, A.; Vafa, C., BPS quivers and spectra of complete $(N=2)$ quantum field theories, Commun. Math. Phys., 323, 1185 (2013) · Zbl 1305.81118 · doi:10.1007/s00220-013-1789-8
[2] Alim, M.; Cecotti, S.; Cordova, C.; Espahbodi, S.; Rastogi, A.; Vafa, C., $(\{\text{cal}(N) = 2\})$ quantum field theories and their BPS quivers, Adv. Theor. Math. Phys., 18, 1, 27 (2014) · Zbl 1309.81142 · doi:10.4310/ATMP.2014.v18.n1.a2
[3] Allegretti, D.G.L.: Categorified canonical bases and framed BPS states. arXiv:1806.10394 [math.RT] · Zbl 07130251
[4] Behrend, K.; Fantechi, B., Symmetric obstruction theories and Hilbert schemes of points on threefolds, Ó Algebra Number Theory, 2, 313-345 (2008) · Zbl 1170.14004 · doi:10.2140/ant.2008.2.313
[5] Benini, F.; Bonelli, G., Wilson-'t Hooft defects, monopole bubbling and supersymmetric quantum mechanics, JHEP, 1809, 014 (2018) · Zbl 1400.81160 · doi:10.1007/JHEP09(2018)014
[6] Cecotti, S., Categorical Tinkertoys for $(N=2)$ Gauge theories, Int. J. Mod. Phys. A, 28, 1330006 (2013) · Zbl 1260.81114 · doi:10.1142/S0217751X13300068
[7] Cecotti, S., Neitzke, A., Vafa, C.: R-twisting and 4d/2d correspondences. arXiv:1006.3435 [hep-th]
[8] Chiu, W.; Diaconescu, De; Manschot, J.; Moore, Gw; Soibelman, Y., Geometric engineering of (framed) BPS states, Adv. Theor. Math. Phys., 18, 5, 1063 (2014) · Zbl 1365.81092 · doi:10.4310/ATMP.2014.v18.n5.a3
[9] Cirafici, M., Instanton Counting and Wall-Crossing for Orbifold Quivers, Annales Henri Poincare, 14, 4, 1001-1041 (2012) · Zbl 1272.81113 · doi:10.1007/s00023-012-0195-7
[10] Cirafici, M., Del Zotto, M.: Discrete integrable systems, supersymmetric quantum mechanics, and framed BPS states-I. arXiv:1703.04786 [hep-th]
[11] Cirafici, M., Del Zotto, M.: Discrete integrable systems, supersymmetric quantum mechanics, and framed BPS states-II. arXiv:1703.04786 [hep-th]
[12] Cirafici, M., Del Zotto, M.: Discrete integrable systems, supersymmetric quantum mechanics, and framed BPS states-III. arXiv:1703.04786 [hep-th]
[13] Cirafici, M., Del Zotto, M., Sen, A., Commun. Math. Phys., 357, 3, 1113 (2018) · Zbl 1386.81538 · doi:10.1007/s00220-017-3041-4
[14] Drukker, N.; Morrison, D.; Okuda, T., Loop operators and S-duality from curves on Riemann surfaces, JHEP, 0909, 031 (2009) · Zbl 1305.14058 · doi:10.1088/1126-6708/2009/09/031
[18] Eager, R.; Selmani, Sa; Wächter, J., Exponential networks and representations of quivers, JHEP, 1708, 063 (2017) - Zbl 1381.81096 · doi:10.1007/JHEP08(2017)063

[19] Gaiotto, D.; Moore, Gw; Neitzke, A., Four-dimensional wall-crossing via three-dimensional field theory, Commun. Math. Phys., 299, 163 (2010) - Zbl 1225.81135 · doi:10.1007/s00220-010-1071-2

[20] Gaiotto, D., Moore, G.W., Neitzke, A.: Wall-crossing, Hitchin systems, and the WKB approximation. arXiv:0907.3987 [hep-th] - Zbl 1397.81364

[21] Gaiotto, D.; Moore, Gw; Neitzke, A., Framed BPS states, Adv. Theor. Math. Phys., 17, 2, 241 (2013) - Zbl 1290.81146 · doi:10.4310/ATMP.2013.v17.n2.a1

[22] Gaiotto, D.; Moore, Gw; Neitzke, A., Spectral networks, Annales Henri Poincare, 14, 1643 (2013) - Zbl 1288.81132 · doi:10.1007/s00023-013-0239-7

[23] Gabella, M., Longhi, P.; Park, Cy; Yamazaki, M., BPS graphs: from spectral networks to BPS quivers, JHEP, 1707, 032 (2017) - Zbl 1380.81399 · doi:10.1007/JHEP07(2017)032

[24] Gabella, M., Quantum holonomies from spectral networks and framed BPS states, Commun. Math. Phys., 351, 2, 563 (2017) - Zbl 1369.81085 · doi:10.1007/s00220-016-2729-1

[25] Galakhov, D.: BPS hall algebra of scattering hall states. arXiv:1812.05801 [hep-th] - Zbl 1430.81078

[26] Gang, D., Longhi, P., Yamazaki, M.: \(S \) duality and framed BPS states via BPS graphs. arXiv:1711.04038 [hep-th]

[27] Kontsevich, M.; Soibelman, Y.: Stability structures, motivic Donaldson-Thomas invariants and cluster transformations. arXiv:0811.2435 [math.AG] - Zbl 1248.14060

[28] Kontsevich, M.; Soibelman, Y., Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants, Commun. Number Theor. Phys., 5, 231 (2011) - Zbl 1248.14060 · doi:10.4310/CNTP.2011.v5.n2.a1

[29] Manschot, J.; Pioline, B.; Sen, A., Wall crossing from Boltzmann black hole halos, JHEP, 1107, 059 (2011) - Zbl 1298.81320 · doi:10.1007/JHEP07(2011)059

[30] Moore, Gw; Royston, Ab; Van Den Bleeken, D., Semiclassical framed BPS states, JHEP, 1607, 071 (2016) - Zbl 1390.81170 · doi:10.1007/JHEP07(2016)071

[31] Nekrasov, N.; Okounkov, A., Membranes and sheaves, Algebraic Geom., 3, 3, 329-369 (2016) - Zbl 1369.14069 · doi:10.14231/AG-2016-015

[32] Nekrasov, N.: Magnificent four. arXiv:1712.08128 [hep-th] · Zbl 07136912

[33] Nekrasov, N., Piazzalunga, N.: Magnificent four with colors. arXiv:1808.05206 [hep-th] · Zbl 07136912

[34] Okounkov, A.: Lectures on \(\mathbb{K} \)-theoretic computations in enumerative geometry. arXiv:1512.07363 [math.AG] · Zbl 1402.19001

[35] On membranes and quivers. to appear

[36] Sontsevich, N., Witten, E.: Electric-magnetic duality, monopole condensation, and confinement in \(\mathbb{N}=2 \) supersymmetric Yang-Mills theory, Nucl. Phys. B, 426, 49 (1994) - Zbl 0996.81510 · doi:10.1016/0550-3213(94)90124-4

[37] Seiberg, N., Witten, E.: Gauge dynamics and compactification to three-dimensions. arXiv:hep-th/9607163 · Zbl 1058.81177

[38] Szendrői, B., Noncommutative Donaldson-Thomas theory and the conifold, Ó Geom. Topol., 12, 1171-1202 (2008) - Zbl 1143.14034 · doi:10.2140/gt.2008.12.1171

[39] Witten, E., Quantum field theory and the Jones polynomial, Commun. Math. Phys., 121, 351 (1989) - Zbl 0667.57005 · doi:10.1007/BF01217730

[40] Witten, E., Fivebranes and knots, Quantum Topol., 3, 1-137 (2012) - Zbl 1241.57041 · doi:10.4171/QT/26

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.