In this work, we present a systematic first-principles density-functional theory based study of geometry, electronic structure, and optical properties of armchair phosphorene nanoribbons (APNRs), with the aim of understanding the influence of edge passivation. Ribbons of width ranging from 0.33 nm to 3.8 nm were considered, with their edges functionalized with the groups H, OH, F, Cl, S, and Se. The geometries of various APNRs were optimized, and the stability was checked by calculating their formation energies. Using the relaxed geometries, calculations of their band structure and optical properties were performed. Pristine APNRs, as expected, exhibit significant edge reconstruction, rendering them indirect band gap semiconductors, except for one width ($N = 5$, where N is the width parameter) for which a direct band gap is observed. The edge passivated APNRs are found to be direct band gap semiconductors, with the band gap at the Γ-point, for all the functional groups considered in this work. To obtain accurate estimates of band gaps, calculations were also performed using HSE06 hybrid functional for several APNRs. Our calculations reveal that functional groups have significant influence on the band gaps and optical properties of narrower APNRs. For wider passivated ribbons, with the increasing ribbon widths, the gaps converge to almost the same value, irrespective of the group.
I. INTRODUCTION

For the past few decades, there has been tremendous amount of interest in reduced-dimensional systems, in general, and two-dimensional (2D) materials, in particular. Not only are 2D materials interesting from the basic science point of view, they also offer easier tuning of their electronic properties, as compared to their bulk counterparts. The tailoring of their electronic properties is crucial to make them suitable for applications in electronics and optics. Phosphorene not only has a finite direct band gap, but also has high carrier mobility, and in-plane anisotropy. This 2D-material offers many potential applications not only in transport-based electronic and spintronic devices, but also in sensors, information storage, and optoelectronic devices. After the successful exfoliation of phosphorene from bulk black phosphorus, it has been a subject of extensive experimental as well as theoretical research. The band gap of phosphorene can be further tailored by manipulating the number of layers, forming heterostructures such as nanoribbons and quantum dots, as well as by chemical means such as edge passivation.

In this work, we present a systematic first-principles density functional theory (DFT) based study of the geometry, electronic structure, and optical properties of armchair-type phosphorene nanoribbons (APNRs), with the aim of understanding the influence of edge-passivation on them. Numerous theoretical studies of phosphorene and its heterostructures have been performed over last few years, therefore, it is difficult to cite all of them. However, below we review the most relevant theoretical studies of the electronic structure and related properties of APNRs, which have been studied mainly using two methodologies: (a) semi-empirical tight-binding model, and (b) first-principles DFT.

Using the tight-binding model Sisakht and coworkers studied the scaling laws in phosphorene nanoribbons (PNRs), Soleimanikahnoj and Knezevic and Forte et al. studied the effect of vertical electric field on electronic and transport properties of multilayer APNRs, while Yuan and Cheng investigated the influence of strain on the transport properties of APNRs.

Guo et al. studied the electronic structure and geometries of bare and H-passivated APNRs using a first-principles DFT based approach. Using the DFT, Tran and Yang studied the electronic structure and optical absorption of H-passivated APNRs, and also reported scaling laws for their band gaps. Carvalho and coworkers computed the formation energies of APNRs, and also examined the edge-induced gap states in them, employing DFT and analytical models. The influence of edge-passivation by chemical groups such as H, F, Cl, O, S, Se, and OH, on the electronic properties of APNRs was studied by Peng et al., using the DFT. Maity and coworkers studied edge reconstruction and Peierls transition in PNRs, using a DFT based approach. Wu et al. computed the electronic and transport properties of H-passivated APNRs using a methodology combining DFT and nonequilibrium Green's functions (NEGF.). The electronic structure and the Seebeck coefficients of H-passivated PNRs, with possible thermo-electric applications, were studied by Zhang et al. also using the first-principles DFT. Hu, Lin, and Yang studied the edge reconstruction in unpassivated PNRs, including a few thousands to ten thousand atoms in their calculations, by means of Discontinuous Galerkin DFT (DGDFT) methodology. The optical properties of relatively narrow APNRs were studied by Nourbakhsh and Asgari, by going beyond the first-principles DFT approach, by including electron-correlation and particle-hole effects within G0W0 and Bethe-Salpeter equation (BSE) methodology, including excitonic effects. Shekarforoush, Shiri and Khoemiz computed the linear and non-linear optical properties of H-passivated APNRs of moderate widths, using first-principles DFT. Kaur et al. also employed the first-principles DFT to study the electronic, structural, and mechanical properties of PNRs of several allotropes of phosphorene. Electronic structure of pristine and APNRs passivated by H, O, and OH was studied by Ding and coworkers using first-principles DFT. Possibility of using bilayer PNRs as pressure sensors was explored by Lv et al. theoretically, using the first-principles DFT. Li and coworkers also studied the electronic structure of both pristine and H-passivated PNRs of moderate widths, using the first-principles DFT.

In light of numerous previous first-principles DFT studies of APNRs as reviewed above, one may wonder as to what is new in the present work, also based upon a similar methodology. In this work, we have studied both the pristine and the passivated APNRs ranging from very narrow ribbons of width 0.32 nm to very broad ones of width 3.85 nm, using the PBE functional. The widths of nanoribbons can also be denoted using an integer parameter N (see Fig. 1(a)), in terms of which the APNRs studied in this work are in the range $3 \leq N \leq 24$. The novel aspects of this work are: (a) the maximum width of ribbons studied in this work is more than the earlier first-principles DFT based studies, such as H-passivated APNRs of maximum width 2.50 nm by Tran et al., and pristine and passivated APNRs by Peng et al., on selective widths up to 3.50 nm, (b) narrow pristine APNRs of widths $N = 3–5$ have been studied, for which no earlier work has been reported, (c) the optical absorption spectra of pristine and all edge-passivated APNRs, whereas the earlier calculations employing the same approach exist only for H-passivated ribbons, (d) the bands involved in the transitions leading to a few important peaks in the absorption spectrum have been identified, (e) for obtaining more accurate estimates of the band gaps, we also performed the band structure calculations using the HSE06 hybrid functional for ribbons of medium width, with several passivating groups, whereas earlier calculations were performed only for -H, and -OH passivated ribbons. Additionally, we also analyzed the calculated data of formation energies and concluded that: (i) the smaller ribbons are more stable than the wider APNRs, (ii) F- and OH-saturated structures are comparatively much more stable, as compared to the H-passivated ones. Furthermore, we also performed a detailed analysis of the contributions of various atoms to the the orbitals in the frontier regions of valence and conduction bands. To the best of our knowledge, none of the previous works has presented calculations on electronic and optical properties of APNRs over such a large range of width, for a variety of passivating groups.
The remaining part of this paper is organized as follows. The theoretical approach and technical details are described in the next section. We discuss and present our results in the section III. Finally, we present our conclusions in section IV.

II. THEORETICAL APPROACH AND COMPUTATIONAL DETAILS

The nanoribbons investigated in this work were taken to be periodic along the y-direction, with at least 15 Å vacuum included in the supercell along both the x- and z-directions to minimize the spurious interactions. First, geometry optimization for each ribbon was performed, followed by the calculations of quantities such as formation energies, the band gaps, the band structure, and the optical absorption spectra. The calculations were carried out by employing the first principles \textit{ab initio} comprehensive density functional theory (DFT),36 as implemented in the computer program Vienna Ab-initio Simulation Package (VASP).37,38 For the purpose, we used projector-augmented wave (PAW) pseudo-potentials39,40 and Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional41 for geometry optimization.

The kinetic energy cut-off of 500 eV was used for the plain wave basis set. For geometry optimization, a k-point grid of $1 \times 14 \times 1$ were chosen in the reciprocal space by employing Monkhorst-Pack centered at the Γ point. During geometry optimization, the convergence cutoff for the electronic energy was 10^{-5} eV, while that for Hellmann-Feynman force was set to 10^{-2} eV/Å. For subsequent total energy and density of states calculations, a tighter energy cutoff of 10^{-6} eV, along with a denser k-mesh grid of $1 \times 45 \times 1$, were employed. For band structure calculations of the optimized APNRs, 100 k-points were included for the path from Γ to Y. Both the PBE and Heyd-Scuseria-Ernzerhof (HSE06)42 hybrid functionals were employed for self-consistent electronic structure calculations.

III. RESULTS AND DISCUSSION

In this section we present and discuss the results of our calculations on the geometry, stability, electronic structure, and optical properties of APNRs, with edges passivated by different functional groups.

A. Geometry

Henceforth, we denote a given ribbon by its width N (see Fig. 1(a)), thus an APNR of width N will be denoted as N-APNR. Additionally, edge bond angles and bond lengths relevant for both passivated and pristine nanoribbons are also defined in Fig. 1. We performed geometry optimization for N-APNRs, with $3 \leq N \leq 24$, for all functional groups except OH and F, for which we performed calculations only for $N = 11$. Optimized geometries for all functional groups as well for the pristine case are presented in Table I, for $N = 11$. Using the same methodology we performed geometry optimization on phosphorene monolayer for reference, and the corresponding relaxed geometry parameters are also presented in Table I. We note that our optimized geometries both for APNRs and phosphorene monolayer are in excellent agreement with results reported by Peng et al.25 also based upon first-principles DFT.

For the pristine APNRs, the P-P bond length, l_2 has been reduced significantly as compared to the other structures in order to stabilize the dangling bonds at the edges, and, because of that, the bond angles α and θ have also increased considerably. Generally, one observes the tendency that larger the edge passivating atom/group, the longer the corresponding bond length. In the present case also the tendency holds true in that when selenium (Se) passivates the edge, l_3 is the longest as compared to its values for other edge atoms. As far as interior bond lengths and angles are concerned, they differ from their edge counterparts by small amounts.

B. Formation energy and relative stability

To quantify the energetic stability of an APNR, we define its formation energy (E_{form}) as follows

$$E_{\text{form}} = E_{\text{total}} - N_p E_p - N_e E_e,$$ \hspace{1cm} (1)

where E_{form} and E_{total}, respectively, are the formation energy and total energy of a pure or edge-passivated APNR within a supercell containing N_p phosphorus atoms, and N_e passivation atoms/groups at the edge. Furthermore, E_p is the energy per phosphorus atom of an infinite phosphorene sheet, and E_e is the energy of a edge-passivating foreign atom which we calculated as $E_e = E_{\text{e}}/2$. For the case of edge passivation by OH group, we used $E_e = (E_{\text{O}} + E_{\text{H}})/2$. Thus, the formation energy measures energetic stability of an edge-passivated APNR, with respect to an infinite phosphorene sheet. Negative value of E_{form} clearly implies that the formation of a given APNR from phosphorene sheet is energetically possible. In our calculations, $N_e = 4$ for all
Table I: The bond lengths (l_1, l_2, l_3) and the bond angles (α, θ, δ) at the edges of the APNRs are shown in the Fig.1 where the bond lengths are denoted according to their subscript 1, 2 and 3.

Structure	l_1 (Å)	l_2 (Å)	l_3 (Å)	α ($^\circ$)	θ ($^\circ$)	δ ($^\circ$)
Mono-layer	2.22	2.26	NA	95.9	104.1	NA
Pristine	2.33	2.07	NA	110.8	119.4	NA
H	2.22	2.25	1.44	95.9	103.3	93.0
OH	2.25	2.26	1.64	96.9	99.9	103.2
F	2.23	2.25	1.64	94.7	97.8	98.6
Cl	2.24	2.26	2.07	92.1	96.1	101.7
S	2.23	2.25	2.12	97.1	104.9	99.5
Se	2.23	2.24	2.28	95.3	102.9	100.0

APNRs considered in this work (see Fig. 1), while N_p depends on the width of the nanoribbon. For example, for 11-APNR, $N_p=22$. Energies of all the molecules considered as functional group are presented in the Table S1 of the supporting information. In the pristine case, the third term on the RHS of Eq. 1 is absent. In Fig. 2a, we present the plot of the width dependence of the formation energy per phosphorus (P) atom (E_{form}/N_p) for all the pristine and edge-saturated APNR structures considered in this work, while the formation energy of pristine as well as edge-passivated 11-APNRs is plotted in Fig. 2b. The following trends emerge from these figures: (a) with positive values of E_{form}, pristine APNRs are energetically unstable, however, their values of E_{form}/N_p are decreasing with the width, i.e., they are reaching the limit of infinite sheet, (b) for H-passivated ribbons, the formation energies are negative, but much smaller than those for APNRs passivated by other groups, (c) for all edge-passivated APNRs, the formation energy per P-atom is gradually increasing with the ribbon-width, and saturating for larger widths, implying that the narrower ribbons are more stable than the broader ones. For the specific case of 11-APNR (see Fig. 2b), we note that the F-passivated APNR is most stable, closely followed by the OH passivated ribbon. These results of ours are consistent with those reported by Ding et al.33

C. Band gaps

In this section we discuss the band gaps of APNRs as functions of their width, and edge-passivating groups.
Figure 2: Formation energies of APNRs calculated using the PBE functional: (a) width dependence of formation energy per P-atom for pristine and various edge-saturated cases, and (b) formation energies of 11-APNRs, for various edge saturations.

In Fig. 3, we present the band gaps of APNRs as functions of their widths, and our results are in good agreement with those reported in earlier studies. \(^{23,25}\) An examination of the figure reveals the following general trends: (a) with the increasing width, the band gaps show a decreasing trend approaching saturation around 2.5 nm, (b) for a given width, the band gap of a pristine nanoribbon is smaller than that of a passivated one, and the difference grows with the increasing width, before eventually saturating, (c) for a given width, H-passivated ribbons have the largest band gaps, while those passivated with Se have the smallest. But for the pristine ribbons a peculiar behavior is observed in that the band gaps do not exhibit a monotonic decrease with increasing width, for narrower ribbons. At first, the band-gap decreases and reaches close to the final saturation value, then suddenly increases again, eventually exhibiting a normal decreasing trend with respect to the width, and follows the regular

Table II: Band gaps (in eV) of \(N\)-APNRs \((N = 3 - 9)\), for various passivating atoms, calculated using the PBE functional.

Passivating Atom	3	4	5	6	7	8	9
H	1.97	1.53	1.30	1.19	1.10	1.05	1.02
Cl	1.66	1.28	1.29	1.22	1.09	1.04	1.04
S	1.28	1.25	1.18	1.10	1.04	1.03	1.01
Se	1.17	1.16	1.07	0.99	0.95	0.96	0.95
trend. This is mainly due to the huge distortion in the smaller structures to stabilize the dangling bonds which make changes in the symmetry of wave function of the edge states. To the best of our knowledge, so far there is no literature on on the electronic structure of pristine APNRs, with widths in the range \(N = 3 \rightarrow 5 \).

It is also instructive to compare our obtained band gaps with that of infinite phosphorene monolayer. Using the PBE functional, and the geometry parameters listed in Table I, for the monolayer phosphorene we obtained the band gap to be 0.91 eV. This compares well with our saturated values of 0.92 eV for the H-passivated APNRs, and 0.91 for the selenium passivated ribbons. However, it is significantly larger than the saturated band gap value of 0.40 eV obtained for the pristine APNRs, thereby implying that pristine APNRs, due to their distorted edges, do not correctly evolve into monolayer phosphorene, with the increasing width.

Table III: Comparison of the band gaps of pristine and edge-saturated 11-APNRs computed using PBE and HSE06 hybrid functionals

Structure	Band-gap (eV)	Band-gap type	
PBE	HSE06		
Pristine	0.49	1.05	In-direct
H	0.98	1.68	direct
OH	0.99	1.68	direct
F	0.96	1.65	direct
Cl	0.99	1.68	direct
S	0.97	1.67	direct
Se	0.92	1.64	direct

It is well-known that DFT-PBE based approaches generally underestimate the bang gaps significantly, therefore, one can wonder as to how reliable are our PBE functional based calculations, both quantitatively, and qualitatively. To verify that, we performed band gap calculations on 11-APNRs for pristine as well as various edge-passivated configurations using the HSE06 functional, and the results are presented in Table III, along with the corresponding values obtained using the PBE functional. HSE06 functional belongs to the class of hybrid functionals,\(^43,44\) whose predicted band gap values are normally fairly accurate, and compare well with the experiments.\(^45,46\) We note the following: (a) HSE06 band gap values for all the cases are significantly higher as compared to the PBE values, and (b) the trends in the band gap values ranging from pristine ribbons to the ones passivated by Se atom are similar for both the HSE06 and PBE calculations. Therefore, we conclude that although PBE functional significantly underestimates the band gaps, however it reproduces the qualitative features of the behavior of band gaps with respect to the passivation groups. Based upon these results, and the data presented in Fig. 3 and Table II, we can say with certainty that for the narrower APNRs, band gaps depend very sensitively on the nature of edge passivation; those passivated by H atoms have the largest gaps, while Se passivated ones have the smallest gaps. This information can be used to tune the electronic and optical properties of APNRs.

D. Band structure and density of states (DOS)

The computed band structures of pristine as well as passivated 11-APNR are shown in the Fig. 5. Our calculations reveal that the band gaps of pristine APNRs of all but one width are indirect, with the valence band maximum (VBM) at \(\Gamma \) point, and the conduction band minimum (CBM) between the \(\Gamma \) and \(Y \) points. The only exception to this is 5-APNR which, as shown in Fig. 4, is a semiconductor with a direct band gap of about 0.46 eV, at the \(\Gamma \) point. To the best of our knowledge, the band structure of pristine 5-APNR has not been discussed in the literature earlier, and the reasons behind its direct band gap could lie in its geometry, presented in Fig. S1 of the Supporting Information. The bond lengths \(l_1 \) and \(l_2 \) of 5-APNR are 2.30 Å and 2.29 Å, respectively, which are elongated with respect to the wider pristine structures. As far as bond angles are concerned, the calculated value of \(\alpha \) is 121.4°, which is larger as compared to wider APNRs, while the value of \(\theta \) at 110° is smaller as compared to the wider ribbons.

The passivated nanoribbons, irrespective of their width, or the nature of the passivating groups, turn out to be direct band gap semiconductors, with the VBM and CBM located at the high symmetry \(\Gamma \) point. This is obvious from the Fig. 5, which contains the band structures of 11-APNRs passivated by H, OH, F, Cl, S, and Se. These results of ours are in very good qualitative and quantitative agreement with the calculations of Peng \textit{et al.}\(^25\) and Tran \textit{et al.}\(^23\)

For the edge-passivated APNRs, we find that both the VBM and the CBM derive predominant contributions from p-type orbitals of P atoms located both on the edges, as well as the interior of the ribbons. However, for the Se-passivated APNRs, the lowest conduction band, including the CBM, is mainly composed of the p-type orbitals located on the Se atoms. As far as deeper valence band orbitals are concerned, they derive dominant contribution from the s-type orbitals of the P atoms. The
contributions of passivating atoms to two lowest conduction bands increase with the increasing atom sizes, being negligible for H-passivated ribbons, and eventually reaching maximum values for Se-passivated APNRs.

We have compared the band structure of H-passivated 11-APNR computed using the HSE06 functional, with that obtained from the PBE functional, in Fig. S4 of the Supporting Information. The HSE06 band structure calculations were initiated using the PBE wave functions, and from the figure it is obvious that the HSE bands close to the Fermi level are similar to the PBE ones, except undergoing a rigid shift resulting from the widening of the band gap. Similar trends were also observed in the HSE band structures of APNRs passivated by other groups.

The total, orbital projected, and atom projected density of states (DOS) for the case of 11-APNRs are presented in Fig. 6. For the pristine ribbon, we note that the edge P atoms contribute more to the conduction band states near the Fermi level, as compared to the interior P atoms; while for the valence bands, both the interior as well edge atoms make significant contributions.
For the passivated APNRs, we see that both the edge and the interior P atoms make significant contributions to the frontier bands. Furthermore, increasing contribution of the passivating atoms to the bands near the Fermi level, with their increasing sizes is also obvious from various DOS plots. It is also clear from these plots that the p-type orbitals contribute more than the s-type orbitals to the frontier states.

E. Optical absorption spectra

Based upon the single-particle DFT-PBE level band structure calculations, we computed the optical absorption spectra of pristine, as well as edge-saturated N-APNRs with various functional groups, for N=3–24, with the incident light polarized along the length of the ribbons. The spectrum was calculated according to the standard formalism, by computing the imaginary part of the dielectric constant matrix, as implemented in the VASP program.\(^{37,38}\)

In Fig. 7 we present the calculated optical absorption spectra of pristine and edge-passivated 11-APNRs. To the best of our knowledge, the only previous calculation of the absorption spectrum of APNRs, based upon the first-principles DFT methodology, was reported by Tran et al.\(^{23}\), for H-passivated ribbons, but only up to 2.4 eV. Here we report calculations not...
just on H-passivated APNRs, but also on pristine ribbons, and also those passivated by other groups. In Fig. S3 of Supporting Information, we also present the results of similar calculations on narrower 5-APNRs, and broader 24-APNRs.

In order to benchmark the calculated spectra, in Table IV we compare the locations of our absorption peaks, with those reported by Tran et al.23 for H-passivated ribbons. Because Tran et al.23 reported the spectra only up to 2.4 eV, therefore, for N=3 and N=5, we are able to compare only one peak each, while for N=10, comparison for three peaks is possible (see Table IV). We note that the our peak locations are about 0.1 eV blue shifted as compared to the ones reported by Tran et al.23, which is a fairly good agreement given the fact that they employed a different computer code, Quantum Espresso47, for their calculations.

Table IV: Comparing the peak positions (in eV) in optical absorption spectra of hydrogen-saturated APNRs computed by us, with those reported by Tran et al.23. Both the calculations are based on DFT-PBE formalism.

APNR	This work	Tran et al.(Ref.23)
3	2.05	1.93
5	1.37	1.25
10	1.49	1.4
	2.29	2.19

Figure 7: Single-particle optical absorption spectra of bare and edge-saturated 11-APNRs computed using DFT-PBE based formalism. The calculated band-gap is indicated by a red arrow for the pristine structure. In other cases the first peak position represents the band gap energy.

On examining the absorption spectra of 11-APNRs in Fig. 7, we see the following trends: (a) for the pristine ribbon there is no peak at the location of its band gap, consistent with the fact that it is an indirect band gap semiconductor, (b) for all the passivated ribbons, as expected, the first peak occurs at the location of the band gap, and (c) for all the APNRs, the highest intensity peak occurs at energies larger than 4 eV.

We present the locations of the first, the second, and the most intense peaks of optical absorption spectra of pristine and passivated 11-APNRs in the Table V. We also investigated the orbitals involved in the one-electron transitions leading to these peaks, and they are also presented in the same Table, in parentheses next to the peak energies. We note that for the pristine APNR, the first peak occurs at 0.69 eV, caused by the orbital transition |V → C + 1\rangle, for a nonzero momentum value, very close to the Γ point. For all the passivated APNRs, the first peak appears due to the |V → C\rangle transition, occurring at the Γ point. The second peak for the pristine ribbon is due to the transition |V → C + 2\rangle, slightly away from the Γ point. For APNRs passivated by monovalent groups, namely, H, OH, F and Cl, transition |V → C + 3\rangle gives rise to the second peak, while the same peak for the divalent passivating groups S and Se, is due to transitions |V − 1 → C + 2\rangle, and |V → C + 2\rangle, respectively. In all the cases, these optical transitions occur either at the Γ point, or fairly close to it. Finally, we examine the nature of
Table V: Locations of the first, second, and the most intense peaks, and the bands involved in the transition (in the parentheses), in the optical absorption spectra of bare and saturated 11-APNRs. Below V and C denote the highest valance band, and the lowest conduction band, respectively. Similarly $V - n$ $(C + n)$ denotes the n-th valence (conduction) band, counting away from the Fermi level.

Saturation	First peak position (eV)	Second peak position (eV)	Most intense peak position (eV)						
Pristine	0.69 $(V \rightarrow C + 1)$	1.26 $(V \rightarrow C + 2)$	4.46 $(V - 8 \rightarrow C + 9)$
H	1.03 $(V \rightarrow C)$	1.38 $(V \rightarrow C + 3)$	5.04 $(V - 10 \rightarrow C + 10)$
OH	1.03 $(V \rightarrow C)$	1.38 $(V \rightarrow C + 3)$	4.81 $(V - 10 \rightarrow C + 8)$
F	1.03 $(V \rightarrow C)$	1.28 $(V \rightarrow C + 3)$	4.82 $(V - 10 \rightarrow C + 9)$
Cl	1.03 $(V \rightarrow C)$	1.27 $(V \rightarrow C + 3)$	5.05 $(V - 11 \rightarrow C + 12)$
S	1.03 $(V \rightarrow C)$	1.27 $(V - 1 \rightarrow C + 2)$	4.35 $(V - 8 \rightarrow C + 8)$
Se	0.92 $(V \rightarrow C)$	1.14 $(V \rightarrow C + 2)$	5.16 $(V - 14 \rightarrow C + 13)$

the highest intensity peaks located at higher energies. Quite expectedly, the corresponding transitions involves bands far away from the Fermi level (see Table V), and they occur closer to the edge of the Brillouin zone, as shown for the case of H-saturated 11-APNR, in Fig. S2 of the Supporting Information.

When we compare the absorption spectra of 11-APNRs with those of 5-APNRs and 24-APNRs (see Fig. S3, Supporting Information) we note that for the pristine 5-APNR, the first absorption peak is at the band gap, because it is a direct band gap material. For the passivated nanoribbons, we note that the basic qualitative features of the absorption spectra are the same irrespective of the widths. For narrower ribbons the absorption peaks are sharper and well separated, while for broader ones they evolve into absorption bands.

IV. CONCLUSIONS

In this work, we presented results on first-principles DFT calculations on pristine and passivated N-APNRs, ranging from the very narrow ($N = 3$), to the very broad ($N = 24$). We first performed geometry optimization for each ribbon, and for those geometries computed quantities such as the formation energies, the band gaps, the band structure, and the optical absorption spectra, using the PBE functional. In addition, for a selected few ribbons, we also calculated the band gaps using the HSE06 functional, and found that it yields band gaps significantly larger than those predicted by PBE-functional based calculations. This implies that electron correlations make important contributions, highlighting their importance in the reduced dimensional systems such as APNRs.

According to formation energy calculations, the pristine APNRs were predicted to be unstable, however, the results may change once the electron-correlation effects are taken into account. Formation energies also suggest that the narrower ribbons are more favorable than the wider ones, and that F- and OH-passivated ribbons are stabler as compared to other passivated ribbons.

Our calculations predict all pristine APNRs to be indirect band gap semiconductors, except for 5-APNR which was shown to have a direct band gap. Irrespective of the passivating group, all edge-saturated APNRs were found to be direct band gap materials, with the gap located at the Γ point. With the increasing width, band gaps of the passivated nanoribbons were shown to evolve to the band gaps of infinite monolayer phosphorene. However, pristine nanoribbons saturated to much smaller band gaps with increasing widths, indicating that the dangling bonds, and the related edge reconstructions, play important roles in their electronic properties.

In this work we also presented a first-time systematic study of the dependence of optical absorption spectra on the passivating groups. We found that the first absorption peak corresponds to $V \rightarrow C$ excitation at the Γ point, corresponding to the band gaps, irrespective of the group. We also analyzed the bands involved in the higher energy transitions. As the self-energy corrections and excitonic effects were not incorporated in our calculations, detailed prediction of absorption profiles, which can be directly compared with the experiments, is not possible. It will, therefore, be interesting, in future, to perform calculations based upon GW-approximation and Bethe-Salpeter equations, to account for the influence of electron-correlation effects on the band structure and optical properties of wider APNRs.

* pritambhattacharyya01@gmail.com
† nareshkdnr@gmail.com
Chaojie Cui, Fei Xue, Wei-Jin Hu, and Lain-Jong Li. Two-dimensional materials with piezoelectric and ferroelectric functionalities. npj 2D Materials and Applications, 2(1):18, 2018.

Alexandra Carvalho, Min Wang, Xi Zhu, Aleksandr S. Rodin, Haibin Su, and Antonio H. Castro Neto. Phosphorene: from theory to applications. Nature Reviews Materials, 1(11):16061, 2016.

Meng Qiu, Wen Xi Ren, Taeho Jeong, Miae Won, Guen Young Park, David Kipkemoi Sang, Li-Ping Liu, Han Zhang, and Jong Seung Kim. Omnipotent phosphorene: a next-generation, two-dimensional nanoplatform for multidisciplinary biomedical applications. Chem. Soc. Rev., 47:5588–5601, 2018.

Munkhbayar Batmunkh, Munkhiargal Bat-Erdene, and Joseph G. Shapere. Phosphorene and phosphorene-based materials - prospects for future applications. Advanced Materials, 28(39):8586–8616, 2017.

Dechao Geng and Hui Ying Yang. Recent advances in growth of novel 2d materials: Beyond graphene and transition metal dichalcogenides. Advanced Materials, 30(45):1800865, 2018.

Meysam Akhtar, George Anderson, Rong Zhao, Adel Alruqi, Joanna E. Mroczkowska, Gamini Sumanasekera, and Jacek B. Jasinski. Recent advances in synthesis, properties, and applications of phosphorene. npj 2D Materials and Applications, 1(1):5, 2017.

Likai Li, Yijun Yu, Guo Jun Ye, Qingqin Ge, Xuedong Ou, Hua Wu, Donglai Feng, Xian Hui Chen, and Yuanbo Zhang. Black phosphorus field-effect transistors. Nature Nanotechnology, 9:372 EP --, Mar 2014. Article.

Han Liu, Adam T. Neal, Zhen Zhu, Zhe Luo, Xianfan Xu, David Tománek, and Peide D. Ye. Phosphorene: An unexplored 2d semiconductor with a high hole mobility. ACS Nano, 8(4):4033–4041, 2014. PMID: 24655084.

Adam H. Woomer, Tyler W. Farnsworth, Jun Hu, Rebekah A. Wells, Carrie L. Donley, and Scott C. Warren. Phosphorene: Synthesis, scale-up, and quantitative optical spectroscopy. ACS Nano, 9(9):8869–8884, 2015. PMID: 26256770.

Jack R. Brent, Nicky Savjani, Edward A. Lewis, Sarah J. Haigh, David J. Lewis, and Paul O’Brien. Production of few-layer phosphorene by liquid exfoliation of black phosphorus. Chem. Commun., 50:13338–13341, 2014.

Guo Zhinan, Zhang Han, Lu Shunbin, Wang Zhiteng, Tang Siying, Shao Jundong, Sun Zhengbo, Xie Hanhan, Wang Huaiyu, Yu Xue-Feng, and Chu Paul K. From black phosphorus to phosphorene: Basic solvent exfoliation, evolution of raman scattering, and applications to ultrafast photons. Advanced Functional Materials, 25(45):6996–7002.

Ambrosi Adriano, Sofer Zdenek, and Pumera Martin. Electrochemical exfoliation of layered black phosphorus into phosphorene. Angewandte Chemie International Edition, 56(35):10434–10445.

Likai Li, Yijun Yu, Guo Jun Ye, Qingqin Ge, Xuedong Ou, Hua Wu, Donglai Feng, Xian Hui Chen, and Yuanbo Zhang. Black phosphorus field-effect transistors. Nature Nanotechnology, 9:372, 2014.

Steven P. Koenig, Rostislav A. Doganov, Henririk Schmidt, A. H. Castro Neto, and Barbaros Ozyilmaz. Electric field effect in ultrathin black phosphorus. Applied Physics Letters, 104(10):103106, 2014.

Jun Dai and Xiao Cheng Zeng. Bilayer phosphorene: Effect of stacking order on bandgap and its potential applications in thin-film solar cells. The Journal of Physical Chemistry Letters, 5(7):1289–1293, 2014. PMID: 26274486.

Weinan Zhu, Maruthi N. Yogeesh, Shixuan Yang, Sandra H. Aldave, Joon-Seok Kim, Sushant Sonde, Li Tao, Nanshu Lu, and Deji Akinwande. Flexible black phosphorus ambipolar transistors, circuits and am demodulator. Nano Letters, 15(3):1883–1890, 2015. PMID: 25715122.

Weinan Zhu, Saungeun Park, Maruthi N. Yogeesh, Kyle M. McNicholas, Seth R. Bank, and Deji Akinwande. Black phosphorus flexible thin film transistors at gigahertz frequencies. Nano Letters, 16(4):2301–2306, 2016. PMID: 26977902.

Esmaeil Taghizadeh Sisakht, Mohammad H. Zare, and Farhad Fazileh. Scaling laws of band gaps of phosphorene nanoribbons: A tight-binding calculation. Phys. Rev. B, 91:085409, Feb 2015.

S. Soleimanikhalojan and I. Knezevic. Tunable electronic properties of multilayer phosphorene and its nanoribbons. Journal of Computational Electronics, 16(3):568–575, Sep 2017.

J. D. S. Forte, D. J. P. de Sousa, and J. Milton Pereira Jr. Dirac spectrum in gated multilayer black phosphorus nanoribbons. 2018.

Yawen Yuan and Fang Cheng. Strain modification on electronic transport of the phosphorene nanoribbon. AIP Advances, 7(9):075310, 2017.

Hongyan Guo, Ning Lu, Jun Dai, Xiaojun Wu, and Xiao Cheng Zeng. Phosphorene nanoribbons, phosphorus nanotubes, and van der waals multilayers. The Journal of Physical Chemistry C, 118(25):14051–14059, 2014.

Vy Tran and Li Yang. Scaling laws for the band gap and optical response of phosphorene nanoribbons. Phys. Rev. B, 89:245407, Jun 2014.

A. Carvalho, A. S. Rodin, and A. H. Castro Neto. Phosphorene nanoribbons. EPL (Europhysics Letters), 108(4):47005, 2014.

Xihong Peng, Andrew Copple, and Qun Wei. Edge effects on the electronic properties of phosphorene nanoribbons. Journal of Applied Physics, 116(14):144301, 2014.

Ajanta Maity, Akansha Singh, and Prasenjit Sen. Peierls transition and edge reconstruction in phosphorene nanoribbons, 2014.

Qingyun Wu, Lei Shen, Ming Yang, Yongqing Cai, Zhigao Huang, and Yuan Ping Feng. Electronic and transport properties of phosphorene nanoribbons. Phys. Rev. B, 92:035436, Jul 2015.

J. Zhang, H. J. Liu, L. Cheng, J. Wei, J. H. Liang, D. D. Fan, J. Shi, X. F. Tang, and Q. J. Zhang. Phosphorene nanoribbon as a promising candidate for thermoelectric applications. Scientific Reports, 4:6452, Sep 2014. Article.

Wei Hu, Lin Lin, and Chao Yang. Edge reconstruction in armchair phosphorene nanoribbons revealed by discontinuous galarkin density functional theory. Phys. Chem. Chem. Phys., 17:31397–31404, 2015.

Zahra Nourbakhsh and Reza Asgari. Excitons and optical spectra of phosphorene nanoribbons. Phys. Rev. B, 94:035437, Jul 2016.

Simar Shekarforoush, Daryoush Shiri, and Farhad Khoeini. Enhanced nonlinear optical susceptibilities in phosphorene nanoribbons: Ab initio study. Journal of Applied Physics, 123(24):245113, 2018.

Sumandeep Kaur, Ashok Kumar, Sunita Srivastava, Ravindra Pandey, and K Tankeshwar. Stability and carrier transport properties of phosphorene-based polymeric nanoribbons. Nanotechnology, 29(15):155701, 2018.
Bangfu Ding, Wei Chen, Zilong Tang, and Junying Zhang. Tuning phosphorene nanoribbon electronic structure through edge oxidization. *The Journal of Physical Chemistry C*, 120(4):2149–2158, 2016.

Y. Lv, Q. Huang, S. Chang, H. Wang, and J. He. Highly sensitive bilayer phosphorene nanoribbon pressure sensor based on the energy gap modulation mechanism: A theoretical study. *IEEE Electron Device Letters*, 38(9):1313–1316, Sept 2017.

Weifeng Li, Gang Zhang, and Yong-Wei Zhang. Electronic properties of edge-hydrogenated phosphorene nanoribbons: A first-principles study. *The Journal of Physical Chemistry C*, 118(38):22368–22372, 2014.

W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects. *Phys. Rev.*, 140:A1133–A1138, Nov 1965.

G. Kresse and J. Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. *Phys. Rev. B*, 54:11169–11186, Oct 1996.

G. Kresse and J. Furthmüller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. *Computational Materials Science*, 6(1):15 – 50, 1996.

P. E. Blöchl. Projector augmented-wave method. *Phys. Rev. B*, 50:17953–17979, Dec 1994.

G. Kresse and D. Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. *Phys. Rev. B*, 59:1758–1775, Jan 1999.

John P. Perdew, Kieron Burke, and Matthias Ernzerhof. Generalized gradient approximation made simple. *Phys. Rev. Lett.*, 77:3865–3868, Oct 1996.

Jochen Heyd, Gustavo E. Scuseria, and Matthias Ernzerhof. Hybrid functionals based on a screened coulomb potential. *The Journal of Chemical Physics*, 118(18):8207–8215, 2003.

Jochen Heyd, Gustavo E. Scuseria, and Matthias Ernzerhof. Hybrid functionals based on a screened coulomb potential. *The Journal of Chemical Physics*, 118(18):8207–8215, 2003.

Laurids Schimka, Judith Harl, and Georg Kresse. Improved hybrid functional for solids: The lsesol functional. *The Journal of Chemical Physics*, 134(2):024116, 2011.

R R Pela, M Marques, and L K Teles. Comparing LDA-1/2, HSE03, HSE06 andG0w0approaches for band gap calculations of alloys. *Journal of Physics: Condensed Matter*, 27(50):505502, nov 2015.

Alejandro J. Garza and Gustavo E. Scuseria. Predicting band gaps with hybrid density functionals. *The Journal of Physical Chemistry Letters*, 7(20):4165–4170, 2016.

Paolo Giannozzi, Stefano Baroni, Nicola Bonini, Matteo Calandra, Roberto Car, Carlo Cavazzoni, Davide Ceresoli, Guido L Chiarotti, Matteo Cococcioni, Ismaila Dabo, Andrea Dal Corso, Stefano de Gironcoli, Stefano Fabris, Guido Fratesi, Ralph Gebauer, Uwe Gerstmann, Christos Gougoussis, Anton Kokalj, Michele Lazzeri, Layla Martin-Samos, Nicola Marzari, Francesco Mauri, Riccardo Mazzarello, Stefano Paolini, Alfredo Pasquarello, Lorenzo Paulatto, Carlo Sbraccia, Sandro Scandolo, Gabriele Sclauzero, Ari P Seitsonen, Alexander Smogunov, Paolo Umari, and Renata M Wentzcovitch. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. *Journal of Physics: Condensed Matter*, 21(39):395502, sep 2009.
Supporting Information for
Influence of Edge Functionalization on Electronic and Optical Properties of Armchair Phosphorene Nanoribbons: a First-Principles Study

Pritam Bhattacharyya,¹,* Rupesh Chaudhari,¹ Naresh Alaal,¹,† Tushar Rana,² and Alok Shukla¹,‡

¹Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
²Department of Physics and Nanotechnology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur - 603203 (Tamil Nadu), India

*Corresponding author.
†Present address: Department of Physics, Manipal University Jaipur, Jaipur 303000, India.
‡Present address: Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India.

arXiv:1910.06863v1 [cond-mat.mes-hall] 15 Oct 2019
Table S1: Total energies of the molecules computed using the PBE functional used for computing the formation energies of passivated APNRs

Molecule	Energy (eV)
H_2	-6.7009
O_2	-9.8611
F_2	-3.5524
Cl_2	-3.5559
S_2	-6.5951
Se_2	-5.4183

Figure S1: Optimized geometry of pristine 5-APNR

Figure S2: The arrow indicates the k value, as well as the involved bands, corresponding to the direct transition responsible for the most intense peak in the optical absorption spectrum of H-saturated 11-APNR. The involved valence and conduction bands are in blue and red colors, respectively.
Figure S3: Optical absorption spectra of bare and saturated 5- and 24-APNR computed using the DFT-PBE methodology. In the pristine case of 5-APNR, the first peak of the optical spectrum is due to the transition at the band edge.

Figure S4: Comparison of band structures of hydrogen(H)-saturated 11-APNR, computed using the PBE and HSE06 hybrid functionals.