Isospin breaking decay $\eta(1405) \to f_0(980)\pi^0 \to 3\pi$

N. N. Achasov1, A. A. Kozhevnikov1,2, and G. N. Shestakov1

1 Laboratory of Theoretical Physics, S. L. Sobolev Institute for Mathematics, 630090, Novosibirsk, Russia, 2 Novosibirsk State University, 630090, Novosibirsk, Russia

(Dated: April 14, 2015)

There are attempts in the literature to theoretically explain the large breaking of isotopic invariance in the decay $\eta(1405) \to f_0(980)\pi^0 \to 3\pi$ by the mechanism containing the logarithmic (triangle) singularity, i.e., as being due to the transition $\eta(1405) \to (K^+\bar{K}^0 + K^0\bar{K}^+) \to (K^+\bar{K}^0 + K^0\bar{K}^+)\pi^0 \to f_0(980)\pi^0 \to 3\pi$. The corresponding calculations were fulfilled for a hypothetic case of the stable K^* meson. Here, we show that the account of the finite width of the K^* ($\Gamma_{K^*\to K\pi} \approx 50$ MeV) smoothes the logarithmic singularities in the amplitude and results in the suppression of the calculated decay width $\eta(1405) \to f_0(980)\pi^0 \to 3\pi$ by the factor of 6 - 8 as compared with the case of $\Gamma_{K^*\to K\pi} = 0$. We also analyze the difficulties related with the assumption of the dominance of the $\eta(1405) \to (K^+\bar{K}^0 + K^0\bar{K}^+)\pi^0 \to f_0(980)\pi^0 \to 3\pi$ decay mechanism and discuss the possible dynamics of the decay $\eta(1405) \to \pi\pi\pi$. The decisive improvement of the experimental data on the $KK\pi\eta$, $KK\pi\eta\pi$, and $\pi\pi$ mass spectra in the decay of the resonance structure $\eta(1405/1475)$ to $KK\pi$ and $\eta\pi\pi$, and on the shape of the resonance peaks themselves in the $KK\pi$ and $\eta\pi\pi$ decay channels are necessary for the further establishing the $\eta(1405) \to 3\pi$ decay mechanism.

I. INTRODUCTION

In seventies, a threshold phenomenon known as the mixing of $a_0^0(980)$ and $f_0(980)$ resonances which breaks the isotopic invariance, was theoretically discovered in Ref. [1], see also Ref. [2]. Recently, the interest in the $a_0^0(980) - f_0(980)$ mixing has been renewed. New proposals for searching it [3–22] have appeared, and the results of the first experiments reporting its discovery with the help of detectors VES [23, 24] and BESIII [23, 25] have been presented. The VES Collaboration was observed for the first time the isospin breaking decay $f_1(1285) \to \pi^+\pi^-\pi^0$ [23, 24], the suggestion for searching it was proposed in Ref. [1, 2]. The BESIII Collaboration has obtained the indications on manifestation of the $a_0^0(980) - f_0(980)$ mixing in the decays $J/\psi \to \phi f_0(980) \to \phi a_0(980) \to \phi\pi\pi$ and $\chi_{c1} \to a_0(980)\pi^0 \to f_0(980)\pi^0 \to \pi^+\pi^-\pi^0$ [25], suggested for studies in Ref. [21, 22]. In a one more experiment, the BESIII Collaboration has measured the decays $J/\psi \to \gamma\pi^+\pi^-\pi^0$ and $J/\psi \to \gamma\pi^0\pi^0\pi^0$ and observed the resonance structure in the three pion mass spectra in vicinity of 1.4 GeV with the width about 50 MeV [26]. At the same time, the corresponding $\pi^+\pi^-\pi^0\pi^0\pi^0$ mass spectra in the vicinity 990 MeV (i.e. in the K^+K^- and $K^0\bar{K}^0$ threshold domain) possess the narrow structure with the width about 10 MeV [26]. So, in this experiment, the isospin breaking decay $J/\psi \to \gamma\eta(1405) \to \gamma f_0(980)\pi^0\pi^0$ followed by the transition $f_0(980)\pi^0\pi^0 \to \pi^+\pi^-\pi^0\pi^0$ was observed for the first time [26] with the statistical significance exceeding 10σ. In the same experiment, the decay $f_1(1285)/\eta(1295) \to \pi^+\pi^-\pi^0$ [26] was also observed with the branching ratio by the factor of two lower than that reported by VES [24].

The narrow resonance-like structure observed in the $\pi^+\pi^-$ and $\pi^0\pi^0$ mass spectra in the decays $\eta(1405) \to \pi^+\pi^-\pi^0$, $\pi^0\pi^0\pi^0\pi^0$ in the K^+K^- and $K^0\bar{K}^0$ threshold domain looks like the structure expected to originate from the isospin breaking $a_0^0(980) - f_0(980)$ mixing [1], i.e., due to the transition $a_0^0(980) \to (K^+K^- + K^0\bar{K}^0) \to f_0(980)\pi^0 \to 3\pi$ caused by the mass difference of the K^+K^- and $K^0\bar{K}^0$ intermediate states. It should be reminded that the corresponding S wave amplitude responsible for the breaking of isotopic invariance, in the region between $KK\pi$ thresholds (the width of this region is about 8 MeV), turns out to be of the order of $\sqrt{(m_{K^0} - m_{K^+})/m_{K^0}}$ [27], but not $(m_{K^0} - m_{K^+})/m_{K^0}$, i.e. by the order of magnitude greater than it could be expected from the naive considerations. It is natural to expect the relative magnitude of the isospin violation to be suppressed outside the $KK\pi$ threshold region, i.e. at the level of $(m_{K^0} - m_{K^+})/m_{K^0}$. To the first approximation, one can neglect such and the similar not really calculable contributions.

The mechanism of the breaking of isotopic invariance in the decay $\eta(1405) \to f_0(980)\pi^0 \to 3\pi$ is similar to the mechanism of the $a_0^0(980) - f_0(980)$ mixing in that it is caused by the transition $\eta(1405) \to (K^+K^- + K^0\bar{K}^0)\pi^0 \to f_0(980)\pi^0 \to 3\pi$. Its amplitude does not vanish due to the non-vanishing mass difference of K^+ and K^0 mesons, and turns out to be appreciable in the narrow region between the K^+K^- and $K^0\bar{K}^0$ thresholds.

The aim of the present work is the elucidation of the possible mechanism of the decay $\eta(1405) \to f_0(980)\pi^0 \to \pi^+\pi^-\pi^0$. There are attempts in the literature to theoretically explain this decay as being due to the mechanism which includes the logarithmic (triangle) singularities [25–30], i.e., due to the transition $\eta(1405) \to (K^*K + K^*\bar{K}) \to KK\pi^0 \to f_0(980)\pi^0 \to \pi^+\pi^-\pi^0$. We pay attention to the fact that in the cited works the vector $K^*(892)$ meson in the intermediate state was considered to be stable, and show that the account of the
finite width of K^*, $\Gamma_{K^*} \approx \Gamma_{K^* \to K\pi} \approx 50 \text{ MeV}$, smooths the logarithmic singularities in the amplitude resulting in the suppression of the calculated width of the decay $\eta(1405) \to f_0(980)\pi^0 \to 3\pi$ by the factor of $6-8$ in comparison with the case of $\Gamma_{K^*} = 0$. We also analyze the difficulties related to the assumption of the dominance of $\eta(1405)$ and discuss the possible dynamics of the decay $\eta(1405) \to \eta\pi\pi$. The decisive improvement of the experimental data on $\eta(1405)$ is expected to be at the level of $(1\pm 5\%)$.

The isospin violation in the decay $\eta(1405)$ is induced (see Fig. 2). However, this information is rather scarce. The matters are further complicated by the fact that the data from $\eta(1405)$ to $\eta(1405)$ and $\eta\pi\pi\eta$ refers to some mixture of the overlapping states $\eta(1405)$ and $\eta(1475)$ in current literature]. In the meantime, there is no single established opinion concerning the reality of two pseudoscalars and the dynamics of the decays $\eta(1405) \to \eta K\pi$ and $\eta\pi\pi$.

FIG. 1. The diagram of the decay $\eta \to (K^*\bar{K} + \bar{K}^*K) \to K\bar{K}\pi$.

$BR(J/\psi \to \gamma\eta(1405) \to \gamma f_0(980)\pi^0 \to \gamma\pi^+\pi^-\pi^0) = (1.50 \pm 0.11 \pm 0.11) \cdot 10^{-5}$. (1)

Comparing the above with the result of Particle Data Group (PDG) $[31]$, $BR(J/\psi \to \gamma\eta(1405/1475) \to \gamma K\bar{K}\pi) = (2.8 \pm 0.6) \cdot 10^{-3}$, (2)

one gets $\frac{BR(J/\psi \to \gamma\eta(1405) \to \gamma f_0(980)\pi^0 \to \gamma\pi^+\pi^-\pi^0)}{BR(J/\psi \to \gamma\eta(1405/1475) \to \gamma K\bar{K}\pi)} = (0.53 \pm 0.13)\%$. (3)

The magnitude of this branching ratio tells about very large breaking of the isospin invariance in the decay $\eta(1405) \to f_0(980)\pi^0$. Guided by naive considerations, this ratio is expected to be at the level of $\frac{1}{(m_{K^*} - m_{K\pi})/m_{K^*}} \approx 10^{-3}$. Notice that in Eq. (3) the magnitude of the forbidden by isospin invariance decay $\eta(1405) \to f_0(980)\pi^0$ is compared to the magnitude of the main allowed decay $\eta(1405/1475) \to K\bar{K}\pi$.

To illustrate the observed breaking of isospin invariance, the BESIII Collaboration [26] gives the ratio $\frac{BR(\eta(1405) \to f_0(980)\pi^0 \to \pi^+\pi^-\pi^0)}{BR(\eta(1405) \to f_0(980)\pi^0 \to \eta\pi\pi\pi^0)} = (17.9 \pm 4.2)\%$. (4)

However, it is large in comparison with Eq. (4) due to only the fact that the isospin-allowed transition $\eta(1405/1475) \to a_0(980)\pi^0 \to \eta\pi\pi\pi^0$ is small. Really, using the PDG branching ratio $J/\psi \to \gamma\eta(1405/1475) \to \gamma\eta\pi^+\pi^-$ [32] and the largest PDG value of $\Gamma(\eta(1405) \to \eta\pi\pi\eta$ $\approx \eta\pi\pi\eta$) $[33]$, the BESIII Collaboration [26] estimated $BR(J/\psi \to \gamma\eta(1405) \to \gamma a_0(980)\pi^0 \to \eta\pi\pi\pi^0) = (8.40 \pm 1.75) \cdot 10^{-5}$. So, the ratio Eq. (4) is an unreliable characteristic of the isospin violation.

In what follows we will use the notation $\epsilon \equiv \eta(1405)$ for brevity. Since the decay $\epsilon \to f_0(980)\pi^0$ is measured in the radiative decay of J/ψ meson, then, when analyzing the situation, it is natural to base the treatment on the information about the decays $J/\psi \to \epsilon \to \gamma K\bar{K}\pi$, $\gamma\eta\pi\pi\pi^0$. However, this information is rather scarce. The matters are further complicated by the fact that the data from $\epsilon \to \epsilon$ refer to the decays $J/\psi \to \gamma\eta(1405/1475) \to \gamma K\bar{K}\pi$, $\gamma\eta\pi\pi\pi^0$ in which the resonance structure $\eta(1405/1475)$ may correspond to some mixture of the overlapping states $\eta(1405)$ and $\eta(1475)$ [it is called sometimes as $\eta(1440)$ in current literature]. In the meantime, there is no single established opinion concerning the reality of two pseudoscalars and the dynamics of the decays $\eta(1405/1475) \to K\bar{K}\pi$ and $\eta\pi\pi$ [28, 31, 34–36].

III. THE DECAY $\epsilon \to (K^*\bar{K} + \bar{K}^*K) \to K\bar{K}\pi$ $f_0(980)\pi^0 \to \pi^+\pi^-\pi^0$.

If the ϵ decays to $(K^*\bar{K} + \bar{K}^*K) \to K\bar{K}\pi$ (see Fig. 1), then, due to the final state interaction among K and K mesons, i.e., due to the transitions $K^*K^* \to f_0(980) \to \pi^+\pi^-$ and $K^0K^0 \to f_0(980) \to \pi^+\pi^-$, the isospin breaking decay $\epsilon \to (K^*\bar{K} + \bar{K}^*K) \to (K^*\bar{K} + \bar{K}^*K)\pi^0 \to f_0(980)\pi^0 \to \pi^+\pi^-\pi^0$ is induced (see Fig. 2). It should be mentioned that here we consider the effect of the isospin violation in the decay $\epsilon \to \pi^+\pi^-\pi^0$ as being due to solely the mass difference of the stable charged and neutral K mesons. The contributions from the production of the K^+K^- and $K^0\bar{K}^0$ pairs are not compensated completely. The smallest compensation among them should naturally take place at the invariant mass of the $\pi^+\pi^-$ system, $\sqrt{s_{\pi^+\pi^-}}$, in the region between the K^+K^- and $K^0\bar{K}^0$ thresholds. However, there is some complexity in the present case. The fact is that just in the region of the ϵ resonance all intermediate particles in the loop of triangle diagram in Fig. 2 at the definite values of the kinematic variables $\sqrt{s_{\pi^+\pi^-}}$ and $\sqrt{s_{\pi^+\pi^-}}$ can lie on their mass shells. This means that in the hypothetic case of the stable K^* meson the logarithmic singularity appears.
FIG. 2. The diagram of the decay $\ell \to f_0(980)^0 \to \pi^+\pi^-\pi^0$ via the $K^*K + K^*K$ intermediate states; p_1, p_2, p_3 stand for the 4-momenta of particles participating in the reaction, $p_1^2 = s_1$ being the invariant mass squared of the ℓ resonance or of the final $\pi^+\pi^-\pi^0$ system, $p_2^2 = s_2 = m_{\pi^+\pi^-}^2$ is the invariant mass squared of the $f_0(980)$ or of the final $\pi^+\pi^-\pi^0$ system, $p_3^2 = m_{\pi^0}^2$.

FIG. 3. Solid curves on the plane $(\sqrt{s_2}, \sqrt{s_1})$ show the location of the logarithmic singularity of the imaginary part of the triangle diagram shown in Fig. 2 in case of the $K^{*+}K^-$ and $K^{*0}K^0$ intermediate states. The dashed vertical lines show the K^+K^- and $K^0\bar{K}^0$ thresholds in the variable $\sqrt{s_2}$ (i.e. its values equal to $2m_{K^+} = 0.987354$ GeV and $2m_{K^0} = 0.995344$ GeV). The dashed horizontal lines correspond to the values of the variable $\sqrt{s_1}$ equal to 1.404 GeV, 1.440 GeV, and 1.497 GeV. At 1.404 GeV < $\sqrt{s_1}$ < 1.497 GeV the logarithmic singularity, in case of the $K^{*+}K^-$ intermediate state, is located at the values of $\sqrt{s_2}$ between the K^+K^- and $K^0\bar{K}^0$ thresholds, while in case of the $K^{*0}K^0$ intermediate state it does not go away from the $K^0\bar{K}^0$ threshold farther than by 6 MeV. At approximately $\sqrt{s_1} = 1.440$ GeV, the singularities reach the KK thresholds.

in the imaginary part of the triangle diagram [47, 49]. Figure 3 shows the location of the logarithmic singularities for the contributions of the $K^{*+}K^-$ and $K^{*0}K^0$ intermediate states. As is seen, in the ℓ resonance region they are located very close to the KK thresholds. For example, at $\sqrt{s_1} = 1.420$ GeV, the singularities from the $K^{*+}K^-$ and $K^{*0}K^0$ intermediate state contributions in the $\pi^+\pi^-$ mass spectrum take place at $\sqrt{s_2} = 0.989$ GeV and 0.998 GeV, respectively (see Fig. 3). Since the located at different positions singularities from the charged and neutral intermediate states do not compensate each other, then the considered mechanism may seem to result in a catastrophic violation of isotopic symmetry in the decay $\ell \to \pi^+\pi^-\pi^0$. However, the accounting of the finite width of the K^* resonance, i.e., the averaging of the amplitude over the resonance Breit–Wigner distribution in accord with the spectral Källén–Lehmann representation for the propagator of the unstable K^* meson [47, 49], smoothes the logarithmic singularities of the amplitude and hence makes the compensation of the contributions of the $K^{*+}K^- + K^{*0}K^0 + K^{*0}K^0$ intermediate states more strong [30]. This results in both the diminishing of the calculated width of the decay $\ell \to \pi^+\pi^-\pi^0$ by a number of times in comparison with the case of $\Gamma_{KK\pi\pi} = 0$, and in the concentration of the main effect of the isospin breaking in the domain of the $\pi^+\pi^-$ invariant mass between the KK thresholds. Figures 4 and 5 show the influence of the allowing for the instability of K^* on the energy dependent width $\Gamma_{KK\pi\pi}(s_1)$ and on the mass spectra of the $\pi^+\pi^-$ system, $d\Gamma_{KK\pi\pi}(s_1, s_2)/d\sqrt{s_2}$, $\sqrt{s_2} = m_{\pi^+\pi^-}$. Figure 4 shows that in the region 1.400 GeV < $\sqrt{s_1}$ < 1.425 GeV the calculated width of the decay $\ell \to \pi^+\pi^-\pi^0$ is lowered by the factor of 6 – 8. The $\pi^+\pi^-$ mass spectra, see Fig. 5 are distorted strongly. Notice that the nonzero experimental resolution in the $\pi^+\pi^-$ mass (in the BESIII experiment [29], it was about 2 MeV) would smooth the peaks in the domain of singularity in Fig. 5 (a) and (c), but the area under the curves would remain practically
and its order of magnitude is controlled by the factor
aged over the region 1.400 GeV

mass spectra in (a), (b), (c), and (d).

The illustration of the influence of instability of the intermediate \(K^\ast \) meson on the \(\pi^+\pi^- \) mass spectra in the decay \(\iota \rightarrow (K^*K + \bar{K}^*K) \rightarrow KK\pi^0 \rightarrow f_0(980)\pi^0 \rightarrow \pi^+\pi^-\pi^0 \) and \(\iota \rightarrow (K^*\bar{K} + \bar{K}^*K) \rightarrow K\bar{K}\pi \) decay widths against the invariant mass \(\sqrt{s_1} \) of the \(\iota \) resonance calculated at \(\Gamma_{K^\ast} = 50 \) MeV. Both widths demonstrate the strong dependence on \(\sqrt{s_1} \). The ratio of these widths is an important characteristic of the violation of the isotopic invariance in the considered model. It does not depend on the magnitude of the \(\iota \) coupling with \(K^*\bar{K} \) \((g_{\iota K^\ast \bar{K}}) \), and its order of magnitude is controlled by the factor \((m_{K^0} - m_{K^+})/m_{K^0} \times (g_{f_0K^*K}/g_{f_0\pi^+\pi^-}) \) and decay kinematics. For the ratio of the widths in Fig. [3] averaged over the region 1.400 GeV < \(\sqrt{s_1} < 1.425 \) GeV, one

\[R = \frac{\Gamma_{\iota \rightarrow \pi^+\pi^-\pi^0}}{\Gamma_{\iota \rightarrow KK\pi}} = \frac{\langle \Gamma_{\iota \rightarrow \pi^+\pi^-\pi^0(s_1)} \rangle}{\langle \Gamma_{\iota \rightarrow KK\pi(s_1)} \rangle} \approx 4 \cdot 10^{-3}. \] (5)

Now, using Eq. (2) and (5) for evaluation of \(BR(J/\psi \rightarrow \gamma \iota \rightarrow \gamma f_0(980)\pi^0 \rightarrow \gamma \pi^+\pi^-\pi^0) \), one obtains

\[BR(J/\psi \rightarrow \gamma \iota \rightarrow \gamma f_0(980)\pi^0 \rightarrow \gamma \pi^+\pi^-\pi^0) \approx R \times BR(J/\psi \rightarrow \gamma \eta(1405/1475) \rightarrow \gamma K\bar{K}\pi) \approx 1.12 \cdot 10^{-5}, \] (6)

in agreement with the data of BESIII \cite{28} given in Eq. (1).

The estimate Eq. (6) includes the assumption of dominance of the \(\eta(1405/1475) \rightarrow (K^*\bar{K} + \bar{K}^*K) \rightarrow K\bar{K}\pi \) mechanism in the decay \(\eta(1405/1475) \rightarrow K\bar{K}\pi \) to be discussed below. Moreover, in view of the absence of the detailed data, one forcibly assumes that \(\iota \) (\(\eta(1405) \), \(\eta(1440) \), and the resonance complex \(\eta(1405/1475) \) constitute the single object looking differently in various channels. Hence, the magnitude of \(BR(J/\psi \rightarrow \gamma \iota \rightarrow \gamma f_0(980)\pi^0 \rightarrow \gamma \pi^+\pi^-\pi^0) \) given by Eq. (6) should be considered in the present model as the upper estimate.

IV. THE DECAY \(\iota \rightarrow (K^*\bar{K} + \bar{K}^*K) \rightarrow K\bar{K}\pi \)

Guided by the data about the resonance complex \(\eta(1405/1475) \) produced in the radiative decays of the \(J/\psi \) meson one can conclude that it decays to \(K\bar{K}\pi \) with the probability about \((80 - 90)\% \). The information about the contribution of the \(K^*\bar{K} + \bar{K}^*K \), \(a_0(980)\pi \), \(\kappa(800)\bar{K} + \bar{K}(800)K \) intermediate states to the decay \(\eta(1405/1475) \rightarrow K\bar{K}\pi \) is contained in two-particle
mass spectra of the states $K\bar{K}$, $K\pi$, and $\bar{K}\pi$. Available
statistics of the $K\bar{K}\pi$ events is not sufficient [37–43], so the quality of the data does not permit one to reli-
ably isolate the possible contributions. To a very rough approximation it is assumed [31, 34–36] that the decay $\eta (1405/1475) \to K\bar{K}\pi$ in the vicinity of 1475 MeV pro-
cceeds mainly via the $K^*\bar{K} + K^*\bar{K}$ state. As for the re-
region of 1405 MeV, it is considered that it can proceed via the $a_0(980)\pi$ state [31, 34, 40], though the admixture of the $K^*\bar{K} + K^*\bar{K}$ channel and even its dominance are discussed too [31, 34, 40, 41]. If, nevertheless, one admits dominance of the $a_0(980)\pi$ channel, then it would be natural to expect a rather sizeable signal from the decay $\ell \to a_0(980)\pi \to \eta\pi\pi [a_0(980)$ resonance is lo-
cated near the $K\bar{K}$ threshold and decays more intensively into $\eta\pi$ than into $K\bar{K}$]. In experiment, the de-
cay $J/\psi \to \gamma\ell \to \gamma\eta\pi\pi$ is seen [31, 34–36, 40, 41] but it is small. See the next section concerning
this fact. One can definitely state that the point-like
mechanism of the decay $\ell \to K\bar{K}\pi$ does not describe the
data. So, the assumption of the dominance of the decay
$\ell \to (K^*\bar{K} + K^*\bar{K}) \to K\bar{K}\pi$ cannot be rejected as yet.
The high statistics experimental studies of the basic de-
cay channels $\ell \to K\bar{K}\pi$ and $\ell \to \eta\pi\pi\pi$ are necessary for
elucidation of the situation.

In connection with the $\ell \to (K^*\bar{K} + K^*\bar{K}) \to K\bar{K}\pi$
decay dominance we also want to pay attention to the
difficulty of using the simplest Breit – Wigner expressions
for the description of the ℓ resonance. For example, let
us take the recent BES data [43] on the $K\bar{K}\pi$ spectrum
in the decay $J/\psi \to \gamma\eta(1440) \to \gamma K\bar{K}\pi$, see Fig. 7 and
fit them with the help of the standard expression

$$\frac{dN}{dm} = A(1 - m^2/m_{J/\psi}^2)^3 BR(\ell \to K\bar{K}\pi; m),$$

where $m \equiv \sqrt{s_{1\ell}}$, and

$$BR(\ell \to K\bar{K}\pi; m) = \frac{2m^3}{\pi m^2 - m^2 - im\Gamma_{tot}(m)i \sqrt{\pi}}$$

In case of the total dominance of the $K^*\bar{K} + K^*\bar{K}$
channel, i.e., when

$$\Gamma_{tot}(m) = \Gamma_{\ell \to K\bar{K}\pi}(m) = \Gamma_{\ell \to (K^*\bar{K} + K^*\bar{K}) \to K\bar{K}\pi}(m)$$

the fit, shown in Fig. 7 with the solid line, gives $\chi^2/n.d.f. = 10/15$, $A = 20$, $m_i = 1.465$ GeV and
$g_{K^*\bar{K} = 6.91}$ [hence $\Gamma_{\ell \to (K^*\bar{K} + K^*\bar{K}) \to K\bar{K}\pi}(m)$ = 448
MeV, but the visible width of the peak is essentially lower].
Our normalization is such that in case of of the stable K^*
meson the coupling constant $g_{K^*\bar{K}}$ is related with the
$\ell \to K^*\bar{K} + K^*\bar{K}$ decay width in accord with the expression

$$\Gamma_{\ell \to K^*\bar{K} + K^*\bar{K}} = \frac{g_{K^*\bar{K}}^2}{4\pi} \frac{8m_{K^*}^3}{m_{K^*}^2},$$

where p_{K^*} stands for the momentum of K meson in the
ℓ rest frame. If one evaluates the total $\ell \to K\bar{K}\pi$ decay
probability than instead of expected value close to 1 one
would get

$$BR(\ell \to K\bar{K}\pi) = \frac{3}{1.3 \text{ GeV}} \int_{1.3 \text{ GeV}}^{3 \text{ GeV}} BR(\ell \to K\bar{K}\pi; m)dm \approx 0.34.$$ (11)

The reason for this violation of the normalization is the sharp
W wave growth of $\Gamma_{\ell \to (K^*\bar{K} + K^*\bar{K}) \to K\bar{K}\pi}(m)$ with
increasing m (see Fig. 8).

Remind that, in case of the scalar mesons $\sigma(600)$,
$a_0(980)$, $f_0(980)$, their propagators obtained upon tak-
ing into account of the finite width corrections, satisfy the
Källén – Lehmann representation and, due to this
fact, preserve the total decay probability normalization
to unity [51, 52], see also Ref. [53]. Unfortunately, we have
not yet succeeded in constructing the propagator
for the ℓ resonance, providing the desired normalization
to unity, as in the case of scalar mesons.

So, one can conclude that the fittings of the data on
the ℓ resonance and the results of the determination of
its parameters from seemingly natural expressions should
be considered as tentative guesses.

V. THE DECAY $\ell \to a_0^0(980)\pi^0 \to f_0(980)\pi^0 \to$

\[\to \pi^+\pi^-\pi^0 \to \pi^+\pi^-\pi^0.\]

The decay $\eta(1405) \to \pi^+\pi^-\pi^0$ can also proceed
due to the $a_0^0(980) - f_0(980)$ mixing \[1\]: $\eta(1405) \to$
\[\to a_0^0(980)\pi^0 \to f_0(980)\pi^0 \to \pi^+\pi^-\pi^0.\] As a result, the
$\pi^+\pi^-$ mass spectrum is sharply enhanced in the region
between the $K^0\bar{K}^-$ and $K^0\bar{K}^0$ thresholds and looks very
similar to the spectra shown in Fig. 5(b) and 5(d). How-
ever, it is difficult with the help of this mechanism to obtain the magnitude of $BR(J/\psi \to \gamma \eta \pi\pi)$ close to the experimental value Eq. (1). Let us take the data about the $a_0^0(980) - f_0(980)$ mixing obtained by BESIII [23],

$$\xi_{af} = \frac{a_0^0 - f_0}{a_0^0} = (0.31 \pm 0.16 \pm 0.143)\%.$$ \hspace{1cm} (12)

Notice that the upper limit on ξ_{af} is 1.0 % at 90 % confidence level [23].

Let us also base the consideration on the magnitude

$$BR(J/\psi \to \gamma \eta \pi\pi) = BR(J/\psi \to \gamma \eta(1405/1475) \to \gamma \eta\pi\pi) = (3.0 \pm 0.5) \cdot 10^{-4}$$

\hspace{1cm} (13)

[31], and let us consider the decay $\eta \to \eta\pi\pi$ as proceeding via the $(a_0^0 + (980)\pi\pi + (980)\pi\pi)$ intermediate states. Then one obtains for $BR(J/\psi \to \gamma \eta \to \gamma\pi\pi\pi pi)$:

$$BR(J/\psi \to \gamma \eta \to \gamma\pi\pi\pi pi) = \frac{\xi_{af}}{2} BR(J/\psi \to \gamma \eta \to \gamma\eta\pi\pi\pi pi) \approx (4.5 \pm 3.3) \cdot 10^{-7}.$$ \hspace{1cm} (14)

The central value in Eq. (14) is by approximately 30 times lower than the central value given by Eq. (1). However, the experimental uncertainties of the data on ξ_{af} are large, and one needs additional measurements to make definite conclusions.

In general, the suppression of the decay $J/\psi \to \gamma \eta \to \gamma\eta\pi\pi\pi pi$ as compared with the $J/\psi \to \gamma \eta \to \gamma \eta\pi\pi\pi pi$ one [31] is not directly related with the smallness of the $\eta \to a_0(908)\pi$ decay probability. Hence, the branching ratio $BR(J/\psi \to \gamma \eta \to \gamma\eta\pi\pi\pi pi)$, caused by the $a_0^0(980) - f_0(980)$ mixing mechanism can be few times greater than that given in Eq. (14). The fact is that the $a_0^0(980)\pi$ intermediate state in the $\eta \to \eta\eta\pi\pi$ decay channel can be hidden due to the destructive interference with another contributions. As our estimates show, the interference between $a_0^0(980)\pi$ and $\sigma(600)\eta$ intermediate states can reduce the probability of the decay $\eta \to \eta\eta\pi\pi$ by the factor of about 1.5; see also Ref. [34]. Besides, the S wave $\eta\pi\pi$ final state interaction in the decay $\eta \to a_0(980)\pi \to \eta\eta\pi\pi$ is capable to suppress its width by the factor of approximately two. The possible influence of this interaction on the $\eta\pi\pi$ mass spectrum in the decay $\eta \to \eta\eta\pi\pi$ is shown in Fig. 8. So, the estimate Eq. (14) can be enhanced by the factor of approximately three. If such a possibility is realized, it would mean that the contribution of the $a_0^0(980) - f_0(980)$ mixing mechanism can provide up to 30 % of the $\eta \to \eta\pi\pi\pi pi$ decay amplitude.

The high statistics experimental investigations on both the form of the mass spectrum of the $\eta \to \eta\pi\pi$ decay channel and the $\eta\pi\pi$ subsystem mass spectra in the region of η peak could elucidate considerably the production dynamics and the role of the $a_0^0(980)\pi$ intermediate state.

VI. DETAILS OF CALCULATIONS

To estimate the effect, we use the following expression for the propagator of stable K^* meson:

$$g_{\mu\nu} - k_\mu k_\nu/k^2.$$ \hspace{1cm} (15)

It preserves the conservation of the unit spin in the presence of interaction and the convergence of the triangle diagram in Fig. 2 for the intermediate states with the specific charge. It should be stressed that the convergence or divergence of the triangle diagram as well as of the $K\bar{K}$ loops in case of the $a_0^0(980) \to (K^+K^- + K^0\bar{K}^0) \to f_0(980)$ transition is not related with the effect under discussion. The sum of the subtraction constants for the contributions of the charged and neutral intermediate states in the dispersion representation for the isospin breaking amplitude should have the natural order of smallness $\sim (m_{K^0} - m_{K^+})$, and it cannot be responsible for the enhancement of the symmetry violation in the vicinity of the K^+K^- and $K^0\bar{K}^0$ thresholds.

The numerical evaluation of the triangle diagram in Fig. 2 is fulfilled using the Feynman parametrization. The knowledge of the explicit imaginary parts of the amplitude (the discontinuities on the K^*K, $\bar{K}^*\bar{K}$, and $K\bar{K}$ cuts) permits one to control the calculations. For the imaginary part of one of the four charge modes one has:
where $a_{K^+K^-} = (2E_{f_0}E_{K^-} - s_2)/(2|p_\pi|^2)$, $E_{f_0} = (s_1 + s_2 - m_\pi^2)/(2\sqrt{s_1})$, $E_{K^-} = (s_1 + m_\pi^2 - m_2^2)/(2\sqrt{s_1})$, $|p_\pi| = |p_{f_0}| = \sqrt{E_{f_0}^2 - s_2}$, $|p_K| = \sqrt{E_{K^-}^2 - m_{K^-}^2}$ (here, the mass m of K^* meson is not fixed to be m_{K^*});
\[
\text{Im} g_{(K^+K^-)}(m^2) = \frac{1}{2} \text{Disc}_{K^+K^-}(m^2) = \frac{g_{K^+K^-}g_{K^*K^+}g_{f_0K^0K^-}}{32\pi\sqrt{s_2}|p_\pi|} \left\{ 4|p_\pi||p_K'| + \left[s_1 + m_\pi^2 + 2m_{K^-}^2 - m_2^2 - 2s_2 \right] \ln \frac{a_{K^+K^-} + 1 + i\varepsilon}{a_{K^+K^-} - 1 + i\varepsilon} \right\},
\]
where $a_{K^+K^-} \equiv a_{K^+K^-}(m^2) = -(2E_{f_0}E_{K^-} - m_\pi^2 - m_\pi^2 - m_2^2)/(2|p_\pi'|^2)$. \(E_{f_0} = (s_1 - s_2 - m_\pi^2)/(2\sqrt{s_2}) \), \(E_{K^-} = \sqrt{s_2}/2 \), $|p_{f_0}'|^2 = |p_{K^-}'|^2 = \sqrt{E_{f_0}^2 - m_{K^-}^2}$, $a_{(0)}_{K^+K^-} = a_{K^+K^-}(m^2 = 0)$.

\[
\text{To approximately account for the influence of the finite K^* width, the amplitude is calculated at different values of its virtual mass m and then is integrated over m^2 from $(m - 3f_{K^*})^2$ to $(m + 3f_{K^*})^2$ with the spectral density \[\rho(m^2) = \frac{1}{\pi(m^2 - m_{K^*}^2)^2 + (m \cdot K^* \cdot m_{K^*}^2)^2}. \]
\]

For example, \(\text{Im} g_{(K^+K^-)}(m^2) \) weighted in such a way is given by
\[
\text{Im} g_{(K^+K^-)}(m^2) = \int \rho(m^2) \text{Im} g_{(K^+K^-)}(m^2) \, dm^2.
\]

The amplitude of production of the $f_0(980)$ resonance, see Fig. 2 is taken in the form
\[
f_S(s_2) = \frac{g_{f_0K^+K^-} - g_{f_0}\pi^+\pi^-}{16\pi} \frac{1}{D_{f_0}(s_2)} e^{i\varphi(s_2)},
\]
where $g_{f_0K^+K^-}$ and $g_{f_0}\pi^+\pi^-$ are the coupling constants of $f_0(980)$ with K^+K^- ($K^0\bar{K}^0$) and $\pi^+\pi^-$ ($\pi^+\pi^+$), the phase of the background is $\varphi(s_2) \approx \pi/2$, $1/D_{f_0}(s_2)$ stands for the $f_0(980)$ propagator \[\frac{1}{D_{f_0}(s_2)} \] , which expression takes into account the couplings of $f_0(980)$ with the $\pi\pi$ and $K\bar{K}$ channels and the corresponding finite width corrections,
\[
1 \left[\frac{m_{a} - m_{b}}{D_{a}(s_2) - D_{b}(s_2)} + \sum_{ab} |\text{Re} \Pi_{f_0}^{ab}(m_{f_0}^2) - \Pi_{f_0}^{ab}(s_2)| \right]
\]
Here $\Pi_{f_0}^{ab}(s_2)$ is the polarization operator for the $f_0(980)$, corresponding to contribution of the ab intermediate state \(\rho_{ab}(s_2) = (1 - \pi \ln 1 + \rho_{ab}(s_2)) \),
\[
\Pi_{f_0}^{ab}(s_2) = \frac{g_{f_0K^+K^-}}{16\pi} \rho_{ab}(s_2) \left[i - \frac{1}{\pi} \ln \frac{1 + \rho_{ab}(s_2)}{1 - \rho_{ab}(s_2)} \right],
\]
where $\rho_{ab}(s_2) = \sqrt{1 - 4m_{a}^2/s_2}$ for $0 < s_2 < 4m_\pi^2$, $\rho_{ab}(s_2)$ should be replaced by $i\rho_{ab}(s_2)$ and
\[
\Pi_{f_0}^{ab}(s_2) = \frac{-g_{f_0K^+K^-}}{16\pi} \rho_{ab}(s_2) \left[1 + \frac{2}{\pi} \arctan \rho_{ab}(s_2) \right]
\]
Our estimates are given for the following values: $m_{f_0} = 0.990$ GeV, $2g_{f_0K^+K^-}/(16\pi) = 0.4$ GeV2, and $(3/2)g_{f_0\pi^+\pi^-}/(16\pi) = 0.1$ GeV2. We have also tried different values of the $f_0(980)$ parameters, for instance, $m_{f_0} = 0.975$ GeV, $2g_{f_0K^+K^-}/(16\pi) = 0.5$ GeV2, and $(3/2)g_{f_0\pi^+\pi^-}/(16\pi) = 0.1$ GeV2 and convinced that the results are not changed significantly.

For the example given in Fig. 3 the following values are used for the $a_0(980)$ resonance \[\frac{1}{D_{a_0}(s_2)} \] : $m_{a_0} = 0.9847$ GeV, $2g_{a_0K^+K^-}/(16\pi) = 0.4$ GeV2, and $g_{a_0\pi^+\pi^-}/(16\pi) = 0.1$. To take into account the $\pi\pi$ final state interaction in the decay $\tau \rightarrow \eta\pi\pi$ the contribution of the amplitude $\tau \rightarrow a_0(980)\eta \rightarrow \eta(\pi\pi)S$ is multiplied by the factor $[1 + i\rho_{\pi\pi}(s)T_0^0(s)]\rho_{\pi\pi}(s)$, where $(\pi\pi)_S$ means the $\pi\pi$ system in S wave, $T_0^0(s)$ and $\rho_{\pi\pi}(s)$ being, respectively, the amplitude and the phase of $\pi\pi$ scattering with the unit angular momentum $l = 0$ and isospin $I = 0$, s is the invariant mass squared of the $\pi\pi$ state. The data on $\rho_{\pi\pi}(s)$ are approximated by the smooth curve \[\frac{1}{D_{a_0}(s_2)} \] .

The propagator of the $a_0(980)$ resonance with the invariant mass square s_2 is
\[
1 \left(\frac{m_{a_0} - s_2 + \sum_{ab} |\text{Re} \Pi_{a_0}^{ab}(m_{a_0}^2) - \Pi_{a_0}^{ab}(s_2)| \right)^{-1}
\]
where $ab = \pi\eta$, K^+K^-, $K^0\bar{K}^0$, $\pi\eta'$; $\text{Im} \Pi_{a_0}^{ab}(s_2)/\sqrt{s_2} = \Gamma_{a_0\rightarrow ab}(s_2) = g_{a_0\pi\eta}$ $g_{a_0\pi\eta}'\rho_{ab}(s_2)/(16\pi)$. For $s_2 > m_{a_0}^2$, the polarization operator
\[
\frac{m_{a_0} - s_2 + \sum_{ab} |\text{Re} \Pi_{a_0}^{ab}(m_{a_0}^2) - \Pi_{a_0}^{ab}(s_2)| \right)^{-1}
\]
where $ab = \pi\eta$, K^+K^-, $K^0\bar{K}^0$, $\pi\eta'$; $\text{Im} \Pi_{a_0}^{ab}(s_2)/\sqrt{s_2} = \Gamma_{a_0\rightarrow ab}(s_2) = g_{a_0\pi\eta}$ $g_{a_0\pi\eta}'\rho_{ab}(s_2)/(16\pi)$. For $s_2 > m_{a_0}^2$, the polarization operator
is given by \[\rho_m \] is given by [51, 55]

\[B. \text{ Kerbikov and F. Tabakin, Phys. Rev. C 62, 489 (2002).} \]

\[F. \text{ E. Close and A. Kirk, Phys. Lett. B 217 (2001).} \]

\[V. \text{ Yu. Grishina et al., Phys. Lett. B 521, 217 (2001).} \]

\[N. \text{ N. Achasov and A. V. Kiselev, Phys. Lett. B 534, 83 (2002).} \]

\[D. \text{ Black, M. Harada, and J. Schechter, Phys. Rev. Lett. 88, 181603 (2002).} \]

\[A. \text{ E. Kudryavtsev et al., Phys. Rev. C 66, 015207 (2002); Yad. Fiz. 66, 994 (2003).} \]

\[M. \text{ Buescher et al., hep-ph/0301126.} \]

\[\text{VII. CONCLUSION} \]

The phenomenon of the $a_0^0(980) \rightarrow f_0(980)$ mixing [1] gave an impetus to conduct experiments of VES on the decay $f_1(1285) \rightarrow \pi^+\pi^-\pi^0$ [23, 24] and BESIII on the decays $J/\psi \rightarrow \phi f_0(980) \rightarrow \phi a_0(980) \rightarrow \phi \eta \pi$, $\chi_{c1} \rightarrow \phi a_0(980)\pi^0 \rightarrow f_0(980)\pi^0 \rightarrow \pi^+\pi^-\pi^0$ [25], and $J/\psi \rightarrow \gamma \eta(1405) \rightarrow \gamma f_0(980)\pi^0 \rightarrow \gamma^3\pi$ [26]. We hope that the remarks presented here on the mechanisms of the isospin breaking in the decay $\eta(1405)$ will stimulate both the further studies of this decay and the principal improvement of the data about $K\bar{K}$, $K\pi$, $\eta\pi$, and $\pi\pi$ mass spectra in the decays of the resonance structure $\eta(1405/1475)$ into $K\bar{K}\pi$ and $\eta\pi\pi$, and about the shape of these resonance peaks in the $K\bar{K}\pi$ and $\eta\pi\pi$ channels.

The present work is partially supported by the RFBR grant 13-02-00039 and by the Interdisciplinary project 102 of the Siberian Branch of RAS.

[1] N. N. Achasov, S. A. Devyamin, and G. N. Shestakov, Phys. Lett. B 88, 367 (1979).
[2] N. N. Achasov, S. A. Devyamin, and G. N. Shestakov, YaF 33, 1337 (1981) [Sov. J. Nucl. Phys. 33, 715 (1981)].
[3] A. R. Dzierba, in Proceedings of the Second Workshop on Physics and Detectors for DAΦNE’95, Frascati, 1995, edited by R. Baldini, F. Bossi, G. Capon, and G. Pancheri, Frascati Physics Series Vol. 4 (INFN, Frascati, 1996), p. 99.
[4] N. N. Achasov and G. N. Shestakov, Phys. Rev. D 56, 212 (1997); Yad.Fiz. 60, 1669 (1997) [Phys. Atom. Nucl. 60, 1522 (1997)].
[5] O. Krehl, R. Rapp, and J. Speth, Phys. Lett. B 390, 23 (1997).
[6] B. Kerbikov and F. Tabakin, Phys. Rev. C 62, 064601 (2000).
[7] F. E. Close and A. Kirk, Phys. Lett. B 489, 24 (2000).
[8] A. E. Kudryavtsev and V. E. Tarasov, Pisma Zh. Eksp. Teor. Fiz. 72, 589 (2000) [JETP Lett. 72, 410 (2000)].
[9] V. Yu. Grishina et al., Phys. Lett. B 521, 217 (2001).
[10] N. N. Achasov and A. V. Kiselev, Phys. Lett. B 534, 83 (2002).
[11] D. Black, M. Harada, and J. Schechter, Phys. Rev. Lett. 88, 181603 (2002).
[12] A. E. Kudryavtsev et al., Phys. Rev. C 66, 015207 (2002); Yad. Fiz. 66, 1994 (2003) [Phys. Atom. Nucl. 66, 1946 (2003)].
[13] M. Buescher et al., [hep-ph/0301126].
[14] L. A. Kondratyuk et al., Yad. Fiz. 66, 155 (2003) [Phys. Atom. Nucl. 66, 152 (2003)].
[15] C. Hanhart, in Scalar Mesons: An Interesting Puzzle for QCD, Utica, NY, 2003, edited by A. H. Fariborz, AIP Conf. Proc. No. 688 (AIP, New York, 2003), p. 61; C. Hanhart, Phys. Rep. 397, 155 (2004).
[16] C. Amsler and N. A. Törnqvist, Phys. Rep. 389, 61 (2004).
[17] M. Buescher, Acta Phys. Pol. B 35, 1055 (2004).
[18] Z. G. Wang, W. M. Yang, and S. L. Wan, Eur. Phys. J. C 37, 223 (2004).
[19] N. N. Achasov and G. N. Shestakov, Phys. Rev. Lett. 92, 182001 (2004).
[20] N. N. Achasov and G. N. Shestakov, Phys. Rev. D 70, 074015 (2004).
[21] J. J. Wu, Q. Zhao, and B. S. Zou, Phys. Rev. D 75, 114012 (2007).
[22] J. J. Wu and B. S. Zou, Phys. Rev. D 78, 074017 (2008).
[23] V. Dorofeev et al., Eur. Phys. J. A 38, 149 (2008).
[24] V. Dorofeev et al., Eur. Phys. J. A 47, 68 (2011).
[25] M. Ablikim et al., Phys. Rev. D 83, 032003 (2011).
[26] M. Ablikim et al., Phys. Rev. Lett. 108, 182001 (2012).
[27] I.e. of the order of the modulus of difference of the phase space volumes of the $K^+\bar{K}^-$ and $K^\pm\bar{K}^\mp$ intermediate states: $|\rho_{K^+\bar{K}^-}(s) - \rho_{K^\pm\bar{K}^\mp}(s)|$, where $\rho_{K^+\bar{K}^-}(s) = \sqrt{1 - 4m_{K^+}^2/s} \rho_{K^\pm\bar{K}^\mp}(s) = \sqrt{1 - 4m_{K^\pm}^2/s}$, s stands for the square the invariant mass of $K\bar{K}$ system.
In the region between the K^+K^- and $K^0\bar{K}^0$ thresholds the isospin breaking decay amplitude has the following effective structure:

$$\sqrt{\Gamma_{K^*}} \ln \left(\frac{\Gamma_{K^*}/2}{\sqrt{m_{K^0}^2 - m_{K^+}^2 + \Gamma_{K^*}^2/4}} \right).$$