MERGERS IN DOUBLE-PEAKED [O\textsc{iii}] ACTIVE GALACTIC NUCLEI

HAI FU1, ADAM D. MYERS2,3, S. G. DJORGOVSKI1, AND LIN YAN4

1 Astronomy Department, California Institute of Technology, MS 249-17, Pasadena, CA 91125, USA; fu@astro.caltech.edu, george@astro.caltech.edu
2 Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; admyers@astro.illinois.edu
3 Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany
4 Spitzer Science Center, California Institute of Technology, MS 229-06, Pasadena, CA 91125, USA; lyan@ipac.caltech.edu

Received 2011 March 21; accepted 2011 March 22; published 2011 May 11

ABSTRACT

As a natural consequence of galaxy mergers, binary active galactic nuclei (AGNs) should be commonplace. Nevertheless, observational confirmations are rare, especially for binaries with separations less than 10 kpc. Such a system may show two sets of narrow emission lines in a single spectrum owing to the orbital motion of the binary. We have obtained high-resolution near-infrared images of 50 double-peaked [O\textsc{iii}]\textlambda 5007 AGNs with the Keck II laser guide star adaptive optics system. The Sloan Digital Sky Survey sample is compiled from the literature and consists of 17 type-1 AGNs between 0.18 < z < 0.56 and 33 type-2 AGNs between 0.03 < z < 0.24. The new images reveal eight type-1 and eight type-2 sources that are apparently undergoing mergers. These are strong candidates of kpc-scale binary AGNs because they show multiple components separated between 0.6 and 12 kpc and often disturbed morphologies. Because most of the type-1s are at higher redshifts than the type-2s, the higher merger fraction of type-1s (47% ± 20%) compared to that of type-2s (24% ± 10%) can be attributed to the general evolution of galaxy merger fraction with redshift. Furthermore, we show that AGN mergers are outliers of the $M_{\text{BH}}-\sigma$ relation because of overestimated stellar velocity dispersions, illustrating the importance of removing mergers from the samples defining the $M_{\text{BH}}-\sigma$ relations. Finally, we find that the emission-line properties are indistinguishable for spatially resolved and unresolved sources, emphasizing that scenarios involving a single AGN can produce the same double-peaked line profiles and they account for at least 70% of the double-peaked [O\textsc{iii}] AGNs.

Key words: galaxies: active – galaxies: formation – galaxies: interactions – galaxies: nuclei – quasars: emission lines

Online-only material: color figures

1. INTRODUCTION

Mergers play an essential role in the assembly and evolution of galaxies, because structures form hierarchically in the cold dark matter dominated universe. Deep cosmological surveys have shown that roughly 10% of L^* galaxies are involved in major mergers at $z = 1$, and the merger fraction varies with galaxy mass and redshift (see Hopkins et al. 2010 and references therein). As supermassive black holes (SMBHs) reside in the centers of most, if not all, galaxies (e.g., Kormendy & Richstone 1995; Richstone et al. 1998), the standard cosmological paradigm predicts the formation of binary SMBHs from galaxy mergers.

Identifying binary SMBHs is of fundamental interest. The population of binary SMBHs depends critically on the efficiency of their coalescence (the so-called Final Parsec Problem; Begelman et al. 1980); moreover, whether the binary stalls over the final few parsecs (e.g., Milosavljević & Merritt 2001), coalesces (e.g., Escala et al. 2004), or recoils (e.g., Madau & Quataert 2004) has key implications for future gravitational wave detection and the demography of SMBHs.

Before the galaxies coalesce and their SMBHs start to orbit each other, a fraction of the mergers may appear as binary active galactic nuclei (AGNs). Gravitational interactions can drive gas from the galactic outskirts into the nuclei of the merging galaxies, as shown in simulations (e.g., Barnes & Hernquist 1996) and observations (e.g., Fu & Stockton 2007; Kewley et al. 2010). The rapid gas concentration may fuel intense black hole accretion. Although AGN pairs with >10 kpc transverse separations comprise ~0.1% of the AGN population (e.g., Hennawi et al. 2006, 2010; Myers et al. 2007, 2008; Green et al. 2010), there are surprisingly few known kpc- to pc-scale binaries (e.g., Komossa et al. 2003; Valtonen et al. 2008; Rodriguez et al. 2009), owing in large to the observational difficulty of spatially resolving such binaries.

Spatially unresolved binaries may be spectroscopically resolved, thanks to the orbital motion of the binaries. AGNs with pairs of broad Balmer emission lines were believed to be strong candidates of parsec-scale binary SMBHs (e.g., Gaskell 1983, 1996). But such systems could be confused with single AGNs with unusual broad-line regions or thin-plus-thick accretion disks (e.g., Eracleous et al. 1997; Eracleous & Halpern 2003), and it is difficult to distinguish these scenarios because they all involve very small spatial scales (<1 pc). The discovery of the double-peaked broad-line AGN SDSS J153636.221+044127.0 (Boroson & Lauer 2009) prompted Gaskell (2010) to reiterate the “smoking gun” criteria for the confirmation of a binary SMBH. First, the two broad emission peaks should shift on timescales corresponding to an orbit, much like a spectroscopic binary star. Second, because of the known variability of broad-line regions, variations in the line fluxes of the two emission peaks should be independent. These criteria may be difficult
because each fiber of the SDSS spectrograph covers only 3 arcsec.

Xu & Komossa 2009; Wang et al. 2009; Liu et al. 2010b; Smith et al. 2010) and the Sloan Digital Sky Survey (SDSS; Gerke et al. 2007) and the DEEP2 Galaxy Redshift Survey (Gerke et al. 2007; Comerford et al. 2009). To date, no unambiguous parsec-scale binary AGN has been found with this method.

Similarly, systematic searches for kpc-scale binary AGNs started from identifying objects with two sets of narrow [O iii] λ5007 emission lines in large spectroscopic surveys, such as the DEEP2 Galaxy Redshift Survey (Gerke et al. 2007; Comerford et al. 2009) and the Sloan Digital Sky Survey (SDSS; Xu & Komossa 2009; Wang et al. 2009; Liu et al. 2010b; Smith et al. 2010). If double-peaked [O iii] emission is indicative of a binary AGN, such emission most likely represents systems with transverse separations of ≈100 pc to ≈10 kpc (Liu et al. 2010a), because each fiber of the SDSS spectrograph covers only 3′′ on the sky. But double-peaked emission-line profile may also arise from other mechanisms, such as peculiar narrow-line regions, extended emission-line nebulae (e.g., Fu & Stockton 2009), or jet–cloud interactions (e.g., Stockton et al. 2007; Rosario et al. 2010).

In this paper, we present high-resolution near-infrared imaging of double-peaked [O iii] AGNs. This program is designed to differentiate between mergers and the contaminating scenarios involving single galaxies, as an attempt to identify a statistical sample of kpc-scale binary AGNs. Note that spatially resolved spectroscopy is required to confirm that a merger is a binary AGN, because the double-peaked emission lines could still arise from a single galaxy in a merger or extended emission-line nebulae.

Throughout we adopt the concordance ΛCDM cosmology with Ω_m = 0.3, Ω_Λ = 0.7, and H_0 = 70 km s^{-1} Mpc^{-1}.

2. OBSERVATIONS AND DATA REDUCTION

Keck II laser guide star adaptive optics (LGSAO; Wizinowich et al. 2006) observations require a bright (R < 17) star within ~60′′ of the source for tip-tilt corrections. We selected 125 objects that are suitable for LGSAO observations from the 271 unique SDSS double-peaked [O iii] AGNs (Wang et al. 2009; Liu et al. 2010b; Smith et al. 2010; we only included “good” objects), resulting in 31 type-1 (broad-line) AGNs and 94 type-2 (narrow-line) AGNs between 0.02 < z < 0.69.

We obtained H-band images for three sources (0400−0652, 0952+2552, and 1240+3534) with the OSIRIS imager (Larkin et al. 2006) at 20 mas pixel^{-1} on 2010 March 6 and 7 UT, and K′-band images for another 47 sources with NIRCam at 40 mas pixel^{-1} on 2010 June 3 and 4 UT. We imaged only three sources in March because spectroscopy was the main purpose of that run. The K′-band filter was used for most sources because (1) the AO system delivers the best image quality in the K′ band and (2) the contrast between the central AGN and the host galaxy is decreased because AGNs tend to be bluer than galaxies. On the other hand, we chose the H band for OSIRIS because of its elevated background in K band (OSIRIS User’s Manual).

Targets, which were randomly selected based on time of observation, consisted of 17 type-1s and 33 type-2s (Table 1). A typical imaging sequence consisted of five to nine frames of...
SDSS Name	z	$\Delta \theta$ (")	ΔS (kpc)	K_1'	K_2'	ΔV (km s$^{-1}$)	$L_{[O III]}$ (log)$L_{[O III]}$	$L_{[O III]}$ (log)$L_{[O III]}$	L_{24cm} (log)L_{24cm}	R	σ_\ast (km s$^{-1}$)	M_{BH} (log)M_{BH}	Ref		
Merging type-1 AGNs															
095207.6 + 255257	0.339	0.99	4.8	15.3	16.9	442	8.55	8.41	8.4	3	
115523.7 + 150757	0.287	0.57	2.5	14.3	15.4	480	8.91	8.50	23.3	2	7.8	3	
123915.4 + 531415	0.202	1.24	4.1	14.4	14.8	715	7.78	7.67	24.1	75	431 ± 30	7.8	3		
124859.7 − 025731	0.487	0.51	3.1	15.5	16.7	380	8.58	9.04	8.8	3	
130724.1 + 460401	0.352	2.29	11.4	16.2	16.4	518	8.30	8.32	293 ± 57	7.7	3	...	9.4	3	
150243.1 + 111557	0.390	1.39	7.4	16.0	16.1	657	9.84	9.86	24.3	36	7.5	3	
151735.2 + 214533	0.399	1.09	5.9	15.5	18.1	324	8.62	8.06	9.3	3	
154107.8 + 203609	0.508	1.95	12.0	16.6	20.5	441	8.96	8.63	8.7	3	
Isolated type-1 AGNs															
110851.0 + 065901	0.182	0.64	2.0	15.1	15.3	204	8.74	8.27	23.6	28	222	...	9.6	3	
114642.5 + 511030	0.130	2.71	6.3	15.0	15.7	287	8.03	8.17	8.5	3	
115715.0 + 081632	0.201	2.57	8.5	14.5	14.7	375	7.50	7.74	7.7	3	
124037.8 + 333437	0.161	0.22	0.6	15.5	15.7	491	8.79	8.20	23.2	28	201	...	7.3	3	
133223.6 + 060627	0.207	1.54	5.2	15.6	15.8	409	7.79	8.04	275	1.3	
135641.6 + 102609	0.123	1.32	2.9	14.7	15.0	383	8.85	9.19	24.0	128	251	...	8.3	3	
165206.1 + 310708	0.075	2.93	4.2	14.3	20.6	307	6.59	6.73	140	1.2	
172049.2 + 310664	0.095	0.40	0.7	14.5	20.3	389	7.69	7.29	242	1	
Isolated type-2 AGNs															
120240.7 + 263139	0.476	14.9	...	466	9.54	8.59	25.3	66	9.6	3	
129111.2 + 042906	0.555	15.2	...	459	9.46	9.33	8.5	3	
144612.8 + 615633	0.275	14.2	...	505	8.89	8.42	23.4	2	7.7	3	
150437.7 + 541150	0.305	14.7	...	719	9.02	8.21	8.3	3	
153231.8 + 420343	0.209	15.1	...	353	8.51	8.44	184 ± 44	8.2	3	8.3	3
161027.4 + 130807	0.229	15.3	...	326	7.94	8.11	175 ± 19	8.3	3	10.3	3
161826.9 + 081951	0.446	14.3	...	384	8.62	9.54	25.6	137	10.3	3	
168147.9 + 215925	0.334	15.1	...	365	8.84	8.49	23.8	5	9.0	3	
171930.6 + 293413	0.180	14.7	...	1105	8.12	7.67	22.7	2	7.4	3	

Notes. Double-peaked [O III] AGNs with Keck/LGS AO images. Column 1: J2000 designation. Column 2: redshift. Columns 3 and 4: projected angular separation (arcsec) and physical separation (kpc) between the main components in a merging system. Columns 5 and 6: for merging systems, these are the K' magnitudes of the main components; for isolated systems, K_1' lists the K' magnitude of the source, while K_2' is left blank. Column 7: velocity splitting (km s$^{-1}$) between the [O III]5007 components: $\Delta V/c = |1 + z_r \lambda_5/(1 + z_r \lambda_5) - 1|/[1 + z_r \lambda_5/(1 + z_r \lambda_5) + 1]$, where z_λ and z_r are the redshifts of the redshifted and blueshifted [O III] components, respectively. Typical statistical errors are 16 km s$^{-1}$. Columns 8 and 9: [O III]5007 luminosity in log$L_{[O III]}$ for the blueshifted (b) and redshifted (r) line, corrected for Galactic extinction. Column 10: radio luminosity at rest frame 1 GHz in logL_{24cm} Hz$^{-1}$, R-corrected from the observed 1.4 GHz fluxes assuming $L_{24cm} \propto \alpha_{24}^{-0.5}$. Column 11: Kellermann et al. (1989) radio loudness, $R = F_{5GHz}/F_{1400A}$. Column 12: stellar velocity dispersion (km s$^{-1}$), corrected for $3.6"$ fiber size. For type-1 sources, we list our own measurements; for type-2 sources, these are compiled from Liu et al. (2010b). Column 13: black hole mass in logM_{BH}, estimated using the $H\beta$ calibration of Vestergaard & Peterson (2006). The errors are about 0.5 dex. Column 14: source references—(1) Liu et al. 2010b; (2) Wang et al. 2009; (3) Smith et al. 2010.
64 s exposures, dithered within boxes of 4″ to 7″. Conditions were photometric and the seeing was about 0.7″ for the OSIRIS nights and 0.7″/0.5″ for the first/second NIRC2 night.

Data were processed using an iterative IRAF reduction pipeline (Stockton et al. 1998). Before individual frames were combined, we corrected the NIRC2 geometric distortions using the solution of P. B. Cameron. The point-spread function (PSF) FWHMs range from 0″065 to 0″130 with a mean of ~0″1, as measured from stellar sources in the co-added images. For our tip-tilt configurations and seeing conditions, the K′-band Strehl ratio is ~0.2 (van Dam et al. 2006).

3. ANALYSES AND RESULTS

3.1. Mergers Among Double-peaked AGNs

Sixteen of the 50 double-peaked AGNs appear to be undergoing mergers with multiple components within 3″ (Figure 1; Table 1). Note that spectroscopic confirmation of three of the type-2 systems (1108+0659, 1146+5110, and 1332+0606) previously appeared in Liu et al. (2010a). For most of the eight type-2 systems, signs of interactions such as tidal tails and asymmetries are evident in the Keck and SDSS images (bottom rows of Figures 1 and 2). Signs of interactions are less clear for the eight type-1 systems (top rows of Figures 1 and 2). Nevertheless, at least five of the type-1 systems are definitely mergers, as we measured small (hundreds of km s\(^{-1}\)) redshift differences between the components with spatially resolved spectroscopy (H. Fu et al. 2011, in preparation).

We used GALFIT (Peng et al. 2010) to model the merging systems. PSFs were taken either from stellar sources inside the same image or from time-adjacent images with similar tip-tilt configurations. We matched the combined magnitudes of the merging components to their Two Micron All Sky Survey (2MASS) magnitudes because the components are mostly unresolved in 2MASS (except for 1157+0816). We transformed filters from K\(_S\) to K′ following John Carpenter’s calibrations\(^6\) and the Mauna Kea Observatory K′ definition (Wainscoat & Cowie 1992). The result are summarized in Table 1.

For 11 of the 16 objects, the K′ magnitudes of the merging components differ by less than 1.2 mag, satisfying the definition of a major merger (mass ratio \(\mu > 1/3\) given a constant mass-to-light ratio). Note that the primary components of many type-1 systems are brightened by the central point sources. For that reason, 0952+2552 is likely a major merger even though it shows a magnitude difference of 1.6 mag.

The 16 multiple component sources are split evenly between type-1s and type-2s. Because we observed a total of 17 type-1s and 33 type-2s, the merger fraction of type-1s (47% ± 20%) is greater than that of type-2s (24% ± 10%). This is surprising because it should be more difficult to detect extended companion galaxies around type-1s than type-2s owing to the bright nuclei of the former.

In light of the rapid evolution of galaxy merger fraction at \(z < 2.5\) (see the model of Hopkins et al. 2010 and references therein for observational constraints), the higher merger fraction in type-1 is likely a result of the distinct redshift distributions of type-1 and type-2 AGNs (Figure 3), as opposed to an intrinsic difference between the two groups. Ideally, we would like to compare the merger fraction of AGNs with our data. In practice, the former is not well determined because of the lack of high-resolution images and the rarity of AGNs in deep cosmological surveys. Nevertheless, based on the 2 deg\(^2\) COSMOS Hubble Space Telescope Advanced Camera for Surveys (ACS) images (Scoville et al. 2007), Cisternas et al. (2011) found that there is no significant difference in the distortion fractions between active and inactive galaxies. Therefore, as a surrogate, in the bottom panel of Figure 3 we compare our data with the result of Kampczyk et al. (2007; \(f_{\text{merger}} \propto (1 + z)^{3.8 ± 1.2}\)) who determined the evolution of galaxy merger fraction using COSMOS ACS images after statistically removing spurious mergers by simulating the appearance of real low-redshift SDSS galaxies at \(z = 0.7\). Our data are consistent with the evolution of the major merger fraction in typical L\(^*\) galaxies, although a larger sample is clearly needed to improve the statistics. Note that by selection mergers are over an order of magnitude more common in double-peaked AGNs than in L\(^*\) galaxies in the same redshift range (see the compilation of Hopkins et al. 2010).

3.2. The Impact of Mergers on the \(M_{\text{BH}} - \sigma\) Relation

The \(M_{\text{BH}} - \sigma\) relation suggests that black hole masses correlate tightly with the velocity dispersions of stellar bulges (\(\sigma\)). Although the \(M_{\text{BH}} - \sigma\) relation is considered fundamental, it remains under debate whether active and inactive galaxies lie on the same \(M_{\text{BH}} - \sigma\) relation. The small sample of reverberation-mapped Seyfert 1 galaxies suggests that they do (e.g., Woo et al. 2010; Graham et al. 2011), while the larger sample of SDSS AGNs suggests that they do not (Greene & Ho 2006; Shen et al.\(^6\))

\(^6\) http://www2.keck.hawaii.edu/inst/nirc2/post_observating/dewarp/
\(^6\) http://www.astro.caltech.edu/~jmc/2mass/v3/transformations/
The latter groups used single-epoch spectra to estimate black hole masses and found that the M_{BH}–σ_v relation of AGNs is shallower than that of quiescent galaxies. One of the main differences between reverberation and single-epoch black hole masses is that the former uses the width of the variable part of the broad emission line measured from root mean square (rms) spectra (Peterson et al. 1998). Single-epoch emission-line widths show \sim25% variation when compared with the rms line widths (Vestergaard 2002). As the black hole mass depends sensitively on the line width, this variation may lead to the discrepancy in the M_{BH}–σ_v relations.

On the other hand, AGNs involved in galaxy mergers can easily deviate from the M_{BH}–σ_v relation because the velocity dispersions are broadened by the relative motions of the components. To test this idea, we measured single-epoch black hole masses and velocity dispersions for the broad-line AGNs in our sample. Because velocity dispersion measurements require a significant host galaxy contribution in the optical spectra, we were only able to measure velocity dispersions in four type-1 AGNs in our sample (1239+5314, 1307+4604, 1532+4203, and 1610+1308).

We measured single-epoch black hole masses with the SDSS spectra and the calibration of Vestergaard & Peterson (2006). We measured FWHMs of the broad Hβ or Hα lines. We did not decompose the broad lines for the kinematic components seen in the double-peaked narrow lines, because (1) the decomposition result would be highly uncertain and (2) the companions of the type-1 AGNs are unlikely to be type-1 AGNs since most of them look extended from the LGSAO images. Hα line FWHMs were converted to Hβ FWHMs using the relation given by Equation (2) of Shen et al. (2008). We corrected the rest-frame monochromatic continuum luminosity at 5100 Å, L_{5100}, for Galactic extinction using the Cardelli et al. (1989) law and for host galaxy contamination using the empirical fit of Shen et al. (2010). L_{5100} scaled from [O iii]λ5007 luminosities gave similar results. For the objects in common, our black hole masses agree with those from Shen et al. (2008) and Shen et al. (2010) within 0.1 dex. Besides measurement errors in the FWHMs and L_{5100}, we also included 0.1 dex uncertainty in the virial coefficient (Woo et al. 2010) and 0.2 dex uncertainty in the size–luminosity relation of the broad-line regions (Kaspi et al. 2005) in the 1σ uncertainty of black hole masses.

We measured stellar velocity dispersions using the same SDSS spectra with the IDL routine $vdistfit$, which determines the velocity dispersion and its error by fitting the galaxy spectrum with a number of Gaussian-broadened stellar template spectra. We masked out emission lines, telluric absorption, and artifacts from sky subtraction in the fitting. Following Shen et al. (2008), the velocity dispersions were corrected for the 3′ fiber size, which changes σ_v by less than 10% at $z < 0.6$. For the object in common (1239+5314), our measurement (431 \pm 30 km s$^{-1}$) agrees with that of Shen et al. (2008; 449 \pm 30 km s$^{-1}$).

The results are shown in Figure 4. The two double-peaked AGNs in mergers fall significantly below the M_{BH}–σ_v relations of inactive galaxies and reverberation-mapped Seyfert 1s, while the isolated double-peaked AGNs lie on the relations within the 1σ scatter. This result highlights the importance of identifying mergers with high-resolution imaging before comparing the M_{BH}–σ_v relation of AGNs and normal galaxies. On the other hand, mergers may also affect the M_{BH}–σ_v relation of quiescent galaxies, as mergers constitute almost half of the early-type galaxies with velocity dispersions greater than 350 km s$^{-1}$ (Bernardi et al. 2008).

Shen et al. (2008) found that AGNs with larger Eddington ratios (L_{bol}/L_{bol}) tend to have larger stellar velocity dispersions than those with lower Eddington ratios at a given black hole mass. In combination with our result, it seems to imply that mergers show larger Eddington ratios, or more efficient black hole accretion. Here we have assumed that the AGNs that show excess in stellar velocity dispersions are all mergers. Future high-resolution imaging of the AGNs in Shen et al.’s sample will be able to test this hypothesis.

3.3. Isolated Double-peaked AGNs

Our images have shown that \sim70% of double-peaked AGNs are not mergers. To increase the success rate of binary identification, it is natural to investigate whether the merging double-peaked AGNs look different from the isolated double-peaked AGNs in terms of their [O iii] profiles. Because our sample was compiled from three different groups, we re-modeled the emission lines to homogenize the measurements. We decomposed the [O iii]λ5007 line with either two Gaussians or Lorentzian profiles, whichever gives the lower χ^2. We found that the merging and isolated double-peaked AGNs show indistinguishable [O iii] profiles and velocity splittings (Figure 3).

Wang et al. (2009) found an anti-correlation between flux ratio and velocity shift ratio of the [O iii] components, which they interpreted as an indication of the orbital motion of binary AGNs. Such an anti-correlation is expected if (1) the [O iii] luminosities correlate with the black hole masses and (2) the black hole masses correlate with the bulge masses (the
A similar fraction of merging type-2s are radio detected (38%\(\times\)3/8). Therefore, jet–cloud interactions should also be an important mechanism in producing double-peaked emission lines in AGN mergers.

4. DISCUSSION

In recent years, there has been a flurry of observational and theoretical research on binary SMBHs/AGNs. Although a few binary SMBH/AGN candidates have been known since late 1990s (Kochanek et al. 1999), the availability of large spectroscopic surveys such as SDSS has rejuvenated this subject and enabled systematic searches for large samples of binary candidates based on spectroscopic signatures indicating potentially two AGN components orbiting each other. The recent progress is driven by the predictions of the standard hierarchical galaxy formation paradigm, the lack of an observational understanding of the formation and evolution of binary SMBHs, and the requirement for making predictions of gravitational wave signals potentially detectable by LIGO and the future laser interferometry mission (LISA).

With several published catalogs of binary AGN candidates, the remaining critical issue is to determine the characteristics of a true binary AGN and the fraction of genuine binary AGNs among the candidates. We carried out a high-resolution imaging survey of double-peaked SDSS AGNs. The experiment was designed to differentiate mergers from contaminating sources involving single AGNs. In 50 sources we found 16 that are apparently undergoing mergers. Our analyses demonstrate clearly that a large percentage (>70%) of these binary AGN candidates are isolated AGNs. Their double-peaked [O iii] line profiles could be explained by several other processes, as discussed in Section 3.3.

Because only \(\sim\)1% of the SDSS AGNs show double-peaked line profiles, the \(\sim\)30% merger fraction thus indicates a kpc-scale binary AGN fraction of \(<\)0.3%, which is comparable to the fraction of AGN pairs with >10 kpc transverse separations (~0.1%). There are several factors that make this binary fraction just an order-of-magnitude estimate. First, it is possible that one of the merging components is actually inactive and the double-peaked line profile is produced by a single galaxy. In a forthcoming paper, we will present spatially resolved spectroscopy of these AGN mergers to securely identify binary AGNs. Second, binaries with small line-of-sight velocity separations \(<\)200 km s\(^{-1}\); see Figure 1) would not show double-peaked emission lines in the SDSS spectra. These spectroscopically unresolved binaries may comprise bulk of the kpc-scale binary AGN population (e.g., Comerford et al. 2009). Because \(\sim\)99% of the SDSS AGNs do not show double-peaked emission lines, future high-resolution studies of single-peaked AGNs will provide better constraints on the binary AGN fraction.

Assuming that (1) galaxy mergers do not enhance AGN activities and (2) the merger fractions are similar for active and inactive galaxies (Cisternas et al. 2011), we would expect a binary AGN fraction of \(\sim\)0.05% at \(z\approx\) 0.5. We calculated the number by multiplying the average AGN duty cycle \((\sim\)1%) and the AGN merger fraction \((\sim\)5%) for \(L^*\) galaxies at \(z\approx\) 0.5; Hopkins et al. 2010). Therefore, a well-determined binary AGN fraction much higher than the expected value may provide the long-sought observational evidence for merger-induced AGN activities.

\(9\) That is, the fraction of binary AGNs among all AGNs.
We thank the referee for a careful reading of the manuscript and for comments that helped to improve the paper. A.D.M. acknowledges partial support from NASA (grants NNX08AJ28G and GO9-0114). S.G.D. was partially supported by NSF grant AST-0909182 and the Ajax Foundation. The authors recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain.

Facilities: Keck:II (LGS AO/NIRC2, LGS AO/OSIRIS), Sloan, FLWO:2MASS, CTIO:2MASS

REFERENCES

Barnes, J. E., & Hernquist, L. 1996, ApJ, 471, 115
Becker, R. H., White, R. L., & Helfand, D. J. 1995, ApJ, 450, 559
Begelman, M. C., Blandford, R. D., & Rees, M. J. 1980, Nature, 287, 307
Bernardi, M., Hyde, J. B., Fritz, A., Sheth, R. K., Gebhardt, K., & Nichol, R. C. 2008, MNRAS, 391, 1191
Boroson, T. A., & Lauer, T. R. 2009, Nature, 458, 53
Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245
Chornock, R., et al. 2010, ApJ, 709, L39
Comerford, J. M., et al. 2009, ApJ, 698, 198
Eracleous, M., & Halpern, J. P. 2003, ApJ, 599, 886
Eracleous, M., Halpern, J. P., Gilbert, A. M., Newman, J. A., & Filippenko, A. V. 1997, ApJ, 490, 216
Escala, A., Larson, R. B., Coppi, P. S., & Mardones, D. 2004, ApJ, 607, 765
Fu, H., & Stockton, A. 2007, ApJ, 666, 794
Fu, H., & Stockton, A. 2009, ApJ, 690, 953
Gaskell, C. M. 1983, in Liege International Astrophysical Colloq. 24, Quasars and Gravitational Lenses, ed. J.-P. Swings (Cointe-Ougree: Univ. Liege), 473
Gaskell, C. M. 1996, ApJ, 464, L107
Gaskell, C. M. 2010, Nature, 463, 1
Gerke, B. F., et al. 2007, ApJ, 660, L23
Graham, A. W., Onken, C. A., Athanassoula, E., & Combes, F. 2011, MNRAS, tmp. 48
Green, P. J., Myers, A. D., Barkhouse, W. A., Mulchaey, J. S., Bennett, V. N., Cox, T. J., & Aldcroft, T. L. 2010, ApJ, 710, 1578
Greene, J. E., & Ho, L. C. 2006, ApJ, 641, L21
Gültekin, K., et al. 2009, ApJ, 698, 198
Hennawi, J. F., et al. 2006, AJ, 131, 1
Hennawi, J. F., et al. 2010, ApJ, 719, 1672
Hopkins, P. F., et al. 2010, ApJ, 715, 202
Kampczyk, P., et al. 2007, ApJS, 172, 329
Kaspi, S., Maoz, D., Netzer, H., Peterson, B. M., Vestergaard, M., & Jannuzi, B. T. 2005, ApJ, 629, 61
Kellermann, K. I., Sramek, R., Schmidt, M., Shaffer, D. B., & Green, R. 1989, AJ, 98, 1195
Kewley, L. J., Rupke, D., Jabran Zahid, H., Geller, M. J., & Barton, E. J. 2010, ApJ, 721, L48
Kochanek, C. S., Falco, E. E., & Muñoz, J. A. 1999, ApJ, 510, 590
Komossa, S., Burwitz, V., Hasinger, G., Predehl, P., Kaastra, J. S., & Ikebe, Y. 2003, ApJ, 582, L15
Kormendy, J., & Richstone, D. 1995, ARA&A, 33, 581
Larkin, J., et al. 2007, Proc. SPIE, 6269, 42
Liu, X., Greene, J. E., Shen, Y., & Strauss, M. A. 2010a, ApJ, 715, L30
Liu, X., Shen, Y., Strauss, M. A., & Greene, J. E. 2010b, ApJ, 708, 427
Madau, P., & Quataert, E. 2004, ApJ, 606, L17
Milosavljević, M., & Merritt, D. 2001, ApJ, 563, 34
Myers, A. D., Brunner, R. J., Richards, G. T., Nichol, R. C., Schneider, D. P., & Bahcall, N. A. 2007, ApJ, 658, 99
Myers, A. D., Richards, G. T., Brunner, R. J., Schneider, D. P., Strand, N. E., Hall, P. B., Blomquist, J. A., & York, D. G. 2008, ApJ, 678, 635
Peng, C. Y., Ho, L. C., Impey, C. D., & Rix, H.-W. 2010, AJ, 139, 2097
Peterson, B. M., Wanders, I., Bertram, R., Hunley, J. F., Pogge, R. W., & Wagner, R. M. 1998, ApJ, 501, 82
Richstone, D., et al. 1998, Nature, 395, 14
Rodriguez, C., Taylor, G. B., Zavala, R. T., Pihlström, Y. M., & Peck, A. B. 2009, ApJ, 697, 37
Rosario, D. J., Shields, G. A., Taylor, G. B., Salvadori, S., & Smith, K. L. 2010, ApJ, 716, 131
Schneider, D. P., et al. 2007, AJ, 134, 102
Scoville, N., et al. 2007, ApJS, 172, 38
Shen, J., Vanden Berk, D. E., Schneider, D. P., & Hall, P. B. 2008, ApJ, 685, 928
Shen, Y., et al. 2010, ApJS, submitted (arXiv:1006.5178)
Smith, K. L., Shields, G. A., Bonning, E. W., McMullen, C. C., Rosario, D. J., & Salvadori, S. 2010, ApJ, 716, 866
Stockton, A., Canalizo, G., & Close, L. M. 1998, ApJ, 500, L121
Stockton, A., Canalizo, G., Fu, H., & Keel, W. 2007, ApJ, 659, 195
Valtonen, M. J., et al. 2008, Nature, 452, 851
van Dam, M. A., et al. 2006, PASP, 118, 310
Vestergaard, M. 2002, ApJ, 571, 733
Vestergaard, M., & Peterson, B. M. 2006, ApJ, 641, 689
Wainwright, R. J., & Cowie, L. L. 1992, AJ, 103, 332
Wang, J.-M., Chen, Y.-M., Hu, C., Mao, W.-M., Zhang, S., & Bian, W.-H. 2009, ApJ, 705, L76
Wizinowich, P. L., et al. 2006, PASP, 118, 297
Woo, J.-H., et al. 2010, ApJ, 716, 269
Xu, D., & Komossa, S. 2009, ApJ, 705, L20