Introduction

Gut microbiota, a large and complex microbial community in the gastrointestinal tract, is essential to the host’s health and well-being (Koh et al. 2016; Liu et al. 2020). Gut microbiota can not only break down the indigestible carbohydrates in food (Schwalm and Groisman 2017), but also produce short-chain fatty acids (SFAs), which can provide nutrition for gut microbiota (Jia et al. 2020). The disturbance of gut microbiota induces inflammation, insulin resistance, diabetes, and osteoporosis (Ma et al. 2019; Bi et al. 2020). Even the novel coronavirus pneumonia was found associated with gut microbiota disturbance (He et al. 2020a).

Probiotics can modulate gut microbiota and cause favorable changes in the gut microbiota structure and functions (Hasan et al. 2019). When given enough dose, probiotics will reach the intestinal tract in an active state, thus improving intestinal microorganisms’ balance and producing beneficial effects on the host (Deng et al. 2020). *Lactobacillus casei* ZX633 may ameliorate the infant diarrhea microbiota, thus reducing the rate of infant bacterial diarrhea (Wang et al. 2020b). After treated with mixed lactic acid bacteria, *Staphylococcus*

The Effect of *Lactobacillus plantarum* BW2013 on The Gut Microbiota in Mice Analyzed by 16S rRNA Amplicon Sequencing

TONG TONG¹, XIAOHUI NIU¹, QIAN LI¹, YUXI LING¹, ZUMING LI¹*, JIA LIU¹, MICHAEL ZHANG², ZHIHUI BAI³, RAN XIA³, ZHICHAO WU⁵ and XIU LIU³

¹Beijing Key Laboratory of Bioactive Substances and Functional Foods and Department of Food Science, College of Biochemical Engineering, Beijing Union University, Beijing, China
²Internal Trade Food Science and Technology (Beijing) Co., Ltd, Beijing, China
³Department of Physics and Astronomy, University of Manitoba, Winnipeg, Canada
⁴Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
⁵China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, China

Submitted 21 March 2021, revised 16 May 2021, accepted 17 May 2021

Abstract

Lactobacillus plantarum BW2013 was isolated from the fermented Chinese cabbage. This study aimed to test the effect of this strain on the gut microbiota in BALB/c mice by 16S rRNA amplicon sequencing. The mice were randomly allocated to the control group and three treatment groups of *L. plantarum* BW2013 (a low-dose group of 10⁸ CFU/ml, a medium-dose group of 10⁹ CFU/ml, and a high-dose group of 10¹⁰ CFU/ml). The weight of mice was recorded once a week, and the fecal samples were collected for 16S rRNA amplicon sequencing after 28 days of continuous treatment. Compared with the control group, the body weight gain in the treatment groups was not significant. The 16S rRNA amplicon sequencing analysis showed that both the Chao1 and ACE indexes increased slightly in the medium-dose group compared to the control group, but the difference was not significant. Based on PCoA results, there was no significant difference in β diversity between the treatment groups. Compared to the control group, the abundance of *Bacteroidetes* increased in the low-dose group. The abundance of Firmicutes increased in the medium-dose group. At the genus level, the abundance of Alloprevotella increased in the low-dose group compared to the control group. The increased abundance of Ruminococcaceae and decreased abundance of *Candidatus_Saccharimonas* was observed in the medium-dose group. Additionally, the abundance of Bacteroides increased, and Alloprevotella and *Candidatus_Saccharimonas* decreased in the high-dose group. These results indicated that *L. plantarum* BW2013 could ameliorate gut microbiota composition, but its effects vary with the dose.

Keywords: *Lactobacillus plantarum*, composition, gut microbiota, 16S rRNA amplicon sequencing, BALB/c mice

* Corresponding author: Z. Li, Beijing Key Laboratory of Bioactive Substances and Functional Foods and Department of Food Science, College of Biochemical Engineering, Beijing Union University, Beijing, China; e-mail: zmli20130522@163.com
© 2021 Tong Tong et al.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Lactic acid bacteria and *Bifidobacteria* are the most commonly used probiotics (He et al. 2020b). *Lactobacillus plantarum*, a rod-shaped, facultative anaerobic, Gram-positive lactic acid bacterium, can effectively improve the health of the host by decreasing the level of blood-stream cholesterol, managing gastrointestinal disorders, and preventing diarrhea (Liu et al. 2015; Seddik et al. 2017a). Wang et al. (2018) found that *L. plantarum* ZDY2013 remits ulcerative colitis by modifying the bacterial composition and function, which linked the microbiota disorders and ulcerative colitis. Analysis of *L. plantarum* ZDY2013 revealed that ulcers were not found in the group of *L. plantarum* ZDY04 (PLA04) and *L. plantarum* ZDY01 (PLA01). As a result, both serum trimethylamine N-oxide and cecal trimethylamine levels were reduced significantly only by *L. plantarum* ZDY04. Li et al. (2019) demonstrated the loss of gut microbiota diversity induced by glycerol monolaurate could be remedied by *L. plantarum* T17, but the same effects were not found in the group of *L. plantarum* T34. *L. plantarum* BW2013 was isolated from fermented Chinese cabbage, and the influence of this strain on the gut microbiota is unknown.

Many methods were used to study the gut microbiota, such as the culture of gut microbiota, polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE), quantitative real-time polymerase chain reaction (qRT-PCR), 16S rRNA amplicon sequencing (Margiotta et al. 2020; Ling et al. 2020). As a relatively new technology, 16S rRNA amplicon sequencing opens new potential avenues of research and facilitates in-depth studies exploring microbial populations and their dynamics in the animal gut (Peng and Zhang 2009; Kim and Isaacson 2015). The 16S rRNA technology has been widely used in biomedical research, linking the establishment between microbiota disorders and human disease (Evariste et al. 2019). For example, Zhu et al. (2020) used 16S rRNA amplicon sequencing to study the gut microbiota of ulcerative colitis with different glucocorticoid response types and found that they had different bacterial composition and function, which linked the microbiota disorders and ulcerative colitis. Analysis of 16S rRNA amplicon sequencing of intestinal microbiota found that high-calorie diet and lipopolysaccharide atomization synergistically promoted pneumonia process in rat pups, which is related to changes in the structure of intestinal flora (Bai et al. 2020).

Bacterial strains and cultural conditions. *L. plantarum* BW2013 was isolated from fermented Chinese cabbage and preserved by the China General Microbiological Culture Collection Center (CGMCC NO. 9462). *L. plantarum* BW2013 was grown anaerobically in the Man-Rogosa-Sharpe medium broth for 20 h at 37°C, and then centrifuged at 3,000 g for 15 min. The bacteria were washed twice and resuspended in sterile phosphate-buffered saline (PBS, pH 7.4).

Adhesion to Caco-2 cell. Caco-2 cell cultures were determined by the method of Fonseca et al. (2021). After cultured in MRS broth for 24 h at 37°C and washed twice with phosphate-buffered solution, the bacteria were resuspended in DMEM approximately 10^8 CFU/ml. Then, 1 ml bacterial suspension was added to cells and incubated for 60 min at 37°C in a 5% CO2 atmosphere. Subsequently, the cells were washed three times with 1 ml of PBS to remove non-adherent bacterial cells and lysed with 1 ml of Triton-X solution at 37°C for 5 min. After the above procedures, the solution was serial diluted and plated on MRS agar to determine the bacterial counts.

Animal, rearing and grouping. The mice (8-week-old male) used in the experiment were purchased from Vital River Laboratories Inc. (Beijing, China). Mice were singly caged under specific pathogen-free conditions at 20–22°C, and relative humidity of 40–60%. Before intragastric administration, the mice were weighed, and the feces were collected for 16S rRNA gene amplicon sequencing analysis. Then the mice were randomly allocated to four groups (each group n = 10):
Lactobacillus plantarum‘ effect on gut microbiota

control group (NC) and three treatment groups of L. plantarum BW2013: a low-dose (10^8 CFU/ml) group (LDG), a medium-dose (10^9 CFU/ml) group (MDG), and a high-dose group (10^10 CFU/ml) (HDG). From 9 a.m. to 10 a.m. every day, the NC group was given sterile PBS (pH 7.4), and treatment groups were administered the corresponding of L. plantarum BW2013 suspension at 400 µl/d once daily over 28 days. All mice were weighed once a week. During the experiment, the mice were fed a normal diet.

16S rRNA gene amplicon sequencing. The fecal genomic DNA was extracted according to the manufacturer’s guidelines of DP712-Magnetic Bead Soil and Fecal Genomic DNA Extraction Kit (Tiangen, China). For 16S rRNA gene amplicon sequencing, the DNA samples were amplified with primers 27F (5'-AGAGTTTGATCMTGGCTCAG-3') and 519R (5'-GWATTACCGCGGCKGCTG-3’), which targeted V3-V4 hypervariable regions of the bacterial 16S rRNA gene (Ranasinghe et al. 2012). PCR program was applied, as follows: the initial denaturation at 95°C for 15 min, the amplification of 34 cycles under various conditions (at 95°C for 30 s, 58°C for 30 s and 68°C for 1 min), and the final extension at 68°C for 5 min. Then the purified amplicons were sequenced with an Illumina Miseq sequencing platform at Novogene Bioinformatics Technology Co., Ltd. (Tianjin, China).

The same volume of 1 × loading buffer (contained SYB green) was mixed with PCR products, and electrophoresis was operated on 2% agarose gel for detection. PCR products were mixed in equal density ratios. Then, the mixture of PCR products was purified with Gene JETTM Gel Extraction Kit (Thermo Scientific).

Sequencing libraries were generated using Ion Plus Fragment Library Kit 48 rxns (Thermo Scientific) following the manufacturer’s recommendations. The library quality was assessed on the Qubit® 2.0 Fluorometer (Thermo Scientific). At last, the library was sequenced on an Ion S5TM XL platform and 400 bp/600 bp single-end reads were generated.

Statistical analysis. The analysis of variance for multiple comparisons was performed in Prisma software (version 5). Statistical differences were evaluated by analysis of variance (ANOVA) and Dunnett-t pairwise comparisons. Cutadapt (V1.9.1) was used for quality control (Martin 2011). Uparse software (Uparse v7.0.1001, http://www.drive5.com/uparse/) was applied to cluster the clean reads to OTUs (Edgar 2013). Species annotation analysis was carried out using the Mothur method and SSSUrRNA database of SILVA132 (http://www.arb-silva.de/) to obtain taxonomic information at each taxonomic level (Quast et al. 2013).

Results

Tolerance to simulated digestion test and adhesion to Caco-2 cell. The survival rate of L. plantarum BW2013 after the simulated gastrointestinal digestion process was 2.90%, and the adhesion rates of L. plantarum BW2013 was 2.4%.

Effect of L. plantarum BW2013 on the body weight gain of mice. Before intragastric administration, the mice were weighed. Then body weight was recorded once a week. The weight changes of mice were shown in Fig. 1. There was no significant difference in body weight gain among the four groups.

Overall sequences and OTUs. An average of 85,386 reads was measured per sample by 16SrRNA amplicon sequencing, and an average of 80,298 clean reads after quality control. The clean reads of all samples were clustered by OTUs (operational taxonomic units) with 97% identity. A total of 1,120 OTUs were obtained, and 74 OTUs were annotated to the genus level.

Diversity indexes among the NC and treatment groups. Compared with NC group, the Chao 1 and ACE indexes (Table I) were slightly higher than those in the MDG group. But there were no significant differences for all the α-diversity indexes among the NC and treatment groups. Compared with the initial state, the Chao1 index of the NC and MDG groups increased significantly, respectively (p = 0.0379, p = 0.0267).

The changes in gut microbiota among groups were examined by using principal coordinate analysis (PCoA). Based on weighted unifrac distance, PCoA analysis was conducted to compare the microbial community composition of different samples (Fig. 2). On the weighted unifrac PCoA score plot, the NC group’s symbols were separated from those of the treatment groups, which revealed that the microbiome
composition of treatment groups was different from those of the NC group, but there was no significant difference. Additionally, there was no significant difference between initial state and NC group.

Relative abundance of gut microbiota at phylum and genus levels. The relative abundance of gut microbiota was measured at the phylum (Fig. 3) and genus (Fig. 4) levels.
Examining the changes in the gut microbiota, the top ten bacterial phyla of the NC and treatment groups were evaluated. The results showed that Bacteroidetes was the most abundant phylum, followed by Firmicutes, Deferribacteres, and Proteobacteria in the NC and treatment groups. *L. plantarum* BW2013 mainly affected the abundance of Bacteroidetes and Firmicutes, which accounted for 97% of the total bacteria (Fig. 3). Compared with the NC group, the abundance of Bacteroidetes increased significantly in the LDG group \((p = 0.04) \). Additionally, the relative abundance of Firmicutes increased significantly in the MDG group compared to the NC group \((p = 0.01) \).

The four most prevalent bacterial genera in the guts of the NC and treatment groups were *Alistipes*, *Alloprevotella*, *unidentified_Ruminococcaceae*, and *Bacteroides* (Fig. 4). Compared to the NC group, *Alistipes* exhibited significantly decreased proportions in the HDG group \((p = 0.038) \). In addition, the abundance of *Candidatus_Saccharimonas* decreased significantly in the MDG and HDG groups \((p = 0.01, p = 0.007) \). By contrast, *Alloprevotella*, *unidentified_Ruminococcaceae*, and *Bacteroides* showed an upward trend. The abundance of *Alloprevotella* in the LDG group was significantly higher than that in the NC group \((p = 0.001) \). Moreover, compared with the NC group, the abundance of *unidentified_Ruminococcaceae* in the MDG group increased significantly \((p = 0.014) \), while the abundance of *Lactobacillus* increased slightly, but there was no significant difference. In addition, the proportion of *Bacteroides* increased significantly in the HDG group compared to the NC group \((p = 0.038) \).

Clustering analysis of species abundance. The heat map showed the relative abundance of the main identified bacteria at the genus level. As shown in Fig. 5, the clustering of gut microbiota was different in the groups. In the initial state, gut microbiota was mainly clustered in Firmicutes. In the NC group, Bacteroidetes were concentrated in the genus of *Desulfovibrio*. Both *Parabacteroides* and *Alloprevotella* from Bacteroidetes dominated the LDG group. In the MDG group, there were large quantities of *Ruminococcaceae* and *Lachnospira* in Firmicutes. In the HDG group, Bacteroidetes were concentrated in the genus of *Bacteroides*.

Table I

The α diversity index of gut microbiota in each group.

Group	Observed species	Shannon	Simpson	Chao1	ACE	Goods coverage
IS	532	6.566	0.971	534.371	540.911	0.999
NC	535.6	6.433	0.968	538.985	545.437	0.999
LDG	559	6.622	0.976	563.100	570.366	0.999
MDG	580	6.728	0.978	582.440	588.671	0.999
HDG	584.8	6.640	0.971	616.129	619.041	0.999
Discussion

The consumption of probiotics has been reported to modulate the composition and structure of the gut microbiome and treat multiple diseases, but some functional activities are strain-specific (Biagioli et al. 2019; Hsu et al. 2019). There are also various methods for detecting gut microbiota, among which 16S rRNA amplicon sequencing is a faster and cheaper way to study the gut microbiome (Goldfeder et al. 2017). In this study, the effect of L. plantarum BW2013 on gut microbiota composition in BALB/c mice was investigated by 16S rRNA amplicon sequencing.

16S rRNA amplicon sequencing could be used to determine all microorganisms’ genetic composition and community function in environmental samples (Qi et al. 2019). In our study, the results of 16S rRNA amplicon sequencing showed that the ACE index and Chao1
index slightly increased in the MGD group compared to the NC group, but there was no significant difference. A previous study also showed that the microbial richness (Chao1 and Shannon) was not significantly improved after the *L. plantarum* LIP-1 treatment (Song et al. 2017), which is consistent with our results. Based on PCoA, there was no significant difference in β diversity in the treatment groups compared to the NC group. There was also no significant difference between the initial state and NC group.

At the phylum level, the abundance of Bacteroidetes and Firmicutes accounted for 97% of the total bacteria. Bacteroidetes can regulate the chaotic state of intestinal microorganisms to a balanced state (Wang et al. 2020a). Firmicutes may play important roles in gastrointestinal health, and affect the metabolism and function of gut microbes (Zhao et al. 2018). In this study, the relative abundance of Bacteroidetes in the LDG group was significantly higher than that in the NC group. Li et al. (2017) found that *L. casei* CCFM4419 increased the abundance of Bacteroidetes, which is similar to our result. Our study showed that the abundance of Firmicutes increased significantly in the MDG group compared with the NC group. *L. plantarum* 12 increased the relative abundance of Firmicutes (Sun et al. 2020), which is similar to our result. Contrary to our results, a strain of *L. plantarum* decreased the abundance of Firmicutes (Zhang et al. 2019).

At the genus level, *L. plantarum* BW2013 significantly increased the abundance of *Alloprevotella* and *Ruminococcaceae*, and significantly decreased the abundance of both *Alistipes* and *Candidatus_Saccharimonas*. *Alistipes* is pathogenic in colorectal cancer and is associated with mental signs of depression (Parker et al. 2020). *Candidatus_Saccharimonas* has been associated with inflammatory diseases, such as gingivitis and other periodontal dysfunctions (Cruz et al. 2020). *Alloprevotella* can produce vitamin B1 and folic acid, and an increase in the abundance of *Alloprevotella* was associated with the improvement of intestinal disorders Seddik et al. 2017; Qi et al. 2019). Based on our results, the abundance of *Alloprevotella* in the LDG group was significantly higher than in the NC group. Kong et al. (2018) found that the abundance of *Alloprevotella* increased significantly after probiotics treatment. This finding is similar to our result. *Ruminococcaceae* can produce butyrate, which can provide energy for intestinal epithelial cells (LeBlanc et al. 2017). In our study, compared with the NC group, the abundance of *Ruminococcaceae* in the MDG group increased significantly. Wang et al. (2018) found that the abundance of *Ruminococcaceae* showed a decreasing trend in *L. plantarum* ZDY2013 group, which is different from our result. It may be due to the different strains used in the experiment. Biagioli et al. (2019) mentioned that some functional activities are strain-specific. Our study showed that compared with the NC group, the abundance of *Bacteroides* in the HDG group increased significantly. Li et al. (2017) found that *L. casei* CCFM4419 increased the abundance of *Bacteroides*, which is consistent with our result. *Bacteroides* are producers of short-chain fatty acids (SCFAs) (Du et al. 2020). SCFAs are produced by the fermentation of microorganisms in the gut and help regulate host energy homeostasis and physiological processes (Horiiuchi et al. 2020). This correlation means that the presence of *L. plantarum* BW2013 can provide a positive impact on host health. In our study, *Desulfovibrio* was enriched in the NC group in the heat map, while *Parabacteroides*, *Alloprevotella*, *Ruminococcaceae*, *Lachnospira*, and *Bacteroides* were concentrated in the treatment groups. Our results collectively suggested that *L. plantarum* BW2013 exerted an effect on ameliorating gut microbiota composition, but its effects vary with the dose.

Conclusion

In this study, our results showed that treatment with *L. plantarum* BW2013 exerted an effect on the gut microbiota composition in mice. At the phylum level, the abundance of Bacteroidetes increased in the LDG group compared with the NC group, while the abundance of Firmicutes increased in the MDG group. At the genus level, the abundance of *Alloprevotella* was higher in the LDG group compared with the NC group. By contrast, the abundance of *Ruminococcaceae* increased in the MDG group, but *Candidatus_Saccharimonas* decreased. In addition, *Bacteroides* abundance increased in the HDG group, but *Alistipes* and *Candidatus_Saccharimonas* decreased. These results indicated that *L. plantarum* BW2013 had the effect of ameliorating the composition of gut mice, but its effect varies with dosing.

Ethical approval

This project was approved by the Ethics Committee of Functional Inspection Center of Health Food of Applied Science and Humanities in Beijing Union University (No. 2019-04).

Authors’ contributions

Zuming Li, Jia Liu and Zhihui Bai conceived and designed the experiments; Tong Tong, Qian Li and Xuyi Ling performed the experiments; Tong Tong, Qian Li, Xiaohui Niu and Michael Zhang analyzed the data; Tong Tong and Xiaohui Niu wrote the paper; Ran Xia, Zhihao Wu and Xiu Liu gave important suggestions; Zuming Li, Michael Zhang, Tong Tong and Xiaohui Niu revised the manuscript.

Acknowledgments

This paper was supported by Beijing Natural Science Foundation [grant number 6173033], Beijing Union University Foundation [grant number 12213611605-001]. Academic Research Projects of
Beijing Union University [grant number ZK70202003], and Internal Trade Food Science and Technology (Beijing) Co., Ltd Cooperation Projects [grant number 202116].

Conflict of interest

The authors do not report any financial or personal connections with other persons or organizations, which might negatively affect the contents of this publication and/or claim authorship rights to this publication.

Literature

Bai C, Liu T, Xu J, Ma X, Huang L, Liu S, Yu H, Chen J, Gu X. Effect of high calorie diet on intestinal flora in LPS-induced pneumonia rats. Sci Rep. 2020 Feb 3;10(1):1701. https://doi.org/10.1038/s41598-020-56832-0

Bi R, Gao J, Pan L, Lai X. Progress in the treatment of diabetes mellitus based on intestinal flora homeostasis and the advancement of holistic analysis methods. Nat Prod Commun. 2020;15(4):1–11. https://doi.org/10.1177/1949097620091841

Biagioli M, Capobianco D, Carino A, Marchiano S, Fiorucci C, Ricci P, Distritti E, Fiorucci S. Divergent effectiveness of multispecies probiotic preparations on intestinal microbiota structure depends on metabolic properties. Nutrients. 2019 Feb 2;11(2):325. Cruz BCDS, Conceição LLD, Mendes TAO, Ferreira CLLLF, Gonçalves RV, Peluzio MDCG. Use of the synthetic VSL#3 and yacon-based concentrate attenuates intestinal damage and reduces the abundance of Candidatus Saccharinomas in a colitis-associated carcinogenesis model. Food Res Int. 2020 Nov;137:109721. https://doi.org/10.1016/j.foodres.2020.109721

Deng X, Tian H, Yang R, Han Y, Wei K, Zheng C, Liu Z, Chen T. Oral probiotics alleviate intestinal dysbacteriosis for people receiving bowel preparation. Front Med (Lausanne). 2020 Feb 27;7:73. https://doi.org/10.3389/fmed.2020.00073

Du X, Xiang Y, Lou F, Tu P, Zhang X, Hu X, Lyu W, Xiao Y. Microbial community and short-chain fatty acid mapping in the intestinal tract of guinea pigs. (Basel). 2020 Jun 9;10(6):1006. https://doi.org/10.3390/an10060100

Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013 Oct;10(12):996–998. https://doi.org/10.1038/nmeth.2604

Evariste L, Barret M, Mottier A, Mouchet F, Gauthier L, Pinelli E. Gut microbiota of aquatic organisms: A key endpoint for ecotoxicological studies. Environ Pollut. 2019 May;248:989–999. https://doi.org/10.1016/j.envpol.2019.02.101

Fonseca HC, de Sousa Melo D, Ramos CL, Dias DR, Schwan RF. The adhesion of enteropathogenic bacteria to Caco-2 and HT-29 cells. Probiotic properties of lactobacilli and their ability to inhibit the intestinal flora as a potential strategy to fight SARS-CoV-2 infection. Front Microbiol. 2020a Jun 9:11:1388. https://doi.org/10.3389/fmicb.2020.01388

He Y, Xu R, Wang W, Zhang J, Hu X. Probiotics, prebiotics, anti-biotic, Chinese herbal medicine, and fecal microbiota transplantation in irritable bowel syndrome: Protocol for a systematic review and network meta-analysis. Medicine (Baltimore). 2020b Aug 7;99(32):e21502. https://doi.org/10.1097/MD.0000000000021502

Horichi H, Kamikado K, Aoki R, Suganuma N, Nishijima T, Nakatani A, Kimura I. Bifidobacterium animalis subsp. lactis GCL2505 modulates host energy metabolism via the short-chain fatty acid receptor GPR43. Sci Rep. 2020 Mar 5;10(1):4158. https://doi.org/10.1038/s41598-020-60984-6

Hsu CN, Hou CY, Chan JYH, Lee CT, Tain YL. Hypertension programmed by perinatal high-fat diet: effect of maternal gut microbiota-targeted therapy. Nutrients. 2019 Dec 2;11(12):2908. https://doi.org/10.3390/nu11122908

Jia Q, Wang L, Zhang X, Ding Y, Li H, Yang Y, Zhang A, Li Y, Lv S, Zhang J. Prevention and treatment of chronic heart failure through traditional Chinese medicine: Role of the gut microbiota. Pharmacol Res. 2020 Jun;151:104552. https://doi.org/10.1016/j.pharmres.2019.104552

Kim HB, Isaacson RE. The pig gut microbial diversity: Understanding the pig gut microbial ecology through the next generation high throughput sequencing. Vet Microbiol. 2015 Jun 12;177(3–4):242–251. https://doi.org/10.1016/j.vetmic.2015.03.014

Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016 Jun 2;165(6):1332–1345. https://doi.org/10.1016/j.cell.2016.05.041

Kong C, Gao R, Yan X, Huang L, Qin H. Probiotics improve gut microbiota dysbiosis in obese mice fed a high-fat or high-sucrose diet. Nutrition. 2019 Apr;60:175–184. https://doi.org/10.1016/j.nut.2018.10.002

LeBlanc JG, Chain F, Martin R, Bermúdez-Humárán LG, Courau S, Langella P. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microb Cell Fact. 2017 May 8;16(1):79. https://doi.org/10.1186/s12934-017-0691-z

Li X, Wang E, Yin B, Fang D, Chen F, Wang G, Zhao J, Zhang H, Chen W. Effects of Lactobacillus casei CCFM419 on insulin resistance and gut microbiota in type 2 diabetic mice. Benef Microbes. 2017 May 30;8(3):421–432. https://doi.org/10.3920/BM2016.0167

Li Y, Liu T, Zhang X, Zhao M, Zhang H, Feng F. Lactobacillus plantarum helps to suppress body weight gain, improve serum lipid profile and ameliorate low-grade inflammation in mice administered with glycerol monolaurate. J Funct Food. 2019;53:54–61. https://doi.org/10.1016/j.jff.2018.12.015

Ling Y, Li W, Tong T, Li Z, Li Q, Bai Z, Wang G, Chen J, Wang Y. Assessing the microbial communities in four different daqus by using PCR-DGGE, PLFA, and Biolog analyses. Pol J Microbiol. 2020;69(1):27–37. https://doi.org/10.33070/pjmi.2020-004

Liu WH, Yang CH, Lin CT, Li SW, Cheng WS, Jiang YP, Wu CC, Courau S, Langella P. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microb Cell Fact. 2017 May 8;16(1):79. https://doi.org/10.1186/s12934-017-0691-z

Liu Z, Luo G, Du R, Sun W, Li J, Lan H, Chen P, Yuan X, Cao D, Li Y, et al. Effects of spaceflight on the composition and function of the human gut microbiota. Gut Microbes. 2020 Jul 3;11(4):807–819. https://doi.org/10.1080/19490976.2019.1710091

Nakatani A, Kimura I. Gut microbiota-targeted therapy. Nutrients. 2019 Dec 2;11(12):2908. https://doi.org/10.3390/nu11122908

Qiao L, Li Y, Li P, Wang M, Wang J, Tang Z, Wang T, Luo L, Wang C, Wang T, et al. Research progress in the relationship between type 2 diabetes mellitus and intestinal flora. Biomed Pharmacother. 2019 Sep;117:109138. https://doi.org/10.1016/j.biopha.2019.109138

Margiotta E, Miragoli F, Callegari ML, Vettoretti S, Caldiroli L, Meneghini M, Zanoni F, Messa P. Gut microbiota composition and frailty in elderly patients with Chronic Kidney Disease. PLoS One. 2020 Apr 1;15(4):e0228530.
Lactobacillus plantarum' effect on gut microbiota

Shinde T, Vemuri R, Shastri MD, Perera AP, Tristram S, Stanley R, Eri R. Probiotic Bacillus coagulans MTCC 5856 spores exhibit excellent in vitro functional efficacy in simulated gastric survival, mucosal adhesion and immunomodulation. J Funct Food. 2019;52:100–108. https://doi.org/10.1016/j.jff.2018.10.031

Song JJ, Tian WJ, Kwoy LY, Wang YL, Shang YN, Menghe B, Wang JG. Effects of microencapsulated Lactobacillus plantarum LIP-1 on the gut microbiota of hyperlipidaemic rats. Br J Nutr. 2017 Oct; 118(7):481–492. https://doi.org/10.1017/S0007114517002380

Sun M, Liu Y, Song Y, Gao Y, Zhao F, Luo Y, Qian F, Mu G, Tuo Y. The ameliorative effect of Lactobacillus plantarum-12 on DSS-induced murine colitis. Food Funct. 2020 Jun 24;11(6):5205–5222. https://doi.org/10.1039/d0fo00007h

Wang C, Zhao J, Zhang H, Lee YK, Zhai Q, Chen W. Roles of intestinal bacteroides in human health and diseases. Crit Rev Food Sci Nutr. 2020a Aug 6;1–19. https://doi.org/10.1080/10408398.2020.1802695

Wang X, Zhang M, Wang W, Lv H, Zhang H, Liu Y, Tan Z. The in vitro effects of the probiotic strain, Lactobacillus casei ZX633 on gut microbiota composition in infants with diarrhea. Front Cell Infect Microbiol. 2020b Sep 10;10:576185. https://doi.org/10.3389/fcimb.2020.576185

Wang Y, Guo Y, Chen H, Wei H, Wan C. Potential of Lactobacillus plantarum ZDY2013 and Bifidobacterium bifidum WBIN03 in relieving colitis by gut microbiota, immune, and anti-oxidative stress. Can J Microbiol. 2018 May;64(5):327–337. https://doi.org/10.1139/cjm-2017-0716

Zhao LL, Yin HC, Lu TF, Niu YJ, Zhang YY, Li SQ, Wang YP, Chen HY. Application of high-throughput sequencing for microbial diversity detection in feces of specific-pathogen-free ducks. Poult Sci. 2018 Jul 1;97(7):2278–2286. https://doi.org/10.3382/ps.20x348

Zhu Y, Luo J, Yang Z, Miao Y. High-throughput sequencing analysis of differences in intestinal microflora between ulcerative colitis patients with different glucocorticoid response types. Genes Genomics. 2020 Oct;42(10):1197–1206. https://doi.org/10.1007/s13258-020-00986-w