Effect of nano-size on magnetostriction of BiFeO$_3$ and exceptional magnetoelectric coupling properties of BiFeO$_3$-P(VDF-TrFE) polymer composite films for magnetic field sensor application

Sonali Pradhan1,2, Pratik Deshmukh1,2, Rahul C Kambale3, Tulshidas C Darvade1,4, S Satapathy1,2,* and Shovan K Majumder1,2

1 Laser Biomedical Applications Division, Raja Ramanna Centre for Advanced Technology, Indore 452 013, Madhya Pradesh, India
2 Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400 094, Maharashtra, India
3 Department of Physics, Savitribai Phule Pune University, Pune 411 007, Maharashtra, India
4 Department of Physics, Sir Parashurambhau College, Pune 411 030, Maharashtra, India

E-mail: sринu73@rrcat.gov.in and sринusатапathy@gmail.com

Received 27 December 2022
Accepted for publication 6 March 2023
Published 17 March 2023

Abstract
The existence of magnetostriction in bulk BiFeO$_3$ is still a matter of investigation and it is also an issue to investigate the magnetostriction effect in nano BiFeO$_3$. Present work demonstrates the existence of magnetostriective strain in superparamagnetic (SPM) BiFeO$_3$ nanoparticles at room temperature and the magnetoelectric (ME) coupling properties in composite form with P(VDF-TrFE). Despite few reports on the magnetostriction effect in bulk BiFeO$_3$ evidenced by the indirect method, the direct method (strain gauge) was employed in this work to examine the magnetostriction of SPM BiFeO$_3$. In addition, a high ME coupling coefficient was observed by the lock-in technique for optimized BiFeO$_3$-P(VDF-TrFE) nanocomposite film. These nanocomposite films also exhibit room-temperature multiferroic properties. These results provide aspects of material with immense potential for practical applications in spintronics and magneto-electronics applications. We report a ME sensor using SPM BiFeO$_3$-P(VDF-TrFE) nanocomposite film for detection of ac magnetic field.

Supplementary material for this article is available online

Keywords: nanocomposites, magnetoelectric effect, superparamagnetic, magnetostriction, BiFeO$_3$ nanoparticles

(Some figures may appear in colour only in the online journal)
1. Introduction

Magnetoelastic (ME) multiferroic materials are remarkable for strong coupling of electric, magnetic, and structural degrees of freedom, which provides ferroelectricity, ferromagnetism, and ferroelasticity simultaneously [1]. The ME effect contributes to intensive scientific explorations in the field of sensors, actuators, memories, spintronics and transducers, which have potentially huge commercial values [2–5]. However, the magnitude and operating temperatures of observed ME coupling have been too low for practical applications. Most single-phase materials show ME coupling at extreme conditions (high magnetic field and low temperature). Therefore, the fabrication of single-phase ME materials at room temperature is a challenge for current active research. Among several multiferroics, the only known room-temperature multiferroic material for potential practical interest is bismuth ferrite (BiFeO$_3$) which is ferroelectric ($T_C \sim 1100$ K) and antiferromagnetic ($T_N \sim 640$ K) [6]. It exhibits a weak net magnetization due to G-type magnetic ordering via Dzyaloshinskii-Moriya (D-M) interaction among nearest neighbor Fe$^{3+}$ spins with an incommensurate cycloidal spin structure having a periodicity of 62 nm [7]. Bismuth ferrite shows quadratic and higher-order ME coupling at room temperature, while linear ME coupling is observed at high electric and magnetic fields [8, 9]. The presence of the spin cycloid nullifies linear ME coupling between electric polarization and magnetization. However, it is important to note that bulk BiFeO$_3$ (BFO) shows negative magnetostrictive ME coupling which was reported by Lee et al. [10]. According to the report, the magnetostrictive origin suppresses the electric polarization at the Fe site below T_N outweighing the inverse D-M interaction. In 2010 Tokunaga et al. observed field-induced polarization change with magnitudes of approximately 200 $\mu C \cdot m^{-2}$ along with one of the principal axes in single-domain crystals of BFO [11]. The suitability of the BFO becomes constrained in many fields because of its spiral-modulated spin structure.

Despite intense study on BFO over the past decades a fundamental understanding of structure-property correlations in BFO is still lacking, specifically the nature of the magnetic response on the size. Moreover, low dimension (<62 nm) is expected to lead to linear ME coupling due to modification in long-range spiral modulated spin structure [12, 13]. To overcome this hindrance, we have considered low dimensional confinement. Moreover, BFO displays novel physical properties with a decrease in size due to an increased surface-to-volume ratio [14]. Recently, it has been shown that BFO nanoparticles exhibit strong size-dependent magnetic properties: (1) suppression of the spiral spin structure increases with decreasing nanoparticle size, (2) uncompensated spins with spin pinning and strain anisotropies at the surface and (3) presence of oxygen vacancies and impurities [15]. BFO below a critical size affords single-domain magnetic nanoparticles exhibiting superparamagnetic (SPM) behavior. In the current work, we studied the magnetic properties of BFO nanopowders with a single domain, obtained by the auto combustion technique. The existence of magnetostrictive properties in SPM BFO is a matter of investigation. Therefore, a study on magnetostrictive properties of super paramagnet BFO has been highlighted here. Further, the use of magnetostrictive properties of SPM BFO has been explored in ferroelectric polymer composite films.

To utilize the SPM BFO nanoparticles for high performance ME coupling effect, a perfect flexible ferroelectric matrix is required. In these circumstances, P(VDF-TrFE) (poly(vinylidene fluoride-trifluoroethylene)) copolymer is an ultimate candidate for ferroelectric matrix because of its high energy density, high insulating property and good piezoelectric properties [16, 17]. Moreover, among the five crystalline phases of polyvinylidene fluoride (PVDF), the β-phase is the best ferroelectric phase to implement [18]. Among the ME composites, polymer-based composites have advantages over ceramic-based composites because of non-deterioration during operation and are compatible with industrial requirements without large leakage current [19]. Nevertheless, the ME coupling effect of SPM BFO embedded in the P(VDF-TrFE) matrix has not yet been reported. In the current work, the structural, magnetic and magnetostrictive properties of SPM BFO and ME coupling properties in BFO-P(VDF-TrFE) nanocomposite films are investigated.

In general, the ME coupling in composite systems appears due to elastic interaction between the ferroelectric and magnetic phases [20, 21]. The direct ME coupling in ME composite has been noticed to happen mainly through strain [22]. The strain induced in the magnetic phase by an external magnetic field due to magnetostriction. Magnetostriction is defined as a change in dimensions of the material in regards to an external applied magnetic field [23, 24]. It is computed as $\lambda = \Delta l/l$ [25, 26]. The magnetostriction of a material can be examined by direct and indirect methods. In the direct method, magnetostrictive strain is measured as a function of the externally applied DC magnetic field, which is employed here.

Due to the SPM behavior of BFO nanoparticles, the magnetic moment of nanoparticles can be more easily flipped in the polymer under an applied magnetic field at room temperature, which might create strain in the polymer matrix. Moreover, the interface effect between nanoparticles and the polymer matrix is a prominent factor for ME coupling properties, which was easily achieved through small-size BFO nanoparticles due to the increasing ratio of the interface area to volume. According to surface elasticity theory, it was found that the interfacial stress due to the inclusion of nanoparticles in polymer shows a short-range effect, which introduces internal stresses in the matrix resulting in output voltage [27, 28]. Different volume % of SPM BFO nanoparticles in polymer matrix influence the dielectric, ferroelectric and magnetic properties of the nanocomposite films. Therefore, BFO_P(VDF-TrFE) nanocomposite films with different volume % (0.2, 0.5, 1, 1.5, 3 and 5%) of BFO nanoparticles were prepared to examine the room temperature multiferroic properties as well as the magnetostrictive properties of nanocomposite films and generation of ME voltage in response to external DC magnetic field.
2. Experimental details

2.1. Sample preparation

Commercially available bismuth nitrate pentahydrate (Bi(NO$_3$)$_3$·5H$_2$O) (Alfa Aesar, 99.99%) and iron nitrate nonahydrate (Fe(NO$_3$)$_3$·9H$_2$O) (Alfa Aesar, 99.99%) were used as starting materials for BiFeO$_3$ nanoparticles synthesis. They were dissolved in distilled water and stirred at room temperature. After half an hour, these two solutions were mixed together and stirred at 80 °C followed by the addition of glycine. Finally, the mixture was combusted at an optimized temperature of 200 °C. After the self-propagating combustion, the dried gel was burnt out completely to obtain the BiFeO$_3$ nanopowders. For nanocomposite film preparation, P(VDF-TrFE) (70:30, PolyK Technologies) powder was first dissolved in N,N-dimethyl formamide (DMF) (Fluka, 99.9%) up to getting the transparent solution. Previously synthesized BiFeO$_3$ nanoparticles were added to this solution and stirred for 2 h to obtain a homogeneous mixture. In this method, the DMF + P(VDF-TrFE) + BFO solution was sonicated for 48 h using the ultrasonic probe to avoid the agglomeration of nanoparticles. Nanocomposite films were prepared by using the doctor blade method [29]. Average thicknesses of 50 μm films were prepared by keeping constant velocity and gap size between the blade and glass substrate. The stretched film on the glass substrate was kept inside an oven at 100 °C for polymer crystallization and solvent evaporation. Finally, the samples were cooled at room temperature overnight and peeled off from glass substrate with the help of water. The content of the nanoparticles in the polymer matrix varied as volume % of 0.2, 0.5, 1, 1.5, 3 and 5 (Inset of figure 1(b)).

2.2. Phase analysis

The compositional and structural characterizations of BiFeO$_3$ nanoparticles and composite films were obtained using x-ray diffraction (XRD) measurements performed with an x-ray diffractometer (Rigaku Geigerflex) with CuK$_α$ (wavelength λ = 1.54 Å) as the radiation source. The XRD scans were performed with a 2θ step interval of 0.01°. Figure 1(a) shows the Rietveld refinement of the XRD patterns for BiFeO$_3$ nanoparticles using Fullprof software. The well-fitted refinement ($\chi^2 = 1.86$) confirms a rhombohedral perovskite structure with space group symmetry $R3c$ where the lattice constants value a and c are found to be 5.58 Å and 13.86 Å respectively. It is seen that all the nanoparticles show a single-phase and no other secondary phase is found in the refinement. The average crystallite size of BiFeO$_3$ nanoparticles is estimated to be approximately 18 nm with the help of the Scherer formula

$$P = \frac{0.9 \times \lambda}{\beta \times \cos \theta}$$

(1)

where P is the crystallite size, β is the full-width at half maxima of XRD peak in radians, λ is the x-ray wavelength and θ is the Bragg angle. The XRD patterns of all BiFeO$_3$ P(VDF-TrFE) nanocomposite films (figure 1(b)) show that the two phases retain their identities without affecting each other.

2.3. Size and morphological analysis

Figure 1(c) shows transmission electron microscopy (TEM) image of BiFeO$_3$ nanoparticles. For TEM micrograph, samples were prepared by dispersing the BFO nanoparticles in methanol using sonicator and put on carbon coated copper grid. Uniform spherical shaped nanoparticles is observed in the TEM. Field emission scanning electron microscopy (FESEM) micrograph of 1.5 vol % nanocomposite film is shown in figure 1(d). The spherulite chain like structure of the polymer in nanocomposite is visible with small disruption due to loading of nanoparticles. Moreover, BiFeO$_3$ nanoparticles completely embedded inside the polymer were also observed.

2.4. Dielectric studies

The dielectric behaviors of ME composite films have a great impact on their particular applications for sensors, actuators, and communications [30, 31]. The room temperature dielectric studies of nanocomposite films in variation with frequency over the range of 100 Hz–1 MHz are presented in figure 2(a). The real part of the dielectric constant is observed to be almost the same for 0.2, 0.5, 1 and 1.5 volume % of BiFeO$_3$. P(VDF-TrFE) nanocomposite films which are slightly higher the value than the pure P(VDF-TrFE) film which arose from the relatively higher dielectric constant of BiFeO$_3$ nanoparticles. This suggests that composites with optimum content of nanoparticles can be used for capacitive energy devices.

In the low frequency (<1 kHz) region, there is an increase in dielectric constant which is considered to be due to the existence of interfacial polarization suggested by Maxwell–Wagner-Sillar and space charge polarization. The space charge polarization works in low frequencies because relaxation time is found to be larger. The interfacial polarization arises due to the misorientation of molecular chains between the amorphous region and the crystalline regions of the P(VDF-TrFE) [32]. As the frequency increases, the dielectric constant falls and remains constant which is because interfacial polarization cannot follow the rapid changes of the applied field at the high frequency.

The inset of figure 2(a) shows a tangent loss (tanδ) for nanocomposite films. In the lower frequency region, the tanδ loss for all composite samples increases concerning BFO nanoparticle content in the polymer which is related to an increase in DC conductivity and interfacial polarization. However, the tanδ values of composite films are lower than the pure P(VDF-TrFE) film except for 5 volume % nanocomposite film due to a decrease in polymer chain movement on the addition of a small percentage of BFO. On other hand, in the higher frequency region, tanδ values for all the nanocomposite films are higher than the pure P(VDF-TrFE) films for dipolar relaxation of polar C-F bonds in the polymer nanocomposite film.

The dielectric studies also allow for the determination of frequency-dependent conductivity of nanocomposite films. The electrical conductivity spectrum is shown in figure 2(b) consists of two regions: low-frequency plateau (conductivity independent of frequency) and high-frequency dispersion regions (conductivity increases with frequency) [33]. The
higher frequency region generally follows Johnsher’s universal power law

\[\sigma_{AC} = A \omega^S \]

where \(A \) is a constant parameter, \(\omega \) is the angular frequency at which the conductivity was measured and \(S \) is a dimensionless fractional parameter \[^{34}\]. The conductivity value increases at a higher frequency region (although the overall increase is very low) from \(6.72 \times 10^{-7} \) S cm\(^{-1} \) to \(3.44 \times 10^{-6} \) S cm\(^{-1} \) with an increase of BFO nanoparticles from 0.2 to 5-volume % in polymer. This is because of dipolar relaxation of the permanent dipole in a short time. The value of the exponent \(S \) which is frequency-dependent was determined to be \(0.997 \pm 0.0002 \) which is given in the inset of figure 2(b).

2.5. Ferroelectric properties

To observe the ferroelectric properties of BiFeO\(_3\)_P(VDF-TrFE) nanocomposite films, the room temperature polarization versus electric field (P-E) measurements have been performed at 50 Hz using the P–E loop tracer (Marine India). All nanocomposite films (except 3 and 5 vol %) show well-saturated hysteresis loops where for higher vol % of BFO nanoparticles in polymer the loops become lossy \[^{35}\]. However, up to certain content of BFO nanoparticles in the polymer causes a maximum polarization, which may be attributed due to an increase in interfacial areas \[^{36}\]. In our case, the maximum remnant polarization was observed to be \(2.74 \) \(\mu \)C cm\(^{-2} \) for 1.5 vol % BiFeO\(_3\)_P(VDF-TrFE) nanocomposite film corresponding to coercive field 410 kV cm\(^{-1} \) figure 2(d).

2.6. Magnetic characterizations

The magnetic characterizations of BFO nanoparticles and BFO_P(VDF-TrFE) nanocomposite films were carried out using S700X SQUID magnetometer (Cryogenics Ltd, UK). Figure 3(a) shows the isothermal magnetization hysteresis loops (\(M \) vs. \(H \)) for the BFO nanoparticles measured at room temperature. We inferred an \(S \)-shape \(M-H \) loop with null coercive field \((H_C) \) indicating SPM-like behavior. In fact, at higher fields, the magnetization does not reach saturation. This might be due to disordered magnetic moments located at the nanoparticle surface. To explore the SPM behavior in BFO nanoparticles the temperature-dependent zero-field (ZFC) and field cooling (FC) magnetization were performed at 300 Oe. The FC magnetization monotonically decreases, while the ZFC curve attains a maximum \((T_m) \) in lower temperature regions. The ZFC curve resembles a typical behavior of non-interacting magnetic nanoparticles.
Dissimilar magnetic responses are identified at three different ranges of temperatures (figure 3(b), indicated in blue, green, and cyan). The ZFC curve exhibits a narrow peak around 50 K which can be ascribed to a blocking temperature (T_B), i.e. this temperature is closer to the system which undergoes a blocking-to-unblocking transition. Above the blocking temperature (at high T) the thermal energy is much larger than the anisotropy energy. So, the magnetic moments of the particles fluctuate freely with temperature and a paramagnetic-like behavior is observed and the particles are in the SPM state.

On the other hand, at very low temperatures the thermal energy is not enough to switch the magnetic moment, which results in the particle moment to confine along the anisotropy direction. In this situation, the particles are said to be in a blocked state, which is confirmed by the sharp fall in the ZFC curve in the low-temperature region. It has been observed that the ZFC and FC curves merge at a temperature above the maximum reached by the ZFC curve. This temperature is known as the irreversibility temperature (T_i). In fact, for mono-size non-interacting magnetic nanoparticles, the blocking temperature can be considered the inflection point of the ZFC curve. When magnetic nanoparticles of different sizes are considered, the maximum of the ZFC magnetization curve is influenced by both the size dispersion and the mean particle size. This indicates the distribution of blocking temperature $f(T_B)$ associated with different particles are associated with different energy barriers leading to different T_B for each size fraction [2, 37]. The blocking temperature distribution $f(T_B)$ is estimated using the reduced-magnetization derivative $\frac{d}{dT}(M_{ZFC} - M_{FC})$ [38]. Figure 3(c) shows well fitted lognormal-type function of $f(T_B)$ distributions results to $<T_B> \leq 16.4 \text{ K}$ ($\sigma = 0.60$) for BFO nanoparticles.

Figure 3(d) shows a well saturated $M-H$ curve of all BFO_P(VDF-TrFE) nanocomposite films carried out at room temperature. The magnetization of nanocomposite films was observed to be gradually increasing with an increase in vol % of BFO in a polymer. All the nanocomposite films have zero retentivity and coercivity with M_S value 0.28, 0.35, 0.41, 0.46, 0.85 and 1.26 emu cc$^{-1}$ for 0.2, 0.5, 1, 1.5, 3 and 5 vol % respectively.

Moreover, there is a distinction observed in the ZFC-FC magnetization curve of low (0.2%) and high vol % (1.5%)
Figure 3. (a) M-H hysteresis curve at 300 K and (b) ZFC-FC magnetization curve at 300 Oe magnetic field for BiFeO$_3$ nanoparticles; (c) lognormal fitting curve for derivative of $M_{ZFC}-M_{FC}$ with respect to temperature for BiFeO$_3$ nanoparticles; (d) M-H hysteresis curve for BiFeO$_3$-P(VDF-TrFE) nanocomposite film at room temperature; (e) and (f) ZFC-FC magnetization curve at 300 Oe magnetic field for 0.2 vol % and 1.5 vol % BiFeO$_3$-P(VDF-TrFE) nanocomposite film, respectively.

of BFO in BFO-P(VDF-TrFE) nanocomposite film which is shown in figures 3(e) and (f). In 0.2 vol % of the nanocomposite, the ZFC curve exhibits a broad maximum in the lower temperature region whereas a relatively narrow peak was obtained in the case of 1.5 vol % of the nanocomposite. The variation in the ZFC curve for different vol % was studied experimentally and theoretically which was attributed to interparticle interaction in magnetic granular systems [39]. Actually, for a highly dense system, the determination of blocking temperature is very difficult due to the interaction of particles with neighbors. Nevertheless, it should be noticed that when nanoparticles are dispersed in a polymer the interaction among the particles becomes negligible [40]. Because of the non-interacting SPM model, we fitted the derivative $\frac{d(M_{ZFC}-M_{FC})}{dT}$ of experimental data with log normal distribution function to get blocking temperature distribution of nanoparticles in polymer matrix. The experimental and fitted curve well agreed with each other satisfying non-interacting super paramagnetic model (inset of figures 3(e) and (f)). We obtained mean blocking temperature $<T_B> \geq 17.4$ K ($\sigma = 0.46$) for 0.2 vol % and $<T_B> \geq 10.9$ K
where in figure 1.5 vol % BFO voltage coefficient versus applied DC magnetic field plot for change in voltage magnetic field a perpendicular direction to the thickness of the sample. An ac electrically poled by applying an electric field of 400 kV cm field. Before the ME measurement, the sample was electrically biased in BFO nanoparticles lattice strain due to suppression of spin spiral periodicity. In the attempt to investigate the coupling between the electric and magnetic order parameters in P(VDF-TrFE) and BFO nanoparticles, the ME coupling of BFO P(VDF-TrFE) nanocomposite film was carried out at room temperature using the lock-in amplifier method (supplied by Marine India). In polymer composite systems, the ME coupling arises due to elastic interactions among ferroelectric and magnetic domains via magnetostriction [22, 41]. In our case, due to modification in long-range spiral modulated spin structure of BFO nanoparticles lattice strain is developed. In addition to that, surface properties increase because of the nano-size effect of BFO nanoparticles. It is important to note that interface has become a prominent factor for ME coupling in polymer composite systems. Therefore, the nano-size effect and developed lattice strain due to suppression of spin cycloid structure have become a source to anticipate ME coupling in BFO P(VDF-TrFE) nanocomposite film. Depending on the elastic interactions and type of externally applied field (electric or magnetic), there are generally two types of ME coupling: (i) direct ME coupling and (ii) converse ME coupling. In this work, we examined direct ME coupling according to the equation [20]

\[
\alpha_{ij}^H = \frac{\partial P_i}{\partial H_j} = \varepsilon_0 \varepsilon_r \left(\frac{\partial E_i}{\partial H_j} \right) = \varepsilon_0 \varepsilon_r \alpha_{ij}^V
\]

where \(\alpha_{ij}^V = \frac{1}{t} \left(\frac{\partial V}{\partial H} \right) \).

The ME voltage coefficient \(\alpha_{ij}^V \) was evaluated using the formula (4) where, \(\partial V \) is the output voltage, \(t \) is the thickness of the nanocomposite film and \(\partial H \) is the applied AC magnetic field. Before the ME measurement, the sample was electrically biased by applying an electric field of 400 kV cm\(^{-1}\) along a perpendicular direction to the thickness of the sample. An AC magnetic field \(\partial H \) of 25 Oe at a frequency of 10 kHz superimposed on an applied direct current bias field to measure the change in voltage \(\partial V \) across the nanocomposite film. The ME voltage coefficient versus applied DC magnetic field plot for 1.5 vol % BFO P(VDF-TrFE) nanocomposite film was shown in figure 4(a). A significant transverse magnetic field induced electric voltage (\(\alpha_{ij}^{ME} \)) of \(~\sim 104\) mV Oe\(^{-1}\) cm was found across the thickness of 1.5 vol % BFO P(VDF-TrFE) nanocomposite film using the above equation (4).

It was observed that the ME coupling coefficient increases with an increase in DC magnetic field and reaches a maximum at 1.7 kOe followed by a decrease in value at a higher DC magnetic field. The initial enhancement of the ME coupling coefficient might be due to an increase in magnetization of BFO nanoparticles in the polymer matrix. After reaching a certain DC magnetic field (in this case 1.7 kOe) the ME voltage coefficient decreases for further increase of DC magnetic field due to a decrease in elastic interaction between the nanoparticles and polymer matrix. The variation of the ME voltage coefficient with a volume percentage of nanoparticles in the polymer is shown in figure 4(b). The initial increase in the ME coupling coefficient (from 0.2 to 1.5 vol %) may be described by an increase in magnetostriction in the ferroelectric phase as well as the increase of crystallization of the electroactive \(\beta \)-phase due to the inclusion of ferrite nanoparticles in PVDF copolymer [42, 43]. Further increase of nanoparticles in the polymer phase leads to disruption of the polymer chain structure. Because of the loading of more nanoparticles in the ferroelectric phase, the fillers cannot disperse in the polymer phase properly, which results in a fall in ME response from 1.5% to 5%. Although a few reports are available in the literature on ME effects in SPM polymer composites. It is found that the obtained value of ME voltage coefficient (\(\alpha_{ME} \)) of \(~\sim 104\) mV Oe\(^{-1}\) cm of the present work for BFO P(VDF-TrFE) nanocomposite is highest as compared to reported values so far (table 1).

When a magnetic field is applied to the composite film, mechanical strain develops in the magnetic phase via the magnetostrictive effect. The developed strain in the magnetic phase transfers to the piezoelectric phase to create stress in the piezoelectric. Due to stress the ferroelectric polarization of piezoelectric phase changes which in turn generates electrical voltage via the piezoelectric effect.

Let us consider application of magnetic field \((H) \) along \(x \) direction. The voltage is measured along \(z \) direction. Then the ME coupling coefficient \(\alpha_{31} \) can be written as

\[
\alpha_{31} = \frac{dP_z}{dH_x}. \tag{5}
\]

On application \(H \) along \(x \) direction, the strain crated along magnetic field direction is \((\varepsilon_x)_x \). Then the ME coupling coefficient can be written as,

\[
\alpha_{31} = \frac{dP_z}{d(\varepsilon_x)_x} \times \frac{d(\varepsilon_x)_x}{dH_x}. \tag{6}
\]

The strain generated along \((x) \) axis is a compressive strain since the magnetostrictive coefficient of BFO nanoparticles is \(-ve \). Let \(m_v \) be the volume fraction of magnetostrictive phase in the nano composite film, then \(\alpha_{31} \) can be written as

\[
\alpha_{31} = \left[(1 - m_v) \frac{dP_z}{d(\varepsilon_x)_x} \right] \times \left[m_v \frac{d(\varepsilon_x)_x}{dH_x} \right]. \tag{7}
\]

Since, there is compressive strain along \(x \) direction, the strain due to elongation along \(z \) direction can be written as \((\varepsilon_z)_z = -\nu_0 \times (\varepsilon_x)_x \), where \(\nu_0 \) is the Poisson’s coefficient,

\[
\frac{dP_z}{d(\varepsilon_z)_z} = -\nu_0 \frac{dP_z}{d(\varepsilon_x)_x}. \tag{8}
\]
Figure 4. (a) Magnetoelectric voltage coefficient (transverse) in response to DC magnetic field for 1.5 vol % BiFeO$_3$/P(VDF-TrFE) nanocomposite film; (b) variation of ME voltage coefficient with respect to volume percentage of BiFeO$_3$ nanoparticles in P(VDF-TrFE) polymer; (c) and (d) magnetostriiction strain measurement with DC magnetic field for BiFeO$_3$ nanoparticles and 1.5 vol % BiFeO$_3$/P(VDF-TrFE) nanocomposite film respectively (inset: piezomagnetic coefficient $\frac{d\lambda}{dH}$ versus DC magnetic field curve).

Table 1. Data on magnetoelectric voltage coefficient for superparamagnetic-polymer based multiferroic system.

Superparamagnetic nanoparticles in P(VDF-TrFE)	ME coefficient (mV/Oe-cm)	References
BiFeO$_3$/P(VDF-TrFE)	104	In our work
BiFeO$_3$/PVDF	2.7	[44]
Fe$_2$O$_3$/P(VDF-TrFE)	0.8	[19]
Zn$_{0.2}$Mn$_{0.8}$Fe$_2$O$_4$/P(VDF-TrFE)	0.16	[19]
CoFe$_2$O$_4$/P(VDF-TrFE)	34	[45]
Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$/P(VDF-TrFE)	1.35	[46]

The strain and stress along z direction is related by $(\varepsilon_z)_z = \frac{1}{Y} \times \sigma_z$, where Y is the modulus of elasticity and σ_z is the stress generated along (z) direction. The equation (8) can be written as

$$ \frac{dP_z}{d(\varepsilon_z)_z} = -\nu_0 \frac{dP_z}{d(\varepsilon_z)_z} = -\nu_0 Y \frac{dP_z}{d(\sigma)_z}. \quad (9) $$

By incorporating direct piezoelectric effect equation $P_z = d_{33}\sigma_z$ (d_{33} is the piezoelectric coefficient) the equation (9) can be written as

$$ \frac{dP_z}{d(\varepsilon_z)_z} = -\nu_0 \frac{dP_z}{d(\varepsilon_z)_z} = -\nu_0 Y d_{33}. \quad (10) $$

In magnetostrictive phase, the strain generated due to magnetic field can be written as $\varepsilon_z = q_{11} \times H_z$, where q_{11} is piezomagnetic coefficient.

$$ \text{Hence}, \quad \frac{d(\varepsilon_z)_x}{dH_z} = q_{11}. \quad (11) $$

By incorporating equations (10) and (11) in equation (7), the ME coupling coefficient can be written as
\[\alpha_{31} = \left[(1 - m_v) \nu_0 Y_{d33} \right] \times \left[m_v q_{11} \right]. \] \tag{12}

From equation (12), it is clear that the ME effect is directly proportional to the piezomagnetic and piezoelectric coefficients. The cumulative effect is to check effective stress–strain is important in this composite and since the magnetic phase is in nanometric range which exhibit collective behavior during strained situation. Therefore, we investigated the magnetostrictive strain behavior of BFO nanoparticles and nanocomposite film in response to the DC magnetic field. The \(\lambda(H) = (\varepsilon_s)_s \) curves obtained in a parallel configuration with an applied magnetic field are plotted in figures 4(c) and (d) together with the \(d\lambda/dH \) vs. \(H \) dependences for the BFO nanoparticles and 1.5 vol % nanocomposite sample (inset of figures 4(c) and (d)). The magnetostrictive strain was examined using the four-wire method and the data were recorded on a hand-held data logger TC-32K (TYPE S-2770) instrument. Magnetostriction was measured along the parallel direction to the applied magnetic field by using a 350 ohm resistive strain gauge. A small negative magnetostrictive strain (−4 ppm at 5 kOe) was observed in both nanoparticles and nanocomposite samples. It is important to note that the strain has linear behavior with applied DC magnetic field over the range 0–6 kOe. It should be noted here that the maximum applied magnetic field was not enough for saturation of magnetostrictive strain of SPM BFO nanoparticles. A similar trend was also observed in the ME voltage coefficient where the voltage coefficient decreases without attaining saturation up to 5 kOe magnetic field. To our knowledge, this is the first magnetostriction measurement result by the direct method reported for the SPM BFO sample.

2.8. ME sensor in BFO_P(VDF-TrFE) nanocomposite films

The magnetic field sensing properties of the composite film was further investigated by recording the output voltage generated from the sample without any amplification in an ac magnetic field in a digital storage oscilloscope (DSO). As per the result discussed in the previous section, the maximum ME coupling voltage coefficient was obtained for 1.5 vol % BFO_P(VDF-TrFE) nanocomposite film. Hence this composite film with an effective area of 1.5 \(\times \) 1.5 cm\(^2\) was taken for sensor application. Figure 5(a) shows the schematic of the above arrangement.

First of all, the bottom and top surface of the film were coated with gold to make it conductive and after that ferroelectrically poled in a perpendicular direction across the thickness of the film. Then it was kept inside a Helmholtz coil along its axis. Two BNC cables taken from the top and bottom surface of the sample are connected to a DSO for measuring the output voltage difference between the top and bottom electrodes. The output voltage was recorded by applying AC magnetic fields of 25 Oe and 12 Oe at two different frequencies i.e. 10 kHz and 5 kHz (figures 5(b) and (c) respectively). The maximum
Figure 6. Schematic diagram showing mechanism of energy transfer between BFO nanoparticles and P(VDF-TrFE) matrix.

output voltage of nearly about 2.3 mV was harvested for an AC magnetic field of 25 Oe at a frequency of 10 kHz.

The ME effect is observed only due to stress–strain transfer via elastic coupling as described in equation (12). The schematic of energy transfer during magnetic field measurement as a sensor is shown in figure 6.

Before the measurement, the composite film was first of all electrically poled by applying an electric field of 400 kV cm\(^{-1}\) along a perpendicular direction to its thickness (z-direction).

When AC magnetic field is applied to this nanocomposite film using a Helmholtz coil along x-direction, the magnetic moment aligned along x-direction. The compressive strain produced in BFO phase along x-direction provided tensile stress along z-direction in piezoelectric P(VDF-TrFE) phase through interface. The stress in z-direction produce voltage due to direct piezoelectric effect across the nanocomposite films.

3. Conclusions

In summary, the self-biased ME sensor was fabricated in a two-step process. In the first step, ME BFO SPM nanoparticles were synthesized using the auto combustion method. The small particle size of the BFO nanoparticles was obtained from the TEM image revealed the SPM behavior at room temperature. In the second, 0-3 BFO-P(VDF-TrFE) nanocomposite films were prepared by incorporating different vol % of BFO nanoparticles in P(VDF-TrFE) using the solution casting method. These BFO-P(VDF-TrFE) nanocomposite films exhibit well saturated ferroelectric loop and low dielectric loss (\(\tan\delta < 0.005\) for 1.5 vol %) which make these nanocomposite films a strong candidate for practical device applications. Unlike bulk BFO, a negative magnetostrictive strain (\(~4\) ppm at 5 kOe) was generated in both nanoparticles and nanocomposite samples. Therefore, a room temperature ME coupling effect \((\alpha_{ME}^{31} \sim 104\) mV Oe\(^{-1}\) cm\(^{-1}\)) was observed in BFO-P(VDF-TrFE) nanocomposite films for which those nanocomposite films can be employed for practical applications like magnetic field sensors, data storage and switching devices. The direct output voltage of 2.3 mV was observed by applying an AC magnetic field of \(~25\) Oe at a frequency of 10 kHz to 1.5 vol % nanocomposite film in magnetic sensor geometry.

Acknowledgments

The authors thank RRCAT and HBNI, Mumbai (Sanction No. DAE/LBAD/5401-00-206-83-00-52/-, LT830006) for financial support. The authors gratefully acknowledge Shri Prem Kumar and Mrs Rashmi Singh for their help in XRD and FESEM measurements, respectively. The authors gratefully acknowledge Dr Azam Ali Khan (IIT Bombay) for providing the TEM data. Dr Rahul C Kambale thankfully acknowledges UGC-DAE CSR Indore, Government of India (Ref.CSR-IC-TIMR-07/CRS-274/2017-18/1280, Collaborative Research Scheme.) for providing the research funds to carry out this research work.

ORCID iDs

Pratik Deshmukh https://orcid.org/0000-0002-2631-525X
S Satapathy https://orcid.org/0000-0003-3546-6858

References

[1] Fuentes-Cobas L E, Matutes-Aquino J A and Fuentes-Montero M E 2011 Mater. Res. 19 129–229
[2] Moscoco-Londoño O et al 2017 Different approaches to analyze the dipolar interaction effects on diluted and concentrated granular superparamagnetic systems J. Magn. Magn. Mater. 428 105–18

[3] Catalán G and Scott J F 2009 Physics and applications of bismuth ferrite Adv. Mater. 21 2463–85

[4] Jiang H M, Han H and Lee J U 2018 Spin-coupling-induced improper polarizations and latent magnetization in multiferroic BiFeO₃ Sci. Rep. 8 1–14

[5] Ramesh R and Spaldin N A 2009 Multiferroics: progress and prospects in thin films Nanois. Technol. 3 20–28

[6] Zhang J T, Lu X M, Zhou J, Sun H, Su J, Ju C C, Huang F Z and Zhi J S 2012 Origin of magnetic anisotropy and spiral spin order in multiferroic BiFeO₃ Appl. Phys. Lett. 100 1–4

[7] Park J G, Le M D, Jeong J and Lee S 2014 Structure and spin dynamics of multiferroic BiFeO₃ J. Phys. Condens. Matter 26 1–33

[8] Kawachi S, Miyahara S, Ito T, Miyake A, Furukawa N, Yamaura J I and Tokunaga M 2019 Direct coupling of ferromagnetic moment and ferroelectric polarization in BiFeO₃ Phys. Rev. B 100 1–5

[9] Tokunaga M, Akaki M, Ito T, Miyahara S, Miyake A, Kuwahara H and Furukawa N 2015 Magnetic control of transverse electric polarization in BiFeO₃ Nat. Commun. 6 1–5

[10] Lee S et al 2013 Negative magnetostriuctive magnetoelectric coupling of BiFeO₃ Phys. Rev. B 88 1–5

[11] Tokunaga M, Azuma M and Shimakawa Y 2010 High-field study of strong magnetoelectric coupling in single-domain crystals of BiFeO₃ J. Phys. Soc. Japan 79 1–5

[12] Carranza-Celis D, Cardona-Rodríguez A, Narváez J, Moscoco-Lendoño O, Muraca D, Knebel M, Ornelas-Soto N, Reiber A and Ramírez J G 2019 Control of multiferroic BiFeO₃ nanoparticles Sci. Rep. 9 1–9

[13] Park T, Papaelthymiou G C, Viescas A J, Mordenbaug A R and Wong S S 2007 Size-dependent magnetic properties of single crystalline multiferroic BiFeO₃ nanoparticles Nano Lett. 7 766–70

[14] Huang F et al 2013 Peculiar magnetism of BiFeO₃ nanoparticles with size approaching the period of the spin spiral structure Sci. Rep. 3 1–7

[15] Béa H, Bibles M, Fusil S, Bouzehouane K, Jacquet E, Rode K, Bencok P and Barthélémy A 2006 Investigation on the origin of the magnetic moment of BiFeO₃ thin films by advanced x-ray characterizations Phys. Rev. B 74 1–4

[16] Bharti V and Zhang Q M 2001 Dielectric study of the relaxor ferroelectric poly(vinylidene fluoride-trifluoroethylene) copolymer system Phys. Rev. B 63 1–6

[17] Furukawa T 1997 Structure and functional properties of ferroelectric polymers Adv. Colloid Interface Sci. 71–72 183–208

[18] Maciel M M, Ribeiro S, Ribeiro C, Francesco A, Maceiras A, Vilas J L and Lanceros-Méndez S 2018 Relation between fiber orientation and mechanical properties of nano-engineered poly(vinylidene fluoride) electrospin composite fiber mats Compos. B. Eng. 139 146–54

[19] Martins P, Kolen’Ko Y V, Rivas J and Lanceros-Méndez S 2015 Tailored magnetic and magnetoelectric responses of polymer-based composites ACS Appl. Mater. Interfaces 7 15017–22

[20] Pradhan D K, Kumari S and Rack P D 2020 Magnetoelectric composites: applications, coupling mechanisms, and future directions J. Nanomater. 10 1–22

[21] Pradhan D K, Pali V S, Kumari S, Sahoo S, Das P T, Pradhan K, Pradhan D K, Scott J F and Katiyar R S 2016 Studies of phase transitions and magnetoelectric coupling in PFN-CZFO multiferroic composites J. Phys. Chem. C 120 1936–44

[22] Hu J M, Duan C G, Nan C W and Chen L Q 2017 Understanding and designing magnetoelectric heterostructures guided by computation: progresses, remaining questions, and perspectives npj Comput. Mater. 3 1–20

[23] Roiter M, Wang Z S, Boothroyd A T, Prabhakaran D, Tanaka A and Doerr M 2014 Mechanism of spin crossover in LaCoO₃ resolved by shape magnetostriiction in pulsed magnetic fields Sci. Rep. 4 1–4

[24] Hunter D et al 2011 Giant magnetostriiction in annealed Co₁₋ₓFeₓ thin-films Nat. Commun. 2 1–7

[25] Wang H, Zhang Y N, Wu R Q, Sun L Z, Xu D S and Zhang Z D 2013 Understanding strong magnetostriiction in Fe₁₀₋ₓGaₓ alloys Sci. Rep. 3 1–5

[26] Versiotti G, Pissas M, Zhang S J and Stamopoulos D 2019 Electric-field control of the remanent-magnetic-state relaxation in a piezoelectric-ferromagnetic PZT-5%FeO₃ composite J. Appl. Phys. 126 1–7

[27] Pan E, Wang X and Wang R 2009 Enhancement of magnetoelectric effect in multiferroic fibrous nanocomposites via size-dependent material properties Appl. Phys. Lett. 95 1–3

[28] Swift A J 1996 Surface and interface analysis Surf. Eng. 1 255–79

[29] Ribeiro C, Costa C M, Correia D M, Nunes-Pereira J, Oliveira J, Martins P, Gonçalves R, Cardoso V F and Lanceros-Méndez S 2018 Electroactive poly(vinylidene fluoride)-based structures for advanced applications Nat. Protocols 13 681–704

[30] Svirskas S, Simenas M, Banys J, Martins P and Lanceros-Méndez S 2015 Dielectric relaxation and ferromagnetic resonance in magnetoelectric (polyvinylidene-fluoride)/ferrite composites J. Polym. Res. 22 1–10

[31] Brito-pereira R, Ribeiro C, Lanceros-mendez S and Martins P 2017 Magnetoelectric response on terfenol-D/P (VDF-TrFE) two-phase composites Compos. B. Eng. 120 97–102

[32] Gonçalves R, Martins P M, Caparrós C, Martins P, Benelmekki M, Botelho G, Lancers-Mendez S, Lasheras A, Gutiérrez J and M B J 2013 Nucleation of the electroactive β-phase, and magnetic and dielectric response of poly(vinylidene fluoride) composites with Fe₃O₄ nanoparticles J. Non-Cryst. Solids 361 93–99

[33] Behera C, Choudhary R N P and Das P R 2017 Development of multiferroism in PVDF with CoFe₂O₄ nanoparticles J. Polym. Res. 24 1–13

[34] Bouaamlat H, Hadi N, Belghiti N, Sadki H, Bennani M N, Abd F, Lamcharfi T, Bouachrine M and Abarkan M 2020 Dielectric properties, AC conductivity, and electric modulus analysis of bulk ethylcarbazole-terphenyl Adv. Mater. Sci. Eng. 2020 1–8

[35] Kusuma D Y, Nguyen C A and Lee P S 2010 Enhanced ferroelectric switching characteristics of P(VDF-TrFE) for organic memory devices J. Phys. Chem. B 114 13289–93

[36] Szafraniak-Wiza J, Andrzejewski B and Hilcerzb B 2014 Magnetic properties of bismuth ferrite nanopowder obtained by mechanochemical synthesis Proc. 8th Int. Conf. Mechanoechemistry Mechanical Alloying INCOME 2014 pp 1029–31

[37] Maniks J, Zabels R, Meri R M and Zicans J 2013 Structure, micromechanical and magnetic properties of polycarbonate nanocomposites IOP Conf. Ser.: Mater. Sci. Eng. 49 1–4

[38] Bruvera I J, Mendoza-Zélis P, Pilar Calatayud M, Goya G F and Sánchez F H 2015 Determination of the blocking temperature of magnetic nanoparticles: the good, the bad, and the ugly J. Appl. Phys. 118 1–7
[39] Knobel M, Nunes W C, Brandl A L, Vargas J M, Socolovsky L M and Zanchet D 2004 Interaction effects in magnetic granular systems Physica B \textbf{354} 80–87

[40] Guduri B R and Luyt A S 2008 Structure and mechanical properties of polycarbonate modified clay nanocomposites \textit{J. Nanosci. Nanotechnol.} \textbf{8} 1890–5

[41] Bhoi K, Dash S, Dugu S, Pradhan D K, Rahaman M M, Simhachalam N B, Singh A K, Vishwakarma P N, Katiyar R S and Pradhan D K 2021 Phase transitions and magnetolectric properties of 70 wt. % Pb(Fe\textsubscript{0.5}Nb\textsubscript{0.5})\textsubscript{3}O\textsubscript{3}–30 wt. % Co\textsubscript{0.6}Zn\textsubscript{0.4}Fe\textsubscript{1.7}Mn\textsubscript{0.3}O\textsubscript{4} multiferroic composite \textit{J. Appl. Phys.} \textbf{130} 0–15

[42] Chu B, Lin M, Neese B, Zhou X, Chen Q and Zhang Q M 2007 Large enhancement in polarization response and energy density of poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) by interface effect in nanocomposites \textit{Appl. Phys. Lett.} \textbf{91} 1–4

[43] Martins P, Lasheras A, Gutierrez J, Barandiarian J M, Orue I and Lanceros-Mendez S 2011 Optimizing piezoelectric and magnetolectric responses on CoFe\textsubscript{2}O\textsubscript{4}/P(VDF-TrFE) nanocomposites \textit{J. Phys. D: Appl. Phys.} \textbf{44} 1–7

[44] Kumar A, Patel P K, Yadav K L, Singh Y and Kumar N 2022 Enhanced magnetolectric coupling response in hot pressed BiFeO\textsubscript{3} and polymer composite films : effect of magnetic field on grain boundary and grain resistance \textit{Mater. Res. Bull.} \textbf{145} 1–5

[45] Feng R, Zhu Z, Liu Y, Song S, Zhang Y, Yuan Y, Han T, Xiong C and Dong L 2021 Magnetolectric effect in flexible nanocomposite films based on size-matching \textit{Nanoscale} \textbf{13} 4177–87

[46] Martins P, Moya X, Phillips L C, Kar-Narayan S, Mathur N D and Lanceros-Mendez S 2011 Linear anhysteretic direct magnetolectric effect in Ni\textsubscript{0.3}Zn\textsubscript{0.7}Fe\textsubscript{2}O\textsubscript{4}/poly(vinylidene fluoride-trifluoroethylene) 0-3 nanocomposites \textit{J. Phys. D: Appl. Phys.} \textbf{44} 1–4