Activity Levels of ^{210}Po, ^{210}Pb and Other Radionuclides (^{134}Cs, ^{137}Cs, ^{90}Sr, ^{110m}Ag, ^{238}U, ^{226}Ra and ^{40}K) in Marine Organisms From Coastal Waters Adjacent to Fuqing and Ningde Nuclear Power Plants (China) and Radiation Dose Assessment

Jiang Sun 1,2, Wu Men 2,3,4, Fenfen Wang 2 and Junwen Wu 1,4,*

1 Institute of Marine Sciences, Shantou University, Shantou, China, 2 Laboratory of Marine Isotopic Technology and Environmental Risk Assessment, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China, 3 School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, China, 4 Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China

With the rapid development of nuclear power, the radiation impacts on edible marine organisms, and the potential radiation risks to humans have become of considerable concern to public health. In this study, the activities of ^{210}Po and ^{210}Pb as well as those of other radionuclides in fishes (Mugil cephalus, $\text{Konosirus punctatus}$, $\text{Largehead hairtail}$, and $\text{Larimichthys polyactis}$), crustaceans ($\text{Mantis shrimp}$, $\text{Parapenaeopsis hardwickii}$, and $\text{Portunus trituberculatus}$), bivalves ($\text{Crassostrea gigas}$, $\text{Sinonovacula conzcta}$), and macroalgae ($\text{Gracilaria}$, Porphyra) collected in the coastal area adjacent to the Fuqing and Ningde nuclear power plants (NPPs) were determined. The activity range of ^{210}Po and ^{210}Pb was 0.60–48.09 and 0.07–2.76 Bq/kg freshweight, respectively, with $^{210}\text{Po}/^{210}\text{Pb}$ activity ratios of 1.1–189.7. The ranking of ^{210}Po activity levels in marine organisms was bivalve mollusks > crustaceans > fishes > macroalgae. The calculated bioconcentration factors of ^{210}Po and ^{210}Pb were 636–44,944 and 3–1,226 L/kg, respectively. These values provide a new supplement to the IAEA reference database. The radiation dose rates for these marine organisms ranged from 0.037 to 1.531 μSv/h, which was much lower than the ERICA ecosystem screening benchmark of 10 μGy/h. The calculated committed effective dose received by humans from ingestion of these marine organisms was 0.06–2.99 mSv. Overall, ^{210}Po was the dominant radiation dose contributor in marine organisms and humans, whereas the dose contributions from the artificial nuclides ^{90}Sr and ^{137}Cs were negligible.

Keywords: lead, polonium, marine biota, nuclear power plant, dose assessment
INTRODUCTION

The polonium isotope ^{210}Po (half-life, $T_{1/2} = 138.4$ d) and its grandparent ^{210}Pb ($T_{1/2} = 22.26$ y) are nonconservative, naturally occurring radionuclides within the uranium ^{238}U decay chain, which is ubiquitous in the environment of the earth. The isotopes ^{210}Po and ^{210}Pb in the atmosphere mainly originated from the release of ^{222}Rn from the ground and its subsequent decay. Due to their strong particle reactivity, they are firmly attached to the aerosol soon after they are produced. With the dry and wet depositions, they are subsequently discharged into the terrestrial and marine environment via dry and wet deposition (Seiler and Wiemels, 2012). Due to their unique geochemical properties, ^{210}Po and ^{210}Pb are used as a tracer pair to study the dynamic processes of aerosols in the atmosphere and estimate the residence times of aerosols (Aba et al., 2020). They are also used to study particle scavenging processes in the sea, particularly in assessing the export of particulate organic carbon (POC) fluxes from the euphotic zone (Zhang et al., 2020; Bam and Maiti, 2021), as well as specific marine food chain processes (Strady et al., 2015). Indeed, beyond the oceanographic application of ^{210}Po and ^{210}Pb, their accumulation in marine organisms and transfer to human consumers of seafood, and the resulting radiation doses to marine organisms or committed effective doses to humans are also issues of public concern. This is especially true for ^{210}Po, as it is one of the most radiotoxic nuclides that emit high-energy (~ 5.3 MeV) alpha rays and is the main contributor of the radiation dose received by marine organisms and humans (UNSCEAR, 2000; Sivakumar, 2014; Men et al., 2020a,b). Marine organisms usually concentrate ^{210}Po and ^{210}Pb from the marine environment. Although the activity levels of ^{210}Po and ^{210}Pb in the marine environment are relatively low compared with those in the terrestrial environment, different marine organisms can concentrate these two radionuclides to relatively high levels with high concentration factors (CFs) ($\sim 10^2$ to $\sim 10^5$) (IAEA, 2004). Therefore, ^{210}Po and ^{210}Pb provide the main radiation source for marine organisms. In seawater, there are relatively higher levels of other naturally occurring nuclides, such as uranium ^{238}U (12.2–215.4 Bq/m3), radium ^{226}Ra (0.22–7.20 Bq/m3), and potassium ^{40}K (12.000 Bq/m3), and artificial radionuclides, such as cesium ^{137}Cs (2.3.2 Bq/m3) and strontium ^{90}Sr (2.2 Bq/m3) (IAEA, 2005; Liu, 2010). Marine organisms also concentrate these nuclides in their body, which thus also produce self-radiation. Since the 1980s, the concept of human-centered environmental protection has gradually evolved into the concept of ecological protection in which the whole ecosystem is the protection target within the field of radiation protection. Many international organizations and government departments have been studying the effects of ionizing radiation on nonhuman species, including the International Commission on Radiation Protection (ICRP), the International Atomic Energy Agency (IAEA), the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), and the European Commission (EC). Additionally, after the 2011 Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, the rapid development of nuclear power has raised increasing attention to the radiation impacts on marine organisms and the potential radiation risks to public health (Yu et al., 2018; Men et al., 2020a,b).

At present, the Fuqing and Ningde Nuclear Power Plants (NPPs), located on the coast of Fujian province (Figure 1), are in operation. The marine organisms living in the area adjacent to these two NPPs provide ideal experimental test subjects to study the concentrations of radionuclides in the marine environment as well as to undertake radiation dose assessment. In this study, data are provided on the activity levels of naturally occurring and artificial radionuclides in marine organisms used as bio-monitors of nuclear power plant operations. Activity levels of ^{210}Po, ^{210}Pb, and other naturally occurring or artificial radionuclides were investigated in fish, crustaceans, bivalve mollusks, and macroalgae in the areas surrounding Fuqing and Ningde NPPs, and the resulting radiation doses to both marine organisms and humans were assessed.

MATERIALS AND METHODS

Sample Collection

Samples of marine organisms were obtained by hired fishermen in areas adjacent to Fuqing and Ningde NPPs (i.e., within 10 km) in July 2020 (Figure 1). Twelve samples with a fresh weight of $\sim 2.2–10.6$ kg each were collected. They were refrigerated and immediately sent to the laboratory (within 24 h). Marine organisms include fishes (the mullet Mugil cephalus, Konosirus punctatus, Largehead hairtail, and Larimichthys polyactis), crustaceans (Mantis shrimp, Parapeneaepsis hardwickii, and crab Portunus trituberculatus), bivalves (soft tissues of the Pacific oyster Crassostrea gigas, and razor clam Sinonovacula conchta), macroalgae (the red algae Gracilaria spp. (Gracilariaceae) and Porphyra spp. (Bangiaceae)) (Figure 2). Seawater and sediment samples were also collected at each of 10 stations near Fuqing NPP and Ningde NPP (Figure 1).

Sample Processing and Analysis

The weighed marine organism samples were dried to constant weight for 48–96 h at 60°C in a drum dryer. Dried samples were pulverized, using agate mortar and pestle sets in preparation for the radioactive analysis. About 1 g of these pulverized dry samples was used for the measurement of ^{210}Po, using a spectrometer (Canberra 7200) (Štrok and Smodiš, 2011). The rest was transferred into crucibles and ashed in a muffle furnace at 450°C for 24–40 h. The ashes were ground and weighed at room temperature, stored in sealed boxes (~ 100 g per sample) for 20 days until analysis. Canberra BE6530 and GR4021 HPGGe spectrometers were used to determine the activities of ^{210}Po, ^{134}Cs, ^{137}Cs, ^{110}mAg, ^{238}U, ^{226}Ra, and ^{40}K (Men et al., 2017). The di-(2-ethylhexyl) phosphoric acid (HDEHP) extraction-β counting method and the Ortec MPC-9604 α/β counter were employed for ^{90}Sr analysis (Men et al., 2017), using ~ 10 g of the ashes. Seawater and sediment samples were also analyzed according to the Technical Specification for Marine Radioactivity Monitoring (State Oceanic Administration of China, 2011). All marine organisms were analyzed whole, except for the bivalves whose shells were removed. Parallel sample analysis was
implemented for *Konosirus punctatus* and *Mantis shrimp*; the results were in good agreement within an error <3%.

Specifically, ca. 1 ml of 0.12848 Bq/ml 209Po was added to 1 g of a dry biological sample, and then the spiked sample was digested with a mixture of concentrated nitric acid and hydrogen peroxide. After steaming until nearly dry, 2 mL of concentrated hydrochloric acid (HCl) was added and steaming carried out again, and the residue was dissolved with 2-M HCl. After filtration, the filtrate was placed in an α spectrometer for measurement over 24 h. The chemical yield for 209Po ranged from 52 to 89%, averaging $72 \pm 12\%$ (SD, $n = 14$) after adding 1 ml of 0.12848 Bq/ml of 209Po standard solution.

Seawater (5 L) was taken from each station for analysis. A known amount of 209Po (\sim1 g) was added to the seawater samples to determine the yield. The spiked samples were co-precipitated with ferric hydroxide by adding \sim50 mg of Fe$^{3+}$ and adjusting the pH to \sim8, with the addition of concentrated ammonium hydroxide (NH$_4$OH). The precipitate was then dissolved in concentrated HCl, and auto-deposition was carried out. The analysis of other radionuclides in seawater is described in detail by Men et al. (2017).

Radiation Dose for Marine Organisms

The ERICA assessment tool (version 1.3, Tier 2) was used to evaluate the dose rates for marine organisms (Beresford et al., 2007; Men et al., 2020a,b). The average biological parameters of the specimens sampled, including length, width, and height, as well as weight, are listed in Table 1, and were used to calculate the radiation doses listed (the biological parameters were determined for all individuals of each species in the sample). The average nuclide activities in seawater and sediment were used to estimate the external dose rates. The activity levels of these nuclides in the marine organism were used to estimate the internal dose rates. The low beta, beta/gamma, and alpha weighing factors were taken to be 3, 1, and 10, respectively. The other parameters were set to their default values.

Committed Effective Dose for Humans Consuming Various Marine Organisms

After ingestion or inhalation by humans, some radionuclides persist in the body and irradiate various tissues for many years. The resulting total effective dose over a lifetime (70 years or number of years up to reaching age, 70 for infants, 50 years for adults) is the committed effective dose (ICRP, 2007; Men et al., 2017). This dose received by a human per unit intake (1 Bq) of a given radionuclide is the radionuclide-specific dose coefficient (DC) for ingestion (Fisher et al., 2013), which converts the energy emitted from the ingested radionuclide into a radionuclide-specific, committed effective dose for human
adults (Sv). For calculation of the committed effective dose for ingestion of marine organisms in this study, the ingestion rate was assumed as exact ingestion rates were not available. Here, the mean per capita consumption rate of aquatic products in China (50.97 kg/year) in 2018 was used to estimate the committed effective dose (FAOSTAT, 2018). This was calculated by multiplying the radionuclide activity in the marine organism (Bq/kg freshweight) by the ingested mass (kg) and the DC (Sv/Bq) (ICRP, 2012).

RESULTS AND DISCUSSION
Activity Levels of 210Po and 210Pb and Other Radionuclides in Marine Organisms

The activities of 210Po and 210Pb as well as other radionuclides in marine organisms from the coastal area adjacent to Fuzhou and Ningde NPPs are listed in Table 2; 210Po and 210Pb activities ranged from 0.60 to 48.09 Bq/kg freshweight and 0.07 to 2.76 Bq/kg freshweight, respectively. These values are within
the reported ranges of 210Po and 210Pb in marine organisms in China (210Po: 0.117–65.8 Bq/kg fresh weight; 210Pb: 0.02–6.88 Bq/kg fresh weight) (Li et al., 2016, 2018; Lin et al., 2016; Dong et al., 2018, 2019; Lin, 2018). The limit of 210Po activity recommended in fish, meat, and shrimp by the Chinese National Standard on limited concentrations of radioactive materials in foods (GB 14882-94) is 15 Bq/kg fresh weight (Ministry of Health of the People’s Republic of China, 1994). About 50% of 210Po activities in marine organisms reported in the present study exceeded this value. Most 210Po activities were higher than the UNSCEAR representative 210Po activities in marine fish, crustaceans, and mollusks (2.4, 6, and 15 Bq/kg fresh weight) (UNSCEAR, 2000). The activity levels of 210Po varied greatly among the different marine species. For example, the highest and lowest 210Pb activities were measured in Crassostrea gigas and Porphyra, respectively. In general, 210Po activities in marine organisms ranked in the order bivalves > crustaceans > fishes > macroalgae.

TABLE 1 | Average biological parameters of the sampled marine organisms.

Sea area	Organism	Length (cm)	Width (cm)	Height (cm)	Mass (kg)
Fuqing NPP	Mugil cephalus	27.00	5.00	4.00	1.100
	Gracilaria	60.00	0.10	0.10	0.006
	Portunus trituberculatus	10.00	6.00	3.00	0.400
	Konosirus punctatus	18.00	4.50	4.00	0.110
	Porphyrta	35.00	2.00	0.10	0.009
Ningde NPP	Sinonovacula constructa	5.00	2.00	2.00	0.012
	Largehead hairtail	60.00	5.00	2.00	1.000
	Crassostrea gigas	7.00	4.00	3.00	0.056
	Parapenaeopsis hardwicki	8.00	1.00	1.00	0.020
	Mantis shrimp	16.00	2.50	2.00	0.050
	Larimichthys polyactis	15.00	6.00	2.00	0.080
	Porphyrta	20.00	1.50	0.10	0.007

TABLE 2 | Activities of 210Po and 210Pb and other radionuclides in marine organisms sampled in this study.

Sea area	Organisms	210Po	210Pb	137Cs	90Sr	238U	226Ra	40K	210Po/210Pb	Bq/kg fresh weight
Fuqing NPP	Mugil cephalus	2.25 ± 0.24	1.33 ± 0.36	0.05 ± 0.01	0.03 ± 0.01	2.66 ± 0.08	1.61 ± 0.03	121.1 ± 3.3	1.7	
	Gracilaria	3.06 ± 0.19	2.76 ± 0.73	0.01 ± 0.01	0.03 ± 0.01	0.50 ± 0.02	0.13 ± 0.01	106.6 ± 2.9	1.1	
	Portunus trituberculatus	41.04 ± 0.67	/	ND	0.39 ± 0.04	0.69 ± 0.21	1.22 ± 0.03	81.9 ± 2.4	/	
	Konosirus punctatus	2.07 ± 0.27	0.32 ± 0.09	0.08 ± 0.03	0.25 ± 0.02	0.24 ± 0.01	107.7 ± 2.9	6.5		
	Porphyrta	0.60 ± 0.13	0.51 ± 0.14	ND	0.09 ± 0.01	0.13 ± 0.01	0.08 ± 0.01	93.4 ± 2.5	1.2	
Ningde NPP	Sinonovacula constructa	33.09 ± 1.09	1.42 ± 0.38	0.05 ± 0.01	0.13 ± 0.03	0.04 ± 0.01	174.9 ± 4.8	23.3		
	Largehead hairtail	32.25 ± 0.74	0.17 ± 0.05	0.08 ± 0.01	0.44 ± 0.05	0.15 ± 0.01	0.09 ± 0.01	63.7 ± 1.7	189.7	
	Crassostrea gigas	48.09 ± 1.06	0.65 ± 0.18	0.03 ± 0.01	0.50 ± 0.05	0.33 ± 0.01	0.04 ± 0.01	76.3 ± 2.1	74.0	
	Parapenaeopsis hardwicki	13.29 ± 0.59	0.14 ± 0.05	0.03 ± 0.01	0.74 ± 0.08	0.71 ± 0.03	0.58 ± 0.01	56.7 ± 1.9	94.9	
	Mantis shrimp	21.54 ± 0.7	0.30 ± 0.08	0.03 ± 0.01	0.10 ± 0.02	0.65 ± 0.03	0.45 ± 0.01	55.4 ± 1.5	71.8	
	Larimichthys polyactis	15.53 ± 0.71	/	ND	0.03 ± 0.01	0.04 ± 0.01	0.11 ± 0.01	72.5 ± 2.0	/	
	Porphyrta	0.68 ± 0.13	0.07 ± 0.03	ND	0.09 ± 0.01	0.07 ± 0.01	0.02 ± 0.01	51.0 ± 1.4	9.7	

ND, not detected. 134Cs and 110mAg were also undetectable. The MDA (minimum detectable activity) for 137Cs, 134Cs, and 110mAg was 0.0014 Bq/kg fresh weight, 661.7 keV), 0.0014 (604.7 keV) Bq/kg fresh weight, and 0.0012 Bq/kg fresh weight, respectively, during a counting time of 96,708 s and with 10 kg samples. The MDA for 210Po was 0.0022 Bq/kg fresh weight (5,304.5 keV) during a counting time of 172,800 s with 5 g samples. The blank for 210Po was 2.7641 Bq/kg fresh weight; The blank for 36Sr was 0.016 Bq/kg fresh weight; The blank for 238U, 239Pu, and 40K was 0.016 Bq/kg fresh weight. The CRM (certified reference material) was 100-g fish ash (standard values: 5.9815 Bq/kg fresh weight, 134Cs; 34.2964 Bq/kg fresh weight, 137Cs; 0.7990 Bq/kg fresh weight, 110mAg). The measured values for 134Cs, 137Cs, and 110mAg in 100-g fish ash dry weight during the counting time of 176,619 s were 0.1405, 0.5023, and 0.0104 Bq/kg fresh weight. /indicates lack of data.
The accumulation of 210Po in marine organisms is related to food type, life cycle stage, trophic level, and body size (Carvalho, 2018). Firstly, suspension-feeding bivalves are primary consumers that mainly ingest phytoplankton and detrital particulate organic matter. Crustaceans are opportunistic primary consumers that mainly ingest phytoplankton and benthic organisms. Biomagnification can significantly enhance the activity level in bivalves (Fowler, 2011; Dong et al., 2018). Secondly, bivalves that usually live on the bottom showed higher 210Po activities due to rapid bottom deposition and biological adsorption. The higher 210Po level in their bodies has been attributed to bioconcentration (Sirelkhatim et al., 2008; Lin, 2018). Finally, 210Po is typically more concentrated in the digestive tract and hepatopancreas or in the gonads (Carvalho, 2018; Dong et al., 2018; Hurtado-Bermudez et al., 2019). The 210Po/210Pb activity ratios in the present study ranged from 1.1 to 189.7 (Table 2). It is reported that both 210Po and 210Pb bind strongly to organisms, and that 210Pb is preferably associated with the mineral fractions of bones and shells. Compared with 210Pb, 210Po is primarily associated with proteins in organisms and can penetrate the cell cytoplasm. Therefore, 210Po can be more effectively assimilated in marine organisms than 210Pb, resulting in 210Po/210Pb activity ratios > 1 in most marine organisms (Stewart et al., 2008).

As shown in Table 2, the activities of 137Cs, 90Sr, 238U, 226Ra, and 40K ranged from detectable to 0.08–0.03–0.75–0.04–2.66–0.02–1.61, and 51–174.9 Bq/kg (freshweight), respectively. The activity levels ranked in the order 40K $>$ 210Po $>$ 210Pb $>$ 238U $>$ 226Ra $>$ 90Sr $>$ 137Cs. The activity levels of 90Sr and 137Cs in marine organisms were $\sim 10^{-2}$ to $\sim 10^{-1}$ Bq/kg (freshweight), which is within background levels (Liu and Zhou, 2000; Chen et al., 2003; Zhang, 2015; Lou et al., 2018). Those of 90Sr and 137Cs activities in fish, meat, and shrimp established by the Chinese National Standard on limited concentrations of radioactive materials in foods are 290 and 800 Bq/kg (freshweight), respectively (Ministry of Health of the People’s Republic of China, 1994). The radioisotope 210Po is the major natural decay product from the uranium series and provides the largest radiation dose to the human body via consumption of marine organisms (UNSCEAR, 2000; Carvalho, 2011; Khot et al., 2021; Kong et al., 2021). Indeed, the scavenging rate of 210Po is higher than that of other radionuclides in the atmospheric environment (Alam and Mohamed, 2011), resulting in high 210Po deposition in the marine environment. In turn, marine organisms show a stronger

Table 3 | Average activities of 210Po and 210Pb and other radionuclides in seawater/sediment.

Sea area	210Po (Bq/m2)	210Pb (Bq/kg)	137Cs (Bq/kg)	90Sr (Bq/kg)	238U (Bq/kg)	226Ra (Bq/kg)	40K (Bq/kg)
Furong NPP (n = 10)	2.24/67.8	2.51/82.5	1.31/1.13	0.71/0.17	33.6/41.5	3.36/31.2	11.550/687.9
Ningde NPP (n = 10)	1.07/108.6	1.28/104.7	1.46/2.08	0.74/0.20	33.5/51.8	2.75/31.2	11.510/647.4

134Cs and 110Ag were undetectable in seawater and sediment.

Table 4 | Bioconcentration factors of 210Po and 210Pb and other radionuclides in marine organisms sampled in this study.

Organisms	210Po	210Pb	137Cs	90Sr	238U	226Ra	40K
Mugil cephalus	1,004	591	38	521	79	479	10
Gracilaria	1,366	1,226	8	42	15	39	9
Portunus trituberculatus	18,321	18	64	549	20	363	7
Konosirus punctatus	924	142	113	7	7	71	9
Parapeneaopsis hardwickii	268	227	127	4	24	8	
Sinonovacula constricta	30,925	1,109	68	29	131	15	
Largehead hairtail	30,140	133	55	595	4	33	6
Crassostrea gigas	44,944	508	21	676	9	15	7
Parapeneaopsis hardwickii	12,421	109	21	1,014	20	193	5
Manis shrimp	20,131	234	21	135	18	127	5
Laminicthys polyactis	14,514	3	41	1	40	6	
Parapeneaopsis hardwickii	636	55	/	122	2	7	4
Fish	2,000	200	100	3	1	100	/
Macroalgae	1,000	1,000	5	1	100	100	/
Crustaceas	20,000	90,000	50	5	10	100	/
Molluscs	20,000	50,000	60	10	30	100	/

List 1 indicates that the value was below the detection limit or was not determined; List 2 indicates lack of data in the database of IAEA recommended values. List 3 IAEA recommended value (IAEA, 2004).
affinity for 210Po than for other radionuclides (Bogdan, 1997; Lin, 2018), resulting in a higher activity level of 210Po than that of other radionuclides. The activity levels of 90Sr and 137Cs in marine organisms in the present study are far below these values. The average activities of 210Po and 210Pb as well as other radionuclides in seawater and sediment in the sea area adjacent to Fuqing and Ningde NPPs are listed in Table 3. The data in Tables 2, 3 were used to estimate the radiation doses for the corresponding marine organisms.

Bioaccumulation of 210Po and 210Pb and Other Radionuclides in Marine Organisms

The bioconcentration factor is defined as the activity ratio of a radionuclide in the marine organism or biota to that in ambient seawater (L/kg) and is an indicator of the accumulation capacity of a given organism for a particular nuclide (Arnot and Gobas, 2006; Alava and Gobas, 2016; Ishii et al., 2020). Bioconcentration factors in different radionuclides vary widely due to their different biochemical properties, while bioconcentration factors (BCFs) in different marine organisms differ greatly due to their different bioaccumulation capacities. Even within the same species, BCFs vary among individuals due to differences in physiology, microhabitat, etc. For the sake of convenience and standardization, a set of values for different radionuclides and different kinds of marine organisms was recommended by the IAEA (IAEA, 2004). Using the data for seawater and marine organism samples in the present study, the BCFs of 210Po and 210Pb as well as those of other radionuclides can be estimated (Table 4). The BCFs for 210Po and 210Pb were in the ranges 636–44,944 and 3–1,226, respectively. BCFs of 137Cs, 90Sr, 238U, 226Ra, and 40K were in the range 5–55, 41–1,014, 1–79, 7–479, and 4–15 L/g freshweight, respectively. The BCF data reported in this study provide a useful supplement of information for the IAEA database.

Radiation Dose Assessment

The radiation doses for nonhuman species have become an issue of increasing public health concern. The ERICA tools downloaded freely from the internet are widely used for radiation assessment (Garnier-Laplace et al., 2011; Johansen et al., 2015; Men et al., 2017, 2020a,b). As shown in Tables 1–4, the radiation doses received by marine organisms in the studied area were assessed, using the ERICA tools. The internal and external dose rates derived for each radionuclide for the different marine species sampled in this study (in μSv/h) are listed in Table 5. The total dose rates ranged from 0.037 to 1.531 μSv/h. Around the Ningde NPP, the highest and lowest radiation doses were observed in *Crassostrea gigas* and *Porphyra*, respectively. Overall, these values are markedly lower than the ERICA ecosystem screening benchmark of 10 μGy/h (Beresford et al., 2007) and the most conservative safety benchmark, which is one to two orders of magnitude lower than the International Commission on Radiological Protection (ICRP)-derived reference levels for corresponding reference animals or plants (ICRP, 2008; Fisher et al., 2013; Men et al., 2017). This suggested that there are no irradiation effects on marine organisms in the area adjacent to Fuqing and Ningde NPPs.

Table 5 | Internal and external radionuclide dose rates derived for each radionuclide for the different marine species sampled in this study (in μSv/h).

Organisms	210Po	210Pb	226Ra	40K	137Cs	90Sr	238U	226Ra	40K
Mugil cephalus	68.7	0.000008	0.001	0.02	0.08	0.00002	0.01	0.001	0.00002
Gracilaria	93.5	0.000006	0.000017	0.0007	0.00002	0.00001	0.00001	0.00001	0.00001
Porphyra (Ningde NPP)	1,253.9	0.000165	0.00062	0.001	0.00001	0.00002	0.00001	0.00001	0.00001
Porphyra	6.3	0.000007	0.000017	0.0007	0.00002	0.00001	0.00001	0.00001	0.00001
Konosirus punctatus	18.3	0.000017	0.000017	0.0007	0.00002	0.00001	0.00001	0.00001	0.00001
Sinonovacula construeta	1,011.5	0.000165	0.00062	0.001	0.00001	0.00002	0.00001	0.00001	0.00001
Largehead hairtail	63.2	0.000008	0.000017	0.0007	0.00002	0.00001	0.00001	0.00001	0.00001
Porphyra (Ningde NPP)	1,469.3	0.000165	0.00062	0.001	0.00001	0.00002	0.00001	0.00001	0.00001
406.0	0.000017	0.000017	0.0007	0.00002	0.00001	0.00001	0.00001	0.00001	
Parapenaeopsis hardwickii	658.1	0.000235	0.00054	0.002	0.00001	0.00002	0.00001	0.00001	0.00001

Click of data due to the fact that the activities of 137Cs in marine organisms were below the MDA.
The dose contributions of different nuclides in different species were plotted in Figure 3 and show that 210Po was the dominant dose contributor except for Mugil cephalus and Porphyra (Fuqing NPP) (47–97%), while 226Ra and 40K were the main dose contributors for Mugil cephalus and Porphyra (Fuqing NPP), respectively. The contribution from external and internal doses for each nuclide (Table 5) suggests that the internal doses were much greater than the external doses. In general, the greatest internal dose should be from 210Po sources because of its alpha emissions. Additional main contributors should be 226Ra and 238U, which produced intermediate internal doses because of alpha emissions. Due to high-activity levels in seawater ($\sim 11,500$ Bq/m3) and marine organisms ($51–174.9$ Bq/kg freshweight) as well as emitted high-energy γ-rays (1,460 keV), 40K generated much higher internal and external dose rates than 210Pb, 137Cs, and 90Sr (EI-Arabi, 2007). Indeed, the dose contribution from 137Cs and 90Sr was $<$0.13%, which was extremely low compared to that of naturally occurring radionuclides.

Radiation Dose Assessment for Humans

The calculated committed effective dose for humans from ingestion of marine organisms in the area adjacent to Fuqing and Ningde NPPs was 60.74–2,990.41 μSv (Table 6). Results show that a maximum committed dose of 2.99 mSv will be received over the following 50 years based on assumed consumption of 50.97 kg of these marine organisms in 1 year. In terms of species, Porphyra had the lowest committed effective dose to humans (~ 100 μSv), while Portunus trituberculatus, Sinonovacula constrzcta, Largehead hairtail, Crassostrea gigas, and Mantis shrimp had committed effective doses exceeding...
CONCLUSIONS

The activity levels of 210Po and 210Pb in fishes (Mugil cephalus, Konosirus punctatus, Largehead hairtail, Larimichthys polyactis), crustaceans (Mantis shrimp, Parapenaeopsis hardwickii, Portunus trituberculatus), bivalve mollusks (Crassostrea gigas, Sinonovacula conzcta), and macroalgae (Gracilaria, Porphyra) collected in coastal waters adjacent to Fuqing and Ningde NPPs were in the range 0.60–48.09 Bq/kg freshweight and 0.07–2.76 Bq/kg freshweight, respectively. The activity ratios of 210Po/210Pb were in the range 1.1–189.7; calculated BCFs of 210Po and 210Pb in marine organisms were 636–44,944 and 3–1,226 L/kg, respectively. The radiation dose rates in the studied marine organisms, ranging from 0.037 to 1.531 µSv/h, were markedly lower than the ERICA ecosystem screening benchmark of 10 µGy/h, suggesting that there were no detectable irradiation effects on the marine organisms studied. The committed effective dose to humans from ingestion of these marine organisms was in the range of 0.06–2.99 mSv. Overall, when the Fuqing and Ningde NPPs are in operation, 210Po is the dominant radiation dose contributor to both marine organisms and humans, and the dose contributions from artificial nuclides 90Sr and 137Cs can be considered negligible.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author/s.

ETHICS STATEMENT

The animal study was reviewed and approved by Third Institute of Oceanography.

AUTHOR CONTRIBUTIONS

WM designed this work and performed the data analysis. JS performed the sample analysis and radiation assessment. JS and WM wrote the manuscript together. FW and JW edited this manuscript. All authors contributed to the article and approved the submitted version.
FUNDING

This work was supported by the guided project of the Department of Science and Technology of Fujian Province (2018Y0058), the National Natural Science Foundation of China (41776091, 42076038), Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (GML2019ZD0060), the Natural Science Foundation of Guangdong Province (2021A151011886), STU Scientific Research Foundation for Talents (NTF18011), and the Open Fund of the Laboratory for Ocean Dynamics and Climate, the Pilot Qingdao National Laboratory for Marine Science and Technology (No. OCFI-201801).

REFERENCES

Aba, A., Ismaeel, A., Al-Boloushi, O., Al-Shammari, H., Al-Boloushi, A., and Malak, M. (2020). Atmospheric residence times and excess of unsupported 210Po in aerosol samples from the Kuwait bay-northern gulf. *Chemosphere* 261:127690. doi: 10.1016/j.chemosphere.2020.127690

Alam, L., and Mohamed, C. A. R. (2011). A mini review on bioaccumulation of 210Po by marine organisms. *Int. Food Res. J.* 18, 1–10.

Alava, J. J., and Gobas, F. A. (2016). Modeling 137Cs bioaccumulation in the salmon-resident killer whale food web of the Northeastern Pacific following the Fukushima Nuclear Accident. *Sci. Total Environ.* 544, 56–67. doi: 10.1016/j.scitotenv.2015.11.097

Arnot, J. A., and Gobas, F. A. (2006). A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms. *Environ. Rev.* 14, 257–297. doi: 10.1139/a06-005

Bam, W., and Maiti, K. (2021). 210Po-210Pb distribution and carbon export in the northern Gulf of Mexico continental slope. *Deep Sea Res Part I* 172:103535. doi: 10.1016/j.dsr.2021.103535

Beresford, N., Brown, J., Copplestone, D., Garnier-Laplace, J., Howard, B., Larsson, C., et al. (2007). An Integrated Approach to the Assessment and Management of Environmental Risks from Ionizing Radiation. Description of Purpose, Methodology and Application (EC Project Contract No. FIE6-CT-2004-508847), June 17, 2005. Available online at: https://www.ericaproject.org

Bogdan, S. (1997). Polonium, uranium and plutonium in the southern Baltic Sea. *Environ. Rev.* 5, 1–29. doi: 10.1139/a97-007

Carvalho, F. P. (2018). Radionuclide concentration processes in marine organisms: a comprehensive review. *J. Environ. Radioact.* 186, 124–130. doi: 10.1016/j.jenrad.2017.11.002

Chen, Z. D., Lin, Q., Deng, F., Liu, Y., Song, H. Q., and Li, L. J. (2003). *Baseline radionuclide concentration in commercially important brachyuran crabs around Mumbai and Sindhudurg of Maharashtra, India*. *J. Radioanal. Nucl. Chem.* 237, 1055–1062. doi: 10.1021/es101637c

Johansen, M. P., Ruedig, E., Tagami, K., Uchida, S., and Higley, K. (2015). Radiocarbon dating does not reveal freshwater fish and aquatic organisms in lake and river ecosystems. *J. Environ. Radioact.* 213:106102. doi: 10.1016/j.jenvrad.2019.106102

Kong, X., Qian, Y., Zheng, Q., and Ji, Y. (2021). Levels and distributions of 210Po and 210Pb in selected seafood samples in China and assessment of related dose to population. *Int. J. Environ. Res. Public Health* 18:3036. doi: 10.3390/ijerph18060306

Li, P. X., Li, Z., Zhang, J., Gao, Z. Q., Wang, J. R., Song, Q. N., et al. (2018). Contents of 210Po in some aquatic organisms and its distribution in different parts of shrimp's bodies. *Radiat. Protect. 38, 15–18 (in Chinese).

Li, P. X., Li, Z., Zhang, J., Yang, H. L., Gao, Z. Q., Jiang, K., et al. (2016). Determination of 210Po in food and processed products and estimation of internal dose. *J. Nucl. Radiochem.* 38, 103–106. doi: 10.7538/hx.2016.38.02.0103

Lin, K. (2018). *The Research of 210Po and 210Pb in Marine Environmental Media*. Master Thesis, Nan Hua University, Hengyang.

Lin, Y. Q., Wang, X. Q., Wang, H. J., Cai, J. M., Luo, J. G., and Zhang, Y. (2016). Study on enrichment of 210Po in shellfish in sea area around nuclear power plant. Proceedings of the third Academic Exchange conference of Guangdong Occupational Health Association (Huizhou), 332–334 (in Chinese).

Liu, G. S. (2010). *Isotopic Oceanography*. Zhengzhou: Zhengzhou University Press, 1–298 (in Chinese).

Liu, G. S., and Zhou, C. Y. (2000). Contents and behavior characteristics of 137Cs and 90Sr in various mediums of Daya Bay. *J. Oceanogr. Taiwan Strait* 19, 261–268 (in Chinese). doi: 10.3969/j.issn.1000-8160.2000.03.001

Men, W., Deng, F. F., He, J. H., Yu, W., Wang, F. F., Li, Y. L., et al. (2017). Radioactive impacts on nekton species in the Northwest Pacific and humans more than one year after the Fukushima nuclear accident. *Ecotoxicol. Environ. Saf.* 144, 601–610. doi: 10.1016/j.ecoenv.2017.06.042
Men, W., Wang, F. F., Yu, W., He, J. H., Lin, F., and Deng, F. F. (2020a). Impact of the Fukushima daiichi nuclear power plant accident on the neon flying squids in the Northwest Pacific from 2011 to 2018. *Environ. Pollut.* 264:114647. doi: 10.1016/j.envpol.2020.114647

Men, W., Wang, F. F., Yu, W., He, J. H., Lin, F., Deng, F. F., et al. (2020b). Impact of the Fukushima Dai-ichi Nuclear Power Plant Accident on dolphin fishes in the Northwest Pacific. *Chemosphere* 257:127267. doi: 10.1016/j.chemosphere.2020.127267

Ministry of Environmental Protection of China. (2002). *Basic Standards for Protection Against Ionizing Radiation and for the Safety of Radiation Sources*, October 8, 2002, GB18871–2002.

Ministry of Health of the People's Republic of China. (1994). *Limited concentrations of radioactive materials in foods*, 22 February 1994, GB 14882-94.

Seiler, R. L., and Wiemels, J. L. (2012). Occurrence of 210Po and biological effects of low-level exposure: the need for research. *Environ. Health Perspect.* 120, 1230–1237. doi: 10.1289/ehp.1104607

Sirelkhatim, D. A., Sam, A. K., and Hassona, R. K. (2008). Distribution of 226Ra-210Pb-210Po in marine biota and surface sediments of the Red Sea, Sudan. *J. Environ. Radioact.* 99, 1825–1828. doi: 10.1016/j.jenvrad.2008.07.008

Sivakumar, R. (2014). An assessment of the 210Po ingestion dose due to the consumption of agricultural, marine, fresh water and forest foodstuffs in Gudalore (India). *J. Environ. Radioact.* 137, 96–104. doi: 10.1016/j.jenvrad.2014.06.019

State Oceanic Administration of China (2011). *Technical Specification for Marine Radioactivity Monitoring, No.10. Haihuazrci.*

Stewart, G. M., Fowler, S. W., and Fisher, N. S. (2008). The bioaccumulation of U-series and Th-series radionuclides in marine organisms. *Radioact. Environ.* 13, 269–305. doi: 10.1016/S1569-4860(07)00008-3

Strady, E., Harmelin-Vivien, M., Chiffoleau, J. F., Veron, A., Tronczynski, J., and Radakovitch, O. (2015). 210Po and 210Pb trophic transfer within the phytoplankton-zooplankton-anchovy/sardine food web: a case study from the Gulf of Lion (NW Mediterranean Sea). *J. Environ. Radioact.* 143, 141–151. doi: 10.1016/j.jenvrad.2015.02.019

Štrok, M., and Smodiš, B. (2011). Level of 210Po and 210Pb in fish and molluscs in Slovenia and the related dose assessment to the population. *Chemosphere* 82, 970–976. doi: 10.1016/j.chemosphere.2010.10.075

UNSCEAR (2000). *UNSCEAR Report 2000, Sources and Effects of Ionizing Radiation*. United Nations Scientific Committee on the Effects of Atomic Radiation.

Yu, W., Johansen, M. P., He, J. H., Men, W., and Lin, L. S. (2018). Artificial radionuclides in neon flying squid from the northwestern Pacific in 2011 following the Fukushima accident. *Biogeosciences* 15, 7235–7242. doi: 10.5194/bg-15-7235-2018

Zhang, L. H., Yang, W. F., Chen, M., Zhu, Y. N., Wang, Z., Fang, Z. M., et al. (2020). Distribution patterns of 210Po, 210Pb and the particle export in the Taiwan Strait during the winter. *Acta Oceanol. Sin.* 39, 12–21. doi: 10.1007/s13131-020-1550-z

Zhang, X. L. (2015). *Investigation of Environmental Radiation Background Organisms Strontium-90 and Cesium-137 at Haiyang Nuclear Power Plant in Shandong Province and the Effect of Fukushima Nuclear Accident on Them*. Master Thesis, Soochow University, Suzhou.

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Sun, Men, Wang and Wu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.