The Synthetic Cannabinoid $R(+)\text{WIN55,212-2}$ Augments Interferon-β Expression via Peroxisome Proliferator-activated Receptor-α*${}^{{\S}}$

Eric J. Downer1,2, Eileen Clifford1, Sylvie Amu6, Padraic G. Fallon6, and Paul N. Moynagh1,3

From the 1Institute of Immunology, National University of Ireland Maynooth, County Kildare, Ireland and the 6Institute of Molecular Medicine, Trinity College Dublin, St. James’s Hospital, Dublin 8, Ireland

Background: The synthetic cannabinoid $R(+)\text{WIN55,212-2}$ can regulate IFN-β expression.

Results: $R(+)\text{WIN55,212-2}$ regulates IFN-β expression in a PPARα-dependent manner.

Conclusion: PPARα mediates effects of $R(+)\text{WIN55,212-2}$ on IFN-β expression.

Significance: PPARα contributes to protective effects of $R(+)\text{WIN55,212-2}$ in models of multiple sclerosis.

We have demonstrated that $R(+)\text{WIN55,212-2}$, a synthetic cannabinoid that possesses cannabimimetic properties, acts as a novel regulator of Toll-like receptor 3 (TLR3) signaling to interferon (IFN) regulatory factor 3 (IRF3) activation and IFN-β expression, and this is critical for manifesting its protective effects in a murine multiple sclerosis model. Here we investigated the role of peroxisome proliferator-activated receptor-α (PPARα) in mediating the effects of $R(+)\text{WIN55,212-2}$ on this pathway. Data herein demonstrate that the TLR3 agonist poly(I:C) promotes IFN-β expression and $R(+)\text{WIN55,212-2}$ enhances TLR3-induced IFN-β expression in a stereoselective manner via PPARα. $R(+)\text{WIN55,212-2}$ promotes increased transactivation and expression of PPARα. Using the PPARα antagonist GW6471, we demonstrate that $R(+)\text{WIN55,212-2}$ acts via PPARα to activate JNK, activator protein-1, and positive regulatory domain IV to transcriptionally regulate the IFN-β promoter. Furthermore, GW6471 ameliorated the protective effects of $R(+)\text{WIN55,212-2}$ during the initial phase of experimental autoimmune encephalomyelitis. Overall, these findings define PPARα as an important mediator in manifesting the effects of $R(+)\text{WIN55,212-2}$ on the signaling cascade regulating IFN-β expression. The study adds to our molecular appreciation of potential therapeutic effects of $R(+)\text{WIN55,212-2}$ in multiple sclerosis.

Current multiple sclerosis (MS)* therapies are partially effective and are based on immunomodulation, restoration of blood-brain barrier integrity, and repair of damage (1). The type I interferon (IFN), IFN-β, is a front line therapy currently available to treat patients with MS (2), displaying beneficial effects on disability progression (3) and relapse rate (4). IFN-β exerts a diverse array of therapeutic mechanisms, with demonstrated effects on antigen presentation, co-stimulatory molecule expression, T cell proliferation, and leukocyte migration (5). Given its clinical efficacy, an increased understanding of novel mechanisms that regulate endogenous expression of IFN-β may provide important clues to new therapy development.

Transcriptional regulation of IFN-β requires the assembly of a transcription enhancer complex on four positive regulatory domains (PRD I to -IV) (6). PRD I-III domains are recognized by IFN regulatory factors (IRFs) (3 and 7), PRD II by nuclear factor-κB (NF-κB) and PRD IV by activator protein-1 (AP-1) (ATF-2/c-Jun), and these transcription factors act in cooperation to form an enhanceosome that drives efficient production of IFN-β (7). Intriguingly, we have recently demonstrated that the aminoalkylindolene, $R(+)\text{WIN55,212-2}$, regulates IFN-β expression by augmenting activation of IRF3 and this is critical for manifesting its protective effects in experimental autoimmune encephalomyelitis (EAE), an animal model of MS (8). $R(+)\text{WIN55,212-2}$ is a potent synthetic cannabinoid receptor agonist and while capable of binding to both CB$_1$ and CB$_2$ cannabinoid receptors, it exhibits greater selectivity for CB$_2$ (9). However, we have demonstrated cannabinoid receptor-independent mechanisms of action for $R(+)\text{WIN55,212-2}$, including those underlying its regulation of IFN-β expression (8). Such findings and others clearly indicate that $R(+)\text{WIN55,212-2}$ can work independently of the classical cannabinoid receptor system. Indeed, other candidate receptors exist for mediating cannabinoid effects, including the orphan receptor GPR55 (10) and transient receptor potential vanilloid type 1 (TRPV1) (11). However more recent interest has focused on the role of nuclear receptor superfamily of peroxisome proliferator-activated receptors (PPARs) as potential mediators of some cannabinoid activity (12). Interestingly cannabinoid-mediated transferase; RANTES, regulated on activation normal T cell expressed and secreted; PLP, proteolipid protein; TK, thymidine kinase.
anti-inflammatory propensity has been linked to PPAR activity (13–14) and this is consistent with the anti-inflammatory effects of PPAR ligands (15–16).

PPARs are ligand-activated nuclear receptors with effects on proliferation, metabolism and immunity (17). Three isoforms exist (PPARα, -γ, and -δ) which heterodimerize with the retinoic X receptor, activating transcription by binding a specific DNA element called the PPAR response element (PPRE) (17). The PPAR subtypes exhibit distinct tissue expression patterns (18), with expression characterized throughout the central nervous system (CNS) (19). PPAR agonists (thiazolidinediones) are used clinically in the treatment of diabetes and experimental evidence suggests potential clinical benefits for patients with neuroinflammatory disorders (20).

The anti-inflammatory properties of PPARs result, at least in part, from inhibition of transcription factors NF-κB and AP-1, and subsequent regulation of chemokines, cytokines and adhesion molecules (16, 21–22). Activation of transcription factors such as NF-κB, in addition to members of the IRF family, is tightly controlled by TLRs, single transmembrane receptors involved in the recognition of conserved microbial motifs (23). Despite the integral role of TLRs in pathogen recognition, dysregulation of TLR signaling cascades is associated with inflammation (24). We have previously demonstrated that \(R(+)\)WIN55,212-2 differentially regulates TLR signaling (TLR3 and TLR4), and in particular, this aminoalkylindole derivative acts as a novel regulator of TLR3 signaling to IRF3 and subsequent expression of IFN-β (8). Such effects of \(R(+)\)WIN55,212-2, in particular its capacity to induce endogenous IFN-β, offers an attractive additional option to the current use of exogenously administered IFN-β in MS. Indeed, a high percentage of patients fail to respond to current therapy, with treatment failure associated with production of neutralizing antibodies to IFN-β in some cases (25). However, cannabinoid receptor involvement was not associated with the effects of \(R(+)\)WIN55,212-2 on endogenous IFN-β expression. Given previous reports that cannabinoid compounds may manifest at least some effects via PPARα (13, 26) we were particularly interested to explore the role of PPARα in mediating the effects of \(R(+)\)WIN55,212-2 on IFN-β expression. We show that \(R(+)\)WIN55,212-2 promotes PPARα transactivation and expression, and potentiates TLR3-induced IFN-β via a PPARα mechanism. We further show that \(R(+)\)WIN55,212-2 specifically targets the AP-1-binding enhancer element of the IFN-β promoter, and this effect of \(R(+)\)WIN55,212-2 is reliant on the PPARα isoform. This study thus identifies a novel role for PPARα in regulating the signaling cascade leading to IFN-β expression.

EXPERIMENTAL PROCEDURES

Materials—The rabbit polyclonal antibodies recognizing phosphorylated and total JNK were from Cell Signaling Technology Inc. (Danvers, MA). The goat polyclonal PPARα antibody was from Santa Cruz Biotechnology Inc. (Santa Cruz, CA). The firefly luciferase NF-κB reporter construct was a gift from Prof. Luke O’Neill (Trinity College Dublin, Ireland). The pFR-luciferase Gal4 reporter construct was a gift from Prof. Andrew Bowie (Trinity College). Constructs encoding IRF3 Gal4 reporter and the IFN-β luciferase reporter construct were gifts from Dr. Kate Fitzgerald (University of Massachusetts Medical School, Worcester, MA). The PRDII, PRDI-III, and PRDIV luciferase reporter constructs were gifts from Dr. Sinead Maggin (National University of Ireland, Maynooth, Ireland). pcDNA2.1+(-) and the IFN-β luciferase reporter plasmid 3xPPRE TK-luc were kind gifts from Dr. Andrew Bennett (University of Nottingham, UK). \(R(+)\)WIN55,212-2, \(S(−)\)WIN55,212-2, the PPARα agonist fenofibrate, the selective JNK inhibitor SP600125 (all from Sigma), and the PPARα antagonist GW6471 (Tocris Bioscience, Bristol, UK) were initially dissolved in DMSO and stored as 10 mM stock solutions. For culture use, the stock drugs were diluted to a final concentration in culture medium, and DMSO (<0.1%) was used as a vehicle control. Human embryonic kidney 293 (HEK293) cells stably expressing the TLR3 receptor were from InvivoGen (Toulouse, France).

Cell Culture—Cell lines were maintained in DMEM supplemented with 10% FBS, 100 μg/ml penicillin, and 100 μg/ml streptomycin. Cells were maintained in a 37 °C humidified atmosphere with 5% CO₂. The neomycin analog G418 (500 μg/ml) was used to select for the stably transfected TLR cell lines and maintenance of CD14 expression. Primary astrocytes were prepared as described previously (27) from the whole brain of 1-day-old C57/BL6 mice in accordance with the guidelines laid down by the local ethics committee (National University of Ireland Maynooth). Briefly, dissected brains were chopped, added to DMEM (Invitrogen), triturated, passed through a sterile mesh filter (40 μm), and centrifuged (2,000 × g for 3 min at 20 °C). The pellet was resuspended in DMEM and plated onto T25 flasks. Medium was changed after 1, 5, and 8 days. Astrocytes were isolated from mixed glia at day 10–14 by removing non-adherent cells with mechanical shaking and harvesting by trypsinization (0.25% trypsin, 0.02% EDTA). Cells were centrifuged (2,000 × g for 5 min at 20 °C), and the astrocyte-enriched pellet was resuspended in DMEM. Astrocytes were plated (2 × 10⁵ cells/ml) on 6- or 12-well plates and treated 24 h later.

Transient Transfections—HEK293 cells (2 × 10⁵ cells/ml) were seeded in 96-well plates and allowed to adhere for 24 h. Cells were transfected using Lipofectamine 2000 with firefly luciferase NF-κB reporter plasmids (80 ng); constitutively expressed Renilla luciferase reporter constructs (pGL3-TK) (20 ng); IFN-β luciferase reporter constructs (80 ng); AP-1 luciferase reporter constructs (80 ng); PRDII, PRDI-III, and PRDIV luciferase reporter constructs (80 ng); and expression constructs encoding mitogen-activated protein kinase kinase (MEKK1) (20 ng). Total DNA was kept constant using the pcDNA3.1 empty vector. To measure the activation of Jun and IRF3, cells were transfected with pFR-Luc (60 ng) and the trans-activator plasmids pFA-Jun (Jun fused downstream of the yeast Gal4 DNA binding domain, 30 ng) and pFA-IRF3 (IRF3 fused downstream of the yeast Gal4 DNA binding domain, 30 ng). For PPARα luciferase reporter gene assays, HEK293 cells were transiently transfected with pcDNA2.1+(-) together with the reporter plasmid 3xPPRE TK-luc (1 μg). Cells were allowed to recover overnight and then pretreated with/without GW6471 (1 μM; 1 h) or SP600125 (10 μM; 1 h) prior to exposure to \(R(+)\)WIN55,212-2 (0.001–40 μM), \(S(−)\)-
WIN55,212-2 (20 \mu M) or fenofibrate (0.001–40 \mu M) for 1 h (overnight treatment to assess PPARα transactivation as based on previous observations) (13). The inhibitor concentrations were selected based on the IC_{50} values for antagonism in cell-based assays (28–29). The concentrations of R(+) WIN55,212-2 used are in line with those used in various anti-inflammatory paradigms in vitro (30–32). Furthermore, the concentrations of fenofibrate tested were based on the EC_{50} values of the compound in transactivation assays (33). Cells were then stimulated in the presence or absence of the TLR3 ligand, poly(I:C) (25 \mu g/ml; InvivoGen) for 6 h (time point was selected based on previous evidence) (34). Cell extracts were generated using reporter lysis buffer (Promega, Southampton, UK), and extracts were assayed for firefly luciferase and Renilla luciferase activity using the Luciferase assay system (Promega) and coelenterazine (1 \mu g/ml), respectively. Luminescence was monitored with a Glomax microplate luminometer (Promega). The Renilla luciferase plasmid was used to normalize for transfection efficiency in all experiments.

ELISA—Primary astrocytes (2 \times 10^5 cells/ml) were seeded in 12-well plates. Cells were pretreated with or without GW6471 (1 \mu M; 1 h) prior to R(+) WIN55,212-2 (20 \mu M; 1 h pretreatment). Cells were then treated with poly(I:C) (25 \mu g/ml) for 6 h. Cell culture supernatants were assayed for levels of RANTES by ELISA according to the manufacturer’s instructions (Duoset, R&D Systems, Abingdon, UK).

Western Blotting—Astrocytes were seeded in 6-well plates (2 \times 10^5 cells/ml). Cells were treated with R(+) WIN55,212-2 (20 \mu M), fenofibrate (20 \mu M) (time points ranging from 5 min to 24 h), and S(−) WIN55,212-2 (20 \mu M; 8 h) or pretreated with or without GW6471 (1 \mu M; 1 h) prior to R(+) WIN55,212-2 (20 \mu M; 15 min). Cells were then washed in ice-cold PBS before being lysed on ice for 10 min in 150 \mu l of lysis buffer (20 mM HEPES, pH 7.4, containing 10 mM KCl, 1.5 mM MgCl₂, 1 mM EDTA, 1 mM EGTA, 1 mM dithiothreitol, 0.1 mM PMSF, 0.5% Igepal, pepstatin A (5 \mu g/ml), leupeptin (2 \mu g/ml), and apro tinin (2 \mu g/ml)). Cell lysates were centrifuged at 13,000 \times g for 15 min at 4 °C. The supernatant was mixed with SDS-PAGE sample buffer (0.125 Tris-HCl, pH 6.8, 20% (v/v) glycerol, 4% (v/w) SDS, 1.4 M β-mercaptoethanol, and 0.0025% (w/v) bromophenol blue). Samples were boiled (10 min) and separated on 10% SDS-polyacrylamide gels, and proteins were transferred to nitrocellulose membrane (Sigma). Membranes were blocked for 1 h in 5% BSA. Membranes were incubated overnight at 4 °C with rabbit polyclonal phospho-JNK (1:1,000 in 5% BSA), goat polyclonal PPARα (1:1,000 in 5% dried milk), and rabbit polyclonal total JNK antibody (1:1,000 in 5% BSA). Membranes were washed and incubated with anti-goat or anti-rabbit IRDye Infrared secondary antibody (1:5,000 in 5% dried milk; LI-COR Biosciences, Lincoln, NE) for 1 h in the dark at room temperature. The membranes were then washed, and immunoreactive bands were detected using the Odyssey Infrared Imaging System (LI-COR Biosciences). Membranes were stripped and incubated with mouse monoclonal anti-β-actin antibody (1:10,000; overnight at 4 °C; Sigma). Molecular weight markers were used to calculate molecular weights of proteins represented by immunoreactive bands. Densitometry was performed using ImageJ software, and values were normalized for protein loading relative to levels of total JNK or β-actin.

Quantitative RT-PCR—HEK293 cells and primary astrocytes (both at 2 \times 10^5 cells/ml) were seeded on 6-well plates. Cells were pretreated with or without the PPARα antagonist GW6471 (1 \mu M; 1 h) prior to exposure to R(+) WIN55,212-2 (20 \mu M; 1 h). In some experiments, cells were pretreated with or without fenofibrate (1–40 \mu M; 1 h). Cells were then treated in the absence or presence of poly(I:C) (25 \mu g/ml) for 4 h. In another series of experiments, primary astrocytes were treated with R(+) WIN55,212-2 (20 \mu M) or S(−) WIN55,212-2 (20 \mu M) for times ranging from 1 to 24 h. RNA was extracted from cells using Tri Reagent® (Invitrogen), and cDNA was generated from normalized RNA using Superscript II reverse transcriptase. cDNA (1 \mu g) was amplified in the presence of SYBR® Green PCR Mastermix (New England Biolabs, Ipswich, MA). Primers used were as follows: murine IFN-β, forward (5′-GGAGATGCACGGAAGATGC-3′) and reverse (5′-CCCTAGTCTGGGAAAATGTG-3′); murine PPARα, forward (5′-CCCTACGGTGATCTACCAAGT-3′) and reverse (5′-GCCCCAGTAGTTTTCGGCAGA-3′); murine TNF-α, forward (5′-GGCCCAAAATGTGTCCTCCTCAGG-3′) and reverse (5′-CTCCCTCAGGGTGTAAGTTCAT-3′). As internal control, murine GAPDH (forward, 5′-AGGTCTACCCAGGCT-GAACG-3′; reverse, 5′-ACCCCTGTTGCTTAGCCGTA-3′) and human HPRT (forward, 5′-TTGCTGACCTGTCGGAT-TAC-3′; reverse, 5′-TCTCCACAAATTACTTATGTCC-3′) were used in a similar reaction. Accumulation of gene-specific PCR products was measured continuously by means of fluorescence detection over 40 cycles. Samples were run in duplicate as follows: 10 min at 95 °C and for each cycle, 10 s at 95 °C, 10 s at 55 °C, and 1 min at 72 °C. Gene expression was calculated relative to the endogenous control, and analysis was performed using the 2−ΔΔCt method.

Confocal Microscopic Analysis of PPARα—Primary astrocytes were seeded (1 \times 10^5 cells/ml) in 4-well chamber slides (Lab-Tek, Roskilde, Denmark) and grown for 24 h. Cells were treated with R(+) WIN55,212-2 (20 \mu M) or S(−) WIN55,212-2 (20 \mu M) for times ranging from 2 to 8 h. Cells were fixed in 4% paraformaldehyde and blocked with 10% chicken serum (Vector Laboratories, Peterborough, UK) for 2 h. Cells were treated overnight at 4 °C with goat polyclonal PPARα antibody (1:100 in 5% chicken serum; Santa Cruz Biotechnology, Inc., Santa Cruz, CA). Cells were washed and incubated with chicken anti-goat Alexa488 secondary antibody (1:500 in 5% chicken serum; Invitrogen) and DAPI (1.5 \mu g/ml) in PBS, washed, and mounted (Vecstain, Vector Laboratories). All samples were viewed using an Olympus Fluoview FV1000 confocal laser-scanning microscope equipped with the appropriate filter sets. Acquired images were analyzed using the Olympus FV-10 ASW imaging software. Negative control experiments were performed by replacing the primary antibody with isotype control IgG (Millipore, Cork, Ireland) and using equal gain settings during acquisition and analysis.

Induction and Assessment of EAE and Treatment with Cannabinoid and PPARα Antagonist—EAE was induced in mice as described (35). Female SJL/J mice (10 weeks old) were injected subcutaneously at two sites with two injections (100 \mu l) of...
emulsified Freund’s complete adjuvant containing 100 μg of myelin proteolipid protein amino acids 139–151 (PLP(139–151)) and 200 μg of Mycobacterium tuberculosis H37Rv followed 2 h later with 200 ng of pertussis toxin (Hooke Laboratories, Lawrence, MA) delivered intraperitoneally.

Results

Results

R(+)WIN55,212-2 Enhances TLR3-induced IFN-β Expression via PPARα—We have previously demonstrated that R(+)WIN55,212-2 negatively regulates the transactivation of NF-κB and expression of proinflammatory cytokines (37) but can positively impact the TLR3-IRF3 signaling axis to enhance IFN-β expression in the presence of TLR3 stimulation (8). Given that such effects were shown to be mediated in a manner independent of cannabinoid receptors (8, 37) and that this compound can exert some effects via PPARα (13, 38), we used the specific PPARα antagonist GW6471 to assess the potential role of PPARα in mediating the effects of R(+)WIN55,212-2 on TLR3-induced activation of NF-κB and IRF3 and expression of TLR-responsive genes. GW6471 failed to regulate the ability of R(+)WIN55,212-2 to inhibit TLR3-induced activation of NF-κB in HEK293-TLR3 cells (Fig. 1A) or the expression of the NF-κB-responsive chemokine RANTES in astrocytes (Fig. 1B), indicating that these effects of R(+)WIN55,212-2 are mediated in a manner independent of PPARα. Similarly, the potentiating effect of R(+)WIN55,212-2 on TLR3-induced IRF3 activation in HEK293-TLR3 cells was not reliant on the PPARα isoform, given that GW6471 failed to influence the effects of R(+)WIN55,212-2 on IRF3 activation (Fig. 1C). The lack of a
role for PPARα in regulating IRF3 was further confirmed in HEK293 cells by demonstrating that GW6471 failed to regulate the previously described ability of R(+)WIN55,212-2 to promote the increased nuclear localization of IRF3-GFP fusion protein (supplemental Fig. 1). However, pre-exposure to the PPARα antagonist GW6471 attenuated the ability of R(+)WIN55,212-2 to enhance poly(I:C)-induced activation of the IFN-β promoter (Fig. 1D) and to potentiate poly(I:C)-induced IFN-β mRNA expression in primary astrocytes (Fig. 1E) and HEK293-TLR3 cells (Fig. 1F), indicating that R(+)WIN55,212-2 enhances TLR3-induced IFN-β expression via a PPARα mechanism.

R(+)WIN55,212-2 Promotes Increased Transactivation and Expression of PPARα—Because R(+)WIN55,212-2 enhances IFN-β expression via a PPARα mechanism, we next assessed the potential of R(+)WIN55,212-2 to directly regulate the activation and expression of PPARα. R(+)WIN55,212-2 was initially compared with the PPARα-specific agonist fenofibrate for its ability to transactivate PPARα and increase the expression of a luciferase reporter gene that is regulated by a PPARα-responsive element. Fenofibrate and R(+)WIN55,212-2 demonstrated a significant increase in PPARα-mediated transcription in HEK293 cells (Fig. 2A) with both agents directly acting on PPARα because their effects were abrogated by the PPARα antagonist GW6471 (Fig. 2B). Furthermore, exposure of primary astrocytes to R(+)WIN55,212-2 significantly enhanced the expression of PPARα mRNA in a time-dependent manner, with mean maximal stimulatory effects observed at 8–24 h post-aminoalkylindole exposure (Fig. 2C). The stimulatory effect of R(+)WIN55,212-2 on PPAR expression was restricted.
R(+)WIN55,212-2 Regulates IFN-β via PPARα

FIGURE 3. Fenofibrate targets PRDIV. HEK293-TLR3 cells were co-transfected with IFN-β promoter-regulated firefly luciferase (A), PRD-III (C), PRDII (D), PRDIV (E), pFA-IRF3- and pFR-regulated firefly luciferase (F), and NF-κB-regulated firefly luciferase (G) in addition to TK Renilla luciferase. Cells were left overnight and pretreated in the absence or presence of fenofibrate (0.1–40 μM; 1 h) and stimulated with poly(I:C) (25 μg/ml) for 6 h. Lysates were assayed for luciferase activity. B, HEK293-TLR3 were pretreated with fenofibrate (1–40 μM; 1 h) prior to poly(I:C) (25 μg/ml)/exposure for 6 h. cDNA was generated and assayed by quantitative real-time PCR for levels of IFN-β mRNA. The expression level of IFN-β was normalized relative to expression of HPRT. H, HEK293-TLR3 cells were co-transfected with AP-1 luciferase reporter construct and TK Renilla luciferase with or without a construct encoding MEK1. Empty vector pcDNA3.1 (EV) was used to normalize the amount of total DNA transfected. Cells were treated with fenofibrate (0.1–40 μM) for 6 h. Lysates were assayed for luciferase activity. Data are presented as the mean ± S.E. (error bars) of triplicate determinations and are representative of three independent experiments. *, p < 0.05; **, p < 0.01; ***, p < 0.001 compared with vehicle-treated cells. +, p < 0.05; ++, p < 0.01; ++++, p < 0.001 compared with poly(I:C)-treated cells.

to the α isomor because it had no effect on PPARα or PPARγ mRNA expression in astrocytes (data not shown). The enantiomeric form of R(+)-WIN55,212-2, S(−)-WIN55,212-2 (39), failed to affect PPARα mRNA expression (Fig. 2C), suggesting that a stereoselective mechanism underlies the stimulatory effects of R(+)-WIN55,212-2 on PPARα. The time- and stereoselective-dependent effects of R(+)-WIN55,212-2 on PPARα expression were also confirmed at the protein level by immunoblotting of extracts from R(+)-WIN55,212-2-treated astrocytes (Fig. 2D). We also employed confocal microscopy to characterize the effects of R(+)-WIN55,212-2 on the cellular expression pattern and localization of PPARα. Exposure of astrocytes to R(+)-WIN55,212-2 promoted strong cellular expression of PPARα from 8 h, and this was highly localized to the nucleus (Fig. 2E). These findings strongly indicate that R(+)-WIN55,212-2 positively regulates the activation and expression of PPARα, and this is consistent with the PPARα dependence of R(+)-WIN55,212-2 with respect to its regulatory effects on IFN-β.

PPARα Targets the PRDIV Domain of the IFN-β Promoter—Given that R(+)-WIN55,212-2 can directly target PPARα and augment TLR3-induced activation of the IFN-β promoter in a PPARα-dependent manner, we next examined if activation of PPARα was sufficient to manifest such positive effects. We thus examined the ability of the PPARα-specific agonist fenofibrate to regulate activation of the IFN-β promoter. Fenofibrate augmented poly(I:C)-induced activation of the IFN-β promoter (Fig. 3A) and induction of IFN-β mRNA (Fig. 3B) in a dose-dependent manner in HEK293-TLR3 cells, indicating that activation of PPARα is indeed sufficient to positively regulate IFN-β. We next probed the mechanistic basis to the regulatory effects of PPARα on the IFN-β promoter. Transcriptional activation of IFN-β requires assembly of a transcription enhancer complex on the four PRDs of its promoter. PRD-III domains are recognized by IRF3/7, PRDII is recognized by NF-κB, and PRDIV is recognized by AP-1 (7). We thus assessed the regulatory influence of PPARα on each of these regulatory regions by measuring the effects of fenofibrate on poly(I:C) induction of a luciferase reporter gene regulated by individual PRDs. Fenofibrate, in a dose-dependent manner, inhibited poly(I:C)-induced activation of PRDIII (Fig. 3C) and PRDII (Fig. 3D) but intriguingly augmented poly(I:C)-induced activation of PRDIV (Fig. 3E). Fenofibrate had no effect on cell viability (supplemental Fig. 2) at the concentrations tested. We next probed the direct effects of fenofibrate on the transcription factors that bind to each of the PRD regions. Fenofibrate, in a dose-dependent manner, inhibited poly(I:C)-induced IRF3-regulated luciferase (Fig. 3F), and this is consistent with the negative effects of fenofibrate on PRDII. Fenofibrate also showed strong inhibitory effects on poly(I:C)-induced activation of NF-κB (Fig. 3G), and this provides a credible basis to the negative effects of fenofibrate on PRDII. Interestingly, fenofibrate induced activation of AP-1...
R(+)WIN55,212-2 Regulates IFN-β via PPARα

FIGURE 4.

A	B	C	D	E	F

- **R(+)WIN55,212-2 acts via PPARα to target PRDIV, AP-1, and Jun transcription factors.** HEK293-TLR3 cells were co-transfected with PRDIV (A and B), AP-1 luciferase reporter construct (C and D), and pFR-Luc (E and F) and the trans-activator plasmid pFA-Jun in addition to constitutively expressed TK Renilla luciferase. Cells were left overnight and treated with or without R(+)WIN55,212-2 (0.001–40 μM; 1 h) or S(-)WIN55,212-2 (20 μM; 1 h) prior to poly(I:C) (25 μg/ml; 6 h) exposure (A, C, and E) or pretreated with GW6471 (1 μM; 1 h) prior to R(+)WIN55,212-2 (20 μM; 6 h) and subsequent poly(I:C) (25 μg/ml; 6 h) (B) exposure (B, D, and F). C and E, cells were also treated with a construct encoding MEKK1, and empty vector pcDNA3.1 (EV) was used to normalized the amount of total DNA transfected. Lysates were assayed for luciferase activity. Data are presented as the mean ± S.E. (error bars) of triplicate determinations and are representative of three independent experiments. *, p < 0.05; **, p < 0.01; ***, p < 0.001 compared with vehicle-treated cells. +, p < 0.05; ++, p < 0.01; ++++, p < 0.001 compared with poly(I:C)-treated (A and B) or R(+)WIN55,212-2-treated cells (D and F). $, p < 0.05 compared with cells treated with poly(I:C) in the presence of R(+)WIN55,212-2.

(Fig. 3H), and this is consistent with the positive effects of fenofibrate on PRDIV.

R(+)WIN55,212-2 Targets the PRDIV Domain of the IFN-β Promoter by Activating AP-1 in a PPARα-dependent Manner—

The positive regulatory effects of fenofibrate on the PRDIV region of the IFN-β promoter, coupled to the PPARα-mediated activation of the IFN-β promoter by R(+)WIN55,212-2, prompted an assessment of the regulatory effects of the latter on the PRDIV domain. Similar to fenofibrate, R(+)WIN55,212-2 augmented poly(I:C)-induced activation of PRDIV luciferase in HEK293-TLR3 cells in a dose-dependent and stereoselective manner (Fig. 4A). This effect was blocked by the PPARα antagonist GW6471 (Fig. 4B), indicating that R(+)WIN55,212-2 targets PRDIV via PPARα and so regulates TLR3-induced activation of the IFN-β promoter. Given that AP-1 targets PRDIV, we next assessed the impact of R(+)WIN55,212-2 on activation of AP-1. Poly(I:C) proved to be a very weak activator of AP-1, but R(+)WIN55,212-2 caused a dose-dependent induction of the AP-1-regulated luciferase gene (Fig. 4C). The stimulatory effect of R(+)WIN55,212-2 on the latter was mediated by PPARα because pre-exposure to GW6471 precluded R(+)WIN55,212-2-induced activation of AP-1 (Fig. 4D). In order to further probe the mechanism by which R(+)WIN55,212-2 activates AP-1, we assessed its ability to activate Jun, a major transactivating subunit of AP-1.

HEK293 cells were thus transfected with a construct encoding a fusion protein of Jun and the DNA binding domain of the yeast protein Gal4 and a luciferase reporter construct regulated by a Gal4 binding motif. R(+)WIN55,212-2 induced the transactivation of the Jun-Gal4 protein in a dose-dependent and stereoselective manner (Fig. 4E) and by a mechanism that is dependent on PPARα because the positive effects of R(+)WIN55,212-2 were abrogated by GW6471 (Fig. 4F).

R(+)WIN55,212-2 Promotes JNK Phosphorylation and JNK Mediates the Effects of R(+)WIN55,212-2 on the IFN-β Promoter—

Given that R(+)WIN55,212-2 targets activation of Jun in a PPARα-dependent manner, we next examined the regulatory effects of R(+)WIN55,212-2 and fenofibrate on activation of JNK, the immediate upstream kinase of Jun (40). Dual phosphorylation of closely positioned threonine and tyrosine residues in JNK is commonly used as an index of JNK activation, and we employed phosphospecific antibodies to characterize the effects of the above ligands on JNK activation. R(+)WIN55,212-2 promoted a time-dependent increase in JNK phosphorylation in astrocytes (Fig. 5A), and this was also observed in response to fenofibrate (Fig. 5B). GW6471 prevented R(+)WIN55,212-2-induced JNK phosphorylation (Fig. 5C), demonstrating that the activation of JNK by R(+)WIN55,212-2 is PPARα-dependent. In addition, the JNK inhibitor SP600125 significantly inhibited the stimulatory
effect of \((+)
\text{WIN55,212-2}\) (Fig. 5D) and fenofibrate (Fig. 5E) on TLR3-induced activation of the IFN-\(\beta\) promoter, indicating that activation of JNK by \((+)
\text{WIN55,212-2}\) and PPAR\(\alpha\) is a critical step mediating the positive effects of the synthetic cannabinoid on activation of the IFN-\(\beta\) promoter.

**Treatment with GW6471 Ameliorates the Protective Effects of \((+)
\text{WIN55,212-2}\) in EAE during the First Paralytic Episode—**

Our laboratory (8) and others (41) have previously demonstrated protective effects of \((+)
\text{WIN55,212-2}\) in EAE. Importantly, the neuroprotective effects of \((+)
\text{WIN55,212-2}\) in EAE are IFN-\(\beta\)-dependent (8). Given that data herein demonstrate that \((+)
\text{WIN55,212-2}\) regulates TLR3-induced IFN-\(\beta\) expression via PPAR\(\alpha\), we assessed the role of this receptor in mediating the effects of \((+)
\text{WIN55,212-2}\) in a relapsing mouse model of EAE involving immunization with PLP(139–151). PLP-immunized mice developed clinical symptoms of disease 11–14 days postimmunization, with partial recovery observed within 7 days (Fig. 6). From 22 to 30 days postimmunization, mice developed a second wave of paralysis, indicative of relapse (Fig. 6). Mice treated with \((+)
\text{WIN55,212-2}\) showed significantly reduced severity of EAE during both the first (14–18 days postimmunization) and second (24–26 days and 28–30 days postimmunization) paralytic episodes. However, PLP-immunized mice treated with \((+)
\text{WIN55,212-2}\) in the presence of GW6471 showed significantly reduced protection during the first (days 15, 16, and 18 postimmunization) paralytic episode (Fig. 6), indicating that the effects of \((+)
\text{WIN55,212-2}\) display some PPAR\(\alpha\) dependence during this phase of the disease. Animals that received GW6471 alone displayed a similar disease course as control animals throughout the experiment.

DISCUSSION

This study defines a non-cannabinoid-dependent mechanism of action for the aminoalkylindole \((+)
\text{WIN55,212-2}\), in that this synthetic cannabinoid receptor agonist regulates IFN-\(\beta\) expression via the PPAR\(\alpha\) nuclear receptor. In so doing, the study also highlights the highly novel role of PPAR\(\alpha\) in regulating IFN-\(\beta\) expression. Previously, we have demonstrated that \((+)
\text{WIN55,212-2}\) augments TLR3 signaling to IRF3 activation and IFN-\(\beta\) expression, and this contributes to the therapeutic effects of \((+)
\text{WIN55,212-2}\) in animal models of MS (8). Here, we now demonstrate that \((+)
\text{WIN55,212-2}\) also
regulates IFN-β expression by targeting the AP-1 transcription factor and the PRDIV enhancer element of the IFN-β promoter, and importantly, these effects are manifested in a PPARα-dependent manner. In addition, the protective effects of R(+)-WIN55,212-2 during the acute phase of EAE were ameliorated by GW6471. Hence, these data identify PPARα as a key receptor target for R(+)-WIN55,212-2 in mediating the positive effects of the latter on IFN-β expression and highlight PPARα as a lead target to exploit in diseases, such as MS, that would benefit from augmentation of IFN-β expression.

IFN-β therapy is a current first line treatment of MS, decreasing relapse rate and modestly reducing disability accumulation (1). The mechanism(s) of action of IFN-β is complex with demonstrated effects on antigen presentation, co-stimulatory molecule expression, T cell proliferation, and leukocyte migration (5). The cell type-specific production of type I IFNs is controlled by the innate immune pattern recognition receptors, namely TLRs and retinoic acid-inducible gene I-like receptors (42). TLRs induce signaling via recruitment of the adaptor myeloid differentiation factor 88 (MyD88), with the exception of TLR3, which induces Myd88-independent signaling via Toll interleukin-1 receptor-domain-containing adaptor-inducing IFN-β (TRIF) protein (43). Such TRIF-mediated signaling promotes the phosphorylation and nuclear localization of transcription factors IRF3 and IRF7 and subsequent induction of type I IFNs (23, 44). We have recently demonstrated that R(+)-WIN55,212-2 can impact this pathway, acting as a novel regulator of TLR3 and TLR4 signaling by inhibiting the proinflammatory signaling axis triggered by TLR3 and TLR4 while selectively augmenting TLR3-induced activation of IRF3 and expression of IFN-β (8). This is consistent with data indicating that the plant-derived cannabinoids (45–46), endocannabinoids (30), and synthetic cannabinoid receptor agonists (30, 47–48) abrogate TLR4-induced proinflammatory mediator production in glia.

Much data indicate that cannabinoids, both synthetic and plant-derived, manifest at least some effects via PPARs. Such effects include palmitoylethanolamide-induced blunting of β-amyloid-induced inflammation (49), R(+)-methanandamide (50) and tetrahydrocannabinol-induced apoptosis (51), cannabidiol- and tetrahydrocannabinol-induced vasorelaxation (52, 53), N-oleylethanolamine-induced protection following middle cerebral artery occlusion (13), and ajulemic acid-induced fibroblast differentiation and IL-8 promoter activity inhibition (14). In addition, data presented herein demonstrate such PPAR dependence for the synthetic cannabinoid R(+)-WIN55,212-2 both in vitro and in vivo. R(+)-WIN55,212-2 belongs to the family of aminoalkylindoles that possess canna-
bimimetic properties despite being structurally dissimilar to plant-derived cannabinoids (54). However, although R(+)-WIN55,212-2 displays high affinity for both CB₁ and CB₂ cannabinoid receptors, with moderate selectivity for CB₂ (9), we (8, 37) and others (30–32, 55–57) have demonstrated cannabinoid receptor-independent effects of this aminooalkylindolone. Indeed, our findings are consistent with PPAR-dependent effects of R(+)-WIN55,212-2 on cell viability (58, 59) and adhesion molecule expression (60). It is noteworthy that Mestre et al. (60) demonstrated that R(+)-WIN55,212-2 regulates endothelial expression of VCAM-1 adhesion molecule independent of CB₁ and CB₂ receptors, but involvement of PPAR receptors was identified, further demonstrating a non-cannabinoid-dependent effect for this aminooalkylindolone. The selectivity of R(+)-WIN55,212-2 in targeting PPARα independently of CB₁ or CB₂ is further supported by data indicating that ligands (pyrazol fatty acid amides) incorporating cannabinoid and PPARα features may lack cannabinoid activity (hypothermia and locomotor activity) but behave as potent activators of PPARs (61).

The concentrations of R(+)-WIN55,212-2 used are in line with those used in various anti-inflammatory paradigms in vitro (30–32). Furthermore, the inability of the enantiomeric form of R(+)-WIN55,212-2 to mimic its effects argues for a stereoselective receptor-mediated process(es), and the present study provides strong evidence for a role for PPARα. Indeed, recent studies have pointed to a growing importance for PPARs in regulating TLR signaling. Thus, PPARγ ligands negatively impact TLR-induced inflammatory signaling in glia (62), monocytes (63), and macrophages (64), and recently PPARγ has been shown to negatively regulate induction of IFN-β in response to TLR3 and TLR4 stimulation (65). Furthermore, in vascular smooth muscle cells, fenofibrate blunts TLR4-induced activation of TRIF and IRF3 (66). Because R(+)-WIN55,212-2 (13, 38) and other cannabinoid-based compounds (38, 67) have been shown to bind and increase the transactivation capacity of PPARα, this receptor was selected as a potential lead target for mediating the effects of R(+)-WIN55,212-2 on IFN-β expression. Using the PPARα antagonist GW6471, we confirm that R(+)-WIN55,212-2 regulates PPARα transactivation to impart its regulatory role on IFN-β expression.

Fenofibrate exerts neuroprotective properties in rodent models of stroke (68), MS (69), and traumatic brain injury (70). Mechanistically, the activation of PPARα has been shown to inhibit proinflammatory gene transcription by repressing the pivotal inflammatory transcription factor, NF-κB (71), and this is supported by our findings indicating an inhibitory effect of fenofibrate on poly(I:C) induction of the NF-κB reporter gene. It is noteworthy that the PPARγ or PPARδ agonists, ciglitazone and L-165,041, did not negatively regulate poly(I:C) induction of the NF-κB reporter gene (supplemental Fig. 3), identifying activators of the α subtype as potent inhibitors of this transcription factor. The present study also adds further complexity to the mechanism of action of PPARα ligands, and the findings raise the possibility that the positive effects of PPARα on TLR3-induced expression of IFN-β may contribute to its in vivo effects. Indeed, data presented herein indicate that mice treated with R(+)-WIN55,212-2 showed reduced severity of EAE during both the first and second paralytic episodes. However, mice co-treated with R(+)-WIN55,212-2 and GW6471 showed reduced protection during the first paralytic episode, indicating that the effects of R(+)-WIN55,212-2 display some PPARα dependence during this phase of the disease. An imbalance in the cytokine network has a role in the initiation of EAE, with CD4⁺ T helper 1 (Th1) cells and Th₁₇ T cells suggested as having distinct and possibly complementary roles in disease onset (72). Both cannabinoid (73) and PPARα receptors (74) are expressed on T cells, and given that R(+)-WIN55,212-2 may exert its anti-inflammatory properties in EAE by regulating T cell viability (56), whereas fenofibrate can regulate IL-17 and interferon-γ expression in isolated T cells (75), it will be interesting to mechanistically delineate the role of PPARs in mediating the effects of cannabinoids in EAE.

The study highlights dual effects of R(+)-WIN55,212-2 on PPARα in that it directly activates and also induces the expression of PPARα. Few data linking an alteration in the expression profile of PPARs with neuroinflammation are available. However, it is attractive to suggest that the anti-inflammatory effects of R(+)-WIN55,212-2 may not be restricted to directly activating PPARα but may also be associated with its ability to regulate the expression profile of PPARs and so facilitate increased signaling by endogenous PPAR ligands. Indeed, the ability of R(+)-WIN55,212-2 to up-regulate the expression of PPARα adds to previous studies describing a similar effect of this aminooalkylindolone on PPARγ expression (58, 59), suggesting that the impact of R(+)-WIN55,212-2 on proliferative and inflammatory pathways may be due to its effects on PPAR expression. It is also noteworthy that LPS can enhance PPARα expression (76), and evidence from our group suggests that endogenous PPARα expression is up-regulated in EAE spinal cord and in peripheral blood mononuclear cells isolated from MS patients (data not shown). Further experiments will determine if this represents an endogenous neuroprotective response, an attractive possibility given that an up-regulation in PPAR expression has been shown to inhibit proinflammatory signaling (77).

R(+)-WIN55,212-2 has been linked to the activation of the mitogen-activated protein kinase (MAPK) family members, including ERK (78–80), p38 (58, 78, 81), and JNK (58, 81–82). In particular, the ability of R(+)-WIN55,212-2 to activate JNK in the CNS (82) is consistent with our findings in astrocytes. Using a specific JNK inhibitor, we demonstrate that this kinase is an upstream signaling intermediate targeted by R(+)-WIN55,212-2 in the cascade leading to IFN-β expression. Furthermore, given that MAPK cascades phosphorylate different residues on the PPAR isoforms to control receptor activity (83), it will be of interest to determine the complex role of MAPKs in determining the effect of R(+)-WIN55,212-2 on PPAR activation.

Our findings identify JNK phosphorylation and AP-1 activation as key mediators of the effects of R(+)-WIN55,212-2 and the PPARα agonist fenofibrate. This is not without precedent because synthetic cannabinoids target AP-1 in the regulation of tyrosine hydroxylase gene transcription in neural cells (84), whereas administration of the endocannabinoid anandamide enhances AP-1 activity in vivo (85). Interestingly, the positive effects of R(+)-WIN55,212-2 on AP-1 are mediated by PPARα,
and this is somewhat surprising given that evidence indicates that fenofibrate negatively regulates AP-1 activity in T cells (86) and vascular smooth muscle cells (87). Cell type specificity may account for this discrepancy, and further experiments will determine the mechanism by which \(R(+)/H_{11001} \)WIN55,212-2-induced PPAR\(\alpha \) activation directly regulates JNK and AP-1 activation. It should be emphasized that not all of the effects of \(R(+)/H_{11001} \)WIN55,212-2 on the IFN-\(\beta \) promoter are mediated by PPAR\(\alpha \). Indeed, the former can augment TLR3-induced activation of IRF3 in a PPAR\(\alpha \)-independent manner, whereas, in contrast, fenofibrate inhibits activation of IRF3 in response to poly(I:C). Thus, whereas \(R(+)/H_{11001} \)WIN55,212-2 employs PPAR\(\alpha \) to promote activation of AP-1 and the PRDIV domain of the IFN-\(\beta \) promoter, it can also utilize a PPAR\(\alpha \)-independent mechanism that overrides any negative regulatory effects of PPAR\(\alpha \) on IRF3 and the PRDI-III regions of the promoter.

In summary, our results show that \(R(+)/H_{11545} \)WIN55,212-2 acts via PPAR\(\alpha \) to impact the JNK/AP-1 pathway, leading to activation of the PRDIV region of the IFN-\(\beta \) promoter (see Fig. 7). We also show that \(R(+)/H_{11545} \)WIN55,212-2, in a PPAR\(\alpha \)-independent manner, can augment activation of IRF3 and the PRDI-III regions of the IFN-\(\beta \) promoter. Despite being mechanistically distinct, such effects of \(R(+)/H_{11545} \)WIN55,212-2 on the PRDI-III and PRDIV regions of the IFN-\(\beta \) promoter will result in positive cooperativity and strong induction of IFN-\(\beta \). This adds significantly to our understanding of the mechanism(s) underlying the therapeutic effects of \(R(+)/H_{11545} \)WIN55,212-2 in autoimmune disorders, in particular MS. More importantly, it also enhances PPAR\(\alpha \) as a lead therapeutic target to exploit in the treatment of diseases, like MS, that benefit from IFN-\(\beta \) augmentation.

Acknowledgment—We thank Dr. Andrew Bennett (University of Nottingham) for the gifts of pcDNAPPAR\(\alpha \) and 3xPPRE TK-luc plasmids.

REFERENCES
1. Graber, J. J., McGraw, C. A., Kimbrough, D., and Dhib-Jalbut, S. (2010) Overlapping and distinct mechanisms of action of multiple sclerosis therapies. Clin. Neurol. Neurosurg. 112, 583–591.
2. Goodin, D. S., and Bates, D. (2009) Treatment of early multiple sclerosis. The value of treatment initiation after a first clinical episode. Mult. Scler. 15, 1175–1182.
3. Jacobs, L. D., Cookfair, D. L., Rudick, R. A., Herndon, R. M., Richert, J. R., Salazar, A. M., Fischer, J. S., Goodkin, D. E., Granger, C. V., Simon, J. H., Alam, I. J., Bartoszak, D. M., Bourdette, D. N., Braiman, J., Broussard, C. M., Coats, M. E., Cohan, S. L., Dougherty, D. S., Kinkel, R. P., Mass, M. K., Munschauer, F. E., 3rd, Priore, R. L., Pullicino, P. M., Scherokman, B. J., and Whitham, R. H. (1996) Intramuscular interferon \(\beta \)-1a for disease
progression in relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group (MSCRG) Ann. Neurol. 39, 285–294.

4. Li, D. K., and Paty, D. W. (1999) Magnetic resonance imaging results of the PRISMS trial. A randomized, double-blind, placebo-controlled study of interferon-β1a in relapsing-remitting multiple sclerosis. Prevention of relapses and disability by interferon-β1a subcutaneously in multiple sclerosis. Ann. Neurol. 46, 197–206.

5. Vosoughi, R., and Freedman, M. S. (2010) Therapy of MS. Clin. Neurol. Neurosurg. 112, 365–385.

6. Maniatis, T., Falvo, J. V., Kim, T. H., Kim, T. K., Lin, C. H., Parekh, B. S., and Wathelet, M. G. (1998) Structure and function of the interferon-β enhancer. Cold Spring Harb. Symp. Quant. Biol. 63, 609–620.

7. Sharir, H., and Abood, M. E. (2010) Pharmacological characterization of peroxisome proliferator-activated receptors. Nuclear control of metabolism. Endocr. Rev. 31, 583–603.

8. Sagar, D. R., Kendall, D. A., and Jacobsson, S. O. (2006) The cannabinoid receptor 1: from orphan receptors to drug discovery. J. Med. Chem. 49, 537–550.

9. Atzei, A., Gargan, S., Curran, N., and Moynagh, P. N. (2000) Caxtina targets the MIF class III protein 1b3-like (1b3L) and inhibits NF-κB and interferon-regulatory factor signaling pathways. J. Clin. Invest. 111, 1231–1240.

10. Croxford, J. L., and Miller, S. D. (2003) Immunoregulation of a viral model of multiple sclerosis using the synthetic cannabinoid R+WIN55,212. J. Clin. Invest. 111, 510–520.

11. Sorensen, P. S., Ross, C., Cennens, K. M., Bendtzn, K., Frederiksen, J. L., Jensen, K., Kristensen, O., Petersen, T., Rasmussen, S., Ravnborg, M., Stenager, E., and Koch-Henriksen, N. (2003) Clinical importance of neutralizing antibodies against interferon β in patients with relapsing-remitting multiple sclerosis. Lancet 362, 1184–1191.

12. Sagar, D. R., Kendall, D. A., and Chapman, V. (2008) Inhibition of fatty acid amide hydrolase produces PPAR-α-mediated analgesia in a rat model of inflammatory pain. Br. J. Pharmacol. 155, 1297–1306.

13. Downer, E. J., Cowley, T. R., Lyons, A., Mills, K. H., Berezin, V., Bock, E., and Lynch, M. A. (2010) A novel anti-inflammatory role of NCAM-derived peptide, FGL. Neurobiol. Aging 31, 118–128.

14. Xu, H. E., Stanley, T. B., Montana, V. G., Lambert, M. H., Shearer, B. G., Cobb, J. E., McKeel, D. D., Galardi, C. M., Plunket, K. D., Nolte, R. T., Parks, D. J., Moore, J. T., Kliwer, S. A., Willson, T. M., and Stimmel, J. B. (2002) Structural basis for antagonist-mediated recruitment of nuclear co-repressors by PPARα. Nature 415, 813–817.

15. Swift, L. R., Ueda, R., Miyahara, M., Kim, T. K., and Tonegawa, S. (2002) International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol. Rev. 54, 161–202.

16. Sun, Y., Alexander, S. P., Garle, M. J., Gibson, C. L., Hewitt, K., Murphy, S. P., Kendall, D. A., and Bennett, A. J. (2007) Cannabinoid activation of PPAR α. A novel neuroprotective mechanism. Br. J. Pharmacol. 152, 734–743.

17. Croxford, J. L., and Miller, S. D. (2003) Immunoregulation of a viral model of multiple sclerosis using the synthetic cannabinoid R+WIN55,212. J. Clin. Invest. 111, 1231–1240.

18. Croxford, J. L., and Miller, S. D. (2003) Immunoregulation of a viral model of multiple sclerosis using the synthetic cannabinoid R+WIN55,212. J. Clin. Invest. 111, 1231–1240.

19. Curran, N. M., Griffin, B. D., O’Toole, D., Brady, K. J., Fitzgerald, S. N., and Moynagh, P. N. (2005) The synthetic cannabinoid R+WIN55,212 inhibits the interleukin-1 signaling pathway in human astrocytes in a cannabinoid receptor-independent manner. J. Biol. Chem. 280, 35797–35806.

20. Sun, Y., Alexander, S. P., Kendall, D. A., and Bennett, A. J. (2006) Cannabinoids and PPARα signaling. Biochem. Soc. Trans. 34, 1095–1097.

21. Herzberg, U., Eliav, E., Bennett, G. J., and Kopin, I. J. (1997) The analgesic effects of R+WIN 55,212–2 mesylate, a high affinity cannabinoid agonist, in a rat model of neuropathic pain. Neurosci. Lett. 221, 157–160.

22. Miralles, F., Parra, M., Caselles, C., Nagamine, Y., Fede, J., and Muñoz-Cánoves, P. (1998) UV irradiation induces the murine urokinase-type plasminogen activator promoter activator gene via the c-Jun N-terminal kinase signaling pathway. Requirement of an AP1 enhancer element. Mol. Cell. Biol. 18, 4537–4547.

23. Hasseldam, O., and Johansen, F. F. (2011) Cannabinoid treatment renders neurons less vulnerable than oligodendrocytes in experimental autoimmune encephalomyelitis. Int. J. Neurosci. 121, 510–520.

24. Takeuchi, O., and Akira, S. (2009) Innate immunity to virus infection. Immunol. Rev. 227, 75–86.

25. Medzhitov, R., Preston-Hurlburt, P., Kopp, E., Stadlen, A., Chen, C., Ghosh, S., and Janeway, C. A., Jr. (1998) MyD88 is an adaptor protein in the role of microglia in Toll-like receptor-mediated neuronal injury. Glia 58, 253–263.
the hToll/IL-1 receptor family signaling pathways. Mol. Cell. 2, 253–258.
44. Fitzgerald, K. A., McWhirter, S. M., Faia, K. L., Rowe, D. C., Latz, E., Golenbock, D. T., Coyle, A. J., Liao, S. M., and Maniatis, T. (2003) IKKε and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 4, 491–496.
45. Puffenbarger, R. A., Boeth, A. C., and Cabral, G. A. (2000) Cannabinoids inhibit LPS-inducible cytokine mRNA expression in rat microglial cells. Glia 29, 58–69.
46. Kozela, E., Pietr, M., Juknat, A., Rimmerman, N., Levy, R., and Vogel, Z. (2009) Role of CB1 and CB2 receptors in the inhibitory effects of cannabinoids on lipopolysaccharide-induced nitric oxide release in astrocyte cultures. J. Cell. Mol. Med. 13, 667–682.
47. O’Sullivan, S. E., Sun, Y., Bennett, A. J., Randall, M. D., and Kendall, D. A. (2009) Time-dependent vascular actions of cannabinoids in the rat aorta. Eur. J. Pharmacol. 612, 61–68.
48. Pacheco, M., Childers, S. B., Arnold, R., Casiano, F., and Ward, S. J. (1991) Aminooalkylindoles. Actions on specific G-protein-linked receptors. Biochem. Pharmacol. 40, 3283–3291.
49. Smith, S. R., Terminelli, C., and Denhardt, G. (2000) Effects of cannabidiol on lipopolysaccharide-activated NF-κb and interferon-β/STAT proinflammatory pathways in BV-2 microglial cells. J. Biol. Chem. 285, 1616–1626.
50. Carroll, C. B., Zeissler, M. L., Hanemann, C. O., and Zajicek, J. P. (2012) Δ(9)-THC exerts a direct neuroprotective effect in a human cell culture model of Parkinson’s disease. Neuropathol. Appl. Neurol., in press.
51. Sánchez, A. I., González-Pérez, P., Galve-Roperh, I., and García-Merino, A. (2006) R(+)-[2,3-Dihydro-5-methyl-3-(4-morpholinylmethyl)-pyrrrolo-[1,2,3-de]-1-benzoxolin-6-yl]-1-naphtalenylmethanone (WIN-2) ameliorates experimental autoimmune encephalomyelitis and induces encephalotigentic T cell apoptosis. Partial involvement of the CB2 receptor. Biochem. Pharmacol. 72, 1697–1706.
52. Smith, S. R., Terminelli, C., and Denhardt, G. (2000) Effects of cannabinoid receptor agonist and antagonist ligands on production of inflammatory cytokines and anti-inflammatory interleukin-10 in endotoxemic mice. J. Pharmacol. Exp. Ther. 293, 136–150.
53. Gianlou, M., Pellerito, O., Portanova, P., Calvaruso, G., Santulli, A., De Blasio, A., Vento, R., and Tesoriere, G. (2009) Apoptosis induced in HepG2 cells by the synthetic cannabinoid WIN. Involvement of the transcription factor PPARα. Biochimie 91, 457–465.
54. Pellerito, O., Calvaruso, G., Portanova, P., De Blasio, A., Santulli, A., Vento, R., Tesoriere, G., and Gianlou, M. (2010) The synthetic cannabinoid WIN 55,212-2 sensitizes hepatocellular carcinoma cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis by activating p8/CCAT/enhancer-binding protein homologous protein (CHOP)/death receptor 5 (DR5) axis. Mol. Pharmacol. 77, 854–863.
55. Mestre, L., Docagne, F., Correa, F., Loria, F., Hernangómez, M., Borrell, J., and Guaza, C. (2009) A cannabinoid agonist interferes with the progression of chronic pain in a model of multiple sclerosis by down-regulating adhesion molecules. Mol. Cell. Neurosci. 40, 258–266.
56. Alvarado, M., Goya, P., Macías-González, M., Pavón, F. J., Serrano, A., Jagerovic, N., Elguero, J., Gutiérrez-Rodríguez, A., García-Granda, S., Suariz, M., and Rodríguez de Fonseca, F. (2008) Antiobesity design multiple ligands. Synthesis of pyrazole fatty acid amides and evaluation as hypophagic agents. Bioorg. Med. Chem. 16, 10098–10105.
57. Turley, C., Nichols, J., Liu, S., Phulwani, N. K., Esen, N., and Kielland, T. (2008) Microglia and astrocyte activation by Toll-like receptor ligands. Modulation by PPAR-γ agonists. PPAR Res. 2008, 453120.
58. Dasu, M. R., Park, S., Devaraj, S., and Jialal, I. (2009) Pioglitazone inhibits Toll-like receptor expression and activity in human monocytes and db/db mice. Endocrinology 150, 3457–3464.
59. Ogawa, S., Lozach, J., Benner, C., Pascual, G., Tangirala, R. K., Westin, S., Hoffmann, A., Subramaniam, S., David, M., Rosenfeld, M. G., and Glass, C. K. (2005) Molecular determinants of cross-talk between nuclear receptors and Toll-like receptors. Cell 122, 707–721.
60. Zhao, W., Wang, L., Zhang, L., Yuan, C., Kuo, P. C., and Gao, C. (2010) Differential expression of intracellular and secreted osteopontin isomers by murine macrophages in response to Toll-like receptor agonists. J. Biol. Chem. 285, 20452–20461.
61. Ii, Y., Wang, Z., Li, Z., and Liu, J. (2010) Modulation of LPS-mediated inflammation by fenofibrate via the TRIF-dependent TLR4 signaling pathway in vascular smooth muscle cells. Cell Physiol. Biochem. 25, 631–640.
62. Deplanque, D., Géle, P., Pëtrail, O., S., I., J., M., F., M., N., R., S., B., D., B., and B., R. (2003) Peroxisome proliferator-activated receptor-α mediates the anti-inflammatory actions of palmitoylthanolamide. Mol. Pharmacol. 67, 15–19.
63. Besson, V. C., Chen, X. R., Plotkin, M., and Marchand-Verrecchia, C. (2005) Fenofibrate, a peroxisome proliferator-activated receptor α agonist, exerts neuroprotective effects in traumatic brain injury. Neurosci. Lett. 388, 7–12.
64. Poynter, M. E., and Daynes, R. A. (1998) Peroxisome proliferator-activated receptor α activation modulates cellular redox status, represses nuclear factor-κB signaling, and reduces inflammatory cytokine production in aging. J. Biol. Chem. 273, 32833–32841.
65. Park, H., Li, Z., Yang, X. O., Chang, S. H., Nurieva, R., Wang, Y. H., Wang, Y., Hood, L., Zhu, Z., Tian, Q., and Dong, C. (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6, 1133–1141.
66. Börner, C., Hött, V., and Kraus, J. (2007) Activation of human T cells induces up-regulation of cannabinoid receptor type 1 transcription. Neur. Immunomodulation 14, 281–286.
67. Dunn, S. E., Ousman, S. S., Sobel, R. A., Zuniga, L., Baranzini, S. E., Youssef, S., Crowell, A., Loh, J., Okenberg, J., and Steinman, L. (2007) Peroxisome proliferator-activated receptor (PPAR)α expression in T cells mediates gender differences in development of T cell-mediated autoimmunity. J. Exp. Med. 204, 321–330.
68. Lee, J. W., Bajwa, P. J., Carson, M. J., Jeske, D. R., Cong, Y., Elson, C. O., Lytle, C., and Straus, D. S. (2007) Fenofibrate represses interleukin-17 and interferon-γ expression and improves colitis in interleukin-10-deficient mice. Gastroenterology 133, 108–123.
69. Mohapatra, S. K., Cole, L. E., Evans, C., Sobral, B. W., Basaganya-Riera, J., Hontecillas, R., Vogel, S. N., and Crasta, O. R. (2010) Modulation of hepatic PPAR expression during Ft LVS LPS-induced protection from Francisella tularensis LVS infection. BMC Infect. Dis. 10, 10.
70. Li, P., Zhu, Z., Lu, Y., and Granneman, J. G. (2005) Metabolic and cellular plasticity in white adipose tissue. II. Role of peroxisome proliferator-activated receptor-α. Am. J. Physiol. Endocrinol. Metab. 289, E617–E626.
71. Yang, H., Wang, Z., Capó-Aponte, J. E., Zhang, F., Pan, Z., and Reinach, P. S. (2010) Epidermal growth factor receptor transactivation by the can-
nabinoind receptor (CB1) and transient receptor potential vanilloid 1 (TRPV1) induces differential responses in corneal epithelial cells. *Exp. Eye Res.* 91, 462–471

79. Park, J. M., Xian, X. S., Choi, M. G., Park, H., Cho, Y. K., Lee, I. S., Kim, S. W., and Chung, I. S. (2011) Antiproliferative mechanism of a cannabinoid agonist by cell cycle arrest in human gastric cancer cells. *J. Cell Biochem.* 112, 1192–1205

80. Moranta, D., Esteban, S., and García-Sevilla, J. A. (2007) Acute, chronic, and withdrawal effects of the cannabinoid receptor agonist WIN55212-2 on the sequential activation of MAPK/Raf-MEK-ERK signaling in the rat cerebral frontal cortex. Short term regulation by intrinsic and extrinsic pathways. *J. Neurosci. Res.* 85, 656–667

81. Luca, T., Di Benedetto, G., Scuderi, M. R., Clementi, S., Bernardini, R., and Cantarella, G. (2009) The CB1/CB2 receptor agonist WIN-55,212-2 reduces viability of human Kaposi’s sarcoma cells in vitro. *Eur. J. Pharmacol.* 616, 16–21

82. Alvaro-Bartolomé, M., Esteban, S., García-Gutiérrez, M. S., Manzanares, J., Valverde, O., and García-Sevilla, J. A. (2010) Regulation of Fas receptor/Fas-associated protein with death domain apoptotic complex and associated signaling systems by cannabinoid receptors in the mouse brain. *Br. J. Pharmacol.* 160, 643–656

83. Gelman, L., Michalik, L., Desvergne, B., and Wahli, W. (2005) Kinase signaling cascades that modulate peroxisome proliferator-activated receptors. *Curr. Opin. Cell Biol.* 17, 216–222

84. Bosier, B., Hermans, E., and Lambert, D. M. (2009) Concomitant activation of adenylyl cyclase suppresses the opposite influences of CB, cannabinoid receptor agonists on tyrosine hydroxylase expression. *Biochem. Pharmacol.* 77, 216–227

85. DeMorrow, S., Francis, H., Gaudio, E., Ueno, Y., Venter, J., Onori, P., Franchitto, A., Vaculin, B., Vaculin, S., and Alpini, G. (2008) Anandamide inhibits cholangiocyte hyperplastic proliferation via activation of thioredoxin 1/redox factor 1 and AP-1 activation. *Am. J. Physiol. Gastrointest. Liver Physiol.* 294, G506–G519

86. Cheng, S. M., Chu, K. M., and Lai, J. H. (2010) The modulatory mechanisms of fenofibrate on human primary T cells. *Eur. J. Pharm. Sci.* 40, 316–324

87. Ryu, S., Won, M., Kim, D. U., Kim, L., Han, G., Park, S. K., Mukaida, N., Maeng, P., Yoo, H. S., and Hoe, K. L. (2004) PPARγ activation abolishes LDL-stimulated IL-8 production via AP-1 deactivation in human aortic smooth muscle cells. *Biochem. Biophys. Res. Commun.* 318, 329–334