Deep mutational analysis reveals functional trade-offs in the sequences of EGFR autophosphorylation sites

Aaron J. Cantora,b,c, Neel H. Shaha,b,c,d, and John Kuriyana,b,c,d,e,1

aDepartment of Molecular and Cell Biology, University of California, Berkeley, CA 94720; bDepartment of Chemistry, University of California, Berkeley, CA 94720; cCalifornia Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720; dHoward Hughes Medical Institute, University of California, Berkeley, CA 94720; and eMolecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

Edited by John D. Scott, HHMI and Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, and accepted by Editorial Board Member Brenda A. Schulman June 18, 2018 (received for review March 1, 2018)

Upon activation, the epidermal growth factor receptor (EGFR) phosphorylates tyrosine residues in its cytoplasmic tail, which triggers the binding of Src homology 2 (SH2) and phosphotyrosine-binding (PTB) domains and initiates downstream signaling. The sequences flanking the tyrosine residues (referred to as “phosphosites”) must be compatible with phosphorylation by the EGFR kinase domain and the recruitment of adapter proteins, while minimizing phosphorylation that would reduce the fidelity of signal transmission. To understand how phosphosite sequences encode these functions within a small set of residues, we carried out high-throughput mutational analysis of three phosphosite sequences in the EGFR tail. We used bacterial surface display of peptides coupled with deep sequencing to monitor phosphorylation efficiency and the binding of the SH2 and PTB domains of the adapter proteins Grb2 and Shc1, respectively. We found that the sequences of phosphosites in the EGFR tail are restricted to a subset of the range of sequences that can be phosphorylated efficiently by EGFR. Although efficient phosphorylation by EGFR can occur with either acidic or large hydrophobic residues at the −1 position with respect to the tyrosine, hydrophilic residues are generally excluded from this position in tail sequences. The mutational data suggest that this restriction results in weaker binding to adapter proteins but also disfavors phosphorylation by the cytoplasmic tyrosine kinases c-Src and c-Abl. Our results show how EGFR-family phosphosites achieve a trade-off between minimizing off-pathway phosphorylation and maintaining the ability to recruit the diverse complement of effectors required for downstream pathway activation.

The epidermal growth factor receptor (EGFR) is a tyrosine kinase that couples extracellular ligand binding to the activation of intracellular signaling pathways (1–3). Activation of human EGFR (also called “ErB1” or “human EGF receptor 1,” Her1), results from ligand-induced homodimerization or heterodimerization with one of three family members, Her2/ErbB2/neu, Her3/ErbB3, or Her4/ErbB4 (4). Allosteric activation of one kinase domain within this dimer by the other kinase domain results in autophosphorylation of multiple tyrosines within the C-terminal tails of both monomers (5). The resulting phosphotyrosine and flanking residues (phosphosites) can then serve as binding sites for intracellular proteins containing Src homology 2 (SH2) or phosphotyrosine-binding (PTB) domains (6, 7). With their enzymatic or scaffolding activities recruited to the plasma membrane, these effector proteins propagate signals inside the cell (Fig. 1A) (8).

Tyrosine kinases recognize their substrates through the formation of a short, antiparallel, \(\beta\)-stranded interaction between the substrate peptide and the activation loop of the kinase domain (9). The kinase domain provides limited opportunity for stereospecific engagement of substrate side-chains. This fact contributes to the impression that tyrosine kinases are “sloppy enzymes” (10, 11) and is consistent with the failure to develop high-affinity substrate-mimicking inhibitors. The catalytic domains of tyrosine kinases do have intrinsic preferences for some substrate sequences over others, with specificity being determined by the pattern of amino acid residues directly adjacent to the tyrosine (12, 13).

For EGFR-family members, the high local concentration of tail phosphosites with respect to the kinase domains may allow these sites to be phosphorylated without much regard for sequence. This made us wonder about the extent to which each phosphosite in the cytoplasmic tails of EGFR-family members is optimized in its sequence for the recruitment of specific adapter proteins versus phosphorylation efficiency by the EGFR kinase domain. The subset of tail tyrosines that are phosphorylated during EGFR signaling is thought to define the subset of downstream pathways that are activated, although the extent to which the intrinsic specificity of the EGFR kinase domain allows discrimination between different phosphosites in the tail has not been mapped (14, 15). The properties that determine the efficiency of binding of SH2 or PTB domains to EGFR-family phosphosites are also not completely understood, because several SH2 or PTB domains can bind to a particular phosphosite, and each SH2 and PTB domain can use multiple different phosphosites (16–20).

Another layer of complexity in EGFR signaling is the potential for cross-talk with cytoplasmic tyrosine kinases, particularly the ubiquitously expressed kinases c-Src and c-Abl (21, 22). Direct phosphorylation of EGFR by c-Src might allow transactivation of EGFR in the absence of growth factors (23–25). Recently, c-Src

Significance

Phosphorylation of tyrosine residues in the cytoplasmic tail of the epidermal growth factor receptor (EGFR) by its kinase domain propagates a rich variety of information downstream of growth factor binding. The amino acid sequences surrounding each phosphorylation site encode the extent of phosphorylation as well as the extent of binding by multiple effector proteins. By profiling the kinase activity of EGFR alongside the binding specificities of an SH2 domain and a PTB domain for thousands of defined phosphorylation site sequences, we discovered that the sequences surrounding the phosphorylation sites in EGFR are not optimal and that discrimination against phosphorylation by cytoplasmic tyrosine kinases such as c-Src and c-Abl is likely to have shaped the evolution of these sequences.

Author contributions: A.J.C., N.H.S., and J.K. designed research; A.J.C. and N.H.S. performed research; A.J.C. and N.H.S. and J.K. analyzed data; and A.J.C., N.H.S., and J.K. wrote the paper.

The authors declare no conflict of interest.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

1To whom correspondence should be addressed. Email: kuriyan@berkeley.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1803598115/-/DCSupplemental.

Published online July 16, 2018.
Overview of EGFR signal transduction at the membrane and a bacterial surface display scheme to analyze the specificity of tyrosine kinases and phosphotyrosine-binding proteins.

Fig. 1. (A) Illustration of membrane-proximal EGFR signaling components. Autophosphorylation of the tyrosine phosphosites in the C-terminal cytoplasmic tail (red circles) by the activated kinase domain produces binding sites for many downstream effectors, a subset of which are depicted. These effectors go on to activate second-messenger pathways, also depicted. Grb2, growth factor receptor-bound protein 2; MAPK, mitogen-activated protein kinases; PI3K, phosphoinositide 3-kinase regulatory subunit; PKC, protein kinase C; Picy1, phospholipase C-gamma-1; Shc1, SH2 domain-containing-transforming protein C1. (B) Workflow for determining phosphosite specificity profiles of tyrosine kinases and phosphotyrosine-binding proteins by bacterial surface display coupled with FACS and deep sequencing. Phosphotyrosine on the surface of the cells is detected either by immunostaining with an anti-phosphotyrosine antibody or, for binding profiles, with either a tandem SH2 or PTB construct fused to GFP. The frequency of each peptide-coding sequence in the highly phosphorylated population, or enrichment, and thus the relative efficiency of phosphorylation or binding for each peptide, is determined by counting the number of sequencing reads for each peptide in the sorted and unsorted populations.

Fig. 1. Scheme for high-throughput screening of phosphosite specificity

A

ligand	EGF
Plasma membrane	
EGFR	
cytoplasmic tails	
phosphosites	
effectors	
Grb2	
Shc1	
downstream signaling pathways	
PKC, Ca²⁺, Ras, MAPK	

B

1. Transform library, induce peptide expression
2. Incubate with kinase, ATP, Mg²⁺
3. Label with anti-pTyr-PE or SH2–GFP
4. Enrich for phosphorylated or SH2-binding cells with FACS
5. Recover DNA from sorted cells
6. Illumina sequencing
7. Recover DNA from sorted cells
8. Enrich for phosphorylated or SH2-binding cells with FACS
9. Recover DNA from sorted cells
10. Enrich for phosphorylated or SH2-binding cells with FACS
11. Recover DNA from sorted cells
12. Enrich for phosphorylated or SH2-binding cells with FACS
13. Recover DNA from sorted cells
14. Enrich for phosphorylated or SH2-binding cells with FACS
15. Recover DNA from sorted cells
16. Enrich for phosphorylated or SH2-binding cells with FACS
17. Recover DNA from sorted cells
18. Enrich for phosphorylated or SH2-binding cells with FACS
19. Recover DNA from sorted cells
20. Enrich for phosphorylated or SH2-binding cells with FACS
21. Recover DNA from sorted cells
22. Enrich for phosphorylated or SH2-binding cells with FACS
23. Recover DNA from sorted cells
24. Enrich for phosphorylated or SH2-binding cells with FACS
25. Recover DNA from sorted cells
26. Enrich for phosphorylated or SH2-binding cells with FACS
27. Recover DNA from sorted cells
28. Enrich for phosphorylated or SH2-binding cells with FACS
29. Recover DNA from sorted cells
30. Enrich for phosphorylated or SH2-binding cells with FACS
31. Recover DNA from sorted cells
32. Enrich for phosphorylated or SH2-binding cells with FACS
33. Recover DNA from sorted cells
34. Enrich for phosphorylated or SH2-binding cells with FACS
35. Recover DNA from sorted cells
36. Enrich for phosphorylated or SH2-binding cells with FACS
37. Recover DNA from sorted cells
38. Enrich for phosphorylated or SH2-binding cells with FACS
39. Recover DNA from sorted cells
40. Enrich for phosphorylated or SH2-binding cells with FACS
41. Recover DNA from sorted cells
42. Enrich for phosphorylated or SH2-binding cells with FACS
43. Recover DNA from sorted cells
44. Enrich for phosphorylated or SH2-binding cells with FACS
45. Recover DNA from sorted cells
46. Enrich for phosphorylated or SH2-binding cells with FACS
47. Recover DNA from sorted cells
48. Enrich for phosphorylated or SH2-binding cells with FACS
49. Recover DNA from sorted cells
50. Enrich for phosphorylated or SH2-binding cells with FACS
51. Recover DNA from sorted cells
52. Enrich for phosphorylated or SH2-binding cells with FACS
53. Recover DNA from sorted cells
54. Enrich for phosphorylated or SH2-binding cells with FACS
55. Recover DNA from sorted cells
56. Enrich for phosphorylated or SH2-binding cells with FACS
57. Recover DNA from sorted cells
58. Enrich for phosphorylated or SH2-binding cells with FACS
59. Recover DNA from sorted cells
60. Enrich for phosphorylated or SH2-binding cells with FACS
61. Recover DNA from sorted cells
62. Enrich for phosphorylated or SH2-binding cells with FACS
63. Recover DNA from sorted cells
64. Enrich for phosphorylated or SH2-binding cells with FACS
65. Recover DNA from sorted cells
66. Enrich for phosphorylated or SH2-binding cells with FACS
67. Recover DNA from sorted cells
68. Enrich for phosphorylated or SH2-binding cells with FACS
69. Recover DNA from sorted cells
70. Enrich for phosphorylated or SH2-binding cells with FACS
71. Recover DNA from sorted cells
72. Enrich for phosphorylated or SH2-binding cells with FACS
73. Recover DNA from sorted cells
74. Enrich for phosphorylated or SH2-binding cells with FACS
75. Recover DNA from sorted cells
76. Enrich for phosphorylated or SH2-binding cells with FACS
77. Recover DNA from sorted cells
78. Enrich for phosphorylated or SH2-binding cells with FACS
79. Recover DNA from sorted cells
80. Enrich for phosphorylated or SH2-binding cells with FACS
81. Recover DNA from sorted cells

In this work, we address several questions about the phosphosites in the cytoplasmic tails of EGFR-family receptors. What is the intrinsic specificity of the EGFR kinase domain with respect to all potential substrates? How does the intrinsic specificity of EGFR map onto tail phosphosites, and how is this specificity differentiated from that of c-Src and c-Abl? How has the specificity of SH2 and PTB domains impinged on the evolution of the sequences of EGFR-family tail phosphosites? To answer these questions, we assayed the activity of EGFR against thousands of peptides with defined sequences representing tyrosine phosphorylation sites in the human proteome, using a high-throughput method based on bacterial surface display of peptides and deep sequencing (Fig. 1B). This method was used recently to determine the mechanistic basis for the orthogonal specificity of two kinases, Lck and ZAP-70, in the T cell receptor pathway (31) and to map the specificity of kinases in the Src family (32). To delineate the specificities of SH2 and PTB domains, we augmented the bacterial surface display system to measure protein binding instead of phosphorylation efficiency.

Deep mutational scanning of EGFR phosphosites with selection based on either phosphorylation or adapter protein binding revealed specificity determinants that differ from optimal motifs observed in previous studies (12, 26, 33). We find that phosphosites in the tails of EGFR-family members avoid some sequence features that are consistent with efficient phosphorylation by EGFR and efficient binding of the Shc1 PTB domain and the Grb2 SH2 domain. The sequence features that are avoided in the tails would, if present, promote phosphorylation by c-Src. Thus, our studies of specificity in the context of natural phosphosite sequences have uncovered evidence of evolutionary trade-offs between on-pathway phosphorylation and binding and the suppression of potentially interfering reactivity in EGFR signaling.

Results and Discussion

Specificity Profile of the EGFR Kinase Domain Derived from a Library of Tyrosine Phosphorylation Sites Found in the Human Proteome.

Previous studies of tyrosine kinase specificity have been based primarily on degenerate peptide libraries in which a tyrosine residue is flanked by random amino acid residues except at one defined position (34). This approach assesses the sufficiency of particular types of residues at specific sites to confer phosphorylation by the kinase of interest. To gain an understanding of EGFR kinase specificity in the context of defined sequences, we developed a high-throughput assay based on bacterial surface display, FACS (35, 36), and deep sequencing to screen for efficiently phosphorylated tyrosine phosphosites (Fig. 1B) (31). This approach developed a high-throughput assay based on bacterial surface display, FACS (35, 36), and deep sequencing to screen for efficiently phosphorylated tyrosine phosphosites (Fig. 1B) (31).
multiplexed bacterial surface display kinase assay has been used recently to characterize tyrosine kinase specificity in the T cell receptor-signaling pathway (31) and to analyze tyrosine kinase specificity on substrates spanning the human proteome (32).

We used this method to screen the EGFR kinase against a library of 15-residue tyrosine-containing peptides referred to as the “Human-pTyr library.” This library corresponds to a diverse set of ~2,600 tyrosine-containing sequences from the human proteome that have been reported as tyrosine kinase substrates in the PhosphoSitePlus (37) or UniProt (38) databases (Methods and ref. 32). Briefly, Escherichia coli cells displaying individual peptides from the Human-pTyr library on their surfaces were subjected to phosphorylation by the purified EGFR kinase. The cells were then labeled with an anti-phosphotyrosine antibody, and the highly phosphorylated population was enriched by FACS. The abundances of each peptide-coding DNA sequence in the sorted and unsorted samples were inferred by their read frequencies in high-throughput sequencing. The ratio of sorted over input read frequency gives an enrichment score for each peptide. This score correlates well with in vitro measurement of the specific activity of the kinase at low peptide concentrations relative to expected $k\text{cat}/K_M$ values across a wide dynamic range (SI Appendix, Fig. S1A), indicating that it is a good measure of catalytic efficiency. The library contains ~700 sequences with more than one tyrosine residue in a 15-residue stretch, and these were analyzed separately.

A key step in our analysis of EGFR specificity was the use of a soluble, dimeric form of the EGFR intracellular module. The isolated EGFR kinase domain has been shown to have ~15-fold higher specific activity when forced to dimerize on lipid vesicles compared with the activity of the monomeric kinase domain (5, 39, 40). We designed constructs that consist of the EGFR intracellular module fused C-terminally to the proteins FKBP and FRB, which, when mixed together along with rapamycin, exhibit an ~30-fold higher specific activity than either protein alone (SI Appendix, Fig. S1B). This soluble construct also includes part of the juxtamembrane region, the kinase domain, and the full-length cytoplasmic tail (see SI Appendix for details). For this synthetically dimerized construct, the values of $k\text{cat}/K_M$ against the peptides we tested ranged from ~30–400 min$^{-1}$·mM$^{-1}$, as estimated from steady-state reactions at low peptide concentration (SI Appendix, Fig. S1A). This is comparable to or slightly higher than that reported for detergent-solubilized full-length EGFR bound to EGF (41–43). As discussed below, this construct also has specific activity against preferred substrates comparable to that of the kinase domain of c-Src against its preferred substrates.

The distribution of phosphorylation enrichment values for single-tyrosine peptides in the Human-pTyr library screened against human EGFR kinase is centered close to zero (Fig. 2A). The distribution has a long tail toward higher values, suggesting that EGFR phosphorylates most sites poorly and phosphorylates preferential substrates.

Tyrosine kinases have a general preference for peptides with negatively charged residues located before the tyrosine (45). Consistent with this, acidic residues are enriched and basic residues are depleted in the phospho-pLogo diagram corresponding to the set of peptides that are phosphorylated efficiently by EGFR (Fig. 2C). The phosphorylation motif determined for EGFR in earlier work using oriented peptide libraries (12), with acidic residues before the tyrosine and a hydrophobic residue in the position immediately after the tyrosine (the +1 position), is also apparent. In our data, peptides containing a −1 acidic/ +1 hydrophobic motif are significantly more likely to be in the highly phosphorylated set ($P < 10^{-16}$; Fisher’s exact test), suggesting that this feature is predictive of efficient phosphorylation by EGFR. Unexpectedly, peptides with a −1 isoleucine or +3 leucine residue are also significantly enriched among sites that are phosphorylated efficiently by EGFR ($P < 10^{-14}$; Fisher’s exact test). Sequences with a leucine at the +3 position would be compatible with the binding of several SH2 domains, such as those of c-Src and phosphatidylinositol-3’-kinase (46), suggesting convergence in specificity between EGFR phosphorylation and SH2 domain binding in this instance.

When peptides with more than one tyrosine are included in the analysis, tyrosine is enriched significantly at multiple positions in the resulting phospho-pLogo (SI Appendix, Fig. S2). This might reflect, in part, the recently described preference of EGFR for the phospho-Tyr-pTyr motif (20); we do not see an enrichment of tyrosine residues in the phospho-pLogo diagrams for other tyrosine kinases tested using the Human-pTyr library and bacterial surface display (32). The analysis in this paper is restricted to the set of sequences that contain only one tyrosine residue at the central position. This includes many phosphosites in which a secondary tyrosine is mutated to alanine in the library.

Phosphosites in the Cytoplasmic Tails of EGFR-Family Members Represent a Subset of the Sequence Patterns That Are Phosphorylated Efficiently by EGFR. We next compared the sequence patterns of the highly phosphorylated peptides in the screen of human phosphosites with the sequence patterns of phosphosites in members of the EGFR family. We analyzed the positional amino acid enrichment in the 10 residues flanking each tyrosine in the tails of a diverse collection of 87 EGFR-family members from across metazoan evolution. This is displayed as a sequence-pLogo diagram in Fig. 2D. The sequence-pLogo diagram for tail phosphosites is different from the phospho-pLogo for efficiently phosphorylated EGFR substrates. Note, however, that the conserved features of the tail sequences comprise a subset of the sequence patterns that define efficient phosphorylation by the EGFR kinase domain. The major difference between the two logos arises from the enrichment of a central EYL motif in the phosphosites of EGFR-family tails. This EYL motif is compatible with the phospho-pLogo for EGFR (Fig. 2C) as well as with the optimal EEEEYFLVE motif reported for EGFR based on in vitro phosphorylation of degenerate peptide libraries (12, 47). The convergence of EGFR-family phosphosites on the EYL motif implies that efficient phosphorylation by EGFR is an important evolutionary pressure shaping these sequences.

Peptides with an isoleucine residue rather than a glutamate at the −1 position are also phosphorylated efficiently by EGFR, but a hydrophobic residue is very rarely found at the −1 position in the tails of EGFR-family members (compare Fig. 2C and D). The preferred motifs for phosphorylation by cytoplasmic tyrosine kinases often consist of hydrophobic residues at the −1 and +3 positions (12, 13, 47). The phospho-pLogo diagrams for c-Src and c-Abl phosphorylation of the Human-pTyr library confirm the importance of a large hydrophobic residue at the −1 position for efficient phosphorylation (Fig. 2E and F) (32). c-Src and c-Abl also disfavor large hydrophobic residues at the +1 position (Fig. 2E and F), which are overrepresented in the sequence-pLogo for EGFR-family tail phosphosites. These observations
suggest that the EYL motif in EGFR-family tails may have arisen as an evolutionary adaptation to minimize phosphorylation by cytoplastic tyrosine kinases such as c-Src and c-Abl.

Saturation Mutagenesis of EGFR Tail Phosphosites. We performed mutational screens to assess the contribution to phosphorylation efficiency of each position in three phosphosites in the EGFR tail (Tyr-992, Tyr-1086, and Tyr-1114) (Fig. 3A). Of these, the sequence-flanking Tyr-992 is most similar to the phospho-pLogo derived from the Human-pTyr library (Fig. 2C) and previously published as an EYL motif and mostly acidic residues upstream of the tyrosine (12, 26). The other two sites, spanning Tyr-1086 and Tyr-1114, both contain an NPxY motif, the signature of PTB-domain binding, as well as a +2 asparagine, which is the main determinant for Grb2 SH2 binding. These two sites differ in their −1 and +1 residues, however. The Tyr-1114 phosphosite contains the consensus EYL motif, while Tyr-1086 diverges from this consensus, with valine and histidine at the −1 and +1 positions, respectively.

We used the surface display/deep sequencing assay to measure the effect of every amino acid substitution along 21-residue stretches spanning these three EGFR phosphosites. The results are presented in Fig. 3B as heat maps of enrichment values relative to the wild-type peptide for each position in the wild-type sequence (rows) and each substitution to one of 17 other amino acids (excluding tyrosine and cysteine; see Methods) (columns). Mean values across columns and rows are shown as separate bars to the right of and below the main heat maps. The column mean denotes the average effect of perturbing a specific position, whereas the row mean indicates the impact of introducing a specific residue type into the peptide. As expected, mutating the central tyrosine to other residues produces low enrichment relative to the wild-type sequence. Expression levels for each mutant in the Tyr-1114 matrix, measured by cell sorting and deep sequencing, varied marginally compared with the differences in enrichment scores attributed to phosphorylation (SI Appendix, Fig. S3).

A readily apparent feature of all three substitution matrices is the preponderance of positive enrichment values at many different positions. This indicates that the wild-type residues at these positions are not optimal for EGFR phosphorylation. For instance, almost any substitution of an acidic residue 5–10 positions before Tyr-992 increases phosphorylation relative to the wild-type sequence. For the Tyr-992 peptide, these acidic residues are part of an “electrostatic hook” element that is implicated in the suppression of kinase activity in the full-length receptor (39, 51, 52). This suggests that the regulatory function of these residues provides an evolutionary constraint on the sequence at this phosphosite, at the expense of phosphorylation efficiency.

The three mutational datasets indicate that the EGFR kinase domain does not have sharply defined specificity. In only a few cases are the majority of substitutions at any one position detrimental, notably at the −2, −1, and +1 positions of the Tyr-1114 phosphosite. Substitutions of the −1 or +1 residues away from glutamate and leucine, respectively, in both the Tyr-992 and Tyr-1114 peptides negatively affect phosphorylation at these sites, in agreement with the emergence of this motif in the Human-pTyr library screen (Fig. 2C). In further agreement with the Human-pTyr screen, substitutions of the −1 residue
by isoleucine either increase phosphorylation (Tyr-992 and Tyr-1086) or reduce it only slightly (Tyr-1114).

Phosphorylation by EGFR of Peptides Containing Either Acidic or Large Hydrophobic Residues at the −1 Position May Reflect Alternate Conformations of the Bound Substrate. The EGFR kinase domain clearly possesses a degree of selectivity at the −1 position of the substrate, as is evident in all three mutational matrices. It is unexpected, however, that both negatively charged residues (aspartic acid, glutamic acid) and hydrophobic residues (isoleucine, methionine, valine) are permitted at the −2 position. For example, the wild-type Tyr-1086 phosphosite has an aspartate at the −1 position, and substitution of this residue by a hydrophobic residue results in increased phosphorylation (Fig. 3). When the residue at the −1 position is acidic or hydrophobic (Fig. 3C), the −2 position is strongly preferred. In this case, the −1 position is strongly preferred, as in the Tyr-1086 phosphosite, for residues at the −1 position coming from the wild-type sequence. Row and column mean values are displayed separately. Data are the mean of at least two replicates. Error bars indicate the SEM.

We used all-atom molecular dynamics simulations to analyze the conformational space sampled by a substrate peptide. We generated a 200-ns trajectory for an isolated peptide in water, with the sequence of the Tyr-1114 phosphosite without the kinase domain. In this simulation, the residues at the +1 to +4 positions with respect to the tyrosine were constrained to be in the β-conformation, corresponding to how these residues interact with the activation loops of tyrosine kinases (9, 53). We docked instantaneous structures sampled from the simulations onto the EGFR kinase domain [Protein Data Bank (PDB) ID code 2GS6] using the residues at the +1 to +4 positions as in ref. 5. We then examined the conformations of the peptide that showed potential interactions with the surface of the kinase domain but did not collide with it.

When we analyzed the backbone torsion angles of the −1 and −2 residues of the modeled peptide over the course of the simulation, we observed that each residue readily adopts both α- and β-conformations (SI Appendix, Fig. S5 A and B). Clustering the conformations based on these torsion angles revealed that the −1 and −2 residues must often share either the α or β region of the Ramachandran diagram (SI Appendix, Fig. S5C). Examining...
We expanded the bacterial surface display method to test the sites phosphorylated by EGFR and c-Src using a focused library of phosphosites in EGFR-family C-terminal tails and reported EGFR substrates (37) using the high-throughput bacterial surface display assay (Fig. 4A). For this experiment, we took the additional step of normalizing the enrichment values based on the expression level of each peptide (Methods) to compare the two kinases quantitatively. In this assay, the sites phosphorylated efficiently by EGFR are phosphorylated poorly by c-Src, and vice versa. Except for the Here2 Tyr-1199 peptide, the highly phosphorylated substrates of EGFR do not include the highly phosphorylated substrates of c-Src (Fig. 4B).

To confirm that EGFR phosphosites are poor substrates for Src-family kinases, we compared the catalytic efficiencies of the dimersized EGFR intracellular module and the c-Src kinase domain for selected EGFR phosphosite peptides using an in vitro kinase assay with purified peptides. We compared the specific activity of these kinases at a fixed peptide concentration that is well below the expected K_M values for peptide substrates (32, 42, 56). Under such conditions the catalytic rate is proportional to the catalytic efficiency (k_{cat}/K_M). For comparison, we also included a peptide from protein kinase Cε, spanning Tyr-313, which is a good substrate for c-Src (32). Tail phosphosites were phosphorylated by EGFR with efficiency similar to the phosphorylation of a preferred substrate by c-Src, while c-Src phosphorylated the tail sites poorly (Fig. 4C). This confirms that the c-Src kinase domain is inherently poor at phosphorylating the EGFR tail phosphosites rather than simply being a less active enzyme than the dimerized EGFR kinase.

The Tyr-1086 phosphosite has valine at the -1 position, which is not optimal for EGFR according to the mutational screen (Fig. 3B). On the other hand, previous studies using position-specific oriented peptide library screens (13) and bacterial surface display (32) indicate that c-Src efficiently phosphorylates peptides with a -1 valine. Consistent with this, our results show that Tyr-1086 is among the most efficiently phosphorylated substrates for c-Src in the EGFR tail but is a relatively poor substrate for EGFR. This observation is also consistent with previous studies reporting that Tyr-1086 is directly phosphorylated by c-Src (27). Intriguingly, mutation of Tyr-1086 in EGFR attenuates the phosphorylation of Tyr-845 in the activation loop of EGFR in a cellular assay, although evidence that this effect is connected to phosphorylation of the EGFR activation loop by c-Src is lacking (52).

We determined the site-specific amino acid substitution sensitivity of the Tyr-1086 phosphosite in EGFR to phosphorylation by c-Src (Fig. 4D) and compared it with the sensitivity of this phosphosite to phosphorylation by EGFR (Fig. 3B and SI Appendix, Fig. S7). Although the Tyr-1086 phosphosite sequence is permissive for phosphorylation by c-Src relative to other EGFR-family phosphosites, this phosphosite is not optimal. Substitution of the histidine residue at the $+1$ position to most other residues increases phosphorylation by c-Src. A histidine residue at the $+1$ position of the Tyr-1086 site is a conserved feature of mammalian EGFR sequences (SI Appendix, Fig. S8) despite its having no obvious benefit for EGFR phosphorylation (Figs. 2C and 3A) or effector protein binding (see below). This suggests that, although Tyr-1086 provides a potential channel for phosphorylation of EGFR by c-Src, the sequence of this phosphosite limits the efficiency of such phosphorylation.

The Binding of Shc1 and Grb2 to EGFR Phosphosites Can Be Enhanced by Sequence Changes That Would Also Increase Phosphorylation by c-Src. We expanded the bacterial surface display method to test the positional amino acid preferences of the SH2 domain of Grb2 and the PTB domain of Shc1 at two EGFR phosphosites,
Tyr-1086 and Tyr-1114. We surmised, based on the presence of known binding motives as well as binding data from previous studies (19, 49, 57), that the SH2 domain of Grb2 and the PTB domain of Shc1 are prominent adapter proteins that bind to these sites in cells.

In this assay, a mixture of c-Src, c-Abl, and EGFR kinases was used to phosphorylate E. coli cells expressing surface displayed peptide libraries. The phosphorylation was allowed to proceed to completion, as monitored by flow cytometry with an anti-phosphotyrosine antibody (SI Appendix, Fig. S9). To assay binding, tandem copies of phosphotyrosine-binding protein domains fused to GFP were used in place of the anti-phosphotyrosine antibody in the FACS selection. Tandem versions of these binding domains were required to maintain a stable signal for the duration of the cell-sorting protocol.

The mutational matrices for the binding of the Shc1 PTB domain (Fig. 5A) and the Grb2 SH2 domain (Fig. 5B) have features consistent with previously determined binding motives for these domains (49). The main determinant of Grb2 SH2 binding is the presence of an asparagine at the +2 position (48, 58). In the mutational matrices, substitution of this residue in both the Tyr-1086 and Tyr-1114 phosphosites is, on average, just as detrimental as substitution of the central tyrosine residue. Similarly, substitution of the asparagine at the −3 position has a uniformly strong negative effect on the binding of the Shc1 PTB domain at these sites. This corresponds to the known specificity of the Shc1 PTB domain (50, 59). For the Tyr-1086 phosphosite, the −2 proline suggested to be important for PTB binding in earlier studies appears to be dispensable for Shc1 binding, while the −2 proline appears to be more important at the Tyr-1114 phosphosite.

Surprisingly, despite completely different modes for binding to peptides, the Grb2 SH2 and Shc1 PTB domains are both sensitive to substitutions of the −1 valine in the Tyr-1086 phosphosite. Isoleucine, another hydrophobic, β-branched residue, is the only substitution that is tolerated by these domains at this position. Introduction of hydrophobic residues, particularly isoleucine or valine, at the −1 position of the Tyr-1114 phosphosite also improves binding, suggesting that a preference for such residues is a
shared feature of these domains in multiple sequence contexts. This specificity determinant has not been described previously, and it is not easily explained by available structural models. It is, however, consistent with an alanine-scanning mutagenesis study of phosphosites in the insulin receptor (50).

The preference exhibited by the Grb2 SH2 domain and the Shc1 PTB domain for a hydrophobic residue at the −1 position is at odds with the conserved sequence features found in EGFR-family tail phosphosites, which are not enriched in valine or isoleucine at the −1 position (Fig. 2D). This preference is, however, aligned with the specificity determinants of Src-family kinases and c-Abl (Fig. 2E and F) (13, 32). The observation that most EGFR-family tail phosphosites avoid hydrophobic residues at the −1 position, despite such residues being preferred by two of the principal effector proteins that bind to these sites, lends further support to the idea that these sites have evolved to discriminate against phosphorylation by c-Src and, potentially, other cytoplasmic tyrosine kinases.

Conclusions

The ancestral metazoan organism appears to have had a nearly full complement of cytoplasmic tyrosine kinases with recognizable counterparts in modern animals, but orthologs of modern receptor tyrosine kinases were lacking (60, 61). For example, the choanoflagellates, which are among the closest living relatives to true metazoans, have clearly identifiable orthologs of Src- and Abl-family kinases. Choanoflagellates also contain numerous receptor tyrosine kinases, but the extracellular domains of these receptors have no counterparts in modern metazoans. Thus, EGFR-family members emerged as important signaling molecules in the background of preexisting signaling networks that included cytoplasmic tyrosine kinases, such as the Src-family kinases.

This raises the question of whether the tails of the EGFR-family members, in addition to being evolutionarily adapted for autophosphorylation and effector binding, are also adapted to encode minimized phosphorylation by cytoplasmic tyrosine kinases. Our work indicates that the EGFR tail is insulated from efficient phosphorylation by kinases that favor hydrophobic residues at the −1 position, which includes Src-family kinases and c-Abl. While substrates with a hydrophobic residue at −1 can be phosphorylated by EGFR, c-Src, and c-Abl, phosphosites in tails of EGFR-family members generally have an acidic residue at this position. This permits efficient phosphorylation by EGFR but not by c-Src and is likely to be an evolutionary adaptation that preserves the integrity of the growth factor-dependent signals emanating from EGFR-family members.

The phosphosites in the tails of EGFR-family members are presented in cis for phosphorylation by the receptor, potentially allowing these receptors to rely on proximity rather than on sequence specificity for efficient phosphorylation of tail phosphosites. Also, the sequences of EGFR-family tail phosphosites do not conform to the optimal motifs identified for efficient EGFR phosphorylation beyond the −1 and +1 residues (12, 26), making it unclear whether phosphorylation by EGFR is an important parameter constraining the evolution of these sequences. By assaying kinase and binding specificity with respect to discrete, determined sequences, we have discovered that the tail phosphosites do conform to the rules governing efficient phosphorylation by EGFR but that the sequence motifs found in the tails exclude phosphorylation by Src-family kinases and c-Abl while maintaining...
binding of SH2 and PTB domains. Our findings underscore the importance of amino acid sequence context in determining which phosphosites are efficiently recognized by a particular kinase or adapter protein. The context-dependent recognition of proline at the -2 position found in many EGFR-family phosphosites simultaneously allows efficient phosphorylation by EGFR and binding by the Shc1 PTB domain. The relative lack of importance of the +2 position in determining EGFR efficiency allows specification of Grb2 binding independent of EGFR phosphorylation. EGFR autophosphorylation takes place in the context of a full-length transmembrane receptor, where distal portions of the tail, as well as other parts of the kinase domain, might affect the docking of short peptide motifs at the active site and thereby the rates and levels of phosphorylation in cells. The tertiary structural interactions that might underlie such a mechanism have been difficult to observe in EGFR-family members (62). The synthetically dimerized EGFR construct developed for this study lends itself well to measuring autophosphorylation rates of individual sites, although this is left to future investigation. The role of substrate docking might also be played by an EGFR-binding partner, as seen in the cyclin-dependent kinase system, where the cyclin bound to the kinase domain directs Rxl, motif-containing substrates to the active site (63). In addition to the intrinsic specificity of the kinase domain, it will be important to investigate the role of other features of EGFR, as well its membrane environment, in the overall phosphorylation efficiency of each tail site.

The architecture of the EGFR-signaling pathway is organized around a central repertoire of enzymes and adapter proteins that are capable of producing a large variety of cellular outcomes depending on the cellular context (1, 14). The timing and extent of phosphorylation and effector recruitment varies depending on which ligands and heterodimerization partners are present (64–67). One explanation for the ability of different EGFR-family ligands to produce alternative phosphorylation and effector recruitment patterns is the intrinsic sequence specificity of EGFR-family kinases, which can determine which sites become phosphorylated and able to support effector binding at different thresholds of kinase activity. It will be interesting to see what role intrinsic kinase specificity plays in determining phosphorylation levels in cells, where substrates are often presented to kinases within the locally dense environment of signaling clusters.

The intrinsic specificity of EGFR and other kinases might be important in the context of activating mutations in the EGFR kinase domain in human cancers (68). In certain cases, such as the L834R substitution and exon 19 deletions in EGFR, the molecular basis of increased activity has been interpreted as a general increase in the maximal substrate turnover (kcat) across the spectrum of substrates (69) due to changes in dimerization propensity (70). Nevertheless, given the multiple alternative specificity-conferring mechanisms that we and others have observed for EGFR substrates, it is reasonable to suspect that changes in both substrate engagement and maximal turnover account for the effects of activating mutations, thus opening the possibility that these mutations also alter the specificity landscape of EGFR. Compellingly, the L834R substitution alters the order of EGFR autophosphorylation in the context of a kinase-domain–tail construct (71). By changing specificity along with activity, cancer mutations might affect not only overall phosphorylation levels but also the relative engagement of different downstream signaling pathways and therefore the cellular outcome of EGFR signaling. As more nuances of EGFR-family signaling are discovered, it will be important to consider how the intrinsic specificity of kinases and their binding partners is projected onto the cellular systems they constitute.

Methods

Detailed methods can be found in the SI Appendix. A brief summary is provided here.

Bacterial Surface Display and Deep Sequencing. Quantification of the phosphorylation of tyrosine-containing peptides displayed on bacteria and the construction of site-saturating mutagenesis libraries were performed largely as described previously (31). Details for the construction of the Human-pTyre library can be found in ref. 32 (see SI Appendix for more details). After induction of peptide expression on the N terminus of the engineered surface display scaffold eCpx (35), E. coli cells were subjected to phosphorylation by a purified kinase under conditions determined empirically to give ~30% maximal phosphorylation, as judged by flow cytometry with anti-phosphotyrosine 4G10 staining. Cells were sorted by FACS based on anti-phosphotyrosine staining into a single bin corresponding to the brightest 25% of events. DNA from the sorted and input cells was amplified and analyzed by Illumina paired-end sequencing. The read frequencies for each peptide-coding DNA sequence from the input and sorted samples from each phosphorylation reaction were compared to give an enrichment ratio for each peptide. For site-saturating mutagenesis libraries, the read frequency ratios of mutant peptides were normalized to that of the wild-type peptide to give a log-relative enrichment value (ΔE). For the EGFR substrate library in Fig. 4A, ΔE was calculated relative to a non-tyrosine-containing control peptide. The data in Fig. 4A were additionally corrected for expression level on the basis of anti-Strep-tag immunostaining, using the tag encoded at the C terminus of the surface display scaffold.

Analysis of SH2- and PTB-domain binding to the saturation mutagenesis libraries was performed similarly to the analysis of phosphorylation, but tandem versions of each binding domain fused to GFP were used in place of the anti-phosphotyrosine antibody. The cells used for this analysis were phosphorylated by a mixture of EGFR, c-Src, and c-Abl kinases and were monitored for uniform phosphorylation by anti-phosphotyrosine flow cytometry (SI Appendix, Fig. 59).

Kinase Peptide Activity Assays. The specific activity of purified kinases against purified peptides was monitored with an enzyme-coupled assay based on NADH absorbance (72). Steady-state reaction rates for kinases at 0.5 μM, peptides at 0.5 mM, and ATP at 0.5 mM at room temperature were converted to specific activity on the basis of the change in NADH absorbance over time.

Generation of Sequence-plogos of EGFR-Family Phophosites. A collection of bona-fide metazoan EGFR-family kinase sequences was extracted from the EGGNOG database (orthology group ENO0410XNS0) (73), aligned, and filtered by sequence identity of the kinase domain to avoid oversampling taxa that have relatively high numbers of species in the sequence database. C-terminal tyrosine sites were analyzed for positional amino acid enrichment with the plogo tool (44), with tyrosines from metazoan transmembrane and intracellular proteins serving as the background distribution. The height of each letter in a plogo corresponds to the log-odds ratio of the binomial probability of observing an amino acid at least as many times in the foreground set as in the background set, divided by the probability of observing that amino acid that many times or fewer in the background set.

Molecular Dynamics Simulations. A peptide encompassing the Tyr-1114 phosphosite corresponding to residues 1110–1118 of human EGFR was simulated with NAMD (74) using the CHARMM36 force field (75). The peptide was modeled based on the peptide substrate in the crystal structure of the phosphorylated insulin receptor kinase (PDB ID code 1IR3) (53) and was constrained to have residues 1114–1118 adopt β-conformation backbone dihedral angles throughout the simulation. Trajectories were analyzed by clustering frames on the basis of the backbone dihedral angles of residues 1112 and 1113. Representative frames from each cluster were selected visually.

ACKNOWLEDGMENTS. We thank Hector Nolla and Alma Valeros of the University of California, Berkeley (UC Berkeley) Cancer Research Laboratory flow cytometry facility for assistance with cell sorting; Bill Russ and Rama Ranganathan at the University of Texas Southwestern Medical Center for assistance with Illumina sequencing and helpful discussions; and Xiaoxian Cao of the J.K. laboratory at UC Berkeley for assistance with protein expression. This work was supported in part by NIH Grants 5R01CA096504-12 and 5R01CA1091580 (to J.K.). N.H.S. was supported by a Damon Runyon Cancer Research Foundation Postdoctoral Fellowship.
1. Yarden Y, Shlivkovski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2:127–137.
2. Lemmon MA, Schlessinger J, Ferguson KM (2014) The EGFR family: Not so prototypical signal transduction.
3. Koval YS, Lembcke J, Weiss K, Kuriyan J (2006) An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 125:1137–1149.
4. Morán MF, et al. (1990) Src homology region 2 domains direct protein-protein interactions in signal transduction. Proc Natl Acad Sci USA 87:8622–8626.
5. Kavanagh WM, Turck CW, Williams LT (1995) PTB domain binding to signaling proteins through phosphotyrosine. Science 268:1177–1179.
6. Pawson T, Scott JD (1997) Signaling through scaffold, anchoring, and adaptor proteins. Science 278:2075–2080.
7. Bore S, Holbet MA, Pickin KA, Cole PA (2006) Protein tyrosine kinase-substrate interactions. Curr Opin Struct Biol 16:668–673.
8. Hunter T (2009) Tyrosine phosphorylation: Thirty years and counting. Curr Opin Biol 21:140–146.
9. Mayer BJ (2012) Perspective: Dynamics of receptor tyrosine kinase signaling complexes. FEBS Lett 586:257–259.
10. Songyang Z, et al. (1995) Catalytic specificity of protein-tyrosine kinases is critical for selective signalling. Nature 373:536–539.
11. Deng Y, et al. (2014) Global analysis of human nonreceptor tyrosine kinase sequence using high-throughput profiling. J Proteome Res 13:3239–3246.
12. Citri A, Yarden Y (2006) EGFR-ERBB signalling: Towards the system level. Nat Rev Mol Cell Biol 7:505–516.
13. Knudsen SJ, Mac ASW, Henriksen L, van Deurs B, Greadal LM (2014) EGFR signaling patterns are regulated by its different ligands. Growth Factors 32:155–163.
14. Schulze WA, Denhardt M (2000) Phosphotyrosine interaction of the ErbB-receptor kinase family. Mol Syst Biol 1:2005.0008.
15. Jones RB, Gordus A, Krall JA, Madbeath G (2006) A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nat Methods 3:168–174.
16. Kaudbarys A, et al. (2008) Systemwide investigation of ErbB reveals 19 sites of Tyr phosphorylation that are unusually selective in their recruitment properties. Chem Biol 15:808–817.
17. Hause RJ, Jr, et al. (2012) Comprehensive binary interaction mapping of SH2 domains via fluorescence polarization reveals novel functional diversification of ErbB receptors. PLoS ONE 7:e46410.
18. Gill K, Macdonald-Oberrmann JL, Pike LI (2017) Epidermal growth factor receptor molecules containing a single tyrosine in their C-terminal tail differ in their recruitment properties: a new property for an established receptor. J Biol Chem 292:20744–20750.
19. Brommann PA, Korkaya H, Courtneidge SA (2004) The interplay between Src family kinases and receptor tyrosine kinases. Oncogene 23:7957–7968.
20. Tanos B, Pendergist AM (2006) Ab1 tyrosine kinase regulates endocytosis of the epidermal growth factor receptor. J Biol Chem 281:32714–32723.
21. Luttrell LM, Della Rocca GJ, van Biesen T, Luttrell DK, Leffkowitz RJ (1997) Gbeta-gamma subunits mediate Src-dependent phosphorylation of the epidermal growth factor receptor. A scaffold for G-protein-coupled-receptor-mediated Ras activation. J Biol Chem 272:4637–4644.
22. Moro L, et al. (2002) Integrin-induced epidermal growth factor (EGF) receptor activation requires Src and p130Cas and leads to phosphorylation of specific EGFR receptor tyrosines. J Biol Chem 277:9405–9414.
23. Joo CK, et al. (2008) Ligand release-independent transactivation of epidermal growth factor receptor-beta involves multiple signaling pathways. J Cell Sci 121:424–428.
24. Begley MJ, et al. (2015) EGFR receptor specificity for phosphorylation-based substrates provides signal integration with Src. Nat Struct Mol Biol 22:983–990.
25. Stover DR, Becker M, Liebetanz J, Lydon NB (1995) Src phosphorylation of the epidermal growth factor receptor at novel sites mediates receptor interaction with Src and P85 alpha. J Biol Chem 270:15591–15597.
26. Lombardo CR, Consler TG, Kassel DB (1995) In vitro phosphorylation of the epidermal growth factor receptor autophosphorylation domain by c-src: Identification of phosphorylation sites and c-src SH2 domain binding sites. Biochemistry 34:16456–16466.
27. Biscardi JS, et al. (1999) c-Src-mediated phosphorylation of the epidermal growth factor receptor on Tyr945 and Tyr1101 is associated with modulation of receptor function. J Biol Chem 274:8335–8340.
28. Biscardi JS, et al. (2016) Early signaling dynamics of the epidermal growth factor receptor. Proc Natl Acad Sci USA 113:3114–3119.
29. Shah NH, et al. (2016) An electrostatic selection mechanism controls sequential kinase signaling downstream of the T cell receptor. elife 5:e20105.
30. Shah NH, Lembcke J, Weiss K, Kuriyan J (2008) Fine-tuning of substrate preferences of the Src-family kinase Lck revealed through a high-throughput specificity screen. elife 2:e23180.
31. Chan PM, Nestler HP, Miller WT (2000) Investigating the substrate specificity of the HER2/Neu tyrosine kinase using peptide libraries. Cancer Lett 160:159–169.
32. Songyang Z (2001) Analysis of protein kinase specificity by peptide libraries and prediction of in vivo substrate specificity. Methods Enzymol 332:171–183.
33. Rice JJ, Daugherty PS (2008) Directed evolution of a biterminal bacterial display scaffold expans the display of diverse peptides. Protein Eng Des Sel 21:435–442.
34. Henriches ST, et al. (2013) A novel quantitative kinase assay using bacterial surface display and flow cytometry. PLoS One 8:e59474.
35. Hornbeck PV, et al. (2015) Phosphositeplus, 2014: Mutations, PTMs and recalibrations. Nucleic Acids Res 43:D512–D520.
36. The UniProt Consortium (2017) UniProt: The universal protein knowledgebase.
37. Rice JJ, Daugherty PS (2008) Directed evolution of a biterminal bacterial display scaffold expans the display of diverse peptides. Protein Eng Des Sel 21:435–442.
38. Fan Y-K, Wong L, Deb TB, Johnson GR (2004) Ligand regulates epidermal growth factor receptor kinase specificity: Activation increases preference for GAB1 and SHC versus auto phosphorylation sites. J Biol Chem 279:38143–38150.
39. Songyang Z (2001) Phosphotyrosine binds to high-affinity specific binding sites for EGFR phosphorylation sites, and ligands increases catcate cerrice activity without affecting substrate binding affinity. Biochem 392:417–423.
40. Qiu C, et al. (2009) In vitro enzymatic characterization of near full length EGFR in activated and inhibited states. Biochemistry 48:6624–6632.
41. O’Shea, et al. (2013) Ploso: A probabilistic approach to visualizing sequence motifs. Nat Methods 10:1211–1212.
42. Pachnisky T, Hunter T, Esch FS, Cooper JA, Sefton BM (1982) Analysis of the sequence environments of amino acids surrounding sites of tyrosine phosphorylation. Proc Natl Acad Sci USA 79:973–977.
43. Songyang Z, et al. (1993) SH2 domains recognize specific phophoepitopes sequences. Cell 72:767–778.
44. Cantor et al. (2008) Linear motif atlas for phosphorylation-dependent signaling. Sci 1695.17a.
45. Songyang Z, et al. (1994) Specific motifs recognized by the SH2 domains of Csk, Btk, and Syk co-fractionate with phosphotyrosine containing proteins. Science 268:1177–1179.
46. Zhang X, Gureasko J, Shen K, Cole P, Kuriyan J (2006) An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 125:1137–1149.
47. Hornbeck PV, et al. (2015) PhosphoSitePlus, 2014: Mutations, PTMs and recalibrations. Nucleic Acids Res 43:D512–D520.