Perfil da Expressão do mRNA do Nrf2, NF-κB e PPARβ/δ em Pacientes com Doença Arterial Coronariana

Nrf2, NF-κB and PPARβ/δ mRNA Expression Profile in Patients with Coronary Artery Disease

Jaqueline Ermida Barbosa, Milena Barcza Stockler-Pinto, Beatriz Oliveira da Cruz, Ana Carla Tavares da Silva, Juliana Saraiva Anjos, Claudio Tinoco Mesquita, Denise Mafra, Ludmila F. M. F. Cardozo

Universidade Federal Fluminense - Programa de Pós-Graduação em Ciências Cardiovasculares, Niterói, RJ – Brasil

Resumo

Fundamentos: O estresse oxidativo e a inflamação estão presentes na doença arterial coronariana (DAC) e estão ligados à ativação do fator de transcrição nuclear kappa B (NF-κB). Para atenuar essas complicações, fatores de transcrição como o fator nuclear eritroide 2-relacionado ao fator 2 (Nrf2) e o receptor ativado por proliferador de peroxissoma β/δ (PPARβ/δ) podem ser ativados para inibir o NF-κB. No entanto, os dados disponíveis sobre a expressão de NF-κB, Nrf2 e PPARβ/δ em pacientes com DAC são limitados.

Objetivo: Avaliar a expressão dos fatores transcripcionais NF-κB e Nrf2 e o PPARβ/δ em pacientes com DAC.

Métodos: Trinta e cinco pacientes (17 homens, idade média de 62,4 ± 7,55 anos) com DAC e doze pacientes (5 homens, com idade média de 63,50 ± 11,46 anos) sem DAC foram incluídos. Células mononucleares do sangue periférico (PBMCs) foram isoladas e processadas para a expressão de mRNA do Nrf2, NF-κB, NADPH: quinona oxidoredutase 1 (NQO1) e mRNAs do PPARβ/δ por meio de reação em cadeia da polimerase quantitativa em tempo real (qPCR). Valores de p < 0,05 foram considerados como estatisticamente significativos.

Resultados: Não houve diferença nas expressões de mRNA do Nrf2 (1,35 ± 0,57), NF-κB (1,08 ± 0,50) ou na enzima antioxidante NQO1 (1,05 ± 0,88) no grupo DAC em comparação com o grupo sem DAC (1,16 ± 0,76, 0,95 ± 0,33, 0,81 ± 0,55, respectivamente). Entretanto, o PPARβ/δ apresentou maior expressão no grupo com DAC (1,17 ± 0,86 vs. 0,56 ± 0,34, p = 0,008).

Conclusão: O principal achado do presente estudo foi o PPARβ/δ apresentar maior expressão nas PBMCs de pacientes com DAC comparados ao grupo controle, ao passo que não foram observadas diferenças nas expressões de mRNA do Nrf2 ou NF-κB. (Arq Bras Cardiol. 2019; 113(6):1121-1127)

Palavras-chave: Doença Arterial Coronariana; Estresse Oxidativo; Inflamação; Obesidade; Hipertensão; Dislipidemias; Fatores de Risco/prevalência; Infarto do Miocárdio; Insuficiência Cardíaca.

Abstract

Background: Oxidative stress and inflammation are present in coronary artery disease (CAD) and are linked to the activation of the transcription nuclear factor kappa B (NF-κB). To attenuate these complications, transcription factors like nuclear factor erythroid 2-related factor 2 (Nrf2) and peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) can be activated to inhibit NF-κB. However, the available data on expression of NF-κB, Nrf2 and PPARβ/δ in CAD patients are limited.

Objective: To evaluate the expression of the transcription factors NF-κB and Nrf2 and PPARβ/δ in CAD patients.

Methods: Thirty-five patients (17 men, mean age 62.4 ± 7.55 years) with CAD and twelve patients (5 men, mean age 63.50 ± 11.46 years) without CAD were enrolled. Peripheral blood mononuclear cells (PBMCs) were isolated and processed for mRNA expression of Nrf2, NF-κB, NADPH: quinone oxidoreductase 1 (NQO1) and PPARβ/δ mRNAs using quantitative real-time polymerase chain reaction (qPCR). p < 0.05 was considered statistically significant.

Results: There was no difference in the mRNA expressions of Nrf2 (1.35 ± 0.57), NF-κB (1.08 ± 0.50) or in the antioxidant enzyme NQO1 (1.05±0.88) in the CAD group compared to the group without CAD (1.16 ± 0.76, 0.95 ± 0.33, 0.81 ± 0.55, respectively). However, PPARβ/δ was highest expressed in the CAD group (1.17 ± 0.86 vs. 0.56 ± 0.34, p = 0.008).

Conclusion: The main finding of this study was the PPARβ/δ being more expressed in the PBMC of patients with CAD compared to the control group, whereas no differences were observed in Nrf2 or NF-κB mRNA expressions. (Arq Bras Cardiol. 2019; 113(6):1121-1127)

Keywords: Coronary Artery Disease; Oxidative Stress; Inflammation; Obesity; Hypertension; Dyslipidemias; Risk Factors/prevalence; Myocardial Infarction; Heart Failure.

Full texts in English - http://www.arquivosonline.com.br

Correspondência: Ludmila F. M. F. Cardozo • Universidad Federal Fluminense • Hospital Universitário Antônio Pedro • Rua Marques do Paraná, 303, 4º andar - prédio da emergência. CEP 24033-900, Niterói RJ – Brasil
E-mail: ludmila.cardozo@gmail.com
Artigo recebido em 17/10/2018, revisado em 07/02/2019, aceito em 13/02/2019

DOI: 10.5935/abc.20190125
Introdução

Entre as doenças cardiovasculares (DCVs), a Doença Arterial Coronariana (DAC) é a principal causa de morte e altos custos com assistência médica no mundo, sendo tipicamente uma doença crônica com progressão ao longo de anos ou décadas. A DAC, também conhecida como doença coronariana arteriosclerótica do coração ou doença coronariana, é caracterizada pelo estreitamento das artérias do coração que fornecem sangue, oxigênio e nutrientes ao tecido cardíaco.

Embora tenha ocorrido um declínio constante na incidência das DCVs nos últimos anos, a prevalência de fatores de risco para DCVs (hipertensão, colesterol elevado e obesidade) tem aumentado. Tabagismo, obesidade, hipertensão arterial, níveis elevados de colesterol total e de lipoproteína de baixa densidade, baixos níveis de lipoproteína de alta densidade, diabetes e idade avançada são os principais fatores de risco para DCV, estando diretamente relacionados à disfunção endotelial com baixa biodisponibilidade de oxigênio nítido, causando vasoconstrição, estresse oxidativo e inflamação.

O estresse oxidativo surge quando há um desequilíbrio entre a produção de espécies reativas do oxigênio (EROs) e a capacidade dos sistemas antioxidantes de defesa do corpo, sendo que a inflamação é uma resposta biológica ao estresse oxidativo onde a célula começa a produzir proteínas, enzimas e outros compostos para restaurar a homeostase. O estresse oxidativo é responsável pela inflamação por meio de diversos mecanismos, um dos quais é a ativação direta do fator de transcrição nuclear kappa B (NF-κB) pelas EROs. O NF-κB regula a transcrição de diversos genes que codificam citocinas pró-inflamatórias, quimiocinas e moléculas de adesão leucocitária.

Nesse sentido, é importante avaliar fatores que atenuam tanto a inflamação quanto o estresse oxidativo. O fator Nuclear enérido 2-relacionado ao fator 2 (Nrf2) tem sido associado a efeitos citoprotetores e seu acúmulo leva a um aumento na transcrição de genes regulados por elementos de resposta antioxidante (ARE) que codificam enzimas antioxidantes e desintoxicantes de fase II, podendo ser considerado um fator protetor contra o estresse oxidativo e a inflamação. Em condições basais, o fator Nrf2 é inativo no citoplasma, sendo inibido por sua proteína repressora citosólica, proteína 1 associada a ECH e NF-kB pelo NF-κB pelas EROs. O NF-κB regulara a transcrição de diversos genes que codificam citocinas pró-inflamatórias, quimiocinas e moléculas de adesão leucocitária.

Medidas antropométricas

As medidas antropométricas foram feitas por um membro da equipe treinado, que utilizou as técnicas padrão. O índice de massa corporal foi calculado pelo peso em quilogramas dividido pela altura em metros quadrados.

Avaliação da pressão arterial

A pressão arterial (PA) foi medida pelo método indireto utilizando-se técnica auscultatória com esfigmomanômetro e manguito apropriado de acordo com as dimensões do braço do paciente. Utilizou-se aparelho de PA aneroido – AD-2 sobre rodízio (pedestal), marca UNITEC Hospitalar (INMETRO ML 095 2007/ANVISA 10432300016). Para avaliar a PA, o procedimento foi inicialmente explicado ao paciente, que era mantido em repouso por mais de cinco minutos, sentado, com os pés apoiados no chão, encostados na cadeira, braço no nível do coração (ponto médio do esterno), apoiado, despido, com a palma da mão voltada para cima e o cotovelo ligeiramente fletido. Definiu-se hipertensão arterial quando os valores da PA sistólica (PAS) eram maiores ou iguais a 140 mmHg.
Procedimentos analíticos e processamento de amostras

Coletou-se sangue de cada participante pela manhã, após 12 horas de jejum noturno, sendo acondicionado em tubo com anticoagulante EDTA (1,0 mg/mL). O plasma foi centrifugado e separado (15 min, 3000xg, 4°C) e armazenado a –80°C até a análise.

Foram coletadas células mononucleares do sangue periférico (PBMCs), diluindo-as as amostras de sangue com EDTA em PBS e as células foram separadas em 5 ml de Histopaque (Sigma-Aldrich) por centrifugação a 1800 g por 30 minutos. As PBMCs foram coletadas e lavadas duas vezes com PBS frio e ressuspensas e armazenadas (–80°C) com 1 ml de meio de congelamento para cultivo celular RecoveryTM (Thermo Fisher Scientific) para isolamento de RNA.

Parâmetros bioquímicos e inflamatórios

Os níveis de colesterol total, colesterol LDL, colesterol HDL, triglicerídeos, glicose e proteína C-reativa ultrassensível foram determinados usando analisadores bioquímicos automáticos da marca Bioclín® (Bioclín BS-120 Chemistry Analyzer). Calculou-se o colesterol LDL pela equação de Friedewald et al.,24

Análise da PCR quantitativa em tempo real

As expressões de mRNA dos fatores de transcrição NF-κB, NQO1 e PPARβ/δ foram avaliadas pela PCR quantitativa em tempo real (qPCR) de PBMCs de acordo com Cardozo et al. 2016.25 Foram utilizados os ensaios de expressão génica TaqMan® (Applied Biosystems) para detectar a expressão de mRNA dos fatores Nrf2 (Hs00975961_g1), NF-κB (Hs00765730_m1), NQO1 (Hs00168547_m1), PPARβ/δ (Hs00975961_g1) e o gene de controle GAPDH (Hs02758991_g1).

Análise estatística

O teste Shapiro-Wilk foi aplicado para testar a distribuição das amostras. Os resultados foram expressos em média ± DP (idade, IMC, PAS, perfil lipídico, glicose, Nrf2, NF-κB, das amostras. Os resultados foram expressos em média ± DP (Hs02758991_g1).

NF-κB expressão de mRNA dos fatores Nrf2 (Hs00975961_g1), PPARβ/δ (Hs00765730_m1), NQO1, PPARβ/δ, mediana (intervalo interquartil) (PCR) ou porcentagem (hipertensão, dislipidemia, diabetes), conforme aplicável. Utilizou-se o teste t de Student não pareado para comparar as variáveis e grupos com distribuição normal e o teste de Mann-Whitney-Wilcoxon para dados não paramétricos. As correlações entre as variáveis foram avaliadas pela correlação dos coeficientes de Pearson ou Spearman de acordo com a distribuição da amostra. Aceitou-se 5% como nível de significância. As análises estatísticas foram realizadas com software SPSS 19.0 (Chicago, IL, EUA).

Resultados

No grupo com DAC, 82,8% apresentaram alterações na cintilografia de perfusão miocárdica (65,5% isquemia miocárdica, 27,6% fibrose miocárdica, e 6,9% de fibrose e isquemia miocárdica). Quanto à duração da doença, 71,4% foram diagnosticados com DAC de 1 a 5 anos, 17,1% de 6 a 10 anos e 11,5% de 10 a 15 anos. De acordo com a história clínica dos pacientes com DAC, 54,2% realizaram algum tipo de procedimento antes do estudo: 8,7% realizaram cateterismo cardíaco, 34,3% angioplastia coronariana transluminal percutânea, 5,7% angioplastia coronariana transluminal percutânea e cateterismo cardíaco e 5,7% angioplastia coronariana transluminal percutânea e cirurgia de revascularização miocárdica. Além disso, disso, 62,8% dos pacientes com DAC e 30,8% do grupo controle eram fumantes. Considerando o uso de medicamentos, no grupo com DAC, 68,5% usavam bloqueadores β-adrenérgicos, 17,4% inibidores da enzima conversora de angiotensina, 77,1% estatinas, 26,5% bloqueadores dos canais de cálcio, 51,4% diuréticos, 37,2% nitratos, 54,3% ácido acetilsalicílico, 62,8% losartana potássica, 34,8% hipoglicemiantes orais e 11,43% insulina. No grupo controle, 53,8% usavam bloqueadores β-adrenérgicos, 15,4% inibidores da enzima conversora de angiotensina, 46,2% estatinas, 30,8% bloqueadores dos canais de cálcio, 53,8% diuréticos, 7,7% nitratos, 61,5% ácido acetilsalicílico, 69,2% losartana potássica, 38,5% hipoglicemiantes orais e 7,7% insulina. Não foram encontradas diferenças estatísticas entre os grupos com relação ao uso de medicamentos ou tabagismo. A Tabela 1 apresenta o perfil clínico e os parâmetros bioquímicos. Além disso, o grupo com DAC apresentou menores níveis de colesterol total, colesterol LDL e colesterol HDL quando comparado ao grupo sem DAC (Tabela 1).

Não foram encontradas diferenças nos fatores transcripcionais Nrf2 e NF-κB ou na expressão de mRNA do gene NQO1, comparando-se o grupo DAC com o grupo sem DAC. Em contrapartida, houve maior expressão do receptor PPARβ/δ no grupo com DAC (Tabela 2). Consideramos que a inclusão de pacientes diabéticos não interferiu nos resultados. Nenhuma correlação foi encontrada.

Discussão

Alguns estudos avaliaram a inflamação sistêmica através da expressão génica das PBMCs.26,27 Salientou-se a importância de estudar as PBMCs como uma estratégia para avaliar alvos de vias metabólicas relacionadas à inflamação para explorar as DCV para uma melhor compreensão da arquitetura dessas doenças. A hipótese contemplada seria a de que os PBMCs poderiam refletir mecanismos inflamatórios de uma maneira mais específica em comparação com o soro/plasma.28 Assim, o presente estudo investiga a expressão de mRNA dos fatores transcripcionais NF-κB e Nrf2 e do receptor PPARβ/δ nas PBMCs de pacientes com DAC. Os pacientes com DCV geralmente estão expostos a inflamação e estresse oxidativo. O fator Nrf2 protege o organismo contra essas alterações, pois está relacionado à síntese de enzimas antioxidantes e é capaz de antagonizar o NF-κB envolvido na indução inflamatória.

Diversos estudos mostraram que o fator NF-κB desempenha um papel importante no desenvolvimento de DCV.29–31 Demonstrou-se que a isquemia induziu rapidamente a ativação do NF-κB no miocárdio de ratos.29 Wilson et al.,30 mostraram que o NF-κB encontrava-se aumentado na placa ateromatosas coronariana em humanos e sua expressão estava predominantemente associada a macrófagos, células espumosas e células musculares lisas vasculares. Além disso, sua expressão mostrou-se...
A níveis de expressão de mRNA no grupo sem DAC e no grupo com DAC

Parâmetros	Grupp sem DAC	Grupp com DAC	Valor de p
Nrf2	1,16 ± 0,76	1,35 ± 0,57	0,35
NF-κB	0,95 ± 0,33	1,08 ± 0,50	0,58
NQO1	0,81 ± 0,55	1,05 ± 0,88	0,37
PPARβ/δ	0,56 ± 0,34	1,17 ± 0,86	0,008

As expressões de mRNA dos fatores Nrf2, NF-κB, NQO1 e PPARβ/δ foram realizadas em PBMCs por PCR quantitativa em tempo real. Os dados foram expressos como média ± DP. Os dados foram expressos como média ± DP. Atenção: DAC: doença arterial coronariana. Nrf2, NF-κB, NQO1 e PPARβ/δ.

Aumentado nas síndromes coronarianas agudas e associada à molécula de adesão intercelular 1 (ICAM-1). A inibição do fator NF-κB nas células endoteliais resultou em redução do desenvolvimento de aterosclerose e mostrou-se correlacionada à redução da expressão de citocinas pro-inflamatórias, quimiocinas e moléculas de adesão nas aortas de camundongos alimentados com dieta rica em colesterol.

Alguns estudos demonstram que, como mecanismo de proteção, no estágio inicial de doenças, o fator Nrf2 tem sua atividade aumentada para evitar danos induzidos por EROs. No estágio final, devido à cronicidade e/ou gravidade da doença, esse mecanismo de proteção pode se tornar saturado pelo excesso de EROs, levando à redução de Nrf2 e/ou o NF-κB parece ser insuficientemente capaz de antagonizar o NF-κB, permanecendo elevado.

Apesar disso, os efeitos da DAC no sistema Nrf2-Keap1 não estão bem estabelecidos. No entanto, pacientes com DAC apresentaram menor expressão gênica de Nrf2/ARE e glutatonia (GSH).

Uma fase importante da formação da placa aterosclerótica é a infiltração endotelial bem estabelecida pelos macrófagos e a formação de células espumosas. Em ratos, o fator Nrf2 é um componente importante nesse processo, uma vez que macrófagos expostos à LDL oxidada promoveram aumento da expressão de Nrf2, que protegeu indiretamente os macrófagos de lesões mediadas por LDL oxidada através de enzimas antioxidantes de fase II. Além disso, a ausência de Nrf2 em macrófagos de camundongos que consomem uma dieta rica em gordura aumentou a formação de células espumosas e a progressão da aterosclerose, sugerindo que o fator Nrf2 é importante na resistência à aterosclerose. O aumento da expressão de Nrf2 nesse estágio do desenvolvimento da aterosclerose é importante porque os efeitos sobre a expressão da heme oxigenase-1 (HO-1), que produz efeitos antiaterogênicos como redução na formação de células espumosas e NQO1, também se mostraram importantes na proteção contra a aterosclerose.

No presente estudo, não houve diferenças na expressão de mRNA do fator Nrf2 ou NF-κB entre pacientes do grupo com DAC e do grupo sem DAC, possivelmente devido ao fato de os pacientes nos dois grupos serem idosos, hipertensos e/ou diabéticos, demonstrando que nenhum dos grupos era composto por pacientes saudáveis. Além disso, todos os pacientes estavam em uso de diversos medicamentos com possível efeito antioxidante. Com a idade, a expressão...
de diversos alvos downstream do fator Nrf2 diminuem. Ainda é importante ressaltar que tanto a hipertensão quanto o diabetes estão relacionados ao aumento do estresse oxidativo, acúmulo de espécies reativas de oxigênio e inflamação.9,41

No presente estudo, o receptor PPARβ/δ mostrou-se elevado quando comparado aos pacientes sem DAC. Parece ser um fator protetor, uma vez que foi demonstrado que o equilíbrio adequado da ativação de PPARβ/δ nos diferentes tipos de células cardíacas pode ser importante para os possíveis efeitos cardioprotetores do PPARβ/δ.42 Um estudo in vivo mostrou que a superexpressão cardíaca específica do PPARβ/δ levou ao aumento da utilização de glicose miocárdica e não alterou a função cardíaca, mas exerceu um efeito protetor na lesão miocárdica induzida por isquemia/reperfusão.43 Além disso, a deleção do gene PPARβ/δ em camundongos resultou em disfunção cardíaca, hipertrofia e insuficiência cardíaca congestiva.17,44 Além disso, o PPARβ/δ foi descrito em várias funções biológicas, incluindo a sobrevivência celular.44,45 Estudos mostram que a inflamação, as EROs e as LDLs oxidadas induzem a apoptose de células endoteliais, representando o início do desenvolvimento de lesões ateroscleróticas.35 Assim, ensaios realizados em queratinócitos mostraram que o aumento da produção de citocinas pró-inflamatórias é capaz de elevar a expressão de PPARβ/δ, que por sua vez regula a expressão de genes relacionados à apoptose, resultando em aumento da resistência à morte celular.44

Dada a importância do PPARβ/δ e dos efeitos dos fatores de transcrição NF-κB e Nrf2 nos pacientes com DAC – o Nrf2 orquestrando a produção de enzimas antioxidantes e desintoxicantes de fase 2 sendo considerado um fator protetor contra o estresse oxidativo e a inflamação,46 com o PPARβ/δ promovendo a cardioproteção42 e o NF-κB regulando a inflamação12 – uma melhor compreensão de como eles são expressos em pacientes com DAC mostra-se útil para que se possa utilizar estratégias na tentativa de modular esses fatores de transcrição. Alguns estudos propuseram que nutrientes contendo inductores de Nrf2 de fontes naturais podem ajudar a melhorar o sistema Nrf2-Keap1.25,47

Este estudo apresentou uma série de limitações que merecem ser consideradas. Primeiramente, este estudo deveria ter um grupo controle saudável para comparação. Em segundo lugar, seria interessante estratificar os resultados por fatores de risco e resultados de cintilografia, mas a amostra não era grande o suficiente para isso. Em terceiro lugar, infelizmente, não realizamos outros genes-alvo dos fatores Nrf2, NF-κB e PPARβ/δ que codificam enzimas antioxidantes e citocinas pró-inflamatórias para confirmar a rede de expressão dos fatores Nrf2, NF-κB e PPARβ/δ. Além disso, não foi possível calcular o colesterol não HDL. Novos estudos devem ser estimulados para explorar esta questão. Considerando essas limitações, este foi um protocolo muito bem controlado, o que nos permitiu concluir que os resultados são consideravelmente relevantes.

Conclusão

O presente estudo revelou aumento da expressão de PPARβ/δ nas PBMCs de pacientes com DAC, embora não tenham sido observadas diferenças nas expressões de mRNA dos fatores Nrf2 ou NF-κB. Esses achados podem levar a possíveis terapias, alvos e futuras pesquisas para o tratamento desses pacientes.

Contribuição dos autores

Concepcão e desenho da pesquisa e Análise e interpretação dos dados: Barbosa JE, Stockler-Pinto MB, Cruz BO, Silva ACT, Anjos JS, Mesquita CT, Maíra D, Cardozo LFMF; Obtenção de dados e Redação do manuscrito: Barbosa JE, Stockler-Pinto MB, Cruz BO, Silva ACT, Anjos JS, Cardozo LFMF; Análise estatística e Obtenção de financiamento: Stockler-Pinto MB, Maíra D, Cardozo LFMF; Revisão crítica do manuscrito quanto ao conteúdo intelectual importante: Barbosa JE, Stockler-Pinto MB, Mesquita CT, Maíra D, Cardozo LFMF.

Potencial conflito de interesses

Declaro não haver conflito de interesses pertinentes.

Fontes de financiamento

Este estudo foi financiado pela Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) - Código Financeiro 001, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) (Processo E-26 / 203.269 / 2017) e (Processo E_05 / 2016_E_05 / 2016) e Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Vinculação acadêmica

Este artigo é parte da dissertação de Mestrado de Jaqueline Ermida Barbosa pela Universidade Federal Fluminense.

Aprovação ética e consentimento informado

Este estudo foi aprovado pelo Comitê de Ética da Universidade Federal Fluminense sob o número de protocolo 826.041 CAAE 35035414.8.0000.5243. Todos os procedimentos envolvidos nesse estudo estão de acordo com a Declaração de Helsinki de 1975, atualizada em 2013. O consentimento informado foi obtido de todos os participantes incluídos no estudo.
Referências

1. Pinho RA, Araújo MC, Ghisi GL, Benetti M. Coronary heart disease, physical exercise and oxidative stress. Arq Bras Cardiol. 2010;94(4):549–55.

2. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Heart disease and stroke statistics–2014 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2014;129(3):e28–292.

3. Mack M, Gopal A. Epidemiology, Traditional and Novel Risk Factors in Coronary Artery Disease. Heart Fail Clin. 2012;16(1):1–10.

4. Lloyd-Jones D, Adams R, Carnethon M, De Simone G, Ferguson TB, Flegal K, et al. Heart disease and stroke statistics–2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2009;119(3):480–6.

5. Gomes E, Telo DF, Souza HP, Nicolau JC, Halpern A, Serrano Jr CV. Oseidade e doença arterial coronariana: papel da inlação vascular. Arq Bras Cardiol. 2010;94(2):273–9.

6. Mehta D. Integrative Medicine and Cardiovascular Disorders. Prim Care. 2017;44(2):351–67.

7. Stocker R, Keaney JF. Role of oxidative modifications in atherosclerosis. Physiol Rev. 2004;84(4):1381–478.

8. Herrmann J, Lerman A. The endothelium: dysfunction and beyond. J Nucl Cardiol. 2001;8(2):197–206.

9. Madamanchi NR, Vendrov A, Runge MS. Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol. 2005;25(1):29–38.

10. Vaziri ND. Oxidative stress in uremia: nature, mechanisms, and potential consequences. Semin Nephrol. 2004;24(5):469–73.

11. Stefansson AL, Bakovic M. Dietary regulation of Keap1/Nrf2/ARE pathway: focus on plant-derived compounds and trace minerals. Nutrients. 2014;6(9):3777–801.

12. Aminzadeh MA, Nicholas SB, Norris KC, Vaziri ND. Role of impaired Nrf2 activation in the pathogenesis of oxidative stress and inflammation in chronic tubulo-interstitial nephropathy. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc - Eur Ren Assoc. 2013;28(8):2036–45.

13. Singh S, Vrishi S, Singh BK, Rahman I, Kakkar P. Nrf2-ARE stress response mechanism: a control point in oxidative stress-mediated dysfunctions and chronic inflammatory diseases. Free Radic Res. 2010;44(11):1267–88.

14. Pall ML, Levine S, Nrf2, a master regulator of detoxification and also antioxidant, anti-inflammatory and other cytoprotective mechanisms, is raised by health promoting factors. Sheng Li Xue Bao. 2015;67(1):1–18.

15. Kim HJ, Vaziri ND. Contribution of impaired Nrf2-Keap1 pathway to oxidative stress and inflammation in chronic renal failure. Am J Physiol Ren Physiol. 2010;298(3):F662–71.

16. Toral M, Romero M, Pérez-Vizcaíno F, Duarte J, Jiménez R. Antihypertensive effects of peroxisome proliferator-activated receptor-β/δ activation. Am J Physiol Heart Circ Physiol. 2017;312(2):H189–200.

17. Cheng L, Ding G, Qiu G, Huang Y, Lewis HE, Gao N, et al. Cardiomyocyte-restricted peroxisome proliferator-activated receptor delta deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nat Med. 2004;10(11):1245–50.

18. Zarzueto MJ, Jiménez R, Galindo P, Sánchez M, Nieto A, Romero M, et al. Antihypertensive effects of peroxisome proliferator-activated receptor-β activation in spontaneously hypertensive rats. Hypertension. 2011;58(4):733–43.

19. Quintela AM, Jiménez R, Gómez-Guzmán M, Zarzueto MJ, Galindo P, Sánchez M, et al. Activation of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) prevents endothelial dysfunction in type 1 diabetic rats. Free Radic Biol Med. 2012;53(4):730–41.

20. Toral M, Gómez-Guzmán M, Jiménez R, Romero M, Zarzueto MJ, Utrilla MP, et al. Chronic peroxisome proliferator-activated receptor-β agonist GW0742 prevents hypertension, vascular inflammatory and oxidative status, and endothelial dysfunction in diet-induced obesity. J Hypertens. 2015;33(9):1831–44.

21. Palomer X, Barroso E, Pizarro-Delgado J, Peña L, Botteri G, Zarei M, et al. PPARβ/δ: A Key Therapeutic Target in Metabolic Disorders. Int J Mol Sci. 2018;19(3). pii:E913.

22. Keys A, Fidanza F, Karvonen MJ, Kimura N, Taylor HL. Indices of relative weight and obesity. J Chronic Dis. 1972;25(6):329–43.

23. Malachias MV, Plasnik FL, Machado CA, Malta D, Scala LC, Fuchs S, et al. Seventh Brazilian Guideline of Arterial Hypertension: Chapter 1 - Concept, Epidemiology and Primary Prevention. Arq Bras Cardiol. 2016;107(3):1–6.

24. Friedewald WT, Levy RJ, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499–502.

25. Cardozo LFM, Stockler-Pinto MB, Mafra D. Brazil nut consumption modulates Nrf2 expression in hemodialysis patients: A pilot study. Mol Nutr Food Res. 2016;60(7):1719–24.

26. Peduzzi LM, Cardozo LF, Daleprane JB, Stockler-Pinto MB, Monteiro EB, Leite M Jr, et al. Systemic inflammation and oxidative stress in hemodialysis patients are associated with down-regulation of Nrf2. J Nephrol. 2015;28(4):495-501.

27. Mozzini C, Fratta Pasini A, Carbin U, Stranieri C, Pasini A, Vallerio P, et al. Increased endoplasmic reticulum stress and Nrf2 repression in peripheral blood mononuclear cells of patients with stable coronary artery disease. Free Radic Biol Med. 2014 Mar;68:178–85.

28. Visvikis-Siest S, Matteau J-B, Samara A, Berrahmoune H, Marie B, Pfister M. Peripheral blood mononuclear cells (PBMCs): a possible model for studying cardiovascular biology systems. Clin Chem Lab Med. 2007;45(9):1154–68.

29. Li C, Browder W, Kao RL. Early activation of transcription factor NF-kappaB during ischemia in perfused rat heart. Am J Physiol. 1999;276(2 Pt 2):H543–552.

30. Wilson SH, Best PJM, Edwards WD, Holmes DR, Carlson PJ, Celemayer DS, et al. Nuclear factor-kappaB immunoreactivity is present in human coronary plaque and enhanced in patients with unstable angina pectoris. Atherosclerosis. 2002;160(1):147–53.

31. Careux R, Kotsaki E, Xanthouela S, van der Marel I, Gijbels MJ, Kardarakis R, et al. Endothelial cell-specific NF-kappaB inhibition protects mice from atherosclerosis. Cell Metab. 2008;8(5):372–83.

32. Malhotra D, Thimmulappa R, Navas-Acien A, Sandforfd A, Elliott M, Singh A, et al. Decline in NRF2-regulated antioxidants in chronic obstructive pulmonary disease lungs due to loss of its positive regulator, DJ-1. Am J Respir Cell Mol Biol. 2008;39(9):1341–54.

33. Suzuki M, Betsuyaku T, Ito Y, Nagai K, Nasuhara Y, Kaga K, et al. Down-regulation of NF-E2-related factor 2 in pulmonary macrophages from patients with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2006;35(5):675–81.

34. Suzuki M, Betsuyaku T, Ito Y, Nagai K, Nasuhara Y, Kaga K, et al. Down-regulated NF-E2-related factor 2 in pulmonary macrophages of aged smokers and patients with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2006;35(5):675–81.

35. Collins AJ, Foley RN, Chavers B, Gilbertson D, Herzog C, Johansen K, et al. Antihypertensive effects of peroxisome proliferator-activated receptor-β agonist GW0742 prevents hypertension, vascular inflammatory and oxidative status, and endothelial dysfunction in diet-induced obesity. J Hypertens. 2015;33(9):1831–44.
Este é um artigo de acesso aberto distribuído sob os termos da licença de atribuição pelo Creative Commons