Retrospektive Anpassung der Selbsteinschätzung ärztlicher Kompetenzen – Beachtenswert bei der Evaluation praktischer Weiterbildungskurse

Zusammenfassung

Zielsetzung: Die Wirksamkeit von praktischen Weiterbildungskursen wird häufig mittels Selbsteinschätzungsinstrumenten evaluiert. Diese Studie analysiert den Effekt eines Basiskurses in laparoskopischer Chirurgie auf die Selbsteinschätzung ärztlicher Kompetenzen durch die Teilnehmer.

Methodik: Der dreitägige Kurs beinhaltet das Vermitteln von Fachwissen und das Üben von praktischen Fertigkeiten. Im Rahmen der Kursevaluation wurde ein Fragebogen zur Selbsteinschätzung eingesetzt

1. zu Beginn des Kurses ('vorkurslich'),
2. am Ende des Kurses ('nachkurslich') und
3. am Ende des Kurses in Bezug auf die Kompetenzen vor dem Kurs ('retrospektiv vorkurslich').

Ergebnisse: An 10 Kursen füllten 89 von 110 Teilnehmern (81%) alle Fragebogen aus. Davon befanden sich 83% in chirurgischer Weiterbildung, 82% hatten noch keine Erfahrung als selbstständiger Operateur. Zu Beginn des Kurses schätzte sich die überwiegende Mehrheit der Teilnehmer als 'mittelbefähigt' oder 'voll befähigt' ein, sowohl hinsichtlich verschiedener Tätigkeitsniveaus als auch spezifischer Kompetenzbereiche. Am Ende des Kurses zeigten sich im Rückblick deutliche Revisionen der Selbsteinschätzungen nach unten. Hinsichtlich der 'Tätigkeit als Operateur unter Aufsicht' und den meisten am Kurs geübten praktischen Fertigkeiten erreichten diese Differenzen Signifikanzniveau (p<0.01). Im Gegensatz dazu fanden sich bei der Einschätzung des am Kurs vermittelten Fachwissens beziehungsweise der nicht im Zentrum des Trainings stehenden Teamfähigkeit und Konzentrationsfähigkeit keine signifikanten Unterschiede.

Schlussfolgerungen: Weniger erfahrene Chirurgen passen die Selbsteinschätzung ihrer 'vorkurslichen' Kompetenzen nach Absolvieren eines praktischen Weiterbildungskurses nach unten an. Beim ausschließlichen Vergleich der 'vorkurslichen' und 'nachkurslichen' Selbsteinschätzung – ohne 'retrospektiv vorkursive' Einschätzung – kann die Wirkung des Trainings unterschätzt werden. Es gilt, dieses Phänomen bei derartigen Evaluationen mit Einsatz von Selbsteinschätzungsfragebogen zu beachten.

Schlüsselwörter: medical education, evaluation studies, diagnostic self evaluation, clinical competence, laparoskopy/*education

Einleitung

Beim Training ärztlicher Kompetenzen interessiert in erster Linie, ob dieses wirksam ist und die angestrebten Ziele erreicht werden [1], [2]. Kirkpatrick schlägt in seinem Evaluationsmodell vor, den Effekt von Trainings auf vier Stufen zu beurteilen. Auf der ersten Stufe wird die Zufriedenheit der Lernenden ('Reaction') erfragt, auf der zweiten Stufe der Lernzuwachs ('Learning'), die dritte Stufe untersucht die Anwendung des Gelernten im beruflichen Alltag ('Behavior') und die letzte Stufe beurteilt die Auswirkungen der Trainings im beruflichen Alltag ('Outcomes'/'Results') [3], [4]. Das Modell wird verschiedentlich kritisiert, weil für den Lernprozess bedeutsame Faktoren wie etwa Persönlichkeitseigenschaften, Lernkultur und Art der Lehrmittel vernachlässigt werden [5]. Zudem konnten für die kausale Verbindung der Stufen 1 bis 4 kaum Hinweise gefunden werden [5]. Des weiteren gibt es wenige Belege für die Annahme, dass Kriterien der Stufe 4 in jedem Fall wichtiger sind als die Kriterien der
Stufen 1 bis 3 [5]. Gleichwohl gelang es Kirkpatrick mit seinem 4-Stufen-Modell, die komplexen Prozesse der Evaluation von Weiterbildungsprogrammen zu vereinfachen, zu systematisieren und die Beurteilung von ‘Behavior’ und ‘Outcomes’ als wichtige Kriterien zu etablieren [5]. Die Beurteilung dieser Kriterien ist aber häufig aufgrund des komplexen Untersuchungsgegenstandes oder fehlender finanzieller Mittel nicht möglich, weshalb meist nur die Stufen 1 und 2 mittels Selbsteinschätzungsinstrumenten beurteilt werden. Die Fähigkeit zur Selbsteinschätzung und Selbstreflexion werden als ärztliche Kernkompetenzen angesehen [6]. Sie dienen der Identifikation eigener Stärken und Schwächen, dem unentbehrlichen Vertrauen in die eigenen Kompetenzen sowie der notwendigen Selbstbeschränkung im Hinblick auf die ärztlichen Tätigkeiten [7]. Im Lernprozess können dank Selbsteinschätzung und Selbstreflexion Ziele formuliert und Gelerntes im Sinne einer Feedback-Funktion evaluiert werden. Eine kürzlich veröffentlichte Übersichtsar beite zeigte jedoch, dass Ärzte die eigenen Kompetenzen nur eingeschränkt beurteilen können. Besonders beachtungswürdig fanden die Autoren, dass die am wenigsten kompetenten Ärzte sich am meisten überschätzen [8]. Diese Beobachtung wurde in anderen Untersuchungen bestätigt, wonach wenig kompetente Personen die eigenen Kompetenzen und die anderer Personen nicht angemessen beurteilen können [9], [10], [11]. Zu Beginn eines Trainings kann es während der Erhebung der Ausgangsdaten zu einer deutschen Selbstausschätzung durch Unerfahrene kommen [12]. Geeignete Trainings können jedoch nicht nur die Kompetenzen verbessern, sondern auch zu einer realistischeren Selbsteinschätzung führen [12], [13].

Die Literatur legt somit nahe, dass die Evaluation der Wirksamkeit von Trainings ausschließlich mit Hilfe von Selbsteinschätzungsinstrumenten mit systematischen Fehlern behaftet sein kann. Die medizinische Weiterbildung, die lange nach dem Lehrling-Meister-Prinzip [14] organisiert war, findet nun vermehrt in Kursen statt. Insbesondere in den chirurgischen Disziplinen wurden strukturierte Weiterbildungskurse notwendig, weil immer mehr spezialisierte Verfahren hohe technische Fertigkeiten benötigen [15], [16]. Verschiedene Untersuchungen konnten Belege für deren Wirksamkeit insbesondere im Falle der laparoskopischen Chirurgie erbringen [17], [18], [19].

Fragestellungen

Am Beispiel eines praktischen Weiterbildungskurses in laparoskopischer Chirurgie soll untersucht werden, ob und wie sich die Selbsteinschätzung ärztlicher Kompetenzen im Verlauf dieses Trainings verändert. Zudem soll der mögliche Einfluss auf die Wirksamkeitsinschätzung derartiger praktischer Weiterbildungskurse diskutiert werden. Dabei stellen sich die folgenden Fragen:

1. **Wie schätzen die Kursteilnehmer ihre Kompetenzen ein**
 1.1. zu Beginn des Kurses (‘vorkurslich’),
 1.2. am Ende des Kurses (‘nachkurslich’) und
 1.3. am Ende des Kurses in Bezug auf ihre Kompetenzen vor dem Kurs (‘retrospektiv vorkurslich’)?

2. **Verändert sich die Selbsteinschätzung aufgrund des Kursbesuches (‘nachkurslich’ im Vergleich zu ‘vorkurslich’ bzw. ‘retrospektiv vorkurslich’ im Vergleich zu ‘vorkurslich’)? Wenn ja, in welchen Kompetenzbereichen?**

3. **Wenn ja, besteht ein Unterschied zwischen Kompetenzbereichen, in denen ein Training erfolgt, im Vergleich zu Kompetenzbereichen ohne Training?**

Methodik

Die vorliegende Untersuchung wurde in 10 Basiskursen zur laparoskopischen Cholezystektomie am European Surgical Institute der Fa. Ethicon Endo-Surgery in Norders- teed, Deutschland durchgeführt.

Weitberbildungskurs

In dreitägigen Kursen wurden Fachwissen vermittelt und Fertigkeiten im komplexen operativen Umfeld geübt. In einer ersten Phase wurden Basiskenntnisse unterrichtet und grundlegende Fertigkeiten trainiert. Während insgesamt 3½ Stunden fanden Vorträge zu anatomischen, physiologischen und klinischen Grundlagen sowie zum Operationsablauf statt. Eine Videodemonstration (1½ Stunden) widmete sich möglichen Fehlern und Gefahren. Eine praktische Demonstration zeigte den Umgang mit laparoskopischen Instrumenten (ca. 1 Stunde). Übungen zu manuellen Fertigkeiten umfassten Naht- und Knüpftechniken in mikrochirurgischer Umgebung (ca. 2 Stunden) sowie an der Computersimulation (ca. 2 Stunden). In einer zweiten Phase wurden die gelernten Fertigkeiten in das Umfeld der laparoskopischen Chirurgie übertragen. Hierfür fanden Nahtübungen am offenen und anschließend am geschlossenen Abdomen (‘Pelvitrainer’) statt. Zuletzt wurde dem simulierten Operationsumfeld ein Organmodell (Schweineleber) hinzugefügt, an welchem die Teilnehmer eine laparoskopische Cholezystektomie durchführten (6 Stunden). Während des Trainings wurde in Gruppen gearbeitet und fortlaufend Feedback gegeben. Die Kurse zielten damit auf einen Kompetenzzuwachs hinsichtlich Fachwissen und manueller Fertigkeiten im laparoskopischen Umfeld.

Fragebogen und Datenerhebung

Zur Selbsteinschätzung verschiedener Aspekte laparoskopischer Kompetenzen wurde ein Fragebogen entwickelt (siehe Tabelle 1). Ein komplettes Item ist in Tabelle 2 dargestellt. Einerseits wurde das Zutrauen in verschiedene Tätigkeiten erfragt, z.B. ‘Fühlen Sie sich befähigt, bei laparoskopischen Operationen selbstständig zu operie-
Tabelle 1: Tätigkeitsniveaus und Kompetenzbereiche des Selbsteinschätzungsfragebogens

Tätigkeitsniveaus	Eigenverantwortliches Operieren ohne Supervision durch erfahrenen Chirurgen
Tätigkeit als Operateur unter Aufsicht	Operieren unter Anleitung und Aufsicht eines erfahrenen Chirurgen
Tätigkeit als erster Assistent	Assistieren eines Operateurs bei laparoskopischen Operationen
Tätigkeit als Kameraassistent	Führen der Kamera bei laparoskopischen Operationen

Kompetenzbereiche

FACHWISSEN

- Kenntnisse über laparoskopische Operationen
- Kenntnisse über Instrumente und technisches Equipment

FERTIGKEITEN

- Manuelle Geschicklichkeit
- Beherrschung der chirurgischen Basisinstrumente
- Sorgfältiger Umgang mit dem Gewebe
- Navigation und Orientierung im Operationsfeld

URTEILSVERMÖGEN

- Klinisch-chirurgisches Urteilsvermögen

PROFESSIONELLES VERHALTEN

- Problemanalyse und Umgang mit Fehlern
- Teamfähigkeit
- Konzentrationsfähigkeit und Umgang mit Stresssituationen

Die Teilnehmer von 10 Basiskursen zur laparoskopischen Chirurgie in den Jahren 2000 und 2001 erhielten je einen Fragebogen zu Beginn und am Ende des dreitägigen Kurses. Dabei beurteilten sie ihre aktuellen laparoskopischen Kompetenzen zu Beginn des Kurses (‘vorkurslich’) und am Ende des Kurses (‘nachkurslich’), sowie am Ende des Kurses im Rückblick auf die Kompetenzen vor dem Kurs (‘retrospektiv vorkurslich’).

Datenauswertung

Die Daten wurden pseudonymisiert erfasst, die Auswertung erfolgte mit SPSS® 15.

Zur Präsentation der Ergebnisse bezüglich der ersten Fragestellung wurden die Antwortstufen 0 und 1 zur Kategorie 'wenig befähigt', Stufe 2 zur Kategorie 'mittel befähigt' sowie Stufen 3 und 4 zur Kategorie 'voll befähigt' zusammengefasst und tabellarisch dargestellt. Zur Beantwortung der Fragestellungen 2 und 3 (Vergleich der Selbsteinschätzungen ‘nachkurslich’ vs. ‘vorkurslich’ bzw. ‘retrospektiv vorkurslich’ vs. ‘vorkurslich’) wurden Wilcoxon-Tests angesichts signifikanter Abweichungen von der Normalverteilung gerechnet. Da die Vergleiche auf der Ebene mehrerer Fragebogen-Items durchgeführt wurden, kam die Bonferroni-Holm-Korrektur zur Anwendung. Hierbei wird der grösste Kennwert der Einzelvergleiche auf einem Signifikanzniveau von α = α / m (d.h. 0.05 / Anzahl der Einzelvergleiche) bewertet. Ist er signifikant,
wird der nächst größere Kennwert auf einem Signifikanzniveau von $\alpha / (m-1)$ getestet etc., bis der nachfolgende Kennwert kein Signifikanzniveau mehr erreicht [20].

Ergebnisse

Die Basischarakteristika der untersuchten Stichprobe sowie die Erfahrungen der teilnehmenden Chirurgen vor Teilnahme am Weiterbildungskurs sind in Tabelle 3 dargestellt.

Tabelle 3: Basischarakteristika und 'vorkursliche' Erfahrungen der Teilnehmer

Charakteristica	N (%)
Rücklaufquote Vollständig ausgefüllte Fragebogen	89°(81)
Geschlecht (weiblich)	24°(27)
Alter	
26 – 35jährig	69 (78)
36 – 45jährig	18 (20)
> 45-jährig	2 (2)

Ausbildungsstand

- 1. - 2. Weiterbildungsjahr: 25 (28)°
- 3. - 4. Weiterbildungsjahr: 26 (29)°
- 5. – 6. Weiterbildungsjahr: 21 (24)°

Facharzt Chirurgie

- Facharzt Chirurgie: 15 (17)°

Erfahrungen in laparoskopischer Chirurgie

- Als Kameraassistent: 7 (8)
- Als erster Assistent: 29 (32)
- Als Operateur unter Aufsicht: 37 (42)
- Als selbstständiger Operateur: 16 (18)

Selbstbeurteilung der Kompetenzen

'**Vorkurslich**' schätzten mehr als die Hälfte der Teilnehmer ihre Fähigkeit als gering ein, selbstständig zu operieren, während sich die meisten Teilnehmer für eine Tätigkeit als Operateur unter Aufsicht, als erster Assistent und als Kameraassistent 'mittel befähigt' bis 'voll befähigt' fühlten (siehe Tabelle 4). In Bezug auf die verschiedenen Kompetenzbereiche wurden 'vorkurslich' das eigene Fachwissen ('Kenntnisse über laparoskopische Operationen') und die eigenen Fertigkeiten ('Manuelle Geschicklichkeit', 'Beherzschung der chirurgischen Basistechniken', 'Sorgfältiger Umgang mit dem Gewebe' sowie 'Navigation und Orientierung im Operationsfeld') von mehr als 90 % der Teilnehmer als 'mittel' bis 'hoch' eingeschätzt. Auch Aspekte professionellen Verhaltens wie 'Problemmanagement und Umgang mit Fehlern', 'Teamfähigkeit' sowie 'Konzentrationsfähigkeit und Umgang mit Stresssituationen' wurden 'vorkurslich' von den meisten Teilnehmern als 'mittel' bis 'hoch' eingeschätzt. Hinsichtlich 'Kenntnisse über Instrumente und technisches Equipment' schätzten gut die Hälfte der Teilnehmer das eigene Fachwissen im mittleren Bereich ein (siehe Tabelle 5).

Tabelle 4: Veränderung der Selbstbeurteilung laparoskopischer Kompetenzen hinsichtlich verschiedener Tätigkeitsniveaus - Häufigkeitsverteilung

Fühlen Sie sich befähigt…	wenig befähigt	mittel befähigt	voll befähigt
selbstständig zu operieren	55 (59) / 23	24 (22) / 43	21 (19) / 34
unter Aufsicht zu operieren	8 (12) / 1	18 (31) / 2	74 (57) / 97
als 1. Assistent zu operieren	0 (1) / 0	8 (7) / 1	92 (92) / 99
die Kameraassistent zu übernehmen	0 (0) / 0	1 (3) / 0	99 (97) / 100

Selbstbeurteilung 'vorkurslich' (in Klammern 'retrospektiv vorkurslich') / *nachkurslich*. Alle Angaben in Prozent der antwortenden Teilnehmer.

Tabelle 5: Veränderung der Selbstbeurteilung laparoskopischer Kompetenzen hinsichtlich einzelner Kompetenzbereiche - Häufigkeitsverteilung

Wie schätzen Sie Ihre Fähigkeiten ein hinsichtlich…	niedrig	mittel	hoch
1. Kenntnisse über laparoskopische Operationen	5 (18)	45 (45)	50 (37) / 70
1.2 Kenntnisse über Instrumente und technisches Equipment	26 (49) / 3	58 (30) / 30	16 (21) / 67
2. Manuelle Geschicklichkeit	5 (28) / 1	45 (47) / 49	50 (25) / 50
2.2 Beherrschung der chirurgischen Basistechniken	6 (47) / 8	29 (25) / 44	65 (27) / 48
2.3 Sorgfältiger Umgang mit dem Gewebe	3 (32) / 3	44 (41) / 48	53 (27) / 49
2.4 Navigation und Orientierung im Operationsfeld	8 (28) / 3	52 (36) / 26	42 (35) / 71
3.1 Klinisch-chirurgische Urteilsvermögen	9 (21) / 3	40 (41) / 42	51 (38) / 55
4.1 Problemmanagement und Umgang mit Fehlern	12 (36) / 11	51 (38) / 57	37 (26) / 32
4.2 Teamfähigkeit	0 (1) / 1	5 (14) / 14	95 (85) / 85
4.3 Konzentrationsfähigkeit und Umgang mit Stresssituationen	0 (10) / 2	17 (16) / 22	83 (74) / 76

'Selbstbeurteilung 'vorkurslich' (in Klammern 'retrospektiv vorkurslich') / *nachkurslich*. Alle Angaben in Prozent der antwortenden Teilnehmer.

'Nachkurslich' zeigte sich ein signifikanter Anstieg der Selbstbeurteilung in den verschiedenen Tätigkeitsniveaus, mit Ausnahme der 'Tätigkeit als Kameraassistent' (siehe Tabelle 6). In den Kompetenzbereichen 'Kenntnisse über laparoskopische Operationen' und 'Kenntnisse über Instrumente und technisches Equipment' sowie 'Navigation und Orientierung im Operationsfeld' schätzten die Teilnehmer die eigene Fähigkeit 'nachkurslich' signifikant höher ein. In den übrigen Kompetenzbereichen zeigte sich 'nachkurslich' eine ähnliche Selbstbeurteilung wie vor Absolvierung des Kurses (siehe Tabelle 7). Im Vergleich 'vorkurslich' und 'retrospektiv vorkurslich' zeigte sich eine signifikante Veränderung der Selbstbeurteilung einzig beim Tätigkeitsniveau 'Tätigkeit als Operateur unter Aufsicht': 'vorkurslich' schätzten sich 74 % der Teilnehmer dazu als 'voll befähigt' ein, retrospektiv 'vorkurslich' sank der Anteil auf 57 % (siehe Tabelle 4;)
Tabelle 6: Veränderung der Selbsteinschätzung laparoskopischer Kompetenzen hinsichtlich verschiedener Tätigkeitsniveaus - statistische Analysen

Fühlen Sie sich befähigt...	vorkurslich	nachkurslich	retrospektiv vorkurslich	Vergleich vorkurslich 'nachkurslich'	Vergleich retrospektiv vorkurslich 'vorkurslich'
Mittelwert (Standardabweichung)/Median	n=78	z = -3.992, p < .001 (a)			
...selbständig zu operieren	1.5 (1.3) / 1.0	2.1 (1.0) / 2.0	1.4 (1.2) / 1.0	n.s.	
...unter Aufsicht zu operieren	3.0 (1.0) / 3.0	3.6 (0.6) / 4.0	2.6 (1.0) / 3.0	z = -4.627, p < .001 (b)	
...als 1. Assistent zu operieren	3.7 (0.6) / 4.0	3.9 (0.4) / 4.0	3.5 (0.8) / 4.0	z = -2.805, p = .006 (c)	
...die Kameraassistent zu übernehmen	3.9 (0.2) / 4.0	3.9 (0.3) / 4.0	3.9 (0.4) / 4.0	n.s.	

(a) signifikant auf Niveau p < .01 (df: 0.054)
(b) signifikant auf Niveau p < .017 (df: 0.053)
(c) signifikant auf Niveau p < .025 (df: 0.02)

n.s. = nicht signifikant

5). In den spezifischen Kompetenzbereichen zeigte sich in den meisten am Kurs geübten praktischen Fertigkeiten ein signifikanter Unterschied (’Manuelle Geschicklichkeit’, ’Beherrschung der chirurgischen Basisfertigkeiten’, ’sorgfältiger Umgang mit dem Gewebe’; Ausnahme ’Navigation und Orientierung im Operationsfeld’, zudem in den Kompetenzbereichen ’Problemmanagement und Umgang mit Fehlern’ sowie ’Klinisch-chirurgisches Urteilsvermögen’). Der Anteil der Teilnehmer, die ihre Kompetenzen ’vorkurslich’ als ’niedrig’ eingeschätzt, stieg ’retrospektiv vorkurslich’ deutlich an. Im Gegensatz dazu zeigte sich bei der Einschätzung des am Kurs vermittelten Fachwissens (’Kenntnisse über laparoskopische Operationen’, ’Kenntnisse über Instrumente und technisches Equipment’) und der nicht im Zentrum des Trainings stehenden ’Teamfähigkeit’ kein signifikanter Unterschied (siehe Tabelle 6; 7).

Diskussion

Die vorliegende Untersuchung erbrachte Evidenz für die Selbstüberschätzung ärztlicher Kompetenzen durch unter- und erfahrenen Chirurgen. Erstens beurteilten die Teilnehmer ihre laparoskopischen Kompetenzen vor Absolvieren dieses praktischen Weiterbildungskurses als mittel bis hoch, sowohl hinsichtlich der verschiedenen Tätigkeitsniveaus (Ausnahme ’Tätigkeit als selbständiger Operator’) als auch hinsichtlich der einzelnen spezifischen Kompetenzbereiche. Dies ist insofern erstaunlich, als sich alle Teilnehmer für einen Kurs zum Training laparoskopischer Kompetenzen angemeldet hatten und die Minderheit der antwortenden Teilnehmer den Facharztstitel Chirurgie abgeschlossen hatte. Zweitens zeigten unsere Daten eine wesentliche Anpassung der Selbsteinschätzung nach dem Besuch des Weiterbildungskurses. In neun von zehn spezifischen Kompetenzbereichen schätzten mehr als 85% der Teilnehmer ihre Kompetenzen ’vorkurslich’ als mittel bis hoch ein. ’Retrospektiv vorkurslich’ fand hier eine deutliche Revision der Selbsteinschätzung nach unten statt. Nur noch rund ein Viertel (resp. rund ein Drittel) der Teilnehmer schätzte ihre Kompetenzen in 5 (respektive 3) Bereichen als mittel bis hoch ein. In dem – hinsichtlich der Zielgruppe des Kurses – wichtigsten Tätigkeitsniveau (’Tätigkeit als Operateur unter Aufsicht’) und in 5 von 10 spezifischen Kompetenzbereichen, insbesondere bei den meisten praktischen Fertigkeiten, erreichte diese Anpassung Signifikanzniveau. Kein statistisch signifikanter Unterschied fand sich jedoch bei dem am Kurs vermittelten Fachwissen (’Kenntnisse über laparoskopische Operationen’ und ’Kenntnisse über Instrumente und Equipment’). Ebenso kam es zu keiner statistisch signifikanten Differenz der selbst eingeschätzten ’Teamfähigkeit’ sowie ’Konzentrationsfähigkeit und Umgang mit Fehlern’. Diese Aspekte professionellen Verhaltens waren nicht Gegenstand des Trainings und die Teilnehmer erhielten hierzu auch kein Feedback. Die vorliegende Untersuchung erbrachte Evidenz für die Selbstüberschätzung ärztlicher Kompetenzen durch unter- und erfahrenen Chirurgen. Erstens beurteilten die Teilnehmer ihre laparoskopischen Kompetenzen vor Absolvieren dieses praktischen Weiterbildungskurses als mittel bis hoch, sowohl hinsichtlich der verschiedenen Tätigkeitsniveaus (Ausnahme ’Tätigkeit als selbständiger Operator’) als auch hinsichtlich der einzelnen spezifischen Kompetenzbereiche. Dies ist insofern erstaunlich, als sich alle Teilnehmer für einen Kurs zum Training laparoskopischer Kompetenzen angemeldet hatten und die Minderheit der antwortenden Teilnehmer den Facharztstitel Chirurgie abgeschlossen hatte. Zweitens zeigten unsere Daten eine wesentliche Anpassung der Selbsteinschätzung nach dem Besuch des Weiterbildungskurses. In neun von zehn spezifischen Kompetenzbereichen schätzten mehr als 85% der Teilnehmer ihre Kompetenzen ’vorkurslich’ als mittel bis hoch ein. ’Retrospektiv vorkurslich’ fand hier eine deutliche Revision der Selbsteinschätzung nach unten statt. Nur noch rund ein Viertel (resp. rund ein Drittel) der Teilnehmer schätzte ihre Kompetenzen in 5 (respektive 3) Bereichen als mittel bis hoch ein. In dem – hinsichtlich der Zielgruppe des Kurses – wichtigsten Tätigkeitsniveau (’Tätigkeit als Operateur unter Aufsicht’) und in 5 von 10 spezifischen Kompetenzbereichen, insbesondere bei den meisten praktischen Fertigkeiten, erreichte diese Anpassung Signifikanzniveau. Kein statistisch signifikanter Unterschied fand sich jedoch bei dem am Kurs vermittelten Fachwissen (’Kenntnisse über laparoskopische Operationen’ und ’Kenntnisse über Instrumente und Equipment’). Ebenso kam es zu keiner statistisch signifikanten Differenz der selbst eingeschätzten ’Teamfähigkeit’ sowie ’Konzentrationsfähigkeit und Umgang mit Fehlern’. Diese Aspekte professionellen Verhaltens waren nicht Gegenstand des Trainings und die Teilnehmer erhielten hierzu auch kein Feedback. Unsere Resultate im Bereich der laparoskopischen Chirurgie bestätigten die Ergebnisse anderer Studien, wonach unerfahrene Chirurgen zur Selbstüberschätzung tendieren [10], [13]. Ebenso unterstützen sie frühere Publikationen, wonach durchgeführte Trainings über den Kompetenzzuwachs [17], [18], [19] und das erhaltene Feedback zu verbesserten ’metakognitiven Fähigkeiten’ und zu einer realistischeren Selbstinschätzung führen können [12], [13]. Es darf aber zugleich nicht ausser Acht gelassen werden, dass auch retrospektive Einschätzungen sozialpsychologischen Einflussfaktoren (z.B. ’soziale Erwünschtheit’ und fehlende Selbstwert-Bedrohung) unterliegen können [21]. In der vorliegenden Studie haben wir uns auf die Untersuchung der Selbsteinschätzung im Verlauf eines typischen praktischen Weiterbildungskurses beschränkt. Eine zusätzlich durchgeführte objektive Beurteilung des Kompetenzzuwachses hätte die Aussagekraft der Ergebnisse...
Tabelle 7: Veränderung der Selbsteinschätzung laparoskopischer Kompetenzen hinsichtlich einzelner Kompetenzbereiche – statistische Analysen

Kompetenzbereich	Vorkurslich	Nachkurslich	Retrospektiv vorkurslich	Vergleich vorkurslich - nachkurslich	Wilcoxon Test
1.1 Kenntnisse über laparoskopische Operationen	2.6 (0.7) / 3.0	2.8 (0.7) / 2.0	2.3 (0.9) / 2.0	z = -3.057, p = .002 (a)	n.s.
1.2 Kenntnisse über Instrumente und technisches Equipment	1.9 (0.7) / 2.0	2.8 (0.7) / 3.0	1.8 (1.0) / 2.0	z = -6.422, p < .001 (c)	n.s.
2.1 Manuelle Geschicklichkeit	2.6 (0.7) / 3.0	2.5 (0.6) / 2.0	2.0 (0.9) / 2.0	n.s.	n.s.
2.2 Beherrschung der chirurgischen Basisinstrumente	2.7 (0.8) / 3.0	2.5 (0.8) / 2.0	1.7 (1.2) / 2.0	z = -5.155, p < .001 (a)	n.s.
2.3 Sorgfältiger Umgang mit dem Gewebe	2.6 (0.7) / 3.0	2.5 (0.7) / 2.0	2.0 (1.9) / 2.0	z = -4.411, p < .001 (b)	n.s.
2.4 Navigation und Orientierung im Operationsfeld	2.4 (0.7) / 2.0	2.8 (0.7) / 3.0	2.2 (1.0) / 2.0	z = -4.275, p < .001 (b)	n.s.
3.1 Klinisch-chirurgisches Urteilsvermögen	2.5 (0.7) / 3.0	2.6 (0.7) / 3.0	2.2 (0.9) / 2.0	n.s.	(n=71)
4.1 Problemanalyse und Umgang mit Fehlern	2.3 (0.8) / 2.0	2.2 (0.8) / 2.0	2.0 (1.1) / 2.0	z = -2.970, p = .003 (a)	n.s.
4.2 Teamfähigkeit	3.4 (0.6) / 3.0	3.3 (0.8) / 3.0	3.3 (0.7) / 3.0	z = -3.274, p < .001 (a)	n.s.
4.3 Konzentrationsfähigkeit und Umgang mit Stresssituationen	3.1 (0.6) / 3.0	3.0 (0.8) / 3.0	2.9 (0.9) / 3.0	n.s.	n.s.

(a) signifikant auf Niveau p < .05 (d.h. 0.05/10)
(b) signifikant auf Niveau p < .056 (d.h. 0.05/9)
(c) signifikant auf Niveau p < .0062 (d.h. 0.05/8)
(d) signifikant auf Niveau p < .007 (d.h. 0.05/7)
(e) signifikant auf Niveau p < .008 (d.h. 0.05/6)
(n.s. = nicht signifikant

nisse ergänzt. Da objektive Bewertungsmassstäbe im Bereich der chirurgischen Fähigkeiten nur beschränkt existieren [22] und deren Anwendung mit erheblichem Ressourcenbedarf einhergeht, haben wir darauf verzichtet. Die erhobenen Daten legen nahe, dass die Effekte der initialen Selbstüberschätzung die Resultate von Kursevaluationen mittels Selbsteinschätzungsinstrumenten beeinflussen. Insbesondere kann es bei einem ausschließlich verglichenen "vorkurslich" – "nachkurslich" zu einer Unterschätzung des Trainingseffektes kommen. Als Konsequenz der vorliegenden Untersuchung sollte die retrospektive Anpassung der Selbsteinschätzung in der Evaluation von Trainings berücksichtigt werden. Auch wenn diese ‘retrospektiv-vorkursliche’ Selbsteinschätzung ihrerseits kein objektives Mass oder Gold-Standard bieten kann, liefert sie jedoch weitere wertvolle Anhaltspunkte, um das Ausmass der initialen Selbstüberschätzung einzuordnen. Wenn das ‘Erkennen’ dieser initialen Selbstüberraschung und deren Korrektur in den Lernzielkatalog von Trainingsmassnahmen einbezogen wird, könnte es einen wichtigen Beitrag im Lernprozess der Teilnehmer darstellen.

Danksagung

Die Autoren danken Ethicon Endo-Surgery, Norderstedt (Deutschland) und insbesondere Herrn Thomas Bürger für die Möglichkeit zur Durchführung der Untersuchung im Rahmen des Weiterbildungskurses in laparoskopischer Chirurgie. Wir danken Frau Dr. rer. nat. Anja Rogausch für die Überarbeitung der statistischen Analysen.
Interessenkonflikt

Die Autoren erklären, dass sie keine Interessenkonflikte im Zusammenhang mit diesem Artikel haben. M. Nagler war in den Jahren 2000 bis 2002 als studentische Hilfskraft für verschiedene Projekte bei Ethicon-Endo Surgery, Norderstedt (Deutschland) angestellt. Andere mögliche Interessenkonflikte in Zusammenhang mit dem vorliegenden Artikel bestehen nicht.

Literatur

1. Musick DW. A conceptual model for program evaluation in graduate medical education. Acad Med. 2006;81(8):759-765. DOI: 10.1097/00001888-200608000-00015

2. Fabry G, Lammerding-Köppel M, Hofer M, Ochsendorf F, Schirito C, Breckwoldt J. Hochschuldidaktische Qualifizierung in der Medizin IV: Messung von Wirksamkeit und Erfolg medizindidaktischer Qualifizierungsangebote: Ein Positionspapier des GMA-Ausschusses Personal- und Organisationsentwicklung für die medizinische Lehre der Gesellschaft für Medizinische Ausbildung sowie des Kompetenzzentrums für Hochschuldidaktik in Medizin Baden-Württemberg. GMS Z Med Ausbild. 2010;27(4):Doc62. DOI: 10.3205/zma000699

3. Kirkpatrick DL. Evaluating Training Programs: The Four Levels. San Francisco/CA: Berrett-Koehler; 1994.

4. Kirkpatrick DL. Evaluation of training. In: Craig RL (Hrsg). Training and development handbook: A guide to human resource development. New York: McGraw Hill; 1976.

5. Bates R. A critical analysis to evaluation practice: the kirkpatrick modell and the principle of benevolence. Eval Prog Plan. 2004;27:341-347. DOI: 10.1016/j.evalprogplan.2004.04.011

6. Gordon MJ. A review of the validity and accuracy of self-assessments in health professions training. Acad Med. 1991;66(12):762-769. DOI: 10.1097/00001888-199112000-00012

7. Eva KW, Regehr G. Self-Assessment in the Health Professions: A Reformulation and Research Agenda. Acad Med. 2005;80(10 Suppl):S46-54. DOI: 10.1097/00001888-200510001-00015

8. Davis DA, Mazmanian PE, Fordis M, Van Harrison R, Thorpe KE, Perrier L. Accuracy of physician self-assessment compared with observed measures of competence: a systematic review. JAMA. 2006;296(9):1094-1102. DOI: 10.1001/jama.296.9.1094

9. Chi MT, Glaser R, Rees E. Expertise in problem solving. In: Sternberg R (Hrsg). Advances in the psychology of human intelligence. Hillsdale/NJ: Erlbaum; 1982. S.7-75.

10. McPherson SL, Thomas JR. Relation of knowledge and performance in boy's tennis: Age and expertise. J Exper Child Psychol. 1989;48:190-211. DOI: 10.1016/0022-0965(89)90002-7

11. Hofer M, Galonska L, Sievers K, Önenköprülü B, Heussen N. Evaluation eines Trainingskonzepts "Plenardidaktik" für Dozenten in Vorlesungen. GMS Z Med Ausbild. 2010;27(3):Doc47. DOI: 10.3205/zma0006848

12. Kruger J, Dunning D. Unskilled and unaware of it: how difficulties in recognizing one's own incompetence lead to inflated self-assessments. J Pers Soc Psychol. 1999;77(6):1121-1134. DOI: 10.1037/0022-3514.77.6.1121

13. Hodges B, Regehr G, Martin D. Difficulties in recognizing one’s own incompetence: novice physicians who are unskilled and unaware of it. Acad Med. 2001;76(10 Suppl):S87-89. DOI: 10.1097/00001888-200110001-00029

14. Ericsson KA. Deliberate practice and the acquisition and maintenance of expert performance in medicine and related domains. Acad Med. 2004;79(10 Suppl):70-81. DOI: 10.1097/00001888-200410001-00022

15. DesCôteaux JG, Leclere H. Learning surgical technical skills. Can J Surg. 1995;38(1):33-38.

16. Hamdorf JM, Hall JC. Acquiring surgical skills. Br J Surg. 2000;87(1):28-37. DOI: 10.1046/j.1365-2168.2000.01327.x

17. Rosser JC, Rosser LE, Savagli RS. Objective evaluation of a laparoscopic surgical skill program for residents and senior surgeons. Arch Surg. 1998;133(6):657-661. DOI: 10.1001/archsurg.133.6.657

18. Ritz JP, Grone J, Hopt U, Saeger HD, Siewert JR, Vollmar B, Lauscher JC, Lehmann KS, Buhr HJ. Practical course for surgical training in Warnemünde* 10 years on. Significance and benefits of a surgical training course. Chirurg, 2009;80(9):864-871. DOI: 10.1007/s00104-009-1782-0

19. Grone J, Ritz JP, Buhr HJ, Lauscher JC. Sustainability of skill courses for general and visceral surgery–evaluation of the long-term effect. Langenbecks Arch Surg. 2010;395(3):277-283. DOI: 10.1007/s00423-009-0568-7

20. Bortz J. Statistik für Human- und Sozialwissenschaftler. Heidelberg: Springer-Verlag; 2005.

21. Fischhoff B. Hindsight not equal to foresight: the effect of outcome knowledge on judgment under uncertainty. Qual Saf Health Care. 2003;12(4):304-311; discussion 11-12. DOI: 10.1136/qhc.12.4.304

22. van Hove PD, Tuijthof GJ, Verdaasdonk EG, Stassen LP, Dankelman J. Objective assessment of technical surgical skills. Br J Surg. 2010;97(7):972-987. DOI: 10.1002/bjs.7115

Korrespondenzadresse:
Michael Nagler
Universitätsklinik für Hämatologie und Hämatologisches Zentrum, Inselspital, 3010 Bern, Schweiz, Tel.: +41 (0)31 632 9601
michael.nagler@insel.ch

Bitte zitieren als
Nagler M, Feller S, Beyeler C. Retrospektive Anpassung der Selbsteinschätzung ärztlicher Kompetenzen – Beachtenswert bei der Selbsteinschätzung ärztlicher... vorausgesetzt dass Autor und Quelle genannt werden.

Copyright ©2012 Nagler et al. Dieser Artikel ist ein Open Access-Artikel und steht unter den Creative Commons Lizenzbedingungen (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.de). Er darf vervielfältigt, verbreitet und öffentlich zugänglich gemacht werden, vorausgesetzt dass Autor und Quelle genannt werden.
Retrospective adjustment of self-assessed medical competencies – noteworthy in the evaluation of postgraduate practical training courses

Abstract

Aim: The efficacy of postgraduate practical training courses is frequently evaluated by self-assessment instruments. The present study analyses the effect of a basic course in laparoscopic surgery on self-assessed medical competencies.

Methods: The 3-day course included teaching of knowledge and training of practical skills. In relation to course evaluation, a questionnaire for self-assessment was applied

1. at the beginning of the course (‘pre-course’),
2. at the end of the course (‘post-course’) and
3. at the end of the course to reassess pre-course competencies (‘retrospective pre-course’).

Results: 89 out of 110 participants (81%) attending 10 courses completed all the questionnaires; 83% were postgraduate trainees in surgery and 82% were inexperienced as an independent surgeon. At the beginning of the course most trainees rated themselves as ‘moderately competent’ or ‘fully competent’ with respect to the various task levels as well as to specific areas of medical competencies. At the end of the course however pronounced retrospective revisions of self-assessment to lower ratings became apparent. Statistically significant differences were seen for the task ‘performing surgical procedures under supervision’ and for most of the practical skills trained during the course (p <0.01). In contrast, no significant differences were observed for knowledge taught during the course as well as for ‘ability to work in a team’ and ‘ability to concentrate’, which were not foci of the course.

Conclusions: Surgeons with little experience change their self-assessment of pre-course competencies to a lower level after participation in a practical postgraduate training course. Evaluations comparing ‘pre-course’ and ‘post-course’ ratings only – without ‘retrospective pre-course’ ratings – may underestimate the training effects. This phenomenon needs to be taken into account when evaluations are dependent exclusively on self-assessment instruments.

Keywords: medical education, evaluation studies, diagnostic self-evaluation, clinical competence, laparoskopy/*education

Introduction

Efficacy and the achievement of learning objectives are essential considerations while conducting training programmes for medical competencies [1], [2]. In his model of evaluation, Kirkpatrick suggests evaluating the efficacy of training programmes using four levels. On the first level, the investigator asks for the perception of the participants (‘Reaction’). Level two will evaluate the amount of learning that has occurred (‘Learning’). Level three will evaluate the transfer that has occurred to the trainees’ everyday environment (‘Behaviour’) and level four measures the impact of the training to the participants’ professional life (‘Outcomes’/ ‘Results’) [3], [4]. Kirkpatrick’s model is being discussed because important factors influencing the learning process are not considered: personality traits, culture of learning and type of teaching aids [5]. Furthermore, no causal relationship between the different levels has been determined to date [5]. In addition, there is a limited amount of data available to support the concept that level four evaluations are more important than those of level 1 to 3 [5]. Nevertheless, using the four-level-model, Kirkpatrick was able to simplify and categorise the complex processes of evaluating
training programmes as well as to establish measures of 'Behaviour' and 'Outcome' as important criteria [5]. However, application of these latter criteria is often not feasible due to the complexity of the object of investigation or cost constraints. Thus, training programmes are mostly evaluated on level 1 and 2 using self-assessment instruments.

The ability to assess one’s own competence is recognised as a key factor for medical competencies [6]. It is essential for medical professionals to be able to identify their personal strengths and weaknesses, to have confidence in their expertise and to be able to restrict their medical practice activities as appropriate [7]. With regard to the learning process, self-assessment skills are required for the determination of aims and to verify existing skills. However, it has been illustrated in a recent review article that physicians are predominantly unable to assess their abilities accurately. The authors were particularly worried about those professionals with the fewest skills but who overestimated their abilities the most [8]. These observations have been confirmed by other investigations, which revealed that the least competent individuals were unable to assess the competence level of either their own skills or those of other individuals accurately [9], [10], [11].

Self-assessment at the beginning of a training programme may contain an over-estimation of skills due to inexperience [12]. Appropriate training programmes may though improve not only the competence of the trainees, but furthermore self-assessment skills [12], [13]. Therefore, the data from previous investigations suggest that evaluation of training programmes using self-assessment measures may contain systematic errors due the effect mentioned above.

Medical education is traditionally organised as an apprenticeship, but recently more and more training courses are held [14]. Training courses are needed particularly in surgical education because advanced technical skills are required for highly specialised procedures [15], [16]. Several studies have demonstrated the efficacy of practical training courses, especially in laparoscopic surgery [17], [18], [19].

Aim

Using the example of a basic course in laparoscopic surgery, we aimed to investigate whether and how self-assessment scores of medical competencies changed as the participants progressed through the postgraduate practical training courses. Furthermore, we intended to discuss the possible effects on course evaluation measures. We considered the following questions:

1. How do participants rate their competencies at the beginning of the course ('pre-course'),
2. their competencies at the end of the course ('post-course') and
3. their pre-course competencies at the end of the course ('retrospective pre-course')?

2. Is there an alteration in self-assessment over the course of the training ('post-course' versus 'pre-course' and 'retrospective pre-course' versus 'pre-course', respectively) and which medical competencies are affected?

3. Are there differences in the changes reported between areas of competencies, which are trained and those that are not?

Methods

The present investigation was conducted for 10 basic courses in laparoscopic surgery at the "European Surgical Institute" of the Ethicon Endo-Surgery Company in Norderstedt, Germany.

Practical postgraduate training course

Three-day courses were performed to impart knowledge and train practical skills in a complex operative setting. In the first phase, basic knowledge was taught and essential skills trained. Lectures of 3¼ hours were held on basic anatomical, physiological and clinical principles as well as surgical procedures. In a video demonstration of 1½ hours possible risks and sources of error were discussed. The handling of laparoscopic instruments was shown in a practical demonstration (1 hour). Exercises in practical skills comprised of suturing and knotting techniques in a microsurgical setting (2 hours) and in a computer simulation (2 hours). In the second phase, the skills learnt were transferred into the laparoscopic surgery setting; suturing exercises were performed on a simulated abdomen with an opened or closed abdominal wall ('Pevlitrainer'). In the last phase, an animal organ was added (pig’s liver) and a laparoscopic cholecystectomy was performed by the trainees (6 hours). The training was provided within a teamwork setting and feedback was given continuously. Overall, the aim of the courses was to enhance medical competencies with regard to knowledge and practical skills in a laparoscopic setting.

Questionnaire and data acquisition

A questionnaire was developed for self-assessment of different aspects of laparoscopic medical competencies (see Table 1). A complete item is illustrated in Table 2. The confidence of the trainees was assessed, for example, by the question 'Do you feel confident to perform laparoscopic procedures independently?' and they were asked to rate themselves according to four task levels using a 5-point scale ranging from 0 ('not applicable') to 4 ('fully applicable'). In addition, confidence was assessed regarding different areas of competency: 'How do you rate your competencies with regard to...?'. A 5-point scale ranging from 0 ('low') to 4 ('very high') was used by the participants to indicate their responses. The questions were then reformulated to assess knowledge, practical skills, judgment and professional behaviour (see Table
Table 1: Different task levels and specific areas of medical competencies of the self-assessment questionnaire

Task levels	Specific areas of medical competencies
Performing laparoscopic procedures independently	KNOWLEDGE
Performing laparoscopic procedures under supervision	Knowledge of laparoscopic procedures: anatomy, course of the surgical procedure, risky situations
Working as surgical first assistant	Knowledge of the construction and handling of laparoscopic instruments
Working as camera assistant	SKILLS
	Manual skills
	Mastering basic surgical techniques
	Careful manipulation of the tissue
	Orientation and navigation in the surgical field
	JUDGEMENT
	Clinical reasoning
	SOCIAL BEHAVIOUR
	Problem management and handling of errors
	Ability to work in a team
	Ability to concentrate and handle stressful situations

Performing laparoscopic procedures independently	Performing laparoscopic procedures independently without supervision
Performing laparoscopic procedures under supervision	Performing laparoscopic procedures with instructions and under the guidance of an experienced surgeon
Working as surgical first assistant	Working as an assistant of an experienced surgeon during laparoscopic procedures
Working as camera assistant	Tracking the camera during laparoscopic procedures

Question	Possible answers
“Do you feel confident to…”	don’t agree – fully agree
... work as a camera assistant?	0 – 1 – 2 – 3 – 4
... work as surgical first assistant?	0 – 1 – 2 – 3 – 4
... perform laparoscopic procedures under supervision?	0 – 1 – 2 – 3 – 4
... perform laparoscopic procedures independently?	0 – 1 – 2 – 3 – 4

1). The questionnaire has not yet been evaluated with regard to psychometric properties.

Table 2: Exemplary illustration of a complete item of the self-assessment questionnaire

Question	Possible answers
“Do you feel confident to…”	don’t agree – fully agree
... work as a camera assistant?	0 – 1 – 2 – 3 – 4
... work as surgical first assistant?	0 – 1 – 2 – 3 – 4
... perform laparoscopic procedures under supervision?	0 – 1 – 2 – 3 – 4
... perform laparoscopic procedures independently?	0 – 1 – 2 – 3 – 4

Participants of 10 basic courses in laparoscopic surgery in 2000 and 2001 were asked to complete the questionnaire. They rated their current laparoscopic medical competencies at the beginning of the course (“pre-course”), at the end of the 3 day course (“post-course”) and re-assessed their pre-course competencies at the end of the course (“retrospective pre-course”).

Data analysis

The data were pseudonymised and data analysis was performed using SPSS® 15.

For presentation purposes with regard to question 1, the ratings 0 and 1 were merged into the category ‘minimally competent’, rating 2 to ‘moderately competent’ and ratings 3 and 4 to ‘fully competent’ and displayed in table form. The Wilcoxon test was used for analysis regarding questions 3 and 4 (comparison of self-assessment ‘post-course’ vs. ‘pre-course’ and ‘retrospective pre-course’ vs. ‘pre-course’ respectively) because significant differences from normal distribution were found. Bonferroni-Holm correction for multiple measurements was used as mul-
Multiple items in the questionnaire were compared. In this case, the maximum statistical value of the single comparisons was evaluated on a significance level of $\alpha = \alpha / m$ (i.e. 0.05 / number of single comparisons). If this statistical value was significant, the next value was evaluated on a level of $\alpha / (m-1)$ and so on, until no significance was found [20].

Results

The basic characteristics of the study cohort as well as the experiences of the surgeons gained before commencing the course are displayed in Table 3.

Table 3: Basic characteristics and 'pre-course' experiences of the participants

Characteristics	N (%)
Rate of return	
Fully completed questionnaires	89 (81)
Sex (female)	24 (27)
Age	
26 – 35 years	69 (78)
36 – 45 years	18 (20)
> 45 years	2 (2)
Qualifications of the participants	
First – second year of postgraduate training	25 (28)
Third - fourth year of postgraduate training	26 (29)
Fifth – sixth year of postgraduate training	21 (24)
Completed postgraduate training in surgery	15 (17)
Experience in laparoscopic surgery	
As a camera assistant	7 (8)
As a surgical first assistant	29 (32)
Performing laparoscopic procedures under supervision	37 (42)
Performing laparoscopic procedures independently	16 (18)

'n' = 110 participants of 10 basic courses asked. *no information available in one case. **no information available in two cases.

Self-assessment of medical competencies

'Pre-course' more than half of the participants rated their competencies as low ('minimally competent') if asked about independently performed surgical procedures, whereas most of the trainees rated themselves as 'moderately competent' or 'fully competent' for surgical procedures performed under supervision, as a surgical first assistant or as a camera assistant (see Table 4). With regard to specific areas of medical competencies more than 90% of the trainees assessed themselves 'pre-course' as 'moderately competent' or 'fully competent' regarding 'knowledge about laparoscopic procedures', 'manual skills', 'mastering basic surgical techniques', 'careful manipulation of the tissue' and 'orientation and navigation in the surgical field'. Similarly, most trainees rated their skills 'pre-course' in the following aspects of social behaviour 'problem management and handling of errors', 'ability to work in a team' and 'ability to concentrate and handle stressful situations' as 'moderately competent' or 'fully competent'. More than half of the trainees regarded their 'knowledge of laparoscopic instruments and technical equipment' as 'moderate' (see Table 5).

Table 4: Adjustment of the self-assessment of laparoscopic competencies with regard to different task levels – frequency distribution

How do you feel confident to...	minimally competent	moderately competent	fully competent
... work as a camera assistant?	55 (59) / 23	24 (22) / 43	21 (19) / 34
... work as a surgical first assistant?	8 (12) / 1	18 (31) / 2	74 (57) / 97
... perform laparoscopic procedures under supervision?	0 (1) / 0	8 (7) / 1	92 (92) / 99
... perform laparoscopic procedures independently?	0 (0) / 0	1 (3) / 0	59 (97) / 100

Self-assessment ratings: pre-course = retrospective pre-course’ / post-course = post-course.' All figures correspond to the percentage of the responding participants.

Table 5: Adjustment of the self-assessment of laparoscopic competencies with regard to specific areas of medical competencies – frequency distribution

How do you rate your abilities with regard to...	minimally competent	moderately competent	fully competent
1.1 Knowledge of laparoscopic procedures	5 (18) / 1	45 (45) / 29	50 (37) / 70
1.2 Knowledge of laparoscopic instruments and technical equipment	26 (49) / 3	58 (30) / 30	16 (21) / 67
2.1 Manual skills	5 (28) / 1	45 (47) / 49	50 (25) / 50
2.2 Mastering basic surgical techniques	6 (47) / 8	29 (25) / 44	65 (27) / 48
2.3 Careful manipulation of the tissue	3 (32) / 3	44 (41) / 48	53 (27) / 49
2.4 Orientation and navigation in the surgical field	6 (26) / 3	52 (39) / 26	42 (35) / 71
3.1 Clinical reasoning	9 (21) / 3	40 (41) / 42	51 (38) / 55
4.1 Problem management and handling of errors	12 (36) / 11	51 (38) / 57	37 (26) / 32
4.2 Ability to work in a team	0 (1) / 1	5 (14) / 14	95 (85) / 85
4.3 Ability to concentrate and handle stressful situations	0 (10) / 2	17 (10) / 22	83 (74) / 76

Self-assessment ratings: pre-course = retrospective pre-course’ / post-course = post-course.’ All figures correspond to the percentage of the responding participants.

'Post-course' a significant increase of self-assessments was found with regard to different task levels (except for 'work as a camera assistant'; see Table 6). Furthermore, a significant increase was seen 'post-course' for the following areas of medical competencies: 'knowledge on laparoscopic procedures', 'knowledge of laparoscopic instruments and technical equipment', 'orientation and navigation in the surgical field', 'problem management and handling of errors', 'ability to work in a team' and 'ability to concentrate and handle stressful situations'.
navigation in the surgical field’. Self-assessment was comparable to the ‘pre-course’ ratings in the remaining areas of medical competencies (see Table 7). The comparison of ‘pre-course’ vs. ‘retrospective pre-course’ ratings indicated a significant adjustment of self-assessment with regard to the task level ‘performing laparoscopic procedures under supervision’: ‘pre-course’ 74% of the trainees rated themselves as ‘fully competent’, which decreased to 57% on the ‘retrospective pre-course’ questionnaire (see Table 4; Table 5). Such significant adjustment was in fact seen in most of the areas of medical competencies trained during the course (‘manual skills’, ‘mastering basic surgical techniques’, ‘careful manipulation of the tissue’ but not in ‘orientation and navigation in the surgical field’) as well as ‘problem management and handling of errors’ and ‘clinical reasoning’. The proportion of participants, who rated their competencies ‘pre-course’ as ‘minimally competent’ increased in the ‘retrospective pre-course’ assessment. In contrast, no significant difference was seen with regard to the knowledge taught (‘knowledge of laparoscopic procedures’, ‘knowledge of laparoscopic instruments and technical equipment’) as well as with regard to ‘ability to work in a team’, which was not the focus of the course (see Table 6, Table 7).

Discussion

The present investigation provides evidence that surgeons with limited experience overestimate their competencies. First, participants rated themselves as ‘moderately competent’ or ‘fully competent’ before attending the course with regard to different task levels (with the exception of ‘performing laparoscopic procedures independently’) as well as specific areas of medical competencies. This is astonishing because the participants had applied for training of laparoscopic competencies and only a minority already had finished postgraduate surgical training. Second, our data revealed substantial retrospective revisions to lower ratings over the course of the training. More than 85 percent of the trainees rated their ‘pre-course’ competencies as ‘moderately competent’ or ‘fully competent’ in 9 out of 10 areas of medical competencies. Relevant adjustments were seen in the ‘retrospective pre-course’ assessment: Only about a quarter of the trainees (or a third, respectively) rated themselves as “moderately” or “fully” competent in 5 (or 3, respectively) competency areas. These adjustments were statistically significant in those tasks most important to the focus of the training course (‘performing surgical procedures under supervision’) and in 5 out of 10 specific areas of medical competencies. No statistically significant difference was seen regarding the knowledge taught (‘knowledge of laparoscopic procedures’, ‘knowledge of laparoscopic instruments and technical equipment’). Likewise, no significant difference was seen in the competencies ‘ability to work in a team’ and ‘ability to concentrate and handle stressful situations’. The latter aspects of social behaviour were not the focus of the training course and no feedback was applied to the participants.

Our results confirm previous data on the tendency of minimally competent surgeons to overestimate their abilities [10], [13]. Furthermore, our data support previous publications which suggest that trainings lead to increased ‘metacognitive abilities’ and more realistic self-assessment abilities [12], [13] via improved competencies [17], [18], [19] and the feedback obtained. It cannot, however, be overlooked that retrospective assessments may also have socio-psychological influences (eg. absence...
of threats to self esteem) and distorting phenomena (e.g. Hindsight bias) [21].

In the present study we investigated the adjustment of self-assessment ratings exclusively in a typical postgraduate practical training course. An additional objective assessment of competence improvement would have added to the validity of the results. However, instruments for objective assessment of surgical competencies are very limited and require extensive resources [22]. Therefore, an objective assessment of surgical competencies was not made.

Our data suggest that the initial over-estimation of trainees’ abilities will influence the results of self-assessment instruments to evaluate the effectiveness of training. In particular a comparison restricted to ‘pre-course’ vs. ‘post-course’ assessments may lead to an under-estimation of the training effect that has occurred. Instead, a ‘retrospective pre-course’ assessment should also be considered if self-assessment instruments are in use. ‘Retrospective pre-course’ assessments are not a substitute for an objective measure or ‘gold standard’. However, it may reveal valuable information regarding the level of over-estimation of personal capabilities at the outset. If such over-estimation could be recognized and incorporated into the curriculum of training programs it may play an important role in the learning process of trainees.

Acknowledgement

The authors thank Ethicon Endo-Surgery, Norderstedt (Germany) and Mr. Thomas Bürger for the opportunity to conduct this investigation over the 10 basic courses in laparoscopic surgery run at their institution. Furthermore, we thank Dr. Anja Rogausch for the revision of the statistical analyses.
Competing interests

The authors declare that they have no competing interests.

References

1. Musick DW. A conceptual model for program evaluation in graduate medical education. Acad Med. 2006;81(8):759-765. DOI: 10.1097/00001888-200608000-00015

2. Fabry G, Lammerding-Köppel M, Hofer M, Ochsendorf F, Schirlo C, Breckwoldt J. Hochschuldidaktische Qualifizierung in der Medizin IV: Messung von Wirksamkeit und Erfolg medizindidaktischer Qualifizierungsangebote: Ein Postenspapier des GMA-Ausschusses Personal- und Organisationsentwicklung für die medizinische Lehre der Gesellschaft für Medizinische Ausbildung sowie des Kompetenzzentrums für Hochschuldidaktik in Medizin Baden-Württemberg, GMS Z Med Ausbild. 2010;27(4):Doc62. DOI: 10.3205/zma00699

3. Kirkpatrick DL. Evaluating Training Programs: The Four Levels. San Francisco/CA: Berrett-Koehler; 1994.

4. Kirkpatrick DL. Evaluation of training. In: Craig RL (Hrsg). Training. 2006;296(9):1094-1102. DOI: 10.1001/jama.296.9.1094

5. Bates R. A critical analysis to evaluation practice: the kirkpatrick model and the principle of benevolence. Eval Prog Plan. 2004;27:341-347. DOI: 10.1016/j.evalprogplan.2004.04.011

6. Gordon MJ. A review of the validity and accuracy of self-assessments in health professions training. Acad Med. 1991;66(12):762-769. DOI: 10.1097/00001888-199112000-00012

7. Eva KW, Regehr G. Self-Assessment in the Health Professions: A Reformulation and Research Agenda. Acad Med. 2005;80(10 Suppl):S48-S54. DOI: 10.1097/00001888-200510001-00015

8. Davis DA, Mazmanian PE, Fords M, Van Harrison R, Thorpe KE, Perrier L. Accuracy of physician self-assessment compared with observed measures of competence: a systematic review. JAMA. 2006;296(9):1094-1102. DOI: 10.1001/jama.296.9.1094

9. Chi MT, Glaser R, Rees E. Expertise in problem solving. In: Sternberg R (Hrsg). Advances in the psychology of human intelligence. Hillsdale/NJ: Erlbaum; 1982. S.7-75.

10. McPherson SL, Thomas JR. Relation of knowledge and performance in boy’s tennis: Age and expertise. J Exper Child Psychol. 1989;48:190-211. DOI: 10.1016/0022-0965(89)90002-7

11. Hofer M, Galonska L, Sievers K, Önenköprü B, Heussen N. Evaluation eines Trainingskonzepts “Plenardidaktik” für Dozenten in Vorlesungen. GMS Z Med Ausbild. 2010;27(3):Doc47. DOI: 10.3205/zma00684

12. Kruger J, Dunning D. Unskilled and unaware of it: how difficulties in recognizing one\’s own incompetence lead to inflated self-assessments. J Pers Soc Psychol. 1999;77(6):1112-1134. DOI: 10.1037/0022-3514.77.6.1121

13. Hodges B, Regehr G, Martin D. Difficulties in recognizing one\’s own incompetence: novice physicians who are unskilled and unaware of it. Acad Med. 2001;76(10 Suppl):S87-89. DOI: 10.1097/00001888-200110001-00029

14. Ericsson KA. Deliberate practice and the aquisition and maintenance of expert performance in medicine and related domains. Acad Med. 2004;79(10 Suppl):S7-81. DOI: 10.1097/00001888-200410001-00022

15. DesCôteaux JG, Leclere H. Learning surgical technical skills. Can J Surg. 1995;38(1):33-38.

16. Hamdorf JM, Hall JC. Acquiring surgical skills. Br J Surg. 2000;87(1):28-37. DOI: 10.1046/j.1365-2168.2000.01327.x

17. Rosser JC, Rosser LE, Savaligi RS. Objective evaluation of a laparoscopic surgical skill program for residents and senior surgeons. Arch Surg. 1998;133(6):657-661. DOI: 10.1001/archsurg.133.6.657

18. Ritz JP, Grone J, Hopt U, Saeger HD, Vollmar B, Lauscher JC, Lehmann KS, Buhr HJ. Practical course for visceral surgery in Warnemünde: 10 years on. Significance and benefits of a surgical training course. Chirurg, 2009;80(9):864-871. DOI: 10.1007/s00104-009-1782-0

19. Grone J, Ritz JP, Buhr HJ, Lauscher JC. Sustainability of skill courses for general and visceral surgery – evaluation of the long-term effect. Langenbecks Arch Surg. 2010;395(3):277-283. DOI: 10.1007/s00423-009-0568-7

20. Bortz J. Statistik für Human- und Sozialwissenschaftler. Heidelberg: Springer-Verlag; 2005.

21. Fischhoff B. Hindsight not equal to foresight: the effect of outcome knowledge on judgment under uncertainty. Qual Saf Health Care. 2003;12(4):304-311; discussion 11-12. DOI: 10.1136/qhc.12.4.304

22. van Hove PD, Tuijthof GJ, Verdaasdonk EG, Stassen LP, Dankelman J. Objective assessment of technical surgical skills. Br J Surg. 2010;97(7):972-987. DOI: 10.1002/bjs.7115

Corresponding author:
Michael Nagler
Universitätsklinik für Hämatologie und Hämatologisches Zent rallabor, Inselpital, 3010 Bern, Schweiz, Tel.: +41 (0)31 632 9601
michael.nagler@insel.ch

Please cite as
Nagler M, Feiler S, Beyeler C. Retrospektive Anpassung der Selbststeinschätzung ärztlicher Kompetenzen – Beachtenswert bei der Evaluation praktischer Weiterbildungskurse. GMS Z Med Ausbild. 2012;29(3):Doc45. DOI: 10.3205/zma000815, URN: urn:nbn:de:0183-zma0008156

This article is freely available from http://www.egms.de/en/journals/zma/2012-29/zma000815.shtml

Received: 2011-06-24
Revised: 2011-12-18
Accepted: 2012-01-17
Published: 2012-05-15

Copyright
©2012 Nagler et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en). You are free: to Share — to copy, distribute and transmit the work, provided the original author and source are credited.