Processing in the food chain: do cereals have to be processed to add value to the human diet?

Authors
Frank Thielecke1,2*, Jean-Michel Lecerf3, Anne P Nugent4,5
*corresponding author

1 Swiss Distance University of Applied Sciences, Regensdorf-Zurich, Switzerland; frank.thielecke@ffhs.ch
2 T2Bene LTD, Bettenstrasse 60a, 4123 Allschwil, Switzerland; frank.b.thielecke@gmail.com
3 Nutrition Department, Institut Pasteur de Lille, 59019 Lille, Cedex, France; jean-michel.lecerf@pasteur-lille.fr
4 Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, 02.0014 Northern Ireland Technology Centre, Cloreen Park, Belfast BT9 5HN, Northern Ireland; A.Nugent@qub.ac.uk
5 UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; Anne.nugent@ucd.ie

*Details of Corresponding Author: Swiss Distance University of Applied Sciences, Regensdorf-Zurich, Switzerland Lausanne 26, Switzerland, frank.thielecke@ffhs.ch, +41 (0) 79 536 06 31

Working title: Processing of cereals

Keywords: cereal-based foods, bread, ready-to-eat breakfast cereals, processing, nutrients
Abstract

Cereals and cereal products have a long history of use by humans. Recently, there have been some discussions regarding level of processing as a descriptor to define food products, including cereal-based foods. This has led to a somewhat emotional debate on food processing. Given the widespread inclusion of cereals in the diet, this review highlights the history of cereal processing as well as their consumption by humans. It provides an evidence-based discussion on their production, contribution to human nutrition, benefits and disadvantages. This review illustrates the impact of processing on nutrients, as well as non-nutrients specifically in bread and ready-to-eat breakfast cereals (RTEC), two cereal-based foods which are widely consumed and integral parts of food based dietary guidelines globally. As a category, most cereals must be processed in some way to enable consumption by humans as we are not equipped to survive exclusively on raw grains. Even thousands of years ago, the processing of cereals was a common practice by humans, turning raw grains into palatable, safe and nutritious foods. Modern processes for cereal-based products are efficient in providing safe and good quality products to satisfy population needs, as well as helping to meet consumer expectations by providing a range of foods that allow for a varied and balanced diet. Today, RTEC and bread make significant contributions to dietary energy and nutrient requirements and underpin food based dietary guidance globally. They have been positively linked with intake of dietary fibre, vitamins and minerals, especially when consumed as whole grain.
2 Introduction

Over 50,000 plants are edible, but very few of them make any significant contribution to the human food supply. Cereals such as maize, rice, and wheat together make up about 60% of the world’s caloric intake\(^1\). Currently, the average annual global production of wheat is about 734 million tonnes\(^2\). Only maize has, at 1.14 million tonnes, a higher global production. Cereals and cereal products have a long history of use by humans. Cereals make significant contributions to dietary energy and nutrient requirements and are sometimes referred to as a ‘dietary staple’, along with milk, fruit and vegetables. Cereals underpin food-based dietary guidance globally. Scientific discussion regarding cereals has typically related to quantity and quality within the human diet, e.g. low or high carbohydrate diets, whole or refined cereal. However, there has been some recent debate regarding level of processing as a descriptor to define food products, including cereal-based ones. The aim of this paper is to shed light on the fundamental processes for cereal-based foods as currently consumed and any implications for nutritional value in the context of a healthy diet. Using ready-to-eat breakfast cereals (RTEC) and breads as examples of globally consumed cereal-based food products, it will compare the processes used in their generation and outline their importance in making nutrients available and helping to achieve dietary balance.

3 History of cereal processing and consumption by humans

The inclusion of cereals in the diet was an important step in human evolution as it is an example of how humans were able increase the supply of digestible carbohydrates by creating solutions to the technical complexity and culinary manipulation needed to change raw cereals into palatable and nutritious foods or staples. Most scientists believed that the domestication of grains began about some 10,000 years ago, but more recent findings may put this time point substantially earlier. An ancient site in Israel contained a collection of cereals, which were dated to about 23,000 years ago\(^3\), suggesting that cereal storage preceded domestication by about 10,000 years. The first processing of cereals might date back even further as evidence suggests that some early homo sapiens were eating starchy, cereal-based snacks as early as 105,000 years ago\(^4\). For example, grass seed residue, mainly sorghum, has been found on ancient African stone tools, which in turn suggests an early application of processing to make the seeds consumable. More recently, about 30,000 years ago, vegetal food processing including the production of flour was a common practice across Europe\(^5\). As early as about 7000 B.C. people in Greece were cultivating wheat, barley and...
oats. Anecdotal evidence suggests that the troops of Hannibal, the Carthaginian general, ate porridge before and during their famous crossing of the Alps (218 B.C.).

4 Rationale for food processing

Simplistically, food processing can be described as any deliberate change in a food that occurs before it is available to people in a form and time that it is required. Food processing is therefore critical for food consumption as it typically turns inedible raw materials into more useful, shelf-stable and palatable foods or drinks fit for human consumption. This basic need as well as safety was one of the key drivers of the creation of food processing. Food processing has since evolved to satisfy more modern day purposes which can be expanded as follows:

- to make food edible
- to ensure safety of food
- to increase palatability (better tasting and greater access to nutrients)
- to produce convenient foods

Positive outcomes of food processing therefore include an increase in the useful life of foods, destruction of food-borne microbes and toxins, optimised nutrient availability, improved characteristics of food quality such as sensory characteristics and functional properties, increased convenience and reduced losses and waste. Ultimately this provides greater choice and variety of safe products for the consumer. There may, however, be less desirable outcomes following processing, one example being an increased availability of starch which can facilitate rapid digestion and blood glucose elevation, especially if grain products are consumed as refined grain products. To turn this around, it highlights the opportunity to optimize grain processing to improve nutritional. To prevent such downsides, an opportunity exists to optimize grain processing to improve nutritional value and make whole grains easier to use in food manufacturing.

Currently, there are a myriad of definitions about how to describe or classify processed foods, which have been described in detail elsewhere. These include descriptions by scientific authorities e.g. the European Food Safety Authority (EFSA), where processed food is simply defined within the definition of “food” to more complex descriptions by non-profit organisations (e.g. International Food Information Council (IFIC)) or groups of scientists (e.g. NOVA) where more detailed but differing categorisations have been developed. This may have contributed to the current standing where despite the long tradition of humans processing food, particularly cereals, today there is some confusion or uncertainty around processed foods and about what
processing of food means among a number of scientists as well as some consumers. In fact, many food processing techniques are common to both homes and food manufacturers (Figure 1).

5 Main aspects of cereal processing

Processing of cereals is required prior to human consumption - as Rubel explained: “Humans are not equipped to live on raw grain as we have neither the teeth or the stomachs for it. We must transform grains into food through cooking, with basic methods of sprouting, fermenting, roasting, boiling and baking. Grinding and baking into breads radically increases a grain’s glycaemic index releasing otherwise unavailable carbohydrates”\(^{(18)}\).

In principle, cereal processing is essentially a physical process whereby the kernel is cleaned, adjusted to an appropriate moisture content and then mechanically reduced to the desired particle size to produce a flour and by-products (e.g. bran). Where appropriate, flour production also involves fractionation—not only to separate bran, germ and endosperm from each other but also to assure the correct particle size of the milled endosperm. There are a number of processing steps for cereals between harvest and consumption. While each type of cereal requires specific treatment steps, the FAO suggest three distinct areas such as (1) preparation of the cereal for storage, (2) primary cereal processing to remove inedible fractions, and (3) secondary processing to transform cereals into “consumer-facing” products (see Figure 2)\(^{(19)}\). Generally speaking, cereal products undergo all three processing steps before consumed by humans.

At a European level, the EU Commission mentions processing but only in the context of establishing maximal levels of certain contaminants within a foodstuff whereby “First-stage processing” shall mean any physical or thermal treatment, other than drying, of or on the grain. Cleaning, sorting and drying procedures are not considered to be ‘first-stage processing’ insofar as no physical action is exerted on the grain kernel itself and the whole grain remains intact after cleaning and sorting. In integrated production and processing systems, the maximum level applies to the unprocessed cereals in case they are intended for first-stage processing.”\(^{(20)}\) Given this EU focus is directed at contamination of food rather than processing per se, for the scope of this paper we adhere to the more targeted FAO definition and discuss the primary and secondary processing steps of two key cereal products: flaked RTEC and bread. We acknowledge that there are many types of breakfast cereals with a varying range of processing steps. We have chosen flaked RTEC as an example of grain products since their production process demonstrates a variety of processing steps. Further, there is a significant history of humans eating both foods. Bread making is one of
the oldest but also the most common processing technique for cereals, with reports of bread consumption by ancient Greeks, Egyptians and people belonging to ancient Rome and Babylon\(^{(21)}\).

While breakfast cereals in the form of porridge have a similar long history to bread, there is a much shorter history of use for RTEC, but their presence on the market is nonetheless significant, with the first RTEC appearing over one hundred years ago in the late nineteenth century\(^{(22)}\). The per capita consumption of RTEC in 2020 stands at 3.7 kg in France, 6.1 kg in the UK, 8.8 kg in Ireland, 6.5 kg in the USA and 5.2 kg in Canada\(^{(23)}\).

5.1 RTEC and breads - processing steps involved

In general, all cereal-based foods have common primary processing steps. They involve cleaning, sorting and removal of the inedible fractions from the cereals followed by milling. In contrast, secondary processing of cereals (or ‘adding value’) is the utilisation of the primary products (whole grains, flakes or flour) to enhance shelf-stability of cereals foods and make them sensorially more attractive for consumers. Any processing should be used as an opportunity to improve recipe formulations such as replacing refined grain with whole grain and reducing composition of added sugar, fat and salt thereby helping products attain a healthier profile. The fundamental technology applied to both RTEC and bread is heat treatment in various forms to both RTEC and bread. Details of the main steps relevant to breads and flaked RTEC and their purpose are summarised below.

Processing steps vary according to desired criteria of the end product. Describing the entire spectrum of processes would be beyond the scope of this review, hence we confine ourselves to the principal processes involved in flaked RTEC and bread.

5.1.1 Flaked breakfast cereals

Depending on the desired properties of the end product breakfast cereal, the processes involved may vary considerably. Examples of processes include mixing, cooking, extruding, drying, cooling, tempering, flaking, drying/toasting, and packaging. The US Environmental Protection Agency has schematically outlined the basic processing steps for flaked cereals and extruded flaked cereals as adapted here (Figure 3).

The initial preparation of the cereals for this process depends on the starter grain. For example, maize requires dry milling to remove the germ and the bran from the kernel, leaving the endosperm. Wheat kernels are first steamed and then gently passed through a pair of rolls to break open the kernels without producing flour at this point. Rice, on the other hand, requires only milling to form the polished head rice that is the normal starting material. The physical processes of flaking, puffing, shredding, extruding and expanding are sometimes described as “texturising”.
An important texturising step for flaked cereals is extrusion, a process which increasingly replaces the more traditional cooking and delumping steps. However, it is often overlooked that extrusion is widely used in the production of other foods, such as pasta, hence here we discuss extrusion for RTEC and pasta together. Since the 1930s, pasta and breakfast cereals have been produced using extrusion processes\(^2\). In simple terms, for RTEC, extrusion and expansion alter the surface/volume ratios to allow for shaping and production of crisp, crunchy products, which addresses consumer demands. For pasta, extrusion enables a variety of different shapes that consumers can purchase, e.g. spaghetti, campanelle, chifferi, farfalle, conchigliie and many other. The effectiveness of the extrusion step for either food form is dependent upon factors such as nutritional composition (e.g. protein, fibre, carbohydrates content), structure (e.g. particle size, proportion of bran) and moisture content achieved in the upstream processes. In general, cooking, drying and toasting, which are applied in traditional as well as extrusion manufacturing, introduce thermal energy to the products, with texturising operations applied during extrusion exerting additional mechanical energy on the dough\(^3\). Nowadays, those processes are often combined in one manufacturing (extrusion) line. Extrusion cooking of RTEC provides several advantages over traditional methods. Extrusion cooking allows for faster processing times, lower processing costs, and greater flexibility leading to greater variability of end products\(^4\). From a consumer perspective, extrusion cooking creates cereals that are easy to chew and come in different shapes. During the manufacture of RTEC, extrusion cooking uses temperature, pressure and shear in varying intensities, depending on the types of ingredients and the desired characteristics of the end products\(^5\). A modern manufactory line for extruded RTEC is shown in Figure 4. These manufacturing lines allow very precise control of process parameters while ensuring high efficiency and variability in output, i.e. selection of RTEC to meet consumers’ demands. The effects of extrusion on nutritional quality are complex. Like many other processes that involve heating food at a high temperature before consumption, such as baking or frying, the nutritional quality may change during extrusion. As a principle, just like with pasta, the extrusion process for RTEC starts with mixing cereal grains into a dough. High temperature extrusion for a short time may minimise losses in vitamins and amino acids and improve protein quality and digestibility\(^6\). On the other hand fragmentation of proteins and starches may occur\(^7\), the latter has been implicated with an increased glycaemic response, possibly resulting in blood glucose elevation. In simplified terms, nutritional quality has been reported to improve with short duration, high moisture and low temperate, whereas negative effects on nutritional quality have been reported with high temperature (>200°C) and low moisture (<15%)\(^8\). More recently, it
has been shown that introducing amaranth or buckwheat, as well as whole grain significantly reduces the rate of carbohydrate hydrolysation in the human digestive tract, which positively affects the glycaemic index of the extruded RTEC or pasta\(^{31, 32}\). The glycaemic index is considered a marker for nutritional quality of carbohydrate rich foods.

For RTEC, extrusion is often followed by coating, a process where for example heat liable vitamins and/or sugar are added. Adding sugar during processing is fundamental for many different functions, not limited to caramelisation, and is responsible for inter alia colour and flavour aspects.

Whilst such added sugar has a variety of purposes during processing, its excessive consumption has been implicated with dental caries and with increased risks for various chronic diseases including, obesity, diabetes and cardiovascular disease. The strongest body of evidence relates dental caries and frequency of intake of sugar-containing foods\(^{33}\). However, to date, there is no firm conclusion that added sugar is related to the above metabolic diseases\(^{34}\), with the strongest available evidence for sugar-containing beverages rather than sugar per se\(^{34}\). Nonetheless, it would be prudent to consume added sugars in moderation.

5.1.2 Bread

Globally, the techniques for making bread can vary but essentially use four essential ingredients: flour, water, yeast and salt\(^{35}\). Nonetheless, bread making is also a complex process that involves many physiochemical and structural changes to yield the final aerated baked product\(^{36}\). Figure 5 provides a general outline of key steps involved.

Within the bread making processes differences can also exist, particularly with respect to extraction rates during milling and fermentation processes used. A higher extraction rate allows for a higher percentage of outer grain layers to be retained with 100% extraction rates yielding whole grain flours. In contrast, white flours typically have lower extraction rates, as low as 70-72\(^{\circ}\)\(^{36, 37}\).

Differences in fermentation can also arise depending on bread type (e.g. sourdough) or whether mainstream mixing and fermentation processes are used. Sourdoughs (a commonly consumed bread type globally) are created when flour and water are mixed and then fermented with yeast and with homo and hetero-fermentative lactic acid bacteria, increasing the lactic and acetic acid concentrations and resulting in a sour taste product. The final taste can also vary depending on the cereal used (wheat, rye, oat, barley or maize), the microbial population present and ratio of bacteria: yeast used\(^{38, 39}\). Some other popular types of bread globally include baguettes, ciabattas, various flat breads, rye or maize breads\(^{38}\). However, in some countries, such breads may be
viewed as artisan, where the term ‘bread’ is typically associated with white or brown pre-packaged
or pre-sliced loaves or pans. Currently, bakeries and food business operators can use two main
methods used to make such prepack bread which differ only with respect to their mixing and
fermentation stages; the Bulk Fermentation Process (BFP) and the Chorleywood Bread Process
(CBP)\(^{(40)}\). The BFP is the more traditional method where ingredients are mixed and the dough left
to ferment for up to three hours. During this fermentation phase, the mixture changes to form an
elastic dough. In contrast, the CBP uses mechanical energy in the form of high-speed mixing as a
type of kneading to develop the dough for proving and baking. A little fat or emulsifier and a
treatment agent (e.g. ascorbic acid) are typically added as an improver to aid this process. Soya
flour may also be added to soften the bread, provide food for the yeast, hold water, keep the bread
moist and help improve the natural colour of the bread. First developed in the 1960s in
Chorleywood, UK, this CBP method was highly successful as it enabled a much faster production
of bread to satisfy consumer need\(^{(40)}\). Hence, the processes of making bread are complex and varied
but ultimately result in a processed cereal product which is commonly consumed.

5.1.3 Comparison of processing of bread and RTEC
There are many steps common to the processing of both RTEC and bread. Using ‘wheat’ as an
example, it is evident the majority of generic processes for making a wheat-based flaked RTEC or
bread are very similar Table 1. Notable differences do exist such as fermentation for bread or steps
like puffing, flaking, roasting or batch cooking which are applied to RTEC, or steps like extrusion
to achieve the desired product characteristics. Extrusion is not applied in bread making (Table 1).
One additional step which can be common to both cereal products involves the addition of vitamins
and/or minerals to the mix or blend either as a restorative function to replace losses during
extraction or as fortificants. We acknowledge that there are of course many variations to processing
steps not only depending on the final product characteristics but also types of cereals used as raw
materials. For example traditional milling of oats first requires a thermal treatment to inactivate
endogenous enzymes and prevent rancidity, followed by dehulling (dry-shelling)\(^{(41)}\). The more
modern ‘green-shelling’ process however requires the oats to be shelled before kiln-drying\(^{(42)}\).
Furthermore, the nature of the end product will define which processes can be applied, for example
shredded cereals require different processing steps to the flake cereals described here.
Nevertheless, when comparing the generic processing steps for wheat bread and flaked RTEC as
illustrated here, it is evident that considerable similarities exist, with 13 of the 17 generic
processing steps common to wheat-based bread and RTEC (Table 1).
Impact of processing on the nutrient and non-nutrient composition of bread and RTEC

The nutritional composition of the main types of whole cereal grains consumed by humans is shown in Table 2. In general, raw whole grains contain typically about 60-80% carbohydrate along with some fat and protein. Whole cereal grains also contain considerable levels of many nutrients and non-nutrients due to the presence of functional molecules, dietary fibre, minerals, vitamins, lignans, phytoestrogens and phenolic compounds in their outer layers (bran, germ and endospermic tissue)\(^{(43)}\). Furthermore, whole grain products contain more vitamins and minerals than their refined grain counterparts. Processing of cereals and the associated removal of outer layers can alter their nutritional value; however, there are more facets to processing. The following subsections highlight the impact on composition following processing of cereals to bread and RTEC in more detail. Table 3 provides an overview of how the nutrient and non-nutrient composition may be altered during the manufacture of RTEC and bread and is described in brief below for energy and macronutrients and in Section 6.2 for micronutrients and non-nutrients.

6.1 Impact on energy and macronutrient content

The endosperm, the large central part of the grain, is mostly composed of carbohydrates in the form of starch. Hence with milling and subsequent removal of the grain’s fibre fraction this main constituent of cereals (starch) can become more easily accessible and digestible\(^{(44)}\) and can lead to an increased glycaemic response following hydrolysis in the upper gastrointestinal tract. Only a fraction of starch in foods is not digested and absorbed in the small intestine, reaching the colon, where it is fermented to variable extent by the microbiome. This fraction is called resistant starch. Resistant starch acts as a type of dietary fibre and has an ability to contribute to a healthy gut microbiota as described elsewhere\(^{(45; 46; 47)}\).

All cereals used to make RTEC and breads undergo milling to various extents (e.g. whole grain, refined grains) and so final quantities of energy and macronutrients present are more influenced by the extent of milling and extraction rather than belonging to a particular commodity group. Cereals also contain protein and fat in addition to carbohydrates, but this is relatively less than other dietary staples e.g. dairy products or meat. Nevertheless, macronutrient composition can be affected by level of processing. For one example, as part of the Maillard reaction the essential
amino acid lysine has been described to become potentially unavailable when the dough is heated in the presence of reducing sugars thereby altering protein amino acid profile\(^{(48)}\). This would make an argument for using whole grains as cereals source, because whole grain contains more protein than refined grain.

\[\text{6.2 Impact on micronutrients and non-nutrient compounds} \]

Although nutrients are found to varying degrees throughout the cereal, there is a higher concentration of micronutrients and fibre in the bran. Polyphenols such as ferulic acid or cinnamic acid are also present mainly in the outer layers of cereal bran, but phytosterols are reported to accumulate in both the bran and germ fractions\(^{(49)}\). Hence, removal of the bran fraction during the primary processing step, milling, can result in reductions in a number of nutrients and non-nutrients present e.g. dietary fibre, tannins, polyphenols, minerals and some vitamins\(^{(50)}\), the concentration of nutrients decreasing with the degree of milling\(^{(51)}\). For example, Oghbaei et al. (2016) reported a loss of vitamins in the range of 70-80\% when rice is milled\(^{(52)}\). Alterations in dietary fibre composition and content will also depend on level and type of processing and affect both soluble (e.g. beta-glucans) and insoluble forms (e.g. arabinoxylans)\(^{(49)}\). Although bran fibre can be added back in later as an ingredient, such losses may provide an argument to prefer whole grain products or products with added bran fibre over refined grain products. In contrast, the presence of naturally occurring inhibitors in whole grains such as phytic acid can render the bioavailability of divalent minerals (e.g. iron, zinc or calcium) low because of the formation of insoluble complexes\(^{(53)}\). However, phytic acid has also been recognised as a natural antioxidant\(^{(54)}\) which may potentially explain the protective effect of whole grain for colorectal cancer\(^{(55)}\). Hence, the ‘right’ amount and method of processing can reduce or prevent this anti-nutritional activity\(^{(49)}\) and perhaps confer protection for colonic health.

As mentioned, secondary processing techniques generally involve heat in some manner and are used to ‘add value to goods’ or variety to the diet. As evident in Table 3, the impact on nutrient and non-nutrient content is often dependent on the individual processing technique and while some are common to breads and RTEC, others are commodity and product specific. For example, the process of flaking has the potential to alter the content of phosphorous and dietary fibre but not iron and calcium: using rice flakes as a medium, fibre and phosphorous content decreased in proportion to the thickness of the flakes, while iron and calcium contents are reported as unaffected\(^{(56)}\). In contrast, the process of fermentation in bread making (used to break down the tough outer hulls and increase cereal digestibility) may increase the content of phenolic compounds and enhance bioavailability\(^{(57)}\). Furthermore, fermentation in combination with hydrothermal
treatment and particle size reduction has been shown to reduce phytic acid\(^{(58)}\), which in turn could increase the availability of minerals that are otherwise bound by phytic acid. Fermentation is widely used in bread making. Other processes like soaking and germination reduce the phytic acid content in cereals\(^{(59)}\). Extrusion seems to have no effect on mineral bioavailability\(^{(60)}\) or retention of vitamins, respectively\(^{(26)}\). Another important mineral, iodine, appears relatively stable throughout the process chain, as it was retained to 100\% in the final products when applied as salts\(^{(61)}\). Salt is a key vehicle for fortification in some countries. Ferulic acid is the most abundant phenolic acid in wheat. There is evidence that ferulic acid increase up to 3-fold\(^{(26)}\), while others point to the potentially increased antioxidant activities rather than content\(^{(51; 62)}\).

Cooking forms a central process for both RTEC and bread making, with cooking increasing the digestibility of nutrients and functional molecules\(^{(48)}\). Dietary fibre has been shown to be relatively resistant to heat treatment\(^{(63)}\). The content of dietary fibre is hardly affected by extrusion cooking but a redistribution of insoluble to more soluble fractions has been reported\(^{(29)}\) and increases with the intensity of the process conditions\(^{(64)}\). In addition, the content of resistant starch may be influenced by cooking processes. For example, a form of resistant starch called retrograded starch may be increased by the heat treatment and subsequent cooling\(^{(48)}\). Optimal parameters for increasing this retrograded (resistant) starch in specific products such as actual temperature, cooling temperature and duration of those steps, are not yet clearly defined. In addition, hydration may also affect the formation of resistant starch, by reducing its content. This is also true, in terms of extrusion cooking, where starch becomes fully gelatinized, resulting in a possible decrease in molecular entanglement and reduced resistant starch formation compared to other processing methods\(^{(65)}\). Approaches to modify the composition of resistant starch in products have been described elsewhere\(^{(66)}\). Building on the point of replacing digestible starch with resistant starch, it has been demonstrated that processing techniques such as roasting, baking and boiling increased the content of resistant starch in cereal products, whereas steaming and frying had the opposite effect\(^{(65)}\). Also, the storage of different cereal products at 4°C up to 24 h significantly increased resistant starch content.

The ability of resistant starch to contribute to a healthy gut microbiota has been described in detail elsewhere\(^{(46; 47)}\). Another key consideration relates to fortification. In countries where fortification is permitted, both RTEC and breads can contribute substantially to the intakes of certain nutrients. A final step in many bread making steps is the addition of micronutrients to white flours either to restore those lost during extraction (restorative function) or as fortificants. For example, under UK
law, white flours must be enriched with thiamin, niacin and calcium to combat nutrient losses in extracted white flours and to ensure minimum levels of these nutrients in the diet\(^67,68\). In the US, thiamin, iron and niacin must be added and since 1998 folic acid in a bid to reduce the occurrence of neural tube defects. Although no European countries currently fortify breads with folic acid, this is common in many other countries globally\(^69\). In contrast, RTEC, when fortified, may contain considerable greater numbers of vitamins and/or minerals and it is recognised that RTEC are one of the most highly fortified foods helping to improve the overall nutritional status of consumers\(^70\). Their consumption with milk and milk products can also enhance nutritional intakes at meal times for key nutrients such as calcium, vitamin D (if fortified), riboflavin, potassium\(^71\).

Collectively, such processing techniques can increase or decrease the amounts and accessibility of a number of macro- and micro-nutrients in the two cereal products examined, even within categories. For example, using UK food composition data, consuming a breakfast consisting of one 40g bowl of whole grain fortified RTEC (e.g. wheat biscuits, no milk) and two average slices of whole grain bread (plain) would yield 293 kcal, 60 g carbohydrates, 9.1 g fibres, 10.2 mg niacin, 318 mg potassium, and 3.6 g of total sugars. On the other hand, choosing a fortified sugar containing RTEC (e.g. 35g extruded type cereal, no milk) with white bread results in intakes of 297 kcal, 64 g carbohydrates, 3.7 g fibres, 7.6 mg niacin, 175.8 mg potassium, and 14.4 g of total sugars. Although energy profiles are similar, distinct differences with respect to fibre and some micronutrients exist. Simplistically, this implies that choice of products consumed over pro-longed periods of time has significant potential to impact nutrient intakes at both an individual and population level, with healthier options available and needed across all categories to help individuals and populations meet dietary guidelines.

In conclusion, depending on the extent of primary and secondary processing steps involved, the final nutritional value of the by-products can vary greatly. While some common processes (e.g. milling and refining) reduces the vitamin and mineral content of cereal, they can also enhance bioavailability of some nutrients as well as the digestibility and accessibility of phenolic compounds. Further, strategies can be employed to mitigate any risk of nutrient losses, e.g. to choose whole grain and bran-based products over refined grain products, to use the processes of soaking, fermentation, and germination to increase mineral bioavailability and reduce phytic acid content. Also, the addition of vitamins and/or minerals (restorative or fortification) will increase nutrient content. Collectively this suggests that by eating a wide variety of foods, as recommended as part of food based dietary guidelines, we can benefit from mix of nutrients which are
bioavailable in different food forms. It also shows that there are no real differences in losses of
nutrients depending on processing of the two major cereal types; both processes are similar.

6.3 The role of processing for safety in cereal-based food products

Generally, a fundamental reason for processing is food safety. Raw, unprocessed cereal grains can
represent a substantial source of natural contaminants specifically mycotoxins and heavy
metals\(^{(72)}\), with contaminants heterogeneously distributed within the kernel\(^{(73)}\). Mycotoxins are
poisons produced by fungi or can be toxins produced by moulds. There are many different
mycotoxins that have been commonly found to contaminate cereal grains; these include aflatoxins,
ochratoxin, fumonisins, deoxynivalenol, T-2 toxin, zearalenone and alkaloids. It has been pointed
out, that processing of cereal contributes to a substantial reduction in contaminants\(^{(74)}\), where any
risk to human safety is greatly lessened. In particular, large fractions of mycotoxins can be
removed by appropriate post-harvest storage, sorting, cleaning, dehulling, and debranning
reduction of damaged kernels, and fine material\(^{(75)}\). These are processes common to cereals used
for RTEC and bread. In addition, it has been suggested that the selenium, magnesium, calcium,
zinc, iron and dietary fibre, inherent in whole grain RTEC and bread may have protective
properties by reducing uptake and toxicity of heavy metals\(^{(76)}\). Whole grain products with high
levels of antioxidants, vitamins and carotenoids as well as superoxide anion scavengers, such as
ferulic acid in whole grain wheat, have the potential to reduce the impact of mycotoxins by
protecting cell membranes from mycotoxin-induced damage\(^{(76)}\). Novel food processing techniques
have been invented to further improve nutritional quality and advance production efficiency, while
ensuring microbial safety. Grain-based foods can also become contaminated with plant toxins e.g.
alkaloids or tropane alkaloids but typically this is as a result of cross-contamination with toxin-
containing plants rather than integral to the grain itself. Processing to ensure safety of cereal-based
products is predicted to become increasingly important in context of climatic change, drive to
organic sustainable farming and desire to abandon the use of chemicals in farming\(^{(77)}\). Other
examples of common toxins in food and present in the diet of most people are the process
contaminants furan and acrylamide. The formation of both is linked to the Maillard reaction. This
reaction enhances the taste of the cooked food items and often adds to the brownish colour of
foods. The formation of acrylamide relies on the presence of carbohydrates (reducing sugars such
as glucose and fructose), the amino acid asparagine when cooked at high temperatures such as in
frying, roasting, toasting and baking\(^{(78)}\). Therefore, a variety of food products including French
fries (chips), potato crisps, bread, breakfast cereals (excluding porridge), fine bakery wares, coffee
and coffee substitutes as well as ‘baby food’ and processed cereal-based food intended for infants and young children (79) can be sources for acrylamide. Levels of acrylamide in products can range substantially and depend not only on processing but on growing conditions of the crops (i.e., cereal type, variety, growing conditions, climate) and methods used for analysis. The sourcing of wheat with lower free asparagine is currently not a viable option because it is commercially not available. Therefore, mitigation of acrylamide formation is mainly achieved through changes in product composition and/or process conditions. For example, extended fermentation time has been shown to result in dough with lower levels of acrylamide in bread (78). EU authorities have provided effective mitigation measures as well as regulatory benchmarks for acrylamide levels in food products including RTEC (150-300 µg/kg) and soft bread (50-100 µg/kg)(80). In comparison, the benchmarks for roast coffee is 400 µg/kg, French fries 500 µg/kg and potato crisps 750 µg/kg. The regulatory benchmarks are typically lower for bread and RTEC than for other commodities.

Furans are another class of contaminant, potentially formed in foods during thermal processing. The formation of furans requires several precursors such as ascorbic acid, amino acids, carbohydrates, unsaturated fatty acids and carotenoids, and they are found in a variety of foods including coffee and canned foods (81). The presence of furans in the diet, and any implication for public health are closely monitored by the authorities. For example, in Europe, EFSA has characterised that grain and grain-based products are chief sources of furans in children, but not in adults. In adults, coffee is the main contributor of furans (82). Mitigation strategies depend on the food product and include lowering the thermal load, adding antioxidants, that delay lipid oxidation (82). However, specific mitigation strategies are still under investigation (82).

Taken together, many of the core processes used to manufacture bread and RTEC can decrease the presence and/or amounts of contaminants, while best practices can mitigate the risk of forming any process related undesired substances e.g. furans and acrylamide, thereby ensuring food safety.

7 The roles of RTEC and bread for the human diet

The contribution of processed foods in general, as defined by IFIC, to nutrient intake has been described (83). For example, in 2014 the American Society for Nutrition (ASN) reported that, for the US, processed foods contributed 57% of energy, 55% of dietary fibre, 48% of calcium, 43% of potassium, 34% of vitamin D, 64% of iron, 65% of folate, and 46% of vitamin B-12 intakes. On the other hand, processed foods contributed 52% of saturated fat, 75% of added sugars, and 57% of sodium. Within this, the ASN concluded that the level of processing was of secondary priority as long as nutrient-dense foods are selected (83).
For RTEC and bread (both processed foods), their role as part of healthy balanced diets has been acknowledged\(^{(37; 61; 84; 85; 86)}\). For both foods, options that are made with whole grain and are high in fibres makes them a valuable source of key nutrients such as vitamins and minerals, antioxidants\(^{(85; 87)}\) and other plant actives\(^{(37; 88)}\). Therefore, whole grain should be the preferred option, however in reality, although the available choices of whole grain foods are increasing globally, the majority of bread and RTEC are still consumed as refined grain.

7.1 Contribution to nutrient intakes

Both RTEC and bread make significant contributions to population nutrient intakes. Healthy adult habitual breakfast cereal consumers are reported to have a higher proportional intake of energy from carbohydrates and lower intake of total and saturated fats than non-consumers\(^{(71; 86)}\). Further, consumption of breakfast cereals has been associated with healthier dietary patterns in adults and children\(^{(71)}\) and to increase intake of associated foods such as milk and fruit\(^{(89)}\). Portion sizes associated with such benefits are typically moderate e.g. in a European cohort the average portion size of cereals consumed by adolescents was 35 g (interquartile range 24–56 g)\(^{(89)}\); this RTEC consuming group also reporting lower intakes of energy and fat but higher protein, carbohydrate and fibre when compared with adolescents consuming mostly bread for breakfast. Inclusion of RTEC in the diet may also yield higher intakes of vitamins and minerals and lower fat intakes but without influencing intakes of energy or sodium\(^{(71; 90; 91)}\). In particular, frequent consumption of RTEC (> 5 times/week) has been associated with a lower risk of inadequate intakes of vitamin A, calcium, folate, vitamin B6, magnesium and zinc. However, the nutritional merits of some RTEC have been questioned because of the content of sugar, salt and saturated fat in some products\(^{(92)}\), while RTEC consumption was also found to be associated with higher sugar intake\(^{(71)}\). Against this context, it is worth remembering that total dietary sugar intake will also be influenced by the intake of naturally occurring milk sugars following consumption of RTEC with milk, while the salt and added sugar composition of RTEC has decreased over the last decade\(^{(92)}\). On the other hand, RTEC can act as an important source of whole grain and fibre\(^{(93)}\), with some products providing around 50% of its ingredients as whole grain. RTEC also have a substantial contribution to peoples’ nutrient intake, for example France, with relatively low consumption of breakfast cereals, the overall contribution of breakfast cereals at breakfast alone in France is 14.7% of energy, 19.2% of carbohydrates, 7.9% of protein, 20.3% of fibres, 10.5% calcium, and 33% iron\(^{(94)}\). While in Canada, a country with relatively high consumption of breakfast cereals, for and adult cohort, 9.3% of the daily energy was reported from RTEC, this category also contributing
15.3% carbohydrates, 5.7% protein, 22.7% fibres, 5.5% calcium and 32.2% iron to the daily intake of these nutrients(95).

For bread, it is reported that EU citizens consume approximately 50 kg of bread per person per year or about 3-4 slices of white bread per day, with citizens of Germany and Austria consuming slightly more and those of UK and Ireland less(96). Outside of the UK (where vitamins and minerals are re-added to white flour after milling), breads made with whole grain flours will generally yield higher composition of fibre and vitamins (e.g. thiamin, niacin, folate) and minerals (e.g. iron, zinc and magnesium)(37). However, the exact contribution will depend on the type of flour used(86; 96).

For example, in the UK, total bread is reported to contribute approximately 12% of total daily energy intake, 16-20% of carbohydrate, 10-12% of protein, up to 21% of fibre intakes, 12-17% of total calcium and 15-17% of total iron intakes(97) (although the bioavailability of iron powdered to fortify flour has been debated)(98). Similar contributions are reported for France, where bread contributes to 15.5% of daily energy intake, 27.2% of carbohydrates, 2.7% of fat, 20.3% of fibres, 3.5% of calcium (only non-fortified sources) and 14.4% of iron to the daily intake of these nutrients(99).

7.2 Some health benefits of eating RTEC and bread

There is a significant body of evidence researching the influence of RTEC and various health outcomes(91). For example, breakfast cereals have been reported to help lower cholesterol concentrations or improve bowel function, if high in oat, barley, or fibre respectively(91). Despite concerns, that pre-sweetened breakfast cereals could increase the risk of overweight and obesity in children, this is not supported by current reviews(91). Such effects (positive or negative) primarily relate to the composition of the foods (nutrient or otherwise), with the role for processing simply to make healthy choices as palatable as possible. For bread, specifically wheat bread and wheat products, there have been concerns linking wheat products (as part of a Western diet and lifestyle) and increasing prevalence of obesity, type-2 diabetes, allergy and food intolerances(100).

Such views have been particularly popular in the press and media and are despite scientific reviews to the contrary(100). There are also suggestions that modern bread wheat has different health benefits from traditional wheat types, but again there is, to date, insufficient evidence to confirm this theory(101). Nonetheless, the consumption of bread, particularly whole grain bread has been linked with reduced mortality(102).
For both RTEC and bread, it is likely that the benefits arise from the composition of the grains and the nutrients and non-nutrients contained within the matrix. For example, benefits with respect to cholesterol or post prandial glucose concentrations may relate to the presence of beta-glucans with associated health claim approved in Europe by the EFSA\(^{103}\). Also, given that both foods can contain considerable amounts and types of dietary fibre, not least, arabinoxylan, resistant starch and lignin this can have benefits with respect to gut health and can influence glycaemic response\(^{37}\). Specifically, resistant starch has been consistently shown to reduce the glycaemic response, which resulted in an approved EFSA health claim\(^{47}\). Furthermore, EFSA also acknowledges health benefits of wheat bran fibre\(^{104}\). On the back of considerable observational evidence showing that people who consume more whole grain have a lower risk of chronic disease\(^{105}\), this has encouraged countries/agencies to issue dietary intake recommendations for whole grain options of both these processed dietary staples in an effort to improve diet quality and enhance health\(^{105}\).

8 Challenges of defining cereal-based products by level of processing

Current debate suggests grouping foods by level of processing\(^{17}\). In analyses of diet and health, grouping of foods and/or nutrients is common and has a strong historic background. For example, food groups are central to population dietary advice as part of food based dietary guidance or as more complex food categorisations or coding systems within the scientific literature. There are many well-established examples of such coding systems, e.g. the Langual (Langua alimentaria) system (first developed by the US Food and Drug Administration in the 1970s and which has since been modified and adopted by the EU consortium, Eurofir\(^{106; 107}\)) and systems created by EFSA (Food Ex\(^{108}\) and the EPIC Consortium\(^{109}\)). Within these generally faceted systems comprehensive information on food descriptors is gathered, not least food source, cooking method, ingredients, use of fortificants and preservation technique (i.e. including some account of processing). Such coding systems are used to account for processing both with respect to influence of processing on exposure to food chemicals\(^{108}\) or the role of nutrients or phytochemicals on disease risk\(^{109}\).

Nevertheless it has been argued that the significance of processing and potential impact on health has been underestimated\(^{16; 17}\) and hence alternative categorisations or descriptors have been developed which depend solely on the level of processing. For example, that of the IFIC\(^9\) which relates to 5 categories of processing (1) minimally processed, (2) processed to preserve or enhance nutrients or freshness, (3) combining foods with ingredients to enhance sensory and/or safety appeal, (4) ready-to-eat foods, (5) foods packaged to stay fresh and save time or the NOVA
categorisation(16; 17) where foods can be divided into four categories (1) unprocessed and minimally processed, (2) processed culinary ingredients, (3) processed foods, (4) ultra-processed foods. Confusingly, depending on which categorisation scheme is used, a food may be listed as processed in one scheme but highly or ultra-processed using another coding system. There is currently no scientific consensus on how processing should be addressed as part of food coding systems, particularly with respect to method of processing (traditional, novel), number of ingredients, use of legally permitted food additives etc.. While such debate continues, it is unclear how this information can be used to scientifically measure trends in dietary quality or diet-disease relationship with chronic disease(10; 110). Further, it is unclear how such newer categorisation systems satisfy the generally accepted principles underpinning general population dietary guidance are that they should be understandable, actionable, affordable and safe(14). There may be learnings on those principles from the French dietary guidelines, that recently discouraged the consumption of ultra-processed foods(111). As identified elsewhere, any shift in use of food coding systems, particularly in studies relating to states of health or ill-health should be accompanied by objective validation, use of biomarkers where possible and careful interpretation of results(112). Finally, consideration must also be given to how such newer categorisation systems are communicated beyond scientific audiences. Consumer insights suggest that simple and realistic nutrition messages are welcome(113), and such new initiatives have led to economic opportunities for the development of phone-based apps and the creation of commercial companies (for example: \url{https://siga.care}). However, given that there is no agreed consensus globally on ways to categorise foods such as cereals according to level of processing or more critically how any such categorisation could impact population dietary behaviour, care must be exercised to avoid confusion and distrust among consumers and to avoid any decreases in intakes key nutrients which cereal products can provide, including those from fortified products.

9 Future considerations

An increasing focus of consumers as well as of public health authorities is sustainable diets. Indeed, the notion of shifting current dietary patterns towards more sustainable systems that carry environmental as well as health benefits has been favoured by the FAO as part of their 2010 definition of sustainable diets(114). Sustainability aspects have since been included in national dietary guidelines by countries such as Sweden(115), Brazil(116) and the Netherlands(117) with mention of similar discussions in the UK(118). Parallel to this background of sustainability is forecasted world population growth, estimated to reaching approximately 9.2 billion in 2050(119). Therefore, the world faces the challenge to meet increasing demands of key nutrients but in a...
sustainable manner. Food processing has traditionally represented an important link between production and consumption of food. In order to provide healthy diets and a maintainable food supply for an ever growing population, all food processors (including those of grain products) must also consider the challenge of sustainable diets as a matter of concern and action.

Cereals, particularly whole grain, are nutrient-dense. They provide energy as well as significant contributions to population intakes of carbohydrate, protein, fibre and many micronutrients. This is often by virtue of their frequent consumption by large segments of the population. For example, in the UK, white bread, although containing around 155 calcium/100g contributes approximately 12-17% to population calcium intakes, particularly in groups such as children and adolescents\(^{(120)}\). Hence, all cereals need to be regarded in helping meet increased demands for these key nutrients globally.

However, the environmental impacts of RTEC or bread and their role as part of future sustainable diets have not been assessed broadly in scientific papers. One paper, using the Dutch diet as the basic setting, applied a model comparing bread and RTEC, as well as dairy, and meat between 0 and 250% of the current intake with the relationship between the quantity of these food products and the environmental impact as well as the nutrient balance of these diets examined\(^{(121)}\). The authors found that RTEC and bread had a better environmental performance compared to dairy or meat while still maintaining a high nutrient balance. Others assessed the influence of breakfast cereal production on land use and biodiversity, they identified the cocoa cultivation as a major contributor to the loss of biotic production\(^{(112)}\), with maize and rice representing further factors. Also, using life cycle assessment tools the environmental impact of breakfast cereals, limited to breakfast cereals produced by Kellogg Europe, has been explored. Given the small quantities of cocoa across all Kellogg’s Europe breakfast cereals (<5% by mass), the finding underpins the substantial impact of the use of cocoa in all food manufacturing, considering that cocoa is used in a variety of food categories other than RTEC\(^{(122)}\). When it comes to assess sustainability of diets/food groups, the whole life cycle of product, including for example packaging and distribution of products needs to be considered. A comparison between the traditional (“bag-in-box” packages) and loose delivery (low-density polyethylene) revealed a potential of up to 85% waste reduction\(^{(123)}\). However, boxes may serve many purposes and the choice of bag material to ensure consistent quality and safety of the products also needs to be taken into account. An interesting approach to further improve the carbon footprint of RTEC and bread, while maintain or increasing nutrient balance scores, involves the replacement of refined flours by pulses\(^{(124)}\). When combining carbon footprint and nutrition into one score, the authors showed that yellow pea
flour decreased the nutrition carbon footprint score by 15% for pan bread and 90% for breakfast cereal. This example for cereal-based food shows that there are opportunities to improve carbon footprint and nutrition value simultaneously.

To address the above demands the EAT–Lancet Commission suggests optimising diets for sustainable food systems predominantly by a shift of diets to plant-based diets(125). Naturally, there are considerable challenges in shifting populations’ diets in this direction, costs of fruit and vegetable being one. Cereals already contribute significantly to the energy supply globally, they can and should play a more dominant role in providing energy and nutrients in a sustainable way to meet demands for increasing global population.

10 Summary

Cereals have been consumed by humans since approximately 100,000 years ago. Cereals have to be processed in some way in order to be consumed by humans. Cereal processing is one of the oldest and given the role of cereals for its contribution to meeting nutrition requirements, one of the most important food technologies. Over the centuries, just like in any other food category, processing technologies have evolved in order to ensure safe products. Modern processes for RTEC and bread are efficient in providing sufficient products in good quality and to meet consumer expectations by providing a range of cereal foods, that allow for a safe, varied and balanced diet. RTEC and bread share fundamental primary processing steps and many of the secondary processing steps. Potential reduction of nutrients can partly be balanced by choosing whole grain varieties over refined grain products as well as by fortification. On the other hand, processing enhances digestibility and bioavailability (e.g. for minerals and phenolic acids) as well as reducing non-nutrients like phytic acid and contaminants. Based on the available scientific evidence to date and in comparison with more traditional approaches, level of processing alone does not appear to act as a useful measure for healthfulness of foods. Clearly, RTEC and bread play an important role in human nutrition by delivering important nutrients and are positively linked with intake of dietary fibre, certain vitamins and minerals, especially when consumed as whole grain. Therefore, whole grain options should be the preferred choice. Cereal foods are part of the solution for sustainable diets as well as meeting the increasing global demand for energy and nutrients. From a public health perspective, it makes sense that food based dietary guidelines in many countries already include cereals foods and specifically mention bread and breakfast cereals. It would be desirable to further strengthen the role of processed cereal foods by including more whole grain, bran-based and fibre-rich options and developing universally agreed quantitative recommendation for whole grain consumption.
Financial support: This work was supported by CEEREAL e.V.. CEEREAL e.V. had no role in the design, analysis or writing of this review.

Conflicts of interest: FT is consultant to CEEREAL e.V. and received research financial support for conducting the literature search and drafting the manuscript. AN and JML declare no conflict of interest.

Authorship: FT and AN conceived the idea of this review paper. FT, AN and JML wrote this manuscript. All authors read and approved the final version of the manuscript.
11 References

1. FAO (2018) Crop prospects and food situation. Quarterly global reports. http://www.fao.org/3/CA2726EN/ca2726en.pdf (accessed 08.09.2019 2019)

2. FAO (2018) FAOSTAT. Crops. http://www.fao.org/faostat/en/#data/QC (accessed 04.06.2020 2020)

3. Weiss E, Kislev ME, Simchoni O et al. (2004) Small-Grained Wild Grasses as Staple Food at the 23 000-Year-Old Site of Ohalo II, Israel. Economic Botany 58, S125-S134.

4. Mercader J (2009) Mozambican grass seed consumption during the Middle Stone Age. Science 326, 1680-1683.

5. Revedin A, Aranguren B, Becattini R et al. (2010) Thirty thousand-year-old evidence of plant food processing. Proc Natl Acad Sci U S A 107, 18815-18819.

6. Beetz KH (2020) Cereal Grains. Dictionary of American History releases/cereal-grains (accessed 01.03.2020)

7. Augustin MA, Riley M, Stockmann R et al. (2016) Role of food processing in food and nutrition security. Trends in Food Science & Technology 56.

8. Floros JD, Newsome R, Fisher W et al. (2010) Feeding the World Today and Tomorrow: The Importance of Food Science and Technology. Comprehensive Reviews in Food Science and Food Safety 9, 572-599.

9. IFIC (2010) What is a Processed Food? You Might be Surprised! Understanding Our Food Communications Tool Kit. www.foodinsight.org

10. Knorr D, Watzke H (2019) Food Processing at a Crossroad. Front Nutr 6, 85.

11. van Boekel M, Fogliano V, Pellegrini N et al. (2010) A review on the beneficial aspects of food processing. Mol Nutr Food Res 54, 1215-1247.

12. Welch RW, Mitchell PC (2000) Food processing: a century of change. Br Med Bull 56, 1-17.

13. Grundy MM, Edwards CH, Mackie AR et al. (2016) Re-evaluation of the mechanisms of dietary fibre and implications for macronutrient bioaccessibility, digestion and postprandial metabolism. Br J Nutr 116, 816-833.

14. Jones JM (2019) Food processing: criteria for dietary guidance and public health? Proc Nutr Soc 78, 4-18.

15. EFSA (2002) Regulation (EC) No 178/2002 of the European Parliament and of the Council (28 January 2002) Article 2 Food Safety. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2002:031:0001:0024:EN:PDF (accessed 16.09.2019)
16. Monteiro CA (2009) Nutrition and health. The issue is not food, nor nutrients, so much as processing. *Public Health Nutr* **12**, 729-731.

17. Monteiro CA, Cannon G, Levy RB et al. (2019) Ultra-processed foods: what they are and how to identify them. *Public Health Nutr* **22**, 936-941.

18. Rubel W (2001) Bread - a global history: University of Chicago press books.

19. FAO Post-harvesting processing. http://www.fao.org/3/a-au104e.pdf (accessed 07.09.2019)

20. EFSA (2006) COMMISSION REGULATION (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32006R1881 (accessed 14.12.2019)

21. Pételet, Onno B, Prost C (2017) Sourdough volatile compounds and their contribution to bread: A review. *Trends in Food Science & Technology* **59**, 105-123.

22. Gibney MJ, Barr SI, Bellisle F et al. (2018) Towards an Evidence-Based Recommendation for a Balanced Breakfast-A Proposal from the International Breakfast Research Initiative. *Nutrients* **10**.

23. Statista (2020) Breakfast Cereals. *Outlooks*. https://www.statista.com/outlook/40090100/100/breakfast-cereals/worldwide (accessed 19.01.2020)

24. Akdogan H (1999) High moisture food extrusion. *International Journal of Food Science & Technology* **34**, 195-207.

25. Campbell GM-S, F. (2008) Water and energy management in cereals processing. In *Handbook of water and energy management in food processing*, pp. 842-862 [RSa-J Jiří Klemeš, editor]: Woodhead Publishing

26. Alam MS, Kaur J, Khaira H et al. (2016) Extrusion and Extruded Products: Changes in Quality Attributes as Affected by Extrusion Process Parameters: A Review. *Crit Rev Food Sci Nutr* **56**, 445-475.

27. Bartsch J (1990) Extrusion cooking. Herausgegeben von C. Mercier, P. Linko und J. M. Harper, 471 Seiten, zahlr. Abb. u. Tab., American Association of Cereal Chemists, Inc., St. Paul/Minnesota, USA, 1989, Preis: USA $89.–-$, im Ausland plus 10%. *Food / Nahrung* **34**, 264-264.

28. Harper JM (1978) Food extrusion. *CRC Crit Rev Food Sci Nutr* **11**, 155-215.

29. Camire ME (1998) Chemical changes during extrusion cooking. Recent advances. *Adv Exp Med Biol* **434**, 109-121.
30. Singh S, Gamth S, Wakeling L (2007) Nutritional aspects of food extrusion: a review. *International Journal of Food Science & Technology* 42, 916-929.

31. Brennan MA, Menard C, Roudaut G et al. (2012) Amaranth, millet and buckwheat flours affect the physical properties of extruded breakfast cereals and modulates their potential glycaemic impact. *Starch - Stärke* 64, 392-398.

32. Brennan MA, Monro JA, Brennan CS (2008) Effect of inclusion of soluble and insoluble fibres into extruded breakfast cereal products made with reverse screw configuration. *International Journal of Food Science & Technology* 43, 2278-2288.

33. EFSA Panel on Dietetic Products N, Allergies (2010) Scientific Opinion on Dietary Reference Values for carbohydrates and dietary fibre. *EFSA Journal* 8, 1462.

34. Rippe JM, Angelopoulos TJ (2016) Relationship between Added Sugars Consumption and Chronic Disease Risk Factors: Current Understanding. *Nutrients* 8.

35. BNF (1999) *Nutrition and Food Processing. Briefing Paper*. London.

36. Ktenioudaki A, Alvarez-Jubete L, Gallagher E (2015) A review of the process-induced changes in the phytochemical content of cereal grains: the breadmaking process. *Crit Rev Food Sci Nutr* 55, 611-619.

37. O'Connor A (2012) An overview of the role of bread in the UK diet. *Nutrition Bulletin* 37, 193-212.

38. Gobbetti M, De Angelis M, Di Cagno R et al. (2019) Novel insights on the functional/nutritional features of the sourdough fermentation. *Int J Food Microbiol* 302, 103-113.

39. Vrcek IV, Cepo DV, Rasic D et al. (2014) A comparison of the nutritional value and food safety of organically and conventionally produced wheat flours. *Food Chem* 143, 522-529.

40. FOB (2019) How Bread is Made: Production Methods. https://www.fob.uk.com/about-the-bread-industry/how-bread-is-made/production-methods/

41. Papageorgiou MS, A. (2018) Introduction to cereal processing and by-products. In *Sustainable Recovery and Reutilization of Cereal Processing By-Products*, pp. 1-25 [CM Galanakis, editor]: Woodhead Publishing Series in Food Science, Technology and Nutrition.

42. Kent NKE, A.D. (1994) *Technology of cereals: An Introduction for Students of Food Science and Agriculture*. 4th edition ed: Pergamon.

43. Fardet A (2010) New hypotheses for the health-protective mechanisms of whole-grain cereals: what is beyond fibre? *Nutr Res Rev* 23, 65-134.

44. O’ghbaei M, ; Prakash, J. (2013) Effect of fractional milling of wheat on nutritional quality of milled fractions. *Trends in Carbohydrate Research* 5, 55-58.
45. Asp NG (1992) Resistant starch. Proceeding from the second plenary meeting of EURESTA:
European FLAIR concerted action no. 11 on physiological implications of the consumption of
resistant starch in man. Eur, J Clin, Nutr 46, S1.
46. Birt DF, Boylston T, Hendrich S et al. (2013) Resistant starch: promise for improving human
health. Adv Nutr 4, 587-601.
47. Lockyer S, Nugent AP (2017) Health effects of resistant starch. Nutrition Bulletin 42, 10-41.
48. Slavin JL, Jacobs D, Marquart L (2001) Grain processing and nutrition. Crit Rev Biotechnol
21, 49-66.
49. Luithui Y, Baghya Nisha R, Meera MS (2019) Cereal by-products as an important functional
ingredient: effect of processing. J Food Sci Technol 56, 1-11.
50. Garcia-Estepa RM, Guerra-Hernández E, Garcia-Villanova B (1999) Phytic acid content in
milled cereal products and breads. Food Research International 32, 217-221.
51. Ramber JM, B. (2002) From farm to the kitchen table: A review of nutrient losses in foods.
GlycoScience & Nutrition 3, 1-12.
52. Oghbaei M, Prakash J (2016) Effect of primary processing of cereals and legumes on its
nutritional quality: A comprehensive review. Cogent Food & Agriculture 2, 1136015.
53. Coutibaly AK, B.; Chen, J. (2011) Phytic Acid in Cereal Grains: Structure, Healthy or Harmful
Ways to Reduce Phytic Acid in Cereal Grains and Their Effects on Nutritional Quality. American
Journal of Plant Nutrition and Fertilization Technology 1, 1-22.
54. Graf E, Empson KL, Eaton JW (1987) Phytic acid. A natural antioxidant. J Biol Chem 262,
11647-11650.
55. Aune D, Chan DS, Lau R et al. (2011) Dietary fibre, whole grains, and risk of colorectal cancer:
systematic review and dose-response meta-analysis of prospective studies. BMJ 343, d6617.
56. Suma RC, Sheetal G, Jyothi LA et al. (2007) Influence of phytin phosphorous and dietary fibre
on in vitro iron and calcium bioavailability from rice flakes. Int J Food Sci Nutr 58, 637-643.
57. Kawaljit SSS, P.; Maninder, K. (2017) Fermentation of cereals: A tool to enhance bioactive
compounds,. In Plant Biotechnology: Recent Advancements and Developments Springer.
58. Majzoobi M, Pashangheh S, Farahmaky A et al. (2014) Effect of particle size reduction,
hydrothermal and fermentation treatments on phytic acid content and some physicochemical
properties of wheat bran. J Food Sci Technol 51, 2755-2761.
59. Gupta RK, Gangoliya SS, Singh NK (2015) Reduction of phytic acid and enhancement of
bioavailable micronutrients in food grains. J Food Sci Technol 52, 676-684.
60. McKevith B (2004) Nutritional aspects of cereals. Nutrition Bulletin 29, 111-142.
61. Thomson BM (2009) Stability of added iodine in processed cereal foods. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 26, 25-31.

62. Nayak B, Liu RH, Tang J (2015) Effect of processing on phenolic antioxidants of fruits, vegetables, and grains—a review. Crit Rev Food Sci Nutr 55, 887-919.

63. Carnovale E, Lintas C (1995) Dietary fibre: effect of processing and nutrient interactions. Eur J Clin Nutr 49 Suppl 3, S307-311.

64. Björck IN, M.; Asp,N.-G. (1984) Extusion cooking and dietary fiber: Effects on dietary fiber content and on degradation in the rat intestinal tract. Cereal Chem 61, 174-179.

65. Vaidya RH, Sheth MK (2011) Processing and storage of Indian cereal and cereal products alters its resistant starch content. J Food Sci Technol 48, 622-627.

66. Ma Z, Boye JI (2018) Research advances on structural characterization of resistant starch and its structure-physiological function relationship: A review. Crit Rev Food Sci Nutr 58, 1059-1083.

67. UK Fob (1998) The Bread and Flour Regulations. Statutory Instrument 1998 No 141.

68. UK Fob (2008) Legislations. https://www.fob.uk.com/about-the-bread-industry/how-bread-is-made/legislation/ (accessed 18.10.2019)

69. Crider KS, Bailey LB, Berry RJ (2011) Folic acid food fortification—its history, effect, concerns, and future directions. Nutrients 3, 370-384.

70. Caldwell EFK, R.S. (2004) CEREALS | Breakfast Cereals. In Encyclopedia of Grain Science, pp. 201-206 [C Wrigley, editor]: Elsevier.

71. Priebe MG, McMonagle JR (2016) Effects of Ready-to-Eat-Cereals on Key Nutritional and Health Outcomes: A Systematic Review. PLoS One 11, e0164931.

72. EFSA (2016) The 2016 European Union report on pesticide residues in food. EFSA Journal 16.

73. Alldrick AJ (2010) Contribution of grain processing to food safety. In Cereal Grains [CWWaIL Batey, editor]: Woodhead Publishing.

74. Kaushik G (2015) Effect of processing on mycotoxin content in grains. Crit Rev Food Sci Nutr 55, 1672-1683.

75. Cheli FP, L.; Rossi, L.; Dell’Orto, V. (2013) Effect of milling procedures on mycotoxin distribution in wheat fractions. LWT-Food Sci Technol 54, 307-314.

76. Thielecke F, Nugent AP (2018) Contaminants in Grain-A Major Risk for Whole Grain Safety? Nutrients 10.
77. Alldrick AJ (2017) Processing (flour milling). In Cereal Grains (second edition), pp. 393-424
78. Krishnakumar TV, R. (2014) Acrylamide in Food Products: A Review. Journal of Food Processing & Technology 5.
79. EFSA (2017) Commission regulation (EU) 2017/2158 of 20 November 2017 establishing mitigation measures and benchmark levels for the reduction of the presence of acrylamide in food. Official Journal of the European Union L304/24.
80. Commission E (2017) Establishing mitigation measures and benchmark levels for the reduction of the presence of acrylamide in food. Official Journal of the European Union: European Commission.
81. Knutsen HK, Alexander J, Barregård L et al. (2017) Risks for public health related to the presence of furan and methylfurans in food. EFSA Journal 15, e05005.
82. Kettlitz B, Scholz G, Theurillat V et al. (2019) Furan and Methylfurans in Foods: An Update on Occurrence, Mitigation, and Risk Assessment. Comprehensive Reviews in Food Science and Food Safety 18, 738-752.
83. Weaver CM, Dwyer J, Fulgoni VL, 3rd et al. (2014) Processed foods: contributions to nutrition. Am J Clin Nutr 99, 1525-1542.
84. McKeith B, Jarzewska A (2010) The role of breakfast cereals in the UK diet: headline results from the National Diet and Nutrition Survey (NDNS) year 1. Nutrition Bulletin 35, 314-319.
85. Toma RC, D. (1989) Ready-to-eat cereals: role in a balanced diet. Cereal Fods World 34, 378-390.
86. Weegels PL (2019) The Future of Bread in View of its Contribution to Nutrient Intake as a Starchy Staple Food. Plant Foods Hum Nutr 74, 1-9.
87. Miller HE, Rigelhof F, Marquart L et al. (2000) Antioxidant content of whole grain breakfast cereals, fruits and vegetables. J Am Coll Nutr 19, 312S-319S.
88. Ryan L, Thondre PS, Henry CJK (2011) Oat-based breakfast cereals are a rich source of polyphenols and high in antioxidant potential. Journal of Food Composition and Analysis 24, 929-934.
89. Michel N, De Henauw S, Beghin L et al. (2016) Ready-to-eat cereals improve nutrient, milk and fruit intake at breakfast in European adolescents. Eur J Nutr 55, 771-779.
90. Laskowski W, Gorska-Warsewicz H, Rejman K et al. (2019) How Important are Cereals and Cereal Products in the Average Polish Diet? Nutrients 11.
91. Williams PG (2014) The benefits of breakfast cereal consumption: a systematic review of the evidence base. *Adv Nutr* **5**, 636S-673S.

92. Williamson CS (2010) Breakfast cereals – why all the bad press? *Nutrition Bulletin* **35**, 30-33.

93. Devlin NF, McNulty BA, Gibney MJ *et al.* (2013) Whole grain intakes in the diets of Irish children and teenagers. *Br J Nutr* **110**, 354-362.

94. Bellisle F, Hébel P, Salmon-Legagneur A *et al.* (2018) Breakfast Consumption in French Children, Adolescents, and Adults: A Nationally Representative Cross-Sectional Survey Examined in the Context of the International Breakfast Research Initiative. *Nutrients* **10**, 1056.

95. Vatanparast H, Islam N, Patil RP *et al.* (2019) Consumption of Ready-to-Eat Cereal in Canada and Its Contribution to Nutrient Intake and Nutrient Density among Canadians. *Nutrients* **11**, 1009.

96. EUFIC (2014) Bread: A nutritious staple. *Healthy living*. https://www.eufic.org/en/healthy-living/article/bread-a-nutritious-staple (accessed 29.12.2019).

97. Lockyer S, Spiro A (2020) The role of bread in the UK diet: An update. *Nutrition Bulletin* **45**, 133-164.

98. England PH (2011) SACN Iron and Health Report. https://www.gov.uk/government/publications/sacn-iron-and-health-report (accessed 15.10.2019).

99. Julia C, Martinez L, Alles B *et al.* (2018) Contribution of ultra-processed foods in the diet of adults from the French NutriNet-Sante study. *Public Health Nutr* **21**, 27-37.

100. Shewry PR, Hey SJ (2016) Do we need to worry about eating wheat? *Nutr Bull* **41**, 6-13.

101. Shewry PR (2018) Do ancient types of wheat have health benefits compared with modern bread wheat? *J Cereal Sci* **79**, 469-476.

102. Jacobs DR, Jr., Meyer HE, Solvoll K (2001) Reduced mortality among whole grain bread eaters in men and women in the Norwegian County Study. *Eur J Clin Nutr* **55**, 137-143.

103. EFSA (2011) Scientific Opinion on the substantiation of health claims related to beta-glucans from oats and barley and maintenance of normal blood LDL-cholesterol concentrations, increase in satiety leading to a reduction in energy intake, reduction of post—prandial glycaemic responses and ‘digestive function’ pursuant to Article 13(1) of Regulation (EC) No 1924/2006. *EFSA Journal* **9**.

104. EFSA Panel on Dietetic Products N, Allergies (2010) Scientific Opinion on the substantiation of health claims related to wheat bran fibre and increase in faecal bulk (ID 3066), reduction in intestinal transit time (ID 828, 839, 3067, 4699) and contribution to the maintenance or achievement of a normal body weight (ID 829) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. *EFSA Journal* **8**, 1817.
105. Seal CJ, Nugent AP, Tee ES et al. (2016) Whole-grain dietary recommendations: the need for a unified global approach. Br J Nutr 115, 2031-2038.

106. Becker WM, A.; IRELAND, J.; ROE, M.; UNWIN, I.; PAKKALA, H. (2008) Proposal for structure and detail of a EuroFIR Standard on food composition data

II: TECHNICAL ANNEX.

http://archives.foodcomp.info/eurofir/Downloads/TechnicalAnnex/EuroFIR_Tech_Annex_2008_final.pdf (accessed 03.07.2020)

107. Ireland JD, Moller A (2010) LanguaL food description: a learning process. Eur J Clin Nutr 64 Suppl 3, S44-48.

108. EFSA (2015) The food classification and description system FoodEx 2 (revision 2). EFSA Supporting Publications 12, 804E.

109. Slimani N, Deharveng G, Southgate DA et al. (2009) Contribution of highly industrially processed foods to the nutrient intakes and patterns of middle-aged populations in the European Prospective Investigation into Cancer and Nutrition study. Eur J Clin Nutr 63 Suppl 4, S206-225.

110. Lecerf J-M (2018) Ultra-processed foods: a discussed new concept. Med Mal Metab 12, 381-386.

111. PNNS (2018) Programme national nutrition santé 2019-2023. https://solidarites-sante.gouv.fr/IMG/pdf/pnns4_2019-2023.pdf (accessed 01.03.2020)

112. Leme ACB, Fisberg RM, Thompson D et al. (2019) Brazilian Children’s Dietary Intake in Relation to Brazil's New Nutrition Guidelines: a Systematic Review. Curr Nutr Rep 8, 145-166.

113. Webb D, Byrd-Bredbenner C (2015) Overcoming consumer inertia to dietary guidance. Adv Nutr 6, 391-396.

114. FAO (2010) Sustainable Diets and Biodiversity: Directions and Solutions for Policy, Research and Action. http://www.fao.org/3/i3004e/i3004e.pdf (accessed 22.06.2020)

115. Agency NF (2015) Swedish dietary guidelines. https://www.livsmedelsverket.se/globalassets/publikationsdatabas/rapporter/2015/rapport- hanteringsrapport-engelska-omslag--inlaga--bilagor-eng-version.pdf?AspxAutoDetectCookieSupport=1 (accessed 03.07.2020)

116. Brazil HMo (2014) Dietary guidelines for the Brazilian population. https://www.paho.org/bq/dmdocuments/2015/dietary-guides-brazil-eng.pdf (accessed 03.07.2020)

117. Netherlands HCot (2015) Dutch dietary guidelines 2015. advisory-report-dutch-dietary-guidelines-2015.pdf (accessed 03.07.2020)
118. Steenson S, Buttriss JL (2020) The challenges of defining a healthy and ‘sustainable’ diet. Nutrition Bulletin 45, 206-222.

119. FAO (2017) The future of food and agriculture- Trends and challenges. http://www.fao.org/3/a-i6583e.pdf (accessed 10.10.2019)

120. England PH (2018) Results from Years 7 and 8 (combined) of the Rolling Programme (2014/2015 to 2015/2016). National Diet and Nutrition Survey. (accessed 01.03.2020)

121. Kramer GFH, Martinez EV, Espinoza-Orias ND et al. (2018) Comparing the Performance of Bread and Breakfast Cereals, Dairy, and Meat in Nutritionally Balanced and Sustainable Diets. Front Nutr 5, 51.

122. Jeswani HK, Hellweg S, Azapagic A (2018) Accounting for land use, biodiversity and ecosystem services in life cycle assessment: Impacts of breakfast cereals. Sci Total Environ 645, 51-59.

123. Dolci G, Nessi S, Rigamonti L et al. (2016) Life cycle assessment of waste prevention in the delivery of pasta, breakfast cereals, and rice. Int J Environ Assess Manag 12, 445-458.

124. Chaudhary A, Marinangeli CPF, Tremorin D et al. (2018) Nutritional Combined Greenhouse Gas Life Cycle Analysis for Incorporating Canadian Yellow Pea into Cereal-Based Food Products. Nutrients 10.

125. Willett W, Rockstrom J, Loken B et al. (2019) Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447-492.
12 Figures

Figure 1 Most of the common food processing techniques are similar at home and industrial manufacturing (modified from (79)).
Figure 2 Principle processing steps of grains, modified from FAO (19).
Figure 3 Traditional process for flaked cereals (left panel) and extruded flake production (right panel), modified from (116).
Figure 4 Modern breakfast cereals manufacturing (provided by courtesy of Bühler AG, Switzerland).
Figure 5 Traditional process for bread making (sourced from https://bakerpedia.com/processes/bread-processing/, accessed 14.01.2020).
13 Tables

Table 1. Overview of the generic processing steps for wheat-based cereals, highlighting those steps used in the manufacture of RTEC flakes and bread*

Process step	Purpose	RTEC	Bread
Cleaning	To remove any dirt and debris	x	x
Grading	Broken kernel pieces are separated from bran and dust cereal to ensure conformity in the output	x	x
Parboiling	To loosen the hull and improve the storage stability	x	x
Soaking	To condition the grains for down-stream steps	x	x
Hulling	Removal of the outer inedible hull leaving the bran, germ and endosperm	x	x
Tempering	A process whereby water is added to clean wheat and allow equilibrate throughout the kernel. It aims to make it easier to separate the bran from the endosperm (flour) and to yield a flour close to the desired moisture content	x	x
Grinding	A gradual reduction process to begin separation of the germ, brand and endosperm	x	x
Milling, pounding	Process of making cereals into flour. Milling can be wet or dry whereby wet milling is usually applied with the main focus on yielding starch and gluten, while dry milling separates the outer layer (bran), from germ and endosperm	x	x
Cooking	To transform the hard kernel to a soft mass, increasing digestibility of nutrients	x	x
Drying	To ensure appropriate moisture content for next processing steps	x	x
Fermentation	Microorganisms are applied to the dough to achieve sensory attributes and improve digestibility by enzymatic breakdown of oligosaccharides and reduction in non-nutrients such as phytates, tannins, polyphenols)	x	
Baking	It causes the outer surface to brown (Maillard reaction), influencing taste and appearance	x	x
Puffing	To expose the cereals to very high steam pressure causing the cereal to burst. Puffed cereals may be further toasted, coated or mixed with other ingredients	x	
Flaking	To prepare partially cooked formulations into quick-cooking or ready-to-eat foods. Typically, cereals are softened by partially cooking in steam, followed by pressing or rolling into flakes which are dried	x	
Extrusion	To mould the dough into the desired shape by heating the dough and forcing it through a small hole	x	
Coating	To apply vitamins and minerals as well as flavours including cocoa, chocolate, nuts, sugars and oils	x	
Toasting	To achieve attributes of the finished product with particular reference to consumer acceptability	x	x

* Depending on the desired product, not every step will necessarily be involved in the manufacture of breads or RTEC.
Table 2 Nutritional composition of different whole grain and refined grains, per 100g

Nutrient	Wheat flour (whole grain)	Wheat flour (refined)	Rice flour (brown)	Rice flour (white)	Corn flour, yellow (whole grain)	Corn flour, yellow (refined)
Carbohydrates, g	75	76	75	80	77	83
Protein, g	10	10	7	6	7	6
Fat, g	2	1	3	1	4	1
Dietary fibre, g	13	3	5	2	7	2
Vitamins						
Thiamin, mg	0.3	0.1	0.4	0.1	0.2	0.07
Riboflavin, mg	0.2	0.04	0.1	0.02	0.1	0.06
Niacin, mg	5.3	1.3	6.3	3	1.9	2.7
Pyridoxine, mg	0.2	0.04	0.7	0.4	0.4	0.1
Folate, µg	28	26	16	4	25	48
Minerals						
Iron, mg	3.7	1.2	2.0	0.4	2.4	0.9
Zinc, mg	3.0	0.7	2.5	0.8	1.7	0.4
Magnesium, mg	117	22	112	35	93	18
Sodium, mg	3.0	2.0	8	0	315	1

Obtained from USDA nutrient database https://fdc.nal.usda.gov/index.html, accessed 19th December 2019)
Table 3: Overview of the influence of some processing steps on nutrient and non-nutrient content highlighting steps in the manufacturing of RTEC and bread

Processing step	Effect on nutrient content	Effect on non-nutrient content
Primary processing		
Soaking/germination	↓ fibre, minerals, some vitamins	↓ phytic acid
Milling*	↑ digestible carbohydrates	↓ polyphenols, tannins
Secondary processing		
Flaking (RTEC)	↓ phosphorous & fibre	↑ phenolics
	<-> iron and calcium (rice cakes)	↓ phytic acid (with hydrothermal treatment)
Fermentation (bread)		
Heat-treatments	↓ lysine (protein) content	↑ ferulic acid
	↑ resistant starch	
	<-> fibre, iodine	
	<-> mineral bioavailability, vitamin retention	
Extrusion	Redistribution from insoluble to soluble fibre	
Fortification	↑ to restore lost nutrients (thiamin, niacin, calcium, iron)	
	↑ to act as a fortificant (not limited to niacin, thiamin, riboflavin, vitamin D, vitamin K, Vitamin A, zinc, iron)	

*typically including fractionation

Information sourced from [26, 29, 44, 48, 49, 50, 56, 57, 58, 59, 60, 61]