Recent Advances of Macromolecular Hydrogels for Enzyme Immobilization in the Food Products

Leila Yavari Maroufi1, Mohsen Rashidi2, Mahnaz Tabibiazar3, Maryam Mohammadi4, Akram Pezeshki5, Marjan Ghorbani6

1Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.
2Department of Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
3Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
4Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.

Abstract
Enzymes are one of the main biocatalysts with various applications in the food industry. Stabilization of enzymes on insoluble carriers is important due to the low reuse, low operational stability, and high cost in applications. The immobility and the type of carrier affect the activity of the immobile enzyme. Hydrogels are three-dimensionally cross-linked macromolecular network structures designed from various polymers. Hydrogels can provide a matrix for an immobile enzyme due to their extraordinary properties such as high water absorbing capacity, carrier of bioactive substances and enzymes, biocompatibility, safety, and biodegradability. Therefore, this study mainly focuses on some enzymes (lactase, lipases, amylases, pectinase, protease, glucose oxidase) that are of special importance in the food industry. These enzymes could be immobilized in the hydrogels constructed of macromolecules such as kappa-carrageenan, chitosan, Arabic gum, pectin, alginate, and cellulose. At last, in the preparation of these hydrogels, different enzyme immobilization methods in macromolecular hydrogels, and effect of hydrogels on enzyme activity were discussed.

Introduction
Enzymes are a type of biocatalysts, widely applied in several applications in the food industry, such as baking, beverages, meat, dairy, fats and oils, as an effective, safe and eco-friendly alternative for food production. Enzymes have been used as food preservatives for long years, and nowadays they are enabling a variety of food industries to give the quality and stability of their products, along with better production efficiency. They provide clean, environment friendly and specific methods for biochemical reactions in moderate conditions. However, the use of enzymes is limited due to their high cost and low reusability. Moreover, the lack of proper mechanism to protect enzymes against protease attack, occurring in almost all biological systems, is another major hurdle to achieve optimal activity. Additionally, the low operational stability of some enzymes during any biochemical reaction is problematic. Therefore, enzyme stabilization is the main objective of enzyme technology. The attainment of stable and active enzymes is a highly challenging effort. In order to overcome these limitations, the immobilization of enzymes with functional efficiency is useful to solve the enzyme problems and decrease the costs. The immobilization method involves the inclusion of enzymes in matrices or binding them on various surfaces. The immobilization of enzymes on hydrophobic supports is a general method. There are various chemical catalyst carriers to immobilize enzymes, one of which is the use of hydrogel matrixes, hydrogels may be used as appropriate carriers for enzymes. The ideal carrier matrix should have the following properties: (a) to be economical, (b) inertness, (c) stability, (d) physical strength, (e) ability to enhance enzyme specificity/activity, (f) regenerability, (g) ability to reduce product inhibition, and (h) ability to prevent nonspecific adsorption and bacterial contamination. Immobilization usually stabilizes the enzyme structure, allowing the hydrogels’ use under harsh environmental conditions (pH, temperature, and presence of organic solvents). Hydrogels are water-insoluble three-dimensional hydrophilic polymer networks that possess all the mentioned ideal carrier properties with a high ability to retain water and other liquids. Therefore, the aquatic environment of hydrogels can reduce the denaturation of enzymes and help their catalytic function. Hydrogels, as smart materials, can respond to many environmental stimuli, including temperature, pH by showing changes in structure, shape and interaction with their loaded substrates. They have several applications, such as

*Corresponding Author: Marjan Ghorbani, Tel: +98 41 33363231; Fax: +98 41 33363231; Email: ghorbanim@tbzmed.ac.ir
© 2022 The Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution (CC BY), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers.
drug delivery, release,13 enzyme trapping, releasing4 and biosensor.14 In this study, some important enzymes in the food industry immobilized in hydrogels, various natural polymers used in the preparation of hydrogels, methods of enzyme immobilization in matrix hydrogels and hydrogels effect on the activity of enzymes are discussed. Figure 1 summarized the different enzymes which can be immobilized on hydrogels with different methods.

Enzymes
The enzymes play a variety of roles in the food industry. Some of these roles are listed in Table 1.

\textbf{β-Galactosidase (lactase)}

β-Galactosidase is from the hydrolase family of enzymes. It is an enzyme usually used to hydrolyze lactose in dairy products. Lactose is the predominant disaccharide in milk and dairy products that some people are unable to consume due to sensitivity. The β-galactosidase enzyme by lactose hydrolysis, makes the consumption of dairy products possible for people with lactose intolerance. Also recently, this enzyme has been used to produce oligosaccharides, known as prebiotic products. Therefore, the use of the β-galactosidase enzyme facilitates the production of useful products in the food industry. Since enzymes have low stability, their immobilization and stabilization on suitable carriers is essential. Immobilization of enzymes is an easy procedure with several benefits, including enzyme reusability, persistent process, increased stability under operation and storage state.15-18

\textbf{Lipases}

One of the widely used biocatalysts is lipase. Lipases are from the hydrolase family of enzymes. They are effective enzymes with various applications in medicine, pharmaceuticals, cosmetics, detergents, paper production and the food industry. They are good catalysts for the production of food additives and ingredients. They have great potential for synthesizing short-chain esters to be used in the food industry as flavor modifiers or fragrance compositions. Lipases play an important role in the dairy industry, including hydrolyzing milk fat, accelerating cheese ripen, increasing the flavor of cheese and lipolyzing butter. In the lipid industry, lipases can be applied to retailor animal and vegetable oils. The industrial use of lipases is limited due to the high cost of their production, the lack of long-term stability and difficulty in recycling them; thus, immobilizing them on suitable matrices, such as hydrogels, can be very effective.19-21

\textbf{Amylases}

Amylases are from the hydrolase family of enzymes. They are widely found in microbial, plant, and animal sources and are one of the important industrial enzymes with many applications in the food and beverage industries. Amylase is the essential enzyme in the bread industry, which breaks down damaged starch in wheat flour into small dextrans and strengthens the dough, resulting in improved bread volume. Further, small oligosaccharides and sugars such as glucose and maltose, produced by this enzyme increase Millard response responsible for browning the shell and creating an attractive cooked taste.22-24

\textbf{Pectinase}

Pectinase is from the hydrolase family of enzymes. The enzyme is used in processing pectin, the main component in the middle lamella of the plant cell wall. Pectinases are widely used in the food industry, such as extracting and clarifying wine and fruit juices, macerating fruit, reducing the viscosity of fruit juices, extracting vegetable oil, fermenting coffee and tea, and valorizing industrial wastes; due to these extensive applications, they make up 25% of the world’s enzymes. Though, like many other industrial enzymes, pectinase has a limited yield and low efficiency in its economic generation.25-27

\textbf{Protease}

The protease enzyme belongs to the family of hydrolases. The origin of protease enzymes is plant, animal, and microbial. Protease or peptidase is an enzyme that hydrolyzes peptide bonds, which is the main commercial and industrial enzyme. The proteases represent the largest

Figure 1. The scheme summarized the different enzymes which can be immobilized on hydrogels with different methods.
group of commercially available enzymes worldwide, accounting for 60% of the industrial enzymes market due to their wide range of applications in food, beverage, detergent, medical diagnosis, leather industries, as well as research and development activities. In the food industry, it is widely used in producing cheese by coagulating milk, improving the digestibility and nutritional value of biscuits, pastries, wafers, cookies through protein hydrolysis, producing gluten-free pasta and producing functional products. Therefore, its immobilization in the hydrogel matrix reduces costs and makes it easy to be widely used in the food industry.28-30

Glucose oxidase
Glucose oxidase is an oxidoreductase that catalyzes the oxidation of glucose to gluconic acid and hydrogen peroxide. It has many uses; for example, it scavenges oxygen in the food industry effectively, catalyzes the reaction of glucose and oxygen that generates gluconic acid, and successfully removes oxygen from food and beverages to prolong their shelf life.31,32

Hydrogel matrixes as enzyme carriers
Hydrogels are three-dimensional, polymeric and hydrophilic networks. They are formed from both synthetic and natural hydrophilic polymers that are water-insoluble, able to swell, absorb, and retain major amounts of water. Over the years, researchers have defined hydrogels in many different ways. The most commonly used definition is that the hydrogel is a water-swollen and cross-linked polymeric network, produced by the simple reaction of one or more monomer/polymer/cross-linker units. One more description is that it is a polymeric material that exhibits the ability to swell and retain a large amount of water in its three-dimensional network, however, will not dissolve in water.33,34 Hydrogels have good biocompatibility and can provide a suitable microenvironment35 and they are widely used in different fields including drug delivery systems, tissue engineering, protein and cell immobilization, agriculture and horticulture and food industry.35,36 In recent years, development of responsive hydrogels has been observed in various field. In particular, hydrogels of polymers such as chitosan, alginate, kappa-carrageenan, etc. have been used as supports for enzyme immobilization. Some studies have reported the immobilization of various enzymes including lipase, lactase, protease, and amylase on polymer-based hydrogels. Enzymes immobilization on soft and solid supports, such as hydrogels, is an efficient procedure amongst diverse enzyme immobilization techniques. Because of retaining a large amount of water inside the three-dimensional network, they provide efficient physiological conditions for enzyme activity. The aqueous environment of polymeric hydrogels can reduce the denaturation of enzymes and help enzymatic functions. Therefore, it can be expected to maintain enzyme activity due to the immobility in the hydrogel polymer matrix.37

Kappa-carrageenan based hydrogel
Kappa-carrageenan, thermo-reversible gel, is a linear, negatively charged sulfated polysaccharide extracted from marine red algae. Kappa-carrageenan is widely used in food, cosmetics, and drug controlled release and encapsulation due to high biodegradability and biocompatibility. In the food field, due to gelling capabilities in the presence of counter-ions, especially K, it is used for many applications.38-40 Zhang et al41 immobilized β-galactosidase enzymes into kappa-carrageenan-based hydrogel beads. As shown in studies conducted by them, the immobilization of β-galactosidase enzyme into carrageenan-based bead hydrogels improved enzyme activity at pH and medium temperature conditions; the physicochemical origin of this effect was attributed to the ability of K ions used to cross-link the polysaccharide chains to increase the stability and activity of β-galactosidase.

Chitosan based hydrogel
Chitosan-based hydrogels have received substantial interest recently in enzyme immobilization, drug delivery, agriculture, biomedicine and food industry. Chitosan is a nontoxic natural polymer produced by the deacetylation of chitin and compound of glucosamine (70%) and acetylglucosamine (30%) units with a molecular weight

Table 1. Application of immobilized enzymes in food industry

Enzyme	Application in food industry	REF
β-Galactosidase	β-Galactosidase is an enzyme widely used in dairy products to hydrolyze of lactose, makes it possible consumption of dairy products for people who are lactose intolerance, used to produce oligosaccharides, that are known as prebiotic products	15-18
Lipase	play an important role in the dairy industry, including hydrolyze milk fat, accelerating cheese ripen, increase the flavor of cheese and lipolysis of butter. In lipid industry, lipases can be applied to retailing of animal and vegetable oils	19-21
Amylase	Amylase is most important enzymes in the bread industry, which breaks down damaged starch in wheat flour into small dextrins and strengthens the dough, resulting in improved bread volume	22-24
Pectinase	extracting and clarifying wine and fruit juices, fruit maceration, reducing the viscosity of fruit juices, extraction of vegetable oil, coffee and tea fermentation and valorization of industrial wastes	25-27
Protease	production of cheese by coagulating milk, improving the digestibility and nutritional value of biscuits, pastries, wafers, cookies through protein hydrolysis, the production of gluten-free pasta and the production of functional products	28-30
Glucose oxidase	oxygen scavenger, catalyzes the reaction of glucose and oxygen and remove oxygen from food and beverages to prolong their shelf life	31,32
ranging from ~50 to ~1000 kDa. It is the second most abundant polysaccharide in nature after cellulose. Chitosan due to beneficial hydrophilic, cationic, and biodegradable properties, applied in several fields, such as agricultural, food, and pharmaceutical industries. This natural polymer has a high potential to produce gels, films, fibers and particularly hydrogels. Facin et al, Wolf et al, and Wolf and Paulino, and Ricardi et al immobilized β-galactosidase enzyme. Pereira et al immobilized lipase enzyme in the chitosan-based hydrogel and showed that chitosan-based hydrogels can be useful for carrying the enzymes.

Arabic gum based hydrogel

Acacia gum, also known as Arabic gum, is an edible gum extracted from the trunks and branches of *Acacia senegal* and *Acacia seyal* rich in low-viscosity soluble fibers. A type of natural amorphous, non-toxic, water-soluble, odorless, colorless, and tasteless polysaccharide; it has been widely applied from ancient times to the present for different purposes in pharmaceutical, food, and other industries. Its molecular structure has a complex mixture of glycoproteins and sugars acting as active sites on immobilization processes. It includes mainly of polysaccharides arabinose and galactose, calcium, magnesium, and potassium salts. Wolf et al, and Wolf and Paulino immobilized β-galactosidase enzymes in the Arabic gum-based hydrogel and showed Arabic gum-based hydrogels to be good solid matrices for the β-galactosidase enzyme immobilization, able to be used for hydrolysis of lactose in dairy foods.

Pectin based hydrogel

Pectin is a frequently used thickening and gelling agent in several food and non-food industries with high consumer acceptance. It is a natural heteropolysaccharide extracted from the skin of apple and citrus fruits. Pectin can be applied in various food applications, being a gelling agent, emulsifier, stabilizer, glazing agent, and fat replacer. Predominantly, it consists of α-1,4-linked galacturonic acid-based units. Pectin due to its unique properties including biocompatibility, degradability, and great transparency, can be used as a matrix to carry useful materials such as enzymes. Cargnin et al immobilized β-Galactosidase enzyme in the pectin-based hydrogel and indicated it to be excellent solid supports for the immobilization of enzymes. The immobilization of β-Galactosidase in pectin-based hydrogels can be used in the hydrolysis of lactose of dairy products for lactose-intolerant individuals; also, Hasanah et al immobilized lipase enzyme in the pectin-based hydrogel.

Alginate based hydrogel

Alginate is a natural polymer. It, due to its properties such as non-toxicity, biocompatibility, low cost, gelation, chemically compatibility, availability, and degradability, is a suitable polymer for many scientific studies. In the food industry, it is a favorite ingredient, food additive, and carrier of effective ingredients in alginate gel encapsulation. Alginate, as an anionic polysaccharide, can be modified using chemical and physical reactions to be a good candidate for three-dimensional (3D) scaffolding derivatives such as hydrogels, microspheres, microcapsules, sponges, foams, and fibers. Fabric et al and Taffano-Schiffo et al immobilized β-Galactosidase enzyme; Oliveira et al immobilized pectinase enzyme; also, Mohammadi et al immobilized lipase enzyme in the alginate-based hydrogel; they showed that in order to better maintain the activity of the enzyme in the alginate matrix, alginate alone was not enough and the

Cellulose based hydrogel

Cellulose is the most abundant polymer in nature, it is found in natural plants and fibers including cotton and linen. Cellulose is the starting material for a wide range of uses in the food industry as food additives and gelling agents. Cellulose based hydrogels are important due to their biocompatibility, non-toxicity and natural originality; they have potential to be used in dye or metal ion adsorption, drug delivery, and enzyme support. Park et al and Jo et al immobilized lipase enzyme in cellulose-based hydrogel and showed that cellulose hydrogel could be applied as a support for lipase and suitable for the immobilization of enzymes.

Polyacrylamide based hydrogel

Polyacrylamide (PAAm), including acrylamide (AM), is a type of synthetic polymers that have several advantages, such as good flexibility, biocompatibility, and high solubility in water. It is used widely in liquid–solid separation in water and waste treatment, paper making, processing of minerals in mining, and oil recovery enhancement. Cross-linked polyacrylamide is used in the food industry as coating, films, and gelling agents. PAAm is a greatly utilized synthetic polymers in hydrogel production due to its great hydrophilicity. It also can be applied to immobilization of enzymes; for example, Mulko et al successfully immobilized alpha amylase enzyme in the PAAm-based hydrogel.

Polyvinyl alcohol (PVA) based hydrogel

PVA is a non-toxic, soluble (in water), semi-crystalline plastic, synthetic, and biocompatible polymer. It is a linear synthetic polymer produced by polyvinyl acetate hydrolysis. Due to its great properties, such as solvent resistance, mechanical efficiency, water high solubility, and eco-friendly, it is widely used in the preparation of hydrogels. The internal network of polyvinyl alcohol hydrogel has free water, crystalline and swollen amorphous PVA domains; it creates a porous structure and can be effective for various applications, including enzyme immobilization.
various polymer based hydrogels was used in this field.

Enzyme immobilization method in hydrogel

There are different methods to immobilize enzymes. As can realize from Figure 2, these methods are generally divided into two types: physical and chemical. In the former, there is a weak interaction among the enzyme and the carrier substance, while in the latter, there is a strong interaction due to the presence of covalent bonds. These immobilization methods are very important since the stability and long-term use of the enzyme depend on them. Common methods of enzyme immobilization include adsorption, encapsulation, entrapment, covalent attachment, and cross-linking. In addition, each of these methods has advantages and disadvantages that are briefly listed in Table 3.

Entrapment and encapsulation

The caging of enzyme can be achieved by any of the following strategies: (1) by inclusion if enzyme within a highly cross-linked polymer matrix, (2) by enzyme dissolution in a nonaqueous phase, or (3) by separating enzyme from a bulk solution by using a semipermeable microcapsule. In this method the enzyme is not bound to the support matrix unlike other methods. When an enzyme is trapped inside a matrix, it is said to be encapsulated. Encapsulation is a physical method with advantages such as being inexpensive and easy; however, its most imperative benefit for enclosing is that no chemical change of the enzyme is required, not causing significant changes in the structure and activity of the enzyme. For this method, there are porous and gel-like matrices. Hydrogels, with their hydrophilic and very porous polymer network, can be the most suitable structure for this method that is more efficient than free enzyme. Enzymes are physically encapsulated in the hydrogel network during the sol-gel transition that is a comparatively mild process, tending to protect the structural integrity and activity of the enzymes. The only drawback that has been mentioned in these studies is the leakage of the enzyme out during storage in aqueous solutions; in recent studies on immobilization of enzymes in hydrogel, the encapsulation method has been used.

There are various methods of enzymes entrapment like fiber entrapping, gel entrapping, microencapsulation, etc.

In C. rugosa, when the lipase enzyme was entrapped in chitosan hydrogel, it showed enhanced enzyme activity and entrapment efficiency. It also prevented friability and leaching. This is mainly because the support matrix is biocompatible and nontoxic; receptive to chemical modifications because of its hydrophilic nature it has high affinity toward proteins.

Adsorption

In this method, the enzyme molecules adhere to the surface of the carrier matrix by a combination of hydrophobic interactions and the formation of various salt linkages per molecule of enzyme. Adsorption immobilization is a physical method that results from van der Waals and other noncovalent interactions, including hydrophobic interactions and hydrogen bonding electrostatic linkages among the support and the attached enzyme. Adsorption immobilization method is a naive, inexpensive, and reversible technique of enzyme immobilization. The adsorbed enzymes are usually resistant to proteolysis and aggregation because of their hydrophobic interaction with interfaces. Other benefits of this technique are: it supports the lowest activation, or no preactivation at all is required so that no reagent is needed; it shields against aggregation, proteolysis, and main interactions, which could disrupt enzyme and carrier potentials, and no

Technique	Advantages	disadvantages
Encapsulation/Entrainment	Protection of enzyme activity, persistent action	Limitation of enzyme loading, catalysis carried out at interphase enzyme/substrate, mass transfer limitations
Adsorption	Easy and cheap, without the need to use reagents, great catalytic activity	Low stability, poor bonding on supports
Covalent attachment	Powerful bonding, inhibition of enzyme leakage, high thermal stability, increased operational stability, compatible with special process	Limitation of enzyme mobility, reduce of enzyme activity, conformational restriction
Cross-linking	Powerful bonding, prevention of leakage, reduce of desorption, easy to reuse	Loss of the enzyme activity, reduce of diffusion rate, weak mechanical properties, limitation of mass transfer

Group of polymers of hydrogel	Hydrogel base	Enzyme	Ref
Biopolymers	Kappa-carrageenan	β-Galactosidase	38–40
	Chitosan	β-Galactosidase	47–49
	Arabic gum	β-Galactosidase	40,48
	Pectin	β-Galactosidase	38
	Alginate	Lipase	37
		β-Galactosidase	40,44
	Cellulose	Lipase	70,71
Synthetic polymers	Polyacrylamide	Alpha amylase	22
	Polyvinyl alcohol (PVA)	Protease	22
		Glucose oxidase	38

Table 3. The advantages and disadvantages of different enzyme immobilization techniques

Macromolecular hydrogels for enzyme immobilization

Advanced Pharmaceutical Bulletin, 2022, Volume 12, Issue 2 | 313
working enzymes can be supplanted with new ones. The drawback of this technique is that the binding or linking forces among the enzyme and the carrier are weak from being established via hydrogen bonding, hydrophobic interactions, and ionic and van der Waals bonding forces.

It was reported that when Yarrowia lipolytica lipase was immobilized on octyl-agarose and octadecyl-sepa hydrogel beads supports by physical adsorption, resulted in greater stability, higher yields, better process control, and quite economical as compared to free lipase. This was mainly because of the hydrophobicity of octadecyl-sepa beads that increases the enzyme and support affinity.

Covalent attachment and cross-linking

Other technique is covalent attachment and cross-linking in which covalent bonds, in general, are generated due to chemical reactions between enzymes and supported materials. This method is mainly depending on the formation of covalent bond between the enzyme and the support material. Covalent bond formation between the enzyme and the matrix happens through the side chain amino acids like histidine, arginine, aspartic acid, etc. Covalent bonds can prevent enzyme leakage and improve the stability and reusability of enzymes; however, there is a high risk of enzyme denaturation, possibly modifying enzymes chemically. Covalent bond formation between the enzyme and the matrix happens through the side chain amino acids like histidine, arginine, aspartic acid, etc. However, the reactivity depends on the presence of different functional groups such as carboxyl group, amino group, indole group, phenolic group, sulphydryl group, thiol group, imidazole group, and hydroxyl group. It requires, however, only low amounts of enzymes to be immobilized, and enzyme catalytic activity may be lost to some extent; for instance, Pereira et al. used covalent attachment method for immobilizing lipase in chitosan-based hydrogel and showed this method to be performed by adding glutaraldehyde and binding between free aldehyde groups and amine groups (NH₂) lipase, performing better than physical methods. Maintenance of immobilized enzymes structural and functional properties is very important which can be played by a cross-linking agent. Glutaraldehyde is one such cross-linking agent, due to its solubility in aqueous solvents and can form stable inter- and intrasubunit covalent bonds, popularly used as functional cross-linker.

Enzyme activity and release

Enzymes are applied as biocatalysts in the food industry. They are applied due to their different properties, such as selectivity, non-toxicity, usage of mild reaction conditions, and lack of secondary reactions. However, their use is limited due to low operational stability, low storage stability, and non-reusability. Therefore, the development of stable and recyclable enzymes for industrial applications is significant research effort. Polymeric hydrogels have recently emerged as a new matrix to immobilize enzymes, which can improve enzymatic activity and stability, and make them possible to be reused, and reduce costs. Hydrogels, due to their porous structure and water absorption properties, create a suitable environment for enzymatic activity and reduce enzymatic denaturation. The studies in this field clearly show that the immobilization of enzymes in hydrogels improves and even increases enzymatic activity as compared to the free state. For example, the encapsulation of lactase enzyme in carrageenan, chitosan, alginate, and pectin-based hydrogels have increased enzymatic activity and stability in different temperature and pH conditions. In a study conducted by Almulaiky et al. the retention of alpha-amylase using PAAm-based hydrogels reached 97.5%, indicating the ability of this hydrogel to protect enzymes, making them reusable. Also, in a study conducted by de Rajdeo et al. the immobilization of pectinase in alginate-based hydrogel showed high operational stability and maintained more than 80% of its initial activity after the third cycle of reuse.

Conclusion

Hydrogels are extensively applied in the food industry since they consist of safe and degradable hydrophilic polymers. In recent years, significant progress in design of enzyme immobilization methods has been made by using different techniques, and it is expected that this area will grow in the future.
immobilization, support matrix with different pore size, and surface modifications are developed. Designing ideal support material by modifying specific structural features required for a target enzyme is now possible by new simulations. The current review has provided a universal overview of the potentials of hydrogels for immobilizing enzymes to be applied in the food industry. β-Galactosidase, lipase, pectinase, amylase, protease, and glucose oxidase enzymes are widely applied in the food industry, and their use is limited due to the low stability and high cost. Hydrogels provide a suitable environment for enzyme activity and reduce enzyme denaturation due to their water absorption properties. Therefore, the immobilization of enzymes in polymeric hydrogels is a very effective approach in using them, leading to the optimal use of enzymes and cost reduction. It is our view that the future holds significant promise with increased usage of immobilized enzymes in pharmacological, clinical, food, biotechnological, and other industrial fields. Moreover, as the structure of enzyme and the mechanism of action is known, controlled immobilization methods can be developed in future.

Ethical Issues
Not applicable.

Conflict of Interest
The author declares no conflict of interest.

References
1. Rastogi H, Bhatia S. Future prospects for enzyme technologies in the food industry. In: Kuddus M, ed. Enzymes in Food Biotechnology: Production, Applications, and Future Prospects. Academic Press; 2019. p. 845-60. doi: 10.1016/b978-0-12-813280-7.00049-9
2. Ferrer M, Martínez-Martínez M, Bargiela R, Streit WR, Golshyna OV, Golshyn PN. Estimating the success of enzyme biosprospecting through metagenomics: current status and future trends. Microb Biotechnol 2016;9(11):22-34. doi: 10.1111/1751-7915.12309
3. Yushkova ED, Nazarova EA, Matyuhiina AV, Noskova AQ, Shavronskaya DO, Vinogradov VV, et al. Application of immobilized enzymes in food industry. J Agric Food Chem 2019;67(42):11553-67. doi: 10.1021/acs.jafc.9b04385
4. Wu S, Snajdrova R, Moore JC, Baldenius K, Bornscheuer UT. Biocatalysis: enzymatic synthesis for industrial applications. Angew Chem Int Ed Engl 2021;60(1):88-119. doi: 10.1002/anie.202006648
5. Bilal M, Zhao Y, Rasheed T, Iqbal HMN. Magnetic nanoparticles as versatile carriers for enzymes immobilization: a review. Int J Biol Macromol 2018;120(PT B):2530-44. doi: 10.1016/j.ijbiomac.2018.09.025
6. Liu DM, Chen J, Shi YP. Advances on methods and easy separated support materials for enzymes immobilization. TrAC Trends Anal Chem 2018;102:332-42. doi: 10.1016/j.trac.2018.03.011
7. Boudrant J, Woodley JM, Fernandez-Lafuente R. Parameters necessary to define an immobilized enzyme preparation. Process Biochem 2020;90:66-80. doi: 10.1016/j.procbio.2019.11.026
8. Du H, Shi S, Liu W, Teng H, Piao M. Processing and modification of hydrogel and its application in emerging contaminant adsorption and in catalyst immobilization: a review. Environ Sci Pollut Res Int 2020;27(12):12967-94. doi: 10.1007/s11356-020-08096-6
9. Bilal M, Rasheed T, Zhao Y, Iqbal HMN. Agaro-chitosan hydrogel-immobilized horseradish peroxidase with sustainable bio-catalytic and dye degradation properties. Int J Biol Macromol 2019;124:742-9. doi: 10.1016/j.ijbiomac.2018.11.220
10. Labus K, Wolanin K, Radosiński Ł. Comparative study on enzyme immobilization using natural hydrogel matrices—experimental studies supported by molecular models analysis. Catalysts 2020;10(5):489. doi: 10.3390/catal10050489
11. Alpaslan D, Dudu TE, Sahiner N, Aktça N. Synthesis and preparation of responsive poly(Dimethyl acrylamide/gelatin and pomegranate extract) as a novel food packaging material. Mater Sci Eng C Mater Biol Appl 2020;108:110339. doi: 10.1016/j.msec.2019.110339
12. Ho DK, Nguyen DT, Thambi T, Lee DS, Huynh DP. Polymamide-based pH and temperature-responsive hydrogels: synthesis and physicochemical characterization. J Polym Res 2018;26(1):7. doi: 10.1007/s10965-018-1666-4
13. Ali A, Ahmed S. A review on chitosan and its nano-composites in drug delivery. Int J Biol Macromol 2018;109:273-86. doi: 10.1016/j.ijbiomac.2017.12.078
14. Eslahi N, Abdorahim M, Simchi A. Smart polymeric hydrogels for cartilage tissue engineering: a review on the chemistry and biological functions. Biomacromolecules 2016;17(11):3441-63. doi: 10.1021/acs.biomac.6b01235
15. Urrutia P, Bernal C, Wilson L, Illanes A. Use of chitosan heterofunctionality for enzyme immobilization: β-galactosidase immobilization for galacto-oligosaccharide synthesis. Int J Biol Macromol 2018;116:182-93. doi: 10.1016/j.ijbiomac.2018.04.112
16. Selvarajan E, Nivetha A, Subathra Devi C, Mohanarivivasan V. Nanoimmobilization of β-galactosidase for lactose-free product development. In: Gothandam KM, Ranjan S, Dasgupta N, Lichtfouse E, eds. Nanoscience and Biotechnology for Environmental Applications. Cham: Springer International Publishing; 2019. p. 199-223. doi: 10.1007/978-3-319-97922-9_7
17. Shafi A, Khan M, Khan MZ, Husain Q. Ameliorating the activity and stability of β galactosidase by tailoring potential nanobiocatalyst on functionalized nanographene: headway to lactose hydrolysis. LWT 2019;112:108260. doi: 10.1016/j.lwt.2019.108260
18. Cargnin MA, de Souza AG, de Lima GF, Gasparin BC, Rosa DDS, Paulino AT. Pinus residue/pectin-based composite hydrogels for the immobilization of β-D-galactosidase. Int J Biol Macromol 2020;149:773-82. doi: 10.1016/j.ijbiomac.2020.01.280
19. Memarpour-Yazdi M, Karbalaei-Heidari HR, Khajeh K. Production of the renewable extremophile lipase: valuable biocatalyst with potential usage in food industry. Food Bioprod Process 2017;102:153-66. doi: 10.1016/j.fbp.2016.12.015
20. Navab A, Razzaghi M, Fernandes P, Karami L, Homaei A. Novel lipases discovery specifically from marine organisms for industrial production and practical applications. Process Biochem 2018;70:61-70. doi: 10.1016/j.procbio.2018.04.018
21. Xie W, Zang X. Covalent immobilization of lipase onto aminopropyl-functionalized hydroxyapatite-encapsulated-γ-Fe2O3 nanoparticles: a magnetic biocatalyst for interesterification of soybean oil. Food Chem 2017;227:397-403. doi: 10.1016/j.foodchem.2017.01.082
22. Mulko L, Perezoy JX, Rivarola CR, Barbero CA, Acevedo DF. Improving the retention and reusability of Alpha-amylase by immobilization in nanopolysacrylamide-graphene oxide nanocomposites. Int J Biol Macromol 2019;122:1253-
Yavari Maroufi et al

23. Wang YC, Hu HF, Ma JW, Yan QJ, Liu HJ, Jiang ZQ. A novel high maltose-forming α-amylase from Rhizomucor miehei and its application in the food industry. Food Chem 2020;305:125447. doi: 10.1016/j.foodchem.2019.125447

24. Gibbs MJ, Biela A, Krause S. α-Amylase sensor based on the degradation of oligosaccharide hydrogel films monitored with a quartz crystal sensor. Biosens Bioelectron 2015;67:540-5. doi: 10.1016/j.bios.2014.09.036

25. Amin F, Bhatti HN, Bilal M. Recent advances in the production strategies of microbial pectinases-a review. Int J Biol Macromol 2019;122:1017-26. doi: 10.1016/j.ijbiomac.2018.09.048

26. Habrylo O, Evangelista DE, Castillo PV, Pelloux J, Henrique-Silva F. The pectinases from Sphingomonas levis: potential for biotechnological applications. Int J Biol Macromol 2018;112:499-508. doi: 10.1016/j.ijbiomac.2018.01.172

27. Hosseini SS, Khodaiyan F, E. Mousavi SM, Kennedy JF, Azimi SZ. A health-friendly strategy for covalent-bonded immobilization of pectinase on the functionalized glass beads. Food Bioproc Tech 2021;14(1):177-86. doi: 10.1007/s11947-020-02524-8

28. Martínez-Medina GA, Barragán AP, Ruiz HA, Ilyina A, Martínez-Hernández JL, Rodríguez-Jasso RM, et al. Hydrogel/enzyme dots as adaptable tool for non-enzymatic colorimetric detection of bacteria. Food Bioproc Tech 2019;12(9):1559-72. doi: 10.1007/s11947-019-02301-2

29. Lafuente R. Biotechnological applications of proteases in food technology. Compr Rev Food Sci Food Saf 2018;17(2):412-36. doi: 10.1111/1541-4337.12326

30. Herrera-Márquez O, Fernández-Serrano M, Pilama M, Jácome MB, Luzón G. Stability studies of an amylase and a protease for cleaning processes in the food industry. Food Bioprod Process 2019;117:64-73. doi: 10.1016/j.fbp.2019.06.015

31. Long J, Pan T, Xie Z, Xu X, Jin Z. Effective production of lactosucrose using β-fructofuranosidase and glucose oxidase co-immobilized by sol-gel encapsulation. Food Sci Nutr 2019;7(10):3302-16. doi: 10.1002/fsn3.1195

32. Shen X, Yang M, Cui C, Cao H. In situ immobilization of glucose oxidase and catalase in a hybrid interpenetrating polymer network by 3D bioprinting and its application. Colloids Surf A Physicochem Eng Asp 2019;568:411-8. doi: 10.1016/j.colsurfa.2019.02.021

33. López-Hortas L, Conde E, Falqué E, Domínguez H, Torres MD. Preparation of hydrogels composed of bioactive compounds from aqueous phase of artichoke obtained by MHF technique. Food Bioproc Tech 2019;12(8):1304-15. doi: 10.1007/s11947-019-02301-2

34. Zhang H, Zhang F, Yuan R. Applications of natural polymer-based hydrogels in the food industry. In: Chen Y, ed. Hydrogels Based on Natural Polymers. Elsevier; 2020. p. 357-410. doi: 10.1016/b978-0-12-816421-1.00015-x

35. Martín MC, López OV, Ciolino AE, Morata VI, Villar MA, Ninago MD. Immobilization of enological pectinase in calcium alginate hydrogels: A potential biocatalyst for winemaking. Biocatal Agric Biotechnol 2019;18:101091. doi: 10.1016/j.bcab.2019.101091

36. Simon D, Obst F, Haefner S, Heroldt T, Peiter M, Simon F, et al. Hydrogel/enzyme dots as adaptable tool for non-compartmentalized multi-enzymatic reactions in microfluidic devices. RSC Adv 2019;9(41):67-77. doi: 10.1039/c8ra0180d

37. Dawes CS, Konig H, Lin CC. Enzyme-immobilized hydrogels to create hypoxia for in vitro cancer cell culture. J Biotechnol 2017;248:25-34. doi: 10.1016/j.jbiotec.2017.03.007

38. Sow LC, Nicole Chong JM, Liao QX, Yang H. Effects of κ-carrageenan on the structure and rheological properties of fish gelatin. J Food Eng 2018;239:92-103. doi: 10.1016/j.jfoodeng.2018.05.035

39. Zhang Z, Yang H, Yang H. Effects of sucrose addition on the rheology and microstructure of κ-carrageenan gel. Food Hydrocoll 2018;75:164-73. doi: 10.1016/j.foodhyd.2017.08.032

40. Benucci I, Mazzacchi C, Lombardelli C, Cacciotti I, Esti M. Multi-enzymatic systems immobilized on chitosan beads for pomegranate juice treatment in fluidized bed reactor: effect on haza-active molecules and chromatic properties. Food Bioproc Tech 2019;12(9):1559-72. doi: 10.1007/s11947-019-02315-w

41. Verma ML, Kumar S, Das A, Randhawa JS, Chandumeeswarri M. Chitin and chitosan-based support materials for enzyme immobilization and biotechnological applications. Environ Chem Lett 2020;18(2):315-23. doi: 10.1007/s10311-019-00942-5

42. Baksbi PS, Selvakumar D, Kadirvelu K, Kumar NS. Chitosan as an environment friendly biomaterial-a review on recent modifications and applications. Int J Biol Macromol 2020;150:1072-83. doi: 10.1016/j.ijbiomac.2019.10.113

43. Mohammad M, Mirabzadeh S, Shahvalizadeh R, Hamishehkar H. Development of novel active packaging films based on whey protein isolate incorporated with chitosan nanofiber and nano-formulated cinnamon oil. Int J Biol Macromol 2020;149:11-20. doi: 10.1016/j.ijbiomac.2020.01.083

44. Liu J, Liu S, Wu Q, Gu Y, Kan J, Jin C. Effect of protocatechuic acid incorporation on the physical, mechanical, structural and antioxidant properties of chitosan film. Food Hydrocoll 2017;73:90-100. doi: 10.1016/j.foodhyd.2017.06.035

45. Qu B, Luo Y. Chitosan-based hydrogel beads: preparations, modifications and applications in food and agriculture sectors-a review. Int J Biol Macromol 2020;152:437-48. doi: 10.1016/j.ijbiomac.2020.02.240

46. Facin BR, Moret B, Baretta D, Belfiore LA, Paulino AT. Immobilization and controlled release of β-galactosidase from chitosan-grafted hydrogels. Food Chem 2015;179:44-51. doi: 10.1016/j.foodchem.2015.01.088

47. Wolf M, Paulino AT. Full-factorial central composite rotational design for the immobilization of lactase in natural polysaccharide-based hydrogels and hydrolisis of lactose. Int J Biol Macromol 2019;135:986-97. doi: 10.1016/j.ijbiomac.2019.06.032

48. Riccardi NC, de Menezes EW, Valmir Benvenutti E, da Natividade Tavano OL, Berenguer-Murcia A, Secundo F, Fernandez-Lafuente R. Biotechnological applications of proteases in food technology. Compr Rev Food Sci Food Saf 2018;17(2):412-36. doi: 10.1111/1541-4337.12326

49. Perreira RM, Andrade GS, de Castro HF, Nogueira Campos MG. Performance of chitosan/glycerol phosphate hydrogel as a support for lipase immobilization. Mater Res 2017;20(5):201-201. doi: 10.1590/1980-5373-mr-2017-0091

50. Bucurescu A, Blaga AC, Estevinho BN, Rocha F. Microencapsulation of curcumin by a spray-drying technique using gum arabic as encapsulating agent and release studies. Food Bioproc Tech 2018;11(10):1795-806. doi: 10.1007/
Macromolecular hydrogels for enzyme immobilization

Advanced Pharmaceutical Bulletin, 2022, Volume 12, Issue 2 | 317

s11947-018-2140-3

53. de Souza AG, Cesco CT, de Lima GF, Artiﬁon SES, Rosa DDS, Paulino AT. Arabic gum-based composite hydrogels reinforced with eucalyptus and pine resins for controlled pharmaceutical release. *Int J Biol Macromol* 2019;140:33-42. doi: 10.1016/j.ijbiomac.2019.08.106

54. Varnier K, Vieira T, Wolf M, Belfiore LA, Tambourgi EB, Paulino AT. Polysaccharide-based hydrogels for the immobilization and controlled release of bovine serum albumin. *Int J Biol Macromol* 2018;120(Pt A):522-8. doi: 10.1016/j.ijbiomac.2018.08.133

55. Jiang Y, Li F, Li D, Sun-Waterhouse D, Huang Q. Zein/pectin nanoparticle-stabilized sesame oil paperpick emulsions: sustainable bioactive carriers and healthy alternatives to sesame paste. *Food Bioproc Tech* 2019;12(12):1982-92. doi: 10.1007/s11947-019-02361-4

56. Slavutsky AM, Bertuzzi MA. Formulation and characterization of hydrogel based on pectin and brea gum. *Int J Biol Macromol* 2019;123:784-91. doi: 10.1016/j.ijbiomac.2018.11.038

57. Hasanah U, Sani NDM, Heng LY, Idris R, Safitri E. Construction of a hydrogel pectin-based triglyceride optical biosensor with immobilized lipase enzymes. *Bioensors (Basel)* 2019;9(4):133. doi: 10.3390/bios9040135

58. Reyes-Avalos MC, Minjares-Fuentes R, Femenia A, Contreas-Esquível JC, Quinto-Ramos A, Espana-Riviera JR, et al. Application of an alginate–chitosan edible film on figs (*Ficus carica*): effect on bioactive compounds and antioxidant capacity. *Food Bioproc Tech* 2019;12(3):499-511. doi: 10.1007/s11947-018-2226-y

59. Narayan KB, Han SS. Dual-crosslinked poly(vinyl alcohol)/sodium alginate/silver nano-composite beads—a promising antimicrobial material. *Food Chem* 2017;234:103-10. doi: 10.1016/j.foodchem.2017.04.173

60. Petzold G, Rodríguez A, Valenzuela R, Moreno J, Mella K. Alginate: a versatile polymer matrix with biomedical and food applications. In: Grumeszecu V, Grumeszecu AM, eds. *Materials for Biomedical Engineering*. Elsevier; 2019. p. 323-50. doi: 10.1016/bs.carbpol.2017.10.084

61. Jana A, Halder SK, Ghosh K, Paul T, Vágvölgyi C, Mondal PK, et al. Tannase immobilization by chitin-alginate based adsorption-entrainment technique and its exploitation in fruit juice clarification. *Food Bioproc Tech* 2015;8(11):2319-29. doi: 10.1007/s11947-015-1586-9

62. Fabra MJ, Pérez-Bassart Z, Talens-Perales D, Martínez-Sanz M, López-Rubio A, Marín-Navarro J, et al. Matryoska enzyme encapsulation: development ofzymoactive hydrogel particles with efﬁcient lactose hydrolisis capability. *Food Hydrocolloids* 2019;96:171-7. doi: 10.1016/j.foodhyd.2019.05.026

63. Sonego JM, Santagapita PR, Perullini M, Jubbagyi M, Ca (II) and Ce (III) homogeneous alginates hydrogels from the parent alginic acid precursor: a structural study. *Dalton Transactions* 2016;45(24):10050-7. doi: 10.1039/C6DT00321D

64. de Oliveira RL, Dias JL, da Silva OS, Porto TS. Immobilization of pectinase from *Aspergillus aculeatus* in alginate beads and clariﬁcation of apple and umbu juices in a packed bed reactor. *Food Bioproc Tech* 2018;109:9-18. doi: 10.1007/ ifb.2018p.02.005

65. Sabahi Mohammadi N, Sowti Khiani M, Ghanbarzadeh B, Rezaei Mokarram R. Improvement of lipase biochemical properties via a two-step immobilization method: adsorption onto silicon dioxide nanoparticles and entrapment in a polyvinyl alcohol/alginate hydrogel. *J Biotechnol* 2020;323:189-202. doi: 10.1016/j.jbiotec.2020.07.002

66. Kamoun EA, Kenawy ES, Chen X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. *J Adv Res* 2017;8(3):217-33. doi: 10.1016/j.jare.2017.01.005

67. Park HH, Ko SC, Oh GW, Jang YM, Kim YM, Park WS, et al. Characterization and biological activity of PVA hydrogel containing chitoooligosaccharides conjugated with gallic acid. *Carbohydr Polym* 2018;198:197-205. doi: 10.1016/j.carbpol.2018.06.070

68. Singh A, Negi MS, Dubey A, Kumar V, Verma AK. Methods of enzyme immobilization and its applications in food industry. In: Kuddus M, ed. *Enzymes in Food Technology: Improvements and Innovations*. Singapore: Springer; 2018. p. 103-24. doi: 10.1007/978-981-13-1933-4_6

69. Sneha HP, Beulah KC, Murthy PS. Enzyme immobilization methods and applications in the food industry. In: Kuddus M, ed. *Enzymes in Food Biotechnology: Production, Applications, and Future Prospects*. Academic Press; 2019. p. 645-58. doi: 10.1016/978-0-12-83280-7-0.0037-2

70. Chakraborty S, Rusli H, Nath A, Sikder J, Bhattacharjee C, Curcio S, et al. Immobilized biocatalytic process development and potential application in membrane separation:
82. Hettiarachchy NS, Feliz DJ, Edwards JS, Horax R. The use of immobilized enzymes to improve functionality. In: Yadav RY, ed. Proteins in Food Processing. 2nd ed. Woodhead Publishing; 2018. p. 569-97. doi: 10.1016/978-0-08-100722-8.00022-x

83. Sirisha VL, Jain A, Jain A. Enzyme immobilization: an overview on methods, support material, and applications of immobilized enzymes. Adv Food Nutr Res 2016;79:179-211. doi: 10.1016/bs.anfr.2016.07.004

84. Nguyen HH, Kim M. An overview of techniques in enzyme immobilization. Appl Sci Convergence Technol 2017;26(6):157-63. doi: 10.5737/asct.2017.26.6.157

85. Srivastava M, Srivastava N, Ramteke P, Mishra P, eds. Approaches to Enhance Industrial Production of Fungal Cellulases. Fungal Biology. Cham: Springer; 2019. doi: 10.1007/978-3-030-14726-6_3

86. Rehman S, Bhatti HN, Bilal M, Asgher M. Cross-linked enzyme aggregates (CLEAs) of Pencillium notatum lipase enzyme with improved activity, stability and reusability characteristics. Int J Biol Macromol 2016;91:1161-9. doi: 10.1016/j.ijbiomac.2016.06.081

87. Defaei M, Taheri-Kafani B, Miroliaei M, Yaghmaei P. Improvement of stability and reusability of α-amylase immobilized on naringin functionalized magnetic nanoparticles: a robust nanobiocatalyst. Int J Biol Macromol 2018;113:354-60. doi: 10.1016/j.ijbiomac.2018.02.147

88. Bilal M, Rasheed T, Zhao Y, Iqbal HMN, Cui J. “Smart” chemistry and its application in peroxidase immobilization using different support materials. Int J Biol Macromol 2018;119:278-90. doi: 10.1016/j.ijbiomac.2018.07.134

89. Traffano-Schiffo MV, Castro-Giraldez M, Fito PJ, Santagapita PR. Encapsulation of lactase in Ca(II)-alginate beads: Effect of stabilizers and drying methods. Food Res Int 2017;100(Pt 1):296-303. doi: 10.1016/j.foodres.2017.07.020

90. Traffano-Schiffo MV, Castro-Giraldez M, Fito PJ, Perullini M, Santagapita PR. Gums induced microstructure stability in Ca(ll)-alginate beads containing lactase analyzed by SAXS. Carbohydr Polym 2018;179:402-7. doi: 10.1016/j.carbpol.2017.09.096

91. Ricardi NC, de Menezes EW, Benvenutti EV, de Natividade Schöffel J, Hackenhaar CR, Hertz PF, Costa TM. Highly stable silica/chitosan support for β-galactosidase immobilization for application in dairy technology. Food Chemistry, 2018;25:346:343-50. doi: 10.1016/j.foodchem.2017.11.026

92. Almulaiky YQ, Khalil NM, El-Shishtawy RM, Altwal T, Algamal Y, Aldaher M, et al. Hydroxyapatite-decorated ZrO2 for α-amylase immobilization: toward the enhancement of enzyme stability and reusability. Int J Biol Macromol 2021;167:299-308. doi: 10.1016/j.ijbiomac.2020.11.150

93. Rajdeo K, Harini T, Lavana K, Fadnavis NW. Immobilization of pectinase on reusable polymer support for clarification of apple juice. Food Bioproc Tech 2016;99:12-9. doi: 10.1016/j.fbp.2016.03.004