Antidiabetic activity of *Pulicaria wightiana* extract in streptozotocin-induced diabetic rats

Nelson Kumar Sadhu 1*, Ravindra Reddy Kandula 2, Chandra Sekhar Kothapalli Bonnth 3

1Department of Pharmacology, P. Rami Reddy Memorial College of Pharmacy, Kadapa-516003, A.P, India
2Department of Pharmaceutics, CES College of Pharmacy, Kurnool-518 218, A.P, India.
3Director, Oil Technological & Pharmaceutical Research Institute (OTPRI), JNTUA, Ananthapuramu-515002, A.P, India.

INTRODUCTION:

Diabetes mellitus (DM) is a chronic endocrine disorder, involving metabolic disorders of carbohydrate, fat, and protein. All forms of diabetes are characterized by a decrease in the circulating concentration of insulin (insulin deficiency) and a decrease in the response of peripheral tissues to insulin (insulin resistance) [1, 2]. In modern medicine no satisfactory effective therapy is still available to cure diabetes mellitus [3]. There is increasing demand by patients to use natural products with antidiabetic activity due to side effects associated with the use of insulin and oral hypoglycemic agents [4-6]. There are numerous traditional medicinal plants reported to have hypoglycemic properties such as Allium sativum (Garlic), Azadirachta indica (Neem), Vinca rosea (Nayantara), Trigonella foenum (Fenugreek), Momordica charantia (Bitter ground), Ocimum santum (Tulsi) [7]. *Pulicaria wightiana* (Family: Asteraceae) commonly known as sontikli and distributed in various parts of India. Earlier phytochemical studies reveal the presence of Sesquiterpenoids, Diterpenoids and Flavonoids [8]. However there is no scientific report available on anti-diabetic activity of *Pulicaria wightiana*. Thus the present study is an attempt to test the antidiabetic activity of *Pulicaria wightiana*.

MATERIALS AND METHODS:

Plant Material:

The basic plant material of *Pulicaria wightiana* whole plant used for the investigation was obtained from local area of Kadapa, India. The plant can be identified authenticated by department of Botany SV University, Tirupathi.

Preparation of the extract:

The whole plant product was collected and dried under shadow. The shade-dried whole plant was subjected to...
pulverization to get coarse powder. The coarsely powdered whole plant (1 kg) of *P. wightiana* was used for extraction with methanol in soxlate apparatus. The extract was evaporated to dryness under vacuum and dried in vacuum desiccator (15.5% w/w).

Animals:

Wistar albino rats of both sexes were used for the study. Before and during the experiment, rats were fed with standard diet (Pranav Agro, Mysore). After randomization into various groups and before initiation of experiment, the rats were acclimatized for a period of 7 days under standard environmental conditions of temperature, relative humidity, and dark/light cycle. Animals described as fasting were deprived of food and water for 16 hours ad libitum.

Oral Glucose Tolerance Test:

Rats were divided into four groups containing six animals in each group. All animals fasted before treatment. Group I was kept as control which received distilled water p.o., group II received standard drug, group III received methanolic extract 200mg/kg, and group IV received methanolic extract 400 mg/kg respectively. The rats of group III and IV were loaded with glucose (3g/kg, p.o.) 30 minutes after drug administration. Blood samples were collected from puncturing the retro orbital sinus on 0, 30, 90 and 150 minutes after loading glucose. Serum glucose level was measured immediately by using glucose estimation kit (Span Diagnostic Pvt. Ltd. Surat, India).

Experimental Induction of Diabetes:

Animals were allowed to fast for 12 h and were administered freshly prepared streptozotocin (STZ) (Himedia) at the concentration of 60 mg/kg bodyweight, i.p. in 0.1mol/L cold citrate buffer, pH 4.5 [18]. The STZ-treated animals were allowed to drink 5% glucose solution overnight to overcome drug-induced hypoglycemia. After 24 h of injection, fasting blood glucose level was checked, and animals with levels above 3.9 mmol/L were considered diabetic.

Biochemical Estimations:

Blood samples were collected from puncturing the retro orbital sinus on initial day, 7th, 14th & 21st day. Serum glucose level was measured immediately by using glucose estimation kit (Span Diagnostic Pvt. Ltd. Surat, India). The lipid profiles (total cholesterol, TG, HDL, and LDL) for all the four groups of animals were performed using commercially available kits. Glycogen content of liver was measured according to Van method [9].

Histopathological Studies

The whole pancreas from each animal was removed after sacrificing the animal and was collected in 10% formalin solution, and immediately processed by the paraffin technique. Sections of 5μ thickness were cut and stained by haematoxylin and eosin (H & E) for histological examination.

Statistical Analysis.

All the values were expressed as mean ± standard error of mean (S.E.M.) and analyzed for ANOVA and post hoc Tukey’s t-test. Differences between groups were considered significant at P < 0.05 levels.

RESULTS:

The effect of methanolic extract of *Pulicaria wightiana* (400 mg/kg and 200 mg/kg) on glucose tolerance test are shown in Figure 1. The supplementation of *Pulicaria wightiana* showed significant hypoglycemic effect after 90 minutes of treatment. The anti-hyperglycemic effect of the extracts on the fasting blood sugar levels of diabetic rats is shown in Table 1 & Figure 2. Administration of STZ (60 mg/kg, i.p.) lead to 1.5 fold elevation of fasting blood glucose levels, which was maintained over a period of 4 weeks. Daily treatment of *Pulicaria wightiana* lead to a dose dependent and significant (P<0.001) fall in blood sugar levels. STZ treatment will increase the serum enzymes levels such as cholesterol, triglycerides, LDL and decrease the HDL level, but glibenclamide (5mg/kg) and whole plant extract of *Pulicaria wightiana* reversed the above STZ induce changes (Table 2). There was a significant increase in glycogen content of liver (P < 0.001) with *Pulicaria wightiana* or glibenclamide treatment as compared to diabetic control (Table 3). Histopathological studies (Figure 3) showed normal acini and normal cellular population in the islets of Langerhans in pancreas of control rats (Group I). Extensive damage to the islets of Langerhans and reduced dimensions of islets (Group II), restoration of normal cellular population size of islets with hyperplasia by glibenclamide (Group III) were also shown. The partial restoration of normal cellular population and enlarged size of β-cells with hyperplasia were shown by methanolic extracts (Figure 1. Group IV & Group V).
Table 1: Effect of MPW on Glucose levels in diabetic rats

Group	Treatment	Serum glucose (mmol/L) (Mean ± SEM) on			
I	Normal (Distilled water)	Initial day	7th day	14th day	21st day
		5.24 ± 0.69	5.26 ± 0.69	5.26 ± 0.61	5.24 ± 0.85
II	Control STZ (60 mg/kg, i.p)	5.26 ± 0.61	24.90 ± 1.22	27.44 ± 1.3***	21.60 ± 0.24##
III	Standard Glibenclamide (5 mg/kg, p.o.) + STZ	5.28 ± 0.69	24.30 ± 1.19	10.70 ± 1.31***	5.46 ± 0.006***
IV	Low dose Methanolic extract (200 mg/kg, p.o) + STZ	5.24 ± 0.68	24.28 ± 1.19	16.72 ± 1.36***	7.10 ± 0.05***
V	High dose Methanolic extract (400 mg/kg, p.o) + STZ	5.25 ± 0.71	24.20 ± 1.00	10.58 ± 1.33***	5.47 ± 0.26***

Values are expressed as means ± S.E.M. n=6, ### = P<0.001 when compared to normal group (G-I), *** = P<0.001 when compared to diabetic control group (G-II)

Table 2: Effect of MPW on serum Lipid profile

Group	Treatment	Cholesterol (mg/dL)	Triglycerides (mg/dL)	HDL (mg/dL)	LDL (mg/dL)
I	Normal (Distilled water)	55.62 ± 4.456	36.49 ± 3.320	35.40 ± 5.556	12.91 ± 1.671
	Control STZ (60 mg/kg, i.p)	274.26 ± 13.96***	140.37 ± 15.58***	10.26 ± 2.337***	235.86 ± 14.10***
III	Standard Glibenclamide (5 mg/kg, p.o.) + STZ	59.92 ± 4.472***	48.22 ± 4.489***	41.385 ± 3.401***	8.89 ± 1.500***
IV	Low dose Methanolic extract (200 mg/kg, p.o) + STZ	60.50 ± 4.437***	50.58 ± 2.177***	38.5 ± 5.590***	11.88 ± 1.108***
V	High dose Methanolic extract (400 mg/kg, p.o) + STZ	56.53 ± 4.774***	44.23 ± 2.74***	39.09 ± 3.72***	10.590 ± 1.315***

Values are expressed as means ± S.E.M. n=6, ### = P<0.001 when compared to normal group (G-I), *** = P<0.001 when compared to diabetic control group (G-II)
Table 3: Effect of MPW on liver glycogen

Group	Treatment	Liver glycogen (mg/g) (Mean ± SEM) on 21st day
I	Normal	16.53 ± 0.1
	(Distilled water)	
II	Control	8.12 ± 0.12###
	STZ (60 mg/kg, i.p)	
III	Standard	15.28 ± 0.9***
	Glibenclamide (5 mg/kg, p.o.) + STZ	
IV	Low dose	12.98 ± 1.1***
	Methanolic extract (200 mg/kg, p.o) + STZ	
V	High dose	14.58 ± 0.4***
	Methanolic extract (400 mg/kg, p.o) + STZ	

Values are expressed as means ± S.E.M. n=6, ### = P<0.001 when compared to normal group (G-I), *** = P<0.001 when compared to diabetic control group (G-II)

OGTT

![OGTT graph](image1)

Figure 1: Effect of methanolic extract of *Pulicaria wightiana* on glucose tolerance test.

GLUCOSE

![GLUCOSE graph](image2)

Figure 2: Effect of methanolic extract of *Pulicaria wightiana* on glucose levels
DISCUSSION:

The present study discusses the antidiabetic effect of the methanolic extract of *Pulicaria wightiana* on streptozotocin-induced diabetic rats. Insulin-dependent diabetes mellitus (IDDM) is a disease caused by progressive destruction of the insulin secreting β-cells. Streptozotocin (STZ) is most commonly used to induce diabetes in rats. STZ selectively destroys the pancreatic cells that secrete insulin, which causes less active pancreatic cells and produces diabetes mellitus [10].

From the results of the present study, it appears that insulin producing cells are still functioning and the stimulation of insulin release could be responsible for most of the metabolic effects. The medicinal plant compounds may have mechanisms acting as insulin-like effect, improving insulin sensitivity, augmenting glucose-dependent insulin secretion, and stimulating the regeneration of islets of Langerhans in pancreas of STZ-induced diabetic rats.

Presence of phenolic compounds such as alkaloids, flavonoids, and tannins in *Pulicaria wightiana* was noticed in preliminary phytochemical analysis. We hypothesized that *Pulicaria wightiana* can be attributed to their insulin-trophic effect that enables the reduction of blood glucose levels due to their antidiabetic effect. The possible mechanism of action of *Pulicaria wightiana* extract treated groups could be potentiating the pancreatic secretion of insulin from β-cells of islets, as was evident by significantly lowering the level of glucose [11].

Conflicts of Interests

The authors declare no conflict of interests.

Acknowledgments

The authors express their gratitude to management of PRRM College of pharmacy for providing the necessary facilities for carrying out the experiments.

REFERENCES:

1. Vats V, Yadav SP, Grover JK. Ethanolic extract of Ocimum sanctum leaves partially attenuates streptozotocin-induced alterations in glycogen content and carbohydrate metabolism in rats. J Ethnopharmacol. 2004;90(1):155-160.
2. Kumar GPS, Arulselvan P, Kumar DS, Subramanian SP. Anti-diabetic activity of fruits of Terminalia chebula on streptozotocin induced diabetic rats. Journal of Health Science. 2006;52(3):283-291.
3. Ghosh S, Suryawashi SA. Effect of Vinca rosea extracts in treatment of alloxan diabetes in male albino rats. Indian J Exp Biol. 2001;39(8):748-758.
4. Holman RR, Turner RC. Oral agents and insulin in the treatment of NIDDM. In: Pickup J, Williams G. editors. *Text Book of Diabetes*. Oxford, UK: Blackwell;1991. pp. 467-469.
5. Rao BK, Kesavulu MM, Apparao C. Antihyperglycemic activity of Momordica cymbalaria in alloxan diabetic rats. J Ethnopharmacol. 2001;78(1):67-71.
6. Kameswar Rao B, Giri R, Kesavulu MM, Apparao CH. “Herbal medine,” in *The Management by Indigenous Resources*, J.S. Bajaj, Ed., Diabetes Mellitus in Developing Countries. Interprint, New Delhi, India, 1997. pp. 375-377.
7. Jaleel CA, Gopi R, Lakshmanan GMA, Panneerselvam R. Triadimefon induced changes in the antioxidant metabolism and ajmalicine production in *Catharanthus roseus* (L.) G. Don, Plant Science. 2006;171(2):271-276.
8. Bohlman F, Knoll KH, El-Emary NA. Newartige sesquiterpene lactone aus *Pulicaria crispa*. Phytochemistry . 1979;18:1231-1233.
9. VAN DER VIES J, Two methods for the determination of glycogen in liver. Biochem J. 1954;57(3):410-416.
10. Gilman A.G, Rall TW, Nies AS, Taylor (eds.). Goodman and Gilman’s the Pharmacological Basis of Therapeutics. 8th ed. New York, NY. Pergamon Press, 1990. p.1516.
11. Shirwaikar A, Rajendran K, Barik R. Effect of aqueous bark extract of Garuga pinnata Roxb. in streptozotocin-nicotinamide induced type-II diabetes mellitus. J Ethnopharmacol. 2006;107(2):285-290.

Cite this article as: Sadhu NK, Kandula RR, Kothapalli Bonnth CS. Antidiabetic activity of Pulicaria wightiana extract in streptozotocin-induced diabetic rats. J Compr Phar 2016;3(1):8-13