Saturating light and not increased carbon dioxide under ocean acidification drives photosynthesis and growth in Ulva rigida (Chlorophyta)

Ralf Rautenberger1,*, Pamela A. Fernández1, Martina Strittmatter2, Svenja Heesch3, Christopher E. Cornwall1,4, Catriona L. Hurd1,4 & Michael Y. Roleda1,5,*

1Department of Botany, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
2The Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, PA37 1QA, Scotland
3Irish Seaweed Research Group, Ryan Institute for Environmental, Marine and Energy Research, National University of Ireland, Galway (NUIG), University Road, Galway, Ireland
4Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia
5Bioforsk Norwegian Institute for Agricultural and Environmental Research, Kudalsveien 6, 8049 Bodø, Norway

Keywords
Bicarbonate, C:N ratio, carbon physiology, carbon-concentrating mechanism, carbonic anhydrase, chlorophyll fluorescence, Fv/Fm, pigments, seaweed, stable carbon isotope.

Abstract
Carbon physiology of a genetically identified Ulva rigida was investigated under different CO2(aq) and light levels. The study was designed to answer whether (1) light or exogenous inorganic carbon (Ci) pool is driving growth; and (2) elevated CO2(aq) concentration under ocean acidification (OA) will downregulate CAext-mediated HCO3− dehydration and alter the stable carbon isotope (δ13C) signatures toward more CO2 use to support higher growth rate. At pH9.0 where CO2(aq) is <1 μmol L−1, inhibition of the known HCO3− uptake mechanisms, that is, direct HCO3− uptake through the AE port and CAext-mediated HCO3− dehydration decreased net photosynthesis (NPS) by only 56–83%, leaving the carbon uptake mechanism for the remaining 17–44% of the NPS unaccounted. An in silico search for carbon-concentrating mechanism elements in expressed sequence tag libraries of Ulva found putative light-dependent HCO3− transporters to which the remaining NPS can be attributed. The shift in δ13C signatures from −22‰ to −10‰ under saturating light but not under elevated CO2(aq) suggest preference and substantial HCO3− use to support photosynthesis and growth. U. rigida is Ci saturated, and growth was primarily controlled by light. Therefore, increased levels of CO2(aq) predicted for the future will not, in isolation, stimulate Ulva blooms.

Introduction
The world’s oceans are a sink for CO2 that has been released through anthropogenic processes since the industrial revolution (~1850). This process buffers climate change in the terrestrial system, but perturbs the seawater carbonate system, and is reducing the pH of the surface ocean, termed ocean acidification (OA) (Takahashi et al.
Ulva is a globally ubiquitous seaweed, well known for causing massive macroalgal blooms that can have negative environmental and economic impacts (McGlathery 2001; Sun et al. 2008; Pang et al. 2010). The drivers of Ulva primary production and growth are variously attributed to light (Aldridge and Trimmer 2009), inorganic nutrients (Coutinho and Zingmark 1993), CO$_2$ (Xu and Gao 2012), and their interactions. Under a saturating light (200–500 μmol photons m$^{-2}$ s$^{-1}$) growth of Ulva curvata can become limited by the supply of inorganic nitrogen (Coutinho and Zingmark 1993). When grown under a subsaturating light (100 μmol photons m$^{-2}$ s$^{-1}$) (but unspecified nutrient concentration), the growth of Ulva prolifera cultivated from spores was reported to increase by ~20% d$^{-1}$ when CO$_2$ was increased by 156% (Xu and Gao 2012). Whether or not a saturating light will further enhance the growth of Ulva under elevated CO$_2$ is unknown.

There are many studies showing that HCO$_3^-$ is the primary source of Ci for Ulva species (Drechsler and Beer 1991; Björk et al. 1992, 1993; Drechsler et al. 1993; Sharkia et al. 1994). Therefore, it is unlikely that the predicted increase in CO$_2$(aq) due to OA will have an effect on the rates of photosynthesis and growth in Ulva (e.g. Xu and Gao 2012). Nevertheless, researchers continue to pursue this line of research (e.g. Pajusala et al. 2013; Olschläger et al. 2013), suggesting that increased levels of CO$_2$(aq) will cause increased growth rate in Ulva. Here, we demonstrate that light, and not Ci, is the main driver for growth of Ulva and suggest that increased levels of CO$_2$(aq) predicted for the future will not, in isolation, stimulate photosynthesis and growth of Ulva.

This study is important and timely because it questions the validity of the current dogma that increasing CO$_2$ will promote (harmful) algal blooms and drive ecosystem “winners and losers”. There is currently a very limited understanding of algal carbon physiology on an organismal level (e.g. Kübler et al. 1999) and on the environmental drivers of basic physiological mechanisms (e.g. Raven 1991) such as photosynthesis and growth. Moreover, the combined physiological and molecular approaches to investigate key driver for Ulva growth confers novelty in this work.

The photosynthetic carbon physiology and growth of a genetically identified Ulva species under different CO$_2$(aq) and light levels were investigated. We hypothesized that (1) under current concentration of CO$_2$(aq), exogenous Ci is saturating for photosynthesis and growth of Ulva rigida; (2) U. rigida has several putative HCO$_3^-$ use mechanisms other than the known inhibitor-sensitive CA$_{ext}$-catalyzed dehydration of HCO$_3^-$ and direct uptake of HCO$_3^-$ through the anion-exchange (AE) port; and (3) elevated concentrations of CO$_2$(aq) predicted for the
future will not affect *U. rigida* growth. The experiment was designed to answer whether (1) light or exogenous Ci pool is limiting *U. rigida* growth; (2) elevated Ci (CO$_2$ and HCO$_3^-$) under OA will support a higher growth rate; (3) CA$_{ext}$-mediated HCO$_3^-$ dehydration is downregulated when *Ulva* is grown under a high CO$_2_{(aq)}$ concentration; and (4) the hypothetical shift to more CO$_2$ use under OA will alter the stable carbon isotope ($\delta^{13}C$) signature (cf. Maberly et al. 1992; Raven et al. 2002; Giordano et al. 2005) and the higher available Ci under OA relative to constant nutrient supply will increase the molar carbon to nitrogen (C:N) ratio (cf. van de Waal et al. 2010).

Materials and Methods

Algal material and stock culture conditions

Sheet-forming *Ulva* thalli (Fig. 1) were collected on 5 October 2011 from the subtidal at the entrance (3 m depth) of Otago Harbour, southern New Zealand (Aramoana, 45.8°S, 170.7°E) and transported in a cooled container to the laboratory. Several algal discs (Fig. 1 inset) were excised from one individual and cultivated in 5-L glass vessels with nutrient-enriched seawater, formulated using the ESNW recipe (Harrison et al. 1980; Berges et al. 2001), which was used throughout the experiment. To avoid significant pH drop, the ESNW was prepared with one-third the ESNW recipe (Harrison et al. 1980; Berges et al. 2001), vessels with nutrient-enriched seawater, formulated using the above differences: DNA was extracted and PCR products were purified using commercial kits (NucleoSpin Plant II, Macherey-Nagel, Düren, Germany, and PureLink PCR Purification Kit, Invitrogen, Germany, respectively). Sequence alignments of the large subunit of the plastid-encoded RuBisCO gene region (rbl) were analyzed under the maximum-likelihood (ML) criterion using the default settings in RAxML v.7.2.2 (Stamatakis 2006). Our rbl sequence (European Nucleotide Archive [ENA] accession no. LK022428) was found to be 100% identical to rbl sequences from *U. rigida* samples collected in New Zealand (e.g. GenBank accession number EF110302; Heesch et al. 2009), Europe (EU484408; Loughnane et al. 2008) and Chile (AY422564: Hayden and Waaland 2004). The phylogenetic analysis placed our strain in a well-supported clade with the above sequences (data not shown), confirming its identification as *Ulva rigida* C.Agardh.

Swarmers released from clonal tissue were positively phototactic indicating that the cultivated strain was a gametophyte, that is, the haploid generation (Guiry and Guiry 2014). Cultivation of the released gametes failed to develop parthenogenetically, suggesting that swarmers were most likely male gametes, which, in contrast to female swarmers, have lower capacity to germinate without fertilization (Koeman and van den Hoek 1981).

Carbon physiology: inhibition of known bicarbonate-use mechanisms

Acetazolamide (AZ, CAS number 59-66-5) and 4,4’-diisothiocyanatostilbene-2,2’-disulfonate (DIDS, CAS
number 207233-90-7) are inhibitors with high specificity for blocking the catalyzed external dehydration of HCO$_3^-$ and the direct HCO$_3^-$ uptake through the anion-exchange (AE) port, respectively (Björk et al. 1992; Axelsson et al. 1995, 1999; Axelsson et al. 2000; Herfort et al. 2002; Suffrian et al. 2011). Both mechanisms operate independently: the addition of these inhibitors in the absence of other HCO$_3^-$ uptake mechanisms can result in an almost complete inhibition of net photosynthesis (Axelsson et al. 1995; Larsson and Axelsson 1999; Fernández et al. 2014).

A concentration of 300 μmol L$^{-1}$ DIDS to inhibit the direct HCO$_3^-$ uptake and 100 μmol L$^{-1}$ AZ to inhibit CA$_{ext}$ were selected based on the dose response curves of Herfort et al. (2002), and the standard utilization of these concentrations across studies on the Ci-use mechanisms of micro- and macroalgal species (e.g. Björk et al. 1992; Axelsson et al. 1995, 1999; 2000; Young et al. 2001; Herfort et al. 2002; Suffrian et al. 2011; van Hille et al. 2014). The 10 mmol L$^{-1}$ stock solution of AZ (≥99%, Sigma-Aldrich, St. Louis, MO, USA) was prepared by dissolving the powder in a basic medium (10 mmol L$^{-1}$ NaOH in MilliQ, 18.3 MΩ cm) while the 30 mmol L$^{-1}$ stock solution of DIDS (≥80% elemental analysis, Sigma-Aldrich) was prepared by dissolving the powder in MilliQ. The stock solutions were freshly prepared and kept at 4°C and dark.

Algal discs were acclimated for 2 days under pH$_T$ 9.0 where Ci is mainly available as HCO$_3^-$ (700 μmol L$^{-1}$) with minimal CO$_2$(aq) (<1 μmol L$^{-1}$). Seawater was adjusted using equal amounts of 0.2 mol L$^{-1}$ NaOH and 0.2 mol L$^{-1}$ NaHCO$_3$ (Roleda et al. 2012a). After 2 days, inhibition of photosynthetic O$_2$ evolution ($n = 3$) under the same pH$_T$ = 9.0 was measured inside a 154-ml transparent acrylic glass chamber equipped with an optode, that is, FOXY-R fiber optic oxygen sensor coupled to the USB-2000 spectrophotometer (Ocean Optics, Dunedin, FL, USA) and the PC interface. The seawater was continuously stirred (650 rpm) to create a homogenous O$_2$ profile. To avoid photorespiration due to high O$_2$ concentrations and temperature, the seawater was initially adjusted to 100 ± 20 μmol O$_2$ L$^{-1}$ using N$_2$ gas and kept constant at 12 ± 1°C, respectively. Net oxygen evolution of individual U. rigida discs was recorded (OOI Sensor 1.0 software; Ocean Optics Inc., FL, USA) at a PPFR of 250 μmol photons m$^{-2}$ s$^{-1}$ (400–700 nm). Oxygen concentration inside the chamber was recorded for 20 min before the inhibitors were added and then for a further 2 × 15 min following the sequential addition of the two inhibitors (e.g. DIDS-AZ and AZ-DIDS; $n = 3$). The oxygen concentration was measured continuously for a total of 50 min per sample. The rate of oxygen evolution was calculated using a linear regression for every stepwise incubation period, that is, the whole incubation time (20 min) before application of the inhibitors, and after every application of each inhibitor (2 × 15 min). The oxygen concentration (μmol O$_2$ L$^{-1}$) was measured after Millero and Poisson (1981) and García and Gordon (1992), and corresponding % inhibition of net photosynthetic (NPS) rate was calculated.

In silico detection of carbon-concentrating mechanisms elements in expressed sequence tag libraries of Ulva

To test our hypothesis on Ulva having different Ci uptake mechanisms other than the known inhibitor-sensitive CA$_{ext}$-catalyzed dehydration of HCO$_3^-$ and direct uptake of HCO$_3^-$ through the AE port, we searched one expressed sequence tag (EST) library of U. prolifera (Jia et al. 2011) publicly available in the dbEST database (Boguski et al. 1993) for putative carbon-concentrating mechanism (CCM) elements. A number of described CCM proteins of the unicellular green alga Chlamydomonas reinhardtii were used in a tblastn search against the U. prolifera EST data set and included the following protein sequences: alpha carbonic anhydrases (CAH1 [accession number BAA14232], CAH3 [EDP00852.1], beta carbonic anhydrases (CAH6 [AAR82947.1], CAH8 [ABS87675.1]), gamma carbonic anhydrase (CAG2 [XP_001701594]), nuclear transcriptional regulators of CCM elements (CIA5 [AAG37909.1], LCR1 [BAD13492.1]), low-CO$_2$-inducible chloroplast membrane Ci candidate transporter (LCIA [XP_00170387.1]), low-CO$_2$-inducible proteins to recapture leaking CO$_2$ (LCIB [EDP04243.1], LCIC [BAD16683.1]), chloroplast carrier protein 1 (CCP1 [EDP04147.1]), high light-activated 3 (HLA3) ATP-binding cassette (ABC) transporter (HLA3 [XP_00170040.1]) and chloroplast proton extrusion protein (CemA [XP_001696592]). Retrieved sequences were further subjected to a reciprocal blastx search against the National Center for Biotechnology Information (NCBI) Genbank nonredundant (nr) database. Furthermore, a VecScreen was run on retrieved sequences to check for vector contamination.

Interactive light × CO$_2$ experimental set-up

Six discs of U. rigida clones (each 3 cm2) were contained in each 24 × 650 mL Perspex flow-through culture vessels. Specimen was pre-incubated under pH$_T$ 7.96 and nutrient replete condition (11.6 ± 0.7 μmol L$^{-1}$ NO$_3$-N, 9.1 ± 0.4 μmol L$^{-1}$ PO$_4$-P and 0.6 ± 0.1 μmol L$^{-1}$ NH$_4$-N; ± SD, $n = 3$), exposed to PPFR of 30 μmol photons m$^{-2}$ s$^{-1}$ (400–700 nm, 12 h: 12 h, light:dark) inside a temperature-controlled walk-in culture chamber set to 13 ± 1°C. A preliminary rapid ETR-E curve measurement calculated a saturating irradiance $E_k = 79$ ± 9 μmol
photons m\(^{-2}\) s\(^{-1}\), and no photo-inhibition of the maximum electron transport rate (ETR\(_{\text{max}}\)) was observed up to a maximum PPFR of 600 \(\mu\)mol photons m\(^{-2}\) s\(^{-1}\) (R. Rautenberger, unpubl. data). Accordingly, two light treatments (PPFR of 400–700 nm) were set as follows: a limiting light (LL) of 31 ± 9 \(\mu\)mol photons m\(^{-2}\) s\(^{-1}\) and a saturating light (SL) of 274 ± 18 \(\mu\)mol photons m\(^{-2}\) s\(^{-1}\). Philips HPI-T 400 W quartz metal halide lamps (Philips) provided the experimental light and the PPFR measured using a 4\(\pi\) quantum sensor (QSL-2101, Biospherical Instruments Inc., San Diego, CA, USA). The LL treatment was achieved using layers of neutral density black screen cover.

The response of \textit{U. rigida} to a shift in pCO\(_2\) was investigated under two treatments slightly higher than today’s pCO\(_2\) (471 \µatm) and that predicted for year 2100 (1224 \µatm). The 160\% higher CO\(_2\) between the low and high pCO\(_2\) treatments is slightly lower than the 192\% increase projected in 2100 (Meethl et al. 2007; IPCC 2013). After three days pre-incubation described above, each culture vessel was randomly assigned to different pCO\(_2\)/pH\(_T\) treatments slightly higher than today’s pHT (7.59 = HC; low CO\(_2\)/high pH\(_T\); 7.97 = LC; high CO\(_2\)/low pH\(_T\)) (high CO\(_2\)/low pH\(_T\)) treatments (PPFR of 400 \(\mu\)mol photons m\(^{-2}\) s\(^{-1}\)). Philips HPI-T 400 W quartz metal halide lamps (Philips) provided the experimental light and the PPFR measured using a 4\(\pi\) quantum sensor (QSL-2101, Biospherical Instruments Inc., San Diego, CA, USA). The LL treatment was achieved using layers of neutral density black screen cover.

The Chl \(a\) fluorescence of each algal disc was blotted dry and photographed by a 14-megapixel resolution digital camera (Lumix DMC-F110; Panasonic, Osaka, Japan). Algal surface area (cm\(^2\)) was analyzed by comparing the pixel density of algal discs to a known reference surface. Seawater in each of the 24 vessels was refreshed every 4.4 h (=\(4\times\) a day change in medium). Within the 4.4-h incubation period, a maximum 0.18 units increase in pH due to photosynthesis was estimated (Cornwall et al. 2012); thereby persistently exposing the algae to a specific range of the pH treatment. Each culture vessel was provided with water movement using magnetic bars stirred at 650 rpm. Five hundred milliliter of the acid–base manipulated seawater corresponding to pH\(_T\) 7.59 and 7.97 was collected and fixed with mercuric chloride. Total alkalinity (A\(_T\)) of samples was measured using the closed-cell titration method described by Dickson et al. (2007). A\(_T\), pH, salinity, and temperature were used to calculate carbonate chemistry parameters using the program SWCO\(_2\) (Hunter 2007). The seawater carbonate chemistry is presented in Table 1.

Table 1. Summary of carbonate chemistry of seawater used in the experiment.

Parameter (unit)	Ambient CO\(_2\)	Elevated CO\(_2\)
A\(_T\) (\(\mu\)mol kg\(^{-1}\))	2197.44 ± 11.99	2207.55 ± 15.97
DIC (\(\mu\)mol kg\(^{-1}\))	2031.41 ± 11.23	2170.76 ± 15.74
H\(_2\)CO\(_3\) (\(\mu\)mol kg\(^{-1}\))	18.49 ± 0.11	48.02 ± 0.51
HCO\(_3\) (\(\mu\)mol kg\(^{-1}\))	1890.43 ± 10.37	2066.36 ± 14.97
CO\(_3\)\(^2-\) (\(\mu\)mol kg\(^{-1}\))	122.48 ± 0.88	56.38 ± 0.66
pCO\(_2\) (\µatm)	471.38 ± 2.87	1223.91 ± 13.02
pH\(_T\)	7.965 ± 0.002	7.590 ± 0.004

Carbonate parameters were calculated from total alkalinity (A\(_T\)) and pH\(_T\) measurements corresponding to each pCO\(_2\) treatment at 13 ± 1°C. Seawater was filtered and nutrient-enriched (ENSW formulation), salinity 34 psu. Data are means ± standard deviations (n = 12).

After 7 days, samples were analyzed for growth, photosynthetic efficiency, pigments, stable isotope signatures, and internal and external carbonic anhydrase (CA) activity. For biochemical analyses, samples were stored either at −20°C (pigment) or −80°C (CA) until analysis.

Growth rate

Algal discs (Fig. 1 inset) from each culture vessel were blotted dry and photographed by a 14-megapixel resolution digital camera (Lumix DMC-F110; Panasonic, Osaka, Japan). Algal surface area (cm\(^2\)) was analyzed by comparing the pixel density of algal discs to a known reference area using the software ImageJ version 1.47b (National Institutes of Health, Bethesda, MD, USA, http://rsb.info.nih.gov/ij/). Relative growth rate (RGR; % d\(^{-1}\)) was calculated from the surface area at the start and end of the experiment after Lüning (1990).

Chlorophyll \(a\) fluorescence

The Chl \(a\) fluorescence of each algal disc was measured submerged in their respective pH treatment using a PAM-2000 fluorometer (Walz GmbH, Effeltrich, Germany) following the protocol of Rautenberger et al. (2009) at 13 ± 1°C. After 5-min dark incubation, basic (F\(_b\)) and maximum fluorescence (F\(_{\text{m}}\)) was measured and F\(_{\text{v}}\)/F\(_{\text{m}}\) was calculated (Schreiber et al. 1995). Electron transport rate (ETR) vs. irradiance (E) curves (ETR–E curves) were recorded from discs exposed to incrementally increasing (every 30 s) actinic light (AL) intensities (7–500 \(\mu\)mol photons m\(^{-2}\) s\(^{-1}\); 400–700 nm). All saturation pulses were set to >9000 \(\mu\)mol photons m\(^{-2}\) s\(^{-1}\) and 0.8 s. The ETRs through the photosystem II (PSII) were calculated by multiplying the intensity of incident AL, the proportion of incident AL intensity that was absorbed by
the measured disc, the fraction of absorbed AL which is most probably received by PSII (0.5) and the PSII operating efficiency (Baker 2008). Maximum electron transport rates (ETRₘₐₓ), the initial slopes of ETR–E curves, called α, and the light saturation points of ETRs (i.e., Eₚ) were estimated from ETRs plotted against the incident AL intensity and calculated according to the model of Jassby and Platt (1976) using the software R version 2.15 (The R Foundation for Statistical Computing, http://www.R-project.org).

Pigments

Frozen algal discs were extracted in 3 mL of 100% N,N-dimethylformamide (DMF; BDH Laboratory Supplies, UK) at 4°C in the dark for 42 h. Chl a and Chl b were analyzed photometrically at 663.8 and 646.8 nm (Ultrospec 3000; Pharmacia Biotech, Cambridge, UK) with 100% DMF as reference at 20°C. Readings at 750.0 nm were used as a correction for scattering light. Chl a and Chl b contents were calculated after Porra et al. (1989) and normalized to algal biomass (μg mg⁻¹ FW).

Extracellular and intracellular carbonic anhydrase activity

Carbonic anhydrase activity was measured according to the pH drift method of Wilbur and Anderson (1948) and Haglund et al. (1992a) using 50 mmol L⁻¹ Tris HCl buffer (adjusted to pH 8.5, 4°C), 2 mmol L⁻¹ dithiothreitol (DTT), 15 mmol L⁻¹ ascorbic acid and 5 mmol L⁻¹ EDTA (disodium salt). The external carbonic anhydrase (CA extr) activity was analyzed from frozen algal discs (60 ± 20 mg FW). Each disc was placed in a 20-mL scintillation vial containing 10 mL of the extraction buffer and equipped with a micro stirrer bar (10 × 3 mm) for the enzymatic reaction. The glass vial was placed inside an ice-containing 100-mL plastic container to maintain the temperature at 0–2°C, sitting on top of a magnetic stirrer to stir the solution. Temperature and pH were simultaneously measured using a ROSS electrode (Orion 8107BNUMD) coupled to Orion 3–Stars Plus pH Benchtop meter (Orion, Thermo Fisher Scientific, Waltham, MA, USA). When pH stabilized at 8.3, 5 mL of ice-cold CO₂-saturated water was added. The time (sec) taken for the pH to drop by 0.4 units, in the pH interval of 8.3–8.1, was recorded. The internal carbonic anhydrase (CA intr) activity was subsequently measured from the same algal disc (Fernández et al. 2014). The algal disc was ground to fine powder in liquid N₂-frozen mortar and pestle. The ground tissue (60 ± 20 mg) was analyzed following the protocol described above. Relative enzyme activity (REA) was computed after the formula of Haglund et al. (1992b).

Carbon to nitrogen ratios and stable carbon isotope signatures

Molar C:N ratios and δ¹³C signatures (‰) were analyzed after algal discs were dried at 60 ± 1°C for 24 h. Discs were ground in a mortar and pestle to a fine powder and combusted in a CE NA1500 Elemental Analyzer (Carlo Erba Instruments Ltd, Hindley Green, Wigan, UK) interfaced to an IRMS 20-20 continuous flow mass spectrometer (Europa Scientific Ltd, Crewe, UK). Corrections for drift were made automatically every five samples from an EDTA standard with a known isotope ratio.

Data analyses

Means ± standard deviations (SDs) were calculated from five (n = 5) or six (n = 6) measurements per treatment. Statistical analyses were performed using JMP Pro 10.0 (SAS Institute Inc., Cary, NC, USA) and R versions 2.7 and 2.15 (The R Foundation for Statistical Computing, http://www.R-project.org). Two-way ANOVA and t-test were used to identify statistical differences of the means within and between treatments. Tukey’s honestly significant difference (HSD, P < 0.05) test was used as a post hoc test.

Results

Carbon physiology and in silico detection of putative CCM from EST libraries

Under pHₐ 9.0, initial blocking of the direct HCO₃⁻ uptake through the AE port by DIDS resulted in 44% inhibition of the net photosynthetic rate (NPS) in U. rigida. Subsequent inhibition of the CA extr by AZ to arrest the catalyzed dehydration of HCO₃⁻ to CO₂ resulted in an additional 39% inhibition of photosynthesis. When the order of inhibition for HCO₃⁻ use was reversed, AZ and DIDS caused 29% and 26% of the NPS, respectively. Total inhibition of the NPS was higher when direct HCO₃⁻ uptake through the AE port was blocked first (T-test, P = 0.0195; Fig. 2). Depending on the order of application of the inhibitors, 17–44% of NPS remained unaccounted.

In the absence of sequence information from U. rigida, the search for putative CCM elements in the EST libraries of U. prolifera (Jia et al. 2011) identified two α-CA and three γ-CAs (Table S1). However, the putative targeting signal peptides could not be resolved because the sequences retrieved from the EST data were not full length. Moreover, the exact localization of these proteins (e.g. chloroplast or periplasm) could not be defined. No β-CA was found in the EST libraries of...
U. prolifera. Furthermore, four putative HLA3 ABC transporters and three chloroplast carrier proteins (CCP1) and five mitochondrial transporter protein were found (Table S1). The transcriptome of a second species Ulva linza also identified putative CCM genes (Zhang et al. 2012). Among those found are at least one α-CA localized in the chloroplast lumen, several low CO₂-induced proteins, a chloroplast Ci transporter (LCIB), several ABC transporters as well as the nuclear transcriptional regulators of CCM elements (CIA5, LCR1).

Growth rate

Relative growth rates (RGR; Fig. 3) of U. rigida discs grown under limiting light (LL) were similar under low pCO₂ (LC; 8.5 ± 2.7% d⁻¹) and high pCO₂ (HC; 9.1 ± 3.6% d⁻¹). When discs were exposed to a saturating light (SL), RGRs were 2.27× and 2.35× higher under LC and HC, respectively (Fig. 3). Statistical analysis showed that RGRs were strongly influenced by the experimental irradiance (ANOVA, P < 0.001) but not by pCO₂ (ANOVA, P = 0.5245). The interaction between irradiance and pCO₂ did not significantly affect the growth rate (ANOVA, P = 0.2473). The growth rate was strongly influenced by the experimental irradiance (ANOVA, P < 0.001) but not by pCO₂ (ANOVA, P = 0.5245).

Chlorophyll a fluorescence

The maximum quantum yield of PSII (Fv/Fm) of U. rigida ranged from 0.807 to 0.813 (Table 2). Neither light (ANOVA, P = 0.152) nor the seawater carbonate chemistry (ANOVA, P = 0.391) or their interaction (ANOVA, P = 0.593) had an effect on Fv/Fm. All electron transport rate-irradiance (ETR-E) curve parameters (Table 2), that is, ETRmax, Eκ and α, were significantly different between light (ANOVA, P < 0.0001) but not significantly different between seawater carbonate chemistry (ANOVA, P > 0.05). No significant interactive effect of the independent variables was observed in any of the ETR-E curve parameter (ANOVA, P > 0.05). The ETRmax and Eκ were significantly higher at saturating light (LL < SL; Tukey’s HSD test, P < 0.05), while the photosynthetic efficiency, α, was significantly higher at low light (LL > SL; Tukey’s HSD test, P < 0.05).

Pigments

All LL-grown discs had a significantly higher biomass-based content of both Chla and Chlb (Table 2) compared with SL-grown discs (ANOVA, P < 0.0001). The content of both chlorophylls was not affected by pCO₂ (ANOVA, P < 0.0001). Light and pCO₂ had an interactive effect on both Chla (ANOVA, P = 0.027) and Chlb (ANOVA, P = 0.026). When grown under SL, the Chla content was ~35% lower than discs grown under LL. Similarly, the Chlb content in LL-grown discs was ~50% higher than...
those grown in SL. The highest Chl/b ratio of 2.2 (LC and HC) were calculated for SL-grown discs, whereas LL-grown discs had lower ratios of 1.64 (LC) and 1.76 (HC).

Extracellular and intracellular carbonic anhydrase activity

The CAext activities (Fig. 4A) ranged between 3.54 and 4.28 REA g⁻¹ FW and were similar in all treatments (ANOVA, \(P > 0.05\)), whereas CAint activities (Fig. 4B) were 20% higher under SL compared with LL (ANOVA, \(P = 0.002\)) irrespective of pCO₂. An increase in pCO₂ (ANOVA, \(P = 0.943\)) and the interaction between light and pCO₂ (ANOVA, \(P = 0.387\)) did not significantly change the CAint. Regardless of pCO₂, the CAint was 1.5–2× higher compared with the CAext under LL and SL, respectively.

Carbon to nitrogen ratios and stable carbon isotope signatures

Molar C:N ratios (Table 2) and δ¹³C signatures (Fig. 5) of U. rigida differed significantly between light treatment, but there was no effect of seawater carbonate chemistry. Regardless of pCO₂, the molar C:N ratio of LL-grown discs (LC = 9.7 ± 0.5; HC = 9.6 ± 0.3) was significantly lower than those in SL-grown discs (LC = 10.5 ± 0.7; HC = 10.0 ± 0.38; ANOVA, \(P = 0.036\); HSD test, \(P < 0.05\); LL < SL). Likewise, stable carbon isotope signatures (Fig. 5) of LL-grown discs were similar between LC (–22.12 ± 1.31‰) and HC (–22.32 ± 1.53‰), whereas algal discs were grown under SL, these signatures shifted to a higher range under LC (–9.76 ± 2.24‰) and HC (–9.78 ± 1.01‰) (ANOVA, \(P < 0.001\); HSD test, \(P < 0.05\); LL < SL). The interaction between pCO₂ and light did not significantly affect C:N ratio (ANOVA, \(P = 0.517\)) nor the δ¹³C signatures (ANOVA, \(P = 0.895\)).

Discussion

Our study showed that HCO₃⁻ is the primary exogenous Ci source used by Ulva rigida to support growth and photosynthesis under saturating light, supporting the findings of previous work on other Ulva species (e.g. Björk et al. 1992; Drechsler et al. 1993; Larsson et al. 1997). However, when the known HCO₃⁻ use mechanisms, that is, direct HCO₃⁻ uptake through the AE port and external catalyzed dehydration of HCO₃⁻, in U. rigida were inhibited, net photosynthesis (NPS) decreased by only 56–83% leaving the carbon uptake mechanism(s) for the remaining 17–44% of NPS unaccounted for. The remaining production cannot be attributed CO₂(aq) as the concentrations under pH₇ 9.0 are much too low but rather to a possible light-dependent active HCO₃⁻ transport system. An in silico search of EST libraries of U. prolifera (Jia et al. 2011) found putative light-dependent HCO₃⁻ transporters, that is, the ABC transporters of the ABC subfamily also found in U. linza (Zhang et al. 2012), which resemble the HLA3 transporter found in Chlamydomonas (Meyer and Griffiths 2013). The ABC transporters are present in all eukaryotes and have different transport functions, including vacuolar sequestration of toxic metabolites and transport of chlorophyll catabolites during senescence, among others (Meyer and Griffiths 2013). The HLA3 analog has been implicated in the active bicarbonate uptake in Chlamydomonas: their role in...
a CCM is supported by genetic and physiological evidence (Wang et al. 2011).

Several CAs are involved in the utilization of HCO$_3^-$ for CO$_2$ fixation. For example, the α-CAs, pCA1 and pCA2, catalyze the external dehydration of HCO$_3^-$ in Chlamydomonas (Spalding 1998); however, these isozymes are not found in Ulva. An unclassified CA$_{\text{ext}}$ isozyme may be present in Ulva, but their contribution to the external dehydration of HCO$_3^-$ to CO$_2$ and the active and/or passive transport of CO$_2$ into the cell may not be sufficient to supply and fill the internal Ci pool to support the high growth rate of the species. Instead, two putative intracellular α-CA isozymes were found in the EST libraries of U. prolifera (Jia et al. 2011). These α-type CA isozymes also identified in U. linza (Zhang et al. 2012) most likely have a subcellular localization, for example, the chloroplast lumen. Both studies, that is, Zhang et al. (2012) and Ye et al. (2014), suggest that this α-CA isozyme is responsible for the internal HCO$_3^-$ dehydration to provide the chloroplast with sufficient CO$_2$ for carbon fixation. The same was recently reported in Saccharina japonica, where cDNA encoding α-CA was associated with the chloroplast envelope and thylakoid membranes (Ye et al. 2014).

Although the β-type CA was not found in the EST of Ulva, it is reported to be localized in the cytosol of another green alga Coccomyxa (Huang et al. 2011) where it facilitates Ci diffusion from the inner surface of the plasmalemma to the chloroplast envelope.

On the other hand, the exact roles of γ-type CA identified in the ESTs of U. prolifera are still unknown. They are usually associated with the mitochondria of green algae and plants (Parisi et al. 2004). Mitochondrial carbonic anhydrase (mtCA) is involved in enzymatic hydration of CO$_2$, produced during respiration and photorespiration, to HCO$_3^-$ to stimulate anaplerotic β-carboxylation, where sufficient supply of HCO$_3^-$ is required to support nonphotosynthetic biosynthetic pathways (Giordano et al. 2003). This may explain the nonphotosynthetic growth enhancement reported in U. rigida (Gordillo et al. 2001). This mechanism that recovers respiratory CO$_2$ presents a very effective way to ensure efficient use of Ci for photosynthesis and nonphotosynthetic Ci-use pathways.
specially among calcifying algae and invertebrates (Rooleda et al. 2012b).

The role of CAext in the Ci use of U. rigida was insignificant and was not regulated by either pCO2 or light. Despite the 160% increase in CO2 under the HC treatment (1224 μatm), downregulation in CAext activity was not observed, a finding opposite to those found in the microalga Emiliania huxleyi (Richier et al. 2011). The constant low CAext activities (3.54–4.28 REA g−1 FW) across all treatments suggest that CO2 uptake after catalyzed external dehydration of HCO3− is not the main source of Ci in U. rigida. Considering that diffusive entry of aqueous CO2 into the cell is very slow in water, this mechanism is deemed to be insufficient for the accumulation of an internal Ci pool large enough to support the observed high growth rates (max 20% d−1) in this species. Moreover, CO2 uptake requires a conversion of CO2 to HCO3− to maintain internal pH and avoid CO2 leakage from the cell (Price et al. 2008).

Conversely, CAint was 1.5–2× higher under saturating light compared with limiting light. The higher enzymatic activity facilitates the conversion of HCO3− to CO2 to support the higher CO2 requirement of RuBisCO for photosynthetic fixation driving higher growth rate under saturating light. However, the source of this internal Ci pool (under high pH 9.0) cannot be wholly attributed to the known HCO3− uptake mechanism where only up to 44% of net photosynthesis is supported by the direct HCO3− uptake through the AE port and 39% by the CAext-mediated HCO3− dehydration. The light-dependent HLA3 ABC transporters described above are hypothesized to most likely contribute to direct HCO3− transport in order to saturate the internal Ci pool. HCO3− is the preferred Ci form for cellular accumulation because it is about 1000-fold less permeable to lipid membranes than CO2 (Price et al. 2008).

When active HCO3− transport through the AE port was blocked first, inhibition of NPS during the 15-min period was 34% higher than when CAext-mediated HCO3− use was blocked first. Subsequent application of the second inhibitor contributed to additional 39% and 26% for the DIDS-AZ and AZ-DIDS treatment, respectively. In the AZ-DIDS treatment, where the CAext-mediated HCO3− use was initially inhibited, algal discs were still actively transporting HCO3− through the AE port that enables the cells to accumulate higher internal Ci pool contributing to lesser total inhibition of NPS. Conversely, when active HCO3− transport through the AE port was blocked first (DIDS-AZ), significantly higher total inhibition of NPS was observed. This suggests that different HCO3− use mechanisms operate simultaneously and that the active transport through the AE port contributes more Ci to the internal pool.

Earlier studies of the carbon physiology of different Ulva species that focused on the AE port and external dehydration of HCO3− reported contradictory results. Larsson and Axelsson (1999) reported the net photosynthetic rates of different Ulva species are primarily supported by external dehydration of HCO3− (34–68%) rather than direct HCO3− uptake (9–40%) through the AE port. Another study by Axelsson et al. (1999) reported >90% of Ulva lactuca photosynthesis is dependent on AZ-sensitive HCO3− dehydration mechanism. Drechsler and Beer (1991) and Drechsler et al. (1993) reported a significantly higher contribution of direct HCO3− uptake compared with CAext-catalyzed HCO3− dehydration in U. lactuca. The above-mentioned studies on HCO3− use mechanisms was measured between pH 8.2 and pH 8.7. At pH >9.4, only HCO3− uptake via the putative DIDS-sensitive AE-transporter is operational in Ulva intestinalis (formerly Enteromorpha intestinalis) (Larsson et al. 1997). Conversely, only at extremely low pH 5.6 was a higher affinity for CO2 observed, which had no adverse effect on U. lactuca’s photosynthetic performance (Drechsler and Beer 1991). It should be noted that those Ulva species reported above may have some degree of taxonomical uncertainty. Previous physiological studies on Ulva did not identify that a light-dependent HCO3− transporter is most likely operational in Ulva’s CCM as found in this study.

Elevated Ci (both CO2 and HCO3−) under OA did not cause a higher growth in U. rigida but growth rate was limited by light. This suggests that the present-day Ci concentration is already saturating for Ulva. Cyanobacterial ancestors of the green algae evolved effective HCO3− use mechanisms during the geologic low-CO2 environment (Giordano et al. 2005); we suggest that this trait is most likely genetically fixed and the modern Ulva can modulate their CCM under different pCO2 conditions (Giordano et al. 2005). Our results do not support the observation of Gordillo et al. (2001) on the same species and Xu and Gao (2012) on U. prolifera that higher pCO2 causes an increase in rates of both photosynthesis and growth. Although the response may be species specific, the mechanistic study of Gordillo et al. (2001) used extremely high CO2 in air (10 000 μL L−1) and the identity of their U. rigida is uncertain as this was not molecularly identified (F. J. L. Gordillo, pers. comm.). The results of our study concur with those of Drechsler and Beer (1991) on U. lactuca where maximum photosynthetic O2 evolution was comparable under low (5.6) and high (8.2) pH. Furthermore, the study of Mercado et al. (2001) on the carbon physiology of three red seaweeds of the order Gelidiales inhabiting the intertidal zone also reported that photosynthesis is limited by light and not by Ci availability.
The seawater Ci species, that is, CO$_2$ and HCO$_3^-$, used as substrate for carbon uptake and fixation consist of stable carbon isotopes 13C and 12C within each species. The present seawater consist of 1% CO$_2$ and 91% HCO$_3^-$; of all natural carbon, only 1.1% is 13C while 98.89% is 12C. Relative to 13CVPDB standard, CO$_2$(aq) has 13C = –10‰ while dissolved HCO$_3^-$ has 13C = +1‰ to +1.5‰ (Mook et al. 1974; Mook 2005). The 13C/12C ratios ($= \delta^{13}$C) of the organic cellular material has been used as a proxy of Ci use relative to bulk seawater Ci source (Giordano et al. 2005). For example, organisms with 13C higher than –10‰ (a value more positive than 13C of CO$_2$ in seawater) must involve HCO$_3^-$ use (Raven et al. 2002). Among mixed CO$_2$/HCO$_3^-$ using algae, a significant use of CO$_2$ under high pCO$_2$ will shift 13C signature corresponding to more CO$_2$ use (i.e. toward –30‰) (Maberly et al. 1992). Here, we found that regardless of pCO$_2$, 13C signatures of U. rigida shifted upwards toward values of –10‰ and higher, under saturating light, which provides further support of the presence of a light-dependent active HCO$_3^-$ transport and intracellular accumulation, and the use of available HCO$_3^-$ to support photosynthetic carbon fixation as previously suggested by Raven et al. (2002).

The C-isotope fractionation in aquatic plants is more complex than in terrestrial plants (Hoefs 2009). Factors that control the 13C signature in algae include not only the availability of CO$_2$(aq), but also light intensity, light intensity, nutrient availability, pH, and physiological factors such as cell size and growth rate (Hoefs 2009 and references therein). In U. rigida, the increase in productivity observed under saturating light regardless of increased availability of CO$_2$(aq) causes a corresponding rise in 13C values, a response associated with more 12C locked up in the tissue as organic matter is generally depleted in 13C (Zeebe and Wolf-Gladrow 2001).

Moreover, the carbon fixation pathway can also influence the isotopic composition of organic matter. 13C signatures between –32% and –22% are characteristics of C$_3$ plants while 13C between –16% and –10% are typical for C$_4$ plants (Zeebe and Wolf-Gladrow 2001; Hoefs 2009 and references therein). The natural variations in the 13C signature of U. rigida between –22% and –10% point to the possible occurrence of a C$_4$ photosynthetic carbon fixation pathway, as observed in U. linza (Xu et al. 2013).

The rising atmospheric CO$_2$ does not only trigger OA but also contributes to global warming that strengthens the vertical stratification of aquatic ecosystems: this suppresses the nutrient supply from deep water into the surface layer. The enhanced CO$_2$ but reduced nutrient supply can therefore increase the C:N ratio of primary producers (e.g., phytoplankton) which are of low nutritional value to consumers (e.g., zooplankton), cascading throughout the entire aquatic food web (van de Waal et al. 2010). In our experiment, we increased CO$_2$ by ~160% and HCO$_3^-$ by ~9% while the nutrient level remained constant. In this scenario, the enhanced exogenous Ci concentration and constant nutrient supply will theoretically still increase the C:N ratio. However, the insignificant fractional increase was observed relative to light and not to CO$_2$ (Table 2). This suggests that changes in the tissue/cellular stoichiometry in macroalgae may not be sensitive to a change in Ci alone. The small increase in C:N under saturating light suggests that exogenous Ci concentration is already saturating for Uvra regardless of pCO$_2$ and saturasating light increase carbon fixation.

The maximum quantum yield of PSII (F_v/F_m) and other photosynthetic parameters (ETR_{max}, E_k, x) are reliable proxies to assess seaweed photosynthetic performance under environmental stress such as high PAR, UVR, and temperature (e.g., Roleda et al. 2005; Rautenberger and Bischof 2006; Hanelt and Roleda 2009; Rautenberger et al. 2009; Roleda 2009). However, we suggest that these parameters are unlikely to be sensitive to changes in seawater carbonate chemistry, that is, pCO$_2$ and pH, within the range likely to occur due to OA. In this study, rigorous PAM-based photosynthetic physiological measurements on U. rigida showed that ETR_{max}, E_k, and x are regulated by light, and a reduced seawater pH, simulating OA, had no effect, a finding contrary to that of Olischlager et al. (2013). Moreover, and contrary to the reported decrease in chlorophyll pigments under OA in U. prolifera (Xu and Gao 2012), OA did not affect the photosynthetic pigments of U. rigida: the amounts of Chla and Chlb were regulated by light.

Algae regulate internal pH maintaining cytoplasmic pH at 7.3 ± 0.2 (Ritchie 1985; Lundberg et al. 1989; Smith and Bidwell 1989) which is 0.7 units lower than that of the current surface seawater pH. Moreover, PSII is located in the thylakoid membrane where it is exposed to the acidified lumen (pH 5.0) and neutral to slightly basic stroma (pH 7.2–8.0) (Falkowski and Raven 2007). Therefore, the photosynthetic apparatus is already acclimated to a wide range of pH. The mechanism of how the bulk water pH may affect F_v/F_m is unknown; studies reporting positive or negative effects of OA on this physiological proxy should therefore be interpreted with caution as they are possible artifacts.

In conclusion, U. rigida is insensitive to OA. The present-day seawater Ci pool is saturating for photosynthesis and growth, and these parameters were primarily controlled by light rather than elevated CO$_2$(aq). For photosynthetic carbon fixation, HCO$_3^-$ is the primary Ci species assimilated by U. rigida. Aside from the known catalyzed external HCO$_3^-$ dehydration and direct HCO$_3^-$ uptake
through the AE port, another inhibitor-insensitive HCO$_3^-$ transport mechanism is most likely present. An in silico search of CCM elements in EST libraries of Ulva found putative light-dependent HCO$_3^-$ transporters, that is, the ABC transporters of the ABCC subfamily, found in both U. prolifera and U. liner. Neither a downregulation in extracellular CA-mediated HCO$_3^-$ dehydration nor a shift to CO$_2$ use was observed under high CO$_2(aq)$. The shift in $\delta^{13}C$ signatures in U. rigida toward -10% under saturating light under low and high CO$_2(aq)$ but not toward -30% under elevated CO$_2(aq)$ suggests preference and substantial internal HCO$_3^-$ accumulation to support photosynthesis and growth regardless of CO$_2$ concentrations. Despite the limited effect of OA and PPFR, the interaction of OA with other climate change stressors, for example, eutrophication and warming, may elicit different effects and warrants further investigation.

Acknowledgments

The following research grants are acknowledged for supporting this work: the German Research Foundation (DFG: RA 2030/1-1) to RR; a University of Otago Research Grant to CLH and RR and the Royal Society of New Zealand Marsden Fund (UOO0914) to CLH. SH acknowledges funding from the Beaufort Marine Research Award carried out under the Irish Sea Change Strategy and the Strategy for Science Technology and Innovation (2006–2013), with the support of the Marine Institute, funded under the Marine Research Sub-Programme of the Irish National Development Plan 2007–2013. We are grateful to Katja Schweikert for collecting the Ulva specimen.

Conflict of Interest

None declared.

References

Aldridge, J. N., and M. Trimmer. 2009. Modelling the distribution and growth of ‘problem’ green seaweed in the Medway estuary, UK. Hydrobiologia 629:107–122.

Axelsson, L., H. Ryberg, and S. Beer. 1995. Two modes of bicarbonate utilization in the marine green macroalga Ulva lactuca. Plant, Cell Environ. 18:439–445.

Axelsson, L., C. Larsson, and H. Ryberg. 1999. Affinity, capacity and oxygen sensitivity of two different mechanisms for bicarbonate utilization in Ulva lactuca L. (Chlorophyta). Plant, Cell Environ. 22:969–978.

Axelsson, L., J. M. Mercado, and F. L. Figueroa. 2000. Utilization of HCO$_3^-$ at high pH by the brown macroalga Laminaria saccharina. Eur. J. Phycol. 35:53–59.

Baker, N. R. 2008. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 59:89–113.

Beer, T., A. Israel, Y. Helman, and A. Kaplan. 2008. Acidification and CO$_2$ production in the boundary layer during photosynthesis in Ulva rigida (Chlorophyta) C Agardh. Isr. J. Plant Sci. 56:55–60.

Berges, J. A., D. J. Franklin, and P. J. Harrison. 2001. Evolution of an artificial seawater medium: improvements in enriched seawater, artificial water over the last two decades. J. Phycol. 37:1138–1145.

Björk, M., K. Haglund, Z. Ramazanov, G. García-Reina, and M. Pedersén. 1992. Inorganic-carbon assimilation in the green seaweed Ulva rigida C.Ag. (Chlorophyta). Planta 187:152–156.

Björk, M., K. Haglund, Z. Ramazanov, and M. Pedersén. 1993. Inducible mechanisms for HCO$_3^-$ utilization and repression of photorespiration in protoplasts and thalli of three species of Ulva (Chlorophyta). J. Phycol. 29:166–173.

Boguski, M. S., T. M. J. Lowe, and C. M. Tolstoshev. 1993. dbEST – database for “expressed sequence tags”. Nat. Genet. 4:332–333.

Cook, C. M., T. Lanaras, and B. Colman. 1986. Evidence for bicarbonate transport in species of red and brown macrophytic marine algae. J. Exp. Bot. 37:977–984.

Cornwall, C. E., C. D. Hepburn, D. W. Pritchard, C. M. McGraw, K. I. Currie, K. A. Hunter, et al. 2012. Carbon-use strategies in macroalgae: differential responses to lowered pH and implications for ocean acidification. J. Phycol. 48:137–144.

Coutinho, R., and R. Zingmark. 1993. Interactions of light and nitrogen on photosynthesis and growth of the marine macroalga Ulva curvata (Kützing) De Toni. J. Exp. Mar. Biol. Ecol. 167:11–19.

Dickson, A. G., C. L. Sabine, and J. R. Christian. 2007. P. 191. Guide to the best practices for ocean CO$_2$ measurements. PICES Special Publication, 3. North Pacific Marine Science Organization, Sidney, Canada.

Drechsler, Z., and S. Beer. 1991. Utilization of inorganic carbon by Ulva lactuca. Plant Physiol. 97:1439–1444.

Drechsler, Z., R. Sharkia, Z. I. Cabantchik, and S. Beer. 1993. Bicarbonate uptake in the marine macroalga Ulva sp. is inhibited by classical probes of anion exchange by red blood cells. Planta 191:34–40.

Falkowski, P. G., and J. A. Raven. 2007. P. 484. Aquatic photosynthesis. Princeton Univ. Press, Princeton, NJ.

Fernández, P. A., C. L. Hurd, and M. Y. Roleda. 2014. Bicarbonate uptake via an anion exchange protein is the main mechanism of inorganic carbon acquisition by the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae) under variable pH. J. Phycol. 50:998–1008.

García, H. E., and L. I. Gordon. 1992. Oxygen solubility in seawater: better fitting equations. Limnol. Oceanogr. 37:1307–1312.
Gattuso, J.-P., and L. Hansson. 2011. P. 352. Ocean acidification. Oxford Univ. Press, Oxford, UK.

Giordano, M., A. Norici, M. Forssen, M. Eriksson, and J. A. Raven. 2003. An anaerobic role for mitochondrial carbonic anhydrase in Chlamydomonas reinhardtii. Plant Physiol. 132:2126–2134.

Giordano, M., J. Beardall, and J. A. Raven. 2005. CO₂ concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu. Rev. Plant Biol. 56:99–131.

Gordillo, F. J. L., F. X. Niell, and F. L. Figueruela. 2001. Non-photosynthetic enhancement of growth by high CO₂ level in the nitrophilic seaweed Ulva rigida C. Agardh (Chlorophyta). Planta 213:64–70.

Guiry, M. D., and G. M. Guiry. 2014. AlgaeBase. Available at http://www.algaebase.org. (accessed 29 March 2014).

Haglund, K., M. Björk, Z. Ramazanov, G. García-Reina, and M. Pedersén. 1992a. Role of carbonic anhydrase in photosynthesis and inorganic-carbon assimilation in the red alga Gracilaria tenustipitata. Planta 187:275–281.

Haglund, K., Z. Ramazanov, M. Motóra, and M. Pedersén. 1992b. Role of external carbonic anhydrase in light-dependent alkalinization by Fucus serratus L. and Laminaria saccharina (L.) Lamour. (Phaeophyta). Planta 188:1–6.

Hanelt, D., and M. Y. Roleda. 2009. UVB radiation may ameliorate photoinhibition in specific shallow-water tropical marine macrophytes. Aquat. Bot. 91:6–12.

Harrison, P. J., R. E. Waters, and F. J. R. Taylor. 1980. A broad spectrum artificial seawater medium for coastal and open ocean phytoplankton. J. Phycol. 16:28–35.

Hayden, H. S., and J. R. Waaland. 2004. A molecular systematic study of Ulva (Ulvaceae, Ulvales) from the northeast Pacific. Phycologia 43:364–382.

Heesch, S., J. E. S. Broom, K. F. Neill, T. J. Farr, J. L. Dalen, and W. A. Nelson. 2009. Ulva, Umbreraula and Gemina: genetic survey of New Zealand taxa reveals diversity and introduced species. Eur. J. Phycol. 44:143–154.

Herfort, L., B. Thake, and J. Roberts. 2002. Acquisition and use of bicarbonate by Emiliania huxleyi. New Phytol. 156:427–436.

van Hille, R., M. Fagan, L. Bromfield, and R. Pott. 2014. A modified pH drift assay for inorganic carbon accumulation and external carbonic anhydrase activity in microalgae. J. Appl. Phycol. 26:377–385.

Hoefs, J. 2009. P. 285. Stable isotope geochemistry. Springer, Berlin Heidelberg.

Huang, S., T. Hainzl, C. Grundström, C. Forsman, G. Samuelsson, and A. E. Sauer-Eriksson. 2011. Structural studies of β-carbonic anhydrase from the green alga Coccomyxa: inhibitor complexes with anions and acetazolamide. PLoS ONE 6:e28458.

Hunter, K. A. 2007. SWCO2. Available at http://neon.otago.ac.nz/research/mfc/people/keith_hunter/software/swco2/. (accessed 5 October 2011).

Hurd, C. L., C. D. Hepburn, K. I. Currie, J. A. Raven, and K. A. Hunter. 2009. Testing the effects of ocean acidification on algal metabolism: considerations for experimental designs. J. Phycol. 45:1236–1251.

IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. P. 1535 in T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley, eds. Cambridge Univ. Press, Cambridge, UK and New York, NY.

Jassby, A. D., and T. Platt. 1976. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr. 21:540–547.

Jia, S., X. Wang, G. Liu, D. Luo, J. Zhang, Y. Liu, et al. 2011. Gene expression analysis of “green tide” alga Ulva prolifera (Chlorophyta) in China. Genes Genomics 33:173–178.

Koch, M., G. Bowes, C. Ross, and X.-H. Zhang. 2013. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Global Change Biol. 19:103–132.

Koeman, R. P. T., and C. van den Hoek. 1981. The taxonomy of Ulva (Chlorophyceae) in The Netherlands. Brit. Phycol. J. 16:99–53.

Kübler, J. E., A. M. Johnston, and J. A. Raven. 1999. The effects of reduced and elevated CO₂ and O₂ on the seaweed Lomentaria articulata. Plant, Cell Environ. 22:1303–1310.

Larsson, C., and L. Axelsson. 1999. Bicarbonate uptake and utilization in marine macroalgae. Eur. J. Phycol. 34:79–86.

Larsson, C., L. Axelsson, H. Ryberg, and S. Beer. 1997. Photosynthetic carbon utilization by Enteromorpha intestinalis (Chlorophyta) from a Swedish rockpool. Eur. J. Phycol. 32:49–54.

Loughnane, C. J., L. M. McVor, F. Rindi, D. B. Stengel, and M. D. Guiry. 2008. Morphology, rbcL phylogeny and distribution of distromatic Ulva (Ulvophyceae, Chlorophyta) in Ireland and southern Britain. Phycologia 47:416–429.

Lundberg, P., R. G. Weich, P. Jens, and H. J. Vogel. 1989. Phosphorus-31 and nitrogen-14 NMR studies of the uptake of phosphorus and nitrogen compounds in the marine macroalga Ulva lactuca. Plant Physiol. 89:1380–1387.

Lüning, K. 1990. P. 544. Seaweeds: their environment, biogeography, and eco physiology. John Wiley & Sons, New York, NY.

Maberly, S. C., J. A. Raven, and A. M. Johnston. 1992. Discrimination between 12C and 13C by marine plants. Oecologia 91:481–492.

McGlathery, K. J. 2001. Macroalgal blooms contribute to the decline of seagrass in nutrient-enriched coastal waters. J. Phycol. 37:453–456.

McGraw, C. M., C. E. Cornwall, M. R. Reid, K. I. Currie, C. D. Hepburn, P. Boyd, et al. 2010. An automated pH-controlled culture system for laboratory-based ocean acidification experiments. Limnol. Oceanogr. Methods 8:686–694.

© 2015 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
Meehl, G. A., T. F. Stocker, W. D. Collins, P. Friedlingstein, A. T. Gaye, J. M. Gregory, et al. 2007. Global climate projections. Pp. 747–845 in S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, eds. Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge Univ. Press, Cambridge, UK and New York, NY.

Mercado, J. M., F. X. Niell, and M. C. Gil-Rodríguez. 2001. Photosynthesis might be limited by light, not inorganic carbon availability, in three intertidal Gelidiales species. New Phytol. 149:431–439.

Meyer, M., and H. Griffiths. 2013. Origins and diversity of eukaryotic CO$_2$-concentrating mechanisms: lessons for the future. J. Exp. Bot. 64:769–786.

Millero, F. J., and A. Poisson. 1981. International one-atmosphere equation of state of seawater. Deep-Sea Res. 28:625–629.

Mook, W. G. 2005. P. 226. Introduction to isotope hydrology. Stable and radioactive isotopes of hydrogen, oxygen and carbon. Taylor and Francis/Balkema, Leiden, the Netherlands.

Mook, W. G., J. C. Bommerson, and W. H. Staverman. 1974. Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet. Sci. Lett. 22:169–176.

Olischläger, M., I. Bartsch, L. Gutow, and C. Wiencke. 2013. Effects of ocean acidification on growth and physiology of Ulva lactuca (Chlorophyta) in a rockpool-scenario. Phycol. Res. 61:180–190.

Pajusalu, L., G. Martin, A. Pöllumäe, and T. Paalm. 2013. Results of laboratory and field experiments of the direct effect of increasing CO$_2$ on net primary production of macroalgal species in brackish-water ecosystems. Proc. Eston. Acad. Sci. 62:148–154.

Pang, S. J., F. Liu, T. F. Shan, N. Xu, Z. H. Zhang, S. Q. Gao, et al. 2010. Tracking the algal origin of the Ulva bloom in the Yellow Sea by a combination of molecular, morphological and physiological analyses. Mar. Environ. Res. 69:207–215.

Parisì, G., M. Perales, M. S. Fornasari, A. Colaneri, N. González-Schain, D. Gómez-Casati, et al. 2004. Gamma carbonic anhydrases in plant mitochondria. Plant Mol. Biol. 55:193–207.

Porra, R. J., W. A. Thompson, and P. E. Kriedemann. 1989. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta 975:384–394.

Price, G. D., M. R. Badger, F. J. Woodger, and B. M. Long. 2008. Advances in understanding the cyanobacterial CO$_2$-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. J. Exp. Bot. 59:1441–1461.

Rautenberger, R., and K. Bischof. 2006. Impact of temperature on UV-susceptibility of two Ulva (Chlorophyta) species from Antarctic and Subantarctic regions. Polar Biol. 29:988–996.

Rautenberger, R., A. Mansilla, I. Gómez, C. Wiencke, and K. Bischof. 2009. Photosynthetic responses to UV-radiation of intertidal macroalgae from the Strait of Magellan (Chile). Rev. Chil. Hist. Nat. 82:43–61.

Raven, J. A. 1991. Physiology of inorganic C acquisition and implications for resource use efficiency by marine phytoplankton–relation to increased CO$_2$ and temperature. Plant, Cell Environ. 8:779–794.

Raven, J. A., A. M. Johnston, J. E. Kübler, R. Korb, S. G. McInroy, L. L. Handley, et al. 2002. Mechanistic interpretation of carbon isotope discrimination by marine macroalgae and seagrasses. Funct. Plant Biol. 29:355–378.

Richier, S., S. Fiorini, M. E. Kerros, P. von Dassow, and J.-P. Gattuso. 2011. Response of the calcifying coccolithophore Emiliania huxleyi to low pH/high pCO$_2$: from physiology to molecular level. Mar. Biol. 158:551–560.

Riebesell, U., V. J. Fabry, L. Hansson, and J.-P. Gattuso. 2010. Guide to best practices for ocean acidification research and data reporting. P. 260. Publications Office of the European Union, Luxembourg.

Ritchie, R. J. 1985. Energetic considerations of ion transport in Enteromorpha intestinalis (L.) Link. New Phytol. 100:5–24.

Roleda, M. Y. 2009. Photosynthetic response of Arctic kelp zoospores exposed to radiation and thermal stress. Photochem. Photobiol. Sci. 8:1302–1312.

Roleda, M. Y., and C. L. Hurd. 2012. Seaweed responses to ocean acidification. Pp. 407–431 in C. Wiencke and K. Bischof, eds. Seaweed Biology. Springer, Berlin, Germany.

Roleda, M. Y., C. Wiencke, D. Hanelt, W. H. van de Poll, and A. Gruber. 2005. Sensitivity of Laminariales zoospores from Helgoland to ultraviolet and photosynthetically active radiation: implications on depth distribution and reproductive season. Plant, Cell Environ. 28:466–479.

Roleda, M. Y., J. N. Morris, C. M. McGraw, and C. L. Hurd. 2012a. Ocean acidification and seaweed reproduction: increased CO$_2$ ameliorates the negative effect of lowered pH on meioospore germination in the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae). Global Change Biol. 18:854–864.

Roleda, M. Y., P. W. Boyd, and C. L. Hurd. 2012b. Before ocean acidification: calcifier chemistry lessons. J. Phycol. 48:840–843.

Schreiber, U., W. Bilger, and C. Neubauer. 1995. Chlorophyll fluorescence as a noninvasive indicator for rapid assessment of in vivo photosynthesis. Pp. 49–70. in E.-D. Schulze and M. M. Caldwell, eds. Ecophysiology of photosynthesis. Springer, Berlin, Germany.
Sharkia, R., S. Beer, and Z. I. Cabantchik. 1994. A membrane-located polypeptide of *Ulva* sp. which may be involved in HCO$_3^-$ uptake is recognized by antibodies raised against the human red-blood-cell anion-exchange protein. Planta 194:247–249.

Smith, R. G., and R. G. S. Bidwell. 1989. Mechanism of photosynthetic carbon dioxide uptake by the red macroalga, *Chondrus crispus*. Plant Physiol. 89:93–99.

Spalding, M. H. 1998. CO$_2$ acquisition: acclimation to changing carbon availability. Pp. 529–547. in J.-D. Rochaix, M. Goldschmidt-Clermont, and S. Merchant, eds. The molecular biology of chloroplasts and mitochondria in chlamydomonas. Kluwer Academic Publishers, Dordrecht, The Netherlands.

Stamatakis, A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690.

Suffrian, K., K. G. Schulz, M. A. Gutowska, U. Riebesell, and M. Bleich. 2011. Cellular pH measurements in *Emiliania huxleyi* reveal pronounced membrane proton permeability. New Phytol. 190:595–608.

Sun, S., F. Wang, C. Li, S. Qin, M. Zhou, L. Ding, et al. 2008. Emerging challenges: Massive green algae blooms in the Yellow Sea. Available at http://precedings.nature.com/documents/2266/version/1/files/npre20082266-1.pdf. (accessed 27 March 2014).

Takahashi, T., S. C. Sutherland, D. W. Chipman, J. G. Goddard, C. Ho, T. Newberger, et al. 2014. Climatological distributions of pH, pCO$_2$, total alkalinity, and CaCO$_3$ saturation in the global surface ocean, and temporal changes at selected locations. Mar. Chem. 164:95–125.

Thiers, B. 2014. Index Herbariorum: A global directory of public herbaria and associated staff. Available at http://sweetgum.nybg.org/ih/. (accessed 29 April 2014).

van de Waal, D. B., A. M. Verschoor, J. M. H. Verspagen, E. van Donk, and J. Huisman. 2010. Climate-driven changes in the ecological stoichiometry of aquatic ecosystems. Front. Ecol. Environ. 8:145–152.

Wang, Y., D. Dunamu, and M. H. Spalding. 2011. Carbon dioxide concentrating mechanism in *Chlamydomonas reinhardtii*: inorganic carbon transport and CO$_2$ recapture. Photosynthesis Res. 109:115–122.

Wilbur, K. M., and N. G. Anderson. 1948. Electrometric and colorimetric determination of carbonic anhydrase. J. Biol. Chem. 176:147–154.

Xu, J., and K. Gao. 2012. Future CO$_2$-induced ocean acidification mediates the physiological performance of a green tide alga. Plant Physiol. 160:1762–1769.

Xu, J. F., X. W. Zhang, N. H. Ye, Z. Zheng, S. L. Mou, M. T. Dong, et al. 2013. Activities of principal photosynthetic enzymes in green macroalga *Ulva linza*: functional implication of C-4 pathway in CO$_2$ assimilation. Sci. China Life Sci. 56:571–580.

Ye, R.-X., Z. Yu, W.-W. Shi, H.-J. Gao, Y.-H. Bi, and Z.-G. Zhou. 2014. Characterization of α-type carbonic anhydrase (CA) gene and subcellular localization of α-CA in the gametophytes of *Saccharina japonica*. J. Appl. Phycol. 26:881–890.

Young, E. B., M. Giordano, and J. Beardall. 2001. Investigation of inorganic carbon acquisition by *Dunaliella tertiolecta* (Chlorophyta) using inhibitors of putative HCO$_3^-$ utilization pathways. Eur. J. Phycol. 36:81–88.

Zeebe, R. E., and D. Wolf-Gladrow. 2001. CO$_2$ in seawater: equilibrium, kinetics, isotopes. Elsevier Oceanography Series, Amsterdam, The Netherlands.

Zhang, X., N. Ye, C. Liang, S. Mou, X. Fan, J. Xu, et al. 2012. De novo sequencing and analysis of the *Ulva linza* transcriptome to discover putative mechanisms associated with its successful colonization of coastal ecosystems. BMC Genom. 13:565.

Supporting Information

Additional Supporting Information may be found in the online version of this article:

Table S1. Identification of putative carbon concentrating mechanism (CCM) elements from *Ulva prolifera* expressed sequence tag (EST) libraries (Jia et al. 2011).