Thermo flavimicrobium dichotomicum as a novel thermoalkaliphile for production of environmental and industrial enzymes

Osama M. Darwesh 1,2,*, Islam A. Elsehemy 3, Mohamed H. El-Sayed 4,5, Abbas A. El-Ghamry 4, Ahmad S. El-Hawy 4

1 Agricultural Microbiology Dept., National Research Centre, Dokki, Cairo, Egypt
2 School of Material Sciences and Engineering, Hebei University of Technology, 300130 Tianjin, China
3 Department of Natural and Microbial Products Chemistry, National Research Centre, Dokki, Cairo, Egypt
4 Botany and Microbiology Dept., Faculty of Science (Boys); Al-Azhar University, Nasr city, Cairo, Egypt
5 Department of Biology, Faculty of Science and Arts, Northern Border University (Rafha), Kingdom of Saudi Arabia

*corresponding author e-mail address: darweshosama@yahoo.com | Scopus ID 56128096000

ABSTRACT
Thermoalkaliphilic actinomycetes enzymes have many important applications in many industrial, biotechnological and environmental aspects. So, the current study aimed to obtain the thermoalkali-enzymes producing actinomycetes. A novel thermoalkaliphilic actinomycete strain was isolated from Egyptian Siwa oasis and identified according to its morphological, physiological and biochemical characters as Thermo flavimicrobium dichotomicum. And then confirmed by phylogenetic analysis and the partial sequence was deposited in GenBank under accession number of KR011193 and name of Thermo flavimicrobium dichotomicum HwSw11. It could produce amylase, cellulase, lipase, pectinase and proteinate enzymes. Also, this strain exhibited anti-bacterial activities against P. aeruginosa and E. coli with inhibition zones of 14 and 20 mm, respectively. Consequently, it has antifungal activity against A. niger, A. flavus and Penicillium notatum with inhibition zones of 17, 14 and 14 mm, respectively. For that, it may be concluded that Thermo flavimicrobium dichotomicum HwSw11 as a novel thermoalkaliphile has a wide range of biological activities against a broad spectrum of pathogenic bacteria and fungi, in addition to produce many enzymes (amylase, cellulase, lipase, pectinase and proteinase). So, this isolate could be applied as manufactory for many industrial, biotechnological and environmental sectors.

Keywords: Antimicrobial activity; Enzymes activity; Thermoalkaliphilic actinomycetes; Thermo flavimicrobium dichotomicum.

1. INTRODUCTION
New biotechnology deals to search about new isolates that have ability to grow and work at harsh conditions like extreme temperatures and pH values for using it in industrial, biotechnological and environmental applications [1-3]. Also, it goes up for solving problems by producing of producing non-traditional materials as antimicrobial agents [4-6], nanobio-synthesized metals like silver, copper and zinc [7,8] and biotechnological agents as bioactive materials [9-12]. Extremophile microorganisms have various adaptation mechanisms enabling them to thrive and produce secondary metabolites under harsh conditions [13-15]. Extremophiles are an organisms that grow under harsh environmental conditions such as temperatures (≥ 50°C) or (<-10°C), alkaline (≥ 8.5) or acidic (≤ 5) pH values, high salinity and high pressure [16-18]. Extremophiles isolates from different habitats include soil, compost, manure [19], geothermal areas [20], sewage sludge or municipal solid waste [21], oil wells [22] and thermally treated foods [23].

Egypt has many harsh environments that might be a good source for isolation of extreme actinomycetes. Swia oasis is one of these places [24], it extreme heat in summer, warm wintertime and very cold at night [25, 26], for that it is a significant site for isolation new isolates. Thermoalkaliphilic actinomycetes have especially potential industrial applications because it has enzymes stable at a high pH and temperatures values [27]. And it produces resistant endospores and survive in harsh environments for a long period, up to 9000 years [28,29]. The adaptation in actinomycetes to survive at high temperature is due to the presence of membrane lipids, which contains a more saturated and straight chain of fatty acids [30,31]. Extremophile possesses novel and highly functional activities, it is a powerful source of many useful products such as hydrolytic extracellular enzymes, Protein, antibiotics, hormones… etc [32-34].

Thermostable enzymes could catalyze important chemical reactions in several industrial and research fields including food, agricultural, pharmaceutical, cosmetic, as well as several other vital economic aspects [35]. Extremophilic actinomycyes species could be a source of thermostable enzymes, which are not only heat resistant, but also stable under highly alkaline conditions [36,37]. It has been reported before that Thermo flavimicrobium dichotomicum genus could produce several vital thermostable enzymes such as lipase and proteinase [38], these facts drove us to explore the ability of the isolated novel Thermo flavimicrobium dichotomicum to produce lipase, amylase, cellulase, pectinase and proteinase enzymes. The ability of any species to produce antimicrobial secondary metabolites exaggerates the opportunity to be used in industrial sectors. So, the current study is concerning the isolation of Thermo flavimicrobium dichotomicum from Siwa oasis in Egyptian desert as a useful manufactory for biotechnological and environmental applications.
2. MATERIALS AND METHODS

2.1. Sample collection and preparation

A total of 12 sandy soil samples (approximately 500 g of each) were collected from seven different sites at Siwa oasis, Marsa Matrouh governorate, Egypt. Each site has been taken special codes and the texture of these samples was determined. The samples were collected in clean plastic bags from layers of 15 to 40 cm depth and air dried for 3 days at 55°C [39, 40]. The pH of soil extract was measured using digital portable pH meter Adwa® AD11 and the soil salinity was measured by digital portable TDS meter Adwa® AD201. The samples were mixed with CaCO₃ (1g/ 100g soil) for 24 hrs at 28 °C before plating to increase the numbers of actinomycetes.

2.2. Isolation and purification of thermoalkaliphilic actinomycetes.

Isolation and enumeration of actinomycetes were performed by soil dilution plate technique using different media. Culture media include Czapek's yeast casamino acid (CYC) agar medium [41], Nutrient agar [42], Plate count agar medium [43], Modified Bennett's agar [44], Inorganic salts-starch agar medium (ISP-4) [45] and Starch-nitrate medium [46]. All media were adjusted to pH 8 and all then inoculated and incubated at 55 °C for 1, 2 and 3 weeks. Selected colonies (rough, chalky) of actinomycetes were selected and transferred to respective agar plates and incubated for 7 days. Plates containing pure cultures were stored until further examination.

2.3. Selection of the most promising isolate.

The most potent isolate was determined depending on the highest tolerance to temperature and alkalinity. All actinomycetes isolates were cultured onto respective agar medium and incubated for 7 days at different temperatures (40, 45, 50, 55, 60 and 65°C) [47] and with different pH values (6, 7, 8, 9, 10, and 11) [48].

2.4. Screening for enzymes assay of the isolated actinomycetes.

Hydrolysis enzymes like amylase, protease, lipase, cellulose and pectinase were assayed in this experiment. Behavior of the actinomycetes isolates toward different substrates of the selective enzymes was noted on agar medium. Pure isolates with maximum growth range (on agar plates) were cultured on basal mineral salts agar medium with addition of glucose for control, starch for amylase [49], casein for protease [50], tributyrin for lipase [51], carboxy methyl cellulose for cellulose [52] and pectin for pectinase [53].

2.5. Identification of the most potent actinomycete isolate.

HwSw11 isolate as the most active one in production of selective enzymes was characterized and identified using morphological, physiological, biochemical methods [42] and molecular techniques [54].

In case of morphological and culture characteristics, HwSw11 isolate were cultivated and observed on different ISP (1, 2, 3, 4, 5, 6 and 7) agar media [42] and non ISP media such as, CYC agar medium [41], Nutrient agar [42] and Starch-nitrate medium [46]. All media adjusted to pH 8 and incubated for 4-7 days at 55°C. Aerial spore mass colour, substrate mycelium colour and the colour of any diffusible pigments were recorded using the National Bureau of Standards (NBS) Colour Name Charts [55]. The morphology of spore chains and sporophores was observed by direct light microscope (Optika, Italy) using cover slip technique [56], also spore morphology was examined by a scanning electron microscope [57] (JEOL Technics Ltd, Japan) at the regional center for mycology and biotechnology, Al-Azhar University, Cairo. In case of Chemotaxonomy characteristics, the determination of the isomeric form of diaminopimelic acid was done as described by Hasegawa et al. [58]. The analysis of the sugar composition of cell wall was carried out using the method described by Lechevalier and Lechevalier [59], using sugars of arabino, galactose, glucose, ribose, mannose and xylose in cell hydrolysates. For Physiological and biochemical characteristics, Isolate HwSw11 was investigated on Yeast – malt extract agar medium (ISP-2) at 55 ºC and pH adjusted to 8 to utilize different carbon and nitrogen sources, NaCl concentrations suppressed the growth, Melanin production was observed on the following media Peptone yeast extract-iron agar medium (ISP 6), Tyroside agar medium (ISP 7), and Tryptone - yeast extract broth medium (ISP-1) [42, 60]. On the other hand, Biochemical tests including catalase production, gelatin liquefaction, H2S production, Nitrate reduction [61], antibiotic sensitivity, Melanin production [42], were also determined.

In the case of sensitivity to antibiotics, 14 different antibiotics were screened using disc diffusion method to determine the sensitivity of the target isolate to these antibiotics. Disks impregnated with penicillin, chloramphenicol, erythromycin, bacitracin, clindamycin, rifampicin, vancomycin, oxicillin, ciprofloxacin, ofloxacin, nalidixic acid, lincomycin, norfloxacin, and tetracycline were placed on the inoculated agar plates [40]. The zones of growth inhibition were measured and the sensitivity was calculated [62].

The characteristics of the HwSw11 isolate were compared with those of reference strains (Thermoactinomyces vulgaris, Thermoflavimicrobium dichotomicum, Laceyella sacchari and Laceyella putida) obtained from Bergey's manual of systematic bacteriology, 2nd ed, volume three, the Firmicutes [38]. Phylogenetic identification was applied to confirm characterization and identification of the target isolate. DNA extraction was performed by lysozyme-sodium dodecyl sulfate method [63]. A partial 16S rRNA gene was amplified using primers; RW01 (5′-AACTGGAGGAGGTTGGGAT-3′) and DG74 (5′AGGAGGTGATCCCAACCCGA-3′) [64]. PCR product was purified using QIA quick PCR purification kit (Qiagen). Sequence analyses were carried out by Sanger Sequencing Technology on Applied Bio-systems automated DNA sequencer, model ABI 3730XL DNA Analyzer (Applied Bio-systems, USA; service provided by Macrogen Inc., South Korea). The sequence analyses and alignments were performed by NCBI-BLAST programs [65, 66]. Multiple sequence alignment and molecular phylogeny were performed using BioEdit software [67]. The phylogenetic tree was displayed using the TREEVIEW program [68].

2.6. Antimicrobial activity evaluation of the secondary metabolites of HwSw11 strain.

Antimicrobial activity of the cell free cultivation medium was determined by Agar well-diffusion method [69]. Pathogens used for testing antimicrobial activity were the reference strains;
Thermoflavimicrobium dichotomicum as a Novel Thermoalkaliphile for Production of Environmental and Industrial Enzymes

Bacillus cereus (ATCC-12228), Staphylococcus aureus (ATCC-6538), Pseudomonas aeruginosa (ATCC-9027), Escherichia coli (ATCC-7839), Candida albicans (ATCC-10231), Aspergillus niger (NRRL-348), Aspergillus flavus (ATCC-16883), Fusarium moniliforme and Penicillium sp. Thermoflavimicrobium dichotomicum HwSw11 strain was grown in Starch-nitrate broth medium for 3 days with pH 8 at 50 °C and then centrifuged and the supernatant was applied as antimicrobial agent. All experiments were performed in triplicate, the mean and standard error values were calculated [70, 71].

2.7. Optimization and examination of beneficial enzymes production.

Five beneficial enzymes were assessed in this study. Amylase enzyme was assessed using soluble starch as a method recorded by Kurup et al. [49]. Protease activity was determined using L-tyrosine as a standard. Five milliliters of 0.65% (w/v) casein in 50 mM potassium phosphate buffer, pH 8.5 is added to 1 ml enzyme solution and the assay mixture was incubated for 10 min at 55 °C in the water bath. After the incubation was done, 5 ml of 110 mM trichloroacetic acid reagent (TCA) was added to enzyme-substrate solution to terminate the reaction. The mixture was put in ice bath for 10 min and centrifuged at 13500 rpm, at room temperature for 10 min then the supernatant was collected. The color development reaction was done by adding 2 ml of supernatant to 5 ml of 500 mM sodium carbonate solution followed by the addition of 1 ml of Folin Ciocalteu’s phenol reagent into a tube and mixed by swirling. The reference tube had the same composition except for the enzyme solution. The changing of the activity was recorded by spectrophotometer in absorbance at 660 nm after 30 min. The enzyme activity was given as unit (U) and one unit is that hydrolyze casein to produce color equivalent to 1.0 µmole (181.0 µg) of tyrosine per min under the defined assay conditions. Lipase was tested using 1% tri butyric as detailed by Hussein et al. [51]. Also, cellulase was assayed using carboxy methyl cellulose as mentioned by Hasanin et al. [52]. In case of pectinase, the enzyme activity was determined using pectin as a substrate. The assay mixture consists of 0.80 ml of the substrate solution (1.0% w/v citric pectin in 0.1 M citric buffer pH 5.0) and 0.20 ml of enzyme solution. The reaction medium was incubated at 50°C for 20 min and terminated by the addition of 1.5 ml of 3, 5-dinitrosalicylic acid reagent. The absorbance of the reaction medium was taken at 540 nm. One unit of pectinase activity (U) was defined as 1 µmol reducing sugar released per minute using galacturonic acid as standard. The tested enzymes were optimized for production at deferent values of pH and degrees of temperature. The activity was recorded as an average of three replicates.

3. RESULTS AND DISCUSSION

3.1. Samples collection and soil analysis.

Recently, several studies have been made to obtain new actinomycetes from harsh habitats like extreme temperature, pH, heavy metal and salinity for production of different bioactive agents as enzymes, anticancer and antibiotic compounds [13, 14]. One of the most essential steps for isolation of the extremophiles is the samples collection. So, this study was concerned about collection of poly extremophiles’ samples. High alkalinity, high TDS and geothermal nature of Siwa oasis will be a precise choice for isolation of thermoalkaliphilic actinomycetes [72]. Twelve sandy soil samples were collected from seven different locations at Siwa oasis. Physicochemical analysis of the collected samples clearly revealed variation in pH ranging from 8.1 to 9.5 that was chosen to be used for adjustment of screening media (Table 1).

Table 1. Physicochemical properties of the collected soil samples from Siwa oasis

Code	Physicochemical analysis	
	TDS (ppm)	pH
SW1	1940	8.6
SW2	7330	8.1
SW3	11100	8.3
SW4	3300	9.0
SW5	3680	8.9
SW6	200	8.7
SW7	300	8.8
SW8	1550	8.1
SW9	770	8.4
SW10	1600	8.1
SW11	9800	8.3
SW12	8350	8.6

Total dissolved solids (TDS) values were ranged from 200 to 11100 ppm; the lowest concentration was recorded in Sw6 sample (200 ppm), while the highest concentration recorded in Sw3 sample (11100 ppm).

3.2. Isolation and Selection of the most promising thermoalkaliphilic actinomycete isolate.

Different culture media were used for isolation of thermoalkaliphilic actinomycetes. A total of 20 actinomycete isolates (coded from HwSw1 to HwSw20) were isolated from 12 sand soil samples on different agar media. The little number of actinomycete isolates may be due to geothermal environment and a little microorganism able to grow in extreme conditions [41, 73].

These isolates were screened for their ability to resist extreme temperatures and high pH values. Among them, actinomycete HwSw11 exhibits a good growth at high temperature and high alkalinity; it can grow at a range of pH (7 to 12), with an optimum pH 9. Also, it can grow in the temperature range between 40 and 55 °C, with an optimum temperature at 50°C. These may be due to the environment of this isolate at Siwa oasis. For that, it may be based on this isolate for the production of biologically active agents. Also, Barakat et al. [15] obtained some isolates from red sea, Egypt as halookaliphile depended on the site of isolation.

The obtained isolates were screened for the ability to produce some industrial and environmental enzymes like amylase, cellulase, lipase, pectinase and proteinase on solid agar medium (Fig. 1). From all tested isolates, isolate HwSw11 showed great activities against all of the substrates under this study. So, it selected as the most potent extremophilic isolate in this study and chosen for the identification studies as a new isolate.

3.3. Identification of the isolate HwSw11.

Microscopic examination of isolate HwSw11 revealed that; aerial mycelium was abundant and distinctive on nutrient agar media after 24 h at 55°C under simple microscope (X10) and the
colonies were observed yellow to orange with entire margins (Fig. 2). Spore chains also observed under light microscopy, it showed a dichotomously branched mycelium, sporophores with single spores and the aerial mycelium appeared to be fragmented with aging of culture. In general, the spore’s chains appeared to be categorized as Rectus-Flexibilis (RF), and Monoverticillus (MV) (Fig. 3).

Figure 1. Screening for enzymes assay production by isolated actinomycetes like proteinase (a), pectinase (b) cellulose (c), amylase (d) and lipase (e) on solid agar medium.

Figure 2. Colonies of HwSw11 observed under simple microscope 10 x on nutrient agar media after 24 h at 55°C.

Figure 3. A, Autolysis of mycelium; B, Hyphae structure observed under light microscope 400x.

Under scanning electron microscopy (SEM), it was found that the isolate HwSw11 produced rectus flexible spore chains (Fig. 4A) and the spores appeared to be spheroidal, 0.5–1.5 μm in diameter, with a ridged surface that gives an angular appearance (Fig. 4). Also, the cell wall peptidoglycan hydrolysis showed that, it contains meso-diaminopimelic acid and no characteristic sugars pattern.

Figure 4. SEM of isolate HwSw11 spores grown on ISP2 agar, 96 h, A, 4300x and B, 14000x.

In the case of Culture characteristics, isolate HwSw11 was grown well on all media except oat meal agar (ISP 3) showed a weak growth as shown in Table (2). Isolate HwSw11 forming a yellow colour substrate mycelium on Yeast – malt extract agar (ISP 2), Inorganic-trace salt- starch agar (ISP 4), Tyrosine agar (ISP 7) and Nutrient agar.

For physiological and biochemical characteristics, isolate HwSw11 can utilize a wide range of sugars added to ISP 2 medium as a sole carbon source, D-Glucose and Sucrose appeared to be the best carbon source stimulating the growth. This isolate investigated on different nitrogen sources and exhibited good growth with beef extract as a sole nitrogen source, moderate growth with peptone and weak growth with urea and ammonia. NaCl concentrations suppressed the growth starting from 1% and above. Also, it has ability to produce catalase and liquefaction of gelatin in media. On the other hand, it hasn’t ability to reduce nitrate and can’t produce H₂S and melanin pigment on investigated media.

Table 2. Cultural properties of isolate HwSw11.

Nutrient medium	Growth	Color of the aerial mycelium	Color of the substrate mycelium	Soluble pigment
Tryptone yeast extract agar (ISP 1)	Moderate	Cream-white	Light grey	Pale yellow
Yeast – malt extract agar (ISP 2)	Good	Light grey	Yellow	None
Oat meal agar (ISP 3)	Weak	Hygroscopic	Cream-white	None
Inorganic-trace salt-starch agar (ISP 4)	Good	White	Pale yellow	None
Glycerol asparagine agar (ISP 5)	Moderate	Hygroscopic	Beige	None
Peptone yeast extract iron agar (ISP 6)	Good	Dark-brown	Brown	Yellow
Tyrosine agar (ISP 7)	Good	White	Deep-yellow	Pale-yellow
Starch-nitrate agar	Good	White	Beige	Dark-beige
Nutrient agar	Good	Cream-white	Yellow to orange	None

| CYC agar | Good | Orange | Brown | None |

Table 3. Antibiotic sensitivity of isolate Sw11.

Antibiotics	Conc. µg/ml	Zone interpretative standards diameter	Isolate sterile zone (mm)	Isolate resistance and susceptibility
Bacitracin	10	12-14	14	20 S
Clindamycin	2	14-15	21	0 R
Penicillin	10	27-28	30	20 R
Chloramphenicol	30	15-16	18	17 I
Erythromycin	15	13-14	23	0 R
Rifampicin	30	20-21	26	25 I
Vancomycin	30	10-11	15	25 S
Oxicillin	1	10-12	13	0 R
Ciprofloxacin	5	13-14	21	20 I
Ofloxacin	5	12-13	16	20 S
Nalidixic acid	30	13-14	19	0 R
Lincomycin	2	14-15	21	0 R
Norfloxacin	10	12-13	17	15 I
Tetracycline	30	14-15	19	23 S
In another case, this isolate was sensitive to some tested antibiotics as Bacitracin, Penicillin, Chloramphenicol, Rifampicin, Vancomycin, Ciprofloxacin, Ofloxacin, Norfloxacin, and Tetracycline and resistance to Clindamycin, Erythromycin, Oxicilllin, Nalidixic acid, and Lincomycin (Table 3). The characteristics of isolate HwSw11 were compared with reference strains (Thermoactinomyces vulgaris, Thermoflavimicrobium dichotomicum, Laceyella sacchari and Laceyella putida) as appeared in Table (4). Regarding morphological, biochemical and physiological characteristics, isolate HwSw11 exhibit growth pattern similar to family of Thermoactinomycesaceae. This family of actinomycetes requires pH greater than 7.0 for germination and optimum pH is 8.0 to 10.0 and temperature over to 50 °C [74]. On depend on the comparative studies, it may be reported that the targeted isolate is enclosed to genus of Thermoactinomyces dichotomicus. In this way, Yoon et al. [73] reported that the strain of Thermoflavimicrobium dichotomicum is able to grow up to 62 °C with optimum temperature of 55 °C.

Figure 5. Phylogenetic tree of Thermoflavimicrobium dichotomicum HwSw11 with respect to reference strains based on the 16srRNA gene sequences.

The obtained identification was confirmed using molecular biology techniques. The partial 16S rDNA sequence (389 nucleotides) of actinomycetes HwSw11 was determined. The sequence was aligned and compared with sequences of the reference species available in BLAST genomic database, which confirmed that the HwSw11 isolate is closely related to Thermoflavimicrobium dichotomicum KCTC 3667T with identity of 94%. Multiple sequence alignment and phylogenetic tree were made as illustrated graphically in Figure (5). The phylogenetic tree was derived from the distance matrices using neighbor-joining [75]. So, upon classical and molecular identifications, this isolate was named Thermoflavimicrobium dichotomicum HwSw11 as a novel isolate and deposited in GenBank under this name and accession number of KR011193.

3.4. Antimicrobial activity.

Nowadays, the resistance mechanisms of almost pathogens are growing fast, because that the obtaining or research about new antimicrobial agents is considered the true way for controlling of these pathogens [5,9]. To achieve this goal, this study focused on isolation of new isolates from harsh environment. The obtained isolate, Thermoflavimicrobium dichotomicum HwSw11 strain, was screened for its ability to produce antimicrobial materials. The cell free supernatant of this strain was examined against some pathogens and found to be produced specifically antimicrobial agent. It has antibacterial activity against gram negative bacteria only like P. aeruginosa and E. coli with inhibition zones of 14 and 20 mm, respectively. Also, it has produced antifungal activity against A. niger, A. flavus and Penicillium sp. with inhibition zones of 17, 14 and 14 mm, respectively (Table 4).

Table 4. A comparative study of the identification properties of the isolate HwSw11 in relation to the reference strains

Isolates	HwSw11	L. putida	L. sacchari	T. vulgaris	T. dichotomicum
Morphological Characteristics					
Aerial mycelium*	Hydroscopic	White	White	White	yellow
Substrate mycelium*	Orange	Yellowish-brown	Olive-buff	White or cream	Orange
Spore surface	Ridged	Smooth	Ridged	Rough	Ridged
Motility	Motile	Motile	Motile	Motile	Motile
Diffusible pigments	Yellow	Yellow	Yellow	No	Yellow
Physiological Characteristics					
Melanin pigment	-	-	-	-	-
Nitrate reduction	-	nd	nd	nd	-
Gelatin liquefaction	+	+	+	+	+
Optimum temp. °C	55	48	55-60	55	55
Optimum pH	9	7.2-7.4	7.2-7.4	7.2-7.4	7.2-7.4
NaCl tolerance %	1	<1	1	1-5	0.5
Enzyme activities					
Amylase	+	+	+	+	+
Cellulase	+	nd	nd	nd	-
Casienase	+	+	+	+	+
Lipase	+	+	+	+	+
Utilizations of carbon sources					
D-glucose	+	+	+	+	+
1-arabinose	+	nd	nd	nd	+
Sucose	+	nd	nd	nd	+
D-xylene	+	nd	-	-	+
D-maltose	+	+	+	+	+
Cellulose	+	nd	nd	nd	-
Starch	+	nd	nd	nd	+
L-inositol	+	nd	nd	nd	+
D-mannitol	+	-	+	+	+
D-fructose	+	-	+	+	nd
Rhamnose	+	-	-	-	-
Raffinose	+	-	+	nd	+
Lactose	+	-	+	+	+
Chemotaxonomic analysis					
Diaminopimelic acid (DAP)	Meso-DAP	Meso-DAP	Meso-DAP	Meso-DAP	Meso-DAP
Sugar pattern	ND	ND	ND	ND	ND
*Aerial and substrate mycelium colors were observed on CYC agar medium; ND: not detected; nd: not determined					

On the other hand, it did not have antimicrobial activity against the tested gram positive bacteria and yeast pathogens. In the present study, we targeted the isolation of actinomycetes because it produces about 70-80 % of the available natural antibiotics in the world. The chance is the discovery of strains of...
rare actinomycetes producing novel antimicrobial compounds [76].

Table 5. Antimicrobial activity of Thermoflavimicrobium dichotomicum HwSw11 supernatant

Test organisms	Inhibition zone diameter (mm)
B. cereus	0
S. aureus	0
P. aeruginosa	14
E. coli	20
C. albicans	0
A. niger	17
A. flavus	14
Fusarium sp.	0
Penicillium sp.	14

3.5. Optimization of beneficial enzymes production.

The old strain of Thermoflavimicrobium dichotomicum hasn’t produce cellulases enzymes and cannot degrade cellulose compounds as the largest agriculture waste [41, 73]. Fortunately, the novel Thermoflavimicrobium dichotomicum HwSw11 showed great production of many useful enzymes like amylase, cellulase, lipase, pectinase and proteinase on solid agar medium. For that, the optimization of enzymes production was the target in this section. The main objective in this method is the optimum condition will be allowed only when achieving the microbial growth with production of targeted enzymes together.

In the case of optimum growth media, Thf. dichotomicum strain HwSw11 was inoculated on 9 different media and the growth plus enzymes assay were observed after 48 h. The results were recorded by values; weak, moderate, good, very good as represented in Table 6. The results showed that the medium producing the highest growth and enzyme activity at the same time was ISP2 medium.

Table 6. Effect of culture media on the growth and enzymes production of Thf. dichotomicum strain HwSw11

Media	Growth	Enzymes production
Starch-nitrate agar medium	Moderate	Moderate
Yeast extract-malt extract agar medium (ISP-2)	Very good	Very good
Oatmeal agar (ISP-3)	Weak	Weak
Inorganic salts- starch agar medium (ISP-4)	Good	Moderate
Peptone yeast extract-iron agar medium (ISP-6)	Good	Moderate
Nutrient agar	Very good	Good
Marine agar	Weak	Weak
Plate count agar medium	Very good	Moderate
Basal mineral salts agar	Weak	Weak

Also, the incubation period is a crucial factor for enzyme production, strain biomasses were collected every 12 h for a period of 96 h and enzymes assessed. The results showed that the best incubation period to produce the highest biomasses was observed after 36 h of incubation (Fig. 6).

Thermoalkaliphilic actinomycyes species are generally used as a source of thermo-stable enzymes. It isn’t only heat resistant, but also stable under highly alkaline conditions [77]. Thf. dichotomicum strain HwSw11 was grown at different temperatures ranged from 15 to 70 ºC. Thf. dichotomicum strain HwSw11 was able to grow at the temperature ranged between 35 and 60 ºC, but the optimum temperature for growth and producing all enzymes at high levels were 55 ºC (Fig. 7).

Another important factor for actinomycyes growth or enzymes and other bioactive compounds production is the initial pH value of cultivation media [78]. In this way, Thf. dichotomicum strain HwSw11 was cultivated into media adjusted to different pH values ranged from 6 to 13. The strain of HwSw11 exhibited the highest biomass and enzymes production was recorded when it cultivated at pH 9 (Fig. 8).

The produced enzymes by Thf. dichotomicum HwSw11 were had a lot of useful applications in environmental, agricultural and industrial area. It has advantage instead other enzymes as it is thermoalkaliphile enzymes and resistant to a wide range of environment conditions. Protease, pectinase and cellulases can be
Thermoflavimicrobium dichotomicum as a Novel Thermoalkaliphile for Production of Environmental and Industrial Enzymes

applied in agricultural field for plant pathogens controlling as safe antifungal and antimycotad agents [79, 80]. Also, these enzymes used for bioenergy production from agricultural wastes by degrading agricultural wastes as ecofriendly agents [81, 82]. On the other way, lipase and amylase can be used in industries like food and detergent industry [83].

4. CONCLUSIONS
Based on the obtained results, a novel Thermoflavimicrobium dichotomicum HwSw11 as thermoalkaliphile actinomyecete was isolated from Siwa oasis, Egypt. The isolated actinomycete exhibited extraordinary ability to produce several valuable enzymes including; amylase, cellulase, lipase, pectinase and proteinase. In addition, it produced noticeable anti-microbial agents against several serious pathogens. For that, the obtained strain may be a multiple factories for production useful new bioactive materials to be applied in several industrial, biotechnological, environmental and agricultural fields.

5. REFERENCES
1. Barakat, K.M.; Mattar, M.Z.; Sabae, S.Z.; Darwesh, O.M.; Hassan, S.H. Production and Characterization of Bioactive Pyocyanin Pigment by Marine Pseudomonas aeruginosa OSh1. Research Journal of Pharmaceutical, Biological and Chemical Sciences 2015, 6, 933-943.
2. El-Sherbiny, G.M.; Darwesh, O.M.; El-Hawary, A.S. Taxonomic characterization of the chitinolytic actinomycete Cellulomonas chitinolytica strain HwAC11. International Journal of Advanced Research in Biological Sciences 2017, 4, 292-299, https://dx.doi.org/10.22192/ijrbs.2017.04.12.032.
3. Darwesh, O.M.; Eida, M.F.; Matter, I.A. Isolation, screening and optimization of L-asparaginase producing bacterial strains inhabiting agricultural soils. Bioscience Research 2018, 15, 2802-2812.
4. Mohamed, A.A.; Ali, S.I.; Darwesh, O.M.; El-Hallouty, S.M.; Sameeh, M.Y. Chemical compositions, potential cytotoxic and antimicrobial activities of Nitraria retusa methanolic extract sub-fractions. International Journal of Toxicological and Pharmacological Research 2015, 7, 204-212.
5. Abdelhameed, R.M.; El-Sayed, H.A.; El-Shahat, M.; El-Sayed, A.A.; Darwesh, O.M. Novel Triazolothiadiazole and Triazolothiadiazine Derivatives Containing Pyridine Moiety: Design, Synthesis, Bactericidal and Fungicidal Activities. Current Bioactive Compounds 2018, 14, 169-179, https://doi.org/10.2174/157340721366616170127095158.
6. Abdelhameed, R.M.; Darwesh, O.M.; Rocha, J.; Silva, A.M. IRMOF-3 Biological Activity Enhancement by Post-Synthetic Modification. European Journal of Inorganic Chemistry 2019, 1243-1249, https://doi.org/10.1002/ejc.201801442.
7. Elshahawy, I.; Aboulennar, H.M.; Lashin, S.M.; Darwesh, O.M. First report of Pythium aphanidermatum infecting tomato in Egypt and its control using biogenic silver nanoparticles. Journal of Plant Protection Research 2018, 15, 137–151, https://doi.org/10.24425/122929.
8. Darwesh, O.M.; Matter, I.A.; Eida, M.F.; Moawad, H.; Oh, Y. Influence of Nitrogen Source and Growth Phase on Extracellular Biosynthesis of Silver Nanoparticles Using Cultural Filtrates of Scenedesmus obliquus. Applied Sciences 2019, 9, 1-13, https://doi.org/10.3390/app9071465.
9. Ali, S.I.; Mohamed, A.A.; Sameeh, M.Y.; Darwesh, O.M.; Abd El-Razik, T.M. Gamma-Irradiation Affects Volatile Oil Constituents, Fatty Acid Composition and Antimicrobial Activity of Fennel (Foeniculum vulgare) Seeds Extract. Research Journal of Pharmaceutical, Biological and Chemical Sciences 2016, 7, 524-532.
10. Sultan, Y.Y.; Ali, M.A.; Darwesh, O.M.; Embaby, M.A.; Marrez, D.A. Influence of Nitrogen Source in Culture Media on Antimicrobial Activity of Micrococcus Iacustris and Oscillatoria rubescens. Research Journal of Pharmaceutical, Biological and Chemical Sciences 2016, 7, 1444-1452.
11. Darwesh, O.M.; Sultan, Y.Y.; Seif, M.M.; Marrez, D.A. Bioevaluation of crustacean and fungal nano-chitosan for applying as food ingredient. Toxicology Reports 2018, 5, 348-356, https://doi.org/10.1016/j.toxrep.2018.03.002.
12. Marrez, D.A.; Abdelhamid, A.E.; Darwesh, O.M. Eco-friendly cellulose acetate green synthesized silver nano-composite as antibacterial packaging system for food safety. Food Packaging and Shelf Life 2019, 20, 1-8, https://doi.org/10.1016/j.fpsl.2019.100302.
13. Anaib, P. Enhanced production and organic solvent stability of a protease from Brevibacillus laterosporus strain PAP04. Brazilian Journal of Medical and Biological Research 2016, 49, e5178, http://dx.doi.org/10.1590/1414-431X20165178.
14. Anaib, P.; Gopinath, S.C.; Chhauagain, B.P.; LakshmiPriya, T. Microbial enzymes and their applications in industries and medicine 2016. BioMed Research International 2017, 2017, https://doi.org/10.1155/2017/2195808.
15. Barakat, K.M.; Hassan, S.W.M.; Darwesh, O.M. Biosurfactant production by haloalkaliphile Bacillus strains isolated from Red Sea, Egypt. Egyptian Journal of Aquatic Research 2017, 43, 205-211, http://dx.doi.org/10.1016/j.ejar.2017.09.001.
16. Wiegel, J. Anaerobic alkali-thermophiles, a novel group of extremophiles. Extremophiles 1998, 2, 257-267, https://doi.org/10.1007/s007920050068.
17. Rothschild, L.J.; Mancinelli, R.L. Life in extreme environments. Nature 2001, 409, 1092, https://doi.org/10.1038/35059215.
18. Darwesh, O.M.; Matter, I.A.; Eida, M.F. Development of peroxidase enzyme immobilized magnetic nanoparticles for bioremediation of textile wastewater dye. Journal of Environmental Chemical Engineering 2019, 7, 102805, https://doi.org/10.1016/j.jece.2018.11.049.
19. Srinivasan, M.; Laxman, R.; Deshpande, M. Physiology and nutritional aspects of actinomyces: an overview. World Journal of Microbiology and Biotechnology 1991, 7, 171-184, https://doi.org/10.1007/BF00328987.
20. Larsen, L.; Nielsen, P.; Ahring, B.K. Thermoanaerobacter malthanii sp. nov., an ethanol-producing, extremely thermophilic anaerobic bacterium from a hot spring in Iceland. Archives of Microbiology 1997, 168, 114-119, https://doi.org/10.1007/s002030050476.
21. Sekiguchi, Y.; Imachi, H.; Suisolurukmi, A.; Muramatsu, M.; Ohashi, A.; Harada, H.; Hanada, S.; Kamagata, Y. Tepidanaerobacter syntrophicus gen. nov., sp. nov., an anaerobic, moderately thermophilic, syntrophic alcohol-and lactate-degrading bacterium isolated from thermophilic digested sludges. International Journal of Systematic and Evolutionary Microbiology 2006, 56, 1621-1629, https://doi.org/10.1099/ijs.0.64112-0.
22. Cayol, J.L.; Ollivier, B.; Patel, B.K.; Ravot, G.; Magot, M.; Ageron, E.; Grimont, P.A.; Garcia, J.L. Description of Thermoanaerobacter brockii subsp. lacteiithelicus subsp. nov., isolated from a deep subsurface French oil well, a proposal to reclassify Thermoanaerobacter finnitii as Thermoanaerobacter brockii subsp. finnitii comb. nov., and an emended description of Thermoanaerobacter brockii. International Journal of Systematic and Evolutionary Microbiology 1995, 45, 783-789, https://doi.org/10.1099/00207713-45-4-783.

23. Cann, I.; Stroot, P.G.; Mackie, K.R.; White, B.A.; Mackie, R.I. Characterization of two novel saccharolytic, anaerobic thermophiles, Thermoanaerobacter polysaccharolyticum sp. nov. and Thermoanaerobacterium zeae sp. nov., and emendation of the genus Thermoanaerobacterium. International Journal of Systematic and Evolutionary Microbiology 2001, 51, 293-302, https://doi.org/10.1099/00207713-51-2-293.

24. Ilahiane, H. Historical Dictionary of the Berbers (Imazighen). Scarecrow Press, Oxford, ISBN-13, 2006; 9780810854529, (Imazighen)

25. Britannica, E. The New Encyclopaedia Britannica. Volume 4, Encyclopaedia Britannica, 2007.

26. Kuhlmann, K. The realm of “two deserts”. Siwah Oasis between east and west Desert Road Archaeology in Ancient Egypt and Beyond. Heinrich-Barth-Institut, Köln. 2013.

27. Grant, W.; Mwatha, W.; Jones, B. Alkaliphiles: ecology, diversity and applications. FEMS Microbiology Reviews 1990, 6, 255-269, https://doi.org/10.1016/S0168-6445(05)80025-X.

28. Nilsson, M.; Renberg, I. Viable endospores of Thermoactinomyces vulgaris in lake sediments as indicators of agricultural history. Applied and Environmental Microbiology 1990, 56, 2025-2028.

29. Sineva, O.; Terekhova, L. Selective isolation of rare actinomycetes from soil Antibiotiki i khimioterapiia. Antibiotic Chemistry, 2015, 60, 27-33.

30. Rahman, O.; Pfitzenmaier, M.; Pester, O.; Morath, S.; Cummings, S.P.; Hartung, T.; Sutcliffe, I.C. Macrophilic and microphilic components of thermostable actinomycetes: identification of lipoteichoic acid in Thermobifida fusca. Journal of Bacteriology 2009, 191, 152-160, https://doi.org/10.1128/JB.01105-08.

31. Agarwal, A.; Mathur, N. Thermophilic actinomycetes are potential source of novel bioactive compounds: A Review. European Journal of Pharmaceutical and Medical Research 2016, 3, 130-138.

32. Rao, M.B.; Tanksale, A.M.; Ghatge, M.S.; Deshpande, V.V. Molecular and biotechnological aspects of microbial proteases. Microbiology and Molecular Biology Reviews 1998, 62, 597-635.

33. Borgave, S.B.; Joshi, A.A.; Kelkar, A.S.; Kanekar, P.P. Screening of alkalophilic, haloalkaliphilic bacteria and alkalitherophilic actinomycetes isolated from alkaline Soda Lake of Lonar, India for antimicrobial activity. International Journal of pharma and bio sciences 2012, 3, 258-274.

34. Kumar, L.; Awasthi, G.; Singh, B. Extremophiles: A Novel Source of Industrially Important Enzymes. Biotechnology 2011, 10, 121-135, https://doi.org/10.3923/biotech.2011.121.135.

35. Rigoldi, F.; Donini, S.; Redaelli, A.; Parisini, E.; Gautieri, A. Engineering of thermostable enzymes for industrial applications. APL Bioengineering 2018, 2, 011501, https://doi.org/10.1063/1.4997367.

36. Schalaminus, E.; Ruttkoff, H.; Behnke, U. Intracellular proteases of Thermoactinomyces vulgaris. 2. Biochemical characterization of proteases in cell extracts. Die Nahrung 1983, 27, 379-386, https://doi.org/10.1002/food.19830270410.

37. Teather, R.M.; Wood, P.J. Use of Congo red-poly saccharide interactions in enumeration and characterization of celluolitic bacteria from the bovine rumen. Applied and Environmental Microbiology 1982, 43, 777-780.

38. Vos, P.; Garrity, G.; Jones, D.; Krieg, N.R.; Ludwig, W.; Rainey, F.A.; Schleifer, K.H.; Whitman, W. Bergey’s manual of systematic bacteriology. Volume 3: The Firmicutes, Springer Science & Business Media, 2011; eBook ISBN 978-0-387-68489-5, 2nd Ed, pp. 1450, https://doi.org/10.1007/978-0-387-68489-5.

39. Tsao, P.; Leben, C.; Keitt, G. An enrichment method for isolating Actinomycetes that produce diffusible antifungal antibiotics. Phytopathology 1960, 50, 88-89.

40. Sharma, C.; Agarwal, A.; Mehtani, P.; Mathur, N.; Bhatnagar, P. Characterization of Actinomycetes from Soil Sample of Nahargarh Hill Area, Jaipur, India for Production of Antimicrobial Compounds and Enzymes. International Journal of Advanced Biotechnology and Research 2014, 5, 304-312.

41. Lacey, J.; Cross, T. Genus Thermoactinomyces tsiklinsky 1899, 501AL. Bergey’s manual of systematic bacteriology 1984, 2, 2574-2585.

42. Shirling, E.T.; Gottlieb, D. Methods for characterization of Streptomyces species. International journal of systematic bacteriology 1966, 16, 313-340, http://dx.doi.org/10.1099/00207713-16-3-313.

43. Reasoner, D.J.; Geldreich, E. A new medium for the enumeration and subculture of bacteria from potable water. Applied and Environmental Microbiology 1985, 49, 1-7.

44. Williams, S.; Goodfellow, M.; Alderson, G.; Wellington, E.; Sneath, P.; Sackin, M. Numerical classification of Streptomyces and related genera. Microbiology 1983, 129, 1743-1813, https://doi.org/10.1099/00221287-129-6-1743.

45. Küster, E. Outline of a comparative study of criteria used in characterization of the Actinomycetes. International Bulletin of Bacteriological Nomenclature and Taxonomy 1959, 9, 97-104, https://doi.org/10.1099/0096266X-9-2-97.

46. Tadashi, A. Culture media for actinomycetes. The society for actinomycetes. Japan National agricultural Library 1975, 1, 1-13.

47. Marchant, R.; Banat, I.M.; Franzetti, A. Thermophilic bacteria in cool soils: metabolic activity and mechanisms of dispersal. Biogeography of microbial organisms: is everything small everywhere. Cambridge University Press. © The Systematics Association 2011, https://doi.org/10.1017/CBO9780511974878.005.

48. Horikoshi, K. Alkaliphiles: some applications of their products for biotechnology. Microbiology and Molecular Biology Reviews 1999, 63, 735-750, https://doi.org/10.1128/MMBR.63.4.735-750.1999.

49. Kurup, V.P.; Barborkia, J.J.; Fink, J.N.; Lechevalier, M.P. Thermoactinomyces candidus, a new species of thermophilic actinomycetes. International Journal of Systematic and Evolutionary Microbiology 1975, 25, 150-154, https://doi.org/10.1099/00207713-25-2-150.

50. Gordon, R.E.; Smith, M.M. Proposed group of characters for the separation of Streptomyces and Nocardioid. Journal of Bacteriology 1955, 69, 147–150.

51. Hussein, H.A.; Darwesh, O.M.; Mekki, B.B. Environmentally friendly nano-selenium to improve antioxidant system and growth of groundnut cultivars under sandy soil conditions. Biocatalysis and Agricultural Biotechnology 2019, 18, 101080, https://doi.org/10.1016/j.bcab.2019.101080.

52. Hussein, H.A.; Darwesh, O.M.; Mekki, B.B.; El-Hallouy, S.M. Evaluation of cytotoxicity, biochemical profile and yield components of groundnut plants treated with nano-selenium. Biotechnology Reports 2019, 24, e00377, https://doi.org/10.1016/j.btre.2019.e00377.

53. Taki, H.A.; Turkmen, F.U. Extracellular Pectinase Production and Purification from a Newly Isolated Bacillus subtilis Strain. International Journal of Food Properties 2016, 19, 2443-2450, https://doi.org/10.1080/10942912.2015.1123270.
Thermoflavimicrobium dichotomicum as a Novel Thermoalkaliphile for Production of Environmental and Industrial Enzymes

54. Kheiralla, Z.H.; Hedwey, M.A.; Mohammed, H.R.; Darwesh, O.M. Isolation of Pigment Producing Actinomycetes from Rhizosphere Soil and Application It in Textiles Dyeing. *Research Journal of Pharmaceutical, Biological and Chemical Sciences* 2016, 7, 2128-2136.

55. Kelly, K. Color-name charts illustrated with centroid colors. *Inter-Society Color Council-National Bureau of Standards* Chicago 1964.

56. Williams, S. Streptomyces Waksman and Henrici. 1943 *Bergey's Manual of Systematic Bacteriology* 1989, 4, 2452-2492.

57. Tresner, H.; Davies, M.; Backus, E. Electron microscopy of Streptomyces spore morphology and its role in species differentiation. *Journal of Bacteriology* 1961, 81, 70-80.

58. Hasegawa, T.; Takizawa, M.; Tanida, S. A rapid analysis for chemical grouping of aerobic actinomyces. *Journal of General and Applied Microbiology* 1983, 29, 319-322, https://doi.org/10.3204/jgam.1983.29.319.

59. Lechevalier, M.P.; Lechevalier, H. Chemical composition as a criterion in the classification of aerobic actinomyces. *International Journal of Systematic and Evolutionary Microbiology* 1970, 20, 435-443, https://doi.org/10.1099/0027713-20-4-435.

60. Korn-Wendisch, F.; Kutzner, H.; The family Streptomycetaceae. In: *The Prokaryotes*. A handbook on the biology of bacteria: ecophysiology, isolation, identification, applications. Chap. 41. Springer, Berlin. 1991.

61. Soundari, A.; Parimala, G.; Rubini, G.; Manon, Mani, V.; Brindha, P.V. Study on diversity of actinomyces population from industrial area. *International Journal of Current Microbiology and Applied Sciences* 2015, 4, 500-512.

62. El-Baz, F.K.; Mahmoud, K.; El-Senousy, W.M.; Darwesh, O.M.; El Gohary, A.E. Antiviral – Antimicrobial and Schistosomicidal Activities of *Eucalyptus camaldulensis* Essential Oils. *International Journal of Pharmaceutical Sciences Review and Research* 2015, 31, 262-268.

63. Sadek, Z.I.; Abdel-Rahman, M.A.; Azab, M.S.; Darwesh, O.M.; Hassan, M.S. Microbiological evaluation of infant foods quality and molecular detection of *Bacillus cereus* toxins relating genes. *Toxicology Reports* 2018, 5, 871–877, https://doi.org/10.1016/j.toxrep.2018.08.013.

64. Darwesh, O.M.; Moawad, H.; Wafaa, M.; Olfat, S.; Sedik, M. Bioremediation of textile reactive blue (RB) azo dye residues in wastewater using experimental prototype bioreactor. *Research Journal of Pharmaceutical, Biological and Chemical Sciences* 2014, 5, 1203-1219.

65. Eida, M.F.; Darwesh, O.M.; Matter, I.A. Cultivation of oleaginous microalgae *Scenedesmus obliquus* on secondary treated municipal wastewater as growth medium for biodiesel production. *Journal of Ecological Engineering* 2018, 19, 38–51, https://doi.org/10.12911/22998993/91274.

66. Hasanin, M.S.; Darwesh, O.M.; Matter, I.A.; El-Saied, H. Isolation and characterization of non-cellulolytic *Aspergillus flavus* EGYPTAS5 exhibiting selective ligninolytic potential. *Biocatalysis and Agricultural Biotechnology* 2019, 17, 160–167, https://doi.org/10.1016/j.bcab.2018.11.012.

67. Hall, T.A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. *Nucleic Acids Symposium Series* 1999, 41, 95–98.

68. Page, R.D. Tree View: An application to display phylogenetic trees on personal computers. *Bioinformatics* 1996, 12, 357-358, https://doi.org/10.1093/bioinformatics/12.4.357.

69. El-Naggar, N.E.; Abdelwahed, N.A.; Darwesh, O.M. Fabrication of biogenic antimicrobial silver nanoparticles by Streptomyces aegyptia NEAE 102 as eco-friendly nanofactory. *Journal of Microbiology and Biotechnology* 2014, 24, 453–464, https://doi.org/10.4014/jmb.1310.10095.

70. Khalil, A.M.; Abdel-Moneim, R.A.; Darwesh, O.M.; Hashim, A.I.; Nada, A.A.; Rabie, S.T. Synthesis, characterization, and evaluation of antimicrobial activities of chitosan and carbonylmethyl chitosan Schiff-base/Silver nanoparticles. *Journal of Chemistry* 2017, 2017, 11, https://doi.org/10.1155/2017/1434320.

71. Mourad, R.; Helaly, F.; Darwesh, O.M.; Sawy, S.E. Antimicrobial and physiochemical natures of silver nanoparticles incorporated into silicone-hydrogel films. *Contact Lens & Anterior Eye* 2019, 42, 325-333, https://doi.org/10.1016/j.clae.2019.02.007.

72. Masoud, A.A.; Koike, K. Arid land salinization detected by remotely-sensed landscape coverages: A case study in the Siwa region, NW Egypt. *Journal of Arid Environments* 2006, 66, 151-167, https://doi.org/10.1016/j.jaridenv.2005.10.011.

73. Yoon, J.H.; Kim, I.G.; Shin, Y.K.; Park, Y.H. Proposal of the genus Thermoactinomycetes sensu stricto and three new genera, *Laceyella, Thermoflavimicrobium* and *Seinsonella*, on the basis of phenotypic phylogenetic and chemotaxonomic analyses. *International Journal of Systematic and Evolutionary Microbiology* 2005, 55, 395-400, https://doi.org/10.1099/ijs.0.63203-0.

74. Foerster, H. Germination characteristics of some thermophilic actinomycete spores VI. *Amer. Soc. Microbiol.*, Washington, DC, 1975, 36-43, https://doi.org/10.1017/BF00407754.

75. Saitou, N.; Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. *Molecular Biology and Evolution* 1987, 4, 406-425, https://doi.org/10.1093/molbev/mal072.

76. Dammak, F.D.; Zara, Z.; Najah, S.; Abdennabi, R.; Belbahri, L.; Rateb, M.E.; Mejdoub, H.; Maaej, S. Antagonistic Properties of Some Halophilic Thermoactinomycetes Isolated from Superficial Sediment of a Solar Saltern and Production of Cyclic Antimicrobial Peptides by the Novel Isolate *Pseudaludium halophilum*. *BioMed Research International* 2017, 2017, https://doi.org/10.1155/2017/1205258.

77. Teplyakov, A.V.; Kuranova, I.P.; Harutyunyan, E.H.; Vainshtein, B.K.; Fro, C.; Ho, W.E.; Wilson, K. Crystal structure of thermitase at 1.4. *Resolution Journal of Molecular Biology* 1990, 214, 261-279, https://doi.org/10.1016/0022-2836(90)90160-N.

78. Abdel-Rahman, M.A.; Sadek, Z.I.; Azab, M.S.; Darwesh, O.M.; Hassan, M.S. Incorporation of microencapsulated *Lactobacillus rhamnosus* into infant foods inhibit proliferation of toxicogenic *Bacillus cereus* strains. *Biocatalysis and Agricultural Biotechnology* 2019, 18, 101013, https://doi.org/10.1016/j.jbacb.2019.01.051.

79. Melentiev, A.I.; Galimzinanova, N.F.; Gilvanova, E.A.; Shchelchekova, E.A.; Kuzmina, L.; YuBoyko, T.F.; Usanov, N.G.; Aktuganov, G.E. Characterization of Novel Alkaliphilic Isolate of *Bacillus mannanilyticus*, Strain IB-OR17, Displaying Chitinolytic and Antifungal Activities. *Advanced Microbiology* 2014, 4, 455-464, http://dx.doi.org/10.4236/am.2014.48050.

80. Geng, C.; Nie, X.; Tang, Z.; Zhang, Y.; Lin, J.; Sun, M.; Peng, D. A novel serine protease, Sep1, from *Bacillus firmus* DS-1 has nematocidal activity and degrades multiple intestinal-associated nematode proteins. *Scientific Reports* 2016, 6, 25012, https://doi.org/10.1038/srep25012.

81. Matter, I.A.; Darwesh, O.M. El-baz, F.K. Using the Natural Polymer Chitosan in Harvesting *Scenedesmus* Species under Different Concentrations and Cultural pH Values. *International Journal of Pharma and Bio Sciences* 2016, 7, 254–260, https://doi.org/10.22376/ijpbs.2016.7.4.b254-260.

82. Waghmare, P.R.; Patil, S.M.; Jadhav, S.L.; Jeon, B.; Govindwar, S.P. Utilization of agricultural waste biomass by cellulolytic isolate *Enterobacter* sp. SUK-Bio.
6. ACKNOWLEDGEMENTS

The authors wish to thank the contribution between Al-Azher University, Cairo, Egypt, Agricultural Microbiology Department, National Research Centre, Giza, Egypt and School of Material Sciences and Engineering, Hebei University of Technology, Tianjin, China.

© 2019 by the authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).