diagnostics enable simultaneous detection of multiple pathogens in respiratory specimens. Characterizing the public health threat of severe acute respiratory infection (SARI) may enhance global health security. We studied potential etiologies of SARI among adults in six countries over a 12-month period using multi-pathogen diagnostics.

Methods. We enrolled SARI cases (acute onset of fever and cough, requiring hospitalization, in an adult from Global Disease Detection sites in Bangladesh, China, Egypt, Guatemala, Kenya, and Thailand) and healthy frequency-matched controls (2 controls: 5 cases by time onset), age group (18–49, 50–64, 65+ years), and catchment area. Demographics, clinical data, and nasopharyngeal and oropharyngeal specimens were collected from cases and controls. Specimens were tested for 16 viruses and 14 bacteria using Taqman Array Card, which uses real-time reverse transcriptase polymerase chain reaction.

Results. We enrolled 2,388 cases and 1,135 controls from Oct 2013 through Oct 2015. Age distribution (Figure) and seasonality varied by site: enrollment peaked in summer months in Bangladesh, Thailand, and China, and in winter months in Egypt, but was stable throughout the year in Guatemala and Kenya. Case fatality rate across all study locations was 2.3% (range 0–7.0%). One or more pathogens were detected in 76% of cases and in 67% of controls; ≥2 pathogens were detected in 42% of cases and 37% of controls. Pathogens more commonly detected among cases than controls included influenza A (OR 13.3, CI 7.0–25.2; 12.8% of cases vs. 1.1% of controls), influenza B (OR 27.0, CI 8.6–84.8; 8.1% vs. 0.3%), and respiratory syncytial virus (RSV) (OR: 9.4, CI 3.4–25.8; 4.0% vs. 0.4%).

Conclusion. In this SARI study, frequent detection of multiple pathogens in the oro- and nasopharynx of both cases and controls made etiology attribution difficult. Influenza and RSV, however, were likely to be causes of SARI. Because upper respiratory tract specimens may not accurately reflect disease in the lungs, better specimens are needed to determine pneumonia etiology, particularly for bacteria.

Disclosures. All authors: No reported disclosures.

890. Impact of Antivirals in the Prevention of Serious Outcomes Associated with Influenza in Hospitalized Canadian Adults: A Pooled Analysis from the Serious Outcomes Surveillance (SOS) Network of the Canadian Immunization Research Network (CIRN)

Zach Shaffelburg, BSc; Michelle Nichols, MSc; Lingyun Ye, MSc; Melissa R. Bowie, MD, FRCPC; FIDSA1; Ayman Chit, MBIoethics, PhD;2; Guad Angelos Santos, PhD;3; May Elsherif, MD;4; Karen Green, MSc, RN;5; Francois Haguinet, PhD,6; Scott A. Halperin, MD,7; Todd Hatchette, MDCP;8; Barbara Ibaruguchi, MSc;9; Jennie Johnstone, MD;10; Kevin Katz, MD, CM, MSc, FRCPC;11; Joanne M. Langley, MD, FRCPC, FSHEA;12; Jason Leblanc, PhD;13; Philippe Lagace-Wiens, MD;14; Mark Loeb, MD, MSc;15; Donna Mackinnon-Cameron, MMath;16; Anne McCarty, MD, MSc;17; Janet Melcaney, MDCP; Frank Fearon, FACP;18; Allison McGeer, MD, MSc;19; Jeff Powis, MD, MSc, FRCPC;20; David Richardson, MD;21; Makeda Semret, MD, FRCPC;22; Yivek Shinde, MD, MPH;23; Stephanie Smith, MD, FRCPC;24; Daniel Smyth, MD, FRCP;25; Geoffrey Taylor, MD, FSHEA;26; Sylvie Trotter, MD, PhD;27; Louis Valiquette, MD, MS, FRCPC;28; Duncan Webster, MD;29; and Shelly McNeil, MD, FRCPC, FIDSA;30; Canadian Center for Vaccinology, St. John’s, Newfoundland and Labrador Health Authority, Dalhousie University, Halifax, NS, Canada;31; Centre Hospitalier Universitaire de Quebec, Quebec City, QC, Canada;32; Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC, Canada;33; Leslie Dan School of Pharmacy, University of Toronto, ON, Canada;34; Sanofi pasteur;35; Toronto, ON, Canada;36; British Columbia Cancer and Health Authority, University of British Columbia, Vancouver, BC, Canada;37; Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada;38; The Ottawa Hospital, Ottawa, ON, Canada;39; Health Sciences North Research Institute, Sudbury, ON, Canada;40; Michael Garron Hospital, Toronto, ON, Canada;41; William Oder Health System, Brampton, ON, Canada;42; McGill University, Montreal, QC, Canada;43; Novavax Vaccines, Gaithersburg, Maryland;44; Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, AB, Canada;45; The Moncton Hospital, Moncton, NB, Canada;46; Division of Infectious Diseases, University of Alberta Hospital, Edmonton, AB, Canada;47; Microbiology and Infectious Disease, Universite de Sherbrooke, Sherbrooke, QC, Canada;48; Saint John Regional Hospital, Dalhousie University, Saint John, NB, Canada

Session: 94. Respiratory Infection Diagnosis

Thursday, October 5, 2017: 2:00 PM

Background. Antiviral treatment of influenza in outpatient settings is associated with a reduction in severe outcomes but benefit in inpatient settings remains unclear. We assessed the impact of antiviral treatment on the severe outcomes death and intensive care unit (ICU) admission and/or need for mechanical ventilation (MV) in hospitalized influenza patients.

Methods. Patients admitted to hospitals of the CIRN SOS Network with an acute respiratory illness from 2011/12–2013/14 who tested polymerase chain reaction (PCR) positive for influenza were included. Demographic and medical information were obtained from patient interview or the medical chart. Main outcomes of interest were ICU admission and/or need for MV, and hospital length of stay. Logistic regression with backwards stepwise selection was used to estimate odds ratios (OR) and 95% confidence limits (CI) for the association between antiviral use and severe outcomes overall, and stratified by time from symptom onset to antiviral start (<48h, 48h <5 days, 5–7 days).

Results. Over 3 influenza seasons, 4,679 patients were enrolled; 59% were aged ≥65 years, 52% were female, and 88% had a comorbidity. Influenza vaccination status was available for 4,019 (86%) patients, of whom 1,796 (45%) had received current season vaccine. Of 4,678 patients, 16% of patients were admitted to ICU and/or required MV and 10% died. Overall, 54% of hospitalized influenza patients received an antiviral; mean time from the onset of symptoms to antiviral start was 4.28 days (range: 0–21 days). Treatment with antivirals was associated with a significant reduction in admission to ICU and/or need for MV (OR = 0.10; 95% CI: 0.08–0.13; P < 0.001), but was not significantly associated with a reduction in death (P = 0.454) irrespective of time between symptom onset and start of antivirals.

Conclusion. In this study, treatment with antivirals in hospitalized patients with influenza was associated with a significant reduction in ICU admission and MV, even when initiated a mean of 4.28 days after symptom onset. Reduction in death was not demonstrated. These findings support current recommendations for antiviral use in hospitalized adults and suggest increased compliance with these guidelines may reduce morbidity and cost.

Disclosures. M. K. Andrew, GSK: Grant Investigator, Research grant; Pfizer: Grant Investigator, Research grant; Sanofi-Pasteur: Grant Investigator, Research grant; A. Chit, Sanofi pasteur: Employee, Salary; G. Dos Santos, GSK: Employee, Salary; Business and Decision Life Sciences (Contractor for GSK Vaccines): Independent Contractor; M. Elsharif, MD, PhD, Canadian Institutes of Health Research: Investigator; Research grant; Public Health Agency of Canada: Investigator; Research grant; GSK: Investigator, Research grant; F. Haguinet, GSK: Employee, Salary; S. A. Halperin, GSK: Scientific Advisor, Consulting fee; GSK: Investigator, Research grant; T. Hatchette, GSK: Grant Investigator, Grant recipient; Pfizer: Grant Investigator, Grant recipient; Abbvie: Speaker for a talk on biologics and risk of TB reactivation, Speaker honorarium; B. Ibaruguchi, GSK: Employee, Salary; J. M. Langley, GSK: Investigator, Research grant; Canadian Institutes of Health Research: Investigator, Research grant; J. Melcaney, GSK: Scientific Advisor, Honorarium to institution; Sanofi pasteur: Scientific Advisor, Honorarium to institution; A. McGeer, Hoffman La Roche: Investigator, Research grant; GSK: Investigator, Research grant; Sanofi pasteur: Investigator, Research grant; J. Powis, Merck: Grant Investigator, Research grant; GSK: Grant Investigator, Research grant; Roche: Investigator, Research grant; Synthetic Biologicals: Investigator, Research grant; M. Semret, GSK: Investigator, Research grant; Pfizer: Investigator, Research grant; Y. Shinde, Novavax: Employee, Salary; GSK: Shareholder, Stocks; GSK: Employee, Salary; S. Trottier, Canadian Institute of Health Research: Investigator; Research grant; L. Valiquette, GSK: Investigator, Research grant; S. McNeil, GSK: Contract Clinical Trials and Grant Investigator, Research grant; Merck: Contract Clinical Trials and Speaker’s Bureau, Speaker honorarium; Novartis: Contract Clinical Trials, No personal remuneration; Sanofi pasteur: Contract Clinical Trials, No personal remuneration

891. Antibiotic Consumption and Antibiotic Resistance Across Organisms, Drugs, and Consumer Groups

Scott Colens, PhD;4; Michael Burnett, MD, MS;5; Derek MacFadden, MD;5; Marc Lipitch, DPhil;6; Yonatan H. Grad, MD, PhD;4; Immunology and Infectious Disease, Harvard Chan School of Public Health, Boston, Massachusetts;7; Harvard Chan School of Public Health, Boston, Massachusetts;8; Harvard School of Public Health, Boston, Massachusetts;9; Immunology and Infectious Diseases (SHIP);10; Division of Infectious Diseases (BWH), Harvard T.H. Chan School of Public Health and Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts

Session: 95. Use ‘em and Lose ‘em: Preventing Antibiotic Overuse

Thursday, October 5, 2017: 2:00 PM

Background. Antibiotic consumption is considered a major driver of antibiotic resistance, but it remains unclear whether the consumption–resistance relationship is apparent for many organisms and drugs, and whether aggregate consumption is the best predictor of resistance.

Methods. We conducted a landscape assessment of the consumption–resistance relationship by comparing a 20% sample of Medicare Part D outpatient antibiotic pharmacy
claims with a nationwide survey of hospital antibiotic susceptibility reports. Antibiotic consumption was summarized in individual states and hospital-referral regions (HRRs) using traditional, aggregate consumption or by metrics that account for the concentration of consumption in a few individuals (Gini coefficient). The consumption–resistance relationships for 17 organism-drug combinations were simultaneously evaluated (Spearman’s rho; linear models predicting resistance from aggregate consumption and Gini coefficient) and corrected for multiple-hypothesis testing (Benjamini-Hochberg).

Results. We identified a significant correlation between aggregate consumption of an antibiotic and an organism’s reported resistance to that antibiotic in only a few cases: quinolones and E. coli (Spearman’s rho = 0.65, adjusted \(P < 10^{-5} \)) and E. cloacae (rho = 0.50, adjusted \(P = 0.006 \)). In other cases, notably E. coli with trimethoprim-sulfamethoxazole, the distribution of antibiotic consumption among consumers has a marginal relationship with antibiotic resistance (~1.0 p.p. resistance per p.p. Gini coefficient of consumption in a few individuals (Gini coefficient). The consumption–resistance relationship between hospital fluoroquinolone use and antibiotic resistance.

Conclusion. There is a clear correlation between aggregate consumption of an antibiotic and the resistance of an organism to that antibiotic in only a few cases, suggesting that antibiotic steward efforts might maximize their effectiveness by focusing on particular organisms, drugs, and consumer groups rather than overall, aggregate consumption.

Disclosures. All authors: No reported disclosures.

892. Improvement of Gram-negative Susceptibility to Fluoroquinolones After Implementation of a Pre-Authorization Policy for Fluoroquinolone Use: A Decade-Long Experience

Rachel A. Lee, MD; Morgan Scully, MD; Danielle E. Kunz, PharmD; T. Aaron Jones, PharmD; Bernard Callins, MD, MSc; Todd P. McCarty, MD; Stephen Moser, PhD; Craig J. Hoehly, MD; Peter G. Pappas, MD; Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama; Infectious Disease, UAB, Birmingham, Alabama; Department of Pharmacy, University of Alabama at Birmingham, Birmingham, Alabama; University of Alabama at Birmingham, Birmingham, Alabama; Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama; Birmingham VA Medical Center, Birmingham, Alabama; Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; Division of Infectious Disease, University of Alabama at Birmingham, Birmingham, Alabama.

Session: 95. Use ‘em and Lose ‘em: Preventing Antibiotic Overuse

Background. Antibiotic use is a well-known risk factor for acquisition of drug-resistant bacteria and community antibiotic prescribing can drive high rates of resistance within the hospital setting. Owing to concerns over increasing fluoroquinolone (FQ) resistance among Gram-negative organisms at UAB Hospital, our stewardship program implemented a pre-authorization policy. The goal of this study was to assess the relationship between hospital fluoroquinolone use and antibiotic resistance.

Methods. In 2006, the inpatient formulary was consolidated to only ciprofloxacin and moxifloxacin with implementation of guidelines for use to limit inpatient prescribing. Any use outside of these guidelines required approval from an infectious diseases physician. Organism-specific data were obtained from the clinical microbiology database and FQ use was obtained from the hospital database. Correlations were calculated using Pearson’s coefficient.

Results. From 1998 to 2004, FQ use peaked at 173 days of therapy (DOT)/1,000 patient-days, but has remained below 60 DOT/1,000 patient-days since restriction implementation (Figure 1). FQ susceptibility was documented for five common Gram-negative isolates, P. aeruginosa, Acinetobacter spp., Enterobacter cloacae, E. coli, and K. pneumoniae, over an 18-year period (1998–2016). Common hospital acquired pathogens, including Pseudomonas aeruginosa, Acinetobacter spp., and Enterobacter cloacae improved in their susceptibilities to fluoroquinolones. Acinetobacter went from 35% to over 50% susceptible in the preceding 10 years after the policy. *P. aeruginosa* improved from 50% susceptible to over 70% and Enterobacter improved from less than 50% to over 90% susceptible. Interestingly this improvement was not seen for *E. coli* which continued to show a decline in susceptibility from over 90% to near 60% in 2016.

Conclusion. In a large academic hospital setting, FQ susceptibility for common hospital-acquired GNRS improved significantly with the introduction of a restricted use program. A continued decline in *E. coli* FQ susceptibility suggests resistance rates may be driven by outpatient and community antibiotic use and thus, outpatient stewardship programs are necessary to prevent further spread of FQ resistance.

Disclosures. All authors: No reported disclosures.