Direct photon production in $d+\text{Au}$ collisions at $\sqrt{s_{NN}}=200$ GeV

A. Adare,12 S.S. Adler,6 S. Afanasiev,28 C. Aidala,13, 40 N.N. Ajitanand,57 Y. Akiba,30, 51, 52 H. Al-Bataineh,46 A. Al-Jamel,46 J. Alexander,57 A. Angerami,13 K. Aoki,13, 31 N. Apadula,58 L. Aphelchte,59 Y. Aramaki,11, 51 R. Armendariz,46 S.H. Aronson,9 J. Asai,51 E.T. Atomssa,34 R. Averbeck,58 T.C. Awes,57 B. Aznoun,46 V. Babintsev,23 M. Bai,5 G. Bakasy,19 L. Bakasy,19 A. Baldisseri,15 K.N. Barish,7 P.D. Barnes,36 B. Bassalleck,45 A.T. Basye,1 S. Batsolei,41 S. Baublis,50 F. Bauer,7 C. Baumann,41 A. Bazilevsky,6, 52 S. Belikov 6, 23, 27, R. Belmont,63 R. Bennett,58 A. Berdnikov,54 Y. Berdnikov,54 J.H. Bhan,67 A.A. Bickley,12 M.T. Bjornndal,13 D.S. Blau,32 J.G. BoissOURNAL,36 J.S. Bok,67 H. Borel,15 K. Boyle,58 M.L. Brooks,36 D.S. Brown,46 N. Bruner,45 D. Bucker,41 N. Buesching,6, 41 V. Bumazhnov,23 G. Bunce,62 J.M. Burward-Hoy,36, 35 S. Butsyk,36, 58 C.M. Canacho,36 X. Camard,59 S. Campbell,58 A. Caringi,42 P. Chand,4 B.S. Chang,67 W.C. Chang,2 J.-L. Charvet,15 C.-H. Chen,58 S. Chernichenko,23 C.Y. Chi,13 J. Chiba,30 M. Chiu,6, 13, 24 I.J. Choi,67 J.B. Choi,9 J.R. Choudhury,4 P. Christiansen,38 T. Chuto,6, 62 P. Chung,57 A. Churyun,23 O. Chvala,7 V. Ciancoli,47 Z. Citron,58 Y. Cobigo,15 B.A. Cole,13 M.P. Comets,48 Z. Conesa del Valle,34 M. Connors,58 P. Constantin,37, 36 M. Csanád,17 A. Devisongs,58 K.V. Dharmawardane,46 O. Dietzsch,55 A. Dion,27, 58 M. Donadelli,55 J.L. Drachenberg,1 O. Drapier,34 A. Drees,58 K.A. Drees,5 A.K. Dubey,65 J.M. Durham,58 A. Durum,23 D. Dutta,4 V. Dzhordzhadze,7, 66 L. D’Orazio,39 S. Edwards,20 Y.V. Efremenko,47 F. Ellinghaus,12 T. Engelmore,13 A. Enokizono,35, 45 H. En’yo,51, 52 B. Espagnon,48 S. Esumi,52 K.O. Eysen,7 B. Fedemi,42 D.E. Fields,45, 52 C. Finck,59 M. Finger,8 E. Finger,7, 8 F. Fleuer,34 S.L. Fokin,32 B.D. Fox,52 Z. Fraenkel,65, 51 J.E. Frantz,13, 58 A. Franz,6 A.D. Frawley,20 K. Fujiwara,51 Y. Fukao,33, 51, 52 S.-Y. Fung,7 T. Fusayasu,44 S. Gadrat,37 I. Garishvili,60 M. Germain,59 A. Glenn,12, 35, 60 H. Gong,58 M. Gonin,34 J. Gosset,15 Y. Goto,51, 52 R. Granier de Cassagnac,34 N. Grau,13, 27 S.V. Greene,63 G. Grim,36 M. Grosse Perdekamp,24, 52 T. Gunji,11 H.-A. Gustafsson,38 T. Hachiya,22 A. Hadj Henni,59 J.S. Haggerty,6 K.I. Hahn,68 H. Hamagaki,11 J. Hamblen,60 R. Han,49 J. Hanks,13 A.G. Hansen,36 E.P. Hartouni,35 K. Haruna,22 M. Harvey,6 E. Haslum,39 K. Hasuko,51 R. Hayano,11 X. He,1, 51 M. Heffner,35 T.K. Hemmert,58 T. Hester,7 J.M. Heuser,51 P. Hidas,66 H. Hiejima,24 J.C. Hill,27 R. Hobbs,59 M. Mohlmann,19 W. Holzmann,13, 57 K. Homma,22 B. Hong,31 A. Hoover,46 T. Horaguchi,11, 22, 51, 52 D. Hornback,60 S. Huang,63 T. Ichihara,51, 52 R. Ichimiya,61, 51 Y. Ikeda,62 V.V. Ikonnikov,32 K. Imai,33, 51 J. Imrek,36 M. Inaba,62 M. Inuzuka,11 D. Isenhour,1 L. Isenhour,1 M. Ishihara,51 T. Isole,11, 51 M. Issah,57, 66, 68 D. Ito,28 D. Ivanischev,50 Y. Iwancza,22 B.V. Jacak,58 J. Jia,6, 13, 57, 58 X. Jian,36 J. Jin,13 O. Jinnouchi,51, 52 B.M. Johnson,6 S.C. Johnson,35 T. Jones,1 K.S. Joo,43 D. Jouan,48 D.S. Juniper,1 F. Kajihara,11 S. Kametani,58 N. Kamaru,51, 52, 61 J. Kamin,58 M. Kaneta,52 J.H. Kang,67 J. Kapustinsky,35 K. Karatsu,33, 51 M. Kasai,51, 53 K. Katou,64 T. Kawabata,11 D. Kawall,40, 52 M. Kawashima,51, 53 A.V. Kazantsev,32 S. Kelly,12, 13 T. Kempt,27 B. Khachaturov,55 A. Khanzadeev,50 K.M. Kijima,52 J. Kikuchi,64 A. Kim,18 B.J. Kim,31 D.H. Kim,43 D.J. Kim,29, 67, 51 E. Kim,56 J.E. Kim,56 G.-B. Kim,34 H.J. Kim,67 S.H. Kim,67 Y.-J. Kim,24 E. Kinney,12 K. Kiriluk,12 Á. Kiss,17 E. Kistenev,6 A. Kiyomiuchi,1 J. Klay,35 C. Klein-Boesing,41 D. Kleijnjan,7 H. Kobayashi,52 L. Kochenda,50 V. Kochetkov,23 R. Kohara,22 B. Konkov,50 M. Konno,62 J. Koster,24 D. Kotchetkov,7 A. Kožlov,65 A. Král,14 A. Kravitz,13 P.J. Kroon,6 C.H. Kuberg,43 G.J. Kunde,36 K. Kurita,51, 53 M. Kurosawa,51 M.J. Kweon,31 Y. Kwon,60, 67 G.S. Kyle,46 R. Lacey,57 S.Y. Lai,13 G.J. Lajoie,27 D. Layton,24 A. Lebedev,27, 32 Y. Le Bornec,48 S. Leckey,58 D.M. Lee,36 J. Lee,18 K.B. Lee,31 K.S. Lee,31 T. Lee,56 M.J. Leitch,36 M.A.L. Leite,55 B. Lenzi,55 X. Li,10 X.H. Li,7 P. Lichtenwalner,42 P. Liebing,52 H. Lim,56 L.A. Linden Levy,12 T. Liška,4, 14 A. Litvinova,28 H. Liu,36, 46 M.X. Liu,36 B. Love,63 D. Lynch,6 C.F. Maguire,63 Y.I. Makdisi,5, 6 A. Malakhov,58 M.D. Malink,58 W.I. Manko,32 E. Mannel,13 Y. Mao,49, 51 G. Martínez,59 L. Mašek,8, 26 H. Masui,62 F. Matathias,13, 58 T. Matsumoto,11, 64 M.C. McCaın,2 M. McCumber,58 P.L. McGaughy,36 N. Meana,58 B. Meredith,24 Y. Miake,62 T. Mibe,30 A.C. Mignerey,39 P. Mikes,56 K. Miki,51, 62 T.E. Miller,63 A. Milov,5, 68 S. Mioduszewski,6 G.C. Mishra,21 M. Mishra,7 J.T. Mitchell,6 A.K. Mohanty,4 H.J. Moon,43 Y. Morino,11 A. Morreale,7 D.P. Morrison,6 J.M. Moss,36 T.V. Moukhanova,32 D. Mukhopadhyay,63, 65 M. Munday,7 T. Murakami,33 J. Murata,51, 53 S. Nagamiya,30 J.L. Nagle,12, 13 M. Naglis,65 M.I. Nagy,17, 66 I. Nakagawa,51, 52 Y. Nakamya,22 K.R. Nakamura,33 T. Nakamura,22, 51 K. Nakano,51, 61 S. Nam,18 J. Newby,35, 60 M. Nguyen,58 M. Nihashi,22 T. Niiita,62 R. Nouicer,6 A.S. Nynan,32 J. Nystrand,38 C. Oakley,21 E. Ó’Brien,6 S.X. Oda,11 C.A. Ogilvie,27 H. Ohnishi,51 I.D. Ojha,3, 63 M. Oka,62 K. Okada,51, 52 Y. Onduk,51 A. Oskarsson,38 I. Otterlund,38
Direct photons in both Au+Au and p+p collisions have been measured at the Relativistic Heavy Ion Collider (RHB) over a wide p_T range, which was achieved through measurements of both real photons and nearly-real virtual photons. For $1 < p_T < 2.5$ GeV/c, a significant excess of direct photons over the binary-scaled $p+p$ yield was observed in central Au+Au collisions, suggesting the existence of thermal photons emitted from the hot medium. The key to measurements of the direct photon production for $p_T < 5$ GeV/c is the use of virtual photons, which greatly reduces the background of photons from $\pi^0, \eta \rightarrow 2\gamma$. For $p_T > 4$ GeV/c, real photons are used and previous Au+Au measurements indicate agreement with the binary-scaled $p+p$ collisions over $4 < p_T < 22$ GeV/c. However, effects either in the initial state or in the medium created in Au+Au collisions may cancel, making the $d+$Au measurement crucial to understanding the Au+Au results, because only initial-state effects are present in $d+$Au collisions.

Cold-nuclear-matter (CNM) effects may play an important role in direct photon production in A+A collisions and possibly modify the production rate compared to $p+p$ collisions. CNM effects in the measured direct photon yield include interplays of various initial-state effects such as the Cronin enhancement, isospin effect, modification of the nuclear parton distribution functions.
(nPDFs) inside the nucleus \[^8\] and the initial-state energy loss of colliding partons \[^10\] \[^11\]. The \(d+Au\) results shed light on these nontrivial effects and are necessary to make a firm statement about thermal photon emission in \(Au+Au\) collisions. The CNM effects were studied in \(d+Au\) collisions at these energies through measurements of \(p^0\), \(\eta\) and \(J/\psi\) \[^12\] \[^13\]; however, direct photons allow studying the initial-state nuclear effects – without the ambiguities of the hadronization process.

In this paper, we present results of direct-photon measurements in \(\sqrt{s_{NN}} = 200\) GeV \(d+Au\) collisions at midrapidity for \(1 < p_T < 16\) GeV/c. Both virtual-photon and real-photon measurements are performed as independent analyses. The virtual-photon analysis uses data taken in 2008 to provide results for the low \(p_T\) region, approximately \(1 < p_T < 6\) GeV/c. The real-photon analysis uses data recorded in 2003 for complimentary results above 5 GeV/c. In addition, we report improved direct photon results in \(\sqrt{s} = 200\) GeV \(p+p\) collisions for \(1 < p_T < 5\) GeV/c using 2006 data. The new \(p+p\) results are combined with the previously published \(p+p\) collision data \[^1\] \[^6\] from 2005 to serve as a reference for the \(d+Au\) data.

The two central arms of the PHENIX detector \[^15\] cover \(|\eta| < 0.35\) in pseudorapidity and \(\pi/2\) in azimuthal angle for each arm. Minimum bias (MB) events were triggered by beam-beam counters located at both sides of the interaction point, covering \(3.0 < |\eta| < 3.9\), which were also used to determine the event centrality for \(d+Au\) collisions. Events containing high \(p_T\) photons and electrons were selectively recorded by photon and single electron triggers in coincidence with the MB trigger. The photon trigger required an energy deposition in the electromagnetic calorimeter (EMCal) and the electron trigger required a hit in the ring imaging Čerenkov detector with a correlated, above threshold, EMCal energy deposition.

The virtual-photon analysis used 0.7 nb\(^{-1}\) of MB data and 54.9 nb\(^{-1}\) of single-electron-triggered data. The analyzed MB and single-photon-triggered data samples for the real-photon analysis were 0.8 and 1.6 nb\(^{-1}\), respectively, where 1 nb\(^{-1}\) of \(d+Au\) collisions corresponds to \(2 \times 197\) nb\(^{-1}\) of nucleon-nucleon collisions. We also analyzed 4.0 pb\(^{-1}\) of the \(p+p\) data from the 2006 run to measure the direct photon cross section for \(1 < p_T < 5\) GeV/c through the virtual photon analysis.

Electron tracks above 0.2 GeV/c momentum are reconstructed using drift and pad chambers in each of the central arms, with momentum resolution \(\sigma_{p_T}/p_T = 1.1\% \pm 1.16\% \times p_T\). Electrons are identified by requiring hits in the ring imaging Čerenkov detector and matching the momentum with the energy measured in the EMCal. Electron pairs are used to measure virtual photons using the method described in Ref. \[^1\] \[^6\].

Any source of real direct photons also produces nearly-real virtual photons, \(i.e.,\) low mass \(e^+e^-\) pairs, allowing extraction of the real direct photon yield from low mass \(e^+e^-\) pairs. In the virtual photon analysis, \(e^+e^-\) pairs with \(m_{ee} < 0.3\) GeV/c\(^2\) and pair \(p_T > 1\) GeV/c are measured by the two central arms. Electron pairs are formed from combinations of all electrons and positrons with \(p_T > 0.3\) GeV/c in an event, and background pairs arising from random combinations, external conversions, correlated background from double Dalitz decays of \(\pi^0\), \(\eta\) and jet induced correlations are removed by analysis techniques as discussed in Ref. \[^6\]. Electron pair mass distributions for different pair \(p_T\) ranges, which comprise the virtual direct photon signal and the hadron decay component, are obtained. The inclusive photon yield is determined from the yield of \(e^+e^-\) pairs in \(m_{ee} \sim 0.05\) GeV/c\(^2\) with the relation of \(d^+\alpha_{ee}/dm_{ee} = \frac{2a_\gamma}{3\pi}m_{ee}dn_{\gamma}\) \[^6\]. The \(e^+e^-\) mass distribution for \(m_{ee} < 0.3\) GeV/c\(^2\) and \(p_T > 1\) GeV/c is decomposed by a two-component fitting procedure described in Ref. \[^6\] using the known shapes of the direct photon and hadron decay components. The direct photon fraction, \(r_\gamma = \text{direct } \gamma/\text{inclusive } \gamma\), is extracted from the fitting. Multiplying the direct photon fraction by the inclusive photon yield leads to the direct photon yield.

The systematic uncertainties on the direct-photon fraction are estimated from the difference in extracted direct-photon fraction when varying: (1) the particle compositions in the “cocktail” of hadron decay contributions for the fit, (2) the background subtraction of the measured mass distribution, (3) the mass region used for the fit, and (4) the efficiency corrections. The largest uncertainty is due to the particle composition of the hadronic cocktail, particularly \(\eta/\pi^0 = 0.48 \pm 0.03\) at \(p_T > 2\) GeV/c, which is essentially identical to \(p+p\) \[^10\]. The resulting uncertainty in the direct-photon fraction due to \(\eta/\pi^0\) is about 20–30%, and less than 5% are from all other sources. The uncertainty in the \(e^+e^-\) pair acceptance correction introduces an additional 9% uncertainty to the inclusive photon yield, which is added in quadrature with the other uncertainties.

Figure 1 shows the measured direct-photon fractions by the virtual-photon analysis in \(p+p\), \(d+Au\), \(Au+Au\) \[^1\] collisions from left to right. The \(p+p\) result is the combination of \[^1\] and the 2006 data. The curves show the expectations from a next-to-leading-order perturbative-quantum-chromodynamics (NLO pQCD) calculation \[^17\] \[^18\]. The cutoff mass scale dependence of the calculation is also shown for three cases: \(\mu = 0.5p_T, 1.0\) \(p_T\) and 2.0 \(p_T\). The expectation for \(d+Au\) is calculated by scaling with the nuclear overlap function calculated from a Glauber model \[^19\], which is expressed as \(T_{dA} = N_{col}/\sigma_{pp}^{incl}\). Here, \(N_{col}\) is the number of binary nucleon-nucleon collisions and \(\sigma_{pp}^{incl}\) is the cross section of inelastic \(p+p\) collisions of 42 mb. The \(p+p\) data points were much improved statistically compared to the previously published data, especially above 3 GeV/c, and the \(p+p\) result is in good agreement with the NLO pQCD expec-
The key to the method is the precise subtraction of the hadronic background originating from hadronic decays, about 80% of which come from $\pi^0 \rightarrow 2\gamma$ and about 15% from $\eta \rightarrow 2\gamma$. Two techniques, π^0-tagging and statistical subtraction methods, are used to remove decay photons. The π^0-tagging method identifies neutral pions by reconstructing pairs of photons in the lead-scintillator EMCal sectors that deposit more than 150 MeV. All pairs of photons at least 10 towers (≈ 0.1 radian) inside the edge of the EMCal which reconstruct to invariant mass $105 < m_{\gamma\gamma} < 165$ MeV are tagged as π^0 decays. The number of direct photons, γ_{dir}, is determined as

$$\gamma_{\text{dir}} = \gamma_{\text{incl}} - (1 + R_{h/\pi^0})(1 + \delta_{\text{miss}})\gamma_{\pi^0 \rightarrow 2\gamma}, \quad (1)$$

where $\gamma_{\text{incl}}, \gamma_{\pi^0 \rightarrow 2\gamma}$ are the number of inclusive and π^0 decay photons, respectively, and R_{h/π^0} is the ratio of other hadronic contributions to π^0 decay photons. δ_{miss} represents the probability that either of the photons from $\pi^0 \rightarrow 2\gamma$ misses the detector. A fast Monte Carlo (MC) simulation, which includes the geometric acceptance and EMCal response, is used to estimate δ_{miss}. The input p_T distribution of π^0 is taken from $p+p$ collisions [21]. δ_{miss} is then determined as a function of p_T and its uncertainty is evaluated as $\sim 6\%$ by varying the implemented simulation conditions. R_{h/π^0} is calculated using the yield ratios of η and ω to π^0 measured by PHENIX [21, 22].

The statistical subtraction method [2, 23] is applied to MB triggered data from both the lead-scintillator and lead-glass EMCal. The hadron decay contribution is estimated by a hadronic cocktail simulation based on the observed p_T spectrum of π^0; other particle spectra are based on the π^0 using m_T scaling [6]. The acceptance and shower merging effects are also implemented in the simulation. A double ratio, R_γ, is calculated as

$$R_\gamma = \left(\frac{dN_\gamma/dp_T}{dN_{\pi^0 \rightarrow 2\gamma}/dp_T} \right)^{\text{data}} \div \left(\frac{dN_\gamma/dp_T}{dN_{\pi^0 \rightarrow 2\gamma}/dp_T} \right)^{\text{sim}}. \quad (2)$$

An excess due to direct photons gives $R_\gamma > 1$, and the direct photon yield is determined by $\gamma_{\text{dir}} = (1 - R_\gamma^{-1})\gamma_{\text{incl}}$.

Figure 2 shows the direct photon cross sections in $p+p$ and $d+Au$ collisions from both virtual- and real-photon analyses [4]. The NLO pQCD calculations agree with the $p+p$ data well for a wide p_T range, and show a preference for the choice $\mu = 0.5p_T$. Unfortunately, the NLO pQCD calculation with a low mass cutoff scale less than 1.0 p_T is not available for $p_T < 2.0$ GeV/c. Thus, we use an empirical parameterization, Eq. 3, inspired by a NLO pQCD formulation for $p+p \rightarrow \gamma X$ [18]:

$$E \frac{d^3\sigma}{dp^3} = a \cdot p_T^{-(b+c \ln x_T)} \cdot (1 - x_T^n)^n, \quad (3)$$

where a, b, c, n are free parameters and $x_T = 2p_T/\sqrt{s}$. The first factor, $p_T^{-(b+c \ln x_T)}$, is a power law with a logarithmic scaling correction. The convolution of two PDFs in colliding protons consequently introduces the factor, $(1 - x_T^n)^n$, which naturally leads to a drop of the cross section to 0 at $x_T = 1$. The virtual-photon ($1.5 < p_T < 5$ GeV/c) and real-photon ($p_T > 5$ GeV/c) results are fit simultaneously, and the point-to-point uncertainty of the data is considered at fitting. The p_T-correlated uncertainty of the fit is identical with that of the data. The quadratic sum of these fit uncertainties is indicated as dotted lines in Fig. 2. The fit describes the data very well for the entire p_T range. The fit parameters with uncertainty (excluding the p_T-correlated uncertainty) are $a = 6.6 \pm 3.3 \times 10^{-3}$, $b = 6.4 \pm 0.3$, $c = 0.4 \pm 0.2$, and $n = 17.6 \pm 14.9$, with $\chi^2/NDF = 22.4/16$. The factor of the power law, $b + c \cdot \ln x_T$, becomes 4.6–5.5 for $0.01 < x_T < 0.1$.

The $d+Au$ data illustrate full consistency between the three aforementioned independent analyses. The independent results are in good agreement in the overlap region from $3.0 < p_T < 6.0$ GeV/c. The virtual photon...
FIG. 2: (color online) (a) The invariant cross sections of the direct photon in p+p [3, 4] and d+Au collisions. The p+p fit result with the empirical parameterization described in the text is shown as well as NLO pQCD calculations, and the scaled p+p fit is compared with the d+Au data. The closed and open symbols show the results from the virtual photon and π^0-tagging methods, respectively. The asterisk symbols show the result from the statistical subtraction method for d+Au data, overlapping with the virtual photon result in 3 < p_T < 5 GeV/c. The bars and bands represent the point-to-point and p_T-correlated uncertainties, respectively. (b) The p+p data over the fit. The uncertainties of the fit due to both point-to-point and p_T-correlated uncertainties of the data are summed quadratically, and the sum is shown as dotted lines. The NLO pQCD calculations divided by the fit are also shown.

The analysis reaches down to 1 GeV/c, and the π^0-tagging method extends to 16 GeV/c. The d+Au data are in agreement with the binary collision scaled p+p fit result across the entire p_T coverage. A power law fit, A_{p+p}^{-n}, is performed with the d+Au data for $p_T > 8$ GeV/c as done for p+p ($n = 7.08 \pm 0.09^{\text{stat}} \pm 0.13^{\text{syst}}$) [4] and Au+Au ($n = 7.18 \pm 0.14^{\text{stat}} \pm 0.06^{\text{syst}}$ for most central) [5]. The fit gives a power of $n = 7.17 \pm 0.76^{\text{stat}} \pm 0.01^{\text{syst}}$, consistent with p+p and Au+Au.

Figure 3 shows the nuclear modification factor for d+Au, R_{dA}, as a function of p_T. The closed and open symbols show the results from the virtual- and real-photon measurements, respectively. The bars and bands represent the point-to-point and p_T-correlated uncertainties, respectively. The box on the right shows the uncertainty of T_{dA} for d+Au. The curves indicate the theoretical calculations [24] with different combinations of the CNM effects such as the Cronin enhancement, isospin effect, nuclear shadowing and initial state energy loss.

FIG. 3: (color online) Nuclear modification factor for d+Au, R_{dA}, as a function of p_T. The closed and open symbols show the results from the virtual- and real-photon measurements, respectively. The bars and bands represent the point-to-point and p_T-correlated uncertainties, respectively. The box on the right shows the uncertainty of T_{dA} for d+Au. The curves indicate the theoretical calculations [24] with different combinations of the CNM effects such as the Cronin enhancement, isospin effect, nuclear shadowing and initial state energy loss. The data do however rule out much larger effects beyond these standard range predictions. In contrast, Fig. 4 shows that for R_{AA} in Au+Au collisions, there is a much larger enhancement of the direct photon production below 2.0 GeV/c. The magnitude of the enhancement in Au+Au with $R_{AA} > 7$ is much higher than observed in d+Au, indicating that there is a significant medium effect on direct photon production.

In conclusion, direct photons in 1 < p_T < 16 GeV/c have been measured for d+Au collisions via three independent analyses, the virtual photon, π^0-tagging and statistical subtraction methods. The results from these analyses agree in the overlap p_T region. The $p+p$ spectrum has also been improved statistically by the 2006 data. The improved $p+p$ data are parameterized by a pQCD inspired fit function. The fit describes the data very well for the entire p_T region. R_{dA} is consistent with unity. The data fully support the theoretical calculations with the standard CNM effects for a wide p_T range. R_{AA} shows a much larger enhancement below 2.0 GeV/c compared to the d+Au data, indicating the existence of a
medium effect as an additional source of direct photons.

We thank the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Laboratory and the staff of the other PHENIX participating institutions for their vital contributions. We acknowledge support from the Office of Nuclear Physics in the Office of Science of the Department of Energy, the National Science Foundation, a sponsored research grant from Renaissance Technologies LLC, Abilene Christian University Research Council, Research Foundation of SUNY, and Dean of the College of Arts and Sciences, Vanderbilt University (U.S.A), Ministry of Education, Culture, Sports, Science, and Technology and the Japan Society for the Promotion of Science (Japan), Conselho Nacional de Desenvolvimento Científico e Tecnológico and Fundação de Amparo à Pesquisa do Estado de São Paulo (Brazil), Natural Science Foundation of China (P. R. China), Ministry of Education, Youth and Sports (Czech Republic), Centre National de la Recherche Scientifique, Commissariat à l’Énergie Atomique, and Institut National de Physique Nucléaire et de Physique des Particules (France), Bundesministerium für Bildung und Forschung, Deutscher Akademischer Austausch Dienst, and Alexander von Humboldt Stiftung (Germany), Hungarian National Science Fund, OTKA (Hungary), Department of Atomic Energy and Department of Science and Technology (India), Israel Science Foundation (Israel), National Research Foundation and WCU program of the Ministry Education Science and Technology (Korea), Ministry of Education and Science, Russian Academy of Sciences, Federal Agency of Atomic Energy (Russia), VR and Wallenberg Foundation (Sweden), the U.S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union, the US-Hungarian Fulbright Foundation for Educational Exchange, and the US-Israel Binational Science Foundation.

\[\text{FIG. 4: (color online) Nuclear modification factors for Au+Au (MB) and d+Au as a function of } p_T. \text{ The triangle symbols show results from the (closed) virtual } \gamma \text{ and (open) real photons measurements, respectively. The bars, bands, and box represent the same uncertainties as in Fig. 3. The (+) symbols for } R_{AA} \text{ for } p_T < 5 \text{ GeV/c illustrates the difference in magnitude for } R_{AA} \text{ between Au+Au and d+Au collisions.} \]