Wound dressings from a hygienic point of view using the example of sorbion sachet S

Abstract

Nosocomial infections present a growing challenge in wound care, especially in light of the rising distribution of multiresistant bacterial strains. Because wounds are an ideal breeding ground for pathogens, special care must be taken in choosing the right dressing. Following the traditional preventive approach, exposure of the nursing staff as well as the wounds to pathogens should be reduced. Dressings allowing a reduced frequency of dressing changes may help accomplish this. During dressing changes the dressing should allow for safe handling with a low risk of contamination. To protect the patient, the dressing should minimise exposure to pathogens during wear time as well as promote healing even if the dressing remains on the wound for a longer period of time. The dressing sorbion sachet S is used as an example to examine possible strategies.

Keywords: wound care, wound dressing, distancing from infectious pathogens

Introduction

In the course of medical history, hygiene has contributed greatly to patient well-being. However, new challenges have arisen, especially in the prevention of health care-associated infections (HAIs). Since about 1965 the number of nosocomial infections from pathogens such as *Staphylococcus aureus* has been increasing, with gram-negative strains appearing around 1980 and resistant *Enterococci* appearing at the beginning of the 90s [1]. Due to the growing spread of methicillin resistant *Staphylococcus aureus* (MRSA), gram-negative bacteria with extended spectrum betalactamase (ESBL), vancomycin-resistant *Enterococcus* (VRE) and other multiresistant pathogens, the issue of HAIs is attracting publicity outside the confines of medical literature. This awareness is further increased by a rise in community-acquired infections outside of hospitals, which have been significantly increasing in parallel with HAIs since the end of the 1980s.

Although the numbers in the literature are varying, we can assume an incidence of nosocomially acquired infections of 4–10%, the majority in intensive care unit (ICU) patients. On average, one in every 6 patients in the ICU and one in 30 patients on the general ward acquire a nosocomial infection. Besides increasing the length of stay in the hospital by 4 to 30 days, especially in patients with a serious primary disease and multiple comorbidities, mortality is dramatically higher. In addition to the medical and social problems these infections pose for those affected, they are also a considerable burden on the social welfare system. The German health insurance DAK calculated the total costs in Germany for MRSA infections alone at 610,483,565 € in 2006/2007 [2]. Costs for aftercare and other economic costs must be added to this. A major study conducted in the USA shows the importance of hygiene in dealing with this issue: hospitals that implemented effective hygiene measures were able to lower the rate of infection by 27–35%, whereas it rose by 9–26% in a control group over the same observation period [3]. The same study deemed up to 32% of the infections as avoidable.

The wound as a portal for pathogens

HAI pathogens normally need an entry portal to cause infection. Accordingly, a large percentage of infections can be traced back to post-ventilation pneumonia or catheter-induced blood vessel and urinary tract infections. Nonetheless, wounds are also a major source of infection; post-operative wound infections alone make up 15–20% of nosocomial infections [4].

Wounds are an ideal reservoir for pathogens or facultative pathogens [5]. This is due in part because the natural skin barrier has been broken, but also because the wound climate is ideal for the reproduction of microorganisms (temperature, possible impaired circulation in the wound area, patient’s nutritional status, lowered immune defences) [6], [7].

Against this background, it is not surprising that persistent, chronic wounds are usually colonised with microbes. The same is true for traumatic wounds, especially bite wounds. A wound that is colonised with microorganisms without having a pathological relevance is called “colonised”. This does not necessarily interfere with the wound healing process. A variety of factors, either endogenous in nature or caused by exogenous factors such as a new...
pathogenic colonisation, can alter the pathogen population, with one or more microorganisms dominating. The resulting condition is known as “critically colonised”. Without intervention, a critical colonisation can initially cause a florid local infection, and in the worst case, a systemic infection [4]. The reasons for the transition from one degree of colonisation to the next are complex, multifactored and currently not fully understood.

Because every wound is considered being at least colonised, this pathogen reservoir deserves special attention. So from the standpoint of traditional hygiene, the standard prophylactic tools should be employed to wound care. Two approaches contribute to reducing exposure – hygiene of the nursing staff and protecting the wound from critical colonisation and infection. An important link between the two approaches is the wound dressing. With respect to hygiene, the following discussion deals with the necessary properties of a wound dressing, using the dressing sorbion sachet S as an example.

Requirements of a modern wound dressing

The best prevention is avoiding exposure. This applies to the nursing staff, whose tasks and close contact with the patient increase the risk of spreading wound pathogens. Standardised work methods and employee training are critical in avoiding this spreading. In addition, efforts should be taken to minimise exposure in terms of duration and intensity. In the simplest of cases, it means reducing the frequency of dressing changes, which can also be seen as economically beneficial. Modern wound dressings should therefore allow for a reduction in the frequency of dressing changes.

At first this sounds easy enough to achieve, but it requires an extremely high performance profile of the dressings if the longer wear time is not to negatively affect the patient. The dressing should be able to create and maintain a wound climate that promotes healing over the entire wear time. One product up to the task is the dressing sorbion sachet S (sorbion Aktiengesellschaft, Ostbevern, Germany). The product’s Hydration Response® Technology is a combination of physically modified cellulose fibres and gelling agents, absorbs and retains large quantities of wound exudate and corrosive agents damaging to the wound. The close interaction of the two components and their various mechanisms of action promote an optimal wound climate longer than many other products [8]. Once the frequency of dressing changes is lowered to the therapeutically reasonable minimum, the next goal is to reduce (unavoidable) contact between the nursing staff and the wound flora while the dressing is being changed. This can be achieved through antisepctic dressings, yet their use should be limited to the special indication of critically colonised or infected wounds. The dressing sorbion sachet S is designed to affect the wound flora in a different manner. The Hydration Response® Technology used in this product binds the absorbed fluid in its interior, along with the pathogens. In vitro experiments demonstrated that the surface of the dressing showed a considerably lower level of pathogens than other dressings after only a short time of absorbing highly infectious test fluids (Figure 1). The pathogens were trapped in the interior of the product and were contained, even under pressure that occurs during dressing changes [9]. This is not necessarily the case in dressings based on PUR foam. To promote wound healing – leading to wound closure and thus best prevention of infection – an “ideally moist” wound environment should be created and maintained [10]. This requires balancing excess exudate and negative consequences such as wound edge maceration and increased risk of infection from soaked dressings, with the amount of moisture physiologically required to transport relevant growth factors, nutrients, etc. on the other side. The Hydration Response® Technology of the sorbion sachet S absorbs excess fluid – and with it the pathogens, as indicated by the in vitro data – and binds it in its interior. Its positive effect on the pathogen population in the wound is documented in statements from patients, who often report that odour, especially of chronic wounds, abates when products with Hydration Response® Technology are used.

The sorbion sachet S is able to loosen wound slough and bind it to its surface at the same time, in effect debriding the wound every time the dressing is changed. Even

Figure 1: Qualitative demonstration of an in vitro experiment on absorbing pathogens. sorbion sachet S and another absorbent dressing were exposed to a solution containing 10^3 CFU/ml Staphylococcus aureus subsp. aureus Rosenbach, Gentamicin- and Methicillin-resistant, (ATCC 33592, [13]) and then pressed with a gloved hand. Immediately thereafter an impression of the glove was taken on an agar plate and incubated for 48 hours at 37 °C [9].
though the direct relationship between wound slough and biofilms is a matter of scientific debate, it does appear probable that slough plays a role in the generation of biofilms [11]. From a hygiene standpoint, soft debridement could represent a special form of prophylaxis.

Conclusion

It has been shown that in hospitals a reduction in the incidence of nosocomial infections can cover the additional expenses incurred by implementing hygiene measures [12]. A good choice of dressings can contribute to this. From a hygiene standpoint, a modern wound dressing should lower the exposure of nursing staff and the wound by reducing the number of dressing changes. In order to do so, the dressing, like the sorbion sachet S with its Hydration Response® Technology, must be able to maintain the moist wound climate required for healing even during an extended period of wear. The absorption and retention of pathogens combined with a low bacterial burden on the surface reduces the exposure of nursing staff during dressing changes as well as exposure of the wound between changes. It may therefore also be possible, in a way that conserves the tissue, to shift the pathogen spectrum to the positive, as expressed in patient reports of odour abatement in chronic wounds. Other properties such as the soft debridement effected by the sorbion sachet S may also contribute to this.

Competing interests

Dr. Alexander Maassen, is a paid employee of sorbion Aktiengesellschaft, Ostbevern, Germany. The article was not sponsored by the company.

References

1. Cohen ML. Epidemiology of drug resistance: implications for a post-antimicrobial era. Science. 1992;257(5073):1050-5. DOI: 10.1126/science.257.5073.1050
2. Rebscher H. MRSA und die gesundheitsökonomischen Folgen. In: Hauptstadtkongress: Medizin und Gesundheit; Berlin; 5. Juni 2008.
3. Study of the Efficacy of Nosocomial Infection Control (SENIC). Atlanta: Centers for Disease Control and Prevention; 1985.
4. Association for the Advancement of Wound Care (AAWC). Advancing your practice: Understanding Wound Infection and the Role of Biofilms. Malvern, PA: Association for the Advancement of Wound Care (AAWC); 2008. Available from: http://www.awconline.org/pdf/International%20Publication%20Final%203.11.08.pdf
5. Assadian O, Daeschlein G, Kramer A. Die Bedeutung der infizierten Problemwunde für den Hygieniker und Mikrobiologen sowie ökonomische Aspekte der chronischen Wunde. GMS Krankenhaushyg Interdiszip. 2006;1(1):Doc30. Available from: http://www.egmgs.de/de/journals/dgkh/2006-1/dgkh000030.shtml
6. MacKay D, Miller AL. Nutritional support for wound healing. Altern Med Rev. 2003;8(4):359-77.
7. European Wound Management Association (EWMA). Position Document: Hard-to-heal wounds: a holistic approach. London: MEP Ltd.; 2008. Available from: http://ewma.org/fileadmin/user_upload/EWMA/pdf/Position_Documents/2008/English_EWMA_Hard2Heal_2008.pdf
8. Independent lab report with data on the capacity of sorbion sachet S and clinical data on the product. Ostbevern: sorbion Aktiengesellschaft; 2004–2009.
9. Independent microbiology lab report with data on sorbion sachet S. Ostbevern: sorbion Aktiengesellschaft; 2008.
10. Kammerlander G, Eberlein T, Brunner U. Modernes Wundmanagement und die Axiome der feuchten Wundbehandlung. Positionsdokument. Embrach: KAMMERLANDER-WFI Wundmanagement Consulting; 2003.
11. Cutting K. Biofilm and Slough. In: sorbion Satellite Symposium: Biofilm and the role of debridement in chronic wounds. EWMA 2009; Helsinki; 21 May 2009.
12. Haley RW, White JW, Culver DH, Hughes JM. The financial incentive for hospitals to prevent nosocomial infections under the prospective payment system. An empirical determination from a nationally representative sample. JAMA. 1987;257(12):1611-4.
13. Schaefler S, Jones D, Perry W, Ruvinskaya L, Baradet T, Mayr E, Wilson ME. Emergence of gentamicin- and methicillin-resistant Staphylococcus aureus strains in New York City hospitals. J Clin Microbiol. 1981;13(4):754-9.

Corresponding author:
Prof. Dr. med. Axel Kramer
Institute for Hygiene and Environmental Medicine, Ernst-Moritz-Arndt-University Greifswald, Walther-Rathenau-Str. 49 a, 17489 Greifswald, Germany, Tel.: +49-(0)3834-515542, Telefax: +49-(0)3834-515541 kramer@uni-greifswald.de

Please cite as
Kramer A, Maassen A. Wound dressings from a hygienic point of view using the example of sorbion sachet S. GMS Krankenhaushyg Interdiszip. 2009;4(2):Doc11.

This article is freely available from http://www.egmgs.de/en/journals/dgkh/2009-4/dgkh000136.shtml

Published: 2009-12-16

Copyright ©2009 Kramer et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en). You are free: to Share — to copy, distribute and transmit the work, provided the original author and source are credited.
Anforderungen an Wundauflagen aus Sicht der Hygiene am Beispiel der Wundauflage sorbion sachet S

Zusammenfassung

Nosokomiale Infektionen stellen nicht zuletzt auf Grund der zunehmenden Ausbreitung multiresistenter Bakterienstämme eine wachsende Herausforderung in der Wundversorgung dar. Da Wunden Erregern einen idealen Nährboden bieten, ist der Auswahl von Wundauflagen besondere Aufmerksamkeit zu widmen. Dem klassischen Präventionsansatz folgend, sollte die Erregerexposition sowohl des Pflegepersonals als auch der Wunde reduziert werden. Dazu tragen Wundauflagen bei, die eine Reduktion der Verbandwechselfrequenz erlauben. Während der Verbandwechsel sollte die Wundauflage ein sicheres Handling mit geringem Kontaminationsrisiko ermöglichen. Zum Schutz der Patienten sollte die Wundauflage während der Tragezeit sowohl die Exposition mit Erregern minimieren, als auch trotz verlängerter Verweildauer für eine heilungsfördernde Wundsituation sorgen. Mögliche Strategien hierzu werden am Beispiel der Wundauflage sorbion sachet S erörtert.

Schlüsselwörter: Wundversorgung, Wundauflage, Distanzierung vor Wundinfektionserregern

Einleitung

Die Hygiene hat große Fortschritte in der Medizingeschichte zum Wohle der Patienten ermöglicht. Allerdings haben sich neue Herausforderungen insbesondere in der Prävention von Health Care-assoziierten Infektionen (HAI) ergeben. Seit etwa 1965 nimmt die Zahl der nosokomialen Infektionen mit Pathogenen wie Staphylococcus aureus zu, seit etwa 1980 auch mit Gram-negativen Stämmen und seit Beginn der 90er Jahre mit resistenten Enterococcen [1]. Insbesondere durch die zunehmende Ausbreitung von Methicillin-resistenten Staphylococcus aureus (MRSA), gramnegativen Keimen mit Betalaktamase erweitertem Spektrums (ESBL), Vancomycin-resistenten Enterococcus (VRE) und weiteren multiresistenten Erregern erregt die Problematik der HAI auch außerhalb der Fachliteratur zunehmend die Aufmerksamkeit der Öffentlichkeit, da parallel zu den HAI auch außerhalb von Kliniken erworbene Infektionen (community acquired infections) seit Ende der 80er Jahre deutlich zunehmen. Trotz unterschiedlicher Angaben in der Literatur kann man von einer Inzidenz nosokomialer Infektionen (community acquired infections) seit Ende der 80er Jahre deutlich zunehmen. Trotz unterschiedlicher Angaben in der Literatur kann man von einer Inzidenz nosokomialer Infektionen von 4–10% mit besonders hohen Anteil bei Intensivpatienten ausgehen. Im Mittel erwerbt jeder 6. Patient auf einer Intensivstation und jeder 30. Patient auf einer allgemeinmedizinischen Station eine nosokomiale Infektion. Folgen sind neben einer um 4 bis 30 Tage verlängerten Krankenhausverweildauer insbesondere bei Patienten mit gravierender Indexerkrankung und mehreren Komorbiditäten, eine dramatisch erhöhte Mortalität. Neben den medizinischen und sozialen Problemen für die Betroffenen stellen diese Infektionen eine erhebliche Belastung für das Sozialsystem dar. Die Gesamtkosten allein für MRSA Infektionen wurden für Deutschland durch die DAK für das Jahr 2006/2007 mit 610.483.565 Euro berechnet [2]. Hinzu kommen die Kosten für die Nachsorge und die sonstigen volkswirtschaftlichen Kosten. Wie wichtig Hygiene in diesem Spannungsfeld ist, zeigt eine große angelegte Studie aus den USA, in der Kliniken mit wirksamer Umsetzung von Hygienemaßnahmen die Infektionsrate um 27 – 35% senken konnten, während diese in einer Kontrollgruppe über den Beobachtungszeitraum um 9–26% anstieg [3]. Derselben Studie zufolge können bis zu 32% der Infektionen als vermeidbar angesehen werden.

Die Wunde als Eintrittspforte für Pathogene

In der Regel benötigen die Erreger von HAI eine Eintrittspforte, um eine Infektion auszulösen. Dementsprechend ist ein hoher Anteil an Infektionen auf eine Pneumonie nach Beatmung oder auf Katheterinduzierte Blutgefäße und Harnwegsinfektionen zurückzuführen. Jedoch haben auch Wunden einen hohen Anteil, so dass allein der Anteil postoperativer Wundinfektionen an den nosokomialen Infektionen 15–20 % ausmacht [4]. Wunden stellen ein ideales Reservoir für pathogene oder fakultativ pathogene Erreger dar [5]. Ursache ist nicht nur die Unterbrechung der natürlichen Schutzbarriere der Haut, sondern auch das Wundklima bietet Mikroorganismen hervorragende Vermehrungsbedingungen (Temperatur, ggf. Durchblutungsstörung im Wundgebiet, Ernährungszustand des Patienten, reduzierte Immunabwehr) [6], [7].
Vor diesem Hintergrund ist es nicht überraschend, dass insbesondere die länger persistierenden chronischen Wunden in der Regel mikrobiell besiedelt sind. Ähnliches gilt für traumatische Wunden, insbesondere für Bissverletzungen. Dieser als „kolonisiert“ bezeichnete Zustand der mehr oder weniger physiologischen, auf jeden Fall noch nicht pathologisch relevanten Besiedlung der Wunde mit Mikroorganismen ist zunächst für den Wundheilungsverlauf unkritisch. Durch verschiedene Faktoren, die entweder endogener Natur oder durch exogene Faktoren wie Neubesiedlung mit Pathogenen bedingt sind, kann es zu einer Verschiebung in der Erregerpopulation mit Dominanz eines oder mehrerer Mikroorganismen kommen. Der resultierende Besiedlungsgrad wird als „kritisch kolonisiert“ bezeichnet. Ohne Intervention kann die kritische Kolonisation zunächst zu einer floriden lokalen, im schlimmsten Fall auch zu einer systemischen Infektion führen [4].

Abbildung 1: Qualitative Demonstration eines in-vitro-Versuchs zur Erregeraufnahme. Sorbion sachet S und eine andere absorbierende Wundaufklage wurden für 20 min einer Lösung mit 10⁷ KBE/ml Staphylococcus aureus subsp. aureus Rosenbach, Gentamicin- und Methicillin-resistent, (ATCC 33592, [13]) ausgesetzt und anschließend mit einer behandschuhten Hand gedrückt. Unmittelbar danach wurde ein Abdruck des Handschuhs auf einer Agarplatte genommen und für 48 h bei 37°C inkubiert [9].

Durch standardisierte Arbeitsweisen und Mitarbeiterverschul- lungen entgegengewirkt werden. Darüber hinaus sollte der Versuch unternommen werden, die Exposition zeitlich und in ihrer Intensität zu minimieren. Das bedeutet im einfachsten Fall, die Frequenz der Verbandwechsel zu senken, was sich auch wirtschaftlich attraktiv darstellen kann. Moderne Wundaufklagen sollten demzufolge eine Senkung der Verbandwechselfrequenz ermöglichen.

Dies klingt zunächst einfach, stellt aber erhebliche Anforderungen an das Leistungsprofil der Produkte, wenn die verlängerte Tragedauer nicht zu Lasten der Patienten gehen soll. Die Wundaufklage sollte in der Lage sein, über die gesamte Verweildauer ein die Heilung förderndes Wundklima zu schaffen. Ein Produkt, das das leisten kann, ist das Produkt sorbion sachet S (sorbion AG, Ostbevern, Germany). Die in dem Produkt verwendete Hydration-Response®-Technologie nimmt durch die Kombination von physikalisch aufbereiteten Zellulosefasern mit Gelbildenden Komponenten große Mengen Wundflüssigkeit auf und bindet diese ebenso wie die darin enthaltenen schädigenden Komponenten. Die enge Interaktion der beiden aktiven Komponenten und ihrer verschiedenen physikalischen Wirkmechanismen vermag längere als viele andere Produkte für ein optimiertes Wundklima zu sorgen [8].

Die besten Prävention ist die Vermeidung der Exposition. Relevanz besitzt das für das Pflegepersonal. Bei diesem besteht aufgrund der ihm übertragenen Aufgaben und dem engen Kontakt mit dem Patienten das Risiko der Weiterverbreitung von Wundpathogenen. Dem muss durch standardisierte Arbeitsweisen und Mitarbeiterverschul- lungen entgegengewirkt werden. Darüber hinaus sollte der Versuch unternommen werden, die Exposition zeitlich und in ihrer Intensität zu minimieren. Das bedeutet im einfachsten Fall, die Frequenz der Verbandwechsel zu senken, was sich auch wirtschaftlich attraktiv darstellen kann. Moderne Wundaufklagen sollten demzufolge eine Senkung der Verbandwechselfrequenz ermöglichen.

Dies klingt zunächst einfach, stellt aber erhebliche Anforderungen an das Leistungsprofil der Produkte, wenn die verlängerte Tragedauer nicht zu Lasten der Patienten gehen soll. Die Wundaufklage sollte in der Lage sein, über die gesamte Verweildauer ein die Heilung förderndes Wundklima zu schaffen. Ein Produkt, das das leisten kann, ist das Produkt sorbion sachet S (sorbion AG, Ostbevern, Germany). Die in dem Produkt verwendete Hydration-Response®-Technologie nimmt durch die Kombination von physikalisch aufbereiteten Zellulosefasern mit Gelbildenden Komponenten große Mengen Wundflüssigkeit auf und bindet diese ebenso wie die darin enthaltenen schädigenden Komponenten. Die enge Interaktion der beiden aktiven Komponenten und ihrer verschiedenen physikalischen Wirkmechanismen vermag längere als viele andere Produkte für ein optimiertes Wundklima zu sorgen [8].

Ist die Verbandwechselfrequenz auf das therapeutisch vertretbare Minimum gesenkt, ist die Verringerung der (unvermeidlichen) Exposition des Pflegepersonals mit der Wundflora während des Verbandwechsels anzustreben. Das kann mittels antiseptischer Wundaufklagen erreicht werden, die aber der speziellen Indikation der kritisch kolonisierten bzw. infizierten Wunde vorbehalten sind. Ein anderer Weg wurde mit der Wundaufklage „sorbion sachet S“ umgesetzt. Die Hydration-Response®-Technologie in diesem Produkt bindet die aufgenommene Flüssigkeit und damit auch die Erreger im Produktinnern. In vitro wurde gezeigt, dass die Oberfläche der Wundaufklage bereits kurze Zeit nach der Aufnahme hochgradig infektiöser Testflüssigkeiten eine deutlich geringere Erregerbelastung aufweist als andere Wundaufklagen (Abbildung 1), wobei die Erreger im Innern des Produkts gebunden werden und selbst auf Druck, wie er bei einem Verbandwechsel nicht ausbleibt, nicht an die Umgebung
abgegeben werden [9]. Das ist bei z.B. bei Wundaufflagen auf Basis von PUR-Schaumstoffen nicht unbedingt der Fall. Im Sinne einer optimalen Wundheilung – die in einem Wundverschluss und damit auch dem optimalen Infektionsschutz resultiert – gilt es, eine „idealfeuchte“ Wundumgebung zu schaffen und aufrecht zu erhalten [10]. Das erfordert, die Balance zu halten zwischen überschüssigem Exsudat und den negativen Folgen wie Wundrandmazeration und erhöhtem Infektionsrisiko auf Grund dünner Verbande auf der einen Seite und der physiologisch notwendigen Feuchte zum Transport relevanter Durchnässter Verbände auf der anderen Seite. Die Hydration-Response®-Technologie des sorbion sachet S nimmt überschüssige Flüssigkeit – und nach vorliegenden in vitro Daten auch Erreger – auf und bindet diese im Innern. Der positive Einfluss auf die in der Wunde vorhandene Erregerpopulation ist klinisch durch Patientenaussagen dokumentiert, die häufig bei Anwendung von Produkten mit Hydration-Response®-Technologie über nachlassende Geruchbelästigung insbesondere bei chronischen Wunden berichtet.

Durch die Produkteigenschaften des sorbion sachet S werden zugleich Wundbeläge gelöst und an die Produktoberfläche gebunden. Somit wird bei jedem Verbandwechsel einer belegten Wunde ein Debridement durchgeführt. Auch wenn derzeit der unmittelbare Zusammenhang zwischen Wundbelägen („slough“) und Biofilmen Gegenstand der wissenschaftlicher Diskussionen ist, erscheint es doch wahrscheinlich, dass die Beläge an der Entstehung von Biofilmen beteiligt sind [11]. Das Soft-Debride-

ment könnte also aus Sicht der Hygiene eine besondere Form der Prophylaxe darstellen.

Schlussfolgerung

Im Bereich der klassischen Krankenhaushygiene gehen Studien davon aus, dass bereits die Senkung der Inzidenz nosokomialer Infektionen um 6% die gesamten durch die Hygienemaßnahmen entstehenden Kosten deckt. Hierzu kann auch die Wahl einer geeigneten Wundaufflage beitragen [12]. Aus Sicht der Hygiene sollte eine moderne Wundaufflage die Exposition des Pflegepersonals und der Wunde durch Reduktion der Verbandwechselhäufigkeit verringern. Dazu muss sie ähnlich wie das sorbion sachet S mit seiner Hydration-Response®-Technologie in der Lage sein, auch während der verlängerten Tragedauer ein heilungsförderndes feuchtes Wundklima aufrecht zu erhalten. Die Aufnahme und Retention von Erregern in Verbindung mit einer keimarmen Oberfläche reduziert während des Verbandwechsels die Exposition des Pflegepersonal und zwischen den Verbandwechseln die Exposition der Wunde. So kann auf gewebeschonende Art möglicherweise auch das Erregerspektrum zum Positiven verschoben werden, was durch die von vielen Patienten beschriebene Aufhebung der Geruchbelästigung bei chronischen Wunden zum Ausdruck kommt. Weitere Ei-
genschaften wie das Soft-Debridement des sorbion sachet S dürften ebenfalls von Bedeutung sein.

Interessenkonflikt

Dr. Alexander Maassen ist ein Angestellter der sorbion Aktiengesellschaft, Ostbevern, Deutschland. Der Artikel wurde nicht von der Firma gesponsort.

Literatur

1. Cohen ML. Epidemiology of drug resistance: implications for a post-antimicrobial era. Science. 1992;257(5073):1050-5. DOI: 10.1126/science.257.5073.1050
2. Rebscher H. MRSA und die gesundheitsökonomischen Folgen. In: Hauptstadtkongress: Medizin und Gesundheit; Berlin; 5. Juni 2008.
3. Study of the Efficacy of Nosocomial Infection Control (SENIC). Atlanta: Centers for Disease Control and Prevention; 1985.
4. Association for the Advancement of Wound Care (AAWC). Advancing your practice: Understanding Wound Infection and the Role of Biofilms, Malvern, PA: Association for the Advancement of Wound Care (AAWC); 2008. Available from: http://www.aawconline.org/pdf/International%20Publication%20Final%20201108.pdf
5. Assadian O, Daeschlein G, Kramer A. Die Bedeutung der infizierten Problemwunde für den Hygieniker und Mikrobiologen sowie ökonomische Aspekte der chronischen Wunde. GMS Krankenhaushyg Interdiszip. 2006;1(1):Doc30. Available from: http://www.e HMS.de/de/journals/dghk/2006-1/dghk00030.shtml
6. MacKay D, Miller AL. Nutritional support for wound healing. Altern Med Rev. 2003;8(4):359-77.
7. European Wound Management Association (EWMA). Position Document: Hard-to-heal wounds: a holistic approach. London: MEP Ltd; 2008. Available from: http://ewma.org/fileadmin/user_upload/EWMA/pdf/Position_Documents/2008/English_EWMA_Hard2Heal_2008.pdf
8. Independent lab report with data on the capacity of sorbion sachet S and clinical data on the product. Ostbevern: sorbion Aktiengesellschaft; 2004–2009.
9. Independent microbiology lab report with data on sorbion sachet S. Ostbevern: sorbion Aktiengesellschaft; 2008.
10. Kammerlander G, Eberlein T, Brunner U. Modernes Wundmanagement und die Axiome der feuchten Wundbehandlung. Positionsdokument. Embrach: KAMMERLANDER-WFI Wundmanagement Consulting; 2003.
11. Cutting K. Biofilm and Slough. In: sorbion Satellite Symposium: Biofilm and the Role of Debridement in Chronic Wounds. EWMA 2009; Helsinki; 21 May 2009.
12. Haley RW, White JW, Culver DH, Hughes JM. The financial incentive for hospitals to prevent nosocomial infections under the prospective payment system. An empirical determination from a nationally representative sample. JAMA. 1987;257(12):1611-4.
13. Schaefer S, Jones D, Perry W, Ruvinskaya L, Baradet T, Mayr E, Wilson ME. Emergence of gentamicin- and methicillin-resistant Staphylococcus aureus strains in New York City hospitals. J Clin Microbiol. 1981;13(4):754-9.
Korrespondenzadresse:
Prof. Dr. med. Axel Kramer
Institut für Hygiene und Umweltmedizin der
Ernst-Moritz-Arndt-Universität, Walther-Rathenau-Str. 49 a, 17489 Greifswald, Deutschland, Tel.:
+49-(0)3834-515542, Telefax: +49-(0)3834-515541
kramer@uni-greifswald.de

Bitte zitieren als
Kramer A, Maassen A. Wound dressings from a hygienic point of view using the example of sorbion sachet S. GMS Krankenhaushyg Interdisziplinär. 2009;4(2):Doc11.

Artikel online frei zugänglich unter
http://www.egms.de/en/journals/dgkh/2009-4/dgkh000136.shtml

Veröffentlicht: 16.12.2009

Copyright
©2009 Kramer et al. Dieser Artikel ist ein Open Access-Artikel und steht unter den Creative Commons Lizenzbedingungen (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.de). Er darf vervielfältigt, verbreitet und öffentlich zugänglich gemacht werden, vorausgesetzt dass Autor und Quelle genannt werden.