ARTICLE
On the Biological Regulators of Bloodsucking Blackflies (Diptear: Simuliidae) of Mixed Forests of Belorussian and Ukrainian Woodlands

Valery M. Kaplich1* Ekaterina B. Sukhomin2 Aleksandr P. Zinchenko2

1. Department of Tourism and Nature Management, Belarussian State Technological University, Minsk, Belorussia
2. Department of Zoology, Lesya Ukrainka Volyn National University, Lutsk, Ukraine

ARTICLE INFO

Article history
Received: 15 April 2021
Accepted: 30 April 2021
Published Online: 10 May 2021

Keywords:
Blackflies
Biological regulators
Parasites
Predators
Biologicals

ABSTRACT

This article considers the natural regulators of blood-sucking Simuliidae subzone of mixed forests on the territory of Belarus and Ukraine. In the mixed forests, the major regulators of preimaginal phases of bloodsucking blackflies are microsporidia (Polidyspirenia simulii, Polidyspirenia sp., Thelohania fibrata, Amblyospora bracteata, A. varians), fungi and mermithides (Gastromermis boophthorae). Caddisfly larvae (Hydropsyche angustipennis, Neureclipsis bimaculata, Polycentropus flavomaculatus, Cyrnus flavidus, Oligostomis reticulata, Brachycentrus subnubilus and Rhyacophila nubila) and fishes (Scardinius erythrophthalmus, Rutilus rutilus, Carassius carassius, Gobio gobio) significantly reduce the number of blackflies larvae and pupae. Adult blackflies are eaten by spiders (Araneus diadematus), dragonflies, robberflies, wasps, frogs (Rana temporaria and Rana terrestris), and insectivorous birds (Delichon urbicum, Hirundo rustica, Apus apus). Bactolarvicid and BLP-2477 are among the most effective biological products.

1. Introduction

The territory of mixed forests belongs to the densely populated regions of Europe, and therefore the protection of the environment is one of the important problems. The integrated control of bloodsucking blackflies includes environmental, biological, and chemical methods, and the chemical ones are predominant. The biological method of the bloodsucking blackflies’ number regulation involves the use of their natural enemies — parasites, predators, and biologicals developed on the base of Bacillus thuringiensis var. israelensis bacteria (H1a). Attempts to control the number of simuliiid species should focus on the biological method. Its rational combination with ecological and chemical methods will stabilize the entomological situation in areas of high human and animal concentration, and also improve the environmental situation.

2. Material and Methods

Biological regulators of the number of the bloodsucking blackflies were studied (2000-2020) in eight stations in the western, central and eastern parts of the Belarussian and Ukrainian Woodlands and by routing method on the territory of the region under study. The parasites and predators of the aquatic stage of development of simuliiid species were collected, and the effectiveness of biological products was analyzed by conventional meth-
ods by Rubzov [1, 2], supplemented by Kaplich et al. [3, 4], Voronin, Issy [5], Dubitskiy [6], Baba, Takaoka [7] Adler et al. [8]. Altogether 518 parasites (10915 parasitized larvae and pupae were investigated) and 540 predator samples were selected. Autopsy of aquatic organism intestines was performed: 1067 caddis fly larvae, 180 dragonflies larvae, 137 mayflies, 127 leeches, and 520 fish. Altogether 480 micropreparations of blackflies were prepared for microsporidiosis investigation, 150 — for fungal disease, 33 — for water mites. All quantitative parameters (indices of dominance — ID, frequency index — FI) were determined according to Beklemishev [9]. The indicators of relative abundance (mass, numerous, small, and solitary species) were adopted from those proposed by Skujin [10] for horseflies. The separation of genera in this article accepted by R. W. Crosskey [11] and P. H. Adler [12].

3. Results

Currently, a lot of attention is paid to the regional study of parasites and predators, since each landscape-climatic zone is characterized by its own Diptera fauna and natural regulators of their population.

3.1 Parasites

The perspective of parasites used in the development of the biological control method is defined by the high specificity for the host, the ability to self-propagate in the host population, to preserve steadily in reservoirs and to limit the number of hosts to a low level without causing harm to helpful aquatic organisms.

In the study area the common mycosis was identified by family Microsporida, which are found in 271 streams of different types (46.9%). More often microsporidia are found in irrigation ditches (21.9%). Infection by fungi of blackflies was registered in 154 basins (26.7%). Different bacteria infected the collected larvae of blackflies from 86 small rivers and drainage canals. The nematodes from family Mermithidae were found only in 38 basins (6.6%), because they are quite sensitive to water pollution. Water mites are found only in 16 streams and 12 small rivers (4.9%).

Infection by parasites was found in 18 species of 6 subgenera Nevermannia, Eusimulium, Schoenbaueria, Wilhelmia, Boopthora, and Simulium of genera Simulium, although 65 species inhabit the subzone of mixed forests.

We reported bacterial infection in the larvae of 10 species: S. pusillum, S. nigrum, S. equinum, S. erythrocephalum, S. ornatum, S. dolini, S. noelleri, S. paramorsitans, S. promorsitans, and S. morsitans. Bacterial infection was found in 14.9% of the streams surveyed. Bacteria are more rapidly developing in the blackflies that live in β-mesosaprobic streams (Table 1).

In the streams of the studied area, the death of blackfly larvae and pupae coated with thin hyphae of Saprolegnia fungi is registered (S. pusillum, S. nigrum, S. erythrocephalum, S. dolini, S. noelleri, S. morsitans). Most often pupae are affected, because the affected larvae die and are drifted downstream, while pupae remain attached to the substrate. The prevalence of the infection of blood-sucking blackflies by Saprolegnia fungi depends primarily on the weather conditions of the year. For example, early and warm springs, when the aquatic stage of development was completed quickly, caused the incidence of infection at the level 0.5-1.5% in the collected larvae and pupae. During cold and long springs the preimaginal development phase was longer, and the level of mycosis reached 3-4%. Larvae and pupae of blackflies can also be damaged by Entomophthora muscae and Batrachochytrium dendrobatidis.

Table 1. Relative abundance (%) of parasites in different types of streams

Pathogen	Stream	oligosaprobic	β-mesosaprobic
Bacteria		26.5	71.5
Fungi		30.8	69.2
mycosis of Microsporidea		31.6	68.4
Mermithidae		100	–
Water mites		73.8	26.2

Our collections of fungi contain division Zygomycota, class Zygomycetes, order Mucorales; division Oomycota, class Chytridiomycetes, order Blastocladiales, genus Coelomomyces (Figure 1). Fungal diseases have been found in 11 species of blackflies. Most often fungal infection is found in S. erythrocephalum (Index of dominance (ID) = 36.3), and S. ornatum (ID = 9.6). The lowest infection rate was recorded in S. volhynicum (ID = 1.3) and S. aureum (ID = 0.7). Larvae and pupae, infected with fungi, were found in medium and small rivers, streams and irrigation ditches, throughout the warm season, with peaks in June (34.3%) and September (38.7%). Fungi developed intensively in blackflies that live in slightly polluted (mesosaprobic) streams (FI = 69.2%), overgrown with pheatophyte (the deep rooted plants), in areas with a small flow rate (0.2-0.4 m/s). The incidence of infection was on average 14%.
One of the important regulators of the numbers of larvae is microsporidia. The incidence of infection was about 3-50%. In the studied area the incidence of infection of larvae ranged from 3-8% in the early spring to 3-40% at the end of the summer.

Microsporidia have been found in 18 species of blackflies. Most often they infected larvae of *S. erythrocephalum* (FI = 19.3, ID = 28.3), *S. ornatum* (FI = 9.4, ID = 14.2), *S. pusillum* (FI = 8.4, ID = 12.4). The larvae resistant to microsporidiosis were *S. angustipes* (FI = 0.4, ID = 0.5) and *S. noelleri* (FI = 0.5, ID = 0.8).

Larvae of blackflies were infected with 5 species of microsporidia from 3 genera: *Polidysirenia simulii* (Lutz, Splendor, 1904), *Polidysirenia sp.*, *Thekohania fibrata* Strickland, 1913, *Amblyospora bracteata* Strickland, 1913. *A. varians* Leger, 1897. They are located in the fat body of the larvae (Figure 2).
The degree of larvae invasion by microsporidia depends primarily on the conditions of the environment. In middle-sized rivers during the summer period two increases of larvae infestation can be traced: one in spring (3rd decade of May - 1st decade of June) and in late summer (3rd decade of July – 2nd decade of August). The largest percentage (till 50%) of infected larvae is observed in the second half of the summer, due to the deteriorated environmental conditions. Usually, the flow velocity of rivers and the content of dissolved oxygen decrease at this time, siltation of water occurs, and the channel bed is overgrown by flora. Therefore, the conditions are favourable for larval reinfestation.

Three species of microsporidia — *T. fibrata* (FI = 40.9), *P. simulii* (FI = 25.0), and *A. bracteata* (FI = 22.6) are widespread, sometimes *A. varians* (FI = 1.4) are observed.

Microsporidia mycosis, as well as other species of parasites, prefer to live in slightly polluted streams. The incidence of microsporidia in mesosaprobic reservoirs is 68.4%.

Larvae infected with microsporidia were detected in all types of streams, in different generations of blackflies throughout the year, with a peak in spring (3rd decade of May) and the second half of the summer (1st decade of August). In mid-summer on average 15–25% of larvae were infected by microsporidia. Sometimes blackflies infected with larvae were found in winter. Until the end of April the extensiveness of larvae invasion reached 3–10%. The highest infestation of simuliidae was recorded in late summer due to the reinfection of larvae population. Larvae infected by microsporidia were not able to pupate and died in autumn.

The outbreaks of mermithids-infestation were registered in all oligosaprobic streams, but compared to other parasites they are less common. Infestation of larvae with *Gastromermis boophthorae* (Welch & Rubzov, 1965) was observed in seven species of blackflies. The incidence of blackfly infection was low (1–14%). The intensity of infection was 1–2 parasites on the host organism. Infected larvae were found from July to September, with a peak in August (54%). Populations of mermithids developed only in clean streams, not contaminated by industrial and agricultural waste.

Usually, these streams have rocky and sandy or peat and sandy beds that are overgrown with phreatophyte, where the flow rate varies from 0.3 to 0.6 m/s when the dissolved oxygen content of the water is 75–97% and water temperature is +3 – +21°C. Free mermithids are found in flowing water reservoirs with temperatures of +11 – +13°C. We registered the case of joint parasitism of microsporidia *P. simulii* and a mermithid *G. boophthorae* in larvae of *S. erythrocephalum*.

Water mites are parasitic on pupae of blackflies [13]. In the streams studied in May water mites *Sperchon setiger* were found (Thor, 1898) on pupae of *S. noelleri*, *S. dolini*, and in the 3rd decade of June — on larvae of *S. morsitsans*. The bottom of streambeds, habituated by affected simuliidae, is stony and sandy, along the banks — muddy, with water flow velocity till 0.35 m/s, dissolved oxygen content 73–80% and temperature +14 — +18°C. Substrate for the mites were stones, branches at a depth of 0.25 m. Water mites were found mainly (73.8% of all registered ones) in oligosaprobic streams. Their oviposition was also observed here, from 9 to 28 eggs. Eggs were oval, tightly attached to the substrate, and covered with a transparent top spider cocoon. The colour of the eggs as they matured varied from white to red.

3.2 Predators

In mixed forests the predators of preimaginal phases of blackflies are the larvae of caddisflies, mayflies, dragonflies, leeches, and fish. The main predators are the following caddisfly larvae: *Hydropsyche angustipennis* (Curtis, 1834), *Neureclipsis bimaculata* (Linnaeus, 1758), *Polycentropus flavomaculatus* (Piclet, 1834), *Cyrrhus flavidis* (McLachlan, 1864), *Olguostomis reticulata* (Linnaeus, 1761), *Brachycentrus subnubilus* (Curtis, 1834), and *Rhyacophilia nubila* (Zetterstedt, 1840).

Caddisflies live in all types of streams and can partially tolerate their contamination. Eggs and fragments of larvae of 6 subgenera (*Wilhelmina*, *Nevermannia*, *Eusimulium*, *Schoenbaueria*, *Boophthora*, *Simulium*) were found in the intestines of 751 blackflies (70.4%) from the 1067 caddisfly larvae studied.

No food preferences of caddis to certain types of blackflies were found. In their intestines, the ratio of blackflies species typical for a certain period in the stream remained approximately the same. Of the total number of larvae and pupae of blackflies found in the guts of predators, caddisflies accounted for 52%.

The attack of caddis larvae on the larvae and pupae of blackflies is characterized by a certain seasonal pattern. They feed on blackflies more intensely in spring (58%), and sometimes in winter (18%), and less intensely in summer (17%) and autumn (7%). This pattern is explained by the dynamics of the number of larvae simuliidae: in spring their density (2,200 flies/dm² on average) is significantly higher than in the autumn (350 flies/dm²) and in winter (54 flies/dm²).
Comparing the average number of larvae of blackflies in stream per area unit with their population in the intestines of caddisflies, one can conclude that caddisflies are able to reduce the number of preimaginal phases of simuliiidae to 5.1%.

The larvae of mayflies are also regulators of the number of blackflies that inhabit small clean ponds and streams. In the 137 mayflies found in the intestines of 48 (35%) Isonychia ignota (Walker, 1853) and Ecdyonurus venosus (Fabricius, 1775), the simuliiidae eggs were represented in large quantities (from 3 to 20 pcs. in one specimen) as well as fragments of larvae of subgenera Nevermannia, Eusimulium, Schoenbaueria, Boophthora, and Simulium. Comparing the average number of larvae of blackflies per area unit of the stream with a population in the intestines of mayflies, one can conclude that mayflies are able to reduce the number of preimaginal phases of simuliiidae to 0.2%.

Dragonfly larvae live in medium and small rivers, and in drainage canals. They feed on the larvae of blackflies mainly in summer. Following the study of 180 dragonfly larvae, residues of 13.7% blackfly larvae were found in the intestines of 124 individuals (69%). Head capsules and other body parts of larvae of subgenera Wilhelmia, Nevermannia, Boophthora, and Simulium were found in the intestines of three species of dragonflies (Calopteryx splendens Harris, 1780, Aeshna cyanea Muller, 1764, Llibellula depressa Linnaeus, 1758).

It was found that larvae of dragonflies eat up to 1.1% of the larvae of blackflies that live on 1 m² of pond area.

Hemolymph of larvae of blackflies is “sucked” by predatory bugs Nepa cinerea (Linnaeus, 1758). They were found mostly in spring (April-May) on underwater objects and plants where the larvae of simuliiidae are attached or ovipositions are located. Likewise, these bugs feed on the larvae of mayflies and caddisflies.

Leeches Erpobdella octoculata Linnaeus, 1758 and Haemopis sanguisuda Linnaeus, 1758, inhabiting streams with varied degrees of contamination and flow velocity, fed on larvae and pupae of blackflies, too. Of the 127 leeches studied, the residues of blackflies were found in 52 individuals (41%), accounting for 5.4% of the larvae found in predators.

In the gut of leeches 311 fragments of larvae of simuliiidae (5.4%) were registered, among them subgenera Boophthora (4.1%), Nevermannia (0.9%), and Eusimulium (0.4%). Leeches can reduce the number of blackflies by approximately 0.5% per 1 m² of stream.

Our observations indicate that fish are one of the most important regulators of the numbers of simuliiidae. 520 individual fish from 4 species (Scardinius erythropthalmus Linnaeus, 1758, Rutilus rutilus Linnaeus, 1758, Carassius carassius Linnaeus, 1758, Gobio gobio Linnaeus, 1758) were investigated. Larvae and pupae of blackflies were found in the stomachs of 250 individuals (48%), which is 23.4% of all simuliiidae found in predators. In medium rivers rudd (S. erythrophthalmus) and gudgeon (G. gobio) are found. The predominant fragments of larvae are from subgenera Boophthora, Wilhelmia, and Simulium. In general, in the intestines of these fish 9.5% of all blackflies, which died from predators, were found.

Adult blackflies are eaten by dragonflies, robberflies, wasps, swallows (Delichon urbicum (Linnaeus, 1758), Hirundo rustica Linnaeus, 1758), and swifts (Apus apus Linnaeus, 1758). Cases of assault by predatory flies of genes Xenomyia and Ochthera on adult blackflies were described [14]. Deaths of blackflies from spiders are registered. Their trapping grids contained between 1 and 12 of simuliiidae females. For example, in the trapping grid of diadem spider (Araneus diadematus Clerck, 1757) in a pine forest 7 females of S. erythrocephalum were registered.

Amphibians also hunt simuliiidae. Throughout the day, more often at the beginning (7 hr.) and at the end (19-21 hrs.) of blackfly flight, when humidity is increased, they become the bag of herbal (Rana temporaria Linnaeus, 1758) and moor (Rana terrestris Andrzejewski, 1832) frogs.

4. Biologicals

The usage of biologicals today is virtually the only method that allows for the effective control and regulation of the number of bloodsucking insects larvae in streams of economic importance, although the specificity of biologicals to a particular group of insects limits the scope of their use [15,16,17,18].

The comparative analysis of the efficiency of stream delarvation by the three biological agents (bactoculicid, bactolarvicid, and BLP-2477) showed that the control of the number of preimaginal blackflies is achieved most effectively by BLP-2477 and bactolarvicid. In drainage canals of up to 1.5 km length, up to 2 m width, 0.5 m depth, and a flow rate of 0.7 m/s, the optimal dose for the death of simuliiidae larvae is 400 grams of the drug. The processing of streams by biologicals is best to be performed in late April — early May in the southern zone, and in May — early June in northern areas by the progressive introduction of the drug in the stream. The use of chemicals in rivers and major drainage canals to destroy the aquatic stage of development of simuliiidae is believed to be impractical because there is pollution of drinking
water, which kills useful aquatic species, whose number is recovering slowly.

5. Conclusions

The principal biological regulators of preimaginal phases of blood-sucking blackflies in the investigated region are microsporidia, caddisfly larvae and fish, while those of adult blackflies are insectivorous birds.

All species of parasites are more rapidly develop in the blackflies living in β-mesosaprobic streams. The incidence of fungal infection (Mucorales and Coelomomyces) was on average 14%. Infection with microsporidia (Polidyspierenia simulii, Polidyspierenia sp., Thelohania fibrata, Amblyospora bracteata, A. varians) reaches 50% in the second half of the summer. The mermithids-infestation Gastromermis boophthorae of blackfly was low (1-14%). The intensity of infestation was 1-2 parasites on the host organism.

Caddisflies (Hydropsyche angustipennis, Neureclipis bimaculata, Polycentropus flavomaculatus, Cyrunus flavidus, Oligostomis reticulata, Brachycentrus subnubilus u Rhycophila nubila) are able to reduce the number of preimaginal phases of simuliiidae to 5.1%. Dragonfly larvae (Calopteryx splendens, Aeshnya cyanea, Libellula depressa) eat up to 1.1% of blackflies larvae. Mayflies (Isonychia ignota, Ecdyonurus venosus) are able to reduce the number of preimaginal phases of simuliiidae to 0.2%. Leeches Erpobdella octoculata and Haemopis sanguisuda can reduce the number of blackflies by approximately 0.5%. Fishes (Scardinius erythrophthalmus, Rutilus rutilus, Carassius carassius, Gobio gobio) are able to reduce the number of preimaginal phases of simuliiidae to 9.5%.

Among biologicals, BLP 2477 and bactolarvicid have shown the highest larvicidal efficacy.

References

[1] Rubzov, I. A. (1956), Blackflies (of Simuliidae family). Fauna of the USSR. Insects Diptera Moscow; Leningrad: AN USSR. Vol. 6. Issue 6. 860 pp.
[2] Rubzov, I. A. (1977), Mermithididae. Leningrad: Nauka. 188 pp.
[3] Kaplich, V. M., Usova, Z. V. (1990), Bloodsucking blackflies in the forest zone. Minsk, Uradzhay. 176 pp.
[4] Kaplich, V.M., Sukhomlin, E.B., Zinchenko, A.P. (2015), Blackflies (Diptera: Simuliidae) of the Europe mixed forests. Minsk: New knowledge. 464 p.
[5] Voronin, V. N., Issy, I. V.(1974), “On the methods of working with microsporidia”. Parazitology. 8(3), 272-273.
[6] Dubitskiy, A. (1978), M. Biological method of dealing with gnats in the USSR. Alma-Ata. 261 pp.
[7] Baba, M., Takaoka, H. (1985), “Notes on blackflies (Diptera: Simuliidae) and their larval parasites in the island of Togo, Oki Islands”. Jpn. J. Sanit. Zool. 36. 71-73.
[8] Adler, P. H., Currie, D. C., Wood, D. M. (2004), The Black Flies (Simuliidae) of North America. New York : Cornell University Press. 942 pp.
[9] Beklemishev, V. N. (1970), Biocenological basis of comparative parasitology. Moscow: Nauka. 502 pp.
[10] Skufjin, K. V. (1949), “On the ecology of horse flies Voronezh region”. Journal of zoology. 28 (2), 145-156.
[11] Crosskey, R. W., Howard, T. M. (2004), A revised taxonomic and geographical inventory of world blackflies (Diptera: Simuliidae). London : Natural History Museum. Available from : http://www.nhm.ac.uk/entomology/projects/blackflies/index.html.
[12] Adler, P. H. (2020), World blackflies (Diptera: Simuliidae) : A comprehensive revision of the taxonomic and geographical inventory [2020]. Available from : https://biomia.sites.clemson.edu/pdfs/blackflyinventory.pdf [Accessed 14.04.2021]. 142 pp.
[13] Davies, D. M. (2011), “The parasitism of black flies (Diptera: Simuliidae) by larval water mites mainly of the genus Sperchon”. Canadian Journal of Zoology 37(3):353-369. DOI: 10.1139/z59-039.
[14] Elsen, P. (1977), “Note biologique sur Xenomyia oxycera Emden (Muscidae, Limnophorinae) et Ochthe ra insularis Becker (Ephydridae) deux dipteres predateurs de Simulium damnosum Theobald (Diptera, Simuliidae) en Cote d’Ivoire”. Rev. zool. afr. 91(3). 732-736.
[15] Jitklang, S., Ahantarig, A., Kuvangkadilok, C., Bai mai, V., Adler, P. H. (2012), “Parasites of larval black flies (Diptera: Simuliidae) in Thailand”. Songklanakarin J. Sci. Technol. 34(6), 597-599.
[16] Cavados, C. F. G., Fonseca, R. N., Chaves, J. Q., Araújo-Coutinho, C. J. P. C., Rabinovitch, L. (2005), “A new black fly isolate of Bacillus thuringiensis autogluttinating strain highly toxic to Simulium pertinax (Kollar) (Diptera, Simuliidae) larvae”. Memórias do Instituto Oswaldo Cruz. 100(7). DOI: 10.1590/s0070-22762005000700021.
[17] Bernotiene, R., Žygutiene, M. (2008), “The usage of biological preparations against blackflies in Lithuania. Eleven years of experience”. The 3rd International Simuliiidae Symposium, including the 29th meeting of the British Simuliid Group, the 7th Eu-
[18] Gray, E. W., Overmyer, J., Noblet, R., Fusco, R. A. (2008), “The effects of algae on B. t. i. efficacy in black flies”. The 3rd International Simuliidae Symposium, including the 29th meeting of the British Simuliid Group, the 7th European Simuliidae Symposium and EMCA Blackfly working group. Vilnius, 2008. Sept. 9-12.: Abstract book. Vilnius, 25.