LOCALLY ANALYTIC VECTORS AND OVERCONVERGENT
(φ, τ)-MODULES

HUI GAO AND LÉO POYETON

Abstract. Let p be a prime, let K be a complete discrete valuation field of characteristic 0 with a perfect residue field of characteristic p, and let G_K be the Galois group. Let π be a fixed uniformizer of K, let K_{∞} be the extension by adjoining to K a system of compatible p^n-th roots of π for all n, and let L be the Galois closure of K_{∞}. Using these field extensions, Caruso constructs the (φ, τ)-modules, which classify p-adic Galois representations of G_K. In this paper, we study locally analytic vectors in some period rings with respect to the p-adic Lie group $\text{Gal}(L/K)$, in the spirit of the work by Berger and Colmez. Using these locally analytic vectors, and using the classical overconvergent (φ, Γ)-modules, we can establish the overconvergence property of the (φ, τ)-modules. In a previous joint work by the first named author and Tong Liu, such overconvergence property is established when K is a finite extension of \mathbb{Q}_p, via a completely different method that does not generalize for general K.

Contents

1. Introduction 1
2. A study of some rings 5
3. Locally analytic vectors of some rings 10
4. Field of norms, and locally analytic vectors 17
5. Computation of \hat{G}-locally analytic vectors 22
6. Overconvergence of (φ, τ)-modules 24
References 30

1. Introduction

1.1. Overview and main theorem. Let p be a prime, let k be a perfect field of characteristic p, and let $W(k)$ be the ring of Witt vectors. Let $K_0 := W(k)[1/p]$, and let K be a totally ramified finite extension of K_0. Write $e := [K : K_0]$. We fix an algebraic closure \overline{K} of K and set $G_K := \text{Gal}(\overline{K}/K)$. Let C_p be the p-adic completion of \overline{K}. Let v_p be the valuation on C_p such that $v_p(p) = 1$. For any subfield $Y \subset C_p$, let \mathcal{O}_Y be its ring of integers.

Notation 1.1.1. Let $\pi \in K$ be a uniformizer, and let $E(u) \in W(k)[u]$ be the irreducible polynomial of π over K_0. Define $\pi_n \in \overline{K}$ inductively such that $\pi_0 = \pi$ and $(\pi_{n+1})^p = \pi_n$. Define $\mu_n \in \overline{K}$ inductively such that μ_1 is a primitive p-th root of unity and $(\mu_{n+1})^p = \mu_n$. Let $K_{\infty} := \bigcup_{n=1}^{\infty} K(\pi_n), \ K_{p_{\infty}} = \bigcup_{n=1}^{\infty} K(\mu_n), \ L := \bigcup_{n=1}^{\infty} K(\pi_n, \mu_n)$.

Let $G_{\infty} := \text{Gal}(\overline{K}/K_{\infty}), \ G_{p_{\infty}} := \text{Gal}(\overline{K}/K_{p_{\infty}}), \ G_L := \text{Gal}(\overline{K}/L), \ \hat{G} := \text{Gal}(L/K)$.

Let $\tau \in \text{Gal}(L/K_{p_{\infty}})$ and $\gamma \in \text{Gal}(L/K_{\infty}) \simeq \text{Gal}(K_{p_{\infty}}/K)$ be two fixed topological generators.

Date: April 24, 2018.
2010 Mathematics Subject Classification. Primary 11F80, 11S20.
Key words and phrases. Locally analytic vectors, Overconvergence, (φ, τ)-modules.
Let V be a finite dimensional \mathbb{Q}_p-vector space equipped with a continuous \mathbb{Q}_p-linear G_K-action. In [Car13], using the theory of field of norms for the field K_∞, Caruso associates to V an étale (φ, τ)-module (if one uses the field K_{p^∞} instead, one would get the usual étale (φ, Γ)-module); this induces an equivalence between the category of p-adic representations of G_K and the category of étale (φ, τ)-modules. An étale (φ, τ)-module is a triple $\hat{D} = (D, \varphi_D, \hat{G})$ (see Def. 6.2.2 for more details). Here, we only mention that D is a finite free module over the ring $B_{K_\infty} := A_{K_\infty}[1/p]$ where

$$A_{K_\infty} := \{ \sum_{i=\infty}^{+\infty} a_i u^i : a_i \in W(k), v_p(a_i) \to +\infty, \text{ as } i \to -\infty \},$$

and φ_D is a certain map $D \to D$ (here, we ignore the discussion of the \hat{G}-data). We say that \hat{D} is overconvergent if we can “descend” the module D to a φ-stable submodule D^\dagger over a subring $B_{K_\infty}^\dagger$ of B_{K_∞}, where

$$B_{K_\infty}^\dagger := \{ \sum_{i=\infty}^{+\infty} a_i u^i \in B_{K_\infty}, v_p(a_i) + i\alpha \to +\infty \text{ for some } \alpha > 0, \text{ as } i \to -\infty \}.$$

The following is our main theorem.

Theorem 1.1.2. For any finite free \mathbb{Q}_p-representation V of G_K, its associated (φ, τ)-module is overconvergent.

Remark 1.1.3.

1) Thm. 1.1.2 is originally proposed as a question by Caruso in [Car13, §4], as an analogue of the classical overconvergence theorem for étale (φ, Γ)-modules by Cherbonnier and Colmez ([CC98]).

2) In a previous joint work by the first named author and T. Liu, Thm 1.1.2 is established when K is a finite extension of \mathbb{Q}_p, using a completely different method (see [GL]); a key ingredient in loc. cit. is the construction of “loose crystalline lifts” of torsion Galois representations, which requires the finiteness of k (see e.g., [GL, Rem. 1.1.2]).

3) We refer to [GL, §1.2] for some discussion of the importance and usefulness of overconvergence results in p-adic Hodge theory. In particular, in loc. cit., we mentioned about the link between the category of all Galois representations and the category of geometric (i.e., semi-stable, crystalline) representations. Indeed, in loc. cit., we used this link to prove the overconvergence theorem. In the current paper, we do not use any semi-stable representations; instead, some results we obtain in the current paper will be used to study semi-stable representations (cf. Item 5 in the following).

4) There does not seem to be any obvious comparison between the proof in this paper and that in [GL]. The main idea in [GL] is to “approximate” a general p-adic Galois representation by torsion crystalline representations; whereas we do not use any torsion representations in the current paper.

5) The key tool in [GL] is the Kisin modules (cf. [Kis06]). In analogy with the theory of Wach modules (cf. [Col99] and [Ber02, §3.3]), it is very possible we can reprove the existence of Kisin modules (for semi-stable Galois representations) by using our overconvergence result. It is also interesting to investigate if we can apply our results to the theory of (φ, \hat{G})-modules (cf. [Liu10]). One result worth mentioning is Thm. 3.4.4(4) (see also Rem. 3.4.5), where we show certain ring of locally analytic vectors is related with the ring $\mathcal{O}_{(0,1)}$ in [Kis06]. We will report some progress in an upcoming work by the first named author and T. Liu.

1.2. **Strategy of proof.** The key ingredient for the proof of Thm. 1.1.2 is the calculation of locally analytic vectors in some period rings, in the spirit of the work by Berger and Colmez ([BC16, Ber16]). The philosophy that overconvergence of Galois representations is related with locally analytic vectors is first observed by Colmez, in the framework of p-adic Langlands correspondence (cf. [Col10, Intro. 13.3]). For example, overconvergent (φ, Γ)-modules (cf. [CC98]) are closely related with locally analytic vectors in the p-adic
Langlands correspondence for $GL_2(\mathbb{Q}_p)$ (cf. [LXZ12, Col14]), i.e., via the “locally analytic p-adic Langlands correspondence”.

To study the p-adic Langlands correspondence for $GL_2(F)$ where F/\mathbb{Q}_p is a finite extension, Berger recently proves overconvergence of the Lubin-Tate (φ, Γ)-modules (cf. [Ber16]). The key idea in loc. cit., very roughly speaking, is that there should exist “enough” locally analytic vectors in the Lubin-Tate (φ, Γ)-modules. To find these locally analytic vectors, one first “enlarges” the space of Lubin-Tate (φ, Γ)-modules over a bigger period ring; then there are indeed enough locally analytic vectors, by using the classical overconvergent (φ, Γ)-modules as an input (cf. [Ber16, Thm. 9.1]). One then descends from the bigger space of locally analytic vectors to the level of Lubin-Tate (φ, Γ)-modules, via a monodromy theorem (cf. [Ber16, §6]).

The key idea in our paper is similar to that in [Ber16]. Indeed, (very roughly speaking), we first “enlarge” the space of the (φ, τ)-module over the big period ring $B_{\text{rig}, L}$ (which is $\text{Gal}(\overline{K}/L)$-invariant of the well known ring B_{rig}^\dagger); there are enough locally analytic vectors on this level, by using the classical overconvergent (φ, Γ)-modules as an input again (cf. the proof of Thm. 6.2.6). To descend these locally analytic vectors to the level of (φ, τ)-modules, we can use a Tate-Sen descent or a monodromy descent (see Prop. 6.1.6 and Rem. 6.1.7 for more details).

As the strategy suggests, one needs to compute locally analytic vectors in some period rings (e.g., $B_{\text{rig}, L}^\dagger$). In the case of (φ, Γ)-modules, the concerned p-adic Lie group is $\text{Gal}(K_{p, \infty}/K)$ (see Notation 1.1.1), which is one-dimensional. In the case of Lubin-Tate (φ, Γ)-modules, the p-adic Lie group is O_F^\times, which is of dimension $[F: \mathbb{Q}_p]$. In general, it would be very difficult to calculate locally analytic vectors for p-adic Lie groups of dimension higher than one. In [Ber16], Berger considers firstly the “F-analytic” locally analytic vectors, which behave similar to the one-dimensional case. He then uses these “F-analytic” locally analytic vectors to determine the full space of O_F^\times-locally analytic vectors. In our paper, the concerned p-adic Lie group is $\hat{G} = \text{Gal}(L/K)$, which is of dimension two. The key observation is that we need to firstly consider \hat{G}-locally analytic vectors which are furthermore $\text{Gal}(L/K_{\infty})$-invariant; these locally analytic vectors then again behave similar to the one-dimensional case. Indeed, we have:

Theorem 1.2.1. Let $(\tilde{B}_{\text{rig}, L}^\dagger)^{\tau, p\text{-an}, \gamma = 1}$ denote the set of $\text{Gal}(L/K_{p, \infty})$-(pro)-locally analytic vectors which are furthermore fixed by $\text{Gal}(L/K_{\infty})$. Then we have

$$(\tilde{B}_{\text{rig}, L}^\dagger)^{\tau, p\text{-an}, \gamma = 1} = \cup_{m \geq 0} \tilde{B}_{\text{rig}, K_{\infty}}(\tilde{B}_{\text{rig}, K_{\infty}}^\dagger),$$

where $\tilde{B}_{\text{rig}, K_{\infty}}$ is the “Robba ring with coefficients in K_{0}”.

With the above theorem established, we can also completely determine the \hat{G}-locally analytic vectors in $\tilde{B}_{\text{rig}, L}^\dagger$; since the statement is too technical, we refer the reader to Thm. 5.3.5.

1.3. Structure of the paper. In §2, we study the rings \tilde{B}^I and B^I (where I is an interval), as well as their G_{∞}-invariants which are denoted as $\tilde{B}_{K_{\infty}}^I$ and $B_{K_{\infty}}^I$. In §3, we compute locally analytic vectors in $\tilde{B}_{K_{\infty}}^I$; and in §4, we need to carry out similar calculations when we replace K_{∞} with a finite extension. In §5, we compute the \hat{G}-locally analytic vectors in \tilde{B}_{L}^I. All these calculations will be used in §6 to carry out the descent of locally analytic vectors, giving us the desired overconvergence result.

1.4. Notations.

1.4.1. Convention on ring notations. In this paper, we will use many rings. Let us mention some of the conventions about how we choose the notations; it also serves as a brief index of ring notations.
(1) In §1.4.2, we define some basic rings. We also compare them with notations commonly used in integral p-adic Hodge theory (see Rem. 1.4.3).

(2) In §2.1, we define the rings \tilde{A}^I and \tilde{B}^I (where I is an interval), which are exactly the same as A^I and B^I in [Ber08] (which are \tilde{A}_I and \tilde{B}_I in [Ber02]). (See also the table in [Ber08, §1.1] for a comparison of notations with those of Colmez andkedlaya).

(3) When Y is a ring, $X \subset \overline{K}$ is a subfield, we use Y_X to denote the Gal(\overline{K}/X)-invariants of Y. Some examples include when $Y = \tilde{A}^I, B^I, A^I, B^I$ and $X = L, K_\infty, M$ where M/K_∞ is a finite extension. This “style of notation” follows that of [Ber08], which uses the subscript $*_{\theta}$ to denote $G_{p,\infty}$-invariants.

(4) In §2.2, we define the rings A^I and B^I and study their G_{∞}-invariants: $A^I_{K_\infty}$ and $B^I_{K_\infty}$.

These rings “correspond” to those rings studied in [Col08, §6.3, §7]. Our A^I and B^I are different from A^I and B^I in [Col08] (cf. Rem. 1.4.3): fortunately, we are mostly interested in $A^I_{K_\infty}$ and $B^I_{K_\infty}$, and since we are using K_∞ as subscripts, confusions are avoided.

1.4.2. Period rings

Let $\tilde{E}^+ := \varprojlim \mathcal{O}_{\overline{K}}/p\mathcal{O}_{\overline{K}}$ where the transition maps are $x \mapsto x^p$, let $\tilde{E} := Fr\tilde{E}^+$. An element of \tilde{E} can be uniquely represented by $(x(n))_{n \geq 0}$ where $x(n) \in C_p$ and $(x^{(n+1)})^p = (x^{(n)})$; let $v_{\tilde{E}}$ be the usual valuation where $v_{\tilde{E}}(x) := v_p(x(0))$. Let

$$\tilde{\Lambda}^+ := W(\tilde{E}^+), \quad \tilde{\Lambda} := W(\tilde{E}), \quad \tilde{B}^+ := \tilde{\Lambda}^+/[1/p], \quad \tilde{B} := \tilde{\Lambda}[1/p],$$

where $W(\cdot)$ means the ring of Witt vectors. There is a unique surjective projection map $\theta : \tilde{\Lambda}^+ \to \mathcal{O}_{C_p}$, which lifts the projection $\tilde{E}^+ \to \mathcal{O}_{\overline{K}}/p$ onto the first factor in the inverse limit. Let B^+_{tr} be the usual period ring (so the θ map extends to B^+_{tr}). Let $\tilde{\varpi} = \{\mu_n\}_{n \geq 0} \subset \tilde{E}^+$, let $[\tilde{\varpi}] \in \tilde{\Lambda}^+$ be its Teichmüller lift, and let $t := \log([\tilde{\varpi}]) \in B^+_{tr}$ as usual.

Let $\varpi := \{\tau_n\}_{n \geq 0} \subset \tilde{E}^+$. Let $E^+_{K_\infty} := k[\varpi], E_{K_\infty} := k([\varpi])$, and let E be the separable closure of E_{K_∞} in \tilde{E}. By theory of field of norms (cf. §4), $\text{Gal}(E/E_{K_\infty}) \simeq G_{\infty}$. Furthermore, the completion of E with respect to $v_{\tilde{E}}$ is \tilde{E}.

Let $[\varpi] \in \tilde{\Lambda}^+$ be the Teichmüller lift of ϖ. Let $A^+_{K_\infty} := W[u]$ with Frobenius φ extending the arithmetic Frobenius on $W(k)$ and $\varphi(u) = u^p$. There is a $W(k)$-linear Frobenius-equivariant embedding $A^+_{K_\infty} \to \tilde{\Lambda}^+$ via $u \mapsto [\varpi]$. Let A_{K_∞} be the p-adic completion of $A^+_{K_\infty}[1/u]$. Our fixed embedding $\varphi : A^+_{K_\infty} \to \tilde{\Lambda}^+_{K_\infty}$ determined by ϖ uniquely extends to a φ-equivariant embedding $A_{K_\infty} \to \tilde{\Lambda}$, and we identify A_{K_∞} with its image in $\tilde{\Lambda}$. We note that $A^+_{K_\infty}$ is a complete discrete valuation ring with uniformizer p and residue field E_{K_∞}.

Let $B_{K_\infty} := A^+_{K_\infty}[1/p]$. Let B be the p-adic completion of the maximal unramified extension of B_{K_∞} inside B, and let $A \subset B$ be the ring of integers. Let $A^+ := \tilde{\Lambda}^+ \cap A$. Then we have:

$$(A)^G_{\infty} = A_{K_\infty}, \quad (B)^G_{\infty} = B_{K_\infty}, \quad (A^+)^G_{\infty} = A^+_{K_\infty}.$$

Remark 1.4.3.

(1) The following rings (and their “B-variants”) that we defined above

$$\tilde{E}^+, \quad E, \quad \tilde{\Lambda}^+, \quad \tilde{\Lambda}, \quad A^+_{K_\infty}, \quad A^+_K, \quad A^+$$

are precisely the following rings which are commonly used in integral p-adic Hodge theory (e.g., in [GL]):

$$R, \quad FrR, \quad W(R), \quad W(FrR), \quad \mathcal{O}_E, \quad \mathcal{O}_{E_{ur}}, \quad \mathcal{O}_{ur}.$$

(2) The rings A and B (and their variants, e.g., A^I, B^I, in §2.2) are different from the “A” and “B” in [Ber08] or [Col08]. Indeed, they are the same algebraic rings, but with different structures (e.g., Frobenius structure). In the proof of our final main theorem (Thm. 6.2.6), we will use the font \mathcal{A}, \mathcal{B} to denote those rings in the (φ, Γ)-module setting.
1.4.4. **Valuations and norms.** A non-Archimedean valuation of a ring \(A \) is a map \(v : A \to \mathbb{R} \cup \{+\infty\} \) such that \(v(x) = +\infty \Leftrightarrow x = 0 \) and \(v(x + y) \geq \inf\{v(x), v(y)\} \). It is called sub-multiplicative (resp. multiplicative) if \(v(xy) \geq v(x) + v(y) \) (resp. \(v(xy) = v(x) + v(y) \)), for all \(x, y \). All the valuations in this paper are sub-multiplicative (some are multiplicative).

Given a matrix \(T = (t_{i,j})_{i,j} \), let \(v(T) := \min\{v(t_{i,j})\} \). A non-Archimedean valuation \(v \) on \(A \) induces a non-Archimedean norm where \(\|a\| := p^{-v(a)} \), and vice versa.

1.4.5. **Some other notations.** Throughout this paper, we reserve \(\varphi \) to denote Frobenius operator. We sometimes add subscripts to indicate on which object Frobenius is defined. For example, \(\varphi_\mathcal{M} \) is the Frobenius defined on \(\mathcal{M} \). We always drop these subscripts if no confusion arises. We use \(M_d(A) \) (resp. \(\text{GL}_d(A) \)) to denote the set of \(d \times d \)-matrices (resp. invertible matrices) with entries in \(A \).

Acknowledgement. We thank Laurent Berger and Tong Liu for many useful discussions. The influence of the work of Laurent Berger and Pierre Colmez in this paper will be evident to the reader. H.G. is partially supported by a postdoctoral position in University of Helsinki, funded by Academy of Finland through Kari Vilonen. L.P. is currently a PhD student of Laurent Berger at the ENS de Lyon.

2. A study of some rings

In this section, we study some rings which are denoted as \(\tilde{B}^I \) and \(B^I \) (where \(I \) is an interval). In particular, we study their \(G_\infty \)-invariants (see 1.1.1 for \(G_\infty \)), which are denoted as \(\tilde{B}^I_{K,\infty} \) and \(B^I_{K,\infty} \). The results will be used in Section 3 to further determine the link between these rings. All results in this section are analogues of their \(G_{p,\infty} \)-versions, established in [Ber02, Col08]; the proofs are also similar.

2.1. **The ring \(\tilde{B}^I \) and its \(G_\infty \)-invariants.** Let \(\pi = \mathfrak{z} - 1 \in \tilde{E}^+ \) (this is not \(\overline{\mathfrak{z}} \)), and let \(\overline{\pi} \in \tilde{A}^+ \) be its Teichmüller lift. When \(A \) is a \(p \)-adic complete ring, we use \(A\{X,Y\} \) to denote the \(p \)-adic completion of \(A[X,Y] \). As in [Ber02, §2], we define the following rings.

Definition 2.1.1. (1) Let
\[
\tilde{A}^{[r,s]} := \tilde{A} + \left\{ \frac{p}{[\pi]^r}, \frac{[\pi]^s}{p} \right\}, \quad \text{when} \ r, s \in \mathbb{Z}^>0[1/p], r \leq s, (r, s) \neq (0, 0);
\]
\[
\tilde{A}^{[r, +\infty]} := \tilde{A} + \left\{ \frac{p}{[\pi]^r} \right\}, \quad \text{when} \ r \in \mathbb{Z}^>0[1/p];
\]
\[
\tilde{A}^{(+\infty, +\infty)} := \tilde{A}.
\]

(2) If \(I \) is one of the closed intervals above, then let \(\tilde{B}^I := \tilde{A}^I [1/p] \).

If \(I \) is one of the closed intervals above, then \(\tilde{A}^I \) is \(p \)-adic complete; we use \(V^I \) to denote its \(p \)-adic valuation (which is sub-multiplicative). When \(I \subset J \) two closed intervals as above, then \(\tilde{A}^J \subset \tilde{A}^I \), and the completion of \(\tilde{B}^I \) with respect to the induced topology from \(V^I \) is \(\tilde{B}^I \).

Remark 2.1.2. We do not define \(\tilde{A}^{[0,0]} \).

Definition 2.1.3. When \(r \in \mathbb{Z}^>0[1/p] \), let
\[
\tilde{B}^{[r, +\infty]} := \cap_{n \geq 0} \tilde{B}^{[r,s_n]}
\]
where \(s_n \in \mathbb{Z}^>0[1/p] \) is any sequence converging to \(+\infty \).

Remark 2.1.4. (1) For any interval \(I \) such that \(\tilde{A}^I \) and \(\tilde{B}^I \) are defined, there is a natural bijection (called Frobenius) \(\varphi : \tilde{A}^I \to \tilde{A}^{pI} \) which is valuation-preserving.
(2) For \(n \in \mathbb{Z}_{\geq 0} \), let \(r_n := (p-1)p^{n-1} \). Let
\[
I_c := \{ [r_\ell, r_k], [r_\ell, +\infty], [0, r_k], [0, +\infty] \}, \quad \text{where } \ell \leq k \text{ run through } \mathbb{Z}_{\geq 0}.
\]
By item (1), in many situations, it would suffice to study \(\tilde{A}^I \) (and \(\mathbf{B}^I \)) for \(I \in I_c \) or \(I = [+\infty, +\infty] \). The cases for \(I \) a general closed interval can be deduced using Frobenius operation; the cases for \(I = [r, +\infty) \) can be deduced by taking Fréchet completion.

There is another type of valuation \(W^J \) on \(\tilde{B}^{[r, +\infty]} \), which we quickly recall. A particularly useful fact is that \(W^{[r, r]} \) are multiplicative valuations (not just sub-multiplicative), see Lem. 2.1.6 below.

Definition 2.1.5. Suppose \(r \in \mathbb{Z}_{\geq 0}[1/p] \), and let \(x = \sum_{k \geq k_0} p^k x_k \in \tilde{B}^{[r, +\infty]} \). Denote \(w_k(x) := \inf_{i \leq k} \{ v_B(x_i) \} \). See [Col08, §5.1] for the properties of \(w_k \); in particular, we have \(w_k(x + y) \geq \inf \{ w_k(x), w_k(y) \} \) with equality when \(w_k(x) = w_k(y) \). For \(s \geq r \) and \(s > 0 \), let
\[
W^{[s, s]}(x) := \inf_{k \geq k_0} \{ k + \frac{p-1}{ps} \cdot v_B(x_k) \} = \inf_{k \geq k_0} \{ k + \frac{p-1}{ps} \cdot w_k(x) \}.
\]
When \(r = 0 \), then \(\tilde{B}^{[0, +\infty]} = \tilde{B}^+ \), let
\[
W^{[0, 0]}(x) := \inf_{x_k \neq 0} \{ k \}.
\]
For \(I \subset [r, +\infty) \) a non-empty closed interval, let
\[
W^J(x) := \inf_{\alpha \in \tilde{I}} \{ W^{[\alpha, \alpha]}(x) \}.
\]

Lemma 2.1.6. Suppose \(r \leq s \in \mathbb{Z}_{\geq 0}[1/p] \), then the following holds.

1. Suppose \(x \in \tilde{B}^{[r, +\infty]} \), then
 - when \(s > 0 \), both \(k + \frac{p-1}{ps} \cdot v_B(x_k) \) and \(k + \frac{p-1}{ps} \cdot w_k(x) \) go to \(+\infty \) as \(k \to +\infty \), and so \(W^{[s, s]}(x) \) is well-defined;
 - when \(r = s = 0 \), \(W^{[0, 0]} \) is obviously well-defined.

2. \(A^{[r, +\infty]} \) and \(\tilde{A}^{[r, +\infty]}[1/\pi] \) are complete with respect to \(W^{[r, r]} \).

3. \(W^{[r, r]}(xy) = W^{[r, r]}(x) + W^{[r, r]}(y) \), \(\forall x, y \in \tilde{B}^{[r, r]} \).

4. For \(x \in \tilde{B}^{[r, +\infty]} \) and \(s > 0 \), we have \(V^{[r, r]}(x) = [W^{[r, r]}(x)] \), where \(V^{[r, r]}(x) \) is defined by considering \(x \) as an element in \(\tilde{B}^{[r, s]} \).

5. For \(x \in \tilde{B}^{[r, +\infty]} \), we have \(W^{[r, s]}(x) = \inf \{ W^{[r, r]}(x), W^{[s, s]}(x) \} \).

6. For \(s > 0 \), the completion of \(\tilde{B}^{[r, +\infty]} \) with respect to \(W^{[r, s]} \) is isomorphic to \(\tilde{B}^{[r, s]} \) as topological rings. Thus, we can extend \(W^{[r, r]} \) to \(\tilde{B}^{[r, s]} \) such that for \(x \in \tilde{B}^{[r, s]} \) we have \(V^{[r, s]}(x) = [W^{[r, s]}(x)] \) and \(W^{[r, s]}(x) = \inf \{ W^{[r, r]}(x), W^{[s, s]}(x) \} \).

7. \(\tilde{B}^{[r, +\infty]} \) is complete with respect to its Fréchet topology, and contains \(\tilde{B}^{[r, +\infty]} \) as a dense subring.

Proof. All these results are well-known. Item 1 and 2 is [Col08, Prop. 5.6]; note that the ring \(\tilde{A}^{(0, r]} \) in loc. cit. is our \(\tilde{A}^{(p-1)/(p^r), +\infty}[1/\pi] \), and the ring of integers in \(\tilde{A}^{(0, r]} \) is precisely our \(\tilde{A}^{(p-1)/(p^r), +\infty} \). Item 3 is [Ber10, Lem. 21.3]. Item 4 is [Ber02, Lem. 2.7]. Item 5 is [Ber02, Lem. 2.20]. Item 6 follows from Item 4. Item 7 is [Ber02, Lem. 2.19].

Remark 2.1.7. (1) Suppose \(x \in \tilde{B}^{[r, +\infty]} \), then \(W^{[r, r]}(x) \geq 0 \) does not imply that \(x \in \tilde{A}^{[r, +\infty]} \); it only implies that \(x \notin \tilde{A}^{[r, r]} \) (when \(r > 0 \)). However, if \(x \in \tilde{A}^{[r, +\infty]}[1/\pi] \), then \(W^{[r, r]}(x) \geq 0 \) if and only if \(x \notin \tilde{A}^{[r, +\infty]} \).

(2) In comparison to Lem. 2.1.6(2), \(\tilde{B}^{[r, +\infty]} \) is not complete with respect to \(W^{[r, r]} \); indeed, its completion is \(\tilde{B}^{[r, r]} \) by Lem. 2.1.6(6).
Proof. The proof is analogous to [Ber02, Prop. 2.17], because $E(u)$ and $\varphi^{-1}(q)$ generate the same ideal in \tilde{A}^+. Item (2) is easy consequence of (1).

Lemma 2.1.9. Suppose $\ell \leq k$, then we have the following short exact sequence

$$0 \to \tilde{A}^{[0,+\infty]}_{K_\infty} \to \tilde{A}^{[r,+,\infty]}_{K_\infty} \to \tilde{A}^{[r_{+}]_{\infty}}_{K_\infty} \to 0.$$

Proof. The proof is analogous to [Ber02, Lem. 2.27]. Indeed, via [Ber02, Lem. 2.18], we have

$$0 \to \tilde{A}^{[0,+\infty]}_{K_\infty} \to \tilde{A}^{[r,+,\infty]}_{K_\infty} \to \tilde{A}^{[r_{+}]_{\infty}}_{K_\infty} \to 0.$$

Take G_∞-invariants, and consider the long exact sequence, it suffices to show that the map

$$\delta: \tilde{A}^{[r_{+}]_{\infty}}_{K_\infty} \to H^1(G_\infty, \tilde{A}^{[1/p]}_{K_\infty})$$

is zero map. By exactly the same argument as in [Ber02, Lem. 2.27], it suffices to show that $H^1(G_\infty, \mathfrak{m}) = 0$ (where \mathfrak{m} is the maximal ideal of \tilde{E}^+) and this is an analogue of [Col98, Prop. IV.1.4(iii)]. Indeed, the ring \tilde{E}^+ satisfies the conditions (C1), (C2) and (C3) in [Col98, IV.1] with respect to our APF extension K_∞ (note that the K_∞ in loc. cit. is our K_∞); the proof is verbatim as in [Col98, Rem. IV.1.1(iii)], since the theory of fields of norms for our extension K_∞ also works (see e.g. [Bre99, §2] for a detailed development).

Lemma 2.1.10. \(\ell \leq k \)

1. $\tilde{A}^{[0,\infty]}_{K_\infty} = \tilde{A}^{[r,\infty]}_{K_\infty} \otimes \tilde{A}^{[0,_{\infty}]}_{K_\infty} = \tilde{A}^{[0,_{\infty}]}_{K_\infty}$

2. $\tilde{A}^{[0,\infty]}_{K_\infty} = \tilde{A}^{[r,\infty]}_{K_\infty} \otimes \tilde{A}^{[0,_{\infty}]}_{K_\infty}$

3. $\tilde{A}^{[0,\infty]}_{K_\infty} = \tilde{A}^{[r,\infty]}_{K_\infty} \otimes \tilde{A}^{[0,_{\infty}]}_{K_\infty}$

Proof. Item (1) is an analogue of [Ber02, Lem. 2.29]. It suffices to prove it when $k = 0$. Since $\tilde{E}^{[\infty]}_{K_\infty}$ is a basis of u^i for $i \in \mathbb{Z}[1/p] \cap [0,e)$, we can easily deduce that $\tilde{a}: \tilde{A}^{[r,\infty]}_{K_\infty} \to \mathcal{O}_{K_\infty}$ is surjective. Given $x \in \tilde{A}^{[0,\infty]}_{K_\infty}$, we recursively define two sequences $x_i \in \tilde{A}^{[0,\infty]}_{K_\infty}$ and $a_i \in \tilde{A}^{[r,\infty]}_{K_\infty}$ as follows:

- let $x_0 = x$;
- choose any $a_i \in \tilde{A}^{[r,\infty]}_{K_\infty}$ such that $\theta(a_i) = \theta(x_i) \in \mathcal{O}_{K_\infty}$;
- let $x_{i+1} := (x_i - a_i) \cdot \frac{1}{\zeta(x_i)}$, then $x_{i+1} \in \tilde{A}^{[0,\infty]}_{K_\infty}$ by Prop. 2.1.8.

Then it is easy to check that $x = \sum_{i \geq 0} a_i(E(u)/p)^i$ with $a_i \to 0$.

For Item (2), again it suffices to consider the case $\ell = 0$. Let $x \in \tilde{A}^{[r,\infty]}_{K_\infty}$, write it as $x = \sum_{k \geq 0} p^k[x_k]$, then clearly $x_k \in (\tilde{E})^{G_\infty}$. Since $(p_{0\infty})/(p-1) \cdot k + v_{\tilde{E}}(x_k) \to +\infty$ as
\[k \rightarrow +\infty, \text{ so } k + v_E(x_k) \rightarrow +\infty, \text{ and so } v_E(x_k \cdot e^k) \rightarrow +\infty. \] Then one can easily show that
\[x \in \tilde{A}_K^+ \left\{ \frac{p}{w} \right\}. \]

Consider Item (3). By Lem. 2.1.9, any element of \(x \in \tilde{A}^{[r,r_\infty]}_K \) can be written as a sum
\[x = a+b \text{ with } a \in \tilde{A}^{[r,+\infty)}_K \text{ and } b \in \tilde{A}^{[0,r_\infty]}_K, \] so we can apply Items (1) and (2) to conclude. \(\square \)

Lemma 2.1.11. The ring \(\tilde{B}^{[r,+\infty]}_K \) is dense in \(\tilde{B}^{[r_\infty,+\infty]}_K \) for the Fréchet topology.

Proof. The proof is verbatim as the proof of [Ber02, Prop. 2.30], by changing \(q \) there to \(E(u) \). \(\square \)

2.2. The ring \(B^l \) and its \(G_\infty \)-invariants.

Definition 2.2.1.

1. When \(r \in \mathbb{Z}_{\geq 0}[1/p] \), let
 \[A^{[r,+\infty]} := A \cap \tilde{A}^{[r,+\infty]}_K, \quad B^{[r,+\infty]} := B \cap \tilde{B}^{[r,+\infty]}_K. \]
2. When \(r, s \in \mathbb{Z}_{\geq 0}[1/p], s \neq 0 \), let \(B^{[r,s]} \) be the closure of \(B^{[r,+\infty]} \) in \(\tilde{B}^{[r,s]}_K \) with respect to \(W^{[r,s]}_K \). Let \(A^{[r,s]} := B^{[r,s]} \cap \tilde{A}^{[r,s]}_K \), which is the ring of integers in \(B^{[r,s]}_K \).
3. When \(r \in \mathbb{Z}_{\geq 0}[1/p] \), let
 \[B^{[r,+\infty]} := \cap_{n \geq 0} B^{[r,s_n]} \]
 where \(s_n \in \mathbb{Z}_{>0}[1/p] \) is any sequence increasing to \(+\infty \).

Definition 2.2.2. For \(0 \leq r < +\infty \), let \(A^{[r,+\infty]}(K_0) \) be the set consisting of Laurent series \(f = \sum_{k \in \mathbb{Z}} a_k T^k \) where \(a_k \in W(k) \) such that \(f \) is a holomorphic function on the annulus defined by
\[v_p(T) \in (0, \frac{p-1}{ep} \cdot \frac{1}{r}]. \]
(Note that when \(r = 0 \), it implies that \(a_0 = 0, \forall k < 0 \). Let \(B^{[r,+\infty]}(K_0) := A^{[r,+\infty]}(K_0)[1/p]. \)

Definition 2.2.3. Suppose \(f = \sum_{k \in \mathbb{Z}} a_k T^k \in B^{[r,+\infty]}(K_0) \).

1. When \(s \geq r, s > 0 \), let
 \[W^{[s,s]}(f) := \inf_{k \in \mathbb{Z}} \left\{ v_p(a_k) + \frac{p-1}{ps} \cdot \frac{k}{e} \right\}. \]
2. When \(r = 0 \), let
 \[W^{[0,0]}(f) := \inf_{k \in \mathbb{Z}} \{ v_p(a_k) \}. \]
3. For \(I \subset [r, +\infty] \) a non-empty closed interval, let
 \[W^I(x) := \inf_{a \in I} W^{[a,a]}(x). \]

Definition 2.2.4. Let \(B^{[r,s]}(K_0) \) be the completion of \(B^{[r,+\infty]}(K_0) \) with respect to \(W^{[r,s]}_K \). Let \(A^{[r,s]}(K_0) \) be the ring of integers in \(B^{[r,s]}_K(K_0) \) with respect to \(W^{[r,s]}_K \).

Lemma 2.2.5. For \(I = [r,s] \subset [0, +\infty) \), we have
\[W^I(x) = \inf \left\{ W^{[r,r]}(x), W^{[s,s]}(x) \right\}. \] Furthermore, when \(s > 0 \), \(B^{[r,s]}(K_0) \) is the set consisting of Laurent series \(f = \sum_{k \in \mathbb{Z}} a_k T^k \) where \(a_k \in K_0 \) such that \(f \) is a holomorphic function on the annulus defined by
\[v_p(T) \in \left[\frac{p-1}{ep} \cdot \frac{1}{s}, \frac{p-1}{ep} \cdot \frac{1}{r} \right]. \]

Proof. This is easy. \(\square \)

Lemma 2.2.6. Suppose \(r \leq s \in \mathbb{Z}_{\geq 0}[1/p] \).
2.2.1. is an analogue of \([Col08]\) be the sequence constructed in \(A\) in \(f > 0\), by noting that \(A\) an approximating sequence.

\[\sum\]

2.2.7. \(\sum\)

Iterate the above process, we get everything is trivial; so in the following, we suppose \(s > 0\). Let \(f (2) \) the map \(f (2) \) induces isometric homeomorphisms

\[\mathcal{A}^{[0,s]}(K_0) \simeq A_{K_\infty}[0,s] \text{ when } r = 0, s > 0;\]

\[\mathcal{A}^{[r,s]}(K_0) \simeq A_{K_\infty}[r,s] \text{ when } r > 0.\]

Before we prove the lemma, we introduce the section \(s\) and use it to build an approximating sequence.

2.2.7. \(\sum\)

The section \(s\). Denote

\[s: A_{K_\infty}/p \to A_{K_\infty}\]

the section where for \(\mathfrak{a} = \sum_{i > -\infty} a_i u^i\), let \(s(\mathfrak{a}) := \sum_{i > -\infty} [a_i] u^i\). One can see that \(s(\mathfrak{a}) \in A_{K_\infty}[0,s][1/u]\) for any \(r \geq 0\). Furthermore, for any \(k \geq 0\), we have

\[w_k(s(\mathfrak{a})) = \inf \{w_k([a_i] u^i)\} = \frac{1}{e} \min \{i: a_i \neq 0\} = v_\mathfrak{a}(\mathfrak{a}),\]

where the first identity holds because \(w_k([a_i] u^i)\) are distinct for different \(i\).

2.2.8. \(\sum\)

An approximating sequence. Let \(r \geq 0\), given \(x \in A_{K_\infty}[r,s][1/u]\), define a sequence \(\{x_n\}\) in \(A_{K_\infty}[r,s][1/u]\) where \(x_0 = x\) and \(x_{n+1} := p^{-1} (x_n - s(\mathfrak{a}_n))\). Then \(x = \sum_{n \geq 0} p^n \cdot s(\mathfrak{a}_n)\), and we have that

\[w_k(x_{n+1}) = w_{k+1}(px_{n+1}) \geq \inf \{w_{k+1}(x_n), w_{k+1}(s(\mathfrak{a}_n))\} = \inf \{w_{k+1}(x_n), w_0(x_n)\}, \text{ by (2.2.1)}, \]

\[= w_{k+1}(x_n).\]

Iterate the above process, we get

\[w_0(x_n) \geq w_n(x_0) = w_n(x).\]

\[\sum\]

Proof of Lem. 2.2.6. Lem. 2.2.6 is an analogue of [Col08, Prop. 7.5], and the proof uses similar idea. It suffices to prove Item (1). Note that when \(s = 0\) (in the case \(r = 0\), then everything is trivial; so in the following, we suppose \(s > 0\).

Part 1. Given \(f(T) = \sum_{k \in \mathbb{Z}} a_k T^k \in A[r,s][K_0]\), then for any \(s \in [r, +\infty)\), \(s > 0\),

\[W^{[s]}(f(u)) \geq \inf_k W^{[s]}(a_k u^k) = \inf_k \{v_p(a_k) + \frac{p - 1}{ps} \cdot \frac{k}{e}\} = W^{[s]}(f(T)).\]

When \(r > 0\), \(v_p(a_k) + \frac{p - 1}{ps} \cdot \frac{k}{e} \to +\infty\) for \(k \to +\infty\) or \(k \to -\infty\), so \(f(u) \in A_{K_\infty}^{[r,s]}[1/u]\) when \(r > 0\), by noting that \(A_{K_\infty}^{[r,s]}[1/u]\) is complete with respect to \(W^{[r,s]}\). When \(r = 0\), then it is clear that \(f(u) \in A_{K_\infty}^{[0,s]}\). Also, it is obvious that the map \(f(T) \mapsto f(u)\) is injective.

Part 2. Given \(x \in A_{K_\infty}^{[r,s]}[1/u]\) when \(r > 0\) (resp. \(x \in A_{K_\infty}^{[0,s]}[1/u]\) when \(r = 0\), let \(\{x_n\}\) be the sequence constructed in 2.2.8 (note that when \(x \in A_{K_\infty}^{[0,s]}\), then \(x_n \in A_{K_\infty}^{[0,s]}, \forall n\)). Let \(f_n(T)\) be the formal series \(\sum_{k \in \mathbb{Z}} f_n k T^k\) such that \(f_n(u) = s(\mathfrak{a}_n)\), and let \(f(T) := \sum_{n \geq 0} p^n f_n(T)\). By (2.2.2),

\[v_\mathfrak{a}(\mathfrak{a}_n) = w_0(x_n) \geq w_n(x),\]
so the expression for $s(r)$ would be of the form $\sum_{i \geq ew_n(x)}|\alpha_i|^i u^i$ (recall that $v_E(u) = 1/e$). Thus $f_n(T) = \sum_{i \geq ew_n(x)}|\alpha_i|^i u^i$, and so

$$W^{[s,s]}(p^n f_n(T)) \geq W^{[s,s]}(p^n T[ew_n(x)]) \geq n + \frac{p-1}{ps} \cdot \frac{1}{e} \cdot ew_n(x) \geq W^{[s,s]}(x).$$

When $r > 0$, $n + \frac{p-1}{ps} \cdot w_n(x) \to +\infty$ when $n \to +\infty$, so $f(T)$ converges in $A^{[r,\infty]}(K_0)$. (When $r = 0$, $f(T)$ automatically converges in $A^{[0,\infty]}(K_0)$). It is clear $f(u) = x$, and $W^{[s,s]}(f(T)) \geq W^{[s,s]}(x)$. Combined with Part 1, this concludes the proof. □

Corollary 2.2.9. We have

$$A^{[0,\infty]}_K = A^+_K, \quad A^{[0,r]}_K = A^+_K \left\{ \frac{u^{ep^k}}{p} \right\},$$

$$A^{[r,\infty]}_K = A^+_K \left\{ \frac{u^{ep}}{p} \right\}, \quad A^{[r,r]}_K = A^+_K \left\{ \frac{p}{u^{ep}}, \frac{u^{ep^k}}{p} \right\}.$$

Proof. This easily follows from Lem. 2.2.6 and Lem. 2.2.5. □

Corollary 2.2.10. Suppose $[r,s] \subset [r',s] \subset [0,\infty]$, then $A^{[r,s]}_K \cap A^{[r',s]}_K = A^{[r',s]}_K$.

Proof. Let $f \in A^{[r,s]}_K \cap A^{[r',s]}_K$. By Cor. 2.2.9, we can always write $f = f_1 + f_2$, where $f_1 \in A^{[r,\infty]}_K$ and $f_2 \in A^{[0,s]}_K$, it then suffices to show that $f_1 \in A^{[r',s]}_K$. But indeed we can show that $f_1 \in A^{[r',\infty]}_K$, using similar argument as in [CC98, Lem. II.2.2]. □

3. Locally analytic vectors of some rings

The main result in this section is to calculate locally analytic vectors in $(\tilde{B}^l)^{G_{\infty}} = \tilde{B}^l_K$. Actually, there is no group action on $(\tilde{B}^l)^{G_{\infty}}$ since G_{∞} is not normal in G_K; what we do instead is to calculate locally analytic vectors in $\tilde{B}^l_L := (\tilde{B}^{\Gal(K/L)})$ (with respect to the $\Gal(L/K)$-action) that are furthermore G_{∞}-invariant.

3.1. Theory of locally analytic vectors. Let us recall the theory of locally analytic vectors, see [BC16, §2.1] and [Ber16, §2] for more details. Recall that a Q_p-Banach space W is a Q_p-vector space with a complete non-Archimedean norm $\| \|_{\| \|}$ such that $\|aw\| = \|a\|_p \|w\|, \forall a \in Q_p, w \in W$, where $\|a\|_p$ is the usual p-adic norm on Q_p. Recall the multi-index notations: if $c = (c_1, \ldots, c_d)$ and $k = (k_1, \ldots, k_d) \in \mathbb{N}^d$ (here $\mathbb{N} = \mathbb{Z}_{\geq 0}$), then we let $c^k = c_1^{k_1} \times \cdots \times c_d^{k_d}$.

3.1.1. Let G be a p-adic Lie group, and let $(W, \| \|)$ be a Q_p-Banach representation of G. Let H be an open subgroup of G such that there exist coordinates $c_1, \ldots, c_d : H \to \mathbb{Z}_p$ giving rise to an analytic bijection $c : H \to \mathbb{Z}_p^d$. We say that an element $w \in W$ is an H-analytic vector if there exists a sequence $\{w_k\}_{k \in \mathbb{N}^d}$ with $w_k \to 0$ in W, such that

$$g(w) = \sum_{k \in \mathbb{N}^d} c(g)^k w_k, \quad \forall g \in H.$$

Let $W^{H_{\text{an}}}$ denote the space of H-analytic vectors. $W^{H_{\text{an}}}$ injects into $C^{\text{an}}(H,W)$, and we endow it with the induced norm, which we denote as $\| \|_{\| \|_H}$. We have $\|w\|_H = \sup_{k \in \mathbb{N}^d} \|w_k\|$, and $W^{H_{\text{an}}}$ is a Banach space.

We say that a vector $w \in W$ is locally analytic if there exists an open subgroup H as above such that $w \in W^{H_{\text{an}}}$. Let W^{la} denote the space of such vectors. We have $W^{la} = \bigcup_H W^{H_{\text{an}}}$.
where H runs through open subgroups of G. We can endow W^{la} with the inductive limit topology, so that W^{la} is an LB space.

Lemma 3.1.2. Keep notations in §3.1.1. If W is furthermore a ring such that $\|xy\| \leq \|x\| \cdot \|y\|$ for $x, y \in W$, then

1. $W^{\text{H-an}}$ is a ring, and $\|xy\|_{H} \leq \|x\|_{H} \cdot \|y\|_{H}$ if $x, y \in W^{\text{H-an}}$.
2. Suppose $w \in W^{x}$ and $w \in W^{\text{G-la}}$, then $1/w \in W^{\text{G-la}}$. (In particular, if W is a field, then $W^{\text{G-la}}$ is also a field.)

Proof. Item (1) is [BC16, Lem. 2.5(i)]. Item (2) is stronger than [BC16, Lem. 2.5(ii)], but this stronger statement is proved in loc. cit. □

3.1.3. Keep notations in §3.1.1. By the paragraph preceding [BC16, Lem. 2.4], there exists some (not unique) open compact subgroup G_{1} of G such that there exist local coordinates $\tilde{c}: G_{1} \to \mathbb{Z}_{p}^{d}$, which furthermore satisfy $\tilde{c}(G_{n}) = (p^n \mathbb{Z}_{p})^d$ where $G_{n} := G_{1}^{p^n-1}$. Then we have $W^{\text{la}} = \oplus_{n} W^{G_{n}\text{-an}}$.

Lemma 3.1.4. ([BC16, Lem. 2.4]) Keep notations in §3.1.3. Suppose $w \in W^{G_{n}\text{-an}}$, then for all $m \geq n$, $w \in W^{G_{m}\text{-an}}$ and $\|w\|_{G_{m}} \leq \|w\|_{G_{n}}$. Furthermore, $\|w\|_{G_{m}} = \|w\|$ when $m \gg 0$.

3.1.5. Let W be a Fréchet space, whose topology is defined by a sequence $\{p_{i}\}_{i \geq 1}$ of seminorms. Let W_{i} denote the Hausdorff completion of W for p_{i}, so that $W = \varprojlim_{i \geq 1} W_{i}$. If W is a Fréchet representation of G, then a vector $w \in W$ is called pro-analytic if its image $\pi_{i}(w)$ in W_{i} is a locally analytic vector for all i. We denote by W^{pa} the set of such vectors. We can extend this definition to LF spaces (cf. [Ber16, §2]).

Proposition 3.1.6. Let G be a p-adic Lie group, let \hat{B} be a Banach (resp. Fréchet) G-ring, and $B \subset \hat{B}$ a Banach (resp. Fréchet) subring (but not necessarily G-stable). Let W be a free B-module of finite rank, let $\hat{W} := \hat{B} \otimes_{B} W$, and suppose there is a B-semi-linear G-action on W. Let $B^{\text{la}} := B \cap \hat{B}^{\text{la}}$ and $W^{\text{la}} := W \cap \hat{W}^{\text{la}}$ (resp. $B^{\text{pa}} := B \cap \hat{B}^{\text{pa}}$ and $W^{\text{pa}} := W \cap \hat{W}^{\text{pa}}$).

If W has a B-basis w_{1}, \ldots, w_{d} in which $g \mapsto \text{Mat}(g)$ is a globally analytic (resp. pro-analytic) function $G \to \text{GL}_{d}(\hat{B}) \subset \text{M}_{d}(\hat{B})$, then

$$W^{\text{la}} = \oplus_{j=1}^{d} B^{\text{la}} \cdot w_{j} \quad \text{(resp. } W^{\text{pa}} = \oplus_{j=1}^{d} B^{\text{pa}} \cdot w_{j} \text{)}.$$

Proof. By [BC16, Prop. 2.3] (resp. [Ber16, Prop. 2.4]), we have $\hat{W}^{\text{la}} = \oplus_{j=1}^{d} \hat{B}^{\text{la}} \cdot w_{j}$ (resp. $\hat{W}^{\text{pa}} = \oplus_{j=1}^{d} \hat{B}^{\text{pa}} \cdot w_{j}$), then we can take intersections with W to conclude. □

In the following, we give a useful criterion to determine analytic vectors for the p-adic Lie group \mathbb{Z}_{p}.

Lemma 3.1.7. Suppose $(W, \|\cdot\|)$ is a \mathbb{Q}_{p}-Banach representation of \mathbb{Z}_{p}. Let τ be a generator of \mathbb{Z}_{p}. Given $x \in W$, then $x \in W^{Z_{p}\text{-an}}$ if and only if the following hold:

1. $\frac{\log \tau^{i}(x)}{i!} \in W, \forall i \geq 0$, where $\log \tau$ denote the operator $(-1) \cdot \sum_{k \geq 1} (1 - \tau)^{k}/k$;
2. $\|\log \tau^{i}(x)/i!\| \to 0$ as $i \to +\infty$;
3. for all $a \in \mathbb{Z}_{p}$,

$$(3.1.1)\quad \tau^{a}(x) = \sum_{i=0}^{\infty} a^{i} \frac{(\log \tau)^{i}(x)}{i!}.$$

If the above holds, then $\log \tau(x) \in W^{Z_{p}\text{-an}}$, and for all $a \in \mathbb{Z}_{p}$, we have $(\log \tau^{a})(x) = a \cdot \log \tau(x)$.

Proof. This is standard, cf. [ST02, §3]. □
Lemma 3.1.8. Suppose \((W, \| \cdot \|)\) is a \(\mathbb{Q}_p\)-Banach representation of \(\mathbb{Z}_p\) such that \(\|g(w)\| = \|w\|, \forall g \in \mathbb{Z}_p, w \in W\) (i.e., \(\| \cdot \|\) is an invariant norm). Let \(x \in W\). Let \(\tau\) be a generator of \(\mathbb{Z}_p\). If there exists some \(r < \inf\{1/e, p^{-1/(p-1)}\}\) (here \(e\) is Euler’s number \(2.718\ldots\)), some \(R > 0\) and \(k_0 \in \mathbb{Z}^\geq 0\), such that

\[
(3.1.2) \quad \| (1 - \tau^a)^k (x) \| \leq R, \quad \text{for all } a \in \mathbb{Z}_p, k < k_0;
\]

\[
(3.1.3) \quad \| (1 - \tau^a)^k (x) \| \leq r^k, \quad \text{for all } a \in \mathbb{Z}_p, k \geq k_0,
\]

then \(x \in W^{\mathbb{Z}_p\text{-an}}\).

Proof. Step 0: Partial log. Let \(A\) be a \(\mathbb{Q}_p\)-algebra. Given \(a \in A\), denote

\[
\log_m a := \sum_{i=1}^{p^m-1} \frac{(1 - a)^i}{i} \in A.
\]

If \(A\) is furthermore a Banach algebra, and \(\| (1 - a)^i \| \to 0\) when \(i \to +\infty\), then we denote \(\log a := (-1) \cdot \sum_{i=1}^{+\infty} \frac{(1 - a)^i}{i}\) (and say \(\log a\) is well-defined). Suppose \(a, b \in A\) such that \(ab = ba\), then we have the identity:

\[
\frac{(1 - ab)^i}{i} = \frac{(1 - a)^i}{i} + \sum_{j=1}^{i} \frac{(i - 1)}{j - 1} \cdot a^j (1 - a)^{i-j} \cdot \frac{(1 - b)^j}{j}.
\]

So we have (cf. \([\text{Car13}, \text{Eqn. (3.4)}]\)):

\[
\log_m(ab) = \log_m a + \sum_{j=1}^{p^m-1} \frac{a^j \cdot \sum_{i=j}^{p^m-1} \left(\frac{(i - 1)}{j - 1} \cdot (1 - a)^{i-j} \right) \cdot \frac{(1 - b)^j}{j}}{j}.
\]

Note that (cf. the equation below \([\text{Car13}, \text{Eqn. (3.4)}]\))

\[
(1 - X)^j \cdot \sum_{i=j}^{p^m-1} \left(\frac{(i - 1)}{j - 1} \right) X^{i-j} \in 1 + X^{p^m-j} \mathbb{Z}_p[X].
\]

Apply the above identity with \(X = 1 - a\), then we get

\[
(3.1.4) \quad \log_m(ab) - \log_m a - \log_m b = \sum_{j=1}^{p^m-1} f_j (1 - a) \cdot (1 - a)^{p^m-j} \cdot \frac{(1 - b)^j}{j},
\]

where \(f_j(X) \in \mathbb{Z}_p[X]\) are some polynomials.

Step 1: Logarithm of \(x\). Using condition \((3.1.2)\) and \((3.1.3)\), it is clear that for any \(a \in \mathbb{Z}_p\), \((\log \tau^a)(x)\) is well-defined. Furthermore, there exists some \(r' > 0\), such that

\[
(3.1.5) \quad \| (\log \tau^a)(x) \| < r', \quad \forall a \in \mathbb{Z}_p.
\]

We claim that

\[
(3.1.6) \quad (\log \tau^a)(x) = a \cdot (\log \tau)(x), \quad \forall a \in \mathbb{Z}_p.
\]

To prove \((3.1.6)\), we first show that

\[
(3.1.7) \quad (\log \tau^{a+\beta})(x) = (\log \tau^a)(x) + (\log \tau^\beta)(x), \quad \forall a, \beta \in \mathbb{Z}_p.
\]

Using \((3.1.4)\), we have

\[
(3.1.8) \quad (\log_m \tau^{a+\beta})(x) - (\log_m \tau^a)(x) - (\log_m \tau^\beta)(x) = \sum_{j=1}^{p^m-1} f_j (1 - \tau^a) \cdot (1 - \tau^\beta)^{p^m-j} \cdot \frac{(1 - \tau^\beta)^j}{j}.
\]

Since \(\| \cdot \|\) is an invariant norm, it is easy to see that

\[
(3.1.9) \quad \| (f(\tau))(w) \| \leq \| w \|, \quad \forall w \in W, f(X) \in \mathbb{Z}_p[X] \text{ a polynomial}.
\]
When \(p^m/2 \geq k_0 \) (so \(\max\{j, p^m - j\} \geq k_0, \forall j \)), the norm of the right hand side of (3.1.8) is bounded by \(p^{m(1-p^m/2)} \) (using (3.1.3) and (3.1.9)). Let \(m \to +\infty \), and so (3.1.7) is proved. Now given \(a \in \mathbb{Z}_p \), let \(a = a_m + p^m b_m \) where \(a_m \in \mathbb{Z}, b_m \in \mathbb{Z}_p \). By (3.1.7),
\[
(\log \tau^a)(x) = (\log \tau^{a_m})(x) + (\log \tau^{p^m b_m})(x) = a_m \cdot (\log \tau)(x) + p^m \cdot (\log \tau^{b_m})(x).
\]
Use (3.1.5), and let \(m \to +\infty \), we can conclude (3.1.6).

Step 2: General term of a summation. Consider the summation \(\sum_{k=0}^{\infty} \frac{(\log \tau^n)^k(x)}{k!} \) where \(a \in \mathbb{Z}_p \), then its “general term” is of the form:
\[
\frac{1}{k!} \frac{(1 - \tau^n)^{i_1} \cdots + + i_k}{i_1 \cdots i_k}(x), \text{ where } i_j \geq 1.
\]
Suppose \(\sum i_j = n \), then \(n \geq k \). Let
\[
r_k := \sup_{n \geq k} \left\{ \frac{1}{k!} \left(\frac{1 - \tau^n}{i_1 \cdots i_k} \right)(x), \text{ where } \sum i_j = n \right\}.
\]
Note that we have
\[
\left\| \frac{1}{k!} \left(\frac{1 - \tau^n}{i_1 \cdots i_k} \right)(x) \right\| \leq r^n \cdot p^{\frac{k-1}{p-1}} \cdot \left(\frac{n}{k} \right)^k, \text{ when } n \geq k_0.
\]
Fix a \(k \), consider the function \(f(X) = rX \cdot X^k \) with \(X \geq k \). Its logarithm is \(X \ln r + k \ln X \), which has derivative \(\ln r + k/X < 0 \) since \(r < 1/e \). Thus we conclude that
\[
\left\| \frac{1}{k!} \left(\frac{1 - \tau^n}{i_1 \cdots i_k} \right)(x) \right\| \leq r^n \cdot p^{\frac{k-1}{p-1}} \cdot \left(\frac{n}{k} \right)^k = (rp^{\frac{1}{p-1}})^k, \text{ when } n \geq k_0.
\]
This implies that \(r_k < +\infty, \forall k \). Furthermore,
\[
r_k \leq (rp^{\frac{1}{p-1}})^k, \text{ when } k \geq k_0,
\]
and so \(\lim_{k} r_k \to 0 \) since \(r < p^{\frac{1}{p-1}} \). This implies that the summation \(\sum_{k=0}^{\infty} \frac{(\log \tau^n)^k(x)}{k!} \) converges absolutely.

Step 3: Conclusion. Using Step 2 and (3.1.6) in Step 1, it is easy to show that all the itemized conditions in Lem. 3.1.7 are satisfied; in particular, the equality (3.1.1) holds because by Step 2, we can “re-arrange” the order of the summation. Thus \(x \in W\hat{\mathcal{Z}_{p-an}} \). \(\square \)

3.2. Locally analytic representations of \(\hat{\mathcal{G}} \)

Notation 3.2.1. Let \(\tau \in \text{Gal}(L/K_{p^\infty}) \) and \(\gamma \in \text{Gal}(L/K_{\infty}) \) be as in Notation 1.1.1, then we have \(\gamma \tau = \tau^{\chi_p(\gamma)} \gamma \). Furthermore,
- if \(K_{\infty} \cap K_{p^\infty} = K \), then \(\tau \) and \(\gamma \) generate \(\hat{\mathcal{G}} \) (cf. [Liu08, Lem. 5.1.2]);
- if \(K_{\infty} \cap K_{p^\infty} \supseteq K \), then necessarily \(p = 2 \), and \(\tau \) and \(\gamma \) generate an open subgroup (denoted as \(\hat{\mathcal{G}}' \)) of \(\hat{\mathcal{G}} \) of index 2 (cf. [Liu10, Prop. 4.1.5]).

Notation 3.2.2.
1. Let \(\tau_n := \tau^{p^n} \) and \(\gamma_n := \gamma^{p^n} \). Let \(\hat{\mathcal{G}}_n \subset \hat{\mathcal{G}} \) be the subgroup topologically generated by \(\tau_n \) and \(\gamma_n \). These \(\hat{\mathcal{G}}_n \) satisfy the property as in §3.1.3.
2. Given a \(\hat{\mathcal{G}} \)-representation \(W \), we use \(W^{\tau_{n-an}} \) (resp. \(W^{\tau_{n-an}} \)) to denote the subset of \(\text{Gal}(L/K_{p^\infty}) \)-locally analytic vectors (resp. Gal(\(L/(K_{p^\infty}(\gamma_n)) \)-analytic vectors, resp. Gal(\(L/K_{\infty}) \)-locally analytic vectors).
3. Let
\[
\nabla_{\tau} := \frac{\log \tau^{p^n}}{p^n} \text{ for } n \gg 0, \quad \nabla_{\gamma} := \frac{\log \gamma}{\log p \chi_p(\gamma)} \text{ for } \gamma \text{ close enough to } 1
\]
be the two differential operators (acting on \(\hat{\mathcal{G}} \)-locally analytic representations).

Lemma 3.2.3. Let \(W^{\tau_{n-an}} \cap W^{\gamma_{1-an}} \), then \(W^{\tau_{n-an}} \cap W^{\gamma_{1-an}} \subset W^{\hat{\mathcal{G}}_{n-an}} \).
Proof. This can be deduced from the fact that any element \(g \in \tilde{G} \) (or \(g \in \hat{G} \) when \(K_\infty \cap K_{p,\infty} \neq K \), cf. Notation 3.2.1) can be uniquely written as a product \(\gamma^a \tau^b \) for \(a, b \in \mathbb{Z}_p \).

Remark 3.2.4. (1) Let \(W^{\gamma, \tau=1} := W^{\gamma, \tau=1} \cap W^{\tau=1} \), then
\[
W^{\gamma, \tau=1} = ((W)^{\text{Gal}(L/K_{p,\infty})})^{\text{Gal}(K_{p,\infty}/K)-\text{la}} \subset W^{\tilde{G}-\text{la}}
\]
because \(\text{Gal}(L/K_{p,\infty}) \) is normal in \(\tilde{G} \).

(2) We do not know if the inclusion \(W^{\tilde{G}-\text{la}} \subset W^{\gamma, \tau=1} \cap W^{\tau=1} \) is an equality (very probably not, see next item).

(3) We thank Laurent Berger for informing us of the following example. Let \(G_1 = G_2 = \mathbb{Z}_p \), and let \(G = G_1 \times G_2 \). Let \(W \) be the space of continuous \(\mathbb{Q}_p \)-valued functions on \(G \) with the action of \(G \) by translations. Let \(f(x, y) = 0 \) if \((x, y) = 0 \) and \(f(x, y) = (x^2 \cdot y^2)/(x^2 + py^2) \) otherwise. Then \(f \in W^{G_1-\text{la}} \cap W^{G_2-\text{la}} \), but \(f \notin W^{\tilde{G}-\text{la}} \). (Note that by Hartog’s theorem, the analogous phenomenon does not happen over usual complex numbers).

3.3. Locally analytic vectors in \(\tilde{L} \). Let \(\tilde{L} \) be the \(p \)-adic completion of \(L \) (cf. Notation 1.1.1). As in [BC16, §4.4], consider the 2-dimensional \(\mathbb{Q}_p \)-representation of \(G_K \) such that \(g \mapsto \left(\frac{\chi(g)}{0} \right) \) where \(\chi \) is the \(p \)-adic cyclotomic character. Since the co-cycle \(c(g) \) becomes trivial over \(C_p \), there exists \(x, y \) such that \(\chi(x) = \chi(y) = 0 \). This implies \(g(\chi) = \chi(g) + c(g)/\chi(g) \) and so \(\alpha \in \tilde{L}^{G\text{-la}} \). Now similarly as in the beginning of [BC16, §4.2], let \(\alpha_n \in L \) such that \(\| \alpha - \alpha_n \|_p \leq p^{-n} \). Then there exists \(r(n) \geq 0 \) such that if \(m \geq r(n) \), then \(\| \alpha - \alpha_n \|_{\tilde{G}_m} = \| \alpha - \alpha_m \|_p \) and \(\alpha - \alpha_n \in \tilde{L}^{G\text{-an}} \). We can furthermore suppose that \(\{ r(n) \}_n \) is an increasing sequence.

Definition 3.3.1. Let \(H \) be a commutative \(\mathbb{Q}_p \)-algebra with a Hausdorff norm, and \(W \subset H \) a \(\mathbb{Q}_p \)-subalgebra. For \(T \in H \), let \(W\{T\}_n \) be the vector space consisting of \(\sum_{k \geq 0} a_k T^k \) with \(a_k \in W \), and \(p^n a_k \to 0 \) when \(k \to +\infty \). One can view \(W\{T\}_n \) as a subset of \(H \).

Proposition 3.3.2. (1) \(\tilde{L}^{G\text{-la}} = \bigcup_{n \geq 1} K(\mu_{r(n)}, \pi_{r(n)}) \{ \alpha - \alpha_n \}_n \).

(2) \(\tilde{L}^{G\text{-la}}, \nabla = 0 = L \).

(3) \(\tilde{L}^{\gamma, \tau=1} = K_{\infty} \).

Proof. Item (1) is [BC16, Prop. 4.12]; we quickly recall the proof here. Suppose \(x \in \tilde{L}^{G\text{-an}} \). For \(i \geq 0 \), let
\[
y_i = \sum_{k \geq 0} (-1)^k (\alpha - \alpha_n)^k \nabla^{k+i}(x) \binom{k+i}{k},
\]
then there exists \(m \geq n \) such that \(y_i \in \tilde{L}^{G\text{-an}} \), and \(x = \sum_{i \geq 0} y_i (\alpha - \alpha_n)^i \) in \(\tilde{L}^{G\text{-an}} \). Then the fact \(\nabla(y_i) = 0 \) will imply that \(y_i \in K(\mu_m, \pi_m) \), concluding (1).

Consider Item (2). By [BC16, Prop. 6.3], there exists a non-zero element \(\beta \in C_p \otimes \text{Lie} \hat{G} \) such that \(\beta = 0 \) on \(\tilde{L}^{G\text{-la}} \); this implies that \(\nabla \tau \) and \(\nabla \gamma \) satisfy a non-trivial linear relation (as operators on \(\tilde{L}^{G\text{-la}} \)). Thus \(\nabla \gamma = 0 \) implies \(\nabla \tau = 0 \), and so \(y_i = 0 \) for \(i \geq 1 \), concluding (2).

Item (3) easily follows from (2).

3.4. Locally analytic vectors in \(\tilde{B}_{K_{\infty}}^I \).

Lemma 3.4.1. Suppose \(I = \{ r_t, r_k \} \) or \(\{ 0, r_k \} \).

(1) \(\tilde{A}^{[0,r_k]} = \tilde{A}^{[0,r_k]} \).

(2) \(\phi_p^k(E(u)) \tilde{A}^I = \phi_p^k(E(u)) \tilde{A}^I \).

(3) \(\phi_p^k(E(u)) \tilde{A}^I = \phi_p^k(E(u)) \tilde{A}^I \).

(4) \(\phi_p^k(E(u)) \tilde{A}^I = \phi_p^k(E(u)) \tilde{A}^I \).
(4) If \(y \in \tilde{\mathbb{A}}^{[0,r_k]} + \mathbb{A}^I \) and \(y_i \in \tilde{\mathbb{A}}^+ \) such that \(y - \sum_{i=0}^{j-1} y_i \left(\frac{\phi^k(E(u))}{p} \right)^i \) is in \((\text{Ker}(\theta \circ t_k))^j \) for all \(j \geq 1 \). Then there exists some \(j \geq 1 \) such that \(y - \sum_{i=0}^{j-1} y_i \left(\frac{\phi^k(E(u))}{p} \right)^i \in \mathbb{A}^I \).

Proof. (1) is easy analogues of [Ber16, Lem. 3.1]. When \(I = [r, r_k] \), (2)-(4) are easy analogues of [Ber16, Lem. 3.2, Prop. 3.3]; one can prove them by simply changing \(Q_k \) (resp. \(\pi \)) in loc. cit. to \(\phi^k(E(u)) \) (resp. \(p \)). When \(I = [0, r_k] \), (2) is easy analogues [Ber16, Lem. 3.2(2)], (3) is vacuous, and (4) easily follows from (1). \(\square \)

For \(I \) a closed interval, note that \(\tilde{(B_I^f, W^f)} \) is a \(\mathbb{Q}_p \)-Banach representation of \(\hat{G} \) (in particular, note that \(W^f(p) = 1 \)); also note that the valuation \(W^f \) is invariant under Galois action.

Lemma 3.4.2. Suppose \(I = [r, r_k] \) or \([0, r_k] \).

1. There exists \(m_0 \geq 0 \) such that
 \[
 \phi^k(E(u)) \in (\tilde{B_I^f})^{m_0-an}.
 \]

2. Suppose \(m \geq m_0 \), then \(\phi^{-n}(u) \in (\tilde{B_I^f})^{m+an} \). Thus:
 \[
 \phi^{-n}(u) \in (\tilde{B_I^f})^{m+an, \gamma = 1} \subset (\tilde{B_I^f})^{\hat{G}la}.
 \]

3. Suppose \(x \in \tilde{B_I^f} \) such that \(tx \in (\tilde{B_I^f})^{an} \), then \(x \in (\tilde{B_I^f})^{an} \).

4. Suppose \(m \geq m_0 \). Then
 \[
 (\tilde{B_I^f})^{m, an, \gamma = 1} \cap \phi^k(E(u)) = \phi^k(E(u))(\tilde{B_I^f})^{m, an, \gamma = 1}.
 \]

Proof. Consider Item (1). Denote \(F := \phi^k(E(u)) \). Since \(F \) is the generator of \(\text{Ker}(\theta \circ t_k : \tilde{B}^f \to C_p) \), we have \(\frac{F}{r} \in \tilde{B_I^f} \). Let \(m_0 \gg 0 \) such that when \(a \in \mathbb{p}^{m_0} \mathbb{Z}_p \),

(3.4.1) \((1 - \tau^a)(u) = u(1 - [\tau]^a) = \alpha p^t \cdot h(p^t) \), for some \(\theta > 0 \), \(h(X) \in \mathbb{Z}_p[X] \).

By increasing \(m_0 \) if needed, we can further assume that \(W^f(p^t \cdot \frac{1}{t}) = \alpha > 0 \). We claim that for all \(\alpha \in \mathbb{p}^{m_0} \mathbb{Z}_p \), there exists \(f_s(X, Y) \in W(k)[X, Y] \) (depending on \(\alpha \)), such that

(3.4.2) \[
(1 - \tau^a)^s \left(\frac{t}{F} \right) = \left(\frac{t}{F} \right)^{\tau^a(F)} \cdot \prod_{i=0}^{s-1} \tau^a(F) = \frac{t}{F} \cdot \tau^a(f^s_{s-1}).
\]

When \(s = 0 \), simply let \(f_0 = 1 \). Suppose (3.4.2) is valid for \(s = 0 \), then

(3.4.3) \[
(1 - \tau^a)^s \left(\frac{t}{F} \right) = \left(\frac{t}{F} \right)^{\tau^a(F)} \cdot \prod_{i=0}^{s-1} \tau^a(F) = \frac{t}{F} \cdot \tau^a(f^s_{s-1}).
\]

Note that

(3.4.4) \[
\tau^a(F) \cdot f^s_{s-1} - F \cdot \tau^a(f^s_{s-1}) = (\tau^a - 1)(F) \cdot f^s_{s-1} - F \cdot (\tau^a - 1)(f^s_{s-1}).
\]

It is easy to see that \((\tau^a - 1)(F) = p^t \cdot G(u, p^t) \) and \((\tau^a - 1)(f^s_{s-1}) = p^t \cdot H(u, p^t) \) with some \(G, H \in W(k)[X, Y] \), so we can simply let

(3.4.5) \[
f_s := \frac{\tau^a(F) \cdot f^s_{s-1} - F \cdot \tau^a(f^s_{s-1})}{p^t}.
\]

concluding the proof of (3.4.2). By (3.4.2),

(3.4.6) \[
W^f((1 - \tau^a)^s \left(\frac{t}{F} \right)) \geq W^f(p^\theta \cdot \left(\frac{p^t}{F} \right)^{s+1}) = -\theta + (s + 1)\alpha.
\]

Thus it is easy to see that for the group generated by \(p^{m_0}\tau \) (\(\simeq \mathbb{Z}_p \)), the conditions (3.1.2) and (3.1.3) in Lem. 3.1.8 are satisfied (if needed, we can increase \(m_0 \) to increase \(\alpha \)), and we can conclude (1).

Item (2) can be easily deduced using (3.4.1) and Lem. 3.1.8.
For Item (3), one can assume that \(n = 0 \) (the general case is similar). Write \(I = [r, s] \). Since \(W' = \inf\{W^{[r]}, W^{[s,s]}\} \), and both \(W^{[r]} \) and \(W^{[s,s]} \) are multiplicative valuations, it is easy to see that there exists a constant \(c(I) > 0 \) depending on \(I \) only, such that

\[
W'(y) \geq W'(ty) - c(I), \quad \forall y \in \tilde{B}_L.
\]

Using this, and the fact that \((1 - \tau^n)(tx) = t \cdot (1 - \tau^n)(x)\), it is easy to see that if \(tx \) satisfies the itemized conditions in Lem. 3.1.7, then so does \(x \).

For Item (4), suppose \(y \in \tilde{B}_L \) such that \(\varphi^k(E(u)) \cdot y \in (\tilde{B}_L)^{\tau_{m-an}} \), it suffices to show that \(y \in (\tilde{B}_L)^{\tau_{m-an}} \). By Item (1), \(t \cdot \varphi^k(E(u)) \cdot y = ty \) is an analytic vector, and we can conclude by Item (3).

Definition 3.4.3. Define

\[
A_{K, \infty}^I := \varphi^{-m}(A_{K, \infty}^n), \quad A_{K, \infty}^I := \bigcup_{m \geq 0} A_{K, \infty}^I,
\]

Define \(B_{K, \infty}^I \) and \(B_{K, \infty}^I \) similarly.

Theorem 3.4.4. Suppose \(I = [r, r_k] \) or \([0, r_k]\).

1. Let \(m_0 \) be as in Lem. 3.4.2, then \((\tilde{A}_L^I)^{\tau_{m+k-an}} \gamma = 1 \subset A_{K, \infty}^I \) when \(m \geq m_0 \).
2. \((\tilde{A}_L^I)^{\tau_{-an}} \gamma = 1 = A_{K, \infty}^I \).
3. \((\tilde{B}_L^I)^{\tau_{-an}} \gamma = 1 = B_{K, \infty}^I \).
4. \((\tilde{B}_L^I)^{\tau_{+an}} \gamma = 1 = B_{K, \infty}^I \).

Proof. The proof of Item (1) follows the same strategy as in [Ber16, Thm. 4.4]. (Some error of loc. cit. is corrected in the errata, posted on Berger’s homepage.) Suppose \(x \in (\tilde{A}_L^I)^{\tau_{m+k-an}} \gamma = 1 \). Suppose \(k_n \geq 0 \) such that we have

\[
x_n := (\frac{u^p}{p})^{k_n} x \in \tilde{A}_L^{[0, r_k]} + p^n \tilde{A}_L.
\]

(Note that when \(I = [0, r_k] \), we can choose \(k_n = 0 \). Then by Lem. 3.4.2(2) and Lem. 3.1.2(1), \(x_n \in (\tilde{A}_L^I)^{\tau_{m+k-an}} \gamma = 1 \). So

\[
\theta \circ t_k(x_n) \in (\tilde{B}_L)^{\tau_{m+k-an}} \gamma = 1 = O_{K(\tau_{m+k})},
\]

where the last identity follows from similar argument as in [BC16, Thm. 3.2]. Since \(\theta \circ t_k(\varphi^{-m}(u)) = \tau_{m+k} \), there exists \(y_{n,0} \in W(k)[\varphi^{-m}(u)] \) such that

\[
\theta \circ t_k(x_n) = \theta \circ t_k(y_{n,0}).
\]

By Lem. 2.1.8, \(x_n - y_{n,0} = (F/p) \cdot x_{n,1} \) with \(x_{n,1} \in \tilde{A}_L \), where \(F := \varphi^k(E(u)) \). By Lem. 3.4.2(4), \(x_{n,1} \in (\tilde{A}_L^I)^{\tau_{m+k-an}} \gamma = 1 \). Applying this procedure inductively gives us a sequence \(\{y_{n,i}\}_{i \geq 0} \) where \(y_{n,i} \in W(k)[\varphi^{-m}(u)] \) such that

\[
x_n - (y_{n,0} + (F/p)y_{n,1} + \cdots + (F/p)^{j-1}y_{n,i-1}) \in (F/p)^i\tilde{A}_L.
\]

By Lem. 3.4.1(4), there exists \(j \gg 0 \) such that

\[
(3.4.3) \quad x_n - (y_{n,0} + (F/p)y_{n,1} + \cdots + (F/p)^{j-1}y_{n,j-1}) \in p\tilde{A}_L^I.
\]

Note that the left hand side of (3.4.3) belongs to \(\tilde{A}_L^{[0, r_k]} + p^n \tilde{A}_L \) (since \(y_{n,i} \) and \(F/p \) are in \(\tilde{A}_L^{[0, r_k]} \)), and so it further belongs to

\[
(\tilde{A}_L^{[0, r_k]} + p^n \tilde{A}_L) \cap p\tilde{A}_L = p(\tilde{A}_L^{[0, r_k]} + p^{n-1}\tilde{A}_L), \quad \text{by Lem. 3.4.1(3)}.
\]

Let

\[
x_n - (y_{n,0} + (F/p)y_{n,1} + \cdots + (F/p)^{j-1}y_{n,j-1}) = px_n'.
\]
By Lem. 3.4.2(2), \(y_n,i \in (\tilde{A}_L^{\gamma})^m \), and so \(x_n' \in (\tilde{A}_L^{\gamma})^m \). Apply to \(x_n' \) the same procedure that we applied to \(x_n \), and proceed inductively. In the end, we will get \(\{y_n,i\}_{i \leq j_n} \) for some \(j_n \gg 0 \) where \(\tilde{y}_{n,i} \in W(k)[v^{-m}(u)] \), and

\[
\tilde{y}_n = \tilde{y}_n,0 + (F/p)\tilde{y}_n,1 + \cdots + ((F/p))^{j_n-1}\tilde{y}_{n,j_n-1},
\]
such that \(x_n - \tilde{y}_n \in p^n \tilde{A}^\ell \). Let \(z_n := (\frac{\alpha}{\lambda} \cdot \tilde{y}_n,0)^{k_n} \), then \(z_n \in \varphi^{-m}(A^{p^m[r_k,r_k]}_{K_\infty}) \) and \(z_n \) converges to \(x \) as elements in \(\tilde{A}^\ell \) (with respect to \(W[r_k,r_k] \)), and so \(x \in \varphi^{-m}(\tilde{A}^{p^m[r_k,r_k]}_{K_\infty}) \). By Cor. 2.2.10, we have

\[
x \in \varphi^{-m}(\tilde{A}^{p^m[r_k,r_k]}_{K_\infty}) \cap \tilde{A}^\ell = \varphi^{-m}(A^{p^m}_{K_\infty}) = A^{p^m}_{K_\infty,m}.
\]

Item (2) then follows from (1). For Items (3) and (4), one can argue similarly as in [Ber16, Thm. 4.4(3)]. \(\square \)

Remark 3.4.5. Item (4) of Thm. 3.4.4 (and (1), (2)) when \(I = [0, r_k] \) will not be used in this paper, but it has potential applications to the study of semi-stable Galois representations; indeed, the ring \(B^{[\varnothing, \infty]}_{K_\infty} \) is precisely the ring \(O_{(0,1)} \) in [Kis06].

Definition 3.4.6. (1) Define the following rings (which are LB spaces):

\[
\overline{B}^\ell := \cup_{r} B^{[\varnothing, \infty]}, \quad B^\ell := \cup_{r} B^{[r, \infty]}, \quad B^{p^m}_{K_\infty} := \cup_{r} B^{[r, \infty]}_{K_\infty}.
\]

(2) Define the following rings (which are LF spaces):

\[
\overline{B}^\ell_{\text{rig}} := \cup_{r} \overline{B}^{[\varnothing, \infty]}, \quad B^\ell_{\text{rig}} := \cup_{r} B^{[r, \infty]}, \quad B^\ell_{\text{rig},K_\infty} := \cup_{r} B^{[r, \infty]}_{K_\infty}.
\]

Corollary 3.4.7. \((\overline{B}^\ell_{\text{rig},L})^{\tau-pa, \gamma=1} = \cap_{m} \varphi^{-m}(B^\ell_{\text{rig},K_\infty}) \).

4. Field of norms, and locally analytic vectors

In this section, when \(K_\infty \subset M \subset L \) where \(M/K_\infty \) is a finite extension, we calculate \(\tilde{G} \)-locally analytic vectors in \(\overline{B}^\ell \) which are furthermore invariant under \(\text{Gal}(L/M) \); the results are parallel with the case for \(M = K_\infty \).

4.1. Field of norms

In this subsection, we briefly recall the theory of field of norms developed by Fontaine and Wintenberger (cf. [FW79, Win83]). To save space, we refer the readers to [Win83] for more details.

In this subsection, let \(E_1 \) be a complete discrete valuation field with a perfect residue field of characteristic \(p \). Let \(E'_1 \) be a fixed algebraic closure, and let \(E^\text{ur}_1 \) be the maximal unramified extension of \(E_1 \) contained in \(\overline{E}_1 \).

If \(E_2/E_1 \) is an algebraic extension, let \(\mathcal{E}(E_2/E_1) \) be the poset consisting of fields \(E \) such that \(E_1 \subset E \subset E_2 \) and \([E : E_1] < +\infty \). Let

\[
X_{E_1}(E_2) := \lim_{E \in \mathcal{E}(E_2/E_1)} E
\]

where the transition maps from \(E' \) to \(E \) (for \(E \subset E' \)) are the norm maps \(N_{E'/E} \). For \(\alpha \in X_{E_1}(E_2) \), we denote it as \(\alpha = \{\alpha_E\}_{E \subset E_2} \) where \(\alpha_E \in E \) and \(N_{E'/E}(\alpha_{E'}) = \alpha_E \) when \(E \subset E' \). For any \(\alpha \in X_{E_1}(E_2) \), the number \(v_{E}(\alpha_{E}) \) for \(E_{\text{ur}} \cap E_2 \subset E \subset E_2 \) is independent of \(E \) (here, \(v_{E} \) is the valuation such that \(v_{E}(E) = \mathbb{Z} \cup \{\infty\} \)); denote the number as \(v(\alpha) \).

Theorem 4.1.1. [Win83, Thm. 2.1.3] Suppose \(E_2/E_1 \) is an infinite APF extension (cf. [Win83, §1.2] for the definition of APF (and strict APF) extensions), then there exists an element \(u_{E_2/E_1} \in X_{E_1}(E_2) \) such that \(v(u_{E_2/E_1}) = 1 \), and there exists a (valuation-preserving) isomorphism

\[
X_{E_1}(E_2) \simeq k_{E_2}(u_{E_2/E_1}),
\]

where \(k_{E_2} \) is the residue field of \(E_2 \) (which is a finite extension of \(k_{E_1} \)), and \(k_{E_2}(u_{E_2/E_1}) \) is equipped with the \(u_{E_2/E_1} \)-adic valuation.

Example 4.1.2. Let \(K, K_{p^\infty}, K_\infty \) be as in Notation 1.1.1.
(1) When $K = K_0$, the elements $\tilde{\mu} := \{\mu_n\}_{n \geq 1}$ defines an element in $X_K(K_{p^\infty})$, and $\tilde{\mu} - 1$ is a uniformizer of $X_K(K_{p^\infty})$.

(2) The elements $\tilde{\pi} := \{\pi_n\}_{n \geq 1}$ defines an element in $X_K(K_{\infty})$, which is a uniformizer.

Let $E_1 \subset E_2 \subset E_3$ where E_2/E_1 is an infinite APF extension, and E_3/E_2 is finite extension (so E_3/E_1 is also an APF extension). Then by [Win83, §3.1.1], we can naturally define an embedding $X_{E_1}(E_2) \hookrightarrow X_{E_1}(E_3)$ (and we identify $X_{E_1}(E_2)$ with its image).

Theorem 4.1.3. [Win83, Thm. 3.1.2] If E_3/E_2 is furthermore Galois, then $X_{E_1}(E_3)$ is Galois over $X_{E_1}(E_2)$, and there exists a natural isomorphism

$$\text{Gal}(X_{E_1}(E_3)/X_{E_1}(E_2)) \simeq \text{Gal}(E_3/E_2).$$

Remark 4.1.4. We can also construct a natural separable closure of $X_{E_1}(E_2)$, see [Win83, Cor. 3.2.3].

For any complete valued filed (A, v_A) with a perfect residue field of characteristic p, let

$$R(A) := \{(x_n)_{n=0}^\infty : x_n \in A, x_{n+1}^p = x_n\}.$$

For $x \in R(A)$, let $v_R(x) := v_A(x_0)$. Then $R(A)$ is a perfect field of characteristic p, complete with respect to v_R.

Theorem 4.1.5. [Win83, Thm. 4.2.1] Suppose E_2/E_1 is an infinite strict APF extension. Let \hat{E}_2 be the completion of E_2. There exists a natural k_{E_2}-algebra embedding

$$\Lambda_{E_2/E_1} : X_{E_1}(E_2) \hookrightarrow R(\hat{E}_2) \hookrightarrow R(\hat{E}_1).$$

Example 4.1.6. Note that $R(C_p)$ is precisely \tilde{E}. Using notations in Example 4.1.2, we have

(1) when $K = K_0$, for the embedding $X_K(K_{p^\infty}) \hookrightarrow \tilde{E}$, we have $\tilde{\mu} - 1 \mapsto \tilde{\varepsilon} - 1$;

(2) for the embedding $X_K(K_{\infty}) \hookrightarrow \tilde{E}$, we have $\tilde{\pi} \mapsto \tilde{\varepsilon}$.

4.2. **Finite extensions of K_{∞} and locally analytic vectors.** Let $K_{\infty} \subset M \subset L$ where M/K_{∞} is a finite extension (which is always Galois). In the following, given a ring A (possibly with superscripts), let A_M denote $\text{Gal}(K/M)$-invariants of A.

4.2.1. **Ramification subgroups.** Let G^s_K (where $s \geq -1$) denote the usual (upper numbering) ramification subgroups of G_K. For any $s \geq -1$, let $K^{(s)} := \cap_{t \geq s} K^{(t)}$. For any $K \subset E \subset K_{\infty}$, let $E^{(s)} := E \cap K^{(s)}$. Let $c(E) := \inf\{s : E^{(s)} = E\}$ (called the conductor of E). See [Col08, Lem. 4.1] for some properties of $c(E)$. In particular, we have $c(K_n) = n - 1$ (here $K_n := K(\pi_n)$).

4.2.2. **Finite extensions of K_{∞}.** Choose an $\alpha \in M$ such that $M = K_{\infty}[\alpha]$, and let $\tilde{M} := K[\alpha]$. Define $\tilde{M}_n := \tilde{M}(\pi_n)$ (note that $\pi_0 = \pi$ is not necessarily a uniformizer of \tilde{M}). By using exactly the same argument as in [Col08, Lem. 4.2, Cor. 4.3, Rem. 4.4], the following hold:

(1) When $n \geq c(\tilde{M}) + 1$ (where $c(\tilde{M})$ is the conductor), $\tilde{M}_{n+1}/\tilde{M}_n$ is totally ramified of degree p.

(2) When $n \geq c(\tilde{M})+1$, $e(\tilde{M}_{n+1}/K_{n+1}) = e(\tilde{M}_n/K_n)$ (resp. $f(\tilde{M}_{n+1}/K_{n+1}) = f(\tilde{M}_n/K_n)$), where $e(A/B)$ (resp. $f(A/B)$) is the ramification degree (resp. inertial degree) of a finite extension. Denote the common numbers as e' (resp. f'), then $e'f' = [M : K_{\infty}]$.

(3) Let $K' := K^{ur} \cap M$ where K^{ur} is the maximal unramified extension of K contained in K_{∞}, then $[K' : K] = f'$.
4.2.3. Construction of u_M. Let k' be the residue field of K', and let $M_0 := \cup K'_{\pi_i}$. Then by §4.2.2 and Examples 4.1.2 and 4.1.6, we have $X_K(M_0) \simeq k'((\overline{\mathbb{F}}))$. Choose any $\pi_M \in X_K(M)$ such that $X_K(M) = k'((\pi_M))$. By Thm. 4.1.3, $X_K(M)$ is a totally ramified extension of $X_K(M_0)$ of degree e'. Let $P(X) = X^{e'} + a_{e'-1}X^{e'-1} + \cdots + a_0$ be the minimal polynomial of π_M over $X_K(M_0)$. Since π_M is integral over $X_K(M_0)$, $P \in k'[u]$. Let $a_i \in W(k')[u]$ be any lift of a_i and let $P(X) = X^{e'} + a_{e'-1}X^{e'-1} + \cdots + a_0$. By Hensel’s Lemma, $P(X)$ has a unique root (which we denote as u_M) in \mathbf{A}_M which reduces to π_M modulo p. (Note that u_M depends on the choices of π_M and a_i.)

We have $\text{Gal}(X_K(M)/X_K(K_\infty)) \simeq \text{Gal}(\mathbf{B}_M/\mathbf{B}_\infty) \simeq \text{Gal}(\tilde{\mathbf{B}}_M/\tilde{\mathbf{B}}_\infty)$ (cf. [CC98, §1.3]). Let $v_1, \cdots, v_{e'}$ be a basis of $W(k')$ over $W(k)$, and let $x_{a+f/b} := v_a \cdot u_M^b$ with $1 \leq a \leq f$, $0 \leq b \leq e'-1$, then we have

$$\mathbf{A}_M = \oplus_{i=1}^{e'} A_{K_\infty} \cdot x_i,$$

and so (cf. [Ber10, Lem. 24.5]),

$$\tilde{\mathbf{A}}_M = \oplus_{i=1}^{e'} \tilde{A}_{K_\infty} \cdot x_i.$$

Lemma 4.2.4. Let $r > 0$ and let $x = \sum_{k \geq 0} p^k[a_k] \in \tilde{A}_{[r, +\infty)}[1/u]$, the following are equivalent:

1. $x \in (\tilde{A}_{[r, +\infty)}[1/u])^\times$;
2. $v_E(a_0) = 0$, and $k + \frac{p-1}{p^{1/r}} \cdot v_E(a_k) > 0, \forall k > 0$;
3. $v_E(a_0) = 0$, and $k + \frac{p-1}{p^{1/r}} \cdot v_E(a_k) > 0, \forall k > 0$.

Proof. The equivalence between (1) and (2) is proved in [Col08, Lem. 5.9]; see the proof of Lem. 2.1.6 for comparison of notations. The equivalence between (2) and (3) is trivial. □

Lemma 4.2.5. (1) There exists some constant $r_M > 0$ which depends only on M (and not on the construction of u_M as in §4.2.3), such that:

(a) $u_M \in \mathbf{A}_{M_{r_M, +\infty}}$, and
(b) $u_M/[\pi_M]$ is a unit in $\tilde{A}_{M_{r_M, +\infty}}$.

(2) If $I = [r_\ell, r_k]$ or $[r_\ell, +\infty)$ such that $r_\ell \geq r_M$, then

$$B'_M = \oplus_{i=1}^{e'} B_{K_{r_\ell}} \cdot x_i, \quad \tilde{B}'_M = \oplus_{i=1}^{e'} \tilde{B}_{K_{r_\ell}} \cdot x_i.$$

Proof. Item (1) follows from exactly the same argument as [Col08, Lem. 6.4, Lem. 6.5] (where Item (1b) uses Lem. 4.2.4). Item (2) follows from exactly the same argument as [Col08, Lem. 6.11] (i.e., an argument using the trace operator). □

Lemma 4.2.6. Suppose $r_\ell \geq r_M$, then $x_i \in (\tilde{A}_{L_{r_\ell, r_k}})^{\tau_{r_\ell, a}}$.

Proof. By Lem. 3.1.2, it suffices to show that $u_M \in (\tilde{A}_{L_{r_\ell, r_k}})^{\tau_{r_\ell, a}}$; the proof uses the same argument as in [Ber16, Thm. 4.4.2]). Indeed, consider the minimal polynomial $P(X)$ of u_M as in §4.2.3. For any $\tau^a \in \text{Gal}(L/K_{r_\ell, a})$ where $a \in \mathbb{Z}_{p}$, $(\tau^a \cdot P)(\tau^a(u_M)) = 0$. Since the coefficients of P are in $W(k')[u] \subset (\tilde{A}_{L_{r_\ell, r_k}})^{\tau_{r_\ell, a}}$, the coefficients of $\tau^a \cdot P$ are locally analytic functions (from \mathbb{Z}_p to $\tilde{A}_{L_{r_\ell, r_k}}^{\tau_{r_\ell, a}}$). Since $P'(u_M) \neq 0$, we can conclude by implicit function theorem for analytic functions (using the inverse function theorem on [Ser06, Page 73]). □

Theorem 4.2.7. Suppose $0 < r \leq s < +\infty$, then

1. $(\tilde{B}_{L_{r}})^{\tau_{r, a}} \cdot \text{Gal}(L/M) = 1 = \cup_{m \geq 0} \varphi^{-m}(B^m_{L_{r}})$,
2. $(\tilde{B}_{L_{r}}^{r, +\infty})^{\tau_{r, a}} \cdot \text{Gal}(L/M) = 1 = \cup_{m \geq 0} \varphi^{-m}(B^m_{L_{r}})$.

Proof. It suffices to prove Item (1). Denote $I := [r, s]$. Since φ induces a bijection between $(B_L)^{\tau_{r, a}} \cdot \text{Gal}(L/M) = 1$ and $(\tilde{B}_{L_{r}})^{\tau_{a}} \cdot \text{Gal}(L/M) = 1$, it suffices to consider the case when $r > r_M$.
and Lem.

\[\left(\mathcal{B}_M^I \right)^{\tau_{\text{la}, \text{Gal}(L/M)}} = \left(\mathcal{B}_M^I \right)^{\tau_{\text{la}}} = (\oplus_{i=1}^{r'} \mathcal{B}_{K_{\infty}}^i \cdot x_i)^{\tau_{\text{la}}}, \text{ by Lem. 4.2.5(2)} \]

\[= \left(\oplus_{i=1}^{r'} \mathcal{B}_{K_{\infty}}^i \cdot x_i \right)^{\tau_{\text{la}}}, \text{ by Prop.3.1.6 and Lem.4.2.6,} \]

and so we can conclude by Thm. 3.4.4 (i.e., the \(M = K_{\infty} \) case).

\[\square \]

4.3. Structure of \(A_M^I \). In this subsection, we study the concrete structure of \(A_M^I \); these results will be used in §6.

Definition 4.3.1.

1. For \(0 < r < +\infty \), let \(A_M^{[r, +\infty)}(K_0') \) be the set consisting of Laurent series \(f = \sum_{k \in \mathbb{Z}} a_k T^k \) where \(a_k \in W(k') \) such that \(f \) is a holomorphic function on the annulus defined by \(0 < v_p(T) \leq (p-1)/(e' e p) \). Let \(B_M^{[r, +\infty)}(K_0') := A_M^{[r, +\infty)}(K_0'[1/p]. \)

2. For \(f = \sum_{k \in \mathbb{Z}} a_k T^k \in B_M^{[r, +\infty)}(K_0') \), and \(s \in [r, +\infty) \), let

\[\mathcal{W}_M^I(a,s)(f) := \inf_{k \in \mathbb{Z}} \{ v_p(a_k) + \frac{p - 1}{p s} \cdot \frac{k}{e' e} \}. \]

For \(I = [a,b] \subset [r, +\infty) \) a non-empty closed interval, let

\[\mathcal{W}_M^I(a,b)(f) := \inf_{a \in I} \{ \mathcal{W}_M^I(a,a)(f) \}. \]

3. Let \(B_M^{[r,s]}(K_0') \) be the completion of \(B_M^{[r, +\infty)}(K_0') \) with respect to \(\mathcal{W}_M^I \). Let \(A_M^{[r,s]}(K_0') \) be the ring of integers with respect to \(\mathcal{W}_M^I \).

Lemma 4.3.2. For \(I = [r, s] \subset (0, +\infty) \), we have \(\mathcal{W}_M^I(x) = \inf \{ \mathcal{W}_M^I(r), \mathcal{W}_M^I(s) \} \). Furthermore, \(B_M^{[r,s]}(K_0') \) is the set consisting of Laurent series \(f = \sum_{k \in \mathbb{Z}} a_k T^k \) where \(a_k \in K_0' \) such that \(f \) is a holomorphic function on the annulus defined by

\[v_p(T) \in [\frac{p - 1}{e' e p} \cdot \frac{1}{s}, \frac{p - 1}{e' e p} \cdot \frac{1}{r}]. \]

Proof. This is easy.

Lemma 4.3.3. Suppose \(r > r_M \).

1. The map \(f(T) \mapsto f(u_M) \) induces a bijection

\[A_M^{[r, +\infty)}(K_0') \simeq A_M^{[r, +\infty)}[1/u_M] \]

such that for \(f \in A_M^{[r, +\infty)}(K_0') \), and all \(s \) such that \(r \leq s < +\infty \), we have

\[\mathcal{W}_M^I(s,r)(f(T)) = W^{[s,r]}(f(u_M)). \]

2. For any \(s \geq r \), the map \(f(T) \mapsto f(u_M) \) induces an isometric homeomorphism

\[A_M^{[r,s]}(K_0') \simeq A_M^{[r,s]} \]

The proof uses similar strategy as in Lem. 2.2.6. We first study the section \(s \).

4.3.4. The section \(s \). Denote

\[s : X_K(M) = A_M/p \rightarrow A_M \]

the section where for \(\tau = \varpi_M^b \sum_{i \geq 0} a_i \varpi_M^i \) with \(a_0 \neq 0 \), \(s(\tau) := u_M^b \sum_{i \geq 0} [a_i] u_M^i \). (When \(M = K_{\infty} \), this precisely is the \(s \) in §2.2.7.) Using the expression, one can check that:

1. \(s(\tau) \in A_M^{[r, r_M]}[1/u_M] \);
2. \(W^{[r, r_M]}(s(\tau)) = W^{[r, r_M]}(u_M^b) = W^{[r, r_M]}(\varpi_M)^b = (p - 1)(p r_M)^{-1} : \varpi_E(\tau) \), where the first equality is because \(\sum_{i \geq 0} [a_i] u_M^i \) is a unit in \(A_M^{[r, r_M]} \), and the second equality uses Lem. 4.2.5(1b);
(3) \(w_0(s(\overline{x})) = v_E(\overline{x}) \);

(4) since \(s(\overline{x})/\overline{u_M} \) is a unit in \(A_{M}^{[r_M,+\infty]} \), Lem. 4.2.4(3) implies that when \(k \geq 1 \),

\[
4.3.1 \quad w_k(s(\overline{x})) > v_E(\overline{x}) - k \cdot pr_M(p-1)^{-1} = w_0(s(\overline{x})) - k \cdot pr_M(p-1)^{-1} .
\]

4.3.5. An approximating sequence. Given \(x \in A_{M}^{[r_M,+\infty]}[1/u_M] \), define a sequence \(\{x_n\} \) in \(A_{M}^{[r_M,+\infty]}[1/u_M] \) where \(x_0 = x \) and \(x_{n+1} = p^{-1}(x_n - s(\overline{x}_n)) \). Note that \(x = \sum_{n \geq 0} p^n s(\overline{x}_n) \).

Similarly as in [Col08, Lem. 7.3], we have

\[
4.3.2 \quad v_E(\overline{x}_n) = w_0(x_n) = \inf_{0 \leq i \leq n} \{w_i(x) - (n - i) \cdot pr_M(p-1)^{-1}\}.
\]

Proof of Lem. 4.3.3. It suffices to prove Item (1). Given \(f(T) \in A_{M}^{[r_M,+\infty]}(K'_0) \), then similarly as in (Part 1) of the proof of Lem. 2.2.6, \(f(u_M) \in A_{M}^{[r_M,+\infty]}[1/u_M] \), and \(W^{[s,s]}(f(u_M)) \geq W_{M}^{[s,s]}(f(T)) \).

For the other direction, suppose \(x \in A_{M}^{[r_M,+\infty]}[1/u_M] \), let \(\{x_n\} \) be the sequence constructed in \(\S 4.3.5 \). Let \(f_n(T) \) be a formal series such that \(f_n(u_M) = s(\overline{x}_n) \). For so any \(s \geq r \),

\[
4.3.6 \quad W_{M}^{[s,s]}(p^n f_n(T)) \geq W_{M}^{[s,s]}(p^n \overline{W}(\overline{x}_n)/v_E(\overline{x}_n)) \geq n \cdot \frac{p-1}{ps} \cdot \inf_{0 \leq i \leq n} \{w_i(x) - (n - i)pr_M(p-1)^{-1}\}, \text{ by (4.3.2)} \]

\[
= \inf_{0 \leq i \leq n} \left\{ \frac{p-1}{ps} \cdot w_i(x) + i \cdot (n - i)(1 - \frac{r_M}{s}) \right\} \geq W^{[s,s]}(x) .
\]

Note that \(\inf_{0 \leq i \leq n} \{\frac{p-1}{ps} \cdot w_i(x) + i \cdot (n - i)(1 - \frac{r_M}{s})\} \) converges to \(+\infty \) when \(n \to +\infty \), so \(f(T) = \sum_{n \geq 0} p^n f_n(T) \) converges in \(A_{M}^{[r_M,+\infty]}(K'_0) \). Clearly \(f(u_M) = x \), and \(W_{M}^{[s,s]}(f(T)) \geq W^{[s,s]}(x) \). \(\square \)

Corollary 4.3.6. Suppose \(r_\ell > r_M \), then

\[
A_{M}^{[r_\ell,+\infty]} = W(k')[u_M]\{\frac{P}{u_{M}^{e_1}}\} , \quad A_{M}^{[r_\ell,r_M]} = W(k')\{u_M^{\ell}\} \{\frac{P}{u_{M}^{e_1}}\} .
\]

Proof. This is similar to Cor. 2.2.9. \(\square \)

Corollary 4.3.7. Suppose \([r, s] \subset [r_\ell, s] \subset (r_M, +\infty) \), then \(A_{M}^{[r, s]} \cap \tilde{A}_{M}^{[r_\ell, s]} = A_{M}^{[r_\ell, s]} \).

Proof. This is similar to Cor. 2.2.10, by using Cor. 4.3.6. \(\square \)

Lemma 4.3.8. Suppose \(r > r_M \). If \(x \in A_{M}^{[r,+\infty]}[1/u_M] \) and \(x \in (\tilde{A}_{M}^{[r,+\infty]})^x \), then \(x \in A_{M}^{[r,+\infty]} \).

Proof. Let \(\{x_n\} \) be the sequence constructed in \(\S 4.3.5 \), and so \(x = \sum_{n \geq 0} p^n s(\overline{x}_n) \). By Lem. 4.2.4, \(v_E(\overline{x}_n) = 0 \), and so \(s(\overline{x}_n) = (A_{M}^{[r,+\infty]})^x \). It then suffices to show that \(1 + y \in (A_{M}^{[r,+\infty]})^x \), where \(y = \sum_{n \geq 1} p^n s(\overline{x}_n)/s(\overline{x_0}) \). As we calculated in the proof of Lem. 4.3.3,

\[
4.3.8 \quad W^{[r,r]}(p^n s(\overline{x}_n)) \geq \inf_{0 \leq i \leq n} \left\{ \frac{p-1}{pr} \cdot w_i(x) + i \cdot (n - i)(1 - \frac{r_M}{r}) \right\} > 0 ,
\]
where the final inequality uses \(n \geq 1 \) and Lem. 4.2.4. And since \(W^{[r,r]}(p^n s(x_n)) \to +\infty \)
when \(n \to +\infty \), so \(W^{[r,r]}(y) > 0 \), and so \((1+y)^{-1} \in A_M^{[r,r]}\). Thus by Cor. 4.3.7, we can conclude that \((1+y)^{-1} \in A_M^{[r,r]} \cap A_M^{[r,+\infty]} = A_M^{[r,+\infty]}\).
\(\square\)

5. Computation of \(\mathcal{G}\)-locally analytic vectors

In this section, we compute the \(\mathcal{G}\)-locally analytic vectors in \(\tilde{\mathcal{B}}^I_L\). The strategy is very similar to [Ber16, Thm. 5.4]: we need to find a “formal variable” (denoted as \(b \) in the following) which plays the role as the \(y \) in [Ber16, Thm. 5.4] (or the \(a \) in Prop. 3.3.2(1)). Indeed, the discovery of \(b \) is the key observation for our calculations. In the following, we define \(b \), and then use Tate’s normalized traces to build an approximating sequence \(b_n \), and use them to determine the set of \(\mathcal{G}\)-locally analytic vectors in \(\tilde{\mathcal{B}}^I_L\).

5.1. The element \(b \). Let \(\lambda := \prod_{n \geq 0} \varphi^n(E(u)) \in B_{K^\infty}^{[0,+\infty]} \). Let \(b := 1/\lambda \), then \(b \) is precisely the \(t \) in [Lin08, Example 3.2.3], and \(b \in \tilde{\mathcal{A}}^I_L \). Since \(\tilde{\mathcal{B}}^I_L \) is a field ([Col08, Prop. 5.12]), there exists some \(r(b) > 0 \) such that \(1/b \in \tilde{\mathcal{B}}^I_L \cap [r(b),+\infty) \).

Lemma 5.1.1. If \(r \geq r(b) \), then \(b, 1/b \in (\tilde{\mathcal{B}}^I_L)^{\mathcal{G}\text{-la}} \).

Proof. Since \(\gamma \) acts on \(b \) (resp. \(1/b \)) via cyclotomic character (resp. inverse of cyclotomic character), it suffices to show that \(b \) (resp. \(1/b \)) is \(\tau \)-locally analytic (cf. the argument in Lem. 3.2.3). The result for \(1/b \) follows from Lem. 3.4.2(3). Then Lem. 3.1.2(2) implies that \(b \) is also locally analytic.
\(\square\)

Remark 5.1.2.

1. It seems likely that \(b \in (\tilde{\mathcal{B}}^I_L)^{\mathcal{G}\text{-la}} \) for any \([r,s] \in [0,+\infty) \), just as the element \(t/(\varphi^k(E(u))) \) in Lem. 3.4.2(1); but we do not know how to prove it.

2. The result that \(b \in (\tilde{\mathcal{B}}^I_L)^{\mathcal{G}\text{-la}} \) for \(r \geq r(b) \) implies easily that \(t/(\varphi^k(E(u))) \in (\tilde{\mathcal{B}}^I_L)^{\mathcal{G}\text{-la}} \) for \(r \geq r(b) \), because the element \(\lambda/(\varphi^k(E(u))) \) is locally analytic; this (partial) proof of Lem. 3.4.2(1) avoids use of Lem. 3.1.8. However, we need the full result of Lem. 3.4.2(1) for the calculation in Thm. 3.4.4.

5.2. Tate’s normalized traces. Recall (see e.g., [Col08, §5.1]) that the weak topology on \(\tilde{\mathcal{A}} \) is the one defined by the semi-valuations \(w_k \), for \(k \in \mathbb{N} \), meaning that \(x_n \to x \) for the weak topology in \(\tilde{\mathcal{A}} \) if and only if for all \(k \in \mathbb{N} \), \(w_k(x_n - x) \to +\infty \). In particular, the set \(\{ p^n \tilde{\mathcal{A}} + \tilde{\mathcal{A}}^{+} \}_{n \geq 0} \) forms a basis of neighbourhood of \(0 \) in \(\tilde{\mathcal{A}} \) for the weak topology. The following lemma is very useful.

Lemma 5.2.1. Let \(r' > 0 \) and \(x_n \in \tilde{\mathcal{A}}^{[r',+\infty]} \), \(\forall n \geq 1 \). Suppose \(x_n \to 0 \) in \(\tilde{\mathcal{A}} \) with respect to the weak topology. Then for any \(r' < s < +\infty \) (note that it is critical \(s \neq r' \)), \(x_n \to 0 \) in \(\tilde{\mathcal{A}}^{[s,+\infty]} \) with respect to the \(W^{[s,s]} \)-topology.

Proof. This is implied by [Col08, Prop. 5.8]. Indeed, we can let the “\(C \)” in loc. cit. to be \(0 \) (see the proof of our Lem. 2.1.6 for comparison of notations).
\(\square\)

In this subsection, we let \(K^\infty \subset M \subset L \) where \(M/K^\infty \) is a finite extension. For \(n \geq 1 \) and \(I \) an interval, let
\[
\mathcal{A}_M,n := \varphi^{-n}(\mathcal{A}_M), \quad \mathcal{A}_M^{[r,r]} := \varphi^{-n}(\mathcal{A}_M^{[r,r]})
\]
Denote \(J := p^{-\infty} \mathbb{Z} \cap [0,1) \) and for \(n \in \mathbb{N} \), let \(J_n := \{ i \in J : v_p(i) \geq -n \} \).

Lemma 5.2.2.

1. Every element \(x \in E_{M,n} \) admits a unique writing \(x = \sum_{i \in J_n} u^i a_i(x) \) where \(a_i(x) \in E_{M} \).

2. Every element \(x \in \tilde{E}_M \) admits a unique writing \(x = \sum_{i \in J} u^i a_i(x) \) where \(a_i(x) \in E_M \) and \(a_i \to 0 \).
(3) Every element \(x \in A_{M,n} \) admits a unique writing \(x = \sum_{i \in J_n} u^i a_i(x) \) where \(a_i(x) \in A_M \).

(4) Every element \(x \in \tilde{A}_M \) admits a unique writing \(x = \sum_{i \in J} u^i a_i(x) \) where \(a_i(x) \in A_M \) and \(a_i \to 0 \) for the weak topology.

Proof. These are easy analogues of [Col08, Prop. 8.3, Prop. 8.5]. \(\square \)

We now define, for \(n \in \mathbb{Z}^\geq 0 \), \(R_{M,n} : \tilde{A}_M \to \tilde{A}_M \) by

\[
R_{M,n}(x) = \sum_{i \in J_n} u^i a_i(x).
\]

Proposition 5.2.3. (1) For \(x \in \tilde{A}_M \), we have \(R_{M,n}(x) \in A_{M,n} \) and \(R_{M,n}(x) \to x \) for the weak topology.

(2) Let \(r' > 0 \) and suppose \(x \in \tilde{A}_{M,r'}^{[r',+\infty]} \). Suppose \(n \gg 0 \) such that \(p^n r' > r_M \) (where \(r_M \) is as in Lem. 4.2.5), then \(R_{M,n}(x) \in A_{M,n}^{[r',+\infty]} \), and \(R_{M,n}(x) \to x \) for both the weak topology and the \(W^{[r,s]} \)-topology for any \(r' < r \leq s < +\infty \). In particular, \(A_{M,\infty}^{[r',+\infty]} := U_{n \geq 0} A_{M,n}^{[r',+\infty]} \) is dense in \(\tilde{A}_M^{[r',+\infty]} \) for both the weak topology and the \(W^{[r,s]} \)-topology.

Proof. Item (1) follows from Lem. 5.2.2. For Item (2), the result that \(R_{M,n}(x) \in A_{M,n}^{[r',+\infty]} \) for \(n \gg 0 \) is analogue of [Col08, Cor. 8.11]. The convergence \(R_{M,n}(x) \to x \) with respect to the weak topology follows from Item (1); the convergence for the \(W^{[r,s]} \)-topology then follows from Lem. 5.2.1 (note that \(W^{[r,s]} = \text{inf}(W^{[r,r]}, W^{[s,s]}) \)). \(\square \)

5.3. Approximation of \(b \)

We now build a sequence \(\{b_n\} \) to approximates \(b \), which furthermore satisfies \(\nabla \gamma(b_n) = 0 \). In the following, we use \(K_\infty \subset \text{fin} \subset M \subset L \) to mean that \(M \) is a middle extension which is finite over \(K_\infty \).

Lemma 5.3.1. Let \(W \) be a \(\mathbb{Q}_p \)-Banach representation of \(\tilde{G} \). Then

\[
(W^{\tilde{G}\text{-la}})^{\nabla \gamma = 0} = \bigcup_{K_\infty \subset \text{fin} \subset M \subset L} W^{\tau \text{-la}, \text{Gal}(L/M) = 1}.
\]

Proof. If \(x \in W^{\tilde{G}\text{-la}} \) such that \(\nabla \gamma(x) = 0 \), then there exists \(m \geq 0 \) such that \(x \in W^{\tilde{G}\text{-an}} \) and \(\exp(p^m \nabla \gamma) \) converges in \(W^{\tilde{G}\text{-an}} \). Thus \(x \in W^{\tau \text{-la}, \text{Gal}(L/M) = 1} \) for \(M = L^{p^m} \). \(\square \)

Lemma 5.3.2. Let \([r,s] \subset (0, +\infty) \) and let \(n \geq 1 \). Let \(x \in \tilde{A}_L^+ \). Then there exists \(w \in (\tilde{A}_L^+)^{\tilde{G}\text{-la}, \nabla \gamma = 0} \), such that \(x - w \in p^n \tilde{A}_L^{[r,s]} \).

Proof. Fix some \(k \gg 0 \) such that \(u^k \in p^n \tilde{A}_L^{[r,s]} \).

Let \(\overline{x} \in \tilde{E}_L^+ \) be the modulo \(p \) reduction of \(x \). By [Win83, Cor. 4.3.4], the set

\[
\bigcup_{m \in \mathbb{N}} \varphi^{-m} \left(\bigcup_{K_\infty \subset \text{fin} \subset M \subset L} E_M^+ \right)
\]

is dense in \(\tilde{E}_L^+ \) for the \(\varphi \)-adic topology, where \(E_M^+ \) is the ring of integers of \(X_K(M) \). Thus, there exists some \(\overline{y}_1 \in \varphi^{-m_1}(E_M^+) \) for some \(m_1 \) and \(M_1 \), such that \(\overline{x} - \overline{y}_1 = u^k \overline{z}_1 \) where \(\overline{z}_1 \in \tilde{E}_L^+ \). Thus we can write

\[
x - [\overline{y}_1] - u^k [\overline{z}_1] = px_1 \text{ for some } x_1 \in \tilde{A}_L^+.
\]

Now we can repeat the process for \(x_1 \) (in the process, we can choose \(M_2 \) to contain \(M_1 \)), so we can write \(x_1 - [\overline{y}_2] - u^k [\overline{z}_2] = px_2 \). Iterate the process, and let \(y = [\overline{y}_1] + p[\overline{y}_2] + \cdots + p^{n-1}[\overline{y}_n] \), then \(y \in \tilde{A}_M^{[r,b]} \) and

\[
x - y = p^n \tilde{A}_L^+ + u^k \tilde{A}_L^+.
\]
Pick any r' such that $0 < r' < r$. By Prop. 5.2.3(2), we can choose some $N \gg 0$ (in particular, we require $p^N r' > r_{Ma}$), such that if we let $w := R_{Ma,N}(y)$, then we have

- $w \in A_{Ma,N}^{[r',+,+]} \subset \tilde{A}_L^{[r',+,+]} \subset \gamma^\wedge A_L^{[r',+,+]}$, and
- $y - w = p^n a + u^k b$ for some $a \in A, b \in \tilde{A}^+$ (note that we do not know if $a \in \tilde{A}_L$ or $b \in \tilde{A}_L^+$), and
- $W^{[r,s]}(y - w) \geq n$.

We claim that $a \in \tilde{A}^{[r,s]}$. Since $p^n a = y - w - u^k b \in \tilde{A}^{[r,s]}$, it suffices to show that $W^{[r,s]}(a) \geq 0$. But we have

$$W^{[r,s]}(a) = W^{[r,s]}(y - w - u^k b) - n \geq \inf \{ W^{[r,s]}(y - w), W^{[r,s]}(u^k b) \} - n \geq 0$$

where we use the assumption $u^k \in p^n \tilde{A}_L^{[r,s]}$ (so $W^{[r,s]}(u^k) \geq n$).

Now, we have

$$x - w \in p^n \tilde{A}_L^{[r,s]} + u^k \tilde{A}_L^+ \subset p^n \tilde{A}_L^{[r,s]}$$

and necessarily $x - w \in p^n \tilde{A}_L^{[r,s]}$ because $x - w$ is G_Λ-invariant. Finally, $w \in (\tilde{B}_L^{[r,s]})^{G_{\Lambda}, \nabla, \gamma = 0}$ by Lem. 5.3.1 (and Thm. 4.2.7).

5.3.3. An approximating sequence for b. Let $I = [r, s] \subset (0, +\infty)$ such that $r \geq r(b)$. For any $n \geq 1$, let $b_n \in (\tilde{B}_L^{[r,s]})^{G_{\Lambda}, \nabla, \gamma = 0}$ be as in Lem. 5.3.2 such that $b - b_n \in p^n \tilde{A}_L^+$. For any fixed n, since both b and b_n are locally analytic, we can choose $m = m(n) \gg 0$ (which depends on n) such that $b - b_n \in (\tilde{B}_L^{[r,s]})^{G_{\Lambda}}$ and $\|b - b_n\|_{G_{\Lambda}} \leq p^{-n}$.

5.3.4. A differential operator. Let $I = [r, s] \subset (0, +\infty)$ such that $r \geq r(b)$. Since $\gamma(b) = \chi(\gamma) \cdot b$, we have $\nabla_\gamma b = b$. Since $1/b$ is in $(\tilde{B}_L^{[r,s]})^{G_{\Lambda}}$ by Lem 5.1.1, we can define $\partial_\gamma : (\tilde{B}_L^{[r,s]})^{G_{\Lambda}} \to (\tilde{B}_L^{[r,s]})^{G_{\Lambda}}$ via

$$\partial_\gamma := \frac{1}{b} \nabla_\gamma.$$

So in particular, we have

$$\partial_\gamma (b - b_n)^k = k (b - b_n)^{k-1}, \forall k \geq 1.$$

Theorem 5.3.5. Let $I = [r, s] \subset (0, +\infty)$ such that $r \geq r(b)$. Suppose $x \in (\tilde{B}_L^{[r,s]})^{G_{\Lambda}}$, then there exists $n, m \geq 1$ and a sequence $\{ x_i \}_{i \geq 0}$ in $(\tilde{B}_L^{[r,s]})^{G_{\Lambda}, \nabla, \gamma = 0}$ such that $\| p^m x_i \|_{G_{\Lambda}} \to 0$ and $x = \sum_{i \geq 0} x_i (b - b_n)^i$ (which converges in the norm $\| \cdot \|_{G_{\Lambda}}$).

Proof. The proof is similar as [Ber16, Thm. 5.4]. Suppose $m \geq 1$ such that $x \in (\tilde{B}_L^{[r,s]})^{G_{\Lambda}}$. Apply [BC16, Lem. 2.6] to the map $\partial_\gamma : (\tilde{B}_L^{[r,s]})^{G_{\Lambda}} \to (\tilde{B}_L^{[r,s]})^{G_{\Lambda}}$, so there exists $n \geq 1$ such that for all $k \in \mathbb{Z}^\geq 0$, we have $\| \partial_\gamma^k (x) \|_{G_{\Lambda}} \leq p^{(n-1)k} \| x \|_{G_{\Lambda}}$. Increase m if necessary so that $m \geq m(n)$ as in §5.3.3. Let

$$x_i := \frac{1}{i!} \sum_{k \geq 0} (-1)^k \frac{(b - b_n)^k}{k!} \partial_\gamma^{k+i}(x),$$

then similarly as [Ber16, Thm. 5.4], they satisfy the desired property. \qed

6. OVERCONVERGENCE OF (φ, τ)-MODULES

In this section, for a p-adic Galois representation V of G_K of dimension d, we show that its associated (φ, τ)-module is overconvergent. We will construct $\tilde{D}_L^I(V) := (\tilde{B}_L^{[r,s]} \otimes_D V)^{G_{\Lambda}}$ (see §6.2), which is a finite free module over $\tilde{B}_L^{[r,s]}$ of rank d equipped with a \tilde{G}-action. The key point is to show that $\tilde{D}_L^I(V)^{\tau, \gamma = 1}$ is also finite free over $(\tilde{B}_L^{[r,s]})^{G_{\Lambda}}$ of rank d, i.e., $\tilde{D}_L^I(V)$ has “enough” $(\tau, \gamma = 1)$-vectors; these vectors will further descend to “overconvergent vectors” in the (φ, τ)-module, via Kedlaya’s slope filtration theorem. Using the classical overconvergent (φ, Γ)-module, we already know that $(\tilde{D}_L^I(V))^{\tilde{G}, \Lambda}$ is finite free over $(\tilde{B}_L^{[r,s]})^{G_{\Lambda}}$
of rank d. So we need to take $(\gamma = 1)$-invariants in $(\tilde{D}_L(V))^{G,\text{an}}$, and show it keeps the correct rank; this is achieved by a Tate-Sen descent or a monodromy descent (followed by an étale descent).

In §6.1, we will carry out the descent of locally analytic vectors: the Tate-Sen descent and étale descent uses an axiomatic approach taken from [BC08]; the monodromy descent (in Rem. 6.1.7) follows some similar argument as in [Ber16]. In §6.2, we prove the overconvergence result.

6.1. Descent of locally analytic vectors. Since we will use results from [BC08], it will be convenient to use valuation notations.

Notation 6.1.1. Suppose W is a \mathbb{Q}_p- (or \mathbb{Z}_p) Banach representation of a p-adic Lie group G such that $W^{G,\text{an}} = W$. Let val_G denote the valuation on W associated to the norm $\| \cdot \|_G$ (cf. §1.4.4).

Proposition 6.1.2. Let $(\widehat{\Lambda}, \text{val}_\Lambda)$ be a \mathbb{Z}_p-Banach algebra equipped with a sub-multiplicative valuation val_Λ. Let H_0 be a profinite group which acts on $\widehat{\Lambda}$ such that $\text{val}_\Lambda(gx) = \text{val}_\Lambda(x), \forall g \in H_0, x \in \widehat{\Lambda}$. Let $g \mapsto U_g$ be a continuous cocycle of H_0 in $\text{GL}_d(\widehat{\Lambda})$.

Suppose $H \subset H_0$ is an open subgroup, and suppose there exists some $a > c_1 > 0$ such that the following conditions are satisfied:

- $(TS1)$: there exists $\alpha \in \widehat{\Lambda}^H$ such that $\text{val}_\Lambda(\alpha) > -c_1$ and $\sum_{\sigma \in H_0/H} \sigma(\alpha) = 1$.
- $\text{val}_\Lambda(U_g - 1) \geq a, \forall g \in H$.

Then there exists $M \in \text{GL}_d(\widehat{\Lambda})$ such that $\text{val}_\Lambda(M - 1) \geq a - c_1$ and the cocycle where $g \mapsto M^{-1}U_g(M)$ is trivial when restricted to H.

Proof. This is a slight variant of [BC08, Cor. 3.2.2]. Indeed, in loc. cit., it requires the condition $(TS1)$ to be satisfied for any pair of open subgroups $H_1 \subset H_2$ in H_0 (cf. [BC08, Def. 3.1.3]); however, in the proof of [BC08, Lem. 3.1.2, Cor. 3.2.2], this condition is used only for one pair.

Lemma 6.1.3. Let $c_1 > 0$, let $I = [r, s] \subset (0, +\infty)$, and let $K_{\infty} \subset M \subset L$ where $[M : K_{\infty}] < +\infty$. There exists $n \gg 0$, and

$$\alpha \in (\mathcal{B}_L)^{\gamma_n\text{-an}, \text{Gal}(L/M)=1},$$

such that the following holds:

- $\text{val}_{\gamma_n}(\alpha) = W^I(\alpha) > -c_1$, here $\text{val}_{\gamma_n} = \text{val}_{<\gamma_n>}$ (cf. Notation 6.1.1);
- $\sum_{\sigma \in \text{Gal}(M/K_{\infty})} \sigma(\alpha) = 1$.

Proof. Denote $\text{Tr} := \sum_{\sigma \in \text{Gal}(M/K_{\infty})} \sigma$ the trace operator. By Thm. 4.1.3, $X_K(M)$ is a finite Galois extension of $X_K(K_{\infty})$, and so there exists $\beta \in X_K(M)$ such that $\text{Tr}(\beta) = 1$. Note that we necessarily have $v_{E}(\beta) \leq 0$.

Suppose $m \gg 0$ (m depends on M and I) such that $p^{-mr_M} < r$ (where $r_M > 0$ as in Lem. 4.2.5), and

$$\frac{p - 1}{pr} \frac{1}{p^mr}\nu_{E}(\beta) > -c_1, \text{ and}$$

$$\frac{1}{p^mr} + \frac{p - 1}{p^mr} v_{E}(\beta) > 0. \quad (6.1.2)$$

Let $\gamma = \varphi^{-m}(s(\beta))$ (where s is the map in §4.3.4), then

- since $p^{-mr_M} < r$, $\gamma \in \varphi^{-m}(\mathcal{A}_{M}^{r_M, +\infty}[1/u_M]) \subset \widehat{\Lambda}^{[r, +\infty][1/u]}$.

• for any $a \in [r, s]$, by using §4.3.4(2) and (6.1.1), we have
 \[
 W^{[a,a]}(\alpha) = W^{[p^m a, p^n a]}(s(\beta)) = \frac{p - 1}{p^m a} v_E(\beta) > -c_1,
 \]
 and so $W^I(\gamma) > -c_1$.

Since $\text{Tr}(\varphi^{-m}(\beta)) = 1$, we have $\text{Tr}(\gamma) = 1 + \sum_{k \geq 1} p^k [a_k]$. Furthermore, for any $k \geq 1$,
 \[
 w_k(\text{Tr}(\gamma)) \geq \inf_{\sigma \in \text{Gal}(M/K)} \{ w_k(\sigma(\gamma)) \} = w_k(\gamma) = p^{-m} w_k(\gamma) > p^{-m} (v_E(\beta) - k p r M(p - 1)^{-1}),
 \]
where the final inequality uses (4.3.1). So when $k \geq 1$,
 \[
 k + \frac{p - 1}{p^r} \cdot w_k(\text{Tr}(\gamma)) > k + \frac{p - 1}{p^r} \cdot p^{-m} \cdot (v_E(\beta) - k p r M(p - 1)^{-1})
 \]
 \[
 = k (1 - \frac{r_M}{m}) + \frac{p - 1}{p^r} \cdot \frac{1}{p^m} v_E(\beta)
 \]
 \[
 > (1 - \frac{r_M}{m}) + \frac{p - 1}{p^r} \cdot \frac{1}{p^m} v_E(\beta), \quad \text{since } 1 - \frac{r_M}{m} > 0
 \]
 \[
 > 0, \quad \text{by (6.1.2)}.
 \]

By Lem. 4.2.4, $\text{Tr}(\gamma) \in (\tilde{A}[r, +\infty])^\times$, and so $\varphi^{m}(\text{Tr}(\gamma)) \in (\tilde{A}[p^m r, +\infty])^\times$. Since $\varphi^{m}(\gamma) \in \mathbf{A}^{[r, +\infty]}[1/\mathfrak{m}], \gamma \cdot (\text{Tr}(\gamma))^{-1} \in (\tilde{B}_L^{r})^{\tau_{\mathfrak{m}} Gal(L/K)} = 1$.

Let $\alpha := \gamma \cdot (\text{Tr}(\gamma))^{-1}$. Note that
 \[
 \gamma \in \varphi^{-m}(\mathbf{A}^{[p^m r, +\infty]}[1/\mathfrak{m})] \subset \varphi^{-m}(B_M^{[r, +\infty]}) \subset (\tilde{B}_L^{r})^{\tau_{\mathfrak{m}} Gal(L/M)} = 1, \quad \text{by Thm. 4.2.7}.
 \]

Thus, we have $\alpha \in (\tilde{B}_L^{r})^{\tau_{\mathfrak{m}} Gal(L/M)} = 1$. We also note that $W^I(\alpha) = W^I(\gamma) > -c_1$. Finally, the existence of $n \gg 0$ such that $\alpha \in (\tilde{B}_L^{r})^{\tau_{\mathfrak{m}} Gal(L/M)} = 1$ is by definition; the existence of $n \gg 0$ such that $\text{val}_n(\alpha) = W^I(\alpha)$ is by Lem. 3.1.4. \hfill \Box

6.1.4. Let B be a \mathbb{Q}_p-algebra, equipped with an action by a finite group G. Let B^G denote the ring B with trivial G-action. Suppose that

1. B is a finite free B^G-module;
2. there exists a G-equivariant decomposition $B^G \otimes_{B^G} B \simeq \bigoplus_{g \in G} B^G \cdot e_g$ such that $e_g^2 = e_g$, $e_g e_h = 0$ for $g \neq h$, and $g(e_h) = e_{gh}$.

Proposition 6.1.5. Let B and G be as in §6.1.4. Suppose N is a finite free B-module with semi-linear G-action, then

1. N^G is a finite free B^G-module;
2. the map $B \otimes_{B^G} N^G \to N$ is a G-equivariant isomorphism.

Proof. This is [BC08, Prop. 2.2.1]. Note that in loc. cit., it asks B to be a Banach algebra, but it is not needed if the S in loc. cit. is just \mathbb{Q}_p. \hfill \Box

Proposition 6.1.6. Let $I = [r, s] \subset (0, +\infty)$. Let M be a finite free $(\tilde{B}_L^{r})^{\tau_{\mathfrak{m}} Gal(L/M)}$-module of rank d, with a semi-linear and locally analytic \tilde{G}-action. Then $(M)^{\text{Gal}(L/K)}$ is finite free over $(\tilde{B}_L^{r})^{\tau_{\mathfrak{m}} Gal(L/K)} = 1$ of rank d, and

$(\tilde{B}_L^{r})^{\tau_{\mathfrak{m}} Gal(L/K)} = 1$.

$(\tilde{B}_L^{r})^{\tau_{\mathfrak{m}} Gal(L/K)} \simeq M$.

Proof. The following proof is via Tate-Sen descent; see Rem. 6.1.7 for another proof via monodromy descent.

Since $\text{Gal}(L/K_\infty)$ is topologically generated by γ, there exists a basis e_1, \cdots, e_d of \mathcal{M} such that the co-cycle c associated to the $\text{Gal}(L/K_\infty)$-action on \mathcal{M} (with respect to the basis) is of the form $g \mapsto U_g$ where $U_g \in \text{GL}_d((\mathcal{B}_L^I)_{G_{\text{an}}})$ for some $n \gg 0$.

Let $a > c_1 > 0$. Suppose $K_\infty \subset M \subset L$ where M/K_∞ is a finite extension such that $\text{val}_{\mathcal{B}_L}(U_g - 1) \geq a$, when $g \in \text{Gal}(L/M)$, where $\text{val}_{\mathcal{B}_L}$ is as in Notation 6.1.1. By Lem. 6.1.3, there exists some $n' \gg 0$ and $\alpha \in (\mathcal{B}_L^I)^{\tau_{n+n'\text{an}},\text{Gal}(L/M)=1}$ such that $\text{val}_{\mathcal{B}_L}(\alpha) > -c_1$, and $\sum_{\sigma \in \text{Gal}(M/K_\infty)} \sigma(\alpha) = 1$. Apply Prop. 6.1.2 to the pair $(\mathcal{A}, \text{val}_{\mathcal{A}}) = ((\mathcal{B}_L^I)_{G_{\text{an}}}, \text{val}_{\mathcal{B}_L})$.

(where val$_{\mathcal{B}_L}$ is sub-multiplicative by Lem. 3.1.2), the restricted co-cycle $c|_{\text{Gal}(L/M)}$, when considered as evaluated in $\text{GL}_d((\mathcal{B}_L^I)_{G_{\text{an}}})$, is trivial after base change. So:

$(\ast) : (\mathcal{M})_{\text{Gal}(L/M)}$ is finite free over $(\mathcal{B}_L^I)^{\tau_{\text{an}},\text{Gal}(L/M)=1}$ of rank d.

Let $G := \text{Gal}(M/K_\infty)$. Fix a basis e'_1, \cdots, e'_d of $(\mathcal{M})_{\text{Gal}(L/M)}$, and suppose the co-cycle associated to G-action on $(\mathcal{M})_{\text{Gal}(L/M)}$ with respect to the basis has value in $\text{GL}_d(\varphi^{-m}(\mathcal{B}_M^{nI}))$ for some $m \gg 0$ (using Thm. 4.2.7). Let N_m be the $\varphi^{-m}(\mathcal{B}_M^{nI})$-span of e'_1, \cdots, e'_d.

Via the same argument as in [BC08, Lem. 4.2.5], there exists some $s(M) > 0$ such that if $a > s(M)$, then the pair $(\mathcal{B}_M^{[a, \infty)}, G)$ satisfies the two conditions in §6.1.4. So when $m \gg 0$ such that $p^mr > s(M)$, then the pair (\mathcal{B}_M^{nI}, G), and thus also the pair $(\varphi^{-m}(\mathcal{B}_M^{nI}), G)$ satisfy the two conditions in §6.1.4. By Prop. 6.1.5, $(N_m)^G$ is finite free over $\varphi^{-m}(\mathcal{B}_M^{nI})$ of rank d; this implies the desired result.

Remark 6.1.7. Keep the notations in Prop. 6.1.6 above. Suppose furthermore that $r \geq r(b)$ (see §5 for $r(b)$), then we can give another proof of Prop. 6.1.6 via monodromy descent. The proof follows similar ideas as in [Ber16, §6].

In this second proof, we only reprove the statement (\ast) above, namely, we show that there exists some $K_\infty \subset M \subset L$ such that $(\mathcal{M})_{\text{Gal}(L/M)}$ is finite free over $(\mathcal{B}_L^I)^{\tau_{\text{an}},\text{Gal}(L/M)=1}$ of rank d. By Lem. 5.3.1, it suffices to show that $(\mathcal{M})_{\nabla=0}^{\nabla=0}$ is finite free over $(\mathcal{B}_L^I)^{G_{\text{an}},\nabla=0}$ of rank d, and

$$(\mathcal{B}_L^I)^{G_{\text{an}}} \otimes (\mathcal{B}_L^I)^{G_{\text{an}},\nabla=0} (\mathcal{M})_{\nabla=0} \simeq \mathcal{M}.$$

Let $D_r = \text{Mat}(\partial_\gamma)$ (∂_γ is well-defined because $r \geq r(b)$), then it suffices to show that there exists $H \in \text{GL}_d((\mathcal{B}_L^I)_{\text{an}})$ such that $\partial_\gamma(H) + D_r H = 0$. For $k \in \mathbb{N}$, let $D_k = \text{Mat}(\partial_\gamma^k)$. For n large enough, the series given by

$$H = \sum_{k \geq 0} (-1)^k D_k \frac{(b - b_n)^k}{k!}$$

converges in $M_d((\mathcal{B}_L^I)_{\text{an}})$ to a solution of the equation $\partial_\gamma(H) + D_r H = 0$. Moreover, for n big enough, we have $W^I(D_k \cdot (b - b_n)^k/k!) > 0$ for $k \geq 1$, so that $H \in \text{GL}_d((\mathcal{B}_L^I)_{\text{an}})$.

Remark 6.1.8. The condition $r \geq r(b)$ in the proof of Rem. 6.1.7 is actually harmless for application in our main theorem Thm. 6.2.6 (i.e., in the proof of Thm. 6.2.6, we could equally apply Rem. 6.1.7 instead of Prop. 6.1.6). Indeed, at the very beginning of the proof of Thm. 6.2.6, we could assume the “r_0” there to be bigger than $r(b)$.
6.2. Overconvergence of (φ, τ)-modules.

Definition 6.2.1.

(1) Let $\text{Mod}^{\varphi}_{A_{K_{\infty}}} \varphi$ denote the category of finite free $A_{K_{\infty}}$-modules M equipped with a $\varphi_{A_{K_{\infty}}}$-semi-linear endomorphism $\varphi_M : M \to M$ such that $1 \otimes \varphi : \varphi^* M \to M$ is an isomorphism. Morphisms in this category are just $A_{K_{\infty}}$-linear maps compatible with φ.

(2) Let $\text{Mod}^{\varphi}_{B_{K_{\infty}}} \varphi$ denote the category of finite free $B_{K_{\infty}}$-modules D equipped with a $\varphi_{B_{K_{\infty}}}$-semi-linear endomorphism $\varphi_D : D \to D$ such that there exists a finite free $A_{K_{\infty}}$-lattice M such that $M[1/p] = D, \varphi_D(M) \subset M$, and $(M, \varphi_D|_M) \in \text{Mod}^{\varphi}_{A_{K_{\infty}}}$.

We call objects in $\text{Mod}^{\varphi}_{A_{K_{\infty}}}$ and $\text{Mod}^{\varphi}_{B_{K_{\infty}}}$ finite free étale φ-modules.

Definition 6.2.2.

(1) Let $\text{Mod}^{\varphi, \hat{G}}_{A_{K_{\infty}}, \hat{A}_L} \varphi, \hat{G}$ denote the category consisting of triples (M, φ_M, \hat{G}) where

- $(M, \varphi_M) \in \text{Mod}^{\varphi}_{A_{K_{\infty}}}$;
- \hat{G} is a continuous \hat{A}_L-semi-linear \hat{G}-action on $\hat{M} := \hat{A}_L \otimes A_{K_{\infty}} M$, and \hat{G} commutes with $\varphi_{\hat{M}}$ on \hat{M};
- regarding M as an $A_{K_{\infty}}$-submodule in \hat{M}, then $M \subset \hat{M}^\text{Gal}(L/K_{\infty})$.

(2) Let $\text{Mod}^{\varphi, \hat{G}}_{B_{K_{\infty}}, \hat{B}_L} \varphi, \hat{G}$ denote the category consisting of triples (D, φ_D, \hat{G}) which contains a lattice (in the obvious fashion) $(M, \varphi_M, \hat{G}) \in \text{Mod}^{\varphi, \hat{G}}_{A_{K_{\infty}}, \hat{A}_L}$.

The category $\text{Mod}^{\varphi, \hat{G}}_{A_{K_{\infty}}, \hat{A}_L}$ (and $\text{Mod}^{\varphi, \hat{G}}_{B_{K_{\infty}}, \hat{B}_L}$) are precisely the étale (φ, τ)-modules as in [GL, Def. 2.1.5].

6.2.3. Let $\text{Rep}_{Q_p}(G_{\infty})$ (resp. $\text{Rep}_{Q_p}(G_K)$) denote the category of finite free Q_p-modules V with continuous Q_p-linear G_{∞} (resp. G_K)-actions.

- For $D \in \text{Mod}^{\varphi}_{B_{K_{\infty}}}$, let

 \[V(D) := (\hat{B} \otimes B_{K_{\infty}} D)^{\psi = 1}, \]

 then $V(D) \in \text{Rep}_{Q_p}(G_{\infty})$. If furthermore $(D, \varphi_D, \hat{G}) \in \text{Mod}^{\varphi, \hat{G}}_{B_{K_{\infty}}, \hat{B}_L}$, then $V(D) \in \text{Rep}_{Q_p}(G_K)$.

- For $V \in \text{Rep}_{Q_p}(G_{\infty})$, let

 \[D_{K_{\infty}}(V) := (\hat{B} \otimes Q_p V)^{G_{\infty}}, \]

 then $D_{K_{\infty}}(V) \in \text{Mod}^{\varphi}_{B_{K_{\infty}}}$.

If furthermore $V \in \text{Rep}_{Q_p}(G_K)$, let

\[\hat{D}_L(V) := (\hat{B} \otimes Q_p V)^{G_L}, \]

then $\hat{D}_L(V) = \hat{B}_L \otimes B_{K_{\infty}} D_{K_{\infty}}(V)$ has a G-action, making $(D_{K_{\infty}}(V), \varphi, \hat{G})$ an étale (φ, τ)-module.

Theorem 6.2.4.

(1) The functors V and D induces an exact tensor equivalence between the categories $\text{Mod}^{\varphi}_{B_{K_{\infty}}}$ and $\text{Rep}_{Q_p}(G_{\infty})$.

(2) The functors V and \hat{D} induces an exact tensor equivalence between the categories $\text{Mod}^{\varphi, \hat{G}}_{B_{K_{\infty}}, \hat{B}_L}$ and $\text{Rep}_{Q_p}(G_K)$.

Proof. (1) is [Fon90, Prop. A 1.2.6] (and using [GL, Lem. 2.1.4]). (2) is due to [Car13] (cf. also [GL, Prop. 2.1.7]).

\[\square \]
Let $V \in \Rep_{\overline{\Q}_p}(G_K)$. Given $I \subset [0, +\infty)$ any interval, let
\[
D^I_{K_{\infty}}(V) := (B^I \otimes_{\overline{\Q}_p} V)^{G_{\infty}}, \\
\tilde{D}^I_{L}(V) := (\tilde{B}^I \otimes_{\overline{\Q}_p} V)^{G_{L}}.
\]

Definition 6.2.5. Let $V \in \Rep_{\overline{\Q}_p}(G_K)$, and let $\tilde{D} = (D_{K_{\infty}}(V), \varphi, \hat{G})$ be the \'{e}tale (φ, τ)-module associated to it. Say that \tilde{D} is overconvergent if there exists $r > 0$, such that for $I' = [r, +\infty)$,
1. $D^I_{K_{\infty}}(V)$ is finite free over $B^I_{K_{\infty}}$, and $B_{K_{\infty}} \otimes B^I_{K_{\infty}} D^I_{K_{\infty}}(V) \simeq D_{K_{\infty}}(V)$;
2. $\tilde{D}^I_{L}(V)$ is finite free over \tilde{B}^I_{L} and $\tilde{B}_{L} \otimes \tilde{B}^I_{L} \tilde{D}^I_{L}(V) \simeq \tilde{D}_{L}(V)$.

Theorem 6.2.6. For any $V \in \Rep_{\overline{\Q}_p}(G_K)$, its associated \'{e}tale (φ, τ)-module is overconvergent.

Proof.

Step 1: locally analytic vectors in $\tilde{D}^I_{L}(V)$. For $I = [r, s] \subset (0, +\infty)$, let
\[
D^I_{K_{\infty}}(V) := (B^I \otimes_{\overline{\Q}_p} V)^{G_{K_{\infty}}},
\]
where (as we mentioned in Rem. 1.4.3) B and B^I are the rings denoted as “B” and “B^I” in [Ber08]. We still have $B \subset \tilde{B}$ and $B^I \subset \tilde{B}^I$. By the main result of [CC98], there exists some $r_0 > 0$, such that when $r \geq r_0$, then $D^I_{K_{\infty}}(V)$ is finite free over $B^I_{K_{\infty}}$ of rank d (here $B^I_{K_{\infty}}$ is precisely “B^I_K” in [Ber08]). Furthermore, there exists G_K-equivariant and φ-equivariant isomorphism
\[
(6.2.1) \quad \tilde{B}^I \otimes_{\overline{\Q}_p} V \simeq \tilde{B}^I \otimes B^I_{K_{\infty}} D^I_{K_{\infty}}(V).
\]
Also, by [Ber02, §5.1],
\[
(6.2.2) \quad D^I_{K_{\infty}}(V) \subset (\tilde{D}^I_{L}(V))^{\tau = 1, \gamma = 1} \subset (\tilde{D}^I_{L}(V))^{\hat{G}, \hat{\imath}}.
\]
By Prop. 3.1.6, (6.2.2) implies
\[
(6.2.3) \quad \tilde{D}^I_{L}(V)^{\hat{G}, \hat{\imath}} = (\tilde{B}^I)^{\hat{G}, \hat{\imath}} \otimes B^I_{K_{\infty}} D^I_{K_{\infty}}(V).
\]
So in particular $\tilde{D}^I_{L}(V)^{\hat{G}, \hat{\imath}}$ is finite free over $(\tilde{B}^I_{L})^{\hat{G}, \hat{\imath}}$. By Prop. 6.1.6, $\tilde{D}^I_{L}(V)^{\tau = 1, \gamma = 1}$ is finite free over $(\tilde{B}^I_{L})^{\tau = 1, \gamma = 1}$. By (6.2.1) and (6.2.3), we also have
\[
(6.2.4) \quad \tilde{B}^I \otimes_{\overline{\Q}_p} V \simeq \tilde{B}^I \otimes B^I_{K_{\infty}} D^I_{K_{\infty}}(V).
\]

Step 2: gluing $\tilde{D}^I_{L}(V)^{\tau = 1, \gamma = 1}$ as a vector bundle. For each $X \subset [r_0, +\infty)$ a closed interval, denote $M^X := \tilde{D}^X_{L}(V)^{\tau = 1, \gamma = 1}$, and $R^X := (\tilde{B}^X_{L})^{\tau = 1, \gamma = 1}$, and so Step 1 says that M^X is finite free over R^X. Let $I = [r, s] \subset [r_0, +\infty)$ such that $I \cap pI$ is non-empty. For each $k \geq 1$, φ^k induces a bijection between $\tilde{D}^I_{L}(V)$ and $\tilde{D}^{p^kI}_{L}(V)$, and thus also a bijection between M^I and M^{p^kI}. Let m_1, \ldots, m_d be a basis of M^I, and so $\varphi(m_1), \ldots, \varphi(m_d)$ is a basis of M^{p^kI}. Let $J := I \cap pI$, then by using Prop. 3.1.6, we have
\[
M^J = R^J \otimes_{R^I} M^I, \quad M^J = R^J \otimes_{R^{p^kJ}} M^{p^kJ}.
\]
So if we write $(\varphi(m_1), \ldots, \varphi(m_d)) = (m_1, \ldots, m_d)P$, then $P \in \GL_d(R^J)$, and so $P \in \GL_d(B^I_{K_{\infty}, m})$ for some $m \gg 0$.

Let $I_k := p^kI, J_k := J_k \cap J_{k+1} = p^kJ$. For each $k \geq 1$, let E_k be the $B^I_{K_{\infty}, m}$-span of $\varphi^k(m_i)$. Since $\varphi^k(P) \in \GL_d(B^I_{K_{\infty}, m})$, we have
\[
B^I_{K_{\infty}, m} \otimes B^I_{K_{\infty}, m} E_k \simeq B^I_{K_{\infty}, m} \otimes B^I_{K_{\infty}, m} E_{k+1}.
\]
This says that the collection \(\{ \varphi^n(E_k) \}_{k \geq 1} \) forms a vector bundle over \(B_{K_\infty}^{[n]} \) (cf. [Ked05, Def. 2.8.1]), and so by [Ked05, Thm. 2.8.4], there exists \(n_1, \cdots, n_d \in \cap_{k \geq 1} \varphi^n(E_k) \), such that if we let
\[
D_{K_\infty}^{[n]} := \bigoplus_{i=1}^d B_{K_\infty}^{[n]} , \quad n_i ,
\]
then
\[
B_{K_\infty}^{[n]} B_{K_\infty}^{[n]} \bigotimes B_{K_\infty}^{[n]} D_{K_\infty}^{[n]} \simeq \varphi^n(E_k).
\]
Now, define
\[
D_{rig,K_\infty}^1 := B_{rig,K_\infty} \bigotimes B_{K_\infty}^{[n]} D_{K_\infty}^{[n]}
\]
Then by (6.2.4), we have
\[
D_{rig,K_\infty}^1 \bigotimes B_{rig,K_\infty} D_{rig,K_\infty}^1 = B_{rig} \bigotimes \mathbb{Q}_p V.
\]
Eqn. (6.2.5) implies that \(D_{rig,K_\infty}^1 \) is pure of slope 0 (cf. [Ked05]). By [Ked05, Thm. 6.3.3], there exists an étale \(\varphi \)-module \(D_{K_\infty}^{[n]} \) over \(B_{K_\infty}^{[n]} \) such that
\[
B_{rig,K_\infty} \bigotimes B_{K_\infty}^{[n]} D_{K_\infty}^{[n]} = D_{rig,K_\infty}^1 .
\]

Step 3: overconvergence. We claim that
\[
B_{K_\infty} \bigotimes B_{K_\infty}^{[n]} D_{K_\infty}^{[n]} \simeq D_{K_\infty}(V).
\]
Let \(D' := B_{K_\infty} \bigotimes B_{K_\infty}^{[n]} D_{K_\infty}^{[n]} \). By Thm. 6.2.4(1), it suffices to show that
\[
V' := (B \bigotimes D')^{[n]} \simeq V_{G_\infty}.
\]
Note that \(V' \) is always a \(G_\infty \)-representation over \(\mathbb{Q}_p \) of dimension \(d \). We have
\[
V' = (\tilde{B} \bigotimes B_{K_\infty}^{[n]} D_{K_\infty}^{[n]})^{[n]} = (\tilde{B} \bigotimes B_{K_\infty}^{[n]} D_{K_\infty}^{[n]})^{[n]} , \quad \text{by [KL15, Thm. 8.5.3(d)(e)]} ,
\]
\[
\subset (\tilde{B}_{rig} \bigotimes B_{rig,K_\infty} D_{rig,K_\infty}^{[n]})^{[n]} , \quad \text{by (6.2.5)},
\]
\[
= V.
\]
So (6.2.7) holds for dimension reasons, and so (6.2.6) holds, concluding the overconvergence of \(\varphi \)-action (i.e., Def. 6.2.5(1) is verified).

Finally, note that \(\tilde{B} \bigotimes B_{K_\infty}^{[n]} D_{K_\infty}^{[n]} \simeq \tilde{B} \bigotimes \mathbb{Q}_p V, \) so if we let
\[
\tilde{D}_{L}^1(V) := (\tilde{B} \bigotimes \mathbb{Q}_p V)^{G_\ell},
\]
then \(\tilde{D}_L^1(V) \simeq \tilde{B}_L \bigotimes B_{K_\infty}^{[n]} D_{K_\infty}^{[n]} \). This implies the overconvergence of the \(\tau \)-action (i.e., Def. 6.2.5(2) is verified).

\[\square\]

References

[BC08] Laurent Berger and Pierre Colmez. Familles de représentations de de Rham et monodromie \(p \)-adique. *Astérisque*, (319):303–337, 2008. Représentations \(p \)-adiques de groupes \(p \)-adiques. I. Représentations galoisiennes et (\(\varphi, \Gamma \))-modules.

[BC16] Laurent Berger and Pierre Colmez. Théorie de Sen et vecteurs localement analytiques. *Ann. Sci. Éc. Norm. Supér. (4)*, 49(4):947–970, 2016.

[Ber02] Laurent Berger. Représentations \(p \)-adiques et équations différentielles. *Invent. Math.*, 148(2):219–284, 2002.

[Ber08] Laurent Berger. Construction de (\(\varphi, \Gamma \))-modules: représentations \(p \)-adiques et \(B \)-paires. *Algebra Number Theory*, 2(1):91–120, 2008.

[Ber10] Laurent Berger. Galois representations and (\(\varphi, \Gamma \))-modules. *course note in IHP*, 2010.
Locally analytic vectors and overconvergent (φ, τ)-modules

[Ber16] Laurent Berger. Multivariable (φ, Γ)-modules and locally analytic vectors. *Duke Math. J.*, 165(18):3567–3595, 2016.

[Bre99] Christophe Breuil. Une application de corps des normes. *Compositio Math.*, 117(2):189–203, 1999.

[Car13] Xavier Caruso. Représentations galoisiennes p-adiques et (φ, τ)-modules. *Duke Math. J.*, 162(13):2525–2607, 2013.

[CC98] F. Cherbonnier and P. Colmez. Représentations p-adiques surconvergentes. *Invent. Math.*, 133(3):581–611, 1998.

[Col98] Pierre Colmez. Théorie d’Iwasawa des représentations de de Rham d’un corps local. *Ann. of Math. (2)*, 148(2):485–571, 1998.

[Col99] Pierre Colmez. Représentations cristallines et représentations de hauteur finie. *J. Reine Angew. Math.*, 514:119–143, 1999.

[Col08] Pierre Colmez. Espaces vectoriels de dimension finie et représentations de de Rham. *Astérisque*, (319):117–186, 2008. Représentations p-adiques de groupes p-adiques. I. Représentations galoisienes et (φ, Γ)-modules.

[Col10] Pierre Colmez. Représentations de GL$_2(Q_p)$ et (φ, Γ)-modules. *Astérisque*, (330):281–509, 2010.

[Col14] Pierre Colmez. La série principale unitaire de GL$_2(Q_p)$: vecteurs localement analytiques. In Automorphic forms and Galois representations. Vol. 1, volume 414 of *London Math. Soc. Lecture Note Ser.*, pages 286–358. Cambridge Univ. Press, Cambridge, 2014.

[Fon90] Jean-Marc Fontaine. Représentations p-adiques des corps locaux. I. In The Grothendieck Festschrift, Vol. II, volume 87 of *Progr. Math.*, pages 249–309. Birkhäuser Boston, Boston, MA, 1990.

[FW79] Jean-Marc Fontaine and Jean-Pierre Wintenberger. Le “corps des normes” de certaines extensions algébriques de corps locaux. *C. R. Acad. Sci. Paris Sér. A-B*, 288(6):A367–A370, 1979.

[GL] Hui Gao and Tong Liu. Loose crystalline lifts and overconvergence of étale (φ, τ)-modules. *to appear*, Amer. J. Math.

[Ked05] Kiran S. Kedlaya. Slope filtrations revisited. *Doc. Math.*, 10:447–525, 2005.

[Kis06] Mark Kisin. Crystalline representations and F-crystals. In *Algebraic geometry and number theory*, volume 253 of *Progr. Math.*, pages 459–496. Birkhäuser Boston, Boston, MA, 2006.

[KL15] Kiran S. Kedlaya and Ruochuan Liu. Relative p-adic Hodge theory: foundations. *Astérisque*, (371):239, 2015.

[Liu08] Tong Liu. On lattices in semi-stable representations: a proof of a conjecture of Breuil. *Compos. Math.*, 144(1):61–88, 2008.

[Liu10] Tong Liu. A note on lattices in semi-stable representations. *Math. Ann.*, 346(1):117–138, 2010.

[LXZ12] Ruochuan Liu, Bingyong Xie, and Yuancao Zhang. Locally analytic vectors of unitary principal series of GL$_2(Q_p)$. *Ann. Sci. Éc. Norm. Supér. (4)*, 45(1):167–190, 2012.

[Ser06] Jean-Pierre Serre. *Lie algebras and Lie groups*, volume 1500 of *Lecture Notes in Mathematics*. Springer-Verlag, Berlin, 2006. 1964 lectures given at Harvard University, Corrected fifth printing of the second (1992) edition.

[ST02] Peter Schneider and Jeremy Teitelbaum. Locally analytic distributions and p-adic representation theory, with applications to GL$_2$. *J. Amer. Math. Soc.*, 15(2):443–468, 2002.

[Win83] Jean-Pierre Wintenberger. Le corps des normes de certaines extensions infinies de corps locaux; applications. *Ann. Sci. École Norm. Sup. (4)*, 16(1):59–89, 1983.

Department of Mathematics and Statistics, University of Helsinki, FI-00014, Finland

E-mail address: hui.gao@helsinki.fi

UMPA, École Normale Supérieure de Lyon, 46 allée d’Italie, 69007 Lyon, France

E-mail address: leo.poyeton@ens-lyon.fr