The 6th post-Newtonian potential terms at $O(G_N^4)$

J. Blümlein a,*, A. Maier a, P. Marquard a, G. Schäfer b

a Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen, Germany
b Theoretisch-Physikalisches Institut, Friedrich Schiller-Universität, Max-Wien-Platz 1, D-07743 Jena, Germany

A R T I C L E I N F O

Article history:
Received 21 January 2021
Received in revised form 25 March 2021
Accepted 26 March 2021
Available online 2 April 2021

A B S T R A C T

We calculate the potential contributions of the Hamiltonian in harmonic coordinates up to 6PN for binary mass systems to $O(G_N^4)$ and perform comparisons to recent results in the literature [1] and [2].

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

Gravitational wave signals from merging black holes and neutron stars [3,4] provide tests of precision predictions within Einstein gravity for the dynamics of binary systems of massive objects. Their dynamics is calculated using post-Newtonian [2,5–12] and the post-Minkowskian [1,13] methods. To match present and future measurements, high order computations are necessary. In the post-Newtonian (PN) approach the level of 6PN [2,11,12] has now been reached for the conservative part of the two-body motion, although there are still a series of constants describing the Hamiltonian to be computed. In the post-Minkowskian approach the calculation of the $O(G_N^4)$ potential terms is the most far reaching result [1]. Here G_N denotes Newton's constant. The different calculations are often performed using different gauges (harmonic, ADM, isotropic and EOB) in deriving the Lagrangian or Hamiltonian. It is important to cross check the results between the two methods, and to compare different representations in the most general way possible. One either can perform special comparisons in calculating the same observable or one performs a canonical transformation [15] between the different Hamiltonians obtained. Technically canonical transformations apply to local representations of the Hamiltonian. Thus, they can only be applied to the potential contributions and the local contributions to the tail terms. If the radial action for a binary system in dependence of both the energy and the angular momentum or a related quantity depending on the energy and the angular momentum turns out to be the same between two approaches, agreement for all observables has been shown. This applies e.g. to the function $\chi(E, j)$, [9], Eq. (9.1).

In this paper we report about the calculation of the $O(G_N^4)$ potential terms to 6PN, extending previous work covering the terms up to $O(G_N^3)$. We use the effective field theory approach [16], for details see [11]. We work in the harmonic gauge and $D = 4 - 2\varepsilon$ dimensions. In the future the missing contributions from the potential region up to $O(G_N^4)$ can be calculated using the same algorithm. The 6PN tail terms consist out of non–local and local terms. The non-local terms have been calculated in $D = 3$ space dimensions in [12], including the corresponding post–Newtonian corrections of the non–local terms at 4 and 5PN. In a calculation ab initio still all the local contributions to the tail terms have to be computed. This concerns as well the calculation of the post–Newtonian corrections to the local 4 and 5PN tail terms. Both the latter calculations have to be performed in D dimensions, since in intermediate steps of the calculation pole terms of $O(1/\varepsilon)$ appear. Partial information on the local contributions to the tail terms has been given in [2], using a different method, up to a number of constants still to be determined.

The Feynman diagrams are generated using QGRAF [17]. The Lorentz algebra is carried out using Form [18] and we perform the integration by parts (IBP) reduction to master integrals using the code Crusher [19]. Table 1 gives an overview on the present calculation.

Redundant diagrams are eliminated in a series of steps outlined in Ref. [7]. 6065 diagrams do finally contribute to the present result. The computation time amounted to a few days on an Intel(R) Xeon(R) CPU E5-2643 v4. The Lagrange function of mth order, still containing the accelerations a_j and time derivatives thereof, is converted into a first order Lagrange density by applying double zero insertions [20,21] together with partial integration and the remaining linear accelerations by a shift [21,22], cf. [6]. By this operation we

* Corresponding author.
E-mail address: Johannes.Bluemlein@desy.de (J. Blümlein).
1 See also Ref. [12] in [11].
2 For surveys see [14].

https://doi.org/10.1016/j.physletb.2021.136260
0370-2693/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
leave harmonic coordinates. A Legendre transformation leads then to the potential contributions of the Hamiltonian, which still contains pole terms in the dimensionless parameter ε.

We define $H = (H_{\text{real}} - M_T^2/\mu^2)/\mu^2$ with $M = m_1 + m_2$, $\mu = m_1 m_2 / M$, $v = \mu / M$, with $m_{1,2}$ the two masses of the binary system, c the velocity of light, and obtain the following result for the potential contributions\(^3\) to the 6PN Hamiltonian to $O(G_N^6)$

\[
H_{\text{pot}} = \frac{p^2}{2} + \frac{1}{8} p^4 (-1 + 3 \nu) + \frac{1}{16} p^6 \left(1 - 5 \nu + 5 \nu^2 \right) + p^8 \left(-\frac{5}{128} + \frac{35 \nu}{128} - \frac{35 \nu^2}{64} + \frac{35 \nu^3}{128} \right)
\]

\[
+ p^{10} \left(\frac{7}{256} - \frac{63 \nu}{256} + \frac{189 \nu^2}{256} - \frac{105 \nu^3}{256} + \frac{63 \nu^4}{256} \right) + p^{12} \left(-\frac{21}{1024} + \frac{231 \nu}{1024} - \frac{231 \nu^2}{256} \right)
\]

\[
+ \frac{1617 \nu^3}{1024} + \frac{1155 \nu^4}{1024} - \frac{211 \nu^5}{512} + p^{14} \left(\frac{33}{2048} - \frac{429 \nu}{2048} + \frac{2145 \nu^2}{2048} - \frac{1287 \nu^3}{512} \right)
\]

\[
+ \frac{3003 \nu^4}{2048} + \frac{3003 \nu^5}{2048} - \frac{429 \nu^6}{2048}
\]

\[
+ \frac{1}{16} \left[-1 + \frac{1}{2} p^2 (-3 - \nu) - \frac{(p.n)^2 \nu}{2} - \frac{1}{4} p^2 (p.n)^2 (-1 + \nu) \nu - \frac{3}{8} (p.n)^4 \nu^2
\]

\[
- \frac{3}{16} p^2 (p.n)^4 (-1 + \nu)^2 - \frac{5}{16} (p.n)^6 \nu^3 - \frac{5}{32} p^2 (p.n)^6 (-2 + \nu) \nu^3 - \frac{35}{128} (p.n)^8 \nu^4
\]

\[
- \frac{63}{256} (p.n)^{10} \nu^5 - \frac{231 (p.n)^{12} \nu^6}{1024} + \frac{1}{8} p^4 \left(5 - 22 \nu - 3 \nu^2 \right) + p^6 \left(-\frac{7}{16} + \frac{165 \nu}{16} \right)
\]

\[
- \frac{31 \nu^2}{8} - \frac{5 \nu^3}{16} + p^4 (p.n)^2 \left(\frac{3 \nu}{16} - \frac{11 \nu^2}{16} + \frac{3 \nu^3}{16} \right) + p^6 (p.n)^4 \left(-\frac{9 \nu^2}{64} + \frac{33 \nu^3}{64} - \frac{9 \nu^4}{64} \right)
\]

\[
+ p^{10} \left(\frac{77}{256} + \frac{805 \nu}{256} - \frac{2865 \nu^2}{256} + \frac{3995 \nu^3}{256} - \frac{1615 \nu^4}{256} + \frac{63 \nu^5}{256} \right)
\]

\[
+ p^2 (p.n)^8 \left(-\frac{35 \nu^3}{256} + \frac{105 \nu^4}{128} - \frac{35 \nu^5}{256} \right) + p^4 (p.n)^6 \left(\frac{15 \nu^3}{128} + \frac{45 \nu^4}{128} + \frac{15 \nu^5}{128} \right)
\]

\[
+ p^6 (p.n)^4 \left(\frac{15 \nu^3}{128} + \frac{3 \nu^4}{128} + \frac{3 \nu^5}{128} - \frac{15 \nu^5}{128} \right)
\]

\[
+ p^{10} (p.n)^2 \left(\frac{63 \nu^3}{512} - \frac{441 \nu^4}{512} + \frac{945 \nu^5}{512} - \frac{63 \nu^6}{512} \right) + p^4 (p.n)^4 \left(-\frac{105 \nu^3}{512} + \frac{1505 \nu^4}{1024} - \frac{1785 \nu^5}{512} \right)
\]

\[
+ p^6 (p.n)^6 \left(\frac{105 \nu^3}{1024} - \frac{105 \nu^4}{1024} + \frac{2169 \nu^5}{1024} - \frac{6891 \nu^6}{1024} + \frac{3003 \nu^7}{1024} - \frac{105 \nu^8}{1024} \right)
\]

\[
+ p^{12} \left(\frac{273}{1024} - \frac{1701 \nu^3}{1024} + \frac{15631 \nu^4}{1024} - \frac{30277 \nu^5}{256} + \frac{5007 \nu^6}{256} + \frac{5971 \nu^7}{256} - \frac{231 \nu^8}{1024} \right)
\]

\(^3\) Including the kinetic terms.
\[+ p^{10} (p.n)^2 \left(\frac{63\nu}{512} - \frac{623\nu^2}{512} + \frac{87\nu^3}{64} + \frac{95\nu^4}{16} - \frac{1889\nu^5}{256} - \frac{63\nu^6}{512} \right) \]
\[+ \frac{1}{r^2} \left[\frac{1}{2} + \frac{1}{2} (p.n)^2 (-1 + 6\nu) + \frac{1}{16} p^4 (-1 + 8\nu)(29 + 12\nu) + \frac{1}{4} p^2 (11 + 15\nu) \right] \]
\[+ \frac{1}{3} (p.n)^4 \nu (7 + 69\nu) + \frac{1}{4} p^2 (p.n)^2 \left(1 - 36\nu - 36\nu^2 \right) + p^2 (p.n)^2 \left(\frac{79\nu}{192} - \frac{4737\nu^2}{64} \right) \]
\[- \frac{7511\nu^3}{96} \right) + p^6 \left(\frac{55}{32} - \frac{667\nu^2}{64} + \frac{1217\nu^3}{64} - \frac{89\nu^4}{64} \right) + p^4 (p.n)^2 \left(\frac{3}{16} - \frac{99\nu}{16} + \frac{733\nu^2}{16} \right) \]
\[+ \frac{3189\nu^3}{64} \right) + (p.n)^6 \left(\frac{487\nu^2}{160} + \frac{543\nu^3}{32} + \frac{4609\nu^4}{80} \right) + p^2 (p.n)^6 \left(\frac{5117\nu^2}{320} - \frac{8331\nu^3}{160} \right) \]
\[+ \frac{13697\nu^3}{1280} - \frac{1178329\nu^4}{1280} \right) + p^6 (p.n)^2 \left(\frac{5}{32} - \frac{589\nu}{16} + \frac{4969\nu^2}{64} + \frac{177\nu^3}{256} - \frac{62143\nu^4}{256} \right) \]
\[+ p^8 \left(\frac{445}{32} - \frac{937\nu}{32} - \frac{11535\nu^2}{128} + \frac{16283\nu^3}{256} + \frac{6649\nu^4}{256} \right) + (p.n)^8 \left(\frac{159\nu}{28} + \frac{75\nu^2}{28} \right) \]
\[- \frac{289839\nu^3}{4480} + \frac{1443091\nu^4}{4480} \right) + p^4 (p.n)^4 \left(\frac{8951\nu^2}{384} + \frac{925\nu^3}{24} - \frac{125225\nu^4}{768} + \frac{652381\nu^5}{768} \right) \]
\[+ p^4 (p.n)^6 \left(\frac{9647\nu^2}{320} + \frac{42947\nu^3}{320} - \frac{4799\nu^4}{8} + \frac{4064307\nu^5}{256} - \frac{98191\nu^6}{80} \right) \]
\[+ p^8 (p.n)^2 \left(\frac{35}{256} - \frac{6747\nu^2}{128} + \frac{14485\nu^3}{32} - \frac{1169335\nu^4}{1024} + \frac{10335431\nu^5}{1024} - \frac{2895995\nu^6}{1024} \right) \]
\[+ (p.n)^10 \left(\frac{5333\nu^2}{1152} + \frac{40343\nu^3}{1152} - \frac{181553\nu^4}{16128} + \frac{2108399\nu^5}{8064} + \frac{87329\nu^6}{16128} \right) \]
\[+ p^{10} \left(\frac{917}{512} + \frac{315\nu}{256} - \frac{26259\nu^2}{512} + \frac{125919\nu^3}{1024} - \frac{87953\nu^4}{1024} + \frac{16495\nu^5}{1024} \right) \]
\[+ p^2 (p.n)^8 \left(\frac{25007\nu}{1792} - \frac{1226481\nu^2}{8960} + \frac{7963357\nu^3}{17920} - \frac{9471627\nu^4}{8960} + \frac{7130709\nu^5}{17920} \right) \]
\[+ p^6 (p.n)^4 \left(\frac{7201\nu}{1536} + \frac{222197\nu^2}{768} + \frac{53039\nu^3}{48} - \frac{1277989\nu^4}{768} + \frac{390901\nu^5}{384} \right) \]
\[+ \frac{1}{r^3} \left[\frac{1}{4} + \frac{p^2}{4} \left(\frac{17}{4} + \frac{643\nu^2}{72} - \frac{7\pi^2\nu^2}{8} - \frac{3\nu^2}{2} \right) + (p.n)^2 \left(\frac{3}{2} - \frac{1013\nu}{12} + \frac{21\pi^2\nu}{8} \right) \right] \]
\[+ \frac{49\nu^2}{4} \right) + (p.n)^4 \left(\frac{6695\nu}{32} + \frac{4395\pi^2\nu}{1024} - \frac{200369\nu^2}{320} + \frac{345\pi^2\nu^2}{128} - \frac{333\nu^3}{32} \right) \]
\[+ p^2 (p.n)^2 \left(\frac{5}{4} + \frac{29447\nu}{800} + \frac{2955\pi^2\nu^2}{512} + \frac{16717\nu^3}{1200} + \frac{1095\pi^2\nu^3}{128} + \frac{11\nu^4}{16} \right) \]
\[+ p^4 \left(\frac{65}{16} + \frac{94439\nu}{800} + \frac{1091\pi^2\nu^2}{1024} + \frac{319789\nu^3}{14400} + \frac{8197\pi^2\nu^3}{64} + \frac{1295\pi^2\nu^4}{32} \right) + (p.n)^6 \left(\frac{357281\nu}{960} \right) \]
\[+ \frac{42105\pi^2\nu^2}{4096} + \frac{18031\nu^2}{3360} + \frac{14175\pi^2\nu^2}{4096} - \frac{14830647\nu^3}{4480} - \frac{65625\pi^2\nu^3}{1024} - \frac{17623\nu^4}{240} \right) \]
\[+ p^2 (p.n)^4 \left(\frac{3171550\nu}{23520} + \frac{89625\pi^2\nu^2}{4096} + \frac{84889\nu^2}{1568} + \frac{127125\pi^2\nu^3}{4096} + \frac{373945981\nu^3}{94080} \right) \]
\[- \frac{30075\pi^2\nu^3}{1024} - \frac{5749\nu^4}{96} \right) + p^6 \left(\frac{161}{32} + \frac{11206267\nu}{141120} - \frac{7719\pi^2\nu^2}{4096} + \frac{3605263\nu^2}{29400} \right) \]
\[
\begin{align*}
&+ \frac{29987\pi^2 v^2}{4096} + \frac{108551131 v^3}{4233600} - \frac{20259\pi^2 v^3}{1024} - \frac{599 v^4}{32} + p^4(p.n)^2 \left(\frac{21}{16} - \frac{162949463 v^5}{235200} \right) \\
&+ \frac{5887\pi^2 v^2}{4096} - \frac{1945067 v^3}{2450} - \frac{172311\pi^2 v^3}{4096} + \frac{2369976949 v^4}{1411200} + \frac{106947\pi^2 v^4}{1024} + \frac{549 v^5}{32} \\
&+ p^4(p.n)^6 \left(-\frac{132847139 v^2}{141120} + \frac{3302175\pi^2 v^2}{65536} - \frac{22546873057 v^3}{1693440} - \frac{413055\pi^2 v^3}{4096} \right) \\
&+ \frac{17629672339 v^3}{1128960} + \frac{1825635\pi^2 v^3}{4096} - \frac{47772068147 v^4}{846720} - \frac{12653055\pi^2 v^4}{8192} - \frac{1431581 v^5}{768} \\
&+ (p.n)^8 \left(\frac{4756417 v^5}{26880} - \frac{2925405\pi^2 v^5}{131072} - \frac{192771863 v^6}{40320} + \frac{23625\pi^2 v^6}{4096} + \frac{2044829 v^7}{10752} \right) \\
&- \frac{784665\pi^2 v^3}{4096} - \frac{1282851793 v^3}{32256} - \frac{9135\pi^2 v^3}{32} - \frac{1816323 v^5}{256} + p^8(p.n)^2 \left(\frac{1605}{256} - \frac{18459883 v^5}{268800} \right) \\
&+ \frac{310029\pi^2 v^2}{131072} + \frac{1275787309 v^2}{3175200} - \frac{23771\pi^2 v^2}{2048} + \frac{38805398273 v^3}{25401600} + \frac{73075\pi^2 v^3}{2048} \\
&+ \frac{174300143 v^4}{268800} + \frac{446081\pi^2 v^4}{8192} - \frac{7797 v^5}{512} + p^6(p.n)^2 \left(\frac{45}{32} - \frac{204352217 v}{2822400} \right) \\
&- \frac{685233\pi^2 v^2}{32768} + \frac{11064793483 v^2}{2116800} + \frac{291459\pi^2 v^2}{4096} - \frac{6068679041 v^3}{1693440} - \frac{1182561\pi^2 v^3}{4096} \\
&+ \frac{26379298087 v^4}{2822400} + \frac{5051661\pi^2 v^4}{8192} + \frac{54337 v^5}{128} + p^4(p.n)^4 \left(\frac{257519 v}{336} - \frac{1824025\pi^2 v^2}{32768} \right) \\
&- \frac{8649135391 v^2}{725760} + \frac{212625\pi^2 v^2}{4096} - \frac{81220205 v^3}{8064} - \frac{209335\pi^2 v^3}{103680} + \frac{8667605527 v^4}{4096} \\
&+ \frac{10868515\pi^2 v^4}{8192} - \frac{1100997 v^5}{640} \right) \\
&+ \frac{\left(\frac{3}{8} - \frac{1279 v^2}{72} + \frac{15\pi^2 v^2}{64} + (p.n)^2 \left(\frac{11}{4} + \frac{73801 v^2}{1600} + \frac{4429\pi^2 v^2}{192} + \frac{953891 v^2}{7200} \right) \right)}{4033\pi^2 v^2} \\
&+ p^2(p.n)^2 \left(\frac{95}{16} + \pi^2 v^2 + \frac{115733 v^3}{2880} + \frac{643\pi^2 v^3}{128} - \frac{1223723 v^4}{7200} + \frac{1419\pi^2 v^4}{128} \right) \\
&+ (p.n)^4 \left(-\frac{1}{8} + \frac{1895797259 v^2}{235200} - \frac{3293913\pi^2 v^2}{4096} - \frac{1742633989 v^4}{117600} - \frac{2617363\pi^2 v^4}{4096} \right) \\
&+ \frac{14035555739 v^3}{705600} - \frac{361499\pi^2 v^3}{1024} + p^4(p.n)^2 \left(\frac{499}{64} + \frac{2128837091 v^3}{1411200} - \frac{1328147\pi^2 v^3}{12288} \right) \\
&+ \frac{420666323 v^2}{132300} + \frac{2076041\pi^2 v^2}{12288} + \frac{617770201 v^3}{423360} + \frac{98447\pi^2 v^3}{3072} + p^2(p.n)^2 \left(\frac{257519 v^2}{128} - \frac{3656476457 v^3}{235200} \right) \\
&- \frac{2385014243 v^3}{282240} + \frac{5042575\pi^2 v^3}{6144} + \frac{35606467999 v^4}{2116800} - \frac{5962205\pi^2 v^4}{6144} - \frac{3656476457 v^3}{235200} \\
&+ \frac{131231\pi^2 v^2}{1536} + p^2(p.n)^4 \left(\frac{3}{16} + \frac{175079560811 v^2}{940800} - \frac{93462353\pi^2 v^2}{8192} - \frac{3559323922849 v^2}{2822400} \right) \\
&+ \frac{166850287\pi^2 v^2}{4096} + \frac{1804730974343 v^3}{1881600} + \frac{219605317\pi^2 v^3}{8192} + \frac{9069782331371 v^4}{1693440} \\
&- \frac{631940135\pi^2 v^2}{8192} + p^6(p.n)^2 \left(\frac{1567}{128} + \frac{331187219953 v^2}{50803200} - \frac{9597775\pi^2 v^2}{24576} - \frac{242295730217 v^2}{8467200} \right) \\
&+ \frac{343433\pi^2 v^2}{1536} + \frac{10130224103 v^3}{10160640} + \frac{72402467\pi^2 v^3}{24576} + \frac{30642112157 v^4}{423360} + \frac{22396811\pi^2 v^4}{24576} \right)
\end{align*}
\]
\[p^4 (p.n)^2 \left(\frac{165}{32} + \frac{14889340433759 \nu}{16934400} + \frac{32454227 \pi^2 \nu}{6144} + \frac{135138293977 \nu^2}{282240} \right) \]
\[- \frac{266286265 \pi^2 \nu^2}{24576} - \frac{57499975573 \nu^3}{336880} - \frac{110076807 \pi^2 \nu^3}{4096} - \frac{1067026223295 \nu^4}{8467200} \]
\[+ \frac{41375245 \pi^2 \nu^4}{3072} \right) \right] \]
\[
\begin{align*}
+ \frac{330761}{35} + p^4 (p.n)^4 \left(\frac{25407}{28} + \frac{80489}{28} + \frac{243865}{112} - \frac{77415}{14} \right) \\
+ (p.n)^8 \left(\frac{999}{1008} + \frac{636}{285} - \frac{1740}{3} - \frac{5367}{4} \right) + p^8 \left(\frac{23587}{112} - \frac{2518799}{2520} + \frac{823993}{630} \right) \\
- \frac{758113}{1008} + p^6 (p.n)^2 \left(\frac{2}{449889}{560} + \frac{1677317}{840} - \frac{1954571}{420} + \frac{607031}{168} \right) \\
+ p^2 (p.n)^6 \left(-\frac{1647}{3} + \frac{9545}{3} - \frac{129523}{48} + \frac{419977}{48} \right) \\
+ \frac{1}{k^4} \left(\frac{68}{3} - \frac{2}{45} p^3 (p.n) (-1215 + 827) + \frac{2}{45} (p.n)^2 (p.n) (-3354 + 10685) + (p.n)^4 (-\frac{52236}{35} \right) \\
+ \frac{32446}{7} - \frac{304669}{30} \right) + p^4 \left(\frac{49023}{70} + \frac{592957}{315} - \frac{297509}{315} \right) \\
+ p^2 (p.n)^2 \left(\frac{201352}{105} - \frac{1895597}{315} + \frac{2822672}{315} + (p.n)^4 \right) \\
+ \frac{1}{k^4} \left(\frac{152831374}{140} - \frac{124306523}{1260} + \frac{1324003}{420} - \frac{9884389}{420} + \frac{10240427}{105} \right) \\
- \frac{2476553}{105} + \frac{12260}{315} \right) + p^6 \left(\frac{652717}{252} + \frac{1932037}{945} - \frac{19664110}{1890} + \frac{18212479}{3780} \right) \\
+ p^2 (p.n)^4 \left(-\frac{3585784}{105} + \frac{53653868}{210} + \frac{155079209}{210} + \frac{20304074}{105} \right),
\end{align*}
\] (1)

working in cms coordinates and using the rescaling defined in [10], Eq. (7). In dot-products the vectors are 3-vectors. Otherwise the same symbol denotes their modulus and \(p.n = p \cdot r / r \). The implicit counting of the powers in \(\eta^2 = 1 / c^2 \) is defined in [6], Eq. (54).

In the limit \(\nu \to 0 \) we agree with the Schwarzschild solution in harmonic coordinates [23].

To compare our result with the post-Newtonian expansion of the result of Ref. [1] to 6PN we perform the following canonical transformation

\[
\tilde{H} = H + \{ H, g \} + \frac{1}{2!} \{ \{ H, g \}, g \} + \frac{1}{3!} \{ \{ \{ H, g \}, g \}, g \} + \frac{1}{4!} \{ \{ \{ \{ H, g \}, g \}, g \}, g \}.
\]

(2)

where \(\{, \} \) denotes the Lie bracket and \(H \) and \(\tilde{H} \) are the Hamiltonians for which the transformation is performed. The corresponding expressions have to be expanded to the respective post-Newtonian order. In the logarithmic terms the scale \(r_0 = e^{-\gamma/2} / (2\sqrt{\pi} \mu_1) \) appears. Here \(\gamma \) denotes the Euler–Mascheroni constant and \(\mu_1 \) is the rescaled mass scale appearing in \(G_N \) in \(D \) dimensions. The function \(g \) inducing the canonical transformation is in general given by

\[
g = p.r \sum_{i=-1}^0 \sum_{j.k.l.m=0}^1 \alpha_{ijklm} r^{-j} p^{2k} (p.n)^2 l \ln^m (r/r_0).
\]

(3)

with \(\nu \)-dependent coefficients \(\alpha_{ijklm} \). Using this ansatz and evaluating Eq. (2) the corresponding explicit transformation can be found. The generating function \(G_{\text{pot}}^{\text{pot}} \) is given in Appendix A, Eq. (4), mapping our result to that of [1]. The potential contributions to the scattering angle have been already found to be the same up to 5PN, cf. [1], referring to the Hamiltonian derived in [10]. Here we proved that this applies to the potential contributions to all observables to 6PN. Next we compare to the part of the local contributions in Ref. [2], Eq. (7.29) to \(O(G_N^4) \) and the lower order terms in \(G_N \), which stem from the potential terms. These are all contributions with the exception of the purely rational terms of order \(\nu^1 \), \(\nu^2 \) and \(\nu^3 \), which contain also local tail contributions [12,24]. We determine the generating function \(G_{\text{pot}}^{\text{pot}} \) given in Appendix A, Eq. (5). Again we find full agreement in all these terms, which also will imply agreement for the corresponding contributions to the scattering angle. In this way we cover all the potential contributions to \(O(G_N^4) \) has been been obtained.

The Hamiltonian \(H_{\text{pot}} \), Eq. (1) is given in computer readable form in an attachment to this paper.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Acknowledgement

We thank Z. Bern for providing a computer-readable version of the Hamiltonian obtained in [1]. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska–Curie grant agreement No. 764850, SAGEX and KMP Berlin.

Appendix A. The generators of the canonical transformations

The generator of the canonical transformation from harmonic coordinates to the isotropic coordinates used in [1] is given by

\[
\begin{align*}
 &\text{Acc.} \\
 &\frac{1}{r^2} \left[\frac{3}{4} \nu + \frac{\nu^2}{16} + \frac{p^2 \left(\frac{9}{4} - \frac{5 \nu^2}{8} + \nu^3 \right)}{1689} \right] + (p.n)^2 \left(\frac{79 \nu}{96} + \frac{413 \nu^3}{32} + \frac{797 \nu^5}{48} + \nu^4 \right) + p^4 \left(\frac{309 \nu}{64} - \frac{635 \nu^2}{64} - \frac{35 \nu^3}{4} + \frac{\nu^4}{32} \right) + (p.n)^4 \left(\frac{-487 \nu}{960} - \frac{181 \nu^2}{64} - \frac{142 \nu^3}{15} + \frac{7 \nu^4}{96} \right) + p^6 \left(\frac{116237 \nu^4}{960} + \frac{49 \nu^5}{384} \right) + (p.n)^6 \left(\frac{-159 \nu}{224} - \frac{751 \nu^2}{224} + \frac{2263 \nu^3}{280} - \frac{89981 \nu^4}{2240} + \frac{15 \nu^5}{224} \right) + p^8 \left(\frac{-5021 \nu}{1920} - \frac{27691 \nu^2}{3840} + \frac{9845 \nu^3}{256} - \frac{127735 \nu^4}{1536} - \frac{140303 \nu^5}{7680} + \frac{19 \nu^6}{3840} \right) + p^{10} \left(\frac{-1943 \nu}{384} + \frac{49709 \nu^2}{768} - \frac{7135 \nu^3}{384} + \frac{233293 \nu^4}{1536} + \frac{83461 \nu^5}{1536} + \frac{19 \nu^6}{192} \right) + p^2 (p.n)^6 \left(\frac{7783 \nu}{8960} + \frac{11253 \nu^2}{896} - \frac{75627 \nu^3}{2240} + \frac{1258391 \nu^4}{17920} + \frac{181733 \nu^5}{17920} + \frac{3 \nu^6}{320} \right) + p^4 (p.n)^6 \left(\frac{14557 \nu}{512} - \frac{90189 \nu^2}{512} + \frac{21797 \nu^3}{64} - \frac{97743 \nu^4}{512} + \frac{99717 \nu^5}{512} + \frac{7 \nu^6}{512} \right) + p^2 (p.n)^8 \left(\frac{-5333 \nu}{11520} + \frac{40343 \nu^2}{11520} + \frac{226997 \nu^3}{20160} - \frac{843847 \nu^4}{32256} - \frac{76493 \nu^5}{161280} + \frac{7 \nu^6}{1536} \right) + (p.n)^8 \left(\frac{-5333 \nu}{11520} + \frac{40343 \nu^2}{11520} + \frac{226997 \nu^3}{20160} - \frac{843847 \nu^4}{32256} - \frac{76493 \nu^5}{161280} + \frac{7 \nu^6}{1536} \right) \right]
\end{align*}
\]
\[
\begin{align*}
&+ \frac{2630001389207v^3}{25401600} - \frac{8715005\pi^2v^3}{12288} + \frac{525737859v^4}{9800} - \frac{52792535\pi^2v^4}{6144} + \frac{1031v^5}{1536} + \frac{11v^6}{3840} \\
&+ \frac{1}{r^3} \left[-\frac{17v}{6} + \frac{1}{90}p^2v(585 + 4v) - \frac{1}{3}(p.n)^2v(12 + 37v) - (p.n)^4 \left(11v - \frac{13v^2}{6} \right) \right] \\
&+ \frac{431v^3}{12} + p^4 \left(\frac{759v}{40} - \frac{69887v^2}{1260} - \frac{10001v^3}{720} \right) + p^2(p.n)^2 \left(\frac{16v}{5} + 28v^2 + \frac{43567v^3}{840} \right) \\
&+ p^6 \left(\frac{5777v}{140} - \frac{780211v^2}{4320} + \frac{163139v^3}{6048} - \frac{2975597v^4}{30240} \right) + p^2(p.n)^4 \left(\frac{213v}{14} + 6851v^2 \right) \\
&+ \frac{2591v^3}{224} - \frac{12837v^4}{224} + p^4(p.n)^2 \left(-\frac{1801v}{280} - \frac{5359v^2}{210} - \frac{17339v^3}{240} + \frac{23201v^4}{1120} \right) \\
&+ (p.n)^6 \left[-\frac{37v}{2} - \frac{106v^2}{9} - \frac{290v^3}{9} + \frac{1789v^4}{18} \right] + \frac{1}{r^4} \left[-\frac{59v}{30} - \frac{443v^2}{60} + p^2 \left(-\frac{5347v}{168} \right) \right] \\
&- \frac{4828v^2}{35} - \frac{15629v^3}{126} + (p.n)^2 \left(\frac{4087v}{140} - \frac{35153v^2}{252} + \frac{9067v^3}{42} \right) + p^2(p.n)^2 \left(\frac{2276941v}{3780} \right) \\
&- \frac{13614733v^2}{1890} + \frac{10245317v^3}{1080} - \frac{2189263v^4}{1008} + p^4 - \frac{2461261v^2}{10080} + \frac{23907v^2}{10} \\
&- \frac{1833827v^3}{1260} + \frac{846893v^4}{1680} + (p.n)^4 \left(-\frac{258989v}{1260} + \frac{10783751v^2}{2520} = \frac{38512301v^3}{5040} \right) \\
&+ \frac{616781v^4}{240} \right] + \ln \left(\frac{r}{r_0} \right) \left[\frac{1}{r^3} \left[-17v + \frac{1}{15}p^2v(585 + 4v) - 2(p.n)^2v(12 + 37v) \right] \\
&- \frac{1}{2}(p.n)^4 \left(132 - 26v + 413v^2 \right) + p^4 \left(\frac{2277v}{20} - \frac{69887v^2}{210} - \frac{10001v^3}{120} \right) \\
&+ p^2(p.n)^2 \left(\frac{96v}{5} + 168v^2 + \frac{43567v^3}{140} \right) + p^6 \left(\frac{17331v^3}{70} - \frac{780211v^2}{720} + \frac{163139v^3}{1008} \right) \\
&- \frac{2975597v^4}{5040} + p^2(p.n)^4 \left(\frac{639v}{7} + \frac{6851v^2}{14} + \frac{7773v^3}{112} - \frac{38511v^4}{112} \right) + p^4(p.n)^2 \left(-\frac{5403v}{140} \right) \\
&- \frac{5359v^2}{35} - \frac{17339v^3}{40} + \frac{69603v^4}{560} + (p.n)^6 \left(-\frac{111v}{3} - \frac{212v^2}{3} + \frac{580v^3}{3} + \frac{1789v^4}{3} \right) \right] \\
&+ \frac{1}{r^4} \left[-\frac{236v}{15} - \frac{619v^2}{10} + p^2 \left(-\frac{5347v}{21} + \frac{39079v^2}{35} - \frac{34728v^3}{35} \right) + (p.n)^2 \left(\frac{8174v}{35} \right) \right] \\
&- \frac{141935v^3}{126} + \frac{540121v^3}{315} + p^2(p.n)^2 \left(\frac{4553882v^2}{945} - \frac{21795487v^2}{3780} + \frac{71879222v^3}{945} \right) \\
&- \frac{6209487v^4}{360} + p^4 \left(\frac{2461261v^2}{1260} + \frac{767301v^2}{40} - \frac{29764649v^3}{2520} - \frac{10268647v^4}{2520} \right) \\
&+ (p.n)^4 \left(-\frac{517978v}{315} + \frac{10779278v^2}{315} - \frac{154121549v^3}{2520} + \frac{17201353v^4}{840} \right) \right] \right].
\end{align*}
\]

The generator of the canonical transformation to the 6PN EOB Hamiltonian reads

\[g_{\text{harm}}^{\text{EOB}} = \]

\[p.r \left[\frac{p^2v}{2} - \frac{p^4v}{8} + \frac{5p^{10}v^3}{96} + p^6 \left(\frac{v}{16} - \frac{v^2}{16} \right) + p^8 \left(\frac{5v^2}{64} - \frac{v^3}{48} \right) + p^{12} \left(\frac{v^4}{96} + \frac{v^5}{240} \right) \right] \]

\[+ \frac{1}{r^3} \left[\frac{5v^2}{4} - \frac{v^4}{4} + p^4 \left(-\frac{62541v^4}{256} - \frac{102821v^5}{1536} + \frac{v^6}{192} \right) + \frac{4v^3}{3} - \frac{83v^2}{24} - \frac{v^3}{8} \right](p.n)^2 \]
\[\begin{align*}
&+ \left(\frac{1333}{960} + \frac{31}{80} + \frac{48}{48} \right)(p.n)^4 + \left(\frac{21565}{1344} - \frac{63677}{2688} + \frac{131}{128} \right)(p.n)^6 \\
&+ \left(\frac{2351599}{32256} + \frac{3989339}{32256} - \frac{91}{128} \right)(p.n)^8 + p^6 \left[\frac{16783}{384} + \frac{14675}{384} - \frac{v^5}{384} \right] \\
&+ \left(\frac{54537}{512} + \frac{113807}{1440} - \frac{21}{1520} \right)(p.n)^2 + p^4 \left[\frac{1681}{192} - \frac{143}{16} - \frac{v^2}{24} \right] \\
&+ \left(\frac{6157}{384} - \frac{100025}{1152} + \frac{131}{576} \right)(p.n)^2 + \left(\frac{804613}{7680} - \frac{7560}{7680} + \frac{1152}{1152} \right)(p.n)^4 \\
&+ p^2 \left[\frac{29}{6} - \frac{191}{24} + \frac{5}{24} + \frac{817}{96} + \frac{493}{32} + \frac{v^4}{48} \right](p.n)^2 + \left(\frac{793}{20} + \frac{484729}{5760} \right)(p.n)^6 \\
&- \frac{199}{1440}(p.n)^4 + \left(\frac{7679449}{53760} - \frac{481625}{1344} - \frac{61}{1920} \right)(p.n)^6 + \frac{1}{r} \left[1 - \frac{v^2}{2} \right] \\
&+ p^{10} \left(\frac{274391}{30720} + \frac{118049}{10240} \right) + \left(- \frac{v}{2} - \frac{v^2}{8} \right)(p.n)^2 - \frac{v^2(p.n)^4}{4} + \frac{5v^4(p.n)^6}{48} + \frac{7v^4(p.n)^8}{48} \\
&- \frac{63v^6(p.n)^{10}}{1024} + p^8 \left[\frac{569}{512} - \frac{1927}{768} + \frac{v^5}{768} \right] \left(\frac{14231}{10240} - \frac{64907}{92160} - \frac{v^6}{7680} \right)(p.n)^2 \\
&+ p^6 \left[\frac{103^2}{192} + \frac{229}{384} + \left. \left(- \frac{205}{384} + \frac{145}{768} + \frac{v^5}{4608} \right) \right] \left(\frac{629}{5120} - \frac{20833}{30720} \right)(p.n)^4 \\
&+ \frac{19v^6}{10240}(p.n)^4 + p^4 \left[\frac{7v}{16} - \frac{37}{48} + \frac{v^3}{48} \right] \left(\frac{7v^2}{96} + \frac{61}{384} + \frac{v^4}{96} \right)(p.n)^2 + \left(\frac{651}{256} + \frac{29}{128} \right)(p.n)^4 \\
&+ \frac{37v^5}{7680}(p.n)^4 + \left(\frac{19v^5}{1024} + \frac{214}{6144} + \frac{265}{6144} \right)(p.n)^6 + p^2 \left[\frac{5}{4} + \frac{v^2}{4} + \left(\frac{v}{4} + \frac{7v^2}{24} \right) \right] \\
&+ \frac{1}{8}(p.n)^2 + \frac{1}{8}(p.n)^4 + \frac{1371}{1440}(p.n)^8 + \frac{1}{r} \left[-\frac{17v}{6} - \frac{4900249}{60480} \right] \\
&+ \frac{97v^2(p.n)^2}{12} + \frac{57v^3(p.n)^4}{8} + \frac{1471v^4(p.n)^6}{15120} + p^4 \left(\frac{288}{1120} + \frac{40613}{32327} \right) v^4(p.n)^2 \\
&+ p^2 \left(\frac{271}{360} + \frac{40921}{840} - \frac{45349}{224} \right)(p.n)^2 \right] \right] + \frac{1}{r^4} \left[\frac{1187\pi^2v}{1024} + \frac{77015}{7680} + \frac{1920}{1920} \right] \\
&+ p^4 \left[\frac{59689843}{131072} + \frac{14968753}{24576} + \frac{14964907}{6144} \pi^2 v^3 - \frac{77051}{7680} + \frac{1391}{1920} \right] \\
&+ \frac{v^4}{800} \left[\frac{60034957159}{5644800} + \frac{5048789}{1680} - \frac{5621293}{1680} \ln \left(\frac{r}{r_0} \right) \right] + p^2 \left(\frac{624073}{6144} \pi^2 v \right) \\
&+ \frac{920315\pi^2}{6444} - \frac{79}{40} + \frac{107}{480} + (p.n)^2 \left[\frac{1555146239}{1179648} - \frac{6894431}{2048} + \frac{47430287}{9216} \pi^2 v^3 \right] \\
&+ \frac{174347}{11520} + \frac{17}{6} + \frac{v^4}{6444} \left[\frac{73238156053}{1693440} + \frac{52850513}{9216} \pi^2 v^3 - \frac{7333009}{504} \ln \left(\frac{r}{r_0} \right) \right] \\
&+ v^3 \left[\frac{183707899}{100800} - \frac{185\pi^2}{32} + \frac{200269}{210} \ln \left(\frac{r}{r_0} \right) \right] + v^2 \left[\frac{902701}{7200} + \frac{263\pi^2}{32} - \frac{789}{10} \ln \left(\frac{r}{r_0} \right) \right] \\
&+ (p.n)^2 \left[\frac{2317781}{18432} - \frac{89525\pi^2}{768} + \frac{3829}{2888} - \frac{377}{2880} \pi^2 v^3 - \frac{32326479}{11200} + \frac{23879\pi^2}{768} \right] \\
&+ \frac{2263951}{1260} \ln \left(\frac{r}{r_0} \right) \right] + (p.n)^4 \left[\frac{1581642941}{1966080} + \frac{464633167}{122880} - \frac{11454839}{3072} \pi^2 v^3 \right] \\
&- \frac{167053}{23040} + \frac{14031}{11520} + v^4 \left[\frac{7419092299}{1680} + \frac{53579429}{16144} + \frac{25070309}{1680} \ln \left(\frac{r}{r_0} \right) \right] \right] \right]
\end{align*}\]
\[+ \frac{1}{7^3} \left\{ \begin{array}{l}
\frac{31^2}{16} - \frac{31^3}{16} + p^6 \left\{ \frac{161901\pi^2 v}{131072} - \frac{20583\pi^2 v^2}{8192} + \frac{226655\pi^2 v^3}{24576} + \frac{981061\pi^2 v^5}{15360} - \frac{31^6}{256} \\
+ v^4 \left[\frac{22497180479}{38688000} - \frac{65287\pi^2 v}{8192} - \frac{4900249}{100080} \ln \left(\frac{r}{r_0} \right) \right] \right\} + (p.n)^2 \left\{ - \frac{879\pi^2 v}{1024} - \frac{15\pi^2 v^3}{64} - \frac{v^4}{8} \\
+ v^2 \left[\frac{109921}{2400} + \frac{99\pi^2 v}{128} - \frac{97}{2} \frac{v^2}{1024} \ln \left(\frac{r}{r_0} \right) \right] \right\} + (p.n)^4 \left\{ \frac{6015\pi^2 v}{4096} + \frac{6765\pi^2 v^2}{4096} - \frac{7073\pi^2 v^3}{1440} \right\} \\
+ \frac{697\pi^5 v^4}{11520} + v^3 \left[\frac{672938979}{564480} + \frac{9635\pi^2 v^3}{1024} - \frac{171}{4} \frac{v^3}{1024} \ln \left(\frac{r}{r_0} \right) \right] + v^5 \left[\frac{1795}{72} - \frac{7\pi^2 v}{8} - \frac{171\pi^2 v^3}{1024} \right] \right\} \\
+ (p.n)^6 \left\{ - \frac{325045\pi^2 v^5}{131072} - \frac{36855\pi^2 v^6}{8192} + \frac{168035\pi^2 v^7}{8192} - \frac{17410529\pi^2 v^8}{322560} + \frac{1489\pi^8 v^9}{7680} \right\} \\
\right\} \]
\]

Here we excluded the purely rational terms at orders \(v \), \(v^2 \) and \(v^3 \), to which local parts of the tail terms contribute.

References

[1] Z. Bern, J. Parra-Martinez, R. Roiban, M.S. Ruf, C.H. Shen, M.P. Solon, M. Zeng, arXiv:210107254 [hep-th].
[2] D. Bini, T. Damour, A. Geralico, Phys. Rev. D 102 (2020) 024061, arXiv:2004.05407 [gr-qc].
[3] B.P. Abbott, et al., Virgo LIGO Scientific, Phys. Rev. Lett. 116 (2016) 061102, arXiv:1602.03837 [gr-qc];
Phys. Rev. X 6 (2016) 041015, arXiv:1606.04856 [gr-qc];
Phys. Rev. Lett. 119 (2017) 161101, arXiv:1710.05832 [gr-qc], 2017;
Phys. Rev. X 9 (2019) 031040, arXiv:1811.12907 [astro-ph.HE].
[4] Y. Aso, Y. Michimura, K. Somiya, M. Ando, O. Miyakawa, T. Sekiguchi, D. Tatsumi, H. Yamamoto, KAGRA, Phys. Rev. D 88 (2013) 043007, arXiv:1306.6747 [gr-qc];
F. Acernese, et al., VIRGO, Class. Quantum Gravity 32 (2015) 024001, arXiv:1408.3978 [gr-qc];
J. Aasi, et al., LIGO Scientific, Class. Quantum Gravity 32 (2015) 074001, arXiv:1411.4547 [gr-qc];
B. Iyer, et al., LIGO Collaboration, LIGO-India, Proposal for the Consortium for Solar Initiative in Gravitational-wave Observations, 2011, LIGO Document M1100296-v2.
[5] T. Damour, P. Jaranowski, G. Schäfer, Phys. Rev. D 89 (8) (2014) 084024, arXiv:1401.4548 [gr-qc];
Phys. Rev. D 91 (8) (2015) 084024, arXiv:1502.07245 [gr-qc];
P. Jaranowski, G. Schäfer, Phys. Rev. D 92 (12) (2015) 124043, arXiv:1508.01016 [gr-qc];
C.R. Galley, A.K. Leibovich, R.A. Porto, A. Rossi, Phys. Rev. D 93 (2016) 124010, arXiv:1511.07379 [gr-qc];
L. Bernard, L. Blanchet, A. Bohé, G. Faye, S. Marstar, Phys. Rev. D 93 (8) (2016) 084037, arXiv:1512.02876 [gr-qc];
T. Damour, P. Jaranowski, G. Schäfer, Phys. Rev. D 93 (8) (2016) 084041, arXiv:1601.01283 [gr-qc];
L. Bernard, L. Blanchet, A. Bohé, G. Faye, S. Marstar, Phys. Rev. D 95 (4) (2017) 044026, arXiv:1610.07934 [gr-qc];
S. Foffa, P. Mastrolo, R. Sturani, C. Sturm, Phys. Rev. D 95 (10) (2017) 104009, arXiv:1612.00482 [gr-qc];
T. Damour, P. Jaranowski, Phys. Rev. D 95 (8) (2017) 084005, arXiv:1701.02645 [gr-qc];
T. Marchand, L. Bernard, L. Blanchet, G. Faye, Phys. Rev. D 97 (4) (2018) 044023, arXiv:1707.09289 [gr-qc];
L. Bernard, L. Blanchet, G. Faye, T. Marchand, Phys. Rev. D 97 (4) (2018) 044037, arXiv:1711.00283 [gr-qc];
S. Foffa, R. Sturani, Phys. Rev. D 100 (2) (2019) 024047, arXiv:1903.05113 [gr-qc];
S. Foffa, R.A. Porto, I. Rothstein, R. Sturani, Phys. Rev. D 100 (2) (2019) 024048, arXiv:1903.05118 [gr-qc].
[6] J. Blümlein, A. Maier, P. Marquard, G. Schäfer, Nucl. Phys. B 955 (2020) 115041, arXiv:2003.01992 [gr-qc].
[7] J. Blümlein, A. Maier, P. Marquard, Phys. Lett. B 800 (2020) 135100, arXiv:1902.11180 [gr-qc].
[8] S. Foffa, P. Mastrolo, R. Sturani, C. Sturm, W.J. Torres Bobadilla, Phys. Rev. Lett. 122 (24) (2019) 241605, arXiv:1902.10571 [gr-qc];
D. Bini, T. Damour, A. Geralico, Phys. Rev. Lett. 123 (23) (2019) 231104, arXiv:1909.02375 [gr-qc];
S. Foffa, R. Sturani, W.J. Torres Bobadilla, J. High Energy Phys. 02 (2021) 165, arXiv:2010.13730 [gr-qc].
[9] D. Bini, T. Damour, A. Geralico, Phys. Rev. D 102 (2) (2020) 024062, arXiv:2003.11891 [gr-qc].
[10] J. Blümlein, A. Maier, P. Marquard, G. Schäfer, Nucl. Phys. B 965 (2021) 115352, arXiv:2010.13672 [gr-qc].
[11] J. Blümlein, A. Maier, P. Marquard, G. Schäfer, Phys. Lett. B 807 (2020) 135486, arXiv:2003.07145 [gr-qc].
[12] D. Bini, T. Damour, A. Geralico, Phys. Rev. D 102 (8) (2020) 084047, arXiv:2007.11239 [gr-qc].
