Pressure-induced phase transitions and the tetragonal high-pressure modification of \textit{Fe}$_{1.08}$Te

C. Kozi,1 S. Rößler,1 A. A. Tsirlin,1 D. Kasinathan,1 C. Börrnert,1 M. Hanfland,2 H. Rosner,1 S. Wirth,1 and U. Schwarz\textsuperscript{1,2}

1Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany
2European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble Cedex 9, France

(Dated: May 2, 2014)

PACS numbers: 74.62.Fj, 74.70.Xa, 61.50.Ks

We report the effects of hydrostatic pressure on the temperature-induced phase transitions in \textit{Fe}$_{1.08}$Te in the pressure range 0–3 GPa using synchrotron powder x-ray diffraction (XRD). The results reveal a plethora of phase transitions. At ambient pressure, \textit{Fe}$_{1.08}$Te undergoes simultaneous first-order structural symmetry-breaking and magnetic phase transitions, namely from the paramagnetic tetragonal (P4/nmm) to the antiferromagnetic monoclinic (P2$_1$/m) phase. We show that, at a pressure of 1.33 GPa, the low-temperature structure adopts an orthorhombic symmetry. More importantly, for pressures of 2.29 GPa and higher, a symmetry-conserving tetragonal-tetragonal phase transition has been identified from a change in the c/a ratio of the lattice parameters. The succession of different pressure and temperature-induced structural and magnetic phases indicates the presence of strong magnetoelastic-coupling effects in this material.

I. INTRODUCTION

The recent discovery of superconductivity in a Fe-based layered system by Kamihara \textit{et al.}1,2 opened up new avenues for research in the field of high transition-temperature superconductivity. The parent compounds of the Fe-superconductors display ubiquitous magnetic and structural phase transitions. In this context, the situation is similar to the cuprates for which the exact nature of the intricate interplay between structure, magnetism and superconductivity still remains elusive after more than two decades of intense research. Since the electronic and phononic excitations are extremely sensitive to the inter-atomic distances, high pressure can efficiently be used as a clean tuning parameter to systematically influence and, hence, gain insight into these complex ordering phenomena. The physical properties of Fe-pnictides and chalcogenides display strong pressure dependencies.2,3

In the case of the 1111 and 122 families of compounds, pressure suppresses the magnetic transition temperature T_N (Refs. 2 and 3) and concomitantly enhances the superconducting transition temperature T_c which suggests an intimate relationship between the two order parameters. Under pressure, some 1111-compounds (e.g., CaFeAsF) undergo a transition from the orthorhombic to lower symmetry monoclinic phase4 in contrast to the transition from orthorhombic to higher symmetry tetragonal phase found in 122-type compounds.5 In undoped BaFe$_2$As$_2$ and SrFe$_2$As$_2$, pressure induces superconductivity with T_c as high as 38 K.6,7 Pressure-induced superconductivity in the case of CaFe$_2$As$_2$ is controversial.8,9,10 However, all 122 systems exhibit a tetragonal collapsed phase that seems to exclude superconductivity.11,12

Among the different families of Fe-superconductors, the tetragonal \textit{Fe}$_{1+y}$Se with T_c = 8 K can be considered as a reference material owing to its archetypical binary atomic pattern.12 The structure belongs to the tetragonal P4/nmm space group and consists of edge-sharing FeSe$_4$ tetrahedra, which form layers orthogonal to the c-axis. The subtle interplay of structural and physical properties in \textit{Fe}$_{1+y}$Se is obvious from the fact that superconducting \textit{Fe}$_{1+y}$Se undergoes a structural transition from the tetragonal to the orthorhombic phase at 90 K while non-superconducting \textit{Fe}$_{1+y}$Se does not.13 Moreover, \textit{Fe}$_{1+y}$Se displays the largest pressure coefficient in the family of Fe-based superconductors, with T_c rising up to 37 K under a pressure of 7–9 GPa.13,14 Eventually, T_c drops with further increase in pressure, and the crystal structure becomes hexagonal above a pressure of 25 GPa.15 In addition, T_c of \textit{Fe}$_{1+y}$Se can also be enhanced by Te substitution up to a maximum of T_c = 15 K for \textit{Fe}$_{1+y}$Se$_{0.5}$Te$_{0.5}$.16,17 The bulk superconductivity disappears for higher Te substitution and no superconductivity has been found so far in bulk samples of the end-member \textit{Fe}$_{1+y}$Te. Instead, \textit{Fe}$_{1+y}$Te displays a unique interplay of magnetic and structural transitions in dependence on the amount of excess Fe, which is presumably accommodated in interstitial sites.18–20 The single, first-order magnetic and structural transition to the monoclinic $P2_1/m$ space group observed at T = 69 K in \textit{Fe}$_{1+y}$Se systematically decreases in temperature down to 57 K with an increase in y from 0.06 to 0.11. For y \geq 0.12, two distinct magnetic and structural transitions occur: the magnetic transition takes place at a higher temperature than the structural one.20 Further, for y \geq 0.12, the low-temperature structure adopts orthorhombic symmetry, $Pmmn$.21–23 This space group $Pmmn$ is a maximal non-isomorphic subgroup of P4/nmm with index 2. In turn, the space group $P2_1/m$ of the monoclinic arrangement is a maximal non-isomorphic subgroup of this orthorhombic variety with index 2.

So far, high-pressure structural investigations on \textit{Fe}$_{1+y}$Te are limited to ambient temperatures.24,25 A
pressure study of FeTe

the magnetic and resistive anomalies observed in a high-pressure-induced tetragonal lattice collapse has been reported for Fe\textsubscript{1.05}Te and Fe\textsubscript{1.087}Te at 300 K at a pressure of about 4 GPa.31,32 This collapsed tetragonal phase was found to be stable up to a pressure of 10 GPa. However, the magnetic and resistive anomalies observed in a high-pressure study of FeTe\textsubscript{0.92} (corresponding to Fe\textsubscript{1.086}Te, pressure study of FeTe

FIG. 1. Experimental protocol: variation of pressure (P) within the four series (referred to as P1–P4) upon changing temperature (T) during the diffraction experiments. ▼ represent P−points at which diffraction data were collected upon cooling, △ mark those measured upon increasing temperature. The temperature-pressure path followed in our experiment is indicated by arrows.

pressure-induced tetragonal lattice collapse has been reported for Fe\textsubscript{1.05}Te and Fe\textsubscript{1.087}Te at 300 K at a pressure of about 4 GPa.31,32 This collapsed tetragonal phase was found to be stable up to a pressure of 10 GPa. However, the magnetic and resistive anomalies observed in a high-pressure study of FeTe\textsubscript{0.92} (corresponding to Fe\textsubscript{1.086}Te,

FIG. 2. Refined synchrotron powder x-ray diffraction patterns of Fe\textsubscript{1.08}Te at temperatures above (285 K) and below (20 K) the phase transition (T\textsubscript{s}~65 K) at ambient pressure.

TABLE I. Parameters of crystal structures and refinements, atomic positions and atomic displacement parameters U\textsubscript{iso} (in 10-2 Å2) in the tetragonal phase at 285 K and in the monoclinic phase at 20 K.

Temperature (K)	Fe\textsubscript{1.08}Te at 285 K	Fe\textsubscript{1.08}Te at 20 K	
Space group	P4/nmm	P2\textsubscript{1}/m	
a (Å)	3.82362(4)	3.83367(8)	
b (Å)	3.79832(7)	3.78932(7)	
c (Å)	6.2824(1)	6.2594(1)	
β (degree)	90	90.661(1)	
R\textsubscript{1}/R\textsubscript{P}	0.022/0.067	0.015/0.095	
Number of reflections	121	361	
Refined parameters for profile/crystal structure	Fe1	Fe2a	Te
Atomic parameters	2a (\frac{1}{4}, \frac{1}{4}, 0)	2e (x, \frac{1}{4}, z)	2e (x, \frac{1}{4}, z)
	U\textsubscript{iso} = 0.93(2)		z = 0.720(1)
	x = 0.7379(4)		x = 0.238(4)
	U\textsubscript{iso} = 0.014(3)		z = 0.719(2)
	U\textsubscript{iso} = 0.23(2)		U\textsubscript{iso} = 0.4(2)
	z = 0.719(2)		U\textsubscript{iso} = 0.21(1)
	U\textsubscript{iso} = 0.2810(1)		U\textsubscript{iso} = 0.2810(1)

a Atomic displacement parameters, U\textsubscript{iso}, and occupancies are intrinsically correlated and, therefore, can not be refined independently. Rietveld refinements performed with the nominal composition Fe\textsubscript{1.08}Te yielded unreasonably small or even negative values for U\textsubscript{iso}. Realistic values of U\textsubscript{iso} could be obtained with SOF(Fe2) = 0.09 corresponding to Fe\textsubscript{1.09}Te.

cf. Ref.33 by Okada et al.33 suggested the presence of two pressure-induced phases at low temperatures. This succession of phase transitions resembles the results29 obtained at ambient pressure but for higher Fe-content, y = 0.13. In order to clearly cross-correlate the influences on the structure exerted by either pressure or Fe excess, we have chosen to investigate a sample with y = 0.08. For this composition, which is close to the one used in Ref.34 we determine the structure with increasing pressure p ≤ 3 GPa and compare the observed structural transformations to the influence of chemical composition.

II. EXPERIMENTAL

Polycrystalline samples were synthesized by solid state reaction of Fe (Alfa Aesar, 99.995%) and Te pieces (Chempur, 99.9999%) in glassy carbon crucibles covered with lids. Mixtures of the target composition were placed (Chempur, 99.9999%) in glassy carbon crucibles covered with lids. Mixtures of the target composition were placed in the sample containers and sealed in quartz ampules under vacuum (10-5 mbar). After heating to 973 K with a rate of 100 K/h, the samples were kept at this temperature for 24 h before increasing the temperature further up to 1173 K. The dwelling at 1173 K for 12 h
investigation are single phase with tetragonal symmetry, clearly show that the samples selected for the present investigation are single phase with tetragonal symmetry, \(P_{4/nmm} \). According to chemical analysis, the samples contain less oxygen and carbon than the detection limit of 0.05 mass \(\% \) and 0.06 mass \(\% \), respectively. As the physical properties of \(\text{Fe}_{1+y} \text{Te} \) depend sensitively on the actual Fe-content \(y \), emphasis was put on its determination. The amount of Fe as obtained by an inductively-coupled plasma method is systematically 1–2 \% higher than the nominal composition. On the other hand, WDX analysis reveals an amount of iron that is typically 3–4 \% lower. However, within the estimated experimental error the results are consistent with the nominal composition. More importantly and in satisfactory agreement, Rietveld refinements of high resolution synchrotron powder x-ray diffraction (XRD) data indicate a composition \(\text{Fe}_{1.05} \text{Te} \) for the nominal composition \(\text{Fe}_{1.08} \text{Te} \) (see Table 1). Similar subtle variations of the determined amount of Fe result also from alternative analysis methods as was reported independently.

Our earlier study\(^{29}\) on \(\text{Fe}_{1.08} \text{Te} \) revealed a sharp first-order transition at \(T_c \sim 65 \text{ K} \) in the heat capacity \(C_p(T) \) accompanied by an anomaly in the temperature dependence of the electrical resistivity \(\rho(T) \) and the magnetic susceptibility \(\chi(T) \), corresponding to a simultaneous magnetic and structural transition. In order to investigate this transition in detail, powder XRD experiments were performed in an angle-dispersive mode at the beam lines ID31 and ID09A of the ESRF (ID31: \(\lambda = 0.40006(3) \text{ A} \) or \(0.39993(3) \text{ A} \), ID09A: \(\lambda = 0.415165 \text{ A} \)). Temperatures down to \(T = 20 \text{ K} \), both at ambient and elevated pressure, were realized utilizing special He-flow cryostats adapted to the requirements of the diffraction set-up environment. The powdered samples were taken in a thin-wall borosilicate glass capillary for ambient pressure measurements (ID31). High pressures were generated by means of the diamond anvil cell technique. The samples were placed in spark-eroded holes of pre-indent metal gaskets, together with small ruby spheres for pressure determination and liquid he-

FIG. 3. Representative high pressure XRD patterns of \(\text{Fe}_{1.08} \text{Te} \) at pressures between ambient (P0) and 2.9 GPa (P4), (a) at 100 K and (b) at 40 K.

FIG. 4. Temperature dependence of powder x-ray diffraction peaks of \(\text{Fe}_{1.08} \text{Te} \). (a) For characterizing the symmetry-breaking transition, the full width at half maximum (FWHM), or (for visible splitting) the sum \(\Delta \) of separation of peak maxima plus FWHM, respectively, of selected reflections are determined. (b) The broadened pattern involving, e.g., the reflections (112) and (200) evidences monoclinic distortion at low temperatures in the pressure regime P1, whereas (c) constant values for all peaks except (200) indicate an orthorhombic low-temperature phase at P2. The error bars are smaller than the symbol sizes.
FIG. 5. Refined synchrotron powder x-ray diffraction patterns of Fe$_{1.08}$Te for the series P1 at temperatures (a) above (65 K) and (b) below (47.5 K) the tetragonal-to-monoclinic transition. (c) and (d) At P2, a transition from tetragonal to orthorhombic phase is observed.

Table II. Parameters of crystal structures and refinements, atomic positions and atomic displacement parameters U_{iso} (in 10$^{-2}$ Å2) at temperatures above and below the phase transition in the pressure ranges P1 and P2.

Temperature (K)	Pressure P1(GPa)	Space group	a (Å)	b (Å)	c (Å)	β (degree)	R_I/R_P	Number of reflections	Refined parameters for profile/crystal structure
65	0.58	$P4/nmm$	3.7899(1)	= a	6.208(2)	90	0.025/0.038	22 / 6	
47.5	0.53	$P2_1/m$	3.8076(1)	3.7758(1)	6.2147(3)	90.354(3)	0.017/0.040	27 / 9	

The considerable effects of preferred orientation caused by the anisotropy of the crystal structure are accounted for by the March-Dollase formalism.37,38

III. RESULTS AND DISCUSSION

A full-profile refinement of powder XRD data measured at ambient pressure confirmed a temperature-induced transformation from tetragonal Fe$_{1.08}$Te (space

lum as a force-transmitting medium (ID09A). The protocol used for the pressure experiment is presented in Fig. 1. Lattice parameters were determined using the program package WinCSD.25 refinements of the crystal structures were performed on the basis of full diffraction profiles with JANA.26 In these least-squares procedures, the considerable effects of preferred orientation caused by
FIG. 6. Powder x-ray diffraction patterns of Fe$_{1.08}$Te in the pressure regime P3 at low temperatures. The left part displays the region of the (200) reflection and the right part an overview of the broader angular range. The pattern at 100 K shows the tetragonal high-temperature phase. The shoulder of the (200) reflection visible at higher angles in the diffraction data taken at 60 K is assigned to the admixture of a second modification. The diagrams recorded at 40 K and 20 K exhibit the tetragonal low-temperature phase. The pronounced shift of, e.g., the (200) line evidences a significant change of the unit cell parameters associated with the symmetry-conserving transformation.

The diagrams recorded at 40 K and 20 K exhibit the tetragonal low-temperature phase. The growth of this phase with decreasing temperature is evident. The (200) reflection at 40 K and 20 K is shifted compared to the pattern recorded at 100 K. The shoulder of the (200) reflection visible at higher angles in the diffraction data taken at 60 K is assigned to the admixture of a second modification. The diagrams recorded at 40 K and 20 K exhibit the tetragonal low-temperature phase. The pronounced shift of, e.g., the (200) line evidences a significant change of the unit cell parameters associated with the symmetry-conserving transformation.

Refined structural parameters at 285 K and at 20 K are presented in Table I.

Upon cooling at only slightly elevated pressures (series P1, pressure values from 0.31–0.75 GPa dependent on temperature, see Fig. 1), additional diffraction lines indicate the onset of a structural change at 55 K. At this temperature, two phases are identified in the XRD patterns of Fe$_{1.08}$Te. At lower temperatures, line broadening of the (112) reflection and a successive splitting of the (200) peak is observed [Fig. 4(a,b)]. In order to characterize the phase transition, the full width at half maximum (FWHM) as well as the sum Δ of separation of peak maxima plus FWHM are depicted in Fig. 4. With decreasing temperature, the refined FWHM value of the (112) peak approximately doubles: from 0.0512(2)$^\circ$ at 295 K to 0.1025(1)$^\circ$ at 40 K, Fig. 4(b). Indexing of the reflections at low temperature requires monoclinic symmetry compatible with the ambient pressure low-temperature phase, P2$_1$/m. Crystal structure refinements of both high- and low-temperature modification are shown in Figs. 3(a) and (b), and the refined parameter values are listed in Tab. II.

At slightly higher pressure (series P2, 1.38–1.65 GPa), the broadening of the (112) peak at low temperatures is completely suppressed (FWHM at 100 K: 0.0613(1)$^\circ$; 27.5 K: 0.0631(2)$^\circ$) while the splitting of the (200) and (020) Bragg peaks remains clearly visible, Fig. 3(c). Owing to the modified XRD pattern, the diagrams measured at temperatures of 55 K and below require an orthorhombic lattice for indexing. Systematic extinctions are compatible with space group Pmnm. Consistently, a first Le Bail refinement yields similarly low values of the residuals as the fit of a monoclinic model. However, the orthorhobic pattern involves a smaller number of free parameters and thus, the higher-symmetry...
the series P3, the determined FWHM of peak (200) corresponds to 0.0797(2)° at 100 K, then it increases to 0.1362(2)° at 60 K, and finally decreases to 0.0784(1)° at 20 K, Fig. 4(a). The patterns of the observed changes in the series P3 and P4 clearly indicate a temperature-induced phase transition involving a two-phase region in which both modifications coexist. Phase coexistence is evidenced between 60 K and 40 K at P3, and between 100 K and 80 K at P4, Fig. 4(b). Co-existing phases in a very large pressure range have also been reported in the case of pnictide compounds at low temperatures.6,7

A detailed analysis of the line positions revealed that upon cooling Bragg peaks like (200) exhibit strong shifts towards higher 2θ angles whereas reflections like (001) are reallocated at lower values of 2θ (see, e.g., the (003)}

TABLE III. Parameters of crystal structures and refinements, atomic positions and atomic displacement parameters U_{iso} (in 10^{-2} Å2) for the pressure ranges P3 and P4.

Temperature (K)	P3	P4
80	2.44	2.33
20		
Pressure P3(GPa)	2.44	2.33
Pressure P4(GPa)	2.86	2.90
Space group	$P4/nmm$	$P4/nmm$
α (Å)	3.7265(1)	3.6946(1)
β (Å)	a	a
c (Å)	6.1428(3)	6.2010(5)
β (degree)	90	90
R_{I}/R_{P}	0.024/0.036	0.059/0.073
Number of reflections	35	36
Refined parameters for profile / crystal structure	23 / 5	26 / 5

Atomic parameters

Fe1

$2a (\frac{1}{4},\frac{1}{4},z)$ $2a (\frac{1}{4},\frac{1}{4},z)$

$U_{iso} = 0.53(5)$ $U_{iso} = 0.43(7)$

Fe2

$2c (\frac{1}{4},\frac{1}{4},z)$ $2c (\frac{1}{4},\frac{1}{4},z)$

$z = 0.680(4)$ $z = 0.662(6)$

$U_{iso} = 0.4(4)$ $U_{iso} = 0.4$ (fixed)

Te

$2c (\frac{1}{4},\frac{1}{4},z)$ $2c (\frac{1}{4},\frac{1}{4},z)$

$z = 0.2911(2)$ $z = 0.2955(3)$

$U_{iso} = 0.36(3)$ $U_{iso} = 0.11(5)$

Temperature (K)	100	40
Pressure P4 (GPa)	2.86	2.90
Space group	$P4/nmm$	$P4/nmm$
α (Å)	3.7131(6)	3.6835(1)
β (Å)	a	a
c (Å)	6.1316(12)	6.1769(5)
β (degree)	90	90
R_{I}/R_{P}	0.076/0.089	0.077/0.074
Number of reflections	42	42
Refined parameters for profile / crystal structure	23 / 3	22 / 5

Atomic parameters

Fe1

$2a (\frac{1}{4},\frac{1}{4},0)$ $2a (\frac{1}{4},\frac{1}{4},z)$

$U_{iso} = 0.3$ (fixed) $U_{iso} = 0.95(7)$

Fe2

$2c (\frac{1}{4},\frac{1}{4},z)$ $2c (\frac{1}{4},\frac{1}{4},z)$

$z = 0.681(1)$ $z = 0.661(6)$

$U_{iso} = 0.3$ (fixed) $U_{iso} = 0.3$ (fixed)

Te

$2c (\frac{1}{4},\frac{1}{4},z)$ $2c (\frac{1}{4},\frac{1}{4},z)$

$z = 0.2922(4)$ $z = 0.2948(3)$

$U_{iso} = 0.3$ (fixed) $U_{iso} = 0.21(4)$

\[Pmn \] model is selected for the crystal structure refinements using full diffraction profiles. The results for the low- and high-temperature modifications are visualized in Figs. 3(c) and (d), refined parameter values are included in Tab. III. Upon further increase in pressure (series P3, 2.29–2.47 GPa, and P4, 2.86–2.92 GPa), cooling of the samples induces broadening or the formation of shoulders for some peaks (Fig. 6). For instance, in

FIG. 8. Refined synchrotron powder x-ray diffraction patterns of Fe$_{1.08}$Te for (a), (b) series P3 and (c), (d) series P4. Shown are results at characteristic temperatures above [(a) 80 K, (c) 100 K] and below [(b) 20 K, (d) 40 K] the symmetry-conserving tetragonal-tetragonal phase transition.

90 K and 80 K at P4, Fig. 7(b). Co-existing phases in a two-phase region in which both modifications coexist. Phase coexistence is evidenced between 60 K and 40 K at P3, and between 100 K and 80 K at P4, Fig. 4(b). Co-existing phases in a very large pressure range have also been reported in the case of pnictide compounds at low temperatures.6,7

A detailed analysis of the line positions revealed that upon cooling Bragg peaks like (200) exhibit strong shifts towards higher 2θ angles whereas reflections like (001) are reallocated at lower values of 2θ (see, e.g., the (003)
FIG. 9. Temperature dependence of lattice parameters a, b, and c at various pressures up to 3 GPa. (a)–(d) A transition from tetragonal to monoclinic symmetry is seen at ambient pressure P0 and for pressure P1. (e), (f) For P2, an orthorhombic phase is found at T < 60 K. Another transition appears to occur at T ≈ 75 K. (g)–(j) A pronounced lattice change within the tetragonal symmetry is observed for P3 and P4. Open symbols show average values for mixtures of the high- and low-temperature phases in P3 and P4. Note a slight temperature-induced decrease of pressure in the experimental set-up upon cooling, see Fig. 1 and appendix.

Putting some emphasis on the similarity between pressure and Fe excess, the temperature-induced changes of c/a’ are compared for both parameters. Analysis of the ratio c/a’ (in which a’ = a for tetragonal symmetry, and a’ = 1/2(a + b) for orthorhombic and monoclinic symmetries) reveals that the symmetry-breaking transitions at P0–P2 or compositions Fe1.08Te with y = 0.06–0.15 cause only minute changes of the ratio c/a’, whereas the symmetry-conserving transition gives rise to a significantly more pronounced alteration, Figs. 10(a) and (b).

For a comparison of the metrical changes, the temperature dependence of the lattice parameters obtained from the refinements at ambient as well as at elevated pressures are summarized in Figs. 9(a)–(j). It can be seen that the symmetry-breaking transitions (tetragonal to monoclinic or to orthorhombic) are associated with a significantly anisotropic change of the unit cell dimensions, see Figs. 9(a)–(f). In the case of the symmetry-conserving transition (tetragonal to tetragonal) the lattice parameter a contracts by ≈ 1% while c increases by approximately the same amount upon transforming into the low-temperature phase, see Figs. 9(g)–(j).

A pronounced lattice change within the tetragonal symmetry is observed for P3 and P4. Open symbols show average values for mixtures of the high- and low-temperature phases in P3 and P4. Open symbols show average values for mixtures of the high- and low-temperature phases in P3 and P4. Note a slight temperature-induced decrease of pressure in the experimental set-up upon cooling, see Fig. 1 and appendix.

Putting some emphasis on the similarity between pressure and Fe excess, the temperature-induced changes of c/a’ are compared for both parameters. Analysis of the ratio c/a’ (in which a’ = a for tetragonal symmetry, and a’ = 1/2(a + b) for orthorhombic and monoclinic symmetries) reveals that the symmetry-breaking transitions at P0–P2 or compositions Fe1.08Te with y = 0.06–0.15 cause only minute changes of the ratio c/a’, whereas the symmetry-conserving transition gives rise to a significantly more pronounced alteration, Figs. 10(a) and (b).

putting some emphasis on the similarity between pressure and Fe excess, the temperature-induced changes of c/a’ are compared for both parameters. Analysis of the ratio c/a’ (in which a’ = a for tetragonal symmetry, and a’ = 1/2(a + b) for orthorhombic and monoclinic symmetries) reveals that the symmetry-breaking transitions at P0–P2 or compositions Fe1.08Te with y = 0.06–0.15 cause only minute changes of the ratio c/a’, whereas the symmetry-conserving transition gives rise to a significantly more pronounced alteration, Figs. 10(a) and (b).
FIG. 11. Temperature-pressure-composition phase diagram for Fe$_{1+y}$Te system. Symbols T, M, and O mark temperatures and pressures of our XRD measurements revealing tetragonal, orthorhombic and monoclinic phases, respectively. The black data points indicate anomalies in resistivity, taken from Ref. 34 for samples Fe$_{1.086}$Te. Gray regions indicate the existence of structural transitions.

IV. SUMMARY AND CONCLUSIONS

The anomaly that has been detected in resistivity measurements on Fe$_{1.086}$Te for pressures $p \leq 1$ GPa is conjectured to originate from a tetragonal–monoclinic phase transition. Our structure investigations confirm this picture. This phase transition occurs at $T_s \approx 65$ K. At somewhat higher pressures p_2 (∼ 1.4 GPa), Fig. 9(e), we clearly resolve a phase transition into the orthorhombic phase at $T \lesssim 60$ K. Yet, the change in c'/a' at around 75 K is of similar magnitude as the alterations associated to the symmetry-breaking transitions at P_0 and P_1 around 60 K (see inset of Fig. 11(a)). This pressure-driven subtle discontinuity within the tetragonal phase is consistent with a change observed for the onset of magnetic order in the temperature-composition phase diagram, Fig. 11. At still higher pressures, P_3 and P_4, we identify another symmetry-conserving phase transition. The temperature of this transition increases with pressure, from ∼ 60 K at 2.29 GPa to ∼ 90 K at 2.9 GPa. There is no indication of the presence of any orthorhombic or monoclinic phases at these higher pressures. With this, one might speculate that the unidentified transition into phase HPII of Ref. 34 coincides with our symmetry-conserving phase transition.

Our pressure studies on Fe$_{1.08}$Te here, along with our earlier investigations on Fe$_{1+y}$Te samples with different Fe excess $0.06 \leq y \leq 0.15$, suggest some analogy between the influence of pressure and Fe excess. These results together with results of Ref. 34 are summarized in Fig. 11 for comparison. For small pressures as well as for small Fe excess $y \leq 0.11$ we find a single transition from a tetragonal into a monoclinic low-temperature phase at roughly 60 K. At a higher pressure $p \sim 1.5$ GPa or higher Fe excess $y \geq 0.13$ two successive transitions appear to take place. Consistently, the transition at lower temperature (∼ 46 K) results in an orthorhombic low-temperature phase. The second transition at somewhat higher temperature (e.g. at 57 K for $y = 0.13$) seems to retain the tetragonal symmetry but drives the material from a paramagnetic into a magnetically ordered phase. For even higher pressures $p \gtrsim 2.3$ GPa we find a symmetry-conserving phase transition. So far, no analogy to this latter transition has been observed for samples with increased Fe excess, likely because of the high amount of excess Fe beyond the homogeneity range of 6–15% that would be required. The exact nature of the magnetism in the teragonal high-pressure phase remains to be investigated.

The close similarity of the temperature-composition and the temperature-pressure phase diagrams suggests a strong magneto-elastic coupling between the magnetic and structural order parameters in Fe$_{1+y}$Te. Paul et al. 20 presented a mean-field theory, in which symmetry-allowed magneto-elastic couplings give rise to monoclinic lattice distortion in the magnetic phase. The magneto-elastic couplings seem to vary with y. For $y \gtrsim 0.12$, the magnetic structure becomes incommensurate with respect to the crystal lattice. Neutron scattering studies report a helical modulation of the magnetic moments with a temperature-dependent propagation vector κ_{13}.

The structural transition into the orthorhombic phase at lower temperature takes place only when the magnetic propagation vector becomes temperature-independent, i.e., at the lock-in transition 20. Application of pressure induces increased overlap of the atomic orbitals which in turn tunes the magneto-elastic couplings. This results in similar magnetic structures as observed in Fe$_{1+y}$Te with $y \gtrsim 0.12$. The microscopic origin of the magnetic and crystal structures in this regime is not yet theoretically addressed.

In conclusion, we showed that pressure strongly influences the phase transitions of Fe$_{1.08}$Te found at low temperatures. The temperature-dependent phase transitions can be successively changed from low-pressure tetragonal–monoclinic to tetragonal–orthorhombic followed by tetragonal–tetragonal with increasing compression. The temperature-dependent phase transitions closely resemble those induced by excess Fe composition.

After submission of this article we recognize a report of an evolution of a two step structural phase transition, tetragonal–orthorhombic–monoclinic, with a two phase (monoclinic + orthorhombic) coexistence at low temperatures in Fe$_{1.13}$Te 41.

ACKNOWLEDGMENTS

The authors wish to thank Yu. Grin, K. Koepernik, U. K. Rößler and L. H. Tjong for stimulating discussions. H. R. thanks SPF 1458 and C. B. thanks CNV–foundation for financial support. We also acknowledge the ESRF for granting beam time at ID09A...
and ID31. Experimental support of Adrian Hill is highly appreciated.

Appendix: Lattice parameters at different temperatures and pressures

The various phase transitions as outlined in the main text are supported by the results of lattice parameter determinations at different pressures which are summarized in the following Tables IV to VII.

TABLE IV. Series P1: Experimental conditions (temperature, pressure) and lattice parameters determined by refinement of peak positions using full experimental diffraction profiles (LeBail fit). Average differences of temperature and pressure before and after the diffraction experiments amount to 0.1(1) K and 0.02(1) GPa, respectively.

Temperature (K)	Pressure (GPa)	a (Å)	b (Å)	c (Å)	β (degree)
296	0.31	3.80876(3)	-	6.25002(8)	-
200	0.74	3.79060(2)	-	6.21435(7)	-
150	0.73	3.78497(2)	-	6.20402(7)	-
100	0.71	3.78560(1)	-	6.20261(7)	-
80	0.63	3.78785(2)	-	6.20679(7)	-
70	0.59	3.78886(2)	-	6.20654(7)	-
65	0.58	3.79004(3)	-	6.2076(1)	-
60	0.55	3.78979(2)	-	6.2078(2)	-
55	0.53	3.79845(7)	3.78174(7)	6.2125(2)	90.191(3)
50	0.49	3.80612(6)	3.77699(5)	6.2180(2)	90.333(2)
45	0.53	3.80975(7)	3.77519(6)	6.2187(2)	90.399(2)

TABLE V. Series P2: Experimental conditions (temperature, pressure) and lattice parameters determined by refinement of peak positions using full experimental diffraction profiles (LeBail fit). Average differences of temperature and pressure before and after the diffraction experiments amount to 0.1(1) K and 0.02(1) GPa, respectively.

Temperature (K)	Pressure (GPa)	a (Å)	b (Å)	c (Å)
100	1.62	3.79064(1)	-	6.1680(1)
80	1.63	3.75666(1)	-	6.17239(9)
75	1.49	3.76208(2)	-	6.17338(8)
70	1.47	3.76178(1)	-	6.17552(8)
65	1.44	3.76172(2)	-	6.17618(8)
60	1.42	3.76200(2)	-	6.17541(9)
55	1.40	3.76965(6)	3.75316(7)	6.1785(2)
50	1.36	3.77082(6)	3.75216(6)	6.1793(2)
45	1.41	3.77332(5)	3.75248(5)	6.1805(2)
40	1.40	3.77437(5)	3.75197(5)	6.1801(2)
35	1.40	3.77614(5)	3.75090(5)	6.1820(2)
30	1.37	3.77740(6)	3.75090(6)	6.1817(2)
27.5	1.38	3.77788(6)	3.75016(6)	6.1814(2)

1. Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).
2. For a review of high pressure studies see, C. W. Chu and B. Lorenz, Physica C 469, 385 (2009).
3. B. Lorenz, K. Sasmal, R. P. Chaudhury, X. H. Chen, R. H. Liu, T. Wu, and C. W. Chu, Phys. Rev. B 78, 012505 (2008).
4. M. Kumar, M. Nicklas, A. Jesche, N. Carooca-Canales, M. Schmitt, M. Hanfland, D. Kasinathan, U. Schwarz, H. Rosner, and C. Geibel, Phys. Rev. B 78, 184516 (2008).
5. H. Takahashi, K. Igawa, K. Arii, Y. Kamihara, M. Hirano,
TABLE VI. Series P3: Experimental conditions (temperature, pressure) and lattice parameters determined by refinement of peak positions using full experimental diffraction profiles (LeBail fit). Average differences of temperature and pressure before and after the diffraction experiments amount to 0.1(1) K and 0.02(1) GPa, respectively.

Temperature (K)	Pressure (GPa)	\(a\) (Å)	\(c\) (Å)
100\(^a\)	2.47	3.72742(2)	6.1377(2)
80\(^b\)	2.44	3.72644(2)	6.14246(9)
60\(^b\)	2.36	3.71976(2)	6.1563(2)
40\(^a\)	2.29	3.7284(5)	6.143(2)
40\(^c\)	2.29	3.69615(2)	6.1996(1)
20\(^c\)	2.33	3.69469(2)	6.2033(2)

\(^a\) High-temperature phase.
\(^b\) Average value for a mixture of the HT- and LT phase since decomposition into the contributions of the components failed.
\(^c\) Low-temperature phase.

TABLE VII. Series P4: Experimental conditions (temperature, pressure) and lattice parameters determined by refinement of peak positions using full experimental diffraction profiles (LeBail fit). Average differences of temperature and pressure before and after the diffraction experiments amount to 0.1(1) K and 0.02(1) GPa, respectively.

Temperature (K)	Pressure (GPa)	\(a\) (Å)	\(c\) (Å)
100\(^a\)	2.86	3.71343(1)	6.1323(2)
95\(^a\)	2.89	3.71017(1)	6.1341(2)
90\(^b\)	2.91	3.70464(1)	6.1421(2)
85\(^a\)	2.92	3.7085(1)	6.125(5)
85\(^c\)	2.92	3.69071(6)	6.170(4)
80\(^a\)	2.91	3.7065(2)	6.130(6)
80\(^c\)	2.91	3.68757(3)	6.171(2)
75\(^c\)	2.92	3.68728(1)	6.179(3)
70\(^c\)	2.92	3.68541(1)	6.173(3)
65\(^c\)	2.89	3.68496(1)	6.175(3)
60\(^c\)	2.89	3.68419(1)	6.173(2)
55\(^c\)	2.88	3.68409(1)	6.176(2)
50\(^c\)	2.87	3.68371(1)	6.180(2)
45\(^c\)	2.9	3.68358(1)	6.1798(2)
40\(^c\)	2.9	3.68347(1)	6.1794(2)

\(^a\) High-temperature phase.
\(^b\) Average value for a mixture of the HT- and LT phase since decomposition into the contributions of the components failed.
\(^c\) Low-temperature phase.
Y. Takano, Appl. Phys. Lett. 93, 152505 (2008).

S. Medvedev, T. M. McQueen, I. A. Troyan, T. Palasyuk, M. I. Eremets, R. J. Cava, S. Naghavi, F. Casper, V. Ksenofontov, G. Wortmann, and C. Felser, Nature Mater. 8, 630 (2009).

S. Margadonna, Y. Takabayashi, Y. Ohishi, Y. Mizuguchi, Y. Takano, T. Kagayama, T. Nakagawa, M. Takata, and K. Prassides, Phys. Rev. B 80, 064506 (2009).

K.-W. Yeh, T.-W. Huang, Y.-L. Huang, T.-K. Chen, F.-C. Hsu, P. M. Wu, Y.-C. Lee, Y.-Y. Chu, C.-L. Chen, J.-Y. Luo, D.-C. Yan, and M.-K. Wu, Europhys. Lett. 84, 37002 (2008).

M. H. Fang, H. M. Pham, B. Qian, T. J. Liu, E. K. Vehstedt, Y. Liu, L. Spinu, and Z. Q. Mao, Phys. Rev. B 78, 224503 (2008).

S. Rößler, D. Cherian, S. Harikrishnan, H. L. Bhat, S. Elizabeth, J. A. Mydosh, L. H. Tjeng, F. Steglich, and S. Wirth, Phys. Rev. B 82, 144523 (2010).

W. Bao, Y. Qiu, Q. Huang, M. A. Green, P. Zajdel, M. R. Fitzsimmons, M. Zhernenkov, S. Chang, M. Fang, B. Qian, E. K. Vehstedt, J. Yang, H. M. Pham, L. Spinu, and Z. Q. Mao, Phys. Rev. Lett. 102, 247001 (2009).

S. Li, C. de la Cruz, Q. Huang, Y. Chen, J. W. Lynn, J. Hu, Y.-L. Huang, F.-C. Hsu, K.-W. Yeh, M.-K. Wu, and P. Dai, Phys. Rev. B 79, 064503 (2009).

R. Hu, E. S. Bozin, J. B. Warren, and C. Petrovic, Phys. Rev. B 80, 214514 (2009).

E. E. Rodriguez, C. Stock, P. Zajdel, K. L. Krycka, C. F. Majkrzak, P. Zavalij, and M. A. Green, Phys. Rev. B 84, 064403 (2011).

S. Rößler, D. Cherian, W. Lorenz, M. Doerr, C. Koz, C. Cursi, Yu. Prots, U. K. Rößler, U. Schwarz, S. Elizabeth, and S. Wirth, Phys. Rev. B 84, 174506 (2011).

I. A. Zaliznyak, Z. J. Xu, J. S. Wen, J. M. Tranquada, G. D. Gu, V. Solovyov, V. N. Glazkov, A. I. Zheludev, V. O. Garlea, and M. B. Stone, Phys. Rev. B 85, 085105 (2012).

C. Zhang, W. Yi, L. Sun, X.-J. Chen, R. J. Hemley, H.-K. Mao, W. Lu, X. Dong, L. Bai, J. Liu, A. F. Moreira Dos Santos, J. J. Molaison, C. A. Tulk, G. Chen, N. Wang, and Z. Zhao, Phys. Rev. B 80, 144519 (2009).

J.-E. Jörgensen, J. S. Olsen, and L. Gerward, High Pressure Res. 31, 603 (2011).

Note that some authors use FeTe$_{1-x}$ rather than Fe$_{1+y}$Te. Since experimental evidence for substantial chalcogen vacancies is lacking, the latter notation is more frequently used. Here, FeTe$_{0.92}$ corresponds to Fe$_{1.086}$Te.

H. Okada, H. Takahashi, Y. Mizuguchi, Y. Takano, and H. Takahashi, J. Phys. Soc. Jpn. 78, 083709 (2009).

WinCSD, L. G. Akselrud, P. Y. Zavalii, Yu. Grin, V. K. Pecharsky, B. Baumgartner, and E. Wölfel, Mater. Sci. Forum 133-136, 335 (1993).

JANA: V. Petricek, M. Dusek and L. Palatinus, JANA 2006. The Crystallographic Computing System, Institute of Physics, Praha, Czech Republic (2006).

A. March, Z. Kristallogr. 81, 285 (1932).

There are minor differences in the transition temperatures as determined by structural investigations at ambient pressure in this work, and for the sample with $y = 0.08$ by thermodynamic and magnetic measurements. These small differences are assigned to the different cooling protocols and a possible difference in the estimated chemical composition.

I. Paul, A. Cano, and K. Sengupta, Phys. Rev. B 83, 115109 (2011).

Y. Mizuguchi, K. Hamada, K. Goto, H. Takatsu, H. Kadawaki, and O. Miura, Solid State Commun. 152, 1047 (2012).