A new subclass of exoribonuclease resistant RNA found in multiple Flaviviridae genera

Matthew J. Szucs¹, Parker J. Nichols¹, Rachel A. Jones¹, Quentin Vicens¹* & Jeffrey S. Kieft¹,²*

¹Department of Biochemistry and Molecular Genetics and ²RNA BioScience Initiative, University of Colorado Denver School of Medicine, Aurora, Colorado, 80045, USA.

*To whom correspondence should be addressed:
Quentin Vicens
Quentin.Vicens@cuanschutz.edu

Jeffrey S. Kieft
Jeffrey.Kieft@cuanschutz.edu
Viruses have developed innovative strategies to exploit the cellular machinery and overcome the host antiviral defenses, often using specifically structured RNA elements. Examples are found in flaviviruses; during flaviviral infection, pathogenic subgenomic flaviviral RNAs (sfRNAs) accumulate in the cell. These sfRNAs are formed when a host cell 5’ to 3’ exoribonuclease degrades the viral genomic RNA but is blocked by an exoribonuclease resistant RNA structure (xrRNA) located in the viral genome’s 3’ untranslated region (UTR). Although known to exist in several Flaviviridae genera the full distribution and diversity of xRNAs in this virus family was unknown. Using the recent high-resolution structure of an xrRNA from the divergent flavivirus Tamana bat virus (TABV) as a reference, we used bioinformatic searches to identify xrRNA in the Pegivirus, Pestivirus, and Hepacivirus genera. We biochemically and structurally characterized several examples, determining that they are genuine xrRNAs with a conserved fold. These new xrRNAs look superficially similar to the previously described xrRNAs but possess structural differences making them distinct from previous classes of xrRNAs. Our findings thus require adjustments of previous xrRNA classification schemes and expand on the previously known distribution of the xrRNA in Flaviviridae, indicating their widespread distribution and illustrating their importance.
IMPORTANCE

The Flaviviridae comprise one of the largest families of positive sense single stranded (+ssRNA) and it is divided into the Flavivirus, Pestivirus, Pegivirus, and Hepacivirus genera. The genus Flavivirus contains many medically relevant viruses such as Zika Virus, Dengue Virus, and Powassan Virus. In these, a part of the virus's RNA twists up into a very special three-dimensional shape called an xrRNA that blocks the ability of the cell to “chew up” the viral RNA. Hence, part of the virus' RNA remains intact, and this protected part is important for viral infection. This was known to occur in Flaviviruses but whether it existed in the other members of the family was not known. In this study, we not only identified a new subclass of xrRNA found in Flavivirus but also in the remaining three genera. The fact that this process of viral RNA maturation exists throughout the entire Flaviviridae family makes it clear that this is an important but underappreciated part of the infection strategy of these diverse human pathogens.
INTRODUCTION

Viruses face continuous evolutionary pressure to evolve innovative strategies that exploit the host cell's biological machinery and overcome its antiviral defenses. Often, these are based on specifically structured RNA elements, which is not surprising given RNA's functional diversity and ability to influence virtually every cellular process. Important examples are found in positive sense single stranded RNA (+ssRNA) viruses such as arthropod-borne flaviviruses, which use several structured elements within their RNA genome to direct or regulate important processes during infection. (1-13).

Among the important structured RNA elements found in flaviviruses are exoribonuclease-resistant RNAs (xrRNAs), which enable an elegant mechanism of non-coding RNA biogenesis. Originally identified in mosquito borne flaviviruses (MBFVs) (14-19) and later in +ssRNA plant-infecting viruses (20, 21), xrRNAs block the processive degradation of the viral genome by host cell 5′-3′ exoribonuclease Xrn1(19), the enzyme responsible for the majority of cytoplasmic RNA decay (Fig. 1A) (22). During infection, a subset of flaviviral genomes is targeted to the cellular RNA decay machinery, then processively degraded in a 5′ to 3′ direction by Xrn1, until the enzyme halts at an xrRNA in the 3′ untranslated region (UTR) (19, 23). The fold of the xrRNA is sufficient for this function, and no accessory proteins nor chemical modification of the RNA are required. The xrRNA and the protected downstream RNA comprise a non-coding subgenomic flaviviral RNA (sfRNA) that accumulates in the cell and performs several important functions for the virus (2, 19, 23-26), including inhibiting host antiviral response (27, 28), affecting viral transmissibility (29-33), and disrupting the host mRNA program (34, 35). Within plant viruses, xrRNAs are associated with both non-coding and coding subgenomic RNAs (36).

Detailed three-dimensional crystal structures of xrRNAs from several flaviviruses provide insight into how an xrRNA resists the action of 5′-3′ exoribonucleases (1, 13, 37). Specifically, all xrRNAs fold into a compact structure containing a ring-like feature that wraps around the 5′ end of the resistant RNA element. Biochemical analyses suggest that this topology acts as a molecular brace against the surface of the exoribonuclease approaching from the 5′ side, preventing it from progressing past a defined point (38). This ring is formed through specific structural motifs, including a three-way junction, pseudoknots and other long-range tertiary interactions, non-Watson-Crick base pairs, complex base stacking
arrangements, and base triples (39). A ring-like structure is also found in the xrRNAs from some genera
of the plant-infecting *Tombusviridae* and *Luteoviridae* viral families although the structural strategy used
to form and stabilize the ring is different (21, 36, 40). There may be yet-undiscovered ways to form a
ring-like structure and thus other RNA architectures that can block exoribonucleases.

Biochemical, structural, and sequence comparison studies led us to group flaviviral xrRNAs into
two distinct classes (Fig. 1B) (38). The class 1 xrRNAs are found in the MBFV, some no known vector
(NKV) flaviviruses, and some insect-specific flaviviruses (ISFV). The class 2 xrRNAs are found in tick-
borne flaviviruses (TBFV) and some related NKV viruses. These classifications are based on the
proposed secondary structure of the elements, the halt-point of Xrn1 relative to these putative secondary
structures, and sequence conservation patterns (38). For example, in the class 1 the sequence of the P1
stem is highly conserved, but the same sequences are not found in the class 2. Classification is informed
and refined by three-dimensional structures which improve sequence alignment efforts [for class 1 MBFV
xrRNAs (1, 13), and for an xrRNA from Tamana bat virus (TABV)(37); there is no structure of a class 2
yet].

The *Flaviviridae* family consists of four major genera: *Flavivirus*, *Pegivirus*, *Pestivirus*, and
Hepacivirus (41-44). Within *Flaviviridae*, xrRNAs have been definitively identified only in the *Flavivirus*
genus, in a single pestivirus (which might actually be a flavivirus) (3, 45, 46) and now the
phylogenetically isolated Tamana bat virus (Fig. 1B)(37). If xrRNAs exist in the genomic RNA of the
Pegivirus, *Pestivirus*, and *Hepacivirus* genera, this would indicate their presence in the three *Flaviviridae*
genera that were previously thought to be devoid of xrRNAs. Their fold may also look different, therefore
potentially calling for classification adjustments as more viruses are discovered, more xrRNAs are
characterized, and more detailed structural information is gained.

New questions about variation in flavivirus xrRNA structure arise from the recent structure of an
xrRNA found in the 3’ UTR of TABV (37). While this xrRNA superficially resembles a class 1 xrRNA, it
lacks the conserved sequences essential to form the required tertiary contacts in the class 1 (Fig.
1C)(38). Consistent with this, although the TABV xrRNA structure forms the ring-like fold, it uses an
unexpected set of tertiary interactions compared to the MBFV xrRNA (Fig. 1C) (37). This divergence is different enough to suggest a potentially new xrRNA subclass with other unidentified members, and to raise the question of whether additional classes of xrRNAs exist among the *Flaviviridae*.

Using computational tools that take into account both structural and sequence constraints, and informed by crystal structures, we exploited the burgeoning availability of genomic data from new viral species. We identified putative xrRNAs in the *Pegivirus*, *Pestivirus*, and *Hepacivirus* genera that we verified using *in vitro* functional studies and characterized by chemical probing. Analysis of sequences and secondary structures revealed fundamental similarities to the TABV xrRNA. Together, these xrRNAs comprise an xrRNA subclass similar to the class 1 but bioinformatically and structurally distinct; we now assign them to subclass 1b and accordingly place the previously classified species in class 1 (MBFV) into subclass 1a. Thus, our results show that all genera (although not necessarily all species) within *Flaviviridae* contain xrRNAs that exist in at least three distinct structural classes/subclasses.

RESULTS

Computational identification of an xrRNA subclass

The recent crystal structure of an xrRNA from TABV (37) revealed a previously unknown secondary structure, which motivated reexamination of existing alignments and secondary structures of many putative xrRNAs from insect specific flaviviruses (ISFV). Therefore, we constructed a new initial sequence alignment from 20 likely xrRNA sequences belonging to ISFV, taking into account the patterns revealed in the TABV structure. These sequences often occur in multiple copies in series, and thus we included all of these in our alignment (referred to as xr1, xr2, etc. in the 3' UTR of CxFV, QBV, MOsFV, CxThFV, KRV, AeFV, CFAV; see Table S1 and S2 in the supplemental material) (47). These ISFV xrRNA sequences had previously been proposed to conform to class 1 xrRNA or to have different secondary structures (38, 47), but we could align them more convincingly to the TABV xrRNA, using information from its crystal structure (37) (see Methods). The resulting initial covariance model was used as input to the program Infernal to search for a similar structure pattern through all available +ssRNA
viral sequences at the National Center for Biotechnology Information (NCBI; last retrieved on 04/24/2020) (48). Multiple iterations (see Materials and Methods) resulted in the identification of 66 putative xrRNA sequences, belonging to the following genera: *Flaviviruses* (n = 23), *Pegiviruses* (n = 27), *Pestiviruses* (n = 7), and *Hepaciviruses* (n = 9) (Fig. 2A; see also Table S1 in the supplemental material). Not all known viral species had xrRNAs that could be identified by our bioinformatic searches, as many sequences in the database did not include the 3′ UTR. As such, more viruses may contain putative xrRNAs, which were not identified here due to incomplete reporting of the viral genome sequences.

From this expanded comparative sequence alignment, we generated a covariance model of the newly proposed xrRNAs (Fig. 2B, right). The comparative sequence alignment, covariance model, and the fact that these xrRNA are bioinformatically distinct from the MBFV, reveals that these identified and revised xrRNA’s did not fit into the class 1 xrRNA as it was currently defined. Thus, we divided the current class 1 xrRNA into two subclasses: subclass 1a (previously defined class 1 xrRNA) and subclass 1b (this current work). Differences observed between the subclass 1b and the subclass 1a were the sequence patterns of their P1 and P3 stems, nucleotide patterns of the L3 loop, Pk1 region, and the presence or absence of a nucleotide between P2 and P3. These are analyzed and discussed in more depth below.

Analysis of the covariance model was performed with R-scape (49) which gave statistical support to the model and the proposed three stems (P1, P2, & P3). Specifically, in each stem, E-values for covarying base pairs ranged from $8.89 \times 10^{-7} – 1.29 \times 10^{-5}$ (P1), $2.17 \times 10^{-14} – 1.75 \times 10^{-3}$ (P2), and $1.45 \times 10^{-4} – 1.77 \times 10^{-9}$ (P3). Stem length varies less for P1 (3–5 base pairs) and P3 (4–5 base pairs), than for P2 (up to 21 predicted base pairs) (Fig. 2B). This variation in stem length had been previously noticed for class 1 MBFVs, albeit with different stem length requirements (P1, 5 base pairs; P3, 4–8 base pairs; but P2, 1–9 base pairs). The similarly conserved lengths of P1 and P3 can be explained by their participation in ring formation, while P2 extends away from the core fold, explaining its variable length (Fig. 1C) (37).

The anticipated Pk1 and Pk2 pseudoknots that we manually predicted based on the TABV structure were also supported by R-scape (Pk1 E-values: $4.58 \times 10^{-8} – 1.20 \times 10^{-13}$) (Fig. 2B).
All flavivirus class 1 xrRNAs contain a base triple necessary for forming the functional fold. In the MBFV this is a U...A-U triple while in TABV it is replaced by an isosteric C...G-C (37). In our covariance model, sequence conservation of this C...G-C base triple is >97% for G, and >97% and >90% for the two Cs (Fig. 2B). Only two sequences identified in our alignment (CXFV_NC_008604.2 Xr1 & Xr4) possess a U...A-U instead of the C…G-C indicating an instance of covariation but not enough to be supported by R-scape (Fig. 2A; see also Table S1 in the supplemental material). Finally, none (except one) of the sequences in our alignment contain any nucleotide between P2 and P3, a peculiarity that was discussed in the report of the TABV xrRNA structure (37). The one sequence that does contain a nucleotide at that position comes from Rodent hepacivirus isolate rn-1 (RHV; Table S1). This putative xRNA has a U in this position, which cannot be otherwise accommodated within P2 or P3. Similarly, other Hepacivirus isolates belonging to sequences such as the Rodent hepacivirus isolate RrMC-HCV (RtMC, Table S1) comprise sequences that depart from the subclass 1b pattern, potentially leading to non-Watson-Crick pairs at the base of P2 or within a somewhat altered three-way junction (sequences marked by ′!!′ in Table S1). These sequences are rare and found mainly in members of the Hepacivirus genera.

Another subset of sequences deviates from the covariance model at the base of P1. They comprise putative ISFV xRNA sequences that are found in the more downstream copies of putative xRNA (xr3, xr4, etc.). Among them are xr4 from the Parramatta River virus isolate 92-B115745 xr4 (PARV_xr4; Table S1), xr3 from Cell fusing agent virus strain Galveston (CFAV_xr3; Table S1), xr1 from Mercadeo virus isolate ER-M10 (MECDV_xr1; Table S1) and xr1 from Menghai flavivirus isolate MHAedFV1 (MFV_xr1; Table S1). For example, only a two base-pair P1 can be proposed for PaRV_xr4, with no equivalent to A48 in TABV. Further testing will be required to determine whether these sequences indeed correspond to xRNAs, and if so, whether they possibly form a subtype within subclass 1b.

Bioinformatically identified subclass 1b xRNAs are exoribonuclease resistant

To test whether computationally identified subclass 1b xRNAs were resistant to Xrn1 and therefore comprised authentic xRNAs, we subjected representative sequences from Pestiviruses,
Pegiviruses and Hepaciviruses to in vitro Xrn1 resistance assays (Fig. 3). Briefly, eight putative subclass 1b xrRNAs (marked by * in Fig. 2A) were transcribed in vitro with a 22 nt leader sequence, which allows Xrn1 to load onto the 5’ end of the transcribed RNA. Some of the previous work from our laboratory showed that a wild-type leader sequence of an arbitrary length could generate false negative results in Xrn1 resistance assays, likely due to RNA misfolding. Hence, for our assays of subclass 1b xrRNAs, the leader sequence contained the same normalization hairpin (xxxx-GAGUA-xxxx) and spacer sequences used for the chemical probing experiments described in the next section (Methods; see Table S3 in the supplemental material). This adjustment also contributed to consistency between resistance assays and probing experiments.

RNAs were treated with RNA 5’-Pyrophosphohydrolase (RPPH), leaving a mono- phosphorylated 5’ end (50). When an RNA is resistant to Xrn1, subsequent incubation with recombinant Xrn1 leads to a defined but smaller size product when resolved by polyacrylamide electrophoresis, as the enzyme has loaded, partially degraded the RNA, but then stopped. As a positive control, we used the in vitro transcribed TABV xrRNA (xr1) (Table S3). An RNA with a tRNA-like structure that is not resistant to Xrn1, with appended normalization hairpins, was used as a negative control (51). When challenged with Xrn1, all putative xrRNA sequences identified in our computational searches were resistant, indicated by the appearance of the shorter but stable RNA product (Fig. 3). This result confirmed that even sequences with very short (3 nt) (Fig. 3C: GBVB) or long P2 stems (15 and 10) (Fig. 3B: HPgV2, Fig. 3C: HCK), or with the potential for a particularly long Pk1 (4nt) (Fig. 3B: SPgV) can form an Xrn1 resistant structure. Even the xrRNA from HCP, which displays a putative A.A pair at the base of P2, is resistant to Xrn1 (see Fig. S1 in the supplemental material). Thus, the bioinformatically identified subclass 1b xrRNAs that we tested are authentic exoribonuclease-resistant elements and this result suggests that the untested sequences from our sequence alignment likely are also true xrRNAs.

Secondary structure validation and chemical probing of subclass 1b xrRNAs

Since the secondary structures proposed on the basis of sequence alignments and covariation are predictions, we tested them experimentally through chemical probing with dimethyl sulfate (DMS;
modifies the Watson-Crick side of unpaired A and C) and N-methylisatoic anhydride (NMIA; modifies the 2′ hydroxyl group of nucleotides not involved in Watson-Crick pairs) (Fig. 4) (52, 53).

We first probed (using NMIA only) the wild-type sequence of the TABV xrRNA, which expands on observations based on the crystal structure by providing a ‘fingerprint’ of the chemical probing pattern for this type of fold (Fig. 4A). Most of the nucleotides were unreactive to NMIA (including in L3 which appears as ‘unpaired’ in the secondary structure diagram, except for Pk2), supporting a compact and stable fold. Highly reactive positions in the exposed loop L2 were consistent with the TABV xrRNA crystal structure (Fig. 1C). Likewise, strong reactivities at U43 and A48 can also be rationalized by the structure: U43 is flexible and the ribose of A48 adopts a reactive C2′ endo pucker (54, 55). Although chemical probing was performed with the wild-type TABV sequence, the resulting data are consistent with the structure of the sequence variant engineered for crystallization (37). In previous studied, removal of the P4 stem has did not affect Xrn1 resistance (37, 56), thus we did not examine it as part of our analysis but the full chemical probing construct with the P4 stem is displayed in the supplementary information (Fig. S2).

We performed chemical probing of the eight Pegivirus, Pestivirus, and Hepacivirus xrRNAs tested for Xrn1 resistance to compare the probing ‘fingerprint’ to that of TABV. The resultant patterns are consistent with the pattern from TABV xrRNA, indicating that they adopt a similar secondary structure (Fig. 4). In seven cases, the RNAs were similarly non-reactive overall, except for L2 and the nucleotide equivalent to U43 in TABV (Fig. 4B–H). GBVB showed the same pattern but was overall more reactive, likely indicative of a less stable in vitro fold (Fig. 4I). Several of the RNAs contained >30 nucleotide expansions in the P2 regions, and in all cases the probing indicated they were folded as elongated stem loops, in some cases with internal loops as seen in HPgV2 (Fig. 4B,C,E,G). In some of these, parts of L2 may be involved in additional intramolecular interactions, as suggested by the absence of reactive positions within L2 for NRPeV, RPeV and HPgV2 (Fig. 4B, C, E). Probing revealed that some sequences had two (NRPeV, RPeV, HPgV2, GBVB) or even three (APPeV) reactive nucleotides between Pk1′ and P1′, regardless of the potential for Pk1 to contain more than three base pairs, which could be interpreted
from only looking at the sequence (Fig. 4B–E, I). Only one sequence tested (HCK) had no reactive nucleotide at that position (Fig. 4G).

Intramolecular interactions involved in proper ring folding, such as the equivalent position to the strongly reactive A48 in TABV, were reactive only in APPeV (G57), SPgV (A54) and GBVB (A47) (Fig. 4D,F,I). Finally, reactive positions to DMS but not NMIA in L3’ (the 3’ side of L3) for NRPeV, RPeV, SPgV, HCK, HCGu, and GBVB implied the Watson-Crick face of these residues remained available in an otherwise structured region of stacked bases, which is compatible to the availability of the A34, A35, and C36 in the TABV crystal structure. Overall, the chemical probing data support the predicted secondary structure models that indicate these xrRNAs share the same TABV xrRNA-like fold, consistent with their inclusion in subclass 1b.

Structural analysis of the subclass 1b xrRNA

Based on the sequence covariation observed and our structural analysis, xrRNAs from subclass 1b are more compact than those from subclass 1a, except for the P2 stem (Fig. 2B). Subclass 1b xrRNAs are distinguished from subclass 1a by four structural features observed in the TABV xrRNA crystal structure. The first is the presence of generally two non-Watson-Crick interactions at the 5’ end of the P1 stem (Fig. 5A, 5C). Over half of the sequences in our alignment have the two A...C interactions observed in the TABV structure, followed by two Watson-Crick pairs before the three-way junction (Fig. 2A, ; see also Table S1 in the supplemental material). The interactions between A4...C46 and A5...C45 seen in the TABV structure help create a sharp bend in the structure associated with a break in base stacking between Pk1 and P2 (Fig. 5A). For the remainder of the sequences, one of the two As is missing, probably the equivalent to A5, because A4 is involved in stabilizing interactions at the ring closure (Fig. 5A). In 28% of sequences, A4...C46 is replaced by A...A/G interactions. This change is accompanied by the presence of A–U or G–C instead of A5...C45, suggesting a third Watson-Crick pair could form in P1 in that case. A common Hoogsteen/sugar edge configuration at A...G and Watson-Crick at A–U or G–C would lead to a shift of the pairing partner of both A bases towards the minor groove. In any event, the length of P1 is constrained to 3–4 base pairs by the compactness of the fold, a structural
feature which is supported by our comparative sequence alignment (Fig. 2A). Conversely, the subclass 1a P1 stem is highly conserved with only two base pairs covarying out of the six possible Watson-Crick base pairs. Also, the subclass 1b lack almost absolutely-conserved sequences that are found in the subclass 1a xrRNAs, for example in the P1 stem, making them distinct (39).

The L3 loop comprising the Pk2 pseudoknot is the second defining feature of the subclass 1b xrRNA. The L3 region exists in a 3-3-3 (86%), 4-3-3/3-3-4 (13%), or a 4-3-4 (1%) nucleotide configuration (the number of nucleotides refers to the length of the 5′ side of L3, of Pk2, and of the 3′ side of L3 or L3′; Fig. 2A, 5C, Table S1). Sequence patterns of L3 can be rationalized based on the TABV structure: (i) the 5′ side generally comprises three pyrimidines (90% U at the position preceding Pk2; Figure 2), due to the tight turn leading to Pk2; (ii) the three base-pair length of Pk2 is conserved as A34 within L3′ immediately downstream participates in ring closure interactions (Figures 2, 5B); (iii) L3′ following Pk2 generally comprises two purines (A34 and A35 in TABV) which help support stacking of Pk2 on P3, followed by a pyrimidine (C36) which could accommodate the guanine present on the 5′ side of L3 in 45% sequences (Figure 2; see also Table S1 in the supplemental material). Notably, the first adenines following Pk2 do not get modified by NMIA, although they are reactive to DMS (Fig. 4), which is consistent with them being conformationally constrained but with available Watson-Crick edges, as revealed by the TABV xrRNA structure (Figure 5B).

Next, a defining structural feature of subclass 1a lacking in subclass 1b is the presence of a conserved cytosine between P2 and P3. In subclass 1a xrRNA, this nucleotide is important for tertiary interactions that support folding and the formation of the ring-like structure around the 5′ end of the xrRNA. Studies have shown that mutating this C to any other nucleotide disrupts the ability of xrRNA to resist Xrn1 (1). In recent studies with TABV it was shown that its fold cannot tolerate the addition of a nucleotide in this region (37). Because the ring of subclass 1b TABV xrRNA is stabilized by a different set of long-range interactions compared to the subclass 1a ZIKV xrRNA, this results in a more compact fold that can no longer accommodate the C. Although this C is critical for subclass 1a xrRNAs, our present work shows that its absence is a shared feature among subclass 1b xrRNAs.
Finally, the covariation pattern of the Pk1 is another key feature of the subclass 1b xrRNA, although less distinctive between the two subclasses. According to sequence alignment and probing data, this region accommodates either two (11% of the sequences identified) or three base pairs (88.3% of the sequences) (Fig. 5B, 5C; see also Table S1 in the supplemental figures). Out of the eight sequences we probed, five reveal that the Pk1 predicted to have three base pairs (based on sequence) actually only forms two base pairs (Fig. 4B, E, F, H, I). Together with the crystal structure of TABV (where Pk1 comprises two base pairs), these results suggest that two base pairs are sufficient to support a resistant fold, although we cannot exclude that Pk1 may have an additional pair on its 5’ side in some other cases, or that this pair is dynamic (Fig. 1C). The second of the two Pk1 base pairs (which is always formed) is >97% a G-C (Fig. 2B), as in subclass 1a (Fig. 2A; reference to Kieft RNA Biology 2015). The first nucleotide immediately downstream of Pk1’ is strongly reactive to NMIA, except for HCK (Fig. 4G). This feature is consistent with the flipped-out conformation of U42 in the TABV structure (Fig. 1B). In the subclass 1a the PK1 region is never more than two base pairs, but it can which can be up to three for the subclass 1b.

DISCUSSION

In this study we have identified and structurally characterized xrRNAs in all genera of Flaviviridae, one of the largest families of RNA viruses, expanding on the known distribution of these RNA structures within Flaviviridae (23). Based on our computational, structural, and biochemical data, we propose that the characteristics of these new xrRNAs require a division of the previously proposed class 1 xrRNA (38) into two distinct subclasses: subclass 1a (comprising MBFV, in particular MVEV, ZIKV, WNV, YFV, etc.), and subclass 1b (comprising TABV, ISFV, pegi-, pesti- and hepaciviruses). Subclasses 1a and 1b deviate in (i) the sequence patterns of their P1 and P3 stems, (ii) the nucleotide patterns of the L3 loop, (iii) the Pk2 region, and (iv) whether a particular nucleotide is present between P2 and P3. In addition, the pattern of almost absolutely-conserved nucleotides that is indicative of subclass 1a (39), is not present in subclass 1b. Thus, all of the identified xrRNAs in Flaviviridae fall into three distinct groups: subclasses 1a and 1b, and class 2 (which remains as described in the literature) (38).
Within known *Flaviviridae* sequences, subclasses 1a and 1b do not appear in the same viral species. In other words, no viral sequence within the phylogenetic groups characterized as having subclass 1a xrRNAs possesses a subclass 1b xrRNA and vice-versa. When several xrRNAs are present in the same 3’ UTR (57), all belong to the same subclass. This observation supports the hypothesis of the evolution of these structural elements from a common ancestor (58), as opposed to horizontal gene transfer. This scenario is further supported by our observation that hepacviruses — one of the most distantly related genera within *Flaviviridae* — also contain the most divergent subset of subclass 1b xrRNAs, possibly branching out further into distinct subcategories. Moreover, hepacviruses include viruses like Hepatitis C, which do not have xrRNAs (59). In short, xrRNAs are evolving with the rest of the attached viral genome and not actively ‘hopping’ across genera.

Although subclass 1b xrRNAs are resistant to Xrn1 *in vitro*, their function in the context of viral infection and pathogenesis remains unclear. A key functional role of xrRNAs from subclass 1a is to enable formation of sfRNAs, which have key roles for virus survival within the vector and host cells (23, 27, 60). Whether the subclass 1b xrRNAs from pesti-, pegi- and hepacviruses have a similar function in the generation of viral sfRNA is currently unknown. In particular, not every virus with a subclass 1b xrRNA generates sfRNAs. As an example, we show that GBV-C has a subclass 1b xrRNA (Fig. S1), although previous studies indicated it may not produce any sfRNA (3). Functions other than generating subgenomic RNAs were also expected from our discovery that plant virus xrRNAs could be located upstream of coding regions (36). Systematically testing of viruses for formation of sfRNAs would be a first step in pinpointing alternative functions of subclass 1b xrRNA. Whether subclass 1b xrRNAs participate in sfRNA generation or not, evolutionarily they maintain the necessary interactions for proper folding into a structure that can resist exoribonucleases.

In addition to motivating systematic characterization of sfRNA formation within all *Flaviviridae* genera, this study also reinforces the importance of combining bioinformatic, biochemical, and structural techniques to derive meaningful conclusions about viral structured RNAs. Bioinformatics are a powerful tool to develop xrRNA secondary structure predictions, but this approach requires the availability of
complete 3’ UTR sequences. We estimate that >50% of the available viral genome sequences for Pesti-, Pegi- and Hepaciviruses end at the last codon of the coding region. In addition, biochemical experiments are needed to not only validate computational predictions, but also to refine the proposed models. As an example, the APPeV xrRNA was predicted to have a six-base pair Pk1, based solely on the sequence alignment and our covariance model. This possibility was refuted — in the context of Xrn1 resistance at least — after the chemical probing experiments revealed that Pk1 consisted of three base pairs (Fig. 4D). We also bioinformatically identified two putative xrRNAs in HPgV2 whose sequences were overlapping (Fig. S2). The Xrn1 resistance assay enabled us to determine which sequence corresponded to the true xrRNA. Similarly, further testing and structural mapping of the putative but still ambiguous xr3–5 elements for some of the ISFVs (CSFV and PaRV) should reveal whether they are actual xrRNAs, and if so, whether they might represent another subgroup within subclass 1b. Overall, this study expands on the widespread presence of xrRNAs in nature, now within all Flaviviridae viruses, thereby further supporting the prevalence of this particular structure in the viral world.

METHODS

Subclass 1b bioinformatic searches and covariance model analysis

An initial subclass 1b alignment was created starting from a total of 20 sequences of insect specific flaviviruses (see Table S1, sequences with a ‘+’ symbol) that were manually aligned with a combination of RALEE v. 0.8 and a text editor, using the TABV secondary structure as a reference. Using Infernal v. 1.1.3 (48) with default parameters we searched a database of reference viral genomes consisting of all currently available +ssRNA sequences downloaded from the National Center for Biotechnology Information (NCBI; last retrieved on 04/24/2020). Hits from the Infernal searches were manually added to the comparative sequence alignment, when they met all of the following criteria: Infernal E value <0.05, >15% nucleotide variation within each sequence, presence of Pk1 and Pk2, location within the 3’ UTR. Sequences with higher E values were also inspected and added to the list if they met the last three
requirements. For the final proposed covariance model of 87 xrRNA sequences, we performed statistical validation using \textit{R-scape} v.1.5.3 (49) and rendering with \textit{R2R} v.1.0.5 (61).

Plasmid construction

Each xrRNA construct (Table S3) was designed as a double stranded DNA gBlock (IDT) and was subsequently cloned into the EcoRI and BamHI sites of pUC-19. Cloned plasmids were amplified in competent \textit{E. coli} DH5α cells and purified with Qiagen miniprep kit (Qiagen). The recovered plasmid stocks were verified through sequencing (Eton Bioscience).

In vitro RNA transcription

Template DNA was amplified by PCR using custom DNA primers (Table S3) and recombinant Phusion Hot Start polymerase (New England Biolabs). \textit{In vitro} transcription was carried out in a volume of 2.5 mL comprising 1.0 mL of PCR reaction as template. The transcription reaction contained ~0.2 M template DNA, 6 mM each rNTP, 60 mM MgCl₂, 30 mM Tris pH 8.0, 10 mM dithiothreitol (DTT), 0.1% spermidine, 0.1% Triton X-100, T7 RNA polymerase, and 2 µL RNasin RNase inhibitor (Promega). The transcription reaction was incubated overnight at 37°C. The RNA was precipitated with 4 volumes of ice cold 100% ethanol, incubating overnight at -20°C. Precipitated RNA was gel purified via 7M urea – 8% denaturing polyacrylamide gel electrophoresis (dPAGE) (1x TBE). The RNA was visualized by UV light, excised from the gel, and eluted from the gel by the crush and soak method overnight at 4°C, in ~ 50 mL of diethylpyrocarbonate (DEPC)-treated Milli-Q filtered water. 30K molecular weight cut off (MWCO) Amicon Ultra spin Concentrators (Millipore-Sigma) were used to concentrate the eluted RNA to 2.5 mg/mL, which was then stored at -20°C in DEPC-treated H₂O until use.

\textit{In vitro} Xrn1 resistance assay

A total of 5 µg RNA was incubated at 90°C for 3 minutes and 20°C for 5 minutes in 40 µL of refolding buffer (100 mM NaCl, 50 mM Tris pH 7.5, 10 mM MgCl₂, and 1 mM DTT). Next, 3 µL of recombinant
RppH (0.5 µg/µL stock) was added to the mixture which was then aliquoted into two volumes of 20 µL. To one of the aliquots, 1.5 µL of recombinant Xrn1 (0.8 µg/µl stock) was added and the reaction mix was incubated in a thermocycler at 37°C for 2 hrs. 10 µL of RNA from each reaction (+/- Xrn1) was resolved by a 7M urea 8% dPAGE and visualized with ethidium bromide.

Chemical probing

This method has been adapted from (62). RNA (1.2 pmol) was refolded in 13 µL of folding buffer (77 mM of Na-HEPES pH 8.0) and 4.8 nM of 6-fluorescein amidite-labeled reverse transcription primer (Table S3) at 95°C for 3 min, followed by a 10 min slow cool to room temperature. 2 µL of 100 mM MgCl₂ were added to the mixture at room temperature. Final concentrations of the folding buffer are as follows: 6.67 mM Na-HEPES pH 8.0, 4.1 nM FAM-labeled RT primers, and 13.3 mM MgCl₂. This reaction mixture was incubated at 37°C for 15 min. The RNA mixture was centrifuged at maximum speed (30,130 × g) in a tabletop centrifuge, and the full 15 µL were added to one well of the 96 well plate where the remainder of the chemical probing experiments occurred. When setting up this experiment, enough folded RNA was made to fill the contents of a 96 well plate.

Fresh stocks of 0.5% dimethyl sulfate (DMS, Sigma Aldrich, ref: D186309) and 12 mg/mL N-methylisatoic anhydride (NMIA, Invitrogen, ref: M25) were made immediately before probing. Chemical modifier stocks were prepared as follows: 10 µL of DMS was first added to 90 µL of 100% ethanol, which was then added to 900 µL of H₂O. This 1% DMS solution was then diluted to 0.5% with DEPC treated Milli-q H₂O. NMIA solution was prepared by dissolving 12 mg of NMIA in dimethyl sulfoxide (DMSO, Acros Organics, ref: 167851000). A stock of DMSO was used as the no modification control. For each condition (DMS, NMIA, or DMSO) 5 µL of the appropriate stock was added to a well containing the 15 µL of folded RNA incubating the reaction at room temperature for 30 min. Specific chemical modifier quenching solutions were prepared which consisted of 1.5 µL of cleaned oligo-dT25 magnetic beads (Invitrogen), 3 µL of 5M NaCl, 0.25 µLof DEPC treated Milli-q H₂O and 5 µL of the respective quenching solution. Fresh 2-Mercaptoethanol (Sigma, ref: M3148) was used to quench the DMS reaction, 0.5 M 2-
(N-Morpholino) ethanesulfonic acid sodium salt (Na-MES, J.T. Baker, ref: 4813-01) to quench NMIA. The appropriate quenching solution was added to each well and incubated at room temperature for 10 min. The chemically modified RNAs bound to the beads were washed with 3x 100 µL of 70% EtOH on a magnetic rack. The washed beads were air dried for ~15 min and then resuspended in 2.5 µL of 2 M betaine (Sigma, ref: B3501).

Quantitation of chemical probing by reverse transcription

The RNA was reverse transcribed on beads with 2.5 µL of reverse transcription mixture comprised of 1.0 µL of 5x First strand Buffer (Thermo Fisher), 0.25 µL of 0.1 M 1,4-Dithiothreitol (DTT), 0.4 µL of a 10 mM equimolar mixture of dNTPs, 0.75 µL of DEPC-Treated H2O, and 0.1 µL of Superscript III reverse transcriptase (Fisher). The mixture was incubated in a 52°C water bath for 50 min. Upon completion, 5 µL of 0.4 M NaOH was added to each well and incubated at 65°C for 20 min to hydrolyze the RNA. The samples were then cooled in an ice bath for 2 min and each reaction was neutralized with 5 µL of an acid quench mixture (1.4 M NaCl, 0.6 N HCl, and 1.3 M NaOAc). The supernatant was aspirated from each well, and the complementary DNA (cDNA) bound to the beads were washed three times with 100 µL of 70% EtOH and allowed to air dry for ~15 min. The cDNA was then eluted off the beads in 11 µL of a ROX-formamide mixture (2.75 uL of ROX-500 ladder (Applied Biosystems) in 1.2 mL of HiDi-formamide (Applied Biosystems), incubating at room temperature for 15 min. The 11 µL cDNA mixture was transferred to an optical plate and analyzed with an ABI 3500 Genetic Analyzer Capillary Electrophoresis machine.

Preparation of the sanger sequence ladder

Alongside the reverse transcription for the chemically probed RNAs, Sanger sequencing ladders were constructed through reverse transcription of unmodified xrRNA in the presence of dideoxynucleoside triphosphates (ddNTP’s). In brief 2.5 µL of an RNA mixture consisting of 0.2 µL of 0.25 µM FAM primer, 1.5 µL of oligo-dT beads (Invitrogen), 0.5 µL of 2.4 µM RNA, and 0.25 µL of 5 M betaine was added to 2.5 µL of ladder reverse transcription mix consisting of 1.0 µL of 5x First strand Buffer (Thermo Fisher),
0.25 µL of 0.1M DTT, 0.4 µL of 1.0 mM dNTP’s (equimolar dATP, dTTP, dCTP, dGTP), 0.4 µL of 1.0 mM of the appropriate ddNTP, 0.1 µL of Superscript III reverse transcriptase, and 0.25 µL of 5 M Betaine. The outlined reverse transcription protocol was followed as described above.

Analysis of chemical probing

The HiTRACE MATLAB suite (https://ribokit.github.io/HiTRACE/) with MATLAB (v8.3.0.532) was used to analyze the chemical probing data as described in (63). CE traces were first aligned manually and verified using the Sanger sequencing ladder in HiTRACE. Each run was corrected for signal attenuation, background subtracted with values from the DMSO channels, and then normalized via the 5’ and 3’ hairpin loops (GAGUA) flanking the sequence of interest in the construct. The nucleotide reactivities for each modifier were calculated, and the reactivities were mapped back to the secondary structure of the xrRNA using Varna v. 3.93 (64).

ACKNOWLEDGEMENTS

The authors thank Dr. Esteban Finol for sharing sets of relevant sequence data, Dr. Elena Rivas for her help with R-scape, and Drs. Rene Olsthoorn and Peter Bredenbeek for useful communication and insight regarding the presence of xrRNAs in Pegiviruses. We also thank David Farrell for computational assistance, Dr. Anna-Lena Steckelberg and David Costantino for critical reading of the manuscript and insightful comments, as well as current and former Kieft Lab members for thoughtful discussions and technical assistance. This work was supported by NIH grants R35GM118070 and R01AI133348 (JSK), and T32AI052066 (MJS).
REFERENCES

1. Akiyama BM, Laurence HM, Massey AR, Costantino DA, Xie XP, Yang YJ, Shi PY, Nix JC, Beckham JD, Kieft JS. 2016. Zika virus produces noncoding RNAs using a multi-pseudoknot structure that confounds a cellular exonuclease. Science 354:1148-1152.
2. Charley PA, Wilusz J. 2016. Standing your ground to exoribonucleases: Function of Flavivirus long non-coding RNAs. Virus Res 212:70-7.
3. Clarke BD, Roby JA, Slonchak A, Khromykh AA. 2015. Functional non-coding RNAs derived from the flavivirus 3’ untranslated region. Virus Res 206:53-61.
4. Ng WC, Soto-Acosta R, Bradrick SS, Garcia-Blanco MA, Ooi EE. 2017. The 5’ and 3’ Untranslated Regions of the Flaviviral Genome. Viruses 9.
5. Selisko B, Wang C, Harris E, Canard B. 2014. Regulation of Flavivirus RNA synthesis and replication. Curr Opin Virol 9:74-83.
6. Brinton MA, Basu M. 2015. Functions of the 3’ and 5’ genome RNA regions of members of the genus Flavivirus. Virus Res 206:108-19.
7. Iglesias NG, Gamarnik AV. 2011. Dynamic RNA structures in the dengue virus genome. RNA Biol 8:249-57.
8. Filomatori CV, Lodeiro MF, Alvarez DE, Samsa MM, Pietrasanta L, Gamarnik AV. 2006. A 5’ RNA element promotes dengue virus RNA synthesis on a circular genome. Genes Dev 20:2238-49.
9. Villordo SM, Gamarnik AV. 2009. Genome cyclization as strategy for flavivirus RNA replication. Virus Res 139:230-9.
10. Friebe P, Harris E. 2010. Interplay of RNA elements in the dengue virus 5’ and 3’ ends required for viral RNA replication. J Virol 84:6103-18.
11. Villordo SM, Alvarez DE, Gamarnik AV. 2010. A balance between circular and linear forms of the dengue virus genome is crucial for viral replication. RNA 16:2325-35.
12. Gebhard LG, Filomatori CV, Gamarnik AV. 2011. Functional RNA elements in the dengue virus genome. Viruses 3:1739-56.
13. Chapman EG, Costantino DA, Rabe JL, Moon SL, Wilusz J, Nix JC, Kieft JS. 2014. The structural basis of pathogenic subgenomic flavivirus RNA (sfRNA) production. Science 344:307-10.
14. Silva PA, Pereira CF, Dalebout TJ, Spaan WJ, Bredenbeek PJ. 2010. An RNA pseudoknot is required for production of yellow fever virus subgenomic RNA by the host nuclease XRN1. J Virol 84:11395-406.
15. Funk A, Truong K, Nagasaki T, Torres S, Floden N, Balmori Melian E, Edmonds J, Dong H, Shi PY, Khromykh AA. 2010. RNA structures required for production of subgenomic flavivirus RNA. J Virol 84:11407-17.
16. Naeve CW, Trent DW. 1978. Identification of Saint Louis encephalitis virus mRNA. J Virol 25:535-45.
17. Urosevic N, van Maanen M, Mansfield JP, Mackenzie JS, Shellam GR. 1997. Molecular characterization of virus-specific RNA produced in the brains of flavivirus-susceptible and -resistant mice after challenge with Murray Valley encephalitis virus. J Gen Virol 78 (Pt 1):23-9.
18. Takeda H, Oya A, Hashimoto K, Yasuda T, Yamada MA. 1978. Association of virus specific replicative ribonucleic acid with nuclear membrane in chick embryo cells infected with japanese encephalitis virus. J Gen Virol 38:281-91.
19. Pijlman GP, Funk A, Kondratieva N, Leung J, Torres S, van der Aa L, Liu WJ, Palmenberg AC, Shi PY, Hall RA, Khromykh AA. 2008. A highly structured, nuclease-resistant, noncoding RNA produced by flaviviruses is required for pathogenicity. Cell Host Microbe 4:579-91.
20. Iwakawa HO, Mizumoto H, Nagano H, Imoto Y, Takigawa K, Sarawaneeyaruk S, Kaido M, Mise K, Okuno T. 2008. A viral noncoding RNA generated by cis-element-mediated protection against 5’->3’ RNA decay represses both cap-independent and cap-dependent translation. J Virol 82:10162-74.
21. Steckelberg AL, Akiyama BM, Costantino DA, Sit TL, Nix JC, Kieft JS. 2018. A folded viral noncoding RNA blocks host cell exoribonucleases through a conformationally dynamic RNA structure. Proc Natl Acad Sci U S A 115:6404-6409.

22. Geisler S, Coller J. 2012. XRN1: A Major 5' to 3' Exoribonuclease in Eukaryotic Cells. Enzymes 31:97-114.

23. Slonchak A, Khromykh AA. 2018. Subgenomic flaviviral RNAs: What do we know after the first decade of research. Antiviral Res 159:13-25.

24. Bavila L, Mosimann AL, Aoki MN, Duarte Dos Santos CN. 2016. A glance at subgenomic flavivirus RNAs and microRNAs in flavivirus infections. Virol J 13:84.

25. Manokaran G, Finol E, Wang C, Gunaratne J, Bahl J, Ong EZ, Tan HC, Sessions OM, Ward AM, Gubler DJ, Harris E, Garcia-Blanco MA, Ooi EE. 2015. Dengue subgenomic RNA binds TRIM25 to inhibit interferon expression for epidemiological fitness. Science 350:217-21.

26. Bidet K, Garcia-Blanco MA. 2014. Flaviviral RNAs: weapons and targets in the war between virus and host. Biochem J 462:215-30.

27. Moon SL, Dodd BJ, Brackney DE, Wilusz CJ, Ebel GD, Wilusz J. 2015. Flavivirus sfRNA suppresses antiviral RNA interference in cultured cells and mosquitoes and directly interacts with the RNAi machinery. Virology 485:322-9.

28. Schnettler E, Tykalova H, Watson M, Sharma M, Sterken MG, Obbard DJ, Lewis SH, McFarlane M, Bell-Sakyi L, Barry G, Weisheit S, Best SM, Kuhn RJ, Pijlman GP, Chase-Topping ME, Gould EA, Grubhofer L, Fazakerley JK, Kohl A. 2014. Induction and suppression of tick cell antiviral RNAi responses by tick-borne flaviviruses. Nucleic Acids Res 42:9436-46.

29. Pompon J, Manuel M, Ng GK, Wong B, Shan C, Manokaran G, Soto-Acosta R, Bradrick SS, Ooi EE, Misse D, Shi PY, Garcia-Blanco MA. 2017. Dengue subgenomic flaviviral RNA disrupts immunity in mosquito salivary glands to increase virus transmission. PLoS Pathog 13:e1006535.

30. Slonchak A, Hugo LE, Freney ME, Hall-Mendelin S, Amarilla AA, Torres FJ, Setoh YX, Peng NYG, Sng JDJ, Hall RA, van den Hurk AF, Devine GJ, Khromykh AA. 2020. Zika virus noncoding RNA suppresses apoptosis and is required for virus transmission by mosquitoes. Nat Commun 11:2205.

31. Yeh SC, Pompon J. 2018. Flaviviruses Produce a Subgenomic Flaviviral RNA That Enhances Mosquito Transmission. DNA Cell Biol 37:154-159.

32. Goertz GP, Fros JJ, Miesen P, Vogels CBF, van der Bent ML, Geertsema C, Koenraadt CJM, van Rij RP, van Oers MM, Pijlman GP. 2016. Noncoding Subgenomic Flavivirus RNA Is Processed by the Mosquito RNA Interference Machinery and Determines West Nile Virus Transmission by Culex pipiens Mosquitoes. J Virol 90:10145-10159.

33. Goertz GP, Miesen P, Overheul GJ, van Rij RP, van Oers MM, Pijlman GP. 2019. Mosquito Small RNA Responses to West Nile and Insect-Specific Virus Infections in Aedes and Culex Mosquito Cells. Viruses 11.

34. Moon SL, Anderson JR, Kumagai Y, Wilusz CJ, Akira S, Khromykh AA, Wilusz J. 2012. A noncoding RNA produced by arthropod-borne flaviviruses inhibits the cellular exoribonuclease XRN1 and alters host mRNA stability. RNA 18:2029-40.

35. Michalski D, Ontiveros JG, Russo J, Charley PA, Anderson JR, Heck AM, Geiss BJ, Wilusz J. 2019. Zika virus noncoding sfRNAs sequester multiple host-derived RNA-binding proteins and modulate mRNA decay and splicing during infection. J Biol Chem 294:16282-16296.

36. *Steckelberg AL, *Vicens Q, Kieft JS. 2018. Exoribonuclease-Resistant RNAs Exist within both Coding and Noncoding Subgenomic RNAs. mBio 9. *joint first authors

37. Jones RA, Steckelberg AL, Szucs MJ, Akiyama BM, Vicens Q, Kieft JS. 2020. Different tertiary interactions create the same important 3-D features in a divergent flavivirus xRNA. bioRxiv doi:10.1101/2020.06.25.172429.

38. *MacFadden A, *O'Donoghue Z, Silva P, Chapman EG, Olsthoorn RC, Sterken MG, Pijlman GP, Bredenbeek PJ, Kieft JS. 2018. Mechanism and structural diversity of exoribonuclease-resistant RNA structures in flaviviral RNAs. Nat Commun 9:119. *joint first authors

39. Kieft JS, Rabe JL, Chapman EG. 2015. New hypotheses derived from the structure of a flaviviral Xrn1-resistant RNA: Conservation, folding, and host adaptation. RNA Biol 12:1169-77.
40. Szucs, M. J. et al. 2020. The crystal structure of a Polerovirus exoribonuclease-resistant RNA shows how diverse sequences are integrated into a conserved fold. doi:10.1101/2020.04.30.070631. *joint first authors

41. Smith DB, Basaras M, Frost S, Haydon D, Cuceau N, Prescott L, Kamenka C, Millband D, Sathar MA, Simmonds P. 2000. Phylogenetic analysis of GBV-C/hepatitis G virus. J Gen Virol 81:769-80.

42. Smith DB, Becher P, Bukh J, Gould EA, Meyers G, Monath T, Muerhoff AS, Pletnev A, Rico-Hesse R, Stapleton JT, Simmonds P. 2016. Proposed update to the taxonomy of the genera Hepacivirus and Pegivirus within the Flaviviridae family. J Gen Virol 97:2894-2907.

43. Smith DB, Meyers G, Bukh J, Gould EA, Monath T, Scott Muerhoff A, Pletnev A, Rico-Hesse R, Stapleton JT, Simmonds P, Becher P. 2017. Proposed revision to the taxonomy of the genus Pestivirus, family Flaviviridae. J Gen Virol 98:2106-2112.

44. Simmonds P, Becher P, Bukh J, Gould EA, Meyers G, Monath T, Scott Muerhoff S, Pletnev A, Rico-Hesse R, Smith DB, Stapleton JT, Ictv Report C. 2017. ICTV Virus Taxonomy Profile: Flaviviridae. J Gen Virol 98:2-3.

45. Bekal S, Domier LL, Gonfa B, McCoppin NK, Lambert KN, Bhalerao K. 2014. A novel flavivirus in the soybean cyst nematode. J Gen Virol 95:1272-1280.

46. de Bernardi Schneider A, Jacob Machado D, Janies D. 2019. Enhanced genome annotation strategy provides novel insights on the phylogeny of Flaviviridae. doi:10.1101/674333.

47. Ochsenreiter R, Hofacker IL, Wolfinger MT. 2019. Functional RNA Structures in the 3'UTR of Tick-Borne, Insect-Specific and No-Known-Vector Flaviviruses. Viruses 11.

48. Nawrocki EP, Eddy SR. 2013. Computational identification of functional RNA homologs in metagenomic data. RNA Biol 10:1170-9.

49. Rivas E, Clements J, Eddy SR. 2017. A statistical test for conserved RNA structure shows lack of evidence for structure in IncRNAs. Nat Methods 14:45-48.

50. Deana A, Celesnik H, Belasco JG. 2008. The bacterial enzyme RppH triggers messenger RNA degradation by 5' pyrophosphate removal. Nature 451:355-8.

51. Hartwick EW, Costantino DA, MacFadden A, Nix JC, Tian S, Das R, Kieft JS. 2018. Ribosome-induced RNA conformational changes in a viral 3'-UTR sense and regulate translation levels. Nat Commun 9:5074.

52. Merino EJ, Wilkinson KA, Coughlan JL, Weeks KM. 2005. RNA structure analysis at single nucleotide resolution by selective 2'-hydroxyl acylation and primer extension (SHAPE). J Am Chem Soc 127:4223-31.

53. Stern S, Moazed D, Noller HF. 1988. Structural-Analysis of Rna Using Chemical and Enzymatic Probing Monitored by Primer Extension. Methods in Enzymology 164:481-489.

54. Vicens Q, Gooding AR, Laederach A, Cech TR. 2007. Local RNA structural changes induced by crystallization are revealed by SHAPE. RNA 13:536-48.

55. Gherghe CM, Mortimer SA, Krahn JM, Thompson NL, Weeks KM. 2008. Slow conformational dynamics at C2'-endo nucleotides in RNA. J Am Chem Soc 130:8884-5.

56. Chapman EG, Moon SL, Wilusz J, Kieft JS. 2014. RNA structures that resist degradation by Xrn1 produce a pathogenic Dengue virus RNA. Elife 3:e01892.

57. Villordo SM, Carballeda JM, Filomatori CV, Gamarnik AV. 2016. RNA Structure Duplications and Flavivirus Host Adaptation. Trends Microbiol 24:270-283.

58. Coughlan JL, Anderson JR, Dozier MK, Dodd BJ, Keene JD, Wilusz CJ, Bradrick SS, Wilusz J. 2015. XRN1 stalling in the 5' UTR of Hepatitis C virus and Bovine Viral Diarrhea virus is associated with dysregulated host mRNA stability. PLoS Pathog 11:e1004708.

59. Schnettler E, Sterken MG, Leung JY, Metz SW, Geertsema C, Goldbach RW, Vlak JM, Kohl A, Khromykh AA, Pijlman GP. 2012. Noncoding flavivirus RNA displays RNA interference suppressor activity in insect and Mammalian cells. J Virol 86:13486-500.

60. Weinberg Z, Breaker RR. 2011. R2R--software to speed the depiction of aesthetic consensus RNA secondary structures. BMC Bioinformatics 12:3.
62. Cordero P, Kladwang W, VanLang CC, Das R. 2014. The mutate-and-map protocol for inferring base pairs in structured RNA. Methods Mol Biol 1086:53-77.
63. Yoon S, Kim J, Hum J, Kim H, Park S, Kladwang W, Das R. 2011. HiTRACE: high-throughput robust analysis for capillary electrophoresis. Bioinformatics 27:1798-805.
64. Darty K, Denise A, Ponty Y. 2009. VARNA: Interactive drawing and editing of the RNA secondary structure. Bioinformatics 25:1974-5.
Fig. 1. Mechanism and presence of exoribonuclease resistant RNA in Flaviviridae. (A) Mechanism of sfRNA biogenesis through Xrn1 exoribonuclease (orange) resistant RNA (xrRNA, boxed in red). (B) Phylogeny of Flaviviridae based on the sequence of NS5 adapted from (44). Genera possessing class 1 or class 2 xrRNAs are boxed in grey. Genera investigated in this study are boxed in red. NKV, no-known vector flavivirus; TBFV, tick borne flavivirus; MBFV, mosquito-borne flavivirus. (C) Secondary structure diagram of the xrRNA1 from TABV. Secondary structure regions are delineated by different colors and key long-range interactions are indicated with lines. (D) Three-dimensional structure of TABV xrRNA xr1, colored as in panel C. (PDB ID XXXX) (37).
Fig. 2: Sequence conservation of subclass 1b xrRNA. (A) Comparative sequence alignment of select subclass 1b xrRNA from insect specific flavivirus (ISFV), Pestivirus, Pegivirus, and Hepacivirus. The TABV xrRNA x1 sequence and the secondary structure derived from the crystal structure were used as a reference. A star (*) designates sequences used for subsequent biochemical analysis. (B) Covariance models of the subclass 1a (32 sequences; updated from (39)) and subclass 1b (87 sequences) xrRNAs. Covarying base pairs validated by R-scape (E-value < 0.05) are highlighted in green.

Szucs, M. J. et al
Figure 3: Biochemical validation of exoribonuclease resistance of subclass 1b xrRNA representatives. Each panel shows the results from denaturing 8% polyacrylamide gel electrophoresis used to analyze Xrn1 resistance experiments. (A) Representative Pestivirus subclass 1b xrRNA. From left to right: NRPeV, Norway Rat Pestivirus (NRPeV_NC025677-1_12526-12618*); RPeV, Rodent Pestivirus (RPeV_KY370101-1_2622-12718_xr1*); APPeV, Atypical Porcine Pestivirus (APPeV_NC_038964-1_11102-11187). (B) Representative subclass 1b xrRNA from Pegivirus. From left to right: Simian Pegivirus (SPgV_NC_001837-1_9441-9518_GBVA*) and Human Pegivirus 2 (HPgV2_NC_027998-2_9532-9636_CP*). (C) Representative subclass 1b xrRNA from Hepacivirus. From left to right: GB virus B (GBVB_NC_001655-1_9095-9165*), Guareza Hepacivirus (HCGu_NC_031950-1_10278-10351) Hepacivirus (HCGu_NC_031950-1_10278-10351*). TABV, Tamana bat virus (positive control); Neg Ctrl, non-resistant RNA (tRNA-like structure) (51).
Figure 4: Secondary structure validation of the subclass 1b through chemical probing.

Subclass 1b constructs were probed with DMS and NMIA. Normalized DMS (blue) and NMIA (red) reactivities were combined with comparative sequence analysis to derive secondary structure models. Reactivities were overlaid on the secondary structure using Varna v. 3.93 (64). (A) Tamana Bat Virus. (B–D) Pestivirus. (E–F) Pegivirus. (G–I) Hepacivirus. Raw and normalized data shown in Fig. S2 of the supplemental material.
Figure 5. Structural analysis of the subclass 1b xrRNA. (A) View of the ring-like structure in the TABV xrRNA from the 3’ side. The 5’ end is kept at the center of the ring and points away from the reader. Regions are color-coded as in Fig. 1C. A...C interactions in P1 are highlighted in the close ups. (B) Close up of L3 and Pk2. (C) Structural features for classes 1 and 2 are highlighted on secondary structure silhouettes. The blue “no” symbol for subclass 1b highlights the absence of a nucleotide in the junction between P2 and P3. In addition to the differences highlighted here, subclass 1a contains regions of absolutely-conserved sequences that are not in subclass 1b (Fig. 2B)
Supplemental Material:

A new subclass of exoribonuclease resistant RNA found in multiple Flaviviridae genera

Matthew J. Szucs¹, Parker J. Nichols¹, Rachel A. Jones¹, Quentin Vicens¹* & Jeffrey S. Kieft¹,²*

Contents:
Table S1: Complete subclass1b sequence alignment
Table S2: General information about subclass1b sequences in alignment
Table S3: In vitro transcribed subclass1b construct information
Figure S1: subclass1b in vitro degradation assay gel images
Figure S2: Pestivirus, Pegivirus, and Hepacivirus chemical probing data

The following pages contain several tables:

Table S1: Complete subclass 1b xrRNA sequence alignment. This sequence alignment was used to generate the subclass 1b covariance model (Fig. 2B). Constructs used for chemical probing analysis are designated by a star. Labels are formatted with the name of the virus, the accession number, the location of the xrRNA within the accession number, and the relative position of the xrRNA, when several are found in series (i.e., xr1 is the most 5' xrRNA element). Sequences ending in a “+” were used in the initial sequence alignment as input for Infernal searches.

Table S2: General information about subclass 1b xrRNA sequences.

Table S3: Subclass 1 xrRNA construct and primer information. Sequence information for the biochemically tested subclass 1b xrRNA, and PCR and reverse transcription primers used for cloning and reverse transcription.
Table S1: Complete subclass 1b sequence alignment
Table S2: General information about subclass 1b sequence alignment

Alignment Name	GenBank or RefSeq ID	mRNA Contact	Virus Name	Start mRNA Length (nt)	mRNA Length (nt)	Change mRNA Location	Genome Classification
FABV_AF344791.1_10241-10305_rr1	AF344791.1	v11	Lamata Bat Virus, complete genome	10241	79	10223-10200	Sagarson flavivirus
FABV_AF344791.1_10305-10385_rr2	AF344791.1	v21	Lamata Bat Virus, complete genome	10305	76	10305-10380	Sagarson flavivirus
CVFV_NC_005604.2_10246-10326_rr4	NC_005604.2	v32	Coles flavivirus, complete genome	10246	81	10246-10326	flavivirus
CVFV_NC_005604.2_10385-10464_rr5	NC_005604.2	v42	Coles flavivirus, complete genome	10385	81	10385-10464	flavivirus
CVFV_NC_005604.2_10464-10596_rr6	NC_005604.2	v62	Coles flavivirus, complete genome	10464	81	10464-10596	flavivirus
CRF4b_HEV_H1.4_10178-10254_sm1	HEV_H1.4	v12	Coles thielavi flavivirus RP-2011, genomic RNA, isolate 178	10178	87	10178-10254	flavivirus
CRF4b_HEV_H1.4_10254-10326_sm2	HEV_H1.4	v22	Coles thielavi flavivirus RP-2011, genomic RNA, isolate 178	10254	80	10254-10326	flavivirus
CRF4b_HEV_H1.4_10464-10596_sm4	HEV_H1.4	v42	Coles thielavi flavivirus RP-2011, genomic RNA, isolate 178	10464	83	10464-10596	flavivirus
QRC_NC_012371.1_10245-10332_rr1	NC_012371.1	v11	Quang Binh Virus, complete genome	10245	84	10245-10332	flavivirus
QRC_NC_012371.1_10332-10414_rr2	NC_012371.1	v22	Quang Binh Virus, complete genome	10332	85	10332-10414	flavivirus
QRC_NC_012371.1_10414-10507_rr3	NC_012371.1	v33	Quang Binh Virus, complete genome	10414	86	10414-10507	flavivirus
QRC_NC_012371.1_10507-10602_rr4	NC_012371.1	v44	Quang Binh Virus, complete genome	10507	86	10507-10602	flavivirus
QRCFV_NC_012371.2_10245-10332_sm1	NC_012371.2	v11	Quang Binh Virus, complete genome	10245	84	10245-10332	flavivirus
QRCFV_NC_012371.2_10332-10414_sm2	NC_012371.2	v22	Quang Binh Virus, complete genome	10332	85	10332-10414	flavivirus
QRCFV_NC_012371.2_10414-10507_sm3	NC_012371.2	v33	Quang Binh Virus, complete genome	10414	86	10414-10507	flavivirus
QRCFV_NC_012371.2_10507-10602_sm4	NC_012371.2	v44	Quang Binh Virus, complete genome	10507	86	10507-10602	flavivirus
TCVX_NC_006237.1_10464-10507_sm1	NC_006237.1	v11	Mosquito flavivirus, complete genome	10464	84	10464-10507	flavivirus
TCVX_NC_006237.1_10507-10552_sm2	NC_006237.1	v22	Mosquito flavivirus, complete genome	10507	87	10507-10552	flavivirus
TCVX_NC_006237.1_10552-10586_sm3	NC_006237.1	v33	Mosquito flavivirus, complete genome	10552	87	10552-10586	flavivirus
TCVX_NC_006237.1_10586-10691_sm4	NC_006237.1	v44	Mosquito flavivirus, complete genome	10586	87	10586-10691	flavivirus
TCVX_NC_006237.1_10691-10712_sm5	NC_006237.1	v55	Mosquito flavivirus, complete genome	10691	87	10691-10712	flavivirus
TCVX_NC_006237.1_10712-10745_sm6	NC_006237.1	v66	Mosquito flavivirus, complete genome	10712	87	10712-10745	flavivirus

Note: The table lists various alignment names, GenBank or RefSeq IDs, mRNA contacts, virus names, start and end mRNA lengths, change mRNA locations, and genome classifications for different flavivirus strains and species.
Table S3: In vitro transcribed subclass 1b construct info
Figure S1: Uncropped subclass 1b in vitro degradation assay gels. Raw gel images used and cropped for Figure 3. Red boxes indicate data only shown in the supplementary information and not in the main text.

A. Figure 3A: RPeV & APPeV
B. Figure 3B: SPgV
C. HPgV2 (different register not shown in main text)
D. Figure 3B: HPgV2
E. Figure 3A: NRPeV
F. Figure 3C: Hepacivirus subclass 1b xRNA
G. Figure 3B: TABV & negative control
H. Figure 3A: TABV & negative control
I. APPeV & RPeV (replicates not shown in main text)
J. HCP (not shown in main text)
K. GBV-C (not shown in main text)
Figure S2: Secondary structure validation of subclass 1b xrRNA by chemical probing. Each of the following pages contains a single xrRNA construct with similar labels and notation, showing the raw data for chemical probing experiments. The eight constructs are ordered by genera: Pestivirus, Pegivirus, and Hepacivirus. (A) Normalized DMS and NMIA reactivities mapped onto the secondary structure representation of the xrRNA, including the putative P4 region. (B,C) CE lanes and reactivity plot for DMS (B) and NMIA (C) used in the experiment. Red circles around the peaks in the reactivity plot represent a higher degree of standard deviation observed for that point.
A

Pestivirus: Atypical Porcine Pestivirus

B

DMS Reactivities

NMIA Reactivities

C

Atypical Porcine Pestivirus

(NG_038964.1)
Human Pegivirus 2

DMS Reactivities

NMIA Reactivities

Human Pegivirus 2 (NC_027998.2)
A

Hepacivirus K (NC_038430)

B

DMS

C

NMIA
Hepatitis GB virus B

A

DMS Reactivities

Values
0.00
1.00

B

DMS

Hepatitis GB virus B

(NC_001655.1)

C

NMIA

NMIA Reactivities

Values
0.00
1.00