ESTUDO RADIOLÓGICO DE MEGACÔLON EM RATOS INFECTADOS POR TRYPANOSOMA CRUZI

Radiological study of megacolon in Trypanosoma cruzi infected rats

Carlos Edmund Rodrigues FONTES, Ana Paula de ABREU, Aretuza Zaupa GASPARIM.

ABSTRACT - Background: Researches on Chagas disease still use several animals and rats, due to size and susceptibility were preferred by many authors. Aim: To develop an experimental model of megacolon in rats inoculated with the strain Y of Trypanosoma cruzi. Methods: Thirty male Wistar rats were distributed in three groups inoculated with different inoculants: Group A: 60000, Group B: 1000000 and Group C: 1500000 trypomastigotes of T. cruzi. Animals were sedated intramuscularly at zero inoculation time (T₀) and 60 days after inoculation (T₆₀), to perform the barium enema in order to evaluate the dilatation of the different segments of colon in a comparative study of the measurements obtained, using a digital caliper. Evidence of infection was performed by blood smear collected from the animal’s tail 18 days after inoculation with observation of the blood forms. Results: Comparing the intestinal diameter of the inoculated animals with 600000 trypomastigotes in the T₀ of infection with T₆₀ days after the inoculation, significant dilatation was observed between the proximal, medial and distal segments (p<0.01), indicating the establishment of the megacolon model. In addition, comparing intestinal diameter between the different segments, with in the T₀ of infection and the T₆₀ after inoculation, significant alterations were observed (p<0.05). Conclusion: The proposed model was possible for in vivo studies of alterations due to infection by T. cruzi and functional alterations of the colon. In addition, the changes manifested in the colon are not directly proportional to the size of the inoculum, but to the time of infection that the animals were submitted, since the animals inoculated with 600000 forms sanguíneas formed as the ones which presented the most significant alterations.

INTRODUÇÃO

A doença de Chagas (DC) ou tripanossomíase americana é importante antropozoonose que tem como agente etiológico o protozoário hemoflagelado Trypanosoma cruzi, como vetores insetos hematófagos da ordem Hemiptera, família Reduviidae e subfamília Triatominae[1]. Estima-se que cerca de oito milhões de pessoas estão infectadas em todo o mundo, ocorrendo com maior frequência na América Latina, onde é endêmica[2].

No Brasil, a forma indeterminada ou assintomática é a mais comum (60-70%), seguida pelas formas cardíacas e digestivas (20-30% e 8-10%)[3]. Entretanto, no Brasil
Central e Chile, a forma digestiva da DC é predominante, porém não é relatado na Venezuela e América Central. Essas diferenças podem estar associadas a vários fatores, tais como linhagem genética do parasito, distribuição geográfica e estado imunológico do paciente.

As manifestações clínicas da DC podem ser classificadas em fase aguda e crônica, fase aguda com elevada parasitemia podendo ser sintomática ou assintomática e duração de aproximadamente dois meses. Em seguida, inicia-se a fase crônica com predomínio da forma indeterminada, na qual é caracterizada por um período latente longo e de baixa parasitemia, podendo durar de 10-30 anos. Após este período muitos pacientes infectados apresentam comprometimento de órgãos como coração, esôfago e cólon, caracterizando as formas cardíacas e digestivas.

A forma digestiva é caracterizada pelo megaesôfago e/ou megacôlon decorrente da inflamação e fibrose do esôfago e/ou cólon, levando a destruição do sistema nervoso autônomo e disfunção do órgão. O megacôlon é causado pela desvascularização plexular mioenterícia na mucosa intestinal, causando distúrbios de motilidade associados à constipação e dilatação do colônio. Tais complicações podem muitas vezes ser fatais resultando na perfuração do intestino e megacôlon tóxico e óbito.

Estudos sobre a DC vêm sendo realizados desde sua descoberta. Por conseguinte, diversos modelos experimentais têm sido utilizados. Os primeiros trabalhos desenvolvidos por Osvaldo Cruz utilizou-se o macaco como modelo, ocasião em que foi inoculado Calithrix Pennicillata parasitos isolados enviados por Carlos Chagas, encontrando-se tripomastigotas no sangue 30 dias após a inoculação. O macaco da espécie Cebus foi utilizado por Torres & Tavares (1958) para o pesquisas da micoadierite e, o macaco Rhesus utilizado por Guimarães e Miranda para estudo do megaesôfago. Pesquisas para DC ainda utilizaram diversos outros animais, tais como a cobra para estudo em órgãos, o cão, pelo seu porte para estudo das lesões cardíacas; o camundongo por seu tamanho e sua suscitabilidade foi o preferido por muitos pesquisadores.

Diante deste contexto, faz-se necessário desenvolver e implantar uma proposta terapêutica para modelos experimentais através de animais de laboratório.

Assim, este trabalho teve como objetivo desenvolver um modelo experimental de megacôlon em ratos inoculados com a cepa Y de T. cruzi para certificação do desenvolvimento da forma digestiva da doença.

MÉTODOS

Este estudo foi aprovado pelo Comitê de Conduta Ética no uso de Animais em Experimentação da Universidade Estadual de Maringá sob n° 046/2009seguido os princípios éticos em experimentação animal, adotados pela Sociedade Brasileira de Ciência em Animais de Laboratório.

Parasito

Fora utilizada a cepa Y (TcII) proveniente de paciente da fase aguda, que se encontrava criopreservada em nitrogênio líquido na coleção de tripanosomatídeos do laboratório de DC da universidade.

Animais e inóculo

Foram utilizados 30 ratos (Rattus novegicus albinus) Wistar, machos, com idade de oito semanas e pesando entre 180-200g. Os animais foram obtidos a partir do biotério central da universidade e mantidos em gaiolas de polipropileno revestidas com serragem seca em condições ideais de temperatura (20-25°C), umidade (70%), ciclo claro-escuro, com água (clorada) e ração (Nuvilab Cr-1® da Nuvital®) disponíveis à vontade. Os animais foram separados em três grupos contendo 10 animais em cada, a inoculação foi realizada de forma digerente.

RESULTADOS

Os animais dos grupos A, B e C foram submetidos ao exame à fresco 18 dias após a inoculação, sendo possível determinar a taxa de infecciosidade que foi de 100%. Os animais do grupo A inoculados com 600000 tripomastigotas sanguíneas/0,1ml de sangue apresentaram no T₀, 11,5 mm de diâmetro intestinal. Já no Tₙ₀ observou-se dilatação significante de 50,4% (p<0,01) no cólon proximal, 36,1% (p<0,05) no cólon médio e 47,6% (p<0,05) no cólon distal, respectivamente (Tabela 1).

TABELA 1 - Diâmetro médio e desvio-padrão dos segmentos proximal, médio e distal do cólon de ratos Wistar inoculados com diferentes inóculos: 600000 (A), 1000000 (B) e 1500000(C) tripomastigotas sanguíneas da cepa Y de T. cruzi.

Grupo	Inóculo	Proximal	Médio	Distal	Proximal	Médio	Distal
A	600000	11,5±1,6	7,0±0,9	6,6±0,8	17,3±1,8	9,5±1,1	9,7±1,4
B	1000000	12,6±1,3	11,2±2,5	9,9±1,1	16,4±2,3	11,0±1,9	10,5±1,3
C	1500000	15,0±1,4	10,1±1,2	10,2±1,3	18,9±1,8	11,5±1,2	11,7±1,7

*No tempo zero (T₀) e 60 dias (Tₙ₀), Letras diferentes numa mesma linha representam diferenças significativas (p<0,01).
Nos grupos B (1000000 tripomastigotas sanguíneas/0,1 ml de sangue) e C (150000 tripomastigotas sanguíneas/0,1 ml de sangue) as alterações se manifestaram somente no cólon distal com dilatação de 18,7% e 15,0% (p<0,01, Tabela 1, Figura1), respectivamente. Ao compararem-se os diferentes segmentos do cólon no T_d e no T_p para o grupo B e C observaram-se alterações significativas (p<0,05, Tabela 1, Figura1).

DISCUSSÃO

No presente estudo utilizaram-se ratos da linhagem Wistar para desenvolver um modelo experimental para as alterações digestivas causadas pela DC. Foi optado por utilizar essa espécie por serem de fácil manuseio e por já existir protocolos para sua utilização como, por exemplo, anestesia e cuidados de bioterismo. No entanto, outro fator importante a ser analisado é a idade do animal, quanto mais jovem mais suscetível à doença^{10,13,22,24}. Foram utilizados somente machos para esse modelo experimental, para evitar alterações ligadas ao ciclo hormonal das fêmeas²¹. Segundo Soares et al. (2012)²¹ ao estudar fêmeas de camundongos infectadas com T. cruzi demonstrou-se serem elas mais resistentes à doença que os machos.

Apesar de a literatura demonstrar que a quantidade do inóculo é diretamente proporcional à gravidade da doença^{2,6,13,19}, estes resultados demonstraram que as alterações observadas no diâmetro do cólon dos animais não estão diretamente relacionadas ao tamanho do inóculo, mas sim ao tempo de infecção que os animais foram submetidos.

De acordo com experiências obtidas no laboratório da universidade, existe grande diferença em relação aos mecanismos de resistência entre o rato e o camundongo infectados por T. cruzi. O camundongo inoculado com 1400 tripomastigotas sanguíneas em 0,1 ml de sangue da cepa Y apresenta alterações de pelagem e neurológicas. Já os ratos, embora os inóculos utilizados neste estudo sejam maiores que os utilizados em camundongos, não foi observada nenhuma alteração clínica nos grupos estudados no período de 60 dias; porém, estes achados são relatados em tempo de observações maiores.

A realização do enema opaco serviu para a avaliação da existência ou não de dilatação do cólon caracterizando a forma intestinal da DC que se dá pela dilatação alongamento e hipertrofia da parede do cólon, principalmente pela camada muscular circular em consequência às lesões da musculatura e dos neurônios do sistema nervoso entérico, especialmente dos plexos de Meissner e Auerbach. Esta dilatação esteve presente em todos os grupos avaliados em maior ou menor índice; porém, no grupo A foi observado as maiores alterações.

Houve dificuldade de administração do contraste por presença de fezes acumuladas por falta de esvaziamento completo do cólon no exame após 60 dias, o que faz alguns animais terem refluxo do bário pelo ânus; isto pode ser explicado por discinesia do cólon pela doença, sendo que este fato não foi observado nos animais no T_d (antes da inoculação); esta dificuldade também foi relatada por Okumura (1961)¹¹. A utilização de paquímetro digital, permitiu mensuração precisa do diâmetro do órgão.

Durante os exames foi notada maior distensão do abdome ao ser injetado contraste após 60 dias (grupos B e C) e nas radiografias do grupo C foi observado progressão maior de ar, com formação de duplo contraste com dilatação do ceco e intestino delgado demonstrando incontinência da válvula ileocecal, achado semelhante ao descrito por Okumura & Correia (1953)¹³ em camundongos.

CONCLUSÃO

O modelo proposto mostrou-se factível para estudos in vivo das alterações decorrentes da infecção pelo T. cruzi e alterações funcionais do cólon. Além disso, as alterações manifestadas no cólon não são diretamente proporcionais ao tamanho do inóculo, mas sim ao tempo de infecção que os animais foram submetidos, visto que os inoculados com 600000 formas sanguíneas foram os que mais apresentaram alterações significantes. Os resultados obtidos demonstraram a importância da continuidade da utilização do rato para se estudar as alterações funcionais do cólon.
REFERÊNCIAS

1. BRASIL. Ministério da Saúde. Secretaria de Vigilância em Saúde. Boletim eletrônico epidemiológico – situação epidemiológica das zoonoses de interesse para a saúde pública, ano 10, n.02, 2010. <http://goo.gl/n65phQ >.

2. Brener Z. Therapeutic activity and criterion of cure on mice experimentally infected with Trypanosoma cruzi. Rev Inst Med Trop São Paulo. 1962; 4: 389-96.

3. Chagas C. Nova tripanosomiasi humana: estudos sobre a morfologia e o ciclo evolutivo do Schizotrypanum cruzi n. gen., n.sp., agente etiológico de nova entidade mórbida do homem. Mem Inst Oswaldo Cruz. 1909; 1: 159-218.

4. Coura JR, Dias JCP. Epidemiology, control and surveillance of Chagas disease: 100 years after its discovery. Mem Inst Oswaldo Cruz. 2009; 104: 31-40.

5. Coura JR, Borges-Pereira J. Chagas disease: What is known and what should be improved: a systemic review. Rev Soc Bras Med Trop. 2012; 45(3): 286-296.

6. Dias JCP. A doença de Chagas e seu controle na América Latina: uma análise de possibilidades. Cad. Saúde Pública. 1993; 9(2): 201-209.

7. Held JR. Appropriate animal models. Ann N Y Acad Sci. 1983; 406: 13-19.

8. Luqueti AD, Miles MA, Rassi A, Rezende JM, Souza AA, Povoa MM, Rodrigues I. Trypanosoma cruzi: zymodemes associated with acute and chronic Chagas’ disease in Central Brazil. Trans R Soc Trop Med Hyg. 1986; 80: 462-470.

9. Macedo AM, Machado CR, Oliveira RP, Pena SD. Trypanosoma cruzi: genetic structure of populations and relevance of genetic variability to the pathogenesis of Chagas disease. Mem Inst Oswaldo Cruz. 2004; 99: 1-12.

10. Meirelles MDNL, Almeida MDGB, Pessoa MHR, Galvão-Castro B. Trypanosoma cruzi: experimental chagas’ disease in rhesusmonkeys. II. Ultrastructural and cytochemical studies of peroxidase and acid phosphatase activities. Mem Inst Oswaldo Cruz. 1990; 85(2): 173-81.

11. Meyer, IF, Kaneshima, EN, de Souza-Kaneshima, AM. Alterações no sistema digestivo de espécies desendeadas pelo quadro infeccioso do Trypanosoma cruzi. Rev Incien Cesumar. 2007; 8(1):11-23.

12. Mori T, Yoon HS, Izuka FH, Myung JM, Sato HH, Okumura M. Estudo preliminar do trânsito intestinal e enema opaco em camundongos com doença de Chagas. Rev Soc Bras Med Trop. 1991; 24(1): 30.

13. Okumura M, Corrêa NA. Produção experimental de megas em animais inoculados com Trypanosoma cruzi. Rev Hosp Clin Fac Med São Paulo. 1961; 16: 338 – 341.

14. Okumura M, Raia AA. Doença de Chagas experimental. RAIA, AA Manifestações digestivas da moléstia de Chagas. São Paulo, Sanvier; 1953, p. 35-59.

15. Prata A. Clinical and epidemiological aspects of Chagas disease. Lancet Infect Dis. 2001; 1: 92-100.

16. SantosCD, Prado JC, Toldo MP, Levi AM, FranciCR, Caldeira JC. Trypanosoma cruzi: Plasma corticosterone after repetitive stress during the acute phase of infection. Exp Parasitol. 2007; 117(4): 405-410.

17. Schmunis GA, Yadon ZE. Chagas disease: Aican health problem be coming a world health problem. Acta Trop. 2010; 115(1-2): 14-21.19. Silva LH, Nussenzweig V. Sobre uma cepa de Trypanosoma cruzi altamente virulenta para camundongo branco. Folia clin biol. 1953; 20: 191-207.

18. Silveira AKB, Lemos EM, Adal Sj, Correa-Oliveira R, Furness Jl, Reis DD. Megacolon in Chagas disease: a study of inflammatory cells, enteric nerves, and glial cells. Human Pathology. 2007; 38(8): 1256-64.

19. Soares RO, Soares CS, Franzoi-de-Moraes SM, Batista MR, Kwabara-HN, Sousa, AMRD, et al. Infecção experimental pelo Trypanosoma cruzi em camundongos: influência do exercício físico versus linhagens e sexos. Rev Bras Med Esporte. 2012; 18(1): 51.

20. Tsafiri WL, Idrane M, Chiari E, Caliare MV, Bambirra EA, Riosleite VH, Barbosa JA. O cão como modelo experimental para o estudo da história natural da doença de Chagas. Rev Soc Bras Med Trop. 1988; 21(2): 77.

21. Torres, CM, Tavares, BM. Miocardite no macaco Cebus após inoculações repetidas com Schizotrypanum cruzi. Mem Inst Oswaldo Cruz. 1958; 56(1): 85-119.

22. Veloso VM, Guedes PM, De Lana M, Martins HR, Carneiro CM, Da Câmara AG, D’Avila SA, Caldas IS, Galvão LMC, Chiarie E, Bahia MT. Genetic modulation in Be-78 and Y Trypanosoma cruzi strains after long-term infection in Beagle dogs revealed by molecular markers. Infect Genet Evol. 2012; 12(5): 1128-35.

23. WHO. WORLD HEALTH ORGANIZATION. Chagas disease (American trypanosomiasis), 2016.Disponível em:< http://www.who.int/mediacentre/factsheets/fs340/en/ >. Acesso em 19 de fev. 2017

24. Zingales B, Andrade SG, Briones MRS, Campbell DA, Chiari E, Fernandes O, et al. A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends Tcl to TcVI. Mem Inst Oswaldo Cruz. 2009; 104: 1051-4.

25. Zingales B, Miles MA, Campbell DA, Teixeira MMG, et al. The revised Trypanosoma cruzi subspecies nomenclature: Rationale, epidemiological relevance and research applications. Infect Genet Evol. Elsevier. 2012; 12: 240–253.