Three homologues, including two membrane-bound proteins, of the disulfide oxidoreductase DsbA in Neisseria meningitidis: effects on bacterial growth and biogenesis of functional type IV pili

Colin Tinsley, Romé Voulhoux, Jean-Luc Beretti, Jan Tommassen, Xavier Nassif

To cite this version:
Colin Tinsley, Romé Voulhoux, Jean-Luc Beretti, Jan Tommassen, Xavier Nassif. Three homologues, including two membrane-bound proteins, of the disulfide oxidoreductase DsbA in Neisseria meningitidis: effects on bacterial growth and biogenesis of functional type IV pili. Journal of Biological Chemistry, American Society for Biochemistry and Molecular Biology, 2004, 279 (26), pp.27078-27087. 10.1074/jbc.M313404200. hal-02679043

HAL Id: hal-02679043
https://hal.inrae.fr/hal-02679043
Submitted on 31 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Three Homologues, Including Two Membrane-bound Proteins, of the Disulfide Oxidoreductase DsbA in Neisseria meningitidis

EFFECTS ON BACTERIAL GROWTH AND BIOGENESIS OF FUNCTIONAL TYPE IV PILI

Colin R. Tinsley‡§, Romé Voulhoux¶, Jean-Luc Beretti‡, Jan Tommassen¶, and Xavier Nassif**

Received for publication, December 8, 2003, and in revised form, April 21, 2004
Published, JBC Papers in Press, April 21, 2004, DOI 10.1074/jbc.M313404200

Many proteins, especially membrane and exported proteins, are stabilized by intramolecular disulfide bridges between cysteine residues without which they fail to attain their native functional conformation. The formation of these bonds is catalyzed in Gram-negative bacteria by enzymes of the Dsb system. Thus, the activity of DsbA has been shown to be necessary for many phenotypes dependent on exported proteins, including adhesion, invasion, and intracellular survival of various pathogens. The Dsb system in Neisseria meningitidis, the causative agent of cerebrospinal meningitis, has not, however, been studied. In a previous work where genes specific to N. meningitidis and not present in the other pathogenic Neisseria were isolated, a meningococcus-specific dsbA gene was brought to light (Tinsley, C., R., and Nassif, X. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 11109–11114). Inactivation of this gene, however, did not result in deficits in the phenotypes commonly associated with DsbA. A search of available genome data revealed that the meningococcus contains three dsbA genes encoding proteins with different predicted subcellular locations, i.e. a soluble periplasmic enzyme and two membrane-bound lipoproteins. Cell fractionation experiments confirmed the localization in the inner membrane of the latter two, which include the previously identified meningococcus-specific enzyme. Mutational analyses demonstrated that the deletion of any single enzyme was compensated by the action of the remaining two on bacterial growth, whereas the triple mutant was unable to grow at 37 °C. Remarkably, however, the combined absence of the two membrane-bound enzymes led to a phenotype of sensitivity to reducing agents and loss of functionality of the pili. Although in many species a single periplasmic DsbA is sufficient for the correct folding of various proteins, in the meningococcus a membrane-associated DsbA is required for a wild type DsbA+ phenotype even in the presence of a functional periplasmic DsbA.

Many proteins, especially membrane and exported proteins, are stabilized by intramolecular disulfide bridges between cysteine residues without which they are misfolded, unstable, and often inactive. The correct formation of disulfide linkages on export into the periplasmic space of Gram-negative bacteria is catalyzed by a group of functionally related enzymes called disulfide oxidoreductases (Dsb). The first of these enzymes, DsbA, discovered in a screen for mutants affecting protein export (1), donates its disulfide bond to cysteine-containing proteins, thus stabilizing their mature, correctly folded forms. Subsequent studies have shown that DsbA is part of an extensive system for the catalysis of disulfide bond formation and isomerization in exported proteins (reviewed in Ref. 2).

The Dsb system studied in Escherichia coli consists of two separate, non-interacting branches acting in the periplasm. The enzyme DsbC shows disulfide isomerase activity and is involved in the correct folding of proteins containing multiple disulfide bonds (3, 4), thus also demonstrating chaperone activity (5). In contrast, DsbA is thought to be purely oxidative in vivo. Though the oxidation of disulfide bonds will occur naturally by the action of dissolved oxygen, an absence of catalysis in DsbA mutants, although not lethal under normal conditions, has considerable effects. Among these effects are a buildup of reduced forms of normally disulfide bond-containing proteins that in some cases decrease enzymatic activity and stability to proteolysis in the periplasm (1) and phenotypes such as the loss of motility due to the incorrect assembly of the flagellar apparatus (6).

Because secreted proteins will be the first to come into contact with the environment, they are of particular importance in pathogenic species for bacteria-host interactions. A major meningococcal virulence attribute is the type IV pilus, which allows the bacteria to interact with the host cells. The pili are filamentous appendages assembled from a protein subunit, pilin, containing an internal disulfide bridge. DsbA enzymes in other pathogenic bacteria have been shown to be necessary for the expression of virulence factors. They are, for example, for pilus-mediated adhesion in enteropathogenic E. coli (7) and Vibrio cholerae (8) and for the correct folding of proteins responsible for the secretion of invasion proteins by Yersinia pestis (9) and the intracellular survival of Shigella flexneri (10).

In a previous work that used representational difference analysis to search for genes specific to Neisseria meningitidis, the causative agent of cerebrospinal meningitis, a meningococcus-specific DsbA homologue was brought to light. Its gene was part of a genetic island that was absent from the other pathogenic Neisseria species, Neisseria gonorrhoeae (11, 12). In this work we demonstrate that this meningococcus-specific dsbA homologue encodes an enzyme with a disulfide oxidoreductase activity.
activity. A search of available genome data revealed that the meningococcus contains, in addition to the meningococcus-specific dsbA, two other homologues of these genes that are also present in *N. gonorrhoeae*. Two of the dsbA homologues, including the meningococcus-specific enzyme, are apparently inner membrane lipoproteins. In contrast to the case with *E. coli*, the periplasmic enzyme in the meningococcus is not by itself sufficient for a wild type DshA+ phenotype as judged by the growth in reducing conditions and the elaboration of functional type IV pili. We show that the presence of at least one of the membrane-associated DshA enzymes is required for a wild type DshA+ phenotype and for pilus-mediated adhesion to human cells.

MATERIALS AND METHODS

Bacterial Strains and Growth Conditions—The strain of *N. meningitidis* used was the 8013 variant 2C43 (13). Bacteria were grown on GC agar (GCB, Difco) with the addition of Kellogg’s defined supplement (14) for 12–20 h at 37 °C in a moist atmosphere containing 5% CO2. Liquid media were GC-Po (1.5% proteose peptone number 3 (Difco), 0.5% NaCl, and 30 mM phosphate, pH 7.5) and, for assays of transformation, GC-Hepes (30 mM phosphate replaced by 30 mM Hepes, pH 7.5, plus 1 mM potassium phosphate); both media were supplemented, as was the solid medium, with *E. coli*–supplemented chloramphenicol for the growth of *L. monocytogenes* in Luria-Bertani liquid medium. The antibiotics used were ampicillin (50 μg/ml), kanamycin (60 μg/ml), nalidixic acid (25 μg/ml), and spectinomycin (50 μg/ml).

Molecular Biological Techniques—Standard molecular biological techniques were as suggested (15, 16) or as described previously (12). Protein concentrations were determined using the bicinchoninic acid assay system (Pierce).

Transformation of Neisseria meningitidis—Mutants were engineered in *N. meningitidis* by transformation with cloned DNA fragments, which leads to homologous recombination and replacement of the wild type gene. Where the DNA fragment was marked with a cassette encoding resistance to an antibiotic, transformation was carried out essentially as described (17), and transformants were selected by growth in the presence of the appropriate antibiotic. If transformation was to be performed without the use of antibiotic selection, the method was that of Gunn and Stein (18), and colonies were tested individually for PCR and confirmed by sequencing. All mutants were verified by PCR, Southern blot, and, where necessary, sequencing.

For quantitative transformation assays, volumes (500 μl) of bacterial suspension with an optical density at 600 nm of 0.1 in GC-Hepes containing 10 mM MgCl2 were incubated with 1 μg of chromosomal DNA carrying a selectable marker for 30 min at 37 °C with 300 units of DNase I. The transformations were diluted 10-fold and allowed to grow with agitation for a further 2 h. Serial dilutions were plated onto normal and selective media, and the ratio of the cells that had incorporated the marker was calculated. Strains were tested for the acquisition of resistance to both nalidixic acid (a spontaneous mutant presumably in the DNA gyrase gene) and chloramphenicol (chromatophenol acetyl transferase gene, GenBank™ accession number AF031037, replacing bases 600 to 3000 of the gene *hap* (adhesion and penetration protein, NMB1985), GenBank™ accession number NC_003112.1, gene identifier 1567948).

Inactivation of the dsbA Genes—Oligonucleotides were designed to amplify DNA fragments from the chromosome of *N. meningitidis* 8013–2C43 extending ~1 kb either side of the first cysteine codon in each of the three dsbA genes. Oligonucleotides were designed such that a ligation of the two fragments creates a restriction endonuclease recognition site in place of the DNA sequence coding for the predicted signal peptide recognition site, and the translational frame of the downstream part of the gene, which would code for the mature protein in the wild type strain, is shifted by one base. The oligonucleotides used to anneal the genes were as follows: dsbA1a, 5′-GGAGATGATGCATGGCGCCCGTTGCGCCCGT CCAAC-3′; dsbA1b, 5′-GGCCGGCTAACCATGAGCA-3′; dsbA2a, 5′-CGTACGATCATGAGCAATCGCTGAGGCTCCGTA GAGT-3′; dsbA2b, 5′-CTTCGCGCATGTAAGAAGAAGCATC GCTGAGCCTCAGCCCGT-3′; dsbA3a, 5′-TTAGTCGTGCGCCTGCGCGTCCGGCCTGCGCGTACGCA-3′; dsbA3b, 5′-AGGGTACATGCCTGTCGCGGACACACTGCGCCGACGCA-3′; dsbA3c, 5′-GGAGATGATGCATGGCGCCCGTTGCGCCCGTCCCAAC-3′; dsbA3d, 5′-GGCCGGCTAACCATGAGCA-3′. Boldface characters represent the restriction endonuclease recognition sites artificially introduced into the oligonucleotide sequence. Two fragments were created by PCR amplification for each gene using primer pairs “a” plus “b” and “c” plus “d” and then joined by PCR ligation. The resulting PCR products were digested with the restriction enzymes corresponding to the sites introduced near the 5′ ends of oligonucleotides “a” and “d” and cloned into pbuexpressII KS+ (Stratagene). Where the gene was to be interrupted with a resistance cassette, the plasmid containing the cloned insert was cleaved with the enzyme corresponding to the restriction enzyme recognition site introduced at the junction between the two primary PCR products. An antibiotic-resistant cassette prepared from the plasmids pT10H and pT10C1, and pT10C1 (12),1 having suitable cohesive ends and flanked by the neisserial uptake sequences (17) necessary for transformation in the meningococcus, was ligated into the cloned gene at the point of cleavage.

Because the meningococcus undergoes frequent phase changes in genes encoding surface structures important in pathogenesis, chromosomal DNA from the verified mutants (of *dsbA1* and *dsbA2*) was used to transform wild type bacteria to antibiotic resistance, and a pool of 50–100 transformant colonies was taken for subsequent study to achieve a statistically homogeneous population of bacteria.

The gene *dsbB* was inactivated by the cloning of the meningococcal gene fragment 135–2434 using oligonucleotides *dsbB* (5′-CCCGCATGATGGTTTTTTGCGGCA-3′) and *dsbB* (5′-CCCGATCTTATTGACCTGGCCACGCGCA-3′), based on the genomic organization of strain Z492 (the genomic sequence of strain 8013–2C43 being incomplete in this region), into plasmid pCR2.1 TOPO (Invitrogen) and then into pUC19 modified to remove all the EcoRI site from the polylinker. The chloramphenicol resistance cassette from plasmid pT10C1 (as above) was inserted into the PstI site at position 378 of the gene, and the plasmid was used to transform *N. meningitidis* to chloramphenicol resistance.

Cloning of the Meningococcus-specific dsbB Gene (dsbB1) and Production of Recombinant DsbB—The portion of the gene coding for the predicted mature protein from *N. meningitidis* was amplified using oligonucleotides dsbB1e (5′-GGAGATGATGCATGGCGCCCGTTGCGCCCGTCCCAAC-3′) and dsbB1 (5′-CTCAATCTTACGAGTTGGCCTGTTTTTCTGCGTT-3′) and cloned into the expression vector pET20b+ (Novagen, R&D Systems) between the restriction endonuclease sites NdeI and Xhol (boldface in the oligonucleotide sequence). The recombinant gene does not encode a lipoprotein signal sequence but always starts with a codon for methionine, followed by the natural gene sequence. An Xhol site, replacing the natural stop codon, allows an in-frame link to the expression vector’s hexahistidine-encoding sequence. The resulting plasmid (pDshB1) was propagated in *E. coli* BL21 (DE3).

Bacteria were grown in liquid culture in Luria-Bertani medium to an OD600 of 0.1. Production of the protein was induced by adding isopropyl-1-thio-β-D-galactopyranoside to a final concentration of 1 mM and, after a further 2 h, the bacteria were harvested and disrupted by sonication. The soluble fraction was passed through a column made from 1 ml of “poly His protein purification resin” (Roche Applied Science). Unbound protein was eluted with 10 ml of phosphate-buffered saline containing 10 mM imidazole. The recombinant DsbA1 protein was eluted in phosphate-buffered saline and 50 mM imidazole. Fractions containing pure recombinant DshB1 (as evaluated by SDS-PAGE analysis) were pooled, dialyzed against phosphate-buffered saline, and stored at −80 °C. About 200 μg of protein was obtained from 200 ml of culture.

Immunization with Recombinant DsbA for the Production of Anti sera—Rabbits were immunized four times at intervals of 15 days with the recombinant C-terminal His-tagged DshB1 (100 μg of antigen in Freund’s complete adjuvant for the first immunization and in Freund’s incomplete adjuvant for subsequent immunizations). Immune serum was collected after 12 days. Monoclonal antibodies were prepared after the immunization of mice with the same antigen and were provided by GlaxoSmithKline, Rixensart, Belgium.

Purification of the Inner and Outer Membranes of N. meningitidis—Separation and analysis of the membrane fractions was performed as described by Cardinale et al. (9). Briefly, bacteria were harvested by centrifugation, and pellets were washed three times with phosphate-buffered saline. Pellets were resuspended in 50 mM Tris-HCl, pH 8, and 50 μg/ml Rnase (Roche

1 C. R. Tinsley, unpublished constructions.
Two-dimensional Gel Electrophoresis and Western Blotting of Pilin—

Two-dimensional electrophoresis was performed according to the manufacturer’s (Bio-Rad) recommendations using a Protean isoelectric focusing cell (Bio-Rad) and the manufacturer’s recommendations. Bacteria grown in RPMI medium (Invitrogen) containing 10% fetal calf serum were diluted to give -10^6 bacteria per milliliter, and 1 ml of the suspension was added to confluent monolayers of human umbilical vein endothelial cells growing in tissue culture wells of -2cm^2. After 1 h, the suspension was removed for the counting of colony forming units. At this time and every hour thereafter, the cells were washed to remove unbound bacteria. After 3 h, the human cell membranes were solubilized with saponin. Cell-associated bacteria were counted and compared with the bacteria present at 1 h.

RESULTS

The Meningococcus-specific dsbA Homologue Encodes a Lipoprotein with a Disulfide Oxidoreductase Activity—A previous work that used representational difference analysis (11, 12) to search for genes specific to N. meningitidis, the causative agent of cerebrospinal meningitis, brought to light a gene encoding a meningococcus-specific disulfide oxidoreductase DsbA. In this work the gene was seen to be a lipoprotein (see first sequence in Fig. 3) in contrast to the activity obtained in previous studies of the DsbA protein (Fig. 1), 7% of the value obtained with thioredoxin and 30 min for recombinant meningococcal DsbA. A typical experiment is shown.

Fig. 1. Assay for the disulfide oxidoreductase activity of the meningococcus-specific dsbA homologue. Precipitation of insulin was measured after the addition of the protein catalyst thioredoxin (1 μM; filled circles) or recombinant meningococcal DsbA homologue (5 μM; empty circles). The absorbance due to background precipitation of insulin by non-enzymatic reduction, which is measured in control tubes containing diithiothreitol but no added protein catalyst, is subtracted. Lag times varied between 10 and 15 min for thioredoxin and between 20 and 30 min for recombinant meningococcal DsbA. A typical experiment is shown.

A peculiarity of the meningococcus-specific DsbA is that, according to the nucleotide sequence, the enzyme is predicted to be a lipoprotein (see first sequence in Fig. 3) in contrast to the majority of investigated DsbAs, which are periplasmic. The signal peptide, relatively short and hydrophobic, ends with the consenus LAA(S)C recognized by the lipoprotein-specific signal peptidase II (reviewed in Ref. 25). To verify that the meningococcus-specific dsbA was indeed a lipoprotein, bacteria were grown in the presence and absence of the lipoprotein signal peptidase II inhibitor globomycin. Proteins of strain 8013–2C43 separated by SDS-PAGE were reacted on Western blot with an antibody directed against the meningococcus-specific DsbA. At higher concentrations of the antibiotic, a band of higher molecular weight was seen corresponding to the unprocessed precursor protein (Fig. 2), thus suggesting that DsbA1 is

2 The abbreviation used is CHAPS, 3-[3(cholamidopropyl)dimethylamino]-1-propanesulfonic acid.
Analysis of the DsbA System in Neisseria meningitidis

Fig. 2. Identification of the meningococcus-specific DsbA as a lipoprotein. Inhibition of maturation of the meningococcal DsbA by globomycin is shown. Meningococci were grown in the presence of different concentrations of globomycin. After 2 h, cells were harvested and subjected to SDS-PAGE electrophoresis and Western blotting with a monospecific monoclonal antibody directed against the meningococcus-specific DsbA. Note the appearance of a band of higher molecular mass (arrow) at higher concentrations of the antibiotic. Growth of the bacteria was followed at the same time (right-hand panel). The numbers on the graph refer to the concentrations of globomycin present in the medium, as noted on the Western blot.

In a lipoprotein. In Gram-negative bacteria, lipoprotein processing occurs in three successive stages: (i) a lipidation of the cysteine that follows the signal sequence via its sulfur atom; (ii) a cleavage of the signal peptide, which is a prerequisite for the third stage; (iii) the attachment of an acyl chain to the exposed amino group. In the presence of globomycin, the difference in apparent molecular weight is due to the absence of cleavage of the signal peptide and the nonlipidation of the amino group of the cysteine.

To investigate the biological role of the meningococcus-specific dsbA, the gene was inactivated by insertion of an antibiotic-resistance cassette near its 5′-end. Preliminary tests were performed to investigate phenotypes associated with lack of DsbA in other bacteria. No differences were seen between the wild type and this mutant in their degree of pilination as evidenced by immunofluorescence microscopy or biochemical tests such as resistance to reducing agents. There was no apparent change in the phenotypes associated with virulence such as pilination-dependent adhesion to human cells or capsulation (measured by agglutination with commercial antisera), the latter being a phenotype associated specifically with the meningococcus and absent from the gonococcus. Hence, we were unable to demonstrate a phenotype associated with the absence of this meningococcus-specific disulfide oxidoreductase.

N. meningitidis Has Three dsbA Genes—The above data regarding the lack of a phenotype associated with a mutation in the *dsbA* specific to the meningococcus prompted us to perform a search of the meningococcal genomes for homologous proteins by BLAST (26) in the three completed and one partially assembled meningococcal genomes. This search revealed that each meningococcal genome contains the *dsbA* gene, and a search of the meningococcal genomes for homologous proteins showed significant homology to *dsbA* of *E. coli* and *dsbA* of *Neisseria meningitidis* (Fig. 3). *Dsba1* is predicted to be periplasmic. The sorting of lipoproteins (demonstrated in *E. coli*) depends on the amino acid following the cysteine, which is the site of cleavage (27). Thus, the *dsbA1* lipoprotein that has a serine at position +2 (of the mature protein) would be expected to be in the outer membrane, whereas the presence in *dsbA2* of an aspartate at 2 should result in retention of the protein in the inner membrane. To confirm the localization of these proteins, we separated the outer from the inner membrane by sucrose density gradient centrifugation from a *dsbA2* and a *dsbA1* mutant to determine the localization of *Dsba1* and *Dsba2*, respectively. The results are shown in Fig. 5. A comparison with the distribution of markers for the inner membrane (lactate dehydrogenase activity) and outer membrane (the porin protein PorA and the outer membrane protein OMP85) (28) demonstrated that, despite its serine residue at position +2, the *Dsba1* protein is attached to the outer membrane (Fig. 5, panel A), casting doubt on the universality of lipoprotein targeting in *N. meningitidis*. On the other hand, as expected, *Dsba2* is located in the inner membrane. Hence, both *Dsba1* and *Dsba2* are inner membrane-localized lipoproteins.

The Expression of a Membrane-bound DsbA Protein (DsbA1 and/or DsbA2) but Not DsbA3 Is Sufficient for Growth under Reducing Conditions—In preliminary observations of growth on agar plates, no differences were observed between the wild type and any of the single or double *dsbA* mutants. However, at
37 °C the triple mutant (DsbA1/H11002, DsbA2/H11002, DsbA3/H11002) was defective for growth. It produced smaller colonies than did the strains carrying any of the double mutations, which had wild type growths on GCB-agar. In addition, these small colonies of the triple mutant were often non-viable after 18 h of growth. On the other hand, this mutant could be successfully grown on agar plates at 30 °C. It was initially considered possible that the combined effects of the mutations were lethal and that those bacteria that survived had undergone secondary mutations permitting growth. This explanation was ruled out by the efficiency of transformation of the dsbA1 mutation into a dsbA2,3 background and the efficiency of transformation of the dsbA2 mutation into a dsbA1,3 background, which was \(10^{-4}\), a value usual for meningococci (29).

We then tested sensitivity to reducing agents, a phenotype typically associated with mutations in dsbA, which leads to an inability to counteract the buildup of reduced, incorrectly folded proteins in the periplasm. Results of these experiments are shown in Fig. 6. Surprisingly, the absence of the two membrane-bound enzymes (or of all three enzymes) resulted in an increased sensitivity to reducing agents, whereas the presence of DsbA1 or DsbA2 permitted a wild type growth. These data suggest that the activity of DsbA3 is lower than that of DsbA1 or DsbA2.

The Expression of a Membrane-bound DsbA Protein (DsbA1 and/or DsbA2) but Not DsbA3 Is Sufficient for the Biogenesis of Functional Type IV Pili—The most abundant extracellular protein in meningococci is pilin, the subunit of the type IV pili necessary for interaction of the bacteria with their human host, which contains a single disulfide bond important for the maintenance of its three-dimensional structure (30, 31). These dsbA mutants were therefore tested for pilus-associated phenotypes, i.e. natural competence for DNA uptake and interaction with human cells. Results are shown in Fig. 6.
tence of meningococci for the uptake of transforming DNA is dependent on the presence of pili and ancillary proteins (32). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A). Both the dsbA1,2 double mutant and the dsbA1,2,3 triple mutant showed marked decreases in their transformation efficiency (Fig. 7A).
posttranslational processing (Fig. 8). This finding is consistent with the hypothesis that the triple and double \(\text{dsbA1/2A2} \) mutants are unable to stabilize the conformation of pilin necessary for its correct processing.

DISCUSSION

Our investigations of a meningococcus-specific protein with homology to the disulfide oxidoreductase DsbA of \(\text{E. coli} \) led us to note the presence of three homologous genes in the menin-
Fig. 9. Homologues of E. coli enzymes of the Dsb system. A putative schema of the folding of exported proteins in the periplasm of N. meningitidis. The model is based on that of E. coli where, in a simplified form, the system consists of two separate chains. DsbA is a relatively nonspecific oxidant that takes its oxidizing power, via DsbB, from the electron transport chain. DsbC has a disulfide isomerase activity and is maintained in a reduced state, despite the oxidizing periplasmic environment, by DsbD, which, in turn, obtains its reducing power from cytoplasmic thioredoxin. The genome sequence of N. meningitidis predicts homologues to all of these enzymes, although apparently there are no homologues to DsbG and DsbE, disulfide isomerases involved in more specific reactions. In contrast there are three DsbA homologues, two of which are associated with the inner membrane. The electron acceptor for these latter two remains to be determined.

Table I

E. coli (K12, MG1655)	N. meningitidis (Z2491)	E value
DsbA (GI:16137101)	DsbA1 (NMA2191)	1.5e-17
DsbA2 (GI:162209)	DsbA3 (NMA2078)	1.4e-12
DsbB (GI:3374526)	DsbC (NMA0730)	7.6e-21
DsbC (GI:16130795)	DsbD (NMA1719)	8.0e-63

Homologies between proteins were calculated by the BLAST algorithm hosted by National Centers for Biological Information. Protein matrix was Blosum 62. Note that the best hit for E. coli DsbG is to the N. meningitidis DsbC gene. Genes encoding Dsb proteins are not significantly different between the different strains of meningococcus. GI, gene identifier.

The two enzymes were membrane-associated, whereas the third was homologous to the periplasmic DsbA of E. coli. To elucidate this unusual situation, we undertook a mutational analysis of the three genes, which led to the surprising result that the presence of at least one of the two membrane-bound enzymes is necessary to obtain a DsbA+ phenotype, the third enzyme (the periplasmic enzyme) being incapable of supporting the required disulfide oxidoreductase activities.

In Gram-negative bacteria, the correct formation of disulfide bonds during protein folding in the periplasm is, in general, the result of a combination of the oxidative DsbA disulfide bond formation and the DsbC disulfide isomerization systems. The genome of N. meningitidis contains genes homologous to each of the components of these two systems but, unlike E. coli, contains three dsbA genes, dsbA1, dsbA2, and dsbA3 (Fig. 9 and Table I). Furthermore, the measured activity of the gene product of the cloned dsbA1 gene, combined with its expression as evidenced on the Western blots and the ability of each E. coli of the components of these two systems but, unlike E. coli, contains three dsbA genes, dsbA1, dsbA2, and dsbA3 (Fig. 9 and Table I). Furthermore, the measured activity of the gene product of the cloned dsbA1 gene, combined with its expression as evidenced on the Western blots and the ability of each E. coli enzyme to complement the others (to a greater or lesser extent), as evidenced on the Western blots and the ability of each E. coli enzyme to complement the others (to a greater or lesser extent), demonstrates the existence of three DsbA enzymes in the meningococcus. A search of available genome sequences demonstrated that the possession of multiple DsbA genes is not restricted to N. meningitidis. Although most of the bacteria studied have a single dsbA gene, examples of two genes are not uncommon (Table II and supplementary material, which is available in the on-line version of this article). N. meningitidis is unusual in having three enzymes, but a more extreme case is that of Shewanella oneidensis in which (at least in the sequenced strain) there are four genes.

Although DsbA, as first discovered in E. coli, is a periplasmic enzyme in most bacteria, a review of available genome sequences reveals that several DsbAs are predicted to be membrane-bound lipoproteins on the basis of their signal sequences (Table II and supplementary material). Homologues of DsbA with BLAST similarity more significant than 10^-15 were found to be restricted to Gram-negative proteobacteria, although lipoprotein Dsb enzymes (more similar to DsbG) were also found in several Gram-positive organisms. In this work we present biochemical evidence that DsbA1 is a lipoprotein. DsbA2 may also be expected to be a lipoprotein in consideration of its similarity to DsbA1 and because the signal sequence is also predicted (e.g. LipID; cbs.dtu.dk/services/LipoP) to be cleaved by lipoprotein signal peptidase. This finding, together with the fact that the hydrophilic protein (which has no membrane-spanning regions apart from the signal peptide) remains associated with the inner membrane, strongly suggests that DsbA2, like DsbA1, is a lipoprotein. In the case of the meningococcus, part of the explanation for the requirement of a membrane-bound DsbA protein may be due to a peculiarity of meningococci, which is to release outer membrane vesicles, or blebs, during normal growth. These blebs contain large amounts of endotoxin, which is particularly important in the fever and cytokine deregulation characteristic of invasive meningococcal disease. This blebbing will also result in the loss of soluble periplasmic enzymes, hence favoring the anchoring of these enzymes to the inner membrane so that the oxidizing power of DsbA would not be lost, as might be the case with that of a soluble disulfide oxidoreductase. It is interesting to note in this context that genome sequence data predict that the enzyme DsbC is also a lipoprotein in the meningococcus.

A more general explanation might be that the presence of the enzyme in the inner membrane increases the likelihood of interaction of the protein to be oxidized with DsbA1 and 2, but this might also lead to steric restrictions of the availability of the active site of the membrane-bound DsbAs for reoxidation by DsbB. In this regard, it is conceivable that the relative flexibility of lipoproteins that are tethered to the membrane by a lipid anchor (as compared with integral membrane proteins) and the additional amino acids at the N terminus of the protein (as compared with DsbA from E. coli; Fig. 3) might allow interaction with the active site of DsbB. However, in preliminary experiments with strains in which dsbB was inactivated, none of the four strains tested showed the same phenotype as was seen for the dsbA1 dsbA2 dsbA3 triple mutants. Further investigation of these mutants is necessary to determine the additional means of reoxidation of DsbA in N. meningitidis.

According to the paradigm of E. coli (the "+2 rule"), lipoproteins will be retained in the inner membrane if the amino acid following the N-terminal cysteine is an aspartate (27). It has
since been demonstrated that phenylalanine, tyrosine, glycine, proline, or tryptophan at the +2 position also cause inner membrane retention (33); other amino acids at this position lead to insertion of the protein in the outer membrane. Hence, the meningococcus-specific DsbA1 (-CS-) would be expected to be an outer membrane protein, whereas the aspartate at position +2 of the mature protein DsbA2 (-CD-) should result in its retention in the inner membrane. However, it was seen that both of these proteins were associated with the inner membrane, which calls into doubt the applicability of this rule to the case of N. meningitidis and suggests that either different amino acids lead to retention in the inner membrane or that the signal is context-dependent.

A reason for the lesser efficacy of the soluble periplasmic DsbA3 might lie in its primary amino acid sequence. This protein differs from the membrane-bound DsbA5 not only in its lipoprotein signal sequence but also at the active site. A search of available protein sequences shows that the amino acid following the first of the cysteine residues at the active site is generally proline, which is small and, because of its secondary amino group, is likely to lead to a particular conformation at the active site and the highly conserved proline 151 (41) was checked. The gene identifier of which the functions have been taken over by the more recently evolved DsbA1 and/or DsbA2. DsbA3 may be a remnant of the periplasmic disulfide oxidoreductase system of N. meningitidis of which the functions have been taken over by the more effective DsbA1 and DsbA2 enzymes. Another possibility, also compatible with the above, is that the functions of the enzymes have diverged, each recognizing one or a group of preferred substrates. This may be a general explanation of the presence of DsbA5 in a bacterium, and, indeed, a similar case has been described for the pathogen Salmonella enterica var. typhimurium, where a third DsbA enzyme, the plasmin-encoded SrgA, is necessary to stabilize the correctly folded form of the plasmin-encoded fimbrial adhesin PefA (35).

In the case of the meningococcus, one or both of the membrane-bound DsbA enzymes were found to be essential for the formation of functional pili at the surface of the bacteria because the mutants showed defects in competence for transformation and in binding to human cells, two important bacterial functions dependent on pili. Indeed pilus-mediated adhesion to human cells is essential to the meningococcus, whose only natural habitat is the human nasopharynx, and it is equally necessary for the interaction with the blood-brain barrier in the pathogenesis of meningococcal meningitis. Two cases (in addition to that above of S. typhimurium) have been described in which a dsbA mutant leads to defects in pilus-associated phenotypes. In enteropathogenic E. coli, levels of pilin are reduced because of a decreased half-life of the protein (36). In contrast, dsbA mutants of Vibrio cholerae show normal levels of pilin but lack pilus function (8). Because the meningococcal mutants investigated here show no significant differences in the levels of pilin or in piliation, it is likely that a folding defect leads to the secretion of pilin molecules that are capable of polymerizing into pili but not of performing their normal functions within the fiber. In support of this idea, the pilin molecules are altered in their behavior in isoelectric focusing. A similar situation has been described recently (37) where pilin variants containing single base pair changes retained their ability to form pili.

Table II

Species (strain)	Class of proteobacteria	Gene identifier	E value	Lipobox of the putative lipoprotein signal sequence
Campylobacter jejuni (NCTC 11168)		ε	3×10^{-6}	LAA-C(21)
Caulobacter crescentus (CB15)		α	4×10^{-5}	LAA-C(19)
Escherichia coli (K12)		γ	6×10^{-8}	LAA-C(19)
Geobacter metallireducens		δ	2×10^{-14}	LAA-C(19)
Haemophilus influenzae (Rd KW20)		γ	2×10^{-13}	LAA-C(19)
Neisseria meningitidis (MC58)		β	8×10^{-11}	LAA-C(19)
N. meningitidis			7×10^{-8}	LAA-C(19)
Pasteurella multocida (PM70)			7×10^{-8}	LAA-C(19)
Pseudomonas aeruginosa (PAO1)			10^{-9}	LAA-C(19)
Pseudomonas putida (KT2440)			10^{-9}	LAA-C(19)
Pseudomonas syringae (pv. tomato str. DC3000)			10^{-9}	LAA-C(19)
Ralstonia solanacearum			10^{-9}	LAA-C(19)
Shewanella oneidensis MR1		β	10^{-9}	LAA-C(19)
Salmonella typhimurium (LT2)		α	10^{-9}	LAA-C(19)
Shigella flexneri (2a, 301)		γ	10^{-9}	LAA-C(19)
Vibrio cholerae (N16961)		γ	10^{-9}	LAA-C(19)
Xanthomonas campestris (pv. campestris str. ATCC 33913)			10^{-9}	LAA-C(19)
Xylella fastidiosa (Temecula1)		γ	10^{-9}	LAA-C(19)
Yersinia pestis (CO92)		γ	10^{-9}	LAA-C(19)
fibers, but the resulting fibers were not functional. A scheme for the folding of pilin that would be compatible with the observed effects of the dsbA mutants would involve the intervention of the disulfide bond formation at a critical point in the protein folding. In the presence of DsbA, a correct conformation is stabilized that promotes subsequent folding to a functionally active structure. In its absence, a slower heuristic folding process eventually stabilizes the pilin in a conformation suitable for secretion and polymerization but not for pilus functionality. We cannot rule out the possibility that loss of function is a secondary effect of the misfolding of ancillary proteins involved in competence or pilus-mediated adhesion or in pilus secretion, whose function depends on correct disulfide bonding. In this regard, it is interesting to note that the predicted sequences of many of the meningococcal proteins involved in pilus formation contain potential disulfide bonds.

In conclusion, pilus-mediated adhesion in N. meningitidis is dependent on one of two novel DsbA proteins regardless of the presence of a periplasmic DsbA, which is in contrast to many other species where a single periplasmic DsbA is sufficient. It is also interesting to note that the very closely related gonococcus, N. gonorrhoeae, contains genes essentially identical to those encoding the inner membrane DsbA2 and the periplasmic DsbA3 and relies on pilus-mediated adhesion in a way similar to that of the meningococcus.

Acknowledgments—We thank Tony Pugsley (Molecular Genetics Unit, Institut Pasteur, Paris) for many helpful discussions, and David Ogrydziak (Institute of Marine Resources, University of California at Davis) for careful reading of the manuscript.

REFERENCES

1. Bardwell, J. C. A., McGovern, K., and Beckwith, J. (1991) Cell 67, 581–589
2. Debarbieux, L., and Beckwith, J. (1999) Cell 99, 117–119
3. Missiakas, D., Georgopoulos, C., and Raina, S. (1994) EMBO J. 13, 2515–2520
4. Rietzch, A., Belin, D., Martin, N., and Beckwith, J. (1996) Proc. Natl. Acad. Sci. U.S.A. 93, 13048–13053
5. Chen, J., Song, J. L., Zhang, S., Wang, Y., Cui, D. F., and Wang, C. C. (1999) J. Biol. Chem. 274, 18601–18605
6. Daley, F. E., and Berg, H. C. (1995) Proc. Natl. Acad. Sci. U.S.A. 90, 1043–1047
7. Zhang, H. Z., and Donnenberg, M. S. (1996) Mol. Microbiol. 21, 787–797
8. Piek, J. A., and Taylor, R. R. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 6210–6214
9. Jackson, M. W., and Plano, M. G. V. (1999) J. Bacteriol. 181, 5126–5130
10. Watrai, M., Tube, T., Yoshikawa, T., and Sasakawa, C. (1995) Proc. Natl. Acad. Sci. U.S.A. 92, 4927–4931
11. Tinsley, C. R., and Nassif, X. (1996) Proc. Natl. Acad. Sci. U.S.A. 93, 11109–11114
12. Ries, S. R., Nassif, X., Kusecek, B., Merker, P., Berett, J.-L., Achtman, M., and Tinsley, C. R. (2000) Infect. Immun. 68, 2082–2093
13. Nassif, X., Puoci, D., and So, M. (1991) J. Bacteriol. 173, 2147–2154
14. Kellogg, D. S. J., Peacock, W. L., Deacon, W. E., Brown, L., and Pirkle, C. K. (1983) J. Bacteriol. 153, 1274–1279
15. Avbelj, F. M., Brent, R., Kungsten, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K. (eds) (1989) Current Protocols in Molecular Biology, 1st Ed., Vols. 1 and 2, Greene Publishing Associates and Wiley-Interscience, New York
16. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
17. Goodman, S. D., and Soegaard, J. (1991) J. Bacteriol. 173, 5921–5923
18. Gunn, J. S., and Stein, D. C. (1996) Mol. Gen. Genet. 253, 509–517
19. Steeghs, L., de Cock, H., Evers, E., Zomer, B., Tommassen, J., and van der Ley, P. (2001) EMBO J. 20, 6937–6945
20. Osborn, M. J., Gander, J. E., Parisi, E., and Carson, J. (1972) J. Biol. Chem. 247, 3962–3972
21. Holmgren, A. (1979) J. Biol. Chem. 254, 9627–9632
22. Tinsley, C. R., and Nassif, X. (2001) in Meningococcal Disease: Methods and protocols (Pollard, A. J., and Maiden, M. C. J., eds) Vol. 67, pp. 635–647, Humana Press, Totowa, NJ
23. Pugsley, A. P. (1993) Microbiol. Rev. 57, 50–108
24. Missiakas, D., and Raina, S. (1997) J. Bacteriol. 179, 2465–2471
25. Juncker, A. S., Willenbrock, H., Von Heijne, G., Brunak, S., Nielsen, H., and Krogh, A. (2003) Protein Sci. 12, 1652–1662
26. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, Z., Zhang, Z., Miller, W., and Lipman, D. J. (1997) Nucleic Acids Res. 25, 3389–3402
27. Yamaguchi, K., Yu, F., and Inouye, M. (1988) Cell 58, 425–432
28. Voulhoux, R., Bos, M. P., Geurtsen, J., Mols, M., and Tommassen, J. (2003) Science 300, 262–265
29. Goodman, S. D., and Soegaard, J. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 6982–6986
30. Heckels, J. E. (1989) Clin. Microbiol. Rev. 2, suppl. S66–S73
31. Parge, H. E., Bernstein, S. L., Deal, C. D., McRee, D. E., Christensen, D., Capozza, M. A., Kay, B. W., Fieser, T. M., Draper, D., So, M., Getzoff, E. D., and Tainer, J. A. (1990) J. Biol. Chem. 265, 2285–2288
32. Wolfgang, M., Lauer, P., Park, H. S., Brossay, L., Hebert, J., and Koomey, M. (1988) Mol. Microbiol. 29, 321–330
33. Seydel, A., Guonon, P., and Pugsley, A. P. (1999) Mol. Microbiol. 34, 810–821
34. Grauschopf, U., Winther, J. R., Korber, P., Zander, T., Tall, P., Parcell, J., and Tainer, J. A. (1990) J. Biol. Chem. 265, 991–1000
35. Donnenberg, M. S., Zhang, H. Z., and Stone, K. D. (1997) Gene 192, 33–38
36. Wolfgang, M., van Putten, J. P., Hayes, S. F., Dorward, D., and Koomey, M. (2000) EMBO J. 19, 6408–6418
37. Stimson, E., Virji, M., Makpeace, K., Dall, A., Morris, H. R., Payne, G., Saunders, J. R., Jennings, M. P., Barker, S., Panico, M., Brench, I., and Moxon, E. R. (1995) Mol. Microbiol. 17, 1201–1214
38. Forest, K. T., Dunham, S. A., Koomey, M., and Tainer, J. A. (1990) Mol. Microbiol. 31, 743–752
39. Stimson, E., Virji, M., Barker, S., Panico, M., Brench, I., Saunders, J., Payne, G., Moxon, E. R., Dall, A., and Morris, H. R. (1990) Biochem. J. 316, 29–33
40. Kadokura, H., Tian, Z., Zander, T., Bardwell, J. C., and Beckwith, J. (2004) Science 303, 534–547

Analysis of the DsbA System in Neisseria meningitidis 27087