Hepatitis B Virus-Related Hepatocellular Carcinoma: Pathogenic Mechanisms and Novel Therapeutic Interventions

Hong-Zhi Xu a Yun-Peng Liu a Bayasi Guleng a,b Jian-Lin Ren a

a Department of Gastroenterology, Zhongshan Hospital affiliated with Xiamen University, and b Medical College of Xiamen University, Xiamen, China

Key Words
Chronic hepatitis B · Hepatitis B virus · Hepatocellular carcinoma · Pathogenic mechanisms · Therapeutic interventions

Abstract
Background: Infection with the hepatitis B virus (HBV) is one of the most important risk factors for hepatocellular carcinoma (HCC). Indeed, HBV is considered a group 1 human carcinogen and is a highly oncogenic agent. HBV cannot be effectively controlled or completely eliminated, so chronic HBV infection is a public health challenge worldwide. Summary: It is now believed that HBV-induced HCC involves a complex interaction between multiple viral and host factors. Many factors contribute to HBV-associated HCC, including products of HBV, viral integration and mutation, and host susceptibility. This review outlines the main pathogenic mechanisms with a focus on those that suggest novel targets for the prevention and treatment of HCC. Key Message: HBV infection is an important risk factor for HCC. Understanding the interaction between viral and host factors in HBV-induced HCC will reveal potential targets for future therapies. Practical Implications: The two main therapeutic strategies consist of antiviral agents and immunotherapy-based approaches. Dendritic cell-based immunotherapy is promising for restoring the T cell-mediated antiviral immune response. Another approach is the specific expansion of the host’s pool of HBV-specific T cells. Stimulation of the Toll-like receptors (TLRs), particularly TLR9, provides another means of boosting the antiviral response. Combination therapy with cytokines (interferon gamma and tumor necrosis factor alpha) plus lamivudine is more effective than these agents used alone. Therapeutic vaccines are being developed as an alternative to long-term antiviral treatment or as an adjunct.

© 2014 S. Karger AG, Basel
Published online: July 18, 2014

Jian-Lin Ren
Department of Gastroenterology
Zhongshan Hospital affiliated with Xiamen University
201 Hubin South Road, Xiamen, Fujian Province 361004 (China)
E-Mail renjianl@xmu.edu.cn

DOI: 10.1159/000365307

H.-Z. Xu and Y.-P. Liu contributed equally to this work.
Introduction

Around 2 billion people are infected with hepatitis B virus (HBV), and more than 350 million have become chronic carriers [1] who have persistent virus and subvirus particles in their blood for more than 6 months. HBV infection is endemic in China. The hepatitis B surface antigen carrier rate is 7.2%, and about 93 million people are chronically infected by HBV [2, 3]. Progressive chronic liver disease appears as hepatitis, fibrosis, cirrhosis and finally hepatocellular carcinoma (HCC) [4]. Chronic HBV infection is a major etiological factor of HCC in HBV endemic areas worldwide [5]. HCC is a common solid tumor worldwide and represents the third leading cause of cancer mortality [6, 7]. Individuals with chronic HBV infection are at increased risk of developing HCC, especially those with chronic liver disease and cirrhosis [8, 9]. As a result, HBV was categorized as a group 1 human carcinogen and one of the most important oncogenic agents by the World Health Organization [10].

There are three reported mechanisms by which HBV promotes carcinogenesis: (1) HBV proteins are involved in many signaling pathways in hepatocytes, thereby affecting the expression and functions of specific genes and contributing to liver disorders. Most of these changes are associated with HCC. (2) Integration of HBV DNA into the host genome alters the function of endogenous genes or induces chromosomal instability. (3) Inflammation-mediated alteration of specific signaling pathways contributes to tumorigenesis. Chronic inflammation plays a vital role in the development of HCC. Repeated cycles of inflammation-induced apoptosis and hepatocyte regeneration increase the risk of hepatocarcinogenesis.

HBV Integration and Mutation in HBV-Related HCC (table 1)

HBV Gene Integration
Integration of the viral gene into the home genome is an important mechanism responsible for HCC development among HBV-infected individuals. HBV DNA integration into the host genome occurs at early steps of clonal tumor expansion and induces both genomic instability and direct insertional mutagenesis of diverse cancer-related genes. The presence of integrated HBV DNA sequences in cellular DNA from human HCCs was first reported in the early 1980s [11–14]. Afterwards, many studies were carried out to further investigate HBV integration. In particular, tumors related to HBV are mostly found in subclasses characterized by high genetic instability, notably with aberrations at chromosomes 4q, 13q, 16p, 16q and 17p [15, 16].

The first reported recurrent HBV integration event was found to be located at the human TERT gene in two liver tumor samples. TERT, a gene encoding telomerase reverse transcriptase, plays an essential role in overriding cellular senescence. This gene is frequently overexpressed in cancer cells and its dysregulation in somatic cells was found to be linked to carcinogenesis [17]. Subsequently, Sung et al. [18] focused on the events of HBV integration and their effects on the HCC genome using whole genome sequencing and integrated expression profiling analyses. They found that HBV integration is observed more frequently in the tumors (86.4%) than in adjacent liver tissues (30.7%). Copy number variations were significantly increased at HBV breakpoint locations where chromosomal instability was likely induced. Approximately 40% of HBV breakpoints within the HBV genome were located within a 1,800-bp region where the viral enhancer, X gene and core gene are located. They also identified recurrent HBV integration events (in ≥4 HCCs) that were validated by RNA sequencing and Sanger sequencing at the known and putative cancer-related TERT, MLL4 and CCNE1 genes, which showed upregulated gene expression in tumor versus normal tissue [18–20].
Genetic instability plays a crucial role in cancer initiation and progression. Meanwhile, the number of HBV integrations is associated with patient survival [18]. The recent development of efficient tools for genome-wide analysis of gene expression and genetic defects has allowed a comprehensive view of the multiple changes occurring in HCC.

HBV Gene Mutation

HBV has a relatively high mutation rate in its genome. YMDD mutation, also known as M204V/I mutation, is caused by the substitution of methionine by valine or isoleucine in the YMDD motif and is designated as the YVDD or YIDD variant. Previous research has suggested that lamivudine is the major cause of YMDD mutation. In recent years, spontaneous YMDD mutations have also been detected in patients with chronic HBV infection not previously treated with antiviral drugs. The spontaneous YMDD mutations are more likely to occur in genotype C strains, and the occurrence of spontaneous YMDD mutations in patients infected with genotype C strains may increase the risk of HCC [21].

Viral genomic mutations are closely related to the natural course of chronic HBV infection. In particular, the basal core promoter double mutation of A1762T and G1764A, the so-called BCP double mutation that has been implicated in the e-suppressive HBV phenotype [22], is important for HCC risk prediction in HBV genotype B or C carriers [23, 24]. Recent data suggest that accumulation of eight key mutations located in the X/preC regions of the HBV genome (G1613A, C1653T, T1753V, A1762T, G1764A, A1846T, G1896A and G1899A) is a risk marker for the development of HCC, and combination of BCP double mutation with these eight key mutations is significantly associated with HCC [25].

Microenvironment of Chronic Liver Injury in HCC Development

Inflammatory Factor and ROS

In chronic hepatitis B (CHB), liver injury is thought to be mediated by host immune responses, including HBV-specific T cells as well as infiltrating neutrophils, natural killer (NK) cells and non-antigen-specific lymphocytes that are attracted by the production of non-specific chemokines [26]. The release of inflammatory cytokines and chemokines also favors hepatocyte proliferation. Although virus-specific lymphocytes are readily detectable in inflammatory lesions in the liver, they are often not sufficient to clear virus infection. Many virus non-specific NK cells, NK T cells and polymorphonuclear leukocytes are also found in these lesions, mediating hepatocellular damage, but they are not effective in virus clearance [27].

Moreover, oxidative stress induced by inflammation and by accumulation of viral surface proteins in the endoplasmic reticulum (ER) leads to increased levels of intracellular reactive oxygen species (ROS), in turn enhancing genomic instability and allowing the accumulation of genetic alterations that may drive tumorigenesis.

Table 1. HBV mutation and integration sites

HBV mutation sites	HBV integration sites
rtA181T/sW172	chromosome 2 (FN1 gene)
3′ end of the HBx gene	chromosome 3 (SENP5 gene)
X/preC regions: G1613A, C1653T, T1753V, A1762T, G1764A, A1846T, G1896A and G1899A	chromosome 5 (TERT gene)
YMDD mutation (M204V/I)	chromosome 18 (ROCK1 gene)
	chromosome 19 (CCNE1, MLL4)
of genetic abnormalities and gene mutations. More specifically, ROS may trigger the activation of intracellular signaling pathways such as the mitogen-activated protein kinase and nuclear factor-κB (NF-κB) pathways that play an important role in hepatic carcinogenesis [28].

Dysfunction of Innate Immunity against HBV

Innate immunity has evolved to rapidly recognize viral nucleic acids, viral proteins and tissue damage. It induces an antiviral state on infected cells by producing type I interferons (IFNs), decreases the pool of infected cells by directing NK cell-mediated killing of viral infected cells, and supports the efficient maturation and site recruitment of adaptive immunity through production of pro-inflammatory cytokines and chemokines [29].

The apparent lack of induction of IFN-I response was interpreted as an ability of HBV to escape innate recognition. This could be the result of the replication strategy of HBV, which uses a transcriptional template, covalently closed circular DNA (cccDNA), that is sequestered within the nucleus of infected cells, where it might not be detected by the innate DNA sensing cellular machinery, and produces polyadenylate viral mRNA that resembles the normal cellular transcripts. Moreover, newly transcribed genomes are protected within viral capsids in the cytoplasm [30]. HBV can actively suppress instead of escaping the innate immunity through the action of different viral proteins. HBV polymerase can inhibit IFN-β induction by interfering with IFN regulatory factor signaling [31, 32].

A major signaling molecule in innate immunity is NF-κB, which induces pro-inflammatory and hepatoprotective gene expression [33]. HBx activation of NF-κB [34] may suppress innate immunity by switching NF-κB signaling to hepatoprotection, thus promoting resistance to immune-mediated damage. Intrahepatic NK cell function is also skewed towards cytolytic activity without IFN-γ production, suggesting that hepatocellular killing occurs without virus clearance [35]. Murine models of hepatocarcinogenesis have highlighted the role of interleukin 6 (IL-6) and of the NF-κB pathway in HCC development. Moreover, microRNAs involved in inflammatory signaling (miR-124 and miR-24/miR-629) have been shown to disturb the IL-6/Stat3 and the Stat3/HNF4-α axis, mechanistically linking inflammation and liver cancer in a self-reinforcing feedback circuit [36].

Dysfunction of Adaptive Immunity against HBV

Adaptive immunity acts through functional maturation and expansion of distinct B and T cell clones able to specifically recognize the infectious agents, a process that necessitates time. This process leads to the control of infection and generates a memory response which increases the host’s ability to block subsequent infections with the same pathogens. However, T cells are more dysfunctional within the infected liver. HBV-specific T cell dysfunction is responsible for hepatoma cell survival, while inflammation-mediated alteration of specific signaling pathways contributes to tumorigenesis.

Dendritic cells (DCs), which link innate immunity with adaptive immunity and which may be infected with HBV, are also defective in chronic HBV infection, resulting in poor adaptive immunity [37]. Regulatory T cells (Tregs) help maintain a tolerogenic environment in the liver. These Tregs are induced by HBx-stimulated production of transforming growth factor-β1 (TGF-β1) [38]. Elevated TGF-β activity, associated with the persistent presence of HBV in the liver tissue, suppresses the expression of miR-34a, leading to enhanced production of chemokine CCL22, which recruits Tregs [39]. In adaptive immunity, there are also defects in HBV-specific CD8+ T cells [40], which are characteristic of T cell exhaustion. Li et al. [41] further showed that the Tim-3/galectin-9 signaling pathway mediates T cell senescence in HBV-associated HCC. These findings provided some mechanisms for HBV-induced immune dysfunction in the development of HBV-associated HCC.
Impact of Viral Proteins in HBV-Induced HCC

The HBV genome has a compact, entirely coding organization, with four overlapping reading frames that encode the viral proteins [42]. HBV-encoded proteins alter host gene expression and cellular phenotypes that are recognized as hallmarks of cancer. These changes promote growth factor-independent proliferation, resistance to growth inhibition, tissue invasion and metastasis, angiogenesis, reprogramming of energy metabolism, and resistance to apoptosis in the face of persistent immune attack and during therapeutic intervention [43].

HBx

HBx is critical for viral pathogenesis and oncogenesis in HBV-infected livers [44, 45]. The HBx gene is the most frequently integrated viral sequence in HCC, and HBx protein is detected in most patients with HBV-related HCC, even in the absence of viral DNA replication [46–48]. HBx has been implicated in mediating multiple viral and cellular events in HBV-infected cells, including viral replication, transactivation of transcription factors, signal transduction, cell cycle progression and cell death. HBx also interacts with the anti-apoptotic proteins Bcl-2 and Bcl-xL through a Bcl-2 homology 3-like motif to promote cytosolic calcium elevation, cell death and viral replication during HBV pathogenesis [49].

HBx truncation is caused by HBV integration. Upon integration, the 3’ end of HBx is often deleted [50]. Meanwhile, the C-terminal region of HBx produced by HBx truncation also contributes to HCC development. The C-terminal region of HBx was found to be important for HBV replication [51] and suggested to be required for ROS production and 8-oxoguanine formation, which are biomarkers of oxidative stress and play an important role in HCC development [24]. Other studies have found that the C-terminal truncation of HBx plays a role in enhancing cell metastasis [52] and directly regulates microRNA transcription and in turn promotes hepatocellular proliferation [53].

Hepatitis B Surface Proteins

The envelope of HBV is formed by three different surface proteins (HBs) termed L (large), M (middle) and S (small), with a ratio of 1:1:4 [54]. On biogenesis, the HBV L protein, together with the structurally closely related M and S envelope proteins, is expressed from a single open reading frame of the viral genome by differential translation initiation. As a consequence, the entire sequence of S is repeated at the C terminus of M and L, which contain the additional pre-S2 domain or pre-S2 and pre-S1 domains, respectively [55]. In the late 1990s, two major types of pre-S deletion mutant LHBs were identified and associated with HCC [56, 57]. In the two types of pre-S mutant LHBs, pre-S1 and pre-S2 mutant LHBs, the pre-S1 and pre-S2 regions, respectively, are partially deleted [58, 59]. They accumulate in the ER and induce strong ER stress [60]. Through an ER stress-mediated pathway, they cause oxidative stress and DNA damage [61]. Through an ER stress-independent pathway, however, pre-S2 mutant LHBs contribute to the increased proliferation of hepatocytes [62]. Pre-S2 mutant large HBs expressed in hepatocytes cluster into groups and exhibit donal expansion and growth advantage. Based on the findings of these previous studies, pre-S mutant LHBs, especially the pre-S2 type, are believed to be crucial in HBV-associated hepatocellular carcinogenesis.

The S protein is expressed at the highest levels and is predominant in virions and subviral particles. The interacting role between host proteins and S protein is another important mechanism leading to HCC. These proteins include JTB, ECHS1 and ALDOA, which refer to cell proliferation, cell motility and cell apoptosis [63–65]. More mechanisms need further research.
HBV Polymerase

HBV polymerase can inhibit IFN-β induction by interfering with IFN regulatory factor signaling [31, 32]. Mechanistically, polymerase was shown to interact with DDX3, a transcriptional factor of the IFN-β promoter. Since DDX3 acts downstream of the activation cascade triggered either by Toll-like receptor 3 (TLR3) (trough TRIF) or by RIG-I (trough IPS-1), the results of these studies show that polymerase can block the activation mediated by these two receptors recognizing dsRNA in the endosomes (TLR3) or in the cytosol (RIG-I).

Hepatitis B e Antigen

Hepatitis B e antigen (HBeAg) is the major product of the pre C-C gene and is a secreted, non-particulate form of the viral nucleocapsid [66, 67]. The HBeAg is regarded as an accessory protein of HBV and is not required for viral replication or infection. The natural history of CHB is typically divided into two phases: HBeAg-positive and HBeAg-negative. Patients with HBeAg-positive CHB have significant downregulation of TLR2 on the surface of monocytes circulating in the peripheral blood and also on hepatocytes and Kupffer cells in their livers. In contrast, HBeAg-negative infection results in upregulation of TLR2 and cytokine expression. Exposure to HBeAg is able to downregulate TLR2 expression but not TLR4 expression on monocytes and results in downstream effects on cytokine production [68]. This inhibition of cytokine production is mediated through TLR signaling pathways. The proposed interaction between the precore protein and the TLR2 pathway may broaden its immunological role in hepatitis B pathogenesis [69].

Immunotherapeutic Interventions for CHB

The two therapeutic approaches available for the suppression of HBV replication include antiviral agents (nucleoside analogues) and immune-based therapies (IFN-α or pegylated IFN-α). However, the rates of HBsAg loss and seroconversion to HBsAb are very low [70], and drug resistance or poor response rate are accompanied by numerous side effects. The goal of therapy is to improve quality of life and survival by preventing progression to cirrhosis, decompensated cirrhosis, HCC and death through sustained suppression of HBV replication [71]. Various therapeutic interventions have been tried as adjuvants to inhibit HBV replication, such as immunotherapeutic interventions, in the treatment of CHB (table 2).

Impaired DC function in patients with CHB may lead to insufficient T cell response to HBV, which may be associated with persistent viral infection. HBV particles and purified HBsAg may both contribute to the dysfunction of myeloid DCs [72] and directly inhibit the production of IFN-α [73]. Recent research suggested that HBsAg/hepatitis B core antigen (HBcAg)-pulsed human blood DC of CHB patients and DC from HBV transgenic mice induced HBsAg-specific and HBcAg-specific cytotoxic T lymphocytes (CTLs) [74]. Activated pulsed DCs acted synergistically with HBcAg-pulsed monocyte-derived DCs in the induction of HBsAg- and HBcAg-specific CTL response [75]. Therefore, a DC-based immunotherapeutic approach may disrupt tolerance against HBV and restore functional antiviral immunity, which is critical for the control of the virus in chronic HBV infection.

A low frequency of T cell immune responses to HBsAg was found in Chinese subjects with HBsAg seroclearance following antiviral therapy, which indicated that HBsAg-specific immune responses were not responsible for HBsAg seroclearance [76]. Robust anti-core T cell responses were found in patients with reduced HBsAg serum levels, suggesting that core-specific T cell responses mediated a protective effect in HBV control [77]. These results suggested that expansion of HBV-specific T cells in vitro through HBcAg stimulation may be one immunotherapeutic intervention.
In CHB patients, the cytotoxic capacity was retained, but NK cell activation and subsequent IFN-γ and tumor necrosis factor alpha (TNF-α) production, especially of the CD56 subset, were strongly hampered. This selective defect in NK cell function may be attributed to the influence of IL-10 and TGF-β in the liver, since it was restored following blockade of these immunosuppressive cytokines in vitro [78]. Restoration of the NK cell cytokine-producing capacity by viral load reduction, therefore, contributed to clearance of the virus [79].

There are many important cytokines involved in the immune responses to HBV infection. Compared with lamivudine alone, cytokine (IFN-γ + TNF-α) treatment and sequential therapy with cytokine and lamivudine showed a stronger inhibition of HBV cccDNA [80]. IL-12 is an immunomodulatory cytokine that promotes cellular immunity. IL-12 stimulation can also lead to downregulation of the co-inhibitory molecule PD-1 [81] and has a pleiotropic effect in restoring functional HBV-specific CTLs. Therefore, IL-12 could be used as an adjuvant agent to break immunological tolerance in CHB treatment.

Tregs showed an immunosuppressive effect against HBV-specific T helper cells. The presence of HBV-specific Tregs contributed to inadequate immune response against the virus, leading to chronic infection [82]. Tregs determine the disease prognosis by reflecting infection progression and impaired immune response. Tregs are therapeutic targets for immunotherapy of HBV infection. The PD-1/PD-1 ligand 1 (PD-L1) system may play a role in the negative regulation of T cell functions in HBV infection. Intrahepatic HBV-specific CD8+ T cells expressed higher levels of PD-1 and lower levels of CD127 than their peripheral counterparts [83]. PD-1 expression in CTLs may be related to the degree of liver damage in CHB patients [84]. Blockade of PD-1/PD-L1 interaction increased CD8+ T cell proliferation and IFN-γ and IL-2 production by circulating intrahepatic lymphocytes, even though anti-PD-L1 showed a stronger effect on intrahepatic compared with peripheral T cells [85].

TLRs are evolutionarily conserved pattern recognition receptors. They play a crucial role in early host defense in a range of microbes, including HBV. Stimulation of TLR9 dramatically increased the CTL responses [86]. Activation of pulsed DCs using synthetic TLR7 and TLR9 ligands or agonists is capable of producing large amounts of type I and III IFN in response to many viruses, including HBV, which contributes to the suppression of HBV replication [87]. These data suggested that the combination of TLR agonists, especially TLR9 agonist, and appropriately timed immune therapy may be a promising approach in the treatment of HBV infection [88].
Therapeutic vaccines, as an alternative to long-term antiviral treatment or to support only partially effective therapy, are currently being developed for chronic HBV infection. Buchmann et al. [89] evaluated a novel vaccine formulation comprising particulate HBsAg and HBcAg, and the saponin-based ISCOMATRIX™ adjuvant for its ability to stimulate T and B cell responses in C57BL/6 mice. The results suggested that the vaccine induced multifunctional HBsAg- and HBcAg-specific CD8+ T cells as well as high antibody titers against both antigens. DNA vaccine encoding HBV large envelope and/or core protein was shown to induce reduction in viremia and cccDNA in the liver in a duck model [90]. The latter was achieved by boosting the hepatic immune response [91]. These data indicate that DNA vaccines combined with viral antigens were potential HBV therapeutic vaccines.

Future Challenges

Although many risk factors have been identified for HCC and tremendous progress has been made in the understanding of the mechanism of HBV-induced HCC, we are still uncertain as to which risk factor takes the major responsibility for hepatocarcinogenesis. What is clear is that HBV-induced hepatocarcinogenesis is a multifactorial process. HBV integration may directly lead to malignant transformation through altering the function of certain key genes. Meanwhile, HBV products and HBV mutation may disrupt normal cellular signaling pathways, thus contributing to HBV-induced HCC. Antiviral therapy of chronic HBV infection has improved dramatically during the last decades, and several new approaches have achieved preclinical validation, but a completely effective treatment is still not available. Thus, functional cure of chronic HBV infection remains an important therapeutic challenge.

Acknowledgement

This work was supported by the National Natural Science Foundation of China (No. 81370591, 81100285).

Disclosure Statement

The authors declare no conflict of interest.

References

1. El-Serag HB, Rudolph KL: Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 2007;132:2557–2576.
2. Liang X, Bi S, Yang W, Wang L, Cui G, Cui F, et al: Epidemiological serosurvey of hepatitis B in China – declining HBV prevalence due to hepatitis B vaccination. Vaccine 2009;27:6550–6557.
3. Lu FM, Zhuang H: Management of hepatitis B in China. Chin Med J (Engl) 2009;122:3–4.
4. Roberts LR, Gores GJ: Hepatocellular carcinoma: molecular pathways and new therapeutic targets. Semin Liver Dis 2005;25:212–225.
5. Lok AS, McMahon BJ: Chronic hepatitis B. Hepatology 2007;45:507–539.
6. Center MM, Jemal A: International trends in liver cancer incidence rates. Cancer Epidemiol Biomarkers Prev 2011;20:2362–2368.
7. But DY, Lai CL, Yuen MF: Natural history of hepatitis-related hepatocellular carcinoma. World J Gastroenterol 2008;14:1652–1656.
8. Brechot C, Gouzeauik D, Murakami Y, Paterlini-Brechot P: Molecular bases for the development of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). Semin Cancer Biol 2000;10:211–231.
9. Ishikawa T: Clinical features of hepatitis B virus-related hepatocellular carcinoma. World J Gastroenterol 2010;16:2463–2467.
10 Pollicino T, Saitta C, Raimondo G: Hepatocellular carcinoma: the point of view of the hepatitis B virus. Carci
nogenesis 2011;32:1122–1132.

11 Shafritz DA, Shouval D, Sherman HI, Hadziyannis SJ, Kew MC: Integration of hepatitis B virus DNA into the
genome of liver cells in chronic liver disease and hepatocellular carcinoma. Studies in percutaneous liver
biopsies and post-mortem tissue specimens. N Engl J Med 1981;305:1067–1073.

12 Koshy R, Koch S, von Loringhoven AF, Kahmann R, Murray K, Hofer R et al: Integration of hepatitis B virus
DNA: evidence for integration in the single-stranded gap. Cell 1983;34:215–223.

13 Brechot C, Pourcel C, Louise A, Rain B, Tiollais P: Presence of integrated hepatitis B virus DNA sequences in
cellular DNA of human hepatocellular carcinoma. Nature 1980;286:533–535.

14 Chakrabarty PR, Ruiz-Opazo N, Shouval D, Shafritz DA: Identification of integrated hepatitis B virus DNA and
expression of viral RNA in an HBsAg-producing human hepatocellular carcinoma cell line. Nature 1980;286:
531–533.

15 Laurent-Puig P, Legois P, Bluteau O, Belghiti J, Franco D, Binot F, et al: Genetic alterations associated with
hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis. Gastroenterology 2001;120:
1763–1773.

16 Chen X, Cheung ST, So S, Fan ST, Barry C, Higgins J, et al: Gene expression patterns in human liver cancers. Mol
Biol Cell 2002;13:1929–1939.

17 Cao Y, Bryan TM, Reddel RR: Increased copy number of the TERT and TERC telomerase subunit genes in cancer
cells. Cancer Sci 2008;99:1092–1099.

18 Sung WK, Zheng H, Li S, Chen R, Liu X, Li Y, et al: Genome-wide survey of recurrent HBV integration in hepato-
cellular carcinoma. Nat Genet 2012;44:765–769.

19 Jiang Z, Junjunhunwala S, Yi L, Haverly PM, Kenneser MI, Guan Y, et al: The effects of hepatitis B virus integra-
tion into the genomes of hepatocellular carcinoma patients. Genome Res 2012;22:593–601.

20 Zhu BH, Wang LT, Li T, Zhou BP: Identification of HBV-related integration sites in HBsAg-positive hepatocel-
lular carcinoma biopsy (in Chinese). Zhonghua Gan Zang Bing Za Zhi 2012;20:468–471.

21 Yang J, Chen X, Zhang H, Chen G: HBV genotype C strains with spontaneous YMDD mutations may be a risk
factor for hepatocellular carcinoma. J Med Virol 2014;86:913–917.

22 Gunther S, Piwon N, Will H: Wild-type levels of pregenomic RNA and replication but reduced pre-C RNA and
e-antigen synthesis of hepatitis B virus with C(1653) → T, A(1762) → T and G(1764) → A mutations in the core
promoter. J Gen Virol 1998;79:375–380.

23 Kao JH, Chen PJ, Lai MY, Chen DS: Basal core promoter mutations of hepatitis B virus in increase the risk of hepato-
cellular carcinoma in hepatitis B carriers. Gastroenterology 2003;124:327–334.

24 Chou YC, Yu MW, Wu CF, Yang SY, Lin CL, Liu CJ, et al: Temporal relationship between hepatitis B virus enhancer I/bsal core promoter sequence variation and risk of hepatocellular carcinoma. Gut 2008;57:
91–97.

25 Park YM, Jang JW, Yoo SH, Kim SH, Oh IM, Park SJ, et al: Combinations of eight key mutations in the X/preC
region and genomic activity of hepatitis B virus are associated with hepatocellular carcinoma. J Viral Hepat
2014;21:171–177.

26 Das A, Maini MK: Innate and adaptive immune responses in hepatitis B virus infection. Dig Dis 2010;28:126–
132.

27 Guidotti LG, Ishikawa T, Hobbs MV, Matzke B, Schreiber R, Chisari FV: Intracellular inactivation of the hepatitis
B virus by cytotoxic T lymphocytes. Immunity 1996;4:25–36.

28 Chemin I, Zoulim F: Hepatitis B virus induced hepatocellular carcinoma. Cancer Lett 2009;286:52–59.

29 Akira S, Uematsu S, Takeuchi O: Pathogen recognition and innate immunity. Cell 2006;124:783–801.

30 Wieland SF, Chisari FV: Stealth and cunning: hepatitis B and hepatitis C viruses. J Virol 2005;79:9369–9380.

31 Wang H, Ryu WS: Hepatitis B virus polymerase blocks pattern recognition receptor signaling via interaction
with DDX3: implications for immune evasion. PLoS Pathog 2010;6:e1000986.

32 Yu S, Chen J, Wu M, Chen H, Kato N, Yuan Z: Hepatitis B virus polymerase inhibits RIG-I- and Toll-like receptor
mediated beta interferon induction in human hepatocytes through interference with interferon regulatory
factor 3 activation and dampening of the interaction between TBK1/IKKepsilon and DDX3. J Gen Virol 2010;
91:2080–2090.

33 Beg AA, Baltimore D: An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science
1996;274:782–784.

34 Su F, Schneider RJ: Hepatitis B virus HBx protein activates transcription factor NF-kappaB by acting on
multiple cytoplasmic inhibitors of rel-related proteins. J Virol 1996;70:4558–4566.

35 Zhang Z, Zhang S, Zou Z, Shi J, Zhao J, Fan R, et al: Hypercytolytic activity of hepatic natural killer cells corre-
lates with liver injury in chronic hepatitis B patients. Hepatology 2011;53:73–83.

36 Hatzihristou M, Polytarchou C, Aggelidou E, Drakaki A, Poultsides GA, Jaeger SA, et al: An HNF4alpha-miRNA
inflammatory feedback circuit regulates hepatocellular oncogenesis. Cell 2011;147:1233–1247.

37 van der Molen RG, Sprengers D, Binda RS, de Jong EC, Nieters HG, Kusters JG, et al: Functional impairment of
myeloid and plasmacytid dendritic cells of patients with chronic hepatitis B. Hepatology 2004;40:738–746.

38 Yoo YD, Ueda H, Park K, Flanders KC, Lee YI, Jay G, et al: Regulation of transforming growth factor-beta 1
expression by the hepatitis B virus (HBV) X transactivator. Role in HBV pathogenesis. J Clin Invest 1996;97:
388–395.
Yang P, Li QJ, Feng Y, Zhang Y, Markowitz GJ, Ning S, et al: TGF-beta-miR-34a-CCL22 signaling-induced Treg cell recruitment promotes venous metastases of HBV-positive hepatocellular carcinoma. Cancer Cell 2012; 22: 291–303.

Lopes AR, Kellam P, Das A, Dunn C, Kwan A, Turner J, et al: Bim-mediated deletion of antigen-specific CD8 T cells in patients unable to control HBV infection. J Clin Invest 2008; 118:1835–1845.

Li H, Wu K, Tao K, Chen L, Zheng Q, Lu X, et al: Tim-3/galectin-9 signaling pathway mediates T-cell dysfunction and predicts poor prognosis in patients with hepatitis B virus-associated hepatocellular carcinoma. Hepatology 2012; 56: 1342–1351.

Neuveut C, Wei Y, Buendia MA: Mechanisms of HBV-related hepatocarcinogenesis. J Hepatol 2010; 52:594–604.

Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell 2011; 144:646–674.

Kremsdorf D, Soussan P, Paterlini-Brechot P, Brechot C: Hepatitis B virus-related hepatocellular carcinoma: paradigms for viral-related human carcinogenesis. Oncogene 2006; 25:3823–3833.

Wei Y, Neuveut C, Tiollais P, Buendia MA: Molecular biology of the hepatitis B virus and role of the X gene. Pathol Biol (Paris) 2010; 58:267–272.

Feitelson MA, Duan LX: Hepatitis B virus X antigen in the pathogenesis of chronic infections and the development of hepatocellular carcinoma. Am J Pathol 1997; 150:1141–1157.

Su Q, Schroder CH, Hofmann WJ, Otto G, Pichlmayr R, Bannasch P: Expression of hepatitis B virus X protein in HBV-infected human livers and hepatocellular carcinomas. Hepatology 1998; 27:1109–1120.

Peng Z, Zhang Y, Gu W, Wang Z, Li D, Zhang F, et al: Integration of the hepatitis B virus X fragment in hepatocellular carcinoma and its effects on the expression of multiple proteins: a key to the cell cycle and apoptosis. Int J Oncol 2005; 26:467–473.

Geng X, Huang C, Qin Y, McCombs JE, Yuan Q, Harry BL, et al: Hepatitis B virus X protein targets Bcl-2 proteins to increase intracellular calcium, required for virus replication and cell death induction. Proc Natl Acad Sci U S A 2012; 109:18471–18476.

Toh ST, Jin Y, Liu L, Wang J, Babrzadeh F, Gharizadeh B, et al: Deep sequencing of the hepatitis B virus in hepatocellular carcinoma patients reveals enriched integration events, structural alterations and sequence variations. Carcinogenesis 2013; 34:787–798.

Luo N, Cai Y, Zhang J, Tang W, Slagle BL, Wu X, et al: The C-terminal region of the hepatitis B virus X protein is required for its stimulation of HBV replication in primary mouse hepatocytes. Virus Res 2012; 165:170–178.

Sze KM, Chu GK, Lee JM, Ng10: C-terminal truncated hepatitis B virus X protein is associated with metastasis and enhances invasiveness by C-Jun/matrix metalloproteinase 10 activation in hepatocellular carcinoma. Hepatology 2013; 57:131–139.

Yip WK, Cheng AS, Zhu R, Lung RW, Tsang DP, Lau SS, et al: Carboxyl-terminal truncated HBx regulates a distinct microRNA transcription program in hepatocellular carcinoma development. PLoS One 2011; 6:e22888.

Heermann KH, Goldmann U, Schwartz W, Seyffarth T, Baumgarten H, Gerlich WH: Large surface proteins of hepatitis B virus containing the pre-s sequence. J Virol 1984; 52:396–402.

Nassal M: Hepatitis B virus morphogenesis. Curr Top Microbiol Immunol 1996; 214:297–337.

Fan YF, Lu CC, Chang YC, Chang TT, Lin PW, Lei HY, et al: Identification of a pre-S2 mutant in hepatocytes expressing a novel marginal pattern of surface antigen in advanced diseases of chronic hepatitis B virus infection. J Gastroenterol Hepatol 2000; 15:519–528.

Fan YF, Lu CC, Chen WC, Yao WJ, Wang HC, Chang TT, et al: Prevalence and significance of hepatitis B virus (HBV) pre-S mutants in serum and liver at different replicative stages of chronic HBV infection. Hepatology 2001; 33:277–286.

Fan ZL, Sabin CA, Dong BQ, Wei SC, Chen QY, Fang KX, et al: Hepatitis B virus pre-s deletion mutations are a risk factor for hepatocellular carcinoma: a matched nested case-control study. J Gen Virol 2008; 89:2882–2890.

Suwannakarn K, Tangkijvanich P, Thawornsuk N, Themboonlers A, Tharmaphornpisal P, Yoocharoen P, et al: Molecular epidemiological study of hepatitis B virus in Thailand based on the analysis of pre-S and S genes. Hepatol Res 2008; 38:244–251.

Wang HC, Wu HC, Chen CF, Fausto N, Lei HY, Su IJ: Different types of ground glass hepatocytes in chronic hepatitis B virus infection contain specific pre-S mutants that may induce endoplasmic reticulum stress. Am J Pathol 2003; 163:2441–2449.

Hsieh YH, Su IJ, Wang HC, Chang WW, Lei HY, Lai MD, et al: Pre-S mutant surface antigens in chronic hepatitis B virus infection induce oxidative stress and DNA damage. Carcinogenesis 2004; 25:2023–2032.

Wang HC, Chang WT, Chang WW, Wu HC, Huang W, Lei HY, et al: Hepatitis B virus pre-s2 mutant upregulates cyclin A expression and induces nodular proliferation of hepatocytes. Hepatology 2005; 41:761–770.

Liu YP, Yang XN, Jazag A, Pan JS, Hu TH, Liu JJ, et al: HBsAg inhibits the translocation of TJbs into mitochondria in HepG2 cells and potentially plays a role in HCC progression. PLoS One 2012; 7:e36914.

Xiao CX, Yang XN, Huang QW, Zhang YQ, Lin BY, Liu JJ, et al: ECHS1 acts as a novel HBsAg-binding protein enhancing apoptosis through the mitochondrial pathway in HepG2 cells. Cancer Lett 2013; 330:67–73.

Pan JS, Zhou F, Xie CX, Cai JY, Chen JM, Zhang ZP, et al: Aldolase A–HBsAg interaction and its effect on ultraviolet radiation induced apoptosis in 293FT cells. J Gastroenterol Hepatol 2010; 25:1702–1709.
Chen RY, Edwards R, Shaw T, Collodge D, Delaney WE 4th, Isom H, et al: Effect of the G1896A precore mutation on drug sensitivity and replication yield of lamivudine-resistant HBV in vitro. Hepatology 2003;37:27e35.

Viswanathan K, Skinner NA, Thompson AJ, Riordan SM, Sozzi V, Edwards R, et al: Regulation of Toll-like receptor-2 expression in chronic hepatitis B by the precore protein. Hepatology 2007;45:102e110.

Milich D, Liang Tj: Exploring the biological basis of hepatitis B e antigen in hepatitis B virus infection. Hepatology 2003;38:1075e1086.

Fletcher SP, Delaney WE 4th: New therapeutic targets and drugs for the treatment of chronic hepatitis B. Semin Liver Dis 2013;33:130e137.

European Association for the Study of the Liver: EASL clinical practice guidelines: management of chronic hepatitis B virus infection. J Hepatol 2012;57:167e185.

Apostolopoulos V, Thalhammer T, Tzakos AG, Stojanovska L: Targeting antigens to dendritic cell receptors for vaccine development. J Drug Deliv 2013;2013:869718.

Shi B, Ren G, Hu Y, Wang S, Zhang Z, Yuan Z: HBsAg inhibits IFN-alpha production in plasmacytoid dendritic cells through TNF-alpha and IL-10 induction in monocytes. PLoS One 2012;7:e49900.

Akbar SM, Yoshida O, Chen S, Cesar AJ, Abe M, Matsuura B, et al: Immune modulator and antiviral potential of dendritic cells pulsed with both hepatitis B surface antigen and core antigen for treating chronic HBV infection. Antivir Ther 2010;15:887e895.

Boni C, Laccabue D, Lampertico P, Giuberti T, Viganò M, Schizazappa S, et al: Restored function of HBV-specific T cells after long-term effective therapy with nucleos(t)ide analogues. Gastroenterology 2012;143:963e973. e9.

Li, M, Ma S, Hu X, Zhou B, Zhang J, Chen J, et al: Cellular immune responses in patients with hepatitis B surface antigen seroclearance induced by antiviral therapy. Virol J 2011;8:69.

Loggi E, Bibi FK, Cursaro C, Granieri C, Galli S, Brodosi L, et al: Virus-specific immune response in HBeAg-negative chronic hepatitis B: relationship with clinical profile and HBsAg serum levels. PLoS One 2013;8:e65327.

Peppa D, Micco L, Javaid A, Kennedy PT, Schurich A, Dunn C, et al: Blockade of immunosuppressive cytokines restores NK cell antiviral function in chronic hepatitis B virus infection. PLoS Pathog 2010;6:e1001227.

Tjwa ET, van Oord GW, Hegmans JP, Janssen HL, Woltman AM: Viral load reduction improves activation and function of natural killer cells in patients with chronic hepatitis B. J Hepatol 2011;54:209e218.

Shi H, Lu L, Zhang NP, Zhang SC, Shen XZ: Effect of interferon-gamma and tumor necrosis factor-alpha on hepatitis B virus following lamivudine treatment. World J Gastroenterol 2012;18:3617e3622.

He Z, Jin L, Liu ZF, Hu L, Dang EL, Feng ZZ, et al: Elevated serum levels of interleukin-21 are associated with disease severity in patients with psoriasis. Br J Dermatol 2012;167:191e193.

Stoop JN, van der Molen RG, Baan CC, van der Laan LJ, Kusters JG, et al: Regulatory T cells contribute to the impaired immune response in patients with chronic hepatitis B virus infection. Hepatology 2005;41:771e778.

Fisicaro P, Valdatta C, Massari M, Loggi E, Biasini E, Sacchelli L, et al: Antiviral intrahepatic T-cell responses can be restored by blocking programmed death-1 pathway in chronic hepatitis B. Gastroenterology 2010;138:682e693, 693.e1e4.

Xibing G, Xiaojuan Y, Juanhua W: PD-1 expression on CTL may be related to more severe liver damage in CHB patients with HBV genotype C than in those with genotype B infection. J Viral Hepat 2013;20:e1e2.

Stross L, Gunther J, Gasteiger G, Asen T, Graf S, Aichler M, et al: Foxp3+ regulatory T cells protect the liver from immune damage and compromise virus control during acute experimental hepatitis B virus infection in mice. Hepatology 2012;56:873e883.

Schwarz K, Storni T, Manolova V, Didierlaurent A, Sirard JC, Rothlisberger P, et al: Role of Toll-like receptors in costimulating cytotoxic T cell responses. Eur J Immunol 2003;33:1465e1470.

Guiducci C, Coffman RL, Barrat FJ: Signalling pathways leading to IFN-alpha production in human plasmacytoid dendritic cell and the possible use of agonists or antagonists of TLR7 and TLR9 in clinical indications. J Intern Med 2009;265:45e57.

Kondo Y, Ueno Y, Shimosegawa T: Toll-like receptors signaling contributes to immunopathogenesis of HBV infection. Gastroenterol Res Pract 2011;2011:810939.

Buchmann P, Dembek C, Kuklick L, Jager C, Todjokusumo R, von Freyland MJ, et al: A novel therapeutic hepatitis B virus vaccine induces cellular and humoral immune responses and breaks tolerance in hepatitis B virus (HBV) transgenic mice. Vaccine 2013;31:1197e1203.

Thermet A, Baranoffosse T, Werle-Lapostolle B, Chevallier M, Pradat P, Trepo C, et al: DNA vaccination in combination or not with lamivudine treatment breaks humoral immune tolerance and enhances cccDNA clearance in the duck model of chronic hepatitis B virus infection. J Gen Virol 2008;89:1192e1201.

Obeng-Adjei N, Choo DK, Saini J, Yan J, Pankhong P, Parikh A, et al: Synthetic DNA immunogen encoding hepatitis B core antigen drives immune response in liver. Cancer Gene Ther 2012;19:779e787.