A NOTE ON SINGULAR EQUIVALENCES AND IDEMPOTENTS

DAWEI SHEN

Abstract. Let Λ be an Artin algebra and let e be an idempotent in Λ. We study certain functors which preserve the singularity categories. Suppose \(\text{pd } \Lambda e\Lambda e < \infty \) and \(\text{id }_{\Lambda \tan \Lambda (e)} \Lambda (e) < \infty \), we show that there is a singular equivalence between \(e\Lambda e \) and \(\Lambda \).

1. Introduction

Let \(R \) be a left noetherian ring. Let \(\text{mod } R \) be the category of finitely generated left \(R \)-modules and let \(\text{proj } R \) be the full subcategory of projective left \(R \)-modules. A complex in \(\text{mod } R \) is called \textit{perfect} if it is quasi-isomorphic to a bounded complex in \(\text{proj } R \). The \textit{singularity category} of \(R \) is the Verdier quotient of the bounded derived category of \(\text{mod } R \) by the thick subcategory of perfect complexes [2, 10]. If there is a triangle equivalence between the singularity categories of two rings \(R \) and \(S \), then such an equivalence is called a \textit{singular equivalence} [4].

Let \(e \) be an idempotent in \(R \). There is a recollement

\[
\text{mod } R / \langle e \rangle \quad \xrightarrow{i} \quad \text{mod } R \quad \xleftarrow{i} \quad \text{mod } eRe.
\]

Here, \(i \) takes any \(M \) in \(\text{mod } R \) to \(eM \) and \(i_\lambda \) takes any \(N \) in \(\text{mod } eRe \) to \(Re \otimes_{eRe} N \). Suppose

(1) \(\text{pd } eRe eRe < \infty \), and

(2) every \(M \in \text{mod } R \) annihilated by \(e \),

then \(i \) induces a singular equivalence between \(R \) and \(eRe \); see [3].

In the present paper, we investigate the singular equivalence induced by the functor \(i_\lambda \). We have the following

Theorem I. Let \(R \) be a left noetherian ring and \(e \) be an idempotent in \(R \). Suppose

(1) \(\text{pd } Re eRe < \infty \), and

(2) every \(M \in \text{mod } R \) admits a projective resolution \(P \) such that \(P^{-i} \in \text{add } Re \) for every sufficiently large \(i \),

then \(i_\lambda \) induces singular equivalence between \(eRe \) and \(R \).

2010 Mathematics Subject Classification. Primary 18E30; Secondary 16G10.

Key words and phrases. Singularity category, triangular matrix ring.
Let \(\Lambda \) be an Artin algebra and \(e \) be an idempotent in \(\Lambda \). The following conditions are studied in [11].

\[
\begin{align*}
(\alpha) \quad & \text{id}_{\Lambda} \frac{\Lambda/(e)}{\text{rad } \Lambda/(e)} < \infty \quad (\beta) \quad \text{pd}_{e\Lambda e} \Lambda < \infty \\
(\gamma) \quad & \text{pd} \frac{\Lambda/(e)}{\text{rad } \Lambda/(e)} < \infty \quad (\delta) \quad \text{pd} \Lambda e_{e\Lambda e} < \infty
\end{align*}
\]

It turns out that

(1) \((\alpha)\) and \((\beta)\) hold if and only if \((\gamma)\) and \((\delta)\) hold;
(2) \(i\) induces a singular equivalence if and only if \((\beta)\) and \((\gamma)\) hold.

As a complement, we have the following

Theorem II. Let \(\Lambda \) be an Artin algebra and \(e \) be an idempotent in \(\Lambda \). Then \(i_\lambda \) induces a singular equivalence if and only if \((\alpha)\) and \((\delta)\) hold.

2. Singularity categories

Let \(R \) be a left noetherian ring. Let \(K^{-,b}(\text{proj } R) \) be the homotopy category of bounded above complexes in \(\text{proj } R \) with bounded cohomologies. It is a triangulated category, whose translation functor \(\Sigma \) is the shift of complexes [12].

A complex \(P \) in \(K^{-,b}(\text{proj } R) \) is perfect if there is an integer \(\ell \) such that the \((-i)\)-th coboundary of \(P \) is projective for every \(i \geq \ell \). Let \(K^b(\text{proj } R) \) be the full subcategory of perfect complexes.

The singularity category of \(R \) is the quotient triangulated category

\[
D_{\text{sg}}(R) := K^{-,b}(\text{proj } R)/K^b(\text{proj } R).
\]

Let \(\text{mod } R \) be the projectively stable category of \(\text{mod } R \). For any \(M \) in \(\text{mod } R \), take a projective precover \(\pi : P \to M \); the syzygy \(\Omega M \) of \(M \) is the kernel of \(\pi \). There is a functor

\[
\Omega : \text{mod } R \to \text{mod } R
\]

sending a module \(M \) to the syzygy \(\Omega M \). For any \(M \) in \(\text{mod } R \), take a projective resolution \(pM \) of \(M \). There is a functor

\[
p : \text{mod } R \to D_{\text{sg}}(R)
\]

sending a module \(M \) to the projective resolution \(pM \). For any \(\ell \geq 0 \), there is a natural isomorphism

\[
p\Omega^\ell(M) \cong \Sigma^{-\ell}pM.
\]

Lemma 2.1 ([4, Lemma 2.1]). For any \(X \in D_{\text{sg}}(R) \), there is \(n \geq 0 \) and \(M \in \text{mod } R \) such that

\[
\Sigma^{-n}X \cong pM.
\]

Lemma 2.2 ([9, Exemple 2.3]). For any \(M, N \in \text{mod } R \), there is an isomorphism

\[
\lim_{\ell \geq 0} \text{Hom}_R(\Omega^\ell M, \Omega^\ell N) \cong \text{Hom}_{D_{\text{sg}}(R)}(pM, pN).
\]

Let \(e \) be an idempotent in \(R \). There is a functor

\[
i_\lambda : \text{mod } eRe \to \text{mod } R
\]
such that $i_\lambda(M) = Re \otimes_{eRe} M$ for every $M \in \mod eRe$. It is a full faithful functor which takes projectives to projectives. The functor i_λ restricts to a full faithful functor i'_λ such that

$$i'_\lambda : \proj eRe \xrightarrow{\cong} \add Re \xrightarrow{\subseteq} \proj R.$$

Here, we denote by $\add Re$ the full subcategory of summands of finite direct sums of copies of Re.

We now restate and prove Theorem I.

Theorem 2.3. Suppose $\pd Re < \infty$, then i_λ induces a full faithful triangle functor

$$D_{\sg}(i_\lambda) : D_{\sg}(eRe) \to D_{\sg}(R).$$

Moreover, $D_{\sg}(i_\lambda)$ is a triangle equivalence if and only if for every $M \in \mod R$, there is an integer ℓ and a projective resolution P of M such that $P^{-i} \in \add Re$ for every $i \geq \ell$.

Proof. Let X be in $K^{-b}(\proj eRe)$ which is exact at degree $\leq \ell$. Then $i_\lambda(X)$ is exact at degree $\leq \ell - \pd Re < \infty$. Therefore i_λ induces a triangle functor

$$K^{-b}(i_\lambda) : K^{-b}(\proj eRe) \to K^{-b}(\proj R).$$

Since i_λ is full faithful, $K^{-b}(i_\lambda)$ is also full faithful. Since i_λ preserves perfect complexes, it induces a triangle functor $D_{\sg}(i_\lambda)$ such that

$$D_{\sg}(i_\lambda) : D_{\sg}(eRe) \xrightarrow{\cong} K^{-b}(\add Re)/K^b(\add Re) \to D_{\sg}(R).$$

Let $f : X \to Y$ be a morphism in $K^{-b}(\proj R)$, where X^i is zero for every $i \leq \ell$ and Y belongs to $K^{-b}(\add Re)$. Let $\sigma_{\geq \ell} Y$ be the stupid truncation of Y at degree $\geq \ell$, then it belongs to $K^b(\add Re)$. Since f factors through $\sigma_{\geq \ell} Y$, by [8, Proposition 10.2.6] the functor $D_{\sg}(i_\lambda)$ is full faithful.

By Lemma 2.1 and 2.2, the singularity category of R is triangle equivalent to the stabilization of the stable category $\mod R$. Then the denseness of $D_{\sg}(i_\lambda)$ follows from [5, Corollary 2.13].

□

3. **Triangular matrix rings**

Let T and S be two rings and M be an S-T-bimodule. We consider the triangular matrix ring

$$R = \begin{pmatrix} T & 0 \\ M & S \end{pmatrix}.$$

Following [1, III.2] a left R-module is given by

$$(X, Y, \phi) = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \mid x \in X, y \in Y \right\},$$

where X is a left T-module, Y is a left S-module and $\phi : M \otimes_T X \to Y$ is a left S-module map. The action is given by

$$\begin{pmatrix} t \\ m \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} tx \\ \phi(m \otimes x) + sy \end{pmatrix}$$

for every $t \in T$, $s \in S$ and $m \in M$.

Let $e = \diag(0, 1)$ be in R. Then $Re = eRe$ and

$$\add Re = \{(0, Y, 0) \mid Y \in \proj S\}.$$
Lemma 3.1. Let X be a left T-module and Y be a left S-module.

1. $\text{pd}_S Y = \text{pd}_R (0, 0, 0)$;
2. $(X, M \otimes_T X, 1)$ is a projective left R-module if and only if X is a projective left T-module.

We have the following: compare [3, Theorem 4.1].

Proposition 3.2. Let T and S be left noetherian rings, and let M be an S-T-bimodule such that SM is finitely generated. Assume that T has finite left global dimension, then there is a triangle equivalence
\[
D_{sg} \left(\begin{pmatrix} T & 0 \\ M & S \end{pmatrix} \right) \simeq D_{sg}(S).
\]

Proof. One checks that the triangular matrix ring R is left noetherian. Let (X, Y, ϕ) be in $\text{mod} R$. Since $\text{pd}_T X$ is finite, by Lemma 3.1 there is a projective resolution P of (X, Y, ϕ) such that $P^{i-1} \in \text{add Re}$ for every $i > \text{pd}_T X$. Then by Theorem II there is a triangle equivalence between $D_{sg}(R)$ and $D_{sg}(S)$. □

Example 3.3 (see [4], Proposition 4.1). Let k be a field, Λ be a finite dimensional k-algebra and M be a finite dimensional left Λ-module. Then M is a Λ-k-bimodule. The one-point extension of Λ by M is the triangular matrix algebra
\[
\Lambda[M] = \begin{pmatrix} k & 0 \\ M & \Lambda \end{pmatrix}.
\]

By Theorem II there is a singular equivalence between Λ and $\Lambda[M]$.

4. Artin algebras

Let Λ be an Artin algebra. We need the following well known

Lemma 4.1. Let M be in $\text{mod} \Lambda$ and P_M be a minimal projective resolution of M. For any semi-simple Λ-module S and any $i \geq 0$ there is an isomorphism
\[
\text{Ext}^i_\Lambda (M, S) \cong \text{Hom}_\Lambda (P_M^{-i}, S).
\]

Proof. For $i = 0$, it is obvious. For $i = 1$, let K be the (-1)-th coboundary of P_M. There is an exact sequence
\[
K \to P_M^0 \xrightarrow{\pi} M.
\]
Applying $\text{Hom}_\Lambda (-, S)$ to it, we obtain an exact sequence
\[
\text{Hom}_\Lambda (M, S) \xrightarrow{\pi^*} \text{Hom}_\Lambda (P_M^0, S) \to \text{Hom}_\Lambda (K, S) \to \text{Ext}^1_\Lambda (M, S).
\]
Since π is a projective cover and S is semi-simple, π^* is surjective. Then
\[
\text{Hom}_\Lambda (K, S) \cong \text{Ext}^1_\Lambda (M, S).
\]
Since P_M^{-1} is a projective cover of K, there is an isomorphism
\[
\text{Ext}^1_\Lambda (M, S) \cong \text{Hom}_\Lambda (P_M^{-1}, S).
\]
By shifting one proves the isomorphism for $i \geq 2$. □
For any \(P \in \text{proj} \Lambda \), we have the following
\[
(4.1) \quad P \in \text{add} \Lambda e \iff \text{Hom}_\Lambda(P, \frac{\Lambda/e}{\text{rad} \Lambda/e}) = 0.
\]

We now restate and prove Theorem II.

Theorem 4.2. Let \(\Lambda \) be an Artin algebra and \(e \) be an idempotent in \(\Lambda \). Suppose \(\text{pd} \Lambda e_{\text{rad} \Lambda} < \infty \), then \(\text{D}_{\text{sg}}(i_\lambda) \) is a triangle equivalence if and only if \(\text{id} \frac{\Lambda/e}{\text{rad} \Lambda/e} < \infty \).

Proof. “\(\Rightarrow \)” Let \(P \) be a minimal projective resolution of \(\Lambda/\text{rad} \Lambda \). If \(\text{D}_{\text{sg}}(i_\lambda) \) is dense, by Theorem I there is \(\ell \geq 0 \) such that \(P_i \in \text{add} \Lambda e \) for every \(i > \ell \). By Lemma 4.1 and (4.1) we have
\[
\text{Ext}_\Lambda^i(\frac{\Lambda/e}{\text{rad} \Lambda/e}) = 0.
\]
Then \(\text{id} \frac{\Lambda/e}{\text{rad} \Lambda/e} \) is finite.

“\(\Leftarrow \)” Let \(M \) be in \(\text{mod} \Lambda \) and \(P_M \) be a minimal projective resolution of \(M \). If \(\text{id} \frac{\Lambda/e}{\text{rad} \Lambda/e} \) is finite, by Lemma 4.1 we have \(P_i \in \text{add} \Lambda e, \forall i > \text{id} \frac{\Lambda/e}{\text{rad} \Lambda/e} \).

From Theorem I we infer that \(\text{D}_{\text{sg}}(i_\lambda) \) is a triangle equivalence. \(\Box \)

We end this section by an example.

Let \(\Lambda \) be an Artin algebra. Let \(S \) be a semi-simple left \(\Lambda \)-module with \(\text{id} \Lambda S \leq 1 \). Denote by
\[
\perp S = \{ M \in \text{mod} \Lambda \mid \text{Hom}_\Lambda(M, S) = \text{Ext}_\Lambda^1(M, S) = 0 \}
\]
the perpendicular category of \(S \) in \(\text{mod} \Lambda \). By Lemma 4.1 a finitely generated left \(\Lambda \)-module \(M \) belongs to \(\perp S \) if and only if \(M \) admits a projective presentation
\[
P^{-1} \to P^0 \to M
\]
such that both \(P^{-1} \) and \(P^0 \) belong to \(\perp S \).

Let \(e \) be an idempotent in \(\Lambda \) such that \(\text{proj} \Lambda \cap \perp S \) coincides with \(\text{add} \Lambda e \). Recall the functor \(i_\lambda \) decomposes into
\[
i_\lambda \colon \text{mod} \Lambda e \cong \perp S \subseteq \text{mod} \Lambda.
\]

We have the following; compare [6 Proposition 2.13].

Proposition 4.3. Keep the notation as previous.
(1) \(\text{gl.dim } \Lambda e \leq \text{gl.dim } \Lambda \leq \text{gl.dim } \Lambda e + 2 \);
(2) there is a singular equivalence between \(\Lambda e \) and \(\Lambda \).

Proof. (1) Let \(\Omega^2 M \) be the minimal second syzygy for \(M \) in \(\text{mod} \Lambda \). Since \(\text{id} \Lambda S \leq 1 \), \(\text{Ext}_\Lambda^i(M, S) = 0 \) for every \(i \geq 2 \). By Lemma 4.1 \(\Omega^2 M \in \perp S \).

Since \(i_\lambda \) preserves projective resolutions, for any \(N \) in \(\text{mod} \Lambda e \) we have
\[
\text{pd}_{\Lambda e} N = \text{pd}_\Lambda i_\lambda(N).
\]
Then
\[
\text{pd}_\Lambda M \leq \text{pd}_\Lambda \Omega^2 M + 2 = \text{pd}_{\Lambda e} i_\lambda(\Omega^2 M) + 2.
\]

(2) From [7 Proposition 1.1] we infer that \(\perp S \) is an exact subcategory of \(\text{mod} \Lambda \). Then the right \(\Lambda e \)-module \(\Lambda e \) is projective. By Theorem I there is a singular equivalence between \(\Lambda e \) and \(\Lambda \). \(\Box \)
Acknowledgments

The author is thankful to Professor Xiao-Wu Chen for discussions. This work is supported by National Natural Science Foundation of China (No. 11801141).

References

[1] M. Auslander, I. Reiten, S. O. Smalø, Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, 36. Cambridge University Press, Cambridge, 1995.
[2] R.-O. Buchweitz, Maximal Cohen-Macaulay modules and Tate-cohomology over Gorenstein rings, Unpublished manuscript, Available at: http://hdl.handle.net/1807/16682, 1987.
[3] X.-W. Chen, Singularity categories, Schur functors and triangular matrix rings, Algebr. Represent. Theory 12 (2009), 181–191.
[4] X.-W. Chen, The singularity category of an algebra with radical square zero, Doc. Math. 16 (2011), 921–936.
[5] X.-W. Chen, The singularity category of a quadratic monomial algebra, The Quarterly Journal of Mathematics, 69 (2018), 1015–1033.
[6] X.-W. Chen and Y. Ye, Retractions and Gorenstein homological properties, Algebr. Represent. Theory 17 (2014), 713–733.
[7] W. Geigle and L. Lenzing, Perpendicular categories with applications to representations and sheaves, J. Algebra 144 (1991), 273–343.
[8] M. Kashiwara and P. Schapira, Categories and sheaves, Grundlehren der Mathematischen Wissenschaften, 332. Springer-Verlag, Berlin, 2006.
[9] B. Keller and D. Vossieck, Sous les catégories dérivées, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), 225–228.
[10] D. Orlov, Triangulated categories of singularities and D-branes in Landau-Ginzburg models, Tr. Mat. Inst. Steklova 246 (2004), 240–262.
[11] C. Psaroudakis, Ø. Skartsæterhagen and Ø. Solberg, Gorenstein categories, singular equivalences and finite generation of cohomology rings in recollements, Trans. Amer. Math. Soc. Ser. B 1 (2014), 45–95.
[12] J.-L. Verdier, Catégories dérivées: quelques résultats (état 0), Cohomologie étale, 262–311, Lecture Notes in Math., 569. Springer, Berlin, 1977.

School of Mathematics and Statistics, Henan University, 475004, Kaifeng, Henan, P. R. China

E-mail address: sdw12345@mail.ustc.edu.cn