MUTATION OF CLUSTER-TILTING OBJECTS AND POTENTIALS

ASLAK BAKKE BUAN, OSAMU IYAMA, IDUN REITEN, AND DAVID SMITH

Abstract. We prove that mutation of cluster-tilting objects in triangulated 2-Calabi-Yau categories is closely connected with mutation of quivers with potentials. This gives a close connection between 2-CY-tilted algebras and Jacobian algebras associated with quivers with potentials.

We show that cluster-tilted algebras are Jacobian and also that they are determined by their quivers. There are similar results when dealing with tilting modules over 3-CY algebras. The nearly Morita equivalence for 2-CY-tilted algebras is shown to hold for the finite length modules over Jacobian algebras.

Contents

Introduction 1
1. Preliminaries on mutation 3
 1.1. Mutation of quivers 3
 1.2. Mutation of quivers with potentials 4
 1.3. Mutation of cluster-tilting objects 5
 1.4. Cluster-tilted algebras 6
 1.5. Mutation of tilting modules over 3-Calabi-Yau algebras 6
2. Cluster-tilted algebras are determined by their quivers 8
3. Preliminaries on presentation of algebras 9
4. Jacobian algebras and weak 2-almost split sequences 13
5. Mutation of quivers with potentials and cluster-tilting objects 20
6. 2-CY-tilted algebras associated with elements in Coxeter groups 26
7. Nearly Morita equivalence for neighboring Jacobian algebras 32
References 39

Introduction

The Fomin-Zelevinsky mutation of quivers plays an important role in the theory of cluster algebras initiated in [FZ]. There is, motivated by this theory via [MRZ], a mutation of cluster-tilting objects in cluster categories, and more generally Hom-finite triangulated 2-Calabi-Yau (2-CY for short) categories over an algebraically closed field K [BMRTT, IY]. This has turned out to give a categorical model for the quiver mutation in certain cases [BMR2, BIRS]. On the other hand there is the recent theory of mutation of quivers with potentials (Q, W), initiated in [DWZ1].

Associated with cluster-tilting objects T in 2-CY categories C are the endomorphism algebras $\text{End}_C(T)$, called 2-CY-tilted algebras. And associated with a quiver...
with potential \((Q,W)\) are algebras called Jacobian algebras in [DWZ1]. The mutation of cluster-tilting objects induces an operation on the associated 2-CY-tilted algebras and the mutation of quivers with potentials induces an operation on the associated Jacobian algebras. The theme of this paper is to investigate these classes of algebras and their relationships, in particular with respect to mutation. In addition to cluster-tilting objects in triangulated 2-CY categories, we also deal with mutation of tilting modules over 3-CY algebras, and their relationship to mutation of quivers with potentials. We now state the main results of this paper, referring to section 1 for definitions and background material.

(A) Starting with a cluster-tilting object \(T\) in a 2-CY category \(C\) such that \(\text{End}_C(T)\) is Jacobian, our main theorem states that the two mutations “coincide” (Theorem 5.1). The same type of result is proved for tilting modules over 3-CY algebras (Theorem 5.2). Our basic idea for the proof is to use the relationship between Jacobian algebras and 2-almost split sequences introduced in [I2, IY], which is a higher analogue of the classical relationship between mesh categories of translation quivers and almost split sequences [Rie, BG, IT1, IT2, I1].

(B) The results in (A) can be used to show that large classes of 2-CY-tilted algebras are Jacobian. In particular, a main result is that cluster-tilted algebras, which are an important subclass of 2-CY-tilted algebras, are Jacobian (Corollary 5.11). This is an easy consequence of Theorem 5.1.

More generally we show that a large class of 2-CY-tilted algebras coming from triangulated 2-CY categories associated with elements in Coxeter groups (see [BIRS]) are also Jacobian (Theorem 6.4).

(C) It is an open question whether there exists a (mutation-) operation on algebras with the following property: \(\text{End}_C(T)\) should be sent to \(\text{End}_C(T^*)\), when \(T\) is a cluster-tilting object in a triangulated 2-CY category and \(T^*\) is a cluster-tilting object obtained from \(T\) by mutation.

Similarly, in [DWZ1] a question was posed, asking if there is a (mutation-) operation defined on algebras with the property: the Jacobian algebra \(P(Q,W)\) should be sent to the Jacobian algebra \(P(Q',W')\), when \((Q,W)\) is a quiver with potential and \((Q',W')\) is a quiver with potential obtained from \((Q,W)\) by mutation.

It is an easy consequence of (A) that both questions have an affirmative answer for 2-CY-tilted algebras which are Jacobian. By recent results in [A], Jacobian algebras of Jacobi-finite QP’s have this property (Theorem 5.12, Corollary 5.13).

(D) Another main result in this paper is that cluster-tilted algebras are determined by their quivers. This was shown for finite representation type in [BMR3]. We here give a short proof of this fact (Theorem 2.3). Alternatively, it is also a direct consequence of (A).

(E) One of the starting points of tilting theory is the reflection functors [BGP, APR], giving a nearly Morita equivalence, in the terminology of [Rin], meaning that \(\text{mod} A \cong \text{mod} A'\) \(S_k\) when \(S_k\) and \(S_k'\) are the simple modules associated with the vertex \(k\), where \(k\) is a sink or a source in the quiver of the path algebra \(A\), and \(A'\) is the path algebra obtained by changing direction of all arrows adjacent to \(k\). An important property of cluster-tilted algebras (and more generally 2-CY-tilted algebras), is that this nearly Morita equivalence generalizes in the sense that one replaces reflection at a source/sink with mutation at any vertex [BMR1, KR1]. A consequence of this is that the cluster-tilted algebras (in one mutation class) have the same “number” of indecomposable modules. In view of the close connection between 2-CY-tilted algebras and Jacobian algebras it is natural to investigate if a property known to hold for one of the classes also holds for the other one. In this spirit we show that nearly Morita equivalence holds also for two Jacobian algebras where one is obtained from the other by mutation of potentials (Theorem 7.1).
We show this also for algebras which are not finite dimensional, dealing with the category of finite length modules. In view of our previous results, this gives a generalization of the above result for cluster-tilted algebras. For the proof we use a functorial approach to results and techniques of [DWZ1].

The organisation of the paper is as follows. In section 1 we collect some known results on the different kinds of mutation and on cluster-tilted algebras. In section 2 we prove that cluster-tilted algebras are determined by their quiver. The connection between cluster-tilting mutation and mutation of quivers with potential is given in sections 3, 4 and 5. In section 6 we show that a class of 2-CY-tilted algebras associated with reduced expressions of elements of the Coxeter groups are given by QP’s, which are rigid in the sense of [DWZ1]. The result on nearly Morita equivalence is given in section 7.

The results in this paper have been presented at conferences in Oxford and Oberwolfach [RG, L3]. That cluster-tilted algebras and some of the 2-CY-tilted algebras associated with elements in Coxeter groups are Jacobian is proved independently in [K3] using completely different methods (see also [A]). We have been informed by Zelevinsky that the result on nearly Morita equivalence is independently proved in [DWZ2]. Our result (A) on 3-CY algebras is related to results of Vitória [V] and Keller-Yang [KY].

Conventions All modules are left modules, and a composition \(ab\) of morphisms (respectively, arrows) \(a\) and \(b\) means first \(a\) and then \(b\). We denote by \(s(a)\) the start vertex of an arrow or path \(a\) and \(e(a)\) denotes the end vertex. For an algebra \(\Lambda\) we denote by \(\text{mod} \, \Lambda\) the category of finitely generated \(\Lambda\)-modules, and by \(\text{f.l.} \, \Lambda\) the category of finite length \(\Lambda\)-modules. We denote by \(J_\Lambda\) the Jacobson radical of an algebra \(\Lambda\), and by \(J_C\) the Jacobson radical of an additive category \(C\). For an object \(T\) in an additive category \(C\) we denote by \(Q_T\) the quiver of \(\text{End}_C(T)\).

1. **Preliminaries on mutation**

In this section we discuss different kinds of mutations. We first recall the Fomin-Zelevinsky mutation of quivers and the recent mutation of quivers with potentials from [DWZ1]. Then we consider the mutation of cluster-tilting objects in 2-Calabi-Yau (2-CY) categories, which often gives a categorical modelling of quiver mutation. A main theme of this paper is the comparison of the last two mutations. Since cluster-tilted algebras play a central role in this paper, we recall their definition and some of their basic properties. Finally, we consider mutation of tilting modules over 3-Calabi-Yau algebras, which will also be compared to mutation of quivers with potentials.

1.1. **Mutation of quivers.** Let \(Q\) be a finite quiver with vertices \(1, \ldots, n\), and having no loops or 2-cycles. For any vertex \(k\), Fomin-Zelevinsky [FZ] defined a new quiver \(\mu_k(Q)\) as follows. Let \(b_{ij}\) and \(b'_{ij}\) denote the number of arrows from \(i\) to \(j\) minus the number of arrows from \(j\) to \(i\) in \(Q\) and \(\mu_k(Q)\), respectively. Then we have

\[
b'_{ij} = \begin{cases}
- b_{ij} & \text{if } i = k \text{ or } j = k, \\
\frac{b_{ij} + |b_{ik}| + b_{jk}|}{2} & \text{else.}
\end{cases}
\]

Clearly we have \(\mu_k(\mu_k(Q)) \simeq Q\). This mutation is an essential ingredient in the theory of cluster algebras initiated in [FZ]. Note that if the vertex \(k\) is a sink or a source, then this mutation coincides with the Bernstein-Gelfand-Ponomarev reflection of quivers [BGP].
1.2. Mutation of quivers with potentials. Let \(Q \) be a finite connected quiver without loops, and with vertices \(1, \ldots, n \), and set of arrows \(Q_1 \). We denote by \(KQ_i \) the \(K \)-vector space with basis \(Q_i \) consisting of paths of length \(i \) in \(Q \), and by \(KQ_{i,\text{cyc}} \) the subspace of \(KQ_i \) spanned by all cycles. Consider the complete path algebra

\[
\widetilde{KQ} = \prod_{i \geq 0} KQ_i
\]

over an algebraically closed field \(K \). A quiver with potential (QP for short) is a pair \((Q,W)\) consisting of a quiver \(Q \) without loops and an element \(W \in \prod_{i \geq 2} KQ_{i,\text{cyc}} \) (called a potential). It is called reduced if \(W \in \prod_{i \geq 3} KQ_{i,\text{cyc}} \). The cyclic derivative \(\partial_aW \) is defined by \(\partial_a(1 \cdot \cdots \cdot 1) = \sum a_{i-a_i+1}a_{i+1} \cdots a_{i-1} \) and extended linearly and continuously. A QP gives rise to what has been called the associated Jacobian algebra \([\text{DWZ}]\)

\[
\mathcal{P}(Q,W) = \widetilde{KQ}/\mathcal{J}(W),
\]

where \(\mathcal{J}(W) = (\partial_aW \mid a \in Q_1) \) is the closure of the ideal generated by \(\partial_aW \) with respect to the \(K \)-adic topology.

Two potentials \(W \) and \(W' \) are called cyclically equivalent if \(W - W' \in [KQ,KQ] \), where \([\cdot,\cdot]\) denote the vector space spanned by commutators. Two QP's \((Q,W)\) and \((Q',W')\) are called right-equivalent if \(Q_0 = Q'_0 \) and there exists a \(K \)-algebra isomorphism \(\phi: \widetilde{KQ} \rightarrow \widetilde{KQ}' \) such that \(\phi|_{Q_0} = \text{id} \) and \(\phi(W) \) and \(W' \) are cyclically equivalent. In this case \(\phi \) induces an isomorphism \(\mathcal{P}(Q,W) \simeq \mathcal{P}(Q',W') \). It is shown in \([\text{DWZ}]\) that for any QP \((Q,W)\) there exists a reduced QP \((Q_{\text{red}},W_{\text{red}})\) such that \(\mathcal{P}(Q,W) \simeq \mathcal{P}(Q_{\text{red}},W_{\text{red}}) \), which is uniquely determined up to right-equivalence. We call \((Q_{\text{red}},W_{\text{red}})\) a reduced part of \((Q,W)\). For example, a reduced part of the QP \((Q,W)\) below is given by the QP \((Q_{\text{red}},W_{\text{red}})\) below.

\[
(Q,W) = \left(\begin{array}{ccc}
2 & 1 & 1 \\
1 & 1 & 1 \\
3 & 0 & 0
\end{array} \right), \quad (Q_{\text{red}},W_{\text{red}}) = \left(\begin{array}{ccc}
2 & 2 & 3 \\
1 & 2 & 3 \\
0 & 3 & 0
\end{array} \right)
\]

A QP \((Q,W)\) is called rigid \([\text{DWZ}]\) if the deformation space \(\mathcal{P}(Q,W)/(KQ_0 + [\mathcal{P}(Q,W),\mathcal{P}(Q,W)]) \) is zero, or equivalently \(J_{\widetilde{KQ}} = J(W) + [KQ,KQ] \) holds.

A mutation \(\mu_k(Q,W) \) of a QP \((Q,W)\) is introduced in \([\text{DWZ}]\) for each vertex \(k \) in \(Q \) not lying on a 2-cycle. It is defined as a reduced part of \((Q',W') = \hat{\mu}_k(Q,W) \), the latter one being given as follows. Replacing \(W \) by a cyclically equivalent potential, we assume that no cycles in \(W \) start at \(k \).

(a) \(Q' \) is a quiver obtained from \(Q \) by the following changes.

(i) Replace the fixed vertex \(k \) in \(Q \) by a new vertex \(k^* \). (Although \(k \) and \(k^* \) are identified in \([\text{DWZ}]\), we distinguish them to avoid any confusion.)

(ii) Add a new arrow \([ab]: i \rightarrow j \) for each pair of arrows \(a: i \rightarrow k \) and \(b: k \rightarrow j \) in \(Q \).

(iii) Replace each arrow \(a: i \rightarrow k \) in \(Q \) by a new arrow \(a^*: k^* \rightarrow i \).

(iv) Replace each arrow \(b: k \rightarrow j \) in \(Q \) by a new arrow \(b^*: j \rightarrow k^* \).

(b) \(W' = [W] + \Delta \) where \([W]\) and \(\Delta \) are the following:

(i) \([W]\) is obtained by substituting \([ab]\) for each factor \(ab \) in \(W \) with \(a: i \rightarrow k \) and \(b: j \rightarrow k \).

(ii) \(\Delta = \sum_{a,b \in Q_1 \atop e(a) = k = e(b)} a^*[ab]b^* \).

Then \(k^* \) is not contained in any 2-cycle in \(\mu_k(Q,W) \), and \(\mu_k \cdot (\mu_k(Q,W)) \) is right-equivalent to \((Q,W)\) \([\text{DWZ}]\). Note that if both \(Q \) and the quiver part of \(\mu_k(Q,W) \) have no loops and 2-cycles, then they are in the relationship of Fomin-Zelevinsky mutation.
For example, we calculate $\mu_2(Q, W)$ and $\mu_2(\mu_2(Q, W))$ for the QP (Q, W) below. (For simplicity we denote a^{**} and b^{**} by a and b respectively.)

$$(Q, W) = \left(1 \xleftarrow{a} 2 \xrightarrow{b} 3, 0 \right) \quad \xrightarrow{\mu_2} \quad \left(1 \xleftarrow{a^{**}} 2 \xrightarrow{b^{**}} 3, a^{**}[ab]b^{**} \right) \quad \xrightarrow{\text{reduced}} \quad \left(1 \xleftarrow{a} 2 \xrightarrow{b} 3, 0 \right)$$

1.3. Mutation of cluster-tilting objects. Let \mathcal{C} be a Hom-finite triangulated K-category, where K is an algebraically closed field. We denote by $[1]$ the shift functor in \mathcal{C}, and $\text{Ext}_A^n(A, B) = \text{Hom}_A(A, B[i])$. Then \mathcal{C} is said to be n-Calabi-Yau (n-CY for short) if there is a functorial isomorphism

$$D \text{Hom}_\mathcal{C}(A, B) \simeq \text{Ext}^n_B(B, A)$$

for A, B in \mathcal{C} and $D = \text{Hom}_K(\ , K)$. Note that this is called weakly n-Calabi-Yau in [K2].

Let \mathcal{C} be 2-CY. An object T in \mathcal{C} is cluster-tilting if

$$\text{add} T = \{ X \in \mathcal{C} \mid \text{Ext}^1_X(T, X) = 0 \}$$

(see [BMRRT], [2], [KR1]). In this case the algebra $\text{End}_\mathcal{C}(T)$ is called a 2-CY-tilted algebra.

Let $T = T_1 \oplus T_2 \oplus \cdots \oplus T_n$, where the T_i are nonisomorphic indecomposable objects. For each $k = 1, \ldots, n$ there is a unique indecomposable object T_k^* in \mathcal{C} with $T_k^* \nmid T_k$ such that $(T/T_k) \oplus T_k^*$ is a cluster-tilting object in \mathcal{C}, and we write $\mu_k(T) = (T/T_k) \oplus T_k^*$. Clearly we have $\mu_k(\mu_k(T)) \simeq T$. There are associated exchange triangles

$$T_k^* \xrightarrow{g} U_k \xrightarrow{f} T_k \xrightarrow{} T_k^*[1] \quad \text{and} \quad T_k \xrightarrow{g'} U_k' \xrightarrow{f'} T_k^* \xrightarrow{} T_k[1]$$

where f and f' are minimal right $\text{add}(T/T_k)$-approximations, and g and g' are minimal left $\text{add}(T/T_k)$-approximations [BMRRT], [Y].

In general, for a category \mathcal{C} and a full subcategory \mathcal{C}', we denote by $[\mathcal{C}'](X, Y)$ the subgroup of $\text{Hom}_\mathcal{C}(X, Y)$ consisting of morphisms factoring through objects in \mathcal{C}'. Then $[\mathcal{C}']$ forms an ideal of the category \mathcal{C}.

We have an equivalence $\text{Hom}_\mathcal{C}(T,) : \mathcal{C}/\text{add} T[1] \simeq \text{mod} \text{End}_\mathcal{C}(T)$ by [BMRRT], [KR1]. Using this, we have an equivalence

$$\frac{\text{mod} \text{End}_\mathcal{C}(T)}{\text{add} S_k} \simeq \frac{\text{mod} \text{End}_\mathcal{C}(\mu_k(T))}{\text{add} S_k^*},$$

where S_k and S_k^* are the simple modules associated with T_k and T_k^*. Thus $\text{End}_\mathcal{C}(T)$ and $\text{End}_\mathcal{C}(\mu_k(T))$ are by definition nearly Morita equivalent.

We say that a 2-CY category \mathcal{C} has no loops or 2-cycles if the quiver Q_T of $\text{End}_\mathcal{C}(T)$ has no loops or 2-cycles for any cluster-tilting object T in \mathcal{C} (see [BIRS]). Under this assumption we have the following important connection with the Fomin-Zelevinsky quiver mutation. For a cluster-tilting object T we have

$$Q_{\mu_k(T)} \simeq Q_T$$

by [BMR2], [BIRS]. Hence \mathcal{C} has a cluster structure in the sense of [BIRS].
1.4. Cluster-tilted algebras. Cluster categories are by definition the orbit categories $C_Q = D^b(KQ)/\tau^{-1}[1]$, where Q is a finite connected acyclic quiver, $D^b(KQ)$ is the bounded derived category of the finite dimensional (left) KQ-modules, and τ is the AR-translation in $D^b(KQ)$, see [BMRRT]. These orbit categories are known to be triangulated by [KI], and are Hom-finite 2-CY [BMRRT]. The cluster-tilted algebras are by definition the 2-CY-tilted algebras coming from cluster categories [BMR1].

For cluster categories C_Q, the cluster-tilting objects are induced by tilting KQ'-modules over path algebras KQ' derived equivalent to KQ. It is known [BMRRT] that given any two cluster-tilting objects in C_Q, then one can be obtained from the other by a finite sequence of mutations of cluster-tilting objects, and hence there is only one mutation class of cluster-tilted algebras by [BMRRT], based on [HU]. By [ABS] ([BR] in the Dynkin case) the quiver of $\text{End}_{C_Q}(T)$ is obtained from the quiver of the tilted algebra $\text{End}_{KQ'}(T)$ by adding an arrow in the opposite direction for each relation in a minimal set of relations. In particular, we have the following, which is also easily seen directly.

Lemma 1.1. Let T be a tilting module in mod KQ. Then $\text{End}_{C_Q}(T) \simeq KQ'$ for a quiver Q' with no oriented cycles, if and only if $\text{End}_{KQ}(T) \simeq KQ'$.

If the quiver Q_T of a 2-CY-tilted algebra coming from a 2-CY category \mathcal{C} is acyclic, then it follows from [KR1] that $\text{End}_{\mathcal{C}}(T) \simeq KQ_T$. Moreover if \mathcal{C} is a connected algebraic triangulated category (that is, the stable category of a Frobenius category), then \mathcal{C} is equivalent to the cluster category C_{Q_T} [KR2].

1.5. Mutation of tilting modules over 3-Calabi-Yau algebras. Let R be a formal power series ring $K[[x,y,z]]$ of three variables over an algebraically closed field K, and let Λ be an R-algebra which is a finitely generated R-module. We call Λ 3-Calabi-Yau (3-CY for short) if the bounded derived category $D^b(\text{f.i.}\Lambda)$ is a 3-CY category [Boc] [CR] [C] [IR]. It was shown in [IR] that Λ is 3-CY if and only if Λ is a free R-module which is a symmetric R-algebra with $\text{gl. dim} \Lambda = 3$. Rickard proved that 3-CY algebras are closed under derived equivalences (see [IR]).

Let Λ be a 3-CY algebra. For a basic tilting Λ-module T of projective dimension at most one, we have another 3-CY algebra $\Gamma = \text{End}_{\Lambda}(T)$. We take an indecomposable decomposition $T = T_1 \oplus \cdots \oplus T_n$. Let $e_k \in \Gamma$ be the idempotent corresponding to T_k for $k = 1, \ldots, n$. We let $I_k = \Gamma(1-e_k)\Gamma$. Let us recall the following result [IR Th. 5.4, Th. 7.1].

Proposition 1.2. If $\Gamma/I_k \in \text{f.i.}\Gamma$, then there exists a minimal projective resolution

$$0 \rightarrow \Gamma e_k \xrightarrow{f_k} P_1 \xrightarrow{f_1} P_0 \xrightarrow{f_0} \Gamma e_k \rightarrow \Gamma/I_k \rightarrow 0$$

with $P_0, P_1 \in \text{add } \Gamma(1-e_k)$ satisfying the following conditions.

(a) Applying $\text{Hom}_\Gamma(-, \Gamma)$ to (1), we have an exact sequence

$$0 \rightarrow e_k \Gamma \rightarrow \text{Hom}_\Gamma(P_0, \Gamma) \rightarrow \text{Hom}_\Gamma(P_1, \Gamma) \rightarrow e_k \Gamma \rightarrow \Gamma/I_k \rightarrow 0.$$

(b) Let $T_k^* = \text{Ker}(T \otimes \Gamma f_0)$ and $\mu_k(T) = (T/T_k) \oplus T_k^*$. Then $\mu_k(T)$ is a basic tilting Λ-module of projective dimension at most one and $T_k^* \nsubseteq T_k$.

(c) If Q_T and $Q_{\mu_k(T)}$ have no loops or 2-cycles, then $Q_{\mu_k(T)} \simeq \mu_k(Q_T)$ holds.

Notice that we can not drop the assumption $\Gamma/I_k \in \text{f.i.}\Gamma$, which is automatically satisfied if Q_T has no loops at k. We need the following additional information for later application.

Proposition 1.3. If $\Gamma/I_k \in \text{f.i.}\Gamma$, then the following assertions hold.
(a) There exist exact sequences (called exchange sequences)

\[0 \to T_k^\ast \xrightarrow{g} U_k \xrightarrow{f} T_k \quad \text{and} \quad 0 \to T_k^\ast \xrightarrow{g'} U'_k \xrightarrow{f'} T_k^\ast \]

such that \(f \) and \(f' \) are right \(\text{add}(T/T_k) \)-approximations, and \(g \) and \(g' \) are left \(\text{add}(T/T_k) \)-approximations.

(b) In the category of finitely generated \(\Lambda \)-modules with projective dimension at most one, \(g \) and \(g' \) are kernels of \(f \) and \(f' \) respectively, and \(f \) and \(f' \) are cokernels of \(g \) and \(g' \) respectively.

(c) The complex \(T_k^\ast \xrightarrow{g} U_k \xrightarrow{f} T_k \) induces exact sequences

\[0 \to (T, T_k^\ast) \xrightarrow{g} (T, U_k') \xrightarrow{f} (T, U_k) \xrightarrow{f} \text{[add } T/T_k](T, T_k) \to 0, \]

\[0 \to (T_k, T) \xrightarrow{f} (U_k, T) \xrightarrow{f} (U_k', T) \xrightarrow{g} \text{[add } T/T_k](T_k, T) \to 0. \]

If \(Q_T \) has no loops at \(k \), then we have \([\text{add } T/T_k](T, T_k) = J_{\text{mod } \Lambda}(T, T_k) \) and \([\text{add } T/T_k](T_k, T) = J_{\text{mod } \Lambda}(T_k, T) \).

(d) The complex \(T_k^\ast \xrightarrow{g} U_k \xrightarrow{f} T_k \) induces exact sequences

\[0 \to (\mu_k(T), T_k^\ast) \xrightarrow{g} (\mu_k(T), U_k') \xrightarrow{f} (\mu_k(T), U_k) \xrightarrow{f} \text{[add } T/T_k](\mu_k(T), T_k^\ast) \to 0, \]

\[0 \to (T_k^\ast, \mu_k(T)) \xrightarrow{f} (U_k', \mu_k(T)) \xrightarrow{f} (U_k, \mu_k(T)) \xrightarrow{g} \text{[add } T/T_k](T_k^\ast, \mu_k(T)) \to 0. \]

If \(Q_T \) has no loops at \(k \), then we have \([\text{add } T/T_k](\mu_k(T), T_k^\ast) = J_{\text{mod } \Lambda}(\mu_k(T), T_k^\ast) \) and \([\text{add } T/T_k](T_k^\ast, \mu_k(T)) = J_{\text{mod } \Lambda}(T_k^\ast, \mu_k(T)) \).

Proof. (a)(c) We have \(\text{Tor}_i^\Gamma(T, \Gamma/I_k) = 0 \) for any \(i > 1 \). Applying \(T \otimes \Gamma \to \text{the sequence } \) and putting \(U_k = T \otimes \Gamma P_0 \) and \(U_k' = T \otimes \Gamma P_1 \), we have the exact sequences in (a).

Since the functor \(T \otimes \Gamma : \text{add } \Gamma \to \text{add } \Lambda T \) is an equivalence and the sequence (11) is exact, we have that \(f \) and \(f' \) are right \(\text{add}(T/T_k) \)-approximations, and that the upper sequence in (c) is exact. Since the functor \(\text{Hom}_{\Gamma^{op}}(\cdot, T) : \text{add } \Gamma \to \text{add } \Lambda T \) is a duality and the sequence (11) is exact, we have that \(g \) and \(g' \) are left \(\text{add}(T/T_k) \)-approximations, and that the lower sequence in (c) is exact.

(b) Clearly \(g \) and \(g' \) are kernels of \(f \) and \(f' \) respectively. Since \(\Lambda \) is 3-CY, we have \(\text{Ext}_\Lambda^i(f.1.A, A) = 0 \) for \(0 \leq i \leq 2 \) \(\mathbb{IR} \). Thus any \(\Gamma \)-module \(X \) with projective dimension at most one satisfies \(\text{Ext}_\Lambda^i(f.1.A, X) = 0 \) for \(i = 0, 1 \). On the other hand, since \(\Gamma/I_k \in f.1.\Gamma \) by our assumption, we have that \(\text{Cok } f = T \otimes \Gamma (\Gamma/I_k) \) and \(\text{Cok } f' = \text{Tor}_1^\Gamma(T, \Gamma/I_k) \) are in \(f.1.\Lambda \). Thus we have \(\text{Ext}_\Lambda^i(\text{Cok } f, X) = 0 \) for \(i = 0, 1 \). This implies that \(f \) and \(f' \) are cokernels of \(g \) and \(g' \) respectively.

(d) Let \(\Gamma = \text{End}_\Lambda(\mu_k(T)) \) and \(I_k' = \Gamma'(1 - e_k)\Gamma' \). We will show \(\Gamma'/I_k' \in f.1.\Gamma' \). Then we have the desired assertion by applying the argument in (c) for \(\mu_k(T) \) instead of \(T \).

For any \(p \in J_{\text{mod } \Lambda}(T_k^\ast, T_k^\ast) \), there exists \(q \in \text{End}_\Lambda(U_k') \) and \(r \in \text{End}_\Lambda(T_k) \) which make the diagram

\[
\begin{array}{ccc}
0 & \to & T_k^\ast \\
\downarrow r & & \downarrow q \\
0 & \to & T_k^\ast
\end{array}
\]

commutative. It is not difficult to check that the correspondence \(p \mapsto r \) gives a well-defined isomorphism \(\Gamma'/I_k' \to \Gamma/I_k \).

In particular, \(Q_T \) has no loops at \(k \) if and only if \(Q_{\mu_k(T)} \) has no loops at \(k \). \(\square \)
2. Cluster-tilted algebras are determined by their quivers

In this section we prove that cluster-tilted algebras are determined by their quivers. Alternative proofs using potentials will be given as a consequence of the main result in section 5.

First we prove the following.

Lemma 2.1. Let T be a cluster-tilting object in some cluster category C_Q, with Q an acyclic quiver. Then C_{Q_T} is equivalent to the cluster category C_Q.

Proof. Although the assertion follows from the main result in [KR2], we give an elementary proof here.

We know that T is induced by some tilting KQ'-module U, where KQ' is derived equivalent to KQ. Since $\text{End}_{C_Q}(T) \approx KQ_T$, we have by Lemma 1.1 that $\text{End}_{KQ'}(U) \approx \text{End}_{C_Q'}(T) \approx \text{End}_{C_Q}(T) \approx KQ_T$, so that KQ' and KQ_T are also derived equivalent. Hence KQ and KQ_T are derived equivalent, so that the cluster categories C_Q and C_{Q_T} are equivalent. \hfill \Box

Lemma 2.2. Let Q be an acyclic quiver and C_Q the associated cluster category. Let T be a cluster-tilting object in C_Q such that the quiver Q_T of $\text{End}_C(T)$ is isomorphic to Q. Then there is an equivalence of triangulated categories $F: C_Q \approx C_Q$ with $F(T) \approx KQ$.

Proof. We have that T is induced by a tilting KQ'-module U, satisfying $\text{End}_{KQ'}(U) \approx KQ$ by Lemma 1.1. Then we have a commutative diagram

$$
\begin{array}{ccc}
U & \in & \mathcal{D}^b(KQ') \\
\downarrow & & \downarrow \text{R} \text{Hom}_{KQ'}(U,) \\
T & \in & C_Q \xrightarrow{F} C_Q
\end{array}
\xrightarrow{\exists} \mathcal{D}^b(KQ) \xrightarrow{\exists} KQ
$$

where $\text{R} \text{Hom}_{KQ'}(U,): \mathcal{D}^b(KQ') \rightarrow \mathcal{D}^b(KQ)$ is an equivalence of triangulated categories since U is a tilting module [H]. Hence $\text{R} \text{Hom}_{KQ'}(U,)$ commutes with τ and $[1]$, so that there is an equivalence $F: C_Q \rightarrow C_Q$ of triangulated categories, with $F(T) \approx KQ$. \hfill \Box

Using this we get the following.

Theorem 2.3. Let T_1 and T_2 be cluster-tilting objects in the cluster categories C_{Q_1} and C_{Q_2} respectively, and assume that the quivers Q_{T_1} and Q_{T_2} are isomorphic. Then there is an equivalence of triangulated categories $F: C_{Q_1} \rightarrow C_{Q_2}$ such that $F(T_1) \approx T_2$. In particular $\text{End}_{C_{Q_1}}(T_1) \approx \text{End}_{C_{Q_2}}(T_2)$ holds.

Proof. We have a sequence of mutations $\mu = \mu_{k_1} \circ \cdots \circ \mu_{k_1}$ such that $\mu(KQ_1) \approx T_1$ in C_{Q_1}. Let T be a cluster-tilting object in C_{Q_Q} such that $\mu(T) \approx T_2$. Since $Q_{T_1} \approx Q_{T_2}$, we have $Q_1 \approx Q_T$. Hence by Lemmas 2.1 and 2.2 there is an equivalence of triangulated categories $F: C_{Q_1} \rightarrow C_{Q_2}$ such that $F(KQ_1) \approx T$. Since cluster-tilting mutations commute with equivalences of triangulated categories, we have $F(T_1) \approx F(\mu(KQ_1)) \approx F(KQ_1) \approx T$, and consequently $\text{End}_{C_{Q_1}}(T_1) \approx \text{End}_{C_{Q_2}}(T_2)$. \hfill \Box

We can strengthen the above theorem as follows.

Corollary 2.4. Let T_1 be a cluster-tilting object in a cluster category and T_2 a cluster-tilting object in an algebraic 2-CY triangulated category C without loops or 2-cycles. If $Q_{T_1} \approx Q_{T_2}$, then $\text{End}_C(T_1) \approx \text{End}_C(T_2)$.

Proof. By the same argument as in the proof of Theorem 2.3, there exists a sequence \(\mu \) of mutations such that \(\mu(T) \simeq T_2 \) and \(Q_T \) is acyclic. Since \(C \) is assumed to be algebraic, it follows from \([KR2]\) that \(C \) is equivalent to \(C_{Q_T} \), so the result follows from Theorem 2.3. \(\square \)

3. Preliminaries on presentation of algebras

In this section we consider presentations of algebras, which are important for the rest of this paper.

Let \(K \) as before be an algebraically closed field and \(\Gamma \) a \(K \)-algebra with Jacobson radical \(J_\Gamma \). We regard \(\Gamma \) as a topological algebra via the \(J_\Gamma \)-adic topology with a basic system \(\{ J_{\Gamma}^n \}_{n \geq 0} \) of open neighborhoods of 0. Thus the closure of a subset \(S \) of \(\Gamma \) is given by

\[
\overline{S} = \bigcap_{n \geq 0} (S + J_{\Gamma}^n).
\]

We assume that \(\Gamma \) satisfies the following conditions:

(A1) \(\Gamma / J_\Gamma \simeq K^n \) for some \(n > 0 \) and \(\dim_K (J_\Gamma / J_{\Gamma}^2) < \infty \),

(A2) the \(J_\Gamma \)-adic topology on \(\Gamma \) is complete and separated, i.e. \(\Gamma \simeq \varprojlim_{n \geq 0} \Gamma / J_{\Gamma}^n \).

For example, finite dimensional \(K \)-algebras, complete path algebras \(\widehat{KQ} \) of finite quivers \(Q \), and algebras over \(R = K[[x_1, \ldots, x_d]] \) which are finitely generated \(R \)-modules satisfy (A1) and (A2). If \(\phi : \Lambda \to \Gamma \) is a homomorphism of \(K \)-algebras satisfying (A1), then \(J_\Lambda \subset \phi^{-1}(J_\Gamma) \) holds. In particular \(\phi \) is continuous.

Let \(Q \) be a finite quiver. It is convenient to introduce the following concepts. For \(a \in Q_1 \), define a right derivative \(\partial^r_a : J_{\widehat{KQ}} \to \widehat{KQ} \) and a left derivative \(\partial^l_a : J_{\widehat{KQ}} \to \widehat{KQ} \) by

\[
\partial^r_a(a_1a_2\cdots a_{m-1}a_m) = \begin{cases} a_1a_2\cdots a_{m-1} & \text{if } a_m = a, \\ 0 & \text{otherwise}, \end{cases}
\]

\[
\partial^l_a(a_1a_2\cdots a_{m-1}a_m) = \begin{cases} a_2\cdots a_{m-1}a_m & \text{if } a_1 = a, \\ 0 & \text{otherwise}, \end{cases}
\]

and extend to \(J_{\widehat{KQ}} \) linearly and continuously. Then \(\partial^r_a \) is a homomorphism of \(\widehat{KQ} \)-modules and \(\partial^l_a \) is a homomorphism of \(\widehat{KQ}^{op} \)-modules. Clearly for any \(p \in J_{\widehat{KQ}} \) we have

\[
p = \sum_{a \in Q_1} (\partial^r_a p)a = \sum_{a \in Q_1} a(\partial^l_a p).
\]

For simplicity we call \(p \in \widehat{KQ} \) basic if \(p \) is a formal linear sum of paths in \(Q \) with a common start \(i \) and a common end \(j \). In this case we write \(s(p) = i \) and \(e(p) = j \). Clearly any ideal of \(\widehat{KQ} \) is generated by a set of basic elements.

We start with the following important fact.

Proposition 3.1. Let \(\Gamma \) be a \(K \)-algebra satisfying (A1) and (A2), and let \(Q \) be a finite quiver. Assume that we have a \(K \)-algebra homomorphism \(\phi_0 : KQ_0 \to \Gamma \) and a homomorphism \(\phi_1 : KQ_1 \to J_\Gamma \) of \((KQ_0, KQ_0)\)-modules. Then the following assertions hold.

(a) \(\phi_0 \) and \(\phi_1 \) extend uniquely to a \(K \)-algebra homomorphism \(\phi : \widehat{KQ} \to \Gamma \). Moreover \(\text{Ker} \phi \) is a closed ideal of \(\widehat{KQ} \).

(b) The following conditions are equivalent.

(i) \(\phi : \widehat{KQ} \to \Gamma \) is surjective.

(ii) \(\phi_0 \) and \(\phi_1 \) induce surjections \(KQ_0 \to \Gamma / J_\Gamma \) and \(KQ_1 \to J_\Gamma / J_{\Gamma}^2 \).
(iii) \(\phi_0 \) induces a surjection \(KQ_0 \rightarrow \Gamma/J_{\Gamma} \), and for any \(i \in Q_0 \) we have an exact sequence
\[
\bigoplus_{a \in Q_1, \ e(a) = i} \Gamma(\phi_s(a)) J_{\Gamma}(\phi_i) \rightarrow 0.
\]

(iv) \(\phi_0 \) induces a surjection \(KQ_0 \rightarrow \Gamma/J_{\Gamma} \), and for any \(i \in Q_0 \) we have an exact sequence
\[
\bigoplus_{a \in Q_1, \ s(a) = i} (\phi_s(a)) \Gamma J_{\Gamma}(\phi_i) \rightarrow 0.
\]

Proof. (a) The first assertion is clear. We observed that \(\phi \) is continuous. Thus \{0\} is a closed subset of \(\Gamma \) and its inverse image \(\text{Ker} \phi \) is a closed subset of \(\widetilde{KQ} \).

(b) (ii)\(\Rightarrow \) (i) \(\phi \) induces a surjection \(\phi_t : KQ_t \rightarrow J_t/J_{t+1} \) for any \(t \). For any \(x \in \Gamma \), there exists \(x_t \in J_t \) and \(p_t \in KQ_t \) such that \(x_{t+1} = x_t - \phi_t(p_t) \). Then we have
\[
\phi(\sum_{t \geq 0} p_t) = x.
\]

(i)\(\Rightarrow \) (iii) It is enough to show that \(\phi(p) \) is in the image of \((\phi a)_n \) for any basic element \(p \in J_{KQ} \) with \(e(p) = i \). This follows from the equality \(p = \sum_{a \in Q_1} (\partial_{\ell} p) a \) since this implies \(\phi p = (\phi \partial_{\ell} p)_a \cdot (\phi a)_n \).

(iii)\(\Rightarrow \) (ii) The sequence in (iii) induces a surjection \(\bigoplus_{a \in Q_1} \Gamma/J_{\Gamma} (\phi a)_n \rightarrow J_{\Gamma}/J_{\Gamma}^2 \).

The rest follows similarly. \(\square \)

We shall need the following easy fact.

Lemma 3.2. Let \(Q \) be a finite quiver and \(S \) a finite subset of \(J_{KQ} \). For the ideal \(I = \langle S \rangle \) of \(\widetilde{KQ} \), we have \(I = \sum_{v \in S} (\langle S \rangle v + I \cdot Q_1) \) and \(I^\ell = \sum_{v \in S} (\langle S \rangle v + I^\ell \cdot Q_1) \).

Proof. Since \(I \) is generated by \(S \), we have the first equality.

Let \(p \in I \). For any \(\ell > 0 \) we can write \(p = r_{\ell} + r_{\ell}^\prime \) for some \(r_{\ell} \in I \) and \(r_{\ell}^\prime \in J_{\ell} \). Then \(p_{\ell} = r_{\ell+1} - r_{\ell} = r'_{\ell} - r'_{\ell+1} \in I \cap J_{\ell} \) for \(\ell > 0 \). Letting \(p_0 = r_1 \), we have \(p_0 + p_1 + \cdots + p_{\ell} = p - r_{\ell+1} \). Thus \(p = \sum_{\ell \geq 0} p_{\ell} \). We write \(p_{\ell} = \sum_{v \in S} \ell_{\ell,v} v + \sum_{a \in Q_1} \ell_{\ell,a} a \) for \(p_{\ell,v} \in \widetilde{KQ} \) and \(\ell_{\ell,a} \in I \). Then \(p = \sum_{v \in S} (\sum_{\ell \geq 0} \ell_{\ell,v} v + \sum_{a \in Q_1} \ell_{\ell,a} a) \) holds. Thus we have the second equality. \(\square \)

We now give a result on description of relations.

Proposition 3.3. Assume that the conditions in Proposition 3.1(b) are satisfied.

For a finite set \(S \) of basic elements in \(J_{KQ} \), the following conditions are equivalent.

(a) \(\text{Ker} \phi = I \) holds for the ideal \(I = \langle S \rangle \) of \(\widetilde{KQ} \).

(b) The following sequence is exact for any \(i \in Q_0 \).
\[
\bigoplus_{v \in S, \ e(v) = i} \Gamma(\phi_{e(v)}) v (\phi_{\partial_{\ell} v})_{v,a} \xrightarrow{a \in Q_1, e(a) = i} \Gamma(\phi_s(a)) J_{\Gamma}(\phi_i) \rightarrow 0. \tag{4}
\]

(c) The following sequence is exact for any \(i \in Q_0 \).
\[
\bigoplus_{v \in S, \ s(v) = i} (\phi_{e(v)}) \Gamma v (\phi_{\partial_{\ell} v})_{v,a} \xrightarrow{a \in Q_1, s(a) = i} (\phi_{e(a)}) \Gamma J_{\Gamma}(\phi_i) \rightarrow 0.
\]

Proof. (a)\(\Rightarrow \) (b) Since
\[
(\phi_{\partial_{\ell} v})_{a} \cdot (\phi a)_n = \phi \left(\sum_{a \in Q_1, e(a) = i} (\partial_{\ell} v) a \right) = \phi v = 0,
\]

the sequence is a complex. Now we assume that \((p_a)_a \in \bigoplus_{a \in Q_1} KQ(s(a))\) satisfies
\((\phi p_a)_a \cdot (\phi a)_a = 0\). Since
\[
\sum_{a \in Q_1, \, e(a) = i} p_a a \in \text{Ker} \phi = T,
\]
there exists \(q_v \in KQ\) by Lemma 3.3 such that
\[
\sum_{a \in Q_1, \, e(a) = i} p_a a = \sum_{v \in S} q_v v \in T \cdot Q_1.
\]
Applying \(\partial^r_{a}p\) on both sides, we have
\[
p_a - \sum_{v \in S} q_v \partial^r_{a} v \in T = \text{Ker} \phi.
\]
Thus \((\phi q_v)_v \in \bigoplus_{v \in S, \, e(v) = i} \Gamma(s(v))\) satisfies
\[
(\phi p_a)_a = (\phi q_v)_v \cdot (\phi \partial^r_{a} v)_v,a.
\]
(b) \(\Rightarrow\) (a) We shall show that \(\text{Ker} \phi = T\). Take any \(v \in S\) with \(e(v) = i\). Since (4) is exact, we have
\[
\phi v = \phi \left(\sum_{a \in Q_1, \, e(a) = i} (\partial^r_{a} v)_a \right) = (\phi \partial^r_{a} v)_a \cdot (\phi a)_a = 0.
\]
This implies \(v \in \text{Ker} \phi\) and \(I \subset \text{Ker} \phi\). Since \(\text{Ker} \phi\) is a closed ideal by Proposition 3.1, we have \(I \subset \text{Ker} \phi\).

To prove \(\text{Ker} \phi \subset T\), we will first show that, for any \(p \in \text{Ker} \phi\), there exists \(p' \in I\) such that \(p - p' \in \langle \text{Ker} \phi \rangle \cdot Q_1\). Without loss of generality, we can assume that \(p\) is basic with \(e(p) = i\). Since
\[
(\phi \partial_{a}^{r} p)_a \cdot (\phi a)_a = \phi p = 0
\]
holds, we have that \((\phi \partial_{a}^{r} p)_a\) factors through the left map \((\phi \partial^{r}_{a} v)_v,a\) in (4). Thus there exists \(q_v \in KQ\) such that \((\phi \partial_{a}^{r} p)_a = (\phi q_v)_v \cdot (\phi \partial^{r}_{a} v)_v,a\). Then
\[
\partial_{a}^{r} p - \sum_{v \in S, \, e(v) = i} q_v \partial^r_{a} v \in \text{Ker} \phi.
\]
Hence
\[
p - \sum_{v \in S, \, e(v) = i} q_v v = \sum_{a \in Q_1, \, e(a) = i} (\partial^r_{a} p - \sum_{v \in S, \, e(v) = i} q_v \partial^r_{a} v)_a \in \langle \text{Ker} \phi \rangle \cdot Q_1.
\]
It follows that \(p' = \sum_{v \in S, \, e(v) = i} q_v v \in I\) satisfies the desired condition.

Consequently we have \(\text{Ker} \phi \subset I + \langle \text{Ker} \phi \rangle \cdot Q_1\). This implies
\[
\text{Ker} \phi \subset I + (I + \langle \text{Ker} \phi \rangle \cdot Q_1) \cdot Q_1 = I + \langle \text{Ker} \phi \rangle \cdot Q_1^2 \subset \cdots \subset I + \langle \text{Ker} \phi \rangle \cdot Q_1^\ell
\]
for any \(\ell\). By (3), we have \(\text{Ker} \phi \subset T\).

(a) \(\Leftrightarrow\) (c) can be shown dually. \(\square\)

We give a relationship between the dimension of \(\text{Ext}^2\)-spaces and minimal sets of generators for relation ideals in complete path algebras (cf. [Don] [Y]). Note that the corresponding result is not true in general if we deal with ordinary path algebras \(KQ\) instead of \(\widehat{KQ}\). See [BIKR] section 7 for an example. Note however that if \(KQ/(S)\) is finite dimensional, then the corresponding result is true.

Proposition 3.4. Let \(Q\) be a finite quiver, \(J = J_{\widehat{KQ}}\), \(I\) a closed ideal of \(\widehat{KQ}\) contained in \(J^2\), and \(\Gamma = \widehat{KQ}/I\). Let \(S\) be a finite set of basic elements in \(I\).
(a) S spans the K-vector space $I/(IJ + JJ)$ if and only if $I = (S)$. Moreover S is a basis of the K-vector space $I/(IJ + JJ)$ if and only if S is a minimal set satisfying $I = (S)$.

(b) If S is a minimal set satisfying $I = (S)$, then we have

$$\dim_K \operatorname{Ext}_1^2(S_i, S_j) = \#((KQ) \cap S = \dim_K i(I/(IJ + JJ))j$$

for any simple Γ-modules S_i and S_j associated with $i, j \in Q_0$.

Proof. (a) Assume first that S spans $I/(IJ + JJ)$, and let $I' = (S)$. Then we have $I = I' + JJ + IJ$. This implies

$$I = I' + (I' + JJ + IJ)J + J(I' + JJ + IJ) = I' + IJ + JJ + IJ + J^2 I = \cdots = I' + \sum_{0 \leq i \leq \ell} J^i I^{\ell-i}$$

for any $\ell > 0$. Thus we have $I \subseteq \bigcap_{\ell > 0} (I' + J^\ell) = I'$ and hence $I = I' = (S)$.

Next we assume that $I = (S)$. By Lemma 3.2 we have $I = (S) + JJ$. Thus $I = (S) + JJ + IJ = KS + JJ + IJ$ holds.

The second equivalence is an immediate consequence of the first assertion.

(b) The minimality of S implies that the projective resolution in Proposition 3.3(b) is minimal. Thus we have the left equality. The right equality follows from (a) since $(i(KQ)) \cap S$ is a basis of the K-vector space $i(I/(IJ + JJ))j$. \qed

Now let C be a K-linear category satisfying the following conditions:

(C1) C is Krull-Schmidt, i.e. any object in C is isomorphic to a finite direct sum of objects whose endomorphism rings are local.

(C2) $\operatorname{End}_C(X)$ satisfies (A1) and (A2) for any basic object $X \in C$.

For a finite quiver Q and a field K, we denote by KQ also the category of finitely generated projective KQ-modules. We have the following observation from Proposition 3.1(a).

Lemma 3.5. For a category C satisfying (C1) and (C2) and a quiver Q, assume that an object $\Phi_0 i \in C$ for any $i \in Q_0$ and a morphism $\Phi_1 a \in C(\Phi s(a), \Phi e(a))$ for any $a \in Q_1$ are given. Then Φ_0 and Φ_1 extend uniquely to a K-linear functor $\Phi : \overline{KQ} \to C$.

Restating Proposition 3.3 we have the following result.

Proposition 3.6. Let C be a category satisfying (C1) and (C2), and let Q be a finite quiver. Let $\Phi : \overline{KQ} \to C$ be a K-linear functor, and let $T = \bigoplus_{i \in Q_0} \Phi_i$. For a finite set S of basic elements in \overline{KQ}, the following conditions are equivalent.

(a) Φ induces a surjection $\phi : \overline{KQ} \to \operatorname{End}_C(T)$ with $\ker \phi = (S)$.

(b) For any $i \in Q_0$, we have a complex

$$\bigoplus_{v \in S, \ e(v) = i} \Phi S(v) \xrightarrow{(\Phi \delta^n_{v, a})} \bigoplus_{a \in Q_1, \ e(a) = i} \Phi S(a) \xrightarrow{(\Phi a)} \Phi i$$

in add T which induces an exact sequence

$$C(T, \bigoplus_{v \in S, \ e(v) = i} \Phi S(v)) \xrightarrow{(\Phi \delta^n_{v, a})} C(T, \bigoplus_{a \in Q_1, \ e(a) = i} \Phi S(a)) \xrightarrow{(\Phi a)} J_C(T, \Phi i) \to 0.$$

(c) For any $i \in Q_0$, we have a complex

$$\Phi_i \xrightarrow{(\Phi a)} \bigoplus_{a \in Q_1, \ s(a) = i} \Phi e(a) \xrightarrow{(\Phi \delta^n_{v, a})} \bigoplus_{v \in S, \ e(v) = i} \Phi e(v)$$
in add T which induces an exact sequence
\[C(\bigoplus_{v \in S, \, s(v) = i} \Phi e(v), T) \xrightarrow{(\Phi \partial e(v))_{a,v}} C(\bigoplus_{a \in Q_1, \, s(a) = i} \Phi e(a), T) \xrightarrow{(\Phi a)_a} J_C(\Phi_i, T) \to 0. \]

4. Jacobian algebras and weak 2-almost split sequences

In this section we study properties of Jacobian algebras of QP’s. We also investigate a variation of 2-almost split sequences and AR 4-angles discussed in [12] [14], which we call weak 2-almost split sequences. We show that there is a close relationship between Jacobian algebras and weak 2-almost split sequences, which will be used to prove the connection between mutation of QP’s and of cluster-tilting objects in the next section.

Let (Q, W) be a QP. For a pair of arrows a and b, we define $\partial_{(a,b)} W$ by
\[\partial_{(a,b)}(a_1a_2 \cdots a_m) = \sum_{a_i = a, \, a_{i+1} = b} a_{i+2} \cdots a_m a_1 \cdots a_{i-1} \]
for any cycle $a_1 \cdots a_m$ in W and extend linearly and continuously. Clearly $e(a) \neq s(b)$ implies $\partial_{(a,b)} W = 0$.

The following easy observation is useful.

Lemma 4.1.
(a) $\sum_{a \in Q_1} (\partial_{(a,b)} W) a = \partial_h W = \sum_{c \in Q_1} c (\partial_{(h,c)} W)$ for any $b \in Q_1$.
(b) $\partial_{(a,b)} W = \partial'_a (\partial_b W) = \partial'_b (\partial_a W)$.

We have the following property of Jacobian algebras of QP’s.

Proposition 4.2. Let (Q, W) be a QP and $\Gamma = \mathcal{P}(Q, W)$. Let $\phi : \overline{KQ} \to \Gamma$ be a natural surjection. Then there exist complexes
\[
\Gamma(\phi_i) \xrightarrow{(\phi b)_b} \bigoplus_{b \in Q_1} \Gamma(\phi e(b)) \xrightarrow{(\phi \partial_{(a,b)} W)_b} \bigoplus_{a \in Q_1} \Gamma(\phi s(a)) \xrightarrow{(\phi a)_a} J_{\Gamma}(\phi_i) \to 0,
\]
\[
(\phi i) \xrightarrow{(\phi a)_a} \bigoplus_{a \in Q_1} \Gamma(\phi s(a)) \xrightarrow{(\phi \partial_{(a,b)} W)_a} \bigoplus_{b \in Q_1} \Gamma(\phi e(b)) \xrightarrow{(\phi b)_b} \bigoplus_{s(b) = i} \Gamma(\phi_i) J_{\Gamma} \to 0
\]
which are exact except at the second left terms.

Proof. Since $\partial_{(a,b)} W = \partial'_a (\partial_b W) = \partial'_b (\partial_a W)$ holds by Lemma 4.1, the assertion follows immediately from Proposition 3.3(a) \Rightarrow (b)(c). \qed

As an immediate application, we have the following consequence.

Proposition 4.3. Let (Q, W) be a QP and $\Gamma = \mathcal{P}(Q, W)$.
(a) $\text{Ext}^2_{\Gamma}(S, \Gamma) = 0 = \text{Ext}^2_{\Gamma_{op}}(S', \Gamma)$ holds for any simple Γ-module S and any simple Γ_{op}-module S'.
(b) If Γ is a finite dimensional K-algebra, then $\text{id}_{\Gamma} \Gamma \leq 1$ and $\text{id}_{\Gamma} \leq 1$.

Proof. (b) follows immediately from (a).
(a) Let S be a simple Γ-module. By Proposition 1.2 there exists a complex
\[P \xrightarrow{f_2} P_1 \xrightarrow{f_1} P_0 \xrightarrow{f_0} P \]
of projective Γ-modules, which is exact at P_0, such that $\text{Cok} f_0 = S$ and
\[
\text{Hom}_{\Gamma}(P_0, \Gamma) \xrightarrow{f_2} \text{Hom}_{\Gamma}(P_1, \Gamma) \xrightarrow{f_1} \text{Hom}_{\Gamma}(P_0, \Gamma)
\]
(5)
is exact. We can take a morphism \(f'_2 : P' \to P_1 \) such that

\[
P \oplus P' \xrightarrow{(f_2, f'_2)} P_1 \xrightarrow{f_1} P_0 \xrightarrow{f_0} P \to S \to 0
\]

gives a projective resolution of \(S \). Since \([\text{5}]\) is exact, we have that

\[
\text{Hom}(P_0, \Gamma) \xrightarrow{f_1} \text{Hom}(P_1, \Gamma) \xrightarrow{(f_2, f'_2)} \text{Hom}(P \oplus P', \Gamma)
\]

is exact. Consequently we have the desired properties. \(\square \)

To study the property of Jacobian algebras of QP’s categorically, we introduce the following concept.

Definition 4.4. Let \(C \) be a category satisfying (C1) and (C2), and \(T \in C \) an object. We call a complex

\[
U_1 \xrightarrow{f_1} U_0 \xrightarrow{f_0} X
\]

in \(\text{add} T \) a right 2-almost split sequence if

\[
C(T, U_1) \xrightarrow{f_1} C(T, U_0) \xrightarrow{f_0} J_C(T, X) \to 0
\]

is exact. In other words, \(f_0 \) is right almost split in \(\text{add} T \) and \(f_1 \) is a pseudo-kernel of \(f_0 \) in \(\text{add} T \). Dually, we call a complex

\[
X \xrightarrow{f_2} U_1 \xrightarrow{f_1} U_0
\]

in \(\text{add} T \) a left 2-almost split sequence if

\[
C(U_0, T) \xrightarrow{f_1} C(U_1, T) \xrightarrow{f_2} J_C(X, T) \to 0
\]

is exact. In other words, \(f_2 \) is left almost split in \(\text{add} T \) and \(f_1 \) is a pseudo-cokernel of \(f_2 \) in \(\text{add} T \). We call a complex

\[
X \xrightarrow{f_2} U_1 \xrightarrow{f_1} U_0 \xrightarrow{f_0} X
\]

in \(\text{add} T \) a weak 2-almost split sequence if \(U_1 \xrightarrow{f_1} U_0 \xrightarrow{f_0} X \) is a right 2-almost split sequence and \(X \xrightarrow{f_2} U_1 \xrightarrow{f_1} U_0 \) is a left 2-almost split sequence. Note that we do not assume that \(f_2 \) (respectively, \(f_0 \)) is a pseudo-kernel (respectively, pseudo-cokernel) of \(f_1 \).

Remark The definition of weak 2-almost split sequences given here is more general than 2-almost split sequences and AR 4-angles in [I2, IY]. One difference is that we assume neither right minimality of \(f_0 \) nor left minimality of \(f_2 \). This point is necessary to deal with Jacobian algebras of non-reduced QP’s. Another difference is that our complex is not assumed to be a gluing of two exact sequences (respectively, triangles). This point simplifies our argument below. But note that we do not have uniqueness of weak 2-almost split sequences.

We give a key observation which gives a relationship between weak 2-almost split sequences and Jacobian algebras of QP’s.

Theorem 4.5. Let \(C \) be a category satisfying (C1) and (C2), and let \((Q, W)\) be a QP. Let \(\Phi : \overline{KQ} \to C \) be a \(K \)-linear functor, and \(T = \bigoplus_{i \in Q_0} \Phi i \). Then the following conditions are equivalent.

(a) \(\Phi \) induces an isomorphism \(P(Q, W) \approx \text{End}_C(T) \).

(b) Any vertex \(i \) in \(Q \) gives rise to the following weak 2-almost split sequence in \(C \)

\[
\Phi i \xrightarrow{(\Phi b)_b} \bigoplus_{b \in Q_1, s(b) = i} \Phi e(b) \xrightarrow{(\Phi a, b) W b, a} \bigoplus_{a \in Q_1, e(a) = i} \Phi s(a) \xrightarrow{(\Phi a)_a} \Phi i.
\]
(c) Any vertex i in Q gives rise to the following right 2-almost split sequence in C
\[\Phi e(b) \xrightarrow{(\Phi \partial_{(a,b)} W)_{b,a}} \bigoplus_{a \in Q_1, e(a) = i} \Phi s(a) \xrightarrow{(\Phi a)_{a,b}} \Phi i. \]

(d) Any vertex i in Q gives rise to the following left 2-almost split sequence in C
\[\Phi i \xrightarrow{(\Phi b)_{b,a}} \bigoplus_{b \in Q_1, s(b) = i} \Phi e(b) \xrightarrow{(\Phi \partial_{(a,b)} W)_{b,a}} \bigoplus_{a \in Q_1, e(a) = i} \Phi s(a). \]

Proof. We shall apply Proposition 3.6 to $S = \{ \partial_a W \mid a \in Q_1 \}$.

(b)\Rightarrow (c)(d) This is clear.

(c)\Rightarrow(a) By Lemma 4.1(b), we have $\partial_{(a,b)} W = \partial_{(b,a)} W$. Looking at the complex
\[\bigoplus_{b \in Q_1, s(b) = i} \Phi e(b) \xrightarrow{(\Phi \partial_{(a,b)} W)_{b,a}} \bigoplus_{a \in Q_1, e(a) = i} \Phi s(a), \]
we have the assertion by Proposition 3.6(b)\Rightarrow(a).

(d)\Rightarrow(a) This is shown similarly.

(a)\Rightarrow(b) By Proposition 3.6(a)\Rightarrow(b)(c), we have exact sequences
\[C(T, \bigoplus_{b \in Q_1, s(b) = i} \Phi e(b)) \xrightarrow{(\Phi \partial_{(a,b)} W)_{b,a}} C(T, \bigoplus_{a \in Q_1, e(a) = i} \Phi s(a)) \xrightarrow{(\Phi a)_{a,b}} J_C(T, \Phi i) \rightarrow 0, \]
\[C(\bigoplus_{a \in Q_1, e(a) = i} \Phi s(a), T) \xrightarrow{(\Phi \partial_{(a,b)} W)_{b,a}} C(\bigoplus_{b \in Q_1, s(b) = i} \Phi e(b), T) \xrightarrow{(\Phi a)_{a,b}} J_C(\Phi i, T) \rightarrow 0. \]

Since $\partial_{(a,b)} W = \partial_{(b,a)} W = \partial_{(b,a)} W$ holds by Lemma 4.1 we have the assertion.

We now give the following sufficient condition for an algebra to be a Jacobian algebra of a QP, which we will apply in section 6. We call a cycle $a_1 a_2 \cdots a_m$ in a quiver Q full if the vertices $s(a_1), \ldots, s(a_m)$ are distinct, and if there is an arrow b in Q with $s(b) = e(b)$ in the cycle, then there is some arrow a_i with $s(b) = s(a_i)$ and $e(b) = e(a_i)$.

Proposition 4.6. Let Γ be an algebra satisfying (A1) and (A2), and let (Q, W) be a QP satisfying the following conditions.

(i) There exists a surjective K-algebra homomorphism $\phi : \mathcal{P}(Q, W) \rightarrow \Gamma$ such that $\ker \phi$ is the closure of a finitely generated ideal.

(ii) Every cycle in W is full.

(iii) The elements $\partial_a W$ for all arrows $a \in Q_1$ contained in cycles of W are linearly independent over K.

(iv) $\dim_K \text{Ext}_K^2(S, S') \leq \dim_K \text{Ext}_K^2(S', S)$ for any simple Γ-modules S, S'.

Then $\phi : \mathcal{P}(Q, W) \rightarrow \Gamma$ is an isomorphism.

Proof. Let I be the kernel of the ring homomorphism $\widehat{KQ} \rightarrow \Gamma$ induced by ϕ in (i). Then $\partial_a W \in I$ for any $a \in Q_1$.

Let $J = J_{\widehat{KQ}}$. We show that the image of $\partial_a W$ for all arrows $a \in Q_1$ contained in cycles of W in $I/(IJ + JI)$ are linearly independent over K. We assume $z = \sum_{i=1}^m c_i \partial_a W$ is in $IJ + JI$ for some c_1, \ldots, c_m in K and different arrows a_1, \ldots, a_m contained in cycles of W. Fix a minimal set S' of basic elements satisfying $I = \langle S' \rangle$, which is finite by the assumption (i). We have an equality $z = \sum_j p_j q_j r_j$ (possibly an infinite sum) with $q_j \in S'$ and $p_j, r_j \in \widehat{KQ}$ such that for each j one of p_j and r_j belongs to J. Assume $z \neq 0$. Then there exists a cycle C in W such that $\partial_a C$
appears in z for some $i = 1, \ldots, m$. We have $\partial_a C = pqr$ for paths p, q and r appearing in p_j, q_j and r_j respectively for some j, and one of p and r is a nontrivial path. Let S and S' be simple Γ-modules corresponding to $s(q)$ and $e(q)$ respectively. Then we have $\text{Ext}^2_{\Gamma}(S, S') \neq 0$ by applying Proposition 3.4(b) to S'. By (iv), we have $\text{Ext}^1_{\Gamma}(S', S) \neq 0$, so there is an arrow in Q from $e(q)$ to $s(q)$. Since p or r is a nontrivial path, it follows that the cycle C is not full, a contradiction to (ii). Consequently we have $z = 0$. By (iii), we have that all c_i are 0.

For each arrow $i \xrightarrow{a} j$ lying on a cycle in W, we have a relation of the form $\partial_a W$, hence $\dim_K \text{Ext}^1_{\Gamma}(S, S_j)$ such relations, where S_i and S_j denote the simple modules at the vertices i and j. We then have

$$\dim_K \text{Ext}^1_{\Gamma}(S_i, S_j) \leq \dim_K i(I/(IJ + JI)) j$$

where the first inequality follows by the above, the equality follows by Proposition 3.4(b), and the last inequality holds by (iv). Hence we have $I = \{\partial_a W \mid a \in Q_1\}$ by Proposition 3.4(a). It follows that ϕ is an isomorphism. □

Now we study the relationship between weak 2-almost split sequences and exchange triangles/sequences for the following two cases.

(A) \mathcal{C} is a 2-CY triangulated category and T is a basic cluster-tilting object.

(B) $\mathcal{C} = \text{mod} \Lambda$ for a 3-CY algebra Λ and T is a basic tilting Λ-module of projective dimension at most one (section 1.6).

The following observation shows that weak 2-almost split sequences appear naturally in cluster-tilting theory.

Proposition 4.7. Let \mathcal{C} and $T = T_1 \oplus \cdots \oplus T_n$ satisfy one of the above (A) or (B). Assume that the quiver of $\text{End}_{\mathcal{C}}(T)$ has no loops at k. Glueing exchange triangles/sequences

$$T_k \xrightarrow{a} U_k \xrightarrow{f} T_k \text{ and } T_k \xrightarrow{g'} U_k \xrightarrow{f'} T_k^*$$

given in sections 1.3 and 1.5, we have weak 2-almost split sequences

$$T_k \xrightarrow{g'} U_k \xrightarrow{f'} T_k \text{ in } \text{add } T,$n

$$T_k \xrightarrow{a} U_k \xrightarrow{g} T_k^* \text{ in } \mu(T).$$

Proof. The case (a) is shown in [LY], and the case (b) is shown in Proposition 1.3(c)(d). □

In the rest of this section, we shall show the following converse statement of Proposition 4.7 which plays an important role in the next section.

Theorem 4.8. Let \mathcal{C} and $T = T_1 \oplus \cdots \oplus T_n$ satisfy one of the above (A) or (B). Assume that Q_T has no loops at k. Then for any weak 2-almost split sequence

$$T_k \xrightarrow{f_1} U_1 \xrightarrow{f_2} U_0 \xrightarrow{f_0} T_k$$

with $f_1 \in J_{\mathcal{C}}$, there exist exchange triangles/sequences

$$T_k \xrightarrow{a} U_0 \xrightarrow{f_0} T_k \text{ and } T_k \xrightarrow{f_2} U_1 \xrightarrow{g'} T_k^*,$$

such that $f_1 = g'g$.

We first give a proof for the case (B). Since $f_1 \in J_{\mathcal{C}}$, we have that f_0 and f_2 are minimal right and left $\text{add}(T/T_k)$-approximations respectively. Consider any exchange sequences

$$0 \to T_k \xrightarrow{a} U_0 \xrightarrow{f_0} T_k \text{ and } 0 \to T_k \xrightarrow{f_2} U_1 \xrightarrow{g'} T_k^*.$$
There is an automorphism \(p \in \text{Aut}_C(U_1) \) such that \(f_1 = pg'g \). Since \((f_2pg')g = f_2f_1 = 0 \) and \(g \) is injective, we have \(f_2pg' = 0 \). Thus there exists \(q \in \text{Aut}_C(T_k) \) such that \(qf_2 = f_2p \).

\[
\begin{array}{cccccc}
T_k & \xrightarrow{f_2} & U_1 & \xrightarrow{f_1} & U_0 & \xrightarrow{f_0} & T_k \\
\downarrow{q} & & \downarrow{p} & & \downarrow{p'} & & \\
0 & \xrightarrow{f_2} & U_1 & \xrightarrow{g'g} & U_0 & \xrightarrow{f_0} & T_k
\end{array}
\]

Since \(f_2 = qf_2p^{-1} \), we have exchange sequences

\[
0 \rightarrow T_k \xrightarrow{q} U_0 \xrightarrow{f_0} T_k \quad \text{and} \quad 0 \rightarrow T_k \xrightarrow{qf_2p^{-1} - f_2} U_1 \xrightarrow{pg'g} T_k
\]
satisfying \(pg'g = f_1 \).

In the rest of this section, we consider the case (A). We need preliminary results. For a finite dimensional \(K \)-algebra \(\Lambda \), we let \(\Lambda^e = \Lambda \otimes_K \Lambda^{\text{op}} \). The radical of a \(\Lambda^e \)-module \(M \) is given by \(J_A M + MJ_A \), so we have \(\text{top}_{\text{La}} M = M/(J_A M + MJ_A) \).

Lemma 4.9. Let \(\Lambda \) be a basic finite dimensional \(K \)-algebra with \(\text{pd}_\Lambda(D\Lambda) \leq \ell \). The \(\Lambda^e \)-module \(\text{top}_{\text{La}} \text{Ext}^\ell\Lambda(D\Lambda, \Lambda) \) is a direct summand of \(\text{Ext}^\ell\Lambda(\Lambda/J_A, \Lambda/J_A) \).

Proof. Take a minimal projective resolution

\[
\cdots \xrightarrow{f_{i+1}} P_i \xrightarrow{f_i} P_0 \xrightarrow{f_0} \Lambda \rightarrow 0 \tag{6}
\]

of the \(\Lambda^e \)-module \(\Lambda \). Applying \(- \otimes_\Lambda \Lambda/J_A\), we have a projective resolution

\[
\cdots \xrightarrow{f_{i+1} \otimes_\Lambda 1_{\Lambda/J_A}} P_i \otimes_\Lambda \Lambda/J_A \xrightarrow{f_i \otimes_\Lambda 1_{\Lambda/J_A}} P_0 \otimes_\Lambda \Lambda/J_A \xrightarrow{f_0 \otimes_\Lambda 1_{\Lambda/J_A}} \Lambda/J_A \rightarrow 0
\]

of the \(\Lambda \)-module \(\Lambda/J_A \). This is minimal since \(\text{Im} f_{i+1} \subset J_A P_i + P_i J_A \) implies \(\text{Im} (f_{i+1} \otimes 1_{\Lambda/J_A}) \subset J_A (P_i \otimes_\Lambda \Lambda/J_A) \). Thus we have

\[
\text{Ext}^\ell\Lambda(\Lambda/J_A, \Lambda/J_A) = \text{Hom}_\Lambda(P_i \otimes_\Lambda \Lambda/J_A, \Lambda/J_A) = \text{Hom}_\Lambda(\Lambda/J_A \otimes_\Lambda \Lambda/J_A, \Lambda/J_A) = D(\text{top}_{\text{La}} P_i). \tag{7}
\]

On the other hand, applying \(- \otimes_\Lambda (DA)\) to (6), we have a projective resolution

\[
\cdots \xrightarrow{f_{i+1} \otimes 1_{DA}} P_i \otimes_\Lambda DA \xrightarrow{f_i \otimes 1_{DA}} P_0 \otimes_\Lambda DA \xrightarrow{f_0 \otimes 1_{DA}} DA \rightarrow 0
\]

of the \(\Lambda \)-module \(DA \). Since \(\text{pd}_\Lambda(DA) \leq \ell \), we have that \(P_\ell \otimes_\Lambda DA \rightarrow \text{Im} f_\ell \otimes 1_{DA} \) is a split epimorphism. Thus we have an exact sequence

\[
\text{Hom}_\Lambda(P_{\ell-1} \otimes_\Lambda DA, \Lambda) \xrightarrow{(f_\ell \otimes 1_{DA}, 1_\Lambda)} \text{Hom}_\Lambda(P_\ell \otimes_\Lambda DA, \Lambda) \rightarrow Q \otimes \text{Ext}^\ell\Lambda(D\Lambda, \Lambda) \rightarrow 0
\]

for some projective \(\Lambda^{\text{op}} \)-module \(Q \). In particular, the \(\Lambda^e \)-module \(\text{top}_{\text{La}} \text{Ext}^\ell\Lambda(D\Lambda, \Lambda) \) is a direct summand of \(\text{top}_{\text{La}} \text{Hom}_\Lambda(P_\ell \otimes_\Lambda DA, \Lambda) \).

Since

\[
\text{Hom}_\Lambda(P_\ell \otimes_\Lambda DA, \Lambda) = \text{Hom}_{\Lambda^e}(P_\ell, \text{Hom}_K(D\Lambda, \Lambda)) = \text{Hom}_{\Lambda^e}(P_\ell, \Lambda^e),
\]

we have \(\text{top}_{\text{La}} \text{Hom}_\Lambda(P_\ell \otimes_\Lambda DA, \Lambda) = D(\text{top}_{\text{La}} P_\ell) \). By (7), we have the assertion. \(\square \)

Immediately we have the following observation.

Lemma 4.10. Let \(\Lambda \) be a basic finite dimensional \(K \)-algebra with \(\text{pd}_\Lambda(D\Lambda) \leq 1 \). If the quiver of \(\Lambda \) has no loops at \(k \), then \(P = \Lambda e_k \) satisfies

\[
\text{Ext}^3\Lambda(\nu P, P) = \text{Hom}_\Lambda(\nu P, \nu(\Lambda/P)) \text{Ext}^3\Lambda(\nu(\Lambda/P), P) + \text{Ext}^3\Lambda(\nu P, \Lambda/P) \text{Hom}_\Lambda(\Lambda/P, P).
\]
Proof. Let $M = \Ext^1_\Lambda(D\Lambda, \Lambda)$ and $e = e_k$. Since the quiver of Λ has no loops at k, we have
\[
e(\Ext^1_\Lambda(\Lambda/J_\Lambda, \Lambda/J_\Lambda))e = \Ext^1_\Lambda((\Lambda/J_\Lambda)e, (\Lambda/J_\Lambda)e) = 0
\]
by Proposition 3.3. By Lemma 4.9 we have $e(\top_{\Lambda_k} M)e = 0$. This implies
\[
eMe = e(J_\Lambda M + MJ_\Lambda)e.
\]
Since the quiver of Λ has no loops at k, we have $eJ_\Lambda = e\Lambda(1 - e)\Lambda$ and $J_\Lambda e = \Lambda(1 - e)\Lambda e$. Thus we have
\[
eMe = e(J_\Lambda M + MJ_\Lambda)e = e\Lambda(1 - e)Me + eM(1 - e)Me.
\]
Since $(D\Lambda)(1 - e) = \nu(\Lambda/P)$, we have
\[
(1 - e)Me = \Ext\Lambda((D\Lambda)(1 - e), \Lambda e) = \Ext\Lambda(\nu(\Lambda/P), P).
\]
Similarly, we have $eM(1 - e) = \Ext\Lambda(\nu P, \Lambda/P)$. Thus we have the desired equality. \square

We also need the following easy observation.

Lemma 4.11. Let C be a 2-CY triangulated category with a cluster-tilting object T. Let $\Lambda = \End_C(T)$ and $F = C(T, -) : C \to \text{mod} \Lambda$. Then we have a functorial isomorphism
\[
\alpha_{X,Y} : C(X[1], Y) \simeq \Ext^1_\Lambda(\nu F(X), F(Y))
\]
for any $X, Y \in \text{add} T$.

Proof. We have an equivalence $F : \text{add} T \simeq \text{add} \Lambda$. Take a triangle
\[
X[1] \to U_1 \to U_0 \to X[2] \tag{8}
\]
with $U_0, U_1 \in \text{add} T$. Applying F and using $F(X[2]) \simeq DC(X, T) = \nu F(X)$, we have a projective resolution
\[
0 \to F(U_1) \to F(U_0) \to \nu F(X) \to 0 \tag{9}
\]
of the injective Λ-module $\nu F(X)$.

Applying $C(\cdot, Y)$ to (8) and $\Hom_\Lambda(\cdot, F(Y))$ to (9) and comparing them by Yoneda’s Lemma on $\text{add} T$, we have a commutative diagram
\[
\begin{array}{cccccc}
C(U_0, Y) & \longrightarrow & C(U_1, Y) & \longrightarrow & C(X[1], Y) & \longrightarrow & C(U_0[-1], Y) = 0 \\
\downarrow & & \downarrow & & \downarrow & & \\
\Hom_\Lambda(F(U_0), F(Y)) & \longrightarrow & \Hom_\Lambda(F(U_1), F(Y)) & \longrightarrow & \Ext^1_\Lambda(\nu F(X), F(Y)) & \longrightarrow & 0
\end{array}
\]
of exact sequences. Thus we have an isomorphism
\[
C(X[1], Y) \simeq \Ext^1_\Lambda(\nu F(X), F(Y)),
\]
which is easily checked to be functorial for $X, Y \in \text{add} T$. \square

Now we have the following result.

Proposition 4.12. Let C be a 2-CY triangulated category with a basic cluster-tilting object $T = T_1 \oplus \cdots \oplus T_n$. Assume that Q_T has no loops at k. Then any morphism in $C(T_k[1], T_k)$ factors through $\text{add} ((T/T_k)[1] \oplus (T/T_k))$.

Proof. We use the notation in Lemma 4.11. Let $P = F(T_k)$ and $I = \nu P$. Then we have an isomorphism
\[
\alpha_{T_k, T_k} : C(T_k[1], T_k) \simeq \Ext^1_\Lambda(I, P).
\]
It is easily checked that we have a commutative diagram
\[
\begin{array}{c}
\mathcal{C}(T_k[1], T/T_k) \times \mathcal{C}(T/T_k, T_k) \xrightarrow{\alpha_{T_k, T_k} \times F} \mathcal{C}(I, \Lambda/P) \times \text{Hom}_\Lambda(\Lambda/P, P) \\
\downarrow \text{comp.} \hspace{2cm} \downarrow \text{comp.} \\
\mathcal{C}(T_k[1], T_k) \xrightarrow{\alpha_{T_k, T_k}} \mathcal{C}(I, P)
\end{array}
\]
whose horizontal maps are isomorphisms. Comparing the images of vertical maps, we have that \(\alpha_{T_k, T_k}\) induces an isomorphism
\[
[(T/T_k)[T_k[1], T_k] \simeq \text{Ext}_\Lambda^1(I, \Lambda/P) \text{Hom}_\Lambda(\Lambda/P, P). \tag{10}
\]
Similarly, we have a commutative diagram
\[
\begin{array}{c}
\mathcal{C}(T_k[1], (T/T_k)[1]) \times \mathcal{C}((T/T_k)[1], T_k) \xrightarrow{F[1] \times \alpha_{T_k, T_k}} \text{Hom}_\Lambda(I, \nu(\Lambda/P)) \times \text{Ext}_\Lambda^1(\nu(\Lambda/P), P) \\
\downarrow \text{comp.} \hspace{2cm} \downarrow \text{comp.} \\
\mathcal{C}(T_k[1], T_k) \xrightarrow{\alpha_{T_k, T_k}} \text{Ext}_\Lambda^1(I, P)
\end{array}
\]
whose horizontal maps are isomorphisms. Comparing the images of vertical maps, we have that \(\alpha_{T_k, T_k}\) induces an isomorphism
\[
[(T/T_k)[T_k[1], T_k] \simeq \text{Hom}_\Lambda(I, \nu(\Lambda/P)) \text{Ext}_\Lambda^1(\nu(\Lambda/P), P). \tag{11}
\]
Since \(Q_T\) has no loops at \(k\), we have
\[
\text{Ext}_\Lambda^1(I, P) = \text{Hom}_\Lambda(I, \nu(\Lambda/P)) \text{Ext}_\Lambda^1(\nu(\Lambda/P), P) + \text{Ext}_\Lambda^1(I, \Lambda/P) \text{Hom}_\Lambda(\Lambda/P, P)
\]
by Lemma \[\text{Lemma 4.10}\]. Using (10) and (11), we have
\[
\mathcal{C}(T_k[1], T_k) = [(T/T_k)[T_k[1], T_k] + [T/T_k][T_k[1], T_k]
\]
which shows the assertion.

Now we are ready to prove Theorem [4.8] for the case (A).

Since \(f_1 \in J_C\), we have that \(f_0\) and \(f_2\) are minimal right and left \(T/T_k\)-approximations respectively. Consider any exchange triangles
\[
T_k^* \xrightarrow{g} U_0 \xrightarrow{f_0} T_k \xrightarrow{e} T_k^*[1] \quad \text{and} \quad T_k \xrightarrow{f_2} U_1 \xrightarrow{g'} T_k^* \xrightarrow{e'} T_k[1].
\]
There are automorphisms \(p \in \text{Aut}_C(U_1)\) and \(q \in \text{Aut}_C(U_0)\) such that \(f_1 = pg'g = g'gq\). If \(g'g = 0\), then \(f_1 = 0\) and the assertion holds. Thus we can assume \(g'g \neq 0\).

(i) First we will show that there exists \(u \in \text{End}_C(T_k^*)\) such that \(g'ug = f_1\).

Consider the following commutative diagram of triangles
\[
\begin{array}{c}
U_1 \xrightarrow{g'} T_k^* \xrightarrow{e'} T_k[1] \xrightarrow{f_2[1]} U_1[1] \\
\downarrow \text{pg'} \hspace{2cm} \downarrow q \hspace{2cm} \downarrow \text{pp'}[1] \\
T_k^* \xrightarrow{g} U_0 \xrightarrow{f_0} T_k \xrightarrow{e} T_k^*[1]
\end{array}
\]
We have a morphism \(h \in \mathcal{C}(T_k[1], T_k)\) which keeps the above diagram commutative. By Lemma [4.12], there exist \(s \in \mathcal{C}(U_1[1], T_k)\) and \(t \in \mathcal{C}(T_k[1], U_0)\) such that \(h = f_2[1]s + tf_0\). Since \((qq - e't)f_0 = e'(h - tf_0) = e'(f_2[1])s = 0\), there exists \(u \in \mathcal{C}(T_k^*, T_k)\) such that \(qq = e't + ug\).
In particular, we have \(f_1 = g'gq = g'ug \).

(ii) Next we will show that \(u \) is an automorphism. Then we have the assertion since we have exchange triangles

\[
T_k^* \xrightarrow{g} U_0 \xrightarrow{f_0} T_k \xrightarrow{c} T_k^*[1] \quad \text{and} \quad T_k \xrightarrow{f_2} U_1 \xrightarrow{g'w} T_k \xrightarrow{u^{-1}c'} T_k^*[1]
\]

satisfying \(f_1 = (g'u)g \).

Assume \(u \in \mathcal{J}_C \). Then there exists \(v \in \mathcal{J}_C(U_1, U_1) \) such that \(g'u = vg' \). Since \(pg'g = g'ug = vg' \), we have \((p - v)g'g = 0 \). Since \(p - v \) is an automorphism by \(p \in \text{Aut}_C(U_1) \) and \(v \in \mathcal{J}_C(U_1, U_1) \), we have \(g'g = 0 \). This contradicts our assumption. \(\square \)

5. Mutation of quivers with potentials and cluster-tilting objects

In this section we use the results from section \([4]\) to show that there is a close connection between mutation of quivers with potentials on one hand and mutation of cluster-tilting objects of 2-CY algebras in section \([13]\) or mutation of tilting modules over 3-CY algebras in section \([13]\) on the other hand. More specifically we will prove the following main results in this section.

Theorem 5.1. Let \(\mathcal{C} \) be a 2-CY triangulated category with a basic cluster-tilting object \(T \). If \(\text{End}_C(T) \cong \mathcal{P}(Q, W) \) for a QP \((Q, W) \) and no 2-cycles start in the vertex \(k \) of \(Q \), then \(\text{End}_C(\mu_k(T)) \cong \mathcal{P}(\mu_k(Q, W)) \).

Theorem 5.2. Let \(\Lambda \) be a 3-CY algebra with a basic tilting module \(T \) of projective dimension at most one. If \(\text{End}_\Lambda(T) \cong \mathcal{P}(Q, W) \) for a QP \((Q, W) \) and no 2-cycles start in the vertex \(k \) of \(Q \), then \(\text{End}_\Lambda(\mu_k(T)) \cong \mathcal{P}(\mu_k(Q, W)) \).

To prove these theorems at the same time, we start with the following general setup: Without loss of generality, we can assume that \((Q, W)\) is reduced since \(\mu_k(Q, W) \) is right equivalent to \(\mu_k(Q_{\text{red}}, W_{\text{red}}) \).

Let \(\mathcal{C} \) be an additive category satisfying (C1) and (C2). Let \(T = T_1 \oplus \cdots \oplus T_n \in \mathcal{C} \) be an object with non-isomorphic indecomposable summands \(T_1, \cdots, T_n \). Assume that \(\text{End}_\mathcal{C}(T) \cong \mathcal{P}(Q, W) \) for a QP \((Q, W)\). We have a surjective \(K \)-algebra homomorphism \(\phi: \overline{K}Q \twoheadrightarrow \text{End}_\mathcal{C}(T) \), which induces a \(K \)-linear functor \(\Phi: \overline{K}Q \to \mathcal{C} \) satisfying \(\Phi \circ T = T \). We simply denote \(\Phi p \) by \(p \) for any morphism \(p \) in \(\overline{K}Q \). By Theorem \([13]\)(a) \(\Rightarrow \) (b), we have a weak 2-almost split sequence

\[
T_i \xrightarrow{(b)_k} \bigoplus_{b \in Q_1, i(b)=i} T_{e(b)} \xrightarrow{(\theta_{a,b})_W}_{a \in Q_1, e(a)=i} T_{s(a)} \xrightarrow{(a)} T_i
\]

in \(T \) for any \(i = 1, \cdots, n \), which we simply denote by

\[
T_i \xrightarrow{f_{i2}} U_{i1} \xrightarrow{f_{i1}} U_{i0} \xrightarrow{f_{0a}} T_i. \tag{12}
\]

Then \(f_{i1} \in \mathcal{J}_C \) holds since \((Q, W)\) is reduced.

Now we fix \(k = 1, \cdots, n \) and assume that there exists an indecomposable object \(T_k^* \in \mathcal{C} \) which does not belong to \(add \ T \) such that the following conditions are satisfied, where we let \(\mu_k(T) = (T/T_k) \oplus T_k^* \).

(I) There exist complexes

\[
T_k \xrightarrow{f_{k2}} U_{k1} \xrightarrow{h_k} T_k^* \quad \text{and} \quad T_k^* \xrightarrow{g_k} U_{k0} \xrightarrow{f_{k0}} T_k
\]

in \(\mathcal{C} \) such that \(f_{k1} = h_kg_k \).

(II) We have the following weak 2-almost split sequence in \(add \mu_k(T) \).

\[
T_k^* \xrightarrow{g_k} U_{k0} \xrightarrow{f_{k0}f_{k2}} U_{k1} \xrightarrow{h_k} T_k^*
\]
Lemma 5.4. follow immediately from Theorem 5.3 and the following observation.

Proof. Then the above conditions (I)–(IV) are satisfied.

Theorem 5.3. gles/sequences such that $h \in \text{Hom}_{Q}(T, T)$ is commutative. Since 0 \in \text{Hom}_{Q}(T, T)$ is exact by Proposition 1.3(c), there exist such that $h_{i}g_{i} = f_{i}$ by Theorem 4.8. In particular, we have (I).

(II) This follows from Proposition 5.7.

(III) This is clear from a property of triangles and exact sequences.

(IV) Since no 2-cycle starts at the vertex k, we have $T_{k} \notin (\text{add } U_{i1}) \cap (\text{add } U_{i0})$. Since $(T_{k}^{*}, T_{i}^{*}) \xrightarrow{g_{i}} (T_{k}^{*}, U_{i0}) \xrightarrow{f_{i0}} (T_{k}^{*}, T_{i})$ is exact, we only have to show that $(T_{k}^{*}, U_{i1}) \xrightarrow{h_{i}} (T_{k}^{*}, T_{i}^{*})$ is surjective. This is clear for the case Theorem 5.4 since we have $\text{Ext}^{1}_{Q}(T_{k}^{*}, T_{i}) = 0$.

We consider the case Theorem 5.4. Fix any $p \in \text{Hom}_{\Lambda}(T_{k}^{*}, T_{i}^{*})$. Since 0 \rightarrow (T, T_{i}) \xrightarrow{f_{i2}} (T, U_{i1}) \xrightarrow{h_{i}} (T, T_{i}^{*}) \rightarrow 0$ is exact by Proposition 1.3(c), there exist $q \in \text{Hom}_{\Lambda}(U_{k1}, U_{i1})$ and $r \in \text{Hom}_{\Lambda}(T_{k}, T_{i})$ which make the diagram commutative. Since \text{Ext}^{1}_{Q}(T_{k}, T) \xrightarrow{h_{k}} (U_{k1}, T) \xrightarrow{f_{k2}} J_{\text{mod } \Lambda}(T_{k}, T) \rightarrow 0$ is exact by Proposition 1.3(c), there exist $s \in \text{Hom}_{\Lambda}(U_{k1}, T_{i})$ such that \text{Ext}^{1}_{Q}(T_{k}, U_{i1}) = 0$ such that $q = sf_{i2} + h_{kt}$. Then we have $h_{k}(p - th_{i}) = 0$. By Proposition 1.3(b), we have $p = th_{i}$.

Proof of Theorem 5.3. Let $(Q', W') = (Q, W)$. By Lemma 5.5, we can define a K-linear functor $\Phi' : KQ' \rightarrow \mathcal{C}$ in the following way.

(i) Φ' coincides with Φ on $Q \cap Q'$.

(ii) Let $\Phi'[ab] = \Phi[a] \Phi[b]$ for each pair of arrows $a : i \rightarrow k$ and $b : k \rightarrow j$ in Q.

(iii) Let $\Phi'[k^*] = T_{k}^{*}$, and $\Phi'[a^*] = \Phi[a]$ and $\Phi'[b^*] = \Phi[b]$. They are defined by

\[
\Phi'(a_{\in Q_{1}, \ e(a)=k}) = g_{k} \in \mathcal{C}(T_{k}^{*}, \bigoplus_{a \in Q_{1}, \ e(a)=k} T_{s(a)}),
\]

\[
\Phi'(b_{\in Q_{1}, \ s(b)=k}) = h_{k} \in \mathcal{C}(\bigoplus_{b \in Q_{1}, \ s(b)=k} T_{e(b)}, T_{k}^{*})
\]

which are given in (I).
We simply denote \(\Phi p \) by \(p \) for any morphism \(p \) in \(\overline{KQ}' \).

To prove Theorem 5.3, we only have to show the following result by Theorem 4.5(c) \(\Rightarrow \) (a).

Proposition 5.5. Any vertex \(i \) in \(Q' \) has the following right 2-almost split sequence in \(\mu_k(T) \).

\[
\bigoplus_{d \in Q_1', \ s(d) = i} T_{e(d)} \xrightarrow{(\partial(c,d)W')_{a,c}} \bigoplus_{c \in Q_1', \ e(c) = i} T_{s(c)} \xrightarrow{(c)_c} T_i.
\]

We divide our proof of Proposition 5.5 into Lemmas 5.6, 5.7, 5.8, and 5.9. We need the following information about mutation of \(Q' \).

Lemma 5.6. Let \((Q, W) \) be a \(\text{QP} \) and \((Q', W') = \mu_k(Q, W) \). Let \(a \) and \(a' \) be arrows in \(Q \) with \(e(a) = e(a') = k \), let \(b \) and \(b' \) be arrows in \(Q \) with \(s(b) = s(b') = k \), and let \(c \) and \(c' \) be arrows in \(Q \cap Q' \). Then we have the following equalities.

(a) \(\partial(c,e')W' = \partial(c,e')[W] \).
(b) \(\partial(a',a)W' = 0 \) and \(\partial(c,b')W' = 0 \).
(c) \(\partial(c,[a]b)W' = \partial(c,[a]b)[W] \) and \(\partial([a]b,c)W' = \partial([a]b,c)[W] \).
(d) \(\partial(c,[a]b)W' = b' \) and \(\partial(a',[a]b)W' = 0 \) if \(a \neq a' \).
(e) \(\partial([a]b,b')W' = a' \) and \(\partial([a]b,b')W' = 0 \) if \(b \neq b' \).
(f) \(\partial(b',a)W' = [ab] \).
(g) \(\partial([a]b,[a]b')W' = 0 \).
(h) For other pairs \(d, d' \in Q_1' \), we have \(\partial(d,d')W' = 0 \).

Proof. Immediate from the definition \(W' = [W] + \Delta \). \(\square \)

Lemma 5.7. We have the following right 2-almost split sequence in \(\mu_k(T) \).

\[
\bigoplus_{a \in Q_1', \ e(a) = k} T_{s(a)} \xrightarrow{([ab])_{a,b}} \bigoplus_{b \in Q_1', \ s(b) = k} T_{e(b)} \xrightarrow{(b)_b} T_k^*.
\]

Proof. By our definition of \(\Phi' \), we can write the above sequence as \(U_{k_0} \xrightarrow{f_{k_0}f_{k_2}} U_{k_1} \xrightarrow{-h_k} T_k^* \).

This is a right 2-almost split sequence by (II). \(\square \)

Lemma 5.8. For a vertex \(i \) in \(Q' \) with \(i \neq k^* \), assume that there is no arrow \(i \rightarrow k \) in \(Q \). Then \(i \) has the following right 2-almost split sequence in \(\mu_k(T) \).

\[
\bigoplus_{d \in Q_1', \ s(d) = i} T_{e(d)} \xrightarrow{((\partial(c,d)W)_d(a,b) \ (\partial(c,d)W)_d,c)} \bigoplus_{c \in Q_1', \ e(c) = i} T_{s(c)} \xrightarrow{([ab])_{a,b}} T_i.
\]

Proof. This is a complex since we have

\[
\sum_{a \in Q_1', \ e(a) = k} a^*[ab] = \sum_{a \in Q_1', \ e(a) = k} (a^*a)b = g_kf_{k_0}b = 0
\]

\[
\sum_{a,b \in Q_1, \ e(a) = k} (\partial([ab])_[e(c)]W)[ab] + \sum_{c \in Q_1', \ e(c) \neq k} (\partial(c,d)W)[c] = \partial dW = 0.
\]

To simplify notations, we decompose \(U_{i_0} = T_k^* \oplus U''_{i_0} \) with \(T_k \notin \text{add } U''_{i_0} \) and write \(f_{i_1} = (f_{i_1}', f_{i_1}'') : U_{i_1} \rightarrow U_{i_0} = T_k^* \oplus U''_{i_0} \),

\[
f_{i_0} = (f_{i_0}', f_{i_0}'') : U_{i_0} = T_k^* \oplus U''_{i_0} \rightarrow T_i.
\]
Then we have the following exact sequences by (III) and (IV).

\[(\mu_k(T), T_k^e) \xrightarrow{g_k} (\mu_k(T), U_{i1}) \xrightarrow{f_{k0}} (\mu_k(T), T_i), \tag{13}\]

\[(\mu_k(T), U_{i1}) \xrightarrow{f_{i1}, f''_{i0}} (\mu_k(T), T_k^e \oplus U''_{i0}) \xrightarrow{f_{i0}''} (\mu_k(T), T_i), \tag{14}\]

We can write our sequence as

\[T_k^e \oplus U_{i1} \xrightarrow{\left(\begin{array}{c} q_k \, 0 \\ f_{i0}'' \end{array}\right)} U''_{i0} \oplus U''_{i0} \xrightarrow{f_{i0}''} T_i,\]

where \(t f_{k0} = f_{i1}'\) holds.

(i) We will show that \((f_{k0}' f_{i0}'')\) is right almost split in add \(\mu_k(T)\).

First we will show that any morphism \(p \in J_C(T/T_k, T_i)\) factors through \((f_{k0}' f_{i0}'')\).

Since \(f_{i0} = (f_{i0}' f_{i0}'')\) is right almost split in add \(T\), there exists \((p_1 \, p_2) \in C(T/T_k, T_k^e \oplus U''_{i0})\) such that \(p = p_1 f_{i0}' + p_2 f_{i0}''\). Since \(f_{k0}\) is right almost split in add \(T\), there exists \(q \in C(T/T_k, U_{i0}^e)\) such that \(p_1 = q f_{k0}'\). Then we have \(p = (q \, p_2)(f_{k0}' f_{i0}''\).

Next we take any \(p \in J_C(T_k^e, T_i)\). Since \(g_k\) is left almost split in add \(\mu_k(T)\), there exists \(q \in C(U_{k0}, T_i)\) such that \(p = g_k q\). Since \(T_k \not\in \text{add} U_{i1}\), we have \(T_i \not\in \text{add} U_{k0}\). Thus \(q \in J_C(U_{k0}, T_i)\) holds, and the first case implies that \(q\) factors through \((f_{k0}' f_{i0}'')\).

Hence \(p\) factors through \((f_{k0}' f_{i0}'')\).

(ii) We will show that \((q_k^0 \, 0)\) is a pseudo-kernel of \((f_{k0}' f_{i0}'')\) in add \(\mu_k(T)\).

Assume \((p_1 \, p_2) \in C(\mu_k(T), U_{i0}'' \oplus U''_{i0})\) satisfies \((p_1 \, p_2)(f_{k0}' f_{i0}'') = 0\). Since \((p_1 \, p_2)(f_{i0}' f_{i0}'') = 0\) holds and \([13]\) is exact, there exists \(q \in C(\mu_k(T), U_{i1})\) such that \(q(f_{i1}' f_{i0}'') = (p_1 \, p_2)(f_{i0}' f_{i0}'')\). Hence we have \(q f_{i1}' = p_1 f_{k0}'\) and \(q f_{i0}'' = p_2\). Since \((p_1 - q t)f_{k0}' = q f_{i1}' - q f_{i1}' = 0\) and \([13]\) is exact, there exists \(r \in C(\mu_k(T), T_k^e)\) such
that \(p_1 - qt = r g_k^e \). Then we have \((p_1, p_2) = (r, q)(\hat{g}_k^{e}f_{i_1}^{r}) \).

\[
\begin{array}{c}
\text{Lemma 5.9.}\quad \text{For a vertex } i \text{ in } Q' \text{ with } i \neq k^*, \text{ assume that there is no arrow } k \to i \text{ in } Q. \text{ Then } i \text{ has the following right } 2\text{-almost split sequence in add } \mu_k(T).

\[
\begin{pmatrix}
\bigoplus_{a,b \in Q_1, s(b) = k} T_{c(b)} \\
\bigoplus_{d \in Q_1, s(d) = i} T_{c(d)}
\end{pmatrix} \begin{pmatrix}
(b^*a^+) \\
0
\end{pmatrix} \begin{pmatrix}
(\partial_{(c,[ab])}[W])_{(a,b),c} \\
(\partial_{(c,d)}[W])_{d,c}
\end{pmatrix} \begin{pmatrix}
\bigoplus_{a \in Q_1, a \to k} T_k^c \\
\bigoplus_{e(c) = i} T_{s(c)}
\end{pmatrix}
\end{array}
\]

Proof. The sequence is a complex since we have

\[
(b^*a^+ + \sum_{c \in Q_1} (\partial_{(c,[ab])}[W])_{c} b_{(a,b)} = -h_k g_k + (\partial_{(a,b)} W)_{(a,b)} = -f_{k1} + f_{k1} = 0,
\]

\[
\sum_{c \in Q_1} (\partial_{(c,d)}[W])_{c} = \partial_d W = 0.
\]

To simplify notations, we decompose \(U_{i_1} = T_k^e \oplus U_i'' \) with \(T_k \notin \text{add } U_i'' \) and write

\[
f_{i_1} = \begin{pmatrix} f_{i_1}^e \\ f_{i_1}'' \end{pmatrix} : \quad U_{i_1} = T_k^e \oplus U_i'' \to U_{i_0}.
\]

Then we have the following exact sequence by (IV).

\[
(\mu_k(T), T_k^e \oplus U_i'') \xrightarrow{\begin{pmatrix} f_{i_1}^e \\ f_{i_1}'' \end{pmatrix}} (\mu_k(T), U_{i_0}) \xrightarrow{f_{i_0}} (\mu_k(T), T_i).
\]

(15)

We can write our sequence as

\[
U_{k1}^e \oplus U_{i_1}'' \xrightarrow{\begin{pmatrix} -f_{i_1}^e \\ f_{i_1}'' \end{pmatrix}} T_k^e \oplus U_{i_0} \xrightarrow{f_{i_0}} T_i
\]

where \(f_{i_1}^e t = f_{i_1}'' \) holds.

(i) We will show that the map

\[
s = (a^*)_a : (C / J_C)(T_k^e, T_{k1}^e) \to (C / J_{C2}) \oplus \text{add}_{\mu_k(T)}(T_k^e, T_i)
\]

is bijective. By the assumption (C2), we have \(K = (C / J_C)(T_k^e, T_k^e) \). By (II), we have that \(g = (a^*)_a : T_k^e \to \bigoplus_{a \in Q_1, e(a) = k} T_{s(a)} \) is minimal right almost split in add \(\mu_k(T) \) since the middle morphism \(f_{k1} f_{k2} \) in the sequence in (II) belongs to \(J_C \). Thus we have that \((J_C / J_{C2}) \oplus \text{add}_{\mu_k(T)}(T_k^e, T_i) \) is a \(K \)-vector space with the basis \(\{ a^* | a: i \to k \} \). Thus the above map is bijective.

(ii) We will show that \((f_{i_0})^* \) is right almost split in add \(\mu_k(T) \).

Since \(f_{i_0} \) is right almost split in add \(T \), any morphism in \(J_C(T_k^e, T_i) \) factors through \(f_{i_0}^* \). Then take any \(p \in J_C(T_k^e, T_i) \). By (i), there exists \(p_1 \in C(T_k^e, T_{k1}^e) \) such that \(p - p_1 s \in J_{C2} \oplus \text{add}_{\mu_k(T)}(T_k^e, T_i) \). Since \(g \) is left almost split in add \(\mu_k(T) \) by (II), there exists \(q \in J_C(T_i, U_{k1}) \) such that \(p - p_1 s = g q \). Since \(f_{i_0} \) is right
almost split in add T, there exists $r \in \mathcal{C}(U_{k_0}, U_{i_0})$ such that $q = rf_{i_0}$. Then we have $p = p_1s + grf_{i_0} = (a_1 gr)(s)_{f_{i_0}}$.

(iii) We will show that $(-h_{s}^{t}, t f_{s})$ is a pseudo-kernel of $(s)_{f_{i_0}}$ in add $\mu_k(T)$.

Assume $(p_1, p_2) \in \mathcal{C}(T, T_k' \oplus U_{i_0})$ with $T' \in \text{add} \mu_k(T)$ satisfies $(p_1, p_2)(s)_{f_{i_0}} = 0$. We first show that there exists $q \in \mathcal{C}(T', U_{k_1}')$ such that $p_1 = q h_{k}^{t}$. Since h_k is right almost split in add $\mu_k(T)$ by (II), we only have to show $p_1 \notin J_C$. We have to consider the case $T' = T_k'$. Since $p_1s = -p_2 f_{i_0} \in J_{\text{add} \mu_k(T)}^2$, we have $p_1 \notin J_C$ by (i).

Since $(p_2 + q t)f_{i_0} = p_2 f_{i_0} + q h_{k}^{t}s = p_2 f_{i_0} + p_1s = 0$ and (15) is exact, there exists $(q_1, q_2) \in \mathcal{C}(T', T_k' \oplus U_{k_1}')$ such that $p_2 + q t = (q_1, q_2)(s)_{f_{i_0}}$. Then $p_2 = -q t + q_1 f_{i_1} + q_2 f_{i_1}' = (q_1 f_{i_2})t + q_2 f_{i_1}'$ holds. Thus we have $(p_1, p_2) = (-q + q_1 f_{i_2}, q_2)(s)_{f_{i_0}}$.

We finish the proof of Theorem 5.8. By Proposition 5.5, we have $\text{End}_C(\mu_k(T)) \simeq \mathcal{P}(Q', W)$. By [DWZ1] Theorem 4.6, we have $\mathcal{P}(Q', W') \simeq \mathcal{P}(\mu_k(Q, W))$. □

We have the following direct consequences of Theorems 5.1 and 5.2.

Corollary 5.10. Let \mathcal{C} be one of the following categories.

(a) \mathcal{C} is a 2-CY triangulated category with a basic cluster-tilting object T.

(b) $\mathcal{C} = \text{mod} \Lambda$ for a 3-CY algebra Λ with a basic tilting Λ-module T of projective dimension at most one.

If $\text{End}_C(T) \simeq \mathcal{P}(Q, W)$ for a μ-QP (Q, W), then for any sequence k_1, \ldots, k_t of vertices in Q such that k_i does not lie on a 2-cycle in $\mu_{k_{i-1}} \cdots \mu_{k_1}(Q, W)$, we have

$$\text{End}_C(\mu_{k_t} \cdots \mu_{k_1}(T)) \simeq \mathcal{P}(\mu_{k_t} \cdots \mu_{k_1}(Q, W)).$$

Remark If \mathcal{C} is a 2-CY triangulated category with cluster structure and $\text{End}_C(T)$ is Jacobian, then none of the Jacobian algebras in the same mutation class will have 2-cycles in their quivers. Hence they are all non-degenerate QP’s in the sense of [DWZ1].

The next result is of special interest.

Corollary 5.11. Any cluster-tilted algebra is isomorphic to a Jacobian algebra of a rigid μ-QP.

Proof. We here use Theorem 5.1 and the fact that any cluster-tilted algebra belongs to the same mutation class as a hereditary algebra, which is trivially given by a QP. That the QP is rigid follows from [DWZ1]. □
It is not known in general whether the algebra \(\text{End}_C(T^*) \) can be defined directly from the algebra \(\text{End}_C(T) \) when \(T^* \) is a cluster-tilting object in the triangulated 2-CY category \(C \) obtained from the cluster tilting object \(T \) by mutation. When the potential \((Q', W')\) is obtained by mutation from the potential \((Q, W)\), it is also not known if the Jacobian algebra \(\mathcal{P}(Q', W') \) can be defined directly from the Jacobian algebra \(\mathcal{P}(Q, W) \).

However, we can prove this for Jacobian algebras of Jacobi-finite QP’s by the following result together with a result of Amiot [A]. We call a QP \((Q, W)\) Jacobi-finite if the factor algebra \(KQ/\partial_a W \mid a \in Q_1 \) of the ordinary path algebra \(KQ \) is finite dimensional [A]. This condition implies that \(\mathcal{P}(Q, W) \) is finite dimensional.

Theorem 5.12. Let \(\Lambda \) be an algebra isomorphic to a Jacobian algebra \(\mathcal{P}(Q, W) \) for some QP \((Q, W)\) and to a 2-CY-tilted algebra \(\text{End}_C(T) \) for some cluster-tilting object \(T \) in a 2-CY category \(C \). Assume \(k \) is a vertex in \(Q \) not lying on any 2-cycle.

(a) The Jacobian algebra \(\mathcal{P}(\mu_k(Q, W)) \) is determined by the algebra \(\Lambda \) and does not depend on the choice of a QP \((Q, W)\).

(b) The 2-CY-tilted algebra \(\text{End}_C(\mu_k(T)) \) is determined by the algebra \(\Lambda \) and does not depend on the choice of a 2-CY category \(C \) and a cluster-tilting object \(T \).

Proof. This is a direct consequence of Theorem 5.11. □

The following gives a partial answer to Question 12.2 in [DWZ1].

Corollary 5.13. Let \(\mathcal{P}(Q, W) \) be a Jacobian algebra of a Jacobi-finite QP. Assume \(k \) is a vertex in \(Q \) not lying on any 2-cycle. If \(\mathcal{P}(Q, W) \simeq \mathcal{P}(Q', W') \) for some QP \((Q', W')\), then \(Q_0 \simeq Q'_0 \) and \(\mathcal{P}(\mu_k(Q, W)) \simeq \mathcal{P}(\mu_k(Q', W')) \).

Proof. Clearly we have \(Q_0 \simeq Q'_0 \). The second assertion follows from Theorem 5.12(a) and the fact that any Jacobian algebra of a Jacobi-finite QP is a 2-CY-tilted algebra [A]. □

We end this section with using the results in this section to give an alternative proof of the following.

Corollary 5.14. Cluster-tilted algebras are determined by their quiver.

Proof. If a cluster-tilted algebra \(\Lambda \) has an acyclic quiver \(Q \), then \(\Lambda \) is isomorphic to the path algebra \(KQ \) by [ABS, KR1], in particular it is determined by its quiver.

Assume that \(T_1 \) and \(T_2 \) are cluster-tilting objects in the cluster categories \(C_{Q_1} \) and \(C_{Q_2} \), respectively, such that the associated quivers are isomorphic. Let \(\mu = \mu_k \circ \cdots \circ \mu_1 \) be a sequence of mutations such that for the projective \(KQ_1 \)-module \(KQ_1 \) we have \(\mu(KQ_1) \simeq T_1 \), and hence \(\mu(Q_1) \simeq Q_1 \). Then let \(T \) be the cluster-tilting object in \(C_{Q_2} \) such that \(\mu(T) \simeq T \) and hence \(\mu(Q_T) \simeq Q_T \). Then \(Q_1 \simeq Q_T \), and hence \(KQ_1 \simeq \text{End}_{C_{Q_2}}(T) \). Since cluster-tilted algebras are QP’s by Corollary 5.11 it follows from Theorem 5.12(b) that \(\text{End}_{C_1}(T_1) \simeq \text{End}_{C_2}(T_2) \). □

Remark It follows from the work in [DWZ1] that if \(\Lambda = \mathcal{P}(Q, W) \) is a Jacobian algebra given by a rigid potential \((Q, W)\) where \(Q \) belongs to the mutation class of an acyclic quiver, then \(\Lambda \) is determined by its quiver. Since by Corollary 5.11 any cluster-tilted algebra has this property, this gives yet another way of seeing that cluster-tilted algebras are determined by their quiver.

6. 2-CY-tilted algebras associated with elements in Coxeter groups

In this section we show that a large class of 2-CY-tilted algebras, including the cluster-tilted algebras and the class of 2-CY-tilted algebras coming from stable categories of preprojective algebras of Dynkin type, are given by QP’s, by finding
an explicit description of the potentials for some of them. Hence by Theorem 5.1 we get that all 2-CY-tilted algebras in the mutation class are given by QP’s. We prove that these QP’s are rigid in the sense of [DWZ1].

These 2-CY-tilted algebras come from 2-CY triangulated categories constructed from elements in the Coxeter groups associated with connected quivers with no loops, as investigated in [HR, BIRS]. (See [CLS2] for an alternative approach to the construction of a subclass of these 2-CY categories). We start with recalling the relevant results from [BIRS], including a description of the quivers of some special 2-CY-tilted algebras.

Let Q be a finite connected quiver with no loops, with vertices 1, . . . , n and set of arrows Q1. The associated preprojective algebra over the algebraically closed field K is defined as follows. For each arrow a ∈ Q1 from i to j, we add a corresponding arrow a∗ from j to i to get a new quiver Q. Then the preprojective algebra is defined by

Λ = KQ/⟨ ∑ α∈Q1 (aa∗ − a∗a)⟩.

We shall write (a∗)∗ = a, and ε(a) = 1, ε(a∗) = −1.

The Coxeter group WQ is presented by generators s1, . . . , sn with relations si, sj = sj, si if there is no arrow in Q between i and j and si, sj, si = sj, si sj if there is precisely one arrow in Q between i and j. Let w be an element in the associated Coxeter group WQ, and w = sα1 · · · sαm a reduced expression, where the u1, . . . , um are integers in {1, . . . , n}. For each integer i in {1, . . . , n}, consider the ideal Ii = Λ(1 − e1)Λ in Λ, where ei denotes the trivial path at the vertex i. Let Iv = Iv1 · · · Ivim, and let Λw = Λ/Iv. Then Iw and Λw are independent of the choice of reduced expression for w, and Λw is a finite dimensional K-algebra. Denote by Sub Λw the full subcategory of mod Λw whose objects are the submodules of finitely generated projective Λw-modules. We have that the injective dimensions idΛw and idΛw,Λw are at most one, and hence the stable category C = Sub Λw is a Hom-finite triangulated 2-CY category [H]. Associated with each reduced expression sα1 · · · sαm of w is the object T = Λ/Iv1 ⊕ Λ/Iv1Iv2 ⊕ · · · ⊕ Λ/Iv1 · · · Ivim in Sub Λw. Consider the algebra EndΛw(T) and the associated 2-CY-tilted algebra EndC(T). Alternatively we can write T as a sum of indecomposable objects

T = T1 ⊕ T2 ⊕ · · · ⊕ Tm

= P1

In1P1 ⊕ P2

(In1I2P2 ⊕ · · · ⊕ Pm

(In1I2···Im)Pm

where Pi is the indecomposable projective Λ-module associated with the vertex i.

The structure of T is determined by the sequence of integers u1, . . . , um. Let Kv1 be the smallest submodule of Pu such that Pu/Kv1 is a sum of copies of Sw (in this case only Sw is). Then let Kv2 be the smallest submodule of Kv1 such that Kv1/Kv,2 is a sum of copies of Sw−1 etc. Then Tv = Pu/Kv,v.

We also recall [BIRS] the following description of the quiver Q′ = Q(u1, . . . , um) of EndL(T). The vertices are 1, 2, . . . , m ordered from left to right. We often denote the vertex v by iv, if it is the r-th vertex of type i. In this case we write |iv| = v. There are two kinds of arrows in Q′.

(i) Arrows going to the left: For two consecutive vertices of type i, for 1 ≤ i ≤ n, draw an arrow from the right one to the left one.

(ii) Arrows going to the right: For each arrow i → j in Q, draw an arrow u → v whenever the following is satisfied

- u is of type i and v is of type j
- there is no vertex of type i between u and v
- if there is a vertex v′ of type j after v, then there is a vertex of type i between v and v′.
The following picture gives an illustration.

Example We give a concrete example. Let Q be the quiver $\xymatrix{1 & 2 & 3,}$ and let $w = s_1 s_2 s_1 s_3 s_1 s_2 s_3 s_1 s_2 s_3 s_2$ be a reduced expression. The associated object T in $\text{Sub} \Lambda_w$ is the following.

The quiver $Q(1, 2, 1, 3, 1, 2, 3, 1, 2, 3, 2)$ is the following.

Recall that the corresponding maps are given as follows.

Lemma 6.1.
(a) Let $i_r \xymatrix{a & i_{r-1}}$ be an arrow in Q' going to the left. Then the map $T_{i_r} \xymatrix{\rightarrow & T_{i_{r-1}}}$ is given by the natural surjection.
(b) Let $i_r \xymatrix{b & j_s}$ be an arrow in Q' corresponding to an arrow $i \xymatrix{b & j}$ in Q. Then the map $T_{i_r} \xymatrix{\rightarrow & T_{j_s}}$ is given by multiplication with b.

For each i, the last (i.e. rightmost) vertex of type i corresponds to the indecomposable projective Λ_w-module $\xymatrix{P_i}$. By dropping the last vertex of type i for each $i = 1, \ldots, n$, where possible, we obtain the quiver $Q' = Q(u_1, \ldots, u_m)$ of $\text{End}_C(T)$ from the quiver Q' of $\text{End}_C(T)$, and T is a cluster-tilting object in $\text{Sub} \Lambda_w$.

Our aim is to show that the 2-CY-tilted algebra $\text{End}_C(T)$ is a Jacobian algebra $\mathcal{P}(Q', W)$, by giving an explicit description of the potential W. For each arrow $i_r \xymatrix{b & j_s}$ in Q', we let $W_b = c(b)bb'p$ if there is a (unique) arrow $j_s \xymatrix{b' & i}$ in Q', where p denotes the path $i \xymatrix{\rightarrow & i_{r-1} \rightarrow \cdots \rightarrow i_r}$. Otherwise we let $W_b = 0$. Then let

$$W = \sum_{b \in Q'} W_b.$$

Our strategy is to show that all the relations $\partial_a W$ are satisfied for $\text{End}_C(T)$, and then apply Proposition 4.10 to show $\text{End}_C(T) \cong \mathcal{P}(Q', W)$.
Example Again we consider the above example. Deleting vertices 14, 33 and 24, we have the quiver \(Q(1, 2, 1, 3, 1, 2, 3, 1, 2, 3, 2) \) as follows.

![Diagram of the quiver](image)

The associated potential is given by

\[
W = a_1 a_1^* p_3 p_2 - a_1^* a_3 q_2 + b_1 b_1^* q_2 - b_1^* b_2 r_2 + b_2 b_2^* q_3 - c_1 c_1^* p_3 + c_1 c_1^* r_2.
\]

Let us start with the following information.

Lemma 6.2. Let \(i_r \to i_{r-1} \) be an arrow in \(Q' \) going to the left. For any arrow \(i \xrightarrow{b} j \) in \(Q \), there exists a map \(T_{i_{r-1}} \xrightarrow{bb^*} T_{i_r} \) of \(\Lambda \)-modules given by multiplication with \(bb^* \). Moreover precisely one of the following holds.

1. There do not exist vertices \(i_u \) and \(j_t \) in \(Q' \) satisfying \(|i_u| < |j_t| < |i_r| \). In this case the map \(T_{i_{r-1}} \xrightarrow{bb^*} T_{i_r} \) is zero.
2. There exists a path \(i_u \xrightarrow{b} j_t \xrightarrow{b} i_v \) in \(Q' \) with \(u \leq r - 1 < r \leq v \). In this case such a path is unique, and the map \(T_{i_{r-1}} \xrightarrow{bb^*} T_{i_r} \) is equal to the composition \(T_{i_{r-1}} \xrightarrow{b} T_{i_u} \xrightarrow{b} T_{j_t} \xrightarrow{b} T_{i_v} \xrightarrow{q} T_{i_r} \) where \(p \) denotes a path \(i_{r-1} \to i_{r-2} \to \cdots \to i_u \) and \(q \) denotes a path \(i_v \to i_{v-1} \to \cdots \to i_r \).

Proof. We can write \(T_{i_{r-1}} = P_i/I_{P_i} \) and \(T_{i_r} = P_i/(\Pi'I_i)P_i \), where \(I' \) is a product of ideals \(I_1, \cdots, I_n \) except \(I_i \). Then we have \(bb^* \in \Pi'I_i \). Thus we have \(\Pi'bb^* \subset \Pi'\lambda_i \), and the map \(T_{i_{r-1}} \xrightarrow{bb^*} T_{i_r} \) is well-defined.

(a) Since \(bb^* \) is zero in \(T_{i_r} \), we have the assertion.

(b) The uniqueness of the path is clear from the definition of \(Q' \). The latter assertion is clear from Lemma 6.1. \(\square \)

We now show that the 2-CY-tilted algebra \(\text{End}_C(T) \) satisfies the relations for the Jacobian algebra \(\mathcal{P}(Q', W) \).

Proposition 6.3. \(\partial_a W \) belongs to the kernel of the surjection \(\widehat{KQ'} \to \text{End}_C(T) \) for any arrow \(a \) in \(Q' \).

Proof. There are two cases to consider.

1. Consider an arrow \(i_r \xrightarrow{b} j_s \) going to the right in \(Q' \). If there is an arrow \(j_s \xrightarrow{b^*} i_t \) in \(Q' \), we have the cycle \(\epsilon(b)b^*p \) as part of the potential \(W \), where \(p \) is the path \(i_t \to i_{t-1} \to \cdots \to i_r \). And if there is an arrow \(j_u \xrightarrow{b^*} i_r \) in \(Q' \), we have the cycle \(\epsilon(b^*)b^*q \), where \(q \) is the path \(j_s \to j_{s-1} \to \cdots \to j_u \). The relation \(\partial_a W \) corresponding to the arrow \(i_r \xrightarrow{b} j_s \) is one of the following four possibilities up to sign.

 (i) \(b^*p - qb^* \), if both \(j_s \xrightarrow{b^*} i_t \) and \(j_u \xrightarrow{b^*} i_r \) exist,
 (ii) \(b^*p \), if \(j_s \xrightarrow{b^*} i_t \) exists, but not \(j_u \xrightarrow{b^*} i_r \),
 (iii) \(qb^* \), if \(j_u \xrightarrow{b^*} i_r \) exists, but not \(j_s \xrightarrow{b^*} i_t \),
 (iv) 0, if neither \(j_s \xrightarrow{b^*} i_t \) nor \(j_u \xrightarrow{b^*} i_r \) exist.
In each case, both $T_{j_s} \xrightarrow{b^*p} T_{i_r}$ and $T_{j_s} \xrightarrow{qb^*} T_{i_r}$ are given by multiplication with b^* by Lemma 6.1. Thus the cases (i) and (iv) are clear. For the case (ii), there is no vertex j_u of type j satisfying $|j_u| < |i_r|$. Since then T_{i_r} has no composition factor S_j, we have that $T_{j_s} \xrightarrow{b^*p} T_{i_r}$ is zero. For the case (iii), there exists an arrow $j_s \xrightarrow{b^*} i_t$ in Q' such that T_{i_t} is a projective Λ_{w}-module. Thus $T_{j_s} \xrightarrow{qb^*} T_{i_r}$ is equal to $T_{j_s} \xrightarrow{b^*p} T_{i_r}$ which is zero in C.

(2) Consider an arrow $i_r \xrightarrow{a} i_{r-1}$ going to the left in Q'.
By definition of W we have
\[
\partial_a W = \sum_b \epsilon(b) pbb^* q,
\]
where b is an arrow in Q satisfying the condition in Lemma 6.2(b) and the additional condition that the path pbb^*q is in Q'. In this case the map $T_{i_{r-1}} \xrightarrow{\epsilon(b) pbb^* q} T_{i_r}$ is given by multiplication with $\epsilon(b) bb^*$ by Lemma 6.2(b).

If b is an arrow in Q satisfying the condition in Lemma 6.2(b) and the path pbb^*q is not in Q', then the map $T_{i_{r-1}} \xrightarrow{\epsilon(b) pbb^* q} T_{i_r}$ is zero in C and equal to the map which is multiplication with $\epsilon(b) bb^*$.

If b is an arrow in Q which does not satisfy the condition in Lemma 6.2(b), then the multiplication map $T_{i_{r-1}} \xrightarrow{b^*} T_{i_r}$ is zero by Lemma 6.2(a).

Consequently the map $T_{i_{r-1}} \xrightarrow{\partial_a W} T_{i_r}$ is equal to multiplication with $\sum_{b \in \mathcal{T}_i} \epsilon(b) bb^*$, which is zero by the definition of the preprojective algebra. □

Now we are ready to prove the main result in this section.

Theorem 6.4. Let Q be a finite quiver without loops and W_Q the Coxeter group associated with Q. Let Λ be the preprojective algebra over the algebraically closed field K and $w \in W_Q$. Let T be a cluster-tilting object associated with a reduced expression of w in the 2-CY triangulated category $\mathcal{C} = \text{Sub} \Lambda_{w}$. Then the 2-CY-tilted algebra $\text{End}_{\mathcal{C}}(T)$ is given by the QP (Q', W) above.

Proof. By Proposition 6.3 we have that $\text{End}_{\mathcal{C}}(T)$ is a factor algebra of the Jacobian algebra $\mathcal{P}(Q', W)$. We want to apply Proposition 4.6.

We first claim that each cycle C in W is full. Recall that C is of the form

```
\[
\begin{array}{cccccc}
  & i_u & \cdots & \cdots & i_{r-1} & i_r \\
\end{array}
\]
```

There are no more arrows between the vertices of type i in C. Further i_r is the unique vertex of type i where there is an arrow from j_s, and i_u is the unique vertex of type i with an arrow to j_s. This shows that C is full.

For any cycle C of W and any arrow a in C, it is clear from the definition of W that the path $\partial_a C$ determines a. Hence for any distinct arrows a and b contained in cycles of W, we have that $\partial_a W$ and $\partial_b W$ do not have common paths. Consequently the $\partial_a W$ for all arrows a contained in cycles of W are linearly independent over K.

Since $\Gamma = \text{End}_{\mathcal{C}}(T)$ is 2-CY-tilted, it follows from [KRI] that $\dim K \text{Ext}_T^1(S, S') \leq \dim K \text{Ext}_T^1(S', S)$ for simple $\text{End}_{\mathcal{C}}(T)$-modules S and S'. It now follows from Proposition 4.6 that $\text{End}_{\mathcal{C}}(T)$ is isomorphic to the Jacobian algebra $\mathcal{P}(Q', W)$. □

Since the 2-CY categories $\text{Sub} \Lambda_{w}$ with the cluster-tilting objects determine a cluster structure [BIR], we have the following consequence of Corollary 5.10.
Corollary 6.5. With the previous notation, all the 2-CY-tilted algebras belonging to the mutation class of cluster-tilting objects associated with reduced expressions are given by QP’s.

We now show that the potential \(W \) is rigid.

Theorem 6.6. With the previous notation, the potential \(W \) on \(Q' \) is rigid.

Proof. Let \(C \) be any cycle in the quiver \(Q' \). We want to show that \(C \) belongs to \(\mathcal{J}(W) \) up to cyclic equivalences.

We say that a vertex \(v \) in \(C \) is a right turning point if an arrow in \(C \) going from left to right ends at \(v \), and an arrow in \(C \) going from right to left starts at \(v \). Then define \(r(C) = \sum_v 3^{|v|} \), where we sum over all right turning points \(v \) of \(C \).

Consider a vertex \(i_u \) on \(C \), with \(|i_u| \) minimal. Consider the last right turning point \(i_v \) preceding \(i_u \), and let \(j_s \to i_v \) be the preceding arrow in \(C \). Since \(|i_u| < |j_s| < |i_v| \), we can choose \(i_r \) with \(|i_r| < |j_s| < |i_r+1| \).

Assume first that there is some \(j_t \) with \(|j_t| < |i_r| \). Then there is an arrow \(j_t \to i_t \) if \(j_t \) is chosen with \(|j_t| \) largest possible. We have the following subquiver of \(Q' \):

\[
\begin{array}{ccccccccccc}
 & & i_u & & \cdots & & i_r & i_{r+1} & \cdots & & i_v \\
& & \downarrow & & \cdots & & \downarrow & & \cdots & & \downarrow \\
& & -b & & i_t & & \cdots & & i_{r+1} & & \cdots & & i_v \\
& & \uparrow & & \cdots & & \uparrow & & \cdots & & \uparrow \\
& & & & j_t & & \cdots & & j_s & & \cdots & & \\
\end{array}
\]

The composition \(j_s \to i_t \to i_{s-1} \to \cdots \to i_r \) coincides with the composition \(j_s \to j_{s-1} \to \cdots \to j_t \to i_r \) by Lemma 6.1. So we replace the first path by the second one to get a new cycle \(C' \) satisfying \(C - C' \in \mathcal{J}(W) \). The right turning point \(i_v \) in \(C \) is replaced by at most two right turning points \(i_r \) and \(j_s \) in \(C' \), where \(|i_r| < |i_v| \) and \(|j_s| < |i_v| \), and hence \(3^{|i_v|} + 3^{|j_s|} < 3^{|i_v|} \). This shows that \(r(C') < r(C) \), and we are done by induction.

Assume now that there is no \(j_t \) with \(|j_t| < |i_r| \). Then \(T_{i_r} \) has no composition factor \(S_j \), so the composition \(T_{i_r} \to \cdots \to T_{i_t} \) must be 0. Hence \(C \in \mathcal{J}(W) \) in this case.

Note that it follows from [DWZ1] that all the potentials in the mutation class of \((Q', W) \) are rigid, and hence we obtain a large class of rigid QP’s. Some examples of rigid QP’s where the quiver \(Q \) is not mutation equivalent to an acyclic quiver were given in [DWZ1].

We end this subsection with a similar description of the (non-stable) endomorphism algebra \(\text{End}_A(T) \) for a cluster-tilting object \(T \) in the 2-CY Frobenius category \(\text{Sub} \Lambda_w \) associated with a reduced expression of \(w \). For this we shall generalize Jacobian algebras of QP’s.

Definition 6.7. We call a triple \((Q, W, F)\) a QP with frozen vertices if \((Q, W)\) is a QP and \(F\) is a subset of \(Q_0\). We define the associated Jacobian algebra by

\[
\mathcal{P}(Q, W, F) = \overline{KQ}/\mathcal{J}(W, F),
\]

where \(\mathcal{J}(W, F)\) is the closure

\[
\mathcal{J}(W, F) = \overline{\langle \partial_a W \mid a \in Q_1, s(a) \notin F, e(a) \notin F \rangle}
\]

with respect to the \(J_{\overline{KQ}}\)-adic topology.

Let \(w = s_{u_1} \cdots s_{u_m} \) be a reduced expression. Let \(T \) be the associated cluster-tilting object in \(\text{Sub} \Lambda_w \) and \(Q' = Q(u_1, \ldots, u_m) \) the associated quiver. We define a potential \(W' \) of \(Q' \) as follows. For each arrow \(i_r \to j_s \) in \(Q' \), we let \(W'_p = e(b)bb^{*}p \)
if there is a (unique) arrow \(j_s \to i_t \) in \(Q' \), where \(p \) denotes the path \(i_t \to i_{t-1} \to \cdots \to i_r \). Otherwise we let \(W'_b = 0 \). Then let
\[
W' = \sum_{b \in Q'_i} W'_b.
\]

Let \(F \) be the set of vertices in \(Q' \) which is not contained in \(Q' \). Then we have a QP \((Q', W', F)\) with frozen vertices.

We have the following analogue of Theorem 6.4.

Theorem 6.8. \(\text{End}_\Lambda(T) \) is isomorphic to \(\mathcal{P}(Q', W', F) \).

We omit the proof since it is quite similar to that of Theorem 6.4.

7. **Nearly Morita equivalence for neighboring Jacobian algebras**

Let \(T \) be a cluster-tilting object in a triangulated 2-CY category \(\mathcal{C} \), and \(T^* = \mu_k(T) \) another cluster-tilting object obtained by mutation. Then we have a nearly Morita equivalence between \(\Lambda = \text{End}_\mathcal{C}(T) \) and \(\Lambda' = \text{End}_\mathcal{C}(T^*) \), that is an equivalence \(\text{mod } \Lambda \to \text{add } S_k \) \(\text{mod } \Lambda' \to \text{add } S'_k \), where \(S_k \) and \(S'_k \) denote the simple modules at the vertex \(k \). This generalizes the equivalence of \([\text{BGP}] \) using reflection functors at sinks or sources. Since there are Jacobian algebras which are not 2-CY-tilted, it is natural to ask if we have a nearly Morita equivalence in general when performing mutations of potentials. It is the aim of this section to show that this is the case, when working with finite length modules.

Let \((Q, W) \) be a quiver with potential and \(\Lambda = \mathcal{P}(Q, W) \) the associated Jacobian algebra. Denote by \(\tilde{\mu}_k(Q, W) \) the quiver with potential and \(\Lambda' = \mathcal{P}(\tilde{\mu}_k(Q, W)) \) the Jacobian algebra obtained by mutation at the vertex \(k \). We show that there is an equivalence of categories \(f. l. \Lambda \to f. l. \Lambda' \), where \(S_k \) and \(S'_k \) denote the simple modules at the vertex \(k \).

Our starting point is the map \(G \) from objects in \(f. l. \Lambda \) to objects in \(f. l. \Lambda' \) used in \([\text{DWZ1}] \), which we now recall.

Given an \(\Lambda \)-module \(M \) and a vertex \(k \), we let \(a_1, ..., a_s \) be all arrows in \(Q \) with \(e(a_p) = k \) and \(b_1, ..., b_t \) be all arrows such with \(s(b_q) = k \). We write
\[
M_{in} = \bigoplus_{p=1}^{s} M_{e(a_p)}, \quad M_{out} = \bigoplus_{q=1}^{t} M_{s(b_q)}.
\]

Let \(\alpha: M_{in} \to M_k \) and \(\beta: M_k \to M_{out} \) be the maps given in matrix form by
\[
\alpha = (a_1, ..., a_s), \quad \beta = \begin{pmatrix} b_1 \\ \vdots \\ b_t \end{pmatrix}.
\]

Also, using the potential \(W \), we define a map \(\gamma: M_{out} \to M_{in} \)
\[
\gamma = \begin{pmatrix} \gamma_{1,1} & \cdots & \gamma_{1,t} \\ \vdots & \ddots & \vdots \\ \gamma_{s,1} & \cdots & \gamma_{s,t} \end{pmatrix}
\]
where \(\gamma_{p,q} = \partial(a_p, b_q) W \) in the notation of section 4. Thus, locally, we get a triangle
\[
\begin{array}{c}
\alpha \\
M_k \\
\beta \\
\end{array} \xleftarrow{\gamma} \begin{array}{c}
M_{in} \\
M_{out} \\
\end{array}
\]
Note that $\gamma_{p,q}$ is a linear combination of paths in Q from $e(b_q)$ to $s(a_p)$, and that there may be other paths from M_{out} to M_{in}.

Now, starting with M, we define a representation \tilde{M} of $\Lambda' = \mathcal{P}(\mu_k(Q,W))$ as follows: first, we let $i: \text{Ker} \gamma \to M_{\text{out}}$ be the inclusion and $\varphi: \text{Ker} \alpha \to \text{Ker} \alpha_{\text{Im} \gamma}$ the natural surjection, and choose two K-linear splittings,

$\rho: M_{\text{out}} \to \text{Ker} \gamma$ such that $i \rho = \text{id}_{\text{Ker} \gamma}$, and

$\sigma: \text{Ker} \alpha_{\text{Im} \gamma} \to \text{Ker} \alpha$ such that $\sigma \varphi = \text{id}_{\text{Ker} \alpha_{\text{Im} \gamma}}$.

Then, locally, the representation \tilde{M} is given by:

$$
\tilde{M}_{\text{out}} = \text{Ker} \gamma_{\text{Im} \beta} \oplus \text{Im} \gamma \oplus \text{Ker} \alpha_{\text{Im} \gamma}, \quad \tilde{\alpha} = (-\rho \pi, -\gamma, 0) \quad \text{and} \quad \tilde{\beta} = \begin{pmatrix} 0 \\ \iota \\ \sigma \end{pmatrix},
$$

where $\iota: \text{Im} \gamma \to \text{Ker} \alpha$ is the natural injection and $\pi: \text{Ker} \gamma \to \text{Ker} \gamma_{\text{Im} \beta}$ is the natural projection.

By [DWZ1, Proposition 10.7], this makes \tilde{M} a representation of Λ'. Moreover, by [DWZ1, Proposition 10.9], the isomorphism class of \tilde{M} does not depend on the choice of the splittings ρ and σ.

We next want to define an associated map on morphisms. Assume that we have two representations M and M' of Λ, and a map $f: M \to M'$, that is locally a commutative diagram

$$
\begin{array}{ccc}
M & \xrightarrow{f} & M' \\
\downarrow & & \downarrow \\
M' & \xrightarrow{f'} & M''
\end{array}
$$

(16)
We want to define a map $\tilde{M} \to \tilde{M}'$. To do so, we need to define a map $\tilde{f}_k : \tilde{M}_k \to \tilde{M}'_k$ such that the squares of the following diagram commute:

\[\begin{array}{ccc}
\tilde{M} & \xrightarrow{f_k} & \tilde{M}'_k \\
\downarrow & & \downarrow \\
\tilde{M}' & \xrightarrow{\tilde{f}_k} & \tilde{M}'_k
\end{array} \]

Remark From the first diagram we have induced maps $\text{Ker} \gamma \to \text{Ker} \gamma'$, $\text{Ker} \alpha \to \text{Ker} \alpha'$, $\text{Im} \gamma \to \text{Im} \gamma'$, $\text{Im} \beta \to \text{Im} \beta'$, $\text{Ker} \gamma \text{Im} \beta \to \text{Ker} \gamma'$ and $\text{Ker} \alpha \text{Im} \gamma \to \text{Ker} \alpha'$.

This again induces componentwise a natural map $\tilde{M}_k \to \tilde{M}'_k$. However, this map turns out not to work for our purposes, as the following example shows.

Example Consider the Jacobian algebra $\mathcal{P}(Q, W)$ given by the quiver

\[
\begin{array}{ccc}
\circ & \xrightarrow{\alpha} & \circ \\
\downarrow & & \downarrow \\
\circ & \xrightarrow{\beta} & \circ \\
\downarrow & & \downarrow \\
\circ & \xrightarrow{\gamma} & \circ
\end{array}
\]

and the potential $W = \alpha \beta \gamma$. Then $\mu_k(\mathcal{P}(Q, W)) = (\tilde{Q}, \tilde{W})$, where \tilde{Q} is the quiver

\[
\begin{array}{ccc}
\circ & \xrightarrow{\gamma} & \circ \\
\downarrow & & \downarrow \\
\circ & \xrightarrow{[\alpha \beta]} & \circ \\
\downarrow & & \downarrow \\
\circ & \xrightarrow{\tilde{\beta}} & \circ
\end{array}
\]

and \tilde{W} is the potential $[\alpha \beta] \gamma + [\alpha \beta] \tilde{\alpha} \tilde{\beta}$. Consider a nonzero map between $\mathcal{P}(Q, W)$-modules

\[
\begin{array}{ccc}
0 & \xrightarrow{\text{id}} & K \\
\uparrow & & \downarrow \\
K & \xrightarrow{0} & K
\end{array}
\]

The image of this map in f.l. $\mathcal{P}(\tilde{Q}, \tilde{W})$ would be

\[
\begin{array}{ccc}
(0, K, 0) & \xrightarrow{h} & (0, 0, K) \\
\uparrow & & \downarrow \\
K & \xrightarrow{0} & K
\end{array}
\]

where h is the zero-map, which indicates that this is not the map we are looking for.
In view of the above, we now proceed to define a new map. Considering the expression

\[
\frac{\text{Ker } \gamma}{\text{Im } \beta} \oplus \frac{\text{Im } \gamma}{\text{Im } \gamma}
\]

we observe that the two first terms extend to \(\text{Cok } \beta\), while the two last terms extend to \(\text{Ker } \alpha\). We have a natural induced map \(\text{Cok } \beta \to \text{Ker } \alpha\). Taking these features into account we consider the knitting of short exact sequences

\[
\begin{array}{c}
0 \\
\xrightarrow{\gamma} \text{Ker } \gamma \xrightarrow{i} \text{Cok } \beta \xrightarrow{\gamma_k} \text{Ker } \alpha \xrightarrow{\varphi} \text{Ker } \alpha \xrightarrow{i} \text{Im } \gamma \\
\xrightarrow{\gamma} \text{Im } \gamma \\
\end{array}
\]

Moreover, \(\tilde{i} : \frac{\text{Ker } \gamma}{\text{Im } \beta} \to \text{Cok } \beta\) and \(\tilde{\gamma} : \text{Cok } \beta \to \text{Im } \gamma\) are the induced maps.

Considering the induced map \(\tilde{\rho} : \text{Cok } \beta \to \frac{\text{Ker } \gamma}{\text{Im } \beta}\), we get a knitting of (\(K\)-split) short exact sequences

\[
\begin{array}{c}
0 \\
\xrightarrow{\gamma} \frac{\text{Ker } \gamma}{\text{Im } \beta} \xrightarrow{i} \text{Cok } \beta \xrightarrow{\gamma_k} \text{Ker } \alpha \xrightarrow{\varphi} \text{Ker } \alpha \xrightarrow{i} \text{Im } \gamma \\
\xrightarrow{\gamma} \text{Im } \gamma \\
\end{array}
\]

where the maps \(\rho\) and \(\sigma\) are induced from the splittings \(\tilde{\rho}\) and \(\sigma\) respectively, so that \(\text{id}_{\text{Cok } \beta} = \tilde{\rho} + \tilde{\gamma}j\) and \(\text{id}_{\text{Ker } \alpha} = \varepsilon\varphi + \varphi\sigma\).

The idea is then to use the diagram

\[
\begin{array}{c}
\frac{\text{Ker } \alpha}{\text{Im } \gamma} \oplus \frac{\text{Im } \gamma}{\text{Im } \gamma} \\
\xrightarrow{\text{Ker } \alpha} \text{Cok } \beta \xrightarrow{\gamma_k} \text{Ker } \alpha \xrightarrow{\varphi} \frac{\text{Ker } \alpha}{\text{Im } \gamma} \\
\xrightarrow{\gamma} \text{Im } \gamma \\
\end{array}
\]

where \(\tilde{f}_\text{out}\) is the induced quotient map and where the middle part commutes, that is

\[
\iota \circ f_\text{in} \circ \varphi' = j \circ \tilde{f}_\text{out} \circ \gamma'.
\]

We let

\[
\tilde{f}_k = \begin{pmatrix}
\tilde{i} \circ \tilde{f}_\text{out} \circ \tilde{\rho}' & \tilde{i} \circ \tilde{f}_\text{out} \circ \tilde{\gamma}' & 0 \\
0 & \tilde{i} \circ \tilde{f}_\text{out} \circ \tilde{\rho}' & 0 \\
0 & \tilde{i} \circ \tilde{f}_\text{out} \circ \tilde{\gamma}' & 0 \\
\end{pmatrix} = \begin{pmatrix}
\tilde{i} \circ \tilde{f}_\text{out} \circ \tilde{\rho}' & 0 & 0 \\
j \circ \tilde{f}_\text{out} \circ \tilde{\rho}' & \tilde{i} \circ \tilde{f}_\text{out} \circ \tilde{\gamma}' & 0 \\
0 & \tilde{i} \circ \tilde{f}_\text{out} \circ \tilde{\gamma}' & 0 \\
\end{pmatrix}
\]

since \(i \circ f_\text{in} \circ \varphi' = 0\) and \(\tilde{i} \circ \tilde{f}_\text{out} \circ \tilde{\gamma}' = 0\). It is however often convenient to use the first expression of \(\tilde{f}_k\).
We need to verify that $\tilde{\beta} \circ f_{\text{in}} = \tilde{f}_k \circ \tilde{\beta}'$ and $\tilde{\alpha} \circ \tilde{f}_k = f_{\text{out}} \circ \tilde{\alpha}'$.

First,

$$\tilde{f}_k \circ \tilde{\beta}' = \begin{pmatrix} \tilde{i} \circ f_{\text{out}} \circ \tilde{\rho}' & \tilde{i} \circ f_{\text{out}} \circ \tilde{\gamma}' & 0 \\ j \circ f_{\text{out}} \circ \tilde{\rho}' & \tilde{\iota} \circ f_{\text{in}} \circ \varepsilon' & \tilde{\iota} \circ f_{\text{in}} \circ \varphi' \\ 0 & \sigma \circ f_{\text{in}} \circ \varepsilon' & \sigma \circ f_{\text{in}} \circ \varphi' \end{pmatrix} \begin{pmatrix} 0 \\ \iota' \\ \sigma' \end{pmatrix}$$

$$= \begin{pmatrix} \tilde{\iota} \circ f_{\text{in}}(\varepsilon' \circ \iota' + \varphi' \circ \sigma') \\ \sigma \circ f_{\text{in}}(\varepsilon' \circ \iota' + \varphi' \circ \sigma') \end{pmatrix}$$

$$= \begin{pmatrix} \tilde{\iota} \circ f_{\text{in}} \\ \sigma \circ f_{\text{in}} \end{pmatrix}$$

$$= \tilde{\beta} \circ f_{\text{in}}$$

On one hand, we have

$$f_{\text{out}} \circ \tilde{\alpha}' = (-f_{\text{out}} \circ \rho' \circ \pi', -f_{\text{out}} \circ \gamma', 0).$$

On the other hand,

$$\tilde{\alpha} \circ \tilde{f}_k = (-\rho \pi, -\gamma, 0) \begin{pmatrix} \tilde{i} \circ f_{\text{out}} \circ \tilde{\rho}' & 0 & 0 \\ j \circ f_{\text{out}} \circ \tilde{\rho}' & \tilde{\iota} \circ f_{\text{in}} \circ \varepsilon' & 0 \\ 0 & \sigma \circ f_{\text{in}} \circ \varepsilon' & \sigma \circ f_{\text{in}} \circ \varphi' \end{pmatrix}$$

$$= (-\rho \circ \pi \circ \tilde{i} \circ f_{\text{out}} \circ \tilde{\rho}' - \gamma \circ j \circ f_{\text{out}} \circ \tilde{\rho}', -\gamma \circ i \circ f_{\text{in}} \circ \varepsilon', 0)$$

Since $-\gamma \circ j \circ f_{\text{in}} \circ \varepsilon' = -\gamma \circ f_{\text{in}} \circ \varepsilon' = -\gamma \circ f_{\text{in}} = -f_{\text{out}} \circ \gamma'$, it suffices (to get $\tilde{\alpha} \circ \tilde{f}_k = f_{\text{out}} \circ \tilde{\alpha}'$) to show that

$$-\rho \circ \pi \circ \tilde{i} \circ f_{\text{out}} \circ \tilde{\rho}' - \gamma \circ j \circ f_{\text{out}} \circ \tilde{\rho}' = -f_{\text{out}} \circ \rho' \circ \pi'.$$

But, by the definition of $\tilde{\rho}$ and $\tilde{\gamma}$, the diagrams

$$\begin{array}{ccc}
M_{\text{out}} & \xrightarrow{\rho} & \text{Ker} \gamma \\
\pi & \downarrow & \pi \\
\text{Cok} \beta & \xrightarrow{\tilde{\rho}} & \text{Ker} \gamma
\end{array} \quad \text{and} \quad \begin{array}{ccc}
M_{\text{out}} & \xrightarrow{\gamma} & \text{Im} \gamma \\
\pi & \downarrow & \pi \\
\text{Cok} \beta & \xrightarrow{\tilde{\gamma}} & \text{Im} \beta
\end{array}$$

are commutative (where, by abuse of notation, we also denote by π the natural projection $M_{\text{out}} \to \text{Cok} \beta$). Therefore,

$$-\rho \circ \pi \circ \tilde{i} \circ f_{\text{out}} \circ \tilde{\rho}' - \gamma \circ j \circ f_{\text{out}} \circ \tilde{\rho}' = -(\rho \circ \pi \circ \tilde{i} \circ j \circ f_{\text{out}} \circ \tilde{\rho}')$$

$$= -(\rho \circ \pi \circ \tilde{i} \circ j \circ \gamma \circ j \circ f_{\text{out}} \circ \tilde{\rho}')$$

$$= -(\rho \circ \tilde{i} \circ \gamma \circ j \circ f_{\text{out}} \circ \tilde{\rho}')$$

$$= -(\rho \circ \tilde{i} \circ \gamma \circ j \circ f_{\text{out}} \circ \tilde{\rho}')$$

$$= -(\pi \circ \text{id}_{\text{Cok} \beta} \circ f_{\text{out}} \circ \rho')$$

$$= -f_{\text{out}} \circ \rho' \circ \pi'$$

where the last equality follows from the commutativity of

$$\begin{array}{ccc}
M_{\text{out}} & \xrightarrow{f_{\text{out}}} & M_{\text{out}}' \\
\pi & \downarrow & \pi \\
\text{Cok} \beta & \xrightarrow{\tilde{f}_{\text{out}}} & \text{Cok} \beta'
\end{array} \quad \begin{array}{ccc}
M_{\text{out}}' & \xrightarrow{\rho'} & \text{Ker} \gamma' \\
\pi' & \downarrow & \pi' \\
\text{Cok} \beta' & \xrightarrow{\tilde{\rho}'} & \text{Ker} \gamma'
\end{array}$$

Note that the image \tilde{f} apparently depends on the choice of the choice of splittings ρ, σ, ρ' and σ'. However, we only aim to show that we obtain a functor $f.1.\Lambda \to \text{add} S_k$.
In [DWZW1] it is proved that different choice of splittings will give isomorphic objects, and for each vertex \(i \neq k \), the isomorphism is given by \(\text{id}: M_i \rightarrow \tilde{M}_i \). Therefore, different choices of splittings will give maps which are equal in \(f.l. \Lambda' [\text{add } S_k] \).

So, we get a well defined map of morphisms from \(f.l. \Lambda \) to \(f.l. \Lambda' [\text{add } S_k] \).

We next want to show that the definition of \(G \) on objects and morphisms from \(f.l. \Lambda \) to \(f.l. \Lambda' [\text{add } S_k] \) actually gives rise to a functor, and that we get an induced equivalence

\[
\begin{align*}
[f.l. \Lambda \text{ [add } S_k]] & \rightarrow [f.l. \Lambda' \text{ [add } S_k]] .
\end{align*}
\]

We first observe that for \(M \) in \(f.l. \Lambda \) we have \(F(\text{id}_M) = \text{id}_{FM} \). This follows from \(\sigma \varphi = \text{id}_{\text{Ker} \alpha} \text{Im} \gamma, \tilde{\rho} = \text{id}_{\text{Ker} \gamma} \text{Im} \beta \) and \(\varepsilon = \text{id}_{\text{Im} \gamma} \). Then, let \(f: M \rightarrow M' \) and \(f': M' \rightarrow M'' \) be two maps in \(f.l. \Lambda \). We will compare \(\tilde{f} \circ \tilde{f}' \) and \(\tilde{f} \circ \tilde{f}' \). By construction, these maps are obtained from the following diagrams:
and easy computations show that, locally, the morphism $\tilde{f} \circ \tilde{f}' - \tilde{f} \circ \tilde{f}'$ is given by

$$\begin{array}{ccc}
\text{Ker} \gamma \\ \oplus \\ \text{Im} \gamma \\
\oplus \\
\text{Ker} \alpha \\
\oplus \\
\text{Im} \gamma \\
\oplus \\
\text{Ker} \alpha \\
\oplus \\
\text{Im} \gamma \\
\oplus \\
\text{Ker} \alpha \\
\oplus \\
\text{Im} \gamma \\
\oplus \\
\text{Ker} \alpha
\end{array}$$

where $F_k = \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
\sigma & \circ & f_{in} \circ e' \circ f'_{out} \circ \tilde{\rho}' & 0 & 0
\end{pmatrix}$. Therefore, the image of $\tilde{f} \circ \tilde{f}' - \tilde{f} \circ \tilde{f}'$ lies in $\text{add} S'_k$, showing that we have a functor $f.\Lambda \to f.\Lambda'$. We have $F(S_k) = 0$, hence there is a functor

$$\begin{array}{ccc}
\text{add} S_k \\
\rightarrow \\
\text{add} S'_k
\end{array}$$

We now verify that this functor is an equivalence. By (the proof of) [DWZ1, Theorem 10.13], this functor is a bijection at the level of representations: in particular it is dense. To show that it is a bijection at the level of the morphisms, suppose that we have a morphism of representations as in diagram (16). By construction $\tilde{\sim}$ is of the form:

By [DWZ1], M is isomorphic to the reduced form $\mu_k(M)$ of \tilde{M}. To obtain this reduced form, one applies three steps; see [DWZ1, Theorem 5.7, Steps 1-3]. It turns out that only the first step has an impact on α, β and γ, and this modification consists of changing the map β to $-\beta$. So, applying these steps does not change the commutativity of the above diagram, saying that after the reduction, \tilde{f} is still a morphism for the reduced representation.

Now, since $f - \tilde{f}$ is (possibly) not zero only at position k, then f and \tilde{f} coincide in $\text{add} S'_k$, showing the bijection at the level of morphisms.

Hence we have proved the following.
Theorem 7.1. The Jacobian algebras \(\Lambda = \mathcal{P}(Q, W) \) and \(\Lambda' = \mathcal{P}(\mu_k(Q', W')) \) are nearly Morita equivalent.

For Jacobi-finite QP's this result can be obtained with a very different approach by combining the result of [A] saying that these algebras are 2-CY-tilted with the corresponding result for 2-CY-tilted algebras [BMRI], [KRI].

References

[A] Amiot C. Cluster categories for algebras of global dimension 2 and quivers with potential, arXiv:0805.1035
[ABS] Assem I., Brüstle T., Schiffler R. Cluster-tilted algebras as trivial extensions, Bull. London Math. Soc. 40 (2008), no.1, 151–162
[APR] Auslander M, Platzeck M.I., Reiten I. Coxeter functors without diagrams, Trans. Amer. Math. Soc. 259 (1979), 1–46
[BGP] Bernstein I.N., Gelfand I.M., Ponomarev V.A. Coxeter functors, and Gabriel's theorem, Uspehi Mat. Nauk 28 (1973), no.2 (170), 19–33
[Boc] Bocklandt R. Graded Calabi-Yau algebras of dimension 3, J. Pure Appl. Algebra 212, (2008), no.1, 14–32
[Bon] Bongartz K. Algebras and quadratic forms, J. London Math. Soc. (2) 28 (1983), no.3, 461–469
[BG] Bongartz K., Gabriel P. Covering spaces in representation-theory, Invent. Math. 65 (1981/82), no. 3, 331–378
[BIRS] Buan A., Iyama O., Reiten I., Scott J. Cluster structures for 2-Calabi-Yau categories and unipotent groups, arXiv:math/0701557
[BMRI] Buan A., Marsh R., Reiten I. Cluster-tilted algebras, Trans. Amer. Math. Soc. 359 (2007), no. 1, 323–332
[BMRR] Buan A., Marsh R., Reineke M., Reiten I., Todorov G. Tilting theory and cluster combinatorics, Adv. Math. 204 (2006), no. 2, 572–618
[BR] Buan A., Reiten I. From tilted to cluster-tilted algebras of Dynkin type, preprint arxiv:math/0510445
[BKR] Burban I., Iyama O., Keller B. Cluster tilting for one-dimensional hypersurface singularities, Adv. Math. 217 (2008), no. 6, 2443–2484.
[CR] Chuang J., Rouquier R., in progress
[DWZ1] Derksen H., Weyman J., Zelevinsky A. Quivers with potentials and their representations I: Mutations, arXiv:0704.0649, to appear in Selecta Math. (N.S.)
[DWZ2] Derksen H., Weyman J., Zelevinsky A. Quivers with potentials and their representations II, in preparation
[FZ] Fomin S., Zelevinsky A. Cluster Algebras I: Foundations, J. Amer. Math. Soc. 15, no. 2 (2002), 497–529
[GLS1] Geiss C., Leclerc B., Schröer J. Rigid modules over preprojective algebras, Invent. Math. 165 (2006), no. 3, 589–632
[GLS2] Geiss C., Leclerc B., Schröer J. Cluster algebra structures and semicanonical bases for unipotent groups, arXiv:math/0703039
[G] Ginzburg V. Calabi-Yau algebras, arXiv:math/0612139
[H] Happel D. Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series, 119. Cambridge University Press, Cambridge, 1988
[HU] Happel D., Unger L. On the set of tilting objects in hereditary categories, Representations of algebras and related topics, Fields Inst. Commun., 45, Amer. Math. Soc., Providence, RI, , 141–159, (2005)
[IT1] Igusa K., Todorov G. Radical layers of representable functors, J. Algebra 89 (1984), no. 1, 105–147
[IT2] Igusa K., Todorov G. A characterization of finite Auslander-Reiten quivers, J. Algebra 89 (1984), no. 1, 148–177.
[I] Iyama O. \(\tau \)-categories. I,II,III. Algebr. Represent. Theory 8 (2005), no. 3, 297–321; ibid. 8 (2005), no. 4, 449–477; ibid. 8 (2005), no. 5, 601–619
[I2] Iyama O. Higher-dimensional Auslander-Reiten theory on maximal orthogonal subcategories, Adv. Math. 210 (2007), no. 1, 22–50
[I3] Iyama O. Cluster tilting in 2-Calabi-Yau categories II, Oberwolfach Report no. 9 (2008), 410–414
[IR] Iyama O., Reiten I. Fomin-Zelevinsky mutation and tilting modules over Calabi-Yau algebras, Amer. J. Math. 130 (2008), no. 4, 1087–1149
[IY] Iyama O., Yoshino Y. Mutation in triangulated categories and rigid Cohen-Macaulay modules, Invent. Math. 172 (2008), no. 1, 117–168
[K1] Keller B. On triangulated orbit categories, Doc. Math. 10 (2005), 551–581
[K2] Keller B. Calabi-Yau triangulated categories, preprint.
[K3] Keller B. CY-completions and their duals, in preparation
[KR1] Keller B., Reiten I. Cluster-tilted algebras are Gorenstein and stably Calabi-Yau, Adv. Math. 211 (1), (2007), 123–151
[KR2] Keller B., Reiten I. Acyclic Calabi-Yau categories, preprint [arxiv:math.RT/0610594] to appear in Compos. Math.
[KY] Keller B., Yang D. Quiver mutation and derived equivalence, in preparation.
[MRZ] Marsh R., Reineke M., Zelevinsky A. Generalized associahedra via quiver representations, Trans. Amer. Math. Soc. 355 (2003), no. 10, 4171–4186
[Re] Reiten I. Cluster tilting in 2-Calabi-Yau categories I, Oberwolfach Report no. 9 (2008), 407–410
[Rie] Riedtmann C. Algebren, Darstellungskocher, Uberlagerungen und zuruck, Comment. Math. Helv. 55 (1980), no. 2, 199–224
[Rin] Ringel C.M. Some Remarks Concerning Tilting Modules and Tilted Algebras. Origin. Relevance. Future. (An appendix to the Handbook of Tilting Theory), Cambridge University Press (2007), LMS Lecture Notes Series 332
[V] Vitoria J. Mutations Vs. Seiberg duality, arXiv:0709.3939
[Y] Yoshino Y. Universal lifts of chain complexes over non-commutative parameter algebras, arXiv:0712.3110

Institutt for matematiske fag, Norges teknisk-naturvitenskapelige universitet, N-7491 Trondheim, Norway
E-mail address: aslakb@math.ntnu.no

Graduate School of Mathematics, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
E-mail address: iyama@math.nagoya-u.ac.jp

Institutt for matematiske fag, Norges teknisk-naturvitenskapelige universitet, N-7491 Trondheim, Norway
E-mail address: idunr@math.ntnu.no

Department of Mathematics, Bishop’s University, Sherbrooke, QC, Canada, J1MOC8
E-mail address: dsmit@ubishops.ca