Extreme values of the Riemann zeta function at its critical points in the critical strip

by

SHASHANK CHORGE (Rochester, NY)

In memory of Professor Andrzej Schinzel

1. Introduction. Assuming the Riemann hypothesis (RH), Littlewood proved that

\[
\limsup_{t \to \infty} \frac{|\zeta(1 + it)|}{\log \log t} \leq 2e^{C_0},
\]

where \(C_0\) denotes Euler’s constant. He also proved unconditionally that

\[
\limsup_{t \to \infty} \frac{|\zeta(1 + it)|}{\log \log t} \geq e^{C_0}.
\]

Gonek and Montgomery obtained similar results sampling zeta at the critical points of the Riemann zeta function to the right of \(\Re s = 1\). Let \(\rho' = \beta' + i\gamma'\) denote a typical critical point of the zeta function, that is, a point where \(\zeta'(\rho') = 0\). Assuming RH, they showed that for \(\beta' \geq 1\),

\[
\limsup_{\gamma' \to \infty} \frac{|\zeta(\rho')|}{\log \log \gamma'} \leq \frac{1}{2} e^{C_0}
\]

and unconditionally, for \(\beta' > 1\), that

\[
\limsup_{\gamma' \to \infty} \frac{|\zeta(\rho')|}{\log \log \gamma'} \geq \frac{1}{4} e^{C_0}.
\]

Gonek and Montgomery mention that one of their motivations was to answer a question posed by J. G. Thompson as to whether, for any large constant \(c\), there must always be infinitely many compact connected components of the level set \(|\zeta(s)| = c\). We see from (1.3) that the answer is yes, for if we take

2020 Mathematics Subject Classification: Primary 11M26.

Key words and phrases: analytic number theory, Riemann zeta function, critical points, extreme values.

Received 22 June 2022; revised 3 January 2023 and 5 September 2023.

Published online 12 October 2023.
c to be just slightly less than $|\zeta(\rho')|$, there will be at least one compact connected component that passes close to ρ'. Furthermore, Montgomery and Thompson [4] have shown that the imaginary parts of points on a connected compact component of a level set $|\zeta(s)| = c$ will all lie in an interval of the form $[T - C \log T, T + C \log T]$ where C is an absolute constant. Thus widely-spaced critical points ρ' will give rise to disjoint compact connected components.

In this paper we obtain estimates corresponding to (1.3) and (1.4) in the right half of the critical strip.

Theorem 1. Assume RH. Let σ_1 and σ_2 be fixed with $1/2 < \sigma_1 < \sigma_2 < 1$. If $\rho' = \beta' + i\gamma'$ is any critical point of the Riemann zeta function with $\sigma_1 < \beta' < \sigma_2$, then there is a positive constant A depending on σ_1 and σ_2 such that

$$\log |\zeta(\rho')| \leq A \frac{\log^{2-2\beta'} \gamma'}{\log \log \gamma'}.$$ \hspace{1cm} (1.5)

Remark. Since we do not use any specific property of the critical points, the estimate in (1.5) is in fact true with ρ' replaced by any point $s = \sigma + it$ with $\sigma_1 < \sigma < \sigma_2$ (see, for example, Titchmarsh [8, equation (14.5.2)]), so it follows from it. We state the alternate version below.

Assume RH. Let σ_1 and σ_2 be fixed with $1/2 < \sigma_1 < \sigma_2 < 1$. Let $s = \sigma + it$ be such that $\sigma_1 < \sigma < \sigma_2$. Then there is a positive constant A depending on σ_1 and σ_2 such that

$$\log |\zeta(s)| \leq A \frac{\log^{2-2\sigma} t}{\log \log t}. \hspace{1cm} (1.6)$$

We nevertheless give a separate proof since the method we use informs the proof of our second theorem.

Theorem 2. Let σ_1 be such that $1/2 < \sigma_1 < 1$. Let $\rho' = \beta' + i\gamma'$ denote a critical point of the Riemann zeta function such that $\sigma_1 < \beta' < 1$. Then for any $\epsilon, \epsilon' > 0$ and for infinitely many ρ' with $\gamma' \to \infty$, we have unconditionally

$$\log |\zeta(\rho')| \geq (B(\sigma_1) - \epsilon') \frac{\log^{1-\beta'} \gamma'}{(\log \log \gamma')^{5-3\beta'+\epsilon}}, \hspace{1cm} (1.7)$$

where

$$B(\sigma_1) = \frac{(\sigma_1 - 1/2)^{1-\sigma_1} \log 2}{(1 - \sigma_1)^2 4^{1-\sigma_1}}. \hspace{1cm} (1.8)$$

One can ask about similar results concerning the small values of $\zeta(1+it)$. Assuming RH, Littlewood [3] showed that

$$\lim inf_{t \to \infty} \frac{|\zeta(1+it)| \log \log t}{\pi^2/12 e^{-C_0}}.$$

and Titchmarsh [7] showed unconditionally that
\[
\liminf_{t \to \infty} |\zeta(1 + it)| \log \log t \leq \frac{\pi^2}{6} e^{-C_0}.
\]
Gonek and Montgomery [1] obtained corresponding results at the critical points of the Riemann zeta function to the right of \(\Re s = 1 \). They showed unconditionally, for \(\beta' > 1 \), that
\[
\liminf_{\gamma' \to \infty} |\zeta(\rho')| \log \log \gamma' \geq \frac{\pi^2}{3} e^{-C_0},
\]
and assuming RH that
\[
\liminf_{\gamma' \to \infty} |\zeta(\rho')| \log \log \gamma' \leq \frac{2\pi^2}{3} e^{-C_0}.
\]
We prove the analogous results at the critical points \(\rho' \) in the right half of the critical strip.

Theorem 3. Assume RH. Let \(\sigma_1 \) and \(\sigma_2 \) be such that \(1/2 < \sigma_1 < \sigma_2 < 1 \). If \(\rho' = \beta' + i\gamma' \) is any critical point of the Riemann zeta function with \(\sigma_1 < \beta' < \sigma_2 \), then for some positive constant \(C \) depending on \(\sigma_1 \) and \(\sigma_2 \) we have
\[
\log |\zeta(\rho')| \geq -C \log^2 \frac{2\beta'}{\log \log \gamma'}.
\]

Remark. Since we do not use any specific property of the critical points, in Theorem 3, the estimate (1.9) is true even if we replace \(\rho' \) with a generic point \(s = \sigma + it \). We state the alternative version as follows.

Assume RH. Let \(\sigma_1, \sigma_2 \) and \(\sigma \) be such that \(1/2 < \sigma_1 < \sigma < \sigma_2 < 1 \). Then for some positive constant \(C \) depending on \(\sigma_1 \) and \(\sigma_2 \), we have
\[
\log |\zeta(s)| \geq \frac{-C \log^2 (2\sigma)}{\log \log t}.
\]

Theorem 4. Let \(\sigma_1 \) be such that \(1/2 < \sigma_1 < 1 \). Let \(\rho' = \beta' + i\gamma' \) denote a critical point of the Riemann zeta function such that \(\sigma_1 < \beta' < 1 \). Then for any \(\epsilon, \epsilon' > 0 \) and for infinitely many \(\rho' \) with \(\gamma' \to \infty \), we have unconditionally
\[
\log |\zeta(\rho')| \leq (-B(\sigma_1) + \epsilon') \frac{\log^{1-\beta'} \gamma'}{(\log \log \gamma')^{5-3\beta'+\epsilon}},
\]
where
\[
B(\sigma_1) = \frac{(\sigma_1 - 1/2)^{1-\sigma_1} \log 2}{(1 - \sigma_1)^2 4^{1-\sigma_1}}.
\]
2. Lemmas for the proof of Theorem

Lemma 1. Assume RH. Let \(\sigma_1 \) and \(\sigma_2 \) be fixed with \(1/2 < \sigma_1 < \sigma_2 < 1 \). Then for any \(\sigma \) with \(\sigma_1 \leq \sigma \leq \sigma_2 \) and any \(x \geq 2 \),

\[
\sum_{n \leq x} \frac{\Lambda(n)}{n^\sigma} = \frac{x^{1-\sigma}}{1-\sigma} + O(1),
\]

where the implied constant in the \(O \)-term depends on \(\sigma_1 \) and \(\sigma_2 \).

Proof. Let

\[
\psi(x) = \sum_{n \leq x} \Lambda(n),
\]

where \(\Lambda(n) \) is von Mangoldt’s function, that is, \(\Lambda(n) = \log p \) if \(n \) is a power of the prime \(p \) and \(\Lambda(n) = 0 \) otherwise. Assuming the Riemann hypothesis, we have

\[
\psi(x) = x + E(x),
\]

where \(E(x) \ll x^{1/2} \log^2 x \). Thus, using Stieltjes integration and integration by parts, we see that

\[
\sum_{n \leq x} \frac{\Lambda(n)}{n^\sigma} = \int_1^x \frac{d\psi(y)}{y^\sigma} = \int_1^x \frac{y^{-\sigma} dy}{y^\sigma} + \int_1^x \frac{dE(y)}{y^\sigma}
\]

\[
= \frac{x^{1-\sigma} - 1}{1-\sigma} + \frac{E(x)}{x^\sigma} + \sigma \int_1^x \frac{E(y)}{y^{\sigma+1}} dy.
\]

The last two terms are \(\ll x^{1/2-\sigma_1} \log x \cdot (1 + \frac{1}{\sigma_1-1/2}) \ll_1 1 \). Furthermore, \(1/(\sigma - 1) \ll_{\sigma_2} 1 \). Hence

\[
\sum_{n \leq x} \frac{\Lambda(n)}{n^\sigma} = \frac{x^{1-\sigma}}{1-\sigma} + O(1)
\]

with the implied \(O \)-term constant depending on \(\sigma_1 \) and \(\sigma_2 \), as asserted.

In our proofs from now on, we will not keep track as explicitly as above of the dependence of our \(O \)-term constants on the parameters \(\sigma_1 \) and \(\sigma_2 \).

Lemma 2. With the same hypotheses as in Lemma 1, we have

\[
\sum_{2 \leq n \leq x} \frac{\Lambda(n)}{n^\sigma \log n} = \frac{x^{1-\sigma}}{(1-\sigma) \log x} + O\left(\frac{x^{1-\sigma}}{\log^2 x} \right).
\]

Here the implicit \(O \)-term constant depends on \(\sigma_1 \) and \(\sigma_2 \).

Proof. Define

\[
S(y) = \sum_{n \leq y} \frac{\Lambda(n)}{n^\sigma}.
\]
From Lemma 1 we find that
\[
\sum_{n \leq x} \frac{\Lambda(n)}{n^\sigma \log n} = \frac{x}{2} \frac{dS(y)}{\log y} = \frac{S(x)}{\log x} + \frac{x}{2} \frac{S(y)}{y \log^2 y} dy
\]
\[
= \frac{x^{1-\sigma}}{(1-\sigma) \log x} + O\left(\frac{1}{\log x}\right)
\]
\[+ \int \frac{x y^{1-\sigma}}{2 y \log^2 y} dy + \int \frac{x}{2} O\left(\frac{1}{y \log^2 y}\right) dy
\]
\[= \frac{x^{1-\sigma}}{(1-\sigma) \log x} + O\left(\frac{x^{1-\sigma}}{\log^2 x}\right),
\]
where the implied constant depends on \(\sigma_1\) and \(\sigma_2\).

Lemma 3. Let \(\sigma_1\) and \(\sigma_2\) be such that \(1/2 < \sigma_1 < \sigma_2 < 1\). Then for \(\sigma_1 < \sigma < \sigma_2\),
\[
\Re \sum_{n \leq x} \frac{\Lambda(n)}{n^s \log n} \leq \frac{x^{1-\sigma}}{(1-\sigma) \log x} + O\left(\frac{x^{1-\sigma}}{\log^2 x}\right),
\]
the implied constant depending on \(\sigma_1\) and \(\sigma_2\).

Proof. We have
\[
\Re \sum_{2 \leq n \leq x} \frac{\Lambda(n)}{n^s \log n} \leq \sum_{2 \leq n \leq x} \frac{\Lambda(n)}{n^\sigma \log n} = \frac{x^{1-\sigma}}{(1-\sigma) \log x} + O\left(\frac{x^{1-\sigma}}{\log^2 x}\right)
\]
by Lemma 2.

Lemma 4. Assume RH. Let \(\sigma_1\) be such that \(1/2 < \sigma_1 < 1\) and let \(4 \leq T \leq t \leq 2T\). Then for \(\sigma_1 \leq \sigma < 1\),
\[
\frac{-\zeta'(s)}{\zeta(s)} = \sum_{n \leq \log^2 T} \frac{\Lambda(n)}{n^s} + O(\log^{2-2\sigma} T).
\]
The implied constant depends at most on \(\sigma_1\).

Proof. From a theorem of Montgomery and Vaughan \[6\] (13.35), when \(s\) is not a root or a pole of a Riemann zeta function and \(x, y \geq 2\), we have
\[
-\frac{-\zeta'(s)}{\zeta(s)} = \sum_{n \leq x y} \frac{w(n) \Lambda(n)}{n^s} - \frac{(xy)^{1-s} - x^{1-s}}{(1-s)^2 \log y}
\]
\[+ \sum_{\rho} \frac{(xy)^{\rho-s} - x^{\rho-s}}{(\rho-s)^2 \log y} + \sum_{k=1}^{\infty} \frac{(xy)^{-2k-s} - x^{-2k-s}}{(2k+s)^2 \log y},
\]
where

\[w(u) = \begin{cases}
1 & \text{if } 1 \leq u \leq x, \\
1 - \frac{\log(u/x)}{\log y} & \text{if } x < u \leq xy, \\
0 & \text{if } u > xy.
\end{cases} \]

Substituting \(y = 2 \) and \(x = \log^2 T \) in the second term on the right-hand side of (2.3) and taking absolute values, we get

\[
\frac{(xy)^{1-s} - x^{1-s}}{(1-s)^2 \log y} = O \left(\frac{x^{1-\sigma}}{T^2} \right) = O \left(\frac{\log^{2-2\sigma} T}{T^2} \right).
\]

The last term on the right-hand side of (2.3) is absolutely bounded, thus \(O(1) \). To simplify the third term on the right-hand side of (2.3) we assume the Riemann hypothesis and that \(\sigma \geq \sigma_1 > 1/2 \). Substituting \(x = \log^2 T \) and \(y = 2 \), and then taking absolute values, we find that

\[
\sum_{\rho} \frac{(xy)^{\rho-s} - x^{\rho-s}}{(\rho - s)^2 \log y} = O \left(\sum_{\rho} \frac{x^{1/2-\sigma}}{|\rho - s|^2} \right) = O(x^{1/2-\sigma}\log T) = O(\log^{2-2\sigma} T).
\]

Here the final two \(O \)-term constants depend on \(\sigma_1 \). Now consider the first term on the right-hand side of (2.3):

\[
\sum_{n \leq x} w(n) \frac{\Lambda(n)}{n^s} = \sum_{n \leq x} \frac{\Lambda(n)}{n^s} + \sum_{x < n \leq 2x} w(n) \frac{\Lambda(n)}{n^s} + O(x^{1-\sigma})
\]

\[
= \sum_{n \leq x} \frac{\Lambda(n)}{n^s} + O(\log^{2-2\sigma} T),
\]

where the implied constant is absolute. Combining all our results, we obtain

\[
-\frac{\zeta'}{\zeta}(s) = \sum_{1 \leq n \leq \log^2 T} \frac{\Lambda(n)}{n^s} + O(\log^{2-2\sigma} T),
\]

where the implied constant depends at most on \(\sigma_1 \). This completes the proof of Lemma 4.

3. Proof of Theorem 1. By Lemma 4 we have

\[
(3.1) \quad -\frac{\zeta'}{\zeta}(s) = \sum_{n \leq \log^2 T} \frac{\Lambda(n)}{n^s} + O(\log^{2-2\sigma} T),
\]

where \(s = \sigma + it \), \(1/2 < \sigma_1 \leq \sigma \leq \sigma_2 < 1 \), and \(4 \leq T \leq t \leq 2T \). Integrating from \(\beta' \) to \(\infty \), where \(\rho' = \beta' + i\gamma' \) is a critical point of the zeta function and
4 \leq T \leq \gamma' \leq 2T$, we see that
\[
\log \zeta(\rho') = \int_{\beta'}^{\infty} \frac{-\zeta'(y + i\gamma')}{\zeta(y + i\gamma')} \, dy = \sum_{n \leq \log^2 T} \frac{A(n)}{n^{\rho'} \log n} + O\left(\frac{\log^{2-2\beta'} T}{\log \log T}\right).
\]
Taking the real part of both sides, we obtain
\[
\log |\zeta(\rho')| = \Re \sum_{n \leq \log^2 T} \frac{A(n)}{n^{\rho'} \log n} + O\left(\frac{\log^{2-2\beta'} T}{\log \log T}\right).
\]
From Lemma 3 we see that
\[
\Re \sum_{2 \leq n \leq \log^2 T} \frac{A(n)}{n^{\rho'} \log n} = O\left(\frac{\log^{2-2\beta'} T}{\log \log T}\right),
\]
so that
\[
\log |\zeta(\rho')| = O\left(\frac{\log^{2-2\beta'} T}{\log \log T}\right).
\]
Since $T \leq \gamma' \leq 2T$, it follows that
\[
\log |\zeta(\rho')| \ll \frac{\log^{2-2\beta'} \gamma'}{\log \log \gamma'}
\]
where the implicit constant depends on σ_1 and σ_2. This completes the proof of Theorem 1.

4. Lemmas for the proof of Theorem 2. The results in this section are all unconditional.

Lemma 5. Let $a(n)$ be a totally multiplicative function such that $|a(n)| \leq 1$ for all n. Then for all $x \geq 1$,
\[
\sum_{n \leq x} a(n) A(n) n^{-s} = \sum_{p \leq x} \frac{a(p) \log p}{p^s - a(p)} + O(x^{1/2-\sigma}),
\]
where $1/2 < \sigma < 1$.

Proof. We begin by observing that
\[
\sum_{p \leq x} \frac{a(p) \log p}{p^s - a(p)} = \sum_{p \leq x} \frac{a(p) \log p}{p^s} \left(\frac{1}{1 - a(p)/p^s}\right) = \sum_{p \leq x} p^{-s} a(p) \log p \cdot \sum_{k=0}^{\infty} \frac{a(p^k)}{p^{ks}}
\]
\[
= \sum_{p \leq x} \sum_{k=1}^{\infty} \frac{a(p^k) \log p}{p^{ks}}.
\]
Therefore,

\[(4.1) \quad \sum_{n \leq x} a(n) \Lambda(n) n^{-s} = \sum_{p^k \leq x} a(p^k)(\log p)p^{-ks} = \sum_{p \leq x} \frac{a(p) \log p}{p^s - a(p)} - \sum_{k=2}^{\infty} \sum_{x^{1/k} < p \leq x} \frac{a(p^k) \log p}{p^{k\sigma}}.\]

Let \(\theta(x) = \sum_{p \leq x} \log p. \) We know that \(\theta(x) \ll x. \) Thus, for any \(a > 1 \) and any \(y_1, y_2 \) such that \(1 < y_1 < y_2, \)

\[\sum \frac{\log p}{p^a} = \int_{y_1}^{y_2} \frac{d\theta(x)}{x^a} = O(y_1^{1-a}).\]

Using this with \(x^{1/k} \geq 2, \) that is, \(2 \leq k \leq \log x/\log 2, \) we have

\[\sum_{x^{1/k} < p \leq x} \frac{\log p}{p^{k\sigma}} = O(x^{1/k-\sigma}).\]

And when \(x^{1/k} < 2, \) that is, \(k > \log x/\log 2, \) we have

\[\sum_{2 \leq p \leq x} \frac{\log p}{p^{k\sigma}} = O(2^{1-k\sigma}).\]

Combining these estimates, we find that the second term on the far right in (4.1) equals

\[\sum_{k=2}^{\infty} \sum_{x^{1/k} < p \leq x} \frac{a(p^k) \log p}{p^{k\sigma}} \ll \frac{\log x/\log 2}{x^{1/k-\sigma}} + \sum_{k=\log x/\log 2}^{\infty} 2^{1-k\sigma} \ll x^{1/2-\sigma} + x^{1/3-\sigma} \log x + x^{-\sigma} \ll x^{1/2-\sigma}.\]

Inserting this into the right-hand side of (4.1), we obtain

\[\sum_{n \leq x} a(n) \Lambda(n) n^{-s} = \sum_{p \leq x} \frac{a(p) \log p}{p^s - a(p)} + O(x^{1/2-\sigma}).\]

Next we define some functions and parameters that will be helpful in constructing a root of \(\zeta'(s) \) arbitrarily close to the line \(\Re s = \sigma_1. \) Let \(\sigma_1 \) be fixed with \(1/2 < \sigma_1 < 1. \) Then for \(x \geq 2, \) and \(0 < c < 1 \) and \(\sigma_1 < \sigma < 1, \) we
define auxiliary functions $V_x(s)$ and $W_x(s)$ as

\begin{align}
V_x(s) & = \sum_{n \leq x} \Lambda(n) n^{-s}, \\
W_x(s) & = \sum_{n \leq x} b(n) \Lambda(n) n^{-s},
\end{align}

where $b(n)$ is a totally multiplicative function such that $b(p) = 1$ for all $p \leq cx$, and $b(p) = -1$ for all $p > cx$. Next we express $W_x(s)$ in terms of $V_x(s)$. By Lemma 5, if $\sigma_1 < \sigma < 1$, then

\begin{align}
W_x(s) &= 2 \sum_{p \leq cx} \frac{\log p}{p^s - 1} - \sum_{cx < p \leq x} \frac{\log p}{p^s + 1} + O(x^{1/2 - \sigma_1}) \\
&= 2 \sum_{p \leq cx} \frac{\log p}{p^s - 1} - \sum_{cx < p \leq x} \frac{\log p}{p^s - 1} + O(x^{1/2 - \sigma_1}) \\
&= 2 \sum_{p \leq cx} \frac{\log p}{p^s - 1} - \sum_{p \leq x} \frac{\log p}{p^s - 1} + O(x^{1/2 - \sigma_1}).
\end{align}

Applying Lemma 5 again to the first two sums, and separately combining the last two sums, we find that

\begin{align}
W_x(s) &= 2V_{cx}(s) - V_x(s) + \sum_{cx < p \leq x} \frac{2 \log p}{p^{2s} - 1} + O(x^{1/2 - \sigma_1}) \\
&= 2V_{cx}(s) - V_x(s) + O(x^{1/2 - \sigma_1}).
\end{align}

We now specify the value of c in the definition of $W_x(s)$ as

\begin{equation}
\log c = -\frac{\log 2}{1 - \sigma_1} + \frac{\log 2}{(1 - \sigma_1)^2 \log^a x}.
\end{equation}

We use this to show that $W_x(s)$ has a root near σ_1.

Lemma 6. Let $1/2 < \sigma_1 < 1$, let $a > 1$ be fixed, and let c in the definition of $W_x(s)$ be given by (4.5). Then for all large x, $W_x(s)$ has a root at

$$s = \sigma_1 + \frac{1}{\log^a x} + O\left(\frac{1}{\log^{2a} x}\right).$$

Proof. Writing $\psi(y) = \sum_{n \leq y} \Lambda(n)$ and applying the prime number theorem, we see that

\begin{equation}
V_x(s) = \sum_{n \leq x} \frac{\Lambda(n)}{n^s} = \frac{\int_1^x \frac{d\psi(y)}{y^s}}{1 - s} = \frac{x^{1-s}}{1-s} + O\left(x^{1-\sigma_1} \exp\left(-c_1 \sqrt{\log x}\right)\right),
\end{equation}
where \(c_1 > 0 \) is an absolute constant. Using this in (4.4), we obtain

\[
W_x(s) = \frac{2(cx)^{1-s} - x^{1-s}}{1-s} + O(x^{1-\sigma_1} \log^{-2a} x),
\]

say. Next we set \(s = \sigma_1 + z \), where \(|z| < 2/\log^a x\) and \(x \) is so large that \(|1-s| \geq |1-\sigma_1| - 2/\log^a x > 0\).

Then

\[
W_x(s) = \frac{2e^{(1-s)\log c} - 1}{1-s} + O(\log^{-2a} x).
\]

Now

\[
(1-s) \log c = (1-\sigma_1 - z) \left(-\frac{\log 2}{1-\sigma_1} + \frac{\log 2}{(1-\sigma_1)^2 \log^a x} \right)
= -\log 2 \cdot \left(1 - \frac{z}{1-\sigma_1} - \frac{1}{(1-\sigma_1) \log^a x} + O(\log^{-2a} x) \right).
\]

Thus,

\[
\frac{W_x(s)}{x^{1-s}} = \frac{\exp \left(\log 2 \cdot \left(\frac{z}{1-\sigma_1} - \frac{1}{(1-\sigma_1) \log^a x} + O(\log^{-2a} x) \right) \right) - 1}{1-s} + O(\log^{-2a} x)
= \frac{\log 2 \cdot (z - \log^{-a} x)}{(1-\sigma_1)(1-s)} + O(\log^{-2a} x).
\]

It follows that \(W_x(s) \) has a root at

\[
s = \sigma_1 + \frac{1}{\log^a x} + O\left(\frac{1}{\log^{2a} x} \right). \quad \blacksquare
\]

If \(p^{i\tau} \) is very near to 1 for \(p \leq cx \) and \(p^{i\tau} \) is very near to \(-1\) for \(cx < p \leq x \), then \(V_x(s + i\tau) \) will be close to \(W_x(s) \). To show that such \(\tau \) exist within a reasonable height, we need a sharp form of Kronecker’s theorem concerning inhomogeneous Diophantine approximation. To this end, we follow closely the approach of Gonek and Montgomery [II].

Lemma 7 ([II, Lemma 7]). Let \(K \) be a positive integer and suppose \(0 < \delta \leq 1/2 \). There is a trigonometric polynomial \(f(\theta) \) of the form

\[
f(\theta) = \sum_{k=0}^{K} c_k e(-k\theta)
\]

such that \(\max_\theta |f(\theta)| = f(0) = 1 \) and \(|f(\theta)| \leq 2e^{-\pi K\delta} \) for \(\delta \leq \theta \leq 1 - \delta \).

The second moment

\[
\mu = \int_{0}^{1} |f(\theta)|^2 \, d\theta
\]
appears below. Since
\[1 = |f(0)|^2 = \left| \sum_{k=0}^{K} c_k \right|^2 \leq (K + 1) \sum_{k=0}^{K} |c_k|^2 \]
by Cauchy’s inequality, it follows that
\[\frac{1}{K + 1} \leq \mu \leq 1. \]

For a given finite set \(\mathcal{P} \) of primes \(p \) and a given set of real numbers \(\beta_p \) (considered modulo 1), we want to show that there exist real numbers \(t \) in prescribed intervals such that \(\| t \log p/2\pi - \beta_p \| < \delta \), where \(\| x \| \) indicates the distance from \(x \) to the nearest integer. To accomplish this we define
\[g(t) = \prod_{p \in \mathcal{P}} \left| f\left(\frac{t \log p}{2\pi} - \beta_p \right) \right|^2, \]
where \(f \) is as in the previous lemma.

Lemma 8. Let \(\mathcal{P} \) be a set of primes not exceeding \(x \). For each \(p \in \mathcal{P} \) let a number \(\beta_p \) be given. Let \(K, \mu, \) and \(g(t) \) be as in (4.11), (4.12), and (4.14). Then for \(Y \) any real number and \(T \geq 4 \),
\[\int_{T}^{T+Y} g(t) \, dt = (Y + O(\exp(2Kx))) \mu \text{card } \mathcal{P}. \]

Proof. The argument is almost identical to [1, proof of Lemma 8].

From this point on, recalling that \(a > 1 \) in some of the lemmas above, we let
\[d_1 = \sigma_1 - 1/2, \quad b > a + 1 > 2, \]
and make the following choices for the parameters \(K, x, \) and \(\delta \):
\[x = \frac{d_1 \log T}{4(\log \log T)^b}, \quad K = \left[\frac{1}{2} \log^b x \right], \quad \delta = \frac{1}{\log^{b-1} x}. \]

For each root \(\rho = \beta + i\gamma \) of the zeta function such that \(\beta \geq (1 + d_1)/2 \), we remove from \([T, 2T] \) those \(\tau \) satisfying \(|\gamma - \tau| \leq T^{d_1/4} + 1 \). We let \(X \) denote the set of \(\tau \) we have removed, and let \(R \) denote the remaining set, so that
\[[T, 2T] = R \cup X. \]
By Titchmarsh [8, Theorem 9.19(A)], the number of roots with ordinates in \([T, 2T]\) is \(\ll T^{1-d_1/2} \log^5 T \). Thus, the set \(X \) has measure \(\ll T^{1-d_1/4} \log^5 T \). Note that if \(\tau \in R \) and \(s = \sigma + it \) with \(|t| \leq 1 \), then \(\min_{\gamma} |\gamma - t - \tau| \geq T^{d_1/4} \). In particular, this holds when \(s \) is on or inside \(\mathcal{C}_1 \) (defined in (5.2)) and \(\tau \in R \).
We next prove an analogue of Lemma 8 for the integral $\int_R g(t) \, dt$.

Lemma 9. Under the same hypotheses as in Lemma 8 and with R and d_1 as above, we have

$$\int_R g(t) \, dt = (T + O(T^{1-d_1/4} \log^5 T)) \mu \text{card } \mathcal{P}.$$

Proof. We have

\begin{equation}
\int_R g(t) \, dt = \int_{\mathcal{T}} g(t) \, dt - \int_X g(t) \, dt.
\end{equation}

By Lemma 8

$$\int_{\mathcal{T}} g(t) \, dt = (T + O(\exp(2Kx))) \mu \text{card } \mathcal{P}.$$

By our choice of the parameters K and x in (4.17) we see that $2Kx \leq d_1(\log T)/4$, so that

\begin{equation}
\exp(2Kx) \leq T^{d_1/4}.
\end{equation}

Thus

\begin{equation}
\int_{\mathcal{T}} g(t) \, dt = (T + O(T^{d_1/4})) \mu \text{card } \mathcal{P}.
\end{equation}

Next, X consists of $\ll T^{1-d_1/2} \log^5 T$ intervals, each of length $\leq 2T^{d_1/4}$. Thus, by Lemma 8 and (4.20), each such interval contributes an amount $\ll (T^{d_1/4} + \exp(2Kx)) \mu \text{card } \mathcal{P} \ll T^{d_1/4} \mu \text{card } \mathcal{P}.

It follows that

\begin{equation}
\int_X g(t) \, dt \ll (T^{1-d_1/2} \log^5 T)(T^{d_1/4} \mu \text{card } \mathcal{P}) = (T^{1-d_1/4} \log^5 T) \mu \text{card } \mathcal{P}.
\end{equation}

Combining this and (4.21) in (4.19), we obtain

$$\int_R g(t) \, dt = (T + O(T^{1-d_1/4} \log^5 T)) \mu \text{card } \mathcal{P}. \quad \blacksquare$$

The function $g(t)$ is large when the numbers $\|t \log p/2\pi - \beta_p\|$ are small, but to obtain Kronecker’s theorem we need a peak function that is positive only when all of these numbers are $< \delta$. To accomplish this we define

\begin{equation}
h(t) = \prod_{p \leq x} \left| f\left(\frac{t \log p}{2\pi} - \beta_p\right)\right|^2 - \epsilon \sum_{p_1 \leq x} \prod_{p \leq x, p \neq p_1} \left| f\left(\frac{t \log p}{2\pi} - \beta_p\right)\right|^2,
\end{equation}

where

\begin{equation}
\epsilon = 4e^{-2\pi K\delta} \ll x^{-3}.
\end{equation}

It is easy to see that $h(t) > 0$ only when $\|t \log p/2\pi - \beta_p\| < \delta$ for all $p \leq x$ (cf. [1]).
Lemma 10. With \(f(\theta) \) defined as in Lemma 7, \(h(t) \) defined as above, and the choice of parameters in (4.17), for \(T \geq 4 \) and any real \(Y \) we have

\[
T + Y \int_T^T h(t) \, dt = (Y + O(T^{d_1/4}))(1 + O(x^{-1}))\mu(x).
\]

Moreover, for \(R \) as in (4.18), we have

\[
\int_R^R h(t) \, dt = (1 + O(x^{-1}))\mu(x)T.
\]

Proof. From the definition of \(h(t) \), Lemma 8, and (4.20), we have

\[
2T \int T^T h(t) \, dt = (Y + O(\exp(2Kx)))\mu(x) + O(\epsilon\pi(x)(Y + O(\exp(2Kx)\mu(x)^{-1})))
\]

\[
= (Y + O(T^{d_1/4}))\mu(x) + O(\epsilon\pi(x)(Y + O(T^{d_1/4})))\mu(x^{-1}).
\]

Now \(\pi(x) \ll x/\log x, \epsilon \ll x^{-3} \) by (4.23), and by (4.13) and our choice of \(K \) in (4.17), \(1/\mu \ll (\log x) \). It follows that \(\epsilon\pi(x)/\mu \ll \log x/x^2 \ll 1/x \). This establishes (4.24).

Next we prove (4.25). By (4.18),

\[
\int_R^R h(t) \, dt = \int_T^T h(t) \, dt - \int_X^X h(t) \, dt.
\]

By (4.24) with \(Y = T \),

\[
2T \int T^T h(t) \, dt = (T + O(T^{d_1/4}))(1 + O(x^{-1}))\mu(x).
\]

To estimate \(\int_X^X h(t) \, dt \), recall that \(X \) consists of \(\ll T^{1-d_1/2} \log^5 T \) intervals, each of length \(\leq 2T^{d_1/4} \). Thus, by (4.24), each such interval contributes an amount

\[
\ll T^{d_1/4}(1 + O(x^{-1}))\mu(x) \ll T^{d_1/4}\mu(x).
\]

It follows that

\[
\int_X^X h(t) \, dt \ll (T^{1-d_1/2} \log^5 T)T^{d_1/4}\mu(x)
\]

\[
= (T^{1-d_1/4} \log T)\mu(x).
\]

Combining this and (4.28) with (4.27), we obtain

\[
\int_R^R h(t) \, dt = T(1 + O(x^{-1}))\mu(x),
\]

which is (4.25).
These lemmas ensure that there are t for which the primes $p \leq x$ behave as we want. However, the remaining primes $p > x$ could make an unwanted contribution. The next lemma guarantees that this does not happen.

Lemma 11. Let $g(t)$ be as in (4.14), where \mathcal{P} is the set of primes not exceeding x. For each $p > x$ let b_p have the property that $|b_p| \leq 1/p^{\sigma_1}$. Then
\[
2T \int_{T}^{2T} g(t) \left| \sum_{x < p \leq T^{d_1/4}} \frac{b_p}{p^t} \right|^2 dt \ll T \mu^\pi(x) \frac{x^{1-2\sigma_1}}{\log x},
\]
where the implied constant depends on σ_1. The same bound holds a fortiori for the integral over R.

Proof. By (4.11) we see that
\[
\prod_{p \in \mathcal{P}} f \left(t \frac{\log p}{2\pi} - \beta_p \right) = \prod_{p \in \mathcal{P}} \left(\sum_{k=0}^{K} c_k e(k\beta_p)p^{-ikt} \right) = \sum_{n \in \mathcal{N}} a_n n^{-it},
\]
where \mathcal{N} is the set of positive integers composed entirely of primes in \mathcal{P}, with multiplicities not exceeding K, and
\[
a_n = \prod_{p \in \mathcal{P}} c_k e(k\beta_p).
\]

Here the product extends over all members of \mathcal{P}, not just those dividing n. We note that a positive integer m has at most one decomposition $m = np$ with $n \in \mathcal{N}$ and $p > x$. Let the numbers C_m be determined by the identity
\[
\left(\sum_{n \in \mathcal{N}} a_n n^{-it} \right) \left(\sum_{x < p \leq T^{d_1/4}} b_pp^{-it} \right) = \sum_{m} C_mm^{-it}.
\]

Montgomery and Vaughan [5] have shown that if $\sum_{m} |C_m| < \infty$, then
\[
\int_{T}^{2T} \left| \sum_{m=1}^{\infty} C_mm^{-it} \right|^2 dt = \sum_{m=1}^{\infty} |C_m|^2(T + O(m)).
\]

In the main term we have
\[
\sum_{m=1}^{\infty} |C_m|^2 = \left(\sum_{n \in \mathcal{N}} |a_n|^2 \right) \left(\sum_{x < p \leq T^{d_1/4}} |b_p|^2 \right).
\]

The sum over n is $\mu^\pi(x)$, and the sum over p is $\ll \sum_{x < p \leq T^{d_1/4}} p^{-2\sigma_1} \ll x^{1-2\sigma_1}/\log x$. In the error term we have
\[
\sum_{m=1}^{\infty} m|C_m|^2 = \left(\sum_{n \in \mathcal{N}} n|a_n|^2 \right) \left(\sum_{x < p \leq T^{d_1/4}} p|b_p|^2 \right).
\]
For \(n \in \mathcal{N} \) we have \(n \leq \exp(2Kx) \leq T^{d_1/4} \), so the sum over \(n \) here is \(\ll \mu^n(x) T^{d_1/4} \). The sum over \(p \) is
\[
\leq \sum_{x < p \leq T^{d_1/4}} p^{1-2\sigma_1} \leq T^{d_1(1-\sigma_1)/2}/\log T.
\]
Combining our estimates, we obtain
\[
(4.29) \quad 2T \left| \sum_{x < p \leq T^{d_1/4}} \frac{b_p}{p^s} \right|^2 dt \ll T \mu^n(x) x^{1-2\sigma_1}/(\log x) + T^{d_1/4} \mu^n(x) T^{d_1(1-\sigma_1)/2}/\log T \ll T \mu^n(x) x^{1-2\sigma_1}/(\log x)
\]
by our choice of \(x \). This completes the proof of Lemma 11.

Lemma 12. Let \(W_x(s) \) be as in (4.3) with \(x = (d_1 \log T)/4(\log \log T)^b \), let \(d_1 = \sigma_1 - 1/2 \), and \(T \geq 4 \). Then for \(s = \sigma + it \) with \(\sigma_1 \leq \sigma \) and \(|t| \leq 1 \), and for \(\tau \in R \), where \(R \) is defined just before (4.18), we have
\[
(4.30) \quad - \zeta'(s + i\tau) = \sum_{n \leq T^{d_1/4}} w(n) A(n)n^{-s-i\tau} + O(T^{-d_1^2/16}),
\]
where
\[
(4.31) \quad w(u) = \begin{cases}
1 & \text{if } 1 \leq u \leq T^{d_1/8}, \\
1 - \frac{\log(u/y)}{\log y} & \text{if } T^{d_1/8} < u \leq T^{d_1/4}, \\
0 & \text{if } u > T^{d_1/4}.
\end{cases}
\]

Proof. By (2.3) with \(x = y = T^{d_1/8}, \ T \geq 4, \ d_1 = \sigma_1 - 1/2, \ \sigma \geq \sigma_1, \) and \(\tau \in R \), we have
\[
(4.32) \quad - \zeta'(s + i\tau) = \sum_{n \leq y^2} w(n) A(n)n^{-s+i\tau} - \frac{y^{2(1-s-i\tau)} - y^{1-s-i\tau}}{(1-s-i\tau)^2 \log y}
\]
\[
+ \sum_{\rho} \frac{y^{2(\rho-s-i\tau)} - y^{\rho-s-i\tau}}{\rho - s - i\tau)^2 \log y}
\]
\[
+ \sum_{k=1}^{\infty} \frac{y^{2(-2k-s-i\tau)} - y^{-2k-s-i\tau}}{(2k + s + i\tau)^2 \log y}.
\]
Since \(R \subseteq [T, 2T] \), the second term on the right-hand side of (4.32) becomes
\[
\frac{y^{2(1-s-i\tau)} - y^{1-s-i\tau}}{(1-s-i\tau)^2 \log y} \ll \frac{T^{d_1(1-\sigma_1)/4}}{d_1 T^2 \log T} \ll T^{d_1/8-d_1^2/4-2}.
\]
We split the third term on the right-hand side of (4.32) into two sums \(P \) and \(Q \), where \(P \) is over the zeros with \(\beta \geq (1 + d_1)/2 \), and \(Q \) is over the
zeros with $\beta < (1 + d_1)/2$. For Q we have

$$Q = \sum_{\beta < (1 + d_1)/2} \frac{y^{2(\rho - s - i\tau)} - y^{\rho - s - i\tau}}{(\rho - s - i\tau)^2 \log y}$$

$$\ll \sum_{\beta < (1 + d_1)/2} \frac{y^{2(\beta - \sigma)} + y^{\beta - \sigma}}{[(\beta - \sigma)^2 + (\gamma - t - \tau)^2] \log y} \ll \frac{y^{-d_1/2} \log T}{d_1^2 \log y} \ll y^{-d_1/2} = T^{-d_1^2/16}.$$

For P in turn we have

$$P = \sum_{\beta \geq (1 + d_1)/2} \frac{y^{2(\rho - s - i\tau)} - y^{\rho - s - i\tau}}{(\rho - s - i\tau)^2 \log y}$$

$$\ll \sum_{\beta \geq (1 + d_1)/2} \frac{y^{2(1 - \sigma)} + y^{1 - \sigma}}{(\gamma - t - \tau)^2 \log y} \ll \frac{y^{1 - 2d_1} \log T}{T^{d_1/4} \log y} \ll \frac{y^{1 - 2d_1}}{T^{d_1/4}} = T^{-d_1/8 - d_1^2/4}.$$

The last term on the right-hand side of (4.32) is

$$\sum_{k=1}^{\infty} \frac{y^{2(-2k - s - i\tau)} - y^{-2k - s - i\tau}}{(2k + s + i\tau)^2 \log y} \ll \frac{y^{-2 - \sigma_1}}{T \log y} \ll T^{-1 - 5d_1/16 - d_1^2/8}.$$

Combining all these estimates, we find that for $\sigma \geq \sigma_1$ and $\tau \in R$,

$$-\zeta(s + i\tau) = -\sum_{n \leq T^{d_1/4}} w(n) \frac{A(n)}{n^{s + i\tau}} + O(T^{-d_1^2/16}).$$

5. Proof of Theorem 2 Let $V_x(s)$ and $W_x(s)$ be as in (4.2) and (4.3).

Let

$$\mathcal{C}_0 = \left\{ s = \sigma_1 + \frac{1 + e^{i\theta}}{\log^a x} : 0 \leq \theta \leq 2\pi \right\},$$

$$\mathcal{C}_1 = \left\{ s = \sigma_1 + \frac{1 + e^{i\theta}}{\log^a x} : 0 \leq \theta \leq 2\pi \right\},$$

where, as previously, $a > 1$. Also, let c be as in (4.5) and δ as in (4.17).

Suppose that τ is a real number such that

$$\left\| \frac{\tau \log p}{2\pi} \right\| < \delta \quad \text{for} \quad p \leq cx, \quad \left\| \frac{\tau \log p}{2\pi} + \frac{1}{2} \right\| < \delta \quad \text{for} \quad cx < p \leq x,$$

and let \mathcal{G} be the set of those τ such that both inequalities hold.
By Lemma 5 (4.2), and (4.3) we see that for \(\sigma > \sigma_1 \),

\[
V_x(s) = \sum_{p \leq x} \frac{\log p}{p^s - 1} + O(x^{1/2 - \sigma_1}),
\]

(5.3)

\[
W_x(s) = \sum_{p \leq x} \frac{\log p}{b(p)p^s - 1} + O(x^{1/2 - \sigma_1}).
\]

(5.4)

Hence

\[
V_x(s + i\tau) - W_x(s) \leq \sum_{p \leq x} \log p \cdot \left(\frac{1}{p^{s+i\tau} - 1} - \frac{1}{b(p)p^s - 1} \right) + O(x^{1/2 - \sigma_1})
\]

(5.5)

\[
\ll \sum_{p \leq x} \frac{\log p}{p^{\sigma_1}} |p^{i\tau} - b(p)| + O(x^{1/2 - \sigma_1}).
\]

Now note that for real \(\theta \), if \(\|\theta\| \) is the distance between \(\theta \) and the nearest integer, then

\[
|e^{2\pi i \theta} - 1| = 2|\sin \pi \theta| \leq 2\pi \|\theta\|.
\]

Thus, taking

\[
\theta = \theta_p = \begin{cases}
\tau \frac{\log p}{2\pi} - \frac{1}{2} & \text{if } p \leq cx, \\
\tau \frac{\log p}{2\pi} + \frac{1}{2} & \text{if } cx < p \leq x,
\end{cases}
\]

we see that if \(\tau \in \mathcal{G} \), then \(|p^{i\tau} - b(p)| \leq 2\pi \delta \) for every \(p \leq x \). Therefore, for \(\sigma \geq \sigma_1 \),

\[
|V_x(s + i\tau) - W_x(s)| \ll \delta \sum_{p \leq x} \frac{\log p}{p^{\sigma_1}} + O(x^{1/2 - \sigma_1}) \ll \frac{x^{1 - \sigma_1}}{\log^{b - 1} x},
\]

(5.6)

since \(\delta = 1/\log^{b-1} x \).

Define

\[
L_x(s) = \sum_{1 < n \leq x} \frac{b(n)\Lambda(n)}{n^s \log n}.
\]

Then we have

\[
\left| \sum_{1 < n \leq x} \frac{\Lambda(n)}{\log n} n^{-s-i\tau} - L_x(s) \right| \leq \sum_{1 < n \leq x} \frac{\Lambda(n)}{n^\sigma \log n} |n^{-i\tau} - b(n)|.
\]

If \(n = p^k \), then \(|n^{-i\tau} - b(n)| = |p^{-ik\tau} - b(p)^k| \leq k |p^{-i\tau} - b(p)| \). Thus, for \(\sigma \geq \sigma_1 \) and \(\tau \in \mathcal{G} \), the expression here is

\[
\leq 2\pi \delta \sum_{p^k \leq x} \frac{1}{p^{k\sigma_1}} \ll \delta \frac{x^{1 - \sigma_1}}{\log x} \ll \frac{x^{1 - \sigma_1}}{\log^{b} x}.
\]
by our choice of δ in (4.17). That is, for $\sigma \geq \sigma_1$ and $\tau \in \mathcal{G}$,

\begin{equation}
\left| \sum_{1 < n \leq x} \frac{\Lambda(n)}{\log n} n^{-s-i\tau} - L_x(s) \right| \ll \frac{x^{1-\sigma_1}}{\log b x}.
\end{equation}

Furthermore, when $\Re s \geq \sigma_1$,

\begin{equation}
L_x'(s) = -\sum_{n \leq x} \frac{b(n)\Lambda(n)}{n^s} \ll \sum_{n \leq x} \frac{\Lambda(n)}{n^{\sigma_1}} \ll x^{1-\sigma_1}.
\end{equation}

Thus, if s is on or inside \mathcal{C}_1, then

\begin{equation}
L_x(s) = L_x(\sigma_1) + O\left(\frac{x^{1-\sigma_1}}{\log^a x}\right).
\end{equation}

At σ_1,

\begin{equation}
L_x(\sigma_1) = \sum_{1 < n \leq x} \frac{b(n)\Lambda(n)}{n^{\sigma_1} \log n} = 2 \sum_{p \leq x} p^{-\sigma_1} - \sum_{p \leq x} p^{-\sigma_1} + O(1).
\end{equation}

By the prime number theorem, for $u \geq 2$,

\begin{equation}
\pi(u) = \frac{u}{\log u} + \frac{u}{\log^2 u} + O\left(\frac{u}{\log^3 u}\right).
\end{equation}

From this and integration by parts, we see that for $y \geq 2$,

\begin{equation}
\sum_{p \leq y} p^{-\sigma_1} = \int_{2^{-}}^{y} \frac{d\pi(u)}{u^{\sigma_1}} = \frac{y^{1-\sigma_1}}{(1-\sigma_1) \log y} + \frac{y^{1-\sigma_1}}{(1-\sigma_1)^2 \log^2 y} + O\left(\frac{y^{1-\sigma_1}}{\log^3 y}\right).
\end{equation}

Using this in (5.9), we obtain

\begin{align*}
L_x(\sigma_1) &= \frac{x^{1-\sigma_1}}{1-\sigma_1} \left(\frac{2c^{1-\sigma_1}}{\log cx} - \frac{1}{\log x} \right) \\
&+ \frac{x^{1-\sigma_1}}{(1-\sigma_1)^2} \left(\frac{2c^{1-\sigma_1}}{\log^2 cx} - \frac{1}{\log^2 x} \right) + O\left(\frac{x^{1-\sigma_1}}{\log^3 x}\right).
\end{align*}

Now, from (4.9) with $s = \sigma_1$, that is, $z = 0$, we have

\begin{equation}
2c^{1-\sigma_1} = 1 + \frac{\log 2}{(1-\sigma_1) \log^a x} + O(\log^{-2a} x) = 1 + O(\log^{-a} x).
\end{equation}

Moreover,

\begin{equation}
\frac{1}{\log cx} = \frac{1}{\log x} \left(1 - \frac{\log c}{\log x} + O\left(\frac{1}{\log^2 x}\right) \right).
\end{equation}
Hence,
\[
\frac{2e^{1-\sigma_1}}{\log cx} - \frac{1}{\log x} = \frac{1 + O(\log^{-a} x)}{\log x} \left(1 - \frac{\log c}{\log x} + O\left(\frac{1}{\log^2 x} \right) \right) - \frac{1}{\log x}
\]
\[
= -\frac{\log c}{\log^2 x} + O\left(\frac{1}{\log^{a+1} x} \right) + O\left(\frac{1}{\log^3 x} \right)
\]
\[
= -\frac{\log c}{\log^2 x} + O(\log^{-\min(a+1,3)} x).
\]

Similarly, one sees that
\[
\frac{2e^{1-\sigma_1}}{\log^2 cx} - \frac{1}{\log^2 x} = O(\log^{-3} x).
\]

Thus, we find that
\[
L_x(\sigma_1) = -x^{1-\sigma_1} \frac{\log c}{(1 - \sigma_1) \log^2 x} + O\left(\frac{x^{1-\sigma_1}}{\log^{\min(a+1,3)} x} \right).
\]

It now follows from (5.8) that for \(s \) on or inside \(C_1 \),
\[
L_x(s) = -x^{1-\sigma_1} \frac{\log c}{(1 - \sigma_1) \log^2 x} + O\left(\frac{x^{1-\sigma_1}}{\log^{\min(a,3)} x} \right).
\]

From this and (5.7) we see that for \(s \) on or inside \(C_1 \), and \(\tau \in \mathbb{R} \),
\[
(5.12) \quad \Re \sum_{1 < n \leq x} \frac{\nu(n)}{\log n} n^{-s-i\tau} \log n \frac{n^{-s-i\tau}}{\log n} - n^{-s} = \frac{d_1 \log T}{4(\log \log T)^{3/2}}.
\]

Let
\[
T_x(s) = \sum_{x < n \leq T^{d_1/4}} \frac{w(n) \Lambda(n)}{\log n} n^{-s}, \quad \text{where} \quad x = \frac{d_1 \log T}{4(\log \log T)^3}.
\]

Then by Lemma 12 for \(s = \sigma + it \) with \(\sigma_1 \leq \sigma \) and \(|t| \leq 1 \), and for \(\tau \in \mathbb{R} \), we have
\[
(5.13) \quad \log \zeta(s + it) = \sum_{n \leq x} \frac{\Lambda(n)}{\log n} n^{-s-i\tau} + T_x(s + it) + O(T^{-d_1^2/16}),
\]
\[
(5.14) \quad -\frac{\zeta'(s + it)}{\zeta(s + it)} = \sum_{n \leq x} \Lambda(n)n^{-s-i\tau} - T_x'(s + it) + O(T^{-d_1^2/16}).
\]
Now suppose that there is \(\tau \in R \cap \mathcal{G} \), and that
\[
T_x(s + i\tau) \ll \frac{1}{\log x}, \quad T'_x(s + i\tau) \ll 1
\]
for \(s \in \mathcal{C}_1 \). Then by (5.7) and (5.6),
\[
\Re \log \zeta(s + i\tau) = -\frac{x^{1-\sigma_1} \log c}{(1 - \sigma_1) \log^2 x} + O\left(\frac{x^{1-\sigma_1}}{\log \min(a,3) x}\right),
\]
\[
-\frac{\zeta'(s + i\tau)}{\zeta(s)} = W_x(s) + O\left(\frac{x^{1-\sigma_1}}{\log^{b-1} x}\right)
\]
for \(s \) on or inside \(\mathcal{C}_1 \).

Recall from (4.10) that if \(s = \sigma_1 + z \) and \(|z| < 2/\log^a x\), then
\[
W_x(s) = \frac{\log 2}{(1 - \sigma_1)(1 - s)} (z - \log^{-a} x) + O(\log^{-2a} x).
\]
Thus, for \(s \) on or inside \(\mathcal{C}_1 \),
\[
W_x(s) = x^{1-\sigma_1} \left(\frac{e^{i\beta} \log 2}{4(1 - \sigma_1)^2 \log^a x} + O\left(\frac{1}{\log^{2a} x}\right)\right).
\]

Since \(a > 1 \), we deduce from this that the argument of \(W_x(s) \) increases by \(2\pi \) as \(s \) traverses \(\mathcal{C}_1 \). Thus, by (5.17), \(\zeta'(s) \) has a zero \(\rho' \) in \(\mathcal{C}_1 + i\tau \), and from (5.16) we see that
\[
\log |\zeta(\rho')| \geq \left(\frac{-\log c}{1 - \sigma_1} + o(1)\right) \frac{x^{1-\sigma_1}}{\log^2 x}.
\]

Now by (4.5),
\[
\log c = \log 2/(\sigma_1 - 1)(1 + o(1)),
\]
so that, using this and substituting again \(d_1 \log T/4(\log \log T)^b \) for \(x \), we obtain
\[
\log |\zeta(\rho')| \geq (1 + o(1)) \left(\frac{(\sigma_1 - 1/2)^{1-\sigma_1} \log 2}{(1 - \sigma_1)^2} \frac{1-\sigma_1}{4^{1-\sigma_1}}\right) \frac{\log^{1-\sigma_1} T}{(\log \log T)^{2+b(1-\sigma_1)}}.
\]
Since \(T \leq \gamma' = 3\rho' \leq 2T \), (5.21) also holds with \(T \) replaced by \(\gamma' \), which is (1.7).

Thus we get
\[
\log |\zeta(\rho')| \geq (B(\sigma_1) - \epsilon) \frac{\log^{1-\beta'} \gamma'}{(\log \log \gamma')^{2+b(1-\sigma_1)}},
\]
where
\[
B(\sigma_1) = \frac{(\sigma_1 - 1/2)^{1-\sigma_1} \log 2}{(1 - \sigma_1)^2} \cdot
\]
To complete the proof of Theorem 2 it only remains to show the existence of a \(\tau \in \mathbb{R} \cap \mathcal{G} \) satisfying (5.15). Recall that
\[
T_x(s + i\tau) = \sum_{x < p \leq T^{d_1/4}} w(p) p^{-s - i\tau},
\]
\[
T'_x(s + i\tau) = - \sum_{x < p \leq T^{d_1/4}} w(p) \log p p^{-s - i\tau}.
\]
We will prove that there is a constant \(C_1 \) that is independent of \(x \) and such that on the circle \(\mathcal{C}_0 \) we have
\[
\oint_{\mathcal{C}_0} |T_x(z + i\tau)|^2 \, dz \leq \frac{C_1}{\log^9 x}.
\]
Then, if \(s \) is on or inside \(\mathcal{C}_1 \), we see from Cauchy’s formula and the Cauchy–Schwarz inequality that
\[
T_x(s + i\tau) = \frac{1}{2\pi i} \oint_{\mathcal{C}_0} \frac{T_x(z + i\tau)}{z - s} \, dz \ll \log^{a/2} x \cdot \sqrt{\oint_{\mathcal{C}_0} |T_x(z + i\tau)|^2 \, dz} \ll \frac{1}{\log^{(9-a)/2} x},
\]
\[
T'_x(s + i\tau) = \frac{1}{2\pi i} \oint_{\mathcal{C}_0} \frac{T_x(z + i\tau)}{(z - s)^2} \, dz \ll \log^{3a/2} x \cdot \sqrt{\oint_{\mathcal{C}_0} |T_x(z + i\tau)|^2 \, dz} \ll \frac{1}{\log^{(9-3a)/2} x}.
\]
From these estimates we conclude that
\[
\sum_{x < n \leq T^{d_1/4}} \frac{w(n) A(n)}{n^{s + i\tau} \log n} = \sum_{x < p \leq T^{d_1/4}} \frac{w(p)}{p^{s + i\tau}} + O(x^{1/2 - \sigma_1})
\]
\[
= T_x(s + i\tau) + O(x^{1/2 - \sigma_1}) \ll \frac{1}{\log^{(9-a)/2} x},
\]
\[
\sum_{x < n \leq T^{d_1/4}} \frac{w(n) A(n)}{n^{s + i\tau}} = \sum_{x < p \leq T^{d_1/4}} \frac{w(p) \log p}{p^{s + i\tau}} + O(x^{1/2 - \sigma_1})
\]
\[
= -T'_x(s + i\tau) + O(x^{1/2 - \sigma_1}) \ll \frac{1}{\log^{(9-3a)/2} x}.
\]
In other words, the inequalities in (5.15) are true.

Now define
\[h^+(t) = \max(0, h(t)) \].
Since \(h(t) \leq h^+(t) \leq g(t) \), using Lemma \[10\], we find that

\[
\int_R h^+(t) \, dt = \mu(\pi) T(1 + O(1/x)).
\]

On the other hand, we have

\[
\int_R h^+(t) \left(\int_{\mathcal{C}_0} |T_x(z + it)|^2 |dz| \right) \, dt \leq \int_R g(t) \left(\int_{\mathcal{C}_0} |T_x(z + it)|^2 |dz| \right) \, dt
\]

\[
= \int_{\mathcal{C}_0} g(t) |T_x(z + it)|^2 \, dt \, |dz| \leq \mu(\pi) T x^{1-2\sigma} \log x \leq \mu(\pi) T x^{1-2\sigma} \frac{\log x}{\log^4 x}.
\]

Thus we conclude that there is \(t \in R \cap \mathcal{G} \) such that

\[
\int_{\mathcal{C}_0} |T_x(z + it)|^2 |dz| \leq \tilde{C} \frac{x}{\log x}.
\]

Choosing \(b = 3 + \epsilon'' \), we get

\[
\log |\zeta(\rho')| \geq (B(\sigma_1) - \epsilon) \frac{\log x^{1-\sigma_1}}{\log \log T(1-\sigma) \log x} + O \left(\frac{x^{1-\sigma}}{(\log x)^{3-3\beta+\epsilon'}} \right),
\]

where \(\epsilon' = \epsilon''(1 - \sigma) \), thus completing the proof of Theorem \[2\].

6. Lemma for the proof of Theorem \[3\]. We assume RH for the proof of Theorem 3.

Lemma 13. Let \(\sigma_1 \) and \(\sigma_2 \) be such that \(1/2 < \sigma_1 < \sigma_2 < 1 \). Then

\[
\Re \sum_{1 \leq n \leq x} \frac{A(n)}{n^s \log n} \geq - \frac{x^{1-\sigma} \log x}{(1-\sigma) \log x} + O \left(\frac{x^{1-\sigma}}{(\log^2 x)^{\frac{1}{2}}} \right),
\]

where \(\sigma_1 < \sigma < \sigma_2 \) and the \(O \)-term constant depends on \(\sigma_1 \) and \(\sigma_2 \).

Proof. We deduce the following inequality from Lemmas \[1\] and \[2\]

\[
\Re \sum_{2 \leq n \leq x} \frac{A(n)}{n^s \log n} \geq - \sum_{2 \leq n \leq x} \frac{A(n)}{n^s \log n} = - \frac{x^{1-\sigma} \log x}{(1-\sigma) \log x} + O \left(\frac{x^{1-\sigma}}{(\log^2 x)^{\frac{1}{2}}} \right).\]

7. Proof of Theorem \[3\]. By Lemma \[4\] we have

\[
-\frac{\zeta'}{\zeta}(s) = \sum_{1 \leq n \leq \log^2 T} \frac{A(n)}{n^s} + O((\log T)^{1-\sigma})
\]

for \(\sigma_1 \leq \sigma \leq \sigma_2 \); let \(4 \leq T \leq t \leq 2T \). Integrating from \(\beta' \) to \(\infty \), where \(\rho' = \beta' + i\gamma' \) is a critical point of the zeta function and \(4 \leq T \leq \gamma' \leq 2T \), we
see that
\[\log \zeta(\rho') = \int_{\beta'}^{\infty} -\frac{\zeta'(y + i\gamma')}{\zeta(y + i\gamma')} \, dy = \sum_{2 \leq n \leq \log^2 T} \frac{A(n)}{n^{\rho'} \log n} + O\left(\frac{\log^{2-2\beta'} T}{\log \log T}\right). \]

Taking the real part of both sides, we obtain
\[(7.2) \quad \log |\zeta(\rho')| = \Re \sum_{2 \leq n \leq \log^2 T} \frac{A(n)}{n^{\rho'} \log n} + O\left(\frac{\log^{2-2\beta'} T}{\log \log T}\right). \]

Because of the inequality above we can use Lemma 13. We can say that
\[(7.3) \quad \Re \sum_{2 \leq n \leq \log^2 T} \frac{A(n)}{n^{\rho'} \log n} \geq -\frac{\log^{2-2\beta'} T}{2(1-\beta') \log \log T} + O\left(\frac{\log^{2-2\beta'} T}{(1-\beta')^2 (\log \log T)^2}\right). \]

Combining (7.2) and (7.3), we get
\[\log |\zeta(\rho')| \geq -\frac{C \log^{2-2\beta'} T}{\log \log T} \]
for some positive constant C. Since $4 \leq T \leq \gamma' \leq 2T$, substituting γ' in the above equation we get
\[\log |\zeta(\rho')| \geq -\frac{C \log^{2-2\beta'} \gamma'}{\log \log \gamma'} \]
for some positive constant C that depends on σ_1 and σ_2. This completes the proof of Theorem 3.

8. Lemmas for the proof of Theorem 4. We do not assume RH for the proof of Theorem 4.

Let σ_1 be such that $1/2 < \sigma_1 < 1$ and $\sigma_1 < \sigma < 1$. For $x \geq 1$, define
\[Z_x(s) = \sum_{n \leq x} \frac{c(n) A(n)}{n^s}, \]
where $c(n)$ is a totally multiplicative function such that $c(p) = -1$ for $p \leq cx$ and $c(p) = 1$ for $p > cx$, and where
\[\log c = -\frac{\log 2}{1 - \sigma_1} + \frac{\log 2}{(1 - \sigma_1)^2 \log^a x}. \]

Here we want σ to be very close to σ_1 for large values of x.

Lemma 14. Let σ_1 be such that $1/2 < \sigma_1 < 1$, and let a be fixed. Then for all large values of x, $Z_x(s)$ has a root at
\[s = \sigma_1 + \frac{1}{\log^a x} + O\left(\frac{1}{\log^{2a} x}\right), \]
where the O-term constant depends on σ_1.
Proof. Let \(x \geq 2 \). We set \(z = s - \sigma_1 \) where \(|z| < 2/\log^a x \) and \(x \) is so large that \(|1 - s| \geq |1 - \sigma_1| - 2/\log^a x > 0 \).

By choosing \(x \) sufficiently large we make sure that \(s \) is arbitrarily close to \(\sigma_1 \). Using Lemma \(\ref{lem:approximation} \) we get

\[
Z_x(s) = - \sum_{p \leq cx} \frac{\log p}{p^s + 1} + \sum_{cx < p \leq x} \frac{\log p}{p^s - 1} + O(x^{1/2 - \sigma_1})
\]

Applying Lemma \(\ref{lem:approximation} \) again to the first two sums, and separately combining the last two sums, we find that

\[
Z_x(s) = V_x(s) - 2V_{cx} + \sum_{p \leq cx} \frac{2 \log p}{p^{2s} - 1} + O(x^{1/2 - \sigma_1})
\]

Thus we have \(Z_x(s) = V_x(s) - 2V_{cx}(s) + O(1) = -W_x(s) + O(1) \).

Using techniques similar to those in Lemma \(\ref{lem:proof_5} \) we can show that \(Z_x(s) \) has a root at

\[
s = \sigma_1 + \frac{1}{\log^a x} + O\left(\frac{1}{\log^{2a} x}\right).
\]

Lemma 15. We have the following lower bound for \(Z_x(s) \):

\[
Z_x(s) \gg \frac{x^{1 - \sigma_1}}{\log^a x}
\]
on \(\mathcal{C}_1 \), where \(\mathcal{C}_1 \) is as in Section 5.

Proof. Since the main term of \(Z_x(s) \) is just the negative of the main term of \(W_x(s) \), the proof is identical to the corresponding part of the proof of Theorem 2 (see (5.19)).

9. Proof of Theorem \(\ref{thm:main} \). Let \(\mathcal{C}_0, \mathcal{C}_1, K \) and \(\delta \) be as defined in Sections 4–5. This time let \(\tau \) be a real number such that

\[
\left| \frac{\tau \log p}{2\pi} + \frac{1}{2} \right| < \delta \quad \text{for} \ p \leq cx, \quad \left| \frac{\tau \log p}{2\pi} \right| < \delta \quad \text{for} \ cx < p \leq x,
\]

and again let \(\mathcal{G} \) be the set of those \(\tau \) such that both inequalities hold.

We have

\[
|V_x(s + i\tau) - Z_x(s)| \ll \frac{x^{1 - \sigma_1}}{\log b^{-1} x}
\]

where \(s \in \mathcal{C}_1 \) and \(\tau \in \mathcal{G} \). The proof is similar to that of (5.6).
Define
\[L_x(s) = \sum_{1 < n \leq x} \frac{c(n)\Lambda(n)}{n^s \log n}. \]

Clearly,
\[(9.2) \quad \left| \sum_{1 < n \leq x} \frac{A(n)n^{-s-i\tau}}{\log n} - L_x(s) \right| = \left| \sum_{1 < n \leq x} \frac{A(n)n^{-s-i\tau}}{\log n} - \sum_{1 < n \leq x} \frac{c(n)\Lambda(n)}{n^s \log n} \right| \]
\[\leq \sum_{1 < n \leq x} \frac{A(n)}{n^\sigma \log n} |n^{-i\tau} - c(n)|. \]

If \(n = p^k \), then
\[|n^{-i\tau} - c(n)| = |p^{-ik\tau} - c(p)^k| \leq k|p^{-i\tau} - c(p)|. \]

Thus, for \(\sigma \geq \sigma_1 \) and \(\tau \in \mathcal{G} \), the expression above is
\[\leq 2\pi \delta \sum_{p^k \leq x} \frac{1}{p^{k\sigma_1}} \ll \delta \frac{x^{1-\sigma_1}}{\log x} \ll \frac{x^{1-\sigma_1}}{\log^b x} \]
by our choice of \(\delta \) in (4.17). That is, for \(\sigma \geq \sigma_1 \) and \(\tau \in \mathcal{G} \),
\[(9.3) \quad \left| \sum_{1 < n \leq x} \frac{A(n)}{\log n} n^{-s-i\tau} - L_x(s) \right| \ll \frac{x^{1-\sigma_1}}{\log^b x}. \]

Also, when \(\Re s \geq \sigma_1 \),
\[L'_x(s) = -\sum_{n \leq x} \frac{c(n)\Lambda(n)}{n^s} \ll \sum_{n \leq x} \frac{\Lambda(n)}{n^\sigma_1} \ll x^{1-\sigma_1}. \]

Thus, if \(s \) is on or inside \(\mathcal{C}_1 \), with \(\mathcal{C}_1 \) as in Section 5, then
\[(9.4) \quad L_x(s) = L_x(\sigma_1) + O\left(\frac{x^{1-\sigma_1}}{\log^a x}\right). \]

Let us evaluate \(L_x(s) \) at \(\sigma_1 \):
\[(9.5) \quad L_x(\sigma_1) = -2 \sum_{p \leq cx} p^{-\sigma_1} + \sum_{p \leq x} p^{-\sigma_1} + O(1) \]
\[= \frac{x^{1-\sigma_1} \log c}{(1-\sigma_1) \log^2 x} + O\left(\frac{x^{1-\sigma_1}}{\log^{\min(3,a+1)} x}\right), \]
which we get by techniques similar to those in Sections 4–5.
Thus combining (9.2), (9.4) and (9.5), we see that for \(s \) on or inside \(C_1 \), and \(\tau \in \mathcal{G} \),

\[
\Re \sum_{1 < n \leq x} \frac{A(n)}{\log n} n^{-s-i\tau} = \frac{x^{1-\sigma_1} \log c}{(1 - \sigma_1) \log^2 x} + O\left(\frac{x^{1-\sigma_1}}{\log^{\min(a,3))} x}\right) + O\left(\frac{x^{1-\sigma_1}}{\log b x}\right),
\]

since \(b > a + 1 \) and \(a > 2 \).

We have

\[
\Re \sum_{p^{k} \leq x} \frac{p^{-k(s+i\tau)}}{k} \leq \left(\frac{\log c}{1 - \sigma_1} + o(1)\right) x^{1-\sigma_1} \log^2 x,
\]

where \(s \in C_1 \) and \(\tau \in \mathcal{G} \).

Let

\[
T_x(s) = \sum_{x < n \leq T^{d_1/4}} \frac{w(n)A(n)}{\log n} n^{-s}.
\]

Then by Lemma 12, when \(s \in C_1 \) and \(\tau \in \mathcal{G} \), for \(s = \sigma + it \) with \(\sigma_1 \leq \sigma \) and \(|t| \leq 1 \), and for \(\tau \in R \), we have

\[
\log \zeta(s + i\tau) = \sum_{1 < n \leq x} \frac{A(n)}{\log n} n^{-s-i\tau} + T_x(s + i\tau) + O(T^{-d_1^2/16}),
\]

\[
-\frac{\zeta'}{\zeta}(s + i\tau) = \sum_{n \leq x} A(n)n^{-s-i\tau} - T'_x(s + i\tau) + O(T^{-d_1^2/16}),
\]

which we get from (4.30), where \(x = d_1 \log T/4(\log \log T)^a \). Now we have to show

\[
T'_x(s + i\tau) = \sum_{x < n \leq T^{d_1/4}} w(n)A(n)n^{-s-i\tau} \ll 1,
\]

\[
T_x(s + i\tau) = \sum_{x < n \leq T^{d_1/4}} w(n)A(n)\frac{n^{-s-i\tau}}{\log n} \ll \frac{1}{\log x},
\]

for all \(s \in C_1 \) and some \(\tau \in \mathcal{G} \).

By substituting (9.9) in (9.8), we get

\[
-\frac{\zeta'}{\zeta}(s + i\tau) = Z_x(s) + O\left(\frac{x^{1-\sigma_1}}{\log^{b-1} x}\right),
\]

Since \(Z_x(s) = -W_x(s) + O(1) \), by the same argument as for (5.19) and (5.17) we can see that \(\zeta'(s) \) has a root for \(\rho' \) in \(C_1 \).
We know that
\[\log c = \log 2 / (\sigma_1 - 1)(1 + o(1)).\]
Combining the above estimates, we get
\[
(9.11) \quad \log |\zeta(\rho')| \leq (1 + o(1)) \left(- \frac{(\sigma_1 - 1/2)^{1 - \sigma_1} \log 2}{(1 - \sigma_1)^2 4^{1 - \sigma_1}} \right) \frac{\log^{1 - \sigma_1} T}{(\log \log T)^2 + b(1 - \sigma_1)}.
\]
Since \(T \leq \gamma' = \Re \rho' \leq 2T \), (9.11) also holds with \(T \) replaced by \(\gamma' \), and this is (1.11).

Thus we get
\[
\log |\zeta(\rho')| \leq (-B(\sigma_1) + \epsilon) \frac{\log^{1 - \beta'} \gamma'}{(\log \log \gamma')^{2 + b(1 - \sigma_1)}},
\]
where
\[
B(\sigma_1) = \frac{(\sigma_1 - 1/2)^{1 - \sigma_1} \log 2}{(1 - \sigma_1)^2 4^{1 - \sigma_1}}.
\]
To complete the proof of Theorem 4, it only remains to show the existence of a \(\tau \in \mathbb{R} \cap \mathcal{G} \) satisfying (9.9) and (9.10). We can apply the same idea as in Sections 4–5 and Kronecker’s formula with minor changes. The proof will proceed with just a different set of \(b_p \).

Combining all the estimates and choosing \(b = 3 + \epsilon'' \), we obtain
\[
\log |\zeta(\rho')| \leq (-B(\sigma_1) + \epsilon) \frac{\log^{1 - \beta'} \gamma'}{(\log \log \gamma')^{5 - 3\beta + \epsilon'}},
\]
where \(\epsilon' = \epsilon''(1 - \sigma) \). Thus the proof of Theorem 4 is complete.

Acknowledgements. The author gives sincere thanks to his doctoral advisor Steven M. Gonek for introducing the problem in this paper and also for providing guidance and support during the process of its study. Professor Gonek also read an earlier version of this paper and made many useful suggestions which significantly improved the exposition.

References

[1] S. M. Gonek and H. L. Montgomery, Extreme values of the zeta function at critical points, Quart. J. Math. 67 (2016), 483–505.
[2] J. E. Littlewood, On the Riemann zeta-function, Proc. London Math. Soc. (2) 24 (1926), 175–201.
[3] J. E. Littlewood, Mathematical notes (5): On the function \(1/\zeta(1 + ti) \), Proc. London Math. Soc. (2) 27 (1928), 349–357.
[4] H. L. Montgomery and J. G. Thompson, Geometric properties of the zeta function, Acta Arith. 155 (2012), 373–396.
[5] H. L. Montgomery and R. C. Vaughan, Hilbert’s inequality, J. London Math Soc. (2) 8 (1974), 73–82.
[6] H. L. Montgomery and R. C. Vaughan, *Multiplicative Number Theory I: Classical Theory*, Cambridge Univ. Press, Cambridge, 2007.

[7] E. C. Titchmarsh, *On the function $1/\zeta(1 + it)$*, Quart. J. Math. Oxford Ser. 4 (1933), 64–70.

[8] E. C. Titchmarsh, *The Theory of the Riemann Zeta-Function*, 2nd ed., Clarendon Press, Oxford, 1986.

Shashank Chorge
Department of Mathematics
University of Rochester
Rochester, NY 14627, USA
E-mail: schorge@ur.rochester.edu