MANY-WORLDS INTERPRETATION OF QUANTUM THEORY AND MESOSCOPIC ANTHROPIC PRINCIPLE

A.Yu. Kamenshchik
Dipartimento di Fisica and INFN,
Via Irnerio 46, 40126 Bologna, Italy
L.D. Landau Institute for Theoretical Physics of the
Russian Academy of Sciences, Moscow, Russia
and
O.V. Teryaev
Joint Institute for Nuclear Research, Dubna, Russia

(Received 28 June 2008; accepted 14 July 2008)

Abstract

We suggest to combine the Anthropic Principle with Many-Worlds Interpretation of Quantum Theory. Realizing the multiplicity of worlds it provides an opportunity of explanation of some important events which are assumed to be extremely improbable. The Mesoscopic Anthropic Principle suggested here is aimed to explain appearance of such events which are necessary for emergence of Life and Mind. It is complementary to Cosmological Anthropic Principle explaining the fine tuning of fundamental constants. We briefly discuss various possible applications of Mesoscopic Anthropic Principle including the
Solar Eclipses and assembling of complex molecules. Besides, we address the problem of Time’s Arrow in the framework of Many-World Interpretation. We suggest the recipe for disentangling of quantities defined by fundamental physical laws and by an anthropic selection.
1 Introduction

The anthropic principle (AP) was proposed long ago [1, 2, 3, 4, 5] but recently it got a strong boost (see e.g. [6, 7]) connected with the development of cosmology [8] and string theory [9]. The general idea of AP consists in the statement that existence of the (human) observer imposes important restrictions on the basic laws and fundamental physical constants. As soon as these restrictions happen to be of tantamount importance, the required values of physical constants appear to be extremely improbable. This smallness of probability could be compensated by the huge number of universes constituting Multiverse. Under this term one should understand a complicated object which may be formed by the process of the ramification of the spatial structure of the universe due to the effects of spontaneous symmetry breaking producing inflationary expansion of the patches of spacetime. Such an opportunity is inherent in the chaotic inflation models [10].

Another source of multiversity is the existence of the so called string landscape which means that the fundamental superstring theory contains a huge amount of vacuum states, each of those may lead to quite different universes with different physics.

Here we would like to discuss yet another source of multiplicity opening the possibility of further extension of applicability of AP. It corresponds to many-worlds interpretation of quantum theory [11]. As soon as this multiplicity does not lead to the change of fundamental constants we are dealing with what we call ”Mesoscopic” AP, corresponding to the scales intermediate between cosmological and microscopic ones.

The structure of the paper is the following: The second section is devoted to a brief review of the basic ideas of the many-worlds interpretation of quantum mechanics; in the third section we discuss branching of worlds understood in the sense of the defactorization of the wave function and the problem of the preferred basis; in the fourth section we consider the important problem of irreversibility and appearance of the arrow of time in terms of the many-worlds interpretation; the fifth sections deals with the definition of the Mesoscopic Anthropic Principle and its simplest applications to planetary systems; in the sixth section we treat biological evolution in terms of variety of options provided by the quantum evolution; in the last
section we discuss the main results and suggest some criteria for disentangling of quantities defined by fundamental physical laws and by an anthropic selection.

2 Many-worlds interpretation of quantum mechanics

The many-worlds interpretation (MWI) of quantum mechanics was suggested by H. Everett in 1957 [12] and its invention was motivated by two factors. One of them was intensively discussed since the moment of creation of quantum mechanics: it is the problem of reconciliation between two processes present in the theory - dynamical evolution in accordance with the Schrödinger equation and the reduction of wave packet, responsible for an observation of the unique outcome of quantum measurement when the quantum state represents a superposition of the corresponding eigenstates. In the most popular Copenhagen interpretation of quantum mechanics such a coexistence of these two processes was provided by the separation of the so called classical realm, which in some versions was connected even with the presence of conscious observer. Thus the desire of getting rid of the ambiguity connected with the wave packet reduction postulate and having a unique quantum description of Nature stimulated the creation of MWI. In the framework of MWI the Schrödinger evolution is the only process, the principle of superposition is applicable to all the states including macroscopic ones and all the outcomes of any measurement-like processes are realized simultaneously but in different “parallel universes”. The very essence of the many-worlds interpretation can be expressed by one simple formula we are about to derive. Let us consider the wave function of a system, containing two subsystems (say, an object and a device), whose wave functions are respectively $|\Phi\rangle$ and $|\Psi\rangle$ and let us the process of the interaction between these two subsystems is described by a unitary operator \hat{U}. The result of action of this operator can be represented as

$$\hat{U}|\Phi\rangle_0|\Psi\rangle_i = |\Phi\rangle_i|\Psi\rangle_i.$$

(1)

Here the state $|\Psi\rangle_i$ is a quantum state of the object corresponding to a definite outcome of the experiment, while $|\Phi\rangle_0$ is an initial state.
of the measuring device. Now, let the initial state of the object be described by a superposition of quantum states:

$$|\Psi\rangle = \sum_i c_i |\Psi_i\rangle.$$ \hspace{1cm} (2)

That superposition principle immediately leads to

$$\hat{U}|\Phi_0\rangle_0 \Psi = \hat{U}|\Phi_0\rangle_0 \sum_i c_i |\Psi_i\rangle = \sum_i c_i |\Phi_i\rangle_0 \Psi_i.$$ \hspace{1cm} (3)

Here $|\Phi_i\rangle$ describes the state of the measuring device, which has found the quantum object in the state $|\Psi_i\rangle$. The superposition (3) contains more than one term, while one sees only one outcome of measurement. The reduction of the wave packet postulate solves this puzzle by introducing another process eliminating in a non-deterministic way all the terms in the right-hand side of Eq. (3) but one. The MWI instead says that all the terms of the superposition are realized but in different universes.

The MWI looks the most consistent between interpretations of quantum theory, because it ultimately reduces the number of postulates. Moreover, one of the proponents of MWI B.S. DeWitt says that in the framework of it the mathematical formalism of the theory gives itself its interpretation [13].

Now, let us turn to second motivation for MWI. In quantum cosmology there is no external observer and hence, no, classical realm. Thus, MWI matches quite well the quantum cosmology.

The many-worlds interpretation with its branching of universes apparently opens a magnificent opportunities for the application of the AP. This possibility was practically overlooked in the literature (see, however [14]).

3 Branching of Worlds and the preferred basis

The opportunity to extract non-trivial physical consequences in the context of MWI is based on the treating of the branching of worlds as an objective process. However, inevitable question arises: decomposing the wave function of the universe one should choose a certain basis. The result of the decomposition essentially depends...
Thus, the so-called problem of the choice of the preferred basis arises [15]. The essence of the problem can be easily formulated considering the same example of a quantum system consisting of two subsystems. Let us emphasize that now we would like to undertake a consideration of a general case without particular reference to artificial measuring devices and quantum objects (for a moment we consider this division of a system into subsystems as granted). The only essential characteristics of the branching process is the defactorization of the wave function. That means that if at the initial moment the wave function of the system under consideration was represented by the direct product of the wave functions of the subsystems

\[
|\Psi\rangle = |\phi\rangle|\chi\rangle
\]

(4)

then after an interaction between the subsystems it becomes

\[
\sum_i c_i |\phi_i\rangle|\chi_i\rangle,
\]

(5)

where more than one coefficient \(c_i\) is different from zero. Apparently the decomposition (5) can be done in various manners. As soon as each term is associated with a separate universe, the unique prescription for the construction of such a superposition should be fixed. We believe that the correct choice of the preferred basis is the so-called Schmidt or bi-orthogonal basis. This basis is formed by eigenvectors of both the density matrices of the subsystems of the quantum system under consideration. These density matrices are defined as

\[
\hat{\rho}_I = \text{Tr}_{II}|\Psi\rangle\langle\Psi|,
\]

(6)

\[
\hat{\rho}_{II} = \text{Tr}_I|\Psi\rangle\langle\Psi|.
\]

(7)

Remarkably, the eigenvalues of the density matrices coincide and hence the number of non-zero eigenvalues is the same, in spite of the fact that the corresponding Hilbert spaces can be very different.

\[
\hat{\rho}_I|\phi_n\rangle = \lambda_n|\phi_n\rangle,
\]

(8)

\[
\hat{\rho}_{II}|\chi_n\rangle = \lambda_n|\chi_n\rangle,
\]

(9)

Consequently, the wave function is decomposed as

\[
|\Psi\rangle = \sum \alpha \sqrt{\lambda_n}|\phi_n\rangle|\chi_n\rangle.
\]

(10)
Many-worlds interpretation of quantum theory ...

The bi-orthogonal basis was first used at the dawn of quantum mechanics by E. Schrödinger [16] for study of correlations between quantum systems and was applied to MWI in [17, 18]. Recently, this basis is actively used for measuring of degree of entanglement, in particular, in relation to quantum computing [19]. The expansion with respect to eigenvectors of spin density matrix and density matrix positivity was also used in hadronic physics and non-perturbative QCD [20, 21].

We believe that the bi-orthogonal basis being defined by the fixing of the decomposition of the system into subsystems have a fundamental character and determines the worlds which result from the defactorization process. However, the subdivision of the system onto subsystems which implies the branching of the worlds should satisfy some reasonable criteria which we are not ready to formalize at the moment (see, however [22] for analysis of some relatively simple cases). One can say, that the decomposition into the subsystems should be such that the corresponding preferred basis were rather stable. For example, when one treats a quantum mechanical experimient of the Stern-Gerlach type, it is natural to consider the measuring device and the atom as subsystems.

4 Time’s arrow

The formalism of the many-world interpretation of quantum theory permits to reformulate the problem of a direction of time in a very transparent way. Indeed, the basic dynamics equations are invariant with respect to the operation of time reflection, while the macroscopic phenomena shows the irreversibility or the presence of the arrow of time. One of the quantitative manifestations of these phenomena is the growth of the von Neumann entropy [23]

\[S = -Tr(\hat{\rho} \ln \hat{\rho}) = -\sum_i \lambda_i \ln \lambda_i \equiv \sum_i S_i. \]

(11)

where the last equality introduces, in the context of MWI the notion of relative entropies of branches. This entropy is minimal and equal to zero for a pure quantum state. Usually, the presence of the arrow of time is connected with the existence of some additional constraints on the solutions of fundamental equations. For example, choosing an
initial state as a state with low value of entropy, one naturally sees its growth. We make an observation that the branching process in the MWI naturally produces the states with a smaller initial relative entropy (that is calculated by taking into account only one branch). In other words, after the measurement-like act of branching a new branch is in factorized quantum state and the density matrices of all its subsystems correspond to pure quantum states. This does not contradict to the increase of entropy in the standard (Copenhagen) treatment of quantum measurement. In the latter case one is dealing after the measurement with the classical statistical mixture of a various outcomes producing increase of entropy which can be measured experimentally. At the same time in MWI the process of measurement (defactorization of the wave function) naturally implies the increase of entropy, but after the identification of an outcome of measurement, when the defactorization of the wave function is completed, the relative entropy (related to the branch where we live) becomes equal to \(S_i \). Forgetting about other branches, which is equivalent to the reduction of wave packet in the Copenhagen interpretation, corresponds to rescaling \(\lambda \rightarrow 1 \) and \(S_i \rightarrow S^R; S^R(t_0) = 0 \), where \(S^R \) is the redefined entropy after the branching happened at time \(t_0 \). Thus, relative entropy of each branch is always growing, \(S^R_i(t) > S^R_i(0) = 0 \), so is \(S_i \) and the usual measurable entropy of classical statistical mixture which is just the sum (11) of the entropies of the branches. Note that this nullification of relative entropy does not involve the distant regions of Universe which are the same for all the branches.

Thus, MWI provides another manifestation of the effect of boundary conditions which is present in any explanation of irreversibility. The example of such boundary conditions is, say, the correlations weakening in the BBGKI chain of equations leading to the appearance of irreversibility. In another approach, when deriving [24] the irreversible master equation from the reversible Kolmogorov-Chapman equation is is sufficient[25] to assume the existence of the initial conditions in the past. The role of boundary effects for the irreversibility of field theory evolution equations implying the ”scale arrow” , analogous to time’s arrow, is discussed in [25, 21]. In turn, the irreversibility with respect to time reflection in field theory may appear either because of T(or CP) violation at the fundamental level or because of its simulation by imaginary phases of scattering amplitudes. The
latter crucially depend on the sign of $i\epsilon$ in the Feynman propagators which is imposed by the causal boundary conditions for Green functions. This effect is giving rise to T-odd spin asymmetries [26] being the subject of intensive theoretical and experimental studies.

In the actual case of MWI the choice of boundary conditions corresponds to the choice of factorized wave function in the past, rather than in the future. However, as MWI may be considered as ”self-interpretation” of the mathematical formalism of quantum theory [13], the suggested approach may explain the fundamental phenomenon of Arrow of Time in a similar manner.

5 Planetary Coincidences and Mesoscopic Anthropic Principle

It is usually believed that the suitable values of fundamental constants are sufficient for emergence of stars, planetary systems and all the astrophysical objects required for appearance of life. However, there are a number of observations pointing to the special, privileged, role of the Solar system (see e.g. [27]). All the values describing this privileged position cannot involve the fine-tuning of neither constants of elementary particle physics nor cosmology. Therefore we call such coincidences the mesoscopic anthropic coincidences and the related selection the Mesoscopic Anthropic Principle (MAP).

The first natural opportunity to find the privileged values of planetary characteristics is to explore the vast number of galaxies stars, and planets in our Universe [28]. Note, that the necessity of this large number provides a sort of answer for one line of possible criticism of AP suggesting that the existence of such a large Universe is hardly necessary for the life on the Earth, this argument being best expressed by S. Hawking who was saying that ”our Solar system is certainly a prerequisite for our existence, But there does not seem any necessity for other galaxies to exist”.

At the same time, the selection among the large number of distant astrophysical objects does not seem sufficient if some fine-tuned value of mesoscopic parameter is required. For this aim the small changes of the relevant parameter within the required range are important. This is exactly what happens in the chaotic inflation or stringy landscape
and allows for a fine tuning of fundamental constants1.

As a possible solution of this problem we suggest the MWI is a source of small variations of mesoscopic planetary constants in different worlds. We assume that the measurement-like quantum interactions leading to the branching occur all the time independently of the presence of (conscious) observer and produce the planetary systems in parallel Everett worlds whose parameters differ by small amount.

The example of planetary fine-tuning is provided by Solar eclipses requiring the coincidences of angular sizes of Sun and Moon, as seen from the Earth. There is currently no explanation of this coincidence, apart from teleological arguments[27]. At the same time, this coincidence would be explained if the eclipse were necessary for some stage of the emergence of life. This does not seem completely impossible, although there is no evidences in favour of such a relation. One possibility is the emergence of life due to photochemical reaction requiring the shadowing of strong ultraviolet radiation of the Sun but presence of the radiation of Solar Corona. Should such or similar scenario find the experimental support (which is possible, at least in principle) this would mean also the support of MAP and the role of MWI.

6 Mesoscopic Anthropic Principle and Biological Evolution

In turn, even suitable planetary environment and emergence of primitive life does not, contrary to popular wisdom, leads to the appearance of its complex forms. The Darwinian evolution is an adaptive one[29] and explains the arising of the complex structures if they provide the evolutionary advantages. At the same time, the appearance of complex structures, which does not lead to immediate evolutionary success, including the Human beings is not trivial to explain. The production of complexity in the process of the type of random walk may be explained[30] only if this complexity is relatively low. The random walk in that case is limited by zero complexity barrier and produces its increase. The further evolutionary process explains the progress of most numerous species, like insects, but not the appearance of complex and rare ones. Therefore, the origin of

1Such a small changes of some parameter constitute, in fact, the cornerstone of Darwinian natural selection, see also the next section
humans, being the most popular success of originals theory of Darwin and Wallace, remains out of scope of its modern version.

The natural way to explain the appearance of very complex and improbable structures is provided by MWI. This opportunity was recently explored by J. McFadden [31] in the case of the earliest stage of biological evolution, where he expresses the revolutionary idea that the first life appears only in one of innumerable Everett worlds.

However, the author dislikes the immediate consequences of his hypothesis which he absolutely correctly deduces: namely, that extraterrestrial life, and therefore, intelligence does not exist (note the same hypothesis was suggested for different reasons by I.S. Shklovsky [32]) and that life cannot be created in the laboratory. To overcome these obstacles he suggests the another use of quantum theory to explain the improbable event, namely, the inverse Zeno effect. However, we do not consider this opportunity as plausible.

Indeed, he considers as a model of improbable event the passage of light through the vertically and horizontally polarized lenses while the insertion of extra lenses between them increase the probability.

This case, however, deals with low-dimensional system when the small probability is achieved due to a sort of fine-tuning (mutual orthogonality of lenses). At the same time, the low probability of transition leading to first self-replicator is due to large dimension of corresponding Hilbert space. More quantitatively, if one has two wave functions (normalized vectors in a Hilbert space) one of which $|i\rangle$, corresponds to initial ”single amino acid arginine” [31] while, second, $|f\rangle$, corresponds to the emerged self-replicator. The typical (average) value of the square of their scalar product, related to a transition probability is

$$<|\langle i|f\rangle|^2> = \frac{1}{N},$$

where N is a dimension of the Hilbert space defined by the number of participating elements. Now, if one produce some quantum measurement, the scale of this quantity clearly remains the same. The only way to increase these probabilities by dense series of measurements would be to arrange them in some particular way defined by the initial and final states. The appearance of such a special measurement-like process is not easier to explain than the occurrence of small-probability quantum transition. At the same time, some
random measurements will not substantially increase the probability (12), contrary to the case of polarized lenses, when the specially organized low probability may be increased by a generic measurement.

Therefore, we do not consider inverse quantum Zeno effect as a candidate for the explanation of low probability events necessary for life emergence and come back to the initial suggestion of McFadden about the use of MWI.

Moreover, we suggest to extend this mechanism to all the stages of biological evolution. Indeed, the original suggestion of [31] is to limit the field of applicability of quantum effects to the microbilogical scale [33] when the entanglement between cell and its environment is essential, while for the multi-cell structures quantum effects were considered [31] unimportant.

Contrary to that, we suggest that all the mutations in the course of biological evolution are the quantum measurement-like processes so that all their different outcomes are realized in different branches. The increasing of complexity now has purely random character, so that only in few parallel worlds the biological evolution produces more and more complex species.

All the parallel worlds emerging due to mutation differ only by small variations in the mutating organism. This feature is common with a standard (neo)Darwinian paradigm. What is different from it is that all the versions of this variation are realized in different parallel Everett worlds. This naturally implies the increase of complexity in some of them just by random process. In our opinion, this solves the fundamental problem of the extremely low probability of life emergence and evolution to the most complex forms, including ourselves.

There are a number of fundamental facts which, to our opinion, do not contradict to or even support this hypothesis. These are ”punctuated equilibrium” (evolution proceeds by sudden bursts followed by long ”stasis” periods), ”Out of Africa” theory [34] (appearance of all humans from a single family), ”Mitochondrial Eve” (identifying a common female ancestor, being the support of previous theory), ”irreversibility of the brain formation” (once emerged brain never reduced in the course of evolution) etc.

We have no opportunity of detailed discussions and just mention that all these facts may be understood as emerging from improbable
rare events of quantum measurement type, so that all of their outcomes are realized in parallel worlds. We are just lucky inhabitants of one of the most "pleasant" of them.

7 Discussion and Conclusions

In this article we have tried to explore the possible relation between Anthropic Principle and Many-World Interpretation of Quantum Theory. The key moment is the possibility to multiply the reality to such an extent that very special events like emergence of Life become quite possible.

The important feature of this process is the smallness of differences between various parallel Everett worlds. This allows to scan all the possible values of required parameters which is essentially similar to the arguments justifying Darwinian natural selection. The only, albeit crucial difference is that selection occurs not in the different moments of time like Darwinian one, but in the different parallel worlds, or, mathematically speaking, in the different regions of Hilbert space. Such a resemblance to the Darwinian evolution may be explored for other known mechanisms of generation of variety of options (like string landscape or eternal chaotic inflation) in order to separate the "physical" predictions from the effects of "environment" [6] or "scanning" [7] which we are about to suggest.

Indeed, if some physical constant should be fine-tuned for the emergence of life it is very unlikely that it is completely defined by underlying physics (cf. [35]) and selection process of Darwinian type was likely to contribute. At the same, the physics should rather lead to the establishing of general framework and more robust constraints (see, for example, Ref. [36], where in the framework of the Euclidean quantum gravity some constraints on possible values of the effective cosmological constant were found) which may be a starting point for subsequent fine-tuning by anthropic selection.

In the case of the Many-World Interpretation such a selection allows to fine-tune various parameters which are not amongst the basic constants of theory of fundamental interactions, including gravity and elementary particle physics. This is because the branching due to the Many-Worlds interpretation occurs when all the fundamental constants are already fixed and therefore they are the same in all
the Everett parallel worlds. We suggested to use the term "Mesoscopic Anthropic Principle" for description of anthropic selection in the branching process.

We considered two possible fields of applicability of Mesoscopic Anthropic Principle, namely, planetary coincidences and biological evolution.

In both cases the small differences generated by branching allow to explain the coincidences which is very difficult to do otherwise. As an example we consider the coincidence of angular sizes of Sun and Moon responsible for the Solar eclipses. This coincidence may be achieved by small steps during branching, and anthropic selection may choose it to be realized in our Universe if eclipses played any role in the life emergence. This hypothesis may be checked, in principle, opening an opportunity for indirect tests of Anthropic Principle.

The other important problem is the arising of complexity during biological evolution, including such extreme cases as Life itself and Mind. We suggest that crucial role is played the Many-Worlds interpretation, so that extremely small probability is fully compensated by enormous number of trials.

No we are ready to take an hazard to try to give the crudest estimate of number of the Everett worlds produced up to the present moment. We first assume that it is the Planck constant \hbar which selects the measurement-like interactions leading to defactorization. Now, for dimensional reasons when determining the number of worlds it should be divided by some constant with the dimension of action or phase space, characterizing the whole Universe. The emerging ratio is related to the ratio of the Planck time t_P and the age of the Universe T. Therefore, we expect that the number of worlds N is

$$N = f \left(\frac{T}{t_P} \right).$$

(13)

where f is some growing function which we allow to range from linear to exponential (the latter qualitatively supported by the chain character of branching while there is no reason for appearance of logarithmic function, also growing) which leads to N ranging from 10^{60} to $10^{10^{60}}$. Especially the last number seems to be fairly huge in order to accommodate all the unlikely events leading to modern picture of Life.
Summing up, we consider the Anthropic Principle combined with the multiple opportunities opened also by the Many-Worlds interpretation of quantum theory, as new exciting field of physics and other natural sciences, rather than dull alternative to them.

Acknowledgment

O.T. is grateful to Cariplo Science Foundation for support during his stay at the University of Insubria (Como) and to the Department of Physics and Mathematics of this University for kind hospitality. This work was partially supported by RFBR Grants N 06-02-16215 and 07-02-91557 and by LSS-1157.2006.2.

References

[1] Dirac, P. A. M.: The Cosmological constants. Nature 139, 323 (1937); New basis for cosmology. Proc. R. Soc. 165 A, 199-208 (1938).

[2] Dicke, R. H.: Dirac’s Cosmology and Mach’s Principle. Nature 192, 440-441 (1961).

[3] Carter, B.: Large Numbers in Astrophysics and Cosmology. Paper presented at Clifford Centennial Meet., Princeton (1970).

[4] Rozental, I.L.: Elementary particles and cosmology (metagalaxy and universe). Phys. Usp. 40, 763 -772 (1997); Physical laws and numerical values of fundamental constants. Sov. Phys. Usp. 23, 296-305 (1980); How Particles and Fields Drive Cosmic Evolution, Springer, Berlin (1988).

[5] Barrow, J.D., Tipler, F.J.: The Anthropic Cosmological Principle, Oxford University Press, Oxford (1988).

[6] Rubakov, V.A.: Talk at the XXXIII International conference on high energy physics, Moscow, July 26- August 2, 2006.

[7] Weinberg, S.: Living in the multiverse, hep-th/0511037.
[8] Garriga, J., Linde, A., Vilenkin, A.: Dark energy equation of state and anthropic selection. Phys. Rev. D 69, 063521 (2004); Pogosian, L., Vilenkin, A., Tegmark, M.: Anthropic predictions for vacuum energy and neutrino masses. JCAP 0407, 005 (2004); Garriga, J., Schwartz-Perlov, D., Vilenkin, A., Winitzki, S.: Probabilities in the inflationary multiverse. JCAP 0601, 017 (2006).

[9] Susskind, L.: The Anthropic landscape of string theory, hep-th/0302219.

[10] Linde, A.D.: Particle Physics and Inflationary Cosmology, Harwood, Chur, Switzerland (1990).

[11] DeWitt, B.S., Graham, N. (Eds.): The Many-Worlds Interpretation of Quantum Mechanics, Princeton University Press, Princeton, NJ (1973).

[12] Everett, H.: Relative state formulation of quantum mechanics. Rev. Mod. Phys. 29, 454-462 (1957).

[13] DeWitt, B.S.: Quantum mechanics and reality. Physics Today 23, No. 9, 30-35 (1970).

[14] Barvinsky, A.O., Kamenshchik, A.Yu., Ponomaryov, v.N.: Anthropic Principle and Many-Worlds Interpretation of Quantum Mechanics, in the Proceedings of the International Seminar “Anthropic Principle in the Structure of Scientific Picture of The World”, November 28-30, Leningrad (1989), 48-50; Fundamental questions of the Interpretation of Quantum Mechanics, A Modern Approach. Pedagogical University of Moscow Publishing House, Moscow (1988).

[15] Deutsch, D.: Quantum theory as a universal physical theory. Int. J. Theor. Phys. 24, 1-41 (1985); Markov, M.A., Mukhanov, V.F.: Classical preferable basis in quantum mechanics. Phys. Lett. A 127, 251-254 (1988); Dieks, D.: Resolution of the measurement problem through decoherence of the quantum state. Phys. Lett. A 142, 439-446 (1989); Ben Dov, Y.: An observer decomposition
for Everett’s theory. Found. Phys. Lett. 3, 383-387 (1990); Albrecht, A.: Investigating decoherence in a simple system. Phys. Rev. D 46, 5504-5520 (1992).

[16] Schrödinger, E.: Discussion of probability relations between separated systems. Proc. Cambridge Philos. Soc. 31, 555-563 (1935); Probability relations between separated systems. 32, 446-452 (1936).

[17] Zeh, H.D.: Toward a quantum theory of observation. Found. Phys. 3, 109-116 (1973)

[18] Barvinsky, A.O., Kamenshchik, A.Yu.: Preferred basis in the many-worlds interpretation of quantum mechanics and quantum cosmology. Class. Quantum Grav. 7, 2285-2293 (1990); Preferred basis in quantum theory and the problem of classicalization of the quantum Universe. Phys. Rev. D 52, 743-757 (1995).

[19] Shimony, A.: Degree of entanglement. Ann. N.Y. Acad. Sci. 755, 675 (1995).

[20] Efremov, A.V., Teryaev, O.V.: On High P(T) Vector Mesons Spin Alignment. Sov. J. Nucl. Phys. 36, 557 (1982).

[21] Artru, X., Elchikh, M., Richard, J.-M., Soffer, J., Teryaev, O.: Spin observables and spin structure functions: inequalities and dynamics. Phys. Rept., to appear.

[22] Barvinsky, A.O., Kamenshchik, A.Yu.: Preferred basis in the many-worlds interpretation in quantum theory and the symmetries of the system. Grav. Cosmol. 1, 261-265 (1995).

[23] von Neumann, J.: Mathematical Foundations of Quantum Mechanics, Princeton University Press, Princeton, NJ (1955).

[24] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Phys. Rept. 371, 461-580 (2002).

[25] Teryaev, O.V.: The irreversibility of QCD evolution equations. Phys. Part. Nucl. 36, S160-S163 (2005).
[26] Teryaev, O.V.: T odd effects in QCD. RIKEN Rev. 28, 101-104 (2000); Ratcliffe, P.G., Teryaev, O.V.: Colour modification of effective T-odd distributions. arXiv:hep-ph/0703293.

[27] Gonzalez, G., Richards, J.W.: The Privileged Planet, Regnery Publishing, Washington D.C. (2004).

[28] Muller, B.: The anthropic principle revisited. arXiv:astro-ph/0108259.

[29] Dawkins, R.: Climbing Mount Improbable. Penguin, London (1996)

[30] Gould, S.J.: Life’s Grandeur: The Spread of Excellence from Plato to Darwin. Trafalgar Square, Cape (1996).

[31] McFadden, J.: Quantum Evolution. W. W. Norton and Company, New York (2001).

[32] Shklovsky, I.S., Sagan, C.: Intelligent Life in the Universe, Holden-Day, San Francisco (1968).

[33] McFadden, J., Al-Khalili, J.: A quantum mechanical model of adaptive mutation. BioSystems 50, 203-211 (1999).

[34] R. Leakey, The Origin of Humankind, Basic Books, New York (1994).

[35] Smolin, L.: Life of the Cosmos, Oxford University Press, Oxford (1998).

[36] Barvinsky, A.O., Kamenshchik, A.Yu.: Cosmological landscape from nothing: Some like it hot. JCAP 0609, 014 (2006); Thermodynamics via Creation from Nothing: Limiting the Cosmological Constant Landscape. Phys. Rev. D 74, 121502(R) (2006).
Comment on

MANY-WORLDS INTERPRETATION OF QUANTUM THEORY AND MESOSCOPIC ANTHROPIC PRINCIPLE

Michael B. Mensky
P.N. Lebedev Physical Institute,
53 Leninsky prosp., 119991 Moscow, Russia

1. The authors of the reviewed paper, A. Yu. Kamenshchik and O. V. Teryaev, consider Many-Worlds Interpretation (MWI) of quantum mechanics in connection with anthropic principle. Combining the anthropic principle with Many-Worlds Interpretation, they attempt to explain why some coincidences necessary for emergence of life are actually observed although probabilities of these coincidences may be estimated as negligible.

The main step in the argument of the authors is the assumption that the variety of worlds appearing in MWI (Everett’s worlds) may be dealt with, in the framework of anthropic principle, in the same way as the variety of real universes forming the Multiverse in some cosmological models (for example in inflationary models) is used. Considering the Everett’s worlds differing from each other on the astrophysical rather than cosmological scale, the authors define what they call Mesoscopic Anthropic Principle (MAP).

As an example of applying MAP, the coincidence of angular sizes...
of Sun and Moon responsible for the Solar eclipses is considered. Another example is arising complexity during biological evolution. In the latter case the role of high complexity for life is evident, but it is not clear how one may explain the process of gradual increasing complexity if each step in this process has no evident preference for life. The authors suggest that MWI may supply an explanation in this case. In the first example (coincidence of angular sizes of Sun and Moon) the role of the coincidence for life is not evident but “does not seem completely impossible”.

The general scheme of reasoning is the following. In the course of branching (due to measurement-like interactions) of our world the enormous variety of worlds arise, most of them inconvenient for life, but “we are just lucky inhabitants of one of the most “pleasant” of them”.

2. MWI is very popular now and is extensively discussed from various viewpoints. The proposal of A. Yu. Kamenshchik and O. V. Teryaev who consider this concept in its connection with life is evidently interesting. Yet it needs to be clarified in some points and compared with close approaches.

In order to discuss Everett’s worlds in their relation to the phenomenon of life, it is very important to make quite clear i) how these worlds are defined and ii) what is a status of each “world”.

The first question is solved in the paper on the basis of the so-called Schmidt basis. This is a pure mathematical definition, of course possible but hardly sufficiently justified in the present context. At least it should be explicitly discussed what would change in case of another definition of “worlds” or why another definition is inappropriate for the tasks of the authors. There is no such a discussion in the paper.

The second question (in fact connected with the solution of the first one) is more important, but it is also not discussed in the paper. After a quantum state is decomposed (with the help of the Schmidt basis or in another way), the resulting components are called “worlds” without any explanation of what does this mean. These “worlds” are formally dealt with just as the real material worlds (e.g. those forming Multiverse in cosmological models) are. All considerations, typical for the anthropic principle, are applied to the Everett’s worlds just as they might be applied to the set of material worlds. It is evident
that correctness of such an approach has to be justified (we believe that the approach is correct but needs more deep analysis).

Recall that different Everett’s worlds (for example those with alive and dead Schroedinger cat) are not different material worlds but only components in the superposition presenting the state of a single quantum material world. The set of all Everett’s worlds (alternative states of our world) may be called Alterverse to distinguish it from Multiverse, a set of material worlds (this terminology was proposed by the present author and supported in A.A. Shatskii, I.D. Novikov and N.S. Kardashev, Physics-Uspekhi 51, No.5, 2008).

Since the Everett’s worlds are not material, the question arises whether the whole “many-worlds representation” of the events is objective or not. The following phrase in the paper turns out to be doubtful: “The opportunity to extract non-trivial physical consequences in the context of MWI is based on the treating of the branching of worlds as an objective process”.

To our mind, the above-mentioned questions stay unanswered because the authors attempt to treat as completely objective those processes which actually include subjective elements. In case of quantum measurement, subjective is the notion of “observation” or “observer”. In case of anthropic principle, subjective is the very concept of life. The discussion proposed in the reviewed paper would be more complete if the (actually unavoidable) concept of consciousness be included in this discussion in an explicit way.

We do not think that the results obtained in the paper of A. Yu. Kamenshchik and O. V. Teryaev should be considered incorrect until all difficult questions are answered. The approach accepted by the authors is to make as many conclusions as it is possible without solving and even posing further questions. This tactic is right and almost unavoidable. However, now one has to pose and try to solve all the rest questions. This will allow one to understand the already obtained results on a deeper level.

It is curious that even first steps on this way (first of all explicit inclusion of the notion of consciousness) give interesting analogues that might point out to further prospects.

3. An attempt to elaborate MWI on the basis of explicit consideration of the phenomenon of consciousness has recently been performed in the following series of papers: Michael B. Mensky, Physics-
Comment

Uspekhi 43, 585-600 (2000); 48, 389-409 (2005); 50, 397-407 (2007); Optics and Spectroscopy 103, 461-467 (2007); NeuroQuantology Vol 5, No 4, 363-376 (2007). The approach developed in these papers was called Extended Everett’s Concept (EEC). It shows that the formalism of MWI includes in itself not only its own interpretation but also the principal features of the phenomenon of consciousness and, more generally, phenomenon of life.

The principal points of EEC are that i) “explicit” consciousness is nothing else than ability of living beings to perceive classical alternatives (Everett’s worlds) separately from each other; ii) “implicit” consciousness (accomplished in the regime when the explicit consciousness is turned off) has access to all alternatives and compares them with each other; iii) returning to the “explicit” form, the consciousness may influence on what alternative it will find itself in, increasing probabilities of favorable alternatives.

In the framework of EEC, the “practically impossible” (having negligible probabilities) events may with great probability happen in the sphere of life if they are favorable for life. Such situations were called “probabilistic miracles”. Many well known but not explained facts in the sphere of life turn out to be quite clear from this point of view. First of all this is the very phenomenon of life, the miracle of life: survival of living beings and conservation, or even improvement, of the quality of life (for example support of health).

The “probabilistic miracles” predicted in the framework of EEC are closely connected with the anthropic principle, although are more general. One of the above-cited papers (Physics-Uspekhi 2007) is a stenograph of the author’s talk given on the occasion of the V.L.Ginzburg’s jubilee. In the course of the discussion after the talk (page 405 of the paper), the first question and the answer to it were as follows:

Question (Al’tshuler B L): The talk creates a nostalgic feeling. Indeed, in 1947, Literaturnaya Gazeta [the Literature News- paper] published a large article where Vitalii Lazarevich Ginzburg was accused of ‘blatant idealism’. As to my question, it is: just before this talk, Valerii Anatol’evich Rubakov spoke about the anthropic principle and the multiplicity of worlds; he said that there can be infinitely many worlds. Is this multiplicity of worlds in the framework of the anthropic principle related to the
multiplicity of Everett’s worlds?

Mensky: This relation was not discussed in the talk by Rubakov but it suggests itself. It also exists in the original Everett interpretation but even more so in the Extended Everett Concept. It is assumed in the EEC that consciousness can choose alternatives that are most favorable for life (more precisely, increase the probability that the consciousness perceives one of the favorable alternatives). This can be called the active version of the anthropic principle. But I would also like to touch upon the first part of Boris Al’tshuler’s comment. Indeed, ‘the ages meet’ here. Our scientific community is too conservative (much more conservative than the scientific community abroad). In the late 1940s, one could be cursed here for quantum mechanics. Now, no one is cursed for quantum mechanics. But for the things like those I was speaking about, one is still cursed.

In another paper (NeuroQuantology 2007, page 375) this has been expressed in a more definite way (in terms of the special mathematical operation of postcorrection):

Let us make finally one more remark demonstrating how natural for living systems is the evolution law (1) including postcorrection. This law is, in its spirit, very similar to what is called anthropic principle. The anthropic principle explains “fine tuning” of the parameters of our world by the fact that in case of any other set of the parameters organic life would not be feasible and therefore no humans could exist to observe this world. The principle of life, formulated as the ability of the living system to postcorrect its state to provide its survival, suggests in fact something quite similar, even in a softer variant.

In order to explain this, we have to underline once more that the postcorrection describes selecting those scenarios which remain in the sphere of life. The rest scenarios do not disappear. They are real as well (included in the complete description of the quantum world), but they are excluded from the sphere of life, therefore are un-
observable. This means that no observer can watch these “unfavorable for life” scenarios. The “sphere of life” is such an image of our world which can be observed. If just this image (i.e. not “the whole world” but only “the sphere of life”) is taken as a starting point for constructing evolution law, then the result of the construction will necessarily be the evolution including postcorrection.

Thus, postcorrection in the evolution of living matter (of the sphere of life) does not need even to be postulated. Instead, it may be derived from the (generalized) anthropic principle. Non-living matter satisfies the conventional quantum-mechanical causal evolution law. Evolution of the living matter (of the sphere of life) simply by definition should include postcorrection.

4. The coincidences mentioned in the paper of A. Yu. Kamen-shchik and O. V. Teryaev may be considered as special cases of the anthropic principle formulated in terms of the operation of postcorrection. These coincidences may also be considered to be examples of “probabilistic miracles”. Of course, in this case only primitive class of probabilistic miracles is meant, available for the simple forms of life.

The miracle in this case is connected only with the very primitive feature of life, namely, survival. The miracle is survival in the conditions which cause death with high probability. Being primitive in its structure, the phenomenon is in this case very important, it is the miracle of life.

Being connected with only primitive forms of life, the probabilistic miracle taking place in the examples considered by A. Yu. Kamen-shchik and O. V. Teryaev may seem to be purely objective. In fact it is on the border between objective and subjective. This makes these examples especially interesting. They may shed light on the phenomenon of emergence of life. In any case they give hint of new ways for further developing EEC and similar theories connecting quantum mechanics with the phenomenon of life.
Comment on
MANY-WORLD INTERPRETATION OF QUANTUM THEORY AND MESOSCOPIC ANTHROPIC PRINCIPLE

Michael B. Mensky
P.N.Lebedev Physical Institute,
53 Leninsky prosp., 119991 Moscow, Russia

1. The authors of the reviewed paper, A. Yu. Kamenshchik and O. V. Teryaev, consider Many-Worlds Interpretation (MWI) of quantum mechanics in connection with anthropic principle. Combining the anthropic principle with Many-Worlds Interpretation, they attempt to explain why some coincidences necessary for emergence of life are actually observed although probabilities of these coincidences may be estimated as negligible.

The main step in the argument of the authors is the assumption that the variety of worlds appearing in MWI (Everett’s worlds) may be dealt with, in the framework of anthropic principle, in the same way as the variety of real universes forming the Multiverse in some cosmological models (for example in inflationary models) is used. Considering the Everett’s worlds differing from each other on the astrophysical rather than cosmological scale, the authors define what they call Mesoscopic Anthropic Principle (MAP).

As an example of applying MAP, the coincidence of angular sizes
Comment

of Sun and Moon responsible for the Solar eclipses is considered. Another example is arising complexity during biological evolution. In the latter case the role of high complexity for life is evident, but it is not clear how one may explain the process of gradual increasing complexity if each step in this process has no evident preference for life. The authors suggest that MWI may supply an explanation in this case. In the first example (coincidence of angular sizes of Sun and Moon) the role of the coincidence for life is not evident but “does not seem completely impossible”.

The general scheme of reasoning is the following. In the course of branching (due to measurement-like interactions) of our world the enormous variety of worlds arise, most of them inconvenient for life, but “we are just lucky inhabitants of one of the most “pleasant” of them”.

2. MWI is very popular now and is extensively discussed from various viewpoints. The proposal of A. Yu. Kamenshchik and O. V. Teryaev who consider this concept in its connection with life is evidently interesting. Yet it needs to be clarified in some points and compared with close approaches.

In order to discuss Everett’s worlds in their relation to the phenomenon of life, it is very important to make quite clear i) how these worlds are defined and ii) what is a status of each “world”.

The first question is solved in the paper on the basis of the so-called Schmidt basis. This is a pure mathematical definition, of course possible but hardly sufficiently justified in the present context. At least it should be explicitly discussed what would change in case of another definition of “worlds” or why another definition is inappropriate for the tasks of the authors. There is no such a discussion in the paper.

The second question (in fact connected with the solution of the first one) is more important, but it is also not discussed in the paper. After a quantum state is decomposed (with the help of the Schmidt basis or in another way), the resulting components are called “worlds” without any explanation of what does this mean. These “worlds” are formally dealt with just as the real material worlds (e.g. those forming Multiverse in cosmological models) are. All considerations, typical for the anthropic principle, are applied to the Everett’s worlds just as they might be applied to the set of material worlds. It is evident
that correctness of such an approach has to be justified (we believe that the approach is correct but needs more deep analysis).

Recall that different Everett’s worlds (for example those with alive and dead Schroedinger cat) are not different material worlds but only components in the superposition presenting the state of a single material world which is quantum. If the Everett’s worlds were material, the experiment with Schroedinger cat would give two cats (one alive cat and one dead cat) instead of a single one, evidently wrong conclusion.

Since the Everett’s worlds are not material, the question arises whether the whole “many-worlds representation” of the events is objective or not. The following phrase in the paper turns out to be doubtful: “The opportunity to extract non-trivial physical consequences in the context of MWI is based on the treating of the branching of worlds as an objective process”.

To our mind, the above-mentioned questions stay unanswered because the authors attempt to treat as completely objective those processes which actually include subjective elements. In case of quantum measurement, subjective is the notion of “observation” or “observer”. In case of anthropic principle, subjective is the very concept of life. The discussion proposed in the reviewed paper would be more complete if the (actually unavoidable) concept of consciousness be included in this discussion in an explicit way.

We do not think that the results obtained in the paper of A. Yu. Kamenshchik and O. V. Teryaev should be considered incorrect until all difficult questions are answered. The approach accepted by the authors is to make as many conclusions as it is possible without solving and even posing further questions. This tactic is right and almost unavoidable. However, now one has to pose and try to solve all the rest questions. This will allow one to understand the already obtained results on a deeper level.

It is curious that even first steps on this way (first of all explicit inclusion of the notion of consciousness) give interesting analogues that might point out to further prospects.

3. An attempt to elaborate MWI on the basis of explicit consideration of the phenomenon of consciousness has recently been performed in the following series of papers: Michael B. Mensky, Physics-Uspekhi 43, 585-600 (2000); 48, 389-409 (2005); 50, 397-407 (2007);
Optics and Spectroscopy **103**, 461-467 (2007); NeuroQuantology Vol **5**, No 4, 363-376 (2007). The approach developed in these papers was called Extended Everett’s Concept (EEC). It shows that the formalism of MWI includes in itself not only its own interpretation but also the principal features of the phenomenon of consciousness and, more generally, phenomenon of life.

The principal points of EEC are that i) “explicit” consciousness is nothing else than ability of living beings to perceive classical alternatives (Everett’s worlds) separately from each other; ii) “implicit” consciousness (accomplished in the regime when the explicit consciousness is turned off) has access to all alternatives and compares them with each other; iii) returning to the “explicit” form, the consciousness may influence on what alternative it will find itself in, increasing probabilities of favorable alternatives.

In the framework of EEC, the “practically impossible” (having negligible probabilities) events may with great probability happen in the sphere of life if they are favorable for life. Such situations were called “probabilistic miracles”. Many well known but not explained facts in the sphere of life turn out to be quite clear from this point of view. First of all this is the very phenomenon of life, the miracle of life: survival of living beings and conservation, or even improvement, of the quality of life (for example support of health).

The “probabilistic miracles” predicted in the framework of EEC are closely connected with the anthropic principle, although are more general. One of the above-cited papers (Physics-Uspekhi 2007) is a stenograph of the author’s talk given on the occasion of the V.L.Ginzburg’s jubilee. In the course of the discussion after the talk (page 405 of the paper), the first question and the answer to it were as follows:

Question (Al’tshuler B L): The talk creates a nostalgic feeling. Indeed, in 1947, Literaturnaya Gazeta [the Literature News-paper] published a large article where Vitalii Lazarevich Ginzburg was accused of ‘blatant idealism’. As to my question, it is: just before this talk, Valerii Anatol’evich Rubakov spoke about the anthropic principle and the multiplicity of worlds; he said that there can be infinitely many worlds. Is this multiplicity of worlds in the framework of the anthropic principle related to the multiplicity of Everett’s worlds?
Comment

Mensky: This relation was not discussed in the talk by Rubakov but it suggests itself. It also exists in the original Everett interpretation but even more so in the Extended Everett Concept. It is assumed in the EEC that consciousness can choose alternatives that are most favorable for life (more precisely, increase the probability that the consciousness perceives one of the favorable alternatives). This can be called the active version of the anthropic principle. But I would also like to touch upon the first part of Boris Al’tshuler’s comment. Indeed, ‘the ages meet’ here. Our scientific community is too conservative (much more conservative than the scientific community abroad). In the late 1940s, one could be cursed here for quantum mechanics. Now, no one is cursed for quantum mechanics. But for the things like those I was speaking about, one is still cursed.

In another paper (NeuroQuantontology 2007, page 375) this has been expressed in a more definite way (in terms of the special mathematical operation of postcorrection):

Let us make finally one more remark demonstrating how natural for living systems is the evolution law (1) including postcorrection. This law is, in its spirit, very similar to what is called anthropic principle. The anthropic principle explains “fine tuning” of the parameters of our world by the fact that in case of any other set of the parameters organic life would not be feasible and therefore no humans could exist to observe this world. The principle of life, formulated as the ability of the living system to postcorrect its state to provide its survival, suggests in fact something quite similar, even in a softer variant.

In order to explain this, we have to underline once more that the postcorrection describes selecting those scenarios which remain in the sphere of life. The rest scenarios do not disappear. They are real as well (included in the complete description of the quantum world), but they are excluded from the sphere of life, therefore are unobservable. This means that no observer can watch these
“unfavorable for life” scenarios. The “sphere of life” is such an image of our world which can be observed. If just this image (i.e. not “the whole world” but only “the sphere of life”) is taken as a starting point for constructing evolution law, then the result of the construction will necessarily be the evolution including postcorrection.

Thus, postcorrection in the evolution of living matter (of the sphere of life) does not need even to be postulated. Instead, it may be derived from the (generalized) anthropic principle. Non-living matter satisfies the conventional quantum-mechanical causal evolution law. Evolution of the living matter (of the sphere of life) simply by definition should include postcorrection.

4. The coincidences mentioned in the paper of A. Yu. Kamen-shchik and O. V. Teryaev may be considered as special cases of the anthropic principle formulated in terms of the operation of postcorrection. These coincidences may also be considered to be examples of “probabilistic miracles”. Of course, in this case only primitive class of probabilistic miracles is meant, available for the simple forms of life.

The miracle in this case is connected only with the very primitive feature of life, namely, survival. The miracle is survival in the conditions which cause death with high probability. Being primitive in its structure, the phenomenon is in this case very important, it is the miracle of life.

Being connected with only primitive forms of life, the probabilistic miracle taking place in the examples considered by A. Yu. Kamen-shchik and O. V. Teryaev may seem to be purely objective. In fact it is on the border between objective and subjective. This makes these examples especially interesting. They may shed light on the phenomenon of emergence of life. In any case they give hint of new ways for further developing EEC and similar theories connecting quantum mechanics with the phenomenon of life.