Matrix Deviation Inequality for ℓ_p-Norm

Yuan-Chung Sheu *† Te-Chun Wang ‡§

February 28, 2023

Abstract

Motivated by the general matrix deviation inequality for i.i.d ensemble Gaussian matrix [15, Theorem 11.1.5], we show that this property holds for ℓ_p-norm with $1 \leq p < \infty$ and i.i.d ensemble sub-Gaussian random matrices, which is a random matrix with i.i.d mean-zero, unit variance, sub-Gaussian entries. As a consequence of our result, we establish the Johnson–Lindenstrauss lemma from ℓ_2^n-space to ℓ_p^n-space for all i.i.d ensemble sub-Gaussian random matrices.

Contents

1 Introduction 2
2 α-Orlicz Random Variables 4
3 Proofs 5
 3.1 Proof of Theorem 1.2 ... 5
 3.1.1 Case 1: $x \in \mathbb{R}^n$ and $y = 0$.. 6
 3.1.2 Case 2: $||x|| = ||y|| = 1$... 9
 3.1.3 Case 3: General Vectors $x, y \in \mathbb{R}^n$.. 11
 3.2 Proof of Corollary 1.3 ... 13

*Department of Applied mathematics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
†Email: sheu@math.nctu.edu.tw
‡Department of Mathematics and Statistics, University of Victoria, British Columbia, Canada.
§Email: lieb.am07g@gmail.com
1 Introduction

Given an \(m \times n \) random matrix \(A \), the uniform deviation inequality plays an important role in theory of random matrices. Also it has many interesting and important consequences. We first quote a classical result \([15, \text{Theorem 11.1.5}]\) for i.i.d ensemble Gaussian random matrices with respect to positive-homogeneous and subadditive function, which is very useful in asymptotic geometric analysis, and the proof goes back to \([13, \text{Lemma 3}]\), which has a different formulation.

Theorem 1.1. Let \(A \in \mathbb{R}^{m \times n} \) be a random matrix with i.i.d \(\mathcal{N}(0,1) \) entries, \(T \subseteq \mathbb{R}^n \), and \(f : \mathbb{R}^m \rightarrow \mathbb{R} \) be a function such that
\[
f(cv) = cf(v) \quad \forall c \geq 0, \ v \in \mathbb{R}^m \quad \text{and} \quad f(u + v) \leq f(u) + f(v) \quad \forall u, v \in \mathbb{R}^m.
\]
Then we have
\[
\mathbb{E}[\sup_{x \in T} |f(Ax) - \mathbb{E}[f(Ax)]|] \leq C \text{Lip}(f) \gamma(T),
\]
where \(\gamma(T) \equiv \mathbb{E}[\sup_{x \in T} |\langle g, x \rangle|], \ g \sim \mathcal{N}(0, I_n), \) and \(\text{Lip}(f) \) is the Lipschitz constant of \(f \). Here \(C \) is an absolute universal constant and \(\gamma(T) \) is called the Gaussian complexity of \(T \).

Note that if \(f(x) \equiv \sup_{y \in S} \langle x, y \rangle \), then \(f(x) \) satisfies the conditions of Theorem 1.1 and \(\text{Lip}(f) = \text{rad}(S) \), so (1) is sharp (see \([15, \text{Theorem 11.2.4}]\) and \([15, \text{Exercise 8.7.2}]\)). An important application of matrix deviation inequality is to establish a Lipschitz embedding between two normed spaces. See \([13, \text{Theorem 7}]\) and \([15, \text{Theorem 11.3.3}]\) for using i.i.d ensemble Gaussian matrix to prove the existence of the embedding from a finite dimensional normed spaces into a low-dimensional Euclidean spaces and the embedding from a high-dimensional Euclidean spaces into a low-dimensional Euclidean spaces. See also \([15, \text{Theorem 8.7.1}]\) and \([8]\) for Chevet inequality and \([2]\) for the \(\ell_p \)-Gaussian-Grothendieck problem.

Still, it is a challenging open problem to study the universality of the matrix deviation inequality (see \([15, \text{Remark 11.1.9}]\)). In other words, whether the general matrix deviation inequality holds for i.i.d ensemble sub-Gaussian random matrix, which is a random matrix with i.i.d mean-zero, unit variance, sub-Gaussian entries. Note that this problem was solved by Liaw et al. \([7, \text{Theorem 1}]\) when \(f(\cdot) = \| \cdot \|_2 \). Namely, if \(A \in \mathbb{R}^{m \times n} \) is an i.i.d ensemble sub-Gaussian random matrix with \(K = \|A_{1,1}\|_{\psi_2} \), where \(\|X\|_{\psi_2} \) is the sub-Gaussian norm of \(X \) (see Definition 2.1), then
\[
\mathbb{E}[\sup_{x \in T} \|Ax\|_2 - m^{1/2}\|x\|_2] \|_{\psi_2} \leq CK^2 \gamma(T) \quad \forall T \subseteq \mathbb{R}^n.
\]
In addition, (2) still holds if \(m^{1/2}\|x\|_2 \) is replaced by \(\mathbb{E}[\|Ax\|_2] \). See \([15, \text{Chapter 9}]\) for the applications.
Main Results. In this paper, we aim to prove the matrix deviation inequality for ℓ_p-norm, $1 \leq p < \infty$, and i.i.d ensemble sub-Gaussian random matrices.

Theorem 1.2. Let $A \in \mathbb{R}^{m \times n}$ be a random matrix with i.i.d, mean-zero, unit variance, sub-Gaussian entries $\{A_{i,j}\}$ and $K = \|A_{i,j}\|_2$. Then we have

$$\left\| \sup_{x \in T} \|Ax\|_p - m^{\frac{1}{p}} \|A_1 x\|_{L^p} \right\|_2 \leq \begin{cases} C_p K^{p} \|A_{1,1}\|_{L^p}^{(p+2)} \text{Lip}(\| \cdot \|_p) \gamma(T), & \text{if } p \in [1, 2] \\ C_p K^{p+2} \text{Lip}(\| \cdot \|_p) \gamma(T), & \text{if } p \in (2, \infty). \end{cases} \tag{3}$$

where A_i is the ith row of A, $\|A_1 x\|_{L^p} = \mathbb{E}[\|A_1 x\|_p^p]$, and C_p is a positive absolute constant depending only on p. In addition, (3) still holds if $m^{1/p}\|A_1 x\|_{L^p}$ is replaced by $\mathbb{E}[\|Ax\|_p]$.

As a consequence of Theorem 1.2, we show that any i.i.d ensemble sub-Gaussian random matrix can be regarded as an embedding from ℓ^2-space to ℓ^m_p-space such that the distances between two points do not increase by more than a factor $D_p(1 + \epsilon)$ and do not decrease by more than a factor $d_p(1 - \epsilon)$.

Corollary 1.3. Let $\epsilon \in (0, 1)$, T be a finite subset of \mathbb{R}^n containing N elements, and

$$(d_p, D_p) = \begin{cases} (C_p \|A_{1,1}\|_p, 1), & \text{if } 1 \leq p < 2, \\ (1, 1), & \text{if } p = 2, \\ (1, C_p K), & \text{if } 2 < p < \infty. \end{cases} \tag{4}$$

Then, under assumption of Theorem 1.2, we have

$$\mathbb{P}
\left(
 d_p(1 - \epsilon) \|x - y\|_2 \leq \| \frac{1}{m^{1/p}} A(x - y) \|_p \leq D_p(1 + \epsilon) \|x - y\|_2 \quad \forall x, y \in T
\right)
\geq \begin{cases} 1 - 2 \exp(- C_p K^{2p} (\|A_{1,1}\|_p)^{2(p+3)} \log(N)) & \text{if } 1 \leq p \leq 2 \\ 1 - 2 \exp(- C_p K^{2p+2} \log(N)) & \text{if } 2 < p < \infty. \end{cases} \tag{5}$$

Remark 1.4. For the problem of dimension reduction, Brinkman and Charikar [1] and Ping Li [6] both give overviews of the results in this area. See also [5] for the problem of distortion and [15, Section 11.3] for the random projection. For more general results and similar problems, see [9], [10], and [11].
Heuristics. The core of our proof of Theorem 1.2 is to show that

\[R_x \equiv \|Ax\|_p - m^\frac{1}{p} \|A_1 x\|_{L^p} \quad \forall x \in \mathbb{R}^p \]

has sub-Gaussian increments (see Lemma 3.5). To do this, we will use the approach given by [13, The proof of Lemma 3] and [7, p. 292], which indicates that it suffices to consider some special cases of Lemma 3.5 (see Lemma 3.2 and Lemma 3.4). In order to prove these special cases, we establish the sub-Gaussian concentration inequality with respect to \(\ell_p \)-norm by using [4, Corollary 1.4] to control the tail probability of the sum of i.i.d \(2/p \)-Orlicz random variables \(|X_j|^p \) (see Lemma 3.3), where \(X_1 \) is a mean-zero sub-Gaussian random variable (note that Lemma 3.3 is a generalization of [7, Proposition 5.1]).

2 \(\alpha \)-Orlicz Random Variables

Definition 2.1. Let \(\alpha > 0 \) and \(X \) be a random variable. The \(\alpha \)-Orlicz norm of \(X \) is defined by

\[\|X\|_{\psi_\alpha} \equiv \inf\{t > 0 : \mathbb{E}[\exp(|X|^\alpha/t^\alpha)] \leq 2\} \quad (6) \]

(For convenience, we set \(\inf \emptyset = \infty \)).

We say \(X \) is a \(\alpha \)-Orlicz random variable if \(\|X\|_{\psi_\alpha} < \infty \). In particular, we say \(X \) is a sub-Gaussian random variable if \(\|X\|_{\psi_2} < \infty \). Note that \(\| \cdot \|_{\psi_\alpha} \) is a norm if and only if \(\alpha \geq 1 \). Nevertheless, \(\| \cdot \|_{\psi_\alpha} \) still make sense for any \(\alpha > 0 \).

The following proposition states the equivalent definitions of \(\| \cdot \|_{\psi_\alpha} \), which will be used throughout this paper. Note that the proof of Proposition 2.2 is the same as [15, Proposition 2.5.2].

Proposition 2.2. Let \(\alpha > 0 \) and \(X \) be a random variable. Then the following properties are equivalent:

(a) The MGF of \(|X|^\alpha \) is bounded at some point, namely

\[\mathbb{E}[\exp(|X|^\alpha/K_1^\alpha)] \leq 2. \quad (7) \]

(b) The tails of \(X \) satisfy

\[\mathbb{P}(|X| \geq t) \leq 2 \exp(-t^\alpha/K_2^\alpha) \quad \forall t \geq 0. \quad (8) \]

(c) The moments of \(X \) satisfy

\[\|X\|_{L^p} \leq K_3 p^\frac{1}{\alpha} \quad \forall p \geq \alpha \quad (9) \]
Here the parameters $K_i > 0$ appearing in these properties differ from each other by at most a constant that depends on α.

By the definition of $\| \cdot \|_{\psi_\alpha}$, it is clear that we have the following relation.

Lemma 2.3. Let X be a random variable such that $\|X\|_{\psi_\alpha \beta} \vee \|X\|_{\psi_\alpha} < \infty$. Then $\|X\|_{\psi_\alpha} = \|X\|_{\psi_\alpha \beta}^\beta$.

3 Proofs

3.1 Proof of Theorem 1.2

Consider the norm induced by A as follows and recall the definition of R_x:

$$
\|x\| \equiv \|A_1 x\|_{L^p} \quad \text{and} \quad R_x = \|Ax\|_p - \frac{1}{m^p} \|x\| \quad \forall x \in \mathbb{R}^n.
$$

(10)

Recall the Generic chaining bound [15, Theorem 8.5.3]. Note that the proof of [15, Theorem 8.5.3] actually gives the following estimation.

Proposition 3.1. Let $T \subseteq \mathbb{R}^n$, $x_0 \in T$, and $\{R_x\}_{x \in T}$ be a random process such that $\|R_x - R_y\|_{\psi_2} \leq \mathcal{K}\|x - y\|_2$ for every $x, y \in T$. Then

$$
\left\| \sup_{x \in T} |R_x - R_{x_0}| \right\|_{\psi_2} \leq C \mathcal{K} \gamma(T),
$$

where C is a positive absolute constant. In particular, if $R_{x_0} = 0$, then $\left\| \sup_{x \in T} |R_x| \right\|_{\psi_2} \leq C \mathcal{K} \gamma(T)$.

To prove Theorem 1.2, it suffices to show that $\{R_x\}_{x \in \mathbb{R}^n}$ has sub-Gaussian increments (i.e., Lemma 3.5). Indeed, since $\gamma(T \cup \{0\}) = \gamma(T)$ and $R_0 = 0$, it follows that (3) is an immediate consequence of Proposition 3.1 and Lemma 3.5. Also, by triangle inequality and $\sup_{x \in T} \|x\|_2 C = \sup_{x \in T} \mathbb{E}[\|g, x\|] = \gamma(T)$, where $C = \mathbb{E}[\|g\|]$ and $g \sim \mathcal{N}(0, 1)$, it is clear that $m^{1/p} \|A_1 x\|_{L^p}$ can be replaced by $\mathbb{E}[\|Ax\|_p]$.

Let us start with some properties that will be used throughout the proof.

(a) Applying Jensen’s inequality shows that

$$
K \geq \inf \{ t > 0 : \exp \left(\frac{\mathbb{E}[\|A_1 x\|_2^2]}{t^2} \right) \leq 2 \} = \sqrt{\frac{1}{\ln 2}} > 1.
$$

(11)
(b) Note that \(\| \cdot \|\) and \(\| \cdot \|_2\) are equivalent. Namely,
\[
C_p \|A_{1,1}\|_{L^p} \|x\|_2 \leq \|x\| \leq \|x\|_2 \quad \forall 1 \leq p \leq 2
\]
and
\[
\|x\|_2 \leq \|x\| \leq C'_p K \|x\|_2 \quad \forall 2 \leq p < \infty,
\]
where \(C_p\) and \(C'_p\) are positive constants that depend on \(p\). The proof of (13) follows from [15, Exercise 2.6.5]. The lower bound of (12) is an immediate consequence of Marcinkiewicz–Zygmund inequality [3, Section 10.3] and Minkowski’s integral inequality [14, Theorem 6.2.7]. Indeed, if \(\|x\|_2 = 1\), then
\[
\|x\| \geq C_p E[(\sum_{j=1}^n (A_{1,j}x_j)^2)^{p/2}]^{1/p} \geq C_p (\sum_{j=1}^n x_j^2 E[|A_{1,j}|^p]^{1/p})^{1/2} = C_p \|A_{1,1}\|_{L^p}.
\]

(c) Applying Hölder inequality gives
\[
\text{Lip}(\| \cdot \|_p) = \begin{cases} \frac{1}{m_p} - \frac{1}{2}, & \text{if } 1 \leq p \leq 2 \\ 1, & \text{if } 2 \leq p < \infty. \end{cases}
\]

3.1.1 Case 1: \(x \in \mathbb{R}^n\) and \(y = 0\)

Lemma 3.2. Under assumption of Theorem 1.2, we have
\[
\|R_x\|_{\psi_2} \leq \left\{ \begin{array}{ll} C_p (K/\|A_{1,1}\|_{L^p})^p \text{Lip}(\| \cdot \|_p) \|x\|_2, & \text{if } 1 \leq p \leq 2 \\ C_p K^p \text{Lip}(\| \cdot \|_p) \|x\|_2, & \text{if } 2 \leq p < \infty. \end{array} \right.
\]

To prove Lemma 3.2, it suffices to establish Lemma 3.3. Indeed, by [15, Proposition 2.6.1], we have \(\|A_{1,1}\|_{L^p} \leq CK \|x\|_2\), so applying the following lemma gives
\[
\|R_x\|_{\psi_2} \leq C_p \|x\| K^p (\|x\|_2)^p \leq C_p K^p \|A_{1,1}\|_{L^p} \|x\|_2 \quad \text{if } 1 \leq p \leq 2; \\
\|R_x\|_{\psi_2} \leq C_p \|x\| K^p (\|x\|_2)^p = C_p \|x\|_2 K^p (\|x\|_2)^{p-1} \leq C_p \|x\|_2 K^p \quad \text{if } 2 \leq p < \infty.
\]

Lemma 3.3. Let \(1 \leq p < \infty\) and \(\{X_i\}_{1 \leq i \leq \infty}\) be i.i.d sub-Gaussian random variables such that \(\|X_1\|_{L^p} = 1\) and \(K \equiv \|X_1\|_{\psi_2} < \infty\). Then, for each \(m \geq 1\) and \(X^{(m)} = (X_1, ..., X_m)\), we have
\[
\|\|X^{(m)}\|_p - m^p \| \|_{\psi_2} \leq C_p K^p \text{Lip}(\| \cdot \|_p),
\]
where \(C_p\) is a positive absolute constant depending only on \(p\).
Proof. To prove Lemma 3.3, it suffices to show that
\[
\mathbb{P}\left(\left\| X^{(m)} \right\|_p - m^{\frac{1}{p}} \geq s \right) \leq \begin{cases}
2 \exp\left(-C_p \frac{s^2}{K^{2p}m^{\frac{1}{p}}-1}\right), & \text{if } 1 \leq p < 2 \\
2 \exp\left(-C_p \frac{s^2}{K^{2p}}\right), & \text{if } 2 \leq p < \infty
\end{cases} \quad \forall s > 0,
\tag{16}
\]
where \(C_p \) is a positive absolute constant.

Step 1. In this step, we prove (16) when \(1 \leq p < \infty \) and \(s \leq K^p m^{\frac{1}{p}} \). Note that if \(|z - 1| \geq \delta \) and \(z \geq 0 \), then \(|z^p - 1| \geq \delta\). Then we have
\[
\mathbb{P}\left(\left| \frac{1}{m^p} \left\| X^{(m)} \right\|_p - 1 \right| \geq \delta \right) \leq \mathbb{P}\left(\left| \frac{1}{m} \sum_{i=1}^{m} (\left| X_i \right|^p - 1) \right| \geq \delta \right).
\]
Since \(||X_i||_{\psi_p} \leq c_p ||X_i||_{\psi_2}\) for each \(1 \leq p < 2 \), we have
\[
\left| \left| X_i \right|^p - 1 \right|_{\psi_1} \leq c_p \left| \left| X_i \right|^p \right|_{\psi_1} \leq c_p \left| \left| X_i \right|^p \right|_{\psi_p} \leq c_p K^p \quad \forall 1 \leq p < 2
\tag{17}
\]
and
\[
\left| \left| X_i \right|^p - 1 \right|_{\psi_2^p} \leq c_p \left| \left| X_i \right|^p \right|_{\psi_2^p} \leq c_p \left| \left| X_i \right|^p \right|_{\psi_2^p} \leq c_p K^p \quad \forall 2 \leq p < \infty
\tag{18}
\]
by [4, Lemma A.3] and Lemma 2.3. Let \(\alpha_i = \frac{1}{m^p} \). Then applying [4, Corollary 1.4] with \(\alpha = 1 \) if \(1 \leq p < 2 \); \(\alpha = \frac{2}{p} \) if \(2 \leq p < \infty \) gives
\[
\mathbb{P}\left(\left| \frac{1}{m} \sum_{i=1}^{m} (\left| X_i \right|^p - 1) \right| \geq \delta \right) \leq 2 \exp\left(-C_p \min\{ \frac{\delta^2}{2}, \frac{\delta}{K^{2p}} \} m \right)
\]
\[
= 2 \exp\left(-C_p \frac{\delta^2 m}{K^{2p}} \right) \quad \forall \delta \leq K^p, \quad 1 \leq p < 2
\tag{19}
\]
and
\[
\mathbb{P}\left(\left| \frac{1}{m} \sum_{i=1}^{m} (\left| X_i \right|^p - 1) \right| \geq \delta \right) \leq 2 \exp\left(-C_p \min\{ \frac{\delta^2}{2}, \frac{\delta^\alpha m^\alpha}{K^{2p}} \} \right)
\]
\[
\leq 2 \exp\left(-C_p \min\{ \frac{\delta^2}{2}, \frac{\delta^\alpha m^\alpha}{K^{2p}} \} \right) \quad \forall \delta \leq K^p, \quad 2 \leq p < \infty.
\tag{20}
\]
Therefore, taking \(s = \delta m^{\frac{1}{p}} \) proves (16) when \(1 \leq p < \infty \) and \(s \leq K^p m^{\frac{1}{p}} \).
Step 2. In this step, we prove (16) when \(1 \leq p < 2 \) and \(s > Km^{\frac{1}{p}} \). In fact, we only need to prove (16) when \(1 \leq p < 2 \) and \(s > Km^{1/p}\xi_p \), where \(\xi_p \) is a positive constant that depends on \(p \). Indeed, if \(\xi_p > 1 \) and \(Km^{1/p} < s < Km^{1/p}\xi_p \), then using the result proved in Step 1 gives

\[
\mathbb{P}\left(\left| X^{(m)} \right|_p - m^{\frac{1}{p}} \geq s \right) \leq \mathbb{P}\left(\left| X^{(m)} \right|_p - m^{\frac{1}{p}} \geq Km^{1/p} \right)
\]

\[
\leq 2 \exp\left(-C_p \frac{(Km^{1/p})^2}{s^2} \right) \leq 2 \exp\left(-\frac{C_p}{\xi_p} K^{2p} m^{\frac{2}{p} - 1} \right).
\]

Note that \(|a^r - b^r| \leq |a - b|^r \) if \(0 < r \leq 1 \) and \(a, b > 0 \). Hence, the tail probability can be estimated as follows:

\[
\mathbb{P}\left(\left| \frac{1}{m^{\frac{1}{p}}} \sum_{i=1}^{m} |X_i|^p - 1 \right| \geq \delta \right) \leq \mathbb{P}\left(\left| \frac{1}{m} \sum_{i=1}^{m} (|X_i|^p - 1) \right| \geq \delta^p \right)
\]

\[
\leq \mathbb{P}\left(\frac{1}{m} \sum_{i=1}^{m} (|X_i|^p - 1) \geq \delta^p \right) + \mathbb{P}\left(\frac{1}{m} \sum_{i=1}^{m} (1 - |X_i|^p) \geq \delta^p \right).
\]

Both of the above terms can be controlled by the same argument. In the following, we only estimate the first term. Note that (18) holds for \(1 \leq p < 2 \) as well. Hence, applying [12, Proposition 5.2] with random variable \(|X_i|^p - 1 \) and \(\alpha = \frac{2}{p} \) gives

\[
\mathbb{P}\left(\frac{1}{m} \sum_{i=1}^{m} (|X_i|^p - 1) \geq \delta^p \right) \leq \exp\left(-\lambda t + mC\alpha' K^{p\alpha'} \lambda^{\alpha'} \right) \quad \forall \lambda \geq \frac{1}{K^{pC}\alpha},
\]

where \(C\alpha \) is a positive constant that depends on \(\alpha \), \(t = m\delta^p \), \(\alpha' \) is the Hölder conjugates of \(\alpha \). Note that

\[
\left(\frac{t}{mK^{p\alpha'} C\alpha'} \right)^{\frac{1}{\alpha} - 1} \geq \frac{1}{K^{pC}\alpha} \iff \delta \geq K\alpha^{1/p}.
\]

Hence, if \(\delta \geq K\alpha^{1/p} \) and \(\lambda \equiv \left(\frac{t}{mK^{p\alpha'} C\alpha'} \right)^{\frac{1}{\alpha} - 1} \), then

\[
\mathbb{P}\left(\frac{1}{m} \sum_{i=1}^{m} (|X_i|^p - 1) \geq \delta^p \right)
\]

\[
\leq \exp\left(-\left(\frac{t}{mK^{p\alpha'} C\alpha'} \right)^{\frac{1}{\alpha} - 1} t + mK^{p\alpha'} C\alpha' \left(\frac{t}{mK^{p\alpha'} C\alpha'} \right)^{\frac{\alpha'}{\alpha} - 1} \right) = \exp\left(-C_p \frac{\delta^2 m}{K^2} \right),
\]

8
where C_p is a constant that depends on p. Therefore, we obtain

$$
P\left(\left| \frac{1}{m^p} ||X^{(m)}||_p - 1 \right| \geq \delta \right) \leq 2 \exp\left(-C_p \frac{\delta^2 m}{K^2}\right) \leq 2 \exp\left(-C_p \frac{\delta^2 m}{2^p}\right) \quad \forall \delta \geq C_{\alpha}^{1/p}K$$

by using (11), so we complete the proof of (16) when $1 \leq p < 2$ and $s > K m^\frac{1}{p}$.

Step 3. In this step, we prove (16) when $2 \leq p < \infty$ and $s > m^\frac{1}{p} K^p$. Decompose the tail probability as (21) and apply [4, Corollary 1.4]. Then we have

$$
P\left(\left| \frac{1}{m^p} ||X^{(m)}||_p - 1 \right| \geq \delta \right) \leq 2 \exp\left(-C_p \min\{\frac{\delta^2}{K^{2p}}, \frac{\delta^\alpha}{K^{op}}\} m^\alpha\right)
= 2 \exp(-C_p \frac{m^\alpha \delta^2}{K^2}) \quad \forall \delta > K^p,$$

so, taking $s = \delta m^\frac{1}{p}$, we complete the proof of this step. \hfill \Box

3.1.2 Case 2: $||x|| = ||y|| = 1$

Lemma 3.4. Under assumption of Theorem 1.2, we have

$$
\left| \left| R_x - R_y \right| \right|_{\psi_2} \leq \begin{cases}
C_p(K/||A_{1,1}||_{L^p})^p \text{Lip}(|| \cdot ||_p)||x - y||_2, & \text{if } 1 \leq p \leq 2 \\
C_p K^p \text{Lip}(|| \cdot ||_p)||x - y||_2, & \text{if } 2 < p < \infty
\end{cases} \quad \forall ||x|| = ||y|| = 1. \tag{23}

Proof. To prove Lemma (3.4), it suffices to show that

$$
P\left(\left| \frac{||Ax||_p - ||Ay||_p}{||x - y||} \right| \geq s \right) \leq \begin{cases}
4 \exp(-C_p \frac{s^2}{(K/||A_{1,1}||_p)^2 m^{\frac{1}{p}}}), & \text{if } 1 \leq p \leq 2 \\
4 \exp(-C_p \frac{s^2}{K^{2p}}), & \text{if } 2 < p < \infty,
\end{cases} \tag{24}

where C_p is a positive constant that depends p. Indeed, since $\mathbb{E}||Z||^N = \int_0^\infty N s^{N-1} \mathbb{P}(||Z|| \geq s) ds$, it is clear that (24) implies (23). Note that if $s \geq 2m^\frac{1}{p}$, then (24) is an immediate consequence of Lemma 3.2. Indeed, if $u = \frac{x - y}{||x - y||}$, then

$$
P\left(\left| \frac{||Ax||_p - ||Ay||_p}{||x - y||} \right| \geq s \right) \leq \mathbb{P}(||Au||_p \geq s) = \mathbb{P}(||Au||_p - m^{\frac{1}{p}} \geq s - m^{\frac{1}{p}})
\leq \mathbb{P}(||Au||_p - m^{\frac{1}{p}} \geq \frac{s}{2})$$.

9
so applying Lemma 3.2 gives (24). Thus, it remains to prove (24) when \(s < 2m^{\frac{1}{p}} \). Since \(a^{p-1}|a-b| \leq |a^p - b^p| \) if \(1 \leq p < \infty \) and \(a, b > 0 \), it follows that
\[
P\left(\frac{||Ax||_p - ||Ay||_p}{||x - y||} \geq s \right) \leq P\left(\frac{||Ax||_p^p - ||Ay||_p^p}{||x - y||} \geq s||Ax||_p^{p-1} \right)
\]
\[
\leq P\left(\frac{||Ax||_p^p - ||Ay||_p^p}{||x - y||} \geq s||Ax||_p^{p-1}, ||Ax||_p \geq \frac{m^{\frac{1}{p}}}{2} \right) + P\left(||Ax||_p < \frac{m^{\frac{1}{p}}}{2} \right)
\]
\[
\leq P\left(\frac{||Ax||_p^p - ||Ay||_p^p}{||x - y||} \geq \frac{sm^{\frac{1}{p}}}{2p-1} \right) + P\left(||Ax||_p < \frac{m^{\frac{1}{p}}}{2} \right) \equiv \mathcal{A}_1 + \mathcal{A}_2.
\]
Since \(s < 2m^{\frac{1}{p}} \) and \(||x|| = 1 \), applying Lemma (3.2) gives
\[
\mathcal{A}_2 \leq P\left(||Ax||_p - m^{\frac{1}{p}}||x|| \geq \frac{m^{\frac{1}{p}}}{2} \right) \leq P\left(||Ax||_p - m^{\frac{1}{p}}||x|| \geq \frac{s}{4} \right)
\]
\[
\leq \begin{cases}
2\exp(-C_p\frac{s^2}{(K/||A_{1,1}||_{L_p})^{2p}m^{\frac{1}{p}}}), & \text{if } 1 \leq p \leq 2 \\
2\exp(-C_p\frac{s^2}{K^{2p}}), & \text{if } 2 < p < \infty.
\end{cases} \tag{25}
\]
To estimate \(\mathcal{A}_1 \), we write \(\mathcal{A}_1 \) as
\[
\mathcal{A}_1 = P\left(\frac{1}{m} \sum_{i=1}^{m} \frac{|A_i x|^p - |A_i y|^p}{||x - y||} \geq \delta \right), \text{ where } \delta = \frac{s}{2p-1m^{\frac{1}{p}}},
\]
so it suffices to show that
\[
\frac{||A_i x|^p - |A_i y|^p}{||x - y||} \leq \begin{cases}
C_p(K/||A_{1,1}||_{L_p})^p, & \text{if } 1 \leq p \leq 2 \\
C_pK^p, & \text{if } 2 < p < \infty.
\end{cases} \tag{26}
\]
Indeed, since \(\delta = \frac{s}{2p-1m^{\frac{1}{p}}} \leq 2^{2-p} \leq 2K^p \) for every \(1 \leq p < \infty \), applying [4, Corollary 1.4] similar to (19) and (20) yields
\[
\mathcal{A}_1 \leq \begin{cases}
2\exp(-C_p\frac{(\delta/2)^2m^{\frac{1}{2}}}{K^{2p}}) = 2\exp(-C_p\frac{s^2}{(K/||A_{1,1}||_{L_p})^{2p}m^{\frac{1}{p}}}), & \text{if } 1 \leq p \leq 2 \\
2\exp(-C_p\frac{(\delta/2)^2m^{2p}}{K^{2p}}) = 2\exp(-C_p\frac{s^2}{K^{2p}}), & \text{if } 2 < p < \infty.
\end{cases} \tag{27}
\]
Hence, it remains to prove (26). Note that \(|a^p - b^p| \leq p|a - b|\sqrt{a^{2p-2} + b^{2p-2}} \) if \(1 \leq p < \infty \) and \(a, b > 0 \). Thus, we have
\[
\frac{|||A_i x|^p - |A_i y|^p||_{\psi^\frac{1}{p}}}{\psi^\frac{1}{p}} \leq p \left(|||A_i x| - |A_i y||\sqrt{|A_i x|^{2p-2} + |A_i y|^{2p-2}}\right)_{\psi^\frac{1}{p}}.
\]
Also, by Hölder’s inequality, we get \(||XY||_{\psi^2_p} \leq ||X||_{\psi^2_{\frac{p}{r}}} ||Y||_{\psi^2_{\frac{p}{s}}} \) if \(\frac{1}{r} + \frac{1}{s} = 1\), so it follows that

\[
\|\|A_1x| - |A_1y|\|_{\psi^2_p} \leq \|\|A_1x\|^{2p-2} + |A_1y|^{2p-2}\|_{\psi^2_{\frac{p}{r}}} \leq \|\|A_1x| - |A_1y|\|_{\psi^2_p}
\]

Applying \([15, Proposition 2.6.1]\) and Lemma 2.3 gives

\[
\|\|A_1x| - |A_1y|\|_{\psi^2_p} \leq \|\|A_1(x - y)\|_{\psi^2_p} \leq \begin{cases} C_p(\|A_1\|_{L^p})\|x - y\|, & \text{if } 1 \leq p \leq 2 \\ C_p\|x - y\|, & \text{if } 2 < p < \infty \end{cases}
\]

and

\[
\|\|\sqrt{|A_1x|^{2p-2} + |A_1y|^{2p-2}}\|_{\psi^2_{\frac{p}{r}}} \leq \left(C_p K^{2(p-1)}\|x\|^{2p-2} + C_p K^{2(p-1)}\|y\|^{2p-2} \right)^{\frac{1}{2}}
\]

\[
\leq \begin{cases} C_p(\|A_1\|_{L^p})^{p-1}, & \text{if } 1 \leq p \leq 2 \\ C_p K^{p-1}, & \text{if } 2 < p < \infty. \end{cases}
\]

Thus, combining (28) and (29) yields (26). Therefore, by (27) and (25), we establish (24) when \(s < 2m^{\frac{1}{r}}\), which completes the proof of Lemma 3.4.

3.1.3 Case 3: General Vectors \(x, y \in \mathbb{R}^n\)

Lemma 3.5. Under assumption of Theorem 1.2, we have

\[
\|\|R_x - R_y\|_{\psi^2_p} \leq \begin{cases} C_p K^p\|A_1\|_{L^p}^{(p+2)} Lip(||\cdot||_{L^p})\|x - y\|_2, & \text{if } 1 \leq p \leq 2 \\ C_p K^{p+2} Lip(||\cdot||_{L^p})\|x - y\|_2, & \text{if } 2 < p < \infty \end{cases} \forall x, y \in \mathbb{R}^n.
\]

Proof. Without loss of generality, we may suppose that \(\|x\| = 1\) and \(\|y\| > 1\). Set \(\overline{y} \equiv \frac{y}{\|y\|}\).

Observe that

\[
\|\|R_x - R_y\|_{\psi^2_p} \leq \|\|R_x - R\overline{y}\|_{\psi^2_p} + \|R\overline{y} - R_y\|_{\psi^2_p}
\]

\[
\leq \begin{cases} \|\|R_x - R\overline{y}\|_{\psi^2_p} + \|R\overline{y}\|_{\psi^2_p} \|y - \overline{y}\|_2, & \text{if } p \in [1, 2] \\ \|\|R_x - R\overline{y}\|_{\psi^2_p} + \|R\overline{y}\|_{\psi^2_p} C_p K \|y - \overline{y}\|_2, & \text{if } p \in (2, \infty). \end{cases}
\]
Hence, it suffices to show the reverse triangle inequality:

\[
||x - \overline{y}||_2 + ||y - \overline{y}||_2 \leq \begin{cases}
C_p||A_{1,1}||_{L^p}||x - y||_2, & \text{if } 1 \leq p \leq 2 \\
C_pK||x - y||_2, & \text{if } 2 < p < \infty \end{cases} \forall ||x|| = 1, ||y|| > 1 \tag{32}
\]

since applying Lemma 3.2, Lemma 3.4, and (32) to (31) yields Lemma 3.5. Let \(\theta \) be the angle between \(x - \overline{y} \) and \(y - \overline{y} \) such that \(0 \leq \theta \leq \pi \), i.e., \(\cos \theta = \frac{(x - \overline{y})(y - \overline{y})}{||x - \overline{y}||_2||y - \overline{y}||_2} \). It is easy to see that (32) holds if \(\frac{\pi}{2} \leq \theta \leq \pi \). Indeed, since \(\cos \theta \leq 0 \), applying the law of cosines gives

\[
(||x - \overline{y}||_2 + ||y - \overline{y}||_2)^2 \leq 2(||x - \overline{y}||_2^2 + ||y - \overline{y}||_2^2) - 4\cos(\theta)||x - \overline{y}||_2||y - \overline{y}||_2
\]

\[
= 2||x - y||_2^2.
\]

In addition, if \(\theta = 0 \), then \(\overline{y} = x \) and so there is nothing to prove.

Now, it remains to consider the case of \(0 < \theta < \frac{\pi}{2} \). Note that there are two possible positions for \(y \) (as shown in Figure 1):

1. If \(y = y_1 \) (see the left of Figure 1), then

\[
||\overline{y} - y||_2 + ||x - \overline{y}||_2 \leq \frac{\cos \theta}{\sin \theta} \sin \tilde{\theta}||x - y||_2 + \frac{1}{\sin \theta} \sin \tilde{\theta}||x - y||_2 \leq \frac{2}{\sin \theta}||x - y||_2; \tag{33}
\]

2. If \(y = y_2 \) (see the right of Figure 1), then

\[
||\overline{y} - y||_2 + ||x - \overline{y}||_2 = \frac{\cos \theta}{\sin \theta} \sin \tilde{\theta}||x - y||_2 + \cos \tilde{\theta}||x - y||_2
\]

\[
+ \frac{1}{\sin \theta} \sin \tilde{\theta}||x - y||_2 \leq \frac{3}{\sin \theta}||x - y||_2. \tag{34}
\]

Thus, it suffices to show that

\[
\sin \theta \geq \begin{cases}
C_p||A_{1,1}||_{L^p}, & \text{if } 1 \leq p \leq 2 \\
C_pK^{-1}, & \text{if } 2 < p < \infty \end{cases} \forall ||x|| = 1, ||y|| > 1 \text{ such that } 0 < \theta \leq \frac{\pi}{2}. \tag{35}
\]

Define \(B \equiv \{ z \in \mathbb{R}^n : ||z|| \leq 1 \} \) and \(B_2(a, r) \equiv \{ z \in \mathbb{R}^n : ||z - a||_2 \leq r \} \). Applying (12) and (13) yields that \(||z|| \leq \frac{1}{R_p}||z||_2 \) for every \(z \in \mathbb{R}^n \), where \(R_p = 1 \) if \(1 \leq p \leq 2 \); \(R_p = \frac{1}{C_pK} \) if \(2 < p < \infty \). Thus, it follows that \(B_2(0, R_p) \subseteq B, ||x||_2 > R_p/2, \) and \(||\overline{y}||_2 > R_p/2 \). Hence, there exists an unique \(w \in \partial B_2(0, R_p/2) \) such that \(\overrightarrow{ow} \perp \overrightarrow{yy} \). Let \(\theta' \) be the angle between \(\overrightarrow{x\overline{y}} \) and \(\overrightarrow{yy} \) on the left of Figure 2. Observe that \(0 < \theta' \leq \theta \). Indeed, if \(\theta < \theta' \) (see the right of Figure 2), there exists \(z \in B \) such
that $z = r\overline{y}$ for some $r > 1$ since B is convex. However, since $w \in B$, we have $||z|| \leq 1$, so we get a contradiction. Therefore applying (12) and (13) implies
\[
\sin \theta \geq \sin \theta' = \frac{Ow}{Oy} = \frac{R_p/2}{||y||_2} \geq \begin{cases}
C_p||A_{1,1}||_{L^p}, & \text{if } 1 \leq p \leq 2 \\
C_pK^{-1}, & \text{if } 2 < p < \infty
\end{cases}
\]
Similarly, if $n \geq 3$, we consider the two dimensional space spanned by x, \overline{y}. Hence, (35) still holds, so we complete the proof of Lemma 3.5.

3.2 Proof of Corollary 1.3

Let $S = \{\frac{x-y}{||x-y||} : x, y \in T \text{ and } x \neq y\}$ and $\tilde{S} = \{\frac{x-y}{||x-y||_2} : x, y \in T \text{ and } x \neq y\}$. Recall that $d_p||z||_2 \leq ||z|| \leq D_p||z||_2$ for every $z \in \mathbb{R}^n$, where d_p and D_p are defined in (4). Thus, we have $\gamma(S) \leq \frac{1}{d_p}\gamma(\tilde{S})$, so it follows that $\gamma(S) \leq \frac{1}{d_p}\sqrt{\log N}$ by using [15, (9.13)]. Therefore applying
Theorem 1.2 and (14) gives

$$
\left\| \sup_{x,y \in T, x \neq y} \frac{1}{m^p} \left\| A(x-y) \right\|_p - 1 \right\|_{\psi_2} = \frac{1}{m^p} \left\| \sup_{z \in S} |R_z| \right\|_{\psi_2} \leq \begin{cases}
C_p K^p \| A_{1,1} \|_p \left(\frac{p+3}{p} \right) \sqrt{\log(N)} \frac{1}{m^{1/p}}, & \text{if } 1 \leq p \leq 2 \\
C_p K^{p+2} \sqrt{\log(N)} \frac{1}{m^{1/p}}, & \text{if } 2 < p < \infty,
\end{cases}
$$

which implies (5).

References

[1] Bo Brinkman and Moses Charikar. On the impossibility of dimension reduction in ℓ_1. *J. ACM*, 52(5):766–788, 2005. doi:10.1145/1089023.1089026.

[2] Wei-Kuo Chen and Arnab Sen. On ℓ_p-Gaussian–Grothendieck Problem. *International Mathematics Research Notices*, 11 2021. doi:10.1093/imrn/rnab311.

[3] Y.S. Chow, H. Teicher, G. Casella, S. Fienberg, and I. Olkin. *Probability Theory: Independence, Interchangeability, Martingales*. Springer Texts in Statistics. Springer New York, 1997. doi:10.1007/978-1-4612-1950-7.

[4] Friedrich Götze, Holger Sambale, and Arthur Sinulis. Concentration inequalities for polynomials in α-sub-exponential random variables. *Electronic Journal of Probability*, 26:1 – 22, 2021. doi:10.1214/21-EJP606.

[5] James R. Lee and Assaf Naor. Embedding the diamond graph in L_p and dimension reduction in L_1. *Geometric and Functional Analysis*, 14(4):745–747, 2004. doi:10.1007/s00039-004-0473-8.

[6] Ping Li. Stable random projections and conditional random sampling, two sampling techniques for modern massive datasets. 2007.

[7] Christopher Liaw, Abbas Mehrabian, Yaniv Plan, and Roman Vershynin. A simple tool for bounding the deviation of random matrices on geometric sets. In *Geometric Aspects of Functional Analysis: Israel Seminar*, pages 277–299. Springer International Publishing, 2017. doi:10.1007/978-3-319-45282-1_18.
[8] Michael B. Marcus and Michel Talagrand. Chevet's theorem for stable processes II. *Journal of Theoretical Probability*, 1(1):65–92, January 1988. doi:10.1007/bf01076288.

[9] Shahar Mendelson. On weakly bounded empirical processes. *Mathematische Annalen*, 340(1):293–314, 2008. doi:10.1007/s00208-007-0152-9.

[10] Shahar Mendelson, Alain Pajor, and Nicole Tomczak-Jaegermann. Uniform uncertainty principle for bernoulli and subgaussian ensembles. *Constructive Approximation*, 28:277–289, 12 2008. doi:10.1007/s00365-007-9005-8.

[11] Shahar Mendelson and Nicole Tomczak-Jaegermann. A subgaussian embedding theorem. *Israel Journal of Mathematics*, 164:349–364, 2008. doi:10.1007/s11856-008-0034-1.

[12] Holger Sambale. Some notes on concentration for α-subexponential random variables. 2020. doi:10.48550/ARXIV.2002.10761.

[13] Gideon Schechtman. Two observations regarding embedding subsets of euclidean spaces in normed spaces. *Advances in Mathematics*, 200(1):125–135, 2006. doi:10.1016/j.aim.2004.11.003.

[14] D.W. Stroock. *Essentials of Integration Theory for Analysis*. Graduate Texts in Mathematics. Springer New York, 2011. doi:10.1007/978-1-4614-1135-2.

[15] Roman Vershynin. *High-Dimensional Probability: An Introduction with Applications in Data Science*. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 2018. doi:10.1017/9781108231596.