Joint Multilingual Knowledge Graph Completion and Alignment

Vinh Tong1, Dat Quoc Nguyen2, Trung Thanh Huynh3, Tam Thanh Nguyen4, Quoc Viet Hung Nguyen4, Mathias Niepert1

1University of Stuttgart, Germany; 2VinAI Research, Vietnam; 3EPFL, Switzerland; 4Griffith University, Australia

1vinh.tong@ipvs.uni-stuttgart.de, 2v.datnq9@vinai.io

Abstract

Knowledge graph (KG) alignment and completion are usually treated as two independent tasks. While recent work has leveraged entity and relation alignments from multiple KGs, such as alignments between multilingual KGs with common entities and relations, a deeper understanding of the ways in which multilingual KG completion (MKGC) can aid the creation of multilingual KG alignments (MKGA) is still limited. Motivated by the observation that structural inconsistencies – the main challenge for MKGA models – can be mitigated through KG completion methods, we propose a novel model for jointly completing and aligning knowledge graphs. The proposed model combines two components that jointly accomplish KG completion and alignment. These two components employ relation-aware graph neural networks that we propose to encode multi-hop neighborhood structures into entity and relation representations. Moreover, we also propose (i) a structural inconsistency reduction mechanism to incorporate information from the completion into the alignment component, and (ii) an alignment seed enlargement and triple transferring mechanism to enlarge alignment seeds and transfer triples during KGs alignment. Extensive experiments on a public multilingual benchmark show that our proposed model outperforms existing competitive baselines, obtaining new state-of-the-art results on both MKGC and MKGA tasks.

1 Introduction

Knowledge graphs (KGs) represent facts about real-world entities as triples of the form (head_entity, relation_type, tail_entity). KGs are widely used in numerous applications and research domains such as dialogue systems (Jung et al., 2020), machine translation (Zhao et al., 2020), and electronic medical records (Rotmensch et al., 2017). Almost all KGs, however, even those at the scale of billions of triples, are far from being complete. This motivates KG completion (KGC) which aims to derive missing triples from an incomplete knowledge graph (Bordes et al., 2013; Wang et al., 2014; Yang et al., 2015; Trouillon et al., 2016; Liu et al., 2017; Dettmers et al., 2018; Nguyen, 2020; Ji et al., 2021; Tong et al., 2021).

Most popular KGs such as YAGO (Suchanek et al., 2007), BabelNet (Navigli and Ponzetto, 2010), and DBpedia (Lehmann et al., 2015), are multilingual, that is, they contain sets of triples constructed from sources in different languages. Fortunately, these KGs often complement each other since a KG in one language might be more comprehensive in some domains compared to a KG in a different language, and vice versa, while still sharing a large number of entities and relation types (Sun et al., 2020a). Especially KGs for low-resource languages could benefit from triples contained in KGs for high-resource languages. Although numerous approaches to KGC have been proposed in recent years (Bordes et al., 2013; Dettmers et al., 2018; Vashishth et al., 2020), most of these only operate on one KG at a time. Treating KGs independently, however, might lead to poor performance due to the sparseness of low-resource languages. Motivated by this observation, some methods have tried to improve multilingual KG completion (MKGC) using multilingual KG alignment (MKGA) (Chen et al., 2020; Singh et al., 2021; Huang et al., 2022).

The alignment problem is challenging due to the varying levels of completeness of monolingual KGs (Sun et al., 2020c). The resulting structural inconsistency between KGs leads to the problem of corresponding entities in two KGs having vastly different embeddings (Xu et al., 2018). Figure 1 illustrates that, in principle, MKGC and MKGA should be mutually beneficial. Given the alignment seed set \{\((E, E^*)\), \((D, D^*)\), \((B, B^*)\)\}, the task here is to find corresponding entities for \(A\) and \(C\) which are \(A^*\) and \(C^*\), respectively. The two KGs share a similar structure but the triple \((B^*, r4, A^*)\) in KG*
has no corresponding triple in KG. This causes the embeddings of entities A and A^* to differ and, thus, makes it difficult to identify the alignment between A and A^*. Indeed, A is more likely to be aligned to C^* as they share a comparable local structure (similar degree and 1-hop neighbor set). Thus, completing missing triples is crucial to improve the alignment quality. Indeed, if one aligned A to A^*, one could recover (B, r_4, A) by transferring (B^*, r_4, A^*) from KG^*.

Motivated by these observations, we propose JMAC, a method for Joint Multilingual KG Completion and Alignment, consisting of two interdependent Completion and Alignment components. Both components employ relation-aware graph neural networks (GNNs) to encode multi-hop neighborhood information into entity and relation embeddings. The Completion component is trained to reconstruct missing triples using the TransE translation-based loss (Bordes et al., 2013) and an additional loss term that incorporates information about the already known alignments. While we learn separate embeddings for the Alignment and Completion components, the embeddings of the Completion component are used within the Alignment component, mitigating the aforementioned problem of structural inconsistencies. In addition, we propose a mechanism for estimating the alignment entropy which is used to adaptively and iteratively grow the alignment seed set. Finally, we also propose a method for transferring triples based on the currently derived alignments.

Our contributions are as follows:

- We propose JMAC, a two-component architecture consisting of Completion and Alignment components for joint multilingual KG completion and alignment.
- We propose a relation-aware GNN for KG embeddings, which learns representations for alignment and completion tasks.
- We introduce a structural inconsistency reduction mechanism that fuses embeddings from the Completion component with those of the Alignment component.
- We propose an alignment seed enlargement and triple transferring mechanism.
- We conduct extensive experiments using the public multilingual benchmark DBP-5L (Chen et al., 2020) and show that our model outperforms existing competitive baselines and achieves state-of-the-art results on both MKGC and MKGA tasks.

2 Problem Definition and Related Work

Let $G = (\mathcal{E}, \mathcal{R}, \mathcal{T})$ denote a KG, where \mathcal{E}, \mathcal{R} and \mathcal{T} denote the sets of entities, relations, and triples, respectively. A triple $(e_h, r, e_t) \in \mathcal{T}$ is an atomic unit, which represents some relation $r \in \mathcal{R}$ between a head entity $e_h \in \mathcal{E}$ and a tail entity $e_t \in \mathcal{E}$.

2.1 Multilingual KG completion (MKGC)

Given a KG $G = (\mathcal{E}, \mathcal{R}, \mathcal{T})$, the KG completion (KGC) task aims to predict missing triples (e_h, r, e_t), that is, to predict the missing tail entity $e_t \in \mathcal{E}$ of an incomplete triple $(e_h, r, ?)$ or the missing head entity $e_h \in \mathcal{E}$ of an incomplete triple $(?, r, e_t)$, where $?$ denotes the missing element.
Embedding models for KG completion have been proven to give state-of-the-art results, representing entities and relation types with latent feature vectors, matrices, and/or third-order tensors (Nguyen, 2020; Ji et al., 2021). These models define a score function f and are trained to make the score $f(e_h, r, e_t)$ of a correct triple (e_h, r, e_t) larger than the score $f(e_h', r', e_t')$ of an incorrect or not known to be correct triple (e_h', r', e_t'). The earliest instances of these embedding models use shallow neural networks with translation-based scoring functions (Bordes et al., 2013; Wang et al., 2014; Lin et al., 2015). Recently, KGC approaches using deep embedding models and more complex scoring functions have been proposed, such as CNN-based models (Dettmers et al., 2018; Nguyen et al., 2018), RNN-based models (Liu et al., 2017; Guo et al., 2018), and GNN-based models (Schlichtkrull et al., 2018; Shang et al., 2019; Vashishth et al., 2020; Nguyen et al., 2022).

The MKGC task is to perform the KGC task on a KG given the availability of other KGs in different languages (Chen et al., 2020; Huang et al., 2022).

2.2 Multilingual KG alignment (MKGA)

MKGA, which is also known as cross-lingual entity alignment, aims to match entities with their counterparts from KGs in different languages (Chen et al., 2017; Wang et al., 2018; Wu et al., 2019; Sun et al., 2020b). Without loss of generalization, we define the alignment between a source graph $G = (E, R, T)$ and a target graph $G^* = (E^*, R^*, T^*)$. For each entity $e \in E$, the MKGA task is now to find $e^* \in E^*$ (if any).

Existing models compute an alignment matrix whose elements represent the similarity score between any two entities $e \in E$ and $e^* \in E^*$ across two KGs. The models then employ a greedy matching algorithm (Kolliaias et al., 2011) to infer matching entities from the alignment matrix. The models typically require an alignment seed set L of pre-aligned entity pairs (e, e^*).

2.3 Joint MKGC and MKGA

The joint MKGC and MKGA problem aims to infer both, new triples for each KG and new aligned entity pairs for each pair of KGs. Performing two tasks jointly might be beneficial: missing triples (e_h, r, e_t) in one KG could be recovered by cross-checking another KG via the alignment, which, in turn, could be boosted by the newly added triples.

Despite the obvious benefit to complete and align KGs jointly, there has not been much work addressing the problem. A notable exception is the application of multi-task learning to the problem (Singh et al., 2021). The proposed multi-task model, however, is not able to capture local neighborhood information. Another limitation is the missing robustness to the previously described issue of structural inconsistencies between the KGs during training.

3 JMAC: Joint Multilingual Alignment and Completion

Figure 2 illustrates the architecture of JMAC which consists of the Completion and Alignment components, respectively. Each component uses a relation-aware graph neural network (GNN) to encode multi-hop neighborhood information into entity and relation embeddings. The use of two GNN encoders is beneficial as embeddings that are suitable for the alignment might differ from those that...
are most beneficial for the completion problem.

3.1 Relation-aware graph neural network

To better capture relation information, we propose a GNN architecture that uses relation-aware messages and relation-aware attention scores.

We unify heterogeneous information from KGs using a GNN with K layers. For the k-th layer (denoted by the superscript k), we update the representation \mathbf{a}_e^{k+1} of each entity $e \in \mathcal{E}$ as:

$$
\mathbf{a}_e^{k+1} = g \left(\sum_{(e',r) \in \mathcal{N}(e)} \alpha_{e,e',r}^k \mathbf{m}_{e',r}^k + \mathbf{a}_e^k \right)
$$

(1)

where $\mathbf{a}_e^k \in \mathbb{R}^n$ is the vector representation of entity e at the k-th layer; $\mathcal{N}(e) = \{(e',r) | (e',r,e) \in \mathcal{T} \cup (e',r,e) \in \mathcal{T}\}$ is the neighbor set of entity e; and the vector $\mathbf{m}_{e',r}^k \in \mathbb{R}^n$ denotes the message passed from neighbor entity e' to entity e through relation r. Here, $\alpha_{e,e',r}^k$ represents the attention weight that regulates the importance of the message $\mathbf{m}_{e',r}^k$ for entity e; and $g(.)$ is a linear transformation followed by a Tanh function.

The innovations of our GNN-based model, which we describe in more detail in the following two sections, are (i) we make the message-passing NN to be relation-aware by learning the relation embedding $\mathbf{a}_e^k \in \mathbb{R}^n$ for each relation $r \in \mathcal{R}$ and by integrating it into the entity message passing scheme $\mathbf{m}_{e',r}^k$ and (ii) we introduce an attention weight $\alpha_{e,e',r}^k$ to further enhance the relation-aware capability of our GNN-based embeddings.

Relation-aware message

Unlike existing GNN-based approaches that infer relation embeddings from learned entity embeddings (Sun et al., 2020b), our approach allows entity and relation embeddings to be learned jointly and, thus, to both contribute to the message passing neural network. This is achieved through an entity-relation composition operation. The message $\mathbf{m}_{e',r}^k$ in Equation 1 is defined as:

$$
\mathbf{m}_{e',r}^k = \mathbf{a}_{e'}^k - \text{MLP}^k_{\text{comp}}(\mathbf{a}_e^k)
$$

(2)

where $\text{MLP}^k_{\text{comp}} : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is a two-layer MLP with the LeakyReLU activation function.

Here, the relation embedding is updated by

$$
\mathbf{a}_e^{k+1} = \text{MLP}^k_{\text{rel}}(\mathbf{a}_e^k)
$$

(3)

where $\text{MLP}^k_{\text{rel}} : \mathbb{R}^n \rightarrow \mathbb{R}^n$ maps relations to a new embedding space and allows them to be utilized in the next layer.

Relation-aware attention

We define the weight $\alpha_{e,e',r}^k$ in Equation 1 to be relation-aware as:

$$
\alpha_{e,e',r}^k = \frac{\exp \left(\text{MLP}^k_{\text{att}}(\mathbf{a}_e^k \circ \mathbf{m}_{e',r}^k) \right)}{\sum_{(e',r') \in \mathcal{N}(e)} \exp \left(\text{MLP}^k_{\text{att}}(\mathbf{a}_{e'}^k \circ \mathbf{m}_{e',r'}^k) \right)}
$$

(4)

where $\text{MLP}^k_{\text{att}} : \mathbb{R}^{2 \times n} \rightarrow \mathbb{R}$; and \circ denotes the vector concatenation operator. As the message vector $\mathbf{m}_{e',r}^k$ contains the information of not only neighbor entity e' but also neighbor relation r, our attentive score $\alpha_{e,e',r}^k$ can capture the importance of the message coming from entity e' to entity e conditioned on relation r connecting them.

Notation extension

Recall that we use two different relation-aware GNN encoders as illustrated in Figure 2: one for the Completion and one for the Alignment component. To distinguish these two encoders, we use c and a to denote the embedding representations used for the Completion and Alignment components, respectively. In particular, \mathbf{a}_e^k and \mathbf{a}_e^k are now the corresponding embeddings of entity e and relation r at the k-th layer of the relation-aware GNN in the Alignment component. Furthermore, e_e^k and e_e^k are the corresponding embeddings of entity e and relation r at the k-th layer of the relation-aware GNN in the Completion component (computed as those of the Alignment component defined in equations 1 and 3).

3.2 Completion component

The Completion component works similarly to KG embedding models (Nguyen, 2020; Ji et al., 2021) which compute a score $f(e_h, r, e_t)$ for each triple (e_h, r, e_t). Our score function f is based on TransE (Bordes et al., 2013) and is computed across all hidden layers of the relation-aware GNN encoder in the Completion component as follows:

$$
f^k(e_h, r, e_t) = -\|c_h^k + r^k_e - e_t^k\|_{\ell_1}
$$

(5)

$$
f(e_h, r, e_t) = \sum_k f^k(e_h, r, e_t)
$$

(6)

We use a margin-based pairwise ranking loss (Bordes et al., 2013) across all hidden layers:

$$
\mathcal{L}_{c,\ell_1} = \sum_{(e_h, r, e_t) \in \mathcal{T}} \sum_{(\tau_h, r, \tau_t) \in \mathcal{T}} \left(\gamma_c - f^k(e_h, r, e_t) + f^k(\tau_h, r, \tau_t) \right)_+
$$

(7)
where \([x]_+ = \max(0, x) \); \(\gamma_c > 0 \) is the margin hyper-parameter; and \(T \) is the set of incorrect triples constructed by corrupting either the head or the tail entity the correct triple \((e_h, r, e_t) \in T\).

Also, given the availability of the alignment seed set \(L \) of pre-aligned entity pairs \((e, e^*)\) among KGs as mentioned in Section 2.2, we additionally compute the following alignment constraint loss:

\[
L_{c, 2} = \sum_k \sum_{(e, e^*) \in L} d_{\text{cos}} \left(c_{e, k}^c, c_{e^*, k}^c \right) \tag{8}
\]

where \(d_{\text{cos}} \) denotes the cosine distance.

To incorporate alignment information into the Completion component, our MKGC loss is computed as the sum of the two losses \(L_{c, 1} \) and \(L_{c, 2} \):

\[
L_c = L_{c, 1} + L_{c, 2} \tag{9}
\]

3.3 Alignment component

The Alignment component is to perform the MKGA task as defined in Section 2.2. We propose to incorporate a structural inconsistency reduction inherited from the Completion into the Alignment component. We also introduce a mechanism to enlarge the alignment seed set \(L \).

Structural inconsistency reduction (SIR) The different completeness levels of KGs lead to structural inconsistencies that might cause incorrect alignment predictions. Fortunately, entity and relation embeddings in the Completion component (i.e. \(c_{e, k}^c \) and \(c_{r, k}^c \)) could help reconstruct missing triples, reducing the structural inconsistencies between KGs. To this end, we propose to incorporate the Completion component embeddings at the \(k \)-th layer of the relation-aware GNN in the Alignment component as follows:

\[
a_{e, k} = \text{MLP}_{a, 3} \left(a_e^0 \circ a_{e, k}^1 \circ \ldots \circ a_{e}^K \right) \tag{10}
a_{r, k} = \text{MLP}_{a, 4} \left(a_r^0 \circ a_{r, k}^1 \circ \ldots \circ a_{r}^K \right) \tag{11}
\]

where \(\text{MLP}_{a, 3} : \mathbb{R}^{2 \times n} \to \mathbb{R}^n \); and \(\text{MLP}_{a, 4} : \mathbb{R}^{2 \times n} \to \mathbb{R}^n \). The transformed embeddings then will be used as input for the next layer following equations 1 and 3. This allows the structural inconsistency reduction to take place at every GNN layer of the two components, enabling their deep integration.

Final entity and relation embeddings for MKGA

We compute the final embeddings for entities and relations for this Alignment component as follows:

\[
a_e = \text{MLP}_{a, 3} \left(a_e^0 \circ a_{e, k}^1 \circ \ldots \circ a_{e}^K \right) \tag{12}
a_r = \text{MLP}_{a, 4} \left(a_r^0 \circ a_{r, k}^1 \circ \ldots \circ a_{r}^K \right) \tag{13}
\]

where \(\text{MLP}_{a, 3} : \mathbb{R}^{(K+1) \times n} \to \mathbb{R}^n \); and \(\text{MLP}_{a, 4} : \mathbb{R}^{(K+1) \times n} \to \mathbb{R}^n \).

Alignment seed enlargement and Triple transferring (EnTr) As mentioned in Section 2.2, existing alignment models require an alignment seed set \(L \) of pre-aligned entity pairs for training. An intuitive approach to improve alignment results is to iteratively increase the size of \(L \) during training. The number of alignments by which the size of \(L \) is increased should depend on some notion of certainty the Alignment component has in its predictions. For example, in the early stages of the alignment process, when the KGs are still sparsely connected, \(L \) should be smaller. The more confident the Alignment component is in its predictions, the larger should \(L \) be. Hence, we propose EnTr, a method to enlarge the alignment seed set. EnTr estimates an optimal number of new entity pairs to be added to \(L \) according to a measure of alignment certainty. At each training epoch, EnTr first computes an alignment matrix \(A \), where each element is the cosine similarity between any two entity embeddings of the two KGs, that is, \(A(e, e^*) = 1 - d_{\text{cos}}(a_e, a_{e^*}) \). EnTr then computes the Shannon entropy of the softmax distribution over this alignment matrix:

\[
P(e^*|e) = \frac{\exp \left(A(e, e^*) \right)}{\sum_{e^* \in E^*} \exp \left(A(e, e^*) \right)} \tag{14}
\]

\[
H(A) = - \sum_{e \in E} \sum_{e^* \in E^*} P(e^*|e) \log P(e^*|e) \tag{15}
\]

Since the entropy measures the uncertainty of the alignment predictions – lower entropy corresponds to a smaller alignment uncertainty – EnTr implements an uncertainty-mediated estimation of the size \(q \) of \(L \) as follows:

\[
q = \left[\beta \cdot \frac{H(\tilde{A}) - H(A)}{H(A)} \cdot \min(|E|, |E^*|) \right] \tag{16}
\]

where \(\tilde{A} \) is the alignment matrix before training and \(\beta \in [0, 1] \) is a hyper-parameter controlling the number of new entity pairs to generate. EnTr then chooses the \(q \) entity pairs with the \(q \) highest cosine similarity scores from \(A \) and sets \(L \) to contain these entity pairs.

EnTr also performs transfer of triples between
the KGs that logically follow from the existing alignments. In particular, for each two aligned entity pairs \((e, e^*)\) and \((e', e'^*)\), if \(r\) is a relation connecting \(e\) and \(e'\), EnTr connects \(e^*\) and \(e'^*\) by \(r\) as well. This allows the two KGs’ structures to become gradually more similar over time.

Optimization The learning objective is to minimize the distance between correctly aligned entity pairs while maximizing the distance between negative entity pairs using a margin-based pairwise ranking loss:

\[
L_a = \sum_{(e,e^*) \in L} [\gamma_a + d_{\cos}(a_e, a_{e^*}) - d_{\cos}(a_{e^*}, a_{e^*})]_+ \tag{17}
\]

where \(\gamma_a > 0\) is the margin hyper-parameter; and \(L\) is the set of negative entity pairs, which is constructed by replacing one entity of each correctly aligned pair by its nearest entities (Wu et al., 2019).

3.4 Model training

We optimize the losses \(L_c\) and \(L_a\) iteratively, using two optimizers respectively for the Completion and Alignment losses. In particular, we hold the Alignment component’s parameters fixed and optimize only the loss \(L_c\). Then we hold the Completion component’s parameters fixed and only optimize the loss \(L_a\). We keep iterating this process in each training epoch.

4 Experimental Setup

4.1 Dataset

Following previous work (Singh et al., 2021; Huang et al., 2022), we conduct experiments using the benchmark DBP-5L\(^1\) (Chen et al., 2020), publicly available for both MKGC and MKGA tasks.\(^2\) DBP-5L consists of 1,392 relations, 56,590 entities, and 225,831 triples across the five languages: Greek (EL), Japanese (JA), French (FR), Spanish (ES), and English (EN). Table 1 presents statistics for each DBP-5L language. Here, each language is referred to as a KG. The DBP-5L benchmark is created for MKGC evaluation. However, each language pair also has pre-aligned entity pairs as the alignment seeds. In particular, on average, about 40% of the entities in each KG have their counterparts at other KGs. Thus, it can also be used for MKGA evaluation (Singh et al., 2021). Similar to prior works, we use the same split of training, validation, and test data, for MKGC available in DBP-5L for each KG. For MKGA, we use the same 50-50 split of the alignment seeds for training and test, as used in AlignKGC (Singh et al., 2021).\(^3\)

4.2 Evaluation protocol

For MKGC, and following previous work (Chen et al., 2020; Singh et al., 2021; Huang et al., 2022), each correct test triple \((e_h, r, e_t)\) is corrupted by replacing the tail entity \(e_t\) with each of the other entities in turn, and then the correct test triple and corrupted ones are ranked in descending order of their score. Similar to the previous work, before ranking, we also applied the “Filtered” setting protocol (Bordes et al., 2013). We employ standard evaluation metrics, including the mean reciprocal rank (MRR), Hits@1 (i.e. the proportion of correct test triples that are ranked first) and Hits@10 (i.e. the proportion of correct test triples that are ranked in the top 10 predictions). Here, a higher score reflects better prediction result.

For MKGA, and following previous work (Chen et al., 2017; Wu et al., 2019; Sun et al., 2020b; Singh et al., 2021), each correct test pair \((e, e^*)\) is corrupted by replacing entity \(e\) with each of the other entities from \(E^*\) in turn, and then the correct test pair and corrupted ones are ranked in descending order of their similarity score. We also employ the evaluation metrics MRR, Hits@1 and Hits@10.

\(^1\)https://github.com/stasl0217/KEnS/tree/main/data

\(^2\)Huang et al. (2022) create another multilingual benchmark named E-PKG (to be released at https://github.com/amzn/ss-aga-kge), however, it is not yet available as of 24/06/2022, EMNLP 2022’s submission deadline.

\(^3\)JMAC can perform KGA on a benchmark that is purely constructed for the KGA task. We show state-of-the-art results obtained for JMAC on a KG benchmark in the Appendix.
4.3 Implementation details

The availability of surface information (SI) such as entity names makes the alignment problem less challenging (Xiang et al., 2021). When surface information is not used by the methods (denoted as w/o SI), the entity and relation embeddings are randomly initialized. When surface information is used (denoted as w/ SI), initial entity and relation embeddings are obtained from pre-trained text embedding models (Singh et al., 2021; Huang et al., 2022). Therefore, we also evaluate these two problems and refer to them as JMAC w/o SI and JMAC w/ SI.

We implement our model using Pytorch (Paszke et al., 2019). We iteratively train our JMAC components up to 30 epochs with two Adam optimizers (Kingma and Ba, 2014). We use a grid search to choose the number of GNN hidden layers $K \in \{1, 2, 3\}$, the initial Adam learning rates $\lambda \in \{1e^{-4}, 5e^{-4}, 1e^{-3}\}$, the controllable hyper-parameter $\beta \in \{0.1, 0.2, 0.3\}$ from Equation 16, the margin hyper-parameters γ_e and $\gamma_a \in \{0.5, 10\}$, and the input dimension and MLP hidden sizes $n \in \{128, 256, 512\}$. The test set results for the two tasks are reported for the model checkpoint which obtains the highest MRR on the validation set of the MKGC task.

5 Main Results

5.1 MKGC results

Comparison results Table 2 lists MKGC results for JMAC and other strong baselines on the DBP-5L test sets. Overall, the multilingual models perform better than the monolingual ones. It is not surprising that JMAC and AlignKGC without surface information (w/o SI) obtain lower numbers than their counterparts using SI (w/ SI). For example, with SI information, JMAC achieves an average improvement of about 8% points for Hits@10. Note that, our “JMAC w/o SI” still produces higher Hits@10 results than “AlignKGC w/ SI” on all KGs, and in general, performs better than “AlignKGC w/o SI”. Compared to SS-AGA that uses both SI and all available alignment seeds for training, our “JMAC w/o SI” Hits@10 results are about 30% better for Greek, 20% better for Japanese, French and English, and 10% better for Spanish. We find that our “JMAC w/ SI” obtains the highest results across all KGs on all evaluation metrics, producing new state-of-the-art performances (except the second-highest Hits@1 scores on Greek, Spanish and English where “AlignKGC w/ SI” produces the highest Hits@1 scores).

Ablation study Table 3 presents ablation results. Removing or replacing any component or mechanism decreases the model’s performance. The largest decrease is observed without the use of the Alignment component (w/o Align.) where the MRR scores drop about 15% points on average. The model also performs substantially poorer when it is not using the alignment seed enlargement and triple transferring mechanism (w/o EnTr). Here, the model’s Hits@10 scores decrease about 10% in Greek, Japanese, French and Spanish. The performance drops incurred by using the same relation-aware GNN encoder (w/ 1-GNN) or not using

Method	Align.	Greek H@1	Greek H@10	Greek MRR	Japanese H@1	Japanese H@10	Japanese MRR	French H@1	French H@10	French MRR	Spanish H@1	Spanish H@10	Spanish MRR	English H@1	English H@10	English MRR
TransE	0%	13.1	43.7	24.3	21.1	48.5	25.3	13.5	45.0	24.4	17.5	48.2	27.6	7.3	29.3	16.9
RotatE	0.4%	14.5	36.2	26.2	26.4	60.2	39.8	21.2	53.9	33.8	23.2	55.5	35.1	12.3	30.4	20.7
KG-BERT	0.3%	17.3	40.1	27.3	26.9	59.8	38.7	21.9	54.1	34.0	23.5	55.9	35.4	12.9	31.9	21.0
KenS	100%	26.4	66.1	-	32.9	64.8	-	22.3	60.6	-	25.2	62.6	-	14.4	39.6	-
SS-AGA	100%	30.8	58.6	35.3	34.6	66.9	42.9	25.5	61.9	36.6	27.1	65.1	38.4	16.3	41.3	23.1
AlignKGC w/o SI	50%	55.1	84.2	65.5	46.7	74.4	56.6	44.5	74.0	54.9	44.0	71.4	53.4	28.5	54.9	37.5
AlignKGC w/ SI	50%	58.2	88.6	69.4	49.3	78.7	60.1	48.4	79.4	59.5	48.0	76.6	58.0	31.7	59.8	41.3
JMAC w/o SI	50%	46.8	90.3	62.3	48.1	85.2	61.3	43.8	83.8	58.0	35.6	76.2	50.3	24.5	65.3	38.3
JMAC w/ SI	50%	55.2	97.5	71.7	53.3	91.4	66.8	49.3	91.3	64.5	45.4	88.2	61.0	29.5	72.7	44.6

Table 2: MKGC results. All metrics are reported in %. Here, H@1 and H@10 abbreviate Hits@1 and Hits@10, respectively. “Align.” denotes the percentage of alignment seeds used by each model when training. The first three models are monolingual baselines (i.e. equivalent to the “Align.” rate of 0%), while the remaining models are multilingual ones. KenS (Chen et al., 2020) and SS-AGA (Huang et al., 2022) are proposed for MKGC only, employing all alignment seeds, i.e. their “Align.” rate is 100%. Results of TransE (Bordes et al., 2013), RotatE (Sun et al., 2019), KG-BERT (Yao et al., 2019), KenS and SS-AGA are taken from Huang et al. (2022), that are reported only with surface information (w/ SI). Results of AlignKGC (Singh et al., 2021) are taken from Singh et al. (2021).
relation-aware messages and attention (w/o RA-GNN) also demonstrate the importance of the two-component architecture design and the relation-aware message passing scheme. Although the structural inconsistency reduction mechanism aims to improve the alignment performance, we find that without it (w/o SIR), the MKGC performance also declines. This shows that the improvement in the MKGA task can lead to direct improvements in the MKGC task.

Impact of alignment seeds To have a better insight into how much MKGA can aid MKGC, we evaluate the MKGC task when using alignment seeds with a sampling percentage ranging from 0% to 100% (i.e. using all pre-aligned entity pairs). Figure 3 shows the MRR scores obtained for this experiment. Overall, our JMAC is improved when using more alignment seeds. The surface information (SI), e.g. entity names, provides informative clues about the similarity between entities across KGs (e.g. two entities with similar names are more likely to be an alignment pair). It is therefore not surprising that “JMAC w/o SI” performs better than “JMAC w/o SI” in all scenarios, especially when the used sampling percentage of alignment seeds is small (i.e. SI becomes more valuable). In addition, the completion performance gradually closer as the sampling percentage approaches 100%. The reason is possibly that when the set of used alignment seeds is large enough, there is not much for surface information to contribute to the alignment performance, which aids the completion performance.

5.2 MKGA results

Comparison results Table 4 presents the overall results of different models on the MKGA task. We refer the reader to the Appendix for results on each language pair. Overall, JMAC performs the best in both the “w/ SI” and “w/o SI” categories. Although SS-AGA performs well in the MKGC task, it performs much worse on the alignment task. Specifically, although using SI, it produces the lowest Hits@10. AlignKGC, on the other hand, achieves the third-best results in both categories. However, it is still outperformed by pure KGA models such as AliNet (obtaining 11.1% points higher Hits@1 than AlignKGC in the “w/o SI” category).
Table 4: MKGA results. Results for AlignKGC are taken from Singh et al. (2021). We report our results for other baselines including MTransE (Chen et al., 2017), AliNet (Sun et al., 2020b), SS-AGA, PSR (Mao et al., 2021) and RDGCN (Wu et al., 2019), employing their publicly released implementations. See the Appendix for the training protocols of these baselines. SS-AGA is originally proposed and evaluated for MKGC only. However, it also computes and defines an alignment matrix, thus we can also evaluate SS-AGA for the MKGA task using this matrix.

Table 5: Ablation study for the MKGA task. (v) w/o Comple.: Model variant containing only the Alignment component without the Completion one.

Limitations
Our experimental results demonstrate that our JMAC model effectively solves the structural inconsistency problem. However, our model works based on the assumption that the surface information (SI), i.e. entity name, of an entity across different KG languages is the same or similar. In fact, some entities might have very different SI compared to their versions across different KGs, due to incorrect annotations during KGs construction or different description caused by the language barrier. We refer this issue to as SI inconsistency. When the level of SI inconsistency is high, using SI information might have reversed impacts on the model performance. A robust model should be able to decide how much it can rely on the SI. Our model has no mechanism to perform that at the moment.

6 Conclusion
We proposed JMAC, a method for joint multilingual knowledge graph completion and alignment. JMAC consists of a Completion and Alignment component and uses a new class of relation-aware GNNs for learning entity and relation embeddings suitable for both the completion and alignment tasks. We also propose a structural inconsistency reduction mechanism that fuses entity and relation embeddings from the Completion component with those of the Alignment component. We also introduce another mechanism to enlarge alignment seeds and transfer triples among KGs during training. Extensive experiments using the benchmark DBP-5L (Chen et al., 2020) show that JMAC performs better than previous strong baselines, producing state-of-the-art results. We publicly release the implementation of our JMAC at https://github.com/vinhsuhi/JMAC.
References

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Durán, Jason Weston, and Oksana Yakhnenko. 2013. Translating Embeddings for Modeling Multi-Relational Data. In NIPS.

Muhao Chen, Yingtao Tian, Mohan Yang, and Carlo Zaniolo. 2017. Multilingual Knowledge Graph Embeddings for Cross-Lingual Knowledge Alignment. In IJCAI.

Xuelu Chen, Muhao Chen, Changjun Fan, Ankith Up- punda, Yizhou Sun, and Carlo Zaniolo. 2020. Multilingual Knowledge Graph Completion via Ensemble Knowledge Transfer. In Findings of EMNLP.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. 2018. Convolutional 2D Knowledge Graph Embeddings. In AAAI.

Lingbing Guo, Qingheng Zhang, Weiyi Ge, Wei Hu, and Yuzhong Qu. 2018. DSKG: A deep sequential model for knowledge graph completion. In CCKS.

Zijie Huang, Zheng Li, Haoming Jiang, Tianyu Cao, Hanqing Lu, Bing Yin, Karthik Subbian, Yizhou Sun, and Wei Wang. 2022. Multilingual Knowledge Graph Completion with Self-Supervised Adaptive Graph Alignment. In ACL.

Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and Philip S. Yu. 2021. A Survey on Knowledge Graphs: Representation, Acquisition, and Applications. TNNLS.

Jaehun Jung, Bokyung Son, and Sungwon Lyu. 2020. AttnIO: Knowledge Graph Exploration with In-and-Out Attention Flow for Knowledge-Grounded Dialogue. In EMNLP.

Diederik Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization. arXiv preprint, arXiv:1412.6980.

Giorgos Kollias, ShahinMohammadi, and Ananth Grama. 2011. Network Similarity Decomposition (NSD): A Fast and Scalable Approach to Network Alignment. TKDE.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas, Pablo N. Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef, Sören Auer, and Christian Bizer. 2015. DBpedia - A Large-scale, Multilingual Knowledge Base Extracted from Wikipedia. SWJ.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. 2015. Learning Entity and Relation Embeddings for Knowledge Graph Completion. In AAAI.

Hanxiao Liu, Yuexin Wu, and Yiming Yang. 2017. Analogical Inference for Multi-Relational Embeddings. In ICML.

Xin Mao, Wenting Wang, Yuanbin Wu, and Man Lan. 2021. Are Negative Samples Necessary in Entity Alignment? An Approach with High Performance, Scalability and Robustness. In CIKM.

Roberto Navigli and Simone Paolo Ponzetto. 2010. BabelNet: Building a Very Large Multilingual Semantic Network. In ACL.

Dai Quoc Nguyen, Tu Dinh Nguyen, Dat Quoc Nguyen, and Dinh Phung. 2018. A Novel Embedding Model for Knowledge Base Completion Based on Convolutional Neural Network. In NAACL.

Dai Quoc Nguyen, Vinh Tong, Dinh Phung, and Dat Quoc Nguyen. 2022. Node Co-occurrence based Graph Neural Networks for Knowledge Graph Link Prediction. In WSDM.

Dat Quoc Nguyen. 2020. A survey of embedding models of entities and relationships for knowledge graph completion. In TextGraphs.

Adam Paszke, Sam Gross, Francisco Massa, et al. 2019. Pytorch: An imperative style, high-performance deep learning library. In NeurIPS.

Maya Rotmensch, Yoni Halpern, Abdulhakim Timat, Steven Horng, and David Sontag. 2017. Learning a Health Knowledge Graph from Electronic Medical Records. Scientific Reports.

Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and Max Welling. 2018. Modeling Relational Data with Graph Convolutional Networks. In ESWC.

Chao Shang, Yun Tang, Jing Huang, Jinbo Bi, Xiaodong He, and Bowen Zhou. 2019. End-to-end Structure-Aware Convolutional Networks for Knowledge Base Completion. In AAAI.

Harkanwar Singh, Prachi Jain, Mausam, and Soumen Chakrabarti. 2021. Multilingual Knowledge Graph Completion with Joint Relation and Entity Alignment. In AKBC.

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. 2007. YAGO: A Core of Semantic Knowledge. In WWW.

Jian Sun, Yu Zhou, and Chengqing Zong. 2020a. Dual Attention Network for Cross-lingual Entity Alignment. In COLING.

Zequn Sun, Chengming Wang, Wei Hu, Muhao Chen, Jian Dai, Wei Zhang, and Yuzhong Qu. 2020b. Knowledge Graph Alignment Network with Gated Multi-hop Neighborhood Aggregation. In AAAI.

Zequn Sun, Qingheng Zhang, Wei Hu, Chengming Wang, Muhao Chen, Farahnaz Akrami, and Chengkai Li. 2020c. A Benchmarking Study of Embedding-Based Entity Alignment for Knowledge Graphs. In VLDB.
A Appendix

A.1 Training protocols for baselines

For the baseline alignment models listed in Table 4, we apply the same training protocol as detailed in Section 4.3 w.r.t. the optimizer, the hidden layers, the initial learning rate values and the number of training epochs. For GNN-based alignment models AliNet, SS-AGA, PSR and RDGCN, we also search their number of GNN layers from \{1, 2, 3\}. For their other hyper-parameters, we use their implementation’s default values.

A.2 MKGA results on the DBP-5L dataset

Tables 6–11 detail alignment results of experimental models as well as ablation results of our JMAC for all language pairs in the DBP-5L dataset.

A.3 Additional results for the KGA task

Note that our JMAC can perform KGA on a benchmark that is purely constructed for the KGA task. To further demonstrate the effectiveness of our JMAC, we conduct an additional KGA experiment using bilingual KG pairs from the OpenEA 15K benchmark DBP1.0 (Sun et al., 2020c). Each KG pair consists of two versions V1 and V2 which are the sparse and dense ones, respectively. The alignment seeds are divided into 20%, 10%, and 70% for training, validation and test, respectively. Statistics of the bilingual KG pairs from the OpenEA 15K benchmark DBP1.0 are presented in Table 12. For this entity alignment experiment, training protocols of JMAC and baselines are the same as described in Sections 4.3 and A.1. Here, the test set results are reported for the model checkpoint which obtains the highest MRR on the validation set. Table 13 reports obtained alignment results on the test sets, where our JMAC performs better than the baselines in both the “w/ SI” and “w/o SI” categories, obtaining new state-of-the-art performances.
Table 6: MKGA Hits@1 results.

Method	EL - EN	EL - ES	EL - FR	EL - JA	EN - FR	EN - ES	ES - FR	JA - EN	JA - ES	JA - FR	Overall	
AlignKGC	-	-	-	-	-	-	-	-	-	-	-	91.9
MTransE	-	43.2	54.1	45.3	55.4	33.4	39.4	48.0	32.9	42.1	58.8	65.4
AliNet	-	66.2	82.7	67.4	79.6	61.5	77.0	82.4	62.2	68.3	84.3	73.2
JMAC	68.8	80.6	73.0	79.4	71.2	78.7	85.6	67.2	74.1	80.3	75.8	

Table 7: MKGA Hits@10 results.

Method	EL - EN	EL - ES	EL - FR	EL - JA	EN - FR	EN - ES	ES - FR	JA - EN	JA - ES	JA - FR	Overall	
AlignKGC	-	-	-	-	-	-	-	-	-	-	-	95.3
MTransE	-	33.5	44.2	38.0	47.0	27.4	31.7	39.6	26.7	34.4	49.9	36.2
AliNet	-	58.4	77.8	60.2	74.1	57.9	71.7	75.7	54.9	61.8	79.4	60.8
JMAC	63.6	74.8	67.0	73.7	65.1	72.8	80.4	62.4	69.1	74.6	70.3	

Table 8: MKGA MRR results. Singh et al. (2021) do not report the MRR results for AlignKGC.

Variants	EL-EN	EL-ES	EL-FR	EL-JA	EN-FR	EN-ES	ES-FR	JA-EN	JA-ES	JA-FR	Overall
JMAC w/ SI	93.1	92.8	92.4	93.8	94.5	93.3	94.5	94.7	91.9	93.1	93.4
(i) w/o RA-GNN	89.0	89.4	85.1	89.3	91.4	89.6	90.7	90.4	87.3	88.2	89.3
(ii) w/ 1-GNN	60.3	72.1	63.6	66.8	59.1	67.1	71.0	52.3	56.8	63.8	62.4
(iii) w/o SIR	90.1	90.4	87.8	91.7	92.9	91.3	92.6	92.5	89.9	90.8	91.3
(iv) w/o EnTr	92.6	92.1	88.9	93.5	94.0	93.1	94.1	93.9	91.2	92.9	92.9
(v) w/o Comple.	90.1	90.4	87.8	91.7	92.9	91.3	92.6	92.5	89.9	90.8	91.3

Table 9: Ablation Hits@1 results for the MKGA task.

Variants	EL-EN	EL-ES	EL-FR	EL-JA	EN-FR	EN-ES	ES-FR	JA-EN	JA-ES	JA-FR	Overall
JMAC w/ SI	97.5	99.7	96.8	97.6	97.8	97.7	97.8	98.2	95.8	97.6	97.5
(i) w/o RA-GNN	91.3	92.1	91.6	93.3	92.7	93.4	92.5	93.1	90.8	91.3	92.2
(ii) w/ 1-GNN	63.3	76.4	65.2	69.3	64.3	71.1	73.3	55.2	57.8	65.3	65.4
(iii) w/o SIR	94.1	95.3	93.6	94.1	95.2	95.0	94.2	95.1	92.3	94.4	94.3
(iv) w/o EnTr	95.6	95.9	94.9	95.0	95.8	96.1	95.8	96.2	94.2	96.4	95.6
(v) w/o Comple.	94.1	95.3	93.6	94.1	95.2	95.0	94.2	95.1	92.3	94.4	94.3

Table 10: Ablation Hits@10 results for the MKGA task.
Table 11: Ablation MRR results for the MKGA task.

Variants	EL-EN	EL-ES	EL-FR	EL-JA	EN-FR	ES-EN	ES-FR	JA-EN	JA-ES	JA-FR	Overall
	95.3	95.0	94.6	95.2	94.6	95.7	96.0	96.3	93.3	95.3	95.1
(i) w/o RA-GNN	90.1	91.1	90.3	92.4	91.6	91.3	91.4	91.7	89.7	89.3	90.9
(ii) w/ 1-GNN	61.4	73.7	64.6	67.3	60.1	68.4	72.6	53.7	57.6	64.4	64.0
(iii) w/o SIR	93.2	93.1	91.4	91.6	92.4	93.6	92.7	93.5	90.3	93.6	92.6
(iv) w/o EnTr	95.0	94.6	93.2	93.5	94.3	95.5	94.8	95.3	92.3	95.2	94.5
(v) w/o Comple.	93.2	93.1	91.4	91.6	92.4	93.6	92.7	93.5	90.3	93.6	92.6

Table 12: Statistics of bilingual KG pairs from the OpenEA 15K benchmark DBP1.0.

KG Pairs	KGs	V1	V2	
EN-FR-15K	EN	15,000	267	47,334
	FR	15,000	210	40,864
EN-DE-15K	EN	15,000	215	47,676
	DE	15,000	131	50,419

Table 13: DBP1.0 test set results. We report our results for AliNet and PSR using their publicly released implementations. Results for MTransE and RDGCN are taken from Sun et al. (2020c). Here, RDGCN is the best performing model among 12 different models experimented by Sun et al. (2020c).