Summary: The moduli space of planar polygons with generic side lengths is a closed, smooth manifold. Mapping a polygon to its reflected image across the X-axis defines a fixed-point-free involution on these moduli spaces, making them into free \mathbb{Z}_2-spaces. There are some important numerical parameters associated with free \mathbb{Z}_2-spaces, like index and coindex. In this paper, we compute these parameters for some moduli spaces of polygons. We also determine for which of these spaces a generalized version of the Borsuk-Ulam theorem holds. Moreover, we obtain a formula for the Stiefel-Whitney height in terms of the genetic code, a combinatorial data associated with side lengths.

MSC:

55M30 Lyusternik-Shnirel’man category of a space, topological complexity à la Farber, topological robotics (topological aspects)
55P15 Classification of homotopy type
57R42 Immersions in differential topology

Keywords:
free \mathbb{Z}_2-space; coindex; index; Stiefel-Whitney class; tidy spaces; planar polygon spaces

Full Text: DOI

References:

[1] Csorba, Péter, Non-tidy spaces and graph colorings (2005), ETH: ETH Zurich, PhD thesis
[2] Davis, Donald M., Manifold properties of planar polygon spaces, Topol. Appl., 250, 27-36 (2018) · Zbl 1407.57020
[3] Davis, Donald M., On the cohomology classes of planar polygon spaces, (Contemp. Math. (2018), American Mathematical Society), 85-89 · Zbl 1404.55005
[4] Davis, Donald M., On the cohomology classes of planar polygon spaces, (Topological Complexity and Related Topics. Topological Complexity and Related Topics, Contemp. Math., vol. 702 (2018), Amer. Math. Soc.: Amer. Math. Soc. [Providence, RI]), 85-89 · Zbl 1404.55005
[5] Farber, Michael, Invitation to Topological Robotics, Zurich Lectures in Advanced Mathematics (2008), European Mathematical Society (EMS): European Mathematical Society (EMS) Zürich · Zbl 1148.55011
[6] Gadgil, Siddhartha, Embedded spheres in $(S^2 \times S^1 \times \cdots \times S^2 \times S^1)$, Topol. Appl., 153, 7, 1141-1151 (2006) · Zbl 1087.57002
[7] Gonçalves, Daciberg L.; Hayat, Claude; Zvengrowski, Peter, The Borsuk-Ulam theorem for manifolds, with applications to dimensions two and three, (Group Actions and Homogeneous Spaces (2010), Fac. Mat. Fizika Inform. Univ. Komenského: Fac. Mat. Fyziky Inform. Univ. Komenského Bratislava), 9-28 · Zbl 1220.55001
[8] Hausmann, J.-C.; Knutson, A., The cohomology ring of polygon spaces, Ann. Inst. Fourier (Grenoble), 48, 1, 281-321 (1998) · Zbl 0903.14019
[9] Hausmann, Jean-Claude, Geometric descriptions of polygon and chain spaces, (Topology and Robotics. Topology and Robotics, Contemp. Math., vol. 438 (2007), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 47-57 · Zbl 1143.55301
[10] Hausmann, Jean-Claude; Rodriguez, Eugenio, The space of clouds in Euclidean space, Exp. Math., 13, 1, 31-47 (2004) · Zbl 1053.55015
[11] Kamiyama, Yasuhiro, Homology of the universal covering of planar polygon spaces, JP J. Geom. Topol., 10, 2, 171-181 (2010) · Zbl 1219.57021
[12] Kamiyama, Yasuhiro; Kinoto, Kazufumi, The height of a class in the cohomology ring of polygon spaces, Int. J. Math. Math. Sci., Article 305926 pp. (2013) · Zbl 1295.55004
[13] Matoušek, Jiri, Using the Borsuk-Ulam Theorem, Universitext (2003), Springer-Verlag: Springer-Verlag Berlin, Lectures on topological methods in combinatorics and geometry, Written in cooperation with Anders Björner and Günter M. Ziegler · Zbl 1006.05001
[14] McCullough, Darryl, Connected sums of aspherical manifolds, Indiana Univ. Math. J., 30, 17-28 (1981) · Zbl 0427.55004
[15] Musin, Oleg R., Borsuk-Ulam type theorems for manifolds, Proc. Am. Math. Soc., 140, 7, 2551-2560 (2012) · Zbl 1278.55007
[16] Panina, Gaiane, Moduli space of a planar polygonal linkage: a combinatorial description, Arnold Math. J., 3, 3, 351-364 (2017) - Zbl 1423.52039

[17] Scott, Peter; Wall, Terry, Topological methods in group theory. Homological group theory, (Proc. Symp., Proc. Symp., Durham 1977. Proc. Symp., Proc. Symp., Durham 1977, Lond. Math. Soc. Lect. Note Ser., vol. 36 (1979)), 137-203

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.