Resonant conversions of QCD axions into hidden axions and suppressed isocurvature perturbations

Naoya Kitajimaa and Fuminobu Takahashia,b

aDepartment of Physics, Tohoku University, Sendai 980-8578, Japan
bKavli IPMU, TODIAS, University of Tokyo, Kashiwa 277-8583, Japan

E-mail: kitajima@tuhep.phys.tohoku.ac.jp, fumi@tuhep.phys.tohoku.ac.jp

Received November 18, 2014
Revised December 8, 2014
Accepted December 30, 2014
Published January 22, 2015

Abstract. We study in detail MSW-like resonant conversions of QCD axions into hidden axions, including cases where the adiabaticity condition is only marginally satisfied, and where anharmonic effects are non-negligible. When the resonant conversion is efficient, the QCD axion abundance is suppressed by the hidden and QCD axion mass ratio. We find that, when the resonant conversion is incomplete due to a weak violation of the adiabaticity, the CDM isocurvature perturbations can be significantly suppressed, while non-Gaussianity of the isocurvature perturbations generically remain unsuppressed. The isocurvature bounds on the inflation scale can therefore be relaxed by the partial resonant conversion of the QCD axions into hidden axions.

Keywords: axions, particle physics - cosmology connection, physics of the early universe

ArXiv ePrint: 1411.2011
Contents

1 Introduction
2 Set-up
3 Cosmology of axion resonant conversion
3.1 Cross-over of mass eigenvalues
3.2 Abundance
3.3 Isocurvature perturbations
4 Discussion and conclusions

1 Introduction

The strong CP problem in the standard model is one of the most profound mysteries in particle physics, and a plausible solution is the Peccei-Quinn (PQ) mechanism \cite{1,2}. When a global $U(1)_{	ext{PQ}}$ symmetry is spontaneously broken, there appears an associated Nambu-Goldstone (NG) boson “axion” which is assumed to acquire a tiny mass predominantly from the QCD anomaly \cite{3–9}. As a result, the axion is stabilized at the CP-conserving minimum, and the strong CP problem is dynamically solved.

In the early Universe, the QCD axion remains massless until the cosmic temperature drops down to the QCD scale, $\Lambda_{\text{QCD}} \simeq 400 \text{ MeV}$. During the QCD phase transition, the QCD axion gradually acquires a mass, and it starts to oscillate about the CP conserving minimum when the mass becomes comparable to the Hubble parameter. The PQ mechanism is therefore necessarily accompanied by coherent oscillations of the QCD axions, which behave as cold dark matter (CDM). The abundance of axion coherent oscillations is given by \cite{10}

$$\Omega_a h^2 \simeq 0.195 \theta_i^2 f(\theta_i) \left(\frac{F_a}{10^{12} \text{ GeV}} \right)^{1.184},$$

where θ_i is the initial misalignment angle of the QCD axion, F_a is the QCD axion decay constant, and $f(\theta_i)$ is the anharmonic correction that is a monotonically increasing function of θ_i: $f(\theta_i) \sim 1$ for $\theta_i \lesssim 1$ and it grows rapidly as θ_i approaches π \cite{11}.

There are two possible cosmological problems of the QCD axion dark matter. One is the overabundance; if the decay constant is of order the GUT or string scale, the axion abundance would be many orders of magnitude larger than the observed dark matter unless the initial misalignment angle is less than about 10^{-2}. The other is the tight isocurvature constraint on the inflation scale; if the axion is present during inflation, it acquires quantum fluctuations of order the Hubble parameter, which induce the CDM isocurvature perturbations. The upper bound on the inflation scale is so tight that it excludes large-field inflation models \cite{12–14}.

The QCD axion may not be the only pseudo NG boson in nature; there may be many axions or axion-like particles (ALPs) \cite{23–28}. Indeed, in a certain class of the compactification of the extra dimensions, there remain many light axions, some of which may play an important cosmological role \cite{29}. For instance, multiple axions in cosmological contexts have been

\footnote{There have been proposed various ways to suppress the axion CDM isocurvature perturbations \cite{12,15–22}.}
studied in the so-called axiverse scenario [30, 31] and the axion landscape [32, 33]. Suppose that there is another axion which has a mixing with the QCD axion. Then, as the QCD axion gradually acquires a mass during the QCD phase transition, the MSW-like conversions could take place. Such resonant conversion was studied in ref. [34] assuming that adiabaticity condition is satisfied and anharmonic effects are negligible.

In this letter we study in detail the resonant conversions of axions, including cases where the adiabaticity condition is only marginally satisfied or weakly violated, and where the anharmonic effects are non-negligible. We show that the axion abundance can be suppressed by the mass ratio of the hidden and QCD axions. This is because it is the number of the axions in a comoving volume that is conserved during the resonant conversion process. The authors of ref. [34] claimed that the QCD axion abundance is suppressed by the square of the mass ratio because the oscillation amplitude is conserved in the conversion process, which however was not confirmed in our analysis. We shall also study how the isocurvature perturbations are modified when the resonant conversions take place. Interestingly, we find that, when the resonant conversion is incomplete due to weak violation of the adiabaticity condition, the power spectrum of the isocurvature perturbations can be significantly suppressed for certain parameters. This is because the conversion rate also depends on the initial misalignment angle, and the produced hidden axions can compensate the isocurvature perturbations of the QCD axions. Therefore, the isocurvature constraint on the inflation scale can be relaxed by the incomplete resonant conversions. On the other hand, non-Gaussianity of isocurvature perturbations are generically non-vanishing even in this case.

The rest of this letter is organized as follows. In section 2, we give our model of axions and study the dynamics of the axion oscillations, focusing on the resonant conversion processes. In section 3, we show how the axion abundance and isocurvature perturbations are modified by the resonant conversion. Section 4 is devoted to conclusions and discussions.

2 Set-up

In this section we give a model of the QCD and hidden axions which have a non-zero mixing. In the next section we study the dynamics of axion coherent oscillations, focusing on the resonant conversion between these two axions.

Let us introduce two complex scalar fields Φ and Φ_H with the following interactions with heavy quarks,

$$\mathcal{L} = \kappa \Phi \tilde{Q} \bar{Q} + \frac{\lambda}{M_P} \Phi_H Q_H \bar{Q}_H$$

(2.1)

where Q and \tilde{Q} belong to $\mathbf{3} + \bar{\mathbf{3}}$ of SU(3)$_c$, Q_H and \bar{Q}_H belong to (anti-)fundamental representation $\mathbf{N} + \bar{\mathbf{N}}$ of a hidden gauge symmetry SU(N)$_H$, and κ and λ are dimensionless coupling constants. $M_P \simeq 2.4 \times 10^{18}$ GeV is the reduced Planck mass. This is an extension of the KSVZ hadronic axion model with additional hidden scalar and quarks. We assume that there are two global U(1) symmetries, U(1)$_{PQ}$ and U(1)$_H$, which are spontaneously broken by vacuum expectation values of Φ and Φ_H. See table 1 for the charge assignment of each field. The QCD axion (a) and the hidden axion (a_H) appear as (pseudo) NG bosons associated with the spontaneous symmetry breaking, and they reside in the phase component of Φ and Φ_H, respectively. We assume that the hidden gauge symmetry SU(N)$_H$ becomes strong and induces a potential for axions in the low energy. If the hidden gauge sector is not thermalized by the inflaton decay, the axion potential is generated when the Hubble parameter becomes comparable to the dynamical scale Λ_H. In the following we assume that
the hidden gauge interactions has already become strong before the QCD phase transition, namely, $\Lambda_H \gg H_{\text{QCD}} \sim \Lambda_{\text{QCD}}^2 / M_P$, where H_{QCD} is the Hubble parameter at the QCD phase transition.

The low-energy effective Lagrangian for axions below the dynamical scale of $SU(N)_H$ is given by

$$L = \frac{1}{2} \partial^\mu a \partial_\mu a + \frac{1}{2} \partial^\mu a_H \partial_\mu a_H - V(a, a_H)$$ \hspace{1cm} (2.2)

with the potential,

$$V(a, a_H) = m_a^2(T) F_a^2 \left[1 - \cos \left(\frac{a}{F_a} \right) \right] + m_H^2 F_H^2 \left[1 - \cos \left(\frac{a_H}{F_H} + \frac{a}{F_a} \right) \right],$$ \hspace{1cm} (2.3)

where $m_a(T)$ and m_H are the mass of the QCD and hidden axions respectively, F_a and F_H are the decay constants of a and a_H, and they are comparable to the corresponding $U(1)$ symmetry breaking scales.\footnote{It is possible to generalize the potential as

$$V(a, a_H) = m_a^2(T) F_a^2 \left[1 - \cos \left(n_1 \frac{a_H}{F_H} + n_2 \frac{a}{F_a} \right) \right] + m_H^2 F_H^2 \left[1 - \cos \left(n_3 \frac{a_H}{F_H} + n_4 \frac{a}{F_a} \right) \right],$$ \hspace{1cm} (2.4)

with $n_1 - n_4$ being some integers, for appropriate charge assignments. In the text we focus on the case of $n_1 = 0$ and $n_2 = n_3 = n_4 = 1$, but we can straightforwardly extend our analysis to more general cases.}

As we shall see in the next section, the resonant conversion takes place if the hidden axion mass m_H is in the following range:

$$H_{\text{QCD}} < m_H < m_a(T = 0) \equiv m_a.$$ \hspace{1cm} (2.5)

We assume that the above condition is satisfied unless stated otherwise.

We have shifted a and a_H in the axion potential (2.3) so that the origins of a and a_H coincide with the potential minimum without loss of generality. Note that both axions are stabilized at the CP conserving minima because the number of cosine functions is equal to the number of axions. Therefore the PQ mechanism remains a viable solution to the strong CP problem even in the presence of the hidden axion.

The equations of motion for the axions are given by

$$\ddot{a} + 3H \dot{a} + m_a^2(T) F_a^2 \sin \left(\frac{a_H}{F_H} + \frac{a}{F_a} \right) + m_a^2(T) F_a \sin \left(\frac{a}{F_a} \right) = 0$$ \hspace{1cm} (2.6)

$$\ddot{a}_H + 3H \dot{a}_H + m_H^2 F_H \sin \left(\frac{a_H}{F_H} + \frac{a}{F_a} \right) = 0.$$

If the axions are initially located in the vicinity of the potential minimum, or if the oscillation amplitudes become much smaller than the corresponding decay constant, the equations of motion can be approximately linearized as

$$\ddot{A} + 3H \dot{A} + M^2 A \approx 0$$ \hspace{1cm} (2.7)
where A and M^2 are respectively the column vector of two axion fields and the (squared) mass matrix,

$$A = \begin{pmatrix} a \\ a_H \end{pmatrix} \quad \text{and} \quad M^2 = \begin{pmatrix} m_a^2(T) + \left(\frac{F_H}{F_a}\right)^2 m_H^2 & \mu^2 \\ \mu^2 & m_H^2 \end{pmatrix},$$ \hspace{1cm} (2.8)

with

$$\mu^2 = \frac{F_H}{F_a} m_H^2. \hspace{1cm} (2.9)$$

One can diagonalize the mass matrix by an orthogonal matrix O as

$$\begin{pmatrix} m_1^2 & 0 \\ 0 & m_2^2 \end{pmatrix} = O^T M^2 O \quad \text{and} \quad \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = O^T A \hspace{1cm} (2.10)$$

with $m_2 > m_1$. In our convention, the mass of a_2 is always heavier than or equal to that of a_1. Alternatively, one may define the mass eigenstates by

$$\begin{pmatrix} a'_1 \\ a'_2 \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} a \\ a_H \end{pmatrix} \hspace{1cm} (2.11)$$

with the mixing angle

$$\tan 2\alpha = -\frac{2\mu^2}{m_0^2(T) + [(F_H/F_a)^2 - 1] m_H^2}. \hspace{1cm} (2.12)$$

Throughout this letter we use the previous notation of the mass eigenstates (a_a, a_2) with $m_2 > m_1$ which is more convenient when the resonant conversion takes place.

3 Cosmology of axion resonant conversion

3.1 Cross-over of mass eigenvalues

The QCD axion remains almost massless at temperatures much higher than the QCD dynamical scale $\Lambda_{QCD} \simeq 400$ MeV, and it gradually acquires a mass and starts to oscillate during the QCD phase transition. The temperature-dependent QCD axion mass is given by [35]³

$$m_a(T) \approx \begin{cases} 4.05 \times 10^{-4} \frac{\Lambda_{QCD}^2}{F_a} \left(\frac{T}{\Lambda_{QCD}}\right)^{-3.34} & \text{for } T > 0.26\Lambda_{QCD} \\ 3.82 \times 10^{-2} \frac{\Lambda_{QCD}^2}{F_a} & \text{for } T < 0.26\Lambda_{QCD} \end{cases}, \hspace{1cm} (3.1)$$

where the typical time scale over which the QCD axion mass grows is the Hubble time H^{-1}. Therefore, if the zero-temperature mass of the QCD axion, $m_a = m_a(T = 0)$, is heavier than the hidden axion mass, there is necessarily a cross-over of the mass eigenvalues. The resonance temperature T_{res} is given by the temperature at which the QCD axion mass becomes equal to the hidden axion mass:

$$T_{res} \simeq 0.1 \left(\frac{\Lambda^2_{QCD}}{F_a m_H}\right)^{0.3}, \hspace{1cm} (3.2)$$

where $m_H < m_a$ is assumed. See figure 1 for the typical evolution of the mass eigenvalues as a function of the cosmic temperature T. We can see that a_1 and a_2 are initially identified
Figure 1. Evolution of mass eigenvalues as a function of temperature T in the GeV units. The axion masses are normalized by the zero-temperature QCD axion mass m_a. The solid (red) and dashed (green) lines represent evolution of the light (m_1) and heavy (m_2) mass eigenvalues, respectively, while the dotted (blue) line represents the temperature-dependent QCD axion mass, $m_a(T)$. We have taken $F_H = F_a = 10^{14}$ GeV and $m_H = 0.1 \, m_a$.

as the QCD and hidden axion respectively for $T > T_{\text{res}}$, and eventually they are exchanged with each other after the cross-over of the mass eigenvalues.

At temperature $T \approx T_{\text{res}}$, QCD axions are converted to hidden axions through resonance a la the MSW effect in neutrino physics [36–38], and vice versa. This conversion process occurs efficiently if the adiabaticity condition is satisfied, namely, if both axions oscillate many times over the Hubble time. Then, there is an adiabatic invariant during the resonant conversion. In particular, if the axion potentials are approximated by the quadratic potential, it is the number of axions in a co-moving volume that is conserved, not the amplitude of oscillations.

The hidden axion starts to oscillate when the Hubble parameter becomes comparable to its mass, $H \sim m_H$, unless it is initially located in the vicinity of the potential maximum. As long as the condition (2.5) is satisfied, the oscillations start before the QCD phase transition, and so, the oscillation amplitude of a_H is likely so small at the resonance temperature that its dynamics can be approximated by the harmonic oscillations.

The resonant efficiency depends on the adiabaticity, which is parametrized by ξ defined by a ratio of the Hubble parameter to the axion mass evaluated at the resonance:

$$\xi \equiv \frac{H(T_{\text{res}})}{m_H} = \frac{H(T_{\text{res}})}{m_a(T_{\text{res}})} \simeq 4.4 \left(\frac{m_H}{m_a} \right)^{-1.6} \frac{F_a}{M_P}. \tag{3.3}$$

Note that the hidden axion mass is equal to the QCD axion mass at the cross-over temperature. As we shall see shortly, the resonance occurs efficiently for $\xi \ll 1$, while it becomes incomplete as ξ approaches unity. This sets the lower bound on m_H for the efficient resonant conversion; this bound roughly reads $m_H \gtrsim H(T = \Lambda_{\text{QCD}}) \simeq 2 \times 10^{-10}$ eV. This explains why the condition (2.5) is required for the resonance conversion: the upper bound on m_H

3Precisely speaking, $m_a(T)$ parametrizes the potential height in eq. (2.3), and the actual mass eigenvalue is slightly different due to the mixing with the hidden axion.
comes from the existence of the cross-over point, and the lower bound from the adiabaticity condition.

The above adiabaticity parameter does not take account of the anharmonic effects, which become important when the initial misalignment angle θ_i approaches π. We will see that the resonance becomes incomplete as we increase the initial misalignment angle of a. This can be understood by noting that, when the anharmonic effect is important, the typical time scale around the end points of oscillations is longer than the mass scale around the potential minimum, which enhances the breaking of the adiabaticity condition.

To recap: the efficient resonant conversion of the QCD axions into hidden axions takes place if the hidden axion mass m_H is in the range of (2.5), and if the anharmonic effects are negligible.

3.2 Abundance

The number of the QCD axions in a comoving volume is an adiabatic invariant during the conversion processes, if the adiabaticity parameter ξ is much smaller than unity, and if the anharmonic effect is negligible. Therefore, if the resonant conversion is efficient, the resultant energy density of the axion CDM is expected to be suppressed by the mass ratio, m_H/m_a, compared to the case without resonant conversion.

To see this, we have numerically solved the axion dynamics with such initial condition that only coherent oscillations of a_1 are induced while a_2 initially sits at the potential minimum. With this initial condition, a_1 starts to oscillate when the Hubble parameter becomes comparable to $m_a(T)$, while no coherent oscillations of a_2 are induced in the low energy, if the resonant conversion is 100 percent efficiency. In the actual Universe, however, the adiabaticity condition is weakly violated by a non-zero value of ξ, and as a result, a small amount of coherent oscillations of a_2 is induced.

The numerical results are shown in figure 2. Here we have set $F_a = F_H = 10^{14}$ GeV and $\theta_{H,i} \equiv a_{H,i}/F_H = -\theta_i$, and solved the axion dynamics by varying the hidden axion mass m_H, for some specific values of the initial misalignment angle, $\theta_i \equiv a_i/F_a = 1$ (dotted blue), 2.5 (dashed green) and 3 (solid red). In figure 2(a), we show the number density ratio, $n_2/(n_1 + n_2)$, evaluated long after the resonance as a function of the adiabaticity parameter ξ. Here the number density of each axion is evaluated by the energy density divided by the mass. One can see from the figure that the resonant conversion is efficient for small values of ξ as only a tiny amount of a_2 is induced. On the other hand, a larger fraction of a_1 is converted to the heavier eigenstate a_2 for larger values of ξ because of the incomplete resonant conversion. Also, one can see that, as the initial misalignment angle θ_i increases, a large number of a_2 is induced due to the incomplete conversion. This is because the anharmonic effect tends to break the adiabaticity condition, making the resonant conversion inefficient.

In figure 2(b) we show the resultant density parameter of the total axion CDM, $\Omega_{a,\text{total}} \equiv \Omega_{a_1} + \Omega_{a_2}$, normalized by the QCD axion density parameter in the absence of the resonant conversion, $\Omega_{a,\text{no-res}}$, as a function of ξ. As expected, the suppression factor is approximately given by the mass ratio, m_H/m_a, for small ξ, where the resonant conversion is efficient. Note that we varied m_H in this plot, and therefore the m_H/m_a line (dotted magenta) is proportional to $\xi^{-1.6}$ (see eq. (3.3)). The suppression factor is of order 0.01 for the parameters adopted; we have chosen the decay constants that are slightly larger than the conventional axion window, since the numerical computation would become expensive, otherwise. For smaller values of F_a and m_H, the suppression factor m_H/m_a becomes smaller, and so, the final axion abundance can be suppressed by a larger amount. By extrapolating our results,
Figure 2. The ratio of the number density of a_2 to the total number density (left panel) and the suppression factor of the axion density parameter with respect to the case without resonant conversion (right panel). The resonant conversion becomes efficient for small values of the adiabaticity parameter ξ. We have taken $F_a = F_H = 10^{14}$ GeV, and varied the initial misalignment angles as $\theta_i \equiv a_i/F_a = 1$ (dotted blue), 2.5 (dashed green) and 3 (solid red) with $\theta_{H,i} = -\theta_i$. The small dotted (magenta) straight line in the right panel shows m_H/m_a, and we can see that the resultant density parameter is indeed suppressed by the mass ratio for small $\xi \lesssim 0.1$.

we expect that the suppression factor is given by

$$\frac{\Omega_{a,\text{total}}}{\Omega_{a,\text{no-res}}} = \mathcal{O}(10^{-4}) \left(\frac{10^{12} \text{GeV}}{F_a} \right).$$

(3.4)

Thus, we can reduce the axion CDM abundance by making use of the resonant conversion of the QCD axions into hidden axions.

Note that, although the initial misalignment angle for a_2 is set to be zero in our numerical calculation, the total axion abundance can be still suppressed for a certain range of the misalignment angle, because a_2 starts to oscillate before a_1 and its abundance tends to be suppressed compared to that of a_1. Interestingly, the suppression factor exhibits oscillating behavior for ξ, which sensitively depends on the initial misalignment angle. This behavior affects the axion isocurvature perturbation as will be shown next.

3.3 Isocurvature perturbations

If the PQ symmetry is already broken during the last 50 or 60 e-foldings of inflation, the QCD axion acquires quantum fluctuations, leading to isocurvature perturbations imprinted on the CMB temperature anisotropy. Similarly, hidden axions also give rise to isocurvature perturbations. The amount of isocurvature perturbations is tightly constrained by the recent CMB observations [39, 40]. Taking into account the anharmonic corrections, the CDM isocurvature perturbation from both the QCD and hidden axions is calculated as [41]

$$\Delta S_{\text{CDM}} = \left(\frac{\Omega_{a,\text{total}}}{\Omega_{\text{CDM}}} \right) \Delta S_{a},$$

(3.5)
with \(\Delta S, a = \frac{\partial \ln \Omega_{a, \text{total}}}{\partial \theta_i} \delta \theta_i + \frac{\partial \ln \Omega_{a, \text{total}}}{\partial \theta_{H,i}} \delta \theta_{H,i} \),

where \(\Omega_{\text{CDM}} \) is the observed CDM density parameter, \(H_{\text{inf}} \) the inflationary Hubble parameter, \(\delta \theta_i, \delta \theta_{H,i} \) the quantum fluctuations of \(\theta_i, \theta_{H,i} \), with \(\langle \delta \theta_i^2 \rangle = \left(\frac{H_{\text{inf}}}{2 \pi F_a} \right)^2 \), \(\langle \delta \theta_{H,i}^2 \rangle = \left(\frac{H_{\text{inf}}}{2 \pi F_H} \right)^2 \). Assuming that there is no correlation between \(\delta \theta_i \) and \(\delta \theta_{H,i} \), the power spectrum of the isocurvature perturbation is given by

\[
\Delta^2 S, a = \left(\frac{\partial \ln \Omega_{a, \text{total}}}{\partial \theta_i} \right)^2 \left(\frac{H_{\text{inf}}}{2 \pi F_a} \right)^2 + \left(\frac{\partial \ln \Omega_{a, \text{total}}}{\partial \theta_{H,i}} \right)^2 \left(\frac{H_{\text{inf}}}{2 \pi F_H} \right)^2.
\]

(3.7)

The current upper bound on the CDM isocurvature perturbation reads [39, 40]

\[\beta < 0.039 \ (95\% \ C.L.), \]

(3.8)

where \(\beta \) is defined by

\[\Delta^2 S, \text{CDM} = \frac{\beta}{1 - \beta} \Delta^2 R. \]

(3.9)

with \(\Delta^2 R \approx 2.2 \times 10^{-9} \) being the curvature power spectrum. This sets stringent constraints on the inflation scale, which were studied in the literature in the case of only QCD axions [12–14].

In the absence of the resonant conversion, the abundance of QCD axions is a monotonically increasing function of the initial misalignment angle \(\theta_i \). In particular, it rapidly increases as \(\theta_i \) approaches \(\pi \), and so, \(\Delta^2 S, a \) is also an increasing function of \(\theta_i \). This is the reason why the isocurvature perturbations get enhanced toward the hilltop initial condition [41, 43].

If there is a resonant conversion of QCD axions into hidden axions, the situation is different. This is because the conversion rate depends on both \(\theta_i \) and the mass ratio \(m_H/m_a \). In figure 3, we show \(\Omega_{a, \text{total}} \) as a function of \(\theta_i \) for various values of \(m_H/m_a \). One can see that there is a plateau around \(\theta_i \approx 3 \) in the case of \(m_H/m_a = 0.03 \), where the isocurvature perturbations are expected to be significantly suppressed. In figure 4, we show the axion isocurvature perturbations normalized by the fluctuation of the misalignment angle of the QCD axion,

\[\frac{\Delta S, a}{\delta \theta_i} = \sqrt{\left(\frac{\partial \ln \Omega_{a, \text{total}}}{\partial \theta_i} \right)^2 + \left(\frac{\partial \ln \Omega_{a, \text{total}}}{\partial \theta_{H,i}} \right)^2}, \]

(3.10)

as a function of the adiabaticity parameter. This usually takes a value of order unity, and so, if it is much smaller than unity, it implies that the axion isocurvature perturbations are

4Here we have truncated higher order terms, which would be important only when the leading term is somehow suppressed. The effects of higher order terms are encoded in the non-Gaussianity of isocurvature perturbations, which we shall discuss later.

5It is possible to modify the size of the quantum fluctuations if the radial component “saxion” evolves during the last 50 or 60 e-foldings [15, 42]. A non-trivial correlation between \(\delta \theta_i \) and \(\delta \theta_H \) can be generated if some combination of the axions was very heavy during inflation (cf. [18]).

6In addition, the non-Gaussianity is enhanced in the hilltop limit. [41].

7Note that the axion abundance exceeds the observed dark matter for the adopted parameters, because \(F_a = 10^{14} \) GeV is chosen for efficient numerical calculation. The purpose of this letter is to study the effect of the resonant conversion on the isocurvature perturbations, and we leave the calculation with smaller values of \(F_a \) for future work, as the required numerical computation is more expensive. Similar suppression is expected for the case with smaller values of \(F_a \).
Figure 3. The θ_i-dependence on the density parameter of the axion CDM is shown. The vertical axis is normalized by the density parameter in the single QCD axion case with $\theta_i = 1$. We have taken $F_a = F_H = 10^{14}$ GeV, $\theta_{H,i} = -\theta_i$ and $m_H/m_a = 0.025$ (solid red), 0.03 (dashed green), 0.035 (dotted blue).

Figure 4. The normalized isocurvature perturbation of the axion CDM, $|\Delta S_{\theta_i}/\theta_i|$ (see eq. (3.10)), is shown as a function of the adiabaticity parameter defined in eq. (3.3) for several values of the initial misalignment angle θ_i. We have taken $F_a = F_H = 10^{14}$ GeV, $\theta_{H,i} = -\theta_i$ and $\theta_i = 1$ (dotted blue), 2.5 (dashed green), 3 (solid red), 2.9 (small-dotted magenta) and 2.95 (dash-dotted cyan).

suppressed by the incomplete resonant conversion. One can see from figure 4 that there is indeed a significant suppression of the isocurvature perturbations at specific values of ξ and θ_i. The detailed structure of the suppression is shown in the right panel of figure 4. There are points where isocurvature perturbations are suppressed by a factor of 10^9; in the vicinity of these points $\partial \Omega_{a,\text{total}}/\partial \theta_i$ actually vanish and its sign flips between these points. Note that, since we have added contributions of the hidden axion fluctuations in eq. (3.7), the total isocurvature perturbations do not vanish even at these points. A detailed scan of the parameters is necessarily to estimate the largest possible suppression factor in our scenario.

4 Discussion and conclusions

In this letter, we have studied the model of the QCD and hidden axions with a mass mixing and performed numerical calculations to follow the MSW-like conversion process between
them, taking account of a weak violation of non-adiabaticity as well as the anharmonic effects. To characterize the violation of the adiabaticity, we have introduced an adiabaticity parameter, ξ, defined by the ratio of the Hubble parameter to the axion mass at the resonance (see eq. (3.3)), and we have found that the resultant axion CDM abundance can be suppressed by a factor of m_H/m_a if the resonant conversion is efficient, i.e., if the adiabaticity parameter is much smaller than unity and the anharmonic effects are negligible. Furthermore, we have found that the anharmonic effect makes the resonant conversion less efficient and, most interestingly, it significantly affects the axion CDM isocurvature perturbations. We have shown that the axion CDM isocurvature perturbations can be suppressed for certain values of the parameters where the resonant conversion is incomplete. In the following we mention on the limitations and implications of the present analysis.

We have performed the calculation with the initial condition that the hidden axion direction sits at the minimum, $\theta_i + \theta_{H,i} = 0$, in order to focus on the resonant conversion from QCD axions to hidden axions. For a more general initial condition, the resonant conversion from hidden axions to QCD axions also takes place, which complicates the dynamics of axions. In fact we have calculated such cases and confirmed that the isocurvature perturbations can be similarly suppressed for a certain range of the parameters. In order to estimate the suppression factor quantitatively, we need to scan the parameter space in the $\theta_i - \theta_{H,i}$ plane. Note that m_H needs to be much smaller than m_a to suppress the axion abundance, but the commencement of the hidden axion oscillations is delayed for small m_H and the amplitude may not be damped sufficiently at the resonance. Thus, there is a limitation to the suppression and we will investigate the conditions under which the total axion CDM abundance is maximally reduced.

Throughout the letter, we have taken $F_H = F_a$ for simplicity. If we choose a smaller value of F_a with $F_a < F_H$, the QCD axion mass at the zero temperature is increased, and as a result, the total axion DM abundance will decrease as it is suppressed by a factor of m_H/m_a. On the other hand, if we choose $F_a > F_H$, the hidden axion oscillations induced by the resonant conversion of the QCD axion can climb over the cosine potential hill and roll down to the adjacent minimum, $\alpha_{H,\text{min}} = 2\pi F_H$. We have confirmed this behavior numerically. This implies that domain walls may be formed by the resonant conversion. Once domain walls are formed and if they are stable, they will dominate the Universe soon and our present Universe cannot be realized. We will also study the parameter region to avoid such a domain wall formation in the future.

So far we have considered only a Gaussian part of the isocurvature perturbations, but higher-order terms become important when the leading Gaussian part is suppressed. The constraint on non-Gaussianity of the isocurvature perturbations is characterized by the parameter, $f_{\text{NL}}^{(\text{iso})}$ and the current constraint reads [44]

$$\left(\frac{\beta}{1-\beta}\right)^2 (f_{\text{NL}}^{(\text{iso})}) = 40 \pm 66. \quad (4.1)$$

While the exact form of $f_{\text{NL}}^{(\text{iso})}$ in the multi-axion case is rather involved, it is roughly estimated as $\beta f_{\text{NL}}^{(\text{iso})} \sim \partial^2 \ln \Omega_{a,\text{total}}/\partial \theta_i^2$, $\partial^2 \ln \Omega_{a,\text{total}}/\partial \theta_{H,i}^2$. We have also checked that the non-Gaussianity of the isocurvature perturbations are not suppressed in general, even if the Gaussian part is suppressed due to the incomplete resonant conversion.\footnote{Vice versa; we observe that the non-Gaussianity can be suppressed for a certain range of the parameters, where the Gaussian part is not suppressed.} These second
derivatives are of $O(10 - 100)$ for the parameters of our interest, and the current constraints from non-Gaussianity of the isocurvature perturbation can be (marginally) satisfied. The mild enhancement of the non-Gaussianity is a necessary outcome of our scenario, because the anharmonic effect plays a crucial role in suppressing the power spectrum of the isocurvature perturbations (cf. footnote 6). It is worth studying how the resonant conversion affects non-Gaussianity, which we leave for future work.

We have focused on the resonant conversion between the QCD and hidden axions so far. In principle a similar resonant conversion could take place between two hidden axions with a mass mixing, if one of them gradually acquires a mass and there appears a cross-over of the mass eigenvalues. The isocurvature perturbations of the hidden axions can be suppressed similarly for a certain set of the parameters.

Acknowledgments
This work was supported by JSPS Grant-in-Aid for Young Scientists (B) (No. 24740135 [FT]), Scientific Research (A) (No. 26247042 [FT]), Scientific Research (B) (No. 26287039 [FT]), the Grant-in-Aid for Scientific Research on Innovative Areas (No. 23104008 [NK, FT]), and Inoue Foundation for Science [FT]. This work was also supported by World Premier International Center Initiative (WPI Program), MEXT, Japan [FT].

References
[1] R.D. Peccei and H.R. Quinn, CP conservation in the presence of instantons, Phys. Rev. Lett. 38 (1977) 1440 [inSPIRE].
[2] R.D. Peccei and H.R. Quinn, Constraints imposed by CP conservation in the presence of instantons, Phys. Rev. D 16 (1977) 1791 [inSPIRE].
[3] S. Weinberg, A new light boson?, Phys. Rev. Lett. 40 (1978) 223 [inSPIRE].
[4] F. Wilczek, Problem of strong p and t invariance in the presence of instantons, Phys. Rev. Lett. 40 (1978) 279 [inSPIRE].
[5] J.E. Kim, Light pseudoscalars, particle physics and cosmology, Phys. Rept. 150 (1987) 1 [inSPIRE].
[6] H.-Y. Cheng, The strong CP problem revisited, Phys. Rept. 158 (1988) 1 [inSPIRE].
[7] J.E. Kim and G. Carosi, Axions and the strong CP problem, Rev. Mod. Phys. 82 (2010) 557 [arXiv:0807.3126] [inSPIRE].
[8] A. Ringwald, Exploring the role of axions and other WISPs in the dark universe, Phys. Dark Univ. 1 (2012) 116 [arXiv:1210.5081] [inSPIRE].
[9] M. Kawasaki and K. Nakayama, Axions: theory and cosmological role, Ann. Rev. Nucl. Part. Sci. 63 (2013) 69 [arXiv:1301.1123] [inSPIRE].
[10] K.J. Bae, J.-H. Huh and J.E. Kim, Update of axion CDM energy, JCAP 09 (2008) 005 [arXiv:0806.0497] [inSPIRE].
[11] L. Visinelli and P. Gondolo, Dark matter axions revisited, Phys. Rev. D 80 (2009) 035024 [arXiv:0903.4377] [inSPIRE].
[12] T. Higaki, K.S. Jeong and F. Takahashi, Solving the tension between high-scale inflation and axion isocurvature perturbations, Phys. Lett. B 734 (2014) 21 [arXiv:1403.4186] [inSPIRE].

This argument is not limited to axions, but, in principle, it can be applied to coherent oscillations of any scalars.
[13] D.J.E. Marsh, D. Grin, R. Hlozek and P.G. Ferreira, *Tensor interpretation of BICEP2 results severely constrains axion dark matter*, *Phys. Rev. Lett.* **113** (2014) 011801 [*arXiv:1403.4216*] [insPIRE].

[14] L. Visinelli and P. Gondolo, *Axion cold dark matter in view of BICEP2 results*, *Phys. Rev. Lett.* **113** (2014) 011802 [*arXiv:1403.4594*] [insPIRE].

[15] A.D. Linde and D.H. Lyth, *Axionic domain wall production during inflation*, *Phys. Lett. B* **246** (1990) 353 [insPIRE].

[16] D.H. Lyth and E.D. Stewart, *Constraining the inflationary energy scale from axion cosmology*, *Phys. Lett. B* **283** (1992) 189 [insPIRE].

[17] M. Dine and A. Anisimov, *Is there a Peccei-Quinn phase transition?*, *JCAP* **07** (2005) 009 [*hep-ph/0405256*] [insPIRE].

[18] K.S. Jeong and F. Takahashi, *Suppressing isocurvature perturbations of QCD axion dark matter*, *Phys. Lett. B* **727** (2013) 448 [*arXiv:1304.8131*] [insPIRE].

[19] A.D. Linde, *Axions in inflationary cosmology*, *Phys. Lett. B* **259** (1991) 38 [insPIRE].

[20] M. Kawasaki, T.T. Yanagida and K. Yoshino, *Domain wall and isocurvature perturbation problems in axion models*, *JCAP* **11** (2013) 030 [*arXiv:1305.5338*] [insPIRE].

[21] S. Folkerts, C. Germani and J. Redondo, *Axion dark matter and Planck favor non-minimal couplings to gravity*, *Phys. Lett. B* **728** (2014) 532 [*arXiv:1304.7270*] [insPIRE].

[22] M. Fairbairn, R. Hogan and D.J.E. Marsh, *Unifying inflation and dark matter with the Peccei-Quinn field: observable axions and observable tensors*, *arXiv:1410.1752* [insPIRE].

[23] E. Masso and R. Toldra, *On a light spinless particle coupled to photons*, *Phys. Rev. D* **52** (1995) 1755 [*hep-ph/9503293*] [insPIRE].

[24] E. Masso and R. Toldra, *New constraints on a light spinless particle coupled to photons*, *Phys. Rev. D* **55** (1997) 7967 [*hep-ph/9702275*] [insPIRE].

[25] E. Masso, F. Rota and G. Zsembinszki, *Planck-scale effects on global symmetries: Cosmology of pseudo-Goldstone bosons*, *Phys. Rev. D* **70** (2004) 115009 [*hep-ph/0404289*] [insPIRE].

[26] J. Jaeckel, E. Masso, J. Redondo, A. Ringwald and F. Takahashi, *The need for purely laboratory-based axion-like particle searches*, *Phys. Rev. D* **75** (2007) 013004 [*hep-ph/0610203*] [insPIRE].

[27] D. Cadamuro and J. Redondo, *Cosmological bounds on pseudo Nambu-Goldstone bosons*, *JCAP* **02** (2012) 032 [*arXiv:1110.2895*] [insPIRE].

[28] P. Arias et al., *WISPy cold dark matter*, *JCAP* **06** (2012) 013 [*arXiv:1201.5902*] [insPIRE].

[29] M. Cicoli, M. Goodsell and A. Ringwald, *The type IIB string axiverse and its low-energy phenomenology*, *JHEP* **10** (2012) 146 [*arXiv:1206.0819*] [insPIRE].

[30] A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper and J. March-Russell, *String axiverse*, *Phys. Rev. D* **81** (2010) 123530 [*arXiv:0905.4720*] [insPIRE].

[31] B.S. Acharya, K. Bobkov and P. Kumar, *An M-theory solution to the strong CP problem and constraints on the axiverse*, *JHEP* **11** (2010) 105 [*arXiv:1004.5138*] [insPIRE].

[32] T. Higaki and F. Takahashi, *Natural and multi-natural inflation in axion landscape*, *JHEP* **07** (2014) 074 [*arXiv:1404.6923*] [insPIRE].

[33] T. Higaki and F. Takahashi, *Axion landscape and natural inflation*, *arXiv:1409.8409* [insPIRE].

[34] C.T. Hill and G.G. Ross, *Models and new phenomenological implications of a class of pseudogoldstone bosons*, *Nucl. Phys. B* **311** (1988) 253 [insPIRE].
[35] O. Wantz and E.P.S. Shellard, *Axion cosmology revisited*, *Phys. Rev. D* **82** (2010) 123508 [arXiv:0910.1066] [inspire].

[36] L. Wolfenstein, *Neutrino oscillations in matter*, *Phys. Rev. D* **17** (1978) 2369 [inspire].

[37] S.P. Mikheev and A.Y. Smirnov, *Resonance amplification of oscillations in matter and spectroscopy of solar neutrinos*, *Sov. J. Nucl. Phys.***42** (1985) 913 [Yad. Fiz. **42** (1985) 1441] [inspire].

[38] S.P. Mikheev and A.Y. Smirnov, *Resonant amplification of neutrino oscillations in matter and solar neutrino spectroscopy*, *Nuovo Cim. C***9** (1986) 17 [inspire].

[39] PLANCK collaboration, P.A.R. Ade et al., *Planck 2013 results. XVI. Cosmological parameters*, *Astron. Astrophys.***571** (2014) A16 [arXiv:1303.5076] [inspire].

[40] PLANCK collaboration, P.A.R. Ade et al., *Planck 2013 results. XXII. Constraints on inflation*, *Astron. Astrophys.***571** (2014) A22 [arXiv:1303.5082] [inspire].

[41] T. Kobayashi, R. Kurematsu and F. Takahashi, *Isocurvature constraints and anharmonic effects on QCD axion dark matter*, *JCAP***09** (2013) 032 [arXiv:1304.0922] [inspire].

[42] S. Kasuya and M. Kawasaki, *Axion isocurvature fluctuations with extremely blue spectrum*, *Phys. Rev. D***80** (2009) 023516 [arXiv:0904.3800] [inspire].

[43] D.H. Lyth, *Axions and inflation: Sitting in the vacuum*, *Phys. Rev. D***45** (1992) 3394 [inspire].

[44] C. Hikage, M. Kawasaki, T. Sekiguchi and T. Takahashi, *CMB constraint on non-Gaussianity in isocurvature perturbations*, *JCAP***07** (2013) 007 [arXiv:1211.1098] [inspire].