Real-Time Scene Text Detection Using Deblurring Technique

T. Sudheer Kumar #1, Naga Venkateshwara Rao Kollipara #2

#ECE Department, St. Martins Engineering College, Dhulapally (v), Kompally, Secunderabad-500100, Telangana State, India

1Sudheerkumarece@smec.ac.in
2Nagaece@smec.ac.in

Abstract— In this paper we present another scene text identification calculation dependent on two AI classifiers: one permits us to produce up-and-comer word areas and different sift through non text ones. To be exact, we remove associated parts (CCs) in pictures by utilizing the maximally steady outside district calculation. These separated CCs are apportioned into bunches so we can produce up-and-comer districts. Dissimilar to customary techniques depending on heuristic principles in grouping, we train an AdaBoost classifier that decides the nearness relationship and bunch CCs by utilizing their pair astute relations. At that point we standardize applicant word districts and decide if every locale contains text or not. Since the scale, slant, and shade of every applicant can be evaluated from CCs, we build up a book/non text classifier for standardized pictures. This classifier depends on multilayer perceptron's and we can control review and exactness rates with a solitary free boundary. At long last, we stretch out our way to deal with abuse multichannel data.

Keywords— AdaBoost classifier, connected components, external region algorithm, heuristic rules, single free parameter

I. INTRODUCTION

Text, as a transporter of introducing dialects, shows up at each side of the world. The captions of a film make crowd more clear the substance and can make an interpretation of the first discoursed into justifiable content. The scoreboard outlined in a live soccer match can tell the fans the exhibition of the two groups. The advanced pictures on the landing page of a site consistently demonstrate some printed data to pull in the consideration of a web surfer. The costs on a flyer bring a great thought of what will be at a bargain in a grocery store. The content on the body of an item tells the expiry date. Traffic signals give significant headings to people on foot to the reason for safety [2]. Letters and Arabic numbers on a vehicle tag gives the exceptional identification of the vehicle. Text data extraction is the wording speaking to the procedure that removes text substance from still pictures and picture groupings, and afterward transform them into machine-editable content.
used for highway toll collection and city traffic analysis. It can also be used to retrieve stolen vehicles and enforce traffic rules. Content-based text information retrieval in multimedia. Content-based multimedia information retrieval (CBMIR) refers to searching for information based on the actual contents of images or frames in video clips rather than keywords or tags. When CBMIR is applied to text information retrieval, the images having desired text information can be retrieved from database.

Film shot classification [8] Motion is a significant component in the examination of shot classification. On the off chance that text shows up in video outlines, it turns into an unsettling influence and debases the exhibition of shot classification calculations. Text data can be recognized by a TIE framework and be evacuated by picture rebuilding strategies. Robot vision: As a segment of robot's vision, capacity of perusing text data in a certifiable domain is basic to manage the activities of robot. Emotionally supportive networks for outwardly impeded individuals. Individuals with visual deficiency or visual disability can realize how to utilize the home apparatuses by falling back on a TIE framework and "read" their directions [1].

II. NATURAL SCENE TEXT DETECTION

A. Existing Methods Of Text Detection And Binarisation

In this section, the existing framework text detection and for text binarisation are discussed with emphases on basic strategies.

Since the text lines in born-digital images tend to have narrow gaps between characters, the region of a text line can be easily connected together by MGD-based clustering and morphological operations. However, for text in natural scene images, characters typically have large sizes, wide stroke width and big inter-character gaps. All of these can lead to detection failures when adopting the framework presented in the previous chapter for detecting natural scene text. In this chapter, each character is treated as an independent object and all character objects are grouped into text lines[5].
The framework of our natural scene text detection algorithm is illustrated in Figure 3. Maximally Stable External Regions (MSER) are extracted on the gray level image to generate character candidates. Both dark-on-bright MSERs and bright-on-dark MSERs are obtained due to the existence of texts with two polarities. In order to remove the character MSERs and keep the non-character MSERs simultaneously, a supervised machine learning stage uses a set of features to train a classifier for character/non-character MSER classification. In order to bring back the misclassified character MSERs, an MSER retrieval step is applied to retrieve single character MSERs and multiple character MSERs. Then, the remaining MESRs are grouped into text lines. As there are still a large amount of non-text regions, a text/non-text line classification step is performed to eliminate the false alarms. A bootstrap scheme is also utilised to enhance the capability of eliminating non-text regions. Finally, the same evaluation framework and dataset in ICDAR2011 Text Localisation Competition are used to evaluate the proposed algorithm [7].

A. PROPOSED ALGORITHM

This initial step of this algorithm is to obtain text candidates from natural scene images. The recent research on natural scene text detection shows that connected component (CC) analysis based on character strokes as an initial processing stage is an attractive solution. Epshtein performed stroke width transform on the Canny edge maps of scene images. Pixels with similar stroke width were combined together to form CCs. Yi et al. [15] proposed gradient-based partition and colour-based partition to generate CCs from scene images. In the work of Pan et al. [20], a local binarisation algorithm was applied to obtain CCs as candidate text components for further processing. The principle of the methods belonging to this category considers that every character is an individual CC and the character CCs are grouped into text lines after the non-character CCs are eliminated. An advantage of this type of method is that the character CCs are less likely to connect to the background components. By taking this advantage, the proposed algorithm belongs to this category of text detection algorithms [9].

Image I is a mapping $I : D \subset \mathbb{Z}^2 \rightarrow S$. External regions are well defined on images if S is totally ordered, i.e. Reflexive, ant symmetric and transitive binary relation exists. Only $S = \{0, 1, \ldots, 255\}$ is considered in our algorithm. Natural scene characters typically have strong contrast against background, uniform colour and hence uniform intensity. Therefore, pixels belonging to a character can be united as an MSER when they are extracted from the gray-level map. In the implementation of
MSER generation, the resultant regions can be either of two types: bright regions on dark background and dark regions on bright background. Dark-on-bright MSERs and bright-on- dark MSERs are processed separately since both of them appear in natural scene images. Some examples of MSER extraction from natural scene images are shown in Figure 4 and some extracted character MSERs and non-character MSERs are illustrated in Figure 5 and Figure 6 respectively.

After the comparison with other region detectors Maximally Stable External Regions (MSERs) detector has been acknowledged as one of the best region detectors as it is robust to view point, scale and lighting changes. An MSER is a part of the image where local binarisation is stable over a large range of thresholds [11].

Before proceeding to the next stage, the MSERs that are obviously not character MSERs are filtered out. MSERs that are too small or too high are removed as non-characters. MSERs with the height less than 10 pixels are also discarded. As only the upper and lower case Roman letters and arabic numbers are considered, the maximum number of holes of a character MSER is 2 as in “B”, “g” and “8” for examples. If an MSER has more than 2 holes, they are pruned as well. The remaining MSERs are fed into a MSER classifier trained by the features introduced in the next section for text/non-text MSER classification [12].

III. IMAGE DEBLUR

The ongoing quick promotion of computerized cameras permits individuals to catch countless advanced photos without any problem. As the quantity of easy-going picture takers increments, so does the quantity of "disappointment" photos including over/under-uncovered, loud, obscured, and unnaturally-shaded pictures. This circumstance
makes programmed shirking and revision of disappointment photos significant. Truth be told, programmed remedial elements of advanced cameras including auto-presentation, programmed white equalization, and decrease abilities consistently improve to determine introduction, shading, and commotion issues [14].

On the other hand, current digital cameras appear to handle image blur only in a limited fashion; they only directly address camera shake blur, but not defocus and motion blur. For camera shake blur, most of the recent cameras are equipped with an anti-camera shake mechanism that moves either the lens or the image sensor to compensate for camera motion obtained from an accelerometer. For defocus blur, however, although a particular scene depth can be focused with an auto-focus function, objects at different depths cannot be captured sharply at the same time (depth-of-field effects, see Fig. 7(a)). Moreover, defocused images can be commonly seen in personal photo collections due to the failure of auto-focusing. In addition, blur caused by object motion, i.e., motion blur (see Fig. 7(b)), can only be avoided by increasing the shutter speed and sensor sensitivity when a camera detects motions in a scene, at the expense of an increased noise level.

Figure 7: Examples of blurred photographs. (a) Photograph with a shallow depth-of-field, in which only the faces at the focused depth are sharply captured, and the others are subject to defocus blur. (b) Photograph containing motion-blurred fish.

A. ALGORITHM

1. The input blurred image is down-sampled to various levels.
2. At each level the gradient and histogram adjustment is done.
3. This will deblur the image at each level.
4. Finally the image is up-sampled to the original size.

To overcome the above-described situation, this dissertation proposes methods for removing defocus and motion blurs in photographs. Therefore, in addition to image processing techniques for deblurring, the proposed method includes modifications of camera optics that alter the image capture process of traditional cameras in order to achieve high frequency preservation and to facilitate blur kernel identification[15]. In this regard, this dissertation pursues low cost and compact hardware implementation, aiming at applications to consumer digital cameras. That is, small modifications to existing cameras or mechanisms that can be directly derived from existing ones will be adopted.

This dissertation focuses on a single-shot approach. That is, we try to recover an unseen sharp image given a single blurred image, and do not resort to taking multiple photographs. Although one could benefit from an increased amount of information from multiple images, images must be registered in some way, and dynamic scenes and/or hand-held image capture without a tripod can introduce additional sources of errors. Of course, one could use multiple synchronized cameras to alleviate this issue, but that is not only expensive but also an unrealistic usage scenario for casual photographers. Another option might be to use a high-speed camera to minimize motion between frames to facilitate registration, but each frame will have an increased noise level due to reduced exposure time, and the memory bandwidth required to transfer image data from the sensor to the
storage device will become large, making the obtainable image resolution small. Moreover, we would like to note that a single-shot approach and a multi-shot approach can complement each other; multi-shot approaches could benefit from improved deblurring results of the proposed single-shot methods, and vice versa. Prior to proposing camera hardware-assisted deblurring methods, we would like to set a baseline performance achievable without modifying camera optics[15]. To this end, we first explore an image deblurring method that is purely based on an image processing approach. After that, we propose defocus and motion deblurring methods with modified camera optics. Image deblurring can be formulated as the process of inverting image blurring.

IV. IMAGE PROCESSING APPROACH TO IMAGE DEBLURRING

Computerized pulling together, a procedure that produces photos centred to various profundities (good ways from a camera) after a solitary camera shot as appeared in Fig.7, is drawing in the consideration of the PC designs network and others taking into account its intriguing and helpful impacts. The method is initially founded on the light field rendering, and endeavours the way that a photo is a 2D necessary projection of a 4D light field, made this procedure down to earth with their hand-held plenoptic camera disposing of the requirement for enormous and frequently costly device, for example, a camera exhibit or a moving camera that was generally required to catch light fields. From that point forward, other novel camera structures have been rising so as to improve the goals of pictures as well as to lessen the expense of optical hardware joined to a camera.

In an attempt to perform digital refocusing without modifying camera optics, in this chapter we are interested in developing an image processing method for synthesizing refocused images from a single photograph taken with a conventional camera.

If we had a sharp, all-in-focus photograph with a depth map of the scene, it would be straightforward to create depth-of-field effects by blurring the input photograph according to the depth, as some of the existing image-editing software do (e.g., the Lens Blur filter of Adobe Photoshop CS [2]). Therefore, we must first estimate “a sharp image with a depth map” from an input photograph. In other words, we must first estimate and remove defocus blur in a photograph.

To achieve this goal, we assume that spatially-variant defocus blur in an input photograph can be locally approximated by a uniform blur, and we restore a sharp image by stitching multiple deconvolved versions of an input photograph. And we also propose a local blur estimation method applicable to irregularly-shaped image segments in order to handle abrupt blur changes at depth discontinuities due to object boundaries. To create desired refocusing effects, we present several means of determining the amount of blur to be added to a restored sharp image based on the estimated blur, by which users can change focus and depth-of-field interactively and intuitively.

A. MOTION BLUR REMOVAL

Motion blur, while being useful for depicting object motion in still images, often spoils photographs by losing image sharpness. The frequency band that can be recovered by deconvolution easily becomes narrow for fast
object motion as high frequencies are severely attenuated and virtually lost.

Follow shot, a photographing technique in which a photographer pans a camera to track an object during exposure, can capture sharp images of a moving object as if it were static. However, there are cases where follow shot is not effective: 1) when object motion is unpredictable; 2) when there are multiple objects with different motion. This is because follow shot favors particular motion that a photographer has chosen to track, as much as a static camera favors “motion” at the speed of zero (i.e., static objects): objects moving differently from favored motion degrade. That is, although no object may be photographed sharply at capture time, differently moving objects can be deconvolved with similar quality. This idea is inspired by Levin et al., who proved that constantly accelerating 1D sensor motion can render motion blur invariant to 1D linear object motion (e.g., horizontal motion), and showed that this sensor motion evenly distributes the fixed frequency “budget” to different object speeds.

We intend to extend their budgeting argument to 2D (i.e., in-plane) linear object motion by sacrificing motion-invariance. We propose to translate a camera sensor circularly about the optical axis, and we analyze the frequency characteristics of circular sensor motion in relation to linear object motion. By losing motion-invariance, we inevitably reintroduce two issues inherent to the classical motion deblurring problem, which resolved for 1D motion.

Firstly, we need to estimate a point-spread function (PSF) of motion blur as it depends on object motion. Fortunately, for a set of PSFs resulting from circular sensor motion, deconvolution by wrong PSFs causes ringing artifacts, which is not always the case for other image capture strategies. This allows us to take a simple hypothesis testing approach for PSF estimation. Secondly, we need to segment an image into regions with different motion in order for deconvolution to be applicable. This is still a challenging problem which has only been partially addressed by state-of-the-art methods (e.g., for 1D motion), and this chapter assumes user-specified motion segmentation.

V. EXPERIMENTAL RESULTS

The following are the results of the blur text detection
VI. CONCLUSION

This proposal centers around the examination and improvement of text recognition and text binarisation calculations for text in conceived computerized pictures and common scene pictures. Our techniques for text discovery and text binarisation have demonstrated the prevalence over different strategies through the trial results utilizing benchmark text identification and text binarisation datasets. Consequently, the MSERs which incorporate different contacting characters are treated as text line associated segments and the relating text lines are recovered by a book line classifier. The mix of these two content MSER recovery methodologies improves the review pace of our calculation. A bogus caution end step is performed for upgrade the identification exactness. The final identification results and the examinations with other normal scene text location techniques have outlined the great execution of the proposed calculation.

REFERENCES

[1] D. Karatzas, S. Mestre, J. Mas, F. Nourbakhsh, and P. Roy, “Tedar 2011 robust reading competition challenge 1: Reading text in born-digital images (web and email),” in International Conference on Document Analysis and Recognition (ICDAR), pp. 1485 – 1490, 2011.

[2] A. Shahab, F. Shafait, and A. Dengel, “Robust competition challenge 2: Reading text in scene images,” in International Conference on Document Analysis and Recognition (ICDAR), pp. 1491–1496, 2011.

[3] Y. Boykov and V. Kolmogorov, “An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 9, pp. 1124 – 1137, 2004.

[4] Y. Zeng, D. Samaras, W. Chen, and Q. Peng, “Topology cut: a novel min-cut/max-flow algorithm for topology preserving segmentation in n-d images,” Computer Vision and Image Understanding, vol. 112, no. 1, pp. 81 – 90, 2008.

[5] Y. Wei and C. Lin, “A robust video text detection approach using svm,” Expert Systems with Applications, vol. 39, no. 12, pp. 10832 – 10840, 2012.

[6] C. M. Thillou and B. Gosselin, “Color text extraction with selective metric-based clustering,” Computer Vision and Image Understanding, vol. 107, no. 1–2, pp. 97 – 107, 2007.

[7] Z. Zhou, L. Li, and C. L. Tan, “Edge based binarization for video text images,” in International Conference on Pattern Recognition (ICPR), pp. 133 – 136, 2010.

[8] M. Xu, J. Wang, M. Hasan, X. He, C. Xu, H. Lu, and J. Jin, “Using context saliency for movie shot classification,” in IEEE International Conference on Image Processing (ICIP), pp. 3653 – 3656, 2011.

[9] S. Wang, S. Jiang, Q. Huang, and W. Gao, “Shot classification for action movies based on motion characteristics,” in IEEE International Conference on Image Processing (ICIP), pp. 2508 – 2511, 2008.

[10] C. Lee, K. Jung, and H. Kim, “Automatic text detection and removal in video sequences,” Pattern Recognition Letters, vol. 24, no. 15, pp. 2607 – 2623, 2003.

[11] C. Yi and Y. Tian, “Localizing text in scene images by boundary clustering, stroke segmentation, and string fragment classification,” IEEE Transactions on Image Processing, vol. 2, no. 9, pp. 4256 – 4268, 2012.

[12] E. Tekin, J. Coughlan, and H. Shen, “Real-time detection and reading of led/lcd displays for visually impaired persons,” in IEEE Workshop on the Applications of Computer Vision (WACV), pp. 491 – 496, 2011.

[13] C. Shi, C. Wang, B. Xiao, Y. Zhang, and S. Gao, “Scene text detection using graph model built upon maximally stable extremal regions,” Pattern Recognition Letters, vol. 34, no. 2, pp. 107 – 116, 2013.

[14] H. Chen, S. Tsai, G. Schroth, D. Chen, R. Grzeszczuk, and B. Girod, “Robust text detection in natural images with edge-enhanced maximally stable extremal regions,” in IEEE International Conference on Image Processing (ICIP), pp. 2609 – 2612, 2011.

[15] C. Yi and Y. Tian, “Text string detection from natural scenes by structure-based partition and grouping,” IEEE Transactions on Image Processing, vol. 20, no. 9, pp. 2594 – 2605, 2011.