238. Direct identification of Bacterial Species with MinION Nanopore Sequencer In Clinical Specimens Suspected of Polybacterial Infection

Kang Il Jun, MD1; Jangsup Moon, MD2; Taek Soo Kim, MD3; Chang Kyung Kang, MD4; Song Mi Moon, MD, PhD; Kyung-Ho Song, MD, PhD5; Pysung Gyun Choe, MD2; B Hwe Kang, MD, PhD1; Song Jang Park, MD, PhD; Eui Suk Kim, MD, PhD; Nam-Joong Kim, MD, PhD6; Myoung-don Oh, MD, PhD7; Kon Chu, MD, PhD8 and Wan Beom Park, MD, PhD9; 1Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea, Seoul; 2Seoul-tukpyolsi, Republic of Korea; 3Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea; 4Seattle Children’s Hospital, Seattle, Washington, USA; 5Seoul-tukpyolsi, Republic of Korea

Session: 39. Diagnostics: Sequencing and Typing

Thursday, October 3, 2019: 12:15 PM

Background. Conventional culture tests usually identify only a few bacterial species, which can grow well in the culture system, in the cases of polybacterial infection. 16s rRNA gene nanopore sequencing enables semi-quantitative identification of bacterial genetic materials. We aimed to evaluate usefulness of 16s rRNA gene nanopore sequencing in the cases suspected of polybacterial infection.

Methods. The research was conducted in a single university hospital for one year. Conventional bacterial culture identification and nanopore sequencing of 16s rRNA genes were carried out simultaneously for cases where polybacterial infection is strongly suspected. Blood agar plate was used for conventional culture, and Microscan (Beckman Coulter, United States) and Vitek 2 (BioMerieux, FR) automated systems were used for identification. For nanopore sequencing, 16s rRNA gene PCR was performed from the clinical specimens, and sequencing libraries were generated from the PCR products using the rapid barcoding sequencing kit (Oxford nanopore technologies, UK). MinION sequencing was performed for 1-3 hours and the reads were analyzed using the EPI2ME 16S BLAST workflow.

Results. Specimens were obtained from 15 patients; 6 liver abscess, 2 psoas abscess, 2 thigh abscess, 1 paraspinal abscess, 1 myotic aneurysm, 1 necrotizing fasciitis, 1 finger gangrene and 1 abscess in coccyx area. 16s rRNA gene nanopore sequencing showed monobacterial organism in 8 (53.3%) specimens and polybacterial organisms in 7 (46.6%) specimens. In three (37.5%) cases of 8 cases with monobacterial infections identified by 16s rRNA gene sequencing, no organism was grown in conventional culture, possibly due to previous antibiotic administrations. In 8 cases of 16s rRNA gene nanopore sequencing testing, 16s rRNA gene PCR was performed from the clinical specimens, and sequencing libraries were generated from the PCR products using the rapid barcoding sequencing kit (Oxford nanopore technologies, UK). MinION sequencing was performed for 1-3 hours and the reads were analyzed using the EPI2ME 16S BLAST workflow.

Conclusion. Nanopore sequencing of 16s rRNA gene using the MinION sequencer may be useful for identification of causing microorganism and differentiation between monobacterial and polybacterial infection when polybacterial infection is suspected.

Disclosures. All authors: No reported disclosures.

239. Epidemiologic Analysis of a Worldwide Collection of Escherichia coli ST131 Using the 1928D Core Genome (cgMLST) Sequence Type (MLST) Reveals Country Specific and Globally Disseminated Clades

Litalgaituri M. Deshpande, PhD1; Andrew R. Davis, BS2; F. Fredrik Dyrke1; Dimitrios Amellos1 and Mariana Canasta, PhD1; 1JMI Laboratories, North Liberty, Iowa; 21928 Diagnostic, Gotteborg, Hallands lan, Sweden

Session: 39. Diagnostics: Sequencing and Typing

Thursday, October 3, 2019: 12:15 PM

Background. Increasing antimicrobial resistance (R) among Escherichia coli (EC) isolates can be associated with the expansion of the pandemic sequence type (ST) 131 that harbors virulence factors and causes more severe infections when compared with other antimicrobial-R EC. We evaluated the core genome MLST (cgMLST) profiles and R genes using the bioinformatics tool 1928D to evaluate the epidemiology of a global ST131 EC collection and unrelated STs.

Methods. A total of 259 EC clinical isolates belonging to ST131 (n = 206), ST131- single loci variant (SLV; n = 25), and 28 non-ST131 isolates collected from 27 countries during 2016-2018 were selected. Whole-genome sequencing FASTQ files were uploaded to the 1928D pipeline to generate MLST, cgMLST and R gene prediction. cgMLST assignment was based on comparing 2,500 genes.

Results. Among 231 ST131 and SLV EC isolates, 7 clades were identified (3 major [178 isolates]; Table) applying cgMLST allele distance (adj) of ≤50 as a cutoff. A total of 21 isolates were not assigned to clades (>50 adj from ST131 and SLV). R profiles showed 95% concordance, 11 alleles differentiated clades II and III from clade I, while 6 alleles separated clades I and III from clade II. Isolates in clade I to IV were ciprofloxacin (MIC >2 mg/L), clades I and III predominantly carried blea(6acr,ib-cr) (39/43 and 61/66), blea(48cr) (35/43 and 43/66), and and aac(6')-Ib-cr (39/43, 45/66) while clade II carried blea(6acr,ib-cr,lik and rarely aac(3')-Ib-cr (3/69). The most ad between the 7 ST131 clades was 216, while unrelated STs showed variable ad among isolates within that ST. Isolates belonging to ST131 were closely related genetically (adj of 30), but other STs had more variability among isolates within each ST. Isolates belonging to ST1193 were closely related genetically (adj of 30), but other STs had more variability among isolates within each ST.

Conclusion. 1928D is a robust platform for epidemiological analysis of isolates, providing additional granularity when compared with MLST. Clades I and III were closely related, but carried different blea(6acr,ib-cr) genes, while clades I and III were not as closely related, but both carried blea(48cr,ib-cr,like and aac(6')-Ib-cr. These findings suggest that these clades might have acquired R genes at different points in their genetic evolution. A threshold of ≤50 (cgMLST distance) was useful for classifying isolates into clades.

Disclosures. All authors: No reported disclosures.

240. The Clinical Utility of Molecular Testing in the Diagnosis and Management of Infectious Diseases: Plasma-based Next-Generation Sequencing (PNGS) for Virulence Factor and Pathogen Profiling

Jim H. Nomura, MD and Towsen Tsai, MD; Southern California Permanente Medical Group, Los Angeles, California

Session: 39. Diagnostics: Sequencing and Typing

Thursday, October 3, 2019: 12:15 PM

Background. Molecular diagnostic tests can provide microbiologic results rapidly and with greater sensitivity than traditional methods. However, these tests come with considerable costs, so thoughtful diagnostic stewardship is essential to ensure that resources and outcomes are optimized. We sought to evaluate the impact of PNGS testing on patient management.

Methods. From February 2017 to January 2019, physicians in our group ordered 164 PNGS tests (Karius, Redwood City CA) on 125 patients. A retrospective chart review was performed to determine the clinical indication and utility of the test.

Results. The assay failure rate was 4.9% (9/184). Positive (pos) results were noted in 34% (53/156), of which 23 (43.4%) represented false pos results; 28 were true pos (52.8%) but 2 were unnecessary (also had pos blood cultures). The most common reason for testing was to assess for Mycobacterium chimaera (Mc) infection, found in 94 of 156 (60.3%) tests. Of the 21 patients with known Mc, only 10/21 had pos initial tests (47.6%); if patients with Mc localized to the sternum were excluded (8 patients), 76.9% with deep organ involvement had pos initial tests. Five patients with deep Mc infection had persistently pos results while on therapy; 4 of these had not had surgery; 1 was 6 months s/p valve replacement for Mc. The next most common indication was to r/o endocarditis in 18/156 (11.5%) and had an impact in 8/18 (44.4%), including 4 patients whose PNGS results led to a likely pathogen in culture negative endocarditis (CNE). Of the 62 tests done for non-Mc patients, 33.9% (2/6) were useful for management decisions. Among patients who eventually had a diagnosis made but had negative PNGS results included patients with Whipple’s (1), CNS infection (2), and fungal infections (5).

Conclusion. Overall, only 17.9% (28/165) of tests yielded true pos results. The most common reason was to evaluate for Mc infection. PNGS did not detect Mc in patients with proven local disease and was pos in >75% with deep/disseminated disease. However, a negative result did not exclude significant Mc infection. Repeat testing can be considered if clinical suspicion is high but should not be done before standard blood cultures are negative. While more than 60% of the non-Mc tests were not clinically useful, there was modest added utility where infection is high on the differential especially patients with CNE.

Disclosures. All authors: No reported disclosures.

241. Molecular patterns of Streptococcus agalactiae (GBS) Strains Associated with Different Clinical Syndromes: Early-Onset Disease in Neonates, Intrauterine Infection, and Vaginal Colonization, an Orthodox Jewish Community (OJC)

Residing in Bney Brak

Yuha Shindler, MsC1; Galia Rahav, MD2; Lira Madar-Shapiro, MsC3; Julia Atibalob, MsC1; Moti Raviv, MD4; and Yamin Maor, MD5; 1Maayan Hayehsha Medical Center and Tel Aviv University, Bney Brak, Tel Aviv, Israel; 2Sheba Medical Center and Tel Aviv University, Ramat Gan, HaMerka, Israel; 3Maayan Hayehsha Medical Center, Bney Brak, HaMerka, Israel; 4Ya‘ayan Hayehsha Medical Center and Tel Aviv University, Bney Brak, HaMerka, Israel; 5Wolfson Medical Center and Tel Aviv University, Holon, HaMerka, Israel

Session: 39. Diagnostics: Sequencing and Typing

Thursday, October 3, 2019: 12:15 PM

Background. Rectovaginal colonization during pregnancy with Group B Streptococcus (GBS) is a risk factor for early neonatal sepsis, and may also cause chorioamnionitis and fetal death. In Israel, the reported colonization rate in pregnant women is low, and therefore routine screening of pregnant women for GBS colonization is not recommended. We noticed higher rates of early-onset disease (EOD) due to GBS in newborns of women hospitalized in Maayan Hayehsha Medical Center, which serves an Orthodox Jewish Community (OJC) in Israel. Therefore, our aim was to...
investigate molecular patterns of GBS strains from mothers and neonates hospitalized in Maayaney Hayeshua.

Methods. During 2017, GBS isolates were collected from asymptomatic pregnant women (280/1,074), neonates with EOD (n = 7), and intrauterine fetal death remains (IUFD) (n = 7). We serotyped isolates from vaginal carriage (n = 203), EOD (n = 7), IUFD (n = 7) and EOD isolates obtained from the Ministry of Health (n = 11). Multilocus sequence typing (MLST) was performed on isolates from asymptomatic pregnant women (n = 14), EOD (n = 7) and IUFD (n = 7). Antibiotic susceptibilities were determined.

Results. GBS carriage rate was 26.1%. In asymptomatic pregnant women the dominant serotype was VI [84 women (41.3%)], followed by III, IV and V in 32 (15.7%), 23 (11.3%) and 21 (10.3%) women, respectively. The dominant serotype in EOD was III [15/18 (83.3%)] and in IUFD VI [5 (71.4%)]. ST-17 was expressed mainly by serotype III, and was associated with EOD. ST-1, expressed mainly by serotype VI, was associated with IUFD. See Tables 1 and 2 and Figure 1. Resistance to erythromycin and clindamycin was 19.3% and 18.2% while resistance in invasive isolates was 45.5% to both antibiotics.

Conclusion. GBS vaginal colonization rate in an OUC was significantly higher than the reported carriage rate of 21.6% reported in Israeli pregnant women. Serotypes VI was dominant in carriage and in cases of IUFD while EOD was exclusively associated with serotype III. Resistance rates to erythromycin and clindamycin were high, particularly in invasive disease. These results advocate routine GBS screening in this population and caution against empirical treatment with macrolides or clindamycin in penicillin-allergic women.

Figure 1. Serotype distribution among GBS isolates

Table 1. Characteristics of GBS isolates according to ST and serotype

Table 2. Correlation between ST types and clinical state

Disclosures. All authors: No reported disclosures.

242. Comprehensive Pathogen Detection for Pediatric Febrile Neutropenia by Metagenomic Next-Generation Sequencing

Kazuhito Horiba, MD, PhD; Yuka Torii, MD, PhD; Yuichi Harada, PhD; Mayuko Shimada; Takako Suzuki, MD; Suguru Takeuchi, MD; Toshihiko Okumura, MD; Jun-ichi Kawada, MD, PhD; Hideki Muramatsu, MD, PhD; Yoshiyuki Takashishi, MD, PhD; Tomoo Ogi, PhD and Yoshimi Ito, MD, PhD;

1Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Aichi, Japan; 2Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; 3Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan

Session: 39. Diagnostics: Sequencing and Typing

Background. Febrile neutropenia (FN) is a common complication in patients with solid tumors and hematologic malignancies. Identification of the causative microorganisms would contribute to optimization of antimicrobial treatment and thus improve the outcome of FN. However, causative microorganisms are detected in only 10% to 20% of FN patients. Next-generation sequencing (NGS) allows us to comprehensively analyze all microorganisms present in a clinical sample. In this study, we aimed to utilize NGS for the detection of microbial pathogens in infectious diseases and elucidate the infection source in FN.

Methods. FN is defined by two characteristics: (1) neutrophils count < 500/µL, and (2) fever ≥38.0°C. From 2016 to 2018, 112 plasma/serum samples of pediatric FN patients (11 positive blood cultures) were analyzed. Serum samples from 10 neutropenic patients without fever were also analyzed as controls. Shotgun sequencing method was applied for these samples. The metagenomic analyses were performed through the pipeline PATHDET, which has been newly established in our laboratory. Diagnosis based on NGS results was made based on the following criteria: (1) number of reads from all pathogens per million reads (PR) >650, (2) a specific pathogen's reads per million reads (RPM) >200, and (3) diversity index >3.0. The NGS results were compared with those from blood culture.

Results. Sequencing reads of bacteria isolated through blood culture were identified at the family level. 25 cases (e.g., *Acinetobacter* sp.) were identified at the species level. In addition, 7 cases (e.g., *Acinetobacter* sp.) were identified at the genus level, and 5 cases (e.g., *Enterobacteriaceae*), were identified at the family level.

Conclusion. Metagenomic NGS technique has great potential for detecting causative pathogens with greater efficiency than the conventional methods.

Disclosures. All authors: No reported disclosures.