Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Background: Selection, outcome and publication biases are well described in case reports and case series but may be less of a problem early in the appearance of a new disease when all cases might appear to be worth publishing.

Objective: To use a prospectively collected database of primary sources to compare the reporting of COVID-19 in pregnancy in case reports, case series and in registries over the first 8 months of the pandemic.

Study design: MEDLINE, Embase and Maternity and Infant Care databases were searched from 22 March to 5 November 2020, to create a curated list of primary sources. Duplicate reports were excluded. Case reports, case series and registry studies of pregnant women with confirmed COVID-19, where neonatal outcomes were reported, were selected and data extracted on neonatal infection status, neonatal death, neonatal intensive care unit admission, preterm birth, stillbirth, maternal critical care unit admission and maternal death.

Results: 149 studies comprising 41,658 mothers and 8,854 neonates were included. All complications were more common in case reports, and in retrospective series compared with presumably prospective registry studies. Extensive overlap is likely in registry studies, with cases from seven countries reported by multiple registries. The UK Obstetric Surveillance System was the only registry to explicitly report identification and removal of duplicate cases, although five other registries reported collection of patient identifiable data which would facilitate identification of duplicates.

Conclusions: Since it is likely that registries provide the least biased estimates, the higher rates seen in the other two study designs are probably due to selection or publication bias. However even some registry studies include self- or doctor-reported cases, so might be biased, and we could not completely exclude overlap of cases in some registries.
Introduction

Primary sources such as case registries, case series and case reports, provided early data regarding the impact of SARS-CoV-2 infection in pregnancy. The influence of publication bias, selection bias and reporting bias is likely to differ between these data sources; it is anticipated that conventional case reports and series are more influenced by bias than data from registry studies. These data sources are more commonly retrospective in nature predisposing them to recall bias, information bias and greater subjectivity [1] and authors have greater autonomy regarding selection of cases to report resulting in significant reporting bias (Table 1).

Although registry studies are often considered to be the ‘gold standard’, potential for bias exists if no efforts are made to disambiguate data. This results in publication of overlapping and duplicated cases amplifying certain outcomes.

Early in the COVID-19 pandemic most publications were case reports or small case series documenting information from either a single or a limited number of cases. The outcomes of these pregnancies varied with some of the papers reporting severe cases of SARS-CoV-2 infection. This uncertainty influenced obstetricians to employ measures such as mother-baby isolation, caesarean birth and formula or expressed milk feeding. Later studies suggested that these practices were not necessary due to low rates of vertical transmission [2].

By assessing the extent to which outcomes reported by data sources differ and the degree of overlap and duplicated studies in registry studies, more informed clinical decisions can be made.

A secondary aim is to investigate the extent to which registries have endeavoured to avoid duplication and overlap of cases.

Methods

A systematic review written in accordance with the guidelines set out by PRISMA 2009 [3]. It used the same methods as Walker et al [2] summarised below. No ethics approvals were required. The study followed a protocol, but the protocol was not registered.

Case reports, case series or registry data, of pregnant women with confirmed COVID-19 infection based on a positive swab, or high clinical suspicion were eligible for inclusion. No restriction was applied on language.

A curated list of all scientific reports of COVID-19 in pregnancy since 22 March 2020, was created, based on a daily PubMed search (Appendix A) supplemented by alerts from colleagues on social media. After 8 April 2020 this was supplemented by formal weekly searches by KO and KW. The search was conducted from 8 April 2020 to 5 November 2020 through the following electronic bibliographic databases (Medline, Embase and Maternity and Infant Care Database) and citation tracking on relevant studies. The search terms were based on MeSH terms.

‘Titles and abstracts were assessed for inclusion by two reviewers (KFW, KO), and if there was a disagreement the full text was obtained. Disagreements were resolved by discussion, and if agreement could not be reached the study was independently assessed by a third reviewer (JGT).’

Data for the first 170 reports was extracted independently by two authors (KFW, KO), data for the subsequent reports was extracted independently by two authors for each study, by a team of three (YK, JS and EY).

A registry was defined as a study which aimed to report every case in a defined geographical area, a case report as a report of a single case and a case series as more than one case but not every case in a defined geographical area.

The following data were collected: number of children, number of deliveries, number of ongoing pregnancies, infection status of mother and neonate, gestational age at delivery, maternal death, maternal critical care unit admission, NICU admission, stillbirth, neonatal death and study type classification. For registries with multiple data updates we used the last update prior to 5 November 2020.

To minimise differences due to different health care systems we excluded case reports and case series from countries (Dominican Republic, Israel, Turkey, Portugal, Australia, Canada, Peru, Iran, Japan, Morocco, Denmark, The West Indies, Jordan, Nigeria, Sri Lanka, Norway, Saudi Arabia, Oman, Estonia, the Republic of Ireland and India) in which at the time there was no registry. We also excluded case series, case reports and registries with no data on pregnancy outcomes. For this reason, 10 registries [7–16] were not included in the comparison of adverse outcomes between different data sources and 57 case series and 10 case reports were excluded from the study as shown in Fig. C.1.

Table 1

Study Type Classification	Number of Studies Identified	Study References
Registry	21	[7–29]
Borderline Registry/ Case Series	3	[30–32]
Case Series	74	[33–106]
Case Reports	47	[107–153]

Table 2

Study Type Classification	No. of studies (N)	Neonates (N)	Infected Neonates (%)	Stillbirth and Neonatal Death N (%)	Neonatal Intensive Care Unit Admission N (%)	Preterm Birth N (%)	Pregnant Women (ongoing pregnancy and delivered) (N)	Maternal Death N (%)	Maternal Critical Care Unit Admission N (%)
Registry	12	6396	85, (1.3)	57, (0.89)	506, (7.9)	823, (13)	33844	43, (0.13)	365, (1.1)
Case Series	74	2141	38, (1.8)	26, (1.2)	338, (16)	289, (13)	2840	6, (0.21)	168, (5.9)
Case Report	47	49*	6, (12)	2, (4.1)	25, (51)	24, (49)	47	1, (2.1)	19, (39)
We explored the extent of overlap between registries where multiple registries reported cases in the same country. Authors classified studies as retrospective or prospective based on the description of each study author, but the methodology section of each paper was checked to make sure the author's description fit with the described study design as per the protocol, and disagreements were resolved with a third author (JGT). Registry methodologies were studied for details of any efforts to identify and remove duplicated cases. Where there was available data we also calculated percentages of total cases identified as duplicates.

Results

Full texts for three studies could not be accessed and were excluded. The study flow chart is shown in Fig. C.1.

Main Findings

The rates of major adverse outcomes estimated from the three study designs is shown in Table 2. In comparison to registry studies and case series, case reports documented the highest incidence of adverse outcomes for all outcomes investigated.

The rates in prospective and retrospective studies are shown in Tables 3 and 4. Retrospective studies reported higher incidences than prospective studies for all six severe outcomes. For two registries (GROG [25] and National Health Commission of China [31]) it could not be determined if they were prospective or retrospective in nature and so these were not included in this comparison.

We found that extensive overlap is likely to be prominent in registry study data. Cases from seven countries were reported by multiple registries, (UK, US, France, Brazil, Spain, Italy, Sweden) with at least five registries reporting cases from the US. However, the extent of the overlap cannot be determined without further information regarding details of cases and the hospitals in which they were reported.

The only registry which made explicit reference to removal of duplicates was the British registry UKOSS [26]. However CDC (US) [28,29], PRIORITY (US) [17,24], Obs COVID Registry (Spain) [20], seNeo (Spain) [23] and ltOSS (Italy) [18] reported the collection of identifiable patient data which would facilitate identification of duplicate cases.

Discussion

Main Findings

Right from the start of the COVID-19 pandemic reported rates of adverse outcomes were higher in case reports than case series which themselves were higher than in registries. The former two study designs overestimate complication rates. Although they tend to provide the most data in the early stages, they should be interpreted with caution owing to this bias.

There are several reasons for the differences we observed. The choice to report a certain case or collection of cases with no predefined method for participant selection leads to a selection effect such that the resultant study population is unrepresentative of the population. Authors may choose to report incomplete data, leading to an outcome selection effect and a misleading representation of reality. Finally journal editors are incentivised to publish papers describing ‘interesting’ or severe outcomes, so called publication bias.

Nevertheless case reports contribute valuable information to medical knowledge, highlight potential areas of research and can
help guide clinicians in novel situations where little is known about effects and course of a disease [4].

We also identified many overlapping cases in all types of study, which complicates epidemiological study of this disease. This problem merits further study.

Strengths of the review

Data collection for this study was carried out by five independent reviewers, KFW, KO, JS, YK and EY and was initiated prior to the commencement of this project. The curated dataset (appendix B or https://ripe-tomato.org/2020/05/15/covid-19-in-pregnancy-101-onwards/) which our group continue to update, remains the only publicly available such resource.

Weaknesses of the review

We could not access three potentially eligible papers. Case series and case reports from countries in which registries were not established, and studies with insufficient data on neonatal outcomes were also excluded. Our combining of rates of adverse outcomes was mathematically crude, and we ignored the possibility of "The Simpson's Paradox," [5]. Some of the data used in analysis may have been outdated given that registries published reports at different times throughout the pandemic. Finally, a certain degree of ambiguity exists with regard to the classification of a registry. For the purpose of this study, a registry report has been defined as a paper which aimed to report every case in a defined geographical area resulting in the classification of 21 studies as registries. However, it could be argued that another classification of data source should have been included in this study to recognise the distinction between registries set up to report cases of COVID-19 in pregnancies and pre-existing surveillance systems. UKOSS (UK), CDC (US) and NethOSS (Netherlands) are examples of registries that could be classified under this category. Further differences in severity of outcomes and the influence of bias may have been detected had this distinction been made.

Comparison to other studies

Our findings confirm many previous studies in other disease setting [6]. However we are the first group to demonstrate this bias so early in the epidemiology of a new disease like COVID-19.

Conclusions

Implications for Clinical Practice

Clinicians resorting to case reports or cases series even early in a disease should recognise that such study designs overestimate severity.

Implications for Future Research

Further study of the phenomenon of duplicate reporting is needed. Inclusion of news releases in comparison of data sources would also be an interesting line of study. Although professionals rely on scientific papers for information, the opinion of the general public is most often guided by the media. The abundance and accessibility of information can present new challenges for medicine, particularly if the media presents biased and unjustifiably severe cases to the public.
Acknowledgements

Thank you to Professor Jim Thornton for all of his work in curating the list of all scientific reports of COVID-19 in pregnancy and to Dr Kate Walker and Dr Keelin O’Donoghue for their work towards the systematic review upon which this study was premised (2). Thank you to Joel Stewart, Yasmin King and Oleia Green for their contribution to data collection for this review.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ejogrb.2021.12.002.

References

[1] Nissen T, Wynn R. The clinical case report: a review of its merits and limitations. BMC Res Notes 2014;7:264.
[2] Walker KR, O’Donoghue K, Grace N, Dorling J, Comeau JL, Li W, et al. Maternal transmission of SARS-COV-2 to the neonate, and possible routes for transmission: a systematic review and critical analysis. BJOG 2020.
[3] Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009;339.
[4] Albrecht J, Meves A, Bigby M. Case reports and case series from Lancet had to influence the work reported in this paper. [38x630]for contribution to data collection for this review.
[5] Brandt JS, Hill J, Reddy A, Schuster M, Patrick HS, Rosen T, et al. Epidemiology of COVID-19 World Association of Perinatal Medicine Working Group. Maternal and Perinatal Outcomes of Pregnant Women with SARS-COV-2 infection. Ultrasound Obstet Gynecol. 2020.
[6] Bartleby MJ, Whitaker M, Ailoran A, Chai SJ, Kirley PD, Alden N, et al. Characteristics and Maternal and Birth Outcomes of Hospitalized Pregnant Women with Laboratory-Confirmed COVID-19 - COVID-19, 13 States, March 1-August 22, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(38):1347–54.
[7] Nasr M, Mascio D. COVID-19 World Association of Perinatal Medicine Working Group. Maternal and Perinatal Outcomes of Pregnant Women with SARS-COV-2 infection. Ultrasound Obstet Gynecol. 2020.
[8] Fernández Colomer B, Sánchez-Luna M, de Alba Romero C, Alarcón A, Balla Souto A, Camba Longueira F, et al. Neonatal Infection Due to SARS-COV-2: An Epidemiological Study in Spain. Front Pediatr. 2020;8.
[9] Flaherman VJ, Afshar Y, Boscardin J, Keller RL, Mardy A, Prah MK, et al. Infant Outcomes Following Maternal Infection with SARS-COV-2: First Report from the PRIORITY Study. Clin Infect Dis 2020.
[10] Kayem G, Lecarpentier E, Deruelle P, Azria E, Blanche P, et al. A snapshot of the Covid-19 pandemic among pregnant women in France. J Gynecol Obstet Hum Reprod. 2020;49(7).
[11] Knight M, Bunch K, Vosden N, Morris E, Simpson N, Gale C, et al. Characteristics and outcomes of pregnant women admitted to hospital confirmed SARS-COV-2 infection in UK: national population based cohort study. BMJ 2020;371.
[12] Moleiro E, Astley CM, Ma W, Sudre CH, Magee LA, Murray B, et al. SARS-COV-2 (COVID-19) infection in pregnant women: characterization of symptoms and syndromes predictive of disease and severity through real-time, remote participatory epidemiology. medRxiv. 2020.
[13] Woodworth KR, Olsen EO, Neelam V, Lewis EL, Galan GR, Oduyojo T, et al. Birth and Infant Outcomes Following Laboratory-Confirmed SARS-COV-2 Infection in Pregnancy - SET-NET, 16 Jurisdictions, March 29-October 14, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(44):1635–40.
[14] Zambrano LD, Ellington S, Strid P, Galan GR, Oduyojo T, Tong VT, et al. Update: Characteristics of Symptomatic Women of Reproductive Age with Laboratory-Confirmed SARS-COV-2 Infection by Pregnancy Status - United States, January 22-October 3, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(44):1641–7.
[15] Ayed A, Embareeg A, Benawadth A, Al-Fouzan W, Hammod M, Alhathal M, et al. Maternal and perinatal characteristics and outcomes of pregnancies complicated with COVID-19 in Kuwait. 2020.
[16] Chen L, Li Q, Zheng D, Jiang H, Wei Y, Zou L, et al. Clinical Characteristics of Pregnant Women with Covid-19 in Wuhan, China. N Engl J Med 2020;382. 25.
[17] Ribeiro N, Sackoveno J, Brismar Wendel S, Brussell Gielde S, Granner S, Jones E, et al. Characteristics and short-term obstetric outcomes in a case series of 67 women test-positive for SARS-COV-2 in Stockholm. Sweden. Acta Obstet Gynecol Scand 2020;99(12):1626–31.
[18] Afshar Y, Gaw SL, Flaherman VJ, Chambers BD, Krakow D, Berghella V, et al. Clinical Presentation of Coronavirus Disease 2019 (COVID-19) in Pregnant and Recently Pregnant People. Obstet Gynecol 2020;136(6):1117–25.
[19] Maraschini A, Corsi E, Salvatore MA, Donati S, Coronavirus and birth in Italy: results of a national population-based cohort study - IOSS COVID-19 Working Group. Ann Ist Super Sanita 2020;56(3):378–82.
[20]European Journal of Obstetrics & Gynecology and Reproductive Biology 268 (2022) 135–142
[21]update registrierung COVID-19 positiver zwangeren in nethOSS: Nederlandse Vereniging voor obsterie & Cynaecologie; 2020 [Available from: https://www.nvog.nl/actueel/registrieratie-van-covid-19-positieve-zwangeren-in-nethOSS/].
[22] Perez OM, et al. The association between COVID-19 and preterm delivery: A cohort study with a multivariate analysis - Spanish Obstetric Emergency Group; 2020.
[23] Afshar Y, Gaw SL, Flaherman VJ, Chambers BD, Krakow D, Berghella V, et al. Clinical Presentation of Coronavirus Disease 2019 (COVID-19) in Pregnant and Recently Pregnant People. Obstet Gynecol 2020;136(6):1117–25.
Chen S, Huang B, Luo DJ, Chen Y, Mu Y, Liu C, et al. Pregnancy with new coronavirus infection: clinical characteristics and placental pathological analysis of the first case in Beijing. Xinhua. 2020;4(5):418–23.

Chen S, Liao E, Cao D, Gao Y, Sun C, Zeng Y. Clinical analysis of pregnancy women with 2019 novel coronavirus pneumonia. J Med Virol. 2020;.

Chen Y, Bai J. Maternal and infant outcomes of full-term pregnancy combined with COVID-19 in Wuhan, China: retrospective case series. Arch Gynecol Obstet. 2020;302(3):545–51.

Chen Y, Peng H, Wang L, Zhao Y, Zeng L, Gao H, et al. Infants Born to Mothers With a New Coronavirus (COVID-19). Front Pediatr. 2020;8:104.

Cui B, Salve A, Bernal-Del Amo M, Jerse S, Short WH, Ninovska SK, Levine LD, et al. Pregnancy outcomes in a high-risk obstetrical population of the South Bronx, New York. Am J Obstet Gynecol MFM. 2020;2(4).

Doudi E, Albañay A, Alfraji N, Mazzuhi U, Costanzo E. Successful Maternal and Fetal Outcomes in COVID-19 Pregnant Women: An Institutional Approach. Am J Case Rep. 2020;21.

Douglas KM, Strobelt KM, Richley M, Mok T, de St Maurice A, Fajardo V, et al. Outcomes of Neonates Born to Mothers With Severe Acute Respiratory Syndrome Coronavirus 2 infection at a Large Medical Center in New York City. J Matern Fetal Neonatal Med. 2020;.

Easter SR, Gupta S, Brenner SK, Leaf DE. Outcomes of Critically Ill Pregnant Women With COVID-19 in the United States. Am J Obstet Gynecol. 2020;.

Emeruwa UN, Spiegelman J, Ona S, Khare K, Miller RS, Fuchs KM, et al. Influence of Race and Ethnicity on Severe Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection Rates and Clinical Outcomes in Pregnancy. Obstet Gynecol. 2020;136(5):1040–3.

Fan C, Lei D, Fang C, Li C, Wang M, Liu Y, et al. Perinatal Transmission of SARS-CoV-2: Should We Worry? Clin Infect Dis 2020;

Fenizia C, Biasin M, Cetin I, Vergani P, Mileto D, Spinelli A, et al. Analysis of SARS-CoV-2 vertical transmission during pregnancy. Nat Commun. 2020;11(1):5128.

Ferriazi E, Frigerio L, Savasi V, Vergani P, Prefumo F, Barresi S, et al. Vaginal delivery in SARS-CoV-2-infected pregnant women in Northern Italy: a retrospective analysis. BJOG. 2020;127(9):1116–21.

Ferriazi EM, Frigerio L, Iacoviello G, Vesan C, Vergani P, Spinello A, Prefumo F, et al. COVID-19 Obstetrics Task Force, Lombardy, Italy: executive management summary and short report of outcome. Int J Gynaecol Obstet 2020;149(3):377–8.

Figueras F, Llurba E, Martínez-Portilla R, Mora J, Crispi F, Gratacos E. COVID-19 causing HELLP-like syndrome in pregnancy and role of angionic factors for differential diagnosis. 2020.

Gao X, Wang S, Zeng W, Chen S, Wu J, Lin X, et al. Clinical and immunologic features among COVID-19-infected mother-infant pairs: antibodies to SARS-CoV-2 detected in maternal milk. Obstet Gynecol. 2020;37.

Goldshtrrom N, Vargas D, Vasquez A, Kim F, Desai K, Turner ME, et al. Detection of severe acute respiratory syndrome coronavirus 2 in placental histopathology: a series of 19 placentas from COVID-19-positive patients. Zhonghua Bing Li Xue Za Zhi. 2020;49(5):418–23.

Hascoët JM, Jellimann JM, Hartard C, Wittwer A, Jeulin H, Franck P, et al. Reflex testing for differential diagnosis; 2020.

Heafl-Callan AM, Martens A, Mortensen PA, et al. Fetal deaths in pregnancies with SARS-CoV-2 infection. Rev Inst Med Trop Sao Paulo. 2020;62(12):1066–9.

Heeft J, Quade B, Deshpande V, Mino-Kenudson M, Ting DT, Desai N, et al. SARS-CoV-2 can infect the placenta and is not associated with specific placental histopathology: a series of 19 placenta from COVID-19-positive mothers. Mod Pathol. 2020;33(11):2092–103.

Hirshberg A, Kers-Goldberger AR, Levine LD, Pierce-Williams R, Short WR, Panz P, et al. Care of critically ill pregnant patients with coronavirus disease 2019: a case series. Am J Obstet Gynecol. 2020;223(2):286–90.

Igbinosa I, Miller S, Bianco K, Nelson J, Kappagoda S, Blackburn BC, et al. Use of remdesivir for pregnant patients with severe novel coronavirus disease 2019. Am J Obstet Gynecol. 2020;223(5):768–70.

Janssen O, Thompson M, Milburn S, Green R, Wagner B, Bianco A, et al. The Impact of Perinatal SARS-CoV2 Infection During the Peripartum Period. Am J Obstet Gynecol. 2020;1000267.

Khan S, Peng L, Siddique R, Nabi C, Nawsharwan Scala C, et al. Impact of COVID-19 on pregnancy outcomes and the risk of maternal-to-neonatal intrauterine transmission of COVID-19 during natural birth. Infect Med (Lpz). 2020;8(4):744–50.

Li N, Han L, Peng M, Lv Y, Ouyang Y, Liu K, et al. Maternal and Neonatal Outcomes of Pregnant Women With Coronavirus Disease 2019 (COVID-19) Pneumonia: A Case-Control Study. Clin Infect Dis. 2020;71(16):2035–41.

Li U, Wang Y, Yang Q, Chen L, Chen J, Yang B, et al. Coronavirus Disease 2019 (COVID-19) During Pregnancy. A Case Series. 2020.

Liu Y, Chen H, Tang K, Guo Y. Clinical manifestations and outcomes of SARS-CoV-2 infection during pregnancy. J Infect. 2020;
Toner LE, Gelber SE, Pena JA, Fox NS, Rebarber A. A Case Report to Assess Chong J, Ahmed S, Hill K. Acute Respiratory Distress Syndrome in a pregnant Zhang L, Dong L, Ming L, Wei M, Li J, Hu R, et al. Severe acute respiratory Li Y, Zhao R, Zheng S, Chen X, Wang J, Sheng X, et al. Lack of Vertical Kelly JC, Dombrowksi M, O'Neil-Callahan M, Kernberg AS, Frolova AI, Stout Sinelli M, Paterlini G, Citterio M, Di Marco A, Fedeli T, Ventura ML. Early Zheng T, Guo J, He W, Wang H, Yu H, Ye H. Coronavirus disease 2019 in pregnant Schnettler WT, Al Ahwel Y, Suhag A. Severe acute respiratory distress Hachem R, Markou GA, Veluppillai C, Poncelet C. Late miscarriage as a Hsu AL, Guan M, Johannesen E, Stephens AJ, Khaleel N, Kagan N, et al. Placental Neonatal Outcomes of Pregnant Patients With COVID-19: a retrospective study. Emerg Microbes Infect. 2020;9(1):1–8. Gidlöf S, Savchenko J, O. Green, J. Stewart et al. European Journal of Obstetrics & Gynecology and Reproductive Biology 268 (2022) 135–142. Daniel K, Goli K, Sargent A. Repeat cesarean section in a COVID-19 positive mother in the United States. SAGE Open Med Case Rep. 2020;8:2050313X20945536. Dong L, Tian J, He S, Zhu C, Wang J, Liu C, et al. Possible Vertical Transmission of SARS-CoV-2 From an Infected Mother to Her Newborn. JAMA. 2020;323(18):1846–8. Dong Y, Chi X, Hai H, Sun L, Zhang M, Xie WF, et al. Antibodies in the breast milk of a maternal woman with COVID-19. Emerg Microbes Infect. 2020;9(1):1–7. Donzelli M, Ippolito M, Catalisano G, Renda B, Tarantino F, Diquatto O, et al. Prone positioning and convalescent plasma therapy in a critically ill pregnant woman with COVID-19. BMJ Case Rep. 2020;13(8):1. Easterlin MC, De Beritto T, Yeh AM, Wertheimer FB, Ramanathan R. Extremely Preterm Infant Born to a Mother With Severe COVID-19 Pneumonia. J Investig Med High Impact Case Report. 2020;8: 2247096220946624. Elkafrawi, D. Joseph, L. Schiattarella A, Rodriguez B, Sisti G. Intravenous transmission of COVID-19 in Pregnancy: case report and review of literature. Acta Biomed. 2020;91(3). Fedele D, Picone D, Dreyfus D, Sibiu J. Successful continuation of pregnancy in a patient with COVID-19-related ARDS. BMJ Case Rep. 2020;13(8). Ferraiole A, Barra F, Krotchiwola C, Paudice M, Vellone VG, Godano E, et al. Report of Positive Placental Swabs for SARS-CoV-2 in an Asymptomatic Pregnant Woman with COVID-19. Medicina (Kaunas) 2020;56(6). Gao W, Deng Z, Zeng L, Yang Y, Gong H, Liu J, et al. A newborn with normal weight and elevated IgG antibodies born to an asymptomatic infection mother with COVID-19. Aging (Albany NY). 2020;12(17):16672–4.
Lv Y, Gu B, Chen Y, Hu S, Ruan T, Xu G, et al. No intrauterine vertical transmission in pregnancy with COVID-19: A case report. J Infect Chemother. 2020;26(12):1313–5.

Fiore A, Piscitelli M, Adodo DK, Thomas C, Dessap AM, Bagate F, et al. Successful Use of Extracorporeal Membrane Oxygenation Postpartum as Rescue Therapy in a Woman With COVID-19. J Cardiothorac Vasc Anesth. 2020.