Females become infertile as the stored sperm’s oxygen radicals increase

Klaus Reinhardt, Anne-Cécile Ribou

To cite this version:
Klaus Reinhardt, Anne-Cécile Ribou. Females become infertile as the stored sperm’s oxygen radicals increase. Scientific Reports, 2013, 3, pp.2888. 10.1038/srep02888 . hal-01168092

HAL Id: hal-01168092
https://univ-perp.hal.science/hal-01168092
Submitted on 3 Jun 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Females become infertile as the stored sperm’s oxygen radicals increase

Klaus Reinhardt1,2,3 & Anne-Cecile Ribou3

Predicting infertility is central to reproductive biology, medicine and evolutionary biology. In-vitro studies suggest that oxidative sperm damage causes infertility. Oxidative sperm damage can be reduced via two fundamental pathways: the removal of oxygen radicals by antioxidants, or the interference with cell metabolism to reduce the formation of oxygen radicals. Oxidative damage protection of spermatozoa should evolve frequently, especially during female sperm storage. However, in-vivo evidence linking oxidative protection and fertility is rare. We show that the intra-sperm production rate of oxygen radicals and the sperm metabolic rate were reduced in female bedbugs, Cimex lectularius, compared to males, and females laid fertile eggs. Females became infertile when sperm oxygen radicals and sperm metabolic rate increased to male levels. Our results link female fitness to sublethal sperm damage, imply adaptive benefits of interfering with sperm metabolism and offer the hypothesis that polyandry may serve to replace low-quality sperm.

Predicting infertility is a significant current challenge in several biological disciplines1. In reproductive medicine, substantial efforts are devoted to research of why one sixth of couples in the western world suffer from infertility problems1. In animal health research and conservation genetics, breeding programmes are designed to reduce infertility between specific male and female genotypes. In evolutionary biology, infertility is a main component of fitness, the central predictor of directional evolutionary change. Across these disciplines, efforts to explain infertility are largely devoted to sperm counts or to male genotypic traits that are correlated with ejaculate characteristics1. This genetic approach, however, requires the additional consideration of environmental effects on sperm function, many of which are known as lifestyle effects on male fertility2 and include the effects of male diet, smoking habits or sexually transmitted microbes on sperm function2,3.

Damage by such environmental effects is not restricted to sperm while in the male but may also happen when the sperm is stored in the female. This notion is important because females of all internally fertilizing species store sperm, some for very long periods4–8, thus achieving reproductive independence from the presence of males, or promoting sperm competition7. The question how females prevent such damaging effects to sperm during storage has received little attention. To date, female sperm storage has been mainly viewed as a numerical process where female become infertile simply because they receive too few sperm, or lose, or use up too many before the full complement of eggs is fertilized9–11. Sexual selection research has therefore suggested that one function of multiple mating by females is to receive a sufficient amount of sperm12,13.

This focus on the number of sperm, or living sperm, is insufficient when considering the above-mentioned environmental factors, or lifestyle effects. The damaging effects on sperm caused by the environmental factors accumulate in the sperm cell and lead to sperm cell ageing14–16, which can restrict female fertility or fitness14–16. However, disentangling whether female infertility is caused by sperm quantity or by sperm quality is important because numerical sperm limitation only limits the number of zygotes produced. By contrast, stored sperm that is aged or otherwise sublethally damaged can fertilize eggs and result in offspring with disease symptoms and reduced fitness14–16. In this paper we, therefore, aim to disentangle effects of sperm quantity and sperm quality, i.e. sperm age, on female infertility.

Damage accumulation during sperm ageing encompasses a suite of biochemical and physiological mechanisms14–16 but oxidative damage by oxygen radicals are major players14–26. Oxidative damage can be reduced, and hence cellular ageing delayed, by two fundamental pathways: the antioxidant pathway and the interference pathway. The majority of studies considered the former, i.e. consider how antioxidants capture the oxygen radicals produced by the cell7,8,21,27. The effectiveness of the antioxidant pathway in improving sperm performance is currently debated25,27,28. The second pathway concerns the extracellular (i.e. extra-sperm) interference with cell
metabolic pathways in order to lower the formation of oxygen radicals in the first place. This possibility has received much less theoretical14 and empirical attention25, but may be important. A previous study found sperm metabolism in female insects was reduced over several weeks of sperm storage with the corresponding intra-sperm oxygen radicals production also being low26. The reduction was proposed to be adaptive because it may delay sperm ageing and so reduce negative fitness effects on females26, but was not tested. Here we now attempt to examine this significance. Using bedbugs, Cimex lectularius, a long-lived, sperm-storing insect28, we tested whether female infertility is lower during periods when oxygen radicals production are suppressed in sperm28 compared to times when radicals are not suppressed.

Sperm cells are morphologically the most diverse cell type in the animal kingdom26. It is possible that sperm physiology is also very variable between species. An additional goal of this study was, therefore, to establish whether the relationship between sperm metabolism and oxygen radicals is similar to that observed in another insect species28.

To summarise, in a long-lived, re-emerging pest species28 we test whether female reproduction is limited by the depletion of sperm quantity or sperm quality, we probe the plausibility of the interference hypothesis of antioxidant defence and, as a first step as to its general applicability, compare sperm metabolism to that of another species.

Results

Weekly recording any infertile eggs (Methods) in the clutches of sexually isolated females, we established that females became infertile after long-term sperm storage, at 9.5 ± 1.6 (SE) weeks (Fig. 1). Most (89.5%, N = 19) infertile females recovered full fertility when they were re-mated, excluding female age as the primary cause of infertility.

Next, we excluded that sperm quantity depletion (lack of sperm numbers) was the primary cause of infertility in bedbugs: In 54 females we manipulated the number of sperm transferred to the female by interrupting copulations, and the number of sperm used by altering her egg laying rate (Methods). Time-failure analysis showed that the number of sperm transferred (z = 1.25, P = 0.211) did not explain variation in the time females started to become infertile. The number of sperm used by females did (z = 3.67, P = 0.0002) but females that laid more eggs became infertile later (Fig. S1), i.e. the opposite direction of what were predicted if more fertilization events would lead to higher sperm usage. The non-significant interaction of the two factors (z = 0.087, P = 0.931) was removed from the model (Table S1). The results did not change if a different infertility indicator was used (Fig. S1, Table S1). When infertility started, as well as two weeks later when females laid all-infertile clutches, most stored sperm was alive (mean 85.6%, range 50–100%, n = 11) (see also Methods), which excludes sperm mortality as the cause of infertility and leaves sperm quality as a predictor of female infertility.

In order to test whether the accumulation of oxidative damage is a candidate trait of sperm-quality mediated female infertility, we measured the rate of intracellular oxygen radicals production in sperm cells using time-resolved microfluorimetry17,29. This parameter is measured the rate of intracellular oxygen radicals production in sperm and from females after short-term storage (6 h, N = 6), intermediate-term storage (3.5 weeks, N = 11) and long-term storage (10 weeks, N = 7). Arrows denote means per storage period. Grey lines connecting data points denote sperm form the same male examined from the male and the female sperm storage.

![Figure 1](image-url)

Figure 1 | (A) Live sperm cells (stained green), surrounding unspecified female cells (stained red) of bedbugs extracted from the female sperm storage organ. The white circle illustrates the < 40 µm diameter of the laser beam that was used to excite an oxygen probe within sperm cells. (B) The intracellular production of oxygen radicals of sperm extracted from the male (filled diamonds, N = 13) and female storage organs (empty diamonds) (upper graph) in relation to the time course that sexually isolated females (N = 54) become infertile (lower graph). The intra-sperm radicals production was sampled in females after short-term storage (6 h, N = 6), intermediate-term storage (3.5 weeks, N = 11) and long-term storage (10 weeks, N = 7). Arrows denote means per storage period. Grey lines connecting data points denote sperm form the same male examined from the male and the female sperm storage.

(before the start of infertility) compared to males. This prediction was confirmed: Paired sperm samples of the same male that were taken from both the male and the female showed that fluorescence lifetime is higher, i.e. oxygen radicals production is lower, in the female (paired t_{6} = −3.373, P = 0.015, mean difference: 6.10 ± 0.83 (SE) nanoseconds (range −0.63 to 13.3 nanoseconds) (Fig. 1B). If eventually oxidative damage would accumulate to cause female infertility, we predicted that fluorescence lifetimes of sperm after long-term storage would be increased compared to short and intermediate duration. This prediction was also upheld. Sampling at short, intermediate and long-term storage, the fluorescence lifetimes were 150.96 ± 0.73 (SE), 153.09 ± 0.49 (SE) and 148.26 ± 0.76 (SE) nanoseconds, respectively (Fig. 1B), and in males 149.31 ± 0.98 (SE) nanoseconds. Thus, the rate of oxygen radicals production in sperm was 17.7% lower after 6 h (Mixed effect model, t-value = 1.98, d.f. = 20, P = 0.0621), and 31.3% lower after 3.5 weeks of storage (Fig. 1B; Mixed effect model, t-value = 3.68, d.f. = 20, P = 0.0016; Table S2) compared to 10 weeks of storage (i.e. the mean start of infertility).
One way that oxygen radicals can be reduced is by an alteration of the sperm metabolic rate, but it is not clear whether a reduced or an increased sperm metabolic rate is related to oxygen radicals production (discussed in ref. 29). We, therefore, measured the sperm metabolic rate using the autofluorescence of free and protein-bound NAD(P)H molecules and compared it with the oxygen radicals production from the same samples. In bedbugs, unlike in crickets, the rate of intracellular oxygen radicals production and the metabolic rate of sperm were positively correlated in both sexes (Fig. S2). This correlation is a necessary pre-condition for females (and in our case also males) to decrease sperm oxygen radicals production by a reduction in sperm metabolic rate. In support, after 3.5 weeks of storage, the sperm metabolic rate was 14.3% lower than after 10 weeks (Mixed effect model, t-value = 2.600, d.f. = 20, P = 0.009, Table S3) and not significantly different from after 6 h (Mixed effect model, t-value = 0.714, d.f. = 20, P = 0.241). Again using only paired samples, we found that sperm metabolic rate at short-term storage was 19.7% (range –5.55 to 41.4) lower than in males (paired t = 2.681, P = 0.036). Statistically modelling sperm oxygen radicals production as a function of sperm metabolic rate revealed that metabolic rate significantly decreased with decreasing oxygen radicals production (Mixed effect model, t-value = −6.87, P < 0.001, Table S4).

Together, our results are consistent with the hypothesis that sperm-storing females incur fitness costs when the rates of oxygen radicals production and metabolism of the sperm are not suppressed compared to the sperm they receive from males. In other words, females have an adaptive benefit from a reduced metabolic rate and oxygen radicals production in stored sperm. Our results also suggest that in terms of the relationship between sperm metabolic rate and oxygen radicals production rate not all species are equal.

Discussion

Our study yielded results that are significant for a number of research areas. For evolutionary and reproductive biology, our result show that a numerical perspective of sperm storage is insufficient to explain female infertility, and hence, insufficient to explain multiple mating by females. Female infertility of sexually isolated females should not automatically be assigned to a lack of sperm number. In our study, infertility was caused by a decrease in sperm quality. That sperm quality decreases over storage time, rather than representing a fixed genotypic quality of a male as assumed by sexual selection models, reinforces the suggestion that the predictive power of sperm competition theory will be improved by accounting for temporal variation in sperm function. Our method can be used to examine the nature of the decline in sperm quality during sperm ageing. Different decline curves yield fundamentally different predictions about the costs and benefits of sperm ageing.

Cell senescence is a thermodynamic necessity. The fact that healthy offspring are being produced even after relatively long sperm storage in many animals suggests that oxidative damage to sperm is reduced over extended periods. We have demonstrated here (see also) that two components of sperm function are indeed reduced: sperm oxygen radicals production and sperm metabolic rate. Here we additionally showed that if both parameters return to male levels, females suffer infertility. While in some species, the antioxidant pathway of sperm protection has demonstrated fitness benefits for males and females, antioxidants only have small effects on human fertility. It is, therefore, possible that the other fundamental pathway of oxidative stress prevention (the one confirmed here) - a suppression of the formation of oxygen radicals (and other reactive oxygen species) - is important. Future studies (see also) should test whether interfering with cell metabolism is a general candidate mechanism to reduce oxidative stress in sperm. Our finding that sperm metabolic rate was positively correlated with oxygen radicals production is a necessary pre-condition of the hypothesis that it is the females that reduce oxygen radicals production by interfering with sperm metabolism and so down-regulate it. The reverse is less plausible, that reduced oxygen radicals production in the cell causes reduced metabolic rate, because the established biochemical pathways of cellular energy production do not seem to require oxygen radicals.

We observed an increased radicals production in sperm cells towards the end of the sperm storage period in bedbug females. It remains to be tested whether this increase is a maladaptive side effect of the unavoidable ageing process or the result of an adaptive female adjustment of oxygen radicals suppression. For example, if reduced radicals suppression by females would increase the mortality of only those sperm that have accumulated more damage than others (e.g., older sperm), one could speculate that the reduced radicals suppression may adaptively prevent the fertilization of eggs with aged sperm and so avoid female investment into embryos with reduced fitness. Alternatively, the vicious circle idea of the free radical theory of ageing, but see, predicts that the oxygen radicals suppression has to constantly increase to keep pace with the constantly accumulating oxidative damage. Under this hypothesis, therefore, the costs of investing into radicals suppression will constantly increase and reach a point where they outweigh the benefits of fertilizing the eggs with non-damaged sperm. Although this sounds unlikely, in an insect related to bedbugs, females upheld investment into sperm storage even though this resulted in fewer eggs being produced. However, in this species, females naturally had no opportunity to re-mate and so have to maintain storage of non-damaged sperm. If, by contrast, re-mating opportunities for females are predictable in time, reducing the investment into radicals suppression after the average re-mating period is beneficial to females, and so may evolve. Given that we found that infertility started, on average, 9.5 weeks (at 25 °C) after sexual isolation, is there any reason to assume that 9.5 weeks is a predictable, evolved average period of re-mating? We believe there is: In the wild, bedbug populations are highly inbred as they are usually founded by single, i.e. sexually isolated, females. For sexually isolated females, it takes 8–9 weeks (at 25 °C) to produce sexually mature sons, a figure close to 9.5 weeks. Consequently, it may be worth testing the idea that sperm radicals suppression in bedbug females has evolved to be maintained only for the average time it takes a mother to receive new sperm from their own sons.

In conclusion, our examination of the sperm storage period in bedbugs, coupled with a fluorescence-based survey of sperm metabolism revealed that sublethal sperm damage is a previously little recognized source of fitness variation. That reducing sperm metabolic rate and oxygen radicals production during sperm storage is adaptive augments the numerical view of female sperm limitation, represents a novel hypothesis why females mate multiple times and offers a potential mechanism how females of many taxa can store sperm for extended periods. Our results extend the current view of sperm quality in postcopulatory sexual selection studies that is restricted to a dead-live dichotomy, or a genetically determined, temporally invariable, sperm genotype. Finally, by characterizing the relationship between oxygen radicals production and cell metabolic rate we present insect sperm cells as a convenient ex-vivo model system of cell metabolism and mitochondrial energetics.

Methods

The study species. Mating. Common bedbug males, *Cimex lectularius* L. 1758, exclusively mate by traumatic insemination. The male pierces the female cuticle and ejaculates the sperm into the spermalage, a secondary copulatory organ situated in the open haemolymph (range 0.2–0.5 mm). Mating rate of *C. lectularius* males transfer sperm at a constant rate during mating and across three matings (Supplementary Fig. S3). Therefore, copulation duration was used to manipulate the number of sperm that females received. Interrupting copulations does not appear to lead to a differential allocation of sperm and seminal fluid in males of the population used here.

Sperm storage. Within 4 hours of mating, sperm leave the spermalage, move through the female haemolymph and enter the female oviduct. From the oviduct, sperm move to the sperm storage organ, the paired seminal concepts, where most sperm arrive.
within 12 hours. From there, the sperm move to, and fertilise the eggs in, the ovaries or are stored in storage organs.

Female fertility. Females can live and lay eggs for almost a year, provided food and sperm are available15,16,17. If females are sexually isolated, offspring are being produced within 12 hours. From there, the sperm move to, and fertilise the eggs in, the ovaries and the cell density. Unlike the routinely used lucigenin-based ROS measurements that produce ROS themselves18, our method does not generate ROS. PBA is insensitive to alterations in the lipid concentration of the membrane19 suggesting that if such changes would occur, they are unlikely to affect the fluorescence lifetime of PBA.

Sample preparation and staining procedure. The sperm-containing vesicles were removed from the male using forceps and placed into a drop of 20 µl buffer on a microscope slide. Sperm were then pipetted into a 20 µl drop of 1 µM PBA, incubated for 4 minutes and washed three times in three different drops of 20 µl of buffer on a microscope slide by drawing the sperm solution ten times up and down a pipette. The sperm were then pipetted into 10 µl buffer in the centre of a Syke-Moon chamber. ROS conversion was measured in this chamber.

To collect sperm from the female, females were dissected in a dissection bowl filled with buffer. The sperm storage organ was removed, rinsed on the outside in 20 µl buffer and placed into a new 20 µl drop. The organ was opened by tearing its ends carefully apart, which released one or a few sun-shaped aggregations of sperm (Fig. S1) these were transferred into 20 µl 1 µM PBA.

Dead sperm with intact membranes were needed to calculate lifetime τ2 (see below), which is terminated when ROS production stops. These sperm were handled as described above, but after rinsing in buffer they were fixed in Baker solution (10% paraformaldehyde in 1% aqueous calcium chloride) for 15–20 minutes20. The time from dissection to the fluorescence measurement was recorded for each sample. There was no difference in handling time between male and female samples (males: 21.5 min; females: 28.2 min; t50.77 = −1.204, P = 0.238), even when one outlier was removed of a female sperm sample measured after 120 minutes (females: 23.5 min; t25.53 = −0.660, P = 0.515).

1. World Health Organization. WHO laboratory manual for the Examination and processing of human sperm. World Health Organiz, 5th ed. (2010).
2. Wogatzky, J. et al. The combination matters—distinct impact of lifestyle factors on sperm quality: a study on semen samples of 10 patients according to MSOME criteria. Reprod Biol Endocrinol 10, 115 (2012).
3. Otti, O., McGhie, A. & Reinhardt, K. In vitro antimicrobial sperm protection by an exciton-like substance. Funct Ecol 27, 219–226 (2013).
4. Birkhead, T. R. & Moller, A. P. Sexual selection and the temporal separation of reproductive events: sperm storage data from reptiles, birds and mammals. Biol J Linn Soc 50, 295–312 (1993).
5. Keller, L. Queen lifespan and colony characteristics in ants and termites. Insectes Soc 45, 235–246 (1998).
6. den Boer, S. P. A., Baer, B., Dreier, S., Aron, S., Nash, D. R. & Boomsma, J. J. Prudent sperm use by leaf-cutter ant queens. Proc Biol Sci 276, 3945–3953 (2009).
7. Hain, M. M., Nilsen, B. & Breivik, P. K. Beyond the mouse model: using Drosophila as a model for sperm interaction with the female reproductive tract. Theriogenology 73, 723–739 (2010).
8. Holt, W. V. & Lloyd, R. E. Sperm storage in the vertebrate female reproductive tract: how does it work so well? Theriogenology 73, 713–722 (2010).
9. Edwall, N., Cage, M. J. G. & Packard, A. Sperm removal placed male prudence and sperm-limited females. Trends Ecol Evol 17, 313–320 (2002).
10. Gromko, M. H. in Sperm competition and the evolution of animal mating systems, Smith, R. L. Ed. (Acad Press, London), pp 331–338 (1984).
11. Roth, S. & Reinhardt, K. Facultative sperm storage in response to nutritional status in a female insect. Proc Biol Sci 270, 554–556 (2003).
12. Simmons, L. The evolution of polyandry: Sperm competition, sperm selection, and offspring viability. Annu Rev Ecol Evol Syst 36, 125–146 (2005).
13. Gowaty, P. A., Kim, Y.-K., Rawlings, J. & Anderson, W. W. Polyandry increases offspring viability and mother productivity but does not decrease mother survival in Drosophila pseudoobscura. Proc Natl Acad Sci USA 107, 13771–13776 (2010).
14. Reinhardt, K. 2007 Evolutionary consequences of sperm cell aging. Q Rev Biol 82, 375–393 (2007).
15. Pizzari, T., Dean, R., Pacey, A., Moore, H. & Bonsall, M. B. The evolutionary ecology of pre- and post-moecic sperm senescence. Trends Ecol Evol 23, 131–140 (2008).
16. White, J. et al. Multiple deleterious effects of experimentally aged sperm in a monogamous bird. Proc Natl Acad Sci USA 105, 13947–13952 (2008).
17. Siva-Jothy, M. T. The young sperm gambit. Ecol Lett 3, 172–174 (2000).
18. Tarin, J. J., Perez-Albala, S. & Cano, A. Consequences on offspring of abnormal function in ageing genes. Hum Reprod Update 6, 532–549 (2000).
19. Halliwell, B. & Gutteridge, J. Free Radicals in Biology and Medicine, Oxford Univ Press, 4th ed. (2007).
20. Wallace, D. C., Fei, W. & Procaccio, V. Mitochondrial energetics and therapeutics. Annu Rev Pathol Mech Dis 5, 297–348 (2011).
21. Blount, J. D., Moller, A. P. & Houston, D. C. Antioxidants, showy males and sperm storage in the honeybee. Proc R Soc B 4, 393–396 (2001).
22. Atken, R. J., de Jolius, G. N. & McLachlan, R. I. Biological and clinical significance of DNA damage in the male germ line. Int J Androl 32, 46–56 (2009).
23. de Laminarde, E. & Lamothe, G. Reactive oxygen-induced reactive oxygen formation during human sperm activation. Free Radic Biol Med 46, 502–510 (2009).
24. Ramosch-Santos, J. et al. Mitochondrial functionality in reproduction: from gonads to gametes to embryos and embryonic stem cells. Hum Reprod Update 15, 553–572 (2009).
25. Zini, A. & Al-Hathal, N. Antioxidant therapy in male infertility: fact or fiction? *Asian J Androl* 13, 374–381 (2011).

26. Koppers, A. J., De Juiis, G. N., Finnie, J. M., McGlaunthan, E. A. & Aitken, R. J. Significance of Mitochondrial Reactive Oxygen Species in the Generation of Oxidative Stress in Spermatozoa. *J Clin Endocrinol Metab* 93, 3199–3207 (2008).

27. Almbro, M., Dowling, D. K. & Simmons, L. W. Effects of vitamin E and beta-carotene on sperm competitiveness. *Ecol Lett* 14, 891–895 (2011).

28. Poland, V. et al. Stored sperm differs from ejaculated sperm by proteome alterations associated with energy metabolism in the honeybee *Apis mellifera*. *Molec. Ecol* 20, 2643–2654 (2011).

29. Ribou, A.-C. & Reinhardt, K. Reduced metabolic rate and oxygen radicals production in stored insect sperm. *Proc Biol Sci* 279, 2196–2203 (2012).

30. Reinhardt, K. & Siva-Jothy, M. T. Biology of bed bugs (Cimicidae). *Ann Rev Entomol* 52, 351–374 (2007).

31. Birkhead, T. R., Hosken, D. J. & Pitnick, S. S. *Biology of Bed Bugs: An Evolutionary Perspective*. Academic press, 1st ed. (2009).

32. Ribou, A.-C., Vigo, J. & Salmon, J. M. Lifetime of fluorescent pyrene butyric acid probe in single living cells for measurement of oxygen fluctuation. *Photochem Photobiol* 80, 274–280 (2004).

33. Oter, O. & Ribou, A.-C. Quenching of long lifetime emitting fluorophores with paramagnetic molecules. *J Fluoresc* 19, 389–397 (2009).

34. Rharass, T., Vigo, J., Salmon, J. M. & Ribou, A.-C. New method for the detection of reactive oxygen species in anti-tumoral activity of Adriamycin: A comparison between hypoxic and normoxic cells. *Free Radical Res* 42, 124–134 (2008).

35. Pizzari, T., Worley, K., Burke, T. & Frommann, D. P. Sperm competition dynamics: ejaculate fertilizing efficiency changes differentially with time. *BMC Evol Biol* 8, 332 (2008).

36. Loyau, A., Blanchet, S., van Laere, P., Clobert, J. & Danchin, E. When not to copy: female fruit flies use sophisticated public information to avoid mated males. *Sci. Rep.* 2, 768 (2012).

37. Harman, D. Aging: overview. *Ann. N.Y. Acad. Sci.* 928, 1–21 (2001).

38. Balaban, R. S., Nemoto, S. & Finkel, T. Mitochondria, oxidants, and aging. *Cell* 120, 483–495 (2005).

39. Murphy, M. P. How mitochondria produce reactive oxygen species. *Biochem J* 417, 1–13 (2009).

40. Lapointe, J. & Hekimi, S. When a theory of aging ages badly. *Proc Natl Acad Sci USA* 104, 19494–19499 (2007).

41. Skala, M. C. et al. In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. *Proc Natl Acad Sci USA* 104, 12177–12182 (2007).

42. Fridovich, I. Superoxide Anion Radical (O2-·), Superoxide Dismutases, and Related Matters. *J Biol Chem* 272, 18515–18517 (1997).

43. Dumas, D. et al. Membrane fluidity and oxygen diffusion in cholesterol-enriched erythrocyte membrane. *Arch Biochem Biophys* 341, 34–39 (1997).

Acknowledgments

We thank A. Dobson, D. Dowling, A. McTighe, R. Naylor, O. Otti and J. Rolff for comments on the manuscript and technical help. Financial support was provided by the VolkswagenFoundation (84–780), NERC (NE/D009634/1), and a visitors’ support scheme by the Languedoc-Roussillon regional government to K.R.

Author contributions

K.R. and A.C.R. conceived the idea, K.R. and A.C.R. carried out the research, K.R. and A.C.R. reviewed the manuscript. K.R. and A.C.R. conceived the idea, K.R. and A.C.R. carried out the research, K.R. and A.C.R. reviewed the manuscript.

Additional information

Supplementary information accompanies this paper at http://www.nature.com/scientificreports

Competition financial interests: The authors declare no competing financial interests.

How to cite this article: Reinhardt, K. & Ribou, A. Females become infertile as the stored sperm’s oxygen radicals increase. *Sci. Rep.* 3, 2888; DOI:10.1038/srep02888 (2013).

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported license: To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/