INTRODUCTION

Longitudinal data are obtained from repeated investigation of specific factors through a long-term follow-up of the same subject. Cohort data, a type of longitudinal data, are an epidemiological study design that compare the incidence or mortality in two groups through long-term follow-ups of a population exposed to a specific risk factor and another that was not exposed which have the advantage that yields a clear temporal precedence relationship between cause and effect.
Bias in cohort studies includes a volunteer bias caused by differences in characteristics between those who voluntarily agreed to participate in the study and those who did not, a follow-up loss bias resulted by death or dropout during the study, an ascertainment bias led by different investigation process of disease information between the exposed and non-exposed group, Hawthorne effect caused by changes in the subject’s behavior by repeated measurement of risk factors, and a time bias affected by changes in diagnostic criteria or subject’s personal factors depending on the follow-up period. Other biases that are also common in most research designs include a non-response bias where there is non-respondents in survey questions, an interviewer bias caused by information bias in the process of investigating with the interviewer, and a measurement bias. In addition, errors may occur unexpectedly and accidentally in the process of conducting research [1]. Thus, it is necessary to perform appropriate quality management in the entire process from pre-phase of the data collection to the time when data are collected.

Quality control is of utmost importance in conducting any study, and the integrity of the study results is determined by the quality of the collected data. If proper quality control is not performed to utilize cohort data, power (1-β) may decrease while type 1 error (α) may increase [2]. Main factors affecting the quality of research data include completeness, accuracy, and timeliness [3], and accurate input of data, monitoring of input data, and data cleaning are required construction for these factors [2,4-7].

According to domestically reported data, the number of surviving infected people excluding those who died by 2018 was 12,991 (25.3/10,000), and the incidence of acquired immune deficiency syndrome (AIDS) per 100,000 population by 2017 was 0.3, which was lower than the Organization for Economic Cooperation and Development average [8,9]. The Korean HIV/AIDS cohort study was established to understand the natural course and epidemiological and clinical characteristics of human immunodeficiency virus (HIV)-infected individuals and patients in Korea from initial diagnosis to AIDS onset and death. In this study, only participants with confirmed HIV positive by the Western blot test and voluntarily consented participated, whom are Korean and over the age of 18 [10]. A total of 16,830 case report forms (CRF) of 1,539 people were collected until October 2019, and the general characteristics, socioeconomic factors, comorbidities (AIDS-related, non AIDS-related), history of antiretroviral therapy (ART) and reasons for termination were measured repeatedly every 6 months [10,11]. These collected data are used by researchers, participating in the Korean HIV/AIDS Cohort Study to conduct intermediary studies related to HIV/AIDS. The purpose of the study is to establish the basis for treatment and prevention methods that are helpful to patients in the clinical field, and research results with poor quality management are difficult to apply to the real world.

In order to test hypothesis of HIV studies and derive high quality research results, proper quality management is required. In this study, based on the existing data quality management strategy, customized quality management methods that consider the characteristics of domestic HIV/AIDS cohort studies was applied to data from the past (the 10th study in 2015) and recent (the 14th study in 2019). The rate of data cleaning was compared to objectively assess the effects of data quality management.

MATERIALS AND METHODS

Epidemiology and data center

The HIV/AIDS Cohort Study in Korea has an epidemiological data center that collects data and manages the quality of data from the department of infectious diseases in 21 hospitals nationwide. In the epidemiological data center, there are an epidemiological team in charge of investigation-related consent, a quality management team in charge of data cleaning, and a statistical analysis team that supports research analysis [10].

Data resource

The Korea HIV/AIDS Cohort Study uses an electronic survey for subjects who have voluntarily consented to repeat measurements every 6 months and collects data in real time from the 21 hospital. The first survey was started in 2006, and by 2016, 5,795 surveys from 1,442 subjects were collected (Supplementary Material 1).

Data quality assurance and quality control protocol

The entire process of the Korea HIV/AIDS cohort research data quality management strategy program is largely divided into pre-phase of data collection, phase of data collection, and post-phase of data collection. Specific strategies, types, management cycle, methods, and possible errors when unexecuted of each phase were presented. In the pre-phase of data collection, Supplementation and revision of CRF, unifying code values, development of logic for detecting errors, education and development of standardized investigation guidelines were performed. In the phase of the data collection, possible errors at the time of data input were minimized through real-time monitoring and management of repeated CRF rate and database (DB) query language. In the post-phase of data collection, data cleaning was performed using the developed logic for detecting errors. The accuracy of the data was improved through standardization of narrative items and resurvey, which minimize missing values. In all phases, data review included confirmation by infectious disease specialists. In the cleaning process to derive the expected errors to be handled in the data, two or more epidemiological statistic researchers conducted a duplicate review. Furthermore, during the review process of checking if the data have been correctly entered into the DB, the epidemiological data center and DB manager of Korea Centers for Disease Control and Prevention (KCDC) conducted a duplicate review (Figure 1 and Table 1).

If there are many missing values for important questions during the analysis of studies that used the data, those values are replaced with other values such as using the formula, internal or external
data to increase the completeness of the data. If there are still missing values even after quality control in the pre-phase and phase of data collection, the values are estimated if possible, and the steps for estimation are as follows:

Replacement using a formula

If the date variables were partially missing, the survey date was used to replace the following equation:

| Figure 1. The process of data quality control. |
Replacement using internal data

If there are no data at a specific time in the existing data, these are replaced with the data at the nearest time within 90 days before or after the specific time. If the results of the immunoassay at the time of diagnosis or at the starting date of initial ART are missing, the tests results at the time of diagnosis or at the closest time before and after the starting date of initial ART are used to replace the data. Replacement rate increased as the permitted period before and after the diagnosis was increased. However, considering the 6 months period of repeated investigation, it was defined as 3 months.

Blood test date – HIV diagnosis date (initial ART date) ≤ 3 mo

Replacement using external data

If the values for date of HIV positive diagnosis, date of death, and path of infection (transfusion, blood products) were missing, the data contained in the HIV/AIDS epidemiology survey by KCDC were used as replacement.

Results of real data application for data quality management strategy

Among the data quality management strategies developed as described above, the quality management method at the post-phase of data collection was applied to data from the 10th and 14th of the HIV/AIDS cohort data, and the rate of data cleaning was compared. Three factors are required to calculate the rate of data cleaning. First, expected errors to be handled, which are estimated to be errors by the developed logic, are required. In addition, corrected errors, which are refined after asking each hospitals to check the expected errors to be handled and non-errors, are values initially classified as errors by logic, but are found as non-error values.
after checking the medical record. These three factors are used to calculate the rate of data cleaning, which is defined as the percentage of corrected error values and non-error values (sum of corrected errors and non-errors, numerator) compared to the number of the expected errors to be handled requested for confirmation to the hospitals (denominator). Thus, the rate of data cleaning indicates the rate at which the estimated errors that expected by logic is corrected, and higher rate of data cleaning (closer to 100) indicates that more errors could be verified.

\[
\text{Rate of data cleaning (\%)} = \frac{\text{corrected errors + non-errors}}{\text{expected errors to be handled}} \times 100
\]

Ethics statement

The purpose of this study is the same as the Korea HIV/AIDS Cohort Study, and it is exempt from research ethics review because no additional data or invasive sample collection has been made to the subject for the study.

RESULTS

After refining approximately 29 million data consisting of 5,795 CRFs and 5,027 variables through the data quality management strategy, the expected errors in the 14th study was 1,803, which was reduced by 53.9% compared to the expected errors of the 10th study. This result was obtained by systematically performing unifying code values, education of standardized investigation guide-
Within from initial ART
1,803
16 hospitals
66.6
64.6
70.5
HIV RNA
CD4
72.6
64.5
1,274
19
59.2
35.1
74.4
68.5
Jul 2019–Nov 2019
72.3
76.1
92.7
Dec 2006–Jul 2019
55.7
38.8
May 2015–Nov 2015
HIV RNA
72.9
6
ART, antiretroviral therapy; HIV, human immunodeficiency virus.

Table 2. Response rate of CD4/viral load by imputation methods

Response rate (%)	Within from diagnosis date	Within from initial ART		
	CD4	HIV RNA	CD4	HIV RNA
30 d	38.8	35.1	64.5	60.1
90 d	59.2	55.7	74.4	70.5
180 d	66.6	64.6	75.7	72.3
270 d	70.9	68.7	76.0	72.6
1 yr	73.6	71.0	76.1	72.9

ART, antiretroviral therapy; HIV, human immunodeficiency virus.

Within from initial ART
1,803
16 hospitals
66.6
64.6
70.5
HIV RNA
CD4
72.6
64.5
1,274
19
59.2
35.1
74.4
68.5
Jul 2019–Nov 2019
72.3
76.1
92.7
Dec 2006–Jul 2019
55.7
38.8
May 2015–Nov 2015
HIV RNA
72.9
6
ART, antiretroviral therapy; HIV, human immunodeficiency virus.

Table 2. Response rate of CD4/viral load by imputation methods

Response rate (%)	Within from diagnosis date	Within from initial ART		
	CD4	HIV RNA	CD4	HIV RNA
30 d	38.8	35.1	64.5	60.1
90 d	59.2	55.7	74.4	70.5
180 d	66.6	64.6	75.7	72.3
270 d	70.9	68.7	76.0	72.6
1 yr	73.6	71.0	76.1	72.9

ART, antiretroviral therapy; HIV, human immunodeficiency virus.
and Prevention. The analyzed results may be taken out of the room after review and approval. The results of data use must comply with the regulations for research outcomes of KCDC. More information is provided by KCDC integrated disease and health system.

DISCUSSION

In order to utilize data in research and improve the quality of life of HIV/AIDS infected individuals in Korea, effort of all participants in data collection and cleaning are required. It is important to use the data to proceed with research; however, accurate data must be preceded for accurate analysis. In the Korea HIV/AIDS Cohort Study, the first cohort-customized data quality management strategy that reflects the characteristics of the cohort subjects and data were established, and a method to increase the completeness of the cohort data was suggested. Previous studies showed that most cohort data quality management strategies were implemented at the phase of data collection. However, in this study, the errors between various variables and sequence that were difficult to identify in previous phases were intensively derived by finding and correcting logical errors. These logical errors, which consider clinical and epidemiological characteristics of the disease, were derived in not only the phase of data collection, but also the post-phase of data collection as well. Moreover, a logical error that combines the clinic-epidemiological evidence and statistical method of HIV/AIDS was applied to the cohort data. Thus, it is possible to extract and refine, in advance, the error values that are not derived as a simple error on computational basis and that contract the clinic-epidemiological hypothesis. In fact, an error may occur when defining a subject by using multiple items in combination, depending on the research topic or when creating a research variable based on the operational definition of the researcher using previously collected data. Even though the researcher may spot these errors during the process of research, the data cannot be directly verified, and it limits the use of that research. Moreover, if the research is continued without identifying these errors, bias may be introduced in the interpretation of the results. Therefore, logical errors need to be developed in consideration of the purpose of collecting research data, clinic-epidemiological characteristics of the disease, and characteristics of the subject.

The quality management strategy in this study was composed of systematic steps, and each step contributed to data quality management in a complex manner. Therefore, it is important that each step is not omitted and is executed properly. For example, if the pre-phase of data collection, such as revising CFR, training CRC, and development of various guidelines is omitted, it is difficult to apply the changing HIV/AIDS epidemiological characteristics to research. If the format for data collection and use is not standardized, data collection and use are restricted. Furthermore, if the process of phase data collection is omitted, it is difficult to identify errors in electronic CRF collected in real time. The reliability and validity of the collected data will decrease when problems such as incorrect input and download errors are not resolved due to an error in the electronic CRF. In addition, if data cleaning in post-phase of the data collection is omitted, errors occurring between multiple sequence and questions that were not confirmed in the previous phases cannot be identified.

As shown in this study, the each phase of data quality management strategy reduced the estimated error value by improving the pre-phase and phase of data collection in the 14th study compared to the 10th study and increased the rate of data cleaning through improvement of the post-phase of data collection. Until now, there has been no standardized term to describe results such as rate of data cleaning as a qualitative review method or strategy using epidemiological research data. Studies using clinical data focused only on the flow of data cleaning processes. There were no studies on the detailed steps and results of the cleaning processes. The 68.4% rate of data cleaning indicates that 684 estimated errors have been corrected out of 1,000 errors, while the 316 errors still remain. An increase in the rate of data cleaning shows that the remaining estimated errors have decreased, suggesting that the reliability of the data has improved compared to before.

The quality of data also affects the results of research analysis. It is important to systematically implement data quality management strategies in the future for better quality data and reliable research results. Despite such systematic and complex cleaning processes, there is a limitation to handling all errors and missing values. Due to the characteristics of cohort data, it is necessary to increase the tracking rate to reduce missing values. In addition, errors at the time of entering electronic CRF need to be fundamentally prevented and processing after data collection need to be minimized through several steps. Even if future technology advancements may allow the use of data query language to prevent errors at the time of entering electronic survey, post-review of downloaded data must be performed. In addition to the developed logical errors, potential errors may exist, and cleaned data is not perfect data without any errors. Therefore, steady development and supplementing procedures against logical errors are required.

SUPPLEMENTARY MATERIALS

Supplementary material is available at http://www.e-epih.org/.

CONFLICT OF INTEREST

The authors have no conflicts of interest to declare for this study.

FUNDING

This study was supported by a grant for the Chronic Infectious Disease Cohort Study (Korea HIV/AIDS Cohort Study) from the Korea Centers for Disease Control and Prevention (2016-ER5103-02).
ACKNOWLEDGEMENTS

We would like to express our sincere gratitude to the researchers who are actively conducting research for the patients and participants who provide valuable materials in the Korea HIV / AIDS Cohort Study.

AUTHOR CONTRIBUTIONS

Conceptualization: SMK, YC, BYC. Data curation: SIK, JYC, SWK, JYS, YJK, Korea HIV/AIDS Cohort Study. Formal analysis: SMK, YC, MK. Funding acquisition: MKK, MY, JGL. Methodology: SMK, YC. Project administration: SIK. Visualization: SMK, YC. Writing – original draft: SMK, YC. Writing – review & editing: SMK, YC, BYC, MK, SIK, JYC, SWK, JYS, YJK, MKK, MY, JGL, BYP.

ORCID

Soo Min Kim: http://orcid.org/0000-0002-6822-9050; Yunsu Choi: http://orcid.org/0000-0003-7682-7993; Bo Youl Choi: http://orcid.org/0000-0003-1115-5736; Minjeong Kim: http://orcid.org/0000-0001-9361-7381; Jun Yong Choi: http://orcid.org/0000-0002-2775-3315; Shin-Woo Kim: http://orcid.org/0000-0002-3755-8249; Joon Young Song: http://orcid.org/0000-0002-1418-7194; Youn Jeong Kim: http://orcid.org/0000-0001-5870-1801; Mee-Kyung Kee: http://orcid.org/0000-0001-7361-8811; Myeongsu Yoo: http://orcid.org/0000-0001-8542-8898; Jeong Gyu Lee: http://orcid.org/0000-0002-7213-6797; Bo Young Park: http://orcid.org/0000-0003-1902-3184

REFERENCES

1. Van den Broeck J, Cunningham SA, Eeckels R, Herbst K. Data cleaning: detecting, diagnosing, and editing data abnormalities. PLoS Med 2005;2:e267.
2. Whitney CW, Lind BK, Wahl PW. Quality assurance and quality control in longitudinal studies. Epidemiol Rev 1998;20:71-80.
3. Chen H, Hailey D, Wang N, Yu P. A review of data quality assessment methods for public health information systems. Int J Environ Res Public Health 2014;11:5170-5207.
4. Gassman JJ, Owen WW, Kuntz TE, Martin JP, Amoroso WP. Data quality assurance, monitoring, and reporting. Control Clin Trials 1995;16(2 Suppl):104S-136S.
5. Schmidt MI, Griep RH, Passos VM, Luft VC, Goulart AC, Menezes GM, et al. Strategies and development of quality assurance and control in the ELSA-Brasil. Rev Saude Publica 2013;47 Suppl 2:105-112 (Portuguese).
6. Teppo L, Pukkala E, Lehtonen M. Data quality and quality control of a population-based cancer registry. Experience in Finland. Acta Oncol 1994;33:365-369.
7. Pandav R, Mehta A, Belle SH, Martin DE, Chandra V, Dodge HH, et al. Data management and quality assurance for an International project: the Indo-US Cross-National Dementia Epidemiology Study. Int J Geriatr Psychiatry 2002;17:510-518.
8. Korea Centers for Disease Control and Prevention. Korea notification of HIV/AIDS in 2018 [cited 2020 Aug 5]. Available from: http://www.cdc.go.kr/npt/biz/npp/portal/nppPblctDtaView.do?pblctDtaSeAt = 1&pblctDtaSn = 1939 (Korean).
9. Jung SO, Cha JO, Yun JK, Kong IS. HIV/AIDS notifications in Korea, 2018. Public Health Wkly Rep 2019;12:1182-1188 (Korean).
10. Choi BY, Choi JY, Han SH, Kim SI, Kee MK, Kim MJ, et al. Korea HIV/AIDS Cohort Study: study design and baseline characteristics. Epidemiol Health 2018;40:e2018023.
11. Choi Y, Choi BY, Kim SM, Kim SI, Kim J, Choi JY, et al. Epidemiological characteristics of HIV infected Korean: Korea HIV/AIDS Cohort Study. Epidemiol Health 2019;41:e2019037.