Hierarchical Gradient Smoothing for Probability Estimation Trees

Presenter: Dr He Zhang
Date: 12th May, 2020
OUTLINE

1. Motivation and related work
 - Where we can do better?
2. Methodology
 - The HGS algorithm
3. Experiment results
 - How does our model work?
4. Conclusion and discussion
 - Take-home messages
1. Motivation and related work
 ➢ Where we can do better?

2. Methodology
 ➢ The HGS algorithm

3. Experiment results
 ➢ How does our model work?

4. Conclusion and discussion
 ➢ Take-home messages
Motivation: Why do we still need single decision tree?

Can we make a single decision tree more accurate while still being efficient and highly interpretable?
Motivation:
What is probability estimation trees?

Decision Tree:
- output a discrete predicted class label

Probability Estimation Trees (PETs)
- output a class probability distribution

PETs are more preferred
- because accurate class probability estimates can show us the reliability of the prediction.

However, poor estimates at leaf nodes:
- high variance: data sparsity
- high bias: towards 0 and 1

Need to be improved.
Motivation: Why doing hierarchical smoothing for trees?

Hierarchical Smoothing / estimation idea:
To make each node a function of the data at the node and the estimate at the parent.

\[p(\text{disease} | \text{has gene & male}) \sim p(\text{disease} | \text{has gene}) \]

\[p(\text{disease} | \text{has gene}) \sim p(\text{disease}) \]

\[P_{\text{MLE}} = \frac{0}{1} = 0\% \]

\[P_{\text{Laplace}} = \frac{0+1}{1+2} = 33.3\% \]

\[P_{\text{M-estimation}} = \frac{0+0.5}{1+1} = 25\% \]

Probability smoothing: make the estimates less extreme.

None of them use the fact that 91% of the patients with that gene have the disease!
Related Work:
Existing hierarchical smoothing methods

- Hierarchical Dirichlet Process (HDP) smoothing

\[
\theta_{4,y} = \frac{n_{4,y} + c_2 \theta_{2,y}}{N_4 + c_2},
\]

\[
\theta_{2,y} = \frac{n_{2,y} + c_1 \theta_{1,y}}{N_2 + c_1},
\]

\[
\theta_{1,y} = \frac{n_{1,y} + c_0 \theta_{0,y}}{N_1 + c_0}.
\]

Need sampling for the parameters

Recursive and Slow !!!

- M-branch smoothing has the same smoothing idea, but different parameter optimization method.
OUTLINE

1. Motivation and related work
 ➢ Where we can do better jobs?

2. Methodology
 ➢ The HGS algorithm

3. Experiment results
 ➢ How does our model work?

4. Conclusion and discussion
 ➢ Take-home messages
Methodology:
Hierarchical Gradient Smoothing (HGS) algorithm

How to make hierarchical smoothing faster?

- replace recursive smoothing with one-time smoothing

- replace sampling by gradient descent

Methodology:
Hierarchical Gradient Smoothing (HGS) algorithm

\[
\theta_{7,y} = \frac{n_{7,y} + \alpha_3 \cdot \theta_{3,y} + \alpha_1 \cdot \theta_{1,y}}{N_7 + \alpha_3 + \alpha_1}
\]

\[
\hat{\theta}_{HGS} = \frac{n_l,k + \alpha \sum_{p \in \text{anc}(l)} \alpha_p \hat{\theta}_{p,k}}{n_{l,} + \alpha \sum_{p \in \text{anc}(l)} \alpha_p}
\]

parameters: \(\hat{\alpha} \)

No sampling, only gradient descent
Yeah, faster !!!
Methodology:
How to optimize the weight parameters?

1. Propose a cost function for HGS

2. Calculate the gradient for each parameter

3. Conduct a standard gradient descent to optimize the parameters

\[\text{LOOCV}(\alpha) = \frac{1}{N} \sum_{l \in \mathcal{L}} \sum_{k \in \mathcal{K}} n_{l,k} \cdot \log \left(\frac{1}{\theta_{l,k}^{\text{LOO}}} \right) \]

\[
\frac{\partial}{\partial \alpha_p} \text{LOOCV}(\alpha) = \frac{1}{N \ln 2} \sum_{l \in \text{des}(p)} \sum_{k \in \mathcal{K}} \beta_{l,k}
\]

where

\[
\beta_{l,k} = \frac{n_{l,k} \cdot \left(\theta_{l,k}^{\text{LOO}} - \theta_{p,k}^{\text{LOO}} \right)}{\left(n_{l,.} - 1 + \sum_{p \in \text{anc}(l)} \alpha_p \right) \cdot \theta_{l,k}^{\text{LOO}}}
\]
Methodology:

Let us talk more about the LOOCV cost function

• Leave-one-out cross validation (LOOCV):
 - a special case of k-folds cross-validation, where k equals to the number of examples.
• Incremental LOOCV: make LOOCV fast
 - it train on the full dataset, then delete the examples in one-fold, test on that fold, and insert the example back. The delete-test-insert phase is repeated for each of the folds.
• Now, if we remove a data example with true class y at leaf node l as the test example, the estimates becomes

\[
\theta_{l,k}^{\text{LOO}} = \frac{n_{l,k} - 1 + \sum_{p \in \text{anc}(l)} \alpha_p \theta_{p,k}^{\text{LOO}}}{n_{l,\cdot} - 1 + \sum_{p \in \text{anc}(l)} \alpha_p}
\]

 - Then, we conduct LOOCV on all the leaf nodes, and get the LOOCV cost function

\[
\text{LOOCV}(\alpha) = \frac{1}{N} \sum_{l \in \mathcal{L}} \sum_{k \in \mathcal{K}} n_{l,k} \cdot \log \left(\frac{1}{\theta_{l,k}^{\text{LOO}}} \right)
\]
OUTLINE

1. Motivation and related work
 - Where we can do better jobs?

2. Methodology
 - The HGS algorithm

3. Experiment results
 - How does our model work?

4. Conclusion and discussion
 - Take-home messages
• **Datasets:** 143 datasets from the UCI repository

Data size	Count
> 10,000	20
> 1,000	52
<1,000	71

• **Evaluation Metrics:**

Metrics	Description
RMSE	measure the accuracy of class probability estimates
0-1 Loss	measure the accuracy of classification
Win-Draw-Loss	when comparing two different models.

• **Evaluation Method:** 10-fold cross validation
1. HGS compared with other smoothing methods

Table 1: Win-Draw-Loss results (The boldface values are significant).

Methods	RMSE	0-1 Loss
HGS vs. MLE	108-2-33	69-22-52
HGS vs. Laplace	111-4-28	68-22-53
HGS vs. M-estimation	98-4-41	66-23-54
HGS vs. M-branch	96-3-44	59-32-52
HGS vs. HDP	92-1-50	64-21-58

- **Significantly better on class probability estimates:** RMSE
- **Better on classification accuracy:** 0-1 loss.

HGS is more accurate than other methods.
2. Efficiency of HGS

Table 2: Averaged results on 143 datasets.

Methods	RMSE	0-1 Loss	Runtime
MLE	0.2596	0.2093	1.1
Laplace	0.2499	0.2093	1.1
M-estimation	0.2485	0.2068	1.1
HDP	0.2436	0.2078	4.9
M-branch	0.2428	0.2062	9.3
HGS	**0.2410**	**0.2059**	**1.1**

- HGS has similar runtime of single-layer methods.
- 5 times faster than HDP.
- 9 times faster than M-branch.

HGS is much more efficient than other hierarchical methods.
3. Training time comparison on different data sizes

![Graph showing training time comparison between HGS and HDP](chart)

- HGS faster than HDP on different data sizes.

Fig. 3: Training time comparison according to log data size.
4. Random Forest with HGS smoothing

- HGS is helpful for small forest.
- Single C4.5 + HGS \approx RF_7 trees
 - Can be learnt and tested much faster
 - Has higher interpretability
 - Applicable for online learning applications

Fig. 4: HGS Smoothing on Random Forest in RMSE
OUTLINE

1. Motivation and related work
 ➢ Where we can do better jobs?
2. Methodology
 ➢ The HGS algorithm
3. Experiment results
 ➢ How does our model work?
4. Conclusion
 ➢ Take-home messages
Conclusion

- HGS is an order of magnitude faster than M-branch and HDP smoothing.

- HGS is significantly better on class probability estimation and better on classification accuracy.

- HGS is generally as good as or superior to random forest with 7 trees and almost as good with 10 trees, and thus suitable in online contexts.

- Random Forest does not need much smoothing because smoothing harms the diversity of random forest.

The implementation, dataset and raw results can be found on Github: https://github.com/icesky0125/DecisionTreeSmoothing
Thank you