REMARK ON POLARIZED K3 SURFACES OF GENUS 36

ILYA KARZHEMANOV

ABSTRACT. Smooth primitively polarized K3 surfaces of genus 36 are studied. It is proved that all such surfaces S, for which there exists an embedding $R \hookrightarrow \text{Pic}(S)$ of some special lattice R of rank 2, are parameterized up to an isomorphism by some 18-dimensional unirational algebraic variety. More precisely, it is shown that a general S is an anticanonical section of a (unique) Fano 3-fold with canonical Gorenstein singularities.

1. INTRODUCTION

Let K_g be the moduli space of all smooth primitively polarized K3 surfaces of genus g. K_g is known to be a quasi-projective algebraic variety (see for example [25]). This makes it possible to consider the fundamental questions of birational geometry about K_g such as its rationality, unirationality, rational connectedness, Kodaira dimension, and etc.

S. Mukai’s vector bundle method, developed to classify higher dimensional Fano manifolds of Picard number 1 and coindex 3 (see [15], [18]), allowed to prove unirationality of K_g for $g \in \{2, \ldots, 10, 12, 13, 18, 20\}$ (see [17], [20], [16], [21]). At the same time, K_g turns out to be non-unirational for general $g \geq 43$ (see [1], [13], [14]). In principle, the proof of unirationality of K_g is based on the observation that general K3 surface S_g with primitive polarization L_g and “not very big” g is an anticanonical section of a smooth Fano 3-fold X_g of genus g so that $L_g = -K_{X_g}|_{S_g}$ (see [17], [16], [19]). The latter gives a rational dominant map from the moduli space \mathcal{F}_g of pairs (X_g, S_g), where $S_g \in |-K_{X_g}|$ is smooth, to K_g by sending (X_g, S_g) to S_g, with \mathcal{F}_g typically being a rational algebraic variety. However, this construction has the restriction that X_g must have Picard number 1, which does not hold for most g (see [7]).

In order to generalize the above arguments for every possible g, to a given smooth Fano 3-fold V of genus g one associates the Picard lattice $R_V := \text{Pic}(V)$, equipped with the pairing $(D_1, D_2) := D_1 \cdot D_2 \cdot (-K_V)$ for $D_1, D_2 \in \text{Pic}(V)$, and considers the moduli space K^R_V of all smooth K3 surfaces S_g, equipped with a primitive embedding $R_V \hookrightarrow \text{Pic}(S_g)$ which maps $-K_V$ to an ample class on S_g of square g (let us call such S_g a K3 surface of type R_V). A beautiful result due to A. Beauville states that a general K3 surface of type R_V is the anticanonical section of a smooth Fano 3-fold X_g of genus g such that $R_{X_g} \cong R_V$ (see [1]). The proof employs the same idea as above, but instead of \mathcal{F}_g the moduli space \mathcal{F}^R_g of pairs (X_g, S_g), where $S_g \in |-K_{X_g}|$ is smooth and X_g is equipped with the lattice isomorphism $R_{X_g} \cong R_V$, is considered. Again the forgetful map $(X_g, S_g) \mapsto S_g$ from \mathcal{F}^R_g to K^R_g turns out to be generically surjective. However, these arguments can be applied only to some $g \leq 33$ (see [7]).

In the present paper, we study primitively polarized smooth K3 surfaces of genus 36 and consider the following

Conjecture 1.1. The moduli space K_{36} is unirational.

To develop an approach to prove Conjecture 1.1 we employ the above ideas to realize a general smooth primitively polarized K3 surface of genus 36 as an anticanonical section of some Fano 3-fold, which must be singular in this case (see [7]). The natural candidate for the latter is the Fano 3-fold X with canonical Gorenstein singularities and genus 36, constructed and studied in [9], [8]. This X has only one singular point (see Corollary 3.10) and the anticanonical linear system $|-K_X|$ gives an embedding $X \hookrightarrow \mathbb{P}^{37}$ (see Remark 3.12), which implies that a general surface $S \in |-K_X|$ is smooth. Also the Picard group of X is generated by K_X (see Corollary 3.11).

Unfortunately, the divisor class group of X has two generators, K_X and some surface E (see Corollary 3.11), so that the restrictions $K_X|_S$ and $E|_S$ generate a primitive sublattice $R_S \subset \text{Pic}(S)$. In particular, the Picard number of S must be at least 2, and hence S cannot be general. However, all lattices R_S, $S \in |-K_X|$, are isomorphic to the lattice $R \cong \mathbb{Z}^2$ with the associated quadratic form $70x^2 + 4xy - 2y^2$ (see the end of Section 3), and, as above,
we can consider the moduli space \mathcal{K}^{36}_{36} of K3 surfaces of type R. On the other hand, we may also consider the moduli space \mathcal{F} of pairs (X^{\sharp}, S^{\sharp}), where X^{\sharp} is a Fano 3-fold of genus 36 with canonical Gorenstein singularities and $S^{\sharp} \in |-K_{X^{\sharp}}|$ is smooth (see Remark 1.3 below for the precise description of \mathcal{F}). Let us state the main result of the present paper:

Theorem 1.2. The forgetful map $s : \mathcal{F} \rightarrow \mathcal{K}^{36}_{36}$ is generically surjective.

Remark 1.3. In the proof of Theorem 1.2 we do not appeal to Akizuki–Nakano Vanishing Theorem, used in [11] to show that \mathcal{F}_{g} (or \mathcal{F}^{g}_{RV}) is a smooth stack, since it is not clear how to apply this theorem in the singular case. Instead, we note that X is unique up to an isomorphism (see Proposition 3.7), and, moreover, it admits a crepant resolution $f : Y \rightarrow X$, with Y being also unique up to an isomorphism (see Proposition 3.8). Then one can prove (see Proposition 3.11) that \mathcal{F} carries the structure of a normal scheme, being the geometric quotient $\mathcal{U}/\text{Aut}(\mathcal{Y})$ of an open subset \mathcal{U} in \mathbb{P}^{37} by the group $\text{Aut}(\mathcal{Y})$ of regular automorphisms of \mathcal{Y}. The proof of Theorem 1.2 then goes along the same lines as in [1] (see Lemma 4.10 below).

Remark 1.4. Taking $X = \mathbb{P}(1,1,1,3)$ in the above considerations, one might apply the arguments from [11] directly (cf. Remark 1.3) to prove that the moduli space \mathcal{K}^{10}_{10} is unirational (see [9], [8] for geometric properties of $\mathbb{P}(1,1,1,3)$).

Furthermore, since the forgetful map $\mathcal{K}^{36}_{36} \rightarrow \mathcal{K}_{36}$ is finite and representable (see [11, (2.5)]), from Theorem 1.2 the construction of \mathcal{F} and quasi-projectivity of \mathcal{K}_{36} we deduce the following

Corollary 1.5. There exists a 18-dimensional unirational algebraic variety which parameterizes up to an isomorphism all smooth K3 surfaces of type R. For general such surface S, $S \in |-K_X|$ and the Picard lattice of S is isomorphic to \mathbb{R}.

Remark 1.6. On the opposite, it follows from the proof of Theorem 1.2 and [2], [3], [23] that no general smooth primitively polarized K3 surface S of genus 36 can be an ample anticanonical section of a normal algebraic 3-fold, except for the cone over S.

Remark 1.7. Corollary 1.5 gives only unirational hypersurface in \mathcal{K}_{36} but not the whole \mathcal{K}_{36}, and hence the proof of Conjecture 1.1 is still to go. It would be also interesting to know whether the map s from Theorem 1.2 is 1-to-1 and \mathcal{K}^{36}_{36} is rational (it follows from the proof of Theorem 1.2 that s is generically étale).

I would like to thank Yu. G. Prokhorov for drawing my attention to the problem and many helpful discussions. I also would like to thank G. Brown, I. Cheltsov, S. Galkin, A. Veselov for fruitful conversations.

2. Notation and conventions

We use standard notions and facts from the theory of minimal models (see [12], [11]). We also use standard notions and facts from the theory of algebraic varieties and schemes (see [3]). All algebraic varieties are assumed to be defined over \mathbb{C}. Throughout the paper we use standard notions and notation from [12], [11], [5]. However, let us introduce some:

- We denote by $\text{Sing}(V)$ the singular locus of an algebraic variety V. For $P \in \text{Sing}(V)$, we denote by $(O \in V)$ the analytic germ of V at P.
- For a \mathbb{Q}-Cartier divisor M and an algebraic cycle Z on a normal algebraic variety V, we denote by $M|_{Z}$ the restriction of M to Z. We denote by $Z_1 \cdot \ldots \cdot Z_k$ the intersection of algebraic cycles Z_1, \ldots, Z_k, $k \in \mathbb{N}$, in the Chow ring of V.
- $M_1 \equiv M_2$ (respectively, $Z_1 \equiv Z_2$) stands for the numerical equivalence of two \mathbb{Q}-Cartier divisors M_1, M_2 (respectively, of two algebraic 1-cycles Z_1, Z_2) on a normal algebraic variety V. We denote by $\rho(V)$ the Picard number of V. $D_1 \sim D_2$ stands for the the linear equivalence of two Weil divisors D_1, D_2 on V. We denote by $N_1(V)$ the group of classes of algebraic cycles on V modulo numerical equivalence. We denote by $\text{Cl}(V)$ (respectively, $\text{Pic}(V)$) the group of Weil (respectively, Cartier) divisors on V modulo linear equivalence.
A normal algebraic three-dimensional variety is called **Fano threefold** if it has at worst canonical Gorenstein singularities and the anticanonical divisor $-K_V$ is ample. A normal algebraic three-dimensional variety is called **weak Fano threefold** if it has at worst canonical singularities and the anticanonical divisor $-K_V$ is nef and big. The number $(-K_V)^3$ (respectively, $\frac{2}{3}(-K_V)^3 + 1$) is called (anticanonical) **degree** (respectively, **genus**) of V.

- For a Weil divisor D on a normal algebraic variety V, we denote by $O_V(D)$ the corresponding divisorial sheaf on V (sometimes we denote both by $O_V(D)$ (or by D)).
- For a vector bundle E on smooth projective variety V, we denote by $c_i(E)$ the i-th Chern class of E.
- We denote by $T_P(V)$ the Zariski tangent space to an algebraic variety V at a point $P \in V$. For V smooth and a smooth hypersurface $D \subset V$, we denote by $T_V(D)$ the subsheaf of the tangent sheaf on V which consists of all vector fields tangent to D.
- For a Cartier divisor M on a normal projective variety V, we denote by $|M|$ the corresponding complete linear system on V. For an algebraic cycle Z on V, we denote by $|M - Z|$ the linear subsystem in $|M|$ which consists of all divisors passing through Z. For a linear system \mathcal{M} on V without base components, we denote by $\Phi_{\mathcal{M}}$ the corresponding rational map.
- For a birational map $\psi : V' \rightarrow V$ between normal projective varieties and an algebraic cycle Z (respectively, a linear system \mathcal{M}) on V, we denote by $\psi_*^{-1}(Z)$ (respectively, by $\psi_*^{-1}(\mathcal{M})$) the proper transform of Z (respectively, of \mathcal{M}) on V'.
- We denote by \mathbb{F}_n the Hirzebruch surface with the class of a fiber l and the minimal section h of the natural projection $\mathbb{F}_n \rightarrow \mathbb{P}^1$ such that $(h^2) = -n, n \in \mathbb{Z}_{\geq 0}$.

3. Preliminaries

In what follows, X is a Fano 3-fold of genus 36 (or degree 70). Let us present the construction and some properties of X (see [9] for more details).

Consider the weighted projective space $\mathbb{P} := \mathbb{P}(1, 1, 4, 6)$ with weighted homogeneous coordinates x_0, x_1, x_2, x_3 of weights 1, 1, 4, 6, respectively. \mathbb{P} is a Fano 3-fold of degree 72. Furthermore, the linear system $| -K_\mathbb{P}|$ gives an embedding of \mathbb{P} in \mathbb{P}^{38} such that the image $\Phi_{-K_\mathbb{P}}(\mathbb{P})$ is an intersection of quadrics. In what follows, we assume that $\mathbb{P} \subset \mathbb{P}^{38}$ is anticanonically embedded. Then $L := \text{Sing}(\mathbb{P})$ is a line on \mathbb{P} with respect to this embedding. Moreover, there are two points P and Q on L such that the singularities $P \in \mathbb{P}, Q \in \mathbb{P}$ are of types $\frac{1}{6}(4, 1, 1), \frac{1}{4}(2, 1, 1)$, respectively, and for every point $O \in L \setminus \{P, Q\}$ the singularity $O \in \mathbb{P}$ is analytically isomorphic to $(0, o) \in \mathbb{C} \times W$, where $o \in W$ is the singularity of type $\frac{1}{2}(1, 1)$ (see [9] Example 2.13).

Proposition 3.1. L is the unique line on \mathbb{P}.

Proof. Let $L_0 \neq L$ be another line on \mathbb{P}. Since $-K_\mathbb{P} \sim O_\mathbb{P}(12)$, we have

\begin{equation}
O_\mathbb{P}(1) \cdot L_0 = \frac{1}{12}.
\end{equation}

which implies that $L \cap L_0 \neq \emptyset$. Consider the crepant resolution $\phi : T \rightarrow \mathbb{P}$ of \mathbb{P}. Set $L'_0 := \phi^{-1}(L_0), E_0 := \phi^{-1}(Q), E_P := \phi^{-1}(P)$ and $E_L := \phi^{-1}(L \setminus \{P, Q\})$, the Zariski closure in T of $\phi^{-1}(L \setminus \{P, Q\})$. These are all the components of the ϕ-exceptional locus. Furthermore, we have $E_P = E_P^{(1)} \cup E_P^{(2)}$, where $E_P^{(i)}$ are irreducible components of the divisor E_P such that $E_P^{(1)} \cap E_L = \emptyset$ and $E_P^{(2)} \cap E_L \neq \emptyset$ (see [9] Example 2.13 for the explicit construction of ϕ).

Since $\rho(\mathbb{P}) = 1$, the group $N_1(T)$ is generated by the classes of ϕ-exceptional curves and some curve Z on T such that $R := \mathbb{R}_+[Z]$ is the K_T-negative extremal ray (see [24] Lemmas 4.2, 4.3). In particular, since $-K_T \cdot L'_0 = 1$, [24] Lemmas 4.2, 4.3] implies that

\begin{equation}
L'_0 = Z + E^*,
\end{equation}

where E^* is a linear combination with nonnegative coefficients of irreducible ϕ-exceptional curves. Further, the linear projection π_L of \mathbb{P} from L is given by the linear system $\mathcal{H} \subset | -K_\mathbb{P}|$ of all hyperplane sections of \mathbb{P} containing L. In addition, π_L maps L_0 to the point because $L \cap L_0 \neq \emptyset$ and \mathbb{P} is the intersection of quadrics. On the other hand, ϕ factors through the blow up of \mathbb{P} at L (see [9, 8]). Hence the linear system $\phi_*^{-1}\mathcal{H}$ is basepoint-free on T and $H \cdot L'_0 = 0$ for $H \in \phi_*^{-1}\mathcal{H}$. In particular, $H \in \mathcal{H}$.
Lemma 3.4. In (3.3), the support $\text{Supp}(E^*)$ of E^* is either \emptyset or e_P, where $e_P \subset E_P^{(1)}$.

Proof. As we saw, the face of the Mori cone $\overline{NE}(T)$, which corresponds to the nef divisor H, contains the class of the curve L_0'. Then from (3.3) we get

$$H \cdot Z = H \cdot E^* = 0.$$

In particular, H intersects trivially every curve in $\text{Supp}(E^*)$. On the other hand, we have $\text{Supp}(E^*) \subseteq \{e_P, e_Q, e_L\}$, where e_P, e_Q, e_L are the curves in E_P, E_Q, E_L, respectively. But for $e_P \subset E_P^{(2)}$ intersections $H \cdot e_P, H \cdot e_Q, H \cdot e_L$ are all non-zero. Thus, $\text{Supp}(E^*)$ is either \emptyset or e_P, where $e_P \subset E_P^{(1)}$.

Consider the extremal contraction $f_R : T \to T'$ of R. The morphism f_R is birational with the exceptional divisor E_R (see [9], [8]).

Lemma 3.5. The divisor $-K_{T'}$ is nef.

Proof. Suppose that $-K_{T'}$ is nef, i.e., T' is a weak Fano 3-fold (with possibly non-Gorenstein singularities). If T' has only terminal factorial singularities, then since $(-K_{T'})^3 \geq (-K_T)^3 = 72$ (see [24] Proposition-definition 4.5), T' is a terminal \mathbb{Q}-factorial modification either of $\mathbb{P}(1, 1, 1, 3)$ or of $\mathbb{P}(1, 1, 4, 6)$. In particular, either $\rho(Y') = 5$ or $\rho(Y') = 2$ (see [9], [8]). On the other hand, $\rho(T') = \rho(T) - 1 = 4$, a contradiction.

Thus, the singularities of T' are worse than factorial. In this case, $f_R(E_R)$ is a point (see [24] Proposition-definition 4.5)) and we get

$$(3.6) \quad E_P \cap E_R = E_Q \cap E_R = \emptyset.$$

On the other hand, it follows from (3.3) that $-K_T \cdot \phi_s(Z) = 1$, i.e., $\phi(Z)$ is a line on \mathbb{P}. In particular, as for L_0 above, we have $\phi_s(Z) \cap L \neq \emptyset$. But then (3.6) implies that $0 = K_T \cdot Z = -1$, a contradiction. \qed

It follows from Lemma 3.5 that $E_R = \mathbb{F}_1$ or $\mathbb{F}^1 \times \mathbb{F}^1$ (see [24] Proposition-definition 4.5)). But if $E_R = \mathbb{F}_1$, then $\phi(E_R)$ is a plane on \mathbb{P} such that $L \not\subset \phi(E_R)$ (see [24] Proposition-definition 4.5)). This implies that there is a line on \mathbb{P} not intersecting L, a contradiction (see [3.2]). Finally, in the case when $E_R = \mathbb{F}^1 \times \mathbb{F}^1$, we have $Z \subset E_R = E_L$ (see [24] Proposition-definition 4.5)), and if $\text{Supp}(E^*) = \emptyset$ in (3.3), then $L_0 = L$, a contradiction. Hence, by Lemma 3.4 we get $\text{Supp}(E^*) = e_P$, where $e_P \subset E_P^{(1)}$. Further, on E_R we have:

$$Z \sim l, \quad E_P|_{E_R} = E_P^{(2)}|_{E_R} \sim h \sim E_Q|_{E_R},$$

which implies that $E_P^{(2)} \cdot Z = E_Q \cdot Z = 1$. On the other hand, since $L_0 \neq L$, we have either $E_P^{(2)} \cdot L_0 = 0$ or $E_Q \cdot L_0 = 0$. Then, intersecting (3.3) with $E_P^{(2)}$ and E_Q, we get a contradiction because $E_P^{(2)} \cdot e_P$ and $E_Q \cdot e_P \geq 0$.

Thus, we get $L_0 = L$, a contradiction. Proposition 3.1 is completely proved. \qed

Coming back to the construction of X, take any point O in $L \setminus \{P, Q\}$ and consider the linear projection $\pi : \mathbb{P} \to \mathbb{P}^{37}$ from O. Then the image of π is a Fano 3-fold X_O of degree 70 (see [9], [8]).

Proposition 3.7. For any point O' in $L \setminus \{P, Q, O\}$, the image of the linear projection $\mathbb{P} \to \mathbb{P}^{37}$ from O' is a Fano 3-fold $X_{O'}$ isomorphic to X_O.

Proof. In the above notation, L is given by equations $x_0 = x_1 = 0$ on \mathbb{P}, with equations of P and Q being $x_0 = x_1 = x_2 = 0$ and $x_0 = x_1 = x_3 = 0$, respectively (see [6] 5.15). Then the torus $(\mathbb{C}^*)^3$, acting on \mathbb{P}, acts transitively on the set $L \setminus \{P, Q\}$, which induces an isomorphism $X_{O'} \simeq X_O$. \qed

In what follows, because of Proposition 3.7 we fix the point $O \in L \setminus \{P, Q\}$, the linear projection $\pi : \mathbb{P} \to \mathbb{P}^{37}$ from O, and denote the image of π by X. Let us construct a terminal \mathbb{Q}-factorial modification of X. Consider the blow up $\sigma : W \to \mathbb{P}$ of \mathbb{P} at O, and the following commutative diagram:

$$\begin{array}{c}
\sigma \\
\downarrow \\
W \\
\downarrow \\
\mathbb{P} \\
\downarrow \pi \\
X.
\end{array}$$

The type of the singularity $O \in \mathbb{P}$ implies that W has at most canonical Gorenstein singularities. Moreover, we have $\text{Sing}(W) = \sigma^{-1}_*(L)$ and the singularities of W are exactly of the same kind as of \mathbb{P}, i.e., locally near every point
in \(\text{Sing}(W) \), \(W \) is isomorphic to \(\mathbb{P} \). Then, resolving the singularities of \(W \) in the same way as for \(\mathbb{P} \), we arrive at the birational morphism \(\tau : Y \to W \), with \(Y \) being smooth and \(K_Y = \tau^*(K_W) \) (see [9, 8]). Set \(f := \tau \circ \mu : Y \to X \).

Proposition 3.8. \(f : Y \to X \) is a terminal \(\mathbb{Q} \)-factorial modification of \(X \). Moreover, \(Y \) is unique up to isomorphism, i.e., every smooth weak Fano 3-fold of degree 70 is isomorphic to \(Y \).

Proof. The linear projection \(\pi \) is given by the linear system \(H \subset | - K_P | \) of all hyperplane sections of \(\mathbb{P} \) passing through \(O \). For a general \(H \in H \), we have
\[
\sigma^{-1}_\pi(H) = \sigma^*(H) - E_\sigma,
\]
where \(E_\sigma \) is the \(\sigma \)-exceptional divisor. On the other hand, from the adjunction formula we get
\[
K_W = \sigma^*(K_P) + E_\sigma.
\]
Thus, the morphism \(\mu : W \to X \) is given by the linear system \(\sigma^{-1}_\pi(H) \subseteq | - K_W | \). Furthermore, since \(\mathbb{P} \) is an intersection of quadrics, \(\pi \) is a birational map, which implies that \(\mu \) and \(f \) are also birational with \(K_Y = f^*(K_X) \).

In particular, \((- K_Y)^3 = (- K_X)^3 = 70 \).

Thus, it remains to prove that every smooth weak Fano 3-fold of degree 70 is isomorphic to \(Y \). Let \(Y' \) be another smooth weak Fano 3-fold of degree 70. Then its image under the morphism \(f' := \Phi_{(- K_Y)} \), \(n \in \mathbb{N} \), is a Fano threefold \(X' \) such that \(K_{X'} = f'^*(K_X) \) (see [10]). Since \((- K_Y)^3 = (- K_X)^3 = 70 \), we get \(X' \simeq X \) and \(Y' \) is a terminal \(\mathbb{Q} \)-factorial modification of \(X \). Then, since \(Y' \) and \(Y \) are relative minimal models over \(X \), the induced birational map \(Y \to Y' \) is either an isomorphism or a sequence of \(K_Y \)-flops over \(X \) (see [12]).

Lemma 3.9. Every \(K_Y \)-trivial extremal birational contraction \(f_1 : Y \to Y_1 \) is divisorial.

Proof. Suppose that \(f_1 \) is small. In the notation from the proof of Proposition 3.8 denote by \(E_{Y,L} \), \(E_1^{(i)} \), \(E_Q \), \(L \) the proper transforms on \(Y \) of \(E_L \), \(E_1 \), \(E_Q \), \(L \) respectively. The resolution \(\tau : Y \to W \) (or \(\phi : T \to \mathbb{P} \)) is locally toric near \(\text{Sing}(W) \). In particular, we have \(E_1^{(1)} \simeq F_1 \), \(E_1^{(2)} \simeq F_2 \), \(E_Q \simeq F_2 \), \(E_{Y,L} \simeq F_m \) for some \(m \in \mathbb{N} \) (see [9] Example 2.13), and hence the only possibility for \(f_1 \) is to contract the curve \(Z = h \) on \(E_{Y,L} \) such that \(\tau(Z) = \sigma^{-1}(L) \).

On the other hand, \(Y \) is obtained by the blow up of the 3-fold \(T \) at the curve \(\phi^{-1}(O) \simeq \mathbb{P}^1 \) (see [9, 8]). Furthermore, since \(\mathbb{P} \) is singular along the line, we have \(E_L \simeq \mathbb{P}^1 \times \mathbb{P}^1 \) (see [24] Proposition-definition 4.5), and hence \(E_{Y,L} \simeq \mathbb{P}^1 \times \mathbb{P}^1 \), a contradiction.

It follows from Lemma 3.9 that \(Y' \simeq Y \). Proposition 3.8 is completely proved. \(\square \)

Corollary 3.10. \(\text{Sing}(X) \) consists of a unique point.

Proof. Since the morphism \(\mu : W \to X \) is given by the linear system \(\sigma^{-1}_\pi(H) \subseteq | - K_W | = | \sigma^*(-K_P) - E_\sigma | \) (see the proof of Proposition 3.8), it contracts only \(\sigma^{-1}_\pi(L) = \text{Sing}(W) \) to the unique singular point on \(X \) (see Proposition 3.11). \(\square \)

Corollary 3.11. We have \(\text{Pic}(X) = \mathbb{Z} \cdot K_X \) and \(\text{Cl}(X) = \mathbb{Z} \cdot K_X \oplus \mathbb{Z} \cdot E \), where \(E := \mu_*(E_\sigma) \).

Proof. This follows from the construction of \(X \) and equalities \(\rho(\mathbb{P}) = 1 \), \((- K_X)^3 = 70 \). \(\square \)

Remark 3.12. It follows from the construction of \(X \) that \(f = \Phi_{(- K_Y)} \) and \(X \subseteq \mathbb{P}^{37} \) is anticanonically embedded.

Remark 3.13. Since \(Y \) is a smooth weak Fano 3-fold, we have \(\text{Pic}(Y) \simeq H^2(Y, \mathbb{Z}) \) (see [7] Proposition 2.1.2) and \(H^2(Y, \mathcal{O}_Y) = 0 \) by Kawamata–Viehweg Vanishing Theorem.

It follows from Corollary 3.10 that a general surface \(S \in | - K_X | \) is smooth. Furthermore, Corollary 3.11 implies that the cycles \(K_X |_S \) and \(E |_S \) are not divisible in \(\text{Pic}(S) \), linearly independent in \(H^2(S, \mathbb{Q}) \), and hence they generate a primitive sublattice \(R_S \) in \(\text{Pic}(S) \). It follows from the construction of \(X \) that all lattices \(R_S \), \(S \in | - K_X | \), are isomorphic to the lattice \(\mathbb{R} \simeq \mathbb{Z}^2 \) with the associated quadratic form \(70x^2 + 4xy - 2y^2 \), and we can consider the moduli stack \(\mathcal{K} := R_{\mathbb{R}^2} \) of \(K3 \) surfaces of type \(R \) (see [1] (2.3)]. \(\mathcal{K} \) is actually an algebraic space because the forgetful map \(\mathcal{K} \to \mathcal{K}_{36} \) is representable and 1-to-1 in our case (see [1] (2.5)]).

Proposition 3.14 (see [1]). Let \(S \) be the \(K3 \) surface of type \(R \). Then

1) It can be also easily seen that the class of a \((-2)\)-curve in \(\text{Pic}(S) \) is unique and generated by the conic \(E |_S \).
the first order deformations of (S, R) are parameterized by the orthogonal of $c_1(R) \subset H^1(S,\Omega^1_S)$ in $H^1(S, T_S)$;
the space K is smooth, irreducible, of dimension 18.

4. Proof of Theorem 1.2

We use the notation and conventions of Section 3. Since $f : Y \rightarrow X$ is the crepant resolution (see Proposition 3.8), it follows from Corollary 3.10 that we can assume a general $S \in \mathcal{G}_{X}$ to be a surface in \mathcal{G}_{Y} on Y. We can also assume that $S \cap \text{Exc}(f) = \emptyset$ for the f-exceptional locus $\text{Exc}(f)$. Further, it follows from Remark 3.12 that the points in $(\mathbb{P}^3)^*$, corresponding to such S’s, form an open subset $U \subset (\mathbb{P}^3)^*$. Consider the natural (faithful) action of the group $G := \text{Aut}(Y)$ on U. Shrinking U if necessary, we obtain the following

Proposition 4.1. The geometric quotient U/G exists as a smooth scheme.

Proof. Let us calculate the group G first. Take $g \in \text{Aut}(\mathbb{P})$ to be an automorphism of \mathbb{P} which fixes the point O. Then g lifts to the automorphism of Y (see the construction of X and Y in Section 3). Conversely, take any $g \in G$.

Lemma 4.2. The morphism $\tau : Y \rightarrow W$ is g-equivariant.

Proof. Since the morphism $f = \Phi_{-K_Y} : Y \rightarrow X$ is g-equivariant (see Remark 3.12), it follows from the construction of Y in Section 3 that the irreducible components of $\text{Exc}(f)$ are all g-invariant. Thus, since $\text{Pic}(Y)$ is generated by K_Y, the irreducible components of E_f and $E_{Y,\sigma} := \tau_f^{-1}(E_{\sigma})$, it is enough to prove that $g(E_{Y,\sigma}) = E_{Y,\sigma}$. Suppose that $g(E_{Y,\sigma}) \neq E_{Y,\sigma}$. Then, since all the curves in E_{σ} (respectively, in $\tau_f(g(E_{Y,\sigma}))$) are numerically proportional and τ is divisorial, we must have $E_{\sigma} \cap \tau_f(g(E_{Y,\sigma})) = \emptyset$. The latter implies that there exists a curve $C \equiv \sigma_x(-K_W \cdot \tau_f(g(E_{Y,\sigma})))$ on W with $K_W \cdot C = 4$ and $C \cap L = \emptyset$. On the other hand, since $K_W \sim O(W)$, we get $O_W(1) \cdot C = 1$, a contradiction. \hfill \Box

It follows from Lemma 4.2 that g acts on W. Further, considering the induced g-action on the cone $\overline{NE}(W)$, we obtain, since $\text{Pic}(W) = \mathbb{Z} \cdot K_W \oplus \mathbb{Z} \cdot E_{\sigma}$, that $\sigma : W \rightarrow \mathbb{P}$ is g-equivariant. The latter gives a g-action on \mathbb{P} with the fixed point O.

Thus, G is isomorphic to the stabilizer in $\text{Aut}(\mathbb{P})$ of the point O, and to describe the G-action on U we may consider the action of the corresponding subgroup in $\text{Aut}(\mathbb{P})$ on the linear system $| - K_{\mathbb{P}} - O|$. Note that, since $P \in \mathbb{P}$, $Q \in \mathbb{P}$, $O \in \mathbb{P}$ are the pairwise non-isomorphic singularities, every $g \in G$ fixes every point on L. Finally, since $O_{\mathbb{P}}(1)$, $O_{\mathbb{P}}(4)$, $O_{\mathbb{P}}(6)$ are G-invariant, the g-action on \mathbb{P} can be described as follows:

$$
(4.3) \quad x_0 \mapsto ax_0 + bx_1, \\
\quad x_1 \mapsto cx_0 + dx_1, \\
\quad x_2 \mapsto \lambda^4 x_2 + f_4(x_0, x_1), \\
\quad x_3 \mapsto \lambda^6 x_3 + x_2^2 x_2 f_2(x_0, x_1) + f_6(x_0, x_1),
$$

where $\lambda \in \mathbb{C}^*$, $(a \ b \ c \ d) \in GL(2, \mathbb{C})/\{\pm 1\}$, $f_i := f_i(x_0, x_1)$ are arbitrary homogeneous polynomials of degree i in x_0, x_1. On the other hand, since $-K_{\mathbb{P}} \sim O(W)$, a general element in $| - K_{\mathbb{P}} - O|$ can be given by the equation

$$
(4.4) \quad \alpha x_3^2 + x_2^3 + a_6(x_0, x_1)x_3 + a_2(x_0, x_1)x_2x_3 + a_4(x_0, x_1)x_2^2 + a_6(x_0, x_1)x_2 + a_{12}(x_0, x_1) = 0
$$

on \mathbb{P}, where $a_i := a_i(x_0, x_1)$ are arbitrary general homogeneous polynomials in x_0, x_1 of degree i, and $\alpha \in \mathbb{C}^*$ is fixed.

Take a general surface S_0 on \mathbb{P} with the equation (4.3) such that $a_2 = a_4 = a_6 = 0$.

Lemma 4.5. If S_0 is g-invariant for some $g \neq id$ from (4.3), then $f_2 = f_4 = f_6 = 0$, $c = b = 0$, $a = d = \sqrt{-1}$, $\lambda^4 = 1$.

Proof. g-invariance of S_0 implies that $f_2 = f_4 = f_6 = 0$ and

$$
(4.6) \quad a_8(x_0, x_1) = a_8(ax_0 + bx_1, cx_0 + dx_1), \quad a_{12}(x_0, x_1) = a_{12}(ax_0 + bx_1, cx_0 + dx_1).
$$

Without loss of generality we may assume that $a_8(x_0, x_1) b_6$ for some $b_6 := b_6(x_0, x_1)$ coprime to x_0 and x_1. Then (4.3) and generality of S_0 imply that $(a \ b \ c \ d) = (\sqrt{-1} \ 0 \ 0 \ d)$, and we get:

$$
\begin{align*}
a^{12} &= 1, & a^{i+1} a^{d-i} &= 1, & a^i d^{6-i} &= a^i d^{6-j}.
\end{align*}
$$

6
for all $0 \leq i, j \leq 6$. In particular, $a = d, a^8 = a^{12} = 1$, i.e., $a = d = \sqrt{-1}$. Finally, since $x_2 \mapsto \lambda^4 x_2$ (see 4.3) and hence $a_8(x_0, x_1) = \lambda^4 a_8(x_0, x_1)$ (see 4.4), we get $\lambda^4 = 1$.

\textbf{Lemma 4.7.} Let $g \in G$, given by 4.3, be such that $f_2 = f_4 = f_6 = 0$, $c = b = 0$, $a = d = \sqrt{-1}$, $\lambda = \pm \sqrt{-1}$. Then $g = \text{id}$.

\textit{Proof.} Let π be the geometric quotient U/G exists as a smooth scheme. Proposition 4.1 is completely proved.

It follows from Lemmas 4.3 and 4.7 since $\lambda^4 = 1$ implies $\lambda^2 = \pm 1$, that the stabilizer of S_0 in G is a group of order 2, generated by some $g_0 \in G$ with $\lambda^2 = 1$ (see 4.3). Consider the normal algebraic subgroup $G' \subset G$ generated by $g^{-1}g_0g$ for all $g \in G$, i.e., generators of G' are all the elements in G for which $f_4 = 0$, $c = b = 0$, $a = d = \sqrt{-1}$ and $\lambda = 1$ in 4.3. Then the G'-action on U is proper, and we can consider the geometric quotient $U' := U/G'$, which exists as a normal scheme (see 22). Further, take the $G'' := G/G'$-equivariant factorization map $\pi_G : U \to U'$ and consider the induced G''-action on U'. Shrinking U if necessary, we obtain

\textbf{Lemma 4.8.} The G''-action on U' is free.

\textit{Proof.} Let S_0' be the image on U' of S_0 under π_G. Then we have $G'' \cdot S_0' \simeq G''$ for the G''-orbit of S_0', and, by the dimension count, there exists a Zariski open subset in U' with a free G''-action. Lemma 4.8 and 24 imply that the geometric quotient $U/G \simeq U'/G''$ exists as a smooth scheme. Proposition 1.1 is completely proved.

Set $\mathcal{F} := U/G$ to be the scheme from Proposition 4.1. It follows from Proposition 4.8 and Remark 4.12 that \mathcal{F} is a (coarse) moduli space which parameterizes the pairs (Y^2, S^2) consisting of smooth weak Fano 3-fold Y^2 of degree 70 and smooth surface $S^2 \subset -K_{Y^2}$ (see (2.2)). These give the following

\textbf{Lemma 4.9.} For $o := (Y, S) \in \mathcal{F}$, we have $H^1(Y, T_Y(S)) = T_o \mathcal{F}$.

\textit{Proof.} This follows from the fact that \mathcal{F} is smooth and $H^1(Y, T_Y(S))$ parameterizes the first order deformations of (Y, S) (see [1] Proposition 1.1).

Consider the forgetful morphism $s : \mathcal{F} \to \mathcal{K}$, which sends (Y, S) to S.

\textbf{Lemma 4.10.} s is generically surjective.

\textit{Proof.} Consider the restriction map $r : T_Y(S) \to T_S$. It fits into the exact sequence

\begin{equation}
0 \to \Omega^2_Y \to T_Y(S) \to T_S \to 0,
\end{equation}

since $\text{Ker}(r) = T_Y(-S)$ is a subsheaf of $T_Y(S)$ consisting of the vector fields vanishing along S, for which we have $T_Y(-S) \simeq \Omega^2_Y$. From (4.11) we get the exact sequence

$$H^1(Y, T_Y(S)) \xrightarrow{H^1(r)} H^1(S, T_S) \xrightarrow{\partial} H^2(Y, \Omega^2_Y).$$

The map ∂ is dual to the restriction map $i : H^1(Y, \Omega^2_Y) \to H^1(S, \Omega^1_S)$ (see [1]). In particular, $\text{Ker}(\partial)$ is the orthogonal of $\text{Im}(i)$. On the other hand, we have $\text{Im}(i) = Z \cdot c_1(K_Y \mid_S) \oplus Z \cdot c_1(\tau^{-1}E_s \mid_S) \simeq Z \cdot K_X \mid_S \oplus Z \cdot E \mid_S$ (see Corollary 3.11 and Remark 3.13), and hence $H^1(r)$ coincides with the tangent map to s at (Y, S), with $\text{Im}(H^1(r)) = \text{Ker}(\partial)$ being the tangent space to \mathcal{K} at S (see Lemma 3.9 and Proposition 3.11). Thus, since \mathcal{K} is irreducible (see Proposition 3.14), we get that s is generically surjective.

\textbf{Theorem 1.2} is completely proved.
REFERENCES

[1] Beauville A. Fano threefolds and K3 surfaces // The Fano conference. Univ. Torino. 2004. P. 175–184.
[2] Cheltsov I. A. Singularity of three-dimensional manifolds possessing an ample effective divisor – a smooth surface of Kodaira dimension zero // Mat. Zametki. V. 59(4). 1996. P. 618–626.
[3] Cheltsov I. A. Rationality of Enriques-Fano threefold of genus five // Russ. Acad. Sci. Izv. Math. 2004. V. 68(3). P. 181–194.
[4] Gritsenko V., Hulek K., Sankaran G. K. The Kodaira dimension of the moduli of K3 surfaces // Inv. Math. V. 167. 2007. P. 519–567.
[5] Hartshorne R. Algebraic geometry // New York: Springer Verlag. 1977.
[6] Iano-Fletcher A. R. Working with weighted complete intersections // Explicit Birational Geometry of 3-Folds (A. Corti and M. Reid, eds.). London Math. Soc. Lecture Note Sec. Cambridge Univ. Press. Cambridge 2000. V. 281. P. 101–173.
[7] Iskovskih V. A., Prokhorov Yu. G. Fano varieties. Encyclopaedia of Mathematical Sciences // Algebraic geometry V / ed. Parshin A. N., Shafarevich I. R. V. 47. Berlin: Springer Verlag. 1999.
[8] Karzhemanov I. V. Fano threefolds with canonical Gorenstein singularities and big degree // arXiv: math. AG0908.1671 (2009).
[9] Karzhemanov I. V. On Fano threefolds with canonical Gorenstein singularities // Russ. Acad. Sci. Sb. Math. 2009. V. 200(8). P. 111–146.
[10] Kawamata Y. The crepant blowing-up of 3-dimensional canonical singularities and its application to the degeneration of surfaces //Ann. of Math. 1988. V. 127(2). P. 93–163.
[11] Kawamata Y., Matsuda K., Matsuki K. Introduction to the Minimal Model Problem // Advanced Studies in Pure Math. 1987. V. 10. P. 283–360.
[12] Kollár J., Mori S. Birational geometry of algebraic varieties // Cambridge Univ. Press. 1998.
[13] Kondo S. On the Kodaira dimension of the moduli spaces of K3 surfaces // Compositio Math. V. 89. 1993. P. 251–299.
[14] Kondo S. On the Kodaira dimension of the moduli spaces of K3 surfaces II // Compositio Math. V. 116. 1999. P. 111–117.
[15] Mukai S. Biregular classification of Fano threefolds and Fano manifolds of coindex 3 // Proc. Natl. Acad. Sci. USA. V. 86. 1989. P. 3000–3002.
[16] Mukai S. Curves and K3 surfaces of genus 11 // Moduli of vector bundles (M. Maruyama, ed., eds.). Lecture Notes in Pure and Appl. Math. V. 179. 1996. P. 189–197.
[17] Mukai S. Curves, K3 surfaces and Fano 3-folds of genus ≤ 10 // Algebraic geometry and commutative algebra in honor of M. Nagata. Kinokuniya. 1987. P. 357–377.
[18] Mukai S. Fano 3-folds // London Math. Soc. Lect. Note Ser. V. 179. 1992. P. 255–263.
[19] Mukai S. New developments of Fano varieties: vector bundles and moduli problems // Sugaku. 1995. V. 47(2). P. 125-144.
[20] Mukai S. Polarized K3 surfaces of genus 18 and 20 // Vector bundles and Special Projective Embeddings. Bergen. 1989. P. 264–276.
[21] Mukai S. Polarized K3 surfaces of genus thirteen // Advanced Studies in Pure Mathematics. V. 45. 2006. P. 315–326.
[22] Popp H. On moduli of algebraic varieties I, II, III // Inv. Math. V. 22. 1973. P. 1–40; Comp. Math. V. 28. 1974. P. 51–81; Comp. Math. V. 31. 1975. P. 237–258.
[23] Prokhorov Yu. G. On algebraic threefolds whose hyperplane sections are Enriques surfaces // Russ. Acad. Sci. Sb. Math. 1995. V. 186 (9). P. 1341–1352.
[24] Prokhorov Yu. G. On the degree of Fano threefolds with canonical Gorenstein singularities // Russ. Acad. Sci. Sb. Math. 2005. V. 196(1). P. 81–122.
[25] Viehweg E. Quasi-Projective moduli for polarized manifolds // Ergebnisse der Mathematik. Springer Verlag. V. 30. 1995. P. 1–320.

UNIVERSITY OF EDINBURGH, KINGS BUILDINGS, MAYFIELD ROAD, EDINBURGH EH9 3JZ, UK
E-mail address: ilkarjem@rambler.ru