Update of Patient Selection and Therapeutic Strategy Using MitraClip

Hiroshi Ueno, MD, Teruhiko Imamura, MD and Koichiro Kinugawa, MD

Summary
Patients with advanced heart failure often accompany severe function mitral regurgitation refractory to optimal medical therapy. Degenerative mitral regurgitation also develops due to various degeneration of mitral valve. Surgical intervention to the mitral valve might be effective in some cases, but it is challenging for the high-risk cases. Recently, percutaneous edge-to-edge mitral valve repair using the MitraClip system, which enables us to approach the mitral valve at relatively low risk, has developed. Two major prospective randomized control trials have been conducted to investigate the clinical advantage of MitraClip system over optimal medical therapy in patients with severe mitral regurgitation; both showed controversial conclusions. Now is a time to consider optimal patient selection and therapeutic strategy using MitraClip system.

Key words: Mitral regurgitation, Percutaneous intervention, Edge-to-edge repair

MitraClip system consists of a 24-Fr steerable guiding catheter and a clip delivery system with a clip located at the tip (Figure 2). The clip delivery system has two di- als (medial-lateral direction and antero-posterior direction) to direct the clip toward the plane of mitral valve. The clip arm can be opened or closed by using the arm positioner knob attached to the clip delivery system. You can try clipping repeatedly before releasing the clip from the clip delivery system for the appropriate positioning.

During the MitraClip procedure, tranesophageal echocardiography is a more useful tool to understand detailed anatomical device positioning than the fluoroscopic image. Echocardiologists and interventionists should collaborate with each other for the successful MitraClip pro-
Figure 1. Two mechanisms of mitral regurgitation (MR): degenerative MR due to mitral valve leaflet prolapse with eccentric MR jet (A, B) and functional MR due to enlarged left ventricular cavity and tethering of mitral valve leaflet (C, D). LA indicates left atrium and LV indicates left ventricle.

Figure 2. MitraClip system consisting of steerable guide catheter and clip delivery system (A) and a clip located on the tip of MitraClip system (B). Figures are used with permission from Abbott Vascular.

cedure.

Following the procedure, approximately 8 mm of the idiopathic atrial septal defect remains, but most of them close gradually with a left to right shunt. If remained, transcatheter closure might be considered.9 For the hemostasis of the right femoral vein, a figure-of-eight technique with one suture is an easy and secure procedure.9

MitraClip® inDegenerative MR

Degenerative MR is a relatively common disease, which develops approximately 2% of the population.10 It is caused by valvular or chordal degeneration with systolic excessive leaflet movement, due to fibroelastic deficiency, or diffuse myxomatous disease.11

The gold standard is surgical interventions including mitral valve repair or replacement, and the repair is recommended for its superiority in the long-term outcome.12 However, approximately half of patients applicable to the surgical intervention do not undergo the surgery, given their high age, renal dysfunction, and a history of open-heart surgery.13

MitraClip procedure, a less invasive transcatheter edge-to-edge mitral valve clipping, was innovated for such high-risk populations. Thus far, many studies have demonstrated the safety and efficacy of the MitraClip procedure.
Of note, Endovascular Valve Edge-to-Edge Repair Study II (EVEREST II) is the sole prospective multicenter randomized trial comparing MitraClip procedure with conventional surgical intervention. In this study, 279 patients with symptomatic MR were randomized into the MitraClip arm and the surgical arm (repair or replacement). Of them, 73% was degenerative MR, and those with reduced cardiac function (left ventricular end-diastolic diameter over 55 mm or left ventricular ejection fraction below 25%) were excluded. The rate of recurrence of MR requiring reoperation was higher in the MitraClip arm over the surgical arm (20% versus 2%), whereas one-year and four-year severity of MR and mortality were statistically comparable between the arms. Major adverse events were also statistically not different between the two arms except for the lower incidence of transfusion in the MitraClip arm (13% versus 45%).

EVEREST High-Risk Registry, a sub-analysis of EVEREST II trial, assessed 78 patients with predicted operative mortality risk ≥ 12% who received MitraClip procedure or medical therapy. One-year survival was superior in the MitraClip group compared with the medical group (76% versus 55%) and the MitraClip group had lower 1-year heart failure recurrence rate compared with the medical group (16% versus 42%).

In the REALIS trial that included 127 inoperable patients with degenerative MR who received MitraClip procedure, one-year survival was over 70%. Given most of the survivors had residual MR 0-2, residual MR 0-2 is considered as a goal of MitraClip procedure thus far.

Given these results, the surgical intervention is recommended as a first choice for the severe degenerative MR, followed by the second choice MitraClip procedure for the high-risk or inoperable cases. The AHA/ACC guidelines recommend MitraClip procedure for those with symptomatic severe degenerative MR who have a reasonable life expectancy but a prohibitive surgical risk due to severe comorbidities (Class IIb). ESC/EACTS guidelines also recommend MitraClip procedure in patients with symptomatic severe degenerative MR who fulfill the echocardiographic criteria of eligibility and are judged inoperable or at high surgical risk (Class IIb).

In Japan, although there is no recommendation in any guidelines, an appropriate use principle is proposed, which states that MitraClip should be considered in patients with symptomatic severe inoperable MR refractory to guideline-directed medical therapy, which has suitable anatomy for the procedure and a probability to improve MR.

MitraClip® in Functional MR

Functional MR develops in patients without any structural disorders. Instead, the dominant etiologies of functional MR are left ventricular remodeling due to cardiomyopathy and atrial remodeling due to long-term atrial fibrillation. In patients with left ventricular remodeling, the tethering of mitral leaflets is a dominant cause of functional MR. In patients with atrial remodeling, the worsening of coaptation of mitral leaflets due to the enlargement of the left atrium is a dominant cause of functional MR.

Guideline-directed medical therapy is considered to treat background heart failure, but its impact in improving functional MR remains limited. Cardiac resynchronization therapy is also considered in patients with functional MR, but the clinical implication remains controversial. Surgical intervention to the mitral valve is also considered. Its improvement in left ventricular remodeling and heart failure symptoms has been demonstrated, whereas its survival benefit remains undemonstrated. Therefore, AHA/ACC and ESC/EACTS guidelines recommend surgical intervention to the mitral valve alone as Class IIb. Furthermore, half of the patients with functional MR cannot receive guideline-directed surgical intervention given their reduced cardiac function.

MitraClip procedure has several advantages over the surgical procedure: (1) venous approach; (2) real-time assessment of MR during the repair; (3) clipping can be tried any time; and (4) no requirement of contrast medium.

A sub-analysis of the EVEREST II High-Risk Cohort was reported to show the clinical outcome of MitraClip procedure on the functional MR. Patients with moderate or greater MR who had STS score above 12% underwent MitraClip procedure. Of them, 246/351 had functional MR. At discharge, 88% had mild or less MR, and 30-day mortality was 4.1%. At 12 months, the prevalence of mild or less MR, left ventricular diameter, and NYHA functional class all improved compared to the pre-procedural conditions.

Following the report, prospective randomized control trials comparing guideline-directed medical therapy versus MitraClip add-on arm were conducted to investigate the prognostic implication of MitraClip on the functional MR: MITRA-FR trial and COAPT trial have been reported thus far.

MITRA-FR Trial

In the MITRA-FR trial, 304 patients with functional MR who had left ventricular ejection fraction 15-40%, regurgitant fraction ≥ 30 mL, and NYHA functional classes II-IV were randomized into the 152 medical arm and 152 MitraClip add-on arm. During the MitraClip procedure, cardiovascular complications developed in five patients and cardiac tamponade happened in two patients. At 12 months, there was no statistically significant difference in the primary composite endpoint, i.e., all-cause death and unplanned rehospitalization for heart failure.

COAPT Trial

In the COAPT trial, 614 patients with functional MR who had left ventricular ejection fraction 25-50%, moderate or greater MR, and NYHA functional classes II-IV were randomized into 312 medical arm and 302 MitraClip add-on arm. The MitraClip add-on arm had a better 24-month heart failure readmission rate than the medical arm (38.5% versus 67.9%, P < 0.001). All-cause mortality during the 24-month observational period was also significantly lower in the MitraClip add-on arm than in the
medical arm (29.1% versus 46.1%, \(P < 0.001 \)).

Future Concerns

There are several discussions to explain these opposite results:\(^3\) (1) doubled sample size; (2) difference in the observational period (one year versus two years); (3) MITRA-FR trial had more enlarged left ventricle (135 ± 35 mL/m² versus 101 ± 34 mL/m²) and reduced left ventricular ejection fraction (15-40% versus 20-50%) than the COAPT trial; and (4) the degree of MR was lower in the MITRA-FR trial than the COAPT trial (effective regurgitant orifice area, 31 ± 10 mm² versus 41 ± 15 mm²). Given these differences, left ventricular function was a dominant prognostic factor in the MITRA-FR trial, whereas MR itself was a dominant prognostic factor in the COAPT trial. In other words, the impact of MitraClip might be less dominant in the MITRA-FR trial than the COAPT trial. Furthermore, medications were not optimized in the MITRA-FR trial, whereas was more optimized in the COAPT trial.

Currently, the indication of MitraClip in patients with functional MR is (1) symptomatic MR refractory to guideline-directed medical therapy, (2) high operative risk, (3) left ventricular ejection fraction above 30%, (4) severe MR, and (5) anatomical feature applicable to the procedure.\(^5\) Considering the current evidence, an algorithm to consider intervention to the functional MR in patients with reduced left ventricular ejection fraction might be proposed (Figure 3).\(^5\)

One of the next concerns would be the therapeutic strategy for less sick heart failure cohort (e.g., cardiac resynchronization therapy nonresponders independent on the continuous inotropes infusion). For them, the left ventricular assist device might not be an aggressive indication, whereas it might be unknown whether MitraClip alone is sufficient to manage their heart failure. Another concern is an intervention to the secondary tricuspid regurgitation due to the MR. An innovation of next-generation device for the MR with anatomy not suitable for the current MitraClip system would also be a future concern. Benefit of MitraClip system in the cost-effectiveness versus medical therapy also remains future concerns.

Disclosure

Conflicts of interest: None.

References

1. Nkomo VT, Gardin JM, Skelton TN, Gottdiener JS, Scott CG, Enriquez-Sarano M. Burden of valvular heart diseases: a population-based study. Lancet 2006; 368: 1005-11.
2. Ling LH, Enriquez-Sarano M, Seward JB, et al. Clinical outcome of mitral regurgitation due to flail leaflet. N Engl J Med 1996; 335: 1417-23.
3. Mirabel M, Iung B, Baron G, et al. What are the characteristics of patients with severe, symptomatic, mitral regurgitation who are denied surgery? Eur Heart J 2007; 28: 1358-65.
4. Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 2016; 37: 2129-200.
5. Baumgartner H, Falk V, Bax JJ, et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J 2017; 38: 2739-91.
6. Alfieri O, Maisano F, De Bonis M, et al. The double-orifice technique in mitral valve repair: a simple solution for complex problems. J Thorac Cardiovasc Surg 2001; 122: 674-81.
7. Stone GW, Lindenfeld J, Abraham WT, et al. Transcatheter mitral-valve repair in patients with heart failure. N Engl J Med 1996; 335: 1417-23.
8. Beri N, Singh GD, Smith TW, Fan D, Boyd WD, Rogers JH. Ia-
trogenic atrial septal defect closure after transseptal mitral valve
interventions: Indications and outcomes. Catheter Cardiovasc In-
terv 2019; 94: 829-36.
9. Cilingiroglu M, Salinger M, Zhao D, Feldman T. Technique of
temporary subcutaneous “Figure-of-Eight” sutures to achieve
hemostasis after removal of large-caliber femoral venous
sheaths. Catheter Cardiovasc Interv 2011; 78: 155-60.
10. Enriquez-Sarano M, Akins CW, Vahanian A. Mitral regurgita-
tion. Lancet 2009; 373: 1382-94.
11. Antoine C, Mantovani F, Benfari G, et al. Pathophysiology of
degenerative mitral regurgitation: New 3-dimensional imaging
insights. Circ Cardiovasc Imaging 2018; 11: e005971.
12. Suri RM, Schaff HV, Dearani JA, et al. Survival advantage and
improved durability of mitral repair for leaflet prolapse subsets
in the current era. Ann Thorac Surg 2006; 82: 819-26.
13. Bach DS, Awais M, Gurm HS, Kohnstamm S. Failure of guide-
line adherence for intervention in patients with severe mitral re-
gurgitation. J Am Coll Cardiol 2009; 54: 860-5.
14. Feldman T, Foster E, Glower DD, et al. Percutaneous repair or
surgery for mitral regurgitation. N Engl J Med 2011; 364: 1395-
406.
15. Whitlow PL, Feldman T, Pedersen WR, et al. Acute and 12-
month results with catheter-based mitral valve leaflet repair: the
EVEREST II (Endovascular Valve Edge-to-Edge Repair) high-
risk study. J Am Coll Cardiol 2012; 59: 130-9.
16. Lim DS, Reynolds MR, Feldman T, et al. Improved functional
status and quality of life in prohibitive surgical risk patients
with degenerative mitral regurgitation after transcatheter mitral
valve repair. J Am Coll Cardiol 2014; 64: 182-92.
17. Nishimura RA, Otto CM, Bonow RO, et al. 2014 AHA/ACC
guideline for the management of patients with valvular heart
disease: a report of the American College of Cardiology/Ameri-
can Heart Association Task Force on Practice Guidelines. J Am
Coll Cardiol 2014; 63: e57-185.
18. Ring L, Dutka DP, Wells FC, Fynn SP, Shapiro LM, Rana BS.
Mechanisms of atrial mitral regurgitation: insights using 3D
transoesophageal echo. Eur Heart J Cardiovasc Imaging 2014;
15: 500-8.
19. Agricola E, Ielasi A, Oppizzi M, et al. Long-term prognosis of
medically treated patients with functional mitral regurgitation
and left ventricular dysfunction. Eur J Heart Fail 2009; 11: 581-
7.
20. Mihaljevic T, Lam BK, Rajeswaran J, et al. Impact of mitral
valve annuloplasty combined with revascularization in patients
with functional ischemic mitral regurgitation. J Am Coll Cardiol
2007; 49: 2191-201.
21. Glower DD, Kar S, Trento A, et al. Percutaneous mitral valve
repair for mitral regurgitation in high-risk patients: results of the
EVEREST II study. J Am Coll Cardiol 2014; 64: 172-81.
22. Obadia JF, Messika-Zeitoun D, Leurent G, et al. Percutaneous
repair or medical treatment for secondary mitral regurgitation. N
Engl J Med 2018; 379: 2297-306.
23. Pibarot P, Delgado V, Bax JJ. MITRA-FR vs. COAPT: lessons
from two trials with diametrically opposed results. Eur Heart J
Cardiovase Imaging 2019; 20: 620-4.