Learning fuzzy clustering for SPECT/CT segmentation via convolutional neural networks

Junyu Chen and Ye Li
Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutes, Baltimore, MD, USA

Licia P. Luna
Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutes, Baltimore, MD, USA

Hyun W. Chung
Department of Nuclear Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, South Korea

Steven P. Rowe, Yong Du and Lilja B. Solnes
Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutes, Baltimore, MD, USA

Eric C. Frey
Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutes, Baltimore, MD, USA

(Received 9 February 2021; revised 1 April 2021; accepted for publication 12 April 2021; published xx xxxx xxxx)

Purpose: Quantitative bone single-photon emission computed tomography (QBSPECT) has the potential to provide a better quantitative assessment of bone metastasis than planar bone scintigraphy due to its ability to better quantify activity in overlapping structures. An important element of assessing the response of bone metastasis is accurate image segmentation. However, limited by the properties of QBSPECT images, the segmentation of anatomical regions-of-interests (ROIs) still relies heavily on the manual delineation by experts. This work proposes a fast and robust automated segmentation method for partitioning a QBSPECT image into lesion, bone, and background.

Methods: We present a new unsupervised segmentation loss function and its semi- and supervised variants for training a convolutional neural network (ConvNet). The loss functions were developed based on the objective function of the classical Fuzzy C-means (FCM) algorithm. The first proposed loss function can be computed within the input image itself without any ground truth labels, and is thus unsupervised; the proposed supervised loss function follows the traditional paradigm of the deep learning-based segmentation methods and leverages ground truth labels during training. The last loss function is a combination of the first and the second and includes a weighting parameter, which enables semi-supervised segmentation using deep learning neural network.

Experiments and results: We conducted a comprehensive study to compare our proposed methods with ConvNets trained using supervised, cross-entropy and Dice loss functions, and conventional clustering methods. The Dice similarity coefficient (DSC) and several other metrics were used as figures of merit as applied to the task of delineating lesion and bone in both simulated and clinical SPECT/CT images. We experimentally demonstrated that the proposed methods yielded good segmentation results on a clinical dataset even though the training was done using realistic simulated images. On simulated SPECT/CT, the proposed unsupervised model’s accuracy was greater than the conventional clustering methods while reducing computation time by 200-fold. For the clinical QBSPECT/CT, the proposed semi-supervised ConvNet model, trained using simulated images, produced DSCs of 0.75 and 0.74 for lesion and bone segmentation in SPECT, and a DSC of 0.79 bone segmentation of CT images. These DSCs were larger than that for standard segmentation loss functions by >0.4 for SPECT segmentation, and >0.07 for CT segmentation with P-values <0.001 from a paired t-test.

Conclusions: A ConvNet-based image segmentation method that uses novel loss functions was developed and evaluated. The method can operate in unsupervised, semi-supervised, or fully-supervised modes depending on the availability of annotated training data. The results demonstrated that the proposed method provides fast and robust lesion and bone segmentation for QBSPECT/CT. The method can potentially be applied to other medical image segmentation applications. © 2021 The Authors. Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine. [https://doi.org/10.1002/mp.14903]

Key words: convolutional neural networks, fuzzy C-means, image segmentation, nuclear medicine
1. INTRODUCTION

Prostate cancer is one of the most common cancers for men in the United States. In 2020, it was estimated that there would be 191,930 new cases of prostate cancer in the US. Bone is a common site for metastasis in prostate cancer. Although planar bone scintigraphy is often used to assess response and progression of bone lesions, quantitative single-photon emission computed tomography (SPECT) has been shown to provide improved quantification compared to planar imaging in other applications, and thus quantitative bone SPECT (QBSPECT) has the potential to provide more accurate estimates of prognostic metrics than planar imaging. Image segmentation plays a vital role in the clinical application of QBSPECT, because quantifying tumor uptake and metabolic tumor burden requires accurate segmentation of bone and lesion structures. With the emergence of machine learning and deep learning, computer-assisted or computer-automated segmentation algorithms are poised to become a routine and essential part of medical image analysis in general. However, due to poor spatial resolution, noise, and contrast properties of SPECT images, developing automated segmentation methods for QBSPECT is challenging. While there has been substantial work on developing automated segmentation algorithms for other imaging modalities, manual delineation is still the most common method used clinically for SPECT imaging. Manual segmentation is not only tedious and time-consuming, but also it can introduce intra- and inter-observer bias and variability. Thus, an automated algorithm that provides fast and accurate segmentation of anatomical or regions-of-interest (ROIs) for QBSPECT images is desired in both clinical practice and research.

Automated segmentation algorithms can be categorized into two groups. The first group is supervised methods, that is, those requiring a set of annotated input data. These methods can be highly effective, but they typically involve a training stage that requires a large number of images with ground truth labels. Deep learning is a representative of such methods, and it recently has become a major focus of attention in the image segmentation field due to its performance. The vast majority of such work has been based on convolutional neural networks (ConvNets), which usually requires a substantial number of accurately annotated training images. In nuclear medicine, various ConvNets-based studies have investigated their use for image segmentation. For instance, Liu et al. designed a ConvNet for dopamine transporter brain SPECT segmentation that estimates the posterior mean of the fractional volume within each voxel. Built upon the idea of fusing multimodality information, Guo et al. and Li et al. incorporated computed tomography (CT) images in training the ConvNet for improved lesion delineation in Positron emission tomography (PET). Despite their promising performance, ConvNets trained using a domain-specific dataset that lacks diversity compared to its target application often leads to poor generalizability on data from “unseen” domains. Unsupervised methods represent another group. In contrast to supervised methods, they can be more robust to unseen domains, and are useful in the absence of substantial amounts of training data. Active contour models, region growing, and clustering algorithms such as Gaussian mixture models (GMM), or fuzzy C-means (FCM), are the examples of unsupervised methods, where the segmentation is obtained based on characterizing intensity distributions of a given image. Much work has been devoted to developing unsupervised segmentation algorithms for nuclear medicine imaging. For example, Abdoli et al. presented a modified Chan–Vese active contour model to take into account noise properties and heterogeneity lesion uptake observed in PET. With similar ideas, Layer et al. and Belhassen et al. incorporated spatial constraints into the objective functions of GMM and FCM to model the noise properties of PET and thus reduce misclassifications. However, these methods generally require computationally intensive optimization for each given image, and therefore they can be slow in practice.

This paper introduces a fast, accurate, and robust segmentation technique and applies it to QBSPECT and CT image segmentation, which takes advantage of both deep learning and intensity clustering. Specifically, we aim to develop a fully automated method for partitioning voxels into background, lesion, and bone in QBSPECT images. To this end, we propose a set of loss functions that are based on the classical FCM algorithm. An important property of the proposed loss functions is that they incorporate the fundamental idea of fuzzy clustering, where the amount (fuzziness) of the overlap between segmentation classes is controlled via a user-defined hyperparameter. The proposed model can be trained in three scenarios: in the first scenario, referred to as unsupervised or self-supervised, the model is trained by minimizing an unsupervised loss function (one that does not require labels) within an unlabeled training dataset, where the loss function depends only on the image intensity distributions; in the second scenario, which follows the traditional paradigm of deep learning, the model is trained by minimizing a supervised loss function that compares the output segmentation and the ground truth labels with the training dataset; in the final scenario, the model is trained in a semi-supervised manner by leveraging both the intensity distributions of the images and the available ground truth labels. The proposed models were implemented using a ConvNet that takes an n-D input volume and outputs a C-class probability vector for each voxel location. The models were trained purely on experimentally acquired images of a physical phantom and realistic, physics-based, simulated images of an anthropomorphic phantom. Nevertheless, they produced accurate segmentation results on the unseen patient images while offering substantial speed-up compared to the conventional clustering algorithms.

The paper is organized as follows. Section 2 introduces clustering-based (Section 2.A) and unsupervised/semi-supervised (Section 2.B) segmentation methods. The proposed methods are described in Section 2.C and the experimental setup in Section 2.D. Section 3 presents experimental results on both simulated and clinical data. Insights gained from the results are discussed in Section 4, and Section 5 presents the conclusion.
2. MATERIALS AND METHODS

2.A. Clustering-based Image Segmentation

Classical clustering-based segmentation methods, such as K-means, FCM, and GMM, aim at characterizing the statistical properties of intensity levels in images by ‘learning’ the statistics of the intensity information from a given image. These methods usually minimize an objective function to group together voxels that share similar intensity statistics. A widely used clustering method applied to medical image segmentation is FCM method, due to its simplicity, robustness, and effectiveness. The objective function of the conventional FCM is written as follows:

$$J_{FCM} = \sum_{j} \sum_{k} \mu_{jk}^q \| y_j - v_k \|^2,$$

where μ_{jk} represents the membership functions for the jth voxel and kth class, v_k is the class-centroid, y_j is the observation (voxel value) at location j, C indicates the number of classes, and Ω is the spatial domain of the image. The minimization of this objective function is given by:

$$\min_{\mu_{jk}} J_{FCM}, \text{s.t.} \left\{ \begin{array}{l} \sum_{k} \mu_{jk} = 1, \forall j \in \Omega \\ 0 < \sum_{j} \mu_{jk} < N, \quad k = 1, \ldots, C \end{array} \right.$$

Here N is the total number of voxels in the image, and the parameter q in (1) is a weighting exponent that satisfies $q \geq 1$ and controls the amount of fuzzy overlap between clusters. Larger q values allow for a greater degree of overlap between the intensity levels in clusters (and vice versa). As $q \rightarrow 1$, the membership, μ_{jk}, becomes crisper, and approaches a binary function. Note that when $q = 1$, the J_{FCM} transforms to the well-known K-means problem. Since FCM does not take spatial context information into consideration, the clustering result may be subject to noise and image artifacts. To overcome this issue, many efforts have been devoted to incorporating local spatial information into the FCM algorithm to improve the performance of image segmentation. Ahmed et al., Pham et al., and Chuang et al. introduced spatial constraints to the FCM’s objective function to allow the labeling of a pixel to be influenced by the labels of its neighbors. Other have incorporated spatial constraints and, at the same time, improving the computational speed. Among those, the Robust FCM (RFCM), proposed by Pham et al., is a straightforward but quite effective improvement on the original FCM. It incorporates a Markov-random-fields- (MRF) based regularization term for penalizing changes in the value of the membership functions in local neighborhoods. The objective function of RFCM is described as follows:

$$J_{RFCM} = \sum_{j} \sum_{k} \mu_{jk}^q \| y_j - v_k \|^2 + \lambda J_{spatial},$$

where

$$J_{spatial} = \beta \sum_{j} \sum_{k} \mu_{jk} \sum_{j \in N_j} \sum_{m \in M_k} \mu_{jm}.$$
and $\sum_{k=1}^{c} z_{jk} = 1, \forall j \in \Omega$,

$$\sum_{k=1}^{c} z_{jk} = 1, \forall j \in \Omega, \quad (8)$$

and $|\nabla z_{jk}|$ represents the Total variational (TV) norm of z_{jk}, where the gradient $\nabla(f)$ can be approximated by the forward difference (i.e., $\nabla z_{jk} \approx z_{j+1,k} - z_{jk}$). Finally, c_k denotes the average voxel intensity value given by a similar form as (6):

$$c_k = \frac{\sum_{j \in \Omega} z_{jk} y_j}{\sum_{j \in \Omega} y_j}. \quad (9)$$

Notice that if λ is set to 0, then (7) is a special case of the FCM problem (1), in which $q = 1$. Then, the loss function can be thought of as a K-means clustering problem with TV regularization for suppressing noise in the membership function, z_{jk}. Kim et al. then proposed to incorporate a weighted supervised cross-entropy loss in addition to L_{MS} to consider semantic information from the ground truth labels:

$$L_{semi-MS} = L_{MS} + \alpha L_{CE}. \quad (10)$$

Since this loss function consists of an unsupervised part that only requires information from the input image itself, and a supervised part that leverages ground truth segmentation, the resulting combined loss function is thus semi-supervised.

In nuclear medicine, image quality is severely affected by the partial volume effects (PVEs), resulting in voxel values that are sums of the uptakes from or actually contain a mixture of different tissues. For this reason, algorithms like K-means or active contour that produce “hard” segmentation (i.e., a voxel can only belong to one class) may not be suitable for nuclear medicine. Here, we proposed incorporating the classical FCM objective function into ConvNet training owing to FCM’s inherent suitability to nuclear medicine’s low-resolution properties. This has the benefit that it takes advantage of the fast computation speed of ConvNets. The details of the proposed method are described in the following subsection.

2.C. Proposed method

Let y be the input image defined over a spatial domain $\Omega \in \mathbb{R}^n$. For the rest of this paper, we focus on the 2-dimensional ($n = 2$) case; however, our implementation is dimension independent. We assume that the input image y is normalized in a preprocessing step.

Figure 1 shows an overview of the method. The ConvNet with parameters θ, takes y as its input (i.e., $f(y; \theta)$), and outputs a C-channel probability map, where each channel corresponds to the probabilities of pixels in y belonging to a specific class. The optimal parameter $\hat{\theta}$ is determined by minimizing the expected loss function within a training dataset, i.e., $\hat{\theta} = \text{argmin}_\theta \mathcal{L}(y; \theta)$. Here, we present three novel loss functions for the task of image segmentation. The first loss is proposed based on $J_{RFCM}(3)$, which is denoted as $\mathcal{L}_{unsupervised}$ in Fig. 1. It is an unsupervised loss that depends on no ground truth labels but only on the input image y. The second loss, which is denoted as $\mathcal{L}_{supervised}$ in Fig. 1, is a modified version of $J_{FCM}(1)$ that leverages the available ground truth information during training. Combining $\mathcal{L}_{unsupervised}$ and $\mathcal{L}_{supervised}$, we obtain the third loss function, which represents the semi-supervised application of the ConvNet model. A detailed description of the network architecture and the loss functions are discussed in the following sections.

2.C.1. Network architecture

The neural network architecture, as seen from Fig. 2, is based on the recurrent convolutional neural network proposed by Liang et al. in Ref. [46]. The network consists of eight convolutional layers, where the first five are recurrent convolutional layers. For each recurrent convolutional layer, $T = 3$ time-steps where used, resulting in a feed-forward subnetwork with a depth of $T + 1 = 4$. Each convolutional layer has a kernel size of 3×3, and it is followed by batch normalization and a Rectified linear unit (ReLU). In the final layer, a 3-channel softmax activation function is used, where each channel represents the probability of being classified as background, bone, or lesion.

2.C.2. Unsupervised loss function

We propose to model the membership functions, u, in the objective function of RFCM (3) by using the softmax output of the last layer of the ConvNet model, i.e. $f(y; \theta)$, using:

\[L_{unsupervised} = \sum_{i=1}^{C} \left(-y_i \log f_i(y; \theta) + (1 - y_i) \log (1 - f_i(y; \theta)) \right) \]

where C is the number of classes, and y_i is the ground truth label for class i. The loss function encourages the network to learn membership functions that are similar to the ground truth labels, while also encouraging diversity among the membership functions.

\[L_{supervised} = \sum_{i=1}^{C} \left(-y_i \log f_i(y; \theta) \right) \]

The supervised loss is calculated by comparing the softmax output of the last layer with the ground truth labels, which are binary and represent the presence or absence of each class in the image.

\[L_{semi-MS} = L_{MS} + \alpha L_{CE} \]

The semi-supervised loss function combines the unsupervised loss and the cross-entropy loss. The parameter α controls the relative weight of the two losses, with $\alpha = 0$ representing a purely unsupervised setting and $\alpha = 1$ representing a purely supervised setting.
2.4.1. Self-supervised ConvNet architecture

The self-supervised ConvNet architecture is illustrated in Fig. 2. The input image is processed by a series of convolutional layers, followed by a channel softmax output. The channel softmax output is then used to calculate the loss function, which is then backpropagated through the network to update the weights.

2.4.2. Semi-supervised/Supervised Loss Functions

While networks trained using unsupervised loss functions can be more robust to test images from an "unseen" domain, their performances are generally limited due to the sole dependence on pixel-level intensity information. Supervised losses, on the other hand, leverage the prior knowledge that includes knowledge of ground truth to learn about semantic and shape information. However, the trade-off is that these supervised ConvNet models may suffer from overfitting and lack of generalizability (to images differing substantially from those used in training) depending on the size of the training dataset.

In the semi-supervised training setting described in Ref. [37], the ConvNet is trained with both supervised and unsupervised loss functions so that the network can take into account the intensity statistics in an individual image while embracing the supervised information provided by the ground truth. The proposed unsupervised loss function, \(\mathcal{L}_{RF} \), can be paired with any supervised loss function in a similar way as described in Ref. [36,37]. That is:

\[
\mathcal{L}(y;\theta) = \mathcal{L}_{RF}(y;\theta) + \alpha \mathcal{L}_{supervised}(y;g;\theta),
\]

where \(\alpha \) is a weighting parameter for controlling the strength of the supervised term, and \(g \) denotes ground truth label map. It is, however, difficult to use supervised loss functions such as Dice similarity (DSC) loss or cross-entropy (CE) because they are not immediately compatible with the 'fuzziness' of the classification produced by FCM and inherent in \(\mathcal{L}_{RF} \), and that they may take different value ranges from \(\mathcal{L}_{RF} \). Inspired by [46], here we propose a novel supervised segmentation loss function on the basis of the FCM objective function:

\[
J_{FCM_label} = \sum_{j \in \Omega} \sum_{k=1}^{C} \mu_{jk}^2 || g_{jk} - \mu_k ||^2,
\]

where the membership function, \(\mu_{jk} \), can be modeled using \(f_{jk}(y;\theta) \), which is the ConvNet’s softmax output, \(g_{jk} \) is the ground truth label at location \(j \) for \(k \)th class, and \(\mu_k \) is the class mean computed within \(g \). The ground truth images, \(g \), have \(C \) channels, where each channel is a binary segmentation mask specifying the spatial domain of class \(k \in \{1,\ldots,C\} \). The class mean \(\mu_k \) can be simply defined in advance as a constant 1, i.e., \(\mu_k = 1 \) (by suitably rescaling \(g_{jk} \)). The loss function can thus be defined as follows:

\[
\mathcal{L}_{FCM_label}(y;\theta) = \sum_{j \in \Omega} \sum_{k=1}^{C} f_{jk}^2(y;\theta) || g_{jk} - \mu_k ||^2,
\]

This loss function incorporates the main idea of FCM, for which the parameter \(q \) is included to regulate the fuzzy overlap between softmax channels. Thus, the proposed semi-supervised loss function is thus written as follows:

\[
\mathcal{L}_{semi-RFCM}(y;\theta) = \mathcal{L}_{RFCM}(y;\theta) + \alpha \mathcal{L}_{FCM_label}(y;\theta).
\]
SPECT/CT images. We first (Section 3.1) present a hyper-parameter analysis for the proposed unsupervised loss on a dataset of realistic QBSPECT simulations. In the second experiment (Section 3.2), we present a series of segmentation experiments using the proposed supervised loss in which the performance is compared to several widely used supervised loss functions on the realistic QBSPECT simulations. In the third experiment (Section 3.3), we demonstrate the effectiveness of the proposed semi-supervised, simulation-trained ConvNet on segmenting lesion and bone from a clinical SPECT scan; the result from the ConvNet was compared to VOIs manually delineated by an experienced physician, which served as a gold-standard. Since CT images provide higher resolution and likely better anatomical information for bone structures, in the final experiment (Section 3.4), we applied and evaluated the proposed semi-supervised loss to the task of segmenting bones in a clinical CT scan.

2.D.1. Dataset

The proposed algorithm was assessed on three datasets, where the training and a testing set consist of the attenuation maps generated from the XCAT phantom\(^{51,52}\) and their corresponding simulated SPECT images; another testing set is a set of clinical SPECT/CT bone scans obtained from an institutional-review-board-approved protocol. A brief description of the data is provided below:

XCAT attenuation maps & SPECT simulations: The bone SPECT simulations were generated based on the 3D activity and attenuation distributions obtained using a population of highly realistic NURBS-based XCAT phantoms. The phantom variations were generated using our previously proposed deformable-registration-based phantom generation method.\(^{53,54}\) Nine XCAT variations were created by mapping a single XCAT attenuation map to capture the anatomical variations of the CT scans from nine patients. The values of the XCAT attenuation maps were calculated on the basis of the material compositions and the attenuation coefficients of the constituents at 140 keV, the photon energy of Tc-99m methylene diphosphonate (MDP) bone imaging. The activity distribution modeled that seen in Tc-99m. The uptake of bone was modeled as 8\(\times\)13 times that of the soft-tissue background. We modeled sclerotic bone lesions in the simulation with increased attenuation coefficient and radiopharmaceutical uptake. The attenuation coefficient was varied randomly with uniform probability in the range 1.13–1.27 times the attenuation coefficient of cortical bone. The uptake in lesions had a mean of 4 times that of the bone, and varied randomly with a uniform distribution by a factor of 0.5–1.75 around that mean. SPECT projections were simulated using an analytic projection algorithm that realistically models attenuation, scatter assuming a 20% wide energy window centered at 140 keV, and the spatially-varying collimator-detector response (CDR) of a low-energy high-resolution collimator on a GE Discovery 670 scanner.\(^{55,56}\) Projections were simulated at 256 projections over 360\(^\circ\) and collapsed after projection to model an acquisition voxel size of 0.22 cm. The acquisition time was such that it modeled a whole-body scan time of 30 minutes, and the projections were scaled appropriately, and Poisson noise was simulated. Bone SPECT images were then reconstructed using a quantitative reconstruction method described in Ref. [5], which is based on the ordered subsets expectation-maximization algorithm\(^{57}\) (OS-EM) and modeled attenuation, scatter, and the CDR. We used 2 iterations of 10 subsets per iteration during reconstruction. No post-filtering was performed. A total of nine clinical SPECT images were simulated using the XCAT phantom variations.

Clinical patient SPECT/CT scans: We used 11 clinical SPECT and 12 clinical CT images in this study. The SPECT scans were acquired on a Siemens Symbia T16 SPECT/CT system. The bone SPECT acquistions were performed using our clinical bone SPECT protocol (120 views per bed position, and two energy windows with widths of 15% and centered at 140 KeV and 119 keV with the latter serving as a scatter window), followed by CT acquisition. The clinical CT images were acquired from 12 patients, with 8 on the Siemens SPECT/CT system and 4 on a GE CT system. Both SPECT and CT images were reconstructed using scanner software. The SPECT reconstructions were obtained using Flash 3D/OS-EM (with default numbers of iteration and subsets) with attenuation, energy-window-based scatter, and geometric collimator-detector response compensations enabled. Bone and lesion in the SPECT and CT images were manually delineated by consensus of two experienced radiologists, where the initial segmentation was produced by a radiology fellow and verified by an attending physician. Two different fellows produced the initial segmentation.

2.D.2. Baseline methods

We compared the results obtained using the proposed loss functions with those from two widely used supervised loss functions for ConvNet-based image segmentation, Dice loss \((L_{DSC})\) and Cross-entropy loss \((L_{CE})\). We also compared the results to a newly proposed unsupervised loss function, Mumford-Shah loss \((L_{MS})\),\(^{37}\) and a semi-supervised variant of it. For fair comparison, the same network architecture (described in section 2.3.1) was used for all loss functions. The baseline loss functions are briefly described below, and we refer \(g\) as the ground truth segmentation here:

Dice loss: Dice similarity coefficient (DSC) quantifies the overlap between two segmentation labels, its loss function is defined by:

\[
L_{DSC}(y, \theta) = 1 - \frac{2|f(y; \theta) \cap g|}{|f(y; \theta)| + |g|}.
\]

Cross-entropy loss: CE is computed as the log loss, summed over all pixel locations and all the possible classes. It can be written as follows:
\[
\mathcal{L}_{CE}(y; \theta) = -\frac{1}{\Omega} \sum_{j \in \Omega} \sum_{k=1}^{C} g_{jk} \log f_{jk}(y; \theta). \]

Mumford-shah loss: The unsupervised and the semi-supervised Mumford-Shah losses\(^{37}\) were previously given in (7) and (10).

Fixed thresholding: The proposed method was also compared to the fixed-threshold (FT) method. The threshold value was set to 42\% of the maximum voxel value of the image for segmenting lesion, which has been proposed as a threshold value in SPECT imaging.\(^{5,58}\) We used 2\% of the maximum voxel value based on our empirical experiments for bone segmentation in SPECT. The intensity of bone in CT images, according to the literature, ranges from 400 to 800 in Hounsfield Unit (HU).\(^{59-62}\) In this study, the threshold was empirically set to be 400 HU for identifying bone in CT.

2.2.3. Evaluation metrics

We used four commonly used metrics in image segmentation to quantify 3D segmentation performance. In addition to these common metrics, the recently proposed surface DSC was also used to take segmentation variability into consideration. The five evaluation metrics are briefly introduced below:

Dice Similarity Coefficient (DSC): DSC is a measure of the spatial overlap accuracy of the segmentation results.

Recall: Recall, also referred to as sensitivity, measures the completeness of the positive segmentation relative to the ground truth segmentation.

Precision: Precision effectively demonstrates the purity of the positive detection relative to the ground truth segmentation.

Intersection over Union (IoU): Similar to DSC, IoU is a metric for quantifying segmentation overlap between prediction and ground truth, it is also referred to as the Jaccard index.

Surface dice similarity coefficient: Inter- and intra-observer variability exists if the delineations were performed by different observers (i.e., physicians). The surface DSC\(^{63}\) was proposed to take segmentation variability into consideration. In this study, the training dataset consisted only of simulated images with ground truth boundaries. Thus, the ConvNets did not learn how the humans would delineate the object-of-interest or the variability in delineation by different observers. Thus, the segmentation provided by the ConvNets might vary, and especially at the boundaries, from the physicians’ delineation of the same object. The conventional DSC weighs all regions of misplaced segmentation equally, and it has been shown that the DSC has a strong bias toward larger objects (i.e., segmenting larger objects often yields higher DSC). However, bone metastases observed in the SPECT images can be small in size. Therefore, even small variations in the segmentation boundary can result in a low DSC, even when these variations are well within an observer’s ability to accurately delineate a tumor. To overcome these shortcomings, Nikolov et al. in Ref. [63] proposed the surface DSC. The surface DSC provides a measure of the fraction of a region’s contour that must be redrawn compared to the "gold-standard." The surface DSC considers a tolerance (in mm) within which the delineations’ variations are clinically acceptable. A surface, \(S\), refers to the boundary of a segmentation mask, \(M\) (i.e., \(S = \partial M\)), and the area of the surface is defined as follows:

\[S = \int_{S} d\sigma, \]

where \(\sigma \in S\) is a point on \(S\). The mapping (denote as \(\xi\)) from \(\sigma\) to a point, \(x\), in \(\mathbb{R}^3\) is given as \(\xi : S \rightarrow \mathbb{R}^3\). Then the border region, \(B\), for the surface \(S\) at a distance tolerance \(\tau\) is given by:

\[B^{(\tau)} = \{ x \in \mathbb{R}^3 | \exists \sigma \in S, \| x - \xi(\sigma) \| \leq \tau \}. \]

Finally, the surface DSC at tolerance \(\tau\) can be written as follows:

\[\text{DSC}_{surf} = \frac{|S_p \cap B^{(\tau)}_g| + |S_g \cap B^{(\tau)}_p|}{|S_p| + |S_g|}. \]

where \(p\) and \(g\) denote, respectively, the prediction from the method under test and the "gold-standard." Similar to the convention DSC, \(\text{DSC}_{surf}\) ranges from 0 to 1. A \(\text{DSC}_{surf}\) of 0.95 simply means that 95\% of the segmentation boundary was within \(\tau\) mm of the "gold-standard" while 5\% needs to be redrawn.\(^{63}\) The tolerance \(\tau\) was set to be one voxel width for lesion segmentation and twice the voxel width for bone segmentation. The tolerance used for these two objects was based on our observation of the variations in organ boundaries of the "gold-standard" delineations provided by our two physicians. We observed a greater deviation for the normal bone, possibly because segmenting them required a much larger amount of work, and possibly because they deemed accurate segmentation of the normal bones less important than the lesions.

Because the patient studies were acquired under different imaging protocols (i.e., varying from 1-bed to 3-bed positions), and considering the variations and imbalances in the number of lesions and lesion sizes in different patients, a weighted average scheme was used to assess the segmentation performances on the patient studies:

\[E[s] = \sum_{p} v_p \sum_{i} v_i p_i, \]

Medical Physics, 0 (0), xxxx
where \(s \in \{ \text{DSC}, \text{Recall}, \text{Precision}, \text{IoU} \} \) denotes the evaluation metric, and \(v_p \) denotes the volume (based on the "gold-standard") of the object-of-interest (i.e., lesion or bone) in a patient \(p_i \). Notice that the DSC_{surf} scores were averaged across all patient studies because DSC_{surf} is independent of the sizes of the object-of-interest.\(^{63}\)

3. RESULTS

3.A. Unsupervised Loss on QBSPECT Simulations

The ConvNet was trained using the proposed RFCM loss function in a self-supervised manner without the use of ground truth information. We used the realistic QBSPECT simulations for both training and testing. The effectiveness of the parameters \(\beta \) and \(q \) was first tested. We then compared the proposed model to the unsupervised Mumford-Shah loss,\(^{37}\) and two clustering methods, FCM\(^{18}\) and RFCM.\(^{28}\) We first studied the effects of the two hyper-parameters in (11). The first parameter is \(\beta \), for controlling the strength of the regularizer. We tested \(\beta \) in a range of 0 to 0.0016 with a step size of 0.004. Figure 3 shows the qualitative results provided using different \(\beta \) values. From left to right, the images are the original image, the original image with the addition of random Gaussian noise \((\sigma = 0.01)\), classification results from five different \(\beta \) values. As visible from the classification images, larger \(\beta \) values lead to cleaner classification results due to the increased strength of spatial smoothness prior, which tends to suppress isolated pixel classification. Notice that the high noise level used here is not clinically realistic, but it was used to show the effectiveness of the proposed spatial regularization. Thanks to the good intrinsic noise-suppressing ability of the ConvNet architecture,\(^{64}\) even when beta was set to zero (i.e., without the spatial smoothness prior), the unsupervised ConvNet still yielded a robust segmentation result. The effectiveness of the spatial prior is also proven by the quantitative results shown in Table I, where the segmentation accuracy gradually improves as \(\beta \) increases. We evaluated the sensitivity of the resulting segmentation to the fuzzy exponent, \(q \), in values of \(q \in [1, 2, 4] \). Some qualitative results are shown in Fig. 4. The last four columns in the left panel of Fig. 4 exhibit the maximum membership classification (i.e., the class that has the maximum membership value) results and the membership functions for the three classes (background, bone, and lesion). When \(q = 1 \) (the first row), the membership functions are nearly binary, but as \(q \) increases from 1 to 4, the degree of overlap between classes becomes higher, resulting in "fuzzier" membership functions.

We also compared the proposed loss function to the unsupervised \(\mathcal{L}_{MS} \).\(^{37}\) As we previously described in section 2.2, \(\mathcal{L}_{MS} \) has a similar form to the K-means problem. So its resulting softmax output, \(z_{\beta} \), is thus, almost binary, as shown in the first row of the left panel in Fig. 4. Finally, we compared the ability of noise regularization between the ConvNets trained by the different unsupervised loss functions. We used a noise-free dataset for training the ConvNet models, and then we used the Gaussian noise corrupted \((\sigma = 0.01)\) images for testing. The parameter, \(\lambda \), was set to be \(10^{-39} \) for \(\mathcal{L}_{MS} \) based on the empirical experiments, and \(\beta = 0.0016 \) and \(q = 2 \) for \(\mathcal{L}_{RFCM} \). For the clustering algorithms, we set \(q = 2 \) for both FCM and RFCM, and \(beta = 0.01 \) for RFCM. Visually, as shown in the right panel of Fig. 4, the ConvNet trained using \(\mathcal{L}_{RFCM} \) delineated the true objects in the image and was more robust to the noise than \(\mathcal{L}_{MS} \). The FCM failed on the noisy images, resulting in unacceptably noisy segmentations. The RFCM, however, achieved comparable results to the

\(\beta \)	DSC	Recall	Precision	IoU	DSC	Recall	Precision	IoU
0	0.465	0.779	0.131	0.303	0.548	0.625	0.516	0.377
0.0004	0.472	0.775	0.134	0.309	0.562	0.608	0.564	0.391
0.0008	0.483	0.752	0.141	0.318	0.572	0.604	0.596	0.401
0.0012	0.500	0.716	0.154	0.333	0.586	0.600	0.636	0.414
0.0016	0.495	0.734	0.147	0.329	0.578	0.584	0.643	0.407

TABLE I. Comparisons of various segmentation quality metrics for various values of the regularization parameter, \(\beta \), for the proposed unsupervised loss.
segmentation obtained using ConvNet-based methods. Quantitatively, as shown in Table II, the performance decreased as the testing images were corrupted by noise for both unsupervised loss functions. However, the proposed L_{RFCM} provided higher values of the quantitative metrics than L_{MS} regardless of the noises. The best lesion segmentation score was achieved using the proposed unsupervised ConvNet, and the best bone segmentation score was achieved by the RFCM. However, as shown in Table III, compared to the RFCM, the proposed unsupervised ConvNet was $2.868 \div 0.013 \approx 221$ times faster.

3.B. Supervised Loss on QBSPECT simulations

In this experiment, we used the ground truth labels to train the ConvNets using the supervised loss functions applied to the realistic simulated QBSPECT images. We first evaluated the effectiveness of the fuzzy exponent, q, in (13), with values of $q \in [1, 2, 4, 6]$. Then, we compared the proposed supervised loss, $L_{FCM_{label}}$, with two widely used loss functions for ConvNet-based segmentation, L_{DSC} and L_{CE}, on a set of simulated QBSPECT images. The proposed supervised loss, $L_{FCM_{label}}$, based on the FCM formulation that incorporates the parameter q for controlling the fuzzy overlap between channels of the softmax output. Figure 5 illustrates some examples of the resulting segmentation and membership functions (i.e., outputs of the last softmax layer) for L_{DSC}, L_{CE}, and $L_{FCM_{label}}$ with different values of q. The third through last rows are the results produced using $L_{FCM_{label}}$ with q values ranging from 1 to 6. We observed the same trend as in Fig. 4, where larger q values tended to produce fuzzier membership functions. Note that the ConvNet trained using L_{DSC} and L_{CE} produced hard (i.e., non-fuzzy) membership functions, which are similar to the results produced using $L_{FCM_{label}}$ with $q = 1$. Table IV shows the quantitative evaluations for segmentation of the realistic QBSPECT simulations. Except for $q = 1$, the proposed $L_{FCM_{label}}$ yielded comparable scores to L_{DSC} and L_{CE}, while providing an interesting property that the resulting membership functions was not necessarily hard. This could potentially be beneficial when quantifying activity inside regions in SPECT images.

3.C. Semi-supervised Loss on Clinical SPECT

In this experiment, we used the proposed semi-supervised loss to train the ConvNet using the simulated QBSPECT images. Before training, data augmentation was applied to the training dataset, where a Gamma correction was performed with $\gamma \in [0.9, 1.1]$. The training and testing image...
TABLE II. Quantitative comparison results of unsupervised segmentation methods on the realistic QBSPECT simulations (top table) and the Gaussian noise corrupted simulation images (bottom table).

Noise-free Simulation	Lesion	Bone						
DSC	Recall	Precision	IoU	DSC	Recall	Precision	IoU	
\mathcal{L}_{MS}^{37}	0.487	0.739	0.145	0.322	0.567	0.603	0.583	0.396
\mathcal{L}_{RFCM}	0.500	0.716	0.154	0.333	0.586	0.600	0.636	0.414
FCM18	0.367	0.796	0.104	0.225	0.660	0.881	0.535	0.493
RFCM28	0.435	0.750	0.136	0.278	0.729	0.803	0.716	0.574

Image corrupted by Gaussian noise ($\sigma = 0.01$)	Lesion	Bone						
DSC	Recall	Precision	IoU	DSC	Recall	Precision	IoU	
\mathcal{L}_{MS}^{37}	0.478	0.735	0.143	0.314	0.487	0.599	0.440	0.322
\mathcal{L}_{RFCM}	0.489	0.734	0.146	0.314	0.571	0.587	0.621	0.400
FCM18	0.061	0.987	0.012	0.031	0.089	0.983	0.046	0.047
RFCM28	0.288	0.871	0.089	0.168	0.714	0.834	0.666	0.555

Table III. Comparisons of computational time between the proposed method and other unsupervised methods.

Average Computational Time Per Image (sec)	ConvNet with \mathcal{L}_{MS}	ConvNet with \mathcal{L}_{RFCM}	FCM	RFCM
	0.013	0.013	0.703	2.868

volumes were standardized to their Z-scores by subtracting their means and dividing by their standard deviations (i.e., $y_{Z-score} = \frac{y - \mu}{\sigma}$). We validated the trained networks using the proposed loss function on 2 clinical SPECT scans and evaluated their performances on nine clinical scans. The segmentation performance of the proposed semi-supervised loss, $\mathcal{L}_{semi-RFCM}$ using $q = 2$, was compared with that of a semi-supervised loss, Mumford-Shah loss (10),37 and two supervised losses, Dice loss (17) and cross-entropy loss (18). Please note we also compared different values of α, the weighting factor controlling the relative strength of the supervised and unsupervised loss functions. Figure 7 shows the segmentation results for four example slices of the clinical SPECT scan, from left to right: the first column displays the SPECT images; the second column shows the gold-standard segmentation provided by the radiologist, where the red contour indicates lesion and the green contour indicates bone; the third through last columns are the segmentation results generated by the ConvNet models trained using different loss functions. As indicated by the arrows in Fig. 7, the semi-supervised loss functions (the third through fourth columns) yielded better visual results than the supervised loss functions and the fixed-threshold method, where the semi-supervised models generally detected the locations and the shapes of the lesion and bone. The mean segmentation scores are shown in Table V, and statistical plots of the DSC and surface DSC scores are shown in the left panel of Fig. 6; the top two figures show the mean and standard deviation of the DSC scores, and the bottom figures present boxplots of the surface DSC. We find that the highest segmentation scores were also provided by the semi-supervised losses, in which the proposed $\mathcal{L}_{semi-RFCM}$ yielded 0.747 in DSC and 0.788 in surface DSC for lesion segmentation, and the highest bone segmentation scores with a DSC of 0.742 in DSC and 0.95 in surface DSC. Among the semi-supervised losses, the proposed $\mathcal{L}_{semi-RFCM}$ loss function outperformed $\mathcal{L}_{semi-MS}$ loss function37 in both lesion and bone segmentation tasks. When compared with the supervised segmentation loss functions, the proposed $\mathcal{L}_{semi-RFCM}$ outperformed them with P-values <0.001 from a paired t-test. The supervised loss functions, $\mathcal{L}_{DSC}, \mathcal{L}_{CE}$, and the proposed \mathcal{L}_{RFCM}, all failed in this case, producing unacceptable segmentation results with DSC less than 0.4 for lesion segmentation. This suggests that the simulation-trained ConvNets using the supervised losses did not generalize well on clinical SPECT data.

3.D. Semi-supervised Loss on Clinical CT

This experiment evaluates the performances of the proposed model applied to clinical CT images. In order to train a ConvNet to segment anatomical structures from CT images, a possible choice for the training dataset is the realistic CT simulations generated using attenuation maps of the XCAT phantom.51,67 However, since the Hounsfield Unit (HU) in CT is simply a linear transformation of the linear attenuation coefficient of the human body, and the scope of this work is to explore the robustness of the proposed method in a setting where the images used for training and testing are from different domains, we instead, trained the ConvNets directly on the attenuation maps of a single XCAT phantom. We applied the
same semi-supervised training scheme (with $q = 2$, and $\alpha=0.3$ and 0.5), as described in the previous section. The proposed method was applied to 12 clinical CT scans, where two scans were used for validation and 10 were used for evaluation. We normalized the 2D slices of the training and testing images so that the intensities of the slices had values in the interval $[0,1]$. Data augmentation using Gamma correction was applied to the training images with $\gamma \in [1.4, 1.6, 1.8]$. The resulting segmentation was compared both qualitatively and quantitatively to the gold-standard segmentation provided by a radiologist. Figure 8 shows some qualitative segmentation results with the corresponding gold-standard segmentation. The proposed method achieved a more accurate bone delineation; specifically, the proposed method was able to detect the boundary of the bone region in more detail (as indicated by the yellow arrows). Table VI shows the mean segmentation scores, and the right panel of Fig. 6 shows statistical plots of the scores. The proposed method, $L_{0.2}^{semi-RFCM}$, outperformed other loss functions by a significant margin with the high scores of 0.841 in surface DSC.
and 0.794 in DSC. Interestingly, the proposed supervised loss, $\mathcal{L}_{\text{FCM}_{\text{label}}}$, achieved 0.770 in surface DSC and 0.778 in DSC, which were the highest among the supervised loss functions. The proposed semi-supervised loss function yielded p-values < 0.001 from the paired t-test was obtained when it was compared to \mathcal{L}_{DSC}, \mathcal{L}_{CE}, and $\mathcal{L}_{\text{semi-MS}}$.

TABLE IV. Quantitative comparisons between the proposed supervised FCM loss, CE, and DSC loss on the realistic QBSPECT simulations.

Loss Function	Lesion DSC	Recall	Precision	IoU	Bone DSC	Recall	Precision	IoU
\mathcal{L}_{DSC}	0.857	0.857	0.946	0.750	0.888	0.896	0.911	0.799
\mathcal{L}_{CE}	0.858	0.957	0.838	0.751	0.898	0.894	0.937	0.815
$\mathcal{L}_{\text{FCM}_{\text{label}}}^{-1}$	0.559	0.493	0.941	0.388	0.901	0.907	0.928	0.820
$\mathcal{L}_{\text{FCM}_{\text{label}}}^{0.1}$	0.859	0.910	0.894	0.753	0.906	0.915	0.930	0.828
$\mathcal{L}_{\text{FCM}_{\text{label}}}^{1}$	0.851	0.883	0.917	0.741	0.901	0.940	0.899	0.820
$\mathcal{L}_{\text{FCM}_{\text{label}}}^{0.5}$	0.852	0.919	0.886	0.742	0.900	0.908	0.927	0.818

TABLE V. Quantitative comparisons between the proposed semi-supervised and supervised losses, semi-supervised MS loss, CE, and DSC loss on the dataset of clinical SPECT scans.

Loss Function	Lesion surface DSC	DSC	Recall	Precision	IoU	Bone surface DSC	DSC	Recall	Precision	IoU
Fixed Threshold	0.399	0.347	0.649	0.197	0.124	0.877	0.651	0.734	0.716	0.496
\mathcal{L}_{DSC}	0.177	0.356	0.297	0.473	0.218	0.928	0.677	0.810	0.589	0.512
\mathcal{L}_{CE}	0.197	0.400	0.348	0.498	0.252	0.931	0.664	0.737	0.614	0.498
$\mathcal{L}_{\text{semi-MS}}^{0.1}$	0.590	0.677	0.650	0.709	0.527	0.939	0.701	0.798	0.637	0.541
$\mathcal{L}_{\text{FCM}_{\text{label}}}^{0.1}$	0.213	0.363	0.350	0.433	0.223	0.896	0.628	0.784	0.550	0.459
$\mathcal{L}_{\text{semi-RFCM}}^{0.1}$	**0.788**	0.747	**0.725**	0.774	**0.618**	**0.950**	0.742	0.725	**0.774**	**0.592**

The top performances are shown in bold.

FIG. 6. Statistical plots of DSC and surface DSC scores for SPECT and CT segmentation using different loss functions. The top three figures plot the mean scores in DSC with standard deviations as error bars. Figures in the bottom row are boxplots of the surface DSC, where the triangles denote the means, and the center lines represent the medians.
4. DISCUSSION

4.A. Unsupervised model

In the traditional paradigm of learning-based methods, there often exists a prior training stage that involves ground truth labels. In this study, we presented, by contrast, a novel unsupervised loss function that extends the ability of neural networks to perform unsupervised segmentation without the need for ground truth labels at any stage. The quantitative results shown in Table I and II indicate that, although the unsupervised loss functions yielded a low DSC that was around 0.50, they provided recalls of >72%. In Tc-MDP-based bone SPECT, lesions often have the highest mean uptake, followed by bone and soft tissue. The proposed unsupervised ConvNets were trained to distinguish different characteristics of intensity distributions between different organs. As a result, the proposed model was often able to capture lesion and bone as two separate classes, thus leads to higher recall. We applied a network visualization method proposed by Erhan et al. to visualize some example filters in the ConvNets. Erhan’s method maximizes a particular filter’s activation by updating a random image. We refer the readers to for the implementation details. The visualizations of five filters from the second-to-last layer of the ConvNets are shown in Fig. 9, where the first row exhibits the visualizations for the proposed unsupervised ConvNet, and the second through the last row show the visualizations for the supervised models. These images demonstrate that the unsupervised ConvNet produced filter patterns, representing image features, that are drastically different from those of the other methods. The supervised ConvNets performed well at differentiating shapes and patterns in images. Therefore, the differences observed in filter visualizations imply that the proposed unsupervised training scheme considered additional information other than shapes and patterns within a given image.

We also demonstrated that the proposed unsupervised ConvNet model was robust to noise in the test image. It is important to mention that the ConvNets were trained on a noise-free dataset, but the ConvNet architecture and the MRF-based regularizer in \(L_{RFCM} \) were able to provide good noise suppressing performances that outperformed the TV regularizer used in \(L_{MS} \). This improvement was also demonstrated by the results shown in Table II and Fig. 4. Specifically, \(L_{RFCM} \) outperformed \(L_{MS} \) by 0.01 in DSC for lesion segmentation and 0.08 in DSC for bone segmentation on a Gaussian noise corrupted test image set.

The proposed \(L_{RFCM} \) loss function incorporates an important idea from FCM, where there is a parameter, \(q \), that allows for the non-binary membership functions. The effects of different values of \(q \) are shown in Fig. 4, where smaller \(q \) values lead to crisper membership values. As described previously, the formulation of \(L_{MS} \) in Ref. [37] is similar to a special case of \(L_{RFCM} \) where the fuzzy exponent, \(q \), is 1. Therefore, the membership functions produced by training with \(L_{MS} \) resulted in "hard" (non-fuzzy) membership values, which
4.B. Supervised model

The proposed supervised loss function was inspired by,49 for which Chen et al. modified the objective function of the well-known Active contour without edges (ACWE) to operate on the ground truth segmentation during training the ConvNet. With a similar idea, we proposed a novel supervised loss function that is based on the objective function of the classical FCM. This loss function, $\mathcal{L}_{FCM\text{label}}$, shares the property of \mathcal{L}_{RFCM} that it incorporates a parameter that supports fuzziness in the membership function. This enabled us to combine $\mathcal{L}_{FCM\text{label}}$ with \mathcal{L}_{RFCM} as a new loss function that can be minimized by a ConvNet in a semi-supervised manner. To the best of our knowledge, this is the first work that introduces the idea of fuzzy clustering into the loss function of CNN-based segmentation.

The effectiveness of q in $\mathcal{L}_{FCM\text{label}}$ is visually shown in Fig. 5. As opposed to the membership values generated by \mathcal{L}_{CE} and \mathcal{L}_{DSC} which were crisper, $\mathcal{L}_{FCM\text{label}}$ offered different degrees of fuzzy overlap between resulting membership functions by selecting different values of q. Unlike hard membership functions, the fuzzy exponent, q, enables a voxel to be in multiple classes. This could be useful in quantifying nuclear medicine images as the images often exhibit partial volume effects, where a voxel usually contains uptake information from more than one class. Quantitatively, on a test dataset comprised of simulated QB-SPECT images, a mean DSC of 0.85 produced by the ConvNets trained using $\mathcal{L}_{FCM\text{label}}$ was comparable to those trained using \mathcal{L}_{CE} and \mathcal{L}_{DSC} (as shown in Table IV). Interestingly, although the ConvNet models trained using the supervised losses did not perform well on the clinical dataset, the proposed $\mathcal{L}_{FCM\text{label}}$ still outperformed the other two supervised losses, particularly by 0.035 in DSC on the bone segmentation from the clinical CT.

4.C. Semi-supervised Model

We combined the proposed unsupervised and supervised losses in a novel loss function, $\mathcal{L}_{semi-RFCM}^q$, that enables the ConvNet to perform semi-supervised segmentation. This loss function was evaluated on a clinical SPECT/CT scan. We emphasize that the ConvNet models were purely trained using QB-SPECT simulations and attenuation maps from the XCAT phantom. As shown in Tables V and VI, in general,
semi-supervised training outperformed supervised training by a large margin of ~0.4 in DSC and surface DSC for lesion segmentation on the clinical SPECT and ~0.08 in DSC on the clinical CT. This is because of the poor generalizability provided by the ConvNets when they are trained using supervised loss functions on purely simulation images, for which they tend to over-fit the semantic information in the training data. Therefore, the performance degradation is expected when testing (i.e., clinical studies) and training data (i.e., simulated images) are not drawn from the same distribution. In comparison, the semi-supervised losses impose the ConvNet models to consider both pixel-level intensity distributions, provided by minimizing the unsupervised losses, and semantic information, provided by minimizing the supervised losses, of a given image. Notice that, as highlighted by the arrows Fig. 10, there are some clear errors in the "gold-standard" segmentation. In comparison, the proposed model would seem to have provided a more accurate delineation. The regions with higher intensity levels and the regions within cortical bones (i.e., bone marrow) were all correctly being classified as bone by the automated observers, in contrast to the human observers. The parameter α is a hyper-parameter that controls the weight of the supervised loss. When α is set to be small, the network focuses more on characterizing intensity distributions rather than the segmentation labels from the training dataset. The impact of α in $L_{\text{semi-RFCM}}^\alpha (q = 2)$ and $L_{\text{semi-MS}}^\alpha$ on the performance of segmenting the clinical data are quantitatively studied, and the results are shown in Fig. 11. For the SPECT data, $L_{\text{semi-RFCM}}^\alpha$ outperforms $L_{\text{semi-MS}}^\alpha$ in lesion segmentation for all the α values tested, while sharing the similar performances in bone segmentation. For the CT data, the performance of $L_{\text{semi-RFCM}}^\alpha$ was consistently higher than that of $L_{\text{semi-MS}}^\alpha$ for all α values we tested.

One focus of this work has been to present a series of loss functions to use ConvNets that require limited amounts of training data. The work concentrated on the development of the loss functions, and an effort to optimize the ConvNet architecture is an interesting avenue for future study. A limitation of this work is that the amount of clinical data used for evaluation is relatively small. However, the existing results have demonstrated that the proposed semi-supervised loss function successfully enabled ConvNets trained using purely simulated images that were totally independent of the clinical images to produce usable segmentation for clinical images. Further evaluation using
more clinical images will be needed before the clinical application of the proposed method.

5. CONCLUSION

In this work, we proposed a set of novel FCM-based loss functions for semi-, unsupervised, and supervised SPECT/CT segmentation using deep neural networks. An advantage of the proposed loss functions is that they enable the ConvNets to consider both voxel intensity and semantic information in the image during the training stage. The proposed loss functions also retain the fundamental property of the conventional fuzzy clustering, where the fuzzy overlap between the channels of softmax outputs can be adjusted by a hyper-
parameter in the loss function. Various experiments demonstrated that the model trained using a dataset of simulated images generalized well and led to fast and robust segmentation on both simulated and clinical SPECT/CT images.

ACKNOWLEDGMENTS

This work was supported by a grant from the National Cancer Institute, U01-CA140204. The views expressed in written conference materials or publications and by speakers and moderators do not necessarily reflect the official policies of the NIH; nor does mention by trade names, commercial practices, or organizations imply endorsement by the U.S. Government.

CONFLICT OF INTEREST

The authors have no conflicts to disclose.

Data Availability Statement

The data used in this study were acquired as part of an IRB protocol and is not approved for public release.

AUTHOR TO WHOM CORRESPONDENCE SHOULD BE ADDRESSED. Electronic mail: jchen245@jhmi.edu.

REFERENCES

1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA: A Cancer J Clin. 2020;70:7–30.
2. Bin H, Wahl RL, Yong D, et al. Comparison of residence time estimation methods for radioimmunotherapy dosimetry and treatment planning—Monte Carlo simulation studies. IEEE Trans Med Imaging. 2008;27:521–530.
3. He B, Du Y, Segars WP, et al. Evaluation of quantitative imaging methods for organ activity and residence time estimation using a population of phantoms having realistic variations in anatomy and uptake. Med Phys. 2009;36:612–619.
4. He B, Frey EC. Comparison of conventional, model-based quantitative planar, and quantitative SPECT image processing methods for organ activity estimation using In-111 agents. Phys Med Biol. 2006;51:3967–3981.
5. He B, Du Y, Song X, Segars WP, Frey EC. A Monte Carlo and physical phantom evaluation of quantitative In-111 SPECT. Phys Med Biol. 2005;50:4169–4185.
6. Gustafsson J, Sundlöv A, Sjögren Gleisner K. SPECT image segmentation for estimation of tumour volume and activity concentration in 177Lu-DOTATATE radionuclide therapy. EJNMMI Res. 2017:7.
7. Segars WP, Bond J, Frush J, et al. Population of anatomically variable 4D XCAT adult phantoms for imaging research and optimization. Med Phys. 2013;40:043701.
8. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans Pattern Anal Mach Intell. 2018;40:834–848.
9. İşı̇n A, Durekkoğlu Ç, Şah M. Review of MRI-based brain tumor image segmentation using deep learning methods. Proced Comput Sci. 2016;102:317–324.
10. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. Lect Note Comput Sci (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2015;9351:234–241.
11. Millietari F, Navab N, Ahmadi S-A. V-net: Fully convolutional neural networks for volumetric medical image segmentation, in 2016 fourth international conference on 3D vision (3DV), IEEE; 2016:565–571.
12. Liu Z, Moon HS, Laforenza R, Perlmutter JS, Norris SA, Jha AK. Fully automated 3D segmentation of dopamine transporter SPECT images using an estimation based approach. arXiv preprint arXiv:2101.06729 2021.
13. Guo Z, Li X, Huang H, Guo N, Li Q. Deep learning-based image segmentation on multimodal medical imaging. IEEE Trans Radiat Plasma Med Sci. 2019;3:162–169.
14. Li L, Zhao X, Lu W, Tan S. Deep learning for variational multimodality tumor segmentation in PET/CT. Neurocomputing. 2020;392:277–295.
15. Zhang L, Wang X, Yang D, et al. Generalizing deep learning for medical image segmentation to unseen domains via deep stacked transformation. IEEE Trans Med Imaging. 2020;39:2531–2540.
16. Kass M, Witkin A, Terzopoulos D. Snakes: active contour models. Int J Comput Vision. 1988;1:321–331.
17. Sanjay-Gopal S, Hebert TJ. Bayesian pixel classification using spatially variant finite mixtures and the generalized EM algorithm. IEEE Trans Image Process. 1998;7:1014–1028.
18. Bezdek JC, Ehrlich R, Full W. FCM: the fuzzy c-means clustering algorithm. Comput Geosci. 1984;10:191–203.
19. Hatt M, Lee JA, Schmidtke CR, et al. Classification and evaluation strategies of auto-segmentation approaches for PET: Report of AAPM task group No. 211. Med Phys. 2017;44:e1–e42.
20. Abdoli M, Dierckx R, Zaidi R. Contourlet-based active contour model for PET image segmentation. Med Phys. 2013;40:082507.
21. Chang TF, Vese LA. Active contours without edges. IEEE Trans Image Process. 2001;10:266–277.
22. Layer T, Blaickner M, Kräusl B, et al. PET image segmentation using a Gaussian mixture model and Markov random fields. EJNMMI physics. 2015;2:1–15.
23. Belhassen S, Zaidi H. A novel fuzzy C-means algorithm for unsupervised heterogeneous tumor quantification in PET. Med Phys. 2010;37:1309–1324.
24. Chen C, Luo J, Parker K. Image segmentation via adaptive K-means clustering and knowledge-based morphological operations with biomedical applications. IEEE Trans Image Process. 1998;7:1673–1683.
25. Bezdek JC, Hall LO, Clarke LP. Review of MR image segmentation techniques using pattern recognition. Med Phys. 1993;20:1033–1048.
26. Pham DL, Xu C, Prince JL. Current methods in medical image segmentation. Annu Rev Biomed Eng. 2000;2:315–337.
27. Chen J, Jha AK, Frey EC. Incorporating CT prior information in the robust fuzzy C-means algorithm for QSPECT image segmentation, in Medical Imaging 2019: Image Processing, edited by Angelini ED, Landman BA page 66, SPIE, 2019.
28. Pham DL. Spatial models for fuzzy clustering. Comput Vis Image Underst. 2001;84:285–297.
29. Ahmed MN, Yamany SM, Mohamed N, Farag AA, Moriarty T. A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans Med Imaging. 2002;21:193–199.
30. Cai W, Chen S, Zhang D. Fast and robust fuzzy c-means clustering algorithm incorporating local information for image segmentation. Pattern Recogn. 2007;40:825–838.
31. Chen S, Zhang D. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Trans Syst Man Cybern, Part B (Cybernetics). 2004;34:1907–1916.
32. Wang X-Y, Bu J. A fast and robust image segmentation using FCM with spatial information. Digit Signal Process. 2010;20:1173–1182.
33. Chuang K-S, Tseng H-L, Chen S, Wu J, Chen T-J. Fuzzy c-means clustering with spatial information for image segmentation, computerized medical imaging and graphics. Comput Med Imaging Graph. 2006;30:9–15.
34. Krinidis S, Chatzis V. A robust fuzzy local information C-means clustering algorithm. IEEE Trans Image Process. 2010;19:1328–1337.
35. Geman S, Geman D. Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell. 1984;PAMI-6:721–741.
36. Chen J, Frey EC. Medical image segmentation via unsupervised convolutional neural network, in Medical Imaging with Deep Learning. 2020.
37. Kim B, Ye JC. Mumford-shah loss functional for image segmentation with deep learning. IEEE Trans Image Process. 2020;29:1856–1866.
38. Shelleraner E, Long J, Darrell T. Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39:640–651.

39. Gu Z, Cheng J, Fu H, et al. Context encoder network for 2D medical image segmentation. IEEE Trans Med Imaging. 2019;38:2281–2292.

40. Norman B, Pedoia V, Majumdar S. Use of 2D U-net convolutional neural networks for automated cartilage and meniscus segmentation of knee MR imaging data to determine relaxometry and morphometry. Radiology. 2018;288:177–185.

41. Cai J, Tang Y, Lu L, et al. Accurate weakly-supervised deep lesion segmentation using large-scale clinical annotations: slice-processed 3D mask generation from 2D RECIST, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 11073 LNCS, Springer Verlag; 2018:396–404.

42. Feng X, Yang J, Laine AF, Angelini ED. Discriminative localization in CNNs for weakly-supervised segmentation of pulmonary nodules, in 2015 IEEE International Conference on Computer Vision (ICCV), 2015:1742–1750.

43. Papandreou G, Chen L, Murphy KP, Yuille AL. Weakly-and semi-supervised learning of a deep convolutional network for semantic image segmentation, in 2015 IEEE International Conference on Computer Vision (ICCV), 2015:1742–1750.

44. Mumford D, Shah J. Optimal approximations by piecewise smooth functions and associated variational problems. Commun Pure Appl Math. 1989;42:577–685.

45. Du Yong B, Tsui MW, Frey EC. Partial volume effect compensation for quantitative brain SPECT imaging. IEEE Trans Med Imaging. 2005;24:969–976.

46. Liang M, Hu X. Recurrent convolutional neural network for object recognition, in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 07–12-June, IEEE Computer Society; 2015:3367–3375.

47. Gregor K, LeCun Y. Learning Fast Approximations of Sparse Coding, in Proceedings of the 27th International Conference on International Conference on Machine Learning, ICML’10, (pp. 399–406), Madison, WI, USA, Omnipress. 2010.

48. Neff T, Payer C, Stern D, Urschler M. Generative Adversarial Network based Synthesis for Weakly-Supervised Medical Image Segmentation, in Proceedings of the OAGM&ARW Joint Workshop 2017: Vision, Automation and Robotics, pages 140–145, Verlag der TU Graz, 2017.

49. Chen X, Williams BM, Vallabhaneni SR, Czanner G, Williams R. Learning active contour models for medical image segmentation. Cyrpv. 2019;2019:11632–11640.

50. Abadi M, Agarwal A, Barham P, et al. TensorFlow: large-scale machine learning on heterogeneous systems. Software available from tensorflow.org. 2015.

51. Segars WP, Mahesh M, Beck TJ, Frey EC, Tsui BM. Realistic CT simulation using the 4D XCAT phantom. Med Phys. 2008;35:3800–3808.

52. Segars WP, Sturgeon G, Mendonca S, Grimes J, Tsui BM. 4D XCAT phantom for multimodality imaging research. Med Phys. 2010;37:4902–4915.