A novel haemocytometric COVID-19 prognostic score developed and validated in an observational multicentre European hospital-based study

Joachim Linssen, Anthony Ermens, Marvin Berrevoets, Michela Seghezzi, Giulia Previtali, Simone van der Sar-van der Brugge, Henk Russcher, Annelies Verbon, Judith Gillis, Jürgen Riedl, Eva de Jongh, Jarob Saker, Marion Münster, Imke CA Munnix, Anthonius Dofferhoff, Volkher Scharnhorst, Heidi Ammerlaan, Kathleen Deiteren, Stephan JL Bakker, Lucas Joost van Pelt, Yvette Kluiter-de Hingh, Mathie PG Leers, André van der Ven

Corresponding author:
André van der Ven, MD PhD, DTMH
Infectious Disease Specialist, Professor International Health
Radboudumc, Department of Internal Medicine
Radboud Center for Infectious Diseases
PO Box 9101, 6500HB Nijmegen, the Netherlands
Email: andre.vanderven@radboudumc.nl
Tel: +31652626633
Fax: +31243541734

Abstract
COVID-19 induces haemocytometric changes. Complete blood count changes, including new cell activation parameters, from 982 confirmed COVID-19 adult patients from 11 European hospitals were retrospectively analysed for distinctive patterns based on age, gender, clinical severity, symptom duration and hospital days. The observed haemocytometric patterns formed the basis to develop a multi-haemocytometric-parameter prognostic score to predict, during the first three days after presentation, which patients will recover without ventilation or deteriorate within a two-week timeframe, needing intensive care or with fatal outcome. The prognostic score, with ROC curve AUC at baseline of 0.753 (95% CI 0.723-0.781) increasing to 0.875 (95% CI 0.806-0.926) on day 3, was superior to any individual parameter at distinguishing between clinical severity. Findings were confirmed in a validation cohort. Aim is that the score and haemocytometry results are simultaneously provided by analyser software, enabling wide applicability of the score as haemocytometry is commonly requested in COVID-19 patients.

Keywords: COVID-19, prognostic score, haemocytometry, complete blood count, intensive care.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Introduction

COVID-19 spans a wide clinical spectrum from asymptomatic to severe pneumonia with multiple organ failure (1), majorly threatening global health, including that of Europe (2). Early identification of critical patients may reduce mortality by timely interventions (2). Many studies explored the diagnostic or prognostic value of various factors including age, sex, CT scan, biochemical and haematological parameters (3-13). Most studies were however geographically limited, had high risk for bias, and had no validation cohort (14). C-reactive protein, ferritin, D-dimer, albumin, urea nitrogen, bilirubin and lactate dehydrogenase (LDH) levels are cited as indirect indicators of the presence and severity of COVID-19 (11, 13, 15-20), as are complete blood count (CBC) and differential count (DIFF) changes, specifically lymphopenia, neutrophilia, high neutrophil-to-lymphocyte ratio (NLR) and thrombocytopenia (15, 21-25). All aforementioned parameters are widely available, but their value is constrained by significant inter-patient variability and limited specificity.

Newer haematology analysers are capable of functional characterisation of blood cells (26-28), including measurement of immune cell activation (29, 30), which has shown promise in screening for infectious diseases (31). The aim of this study is to develop and validate a prognostic score using only haemocytometric data for COVID-19 patients presenting at hospitals, to predict within three days of hospital admission, who will deteriorate and require intensive care unit (ICU) transfer within 14 days of admission. Importantly, our intended purpose of this score is to assist with objective risk stratification to support patient management decision making early on, and thus facilitate timely interventions, such as need for ICU or not, before symptoms of severe illness become clinically overt, with the intention to improve patient outcomes, and not to predict mortality.

Methods

Study design, sample size and participants

Whilst it was not possible to calculate an appropriate sample size due to the rapid escalation of the COVID-19 pandemic and concomitant resource contraints experienced by the study centres during the time of planned data collection, the study team set a minimum target of 500 patients, of which at least 250 were admitted to intensive care, and that the study would remain open for enrolment of patients until 6 April 2020 to increase the patient numbers as much as possible.

In this explorative multicentre study patients were prospectively enrolled into a prognostic score development cohort from 21 February to 6 April 2020, with follow-up to document clinical outcome until 9 June 2020, from 7 hospitals in the Netherlands and 1 each in Italy and Belgium.

Data analysis and prognostic score development was performed retrospectively from 9 to 29 June 2020. Thereafter, eligible patients presenting between 7 April to 15 May 2020 and 3 March and 17 May 2020 respectively at 2 hospitals in the Netherlands were retrospectively enrolled into a validation cohort.

Inclusion criteria for both cohorts were: primary presentation at participating hospitals; RT-PCR confirmed COVID-19; age ≥18 years; ≥1 CBC-DIFF (± reticulocyte measurement (RET)) analysed on a Sysmex XN series haematology analyser (Kobe, Japan) as part of routine care; initial management decision record (self-isolation, general ward admission, ICU admission). Any documented comorbidities, duration of symptoms, subsequent ICU transfer and final outcome (recovered, died, unknown) were recorded. Patients with unknown outcome, or disorders that significantly alter haemocytometry were excluded. All CBC-DIFFs (+/- RET) done at presentation and throughout hospitalisation, of eligible patients, were included for retrospective analysis.

Reference data were obtained from a random sample of 12,782 healthy individuals from a large population-based cohort in the Netherlands (www.lifelines.nl).
Haemocytometry

Parameters included in this study are shown in Table 1.

In brief, standard CBC-DIFF parameters plus nucleated red blood cells (NRBC), immature granulocytes (IG), neutrophil reactivity index (NEUT-Rl), and neutrophil granularity index (NEUT-GI) were measured. Neutrophil-to-lymphocyte ratio (NLR) and immature granulocyte-to-lymphocyte ratio (IGLR) were calculated.

Where available, we assessed reticulocyte count (RET), reticulocyte haemoglobin content (RET-He), the optical measurement of reticulocyte haemoglobinisation, the difference in reticulocyte and RBC haemoglobin content (Delta-He) (which is also a real time marker for iron bioavailability, with a negative value being an indirect marker of monocyte activation), the percentage of hypochromic (HYPO-He) and microcytic (RBC-MICRO-R).

Anonymous XN-analyser raw data files were provided to Sysmex Europe collaborators for analysis using virtual analyser software, specifically to obtain reactive lymphocyte (RE-LYMPH), antibody-synthesising lymphocyte (AS-LYMPH) and reactive monocyte (RE-MONO) counts. If the analyser was equipped with a PLT-F (optical platelet count) measurement channel, and the initial CBC platelet count result triggered a reflex PLT-F measurement, or this was included in the initial request as a default profile, then immature platelet fraction (IPF#, IPF%) values measured in this channel were included in the data analysis. However, as most analysers in this study were not equipped with the PLT-F channel, the IPF# and IPF(%) values were derived from the RET channel measurement using virtual analyser software.

Definitions

Disease severity was scored as follows: **Mild**: no hospitalisation, recovered; **Moderate**: ≤5 days hospitalisation without ICU/ventilation, recovered; **Severe**: >5 days hospitalisation without ICU/ventilation, recovered; **Critical**: ICU/ventilation at any stage of hospitalisation, recovered; **Fatal**: death.

Two management/outcome groups were defined, assuming that all patients that died would have needed ICU admission, and would have been admitted to ICU, had an ICU bed been available: 1) non-critical (NC) group comprising patients classified as mild, moderate or severe, and 2) the CF group comprised of critical (C) and fatal (F) outcome patients.

Day 0 refers to the day of first presentation at hospital, and the day of admission for those patients requiring hospitalisation. Day 1 refers to one day after the day of admission, or alternatively, one hospital bed night. Day 2, refers to 2 days, and so on.

Data analysis and development of a prognostic score to predict disease severity and progression in COVID-19 patients

The prognostic score development process is outlined in Figure 1. Haemocytometric data were grouped according to clinical severity, management/outcome, symptom duration and days of hospitalisation, and analysed up to day 14 and compared with healthy controls, to identify specific patterns and trends. Haemoglobin values were adjusted for age and gender.

In brief, each parameter was analysed univariately with regard to critical/fatal outcome and backward-selection multiple logistic regression analysis was conducted to select parameters for inclusion in the prognostic score, using the following criteria: 1) significant difference on days 0-3 (p≤0.001); 2) >20% abnormal in the CF group; 3) only dominant parameter selected if ≥2 eligible parameters are inter-dependent.
Table 1. Sysmex XN-1000 haematology analyser parameters used in this study

Parameter name	Standard parameters	Parameter description	Measurement profile
AS-LYMPH	Yes	Antibody synthesising lymphocyte count (this is a subset of RE-LYMPH)	CBC-DIFF
AS-LYMPH%	Yes	Antibody synthesising lymphocyte percentage of total white blood cell count	CBC-DIFF
AS-LYMPH%/L	Yes	Antibody synthesising lymphocytes as a percentage of lymphocytes	CBC-DIFF
BASO	Yes	Basophil count	CBC-DIFF
Delta-He	Yes	Standard parameter calculated by the equation RET-He minus RBC-He	RET
EO	Yes	Eosinophil count	CBC-DIFF
HCT	Yes	Hematocrit	CBC-DIFF
HGB	Yes	Hemoglobin concentration	CBC-DIFF
HYPO-He	Yes	The ratio of the count in the low-level area of the forward scattered light signal in the RBC area of the RET scattergram, to mature red blood cells (% of hypochromic red blood cells of total red blood cells)	RET
IG	Yes	Immature granulocyte count	CBC-DIFF
IPF	Yes	Immature platelet fraction (% of immature platelets of total platelet count)	RET (PLT-F)⁵
IPF#	Yes	Immature platelet fraction count (immature platelet absolute count)	RET (PLT-F)⁵
LYMMPH	Yes	Lymphocyte count	CBC-DIFF
MCH	Yes	Mean corpuscular hemoglobin	CBC-DIFF
MCHC	Yes	Mean corpuscular hemoglobin concentration	CBC-DIFF
MCV	Yes	Mean corpuscular volume	CBC-DIFF
MicroR	Yes	Micro RBC ratio (proportion of small red blood cells (RBCs) as a % of total RBCs)	RET
NEUT	Yes	Neutrophil count	CBC-DIFF
NEUT-GI	Yes	Neutrophil granularity index (reactivity of neutrophils (cytoplasmic granularity))	CBC-DIFF
NEUT-RI	Yes	Neutrophil reactivity index (reactivity of neutrophils (metabolic activity))	CBC-DIFF
NRBC	Yes	Nucleated red blood cell count	CBC-DIFF
PLT	Yes	Platelet count	CBC-DIFF
RBC	Yes	Red blood cell (erythrocyte) count	CBC-DIFF
RBC-He	Yes	Mature RBC hemoglobin equivalent (optical measurement of red blood cell hemoglobinisation)	RET
RE-LYMPH	Yes	Reactive lymphocyte count	CBC-DIFF
RE-LYMPH%	Yes	Reactive lymphocyte percentage of total white blood cell count	CBC-DIFF
RE-LYMPH%/L	Yes	Reactive lymphocytes as a percentage of lymphocytes	CBC-DIFF
RE-MONO	Yes	Number of monocytes with a side fluorescent signal >150 channels representing activated monocytes	CBC-DIFF
RE-MONO%/M	Yes	Reactive monocytes as a percentage of monocytes	CBC-DIFF
RET#	Yes	Reticulocyte count	RET
RET-He	Yes	Reticulocyte hemoglobin equivalent (optical measurement of reticulocyte hemoglobinisation)	RET
WBC	Yes	White blood cell (leukocyte) count	CBC-DIFF

Note: The availability of individual parameters as either diagnostic (IVD) or research use only (RUO) is dependent on regulatory approval status which differs across regions.

a) Standard parameters available in the complete blood count (CBC), differential (DIFF) or reticulocyte measurement (RET) channels across multiple manufacturer haematology analyser platforms. b) Depending on region, the immature platelet count (IPF# and IPF%) are obtained either from the RET or PLT-F channel. PLT-F refers to fluorescent optical platelet measurement.
Figure 1. Flow chart illustrating steps involved in prognostic score development

Abbreviations: NC, non-critical patient group; CF, critical/fatal patient group; ROC, receiver operating characteristics (curve); AUC, area under the curve.
Receiver operating characteristics (ROC) curve analysis of selected parameters was applied for calculation of optimal cut-off values associated with sensitivity and specificity and used as the baseline for points assignment, with further increments for increasing specificity and likelihood ratio in discriminating between NC and CF groups (maximum 4 points). The score represents the sum of individual parameter points.

Score values were calculated for day 0-3 measurements to determine the cut-off value that best discriminate between the NC and CF groups. To further enhance score sensitivity without compromising specificity, additional parameters were included (maximum 1 point each) if they were significantly abnormal from day 4 onwards with >95% specificity.

The 14-day prognostic score time horizon was plotted using all available measurements and its performance in predicting disease severity validated in an independent patient cohort.

Only haemocytometry parameters were used as predictors in the prognostic score development. As these data are generated from automated haematology analysers, and do not rely on interpretation, predictors for the prognostic score were automatically blinded.

Also, the outcome groups were defined in advance of patient enrolment, and patients were classified according to objective data (length of hospital stay, general ward or ICU, recovered and discharged from hospital or died) provided by the enrolling study centre prior to the commencement of data analysis and score development. In this regard, the authors involved in score development had no influence over assessment of prediction of disease severity of individual patients, and hence assessment of outcome was deemed to have been blinded.

Statistics

MedCalc Statistical Software version 19.2.1 (MedCalc Software Ltd, Ostend, Belgium; https://www.medcalc.org; 2020) was used. Differences between patient groups were assessed using Student’s t-test for normality and if rejected (D’Agostino-Pearson test for normal distribution), the Mann-Whitney U-test for non-normally distributed variables was used. The Hodges-Lehmann median difference (md) was used to describe the differences in values of non-standard distributed parameters. To evaluate predictive values, we calculated the AUC of ROC curves, and 95% confidence intervals for each of the first 14 days of hospitalisation. This was done for both the development and validation cohort. The influence of two categorical variables was visualised using the clustered multiple comparison graph with standard error of mean (SEM). Confoundance of prognostic score, age, gender and presence of comorbidities was tested by logistic regression. Box and whisker plots were used to visualise comparisons of multiple groups.

Missing data

Those samples that did not have a RET channel measurement were excluded from the trend analysis of all parameters measured or derived from this measurement channel (Table 1). Only samples with full profile (CBC DIFF RET) measurements were included for determination of cut-off values for prognostic score calculation. Only patients with full profile measurements were included in the validation cohort. No imputation was done for missing data. All patients that were enrolled from those centres that did not provide any information on the presence or absence of comorbidities, were excluded from the statistical analysis of prognostic score performance versus presence of comorbidities in predicting disease severity outcome classical risk factors.

Ethics

The study was reviewed by all participating centre ethics committees with approval granted in Italy (Registration Number 54/20) and Belgium (Registration Number 300202000105) and exemption in the Netherlands, with need for informed consent waived by all.
Results

Patient characteristics

In total 999 patients were enrolled in the development cohort (Figure 2). Seventeen patients with underlying haematological malignancies or currently undergoing chemotherapy, were subsequently excluded. Nine hundred eighty-two patients with 2587 haematology measurements (day 0–13), were included to analyse temporal haemocytometric data trends and for performing steps 1 and 2 of prognostic score development (Figure 1). Median age was 71 years (range 18-96) and 68% of the patients were male. Patient distribution by sex, clinical severity and comorbidities is shown in Table 2. After excluding 59 patients with missing day 0-3 CBC-Diff data, the remaining 923 patients with 1587 measurements were used to complete prognostic score development (step 3 to 6).

Of the 923 patients, 64 (6.9%) were not hospitalised, 687 (74.4%) were admitted to general wards and 172 (18.6%) went directly to ICU, with a further 9 ICU transfers after day 3. The mortality rate for ICU patients (29.3%; 53/181) and general ward patients (27.4%, 186/678) was comparable (Figure 2). Patients who died or were critically ill, were significantly older than those less severely ill (median age 74 vs 65 years, p<0.001). Although males outnumbered females (631; 292) in patients that had a severe disease progression, mortality rates were independent of sex. Characteristics of the 923 patients are presented in Table 3. Distribution of clinical severity by age is shown in Figure 3.
Figure 2. Patient flow chart from prognostic score development and validation cohorts, including sample numbers for CBC-Diff (with or without RET) and clinical outcome

Footnote. a) Details of how the validation patient cohort patients were selected are provided in Figure 11, b) the exclusion criteria for the validation cohort were the same as for the development patient cohort.
Table 2. Basic demographic characteristics of COVID-19 PCR confirmed patients enrolled for prognostic score development

All patients	Total	Mild	Moderate	Severe	Critical	Fatal
n [%]	982	64 [6.5]	198 [20.2]	323 [32.9]	144 [14.7]	253 [25.8]
Age Years (range)	18-96	18-96	22-91	19-93	28-88	42-95
Age Years (median)	71	59	68	69.5	65	79
Females						
n [%]	314 [32.0]	27 [8.6]	74 [23.6]	113 [36.0]	38 [12.1]	62 [19.7]
Age Years (range)	18-95	18-92	22-86	19-93	28-81	56-95
Age Years (median)	69	62	67	69	64	79.5
Males						
n [%]	668 [68.0]	37 [5.5]	124 [18.6]	210 [31.4]	106 [15.9]	191 [28.6]
Age Years (range)	26-96	35-96	30-91	26-89	32-88	42-93
Age Years (median)	72	59	68	69.5	65	79
Length of hospitalisation						
Days (range)	0-78	0	1-5	6-46	2-78	1-44
Days (median)	6	0	3	10	22	6
Comorbiditiesa						
Absentb [%]	[27]	[68]	[45]	[35]	[24]	[13]
Presentc [%]	[73]	[32]	[55]	[65]	[76]	[87]
Diabetes [%]	[15.9]	[5.5]	[15.0]	[14.9]	[20.5]	[18.2]
Hypertension [%]	[12.8]	[1.8]	[7.9]	[14.5]	[17.9]	[13.9]
Cardiovascular disorders [%]	[27.6]	[16.3]	[21.3]	[25.6]	[18.8]	[41.6]
Respiratory disorders [%]	[12.0]	[5.5]	[8.7]	[12.6]	[12.5]	[14.8]
CNS disorders [%]	[4.3]	[3.6]	[3.2]	[4.6]	[1.8]	[6.2]
Renal disorders [%]	[4.8]	[1.8]	[3.9]	[5.0]	[5.4]	[5.7]
Malignancy [%]	[9.2]	[0]	[9.5]	[8.4]	[9.8]	[12.0]
Autoimmune disease [%]	[3.7]	[5.5]	[3.9]	[2.3]	[6.3]	[3.3]
Pregnancy [%]	[0.3]	[1.8]	[0.8]	[0]	[0]	[0]
Obesityd [%]	[2.7]	[0]	[3.1]	[3.4]	[1.8]	[2.9]
Othere [%]	[7.8]	[5.5]	[4.7]	[10.7]	[12.5]	[4.3]

Footnote: a) Occurrence of comorbidities is shown as a relative frequency expressed as a percentage (patients with a comorbidity divided by total number of patients in whom the presence or absence of comorbidities was recorded) as 2 of the participating study centres did not document the presence or absence of comorbidities.

b) Absent – comorbidities confirmed to be absent.

c) Present – one or more comorbidities confirmed to be present.

d) Body mass index (BMI) measurements were not undertaken as part of this study. It was also up to the discretion of the physician to document obesity as a comorbidity. As this study was undertaken in the early phase of the pandemic, it may not have been common knowledge to all attending physicians that obesity is significant contributor to adverse outcomes in COVID-19.

e) Other includes gastrointestinal disorders, musculoskeletal disorders, endocrine disorders, lipid disorders, haemachromatosis, psoriasis, malnutrition and Down syndrome.
Table 3. Demographic and first haemocytometric data at hospital presentation or within 3 days after admission

	Non-critical group (NC)	Critical/fatal group (CF)	P-value	All patients	Reference values healthy volunteers	% abnormal results
Patients [n]	557	366	<0.0001	923	292	923
Female [n]	201	91	<0.0001	292		
Male [n]	356	276	<0.0001	631		
Age (Years, median)	65	74	<0.0001	68		
Female [Y, median]	64	73	0.0040	67		
Male [Y, median]	66	74	0.0010	69		
Female vs. Male in NC [n] [F, M]	na [201, 356]	na [91, 276]	ns na	na na		
Female vs. Male in CF [n] [F, M]	na [91, 276]	na [91, 276]	ns na	na na		
Duration of symptoms [Days, median]	7 [7]	7 [7]	ns [7]	ns [7]	7 [7]	7 [7]

Haemocytometry

Patients/healthy volunteers, [samples]	Median [95% CI]	Median [95% CI]	P-value	Median [95% CI]	Median [95% CI]	%
White blood cells findings						
WBC (white blood cell count) [10³/µL]	5.92 [2.42–13.17]	7.75 [3.02–18.61]	<0.0001	6.43 [2.59–16.10]	5.84 [3.64–9.61]	28.4
NEUT (neutrophil count) [10³/µL]	4.37 [1.39–11.21]	6.25 [2.17–15.18]	<0.0001	4.96 [1.53–13.61]	3.12 [1.62–5.86]	41.4
IG (immature granulocyte count) [10³/µL]	0.04 [0.01–0.26]	0.06 [0.01–0.67]	<0.0001	0.05 [0.01–0.48]	0.03 [0.01–0.09]	16.3
LYMPH (lymphocyte count) [10³/µL]	0.91 [0.35–2.09]	0.74 [0.26–1.91]	<0.0001	0.78 [0.28–2.00]	1.92 [1.07–3.41]	70.5
NLR (neutrophil-to-lymphocyte ratio) [ratio]	4.7 [1.3–17.7]	8.1 [2.1–39.0]	<0.0001	6.0 [1.4–28.5]	1.6 [0.8–3.6]	77.1
IGLR (immature granulocyte-to-lymphocyte ratio) [ratio*100]	3.9 [0.8–36.1]	7.3 [1.2–69.1]	<0.0001	4.8 [0.81–52.7]	1.8 [0.5–4.8]	49.4
MONO (monocyte count) [10³/µL]	0.43 [0.13–1.29]	0.43 [0.10–1.22]	0.0172	0.42 [0.11–1.27]	0.48 [0.28–0.83]	22.8
EO (eosinophil count) [10³/µL]	0.01 [0.00–0.26]	0.01 [0.00–0.31]	ns.	0.01 [0.00–0.29]	0.16 [0.04–0.47]	76.6
BASO (basophil count) [10³/µL]	0.01 [0.00–0.05]	0.01 [0.00–0.08]	ns.	0.01 [0.00–0.07]	0.04 [0.02–0.09]	56.1
Table 3 continued.

	Non-critical group (NC)	Critical/fatal group (CF)	P-value	All patients	Reference value healthy volunteers	% abnormal results
WBC extended parameters						
NEUT-RI (neutrophil reactivity index) [FI]	50.0 [43.9–57.0]	50.6 [44.2–59.2]	0.0023	50.2 [44.0–58.1]	46.1 [41.9–50.6]	47.0
NEUT-GI (neutrophil granularity index) [GI]	153 [143–163]	153 [141–163]	ns	153 [143–163]	149 [142–157]	23.2
RE-LYMPH (reactive lymphocytes as % of lymphocytes) [% of lymph]	9.9 [2.6–23.6]	10.0 [2.4–28.9]	<0.0001	10.5 [2.5–26.3]	3.3 [1.3–7.6]	73.3
AS-LYMPH (antibody synthesising lymphocytes as % of lymphocytes) [% of lymph]	3.6 [0.0–13.2]	4.2 [0.0–19.8]	<0.0001	3.8 [0.0–17.4]	0.0 [0.0–0.0]	90.4
RE-MONO (reactive monocytes as % of monocytes) [% of mono]	2.5 [0.2–17.9]	3.9 [0.0–30.0]	<0.0001	3.0 [0.3–22.7]	0.0 [0.0–4.3]	37.3
Red blood cells findings						
HGB (haemoglobin) [g/dL]	13.4 [9.6–16.3]	12.9 [8.4–16.5]	<0.0001	13.2 [8.9–16.3]	14.1 [11.9–16.6]	26.5
RBC (red blood cell count) [10⁶/µL]	4.8 [3.10–5.54]	4.31 [2.90–5.62]	<0.0001	4.42 [3.00–5.58]	473 [3.99–5.60]	26.8
MCV (mean cell volume) [fL]	89.1 [78.3–101.6]	90.2 [77.9–103.0]	ns	89.5 [78.3–101.9]	90.1 [82.5–97.8]	14.2
RET (reticulocyte count) [10⁵/µL]	30.2 [14.1–80.0]	30.0 [13.9–95.6]	ns	30.1 [14.1–89.5]	57.5 [32.6–96.6]	55.5
NRBC (nucleated red blood cell count) [µL]	0 [0–10]	0 [0–60]	<0.0001	0 [0–30]	0 [0–10]	46
RET-He (reticulocyte haemoglobin equivalent) [pg]	30.2 [23.6–35.5]	29.4 [22.9–34.8]	ns	29.9 [23.1–35.2]	32.8 [29.4–35.4]	44.4
RBC extended parameters						
DELTA-He (difference in reticulocyte and RBC haemoglobin content) [pg]	-0.5 [-4.8–3.1]	-1.2 [-7.0–3.1]	<0.0001	-0.7 [-5.9–3.1]	2.6 [1.4–3.6]	85.7
MICRO-R (% of RBC that are microcytic) [%]	1.5 [0.4–8.5]	1.5 [0.4–10.0]	ns	1.5 [0.4–9.5]	1.1 [0.3–4.2]	9.9
HYPO-He (% of RBC that are hypochromic) [%]	0.2 [0.1–2.0]	0.3 [0.1–2.6]	<0.0001	0.2 [0.1–2.5]	0.1 [0.0–0.5]	21.9
Platelet findings						
PLT (platelet count) [10⁶/µL]	199 [96–451]	205 [64–435]	ns	201 [79–446]	256 [161–385]	32.7
IPF% (immature platelet fraction) [%]	4.3 [1.7–12.9]	4.9 [2.0–5.9]	ns	4.5 [1.7–14.2]	3.0 [1.1–8.1]	14.6
PLT extended parameters						
IPF# (absolute immature platelet count) [10³/µL]	9.4 [3.6–30.9]	11.2 [3.5–28.7]	0.0001	10.2 [3.5–29.6]	7.9 [3.1–18.1]	15.4

Note: The expanded name of the haemocytometric parameters is shown in brackets in italics. The unit of measure for each parameter is shown in square brackets. A more detailed explanation of the haemocytometric parameters is provided in Table 1.

Abbreviations: na, not applicable; ns, not significant.
Figure 3. Clinical severity and outcome by age of all patients

![Bar chart showing age distribution of patients by clinical severity](image)

Age Group	Non-critical	Critical (survivors)	Critical (non-survivors)
18-24			
25-34			
35-44			
45-54			
55-64			
65-74			
75-84			
> 85			

Age (in years)	Number of patients
18-24	
25-34	
35-44	
45-54	
55-64	
65-74	
75-84	
> 85	

Haemocytometry data trends over 14 days of hospitalisation in critical/fatal (CF) and non-critical (NC) patients

The haematological changes derived from the 2587 measurements, taken from 982 development cohort patients at various time points (at the discretion of the attending physician) from day of admission (day 0) up to 13 days, are shown in Figure 4 (lymphocyte-related parameters), Figure 5 (neutrophil-related parameters), Figure 6 (monocyte parameters), Figure 7 (red blood cell-related parameters) and Figure 8 (platelet parameters) and further described below with findings grouped along haemopoietic cell lines.

WBC findings
In NC and CF groups, lymphopenia is present for 7 and 10 days respectively and normalises thereafter, as lymphocyte numbers have a tendency to increase after 5 days in both groups. (Figure 4A) The NLR increases in the CF group compared to the NC group, and then gradually decreases again. The differences between the groups remain significant over time (p<0.001) (Figure 4B). Neutrophil counts are normal and remain stable in the NC group, whereas values are mildly elevated and continue to rise over time in the CF group (Figure 5A). This increase in neutrophils is accompanied by a mildly elevated NEUT-RI level in the CF group (Figure 5B). Absolute differences in baseline IG#, although statistically significant (p<0.001), are small. After day 2, there is a marked rise in IG in the CF but not in the NC group (Figure 5C). The immature granulocyte-to-lymphocyte ratio (IGLR) trend mirrors that of IG (Figure 5D). AS-LYMPH%/L remains abnormally elevated in both groups from baseline throughout the first two weeks of hospitalisation (Figure 4C). The RE-LYMPH, minus AS-LYMPH (a subset of RE-LYMPH, which is absent in healthy individuals) indicates that the reactive lymphocytes observed in both NC and CF groups are largely comprised of AS-LYMPH (Figure 4D), in keeping with a predominant B-cell rather than T-cell response. Absolute monocyte counts are within normal limits for the NC group and remain stable throughout. Likewise, values are largely normal within the CF group, but show an upward trend with mild monocytosis evident from about day 10 onwards (Figure 6A). RE-MONO%/M remains stable over time, and largely within normal limits in the NC group. In contrast, in the CF group monocyte activation increases up to days 3 to 4, with values returning to within the reference range after a week (Figure 6B).
Figure 4. Trends of lymphocyte related parameters over 14 days of hospitalisation in critical/fatal (CF) and non-critical (NC) patients

Note: Fourteen days of hospitalisation refers to Day 0 (day of admission) plus the next 13 days after admission.

The normal reference range is depicted by the area between the dotted horizontal lines. Vertical bars indicate standard error of the mean (SEM).

A) absolute lymphocyte count (LYMPH), B) neutrophil-to-lymphocyte ratio (NLR), C) antibody-synthesising lymphocytes as percentage of lymphocytes (AS-LYMPH%/L), D) reactive lymphocytes minus AS-LYMPH (as a percentage of lymphocytes)

The number of sample measurements available per day for the trend analysis for the parameters plotted per patient group are shown in the table below:

Day	0	1	2	3	4	5	6	7	8	9	10	11	12	13
NC	469	139	146	129	95	65	59	42	31	25	18	12	11	17
CF	321	122	134	90	94	71	54	58	45	44	33	33	25	17
Figure 5. Trends of neutrophil related parameters over 14 days of hospitalisation in critical/fatal (CF) and non-critical (NC) patients

Note: Fourteen days refers to Day 0 (day of admission) plus the next 13 days after admission. The normal reference range is depicted by the area between the dotted horizontal lines. Vertical bars indicate standard error of the mean (SEM).

A) absolute neutrophil count (NEUT), B) neutrophil reactivity index (NEUT-RI), C) immature granulocytes (IG), D) immature granulocyte-to-lymphocyte ratio *100 (IGLR).

The number of sample measurements available per day for the trend analysis for the parameters plotted per patient group are shown in the table below:

Day	NC	CF
0	469	321
1	139	122
2	146	134
3	129	90
4	95	94
5	65	71
6	59	54
7	42	58
8	31	45
9	25	44
10	18	33
11	12	33
12	11	25
13	17	17

Figure 6. Trends of monocyte parameters over 14 days of hospitalisation in critical/fatal (CF) and non-critical (NC) patients

Note: Fourteen days of hospitalisation refers to Day 0 (day of admission) plus the first 13 days after admission. The normal reference range is depicted by the area between the dotted horizontal lines. Vertical bars indicate standard error of the mean (SEM).

A) absolute monocyte count (MONO), B) reactive monocytes as a percentage of monocytes (RE-MONO%/M).

The number of sample measurements available per day for the trend analysis for the parameters plotted per patient group are shown in the table below:

Day	NC	CF
0	469	321
1	139	122
2	146	134
3	129	90
4	95	94
5	65	71
6	59	54
7	42	58
8	31	45
9	25	44
10	18	33
11	12	33
12	11	25
13	17	17
In all patients, there is a gradual drop in HGB, also after adjusting for age and sex (Figure 7A), with differences between the groups becoming increasingly wider from day 5 onwards. After day 7, HGB continues to decline only in the CF-group. RET# remain low in both groups despite dropping HGB in the first week but RET# shows a consistent rise thereafter in the CF group, towards the upper limit of the normal reference range (Figure 7B). The Delta-He is negative and remains relatively stable in the NC group (Figure 7C). In contrast, Delta-He drops progressively in the CF group, reaching its nadir at about day 7, and then rises towards zero, primarily due to an improvement in the RET-He values (data not shown). NRBC# is almost zero in the NC group (within normal range) but rise sharply and progressively at about day 5 in the CF group (Figure 7D).

Figure 7. Trends of red blood cell related parameters over 14 days of hospitalisation in critical/fatal (CF) and non-critical (NC) patients

Note: Fourteen of hospitalisation refers to Day 0 (day of admission) plus the first 13 days after admission. The normal reference range is depicted by the area between the dotted horizontal lines. Vertical bars indicate standard error of the mean (SEM).

A) hemoglobin (HGB) corrected for age and gender, B) reticulocyte count (RET), C) difference in haemoglobinisation of reticulocytes and red blood cells (DELTA-He), D) nucleated red blood cells (NRBC).

The number of sample measurements available per day for the trend analysis for the parameters plotted per patient group are shown below:

Parameter	NC	CF
HGB	469	321
NRBC	139	122
RET#	146	134
DELTA-He	129	90

Parameter	Day 0	1	2	3	4	5	6	7	8	9	10	11	12	13
HGB, NC	469	139	146	129	95	65	59	42	31	25	18	12	11	17
HGB, CF	321	122	134	90	94	71	54	58	45	44	33	33	25	17
RET# NC	275	55	91	69	53	37	36	22	10	14	7	6	33	7
RET# CF	183	57	74	64	60	56	44	48	38	38	28	25	22	14
PLT findings

PLT are largely within the normal range but show a progressive upward trend over time for both groups, with patients in the CF group manifesting with mild thrombocytosis from about day 10 onwards (Figure 8A). The IPF# initially is within the normal reference range for both groups but over time the CF group shows a gradual increase, exceeding the upper limit of the reference range in parallel to PLT# (Figure 8C), whereas IPF(%) remains within normal limits throughout for both groups (Figure 8D). The platelet-to-lymphocyte ratio (PLR) is abnormally elevated for both groups throughout, with values slightly higher in the CF group, but only until day 5, after which the NC and CF groups overlap (Figure 8B).

Figure 8. Trends of platelet parameters over 14 days of hospitalisation in critical/fatal (CF) and non-critical (NC) patients

Note: Fourteen days refers to Day 0 (day of admission) plus the first 13 days after admission. The normal reference range is depicted by the area between the dotted horizontal lines. Vertical bars indicate standard error of the mean (SEM).

A) platelet count (PLT), B) platelet-to-lymphocyte ratio (PLR), C) immature platelet count (IPF#) D) immature platelet fraction (IPF%).

The number of sample measurements available per day for the trend analysis for the parameters plotted per patient group are shown below:

	Day 0	1	2	3	4	5	6	7	8	9	10	11	12	13	
PLT#	NC	469	139	146	129	95	65	59	42	31	25	18	12	11	17
	CF	332	122	154	90	94	71	54	56	45	44	33	33	25	17
PLR	NC	275	55	91	69	53	37	36	22	10	14	7	6	33	17
	CF	183	57	74	64	60	56	44	48	38	38	28	25	22	14

Note: CC-BY-NC 4.0 International license. It is made available under a CC-BY-NC 4.0 International license. This preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
Formulation and performance of the haemocytometric COVID-19 prognostic score in the development cohort

In the analysis of 1587 samples, 923 patients (days 0-3), six variables (parameters or ratios thereof) were identified that fulfilled the prespecified selection criteria, namely sufficient discriminatory power between NC and CF patient groups (p≤0.001) and at least 20% of all CF results outside of the normal range. These were NLR (p<0.0001, 77.1%), IGLR (P<0.0001, 49.4%), RE-MONO%M (p<0.0001, 37.3%), AS-LYMPH%M (p<0.0001, 90.4%), Delta-HEe(p<0.0001, 85.7%), and NRBC (p<0.0001, 46.0%). Other parameters also fulfilled these criteria but these were not selected as they are interdependent on others already included. These were WBC, NEUT#; LYMPH# (represented by NLR, IGLR, AS-LYMPH), MONO# (represented by RE-MONO), RE-LYMPH (represented by AS-LYMPH), RBC, HGB and HYPO-HE (represented by DELTA-HE) as well as NEUT-RI which is commonly elevated in bacterial infection (31).

These 6 variables (NLR, IGLR, RE-MONO%M, AS-LYMPH%M, Delta-He, NRBC) were assigned a score from 0 to maximum of 4 points each. Applying this score to the CF and NC patient groups, no overlap (SEM) was noticed in the mean values except on day 13, where the available data points were few (Figure 9A). These combined six variables had a sensitivity of 68% (249/366) in identifying CF patients in the first 3 days. However, clear haematological abnormalities, especially HGB, HYPO-He, PLT and IPF# were observed in 8 of the undetected CF patients. These parameters were therefore added to the score with a maximum of 1 point each. The sum of 10 variables makes up the final prognostic score value, with a minimum of 0 and a theoretical maximum 28 points. The prognostic score cut-off values and point allocation matrix is shown in Table 4.

Prognostic score performance in the 923 patients using 3 as the cut-off, correctly identified 70.5% (95% CI 66–75) of patients finally classified as critical/fatal on days 0-3 with sensitivities of 62.3% (95% CI 55–69), 74.5% (95% CI 61–85), 75.6% (95% CI 64–85) and 87.0% (95% CI 77–94) on days 0, 1, 2 and 3 respectively, and 93% (95% CI 81-99) on day 6. Moreover, the scores for non-ICU patients who subsequently deteriorated and died (n=186, Figure 2), were already notably higher during the initial phase of hospitalisation with a median value of 3 (95% CI 2-4), 4 (95% CI 1.5-6.7), 5 (95% CI 4.0-6.0) and 5 (95% CI 4.4-7.6) on days 0, 1, 2 and 3 respectively, (Table 5), compared with 1 (95% CI 1.0-2.0) to 2 (95% CI 1.0-3.0) for patients who recovered without ICU intervention. Furthermore, we observed that the score in all patients that died increased progressively over time, as it did for all ICU patients that survived, compared with stable values for non-ICU survivors (Figure 9B), confirming that the score does not predict fatality, but rather a critical clinical course.
Figure 9. Haemocytometric COVID-19 prognostic score prediction of clinical severity in the development cohort

A) Development cohort prognostic score 14-day hospitalisation time horizon (day of admission plus the first 13 days thereafter) comparing non-critical (NC) and critical/fatal (CF) groups. Points shown are mean values with vertical bars representing SEM. B) Development cohort prognostic score 7-day hospitalisation time horizon comparing outcomes (recovered without ICU, recovered with ICU or died). Points shown are mean values with vertical bars representing SEM. C) ROC curve to assess the capability of prediction of critical/fatal disease progression of the prognostic score, absolute lymphocyte count (LYMPH), neutrophil-to-lymphocyte ratio (NLR), absolute monocyte count (MONO), platelet count (PLT) and platelet-to-lymphocyte ratio (PLR) for development cohort incorporating all measurements over the initial 14-day period of hospitalisation. The number of measurements for each day of hospitalisation that were available per patient group are shown in the table below and indicate that there were markedly fewer measurements for the second week, notably in the NC group which may have contributed to bias.

Days after admission	0	1	2	3	4	5	6	7	8	9	10	11	12	13
Critical/fatal	182	55	74	63	60	56	44	47	38	38	28	25	22	14
Non-critical	272	54	90	69	52	36	36	22	10	14	6	6	3	7
Ward survivors	272	54	90	69	52	36	36	22	10	14	6	6	3	7
ICU survivors	70	25	43	36	36	35	30							
Non-survivors	107	25	31	26	23	21	14							
Table 4. Haemocytometric COVID-19 prognostic score cut-off values

Variable	Precondition	1 Point	2 Points	3 Points	4 Points
IG/L*100	IG ≥ 0.09	≥ 10	≥ 20	≥ 40	≥ 45
NLR	none	[≥ 7.7 & LYMPH < 1.07 & N/L² ≥ 7.5] or [≥ 7.7 < 16.5 & LYMPH ≥ 0.65]	[≥ 7.7 < 16.5 & LYMPH ≥ 0.65]	[≥ 7.7 < 16.5 & LYMPH ≥ 1.07]	≥ 16.5
RE-MONO/M [%]	none	[≥ 5 < 15 & RE-MONO < 0.03]	[≥ 5 < 15 & RE-MONO < 0.03]	n/a	≥ 15
AS-LYMPH/L [%]	none	[≥ 5 & LYMPH < 10]	≥ 10	n/a	≥ 15
DELTA-He [pg]	RET ≥ 6.0	[≥ -1 ≥ -2] or [≤ 0.4 ≥ -1 & RET ≥ 20.0]	[≤ -2 ≥ -4]	n/a	< -4
NRBC [µL]	HgB ≥ 9 and RET < 90	n/a	≥ 20	n/a	≥ 40
HgB [g/dl]	none	≥ 17			
HYPO-He [%]	Micro-R < 10	≥ 1.9			
PLT [10³/µL]	none	< 85			
IPF# [10³/µL]	none	≥ 25			

Note: For the primary variables, 1 point = value above the cut-off value for the best AUC; 2 points = value above the cut-off value for the best AUC and ≥80% specificity; 3 points = value above the cut-off value for the best AUC and >90% specificity; and 4 points = value above the cut-off value for the best AUC and >95% specificity. The cut-off values for the secondary variables were chosen exclusively based on observed extremes of values in critical disease, with the maximum award of 1 point per variable. The prognostic score values were calculated automatically using a pre-set algorithm, using the above cut-off values to assign points per individual parameter. The aim is to have the formula for calculation of the prognostic score incorporated into the Laboratory Information System software in use in individual laboratories.

Abbreviations: IGLR, immature granulocytes-to-lymphocyte ratio; NLR, neutrophil-to-lymphocyte ratio; AS-LYMPH%, antibody secreting lymphocytes as a proportion of lymphocytes; RE-MONO%, reactive monocytes as a proportion of monocytes; DELTA-He, difference in haemoglobinisation of reticulocytes and red blood cells; NRBC, absolute nucleated red blood cell count; HgB, haemoglobin; HYPO-He, percentage of red blood cells that are hypochromic; PLT, platelet count; IPF, absolute immature platelet count; N/L², neutrophil-to-lymphocyte squared ratio.

a) Unit of measure for IG (absolute immature granulocyte count) is x 10³/µL
b) Unit of measure for LYMPH (absolute lymphocyte count) is x 10³/µL
c) Unit of measure for RE-MONO (absolute reactive monocyte count) is x 10³/µL
d) Unit of measure for LYMPH% (percentage lymphocyte count)
e) Unit of measure for RET (absolute reticulocyte count) is x 10³/µL
f) Unit of measure for HgB (Haemoglobin concentration) is g/dL
g) Unit of measure for MicroR (percentage microcytic RBC)
Table 5. Development cohort prognostic score values by day based on clinical severity group, initial management and outcome

day	Not hospitalised	Hospitalised with admission to a general ward on day of initial presentation (non-ICU)	Hospitalised with admission directly to ICU on day of initial presentation						
	Mild Median score	Recovered Median score	Died Median score	n	Recovered Median score	Died Median score	n		
0	0.5 (0.0-1.0)	1.0 (1.0-2.0)	243	3.0 (2.0-4.0)	86	4.0 (3.0-6.0)	70	4.0 (2.6-8.4)	21
1	2.0 (1.5-3.0)	2.0 (1.0-3.0)	59	4.0 (1.5-6.7)	15	6.5 (3.0-9.3)	24	7.0 (1.5-1401)	10
2	2.0 (1.0-3.0)	5.0 (4.0-6.0)	96	7.0 (6.0-8.9)	23	7.0 (6.0-8.9)	37	12.5 (1.8-16.6)	8
3	2.0 (1.0-3.0)	5.0 (4.4-7.6)	75	8.0 (7.0-9.0)	16	8.0 (7.0-9.0)	31	12.5 (7.8-18.3)	8
4	3.0 (2.0-4.0)	7.0 (6.0-8.7)	59	8.0 (6.0-10.8)	15	8.0 (6.0-10.8)	30	15.0 (3.8-20.4)	8
5	2.0 (1.0-3.0)	12.0 (6.5-14.9)	37	6.5 (4.8-8.3)	13	6.5 (4.8-8.3)	34	7.0 (0.8-19.1)	8
6	3.0 (2.0-4.0)	11.0 (6.1-14.8)	37	9.0 (7.0-11.0)	9	9.0 (7.0-11.0)	29	14.0 (na)	5
7	2.0 (0.3-6.7)	11.0 (5.2-15.4)	23	8.0 (6.0-11.2)	6	8.0 (6.0-11.2)	29	8.0 (5.8-12.4)	11

Note: Recovered refers to patients that survived and were discharged from hospital. By definition, "Mild" patients are not hospitalised and therefore only day 0 prognostic score values are available.

a) Median score refers to the median value obtained for the haemocytometric COVID-19 prognostic score for the patient group for patients with the same length of hospitalisation on the day of measurement.

Values in brackets represent the 95% CI for the median.

b) Sample size was too small to calculate 95% CI.

For the initial period of hospitalisation (<4 days) and for the 14-day prediction time-horizon, the prognostic score was better than NLR at differentiating clinical severity, with a higher AUC at all time points (Table 6). Notably, the cut-off value that determined the best AUC was consistent for the prognostic score (>3 or >4) over time, whereas it ranged from >4.7 to >11.6 for NLR. AUC values for platelet-to-lymphocyte ratio (PLR), LYMPH, MONO and PLT were all low (range 0.501-0.647) with highly variable cut-off values at the different time points. The AUC comparisons for the prognostic score and these individual variables is shown in Figure 9C.
Day	Prognostic score	LYMPH (x10³/µL)	NLR	MONO (x10³/µL)	PLT (x10³/µL)	PLR	
<4	0.753	0.591	0.709	0.516	0.537	0.602	
	[AUC]	[0.723 to 0.781]	[0.558 to 0.624]	[0.678 to 0.740]	[0.482 to 0.550]	[0.503 to 0.570]	[0.568 to 0.635]
	3	<0.810	> 7.7	< 0.400	> 234	> 308	
	[P-value vs prognostic score]	na	<0.0001	0.0066	<0.0001	<0.0001	<0.0001
<14	0.806	0.55	0.718	0.551	0.563	0.591	
	[AUC]	[0.784 to 0.826]	[0.523 to 0.576]	[0.694 to 0.741]	[0.525 to 0.577]	[0.537 to 0.589]	[0.565 to 0.617]
	4	<0.810	> 7.1	> 0.640	> 268	> 308	
	[P-value vs prognostic score]	na	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
0	0.722	0.603	0.683	0.506	0.537	0.605	
	[AUC]	[0.678 to 0.763]	[0.556 to 0.648]	[0.638 to 0.726]	[0.459 to 0.553]	[0.490 to 0.584]	[0.558 to 0.650]
	3	<0.780	> 7.6	> 0.700	> 234	> 375	
	[P-value vs prognostic score]	na	0.0001	0.0660	<0.0001	<0.0001	0.0001
1	0.737	0.557	0.664	0.511	0.555	0.602	
	[AUC]	[0.644 to 0.817]	[0.459 to 0.652]	[0.567 to 0.751]	[0.413 to 0.608]	[0.457 to 0.651]	[0.504 to 0.695]
	4	<0.620	> 11.6	> 0.180	> 218	> 358	
	[P-value vs. prognostic score]	na	0.0036	0.1132	0.0012	0.0045	0.0265
2	0.739	0.572	0.714	0.575	0.515	0.526	
	[AUC]	[0.665 to 0.804]	[0.492 to 0.649]	[0.638 to 0.782]	[0.495 to 0.652]	[0.436 to 0.594]	[0.446 to 0.604]
	4	<1.020	> 5.1	< 0.470	< 118	> 217	
	[P-value vs. prognostic score]	na	<0.0001	0.4780	0.0026	<0.0001	0.0001
3	0.875	0.602	0.827	0.501	0.582	0.647	
	[AUC]	[0.806 to 0.926]	[0.514 to 0.686]	[0.751 to 0.887]	[0.413 to 0.590]	[0.493 to 0.667]	[0.559 to 0.728]
	3	<0.810	> 7.3	< 0.680	> 255	> 280	
	[P-value vs. prognostic score]	na	<0.0001	0.1860	<0.0001	<0.0001	<0.0001
Table 6 continued

Day 4 [n = 112]	Prognostic score	LYMPH (x10³/µL)	NLR	MONO (x10³/µL)	PLT (x10³/µL)	PLR
[AUC]	0.867	0.604	0.778	0.572	0.531	0.583
[95% CI]	0.790 to 0.924	0.507 to 0.695	0.690 to 0.851	0.475 to 0.665	0.434 to 0.626	0.486 to 0.676
[cut-off value]	> 4	< 0.710	> 7.7	< 0.270	< 238	< 330
[P-value vs prognostic score]	na	< 0.0001	0.0070	< 0.0001	< 0.0001	< 0.0001

Day 5 [n = 92]	Prognostic score	LYMPH (x10³/µL)	NLR	MONO (x10³/µL)	PLT (x10³/µL)	PLR
[AUC]	0.877	0.578	0.753	0.578	0.599	0.506
[95% CI]	0.792 to 0.936	0.471 to 0.680	0.652 to 0.837	0.470 to 0.680	0.492 to 0.700	0.400 to 0.612
[cut-off value]	> 4	< 1.140	> 6.5	< 0.580	< 227	< 350
[P-value vs prognostic score]	na	< 0.0001	0.0030	< 0.0001	< 0.0001	< 0.0001

Day 6 [n = 80]	Prognostic score	LYMPH (x10³/µL)	NLR	MONO (x10³/µL)	PLT (x10³/µL)	PLR
[AUC]	0.875	0.517	0.688	0.511	0.589	0.545
[95% CI]	0.782 to 0.938	0.403 to 0.630	0.575 to 0.787	0.397 to 0.625	0.474 to 0.698	0.430 to 0.657
[cut-off value]	> 4	< 1.620	> 7.0	> 0.840	< 277	< 153
[P-value vs prognostic score]	na	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001

Day 7 [n = 100]	Prognostic score	LYMPH (x10³/µL)	NLR	MONO (x10³/µL)	PLT (x10³/µL)	PLR
[AUC]	0.856	0.633	0.724	0.561	0.596	0.549
[95% CI]	0.772 to 0.918	0.531 to 0.727	0.625 to 0.808	0.458 to 0.660	0.493 to 0.693	0.446 to 0.649
[cut-off value]	> 3	< 0.940	> 4.7	< 0.310	< 298	> 311
[P-value vs prognostic score]	na	0.0002	0.0044	< 0.0001	< 0.0001	< 0.0001

Note: “Prognostic score” refers to the haemocytometric COVID-19 prognostic score comprised of NLR, IGLR, RE-MONO%/M, AS-LYMPH%/L, DELTA-He, NRBC, HGB, Hypo-He, PLT and IPF#. Abbreviations: NLR, neutrophil-to-lymphocyte ratio; IGLR, immature granulocyte-to-lymphocyte ratio; RE-MONO%/M, reactive monocytes as percentage of total monocyte count; AS-LYMPH%/L, antibody-synthesising lymphocytes as percentage of total lymphocyte count; DELTA-He, difference in haemoglobinisation of reticulocytes and red blood cells; NRBC, absolute nucleated red blood cell count; HGB, haemoglobin; Hypo-He, percentage of red blood cells that are hypochromic; PLT, platelet count; IPF#, absolute immature platelet count; LYMPH, absolute lymphocyte count; MONO, absolute monocyte count; PLR, platelet-to-lymphocyte ratio; AUC, area under the curve; CI, confidence interval; na, not applicable.

a) “Day” refers to number of days of hospitalisation of patient at time of blood sample measurement. Day 0 refers to the day of first presentation at hospital.

b) “n” refers to the number of complete profile (complete blood and differential count and reticulocyte channel) sample measurements available at a particular time point and included in the ROC curve analysis.
In investigating if the score can predict severity independent of the classical risk factors such as age and presence of comorbidities, using a Mann-Whitney test, it was found that the prognostic score was significantly higher in the CF group than the NC group across all age groups and for all age groups segregated by the presence or absence of comorbidities, with the exception of patients 84 years and older with with reported comorbidities (Table 7 and Figure 10). The median difference in prognostic score values between the NC and CF groups ranged from 2–7 points.

Table 7. Mann-Whitney test for significance of the difference in prognostic score between critical/fatal (CF) and non-critical (NC) patients.

Age range (years)	25-34^b	35-44	45-54	55-64	65-74	75-84	>84					
CF vs NC	p<0.0001	p<0.0001	p<0.0001	p<0.0001	p<0.0001	p<0.0001	md=7	md=6	md=5	md=5	md=3	md=2
CF vs NC with reported comorbidities^c	Sample size insufficient	p=0.0046	md=5	p<0.0094	md=3	p<0.0001	md=5	p<0.0001	md=4	p<0.0001	md=2	p=0.0748
CF vs NC with comorbidities^c reported as “none”	Sample size insufficient	p=0.0011	md=7	p<0.0001	md=5	p<0.0001	md=4	p<0.0305	md=2	p<0.0001	md=5	p=0.0339

Note: The data is shown per age group for all patients as well as for patients segregated according to the presence or absence of reported comorbidities. “md” refers to the Hodges-Lehmann median difference in prognostic score values between the NC and CF groups in each age category.

a) Patients that were enrolled into the study from the two hospitals that did not report on comorbidities were excluded from the analysis
b) Sample size was too small for analysis in this age group segregated by comorbidities. Only 1 patient without comorbidities showed CF disease progression and in the group without comorbidities only 2 patients showed CF disease progression. Sample size was too small to report a Hodges-Lehmann median difference.
c) Patients older than 84 years and with reported comorbidities were the only group where the difference between CF and NC groups was not significant.

Figure 10. Impact of age and presence of comorbidities on prediction of disease severity.

A) Box and whisker plots of prognostic score values for NC and CF groups segregated by age. The prognostic score can predict severity independent of age, therefore potentially assisting in identifying young patients at risk for severe disease progression as well as older patients not at risk. B) Box and whisker plots of prognostic score values for NC and CF groups segregated by comorbidities in the 75-84 year old group, as an illustrative example. The prognostic score is significantly higher in patients with severe disease progression independent of the presence of comorbidities. Please refer to Table 7 for more detailed information on all age groups.
Prognostic score validation

For 202 patients (Figure 11), 65.8% male and median age 70 years (range 22-93), with 217 (165 CF; 52 NC) CBC-DIFF-RET day 0-3 measurements available, the prognostic score gave an AUC of 0.797 (95% CI 0.724-0.829), which is comparable to the prognostic score performance in the development cohort (AUC 0.753, 95% CI 0.723-0.781). Mortality rate was 20.8% (42/202) and outcome was correctly identified in 72% (91/127) of CF patients (development cohort 70.5%). Except for day 1, score values of the NC and CF groups over the 14-day period (718 measurements) did not overlap (SEM) (Figure 12A), with AUC of prognostic score superior to NLR (Figure 12B).
Figure 11. Flow chart showing inclusion and exclusion of validation cohort patient

Abbreviations: NC, non-critical patient group; CF, critical/fatal patient group.

a) The following criteria were used to ensure selection of only those patients for whom the primary presentation at hospital was related to COVID-19: Emergency department location on day 0, provisional diagnosis of pneumonia, if admitted, with admission to a general ward, internal medicine, ICU or anaesthesia (critical care).
Figure 12. Haemocytometric COVID-19 prognostic score prediction of clinical severity in the validation cohort

A) Validation cohort prognostic score 14-day hospitalisation time horizon comparing non-critical (NC) and critical/fatal (CF) groups. B) ROC curve comparisons of prognostic score and NLR over 14 days. The prognostic score AUC (0.838, 95%CI 0.809-0.864) was significantly higher (p<0.0001) than the NLR AUC (0.673,95% CI 0.637-0.707).

The number of measurements for each day of hospitalisation that were available per patient group are shown in the table below and indicate that overall, there were relatively few measurements per day for the NC group which has contributed to greater variance per time point.

Days after admission	0	1	2	3	4	5	6	7	8	9	10	11	12	13
Critical/fatal	19	58	45	43	58	52	53	50	48	46	42	36	33	34
Non-critical	20	11	8	13	9	12	10	2	5	3	1	0	2	5

Discussion

We showed that SARS-CoV-2 infection is accompanied by haemocytometric changes over time and that distinct early haemocytometric parameters, combined in a COVID-19 prognostic score, can be used early on to identify those patients likely to deteriorate thereafter and thus may benefit from ICU admission. Moreover, our data suggest that parameters reflecting the activation or functional status of blood cells are better disease severity indicators than traditional parameters, such as lymphocyte or platelet counts.

In COVID-19, lymphopenia has been assigned a key role based on a higher incidence and greater suppression observed in ICU patients (32). Our data indicate that lymphocyte count had no significant prognostic value (AUC 0.550; 0.523– 0.576)), although relative presence of lymphocytes did hence the incorporation of NLR, IGLR and AS-LYMPH%/L (reflecting lymphoplasmacytoid lymphocytes (30)) in the prognostic score. Increased lymphocyte activation has been documented in COVID-19 (33, 34). Our findings concur with a previous study (35) that reported AS-LYMPH as a strong predictor of clinical severity in COVID-19 patients. Furthermore, a specific “hourglass” appearance on the WBC scattergram on Sysmex analysers, representative of lymphoplasmacytoid lymphocytes, was reported to have a high positive predictive value to detect COVID-19 (37).

In contrast to lymphocytes, neutrophils, including precursors, have a tendency to increase in COVID-19 (36). IGs, representing metamyelocytes, myelocytes, and promyelocytes (37), were commonly present in our patient population, especially in those more severely ill. The importance of IGs in management of sepsis has been reported (38, 39). Of note, increases in
neutrophil counts and neutrophil activity (NEUT-RI) were dissimilar, unlike observations in bacterial infections (40). RE-MONO% is abnormal in critical/fatal cases only, in line with a previous report attributing a key role for monocytes and macrophages in severe COVID-19 (41).

Erythropoietic changes have been reported, mostly showing low HGB levels (22, 34, 42). We found that whilst HGB levels decrease in COVID-19 patients, the erythropoietic response to anaemia, indicated by RET and reticulocyte production index (data not shown), were mostly normal. Haemoglobinisation of reticulocytes, as indicated by negative DELTA-He levels, is however significantly compromised, specifically in more severe cases, possibly due to ongoing inflammation (43). NRBCs are absent in peripheral blood of healthy adults. Their presence, without reticulocytosis, in severe COVID-19 cases indicates haematopoietic stress, probably due to prolonged hypoxia or inflammation (44). Furthermore, NRBCs, were reported as a marker of disease severity in ARDS patients, indicating a higher risk of death (45).

Contrary to other studies (15, 23, 46, 47), PLT at presentation were similar between CF and NC cases, mostly within normal limits with no sign of increased platelet consumption as IPF also remained normal. PLT, and IPF#, tended to increase with disease severity. Higher PLT have been previously reported in severe COVID-19 (48). So thrombocytosis, more than thrombocytopenia may be linked to severe COVID-19 which is in contrast to guidelines to identify severe pneumonia (49).

A recent meta-analysis (50) concluded that severe COVID-19 patients had higher neutrophil counts and NLR, and lower lymphocyte counts than those with non-severe COVID-19, and that these basic parameters might help clinicians to predict the severity and prognosis of COVID-19. Although our findings concur with their observed clinical severity-based WBC differences, the discriminating power, early on during hospitalisation and thus value to determine prognosis, was insufficient. A previous report about the prognostic value of NLR (51) is also not supported by our data. Altogether, our findings indicate that new parameters, reflecting functional status of blood cells, are more frequently outside reference ranges in COVID-19 than classical parameters such as lymphocytes, neutrophils or platelets. However, none of the measured parameters, traditional or novel, alone could discriminate patients based on disease severity.

The prognostic score we developed used multiple parameters, representing the three haemopoietic cell lines, with the aim to distinguish CF from NC COVID-19 patients. Different cell lines may not all be equally affected by COVID-19 at the same time. Thus, it is not unexpected that multiple parameters together are better at predicting disease severity, as duration of symptoms at presentation differs widely in individual patients.

The prognostic score correctly identified 70.5 % of these patients during first 3 days of hospital admission, with similar performance confirmed in the validation cohort (72.0%). Prognostic score trends over 14 days confirmed a stable clinical course in NC patients and disease progression in CF patients, peaking on day 6 (sensitivity 93%). In the development cohort there was a distinct progressive upward trend of prognostic score values from day 0, peaking on day 6 in the CF group. In the validation cohort, the score also peaked on day 6, but the day 0 score value started relatively high, dropping on day 1, giving the appearance of convergence with the NC group on day 1. The validation cohort was comprised of patients from only two hospitals.

Study enrolment at these two hospitals took place at different times of the pandemic, during which time ICU capacity was ramped up significantly. In this regard we speculate that ICU access differed at the two hospitals, hence patients with a similar degree of disease severity may have been admitted to ICU at one hospital and remained on the general ward at the other. Furthermore, all day 0 patients in the CF group were from a single hospital, and numbers were small relative to the development cohort. Our ethics approval did not permit us to review the individual patient clinical records of six patients in the CF group that already had very high (10 – 16 points) prognostic score values on day 0, four of whom also had no further follow-up samples which would have brought the score value averages on the days following admission, upwards. Any such inter-hospital variability would have been masked in the development cohort, because of the much larger sample size and representation from 8 hospitals, compared to the validation cohort where such differences may have been more readily exposed. We therefore speculate that the high average day 0 score value patients in the validation cohort are
outliers, and that the day 1 data is more representative of the expected prognostic score values
in the validation cohort data set.

As has been widely reported in the literature, our data too shows that males were predominantly
affected, and that disease severity was associated with increasing age and presence of
comorbidities in general (Table 2, Figure 3). However, not all young patients had a mild course,
and not all old patients with comorbidities were critical. Systemic inflammation is an important
factor driving disease severity. Our prognostic score, incorporating the activation status of
immune cells, may therefore have additional value, especially on an individual patient level,
over classical risk factors such as age, gender and comorbidities in discriminating between NC
and CF patients, (Table 7, Figure 10). As such, our prognostic score may assist in identifying
any patients at risk for severe disease progression, being young or old, male or female, with or
without comorbidity and by doing so, support individualised treatment decisions with objective
data.

Notably, the mortality rate was relatively high in patients on the general ward compared to ICU,
possibly due to ICU bed shortages or unfamiliarity with COVID-19 at that time. Whatever
reason, we assumed that the need for more intensive treatment should have been considered
for all patients that died in the general ward. Once a patient is overtly critically ill, clinical
judgement will suffice to prioritise intensive care for such a patient. Importantly, our score strives
to identify the deranged immune response as a harbinger of criticality (organ failure) before
such organ failure is clinically evident. Our data (Figure 9B) shows that prognostic score values
of patients with a critical clinical course (CF group) were indistinguishable based on outcome,
namely whether they recovered (C) or died (F), confirming that the clinical applicability of our
score is to predict on an individual patient level who is likely to have a critical clinical course, but
not to predict mortality.

In our study, the prognostic score was calculated retrospectively using the haemocytometric
data from each individual sample measurement exported into Excel. For future clinical practice,
we envisage that the prognostic score will be automatically calculated by the laboratory
information system and that the result is given on request, together with complete blood count
analysis. Besides serving as a risk stratification tool for clinical decision-making early on, we
postulate that the prognostic score, which provides a snapshot in time of the phase of an
individual’s immune response, may be promising as an aid to patient selection for future clinical
trials exploring immunomodulatory therapeutic options for COVID-19.

Most previous risk score development studies were limited by small sample size, single centre,
univariate analysis and lack of a validation cohort. In contrast, the 4C mortality score, developed
and validated by the International Severe Acute Respiratory and Emerging Infections
Consortium (ISARIC), incorporating patient demographic information (age, sex, comorbidities),
clinical observations (respiratory rate, peripheral oxygen saturation, level of consciousness) and
blood parameters (C-reactive protein (CRP), urea level), incorporated more than 35000 and
22000 patients into the development and validation cohorts respectively, and showed better
performance at predicting mortality in COVID-19 patients than all previously published scores
(52). The ISARIC investigators conclude that their score is easy to use as all parameters are
commonly available at hospital admission. Our score has several advantages: firstly, only
objective measurements of a haematology analyser are used while the ISARIC 4C mortality
score uses clinical observation parameters which may be subject to interpretation; secondly, our
score is aimed to be automatically generated while 4C mortality score needs to be calculated;
thirdly, different laboratory measurements (oxygen saturation, CRP, urea) are required to
calculate the 4C mortality score, while our score uses the globally most commonly requested
laboratory examination for patients attending health facilities; fourthly, haematology analyser are
widely available globally more so than CRP measurements; and fifthly, the 4C mortality score is
aimed at patients admitted to the hospital, while our score was develop for patients presenting
at the hospital (of whom some were never admitted).

The strength of our study is the inclusion of a relatively large group of confirmed COVID-19
cases from multiple centres and countries, including a validation cohort. Furthermore, we
believe that an advantage of our prognostic score is that all input data required to calculate the score value are generated from a single haematology profile test, which is the most common routinely requested baseline blood tests in all patients globally.

A limitation of our study is its retrospective nature, as data retrieved from hospital records were sometimes incomplete. Our study was performed at a time that COVID-19 was a new disease entity that constrained the health care in many of the participating centers which may have affected management decisions and therefore study outcome parameters. Data from out-patient settings including more mild cases, and from nursing homes that usually accommodate high risk patients, are needed. Furthermore, clinical data collection was limited, including comorbidity affecting COVID-19 susceptibility and ICU admission decisions, notably as the demand for ICU beds was greater than the availability at the time of our study. Importantly, the conditions of our fast-tracked ethics clearance to facilitate rapid study initiation, did not permit data collection about bacterial superinfections and medication (antibiotics, corticosteroids), while these factors may affect outcome and haemocytometric parameters.

Finally, our prognostic score includes Sysmex unique parameters. This is a limitation as the score is not universally applicable to all haematology analysers, although the concept is transferable (see Table S1 for parameters available on other manufacturer haematology platforms). However, it is the very ability to quantify blood cell activation, a reflection of the general immune response status of an individual, that has rendered our prognostic score (which incorporates cell activation parameters such as reactive monocytes and antibody-synthesising lymphocytes amongst others) better than using only standard parameters, such as neutrophil-to-lymphocyte ratio, which are universally available on all systems, at least in our patient dataset.

Conclusions

Our finding of potential usefulness of extended haemocytometry may be impactful as Sysmex haematology analysers are widely available. Haematology blood profile requests are common, inexpensive, quick, highly standardised, quality-controlled baseline tests. Furthermore, this investigation is requested in febrile patients and those with non-febrile conditions. As the latter patients are at higher risk for serious COVID-19, early recognition is important to provide supportive care.

Acknowledgements

We would like to thank all patients involved in this study, as well as doctors, nurses, and researchers working together to fight against COVID-19. We also acknowledge Claudia Wienefoet of Sysmex Netherlands/Belgium for her support to the Dutch and Belgian participating centers and Sysmex Europe throughout the duration of this study. Sysmex Europe provided free of charge reagents to the study sites. No other funders were involved in this study.

Author contributions

All authors contributed to the contents and revised the article. Anthony Ermens, Marvin Berrevoets, Michela Seghezzi, Giulia Previtali, Simone van der Sar-van der Brugge, Henk Russcher, Annelies Verbon, Judith Gillis, Jürgen Riedl, Eva de Jongh, Imke Munnix, Anthonius Dofferhoff, Volkher Scharnhorst, Heidi Ammerlaan, Kathleen Deiteren, Stephan JL Bakker, Lucas Joost van Pelt, Yvette Kluiters-de Hingh and Mathie PG Leers were responsible for the provision of data. Andre van der Ven, Anthony Ermens and Joachim Linssen conceptualised and designed the study. Joachim Linssen and Jarob Saker did the data analysis of the haematology parameters. Joachim Linssen, Marion Münster, Andre van der Ven and Anthony Ermens further analysed and interpreted the data and wrote the original article.
Conflict of interest

Joachim Linssen, Jarob Saker and Marion Münster are full time employees of Sysmex Europe GMBH who provided the study reagents free of charge. Andre van der Ven has an ad hoc consultancy agreement with Sysmex Europe GMBH. All other authors having nothing to declare.

Supporting information

Additional supporting information may be found online in the Supporting Information section at the end of the article.

Table S1. Novel parameters of different manufacturers in relation to possible adaptability of the haemocytometric COVID-19 prognostic score

Figure 3 – source data file 1. Source data for clinical severity and outcome by age of all patients

Figure 4 – source data file 1. Source data for trends of absolute lymphocyte count over 14 days of hospitalisation in critical/fatal (CF) and non-critical (NC) patients

Figure 4 – source data file 2. Source data for trends of neutrophil-to-lymphocyte ratio over 14 days of hospitalisation in critical/fatal (CF) and non-critical (NC) patients

Figure 4 – source data file 3. Source data for trends of AS-LYMPH%L over 14 days of hospitalisation in critical/fatal (CF) and non-critical (NC) patients

Figure 4 – source data file 4. Source data for trends of RE-Lymph minus AS-LYMPH asa percentage of total lymphocytes over 14 days of hospitalisation in critical/fatal (CF) and non-critical (NC) patients

Figure 5 – source data file 1. Source data for trends of absolute neutrophil count over 14 days of hospitalisation in critical/fatal (CF) and non-critical (NC) patients

Figure 5 – source data file 2. Source data for trends of NEUT-RI over 14 days of hospitalisation in critical/fatal (CF) and non-critical (NC) patients

Figure 5 – source data file 3. Source data for trends of immature granulocyte count over 14 days of hospitalisation in critical/fatal (CF) and non-critical (NC) patients

Figure 5 – source data file 4. Source data for trends of immature granulocyte-to-lymphocyte ratio over 14 days of hospitalisation in critical/fatal (CF) and non-critical (NC) patients

Figure 6 – source data file 1. Source data for trends of absolute monocyte count over 14 days of hospitalisation in critical/fatal (CF) and non-critical (NC) patients

Figure 6 – source data file 2. Source data of trends of reactive monocytes as a percentage of total monocyte count count over 14 days of hospitalisation in critical/fatal (CF) and non-critical (NC) patients

Figure 7 – source data file 1. Source data for trends of corrected haemoglobin values over 14 days of hospitalisation in critical/fatal (CF) and non-critical (NC) patients

Figure 7 – source data file 2. Source data for trends of absolute reticulocyte count over 14 days of hospitalisation in critical/fatal (CF) and non-critical (NC) patients

Figure 7 – source data file 3. Source data for trends of Delta-He values over 14 days of hospitalisation in critical/fatal (CF) and non-critical (NC) patients
Figure 7 – source data file 4. Source data for trends of nucleated red blood cell counts over 14 days of hospitalisation in critical/fatal (CF) and non-critical (NC) patients.

Figure 8 – source data file 1. Source data for trends of platelet count over 14 days of hospitalisation in critical/fatal (CF) and non-critical (NC) patients.

Figure 8 – source data file 2. Source data for trends of platelet-to-lymphocyte count ratio over 14 days of hospitalisation in critical/fatal (CF) and non-critical (NC) patients.

Figure 8 – source data file 3. Source data for trends of absolute immature platelet count (IPF#) over 14 days of hospitalisation in critical/fatal (CF) and non-critical (NC) patients.

Figure 8 – source data file 4. Source data for trends of immature platelet fraction (IPF%) over 14 days of hospitalisation in critical/fatal (CF) and non-critical (NC) patients.

Figure 9 – source data file 1. Source data for development cohort prognostic score 14-day hospitalisation time horizon (day of admission plus the first 13 days thereafter) comparing non-critical (NC) and critical/fatal (CF) groups.

Figure 9 – source data file 2. Source data for development cohort prognostic score 7-day hospitalisation time horizon comparing outcomes (recovered without ICU, recovered with ICU or died).

Figure 9 – source data file 3. Source data for ROC curves to assess the capability of prediction of critical/fatal disease progression of the prognostic score, absolute lymphocyte count (LYMPH), neutrophil-to-lymphocyte ratio (NLR), absolute monocyte count (MONO), platelet count (PLT) and platelet-to-lymphocyte ratio (PLR) for development cohort incorporating all measurements over the initial 14-day period of hospitalisation.

Figure 10 – source data file 1. Impact of age on prediction of disease severity.

Figure 10 – source data file 2. Impact of age on prediction of disease severity.

Figure 12 – source data file 1. Source data for haemocytometric COVID-19 prognostic score prediction of clinical severity in the validation cohort over 14-day hospitalisation time horizon comparing non-critical (NC) and critical/fatal (CF) groups.

Figure 12 – source data file 2. Source data for ROC curve comparisons of prognostic score and NLR over 14 days.

Table 2 – source data file 1. Source data for basic demographic characteristics of COVID-19 PCR confirmed patients enrolled for prognostic score development.

Table 3 – source data file 1. Source data for demographic and first haemocytometric data available for patients at hospital presentation or within 3 days after admission.

Table 5 – source data file 1. Source data for development cohort prognostic score values by day based on clinical severity group, initial management and outcome.

Table 6 – source data file 1. Source data for Receiver Operator Characteristics (ROC) curve comparisons between the haemocytometric COVID-19 prognostic score versus other parameters.

Table 7 – source data file 1. Mann-Whitney test for significance of the difference in prognostic score between critical/fatal (CF) and non-critical (NC) patients.

TRIPOD checklist - Prediction Model Development and Validation
Table S1. Novel parameters of different manufacturers in relation to possible adaptability of the haemocytometric COVID-19 prognostic score to non-Sysmex haematology analysers

Company	Sysmex	Abbott	Beckman Coulter	Horiba	Mindray	Siemens Healthineers
Models	XN-Series	CELL-DYN	UniCel DxH800/900	Yumizen H1500,	BC-6800,	Advia 2120i
		Sapphire	UniCel DxH600/690T	H2500	BC-6000,	Advia 120
		Alinity hq			BC-6200,	
					BC-6800+	

White blood cell parameters

Company	Sysmex	Abbott	Beckman Coulter	Horiba	Mindray	Siemens Healthineers
IG %, #	IG %, #	EGC %, #	IMG %, IMG #	IMG	IMG	DNI

Company	Sysmex	Abbott	Beckman Coulter	Horiba	Mindray	Siemens Healthineers
NEUT-RI	NEUT-GI	Mean neutrophil volume (MNV), neutrophil distribution width (NDW)				DNI (delta neutrophil index)

Neutrophil parameters

Company	Sysmex	Abbott	Beckman Coulter	Horiba	Mindray	Siemens Healthineers
AS-LYMP %, #	RE-LYMP %, #	IML %, IML #	HFC %, #			

Lymphocyte parameters

Company	Sysmex	Abbott	Beckman Coulter	Horiba	Mindray	Siemens Healthineers
Re-Mono	Re-Mono	MDW (ESId)	IMM %, IMM #			

Monocyte parameters

Company	Sysmex	Abbott	Beckman Coulter	Horiba	Mindray	Siemens Healthineers
LIC %, #	LIC %, #					

Other WBC parameters

Company	Sysmex	Abbott	Beckman Coulter	Horiba	Mindray	Siemens Healthineers
LUC	LUC					
Red blood cell parameters	Reticulocyte haemoglobin	MCVr (Mean cellular volume of reticulocytes)	MRV (mean reticulocyte volume)	RHCc (Reticulocyte Hemoglobin Content calculated)	RHE (Reticulocyte Hemoglobin Expression)	CHr (Content Hemoglobin reticulocytes)
--------------------------	--------------------------	---	--------------------------------	---	--	---------------------------------------
Reticulocyte haemoglobin equivalent	RET-He	MCHr (mean cellular hemo-globin of reticulocytes)	MRV (mean reticulocyte volume)	RHCc (Reticulocyte Hemoglobin Content calculated)	RHE (Reticulocyte Hemoglobin Expression)	CHr (Content Hemoglobin reticulocytes)
MCHr (mean cellular hemo-globin of reticulocytes)	CHCr (mean cellular hemo-globin concentration of reticulocytes)	MRV (mean reticulocyte volume)	MCVr (reticulocyte average volume)	MCVr (reticulocyte average volume)	MRV (mean reticulocyte volume)	
MCVr (reticulocyte average volume)	CHr (Content Hemoglobin of reticulocytes)	MRV (mean reticulocyte volume)	MCVr (reticulocyte average volume)	MRV (mean reticulocyte volume)		
MRV (mean reticulocyte volume)	MCVr (reticulocyte average volume)	MRV (mean reticulocyte volume)	MCVr (reticulocyte average volume)			
MCVr (reticulocyte average volume)	MRV (mean reticulocyte volume)	MCVr (reticulocyte average volume)	MRV (mean reticulocyte volume)			
MCVr (reticulocyte average volume)	MRV (mean reticulocyte volume)	MCVr (reticulocyte average volume)				
MRV (mean reticulocyte volume)	MCVr (reticulocyte average volume)					

| Nucleated red blood cells | NRBC %, # |
|--------------------------|----------|----------|----------|----------|----------|
| NRBC %, # |
NRBC %, #	NRBC %, #	NRBC %, #	NRBC %, #
NRBC %, #	NRBC %, #		
NRBC %, #	NRBC %, #		

Other RBC parameters	Hypo-He (%) (hypochromic RBC)	RBC-He (RBC haemoglobin content)	Delta-He (difference between RET-He and RBC-He)	Micro% (microcytic RBC)
Hypo-He (%) (hypochromic RBC)	RBC-He (RBC haemoglobin content)	Delta-He (difference between RET-He and RBC-He)	Micro% (microcytic RBC)	
RBC-He (RBC haemoglobin content)	Delta-He (difference between RET-He and RBC-He)	Micro% (microcytic RBC)		
Delta-He (difference between RET-He and RBC-He)	Micro% (microcytic RBC)			
Micro% (microcytic RBC)				

Platelet parameters	IPF %	IPF #	%rP (percentage of reticulated platelets)	IPF %	%Rtc Plts Rtc Plts Count (reticulated platelets %, #)
IPF %	IPF #	%rP (percentage of reticulated platelets)	IPF %	%Rtc Plts Rtc Plts Count (reticulated platelets %, #)	
IPF %	%Rtc Plts Rtc Plts Count (reticulated platelets %, #)				

Note: Recent technological advancements in haematology analysers have produced many novel parameters to characterise blood cells (Ref). While some are common, each manufacturer has parameters exclusive to their technology. The prognostic score could thus be adapted and trialled by using alternative parameters that provide similar assessment of cellular activation status, which is a core contributor to the discriminatory power of the prognostic score. This table is not meant to reflect a comprehensive list of all non-standard parameters available on all models of haematology analysers from the manufacturers listed here. The information shared here is limited to those parameter classes that in the authors opinion best match the parameters that make up the haemocytometric COVID-19-score. Parameters in black are diagnostic parameters, parameters in blue and in italics are research parameters. The information provided in this table was extracted from the latest publicly accessible version of instructions for use of the analysers mentioned. Whilst every effort was made to ensure that the data is correct, the authors do not take responsibility for any omissions or mistakes. Ref. Rastogi P, Bhatia P, Varma N. Novel Automated Hematology Parameters in Clinical Pediatric Practice. Indian Pediatr. 2017;54(5):395-401.
References

1. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708-20.

2. Sun Q, Qiu H, Huang M, Yang Y. Lower mortality of COVID-19 by early recognition and intervention: experience from Jiangsu Province. Ann Intensive Care. 2020;10(1):33.

3. Shi Y, Yu X, Zhao H, Wang H, Zhao R, Sheng J. Host susceptibility to severe COVID-19 and establishment of a host risk score: findings of 487 cases outside Wuhan. Crit Care. 2020;24(1):108.

4. Caramelo F, Ferreira N, Oliveira B. Estimation of risk factors for COVID-19 mortality - preliminary results. medRxiv. 2020;2020.02.24.20027268.

5. Lu J, Hu S, Fan R, Liu Z, Yin X, Wang Q, et al. ACP risk grade: a simple mortality index for patients with confirmed or suspected severe acute respiratory syndrome coronavirus 2 disease (COVID-19) during the early stage of outbreak in Wuhan, China. medRxiv. 2020;2020.02.20.20025510.

6. Yan L, Zhang H-T, Xiao Y, Wang M, Sun C, Liang J, et al. Prediction of criticality in patients with severe Covid-19 infection using three clinical features: a machine learning-based prognostic model with clinical data in Wuhan. medRxiv. 2020;2020.02.27.20028027.

7. Yuan M, Yin W, Tao Z, Tan W, Hu Y. Association of radiologic findings with mortality of patients infected with 2019 novel coronavirus in Wuhan, China. PLoS One. 2020;15(3):e0230548.

8. Wang L, He W, Yu X, Hu D, Bao M, Liu H, et al. Coronavirus disease 2019 in elderly patients: Characteristics and prognostic factors based on 4-week follow-up. J Infect. 2020;80(6):639-45.

9. Chen R, Liang W, Jiang M, Guan W, Zhan C, Wang T, et al. Risk Factors of Fatal Outcome in Hospitalized Subjects With Coronavirus Disease 2019 From a Nationwide Analysis in China. Chest. 2020;158(1):97-105.

10. Galloway JB, Norton S, Barker RD, Brookes A, Carey I, Clarke BD, et al. A clinical risk score to identify patients with COVID-19 at high risk of critical care admission or death: an observational cohort study. J Infect. 2020;81(2):282-288.

11. Sun Y, Dong Y, Wang L, Xie H, Li B, Chang C, et al. Characteristics and prognostic factors of disease severity in patients with COVID-19: The Beijing experience. J Autoimmun. 2020;112:102473.

12. Shi H, Han X, Jiang N, Cao Y, Alwalid O, Gu J, et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis. 2020;20(4):425-34.

13. Ji D, Zhang D, Xu J, Chen Z, Yang T, Zhao P, et al. Prediction for Progression Risk in Patients with COVID-19 Pneumonia: the CALL Score. Clin Infect Dis. 2020:ciaa414.

14. Wynants L, Van Calster B, Bonten MMJ, Collins GS, Debray TPA, De Vos M, et al. Prediction models for diagnosis and prognosis of covid-19 infection: systematic review and critical appraisal. BMJ. 2020;369:m1328.

15. Henry BM, de Oliveira MHS, Benoit S, Plebani M, Lippi G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis. Clin Chem Lab Med. 2020;58(7):1021-1028.

16. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-62.

17. Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med. 2020;180(7):1-11.

18. Liu F, Li L, Xu M, Wu J, Luo D, Zhu Y, et al. Prognostic value of interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19. J Clin Virol. 2020;127:104370.

19. Luo X, Zhou W, Yan X, Guo T, Wang B, Xia H, et al. Prognostic value of C-reactive protein in patients with COVID-19. Clin Infect Dis. 2020:ciaa641.

20. Yang AP, Liu JP, Tao WQ, Li HM. The diagnostic and predictive role of NLR, d-NLR and PLR in COVID-19 patients. Int Immunopharmacol. 2020;84:106504.

21. Kermali M, Khalsa RK, Pillai K, Ismail Z, Harky A. The role of biomarkers in diagnosis of COVID-19 - A systematic review. Life Sci. 2020;254:117788.
22. Lippi G, Plebani M. Laboratory abnormalities in patients with COVID-19 infection. *Clin Chem Lab Med.* 2020;58(7):1131-1134.

23. Jiang SQ, Huang QF, Xie WM, Lv C, Quan XQ. The association between severe COVID-19 and low platelet count: evidence from 31 observational studies involving 7613 participants. *Br J Haematol.* 2020;190(1):e29-e33.

24. Lippi G, Plebani M, Henry BM. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A meta-analysis. *Clin Chim Acta.* 2020;506:145-8.

25. Khartabil TAT, Russcher HH, van der Ven AA, de Rijke YBY. A summary of the diagnostic and prognostic value of hemocytometry markers in COVID-19 patients. *Crit Rev Clin Lab Sci.* 2020;1-17.

26. Chabot-Richards DS, George TI. White blood cell counts: reference methodology. *Clin Lab Med.* 2015;35(1):11-24.

27. Buttarello M. Laboratory diagnosis of anemia: are the old and new red cell parameters useful in classification and treatment, how? *Int J Lab Hematol.* 2016;38 Suppl 1:123-32.

28. Hoffmann JJ. Reticulated platelets: analytical aspects and clinical utility. *Clin Chem Lab Med.* 2014;52(8):1107-17.

29. Kono M, Saigo K, Matsuhira S, Takahashi T, Hashimoto M, Obuchi A, et al. Detection of activated neutrophils by reactive oxygen species production using a hematology analyzer. *J Immunol Methods.* 2018;463:122-6.

30. Linssen J, Jennissen V, Hildmann J, Reisinger J, Schindler J, Malchau G, et al. Identification and quantification of high fluorescence-stained lymphocytes as antibody synthesizing/secreting cells using the automated routine hematology analyzer XE-2100. *Cytometry B Clin Cytom.* 2007;72(3):157-66.

31. Prodjoesoewojo S, Riswari SF, Djauhari H, Kosasih H, van Pelt LJ, Alisjahbana B, et al. A novel diagnostic algorithm equipped on an automated hematology analyzer to differentiate between common causes of febrile illness in Southeast Asia. *PLoS Negl Trop Dis.* 2019;13(3):e0007183.

32. Terpos E, Ntanasis-Stathopoulos I, Elalamy I, Kastritis E, Sergentanis TN, Politou M, et al. Hematological findings and complications of COVID-19. *Am J Hematol.* 2020;95(7):834-847.

33. Chong VCL, Lim KGE, Fan BE, Chan SSW, Ong KH, Kuperan P. Reactive lymphocytes in patients with Covid-19. *Br J Haematol.* 2020;189(5):844.

34. Fan BE, Chong VCL, Chan SSW, Lim GH, Lim KGE, Tan GB, et al. Hematologic parameters in patients with COVID-19 infection. *Am J Hematol.* 2020;95(6):E131-E4.

35. Yip CYC, Yap ES, De Mel S, Teo WZY, Lee CT, Kan S, et al. Temporal changes in immune blood cell parameters in COVID-19 infection and recovery from severe infection. *Br J Haematol.* 2020;190(1):33-36.

36. Mitra A, Dwyre DM, Schivo M, Thompson GR, 3rd, Cohen SH, Ku N, et al. Leukoerythroblastic reaction in a patient with COVID-19 infection. *Am J Hematol.* 2020;95(8):999-1000.

37. Briggs CJ, Linssen J, Longair I, Machin SJ. Improved flagging rates on the Sysmex XE-5000 compared with the XE-2100 reduce the number of manual film reviews and increase laboratory productivity. *Am J Clin Pathol.* 2011;136(2):309-16.

38. Nierhaus A, Klatte S, Linssen J, Eismann NM, Wichmann D, Hedke J, et al. Revisiting the white blood cell count: immature granulocytes count as a diagnostic marker to discriminate between SIRS and sepsis—a prospective, observational study. *BMC Immunol.* 2013;14:8.

39. Ayres LS, Sgnaolin V, Munhoz TP. Immature granulocytes index as early marker of sepsis. *Int J Lab Hematol.* 2019;41(3):392-6.

40. Park SH, Park CJ, Lee BR, Nam KS, Kim MJ, Han MY, et al. Sepsis affects most routine and cell population data (CPD) obtained using the Sysmex XN-2000 blood cell analyzer: neutrophil-related CPD NE-SFL and NE-WY provide useful information for detecting sepsis. *Int J Lab Hematol.* 2015;37(2):190-8.

41. Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. *Nat Rev Immunol.* 2020;20(6):355-62.

42. Sun S, Cai X, Wang H, He G, Lin Y, Lu B, et al. Abnormalities of peripheral blood system in patients with COVID-19 in Wenzhou, China. *Clin Chim Acta.* 2020;507:174-80.

43. Weimann A, Cremer M, Hernaiz-Driever P, Zimmermann M. Delta-He, Ret-He and a New Diagnostic Plot for Differential Diagnosis and Therapy Monitoring of Patients Suffering from Various Disease-Specific Types of Anemia. *Clin Lab.* 2016;62(4):667-77.
44. Danise P, Maconi M, Barrella F, Di Palma A, Avino D, Rovetti A, et al. Evaluation of nucleated red blood cells in the peripheral blood of hematological diseases. *Clin Chem Lab Med.* 2011;50(2):357-60.

45. Menk M, Giebelhauser L, Vorderwulbecke G, Gassner M, Graw JA, Weiss B, et al. Nucleated red blood cells as predictors of mortality in patients with acute respiratory distress syndrome (ARDS): an observational study. *Ann Intensive Care.* 2018;8(1):42.

46. Yang X, Yang Q, Wang Y, Wu Y, Xu J, Yu Y, et al. Thrombocytopenia and its association with mortality in patients with COVID-19. *J Thromb Haemost.* 2020;18(6):1469-1472.

47. Wang D, Yin Y, Hu C, Liu X, Zhang X, Zhou S, et al. Clinical course and outcome of 107 patients infected with the novel coronavirus, SARS-CoV-2, discharged from two hospitals in Wuhan, China. *Crit Care.* 2020;24(1):188.

48. Qu R, Ling Y, Zhang YH, Wei LY, Chen X, Li XM, et al. Platelet-to-lymphocyte ratio is associated with prognosis in patients with coronavirus disease-19. *J Med Virol.* 2020.

49. Metlay JP, Waterer GW, Long AC, Anzueto A, Brozek J, Crothers K, et al. Diagnosis and Treatment of Adults with Community-acquired Pneumonia. An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America. *Am J Respir Crit Care Med.* 2019;200(7):e45-e67.

50. Zeng F, Li L, Zeng J, Deng Y, Huang H, Chen B, et al. Can we predict the severity of coronavirus disease 2019 with a routine blood test? *Pol Arch Intern Med.* 2020;130(5):400-6.

51. Liu J, Li S, Liu J, Liang B, Wang X, Wang H, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. *EBioMedicine.* 2020;55:102763.

52. Knight SR, Ho A, Pius R, Buchan I, Carson G, Drake TM, et al. Risk stratification of patients admitted to hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: development and validation of the 4C Mortality Score. *BMJ.* 2020;370:m3339.