Identification of proteasomal catalytic subunit PSMA6 as a therapeutic target for lung cancer

Tomohiko Kakumu,1 Mitsuo Sato,1 Daiki Goto,1 Toshio Kato,1 Naoyuki Yogo,1 Tetsunari Hase,1 Masahiro Morise,1 Takayuki Fukui,2 Kohei Yokoi,2 Yoshitaka Sekido,2,4 Luc Girard,5 John D. Minna,5 Lauren A. Byers,6,7 John V. Heymach,6,7 Kevin R. Coombes,8 Masashi Kondo1 and Yoshinori Hasegawa1

Departments of 1Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya; 2Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya; 3Cancer Genetics, Nagoya University Graduate School of Medicine, Nagoya; 4Division of Molecular Oncology, Aichi Cancer Center Research Institute, Nagoya, Japan; 5Hamon Center for Therapeutic Oncology Research and the Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas; 6Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; 7The University of Texas Graduate School of Biomedical Sciences, Houston, Texas; 8Department of Biomedical Informatics, Ohio State University, Columbus, Ohio, USA

Key words
Apoptosis, lung neoplasms, proteasome endopeptidase complex, small interfering RNA, spliceosomes

Correspondence
Mitsuo Sato, Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan. Tel: 052-744-2167; Fax: 052-744-2176; E-mail: msato@med.nagoya-u.ac.jp

Funding Information
Grant-in-Aid for Exploratory Research (Grant/Award Number: 26670416), Grant-in-Aid for Scientific Research (C) (Grant/Award Number: 23591144), Grant-in-Aid for Scientific Research (B) (Grant/Award Number: 26293197), University of Texas Southwestern Medical Center SPORE (Grant/Award Number: P50CA70907), CPRIT (Grant/Award Number: RP110708).

Received September 26, 2016; Revised January 21, 2017; Accepted January 30, 2017

Cancer Sci 108 (2017) 732–743
doi: 10.1111/cas.13185

To identify potential therapeutic targets for lung cancer, we performed semi-genome-wide shRNA screening combined with the utilization of genome-wide expression and copy number data. shRNA screening targeting 5043 genes in NCI-H460 identified 51 genes as candidates. Pathway analysis revealed that the 51 genes were enriched for the five pathways, including ribosome, proteasome, RNA polymerase, pyrimidine metabolism and spliceosome pathways. We focused on the proteasome pathway that involved six candidate genes because its activation has been demonstrated in diverse human malignancies, including lung cancer. Microarray expression and array CGH data showed that PSMA6, a proteasomal subunit of a 20S catalytic core complex, was highly expressed in lung cancer cell lines, with recurrent gene amplifications in some cases. Therefore, we further examined the roles of PSMA6 in lung cancer. Silencing of PSMA6 induced apoptosis or G2/M cell cycle arrest in cancer cell lines but not in an immortalized normal lung cell line. These results suggested that PSMA6 serves as an attractive target with a high therapeutic index for lung cancer.

A ccumulating evidence from molecular biology, epidemiology and histopathology has suggested that human lung cancer develops through a multi-step carcinogenic process.1–4 During this process, normal lung epithelial stem cells, presumably the origin of lung cancer, enhance their malignant potential stepwise by acquiring genetic or epigenetic changes in oncogenes or tumor suppressor genes associated with survival advantages before finally transforming to overt cancer cells.5,5 Recent advances in high-throughput genetic analysis revealed that single lung cancer cells harbour a number of (~20 to ~200) genetic and epigenetic changes.4 Nevertheless, findings from cancer epidemiology and the experimental models of the multi-step lung carcinogenic process, which were developed by our group and others, suggested that only a handful of changes are ‘drivers’ whereas others are only ‘passengers’.6,7 From these numerous altered genes, it is vital to sort out those that truly contribute to the oncogenic properties of cancer cells by performing functional screening because such genes could serve as valuable therapeutic targets.

A pooled shRNA library screening is emerging as a powerful tool for identifying genes that contribute to various malignant phenotypes, including enhanced ability of proliferation and survival as well as resistance to treatments.8 For instance, using genome-wide shRNA screening, Luo et al. discovered that the knockdown of some genes selectively impaired the viability of KRAS-mutant cancer cells.9 Another study has identified MEDI12 as the gene that regulates the resistance of multiple types of human cancers to molecular-targeted drugs.10 In search for new lung tumor suppressor genes (TSGs), a study used NIH3T3 cells for a shRNA screening and revealed new candidate TSGs, whose loss activated the pathway of the fibroblast growth factor (FGF) gene.11 Collectively, these studies serve as a proof of principle for pooled shRNA-based screening to identify genes with important roles in the pathogenesis of cancer cells.

With this background, we performed a screening with a pooled shRNA library in search for genes that are critical for the survival and/or proliferation of lung cancer cells using a lung cancer cell line, NCI-H460. One inevitable issue with this type of analysis is that the genes identified by a screening would include numerous genes that are essential not only for...
cancer cells but also for normal cells.\(^{(8)}\) In addition, we cannot simply exclude such genes from the list of candidates because pathways essential for normal cells are sometimes activated in cancer cells and may serve as important therapeutic targets.\(^{(12,13)}\) Therefore, we additionally used genomic data to strengthen the reliability of our screening process. We integrated our mRNA expression and gene copy number data into our shRNA screening results because we anticipated that amplified and/or highly expressed genes would be more likely to be associated with cancer-specific biology.

Through this integrative analysis we identified \(\text{PSMA6}\), a subunit of the proteasome complex, as one of the most promising targets for lung cancer. We showed that \(\text{PSMA6}\) knockdown suppressed the viability of cancer cells through the induction of apoptosis or cell cycle arrest at G2/M, with only a minimal effect on normal lung epithelial cells; these suggested that the development of novel lung cancer therapies that target \(\text{PSMA6}\) holds great promise.

Materials and Methods

Cell cultures. Nineteen lung cancer cell lines and normal human bronchial epithelial cell line, NHBE and two \(\text{Cdk4/hTERT-}\)immortalised normal human bronchial epithelial cell lines, HBEc3 and HBEc4 were purchased from ATCC (Manassas, VA, USA) or obtained from the Hamon Center collection (University of Texas Southwestern Medical Center, Dallas, TX, USA).\(^{(14)}\) 293FT was obtained from Thermo Fisher Scientific (Waltham, MA, USA). For packaging into lentiviral particles, \(\text{hTERT}\) cells were used (Table S1). Using the Illumina TotalPrep RNA Amplification Kit (Cat # ILL1791; Ambion, Austin, TX, USA), 500 ng of total RNA from each sample was used to label the cRNA probes. Amplified and labelled cRNA probes (1.5 μg) were hybridised to Illumina Human WG-6 v3.0 Expression BeadChip (Cat # BD-101-0203; Ambion) before being, washed, blocked and detected by streptavidin-Cy3, following the manufacturer’s protocol; thereafter, the chips were scanned using the Illumina iScan System (Ambion). Bead-level data were obtained and pre-processed using the R package Model-Based Background Correction for background correction and probe summarization. Pre-processed data were then quantile-normalized and log-transformed.

DNA copy number analysis. 108 NSCLC cell lines were used (Table S2). Illumina BeadStudio was used to extract the “Log R Ratio” for each SNP. The package DNA copy for the R statistical software environment was used to segment the data. Final copy number variation was interpreted qualitatively as deleted, unchanged, or amplified.

Proteasome activity assay. Proteasome activity was measured using a 20S proteasome activity assay kit (Merck Millipore, Temecula, CA, USA), according to the manufacturer’s protocol. In short, total cell lysates prepared from each cells were incubated with the fluorogenic substrate Suc-Leu-Leu-Val-Tyr-AMC. The free AMC fluorescence can be quantified using a 380/460 nm filter set in a fluorometer.

Western blot analysis. Western blot analysis was performed using whole cell lysates, as described previously.\(^{(15)}\) The primary antibodies used were rabbit polyclonal anti-actin (Sigma-Aldrich), rabbit monoclonal anti-\(\text{PSMA6}\), rabbit monoclonal anti-cleaved poly(ADP-ribose) polymerase (PARP), rabbit polyclonal anti-p53, and rabbit monoclonal anti-p2\(^{\text{WAF1/CIP1}}\) (Cell Signaling Technology, Boston, MA, USA). Actin protein levels were measured as a control for equality of protein loading. Anti-rabbit antibody or anti-mouse antibody (GE Healthcare, Tokyo, Japan) was used at 1:2000 dilution as a secondary antibody.

Transfection of short interfering RNA. In total, \(5 \times 10^5\) of cells were plated in 10-cm plates. On the next day, the cells were transduced with the shRNAs packaged with lentivirus at low multiplicity of infection (MOI = 0.2) in RPMI. As a result, we anticipated that each of the 27 500 shRNA expression plasmids was integrated into the genome of 200 individual cells. After 24 h, the viral supernatant was replaced with standard RPMI culture medium containing 2 μg/mL cell culture that was tested on puromycin dihydrochloride. Selection was continued for 3 more days, following which the cells were transferred into fresh standard RPMI medium without antibiotics and grown for 24 h. Cells were transfected into RPMI containing 1% FCS and incubated for 5 more days without treatment. Cells were passaged after reaching 80% confluence. Finally, cells were harvested, shock-frozen and kept at −80°C. Genomic DNA was prepared from cell pellets; polymerase chain reaction amplification of barcodes and barcode quantitation by next-generation sequencing were performed at Cellecta.

Construction of \(\text{PSMA6}\)-expressing lentiviral vector and viral transduction in HBEc3. A custom-ordered pUC57 plasmid vector containing a full-length fragment of \(\text{PSMA6}\), designated as pUC57-\(\text{PSMA6}\), was purchased from Genescript (Piscataway, NJ, USA). An EcoRI/XhoI-digested \(\text{PSMA6}\) insert from pUC57-\(\text{PSMA6}\) was cloned into EcoRI/Xhol-digested pLent6/V5-GW/ locZ, generating pLent6-\(\text{PSMA6}\) vector. Lentiviral transduction of \(\text{PSMA6}\) in HBEc3 was performed as described previously.\(^{(15)}\) hTERT cells were used as a normal lung cancer (NSCLC) cell lines and 59 normal control cell lines were used (Table S1). Using the Illumina TotalPrep RNA Amplification Kit (Cat # ILL1791; Ambion, Austin, TX, USA), 500 ng of total RNA from each sample was used to label the cRNA probes. Amplified and labelled cRNA probes (1.5 μg) were hybridised to Illumina Human WG-6 v3.0 Expression BeadChip (Cat # BD-101-0203; Ambion) before being, washed, blocked and detected by streptavidin-Cy3, following the manufacturer’s protocol; thereafter, the chips were scanned using the Illumina iScan System (Ambion). Bead-level data were obtained and pre-processed using the R package Model-Based Background Correction for background correction and probe summarization. Pre-processed data were then quantile-normalized and log-transformed.

DNA copy number analysis. 108 NSCLC cell lines were used (Table S2). Illumina BeadStudio was used to extract the “Log R Ratio” for each SNP. The package DNA copy for the R statistical software environment was used to segment the data. Final copy number variation was interpreted qualitatively as deleted, unchanged, or amplified.

Proteasome activity assay. Proteasome activity was measured using a 20S proteasome activity assay kit (Merck Millipore, Temecula, CA, USA), according to the manufacturer’s protocol. In short, total cell lysates prepared from each cells were incubated with the fluorogenic substrate Suc-Leu-Leu-Val-Tyr-AMC. The free AMC fluorescence can be quantified using a 380/460 nm filter set in a fluorometer.

Western blot analysis. Western blot analysis was performed using whole cell lysates, as described previously.\(^{(15)}\) The primary antibodies used were rabbit polyclonal anti-actin (Sigma-Aldrich), rabbit monoclonal anti-\(\text{PSMA6}\), rabbit monoclonal anti-cleaved poly(ADP-ribose) polymerase (PARP), rabbit polyclonal anti-p53, and rabbit monoclonal anti-p2\(^{\text{WAF1/CIP1}}\) (Cell Signaling Technology, Boston, MA, USA). Actin protein levels were measured as a control for equality of protein loading. Anti-rabbit antibody or anti-mouse antibody (GE Healthcare, Tokyo, Japan) was used at 1:2000 dilution as a secondary antibody.

Transfection of short interfering RNA. In total, \(5 \times 10^5\) of cells were plated in 10-cm plates. On the next day, the cells were transduced with the shRNAs packaged with lentivirus at low multiplicity of infection (MOI = 0.2) in RPMI. As a result, we anticipated that each of the 27 500 shRNA expression plasmids was integrated into the genome of 200 individual cells. After 24 h, the viral supernatant was replaced with standard RPMI culture medium containing 2 μg/mL cell culture that was tested on puromycin dihydrochloride. Selection was continued for 3 more days, following which the cells were transferred into fresh standard RPMI medium without antibiotics and grown for 24 h. Cells were transfected into RPMI containing 1% FCS and incubated for 5 more days without treatment. Cells were passaged after reaching 80% confluence. Finally, cells were harvested, shock-frozen and kept at −80°C. Genomic DNA was prepared from cell pellets; polymerase chain reaction amplification of barcodes and barcode quantitation by next-generation sequencing were performed at Cellecta.

Through this integrative analysis we identified \(\text{PSMA6}\), a subunit of the proteasome complex, as one of the most promising targets for lung cancer. We showed that \(\text{PSMA6}\) knockdown suppressed the viability of cancer cells through the induction of apoptosis or cell cycle arrest at G2/M, with only a minimal effect on normal lung epithelial cells; these suggested that the development of novel lung cancer therapies that target \(\text{PSMA6}\) holds great promise.
were transiently transfected with either 10 nM predesigned short interfering RNA (siRNA) (MISSION siRNA; Sigma-Aldrich) that targeted PSMA1, PSMA2, PSMA3, PSMA6, PSMA7 and PSMD13 or control siRNA (Sigma-Aldrich) using Lipofectamine RNAiMAX (Invitrogen, Carlsbad, CA, USA), according to the manufacturer’s protocol. After 48 h, the transfected cells were harvested for further analyses or were re-plated for cell growth assays.

Immunohistochemistry. Surgically resected lung cancer samples were obtained from patients at the Nagoya University Hospital. Before tissue sample collection, ethics committee approval and fully informed written consent were obtained from all patients. Tissue sections (4-μm-thick) were cut, deparaffinized in xylene, rehydrated in graded alcohols and blocked with 5% skim milk for 10 min. Rabbit monoclonal anti-PSMA6 antibody (Cell Signaling Technology) was used. Staining was performed manually.

Tissue samples were divided into four groups, according to the percentage of tumour cells that were strongly stained: immunohistochemistry (IHC) scores were 0, 1+, 2+ and 3+ for, 0%, <33%, 33-66% and >66% staining, respectively.

Cell growth assays. A colorimetric proliferation assay was performed using the WST-1 Assay Kit (Roche, Basel, Switzerland), according to the manufacturer’s instructions. Liquid colony formation and soft agar colony formation assays were performed, as described previously.\(^\text{(15)}\)

Cell cycle analysis. Cells were harvested 48 h after the transfection of siRNAs and washed in ice-cold PBS. Following centrifugation at 437 g for 3 min, cells were suspended in 300 μL of cold PBS under gentle vortex before fixing by dropwise addition of 700 μL ice-cold ethanol. Fixed cells were stored at 4°C for at least 2 h. For staining, pelleted cells were washed twice with cold PBS and re-suspended in 1 mL PBS containing 200 μg/mL RNase before staining with 20 μg propidium iodide. Cells were incubated at 37°C for 30 min and maintained at 4°C before analysis. Cells were filtered through a 40-μm nylon mesh and analyzed using a flow FACS Gallios flow cytometer (Beckman Coulter).

Statistical analysis. IBM SPSS version 23 software (International Business Machines Corp., Armonk, NY, USA) was used for all statistical analyses in this study. The Mann–Whitney U-test was used to analyze differences between two groups.

Results

Semi-genome-wide screening with a pooled shRNA library identified the genes essential for the proliferation and/or survival of the lung cancer cell line NCI-H460. To systemically identify genes indispensable for lung cancer cell survival and/or proliferation, we performed semi-genome-wide dropout viability analysis using a pooled shRNA library that targeted 5043 genes. The library was transduced in the NCI-H460 lung cancer cell line by lentiviral infection (Fig. 1a). We used this cell line because of the following reason. The cell line had been shown to be highly invasive and metastatic\(^\text{(16)}\) but to have wild-type p53,\(^\text{(17)}\) which is a key player in both apoptosis and cell cycle arrest. Therefore, it seemed to be suitable for screening of aberrantly, oncogenically activated genes whose knockdown causes growth suppression mainly through apoptosis and/or cell cycle arrest. The abundance of individual shRNA constructs for each gene was quantified by sequencing the associated barcode sequences with next-generation sequencing. The suppressive effects on cell viability were determined by dividing the normalized barcode abundance by that of the baseline reference. The significance of the suppressive effects was determined by performing t-test to compare replicates of shRNA with a given gene with those of luciferase. The result is shown as a volcano plot (Fig. 1b). We selected 51 genes as potential candidates on the basis of significant average suppressive effects (P < 0.05) below a log2 of −2.

To identify the pathways overrepresented in the 51 genes, we performed gene-annotation enrichment analysis using a web-based online pathway tool, NIH-DAVID.\(^\text{(18,19)}\) We found that the 51 genes were significantly enriched for the five pathways, including ribosome, proteasome, RNA polymerase, pyrimidine metabolism and spliceosome pathways (Table 1). All five pathways were essential for survival and/or proliferation, ensuring the reliability of our screening procedure. We focused on the proteasome pathway because its activation has been demonstrated in multiple types of human cancers and a drug targeting proteasome, bortezomib, has been clinically used for multiple myeloma.\(^\text{(20)}\) In the proteasome pathway, there were five potential candidate genes (PSMA1, PSMA2, PSMA3, PSMA6 and PSMD13) that encoded subunits of the 26S proteasome complex; SHFM1 encoded a multifunctional protein involved in DNA repair and proteasome assembly. We excluded SHFM1 from our subsequent analysis because its oncogenic roles have already been demonstrated in several types of cancers such as gastric, ovarian and breast cancers.\(^\text{(21,22)}\) In addition, in our analysis, we included PSMA7, another subunit of the 26S proteasome complex, which was included in our 51 candidate genes but did not appear in the proteasome pathway after our gene-annotation enrichment analysis. Therefore, we selected six 26S proteasome subunits genes for validation and functional analyses. To validate our screening results, we individually silenced these six genes with two independent synthesized siRNA oligos for each gene and evaluated the effects on cell viability. The analysis revealed that the knockdown of proteasome subunit genes suppressed the viability of H460 in all cases, confirming our screening results (Fig. 1c).

Genome-wide gene expression and copy number data suggested that PSMA6 is one of the most attractive targets. To choose the most promising targets from the candidate proteasome subunit genes, we integrated our data on gene expression analysis and gene copy number analysis of a panel of normal and lung cancer cell lines. We expected that genes with increased expression and/or increased copy number may have more tumor-specific biology; therefore, such genes would be more likely to serve as better therapeutic targets. Data of our gene expression analysis using Illumina chips in 163 cell lines revealed that compared with 59 normal controls, PSMA3 and

![Fig. 1.](image-url)
Semi-genome-wide screening with a pooled shRNA library identifies genes essential for the proliferation and/or survival in the lung cancer cell line NCI-H460. (a) A schematic summary of shRNA screening for identifying genes indispensable for lung cancer cells to survive and/or proliferate. The screen involves three steps: (i) cell transduction with a library of shRNA agents; (ii) 96-h incubation; (iii) quantification of shRNA abundance by barcode sequencing. Depleted (blue), unchanged (green) or enriched (red) amount of shRNA means suppressive, none or promotive effects on the proliferation and/or survival of each cell during the screening, respectively. (b) Screening results are presented as a volcano plot, with 5043 genes being ranked by fold-change and significance. (c) Cell viability assay for H460 cells transfected with two independent synthesized siRNA oligos targeting PSMA1, PSMA2, PSMD3, PSMA6, PSMA7 or PSMD13.
Table 1. Pathways overrepresented with 51 target genes identified through shRNA screening

Pathway name	No. genes	% of the target genes	P-value	Benjamini
Ribosome	13	27.1	7.80E-13	3.2E-11
Proteasome	6	12.5	2.50E-05	5.1E-4
RNA polymerase	3	6.2	1.90E-02	2.3E-1
Pyrimidine	4	8.3	3.60E-02	3.1E-1
metabolism	4	8.3	7.10E-02	4.5E-1

PSMA6 were upregulated in cancer cell lines (Mann–Whitney U-test, \(P < 0.001 \)), whereas PSMD13 was downregulated in cancer cells (Fig. 2a). Expression data for PSMA7 were not available. Copy number analysis by array CGH showed that PSMA6 (7.3%; cut-off was set as available. Copy number analysis by array CGH showed that PSMA6 knockdown increased levels of apoptosis clearly in H460 and weakly in H1299 but not in others (Fig. 4a). Cell cycle analysis with propidium iodide staining followed by flow cytometry revealed that PSMA6 knockdown induced apoptosis in H460 and G2/M arrest in H1299 but did not apparently affect HBEC3 or H661 (Fig. 4b). By measuring proteasome activity in the cells, we examined whether such large phenotypic differences in response to PSMA6 knockdown may result from differences in the effects of the knockdown on proteasome activity. We found that PSMA6 knockdown equally inhibited proteasome activity by approximately 50% of the control in all the three cell lines except H661; this excluded the possibility that the difference in the PSMA6 knockdown-induced phenotypic changes resulted from different effects of PSMA6 knockdown on proteasome activity at least between H460 or H1299 versus HBEC3 (Fig. 4c).

In addition, we examined the effects of PSMA6 knockdown on the expression of p21\(^{Cip1/Waf1}\), which plays an important role in the cell cycle and whose expression is controlled by the proteasome pathway. We found that the protein expression levels of p21\(^{Cip1/Waf1}\) were equally upregulated by knockdown of PSMA6 in H460, H1299 and HBEC3 but not in H661 (Fig. 4a).

These results suggested that the high specificity of viability suppression by PSMA6 knockdown occurs through higher dependency on proteasome activity in cancer cells than in normal cells. Nevertheless, we were unable to judge whether cancer cell lines with high PSMA6 amplification are hypersensitive to PSMA6 knockdown because of inefficient PSMA6 knockdown in H661.

Next, we examined whether the knockdown of the other five candidate proteasome genes also induced apoptosis or cell cycle arrest in cancer cells. We silenced all the candidate proteasome genes in H460 and H1299, and looked at levels of induced apoptosis as well as effects on cell cycle. Efficient knockdown of all the six genes was obtained (Fig. S2). Apoptosis analysis revealed that in H460, knockdown of the other five genes also induced apoptosis, albeit to a less extent compared with that of PSMA6 (Fig. 4d) while in H1299, knockdown of all the candidate proteasome genes except PSMA7 induced comparable levels of apoptosis (Fig. 4d). Cell cycle analysis revealed that in H460, knockdown of PSMA1 or PSMA3 induced G2/M arrest while in H1299, knockdown of all the candidate proteasome genes induced G2/M arrest to some extent (Fig. 4e). These induction of apoptosis or cell cycle arrest did not seem to correlate with degrees of inhibition of proteasome activity (Fig. 4f). These results suggest that PSMA6 knockdown does not necessarily induce the greatest levels of apoptosis or cell cycle arrest but instead that resulting phenotypic responses due to the knockdown of the candidate proteasome genes occur in a cell context dependent manner, possibly not necessarily correlating with proteasome activity.

PSMA6 overexpression in HBEC3 did not affect proteasome activity or proliferation. Finally, to evaluate the potential of PSMA6 overexpression in oncogenic transformation, we examined whether PSMA6 overexpression in normal bronchial epithelial cells affected their proliferation rate. Lentivirally introduced expression of PSMA6 was confirmed by western blotting (Fig. 5a). PSMA6 overexpression in HBEC3 did not affect proteasome activity or enhance proliferation (Fig. 5b,c,d).
Fig. 2. Genome-wide gene expression and copy number data suggest that PSMA6 is one of the most attractive targets. (a) Microarray expression analysis of PSMA1, PSMA2, PSMA3, PSMA6, and PSMD13 mRNA. The bottom and top of the box are lower and upper quartiles, respectively. The band near the middle of the box is the median. *P < 0.001 (Mann–Whitney U-test). (b) Array CGH analysis of PSMA1, PSMA2, PSMA3, PSMA6, PSMA7, and PSMD13 showing increases in the copy number of PSMA6 in a small fraction of NSCLC cell lines. (c) Correlation between copy numbers and mRNA expression of PSMA6 in lung cancer cell lines.
Fig. 3. PSMA6 is highly expressed in lung cancer. (a) Western blot of PSMA6 in three normal controls (one primary culture NHBE and two immortalized normal bronchial epithelial cell lines, HBEC3 and HBEC4) and 19 lung cancer cell lines. (b) Immunohistochemical (IHC) staining of PSMA6 in surgically resected lung cancer and matched normal lung specimens. Scale bars: 100 μm. Pt, patient. (c) Immunohistochemical staining scores in surgically resected lung cancer and matched normal lung specimens. 0 = none, 1 = weak, 2 = positive, 3 = strong. (d) The lung cancer set from Bild et al. was analyzed to generate Kaplan–Meier plots of OS according to PSMA6 expression levels using the R2 genomics analysis and visualization platform (http://hgserver1.amc.nl/cgi-bin/r2/main.cgi).
Based on these results, we suggest that PSMA6 overexpression alone does not have oncogenic ability.

Discussion

Several studies have reported the roles of PSMA6 in the carcinogenesis of other types of cancer. Two previous shRNA screening studies identified PSMA6 as an essential survival gene in malignant mesothelioma and glioblastoma cells.\(^\text{24,25}\) In addition, proteomic analysis of transgenic mice developing hepatocellular carcinoma revealed that several proteasome subunits, including PSMA6, were upregulated in the tumor.\(^\text{26}\)

The findings of these studies, together with our results, suggest the oncogenic function of PSMA6 in multiple types of human cancer; therefore, PSMA6-targeted therapy may have broad applications for different types of tumors.

It has been well acknowledged that proteasome inhibition exerts more cytotoxicity in cancer cells than in corresponding normal cells.\(^\text{20,27}\) In agreement with this, we found that PSMA6 knockdown shows greater growth suppressive effects in cancer cells than in immortalized normal cells. We also show that PSMA6 knockdown induced greater apoptosis than knockdown of other five proteasome subunits in H460 although knockdown of these genes comparably inhibited proteasome activity. These results suggest that PSMA6 knockdown may induce apoptosis through unknown factors that are not directly associated with proteasome activity. Such protease-independent biological functions of another proteasome subunit gene, PSMD10 (also known as Gankyrin or p28) has been demonstrated.\(^\text{28,29}\) It functions as an oncogene by increasing hyperphosphorylation of Rb by CDK4 as well as promoting the degradation of p53 by MDM2. Further studies will be needed to clarify whether PSMA6 also has such proteasome-independent biological functions.

We found different responses to PSMA6 knockdown in three lung cancer cell lines, H460, H1299, and H661. We anticipated H661 with high PSMA6 amplification to exhibit hypersensitivity to PSMA6 knockdown; however it did not show apoptosis or cell cycle arrest. Nevertheless, because of inefficient PSMA6 knockdown (~50% protein reduction), we cannot judge whether cell lines with high PSMA6 amplifications are hypersensitive to PSMA6 knockdown. H460 and H1299 differ in their p53 statuses: p53 is intact in H460 but is deleted in H1299. This may influence their apoptotic responses to PSMA6 knockdown. Nevertheless, obviously, these two cell lines differ significantly in numerous other genes involved in the apoptosis pathway, and thus we cannot draw definite conclusions. Further studies using isogenic cell lines differing only in the p53 status will be needed.

Intriguingly, the involvement of PSMA6 in another common human adult disease, myocardial infarction has been reported. Independent studies have reported that SNP in exon 1 in PSMA6 with enhanced transcription is a risk factor for developing myocardial infarction, which is hypothesized to be attributable to enhanced inflammation resulting from upregulation of NF-kB due to enhanced activity of proteasome.\(^\text{31}\) Because the involvement of NF-kB in carcinogenesis is well-acknowledged,\(^\text{32}\) one can hypothesize that PSMA6 exerts its oncogenic ability through enhanced inflammation resulting from NF-kB upregulation. It would be interesting to examine whether SNP in exon1 is also a risk factor for developing cancer.

Several studies have reported tumor-promoting or suppressive roles of proteasome subunits, other than PSMA6, in lung cancer. For instance, Matsuyma et al. have reported that the knockdown of PSMD2, a subunit of the 19S regulatory unit, causes apoptosis and G1 cell cycle arrest in lung cancer cells and that its higher expression is correlated with shorter patient survival in patients with surgically treated lung adenocarcinoma, suggesting its oncogenic roles in lung cancer. Consistent with these results, our shRNA screening identified PSMD2 as a gene required for viability of H460 cells (76th gene in the ranking of fold reduction). Another study analysed the expression of four 20S proteasome subunits (PSMA1, PSMA5 and PSMB4 and one 19S proteasome subunit) in several histological types of lung cancer specimens and found that all subunits were overexpressed in all histological types.\(^\text{33}\) The authors showed that among the five genes studied, only PSMB4 expression, as measured by Ki67 expression, was positively correlated with proliferation activity in neuroendocrine tumors, suggesting its involvement in the pathogenesis of lung cancer. We did not observe a significant decrease in PSMB4 shRNAs. However, the H460 cell line that was used in our screening was not a neuroendocrine type of lung cancer; it is possible that PSMB4 acts as an oncogenic gene only in neuroendocrine tumors. Altogether, these findings suggested that the deregulation of the proteasome pathway plays pivotal roles in the pathogenesis of lung cancer.

We found increased expression of PSMA6 at both mRNA and protein levels in lung cancer cell lines as well as in clinical specimens. We also found that PSMA6, located at the 14q13.3 region, was amplified in approximately 7% of lung cancer cell lines, which was associated with increased PSMA6 expression, indicating that increased PSMA6 in lung cancer is at least in part due to gene amplification. A prior study has reported that the 14q13.3 region is amplified in approximately 15% of lung cancer specimens. In addition, by further analyzing a large number of other tumor types and performing functional experiments, the study identified three developmental genes (TTF1/NKX2-1, NKX2-8 and PAX9) located in the 14q.13.3 region as oncogenic genes in lung cancer.\(^\text{34}\) In particular, the oncogenic roles of TTF1/NKX2-1 have been demonstrated by several lines of evidence.\(^\text{35-37}\) Our results
Fig. 4. Continued
showed the potential of PSMA6 as an oncogenic gene in lung cancer, suggesting that PSMA6 is another target in this region that could contribute to the development of lung cancer treatment.

Elevated PSMA6 protein expression without gene amplification in lung cancer specimens suggested that other mechanisms cause PSMA6 upregulation. One possible cause is nuclear factor E2-related factor 2 (Nrf2), which has been shown to upregulate the expression of many proteasome subunits, including PSMA6, and proteasome activity\(^{(38,39)}\). There was no correlation between Nrf2 and PSMA6 expression in our analysis of microarray data for lung cancer cell lines. Because Nrf2 is a nuclear factor, we cannot assertively exclude the possibility that it plays a role in PSMA6 upregulation. However, considering the function of Nrf2 as a pan-upregulator of the majority of proteasome subunits, we suggest that Nrf2 does not primarily contribute to PSMA6 upregulation in lung cancer because we observed that only a few proteasome subunits were specifically upregulated in lung cancer.

In conclusion, we have identified PSMA6 as a promising therapeutic target for lung cancer. Further studies focused on clarifying the mechanisms underlying PSMA6 knockdown-induced growth inhibitory effects, with more expanded lung cancer cell lines, are required to warrant the performance of compound library screening to search for drugs that target PSMA6.

Disclosure Statement

Authors do not have any conflicts of interest to declare.

Acknowledgments

This work was supported, in part, by Grant-in-Aid for Exploratory Research 26670416 and Grant-in-Aid for Scientific Research (B) 26293197 for M. Sato, a Grant-in-Aid for Scientific Research (C) 23591144 for M. Kondo from the Japan Society for the Promotion of Science, University of Texas Southwestern Medical Center SPORE P50CA70907 for J. Minna, and CPRIT RP110708 for J. Minna.

References

1. Armitage P, Doll R. The age distribution of cancer and a multi-stage theory of carcinogenesis. Br J Cancer 1954; 8: 1–12.
2. Vogelstein B, Fearon ER, Kern SE et al. Allelotype of colorectal carcinomas. Science 1989; 244: 207–11.
3. Hirsch FR, Franklin WA, Gazdar AF, Bunn PA Jr. Early detection of lung cancer: clinical perspectives of recent advances in biology and radiology. Clin Cancer Res 2001; 7: 5–22.
4. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW. Cancer genome landscapes. Science 2013; 339: 1546–58.
5. Sato M, Shames DS, Gazdar AF, Minna JD. A translational view of the molecular pathogenesis of lung cancer. J Thorac Oncol 2007; 2: 327–43.
6. Sasai K, Suzuki T, Yanagita E et al. Oncogene-mediated human lung epithelial cell transformation produces adenocarcinoma phenotypes in vivo. Cancer Res 2011; 71: 2541–9.
7. Sato M, Larsen JE, Lee W et al. Human lung epithelial cells progressed to malignancy through specific oncogenic manipulations. Mol Cancer Res 2013; 11: 638–50.
8. Diehl P, Tedesco D, Chenchik A. Use of RNAi screens to uncover resistance mechanisms in cancer cells and identify synthetic lethal interactions. Drug Discov Today Technol 2014; 11: 11–8.
Supporting Information

Additional Supporting Information may be found online in the supporting information tab for this article.

Fig. S1. Kaplan–Meier plots of OS according to PSMA6 protein expression levels in 96 non-small cell lung cancer cases. The P-value was calculated by the log-rank test.

Fig. S2. Knockdown efficiency of PSMA1, PSMA2, PSMA3, PSMA6, PSMA7, or PSMD13 in H460 and H1299. Quantitative real time PCR was done for H460 and H1299 transfected with PSMA1, PSMA2, PSMA3, PSMA6, PSMA7, PSMD13 RNAi or control oligos.

Table S1. List of cell lines used for microarray expression analysis.

Table S2. List of cell lines used for gene copy analysis.

Table S3. Correlation between PSMA6 protein expression and clinicopathological characteristics.