Paracoccidoides brasiliensis 30 kDa Adhesin: Identification as a 14-3-3 Protein, Cloning and Subcellular Localization in Infection Models

Julhiany de Fatima da Silva, Haroldo César de Oliveira, Caroline Maria Marcos, Rosângela Aparecida Moraes da Silva, Tania Alves da Costa, Vera Lucia García Calich, Ana Marisa Fusco Almeida, Maria José Soares Mendes-Giannini

1 Department of Clinical Analyses, Faculty of Pharmaceutical Sciences, São Paulo State University - University Estadual Paulista Araraquara, São Paulo, Brazil, 2 Department of Immunology, Biomedical Institute, São Paulo University, São Paulo, Brazil

Abstract

Paracoccidoides brasiliensis adhesion to lung epithelial cells is considered an essential event for the establishment of infection and different proteins participate in this process. One of these proteins is a 30 kDa adhesin, pI 4.9 that was described as a laminin ligand in previous studies, and it was more highly expressed in more virulent *P. brasiliensis* isolates. This protein may contribute to the virulence of this important fungal pathogen. Using Edman degradation and mass spectrometry analysis, this 30 kDa adhesin was identified as a 14-3-3 protein. These proteins are a conserved group of small acidic proteins involved in a variety of processes in eukaryotic organisms. However, the exact function of these proteins in some processes remains unknown. Thus, the goal of the present study was to characterize the role of this protein during the interaction between the fungus and its host. To achieve this goal, we cloned, expressed the 14-3-3 protein in a heterologous system and determined its subcellular localization in *in vitro* and *in vivo* infection models. Immunocytochemical analysis revealed the ubiquitous distribution of this protein in the yeast form of *P. brasiliensis*, with some concentration in the cytoplasm. Additionally, this 14-3-3 protein was also present in *P. brasiliensis* cells at the sites of infection in C57BL/6 mice intratracheally infected with *P. brasiliensis* yeast cells for 72 h (acute infections) and 30 days (chronic infection). An apparent increase in the levels of the 14-3-3 protein in the cell wall of the fungus was also noted during the interaction between *P. brasiliensis* and A549 cells, suggesting that this protein may be involved in host-parasite interactions, since inhibition assays with the protein and this antibody decreased *P. brasiliensis* adhesion to A549 epithelial cells. Our data may lead to a better understanding of *P. brasiliensis* interactions with host tissues and paracoccidioidomycosis pathogenesis.

Introduction

Paracoccidoides brasiliensis is a dimorphic fungus and the etiologic agent of paracoccidioidomycosis (PCM). This disease presents prolonged evolution and may involve several organs [1]. *P. brasiliensis* is considered a facultative intracellular fungus that can adhere to and invade epithelial cells *in vivo* and *in vitro* [2]. The adhesion and invasion abilities of the fungus are dependent on the virulence of the isolate [3], which can be attenuated or lost after subsequent cycles of subculture for long periods [4] and reestablished after passage in animals [5] or in epithelial cell culture. *P. brasiliensis* has multiple mechanisms of pathogenicity, including adherence, colonization, dissemination, survival in hostile environments and escape from immune response mechanisms that allow it to colonize the host and cause disease [6–8]. The fungus also uses a variety of surface molecules to bind to the extracellular matrix of the host cell and establish infection [9]. The molecular mechanisms involved from first contact with the infectious agent to subsequent stages of the disease remain unknown. A necessary step in the colonization and, ultimately, development of diseases by pathogens is associated with their ability to adhere to the surface of the host. The ability to adhere is a widely distributed biological phenomenon that is shared by many organisms to enable them to colonize their habitats. Successful colonization is usually a complex event and involves surface proteins of the fungus and cellular receptors [10,11]. In this way, PCM development depends on interactions between the fungus and the host cell components.

Fungal virulence is a highly complex event resulting in the expression of multiple genes at different stages of infection, and adhesion and survival of the pathogen within the host appear to be essential in establishing pathogenesis. In this context, important virulence factors of the fungi have been described [2,12–19]. Pathogen adhesion requires the recognition of carbohydrate or protein ligands on the surface of the host cell or proteins of the extracellular matrix (ECM) [20–22]. Studies have characterized
extracellular matrix components involved in the interaction between *P. brasiliensis* and the host, and some adhesins have also been described. Adhesins are believed to play an important role in *P. brasiliensis* pathogenesis [3,23–35].

The large number of different tissues that fungi can colonize and infect suggests that fungi can use a variety of surface molecules for adhesion [36]. Mechanisms that may be responsible for determining the pathogenicity and virulence of *P. brasiliensis* have been extensively investigated by interaction experiments of this pathogen *ex vivo* in cell culture [26,27,37–42] and experiments using high-throughput molecular tools, such as cDNA microarrays, insertional and/or gene deletion, and RNA interference [14,43–50]. Studies have characterized extracellular matrix components involved in the interaction of *P. brasiliensis* with the host. The ECM consists of a network of proteins, including collagen, non-collagen glycoproteins, especially fibronectin and laminin, and proteoglycans, which seem to affect the proliferative capacity of the fungus [2]. In general, genes involved in adhesion are not constitutively expressed but activated when induced at the site of infection in the host [51,52]. The understanding and identification of molecules involved in the adhesion of microorganisms to different substrates in the host are important as targets for more effective new treatments in systemic mycoses.

Some molecules of *P. brasiliensis* have been identified as ligands of extracellular matrix components. Gp43 was the first to be identified as a ligand for laminin [3,23,24]. The 43 kDa glycoprotein was found to play a role in adhesion because anti-gp43 serum inhibited the adhesion process by 85% [3]. Additional tests of binding affinity showed that gp43 was able to bind both fibronectin and laminin. In *P. brasiliensis*, other adhesins have also been described, and they are believed to play important roles in its pathogenesis [26,27,29,32–35,53]. A 30 kDa adhesin of *P. brasiliensis* has been identified as a ligand for laminin [3,23–35]. Gp43 was the first to be characterized as belonging to the family of glycosyl hydrolases and has the capacity to adhere to ECM proteins. This protein was described another fungal surface molecule, called PbDfg5p, that has the capacity to adhere to ECM proteins [33]. Da Silva Castro et al., (2008) [57]. Members of this group function as accessory proteins in various processes, act as specific determinants that alter the cellular localization of other proteins with which they interact and are involved in the direct regulation of enzyme activity [59].

Thus, in this study, we characterized the 14-3-3 protein of *P. brasiliensis* by determining its localization, both in the yeast form of the fungus and in infection models (epithelial cells and a murine model), to better understand *P. brasiliensis*-host tissue interactions and paracoccidioidomycosis pathogenesis.

Materials and Methods

Ethics Statement

Animal experiments were performed in strict accordance with Brazilian Federal Law 11,794 establishing procedures for the scientific use of animals and the state law establishing the Animal Protection Code of the State of São Paulo. All efforts were made to minimize suffering, and all animal procedures were approved by the Ethics Committee on Animal Experiments of the Institute of Biomedical Sciences of the University of São Paulo (Proc.180/2011/CEUA) and the Ethics Committee on Animal Experiments of the Faculty of Pharmaceutical Sciences of Araraquara – UNESP (Proc. 10/2011/CEUA/FCF).

P. brasiliensis Isolate and Growth Conditions

A highly virulent *P. brasiliensis* (isolate 18), obtained from the mycology collection of the Faculty of Medicine, University of São Paulo (FM-USP), was used throughout this investigation. *P. brasiliensis* yeast cells were maintained by weekly subcultivation in semisolid culture medium. Fungal cells were grown for 3–4 days at 35°C on Fava-Netto solid medium [60].

Protein Characterization by Amino Acid Sequencing

For internal peptide sequencing, the 30 kDa protein was subjected to two-dimensional electrophoresis. The gel was stained with Coomassie blue, and the band was excised from the gel, eluted, and digested with trypsin for endopeptidase digestion. The fragments were separated by reverse-phase HPLC and subjected to Edman degradation [61].

Amino Acid Sequence Homology Analysis of *P. brasiliensis* 30 kDa Adhesin

The amino acid sequences were compared to other sequences deposited in a database. The homology searches were performed with the BLASTP program [62] and FASTA 3 [63].

Cloning cDNA Containing the Complete Coding Region of the 14-3-3 Protein into an Expression Vector

Cloned cDNA containing the complete coding region of the 14-3-3 protein (GenBank accession number AF462124) [64] was amplified by PCR using sense (5'-ATGGGTTACGAA-GATGCTG-3') and antisense (5'-TTCAGCGGCCCTTGA-
indeed the 14-3-3 protein of *P. brasiliensis* recommendations. The cleaved fractions were analyzed by SDS-PAGE. The immunoglobulin fractions of the antiserum were separated by 2-week intervals. The obtained serum, containing monospecific was injected into one rabbit with Freund’s adjuvant three times at 20 C for 30 min at 4 C. The supernatant was discarded, and the cells were resuspended in lysis buffer (50 mM NaH₂PO₄, 20 mM imidazole, 300 mM NaCl, 1 mM PMSF, and 1× PLLAC) and lysed by extensive sonication (pulse on 4.4 s pulse off 9.9 s; 60% extended for 2 min). The sample was centrifuged at 10,000 x g for 30 min at 4 C. The histidine tail was removed using the Thrombin Clean Cleave™ Kit (Sigma Aldrich, St. Louis, MO, USA) according to the manufacturer’s recommendations. The cleared fractions were analyzed by SDS-PAGE.

To confirm that the purified recombinant protein obtained was indeed the 14-3-3 protein of *P. brasiliensis*, the bands obtained in the 10% polyacrylamide gel were purified and subjected to tryptic digestion using 10 mg/mL Trypsin Gold (Promega). The tryptic fragments were subjected to LC-MS/MS using a Q-TOF Ultima API mass spectrometer (Waters, UK). The spectra were processed using ProteinLynx v4.0 software (Waters) and MASCOT MS/MS ion search (www.matrixscience.com), and the sequences were identified by searching the SwissProt database.

Antibody Production

Purified recombinant 14-3-3 protein was used to generate specific rabbit polyclonal serum. Rabbit preimmune serum was obtained and stored at −20 C. The purified protein (1.5 mg/mL) was injected into one rabbit with Freund’s adjuvant three times at 2-week intervals. The obtained serum, containing monospecific polyclonal antibody to 14-3-3, was aliquoted and stored at −20 C. The immunoglobulin fractions of the antiserum were separated by precipitation with ammonium sulfate and stored at −70 C.

Cell-free Antigen

The cell-free extract was obtained from yeast cells of *P. brasiliensis* (isolate 18, with high adherence capacity to epithelial cells). The protein concentration of the extract was quantified by the Bradford method (BioRad), and the samples were analyzed by SDS-PAGE.

Cell Wall Protein Extraction

This procedure was performed as described in da Silva Castro et al., [57], with some modifications. Yeast cells were frozen in liquid nitrogen and disrupted by maceration, and the material was lyophilized, weighed and resuspended in 50 mM Tris buffer. The supernatant was separated from the cell wall fraction by centrifugation at 10000 x g for 10 min at 4 C. To remove noncovalently linked proteins and intracellular contaminants, the isolated cell wall fraction was washed extensively with 1 M NaCl and boiled three times in SDS extraction buffer (50 mM Tris-HCl, pH 7.8, 2% w/v SDS, 100 mM Na-EDTA, and 40 mM β-mercaptoethanol) and pelleted after the extractions by centrifugation at 10000 x g for 10 min [67]. The protein concentration of the extract was quantified by the Bradford method (BioRad), and the samples were analyzed by SDS-PAGE.

Western Blot Analysis

The cell wall protein extracts and purified 14-3-3 recombinant protein separated by one- and two-dimensional electrophoresis were transferred to nitrocellulose membranes. The membranes were incubated with the polyclonal antibody obtained against the 14-3-3 recombinant protein and peroxidase-conjugated anti-rabbit IgG as the secondary antibody. The reaction was developed with a chromogen substrate consisting of 0.005 g of diaminobenzidine (DAB) diluted in 30 mL of PBS plus 150 µL of hydrogen peroxide. The negative control reaction was performed with non-immune rabbit serum.

Mice and IT Infection

C57BL/6 mice were obtained from the Isogenic Breeding Unit (Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil) and used at 8 to 12 weeks of age. The mice were anesthetized and subjected to intratracheal (IT) *P. brasiliensis* infection as previously described [68]. Briefly, after intraperitoneal anesthesia, the animals were IT infected with 10⁹ *P. brasiliensis* yeast cells in 50 µL of PBS. At 72 h and 4 weeks postinfection, the lungs were removed and fixed to analyze the subcellular localization of *P. brasiliensis* 14-3-3 protein. These experiments were approved by the Ethics Committee on Animal Experiments of the University of São Paulo, São Paulo, Brazil.

Subcellular Localization of the 14-3-3 Recombinant Protein in *P. brasiliensis* Yeast Cells in vitro and in vivo

To determine the subcellular localization of the 14-3-3 protein of *P. brasiliensis*, we performed immunocytochemistry at the ultrastructural level using immunogold labeling. For each experiment, both pneumocytes infected with *P. brasiliensis* (10⁵ cells/mL) for 2, 5 and 8 h and lungs removed from C57BL/6 mice IT infected with *P. brasiliensis* (10⁶ cells/mL) were fixed (2.5% v/v glutaraldehyde in 0.1 M sodium cacodylate buffer, pH 7.2) for 24 h at 4 C and submitted to the electron microscopy service of the Institute of Biomedical Sciences (ICB-I) USP-SP for the preparation of ultrathin sections. After fixation, the cells were rinsed several times using the same buffer, and free aldehyde groups were quenched with 50 mM ammonium chloride for 1 h, followed by block staining in a solution containing 2% (w/v) uranyl acetate in 15% (v/v) acetone for 2 h at 4 C (4). The material was dehydrated in a series of increasing concentrations of acetone (30 to 100% v/v) and embedded in LR Gold resin
were statistically analyzed using Origin Pro v7.5 software.

Results

Homology of the Internal Peptides of the P. brasiliensis 30 kDa Adhesin

The 30 kDa adhesin was analyzed based on sequences of the internal peptide of P. brasiliensis, which spanned three amino acid sequences: IVASADKVEER, NLLSVAYK and NATAEVATDLAPTHPIR. These sequences were submitted to databases and analyzed by BLASTP (www.ncbi.nlm.nih.gov/BLAST) and FASTA 3 (www.ebi.ac.uk/ fasta3/). The results were the same in both analyses; the peptides shared similarity to the 14-3-3 protein of P. brasiliensis. The amino acid sequence of the peptides showed identity with two regions of the 14-3-3 protein of P. brasiliensis that were already deposited in GenBank (AA24348): amino acids 28–50 shared 100% identity, and amino acids 153–169 shared 100% identity, as shown in Figure 1.

Expression, Purification and Production of a Polyclonal Antibody to Pb14-3-3 Recombinant Protein

cDNA encoding the Pb14-3-3 recombinant protein was subcloned into the expression vector pET-32a, and a recombinant fusion protein was obtained. After induction with IPTG, a 43 kDa recombinant protein was detected in bacterial lysates (Fig. 2A). The 6 histidine residues fused to the N-terminus of the recombinant protein were used to purify the protein from bacterial lysates through nickel-chelate affinity. The recombinant protein was eluted and analyzed by SDS-PAGE (Fig. 2B). An aliquot of the purified recombinant protein was used to generate a rabbit polyclonal antibody to Pb14-3-3r. Western blotting confirmed the positive reaction of the antibody with the fusion protein (Fig. 1C) and identified a 43 kDa protein in bacterial lysates. After cleavage with the Thrombin Cleave kit (Sigma Aldrich, St. Louis, MO, USA), the immunoreactive band corresponded to a 30 kDa protein. The 14-3-3 antiserum obtained in rabbits reacted with P. brasiliensis 14-3-3 recombinant protein, and reactivity was observed up to 1:1000. Controls were incubated with rabbit preimmune serum at 1:100 (Fig. 2C).

Cell Wall Protein Extraction

The 14-3-3 protein expression was more evident in P. brasiliensis cell wall recovered from A549 infected cells. When the fungus was cultivated in Fava Netto medium, we observed a weak reaction in the cytoplasmic fraction and no reaction in the cell wall extract (Fig. 3). Additionally, no reaction was observed in uninfected A549 cells (control) or in the cytoplasmic fraction of P. brasiliensis recovered from A549 infected cells (data not shown).

Subcellular Localization of the 14-3-3 Protein in P. brasiliensis Yeast Cells in vitro and in vivo

The subcellular localization of the 14-3-3 protein was determined using an anti-14-3-3 polyclonal antibody in combination with immunoelectron microscopy. P. brasiliensis yeast cells, pneumocytes and lungs removed from C57BL/6 mice infected with P. brasiliensis were processed by postembedding with gold particles. Immunocytochemical assays revealed the ubiquitous distribution of gold particles in P. brasiliensis yeast cells, with some concentration in the cytoplasm (Fig. 4).

Notably, the number of gold particles was increased in the P. brasiliensis yeast cell wall at the time of epithelial cell interaction (Fig. 5), suggesting that the 14-3-3 protein may play an important role in the infection process.
role in the host-pathogen interaction. Some cell wall fragments containing these gold particles were directed to epithelial cells (Fig. 5C) at longer interaction times (8 h).

The 14-3-3 protein was ubiquitously distributed in fungi (Fig. 6) present at the sites of infection of C57BL/6 mice intratracheally infected with *P. brasiliensis* yeast cells for 72 h (acute infections) and 30 days (chronic infection).

Control samples incubated with rabbit preimmune serum showed no gold labeling.

Inhibition of the Interaction of *P. brasiliensis* with Epithelial Cells Using Recombinant 14-3-3 Protein

The inhibition assay was performed by counting cells using optical microscopy (Fig. 7). Pretreatment with the 14-3-3 protein of *P. brasiliensis* significantly reduced ($p<0.05$) the infection at all times evaluated. These data were confirmed with CFU counts. BSA treatment (control) led to a slight reduction in the rate of infection, but these data were not statistically significant compared with those obtained in the absence of treatment. When the cells were pretreated with the recombinant 14-3-3 protein (25 μg/mL), we observed a reduction of approximately 40% at 2 h of infection, 54% at 5 h, 35% at 8 h and 28% at 24 h, demonstrating that this protein may be important in the *P. brasiliensis* infective process. Moreover, the rate of infection at 24 h was significantly different compared with earlier times (2, 5 and 8 h), but no difference was found between earlier times ($p>0.01$). This result could explain the increased rate of infection, but there is still inhibition by recombinant 14-3-3 protein.

Inhibition of the Interaction of *P. brasiliensis* with Epithelial Cells Using Polyclonal Anti-14-3-3 Produced in Rabbits

The inhibition assay was performed by counting cells using optical microscopy (Fig. 8). Antibody treatment (1:100) was also effective in inhibiting the infection, particularly at 2 and 24 h, demonstrating that this protein may be important in the infective process of *P. brasiliensis*.

Discussion

P. brasiliensis is considered a facultative intracellular fungus that may adhere to and invade epithelial cells *in vivo* and *in vitro* [2]. The adhesion and invasion ability of the fungus is dependent on the virulence of the isolate [3]. The ability of cells to interact with

![Image 1](https://example.com/image1)

Figure 1. Comparison of the 30 kDa adhesin with the 14-3-3 protein of *P. brasiliensis* by BLASTp and FASTA 3.
doi:10.1371/journal.pone.0062533.g001

![Image 2](https://example.com/image2)

Figure 2. SDS-PAGE to verify protein induction (A) and 14-3-3 recombinant protein purification (B). Gels were stained with Phast Gel Coomassie R350. (A) 1: LMW ladder (low molecular weight, GE Life Science), 2: 5 h of induction with 0.4 mM IPTG at 37 °C. (B) 1: LMW, 2: purified protein. The arrow indicates the purified 14-3-3 recombinant protein. (C) Immunoblot to verify the reactivity of polyclonal serum anti-14-3-3. (1) Pre-immune serum 1:100– control, (2) full recombinant 14-3-3 protein and (3) cleaved 14-3-3 protein induced for 2 h.
doi:10.1371/journal.pone.0062533.g002
each other in an orderly manner depends on multiple adhesive interactions between adjacent cells and their extracellular environment and is mediated by cell adhesion molecules [69–71]. Pathogen adhesion requires the recognition of carbohydrate or protein ligands on the surface of the host cell or proteins of the ECM [20–22]. The large number of tissue types that fungi can colonize and infect suggests that fungi have a variety of surface molecules for adhesion [36]. Possible mechanisms responsible for determining the pathogenicity and virulence of P. brasiliensis have been extensively investigated by interaction experiments of this pathogen ex vivo in cell culture [26,27,37–42] and high-throughput molecular tools, such as cDNA microarrays, insertion and/or gene deletion, and RNA interference [14,43–50].

In our previous study, we characterized a 30 kDa adhesin as a laminin ligand and observed that this adhesin was more highly expressed in virulent P. brasiliensis isolates, indicating that this protein may contribute to the virulence of this important fungal pathogen [39].

In the present study, we aimed to obtain a better understanding of the role of the 14-3-3 protein in the relationship between P. brasiliensis and host cells using in vitro and in vivo models. Thus, we generated a recombinant 14-3-3 protein in bacteria and used it to generate a polyclonal antibody that specifically recognized the recombinant purified protein.

Using amino acid sequencing, we determined that the adhesin belongs to the 14-3-3 family, and we showed that the P. brasiliensis protein may play an important role in the pathogenesis of this fungus, provided that inhibits by 50% the adherence to epithelial cells.

The 14-3-3 protein was identified in the genome of the P. brasiliensis fungus, but its function was unknown. The pathogen must regulate adhesin expression to survive and cause disease [39]. 14-3-3 proteins are a family of adaptor proteins that modulate protein function in all eukaryotic cells [72]. Little is known about the function of 14-3-3 proteins in pathogenic fungi.

Studies on Saccharomyces cerevisiae and Schizosaccharomyces pombe have demonstrated that both yeasts contain two genes that encode 14-3-3 proteins, and these proteins, as in higher eukaryotes, bind to numerous proteins involved in a variety of cellular processes [73]. The filamentous fungus Aspergillus nidulans contains a protein with high homology to 14-3-3 proteins (called Arta) that prevents the formation of the septum [74], and recently, this protein was described in P. brasiliensis vesicles [19,75].

A critical first step in the establishment of infection by pathogens is adhesion to host components. The recognition of host cells by a pathogen requires the presence of complementary molecules on the surface of the host cell. We previously demonstrated that P. brasiliensis is capable of adhering to and invading epithelial cells [27]. Adhesins that interact with receptors have been found to exist in a number of different pathogens, and host components of

Figure 3. Immunoblotting was performed using the anti-Pb14-3-3 polyclonal antibody to verify 14-3-3 protein reactivity.
Cytoplasmic fraction from P. brasiliensis grown in Fava Nettos media (1), cell wall fraction from P. brasiliensis grown in Fava Nettos media (2), and A549 cells infected with P. brasiliensis for 2h (4), 5h (6) and 8h (8). The control was performed using noninfected A549 cells for 2h (3), 5h (5), and 8h (7).
doi:10.1371/journal.pone.0062533.g003

Figure 4. Immunoelectron microscopy to determine the localization of the 14-3-3 protein in yeast cells of P. brasiliensis.
(A) The negative control was performed with pre-immune serum. (B) and (C) Labelling with the polyclonal anti-14-3-3 antibody. The arrows indicate the gold particles, demonstrating the sub-cellular localization of this protein. Magnification 25,000×.
doi:10.1371/journal.pone.0062533.g004
the ECM are often of great importance in the modulation of migration, invasion, differentiation, and microbial proliferation. In recent years, several proteins in *P. brasiliensis* with receptor-like characteristics have been found to be ligands of the ECM [26,27,33,35,39,76].

Using enteropathogenic *E. coli* (EPEC), Patel et al., (2006) demonstrated that the tau isoform (also known as theta) of 14-3-3 can bind specifically to Tir, a major effector protein that is delivered to the plasma membrane of the eukaryotic cell, where it acts as the receptor for the bacterial adhesin intiminin. 14-3-3tau is recruited to the site of the pedestal (3 h after infection) and can decorate attached EPEC in the later stages of the infection process (5–7 h after infection) [72].

Immunocytochemical analysis, confirmed by western blotting analysis of cell wall protein extracts, revealed ubiquitous distribution of the 14-3-3 protein in the cell wall of the yeast form of *P. brasiliensis*, with some concentration in the cytoplasm, and in *in vitro* (pneumocyte interaction) and *in vivo* (mouse infection) models. Interaction experiments were also carried out in animal models of infection (C57BL/6 mice) to elucidate the role of this protein in *in vivo* and validate the data previously obtained in cell culture. Notably, we observed a large increase in the amount of *P. brasiliensis* 14-3-3 protein in the fungal cell wall during interaction with epithelial lung cells (A549) and in acute infection in mice, suggesting that this protein could play an important role in the host-pathogen interaction. Few fungi are found in acute infections; however, we observed the presence of the 14-3-3 protein in the fungal cell wall and a partial loss of this cell wall, similar to the cell culture model (A549). However, in chronic infection (30 days), the distribution of the 14-3-3 protein was similar to that found in fungus in culture media, and this feature may be related to an adaptive condition of the fungus. The 14-3-3 protein distribution in *P. brasiliensis* during the interaction with epithelial lung cells and in infected mice has never been demonstrated, and the large amount of 14-3-3 protein in the cell wall of this fungus during the interaction may suggest the importance of this protein in this context.

The presence of the 14-3-3 protein at the *P. brasiliensis* cell surface raises interesting questions: for example, how is this protein incorporated into the cell wall in the absence of a conventional N-terminal signal sequence for targeting the protein to the secretory pathway. Additional studies will be necessary to identify putative signals related to *P. brasiliensis* cell wall targeting. The targeting of some classic cytoplasmic molecules lacking an N-terminal signal.
peptide to other cellular compartments is not uncommon for *P. brasiliensis*, as described for glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) and triosephosphate isomerase (TPI) [34]. Proteins that lack an N-terminal signal peptide sequence have also been found in the cell wall of *S. cerevisiae* in addition to their usual cytoplasmic localization [77]. In addition, the cytoplasmic proteins GAPDH, TPI and formamidase have been detected in extracellular vesicles secreted by *Histoplasma capsulatum* [78] and *Cryptococcus neoformans* [79]. These data support our finding that the 14-3-3 protein is localized in both the cytoplasm and the cell wall of *P. brasiliensis* [75], and during the interaction, it can be exported to sites of infection.

In conclusion, in the present study, we have shown that the *P. brasiliensis* 14-3-3 protein, with adhesin characteristics, may play an important role in the fungus-host cell interaction. Our data may lead to a better understanding of *P. brasiliensis* interactions with host tissues and paracoccidioidomycosis pathogenesis.

Figure 7. Inhibition assay of the interaction between *P. brasiliensis* and epithelial cells using recombinant 14-3-3 protein at different times. *p*≤0.05 compared to untreated cells.
doi:10.1371/journal.pone.0062533.g007

Figure 8. Inhibition of the interaction of *P. brasiliensis* with epithelial cells using polyclonal anti-14-3-3 produced in rabbits at different times. *p*≤0.05 compared to untreated cells with cells infected with *P. brasiliensis* previously treated with polyclonal anti-14-3-3.
doi:10.1371/journal.pone.0062533.g008
Acknowledgments

We are very grateful to Profa. Célia Maria de Almeida Soares and Juliana Alves Parente for their help with cloning experiments; Prof. Sandra Roberto Valentini, Prof. Cleslei Fernando Zanelli, Camila Arnaudo Olhê Dias and Tatiana Faria Watanabe for their help with 14-3-3 recombinant protein purification; Prof. Carlos Pelleschi Taborda and Luciana Thomaz for their help with the immunogold technique and Gaspar Ferreira de Lima and Edison Rocha de Oliveira for their technical assistance with electron microscopy.

References

1. Franco M, Peraço ML, Soares A, Montenegro R, Mendes RP, et al. (1993) Host-parasite relationship in paracoccidioidomycosis. Curr Top Med Mycol 5: 115–149.
2. Mendes-Giannini MJ, Taylor ML, Bouchac JP, Burger E, Calich VL, et al. (2000) Pathogenesis II: fungal responses to host responses: interaction of host cells with fungi. Med Mycol 38 Suppl 1: 113–125.
3. Hanna SA, Monteiro da Silva JL, Giannini MJ (2000) Adherence and intracellular parasitism of Paracoccidioides brasiliensis in Vero cells. Microbes Infect 2: 677–684.
4. Brummer E, Restrepo A, Hannah LH, Stevens DA (1990) Virulence of Paracoccidioides brasiliensis: the influence of in vitro passage and storage. Mycopathologia 109: 13–17.
5. Castaneda E, Brummer P, Pappagianis D, Stevens DA (1987) Chronic pulmonary disseminated and paracoccidioidomycosis in mice: quantification of progression and chronicity. J Med Vet Mycol 25: 377–387.
6. Franco M (1987) Host-parasite relationships in paracoccidioidomycosis. J Med Vet Mycol 25: 5–18.
7. Kurokawa CS, Sugaizaki MF, Peraço MT (1998) Virulence factors in fungi of systemic mycoses. Rev Inst Med Trop Sao Paulo 40: 125–135.
8. VAN DE Wouw AP, Howlett BJ (2011) Fungal pathogenicity genes in the age of electron microscopy. Curr Opin Cell Biol 23: 357–365.
9. Lengeler KB, Davidson RC, D'souza C, Harashima T, Shen WC, et al. (2000) Candida albicans. Curr Opin Microbiol 6: 225–235.
10. Sohn K, Senuyuk I, Fertey J, Königsdorfer A, Joffroy C, et al. (2006) An in vitro analysis tools: VLGC AMFA MJSMG. Wrote the paper: JFS HCO CMM AMFA MJSMG. Contributed reagents/materials/analysis tools: VLGC AMFA MJSMG. Performed the experiments: JFS HCO CMM AMFA MJSMG. Analyzed the data: JFS HCO CMM AMFA MJSMG. Contributed reagents/materials/analysis tools: VLGC AMFA MJSMG. Wrote the paper: JFS HCO CMM AMFA MJSMG.
11. Gonzalez A, Lenzi HL, Motta EM, Caputo L, Sahaza JH, et al. (2005) Expression of adhesion molecules in lungs of mice infected with Paracoccidioides brasiliensis conidia. Infect Immun 7: 666–673.
12. Fernandez A, Gómez BL, Diez S, Hernández O, Restrepo A, et al. (2005) Purification and partial characterization of a Paracoccidioides brasiliensis protein with capacity to bind to extracellular matrix proteins. Infect Immun 73: 2486–2495.
13. González A, Jiménez BL, Motta EM, Caputo L, Sahaza JH, et al. (2005) Expression of adhesion molecules in lungs of mice infected with Paracoccidioides brasiliensis conidia. Infect Immun 7: 666–673.
14. Parente AF, Bailão AM, Borges CL, Parente JA, Magalhães AD, et al. (2011) The role of the fungal cell wall in virulence gene discovery through insertional mutagenesis. Eukaryot Cell 3: 420–429.
47. Nitrler MP, Hocking-Murray D, Foo CK, Sil A (2005) Identification of *Histoplasma capsulatum* transcripts induced in response to reactive nitrogen species. Mol Biol Cell 16: 4792–4813.

48. Marion CL, Rappleye CA, Engle JT, Goldman WE (2006) An alpha-(1,4)-amylase is essential for alpha-(1,3)-alpha-(1,6)-alpha-(1,4)-alpha-(1,3) production and virulence in *Histoplasma capsulatum*. Mol Microbiol 62: 970–983.

49. Rappleye CA, Goldman WE (2006) Defining virulence genes in the dimorphic fungi. Annu Rev Microbiol 60: 261–303.

50. Tavares AH, Silva SS, Dantas A, Campos EG, Andrade RV, et al. (2007) Early transcriptional response of *Panurovus brasiliensis* upon internalization by marine macrophages. Microbes Infect 9: 583–590.

51. Cheng S, Clancy CJ, Checkley MA, Zhang Z, Wozniak KL, et al. (2005) The alpha-(1,3)-alpha-(1,4)-alpha-(1,6)-alpha-(1,3) hydrolase contains an endo-alpha-(1,6)-alpha-(1,4)-alpha-(1,3) activity in the cell wall of the black yeast *Exophila* (Hymenomycetes) *deminutatus*. Microbiology 143 (Pt 5): 1673–1680.

52. Verstrepen KJ, Fink GR (2009) Genetic and epigenetic mechanisms underlying cell-surface variability in protozoa and fungi. Annu Rev Genet 43: 1–24.

53. Hernández O, Almeida AJ, Tamayo D, Torres I, García AM, et al. (2011) The hydrolase PbHAD03 participates in the adherence of *Panurovus brasiliensis* conidia to epithelial lung cells. Med Mycol.

54. Hernández O, Almeida AJ, González A, García AM, Tamayo D, et al. (2010) A 32-kilodalton hydrolase plays an important role in *Panurovus brasiliensis* adherence to host cells and influences pathogenicity. Infect Immun 78: 5280–5286.

55. Zambuzzi-Carvalho PF, Cruz AH, Santos-Silva LK, Goes AM, Soares CM, et al. (2009) The male synthase of *Panurovus brasiliensis* Pb01 is required in the glyoxylate cycle and in the allantoin degradation pathway. Med Mycol 47: 734–744.

56. Cruz AH, Brock M, Zambuzzi-Carvalho PF, Santos-Silva LK, Troian RF, et al. (2011) Phosphorylation is the major mechanism regulating isocitrate lyase activity in *Panurovus brasiliensis*. FEBS J 278: 2318–2332.

57. da Silva Castro N, Barbosa MS, Maia ZA, Biao SN, Felipe MS, et al. (2008) Characterization of *Panurovus brasiliensis* PbDfg5p, a cell-wall protein implicated in filamentous growth. Yeast 25: 141–154.

58. Fu H, Subrahmanyan RR, Masters SC (2000) 14-3-3 proteins: structure, function, and regulation. Annu Rev Pharmacol Toxicol 40: 617–647.

59. van Hemert MJ, Steensma HY, van Heusden GP (2001) Yeast 14-3-3 proteins. Yeast 17: 569–581.

60. Troyanovsky SM (1999) Mechanism of cell-cell adhesion complex assembly. Curr Opin Cell Biol 11: 561–566.

61. Troyanovsky SM (2008) Regulation of cadherin-based epithelial cell adhesion by endocytosis. Front Biosci (Schol Ed) 1: 61–67.

62. Miyoshi J, Takai Y (2000) Structural and functional associations of apical junctions with cytoskeleton. Biochim Biophys Acta 1778: 670–681.

63. Patel A, Cummings N, Batchelor M, Hill PJ, Dubois T, et al. (2006) Host protein interactions with enteropathogenic *Echeverichia coli* (EPEC): 14-3-3a binds *Tir* and has a role in EPEC-induced actin polymerization. Cell Microbiol 8: 55–71.

64. van Heusden GP, Steensma HY (2006) Yeast 14-3-3 proteins. Yeast 23: 159–171.

65. Kraus PR, Hofmann AF, Harris SD (2002) Characterization of the *Aspergillus nidulans* 14-3-3 homologue, ArtA. FEMS Microbiol Lett 210: 61–66.

66. Vallejo MC, Nakayasu ES, Matsuo AL, Sobreira TJ, Longo LV, et al. (2012) Vesicle and Vesicle-Free Extracellular Proteome of *Panurovus brasiliensis* Comparative Analysis with Other Pathogenic Fungi. J Proteome Res 11: 1676–1683.

67. Marcos CM, de Fatima da Silva J, de Oliveira HC, Moraes da Silva RA, Mendes-Giannini MJ, et al. (2012) Surface-expressed enolase contributes to the adhesion of *Panurovus brasiliensis* to host cells. FEMS Yeast Res.

68. Nombela C, Gil C, Chaffin WL (2006) Non-conventional protein secretion in *Histoplasma capsulatum* yeast. Trends Microbiol 14: 15–21.

69. Albuquerque PC, Nakayasu ES, Rodrigues ML, Frases S, Casadevall A, et al. (2008) Vesicular transport in *Histoplasma capsulatum* contains protein components associated with virulence. Eukaryot Cell 7: 58–67.