Effect of annealing on the static properties of Ti-20Nb-10Ta alloy

S V Konushkin¹, K V Sergiyenko¹, M A Sevost'yanov¹, E O Nasakina¹, M A Sudarchikova¹, A M Tsareva¹, A S Baikin¹, M A Kaplan¹, L A Shatova² and A G Kolmakov¹

¹ Baikov Institute of Metallurgy and Material Sciences, 49 Leninsky Avenue, Moscow, Russia
² Voronezh State Technical University, st. 20-letiya Oktyabrya, 84/4, Voronezh, Russia

E-mail: nacakina@mail.ru

Abstract. The effect of heat treatment on the static mechanical properties of a Ti-20Nb-10Ta shape memory alloy in the form of thin wire is studied. After annealing at 600 °C for 20 minutes, a low modulus of elasticity was obtained. The best strength and ductility indicators were obtained after annealing at a temperature of 800 °C during 60 minutes.

1. Introduction
Endoprosthetics is a modern method of treating diseases and consequences of hip injuries [1].

Endoprosthetics surgery is difficult due to violations of the anatomical relationships and defects of the main and auxiliary elements of the hip joint. Most metal implants are made from Co-Cr-Mo and Ti-6Al-4V alloys. But there are problems associated with the effectiveness of these implants. One of them is a higher modulus of elasticity of alloys (more than 100 GPa) compared with human bone (about 4–30 GPa) [2-3].

Due to the different elastic moduli of the implant and the surrounding bone, there is a loss of bone density and mass (osteopenia), which leads to revision operations [4].

To solve this problem, recently developed new alloys with a lower modulus of elasticity and at the same time with the same strength [5-13].

The introduction of alloying elements (Nb and Ta) into titanium will improve the strength characteristics, lower the elastic modulus, and increase biocompatibility and corrosion resistance [14-15].

2. Materials and methods
The starting materials were high purity iodide titanium, tantalum and niobium.

By the method of five-time electric arc remelting with a non-consumable electrode in an argon atmosphere, ingots of these alloys weighing 60 grams were obtained. After smelting, the ingots were subjected to homogenizing annealing for 12 hours at a temperature of 900 °C in a vacuum of 10⁻⁵ millimeters of mercury.

After homogenizing annealing, the ingots were rolled in streams to sizes of 10 × 10 mm at temperatures up to 600 °C. Next, the workpiece was subjected to rotational forging to a diameter of 2-1.8 mm at temperatures up to 600 °C. Next, the workpiece was dragged to a diameter of 280 microns at a temperature of 150-200 °C. The dies were heated to 400 °C. Aquadag was used as a lubricant.
After receiving a wire of 280 μm, annealing was carried out at temperatures from 600-800 °C at temperatures from 20 to 60 minutes in a vacuum of 10^{-5} millimeters of mercury.

The study of static properties was carried out on a universal testing machine INSTRON 3382 with a tensile speed of 1 mm/min.

3. Results and discussion

Figure 1 shows the type of blanks at various stages of production. Figure 2 shows the microstructure of the alloy before and after annealing. The dendritic structure characteristic of cast alloys shows axes of the first and second orders.

![Figure 1. Plastic deformation of workpieces: (a) ingot after the first rolling in calibers, (b) workpiece after rolling in calibers, (c) bar after rotational forging, and (d) wire after drawing.](image)

![Figure 2. Microstructure of Ti-20Nb-10Ta alloy (a) after smelting and (b) after annealing at a temperature of 900 °C for 12 hours.](image)

As can be seen from the x-ray data (Figure 3), the peaks from the elements overlap each other, which makes their identification difficult. After annealing, there is a slight narrowing of the peaks,
which indicates stress relief. New phases are not allocated. The alloy is a substitution solution with a b-Ti lattice.

![X-ray data of Ti-20Nb-10Ta alloy before (upper) and after annealing (lower).](image)

The results of static tests of the investigated materials in the initial state and after various types of annealing are shown in Table 1. Figure 4 shows a typical view of the tensile curves of the studied materials.

Type of processing	δ, %	σ0.2, MPa	σв, MPa	E, GPa
Ti-20Nb-10Ta after drawing	4.12±0.01	494±5	684±4	46±2
Ti-20Nb-10Ta (annealing at 600°C, 20 minutes vacuum)	0.83±0.04	449±8	624±3	50±1
Ti-20Nb-10Ta (annealing at 700°C, 20 minutes vacuum)	0.67±0.02	422±7	621±9	41±2
Ti-20Nb-10Ta (annealing at 800°C, 20 minutes vacuum)	1.61±0.03	685±3	881±7	50±3
Ti-20Nb-10Ta (annealing at 600°C, 60 minutes vacuum)	3.56±0.08	506±4	718±5	49±1
Ti-20Nb-10Ta (annealing at 800°C, 60 minutes vacuum)	7.2±0.01	685±6	937±3	59±1
4. Conclusions
The methodology for producing homogeneous ingots of the selected composition was developed, including a fivefold electric arc remelting in an argon atmosphere and homogenizing annealing at a temperature of 900 °C for 12 h in vacuum.

The technology was developed and wires with a diameter of 280 microns from the selected alloys were obtained. The technology includes the rolling of smelted ingots, rotational forging of billets and drawing of bars at temperatures up to 600 °C in air.

The obtained wire was tensile tested after annealing at various temperatures and times. After annealing at 600 °C and 20 minutes, a low modulus of elasticity was obtained. The best strength and ductility indicators were obtained after annealing at a temperature of 800 °C and 60 minutes.

Acknowledgments
The work was supported by the Ministry of Science and Higher Education of the Russian Federation (grant identifier RFMEFI60419X0242).

References
[1] Nadim James Hallab, Joshua James Jacobs Orthopedic Applications 2013 Biomaterials Science (Third Edition) 841-882
[2] Geetha M, Singh A K, Asokamani R, Gogia A K Ti based biomaterials, the ultimate choice for orthopaedic implants" a review 2009 Progress in Materials Science 54 397-425 DOI: 10.1016/j.pmatsci.2008.06.004
[3] Kaur M, Singh K Review on titanium and titanium based alloys as biomaterials for orthopaedic applications 2019 Mater Sci Eng: C 102 844-862. doi.org/10.1016/j.msec.2019.04.064
[4] Katti K S Biomaterials in total joint replacement 2004 Colloids and Surfaces B: Biointerfaces. 39(3) 133-142
[5] Hee Young Kim, Shuichi Miyazaki. Unique Properties of Metastable Beta Ti Alloys Related to Martensitic Transformation 2018 Ni-Free Ti-Based Shape Memory Alloys 147-180 doi.org/10.1016/B978-0-12-809401-3.00005-7
[6] Nasakina E O, Sudarchikova M A, Sergienko K V, Konushkin S V, Sevost’yanov M A Ion
Release and Surface Characterization of Nanostructured Nitinol during Long-Term Testing 2019 *Nanomaterials* 9(11) 1569 DOI: 10.3390/nano9111569

[7] Konushkin S V, Baskakova M I, Leonov A V, Nasakina E O, Sudarchikova M A, Kolmakova A A, Bespamiatnova A, Sergiyenko K V, Leonova Yu O, Sevostyanov M A The structure of the alloy Ti - (20-30) Nb - 5Zr after smelting and homogenizing annealing 2019 *IOP Conference Series: Materials Science and Engineering* 525 012060 doi:10.1088/1757-899X/525/1/012068

[8] Sergienko K V, Titov D D, Konushkin S V, Baikin A S, Nasakina E O, Baskakova M I, Bespamiatnova A, Baranov E E, Shatova L A, Kolmakov A G, Sevostyanov M A Study of the coefficient of heat expansion of TiNbTaZr alloy 2019 *IOP Conference Series: Materials Science and Engineering* 525 012092 doi:10.1088/1757-899X/525/1/012092

[9] Kaplin M A, Sevost'yanov M A, Nasakina E O, Baikin A S, Sergienko K V, Konushkin S V, Kolmakov A G Influence of the Surface Modification on the Mechanical Properties of NiTi (55.8 wt % Ni) Alloy Wire for Medical Purposes 2018 *Inorg Mater Appl Res* 9(4) 751–756

[10] Sevostyanov M A, Baikin A S, Shatova L A, Nasakina E O, Berezhnov A V, Gudkov S V, Sergienko K V, Konushkin S V, Baskakova M I, Kolmakov A G Biocompatibility of the Ti81Nb13Ta3Zr3 Alloy 2018 *Dokl Chemistry* 482(1) 204–206 DOI: 10.1134/S0012500818090045

[11] Dipankar Banerjee, Williams J C Perspectives on Titanium Science and Technology 2013 *Acta Mater* 61(3) 844-879 https://doi.org/10.1016/j.actamat.2012.10.043

[12] Sheremetyev V, Brazievski V, Prokoshkin S, Inaekyan K, Dubinskiy S Functional fatigue behavior of superelastic beta Ti-22Nb-6Zr(at%) alloy for load-bearing biomedical applications 2016 *Mater Sci Eng C* 58(1) 935-944 DOI: 10.1016/j.msec.2015.09.060

[13] Konopatskii A S, Zhukova Y S, Dubinskii S M, Korobkova A A, Filonov M R, Prokoshkin S D Microstructure of Superplastic Alloys Based on Ti–Nb for Medical Purposes 2016 *Metallurgist* 60(1-2) 223-228 DOI: 10.1007/s11015-016-0277-8

[14] Niinomi M Titanium Alloys 2019 *Encyclopedia of Biomedical Engineering* 213-224 doi.org/10.1016/B978-0-12-801238-8.99864-7

[15] Manmeet Kaur, Singh K Review on titanium and titanium based alloys as biomaterials for orthopaedic applications 2019 *Mater Sci Eng: C* 102 844-862 https://doi.org/10.1016/j.msec.2019.04.064