Data Article

Data on High Resolution Melting (HRM) and phylogenetic analysis of *P. ovale wallikeri* and *P. ovale curtisi*

Aline Lamien-Meda a, *, Hans-Peter Fuehrer b, Harald Noedl a

a Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Austria

b Institute of Parasitology, University of Veterinary Medicine, Vienna, Austria

Abstract

High Resolution Melting (HRM) analysis is a post-PCR analysis method used for identifying genetic variation in nucleic acid sequences. These data are presenting the identity of the 33 samples used for a qPCR-HRM and a nested snapback methods validation. In addition we are presenting the high resolution melting profiles of *P. ovale curtisi* (Poc) and *P. ovale wallikeri* (Pow) in the following conditions: after a direct qPCR run and after a nested snapback run. The qPCR-HRM of artificial mixture of Poc and Pow plasmids (200 copies/μl, each) at different proportions are showing the melting pattern of co-infections with both species. The sequencing methodology of the clpc gene fragment of 12 randomly selected samples is described and their likeness to published sequences is shown in a maximum likelihood tree. "Novel high resolution melting and snapback assays for simultaneous detection and differentiation of Plasmodium ovale spp." [1].

© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Data Article

Data on High Resolution Melting (HRM) and phylogenetic analysis of *P. ovale wallikeri* and *P. ovale curtisi*

Aline Lamien-Meda a, *, Hans-Peter Fuehrer b, Harald Noedl a

a Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Austria

b Institute of Parasitology, University of Veterinary Medicine, Vienna, Austria

Article Info

Article history:
Received 2 February 2019
Received in revised form 28 March 2019
Accepted 16 April 2019
Available online 23 April 2019

Abstract

High Resolution Melting (HRM) analysis is a post-PCR analysis method used for identifying genetic variation in nucleic acid sequences. These data are presenting the identity of the 33 samples used for a qPCR-HRM and a nested snapback methods validation. In addition we are presenting the high resolution melting profiles of *P. ovale curtisi* (Poc) and *P. ovale wallikeri* (Pow) in the following conditions: after a direct qPCR run and after a nested snapback run. The qPCR-HRM of artificial mixture of Poc and Pow plasmids (200 copies/μl, each) at different proportions are showing the melting pattern of co-infections with both species. The sequencing methodology of the clpc gene fragment of 12 randomly selected samples is described and their likeness to published sequences is shown in a maximum likelihood tree. "Novel high resolution melting and snapback assays for simultaneous detection and differentiation of Plasmodium ovale spp." [1].

© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Data

This report is presenting in Table 1 the detailed list of all thirty three (33) samples used to validate a qPCR-HRM and a nested snapback methods developed for P. ovale species differentiation [1]. Table 1 is presenting the origin of samples and the results of different genotyping methods (microscopy, nested-PCR,qPCR-HRM and PrimerDesign kit). The P. ovale clpc gene fragments of twelve (12) samples selected randomly were sequenced. The obtained sequences were used for a phylogenetic reconstruction together with previously published P. ovale clpc sequences (Fig. 3). The PCR and HRM melting curves of P. ovale curtisi (Poc) and P. ovale wallikeri (Pow) are shown in Fig. 1 and the differences between the melting temperatures (Tm) are presented in Fig. 2. The nested snapback ΔTm was 3.74°C and that of the direct qPCR-HRM was 0.2°C. Intermediate Tm values of 71.07 ± 0.05°C (for qPCR-HRM reaction) and 60.0 ± 1.5°C (for nested snapback reaction) were observed with artificial mix of Poc/Pow at the proportions of 8/2, 7/3, 5/5, 3/7 and 2/8 (Fig. 4).

2. Experimental design, materials and methods

2.1. qPCR–HRM and nested snapback assays

The melting curves of Poc and Pow in Fig. 1 and the melting temperatures (Tm) shown in Fig. 2 were obtained by PCR and high-resolution melting reactions using a Roche LightCycler 480 qPCR system.
Table 1

P. ovale curtisi (Poc) and P. ovale wallikeri (Pow) samples tested with the qPCR-HRM and snapback assays with their microscopy, nested PCR and PrimerDesign qPCR genotyping.

No.	Sample ID	Origin	Microscopy	Parasite density/μl	Nested PCR	qPCR-HRM genotyping	Snapback genotyping	PrimerDesign Kitb
1	F3	Ethiopia	Pv	–	Pow	Pow	Pow	Pow
2	T52	Ethiopia	n.d.	–	Pow	Pow	Pow	Pow
3	K21	Ethiopia	Pv	–	Pow	Pow	Pow	Pow
4	K28	Ethiopia	Pf	–	Poc	Poc	Poc	Poc
5	K41	Ethiopia	Pv	–	Poc/Pf	Poc	Poc	Poc
6	K46	Ethiopia	Pv	–	Pow	Pow	Pow	Pow
7	Pro2	Ethiopia	Pv	4920	Poa	n.d.	Pow	n.d.
8	Pro4	Ethiopia	Pv	5600	Poa	n.d.	Pow	n.d.
9	Pro6	Ethiopia	Pv	15200	Poa	Pow	Pow	Pow
10	Pro9	Ethiopia	Pv	4920	Pf/Po	Pow	Pow	Pow
11	Pro12	Ethiopia	Pv	6000	Poa	Poc	Poc	Poc
12	Pro21	Ethiopia	Pv	7200	Pf/Iova	Pow	Pow	Pow
13	5	Ethiopia	n.d.	–	Poc	Poc	Poc	n.d.
14	SG9255	Ethiopia	n.d.	–	Pow	Pow	Pow	Pow
15	Po1	Bangladesh	Pv	2240	Pow	Pow	Pow	Pow
16	Po2	Bangladesh	Pm	6680	Pow	Pow	Pow	Pow
17	Po3	Bangladesh	Pm	2600	Pow	Pow	Pow	Pow
18	Po4	Bangladesh	Pv	280	Poc	Poc	Poc	Poc
19	Po5	Bangladesh	Pv	120	Pow	Pow	Pow	Pow
20	Po7	Bangladesh	Pv	440	Pow/pf	n.d.	Pow	n.d.
21	Po8	Bangladesh	Pv	320	Pow/pm/pf	Pow	Pow	Pow
22	Po9	Bangladesh	Pf	14520	Pow/Pf	n.d.	Pow	n.d.
23	Po10	Bangladesh	Pf+Pv	480	Poc/Pf/Pv	Poc	Poc	Poc
24	Po11	Bangladesh	neg	–	Pow	Pow	Pow	Pow
25	Po12	Bangladesh	neg	–	Poc	Poc	Poc	Poc
26	Po14	Bangladesh	neg	–	Poc	Poc	Poc	Poc
27	Po15	Bangladesh	neg	–	Poc	Poc	Poc	Poc
28	Po16	Bangladesh	neg	–	Poc/Pf	Poc	Poc	Poc
29	Po17	Bangladesh	Pf	3080	Poc/Pf/Pm	Poc	Poc	Poc
30	Po18	Bangladesh	neg	–	Poc/Pf	Poc	Poc	Poc
31	Po20	Bangladesh	neg	–	Poc/Pf/Pv/Pm	Poc	Poc	Poc
32	Po21	Bangladesh	neg	–	Poc/pf/pv/pm	Pow	Pow	Pow
33	Po22	Bangladesh	neg	–	Pow/Pf/Pv/Pm	Pow	Pow	Pow

n.d. (not detected); Po (Plasmodium ovale); Pf (Plasmodium falciparum); Pv (Plasmodium vivax); Pm (Plasmodium malariae).

Further information of Bangladeshi ovale samples can be found in Ref.[5].

a P. ovale spp. was not known to be endemic in the sampling areas.

b P. ovale species was not characterized.

c Parasite density/μl was not evaluated for all samples.

Fig. 1. Separated melting curves of Pow (red) and Poc (green). The lines at the middle of the curves are presenting the accuracy of the Tm with equal Tm value of the sample.
2.2. Clpc gene fragments amplification and sequencing

A fragment of the clpc gene (640 bp) of 12 randomly selected samples was amplified by PCR from total genomic DNA using primers previously designed by Perkins et al. [2]: Perkins_clpcF (5′-GGTAAAACTGAATTAGCAAAAATATTA-3′) and Perkins_clpcR (5′-GGACGAGCTCCATATAAAGGATT-3′). The PCR reaction was performed with initial denaturation at 95°C (4 min) and 40-cycles of denaturation (95°C, 20 sec), annealing (50°C, 30 sec) and extension (72°C, 50 sec). The PCR products were separated by electrophoresis in a 2% agarose gel. The PCR positive products were sequenced commercially by LGC Genomics.

The sequences were edited using Vector NTI version 11.5 and BioEdit software package version 7.2.6. Multiple sequence alignments were performed using the clustal W algorithm, as implemented in MEGA 7, to compare the obtained sequences to a set of published P. ovale clpc sequences from other studies [2–4] retrieved from GenBank (Accession numbers KP050438 – KP050448, AB649417, AY634623, HQ842632, KX611805, LT594596, LT5994519).

2.3. Phylogenetic reconstructions

For phylogenetic reconstructions, the most appropriate model of molecular evolution was determined by the Akaike Information Criterion (AIC) using MEGA7. Maximum likelihood (ML) analyses with 1000 bootstrap replicates were performed using the program MEGA7 with the predetermined model of molecular evolution (GTR+I+G for both datasets) using all sites. All the Plasmodium species clustered separately with strong bootstrap support. Additionally, the P. ovale wallikeri and P. ovale...
Fig. 3. Maximum likelihood tree of 61 Plasmodium sp. clpc gene. The clpc gene fragment of 12 samples was amplified, sequenced, aligned and compared to those from other studies [2–4] in order to confirm their identity. The green diamonds are indicating the selected 12 samples. The scale bar shows the number of nucleotide substitutions per site.
Fig. 4. qPCR-HRM and Nested snapback melting curves obtained from artificial mixes from Poc and Pow. The following five (5) artificial mixes with various ratios were done: 8/2, 7/3, 5/5, 3/7, 2/8, for respectively Poc/Pow. All mix samples produced an intermediate Tm (71.07 ± 0.05 °C) with the qPCR-HRM assay. For the snapback reaction, the intermediate Tm values were 60.0 ± 1.5 °C.
curtisi formed two distinct sub-clusters with strong bootstrap support. Among the 12 samples that were sequenced, 7 (Po1, Po2, Po4; K46, Pro2, Pro6, Pro21) were clustered with *P. ovale wallikeri* and 5 (Po3, Pro9, Pro12, K28, K41) were clustered with *P. ovale curtisi*.

Acknowledgements

We wish to thank all collaborators involved in collecting the samples used in the validation of the assay as well as all malaria patients participating in these studies. We also wish to thank our colleagues from the Epidemiology & Diagnostic of Zoonoses Research Group, Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Austria for providing the Non-plasmodium DNA.

Transparency document

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2019.103937.

References

[1] A. Lamien-Meda, H.-P. Fuehrer, H. Noedl, Novel high resolution melting (HRM) and snapback assays for simultaneous detection and differentiation of plasmodium ovale spp. Acta Trop. 192 (2019) 75–81, https://doi.org/10.1016/j.actatropica.2019.01.018.

[2] S.L. Perkins, I.N. Sarkar, R. Carter, The phylogeny of rodent malaria parasites: simultaneous analysis across three genomes, Infect. Genet. Evol. 7 (2007) 74–83, https://doi.org/10.1016/j.meegid.2006.04.005.

[3] D. Rathore, A.M. Wahl, M. Sullivan, T.F. McCutchan, A phylogenetic comparison of gene trees constructed from plastid, mitochondrial and genomic DNA of Plasmodium species, Mol. Biochem. Parasitol. 114 (2001) 89–94, https://doi.org/10.1016/S0166-6851(01)00241-9.

[4] J.-M. Chavatte, S.B.H. Tan, G. Snounou, R.T.P.V. Lin, Molecular characterization of misidentified Plasmodium ovale imported cases in Singapore, Malar. J. 14 (2015) 454, https://doi.org/10.1186/s12936-015-0985-8.

[5] H.P. Fuehrer, V.E. Habler, M.A. Fally, J. Harl, P. Starzengruber, P. Swoboda, I. Bloeschl, W.A. Khan, H. Noedl, Plasmodium ovale in Bangladesh: genetic diversity and the first known evidence of the sympatric distribution of Plasmodium ovale curtisi and Plasmodium ovale wallikeri in southern Asia, Int. J. Parasitol. 42 (2012) 693–699, https://doi.org/10.1016/j.ijpara.2012.04.015.