Metallocages for Metal Anions: Highly Charged [Co@Ge₉]⁻ and [Ru@Sn₉]⁻ Clusters Featuring Spherically Encapsulated Co¹⁻ and Ru²⁻ Anions

Benedikt J. L. Witzel, Wilhelm Klein, Jasmin V. Dums, Marina Boyko, and Thomas F. Fässler*

Dedicated to Professor Reinhard Nesper on the occasion of his 70th birthday

Abstract: Endohedral clusters count as molecular models for intermetallic compounds—a class of compounds in which bonding principles are scarcely understood. Herein we report soluble cluster anions with the highest charges on a single cluster to date. The clusters reflect the close analogy between intermetalloid clusters and corresponding coordination polyhedra in intermetallic compounds. We now establish Raman spectroscopy as a reliable probe to assign for the first time the presence of discrete, endohedrally filled clusters in intermetallic phases. The ternary precursor alloys with nominal compositions \(K_{\text{Co}_2}\text{Ge}_9 \) and \(K_{\text{Ru}_2}\text{Sn}_9 \) exhibit characteristic bonding modes originating from metal atoms in the center of polyhedral clusters, thus revealing that filled clusters are present in these alloys. We report also on the structural characterization of \([\text{Co@Ge}_9]^{-}(1a)\) and \([\text{Ru@Sn}_9]^{-}(2a)\) obtained from solutions of the respective alloys.

The enormous structural diversity of intermetallic phases provokes the chemists’ imagination of an understanding of matter by manageable chemical concepts. The success of chemical concepts, such as valence, octet and (8-N) rules, has triggered many targeted syntheses of those. The progress of quantum-chemical methods led to a deep understanding of these concepts. However, many more factors have to be considered for the description of intermetallic compounds. Whereas manageable concepts based on geometrical and electronical parameters, such as atomic size ratios (Laves[3] and Frank-Kasper[2] phases) and valence electron concentration (Hume-Rothery phases[10]) exist for a small group of intermetallic compounds, the rules developed by Zintl and their broader interpretation by Laves and Klemm[4] facilitate the implementation of molecular concepts in intermetallic compounds. A formal electron transfer and salt-like description allows the application of the 8-N rule for the description of polymeric or oligomeric anionic substructures. An extension of this concept by including Wade’s rules[5] for polyhedral clusters has also been developed.[6]

Even though the simplicity of this borderline approach led to a broad acceptance of this concept, the extension to the large number of intermetallic compounds comprising transition-metals is still missing. Nevertheless, some recent examples show that intermetalloid clusters, which are frequently used for the description of complex intermetallic compounds on a bare topological basis, similarly exist as discrete clusters and vice versa.[7] The extension of Wade’s rules originally developed for boranes to ligand-free atom clusters arise from the fact that a certain number of energetically low-lying orbitals exist, which are delocalized over all atoms. The same holds true for more complex cluster units, such as the nested onion-like atom shells that occur as discrete \([\text{Sn@Cu}_2@\text{Sn}_2]^{-}\) units in the ternary phase \(\text{Na}_2\text{Cu}_2\text{Sn}_2 \).[8] Remarkably, structurally identical nested polyhedra \(\text{Al@M}_4\text{Mg}_2 \) occur in \(\text{Mg}_2(\text{Al/Zn})_6 \),[9] with the difference that the outer atom shell is salt-like in \(\text{Na}_2\text{Sn@Cu}_2@\text{Sn}_2 \), whereas it contains metallic bonds in \(\text{M}_4(\text{Al/Mg}_2) \). Owing to the very high negative charge of \(-12\), an isolation of the large intermetalloid cluster \(\text{Sn@Cu}_2@\text{Sn}_2 \) is not possible, however, the isoelectronic clusters \([\text{As@Ni}_2@\text{As}_2]^{-}\) and \([\text{Sb@Pd}_2@\text{Sb}_2]^{-}\) have already been obtained from solution.

Endohedral molecular anions \([M@E_n]^{-}\) with \(M \) being a transition metal, \(E \) a tetrab element, and \(n = 9, 10, \) and 12 contain—as a result of the high coordination number of \(M \)—structural motifs as they occur in intermetallic compounds, nonetheless they allow a molecular description of chemical bonding. In this context ligand-free endohedrally filled tetrab clusters with fully delocalized chemical bonds are interesting models for the understanding of chemical bonding in intermetallic compounds.[11] For example, \(^{63}\text{Cu}\) NMR spectra revealed that the bronze-type bimetallc clusters \([\text{Cu@Sn}_9]^{-}\) and \([\text{Cu@Pb}_9]^{-}\) are indeed \([\text{Cu}@\text{(Sn)}_9]^{-}\) and \([\text{Cu}@\text{(Pb)}_9]^{-}\) complexes with an unexpected positively charged Cu atom inside an electron-rich and negatively charged p block metal cage.[12] Tetrab element clusters can incorporate different metal atoms to give ligand-free intermetalloid clusters, and
numerous cage compounds have been obtained with different polyhedral shapes, which are obviously stabilized by the guest atom. Aside from the larger examples, such as twelve-atomic entities, such as [Ru@Ge₃]⁻[14] or 17-atomic [15] and 18-atomic [16] clusters with more than one guest atom, also ten- [14] and nine-atomic clusters [13,15] of Ge, Sn, and Pb can host late transition metals (TM) as endohedral guest atoms. As a result of the stability of the filled d⁰ shell these endohedral guest atoms might function as a pseudo noble gas, and thus, for example, an endohedral Ni atom serves as a formal zero-electron donor/acceptor, [19] while a Co atom, for example, in [Co@Sn₃]⁻ [18c,15b] is considered as a one-electron acceptor site. [20]

The smallest intermetallobal deltahedral clusters to date are the nine-atomic tetrel species, so far limited to the higher homologues Sn and Pb, with only one exception, namely the paramagnetic [Ni@Ge₃]⁻ [16] The Co/Ge and Fe/Ge combinations are special cases, as the smallest clusters known so far, the [Co@Ge₉]⁻ [17] unit and the paramagnetic [Fe@Ge₉]⁻ [17c] anion, form pentagonal prisms without any deltahedral faces. Interestingly, quantum-chemical calculations subsequently found this polyhedron as the structure of lowest energy for an arrangement of ten Ge atoms hosting an endohedral Co or Fe (or Pd, Pt) atom, while for the corresponding [Ni@Ge₉]⁻ and the bare [Ge₉]⁻ clusters a bicapcapped square antiprism is preferred [17b,20,21] and the size of the transition-metal atom was considered as an influencing factor for the shape of the resulting polyhedron. [22]

In contrast to clusters in solution, much less is known about endohedrally filled tetrel-atom [E₉] clusters within intermetallobal compounds and about the mechanisms how soluble clusters are formed from these. [23] The only examples known are [Ni@Sn₉] and [Co@Sn₉] that occur in Na₉NiSn₉₇ and K₆Co₉Sn₉Sn₉, respectively [17b,18b] Termary alloys consisting of K-Co-Sn are suitable sources for the syntheses of intermetallobal clusters of higher nuclearity, such as [Co@Sn₉Ni(CO)]⁻, [Co@Sn₉Pt(PPh₃)]⁻, or [Co@Sn₉P₃Br₃]⁻ [18b] Examples of cobalt-filled cages with negatively charged metal atoms exist also in mixed-metal cages, such as [Co@Sn₃Sb₉]⁻ and [Co@Sn₉Sb₉]⁻. [24]

Experimentally the formation of endohedrally filled clusters in solution seemed to be limited to clusters with a maximum charge of -4 as it is observed for bare [E₉] clusters, whereas [Co@Sn₉]⁻ was solely detected in the solvent-free solid. [25]

Herein we report on the syntheses of anionic clusters with even higher charges in solution, fathoming also the maximum size of an atom that can be incorporated as well as the charge transfer to the encapsulated transition-metal atom.

[Co@Ge₉]⁻ (1a) and [Ru@Sn₉]⁻ (2a) are found in liquid ammonia solutions of melts of the nominal compositions “K₉Co₉Ge₉” and “K₉Ru₉Sn₉”, respectively. Compounds 1a and 2a are unusual examples with respect to the large size of the incorporated metal atoms (Ru), the stabilization of high negative charges of the transition metal (Ru⁻²), and the to date, highest charge of -6 for an endohedrally filled cluster.

Quantum-chemical analyses indicate the presence of [Co⁻²@\(\text{Ge}_9\)]⁻ and [Ru⁻²@\(\text{Sn}_9\)]⁻ clusters.

Both compounds, K₆(OH)[Co@Ge₉]·16NH₃ (1) and K₆(OH)[Ru@Sn₉]·10NH₃ (2), were isolated as black single crystals from liquid ammonia solutions (experimental conditions are given in the Supporting Information). Owing to the presence of large amounts of ammonia solvent molecules in the lattice, the crystals are rather sensitive to temperature. Thus, all manipulations must be carried out at low temperatures. As a consequence of the experimental limitations arising when ammonia is used as a solvent and because of the low solubility of the highly charged clusters, a characterization of such clusters in solution is hindered. The good quality of the crystals obtained allowed for a detailed structural analysis by single-crystal structure determination and comparison with theoretical results. The charge of the anion 1a is -5 and arises from the presence of six K⁺ cations and one hydroxide anion per formula unit. [26] The crystallographic site symmetry of [Co@Ge₉]⁻ is C₃v, but the deviation from D₃h symmetry is small (Figure 1, Table 1). The point group of the [E₉] clusters can generally be approximated by the geometric parameters given in Table 1. [27] The structure of 1a is best described as a slightly distorted tri-capped trigonal prism with almost equal prism heights and isosceles as well as nearly coplanar prism triangles. The Ge–Ge bond lengths are in the narrow range between 2.683 and 2.811 Å and thus within the range of binary Co–Ge phases (2.43–2.03 Å). [28] All nine Co–Ge contacts are almost identical (2.33–2.37 Å) and are considerably shorter than those in the pentagonal prismatic [Co@Ge₉]⁻ cluster (2.48 and 2.53 Å) and slightly shorter than in Co–Ge phases (2.34 to 2.73 Å). [29] In spite of such short Co–Ge distances, the incorporation of the Co atom into the [Ge₉] cluster leads to a widening of the Ge–Ge bonds, and because of the uniformity of the Co–Ge distances, all the Ge cluster atoms are lying on an almost perfect sphere around the Co atom. Thus, the formation of a tri-capped trigonal prism with D₃h symmetry is geometrically favored. For clusters with 22 skeleton electrons (SE), this polyhedron type is rarely observed, and for bare metals clusters lies energetically close to a mono-capped square antiprism with C₃v symmetry. [18b–22] This shape thus indicates a 22 SE cluster and an incorporation of an atom with a d⁰ valence electron configuration and a formal charge distribution [Co⁻²@\(\text{Ge}_9\)]⁻. Anionic Co is known from several ligand-stabilized complexes [29] and has

![Figure 1](https://example.com/figure1.png)

Figure 1. The endohedral clusters 1a and 2a-I (2a-II is found in Figure S1). Displacement ellipsoids are set at the 80% probability level; symmetry operation: (i) x, 0.5–y, z. Detailed bond lengths can be found in the Supporting Information.)
recently also been found as a guest ion incorporated in [Sn₄] Zintl clusters.[13b,c,13a] In K₅(OH)[Ru@Sn₃]·10NH₃ (2) the charge of 2a is −6, derived from the presence of seven K⁺ ions and one (OH)⁻ anion. Crystallographically, the 10 NH₃ molecules per formula unit can clearly be distinguished from the OH group. In the unit cell there are two symmetrically independent clusters 2a-I and 2a-II which have the same shape. The analyses of the geometrical parameters (Table 1) again show polyhedra close to perfect D₃₅₇ symmetry with nine almost equal Ru–Sn bond lengths in the narrow range 2.641–2.700 Å and which are in good agreement with the corresponding values in the respective binary system (2.60–2.80 Å).[30] The Sn–Sn distances (3.0512(8)–3.1409(6) Å) are in a narrow range and on average considerably longer than those in empty [Sn₄]⁺− (typically below 3 Å) but within the range of 2.86–3.64 Å observed in binary Ru–Sn compounds. Assuming an [Sn₄]⁺− host polyhedron with an elongated trigonal-prismatic structure[35] the endohedral Ru atom must also provide 10 electrons to the system, resulting in a formally twofold negatively charged for Ru. Compounds with Ru(−II) are rare, but have been found in isonitrile[37] and biphosphinine[38] complexes, whereas to the only known intermetalloid cluster, [Ru@Ge₄]⁺−, was attributed Ru(−I).[14a]

An inspection of other [Sn₄] units reveals different structures for the empty, the Co-filled, and the Ni-filled 22-electron clusters, namely C₃₅₇, for [Sn₄]⁺−,[31] [Ni@Sn₄]⁺− [35b,32] and for the partially oxidized [Co@Sn₄]⁺− cluster with 21 SE,[35c] while [Cu@Sn₄]⁺− shows D₃₅₇ symmetry.[33] Generally, in all cases of isolated [Sn₄] units the distances between the transition metal and the capping Sn atom are significantly longer than the remaining TM–Sn bonds.

Compared to related cluster units with the same endohedral transition metal, 1a and 2a display in average much shorter TM–E bond lengths in a smaller range (see Supporting Information, Table S3; a full list of E–E and TM–E bond lengths can be found in Tables S2 and S3). As a result of the presence of the endohedral atoms the E–E distances in 1a and 2a-I/II are about 5% longer than in the empty cluster analogues in 3 and 4, respectively, which leads to an increase of the cluster volume of 19.4% for 1a and 17.15% for 2a-I/II (see Table S4).

DFT calculations have been performed for 1a and 2a as well as for the empty [Ge₄]⁺− and [Sn₄]⁺− ions using a polarized continuum model (PCM) solvate field based on water for negative charge compensation. In accordance to experimental findings the structure optimization leads to a D₃₅₇ symmetry for 1a and 2a and to C₃₅₇ symmetry for the empty clusters. Compounds 1a and 2a represent minima with considerably large HOMO–LUMO gaps of 3.73 eV and 2.98 eV, respectively. The calculated interatomic distances agree well with the experimental data showing deviations of less than 0.06 Å or below 2% for all Ge–Ge–Sn–Sn and Ge–Co/Sn–Ru distances for both endohedral clusters, which confirms the optimized structure. Charge distribution based on population analyses according to Hirshfeld and natural population analyses were carried out (all charges are given in the Supporting Information in Table S6), and both methods account for negative charges for the endohedral TM atoms.

To derive an orbital interaction diagram, single-point calculations for the empty clusters [Ge₄]⁺− and [Sn₄]⁺− were performed in D₃₅₇ symmetry, resulting in slightly different HOMO–LUMO gaps if compared to the C₃₅₇ minimum structure (Tables S7 and S8).[35] The molecular orbitals shown in Figure 2b allow for a classification according to the tensor surface harmonic theory in S, P, D, F, and G orbitals.[40] The 1S¹P¹1D₁P¹2S¹F¹2P² electronic configuration with an empty 1G orbital as the LUMO perfectly fits the superatom model of the 40 electron clusters [Eₜ]⁺−. The d orbitals of the Co or Ru interact with a D set of the cluster representing delocalized bonds, whereas the F and G type orbitals are

Table 1: Geometrical parameters for the TM-centered [Eₜ] (E = Ge, Sn, and Pb) clusters in 1 and 2, [Cu@Sn₄]⁺− and [Cu@Pb₄]⁺− and the corresponding values of their empty equivalents in K₅(OH)[Eₜ]·11NH₃ (E = Ge (3), Sn (4))[30] and Li₅Pb₄·17NH₃.[36] For a detailed explanation of the geometrical parameters see elsewhere.[31]

Compound	SE[a]	h₁[b]	h₂[b]	h₃[b]	d₁ / d₂[c]	Point group	Volume/ Å[d]	Volume change
[Ge₄]⁺−	3a[35]	22	1	1	1.26	ca. C₃₅₇	21.3	--
[Co@Ge₄]⁺−	(1a)	22	1.22	1.22	1.25	ca. D₃₅₇	26.4	19.4%
[Sn₄]⁺−	4a[30]	22	1	1	1	ca. C₃₅₇	32.9	--
[Ru@Sn₄]⁺−	(2a-I)	22	1.31	1.29	1.30	ca. D₃₅₇	38.3	16.4%
[Ru@Sn₄]⁺−	(2a-II)	22	1.28	1.28	1.26	ca. D₃₅₇	38.8	17.9%
[Cu@Sn₄]⁺−	(3a)	22	1.20	1.22	1.25	ca. D₃₅₇	37.3	13.4%
[Pb₄]⁺−	6m	22	1	1.01	1.28	ca. C₃₅₇	37.4	--
[Cu@Pb₄]⁺−	(3b)	22	1.15	1.18	1.22	ca. D₃₅₇	41.7	11.3%

[a] Number of skeleton electrons (SE) assuming a d⁰ configuration for the central atoms.[b] Heights of an underlying tri-capped trigonal prisms (ca. D₃₅₇).[c] Ratio of diagonals of the planar square of an underlying mono-capped square antiprism (ca. C₃₅₇).[d]
mainly unaffected. The alternative analysis by intrinsic bond orbitals\[41\] (Figure 2c, and Tables S9 and S10, Figures S7 and S8) shows that all interactions between the TM and the cluster atoms correspond to fully delocalized multi-center bonds.

The formation of such clusters, which leads to the anticipation of several mechanisms on a theoretical level is most intriguing, however, experimental data are scarcely reported.\[14\]-\[43\] As stated above, generally two possible ways for the formation of endohedral clusters have to be considered: either they are formed during a solid-state reaction or by an intermediate cluster opening step in solution. The powder X-ray diffractograms of the solid precursors “K\(_2\)Co\(_{1.2}\)Ge\(_9\)” and “K\(_3\)Ru\(_{1.2}\)Sn\(_9\)” are rather complex but show the finger-print characteristics of the K\(_3\)CoSn\(_{17}\) structure which contains filled clusters (Figure 5). To detect such filled clusters in alloys, which are solely characterized by a crude phase assignment, we applied Raman microscopy for the first time.\[45\] Owing to the absence of experimental data of such alloys, Raman frequencies calculated from the molecular anions [Co@Ge\(_3\)]\(^-\) and [Ru@Sn\(_3\)]\(^-\) were used as a reference. In case of the empty clusters, a close accordance with an acceptable error of 5\%\[45\] is observed between the measured\[45\] and the simulated data (Tables S6, S8). Even though more complex phonon modes must be considered in the solid, the strongest modes match very well the experimental data for both binary Zintl compounds K\(_2\)Ge\(_9\) and K\(_3\)Sn\(_9\) and may serve as a characteristic marker for the presence of empty [E\(_3\)] clusters. The main mode of the [E\(_3\)] cluster is a breathing motion, that is, inflating and deflating, which is observed at 220 cm\(^{-1}\) for [Ge\(_3\)] and 146 cm\(^{-1}\) for [Sn\(_3\)]. According to DFT calculations these modes are shifted to higher wavenumbers by about 25 cm\(^{-1}\) for [Co@Ge\(_3\)]\(^-\) and 40 cm\(^{-1}\) for [Ru@Sn\(_3\)]\(^-\), if the endohedral species is present, as shown in Figure 3 for [Co@Ge\(_3\)]\(^-\) (for [Ru@Sn\(_3\)]\(^-\) see Figure S11). The characteristic modes of filled clusters, however, are those which include the central atom. The vibrations of the discrete cluster anions 1a and 2a correspond to the modes A and B in the regions 360 and 260 cm\(^{-1}\), respectively, as shown for 1a in Figure 3. Fortunately these vibrations appear in a region where none of the related compounds shows any other modes,\[45a,46\] and thus it can be considered as an evidence for the presence of the filled clusters in the solid-state precursors.

The [Co@Ge\(_3\)]\(^-\) and [Ru@Sn\(_3\)]\(^-\) units are the endohedral clusters with the highest volume increase to date of filled clusters as compared to the corresponding empty ones. The synthesis proceeded from the elements via a two-step route, first a solid-state reaction, then subsequent dissolution of the precursor phase obtained in liquid ammonia. Additionally we established for the first time that Raman spectroscopy is a reliable probe to assign the presence of endohedrally filled clusters in intermetallic phases.
Acknowledgements

We gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft, TUM.solar in the context of the Bayerische Forschungsvereinigung "Solar Technologies Go Hybrid" (SoTechn), and the TUM graduate school. We thank Sebastian Geier for the measurements of the Raman spectra.

Conflict of interest

The authors declare no conflict of interest.

Keywords: cobalt - intermetalloid cluster - Raman studies - ruthenium - tin

How to cite: Angew. Chem. Int. Ed. 2019, 58, 12908–12913
Angew. Chem. 2019, 131, 13040–13045

[1] a) F. Stein, M. Palm, G. Stauthoff, Intermetallics 2004, 12, 713; b) F. Stein, M. Palm, G. Stauthoff, Intermetallics 2013, 23, 1056.
[2] F. C. Frank, J. S. Kasper, Acta Crystallogr. 1958, 11, 184.
[3] M. Ruhnow, Cryst. Res. Technol. 2013, 48, 294.
[4] a) E. Zintl, Angew. Chem. 1939, 52, 1; b) W. Klemm, Proc. Chem. Soc. London 1959, 329.
[5] a) K. Wade, Chem. Commun. 1971, 792; b) K. Wade, Adv. Inorg. Chem. Radiochem. 1976, 18, 1.
[6] R. Nesper, Angew. Chem. Int. Ed. Engl. 1991, 30, 789; Angew. Chem. 1991, 103, 805.
[7] a) S. Mitzinger, L. Broeckaert, W. Massa, F. Weigend, S. Dehnen, Nat. Commun. 2016, 7, 10480; b) R. J. Wilson, B. Weinert, S. Dehnen, Dalton Trans. 2018, 47, 14861; c) C. Liu, Z.-M. Sun, Coord. Chem. Rev. 2019, 382, 32; d) S. Dehnen, B. Weinert, Struct. Bonding (Berlin) 2017, 174, 99; e) R. J. Wilson, N. Lichtenberger, B. Weinert, S. Dehnen, Chem. Rev. 2019, https://doi.org/10.1021/acs.chemrev.8b00658.
[8] S. Stegmaier, T. F. Fässler, J. Am. Chem. Soc. 2011, 133, 19758.
[9] a) G. Bergmann, J. L. T. Waugh, L. Pauling, Acta Crystallogr. 1957, 10, 254; b) M. Feuerbacher, C. Thomas, S. Roitsch, Intermetallics 2008, 16, 943.
[10] M. J. Moses, J. C. Fettinger, B. W. Eichhorn, Science 2003, 300, 778.
[11] a) Z. Li, H. Ruan, L. Wang, C. Li, X. Jin, L.-J. Li, J. Xu, J. E. Espinoza-Quintero, J. C. A. Duckworth, W. K. Myers, J. E. Demeshko, C. Rödl, R. Wolf, J. Phys. Chem. A 2012, 116, 9197.
[12] a) More examples of endohedrally filled clusters are reported wherein more than one kind of metal appears in the cluster shell; b) R. B. King, I. Silaghi-Dumitrescu, M. U. Uğurlu, J. Phys. Chem. A 2009, 113, 527.
[13] a) Filled triel clusters are more frequent in solvent-free solids; b) J. D. Corbett, Angew. Chem. Int. Ed. 2000, 39, 670; Angew. Chem. 2000, 112, 682.
[14] J. Wilson, F. Hasteiter, K. Reiter, P. Büschelberger, R. Wolf, R. M. Gschwind, F. Weigend, S. Dehnen, Angew. Chem. Int. Ed. 2018, 57, 15359; Angew. Chem. 2018, 130, 15585.
[15] Nine-atomic $[Eq.]^3$ clusters (with $E = Si, Ge, Sn$) containing $2 + 9 + 4 = 22$ skeleton electrons and according to the Wade-Mingsos rules adopt the shape of a nido cluster (capped square antiprism). The incorporation of a d^0 metal atom (Ni) or ion (Co–Cu) does not change this electron count.
[16] Both new compounds turned out to contain hydroxide as an unintentional impurity, most likely introduced by contaminated batches of $NH_3(l)$. The hydroxide anion is coordinated by a distorted square pyramid of five K^+ ions with the hydroxide H atom located at the basal face of the pyramid. These K^+ ions are additionally coordinated by 3–5 ammonium molecules each, so a $[K_9(OH)(NH_3)]^{4+}$ complex cation is formed. The same arrangement has been found for example in $K_2[OH-\text{(Sn}_3\text{I}_9)]^{10+}$ and in $K_2[OH-(Sn_{11}I_{29})]^{14+}$. Structural details are given in the Supporting Information.
[17] T. F. Fässler, Coord. Chem. Rev. 2001, 215, 347.
[18] K. P. H. Schubert, Z. Metallkd. 1950, 41, 433; b) P. K. Panday, K. Schubert, J. Less-Common Met. 1969, 18, 175; c) M. Ellner, J. Less-Common Met. 1976, 48, 21; d) H. Takizawa, T. Sato, T. Endo, M. Shimada, J. Solid State Chem. 1983, 73, 40; e) N. Audebrand, M. Ellner, E. J. Mettemeijer, Powder Diff. 2000, 15, 120.
[19] a) A. Devasagayaraj, S. Achyutha Rao, M. Periasamy, J. Organomet. Chem. 1991, 403, 367; b) W. Hieber, F. Mühbauer, E. A. Ehmann, Ber. Disch. Chem. Ges. 1932, 65, 1090; c) R. Hammer, H.-F. Klein, Z. Naturforsch. B 1977, 32, 138; d) G. F. Warnock, N. J. Cooper, Organometallics 1989, 8, 1826; e) H. He, W. Klein, T. F. Fässler, Acta Crystallogr., Sect. E: Struct. Rep. Online 2014, 70, m9; f) R. Wolf, A. W. Ehlers, J. C. Slootweg, M. Lutz, D. Gudat, M. Hunger, A. L. Spek, K. Lammertsma, Angew. Chem. Int. Ed. 2008, 47, 4584; Angew. Chem. 2008, 120, 4660; g) C. Rödl, R. Wolf, Eur. J. Inorg. Chem. 2016, 736; h) P. Coburger, S. Demeshiko, C. Rödl, E. Hey-Hawkins, R. Wolf, Angew. Chem. Int. Ed. 2017, 56, 15871; Angew. Chem. 2017, 129, 16887; i) C. Rödl, K. Schwedtmann, J. J. Weigand, R. Wolf, Chem. Eur. J. 2019, 25, 61810; j) C. Rödl, R. Wolf, Chem. Eur. J. 2019, https://doi.org/10.1002/chem.201901061.
[20] C. B. Benda, H. He, W. Klein, M. Somer, T. F. Fässler, Z. Anorg. Allg. Chem. 2015, 641, 1080.
[21] K. Mayer, J. V. Dums, W. Klein, T. F. Fässler, Angew. Chem. Int. Ed. 2017, 56, 15159; Angew. Chem. 2017, 129, 15536.
For comparison to empty E_9^{4+} clusters, the recently reported compounds $K_5[OH][Ge_9]·11NH_3$ and the isotypic Sn homologue have been considered due to their very close chemical as well as crystallographic relationship, and for their typical appearance with respect to similar $[Ge_9]$ and $[Sn_9]$ containing compounds. This can be explained by the numerical error of the PCM method, as well as, the extraordinary high charge of the clusters.

Manuscript received: June 7, 2019
Accepted manuscript online: July 12, 2019
Version of record online: August 21, 2019