Particle Tracks, Events and Quantum Theory

A. Jadczyk
Research Institute for Mathematical Physics
Kyoto University, Kyoto 606, Japan
and
Institute of Theoretical Physics, University of Wrocław,
Pl. Maxa Borna 9, PL 50 204 Wrocław, Poland*

Abstract

The law of track formation in cloud chambers is derived from the Liouville equation with a simple Lindblad’s type generator that describes coupling between a quantum particle and a classical, continuous, medium of two–state detectors. Piecewise deterministic random process (PDP) corresponding to the Liouville equation is derived. The process consists of pairs (classical event, quantum jump), interspersed with random periods of continuous (in general, non–linear) Schrödinger’s–type evolution. The classical events are flips of the detectors – they account for tracks. Quantum jumps are shown, in the simplest, homogeneous case, to be identical to those in the early spontaneous localization model of Ghirardi, Rimini and Weber (GRW). The methods and results of the present paper allow for an elementary derivation and numerical simulation of particle track formation and provide an additional perspective on GRW’s proposal.

*Permanent address
1 Introduction

Inspired by John Bell’s challenging call for an exact formulation of quantum measurement theory \[1, 2\], Ph.Blanchard and the present author proposed a model of quantum measurement based on completely positive (CP) semigroup coupling between a quantum system and a classical one \[3\]. The main advantages of this proposal emerged only after the publication of \[3\]. In the following series of papers \[4\] – \[7\] the method of Ref. \[3\] was successfully applied to several model physical situations, including Zeno’s effect, Stern-Gerlach – type coupling, particle position detector, and SQUID–tank system. In all those cases the coupling was shown to lead to a piecewise – deterministic random process (PDP) describing time series of experimentally observed events. Moreover, in Ref. \[8\] models that deal with simultaneous measurement of several non–commuting observables were described, and it was suggested that the question of determining an unknown state of the quantum system should be answered using the proposed exact definition of a measurement. However, the obvious and crucial test of any quantum measurement theory, namely that of finding the laws governing track formation in cloud chambers and on photographic plates was, until recently, missing. The reason for this was partly of a technical character, namely in all of these previous applications the classical system was either discrete or finite – dimensional, otherwise technical difficulties mounted. In the present paper we will show how these difficulties can be overcomed owing to the discrete Poisson nature of the PDP.

Technically, the paper is concerned with a non – relativistic quantum particle coupled to a classical medium of two–state particle detectors. The medium is characterized by a family of ”sensitivity” functions \(g_a(x)\), where \(g_a\) can be thought of as a Gaussian–like function centered at \(a\). The configuration space of the classical system is, in general, infinite–dimensional. In \$3\ we will write down the simplest possible Liouville equation (Eqs. (5) – (7)) corresponding to the intuitive idea that presence of the particle at some point \(a\) causes flip in the detector located at that point. The functions \(g_a\) are used to describe the spatial sensitivity, and also the response time, of the detectors. The quantum Hamiltonian is allowed to depend on the actual

\[1\]
If there is no detector at \(a\), we put \(g_a(x) \equiv 0\). Thus our model covers also the case of a discrete, finite or infinite, number of detectors.
configuration of the medium (although in most applications such a dependence can be neglected). We denote by H_Γ the Hamiltonian corresponding to detectors flipped at the points of a set Γ. The main result of the present paper is the derivation of a PDP corresponding to this coupling. The PDP, derived in §4, can be summarized as follows.

Suppose one starts, at time t_0, with all detectors in the ”off” state, and with the quantum object described by a wave function $\psi_0 = \psi_{t_0}$. Then ψ evolves continuously according to the modified Schrödinger evolution

$$\psi_{t,\Gamma} = \exp \left(-iH_\Gamma t - \frac{\Lambda t}{2} \right) \psi_0 / \| \exp \left(-iH_\Gamma t - \frac{\Lambda t}{2} \right) \psi_0 \|,$$

with $\Gamma = \{ \emptyset \}$ and with Λ defined by $\Lambda(x) = \int g_a(x)^2 da$, until a jump occurs at a random time t_1, at which time the wave function is, say, ψ_{t_1}. The jump consists of a pair: (classical event, quantum jump). The classical part is a flip of the detector state at a random point of space, say at a_1. It happens at a point a, with the probability density $p(a)$ given by $p(a) = \| g_a \psi_{t_1} \|^2 / \lambda(\psi_{t_1})$, where the rate function λ is given by $\lambda(\psi) = (\psi, \Lambda \psi)$. The quantum part of the jump is jump of the Hilbert space vector ψ_{t_1} to the new state $\psi_1 = g_a \psi_{t_1} / \| g_a \psi_{t_1} \|$. After the jump the process starts again with a continuous time evolution as before, but now with $\Gamma = \{ a_1 \}$. After n events, that happened at the points a_1, \ldots, a_n, one puts $\Gamma = \{ a_1, \ldots, a_n \}$. The random times of jumps are regulated by an inhomogeneous Poisson process: the probability $P(t, t + \triangle t)$ for the first jump to occur in the time interval $(t, t + \triangle t)$ is computed from the formula $P(t, t + \triangle t) = 1 - \exp \left(- \int_t^{t+\triangle t} \lambda(\psi_s) \right) ds \approx \lambda(\psi_t) \triangle t$.

Our model admits an interesting special case - that of a passive, homogeneous medium. If the medium is passive, i.e. if the quantum Hamiltonian does not depend on the actual state of the medium, and if it is homogeneous, then the description simplifies: the quantum process separates, the jump rate is constant, and one gets ”spontaneous wave–packet reductions” of Ghirardi–Rimini–Weber (cf. e.g. [9] and references therein). In general, however, the process of formation of a track has a non–constant rate, and the dependence of the rate of jumps on the state of the quantum system given by the present model is essential and experimentally verifiable.\footnote{This is one of the important differences between our approach and other ones, where...} We believe...
that the proposed model of the particle track formation is the simplest one that gives intuitively expected results. It can be used for numerical simulation of particle track formation for different Hamiltonians and for different geometric configurations. It should be, in particular, interesting to analyze numerically the influence of particle detectors on sharpness of the fringe pattern in interferometry experiments.

From a philosophical point of view, it is worth noting that in the present paper we deliberately avoid the concepts of an ”observer”. Our model aims at being totally objective. A philosophical summary of our results can be formulated as follows: Quantum Theory, once invented by human minds and ones asked questions that are of interest for human beings, needs not ”minds” or ”observers” any more. What it needs is lot of computing power and effective random number generators, rather than ”observers”. The fundamental question, to which we do not know answer yet, can be thus formulated as follows: can random number generators be avoided and replaced by deterministic algorithms of simple and clear meaning?

2 Events and Quantum Measurements

In this paragraph we will briefly describe the main ideas that influenced our way of looking at the quantum mechanical measurement problem, and that finally led to the simple cloud chamber model of this paper.

The crucial concept of our approach to quantum measurements is that of an ”event”. The importance of this concept, and the intrinsic incapability of quantum theory to deal with it, have been stressed by several authors. In 1958 E. Schrödinger wrote [12]:

‘It is usually believed that the current orthodox theory actually accounts for the ”nice linear traces” produced in the Wilson chamber etc. I think this is a mistake, it does not.’

H.P. Stapp stressed the role of ”events” in the ”world process” (Refs. [13, 14], cf. also the entry ”events” in the Index of [15]). G. F. Chew used Stapp’s ideas on soft–photon creation–annihilation processes (cf. [16]) and proposed dependence of the timing of wave packet reductions on the actual state of the quantum system could not be derived - cf. e.g. [10] and references therein.
the term "explicate order", complementing Bohm’s "implicate" quantum order, to denote the world process of "gentle" creation–annihilation events [17].

R. Haag emphasized [18] that "an event in quantum physics is discrete and irreversible” and that "we must assume that the arrow of time is encoded in the fundamental laws ...". In [19] he went on to suggest that "transformation of possibilities into facts must be an essential ingredient which must be included in the fundamental formulation of the theory".

In [1, 2] J.S. Bell reprimanded the misleading use of the term "measurement" in quantum theory. He opted for banning this word from our quantum vocabulary, together with other vague terms such as "macroscopic", "microscopic", "observable" and several others. He suggested to replace the term "measurement" by that of "experiment", and also not to speak of "observables" (the things that seem to call for an "observer") but to introduce instead the concept of "beables" - the things that objectively "happen–to–be (or not–to–be)".

On the technical side, S. Machida and M. Namiki [20] proposed a way of describing measurements in quantum mechanics that inspired H. Araki [21, 22] to formulate his continuous superselection rule model of classical measuring apparatus in quantum mechanics. In the Araki’s model infinite time was however needed for an "event" (change of the classical pointer position) to occur.

In a series of papers E.C.G. Sudarshan et al. investigated possibility of solving the measurement problem via a unitary, Hamiltonian coupling between a quantum and a classical system (cf. [23] and references therein).

N.P. Landsman [24] and M. Ozawa [25] gave quite general ("no–go") arguments that stressed impossibility of coupling of classical and quantum degrees of freedom via a unitary, finite–time dynamics.

On the other hand many authors were using "dynamical semigroups" – non–unitary dissipative time–evolutions that described an effective dynamics of quantum systems coupled to other quantum systems or to external "reservoirs" or "environment". V. Gorini et al. [26] and Lindblad [27] derived a general form of generators of norm–continuous semigroups of completely positive maps of the operator algebra of a Hilbert space. Such semigroups were

3Calling observables "observables" can be, however, justified in the framework of an objective theory of experiments. We plan to discuss this subject elsewhere.

4A short no–go argument can be found in Ref. [8].

5It was later extended by E. Christensen and D. Evans [28] to cover the case of more
widely applied to many kinds of "master equations" of statistical physics, while Ghirardi, Rimini and Weber \[9\] proposed to use a particular Lindblad–type generator for describing a "spontaneous reduction process" for a single quantum particle. The GRW model incorporated "quantum jumps" that occurred in finite (Poisson distributed) times, but it did not account for the (classical) "events". Although it was clear to the experts that using dissipative semigroups instead of a unitary dynamics allowed to go around the no–go theorems, it is only in \[3\] that simple methods of construction of dissipative generators were found that led to measurement–like couplings of quantum and classical degrees of freedom. Later on, in Refs. \[4\]–\[8\], using the results of M. H. A. Davis (see \[29, 30\]), a piecewise–deterministic random process (PDP) on the space of pure states of the total (classical+quantum) system was associated with the Liouville equation. While the Liouville equation describes continuous time–evolution of density matrices, that is of statistical states that concern ensembles, the associated piecewise–deterministic random process contains apparently more useful information: it can be used to simulate real–time behaviour of individual systems in measurement–like situations.

3 The Cloud Chamber Model

Our aim is to explain the "nice linear tracks" that quantum particles leave on photographs and in cloud chambers. These tracks are indeed hard to explain if one assumes that there are no particles and no events – only Schrödinger’s waves. Schrödinger himself was perplexed and not quite sure which way to take.

Physically, a photographic plate or a cloud chamber is a highly complex many-particle system. Physiologically, it appears to exhibits a complex, irreversible dynamics to an external living observer. Many factors participate in the result – including the mediation of photons in the final act of perception. However, it seems to us that the detailed internal structure of local particle detectors, and also the details of the perception process, would it be human or animal, are totally irrelevant for the phenomenon itself. What is relevant, it is the response of the detectors to the quantum particle, and their back general operator algebras, including the case that is most interesting for us - that of a non–trivial centre.
reaction on it. We put forward conjecture that it is sufficient to assume that we have to do with a system of classical two-state detectors that can change their state when a particle passes nearby. Although the real cloud chamber have a finite number of sensitive centers, it proves to be no more difficult to deal with a more general, continuous model - the extra bonus being that we cover this way the GRW model as well.

There is a formal detail in the model below that deserves to be mentioned: our model is more reversible than any real cloud chamber. Namely, we allow for a local detector to change its state back, when it registers the particle for the second time, and so on. This makes the model slightly easier to solve.

The present model can be easily reformulated to cover also the case of "only-one-flip" detectors. The final PDP proves to be the same except that each detector can flip only ones.

The derivation of the model below is heuristic. Nevertheless it leads to a well defined piecewise–deterministic random process that has a clear physical meaning. We then show that for a passive, homogeneous, medium, the effective time evolution of the quantum system itself happens to be also Markovian - it is described by an effective CP semigroup that is identical to that postulated by Ghirardi et al.

This fact may suggest another application of our model: instead of considering it as an approximate model of a real, discrete and finite, cloud chamber, we may consider it as an exact model of some, perhaps yet unknown, space–structure that is participating in a universal process of wave packet reductions. The actual physical interpretation may depend on the values of parameters that enter the model. There will be, essentially, two free parameters: a coupling constant λ, of physical dimension t^{-1}, that will regulate the expected time rate of jumps, and a normalized Gaussian function whose width determines space sensitivity of the detectors. In fact, aiming at a wider applicability of our model, we will allow for non-constant rates of jumps, and for more general, not necessarily Gaussian, sensitivity functions. Clearly, presence of arbitrary functions that are external to the model, makes it to look like a phenomenological rather than as a fundamental description – unless these functions are derived from geometrical and probabilistic considerations.

6On the other hand, it is related to the, so called, "detailed balance condition" that is often postulated in statistical physics models - for a recent discussion cf. and references therein.
We proceed to describe our model in mathematical terms. The description will be brief and will never go beyond elementary mathematical concepts. Special mathematical terms, when they occur, are used only in an informal way and can be skipped by a reader who is mainly interested in the main ideas and results.

Let \(E \) denote the physical space, we take for definiteness \(E = \mathbb{R}^n \), although it is straightforward to \(E \) to be a homogeneous space or an arbitrary Riemannian manifold. We consider the space \(E \) filled up with a continuous medium which can be, at each point \(a \in E \), in one of its two states: ”on–state”, represented by \(\begin{pmatrix} 1 \\ 0 \end{pmatrix} \), or ”off–state”, represented by \(\begin{pmatrix} 0 \\ 1 \end{pmatrix} \). We would like to consider the set of all possible states of the medium. This is however enormously big a set, because states of the medium are, in our case, in one–to–one correspondence with its configurations, that is with subsets of \(E \). Indeed, to each state of the medium we can uniquely associate the set of all points that are ”on”. Thus the set of all states of the medium is isomorphic to \(2^E \). Fortunately we can restrict our attention to much smaller classes of subsets of \(E \). Let us introduce equivalence relation ” \(\sim \) ” in \(2^E \), with equivalence classes consisting of subsets of \(E \) that differ one from another by at most finite number of elements. Denoting by \(\triangle \) the set–theoretical symmetric difference operation, we have: \(\Gamma \sim \Gamma' \iff \Gamma \triangle \Gamma' \) is a finite set. It will be sufficient for us to choose some ”ground state” and to take its equivalence class, that is the set of these configurations that differ from the ”vacuum” in at most finite number of points. For convenience we will take for the ground state the state of ”all off”, represented by the empty subset \(\emptyset \in 2^E \). Its equivalence class \(\mathcal{S} = [\emptyset] \) consists of those states of the medium that are everywhere ”off” except in a finite number of points, i.e. the class of all finite subsets of \(E \).

Remark. The fact that we can restrict ourselves to the above class \(\mathcal{S} \) of sets, instead of dealing with whole of \(2^E \), is not evident by itself. It will be justified only a posteriori, when we will see that the ”events”, that will appear in the piecewise-deterministic random process which we will construct later on, consist of ”flipping” a state of the medium in single (randomly chosen according to appropriate probability distribution) points of \(E \), and that with probability one there is a finite number of events in any finite interval of time.

We can endow \(\mathcal{S} \) with a topology and with a measurable structure as
follows: first of all we observe that S is a disjoint union of subsets S_i, $i = 0, 1, \ldots$, where S_i consists of those states that differ from the ground state at exactly i points of E. But then, S_i is isomorphic to the i–th Cartesian power of E, with coinciding points extracted, and divided by the action of the permutation group in i elements. It follows in particular that S has a power of the continuum.

Statistical states of the classical system are probability measures on S. They are represented by sequences $\{\mu_i\}$, where μ_i is a measure on S_i, and $\sum_{i=0}^{\infty} \mu(S_i) = 1$.

Let $H_q = L^2(\mathbb{R}^n, d^n x)$ be the Hilbert space that is used for description of the quantum system coupled to our classical medium. We denote by $\mathcal{B}(H_q)$ the algebra of bounded linear operators on H_q. Its elements are ”observables” of the quantum system. Statistical states of the quantum system are normalized (by $\text{Tr}(\rho) = 1$) positive trace class operators on H_q. Then statistical states of the total, classical plus quantum, system are described by measures ρ on S with values in positive, trace class, operators on H_q, with $\sum_{i=0}^{\infty} \text{Tr}(\rho(S_i)) = 1$. A natural candidate for the algebra \mathcal{A}_{tot} of observables of the total system is the algebra of continuous, bounded functions on S with values in $\mathcal{B}(H_q)$. Thus, \mathcal{A}_{tot} is the direct sum of algebras \mathcal{A}_i, where \mathcal{A}_i is the algebra of continuous, bounded, $\mathcal{B}(H_q)$–valued functions on S_i. As our main aim is to derive the PDP rather than to prove the existence of CP semigroup we will apply, from now on, a heuristic notation. Thus, a state of the total system will be represented by a family $\{\rho_\Gamma\}_{\Gamma \in S}$, with $\sum_{\Gamma} \text{Tr}(\rho_\Gamma) = 1$.

To have some definite example in mind, in what follows we will take for the quantum system a particle of mass m moving in $E = \mathbb{R}^n$ according to the dynamics described by the quantum Hamiltonian

$$H_\Gamma = -\frac{\hbar^2}{2m} \left(\nabla_x - \frac{e}{\hbar c} A_\Gamma \right)^2 + V_\Gamma(x). \quad (1)$$

We thus allow quantum Hamiltonian to depend on the actual state of the medium.

Remark We could allow H to depend explicitly on time - then the semigroup property would be lost, but PDP would be described in exactly the same way as in the present model, except that the exponential in the formula (12) would have to be time-ordered. Generalization to the case of quantum particle moving on a manifold and acted upon by gravitational and electromagnetic
forces is straightforward. A more general treatment, including Bose or Fermi multiparticle case, will appear elsewhere [32]. The idea will not change also in such a case.

We proceed now to describe the coupling that corresponds to the following intuitive picture: the medium consists of detectors that can change their state if the particle approaches them sufficiently close. The sensitivity of detectors as well as their relaxation time are described by real, non-negative functions \(g_a(x) \), where the variable \(a \) describes the position of the detector. We can think of \(g_a \) as a hat-like function with its center at \(x = a \). We introduce then the non-negative function \(\Lambda(x) \) defined by

\[
\Lambda(x) = \int_E g_a(x)^2 da,
\]

for all \(x \in E \). Here \(da \) denotes the Lebesgue measure, but if we want to describe a discrete, rather than a continuous, case, then the integral above should be replaced by a sum. By the abuse of notation we will denote by the letter \(\Lambda \) the operator of multiplication by the function \(\Lambda(x) \), acting on the Hilbert space \(L^2(\mathbb{R}^n, d^n x) \).

Each state \(\rho \) of the total system can be, formally, written as:

\[
\rho = \sum_{\Gamma \in \mathcal{S}} \rho_\Gamma \otimes \epsilon_\Gamma,
\]

where, for \(\Gamma \in \mathcal{S} \),

\[
\epsilon_\Gamma = \prod_{a \in E} \begin{pmatrix} 0 & \chi_\Gamma(a) \\ \chi_\Gamma(a) & 0 \end{pmatrix},
\]

and where \(\chi_\Gamma \) stands for the characteristic function of \(\Gamma \).

Remark The last statement requires some care. It is also not quite trivial. For a finite number of detectors it is not too difficult to see. We are using above the notation introduced by J. von Neumann in his theory of continuous tensor products. To give to the above expressions a precise mathematical meaning, we would have to invoke a part of this theory. (For a more modern account cf. [33] and references therein.) That tool is however not necessary for the present, heuristic, purpose. More complete mathematical treatment will be given elsewhere.
To define the coupling between the particle and the medium, we will apply the ideas introduced in [3][4]. Namely, we will write the Liouville time evolution equation for the statistical state of the total system as

\[\dot{\rho} = -i[H, \rho] + \mathcal{L}(\rho), \]

(5)

where \(\mathcal{L} \) is a Lindblad–type generator that provides dissipative coupling.

Remark: In the present model we will neglect a possible free dynamics of the medium.

For \(\mathcal{L} \) we take the simplest possible coupling:

\[\mathcal{L}(\rho) = \int da (V_a \rho V_a - \frac{1}{2}\{V_a^2, \rho\}), \]

(6)

where

\[V_a = g_a \otimes \tau_a, \]

(7)

\(g_a \) being the multiplication operator by the function \(g_a(x) \), and \(\tau_a \) denoting the "flip" of the detector at the point \(a \):

\[\tau_a = \prod_{b \neq a} \otimes_b u_b, \]

(8)

where

\[u_b = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \]

(9)

for \(b \neq a \), while

\[u_a = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}. \]

(10)

Because \(\tau_a^2 = Id \), our evolution equation reads now:

\[\dot{\rho} = -i[H, \rho] + \int da V_a \rho V_a - \frac{1}{2}\{\Lambda, \rho\}, \]

(11)

where \(\Lambda \) in the anticommutator is understood as a multiplication operator by the function \(\Lambda(x) \).

Let us denote by \(a(\Gamma) \) the set representing the state \(\Gamma \) with the flipped \(a \):

\[a(\Gamma) = \Gamma \triangle \{a\}. \]

(12)
Then, using change of summation variable $\Gamma \rightarrow \Gamma' = a(\Gamma)$, and also using the fact that $a(a(\Gamma)) = \Gamma$ – i.e. that the second flip cancels the first, we obtain

$$V_a \rho V_a = \sum_{\Gamma \in S} a^a(\Gamma) g_a \otimes \epsilon_{a(\Gamma)} = \sum_{\Gamma \in S} g_a a^a(\Gamma) g_a \otimes \epsilon_{\Gamma}$$ \hfill (13)

so, that we can write:

$$\dot{\rho}_\Gamma = -i[H, \rho_\Gamma] + \int da \, g_a a^a(\Gamma) g_a - \frac{1}{2}\{\Lambda, \rho_\Gamma\}. \hfill (14)$$

The equation (14) fundamental. It describes time evolution of the family $\{\rho_\Gamma\}$, where Γ runs over all finite subsets of E. All the relevant statistical information about the quantum particle and the classical medium can be derived from this equation. In the next paragraph we will derive the piecewise deterministic random process that is compatible with Eq. (14) and that concerns histories of individual coupled systems. Before however going to this, let us see that in the passive, homogeneous, case we can obtain effective time evolution for the quantum particle alone. If the medium is passive and homogeneous, then the Hamiltonian does not depend on the actual state of the medium: $H_\Gamma \equiv H$. Moreover, for symmetry reasons Λ must be a constant: $\Lambda(x) \equiv \lambda$. For instance this happens if we take for g_a the Gaussian functions:

$$g_a(x) = \lambda^{1/2} \left(\frac{\alpha}{\pi}\right)^{\frac{n}{2}} \exp\left(-\alpha(x - a)^2\right). \hfill (15)$$

The effective state of the quantum particle is determined by tracing over the classical configurations:

$$\hat{\rho} = \sum_{\Gamma \in S} \rho_\Gamma. \hfill (16)$$

To sum up the Eq. (14) over Γ we note that, for each $a \in E$, $a : \Gamma \mapsto a(\Gamma)$ is a one–to–one map of S onto itself, this owing to the fact that 2^E is a group under the symmetric–difference operation, and that S is a subgroup.

Thus we have $\sum_{\Gamma \in S} a^a(\Gamma) = \sum_{\Gamma \in S} \rho_\Gamma = \hat{\rho}$. It follows that the time derivative of $\hat{\rho}$ depends, for our particular choice of the coupling, only on $\hat{\rho}$ and not on the full hierarchy of ρ_Γ’s; we have:

$$\dot{\hat{\rho}} = -i[H, \hat{\rho}] + \int da \, g_a \hat{\rho} g_a - \lambda \hat{\rho}, \hfill (17)$$

which is exactly of the type discussed by Ghirardi, Rimini and Weber (cf. Ref. [4]).
4 The Piecewise Deterministic Process

4.1 Definition of PDP and its infinitesimal generator

In his monographs [29, 30] dealing with stochastic control and optimization M. H. A. Davis, having in mind mainly queuing and insurance models, described a special class of piecewise deterministic processes that was later found to fit perfectly the needs of quantum measurement theory. Even if for the present model we will have to extend slightly the original Davis’ framework, and to work with jumps between continuously parameterized states and not between discrete manifolds, we will describe briefly the discrete case and we leave the problem of a rigorous formulation of its evident extension to continuous families aside.

Let ι be an index running over a finite or countable set J. Consider functions $f(\xi, \iota)$, where for each ι the variable ξ is continuous and runs through some set M. Suppose we have a one–parameter semi-group of transformations α_ι acting on the space of such functions with the infinitesimal generator D which is an integro–differential operator of the following form:

$$(Df)(\xi, \iota) = (Z_\iota f)(\xi, \iota) + \lambda(\xi, \iota) \sum_{\iota'} \int_M Q(\xi, \iota; d\xi', \iota') \left(f(\xi', \iota') - f(\xi, \iota) \right),$$

where Z_ι are vector fields that generate one–parameter flows ϕ_ι on M, $\lambda(\xi, \iota)$ are non–negative functions, while $Q(\xi, \iota; d\xi', \iota')$ are (non–negative) transition measures - thus satisfying

$$\sum_{\iota'} \int_M Q(\xi, \iota; d\xi', \iota') = 1,$$

and also

$$\int_{\{\xi\}} Q(\xi, \iota; d\xi', \iota) = 0,$$

for all ι and $\xi \in M$. We notice that by the very definition we have $Z_\iota(\xi) = d\phi_\iota(\xi, t)/dt |_{t=0}$. Then, as it is shown in Refs. [29, 30], one can associate with this generator D a piecewise–deterministic Markov process that is described as follows.

\footnote{We will need the case where also ι will be continuous running over E, while M will coincide with the unit ball in the Hilbert space $L^2(E)$ (modulo the phase).}
Suppose the process starts at some point \((\xi_0, \iota_0)\). Then \(\xi\) evolves continuously along the vector field \(Z_\iota, \xi_t = \phi_t(\xi_0, t)\), while \(\iota_0\) remains constant until a jump occurs at a certain random time \(t_1\). The time of this jump is governed by a (inhomogeneous) Poisson process with rate function \(\lambda(t) = \lambda(\xi_t, \iota_0)\). When jump occurs at \(t = t_1\), then \((\xi_{t_1}, \iota_0)\) jumps to \((\xi', \iota)\) with probability density \(Q(\xi_{t_1}, \iota_0; d\xi', \iota)\) and the process starts again.

Remark Notice that the probability that the jump will occur between \(t\) and \(t+dt\), provided it did not occurred yet is equal to \(1 - \exp\left(-\int_t^{t+dt} \lambda(s)ds\right) \approx \lambda(t)dt\). This justifies calling \(\lambda\) the rate function.

Association of the random process with the semi-group \(\alpha_t\) is canonical and can be described as follows: first one goes from \(\alpha_t\) that acts on functions \(f(\xi, \iota)\) to its dual \(\alpha^t\) acting on measures. Then, choosing the Dirac measure \(\delta_{\xi_0,\iota_0}\) concentrated at \((\xi_0, \iota_0)\) as the initial point \(\mu_0\), we apply to it \(\alpha^t\) to get \(\mu_t = \alpha^t(\mu_0)\). The resulting measure \(\mu_t\) is then characterized by the fact that \(d\mu(\xi, \iota)\) is equal to the probability that the process starting at \(t = 0\) from \((\xi_0, \iota_0)\) will end, at time \(t\), at the point \((\xi, \iota)\).

A detailed and precise description of the above correspondence should include specification of the involved measure structures and domains of definition. We refer the reader to Refs. [29, 30] for mathematical details.

4.2 Derivation of the PDP for the cloud chamber model.

We will now describe the most important fact about our cloud chamber model: we will show that Eq. (14) describing the time evolution of statistical states of the total system can be interpreted in terms of a piecewise deterministic random process. That process has then a transparent description in terms of pairs of \((\text{classical event, quantum jump})\) that are interspersed (in a random way, according to an homogeneous Poisson point process law with rate \(\lambda\)) with the periods of continuous, Schrödinger’s type, time evolution.

If we want to interpret the equation (14) in terms of a PDP on pure states, then the first thing we have to do, is to rewrite Eq. (14) as an equation for observables rather then states. After doing so we will interpret observables as functions on pure states.

Given a state \(\rho = \{\rho_\Gamma : \Gamma \in S\}\) and an observable \(A = \{A_\Gamma : \Gamma \in S\}\),
the expectation value of A in ρ is given by $< \rho, A >= \sum \text{Tr}(\rho A\Gamma)$. Time evolution of observables is then defined as dual to the time evolution of states, so that we have $< \rho, \dot{A} >= < \dot{\rho}, A >$. By substituting the equation (14) for $\dot{\rho}$, we easily find that, in our case, observables evolve according to the law that is almost identical to that for states, except that there is change of sign in front of the commutator:

$$\dot{A}_{\Gamma} = i[H_{\Gamma}, A_{\Gamma}] + \int da g_a A_{a(\Gamma)}g_a - \frac{1}{2}\{\Lambda, A_{\Gamma}\}. \tag{21}$$

Each observable A (of the total system) can be interpreted as a function f_A on pure states (of the total system):

$$f_A(\psi, \Gamma) \equiv < \psi, A_{\Gamma}\psi >, \quad \psi \in \mathcal{H}_q, \quad \Gamma \in \mathcal{S}. \tag{22}$$

We can now sandwich the Eq. (21) between two ψ vectors to see if we can interpret this equation in terms of time evolution of functions on pure states. We get

$$\dot{f}_A(\psi, \Gamma) \equiv f_{\dot{A}}(\psi, \Gamma) = (\psi, i[H_{\Gamma}, A_{\Gamma}]\psi) + (< \psi, \int da g_a A_{a(\Gamma)}g_a \psi > - \frac{1}{2}(\psi, \{\Lambda, A_{\Gamma}\}\psi)). \tag{23}$$

The first term on the rhs of Eq. (23) can be written also as $(Z_H f_A)(\psi, \Gamma)$, where Z_H is the vector field of the Hamiltonian evolution of pure states

$$(Z_H f)(\psi, \Gamma) = \frac{d}{dt} \left(e^{-iH_{\Gamma}t} \psi \right) \bigg|_{t=0}. \tag{24}$$

The second term can be rewritten as:

$$(\psi, \int da g_a A_{a(\Gamma)}g_a \psi) = \int da < g_a \psi, A_{a(\Gamma)} g_a \psi >$$

$$= (\psi, \Lambda \psi) \int da \frac{\|g_a\psi\|^2}{(\psi, \Lambda \psi)} f_A(g_a \psi, a(\Gamma)). \tag{25}$$

Finally, the third term of the Eq. (23), rewritten in terms of the functions f_A, gives rise to two terms:

$$-\frac{1}{2}(\psi, \{\Lambda, A_{\Gamma}\}\psi) = \left. \frac{d}{dt} \left(\| \exp\left(-\frac{A_{\Gamma}}{2}\right)\psi \| f_A\left(\frac{\exp\left(-\frac{A_{\Gamma}}{2}\right)\psi}{\|\exp\left(-\frac{A_{\Gamma}}{2}\right)\psi\|}, \Gamma\right) \right) \right|_{t=0}$$

$$= -(\psi, \Lambda \psi) + \left. \frac{d}{dt} \left(f_A\left(\frac{\exp\left(-\frac{A_{\Gamma}}{2}\right)\psi}{\|\exp\left(-\frac{A_{\Gamma}}{2}\right)\psi\|}, \Gamma\right) \right) \right|_{t=0}. \tag{26}$$

15
Let us introduce the second vector field Z_D corresponding to the non-linear evolution:

$$(Z_D f)(\psi, \Gamma) = \frac{d}{dt} f \left(\exp\left(-\frac{\Delta t}{2} \right) \psi \parallel \exp\left(-\frac{\Delta t}{2} \right) \psi \parallel, \Gamma \right) |_{t=0}. \quad (27)$$

We now see that we can write the evolution equation for the function f_A in the form required by Eq.(18) provided we introduce:

the rate function:

$$\lambda(\psi) = (\psi, \Lambda \psi), \quad (28)$$

the vector field:

$$Z = Z_H + Z_D, \quad (29)$$

and the transition measure $Q(\psi, \Gamma; \psi', \Gamma')d\psi'd\Gamma'$ that vanishes except for

$$Q(\psi, \Gamma; \psi', a(\Gamma)) = \frac{\|g_a \psi\|^2}{\lambda(\psi)} \delta(\psi' - \frac{g_a \psi}{\|g_a \psi\|})d\psi', \quad (30)$$

where $\delta(\psi' - \psi)d\psi'$ is a symbolic expression for the Dirac measure concentrated at ψ.

It is easy to see that the vector field $Z = Z_H + Z_D$ exponentiates to:

$$(\exp(Zt)f)(\psi_0, \Gamma) = f(\psi_{\Gamma;t}, \Gamma) \quad (31)$$

where $\psi_{\Gamma;t}$ is given by

$$\psi_{\Gamma;t} = \frac{\exp(-iH_\Gamma t - \frac{\Delta t}{2}) \psi_0}{\| \exp(-iH_\Gamma t - \frac{\Delta t}{2}) \psi_0 \|}. \quad (32)$$

Thus $\psi_{\Gamma;t}$ can be thought of as a solution of a non-linear, non-Hermitian Schrödinger equation.

We now describe the piecewise deterministic process on pure states of the total system that is associated with these data. Starting with the quantum system described by an initial wave packet $\psi \in L^2(E)$, and with the initial “all off” state of the medium, ψ develops according to the equation (32) until a jump occurs at random time t_1, at which time the wave packet is ψ_{t_1}. The time t_1 of the jump is governed by the inhomogeneous Poisson process that is characterized by the probability $P(t, t + \Delta t)$ for the jump to occur in the
time interval \((t, t + \Delta t)\), provided it did not occurred yet. It is given by the formula

\[
P(t, t + \Delta t) = 1 - \exp \left(- \int_{t}^{t+\Delta t} \lambda(\psi_s) \, ds \right) \approx \lambda(\psi_t) \Delta t.
\] (33)

The jump consists of a pair (classical event, quantum jump). The classical event is a flip of the detector at a random point \(a \in E\). It happens at \(a\) with probability density

\[
p(a) = \frac{\|g_a \psi_{t1}\|^2}{\lambda(\psi_{t1})}.
\] (34)

When the classical detector flips at some point \(a = a_1\), then the quantum states jumps from its actual state \(\psi_{t1}\) to the new state \(\psi_1\) given by

\[
\psi_1 = \frac{g_{a_1} \psi_{t1}}{\|g_{a_1} \psi_{t1}\|}
\] (35)

and the process starts again.

It is worth noting that, for simple Gaussian packets, and for a free evolution, the most probable place for a flip to occur is at the maximum of the actual wave–function. That explains linear tracks. For more complicated geometries and dynamics – numerical computation is necessary, at least until simple general laws are found that are based on PDP.

5 Summary and Conclusions

We have seen that a simple coupling between quantum particle and classical continuous medium of two–state detectors leads to a piecewise deterministic random process that accounts for track formation in cloud chambers and photographic plates. For a passive, homogeneous medium the process is essentially identical to the spontaneous localization GRW model of Ref. [9]. In particular all the theoretical and numerical analysis that has been done for GRW models applies also in this case.

As mentioned in the Introduction, to simulate track formations only random number generators and computing power is necessary. Our model does not involve observers and minds. This does not mean that we do not appreciate the importance of the mind–body problem. In our opinion understanding
the problems of minds needs also quantum theory, and perhaps even more – that is still beyond the horizon of the present-day physics. But our model indicates that quantum theory does not need human minds. Quantum theory should be formulated in a way that involves neither observers nor minds – at least not more than any other branch of physics. Our model can be considered as a step in this direction. It can rightly be criticized as being too phenomenological to satisfy us wholly. But, provided it correctly accounts for experimental results, it can give a valuable new insight into the quantum duality of potential and actual, of waves and particles, and of determined and random.
Acknowledgments The necessity of formulating and of investigating a cloud chamber model, as well as the rough idea of how to do it, was the subject of many discussion with Prof. Ph.Blanchard. I thank him also for reading the manuscript. The work was mainly done while the author stayed at RIMS, Kyoto. Thanks are due to JSPS for financial support and to Prof. H. Araki for his kind hospitality and for encouraging and useful discussions. Thanks are also due to Profs. H. Ezawa, M. Namiki and I. Ojima for discussions and for their criticism. I would also like to thank Prof. M. Ozawa for his criticism concerning CP semigroup couplings. I owe lot of thanks to Prof. H.P. Stapp for useful correspondence during all of the period of writing this paper.

The final writeup was done at the Erwin Schrödinger Institute, Wien. I thank to Prof. H. Narnhofer for her hospitality and for reading the paper. I also owe thanks to Prof. F. Benatti for clarifying and encouraging correspondence.

References

[1] Bell, J. : "Against measurement", in Sixty-Two Years of Uncertainty. Historical, Philosophical and Physical Inquiries into the Foundations of Quantum Mechanics, Proceedings of a NATO Advanced Study Institute, August 5-15, Erice, Ed. Arthur I. Miller, NATO ASI Series B vol. 226 , Plenum Press, New York 1990

[2] Bell, J. : "Towards an exact quantum mechanics", in Themes in Contemporary Physics II. Essays in honor of Julian Schwinger’s 70th birthday, Deser, S. , and Finkelstein, R. J. Ed. , World Scientific, Singapore 1989

[3] Blanchard, Ph. and Jadczyk, A. : "On the interaction between classical and quantum systems", Phys. Lett. A 175 (1993), 157–164

[4] Blanchard, Ph. and Jadczyk, A. : "Strongly coupled quantum and classical systems and Zeno’s effect", Phys. Lett. A 183 (1993), 272–276

[5] Blanchard, Ph. and Jadczyk, A. : "Classical and quantum intertwine", in Proceedings of the Symposium on Foundations of Modern Physics, Cologne, June 1993, Ed. P. Mittelstaedt, World Scientific (1994), hep-th

9309112
[6] Blanchard, Ph. and Jadczyk, A.: "From quantum probabilities to classical facts", in *Advances in Dynamical Systems and Quantum Physics*, Capri, May 1993, Ed. R. Figari, World Scientific (1994), hep-th 9311090

[7] Blanchard, Ph. and Jadczyk, A.: "How and When Quantum Phenomena Become Real", to appear in Proc. Third Max Born Symp. "Stochasticity and Quantum Chaos", Sobotka, Eds. Z. Haba et al., Kluwer Publ.

[8] Jadczyk, A.: "Topics in Quantum Dynamics", Preprint CPT–Marseille 94/P.3022, also BiBoS 635/5/94, hep-th 9406204

[9] Ghirardi, G.C., Rimini, A. and Weber, T.: "An Attempt at a Unified Description of Microscopic and Macroscopic Systems", in *Fundamental Aspects of Quantum Theory*, Proc. NATO Adv. Res. Workshop, Como, Sept. 2–7, 1985, Eds. Vittorio Gorini and Alberto Frigerio, NATO ASI Series B 144, Plenum Press, New York 1986, pp. 57–64

[10] Caves, C. M. and Milburn, G. J.: "Quantum mechanical model for continuous position measurements", *Phys. Rev. A* 36 (1987) 5543–5555

[11] Stapp, H. P.: "The Integration of Mind into Physics", Talk at the conference Fundamental Problems in Quantum Theory, Univ. of Maryland at Baltimore, June 18–22, 1994, Preprint LBL-35640, June 1994

[12] Schrödinger, E.: "Might perhaps Energy be a merely Statistical Concept?", *Nuovo Cimento* IX (1958) 162–179

[13] Stapp, H. P.: "Bell’s Theorem and World Process", *Nuovo Cimento* 29 (1975) 270–276

[14] Stapp, H. P.: "Theory of Reality", *Found. Phys.* 7 (1977) 313–323

[15] Stapp, H. P.: "Mind, Matter and Quantum Mechanics", Springer Verlag, Berlin 1993

[16] Stapp, H. P.: "Solution of the Infrared Problem", *Phys. Rev. Lett.* 50 (1983) 467–469

[17] Chew, G. F.: "Gentle Quantum Events and the Source of Explicate Order", *Zygon* 20 (1985) 159–164
[18] Haag, R. : "Events, histories, irreversibility", in Quantum Control and Measurement, Proc. ISQM Satellite Workshop, ARL Hitachi, August 28–29, 1992, Eds. H. Ezawa and Y. Murayama, North Holland, Amsterdam 1985

[19] Haag, R. : "Fundamental Irreversibility and the Concept of Events", Commun. Math. Phys. 132 (1990) 245–251

[20] Machida, S. and Namiki, M. : "Theory of Measurement in Quantum Mechanics", Progr. Theor. Phys. 63 (1980), 1457–1473 and 1833–1847

[21] Araki, H. : "A Remark on Machida–Namiki Theory of Measurement", Progr. Theor. Phys. 64 (1980), 719–730

[22] Araki, H. "A Continuous Superselection Rule as a Model of Classical Measuring Apparatus in Quantum Mechanics", in Fundamental Aspects of Quantum Theory, Proc. NATO Adv. Res. Workshop, Como, Sept. 2–7, 1985, Eds. Vittorio Gorini and Alberto Frigerio, NATO ASI Series B 144, Plenum Press, New York 1986, pp. 23–33

[23] Sudarshan, E.C.G. : "Measurement Theory", in Foundations of Quantum Theory, Santa Fe Workshop 27-31 May 1993, Ed. Black, T.D. et al., World Scientific, Singapore 1992

[24] Landsman, N. P. : "Algebraic theory of superselection sectors and the measurement problem in quantum mechanics", Int. J. Mod. Phys. A6 (1991), 5349–5371

[25] Ozawa, M.: "Cat Paradox for C^*–Dynamical Systems", Progr. Theor. Phys. 88 (1992), 1051–1064

[26] Gorini, V., Kossakowski, A. and Sudarshan, E. C. G. : "Completely positive dynamical semigroups of N–level systems", J. Math. Phys. 17 (1976), 821–825

[27] Lindblad, G. : "On the Generators of Quantum Mechanical Semigroups", Comm. Math. Phys. 48 (1976), 119–130

[28] Christensen, E. and Evans, D. : "Cohomology of operator algebras and quantum dynamical semigroups", J. London. Math. Soc. 20 (1978), 358–368
[29] Davis, M. H. A. : *Lectures on Stochastic Control and Nonlinear Filtering*, Tata Institute of Fundamental Research, Springer Verlag, Berlin 1984

[30] Davis, M. H. A. : *Markov models and optimization*, Monographs on Statistics and Applied Probability, Chapman and Hall, London 1993

[31] Majewski, W. A. and Streater, R. F. : "Detailed Balance and Quantum Dynamical Semigroups", preprint Dept. Math., King’s College, London, 1994

[32] Jadczyk, A. : "On Quantum Jumps, Events and Spontaneous Localization Models", ESI-Wien Preprint (1994)

[33] Guichardet, M. A. : "Produits Tensoriels Infinis et Représentations des Relations d’Anticommutation", *Ann. sc. Éc. Norm. Sup.* **83** (1966), 1–52