Phase I Study of Lenvatinib and Capecitabine with External Radiation Therapy in Locally Advanced Rectal Adenocarcinoma

Rutika Mehta1, Jessica Frakes2, Jongphil Kim3, Andrew Nixon4, Yingmiao Liu4, Lauren Howard6, Maria E. Martinez Jimenez1, Estrella Carballido1, Iman Imanirad1, Julian Sanchez1, Sophie Dessureault1, Hao Xie1, Seth Felder1, Ibrahim Sahin1, Sarah Hoffe2, Mokenge Malafa1, Richard Kim1,1,‡,1

1Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
2Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
3Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
4Department of Medicine, Duke University Medical Center, Durham, NC, USA
5Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA

*Corresponding author: Richard Kim, M.D., H. Lee Moffitt Cancer Center, 12902 USF Magnolia Drive, CSB 8th Floor, Tampa, FL 33612, USA. Tel: +1 813 745 1277; E-mail: richard.kim@moffitt.org
‡Principal investigator: Richard Kim

Abstract

Background: Neoadjuvant chemoradiation with fluoropyrimidine followed by surgery and adjuvant chemotherapy has been the standard treatment of locally advanced stages II and III rectal cancer for many years. There is a high risk for disease recurrence; therefore, optimizing chemoradiation strategies remains an unmet need. Based on a few studies, there is evidence of the synergistic effect of VEGF/PDGFR blockade with radiation.

Methods: In this phase I, dose-escalation and dose-expansion study, we studied 3 different dose levels of lenvatinib in combination with capecitabine-based chemoradiation for locally advanced rectal cancer.

Results: A total of 20 patients were enrolled, and 19 were eligible for assessment of efficacy. The combination was well tolerated, with an MTD of 24 mg lenvatinib. The downstaging rate for the cohort and the pCR was 84.2% and 37.8%, respectively. Blood-based protein biomarkers TSP-2, VEGF-R3, and VEGF correlated with NAR score and were also differentially expressed between response categories. The NAR, or neoadjuvant rectal score, encompasses cT clinical tumor stage, pT pathological tumor stage, and pN pathological nodal stage and provides a continuous variable for evaluating clinical trial outcomes.

Conclusion: The combination of lenvatinib with capecitabine and radiation in locally advanced rectal cancer was found to be safe and tolerable, and potential blood-based biomarkers were identified.

Clinical Trial Registration: NCT02935309

Key words: lenvatinib, radiation, rectal cancer.

Lessons Learned

• In this phase I study, the combination of lenvatinib with capecitabine and radiation were considered safe for the treatment of patients with locally advanced rectal cancer.
• In the cohort of 20 enrolled patients, 19 were evaluable; the downstaging rate was 84.2% and the pCR was 37.8%.
• Some potential blood-based biomarkers were identified.

Discussion

Various strategies have been studied to define the ideal treatment for locally advanced rectal cancer. Pre-operative chemoradiation is known to result in better pCR rates than pre-operative radiation alone (13.7% vs 5.3%; odds ratio 2.84; 95% CI, 1.75-4.59; P < .0001) and has been
the standard for several years as a treatment for locally advanced rectal cancer.1 Our study was able to achieve a pCR rate of 37.8%. However, we had no patients enrolled with T4 disease, which is known to be a characteristic of “high-risk” disease (Table 1).

In a study of KRAS-mutated rectal cancer, the combination of capecitabine and sorafenib with radiation yielded a pCR rate of 60%.2 The downstaging rate on this study was 81.6%, comparable to the 84.2% seen in our study. The study with sorafenib did report 15% grade 3 adverse events with diarrhea and 12.5% grade 3 adverse events with hand-foot-syndrome.3 Our study did not have excess of 10% of grade 3 adverse events, and this was mostly related to hypertension more commonly seen with lenvatinib than sorafenib. Patients with high NAR scores (>16) are associated with poor overall survival, those with low scores (<8) are associated with superior overall survival, and those in the middle have intermediate survival.3 In our study, the median NAR was 8.43 and mean was 10.37, and these scores are in the intermediate range. Overall, this was a well-tolerated regimen with few adverse events and no dose-limiting toxicities. There were no treatment interruptions due to treatment. No excess post-operative complications were reported due to the study treatment except for 1 patient who had wound dehiscence that was not attributed to the study treatment. Most adverse events were low grade and in line with some side effects expected of lenvatinib. In our study, baseline levels of 3 biomarkers, TSP-2, VEGF-R3, and VEGF, correlated with NAR score, and these levels were significantly different across different response group categories (Figure 1). While previous studies with the combination of bevacizumab did not lead to success in unselected patient population, our blood-based biomarkers may be extremely beneficial to enable discernment as to which patients will benefit the most from the addition of anti-angiogenic or a mixed protein kinase inhibitor that targets other receptors in the tumor stroma to chemoradiation.

Table 1. Patient characteristics at baseline and pathological outcomes (n = 19)
Age, years
Mean (standard deviation)
Median (min, max)
Sex, n (%)
Male
Female
Race/ethnicity, n (%)
Hispanic or Latino
White
Other/unknown
ECOG, n (%)
0
1
Clinical stage at diagnosis, n (%)
T2N1
T3N0
T3N1
T3N2
Interval between completion of chemoXRT and surgery
Median (standard deviation), days
Type of surgery, n (%)
LAR
APR
Pathological response, n (%)
pCR
pPR
pNR
NAR (Neoadjuvant rectal) score
Mean (min, max)
Median ± standard deviation

Abbreviations: LAR, low anterior resection; APR, abdominoperineal resection; pCR, pathological complete response; pPR, pathological partial response; pNR, pathological non response.

Author disclosures and references available online.
Additional Details of Endpoints or Study Design

Blood Biomarker Analyses
EDTA plasma was isolated from each patient by venipuncture at baseline (within 42 days preceding Day 1) and after completion of chemoradiation prior to surgery. The plasma levels of 25 biomarkers, including Ang-2, GP130, HGF, ICAM-1, IL-6, IL-6R, OPN, PDGF-AA, PDGF-BB, PIGF, SDF-1, TGF-b1, TGF-b2, TIMP-1, TSP-2, VCAM-1, VEGF, VEGF-C, VEGF-D, VEGF-R1, VEGF-R2, and VEGF-R3 were measured with the CircaScan multiplex platform (Quanterix, Billerica, Massachusetts), whereas BMP-9\(^\text{17}\), CD73\(^\text{18}\), and TGFb-R\(^\text{39}\) were tested as described previously.

Statistical Plan and Analyses
A standard “3+3” design was used to determine the MTD. In this study design, 3 patients were planned to be treated with a pre–determined dose of lenvatinib. The dose escalation was planned to stop with more than one DLT occurrence at any dose. Three additional patients were planned to be added if one out of 3 patients had DLT at any dose. With no DLT occurrence, three new patients were planned to be recruited to the study for the next dose of lenvatinib. The MTD of lenvatinib was defined as the highest dose level at which no more than 1 out of 6 subjects experienced DLT. At the MTD of lenvatinib, an additional expansion cohort of 10 patients was planned to be enrolled in the study to further assess the safety and efficacy of this agent in combination with capecitabine and radiation.

The pathological response rate was used to assess efficacy. The response was categorized as complete response (CR), partial response (PR), and no response (NR). To test biomarker changes in response to treatment, log transformed ratios (Lratios) were calculated using the formula: \(\log_2(\text{post–treatment level}/\text{baseline level})\). Fold changes were calculated post–treatment defined as post–treatment/baseline. Waterfall plots are shown to graphically illustrate changes. The Kruskal–Wallis test was used to test the association of the different biomarkers with treatment response and bees warm plots were used to depict this graphically. Spearman’s correlation coefficient was used to test the association of the biomarkers with NAR score and scatterplots were used to depict these graphically. Spearman’s correlation coefficient was used to test the association of the biomarkers with NAR score and scatterplots were used to depict these graphically. Spearman’s correlation coefficient was used to test the association of the biomarkers with NAR score and scatterplots were used to depict these graphically. Spearman’s correlation coefficient was used to test the association of the biomarkers with NAR score and scatterplots were used to depict these graphically. Spearman’s correlation coefficient was used to test the association of the biomarkers with NAR score and scatterplots were used to depict these graphically. Spearman’s correlation coefficient was used to test the association of the biomarkers with NAR score and scatterplots were used to depict these graphically. Spearman’s correlation coefficient was used to test the association of the biomarkers with NAR score and scatterplots were used to depict these graphically. Spearman’s correlation coefficient was used to test the association of the biomarkers with NAR score and scatterplots were used to depict these graphically. Spearman’s correlation coefficient was used to test the association of the biomarkers with NAR score and scatterplots were used to depict these graphically. Spearman’s correlation coefficient was used to test the association of the biomarkers with NAR score and scatterplots were used to depict these graphically. Spearman’s correlation coefficient was used to test the association of the biomarkers with NAR score and scatterplots were used to depict these graphically. Spearman’s correlation coefficient was used to test the association of the biomarkers with NAR score and scatterplots were used to depict these graphically. Spearman’s correlation coefficient was used to test the association of the biomarkers with NAR score and scatterplots were used to depict these graphically. Spearman’s correlation coefficient was used to test the association of the biomarkers with NAR score and scatterplots were used to depict these graphically. Spearman’s correlation coefficient was used to test the association of the biomarkers with NAR score and scatterplots were used to depict these graphically. Spearman’s correlation coefficient was used to test the association of the biomarkers with NAR score and scatterplots were used to depict these graphically. Spearman’s correlation coefficient was used to test the association of the biomarkers with NAR score and scatterplots were used to depict these graphically. Spearman’s correlation coefficient was used to test the association of the biomarkers with NAR score and scatterplots were used to depict these graphically. Spearman’s correlation coefficient was used to test the association of the biomarkers with NAR score and scatterplots were used to depict these graphically. Spearman’s correlation coefficient was used to test the association of the biomarkers with NAR score and scatterplots were used to depict these graphically. Spearman’s correlation coefficient was used to test the association of the biomarkers with NAR score and scatterplots were used to depict these graphically. Spearman’s correlation coefficient was used to test the association of the biomarkers with NAR score and scatterplots were used to depict these graphically. Spearman’s correlation coefficient was used to test the association of the biomarkers with NAR score and scatterplots were used to depict these graphically. Spearman’s correlation coefficient was used to test the association of the biomarkers with NAR score and scatterplots were used to depict these graphically. Spearman’s correlation coefficient was used to test the association of the biomarkers with NAR score and scatterplots were used to depict these graphically. Spearman’s correlation coefficient was used to test the association of the biomarkers with NAR score and scatterplots were used to depict these graphically. Spearman’s correlation coefficient was used to test the association of the biomarkers with NAR score and scatterplots were used to depict these graphically. Spearman’s correlation coefficient was used to test the association of the biomarkers with NAR score and scatterplots were used to depict these graphically. Spearman’s correlation coefficient was used to test the association of the biomarkers with NAR score and scatterplots were used to depict these graphically. Spearman’s correlation coefficient was used to test the association of the biomarkers with NAR score and scatterplots were used to depict these graphically. Spearman’s correlation coefficient was used to test the association of the biomarkers with NAR score and scatterplots were used to depict these graphically. Spearman’s correlation coefficient was used to test the association of the biomarkers with NAR score and scatterplots were used to depict these graphically. Spearman’s correlation coefficient was used to test the association of the biomarkers with NAR score and scatterplots were used to depict these graphically. Spearman’s correlation coefficient was used to test the association of the biomarkers with NAR score and scatterplots were used to depict these graphically. Spearman’s correlation coefficient was used to test the association of the biomarkers with NAR score and scatterplots were used to depict these graphically. Spearman’s correlation coefficient was used to test the association of the biomarkers with NAR score and scatterplots were used to depict these graphically. Spearman’s correlation coefficient was used to test the association of the biomarkers with NAR score and scatterplots were used to depict these graphically. Spearman’s correlation coefficient was used to test the association of the biomarkers with NAR score and scatterplots were used to depict these graphically. Spearman’s correlation coefficient was used to test the association of the biomarkers with NAR score and scatterplots were used to depict these graphically. Spearman’s correlation coefficient was used to test the association of the biomarkers with NAR score and scatterplots were used to depict these graphically. Spearman’s correlation coefficient was used to test the association of the biomarkers with NAR score and scatterplots were used to depict these graphically. Spearman’s correlation coefficient was used to test the association of the biomarkers with NAR score and scatterplots were used to depict these graphically. Spearman’s correlation coefficient was used to test the association of the biomarkers with NAR score and scatterplots were used to depict these graphically. Spearman’s correlation coefficient was used to test the association of the biomarkers with NAR score and scatterplots were used to depict these graphically. Spearman’s correlation coefficient was used to test the association of the biomarkers with NAR score and scatterplots were used to depict these graphically. Spearman’s correlation coefficient was used to test the association of the biomarkers with NAR score and scatterplots were used to depict these graphically.
Outcome Notes

Safety assessment was made using CTCAE v4.0. Assessment of efficacy was determined based on pathological response evaluated by post–operative pathological staging as well as Neoadjuvant Rectal (NAR) score to compare the initial clinical and final pathological staging. The TNM AJCC 7th edition was used to determine the pathological staging.

Seven (37.8%) patients achieved pathological complete response and additional nine patients (47.4%) had pathological downstaging. The total downstaging for the overall cohort was 84.2%. Three patients (15.8%) had no treatment response to lenvatinib and capcitabine-based neoadjuvant chemoradiation. The mean and median neoadjuvant rectal (NAR) score was 10.37 and 8.43, respectively. The median interval between completion of chemoradiation and surgery was 59 days.

Toxicities

No dose-limiting toxicities were noted. There were 5 patients treated on dose level 1 of 14 mg of lenvatinib, 3 patients on dose level 2 of 20 mg lenvatinib, and 12 patients on dose level 3 of 24 mg of lenvatinib. The most common any grade adverse events due to any cause were fatigue (n = 15), hypertension (n = 13), nausea (n = 13), radiation dermatitis (n = 10), diarrhea (n = 9) and urinary tract infection pain (n = 9). The only grade 3 adverse events due to any cause were hypertension (n = 3), decreased lymphocyte count (n = 3), increase in ALT (n = 1) and rectal pain (n = 1). The mean and median adverse events attributed to study treatment were fatigue (n = 15), nausea (n = 13), hypertension (n = 12) and radiation dermatitis (n = 10). The only grade 3 adverse events attributed to study treatment were fatigue (n = 9), nausea (n = 8), diarrhea (n = 5) and hypertension (n = 5). The dose level 3 of 24 mg lenvatinib was established as the MTD.

Surgical Outcomes and Pathological Response

All patients enrolled in the study completed preplanned chemoradiation with concurrent capcitabine and lenvatinib and underwent surgical resection of primary rectal cancer. The median interval between completion of chemoradiation and surgery was 59 days. Fourteen patients (73.7%) underwent low anterior resection (LAR). Among patients who underwent abdominal perineal resection (APR), 1 patient died due to infectious complications from a perineal wound dehiscence. The event occurred more than 30 days but less than 90 days after surgery. Post–operative specimens were reviewed for pathological tumor regression. Seven (37.8%) patients achieved pathological complete response and additional 9 patients (47.4%) had pathological downstaging. The total downstaging for the overall cohort was 84.2%. Three patients (15.8%) had no treatment response to lenvatinib and capcitabine-based neoadjuvant chemoradiation. The mean and median neoadjuvant rectal (NAR) score were 10.37 and 8.43, respectively.

Biomarker Analyses

Specimens for biomarker analyses were available from 18 patients. Of all the biomarkers evaluated, the highest median fold change from baseline to post-treatment was seen with PDGF-BB and PDGF-AA, with median values of 2.83 and 2.55, respectively. Expression levels of all biomarkers at baseline and post-treatment can be provided upon request. Baseline biomarker levels were also correlated with NAR score. The most significant markers were TSP-2, VEGF-R3, and VEGF with correlation coefficients being −0.672 (P = .0023), −0.529 (P = .00241) and −0.502 (P = .0337), respectively. The baseline expression of these same three markers, TSP-2, VEGF-R3, and VEGF, significantly differed across the response categories: pCR, pPR, and pNR with the highest values noted in pCR cases (P = .0031, .0078, and .0165, respectively) (Figure 1). The biomarkers that showed significant changes from baseline to post-treatment were TIMP-1 (P = .0024), BMP-9 (P = .0049), PlGF (P = .0068), VEGF-R3 (P = .0068), ICAM-1 (P = .0342), and TGF-b1 (P = .0425) (Table 2).

Adverse Events

Tables 3 and 4.
The current standard for the treatment of locally advanced stage II/III rectal cancer is pre-operative chemoradiation with fluoropyrimidine. When compared to post-operative radiation, pre-operative radiation has some advantages: decreasing tumor volume, radiating surgery naive tissue to potentially increase the radiation sensitivity, reducing the risk of exposing post-surgical bowel tissue and anastomosis from radiation, and increasing the likelihood of R0 resection. Various strategies have been studied to define the ideal treatment for locally advanced rectal cancer. Pre-operative chemoradiation is known to result in better pCR rates than pre-operative radiation alone (13.7% vs 5.3%; odds ratio 2.84; 95% CI, 1.75-4.59; P < .0001) and has been the standard for several years as a treatment for locally advanced rectal cancer. Several studies have been conducted to improve radiation sensitivity. The most common strategy studied has been to add oxaliplatin. Some studies have shown significant improvement in pCR rates with one study showing improvement in disease-free survival. However, the body of evidence indicates an overall higher risk for toxicities with the addition of oxaliplatin without clear overall survival benefit. In a study comparing pre-operative chemoradiation with 5FU or capecitabine with or without the addition of oxaliplatin, the pCR rates were 17.8% and 19.5%, respectively. However, the addition of oxaliplatin resulted in a significantly greater percentage of grades 3–5 diarrhea (16.5% vs 6.9%; P < .001). The three-year locoregional recurrence rate was similar with 5FU or sorafenib alone (13.7% vs 5.3%; odds ratio 2.84; 95% CI, 1.75-4.59; P < .0001) and has been the standard for several years as a treatment for locally advanced rectal cancer. In our study, the median NAR was 8.43 and the mean was 10.37, and these scores are in the intermediate range. It would be useful to validate the association of NAR score with survival in a larger study of this combination.

Overall, this was a well-tolerated regimen with few adverse events and no dose-limiting toxicities. There were no treatment interruptions due to treatment. No excess post-operative complications were reported due to the study treatment except for 1 patient who had wound dehiscence but was not attributed to the study treatment. Most adverse events were low grade and in line with some side effects expected of lenvatinib.

To this date, there are no reliable predictive biomarkers for TKIs. In our study, the baseline level of 3 biomarkers TSP-2, VEGF-R3, and VEGF correlated with NAR score and these levels were significantly different across different response group categories. TSP-2 encodes for thrombospondin-2 which has anti-angiogenesis properties. Patients with lower levels of TSP-2 at baseline did not show significant pathological response, possibly due to TSP-2 induced hypoxia. Hypoxia overall can lead to radioresistance. However, hypoxia can lead to the secretion of angiogenic factors such as VEGF and when combined with anti-angiogenesis agents can increase sensitivity to radiation. Thus, we postulate that tumors in a hypoxic environment have activation of angiogenic signaling that may increase the sensitivity to radiation combined with antiangiogenic agents. While previous studies with the combination of bevacizumab did not lead to success in unselected patient population, our blood-based biomarkers may be beneficial to enable discernment as to which patients will benefit the most from the addition of anti-angiogenic or a mixed protein kinase inhibitor that targets other receptors in the tumor stroma to chemoradiation.

There are some limitations to this study. This is a single-arm, single-institution study. Therefore, the results of the trial will need to be confirmed in a larger randomized trial. In the NRG-G1002 study, the TNT approach was tested with independent arms of combination chemoradiation with pembrolizumab or veliparib. The experimental arms with combination pembrolizumab or veliparib did not significantly improve pCR or NAR score; however, the combination of pembrolizumab or veliparib was considered safe when administered with chemoradiation for locally advanced rectal cancer.

In the era of total neoadjuvant treatment (TNT), this approach may seem outdated. However, we believe that this approach can be integrated as a treatment arm for the chemoradiation portion to help ensure more superior pCR rates and increase the chances for non-operative management. There is also increasing use of circulating tumor DNA (ctDNA) in stages II and III.
colo-rectal cancers. There are currently prospective trials ongoing to assess the utilization of ctDNA for escalation/de-escalation of systemic therapy in locally advanced colorectal cancer. This study is the first of its kind that has reported safety, efficacy, and correlative biomarker analyses of the novel combination of lenvatinib with capecitabine and radiation in locally advanced rectal cancer. We believe that the integration of ctDNA with the blood-based biomarkers will add significant value in designing a large trial with the combination of lenvatinib and capecitabine with radiation and identify the patients that will most likely benefit from the combination.

Funding

This study was supported by an unrestricted grant from Eisai.

Conflict of Interest

Rutika Mehta: Eli Lilly (C/A), BMS, Astellas (SAB), Daiichi Sankyo, Natera (H); Andrew Nixon: Eli Lilly, GSK, Promega Corporation, Leap Therapeutics, AdjuVolt Therapeutics (C/A), Genentech, HTG Molecular Diagnostics, MedImmune/AstraZeneca, Medpace, Promega Corporation, Seattle Genetics (RF), Core Correlatives Sciences Committee (NCTN-CCSC, Chair); Richard Kim: QED, Lilly, BMS, Bayer (C/A). The other authors indicated no financial relationships.

(C/A) Consulting/advisory relationship; (RF) Research funding; (E) Employment; (ET) Expert testimony; (H) Honoraria received; (OI) Ownership interests; (IP) Intellectual property rights/inventor/patent holder; (SAB) Scientific advisory board.

Data Availability

The data underlying this article will be shared on reasonable request to the corresponding author.

References

1. Kim R, Prithviraj GK, Shridhar R, et al. Phase I study of preoperative continuous 5-FU and sorafenib with external radiation therapy in locally advanced rectal adenocarcinoma. *Radiother Oncol*. 2016;118(2):382-386.
2. von Moos R, Koeberle D, Schacher S, et al.; Swiss Group for Clinical Cancer Research (SAKK). Neoadjuvant radiotherapy combined with capecitabine and sorafenib in patients with advanced KRAS-mutated rectal cancer: a phase II trial (SAKK 41/08). *Eur J Cancer*. 2018;89:82-89.
3. Glynn-Jones R, Glynn-Jones S. The concept and use of the neoadjuvant rectal score as a composite endpoint in rectal cancer. *Lancet Oncol*. 2021;22(7):e314-e326.
4. Bosset JF, Collette L, Calais G, et al.; EORTC Radiotherapy Group Trial 22921. Chemotherapy with preoperative radiotherapy in rectal cancer. *N Engl J Med*. 2006;355(11):1114-1123.
5. Deng Y, Chi P, Lan P, et al. Modified FOLFOX6 with or without radiation versus fluorouracil and leucovorin with radiation in neoadjuvant treatment of locally advanced rectal cancer: initial results of the Chinese FOWARC multicenter, open-label, randomized three-arm phase III trial. *J Clin Oncol*. 2016;34(27):3300-3307.
6. Rödel C, Graeven U, Fietkau R, et al.; German Rectal Cancer Study Group. Oxaliplatin added to fluorouracil-based preoperative chemoradiotherapy and postoperative chemoradiotherapy of locally advanced rectal cancer (the German CAO/ARO/AIO-04 study): final results of the multicentre, open-label, randomised, phase 3 trial. *Lancet Oncol*. 2015;16(8):979-989.
7. Ashele C, Cionini L, Lonardi S, et al. Primary tumor response to preoperative chemoradiation with or without oxaliplatin in locally advanced rectal cancer: pathologic results of the STAR-01 randomized phase III trial. *J Clin Oncol*. 2011;29(20):2773-2780.
8. Gérard JP, Azria D, Gourgou-Bourgade S, et al. Comparison of two neoadjuvant chemoradiotherapy regimens for locally advanced rectal cancer: results of the phase III trial ACCORD 12/0405-Prodige 2. *J Clin Oncol*. 2010;28(10):1638-1644.
9. O’Connell MJ, Colangelo LH, Bear RW, et al. Capecitabine and oxaliplatin in the preoperative multimodality treatment of rectal cancer: surgical end points from National Surgical Adjuvant Breast and Bowel Project trial R-04. *J Clin Oncol*. 2014;32(18):1927-1934.
10. Schmoll H-J, Haustermans K, Price TJ, et al. Neoadjuvant chemoradiotherapy and postoperative chemotherapy with capecitabine +/- oxaliplatin in locally advanced rectal cancer: Final results of PETACC-6. *J Clin Oncol*. 2018;36(15_suppl):3500-3500.
11. Allegra CJ, Yothers G, O’Connell MJ, et al. Neoadjuvant 5-FU or capecitabine plus radiation with or without oxaliplatin in rectal cancer patients: a phase III randomized clinical trial. *J Natl Cancer Inst*. 2015;107(11):djv248.
12. Sebag-Montefiore D, Adams R, Gollins S, et al. ARISTOTLE: a phase III trial comparing concurrent capecitabine with capecitabine and irinotecan (Ir) chemoradiation as preoperative treatment for MRI-defined locally advanced rectal cancer (LARC). *J Clin Oncol*. 2020;38(15_suppl):4101-4101.
13. Dewdney A, Cunningham D, Tabernero J, et al. Multicenter randomized phase II clinical trial comparing neoadjuvant oxaliplatin, capecitabine, and preoperative radiotherapy with or without cetuximab followed by total mesorectal excision in patients with high-risk rectal cancer (EXPERT-C). *J Clin Oncol*. 2012;30(14):1620-1627.
14. Helbling D, Bodoky G, Gautschi O, et al. Neoadjuvant chemoradiotherapy with or without panitumumab in patients with wild-type KRAS, locally advanced rectal cancer (LARC): a randomized, multicenter, phase II trial SAKK 41/07. *Ann Oncol*. 2013;24(3):718-723.
15. Landry JC, Feng Y, Prabhu RS, et al. Phase II trial of preoperative radiation with concurrent capecitabine, oxaliplatin, and bevacizumab followed by surgery and postoperative 5-Fluorouracil, Leucovorin, Oxaliplatin (FOLFOX), and bevacizumab in patients with locally advanced rectal cancer: 5-year clinical outcomes ECOG-ACRIN cancer research group E3204. *Oncologist*. 2015;20(6):615-616.
16. Salazar R, Capdevila J, Laquette B, et al. A randomized phase II study of capecitabine-based chemoradiation with or without bevacizumab in resectable locally advanced rectal cancer: clinical and biological features. *BMC Cancer*. 2015;15:60.
17. Bornstein P, Armstrong LG, Hankenson KD, Kyriakides TR, Yang Z. Thrombospondin 2, a matricellular protein with diverse functions. *Matrix Biol*. 2000;19(7):557-568.
18. Wachserberger P, Burd R, Dicker AP. Tumor response to ionizing radiation combined with antiangiogenesis or vascular targeting agents: exploring mechanisms of interaction. *Clin Cancer Res*. 2003;9(6):1957-1971.
19. George TJ, Yothers G, Hong TS, et al. NRG-GI002: a phase II clinical trial platform using total neoadjuvant therapy (TNT) in locally advanced rectal cancer (LARC)—First experimental arm (EA) initial results. *J Clin Oncol*. 2019;37(15_suppl):3505-3505.
20. Rahma OE, Yothers G, Hong TS, et al. NRG-GI002: a phase II clinical trial platform using total neoadjuvant therapy (TNT) in locally advanced rectal cancer (LARC)—Pembrolizumab experimental arm (EA) primary results. *J Clin Oncol*. 2021;39(3_suppl):e18.
21. Kasi PM, Sawyer S, Guilford J, et al. A multicenter study to evaluate the impact of circulating tumor DNA guided therapy (BESPOKE) in patients with stage II and III colorectal cancer. *Ann Oncol*. 2020;31(4):S459.
Figure 1. Baseline levels of three markers significantly differ across outcome groups.
Table 2. Biomarker levels at baseline and post-treatment. Fold change (post-chemo/baseline) was calculated for each patient and averaged.

Biomarker	Unit	Baseline (n = 18)	Post-chemo (n = 12)	Fold change: median (range)
Ang2	pg/mL	396.65 (170.06-959.7)	375.9 (184.69-827.5)	1.01 (0.48-1.89)
BMP9	pg/mL	87.64 (37.39-382.25)	163.49 (41.34-318.91)	1.58 (0.89-5.53)
CD73	pg/mL	0.25 (0.01-23.29)	0.39 (0.02-9.91)	1.12 (0.03-143.52)
GP130	ng/mL	279.05 (187.10-432.95)	315.30 (208.00-468.15)	1.1 (0.5-2)
HGF	pg/mL	139.48 (47.19-292.9)	160.83 (34.26-357.6)	1.1 (0.28-2.05)
ICAM1	ng/mL	449.65 (284.10-889.05)	436.50 (310.55-649.90)	1.07 (0.89-1.3)
IL6	pg/mL	2.63 (0.49-6.47)	1.98 (0.4-6.9)	1.31 (0.13-3.37)
IL6R	ng/mL	35.13 (23.08-48.36)	39.88 (23.06-56.01)	1.03 (0.93-1.51)
OPN	ng/mL	87.35 (43.96-235.39)	93.41 (67.89-205.43)	1.08 (0.65-1.75)
PDGFxAA	pg/mL	126.06 (7.84-1714.88)	291.19 (69.55-3182.5)	2.55 (0.36-22.16)
PDGFxBB	pg/mL	515.92 (54.34-10325)	1893.75 (191.43-10015)	2.83 (0.23-13.07)
PI GF	pg/mL	11.8 (4.72-24.7)	16.03 (9.43-32.54)	1.5 (0.9-2.41)
SDF1	ng/mL	1.62 (0.58-3.17)	1.79 (0.25-4.38)	1.16 (0.31-3.07)
TGFb1	ng/mL	17.17 (9.72-107.88)	26.41 (11.93-114.68)	1.37 (0.33-6.22)
TGFb2	pg/mL	55.71 (36.04-93.22)	79.32 (32.75-194.47)	1.28 (0.35-3.18)
TGFbR3	ng/mL	125.93 (79.32-171.63)	120.68 (84.08-194.68)	1.18 (0.63-1.45)
TIMP1	ng/mL	61.58 (40.56-112.85)	83.79 (56.82-139.55)	1.33 (0.93-2.22)
TSP2	ng/mL	131.70 (64.05-275.30)	189.15 (115.88-242.48)	1.13 (0.72-2.15)
VCAM1	ug/mL	1.97 (1.49-3.40)	2.37 (1.50-3.02)	0.92 (0.84-1.68)
VEGF	pg/mL	38.55 (18.84-109.3)	46.59 (23.11-77.54)	1.31 (0.24-1.88)
VEGFC	pg/mL	574.06 (321.22-2488.03)	773.27 (378.33-2669.72)	1.25 (0.39-3.58)
VEGFD	ng/mL	1.12 (0.81-2.79)	1.27 (1.05-2.96)	1.15 (0.75-2.67)
VEGFR1	pg/mL	63.14 (13.55-98.42)	67.4 (29.2-146.96)	1.15 (0.45-1.83)
VEGFR2	ng/mL	4.84 (1.13-7.28)	4.82 (3.08-7.30)	0.97 (0.7-1.25)
VEGFR3	ng/mL	164.04 (63.40-285.03)	245.03 (150.23-342.40)	1.18 (0.94-1.97)
Table 3. Adverse events reported due to any cause with lenvatinib combined with capecitabine based chemoradiation in locally advanced rectal cancer (N = 20)

Adverse events	Cohort 1 dose level (14 mg) (N = 5)	Cohort 2 dose level (20 mg) (N = 3)	Cohort 3 dose level (24 mg) (N = 12)	Total	Total grade 3	
	NCI-CTC grade					
Blood and lymphatic system disorders						
White blood cell count decreased	2	2	0			
Lymphocyte count decrease	1	1	2			
Neutrophil count decrease	2	1	7			
Platelet count decreased	1	0	2			
Gastrointestinal disorders						
Anorexia	2	1	3	6	0	
Buttock pain	1	1	0			
Alanine aminotransferase increased	1	1	1			
Aspartate aminotransferase increased	1	1	0			
Constipation	2	1	1	3	0	
Diarrhea	1	3	5	9	0	
Dry mouth	1	1	0			
Dyspepsia	1	1	0			
Fecal Incontinence	1	1	0			
Flatulence	1	1	1	3	0	
Hemorrhoids	1	1	0			
Hiccups	1	1	0			
Nausea	2	3	7	13	0	
Oral dysesthesia	1	1	0			
Oral pain	1	1	0			
Rectal Pain	2	1	1	2	4	1
Proctitis	2	2	2	2	8	0
Vomiting	2	2	0			
GI disorders—others	1	3	2	6	0	
GU/GYN disorders						
Creatinine elevation	1	1	0			
Erectile dysfunction	2	2	0			
Hematuria	1	1	0			
Proteinuria	1	1	0			
Urinary frequency	1	1	0			
Urinary incontinence	1	1	0			
Urinary urgency	2	2	0			
Urinary tract infection	1	1	0			
Other renal and urinary disorders	1	1	0			
Urinary tract pain	2	1	6	9	0	
Breast pain	1	0				
Table 3. Continued

Adverse events	Cohort 1 dose level (14 mg) (N = 5)	Cohort 2 dose level (20 mg) (N = 3)	Cohort 3 dose level (24 mg) (N = 12)	Total	Total grade 3									
	NCI-CTC grade	NCI-CTC grade	NCI-CTC grade											
	1	2	3	1	2	3	1	2	3	1	2	3		
Skin/cutaneous														
Dermatitis radiation	2	1		2	1		3	1					10	0
Limb edema		1				1							1	0
Palmar-plantar erythrodynesthesia syndrome	1												1	0
Pruritis	3	1		1		4							8	0
Papulopustular rash	1						1					0	1	0
Rash-maculo-papular					1								1	0
Thorax/cardiovascular														
Chest pain		1			1		2	0					2	0
Dyspnea	1	1		1			3	0					3	0
Hypertension	1	3	3	3	3	13	3						13	3
Hypotension	1												1	0
Palpitations				1			1	0					1	0
Sinus bradycardia							1	0					1	0
Electrolyte abnormalities														
Hyperglycemia	1			1		2	0						2	0
Hypokalemia					1		1	0					1	0
Others														
Anxiety	2			1		3	0						3	0
Arthralgia	1												1	0
Back pain		1				1							1	0
Blurred vision	1					1							1	0
Chills	2						2	0					2	0
Depression	1					1							1	0
Dizziness	1						2	0					2	0
Fatigue	3	1	2				9	15	0				15	0
Fever	1						1	0					1	0
Non-cardiac chest pain	1			1		2	0						2	0
Headache	1	3	1		5								5	0
Hoarseness		3								3			3	0
Infections	1					1							1	0
Insomnia	2	2		1		5	0						5	0
Myalgia	2												2	0
Pain	1			2		3	0						3	0
Pain in extremity				1			1	0					1	0
Photophobia				1			1	0					1	0
Somnolence	1												1	0
Weight loss		1			1		1	0					1	0
Other general disorders, non-specified	1						1	0					1	0
Table 4. Adverse events related to treatment with lenvatinib combined with capecitabine based chemoradiation in locally advanced rectal cancer (N = 20)

Adverse events	Cohort 1 dose level (N = 5)	Cohort 2 dose level (N = 3)	Cohort 3 dose level (N = 12)	Total	Total grade 3									
	NCI-CTC grade	1	2	3	NCI-CTC grade	1	2	3	NCI-CTC grade	1	2	3		
Blood and lymphatic system disorder														
Neutrophil count decreased		1												
Lymphocyte count decreased		1	1	2										
Platelet count decreased		2												
White blood cell count decreased		2												
Gastrointestinal disorders														
Anorexia		2												
Buttock pain		1												
Constipation		1												
Diarrhea		1												
Fecal incontinence		2												
Nausea		2												
Oral pain		1												
Proctitis		2												
Rectal pain		1												
Vomiting		2												
Oral dysesthesia		1												
Other gastrointestinal disorders		1												
General disorders and administration site conditions														
Dry mouth		3												
Fatigue		1												
Injury, poisoning and procedural complications														
Aspartate aminotransferase increased		1												
Skin and subcutaneous tissue disorders														
Palmar plantar erythrodysesthesia syndrome		1												
Papulopustular rash		1												
Dermatitis radiation		2												
Pruritis		3												
Rash maculo-papular		1												
Cardiovascular disorders														
Sinus bradycardia		1												
Hypertension		1												
Infections and cutaneous														
Urinary tract infection		1												
Other infections and infestations		1												
Adverse events	Cohort 1 dose level (N = 5) NCI-CTC grade	Cohort 2 dose level (N = 3) NCI-CTC grade	Cohort 3 dose level (N = 12) NCI-CTC grade	Total	Total grade 3									
--------------------------------	--	---	--	-------	---------------									
	1	2	3											
Miscellaneous														
Arthralgia	1													
Creatinine increased	1													
Headache	2	1	3	1	0									
Myalgia	1													
Urinary frequency	1													
Urinary incontinence	1													
Urinary urgency				1	0									
Urinary tract pain	1	1	2	2	0									
Erectile dysfunction			1	1	0									
Hiccups	1													
Hoarseness	3			3	0									
Other renal and urinary disorders				1	0									