Approximate Solution of 2-Dimensional VO Linear Fractional Partial Differential Equation

Nabaa N. Hasan, Omar H. Salim

Department of Mathematics, College of Science, Mustansiriyah University, Baghdad, Iraq

Email1: alzaer1972@uomustansiriyah.edu.iq

Abstract. The non-polynomial spline method has been used to solving 2-dimensional variable-order (VO) fractional partial differential equations (FPDE). For VO fractional derivative, described in the sense of the Caputo. The main objective of this study and advantage of the proposed method is to investigate a public approximation for the frequency of the trigonometric functions of the non-polynomial part of the spline function. The powerful algorithm of the proposed method gives high accuracy results.

1. Introduction
The variable-order fractional is the one of most important tool in nowadays, with successful applied in mechanics [1], It can be used in the design of abnormal diffusion because it can depict the time-based diffusion process more efficiently than the partial derivative of the static arrangement means that the order of α.[2-3]. The topic is very active and of great interest due to its many applications, not only in Mathematics, but also in physics and in engineering, and it has proven that it describes complex phenomena in nature better and more broadly. [4-10]. The effect of differences between the use of fixed-order and variable-order fractional derivatives has been discussed and studied in [11].The addition and mathematical formalization of coefficients of variable-order fractions. The Evolutionary control equations for successful application have led to the modelling of complex world problems, from the study of biology and mechanics to transport processes and to many important applications. Partial variable calculus is an unknown branch of calculus that provides wonderful opportunities to simulate interdisciplinary processes. The scientific community has been extensively exploring the applications of fractional variable order in modelling and physical systems engineering. Among the goals of this work, will be starting point for researchers who interested in approaching this wonderful topic. We are interested in developing computational and analytical methods and applying complex physical systems using advanced simulation software. For more details, see [12-18].

This paper proposes non-polynomial spline functions (SF) to approximate the solution of the fractional partial differential equations of variable order (FPDEVO).
2. Definitions and properties:

2.1 Some Definitions:
In this part, some necessary and important definitions and mathematical principles of variable-order fractional derivatives and some properties of fractional derivatives will be mentioned.

Definition 2.1 [19] The Caputo and Riemann fractional derivatives of order α of $f(t)$ defined as:

$$\overset{\circ}{C}D^\alpha f(t) = \frac{1}{\Gamma(n-\alpha)} \int_0^t \frac{f^{(n)}(s)}{(t-s)^{\alpha-n+1}} ds$$

$$\alpha D_t^\alpha f(t) = \frac{1}{\Gamma(n-\alpha)} \frac{d^n}{dt^n} \int_0^t \frac{f(s)}{(t-s)^{\alpha-n+1}} ds,$$ \hspace{1cm} ...(1)

where $n-1 < \alpha \leq n$, $n \in \mathbb{N}$ and $n > 0$.

After folding the definition of fixed-order fractional derivatives, we show the variable-order fractional differentiation factor. Fixed-order fractional derivatives are expanded into the variable-order fractional meaning.

Definition 2.2 [19] The Riemann FPDEO of $\alpha(t)$ is defined as:

$$\overset{\circ}{D}_t^{\alpha(t)} f(t) = \frac{1}{\Gamma(n-\alpha(t))} \frac{d^n}{dt^n} \int_0^t \frac{f(s)}{(t-s)^{\alpha(t)-n+1}} ds$$ \hspace{1cm} ...(2)

where $n-1 < \alpha_{\text{min}} < \alpha(t) < \alpha_{\text{max}} < n$, $n \in \mathbb{N}$ for $t \in [0, \tau]$.

Other definitions of the derivative of variable arrangement have been proposed with respect to Caputo.

Definition 2.3 [19] Let $n-1 < \alpha(t) \leq n$ for all $t \in [0, \tau]$ the operator $\overset{\circ}{C}D_t^{\alpha(t)}$ defined by

$$\overset{\circ}{C}D_t^{\alpha(t)} f(t) = \frac{1}{\Gamma(n-\alpha(t))} \int_0^t \frac{f^{(n)}(s)}{(t-s)^{\alpha(t)-n+1}} ds$$ \hspace{1cm} ...(3)

and

$$\overset{\circ}{D}_b^{\alpha(t)} f(t) = \frac{1}{\Gamma(n-\alpha(t))} \frac{d^n}{dt^n} \int_0^t \frac{f(s)}{(t-s)^{\alpha(t)-n+1}} ds$$

is called the Caputo fractional derivative of VO of $\alpha(t)$.

If $\alpha(t)$ is a constant function, then the order of the partial variable is changed to the derivative of the constant order. The two definitions of variable-order derivatives are not generally equivalent, but are related by the following relationship:

$$\alpha D_t^{\alpha(t)} f(t) = \sum_{k=0}^{n-1} \frac{f^{(k)}(0) t^{k-\alpha(t)}}{\Gamma(k+1-\alpha(t))} + \overset{\circ}{D}_t^{\alpha(t)} f(t).$$ \hspace{1cm} ...(4)

The formula for the fractional Caputo derivative, $0 < \alpha(t) \leq 1$:

\[c_0^\alpha D_t^\beta x^\beta = \begin{cases} 0, & \beta = 0, \\ \frac{\Gamma(\beta+1)}{\Gamma(\beta+1-\alpha(t))} x^{\beta-\alpha(t)}, & \beta = 0,1,2,\ldots \end{cases} \quad \ldots (5) \]

Definition 2.4 [20] Let 0 < α(x, t) ≤ 1 the operator \(c_0^\alpha D_t^{\alpha(x,t)} \) defined by

\[c_0^\alpha D_t^{\alpha(x,t)} u(x,t) = \frac{1}{\Gamma(n-\alpha(x,t))} \int_0^x \frac{1}{(x-s)^{\alpha(x,s)-n+1}} \frac{\partial^n u(x,t)}{\partial s^n} \, ds \quad \ldots (6) \]

is called the Caputo space fractional derivative of variable-order. Next, let us introduce some properties of fractional derivatives [21].

1- Linearity: if the operator \(D_t^\alpha(A g_1(t) + B g_2(t)) = A D_t^\alpha g_1(t) + B D_t^\alpha g_2(t) \), then of must be linear. where \(g_1(t) \) and \(g_2(t) \) are any two function, \(A, B \in \mathbb{R} \), \(\mathbb{R} \) be a regain s.t \(\mathbb{R} = \{(x,t): a \leq x \leq b, c \leq t \leq d\}, \alpha \in \mathbb{R}^+ \) for any type of fractional derivatives.

2- Analyticity:-if \(f(x) \) is analytic then \(D_t^\alpha f(x) \) is also analytic function of order \(\alpha \) and \(z \)

3- Law of exponents :- \(D_t^\alpha a D_t^\beta f(t) = D_t^{\alpha+\beta} f(t) \), and existence the inverse of the operator \(D_t^\alpha a D_t^{-\alpha} f(t) = f(t) \).

4- Identity: if \(D_t^\alpha f(t) = f(t) \), then \(D_t^\alpha f(t) \) is identity when \(\alpha \) is zero order.

2.2 Two-dimensional non-polynomial spline for solving FPDEVO

Consider the partition \(\Delta = \{t_0, t_1, t_2, \ldots, t_n\} \) of \([a, b] \in \mathbb{R} \). Let \(S(\Delta) \) indicate the set of piecewise polynomials on interval \(I_i = [t_i, t_{i+1}] \) of partition \(\Delta \), let \(u(x,t) \) be the exact solution, this new method provides an approximation. Also, \(C^\omega \) in the trigonometric portion of the non-polynomial slices it compensates for the loss of smoothness inherited by the polynomial. The non-polynomial spline function, obtained by the segment \(P_i(t) \). Each non-polynomial spline of \(n \) order \(P_i(t) \) has the form:

\[p_i(t) = a_i \cos k(t - t_i) + b_i \sin k(t - t_i) + \cdots + y_i(t - t_i)^{n-1} + z_i \]

\[\ldots (7) \]

Where \(a_i, b_i, y_i \), and \(z_i \) are constants and \(k \) is repeat the trigonometric functions that will be used to increase the accuracy of the method of order \(\alpha, 0 < \alpha \leq 1 \).

Definition 3.1 [22] Let \(a_i, b_i, c_i \) and \(d_i \) are constants to be determined

\[p_i(t) = a_i \cos k(t - t_i) + b_i \sin k(t - t_i) + c_i(t - t_i) + d_i \]

\[\ldots (8) \]

is called Linear Non-Polynomial SF

Now, by tensor product we will construct two dimensional non-polynomial spline. Let \(\mathbb{R} \) be a regain s.t \(\mathbb{R} = \{(x,t): a \leq x \leq b, \, c \leq t \leq d\} \) the method of finding two dimensional functions \(g(x,y) \) in a tensor product space \(S_1 \otimes S_2 \), such that \(S_1 = \text{span} \{\cos(t), \sin(t), t, 1\} \) and \(S_2 = \text{span} \{\cos(x), \sin(x), x, 1\} \)

\[S_1 \otimes S_2 = z(x,t) \quad \ldots (9) \]

Let the matrix form:

\[A C = \Phi \quad \ldots (10) \]

where \(A = \Psi \otimes \Phi \) is tensor product of two matrices \(\Psi \) and \(\Phi \) of dimensions \(n \times m \)

\[\Psi = \begin{bmatrix} a_{1,1} & \cdots & a_{1,m} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,m} \end{bmatrix}, \quad \Phi = \begin{bmatrix} b_{1,1} & \cdots & b_{1,m} \\ \vdots & \ddots & \vdots \\ b_{n,1} & \cdots & b_{n,m} \end{bmatrix} \]
\[A = \Psi \otimes \Phi = \begin{bmatrix} a_{1,1} \Phi & \ldots & a_{1,m} \Phi \\ \vdots & \ddots & \vdots \\ a_{n,1} \Phi & \ldots & a_{n,m} \Phi \end{bmatrix} \]

and

\[C = [c_{1,1} \ldots c_{m,1} c_{1,2} \ldots c_{m,2} \ldots c_{m,n}]^T \]

\[F = [f_{1,1} \ldots f_{m,1} f_{1,2} \ldots f_{m,2} \ldots f_{m,n}]^T \]

Solve (10) to find the unknown vector.

The following theorem present the two dimensional linear non-polynomial spline functions that will be used to evaluate the approximate solution of FPDEVO which is achieved by evaluating Caputo fractional derivative of the spline basis.

Theorem 3.1 The Caputo variable-order fractional derivative of the linear non-polynomial spline approximate the solution of FPDEVO’s of the form

\[D^{\alpha(x,t)}u(x,t) = f(x,t,u_x,u_t,u_{xx},u_{tt}), \ 0 \leq x \leq 1, 0 \leq \alpha(x,t) \leq 1, t > 0 \ldots (11) \]

with initial condition \(u(x,0) = g_1(x), 0 \leq x \leq 1 \ldots (12) \)

and boundary condition \(u(0,t) = g_2(t), \ u(1,t) = g_3(t), t > 0 \ldots (13) \)

where \(g_1(x), g_2(t) \) and \(g_3(t) \) are arbitrary functions.

proof:

Let \(z(x,t) = \sum_{i=0}^{m} \sum_{j=0}^{n} c_{i,j} \psi_j(t) \phi_i(x) \ldots (14) \)

where \(\phi_i(x) \) and \(\psi_j(t) \) are the basis of the linear non-polynomial spline function.

From the initial condition given by equation (12), one may get:

\[\sum_{i=0}^{m} \sum_{j=0}^{n} c_{i,j} \psi_j(0) \phi_i(x) = g_1(x) \ldots (15) \]

substituting the knot points for the x-axis to get an equation for each knot point, and form boundary condition given in equation (13), we have

\[\sum_{i=0}^{m} \sum_{j=0}^{n} c_{i,j} \psi_j(t) \phi_i(0) = g_2(t) \ldots (16) \]

and \(\sum_{i=0}^{m} \sum_{j=0}^{n} c_{i,j} \psi_j(t) \phi_i(1) = g_3(t) \ldots (17) \)

similarly, substituting the knot points for the t-axis to get an equation for each knot point at \(x = 0 \) and \(x = 1 \)

the assumed solution in equation (14) is substituted in equation (11), we have

\[\sum_{i=0}^{m} \sum_{j=0}^{n} c_{i,j} \psi_j(t) \phi_i(x) = f(x,t,\psi'(t),\phi'(x),\psi''(t),\phi''(x)) \ldots (18) \]

substitute the knot points \((x_i,t_j) \) for \(i = 0,1,2, \ldots, m \), \(j = 0,1,2, \ldots, n \), to get an equation for each pair \((i,j) \), for all \(i = 0,1,2, \ldots, m \), \(j = 0,1,2, \ldots, n \) then from equations (14-18) and a system with unknown coefficients \(c_{i,j} \) must be determined to compute equation (14).

Now, present the method in the following algorithm FPDEVO:
The Algorithm (3.1): (FPDEVO)
To find the approximate solution to (14), we choose \(n > 0 \) and follow these steps:

Step 1: Set \(h = (a - b)/n, \ x_i = x_o + i \ h, i = 0,1,2, ..., n \)
where \(x_o = a, x_n = b \)

Step 2: Set \(k = (d - c)/m, \ \ t_j = t_o + j \ k, j = 0,1,2,....m \) where \(t_o = c, t_m = d \)

Step 3: Evaluate \(a_o b_o, c_o and d_o \) in comparison with equation (8)

Step 4: Calculate the matrix \(A \) by using equations 11-14

Step 5: Evaluate the vector \(F \) by using (10)

Step 6: Calculate \(A^{-1} \) by step 4

Step 7: Evaluate the coefficient \(C_{i,j} \) by using step 5 and step 6 such that \(C_{i,j} = A^{-1} F \) by using equation (10)

Step 8: Calculate approximate solution \(z(x,t) \) using step 7 and equation (14)

3. Illustrative Example
There are two illustrative examples of variable order linear fractional partial differential equations to prove the proposed action linear non-polynomial partial spline method, where MathCad 15 program applied for computation the results.

Example 3.1

\[D^2_x u(x,t) + 0.5 \cos \left(\frac{\alpha(x,t) \pi}{2} \right) D^\alpha_x u(x,t) - \frac{2}{t^{4+1}} u(x,t) = f(x,t) \]

for \(x \in [0,1], t \in [0,1] \)

subject to initial condition (IC): \(u(x,0) = x^2(8 - x) \)

and the boundary conditions (BC): \(u(0,t) = 0 \), \(u(1,t) = 7(t^2 + 1) \)

the exact solution [20] given by:

\[u(x,t) = x^2(8 - x)(t^2 + 1) \]

with \(f(x,t) = -(t^2 + 1) \left(\frac{16 x^2 - \alpha(x,t)}{t(3 - \alpha(x,t))} + \frac{6 x^3 - \alpha(x,t)}{t(4 - \alpha(x,t))} \right) \]

and \(\alpha(x,t) = 1.5 + 0.5e^{-(x/t^2)} \)

by algorithm (3.1) the approximate solution is:

\[z(x,t) = (-85.484 \cos t - 40.66 \sin t + 81.904 t + 70.891) \cos x \]

\[+ (397.705 \cos t - 15.124 \sin t - 36.852 t - 398.745) \sin x \]

\[+ (-388.014 \cos t + 6.369 \times 10^{-6} \sin t + 62.695 t + 389.181) x \]

\[+ (85.484 \cos t + 40.66 \sin t - 81.904 t - 70.891) \]

Table (3.1) illustrate the exact, approximate solution and absolute error

X	0	0.01	0.02	0.03	1/3	0.01	0.02	0.03	2/3	0.01	0.02
t	0	0	0	0	0	0.852	0.852	0.898	0.853	3.259	3.275
u(x,t)	0	0.852	0.852	0.898	0.853	3.259	3.267	3.275	3.261	1.833×10^{-4}	
z(x,t)	0	0.852	0.852	0.898	0.853	3.259	3.275	3.267	3.261	1.833×10^{-4}	
The approximation solution $z(x, t)$ and the exact solution $u(x, t)$ are illustrated in figure (3.1), and the absolute error $e_r(x, t)$ is given in figure (3.2).

Table 1: Accuracy Comparison

t	z	u	e_r
0	7	7	2.386×10^{-4}
0.01	7.001	7.001	2.3×10^{-4}
0.02	7.003	7.003	2.214×10^{-4}
0.03	7.007	7.006	2.065×10^{-4}

Figure (3.1): the approximate surface $z(x, t)$ and the exact surface $u(x, t)$ for example (3.1)

Figure (3.2): the error $e_r(x, t)$ for example (3.1)
Figure (3.1) summarizes the results approximate solution $z(x,t)$ in Table (3.1) gives a more realistic approximation $az(x,t) = 1.5 + 0.5e^{-(x/t)^{2-1}}$.

Example (3.2):
\[
\begin{align*}
\frac{\partial}{\partial t}D_t^{\alpha(x,t)}u(x,t) - D_xu(x,t) + D_tu(x,t) - D_x^2u(x,t) &= f(x,t), \text{ for } x \in [0,1], t \in [0,1] \\
\text{subject to } IC: u(x,0) &= 5x(1-x) \\
\text{and BC: } u(0,t) &= u(1,t) = 0
\end{align*}
\]

the exact solution [23] given by $u(x,t) = 5x(t + 1)(1 - x)$

with $f(x,t) = -\frac{5x(1-x)}{(3-\alpha(x,t))} t^{1-\alpha(x,t)} - 5(t(2x - 3) + x^2 + x - 3)$

and $\alpha(x,t) = 0.8 + 0.005 \sin(x) \cos(tx) $

by algorithm (3.1) the approximate solution is:

\[
\begin{align*}
z(x,t) &= (-4.857 \cos t - 0.626 \sin t + 8.906 t + 13.839) \cos x \\
&\quad + (7.246 \cos t - 0.255 \sin t + 5.808 t - 2.39) \sin x \\
&\quad + (-8.33 \cos t + 7.573 \times 10^{-8} \sin t + 0.867 t + 8.33)x \\
&\quad + (4.857 \cos t + 0.626 \sin t + 8.906 t - 13.839)
\end{align*}
\]

Table (3.2) illustrate the exact approximate solution and absolute error

| X | t | $z(x,t)$ | $u(x,t)$ | $|z(x,t) - u(x,t)|$ |
|---|---|---------|---------|------------------|
| 0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.01 | 0.0 | 0.0 | 0.0 |
| 0.02 | 0.0 | 0.0 | 0.0 |
| 0.03 | 0.0 | 0.0 | 0.0 |
| 1/3 | 0 | 1.111 | 1.111 | 0.356 $\times 10^{-4}$ |
| 0.01 | 1.122 | 1.122 | 0.346 $\times 10^{-3}$ |
| 0.02 | 1.133 | 1.133 | 0.714 $\times 10^{-3}$ |
| 0.03 | 1.143 | 1.144 | 0.107 $\times 10^{-2}$ |
| 2/3 | 0 | 1.111 | 1.111 | 0.688 $\times 10^{-4}$ |
| 0.01 | 1.122 | 1.122 | 0.211 $\times 10^{-3}$ |
| 0.02 | 1.133 | 1.133 | 0.487 $\times 10^{-3}$ |
| 0.03 | 1.144 | 1.144 | 0.761 $\times 10^{-3}$ |
| 1 | 0 | 0.9343 $\times 10^{-4}$ | 0 | 0.9343 $\times 10^{-4}$ |
| 0.01 | 0.8733 $\times 10^{-4}$ | 0 | 0.8733 $\times 10^{-4}$ |
| 0.02 | 0.8116 $\times 10^{-4}$ | 0 | 0.8116 $\times 10^{-4}$ |
| 0.03 | 0.743 $\times 10^{-4}$ | 0 | 0.743 $\times 10^{-4}$ |

The approximation solution $z(x,t)$ and the exact solution $u(x,t)$ are illustrated in figure (3.3), and the absolute error $e(x,t)$ is given in figure (3.4)
Figure (3.3): the approximate surface $z(x, t)$ and the exact surface $u(x, t)$ for example (3.2)

Figure (3.4): the error $e(x, t)$ for example (3.2)

Figure (3.3) summarizes the results. The approximate solution $z(x, t)$ in Table (3.2) gives a more realistic approximation at $x = 0.8 + 0.005 \sin(x) \cos(tx)$.

Conclusion and future work

The linear non-polynomial spline function is presented for solving the FPDEVO. Our proposed method is based on trigonometric and polynomial, and it is completely different from the previously shown methods. The results in Table 3.1, 3.2 and figures 3.1, 3.3 show that the proposed method can be used to solve the problem with high accuracy.
Indeed, implementation of an FPDEVO algorithm may also be on our future lines of research. Also we may use the proposed method to solve system of FPDEVO.

References

[1] Coimbra C F M 2003 Mechanics with variable order differential operators Ann. Phys. 12 692–703
[2] Pedro H T C Pereira and J M C Coimbra C.F.M 2008 Variable-order modeling of diffusive convective effects on the oscillatory flow past a sphere J. Vib. Control 14 1659–1672
[3] Sun H G and Chen Y Q 2009 Variable order fractional differential operators in anomalous diffusion modeling Phys. A 388, 4586–4592
[4] Podlubny I 1999 Fractional Differential Equations”. Mathematics in Science and Engineering 198 Academic Press, San Diego, CA
[5] Tenreiro Machado J A 2011 Complex Order Vander Pol oscillator Nonlinear Dyn. 65 247–254
[6] Muslih S I and Rabei E M 2008 On fractional Euler–Lagrange and Hamilton equations and the fractional generalization of total time derivative Nonlinear Dyn. 53 67–74
[7] Valerio D, Trujillo J J, Tenreiro Machado J A and Baleanu D 2013 Fractional calculus: a survey of useful formulas Eur. Phys. J. Spec. Top. 222 1827–1846
[8] Guo X and Xu M 2006 Some physical Applications of Fractional Schrödinger equation J. Math. Phys. 47 82104
[9] Bohannan G 2008 Analog Fractional Order Control Erin Temperature and motor Control Applications J. Vib. Control 14 1487–1498
[10] Das S 2008 Functional Fractional Calculus for System Identification and Controls”. Springer New York
[11] Sun, H G, Wei H and Chen Y Q 2011 Comparative Study of Constant-Order and Variable-Order Fractional Models in Characterizing Memory Property of Systems”. Eur. Phys. J. Spec. Top. 193(1) 185–192
[12] Moghaddam B P and Ivaz K 2017 An Efficient Cubic Spline Approximation for Variable-order Fractional Differential Equations with Time Delay Nonlinear Dyn. 87 815–826 (https://doi:10.1007/s11071-016-3079-4).
[13] Sierociuk D and Macias M. “On The Recursive Fractional Variable-order Derivative: equivalent switching strategy, duality, and analog modeling”. Circuits Syst. Signal Process. 34, 1077–1113,(2015), (https://doi:10.1007/s00034-014-9895-1).
[14] Tavares D, Almeida R and Torres D F 2016 Caputo Derivatives of Fractional Variable Order: Numerical Approximations Commun. Nonlinear Sci. Numer. Simul. 35 69–87 (https://doi:10.1016/j.cnsns.2015.10.027).
[15] Zhang H Liu F and Zhuang P 2014 Numerical Analysis of a New Space time Variable Fractional Order Advection Dispersion Equation Appl. Math. Comput. 242 541–550 (https://doi:10.1016/j.amc.2014.06.003).
[16] Machado J A T 2017 A Stable Three-level Explicit Spline Finite Difference Scheme for a Class of Nonlinear Time Variable Order Fractional Partial Differential Equations Comput. Math. Appl. 73, 1262–1269 (https://doi:10.1016/j.camwa.2016.07.010).
[17] Song H, Yi M, Huang J and Pan Y 2016 Bernstein Polynomials Method for a Class of Generalized Variable Order Fractional Differential Equations IAENG Int. J. Appl. Math. 46 437–444
[18] Chen C, Turner I and Anh Vo 2010 Numerical Schemes and Multivariate Extrapolation of a Two-dimensional Anomalous Sub-diffusion Equation Numer. Algorithms 54 (1) 1–21MR 2610319 https://doi.org/10.1007/s11075-009-9320-1.
[19] Sun H, Chang A, Zhang Y and Chen W 2019 A Review On Variable-order Fractional Differential equations: mathematical foundations, physical models, numerical methods and applications. Fract. Calc. Appl. Anal. 22 27–59 (https://doi:10.1515/fca-2019-0003).
[20] Nasser H S and Abdul Rahman, T 2013 Numerical Simulations for the Space-Time Variable Order Nonlinear Fractional Wave Equation Hindawi Publishing Corporation Journal of Applied Mathematics Article ID 586870, p7 http://dx.doi.org/10.1155/2013/586870.
[21] Patnaik S, Hollkamp J P and Semperlotti F 2020 Applications of Variable-order Fractional Operators Proc. R. Soc. A \textbf{476} 20190498 http://dx.doi.org/10.1098/rspa.2019.0498
[22] Zarebnia M, Hoshyar M and Sedaghti M 2011 Non-Polynomial Spline Method for the Solution of Problems in Calculus of Variations World Academy of science Engineering and Technology \textbf{51} 986-991
[23] Mahmoud A. Zaky and Bhrawy A H 2015 Numerical Simulation Of Time Variable Fractional Order Mobile-Immobile Advection-Dispersion Model \textit{Romanian Reports in Physics} \textbf{67}(3) 773–791 https://www.researchgate.net/publication/269764399.