Współczynnik żyła główna dolna/aorta w ocenie nawodnienia – porównawcza ocena wyników pomiarów doświadczonych i niedoświadczonych badaczy w grupie młodych dorosłych

Inferior vena cava/aorta diameter index in the assessment of the body fluid status – a comparative study of measurements performed by experienced and inexperienced examiners in a group of young adults

Kaja Durajska¹, Emilia Januszkiewicz¹, Łukasz Szmygel², Wojciech Kosiak³

¹ Ultrasound Student Association at the Laboratory of Diagnostic Ultrasound and Biopsy, Department of Pediatrics, Oncology, Hematology and Endocrinology, University Clinical Center in Gdańsk, Gdańsk, Poland
² Department of Pediatrics, Diabetology and Endocrinology, University Clinical Center in Gdańsk, Gdańsk, Poland
³ Laboratory of Diagnostic Ultrasound and Biopsy, Department of Pediatrics, Oncology, Hematology and Endocrinology, University Clinical Center in Gdańsk, Gdańsk, Poland

Correspondence: Kaja Durajska, Sadowa 6, 81-640 Gdynia, e-mail: kaja.durajska@wp.pl, tel.: +48 692 375 620

DOI: 10.15557/JoU.2014.0027

Streszczenie

Ocena stanu nawodnienia jest jednym z najtrudniejszych zadań dla lekarzy klinicyków. Pomimo istnienia wielu metod oceniających stan nawodnienia pacjentów żadna z procedur nie jest w pełni satysfakcjonująca w obecnej dobie nauk medycznych. W przedstawionym poniżej artykule porównano wyniki pomiarów wykonanych przez doświadczonych i niedoświadczonych badaczy w ultrasonograficznej ocenie stanu gospodarki wodnej, bazując na określeniu współczynnika żyła główna dolna/aorta. Badaniami objęto 50 młodych studentów, w wieku od 19 do 26 lat (mediana wieku – 22,95 roku), w tym 27 kobiet oraz 23 mężczyzn. Ochotników badano w pozycji leżącej na plecach, aparatem GE Logiq 7, głowicą typu convex o częstotliwości 2–5 MHz. Pomiary zostały wykonane w projekcji podłużnej i poprzecznej przez dwóch niedoświadczonych badających, autorów pracy, po wcześniejszym czterogodzinnym prze- szkoleniu przez doświadczoną lekarza ultrasonografistę. W badanej grupie stwierdzono podobne wyniki współczynnika żyła główna dolna/aorta w projekcji podłużnej do podawanych w piśmiennictwie. Norma dla współczynnika żyła główna dolna/aorta wyznaczona przez zespół Kosiaka i wsp., która wyniosła 1,2 ± 0,17 odchylenia standardowe, zgodnie z obserwacjami autorów, wynoszących 1,286 ± 0,2 odchylenia standardowe, dla odchylenia standardowego 0,2. W przedstawionym artykule udowodniono, że pomiar współczynnika żyła główna dolna/aorta jest badaniem nieskomplikowanym,

Słowa kluczowe

współczynnik żyła główna dolna/aorta, projekcja podłużna, poprzeczna, nawodnienie, niedoświadczeni badający

Submitted: 04.11.2013
Accepted: 13.11.2013

Streszczenie

Ocena stanu nawodnienia jest jednym z najtrudniejszych zadań dla lekarzy klinicyków. Pomimo istnienia wielu metod oceniających stan nawodnienia pacjentów żadna z procedur nie jest w pełni satysfakcjonująca w obecnej dobie nauk medycznych. W przedstawionym poniżej artykule porównano wyniki pomiarów wykonanych przez doświadczonych i niedoświadczonych badaczy w ultrasonograficznej ocenie stanu gospodarki wodnej, bazując na określeniu współczynnika żyła główna dolna/aorta. Badaniami objęto 50 młodych studentów, w wieku od 19 do 26 lat (mediana wieku – 22,95 roku), w tym 27 kobiet oraz 23 mężczyzn. Ochotników badano w pozycji leżącej na plecach, aparatem GE Logiq 7, głowicą typu convex o częstotliwości 2–5 MHz. Pomiary zostały wykonane w projekcji podłużnej i poprzecznej przez dwóch niedoświadczonych badających, autorów pracy, po wcześniejszym czterogodzinnym prze- szkoleniu przez doświadczoną lekarza ultrasonografistę. W badanej grupie stwierdzono podobne wyniki współczynnika żyła główna dolna/aorta w projekcji podłużnej do podawanych w piśmiennictwie. Norma dla współczynnika żyła główna dolna/aorta wyznaczona przez zespół Kosiaka i wsp., która wyniosła 1,2 ± 0,17 odchylenia standardowe, zgodnie z obserwacjami autorów, wynoszących 1,286 ± 0,2 odchylenia standardowe, dla odchylenia standardowego 0,2. W przedstawionym artykule udowodniono, że pomiar współczynnika żyła główna dolna/aorta jest badaniem nieskomplikowanym,
Abstract

The assessment of the body fluid status is one the most challenging tasks in clinical practice. Although there are many methods to assess the body fluid status of patients, none of them is fully satisfactory in contemporary medical sciences. In the article below, we compare the results of measurements performed by experienced and inexperienced examiners based on the inferior vena cava/aorta diameter index in a sonographic hydration assessment. The study enrolled 50 young students at the age of 19–26 (the median age was 22.95) including 27 women and 23 men. The volunteers were examined in the supine position with GE Logiq 7 system and a convex transducer with the frequency of 2–5 MHz. The measurements were performed in the longitudinal and transverse planes by two inexperienced examiners – the authors of this paper, following a four-hour training conducted by an experienced sonographer. The longitudinal values of the inferior vena cava/aorta diameter index obtained in this study were similar to those found in the literature. The reference value for the inferior vena cava/aorta index determined by Kosiak et al., which constituted 1.2 ± 2 SD, for SD = 0.17, was similar to the values obtained by the authors of this paper which equaled 1.28 ± 2 SD, for SD = 0.2. The article presented below proves that measuring the inferior vena cava/aorta diameter index is not a complex examination and it may be performed by physicians with no sonographic experience. Furthermore, the paper demonstrates that the inferior vena cava/aorta diameter index measured in the transverse plane is similar to the inferior vena cava/aorta diameter index determined in the longitudinal plane. Thus, both measurements may be used interchangeably to assess the hydration status of patients.

Introduction

An accurate assessment of the body fluid status is a challenging task in clinical practice\(^{(1-3)}\) and inappropriate assessment of hydration or overhydration may result in severe complications, even in the patient’s death\(^{(4)}\). Due to their limitations, the methods currently used for the hydration status assessment do not meet the expectations of clinicians to a satisfactory level\(^{(1,5)}\). A commonly used physical examination is burdened with the considerable risk of making an erroneous assessment\(^{(6)}\). The advancement that has occurred in the field of ultrasound imaging allows for the application of this method directly at the patient’s bed as an extension of the basic physical examination, not only when imaging examinations are necessary, but also for the purposes of clinical assessment of the patient’s condition.

Numerous authors assess new methods in terms of their diagnostic value, possibility of easy and fast application, dependency of the outcomes on the examiner’s experience as well as time needed for mastering the technique\(^{(7-9)}\).

The presented paper constitutes an attempt to assess the value of the selected diagnostic index used for the hydration status assessment by providing answers to questions connected with the technique of examination and by comparing ultrasound-based measurements of the inferior vena cava/aorta diameter (IVA/Ao) index taken by experienced and inexperienced examiners.

Key words

- inferior vena cava/aorta diameter index
- longitudinal plane
- transverse plane
- body fluid status
- inexperienced examiners

Possible Polish response to the translation errors:

Wstęp

Precyzyjna ocena stanu nawodnienia jest niezwykle trudnym zadaniem dla lekarzy klinicystów\(^{(1-3)}\), a niewłaściwe określenie stopnia odwodnienia bądź przewodnienia może wiązać się z poważnymi komplikacjami, a nawet zgonem pacjenta\(^{(4)}\). Ze względu na swoje ograniczenia obecnie używane metody służące ocenie stopnia nawodnienia nie spełniają dostatecznie oczekiwań lekarzy klinicystów\(^{(1,5)}\). Powszechnie stosowane w praktyce ultrasonograficznej, pozwalają na zastosowanie metody bezpośrednio przy łóżku chorego jako rozszerzenia podstawowego badania przedmiotowego, nie tylko w przypadku konieczności wykonania badań obrazowych, ale także w celu oceny stanu klinicznego.

Wielu autorów ocenia nowe metody pod kątem wartości diagnostycznej, możliwości łatwego i szybkiego wykorzystania, zależności wyników od doświadczenia badającego oraz czasu niezbędnego do ich opanowania\(^{(7-9)}\).

W prezentowanej pracy autorzy podjęli próbę oceny wartości wybranego wskaźnika diagnostycznego służącego do okresleniu stanu nawodnienia, poprzez odpowiedzi na pytania dotyczące techniki badania oraz porównanie wyników ultrasonograficznych pomiarów współczynnika żyla główna dolna/aorta (IVC/Ao) dokonanych przez doświadczonych oraz niedoświadczonych badaczy.

Introduction

An accurate assessment of the body fluid status is a challenging task in clinical practice\(^{(1-3)}\) and inappropriate assessment of hydration or overhydration may result in severe complications, even in the patient’s death\(^{(4)}\). Due to their limitations, the methods currently used for the hydration status assessment do not meet the expectations of clinicians to a satisfactory level\(^{(1,5)}\). A commonly used physical examination is burdened with the considerable risk of making an erroneous assessment\(^{(6)}\). The advancement that has occurred in the field of ultrasound imaging allows for the application of this method directly at the patient’s bed as an extension of the basic physical examination, not only when imaging examinations are necessary, but also for the purposes of clinical assessment of the patient’s condition.

Numerous authors assess new methods in terms of their diagnostic value, possibility of easy and fast application, dependency of the outcomes on the examiner’s experience as well as time needed for mastering the technique\(^{(7-9)}\).

The presented paper constitutes an attempt to assess the value of the selected diagnostic index used for the hydration status assessment by providing answers to questions connected with the technique of examination and by comparing ultrasound-based measurements of the inferior vena cava/aorta diameter (IVA/Ao) index taken by experienced and inexperienced examiners.
Pomiar współczynnika IVC/Ao jest badaniem prostym i szybkim? Czy czasu wymaga opanowanie metody? Czy do wykonania badania niezbędne jest doświadczenie w diagnostyce ultrasonograficznej, czy też metodę tę mogą stosować również osoby bez takiego doświadczenia?

Material i metoda

Badaniami objęto 50 zdrowych ochotników (studentów), w wieku 22.5 ± 3.5 roku, w tym 27 kobiet (54%) oraz 23 mężczyzn. Wykonywano je u osób leżących na plecach, przy zastosowaniu aparatu GE Logiq 7, głowicą typu convex o częstotliwości 2–5 MHz. Pomiarów dokonywano w projekcji podłużnej i poprzecznej, przekładając głowicę poniżej wyrostka mieczkowatego. Średnice IVC i aorty w opcji B-mode mierzone w czasie cyklu oddychowego. Dodatkowo u każdego badanego wykonano pomiar ciśnienia tętniczego zgodnie z wytycznymi Polskiego Towarzystwa Nacisku Wnętrzniego, przy pomocy aparatu automatycznego Omron 3, oraz pomiar masy ciała i wzrostu w celu określenia BMI. Badania poprzedzał wywiad chorobowy w kierunku schorzeń przewlekłych oraz przyjmowanych leków. Pomiarów dokonywano dwóch niedoświadczonych badających, autorów pracy, po wcześniejszym czterodziesięciomiesięcznym przeszkoleniu przez doświadczoną lekarz ultrasonografistę. Badania odbywały się pod stałym nadzorem opiekunów pracy.

W celu minimalizowania błędów pomiarowych wszystkie pomiary zostały wykonane trzykrotnie, a do analizy przyjęto medianę wyników. Analitycznych uzyskanych wyników przeprowadzono za pomocą testu statystycznego w rozkładzie t-Studenta. Za wartości istotne uznano wartość p mniejszą od 0.05. Uzyskane wyniki odniesione do danych z literatury. Program badań uzyskał akceptację Niezależnej Komisji Bioetycznej do spraw Badań Naukowych przy GUMed.

Materiał i metody

The study enrolled 50 healthy volunteers (students) at the age of 22.5 ± 3.5 including 27 women (54%) and 23 men. The subjects were examined in the supine position with GE Logiq 7 system and a convex transducer with the frequency of 2–5 MHz. The measurements were taken in longitudinal and transverse views by placing the transducer below the xiphoid process. The diameters of IVC and aorta in a B-mode examination were measured during a regular breathing cycle. In addition, each subject had their arterial pressure taken, as recommended in the guidelines of the Polish Society of Hypertension, with the use of Omron 3 – an automatic blood pressure monitor. Moreover, for BMI index calculation, the weight and height of each subject were taken. The examinations were preceded by an interview in terms of chronic diseases and taken medicines. The measurements were performed by two inexperienced examiners – the authors of this paper, following a four-hour training conducted by an experienced sonographer. The examinations were performed under continuous observation of the supervisors of this study. In order to minimize errors in measurements, all values were calculated three times and the analysis included the median value. The analysis of the outcomes was performed by means of the Student’s t-test. The p value lower than 0.05 was regarded as statistically significant. The outcomes were discussed with the reference to the literature. The study was approved by the Independent Ethics Committee for Academic Research at the Medical University of Gdańsk (Poland).

Wyniki

W pomiarach ultrasonograficznych w przekroju poprzecznym średnica aorty (Ao) wyniosła 15.7 mm, dłuższy wymiar średnicy żyły głównej dolnej (IVC1) miał 28.4 mm, krótszy wymiar średnicy żyły głównej dolnej (IVC2) – 15.5 mm, natomiast w przekroju podłużnym Ao wyniosła 15.3 mm, a IVC – 18.8 mm (tab. 1). Średnia masa ciała w badanej grupie wyniosła 62 kg, średnia wzrostu – 171 cm, BMI mieściło się w normie (22.52 ± 2.78). W przeprowadzonych badaniach stwierdzono wynik współczynnika IVC/Ao w projekcji podłużnej zbliżone do danych z literatury(1). Wartość średnia współczynnika IVC/Ao uzyskana przez autorów wyniosła 1.2286 ± 2 SD, dla SD = 0.2 (tab. 1) i była podobna do wartości wyznaczonej przez zespół Kosiaka i wsp., wynoszącej 1.2 ± 2 SD, dla SD = 0.17. Ponadto stwierdzono istotną korelację pomiędzy współczynnikiem IVC/Ao w projekcji podłużnej i poprzecznej; $r_p = 0.508$, $r_f = 0.457$ (wzajemna korelacja testowej w rozkładzie t-Studenta: $t_1 = 3.776$, $t_2 = 3.286$ dla $p = 0.002$.

Wyniki

In sonographic measurements performed in the transverse view, the diameter of aorta (Ao) constituted 15.7 mm, the longer dimension of the inferior vena cava (IVC1) equaled 28.4 mm and the shorter one (IVC2) – 15.5 mm. In the longitudinal view, Ao equaled 15.3 mm and IVC – 18.8 mm (tab. 1). The mean body weight in the study group constituted 62 kg and the mean height – 171 cm; BMI index was normal (22.52 ± 2.78). The measurements conducted in the longitudinal view resulted in obtaining IVC/Ao index values similar to those quoted in the literature(1). The mean IVC/Ao index obtained by the authors of this paper equaled 1.2286 ± 2 SD, for SD = 0.2 (tab. 1) and was similar to the value determined by Kosiak et al. which constituted 1.2 ± 2 SD, for SD = 0.17. Moreover, a significant correlation was observed between the IVC/Ao indices calculated in the longitudinal and transverse views: $r_p = 0.508$, $r_f = 0.457$ (the value in the distribution of the Student’s t-test: $t_1 = 3.776$, $t_2 = 3.286$ for $p = 0.002$, $p = 0.001$).

Results

Questions connected with examination technique

Is the measurement of IVC/Ao index an easy and fast examination? How much time is needed for mastering this method? Is sonographic experience vital to perform the examination or can it be conducted by persons without such experience?
Nie stwierdzono natomiast korelacji między wartością współczynnika IVC/Ao mierzonego w projekcji podłużnej a stosunkiem wymiarów krótszego i dłuższego IVC mierzonych w projekcji poprzecznej.

Omówienie

Ocena stanu nawodnienia pacjenta jest istotnym elementem badania fizykalnego (1). Niezwykle ważne jest szybkie rozpoznanie odwodnienia znacznego stopnia i wdrożenie odpowiedniego leczenia (decyzja o przyjęciu do szpitala, nawadnianiu doustnym/dożylnym). Z drugiej strony nie rozpoznanie odwodnienia lub nieprawidłowa ocena jego stopnia może prowadzić do nieuzasadnionej hospitalizacji, co wiąże się ze zbędnymi kosztami oraz naraża pacjenta na ryzyko zakażenia wewnątrzszpitalnego (6). W codziennej praktyce lekarskiej do oceny stopnia nawodnienia stosuje się

Badacz 1.	IVC podłużne [mm]	Ao podłużne [mm]	IVC/Ao	BMI [kg/m²]
Examiner 1	19	15,7	1,21	22,22
SD	2,95	1,6	0,23	2,78

Badacz 2.	IVC podłużne [mm]	Ao podłużne [mm]	IVC/Ao	BMI [kg/m²]
Examiner 2	18,5	14,9	1,24	22,22
SD	2,7	1,78	0,22	2,78

Mediana (wszystkich badań)

Badacz 1.	IVC podłużne [mm]	Ao podłużne [mm]	IVC/Ao	BMI [kg/m²]
Examiner 1	18,8	15,3	1,23	22,22
SD	2,5	1,6	0,2	2,78

Discussion

The assessment of the body fluid status is a significant element of a physical examination (1). A fast diagnosis of considerable dehydration and implementation of adequate treatment (admission to hospital, oral/intravenous rehydration) are of vital importance. On the other hand, a failure to identify dehydration or erroneous assessment of its degree may lead to groundless hospitalization, which is associated with unnecessary costs, and puts the patient at risk of hospital-acquired infections (6). In daily medical practice, the following methods are used to diagnose dehydration:

Thus, it was demonstrated that these measurements may be used interchangeably (figs. 1, 2).

However, no correlation was observed between the value of the IVC/Ao index measured in the longitudinal view and the ratio of the shorter and longer dimensions of the IVC measured in the transverse view.

Ryc. 1. Korelacja pomiędzy wynikami pomiarów: IVC1/Ao a IVC/Ao

Ryc. 2. Korelacja pomiędzy wynikami pomiarów: IVC2/Ao a IVC/Ao

Tab. 1. Median IVC and aorta diameters in the study group
Użyteczność ultrasonograficznej oceny stanu nawodnienia została uprzednio potwierdzona zarówno u dzieci, jak i u dorosłych w kilku niezależnych badaniach\(^1,12–14\). W 1979 roku Natori i wsp. za pierwszy udowodnili korelację między zmianami średnicy IVC i ciśnieniem w prawym przedsionku serca\(^{15}\). Współcześnie pomiar średnicy żyły głównej dolnej (IVC) oraz zapadalność żyły głównej dolnej (IVCCI) z dobrym efektem wykorzystuje się do określenia stanu nawodnienia u pacjentów dializowanych\(^{14,16}\).

Galążąc medycyny, w której ocena IVC znajduje coraz szersze zastosowanie, jest medycyna ratunkowa, szczególnie u pacjentów po urazach wielonarzędziowych\(^{17}\). Wykazano ponadto, że ultrasonograficzne badanie stanu nawodnienia może służyć jako wczesny wykrywacz hipowolemicznym u zdrowych kandydatów na dawców krwi i do określenia stopnia anemizacji przy krwotokach u pacjentów po urazach\(^{18,19}\).

Mimo znacznej liczby pozytywnych donosów związanych z pomiarami IVC metoda ta niesie ze sobą pewne ograniczenia, jakimi są brak jednoznacznych norm średnicy żyły głównej dolnej oraz niewystarczająca dostępność odpowiednio przeszkolonego personelu medycznego\(^3\).

Stosunkowo nowym elementem ultrasonograficznej oceny nawodnienia jest współczynnik IVC/Ao. Wyznaczenie aorty jako punktu odniesienia do średnicy żyły głównej dolnej ma swoje szczególne uzasadnienie. Aorta w żywym organizmie jest punktem odniesienia do stanu nawodnienia, który jest poufany i ma charakter przedostawniczy (CVP). Jednak to, iż aorta nie jest miejscem zasilającym, można zapominać konieczność przeliczania jej na powierzchnię ciała\(^{10}\). Przeprowadzone badania wykazały istotną zależność pomiędzy wagą a średnicą aorty zarówno w przekroju poprzecznym, jak i podłużnym (wartość współczynnika korelacji >0,7). Z punktu widzenia obserwacji, wyniki pomiarów współczynnika mogą być zamienione w pomiar zebrane przez Götz\(^{10}\), aświadczyły, że istotna jest jednoznaczność pomiarów tej zależności w różnych grupach pacjentów, jakich są pacjenci dializowani i pacjenci z chorobami układu krążenia.

e Linię izolecji między OCZ a IVC/Ao, wynoszącą 277, można stosować jako normalną wartość w przypadku dojrzewania aorty i dializacji, a także w przypadku zwiększenia ciśnienia w czwowiskach, które mogą wpływać na kształt aorty.

e Wartość IVC/Ao, wyznaczona na podstawie pomiarów, może być wykorzystana do oceny stanu nawodnienia pacjentów, a także do oceny stanu postępu obserwacji.

e Wartość IVC/Ao, wyznaczona na podstawie pomiarów, może być wykorzystana do oceny stanu nawodnienia pacjentów, a także do oceny stanu postępu obserwacji.

e Wartość IVC/Ao, wyznaczona na podstawie pomiarów, może być wykorzystana do oceny stanu nawodnienia pacjentów, a także do oceny stanu postępu obserwacji.
W badaniach uwzględniono też pomiary współczynnika IVC/aorta mierzonego w przekroju poprzecznym, a uzyskane wyniki wykazały korelacje pomiędzy wartościami współczynnika mierzonego w przekroju podłużnym i poprzecznym ($r_1 = 0.508$, $r_2 = 0.457$). Wskazuje to na możliwość zamiennego stosowania pomiarów, szczególnie w przypadku, gdy w którymś z przekrojów ocena naczyń brzusznych jest utrudniona bądź niemożliwa.

Aparat ultrasonograficzny w rękach doświadченego ultrasonografisty, służący do badania oceny nawodnienia, może być także wykorzystany do poszukiwania bezpośredniego przyczyny zaburzeń nawodnienia pacjenta. Wykonując badanie IVC i aorty, można jednocześnie ocenić stan narządów położonych w jamie brzusznej (nerki, śleczona, wątroba) oraz klatkę piersiową (serce, płuc) (20,21). Stwierdzenie patologii w powyższym zakresie może pomóc w odnalezieniu przyczyny zaburzeń i pozwala na szybkie podjęcie ukie-runkowanych działań leczniczych.

Wnioski

Osoby bez doświadczenia ultrasonograficznego poprzecznym ocenienia IVB i aorty z dokładnością zbliżoną do precyzji doświadczonych badaczy. Ultraslonograficzna ocena współczynnika IVC/Ao jest bada- niem prostym technicznie i z powodzeniem może być stosowana przez osoby bez wcześniejszego doświadczenia w wykonywaniu badań USG.

Współczynnik IVC/Ao uzyskany w projekcji poprzecznej jest podobny do współczynnika IVC/Ao uzyskanego w projekcji podłużnej. Obie płaszczyzny pomiarów mogą być wykorzystywane zamiennie w celu oceny stopnia nawodnienia.

Conclusions

After a four-hour training, persons without experience in sonography are capable of measuring the diameters of the IVC and aorta with the accuracy comparable to the precision of experienced examiners.

From technical point of view, the sonographic assessment of the IVC/Ao index is an easy examination and may be effectively conducted by persons without prior experience in the field of sonography.

The IVC/Ao index obtained in the transverse view is similar to the IVC/Ao index obtained in the longitudinal view. Thus, for the purposes of the hydration status assessment, the measurements taken in both planes may be used interchangeably.
Conflict of interest

The authors do not report any financial or personal links with other persons or organizations, which might affect negatively the content of this publication and/or claim authorship rights to this publication.