Knowledge, attitude and practice of Sri Lankan women towards breast cancer: A cross sectional study

N.D. Ranaweera
General Sir John Kotelawala Defence University

P.M.C. Dinesha
General Sir John Kotelawala Defence University

C.A.K. Pathirage
General Sir John Kotelawala Defence University

P.W.D.N. Weerasinghe
General Sir John Kotelawala Defence University

D.M.K.N. Senarathna
General Sir John Kotelawala Defence University

G.A.G.M.S. Ariyasena
General Sir John Kotelawala Defence University

G.L.S. Galgamuwa (lahiruahs@yahoo.com)
Open University of Sri Lanka

H.S.M.S.K. Wijesiri
General Sir John Kotelawala Defence University

K.A.S.J. Balawardhana
General Sir John Kotelawala Defence University

Research article

Keywords: Breast cancer, Risk factors, Early detection techniques

DOI: https://doi.org/10.21203/rs.2.24047/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Introduction Breast cancer is a type of cancer that develops from breast tissue. Although the knowledge on breast cancer among women in Sri Lanka is high, their practice of breast self-examination is poor. This study was aimed to determine attitudes, practices and the awareness of early detection techniques and risk factors among women in Sri Lanka.

Method A study was conducted between two groups in National Cancer hospital, Sri Lanka and a peripheral women clinic consisting 317 participants in each group. Self-administered questionnaire was used to collect data regarding the awareness of early detection techniques, signs and symptoms and risk factors for breast cancers.

Results A total of 33.8% of peripheral women clinic and 65.0% in National Cancer hospital patients had good knowledge regarding risk factors. The knowledge of risk factors, signs and symptoms and screening methods about breast cancers was significantly high in patients attending to National cancer hospital. Older aged people have less awareness about screening methods compared to younger people. People with high education background and those have a family history of breast cancer had more aware about screening and therapeutic methods.

Conclusion Comparative to the peripheral women clinic, patients attending to National Cancer Hospital had a fairly good knowledge, practice and attitude regarding the early detection techniques, risk factors, signs and symptoms.

Introduction

Breast cancer is a major public health problem in both developed and developing countries and has become the second leading cause of deaths among women worldwide [1]. Over 1.15 million women were diagnosed with breast cancer each year and more than 500,000 of them face death in the world. Breast cancer has become the most common type of cancer among women in Sri Lanka [2].

A vast variety of risk factors for breast cancer with respect to the geographic characteristics as well as with the life style related habits of the community have been reported [3]. Breast feeding was found to be a protective factor against breast cancer while dietary and life style factors such as obesity, smoking and alcohol consumption and sedentary life style were identified as risk factors for breast cancers by the nutritional and epidemiological surveys [4, 5].

Knowledge regarding early diagnosis and screening methods can be reduced the burden of cancer. The majority of patients in developing countries initiate treatments for breast cancers in their advanced stages due to the low level of awareness regarding early warning signs, screening techniques among general female population and poor prognosis of the patient [6].

The successfulness in the treatment as well as the early detection of breast cancer in the early stages of breast cancer depends on the early diagnosis. This could directly effect for the survival rate as well as the
quality of life of the patients. Breast Self-Examination (BSE), mammography and clinical Breast Examination (CBE) are techniques that provide the best approach in the sense of reducing the risk of dying from breast cancer. Proper knowledge of early warning signs and screening methods for breast cancer plays an effective role in developing and early detection programs in the community [6].

Recent studies in Sri Lanka reported that the awareness levels about risk factors and early detection measures of breast cancer, such as CBE and BSE were predominantly in a lower level [2]. Moreover, it has been reported that late presentation of breast cancer is significant and the majority of patients with breast cancer were diagnosed at the advanced stages of the disease. Therefore, the awareness about breast cancer and early detection techniques are need urgent. It is a vital necessity to explore the baseline values of the knowledge to prevent the occurrence of breast cancer as well as for the early detection of breast cancer. Implementation of new studies for assessing the level of knowledge regarding breast cancer in the population is important [6].

It is difficult to find a study conducted in Sri Lanka that has been comprehensively evaluated the awareness levels regarding risk factors, early warning signs, therapeutic and screening methods as well as the predictive factors that is being associated with the occurrence of the breast cancer. The current study aims at women specifically to evaluate the levels of knowledge about risk factors, early detection techniques, signs and symptoms of breast cancer and therapeutic methods of breast cancer. Ultimately to determine which women are most vulnerable for having less knowledge.

Methodology

Study setting and population

This cross-sectional study was carried out among two groups of women attended to the clinics. a) breast cancer clinics at the National Cancer Hospital (NCH), b) in a peripheral women clinic at a Medical officer of Health (MOH) area in the Western province, Sri Lanka from January to June, 2018. Peripheral women clinics invite people to participate in a planned comprehensive cancer control program. National Cancer Hospital is the main oncological institution in Sri Lanka where almost all the patients who have diagnosed with breast cancer receive treatments.

The Well Women clinics (WWC) are the clinics that targets on preventive healthcare of the Sri Lankan society. These clinics were conducted under the supervision of the Ministry of Health. The selected MOH area span is about 42 square kilometers and consists of 14 clinic centers. The study outcome is relatively can be generalized to the area since almost all 14 WWC cover up in the study.

As a part of this population based program, the women's awareness levels about different aspects of breast cancer, including risk factors, early warning signs, and therapeutic and screening approaches were evaluated. During the study period, a self-administered questionnaire was distributed among women attended to those institutions before contributing at screening and educational programs. The
participants were informed about the increased incidence rate of breast cancer, particularly among the young Sri Lankan female population.

Sampling Method

Sample size was calculated using the equation of \(n = z^2 p (1-p) / d^2 \) where \(n \) = sample size, \(z \) = 1.96; critical value of specified confidence at 95% confidence interval, \(p \) = probable estimate of proportion of the prevalence for awareness about risk factors for breast cancers among females in Sri Lanka (78%) [2]. Minimal sample size was calculated as 265. In addition, 20% sampling error was added to minimize irresponsible and recording errors and the final sample size was 317. In order to compare the awareness of breast cancer risk factors of women who already have breast cancers and who are apparently healthy; 317 women were selected from each group.

Women aged between 30 to 65 years attended to the breast cancer clinics in the National hospital and the peripheral women clinic were included for this study. Women, who were less than 30 and more than 65 years, were already diagnosed with a breast cancer and physically and mentally disabled women were excluded from the study.

Data Collection

A self-administered questionnaire was used for data collection. The questionnaire consisted of 34 questions to assess the knowledge, attitude and the practice about breast cancer risk factors and early detection techniques. The questionnaire was organized in to five sections such as socio-demographic variables, and the awareness and attitudes of risk factors and screening methods.

A self-administered questionnaire was formulated in local languages (Sinhala and Tamil) for easier comprehension by the participants and translated into English. All the information regarding privacy and confidentiality of the participants was provided in the information sheet. Once the participants were determined to be eligible to participate in the study, they were approached by the investigators to explain the process of the study.

Information sheets and the consent forms were distributed among eligible participants. The questionnaire was pre-tested before using in the study at a well women clinic at a MOH area and at the National Cancer Hospital, Sri Lanka to assess the feasibility of the study and drawbacks of the questionnaire. Informed written consents were taken from all the participants of the study. The anonymity and confidentiality of data and privacy of the participants were properly maintained by using a serial number. Participants were fully informed regarding the participation of the study is on voluntary basis and can leave the study on their preferences. Furthermore, participants were convinced that there will be no any negative consequences occur due to the refusal in terms of accessing their health care services.
Statistical analysis

Data were entered into Microsoft Excel data sheet. Collected data were coded and analyzed using the Statistical Package for Social Science (SPSS) version 23 software. A scoring system was used to analyze responses on knowledge. Descriptive statistical analysis was carried out awarding score of 1 for every positive answer and score of 0 for every negative answer. Any participant who did not answer was considered as a negative response. A total of 10 questions were asked to assess knowledge of risk factors and 9 questions were asked about signs and symptoms. Chi square test was used to determine the significance of the awareness of risk factors and symptoms of breast cancers among two groups. P value less than 0.05 was considered as significant.

Results

A total of 634 women (317 per each group) with the mean age of 28.07±8.1 years were participated for the study. Majority of both populations have completed the secondary education, however, one fourth of participants in MOH clinics completed tertiary education level while only 12% of female participants of NCH had completed tertiary level education. More than 75% of women had breast fed to their children. Only 7.9 % of MOH sample and 22.7 % of NCH participants expressed that they have a family history of breast cancer (Table 1).

Knowledge among women regarding signs and symptoms was significantly higher in NCH compared to MOH sample. Majority of women participating to the clinics in MOH had no knowledge about signs and symptoms of breast cancer. Only a quarter of participant had aware of changing the size of the breast is a sign for breast cancer. In addition, one third of MOH and half of NCH participants had no idea of nipple rash is a sign of breast cancer. Very low number of participants has knowledge about usage of hormone replacement therapy, start menarche at early age and less activity level are risk factors for breast cancer. Lump or thickening of the breast was the commonest known sign in both participants (Table 2).

Majority of the participants, 353 (55.7 %) reported that they do not have any risk factor which can cause breast cancer. Most of the participants, (67.8 %) from the NCH admitted that they were having at least one risk factor.

It is clearly visible that knowledge regarding methods of early detection of breast cancer among NCH is higher than MOH sample (89.9 % and 70.0 % of NCH and MOH respectively). The knowledge of signs and symptoms and risk factors is significantly increased with education level. Young Patients have more knowledge about breast cancer compare to older people in NCH. However, young patients in MOH have low awareness about risk factors (Table 3).

The knowledge of screening methods for breast cancer is significantly higher in patients participate clinics in NCH than patients participating to MOH clinics. The most known early detection method among MOH participants is BSE (80%) and the least known screening method is Mammography (32.8%). Among
NCH Participants, the most known and least known early detection methods are CBE (91.8%) and Magnetic Resonance Imaging [MRI] (62.8 %) respectively (Table 4).

When considering socio demographic characteristics with the awareness of breast cancer screening techniques, young educated participants had higher knowledge of screening methods. Age was significantly associated with BSE (p = 0.011), mammography (p = 0.008) and with FNAC (p = 0.044). Older aged people have less awareness about screening methods compared to younger people. Educated people had more significantly more aware about BSE (p <0.001), CSE (p = 0.039), mammography (p <0.001) and FNAC (p = 0.027) than people with low education background. In addition, patients having family members with breast cancer have significantly high awareness about mammography (p = 0.016) compared to people with no history of breast cancer among their family members.

In the present study, MOH and NCH participants practice BSE (43.5 %) and (59.3 %) respectively. However majority of the MOH sample had never done CBE (65.9 %). All participants from NCH had performed CBE before even as an investigation procedure. Half of the patients had no idea of the recommended age to start mammography examination.

Majority of participants practiced BSE once a month in both groups. Among the two samples 47.9 % of MOH and 39.1 % of NCH sample knew at what age BSE should be started. A total of 27.4 % participants in MOH and 29.7 % in NCH practiced BSE monthly. BSE had been initiated most between 30 - 35 years in the MOH sample while in NCH it had been most after 35 years. There is significance between the level of education and the practice of BSE.

Majority of the participants in MOH clinics (65.2%) had never done CBE. All participants from NCH had performed CBE before even as an investigation procedure. Majority of MOH (58.0 %) and NCH (57.4 %) samples had stated that they didn't know how often CBE should be done until 40 years. The most respondents had no idea about the recommended age to start mammography examination (Table 5).

When studying the relationship between the level of education with the frequency of attending for CBE per year among MOH population, there was significance between educational level and the knowledge on BSE. However, no significance found between the family history of breast cancer with the practice of BSE.

Majority stated that they have visited physicians within a week if they have developed a breast lump. Majority of participants reported that breast cancer is a curable disease. Out of the MOH population (32.5 %) and NCH (34.4 %) had stated that 5 years survival is rare following a breast cancer (Table 6).

The most common reason for not practicing BSE was the idea of not having breast problems. Most of NCH participants had stated that they didn't practice BSE due to carelessness. In NCH all the participants had done CBE, ever since when the patients were diagnosed as having breast cancer that patient obviously undergoes a CBE (Table 7).

Discussion
Breast cancer is a significant health problem worldwide and the incidence rapidly increasing over the last two decades [7]. The basic knowledge of breast cancer such as diagnostic tools, screening techniques, risk factors, new approaches to prevention, early diagnosis play key roles in reducing mortality and morbidity rates [6]. This study was designed to evaluate the awareness about risk factors, early warning signs, screening methods for early detection, and treatment of breast cancer in a representative sample of Sri Lankan women. The present study revealed that the participants had inadequate knowledge about early warning signs and the awareness of the therapeutic methods was low. However, they have shown poor knowledge, but slightly higher, about screening methods consistently about risk factors compared to developing as well as developed countries [8–12].

Lump or thickening in the breast was the awareness sign regarding breast cancer. Similarly, Madduwa and Wijesinghe (2008) has revealed that 74.6% of respondents recorded breast lump as the most frequent sign of the breast cancer [2]. MOH is preferably a unit that is responsible for maintaining the preventive health care of the country while NCH is an institute responsible for curative health care. Majority of women in MOH clinics had poor knowledge about MRI and FNAC screening methods. The low proportion of the respondents for MRI and FNAC can be attributed to not availability to this population particularly and more common applicability of those techniques for other diseases than breast examination. The most effective predictors of knowledge level about breast cancer risk factors, screening methods, early warning sign, and therapeutic modalities were educational qualification, personal history and contributing in educational and screening public programs, respectively. Women exposed to risk factors were more vulnerable to breast cancers than who were not exposed [13].

The present study confirmed that the level of education is the common significant factor for high awareness levels. This is in agreement with previous studies in screening methodologies, risk factors, early warning signs and symptoms [14–18]. Women who had higher level of education and who were engaging in professional jobs had a good knowledge about breast cancer. It is observed that a more highly significant association existed between higher educational qualification and awareness of therapeutic modalities. Although it is naturally expected that people having higher levels of education have more capability for obtaining more and effective information from various sources

Present study results in line with other previous studies showed a high awareness levels about screening methods [19–22], risk factors [23] and early warning sign [18]. Formal training programs and correct structured theoretical educations on breast cancer enhance the awareness and BSE training on improving of awareness levels [24]. Those educated and with a family or personal history of BS were particularly likely to acknowledge risk factors [25]. Married and older people are generally more concerned about their health due to being more at risk for chronic disease and higher responsibilities toward the family, respectively. Therefore, they have more capability for obtaining more and effective information from various sources about health determinants.

In this study, the majority of the participants had practice of BSE. Similar to this study, 44% of the participants were aware of BSE in Tanzania 71.5% and in India (55%) had identified that BSE as an
important technique in early diagnosis [26, 27]. However, only in Nigeria (19%) and in India (8.9%) of the participants practiced BSE monthly [28]. However, the rate of practice BSE on a regular basis is low. Furthermore, this study also showed lack of knowledge on breast cancer to be the main challenge in breast cancer screening. The similarity in findings between these studies indicates that lack of knowledge in this matter is a problem in various African and Asian societies; therefore, more effort should be made to educate women in these areas.

According to this study, knowledge regarding screening methods varied between two populations. Patients who already got breast cancer had a good knowledge when compared with other sample. Awareness programs have to be established regarding health education about the BSE and CBE [29]. The level of knowledge and attitude of risk factors and early detection signs and symptoms among health professionals are important in order to guide patients for necessary screening.

Women with family history of breast cancer have higher risk of developing the disease. Aging is a known risk factor and therefore post-menopausal women with a family history of breast cancer are a particularly vulnerable group. Lack of physical activity and obesity were identified as risk factors for developing breast cancer and they have an increased risk of developing post-menopausal breast cancer [30].

Family history of breast cancer, smoking history and the level of education were the strongest predictors of breast cancer among the study group. The time duration of usage of HRT was a risk factor for breast cancer. Other factors such as first full-term pregnancies before 30 years and high parity were found to be factors that protected against breast cancers [31].

The lack of knowledge and misbelieves about breast cancer prevention among females are responsible for the negative perception of the curability of the cancer which was detected early. The low level of knowledge and misbeliefs were also responsible for not believing the efficacy of the screening tests.

The study revealed that the low educated females had less number of screening attempts. poor educational level had affected the increased mortality rate of breast cancers in Asia. Majority of the participants had misconceptions on knowledge and screening of breast cancer. Comparatively family health nurses had a higher score than other category of public health nurses.

The patients who have had relatives affected with breast cancer had a better knowledge about the disease. This concluded that breast cancer awareness among women should be enhanced [32].

Family history has no significant relationship with the practice of BSE for both samples, starting age of BSE for both samples and the frequency of practicing CBE for both samples. These findings suggest the urgent need of conducting health education programs to enhance knowledge and practice of early detection techniques

Conclusion
Present study revealed that the awareness regarding risk factors and signs and symptoms of breast cancers was low. However, the awareness of screening approaches was high among Sri Lankan adult women and indicated that higher educational attainments, attending screening and public educational programs and family history of breast cancer, caused higher levels of awareness. These findings are important to implement new effective ways to overcome the burden of breast cancer disease among Sri Lankan women. Health educational sessions should be conducted for patients who had already been diagnosed as breast cancer patients, in order to improve knowledge and facilitate treatment options and finally to improve the quality of life.

Abbreviations

BSE: Breast Self-Examination; CBE: clinical Breast Examination; NCH: National Cancer Hospital; WHO: World health organization; WWC: Well Women clinics; MOH: Medical officers of Health; LKR: Sri Lankan Rupees; HRT: Hormone Replacement of Therapy; FNAC: Fine Needle Aspiration biopsy for Cytology; SPSS: Statistical Package for Social Science

Declarations

Ethics approval and consent to participate

Ethical clearance and approval were obtained from Ethics Review Committee, Faculty of Medicine, General Sir John Kotelawala Defence University. The permission to conduct the study was granted from the Regional Director of Health Services and from the Director of National Cancer Hospital, Sri Lanka. Written informed and verbal consent were taken from the participants individually prior to the interview conduction followed after the explanation of the aims and the benefits of the study. All parents were informed that their participation was voluntary and the procedure used did not pose any potential risk and their identities will be kept strictly confidential. Informed written consent forms were taken from all participants who voluntary participated and all information was kept in confidence.

Consent to publish

Not applicable.

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

Competing interests

The authors declare that they have no competing interests.

Funding
This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Author Contributions

HSMSKW and KASJB conceived and designed the experiments. NDR, PMCD, CAKP, PWDNW, DMKNS and GAGMSA performed the study. LSG, NDR, PMCD, CAKP, PWDNW, DMKNS and GAGMSA involved to data interpretation and statistical analysis. LSG wrote the first draft of the manuscript. NDR, HSMSKW and KASJB critically revised the manuscript for intellectual content. All authors read and approved the final manuscript. HSMSKW, KASJB and LSG are guarantors of the paper.

Acknowledgements

We would like to express our deepest gratitude to the male and female individuals who participated in this study. It is our pleasure to thank the management, medical authorities and other health care workers in National Cancer Hospital, Sri Lanka ad MOH in Piliyandala for their cooperation for this study. Our sincere thanks also go to the academic and non-academic staff of the Department of Nursing and Midwifery, Faculty of Allied Health Sciences, Genera Sir John Kotelawala Defence University, Sri Lanka for their continuous support.

References

1. Montazeri A, Vahdaninia M, Harirchi I, Harirchi AM, Sajadian A, Khaleghi F, et al. Breast cancer in Iran: need for greater women awareness of warning signs and effective screening methods. Asia Pac Family Med.2008;7:6.
2. Mudduwa L, Wijesinghe C. Awareness of breast cancer among females with breast diseases, Galle Med J. 2008;13:14-8.
3. National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology: breast cancer. Version 2. http://www.nccn.org/professionals/physician_gls/f_guidelines.asp.
4. McTiernan A. Behavioral risk factors in breast cancer: can risk be modified? 2003;8:326-34.
5. Tsugane S. Dietary factor and cancer risk evidence from epidemiological studies. Cancer Chem. 2004;31:847-52.
6. Elmore JG, Armstrong K, Lehman CD, Fletcher SW. Screening for breast cancer. J American Med Ass. 2005;293:1245-56.
7. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA: Cancer J Clin. 2005;55:74-108.
8. Harirchi I, Kolahdoozan S, Karbakhsh M, Chegini N, Mohseni SM, Montazeri A, et al. Twenty years of breast cancer in Iran: downstaging without a formal screening program. Ann Oncol.2011;22:93-7.
9. Taghavi A, Fazeli Z, Vahedi M, Baghestani AR, Pourhoseinghohi A, Barzegar F, et al. Increased trend of breast cancer mortality in Iran. Asian Pac J Cancer Prev. 2012;13:367-70.
10. Alam AA. Knowledge of breast cancer and its risk and protective factors among women in Riyadh. Ann Saudi Med. 2006;26:272-7.

11. Al Junaiibi RM, Khan SA. Knowledge and awareness of breast cancer among university female students in Muscat, sultanate of Oman-a pilot study. J Applied Pharma Sci. 2011;1:146-9.

12. Dandash KF, Al-Mohaimeed A. Knowledge, attitudes, and practices surrounding breast cancer and screening in female teachers of Buraidah, Saudi Arabia. Int J Health Sci. 2007;1:61-71.

13. Surdyka JA, Surdyka D, Stanislawek A, Staroslawskae E, Patrya Ki. Selected breast cancer risk factors and early detection of the neoplasm in women from Lublin region attending screening program in St. John’s Cancer Center, years 2005–2006. Ann Agri Environ Med. 2014;21:792-8.

14. Al-Dubai S, Qureshi AM, Saif-Ali R, Ganasegeran K, Alwan MR, Hadi JIS. Awareness and knowledge of breast cancer and mammography among a group of Malaysian women in Shah Alam. Asian Pac J Cancer Prev. 2011;12:2531-8.

15. Grunfeld EA, Ramirez AJ, Hunter MS, Richards MA. Women's knowledge and beliefs regarding breast cancer. British J Cancer. 2002;86:1373-8.

16. Linsell L, Burgess CC, Ramirez AJ. Breast cancer awareness among older women British J Cancer. 2008;99:1221-5.

17. Thomas EC. African American women’s breast memories, cancer beliefs, and screening behaviors. Cancer Nur. 2004;27:295–302.

18. Budakoglu Il, Maral I, Ozdemir A, Bumin MA. The effectiveness of training for breast cancer and breast self-examination in women aged 40 and over. J Cancer Edu. 2007;22:108-11.

19. Godazandeh GA, Khani H, Khalilian AR, Attard Z, Firozjaee MA, Partovi A, et al. Knowledge and practice of above 15 years old females towards breast cancer prevention in Sari township, 2004. J Mazandaran Uni Med Sci. 2006;16:64-76.

20. Jahan S, Al-Saigul AM, Abdelgadir MH. Breast cancer: knowledge, attitudes and practices of breast self-examination among women in Qassim region of Saudi Arabia. Saudi Med J. 2006;27:1737-41.

21. Norman P, Brain K. An application of an extended health belief model to the prediction of breast self-examination among women with a family history of breast cancer. British J Health Psychol. 2005;10:1-16.

22. Yelland MJ, Rice DE, Ward AE, Bain C, Siskind V, Schofield F. A profile of Australian women practicing breast self-examination. Asia Pac J Public Health. 1991;5:307-12.

23. Madanat H, Merrill RM. Breast cancer risk-factor and screening awareness among women nurses and teachers in Amman, Jordan. Cancer Nur. 2002;25:276-82.

24. Mousavi SM, Montazeri A, Mohagheghi MA, Jarrahi AM, Harirchi I, Najafi M, et al. Breast cancer in Iran: an epidemiological review. Breast J. 2007;13:383-91.

25. Lykins ELB, Graue LO, Brechting EH, Roach AR, Gochett CG, Andykowski MA. Beliefs about cancer causation and prevention as a function of personal and family history of cancer: a national, population-based study. Psycho-Oncol. 2008;17:967-74.
26. Ng’ida FD, Kotoroi GL, Mwangi R, Mabelele MM, Kitau J, Mahande Knowledge and practices on breast cancer detection and associated challenges among women aged 35 years and above in Tanzania: a case in Morogoro Rural District. Breast Cancer. 2019;11:191-7.

27. Sehrawat JS, Mor S. Knowledge, beliefs and practices about breast cancer and its self-examination procedure among urban and rural women of district Gurdaspur, Punjab, India: a cross sectional study. Int J Community Med Public Health. 2017;4:120-8.

28. Gwarzo UMD, Sabitu K, Idris SH. Knowledge and practice of breast-self-examination among female undergraduate students of Ahmafu Bello University Zaria, Northwestern Nigeria. Ann Afr Med. 2009;8:55-8.

29. Okobia MN, Bunker CH, Okonofua FE, Osime U. Knowledge, attitude and practice of Nigerian women towards breast cancer: A cross-sectional study. World J Surgical Oncol. 2006;4:11.

30. Begum P, Richardson CE, Carmichael AR. Obesity in post-menopausal women with a family history of breast cancer: prevalence and risk awareness. Int Seminars Surg Oncol. 2009;6:1-5.

31. Sezer H, Yilmaz M, Gurler H, Koyuncu A. Breast cancer risk factors in Turkey: a hospital-based case-control study. Asian Pac J Cancer Prev. 2011;12:2317–22.

32. Ranasinghe HM, Ranasinghe N, Rodrigo C, Seneviratne RDA, Rajapakse S. Awareness of breast cancer among adolescent girls in Colombo, Sri Lanka: a school based study, BMC Public Health 2013;13:1209.

Tables
Variables	Categories	MOH	NCH
Age (Years)	30 - 40	216 (68.1)	37 (11.7)
	41 - 50	44 (13.9)	82 (25.9)
	51 - 60	36 (11.3)	97 (30.6)
	61 - 70	21 (6.6)	101 (31.9)
Educational level	No formal education	33 (10.4)	16 (4)
	Primary education	73 (23)	122 (38.5)
	Secondary education	130 (41)	141 (44.5)
	Tertiary education	81 (25.6)	38 (12)
Marital status	Single	16 (5)	32 (10.1)
	Married	301 (95)	285 (89.9)
No of children	0	68 (21.5)	44 (13.9)
	1 - 3	241 (76)	246 (77.6)
	4 - 8	8 (2.5)	27 (8.5)
Breast Feed	Yes	244 (77)	267 (84.2)
	No	73 (23)	50 (15.8)
Family History of breast cancer	Yes	25 (7.9)	72 (22.7)
	No	292 (92.1)	245 (77.3)
Table 2. Awareness regarding signs and symptoms and risk factors of breast cancer

Variables	No. of positive responses (%)	MOH	NCH	p value
Signs and Symptoms		MOH	NCH	
Redness of breast skin		113 (35.6)	181 (57.1)	0.001
Change in the position of nipple		144 (45.4)	223 (70.3)	0.001
Pulling in the nipple		115 (36.3)	228 (71.9)	0.001
Discharges or bleeding from nipple		202 (63.7)	238 (75.1)	0.002
Nipple rash		109 (34.4)	168 (53.0)	0.001
Changes in the size of the breast / nipple		88 (27.4)	188 (59.3)	0.001
Changes in the shape of the breast / nipple		143 (45.1)	214 (67.5)	0.001
Lump or thickening of breast		252 (79.5)	296 (93.4)	0.001
Pain in the breast or arm pit		143 (45.1)	217 (68.5)	0.001
Risk factors		MOH	NCH	
Having a past history of breast cancer		187 (59.0)	241 (76.0)	0.001
Using hormone replacement therapy (HRT)		89 (21.1)	160 (50.5)	0.001
Consumption of alcohol and other drugs		148 (46.7)	188 (59.3)	0.001
Being overweight (BMI > 23)		91 (28.7)	144 (45.4)	0.001
Having a close relative diagnosed with a breast cancer		163 (51.4)	240 (75.7)	0.001
Having children in later age or not at all		116 (36.6)	167 (52.7)	0.001
Start menarche at early age		49 (15.5)	116 (36.6)	0.001
Category	Group 1	Group 2	Significance	
--	---------	---------	--------------	
Having a late menopause	99 (31.2)	170 (53.6)	< 0.001	
Having a less activity level (<30 minutes, 5 times a week exercise)	87 (27.4)	133 (42.0)	< 0.001	
Stress and depression	121 (38.2)	214 (67.5)	< 0.001	
Table 3. Awareness of signs and symptoms and risk factors with socio demographic characteristics

Variable	Category	Signs and symptoms (Range 0 - 9)	Risk factors (Range 0 - 10)						
		MOH	p value	NCH	p value	MOH	p value	NCH	p value
		Mean (SD)		Mean (SD)		Mean (SD)		Mean (SD)	
Age (Years)	31 - 40	4.00 (2.61)	0.170	6.57 (2.29)	0.021	3.31 (2.47)	0.014	5.70 (2.33)	0.239
	41 - 50	4.82 (2.18)		6.65 (2.47)		4.36 (2.66)		6.05 (2.42)	
	51 - 60	4.03 (2.66)		6.22 (2.61)		4.00 (2.66)		5.52 (2.95)	
	61 - 70	4.71 (1.73)		5.56 (2.46)		4.38 (2.33)		5.25 (2.67)	
Education level	No formal education	4.82 (2.82)	0.083	4.37 (3.13)	0.005	3.31 (2.47)	0.011	5.13 (3.18)	0.090
	Primary education	4.11 (2.52)		5.93 (2.62)		4.36 (2.66)		5.19 (2.71)	
	Secondary education	4.37 (2.38)		6.39 (2.27)		4.00 (2.66)		5.82 (2.49)	
	Tertiary education	3.65 (2.36)		6.82 (2.45)		4.38 (2.33)		6.24 (2.81)	
Marital state	Single	4.56 (2.27)	0.520	6.03 (2.20)	0.760	4.00 (2.50)	0.496	6.03 (2.87)	0.325
	Married	4.15 (2.48)		6.18 (2.55)		3.58 (2.39)		5.54 (2.64)	
Breast feeding	Yes	4.09 (2.54)	0.298	6.22 (2.56)	0.359	3.75 (2.41)	0.039	5.58 (2.67)	0.931
	No	4.44 (2.23)		5.86 (2.26)		3.10 (2.86)		5.62 (2.68)	
Family history	Yes	4.04 (2.57)	0.779	6.26 (2.42)	0.694	4.80 (2.61)	0.009	6.00 (2.63)	0.139
	No	4.18 (2.47)		6.13 (2.55)		3.50 (2.35)		5.47 (2.67)	
No. of children	0	4.34 (2.24)	0.027	5.55 (2.47)	0.202	3.16 (2.32)	0.078	5.55 (2.80)	0.867
	1 - 3	4.05 (2.51)		6.24 (2.57)		3.76 (2.39)		5.57 (2.70)	
Screening methods	No. of positive responses (%)	MOH	NCH	p value					
---------------------------	-------------------------------	-----	-----	---------					
Breast self-examination	254 (80.1)	265	(83.6)	0.257					
Clinical breast examination	249 (78.5)	291	(91.8)	<0.001					
Mammography	104 (32.8)	284	(89.6)	<0.001					
MRI	109 (34.4)	199	(62.8)	<0.001					
FNAC	120 (38.0)	264	(83.3)	<0.001					
Table 5. Practices of early detection methods for breast cancer

Practices	Responses	No. of participants (%)	MOH	NCH	p value
Practice of BSE					
Frequency of BSE					
Once a month			74 (53.6)	119 (63.3)	0.098
Once in three months			12 (8.7)	12 (6.4)	
Once in quarter of a year			12 (8.7)	6 (3.2)	
Not very often			40 (29.0)	51 (27.1)	
Age when first BSE started					
<30 years			55 (39.9)	23 (12.2)	<0.001
30 – 35 years			56 (40.6)	28 (14.9)	
>35 years			27 (19.6)	137 (72.9)	
Level of education					
No formal education			12 (8.7)	7 (3.7)	<0.001
Primary level			22 (15.9)	61 (32.4)	
Secondary level			56 (40.6)	94 (50.0)	
Tertiary level			48 (34.8)	26 (13.8)	
Family history of BSE					
Yes			14 (10.1)	39 (20.7)	0.010
No			124 (89.9)	149 (79.3)	
Practice of CBE					
Frequency of CBE					
Once			100 (92.6)	195 (61.5)	<0.001
1-3 times			1 (0.9)	38 (12.0)	
3-5 times			5 (4.6)	40 (12.6)	
More than 5 times			2 (1.9)	44 (13.9)	
Level of education					
No formal education			8 (7.4)	16 (5.0)	<0.001
Primary level			22 (20.4)	122 (38.5)	
Secondary level			46 (42.6)	141 (44.5)	
Tertiary level			32 (29.6)	38 (12.0)	
Family history and CBE					
Yes			12 (11.1)	72 (22.7)	<0.001
No			96 (88.9)	245 (77.3)	
Knowledge of Mammography					
Recommended age to start at 30			38 (12.0)	58 (18.3)	<0.001
mammography examination at 35			95 (30.0)	69 (21.8)	
(Years)			25 (7.9)	55 (17.4)	
at 40			4 (1.3)	5 (1.6)	
Don’t know			155 (48.9)	130 (41.0)	
Table 6. Attitudes regarding breast cancer

Attitudes	Responses	No. of positive responses
		MOH (%)
If a breast cancer developed	will be scared	200 (63.1)
	will consult a doctor	313 (98.7)
	will use traditional medicine	38 (12.0)
	will go to prayer house	207 (65.3)
	will agree to perform mastectomy	254 (80.1)
Occurrence of breast cancer in old age	Yes	80 (25.2)
Breast cancer is curable	Yes	248 (78.2)
Survival of more than five years	Yes	103 (32.5)
Willingness to allow a male doctor	Yes	305 (96.2)

(p value) NCH (%)
Table 7: Reasons for not practicing BSE and CBE regularly

Reasons for the negligence in BSE and CBE practice	No. of participants (%)	MOH	NCH
Breast self-examination (BSE)			
I don’t have breast problem	133 (54.7)	61 (30.8)	
I don’t think I should	62 (25.5)	50 (25.3)	
I don’t feel comfortable doing this	8 (3.3)	17 (8.6)	
I don’t know how to do that	53 (21.8)	50 (25.3)	
Carelessness	79 (32.5)	103 (52.0)	
Too frequent to practice	18 (7.4)	21 (10.6)	
I don’t think it is necessary	80 (32.9)	42 (21.2)	
Unsure about benefits	21 (8.6)	13 (6.6)	
Others	47 (19.3)	33 (16.7)	
Clinical breast examination (CBE)			
Concern about extra money	13 (6.2)		
Concern about extra time	27 (12.9)		
Fear of outcome	6 (2.9)		
Too young to participate	22 (10.5)		
No signs and symptoms of breast cancer	135 (64.6)		
No one recommended	61 (29.2)		
Unsure about the benefits	8 (3.8)		
Others	55 (26.3)		