Purpose: To implement physics-based regularization as a stopping condition in tuning an untrained deep neural network for reconstructing MR images from accelerated data.

Methods: The ConvDecoder (CD) neural network was trained with a physics-based regularization term incorporating the spoiled gradient echo equation that describes variable-flip angle data. Fully-sampled variable-flip angle k-space data were retrospectively accelerated by factors of $R = \{8, 12, 18, 36\}$ and reconstructed with CD, CD with the proposed regularization (CD $+ r$), locally low-rank (LR) reconstruction, and compressed sensing with L1-wavelet regularization (L1). Final images from CD $+ r$ training were evaluated at the “argmin” of the regularization loss; whereas the CD, LR, and L1 reconstructions were chosen optimally based on ground truth data. The performance measures used were the normalized RMS error, the concordance correlation coefficient, and the structural similarity index.

Results: The CD $+ r$ reconstructions, chosen using the stopping condition, yielded structural similarity indexes that were similar to the CD ($p = 0.47$) and LR structural similarity indexes ($p = 0.95$) across R and that were significantly higher than the L1 structural similarity indexes ($p = 0.04$). The concordance correlation coefficient values for the CD $+ r$ T1 maps across all R and subjects were greater than those corresponding to the L1 ($p = 0.15$) and LR ($p = 0.13$) T1 maps, respectively. For $R \geq 12$ (≤ 4.2 min scan time), L1 and LR T1 maps exhibit a loss of spatially refined details compared to CD $+ r$.

Conclusion: The use of an untrained neural network together with a physics-based regularization loss shows promise as a measure for determining the optimal stopping point in training without relying on fully-sampled ground truth data.
INTRODUCTION

Magnetic Resonance Imaging (MRI) exhibits superior tissue contrast compared to other imaging modalities, such as CT. In imaging ischemic stroke patients, for instance, MRI was shown to be substantially more sensitive in detecting lesions (93.5% positivity rate) compared to CT (85% positivity rate). In breast imaging, for example, MRI has shown greater sensitivity than mammography with recent advancements. While sensitivity is superior, MRI may lack specificity in some cases compared to other imaging techniques. False positives in general may lead to unnecessary biopsies with concomitant stress to the patient and cost to the healthcare system. Thus, there is substantial effort toward increasing the diagnostic specificity of MRI through the development of quantitative imaging schemes that provide numeric data in addition to standard of care images for informing patient care.

Quantitative imaging involves fitting MRI data to a known physical model to estimate parameters that represent tissue characteristics. For instance, the fast spoiled gradient echo (SPGR) sequence equation is fit to data from a T_1-weighted variable-flip angle (VFA) acquisition to estimate the tissue T_1 values at each voxel, where T_1 values have been shown to distinguish some pathologies. T_1 parameter mapping is also an important component in other quantitative schemes, such as pharmacokinetic analysis of dynamic contrast-enhanced (DCE) MRI in breast cancer imaging and brain imaging for diagnosis and treatment monitoring.

Despite the utility of quantitative imaging, scan time constraints remain a barrier to incorporating quantitative imaging schemes into standard of care protocols. To combat this issue, many investigators are attempting to reduce scan time necessary for clinical application through model-based, multi-contrast methods. One such example is MR fingerprinting for collecting multiparametric maps in a single, fast scan using dictionary matching with unique, non-clinical sequences. MR multitasking is another multiparametric mapping technique that combines different imaging dynamics along multiple orthogonal dimensions that are subsequently resolved as a low-rank (LR) tensor, naturally extending LR matrix priors. Time-resolved EPI is another promising method for fast quantitative imaging that involves optimally under-sampling k-space along both spatial and temporal dimensions without blurring artifacts from traditional EPI. These are rich multi-contrast acquisitions that incorporate a well-defined physical model with great potential for compatibility with deep learning advancements.

Model-based reconstruction via trained deep learning methods has shown promise in utilizing deep convolutional neural networks (CNNs) for reconstructing images with sufficient spatial and/or temporal resolution from highly accelerated raw MRI data for successful subsequent analysis with appropriate models. One such method is the Model-Based Deep Learning framework by Aggarwal et al., which introduces an end-to-end supervised CNN-based noise estimator as a regularization term. Supervised methods, however, are limited by the availability of sufficiently large, curated training datasets. This is an issue that self-supervised and untrained methods circumvent by relaxing the need for fully-sampled ground truth (GT) data. The reference-free latent map extraction method trains a U-Net architecture in a self-supervised manner to map under-sampled data to quantitative parameter maps. While the reference-free latent map extraction method does incorporate physical dynamics, the method still requires a large training set. The Self-Supervision via Data Under-sampling method is a self-supervised method that also relies only on a large training set of available under-sampled data that is split into separate sets via multiple masks.

Conversely, untrained generative neural networks—such as DeepImagePrior, DeepDecoder, and ConvDecoder (CD) (where the term “untrained” was coined)—do not rely on a training data set. Instead, they operate on a single under-sampled input and are thus scan-specific, relying on the neural network structure for implicit regularization. The CD has been shown to substantially outperform conventional methods based on sparsity and LR principles and has been shown to perform similarly to trained methods in some cases. Still, these methods neither incorporate the known physical dynamics that further constrain the image reconstruction inverse problem nor include a stopping condition for determining when an optimal solution has been reached; therefore, they are prone to overfitting and can result in image artifacts. Yaman et al. and, recently, Leynes et al. propose regularizations based on data-consistency and statistical properties, respectively, that serve as stopping conditions for scan-specific reconstructions, but these methods do not include the quantitative model.

To address the need for a physics-informed untrained method with a reliable stopping condition for high-resolution dynamic MRI data amenable to quantitative analysis, we previously applied the CD method with an SPGR-based regularization term (CD + r) as a proof-of-principle for reconstructing multi-dimensional images from simulated accelerated VFA data. Here, we formalize the CD + r method and apply it to retrospectively accelerated 3D VFA data collected from three healthy subjects. We compare the image reconstruction quality and T_1 map output of fully-sampled VFA data to the output of retrospectively accelerated VFA data reconstructed...
Magnetic Resonance in Medicine | 1619

Implementation of the proposed deep learning framework

The CD method, \(G(w) \), is a generative CNN with weights \(w \) that maps a low-dimensional vector of random noise (Gaussian noise with mean 0 and standard deviation 1) to an image. It is an extension of the original DeepDecoder framework with added convolutional operations, where the weights are iteratively optimized on a single dataset as opposed to trained on a collection of training data (i.e. supervised and self-supervised methods).

The cost function, \(L(G(w)) \), for training \(G(w) \) is defined as follows:

\[
L(G(w)) = \min_w \| y_u - AG(w) \|_2^2.
\]

This cost function strictly enforces data consistency between the inputted accelerated k-space data, \(y_u \), and the network output, \(G(w) \), passed through the forward operator, \(A \) (see Eq. 1). Even though the problem is ill-posed, the CNN provides implicit regularization favoring natural images. The original implementation of the CD architecture (see Figure S1 for the network structure) was adapted into DeepInPy, a Python-based framework for training deep learning methods specific to MRI reconstruction problems. Each under-sampled dataset presented to the CD network is reconstructed separately and independently. The network was calibrated using the ISMRM/NIST phantom scanned with the same equipment and protocol described below in Section 2.4 (see Supplemental Methods for phantom details).

The weights were updated through backpropagation using the Adam optimizer, where a step size of \(\delta = 0.01 \) was empirically chosen based on calibration with the...
phantom scans. The network was trained for 10 000 training steps. The optimal reconstruction (complex-valued, coil-combined VFA image series) for each CD experiment was chosen by evaluating the argmin of the final normalized RMS error (NRMSE) curve as a function of training steps as a “best-case” reconstruction compared to the GT. The NRMSE was retrospectively smoothed with the Savitzky–Golay method\(^48\) prior to finding the argmin (Figure S2).

For CD with physics-based regularization (CD + \(r\)), the CD network structure (Figure S1) and same optimization scheme were used; however, the cost function in Eq. (3) was altered to reflect the regularization term:

\[
L(G(w)) = \min_w \| y_u - AG(w) \|_2^2 + \mu \| G(w) - x_m \|_2^2, \tag{4}
\]

where \(\mu\) is the regularization parameter, and \(x_m\) is the SPGR model output computed through dictionary matching as described in Section 2.2. The proposed pipeline for CD + \(r\) is visually outlined in Figure 1. The model, \(x_m\), was updated from \(G(w)\) every \(j = 5\) training steps through alternating minimization,\(^49\) where the value of \(j\) was empirically optimized (see Supplemental Methods for more detail). Four values of the regularization parameter were selected after investigating many values across scales during hyperparameter optimization: \(\mu \in \{0.05, 0.10, 0.50, 1.0\}\). The regularization loss was retrospectively smoothed with the Savitzky–Golay method\(^48\) (Figure S2), and the optimal reconstruction for each experiment was selected by computing the argmin of the regularization loss (noting that CD + \(r\) is blind to the GT data).

Reconstruction-based \(T_1\) maps corresponding to the optimal reconstructions outputted from CD and CD + \(r\) were a byproduct of dictionary matching in solving for \(x_m\) during optimization.\(^20\) All deep learning experiments were performed on NVIDIA V100 graphics processing units (GPUs) with 16 GB memory. Code to reproduce our results is available at https://github.com/kslav/cdr_mri.git.

2.4 Data acquisition

Three healthy subjects (denoted S1, S2, and S3) were scanned using a 3T MAGNETOM Vida MRI scanner equipped with a 32-channel head coil array (Siemens, Munich, Germany) under approval of the Institutional Review Board and with informed consent. Fully-sampled VFA data from each subject were collected using a 3D SPGR sequence with an acquisition matrix of 224 × 224 × 224 over a (22.4 cm)\(^3\) FOV (i.e., 1 mm\(^3\) isotropic resolution), TR/TE = 6.10/2.75 ms, and nine flip angles from 4° through 20° and linearly spaced in 2° increments. No parallel imaging was employed so that all k-space samples were collected, which required 50 min of scanning per subject.
A representative dynamic slice (as a function of \(\theta \)) from each dataset was selected for analysis following an inverse Fourier transform along the read-out direction. The magnitudes of the VFA anatomical images at all nine flip angles are displayed in Figure S3 (images and data are complex-valued, see Supplemental Methods for more information on data formatting). To eliminate correlated noise across the sensitivity coils, noise pre-whitening was performed on all three datasets using a noise pre-scan and the BART toolbox.50 Finally, software singular value decomposition-based coil compression was applied to the raw k-space datasets50–52 to shrink the coil space down to 11 signal-contributing virtual coils, thereby eliminating coils contributing less than 1% of the total signal (see Figure S4).

2.5 Simulated data generation without model error

To determine how quantitative model error affects the performance of the proposed physics-regularized method, datasets with no model error were first created from the raw data by synthesizing the forward equation. A set of three reference T1 maps and modeled images were estimated using dictionary matching applied to the three fully-sampled datasets. Each simulated VFA image series was multiplied by coil sensitivity maps (described in Section 2.6 below) to arrive at simulated coil images. The k-space data were subsequently computed by taking the Fourier transform of these coil images. Finally, noise was added to the k-space of each simulated image based on the native SNR of the raw data. The result was a set of three noisy, simulated datasets derived from the three raw datasets without VFA model error.

2.6 Preparation of retrospectively accelerated data

After acquiring and pre-processing the raw k-space and generating simulated data by the methods in Sections 2.4 and 2.5, respectively, the raw and simulated data were subsequently normalized to have a norm of 1000 (see Supplemental Methods on phantom scans). The coil sensitivities, \(S \), were computed using the ESPIRiT algorithm53 implemented in BART. The coil sensitivity maps corresponding to each raw dataset were used in Section 2.5 for the simulated data as the modeled anatomy remained the same.

Next, the sampling masks, \(M \), were created. A set of unique variable-density 2D Poisson-disc sampling patterns with fully-sampled auto-calibration regions of size 25 \(\times \) 25 was generated using BART and stored in a 3D volume of masks matching the VFA data dimensions. We chose acceleration factors of \(R \in \{8, 12, 18, 36\} \), corresponding to scan durations of \{6.25, 4.17, 2.78, 1.4\} min; thus, a set of \(M \) was generated for each value of \(R \) (Figure S4). The three fully-sampled raw and simulated datasets were all retrospectively accelerated by taking the product of \(M \) with the fully-sampled k-space. An example set of corresponding zero-filled images is displayed in Figure S5.

2.7 Implementation of the baseline methods of reconstruction

Compressed sensing (L1)42,54 and locally LR reconstruction,41,55 both implemented using BART, were chosen as the baseline methods against which the performance of the proposed method was evaluated. These methods were chosen because they are commonly used, are effective, do not rely on training data, and lack a stopping condition independent of GT data.31 For each set of raw and simulated data, the optimal reconstructed images from L1 and LR were found by optimizing over the regularization parameter, \(\lambda \), and the number of iterations, \(N \), (available in Table 1 for the raw data and Table S1 for the simulations) through the minimization of the NRMSE computed between the GT images and the reconstructions. Reconstruction-based T1 maps corresponding to the final L1 and LR-reconstructed images were computed using dictionary matching.

2.8 Performance measures and statistical analysis

The NRMSE, concordance correlation coefficient (CCC),56 and structural similarity index (SSIM)57 were computed to assess the performance of the proposed framework. We used the fully-sampled raw k-space data as reference GT scans and computed the corresponding reference T1 maps for all three subjects. This allowed us to quantitatively benchmark the performance of the reconstruction schemes (Sections 2.3 and 2.7) against the GT image quality. The NRMSE and SSIM were used to quantify the performance of the VFA image series, whereas the NRMSE and CCC were used to measure the agreement between the reference T1 maps (Section 2.5) and the reconstruction-based T1 maps. The Wilcoxon rank sum test was used to compute \(p \)-values when comparing performance metrics across methods. Generally, average values are accompanied with “(± standard deviation).”
Table 1 Performance measures, (normalized RM error [NRMSE], structural similarity index [SSIM]), for all reconstruction methods applied to raw data. Bolded values refer to highest performing metric for each subject at each acceleration factor.

Subject	L1 Performance	L1 Regularization	LR Performance	LR Regularization	CD Performance	CD Number of steps	CD + r (μ = 0.10) Performance	CD + r (μ = 0.10) Number of steps
S1	(0.158, 0.862)	0.01	(0.141, 0.904)	0.0079	(0.139, 0.894)	1702 (1500)	(0.149, 0.883)	1414 (1500)
S2	(0.155, 0.864)	0.01	(0.137, 0.892)	0.0077	(0.134, 0.876)	1695 (1500)	(0.136, 0.876)	1934 (2000)
S3	(0.135, 0.885)	0.01	(0.116, 0.921)	0.0073	(0.111, 0.914)	2060 (2000)	(0.111, 0.913)	2196 (2000)

Subject	L1 Performance	L1 Regularization	LR Performance	LR Regularization	CD Performance	CD Number of steps	CD + r (μ = 0.10) Performance	CD + r (μ = 0.10) Number of steps
S1	(0.179, 0.844)	0.01	(0.161, 0.882)	0.0063	(0.149, 0.879)	1695 (1500)	(0.163, 0.873)	1391 (1500)
S2	(0.177, 0.841)	0.0098	(0.155, 0.869)	0.006	(0.143, 0.868)	1645 (1500)	(0.149, 0.848)	1485 (1500)
S3	(0.157, 0.864)	0.0091	(0.131, 0.904)	0.0058	(0.119, 0.907)	2156 (2000)	(0.120, 0.906)	1947 (2000)

Subject	L1 Performance	L1 Regularization	LR Performance	LR Regularization	CD Performance	CD Number of steps	CD + r (μ = 0.10) Performance	CD + r (μ = 0.10) Number of steps
S1	(0.210, 0.811)	0.0078	(0.189, 0.848)	0.0049	(0.162, 0.880)	1798 (2000)	(0.198, 0.840)	773 (1000)
S2	(0.207, 0.802)	0.0071	(0.182, 0.835)	0.0046	(0.151, 0.848)	1728 (2000)	(0.163, 0.850)	1440 (1500)
S3	(0.186, 0.836)	0.0065	(0.155, 0.877)	0.0045	(0.13, 0.907)	2262 (2500)	(0.130, 0.907)	2967 (3000)

Subject	L1 Performance	L1 Regularization	LR Performance	LR Regularization	CD Performance	CD Number of steps	CD + r (μ = 0.10) Performance	CD + r (μ = 0.10) Number of steps
S1	(0.289, 0.726)	0.0038	(0.256, 0.775)	0.0048	(0.199, 0.837)	2177 (2000)	(0.339, 0.681)	9772 (9999)
S2	(0.277, 0.718)	0.0036	(0.249, 0.752)	0.0051	(0.185, 0.817)	2030 (2000)	(0.307, 0.701)	7660 (7500)
S3	(0.261, 0.756)	0.003	(0.219, 0.810)	0.0038	(0.155, 0.864)	2486 (2500)	(0.156, 0.866)	2551 (2500)

Abbreviation: CD, ConvDecoder.
Note: The optimal number of iterations for L1 and low-rank (LR) were 110 and 150, respectively.

3 | RESULTS

Across all methods, acceleration factors, and simulated and raw data, a total of 168 reconstruction experiments were performed. Each CD experiment took 3.16 (±0.24) h to complete on average, and each CD + r experiments took 5.15 (±0.20) h to complete.

3.1 Applying the regularization loss as a stopping condition

The suitability of the regularization loss as a stopping condition was evaluated across the CD + r experiments in the simulated and raw data settings at four values of \(\mu \) and \(R \) (Figures 2, S6). The NRMSEs, SSIMs, and optimal number of training steps can be found for these experiments for the raw data in Table S2 and the simulated data in Table S3. Bolded values in Tables S2 and S3 indicate the highest performing metrics, which, in Table S2, correspond predominantly to \(\mu = 0.1 \) for \(R \leq 18 \) and to \(\mu = 1.0 \) for \(R = 36 \). In Table S3, the highest performing metrics correspond to \(\mu = 0.5 \) and \(\mu = 1.0 \). Figure 2A displays training curves and performance measures for the simulated case for a representative subject (S3) at \(R = 12 \). In this figure, the reconstructions for \(\mu = 0.05 \) and \(\mu = 0.10 \) both yielded NRMSEs of 0.13. These two results match the NRMSE of the optimal CD reconstruction (\(\mu = 0 \)) (based on the global minima of the NRMSE curve). Similar NRMSE values were found for \(\mu = 0.50 \) and \(\mu = 1.0 \).
FIGURE 2

Regularization loss and normalized RMS error (NRMSE) in a representative dataset for $R = 12$. (A) The top left and top right plots show the regularization loss and the NRMSE, respectively, as a function of training steps for the simulated data. Below these plots, representative variable-flip angle (VFA) reconstructions at $\theta = 10^\circ$ at four regularization rates, μ, are juxtaposed with the ground truth (GT) image. The numbers in parentheses below the anatomical images inform the NRMSE and structural similarity index (SSIM) for the optimal reconstruction based on the argmin of the regularization loss (for non-zero μ) and the NRMSE curve (for $\mu = 0$). (B) Analogous to the information in panel (A) for the raw data analysis. The results in both panels are similar in terms of NRMSE and SSIM; though, more training steps were required to reach the optimal stopping condition for $\mu = 0.50$ and 0.10.

The added physics-informed regularization in Figure 2A yielded lower NRMSE values across all four μ's at later epochs (roughly post 3000) compared to CD. At the final training step of 9999 (Figure 2A), the CD reconstruction had a NRMSE of 0.28 compared to 0.20 for the CD + r experiment with the greatest final NRMSE, corresponding to $\mu = 0.05$. The CD + r reconstructions for subject S3 yielded an average NRMSE and SSIM across μ of 0.13 (± 0.002) and 0.91 (± 0.01), respectively, compared to the CD reconstruction with a NRMSE of 0.13 and a
SSIM of 0.89. Averaging over all simulated subject datasets at $R = 12$, the CD + r reconstructions yielded an average NRMSE and SSIM of 0.15 (± 0.01) and 0.89 (± 0.03), respectively, compared to CD reconstructions with an average NRMSE of 0.15 (± 0.01) and an average SSIM of 0.88 (± 0.03).

The raw data analysis for subject S3 at $R = 12$ is displayed in Figure 2B. Larger regularization rates of $\mu = 0.50$ and $\mu = 1.0$ corresponded with a greater duration of optimization compared to the simulated results in Figure 2A. Like the NRMSE curves in Figure 2A, the added physics-informed regularization in Figure 2B lowered NRMSEs for all four μ values at later epochs compared to CD in Figure 2B. The CD + r reconstructions for subject S3 yielded an average NRMSE and SSIM across μ of 0.12 (± 0.005) and 0.91 (± 0.01), respectively, compared to the CD reconstruction with a NRMSE of 0.12 and a SSIM of 0.91. Averaging over all raw subject datasets at $R = 12$, the CD + r reconstructions yielded an average NRMSE and SSIM of 0.17 (± 0.04) and 0.86 (± 0.04), respectively, compared to CD reconstructions with an average NRMSE of 0.15 (± 0.02) and an average SSIM of 0.88 (± 0.02).

3.2 | Comparing the image reconstructions across the four methods

The SSIM and NRMSE values can be found in Table 1 for the raw data reconstructions (Table S1 for the simulated data reconstructions) for all methods and acceleration factors. For display in subsequent figures, greater focus is placed on juxtaposing LR, CD, and CD + r as LR (NRMSE = 0.17 [± 0.05], SSIM = 0.86 [± 0.05]) performed better on average across subjects and R values than L1 (NRMSE = 0.20 [± 0.05], SSIM = 0.82 [± 0.06]). Bolded values in Table 1 and S1 indicate the highest performing metrics, predominantly corresponding to CD and CD + r for $R \geq 18$.

Taking the same representative subject, S3, from Figures 2 and 3 compares the L1, LR, CD, and CD + r (with $\mu = 0.10$) reconstructions for the simulated dataset (Figure 3A) and the raw dataset (Figure 3B) at $R = 12$. In Figure 3A, L1 yields a higher NRMSE of 0.17 and a lower SSIM of 0.87, compared to NRMSE values of 0.13 for both LR, CD, and CD + r. The difference image in Figure 3A for L1 reveals a higher normalized error in the skull and gray matter regions, qualitatively visible as blurring in the magnified anatomical images. The results from the raw data analysis in Figure 3B are consistent with the results in Figure 3A. Averaged across all three raw datasets at $R = 12$ in Figure 2B, the NRMSE values for the LR, CD, and CD + r reconstructions were 0.15 (± 0.02), 0.14 (± 0.02), and 0.14 (± 0.02), respectively. Similarly, the average SSIM values for the three respective methods were 0.89 (± 0.02), 0.88 (± 0.03), and 0.88 (± 0.03).

To compare the performance of LR, CD, and CD + r across datasets and acceleration factors, the SSIM values for $R \in \{8, 12, 18\}$ were plotted in Figure 4A against the flip angle (Figure S7 for the simulations). The anatomical image of Subject S2 at $\theta = 10^\circ$ is shown as a representative case in Figure 4B, where LR and CD reconstructions have larger SSIMs (± 0.02) compared to CD + r for $R = 8$ and $R = 12$. At $R = 18$, however, all four methods yield the same SSIM. In the SSIM plot for $R = 18$, the CD and CD + r curves closely overlap and are higher than the LR curve for flip angles below 12°. The anatomical images show that LR reconstructions tend to be noisier, which obscures tissue details at higher acceleration factors compared to the smoother reconstructions from CD and CD + r. In the absence of model error, Figure S7 shows that CD + r confers an advantage over CD for higher acceleration factors and stronger regularization.

3.3 | Comparing the T_1 maps across the four methods

Aside from the reconstructed VFA image series from each of the four methods, we also investigated the quality of the T_1 maps corresponding to each optimal reconstruction. The NRMSEs and CCs for the T_1 maps corresponding to the reconstructions from all accelerated raw data at all R can be found in Table 2 (simulation results in Table S4). Bolded values in Table 2 and Table S4 indicate the highest performing metrics, corresponding to CD and CD + r T_1 maps across all R.

Figure 5 compares the T_1 maps corresponding to the optimal LR, CD, and CD + r reconstructions for $R \in \{8, 12, 18\}$. Qualitatively, the LR T_1 map showed the least agreement with the GT T_1 map across all acceleration factors. For $R = 8, 12, 18$, respectively, the LR results were CCC = 0.91, 0.87, 0.83 compared to CD results of CCC = 0.93, 0.91, 0.88 and CD + r results of CCC = 0.93, 0.91, 0.89. At $R = 36$ (1.5 min of scan time), the CD + r T_1 map (CCC = 0.82) and the CD T_1 map (CCC = 0.82) showcased similar agreement with the GT map.

Figure 6 displays the T_1 maps for all three retrospectively accelerated raw datasets at $R = 12$ (simulation results presented in Figure S8). As in Figure 5, the LR T_1 maps lack spatially refinement across the tissue, most evident in the gray matter folds and ventricles that are clearly defined in the GT parameter map. Figure 7 compares the CCC and NRMSE values for the LR and CD + r T_1 maps from all subjects and acceleration factors, revealing that the CD + r T_1 maps across all experiments yield smaller NRMSE values ($p = 0.162$) and larger CCC values ($p = 0.131$) than the
FIGURE 3 Performance of all four methods in a representative dataset for $R = 12$. (A) Optimal reconstructions of simulated data at $\theta = 10^\circ$ and $\mu = 0.10$ for ConvDecoder (CD) + r. The CD + r reconstruction is compared to the results from L1, low-rank (LR), and CD, where the white numbers overlayed on the images reflect the normalized RMS error (NRMSE) and structural similarity index (SSIM), as labeled, computed across all flip angles. The grayscale bar represents fractional error between the ground truth (GT) and each reconstruction. L1 yields a higher NRMSE of 0.17 and a lower SSIM of 0.87, compared to NRMSE values of 0.13 for the remaining methods. This higher error in the L1 reconstruction is evident in the magnified anatomical images, where there is loss of edge information in the gray matter region adjacent to the ventricle. In the absence of variable-flip angle (VFA) model error, CD + r yielded the highest SSIM value among the reconstructions. (B) Analogous to the information in (A) for the raw data analysis. The results from the raw data analysis are consistent with the results in panel A, where all NRMSEs and SSIM values are within 0.1 of their simulation-based counterparts. CD + r performed similarly to CD when model error was no longer accounted for.

LR T_1 maps when compared to the reference maps. In the simulated setting, (Figures S8 and S9) the CD + r T_1 maps exhibited better agreement with the reference maps than the LR T_1 maps to a statistically significant extent (NRMSE with $p = 0.015$ and CCC with $p = 0.002$).

4 DISCUSSION

This study is the first to utilize the untrained CD method with a physics-based regularization term serving as a stopping condition to reconstruct retrospectively accelerated raw, dynamic MRI data, noting that the original CD architecture was previously only applied to reconstructing 2D static images with no physics-based regularization. 31 It is important to note that the NRMSE curve was known to us due to the retrospective nature of this study that provides access to GT data. We therefore used the NRMSE to choose the best stopping condition for L1, LR, and CD in order to provide a “best-case” reconstruction for comparison, noting that this is not achievable in practice. Importantly, CD + r was blind to the GT data, yet CD + r was able to perform similarly to the “best-case” result of CD, while outperforming the other two methods. While trained methods typically outperform untrained methods, 31 it can be difficult to acquire GT training data for some types of scans, such as DCE MRI and other quantitative imaging schemes that have strict temporal sampling requirements. There is therefore a need for untrained methods that can work with limited data.

A major challenge of using untrained methods is the selection of an appropriate regularization parameter and early stopping condition when GT data is not available to benchmark the reconstructions. Importantly, the physics-based regularization proposed in this study demonstrated reliability as a stopping condition that can
FIGURE 4 ConvDecoder (CD) performance at different R values across all raw datasets. (A) Plots of the structural similarity index (SSIM) as a function of flip angle for $R \in \{8, 12, 18\}$ for all three subjects. The solid, star, and dashed curves in the SSIM plots correspond to CD + r ($\mu = 0.10$), CD, and low-rank (LR), respectively. (B) Anatomical images for subject S2 from each reconstruction (blue curves in panel (A)) at $\theta = 10^\circ$ for each of the three R values. The SSIM values are overlaid on each anatomical image. While LR and CD have higher SSIM values at the lowest two R values, the three methods match in performance at $R = 18$, where all three blue curves in panel A closely overlap across all flip angles. The dynamic range in SSIM that the curves differ by with respect to one another does not exceed ± 0.2 (within two significant figures).

be computed without access to GT data given a suitable value for the regularization parameter. Even when neglecting early stopping and when trained to completion after 10 000 training steps, CD + r yielded reconstructions with substantially lower NRMSEs at the end of training compared to CD across all subjects, acceleration factors, and μ values. Because the optimal value of μ is not known a priori for novel reconstructions, we investigated μ values at different scales and subsequently showed that (i) the NRMSE increases slowly as training continues beyond the known (i.e., optimal) solution and (ii) the automatic stopping condition remains close to the optimal solution. Thus, there is tolerance in the choice of solution based on the stopping condition and regularization parameter.

Another important contribution of the CD + r method is the ability to compute highly detailed quantitative parameter maps simultaneously during reconstruction via the physics-based regularization term. The T_1 maps corresponding to the CD + r reconstructions yielded high agreement with the reference T_1 map across all subjects, achieving $\text{CCC} > 0.9$ for $R \leq 12$ (as short as 4-min of acquisition time), thus outperforming the L1 and LR baselines. Comparing the CD + r T_1 maps with those derived from the baseline LR method (Figures 5 and 6), CD + r yields T_1 maps with more spatial refinement in closer agreement with the reference (GT) T_1 map. The LR T_1 map, however, exhibits greater noise and blurring, particularly in the gray matter region across subjects and acceleration factors. It is important to note that L1, LR, and CD benefited from a priori knowledge of the GT when selecting the regularization parameters, while CD + r did not.

While CD + r compared positively to baseline methods, there are opportunities for further investigation. First, untrained methods are generally slower than trained methods, and CD + r is not excluded from this. Trained methods, while taking ample time and resources to train (particularly for large training datasets with thousands of examples), are fast at inference, outputting a solution after a small number of forward passes through a deep network, whereas untrained methods are iteratively fit to data over many training steps for each independent set of data. As CD + r explicitly solves for the dynamic images, the reconstruction will require more time and memory for datasets with more dynamic points. One solution, proposed by Darestani et al. is to warmstart the neural network (i.e., load pre-trained weights from a similar anatomy to initiate the network rather than beginning with random weights). Arora et al. also showed that multiple slices could be
TABLE 2 Performance measures for T1 mapping analysis of the raw data. Paired values in parentheses in each field correspond to the (normalized RMS error [NRMSE], concordance correlation coefficient [CCC]). Bolded values refer to highest performing metric for each subject at each acceleration factor.

R = 8	Subject	L1	LR	CD	CD + r (μ = 0.10)
S1	(0.204, 0.921)	(0.207, 0.916)	(0.201, 0.928)	(0.202, 0.926)	
S2	(0.201, 0.918)	(0.206, 0.912)	(0.204, 0.920)	(0.194, 0.928)	
S3	(0.193, 0.918)	(0.201, 0.910)	(0.185, 0.928)	(0.186, 0.928)	

R = 12	Subject	L1	LR	CD	CD + r (μ = 0.10)
S1	(0.243, 0.883)	(0.246, 0.878)	(0.219, 0.914)	(0.235, 0.897)	
S2	(0.248, 0.869)	(0.249, 0.867)	(0.220, 0.907)	(0.224, 0.900)	
S3	(0.230, 0.879)	(0.234, 0.874)	(0.211, 0.906)	(0.211, 0.905)	

R = 18	Subject	L1	LR	CD	CD + r (μ = 0.10)
S1	(0.0.287, 0.830)	(0.288, 0.827)	(0.254, 0.883)	(0.283, 0.840)	
S2	(0.290, 0.813)	(0.293, 0.807)	(0.249, 0.876)	(0.255, 0.868)	
S3	(0.265, 0.837)	(0.271, 0.828)	(0.235, 0.880)	(0.229, 0.889)	

R = 36	Subject	L1	LR	CD	CD + r (μ = 0.10)
S1	(0.364, 0.703)	(0.374, 0.682)	(0.315, 0.811)	(0.434, 0.633)	
S2	(0.38, 0.624)	(0.408, 0.575)	(0.301, 0.813)	(0.417, 0.648)	
S3	(0.329, 0.739)	(0.332, 0.730)	(0.280, 0.822)	(0.277, 0.821)	

Abbreviations: CD, ConvDecoder; LR, low-rank.

reconstructed with a single generative model. In Darestani et al.’s example, it was shown that a CD architecture optimized for one set of non-fat suppressed knee MR images is a good initialization for training a CD architecture to reconstruct another set of fat-suppressed knee MR images. In the context of this study, an adjacent tissue slice can be used to warmstart the CD + r reconstruction scheme for all subsequent brain reconstructions of the same imaging modality, and we show promising preliminary results for this approach in Figure S10. It may also be possible to incorporate computation savings from subspace-based methods. Additionally, because the physics-based regularization term in CD + r informs when the optimal solution is reached, training can be stopped early and would thus save up to 1 h of computation (given the computational resources used in this work) compared to CD.

Another drawback to consider is that the current design of CD + r applies only to 2D dynamic data. As such, reconstructing a dynamic 3D volume would necessitate slice-by-slice reconstruction with warmstarting or an updated CD + r architecture that can take as input 4D, perhaps with convolutions along the dynamic dimension for further compression. This approach has successfully been explored in other trained methods for fast image reconstruction. While we implemented one type of deep image prior (DIP), there remains the question of whether other DIPs, such as regularization by artifact-removal and time-dependent DIP, may confer a greater advantage. Similarly, the optimal sampling mask remains to be explored for our application. Lastly, as only healthy subjects were available for direct imaging in the research setting, there is the question of the performance of CD + r in the context of diseased tissue. This direction of work would involve close collaboration with radiologists to determine the diagnostic quality of images and with mathematical oncologists to appropriately curate models of disease for regularization.

The analysis in this work indicates that it may be possible to use the unsupervised physics-based regularization term—blind to GT data—to determine the optimal stopping point in training while yielding results similar to methods that do reference the GT, which is an important real-world consideration when deploying these methods prospectively. These retrospective results indicate that it may be possible to achieve similar performance using the
FIGURE 5 T1 maps for a single raw dataset at three accelerations. T1 maps for $R \in \{8, 12, 18\}$ corresponding to mapping the anatomical low-rank (LR), ConvDecoder (CD), and CD + r reconstructions. The CD and CD + r ($\mu = 0.10$) reconstructions were obtained at the optimal number of training steps listed in Table 1. For all values of R, the LR T1 map has visible blurring in the gray matter folds compared to the CD and CD + r T1 maps. At $R = 8$, the concordance correlation coefficient (CCC) value for the CD + r T1 map is 2% higher than the CCC value for the LR T1 map; this difference is 7% at $R = 18$ with CD + r showing greater agreement to the ground truth T1 map.

FIGURE 6 T1 maps for all raw datasets at $R = 12$. T1 maps for all three subjects corresponding to mapping the anatomical low-rank (LR), ConvDecoder (CD), and CD + r reconstructions. The CD and CD + r ($\mu = 0.10$) reconstructions for each subject are displayed after the optimal number of training steps specified in Table 1. For all values of R, the CD and CD + r T1 maps show less blurring in the gray matter regions as compared to the LR T1 maps. The concordance correlation coefficient (CCC) values, overlain on each map, are lower for the LR T1 maps for all subjects (≤ 0.88) as compared to the CD and CD + r T1 maps for all subjects (≥ 0.90). GT, ground truth.
CD + r method given prospectively accelerated data, at least given the Poisson-disc sampling pattern used in this work. A prospective analysis merits further investigation.

While the CD + r method was evaluated using VFA data and the SPGR model, it is generalizable to any MRI modality and corresponding physical model, making it compatible with, for example, MR fingerprinting, time-resolved EPI, and MR multitasking given the reformulation of the CD network to output tensor data. In another example, a recent approach to choosing the stopping condition proposed splitting the measurements into three disjoint sets for training, validation, and early stopping, respectively; as this does not exploit the physical model, it could also be combined with the proposed physics-based regularization. To recover high-spatial, high-temporal resolution images from an ultra-fast DCE-MRI acquisition, as another example, the dictionary used for fitting the SPGR model to the VFA data would be replaced with a dictionary storing perfusion model curves, such as those outputted by the Kety–Tofts model. The structure and training of the network would be optimized for the DCE-MRI inverse problem through hyperparameter optimization of the number of layers, the size of the latent space, and the step size used for gradient descent.

5 | CONCLUSIONS

We have introduced an untrained deep learning-based generative neural network for model-based MRI reconstruction with a physics-based regularization. We demonstrated the utility of the stopping condition provided by the physics-based regularization term in the CD + r training, which was especially powerful in T1 mapping at high accelerations. The ability to determine the optimal reconstruction without a performance measure requiring GT data is integral to the reconstruction of prospectively acquired accelerated MRI data. The success of this method on highly accelerated raw data indicates the potential to incorporate a fast acquisition of dynamic MRI data in the clinical setting for quantitative imaging.

ACKNOWLEDGMENTS

We thank the National Institutes of Health for funding through NCI U01CA142565, U01CA174706, U01CA253540, U24CA226110, and R01CA240589, as well as NIH U24EB029240. We also extend our gratitude to the American Cancer Society for support through RSG-18-006-01-CCE and the Cancer Prevention and Research Institute of Texas for support through CPRIT RR160005. An Amazon Web Services Machine Learning Research Award was an integral funding component in enabling the use of GPUs. Lastly, we gratefully acknowledge the time that the three subjects in this study volunteered for being scanned. Thomas E. Yankeelov is a CPRIT Scholar in Cancer Research.

DATA AVAILABILITY STATEMENT

Code to reproduce our results is available at https://github.com/kslav/cdr_mri.git.

ORCID

Kalina P. Slavkova DOI https://orcid.org/0000-0003-4311-2355
REFERENCES

1. Kim DS, Kong MH, Jang SY, Kim JH, Kang DS, Song KY. The usefulness of brain magnetic resonance imaging with mild head injury and the negative findings of brain computed tomography. *J Korean Neurosurg Soc*. 2013;54:100-106. doi:10.3340/jkns.2013.54.2.100

2. Smajlović D, Sinanović O. Sensitivity of the neuroimaging techniques in ischemic stroke. *Med Arh*. 2004;58:282-284.

3. Kertesz A, Black SE, Nicholson L, Carr T. The sensitivity and specificity of MRI in stroke. *Neurology*. 1987;37:1580-1585. doi:10.1212/wnl.37.10.1580

4. Kuhl C, Weigel S, Schrading S, et al. Prospective multicenter cohort study to refine management recommendations for women at elevated familial risk of breast cancer: the EVA trial. *J Clin Oncol*. 2010;28:1450-1457. doi:10.1200/JCO.2009.23.0839

5. Kuhl CK, Schrading S, Biber M, et al. Abbreviated breast magnetic resonance imaging (MRI): first postcontrast subtracted images and maximum-intensity projection - a novel approach to breast cancer screening with MRI. *J Clin Oncol*. 2014;32:2304-2310. doi:10.1200/JCO.2013.52.5386

6. Leithner D, Eyer M, Lewis EA, Marino MA, Helbich TH, Pinker K. Abbreviated MRI of the breast: does it provide value? *J Magn Reson Imaging*. 2019;49:e85-e100. doi:10.1002/jmri.26291

7. Shehata M, Grimm L, Ballantyne N, et al. Ductal carcinoma in situ: current concepts in biology, imaging, and treatment. *J Breast Imaging*. 2019;1:166-176. doi:10.1093/jbi/wbz039

8. Abramson RG, Arlinghaus LR, Dula AN, et al. MR imaging biomarkers in oncology clinical trials. *Magn Reson Imaging Clin N Am*. 2016;24:11-29. doi:10.1016/j.mric.2015.08.002

9. Rosenkrantz AB, Mendiratta-Lala M, Bartholmai BJ, et al. Clinical utility of quantitative imaging. *Acad Radiol*. 2015;22:33-49. doi:10.1016/j.acra.2014.08.011

10. Yankeelov TE, Mankoff DA, Schwartz LH, et al. Quantitative imaging in cancer clinical trials. *Clin Cancer Res*. 2016;22:284-290. doi:10.1186/1078-0432.CCR-14-3336

11. Wang HZ, Riederer SJ, Lee JN. Optimizing the precision in T1 relaxation estimation using limited flip angles. *Magn Reson Med*. 1987;5:399-416. doi:10.1002/mrm.1910050502

12. Müller A, Jurcoane A, Kebir S, et al. Quantitative T1-mapping detects cloudy-enhancing tumor compartments predicting outcome of patients with glioblastoma. *Cancer Med*. 2017;6:89-99. doi:10.1002/cam4.966

13. Yankeelov T, Gore J. Dynamic contrast enhanced magnetic resonance imaging in oncology: theory, data acquisition, analysis, and examples. *Curr Med Imaging Rev*. 2007;3:91-107. doi:10.2174/157340507780619179

14. Calcagno C, Lobatto ME, Dyvorne H, et al. Three-dimensional dynamic contrast-enhanced MRI for the accurate, extensive quantification of microvascular permeability in atherosclerotic plaques. *NMR Biomed*. 2015;28:1304-1314. doi:10.1002/nbm.3369

15. Bergamino M, Barletta L, Castellan L, Mancardi G, Roccatagliata L. Dynamic contrast-enhanced MRI in the study of brain tumors. Comparison between the extended Tofts-Kety model and a phenomenological universalities (PUN) algorithm. *J Digit Imaging*. 2015;28:748-754. doi:10.1007/s10278-015-9788-2

16. Sorace AG, Partridge SC, Li X, et al. Distinguishing benign and malignant breast tumors: preliminary comparison of kinetic modeling approaches using multi-institutional dynamic contrast-enhanced MRI data from the international breast MR consortium 6838 trial. *J Med Imaging*. 2018;5:1. doi:10.1117/1.JMI.5.1.011019

17. Virostko J, Hainline A, Kang H, et al. Dynamic contrast-enhanced magnetic resonance imaging and diffusion-weighted magnetic resonance imaging for predicting the response of locally advanced breast cancer to neoadjuvant therapy: a meta-analysis. *J Med Imaging*. 2017;5:1. doi:10.1117/1.JMI.5.1.011011

18. Jarrett AM, Kazerouni AS, Wu C, et al. Quantitative magnetic resonance imaging and tumor forecasting of breast cancer patients in the community setting. *Nat Protoc*. 2021;6:5309-5338. doi:10.1038/s41596-021-00617-y

19. Virostko J, Sorace AG, Slavkova KP, et al. Quantitative multiparametric MRI predicts response to neoadjuvant therapy in the community setting. *Breast Cancer Res*. 2021;23:110. doi:10.1186/s13058-021-01489-6

20. Ma D, Gulani V, Seiberlich N, et al. Magnetic resonance fingerprinting. *Nature*. 2013;495:187-192. doi:10.1038/nature11971

21. Poorman ME, Martin MN, Ma D, et al. Magnetic resonance fingerprinting part 1: potential uses, current challenges, and recommendations. *J Magn Reson Imaging*. 2020;51:675-692. doi:10.1002/jmri.26836

22. Christodoulou AG, Shaw JL, Nguyen C, et al. Magnetic resonance multitasking for motion-resolved quantitative cardiovascular imaging. *Nat Biomed Eng*. 2018;2:215-226. doi:10.1038/s41551-018-0217-y

23. Ma S, Nguyen CT, Han F, et al. Three-dimensional simultaneous brain T1, T2, and ADC mapping with MR multitasking. *Magn Reson Med*. 2020;84:72-88. doi:10.1002/mrm.28092

24. Wang N, Xie Y, Fan Z, et al. Five-dimensional quantitative low-dose multitasking dynamic contrast-enhanced MRI: preliminary study on breast cancer. *Magn Reson Med*. 2021;85:3096-3111. doi:10.1002/mrm.28633

25. Wang F, Dong Z, Reese TG, et al. Echo planar time-resolved imaging (EPTI). *Magn Reson Med*. 2019;81:3599-3615. doi:10.1002/mrm.27673

26. Dong Z, Wang F, Reese TG, Bilgic B, Setsompop K. Echo planar time-resolved imaging with subspace reconstruction and optimized spatiotemporal encoding. *Magn Reson Med*. 2020;84:2442-2455. doi:10.1002/mrm.28295

27. Fessler JA. Model-based image reconstruction for MRI. *IEEE Signal Process Mag*. 2010;27:81-89. doi:10.1109/MSP.2010.936726

28. Aggarwal HK, Mani MP, Jacob M. MoDL: model-based deep learning architecture for inverse problems. *IEEE Trans Med Imaging*. 2019;38:394-405. doi:10.1109/TMI.2018.2865356

29. Hammernik K, Klatzer T, Kobler E, et al. Learning a variational network for reconstruction of accelerated MRI data. *Magn Reson Med*. 2018;79:3055-3071. doi:10.1002/mrm.26977
30. Yaman B, Hosseini SAH, Moeller S, Ellermann J, Ugurbil K, Akçakaya M. Ground-truth free multi-mask self-supervised physics-guided deep learning in highly accelerated MRI. *Proceedings - International Symposium on Biomedical Imaging*, IEEE Computer Society; 2021:1850-1854. doi:10.1109/ISBI48211.2021.9433924

31. Zalbagi Darestani M, Heckel R. Accelerated MRI with un-trained neural networks. *IEEE Trans Comput Imaging*, 2021;7:724-733. doi:10.1109/TCl.2021.3097596

32. Heckel R, Hand P. Deep Decoder: Concise Image Representations from Untrained Non-convolutional Networks *arXiv preprint* Published online October 2, 2018.

33. van Veen D, Jalal A, Soltanolkotabi M, Price E, Vishwanath S, Dimakis AG. Compressed Sensing with Deep Image Prior and Learned Regularization *arXiv preprint*, 2018. https://doi.org/10.48550/arXiv.1806.06438

34. Bora A, Jalal A, Price E, Dimakis AG. Compressed Sensing using Generative Models *arXiv preprint* March 9, 2017. https://doi.org/10.48550/arXiv.1703.03208

35. Ulyanov D, Vedaldi A, Lempitsky V. Deep Image Prior. *Int J Comput Vis*. 2020;128:1867-1888. doi:10.1007/s11263-020-01303-4

36. Liu F, Kijowski R, el Fakhri G, Feng L. Magnetic resonance imaging phantom. *Magn Reson Med*. 2021;85:3211-3226. doi:10.1002/mrm.28659

37. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF, eds. *Lecture Notes in Computer Science: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015*. Vol 9351. Springer; 2015:234-241. doi:10.1007/978-3-319-24574-4_28

38. Yaman B, Amir S, Hosseini H, Akçakaya M. Zero-shot physics-guided deep learning for subject-specific MRI reconstruction. Paper presented at: NeurIPS Workshop on Deep Learning and Inverse Problems; December 13, 2021; Online.

39. Leynes AP, Nagarajan SS, Larson PEZ. Scan-specific Self-supervised Bayesian Deep Non-linear Inversion for Under-sampled MRI Reconstruction *arXiv preprint* March, 2022. https://doi.org/10.48550/arXiv.2203.00361

40. Slavkova KP, DiCarlo JC, Wadhwa V, et al. Implementing ConvDecoder with physics-based regularization to reconstruct under-sampled variable-flip angle MRI data of the breast. *Proceedings of the Annual Meeting of the ISMRM*. International Society for Magnetic Resonance in Medicine; 2021:1448.

41. Zhang T, Pauly JM, Vasanawala SS, Lustig M. Coil compression for MRI with large coil arrays. *Magn Reson Med*. 2007;57:1131-1139. doi:10.1002/mrm.21237

42. Zhang T, Pauly JM, Vasanawala SS, Lustig M. Coil compression for accelerated imaging with cartesian sampling. *Magn Reson Med*. 2013;69:571-582. doi:10.1002/mrm.24267

43. Uecker M, Lai P, Murphy MJ, et al. ESPIRIT-an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. *Magn Reson Med*. 2014;71:990-1001. doi:10.1002/mrm.24751

44. Lustig M, Donoho D, Santos J. Compressed sensing MRI. *Signal Processing Magazine, IEEE*. 2008;25:72-82. doi:10.1109/TIT.2006.871582

45. Trzasko J, Manduca A. CLEAR: calibration-free parallel imaging using locally low-rank encouraging Reconstruction CLEAR: calibration-free parallel imaging using locally low-rank encouraging reconstruction. In Proceedings of the 20th Annual Meeting of ISMRM, Melbourne, Australia, 2012.

46. Lin LIK. A concordance correlation coefficient to evaluate reproducibility. *Biometrics*. 1989;45:255. doi:10.2307/2532051

47. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural similarity. *IEEE Trans Image Process*. 2004;13:600-612. doi:10.1109/TIP.2003.819861

48. Arora S, Roeloffs V, Lustig M. Untrained modified deep decoder for joint denoising and parallel imaging reconstruction: Proceedings of the International Society for Magnetic Resonance in Medicine; 08-14 August 2020.

49. Tamir JI, Uecker M, Chen W, et al. T_1 shuffling: sharp, multi-contrast, volumetric fast spin-echo imaging. *Magn Reson Med*. 2017;77:180-195. doi:10.1002/mrm.26102

50. Qin C, Schlemper J, Caballero J, Price AN, Hajnal JV, Rueckert D. Convolutional recurrent neural networks for dynamic MR image reconstruction. *IEEE Trans Med Imaging*. 2019;38:280-290. doi:10.1109/TMI.2018.2863670

51. Küstner T, Fuin N, Hammernik K, et al. CINENet: deep learning-based 3D cardiac CINE MRI reconstruction with multi-coil complex-valued 4D spatio-temporal convolutions. *Sci Rep.* 2020;10:13710. doi:10.1038/s41598-020-70551-8
reconstruction. *Magn Reson Med.* 2021;85:152-167. doi:10.1002/mrm.28420

63. Liu J, Sun Y, Eldeniz C, Gan W, An H, Kamilov US. RARE: image reconstruction using deep priors learned without groundtruth. *IEEE J Sel Top Signal Process.* 2020;14:1088-1099. doi:10.1109/JSTSP.2020.2998402

64. Yoo J, Jin KH, Gupta H, Yerly J, Stuber M, Unser M. Time-dependent deep image prior for dynamic MRI. *IEEE Trans Med Imaging.* 2021;40:3337-3348. doi:10.1109/TMI.2021.3084288

65. Yaman B, Amir Hossein Hosseini S, Akcakaya M. Zero-shot self-supervised learning for MRI reconstruction. Presented at: International Conference on Learning Representation. OpenReview; 25-29 April 2022.

66. Tofts PS, Kermode AG. Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. *Magn Reson Med.* 1991;17:357-367. doi:10.1002/mrm.1910170208

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of the article at the publisher’s website.

FIGURE S1: Modified ConvDecoder architecture for multi-contrast MRI reconstruction. The ConvDecoder architecture consists of six blocks with 128 latent channels. From left to right (denoted by the white arrows) the input of random noise (red tetrahedron of size 64×16×16, Gaussian noise with mean 0 and standard deviation of 1) is operated on by the first layer of the architecture. The output of each layer serves as the input into the next layer until the final complex-valued VFA images (green) are outputted from the final layer of size 9×224×224×2. Each layer (excluding the last) consists of a sequential order of operations as follows: up-sampling operation (white) to increase the size of the input, a convolutional operation (orange) consisting of kernels of size 3×3, a non-linearity conferred by ReLU activation functions (dark gray), and batch normalization (dark blue). The final layer does not up-sample its input and instead directly convolves the input, passes it through the nonlinearity, performs batch normalization, and outputs an image with the user-specified dimensions. The size of each layer output is as follows: [128×28×28], [128×46×46], [128×78×78], [128×133×133], and [9×224×224×2].

FIGURE S2: Regularization loss for raw dataset S3 at R = 12 for all regularization parameters. Each plot displays the actual regularization loss (blue) plotted across all 10 000 training steps with the smoothed regularization loss (orange) overlaid after application of the Savitzky–Golay method, which is effectively a low-pass filter. This smoothing method functions by filtering the signal with an n-degree polynomial of a fixed window size, where the polynomial is fit at each point in the signal, using least-squares with derivate of order m, capturing surrounding points within the extent of the window. For smoothing the regularization loss and NRMSE in this work, a window size of 51 was chosen with n = 1 and m = 0.

FIGURE S3: Ground truth anatomical images from fully-sampled raw data. The T1-weighted, anatomical images at all nine flip angles are displayed for each subject (S1, S2, S3) for reference. The signal intensity is lower for higher flip angles, and the dynamic range of the contrast is greater for mid-range flip angles.

FIGURE S4: Data pre-processing steps. The correlation matrix between all 16 original sensitivity coils is shown in the top left panel, demonstrating that there is correlation (non-zero off-diagonal elements of the matrix) between the coils. After noise pre-whitening is applied to each k-space dataset, we see that the off-diagonal correlations have been eliminated (before and after images are shown for completeness). Following noise pre-whitening, software coil compression based on singular value decomposition was applied to solve for 11 signal-contributing virtual coils.

FIGURE S5: Sampling masks and corresponding accelerated zero-filled images. From the top left to the top right, the Poisson disk sampling masks are displayed for each of the four acceleration factors, R ∈ {8, 12, 18, 36}, with the corresponding equivalent scan time in minutes in parentheses. The anatomical images spanning from the bottom left to the bottom right of the figure are the corresponding ground-truth (GT) and zero-filled images for a representative scan.

FIGURE S6: Regularization loss and NRMSE in a representative dataset for R ∈ {8, 18, 36}. (A) The left and right plots in each row, separated by a black line, correspond to a particular R value; these plots show the regularization loss (left) and the NRMSE (right) as a function of training step for the simulated data. (B) Analogous to plots in (A) for the raw data. The regularization loss curves corresponding to the two smallest regularization rates of 0.05 and 0.10 are more amenable to qualitative inspection of the minima, especially for R = 36.

FIGURE S7: CD and CD + r performance at different R values across all simulated datasets. (A) Plots of the SSIM as a function of flip angle for R ∈ {8, 12, 18} for all three subjects for four regularization rates in CD + r. The solid and dashed curves in the SSIM plots correspond to CD and CD + r, respectively.

FIGURE S8: T1 maps for all simulated datasets at R = 12. T1 maps for all three subjects corresponding to mapping the anatomical LR, CD, and CD + r reconstructions. The CD and CD + r (μ = 0.10) reconstructions for each subject were saved at their optimal number of training steps specified in Table 1. For all R’s, CD and CD + r recover more
spatially refined T₁ values in the gray matter and ventricles than LR. The CCC values, overlain on each map, are lower for the LR T₁ maps for all subjects (CCC < 0.78) as compared to the CD and CD + r T₁ maps for all subjects (CCC > 0.82).

FIGURE S9: NRMSE and CCC values for all T₁ maps from the simulated data analysis. The left plot compares the NRMSEs across R ∈ {8, 12, 18} of the CD + r T₁ maps of each subject against the NRMSEs of the corresponding LR T₁ maps. The right plot compares the CCCs (for the same R values) of the CD + r T₁ maps of each subject against the CCCs of the three corresponding LR T₁ maps. The legend at left identifies the R values by color (blue: R = 8, red: R = 12, yellow: R = 18) and the subjects by marker shape (circle: S1, triangle: S2, cross: S3). For all subjects and acceleration factors, the CD + r T₁ maps have lower NRMSE (p = 0.015) and higher CCC (p = 0.002) than the LR T₁ maps.

FIGURE S10: Warm starting training using a neighboring slice in a representative dataset. (A) Regularization loss for the original reconstruction with randomly initialized weights (blue and orange curves, where the orange curve is a smoothed version of the blue curve) and the warm started reconstruction (green and red curves, where the red curve is a smoothed version of the green curve). (B) NRMSE for the randomly initialized (blue) and warm-started network (green). (C) Optimal reconstructions from the case of no warmstarting (blue-boxed image) at 1947 optimization steps and with warm starting (orange-boxed figure) at 601 optimization steps. The NRMSE and SSIM of both reconstructions were the same. These results demonstrate the ability to save computation time (324% in this case) by initializing CD + r with the optimal weights saved from reconstructing a neighboring slice in the tissue volume.

TABLE S1: Performance measures, (NRMSE, SSIM), for all reconstruction methods applied to the simulated data.

TABLE S2: Performance measures, (NRMSE, SSIM), for CD + r applied to the raw data for all four values of μ. Bolded values indicate highest performing metric.

TABLE S3: Performance measures, (NRMSE, SSIM), for CD + r applied to the simulated data for all regularization parameter values.

TABLE S4: Performance measures for T₁ mapping analysis of simulated data. Paired values in parentheses in each field correspond to the (NRMSE, CCC).

How to cite this article: Slavkova KP, DiCarlo JC, Wadhwa V, et al. An untrained deep learning method for reconstructing dynamic MR images from accelerated model-based data. *Magn Reson Med.* 2023;89:1617-1633. doi: 10.1002/mrm.29547