A Complex Systems Approach to Evaluate HIV Prevention in Metropolitan Areas: Preliminary Implications for Combination Intervention Strategies

Brandon D. L. Marshall1,2, Magdalena M. Paczkowski1, Lars Seemann3, Barbara Tempalski4, Enrique R. Pouget4, Sandro Galea1, Samuel R. Friedman4

1 Department of Epidemiology, Columbia University Mailman School of Public Health, New York, New York, United States of America, 2 Department of Epidemiology, Brown University, Providence, Rhode Island, United States of America, 3 Department of Physics, University of Houston, Houston, Texas, United States of America, 4 Institute for AIDS Research, National Development and Research Institutes, Inc., New York, New York, United States of America

Abstract

Background: HIV transmission among injecting and non-injecting drug users (IDU, NIDU) is a significant public health problem. Continuing propagation in endemic settings and emerging regional outbreaks have indicated the need for comprehensive and coordinated HIV prevention. We describe the development of a conceptual framework and calibration of an agent-based model (ABM) to examine how combinations of interventions may reduce and potentially eliminate HIV transmission among drug-using populations.

Methodology/Principal Findings: A multidisciplinary team of researchers from epidemiology, sociology, geography, and mathematics developed a conceptual framework based on prior ethnographic and epidemiologic research. An ABM was constructed and calibrated through an iterative design and verification process. In the model, “agents” represent IDU, NIDU, and non-drug users who interact with each other and within risk networks, engaging in sexual and, for IDUs, injection-related risk behavior over time. Agents also interact with simulated HIV prevention interventions (e.g., syringe exchange programs, substance abuse treatment, HIV testing) and initiate antiretroviral treatment (ART) in a stochastic manner. The model was constructed to represent the New York metropolitan statistical area (MSA) population, and calibrated by comparing output trajectories for various outcomes (e.g., IDU/NIDU prevalence, HIV prevalence and incidence) against previously validated MSA-level data. The model closely approximated HIV trajectories in IDU and NIDU observed in New York City between 1992 and 2002, including a linear decrease in HIV prevalence among IDUs. Exploratory results are consistent with empirical studies demonstrating that the effectiveness of a combination of interventions, including syringe exchange expansion and ART provision, dramatically reduced HIV prevalence among IDUs during this time period.

Conclusions/Significance: Complex systems models of adaptive HIV transmission dynamics can be used to identify potential collective benefits of hypothetical combination prevention interventions. Future work will seek to inform novel strategies that may lead to more effective and equitable HIV prevention strategies for drug-using populations.

Introduction

Although the global incidence of HIV infection has declined by over 20% since its peak in 1997, the persistent large number of new infections annually, estimated at 2.6 million in 2009 [1], demonstrates that the need for effective HIV prevention strategies remains urgent. A series of recently published efficacious interventions [2,3,4] have renewed interest in placing prevention-centered approaches at the center of global HIV elimination strategies. However, as it is increasing likely that no single biomedical intervention will be sufficient to control HIV/AIDS and also that social and behavioral aspects of implementing such biomedical interventions need to be considered [5,6], there is an emerging consensus that combination HIV prevention (i.e., packages of evidence-based interventions tailored to specific populations) provides the best opportunity to significantly reduce HIV transmission at the population level [7,8,9]. In this paper, we will adopt the term “highly active HIV prevention” to refer to the additive (and potentially interactive) effect of combining treatment-centered approaches, biomedical strategies, behavioral interventions, and structural changes to suppress and eventually eliminate HIV transmission [10]. Although the Joint United Nations Programme on HIV/AIDS (UNAIDS) has formally adopted combination prevention as a key...
component in a new global HIV strategy and has recommended that these programs be expanded immediately [11]. Epidemiologic evidence to guide the implementation of “highly active” HIV prevention continues to be scarce. Given that adverse effects may arise from combining interventions that have been found to be efficacious in individual randomized controlled trials or from the inclusion of unproven interventions within combination prevention packages [12], there is a need to investigate which sets of programs produce maximal sustained benefit under limited resource allocation scenarios [13,14].

In this paper we examine how complex systems approaches can contribute to the evolving field of HIV epidemiology and prevention. As an illustration of these techniques, we then describe the construction and calibration of an agent-based model (ABM) of HIV transmission within a population-based sexual and injecting network. ABMs are computational models used to simulate autonomous “agents” (i.e., individuals) interacting within a shared environment. ABMs can and have been used to examine how multi-level policies and programs shape population health [15]. Although many different combinations of biomedical, behavioral, policy, and structural interventions can be integrated into the model and will be examined in future work, we will focus this paper on four evidence-based approaches (i.e., needle and syringe programs [NSPs], substance abuse treatment, voluntary counseling and HIV testing [VCT], provision of highly active antiretroviral therapy [HAART]) used to prevent HIV transmission among injection and non-injection drug users (IDU, NIDU). As such, a brief overview of the epidemiology of drug use and HIV is provided for readers. We conclude with a discussion of the benefits and challenges of incorporating complex systems methods within epidemiology and HIV prevention science.

Complex Systems Approaches in Epidemiology

The use of traditional epidemiologic studies to assess the effectiveness of combination HIV prevention strategies is limited by several factors, including methodological challenges, ethical considerations, cost, and the scale necessary to observe intended effects [16]. In order to identify both the independent and synergistic effects of multiple interventions, very large studies using complicated factorial designs are required [17]. For example, even with only four interventions, \(2^4 = 16\) randomized blocks would be required. Furthermore, traditional epidemiologic approaches, including those relying on regression analyses, seek to identify the independent risk factors for a specific health outcome, and are thus often unable to account for the interdependent, non-linear, and adaptive processes that occur as individuals interact with each other and their environments [10]. Under these research paradigms, important systems-level processes, including interactive feedback loops among system components and across levels of analysis, social learning in networks, and individual-level reciprocity may go unrecognized [18]. In the absence of models that account for these dynamics, interventions (including for example programs that target one exposure or risk factor in the absence of others) may inadvertently increase health disparities and many even lead to outbreaks in vulnerable sub-populations [20].

In contrast, complex systems methods rely on computer algorithms to model dynamic and evolving interactions among individuals and their environments [21]. They permit the researcher to study the impact of particular perturbations (including hypothetical interventions) on population health in simulated environments [22]. The methods can be used to integrate empirical data from a large number of studies and contexts, which permits the simulation of interventions within various population structures with greater efficiency than the replication of observational studies and trials. Given these advantages, it is not surprising that complex systems approaches have been used extensively to model a wide variety of health behaviors and other social phenomena [23,24,25]. Furthermore, calls to integrate complex systems approaches within public health science are increasingly common [22,26,27,28]. Although these methods are gaining traction in epidemiology, their practical utility to address “real-world” public health problems largely remains to be realized.

One type of complex systems method is agent-based modeling (ABM). Although a complete discussion of ABM approaches is beyond the scope of this paper and has been published elsewhere [18], a brief overview of the method is provided. Unlike many modeling approaches which seek to identify states of equilibria, ABMs simulate (inter-)actions of heterogeneous, autonomous agents (i.e., “agents”) that may produce non-linear, adaptive, and non-equilibrium dynamics [25]. The model simulates the passage of time in discrete time steps. At each time step, agents update their own internal states based on pre-programmed rules, interactions with other agents, and feedback from their environment. Agents can possess static or varying attributes that influence how behaviors are executed over time. Even simple sets of rules and attributes can result in nonlinear, adaptive, or threshold behavior patterns, which result in the emergence systems-level dynamics [29]. Given that many health and social behaviors are described by these types of processes, ABM have been recognized as crucial for addressing complex public health issues [22,28]. Of relevance to the work described in this paper, these techniques have been used to understand how substance use is affected by complex and interacting social and environmental factors [15,30,31]. Although ABM has been used to investigate infectious disease dynamics for some time [32,33,34], few studies have employed these methods to elucidate evolving patterns of HIV transmission, particularly within concurrent sexual and drug-using networks.

Epidemiology of Substance Use and HIV

Injection drug use is a growing global health concern. Recent estimates suggest that, globally, 16 million people inject drugs, among whom approximately 3 million are HIV positive [33]. Injection drug use is a primary driver of HIV transmission in many settings, including for example parts of Eastern Europe and Central Asia [1].

In North America, interventions to reduce injection-related risk behavior have led to significant declines in HIV incidence among
IDU populations [36,37]. Recently however, these reductions have been offset by a continuing rise in HIV prevalence among NIDU [38]. In some settings, including New York City, sexual risk behavior and non-injection drug use have replaced injection-related behaviors as the primary risk factors for HIV infection among IDU, even in the presence of well-established HIV prevention programs [39,40]. Novel methodologic approaches are required to inform more effective interventions that address evolving time- and place-specific risk factors operating at multiple levels to produce and perpetuate drug-related harms.

Considerable research has demonstrated the effectiveness of a wide array of interventions to decrease HIV transmission among IDU and NIDU [41]. In 2009, the World Health Organization (WHO), the United Nations Office on Drugs and Crime (UNODC), and UNAIDS published a guide for achieving universal access to a combination of evidence-based HIV prevention services for drug users, including NSPs, VCT, opioid substitution therapy (OST) and other forms of substance abuse treatment, and, for HIV positive IDU/NIDU, access to HAART [42]. However, evidence demonstrating the effectiveness of these combination prevention approaches is scarce.

Parameter	MSM	HM	HF	WSW	Sources	
HIV Baseline Prevalence (%)	55.0	42.0	39.0	53.0	_ENREF_14CVAR, [47,102]	
AIDS Mortality Rate (per 1,000 person-years)	5.8	CVAR				
HIV negative	15	[164,165]				
HIV positive, not on HAART	100	[166]				
HIV positive, on HAART	23	[63,167]				
AIDS	200	[168,169]				
Progression to AIDS (annual probability)	Not on HAART	0.167	[143,144]			
On HAART and ≥90% adherent to therapy	0.067	[63]				
On HAART and <90% adherent to therapy	See Table 5					
Number of contacts (per time step)	Poisson (λ = 5)	[88,89,90]				
Sexual Behavior (annual probability)	Unprotected intercourse	0.75	0.75	0.75	0.75	[83,102,103,104]
Injecting Behavior (annual probability)	Consistent NSP use, given t <1995, no treatment	0.65	[47,116]			
Consistent NSP use, given t <1995, treatment	0.85	[66,170]				
Consistent NSP use, given t ≥1995, no treatment	0.80	[44]				
Consistent NSP use, given t ≥1995, treatment	0.90	[66,170]				
Substance Abuse Treatment (annual probability)	Treatment initiation at t=j, given no NSP use at t=j	0.09	[53,118]			
Treatment initiation at t=j, given NSP use at t=j	0.18	[53,55,56]				
Discontinuation at t=j, given initiation at t < j	0.50	[53,119]				
Voluntary HIV Testing (annual probability)	Access VCT at t=j, given no NSP use at t=j	0.25	[54]			
Access VCT at t=j, given NSP use at t=j	0.45	[54]				
HIV Treatment (annual probability)	HAART initiation, given t ≤1996	0.00	[171]			
HAART initiation, given t >1996, no treatment	0.08	[65]				
HAART initiation, given t >1996, treatment	0.14	[65,172]				
Discontinuation at t=j, given initiation at t < j	0.45	[65,139,140,141]				

Abbreviations: AIDS – acquired immune deficiency syndrome; HAART – highly active antiretroviral therapy; HIV – human immunodeficiency virus; HF – heterosexual female; HM – heterosexual male; MSM – men who have sex with men; NSP – needle and syringe exchange program; VCT – voluntary counseling and HIV testing; WSW – women who have sex with women.

Notes: AIDS prevalence within the entire IDU population; <100% correct condom use between agent dyads; * defined as accessing VCT at t < j and testing positive for HIV; * synonymous with 100% sterile syringe use; agents who discontinue treatment at t=j can re-initiate treatment at some t > j with probability P=0.18.

doi:10.1371/journal.pone.0044833.T002

Table 2. Key parameter values for injection drug-using (IDU) agents.
Observational studies have suggested that the presence of multiple HIV prevention interventions (e.g., NSPs and OST combined with VCT) can reduce HIV prevalence among some IDU populations to below 10% [43,44], although in severe epidemics and among particularly disenfranchised sub-groups (e.g., ethnic and sexual minority drug users), these reductions may be more difficult to achieve. A recently published study utilized a compartmental model to suggest that while the provision of NSPs, OST and HAART may result in modest reductions in HIV transmission among IDU, only high-coverage, combination scenarios produce significant population-level benefit [45]. However, it is not clear whether synergistic effects – over and above the additive benefits of implementing multiple interventions – are observed when prevention measures are combined, collocated, or offered in tandem. Furthermore, the precise mechanisms through which combined approaches act to influence systems-level HIV dynamics largely have yet to be elucidated. Accordingly, using complex systems modeling, we sought to assess the hypothetical impact of various combinations of interventions as a means of informing more effective HIV prevention efforts for IDU and NIDU.

Table 3. Key parameter values and sources for non-injection drug-using (NIDU) agents.

Parameter	MSM	HM	HF	WSW	Sources
Baseline Prevalence (%)					
HIV	18.0	4.8	4.8	4.8	CVAR, [40,79,81,95]
AIDS	2.0	0.2	0.2	0.2	CVAR, [173]
Mortality Rate (per 1,000 person-years)					
HIV negative	7				[165]
HIV positive, not on HAART	25				[173]
HIV positive, on HAART	18				[173]
AIDS	80				[173]
Progression to AIDS (annual probability)					
Not on HAART	0.100				[143,144]
On HAART and ≥90% adherent to therapy	0.010				[63]
On HAART and <90% adherent to therapy					See Table 5
Number of contacts (per time step)					
Sexual Behavior (annual probability)					
Unprotected intercourse1	0.40	0.70	0.70	0.75	[78,80,106,107]
Unprotected intercourse1 at t=j, given VCT = + at t < j*	0.40	0.35	0.35	0.45	[60,61,115]
Voluntary HIV Testing (annual probability)					
Access VCT	0.25	0.06			[82,174]
HIV Treatment (annual probability)					
HAART initiation, given t ≥1996	0.00				[171]
HAART initiation, given t >1996	0.14				[175]
Discontinuation at t=j, given initiation at t<j	0.35				[141,142]

Abbreviations: AIDS – acquired immune deficiency syndrome; HAART – highly active antiretroviral therapy; HIV – human immunodeficiency virus; HF – heterosexual female; HM – heterosexual male; MSM – men who have sex with men; NSP – needle and syringe exchange program; VCT – voluntary counseling and HIV testing; WSW – women who have sex with women.

Notes:
1Value represents the prevalence of AIDS within the entire population of NIDU;
1defined as <100% correct condom use between agent dyads;
*defined as accessing VCT at t < j and testing positive for HIV.
doi:10.1371/journal.pone.0044833.t003

Methods

An Agent-Based HIV Transmission Network Model

We describe an ABM that represents HIV transmission and other transition states (e.g., injection drug use initiation, progression to AIDS) within an artificial society of three categories of agents: IDUs, NIDUs, and non-drug users (NUs). To be consistent with a variety of New York City-based studies of drug users [46,47,48,49,50], we defined IDUs as agents who are actively injecting drugs (i.e., injected an illicit drug in the past year), and NIDUs as agents who are actively using hard drugs (e.g., crack, heroin, cocaine, methamphetamine) by non-injection routes of consumption (e.g., snorting, smoking). Agents are also stratified by two additional characteristics: sex (female, male), and sexual behavior (men who have sex with men [MSM], heterosexual men [HM], heterosexual women [HW], and women who have sex with women [WSW]). Note that MSM agents include those who engage exclusively in sex with other men and those who have sex with men and women (and analogously for WSW). At each annualized time step, agents interact with other agents and with simulated HIV prevention interventions. A time scale of ten years in annual increments was chosen, as these estimates can be calibrated against empirical data and surveillance statistics.

We implemented our model using an open-source programming language known as Python™ (version 2.7.2). The simulation
Table 4. Key parameter values and sources for agents who do not use drugs (NU).

Parameter	MSM	HM	HF	WSW	Sources
Baseline Prevalence (%)					
HIV	8.0	1.5	1.2	1.2	[69,81,176]
AIDS	2.0\(^1\)	0.03\(^2\)			CVAR
Mortality Rate (per 1,000 person-years)					
HIV negative	5				[177]
HIV positive, not on HAART	40				[178]
HIV positive, on HAART	10				[62,63]
AIDS	80				[144]
Progression to AIDS (annual probability)					
Not on HAART	0.100				[143,144]
On HAART and ≥90% adherent to therapy	0.010				[63]
On HAART and <90% adherent to therapy					See Table 5
Number of Contacts (per time step)	Poisson (λ = 1.5, 1.0)\(^3\)				[73,82,97,98,99]
Sexual Behavior (annual probability)					
Unprotected intercourse\(^1\)	0.40	0.70	0.70	0.75	[101,108,109,110]
Unprotected intercourse\(^2\) at t = j, given VCT = + at t < j\(^*\)	0.40	0.35	0.35	0.45	[60,61,115]
Voluntary HIV Testing (annual probability)	Access VCT	0.25	0.06		[82,174]
HIV Treatment (annual probability)					
HAART initiation, given t ≥1996	0.00				[171]
HAART initiation, given t <1996	0.14				[179]
Discontinuation at t = j, given initiation at t < j\(^1\)	0.35				[141,142]

Abbreviations: AIDS – acquired immune deficiency syndrome; HAART – highly active antiretroviral therapy; HIV – human immunodeficiency virus; HF – heterosexual female; HM – heterosexual male; MSM – men who have sex with men; VCT – voluntary counseling and HIV testing; WSW – women who have sex with women.
Notes:
\(^1\)value represents the prevalence of AIDS within the entire population of NU;
\(^2\)defined as <100% correct condom use between agent dyads;
\(^3\)defined as accessing VCT at t < j and testing positive for HIV;
\(^1\)MSM and WSW partners sampled from a Poisson distribution with mean 1.5, HM and HF are sampled from a Poisson distribution with mean 1.0.
doi:10.1371/journal.pone.0044833.t004

Table 5. Relationship between adherence to HAART, the per-partnership annualized probability of HIV transmission between serodiscordant agents, and progression to AIDS.

Adherence – A (%)	Probability of achieving A	Annualized per-partnership probability of HIV transmission	Annual Probability of progressing to AIDS	Annual Probability of progressing to AIDS, if IDU		
	Syringe sharing	Unprotected sex between men	Unprotected heterosexual sex			
Not on HAART	N/A	0.0340	0.0489	0.0100	0.100	0.167
0–29	0.1	0.0340	0.0489	0.0100	0.100	0.167
30–49	0.1	0.0272	0.0391	0.0080	0.082	0.131
50–69	0.1	0.0136	0.0196	0.0040	0.064	0.106
70–89	0.1	0.0068	0.0098	0.0020	0.046	0.083
≥90	0.6	0.0005	0.0008	0.0002	0.010	0.067

Note: per-partnership transmission values derived from a series of Bernoulli distributions, assuming 10 unprotected sexual acts and 5 syringe sharing events (“trials”) per partnership [97,128,129], and per-event transmission probabilities of 0.007, 0.005, and 0.001 for syringe sharing, unprotected sex between men, and unprotected heterosexual sex, respectively [123,124,125,126,127]. We also assume that the relationship between adherence, viral load, and per-event probability of HIV transmission is linear [132,133]. The relationship between probability of AIDS progression and adherence is also assumed to be linear [63,143,144,145]. Values shown above are multiplied by a factor of four during the first time step following seroconversion to account for increased probability of HIV transmission during early stage infection [130,131].
doi:10.1371/journal.pone.0044833.t005
consists of an arbitrary population of 100,000 agents, with new agents replacing those who exit the model in a stochastic manner. To initialize the transmission model, agents are constructed and placed in a network space, represented as nodes and links. HIV transmission between serodiscordant agents can occur through unsafe sex, or, if both are IDU, through syringe sharing. The probability of engagement in risk behavior and the conditional likelihood that HIV transmission occurs varies by sex, sexual orientation, and drug use status. The probability of HIV transmission per agent pairing (i.e., across linked nodes) is also dependent on whether agents are engaged in one or more interventions within the model environment. We have focused our initial modeling efforts on four programs (i.e., NSP, substance abuse treatment, VCT, and HAART) which are described by the WHO/UNAIDS/UNODC as “core interventions” within a comprehensive package of HIV-related services for drug users [42]. These interventions have the strongest body of scientific evidence to support their effectiveness [51], and thus constitute the minimally recommended set of interventions to ensure sufficient levels of HIV prevention, treatment and care for IDU populations. Specifically, probability functions stochastically assign each agent in a given time period to: seek substance abuse treatment (a general function that represents all forms of treatment, including OST); if HIV positive initiate HAART, which itself is dependent on accessing VCT; and if an IDU, obtain sterile syringes from NSPs. We hypothesize that the simulated interventions will decrease HIV prevalence, HIV incidence, and AIDS incidence in the agent population through the following pathways of action:

1. Utilization of NSPs will reduce HIV transmission through the provision of sterile injecting equipment [52]. NSP use will also result in an increased uptake of other HIV prevention services, namely substance abuse treatment [53,54,55,56].

2. HIV-infected agents who access VCT can initiate HAART. Studies have demonstrated that early initiation of HAART can effectively eliminate HIV transmission between serodiscordant partners by suppressing viral load [4,57,58,59]. HIV positive agents who initiate HAART will also be less likely to engage in sexual risk behavior and are less likely to progress to AIDS [60,61,62,63].

3. Drug-using agents can enroll in substance abuse treatment, which increases the probability of initiating HAART and reduces engagement in syringe sharing [64,65,66].

In order for ABM simulation systems to produce reasonable values for unobserved variables (i.e., distributions of risk behaviors among subgroups of users), model parameterization and calibration should be based whenever possible on empiric data [67]. In addition to previously published estimates, this model has been calibrated against data collected as part of a study known as the Community Vulnerability and Responses to Drug User-Related HIV/AIDS (CVAR). As described previously [68,69,70], robust methods were used to estimate annual IDU prevalence, HIV prevalence, and AIDS incidence between 1992 and 2002 within the 96 largest metropolitan statistical areas (MSAs) in the United States. Although one objective of future modeling work is to replicate historical HIV prevalence and predict HIV dynamics in any given MSA, the model presented here has been parameterized and calibrated using HIV prevalence estimates for the New York MSA (population 11.7 million in 2010).

Network Structure: Modeling Risk

At model initialization, initial conditions are set such that the agent population represents a population-based sex and drug-using network of individuals living in the New York MSA in 1992. When the model is initialized, sexual orientation and drug use status are attributed randomly to agents, such that 6.0% of male agents are MSM [71,72], and 5.0% of female agents are WSW [73]. We consider 1.9% of the total 1992 population to be IDUs, 70% of whom are male [68,69], while 6.4% of the initial
population is an NIDU [74], 60% of whom are male [75]. Additionally, MSM and WSW are overrepresented among drug-using agents [76,77,78,79,80]. Conditional distributions of agent characteristics are shown in Table 1.

At model initialization and at each time step thereafter, a network is constructed such that each index agent interacts (i.e., has sex or injects with) \(k \) others in the agent population, where \(k \) is greater than or equal to zero. Agents are only connected to other agents with whom sexual- or injecting-related risk behavior can occur (i.e., we model a risk network as opposed to a social network). For example, two heterosexual male NUs cannot be connected to each other, whereas two heterosexual male IDUs can be linked since syringe sharing between the pair can occur. For non-IDU MSM agents, we incorporate assortative mixing (i.e., favoring links between nodes with similar characteristics) such that 90% interact exclusively with other MSM [81,82], while the remaining 10% are connected randomly to other agents with whom they can have sex (i.e., other MSM, WSW, and heterosexual females). Given studies suggesting that a high proportion of IDU-MSM engage in sexual activity with women [83,84,85], we assume only 50% of this group interacts exclusively with other MSM. For WSW agents, 50% are sexually connected to WSW exclusively [73]; the remaining 50% are assigned random agents with whom they can have sex (i.e., other WSW, MSM, and heterosexual males). The value of \(k \) for each agent varies per time step, and is specified by a random variable sampled from a probability distribution function for the following five categories of agents: IDU, NIDU, NU MSM, NU WSW, and the general population (i.e., non-IDU, non-NIDU, non-MSM, non-WSW agents). Although alternative degree distributions (e.g., negative binomial, discrete Pareto) can be implemented and will be explored in future research, we have defined \(k \) as a random variable sampled from a series of Poisson distribution functions. This distribution assumes partners are acquired at a fixed homogeneous rate \(\lambda \) over time [86]. Although real-world social and sexual networks are often highly skewed and can deviate substantially from the Poisson model, the node degree distribution of the widely used Erdős-Rényi random network follows a Poisson distribution and thus will be used as an approximation [87]. For IDU, we assume a mean \(\lambda \) of five annual injecting and/or sexual contacts [88,89,90]. For links between IDU through which both sexual and injecting behavior can occur, we define a random probability of engaging in sex only at 0.20, a probability of injecting only at 0.60, and a probability of doing both at 0.20 [88,89,90]. We incorporate assortative mixing for IDU, such that, at any given time step, IDUs are four-fold more likely to establish a connection with another IDU compared to other agent types [88,89,90]. For agents who are NIDU, we let \(\lambda = 3 \) [91,92,93]. We also incorporate assortative mixing for NIDU, such that each NIDU agent has a 0.12 probability of being connected to at least one IDU per time step [94,95]. Additionally, each NIDU has a 0.50 probability of being connected to at least one other NIDU.
during each time step [96]. These attachment probabilities (and those governing mixing for MSM and WSW) are applied at each time step such that the assortative mixing patterns specified at model initiation are retained. For non-drug-using MSM and WSW agents, we assume a Poisson distribution with $\lambda = 1.5$ [73,82,97]. For all other agents, the number of contacts per time step is sampled from a Poisson distribution with a mean (λ) of 1.0, which corresponds to empirically observed distributions of sexual partnerships in the general US population [98,99].

We note that randomly re-assigning contact values (k) at each time step would overestimate sexual and injecting partnership turnover and underestimate partnership duration. Therefore, we incorporate a counting process, whereby agents are added or removed from index agent i's network according to the random number drawn at each time step. For example, assume $k = 7$ for

Figure 3. HIV prevalence among IDU (panel A) and NIDU (panel B) obtained from a Monte Carlo simulation of the agent-based model. Black lines indicate empirical trajectories [70]. Error bars represent two standard deviations of the bootstrap estimates; CVAR data for HIV prevalence among NIDU is not available.

doi:10.1371/journal.pone.0044833.g003
agent \(i \) at \(t = 0 \). If the random variable sampled from the Poisson distribution at \(t = 1 \) produces a value of \(k = 9 \), agent \(i \) adds two new agents to the seven she/he is already connected to. If at \(t = 2 \) the random variable produces \(k = 5 \), agent \(i \) loses 4 links from its network, chosen stochastically. The simulation proceeds sequentially through the list of agents such that the population’s degree distribution is updated in an iterative manner. For example, if agent \(i \) loses agent \(j \) from its network, and agent \(j \)’s degree

Figure 4. HIV incidence among IDU obtained from a Monte Carlo simulation of the agent-based model. Data shown in black represent empirically observed estimates HIV incidence among IDU in New York City [36]. Error bars represent two standard deviations of the bootstrapped estimates. doi:10.1371/journal.pone.0044833.g004

Figure 5. HIV prevalence among MSM agents obtained from a Monte Carlo simulation of the agent-based model, stratified by drug user status. Error bars represent two standard deviations of the bootstrap estimates. Abbreviations: MSM = men who have sex with men; NU = non-drug user; NIDU = non-injection drug user; IDU = injection drug user. doi:10.1371/journal.pone.0044833.g005
distribution is specified to remain constant at that time step, a new link will be formed between j and a third agent k, who is chosen from the remaining agents who have not yet been updated at that time step. This algorithm produces estimates for partnership duration and turnover that are similar to those observed in a network study of IDU in Bushwick, Brooklyn [47], a population-based study of MSM in New York City [82], and other nationally representative sexual behavior studies [73,90,100,101].

Agent Risk Behavior

Agents engage in two types of HIV risk behavior: unprotected intercourse, and, if both agents are IDUs, syringe sharing. Unprotected intercourse is defined as the annual probability of less than 100% correct and consistent condom use between two agents. The probability that two agents engage in unprotected intercourse varies by drug use status and sex/sexual orientation, the values of which are shown in Tables 2, 3, 4. These values have been parameterized by a nationally representative survey of sexual behavior among US adults [101], and population-specific cohort studies for IDU NIDU WSW, and MSM [78,80,83,102,103,104,105,106,107,108,109,110]. Since studies have shown that persons who are aware of their HIV positive status are less likely to engage in sexual risk behavior [60,111,112,113], we assume the probability that a pair of agents engages in sexual risk will be 50% lower if one or both has tested positive (i.e., accesses VCT). While evidence suggesting risk behavior change following HIV diagnosis among MSM is mixed and evolving [114], several reviews have suggested that testing positive has a negligible impact on sexual risk behavior in this population [61,115]. Therefore, we assume that for MSM, the probability of engaging in sexual risk behavior is not dependent on VCT.

IDU agents practice sexual risk behavior and can also share used syringes with other IDUs. Several studies of New York City IDU have shown that the annual probability of consistent NSP use (i.e., no syringe sharing) among IDUs in 1992–1994 was approximately 0.65 [47,116]. Due to an expansion of NSPs and other policy and programmatic changes in the mid-1990’s the probability of NSP use in later years increased to 0.80 [44]. To match these two time periods [44], we model a step function such that $P_{NSP \text{ use}_{t=1992-1994}} = 0.65$ and $P_{NSP \text{ use}_{t=1995}} = 0.80$.

Agents who are IDU can also enter substance abuse treatment. We note that NIDU do not interact with substance abuse treatment, an assumption that will be relaxed in future iterations of the model. At model initialization, we stochastically assign 9% of agents that are IDU to be in substance abuse treatment [117]. Based on previously published estimates, we set the annual probability of entering substance abuse treatment for IDU to be 0.09 [53,118]. Once an IDU enters treatment during time step t, the probability of remaining in treatment at $t+1$ is 0.5 [53,119]. Once a user relapses, the probability of (re)-entering treatment doubles for all future time points, based on literature demonstrating that prior treatment exposure is a strong predictor of re-entering treatment [53,118,120]. A recently published Cochrane review has demonstrated that in-treatment IDUs are approximately 50% less likely to share syringes than out-of-treatment IDUs [66]. Therefore, in our model, we will assume that enrollment in substance abuse treatment increases the likelihood of NSP use (i.e., decreases the probability that a pair of IDU share syringes), such that: $P_{\text{NSP use}_{t \text{ | treatment}_{t=1992-1994}}} = 0.85$ and $P_{\text{NSP use}_{t \text{ | treatment}_{t=1995}}} = 0.90$. We assume no change in sexual behavior while IDUs are in treatment [66,121]. We also assume that the networks of IDUs in treatment are the same as IDUs out of treatment. Finally, given studies demonstrating that consistent NSP utilization doubles the likelihood of accessing drug treatment [53,55,56,122], we assume the probability of entering treatment during time t given NSP use at time t is twice the value for IDUs who do not use an NSP. In this manner, the likelihood of engagement in either or both of these interventions is explicitly linked and interdependent.

Agents access VCT with probabilities shown in Tables 2, 3, 4. Note that for an IDU who utilizes an NSP at time t, the probability of VCT at time t increases by a factor of 1.25 [54]. An agent who tests HIV positive after 1996 can initiate HAART. The likelihood of initiating therapy varies by drug use status; for IDU, being enrolled in substance abuse treatment increases the probability of commencing HAART [65].

HIV Transmission and Progression

The probability that an HIV negative agent acquires infection from a serodiscordant partner is derived from empirical estimates of per-act HIV transmission: 0.007 for syringe sharing [123], 0.005 for unprotected intercourse between men [124,125,126], and 0.001 for unprotected heterosexual intercourse [125,127]. To obtain the per-partner probability of HIV transmission between serodiscordant agents, we model a series of Bernoulli distributions, $p_{\text{partner}} = 1 - (1 - p_{\text{act}})^n$, where p_{partner} is the annualized per partnership risk of HIV transmission, p_{act} is the per act “transmission event” probability described above, and n is the number of “trials” per partnership per time step. We assume that, if two agents practice a risk behavior during a time step, the pair engages in a total of 10 unprotected sexual acts (“trials”) and/or, if IDUs, 5 syringe sharing events per annum [97,128,129]. The resulting annualized per partnership risks of HIV transmission are shown in Table 5. In order to accommodate increased transmission risk during early stage HIV infection and to be consistent with studies of per-coital rates of HIV transmission by stage of infection [130,131], we multiplied these probabilities by a factor of four during the first time step following seroconversion.

In order to examine the potential influence of HAART on disease acquisition at the individual and population level, we model the relationship between adherence, viral load, and per-event HIV transmission. A landmark study by Bangsberg et al demonstrated that the relationship between adherence and viral load is approximately linear and highly correlated ($\rho=0.8$) [132]. Furthermore, an important study by Quinn and colleagues and a recently published meta-analysis allow us to model the relationship between viral load and probability of HIV transmission between serodiscordant partners [133,134]. EN-REF_80. Once an agent initiates HAART, we stochastically assign an adherence value that we assume does not change over the course of therapy. Higher values of adherence reduce the per-event probability of transmission (and thus the per-partner transmission probability), as shown in Table 5. Based on prior literature and a systematic review [135,136,137,138], we assume 60% of agents achieve $\geq90\%$ adherence upon initiating HAART (all other adherence values are assumed to be equally likely). Although some studies have shown that IDU tend to be less adherent than non-IDU [135,137], a recent meta-analysis suggested that this may not be the case [138]. Therefore, we assume no relationship between drug use and adherence.

Prospective cohort studies have shown that approximately 45% of IDU who initiate HAART discontinue therapy after 1 year [63,139,140,141]. In contrast, approximately 35% of NIDU and NU who initiate HAART discontinue therapy after 1 year [141,142]. Therefore, we assume $P_{\text{HAART discontinuation}}(\text{IDU, NIDU}) = 0.45$ and $P_{\text{HAART discontinuation}}(\text{NU})$, where $\text{HAART discontinuation}$ is the event that an agent stops therapy, IDU, NIDU, and NU are the drug use status of the agent. EN-REF_80.
As a final step, we employed Monte Carlo techniques to examine the degree of variation in model outputs arising from the many processes and behaviors that are stochastic. A simulation of 100,000 agents over 11 time steps was repeated 1,000 times. To run the simulation, we used a Beowulf computing cluster consisting of 6 compute nodes and 1 head node, each with two quad-core Intel® Xeon processors and between 8 and 24 GB of RAM. In the figures below, we show the mean and two standard deviations for each estimate from the sampled distributions.

Results

The Risk Network

A representative network structure of a random subsample of 1,000 agents at model initialization is shown in Figure 2. The findings are qualitatively similar to empirical sexual and injecting network studies in New York City and Colorado Springs [85,150]. Namely, the ABM risk network consists of a very large central “core” component, with a cluster of IDU at its center. Furthermore, we observed both cyclic (multiple pathways between network members) and dendritic (linear chains of connections between nodes) microstructures, which are common characteristics of sexual and drug-injecting networks [151]. Finally, we note the presence of network members who appear to act as “bridges” between smaller components and the central core. Although beyond the scope of this paper, a formal network analysis will be conducted to confirm quantitatively whether the modeled network accurately reflects real-world sexual and injecting network topologies.

HIV Trajectories among Injecting and Non-injecting Drug Users

The model generated injecting and non-injecting drug user prevalence approximately similar to that reported by CVAR [68], including a steady decline in the proportion of agents who are IDU (data not shown). In figures 3, 4 and 5, we show the model predictions for HIV prevalence and incidence among key subpopulations of interest, including for example an approximately linear decrease in HIV prevalence among IDU observed between 1992 and 2002 [70]. The estimated prevalence of HIV among NIDU (i.e., 7% at 2002) is consistent with a previously published estimate [95], but lower than one other study that found an HIV prevalence of 12% among never injectors [38]. Although HIV incidence data were not estimated by CVAR, the ABM generated HIV incidence trajectories that are similar to previously published estimates (Figure 4) [36]. Finally, the model produced estimates of AIDS incidence that are consistent with unpublished CVAR data (not shown).

HIV Trajectories among MSM

In addition to modeling HIV prevalence and incidence among IDU/NIDU, the population-based nature of the ABM also permitted an examination of HIV trajectories in other subgroups, including MSM. In Figure 5, we demonstrate that trends in HIV prevalence among MSM vary substantially by drug use status. While HIV prevalence among MSM-IDU declines over the lifetime of the model, infection in MSM-NIDU and MSM-NU increases significantly. These findings are broadly consistent with findings from the New York site of the CDC National HIV Behavioral Surveillance system and other studies, demonstrating declining HIV prevalence among MSM IDU between 1990 and 1999 [102], and continuing propagation among NIDU and NU MSM over the past two decades [152,153]. For example, HIV prevalence in a probability sample of New York City NIDU and
NU MSM in 1997 was 12 and 24 percent, respectively [81], which are similar to those generated by the ABM (i.e., 14 and 27 percent).

Discussion

Through the development and calibration of an agent-based model, we were able to closely approximate trends in the HIV epidemic observed historically in New York City. In contrast to deterministic compartmental models such as SIR models [see for example [45,154]], our model allows for the monitoring of individual agent behavior and HIV disease progression among infected persons. Additionally, the agent-based model allows for greater heterogeneity in the simulated population (e.g., gender, sexual orientation, drug use status, HIV disease status) than most existing network models, including for example several exponential random graph network models of HIV transmission [155,156]. Finally, the ABM allows for an examination of how interdependence and feedback between simulated sets of prevention interventions influence population-level HIV transmission dynamics over time. Although future work is required to confirm these exploratory results, explicit specification of non-independent agent-intervention interactions reproduces estimates that approximate empirically observed phenomena.

Although combination HIV prevention has garnered much recent attention and will likely be a central component of successful worldwide HIV strategies over the coming decade [8,13,14], several authors have noted the absence of data to inform how best to combine available evidence-based interventions and how to optimize their effectiveness [45,157]. We have demonstrated the capacity for complex systems approaches to overcome many of the methodologic challenges inherent in observational studies (e.g., cost, difficulty capturing non-linear adaptive dynamics), and the potential for these methods to model “real-world” policy scenarios. In future work, we will use the calibrated ABM described herein to formally model the hypothesis that interventions operating in a coordinated and comprehensive manner will substantially reduce (and potentially eliminate) HIV transmission at the population level.

In addition to informing future studies that seek to investigate combination HIV prevention approaches, these results also illustrate the utility and relevance of complex systems approaches within social epidemiology and HIV prevention science. Although agent-based models are increasingly common in the field [31,149,158], the methods are not without challenges and skepticism [18,159]. For this reason, a key objective of this paper was to provide readers with a detailed protocol for model development and calibration that can be duplicated and improved upon. Although standard protocols for reporting complex systems methods have been published in other fields including ecology [160], acceptable standards and conventions for reporting the results of epidemiologic ABMs require further development and implementation.

The construction and calibration of this ABM was not absent of challenges, and the study has a number of important limitations that bear mentioning. First, the replication of historical patterns does not necessarily imply that model assumptions and processes have been correctly specified [149]. To further support model validity, findings derived from ABM simulations should be robust to changes in critical assumptions regarding network topology and agent behavior, parameter values, and initial conditions [161]. This will be the primary focus of future work. Second, although we have based model parameters on existing data wherever possible, for some features (e.g., drug use transitions) empirical data were not available. In order to realize the full potential of the complex systems methods, model development should proceed in tandem with empirical data collection, such that the two scientific processes inform each other. Third, ABM behavior can be heavily dependent on system size [161]. Although we conducted simulations over a range of model sizes and did not identify aspects of system size on resulting behaviors, we cannot preclude the possibility that a relationship between model size and system behavior exists. Fourth, although we chose a relatively coarse timescale (e.g., annual time steps) to reduce computational resource requirements and to model HIV trajectories over a long time period (e.g., 11 years for model calibration), the model likely underestimates the effect of short-term behavioral dynamics, including for example partner concurrency. A time domain of finer resolution might have allowed for the modeling of these short-term effects that are currently not considered and will be the focus of future work.

We conclude by emphasizing that the model has substantial room for continued refinement and validation. For example, the network topology is relatively basic, and important aspects of real-world networks (e.g., social norms and the network and individual properties that shape who forms a relationship with whom) were not considered. For example, while some empirical research suggests that IDUs enrolled in substance abuse treatment have fewer drug-using network members and are more likely to be located at the periphery of the network [47,162], we assumed in-treatment IDUs have the same network characteristics as IDUs out-of-treatment. Furthermore, although we have explicitly incorporated sex and sexual orientation in the model, other sociodemographic characteristics (e.g., ethnicity) are not included. Finally, we must continue to test model robustness, particularly in terms of the ABM’s sensitivity to changes in parameters, network topologies, and other key assumptions.

ABMs constitute a novel analytic approach that complements other scientific modes of inquiry, offering key insights into the properties, dynamics, and evolution of complex systems. Although not without challenges, these methods hold much promise for improving our understanding of HIV risk, drug use, and other health behaviors as they operate within adaptive environments and complex social systems.

Acknowledgments

We would like to Art Poon and Lindsey Richardson for technical guidance, scientific advice, and computing support.

Author Contributions

Conceived and designed the experiments: BDLM MMP BT ERP SG SRF. Performed the experiments: BDLM MMP LS. Analyzed the data: BDLM MMP BT ERP SG SRF. Contributed reagents/materials/analysis tools: MMP LS. Wrote the paper: BDLM. Reviewed the first draft of the manuscript and provided important intellectual content and approved the final version of the manuscript: BDLM MMP LS BT ERP SG SRF.

References

1. Joint United Nations Programme on HIV/AIDS (2010) Global Report: UNAIDS Report on the Global AIDS Epidemic 2010. Geneva, Switzerland: UNAIDS.

2. Abdool Karim Q, Abdool Karim SS, Frohlich JA, Grobler AC, Baxter C, et al. (2010) Effectiveness and safety of tenofovir gel, an antiretroviral microbicide, for the prevention of HIV infection in women. Science 329: 1168–1174.
25. Epstein JM (2006) Generative Social Science: Studies in Agent-Based
35. Mathers BM, Degenhardt L, Phillips B, Wiessing L, Hickman M, et al. (2008)
34. Zanette DH, Risau-Gusman S (2008) Infection spreading in a population with
33. Perez L, Dragicevic S (2009) An agent-based approach for modeling dynamics
32. Bagni R, Berchi R, Cariello P (2002) A comparison of simulation models
31. Gorman DM, Mezic J, Mezic I, Gruenewald PJ (2006) Agent-based modeling
28. Maglio PP, Mabry PL (2011) Agent-based models and systems science
26. Sterman JD (2006) Learning from evidence in a complex world. Am J Public
19. Friedman SR, Rossi D, Braine N (2009) Theorizing “Big Events” as a potential
13. Merson M, Padian N, Coates TJ, Gupta GR, Bertozzi SM, et al. (2008)
10. Coates TJ, Richter L, Caceres C (2008) Behavioural strategies to reduce HIV
9. Piot P, Bartos M, Larson H, Zewdie D, Mane P, et al. (2008) Coming to terms with
7. Padian NS, McCoy SI, Karim SS, Hasen N, Kim J, et al. (2011) HIV
4. Cohen MS, Chen YQ, McCauley M, Gamble T, Hosseinipour MC, et al.
3. Grant RM, Lama JR, Anderson PL, McMahan V, Liu AY, et al. (2010) Preexposure
2. Cohen MS, Chen YQ, Mading M, Gamble T, Hosseinipour MC, et al. (2011) Prevention of HIV-1 infection with early antiretroviral therapy.
1. N Eng J Med 365: 2387–2399.
62. Mocroft A, Ledergerber B, Katlama C, Kirk O, Reiss P, et al. (2005) Decline in the AIDS and death rates in the EuroSIDA study: an observational study. Lancet 362: 26–29.

63. Egger M, May M, Calvez V, Phillips AN, Ledergerber B, et al. (2002) Prognosis of HIV-1-infected patients starting highly active antiretroviral therapy: a collaborative analysis of prospective studies. Lancet 360: 119–129.

64. Sorensen JL, Copeland AL. (2000) Drug abuse treatment as an HIV prevention strategy: a review. Drug Alcohol Depend 39: 17–31.

65. Liebsch DA, Shi Q, Schuster SH, Stasolla E, et al. (2001) Time to initiating highly active antiretroviral therapy among HIV-infected injection drug users. AIDS 15: 1707–1715.

66. Gowing L, Farrell M, Bornemann R, Sullivan LE, Ali R (2008) Substitution treatment of opioid users for prevention of HIV infection. Cochrane Database Syst Rev 2. Art. No.: CD004145. DOI: 10.1002/14651858.CD004145.pub16465183.01465183.

67. Arroyo J, Hassan S, Gutierrez C, Pavor J (2010) Re-thinking simulation: a methodological approach for the application of data mining in agent-based modelling. Comput Math Organ Theor 16: 416–435.

68. Brady JE, Friedman SR, Cooper HL, Flom PL, Tempalski B, et al. (2006) Estimating the prevalence of injection drug use in the U.S. and in large U.S. metropolitan areas from 1992 to 2002. J Urban Health 83: 323–351.

69. Liebsch DA, Shi Q, Schuster SH, Stasolla E, et al. (2004) An HIV-prevalence-based model for estimating urban risk populations of injection drug users and men who have sex with men. J Urban Health 81: 401–415.

70. Tempalski B, Lieb S, Cleland CM, Cooper H, Brady JE, et al. (2009) HIV-prevalence rates among injection drug users in 96 large US metropolitan areas, 1992–2002. J Urban Health 86: 132–154.

71. Lieb S, Fallon SJ, Friedman SR, Thompson DR, Gates GJ, et al. (2011) Gender networks: a framework for evaluating evidence. Sex Transm Dis 35: 30–40.

72. Xu F, Sternberg MR, Markowits LE (2010) Men who have sex with men in the United States: demographic and behavioral characteristics and prevalence of HIV and HSV-2 infection: results from National Health and Nutrition Examination Survey 1999–2002. Sex Transm Dis 37: 399–405.

73. Xu F, Sternberg MR, Markowits LE (2010) Women who have sex with women in the United States: prevalence, sexual behavior and prevalence of herpes simplex virus type 2 infection-results from national health and nutrition examination survey 2001–2002. Sex Transm Dis 37: 407–413.

74. Substance Abuse and Mental Health Services Administration (2010) National Prevalence Estimates for Top 20 Metropolitan Statistical Areas (MSAs). Office of Applied Studies, U.S. Department of Health and Human Service. Available: http://oas.samsa.ca/2k3States/metro2K3PL.html. Accessed 11 December 2011.

75. Warner LA, Kessler RC, Hughes M, Anthony JC, Nelson CB (1995) The prevalence of homosexual behavior and attraction in the United Kingdom, France: results of national population-based samples. Arch Sex Behav 24: 235–248.

76. Leigh RC, Temple MT, Trocki FK (1993) The sexual behavior of US adults: results from a national survey. Am J Public Health 83: 1400–1408.

77. Sullivan PS, Salazar L, Buchbinder S, Sanchez TH (2009) Estimating the proportion of HIV transmission from main sex partner among men who have sex with men in five US cities. AIDS 23: 1153–1162.

78. Adimora AA, Schoenbach VJ, Doherty IA (2007) Concurrent sexual partners among men in the United States. Am J Public Health 97: 2230–2237.

79. Adimora AA, Schoenbach VJ, Doherty IA, McDonnell LM, Martinez-Johnson RH, et al. (2002) Concurrent sexual partnerships among women in the United States. Epidemiology 13: 320–327.

80. Sell RL, Wells JA, Wypij D (1995) The prevalence of homosexual behavior and attraction in the United Kingdom, France: results of national population-based samples. Arch Sex Behav 24: 235–248.

81. Kral AH, Lorvick J, Watters JK (1997) HIV risk profile of injecting drug users and sex partners who do not inject drugs. AIDS 8: 357–361.

82. Tempalski B, Lieb S, Cleland CM, Cooper H, Brady JE, et al. (2009) HIV infection among drug users who have sex with women exhibit increased HIV infection and risk behaviors. J Acquir Immune Defic Syndr 46: S80–S87.

83. Arroyo J, Hassan S, Gutierrez C, Pavor J (2010) Rethinking simulation: a methodological approach for the application of data mining in agent-based modelling. Comput Math Organ Theor 16: 416–435.

84. Celentano DD, Galai N, Sethi AK, Shah NG, Strathdee SA, et al. (2001) Time changes in HIV seroprevalence and related behaviors among injection drug users who do and do not have sex with men: New York City, 1990–1999. Am J Public Health 92: 582–584.

85. Bararok K, Des Jarlais DC, Perlis TE (2008) Alcohol and HIV sexual risk behaviors among injection drug users. Drug Alcohol Depend 95: 54–61.

86. Des Jarlais DC, Hagan H, Arasteh K, McKnight C, Perlman D, et al. (2007) Herpes simplex virus-2 and HIV among noninjecting drug users in New York City. Sex Transm Dis 34: 923–927.

87. Des Jarlais DC, Arasteh K, McKnight C, Perlman D, Hagan H, et al. (2010) Gender and age patterns in HSV-2 and HIV infection among non-injecting drug users in New York City. Sex Transm Dis 37: 637–643.

88. Lemp GF, Jones M, Kellogg TA, Nieri GN, Anderson L, et al. (1993) Condom use with primary partners among injecting drug users in the U.S. Public Health Rep 126: 60–72.

89. Kortuni BJ, Friedman SR, Neaigus A, Curtis R, Des Jarlais DC (2002) Risk networks and racial/ethnic differences in the prevalence of HIV infection among injection drug users. J Acquir Immune Defic Syndr 30: 95–104.

90. Jose B (1996) Racial/ethnic variations in the prevalence of human immunodeficiency virus type 1 infection among injection drug users and men who have sex with men in the year postdiagnosis: effects of drug use and partner types. J Acquir Immune Defic Syndr 56: 176–182.

91. Oortsoe DE, Fox KJ, Chmiel JS, Silvestre A, Vischer BR, et al. (2002) Attitudes towards highly active antiretroviral therapy are associated with sexual risk.
taking among HIV-infected and uninfected homosexual men. AIDS 16: 775–780.

116. Des Jarlais C, Perlis T, Friedman SR, Chapman T, Kuo J, et al. (2000) Behavioral risk reduction in a declining HIV epidemic: injection drug users in New York City, 1990–1997. Am J Public Health 90: 1112–1116.

117. Tempalski B, Cleland CM, Pouget ER, Chatterjee S, Friedman SR (2010) Persistence of low drug treatment coverage for injection drug users in large US metropolitan areas. Subst Abuse Treat Prev Policy 5: 23.

118. Booths RE, Crawford TJ, Zhang Y (1996) Substance abuse treatment entry, retention and effectiveness: out-of-treatment opiate injection drug users. Drug Alcohol Depend 42: 11–20.

119. Brouner R, Kidorf M, King V, Belinson P, Svican D, et al. (1998) Drug abuse treatment success among needle exchange participants. Public Health Rep 113: 129–139.

120. Zule WA, Desmond DP (2000) Factors predicting entry of injecting drug users into substance abuse treatment. Am J Drug Alcohol Abuse 26: 247–261.

121. Watkins KE, Mertzger D, Woody G, McLellan AT (1992) High-risk sexual behaviors of intravenous drug users in- and out-of-treatment: implications for the spread of HIV. Am J Drug Alcohol Abuse 18: 389–398.

122. Watters JK, Estilo MJ, Clark GL, Lovrich J (1994) Syringe and needle exchange as HIV/AIDS prevention for injection drug users. JAMA 271: 115–120.

123. Kaplan EH, Reimer R (1992) A model-based estimate of HIV infectivity via needle sharing. J Acquir Immune Defic Syndr 5: 1116–1118.

124. Wawer MJ, Sewankambo NK, Serwadda D (1999) Changing patterns in Colorado Springs. Sex Transm Infect 75: 159–163.

125. Baggaley RF, White RG, Boily MC (2010) HIV transmission risk through anal sex. CMAJ 182: 1542–1549.

126. Baggaley RF, White RG, Boily MC (2010) HIV transmission risk through anal intercourse: systematic review, meta-analysis and implications for HIV prevention. Int J Epidemiol 39: 1048–1063.

127. Gray RH, Wawer MJ, Brookmeyer R, Sewankambo NK, Serwadda D, et al. (2005) Probability of HIV-1 transmission per coital act in monogamous, heterosexual, HIV-1-discordant couples in Rakai, Uganda. Lancet 357: 1149–1153.

128. Rakha JM, Boily MC, Rajasaneri J, O’Shaughnessy MV, Schechter MT (2003) The impact of needle-exchange programs on the spread of HIV among injection drug users: a simulation study. J Urban Health 80: 302–320.

129. Wawer MJ, Gray RH, Brookmeyer R, Sewankambo NK, Serwadda D, et al. (1999) Probability of HIV-1 transmission per coital act in monogamous, heterosexual, HIV-1-discordant couples in Rakai, Uganda. J Infect Dis 191: 1403–1409.

130. Brookmeyer R, Zollinger R, Padian N, Quinn TC, Wawer MJ, et al. (1994) Impact of needle-exchange programs on the spread of HIV among injection drug users. CMAJ 150: 1267–1274.

131. Wolitski RJ, Valdiserri RO, Denning PH, Levine WC (2001) Are we headed for a resurgence of the HIV epidemic among men who have sex with men? Am J Public Health 91: 883–888.

132. Strathdee SA, Hallett TB, Bobrova N, Rhodes T, Booth R, et al. (2010) HIV and drug risk environment for injecting drug users: the past, present, and future. Lancet 376: 268–284.

133. Murphy M, Karch AE, Hamilton DT, Moody J, Wakefield S (2009) Concurrent partnerships and HIV prevalence disparities by race: linking science and public health practice. Am J Public Health 99: 1023–1031.

134. Goodreau SM, Casella S, Kasprzyk D, Montano DE, Greek E, et al. (2012) Concurrent partnerships, acute HIV and HIV epidemic dynamics among young adults in Zimbabwe. AIDS Behav 16: 312–322.

135. Fichten GD, Luo H, Paxton J, Graupner J, Jitka J, et al. (2011) Infectious disease propagation. Int J STD AIDS 22: 780–781.

136. Zaccarelli M, Gattari P, Rezza G, Conti S, Spizzichino L, et al. (2007) Empirical validation of agent-based models: alternatives and prospects. JASSS - J Artif Soc S 10: 8.

137. Gottlieb MS, Gifford CA, Borden SP, Satterwhite C, Shaffer MD, et al. (2008) Longitudinal predictors of injection cessation and subsequent relapse among a cohort of injection drug users in Baltimore, MD, 1980–2000. Drug Alcohol Depend 68: 137–146.

138. Wolitski RJ, Valdiserri RO, Denning PH, Levine WC (2001) Are we headed for a resurgence of the HIV epidemic among men who have sex with men? Am J Public Health 91: 883–888.

139. Moser AR, Bacchetti P (1989) Natural history of HIV infection. AIDS 3: 55–61.

140. Cascade Collaboration (2003) Determinants of survival following HIV-1 infection among injection drug users. Lancet 362: 1267–1274.

141. Bandberg DR, Perry S, Charlebois ED, Clark RA, Robertson M, et al. (2001) Non-adherence to highly active antiretroviral therapy predicts progression to AIDS. AIDS 15: 1181–1183.

142. Shah NG, Galai N, Celentano DD, Vlahov D, Strathdee SA (2006) Longitudinal predictors of injection cessation and subsequent relapse among a cohort of injection drug users in Baltimore, MD, 1980–2000. Drug Alcohol Depend 68: 137–146.

143. Wolitski RJ, Valdiserri RO, Denning PH, Levine WC (2001) Are we headed for a resurgence of the HIV epidemic among men who have sex with men? Am J Public Health 91: 883–888.

144. Cascio J, Valdiserri RO, Denning PH, Levine WC (2001) Are we headed for a resurgence of the HIV epidemic among men who have sex with men? Am J Public Health 91: 883–888.

145. Wolitski RJ, Valdiserri RO, Denning PH, Levine WC (2001) Are we headed for a resurgence of the HIV epidemic among men who have sex with men? Am J Public Health 91: 883–888.
172. Uhlmann S, Milloy MJ, Kerr T, Zhang R, Guillemi S, et al. (2010) Methadone maintenance therapy promotes initiation of antiretroviral therapy among injection drug users. Addiction 105: 907–913.

173. Kapadia F, Cook JA, Cohen MH, Sohler N, Kovacs A, et al. (2005) The relationship between non-injection drug use behaviors on progression to AIDS and death in a cohort of HIV seropositive women in the era of highly active antiretroviral therapy use. Addiction 100: 990–1002.

174. Anderson JE, Carey JW, Taveras S (2000) HIV testing among the general US population and persons at increased risk: information from national surveys, 1987–1996. Am J Public Health 90: 1089–1095.

175. McGowan CC, Weinstein DD, Samenow CP, Stinnette SE, Barkanic G, et al. (2011) Drug use and receipt of highly active antiretroviral therapy among HIV-infected persons in two U.S. clinic cohorts. PLoS ONE 6: e18462.

176. New York State Department of Health (1994) HIV infection in New York State.

177. (1994) Mortality patterns–United States, 1992. MMWR Morb Mortal Wkly Rep 43: 916–920.

178. Mocroft A, Beettle R, Kirk O, Blaxhult A, Parkin JM, et al. (2002) Changes in the cause of death among HIV positive subjects across Europe: results from the EuroSIDA study. AIDS 16: 1663–1671.

179. Cole SR, Hernan MA, Robins JM, Anastos K, Chmiel J, et al. (2003) Effect of highly active antiretroviral therapy on time to acquired immunodeficiency syndrome or death using marginal structural models. Am J Epidemiol 158: 687–694.