Hierarchical Porous Li$_2$Mg(NH)$_2$@C Nanowires with Long Cycle Life Towards Stable Hydrogen Storage

Guanglin Xia1,2, Yingbin Tan2, Dan Li1, Zaiping Guo1, Huakun Liu1, Zongwen Liu3 & Xuebin Yu2

1Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, Australia, 2Department of Materials Science, Fudan University, Shanghai, China, 3School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, Australia.

The hierarchical porous Li$_2$Mg(NH)$_2$@C nanowires full of micropores, mesopores, and macropores are successfully fabricated via a single-nozzle electrospinning technique combined with in-situ reaction between the precursors, i.e., MgCl$_2$ and LiN$_3$, under physical restriction upon thermal annealing. The explosive decomposition of LiN$_3$ well dispersed in the electrospun nanowires during carbothermal treatment induces a highly porous structure, which provides a favourable way for H$_2$ delivering in and out of Li$_2$Mg(NH)$_2$ nanoparticles simultaneously realized by the space-confinement of the porous carbon coating. As a result, the thus-fabricated Li$_2$Mg(NH)$_2$@C nanowires present significantly enhanced thermodynamics and kinetics towards hydrogen storage performance, e.g., a complete cycle of H$_2$ uptake and release with a capacity close to the theoretical value at a temperature as low as 105$^\circ$C. This is, to the best of our knowledge, the lowest cycling temperature reported to date. More interestingly, induced by the nanosize effects and space-confinement function of porous carbon coating, a excellently stable regeneration without apparent degradation after 20 de-/re-hydrogenation cycles at a temperature as low as 130$^\circ$C was achieved for the as-prepared Li$_2$Mg(NH)$_2$@C nanowires.

Solid-state hydrogen storage has been widely considered as the safest and most effective way to achieve the widespread use of H$_2$ as a prominent energy carrier in the future1. Despite decades of extensive efforts, it is still a big challenge to find a suitable H-rich material that features high safety, low cost, and fast kinetics for H$_2$ absorption and desorption under moderate conditions2–4. Metal-N-H systems have been extensively investigated as potential materials for solid-state hydrogen storage since the discovery of the hydrogen storage performance of the Li-N-H system, which was found to reversibly store 11.5 wt. % hydrogen5–6. Inspiringly, it was verified that partial substitution of Mg for Li in the Li-N-H composite to form the Li-Mg-N-H system could significantly decrease the sorption enthalpy change7–9. Among such composites, the Mg(NH$_2$)$_2$-2LiH system is one of the most promising hydrogen storage materials due to its favorable thermodynamics (39 kJ mol$^{-1}$ H$_2$), which is lowered by 35% compared with the LiNH$_2$-LiH system, as well as its relatively high H$_2$ content and good reversibility9–11. According to the H$_2$ sorption process as described in Equation (1), 5.6 wt. % H$_2$ could be reversibly stored in this system at an operating temperature of 90$^\circ$C under 1 bar of equilibrium hydrogen pressure, based on the thermodynamic calculation12,13, which could satisfy the practical requirements of proton exchange membrane (PEM) fuel cells.

\[
\text{Li}_2\text{Mg(NH)}_2 + 2\text{H}_2 \leftrightarrow \text{Mg(NH)}_2 + 2\text{LiH} \quad (1)
\]

Nevertheless, due to both the sluggish interface reaction between Mg(NH$_2$)$_2$ and LiH in the preliminary step and the following mass transport across the thus-formed imide layer, which results in a rather high activation energy barrier (E_a : \sim102–120 kJ mol$^{-1}$), a temperature higher than 200$^\circ$C is required to achieve a reasonable H$_2$ sorption rate14–15. In addition, another big challenge for practical application of the Li-Mg-N-H system is the undesirable release of ammonia resulting from the insufficient reaction of Mg(NH$_2$)$_2$ with LiH, which not only significantly degrades the H$_2$ cycling capacity due to the loss of elemental N, but also would damage the active catalyst in the PEM fuel cells16–17. Previous experimental results have clearly established that, in terms of mitigating the above-mentioned problems, intimate contact between Mg(NH$_2$)$_2$ and LiH through the reduction of their
particle sizes is an effective way of improving the hydrogen storage properties of the Li-Mg-N-H system\(^1\). It is well-known, however, that particles with small sizes are intrinsically unstable and prone to grow into larger crystallites\(^19\). Thus, during long-term cyclic heat treatment for \(\text{H}_2\) release and uptake, phase separation and particle growth are inevitable, which would significantly degrade the sorption kinetics\(^19\). Therefore, an efficient host, which is both capable of uniformly confining the nanostructured morphology of the thus-synthesized complex hydrides during repeated heating and is chemically inert, is essential for preserving the nanosize effects on the active substrates inside.

To this end, nanoconfinement of complex hydrides in porous scaffolds, which can serve as containers, has emerged as an intriguing strategy to synthesize nanostructured materials and therefore improve their hydrogen storage properties\(^19\)–\(^25\). The porous templates can effectively, on the one hand, facilitate the formation of nanoparticles and, on the other hand, maintain the shape and size of the active materials during cycles of hydrogen sorption\(^19\). In general, the preparation process involves melt infiltration or solution infiltration, which requires good wettability of the porous scaffolds by the precursors. Moreover, in order to achieve a relatively high loading level with good distribution, many repetitions of the infiltration steps and the following drying are required\(^26\). This makes the nanoconfinement time-consuming and tedious, while not allowing control over the homogeneous distribution of confined composites\(^26\). More importantly, the Li-Mg-N-H system is composed of multiphase components, and all of them have high chemical activity, low solubility, and/or high melting points, which therefore hinders the direct synthesis of a nanosized Li-Mg-N-H composite by the conventional nanoconfinement technique.

Herein, we report a novel in-situ reaction strategy based on an electrospinning technique, which is inexpensive, simple, and versatile, for the preparation of nanowoven materials, consisting of long entangled nanofibers of different materials, to fabricate nanowires (NWs) of Li-Mg-N-H composite uniformly coated with hierarchical porous carbon. As illustrated in Fig. 1, the overall synthetic procedure for the carbon-coated Li-Mg-N-H NWs originates from electrospinning coupled with the in-situ fabrication of the porous carbon coating and the consecutive transformation of the precursors to form the Li-Mg-N-H composite. Due to the special physicochemical properties of the components in the Li-Mg-N-H system, as mentioned above, our synthetic procedure is based on the in-situ reaction between MgCl\(_2\) and Li\(_3\)N as the electrospinning precursors. Upon heat treatment concurrent with carbonization to produce the uniform carbon coating, Li\(_3\)N firstly decomposes into Li\(_3\)N with vigorous release of nitrogen, which then reacts with MgCl\(_2\) to produce Mg\(_3\)N\(_2\) via a metathesis reaction (2). With further increase of temperature, the interaction between the thus-formed Mg\(_3\)N\(_2\) and the residual Li\(_3\)N results in the formation of disordered LiMgN-type structures (Fig. S1 and S2 in the Supporting Information)\(^28\). Afterwards, annealing under \(\text{H}_2\) atmosphere induces the hydrogenation according to Equation (3)\(^29\), which, as a result, forms the composite of Mg(NH\(_2\))\(_2\) and LiH, with LiCl as the by-product. The formation of Mg(NH\(_2\))\(_2\), LiH, and LiCl, as detected by X-ray diffraction of the bulk precursors after annealing (Fig. S1), could verify the feasibility of this procedure.

\[
\begin{align*}
3\text{MgCl}_2 + 2\text{Li}_3\text{N} & \rightarrow \text{Mg}_3\text{N}_2 + 6\text{LiCl} \quad (2) \\
\text{Mg}_3\text{N}_2 + 4\text{Li}_3\text{N} + 12\text{H}_2 & \rightarrow 3\text{Mg(NH}_2)_2 + 12\text{LiH} \quad (3)
\end{align*}
\]

Results
Scanning electron microscope (SEM) images of the as-electrospun NWs are shown in Fig. 1. When a high voltage is applied between the outer metallic capillary, containing the mixed precursor solution of Li\(_3\)N, NH\(_4\)MgCl\(_3\), and poly(vinyl alcohol) (PVA), and the collector, the liquid jets are stretched by electrostatic forces to generate textile NWs with a uniform coating of PVA. From the SEM images, the formation of a highly interconnected network of the as-electrospun NWs with a diameter of ~250 nm is clearly observed. Subsequently, the as-collected NWs were dewatered at ~85 °C, and the temperature was then programmed to rise to 250 °C under dynamic vacuum, meanwhile realizing the transformation of NH\(_4\)MgCl\(_3\) into MgCl\(_2\),...
accompanied by the release of the thus-formed ammonia and hydrogen chloride. Simultaneously, the formation of Li$_3$N due to the decomposition of LiN$_2$ was verified by the color change (Fig. S3) to the characteristic color of Li$_3$N, i.e., ruby red from white, across this heating step. On elevating the calcination temperature to 550°C under N$_2$ atmosphere, the PVA substrates were then transformed into pyrolysis carbon upon thermal decomposition, which homogeneously puts “carbonaceous clothes” on the active composite inside, accompanied by the metathesis reaction between MgCl$_2$ and Li$_3$N. As shown in Fig. 1, the carbonized NWs perfectly maintain the structural integrity of the as-electrospun polymers and, compared to polymeric NWs with smooth surfaces, exhibit rough surfaces with small relics and mesoporous structure on the outside wall. This is supposed to stem from the explosive release of N$_2$ during the decomposition of LiN$_2$, which could push away the surrounding PVA substrate from the point where LiN$_2$ exists, leading to the formation of numerous pores after the carbonization of relatively flexible polymers into relatively stiff carbon sheets at high temperature29. Magnified images of Li-Mg-N-H NWs (Fig. 2a) can further demonstrate the presence of open pores on the external surface, with pore diameters in the range of 2–40 nm. It also was found that the diameter of the as-electrospun PVA NWs was significantly decreased after carbonization, due to the decomposition of the polymer during calcination29. In the high-resolution transmission electron microscope (HRTEM) image (Fig. 2b), not only the wirelike nanostructure, but also the porous interior with mesopores and macropores can be clearly observed. This verifies the homogenous distribution of pores, which can effectively facilitate the H$_2$ transportation across the carbon matrix, owing to the explosive decomposition of LiN$_2$ inside the carbonized wires, indirectly confirming the uniform dispersion of Li-Mg-N-H composite. The HRTEM image (inset of Fig. 2b) also reveals the presence of small mesopores (~2.5 nm) inside the disordered carbon sheets. The N$_2$ adsorption-desorption isotherms of the as-prepared NWs exhibit typical type-IV hysteresis, with an obvious increase at a high relative pressure ($P/P_0 = 0.80–0.99$), indicative of the presence of both macropores and mesopores, due to the compression of PVA by the strong power of the N$_2$ stream and the subsequent solidification from carbonization, which agrees well with the TEM results. In addition, the isotherms show increases in adsorption at a low relative pressure, suggesting the presence of a large number of micropores in the NWs after calcination. These pores may be derived from the free volume and microporosity in the carbon NWs that is attributed to the disordered packing of the turbostratic carbon sheets and clusters as a result of the carbonization process of the nanostructured polymers$^{31–33}$. Taking advantage of the one-dimensional (1D) and hierarchical porous architecture, the Li$_2$Mg(NH)$_2$@C possesses a relatively large Brunauer-Emmett-Teller (BET) surface area of around 438 m2 g$^{-1}$ and pore volume of 0.86 cm3 g$^{-1}$ according to the N$_2$ sorption isotherms (Fig. S4). Moreover, the pore size distribution further demonstrates the formation of mesopores in the as-prepared NWs. Accordingly, on account of the special physico-chemical properties of every individual component in the as-electrospun matrices, the hierarchical porous carbon NWs can be obtained via a simple single-nozzle electrospinning. It is worth noting that the energy dispersive spectroscopy (EDS) elemental map (Fig. 2d) of C coincides well with the structure of the NWs, while the maps of Cl, Mg, and N agree well with the C map, which directly demonstrates the homogeneous dispersion of the precursors inside the carbon NWs.

After the carbothermal treatment and annealing in the H$_2$ atmosphere, high-resolution X-ray diffraction (HRXRD) verified the formation of LiCl, as shown in Fig. 2e, while other products are undiscernible due to a lack of long-range order. The characteristic peaks assigned to the N-H bonds of Mg(NH$_2$)$_2$ can be clearly detected, however, from the Fourier transform infrared (FTIR) spectra (Fig. S5), indicating the presence of Mg(NH$_2$)$_2$ embedded in the porous NWs. Moreover, the in-situ HRXRD confirms the generation of Li$_2$Mg(NH)$_2$ with increasing temperature, providing direct evidence of the successful synthesis of the porous carbon-coated Li$_2$Mg(NH)$_2$ NWs. In addition, the surrounding carbon matrix appears to have an amorphous structure, acting as a strong buffer to accommodate the sintering of nanostructured Li$_2$Mg(NH)$_2$ during the cycles of H$_2$ sorption. As deduced from the Debye-Scherrer equation, the average crystallite size of the carbon-coated Li$_2$Mg(NH)$_2$ NWs is only ~4 nm. Clearly, the electrospinning will, on the one hand, eliminate the tedious process of infiltration and drying and, at the same time, is suitable for good encapsulation and distribution of the precursors inside the as-electrospun NWs34, while the blocking of pores and/or agglomeration of active composite on the outside surface of the templates is usually observed during nanoco ncenfiment, which significantly limits complete pore filling and good dispersion of complex hydrides inside the scaffolds35. Finally, the in-situ metathesis reaction between MgCl$_2$ and Li$_3$N stemming from the well-dispersed precursors inside the thus-formed carbon NWs, followed by the hydrogenation process, leads to the formation of the nanosized Li-Mg-N-H composite with homogeneous distribution. Therefore, as a result of the explosive release of N$_2$ from the as-electrospun wires upon carbothermal treatment, the obtained car-

![Figure 2](https://www.nature.com/scientificreports)
bon-coated Li-Mg-N-H-based NWs possess a well-designed 1D nanostructure and a three-dimensional (3D) interconnected texture full of micropores, mesopores, and macropores, which can effectively hinder the growth and agglomeration of the confined nanoparticles during heat treatment and promote H_2 access through the porous carbonaceous framework to interact with the active substrates. This is the first report, to the best of our knowledge, on the in-situ synthesis of a carbon-coated Li-Mg-N-H-based system with 3D porous nanostructures.

To compare the dehydrogenation behavior of the Li-Mg-N-H-based NWs with that of a ball-milled composite of Mg(NH$_2$)$_2$/2LiH, mass spectrometry (MS), thermogravimetry (TG), and volumetric temperature-programmed desorption (TPD) characterizations were conducted, as shown in Fig. 3. The bulk Li-Mg-N-H system after ball milling starts to dehydrogenate above 140°C, with dehydrogenation peaking at ~199°C, along with the simultaneous emission of ammonia, which is generally consistent with reports in the literature. In comparison, the carbon-coated Li-Mg-N-H NWs exhibited onset and peak temperatures of H_2 desorption that were downshifted to ~78°C and 113°C, respectively, which are 62°C and 86°C lower, respectively, than for their ball-milled counterpart. It is also noteworthy that the generation of the toxic by-product, i.e., NH$_3$, was significantly depressed in the thermal dehydrogenation of the Li-Mg-N-H NWs, which is favorable for both reversibility and onboard practical applications as a hydrogen-storage medium. The quantitative H_2 desorption measurement by the TG method confirmed the dramatically reduced operating temperature of the carbon-coated Li-Mg-N-H NWs, which corresponds well with the MS spectra. A weight loss of 5.5 wt. % H_2 could be achieved in the temperature range between 78°C and 155°C. From the in-situ HRXRD results (Fig. 2e), the formation of Li$_2$Mg(NH)$_2$ upon dehydrogenation is confirmed to start at a temperature of ~110°C, which is consistent with the TG-MS results.

The isothermal H_2 desorption and absorption properties (Fig. 3b, c) were further characterized by volumetric measurements to clarify the effects of both the reduction in the particle size and the carbonaceous coating with highly porous nanostructure on the modification of the Li-Mg-N-H system. The ball-milled composite shows a H_2 capacity of approximately 0.5 wt. % and 0.65 wt. % for desorption and absorption, respectively, within 60 min, even at the high temperature of 135°C. On the contrary, the carbon-coated Li-Mg-N-H NWs display a fast hydrogenation at 135°C, with a capacity reaching up to 5.5 wt. %, and a subsequent hydrogen release as high as ~5.2 wt. % can be implemented over the period of 60 min. In particular, upon decreasing the operating temperature to 105°C, the H_2 sorption from the Li-Mg-N-H NWs can still proceed, and a complete cycle of H_2 uptake and release (~5.5 wt. %) can be achieved with an extended holding time (Fig. S6). In order to quantitatively estimate the enormously enhanced hydriding/dehydriding kinetics for the as-prepared carbon-coated Li-Mg-N-H NWs, the apparent activation energies (E_a) during the H_2 absorption/desorption were determined by combining the Johnson-Mehl-Avrami equation with the Arrhenius equation after fitting the experimental results at various temperatures. Based on the slope of the linear plots of ln(k) (k, rate constant) versus 1/T (T, absolute temperature), the activation energy for hydrogenation and dehydrogenation of the porous carbon-coated Li-Mg-N-H NWs was verified to be around 23.9 and 24.5 kJ mol$^{-1}$ H_2, respectively, much very lower than for the bulk counterpart (Fig. S7). This directly confirms the significant enhancement of kinetics for the carbon-coated Li-Mg-N-H NWs, due to the reduction of particle size and therefore diffusion distances.

Another important issue with Li-Mg-N-H composite for hydrogen storage application is the significant degradation of H_2 capacity upon cycling, owing to the release of ammonia, and the particle growth and phase separation during thermal treatment. The cycling behavior of the carbon-coated Li-Mg-N-H NWs, in comparison with their bulk counterpart, is shown in Fig. 4 and Fig. S8, using isothermal dehydrogenation and hydrogenation. The H_2 capacity, as cycling of the bulk Li-Mg-N-H composite proceeds, is severely degraded from 0.7 wt. % to 0.35 wt. % after only 5 cycles of sorption, which is equal to a capacity retention lower than 50%, even with a dwell time of 400 min for one cycle at 130°C. In contrast, in the case of the carbon-coated Li-Mg-N-H NWs cycled under the same conditions, but over a significantly shorter time, the H_2 capacity still reaches 5.3 wt. % and the capacity retention is up to 94.6% after 20 consecutive cycles of hydrogenation and dehydrogenation. The characteristic peaks of Mg(NH$_2$)$_2$ and Li$_2$Mg(NH)$_2$ can be clearly observed, even through 20 cycles of sorption (Fig. S9), and the porous structure of the Li$_2$Mg(NH)$_2$@C NWs is well maintained after cyclic heat treatment (Fig. S10). Furthermore, the curves of absorption and desorption during the cyclic H_2 sorption are almost identical to each other (Fig. S11), indicating the greatly enhanced hydrogen storage performance, i.e., capacity and kinetics were well-preserved, which is attributed to a strong tolerance of the porous carbonaceous coating towards particle growth and sintering.

Discussion

It is well known that the high activation energy barriers for both the hydrogenation and the dehydrogenation of the Li-Mg-N-H composite results from the sluggish interface reaction due to the slow diffusion of atoms (e.g., Li$^+$, Mg$^{2+}$, and H$^+$ ions) across amide-imide and imide-hydride phase boundaries and the mass transport along the as-formed layer of imides. The reduction of particle size into nanometer range can significantly decrease the diffusion pathways across amides/imides and hydrides, increase their surface area and develop closer proximity between Mg(NH$_2$)$_2$ and LiH, which would lead to the significantly improved kinetics and thermodynamics towards superior hydrogen storage performance. In the case of the ball-milled Li-Mg-N-H composite, the sizes of most of the particles are larger than 1 μm (Fig. S12), and therefore, the surface-to-volume ratio is small, which endows it with high activation energy. By contrast, it is notable that the in-situ fabrication of the carbon-coated Li$_2$Mg(NH)$_2$ via electrospinning followed by calcination and annealing can, on the one hand, realize the direct synthesis of nanosized Li$_2$Mg(NH)$_2$ (~4 nm), significantly improving its hydrogen storage
performance (Fig. 3), while, on the other hand, the space-confine-
mentation function of the porous carbon coating can well preserve the
nanostructural features down to the nanometer scale during consec-
tutive cycles of heating, which therefore gives the Li$_2$Mg(NH)$_2$ stable
reversibility without apparent degradation, even up to 20 cycles of
de-/re-hydrogenation (Fig. 4).

In summary, we have successfully prepared hierarchically porous
Li$_2$Mg(NH)$_2$@C NWs via a simple and scalable single-nozzle elec-
trospinning technique with a subsequent carbothermal reaction,
which realizes the in-situ formation of a porous carbon coating ser-
ving as template, with the Li-Mg-N-H composite produced via the
subsequent reaction under physical restriction. Our results obviously
verified the significantly improved hydrogen storage performance,
including complete reversibility at a temperature as low as 105°C
and tremendous reduction of the hydriding/dehydriding temperature
of the Li$_2$Mg(NH)$_2$, with the reduction of particle size down to the
nanometer scale. Induced by the space-confinement of the porous
carbon coating, the Li$_2$Mg(NH)$_2$@C NWs present very good cycling
stability, close to the theoretical value over 20 cycles of de-/re-hydro-
genation at 130°C. To the best of our knowledge, no such highly
stable cycling at relatively low temperature has been reported for
Li-Mg-N-H based materials. However, it should be noted that, due
to the extra weight of the porous carbon NWs and the by-product
of LiCl, the actual reversible H$_2$ capacity in the whole system is
limited. Therefore, further works in the search of an effective solvent
to remove the inactive LiCl and/or a new synthetic strategy to
achieve a high loading percent of precursors are still required to
achieve a high hydrogen storage capacity in the whole system.

The ball-milling of Mg(NH$_2$)$_2$ and LiH with a molar ratio of 1 : 2 was conducted via a planetary QM-1SP2 for 10 h. The ball-
to-powder ratio was 30 : 1, with a milling speed of 500 rpm. The milling procedure
was carried out by alternating between 30 min of milling and 6 min of rest. In order to
prevent contamination by air, all handling and manipulation of the materials were
performed in an argon-filled glove box with a recirculation system to keep H$_2$O and
O$_2$ levels below 1 ppm.

Materials characterization. Mass spectrometry (MS; Hidden HPR 20) was
directed from room temperature, using a heating rate of 2°C min$^{-1}$ under dynamic
nitrogen with a purge rate of 80 mL min$^{-1}$. Differential scanning calorimetry (DSC)
measurements were performed with a TAQ 2000 DSC under N$_2$ with a gas flow of
40 mL min$^{-1}$ at a heating rate of 2°C min$^{-1}$. Nitrogen absorption/desorption
isotherms (Brunauer-Emmett-Teller (BET) technique) at the temperature of liquid
nitrogen via a Quantachrome NOVA 4200e instrument were collected to characterize
the pore structure of the samples. The pore volumes and pore size distributions were
obtained by using the Barrett-Joyner-Halenda (BJH) model from the adsorption
branches of isotherms. The phase composition of the powders was analyzed by X-ray

Methods

Synthesis of hierarchical porous Li$_2$Mg(NH)$_2$@C nanowires. Poly(vinyl alcohol)
(PVA, 0.5 g, Alfa Aesar, M$_L$ = 88000, CAS: 9002-89-5) was mixed with deionized
water (5 mL) and stirred at $90°C$ for 8 h to make the PVA solution. After cooling
down to room temperature, LiN$_3$ solution (0.5 mL, 20 wt. %) and
NH$_4$MgCl$_3$ (0.05 g) in water were then added and vigorously stirred for 6 h to make a
homogeneous spinning dope. The resultant precursor solution was poured into a
syringe with a 18-gauge blunt tip needle. The flow rate of the solution was
approximately 500 μL$^{-1}$ and was controlled by a syringe pump (Longer, TJP-3A,
China). A grounded stainless steel plate was horizontally placed 10 cm from the
needle to collect the as-electrospun NWs. A high voltage of 15 kV was applied by a
high-voltage power supply. The as-collected electrospun nanowires were firstly
dewatered at a temperature of 85°C under dynamic vacuum for 15 h and then
calcinated at $550°C$ for 3 h under dynamic N$_2$ atmosphere to obtain the porous carbon
NWs containing the precursors (heating rate 1°C min$^{-1}$). Finally, the thus-formed
carbon NWs were annealed under 150 bar H$_2$ at 300°C for 12 h for a complete
hydrogenation, as schematically illustrated in Fig. 1, and then further annealed under
vacuum for dehydrogenation at 150°C, which leads to the formation of the
hierarchically porous Li$_2$Mg(NH)$_2$@C NWs. According to elemental analysis, the
resulting nanowires contained 9.86 mass% Li, 5.7 mass% Mg, 6.23 mass% N, 2.8
mass% O, 16.7 mass% Cl, and 58.5 mass% C, which gives the mass concentration of
Li$_2$Mg(NH)$_2$ of ~15.2 mass% in the as-prepared carbon NWs.

Preparation of the ball-milled composite. The ball-milling of Mg(NH$_2$)$_2$ and LiH
with a molar ratio of 1 : 2 was conducted via a planetary QM-1SP2 for 10 h. The ball-
to-powder ratio was 30 : 1, with a milling speed of 500 rpm. The milling procedure
was carried out by alternating between 30 min of milling and 6 min of rest. In order to
prevent contamination by air, all handling and manipulation of the materials were
performed in an argon-filled glove box with a recirculation system to keep H$_2$O and
O$_2$ levels below 1 ppm.

Materials characterization. Mass spectrometry (MS; Hidden HPR 20) was
directed from room temperature, using a heating rate of 2°C min$^{-1}$ under dynamic
nitrogen with a purge rate of 80 mL min$^{-1}$. Differential scanning calorimetry (DSC)
measurements were performed with a TAQ 2000 DSC under N$_2$ with a gas flow of
40 mL min$^{-1}$ at a heating rate of 2°C min$^{-1}$. Nitrogen absorption/desorption
isotherms (Brunauer-Emmett-Teller (BET) technique) at the temperature of liquid
nitrogen via a Quantachrome NOVA 4200e instrument were collected to characterize
the pore structure of the samples. The pore volumes and pore size distributions were
obtained by using the Barrett-Joyner-Halenda (BJH) model from the adsorption
branches of isotherms. The phase composition of the powders was analyzed by X-ray
The hydrogen storage properties of the thus-synthesized Li2Mg(NH)2@C NWs were investigated on a Sievert’s apparatus, denoted as a gas reaction controller (GRC, Advanced Materials Corp., USA). The apparatus was carefully calibrated from the H2 sorption of a LaNi5 reference sample with an accuracy of ±1%. For the calibration, the KBr pellets were loaded into a pre-dried 0.7 mm boron-silica glass capillary tube, and the hydrogen pressure was measured using a field emission scanning electron microscope (FE-SEM, JEOL 2011 F) with a Mythen-II detector at the Powder Diffraction Beamline, Australian Synchrotron. The hydrogen desorption of the Li-Mg-N-H system was evaluated using a field emission scanning electron microscope (FE-SEM, JEOL 2011 F, Tokyo, Japan) and a transmission electron microscope (TEM, JEOL, Tokyo, Japan) and a transmission electron microscope (TE-M, JEOL, Tokyo, Japan). Elemental analysis was performed with an Elementar Vario EL3 Elemental Analyser.

Acknowledgments

This work was partially supported by the Ministry of Science and Technology of China (2010CB631002), the National Natural Science Foundation of China (21271046), the PhD Programs Foundation of the Ministry of Education of China (20110071110009), and the National Basic Research Program of China (2011CB604606).

Author contribution

G.L.X., Z.P.G., H.K.L., and X.B.Y. proposed, planned, and designed the project. G.L.X., Y.B.T., D.L., and Z.W.L. performed the material preparation, characterization, and hydrogen storage tests. All authors contributed to writing the manuscript.

Additional information

Supplementary information accompanies this paper at http://www.nature.com/srep.

Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Xia, G.L. et al. Hierarchical Porous Li$_2$Mg(NH)$_3$@C Nanowires with Long Cycle Life Towards Stable Hydrogen Storage. Sci. Rep. 4, 6599; DOI:10.1038/srep06599 (2014).

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/