Exercício como mobilização precoce em pacientes com uso de drogas vasoativas

Exercise as early mobilization in patients using vasoactive drugs

RESUMO
Introdução: São claros os benefícios funcionais da mobilização precoce (MP) capaz de minimizar limitações e deformidades diante do imobilismo, porém são muitas as barreiras para conduzir a MP como prática de rotina na unidade de terapia intensiva (UTI), entre elas, o uso de drogas vasoativas (DVA), visto que está diretamente relacionada à fraqueza adquirida na UTI, além da presença da resistência da equipe multidisciplinar em mobilizar o paciente em uso de DVA. Objetivo: O objetivo desta revisão de literatura é levantar embasamento científico no manejo do paciente crítico em uso de DVA para MP em UTI. Métodos: É uma revisão integrativa da literatura, com pesquisa nas bases de dados: PEDro, Pubmed, Lilacs, com artigos publicados entre 2011 e 2018, em português e inglês, utilizando os termos: vasoactive drugs, early mobility, exercise in ICU, vasopressor e seus equivalentes em Português. Resultados: Foram incluídos nove trabalhos que analisaram a intervenção de MP em pacientes com uso de DVA, com ou sem suporte ventilatório. Não houve um tratamento homogêneo entre os trabalhos pesquisados, variando entre exercícios no leito e fora, de ação passiva e/ou ativa. Porém, independente da conduta, houve melhora da resposta cardiovascular sem alterações relevantes quanto ao uso da DVA. Conclusão: A MP não é contraindicada para pacientes em UTI com uso de DVA e mostrou-se eficaz e segura sem promover alterações hemodinâmicas e cardiopulmonares relevantes, que determinassem sua contraindicação absoluta.

Palavras-chave: Vasodilatadores, Deambulação precoce, Unidades de terapia intensiva, Fisioterapia.

ABSTRACT
Introduction: The functional benefits of early mobilization (EM) capable of minimizing limitations and deformities in the face of immobility are clear, but there are many barriers to conduct EM as a routine practice in the Intensive Care Unit (ICU), including the use of vasoactive drugs (VAD), since it is directly related to weakness acquired in the ICU, in addition to the resistance of the multidisciplinary team to mobilize the patient using VAD. Objective: The objective of this literature review is to raise a scientific basis in the management of critically ill patients using DVAs in the ICU. Methods: It is an integrative review of the literature, with research in the databases: PEDro, Pubmed, Lilacs, with articles published between 2011 and 2018, in Portuguese and English, using the terms: vasoactive drugs, early mobility, exercise in ICU, vasopressor and its equivalents in Portuguese. Results: Nine studies were included that analyzed the EM intervention in patients using VAD, with or without ventilatory support. There was no homogeneous treatment among the researched works, varying between exercises in bed and outside, with passive and / or active action. However, regardless of the conduct, there was an improvement in the cardiovascular response without relevant changes regarding the use of VAD. Conclusion: EM is not contraindicated for patients in the ICU with the use of VAD, and it was shown to be effective and safe without promoting relevant hemodynamic and cardiorespiratory changes, which would determine its absolute contraindication

Key-words: Vasodilator agents, Early ambulation, Intensive care units, Physical therapy specialty.
Introdução

Entende-se por mobilização precoce (MP) a fisioterapia realizada no paciente crítico, nas primeiras 48 horas de doença instalada, como processo de melhoria da funcionalidade e redução do tempo nas Unidades de Terapia Intensiva (UTI) [1,2]. São claros os benefícios funcionais da MP [3] capaz de minimizar limitações e deformidades [3-5]. Tem melhores resultados quando iniciada precocemente [4], com efeito positivo sobre a melhora da qualidade de vida e longevidade após a alta [6].

O tempo de permanência prolongado na UTI é associado ao imobilismo no leito, responsável pelo desenvolvimento de fraqueza adquirida na UTI, devido à perda de músculos esqueléticos de 1-1,5% por dia em repouso [3,7], podendo essa perda chegar a 3% [8], e ainda perdurar por cinco anos após alta hospitalar [5,7]. Mesmo com estes dados, o imobilismo é considerado um problema de saúde pública, já que menos de 10% dos pacientes críticos no Brasil são mobilizados em ambiente hospitalar, o que impacta no aumento das comorbidades e mortalidade [3,9].

Por ser pouco praticada, há poucos estudos nacionais que demonstram tal prática [9-11], porém sabemos que os pacientes que são mais comumente mobilizados precoce estão em ventilação mecânica, [1,2,4-6,8,10-13] e uma parte, sob efeito de diversas medicações, devido à gravidade do quadro clínico. Em concordância a esse dado, nos Estados Unidos da América foi observado que pacientes não ventilados mecanicamente tinham menores chances de serem mobilizados e, além disso, os exercícios realizados eram limitados ao leito [14].

São muitas as barreiras para conduzir a MP como prática de rotina na UTI, e vão desde a equipe multiprofissional pouco preparada e destreinada, ausência de equipamentos, instabilidade do quadro clínico do paciente, sedação e uso de drogas vasoativas (DVA), sendo também necessária monitorização constante das repercussões hemodinâmicas [7,15].

A literatura afirma que as DVA estão entre os medicamentos mais empregados em todos os centros de terapia intensiva [16]. Muitos pacientes graves fazem uso delas para otimizar débito cardíaco e tônus vascular sistêmico e pulmonar, devido a seus efeitos vasculares periféricos, pulmonares, cardíacos e renais, com ação de vasocostricção, inotropismo, cronotropismo, broncodilatação e outros. São capazes de reestabelecer o fluxo sanguíneo em órgãos vitais em estadios de choque circulatório [17-19] por posuírem ação rápida e potente, melhorando o prognóstico e a sobrevida dos pacientes. Portanto, o uso de DVA está associado a a fraqueza adquirida na UTI independentemente de outros fatores, de forma que esta perda de força muscular será mais acentuada quando associada ao imobilismo no leito. Desta forma, deve ser utilizada com cautela e com monitorização hemodinâmica e laboratorial [20,21] devida à resposta nos receptores alfa e beta estar diretamente relacionada à dose aplicada [19,21].

Percebe-se resistência entre os médicos quanto a mobilização de pacientes em uso de ventilação mecânica e drogas (sedação e vasoativas), receio que muitas vezes se estende à equipe multiprofissional [5,22,23]. Os mesmos usam como justificativa o risco de alterações nos critérios cardiovasculares (pressão arterial média, débito cardíaco e fluxo sanguíneo), visto que durante a MP ocorre o aumento do consumo de oxigênio pela ativação muscular, o que pode resultar em eventos adversos, principalmente se a equipe não estiver preparada adequadamente para realizar este procedimento [23].

Um melhor entendimento dos riscos ao mobilizar pacientes que estejam em uso de drogas vasoativas pode diminuir a distância entre pesquisa e prática clínica.
Tendo conhecimento das barreiras que implicam na realização da MP e o uso concomitante de DVA, o objetivo desta revisão de literatura é levantar embasamento científico no manejo do paciente crítico em uso de DVA para MP em UTI.

Métodos

Este estudo é uma revisão integrativa da literatura e foi realizada pesquisa através das bases de dados: PEDro, Pubmed, Lilacs, com artigos publicados entre 2011 e 2018, em português e inglês, utilizando os termos: vasoactive drugs, early mobility, exercise in ICU, vasopressor e seus equivalentes em português. Os artigos foram avaliados de acordo com a recomendação de Oxford Centre for Evidence-Based Medicine: A) Revisão sistemática (com homogeneidade) de ensaios clínicos controlados e randomizados. Ensaio clínico controlado e randomizado com intervalo de confiança estreito. Resultados terapêuticos do tipo “tudo ou nada”; B) Revisão sistemática (com homogeneidade) de estudos de coorte. Estudo de coorte (incluindo ensaio clínico randomizado de menor qualidade). Observação de resultados terapêuticos/Estudo ecológico. Revisão sistemática (com homogeneidade) de estudos caso-controle. Estudo caso-controle; C) Relato de casos (incluindo coorte ou caso-controle de menor qualidade); D) Opinião de especialista sem avaliação crítica ou baseada em matérias básicas (estudo fisiológico ou estudo com animais).

Em todas as bases de dados consultadas, foram encontrados 63 artigos e selecionados apenas nove que se encaixavam nos critérios de inclusão, que realizaram intervenção fisioterapêutica motora em pacientes com uso de DVA. Foram excluídos artigos de revisão narrativa/integrativa ou sistemática e trabalhos que não deixavam claro o uso de DVA. O fluxograma de seleção segue abaixo, na figura 1.

![Fluxograma para seleção dos artigos.](image-url)
Resultados

Foram incluídos nove artigos, onde os pacientes eram submetidos à intervenção fisioterapêutica, com ou sem o uso de DVA, com uma constante monitorização hemodinâmica.

Os resultados levantados através dos estudos selecionados estão expostos na tabela I e II. Na tabela I, encontram-se o nome do autor, ano de publicação, o grau de evidência, o objetivo do estudo e a conclusão obtida através dos resultados observados. A Tabela II apresenta o nome do autor, ano de publicação, a amostra de pacientes com sua respectiva distribuição e ainda a intervenção fisioterapêutica. Importante ressaltar que as intervenções descritas na Tabela II, foram distintas, porém todas foram realizadas em ambiente hospitalar.

Os resultados mostram que o uso de DVA não foi um empecilho para a realização da MP, pois não causaram instabilidade hemodinâmica, além de potencialmente melhorar a resposta cardiovascular diante da ativação muscular.

Além disso, não ocorreram eventos adversos que necessitaram do aumento da dose de DVA, mostrando-se, portanto, que a presença destas não é uma contraindicação para intervenções fisioterapêuticas.

Tabela I - Grau de recomendação, objetivo do estudo e a conclusão dos artigos da mobilização precoce em pacientes com uso de DVA.

Autor/Ano	GR	Objetivo	Conclusão
Hodgson C et al. 2015 [12]	C	Investigar as práticas atuais de mobilização, força na alta da UTI e recuperação funcional aos 6 meses em pacientes internados em UTI, sob ventilação mecânica.	O uso de vasopressores e sedação profunda foram comuns. As principais barreiras relatadas em pacientes que não receberam mobilização precoce foram intubação e sedação. O escore MRC-SS foi maior nos pacientes que se mobilizaram sob ventilação mecânica.
Garzon-Serrano J et al. 2011 [7]	C	Avaliar o nível de mobilização alcançado e as barreiras para progredir para o próximo nível de mobilização, realizada por fisioterapeutas e enfermeiros.	Para garantir a estabilidade cardiovascular durante a mobilização, manteve-se a administração de vasopressores, volume, vasodilatadores e analgésicos, conforme indicado nos estudos de segurança. Não foram observados eventos adversos associados à mobilização neste estudo.
Liu K et al. 2018 [15]	B	Determinar a segurança da mobilização precoce avaliando a incidência de eventos adversos, quando realizada por profissionais não especialistas em mobilização, evoluindo o grau de mobilidade.	Verificaram que a mobilização precoce é segura, não demonstrou efeitos adversos significativos que exigiram tratamento adicional e/ou aumento da dose das drogas vasoativas.
Wolfe KS et al. 2018 [20]	B	Avaliar a relação entre o uso de medicamentos vasoativos e o resultado da fraqueza adquirida na UTI.	Um total de 80 dos 172 pacientes demonstraram Fraqueza Adquirida na UTI (FMA-UTI). Na análise multivariada, o uso de medicamentos vasoativos foi associado a um aumento de mais de três vezes na chance de desenvolver FMA-UTI na alta hospitalar, independente de outros fatores de risco estabelecidos para FMA-UTI.
Gardenghi G et al. 2017 [24]

Investigar o comportamento cardiorrespiratório de pacientes no pós-operatório de cirurgia cardíaca recebendo ou não DVAs durante a realização de ciclo para MMSS, verificando a segurança do mesmo sobre a eventual perda de cateter arterial radial.

Boyd J et al. 2018 [25]

Investigar a segurança da reabilitação por exercício em pacientes sob ventilação mecânica e avaliar as recomendações da escala de mobilização na UTI.

O exercício de cicloergômetro passivo muito precoce em pacientes sedados, críticos, ventilados mecanicamente foi considerado seguro e não foi associado a alterações significativas nas condições hemodinâmicas, respiratórias ou variáveis metabólicas, mesmo naquelas que utilizaram agentes vasoativos.

Hodgson C et al. 2016 [27]

Determinar se uma intervenção específica (EGDM) resultaria em uma dose maior de mobilização precoce na UTI e se poderia impedir a FMA-UTI e melhorar a função dos pacientes.

A mobilização precoce com objetivo foi segura e viável, resultando no aumento dos exercícios ativos e nos marcos de mobilidade alcançados nos pacientes internados na UTI.

Genc A et al. 2014 [28]

Comparar os efeitos da mobilização passiva de membros nos parâmetros hemodinâmicos e ventilatórios em pacientes sem ou com baixas doses de vasoressor.

Houve aumento da pré-carga devido ao aumento do retorno venoso induzido pela mobilização. Sem alterações significantes entre os grupos. Foram detectados em três pacientes aumento superior a 20% na frequência cardíaca e em seis pacientes aumento da pressão arterial média.

Autor/Ano	Objetivo	Conclusão
Gardenghi G et al. 2017 [24]	Investigar o comportamento cardiorrespiratório de pacientes no pós-operatório de cirurgia cardíaca recebendo ou não DVAs durante a realização de ciclo para MMSS, verificando a segurança do mesmo sobre a eventual perda de cateter arterial radial.	A adoção do ciclo para MMSS foi segura no PO de cirurgia cardíaca, sem causar alterações desfavoráveis nos parâmetros cardiorrespiratórios estudados, mesmo nos indivíduos em uso de DVAs.
Boyd J et al. 2018 [25]	Investigar a segurança da reabilitação por exercício em pacientes sob ventilação mecânica e avaliar as recomendações da escala de mobilização na UTI.	Em 809 oportunidades de mobilização, em 260 não ocorreu devido à instabilidade hemodinâmica, em 101 os pacientes realizaram exercício no leito e em 448 fora do leito. Em 299 atendimentos os pacientes estavam em uso de suporte vasoressor, houve um evento adverso em um paciente que estava usando noradrenalina em dose moderada, quando colocado na mesa de inclinação. O artigo conclui que dependência de medicação vasoativa não deve ser considerada uma razão para reter a reabilitação por exercício.
Pires-Neto R et al. 2013 [26]	Verificar as alterações fisiológicas e a segurança de uma intervenção precoce no cicloergômetro (<72h de ventilação mecânica) em pacientes críticos.	O exercício de cicloergômetro passivo muito precoce em pacientes sedados, críticos, ventilados mecanicamente foi considerado seguro e não foi associado a alterações significativas nas condições hemodinâmicas, respiratórias ou variáveis metabólicas, mesmo naquelas que utilizaram agentes vasoativos.
Hodgson C et al. 2016 [27]	Determinar se uma intervenção específica (EGDM) resultaria em uma dose maior de mobilização precoce na UTI e se poderia impedir a FMA-UTI e melhorar a função dos pacientes.	A mobilização precoce com objetivo foi segura e viável, resultando no aumento dos exercícios ativos e nos marcos de mobilidade alcançados nos pacientes internados na UTI.
Genc A et al. 2014 [28]	Comparar os efeitos da mobilização passiva de membros nos parâmetros hemodinâmicos e ventilatórios em pacientes sem ou com baixas doses de vasoressor.	Houve aumento da pré-carga devido ao aumento do retorno venoso induzido pela mobilização. Sem alterações significantes entre os grupos. Foram detectados em três pacientes aumento superior a 20% na frequência cardíaca e em seis pacientes aumento da pressão arterial média.

GR = Grau de Recomendação; UTI = Unidade de Terapia Intensiva; MRC-SS = Medical Research Council Sum-Score; FMA-UTI = Fraqueza adquirida na UTI; DVA = Droga vasoativa); MMSS = Membros Superiores; PO = Pós-Operatorário; EGDM = Mobilização precoce ao nível mais alto de atividade.
Tabela II - Amostra de pacientes com respectiva distribuição em grupos e tipo de intervenção realizada em paciente com uso de DVA.

Autor/Ano	N° de Pacientes e distribuição	Tratamento
Hodgson C et al. 2015	N: 192 DVA: 127 (68%)	Foi realizada mobilização com exercícios na cama, em pé ao lado da cama ou andando. No terceiro dia, todos os pacientes mobilizados foram ventilados mechanicamente por tubo endotraqueal.
Garzon-Serrano J, et al. 2011	N: 63 pacientes; 179 intervenções; 131 intervenções realizadas por enfermeiros (50% desses pacientes com DVAs), 48 intervenções realizadas por fisioterapeutas (65% desses pacientes com DVAs)	Nível 1: ADM passivo para MMSS e MMII, de forma global, e sentado na cama. Nível 2: incluem transferência do paciente para uma cadeira através de um elevador mecânico e/ou sentado ao lado da cama. Nível 3: ortostatismo ao lado da cadeira ou lateral da cama. Nível 4: atividades incluem deambulação do paciente.
Liu K et al. 2018	Pacientes admitidos na UTI: 839 Pacientes selecionados: 232 Foram realizadas 587 sessões. A incidência de eventos adversos, entre todas as sessões de reabilitação foi de 2,2%.	Nível 1: Nenhuma mobilização ou exercícios na cama. Nível 2: Paciente em DD elevado, incluído cicloergômetro e mobilização ativa. Nível 3: Sedestação beira leito. Nível 4: Transferência ativa para a poltrona. Nível 5: Marcha estática ou deambular.
Wolfe KS et al. 2018	Amostra com 172 Pacientes	Os pacientes incluídos no estudo receberam terapia física e ocupacional precoce dentro de 72 horas de VM (mobilização precoce) ou atendimento padrão conforme solicitado pelo médico.
Gardenghi G et al. 2017	N: 26 pacientes Grupo controle s/DVA: 13 pacientes Grupo DVA: 13 pacientes Todos submetidos a CC (revascularização miocárdica e/ou troca valvar) por esternotomia mediana.	Foi realizado no 1º PO, cicloergômetro p/ MMSS por 5 minutos, com parâmetros avaliados durante a atividade: FC, SPO2, dispneia, esforço de MMSS (Borg) e pressão de perfusão (PAM).
Boyd J et al. 2018	Amostra com 91 pacientes	Exercícios no leito ou fora do leito, evoluindo na escala de mobilidade de acordo com o quadro clínico do paciente.
Pires-Neto R et al. 2013	19 pacientes em ventilação mecânica, sendo 13 pacientes em uso de drogas vasoativas	Realizaram apenas exercício passivo de cicloergômetro de MMII por 20 minutos usando um ergômetro cicloelétrico, avaliando as seguintes variáveis: PAM, PAS, FC e SPO2.
Hodgson C et al. 2016	Havia 50 pacientes inscritos no estudo, 21 pacientes no grupo controle e 29 pacientes no grupo intervenção.	O protocolo EGDM incluía atividades funcionais ativas, incluindo deambular, ortostatismo, sedestação e rolar. O paciente poderia receber assistência da equipe ou equipamento, mas participava ativamente do exercício no mais alto nível funcional. O EGDM começa no nível mais alto de atividade que um paciente pode sustentar e trabalhar para maximizar a atividade.
Genc A et al. 2014	Total de pacientes: 120. GRUPO 1 não recebeu vasopressor (38 pacientes) GRUPO 2 recebeu vasopressor dopamina <10 μg/kg/min, noradrenalina /adrenalina <0,1 μg/kg/min (82 pacientes).	1 sessão diária de 10 repetições de flexão-extensão em cada articulação, tanto de membros superiores quanto inferiores.

DVA = Droga Vasoativa; ADM = Amplitude de Movimento; MMSS = Membros Superiores; MMII = Membros Inferiores; UTI = Unidade de Terapia Intensiva; DD = Decúbito Dorsal; VM = Ventilação Mecânica; CC = Cirurgia Cardíaca; PO = Pós-Operatório; FC = Frequência Cardíaca; PAM = Pressão Arterial Média; PAS = Pressão Arterial Sistólica; EGDM = Mobilização precoce no nível mais alto de atividade.
Discussão

O levantamento literário realizado e demonstrado nos resultados forneceu indícios de que a MP na UTI, na vigência de DVA pode ser uma alternativa segura na assistência ao paciente crítico, buscando minimizar as repercussões negativas do imobilismo no leito.

O consenso de especialistas publicado em 2014 por Hodgson et al. [29] não conseguiu chegar a um acordo em relação a dose de DVA que possa ser considerado segura para iniciar a MP. No entanto, Boyd et al. [25] avaliaram os limites de segurança para o exercício nas UTIs em pacientes com o uso de DVA, baseado no mesmo sistema de sinais e cores que o consenso mencionado anteriormente, em que verde significa baixo risco de eventos adversos, amarelo, quando há riscos para mobilização, mas os benefícios sobrepõem-se aos riscos desde que a equipe seja habilitada e treinada nos processos e vermelho, quando há risco potencial de eventos adversos com consequências graves. Nesse estudo de coorte prospectiva havia 91 pacientes, e os autores registraram a forma mais avançada de exercício (ou seja, aquele exercício com maior ativação muscular) utilizada a cada dia, definindo como exercícios de reabilitação os exercícios ativos realizados no leito ou fora dele. As DVA foram categorizadas, conforme dose individual, em baixa, moderada e altas doses. Os pacientes que faziam uso de mais de uma DVA foram categorizados de acordo com o nível mais alto de uma das medicações.

Em resumo, houve 809 oportunidades de mobilização, sendo o fisioterapeuta que tomava a decisão sobre a indicação de mobilização, em 260 (32,1%) dessas oportunidades a reabilitação não ocorreu porque foram realizadas mobilizações passivas, que para os autores não era considerado uma intervenção de reabilitação. No total de mobilizações realizadas, em 299 ocasiões os pacientes estavam sob uso de inotrópicos ou vasopressores, em 144 (48,16%) destas ocasiões o exercício não foi realizado. Os exercícios na cama ocorreram em 41 (13,71%) destas sessões, e em 114 (38,12%) ocasiões foram realizados fora da cama. De todas estas ocasiões, apenas um evento adverso ocorreu quando os pacientes estavam sob suporte de droga vasoativa. Este evento adverso foi definido como instabilidade cardiovascular e ocorreu ao usar a mesa de inclinação em um paciente que foi classificado como recebendo um nível moderado de suporte inotrópico (0,15 mcg/kg/min de Noradrenalina). Na conclusão do estudo sugerem que a dependência de medicação vasoativa não deve ser considerada uma razão para reter a reabilitação por exercício [25].

Camargo et al. [2] realizaram um único exercício passivo de cicloergômetro para membros inferiores por 20 minutos em 19 pacientes hemodinamicamente estáveis, profundamente sedados e ventilados mecanicamente. Dentro dos avaliados, 13 (68%) sob uso de noradrenalina. Avaliavam minuto a minuto as variáveis hemodinâmicas, respiratórias e metabólicas antes, durante e depois do exercício. As variáveis analisadas incluíram: débito cardíaco, resistência vascular sistêmica, saturação venosa central de oxigênio no sangue, frequência respiratória e volume corrente, consumo de oxigênio, dióxido de carbono, produção e níveis de lactato sanguíneo. Em conclusão o exercício foi considerado seguro, não sendo associado a alterações significativas nas condições hemodinâmicas, respiratórias ou variáveis metabólicas, mesmo naquelas que requereram agentes vasoativos.

Os exercícios passivos (EP) são amplamente utilizados no tratamento de pacientes inconscientes e recomenda-se um início precoce. Genc et al. [28] objetivaram em determinar os efeitos dos EP nos parâmetros hemodinâmicos e respiratórios em pacientes críticos recebendo suporte vasopressor ou inotrópico em baixa dose. Os
prontuários de 120 pacientes foram avaliados e retrospectivamente foram agrupados em dois grupos em que trinta e oito pacientes não receberam suporte vasopressor / inotrópico (grupo 1) e 82 pacientes receberam suporte vasopressor / inotrópico em baixa dose (grupo 2). Pressão venosa central, frequência cardíaca, pressão arterial média, e a saturação de oxigênio foram registradas antes e imediatamente após os EP. Não foi observada diferença estatisticamente significante na taxa de alteração dos parâmetros hemodinâmicos ou respiratórios entre os dois grupos após os EP. Este estudo retrospectivo confirmou que os EP resultam em alterações hemodinâmicas e respiratórias semelhantes em pacientes críticos que receberam doses baixas de suporte vasopressor / inotrópico em comparação com aqueles que não o fizeram.

Em um recente estudo de Gardenghi et al. [24], 26 pacientes passaram por cirurgia cardíaca para revascularização do miocárdio ou troca valvar, realizada com esternotomia mediana, e metade estava em uso de dobutamina e noradrenalina com doses a critério médico. Foram submetidos a exercícios ativos no 1º dia PO utilizando cicloergômetro para membros superiores (MMSS) por 5 minutos com intensidade avaliada pelo esforço e dispneia (4 e 5 na escala de Borg), e pelos parâmetros de FC, SpO₂ e PAM. Gardenghi et al. [24] puderam demonstrar que a MP nesse grupo foi segura, pois não houve nenhum evento adverso relacionado, e principalmente, não apresentou alterações hemodinâmicas anormais mesmo nos pacientes em uso de DVA.

Liu et al. [15] mostraram que a MP é segura, mesmo quando realizada por profissionais não especializados em MP, em um hospital sem cultura de mobilização, realizando um treinamento básico por apenas um mês. Eles determinaram a segurança da mobilização avaliando a taxa de incidência de eventos adversos nas sessões de reabilitação. Durante 587 sessões ocorreram 13 eventos adversos que incluíram sete episódios de intolerância do paciente e seis de hipotensão ortostática, e foi interrompida a atividade. Não houve nenhum evento adverso grave que requereu tratamento adicional como aumento da dose de DVA. Além disso, foi observado que os pacientes que receberam terapia por cerca de 20 minutos, sendo o tempo real determinado de acordo com o caso de cada paciente, levaram um tempo médio de 1,2 dias para sair da cama.

Garzon-Serrano et al. [7] avaliaram o nível de mobilização realizado por fisioterapeutas e enfermeiros em pacientes internados na UTI, em uma escala de 0 a 4, onde 4 era o maior nível de mobilização. Foram realizadas atividades na borda do leito, transferências da cama para cadeira e treinamento de marcha, assim a mobilização foi considerada um processo de melhoria de mobilidade na UTI. O uso de DVA não foi preditor de exclusão para a realização da mobilização, e elas eram utilizadas para manter os parâmetros hemodinâmicos estáveis, sendo que sua utilização não promoveu efeitos adversos aos pacientes. O nível de mobilização dos pacientes alcançado pelos fisioterapeutas foi maior que o alcançado pelos enfermeiros. Entre os profissionais, foram identificadas diferentes barreiras de mobilização como instabilidade hemodinâmica e terapia de substituição renal, que foram barreiras levadas mais em consideração pelos enfermeiros, enquanto o comprometimento neurológico foi classificado como mais alta barreira pelos fisioterapeutas. Devido a uma relação direta do nível de mobilização e os efeitos benéficos dela, torna-se importante iniciativas para padronização dessa intervenção entre os intensivistas.

No estudo de coorte prospectivo multicêntrico realizado por Hodgson et al., desenvolvido em 12 UTIs na Austrália e Nova Zelândia, com 192 pacientes, investigou-se a prática de MP, forç na alta da UTI e recuperação funcional dos pacientes em VM. Como barreiras à MP, identificou-se a sedação e intubação. Foram realizadas
atividades no leito, beira leito e fora do leito, com sedestação, ortostase, deambulação e movimentos ativos para MMSS e MMII em flexão e extensão, após média de 5 dias de internação. A deambulação foi realizada após o dia 7 de internação. Foram registradas 209 mobilizações, e não houve eventos adversos graves, exceto por 6 registros em que ocorreu a interrupção por instabilidade cardiovascular ou respiratória, sem a necessidade de intervenção médica. O uso de DVA esteve presente em 66% dos pacientes, e não foi impeditivo para o tratamento. Com isso, o escore MRC-SS foi maior nos pacientes que foram mobilizados em VMI (50,0 ± 11,2 versus 42,0 ± 10,8, P = 0,003). E ainda assim, mais de 50% dos pacientes que receberam alta da UTI desenvolveram fraqueza adquirida na UTI associada à morte após alta [12].

No estudo de Wolfe et al. [20] que consiste em uma análise secundária de pacientes que foram selecionados para receber MP dentro de 72 horas da VM, os pacientes foram submetidos a testes de força muscular ao lado da cama por um terapeuta cego, para avaliar se havia desenvolvido fraqueza muscular adquirida na UTI (FMA-UTI). Dos 172 pacientes analisados, 80 demonstraram FMA-UTI na alta hospitalar. Os autores relataram que o uso de medicamentos vasoativos foi associado a um aumento de mais de três vezes nas chances de desenvolverem FMA-UTI, independentemente de outros fatores de risco estabelecidos. Mencionam que esse efeito está associado diretamente à duração da medicação vasoativa e dose cumulativa de noradrenalina, não sendo constatado na vasopressina e fenilefrina. Observaram também que apenas os grupos β-adrenérgico de DVAs (noradrenalina, epinefrina, dopamina e dobutamina) esteve significativamente ligado ao desenvolvimento de FMA-UTI.

Em 2016 Hodgson [27] seguiu um protocolo de MP, no qual os pacientes realizaram atividades no nível mais alto que eles conseguiam, visando maximizar a segurança da mobilização. Os pacientes não foram excluídos por estar usando DVA, eram apenas excluídos da MP caso estivessem com dose de noradrenalina >0,2ug/kg/min ou aumento de 25% da dose de qualquer DVA nas últimas 6 horas. Resultou-se em um aumento em minutos de mobilidade realizada pelos pacientes na UTI, alcançando um nível mais alto de atividade após a alta. Em contrapartida, foram relatados quatro eventos adversos, sendo eles agitação e hipotensão transitória e apenas um foi necessário interromper a terapia, nenhum deles necessitou de terapia medicamentosa complementar.

Este artigo possui limitações que devem ser apontadas. Por se tratar de uma revisão da literatura, não é possível por meio dele precisar que toda a literatura sobre o assunto tenha sido incluída, por mais que os autores tenham se esforçado por fazê-lo. Inclui ainda diferentes populações, o que pode interferir na conclusão atingida.

Conclusão

Na busca de diminuir a distância entre as pesquisas científicas e a prática clínica, esta revisão de literatura evidenciou que a mobilização precoce para pacientes em UTI com uso de drogas vasoativas mostrou-se eficaz e segura sem promover alterações hemodinâmicas e cardiorrespiratórias relevantes, que determinassem sua contraindicação absoluta. Desta forma, diante das respostas benéficas, a mobilização precoce pode e deve ser utilizada como recurso no tratamento intensivo, desde que haja uma monitorização dos riscos pela equipe multidisciplinar.

Potencial conflito de interesse
Nenhum conflito de interesses com potencial relevante para este artigo foi reportado.
Fontes de financiamento
Não houve fonte de financiamento externo para este estudo.

Contribuição dos autores
Concepção e desenho do estudo: Gardenghi G e Spadari JAA. Aquisição de dados: Morais AM, Penha DN, Costa DG e Schweling VBAF. Análise e interpretação dos dados: Gardenghi G e JAAS. Redação do manuscrito: Morais AM, Penha DN, Costa DG e Schweling VBAF. Revisão crítica: Gardenghi G e Spadari JAA.

Referências
1. Hodgson C, Needham D, Haines K, Bailey M, Ward A, Harrold M, Young P, Zanni J et al. Feasibility and inter-rater reliability of the ICU Mobility. Scale Heart & Lung: The Journal of Agute and Critical Care 2014;43(1):19–24. https://doi.org/10.1016/j.hrtlng.2013.11.003
2. Camargo JBG, Cavenaghi OM, Mello JRC, Brito MVC, Ferreira LL. Mobilidade funcional de pacientes críticos em terapia intensiva: um estudo piloto. Revista de Atenção à Saúde 2020;18(63):14-20.
3. Aquim EE, Bernardo WM, Buzzini RF, Azeredo NAG, Cunha LS, Damasceno MCP et al. Diretrizes Brasileiras para Mobilização Precoce em Unidade de Terapia Intensiva. Rev Bras Ter Intensiva 2019;31(4):434-43. https://doi.org/10.5935/0103-507X.20190084
4. Timenetsky KT, Neto AS, Assunção MSC, Taniguchi L, Eid RAC, Córrea TD. Mobilization practices in the ICU: A nationwide 1-day point-prevalence study in Brazil. PLoS ONE 2020;15(4):e0230971. https://doi.org/10.1371/journal.pone.0230971
5. Hashem MD, Nelliot A, Needham DM. Early mobilization and rehabilitation in the ICU: moving back to the future. Respiratory Care 2016;61(7):971-9. https://doi.org/10.4187/respcare.04741
6. Tipping CJ, Harrold M, Holland A, Romero L, Nisbet T, Hodgson CL. The effects of active mobilization and rehabilitation in ICU on mortality and function: a systematic review. Intensive Care Med 2017;43:171-83. https://doi.org/10.1007/s00134-016-4612-0
7. Garzon-Serrano J, Ryan C, Waak K, Hirschberg R, Tully S, Bittner EA, Chipman DW, et al. Early mobilization in critically ill patients: patients’ mobilization level depends on health care provider’s profession. PM&R 2011;3(4):307-13. https://doi.org/10.1016/j.pmrj.2010.12.022.
8. Morris PE, Griffin L, Berry M, Thompson C, Hite RD, Winkelman C, Hopkins RO et al. Receiving early mobility during an intensive care unit admission is a predictor of improved outcomes in acute respiratory failure. Am J Med Sci 2011;341(5):373-7. https://doi.org/10.1097/MAJ.0b013e31820ab4f6.
9. Fontela PC, Lisboa TC, Forgiarini-Júnior LA, Friedman G. Early mobilization practices of mechanically ventilated patients: a 1-day point-prevalence study in southern Brazil. Clinics 2018;73:e241. http://doi.org/10.6061/clinicalves/2018/e241
10. Feliciano VA, Albuquerque CG, Andrade FMD, Dantas CM, Lopez A, Ramos FF et al. A influência da mobilização precoce no tempo de internamento na Unidade de Terapia Intensiva. ASSOBRAFIR Ciência 2012;3(2):31-42
11. Pires-Neto RC, Lima NP, Cardim GM, Park M, Deneyh L. Early mobilization practice in a single Brazilian Intensive Care Unit. J Crit Care 2015;30(5):896-900. https://doi.org/10.1016/j.jcrc.2015.05.004
12. Hodgson C, Bellomo R, Berney S, Bailey M, Buhr H, Deneyh L, Harrold M et al. Early mobilization and recovery in mechanically ventilated patients in the ICU: a bi-national, multi-centre, prospective cohort study. Crit Care 2015;19(1):81. https://doi.org/10.1186/s13054-015-0765-4
13. McWilliams D, Jones C, Atkins G, Hodson J, Whitehouse T, Veenith T, Reeves E, et al. Earlier and enhanced rehabilitation of mechanically ventilated patients in critical care: a feasibility randomised controlled trial. J Crit Care 2018;44:407-12. https://doi.org/10.1016/j.jcrc.2018.01.001
14. Jolley SE, Moss M, Needham DM, Caldwell E, Morris PE, Miller RR, Ringwood N, et al. Point prevalence study of mobilization practices for acute respiratory failure patients in the United States. Crit Care Med 2017;45(2):205-15. https://doi.org/10.1097/CCM.0000000000002058
15. Liu K, Ogura T, Takahashi K, Nakamura M, Ohtake H, Fujiduka K, Abe E, Oosaki H, et al. The safety of a novel early mobilization protocol conducted by ICU physicians: a prospective observational study. J Int Care 2018;(6):10. https://doi.org/10.1186/s40560-018-0281-0
16. Mendonça LBA, Madeiro AC, Lima FET, Barbosa IV, Brito MEM, Cunha LGP. Uso de catecolaminas de
infusão contínua em pacientes de unidade de terapia intensiva. Rev Enferm UFPE on line 2012;6(1):26-31.

17. Fonseca JCL. Drogas vasoativas – Uso racional. Rev Soc Cardiol 2001;14:49-53.

18. Ostini FM, Antoniazi P, Filho AP, Bestetti R, Cardoso MCM, Filho AB. O uso de drogas vasoativas em terapia intensiva. Simpósio: Medicina Intensiva: I. Infeção e choque; 1998;31:400-11.

19. Udesen NlJ, Helgestad OKL, Banke ABS, Frederiksen PH, Josiassen J, Jensen LO et al. Impact of concomitant vasoactive treatment and mechanical left ventricular unloading in a porcine model of profound cardiogenic shock. Crit Care 2020;24(1):95. https://doi.org/10.1186/s13054-020-2816-8

20. Wolfe KS, Patel BK, MacKenzie EG, Giovanni SP, Pohlman AS, Churpek MM et al. Impact of vasoactive medications on ICU-acquired weakness in mechanically ventilated patients. Chest 2018;154(4):781-7. https://doi.org/10.1016/j.chest.2018.07.016

21. Jentzer JC, Coons JC, Link CB, Schmidhofer M. Pharmacotherapy update on the use of vasopressors and inotropes in the intensive care unit. J Cardiovasc Pharmacol Ther 2014;20(3),249-60. https://doi.org/10.1177/1074248414559838

22. Conceição TMA, Gonzáles AI, Figueiredo FCXS, Vieira DSR, Bündchen DC. Critérios de segurança para iniciar uma mobilização precoce em unidades de terapia intensiva. Revisão sistemática. Rev Bras Ter Intensiva 2017;29(4):509-19. https://doi.org/10.5935/0103-507x.20170076.

23. Fontanela PC, Jr Forgiarini LA, Friedman G. Atitudes clínicas e barreiras percebidas para a mobilização precoce de pacientes graves em unidades de terapia intensiva adulto. Rev Bras Ter Intensiva 2018;30(2):187-194. https://doi.org/10.5935/0103-507x.20180037

24. Gardenghi G, Kushida CL, Dias AB, Cruz JB, Lima KR, Souza AH. Estudo piloto da viabilidade no uso de cicloergômetro para membros superiores no primeiro dia pós-operatório de cirurgia cardíaca. Rev Pesqui Fisioter 2019;9(2):179-86. http://doi.org/10.17267/2238-2704rpf.v9i2.2303

25. Boyd J, Paratz J, Tronstad O, Caruana L, McCormack P, Walsh J. When is it safe to exercise mechanically ventilated patients in the intensive care unit? An evaluation of consensus recommendations in a cardiothoracic setting. Heart Lung 2018;47(2):81-6. https://doi.org/10.1016/j.hrtlng.2017.11.006

26. Pires-Neto RC, Kawaguchi YMF, Hirota AS, Fu C, Tanaka C, Caruso P et al. Very early passive cycling exercise in mechanically ventilated critically ill patients: physiological and safety aspects - A case series. PLoS One 2013;8(9):e74182. https://doi.org/10.1371/journal.pone.0074182

27. Hodgson CL, Bailey M, Bellomo R, Berney S, Buhr H, Denehy L, Gabbe B et al. A binational multicenter pilot feasibility randomized controlled trial of early goal-directed mobilization in the ICU. Crit Care Med 2016;44(6):1145-52. https://doi.org/10.1097/CCM.0000000000001643

28. Genc A, Koca U, Ali G. What are the hemodynamic and respiratory effects of passive limb exercise for mechanically ventilated patients receiving low-dose vasopressor / inotropic support?. Crit Care Nurs Q 2014;37(2):152-8. https://doi.org/10.1097/CNQ.000000000000013

29. Hodgson C, Stillik K, Needham D, Tipping C, Harrold M, Baldwin C, Bradley S, et al. Expert Consensus and recommendations on safety criteria for active mobilization of mechanically ventilated critically ill adults. Crit Care 2014;18(6):658.