A NOTE ON A BRILL-NOETHER LOCUS
OVER A NON-HYPERELLIPTIC CURVE OF GENUS 4

SUkmooN Huh

Abstract. We prove that a certain Brill-Noether locus over a non-hyperelliptic curve C of genus 4, is isomorphic to the Donagi-Izadi cubic threefold in the case when the pencils of the two trigonal line bundles of C coincide.

1. Introduction

Let C be a non-hyperelliptic curve of genus 4 over C and then C is embedded into \(\mathbb{P}_3 \) by the canonical embedding and there exists a unique quadric surface \(Q \subset \mathbb{P}_3 \) containing C. If we let \(g_3^1 \) and \(h_3^1 \) be the two trigonal line bundles such that \(g_3^1 \otimes h_3^1 = \mathcal{O}_C(K_C) \), the canonical line bundle, then Q is singular if and only if the two pencils \(|g_3^1| \) and \(|h_3^1| \) coincide.

Let \(SU_C(2, K_C) \) be the moduli space of semi-stable bundles of rank 2 on C with the canonical determinant and \(W^r \) be the Brill-Noether locus defined as the closure of the set of stable bundles \(E \) with \(h^0(E) \geq r + 1 \). In [3], \(W^2 \) was proven to be isomorphic to the Donagi-Izadi cubic threefold. In [1], we gave a different proof of this when \(Q \) is smooth, using the fact that the moduli space of stable sheaves of rank 2 on \(Q \) with the Chern classes \(c_1 = \mathcal{O}_Q(1,1) \) and \(c_2 = 2 \), is isomorphic to \(\mathbb{P}_3 \).

In this article, we use the same trick of [1] to the Hirzebruch surface \(F_2 \) and derive the same result on \(W^2 \) when \(Q \) is a quadric cone in \(\mathbb{P}_3 \). Unlike the situation in [1], the determinant of sheaves that we choose over \(F_2 \) is not ample, which prevents us from using the definition of stability. Instead, we use a parametrization \(P \) of the vector bundles on \(F_2 \) admitting a certain exact sequence. We show that \(P \) is isomorphic to \(\mathbb{P}_3 \), the original ambient space into which \(C \) is embedded by the canonical embedding. From the investigation of this parametrization, we show that the restriction map from \(P \) to \(W^2 \) is given by the complete linear system \(|I_C(3)| \), implying that \(W^2 \) is isomorphic to the Donagi-Izadi cubic threefold.

2. Main Theorem

Let \(F_2 = \mathbb{P}(\mathbb{F}) \) be the Hirzebruch surface with a section \(\sigma \) whose self-intersection is \(-2 \), where \(F \simeq \mathcal{O}_{F_1} \oplus \mathcal{O}_{F_1}(2) \). Recall that \(F_2 \) is the minimal

\[1991 \text{ Mathematics Subject Classification. Primary: 14D20; Secondary: 14E05.} \]
\[\text{Key words and phrases. moduli, Hirzebruch surface, stable sheaf, Brill-Noether loci.} \]
\[\text{The author would like to thank Edoardo Ballico and Robert Pignatelli for many advices.} \]
resolution of the quadric cone $Q \subset \mathbb{P}_3$ at the vertex point P_0. The section σ is the exceptional curve of the resolution. Let f be a fibre of the ruling $\pi : \mathbb{F}_2 \rightarrow \mathbb{P}_1$ and then $\text{Pic}(\mathbb{F}_2)$ is freely generated by σ and f. We will denote the line bundle $\mathcal{O}_{\mathbb{F}_2}(a \sigma + bf)$ by $\mathcal{O}(a, b)$ and $E \otimes \mathcal{O}(a, b)$ by $E(a, b)$ for a coherent sheaf E on \mathbb{F}_2. Note that the canonical line bundle is $\mathcal{O}(-2, -4)$. Then the resolution $\varphi : \mathbb{F}_2 \rightarrow Q$ is given by the linear system $|O(1, 2)|$. Here, the line bundle $H = O(1, 2)$ is the tautological line bundle $\mathcal{O}_{\mathbb{F}_2}(1)$ on \mathbb{F}_2, which is nef but not ample.

Lemma 2.1. We have

$$H^i(\mathcal{O}_{\mathbb{F}_2}(aH + bf)) = \begin{cases} 0, & \text{if } a = -1; \\ H^i(\mathbb{P}_1, S^a(F) \otimes \mathcal{O}_{\mathbb{F}_1}(b)), & \text{if } a \geq 0; \\ H^{2-i}(\mathbb{P}_1, S^{-2-a}(F) \otimes \mathcal{O}_{\mathbb{F}_1}(-b)), & \text{if } a \leq -2. \end{cases}$$

Proof. From the Leray spectral sequence,

$$H^i(\mathbb{P}_1, R^j \pi_* \mathcal{O}_{\mathbb{F}_2}(aH + bf)) \Rightarrow H^{i+j}(\mathbb{F}_2, \mathcal{O}_{\mathbb{F}_2}(aH + bf))$$

and $R^i \pi_* \mathcal{O}_{\mathbb{F}_2}(aH + bf) = R^i \pi_* \mathcal{O}_{\mathbb{F}_2}(aH) \otimes \mathcal{O}_{\mathbb{F}_1}(b) = 0$ for $i > 0$ and $a \geq -1,$ we have

$$H^i(\mathbb{F}_2, \mathcal{O}_{\mathbb{F}_2}(aH + bf)) = H^i(\mathbb{P}_1, \pi_* \mathcal{O}_{\mathbb{F}_2}(aH + bf)),$$

for all $a \geq -1.$ Since $\pi_* \mathcal{O}_{\mathbb{F}_2}(aH + bf) = S^a(F) \otimes \mathcal{O}_{\mathbb{F}_1}(b)$ if $a \geq 0$ and 0 otherwise, we get the first and second assertions. The last case can be derived from the second case, using the Serre duality. □

Let \mathcal{P} be the set of non-trivial sheaves of rank 2 on \mathbb{F}_2 with the Chern classes $c_1 = O(1, 2)$ and $c_2 = 2$, which are fitted into the following exact sequence,

$$0 \rightarrow \mathcal{O}(1, 0) \rightarrow E \rightarrow \mathcal{O}(0, 2) \rightarrow 0.$$

Note that $h^0(E)$ is 3 or 4 from the sequence (1). If we let $O(a, b)$ be a sub-bundle of E from a section $s \in H^0(E)$, we have $(a, b) = (0, 0), (0, 1), (0, 2), (1, 0)$ or $(1, 1)$, since $c_2(E) = 2$. In the case of $(a, b) = (0, 2)$, E turns out to be isomorphic to $O(1, 0) \oplus O(0, 2)$, which is excluded. In the case of $(1, 1)$, E is fitted into

$$0 \rightarrow \mathcal{O}(1, 1) \rightarrow E \rightarrow I_p(0, 1) \rightarrow 0,$$

where p is a point on \mathbb{F}_2, implying that $h^0(E(-1, 0)) = 2$. But this is not true since $h^0(E(-1, 0)) = 1$ from (1). Thus we obtain only $O(0, 0), O(1, 0)$ or $O(0, 1)$ as sub-bundles of $E \in \mathcal{P}$ from sections of E.

Let \mathcal{D} be the set of sheaves $E \in \mathcal{P}$, fitted into the following exact sequence,

$$0 \rightarrow \mathcal{O}(0, 1) \rightarrow E \rightarrow I_p(1, 1) \rightarrow 0,$$

where p is a point on \mathbb{F}_2. Since the dimension of $\text{Ext}^1(I_p(1, 1), \mathcal{O}(0, 1))$ is 1, so we have the unique non-trivial extension of (3) to each point $p \in \mathbb{F}_2$. (It can be easily checked that the trivial extension does not lie in \mathcal{P}). Since $h^0(E(-1, 0)) = 1$, we have $E \in \mathcal{P}$ and thus $\mathcal{D} \subset \mathcal{P}$. We also have
h^0(E(0, -1)) = 1 + h^0(I_p(1, 0)) = 2 if \(p \in \sigma \) and 1 otherwise. Similarly,
\(h^0(E) = 4 \) if \(p \in \sigma \) and 3 otherwise.

Let \((a, b) = (0, 0)\) and so we have the exact sequence,

\[
0 \to \mathcal{O} \to E \to I_Z(1, 2) \to 0,
\]

where \(Z \) is a 0-cycle on \(\mathbb{F}_2 \) with length 2. Let us denote the extension classes of type (4) by \(\mathbb{P}(Z) := \mathbb{P} \text{Ext}^1(I_Z(1, 2), \mathcal{O}) \), then \(\mathbb{P}(Z) \) is isomorphic to \(\mathbb{P}H^0(\mathcal{O}_Z)^* \simeq \mathbb{P}_1 \). Since \(1 = H^0(E(-1, 0)) = H^0(I_Z(0, 2)) \), we have two fibres \(f_1 \) and \(f_2 \) of \(\pi \), each containing a point of \(Z \). In fact, in the case when \(Z \) is contained in a fibre \(f \), we have the extension (2).

Proposition 2.2. We have the following descriptions on \(\mathcal{P} \):

1. \(\mathcal{P} \) is isomorphic to \(\mathbb{P}_3 \).
2. \(\mathcal{D} \subset \mathcal{P} \) is a quadric cone \(Q' \).
3. The vertex \(P_0' \) of \(\mathcal{D} \) corresponds to the unique vector bundle \(E_0 \in \mathcal{P} \) such that \(h^0(E_0) = 4 \).

Proof. The assertion (1) is clear since \(h^0(E(-1, 0)) = 1 \) for all \(E \in \mathcal{P} \) and \(\mathbb{P} \text{Ext}^1(\mathcal{O}(0, 2), \mathcal{O}(1, 0)) \) is isomorphic to \(\mathbb{P}H^1(\mathcal{O}(1, -2)) \simeq \mathbb{P}_3 \). Now there exists a universal extension

\[
0 \to q^*\mathcal{O}(1, 0) \to \mathcal{E} \to q^*\mathcal{O}(0, 2) \to 0,
\]
on \(\mathcal{P} \times \mathbb{F}_2 \) (\(q \) is the projection to \(\mathbb{F}_2 \)) such that \(\mathcal{E}|_{\{p\} \times \mathbb{F}_2} \) is isomorphic to an extension corresponding to \(p \in \mathcal{P} \). Let \(\mathcal{E}' \) be an extension of \(I_\triangle \otimes q^*\mathcal{O}(1, 1) \) by \(q^*\mathcal{O}(0, 1) \) over \(\mathbb{F}_2 \times \mathbb{F}_2 \) such that the restriction of \(\mathcal{E}' \) to \(\{p\} \times \mathbb{F}_2 \) is the unique non-trivial extension of \(I_p(1, 1) \) by \(\mathcal{O}(0, 1) \). Here, \(\triangle \) is the diagonal of \(\mathbb{F}_2 \times \mathbb{F}_2 \). The existence of such \(\mathcal{E}' \) is guaranteed because

\[
\begin{align*}
H^2(I_\triangle \otimes p^*\mathcal{O}(-1, -4) \otimes q^*\mathcal{O}(-2, -4)) \\
\simeq H^2(\mathcal{O}_\triangle \otimes p^*\mathcal{O}(-1, -4) \otimes q^*\mathcal{O}(-2, -4)) \\
\simeq H^2(\mathbb{F}_2, \mathcal{O}(-1, -4) \otimes p_\circ q^*\mathcal{O}(-2, -4)) \\
\simeq H^2(\mathcal{O}(-3, -8)) \simeq H^0(\mathcal{O}(1, 4))
\end{align*}
\]
is not zero. Since each restriction to \(\{p\} \times \mathbb{F}_2 \) is contained in \(\mathcal{P} \), we have a morphism \(\chi \) from \(\mathbb{F}_2 \) to \(\mathcal{P} \) and the image of \(\chi \) is \(\mathcal{D} \). Now assume that \(h^0(E) = 4 \) for \(E \in \mathcal{P} \). It can be easily checked that there exists a section of \(E \) for which \(E \) is fitted into (4). Thus, \(4 = h^0(E) = 1 + h^0(I_Z(1, 2)) \), i.e. \(h^0(I_Z(1, 2)) = 3 \). This implies that \(Z \) is contained in \(\sigma \). From (4), we also have \(h^0(E(0, -1)) > 0 \). In particular, \(E \) is also fitted into (6) with \(p \in \sigma \).

Let \(s_1, s_2 \) be two sections of \(E(-1, 0) \) such that \(p_1 \) is the only zero of \(s_1 \) and \(s_2 \). If \(s_1 \) and \(s_2 \) are different, we can find \(p_2 \neq p_1 \) such that \(as_1 + bs_2 \) is zero at \(p_2 \) for some \(a, b \neq 0 \), which is absurd because \(p_1 \) is also the unique zero of \(as_1 + bs_2 \). Thus for all \(p_1 \in \sigma \), we have the unique \(E \) such that \(h^0(E) = 4 \). In particular, the map \(\chi \) contracts \(\sigma \) to a point in \(\mathcal{P} \). Let \(E \in \mathcal{D} \). If \(p \not\in \sigma \),
we have $h^0(E(0, -1)) = 1$ so that we can assign a different E for each $p \not\in \sigma$.
Thus χ is the minimal resolution of a quadric cone $Q' \subset P$ at the vertex point P_0' corresponding to the sheaf E_0 admitting (3) with $p \in \sigma$. \hfill \Box

Remark 2.3.

(1) Let us consider the definition of stability on the sheaves of rank 2 on P_2 with the Chern classes $c_1 = O(1, 2)$ and $c_2 = 2$ with respect to the nef divisor $H = O(1, 2)$. It can be checked that such sheaves admits an exact sequence (1). Since all the sheaves in \mathcal{D} contains $O(0, 1)$ as sub-bundle, it contradicts to the stability condition. So the space of stable sheaves in this sense, is isomorphic to $P_3 \backslash Q$ and in particular, it is not projective.

(2) Let us assume that a non-trivial bundle E with the extension (3), $p \in P_2 \backslash \sigma$, admits an extension (4) with $Z \in P_2^{[2]}$, where $P_2^{[2]}$ be the Hilbert scheme of 2-cycles of length 2 on P_2. In these two extensions, O is a sub-bundle of $O(0, 1)$, otherwise, E contains $O \oplus O(0, 1)$ as a sub-bundle, which is absurd. Thus we have a surjection from $I_Z(1, 2)$ to $I_p(1, 1)$. In particular, $\text{Hom}(I_Z(1, 2), I_p(1, 1))$ non-trivial. As a result, if we take $\text{Hom}(\cdot, I_p(1, 1))$ to the exact sequence,

$$0 \to I_Z(1, 2) \to O(1, 2) \to O_Z \to 0,$$

then we know that $\text{Ext}^1(O_Z, I_p)$ is non-trivial, which implies that $p \in Z$. Let us denote this p by p_E.

For $E \in \mathcal{P}$, we consider the determinat map

$$\lambda_E : \wedge^2 H^0(E) \to H^0(O(1, 2)).$$

Recall that the dimension of $\wedge^2 H^0(E)$ is 3 if $E \neq E_0$.

Lemma 2.4. If $E \in \mathcal{P} \backslash \mathcal{D}$, then λ_E is injective.

Proof. Let s_1 and s_2 be two sections of $H^0(E)$ for which $s_1 \wedge s_2$ is a non-trivial element in $\ker(\lambda_E)$. It would generate a subsheaf F of E such that $h^0(F) \geq 2$. Since $c_2(E) = 2$, it can be easily checked that the only possibility for F is $O(0, 1)$ or $I_p(1, 1)$, where p is a point on P_2 with the following exact sequence,

$$0 \to I_p(1, 1) \to E \to O(0, 1) \to 0.$$

Let us assume that $E \not\in \mathcal{D}$ and in particular, $I_p(1, 1)$ is the only possibility for F. From the previous result, E is locally free. Since $O(0, 1)$ is torsion-free, so $I_p(1, 1)$ must be a line bundle, which is absurd. \hfill \Box

Let us denote by $p_E \in P_3$, the point corresponding to the dual of the cokernel of λ_E. As vector subspaces of $H^0(O(1, 2))$, we see that $H^0(I_Z(1, 2))$ is contained in the image of $\wedge^2 H^0(E)$ and so p_E is contained in $H^0(O_Z)^*$ as a vector subspace of $H^0(O(1, 2))^*$. It implies that p_E is a point in P_3, contained in all secant lines of $\varphi(Z)$ for which E admits an extension (4).

This argument with the remark 2.3 gives us a map from $\eta : \mathcal{P} \to P_3$ sending
E to p_E for $E \in \mathcal{P}\setminus\{E_0\}$. Clearly, this map extends to E_0 by assigning the vertex $P_0 \in Q$ because in the extension $\tilde{\mathcal{E}}$ of E_0, the support of Z should lie on σ due to the fact that $h^0(E) = 4$ and so $h^0(I_Z(1,1)) = 2$. Note that, for $E \in \mathcal{P}\setminus\mathcal{D}$, p_E lies outside Q and so we get the following statement.

Proposition 2.5. The map $\eta : \mathcal{P} \to \mathbb{P}H^0(\mathcal{O}(1,2))^*$ is an isomorphism. Moreover, the restriction of η to Q' is an isomorphism to Q sending an extension of type \mathcal{Z} to $\varphi(p) \in Q$.

Remark 2.6. Let $p \in \mathbb{P}_3 \setminus Q$ and φ' be the restriction of the projection from \mathbb{P}_3 to \mathbb{P}_2 at p, to Q. For the cotangent bundle of \mathbb{P}_2, twisted by $\mathcal{O}_{\mathbb{P}_2}(2)$, admits the following exact sequence,

$$0 \to \mathcal{O}_{\mathbb{P}_2} \to \Omega_{\mathbb{P}_2}(2) \to I_{\mathbb{P}_2}(1) \to 0,$$

where p is a point on \mathbb{P}_2, not the point corresponding to the line passing through p and the vertex point P_0. If we pull back the sequence via $\varphi' \circ \varphi$, then we get a vector bundle E admitting an exact sequence (4), where Z is $\varphi^{-1} \circ \varphi'^{-1}(p)$. This defines a map from $\mathbb{P}_3 \to \mathcal{P}$ and in fact, it extends to the inverse morphism of η.

Let C be a non-hyperelliptic curve of genus 4 with the two trigonal line bundles g_3^1 and h_3^1 such that $|g_3^1| = |h_3^1|$. In particular, C is embedded into \mathbb{P}_3 by the canonical embedding and there exists a unique quadric cone $Q \subset \mathbb{P}_3$ containing C. Let P_0 be the vertex point of Q. Recall that \mathbb{F}_2 is the minimal resolution of Q at P_0. Let C' be the proper transform of C in \mathbb{F}_2. Note that C and C' are isomorphic, so we will use C instead of C' if there is no confusion. Let us assume that the divisor type of $C \subset \mathbb{F}_2$ is (a,b). From the adjunction formula, we have

$$6 = 2g(C) - 2 = C.(C + K) = (a,b).(a - 2, b - 4).$$

Since C does meet the vertex P_0, we have $C.\sigma = 0$. Hence $(a,b) = (3,6)$. If we tensor the following exact sequence

$$0 \to \mathcal{O}(-3,-6) \to \mathcal{O} \to \mathcal{O}_C \to 0,
$$

with a bundle $E \in \mathcal{P}$ and take the long exact sequence of cohomology, we have $h^0(E|\mathcal{C}) = h^0(E) = 3$ since $h^1(E(-3,-6)) = h^1(E) = 0$. By the adjunction formula, we have

$$\mathcal{O}_C(K) = \mathcal{O}(K_{\mathbb{F}_2}) \otimes \mathcal{O}(3,6) \otimes \mathcal{O}_C = \mathcal{O}(1,2) \otimes \mathcal{O}_C,$$

i.e. the determinant of $E|\mathcal{C}$ is $\mathcal{O}_C(K_C)$.

Lemma 2.7. The restriction map

$$\Phi : \mathcal{P} \longrightarrow \mathcal{W},$$

sending E to $E|\mathcal{C}$, is well-defined.

Proof. It is enough to prove that $E|\mathcal{C}$ is stable. Let us assume that there exists a sub-bundle $\mathcal{O}_C(D)$ with $d = \deg(D) \geq 3$. Since the degree of $K_C - D$ is less than 4, we have $h^0(\mathcal{O}_C(D)) > 0$ due to the Clifford theorem [?] and
$h^0(E|C) = 3$. Thus we can assume that D is effective. Since $H^0(E) \simeq H^0(E|C)$, D can be considered as the zero section of $H^0(E)$ with C. For a section in $H^0(E)$, let us consider an exact sequence,

$$0 \to \mathcal{O}(a,b) \to E \to I_Z(1-a,2-b) \to 0,$$

where $a, b \geq 0$. From the numeric invariants of E and the fact that $h^0(E) = 3$, we have $(a,b) = (0,0), (1,0)$ or $(0,1)$. For a general vector bundle $E \in \mathcal{P}$, the case of $(a,b) = (0,1)$ cannot happen. Indeed, it happens only when $E \in \mathcal{D}$. Since the length of Z is at most 2 in each case, d must be less than 3. Hence, $E|C$ is stable.

Let g^1_3 be the trigonal line bundle on C and we have $\mathcal{O}(0,1)|C = g^1_3$. If $E \in \mathcal{D}$, we have an exact sequence \([3]\). If $p \not\in C$, we obtain the following exact sequence

$$0 \to g^1_3 \to E|C \to g^1_3 \to 0,$$

after tensoring with \mathcal{O}_C. In particular, $E|C$ is in the same equivalent class of $g^1_3 \oplus g^1_3$. If $p \in C$, then we obtain an exact sequence,

$$0 \to g^1_3 \otimes \mathcal{O}_C(p) \to E|C \to g^1_3 \otimes \mathcal{O}_C(-p) \to 0,$$

which implies that $E|C$ is not semi-stable. Thus we have the following assertion.

Proposition 2.8. The restriction map $\Phi : \mathcal{P} \longrightarrow \mathcal{W}^2$ is defined by the complete linear system $|I_C(3)|$. In particular, \mathcal{W}^2 is isomorphic to the Donagi-Izadi cubic threefold.

Proof. The proof is similar with the one in \([1]\). If we choose a general hyperplane section $H \subset \mathcal{P}$, then the restriction of Φ to H is not defined on 6 intersection points of C with H. Since this indeterminacy locus lie on a conic on H, the blow-up of H at these points is a singular cubic surface in \mathbb{P}_3. In particular, the degree of Φ is 3.

Let E be a general vector bundle in \mathcal{W}^2 with $h^0(E) = 3$. It can be checked as in \([2,4]\) that the determinant map from $\wedge^2 H^0(E)$ to $H^0(\mathcal{O}_C(K_C))$ is injective and so we can assign a point $p_E \in \mathbb{P}_3$ corresponding to the dual of the cokernel of the determinant map. This defines a map ρ from \mathcal{W}^2 to \mathbb{P}_3 and $\eta^{-1} \circ \rho \circ \Phi$ is the identity on \mathcal{P}. In particular, the dimension of \mathcal{W}^2 is at least 3. Conversely, the dimension of \mathcal{W}^2 can be shown to be at most 3 as follows: Let us assume that E is the extension of $\mathcal{O}_C(K_C - D)$ by $\mathcal{O}_C(D)$, where D is a divisor of C with the degree d. Because of the stability of E and the result of \([2]\), we can assume that $d = 2$ and so $h^0(\mathcal{O}_C(D)) = 1$. In particular, we can assume that D is effective. In the extension space $\mathbb{P} \text{Ext}^1(\mathcal{O}_C(K_C - D), \mathcal{O}_C) \simeq \mathbb{P}_1$, there exists \mathbb{P}_1-parametrization corresponding to the vector bundles E with $h^0(E) \geq 3$ \([3]\). Thus, we have a dominant map from a \mathbb{P}_1-bundle over $\text{Sec}^2(C)$ to \mathcal{W}^2 and so the dimension of \mathcal{W}^2 is at most 3. Now, we know that $h^0(I_C(3)) = 5$ and so Φ is given by the complete linear system $|I_C(3)|$ and the image is exactly \mathcal{W}^2. \qed
A NOTE ON A BRILL-NOETHER LOCUS

REFERENCES

1. S. Huh, *A moduli space of stable sheaves on a smooth quadric in \mathbb{P}_3*, Preprint, arXiv:0810.4392 [math.AG], 2008.

2. Herbert Lange, *Higher secant varieties of curves and the theorem of Nagata on ruled surfaces*, Manuscripta Math. 47 (1984), no. 1-3, 263–269. MR MR744323 (85f:14043)

3. W. M. Oxbury, C. Pauly, and E. Previato, *Subvarieties of $SU_C(2)$ and 2θ-divisors in the Jacobian*, Trans. Amer. Math. Soc. 350 (1998), no. 9, 3587–3614. MR MR1467474 (98m:14034)

Korea Institute for Advanced Study, Hoegiro 87, Dongdaemun-gu, Seoul 130-722, Korea

E-mail address: sukmoo.n.huh@math.unizh.ch