The appropriate whole body metric for calculating standardised uptake value and the influence of sex

Georgia Keramidaa,c and A. Michael Petersb

Aim To compare weight, lean body mass and body surface area for calculation of standardised uptake value (SUV) in fluorine-18-fluorodeoxyglucose PET/computed tomography, taking sex into account.

Patients and methods This was a retrospective study of 161 (97 men) patients. Maximum standardised uptake value (SUV$_{\text{max}}$) and mean standardised uptake value (SUV$_{\text{mean}}$) were obtained from a 3-cm region of interest over the right lobe of the liver and scaled to weight, scaled to lean body mass (SUL) and scaled to body surface area (SUA). Mean hepatic computed tomography density was used to adjust SUV$_{\text{mean}}$ for hepatic fat (SUV$_{\text{FA}}$). Hepatic SUV indices were divided by SUV from left ventricular cavity, thereby, eliminating whole body metric, to obtain a surrogate of blood fluorine-18-fluorodeoxyglucose clearance into liver, and multiplied by blood glucose to give a surrogate of hepatic glucose uptake rate (mSUV).

Results SUV$_{\text{max}}$, SUV$_{\text{mean}}$ and all scaled to weight indices correlated strongly with weight. SUV$_{\text{mean}}$, SUV$_{\text{FA}}$, SUV$_{\text{mean}}$ and SUV$_{\text{FA}}$, however, correlated weakly or not at all with weight, nor with their corresponding whole body metric in men or women, but correlated strongly when the sexes were combined into one group. This was the result of sex differences in SUL (greater in men) and SUA (greater in women). There was, however, no sex difference in mSUV.

Conclusion Weight is unsuitable for calculating SUV. SUL and SUA are also inappropriate as maxima but appropriate as mean and fat-adjusted values. However, SUV is recommended for both sexes because SUA is influenced by both body fat and weight. Sex differences in SUV and SUA give rise to misleading correlations when sexes are combined into one group.

Keywords: body surface area, fluorine-18-fluorodeoxyglucose, lean body mass, PET, sex, standardised uptake value

aClinical Imaging Sciences Centre, bBrighton and Sussex Medical School, Brighton and cRoyal Brompton and Harefield Foundation Trust, London, UK

Correspondence to A. Michael Peters, MA, MD, DSc, FMedSci, Audrey Emerton Building, Brighton and Sussex Medical School, Eastern Road, Brighton BN2 5BE, UK

Tel: +44 012 7352 3360; fax: +44 012 7352 3366; e-mail: a.m.peters@bsms.ac.uk

Received 26 April 2018 Revised 2 September 2018 Accepted 5 October 2018
increased in larger persons [13], which would be expected to increase SUV\textsubscript{max}. Sex is also an important consideration because, first, there is evidence to suggest that hepatic glucose metabolism differs between sexes [14, 15], second, men are larger than women, and thirdly, women have more body fat than men [16].

The purpose of the current study was to re-examine the issue of most appropriate whole body metric for calculating SUV using the liver as reference tissue in the context of sex.

Patients and methods

Patients

This was a retrospective study of 161 (97 men) adult patients, in whom height as well as weight was measured immediately prior to imaging, referred for routine 18F-FDG PET/CT almost all for the management of cancer. The population comprised two groups of 101 and 60 patients that have been separately reported in studies elsewhere [6,9,13] and combined into one group for this study. The study received ethical approval from a National Research Ethics Committee of the UK.

Imaging

The PET/CT imaging protocol is described elsewhere [6,9,13]. In brief, PET/CT was performed with unenhanced CT-based attenuation correction using a Siemens Biograph, Siemens, Erlangen, Germany. 64-slice PET scanner with immediate nonenhanced CT scanning (120 kVp/50 mA-Care dose4D; slice 5 mm; pitch 0.8; rotational speed 0.5/s). Arms were up, as arms down may result in artificial elevation of the liver 18F-FDG signal due to beam-hardening effects. Emission data were acquired at 3 min per bed position. Imaging was performed 60 min after injection of \(\sim 400\) MBq, not scaled for body size, after 6 h of fasting.

Image analysis

SUV\textsubscript{max}, SUV\textsubscript{mean} and mean CT density were recorded in a 3 cm diameter ROI over the right lobe of the liver, avoiding any known or suspected regional pathology, as described previously [6,9,13]. Blood pool SUV was obtained from an ROI of 1.5 cm diameter over the left ventricular blood pool (SUV\textsubscript{LV}). Reproducibility of SUV measurement was performed in the group of 60 patients.

Data analysis

SUV\textsubscript{mean} was adjusted for hepatic fat using a recently described exponential equation [17] that relates CT density to the proportion of the liver that is fat (P_F).

$$P_F = \exp[-0.0238(\text{CTD}+50)].$$

The fat-adjustment procedure was to divide SUV\textsubscript{mean} by $1-P_F$ to give SUV\textsubscript{FA} [18]. SUV\textsubscript{max} is not considered to require correction.

SUV\textsubscript{max} was divided by maximum SUV\textsubscript{LV}, and SUV\textsubscript{mean} and SUV\textsubscript{FA} were divided by mean SUV\textsubscript{LV}. Expressing tissue SUV in relation to blood pool SUV has two desirable effects. Firstly, it eliminates whole body metric and secondly renders SUV a closer surrogate of blood 18F-FDG clearance into tissue (i.e. blood clearance of 18F-FDG that is phosphorylated) [19]. SUV/SUV\textsubscript{LV} was then multiplied by blood glucose concentration to give mSUV as an estimate of hepatic glucose phosphorylation rate [20].

Estimation of lean body mass and body fat percentage

Sex-specific LBM was estimated from the formula of Boer [21] to give $^\text{B}$LBM and from the formulae of Janmahasatian et al. [22] to give $^\text{J}$LBM. Body fat percentage was calculated as: $100 \times (\text{weight} - \text{LBM})/\text{weight}$.

Estimation of body surface area

Sex-non-specific BSA was estimated from the formula of Haycock et al. [23] to give $^\text{H}$BSA and from the sex-specific formulae of Tikuisis et al. [24] to give $^\text{T}$BSA.

Statistical analysis

Linear regression analysis was used to determine the Pearson correlation coefficients between variables. Student’s unpaired t-test was used to determine the significance of the differences of variables between men and women. A P value of less than 0.05 was taken to indicate statistical significance.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Results

Correlations with body weight

SUV indices correlated strongly with body weight in both men and women (Table 1). SUV\textsubscript{max} and SUV\textsubscript{Amax} also correlated strongly with body weight. SUV\textsubscript{mean}, SUV\textsubscript{FA}, SUV\textsubscript{mean} and SUV\textsubscript{FA} showed weak or no correlations with body weight in men or women analysed separately but showed some strong correlations when the sexes were combined into one group (Table 1).

Whole body metric-specific correlations

In contrast to maximum SUV and SUV\textsubscript{mean} and fat-adjusted SUV and SUA showed no correlations with their whole body metric equivalents in men or women, except for $^\text{T}$SUA\textsubscript{mean} in men (Tables 2 and 3). However, several strong correlations were again noted when the sexes were combined (Fig. 1).
Differences between men and women

CT density, \(P_F \) and blood glucose were all similar between men and women (Table 4). Body fat percentage, however, was higher in women compared with men. LBM and BSA were, as expected, higher in men than women but the ratio of BSA/LBM was higher in women. \(^{15}SUL \) behaved similarly, although \(^{15}SUA_{\text{mean}} \) did correlate significantly with \(^{15}BSA \) in men. \(mSUV \), in contrast, correlated strongly with body weight, which can be explained by the relatively low penetration of \(^{18}F\)-FDG into adipose tissue [1]. These findings are in line with Sugawara et al. [4] and Tahari et al. [5], who favoured LBM, and with Kim et al. [3] and Schomburg et al. [7], who favoured BSA, and are therefore not new. Nevertheless, we believe our study is important as it clarifies the role of sex and shows that ignoring sex results in misleading correlations.

SUV indices were not significantly different between men and women (Table 4). \(^{15}SUL \) indices, however, were greater in men than women, while in contrast \(^{15}SUW \) indices were not significantly different between men and women (Table 4).

Discussion

The main finding in this study is that mean and fat-adjusted hepatic SUV showed no significant correlation with LBM in either sex, in spite of the presence of LBM in both co-ordinates, suggesting that LBM is an appropriate whole body metric for the calculation of SUV. \(SUA \) behaved similarly, although \(^{15}SUA_{\text{mean}} \) did correlate significantly with \(^{15}BSA \) in men. \(SUW \), in contrast, correlated strongly with body weight, which can be explained by the relatively low penetration of \(^{18}F\)-FDG into adipose tissue [1]. These findings are in line with Sugawara et al. [4] and Tahari et al. [5], who favoured LBM, and with Kim et al. [3] and Schomburg et al. [7], who favoured BSA, and are therefore not new. Nevertheless, we believe our study is important as it clarifies the role of sex and shows that ignoring sex results in misleading correlations.

LBM has the potential disadvantage of underestimating SUV because \(^{18}F\)-FDG, at least to a limited extent, accumulates in adipose tissue [1], which SUV ignores. Because women have more adipose tissue than men, this may explain why \(^{15}SUL \) indices were higher in women. Conversely, BSA has the potential disadvantage of

Table 1 Correlation coefficients and their significance levels (\(P \)) of the linear relationships between \(^{15}SUV \) indices and body weight in men, women and both combined

	Men	Women	Both
\(^{15}SUA_{\text{max}} \)	0.62 (<0.0001)	0.76 (<0.0001)	0.65 (<0.0001)
\(^{15}SUA_{\text{mean}} \)	0.48 (<0.001)	0.61 (<0.0001)	0.45 (<0.0001)
\(^{15}SUW_{\text{max}} \)	0.55 (<0.001)	0.67 (<0.0001)	0.53 (<0.0001)
\(^{15}SUW_{\text{mean}} \)	0.29 (0.004)	0.26 (0.04)	0.28 (<0.0001)
\(^{15}SUW_{\text{max}} \)	0.27 (0.007)	0.46 (0.0002)	0.46 (<0.0001)
\(^{15}SUW_{\text{mean}} \)	0.06 (NS)	0.09 (NS)	0.18 (0.02)*
\(^{15}JSUL_{\text{max}} \)	0.07 (NS)	0.21 (NS)	0.28 (0.0003)*
\(^{15}JSUL_{\text{mean}} \)	0.25 (0.01)	0.40 (0.001)	0.27 (0.0005)
\(^{15}JSUL_{\text{max}} \)	0.13 (NS)	0.16 (NS)	0.09 (NS)
\(^{15}JSUL_{\text{mean}} \)	0.14 (NS)	0.32 (0.01)	0.17 (0.03)
\(^{15}JSUL_{\text{max}} \)	0.21 (0.04)	0.08 (NS)	0.26 (0.0009)*
\(^{15}JSUL_{\text{mean}} \)	0.09 (NS)	0.03 (NS)	0.15 (NS)

Table 2 Correlation coefficients and their significance levels (\(P \)) of the linear relationships between scaled to lean body mass indices and the same lean body mass used to calculate them in men, women and both combined

	Men	Women	Both
\(^{15}SUL_{\text{max}} \)	0.28 (0.005)	0.42 (0.0006)	0.49 (<0.0001)
\(^{15}SUL_{\text{mean}} \)	0.02 (NS)	0.1 (NS)	0.20 (0.01)*
\(^{15}SUL_{\text{max}} \)	0.23 (0.02)	0.49 (<0.0001)	0.63 (<0.0001)
\(^{15}SUL_{\text{mean}} \)	0.09 (NS)	0.14 (NS)	0.44 (0.001)*
\(^{15}SUL_{\text{max}} \)	0.10 (NS)	0.24 (NS)	0.50 (<0.0001)*

Table 3 Correlation coefficients and their significance levels (\(P \)) of the linear relationships between scaled to body surface area indices and the same body surface area used to calculate them in men, women and both combined

	Men	Women	Both
\(^{15}SUA_{\text{max}} \)	0.22 (0.03)	0.41 (0.0008)	0.24 (0.002)
\(^{15}SUA_{\text{mean}} \)	0.09 (NS)	0.03 (NS)	0.18 (0.02)*
\(^{15}SUA_{\text{max}} \)	0.03 (NS)	0.14 (NS)	0.07 (NS)
\(^{15}SUA_{\text{mean}} \)	0.1 (NS)	0.34 (0.006)	0.13 (NS)
\(^{15}SUA_{\text{max}} \)	0.21 (0.04)	0.07 (NS)	0.29 (0.0002)*
\(^{15}SUA_{\text{mean}} \)	0.09 (NS)	0.04 (NS)	0.19 (0.02)*

Fig. 1

There is no significant correlation between lean body mass \((^{15}LBM) \) estimated from the sex-specific formulae of Janmahasatian et al. [25] and mean SUV \((^{15}SUW_{\text{mean}}) \) calculated using LBM as whole body metric in women (open circles; \(r = 0.14 \)) or in men (closed circles; \(r = -0.09 \)), but there is a strong correlation when the sexes are combined into a single group (\(r = 0.44; P < 0.0001 \)). "LBM, Janmahasatian lean body mass; \(SUW \), Janmahasatian scaled to lean body mass; SUV, standardised uptake value."

The finding of significant correlations between SUV indices and whole body metrics when men and women were combined when there was no correlation in either sex analysed separately (Tables 1–3 and Fig. 1) is the result of anthropometric differences and consequent differences in SUV indices between the two sexes. Batallés et al. [26] found higher SUV in men than women, while Demir et al. [25], like us, found SUL, but not SUV, to be higher in men. This sex difference indicates that correlations when the sexes are combined may be misleading. Some of the previous studies either included only women [2,4] or did not distinguish between men and women [3,7].

Division by blood pool SUV renders tissue SUV a closer reflection of 18F-FDG clearance [19] (referred to as uptake constant in dynamic 18F-FDG studies), and bypasses whole body metric normalisation, which cancels out. Multiplication of this ratio by blood glucose concentration makes it a closer surrogate of hepatic glucose phosphorylation [20], which in dynamic studies is uptake constant multiplied by blood glucose [27,28]. We found no difference in mSUV between men and women, in keeping with an artefactually lower SUL and artefactually higher SUA in women, as suggested above. However, although division by blood pool SUV bypasses the choice of whole body metric, partial volume effects in relation to blood pool ROI become an issue and may explain why no sex differences in mSUV were seen, because several previous studies have shown differences in glucose metabolism between men and women [14,15], including a higher glucose uptake rate [29].

SUV is sensitive to statistical noise and to hepatic fat content. Thus, in general, SUV$_{max}$ indices, but not SUV$_{mean}$ or SUV$_{FA}$ indices, correlated strongly with all body size metrics, consistent with SUV$_{max}$ being more susceptible to noise, and therefore reaching higher values in large persons in whom there is greater signal attenuation. Adjusting SUV for hepatic fat (to give SUV$_{FA}$) turned out to have no relevance to choice of whole body metric in our study probably because there was no significant difference in liver fat percentage between men and women, and correspondingly no difference in hepatic CT density.

Conclusion

We believe in common with others that in general LBM, as a 3-dimensional variable, is the preferred whole body metric for normalising SUV for the purpose of quantifying 18F-FDG accumulation in pathological tissues, such as tumours, in both men and women. Although LBM tends to underestimate SUV in persons with high body fat percentage, we believe it is preferable to BSA because BSA is artefactually influenced not only by body fat percentage, which is greater in women, but also by body size, which is greater in men.

Table 4 Mean (SD) values of computed tomography density (HU), blood glucose (mmol/l), liver fat (%), body fat (%), whole body metrics, SUV indices and mSUV in men and women

	Men	Women	P
Blood glucose	5.7 (0.8)	5.6 (0.9)	NS
CT density	46 (10)	50 (12)	NS
%Liver fat	10.5 (2.9)	9.7 (3.0)	NS
%Body fat (Boer)	26 (6)	32 (10)	<0.0001
%Body fat	25 (7)	39 (6)	<0.0001
Body weight	84 (16)	71 (18)	<0.0001
LBM	62 (7)	47 (6)	<0.0001
BSU	2.63 (0.22)	1.79 (0.24)	<0.0001
BSUFA	2.94 (0.18)	1.78 (0.21)	<0.0001
SUWFA	3.28 (0.012)	0.0393 (0.0025)	<0.0001
SUWmax	3.02 (0.62)	2.84 (0.65)	NS
SUWmean	2.03 (0.41)	1.96 (0.29)	<0.0001
BSULmax	1.67 (0.22)	1.57 (0.21)	0.005
BSULmin	0.06 (0.001)	0.075 (0.011)	NS
BSUmin	0.065 (0.007)	0.06 (0.008)	<0.0001
SuFAmax	0.061 (0.008)	0.066 (0.008)	<0.0001
SuFAmin	0.072 (0.011)	0.075 (0.011)	NS
TSUAmx	0.055 (0.007)	0.060 (0.008)	<0.0001
TSUAmn	0.065 (0.008)	0.066 (0.008)	<0.0001
mSUV FA	9.35 (2.17)	8.12 (2.71)	NS
mSUV mean	7.96 (1.64)	8.22 (2.21)	NS
mSUV FA	8.90 (1.82)	9.13 (2.54)	NS

SUW, Boer lean body mass; BSU, Haycock body surface area; LBM, Jaanmahasatian lean body mass; BSUL, Jaanmahasatian scaled to body surface area; BSA, Haycock scaled to body surface area; SUL, Jaanmahasatian scaled to lean body mass; LBM, lean body mass; NS, not significantly different between men and women; SUV, standardised uptake value; SUA, Tikuisis body surface area; SUA, Tikuisis scaled to body surface area; SUL, scaled to weight.

overestimating SUV because, like body weight, it increases, with no change in LBM, when body fat increases, explaining why SUA indices were higher in women. Moreover, as a two-dimensional variable, BSA is relatively higher in small individuals compared with large. It is notable that the sex-specific equations of Tikuisis gave almost identical estimates of BSA as the sex-non-specific formula of Haycock (Table 4). There were no sex differences in SUW. However, because they have more fat, women might have been expected to have higher SUW indices.

The generally stronger correlations between SUV$_{max}$ indices and corresponding whole body metrics compared with their mean and fat-adjusted equivalents are in keeping with the notion that SUV$_{max}$ is influenced by statistical noise and increased in large persons. This tendency, however, is opposed by BSA as a whole body metric because large persons have low BSA relative to their size, explaining why SUA$_{max}$ did not correlate so strongly with BSA compared with the correlations between SUL$_{max}$ and LBM (Tables 2 and 3).
Acknowledgements

Conflicts of interest

There are no conflicts of interest.

References

1. Christen T, Sheikine Y, Rocha VZ, Hurwitz S, Goldfine AB, Di Carlo M, et al. Increased glucose uptake in visceral versus subcutaneous adipose tissue revealed by PET imaging. JACC Cardiovasc imaging 2010; 3:843–851.
2. Zasadny KR, Wahl RL. Standardized uptake values of normal tissues at PET with 2-([fluorine-18])-fluoro-2-deoxy-D-glucose: variations with body weight and a method for correction. Radiology 1993; 189:847–850.
3. Kim CK, Gupta NC, Chandramouli B, Alavi A. Standardized uptake values of FDG: body surface area correction is preferable to body weight correction. J Nucl Med 1994; 35:164–167.
4. Sugawara Y, Zasadny KR, Neuhoff AW, Wahl RL. Reevaluation of the standardized uptake value for FDG: variations with body weight and methods for correction. Radiology 1999; 213:521–525.
5. Tahari AK, Chien D, Azadi JR, Wahl RL. Optimum lean body formulation for correction of standardized uptake value in PET imaging. J Nucl Med 2014; 55:1481–1484.
6. Keramida G, Hunter J, Dizdalevic S, Peters AM. The appropriate whole-body index on which to base standardized uptake value in 2-deoxy-2-[([18]F)] fluordeoxyglucose PET. Br J Radiol 2015; 88:20140520.
7. Schomburg A, Bender H, Reichel C, Sommer T, Ruhlmann J, Kozak B, et al. Standardized uptake values of fluorine-18 fluorodeoxyglucose: the value of different normalization procedures. Eur J Nucl Med 1996; 23:571–574.
8. Delanaye P, Rademkecker RP, Ronve M, Depas G, Krzensinski JM. Indexing glomerular filtration rate for body surface area in obese patients is misleading: concept and example. Nephrol Dial Transplant 2005; 20:2024–2028.
9. Keramida G, Potts J, Bush J, Dizdalevic S, Peters AM. Hepatic steatosis is associated with increased hepatic FDG uptake. Eur J Radiol 2014; 83:751–755.
10. Decarle PO, Lepanto L, Billaud JS, Olivet D, Murphy-Lavalée J, Kaufmann C, et al. Fatty liver deposition and sparing: a pictorial review. Insights Imaging 2011; 2:533–538.
11. Akamatsu G, Ikar Y, Nishida H, Nishio T, Ohnishi A, Maebatake A, et al. Influence of statistical fluctuation on reproducibility and accuracy of S/Um and S/Umpeak: a phantom study. J Nucl Med Technol 2015; 43:222–226.
12. Lodge MA, Chaudhry MA, Wahl RL. Noise considerations for PET quantification using maximum and peak standardized uptake value. J Nucl Med 2012; 53:1041–1047.
13. Keramida G, Dunford A, Siddique M, Cook GJ, Peters AM. Relationships of body habitus and SUV indices with signal-to-noise ratio of hepatic (18)F-FDG PET. Eur J Radiol 2016; 85:1012–1015.
14. Blaak E. Sex differences in the control of glucose homeostasis. Curr Opin Clin Nutr Metab Care 2008; 11:500–504.
15. Basu R, Dalla Man C, Campioni M, Basu A, Khee G, Toffolo G, et al. Effects of age and sex on postprandial glucose metabolism: differences in glucose turnover, insulin secretion, insulin action, and hepatic insulin extraction. Diabetes 2006; 55:2001–2014.
16. Deurenberg P, Weststrate JA, Seidell JC. Body mass index as a measure of body fatness: age- and sex-specific prediction formulas. Br J Nutr 1991; 65:105–114.
17. Keramida G, Peters AM. New exponential functions based on CT density to estimate the percentage of liver that is fat. Br J Radiol 2017; 90:20170186.
18. Keramida G, Potts J, Bush J, Venna S, Dizdalevic S, Peters AM. Accumulation of (18)F-FDG in the liver in hepatic steatosis. Am J Roentgenol 2014; 203:643–648.
19. Keramida G, Dizdalevic S, Bush J, Peters AM. Quantification of tumour (18)F-FDG uptake: Normalise to blood glucose or scale to liver uptake? Eur Radiol 2015; 25:2701–2708.
20. Boellaard R, O’Doherty MJ, Weber WA, Mottaghy FM, Lonsdale MN, Stroobants SG, et al. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging 2010; 37:181–200.
21. Boer P. Estimated lean body mass as an index for normalization of body fluid volumes in humans. Am J Physiol 1984; 247:632–636.
22. Jammahasanian S, Duffull SB, Ash S, Ward LC, Byrne NM, Green B. Quantification of lean bodyweight. Clin Pharmacokinet 2005; 44:1051–1065.
23. Haycock GB, Schwartz GJ, Wisotsky DH. Geometric method for measuring body surface area: a height-weight formula validated in infants, children and adults. J Pediatr 1978; 93:62–66.
24. Tikuvisis P, Meunier P, Jubenville CE. Human body surface area: measurement and prediction using three dimensional body scans. J Appl Physiol 2001; 85:264–271.
25. Demir Y, Sürücü E, Engöz T, Koç M, Kayă GÇ. Liver metabolic activity changes over time with neoadjuvant therapy in locally advanced rectal cancer. Nucl Med Commun 2016; 37:116–121.
26. Batalin FS, Vilavicencio LR, Quaranza A, Burgos L, Trezzo S, Staffieri R, et al. Variations of the hepatic SUV in relation to the body mass index in whole body PET-CT studies. Rev Esp Med Nucl Imagen Mol 2013; 32:26–32.
27. Choi YW, Hawkins RA, Huang SC, Brunk RC, Hoh CK, Messa C, et al. Evaluation of the effect of glucose ingestion and kinetic model configurations of FDG in the normal liver. J Nucl Med 1994; 35:818–823.
28. Ilozo P, Geisler F, Ökonon V, Mäki M, Takala T, Solin O, et al. Insulin stimulates liver glucose uptake in humans: an (18)F-FDG PET study. J Nucl Med 2003; 44:682–689.
29. Keramida G, Peters AM. Fasting hepatic glucose uptake is higher in men than women. Physiol Rep 2017; 5:e13174.