The micro-/nano-PCMs for thermal energy storage systems: A state of art review

Adeel Arshad\(^{1}\) | Mark Jabbal\(^{1}\) | Yuying Yan\(^{1,2}\) | Jo Darkwa\(^{3}\)

1 Fluids and Thermal Engineering (FLUTE) Research Group, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
2 Research Centre for Fluids and Thermal Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
3 Building, Energy, and Environment (BEE) Research Group, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK

Correspondence
Adeel Arshad and Yuying Yan, Fluids and Thermal Engineering (FLUTE) Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK. Email: Adeel.Arshad@nottingham.ac.uk; adeel.kirmani@hotmail.com; yuying.yan@nottingham.ac.uk

Summary
With advancement in technology—nanotechnology, various thermal energy storage (TES) materials have been invented and modified with promising thermal transport properties. Solid-liquid phase change materials (PCMs) have been extensively used as TES materials for various energy applications due to their highly favourable thermal properties. The class of PCMs, organic phase change materials (OPCMs), has more potential and advantages over inorganic phase change materials (IPCMs), having high phase change enthalpy. However, OPCMs possess low thermal conductivity as well as density and suffer leakage during the melting phase. The encapsulation technologies (ie, micro and nano) of PCMs, with organic and inorganic materials, have a tendency to enhance the thermal conductivity, effective heat transfer, and leakage issues as TES materials. The encapsulation of PCMs involves several technologies to develop at both micro and nano levels, called micro-encapsulated PCMs (micro-PCM) and nano-encapsulated PCMs (nano-PCM), respectively. This study covers a wide range of preparation methods, thermal and morphological characteristics, stability, applications, and future perspective of micro-/nano-PCMs as TES materials. The potential applications, such as solar-to-thermal and electrical-to-thermal conversions, thermal management, building, textile, foam, medical industry of micro- and nano-PCMs, are reviewed critically. Finally, this review paper highlights the emerging future research paths of micro-/nano-PCMs for thermal energy storage.

KEYWORDS
encapsulation technologies, micro-encapsulated, micro-PCM, nano-PCM, nanotechnology, nano-encapsulated, phase change materials, thermal energy storage

1 | INTRODUCTION

After the energy crisis of the 1970s, the world is facing a shortage of energy resources. Researchers are looking to different energy storage technologies based on renewable and sustainable resources to meet the future energy requirements.\(^{3}\) Phase change thermal energy storage (TES) technology using phase change materials (PCMs) ensures the storage, transportation, and wider domestic and industrial applications of thermal energy. TES technology has high heat capacity and enthalpy of fusion with the capability of absorbing and releasing extensive amounts of thermal energy during phase transition. The thermal performance of phase change TES technology employing PCMs, which are also known as latent heat storage materials (LHSMs), solely depends on the properties
of PCMs. On the basis of chemical composition, PCMs are classified into two major categories: organic phase change materials (OPCMs) and inorganic phase change materials (IPCMs). The advantages of PCMs and especially OPCMs, which includes paraffins (n-alkanes) and non-paraffins (n-alkenes) materials, are higher stability, high energy storage density, no segregation, nontoxic, self-nucleation (supercooling), noncorrosiveness, and nonreactive.2 Con-}

dition, no segregation, nontoxic, self-nucleation (supercooling), noncorrosiveness, and nonreactive.2 Contrari-

ally high thermal conductivity, and flame retardancy. In spite of this, IPCMs possess subcooling and phase separation, which reduce their instant release and utilisation of thermal energy for large-scale TES applications. OPCMs have lower thermal conductivity3 and also suffer leakage problem and subcooling phenomenon during phase transition.4 The lower thermal conductivity of OPCMs reduces the rate of heat transfer, which causes increase in temperature gradient and insensitivity to temperature changes across the system boundaries. OPCMs, with potential advantage as TES materials, are being developed for applications including air conditioning, ie, natural air cooling;5 cold thermal storage and absorption refrigeration;6,7 solar energy storage;10,11 thermal regulating fabric;12,13 passive heating of building,14-17 heat pipes,18 desalination,19 thermal management of electronic devices and electric vehicle batteries,20-30 spacecraft,31,32 and other integrated thermal control systems such as trombe wall, PCM-filled wallboards, shutter, concrete, under floor heating systems, ceiling boards, and hot water supply.33,34 However, the leakage issue and lower thermal conductivity of OPCMs causes harm with interacting medium and results in energy efficiency losses of the thermal system.

Efforts have been made to solve the aforementioned challenges related with both types of PCMs. Various conventional approaches such as the addition of more water, nucleating agents, thickeners, and stirring of the salt solution have been employed to control the predicaments of IPCMs in their constant dissolution and crystallisation procedure.35 In contrary, the addition of conductive fillers and flame-retardants has reduced the disadvantages of OPCMs. However, these efforts would certainly lessen the energy storage density of PCMs due to the presence of inactive mass.36 At present, nanoconfinement technologies have attracted a lot of interest and present a new opportunity for considerable refinement in the thermophysical properties of PCMs while sustaining their energy storage capacity.37,38 There are several advantages associated with nanoconfinement like small domain size, large surface area, diverse surface functionalities, controlled volume expansion, reduced reactivity with the external environment, and high heat transfer rate.

Confinement is the procedure of enclosing liquid or solid PCMs within supporting materials to fabricate a type of composite PCM. The main function of confinement is to stop the contact of the liquid phase of PCMs with the surrounding environment.39 The surface chemistry occupied at the interfaces of two phases such as solid-liquid or liquid-gas has a considerable effect on the thermodynamic properties of composite PCMs. Confinement technology can be applied to control the phase change parameters by a new mechanistic way by heterogeneous nucleation, large contact area, and associated surface energy in a confined environment. For example, the confinement of salt hydrates inside packaging materials not only restrains the loss of water of crystallisation during the phase transition to resolve the phase dissociation and supercooling phenomena but also enhances the heat transfer duration. Depending on the size, confinement technology can be classified into macro-confinement, micro-confinement, and nano-confinement. Different kinds of physical properties like adhesion forces, Van der Waals interactions, capillary actions, and surface chemistries are more effective at the nanoscale of confinement. For that reason, nano-confinement technology has proven to more valuable than macro- and micro-confinement.40,41 Additionally, nano-confinement provides better heat transfer, and accommodates dimensional changes related with the phase transition of PCMs. According to material designs and dimensions, confinement strategies can be classified as:

1. Core-shell confinement (0D)
2. Longitudinal confinement (1D)
 - Tubular confinement
 - Fibrous confinement
3. Interfacial or layer confinement (2D)
4. Porous confinement (3D)

In core-shell confinement, a small particle of liquid or solid PCMs is coated with shell material and exhibits the zero-dimensionality. Longitudinal confinement is also similar to core-shell confinement, but is one-dimensional (1D). According to shell materials, longitudinal confinement is further achieved either by infiltrating the melted PCM into the inner cavity of nanotubes (tubular confinement) such as CNTs, or by restraining the PCMs within the internal diameter of nanofibres (fibrous confinement) employing coaxial electrospinning technique. Interfacial or layer confinement technology covers the confinement of PCMs at the interface of nanomaterials by the interaction between PCM molecules and the surface of nanomaterials such as graphene oxide. In nanoporous confinement, the PCMs are impregnated into the nanopores of the supporting materials through a
vacuum developed infiltration method, shown in Figure 1. In term of size, the term core-shell nanoconfinement is used if the size of the capsules varies between 1 and 1000 nm, and for longitudinal confinement, the diameter of nanotubes or nanofibres should vary from 1 to 1000 nm.

Here, in the current study, the core-shell confinement of PCMs is further reviewed in detail. PCMs are encapsulated in a capsule of a core-shell composite construction called encapsulated phase change materials (EPCMs).43-45 The EPCMs are tiny capsules or containers, consisting of two parts: (a) core of PCMs and (b) shell of polymer or inorganic materials, which may have core-shell, multi-shell, and polynuclear structure depending on the synthesis technique, as shown in Figure 2. These capsules are in both regular (e.g., spherical, tubular, and oval) and irregular shapes. Additionally, the structural arrangement of the capsule depends on the core material and deposition process of the shell.44 The material of the coating shell has significant importance in terms of providing structural integrity and stability. In particular, to enhance heat transfer rate, the encapsulated PCMs need mechanically strong and thermally conductive shell materials. The proportion of core and shell materials therefore is a key parameter to enhance the TES capability and structural stability, applied in both non-flow and flowing systems. Weight percentage of both core and shell materials are relatively dependent on each other and defines TES performance. A high weight percentage of shell material reduces the heat storage capacity of core PCM, but alternatively increases the structural stability and vice versa.47-49 Therefore, the mass of coating material needs to be optimised to obtain the desired thermophysical properties. Various coating materials such as organic polymers, silica, metal oxides, and hydroxides have been utilised. Furthermore, the selection of the shell material is based on encapsulation technique and type of PCM. Generally, polymers are used as a traditional coating materials for encapsulation of PCMs. The positive features of using polymers as shell materials are that they are cheap, lightweight, mechanically stable, easily processed, and compatible with PCMs.50 In addition, the polymers are flexible, which allows the expanded volume of PCM during phase transition resulting in ease of melting while keeping the shape and stability of prepared nanocapsules. Such promising physical properties of polymers makes them preferable to use as shell material for PCM encapsulation. Heretofore, polystyrene (PS), polyurea (PU), poly(urethane), polycyraclates, poly-amide (PA), polymethyl methacrylate (PMMA), polyethyl methacrylate (PEMA), and formaldehyde resins have been utilised as shell materials to encapsulate OPCMS. So far, many encapsulation technologies have been introduced as (a) micro and

FIGURE 1 Confinement strategies and potential applications of PCMs. Reused from Aftab et al.42 with permission from The Royal Society of Chemistry [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 2 A, Synthetic illustration of phase change EPCMs and B, various structures. Reused from Aftab et al.42 with permission from The Royal Society of Chemistry [Colour figure can be viewed at wileyonlinelibrary.com]
nano encapsulation, (b) shape-stabilised composite, and (c) intercalation. The encapsulation of the PCMs

- Macro-encapsulated PCM (macro-PCM) (1 mm)
- Micro-encapsulated PCM (micro-PCM) (1-1000 μm)
- Nano-encapsulated PCM (nano-PCM) (1-1000 nm)

OPCMs with temperature range of -10 to 80°C are mostly under development with various encapsulation techniques into microcapsule and nanocapsule.51 The encapsulation techniques depend on the physical and chemical properties of shell and core materials as well the method of encapsulation.51-53 From 50 years of developments in nanotechnology, macro and micro encapsulation technologies of PCMs have improved by increasing the thermal performance and stability of encapsulated PCMs. As the stability of the EPCM capsules relies on the size of particles, micro-PCMs can increase the viscosity of the fluid54-56; they can also fracture in the fluid flow resulting in a fluid flow obstacle. To overcome this issue, nano-PCMs of small particle size, large surface area, low leakage, uniform fluid flow, and suspension stability have gained attention as new TES materials for energy storage applications.55 Additionally, nano-PCMs have volume and surface effect, are easily dispersed in fluid and steadily flow in slurry make them favourable in thermal energy storage and thermal management applications.57,58

To date, a few studies have summarised the progress on preparation of micro-PCMs59,60 and nano-PCMs.41 However, this review critically summarises research in the area of novel energy storage materials for the applications of TES systems. Initially, ideal characteristics of EPCMs are elaborated, which are potentially necessary to enhance thermal storage and heat transfer performance. Further, a detailed discussion on preparation technologies to encapsulate PCM into macro-, micro-, and nano-sized capsules are presented using physical-mechanical, physical-chemical, chemical-mechanical, and chemical encapsulation methods. Thermophysical properties of these novel EPCMs are summarised representing their enhancement in thermal conductivity, latent heat of fusion, and encapsulation efficiency. Additionally, a detailed discussion on characterisation techniques to evaluate the chemical, thermal, physical, morphological, and thermal reliability and thermal cyclic properties of EPCMs is presented. The stability, which is a real challenge of PCM capsules, is discussed with respect to chemical and thermal properties to explore the functionality and thermodynamic nature as energy storage materials. Potential applications such as solar-to-thermal and electrical-to-thermal conversion, thermal management, building, textile, foam, and medical industry of micro- and nano-PCMs are reviewed critically. Finally, this review highlights the emerging future research directions of EPCMs in the area of TES.

2 IDEAL CHARACTERISTICS OF EPCM

Ideal characteristics of EPCM include the ability to significantly influence thermal systems while performing as a TES material, especially at varying operating conditions. Thus, for an ideal EPCM, it is necessary to meet specific criteria and environmental conditions for longer duration operation. Figure 3 presents the ideal characteristics of EPCM, which are necessary for utilisation in thermal applications. The ideal characteristics of EPCMs depend on their fundamental chemical, physical, thermal, and economics properties, which are as follows61:

- Sufficient phase-transition temperature: Suitable phase change temperature of EPCM is essential and must match the operating conditions of specific application at melting and solidification temperature points.
- High latent heat of fusion: Latent heat of fusion, also called enthalpy of fusion, of the EPCM is the most desirable thermal property pertaining to ability to absorb large amount of heat with least amount of volume, especially to reduce the size of the TES system. EPCMs based on organic PCMs as core materials and polymeric materials as a shell have the tendency to absorb higher latent heat.
- High thermal conductivity: Higher thermal conductivity provides the additional capability to store thermal energy, while sensible heating phase results in shorter charging and discharging phases. Inorganic material coated EPCMs have more potential to increase the thermal conductivity, resulting in transmission of heat at higher rate. However, the increase in thermal conductivity of EPCMs causes lower absorption of latent heat fusion.
- Durability: EPCM must withstand damage from friction and wear and tear. The strength of the coated shell of an EPCM has to sustain its mechanical properties while flowing through system.
- High density and small volume change at phase transition: High density of the EPCM helps to reduce the size of the encapsulated container. The small volume change undertaken in phase transformation helps to minimise the complexity of the EPCM storage container.
- Congruent melting: helps the EPCMs to prevent irreversible segregation, reducing the loss of storage capacity while recycling.
- Favourable phase equilibrium: Favourable or suitable phase equilibrium temperature ensures heat
storage and extraction at constant temperature in a TES system.

- Long-term chemical stability: The continuous charging and discharging of EPCMs, water loss, decomposition or chemical interaction with storage container can undergo degradation in EPCMs. So it is highly preferred that EPCMs should maintain their long-term chemical stability and corrosion resistance when interacting with other materials.
- Nonhazardous: For safety measures, EPCMs should be nontoxic, nonflammable, and nonexplosive.
- High nucleation rate: An ideal EPCM should have a high nucleation rate and good crystallisation rate.
- Low supercooling or subcooling: Low subcooling, also called supercooling, ensures melting and cooling at the same temperature, which is due to metastable condition of the EPCM during solidification. This means that during cooling, the EPCM is not in a thermodynamic equilibrium state. The supercooling particularity occurs in salt hydrates, which prevents the extraction of thermal energy.
- Low vapour pressure and adequate crystallisation rate: Low pressure and rapid crystallisation of EPCM help to reduce the design complexity of EPCM storage system.
- Low cost and availability: The cost and availability of EPCM have a major significance on the overall cost of the thermal system. As the development of EPCMs require high precision and clean environment, so it may increase their cost.

3 | THE PREPARATION TECHNOLOGIES FOR EPCMS

The encapsulation techniques of PCMs are usually categorised into four different methods, (a) physical-mechanical, (b) physical-chemical, (c) chemical-mechanical, and (d) chemical, which are based on synthesis of the EPCMs. Table 1 highlights a brief summary of the abovementioned methods, their subrelevance techniques, and the resulting size of capsules formed for the relevant type of PCMs.

3.1 | Physical-mechanical methods

Generally, the physical-mechanical methods do not involve any chemical reaction resulting in the formation of microcapsules of relatively large size. Table 2 summarises the properties of each technique of the physical-mechanical method. The advantages and disadvantages of physical-mechanical methods are summarised in Table 3. The physical-mechanical methods include the
following techniques forming microcapsules.

- Pan coating
- Air-suspension coating
- Centrifugal extrusion
- Vibration nozzle
- Spray drying
- Solvent evaporation/extraction
- Vacuum impregnation

encloses the core of the capsule (eg, PCMs) and is solidified by a cooling medium. The alternative method is to gradually apply or spray the coating material onto the core material or particles into the tumbler machine/vessel, which reduces the processing time as well energy and material consumption.62 In this technique, the melting temperature of the core material must be higher than the shell material; otherwise, PCM encapsulation will not be eventuated effectively.

3.1.1 Pan coating

The pan coating process is the oldest and most widely used, especially in pharmaceutical industries, to form small-coated particles and pellets. The solid particles are mixed with a dry coating material then heated to a set temperature, thus melting the coating material, which

3.1.2 Air-suspension coating

 Adopting air-suspension technique for micro-encapsulation gives more control and flexibility in comparison with pan coating, by charging operation times of core material into the coating zone while processing.63 Solid particles are suspended in an upward air stream

TABLE 1 Summary of encapsulation methods, techniques, formed capsules, and type of PCMs

Methods	Techniques	Formed Capsules	PCMs
Physical-mechanical	Pan coating	Micro	Organic
	Air-suspension coating	Micro	Organic
	Centrifugal extrusion	Micro	Organic
	Vibration nozzle	Micro	Organic
	Spray drying	Micro	Organic
	Solvent evaporation/extraction	Micro	Organic
	Vacuum impregnation	Micro	Organic
Physical-chemical	Ionic gelation	Micro	Organic
	Coacervation	Micro	Organic
	Sol-gel method	Micro/nano	Organic/inorganic
Chemical-mechanical	Microfluidic method	Micro	Organic
	Melt-coaxial electrospray method	Micro	Organic
Chemical	Interfacial polymerisation	Micro/nano	Organic/inorganic
	Suspension polymerisation	Micro	Organic
	Emulsion polymerisation	Micro/nano	Organic/inorganic
	Miniemulsion polymerisation	Nano	Organic/inorganic
	In situ polymerisation	Nano	Organic/inorganic

TABLE 2 Advantages and disadvantages of physical-mechanical methods

Techniques	Advantages	Disadvantages
Pan coating	Low-cost production	High skilled manpower required
		Difficulty in control
Air-suspension coating	Low-cost	High skilled level required
	large production volume	Agglomeration of particles
Centrifugal extrusion	Suitable for encapsulation	High temperature range
Vibrational nozzle	Large volume of production	High temperature range
	Easily scaled-up	
Spray drying	Easily scaled up	High temperature range
	Easy availability of equipment	Agglomeration of particles
	Controllable to produce	Uncoated particle
Solvent evaporation	Economical	Limited for lab production
	Feasible to remove moisture	
	Low cost	Limited for large-scale production
Vacuum impregnation		
3.1.3 Centrifugal extrusion

Southwest Research Institute (SwRI)\(^6\) developed a mechanical process to produce microcapsules on the principle of centrifugal force in which the core material, which is in liquid phase, flows through inside a tube. The coating or shell material, which should be immiscible with core material, flows through the annular around the tube. The key parameters that influence the process are rotational speed of cylinder, flow rate of core and shell materials, concentration, viscosity, and surface tension of the core material. With rotation or vibration of the tube, the core and coating materials extrude from the orifice making spherical capsules due to surface tension forces. The coated capsules are then solidified by heat or chemical reactions in a bath.\(^{46,67}\) There is no study found of PCM encapsulation using this method.

3.1.4 Vibration nozzle

There are several studies available but without vibration, in which microgranulation or matrix encapsulation is normally carried out through a vibrating nozzle under laminar flow regime. The uniform capsules are formed due after coating and drying in the solutions with both water and volatile organic solvents. During a cyclic process in the coating zone, the shell material (usually polymer or inorganic material) is repeatedly sprayed on the core particles up to the required level of thickness for encapsulation. This encapsulation technique was employed for pharmaceutical,\(^{64}\) food,\(^{65}\) and cosmetic industries,\(^{66}\) and it is not suitable for PCM encapsulation. Figure 4 shows the typical operating principle of air-suspension particle operation with two growth mechanism of interparticle agglomeration and surface layer.

TABLE 3 Summary of prepared micro-PCMs using physical-mechanical methods

Reference	Method	Core	Shell	Particle size, μm	EE, %	Tm, °C	Latent heat, J/g
Borrego et al.\(^7\)	Spray drying	RT-27	LDPE, EVA, Gelatin and gum arabic	3.9	49.32	28.40	98.1
Hawlader et al.\(^8\)	Spray drying	Paraffin wax	Gelatin and gum arabic	~0.2	86	62.3-95.7	
Carvalho et al.\(^9\)	Spray drying	N-octadecane	Lecithin and chitosan	0.1-5	62.3-95.7	145	
Carneiro et al.\(^10\)	Spray drying	Flaxseed oil	Lecithin and gum arabic	1.35-5.70	62.3-95.7	145	
Rajam and Anandharasan\(^11\)	Spray drying	Lactobacillus plantarum	Methyl cellulose	5	62.3-95.7	145	
Yang et al.\(^12\)	Spray drying	Poppyseed oil	Gelatin and gum arabic	~0.2	86	62.3-95.7	
Memon et al.\(^8\)	Vacuum impregnation	Paraffin wax	LWA	~2 x 10\(^5\) (macro)	70	96.8	185

3.1.3 Centrifugal extrusion

Southwest Research Institute (SwRI)\(^6\) developed a mechanical process to produce microcapsules on the principle of centrifugal force in which the core material, which is in liquid phase, flows through inside a tube. The coating or shell material, which should be immiscible with core material, flows through the annular around the tube. The key parameters that influence the process are rotational speed of cylinder, flow rate of core and shell materials, concentration, viscosity, and surface tension of the core material. With rotation or vibration of the tube, the core and coating materials extrude from the orifice making spherical capsules due to surface tension forces. The coated capsules are then solidified by heat or chemical reactions in a bath.\(^{46,67}\) There is no study found of PCM encapsulation using this method.

3.1.4 Vibration nozzle

There are several studies available but without vibration, in which microgranulation or matrix encapsulation is normally carried out through a vibrating nozzle under laminar flow regime. The uniform capsules are formed due after coating and drying in the solutions with both water and volatile organic solvents. During a cyclic process in the coating zone, the shell material (usually polymer or inorganic material) is repeatedly sprayed on the core particles up to the required level of thickness for encapsulation. This encapsulation technique was employed for pharmaceutical,\(^{64}\) food,\(^{65}\) and cosmetic industries,\(^{66}\) and it is not suitable for PCM encapsulation. Figure 4 shows the typical operating principle of air-suspension particle operation with two growth mechanism of interparticle agglomeration and surface layer.
to vibration68, however, this method has been carried out for PCM encapsulation. Some studies reported the uniform stable PCM composites prepared by this method but without vibration.69-75

3.1.5 Spray drying

The spray drying encapsulation technique is economical, easily scaled-up, and controllable to produce homogeneous microsize capsules with efficient design of the atomizer.76-78 The spray drying process is the most commonly used technique in the food and pharmaceutical industries79-82 due to the suitability of encapsulation of heat-sensitive materials. This technique involves four major steps.83 Figure 5 presents the flow process of typical spray drying encapsulation technique.67

- Preparation of the dispersion/emulsion of wall material.
- Homogenisation of the dispersion/emulsion.
- Atomization of the in-feed dispersions.
- Dehydration/evaporation of the atomized particles.

The produced microcapsules are usually polynuclear or matrix type, and with increasing production rate or flow rate, agglomerated and uncoated particles are obtained.46

FIGURE 5 Flow diagram of spray drying encapsulation technique.67 Reused with permission from John Wiley and Sons license number 4385841192579

3.1.6 Solvent evaporation/extraction

Solvent evaporation or extraction is a liquid-liquid emulsification system that is extensively used in the pharmaceutical industry. This technique is carried out in liquid manufacturing vehicle (LMV) and emulsification of polymer in a volatile solvent in water followed by solvent removal. The basic steps of micro-encapsulation by solvent evaporation are shown in Figure 6.84 There are different methods of micro-encapsulation of drugs by solvent evaporation, which depends on the hydrophilicity or the hydrophobicity of the core material. The detail procedure of the solvent evaporation technique can be found in Li et al.84

3.1.7 Vacuum impregnation

Vacuum impregnation technique is frequently used to remove air from the encapsulation materials and is widely used in the food industry. The process of macro-encapsulation carried out by Memon et al85 used paraffin as a core material and light weight aggregate (LWA) as a shell material for TES. Figure 7 illustrates the

FIGURE 7 Flow process of a macro-encapsulated TES LWA. Schematic image of PCM-LWA preparation process; A, LWA; B, paraffin-LWA; C, paraffin-LWA coated with a mixture of epoxy graphite powder; and D, paraffin-LWA graphite powder sample coated with silica fume.85 Reused with permission from Elsevier license number 4385850945845 [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 Basic step of micro-encapsulation by solvent evaporation.84 Reused with permission from Elsevier license number 4385850567033 [Colour figure can be viewed at wileyonlinelibrary.com]
preparation process of PCM (paraffin) and LWA using the vacuum impregnation technique.

3.2 Physical-chemical methods

Generally, physical-chemical methods include physical reactions such as phase separation, condensation, boiling, and complexation. These include the following three main methods. The advantages and disadvantages of physical-chemical methods are summarised in Table 4. Table 5 enumerates the thermophysical properties of prepared capsules under different types of physical-chemical methods.

- **Ionic gelation**
- **Coacervation**
- **Sol-gel method**

3.2.1 Ionic gelation

This method is generally used in the pharmaceutical industry, especially in drug supply systems, but it has not been used for the encapsulation of PCMs. In this method, the gel forming solution is put into droplet form in a gelation bath resulting in the formation of hydrogel beads. The gelation process occurs due to the ionic bonding between the polymer chain, due to when the alginate solution is dropped in a calcium bath, which leads to the calcium alginate microcapsules, or by cooling such as an agarose solution.

3.2.2 Coacervation

The coacervation word is derived form the Latin word *acerus* meaning “heap.” Generally, the coacervation method is classified under two methods: (a) *simple coacervation* and (b) *complex coacervation*. In the simple coacervation method, the low-molecular substance is interacted with dissolved polymer. In complex coacervation method, the interaction happens between two polymers who have opposite charges. The complex coacervation method involves the mixture of two polymers and complexation processes such as cross linking, desolvation and thermal treatment, which requires extra cost and a more unyielding operation as compared with simple coacervation. However, the complex coacervation method produces more smaller size microcapsules of spherical shape with greater stability. Figure 8 represents the typical flow diagram of complex coacervation. The complex coacervation method consists of three stages: (a) the preparation of the oil-water emulsion by adding the core material (usually oil) dispersed in water forming a phase separation coacervation with aqueous polymer solution; (b) the deposition of the shell material onto the core particles by adding second aqueous polymer solution of opposite electric charge followed by adjusting the pH number, temperature, or by dilution of the medium; (c) and, finally, the mixture is cooled down forming micro-encapsulation with stabilisation by cross-linking and harvesting of the micro-PCMs or thermal treatment.

From complex coacervation, Konuklu et al produced micro-PCM using caprylic acid (octanic acid) using various wall materials (UF resin, MF resin, and UMF resin) suitable for TES applications. The schematic of flow process and SEM image of produced particle size of micro-capsules is shown in Figures 9 and 10.

3.2.3 Sol-gel method

“Sol-gel” is the abbreviation of “solution-gelling” and is largely used to synthesise inorganic materials. The sol-gel process is a familiar physical-chemical technique to develop nanocapsules with an inorganic shell. It has captured attention in recent years as it is inexpensive and needs mild processing conditions. The sol-gel process followed as the polycondensation reactions of a molecular precursor in a liquid phase to form a colloidal solution (sol), which is subsequently converted to an oxide network (gel). Figure 11 shows the typical process of the sol-gel method. In the sol-gel method, the processes are as follows: (a) The precursor (usually alkoxides and inorganics) is mixed uniformly with the solvent, catalyst, and complex agent; (b) a stable and transparent colloidal solution is formed after hydrolysis and condensation chemical reactions. At this step, the condition of dispersion changes
Reference	Method	Core	Shell	Particle size, µm	EE, %	T_m	Latent heat, J/g	
Lazko et al 111	Simple coacervation	n-Hexadecane	Soy glycmin	~ 101.7	65			
Sutaphanit and Chiprasert 112	Simple coacervation	Holy basil essential oil (HBEO)	Gelatin	392.30	44.65-100.09			
Konuklu et al 148	Complex coacervation	Octanic acid	UF, MF, UMF	0.2-1.5	59.29	13.90	93.9	
Hawlader et al 113	Complex coacervation	Paraffin wax	Gelatin and gum arabic	50-100	9.43-94.26		20-90	
Hawlader et al 114	Complex coacervation	Paraffin wax	Gelatin and gum arabic	50-100	79.43-94.26		20-90	
Hawlader et al 116	Complex coacervation	Paraffin wax	Gelatin and gum arabic	~ 0.5	~60	213		
Santos et al 94	Complex coacervation	Xylitol	Gelatin and gum arabic	78.45-109.31	31-71			
Piacentini et al 116	Complex coacervation	Sunflower oil	Fish gelatin and arabic gum	40-240				
Alvando et al 117	Complex coacervation	n-Tetradecane	Gelatin	90-125	5.30	192		
Özonur et al 118	Complex coacervation	Coco-fatty acid	Gelatin and gum arabic	1 mm	29-31			
Onder et al 119	Complex coacervation	n-Hexadecane, n-octadecane, n-nonadecane	Gelatin-gum arabic mixture	~		11-38	19.70-165.80	
Bayès-García et al 120	Complex coacervation	RT-27	Sterilised gelatine/arabic gymn, agar agar/arabic gum	9.12	48.49	298.3-301.3, 299.5-302.5	79.78	
Butstraen and Salaün 121	Complex coacervation	TMiglyol 812N	Chitosan and gum arabic	5-10				
Shin et al 122	Complex coacervation	n-Eicosane	MF	1.89	53	36.9	134.3	
Jiang et al 123	Sol-gel method	n-Eicosane	Fe₂O₃/SiO₂	~4-6	71.78	39.15	170.20	
Wu et al 124	Sol-gel method	Tris	SiO₂	~100-200	67.90	110-155	146	
Cao et al 125	Sol-gel method	Paraffin wax	TiO₂	~50	85.5	58.8	161.1	
Cao et al 126	Sol-gel method	Palmitic acid (PA)	TiO₂	200-400 nm	30.4	61.7	63.3	
Chen et al 127	Sol-gel method	Stearic acid (SA)	SiO₂	20-30	90.7	52.6-53.5	162.0-171.0	
Chen et al 128	Sol-gel method	Paraffin wax	SiO₂	40-60	82.2	57.96	156.86	
He et al 129	Sol-gel method	n-Octadecane	SiO₂	2-4	41.45	27.96	87.46	
Wang et al 130	Sol-gel method	n-Pentadecane	SiO₂	8-15	69.1-87.5	57.84-58.37	130.82-165.68	
Fang et al 131	Sol-gel method	Paraffin wax	SiO₂	7-16	86.4	27.1	184.9	
Zhang et al 132	Sol-gel method	n-Octadecane	SiO₂	7-16	183.7 nm, 466.4 nm, 722.5 nm	82.53, 84.28, 88.32	61.06, 60.92, 61.6	168.16, 172.16, 180.91
Latibari et al 133	Sol-gel method	Palmitic acid (PA)	SiO₂	183.7 nm, 466.4 nm, 722.5 nm	82.53, 84.28, 88.32	61.06, 60.92, 61.6	168.16, 172.16, 180.91	
Latibari et al 134	Sol-gel method	Stearic acid (SA)	TiO₂	317.6-946.4 nm	30.36-64.76	58.23-59.14	58.12-123.96	
Chai et al 135	Sol-gel method	n-Eicosane	TiO₂	1.5-2	49.90-77.97	42.73-43.88	97.60-152.50	
Hong et al 136	Sol-gel method	Indium	SiO₂	200 nm		155.3	19.6	
Li et al 137	Sol-gel method	RT 28	SiO₂, EG	5-20, 1-5	27.53, 27.72	112.84, 104.41		
Chang et al 138	Sol-gel method	n-Octadecane	PMMA/SiO₂	10			178.9	
from solution to gel; hence, why this method is known as the sol-gel method; (c) the formed sol is further processed by ageing to make three-dimensional network structure; (d) finally, micro- and nano-PCM is formed after drying, sintering, and curing processes. Additionally, the sol-gel method is mixed with the miniemulsion polymerisation method to gain better thermophysical properties. For instance, Zhu et al. prepared the nano-PCM using n-octadecane as PCM with organosilica shell via interfacial co-hydrolysis and co-polycondensation of functional SiO2 precursors adopting the miniemulsion technique. The authors obtained the nanocapsules of organosilica from 200 to 693 nm of precise core-shell structure. Using mesoporous particles, the interfacial contact of EPCM with solid support enhances the nucleation sites in comparison with core-shell particles resulting reduced the supercooling. Thus, due to mesoporous confinement and heterogeneous nucleation sites, a thick shell is more promising to lessen supercooling than a thin shell.

Considering the inflexibility of shell materials, some authors follow a track for enhancing the energy storage performance of hybrid systems. Zhang et al. confined stearic acid with a SiO2 nanoshell with controlled shell density and improved the energy storage capacity of the EPCM by 36.9% compared with that of unconfined stearic acid, as shown in Figure 12. This improvement in latent heat is attributed to the formation of a various stable hydrogen bonds network in highly superimposed stress on the encapsulated SA core from the SiO2 shell, which considerably decreases the intermolecular spacing of the SA core.
in contrast to its unconfined state. Hence, collapsing and reshaping of these tightly packed stable hydrogen bonds contribute to the latent heat of SA while experiencing phase transition. Further, this strong hydrogen bonding causes the rise of phase transition temperature of confined SA. Despite the merits of the rigid shell, there are also some disadvantages. Rao et al. investigated the melting mechanism of NEPCM of confined n-octadecane with free and constrained SiO$_2$ shell using molecular dynamic simulation method. The results showed that the encapsulated n-octadecane was restrained with constrained SiO$_2$. Further, the soft shell can increase the fluidity and eventually improve the heat transfer speed of the TES systems. Compared with organic-based PCMs, IPCMs have also been confined within the SiO$_2$ shell. Zhang et al. synthesized Na$_2$SO$_4$10H$_2$O encapsulated SiO$_2$ nanobowls via synchronous hydrolysis reactions of SiO$_2$ precursors. The authors proposed, as well as validated, that the microstresses inside the liquid particles or nanodroplets was responsible for the formation of solid nanostructures. Furthermore, the SiO$_2$ wall, acting as a heterogeneous nucleator, reduces the degree of supercooling to a minor extent, however, it is immense and unsuitable for actual life applications. Moreover organic and inorganic PCMs, metallic PCMs including indium, tin and alloys have also been confined by a SiO$_2$ shell. Higher crystallinity and thermal conductivity was reported in metallic PCMs. The silica shell can further reduce the corrosion and stop leakage. Wu et al. suspended bare indium and SiO$_2$ encapsulated indium nanoparticles in a base liquid, poly-α-olefin (PAO), for high-temperature heat transfer applications using the colloid method. In contrary of prediction, they established the fact that the coalescence of indium particles within a single-phase fluid is not a big issue. Thus, indium nanoparticles can be employed without encapsulation.
Metal-based compound materials are also investigated by scientists to use as shells other than SiO₂. In comparison with SiO₂, metal-based materials have greater value of thermal conductivity and mechanical strength, and they also provide a compact and rigid structure. The formation of a metal compound shell involves the condensation of a metal hydroxide precursor during in situ sol-gel and emulsion polymerisation, similar to SiO₂ shell formation. Until now, very few metal-based compounds have been utilised for encapsulation of PCMs. Latibari et al.⁹⁹ utilised TiO₂ to prepare nanocapsules of SA using TiO₂ as a shell and found that the nanocapsules present higher thermal conductivity and encapsulation efficiency up to 64.76% for NC of sizes 583.4 nm and 946.4 nm. Pan et al.⁹⁸ used the boehmite (γ-AlOOH) shell to encapsulate the SA, and it had been discovered that the phase transition temperature of SA was lowered by 50°C due to the confinement effect, as shown in Figure 13. The heat storage density of the prepared nanocapsules was about ~ 140 kJ/kg, which is lower than that of the pristine PCM but still higher than that of the mostly room temperature PCMs. Therefore, boehmite coating technology can be utilised to alter the phase transition temperature of high-temperature PCMs having high-energy storage performance to room temperature. Sol-gel method is usually suitable for encapsulation of both micro- and nano-enhanced PCMs. The summary of different studies adopting sol-gel method is enumerated in Table 5.

3.3 Chemical-mechanical methods

In chemical-mechanical methods, mechanical machine is used to accomplish the chemical reaction to encapsulate the PCMs. It generally includes the following two methods. The detail summary of these two techniques are provided in Table 6.
3.3.1 Microfluidic technique

In microfluidic technique, widely used in the medical and pharmaceutical fields, the capillary microfluidic device is utilised to form the monodisperse double emulsion droplets following the flow motion geometry. Figure 14 illustrates the complete process of formation of monodisperse double emulsion droplets developed by Sun et al. The authors used the water-oil-water (W-O-W) double emulsion template and produced the outer phase of materials (water, glycerol, and polyvinyl alcohol [PVP]) and middle phase of materials (oils included Suppocire AIM oil, paraffin, nonadecane, and eicosane) in co-flowing channels with different flow rates. The micro-PCM is obtained following washing and drying processes. Fu et al prepared the silicone/n-hexadecyl bromide microcapsules by microfluidic technique selecting n-hexadecyl bromide as an inner fluid and poly(dimethylsiloxane) vinyl terminated and poly(methylhydrosiloxane) as outer fluids. The optical and SEM images of produced micro-PCMs are shown in Figure 15.

3.3.2 Melt-coaxial electrospray technique

This encapsulation technique is the further modification of spray drying technique introducing a chemical reaction during process. It was first introduced by Loscertales et al who proposed a method to generate steady coaxial jets of immiscible liquids having micrometre/nanometre diameter in size. The schematic diagram of melt-coaxial electrospray technique used by Moghaddam et al is shown in Figure 16. The authors first time produced the
microcapsules using \(n \)-nonadecane and sodium alginate as core and shell materials, respectively.

3.4 Chemical methods

The chemical method ensures the production of smaller sizes such as nanocapsules using organic and inorganic materials as shell material or precursor to build the shell. Following are the most used techniques under chemical methods to produce PCM encapsulations. Table 8 represents the different approaches and properties of micro-/nano-encapsulated PCMs prepared by various chemical methods. The advantages and disadvantages of chemical methods are summarised in Table 7.

- Interfacial polymerisation
- Suspension polymerisation
- Emulsion polymerisation
- Mini-emulsion polymerisation
- In situ polymerisation

3.4.1 Interfacial polymerisation/polycondensation

In interfacial polymerisation, the first process is the preparation of oil-water (O/W) or water-oil (W/O) emulsions by adopting appropriate emulsifier. The next step is the formation of polymer capsules in the surface of the core materials (ie, OPCMs) by interfacial polymerisation at an interface between two phases with each of them containing a suitable reaction monomers. The final step is the separation of the capsule from oil phase or water phase. Figure 17 shows the synthesised microcapsules via polycondensation. Park et al. prepared the nano-PCMs using paraffin as a core and PU as a shell material via interfacial polycondensation. The SEM and TEM images of prepared nano-PCMs are shown in Figure 18. Pan et al. adopted the in situ emulsion interfacial polycondensation method and prepared a novel micro-encapsulated PCM using palmitic acid (PA) and AlOOH as core and shell materials, respectively.

3.4.2 Suspension-like polymerisation

The suspension-like polymerisation accomplishes on the system phases, (a) the discontinuous or dispersed phase, which contains the reagents of core material and monomers including initiator which prompt the chemical reaction; (b) the continuous phase, which includes the reactants of shell materials and solvent. The process of suspension-like polymerisation consists of the following steps: (a) the dissolution of polymer monomers into core materials under stirring to obtain homogeneous oil solution; (b) this homogeneous solution is then
added to the continuous phase at constant temperature
to produce the oil-water (O/W) emulsion; (c) further an
emulsifier is added to the O/W solution to make it more
homogenised; (d) then the prepared stable emulsion is
stirred at constant high temperature for a period to give
the proper polymerisation reaction; (e) finally, the pre-
pared encapsulated PCMs capsules are filtered, washed
and dried. The schematic flow process of suspension-like
polymerisation is shown in Figure 19.148

3.4.3 | Emulsion polymerisation

The emulsion polymerisation method takes the mixing of
the polymer in the presence of emulsifier in an oiled sys-
tem. During the process, a number of thermal, chemical,
and physical processes occur to make the micro-PCM or
nano-PCM. Unlike the suspension-like polymerisation, in
the emulsion process, the initiator is solved in the aqueous
phase, and the monomer is emulsified in the polymerisa-
tion medium with the aid of a surfactant. Commonly, there
are three steps on which the emulsion polymerisation
completes its process. Firstly, (a) the insoluble monomer
with emulsifier is dispersed in solvent reaction medium
adding the surfactant and the mechanical stirring. Further,
(b) the initiator is added, which initiates the polymerisa-
tion reactions and generates the polymer membrane on
the surface of the core material. Finally, (c) the washing
and removing of the oil to form the micro-/nano-PCMs.
Figure 20 shows the schematic of common emulsion poly-
erisation method.148 In emulsion polymerisation
method, commonly used materials for shell are PS or
PMMA, and alkane is used as a core material. Additionally,
polymer polymerisation is often carried by emulsion poly-
erisation which used the liquid PCM as a core material
to prepare the micro-/nano-PCM. The properties of var-
ious studies adopting emulsion polymerisation are listed
in Table 8.

3.4.4 | Miniemulsion polymerisation

The miniemulsion polymerisation method is the most
commonly used method to prepare the nano-PCM because
the smaller encapsulated capsules can be formed as
compared with the emulsion polymerisation method.
Compared with emulsion polymerisation, miniemulsion
polymerisation occurs within the small droplet, which
requires less input energy. Thus, this technique is
employed under ambient reaction conditions which are
necessary for the production of stable nanocapsules. In
this method, the ultrasonication process is carried out
to produce laboratory scale formation, and high-pressure
homogenizer is used for large-scale processes to obtain
the homogenisation. The scheme of miniemulsion poly-
erisation is presented in Figure 21.149 The first step
of miniemulsion process, small nanometre tiny droplets
are formed in a size range of 30 to 500 nm under high
sheering effect which are stable and contain the emulsi-
fier, water, monomer, surfactant, initiator, the dispersed,
and continuous phase. The second step is comprising on
polymerisation reaction in which these droplets are poly-
merized without changing their chemical composition.
and latex properties.150 In miniemulsion polymerisation, the monomers determine the morphological characteristics of prepared nanocapsules.151,152 The miniemulsion polymerisation technique is further categorised into three classes: direct emulsion (oil in water, O/W), indirect emulsion (water in oil, W/O), and Pickering inverse emulsion. Classical emulsifiers, eg, amphiphilic oligo (methacrylic acid 41-b-methyl methacrylate 8), sodium lauryl sulfate, Tween-80, Span-20, and Span-85 are usually utilised in direct and indirect emulsions. Contrarily, in Pickering inverse emulsion, solid particles are employed as an emulsifier.47,48,153

Cortazar and Rodriguez49 employed the miniemulsion polymerisation technique to encapsulate paraffin wax with methyl methacrylate and investigated the kinetic, phase change properties and thermal stability. The maximum amount of encapsulated paraffin wax achieved was 60 wt.% with latent heat capacity of 140.3 J/g and obtained a capsule size of 439.4. Furthermore, the authors reported that nanocapsules having a higher weight percentage of paraffin wax undergo the phase separation phenomenon. Chen et al154 adopted the miniemulsion polymerisation technique to encapsulate the n-dodecanol as a core and PMMA as a shell material using DNS-86 as a polymerizable emulsifier and hexadecane (HD) as a co-emulsifier. The nanocapsules fabricated by this method are 100 to 200 nm in diameter and present a latent heat and encapsulation efficiency up to 98.8 J/g and 82.2\%, respectively. The authors also explored the effect of the amount of emulsifier and co-emulsifier on latent heat, diameter, size distribution, and encapsulation efficiency. Zhang et al155 encapsulated n-octadecane PCM with PEMA and PMMA with an average shell thickness of 50 nm, and a core/shell weight ratio of 80/20 and obtained an average particle size of nanocapsules 140 nm and 119 nm, respectively. The authors found the encapsulation ratio and efficiency of 89.5\% and 89.5\%, respectively. Further, they reduced the degree of supercooling significantly and found that the PEMA shell has relatively better thermal performance. Wang et al156 designed a two-step Pickering emulsification technique to prepare the nanocapsules of nonadecane as a PCM with polystyrene as a shell material by using surface-modified amphiphilic zirconium phosphate platelets (ZrP) as an emulsifier for scale-up and mass production level. Further, this method is preferable to encapsulate the organic or alkane PCMs as a core material and PS, PU, styrene-butyl acrylate, and PMMA as shell materials. In conclusion, miniemulsion is the most adopted polymerisation technique in nanocapsules coating technology.
TABLE 7 Advantages and disadvantages of chemical methods

Techniques	Advantages	Disadvantages
Interfacial polymerisation	Controllable to produce Homogeneous in size	High wall permeability
	Good mechanical resistance	Difficulty in control
	Good thermal and chemical stability	
Suspension polymerisation	Controllable to produce	Fewer monomers are water soluble
	Efficient control of heat during reaction	High-cost equipment
	Low-cost production	
Emulsion polymerisation	Low-cost production	Limited for liquid PCMs
	Rapid production	Polymer is purified from the surfactant
	Uniform morphological capsules	Used only in oiled system
		Multiphases of solution
Miniemulsion polymerisation	Nanoscale production	High-cost equipment
	Good thermal and chemical stability	High skill is needed for preparation
	Uniform morphological capsules	
In situ polymerisation	Most effective for nanoscale production	High-cost equipment
	Uniform coating	High skill is needed for preparation
	Uniform morphological capsules	
	Good thermal and chemical stability	

3.4.5 In situ polymerisation

The in situ polymerisation method involves chemical reaction in a continuous phase of two immiscible liquids (water soluble phase and oil soluble phase) rather two phase as in interfacial polymerisation. In preparation of microcapsule/nanocapsule through in situ polymerisation, the monomers are dissolved in the continuous phase; however, the polymers are not soluble in continuous phase whereby the polymerisation reaction occurs on the surface of the core materials. Commonly, there are four steps that complete the in situ polymerisation: (a) formation of the oil-water (O/W) emulsion; (b) preparation of the prepolymer mixture liquid; (c) mixing the O/W emulsion and prepolymer liquid to encapsulate the core materials; (d) washing and drying of microcapsule/nanocapsule. Figure 22 presents the example of in situ polymerisation method. Fang and his co-authors employed the ultrasonic-assistant miniemulsion in situ polymerisation technique for coating of \(n \)-octadecane as a core with polystyrene as a shell material. The authors obtained the spherical shape nanocapsules of size ranging from 100 to 123 nm in diameter. In another study, these authors coated the \(n \)-tetradecane with PS for cold energy storage of average diameter of 132 nm and achieved the melting and freezing points and latent heats values of 4.04°C and -3.43°C, 98.71 J/g and 91.27 J/g, respectively. With the same core material \(n \)-tetradecane, Fang et al. used the urea and formaldehyde as shell materials adopting in situ polymerisation technique by adding 1% to 3% NaCl to improve the thermal stability of the prepared nanocapsules. To investigate the effect of various shell materials on thermophysical properties, Konuklu et al. used the UF, MF, and UMF resins to prepare the nanocapsules of caprylic acid. The authors found the UF resin as a best resin for shell material among others in term of stability of nanocapsules. So far now, generally, the OPCMs as core materials and UF, MF, CMC, PMMA, PMF, and PAMA are used as a shell materials.

4 CHARACTERISTICS EVALUATION TECHNIQUES OF EPCMS

A characterisation of EPCMs depends on the desired thermal, physical, and chemical properties. The manufacturing of micro and nano level encapsulated capsules are only valuable and successful when they fulfill the industrial and end-user requirements to meet clean energy demands. The characteristics of EPCMs are analysed using various quantitative and qualitative techniques per the evaluation of the property. Table 9 presents the list of various characterisation techniques conducted by researchers.

4.1 Chemical analysis

4.1.1 X-ray diffraction (XRD)

The X-ray diffraction (XRD) or X-ray power diffraction (XPRD) technique is adopted to measure the crystallloid phase, material structure, crystallite atomic arrangement and size, crystal orientation, or texture and can measure the various parameters such as crystallinity and stain and distinguishes the amorphous and crystalline material. The physics of the diffraction of the X-ray is similar to the diffraction of the electrons or neutrons except the only difference is the scattering mechanism.
This technique ensures the crystalline structure of microcapsule/nanocapsule preferably suitable for inorganic shell materials. For instance, Zhang et al.280 presented the XRD results of Ag/SiO\textsubscript{2} double-layered micro-PCM with \textit{n}-eicosane as a core material to investigate the crystalline structure at different reaction time. The good crystallinity was retrained of silica layer on microcapsules surface and only an amorphous silica shell was fabricated onto the \textit{n}-eicosane core. Zhao et al.244 presented the XRD patterns of Ag-paraffin@Halloysite microspheres and obtained a consistent crystalline structure of Ag nanoparticles onto surface of paraffin@Halloysite. Additionally, the crystalline structure of paraffin was not affected in Ag-paraffin@Halloysite during the encapsulation process.

\subsection{Fourier transformed infrared spectroscopy (FT-IR)}

The Fourier transformed infrared spectroscopy (FT-IR) technique evaluates the chemical composition or the functional groups of organic and inorganic compounds and microcapsule/nanocapsule of EPCMs. The FT-IR is an effective analytical technique to identify the “chemical family” of the encapsulated core and shell materials. Further, FT-IR also confirms identifying the specific impurities in a pure compound in collection of the unique absorption bands. The FT-IR is the preferred method of infrared spectroscopy passing the IR radiation through the sample. Some IR radiation is absorbed by the sample and some transmit through the sample. At the detector, a
FIGURE 18 The SEM and TEM images of nano-PCMs A, with and B, without Fe$_3$O$_4$ nanoparticles.145 Reused with permission from Elsevier license number 4385870250913

FIGURE 19 Scheme of the suspension-like polymerisation process.148 Reused with permission from Elsevier license number 4385870668358 [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 20 Scheme of the emulsion polymerisation method.148 Reused with permission from Elsevier license number 4385870668358 [Colour figure can be viewed at wileyonlinelibrary.com]

spectra arise due the singles that represents a molecular fingerprint of the sample. In IR spectroscopy, the different spectral fingerprints arise due to the chemical structure (atoms and molecules) of different materials. In FT-IR method, the infrared spectra is obtained firstly by collecting an interferogram of a sample using an interferometer. Further, Fourier transform (FT) is applied on the interferogram from which the resulting spectrum is obtained. The FT-IR spectrometer collects and digitizes the interferogram performing the FT function and then displays the spectrum. Various researchers presented the FT-IR peaks to represent the chemical composition of micro-/nano-PCMs. Presented FT-IR results by Zhang et al.264 showed the excellent chemical composition of encapsulated KNO$_3$@SiO$_2$ microcapsules. Kahraman et al.293 synthesised microcapsules using PS as a shell material and various n-alkanes
eutectics (C17-C18, C20-C17, C20-C19, and C20-C24) and obtained the excellent functional group and chemical composition of EPCMs.

4.1.3 Energy-dispersive X-ray spectroscopy (EDS)

The energy-dispersive X-ray spectroscopy (EDS or EDX) is an analytical technique, which is used to investigate the surface elemental analysis, chemical characterisation, or elemental composition of a sample. The EDS technique detects the X-rays emitted from the sample during the bombardment of a high-energy beam of charged particles such as electrons or a beam of X-rays focused into the sample. Normally, the EDS technique is carried out in conjunction with scanning electron microscopy (SEM). Zhang et al.\(^{280}\) performed the EDS analysis to investigate the surface elemental distribution of Ag/SiO\(_2\) double-layered microcapsules with \(n\)-eicosane as a core material along with atomic percentage. Ma et al.\(^{245}\) determined the chemical elements and purity of paraffin@TiO\(_2\) microcapsules and confirmed the formation of TiO\(_2\) shell onto the surface of paraffin wax. Geng et al.\(^{277}\) presented the EDS results with SEM of silver-coated microcapsules found the equal proportion of Ag, which was in accordance with feed ratio.

4.1.4 X-ray photoelectron spectroscopy (XPS)

X-ray photoelectron spectroscopy (XPS), which is also known as electron spectroscopy for chemical analysis (ESCA), is a surface analysis technique to study the surface chemistry or characterisation of a sample material. XPS can measure the elemental composition, empirical formula, and chemical and electronic states from the surface or within the sample. Additionally, XPS can investigate the uniformity of elemental composition of the surface as well as with other materials that contaminate a surface. The surface elemental composition analysis carried out by Zhang et al.\(^{280}\) through XPS technique and observed the elemental characteristic peaks of Ag/SiO\(_2\) double-layered microcapsules. Geng et al.\(^{277}\) presented the XPS peak spectrum of silver-coated microcapsules and observed the existence of face-centred cubic metallic silver. Advincula et al.\(^{230}\) confirmed the functional groups and binding energy of RGO-SA microcapsules with XPS technique.

4.2 Thermal analysis

4.2.1 Thermal conductivity analysers

Thermal conductivity is the major and fundamental property for the evaluation of EPCMs for efficient TES in various thermal systems. So far, various instruments have been utilised for the measurement of thermal conductivity of microcapsule/nanocapsule such as laser flash apparatus (LINSEIS LFA1000),\(^{132}\) TC3020 thermal conductivity meter,\(^{286}\) TC3000 thermal conductivity meter,\(^{287}\) Sweden Hot Disk thermal conductivity meter,\(^{263,275}\) and EKO HC-110 thermal conductivity meter.\(^{262}\) The encapsulated capsules are pressed in a tablet form to measure the thermal conductivity of microcapsule/nanocapsule. The thermal conductivity of a single capsule can be predicted theoretically based on composite sphere approach as follows\(^{256,294-296}\):

\[
\frac{1}{k_p d_p} = \frac{1}{k_c d_c} + \frac{d_p - d_c}{k_s d_p d_c}.
\]

Here, \(k_p\), \(k_c\), and \(k_s\) are the thermal conductivities of microcapsule/nanocapsule, core material, and shell material, respectively. Additionally, \(d_p\) and \(d_c\) are the diameter of microcapsule/nanocapsule and core material, respectively. Most of the PCMs, especially OPCMs, exhibit low thermal conductivity, which reduces heat transfer performance. The sole purpose to encapsulate the PCM is to enhance their thermophysical properties to utilise them for effective and efficient heat transfer applications. The enhancement in thermal conductivity of EPCMs solely depends on the shell material. Using organic polymeric shell materials exhibit the lower thermal conductivity, which reduce the rate of heat transfer during thermal energy storage and release. However, coating of inorganic nanomaterials such as Fe\(_2\)O\(_3\),\(^{123,145}\) TiO\(_2\),\(^{125,126,132}\) SiO\(_2\),\(^{123,147,168,169}\) GNPs,\(^{286}\) Al\(_2\)O\(_3\),\(^{263}\) CaCO\(_3\),\(^{262}\) Cu\(_2\)O,\(^{158}\) and MWCNTs\(^{448}\) increases the heat transfer rate during operation. Although the higher thermal conductivity has been achieved, however, the decrease in latent heat of phase change enthalpy observed. Therefore, there should be compromised on the optimum values of thermal conductivity and latent heat of phase change enthalpy.

4.2.2 Differential scanning calorimeter (DSC)

The differential scanning calorimeter (DSC) is one of the most widely adopted technique to measure the thermo-analytical properties such as melting onset and peak temperatures, cooling onset and peak temperatures, heat capacity, latent heat of melting and cooling, and degree of supercooling (defined as the difference of peak melting and cooling temperatures).\(^{277}\) During DSC analysis, the amount of energy absorbed or released upon heating or cooling is measured providing qualitative and quantitative data during endothermic (heat absorption) and exothermic (heat rejection) phase transitions. In DSC analysis, the change of heat flux is recorded with respect to
Reference	Method	Core	Shell	Particle Size, μm	EE, %	T_m	Latent Heat, J/g
Zhang and Wang 146	Interfacial polycondensation	n-Octadecane	PU	11-20	87.4	27.04	188.9
Hirechi 159	Interfacial polymerisation	Insecticide	PU	30-40	90	–	–
Salaün et al 160	Interfacial polymerisation	Xylitol	PUR	11.2-21.6	–	–	196.3
Park et al 145	Interfacial polycondensation	Insecticide	PU	400-600 nm	–	56.54	101.1
Liang et al 161	Interfacial polycondensation	n-Hexadecane	TDI, EDA	20-35	–	29	80
Zou et al 162	Interfacial polycondensation	Insecticide	TDI, EDA	–	–	–	–
Cho et al 163	Interfacial polymerisation	n-Octadecane	TDI, DETA	1	–	30.8	112
Siddhan et al 164	Interfacial polymerisation	n-Octadecane	TDI, DETA	7.3	92	–	–
Su et al 165	Interfacial polymerisation	n-Octadecane	TDI, DETA	5-10	94.7	–	117.5
Tseng et al 166	Interfacial polycondensation	n-Pentadecane, n-Eicosane, Paraffin wax	UF	47, 79, 150	–	–	109, 148, 127
Zhang et al 167	Interfacial polycondensation	n-Octadecane	SiO₂	4-30	–	–	–
Pan et al 146	In situ emulsion interfacial polycondensation	Palmitic acid	AIOOH	100 nm	69	16	27.8
Li et al 168	In situ emulsion interfacial hydrolysis and polycondensation	Paraffin wax	SiO₂	200-500 nm	31.7	56.5	45.5
Liang et al 169	In situ emulsion interfacial hydrolysis and polycondensation	n-Octadecane	SiO₂	169-563 nm	49.3	27.35	109.5
Yadav et al 170	Interfacial polymerisation	Butachlor	PU	1-20	–	–	–
Yadav 171	Interfacial polycondensation	Cyclohexane	PU	1.6	–	–	–
Hong and Park 172	Interfacial polymerisation	Migrin oil	PU	7.6-12.4	–	–	–
Hong and Park 173	Interfacial polymerisation	Ovalbumin	PU	50 nm-8 μm	–	–	–
Kim and Cho 174	Interfacial polycondensation	Octadecane	PU	1-2	31.9	54.8	–
Su et al 175	Interfacial polymerisation	n-Octadecane	PU	5-10	93.4-94.9	29.8-31.0	115.0-117.5
Guanglong et al 176	Interfacial polymerisation	n-Hexadecane	PU	2-4	50.1	15.52	66.09
Lan et al 177	Interfacial polymerisation	n-Eicosane	PU	–	74.6-77.6	35.7-36.5	29.34-63.55
Wei et al 178	Interfacial polymerisation	Paraffin wax	Poly-amide	6.4	99	29-44	121.7
Huang et al 179	Suspension-like polymerisation	Na₂HPQ₇H₂O	PMMA	–	6.8	51	150
Qiu et al 180	Suspension-like polymerisation	n-Octadecane	BMA	1-46	–	20.9-21.6	116.4-144.3
Reference	Method	Core	Shell	Particle Size, μm	EE, %	T_m	Latent Heat, J/g
------------------------	-------------------------------	-----------------------	----------------------	-------------------	-------	-------	------------------
Tang et al\(^1\)\(^81\)	Suspension-like polymerisation	n-Octadecane	ODMA-MAA	0.5-4	–	21.1	93
Sánchez-Silva et al\(^1\)\(^82\)	Suspension-like polymerisation	Paraffin wax	PS, MMA	380	–	40.66-41.81	83.70-96.47
Sánchez et al\(^1\)\(^83\)	Suspension-like polymerisation	Paraffin wax, Tetradecane	PS	38.01, 11.24, 0.07, 0.07,	–	–	41.65, 48.92, 0.
	PEG 800, PEG 1000, RT27, RT20, Nonadecane			27.85, 64.87, 10.64	–	0, 58.83, 12.01, 119.80	
Sánchez et al\(^1\)\(^84\)	Suspension-like polymerisation	Paraffin wax	PS	~200	75.6	98-113	21.2-41.7
Borreguero et al\(^1\)\(^85\)	Suspension-like polymerisation	RT27	PS	500	–	–	–
You et al\(^1\)\(^86\)	Suspension-like polymerisation	n-Octadecane	PS-DVB	80	–	29	126
You et al\(^1\)\(^87\)	Suspension-like polymerisation	n-Octadecane	PS-DVB	71-207	–	29	125
Li et al\(^1\)\(^88\)	Suspension-like polymerisation	n-Octadecane	PS, PSB, PSD, PSDB, PDVB	~50	–	24.34-30.84	22.0-156.9
Chaiyasat et al\(^1\)\(^89\)	Microsuspension polymerisation	n-Octadecane	PDVB	~1.5	–	22.6	192
Qiu et al\(^1\)\(^90\)	Suspension-like polymerisation	n-Octadecane	BDHA, DVB, TMPTA, PETRA	0.72-0.75	–	29.3-35.2	83.7-156.4
Cheng et al\(^1\)\(^91\)	Suspension-like polymerisation	n-Octadecane	TPGDA	300-600 nm	100	–	104
Ma et al\(^1\)\(^92\)	Suspension-like polymerisation	Paraffin wax, Butyl stearate	Acrylate-based polymer	10-80	46-68	29.08-32.12	63.98-93.97
Sanchez et al\(^1\)\(^93\)	Suspension-like polymerisation	Paraffin wax	PS	4.80	–	–	102.42
Sanchez-Silva et al\(^1\)\(^94\)	Suspension-like polymerisation	RT31	PS	4.0-53.2	49.0-67.9	31.56	75.7-135.3
Borreguero et al\(^1\)\(^95\)	Suspension-like polymerisation	Paraffin wax	PS	3.83, 3.97	43.6, 35.1	–	58.6, 79.0
Qiu et al\(^1\)	Suspension-like polymerisation	n-Octadecane	PBMA, PBA	2.75	47.7-55.6	29.1-31.6	96-112
Ma et al\(^1\)\(^96\)	Emulsion polymerisation	Paraffin wax	PMMA	0.25	–	24-33	101
Giro-Paloma et al\(^1\)\(^97\)	Emulsion polymerisation	Paraffin wax, Palmitic acid	PSCeEA	0.166, 0.265	–	36.71, 59.12	49.03, 97.93
Sarı et al\(^1\)\(^98\)	Emulsion polymerisation	n-Octacosane	PMMA	0.25	–	50.6	86.4
Sarı et al\(^1\)\(^99\)	Emulsion polymerisation	n-Heptadecane	PMMA	0.14-0.40	–	18.2	81.5
Alkan et al\(^1\)\(^100\)	Emulsion polymerisation	Docosane	PMMA	0.16	–	41.0	54.6
Alkan et al\(^1\)\(^101\)	Emulsion polymerisation	n-Eicosane	PMMA	0.70	–	35.2	84.2
Alay et al\(^1\)\(^102\)	Emulsion polymerisation	n-Hexadecane	PMMA	0.22, 1.05	–	15.69, 17.34	68.89, 145.61
Alay et al\(^1\)\(^103\)	Emulsion polymerisation	n-Hexadecane	PMMA	140-466 nm	–	17.23	148.05
Baek et al\(^1\)\(^104\)	Emulsion polymerisation	n-Octadecane	PS	80 nm	14.6-56.8	–	6.48-49.76
Sarı et al\(^1\)\(^105\)	Emulsion polymerisation	n-Heptadecane	PS	1-20	63.3	21.48	136.89

(Continues)
Reference	Method	Core	Shell	Particle Size, μm	EE, %	T_m	Latent Heat, J/g
Sar et al 153	Emulsion polymerisation	n-Nonadecane	PMMA	0.1-35	60.3	31.23	139.20
Sar et al 205	Emulsion polymerisation	n-Heptadecane, n-octadecane, n-nonadecane, n-eicosane, n-tetraicosane	PMMA	0.01-100	50.2-65.4	19.24-35.80	171.14-265.60
Sar et al 206	Emulsion polymerisation	n-Tetracosane/n-Octadecane PS		0.01-115	64.4	25.96	156.39
Sar et al 207	Emulsion polymerisation	Capric/stearic acid	PMMA	1.3	–	21.37	116.25
Luo and Zhou 208	Miniemulsion polymerisation	Paraffin wax	PS	<100 nm	–	–	–
Chen et al 154	Miniemulsion polymerisation	n-Dodecanol	PMMA	150 nm	82.2	18.2	98.8
Chen et al 209	Miniemulsion polymerisation	n-Dodecanol	SBA	100 nm	98.4	27	109.2
Li et al 210	Miniemulsion polymerisation	n-Hexadecane	UF	270 nm	–	16.15-16.36	114.6-143.7
Fuensanta et al 211	Miniemulsion polymerisation	RT80	SBA	52-112 nm	78-80	77.7-84.1	4.9-23.9
Fang et al 154	Miniemulsion polymerisation	n-Tetradecane	PS	132 nm	89	4.04	98.71
Fang et al 213	Miniemulsion in situ polymerisation	n-Octadecane	PS	100-123 nm	–	30-35	124.4
Fang et al 212	Miniemulsion in situ polymerisation	n-Octadecane	PS	108-126 nm	–	–	88.35-124.4
Fang et al 211	Miniemulsion polymerisation	n-Dotriacontane	PS	168.2 nm	61.23	70.9	174.8
Tumirah et al 214	Miniemulsion in situ polymerisation	n-Octadecane	PS-MMA	102 nm	–	29.5	107.9
Wu et al 215	Miniemulsion polymerisation	Paraffin wax	PS	100 nm	47.7-55.6	29.1-31.6	96-112
Zhang et al 155	Direct miniemulsion polymerisation	n-Octadecane	PEMA, PMMA	140 nm, 119 nm	89.5	32.2, 31.9	198.5, 208.7
Hu et al 216	In situ polymerisation	Paraffin wax	CMC-MF	50 nm	63.1	24.4	83.46
Nan et al 217	In situ polymerisation	n-Octadecane	P(MMA-co-AMA)	577-693 nm	64.0-71.6	24.7-27.4	129-151
Fang et al 213	In situ polymerisation	n-Tetradecane	UF	100 nm	60	5.57-9.01	66.01-134.16
Choi et al 218	In situ polymerisation	n-Tetradecane	PVA, PS, PMMA, PEMA	23.15, 16.89, 18.59	–	2.06, 5.97, 5.68	~0, 66.26, 80.62
Jin et al 219	In situ polymerisation	Paraffin wax	UF	20	–	53.3-5.44	~98.5 to ~200.4
Zhang et al 220	In situ polymerisation	n-Octadecane	MF	0.9-9.2	–	30.4-30.5	169-172
Li et al 221	In situ polymerisation	n-Octadecane	MF	2.2	59	40.6	144
Hong and Park 222	In situ polymerisation	Migrin oil	MF	<10	–	–	–
Salaün et al 223	In situ polymerisation	n-Hexadecane, n-Eicosane	MF	~10	70	–	163-170
Zhang and Wang 224	In situ polymerisation	n-Octadecane	MF	20 nm	92	26.91	146.25
Zhang et al 225	In situ polymerisation	n-Octadecane	UMF	0.2-5.6	65.78	32.77-34.88	91.10-241.68
Zhang et al 226	In situ polymerisation	n-Octadecane	MF	0.2-1.8	–	24.4-36.2	44-166
Fan et al 227	In situ polymerisation	n-Octadecane	MF	1-2	–	–	102-166

(Continued)
Reference	Method	Core	Shell	Particle Size, μm	EE, %	T_m	Latent Heat, J/g
Guo et al \(^{228}\)	In situ polymerisation	Dodecanol	PEG modified MF	0.83 ± 0.23-14.4 ± 5.56	–	25.8	118.9
Konuklu et al \(^{229}\)	In situ polymerisation	Decanoic acid	PMUF	0.28	–	33	88
Krupa et al \(^{230}\)	In situ polymerisation	Paraffin wax	MF	15 ± 3	–	129.4	157
Yuan et al \(^{231}\)	In situ polymerisation	Paraffin wax	SiO\(_2\), GO	~10	49.6	49.7	87.1
Fan et al \(^{232}\)	In situ polymerisation	n-Octadecane	MF	~1	20	–	160
Zhang et al \(^{233}\)	In situ polymerisation	n-Octadecane, n-nonadecane, n-eicosane	MF	0.3-6.4	70	36.5, 219.3, 45.3	167, 161, 172
Shin et al \(^{234}\)	In situ polymerisation	n-Eicosane	MF	0.1-10	53	36.9	134.4
Shin et al \(^{234}\)	In situ polymerisation	n-Eicosane	MF	1.89	–	36.9	134.3
Boh et al \(^{235}\)	In situ polymerisation	P1-S, RT25, RT40	Amino-aldehyde	5.91, 2.78	–	–	–
Sarier and Onder \(^{12}\)	In situ polymerisation	n-Octadecane, n-eicosane, n-hexadecane	MF	1-500	–	17.7	44.6
Rao et al \(^{236}\)	In situ polymerisation	n-Docosane	MF	10	–	–	150
Salaün and Vroman \(^{237}\)	In situ polymerisation	n-Docosane	MF	5-20	68-135.4	55.69-56.72	17.74-57.81
Yuan et al \(^{238}\)	In situ polymerisation	n-Dodecanol	PMF	1-10	–	–	–
Yu et al \(^{239}\)	In situ polymerisation	n-Dodecanol	MF	30.6	93.1	21.5	187.5
Lee et al \(^{240}\)	In situ polymerisation	n-Octadecane, n-hexadecane	MF	5-20	–	–	150-210
Li et al \(^{221}\)	In situ polymerisation	n-Octadecane, n-hexadecane	MF	2.2	59	40.6	144
Fu et al \(^{241}\)	In situ polymerisation	n-Docosane	MF	3.6	–	–	–
Silakhori et al \(^{242}\)	In situ polymerisation	Paraffin wax	Aniline (C\(_6\)H\(_7\)N)	300-500 nm	49.7	53.4	65.1
time; however, the heating rate and sample mass is most important because the changing heat rate and sample mass will give temperature-heat flow responses.293,297

4.2.3 Thermogravimetical analysis (TGA)

The thermogravimetry or thermogravimetical analysis (TGA) technique measures the amount and rate change of the material weight as a function of temperature or at isothermal condition as a function of time in a controlled atmospheric conditions upon melting and solidification.246

The change in the mass of sample material of microcapsule/nanocapsule is examined under the various thermal modes such desorption, absorption, sublimation, vaporisation, oxidation, reduction, and decomposition.298

4.3 Physical analysis

4.3.1 Performance parameters

In the literature, a few mathematical relations have been used to address the physical and thermal performance of EPCMs. These relations are mainly affected by the mass of core and shell materials, mass of emulsifier, and cross-link agent, herein the synthesis encapsulation technique. The theoretical and actual loading or core content of PCM can be calculated as follows158:

\[
C_{th} = \frac{m_{\text{core}}}{m_{\text{core}} + m_{\text{shell}}} \times 100\% \quad (2)
\]

\[
C_{act} = \frac{m_{\text{core}} - m_{\text{shell}}}{m_{\text{core}}} \times 100\% \quad (3)
\]

Major thermal performance of EPCMs are generally evaluated using encapsulation ratio (ER), encapsulation efficiency (EF), thermal energy storage capability (TESC), and thermal cycling performance (TCP) as follows244,245,299:

\[
ER = \frac{\Delta H_{m,\text{EPCM}}}{\Delta H_{m,\text{PCM}}} \times 100\% \quad (4)
\]

\[
EF = \frac{\Delta H_{m,\text{EPCM}} + \Delta H_{s,\text{EPCM}}}{\Delta H_{m,\text{PCM}} + \Delta H_{s,\text{PCM}}} \times 100\% \quad (5)
\]

\[
\text{TESC} = \frac{\Delta H_{m,\text{PCM}}(\Delta H_{m,\text{EPCM}} + \Delta H_{s,\text{EPCM}})}{\Delta H_{m,\text{EPCM}}(\Delta H_{m,\text{PCM}} + \Delta H_{s,PCM})} \times 100\% \quad (6)
\]

\[
\text{TCP} = \frac{\Delta H_{m,\text{EPCM}}'}{\Delta H_{m,\text{PCM}}} \times 100\% \quad (7)
\]

Here, \(\Delta H_{m,\text{EPCM}}\) and \(\Delta H_{s,\text{EPCM}}\) are the change in enthalpies of melting and solidifications, respectively, of EPCM, and \(\Delta H_{m,\text{PCM}}\) and \(\Delta H_{s,\text{PCM}}\) are the change in enthalpies of melting and solidifications, respectively, of PCM. The change in enthalpy or latent heat of fusion is measured by the DSC. During the practical utilisation of EPCMs in various applications, the shell of the encapsulated microcapsule/nanocapsule possesses a crack or porous structure resulting in the leakage of the core PCM. So the core percentage or leakage rate in microcapsule/nanocapsule at various times is usually used to define the leakage-performance.249,280 The leakage rate (\(L_r\)) between the initial mass (\(m_0\)) of capsules and after heating periodically at certain melting temperature, indicated as \(m_t\), is defined as follows:

\[
L_r = \frac{m_0 - m_t}{m_0} \times 100\% \quad (8)
\]

Herein, it can been noticed that increasing the thickness although deceases the percentage of leakage rate of the capsules. However, as a result of this, ER will decrease simultaneously.
TABLE 9 Characterisation techniques used by the various researchers for characteristics evaluation of EPCMs

Characterisation Technique	References
X-Ray diffraction (XRD)	55,56,72,75,87,102,110,125,126,128,130,133,155,168,173,219,232,233,241,243-245
	38,43,91,98,106,109,123,124,132,147,158,169,213,214,216,231,246,252
Fourier transformed infrared spectroscopy (FT-IR)	87,96,118,129,163,165,166,172,173,175,177,203,219-221,225,226,233,237,238,239,254
	45,69,70,74,130,131,133,144,160,161,182,187,196,199,202,224,239,255,256
	4,54,56,102,127,128,134,146,154,155,167,168,190,191,209,211,245,257,258
	43,94,99,121,123,125,126,145,153,178,192,213,216,229,230,242,259,260
	44,83,91,98,109,124,132,140,169,181,197,204-207,214,231,247,261-263
	37,147,158,228,245,248-250,264-267
Scanning electron microscopy (SEM)	73,79,86,96,111,129,166,172,173,175,183,203,218,220,221,225-227,232-234,236,245,268
	12,45,70,72,87,135,144,157,164,186,199,202,219,224,237-239,254,255,269-271
	69,75,78,102,120,130,131,133,134,137,146,154,167,182,187,188,190,194,196,198,200,201,241,256
	4,14,49,54,56,87,135,144,157,164,186,199,202,219,224,237-239,254,255,269-271
	38,43,81,94,95,99,121,123,125,126,145,153,180,181,192,204,205,216,229,230,246,259-261
	85,90,91,98,106,109,124,132,134,156,169,197,206,207,228,231,247,262,263,274,275
	37,147,158,248-252,265-267,276-278
Transmission electron microscopy (TEM)	54,56,70,72,75,87,100,102,132,134,155,168,191,203,208,209,211,255,270,273,279
	98,106,109,110,123,132,145,146,156,158,169,213,214,245,247,248,277
Energy-dispersive X-ray spectroscopy (EDS)	56,102,106,109,123,147,158,245,262,265,269,274,277,280-283
X-ray photoelectron spectroscopy (XPS)	123,126,132,138,160,243,230,251,257,274,277,280
Optical microscopy (OM)	43,99,123,138,140,142,156,249,262,284,285
Thermal conductivity analysers	132,147,225,262,263,275,276,286,287
Differential scanning calorimeter (DSC)	12,73,113,117,129,165,166,173,175,177,183,203,218,220,221,225,232,236,268,279,288,289
	45,69,70,72,74,87,120,130,131,134,144,157,161,182,186,196,199-202,219,224,237,254
	14,54,78,102,127,128,134,146,154,155,160,167,187-191,194,209,241,243,256,257,272
	4,38,43,56,94,99,100,110,123,125,126,138,153,168,176,213,229,230,242,290
	44,132,153,180,181,192,197,204,205,214,214,260-262
	37,85,91,98,106,109,124,140,156,158,169,206,207,228,231,247,262,263,264,275
	238,239,246-248,252,265-267,276,277
Thermogravimetric analysis (TGA)	45,72,135,157,173,175,177,186,199,219,221,225,227,237-239,269,270
	14,69,75,120,130,131,144,146,154,160,167,182,187,188,190,196,198,200,256
	4,43,54,56,118,128,134,155,155,168,178,189,191,211,231,242,243,257,290
	38,99,123,132,138,145,153,180,192,204,205,214,216,229,230,246,259,260,262
	37,91,98,106,109,124,147,158,169,197,206,207,228,231,247,251,263,265,266,275,277,291
Atomic force microscopy (AFM)	85,197,228,248,249,257,259,292
Brunauer, Emmett, and Teller (BET)	257
Raman Spectroscopy	231,238
Small angle X-ray scattering (SAXS) and wide angle X-ray scattering (WAXS)	99,131,144,167,224,262

4.3.2 Optical microscopy (OM)

To evaluate the particle size, morphology, transparency, colour, and fixation, a few researchers have presented images of EPCMs using optical microscopy (OM) technique.99,138,285 Wang et al285 presented the images of SiC-/PMF-coated n-octadecane microcapsules and revealed that nano-SiC solid particles could be absorbed at oil-water interface. Additionally, it showed the 10 μm size of microcapsules using OM technique.

4.3.3 Scanning electron microscopy (SEM)

The SEM technique, based on scattered electrons, is used to determine the particle size and shape using electron microscope of the microcapsule/nanocapsule. SEM uses a higher energy beam of electron on the surface of the sample, which generates various signals showing the image of the sample surface. These variety of signals reveal the various characteristics information of the sample including
topography (the surface features or texture), morphology (the shape and size), composition (elements and compounds) and crystallography (atoms arrangement). Various research has presented SEM images to represent chemical composition, morphology, and crystallography of EPCMs, as mentioned in Table 9.

4.3.4 Transmission electron microscopy (TEM)

TEM, based on the transmitted electrons, is used to measure at higher resolution than SEM, such as nano level closer to the atomic structure. So the morphology and PSD of microcapsule/nanocapsule can also be determined by TEM at a smaller level (eg, nanometres), which is beyond the limit of SEM. In TEM, the electron passes through the sample, whereas in SEM, the electron beam just scans over the surface of the sample material. Geng et al presented TEM images of Ag-MMF–coated microcapsules of 1-tetradecacanol with diameter of 100 nm.

4.3.5 Atomic force microscopy (AFM)

The atomic force microscopy (AFM) is a surface topography measuring technique, which measures the surface images near nanometre resolution as well as the local properties such height, friction, and magnetism with a scanning probe. Further, AFM can also evaluate the mechanical properties of the microcapsule/nanocapsule. Zheng et al evaluated the highest elastic modulus of CNTs coated n-eicosane microcapsules. Huang et al evaluated the surface profile of CNTs coated n-octadecane microcapsules and obtained the average roughness and root mean square roughness with CNTs, which were 17.12 nm and 21.09 nm, respectively, approximately three times that of microcapsules without A-CNTs/PSS multilayers.

4.3.6 Brunauer, Emmett, and Teller (BET)

The BET technique is used to measure the specific surface area of the solid including pore size distribution by adsorption/desorption of nitrogen gas on the surface and then calculating the amount of the adsorbate gas into the surface corresponding to a monomolecular layer of the surface. The BET equation can be used to determine the surface area of the wide variety of gases or vapours. The most commonly used BET equation is described below, in Equation 9.

\[
\frac{x}{V(1-x)} = \frac{1}{V_m \cdot c_{BET}} + \frac{x(1-c_{BET})}{V_m \cdot c_{BET}}
\]

where \(V \) and \(V_m \) are the volumes of absorbed molecules and monolayer volume, respectively, \(c_{BET} \) is the BET constant, and \(x \) is the relative pressure \((x = P/P_o) \).

4.3.7 Small angle X-ray scattering (SAXS) and wide angle X-ray scattering (WAXS)

The small angle X-ray scattering (SAXS) is used to determine the crystalline structure of polymers coated microcapsule/nanocapsule at a range of 0.02° to 10°. The wide angle X-ray scattering (WAXS) or wide angle X-ray diffraction (WAXD) is used to measure the crystalline structure of inorganic- and organic polymeric–encapsulated materials at wider angles at 2\(\theta > 1^\circ \). The Bragg peaks (diffraction peaks) are analysed by function of scattering angles, which arise by scattering from the sub nanometre size crystal structures. A few researchers have utilised SAXS and WAXS techniques for EPCMs.

5 STABILITY OF EPCMS

The stability of ECPMs is the real challenge for the current industrial revolution. Stability of EPCMs is mainly concerned with thermal and chemical stability to ensure the long-term usage of micro-/nano-encapsulated PCMs. Generally, a number of repeated thermal cyclic tests are performed to validate the thermal reliability by measuring the thermophysical properties. The quality of the encapsulated PCMs is evaluated by assuring that there is no geometrical variation, leakage of microcapsule/nanocapsule, sedimentation, aggregation, and crystallisation of interlayer materials. A thermodynamically and chemically encapsulated PCMs ensures the long-term performance as TES materials for industrial and research applications. Further, thermal and chemical stability of the EPCMs enhances the economic feasibility maintaining their latent heat of fusion and melting for employing under repeated melting/freezing cycles with time.

5.1 Chemical stability

The chemical stability of the encapsulated capsules is generally determined by adopting the anti-osmosis test in which sealing performance of encapsulated capsules of PCMs is determined. The anti-osmosis test determines the weight loss of the extracted microcapsule/nanocapsule, and it can be used to evaluate the durability of the encapsulated capsules. Zhang et al conducted the anti-osmosis to evaluate the leaf performance of SiO\(_2\) (shell material) and n-octadecane (core material) under different conditions. The authors reported that microcapsules of 50/50 weight ratio had the best anti-osmosis
performance as compared with others weight ratios. Further, they evidenced that the release rates of microcapsules depend on the thickness of the silica shell. The greater the thickness of the shell, the lesser the release rate of the encapsulated capsules. A similar method to determine the leaking performance or durability of micro-encapsulated n-octadecane was developed by Zhang and Wang. The authors used SMA, SDS, and PVA as emulsifiers, and results showed that by using SMA and SDS, as shown in Figure 23, the release rate of the microcapsules increased with increasing weight percentage of the core materials. Further, the authors reported that release rate of microcapsules prepared by using SDS was much higher than that of microcapsules using SMA at the same weight ratio. Su et al. also adopted the same method and SMA was used as a surfactant with percentage of 1.0, 2.0, 3.0, and 4.0% under the presences of ethyl alcohol as an extraction solvent. They found that the 4.0% of SMA showed the lower release rate of PU shell, as shown in Figure 24. Further, they suggested that this releasing phenomena might be attributed to the emulsion effect and shell polymerisation.

5.2 Thermal stability
The thermal stability of the encapsulated microcapsule/nanocapsule of PCMs has the greater potential and significance in TES systems. Several studies have been conducted to ensure the consistency in latent heat of fusion and melting temperature of EPCMs. Thermal cycles or thermal cycling tests can be conducted using TGA and DSC. Silakhori et al. conducted the thermal cycles tests using TGA and DSC methods up to 1000 cycles for paraffin wax/polyaniline nanocapsules and found the chemical and thermal structures of the capsules remained unchanged. Similarly, Hawlader et al. claimed that encapsulated capsules of paraffin wax maintained their original geometrical profile and energy storage capacity even after 1000 thermal cycles. Fortuniak et al. used DSC for 50 cycles of fusion and crystallisation and reported the proof of thermal stability of microcapsules of n-eicosane coated with polysiloxane. Sarı et al. performed the FT-IR, TGA, and DSC analysis of PMMA/n-octadecane microcapsules for 5000 thermal cycles, shown in Figure 25. They reported that melting temperature changed from 51.1°C to 52.3°C, freezing temperature was changed from 53.7°C to 55.2°C, and the latent heats of melting and freezing were measured as 79.9 J/g and 81.7 J/g, respectively, after 5000 thermal cycling. The authors concluded that there was good thermal and chemical stability of PMMA/n-octadecane microcapsules in terms of changing of its thermal properties. Alkan et al. carried out the FT-IR, DSC, and TGA tests for thermal and chemical stability of PMMA/docosane after 1000, 3000, and 5000 thermal cycles. The authors found the melting point of PMMA/docosane changed from 40.1 to 41.4°C and crystallising point changed from 41.6 to 41.7°C; moreover, the latent heat of melting and crystallisation was found of 75.2 J/g and 67.7 J/g, respectively, after 1000, 3000, and 5000 thermal cycles. The authors evidenced that there was no significant changed in phase change thermal properties as well as in chemical structure of the microcapsules after thermal cycling tests, shown in Figure 26. Sharma et al. carried out the 1500 repeated melt/freeze cycles to study the thermal stability of commercial grade acetamide, stearic acid, and paraffin wax. The DSC curves of three PCMs concluded that acetamide and paraffin wax showed
convection heats during phase transformation define the employability of EPCMs for a specific application. In this section, we reviewed some potential applications, which have been greatly accelerated incorporating micro and nano EPCMs.

6.1 Solar-to-thermal energy storage

An unlimited, economic, and sustainable energy source has always been a potential requirement in the sight of researchers and industrialist. One such energy source is the sun. Here, the question is how to utilise solar energy in an efficient and longer time period to meet the energy requirement for both in day and especially in night time as more heat and electricity are required because of the absence of sun. To address this challenge, novel smart energy storage materials are needed to be developed, which can efficiently store this renewable solar energy source along with reducing global warming and climate changes issues. Therefore, EPCMs have been gaining the promising attention in recent years to absorb solar thermal energy in the form of latent heat and release it later on to meet the energy demands. The utilisation of micro- and nano-PCMs has been under investigation for photo-thermal conversion, solar cells, direct absorb solar collector, photo catalyst, storage tank or container, heat exchanger, and minichannel to harvest and convert solar energy directly and indirectly. Zeng et al. synthesised the core-shell nanoparticles using Sn/SiO2/Ag, where Sn was used as the core material to store the thermal energy, SiO2 was used as a shell material to provide containment, and Ag shell was used to enhance the light absorption intensity. They found good optical absorption and TES capabilities of Sn/SiO2/Ag composite nanoparticles, which improved the volumetric absorption efficiency of DASC from medium- to high-temperature range. Zheng et al. investigated the geometry-dependent heating efficiency and stability of hollow structure micro-PCMs (h-micro-PCMs) and solid PCM core particles (s-micro-PCMs) to enhance the thermal diffusivity and reliability of micro-PCMs for solar-thermal energy conversion and storage systems. The results revealed more stability and higher heat diffusivity within and above the phase transition range in case of h-micro-PCMs than s-micro-PCMs. Pethurajan et al. synthesised the SiO2/D-mannitol micro-PCMs using sol-gel technique for solar energy harvesting and storage systems. Fundamental thermophysical properties were studied and found enhancement in thermal conductivity of 1.77 W/m.K. Additionally, they found excellent thermal stability that after 100 cycles, latent heat of melting was 250.75 J/g, and encapsulation ratio and efficiency were reported of 88.925% and 85.024%,
Thermal management is highly emerging and keen requirement for the efficient performance of thermal systems. The effective thermal management requires a highly power, which encourages researchers to develop practical devices or systems of higher energy conversion efficiency. From the last three decades, researchers have been putting efforts on solar-to-thermal energy harvesting and conversion using PCM, which stores the heat through absorption only during hours of sunshine. Contrarily, there is a huge challenge for countries located at the upper reaches of the Northern hemisphere, which lack sunlight throughout the winter season. To overcome this challenge, studies are available that developed the electrical conductive micro-/nano-PCMs to convert and store energy from electrical-to-thermal. The conductive EPCMs convert the electrical energy into heat on applying the small input voltage and store that heat in form of latent heat while melting of the PCMs within the microcapsule and nanocapsule. Zheng et al. synthesized a joule heating system to reduce the convective heat transfer from electrothermal system to the surrounding by inserting the highly conductive and stable microcapsules of docosane and GO-CNT as core and shell material, respectively. The results shown in Figure 28A-E illustrate that with loading of 5% of micro-PCMs, the working temperature can be improved by 30% even at lower voltage and ambient temperature, which ensures a potential usage in daily household heat storage applications.

Figure 28C further presents that heat storage and release time-temperature curves are similar to solar-to-thermal energy conversion and storage. The conversion and storage efficiency from electrical-to-thermal energy can be calculated by using Equation 11:

$$\eta = \frac{m \Delta H}{VIt}$$

Here, \(m \) and \(\Delta H \) are the mass and phase transition enthalpy of EPCMs, respectively, and \(V \), \(T \) and \(t \) are the voltage, current, and time duration while phase transformation, respectively. To achieve the higher efficiency, EPCMs should have high TES capacity and high electrical conductivity so that it can be driven by low voltage. Recently, Hussain et al. synthesized the bifunctional nano-PCMs consisting oleic acid (OA)-PEG core and SiO\textsubscript{2}/SnO\textsubscript{2} shell materials to store the thermal and electrical energies. The authors reported the thermal and electrical conductivities of 0.7053 W/mK and 1.08 \times 10^{-7} S/cm, respectively. Additionally, it was suggested that OA-PEG/SiO\textsubscript{2}/SnO\textsubscript{2} nano-PCMs can be used as electrode material for electrochemical energy storage.

6.2 Electrical-to-thermal energy storage

The energy harvesting and conversion from electrical to thermal is an emerging area to store heat for beneficial usage. The fundamental evaluation parameter is the enhanced or reduced temperature at a certain input energy harvest and conversion characteristics. They found that micro-PCMs eutectics consisting of paraffin@Cu-Cu\textsubscript{2}O by a hydrothermal method for solar energy storage and photo-thermal conversion and found the encapsulation efficiency of 62.79%. Further, micro-PCMs capsules are suspended in DI water studied the photo-thermal conversion characteristics. They summarised that paraffin@Cu-Cu\textsubscript{2}O slurry had the better light absorbing properties, thermal conductivity, and photo-thermal conversion performance, which can be potentially used for DASC systems. Chen et al.306 found the melting temperature and latent heat of 59.28°C and 91.94 J/g, respectively, of SA/MWCNTs prepared by vacuum absorption method. Further, they estimated the photo-thermal conversion efficiency by suspending the SA/MWCNTs into water making a stable suspension. The authors predicted the excellent photo-thermal conversion performance with temperature increased from 30°C to 80°C and found the 85% receiver efficiency, which shows its potential to store solar energy for practical applications. Zhao et al.344 developed innovative hybrid micro-PCMs consisting of Ag-Paraffin@Halloysite to store solar energy and studied the catalytic reactions by self-assembly method. Figure 27 shows the catalytic activity of Ag-Paraffin@Halloysite used as a catalysis and revealed the better conversion activity of 95.3% in 6 min compared with one without heat storage with conversion of 71.1% in 6 min for catalytic reduction of 4-nitophenol. The efficiency (\(\eta \)) of solar-to-thermal energy conversion and storage systems confined with EPCMs can be determined from Equation 10:

$$\eta = \frac{m \Delta H}{\Delta t}$$

Here, in Equation 10, \(m \) is the mass of confined EPCMs, \(\Delta H \) is the latent heat enthalpy during phase transformation, \(\Delta t \) is the effective surface area of solar system, \(\Delta t \) is the intensity of solar irradiation, and \(\Delta t \) is phase transformation completion duration. To achieve the higher efficiency, EPCMs should have high TES capacity and high electrical conductivity so that it can be driven by low voltage. Recently, Hussain et al.299 synthesised the bifunctional nano-PCMs consisting oleic acid (OA)-PEG core and SiO\textsubscript{2}/SnO\textsubscript{2} shell materials to store the thermal and electrical energies. The authors reported the thermal and electrical conductivities of 0.7053 W/mK and 1.08 \times 10^{-7} S/cm, respectively. Additionally, it was suggested that OA-PEG/SiO\textsubscript{2}/SnO\textsubscript{2} nano-PCMs can be used as electrode material for electrochemical energy storage.
conductive media to transfer the heat flux from hot source towards the sink. PCMs, with their dual favourable thermal properties of isothermal phase transition temperature and high latent of fusion, have increased the demand for thermal cooling of electronics devices, Li-ion batteries, photovoltaic modules, high power lasers, thermoelectric and thermochemical systems, photo-thermal conversion systems, solar thermal energy storage systems, exothermic chemical reactions, and energy harvesting industrial power plants.109,310 For cooling of each system, it requires a confine amount of PCM and range of operating temperature. Overall, cooling techniques are classified as active cooling and passive cooling. Here, we summarise the active cooling technique based on single-phase and multiphase fluids based on EPCMs. For cooling of high heat generating microprocessing units, microchannel cooling technique has been introduced, which uses the heat transfer fluid (HTF) to transfer the heat energy from hot source to cold source. The HTF is selected based on its viscosity and heat transfer capacity. The heat transfer capacity of single-phase fluid (eg, water) is very low to ensure the efficient thermal performance maintaining the device temperature at a comfortable level. In order to enhance the heat transfer capacity of HTF, the microcapsule/nanocapsule are dispersed into the base fluid. The prepared fluid after adding the microcapsule/nanocapsule is called slurry, which has the capability to enhance the high heat transfer and high heat storage capacities by combining the latent heat of microcapsule/nanocapsule and sensible heats both base fluid and microcapsule/nanocapsule. This, EPCMs slurry (consisting of solid/liquid mixture), also called multiphase fluid, has multifunctional characteristics to serve as both heat HTFs and energy storage fluids (ESFs).311 The emulsion of macro- and micro-PCMs in base fluids under high pressure causes the fracture of capsules, thus increases the viscosity of slurry, reducing the heat transfer capacity, and requiring a higher input power for pumping the slurry. Therefore, to address these issues, nano-PCMs have been dispersed into the base fluid. The effective specific heat (C_{eff}) of EPCMs slurry as a function of volume fraction (ϕ) of encapsulated capsules can be defined by Equation 12 as:

$$C_{\text{eff}} = C_0 + \phi H_{\text{EPCM}} / \Delta T$$ \hspace{1cm} (12)
Here, \(C_o \) is the specific heat of base fluid, \(H_{EPCM} \) is the latent heat of dispersed EPCM per unit volume, and \(\Delta T \) is the temperature difference between the transfer surface and bulk fluid or the difference between the encapsulated capsules melting (\(T_m \)) and freezing (\(T_f \)) temperatures. Hong et al.\(^{133} \) synthesised the SiO\(_2\)-encapsulated In nanoparticles and polymer-encapsulated paraffin wax nanoparticles using colloid method, and then the slurry was prepared by dispersing into poly-\(\alpha \)-olefin (PAO) and water for potential high and low temperature applications, respectively. The heat transfer coefficients of PAO containing 30\% In nanoparticles by mass and water containing 10\% paraffin wax nanocapsules by mass are 1.6 and 1.75 times, respectively, higher than that of the base fluids. The comparison of adding nano-PCMs consisting of polymer/paraffin wax of 28 vol.\% added with water was carried out by Wu et al.\(^{215} \) The enhancement in heat transfer coefficient was found by 50\% and 70\% for jet impingement and spray cooling, respectively, compared with base fluid. The authors prepared without and with SiO\(_2\)-encapsulated In nano-PCMs using colloid method and dispersed into PAO and conducted the experiments in a microchannel heat exchanger to study heat transfer characteristics.\(^{105} \) The authors found the heat transfer coefficient of 47 000 W/m\(^2\).K without SiO\(_2\) coating of 30\% In into PAO, which was two times improvement over the single-phase PAO. Further, they suggested after thermal cycling test involving 5000 cycles that In nanoparticles can be used without encapsulation.

In practical applications of micro- and nano-PCMs, slurries at component level, the heat transfer, and fluid flow characteristics inducts, tubes, channels and thermal storage characteristics in a tank have been investigated. The design of advance microchannel is shown in Figure 29, which has the significant potential to overcome the internal heat generated inside the miniature and highly integrated electronics components or systems. The hybrid water-based suspensions consisting of Al\(_2\)O\(_3\) nanoparticles (nanofluid) and micro-PCMs particles (slurry) were
prepared, and then heat transfer characteristics were studied flowing through a circular tube\[^{312}\] and minichannel heat sink.\[^{313}\] The highest heat transfer enhancement of 57% was achieved at the highest flow rate in case of nanofluid, whereas the heat transfer enhancement was 51% at lowest flow rate in case of slurry. Seyf et al\[^{314}\] investigated effect of mass concentration and melting range of nano-PCMs dispersed in PAO as well as Re number on thermal and hydrodynamics characteristics of a microtube heat sink. They found that nano-PCM slurry as a coolant enhanced the thermal performance by decreasing the generated total entropy, thermal resistance, increasing the Nu number, and maintaining the temperature uniformity. However, an increase in the pressure drop was observed with the increase of mass concentration, which requires more pumping power. Liu et al\[^{287}\] prepared the micro-PCM slurry composed of water/ethanol as a base fluid and paraffin/melamine resin micro-PCM as additive and studied the heat transfer performance in a horizontal circular tube. The results revealed that convective heat transfer coefficients of micro-PCM slurry were about 2 times and 3 times at 5% and 10% mass fractions, respectively, higher than to the base fluid. The drastic increase of pressure drop is due to the higher viscosity of slurry, which increases by higher loading of capsules and Re number. Moreover, the higher heat transfer rate can also be achieved by reducing the thickness of the thermal boundary layer.\[^{315}\]

6.4 Building

Micro- and nano-PCMs are currently employed in building in various forms such as concrete mixes, cement mortar, wall boards, gypsum plaster, sandwich panels, and slabs to meet the energy consumption of buildings for heating, cooling, air conditioning and ventilation, water heating, and lighting.\[^{316}\] The embedment of EPCMs has significant potential to increase the thermal inertia at constant mass in buildings especially mixing with concrete, which influence its thermophysical and mechanical properties.\[^{317}\] Additionally, the embedment of micro- and nano-PCMs in concrete increases the thermal and acoustic insulation of walls. Giro-Paloma et al\[^{318}\] reported the mechanical properties of micro-PCMs synthesising of RT-21 with acrylic shell. The nano-indentation technique was used to determine the mechanical properties such as modulus of elasticity, load at maximum displacement, and displacement at maximum load. The results showed the significant mechanical resistance and stiffness of RT-21 microcapsules, and also better stability was achieved with less short emission of volatile organic compounds. Aguayo et al\[^{319}\] proposed
the infrastructural concrete mixing with two paraffin wax–based micro-PCMs for mitigating early age cracking and freeze-and-thaw–induced damages. The evaluations of micro-PCMs on cement hydration and pore structure were carried out, and it was ascertained that mechanical properties such as comprehensive strength of cement mortars was strongly dependent on the mechanical properties of micro-PCMs. Cao et al320 fabricated the concretes of high TES by mixing the micro-PCMs of RT-27 coated with the LDPE-EVA copolymer shell into portland cement concrete (PCC) and geopolymer concrete (GPC). Figure 30 shows the SEM images of PPC and GPC cements incorporating of micro-PCMs capsules. The results found higher heat storage capacity and lower thermal conductivity, simultaneously. The significant loss in compressive strength was observed by adding micro-PCMs capsules. However, the compressive strength fulfils the mechanical European regulation for concrete applications.

Wei et al321 reported the durability of cementitious composite containing commercially available micro-PCMs. The results revealed that micro-PCMs reduced the rate and extent of water sorption and did not affect the dry shrinkage of cementitious composites. However, in specific cases, micro-PCMs improved the durability of cementitious composites. Apart from the investigation on mechanical properties, the effect of thermal deformation was examined by Young et al.322 The effective thermal deformation coefficient was predicted and found similar to the shell materials. Finally, a design rule was proposed to design the EPCM-mortar composites, which found useful in the built environment and high performance composites. The other possibilities of using EPCMs are with building structures through wall boards,323 gypsum plaster,324,325 sandwich panels,326 and slabs,327 which could lead to reduce the energy demand in both residential and commercial building sectors.

6.5 Textiles

Various schemes have been investigated of EPCMs incorporating with textiles such to protect or give a durable finish on cotton or woollen, durable fragrances, and skin softeners. Meanwhile, micro-PCMs have been utilised for waste yeast cells, coating on the surface of fabric or embedded within fibre Nelson.328 Sarier and his co-authors32,119 firstly reported the thermal regulation or thermal comfort of four different

FIGURE 30 SEM images of A, PCC without micro-PCMs, B, PCC containing 3.2 wt.% micro-PCMs, C, GPC without micro-PCMs, and D, GPC containing 2.7 wt.% micro-PCMs.320 Reused with the permission from Elsevier license number 4444700728610
Foam capsules of containing n-octadecane, n-octadecane/PE600, n-eicosane/n-hexadecane, and PEG/Na₂CO₃·10H₂O/n-hexadecane as a core materials coated with PUF. The energy absorption capacities were enhanced from 2.5 to 4.5 times relative to the reference fabric at a particular temperature. Later on, authors found the higher thermal conductivities of microcapsules, which can be employed for thermal cooling of clothing fabrics, medical and automobile textiles, and building materials. Additionally, the phase change enthalpies of 137 and 168 J/g for n-hexadecane and n-octadecane, respectively, were achieved using silver nanoparticles. Alay et al. synthesized the micro-PCMs of n-hexadecane/PBE and n-hexadecane/PMMA with the aim to increase the physical interaction between the microcapsules and fibre surface for heat storage and thermoregulation in fabrics. The pad-cure method was adopted to add the micro-PCMs on woven fabrics. The results showed that the cotton, cotton/polyester, and microfibre polyester fabrics were capable to absorb heat of 6.56 and 25.98 J/g with n-hexadecane/PBE, 4.95, 10.02, and 8.38 J/g, respectively, with n-hexadecane/PMMA. Moghaddam and his co-authors prepared the microcapsules of non-oxadecane as a core and sodium alginate as a shell materials for application of thermal comfort of textile fabric. The authors found the high energy storing density more than 137.83 J/g for phase transition temperature of 30 to 31°C, which was the suitable for thermal regulation in textile. Aksoy and his co-authors synthesized the micro-PCM of n-octadecane/PE600, n-eicosane/sodium alginate, and n-eicosane/PMMA-co-AA to enhance the textile thermal comfort, thermal stability, and flame-retardant properties incorporated with cotton fabrics by pad-dry-cure method. The optical images proved the presence of microcapsules incorporated fabric homogeneously onto the surface which are mainly located between the fibres and fibre spaces, as shown in Figure 31. The heat storage enthalpy of 97 to 114 J/g was achieved, which showed the significant potential for textile applications and thermal regulating properties of micro-PCM incorporated with fabrics. Further, the authors reported durability of microcapsules onto the fabric surface after washing and rubbing tests, and inconsistencies of micro-PCMs with fabrics are due the chemical compatibility of the fabric material and shell material of microcapsules.

Recently, Sun and Iqbal synthesized nano-PCMs containing n-octadecane and n-eicosane as core materials and applied on the cotton fabric through a pad-dry-cure process and compared with commercial available micro-PCM of n-octadecane. The results revealed that nano-PCM had 28% more capacity to absorb latent heat than commercial micro-PCM and nano-PCM treated cotton fabric showed the better durability due to its better adhesion with fibrous material of cotton while washing.

6.6 Foam

Foam is potentially used in structures to enhance the thermal performance, especially to reduce the rate of heat transfer or to increase the thermal resistance, acting as an insulating material. Mostly, PS and PU are applied with micro- and nano-PCMs in building structures such as wall, windows roofs and floors, automotive and aerospace interiors, and biomedical applications. You et al. synthesized the n-octadecane/PU micro-PCMs and inserted it inside the foam. They reported that latent of fusion of micro-PCMs depends on the weight ratios of added microcapsules, ie, increasing the content of micro-PCMs increases the enthalpy and vice versa. The maximum value of 12 J/g at 12.59 wt.% of micro-PCMs was achieved. Borreguero and his co-authors synthesized the rigid PU foams of varying weight concentrations of RT-27-based micro-PCMs for the purpose of building insulations and TES. The authors reported that increasing the micro-PCMs contents decreased the thickness of foam but increased the density and TES capacity. The PU foams with 18 wt.% of microcapsules enhanced the TES capacity meanwhile along with sustaining the mechanical properties without addition of fillers. Whereas at higher content of 21 wt.% of microcapsules caused the reduction in mechanical properties. However, the 11 wt.% containing foams maintained the advantages of improving TES capacity and exhibited higher compressive strength and elastic modulus. Later, the authors fabricated the rigid PU incorporating 18 wt.% microcapsules of two difference shell materials consisting PS and PMMA, named as mSP-(PS-TR27) and Micronal DS 5001X. Figure 32A,B exhibits the SEM of PU foams containing 18 wt.% of mSP-(PS-TR27) and Micronal DS 5001X, respectively. The results revealed that micro-PCMs of both shell materials improved the TES capacity of PU foams. Additionally, larger size of PS and agglomeration of PMMA microcapsules caused the strut rupture and damaging the mechanical properties.

Recently, Serrano et al. developed the rigid PU of varying the weight percentage from 0% to 50% of microcapsules of named mSD-(LDPE.EVA-RT27) and found the 40 wt.% optimum weight percentage of microcapsules to produce thermal regulating foams having latent heat of 34.4 J/g, which was higher than those rigid PU of similar materials reported in the literature. Further, the authors suggested that if this rigid PU will be employed in building, the amount of CO₂ leaving to the atmosphere can be reduced.
resulting in save the energy. Qiu et al.339-342 prepared the PS foam with microcapsules containing paraffin wax and DEEP as core and PMAA-co-EMA as a shell materials and found that micro-PCM had good thermal regulation potential and TES capacity treated with foam. Later, they synthesised the micro-PCM of hybrid shell materials of PMMA and UF coated on n-tetradecane and found the higher enthalpy of 175.5 J/g. Additionally, the authors reported that the foam treated with micro-PCMs has the better thermal regulating properties than raw foam.342
6.7 | Medical industry

The antibacterial effectiveness of EPCMs is a significant and emerging area for the development of hybrid functionality materials. Silver-based nanomaterials are significantly used as a shell materials with EPCMs because of their inherent antimicrobial properties in medical application. Tobaldi et al.\(^{343}\) developed the silver-modified titania nanoparticles through green aqueous sol-gel method to study the antibacterial and photocatalytic properties under both the UV and visible-light exposures. Under UV-light source, silver nanoparticles showed the significant antibacterial activity against *Escherichia coli* (Gram-negative bacteria) than methicillin-resistant *Staphylococcus aureus* (Gram-positive bacteria). Zhang et al.\(^{280}\) synthesised the multifunctional micro-PCMs of *n*-eicosane as core and silver/silica of double-layered as shell material and found the high antibacterial especially against *E. coli*, *S aureus*, and *Bacillus subtilis*. The antibacterial effectiveness, shown in Figure 33, revealed that bacterial activities for *E. coli*, *S aureus*, and *B. subtilis* were inhibited up to 64.6%, 99.1%, and 95.9%, respectively, when contacting the microcapsules for 2 hours.

7 | FUTURE RESEARCH ON EPCMS

Micro- and nano-EPCMs have the potential features in future applications. So far, many OPCMs have been used as a core material for encapsulation, also most studies focused to develop micro-PCMs. A few studies have been reported to encapsulate the nano-PCMs. Although many researchers are currently working on the preparation and characterisation of nano-PCMs, however, there is the still need for further improvement in engineering applications. Followings are suggestions for future works:

- **Long-term stability:** The stability of micro-/nano-PCMs is the major need for the applications in every aspects of the life, especially when it is under usage of heat transfer and flow conditions.
- **Efficiency enhancement:** The encapsulation efficiency of the production of micro-/nano-PCMs is still quite low, which is still facing the lack of to meet the requirements of industrial applications.
- **Encapsulation of IPCMs:** Since the inorganic PCMs (salt hydrates and molten salts) have high latent of fusion during phase transformation, they have more potential in TES applications, eg, active and passive heating and cooling through solar energy. However, they can degrade in moisture environment. Untill now, research has focused on use of OPCMs as core materials. Therefore, there is the need of micro-/nano-encapsulation of molten salts and salt hydrates to use a core materials.
- **Subcooling or supercooling:** The supercooling of micro-/nano-PCMs is the major obstacle in industrial applications. Further investigations of micro-/nano-PCMs are needed to overcome this issue to enhance the thermal stability and efficiency of thermal systems.
- **Leakage performance:** More studies are needed to adopt a standard mechanical test to study the durability or leakage of EPCMs, especially the nano-PCMs to enhance its chemical stability.
- **Application of EPCMs:** Up to now, little investigations have been reported using EPCMs especially nano-PCMs in solar energy, battery and electronic thermal management, solar energy storage, solar panels thermal cooling control, smart building, waste heat recovery, etc. Therefore, new technologies using nano-PCMs should be developed with potential feature to overcome the deficiency of conventional technologies.
- **Enhancement of thermal properties:** In the encapsulation of PCMs, it has been reported that the melting temperature latent heat of fusion are reduced as compared with pure PCMs. The purpose of PCMs is to use as energy storage materials in TES systems without loss of heat transfer and fluid flow performance. Hence, this is real challenge of EPCMs to increase or maintain the latent heat of fusion with different melting and freezing temperatures. Therefore, new studies are needed to focus in this direction of encapsulation of PCMs. Additionally, the lower thermal conductivity is also a real challenge of PCMs. Some novel encapsulation techniques are needed to enhance the thermal conductivity
of PCMs at the cost of not affecting the latent heat of fusion of PCMs.

8 | CONCLUDING REMARKS

This review paper comprehensively covers research progress on the development of macro-, micro-, and nano-EPCMs conducted from the last few decades. Initially, the ideal characteristics of EPCMs are elaborated for the selection of a specific criteria and application. Further, various encapsulation technologies based on different methods such as physical-mechanical, physical-chemical, chemical-mechanical, and chemical methods have been thoroughly explained to synthesis the macrometre-, micrometre-, and nanometre-encapsulated capsules. Additionally, thermophysical properties such as thermal conductivity, latent heat of enthalpy, encapsulation ratio, and encapsulation efficiency are summarised respective to each method. In a similar way, detailed characteristics evaluation techniques of chemical, thermal, and physical properties have been discussed. Stability of EPCMs based on chemical and thermal properties are also discussed. Finally, potential applications of EPCMs have been explained in detail. The following conclusions are summarised from this review:

• The encapsulation of OPCMs coating with a polymer shell material is simple and does not require any complication and can be achieved adopting simple polymerisation techniques.
• The encapsulation of IPCMs is difficult and expensive because of the hydrophilic nature of salt hydrates, which have the characteristics to alter their water content, thus limited to used only inverse emulsion and addition of polymerisation reactions.
• Efficiency and stability of capsules during encapsulation can be restrained by monitoring the molecular weight of the polymers in shell formation process.
• Lower molecular weight shell materials, although increase the encapsulation efficiency but contrarily reduce the mechanical strength and mobility of smaller molecules. Hence, there should be precise selection of encapsulation technique and reactants to obtain the required thermophysical properties.
• The selection of each core-shell confinement technology is based on morphological parameters of capsules such as size, distribution, degree of dispersion, environment of use and selection of shell material. A specific shell material has its own merits and disadvantages regarding thermophysical properties point of view.
• IPCMs as shell materials are found favourable for encapsulation because they have high thermal conductivity; however, they possess low encapsulation efficiency, longer cross-linking, and are less stable.
• Overall, it is concluded that after encapsulation of PCMs, the leaking, subcooling, and segregation issues had been overcome to some extent; however, the melting temperature and latent heat of fusion were decreased, which limits the EPCMs for thermal management solutions.
• Considering all the encapsulation techniques, the in situ polymerisation technique is found to be one of the better ones, offering more encapsulation efficiency and thermophysical stability.
• This review reveals the good thermal and chemical stability of EPCMs, which are strongly influenced by the morphology of encapsulated capsules.
• EPCMs are the most suitable for thermal management and TES applications in conjunction with various subsystems such as heat sinks, micro-minichannels, heat pipes, heat exchangers, wall-boards, panels, and slabs.

CONFLICT OF INTEREST

The authors declare no conflict of interest regarding this review article.

ORCID

Adeel Arshad https://orcid.org/0000-0002-2727-2431

REFERENCES

1. Salunkhe PB, Shembekar PS. A review on effect of phase change material encapsulation on the thermal performance of a system. Renewable Sustainable Energy Rev. 2012;16(8):5603-5616.
2. Jegadheeswaran S, Pohekar SD. Performance enhancement in latent heat thermal storage system: a review. Renewable Sustainable Energy Rev. 2009;13(9):2225-2244.
3. Wang X, Guo Q, Zhong Y, Wei X, Liu L. Heat transfer enhancement of neopentyl glycol using compressed expanded natural graphite for thermal energy storage. Renewable Energy. 2013;51:241-246.
4. Qiu X, Song G, Chu X, Li X, Tang G. Preparation, thermal properties and thermal reliabilities of microencapsulated n-octadecane with acrylic-based polymer shells for thermal energy storage. Thermochim Acta. 2013;551:136-144.
5. Waqas A, Din ZU. Phase change material (PCM) storage for free cooling of buildings—A review. Renewable Sustainable Energy Rev. 2013;18:607-625.
6. Li G, Hwang Y, Radermacher R, Chun H-H. Review of cold storage materials for subzero applications. Energy. 2013;51:1-17.
7. Chidambaram LA, Ramana AS, Kamaraj G, Velraj R. Review of solar cooling methods and thermal storage options. Renewable Sustainable Energy Rev. 2011;15(6):3220-3228.
8. Shon J, Kim H, Lee K. Improved heat storage rate for an automobile coolant waste heat recovery system using
phase-change material in a fin-tube heat exchanger. *Appl Energy*. 2014;113:680-689.

9. Pandiyarajan V, Chinnappandian M, Raghavan V, Velraj R. Second law analysis of a diesel engine waste heat recovery with a combined sensible and latent heat storage system. *Energy Policy*. 2011;39(10):6011-6020.

10. Zhao W, France DM, Yu W, Kim T, Singh D. Phase change material with graphite foam for applications in high-temperature latent heat storage systems of concentrated solar power plants. *Renewable Energy*. 2014;69:134-146.

11. Khan MMA, Ibrahim NI, Mahbubul IM, Ali HM, Saídur R, Al-Salaman FA. Evaluation of solar collector designs with integrated latent heat thermal energy storage: a review. *Solar Energy*. 2018;166:334-350.

12. Sarier N, Onder E. The manufacture of microencapsulated phase change materials suitable for the design of thermally enhanced fabrics. *Thermochim Acta*. 2007;452(2):149-160.

13. Nejman A, Cieslak M, Gajdzicki B, Goetzendorf-Grabowska B, Karaszewska A. Methods of PCM microcapsules application and the thermal properties of modified knitted fabric. *Thermochim Acta*. 2014;589:158-163.

14. Su J-F, Wang X-Y, Wang S-B, Zhao Y-H, Huang Z. Fabrication and properties of microencapsulated-paraffin/gypsum-matrix building materials for thermal energy storage. *Energy Convers Manage*. 2012;55:101-107.

15. Sayyar M, Weerariri SR, Soroushian P, Lu J. Experimental and numerical study of shape-stable phase-change nanocomposite toward energy-efficient building constructions. *Energy Build*. 2014;75:249-255.

16. Pomianowski M, Heiselberg P, Zhang Y. Review of thermal energy storage technologies based on PCM application in buildings. *Energy Build*. 2013;67:56-69.

17. Kong X, Lu S, Huang J, Cai Z, Wei S. Experimental research on the use of phase change materials in perforated brick rooms for cooling storage. *Energy Build*. 2013;62:597-604.

18. Riffat SB, Omer SA, Ma X. A novel thermoelectric refrigeration system employing heat pipes and a phase change material: an experimental investigation. *Renewable Energy*. 2001;23(2):313-323.

19. Sarwar J, Mansoor B. Characterization of thermophysical properties of phase change materials for non-membrane based indirect solar desalination application. *Energy Convers Manage*. 2016;120:247-256.

20. Arshad A, Ali HM, Khushnood S, Jabbal M. Experimental investigation of PCM based round pin-fin heat sinks for thermal management of electronics: effect of pin-fin diameter. *Int J Heat Mass Transfer*. 2018;117:861-872.

21. Arshad A, Ali HM, Yan W-M, Hussein AK, Ahmadlouydarab M. An experimental study of enhanced heat sinks for thermal management using n-eicosane as phase change material. *Appl Therm Eng*. 2018;132:52-66.

22. Arshad A, Ali HM, Ali M, Manzoor S. Thermal performance of phase change material (PCM) based pin-finned heat sinks for electronics devices: effect of pin thickness and PCM volume fraction. *Appl Therm Eng*. 2017;112:143-155.

23. Ali HM, Arshad A. Experimental investigation of n-eicosane based circular pin-fin heat sinks for passive cooling of electronic devices. *Int J Heat Mass Transfer*. 2017;112:649-661.

24. Ali HM, Arshad A, Jabbal M, Verdin PG. Thermal management of electronics devices with PCMs filled pin-fin heat sinks: a comparison. *Int J Heat Mass Transfer*. 2018;117:1199-1204.

25. Ali HM, Ashraf MJ, Giovannelli A, et al. Thermal management of electronics: an experimental analysis of triangular, rectangular and circular pin-fin heat sinks for various pcms. *Int J Heat Mass Transfer*. 2018;123:272-284.

26. Ashraf MJ, Ali HM, Usman H, Arshad A. Experimental passive electronics cooling: parametric investigation of pin-fin geometries and efficient phase change materials. *Int J Heat Mass Transfer*. 2017;115:251-263.

27. Usman H, Ali HM, Arshad A, et al. An experimental study of PCM based finned and un-finned heat sinks for passive cooling of electronics. *Heat Mass Transfer*. 2018;54(12):3587-3598.

28. Hussain A, Abidi IH, Tso CY, Chan KC, Luo Z, Chao CYH. Thermal management of lithium ion batteries using graphene coated nickel foam saturated with phase change materials. *Int J Therm Sci*. 2018;124:23-35.

29. Hussain A, Tso CY, Chao CYH. Experimental investigation of a passive thermal management system for high-powered lithium ion batteries using nickel foam-paraffin composite. *Energy*. 2016;115:209-218.

30. Ali HM, Arshad A, Janjua MM, Baig W, Sajjad U. Thermal performance of LHSU for electronics under steady and transient operations modes. *Int J Heat Mass Transfer*. 2018;127:1223-1232.

31. Mulligan JC, Colvin DP, Bryant YG. Microencapsulated phase-change material suspensions for heat transfer in spacecraft thermal systems. *J Spacecraft Rockets*. 1996;33(2):278-284.

32. fan Wu W, Liu N, long Cheng W, Liu Y. Study on the effect of shape-stabilized phase change materials on spacecraft thermal control in extreme thermal environment. *Energy Convers Manage*. 2013;69:174-180.

33. Sharma A, Tyagi VV, Chen C, Buddhi D. Review on thermal energy storage with phase change materials and applications. *Renewable Sustainable Energy Rev*. 2009;13(2):318-345.

34. Zhou D, Zhao CY, Tian Y. Review on thermal energy storage with phase change materials (PCMs) in building applications. *Appl Energy*. 2012;92:593-605.

35. Cabeza LF, Svensson G, Hiebler S, Mehling H. Thermal performance of sodium acetate trihydrate thickened with different materials as phase change energy storage material. *Appl Therm Eng*. 2003;23(13):1697-1704.

36. Milián YE, Gutiérrez A, Grágeda M, Ushak S. A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties. *Renewable Sustainable Energy Rev*. 2017;73:983-999.

37. Graham M, Coca-Clemente JA, Shchukina E, Shchukin D. Nanoconfined phase change materials for thermal energy storage: parametric investigation of pin-finned heat sinks. *J Mater Chem A*. 2018;5(26):13683-13691.

38. Huang X, Xia W, Zou R. Nanoconfinement of phase change materials within carbon aerogels: phase transition behaviours and photo-to-thermal energy storage. *J Mater Chem A*. 2014;2(47):19963-19968.

39. Hyun DC, Levinson NS, Jeong U, Xia Y. Emerging applications of phase-change materials (PCMs): teaching an old dog new tricks. *Angew Chem Int Ed*. 2014;53(15):3780-3795.

40. Uemura T, Yanai N, Watanabe S, et al. Unveiling thermal transitions of polymers in subnanometre pores. *Nature Commun*. 2010;1(7):1-8.

41. Liu C, Rao Z, Zhao J, Hsu Y, Li Y. Review on nanoencapsulated phase change materials: preparation, characterization and heat transfer enhancement. *Nano Energy*. 2015;13:814-826.

42. Aftab W, Huang X, Wu W, Liang Z, Mahmood A, Zou R. Nanoconfined phase change materials for thermal energy applications. *Energy Environ Sci*. 2018;11(6):1392-1424.
43. Chen K, Yu X, Tian C, Wang J. Preparation and characterization of form-stable paraffin/polyurethane composites as phase change materials for thermal energy storage. Energy Convers Manage. 2014;77:13-21.

44. Xu S, Zou L, Ling X, Wei Y, Zhang S. Preparation and thermal reliability of methyl palmitate/methyl stearate mixture as a novel composite phase change material. Energy Build. 2014;68:372-375.

45. Sari A, Alkan C, Karaipekli A, Uzun O. Microencapsulated n-octacosane as phase change material for thermal energy storage. Solar Energy. 2009;83(10):1757-1763.

46. Ghosh SK. Functional coatings and microencapsulation: a general perspective. Functional coatings. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2006:1-28.

47. Wang Y, Wang J, Nan G, Wang H, Li W, Zhang X. A novel method for the preparation of narrow-disperse nanocapsulated phase change materials by phase inversion emulsification and suspension polymerization. Ind Eng Chem Res. 2015;54(38):9307-9313.

48. Shirin-Abadi AR, Mahdavian AR, Khoee S. New approach for the elucidation of PCM nanocapsules through miniemulsion polymerization with an acrylic shell. Macromolecules. 2011;44(18):7405-7414.

49. de Cortazar MG, Rodriguez R. Thermal storage nanocapsules by miniemulsion polymerization. J Appl Polym Sci. 2012;127(6):5059-5064.

50. Jamekhorshid A, Sadrameli SM, Farid M. A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renewable Sustainable Energy Rev. 2014;31:531-542.

51. Tyagi VV, Kaushik SC, Tyagi SK, Akiyama T. Development of phase change materials based microencapsulated technology for buildings: a review. Renewable Sustainable Energy Rev. 2011;15(2):1373-1391.

52. Boh B, Šumiga B. Microencapsulation technology and its applications in building construction materials technologija mikrokapsuliranja in njena uporaba v gradbeni materiali. RMZ–Mater Geoenviron. 2008;55(3):329-344.

53. Zhao CY, Zhang GH. Review on microencapsulated phase change materials (MEPCMs): fabrication, characterization and applications. Renewable Sustainable Energy Rev. 2011;15(8):3813-3832.

54. Fang Y, Yu H, Wan W, Gao X, Zhang Z. Preparation and thermal performance of polystyrene/n-tetradecane composite nanoencapsulated cold energy storage phase change materials. Energy Convers Manage. 2013;76:430-436.

55. Fang Y, Kuang S, Gao X, Zhang Z. Preparation and characterization of novel nanoencapsulated phase change materials. Energy Convers Manage. 2008;49(12):3704-3707.

56. Latibari ST, Mehrali M, Mehrali M, Mahlia TMI, Metselaar HSC. Synthesis, characterization and thermal properties of nanoencapsulated phase change materials via sol-gel method. Energy. 2013;61:664-672.

57. Weiss J, Takhistov P, McClements DJ. Functional materials in food nanotechnology. J Food Sci. 2006;71(9):R107-R116.

58. Cho K, Choi M. Experimental study on the application of paraffin slurry to high density electronic package cooling. Heat Mass Transfer. 2000;36(1):29-36.

59. Khadiran T, Hussein MZ, Zainal Z, Rusli R. Encapsulation techniques for organic phase change materials as thermal energy storage medium: a review. Sol Energy Mater Sol Cells. 2015;143:78-98.

60. Su W, Darkwa J, Kokoigianakis G. Review of solid-liquid phase change materials and their encapsulation technologies. Renewable Sustainable Energy Rev. 2015;48:373-391.

61. Wei G, Wang G, Xu C, et al. Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: a review. Renewable Sustainable Energy Rev. 2018;81:1771-1786.

62. Poncelet D. Microencapsulation: fundamentals, methods and applications. Surface chemistry in biomedical and environmental science. Netherlands: Springer;23-34.

63. Venkatesan P, Manavalan R, Valliappan K, et al. Microencapsulation: a vital technique in novel drug delivery system. J Pharm Sci Res. 2009;1(4):26-35.

64. Wurster DE. Air-suspension technique of coating drug particles**School of Pharmacy, University of Wisconsin, Madison. J Am Pharm Assoc (Sci ed). 1959;48(8):451-454.

65. Werner SRL, Jones JR, Paterson AHJ, Archer RH, Pearce DL. Air-suspension particle coating in the food industry: part I—state of the art. Powder Technol. 2007;171(1):25-33.

66. Cheng SY, Yuen CWM, Can CW, Cheuk KKL. Development of cosmetic textiles using microencapsulation technology. Res J Text Apparel. 2008;12(4):41-51. https://doi.org/10.1180/RJTA.12-04.2008-B005

67. Thies C. Microencapsulation. Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, Inc. 2005;16:438-463.

68. Heinzen C, Berger A, Marison J. Use of Vibration Technology for Jet Break-Up for Encapsulation of Cells and Liquids in Monodisperse Microcapsules. In: Nedovic V, Willaert R, eds. Fundamentals of Cell Immobilisation Biotechnology. Focus on Biotechnology, 2004; vol 8A. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1638-3_14

69. Wang L, Meng D. Fatty acid eutectic/poly methyl methacrylate composite as form-stable phase change material for thermal energy storage. Appl Energy. 2010;87(8):2660-2665.

70. Wang W, Yang X, Fang Y, Ding J. Preparation and performance of form-stable polyethylene glycol/silicon dioxide composites as solid-liquid phase change materials. Appl Energy. 2009;86(2):170-174.

71. Li J, Xue P, He H, Ding W, Han J. Preparation and application effects of a novel form-stable phase change material as the thermal storage layer of an electric floor heating system. Energy Build. 2009;41(8):871-880.

72. Cai Y, Song L, He Q, Yang D, Hu Y. Preparation, thermal and flammability properties of a novel form-stable phase change materials based on high density polyethylene/poly(ethylene-co-vinyl acetate)/organophilic montmorillonite nanocomposites/paraffin compounds. Energy Convers Manage. 2008;49(8):2055-2062.

73. Sarı A. Form-stable paraffin/high density polyethylene composites as solid-liquid phase change material for thermal energy storage: preparation and thermal properties. Energy Convers Manage. 2004;45(13-14):2033-2042.

74. Sarı A, Karaipekli A. Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form-stable PCM for thermal energy storage. Sol Energy Mater Sol Cells. 2009;93(5):571-576.

75. Song G, Ma S, Tang G, Yin Z, Wang X. Preparation and characterization of flame retardant form-stable phase change materials composed by EPDM, paraffin and nano magnesium hydroxide. Energy. 2010;55(5):2179-2183.

76. Land C. Industrial Drying Equipment: Selection and Application. New York: Marcel Dekker, Inc; 1991.
Obón JM, Castellar MR, Alacid M, Fernández-López JA. Production of a red-purple food colorant from Opuntia stricta fruits by spray drying and its application in food model systems. *J Food Eng*. 2009;90(4):471-479.

Borregoaro A, Valverde JL, Rodriguez JF, Barber AH, Cubillo JJ, Carmona M. Synthesis and characterization of microcapsules containing rubitherm®RT27 obtained by spray drying. *Chem Eng J*. 2011;166(1):384-390.

Billon A, Bataille B, Cassanas G, Jacob M. Development of spray-dried acetylaminothiol nanomicrospheres using experimental designs. *Int J Pharm*. 2000;203(1-2):159-168.

Gharsallaoui A, Roudaut G, Chambin O, Voilley A, Saurel R. Applications of spray-drying in microencapsulation of food ingredients: an overview. *Food Res Int*. 2007;40(9):1107-1121.

Shen Q, Quek SY. Microencapsulation of astaxanthin with blends of milk protein and fiber by spray drying. *J Food Eng*. 2014;123:165-171.

Silva VM, Vieira GS, Hubinger MD. Influence of different combinations of wall materials and homogenisation pressure on the microencapsulation of green coffee oil by spray drying. *Food Res Int*. 2014;61:132-143.

Poshadri A, Aparna K. Microencapsulation technology: a review. *Res ANGRAU*. 2010;38(1):86-102.

Li M, Rouaud O, Poncelet D. Microencapsulation by solvent evaporation: state of the art for process engineering approaches. *Int J Pharm*. 2008;363(1-2):26-39.

Memon SA, Cui H, Lo TY, Qi K, et al. Multi-functional microcapsules produced by aerosol reaction. *J Aerosol Sci*. 2008;39(12):1089-1098.

Carvalho AGS, Silva VM, Hubinger MD. Microencapsulation by spray drying of emulsified green coffee oil with two-layered membranes. *Food Res Int*. 2014;61:236-245.

Carneiro HCF, Tonon RV, Grosso CRF, Hubinger MD. Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. *J Food Eng*. 2013;115(4):443-451.

Rajam R, Anandharamakrishnan C. Spray freeze drying method for microencapsulation of Lactobacillus plantarum. *J Food Eng*. 2015;166:95-103.

Yang X, Gao N, Hu L, Li J, Sun Y. Development and evaluation of novel microcapsules containing poppy-seed oil using complex coacervation. *J Food Eng*. 2015;161:87-93.

Huang H-J, Yuan W-K, Chen XD. Microencapsulation based on emulsification for producing pharmaceutical products: a literature review. *Asia-Pac J Chem Eng*. 2006;14(3-4):515-544.

Jyothi NVN, Prasanna PM, Sakarkar SN, Prabha KS, Ramiah PS, Srawan GY. Microencapsulation techniques, factors influencing encapsulation efficiency. *J Microencapsulation*. 2010;27(3):187-197.

Konuklu Y, Unal M, Paksoy HO. Microencapsulation of caprylic acid with different wall materials as phase change material for thermal energy storage. *Sol Energy Mater Sol Cells*. 2014;120:536-542.

Dima C, Cotărleţ M, Alexe P, Dima S. Microencapsulation of essential oil of pimento [Pimenta dioica (L) Merr.] by chitosan/k-carrageenan complex coacervation method. *Innovative Food Sci Emerg Technol*. 2014;22:203-211.

Kaneko R, Suzuki E, Jikei M, Kakimoto M-A. Preparation and properties of hyperbranched aromatic polyamide-silica composites by sol-gel method. *High Perform Polym*. 2002;14(2):105-114.

Macwan DP, Dave PN, Chaturvedi S. A review on nano-TiO₂ sol-gel type synthesises and its applications. *J Mater Sci*. 2011;46(11):3669-3686.

Zhu Y, Liang S, Chen K, et al. Preparation and properties of nanoencapsulated n-octadecane phase change material with organosilica shell for thermal energy storage. *Energy Convers Manage*. 2015;105:908-917.

He F, Wang X, Wu D. New approach for sol-gel synthesis of microencapsulated n-octadecane phase change material with silica wall using sodium silicate precursor. *Energy*. 2014;67:223-233.

Zhang S, Wang S, Zhang J, et al. Increasing phase change latent heat of stearic acid via nanocapsule interface confinement. *J Phys Chem C*. 2013;117(44):23412-23417.

Rao Z, Wang S, Peng F. Self diffusion of the nano-encapsulated phase change materials: a molecular dynamics study. *Appl Energy*. 2012;100:303-308.

Zhang J, Wang SS, Zhang SD, et al. In situ synthesis and phase change properties of Na₅SO₄·10H₂O@SiO₂ solid nanobowls toward smart heat storage. *J Phys Chem C*. 2011Sep;115(41):20061-20066.

Zhang M, Hong Y, Ding S, et al. Encapsulated nano-heat-sinks for thermal management of heterogeneous chemical reactions. *Nanoscale*. 2010;2(12):2790.

Lai C-C, Lin S-M, Chu Y-D, Chang C-C, Chueh Y-L, Lu M-C. Tunable endothermic plateau for enhancing thermal energy storage obtained using binary metal alloy particles. *Nano Energy*. 2016;25:218-224.

Wu W, Bostanci H, Chow L, et al. Heat transfer enhancement of PAO in microchannel heat exchanger using nano-encapsulated phase change indium particles. *Int J Heat Mass Transfer*. 2013;58(1-2):348-355.

Nomura T, Zhu C, Sheng N, Saito G, Akiyama T. Microencapsulation of metal-based phase change material for high-temperature thermal energy storage. *Sci R*. 2015;5(1):9117.

Liu H, Wang X, Wu D. Fabrication of graphene/TiO₂/paraffin composite phase change materials for enhancement of solar energy efficiency in photocatalysis and latent heat storage. *ACS Sustainable Chem Eng*. 2017;5(6):4906-4915.

Yu S, Wang X, Wu D. Self-assembly synthesis of microencapsulated n-eicosane phase-change materials with crystalline-phase-controllable calcium carbonate shell. *Energy Fuels*. 2014;28(5):3519-3529.

Latibari ST, Mehrali M, Mehrali M, et al. Facile synthesis and thermal performances of stearic acid/titania core/shell nanocapsules by sol–gel method. *Energy*. 2015;85:635-644.

Pan L, Ji Q, Qin Y, Jiang Z, Zhang Z, Zhang S, Wang Z. Diverting phase transition of high-melting-point stearic acid to room temperature by microencapsulation in boehmite. *RSC Adv*. 2013;3(44):22326.

Lazko J, Popineau Y, Legrand J. Soy glycinin microcapsules by simple coacervation method. *Colloids Surf B*. 2004;37(1-2):1-8.

Sutaphanit P, Chitrprasert P. Optimisation of microencapsulation of holy basil essential oil in gelatin by response surface methodology. *Food Chem*. 2014;150:313-320.

Hawlader M, Uddin M, Zhu HJ. Preparation and evaluation of a novel solar storage material: microencapsulated paraffin. *Int J Solar Energy*. 2000;20(4):227-238.
114. Hawlader M, Uddin M, Zhu H. Encapsulated phase change materials for thermal energy storage: experiments and simulation. Int J Energy Res. 2002;26(2):159-171.

115. Santos MG, Bozza FT, Thomazini M, Favaro-Trindade CS. Microencapsulation of xylitol by double emulsion followed by complex coacervation. Food Chem. 2015;171:32-39.

117. Alvarado J, Marsh C, Sohn C, et al. Characterization of supercooling suppression of microencapsulated phase change material by using DSC. J Therm Anal Calorim. 2006;86(2):505-509.

118. Özour Y, Mazman M, Paksoy H, Evliya H. Microencapsulation of coco fatty acid mixture for thermal energy storage with phase change material. Int J Energy Res. 2006;30(10):741-749.

119. Onder E, Sarier N, Cimen E. Encapsulation of phase change materials by complex coacervation to improve thermal performances of woven fabrics. Thermochim Acta. 2008;467(1-2):63-72.

120. Bayés-Garcia L, Ventolà L, Cordobilla R, Benages R, Calvet T, Cuevas-Diarte MA. Phase change materials (PCM) microcapsules with different shell compositions: preparation, characterization and thermal stability. Sol Energy Mater Sol Cells. 2010;94(7):1235-1240.

121. Butstraen C, Salatún F. Preparation of microcapsules by complex coacervation of gum arabic and chitosan. Carbohydr Polym. 2014;99:608-616.

122. Shin Y, Yoo D-I, Son K. Development of thermoregulating textile materials with microencapsulated phase change materials (PCM). II. Preparation and application of PCM microcapsules. J Appl Polym Sci. 2005;96(8):2005-2010.

123. Jiang F, Wang X, Wu D. Design and synthesis of magnetic microcapsules based on n-ecosanoic core and Fe₃O₄/SiO₂ hybrid shell for dual-functional phase change materials. Appl Energy. 2014;134:456-468.

124. Wu C-B, Wu G, Yang X, et al. Preparation of microencapsulated medium temperature phase change material of tris(hydroxymethyl)methyl aminomethane@SiO₂ with excellent cycling performance. Appl Energy. 2015;154:361-368.

125. Cao L, Tang F, Fang G. Synthesis and characterization of microencapsulated paraffin with titanium dioxide shell as shape-stabilized thermal energy storage materials in buildings. Energy Build. 2014;72:31-37.

126. Cao L, Tang F, Fang G. Preparation and characteristics of microencapsulated palmitic acid with TiO₂ shell as shape-stabilized thermal energy storage materials. Sol Energy Mater Sol Cells. 2014;123:183-188.

127. Chen Z, Cao L, Shan F, Fang G. Preparation and characteristics of microencapsulated stearic acid as composite thermal energy storage material in buildings. Energy Build. 2013;62:469-474.

128. Chen Z, Cao L, Fang G, Shan F. Synthesis and characterization of microencapsulated paraffin microcapsules as shape-stabilized thermal energy storage materials. Nanoscale Microscale Thermophys Eng. 2013;17(2):112-123.

129. Wang L-Y, Tsai P-S, Yang Y-M. Preparation of silica microspheres encapsulating phase-change material by sol-gel method in o/w emulsion. J Microencapsulation. 2006;23(1):3-14.

130. Fang G, Chen Z, Li H. Synthesis and properties of microencapsulated paraffin composites with SiO₂ shell as thermal energy storage materials. Chem Eng J. 2010;163(1-2):154-159.

131. Zhang H, Wang X, Wu D. Silica encapsulation of n-octadecane via sol-gel process: a novel microencapsulated phase-change material with enhanced thermal conductivity and performance. J Colloid Interface Sci. 2010;343(1):246-255.

132. Chai L, Wang X, Wu D. Development of bifunctional microencapsulated phase change materials with crystalline titanium dioxide shell for latent-heat storage and photocatalytic effectiveness. Appl Energy. 2015;138:661-674.

133. Hong Y, Ding S, Wu W, et al. Enhancing heat capacity of colloidal suspension using nanoscale encapsulated phase-change materials for heat transfer. ACS Appl Mater Interfaces. 2010;2(6):1685-1691.

134. Li M, Wu Z, Tan J. Properties of form-stable paraffin/silicon dioxide/expansive graphite phase change composites prepared by sol-gel method. Appl Energy. 2012;92:456-461.

135. Chang CC, Tsai YL, Chiu JJ, Chen H. Preparation of phase change materials microcapsules by using PMMA network-silica hybrid shell via sol-gel process. J Appl Polym Sci. 2009;112(3):1850-1857.

136. Tan Y-C, Hettagarachchi K, Siu M, Pan Y-R, Lee AP. Controlled microfluidic encapsulation of cells, proteins, and microbeads in lipid vesicles. J Am Chem Soc. 2006;128(17):5656-5658.

137. Sun BJ, Shum HC, Holtzie C, Weitz DA. Microfluidic melt encapsification for encapsification and release of actives. ACS Appl Mater Interfaces. 2010;2(12):3411-3416.

138. Fu Z, Su L, Li J, et al. Elastic silicone encapsulation of n-hexadecyl bromide by microfluidic approach as novel microencapsulated phase change materials. Thermochim Acta. 2014;590:24-29.

139. Loscertales IG, Barrero A, Guerrero I, Cortijo R, Marquez M, Ganan-Calvo A. Micro/nano encapsulation via electified coaxial liquid jets. Science. 2002;295(5560):1695-1698.

140. Moghaddam MK, Mortazavi SM, Khayamian T. Preparation of calcium alginate microcapsules containing n-nonadecane by a melt coaxial electrospray method. J Electrostat. 2015;73:56-64.

141. Comunian TA, Abbaspourrad A, Favaro-Trindade CS, Weitz DA. Fabrication of solid lipid microcapsules containing ascorbic acid using a microfluidic technique. Food Chem. 2014;152:271-275.

142. Vilanova N, Rodriguez-Abreu C, Fernandez-Nieves A, Solans C. Fabrication of novel silicone capsules with tuneable mechanical properties by microfluidic techniques. ACS Appl Mater Interfaces. 2013;5(11):5247-5252.

143. Ye C, Chen A, Colombo P, Martinez C. Ceramic microparticles and capsules via microfluidic processing of a preceramic polymer. J R Soc Interface. 2010;7(Suppl 4):S461-S473.

144. Zhang H, Wang X. Synthesis and properties of microencapsulated n-octadecane with polyurea shells containing different soft segments for heat energy storage and thermal regulation. Sol Energy Mater Sol Cells. 2009;93(8):1366-1376.

145. Park S, Lee Y, Kim YS, et al. Magnetic nanoparticle-embedded PCM microcapsules based on paraffin core and polyurea shell. Colloids Surf A. 2014;450:46-51.

146. Pan L, Tao Q, Zhang S, et al. Preparation, characterization and thermal properties of micro-encapsulated phase change materials. Sol Energy Mater Sol Cells. 2012;98:66-70.

147. Szczotok AM, Garrido I, Carmona M, Kjøniksen A-L, Rodriguez JF. Predicting microcapsules morphology and encapsulation efficiency by combining the spreading coefficient theory and polar surface energy component. Colloids Surf A. 2018;554:49-59.
149. Landfester K. Miniemulsions for nanoparticle synthesis. *Topics in current chemistry*. Berlin: Heidelberg: Springer; 2003;75-123.

150. Galindo-Alvarez J, Boyd D, Marchal F, et al. Miniemulsion polymerization templates: a systematic comparison between low emulsion emulfication (near-PIT) and ultrasound emulsification methods. *Colloids Surf A*. 2011;374(1-3):134-141.

151. Wang H, Wang M, Ge X. Graft copolymers of polyurethane with various vinyl monomers via radiation-induced miniemulsion polymerization: influential factors to grafting efficiency and particle morphology. *Radiat Phys Chem*. 2009;78(2):112-118.

152. Sajjadi S, Jahanzad F. Comparative study of monomer droplet nucleation in the seeded batch and semibatch miniemulsion polymerisation of styrene. *Eur Polym J*. 2003;39(4):785-794.

153. Sari A, Alkan C, Biçer A, Altuntaş A, Bilgin C. Micro/nanoencapsulated n-nonadecane with poly(methyl methacrylate) shell for thermal energy storage. *Energy Convers Manage*. 2014;86:614-621.

154. Chen Z-H, Yu F, Zeng X-R, Zhang Z-G. Preparation, characterization and thermal properties of novel nanoencapsulated phase change materials for thermal energy storage. *Solar Energy*. 2012;91(1):7-12.

155. Zhang GH, Bon SAF, Zhao CY. Synthesis, characterization and thermal properties of novel nanoencapsulated phase change materials for thermal energy storage. *Sorlar Energy*. 2012;86(5):1149-1154.

156. Wang X, Zhang L, Yu Y-H, et al. Nano-encapsulated PCM via pickering emulsification. *Sci Rep*. 2015;5(1):13357.

157. Fang G, Li H, Yang F, Liu X, Wu S. Preparation and characterization of nano-encapsulated n-tetradecane as phase change material for thermal energy storage. *Chem Eng J*. 2009;153(1-3):217-221.

158. Gao F, Wang X, Wu D. Design and fabrication of bifunctional microcapsules for solar thermal energy storage and solar photocatalysis by encapsulating paraffin phase change material into cuprous oxide. *Sol Energy Mater Sol Cells*. 2017;168:146-164.

159. Hirsch K. Microencapsulation of an insecticide by interfacial polymerisation. *Powder Technol*. 2003;130(1-3):324-330.

160. Salehin F, Bedek G, Devaux E, Dupont D, Gengembre L. Microencapsulation of a cooling agent by interfacial polymerization: influence of the parameters of encapsulation on poly(urethane-urea) microparticles characteristics. *J Membr Sci*. 2011;370(1-2):23-33.

161. Liang C, Lingling X, Hongbo S, Zhiben Z. Microencapsulation of butyl stearate as a phase change material by interfacial polymerization in a polyeurea system. *Energy Convers Manage*. 2009;50(3):723-729.

162. Zou GL, Tan ZC, Lan XZ, Sun LX, Zhang T. Preparation and characterization of microencapsulated hexadecane used for thermal energy storage. *Chem Chin Lett*. 2004;15(6):729-732.

163. Cho J-S, Kwon A, Cho C-G. Microencapsulation of octadecane as a phase-change material by interfacial polymerization in an emulsion system. *Colloid Polym Sci*. 2002;280(3):260-266.

164. Siddhan P, Jassal M, Agrawal AK. Core content and stability of n-octadecane-containing polyeurea microcapsules produced by interfacial polymerization. *J Appl Polym Sci*. 2007;106(2):786-792.

165. Su J-F, Wang L-X, Ren L. Synthesis of polyurethane microPCMs containing n-octadecane by interfacial polymerization: influence of styrene-maleic anhydride as a surfactant. *Colloids Surf A*. 2007;299(1-3):268-275.

166. Tseng Y-H, Fang M-H, Tsai P-S, Yang Y-M. Preparation of microencapsulated phase-change materials (MPCMs) by means of interfacial polymer condensation. *J Microcapsul*. 2005;22(1):37-46.

167. Zhang H, Sun S, Wang X, Wu D. Fabrication of microencapsulated phase change materials based on n-octadecane core and silica shell through interfacial polymer condensation. *Colloids Surf A*. 2011;389(1-3):104-117.

168. Li B, Liu T, Hu L, Wang Y, Gao L. Fabrication and properties of microencapsulated paraffin@SiO2 phase change composite for thermal energy storage. *ACS Sustainable Chem Eng*. 2013;1(3):374-380.

169. Liang S, Li Q, Zhu Y, et al. Nanoencapsulation of n-octadecane phase change material with silica shell through interfacial hydrolysis and polycondensation in miniemulsion. *Energy*. 2015;93:1684-1692.

170. Yadav S, Suresh A, Khilar KC. Microencapsulation in polyurea shell by interfacial polymer condensation. *AIChE J*. 1990;36(3):431-438.

171. Yadav S. Release rates from semi-crystalline polymer microcapsules formed by interfacial polymer condensation. *J Membr Sci*. 1997;125(2):213-218.

172. Hong K, Park S. Preparation of polyurethane microcapsules with different soft segments and their characteristics. *React Funct Polym*. 1999;42(3):193-200.

173. Hong K, Park S. Preparation of polyurea microcapsules containing ovalbumin. *Mater Chem Phys*. 2000;64(1):20-24.

174. Kim J, Cho G. Thermal storage/release, durability, and temperature sensing properties of thermostatic fabrics treated with octadecane-containing microcapsules. *Text Res J*. 2002;72(12):1093-1098.

175. Su J-F, Wang L-X, Ren L, Huang Z, Meng X-W. Preparation and characterization of polyurethane microcapsules containing n-octadecane with styrene-maleic anhydride as a surfactant by interfacial polymer condensation. *J Appl Polym Sci*. 2006;102(5):4996-5006.

176. Guanglong Z, Xiaoheng L, Zhi-Cheng T, Li-Xian S, Tao Z. Microencapsulation of n-hexadecane as a phase change material in polyurea. *Acta Phys Chim Sin*. 2004;20(1):90-93.

177. Lan X-Z, Tan Z-C, Zou G-L, Sun L-X, Zhang T. Microencapsulation of n-eicosane as energy storage material. *Chin J Chem*. 2002;22(5):411-414.

178. Wei J, Li Z, Liu L, Liu X. Preparation and characterization of novel polyamid paraffin MPCM by interfacial polymerization technique. *J Appl Polym Sci*. 2013;127(6):4588-4593.

179. Huang J, Wang T, Zhu P, Xiao J. Preparation, characterization, and thermal properties of the microencapsulation of a hydrated salt as phase change energy storage materials. *Thermochim Acta*. 2013;557:1-6.

180. Qiu X, Lu L, Wang J, Tang G, Song G. Preparation and characterization of microencapsulated n-octadecane as phase change material with different n-butyl methacrylate-based copolymer shells. *Sol Energy Mater Sol Cells*. 2014;128:102-111.

181. Tang X, Li W, Zhang X, Shi H. Fabrication and characterization of microencapsulated phase change material with low supercooling for thermal energy storage. *Energy*. 2014;68:160-166.

182. Sánchez-Silva L, Rodríguez JF, Romero A, Borreguero AM, Carmona M, Sánchez P. Microencapsulation of PCMs with a styrene-methyleneacrylate copolymer shell by suspension-like polymerisation. *Chem Eng J*. 2010;157(1):216-222.

183. Sánchez L, Sánchez P, de Lucas A, Carmona M, Rodríguez JF. Microencapsulation of PCMs with a polystyrene shell. *Colloid Polym Sci*. 2007;285(12):1377-1385.
184. Sánchez L, Sánchez P, Carmona M, de Lucas A, Rodríguez JF. Influence of operation conditions on the microencapsulation of PCMs by means of suspension-like polymerization. Colloid Polym Sci. 2008;286(8-9):1019-1027.

185. Borreguero AM, Carmona M, Sanchez ML, Valverde JL, Rodríguez JF. Improvement of the thermal behaviour of gypsum blocks by the incorporation of microcapsules containing PCMs obtained by suspension polymerization with an optimal core/coating mass ratio. Appl Therm Eng. 2010;30(10):1164-1169.

186. You M, Zhang X, Wang J, Wang X. Polyurethane foam containing microencapsulated phase-change materials with styrene-divinylbenzene co-polymer shells. J Mater Sci. 2009;44(12):3141-3147.

187. You M, Wang X, Zhang X, Zhang L, Wang J. Microencapsulated n-octadecane with styrene-divinylbenzene co-polymer shells. J Polym Res. 2010;18(1):49-58.

188. Li W, Song G, Tang G, Chu X, Ma S, Liu C. Morphology, structure and thermal stability of microencapsulated phase change material with copolymer shell. Energy. 2011;36(2):785-791.

189. Chaiyasat P, Islam MZ, Chaiyasat A. Preparation of poly(divinylbenzene) microencapsulated octadecane by microsuspension polymerization: oil droplets generated by phase inversion emulsification. RSC Adv. 2013;3(26):10202.

190. Qiu X, Li W, Song G, Chu X, Tang G. Fabrication and characterization of microencapsulated n-octadecane with different crosslinked methylethacrylate-based polymer shells. Sol Energy Mater Sol Cells. 2012;98:283-293.

191. Cheng F, Wei Y, Zhang Y, Wang F, Shen T, Zong C. Preparation and characterization of phase-change material nanocapsules with amphiphilic polyurethane synthesized by 3-allyloxy-1,2-propanediol. J Appl Polym Sci. 2013;130(3):1879-1889.

192. Ma Y, Sun S, Li J, Tang G. Preparation and thermal reliability of microencapsulated phase change materials with binary cores and acrylate-based polymer shells. Thermochim Acta. 2014;588:38-46.

193. Sanchez L, Lacasa E, Carmona M, Rodriguez JF, Sanchez P. Applying an experimental design to improve the characteristics of microcapsules containing phase change materials for fabric uses. Ind Eng Chem Res. 2008;47(23):9783-9790.

194. Sánchez-Silva L, Rodríguez JF, Sánchez P. Influence of different suspension stabilizers on the preparation of rubitherm RT31 microcapsules. Colloids Surf A. 2011;390(1-3):62-66.

195. Borreguero A, Sánchez M, Sánchez-Silva M, Carmona M, Rodríguez J. Development of microcapsules containing phase change materials for refrigeration. In: 9th International Conference on Phase-Change Materials and Slurries for Refrigeration and Air Conditioning, Bulgaria, Vol. 5; 2010:29-36.

196. Ma S, Song G, Li W, Fan P, Tang G. UV irradiation-initiated MMA polymerization to prepare microcapsules containing phase change paraffin. Sol Energy Mater Sol Cells. 2010;94(10):1643-1647.

197. Giro-Paloma J, Konuklu Y, Fernández AI. Preparation and exhaustive characterization of paraffin or palmitic acid microcapsules as novel phase change material. Solar Energy. 2015;112:300-309.

198. Sari A, Alkan C, Karaipekli A. Preparation, characterization and thermal properties of PMMA/n-hexadecane microcapsules as novel solid–liquid microPCM for thermal energy storage. Appl Energy. 2010;87(5):1529-1534.

199. Alkan C, Sari A, Karaipekli A, Uzun O. Preparation, characterization, and thermal properties of microencapsulated phase change material for thermal energy storage. Sol Energy Mater Sol Cells. 2009;93(1):143-147.

200. Alkan C, Sari A, Karaipekli A. Preparation, thermal properties and thermal reliability of microencapsulated n-ecosane as novel phase change material for thermal energy storage. Energy Convers Manage. 2011;52(1):687-692.

201. Alay S, Alkan C, Gde F. Synthesis and characterization of poly(methyl methacrylate)/n-hexadecane microcapsules using different cross-linkers and their application to some fabrics. Thermochim Acta. 2011;518(1-2):1-8.

202. Alay S, Gde F, Alkan C. Preparation and characterization of poly(methyl methacrylate-co-glycidyl methacrylate)/n-hexadecane nanocapsules as a fiber additive for thermal energy storage. Fibers Polymers. 2010;11(8):1089-1093.

203. Baek K-H, Lee J-Y, Kim J-H. Core/shell structured PCM capsules obtained by resin fortified emulsion process. J Dispersion Sci Technol. 2007;28(7):1059-1065.

204. Sari A., Alkan C, Dışoğlu C, Biçer A. Micro/nano-encapsulated n-heptadecane with polystyrene shell for latent heat thermal energy storage. Sol Energy Mater Sol Cells. 2014;126:42-50.

205. Sari A, Alkan C, Bilgin C. Micro/nano encapsulation of some paraffin eutectic mixtures with poly(methyl methacrylate) shell: preparation, characterization and latent heat thermal energy storage properties. Appl Energy. 2014;136:217-227.

206. Sari A, Alkan C, Dışoğlu C, Kızıl Ç. Micro/nano encapsulated n-tetracosane and n-octadecane eutectic mixture with polystyrene shell for low-temperature latent heat thermal energy storage applications. Solar Energy. 2015;115:195-203.

207. Sari A, Alkan C, Özcan AN. Synthesis and characterization of micro/nano capsules of PMMA/capric-stearic acid eutectic mixture for low temperature-thermal energy storage in buildings. Energy Build. 2015;90:106-113.

208. Luo Y, Zhou X. Nanoencapsulation of a hydrophobic compound by a miniemulsion polymerization process. J Polym Sci Part A Polym Chem. 2004;42(9):2145-2154.

209. Chen C, Chen Z, Zeng X, Fang X, Zhang Z. Fabrication and characterization of nanocapsules containing n-decanol by miniemulsion polymerization using interfacial redox initiation. Colloid Polym Sci. 2011;290(4):307-314.

210. Li MG, Zhang Y, Xu YH, Zhang D. Effect of different amounts of surfactant on characteristics of nanoencapsulated phase-change materials. Polym Bull. 2011;67(3):541-552.

211. Fuensanta M, Paiphansiri U, Romero-Sánchez MD, Guillem A. Synthesis of binary PCMs obtained by suspension polymerization. Energy Convers Manage. 2011;52(1):687-692.

212. Sarı A., Alkan C, Dışoğlu C, Kızıl Ç. Micro/nano encapsulated n-tetracosane and n-octadecane eutectic mixture with polystyrene shell for low-temperature latent heat thermal energy storage applications. Solar Energy. 2015;115:195-203.

213. Fuensanta M, Paiphansiri U, Romero-Sánchez MD, Guillem A. Synthesis of binary PCMs obtained by suspension polymerization. Energy Convers Manage. 2011;52(1):687-692.

214. Baek K-H, Lee J-Y, Kim J-H. Core/shell structured PCM capsules obtained by resin fortified emulsion process. J Dispersion Sci Technol. 2007;28(7):1059-1065.

215. Baek K-H, Lee J-Y, Kim J-H. Core/shell structured PCM capsules obtained by resin fortified emulsion process. J Dispersion Sci Technol. 2007;28(7):1059-1065.

216. Baek K-H, Lee J-Y, Kim J-H. Core/shell structured PCM capsules obtained by resin fortified emulsion process. J Dispersion Sci Technol. 2007;28(7):1059-1065.
252. Leng G, Qiao G, Jiang Z, et al. Micro encapsulated & form-stable phase change materials for high temperature thermal energy storage. Appl Energy. 2018;217:212-220.

253. ping Wang J, peng Zhao X, lin Guo H, Zheng Q. Preparation of microcapsules containing two-phase core materials. Langmuir. 2004;20(25):10845-10850.

254. Alkan C, Sari A. Fatty acid/poly(methyl methacrylate) (PMMA) blends as form-stable phase change materials for latent heat thermal energy storage. Solar Energy. 2008;82(2):118-124.

255. Ma Y, Chu X, Tang G, Yao Y. The effect of different oil segments on the formation and properties of binary core microencapsulated phase change materials with polyurea/polyurethane double shell. J Colloid Interface Sci. 2013;392:407-414.

256. Giro-Paloma J, Barreneche C, Martínez M, Fernández AI, Cabeza LF. Physico-chemical and mechanical properties of microencapsulated phase change material. Appl Energy. 2013;109:441-448.

257. Fortuniak W, Slomkowski S, Chojnowski J, Kurjata J, Tracz A, Mizerska U. Synthesis of a paraffin phase change material microencapsulated in a siloxane polymer. Colloid Polym Sci. 2012;291(3):725-733.

258. Liu J, Chen L, Fang X, Zhang Z. Preparation of graphite nanoparticles-modified phase change microcapsules and their dispersed slurry for direct absorption solar collectors. Sol Energy Mater Sol Cells. 2017;159:151-158.

259. Yang R, Xu H, Zhang Y. Preparation, physical property and phase change emulsion. J Appl Polym Sci. 2003;80(4):632-643.

260. Ji X, Luo R, Peng F, Fang Y, Akiyama T, Wang S. Synthesis, characterization and thermal properties of paraffin microcapsules modified with nano-Al2O3. Appl Energy. 2015;137:731-737.

261. Zhang H, Balram A, Tiznobaik H, Shin D, Santhanagopalan S. Microencapsulation of molten salt in stable silica shell via a water-limited sol-gel process for high temperature thermal energy storage. Appl Therm Eng. 2018;136:262-274.

262. Qiu XZ, Tao Y, Xu XQ, He XH, Fu XY. Synthesis and characterization of paraffin/TiO2-P(MMA-co-BA) phase change material microcapsules for thermal energy storage. J Appl Polym Sci. 2018;135(27):46447.

263. Şahan Nurten, Paksoy H. Developing microencapsulated 12-hydroxystearic acid (HSA) for phase change material use. Int J Energy Res. 2018;42(10):3351-3360.

264. Sanzhez-Silva L, Lopez V, Cuenca N, Valverde JL. Poly(urea-formaldehyde) microcapsules containing commercial paraffin: in situ polymerization study. Colloid Polym Sci. 2018;296(9):1449-1457.

265. Zhang Z, Fang X. Study on paraffin/expanded graphite composite phase change thermal energy storage material. Energy Convers Manage. 2006;47(3):303-310.

266. Song Q, Li Y, Xing J, Hu JY, Marcus Y. Thermal stability of composite phase change material microcapsules incorporated with silver nano-particles. Polymer. 2007;48(11):3317-3323.

267. Su J-F, Huang Z, Ren L. High compact melanin-formaldehyde microPCMs containing n-octadecane fabricated by a two-step coevaporation method. Colloid Polym Sci. 2007;285(14):1581-1591.

268. Yuan Y, Huang Y, Li Q. Experimental investigation on thermal conductivity and specific heat capacity of magnetic microencapsulated phase change material suspension. Chem Phys Lett. 2009;479(4-6):264-269.

269. Cao F, Yang B. Supercooling suppression of microencapsulated phase change materials by optimizing shell composition and structure. Appl Energy. 2014;113:1512-1518.

270. Porras-Sauvedra J, Palacios-González E, Lartundo-Rojas L, et al. Microstructural properties and distribution of components in microparticles obtained by spray-drying. J Food Eng. 2015;152:105-112.

271. Wang T, Wang S, Luo R, Ziu C, Akiyama T, Zhang Z. Microencapsulation of phase change materials with binary cores and calcium carbonate shell for thermal energy storage. Appl Energy. 2016;171:113-119.

272. Liu J, Chen L, Fang X, Zhang Z. Preparation of graphite nanoparticles-modified phase change microcapsules and their dispersed slurry for direct absorption solar collectors. Sol Energy Mater Sol Cells. 2018;159:151-159.

273. Geng X, Li W, Yin Q, et al. Design and fabrication of reversible thermochromic microencapsulated phase change materials for thermal energy storage and its antibacterial activity. Energy. 2018;159:857-869.

274. Yang W, Zhang L, Guo Y, et al. Novel segregated-structure phase change materials composed of paraffin@graphene microencapsules with high latent heat and thermal conductivity. J Mater Sci. 2018;53(4):2566-2575.

275. Yang R, Xu H, Zhang Y. Preparation, physical property and thermal physical property of phase change microcapsule slurry and phase change emulsion. Sol Energy Mater Sol Cells. 2003;80(4):405-416.

276. Zhang X, Wang X, Wu D. Design and synthesis of multifunctional microencapsulated phase change materials with silver/silica double-layered shell for thermal energy storage, electrical conduction and antimicrobial effectiveness. Energy. 2016;111:498-512.

277. Arconada N, Arribas L, Lucio B, González-Aguilar J, Romero M. Macroencapsulation of sodium chloride as phase change materials for thermal energy storage. Solar Energy. 2018;167:1-9.

278. Li M, Liu J, Shi J. Synthesis and properties of phase change microcapsule with SiO2-TiO2 hybrid shell. Solar Energy. 2018;167:158-164.

279. Scacchetti FA, Pinto E, Soares GMB. Thermal and antimicrobial evaluation of cotton functionalized with a chitosan-zeolite composite and microcapsules of phase-change materials. J Appl Polym Sci. 2017;135(15):46135.

280. Demirbağ S, Aksoy SA. Encapsulation of phase change materials by complex coacervation to improve thermal performances and flame retardant properties of the cotton fabrics. Fibers Polym. 2016;17(3):408-417.

281. Wang X, Li C, Zhao T. Fabrication and characterization of poly(melamine-formaldehyde)/silicon carbide hybrid...
microencapsulated phase change materials with enhanced thermal conductivity and light-heat performance. Sol Energy Mater Sol Cells. 2018;183:82-91.

286. Huang X, Lin Y, Fang G. Thermal properties of polyvinyl butyral/graphene composites as encapsulation materials for solar cells. Solar Energy. 2018;161:187-193.

287. Liu C, Ma Z, Wang J, Li Y, Rao Z. Experimental research on flow and heat transfer characteristics of latent functional thermal fluid with microencapsulated phase change materials. Int J Heat Mass Transfer. 2017;115:737-742.

288. Sharma SD, Buddh D, Sawhney RL. Accelerated thermal cycle test of latent heat-storage materials. Solar Energy. 1999;66(6):483-490.

289. Zhang GH, Zhao CY. Thermal property investigation of aqueous suspensions of microencapsulated phase change material and carbon nanotubes as a novel heat transfer fluid. Renew Energy. 2013;60:433-438.

290. Zheng Z, Chang Z, Xu G-K, et al. Microencapsulated phase change materials in solar-thermal conversion systems: understanding geometry-dependent heating efficiency and system reliability. ACS Nano. 2016;11(1):721-729.

291. Zhang Y, Cheng X, Wang J, Zhou F. Bi- and tetra-layered dipalmitoyl phosphatidylserine (DPPS) patterns produced by hydration of Langmuir-Blodgett monolayers and the subsequent enzymatic digestion. Colloids Surf A. 2009;337(1-3):26-32.

292. Döş DK, Kızıl Ç, Bicer A, Sarı A, Alkan C. Microencapsulated n-alkane eutectics in polystyrene for solar thermal applications. Solar Energy. 2018;160:32-42.

293. Hasan MI. Numerical investigation of counter flow microchannel heat exchanger with MEPCM suspension. Appl Therm Eng. 2011;31(6-7):1068-1075.

294. Liu L, Alva G, Jia Y, Huang X, Fang G. Dynamic thermal characteristics analysis of microencapsulated phase change suspensions flowing through rectangular mini-channels for thermal energy storage. Energy Build. 2017;134:37-51.

295. Jurkowski M, Szczygiel I. Review on properties of microencapsulated phase change materials slurries (mPCMs). Appl Therm Eng. 2016;98:365-373.

296. Jiang Y, Sun Y, Jacob RD, Bruno F, Li S. Novel Na2SO4-NaCl-ceramic composites as high temperature phase change materials for solar thermal power plants (part 1). Sol Energy Mater Sol Cells. 2018;178:74-83.

297. Lu Y, Xiao X, Mo J, et al. Green nano-encapsulation technique for preparation of phase change nanofibers mats with core-sheath structure. Colloids Surf A. 2018;555:501-506.

298. Imran Hussain S, Ameelia Roseline A, Kalaiselvam S. Biphasic nanoencapsulated eutectic phase change material core with SiO2/SnO2 nanosphere shell for thermal and electrical energy storage. Mater Des. 2018;154:291-301.

299. Naderi M. Chapter Fourteen - Surface Area: Brunauer-Emmett-Teller (BET). Progress in Filtration and Separation. In: S. Tarleton. Oxford, Academic Press; 2015:585-608.

300. Toma AC, Pfohl T. Small-angle X-ray scattering (SAXS) and wide-angle x-ray scattering (WAXS) of supramolecular assemblies. Supramolecular chemistry: from molecules to nanomaterials; 2012.

301. Lamba D. Wide-Angle X-Ray Scattering (WAXS). Encyclopedia of Membranes. Drioli E, Giorno L. Berlin, Heidelberg: Springer Berlin Heidelberg; 2016:2040-2042. https://doi.org/10.1007/978-3-662-44324-8

302. Sharma A, Sharma SD, Buddh D, Sawhney RL. Thermal cycle test of urea for latent heat storage applications. Int J Energy Res. 2001;25(5):465-468.

303. Zeng J, Xuan Y, Duan H. Tin-silica-silver composite nanoparticles for medium-to-high temperature volumetric absorption solar collectors. Sol Energy Mater Sol Cells. 2016;157:930-936.

304. Petthurajan V, Sivan S, Konatt AJ, Reddy AS. Facile approach to improve solar thermal energy storage efficiency using encapsulated sugar alcohol based phase change material. Sol Energy Mater Sol Cells. 2018;185:524-535.

305. Chen Y, Zhang Q, Wen X, Yin H, Liu J. A novel CNT encapsulated phase change material with enhanced thermal conductivity and photo-thermal conversion performance. Sol Energy Mater Sol Cells. 2018;184:82-90.

306. Zheng Z, Jin J, Xu G-K, et al. Highly stable and conductive microcapsules for enhancement of joule heating performance. ACS Nano. 2016;10(4):4695-4703.

307. Liu L, Zou R, Lin Z, et al. Tailoring carbon nanotube density for modulating electro-to-heat conversion in phase change composites. Nano Lett. 2013;13(9):4028-4035.

308. Ling Z, Zhang Z, Shi G, et al. Review on thermal management systems using phase change materials for electronic components, li-ion batteries and photovoltaic modules. Renewable Sustainable Energy Rev. 2014;31:427-438.

309. Qiu Z, Ma X, Li P, Zhao X, Wright A. Micro-encapsulated phase change material (MPCM) slurries: characterization and building applications. Renewable Sustainable Energy Rev. 2017;77:246-262.

310. Chen L, Wang T, Zhao Y, Zhang X-R. Characterization of thermal and hydrodynamic properties for microencapsulated phase change slurry (MPCS). Energy Convers Manage. 2014;79:317-333.

311. Ho CJ, Huang JB, Tsai PS, Yang YM. Water-based suspensions of Al2O3 nanoparticles and MEPCM particles on convection effectiveness in a circular tube. Int J Therm Sci. 2011;50(5):736-748.

312. Ho CJ, Chen W-C, Yan W-M. Experiment on thermal performance of water-based suspensions of Al2O3 nanoparticles and MEPCM particles in a minichannel heat sink. Int J Heat Mass Transfer. 2014;69:276-284.

313. Seyf HR, Zhou Z, Ma HB, Zhang Y. Three dimensional numerical study of heat-transfer enhancement by nano-encapsulated phase change material slurry in microtube heat sinks with tangential impingement. Int J Heat Mass Transfer. 2013;56(1-2):561-573.

314. Rehman MMU, Qu ZG, Fu RP. Three-dimensional numerical study of laminar confined slot jet impingement cooling using slurry of nano-encapsulated phase change material. J Thermal Sci. 2016;25(5):431-439.

315. Konuklu Y, Ostry M, Paksoy HO, Charvat P. Review on using microencapsulated phase change materials (PCM) in building applications. Energy Build. 2015;106:134-155.

316. Erlbeck L, Schreiner P, Fasel F, Metherer F-J, Rädle M. Investigation of different materials for macroencapsulation of salt hydrate phase change materials for building purposes. Constr Build Mater. 2018;180:512-518.

317. Giro-Paloma J, Al-Shannaq R, Fernández A., Farid M. Preparation and characterization of microencapsulated phase change materials for use in building applications. Materials. 2018;5(1):11.

318. Aguayo M, Das S, Maroli A, et al. The influence of microencapsulated phase change material (PCM) characteristics on
the microstructure and strength of cementitious composites: experiments and finite element simulations. *Cem Concr Compos.* 2016;73:29-41.

320. Cao VD, Pilehvar S, Salas-Bringas C, et al. Microencapsulated phase change materials for enhancing the thermal performance of portland cement concrete and geopolymer concrete for passive building applications. *Energy Convers Manage.* 2017;133:56-66.

321. Wei Z, Falzone G, Wang B, et al. The durability of cementitious composites containing microencapsulated phase change materials. *Cem Concr Compos.* 2017;81:66-76.

322. Young RA, Wei Z, Rubalcava-Cruz J, et al. A general method for retrieving thermal deformation properties of microencapsulated phase change materials or other particulate inclusions in cementitious composites. *Mater Design.* 2017;126:259-267.

323. Biswas K, Lu J, Soroushian P, Shrestha S. Combined experimental and numerical evaluation of a prototype nano-PCM enhanced wallboard. *Appl Energy.* 2014;131:517-529.

324. Barreneche C, de Gracia A, Serrano S, et al. Comparison of three different devices available in Spain to test thermal properties of building materials including phase change materials. *Appl Energy.* 2013;109:421-427.

325. Zhang H, Xu Q, Zhao Z, et al. Preparation and thermal performance of gypsum boards incorporated with microencapsulated phase change materials for thermal regulation. *Sol Energy Mater Sol Cells.* 2012;102:93-102.

326. Castellón C, Medrano M, Roca J, et al. Effect of microencapsulated phase change material in sandwich panels. *Renewable Energy.* 2010;35(10):2370-2374.

327. Konuklu Y, Paksoy HO. Phase change material sandwich panels for managing solar gain in buildings. *J Solar Energy Eng.* 2009;131(4):41012.

328. Nelson G. Application of microencapsulation in textiles. *Int J Pharm.* 2002;242(1-2):55-62.

329. Sennur A, Göde F, Alkan C. Synthesis and thermal properties of poly(n-butyl acrylate)/n-hexadecane microcapsules using different cross-linkers and their application to textile fabrics. *J Appl Polym Sci.* 2011;120(5):2821-2829.

330. Moghaddam MK, Mortazavi SM. Preparation, characterisation and thermal properties of calcium alginate/n-nonadecane microcapsules fabricated by electro-coextrusion for thermo-regulating textiles. *J Microencapsulation.* 2015;32(8):737-744.

331. Alkan C, Aksoy SA, Anayurt RA. Synthesis of poly(methyl methacrylate-co-acrylic acid)/n-ecosane microcapsules for thermal comfort in textiles. *Text Res J.* 2015;85(19):2051-2058.

332. Aksoy SA, Alkan C, Tözüm MS, Demirbağ S, Anayurt RA, Ulcay Y. Preparation and textile application of poly(methyl methacrylate-co-methacrylic acid)/n-octadecane and n-ecosane microcapsules. *J Text Inst.* 2016;108(1):30-41.

333. Sun D, Iqbal K. Synthesis of functional nanocapsules and their application to cotton fabric for thermal management. *Cellulose.* 2017;24(8):3525-3543.

334. You M, Zhang XX, Li W, Wang X. Effects of MicroPCMs on the fabrication of MicroPCMs/polyurethane composite foams. *Thermochim Acta.* 2008;472(1-2):20-24.

335. Borregoero AM, Valverde JL, Peijs T, Rodríguez JF, Carmona M. Characterization of rigid polyurethane foams containing microencapsulated rubitherm® RT27. part i. *J Mater Sci.* 2010;45(16):4462-4469.

336. Borregoero AM, Rodríguez JF, Valverde JL, Arevalo R, Peijs T, Carmona M. Characterization of rigid polyurethane foams containing microencapsulated rubitherm® RT27: catalyst effect. part II. *J Mater Sci.* 2010;46(2):347-356.

337. Borregoero AM, Rodríguez JF, Valverde JL, Peijs T, Carmona M. Characterization of rigid polyurethane foams containing microencapsulated phase change materials: microcapsules type effect. *J Appl Polym Sci.* 2012;128(1):582-590.

338. Serrano A, Borregoero AM, Garrido I, Rodríguez JF, Carmona M. Reducing heat loss through the building envelope by using polyurethane foams containing thermoregulating microcapsules. *Appl Therm Eng.* 2016;103:226-232.

339. Qiu X, Lu L, Chen Z. Preparation and characterization of flame retardant phase change materials by microencapsulated paraffin and diethyl ethylphosphonate with poly(methacrylic acid-co-ethyl methacrylate) shell. *J Appl Polym Sci.* 2015;132(17):n/a-n/a.

340. Qiu X, Lu L, Wang J, Tang G, Song G. Fabrication, thermal properties and thermal stabilities of microencapsulated n-alkane with poly(lauryl methacrylate) as shell. *Thermochim Acta.* 2015;620:10-17.

341. Qiu X, Lu L, Han P, Tang G, Song G. Fabrication, thermal property and thermal reliability of microencapsulated paraffin with ethyl methacrylate-based copolymer shell. *J Therm Anal Calorim.* 2016;124(3):1291-1299.

342. Han P, Qiu X, Lu L, Pan L. Fabrication and characterization of a new enhanced hybrid shell microPCM for thermal energy storage. *Energy Convers Manage.* 2016;126:673-685.

343. Tobaldi DM, Piccirillo C, Pullar RC, et al. Silver-modified nano-titania as an antibacterial agent and photocatalyst. *J Phys Chem C.* 2014;118(9):4751-4766.