SPECIAL VALUES OF L-FUNCTIONS OF ONE-MOTIVES
OVER FUNCTION FIELDS

THOMAS H. GEISSER AND TAKASHI SUZUKI

Abstract. The purpose of this paper is to give a formula for the leading
coefficient at $s = 1$ of the L-function of one-motives over function fields
in terms of Weil-étale cohomology, generalizing the Weil-étale version
of the Birch and Swinnerton-Dyer conjecture in the authors’ previous
work. As a consequence we express the Tamagawa number of a torus
troduced by Ono-Oesterlé in terms of Weil-étale cohomology, and re-
prove their Tamagawa number formula.

1. Introduction

Let S be a proper smooth geometrically connected curve over a finite
field \mathbb{F}_q with function field K, and let $M = [X \to G]$ be a 1-motive over K,
that is, a lattice X and a semi-abelian variety G over K placed in degrees
-1 and 0, respectively. Consider the Hasse-Weil L-function $L(M, s)$ of the l-adic representation $V_l(M)(-1)$ over K

$$L(M, s) = \prod_v \det(1 - \varphi_v N(v)^{-s} | V_l(M)(-1)^{I_v})^{-1},$$

where l is a prime different from the characteristic p of K, v runs through
the places of S, I_v is the inertia group at v, φ_v is the geometric Frobenius at v, and $N(v)$ the order of the residue field $k(v)$ at v. Denote the Néron model and the connected Néron model of G over S by G and G^0, respectively,
and let $\text{Lie } G^0$ be the Lie algebra of G^0 (a locally free sheaf). Let $\mathcal{X} = j_*X$,
where $j: \text{Spec } K \hookrightarrow S$ is the inclusion. Define \mathcal{X}^Δ by the fiber product

$$
\begin{array}{ccc}
\mathcal{X}^\Delta & \longrightarrow & G^0 \\
\downarrow & & \downarrow \\
\mathcal{X} & \longrightarrow & G,
\end{array}
$$
and let \mathcal{M}^Δ be the complex of étale sheaves $[\mathcal{X}^\Delta \to \mathcal{G}^0]$ on S. If we set

$$r_M := - \sum_i (-1)^i \cdot \dim H_i^W(S, \mathcal{M}^\Delta) \otimes \mathbb{Q},$$

then

$$r_M = \text{rk } A(K) - \text{rk } X(K) - \text{rk } Y(K) + \sum_v \text{rk}(\mathcal{X}/\mathcal{X}^\Delta)(k(v)),$$

where A is the abelian variety quotient of G and Y is the character module of the torus part of G. Note that r_M can be negative. We give the following formula in the spirit of Lichtenbaum [Lic09].

Theorem 1.1. Assume that the Tate-Shafarevich group $\Sha(A)$ of A is finite. Then the groups $H^*_W(S, \mathcal{M}^\Delta)$ are finitely generated, $L(M, s)$ has a zero of order r_M at $s = 1$, and

$$\lim_{s \to 1} \frac{L(M, s)}{(s - 1)^{r_M}} = (-1)^{\text{rk } X(K)} \cdot \chi_W(S, \mathcal{M}^\Delta)^{-1} \cdot q^{\chi(S, \text{Lie } G^0)} \cdot (\log q)^{r_M}.$$

Here $\chi_W(S, \mathcal{M}^\Delta)$ is the Euler characteristic of the complex $H^*_W(S, \mathcal{M}^\Delta)$ with differential the cup product with a generator $e \in H^1_W(S, \mathbb{Z}) \cong \mathbb{Z}$.

This includes the formula for abelian varieties in [GS20] and implies a formula for tori as a special case. Note that the left-hand side depends on the map $X \to G$ just as the right-hand side does; in fact, we have

$$L(M, s) = L(\mathcal{X}^\Delta, s - 1) \cdot L(T, s) \cdot L(A, s),$$

where $L(\mathcal{X}^\Delta, s)$ is the L-function of \mathcal{X}^Δ defined below. In particular, the theorem is more subtle than just combining formulas for abelian varieties, tori, and lattices, and we need a result for \mathbb{Z}-constructible sheaves \mathcal{Z} on S. Let

$$L(Z, s) = \prod_v \det(1 - \phi_v N(v)^{-s} | Z_{\phi} \otimes \mathbb{Q}_l)^{-1},$$

be the L-function of the l-adic sheaf $Z \otimes \mathbb{Q}_l$ on S, where Z_{ϕ} is the stalk of Z at a geometric point lying over v. The Weil-étale cohomology groups $H^*_W(S, \mathcal{Z})$ are finitely generated, and we define r_Z as in (1.1) and $\chi_W(S, \mathcal{Z})$ as above.

Theorem 1.2. The function $L(Z, s)$ has a pole of order r_Z at $s = 0$, and

$$\lim_{s \to 0} L(Z, s) \cdot s^{r_Z} = (-1)^{\text{rk } Z(K)} \cdot \chi_W(S, \mathcal{Z}) \cdot (\log q)^{-r_Z}.$$

Similar formulas in the number field case were given by Tran [Tra15, Tra16]. The proof uses Artin’s induction theorem to reduce to the case of $\mathcal{Z} = \mathcal{Z}$. To prove Theorem 1.1 for $M = T$ a torus, we apply Theorem 1.2 to $j_* Y$, where $Y = \text{Hom}(T, G_m)$ is the character module of T, and use duality for Weil-étale cohomology of [Gei12] as well as the functional equation

$$L(T, 1 - s) = q^{-\chi(S, \text{Lie } (T^0))} \cdot L(j_* Y, s).$$
The proof of Theorem 1.1 is completed by combining the cases of constructible sheaves, tori, and abelian varieties.

As a by-product, we are able to express the Ono-Oesterlé Tamagawa number \(\tau(T) \) of a torus in terms of global invariants:

\[
\tau(T) = \frac{\# \text{Cl}(T^0)_{\text{tor}} \cdot q^{\chi(S, \text{Lie } T^0)}}{\# T^0(S) \cdot \rho(T) \cdot (\log q)^{k Y(S)} \cdot \text{Disc}(h_T)}
\]

and reprove the Tamagawa number formula of Ono [Ono63] and Oesterlé [Oes84]

\[
\tau(T) = \# H^1(K, Y) \cdot \# \Pi(T).
\]

Here \(\rho(T) \) is the value in Theorem 1.1 for \(M = T \),

\[
\text{Cl}(T^0) = \frac{\text{T} \cdot \text{A}_K}{\text{T}(K) + T^0(\mathcal{O}_{A_K})} \approx \bigoplus_v \pi_0(T_v)(k(v)) \div T(K),
\]

and \(h_T \) is the pairing

\[
h_T : \text{Cl}(T^0) \times Y(K) \to \text{Cl}(G_m) = \text{Pic}(S) \to \mathbb{Z}.
\]

The object \(M^\Delta \) is functorial in \(M \). It is closely related to, but different from, the Néron model \(M \) of \(M \) in the sense of [Suz19], whose cohomology groups \(H^*_W(S, M) \) are not finitely generated in general. We are planing to discuss the duality of \(M^\Delta \) and its Weil-étale cohomology, as well as their relations to the functional equation for \(L(M, s) \), in a forthcoming paper.

It would be desirable to unify Theorems 1.1 and 1.2 in terms of “constructible 1-motives” and their \(L \)-functions. As a first step, Pepin Lehalleur [PL19] defined constructible 1-motives with \(\mathbb{Q} \)-coefficients, but one would need to define a refinement with \(\mathbb{Z} \)-coefficients in order to formulate a special value formula, and this is especially difficult for the \(p \)-integral structure.

After the first version of this paper was uploaded to the arXiv, A. Morin [Mor22] gave a number field version of Theorem 1.2, improving on Tran’s work.

Notation. Throughout the paper \(k = \mathbb{F}_q \) is a finite field of characteristic \(p \) and \(S \) a proper, smooth, and geometrically connected curve over \(k \) of genus \(g \) with function field \(K \). For a place \(v \) of \(K \) (or a closed point of \(S \)), we denote the completed, henselian, and strict henselian local ring of \(S \) at \(v \) by \(\mathcal{O}_v, \mathcal{O}^h_v \), and \(\mathcal{O}^{sh}_v \), and their fraction field by \(K_v, K^h_v \), and \(K_v^{sh} \), respectively. Denote the residue field of \(\mathcal{O}_v \) by \(k(v) \), the degree of \(v \) by \(\deg(v) = [k(v) : k] \), and \(N(v) = \#k(v) = q^{\deg(v)} \). The adele ring of \(K \) is denoted by \(A_K \) and its subring of integral adeles by \(\mathcal{O}_{A_K} \).

For an abelian group \(G \), denote its torsion part by \(G_{\text{tor}} \) and its torsion-free quotient by \(G/\text{tor} \). If we have a pairing \(\varphi : G \times H \to \mathbb{Z} \) between finitely generated abelian groups, then the discriminant of \(\varphi/\text{tor} : G/\text{tor} \times H/\text{tor} \to \mathbb{Z} \) is denoted by \(\text{Disc}(\varphi) \). A lattice over a field is a finitely generated free
abelian group equipped with a continuous action of the absolute Galois group of the field (which necessarily factors through a finite group).

The Néron models we consider are Néron lift (locally finite type) models in the terminology of [BLR90, Chapter 10]. The connected Néron model means the part of the Néron model with connected fibers, usually denoted by G^0 if G denotes the Néron model. For a group scheme G locally of finite type over a field, we denote the étale group scheme of connected components of G by $\pi_0(G)$ ([DG70, Chapter II, §5, No. 1, Proposition 1]).

Acknowledgments. The authors are grateful to Kazuya Kato, Stephen Lichtenbaum and Takeshi Saito for helpful discussions.

2. Weil-étale cohomology of tori and lattices

We recall the Weil-étale cohomology groups [Lic05], [Gei04] of varieties over a finite field. See also [GS20, Section 5] for another survey.

Let $\mathbb{F} = \mathbb{F}_q$ be an algebraic closure of $k = \mathbb{F}_q$. Denote the q-th power (arithmetic) Frobenius map by $\phi \in \text{Gal}(\overline{k}/k)$. Denote the Weil group of k by $W = \langle \phi \rangle \subset \text{Gal}(\overline{k}/k)$ and the category of W-modules by Mod_W. Let X be a proper smooth variety over k and \overline{X} be the base change of X to \overline{k}. Denote the category of sheaves of abelian groups on the small étale site X_{et} by $\text{Ab}(X_{\text{et}})$ and its bounded derived category by $D^b(X_{\text{et}})$. For a sheaf $F \in \text{Ab}(X_{\text{et}})$, we denote its inverse image to X_{et} by $F_{\overline{X}}$. Hence we have a left exact functor

$$\text{Ab}(X_{\text{et}}) \to \text{Mod}_W, \quad F \mapsto \Gamma(\overline{X}, F)$$

and its right derived functor

$$D^b(X_{\text{et}}) \to D^b(\text{Mod}_W), \quad F \mapsto R\Gamma(\overline{X}, F).$$

The group $\Gamma(\overline{X}, F)$ has a natural action of ϕ. Composing it with the group cohomology functor $R\Gamma(W, \cdot)$, we obtain a triangulated functor

$$R\Gamma_W(X, \cdot) : D^b(X_{\text{et}}) \to D^b(\text{Ab}), \quad F \mapsto R\Gamma(W, R\Gamma(\overline{X}, F)).$$

and denote the n-th cohomology of $R\Gamma_W(X, \cdot)$ by $H^n_W(X, \cdot)$.

Let $e \in H^1_W(k, \mathbb{Z}) \cong \text{Hom}(W, \mathbb{Z})$ be the homomorphism sending ϕ to 1. For any $F \in D^b(X_{\text{et}})$, the cup product with e defines a homomorphism $e : H^n_W(X, F) \to H^{n+1}_W(X, F)$. Since $e \cup e = 0$, we obtain a complex $(H^n_W(X, F), e)$. It is exact after tensoring with \mathbb{Q} by [Gei04 Corollary 5.2], hence the cohomology groups of this complex are torsion. If the groups $H^n_W(X, F)$ are finitely generated for all n and zero for almost all n, then the Euler characteristic of the complex $(H^n_W(X, F), e)$ is thus well-defined.

We denote this Euler characteristic by $\chi_W(X, F)$:

$$\chi_W(X, F) = \chi(H^n_W(X, F), e) = \prod_n (\# H^n_W(X, F), e)^{(-1)^n}.$$
Weil-étale cohomology does not depend on the choice of k:

Proposition 2.1. Let k'/k be a finite field contained in the field of constants of X, and let W and W' be the Weil groups of k and k', respectively. Then the natural morphism

$$R\Gamma_W(X, \cdot) \to R\Gamma_{W'}(X, \cdot)$$

of functors $D^b(\text{Sch}_k) \to D^b(\text{Ab})$ is an isomorphism.

Proof. Fix an algebraic closure $\overline{k'} = \overline{k}$ of k' (or k). Then $R\Gamma(X \times_k \overline{k'}, \cdot)$ is canonically isomorphic to $R\Gamma(X \times_k \overline{k}, \cdot) \otimes_{\mathbb{Z}[W']} \mathbb{Z}[W]$ as functors $D^b(\text{Sch}_k) \to D^b(\text{Mod}_W)$. This implies the result. \hfill \Box

Note however that the cup product with a generator of $H^1_W(k, \mathbb{Z})$ and a generator of $H^1_{W'}(k', \mathbb{Z})$ on these isomorphic functors differ by a factor of $[k' : k]$.

From now on we assume that the base is a smooth, proper, and geometrically connected curve S over k. Let K be the function field of S, T/K be a torus and $Y = \text{Hom}_K(T, \mathbb{G}_m)$ its character lattice. Let \mathcal{T} and \mathcal{T}^0 be the Néron and connected Néron models over S, respectively. Let $\mathcal{Y} = j_s Y$ and $\mathcal{Y} = \tau_{\leq 1} R j_* Y$, where $j : \text{Spec } K \hookrightarrow S$ is the inclusion and $\tau_{\leq 1}$ is the truncation functor in degrees ≤ 1 (in the cohomological grading).

By [Suz19, Definition 4.8], the natural pairing $T \times Y \to \mathbb{G}_m$ over K canonically extends to a morphism

(2.1) $\mathcal{T}^0 \otimes^L \mathcal{Y} \to \mathbb{G}_m$

in $D^b(\text{Sch}_k)$. Denote the sheaf-Hom functor for S_{et} by $\mathcal{H}om_{S_{\text{et}}}$.

Proposition 2.2. The induced morphism

$$\mathcal{T}^0 \to R \mathcal{H}om_{S_{\text{et}}} (\mathcal{Y}, \mathbb{G}_m)$$

in $D^b(\text{Sch}_k)$ is an isomorphism.

Proof. We can check this at stalks. The morphism pulled back to K_{et} is nothing but the duality between T and Y. Hence it is enough to show that for any place $v \in S$, the induced morphism

$$\mathcal{T}^0(\mathcal{O}_{v,et}^{sh}) \to R \mathcal{H}om_{\mathcal{O}_{v,et}^{sh}} (\mathcal{Y}, \mathbb{G}_m)$$

in $D^b(\text{Ab})$ is an isomorphism. Denote by $j : \text{Spec } K_v^{sh} \hookrightarrow \text{Spec } \mathcal{O}_{v,et}^{sh}$ and $i : \text{Spec } k(v) \hookrightarrow \text{Spec } \mathcal{O}_{v,et}^{sh}$ the inclusions. Set $\mathcal{Y}^0 = j_Y Y$ and $\mathcal{Y} = \tau_{\leq 1} R j_* Y$. By [Suz19, Proposition 4.14], we have a canonical morphism of distinguished triangles

$$
\begin{array}{ccc}
\mathcal{T}^0(\mathcal{O}_{v,et}^{sh}) & \longrightarrow & T(K_v^{sh}) \\
\downarrow & & \downarrow \\
R \mathcal{H}om_{\mathcal{O}_{v,et}^{sh}} (\mathcal{Y}, \mathbb{G}_m) & \longrightarrow & R \mathcal{H}om_{\mathcal{O}_{v,et}^{sh}} (\mathcal{Y}^0, \mathbb{G}_m) \\
& & \longrightarrow \\
& & R \mathcal{H}om_{\mathcal{O}_{v,et}^{sh}} (i_* \mathcal{Y}, \mathbb{G}_m)[1].
\end{array}
$$
(There is actually a shifted term $T^0(\mathcal{O}^s_v)[1]$ next to $\pi_0(\mathcal{T}_v)(k(v))$, a similar term for the lower row and another commutative square next to the right square.) By the adjunction and the duality between T and Y, the middle map can be identified with the isomorphism

$$T(K^s_v) \cong R\Gamma(K^s_v, T) \cong R\text{Hom}_{K^s_v, \text{et}}(Y, G_m)$$

since $H^n(K^s_v, T) = 0$ for $n \geq 1$ by [Ser79, Chapter X, Section 7, “Application”]. For the right vertical morphism, we use the exact sequence

$$0 \rightarrow G_m \rightarrow G_m \rightarrow i_*Z \rightarrow 0$$

in $\text{Ab}(\mathcal{O}^s_v)$, where G_m is the Néron model of G_m. Since $H^n(K^s_v, G_m) = 0$ for $n \geq 1$, we have $Rj_*G_m \cong G_m$, hence

$$R\text{Hom}_{\mathcal{O}^s_v, \text{et}}(i_*\bar{\mathcal{Y}}_v, G_m) \cong R\text{Hom}_{K^s_v, \text{et}}(j^*i_*\bar{\mathcal{Y}}_v, G_m) = 0.$$

Therefore

$$R\text{Hom}_{\mathcal{O}^s_v, \text{et}}(i_*\bar{\mathcal{Y}}_v, G_m)[1] \cong R\text{Hom}_{\mathcal{O}^s_v, \text{et}}(i_*\bar{\mathcal{Y}}_v, i_*Z) \cong R\text{Hom}_{\text{Ab}}(\bar{\mathcal{Y}}_v, Z) = R\text{Hom}_{\text{Ab}}(\tau_{\leq 1}R\Gamma(K^s_v, Y), Z).$$

Therefore the right vertical morphism in the above diagram is

$$\pi_0(\mathcal{T}_v)(k(v)) \rightarrow R\text{Hom}_{\text{Ab}}(\tau_{\leq 1}R\Gamma(K^s_v, Y), Z).$$

This is an isomorphism by [Suz19, Theorem B (5)]. Therefore the left vertical morphism in the above diagram is also an isomorphism. □

Theorem 2.3. The groups $H^n_W(S, T^0)$ as well as the group $H^n_W(S, \check{Y})$ are finitely generated for all n, and zero for $n \not= 0, 1, 2, 3$. Moreover, the pairing

$$R\Gamma_W(S, \mathcal{T}^0) \otimes \mathbb{L} R\Gamma_W(S, \check{Y}) \rightarrow R\Gamma_W(S, G_m) \rightarrow \mathbb{Z}[-2]$$

induced by (2.1) is perfect.

Proof. This follows from [Gei12, Proposition 2.6, Theorem 4.2 and Corollary 4.3] because the cohomology groups and the pairing agrees with the one in [Gei12] by Proposition 2.2. □

Corollary 2.4. We have perfect pairings

$$H^1_W(S, \mathcal{T}^0)_{\text{tor}} \times H^2(W, \check{Y})_{\text{tor}} \rightarrow \mathbb{Z}$$

of finitely generated free abelian groups as well as perfect pairings

$$H^0_W(U, \mathcal{T}^0)_{\text{tor}} \times H^3_W(U, \check{Y})_{\text{tor}} \rightarrow \mathbb{Q}/\mathbb{Z}$$

of finite abelian groups.

Lemma 2.5. We have

$$\dim H^0(S, \check{Y}) \otimes \mathbb{Q} = \text{rk} Y(K),$$

and all other étale cohomology groups of \check{Y} are torsion.
Proof. The first statement follows from \(H^0(S, \tilde{Y}) = H^0(K, Y) \), and second from the long exact sequence
\[
\ldots \to H^i(S, \tilde{Y}) \to H^i(K, Y) \to H^i(S, \tau_{\geq 1} R^j_* Y) \to \ldots
\]
because the sheaves \(R^n j_* Y \) as well as Galois cohomology are torsion for \(n > 0 \). \(\square \)

Proposition 2.6.
\[
\text{rk } H^i_W(S, \tilde{Y}) = \begin{cases}
\text{rk } Y(K) & i = 0, 1 \\
0 & \text{otherwise}
\end{cases}
\]
\[
\text{rk } H^i_W(S, T^0) = \begin{cases}
\text{rk } Y(K) & i = 1, 2 \\
0 & \text{otherwise}
\end{cases}
\]

Proof. We know the groups in question are finitely generated. The statement for \(H^i_W(S, \tilde{Y}) \) follows from the Lemma and the isomorphism between \(H^i_W(S, \tilde{Y}) \otimes \mathbb{Q} \) and \((H^i(S, \tilde{Y}) \oplus H^{i-1}(S, \tilde{Y})) \otimes \mathbb{Q} \) ([Gei04, Corollary 5.2]). The statement for \(H^i_W(S, T^0) \) follows by duality. \(\square \)

We summarize the above finiteness results (where \(\text{fg} \) stands for finitely generated):

\(i \)	0	1	2	3
\(H^i_W(S, \tilde{Y}) \)	\(\text{fg free} \)	\(\text{fg finite} \)	\(\text{finite} \)	\(\text{finite} \)
\(H^i_W(S, T^0) \)	\(\text{finite} \)	\(\text{fg} \)	\(\text{fg} \)	\(0 \)

Here the freeness of \(Y(K) \) reflects to the vanishing of (the torsion of) \(H^3_W(S, T^0) \).

Corollary 2.7. The secondary Euler characteristic of the torus and the lattice are given by
\[
\begin{align*}
\rho_T &:= - \sum_i (-1)^i \cdot \text{rk } H^i_W(S, T^0) = - \text{rk } Y(K) \\
\rho_Y &:= - \sum_i (-1)^i \cdot \text{rk } H^i_W(S, \tilde{Y}) = \text{rk } Y(K)
\end{align*}
\]

Proposition 2.8.
\[
\chi_W(S, T^0) = \chi_W(S, \tilde{Y})^{-1}.
\]

Proof. The cup product with the element \(e \in H^1_W(k, \mathbb{Z}) \) induces a natural transformation \(e: R\Gamma_W(S, \cdot) \to R\Gamma_W(S, \cdot)[1] \). The associativity of cup product shows that the diagram
\[
\begin{array}{ccc}
R\Gamma_W(S, T^0) \otimes L R\Gamma_W(S, \tilde{Y}) & \xrightarrow{id \otimes e} & R\Gamma_W(S, T^0) \otimes L R\Gamma_W(S, \tilde{Y})[1] \\
\downarrow_{e \otimes \text{id}} & & \downarrow_{\cup}
\end{array}
\]
\[
\begin{array}{ccc}
R\Gamma_W(S, T^0)[1] \otimes L R\Gamma_W(S, \tilde{Y}) & \xrightarrow{\cup} & R\Gamma_W(S, T^0 \otimes L \tilde{Y})[1]
\end{array}
\]
is commutative. Hence the diagram

\[R\Gamma_W(S, \mathcal{T}^0) \xrightarrow{\sim} R\text{Hom}(R\Gamma_W(S, \mathcal{Y})[2], \mathbb{Z}) \]

\[\downarrow e \quad \quad \quad \quad \downarrow e \]

\[R\Gamma_W(S, \mathcal{T}^0)[1] \xrightarrow{\sim} R\text{Hom}(R\Gamma_W(S, \mathcal{Y})[1], \mathbb{Z}) \]

is commutative, from which the result follows. \qed

3. \text{L}-VALUES FOR \mathbb{Z}-CONSTRUCTIBLE SHEAVES

Let \mathcal{Z} be a \mathbb{Z}-constructible étale sheaf on S \cite[Chapter II, Section 0]{Mil06}. The groups $H^i_W(S, \mathcal{Z})$ are finitely generated by \cite[Proposition 2.6]{Gei12}. In this section, we prove a formula for the leading coefficient of the L-function of \mathcal{Z} at $s = 0$ in terms of $\chi_W(S, \mathcal{Z})$. Similar formulas in the number field case were given by Tran \cite{Tra15}, \cite{Tra16}.

We define $L(\mathcal{Z}, s)$ by the Euler product

\[\prod_v \det(1 - \varphi_v N(v)^{-s} \mid \mathcal{Z}_v \otimes \mathbb{Q})^{-1}, \]

where v runs through the places of S, \mathcal{Z}_v is the stalk of \mathcal{Z} at a geometric point lying over v and φ_v is the geometric Frobenius at v. This function agrees with the L-function of the l-adic sheaf $\mathcal{Z} \otimes \mathbb{Q}_l$ on S \cite[Definition 5.3.7]{Kah18}, where $l \neq p$ is any prime. In particular, it is equal to the value at $t = q^{-s}$ of the rational function

\[\prod_{i=0}^{2} \det(1 - \varphi t \mid H^i(S, \mathcal{Z} \otimes \mathbb{Q}_l))^{-1}^{(-1)^{i+1}}, \]

where φ is the geometric Frobenius of k and the cohomology is taken as the continuous cohomology \cite[Corollary 5.3.11]{Kah18}. Let $j: \text{Spec} K \hookrightarrow S$ be the inclusion, Y the torsion-free quotient of the generic fiber $j^* \mathcal{Z}$ of \mathcal{Z} and Y' the dual lattice of Y. We set

\[L(Y, s) := L(j_* Y, s). \]

Then $L(Y, s)$ agrees with the Artin L-function

\[\prod_v \det(1 - \phi_v N(v)^{-s} \mid Y'(K_v^{sh}) \otimes \mathbb{Q})^{-1}, \]

of Y', where ϕ_v is the arithmetic Frobenius at v. The function $L(Y, s)$ is also the Hasse-Weil L-function

\[\prod_v \det(1 - \varphi_v N(v)^{-s} \mid (Y(K_v^{\text{sep}}) \otimes \mathbb{Q}_l)_{I_v})^{-1}, \]

of the l-adic representation $Y(K_v^{\text{sep}}) \otimes \mathbb{Q}_l$ over K, where I_v is the inertial group at v. The functions $L(\mathcal{Z}, s)$ and $L(Y, s)$ are equal up to finitely many
Euler factors since the kernel and the cokernel of the natural morphism $Z \to j_*Y$ are concentrated at finitely many closed points. Let

$$r_Z = - \sum i \cdot (-1)^i \cdot \text{rk} H^i_W(S, Z).$$

Theorem 3.1. We have

$$\lim_{s \to 0} L(Z, s) \cdot s^{r_Z} = \pm \chi_W(S, Z) \cdot (\log q)^{-r_Z}. \tag{3.1}$$

We will see in Proposition 4.3 that the sign \pm is $(-1)^{\text{rk} Z(K)}$.

Proof. We will proceed in several steps.

Step 1: If $Z = Z$, then $L(Z, s)$ is the zeta function of S, and (3.1) reduces to [Gei04, Theorem 9.1, Proposition 9.2].

Step 2: If Z is constructible, then both sides of (3.1) are 1.

This is clear for the left-hand side. For the right-hand side, the constructibility of Z implies that the groups $H^i(S, Z)$ are finite by [Mil80, Chapter VI, Theorem 2.1], hence $\#H^i(S, Z)^G = \#H^i(S, Z)_G$, which implies that $\chi_W(S, Z) = 1$ in view of the short exact sequences

$$0 \to H^{i-1}(\bar{S}, Z)_G \to H^i_W(S, Z) \to H^i(\bar{S}, Z)^G \to 0.$$

Step 3: Equation (3.1) holds if Z is supported on closed points of S.

We may assume that Z is supported at a single place v. Write $Z = i_{v*}Z_v$, where $i_v: v \hookrightarrow S$ is the inclusion. The number $r := r_Z$ is the rank of $Z_v(k(v))$. The left-hand side is

$$\lim_{s \to 0} \det(1 - N(v)^{-s})^{-r} \cdot (\deg(v) \cdot \log q)^{-r} = \chi_W(k(v), Z_v) \cdot (\deg(v) \cdot \log q)^{-r},$$

where W_v is the Weil group of $k(v)$. Let $e_v \in H^1_W(k(v), Z)$ be the generator corresponding to the arithmetic Frobenius of $k(v)$. Since $H^1_W(k, Z) \to H^1_W(k, Z)$ is multiplication by $\deg(v)$, we obtain

$$\chi_W(S, Z) = \chi_W(k(v), Z_v) = \chi_W(k(v), Z_v) \cdot \deg(v)^{-r}.$$

Hence both sides of (3.1) are $\chi_W(S, Z) \cdot (\log q)^{-r}$.

Step 4: Let K'/K be a finite separable extension. Denote the normalization of S in K' by S'. Assume that Z is the pushforward of a \mathbb{Z}-constructible sheaf Z' on S'. Then (3.1) for Z' over S' implies (3.1) for Z over S.

Denote the constant field of K' by k', its order by q', and the morphism $S' \to S$ by π. Since π is finite, we have $R^n\pi_* = 0$ for $n \geq 1$. Hence by [Mil80, Chapter VI, Lemma 13.8 (c)], we have

$$\det(1 - \varphi t | H^i(S, Z \otimes \mathbb{Q}_l)) = \det(1 - \varphi t | H^i(S', Z' \otimes \mathbb{Q}_l)).$$
for any \(i \), where \(S' = S' \times_k k \) as before. Taking the alternating product over \(i \), evaluating it at \(t = q^{-s} \) and noting that the \(L \)-function is independent of the choice of a constant field, we have \(L(Z, s) = L(Z', s) \).

Also \(H^1_{W'}(S, Z) \cong H^1_{W'}(S', Z') \) by Proposition [2.1] where \(W' \) is the Weil group of \(k' \). In particular, \(r_Z = r_{Z'} \). Let \(e' \in H^1_{W'}(k', \mathbb{Z}) \) be the generator corresponding to the \(q \)-th power arithmetic Frobenius. Then \(e = [k' : k]e' \) via the homomorphism \(H^1_{W'}(k, \mathbb{Z}) \to H^1_{W'}(k', \mathbb{Z}) \). This implies

\[
\chi_W(S, Z) = \chi_{W'}(S', Z') \cdot [k' : k]^{-r_{Z'}}.
\]

As \(q' = q^{[k' : k]} \), we get the result.

Step 5: Let \(n \geq 1 \) be an integer. If (3.1) holds for \(Z^n \), then it holds for \(Z \).

This follows by taking the \(n \)-th roots of the real numbers on both sides of (3.1).

Step 6: We now finish the proof. We first observe that both of the sides of (3.1) are multiplicative in \(Z \) with respect to short exact sequences. In particular, we may assume that \(Z \) is torsion-free by Step 2. Denote the generic fiber of \(Z \) by \(Z_K \). By the Artin induction theorem [Swa60] Corollary 4.4, Proposition 4.1], there exist an integer \(n \geq 1 \), finite separable extensions \(K'_1, \ldots, K'_m, K'_1', \ldots, K'_n' \), a finite Galois module \(N_K \) over \(K \) and an exact sequence

\[
0 \to \bigoplus_i \pi_{K'_i/K_s} \mathbb{Z} \to \bigoplus_j \pi_{K'_j/K_s} \mathbb{Z} \to N_K \to 0
\]

of Galois modules over \(K \), where \(\pi_{K'_i/K} \) is the morphism \(\text{Spec } K'_i \to \text{Spec } K \) and \(\pi_{K'_j/K} \) are similarly defined. By spreading out, this sequence can be obtained as the generic fiber of an exact sequence

\[
0 \to \bigoplus_i \pi_{U'_i/U_s, \ast} \mathbb{Z} \to \bigoplus_j \pi_{U'_j/U_s, \ast} \mathbb{Z} \to N_U \to 0
\]

of étale sheaves over some dense open subscheme \(U \subseteq S \), where \(Z_U \) is the restriction of \(Z \) to \(U \); \(U'_i \) and \(U''_j \) denote the normalization of \(U \) in \(K'_i \) and \(K''_j \), respectively; \(\pi_{U'_i/U} \) and \(\pi_{U''_j/U} \) are the morphism \(U'_i \to U \) and \(U''_j \to U \), respectively; and \(N_U \) is a finite étale group scheme over \(U \). Denote the inclusion map \(U \hookrightarrow S \) by \(\iota \). By the exact sequence

\[
0 \to \iota_* Z_U \to Z \to \bigoplus_{v \not\in U} i_{v, \ast} Z_v \to 0
\]

and Step 3, (3.1) for \(\iota_* Z_U \) and for \(Z \) are equivalent. By the exact sequence (3.2), Steps 2 and 5 and the exactness of \(\iota_* \), it is enough to show the proposition for \(\iota_* \pi_{U'_i/U_s, \ast} \mathbb{Z} \) and \(\iota_* \pi_{U''_j/U_s, \ast} \mathbb{Z} \). If \(\iota'_i : U'_i \hookrightarrow S'_i \) is the inclusion into the smooth compactification, then \(\iota'_i(\pi_{U'_i/U_s, \ast} \mathbb{Z}) \cong \pi_{S'_i/S_s, \ast}(\iota'_{i, \ast} \mathbb{Z}) \). Finally, (3.1) for \(\pi_{S'_i/S_s, \ast}(\iota'_{i, \ast} \mathbb{Z}) \) follows from Steps 1, 2, and 4. \(\square \)
4. Functional equations and L-values for tori

We will determine the sign and express the exponential term appearing in the functional equation relating the L-functions of T and of Y in terms of $\chi(S, \text{Lie } T^0)$. This will allow us to give a formula for the leading coefficient of the L-function of T at $s = 1$ in terms of $\chi_w(S, T^0)$.

Let $r = \text{rk } Y(K)$, $d = \dim T$, Y' be the dual lattice of Y, and define

$$L(T, s) := L(Y', s).$$

More explicitly, by the discussion in Section 3, we know that $L(T, s)$ is the Artin L-function of Y and also the Hasse-Weil L-function of the l-adic representation $Y' \otimes_{\mathbb{Z}} \mathbb{Q}_l \cong V_l(T)(-1)$ over K (where $l \neq p$ is any prime),

$$L(T, s) = \prod_v \det(1 - \varphi_v | N(v)^{-s} | V_l(T)(-1)_{I_v})^{-1},$$

where φ_v is the geometric Frobenius at v and I_v is the inertia group at v.

Let $f(Y)$ be the Artin conductor of the Galois representation $Y \otimes_{\mathbb{Z}} \mathbb{Q}_l$ over K as defined in [Ser79, Chapter VI, Section 3]. It is an effective divisor on S. Denote its multiplicity at a place v by $f(Y|_{D_v})$ (where D_v is the decomposition group at v), so that

$$f(Y) = \sum_v f(Y|_{D_v}) \cdot v.$$

The degree $f(Y)$ of $f(Y)$ is given by

$$f(Y) = \sum_v \deg(v) f(Y|_{D_v}).$$

The functional equation for Artin L-functions [Kah18 Theorem 4.4.8] in this case says that

$$L(T, 1 - s) = \pm q^{((2g - 2)d + f(Y))(s - 1/2)} \cdot L(Y, s).$$

We have

$$L(Y, s) = \prod_{i=0}^{2} \det(1 - \varphi q^{-s} | H^1(S, Y \otimes \mathbb{Q}_l))(-1)^{i+1}$$

by [Kah18 Corollary 5.3.11], where φ is the geometric Frobenius of k. Each term $\det(1 - \varphi t | H^1(S, Y \otimes \mathbb{Q}_l))$ is a polynomial with integer coefficients in t with constant term 1 whose reciprocal roots are Weil q-numbers of weight i [Kah18 Theorem 5.5.9].

Proposition 4.1. We have

$$\det(1 - \varphi t | H^1(S, Y \otimes \mathbb{Q}_l)) = \det(1 - \varphi t | H^1(C, \mathbb{Q}_l))$$

for some abelian variety C over \mathbb{F}_q.

Proof. Let K' be a finite Galois extension of K with Galois group G that trivializes Y. Denote the normalization of S in K' by S'. Denote the constant field of K' by k'. Let $U \subseteq S$ be a dense open subscheme over which Y is a lattice. Let $U' \subseteq S'$ be the inverse image of U in S'. Denote the inclusion map $\text{Spec} K' \hookrightarrow S'$ by j'. Set $Y = j^*_s(Y \times_K K')$, $\overline{S}' = S' \times_k \overline{k}$ and $\overline{U}' = U' \times_k \overline{k}$. The long exact sequence for cohomology with compact support for $\overline{U} \hookrightarrow \overline{S}'$ yields an exact sequence

$$\bigoplus_{v \in S' \setminus U} Y(K_v^{sh} \otimes_K K') \otimes \mathbb{Q}_l \to H^1_c(\overline{U}', Y' \otimes \mathbb{Q}_l) \to H^1(\overline{S}', Y' \otimes \mathbb{Q}_l) \to 0.$$

This sequence remains exact after taking G-invariants since G is finite and the groups are \mathbb{Q}_l-vector spaces. Comparing the resulting exact sequence with the similar exact sequence for $U \hookrightarrow S$, we know that

$$H^1(\overline{S}, Y \otimes \mathbb{Q}_l) \cong H^1(\overline{S}', Y' \otimes \mathbb{Q}_l)^G.$$

The Jacobian variety $J_{S'/k}$ of S'/k is isomorphic to the Weil restriction of the Jacobian $J_{S'/k'}$ from k' to k. In particular, it is an abelian variety over k with a natural action of G by group scheme morphisms over k. Consider the abelian variety $J_{S'/k} \otimes_{\mathbb{Z}} Y(K') \cong J_{S'/k}^d$ over k. The tensor product of the G-actions on $J_{S'/k}$ and on $Y(K')$ defines a G-action on $J_{S'/k} \otimes_{\mathbb{Z}} Y(K')$ by group scheme morphisms over k. Let C be the maximal reduced and connected subgroup scheme of the G-invariant part of $J_{S'/k} \otimes_{\mathbb{Z}} Y(K')$. It is an abelian variety over k. Thus to prove the proposition it suffices to observe that the l-adic Tate module of C is isomorphic to $H^1(\overline{S'}, Y' \otimes \mathbb{Q}_l)^G(1)$ as a Gal(\overline{k}/k)-module and

$$H^1(\overline{S}, Y \otimes \mathbb{Q}_l) \cong H^1(\overline{S'}, Y' \otimes \mathbb{Q}_l)^G \cong H^1(\overline{C}, \mathbb{Q}_l).$$

\square

Proposition 4.2. The sign of the functional equation (4.1) is positive.

Proof. Recall again that $L(T, s) = L(Y', s)$ and $r = \text{rk} Y(K) = \text{rk} Y(K')$. The function $L(Y, s)$ is real-valued for real s, positive for large real s (by the Euler product) and has a pole of order r at $s = 0$ and $s = 1$ by Theorem 3.1 and (4.1). The only other possible zero or pole are at $s = 1/2$. Hence it is enough to show that $L(Y, s)$ has a zero of even order at $s = 1/2$. This order is equal to the order of zero of the function $\text{det}(1 - \varphi q^{-s} | H^1(\overline{S}, Y \otimes \mathbb{Q}_l))$ at $s = 1/2$. But this function is a polynomial with \mathbb{Z}-coefficients in q^{-s} of even degree by Proposition 4.1.

\square

Proposition 4.3. The sign in the formula (3.1) is $(-1)^{\text{rk} Z(K)}$.

Proof. Denote the generic fiber of Z by Z_K. The two functions $L(Z, s)$ and $L(Z_K, s) (= L(j_*Z_K, s))$ differ only by finitely many Euler factors of weight zero (namely polynomials in q^{-s} with roots of unity roots). Hence they have the same zeros and poles for positive s. By the proof of Proposition 4.2 we know that the function $L(Z_K, s)$ has a pole of order $\text{rk} Z(K)$ at $s = 1$, a
zero of even order at \(s = 1/2 \), and does not have a zero or pole for other positive values of \(s \). This implies the result.

Proposition 4.4.

\[
\frac{f(Y)}{2} = -\deg(\text{Lie} T^0).
\]

Proof. Recall that \(f(Y) = \sum_{v \in S} \deg(v) f(Y|_{D_v}) \). Let \(K' \) be a finite Galois extension of \(K \) that trivializes \(Y \). Let \(k' \) be the field of constants of \(K' \). Let \(S' \) be the normalization of \(S \) in \(K' \), and \(T'^0 \) the connected Néron model over \(S' \) of \(T \times_K K' \). For each \(v \in S \), fix a place \(v' \) of \(S' \) above \(v \). By [CY01, Theorem (12.1)], we have

\[
\frac{f(Y|_{D_v})}{2} = \frac{1}{e_{v'/v}} \text{length}_{\mathcal{O}_{v'}} \frac{\text{Lie}(T^0) \otimes_{\mathcal{O}_{S'}} \mathcal{O}_{v'}}{\text{Lie}(T^0) \otimes_{\mathcal{O}_S} \mathcal{O}_{v'}},
\]

where \(e_{v'/v} \) is the ramification index of \(\mathcal{O}_{v'}/\mathcal{O}_v \) and \(\text{length}_{\mathcal{O}_{v'}} \) denotes the length of \(\mathcal{O}_{v'} \)-modules. The length of the cokernel of a full rank embedding of finite free modules is invariant under taking the top exterior power and inverts when taking duals. Hence the right-hand side is equal to

\[
\frac{1}{e_{v'/v}} \text{length}_{\mathcal{O}_{v'}} \frac{\text{det}(\text{Lie}(T^0))^* \otimes_{\mathcal{O}_S} \mathcal{O}_{v'}}{\text{det}(\text{Lie}(T'^0))^* \otimes_{\mathcal{O}_{S'}} \mathcal{O}_{v'}}.
\]

where \(\text{det} \) denotes the top exterior power and \(* \) denotes the dual line bundle.

Let \(\omega \in \text{det}(\text{Lie}(T))^*(K) \) be a non-zero invariant top degree differential form on \(T/K \). Then \(f(Y)/2 \) can be written as the number

\[
\sum_{v \in S} \frac{\deg(v)}{e_{v'/v}} \text{length}_{\mathcal{O}_{v'}} \frac{\text{det}(\text{Lie}(T^0))^* \otimes_{\mathcal{O}_S} \mathcal{O}_{v'}}{\omega \mathcal{O}_{v'}},
\]

(4.2)

minus the number

\[
\sum_{v \in S} \frac{\deg(v)}{e_{v'/v}} \text{length}_{\mathcal{O}_{v'}} \frac{\text{det}(\text{Lie}(T'^0))^* \otimes_{\mathcal{O}_{S'}} \mathcal{O}_{v'}}{\omega \mathcal{O}_{v'}},
\]

(4.3)

where the length of \(L/M \) for two finite free \(\mathcal{O}_{v'} \)-modules \(L \subset M \) means the negative of the length of \(M/L \). The number (4.2) is equal to

\[
\sum_{v \in S} \deg(v) \text{length}_{\mathcal{O}_v} \frac{\text{det}(\text{Lie}(T^0))^* \otimes_{\mathcal{O}_S} \mathcal{O}_v}{\omega \mathcal{O}_v} = -\deg(\text{det}(\text{Lie}(T^0))).
\]

Similarly the number (4.3) is equal to

\[
\frac{[k' : k]}{[K' : K]} \sum_{v' \in S'} \deg(v') \text{length}_{\mathcal{O}_{v'}} \frac{\text{det}(\text{Lie}(T'^0))^* \otimes_{\mathcal{O}_{S'}} \mathcal{O}_{v'}}{\omega \mathcal{O}_{v'}}
\]

\[
= -\frac{[k' : k]}{[K' : K]} \cdot \deg(\text{det}(\text{Lie}(T'^0))),
\]

where the degree is relative to the field of constants \(k' \) of \(K' \). The group \(T'^0 \) is a finite product of copies of \(G_m \) over \(S' \). Hence the degree of its Lie algebra is zero. This proves the proposition. \(\square \)
Proposition 4.5.
\[L(T, 1 - s) = q^{-\chi(S, \text{Lie}(T^0))(2s-1)} \cdot L(Y, s). \]

Proof. This follows from (4.1), Propositions 4.2 and 4.4, and the Riemann-Roch formula
\[\chi(S, \text{Lie}(T^0)) = (1 - g)d + \deg(\text{Lie}(T^0)). \]

\[\square \]

Recall from Corollary 2.7 that \(r_T = -r = -\text{rk}_Y(K). \)

Theorem 4.6.
\[\lim_{s \to 1} \frac{L(T, s)}{(s - 1)^r_T} = \chi_W(S, T^0)^{-1} \cdot q^{\chi(S, \text{Lie} T^0)} \cdot (\log q)^{r_T}. \]

Proof. We have
\[\chi_W(S, T^0)^{-1} = \chi_W(S, \tilde{Y}) = \chi_W(S, Y) \]
by Proposition 2.8 and the constructibility of \(R^1 j_* Y. \) Hence the result follows from Theorem 3.1, Propositions 4.3 and 4.5.

\[\square \]

5. Calculations of the Weil-étale Euler characteristic

The goal of this section is to express the Weil-étale Euler characteristic \(\chi_W(S, T^0) \) in terms of classical invariants. Define
\[\Phi_T(k) := \bigoplus_v \pi_0(T_v)(k(v)) \]
and let
\[T(\mathbb{A}_k) = \lim_{U \subseteq S} \prod_{v \in U} T^0(\mathcal{O}_v) \times \prod_{v \notin U} T(K_v) \]
be the restricted direct product of \(T(K_v) \) with respect to the connected components \(T^0(\mathcal{O}_v) \). For \(i_v: v \hookrightarrow \mathcal{O}_v \) the inclusion, we have an exact sequence
\[0 \to T^0 \to T \to i_{v,*} \pi_0(T_v) \to 0 \]
of fpf sheaves over \(\mathcal{O}_v^h \). Taking sections over \(\mathcal{O}_v \), we obtain an exact sequence
\[0 \to T^0(\mathcal{O}_v) \to T(K_v) \to \pi_0(T_v)(k(v)) \to 0. \]

because \(T(\mathcal{O}_v) = T(K_v) \) and \(H^n(\mathcal{O}_v, T^0) \cong H^n(k(v), T_v^0) = 0 \) for \(n \geq 1 \) by [Mil80, Chapter III, Remark 3.11 (b)] and Lang’s theorem. We also have an exact sequence
\[0 \to T^0(\mathcal{O}_v^h) \to T(K_v^h) \to \pi_0(T_v^h)(k(v)) \to 0 \]

since \(T(\mathcal{O}_v^h) = T(K_v^h) \) and \(H^n(\mathcal{O}_v^h, T^0) \cong H^n(k(v), T_v^0) = 0 \) similarly. Taking the restricted direct product of (5.2), we obtain an exact sequence
\[0 \to T^0(\mathcal{O}_K) \to T(\mathbb{A}_K) \to \Phi_T(k) \to 0. \]
Define $\text{Cl}(\mathcal{T}^0)$ to be the quotient
\[\frac{T(\mathcal{A}_K)}{T(K) + \mathcal{T}^0(\mathcal{O}_{h_K})} \approx \Phi_T(k), \]
and let
\[\text{III}(T) = \text{Ker} \left(H^1(K, T) \to \prod H^1(K_v, T) \right) \]
be the Tate-Shafarevich group of T. We note that the Tate-Shafarevich group does not change if we use $H^1(K^h_v, T)$ instead of $H^1(K_v, T)$ since $H^1(K^h_v, T) \cong H^1(K_v, T)$.

Proposition 5.1. There exist a canonical exact sequence and a canonical isomorphism
\[0 \to \text{Cl}(\mathcal{T}^0) \to H^1_W(S, \mathcal{T}^0) \to \text{III}(T) \to 0, \]
\[H^1_W(S, \tilde{Y}) \cong H^1(K, Y). \]

Proof. The exact sequence
\[0 \to H^1(S, \mathcal{T}^0) \to H^1_W(S, \mathcal{T}^0) \to \mathcal{T}^0(S) \otimes \mathbb{Q} \]
and the finiteness of $\mathcal{T}^0(S)$ (Proposition 2.6) shows $H^1(S, \mathcal{T}^0) \cong H^1_W(S, \mathcal{T}^0)$.

The localization sequence gives an exact sequence
\[T(K) \to \bigoplus_v H^1_v(\mathcal{O}^h_v, \mathcal{T}^0) \to H^1(S, \mathcal{T}^0) \to H^1(K, T) \to \bigoplus_v H^2_v(\mathcal{O}^h_v, \mathcal{T}^0). \]

Now consider the analogous sequence for $\text{Spec} \mathcal{O}^h_v$. The vanishing of $H^n(\mathcal{O}^h_v, \mathcal{T}^0)$ for $n \geq 1$ gives an isomorphism $H^1(K_v^h, T) \cong H^2_v(\mathcal{O}^h_v, \mathcal{T}^0)$ as well as a short exact sequence
\[0 \to \mathcal{T}^0(\mathcal{O}^h_v) \to T(K_v^h) \to H^1_v(\mathcal{O}^h_v, \mathcal{T}^0) \to 0, \]
which implies $H^1_v(\mathcal{O}^h_v, \mathcal{T}^0) \cong \pi_0(T_v(k(v)))$ by comparing to (5.3).

For the isomorphism, we use that $H^1(S, \tilde{Y}) \cong H^1(K, Y)$ as above. Hence it is enough to show that the natural map $H^1(S, \tilde{Y}) \to H^1(K, Y)$ is an isomorphism, which follows from $H^n_v(\mathcal{O}^h_v, \tilde{Y}) = 0$ for $n \leq 2$. For this, it is enough to show that $H^n_v(\mathcal{O}^{sh}_v, \tilde{Y}) = 0$ for $n \leq 2$ which follows because
\[H^n_v(\mathcal{O}^{sh}_v, \tilde{Y}) \cong \begin{cases} H^n(K^{sh}_v, Y) & n = 0, 1; \\ 0 & n \neq 0, 1. \end{cases} \]
by definition of \tilde{Y}. \hfill \Box

Denote the first map in the exact sequence in Proposition 5.1 by cl_T:
\[\text{cl}_T: \text{Cl}(\mathcal{T}^0) \hookrightarrow H^1_W(S, \mathcal{T}^0). \]

As seen in the proof of Proposition 5.1, cl_T is the composite of the natural maps
\[\frac{T(\mathcal{A}_K)}{T(K) + \mathcal{T}^0(\mathcal{O}_{h_K})} \approx \bigoplus_v H^1_v(\mathcal{O}^h_v, \mathcal{T}^0) \to H^1(S, \mathcal{T}^0) \cong H^1_W(S, \mathcal{T}^0). \]
We denote the map induced on the torsion-free quotients by cl_T/tor:

$$\text{cl}_T/\text{tor} : \text{Cl}(T^0)/\text{tor} \to H^1_W(S, T^0)/\text{tor}.$$

By the functoriality of class groups Cl and connected Néron models, we have a natural map

$$(5.4) \quad Y(K) = \text{Hom}_K(T, G_m) \cong \text{Hom}_S(T^0, G_m) \to \text{Hom}(\text{Cl}(T^0), \text{Cl}(G_m)).$$

Hence we have a canonical pairing

$$(5.5) \quad h_T : Cl(T^0) \times Y(K) \to \text{Cl}(G_m) = \text{Pic}(S)^{\text{deg}} \mathbb{Z}.$$

Recall the isomorphism $Y(K) \cong H^0_W(S, \hat{Y})$ and the morphism $e : H^0_W(S, \hat{Y}) \to H^1_W(S, \hat{Y})$. We denote the composite $Y(K) \to H^1_W(S, \hat{Y})$ by e by abuse of notation.

Proposition 5.2. The composite

$$\text{Cl}(T^0) \times Y(K) \xrightarrow{\text{cl}_T \times e} H^1_W(S, T^0) \times H^1_W(S, \hat{Y}) \to \mathbb{Z},$$

where the last (perfect) pairing is the pairing of Corollary 2.4, agrees with h_T.

Proof. The pairing $T^0 \otimes^L \hat{Y} \to G_m$ over S in (2.4) induces a commutative diagram

$$
\begin{array}{ccc}
T(K) \times Y(K) & \longrightarrow & K^x \\
\downarrow & & \downarrow \\
\bigoplus_v H^1_v(O_v^h, T^0) \times Y(K) & \longrightarrow & \bigoplus_v H^1_v(O_v^h, G_m),
\end{array}
$$

where the vertical maps are coboundary maps of localization sequences. On the cokernels of the vertical maps, this diagram induces a pairing

$$\text{Cl}(T^0) \times Y(K) \to \text{Cl}(G_m).$$

This agrees with the map (5.4). Hence the naturality of the cup product shows that the diagram

$$
\begin{array}{ccc}
\text{Cl}(T^0) \times Y(K) & \longrightarrow & \text{Cl}(G_m) = \text{Pic}(S) \\
\downarrow_{\text{cl}_T \times \text{id}} & & \downarrow \\
H^1_W(S, T^0) \times Y(K) & \longrightarrow & H^1_W(S, G_m) = \text{Pic}(S)
\end{array}
$$

is commutative, where the upper horizontal pairing is h_T. Also consider the commutative diagram

$$
\begin{array}{ccc}
H^1_W(S, T^0) \times Y(K) & \longrightarrow & H^1_W(S, G_m) = \text{Pic}(S) \\
\downarrow_{\text{id} \times e} & & \downarrow e \\
H^1_W(S, T^0) \times H^1_W(S, \hat{Y}) & \longrightarrow & H^2_W(S, G_m) = \mathbb{Z}
\end{array}
$$
where the commutativity of the right square follows from the geometric connectivity of S over k. Combining these two diagrams, we get the result.

With these preparations we can determine the Euler characteristic of the torus.

Proposition 5.3.

$$
\chi(H^*_W(S, T^0)/tor, e)^{-1} = \frac{\# \text{Coker}(cl_T/tor)}{\text{Disc}(h_T)}.
$$

Proof. The only non-trivial map for this Euler characteristic is

$$
e: H^1_W(S, T^0)/tor \to H^2_W(S, T^0)/tor
$$

by Proposition 5.6. Its linear dual is

$$e: Y(K) \to H^1_W(S, \tilde{Y})/tor$$

by Corollary 2.4 and the proof of Proposition 2.8. Hence Proposition 5.2 gives the result.

Proposition 5.4. Denote the alternating product of the orders of $H^*_W(S, T^0)_{tor}$ by $\chi(H^*_W(S, T^0)_{tor})$. Then

$$
\chi(H^*_W(S, T^0)_{tor})^{-1} = \frac{\# \text{Cl}(T^0)_{tor} \cdot \# \text{III}(T)}{\# T^0(S) \cdot \# H^1(K, Y) \cdot \# \text{Coker}(cl_T/tor)}.
$$

Proof. We have an exact sequence of finite groups

$$0 \to \text{Cl}(T^0)_{tor} \xrightarrow{cl_T} H^1_W(S, T^0)_{tor} \to \text{III}(T) \to \text{Coker}(cl_T/tor) \to 0$$

by Proposition 5.1. Also

$$\# H^2_W(S, T^0)_{tor} = \# H^1_W(S, \tilde{Y})_{tor} = \# H^1(K, Y)$$

by Corollary 2.4 and Proposition 5.1. Therefore

$$\chi(H^*_W(S, T^0)_{tor})^{-1} = \frac{\# H^1_W(S, T^0)_{tor}}{\# H^0_W(S, T^0)_{tor} \cdot \# H^2_W(S, T^0)_{tor}} = \frac{\# \text{Cl}(T^0)_{tor} \cdot \# \text{III}(T)}{\# T^0(S) \cdot \# H^1(K, Y) \cdot \# \text{Coker}(cl_T/tor)}.$$

Proposition 5.5.

$$
\chi_W(S, T^0)^{-1} = \frac{\# \text{Cl}(T^0)_{tor} \cdot \# \text{III}(T)}{\# T^0(S) \cdot \# H^1(K, Y) \cdot \text{Disc}(h_T)}.
$$

Proof. The number $\chi_W(S, T^0)$ is the product of $\chi(H^*_W(S, T^0)/tor, e)$ and $\chi(H^*_W(S, T^0)_{tor})$ by the proof of [Gei04, Theorem 9.1]. Therefore Propositions 5.3 and 5.4 give the result.
6. A Weil-étale Tamagawa number formula for tori

In this section, we express the Tamagawa number of T, defined by Ono in [Ono61] and redefined (in the function field case) by Oesterlé [Oes84], in terms of arithmetic-geometric invariants defined without using Haar measures. We use this to reprove Ono-Oesterlé’s Tamagawa number formula [Ono63], [Oes84].

We begin by recalling the Tamagawa number from [Ono61, Sections 3.1–3.5], [Oes84, Chapter I]. Set

$$d = \dim(T), \quad r = \text{rk}(Y(K)), \quad g = \text{genus } S.$$

The function $L(T, s)$ has a pole of order r at $s = 1$ by Theorem 4.6. We define

$$\rho(T) = \lim_{s \to 1} L(T, s)(s - 1)^r.$$

We denote the sum of the valuations $\mathfrak{A}_K \twoheadrightarrow \bigoplus_v \mathbb{Z} \twoheadrightarrow \mathbb{Z}$ by deg. A character $\chi \in Y(K) = \text{Hom}_K(T, G_m)$ induces a homomorphism $\bar{\chi} : T(\mathbb{A}_K) \to \mathfrak{A}_K$.

In other words, $T(\mathbb{A}_K)^1$ is the inverse image of the left kernel of the pairing h_T in (5.5) under the quotient map $T(\mathbb{A}_K) \to \text{Cl}(T^0)$. This group contains $T(K)$ and $T^0(\mathcal{O}_{\mathbb{A}_K})$. Recall that the quotient $\text{Cl}(T^0)$ of $T(\mathbb{A}_K)$ by $T(K) + T^0(\mathcal{O}_{\mathbb{A}_K})$ is finitely generated by Propositions 5.1 and 2.3.

Proposition 6.1. In the exact sequence

$$0 \to \frac{T(\mathbb{A}_K)^1}{T(K) + T^0(\mathcal{O}_{\mathbb{A}_K})} \to \text{Cl}(T^0) \to \frac{T(\mathbb{A}_K)}{T(\mathbb{A}_K)^1} \to 0,$$

the first term is the torsion part of $\text{Cl}(T^0)$. In particular, $T(\mathbb{A}_K)^1$ is the inverse image of $\text{Cl}(T^0)_{\text{tor}}$ under the surjection $T(\mathbb{A}_K) \twoheadrightarrow \text{Cl}(T^0)$.

Proof. The quotient $T(\mathbb{A}_K)^1/T(K)$ is compact by [Ono61] Theorem 3.1.1]. Hence the first term is finite. The third term is torsion-free by definition. □

Let ω be a non-zero invariant differential form on T/K of maximal degree. It induces a canonical Haar measure on $\text{Lie}(T)(K_v)$ and $T(K_v)$ for each v, which we denote by μ_v. Set

$$P_v(T, t) = \det(1 - \varphi_v t | V_v(T)(-1)^{l_v}).$$

We define the Tamagawa measure $\mu_{T(\mathbb{A}_K)}$ on $T(\mathbb{A}_K)$ by

$$\mu_{T(\mathbb{A}_K)} = \frac{1}{\rho(T) \cdot q^{(g-1)d}} \prod_v P_v(T, N(v)^{-1})^{-1} \mu_v.$$

The infinite product evaluated on open compact subgroups absolutely converges [Ono61, Section 3.3] and hence defines a Haar measure on $T(\mathbb{A}_K)$.
which does not depend on the choice of ω by the product formula. The composite map
\[
T(\mathbb{A}_K) \to \text{Cl}(T^0) \xrightarrow{h_T} \text{Hom}(Y(K), \mathbb{Z}) \xrightarrow{n \to q^n} \text{Hom}(Y(K), \mathbb{R}_>^\times)
\]
is denoted by ϑ in [Oes84, Chapter I, Section 5.5]. Recall from [Ono61, Section 3.5] and [Oes84, Chapter I, Definition 5.12] that the Tamagawa number $\tau(T)$ is defined as
\[
\tau(T) = \frac{\mu_{T(\mathbb{A}_K)}(T(\mathbb{A}_K)(K)^1/T(K))}{(\log q)^r \cdot \text{Disc}(h_T)}
\]
The correction factor $\text{Disc}(h_T)$ was introduced by Oesterlé [Oes84, Chapter I, Definition 5.9 (b)] and did not appear in [Ono61]. It can be non-trivial [Oes84, Chapter I, Remark 5.7].

Proposition 6.2.
\[
\tau(T) = \frac{\# \text{Cl}(T^0)_{\text{tor}} \cdot q^{\chi(S,\text{Lie}^0)}}{\# T^0(S) \cdot \rho(T) \cdot (\log q)^r \cdot \text{Disc}(h_T)}.
\]

Proof. By Proposition 6.1, we have an exact sequence
\[
0 \to T^0(O_{\mathbb{A}_K}) \xrightarrow{} T(\mathbb{A}_K) \xrightarrow{} T^0(K) \to \text{Cl}(T^0)_{\text{tor}} \to 0.
\]
Hence $\tau(T) \cdot (\log q)^r \cdot \text{Disc}(h_T) = \mu_{T(\mathbb{A}_K)}(T(\mathbb{A}_K)(K)^1/T(K))$ can be written as
\[
\frac{\# \text{Cl}(T^0)_{\text{tor}}}{\# T^0(S) \cdot \rho(T)} \cdot \mu_{T(\mathbb{A}_K)}(T^0(O_{\mathbb{A}_K}))
\]
\[
= \frac{\# \text{Cl}(T^0)_{\text{tor}}}{\# T^0(S) \cdot \rho(T) \cdot q^{(g-1)d} \cdot \prod_v P_v(T, N(v)^{-1})^{-1} \mu_v(T^0(O_v))}
\]
To calculate the factors in the product term, we have
\[
P_v(T, N(v)^{-1}) = \frac{\# T^0(k(v))}{N(v)^d}
\]
(see the proof of [GS20, Proposition 4.1] for example) and
\[
\mu_v(T^0(O_v)) = \# T^0(k(v)) \cdot \mu_v(T^0(p_v))
\]
\[
= \# T^0(k(v)) \cdot \mu_v(\text{Lie}(T^0)(p_v))
\]
\[
= \frac{\# T^0(k(v))}{N(v)^d} \cdot \mu_v(\text{Lie}(T^0)(O_v))
\]
where $T^0(p_v)$ denotes the kernel of the reduction map $T^0(O_v) \to T^0(k(v))$ and $\text{Lie}(T^0)(p_v)$ similarly. Hence
\[
P_v(T, N(v)^{-1})^{-1} \mu_v(T^0(O_v)) = \mu_v(\text{Lie}(T^0)(O_v))
\]
\[
= N(v)^{-v(\omega)}
\]
where \(v(\omega) \) is the order of zero at \(v \) of \(\omega \) as a rational section of \(\det(\text{Lie}(\mathcal{T}^0))^* \). Therefore

\[
\prod_v P_v(T, N(v)^{-1})^{-1} \mu_v(\mathcal{T}_v(0)) = \prod_v q^{-\deg(v) \cdot v(\omega)} = q^{\deg(\text{Lie}(\mathcal{T}^0))} = q^{\chi(S, \text{Lie} \mathcal{T}^0) - (1-g)d},
\]

where the last equality is the Riemann-Roch theorem. \(\Box \)

Proposition 6.3.

\[
\tau(T) = \frac{\#H^1(K, Y)}{\#\Pi(T)}.
\]

Proof. This follows from Theorem 4.6, Propositions 5.5 and 6.2. \(\Box \)

This reproves Ono-Oesterlé’s Tamagawa number formula [Ono63, Section 5, Main theorem], [Oes84, Chapter IV, Corollary 3.3].

7. 1-Motives

Let \(M \) be a 1-motive over \(K \). The goal of this section is to combine the results of this paper for tori and lattices with the results of for abelian varieties of [GS20] to obtain a formula for the \(L \)-function of \(M \) at \(s = 1 \).

More precisely, we define a model \(M^\Delta \) over \(S \) such that, assuming the finiteness of the Tate-Shafarevich group of the abelian variety component of \(M \), the groups \(H^*_W(S, M^\Delta) \) are finitely generated, and the leading coefficient of the \(L \)-function of \(M \) at \(s = 1 \) can be expressed in terms of \(H^*_W(S, M^\Delta) \).

Let \(M = [X \to G] \) be a 1-motive over \(K \), where \(X \) and \(G \) are a lattice and a semi-abelian variety over \(K \) placed in degree \(-1\) and \(0 \), respectively. Let \(T \) be the torus part of \(G \) and \(A \) the abelian variety quotient of \(G \). Let \(Y \) be the character lattice of \(T \). Denote \(\mathcal{X} = j_* X \), where \(j : \text{Spec} \, K \to S \). Denote the Néron and connected Néron model of \(G \) over \(S \) by \(\mathcal{G} \) and \(G^0 \), respectively. Define \(\mathcal{X}^\Delta \) by the fiber product

\[
\begin{array}{ccc}
\mathcal{X}^\Delta & \longrightarrow & G^0 \\
\downarrow & & \downarrow \\
\mathcal{X} & \longrightarrow & \mathcal{G}.
\end{array}
\]

Note that despite the notation, the scheme \(\mathcal{X}^\Delta \) depends not only on \(\mathcal{X} \) but the whole data \(M = [X \to G] \). The fiber \(\mathcal{X}_v^\Delta \) of \(\mathcal{X}^\Delta \) at a place \(v \) is the kernel of the morphism \(\mathcal{X}_v \to \pi_0(\mathcal{G}_v) \) over \(k(v) \). Therefore the group of geometric points of \(\mathcal{X}_v^\Delta \) is the kernel of the map \(X(K_v^{sh}) \to \pi_0(\mathcal{G}_v)(k(v)) \).

Proposition 7.1. The scheme \(\mathcal{X}^\Delta \) is a \(\mathbb{Z} \)-constructible étale subsheaf of \(\mathcal{X} \) such that the quotient \(\mathcal{X}/\mathcal{X}^\Delta \) is supported on finitely many closed points of \(S \).
Proof. It is enough to show that the morphism $\mathcal{X}_v \to \pi_0(\mathcal{G}_v)$ over $k(v)$ is zero for almost all places v. We have an exact sequence

$$0 \to \mathcal{G}^0 \to \mathcal{G} \to \bigoplus_v i_{v,*} \pi_0(\mathcal{G}_v) \to 0$$

on S_{ct}. We want to show that the induced morphism $\mathcal{X} \to \bigoplus_v i_{v,*} \pi_0(\mathcal{G}_v)$ factors through a finite partial direct sum. Let $U \subseteq S$ be a dense open subscheme such that \mathcal{X} is a lattice over U. Let U'/U be a finite étale Galois covering with Galois group G trivializing \mathcal{X}. Then the morphism $\mathcal{X} \times_S U \to \bigoplus_{v \notin U} i_{v,*} \pi_0(\mathcal{G}_v)$ over U corresponds to a G-module homomorphism $\mathcal{X}(U') \to \bigoplus_{v \notin U} \pi_0(\mathcal{G}_v)(U' \times_U k(v))$. Since $\mathcal{X}(U')$ is finitely generated, this homomorphism indeed factors through a finite partial direct sum. \hfill \Box

Example 7.2.

1. Take $X = \mathbb{Z}$ and $G = \mathbb{G}_m$, so that the morphism $X \to G$ corresponds to a non-zero rational function $f \in K^X$. Then for any place v, the map $\mathcal{X}(K^X_v) \to \pi_0(\mathcal{G}_v)(k(v))$ is the map $\mathbb{Z} \to \mathbb{Z}$ given by multiplication by the valuation $v(f)$ of f. Therefore $\mathcal{X}_v^\Delta \neq \mathcal{X}_v = \mathbb{Z}$ if and only if f has a zero or pole at v, in which case $\mathcal{X}_v^\Delta = 0$. Therefore

$$\mathcal{X}/\mathcal{X}^\Delta = \bigoplus_{v \in \Sigma} i_{v,*} \mathbb{Z},$$

where Σ is the set of places where f has a zero or pole.

2. Take $X = \mathbb{Z}$, and assume $G = A$. Then the morphism $X \to G$ corresponds to a rational point $a \in A(K)$. For any place v, the map $\mathcal{X}(K^X_v) \to \pi_0(\mathcal{G}_v)(k(v))$ corresponds to the image $a_v \in \pi_0(\mathcal{A}_v)(k(v))$ of a. Note that $\pi_0(\mathcal{A}_v)(k(v))$ is a finite group. Therefore $\mathcal{X}_v^\Delta \subseteq \mathcal{X}_v$ is given by the finite index subgroup $n_v \mathbb{Z} \subset \mathbb{Z}$, where n_v is the order of a_v. We have $n_v = 1$ for almost all v since A has good reduction almost everywhere and so $\pi_0(\mathcal{A}_v) = 0$ for almost all v. Thus

$$\mathcal{X}/\mathcal{X}^\Delta = \bigoplus_v i_{v,*} (\mathbb{Z}/n_v \mathbb{Z})$$

is constructible in this case.

Define \mathcal{M}^Δ to be the complex

$$\mathcal{M}^\Delta := [\mathcal{X}^\Delta \to \mathcal{G}^0].$$

The l-adic representation $V_l(M)$ over K associated with M fits in the exact sequence

$$0 \to V_l(G) \to V_l(M) \to X \otimes \mathbb{Q}_l \to 0.$$

Define $L(M, s)$ to be the Hasse-Weil L-function of $V_l(M)(-1)$.

Example 7.3. The sheaf $\mathcal{X}/\mathcal{X}^\Delta$ non-trivially contributes to $L(M, s)$ and $\chi_W(S, \mathcal{M}^\Delta)$ in general. To see this, first we have

$$L(X, s) = L(\mathcal{X}^\Delta, s) \cdot L(\mathcal{X}/\mathcal{X}^\Delta, s),$$

Define M^Δ to be the complex

$$M^\Delta := [\mathcal{X}^\Delta \to \mathcal{G}].$$

The l-adic representation $V_l(M)$ over K associated with M fits in the exact sequence

$$0 \to V_l(G) \to V_l(M) \to X \otimes \mathbb{Q}_l \to 0.$$

Define $L(M, s)$ to be the Hasse-Weil L-function of $V_l(M)(-1)$.
\[
\chi_W(S, \mathcal{X}) = \chi_W(S, \mathcal{X}^\Delta) \cdot \chi_W(S, \mathcal{X}/\mathcal{X}^\Delta).
\]

In Example 7.2 (1), we have
\[
L(\mathcal{X}/\mathcal{X}^\Delta, s) = \prod_{v \in \Sigma} (1 - N(v)^{-s})^{-1}.
\]

This has a pole of order \(\#\Sigma\) at \(s = 0\). We have
\[
\lim_{s \to 0} L(\mathcal{X}/\mathcal{X}^\Delta, s) \cdot s^{\#\Sigma} = \prod_{v \in \Sigma} \left(\log N(v)\right)^{-1} = \prod_{v \in \Sigma} \left(\deg(v)\right)^{-1} \cdot (\log q)^{-\#\Sigma}.
\]

Also
\[
\chi_W(S, \mathcal{X}/\mathcal{X}^\Delta) = \prod_{v \in \Sigma} (\deg(v))^{-1}.
\]

This is consistent with Theorem 3.1.

Proposition 7.4. The complex of sheaves on \(S_{\text{et}}\)
\[
(7.1) \quad 0 \to T^0 \to G^0 \to A^0 \to 0
\]
is exact at \(T^0\) and \(A^0\), and its cohomology at \(G^0\) is an étale skyscraper sheaf with finite stalks.

Note that the exactness of the sequence is not considered in the category of group schemes over \(S\). For example, the morphism \(T^0 \to G^0\) may not be a closed immersion as noted in [Cha00, Remark 4.8 (b)].

Proof. For any \(v \in S\), the stalk of \(R^1 j_* T\) at \(\overline{v} = \text{Spec} k(v)\) is \(H^1(K_v^{sh}, T)\), which is zero by [Ser79, Chapter X, Section 7, “Application”]. Hence we have an exact sequence \(0 \to T \to G \to A \to 0\) in \(\text{Ab}(S_{\text{et}})\). In particular, the morphism \(T^0 \to G^0\) is injective in \(\text{Ab}(S_{\text{et}})\). For almost all \(v\), the sequence (7.1) pulled back to \(O_v\) is exact. Let \(C_v\) and \(D_v\) the cohomology of the complex
\[
0 \to T^0(O_v^{sh}) \to G^0(O_v^{sh}) \to A^0(O_v^{sh}) \to 0
\]
in the middle and on the right, respectively. It suffices to show that \(C_v\) is finite and \(D_v\) is zero. It follows from the diagram
\[
\begin{array}{ccccccc}
0 & & 0 & & 0 & & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \longrightarrow & T^0(O_v^{sh}) & \longrightarrow & G^0(O_v^{sh}) & \longrightarrow & A^0(O_v^{sh}) & \longrightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \longrightarrow & T(O_v^{sh}) & \longrightarrow & G(O_v^{sh}) & \longrightarrow & A(O_v^{sh}) & \longrightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \longrightarrow & \pi_0(T_v)(k(v)) & \longrightarrow & \pi_0(G_v)(k(v)) & \longrightarrow & \pi_0(A_v)(k(v)) & \longrightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & & 0 & & 0, & & 0,
\end{array}
\]
with exact columns and exact middle row that

\[C_v \cong \ker \left(\pi_0(T_v)(k(v)) \to \pi_0(G_v)(k(v)) \right) \]

\[D_v \cong H \left(\pi_0(T_v)(k(v)) \to \pi_0(G_v)(k(v)) \to \pi_0(A_v)(k(v)) \right) \]

The groups \(\pi_0(T_v)(k(v)) \) and \(\pi_0(G_v)(k(v)) \) are finitely generated by [HNT11, Proposition 3.5] for example. Therefore \(C_v \) and \(D_v \) are finitely generated, and do not change if \(O_v^{sh} \) is replaced by the maximal unramified extension \(O_v^{ur} \) of \(O_v \) or its completion \(\hat{O}_v^{ur} \). The group \(G^0(O_v^{ur}) \) is the union of profinite subgroups \(G^0(O_L) \), where \(L \) runs through finite subextensions of \(K_v^{ur}/K_v \).

Similar statements hold for \(T^0(O_v^{ur}) \) and \(A^0(O_v^{ur}) \). Hence \(C_v \) and \(D_v \) are unions of profinite subgroups and thus they are finite.

It remains to prove that \(D_v = 0 \). Let \(n = \# \text{Aut}(D_v) \). Then \(\varphi^n_v \) acts trivially on \(D_v = A^0(\hat{O}_v^{ur})/G^0(\hat{O}_v^{ur}) \), so that \(\varphi^n_v - 1 \) is the zero map on \(D_v \). But \(\varphi^n_v - 1 \) is surjective on \(A^0(\hat{O}_v^{ur}) \) by Lang’s theorem. □

Recall that \(Y \) denotes the character lattice of \(T \).

Corollary 7.5.

1. The groups \(H^*_W(S, M^\Delta) \) have finite ranks (namely, they become finite-dimensional after \(\otimes \mathbb{Q} \)) and we have

\[
r_M := - \sum_i (-1)^i \cdot i \cdot \text{rk} H^i_W(S, M^\Delta)
= r_T + r_A - r_{X^\Delta}
= \text{rk} A(K) - \text{rk} X(K) - \text{rk} Y(K)
\]

+ \(\sum_v \text{rk}(\mathcal{X}/\mathcal{X}^\Delta)(k(v)) \).

2. Assuming the finiteness of the Tate-Shafarevich group of the abelian variety component of \(M \), the groups \(H^*_W(S, M^\Delta) \) are finitely generated abelian groups.

Note that \(r_T = - \text{rk} Y(K) \) by Corollary [2.7] and \(r_A = \text{rk} A(K) \) by [GS20].

Proof. By Proposition 7.4, we have a long exact sequence

\[
\cdots \to H^i_W(S, T^0) \to H^i_W(S, G^0) \to H^i_W(S, A^0) \to \cdots
\]

up to finite abelian groups. If III(\(A \)) is finite, then the groups \(H^*_W(S, A^0) \) are finitely generated by [GS20] Theorem 1.1]. As \(M^\Delta = [\mathcal{X}^\Delta \to G^0] \), the result follows.

Proposition 7.6. We have

\[
\chi(S, \text{Lie} G^0) = \chi(S, \text{Lie} T^0) + \chi(S, \text{Lie} A^0).
\]
Proof. By the Riemann-Roch formula, it is enough to show that
\[\deg \operatorname{Lie} G^0 = \deg \operatorname{Lie} T^0 + \deg \operatorname{Lie} A^0. \]
For this, it is enough to show that
\[\det \operatorname{Lie} G^0 \cong \det \operatorname{Lie} T^0 \otimes \mathcal{O}_S \det \operatorname{Lie} A^0 \]
as line subbundles of the rank one \(K \)-vector space
\[\det \operatorname{Lie} G \cong \det \operatorname{Lie} T \otimes_K \det \operatorname{Lie} A. \]
But this is [Cha00, Theorem 4.1, Question 8.1]. \(\square \)

Proposition 7.7. We have
\[L(M, s) = L(X^\Delta, s - 1) \cdot L(T, s) \cdot L(A, s). \]

Proof. For each place \(v \), we have an exact sequence
\[0 \to V_i(G)^I_v \to V_i(M)^I_v \to (X \otimes \mathbb{Q}_l)^I_v \to H^1(K_v^{ur}, V_i(G)). \]
The last term contains the \(l \)-adic completion of \(G(K_v^{ur}) \) tensored with \(\mathbb{Q}_l \). We have a commutative diagram
\[\begin{array}{ccc}
X(K_v^{ur}) & \longrightarrow & G(K_v^{ur}) \\
\downarrow & & \downarrow \\
(X \otimes \mathbb{Q}_l)^I_v & \longrightarrow & H^1(K_v^{ur}, V_i(G)).
\end{array} \]
Hence the lower horizontal morphism factors through \(\pi_0(G_v)(\overline{k(v)}) \otimes \mathbb{Q}_l \) and is equal to the map \(X(K_v^{ur}) \to \pi_0(G_v)(\overline{k(v)}) \) tensored with \(\mathbb{Q}_l \). The kernel of \(X(K_v^{ur}) \to \pi_0(G_v)(\overline{k(v)}) \) is \(X^\Delta(\overline{k(v)}) \) by definition. Therefore we have an exact sequence
\[0 \to V_i(G)^I_v \to V_i(M)^I_v \to X^\Delta(\overline{k(v)}) \otimes \mathbb{Q}_l \to 0. \]
This implies
\[L(M, s) = L(G, s) \cdot L(X^\Delta, s - 1). \]
Proposition 7.3 implies that the sequence
\[0 \to V_i(T)^I_v \to V_i(G)^I_v \to V_i(A)^I_v \to 0 \]
is exact since \(V_i(G)^I_v \cong V_i(G^0(\mathcal{O}_s^{sh})) \) and so on. Hence \(L(G, s) = L(T, s) \cdot L(A, s). \) \(\square \)

Theorem 7.8. Assume that \(\text{III}(A) \) is finite. Then the groups \(H^*_W(S, \mathcal{M}^\Delta) \) are finitely generated and
\[\lim_{s \to 1} \frac{L(M, s)}{(s - 1)^r_M} = (-1)^{\chi_Y(K)} \cdot \chi_W(S, M^\Delta)^{-1} \cdot q^{\chi_{S, \operatorname{Lie} G^0}} \cdot (\log q)^r_M. \]
Proof. The finiteness of $\text{III}(A)$ implies the finite generation of $H^*_W(S,A^0)$ by [GS20, Theorem 1.1]. We have

$$\chi_W(S,M^\Delta) = \chi_W(S,X^\Delta)^{-1} \cdot \chi_W(S,G^0) = \chi_W(S,X^\Delta)^{-1} \cdot \chi_W(S,T^0) \cdot \chi_W(S,A^0)$$

by Proposition 7.4. With Propositions 7.5, 7.6 and 7.7, the theorem reduces to Theorem 4.6 for T, Theorem 3.1 for X^Δ and the Weil-étale BSD formula [GS20, Theorem 1.1]

$$\lim_{s \to 1} \frac{L(A,s)}{(s-1)^{\text{rk} A(K)}} = \chi_W(S,A^0)^{-1} \cdot q^{\chi(S,\text{Lie} A^0)} \cdot (\log q)^{\text{rk} A(K)}$$

for A. □

REFERENCES

[BLR90] Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud. Néron models, volume 21 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1990.

[Cha00] Ching-Li Chai. Néron models for semiabelian varieties: congruence and change of base field, volume 4, pages 715–736. 2000. Loo-Keng Hua: a great mathematician of the twentieth century.

[CY01] Ching-Li Chai and Jiu-Kang Yu. Congruences of Néron models for tori and the Artin conductor. Ann. of Math. (2), 154(2):347–382, 2001. With an appendix by Ehud de Shalit.

[DG70] Michel Demazure and Pierre Gabriel. Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs. Masson & Cie, Éditeur, Paris; North-Holland Publishing Co., Amsterdam, 1970. Avec un appendice Corps de classes local par Michiel Hazewinkel.

[Gei04] Thomas Geisser. Weil-étale cohomology over finite fields. Math. Ann., 330(4):665–692, 2004.

[Gei12] Thomas Geisser. Duality for Z-constructible sheaves on curves over finite fields. Doc. Math., 17 (2012), 989–1002.

[GS20] Thomas H. Geisser and Takashi Suzuki. A Weil-étale version of the Birch and Swinnerton-Dyer formula over function fields. J. Number Theory, 208:367–389, 2020.

[HN11] Lars Halvard Halle and Johannes Nicaise. Motivic zeta functions of abelian varieties, and the monodromy conjecture. Adv. Math., 227(1):610–653, 2011.

[Kah18] Bruno Kahn. Fonctions zêta et L de variétés et de motifs. Nano. Calvage et Mounet, Paris, 2018.

[Lic05] Stephen Lichtenbaum. The Weil-étale topology on schemes over finite fields. Compos. Math., 141(3):689–702, 2005.

[Lic09] Stephen Lichtenbaum. Euler characteristics and special values of zeta-functions. In Motives and algebraic cycles, volume 56 of Fields Inst. Commun., pages 249–255. Amer. Math. Soc., Providence, RI, 2009.

[Mil80] James S. Milne. Étale cohomology, volume 33 of Princeton Mathematical Series. Princeton University Press, Princeton, N.J., 1980.

[Mil06] James S. Milne. Arithmetic duality theorems. BookSurge, LLC, Charleston, SC, second edition, 2006.

[Mor22] Adrien Morin. Special values of L-functions on regular arithmetic schemes of dimension 1. To appear in J. Number Theory, DOI:10.1016/j.jnt.2022.07.002, arXiv:2108.00811v1, 2022.
[Oes84] Joseph Oesterlé. Nombres de Tamagawa et groupes unipotents en caractéristique p. *Invent. Math.*, 78(1):13–88, 1984.
[Ono61] Takashi Ono. Arithmetic of algebraic tori. *Ann. of Math. (2)*, 74:101–139, 1961.
[Ono63] Takashi Ono. On the Tamagawa number of algebraic tori. *Ann. of Math. (2)*, 78:47–73, 1963.
[PL19] Simon Pepin Lehalleur. Triangulated categories of relative 1-motives. *Adv. Math.*, 347:473–596, 2019.
[Ser79] Jean-Pierre Serre. *Local fields*, volume 67 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, 1979. Translated from the French by Marvin Jay Greenberg.
[Suz19] Takashi Suzuki. Néron models of 1-motives and duality. *Kodai Math. J.*, 42(3):431–475, 2019.
[Swa60] Richard G. Swan. Induced representations and projective modules. *Ann. of Math. (2)*, 71(3):552–578, 1960.
[Tra15] Minh-Hoang Tran. *Weil-étale Cohomology and Special values of L-functions of 1-motives*. Mathematics Theses and Dissertations, Brown Digital Repository. Brown University Library, 2015. DOI: 10.7301/Z00K26X8.
[Tra16] Minh-Hoang Tran. Weil-étale cohomology and special values of L-functions at zero. arXiv:1608.01152v1, 2016.

Rikkyo University, Ikebukuro, Tokyo, Japan
Email address: geisser@rikkyo.ac.jp

Chuo University, Kasuga, Tokyo, Japan
Email address: tsuzuki@gug.math.chuo-u.ac.jp