Peritonitis in children on peritoneal dialysis: 12 years of tertiary center experience

Saeed M. AlZabli a, *, Mohammed A. Alsuhaibanib, Meshail A. BinThunian c, Dayel A. Alshahrani d, Abdulkarim Al anazia, Sibi Varghese a, Vernice Rose a, Khawla A. Rahima

a Pediatric Nephrology Section, Children Specialized Hospital, King Fahad Medical City, Riyadh, 12231, Saudi Arabia
b Department of Pediatrics, College of Medicine, Qassim University, Qassim, 51452, Saudi Arabia
c General Pediatric Section, Children Specialized Hospital, King Fahad Medical City, Riyadh, 12231, Saudi Arabia

1. Introduction

Chronic kidney disease in childhood, which can be congenital or acquired, is a leading cause to end-stage of several renal or urologic diseases [1]. Peritoneal dialysis (PD) is reported to be the dialysis modality of choice in children with end-stage renal disease (ESRD) worldwide [2]. PD-associated peritonitis is associated with morbidity, mortality, and treatment failure in patients undergoing PD [3]. Peritonitis secondary to bacterial causes is the most frequent cause of morbidity and permanent technical failure in pediatric patients [4]. Therefore, the use of empirical antibiotics according to the most prevalent bacterial organism causing peritonitis has been
recommended by the International Society of Peritoneal Dialysis (ISPD) [5]. Early identifications of peritonitis and protocol-guided management may reduce the rate of peritonitis. Proper catheter placement, topical antibiotics for exit-site, frequent training for patients and their families, and contamination treatment are examples for procedures that minimize infection risk in PD patients [6]. This study aims to assess the rate, associated microbiology, antibiotic susceptibility, and outcomes for PD-associated peritonitis in pediatric patients at King Fahad Medical City over 12 years. These data will be beneficial for establishing regional treatment guidelines.

2. Materials and methods

A retrospective study was performed at King Fahad Medical City in Riyadh, Saudi Arabia. Hospitalized pediatric patients aged 0–14 years, diagnosed with PD-associated peritonitis between 2007 and 2018 were retrospectively reviewed and analyzed. Patients above 14 years old were excluded. Both descriptive and inferential statistics were conducted. All the patients underwent surgical catheter insertion and received antibiotic prophylaxis during catheter implantation. Additionally, topical antibiotics of the exit site are used routinely for 3 of the patients as per ISPD guidelines. Regarding the caregiver training, at least two of the family members (e.g., father and mother) were trained at the time of initiation of dialysis for 1–2 weeks, to reach the required competency of doing dialysis independently.

We used MS Excel version 2010 to analyze 208 episodes of PD-associated peritonitis and the relationships with other study variables. We used IBM SPSS Statistics for Windows, version 21 (IBM Corp., Armonk, N.Y., USA) to analyze the outcomes in 131 patients with peritonitis. Descriptive statistics were presented using counts, proportions (%), and mean ± standard deviation whenever appropriate. The relationship between the sociodemographic data and the outcome of peritonitis had been conducted using Fisher's Exact test. To adjust for the potential confounders, a multivariate regression analysis was conducted to predict the influence of positive peritonitis from the selected sociodemographic characteristics of the patients. Survival analysis (Kaplan Meier) was also presented to evaluate the differences of the outcome (survival vs. nonsurvival) between male and female subjects measured in months where the log-rank test was also being reported. We considered a p-value of <0.05 as statistically significant. All study variables were carefully assessed and grouped by subject order. Missing values were handled carefully by excluding them from the analyses. This method was applied to maintain the consistency and accuracy of the study results.

Data collection obtained from the patient’s medical charts, including demographics, age at initiation of PD, onset of first peritonitis episode after PD initiation, incidence of PD peritonitis, period between PD catheter placement and the first episode of peritonitis, causes of ESRD, comorbidity conditions, causing organism, antibiotics susceptibility, and outcomes. The diagnosis of peritonitis was based on ISPD 2016 [5], where the diagnosis of peritonitis requires a minimum of two of the following: (1) clinical manifestations compatible with peritonitis, (2) white cell count >100/μL, and (3) positive culture for dialysis effluent. The removal of PD catheter, transfer to hemodialysis, relapse or recurrent peritonitis, and patient death were the outcomes observed in this study. An episode that happened within four weeks of the therapy completion for a prior episode caused by the same organism or one sterile episode was considered as relapsing peritonitis. If an episode happened within three months after starting dialysis, and 20 (15.3%) first experienced peritonitis between 3 and 6 months after starting PD. Meanwhile, 50 (38.2%) patients remained peritonitis-free. The mean number of peritonitis episodes was 1.6 (2.5) (Table 1). The most common comorbidities were hypertension (55%), followed by cardiac (29%) and central nervous system dysfunction (22.1%), whereas malignancy was uncommon (0.8%) (Fig. 1). The most common underlying primary diagnosis was focal segmental glomerulosclerosis (FSGS, 15.3%), followed by posterior urethral valves (12.2%) and congenital nephrotic syndrome (11.5%) (Fig. 2). Regarding the presence of peritonitis (negative vs. positive) in

3. Results

In total, the cases of 146 children undergoing PD were retrospectively reviewed and analyzed. We excluded 15 patients undergoing acute PD. Of the remaining 131 patients, 68 (51.9%) were boys (Table 1). The patients’ age were ranged from 0 to 12 years, with 6–12 years being the most common age (46.6%). In total, 37.4% of patients started PD after 48 months of age and 21.4% of patients started PD between 25 and 48 months of age. Regarding the first peritonitis episode, 27 (20.6%) children developed peritonitis within three months after starting dialysis, and 20 (15.3%) first experienced peritonitis between 3 and 6 months after starting PD. Meanwhile, 50 (38.2%) patients remained peritonitis-free. The mean number of peritonitis episodes was 1.6 (2.5) (Table 1). The most common comorbidities were hypertension (55%), followed by cardiac (29%) and central nervous system dysfunction (22.1%), whereas malignancy was uncommon (0.8%) (Fig. 1). The most common underlying primary diagnosis was focal segmental glomerulosclerosis (FSGS, 15.3%), followed by posterior urethral valves (12.2%) and congenital nephrotic syndrome (11.5%) (Fig. 2). Regarding the presence of peritonitis (negative vs. positive) in

Table 1

| Study variable | N (%) |
|---------------|-------|
| Gender        |       |
| Male          | 68 (51.9) |
| Female        | 63 (48.1) |
| Nationality   |       |
| Saudi         | 125 (95.4) |
| Non-Saudi     | 6 (04.6) |
| Place of residence |     |
| Riyadh        | 55 (42.0) |
| Outside Riyadh| 76 (58.0) |
| Socioeconomic status | |
| Fair          | 57 (43.5) |
| Good          | 74 (56.5) |
| Age group (years) |    |
| <1            | 7 (05.3) |
| 1–5           | 32 (24.4) |
| 6–12          | 61 (46.6) |
| >12           | 31 (23.7) |
| Age at initiation of PD (months) | |
| <6            | 13 (09.9) |
| 6–12          | 18 (13.7) |
| 13–24         | 23 (17.6) |
| 25–48         | 28 (21.4) |
| >48           | 49 (37.4) |
| The onset of first peritonitis episode after PD initiation (months) | |
| <3            | 27 (20.6) |
| 3–6           | 20 (15.3) |
| 7–12          | 10 (07.6) |
| >12           | 24 (18.3) |
| No peritonitis| 50 (38.2) |
| The number of episodes of peritonitis (mean ± standard deviation) | 1.6 (02.5) |
| Patient source |       |
| New to dialysis | 97 (74.0) |
| Failed kidney transplant | 1 (0.80) |
| Transfer from hemodialysis | 33 (25.2) |

PD: peritoneal dialysis.
relation to the baseline characteristics of participants, only the place of residence ($P = 0.020$) and total duration of PD ($P < 0.001$) were significantly related to its presence (Table 2). A multivariate regression analysis had been conducted to predict the influence of positive peritonitis from the selected baseline characteristics of patients. Regression was adjusted in the model, including the place of residence and total duration of PD. It was revealed that the odds of having positive peritonitis for those patients with 6–12 months duration of PD are 17 times higher as compared to those with less than 6 months duration (Adjusted odds ratio (AOR) = 17.425, CI = 4.404–68.942, and $P < 0.001$); however, the odds increased to 5 times higher in the duration of 13–24 months (AOR = 5.265, CI = 1.362–20.355, $P = .016$) when compared with less than six months. On the other hand, the place of residence did not reach statistical significance when predicting the effect of positive peritonitis (Table 3).

Most of the patients had a single episode of peritonitis (25.2%), followed by two (19.1%) and three episodes (6.9%). Gram-positive bacteria were most common causative organisms (50.1%), then gram-negative microbes (26%) and fungi (3.4%). Meanwhile, 20.5% of cases were culture-negative (Fig. 3). Among gram-positive organisms, coagulase-negative Staphylococcus was the most common (22.1%), whereas Klebsiella (6.3%) was the most common gram-negative microbe. Most of the gram-positive microorganisms were resistant to penicillin, whereas first-generation cephalosporins were effective against most streptococci and methicillin-

**Fig. 1.** The annual rate of peritonitis, revealing the improvement of rate in the last two years.

**Fig. 2.** Primary diagnosis of end-stage renal disease. FSGS: Focal segmental glomerulosclerosis; HUS: Hemolytic uremic syndrome; and MPGN: Membranoproliferative glomerulonephritis.
presented with abdominal pain, fever, and cloudy eff
Among the presenting symptoms, 56.7%, 50%, and 49% of patients
organisms, it was found that the odds of catheter removal for those
Three episodes (1.4%) were fatal. In the multivariate
AOR: adjusted odds ratio and CI: Confidence Interval.
* Significant at \( P < 0.05 \) level.

PD: peritoneal dialysis.
* \( P \)-value was calculated by using the Fisher’s exact test.
* Significant at \( P < 0.05 \) level.

table 2

| Study variable | Peritonitis | \( P \)-value* |
|----------------|-------------|---------------|
|                | Negative (n = 50) | Positive (n = 81) |   |
| Gender         |             |               |   |
| Male           | 26 (52.0)  | 42 (51.9)  | 1.000 |
| Female         | 24 (48.0)  | 39 (48.1)  |   |
| Nationality    |             |               |   |
| Saudi          | 48 (96.0)  | 77 (95.1)  | 1.000 |
| Non-Saudi      | 02 (04.0)  | 04 (04.9)  |   |
| Place of residence |         |               |   |
| Riyadh         | 15 (30.0)  | 41 (50.6)  | .029* |
| Outside Riyadh | 35 (70.0)  | 40 (49.4)  |   |
| Socioeconomic status | | |   |
| Fair           | 21 (42.0)  | 36 (44.4)  | .857 |
| Good           | 29 (58.0)  | 45 (55.6)  |   |
| Age group (years) |       |               |   |
| \( \leq 5 \) | 15 (30.0)  | 24 (29.6)  | 1.000 |
| \( >5 \)    | 35 (70.0)  | 57 (70.4)  |   |
| The total duration of PD (months) | | |   |
| \( <6 \)    | 24 (48.0)  | 7 (08.6)   | <.001* |
| \( 6–12 \)  | 12 (24.0)  | 12 (14.8)  |   |
| \( 13–24 \) | 6 (12.0)   | 19 (23.5)  |   |
| \( 25–48 \) | 4 (08.0)   | 21 (25.9)  |   |
| \( >48 \)   | 4 (08.0)   | 22 (27.2)  |   |

sensitive *Staphylococcus aureus*. However, methicillin-resistant *S.
was resistant to most antibacterial agents tested excluding
vancomycin (Table 4). In general, aminoglycosides had the highest
sensitivity for gram-negative pathogens, whereas gram-negative
microbes were sensitive to ceftazidime and cefepime (Table 5).
Among the presenting symptoms, 56.7%, 50%, and 49% of patients
presented with abdominal pain, fever, and cloudy effluent,
respectively. In total, 18.9% of episodes were associated with exit-site
infection. The vast majority of episodes (95.9%) were not
associated with bloodstream infections. Peritonitis was resolved in
153 episodes (73.6%), whereas 52 (25.0%) episodes required cath-
ter removal. Three episodes (1.4%) were fatal. In the multivariate
regression model, to predict catheter removal from the selected
organisms, it was found that the odds of catheter removal for those
who had exit site infection was 5 times higher as compared to those
without it (AOR = 5.64, CI = 0.52–61.32, and \( P = .049 \)). On the other
hand, gram positive, gram negative, polymicrobial, and fungi did
not reach statistical significance after adjustment for confounders
(Table 6). The survival plot of male and female subjects regarding
the onset of first peritonitis revealed that the mean survival of male
was 3.48 months while for female it was 3.57 months, whereas the
overall mean survival rate was 3.53. (Fig. 4). However, this result
did not reach statistical significance based on log-rank (Mantel-Cox)
(\( X^2 = 0.095, P = .758 \)).

4. Discussion

PD continues to be an effective and safe dialysis for children
with ESRD [6]. However, according to several epidemiological
studies, peritonitis is a serious complication that is commonly
associated with PD [7]. This study is the largest of this type con-
ducted in Saudi Arabia. In our 12-year study, the peritonitis rate
exceeded those recorded in the USA (0.26 episodes/patient-year),
but the rate was markedly reduced in the last two years [8].
Furthermore, our rate is lower as compared to the Annual Dialysis
Report of the North American Pediatric Renal Trials and Collaborative
Studies (NAPRTCS) (0.64 episodes/patient-year) and reports in
Australia and New Zealand (0.71 episodes/patient-year) [8] [5].
Our results were similar to those reported from the King Saud
University Hospital in Riyadh (1 per 4.7 patient-months) [10]. In
contrast, better results were reported by Mirza et al. (one per nine
patient-months) from the Riyadh Medical Complex and King Fahd
National Guard Hospital [11]. Our findings were also in line with
those reported by Alharthi [12]. Per ISPD guidelines, the peritonitis
rate should not exceed 0.5 episodes per year [5]. This probably
reflects the improvement in our PD program, which included
retraining and strict protocols to prevent infections. The impor-
tance of preserving the peritoneal membrane and its function in
children, who will require a lifetime of ESRD care, dictates an
effective approach to prevent peritonitis. The ISPD pediatric
guidelines have been developed by taking this approach into
consideration. However, it is reflecting an opinion-based rather
than evidence-based approach, as there are limited studies in both
the pediatric nephrology and infectious disease literature.

It has been reported that gram-positive bacteria account for
more than 50% of peritonitis episodes, whereas 20–30% of these
episodes are related to gram-negative bacteria [12]. Our findings
were in line with previous results. Among gram-positive bacteria,
*Staphylococcus epidermidis* and *S. aureus* are commonly the causa-
tive organisms. *S. epidermidis* can form biofilms on silastic material
more quickly than other microorganisms [13]. Meanwhile, the rate
of fungal infections was in line with the findings of international
studies [14].

Peritonitis with culture-negative is rare in North America (11%)
and Argentina (15%), whereas it was causative of about 59% of all
episodes in a multicenter Brazilian prospective study [13,15].
However, the rate of culture-negative peritonitis was 20.5% in our
study. The culture-negative peritonitis rate should not exceed 20% of all peritonitis episodes, with a goal to be lower than 10% in any
center [5]. The empiric therapy for peritonitis episodes consist of
intraperitoneal cefepime monotherapy or can be a first-generation
cephalosporin, such as cefazolin or a glycopeptide (vancomycin or
tecoplanin) combined with a third-generation cephalosporin such
as ceftazidime according to the current pediatric ISPD guidelines.
The guidelines also recommended the use of vancomycin with a
positive history of methicillin-resistant *Staphylococcus aureus*
(MRSA) colonization/infection, is seriously sick, or has a positive
history of allergy to penicillins and cephalosporins [5,6]. Never-
thless, there is no consensus concerning the best empirical anti-
microbial therapy of PD-related peritonitis. An empirical treatment


table 3

| Factor | AOR | 95% CI | \( P \)-value |
|--------|-----|-------|-------------|
| Place of residence | | | |
| Riyadh | Ref | | |
| Outside Riyadh | .433 | 0.182–1.029 | .058 |
| The total duration of PD (months) | | | |
| \( <6 \) | Ref | | |
| \( 6–12 \) | 17.425 | 4.404–68.942 | <.001* |
| \( 13–24 \) | 5.265 | 1.362–20.355 | .016* |
| \( 25–48 \) | 1.736 | 0.418–7.215 | .448 |
| \( >48 \) | 4.009 | 0.197–4.200 | .903 |

AOR: adjusted odds ratio and CI: Confidence Interval.
* Significant at \( P < .05 \) level.
with glycopeptide and ceftazidime was superior to cefazolin and ceftazidime as demonstrated by a meta-analysis study [16,17]. However, our study results showed that the use of vancomycin is essential in cases with coagulase-negative Staphylococcus aureus (CONS) and MRSA peritonitis; however, the use of cefazolin plus ceftazidime as empirical therapy for peritonitis is still effective, when there is no concern for CONS and MRSA. Most of the gram-negative organisms were sensitive to aminoglycoside; however, it was used only in cases resistant to ceftazidime, secondary to its effect on residual renal function. Regarding monotherapy cefepime, additional prospective research is needed to assess its effectiveness in our population.

The International Pediatric Peritonitis Registry from 44 pediatric dialysis centers reported the outcomes of 548 episodes of peritonitis in 392 pediatric patients, 89% of patients achieved full functional recovery in line with exit-site infection in 18.9%, which makes exit-site infection an important risk factor [18]. Another risk factor is prolonged PD; patients undergoing PD for more than 84 months developed more peritonitis episodes (28.8%), when compared with patients undergoing PD for less than six months (6.2%). $P$ value was $<.001$. In the current study, 82% of full functional recovery was the outcomes of the peritonitis episodes comparable to the rate of 89%, which was reported in large multicenter studies with data extracted from the IPPR [18].

Moreover, concerning the long-term outcomes of children on PD, our findings regarding the shift to hemodialysis were similar to those of international and European registries (8.1% and 21%, respectively) [19]. Besides, another study found that 18% of episodes of peritonitis in the US and 16% of those in Canada required catheter removal [12]. There is an appreciable variation in the reported prevalence of peritonitis-associated mortality in the literature [20]. In our study, peritonitis-related mortality was considered for any death during the peritonitis course. However, the rate of deaths due to peritonitis complicated by septic shock was lower than that reported in Italy (9.5%) [21].

The main limitations of our study include the retrospective design and sample size and subsequent bias in results and conclusions.

5. Conclusion

The results of our study showed that the prevalence of peritonitis was comparable with those of other large pediatric studies and previous international registries related to common organisms. The

**Table 4**

| Gram-positive organisms | Penicillin | Vancomycin | Cephalothin |
|-------------------------|------------|------------|-------------|
| CONS %                  | 4.4        | 95.6       | 100 0 28.2  71.8 |
| MSSA %                  | 7.5        | 92.5       | 100 0 96.3  3.7 |
| Streptococcus %         | 77         | 33         | 100 0 80 20 |
| MSSA %                  | 28.5       | 71.5       | 83.4 16.6  50 50 |
| MRSA %                  | 0          | 100        | 100 0 0 100 |
| Others %                | 100        | 0          | 100 0 100 0 |

S: Sensitive; R: Resistant; CONS: Coagulase negative Staphylococcus aureus; MSSA: Methicillin-sensitive Staphylococcus aureus; MRSA: Methicillin-resistant Staphylococcus aureus.

**Table 5**

| Gram-negative organisms | Ceftazidime | Cefepime | Aminoglycoside | Tazocin | Ciprofloxacin | Meropenem |
|-------------------------|-------------|----------|----------------|---------|---------------|-----------|
| **Pseudomonas %**       | 92.8        | 7.2      | 91.6 8.4       | 100 0   | 92.8 7.2      | 100 0     |
| **Klebsiella including ESBL %** | 60     | 40       | 63.6 36.4     | 100 0   | 90 10         | 81.8 18.2 |
| **Escherichia coli including ESBL %** | 66.6     | 33.4     | 66.6 33.4     | 88.8 11.2 | 78.5 12.5      | 85.7 14.3 |
| **Acinetobacter baumannii %** | 87.5     | 12.5     | 100 0         | 100 0   | 87.5 12.5     | 100 0     |
| **Others %**            | 55.5        | 44.5     | 83.3 16.7     | 100 0   | 75 25         | 83.3 16.7 |

S: Sensitive; R: Resistant; and ESBL: Extended-spectrum beta-lactamases.

Fig. 3. Most common microorganisms causing peritonitis. CONS: coagulase-negative Staphylococcus aureus; MSSA: Methicillin sensitive Staphylococcus aureus; and MRSA: Methicillin-resistant Staphylococcus aureus.
rate of peritonitis was noticeably high in our study, although the rate was markedly reduced in the last two years, most likely related to the prolonged duration of PD and exit site infection. Further studies are required to identify other risk factors in our populations, including the assessment of environmental factors. Our data suggest that ceftazidime and cefazoline are still considered as effective options in the empirical therapy. Vancomycin instead of cefazoline should be considered when there is a concern for CONS and MRSA. Renal transplants within the first two years after the initiation of PD will decrease the overall rate of peritonitis.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Declaration of competing interest

None.

Acknowledgment

The authors would like to thank the Research Center at King Fahd Medical City, Riyadh, for their valuable support in the preparation of this manuscript.

Visual abstract

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ijpam.2020.09.001.

References

[1] Prasad N, Rangaswamy D, Patel M, Gulati S, Bhaduria D, Kaul A, et al. Long-term outcomes in children on chronic continuous ambulatory peritoneal dialysis: a retrospective cohort study from a developing country. Pediatr Nephrol 2019;34(11):2389–97.
[2] Melek E, Baskan E, Gulleroglu KS, Kurnap M, Moray G, Haberal M. Timing for removal of peritoneal dialysis catheters in pediatric renal transplant patients. Exp Clin Transplant 2016;14(Suppl 3):74–7.
[3] Ye H, Zhou Q, Fan L, Guo Q, Mao H, Huang F, et al. The impact of peritoneal dialysis-related peritonitis on mortality in peritoneal dialysis patients. BMC
Nephrol. 2017;18(1):186.

[4] Sethna CB, Bryant K, Munshi R, Warady BA, Richardson T, Lawlor J, et al. Risk factors for and outcomes of catheter-associated peritonitis in children: the SCOPE collaborative. Clin J Am Soc Nephrol 2016;11(9):1590–6. CJN-02540316.

[5] Li PK, Szeto C-C, Piraino B, de Arteaga J, Fan S, Figueiredo AE, et al. ISPD peritonitis recommendations: 2016 update on prevention and treatment. Peritoneal Dialysis International; 2016. pdi-2016.

[6] Szeto C-C, Li PK-T, Johnson DW, Bernardini J, Dong J, Figueiredo AE, et al. ISPD catheter-related infection recommendations: 2017 update. Perit Dial Int 2017;37(2):141–54.

[7] Sahlawi MAI, Wilson G, Stallard B, Manera KE, Tong A, Pisoni RL, et al. Peritoneal dialysis-associated peritonitis outcomes reported in trials and observational studies: a systematic review. Peritoneal Dialysis International; 2019. 0896860819893810.

[8] Perl J, Fuller DS, Bieber BA, Boudville N, Kanjanabuch T, Ito Y, et al. Peritoneal dialysis-related infection rates and outcomes: results from the peritoneal dialysis outcomes and practice patterns study (PDOPPS). American Journal of Kidney Diseases; 2020.

[9] Chang HJ, Han KH, Cho MH, Park YS, Kang HG, Cheong HIL, et al. Outcomes of chronic dialysis in Korean children with respect to survival rates and causes of death. Korean journal of pediatrics 2014;57(3):135.

[10] AlSaloum AA, Al Mugeiren MM, Al Rashid S, Al Mazrou A, Al Zamil F. CAPD in Saudi Arabian children: ten years experience from a single center. Saudi Journal of Kidney Diseases and Transplantation 1997;8(3):298.

[11] Mirza K, Eloukki AY. Peritonitis in continuous ambulatory peritoneal dialysis in children living in Saudi Arabia. Pediatr Nephrol 1997;11(3):325–7.

[12] Alharthi AA. Peritonitis in children with automated peritoneal dialysis. Clin Nephrol 2015;84(5):289–94.

[13] Ponce D, De Moraes TP, Fecois-Filho R, Figueiredo AE, Barretti P. Peritonitis in children on chronic peritoneal dialysis: the experience of a large national pediatric cohort. Blood Purif 2018;45(1–3):118–25.

[14] Levallois J, Nadeau-Fredette A-C, Labbe A-C, Laverdiere M, Ouimet D, Vallée M. Ten-year experience with fungal peritonitis in peritoneal dialysis patients: antifungal susceptibility patterns in a North-American center. Int J Infect Dis 2012;16(1):e41–3.

[15] Chadha V, Schaefer FS, Warady BA. Dialysis-associated peritonitis in children. Pediatr Nephrol 2010;25(3):425–40.

[16] Barretti P, Doles JVP, Pinotti DG, El Dib R. Efficacy of antibiotic therapy for peritoneal dialysis-associated peritonitis: a proportional meta-analysis. BMC Infect Dis 2014;14(1):445.

[17] Kussmann M, Schuster L, Zeitlinger M, Pichler P, Reznicek G, Wiesholzer M, et al. The influence of different peritoneal dialysis fluids on the in vitro activity of ampicillin, daptomycin, and linezolid against Enterococcus faecalis. Eur J Clin Microbiol Infect Dis 2015;34(11):2257–63.

[18] Warady BA, Feneberg R, Verrina E, Flynn JT, Müller-Wieland DE, Besbas N, et al. Peritonitis in children who receive long-term peritoneal dialysis: a prospective evaluation of therapeutic guidelines. J Am Soc Nephrol 2007;18(7):2172–9.

[19] Vidal E, van Stralen KJ, Chesnaye NC, Bonhuis M, Holmberg C, Zuwowska A, et al. Infants requiring maintenance dialysis: outcomes of hemodialysis and peritoneal dialysis. J Am Soc Nephrol 2016;27(11):3238–52.

[20] Mehrotra R, Devuyst O, Davies SJ, Johnson DW. The current state of peritoneal dialysis. J Am Soc Nephrol 2016;27(11):3238–52.

[21] Vidal E, Edefonti A, Murer L, Giongilio B, Maringhini S, Pecoraro C, et al. Peritoneal dialysis in infants: the experience of the Italian Registry of paediatric chronic dialysis. Nephrol Dial Transplant 2012;27(1):388–95.