A Higher Plant Δ^8 Sphingolipid Desaturase with a Preference for (Z)-Isomer Formation Confers Aluminum Tolerance to Yeast and Plants$^{[C][OA]}$

Peter R. Ryan*, Qing Liu, Petra Sperling, Bei Dong, Stefan Franke, and Emmanuel Delhaize

Commonwealth Scientific and Industrial Research Organization, Plant Industry, Canberra, Australian Capital Territory 2601, Australia (P.R.R., Q.L., B.D., E.D.); and Biozentrum Klein Flottbek und Botanischer Garten (P.S.) and Institut für Organische Chemie (S.F.), Universität Hamburg, D–20246 Hamburg, Germany

Three plant cDNA libraries were expressed in yeast (Saccharomyces cerevisiae) and screened on agar plates containing toxic concentrations of aluminum. Nine cDNAs were isolated that enhanced the aluminum tolerance of yeast. These cDNAs were constitutively expressed in Arabidopsis (Arabidopsis thaliana) and one cDNA from the roots of Stylosanthes hamata, designated $S851$, conferred greater aluminum tolerance to the transgenic seedlings. The protein predicted to be encoded by $S851$ showed an equally high similarity to Δ^6 fatty acyl lipid desaturases and Δ^8 sphingolipid desaturases. We expressed other known Δ^6 desaturase and Δ^8 desaturase genes in yeast and showed that a Δ^6 fatty acyl desaturase from Echium plantagineum did not confer aluminum tolerance, whereas a Δ^8 sphingobase desaturase from Arabidopsis did confer aluminum tolerance. Analysis of the fatty acids and sphingobases of the transgenic yeast and plant cells demonstrated that $S851$ encodes a Δ^8 sphingobase desaturase, which leads to the accumulation of $8(Z/E)$-C$_{18}$-phytosphingine and $8(Z/E)$-C$_{16}$-phytosphingine in yeast and to the accumulation of $8(Z/E)$-C$_{18}$-phytosphingine in the leaves and roots of Arabidopsis plants. The newly formed $8(Z/E)$-C$_{18}$-phytosphingine in transgenic yeast accounted for 3 mol% of the total sphingobases with a $8(Z)/8(E)$-isomer ratio of approximately 4:1. The accumulation of $8(Z)$-C$_{16}$-phytosphingine in transgenic Arabidopsis shifted the ratio of the $8(Z)/8(E)$ isomers from 1:4 in wild-type plants to 1:1 in transgenic plants. These results indicate that $S851$ encodes the first Δ^8 sphingolipid desaturase to be identified in higher plants with a preference for the $8(Z)$-isomer. They further demonstrate that changes in the sphingolipid composition of cell membranes can protect plants from aluminum stress.

Trivalent cations are toxic to most plant cells. The increased prevalence of soluble aluminum (Al$^{3+}$) cations in acid soils is a major limitation to plant production around the world. Aluminum disrupts a range of cellular processes, including nutrient acquisition, cell wall loosening, nuclear division, cytoskeleton stability, cytoplasmic calcium homeostasis, hormone transport, and signal transduction (Taylor, 1988; Kochian, 1995; Matsumoto, 2000). Many of these symptoms occur rapidly and some workers have concluded that aluminum toxicity is initiated by interactions occurring in the extracellular compartment (Horst, 1995) and cell membranes. Aluminum accumulates rapidly in the highly charged cell wall and near the fixed charges and polar groups on the plasma membrane surface, which can displace calcium from critical sites in the apoplasm, alter physical properties of the plasma membrane, change membrane lipid composition, block ion channels, and disrupt signal transduction processes by interfering with phospholipase C metabolism (Haug and Caldwell, 1985; Rengel, 1992; Shi and Haug, 1992; Kinraide et al., 1994; Ryan et al., 1994; Jones and Kochian, 1995; Piña-Chable and Hernández-Sotomayor, 2001; Martínez-Estévez et al., 2003; Stival da Silva et al., 2006). Whereas it remains unclear which, if any, of these reactions are primary causes for aluminum toxicity in plants, it is plausible that aluminum-dependent changes in cell membrane structure and function contribute to the overall stress encountered in acid soils. Consistent with this idea are reports demonstrating that aluminum can reduce membrane fluidity of the Archaeabacterium Thermoplasma acidophilum by binding to the polar head groups of phospholipids (Deleers et al., 1986) and alter the lipid composition of plant roots (Lindberg and Griffiths, 1993; Zhang et al., 1997; Peixoto et al., 2001; Stival da Silva et al., 2006). Previous reports have also shown that genetically engineered changes to the lipid composition of plant and yeast (Saccharomyces cerevisiae) membranes can affect their susceptibility to chilling, photoinhibition, drought, fungal toxins, and ion toxicity (Avery et al., 1996; Nishida and Murata, 1996; Delhaize et al., 1999; Thevissen et al., 2000; Los and Murata, 2004; Zhang et al., 2005; Stival da Silva et al., 2006).

* Corresponding author; e-mail peter.ryan@csiro.au; fax 61-2-6246-5000.

The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantphysiol.org) is: Peter R. Ryan (peter.ryan@csiro.au).

$^{[C]}$ Some figures in this article are displayed in color online but in black and white in the print edition.

$^{[O]}$ Open Access articles can be viewed online without a subscription.

www.plantphysiol.org/cgi/doi/10.1104/pp.107.100446

1968 Plant Physiology, August 2007, Vol. 144, pp. 1968–1977, www.plantphysiol.org © 2007 American Society of Plant Biologists Downloaded from on July 22, 2018 - Published by www.plantphysiol.org

Copyright © 2007 American Society of Plant Biologists. All rights reserved.
In contrast to the complexity of aluminum toxicity, the genetics of aluminum resistance can be relatively simple. For instance, the mechanism for aluminum resistance in some cereal species, such as wheat (Triticum aestivum; Raman et al., 2005) and barley (Hordeum vulgare; Minella and Sorrells, 1997) is controlled by single major genes. The aluminum resistance gene from wheat, TaALMT1, encodes a membrane protein that facilitates the aluminum-dependent release of malate anions from the root apices. These organic anions protect the root cells by chelating the aluminum cations in the apoplasm (Delhaize et al., 1993; Sasaki et al., 2004).

The aim of this study was to identify novel plant genes that confer aluminum tolerance using a strategy that does not make any assumptions about function. Using a yeast expression system, we isolated nine plant cDNAs that conferred increased tolerance to aluminum stress. One of these cDNAs from Stylis santhes hamata also enhanced the aluminum tolerance of Arabidopsis (Arabidopsis thaliana). We established that this cDNA encodes a Δ8 sphingolipid desaturase that preferentially produces the 8(Z)-isomer of phytosphinganine.

RESULTS

Plant cDNAs Conferring Aluminum Tolerance to Yeast

Bakers’ yeast was transformed with cDNA libraries prepared from the nodules of soybean (Glycine max), roots of S. hamata, and cluster roots of white lupin (Lupinus albus). These libraries were chosen because they were either prepared from a species well adapted to acid soils (S. hamata) or from tissues predicted to contain proteins that facilitate organic anion efflux from root cells (soybean nodules; cluster roots of white lupin). Transformed yeast cells were screened on agar plates with aluminum concentrations sufficient to inhibit the growth of cells containing an empty vector. Plasmids isolated from aluminum-tolerant colonies were amplified in Escherichia coli and retransformed into wild-type yeast to confirm that the aluminum-tolerance phenotype was caused by expression of the cDNA inserts and was not due to spontaneous mutations. Nine different cDNAs conferred increased aluminum tolerance to yeast cells. Figure 1, A to C, illustrates the increase in aluminum tolerance provided by one of nine cDNAs. The cDNAs were sequenced and their likely function determined by comparing their putative translation products with the nonredundant protein database using the BLASTx algorithm (http://www.ncbi.nlm.nih.gov/BLAST; Table I).

A cDNA Encoding a Lipid Desaturase Confers Aluminum Tolerance to Arabidopsis

Nine cDNAs were expressed in Arabidopsis under the control of the constitutive cauliflower mosaic virus (CaMV) 355 promoter. Aluminum tolerance of several T1 lines from each construct was compared with wild-type plants by estimating relative root growth on agar plates (data not shown). One cDNA from the S. hamata library, designated S851, enhanced the aluminum tolerance of all five independently transformed T1 lines tested (data not shown) and this cDNA was investigated further. It is possible that some of the other cDNAs are able to increase the aluminum tolerance of T2 material, but this was not tested in this study. We generated T2 populations from the T1 plants expressing S851 and selected two independent lines, At-S851-H4 and At-S851-H6, which were homozygous for antibiotic resistance. Expression of the S851 transgene in these two lines was confirmed by northern-blot analysis (data not shown). The aluminum tolerance of the At-S851-H4 and At-S851-H6 lines was estimated on agar in plates and pots. Relative root growth was consistently 20% to 100% greater in the homozygous transgenic lines compared to wild-type plants over a range of aluminum concentrations (Fig. 2). The stimulation of root growth observed in some treatments is likely to be caused by the often-reported amelioration of proton stress by low concentrations of aluminum (Kinraide, 1993).

In addition to aluminum, we tested whether yeast expressing S851 cDNA (designated here as Sc_pYES3-S851) was more tolerant of other toxic cations than yeast cells transformed with the empty vector (designated here as Sc_pYES3). Sc_pYES3-S851 conferred enhanced tolerance to gadolinium (Gd3+), but no

Figure 1. The S851 cDNA from S. hamata confers aluminum and gadolinium tolerance to transgenic yeast cells. Yeast strains transformed with an empty vector (Sc_pYES3) or transformed with a vector containing the S851 cDNA (Sc_pYES3-S851) were grown in SMM – ura medium. Cultures were diluted to an OD600 of 1.0 in sterile water before a series of 10-fold dilutions was prepared for each of two independent cultures of each strain. Aliquots (10 μL) of each dilution were added to agar plates containing SMM – ura with a range of toxic cations. A, Control agar. B, 200 μM AlCl3. C, 400 μM AlCl3. D, 3.6 mM MnCl2. E, 700 μM GdCl3. F, 600 μM LaCl3. Results are typical of those obtained from at least two independent experiments. [See online article for color version of this figure.]
consistent changes were observed for lanthanum (La$^{3+}$) or manganese (Mn$^{2+}$; Fig. 1, D–F). The homozygous Arabidopsis lines, At-S851-H4 and At-S851-H6, were also tested on agar plates containing a range of gadolinium concentrations, but neither showed greater tolerance than wild-type plants (data not shown).

Function of the Protein Encoded by S851

The predicted translation product of S851 is equally similar (approximately 70% amino acid identity) to two distinct lipid-modifying enzymes: a Δ6 fatty acyl lipidsaturase and a Δ8 sphingolipid desaturase. Δ6 desaturase enzymes add a double bond to linoleic acid (18:29,12) and α-linolenic acid (18:39,12,15) to produce γ-linolenic acid (18:39,12,15) and stearidonic acid (18:49,12,15), respectively. Δ8 sphingolipid desaturases create double bonds in long-chain bases (also called sphingobases), such as sphinganine (d18:0), phytosphinganine (t18:0), or 4-sphingenine (18:1a) to produce E- and Z-isomers of 8-sphingine (d18:1a,b), 8-phytosphingine (t18:1a), or 4,8-sphingadienine (d18:2a,b), respectively.

A phylogenetic comparison between the predicted S851 protein and other Δ6 fatty acyl lipidsaturase and Δ8 sphingobase desaturase proteins of known function revealed that S851 grouped with most of the Δ8 sphingolipid desaturase proteins (Fig. 3). However, Δ6 fatty acyl lipidsaturases from *Echium plantagineum* and *Borago officinalis* also clustered with the Δ8 desaturase enzymes, making it difficult to predict S851 function from this cladogram. To establish the function of the S851 protein, we tested the ability of other Δ6 and Δ8 desaturase enzymes to confer aluminum tolerance to yeast. In addition, the fatty acid and long-chain base compositions were measured in transgenic yeast and Arabidopsis expressing S851.

Initial analyses of the major fatty acid compositions in transgenic yeast and Arabidopsis showed no changes associated with the expression of the S851 cDNA (Table II). A cDNA encoding a Δ6 fatty acyl desaturase isolated from *E. plantagineum* (Zhou et al., 2006) was expressed in yeast (Sc$_p$YES3-Δ6) and tested on agar plates containing toxic levels of aluminum. The Sc$_p$YES3-Δ6 and Sc$_p$YES3 cells were equally sensitive to aluminum and both grew significantly slower than the Sc$_p$YES3-S851 cells (Fig. 4A). To confirm that the Δ6 fatty acyl desaturase was functional in yeast, we analyzed the lipid content of these cells grown in the presence and absence of linoleic acid, a substrate for Δ6 desaturase enzymes. When linoleic acid was excluded from the medium (control), the major fatty acid composition of all strains was similar (Fig. 5). When linoleic acid was included in the medium, it was activated to acyl-CoA and incorporated into membrane lipids where it accounted for over 40% of the total fatty acid content in all strains. The palmitoleic and oleic acid fractions showed a concomitant decrease of approximately 60%. Inclusion of linoleic acid was also associated with γ-linolenic acid accumulation in the Sc$_p$YES3-Δ6 strain only where it accounted for 1% of the total fatty acid content (Fig. 5). No γ-linolenic acid was detected in the Sc$_p$YES3 or Sc$_p$YES3-S851 strains. This result confirms that the Δ6 desaturase enzyme from *E. plantagineum* was functional when substrate for the enzyme was available and indicates that S851 cDNA does not encode a Δ6 fatty acyl desaturase.

Yeast cells were then transformed with a known Δ8 sphingolipid desaturase from Arabidopsis (GenBank accession no. AF001394; strain Sc$_p$YES3-Δ8) and its aluminum tolerance compared with control cells. The Sc$_p$YES3-Δ8 strain was more tolerant to aluminum stress than the Sc$_p$YES3 control (Fig. 4B). The finding that the aluminum tolerance of yeast is increased by expression of a known Δ8 desaturase is consistent with the hypothesis that S851 encodes a Δ8 sphingolipid desaturase, but not a Δ6 fatty acyl desaturase.

Sphingobase Analyses of Yeast and Plant Cells Expressing S851

Analysis of the sphingobases released from the Sc$_p$YES3-S851 yeast strain identified Δ8-unsaturated long-chain bases C$_{18}$ and C$_{20}$-phytosphinganine, which were not present in the control strain (Fig. 6, A and B).
These novel 8(Z)- and 8(E)-C_{18} phytosphingogenines accounted for 3 mol% of the total sphingobases in Sc_pYES3-S851 with an 8(Z):8(E) ratio of 4:1. Although the identities of most of the sphingobases in Figure 6 were confirmed by HPLC/mass spectrometry (MS) with electrospray ionization, the 8(Z):8(E) ratio of C_{20}-phytosphingogenines could not be estimated accurately because 8(E)-C_{20}-phytosphingogenine coeluted with the C_{19}-phytosphingogenine present in yeast.

Changes in the sphingobase composition of Arabidopsis plants expressing S851 were also consistent with Δ8 sphingolipid desaturase activity. The main sphingobases in wild-type Arabidopsis plants, 8(Z)-C_{18}-phytosphingogenine, 8(E)-C_{18}-phytosphingogenine, and C_{18}-phytosphingogenine, comprised 15, 58, and 27 mol%, respectively, of the total with an 8(Z):8(E) ratio of approximately 0.3 (Fig. 6C; Table III). This profile is generally consistent with previous analyses of the Arabidopsis ecotypes Columbia C24 (Sperling et al., 2005) and Wassilewskija (Bonaventure et al., 2003). In the At-S851-H4 and At-S851-H6 lines, these same sphingobases represented 43, 42, and 15 mol%, respectively (Fig. 6, D and E; Table III). Separate analyses of the sphingobases in leaves and roots resemble the data obtained with whole plants (Table III). The increase in the 8(Z)-isomer of C_{18}-phytosphingogenine shifted the 8(Z):8(E) ratio closer to 1:0. These data confirm that S851 cDNA from S. hamata encodes a sphingolipid desaturase, which introduces a Δ8 double bond into phytosphinganine in both heterologous systems tested. The enzyme is stereo-unselective, but exhibits a strong preference for Z-isomer formation.

DISCUSSION

Nine plant cDNAs from different plant libraries were isolated for their ability to confer aluminum tolerance to yeast cells. One cDNA (S851) that originated from the acid soil-tolerant forage species, S. hamata, also increased the aluminum tolerance of Arabidopsis.

Figure 2. The S851 cDNA from S. hamata confers aluminum tolerance to transgenic Arabidopsis plants. S851 was constitutively expressed in Arabidopsis under the control of the CaMV 35S promoter. Two homozygous lines, At-S851-H4 and At-S851-H6 (gray bars), and wild-type plants (black bars) were grown on sterile nutrient agar supplemented with 0, 300, 400, or 500 μM aluminum chloride (pH 4.8–4.9). Relative root growth (RRG), defined as (root length with aluminum)/(root length without aluminum), was estimated after 14 d by (1) growing seedlings on plates supported in an almost vertical orientation (plates) or (2) growing seedlings in sterile pots that forced the roots to grow directly into the agar (pots). Data show the mean and SEs of the RRG (S851) ratio of C_{20}-phytosphingenine coeluted with the 8(Z)-C_{20}-phytosphingenine present in yeast. One cDNA (S851) that originated from the acid soil-tolerant forage species, S. hamata, also increased the aluminum tolerance of Arabidopsis.

Figure 3. Phylogenetic tree of Δ6 fatty acyl lipid desaturase and Δ8 sphingobase desaturase proteins. Phylogenetic and molecular evolutionary analyses of the proteins were conducted using MEGA, version 3.1 (Kumar et al., 2004). Default settings for the protein alignment and neighbor-joining phylogenetic calculations were used. All proteins have had their function verified experimentally as being a Δ6 fatty acyl desaturase enzyme (d6) or a Δ8 sphingobase desaturase enzyme (d8). Full species names and GenBank accession numbers are as follows: *Aquilegia vulgaris* (AF406816) Arabidopsis (gene 1; AF001394); Arabidopsis (gene 2; BX820915); *B. officinalis* (gene 1; AF133728); *B. officinalis* (gene 2; U79010); *Ceratodon purpureus* (AJ250735); *E. plantagineum* (AY952780); *Helianthus annuus* (X87143); *Kluyveromyces d8* (AB085690); *N. tabacum* (AB031111); *Physcomitrella patens* (AJ229890); S851 (EF640314); *Spiroplata patensis* (X87094); *Synechocystis* sp. (L11421); and *Thamnidium elegans* (AY941161). Scale bar represents the number of substitutions per site.
Ryan et al.

Table II. Analysis of the major fatty acids in the total lipids extracted from yeast and Arabidopsis expressing S851 cDNA from S. hamata

Fatty acids were analyzed as their methyl ester derivatives by gas chromatography. Results show the contribution of each major fatty acid as mol% of the total fatty acid extract. Data represent the mean and se where n = 3 for yeast, and n = 7 to 9 for Arabidopsis. Dashes indicate that no peaks were detected.

Yeast and Plant Lines	Major Fatty Acids	mol%						
	Myristic	Palmitic	Palmitoleic	16:3	Stearic	Oleic	Linoleic	α-Linolenic
Yeast								
pYES3	1.9 ± 0.4	22.4 ± 0.5	36.9 ± 1.7	–	8.1 ± 0.5	27.0 ± 0.9	–	–
pYES3_S851	1.8 ± 0.2	25.6 ± 4.7	34.8 ± 3.5	–	7.7 ± 0.4	26.5 ± 2.5	–	–
Arabidopsis								
Wild type	0.5 ± 0.1	20.5 ± 4.5	0.4 ± 0.1	15.8 ± 0.2	1.8 ± 0.5	4.4 ± 2.0	16.0 ± 3.7	40.8 ± 7.3
At-S851-H4	0.8 ± 0.2	20.3 ± 4.0	0.4 ± 0.1	10.1 ± 6.6	2.6 ± 0.9	8.3 ± 4.5	13.3 ± 1.2	40.3 ± 6.9
At-S851-H6	0.6 ± 0.2	18.2 ± 2.5	1.3 ± 0.7	10.3 ± 5.8	2.9 ± 0.7	8.3 ± 3.9	13.4 ± 1.3	41.6 ± 5.4

seedlings. A previous attempt to isolate aluminum tolerance genes by screening a cDNA expression library in yeast identified several genes that were effective in yeast (Delhaize et al., 1999), but these did not prove to be effective when overexpressed in tobacco (Nicotiana tabacum) plants (E. Delhaize, unpublished data). Yeast is a powerful technique for isolating plant genes that confer aluminum tolerance regardless of their role in the plant from which they originate. However, it is clear that the transgenes will not always confer the same phenotypes in the single-celled system as they do in intact plants. For instance, many genes identified to be important for aluminum tolerance in yeast encode components of signal transduction pathways and cell wall metabolism (Kakimoto et al., 2005). Therefore, the phenotype conferred by a transgene may depend on a signal pathway or cell wall structure being conserved between the species. Despite this potential problem, there are examples of plant cDNAs conferring aluminum tolerance to both yeast and plants. For instance, Ezaki et al. (2000) showed that genes encoding a GDP dissociation inhibitor from Arabidopsis and a blue copper protein from tobacco enhanced the aluminum tolerance of transgenic Arabidopsis and yeast. Interestingly, one of the other cDNAs isolated here from white lupin (La97), which increased the aluminum tolerance of yeast, but not Arabidopsis, also encodes a GDP dissociation inhibitor. The reason La97 did not increase the aluminum tolerance of Arabidopsis might be due to subtle differences in functions of the two proteins or because the increase in tolerance was insufficient to be clearly identified in the segregating T1 lines.

The putative protein encoded by S851 showed an equally strong similarity to a Δ6 fatty acyl lipid desaturase and a Δ8 sphingolipid desaturase. We demonstrated that the S851 protein did not have Δ6 fatty acyl lipid desaturase activity because the Sc_pYES3-S851 yeast strain failed to accumulate γ-linolenic acid under any conditions tested. Analyses of the sphingobases released from transgenic yeast and Arabidopsis indicated that S851 encodes a Δ8 (Z/E)-sphingolipid desaturase. We showed that another Δ8 sphingolipid desaturase enzyme from Arabidopsis also confers aluminum tolerance to yeast, which is consistent with the finding of Stival da Silva et al. (2006). By contrast, expression of a known Δ6 fatty acyl lipid desaturase in yeast provided no protection from aluminum stress. Our results indicate that the sphingolipid composition can protect yeast and Arabidopsis from aluminum toxicity, but whether this occurs by altering membrane structure or by specific biochemical interactions is not clear. The Sc_pYES3-S851 yeast strain also showed greater tolerance to toxic concentrations of another trivalent cation, gadolinium, which indicates that Δ8 unsaturated sphingolipids have the potential to provide tolerance to other ionic stresses.

Sphingolipids do not possess the ester-glycerol linkages common in most membrane lipids, but are composed of a long-chain amino alcohol base that forms an amide linkage to a fatty acid. This basic ceramide structure can be further modified by glycosylation, hydroxylation, and desaturation. Δ8 unsaturated sphingobases can exist as the E (trans)- or Z (cis)-isomer and all Δ8 sphingolipid desaturases isolated so far from higher plants preferentially form the E isomer (see Sperling and Heinz, 2003). The lipid desaturase characterized here is notable for being the first bifunctional Δ8 sphingolipid desaturase enzyme from higher plants to preferentially synthesize the (Z)-isomer of phytosphinganine.

A connection between Δ8 unsaturated sphingobases and aluminum tolerance in plants was previously investigated by Stival da Silva et al. (2006). They showed that the heterologous expression of a Δ8 (E/Z)-sphingolipid desaturase from Arabidopsis in hybrid maize (Zea mays) led to an 8-fold increase in the 8(E)-phytosphinganine content of a homoyzgous T2 line, which changed the 8(Z):8(E) ratio from 5:1 (wild type) to approximately 1:3 (transgenic plants). However, those transgenic maize plants were scored as being more sensitive to aluminum stress. This contrasts with our findings, which show that expression of a similar desaturase from S. hamata increases the aluminum tolerance in Arabidopsis. There are several possible explanations for why one Δ8 sphingolipid
desaturase enzyme confers aluminum tolerance, whereas another does not. For instance, maize has a naturally high content of \(8(Z)\)-unsaturated bases and is generally more aluminum tolerant than Arabidopsis. These attributes could influence the magnitude of phenotype generated by expression of a \(\Delta8\) fatty acyl lipid desaturase in maize. Furthermore, as noted above, the \(\Delta8\) sphingolipid desaturase from Arabidopsis preferentially forms the (E)-isomer of 8-phytosphingenine (Sperling et al., 1998; Sperling and Heinz, 2003), whereas the enzyme from \(S.\ hamata\) preferentially forms the (Z)-isomer. Introduction of a \((Z)\)-double bond leads to a kink in the long-chain base, which is not generated by the formation of an (E)-double bond. This kink might induce some specific biochemical functions, generate changes to membrane structure, or possibly affect the functioning of the sphingolipid-rich lipid rafts (see below). The finding that both \(\Delta8(E/Z)\) sphingolipid desaturase enzymes were able to increase the aluminum tolerance of yeast could be explained by the absence of any unsaturated sphingobases in wild-type yeast. Therefore, even a small accumulation of \(8(Z)\)-phytosphingenine from either enzyme might be sufficient to improve its resistance to aluminum stress. Future studies will determine whether the stereochemistry of sphingobases influences their ability to confer aluminum tolerance by expressing the \(\Delta8\) sphingolipid desaturase genes from Arabidopsis and \(S.\ hamata\) in the same plant species.

Participation of membrane lipids, not just sphingolipids, in the perception and response to environmental signals is well known. For instance, unsaturated acyl lipids can ameliorate the damage caused by chilling stress and photo-inhibition at low temperatures (Cossins, 1994; Nishida and Murata, 1996; Murata and Los, 1997) as well as drought stress (Zhang et al., 2005). Membranes become more rigid as temperature decreases and damage to cells can occur as membranes change from a liquid crystalline phase to a gel phase (see Los and Murata, 2004). Membranes with a higher percentage of unsaturated acyl lipids appear to incur less damage at low temperature, in part because fluidity is maintained.

In comparison to other membrane lipids, the functions of sphingolipids are poorly understood despite being a ubiquitous component of eukaryotic cells. Although in excess of 300 structurally different compounds have now been identified, sphingolipids typically constitute <5% of total lipids in yeast and plants. Interest in sphingolipid metabolism has increased as their roles in cell growth, membrane stability, stress response, and apoptosis have been elucidated (Thevissen et al., 2000; Sperling and Heinz, 2003; Worrall et al., 2003; Lynch and Dunn, 2004). More recently, microdomains or rafts with a high sphingolipid-to-protein ratio have been detected in the plasma membranes of plant cells (Mongrand et al., 2004; Borner et al., 2005).

![Figure 4](image)

Figure 4. The ability of different plant desaturases to confer aluminum tolerance to transgenic yeast cells. **A,** Yeast transformed with an empty vector (Sc_pYES3), a vector containing the \(S851\) cDNA (Sc_pYES3-S851), or a vector containing a \(\Delta6\) fatty acyl lipid desaturase isolated from \(E.\ plantagineum\) (Sc_pYES3-\(\Delta6\)) were grown in SMM — ura medium with or without 400 \(\muM\) AlCl\(_3\). B, Yeast transformed with an empty vector (Sc_pYES3), a vector containing the \(S851\) cDNA (Sc_pYES3-S851), or a vector containing a known \(\Delta8\) sphingolipid desaturase isolated from Arabidopsis (Sc_pYES3-\(\Delta6\)) were grown in SMM — ura medium with or without 500 \(\muM\) AlCl\(_3\). Serial dilutions of the cultures were prepared as described in Figure 1. Results are typical of those obtained from at least two independent experiments. [See online article for color version of this figure.]

![Figure 5](image)

Figure 5. Effect of linoleic acid supplementation on the major fatty acid composition of lipids extracted from different yeast strains. Yeast cultures were grown in the presence or absence of 0.5 mM linoleic acid for 3 d. Bars represent Sc_pYES3 (black), Sc_pYES3-S851 (light gray), and Sc_pYES3-\(\Delta6\) (dark gray). Note that \(\gamma\)-linolenic acid was only detected in the Sc_pYES3-\(\Delta6\) strain grown with linoleic acid. Data show the mean and SD (\(n = 3\)) of each major fatty acid as mol% of the total fatty acid extract.
appear to provide a platform for protein binding and organization and may constitute signaling centers for specialized physiological functions (Morel et al., 2006). Unsaturated sphingolipids may have specific roles in cellular responses to stresses (Ohnishi et al., 1988; Imai et al., 2000; Kawaguchi et al., 2000) and a few studies have examined these responses in detail. For instance, sphingosine-1-P can modulate stomatal closure by linking the perception of abscisic acid to reduction in guard cell turgor, whereas dihydrospingosine-1-P, a structurally similar base without the Δ4 double bond, has no effect (Ng and Hetherington, 2001; Ng et al., 2001).

Cerebrosides (glucosylceramides) and other more complex sphingolipids in Brassicaceae, such as glycosyl inositol phosphorylceramides, predominantly contain Δ8 unsaturated trihydroxy bases like 8-phytosphinganine (t18:1Δ8) and only minor amounts of phytosphinganine and Δ8 unsaturated dihydroxy bases (Bonaventure et al., 2003). Furthermore, glycosyl inositol phosphorylceramides mostly contain the 8(E)-isomer of phytosphinganine, whereas cerebrosides typically have a larger proportion of the 8(Z)-unsaturated sphingobases (Sperling et al., 2005). Cerebrosides extracted from the roots and shoots of members of the Fabaceae (e.g. Phaseolus sp. and pea [Pisum sativum]) also contain appreciable proportions of the dihydroxy bases 8-sphinganine (d18:1Δ8) and 4,8-sphingadienine (d18:2Δ4,8, Imai et al., 1997; Sperling et al., 2005). A similar sphingobase profile can be expected in S. hamata because it also belongs to the Fabaceae. Future studies will attempt to confirm this prediction and investigate whether the known aluminum tolerance of S. hamata (ecotype Verano) can be attributed to the lipid profile of its membranes.

Desaturation of long-chain bases by sphingolipid desaturases probably occurs after ceramide formation, but the natural substrate of the desaturase encoded by S851 is unclear. García-Maroto et al. (2007) speculated that distinct Δ8 desaturases might have preferences for the cerebroside or glycosyl inositol phosphorylcera-

Figure 6. Changes in the long-chain base composition of yeast cells and Arabidopsis plants expressing the S851 cDNA. Sphingobases were separated as ditrophenyl derivatives by reversed-phase HPLC and detected at 350 nm. The different derivatized sphingobases are numbered according to increasing elution time with 1 = 8(Z)-C18-phytosphinganine; 2 = 8(E)-C18-phytosphinganine; 3 = C18-phytosphinganine; 4 = 8(Z)-C20-phytosphinganine; 5 = C20-phytosphinganine coeluting with 6 = 8(E)-C20-phytosphinganine; 7 = C20-phytosphinganine; 8 = C18-sphinganine; and 9 = C20-sphinganine. INVSc2 cells expressing the S851 gene from S. hamata (B) form 8(Z)- and 8(E)-phytosphingamines (1, 2, 4, 6), not present in INVSc2 cells expressing the empty vector pYES3 (A). The two Δ8 sphingolipid desaturases encoded in wild-type plants (C) preferentially form the Δ8 (E)-isomer (2), whereas expression of the S851 cDNA in two independent homozygous lines, At-S581-H4 and At-S581-H6 (D and E), leads to a significant increase in the Δ8 (Z)-isomer (1). The identities of the N-(2,4-dinitrophenyl)-sphingobases (1–9) in samples B and E were confirmed by their negative ions [M-H]- of HPLC-electrospray ionization-MS and their relative elution times as previously described (Ternes et al., 2002).

These microdomains are characterized by their insolubility to nonionic detergents and a high proportion of the proteins associated with them are involved with stress responses, cellular trafficking, and cell wall metabolism (Morel et al., 2006). Interestingly, about 16% of them also exhibit putative fatty acid modification sites. These sphingolipid-enriched lipid rafts

Copyright © 2007 American Society of Plant Biologists. All rights reserved.
the 8(Z)-isomer is paralleled by an increase in cerebrosides and how the two isomers 8(Z)-phytosphingine and 8(E)-phytosphingine affect membrane physiology and cellular metabolism.

MATERIALS AND METHODS

Plant cDNA Libraries

The three cDNA libraries screened in this study were chosen because they were either derived from acid-tolerant species or because the libraries were prepared from tissues predicted to contain proteins that facilitate organic anion efflux from root cells as described below. *Stylosanthes hamata* is a widely used tropical forage plant and ecotype Verano is suited to the infertile and acidic soils of Central and South America as well as northern Australia. White lupin (*Lupinus albus*) forms specialized structures, called cluster roots, on its lateral roots during the onset of phosphorus deficiency (see Ryan et al., 2001). These specialized roots release large amounts of citrate into the rhizosphere, which mobilizes poorly soluble reserves of phosphorus from the soil. In the nodule roots during the onset of phosphorus deficiency (see Ryan et al., 2001). These specialized roots release large amounts of citrate into the rhizosphere, which mobilizes poorly soluble reserves of phosphorus from the soil. In the nodule

Tissue Analyzed	Sphingobases	8(Z)-t18:1	8(E)-t18:1	t18:0	8(Z)-t18:1 as % of Total t18:1 Bases	Ratio 8(Z):8(E)
Whole plants		14.8	58.2	27.0	20.3	0.25
Wild type		43.8	41.5	14.7	51.3	1.06
At-S851-H4		43.0	42.3	14.7	50.4	1.02
Leaves		17.1	62.9	20.0	21.4	0.27
Wild type		40.0	38.9	21.1	50.7	1.03
At-S851-H4		39.1	40.8	20.1	48.9	0.96
Roots		16.8	40.1	43.1	28.5	0.42
Wild type		34.5	25.7	39.8	57.3	1.34

Primary transformants were selected on supplemented minimal medium without uracil (SMM – ura; Rose et al., 1990), washed off plates with sterile water, and stored in 15% glycerol at −80°C.

cDNA libraries from soybean root nodules and from the roots of *S. hamata* (ecotype Verano) were ligated into the Sall-Norl sites of pYES3 (Smith et al., 1995) and transformed into yeast (strain INVSc2) as described above.

Yeast Screen

Approximately 106 yeast transformants were screened as described previously (Delhaize et al., 1999) on SMM – ura with 2% Gal and buffered to pH 4.1 with 10 mM succinate. The selection medium also contained 500 or 600 μM AlCl₃, which was sufficient to prevent growth of cells transformed with the empty vector. Plasmids were isolated from aluminum-tolerant colonies, amplified in E. coli, and then retransformed into wild-type yeast.

Preparation of pYES3-Δ6 and pYES3-Δ8 Yeast Strains

A clone of the coding region of the Δ6 fatty acyl lipid desaturase from *Echium plantagineum* (GenBank accession no. AY952780) was provided by Xue-Rong Zhou (Commonwealth Scientific and Industrial Research Organization Plant Industry). A full-length coding region of the Δ8 sphingolipid desaturase from Arabidopsis (*Arabidopsis Italiana*; At3g1580; GenBank accession no. AF001394) was amplified from RNA isolated from middle maturity developing embryos with the following primers: 5′-5TGGTCGCTCGTCAATGCGCGGAA-3′ (forward) and 5′-CATTTAGCCATGAGTATTCAAAG-3′ (reverse). Reverse transcription-PCR was performed using the SuperScript one-step reverse transcription-PCR with platinum Taq (Invitrogen) kit following the manufacturer’s instructions. Briefly, a 50-μL reaction contained 25 μL 2× reaction mix and 200 ng RNA, 1 μL each of two oligo primers, and 2 μL platinum Taq enzyme mix. Thermal cycling was 50°C for 3 min (one cycle), 94°C for 2 min (one cycle), 94°C for 15 s, 58°C for 30 s, 68°C for 1.5 min (40 cycles), and 68°C for 7 min (one cycle). PCR fragments obtained were cloned into pGEM T Easy (Promega) and sequenced. The insert was subsequently excised with NorI from pGEM T Easy vector and ligated into the NorI site of pYES3 in a sense orientation relative to the GAL1 promoter and transformed into yeast strain INVSc2.

Arabidopsis Transformation and Measurements of Aluminum Tolerance

Plant cDNAs were cloned into the pART7 plasmid (Gleave, 1992) to generate an expression cassette with the cDNA under the control of the CaMV 35S promoter. The plasmid was digested with NorI and the fragment that contained the expression cassette was ligated into the NorI site of the binary vector pPLEX502 (Schünemann et al., 2003). The binary vector was then transformed into Agrobacterium tumefaciens strain AGL1 by triparental mating.
Arabidopsis (ecotype Columbia) was transformed by the floral-dip technique as described by Clough and Bent (1998). The seeds were germinated and screened on Murashige and Skoog medium containing 50 μg/mL kanamycin to identify transgenic plants. Two independent homozygous T1 lines with single inserts were identified from two T1 populations that displayed approximately 75% resistance to kanamycin (indicating a single insert). To screen the T1 seed and homozygous T2 lines for aluminum tolerance, seeds were sterilized in a container filled with Cl2 gas for 3 h followed by germination on agar medium in either sterile plates or pots that contained 16.7 mM KNO3, 0.66 mM CaCl2, 0.66 mM MgSO4, 0.067 mM KH2PO4, 7.6 μM H3BO3, 1.8 μM MnCl2, 0.25 μM ZnSO4, 0.2 μM CuCl2, 16.67 μM FeCl3, and various concentrations of AlCl3 with 5 mM sucinic acid to buffer the medium at pH 4.8 to 4.9. Between 20 and 30 wild-type seeds and a similar number of seeds from one of the homozygous transgenic lines were spread along each half of a straight line across the middle of the agar plates. The plates were then held in a near-vertical position so that the line of seeds was horizontal. We noticed that the roots on these plates would sometimes lift off the agar and avoid the aluminum treatment. Therefore, aluminum tolerance was also measured in sterile pots, which forced the roots to penetrate the agar. In this arrangement, wild-type and transgenic seeds were spread around the periphery of the pots (6.5-cm diameter) to facilitate root length measurements at a later date. After positioning the seeds, the plates and pots were kept at 4°C for 2 d and then transferred to a temperature-controlled growth room (8-h darkness at 15°C and 16-h light at 20°C). Root lengths were measured after 14 d. These experiments were repeated at least three times for each homozygous line.

RNA Isolation and Northern-Blot Analysis
Total RNA isolated from Arabidopsis leaves was separated on a 1.5% denaturing formaldehyde gel, transferred onto a Hybond N+ nylon membrane, and northern blots prepared according to the method described by Sambrook et al. (1989).

Fatty Acid Analyses
Total lipids of Arabidopsis leaves or yeast cells were extracted with methanol-chloroform according to the method described by Bligh and Dyer (1959). The fatty acid methyl ester (FAME) preparation and subsequent analysis of fatty acid composition by gas chromatography followed the method described by Liu et al. (2002). Briefly, after evaporating the solvent, lipid extracts were methylated in 2 mL of 0.02 M sodium methoxide for 1 h at 90°C. FAMEs were then extracted by adding 1.5 mL hexane and 2 mL water and vortexing. The upper phase, containing the FAMEs, was transferred to a microvial and separated in a SGE BPX70 column (0.25-mm diameter, 60-m length, and 2.5-μm film thickness) with gas chromatography (model 3400; Varian) using helium as carrier gas. Fatty acid composition was calculated as the percentage of each fatty acid represented in the total fatty acids.

Pretreatment of Yeast Cells in Linoleic Acid
Yeast cells were grown to OD600 1.0 in 5 mL SMM – ura with 2% Glc at 30°C. Cells were collected by centrifugation, washed in sterile water, and resuspended in 5 mL SMM – ura containing 2% Gal, 0.5 mM linoleic acid (no. L1376; Sigma-Aldrich), and 1.0% NP-40, then incubated on a 20°C shaker for 3 d. Yeast cells were harvested by centrifuging and washed first with 1% NP-40, then with 0.5% NP-40, and finally with sterile water.

Preparation of Yeast and Plants for Sphingobase Analyses
Yeast cells transformed with the empty pYES3 vector (strain Sc. pYES3) or with pYES3 containing S581 (strain Sc. pYES3-S581) were grown aerobically at 30°C for 2 d in complete minimal medium (minus uracil) supplemented with 2% (v/v) raffinose for 24 h. Expression of the transgene was induced by a further 24-h growth after addition of Gal (final concentration 1.8% [w/v]). Cells were harvested by centrifugation for 10 min at 1,500g, resuspended in water, boiled for 15 min to inactivate lipases, and centrifuged again.

Seeds (2.5 mg) of Arabidopsis (Columbia) wild-type and homozygous lines constitutively expressing S581, At-S581-H4, and At-S581-H10, were sterilized in 4% NaOCl and 0.02% (v/v) Triton X-100 for 10 min, washed three times in sterile water, and resuspended in 0.05% (v/v) agarose for plating. Plants were grown in a climate chamber for 3 weeks at 23°C, 15-h light/9-h dark cycle, and 150 μM m–2 s–1 on sterile plates that contained 1X Murashige and Skoog salts, including B5 vitamins (MS519; Sigma), 1% (w/v) Suc, 2.3 mM MES-buffer adjusted to pH 5.8, and 0.8% plant agar. Homozygous lines were grown on plates supplemented with 50 μg kanamycin mL–1. After 21 d, Arabidopsis plants were harvested, boiled in water for 15 min, and dried dry.

Sphingobase Analyses
Pellets of yeast cells (380 mg of fresh weight) and whole Arabidopsis plants, leaves, or roots (500 mg) were subjected to barium hydroxide hydrolysis as previously described (Ternes et al., 2002). After extraction by solvent partitioning, the sphingobases were converted to dinitrophenyl derivatives by reaction with 1-fluoro-2,4-dinitrobenzene and purified by thin-layer chromatography. HPLC separations were carried out by reverse-phase elution and detection at 350 nm. To identify compounds by spectrometric identification, reversed-phase HPLC-MS with electrospray ionization of dinitrophenyl-derivatized sphingobases was performed on a MAT 95 XL-Trap instrument (ThermoQuest) in negative ion mode, as previously described (Ternes et al., 2002). In the negative ion mode (mass-to-charge ratio [m/z] = M– – 1), pseudomolecular ions corresponding to the dinitrophenyl derivatives of the sphingobases were detected at the expected retention times, with m/z = 466 for Cyp1-sphinganine, m/z = 482 for Cyp2-sphinganine, m/z = 480 for Cyp21-sphinganine, m/z = 500 for Cyp22-sphinganine, and m/z = 508 for 8(Z)- and 8(E)-Cyp22-sphingophosphines.

Sequence data from this experiment can be found in the GenBank/EMBL data libraries under the accession numbers provided in Table I.

ACKNOWLEDGMENTS

We are grateful to Brent Kaiser for supplying the cDNA library prepared from soybean root nodules, Frank W. Smith for supplying the cDNA library prepared from the roots of S. hamata, and Xue-Rong Zhou for providing a clone of the δ fatty acid desaturase gene from Echium. We are also grateful to Professor Ernst Heinz for helpful comments on the manuscript.

Received March 30, 2007; accepted June 12, 2007; published June 28, 2007.

LITERATURE CITED

Avery SV, Howlett NG, Radice S (1996) Copper toxicity towards Saccha-
romyces cerevisiae: dependence on plasma membrane fatty acid compos-
ition. Appl Environ Microbiol 62: 3963–3966
Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and
purification. Can J Biochem Physiol 37: 911–917
Bonaventure G, Salas JJ, Pollard MR, Ohlrogge JB (2003) Disruption of the
FATB gene in Arabidopsis demonstrates an essential role of satu-
rated fatty acids in plant growth. Plant Cell 15: 1020–1033
Bornor GHH, Sherrier DJ, Weimar T, Michaelson LV, Hawkins ND,
MacAskill A, Napier JA, Beale MH, Lilley KS, Dupree P (2005)
Analysis of detergent-resistant membranes in Arabidopsis: evidence for
plasma membrane lipid rafts. Plant Physiol 137: 104–116
Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacteri-
ium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735–743
Cossins AR (1994) Homeoviscous adaptation of biological membranes and its
functional significance. In AR Cossins, ed, Temperature Adaptation of
Biological Membranes. Portland Press, London, pp 63–76
Deeleers M, Servais JP, Wulfert E (1986) Neurotoxic cations induce mem-
brane rigidification and membrane fusion at micromolar concentrations.
Biochim Biophys Acta 835: 271–276
Delhaize E, Hebb DM, Richards KD, Lin JM, Ryan PR, Gardner RC (1999)
Cloning and expression of a wheat (Triticum aestivum L.) cDNA phos-
thatidylserine synthase cDNA. J Biol Chem 274: 7082–7088
Delhaize E, Ryan PR, Randall PJ (1993) Aluminum tolerance in wheat
(Triticum aestivum L.). II. Aluminum stimulated excretion of malic acid
from root apices. Plant Physiol 103: 695–702
Ezaki B, Gardner RC, Ezaki Y, Matsumoto H (2000) Expression of aluminum-
induced genes in transgenic Arabidopsis plants can ameliorate aluminum
stress and/or oxidative stress. Plant Physiol 122: 657–665
Garcia-Maroto F, Garrido-Cárdenas JA, Michaelson LV, Napier JA, Alonso
DL (2007) Cloning and molecular characterization of a δ-sphingolipid-
desaturase from Nicotiana tabacum closely related to Δ2-acyl-desaturases.
Plant Mol Biol 64: 241–250
Gietz RD, Schiestl RH, Willems AR, Woods RA (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11: 355–360

Gleave A (1992) A versatile binary vector system with a T-DNA organisation structure conducive to efficient integration of cloned DNA into the plant genome. Plant Mol Biol 20: 1203–1207

Haug A, Caldwell CR (1985) Aluminum toxicity in plants: the role of the root plasma membrane and calmodulin. In: Bt. John, E. Berlin, PC Jackson, eds. Frontiers of Membrane Research in Agriculture. Beltsville Symposium 9. Rowan & Allanheld, Totowa, NJ, pp 359–381

Horst WJ (1995) The role of the apoplastic in aluminum toxicity and resistance of higher plants. Z Pflanzenzernähr Bodenk 158: 419–428

Imai H, Morimoto Y, Tamura K (2000) Sphingoid base composition of monogalactosylceramide in Brassicaceae. J Plant Physiol 157: 453–456

Imai H, Ohnishi M, Hoshuku K, Kojima M, Ito S (1997) Sphingoid base composition of cerebroside from plant leaves. Biosci Biotechnol Biochem 61: 351–353

Jones DL, Kochian LV (1995) Aluminum inhibition of the inositol 1,4,5-trisphosphate signal transduction pathway in wheat roots: a role in aluminum toxicity? Plant Cell 7: 1913–1922

Kakimoto M, Kobayashi A, Fukuda R, Uno Y, Ohta A, Yoshimura E (2005) Genome-wide screening of aluminum tolerance in Saccharomyces cerevisiae. Biometals 18: 467–474

Kawaguchi M, Imai H, Naoe M, Yasui Y, Ohnishi M (2000) Cerebroside in grapevine leaves: distinct composition of sphingoid bases among the grapevine species having different tolerances to freezing temperature. Biosci Biotechnol Biochem 64: 1271–1273

Kinraide TB, Nakamura K, Simons BR, Krick LA, McAdoo KL, Bascomb DJ (1993) Aluminum enhancement of plant growth in acid rooting media: a case of reciprocal alleviation of toxicity by two toxic cations. Physiol Plant 88: 619–625

Kinraide TB, Ryan PR, Kochian LV (1994) Al3+–Ca2+ interaction in rhizotoxicity. II. Evaluating the Ca2+ displacement hypothesis. Planta 192: 104–109

Kochian LV (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mol Biol 46: 237–260

Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5: 150–163

Lindberg S, Griffiths G (1993) Aluminum effects on the ATPase activity and lipid composition of plasma membrane in sugar beet roots. J Exp Bot 44: 1543–1550

Liu Q, Singh SP, Green AG (1993) Aluminium effects on the ATPase activity and lipid composition of plasma membrane in sugar beet roots. J Exp Bot 44: 677–702

Martinez-Estevé M, Racagni-Di Palma G, Muñoz-Sánchez JA, Brito-Agazá L, Loyola-Vargas VM, Hernández-Sotomayor SMT, Sperling P, Heinz E (2000) Vitamin D3 differentially modulates lipid metabolism from the phosphoinositide pathway in Caffea arabica cells. J Plant Physiol 156: 1297–1303

Matsumoto H (2000) Cell biology of aluminum toxicity and tolerance in higher plants. Int Rev Cytol 200: 1–46

Minella E, Sorells ME (1997) Inheritance and chromosome location of Al-resistant and Al-sensitive genotypes in response to aluminum stress. Physiol Plant 99: 931–936

Mongrand S, Morel J, Laroche J, Claverol S, Carde JP, Hartmann MA, Peira-Barbaud F, Delahaize E, Jones DL (2000) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol 52: 527–560

Ryan PR, Delahaize E, Jones DL (2001) Aluminum effects on fatty acid composition and lipid preoxidation of a halophyte. Funct Plant Biol 28: 638–641

Rupley CH, Smolenick TW, Kuznetsov NV (1997) Identification and characterization of a sphingolipid 13-desaturase confers aluminum tolerance in tomato. Proc Natl Acad Sci USA 94: 10509–10514

Sperling P, Blume A, Zähringer U, Heinz E (2000) Further characterization of Δ4-sphingolipid desaturases from higher plants. Biochim Biophys Acta 1491: 29–43

Sperling P, Heinz E (2003) Plant sphingolipids: structural diversity, biosynthesis, first genes and functions. Biochim Biophys Acta 1635: 1–15

Spencer G, Kieft MM, Rauser LE, Patel PN (2000) Modulated fatty acid desaturation via overexpression of a 13-desaturase gene in higher plants. J Biol Chem 275: 4276–4282

Tang GC, Slaski JJ, Archambault DJ, Taylor GJ (1997) Alteration of plasma membrane lipids in aluminum-resistant and aluminum-sensitive wheat genotypes in response to aluminum stress. Physiol Plant 99: 302–308

Zhang Q, Wang R, Yin X, Luo F, Liang X, Wang L, Liu J, Lou X, Luan Y, Lian H, Zhang L, Wang Y, Li T, Zhao H, Ma X, Jia Y, Sutthaitrakool S, Ben-Hayyim G (2005) Modulated fatty acid desaturation via overexpression of two distinct omega-3 desaturases differentially alters tolerance to various abiotic stresses in tobacco cells and plants. Plant J 44: 361–371

Zhou X, Robert S, Singh S, Green A (2006) Heterologous production of GLA and DGLA by expression of an Ecbium plantagineum Δ6 desaturase gene. Plant Physiol 142: 665–673