Kolmogorov equation in fully developed turbulence

F. Moisy, P. Tabeling, H. Willaime

Laboratoire de Physique Statistique, École Normale Supérieure
24 rue Lhomond, 75231 Paris (France)

(March 21, 2022)

Abstract

The Kolmogorov equation [1] with a forcing term is compared to experimental measurements, in low temperature helium gas, in a range of microscale Reynolds numbers R_{λ} between 120 and 1200. We show that the relation is accurately verified by the experiment (i.e. within ±3% relative error, over ranges of scales extending up to three decades). Two scales are extracted from the analysis, and revealed experimentally, one characterizing the external forcing, and the other, varying as $R_{\lambda}^{-3/5}$, defining the position of the maximum of the function $-S_3(r)/r$, and for which a physical interpretation is offered.

47.27.Gs, 47.27.Jv
Kolmogorov equation \([1]\) is an exact relation between the longitudinal second order and third order structure functions, \(S_2(r)\) and \(S_3(r)\), valid for the ideal case of homogeneous isotropic turbulence. \(S_2(r)\) is linked to kinetic energy and \(S_3(r)\) to energy transfers, two crucial quantities characterizing fully developed turbulence. This relation is extensively used by the experimentalists to measure, from inertial range quantities, the mean dissipation rate \(\epsilon\); no alternative method exists, in general, when the dissipative scales are unresolved, which typically happens at large Reynolds numbers. A restricted form of this equation, called ”four-fifths law”, is considered as one of the most important results in fully developed turbulence \([2]\). The Kolmogorov equation was originally derived, after von Kármán and Howarth \([3]\) for freely decaying turbulence, and its adaptation to stationary forced turbulence, in a form suitable for a detailed comparison with experiment, was done by Novikov \([4]\); the corresponding equation, valid for scales well below an external forcing length \(L_f\), reads:

\[
S_3 = 6\nu \frac{dS_2}{dr} - \frac{4}{5} \epsilon r \left(1 - \frac{5}{14} \frac{r^2}{L_f^2}\right),
\]

(1)

where \(r\) is the scale and \(\nu\) is the kinematic viscosity. \(L_f\) is an external scale, characterizing the forcing. We will call this equation ”forced Kolmogorov equation”; \(L_f\) is distinct from the integral length \(\Lambda\), defined as the correlation length of the longitudinal velocity fluctuations. While the integral scale \(\Lambda\) is well documented, no systematic measurement of \(L_f\) has been reported yet. More generally, the extent to which forced Kolmogorov equation describes real turbulence is poorly known. The few investigations reported so far consider a truncated form of this equation — i.e. without the last term in Eq. (1) —, which, as will be shown in this Letter, is likely to be inaccurate for microscale Reynolds numbers \(R_\lambda\) lower than approximately 1000. For larger \(R_\lambda\), the truncated form is found compatible with the experiment, but sizeable deviations, on the order of 10 to 30%, are usually observed \([5-8]\); the existence of such deviations raises the issue as to whether the Kolmogorov equation should be amended to apply to real systems, and whether the fundamental concepts on which it relies — i.e. isotropic homogeneous turbulence — should be reassessed. Jeopardizing these issues, the results we present in this Letter show that the forced Kolmogorov equation de-
scribes the real world to a remarkable degree of accuracy, throughout the range of scales on which it is expected to apply. The analysis will further lead to single out two new scales for turbulence; one of them was introduced recently by Novikov [9], in a related context, but never observed.

The set-up we use is the same as the one described in Refs. [10–12]. The flow is confined in a cylinder, limited axially by disks equipped with blades, rotating in opposite directions, at approximately equal angular speeds. The working volume is a cylinder, 20 cm in diameter, and 13.1 cm in height. The cell is enclosed in a cylindrical vessel, in thermal contact with a liquid helium bath. The vessel is filled with helium gas, held at controlled pressure, and maintained between 4.2 and 6.5 K; the temperature is controlled with a long term stability better than 1 mK. Pressure and temperature are measured within 1% accuracy. The large scale structure of the flow is a confined circular mixing layer [10]. Local velocity measurements are performed by using “hot”-wire anemometry. The sensors are made from a 7 µm thick carbon fiber, stretched across a rigid frame; a metallic layer covers the fiber everywhere except on a spot at the center, 7 µm long, which defines the active length of the probes. The time responses of the probes are analyzed, in some detail, in Ref. [11]. We use here a probe located 4.7 cm from the mid plane of the system, and 6.5 cm from the cylinder axis; the speeds of the counter-rotating disks are finely tuned so as to maintain a local fluctuation rate close to 20%. We restrict our investigation to a range of R_{λ} comprised between 120 and 1200. Here, R_{λ} is defined by:

$$R_{\lambda} = \frac{u\lambda}{\nu},$$

(2)

where u is the rms of the velocity fluctuations, and λ is the Taylor microscale (based on the measurement of ϵ discussed below).

For all data files, more than 3×10^7 data points are recorded, ensuring comfortable convergence of the second and third moments. We check, for each file, that the velocity distribution is gaussian and we discard situations where the dissipative scale is not resolved. We also eliminate files for which the spectrum shows noise levels above 70 dB, or for which
peaks (generally signalling the presence of a mechanical vibration) are visible in the inertial
or dissipative ranges. This procedure leads to reject a little bit more than 50% of the files.
For $R_\lambda > 1200$, the noise level becomes prohibitive to ensure a reliable determination of
$S_3(r)$ and for $R_\lambda > 2300$, we cease to resolve the dissipative scales.

To investigate to what extent Eq. (1) agrees with the experiment, we write it in the
following form:

$$-\frac{S_3}{r} + \frac{6\nu dS_2}{r \, dr} = \frac45 \epsilon \left(1 - \frac{5 \, r^2}{14 \, L_f^2} \right)$$

(3)

— following a procedure already used in Ref. [6] —; we will call the expression forming
the left hand side $J(r)$. All quantities on the left hand side can be accurately measured:
the structure functions are obtained from the hot wire time series (we thus use Taylor’s
hypothesis to convert separation times into distances), and viscosity is known within $\pm 2\%$
accuracy. The procedure thus consists in finding a best fit for the measured left hand side,
by using the polynomial form given by the rhs of Eq. (3); in this calculation, two parameters
— ϵ and L_f — are free. The result is shown in Fig. 1 for $R_\lambda = 720$. One finds the fit
accurately reproduces the lhs of Eq. (3), within a range of scales covering two decades. The
difference between the fit and experimental data is shown in the inset. The amplitudes of
the deviations are below 3\%, for r ranging between 8 and 900 η. One could say that in
this range, the forced Kolmogorov equation is verified within $\pm 3\%$ accuracy. Outside this
range, discrepancies are observed: below 8 η, they are mainly due to noise which, although
comfortably small for the usual measurements on turbulence, becomes here too large to be
fully neglected. Above 900 η, the discrepancies simply signal that the equation is no more
applicable.

Figure 2 collects results obtained for several R_λ, on Eq. (1), in the range 120-1200, i.e.
one decade of variation in R_λ. The points are measurements on the Kolmogorov function
$K(r) = -S_3/\epsilon r$ and the full lines correspond to a determination of the rhs of Eq. (1), using
best fit values for ϵ and L_f, obtained by using the above procedure. As R_λ increases, $K(r)$
tends to form a plateau, in the inertial range, as expected from the Kolmogorov theory.
However, the trend, in terms of this parameter, is slow: inspecting the set of files we have for various R_λ shows that, below $R_\lambda = 1000$, there is no clear plateau, and one may ask to what extent an inertial range can be defined below this value. Anyhow, in all cases, the experiment confirms that the forced Kolmogorov relation accurately holds, the relative deviations between the theory and the experiment lying below 3%, for a set of records exploring three decades in scales, which is remarkable.

We now turn to the analysis of the dependence on R_λ of the characteristics of the curves of Fig. 2. Those curves can be characterized by several quantities. One of them, the external scale L_f, is represented at various Reynolds numbers on Fig. 3. There is a substantial scatter, but no systematic evolution with R_λ is found, which indicates that L_f can be treated as a constant. We may thus consider that the effective forcing experienced by the flow is controlled by the flow geometry, which is physically acceptable. We estimate this scale as:

$$L_f = 1.2 \pm 0.3 \text{ cm}.\quad (4)$$

We thus find L_f slightly smaller than the integral scale Λ (estimated to 2 cm in the present case), and one order of magnitude below the cell radius. The extent to which scales separate must be discussed by comparing L_f to η. The fact that L_f is one order of magnitude smaller than the cell size implies that in practice one must achieve high Reynolds numbers to obtain scale separation and therefore fill conditions in which scaling behavior can be observed. The experiment also reveals an extended gap of scales, comprised between L_f and the cell size, for which turbulent fluctuations seem to escape from a theoretical description, based on simple assumptions.

Another quantity of interest, useful for characterizing the plot of Fig. 2, is the location of the maximum of $K(r)$, which we call l_s, for reasons which will appear later. By construction, this scale is well within the inertial range. l_s is plotted against R_λ in Fig. 3; here again, there is a substantial scatter, but one finds a clear power law with R_λ, in the form:

$$l_s = (7.1 \pm 0.6) L_f R_\lambda^{-0.57 \pm 0.04}.\quad (5)$$
A last quantity of interest is the maximum value of $K(r)$, whose evolution with R_λ is displayed on Fig. 4. As expected, the maximum converges towards $4/5$ as R_λ increased. Nonetheless, the evolution is rather slow; the asymptotic regime is accurately reached (i.e. within 3%) only at $R_\lambda > 600$. This observation, together with the preceding remarks on the formation of a clear plateau, underlines the fact that, in experimental systems, conditions for reaching the high Reynolds number limit, for the third order structure function, are difficult to achieve. The situation seems more favorable for the even order structure functions, and for the energy spectrum, the cross-over appearing at L_f being less pronounced, and hardly detectable if logarithmic scales are used.

Simple characteristics of the maximum of the Kolmogorov function $K(r)$ can be deduced from Eq. (1), by determining its approximate form, for scales well above η, in a way similar to Ref. [9]. Estimating the second order structure function S_2 by the expression:

$$S_2(r) = c_0 (er)^{2/3},$$

and reinserting in Eq. (3), one gets:

$$K(r) = \frac{4}{5} - 4c_0 \left(\frac{r}{\eta} \right)^{-4/3} - \frac{2}{7} R_\lambda^{-3} \left(\frac{r}{\eta} \right)^{2}.$$

(7)

The maximum of $K(r)$ is moreover found to be located at a scale:

$$l_s \simeq L_f R_\lambda^{-3/5},$$

(8)

and the maximum of the function $K(r)$ is calculated as:

$$K_{\text{max}} = \frac{4}{5} \left(1 - \left(\frac{R_\lambda}{R_{\lambda_0}} \right)^{-6/5} \right).$$

(9)

with $R_{\lambda_0} \sim 30$. The two results are well verified in the experiment: the value $3/5$ we find is consistent with the experimental value 0.57 ± 0.04, and the expression for K_{max}, plotted against R_λ in Fig. 4, agrees well with the experiment. We recall here that Eq. (4) applies only for moderate and large R_λ, i.e. well above 30, and should not be used for describing low Reynolds number turbulence, for which approximation (7) ceases to be valid.
It is also interesting to reveal an equivalence between l_s and another scale — which we temporary call l^*_s —, introduced by Novikov [9] quite recently, and which was proposed to represent the size of vortex strings in fully developed turbulence. The equivalence between l^*_s and l_s can be shown by reexpressing the quantity [called $\alpha(r)$] which controls, in the analysis of Ref. [9], the generation of vorticity correlations, and from which l^*_s is defined. Assuming isotropy and homogeneity, one can derive, after some manipulations, the following exact relation between $\alpha(r)$ and $S_3(r)$:

$$\alpha(r) = \frac{1}{24} \left(r \frac{d^3}{dr^3} + 8 \frac{d^2}{dr^2} + \frac{8}{r} \frac{d}{dr} - \frac{8}{r^2} \right) S_3(r).$$ \hspace{1cm} (10)

In the analysis of Ref. [9], l^*_s is defined as the zero crossing of $\alpha(r)$; now, from Eq. (10), by using the approximation leading to Eq. (7), one can show that $\alpha(r)$ crosses zero axis at $1.4 \ l_s$. Therefore, the two scales are equivalent, which justifies using a single notation for both.

This remark further suggests a physical interpretation for l_s. In a previous work [13], internally coherent clusters of worms [14,15], whose size is proportional to $R_\lambda^{-0.70\pm0.10}$ have been found, a scaling close to l_s. These clusters can be thought of as corresponding to the strings of Ref. [9] since they define regions where velocity gradients (assumed to represent vorticity [14]) are strongly correlated. We thus suggest here that l_s provides a scale for the worm clusters in isotropic turbulence.

To summarize, we have carried out a detailed, systematic comparison between a fundamental relation of turbulence and the experiment. This study could be done by using low temperature helium, which allows to achieve highly controlled experimental conditions, while spanning an impressive range of Reynolds numbers. The analyses have been performed from single point measurements by using Taylor’s hypothesis. We have shown that forced Kolmogorov equation applies to real flows, within a range of R_λ lying between 120 and 1200, with a remarkable degree of accuracy; estimated to $\pm 3\%$ in relative magnitude, over three decades of scales. The experiment suggests that, as far as the third order structure function is concerned, the formation of an inertial range is slow. However, the results we
found, whether close or far from the asymptotics, can be accurately interpreted by assuming an isotropic homogeneous turbulence state, which demonstrates the relevance of this approximation, used in almost all theoretical approaches to turbulence. The scales we infer from the analysis are observed for the first time, and we suggest here they may be useful to consider in order to characterize more completely experimental situations.

ACKNOWLEDGMENTS

The authors have benefited of discussions with E. Siggia, E.A. Novikov, A. Tsinober, Y. Couder, S. Douady, B. Andreotti, J. Paret. They thank I. Proccacia for stressing an important point in the equations. This work has been supported by Ecole Normale Supérieure, CNRS, the Universities Paris 6 and Paris 7.
REFERENCES

[1] A.N. Kolmogorov, Dokl. Akad. Nauk. SSSR 32, 1, (1941) [Proc. R. Soc. Lond. A 434, 15 (1991)].

[2] U. Frisch, Turbulence (Cambridge University Press, 1995).

[3] A detailed presentation of the equation can be found in A.S. Monin and A.M. Yaglom, Statistical Fluid Mechanics (MIT Press, Cambridge, MA, 1975), Vol. 2.

[4] E.A. Novikov, Zh. Eksp. Theor. Fiz. 47, 1919 (1964) [Sov. Phys. JETP 20, 1290 (1965)].

[5] A.J. Chambers and R.A. Antonia, Boundary Layer Meteorology 28, 343 (1984).

[6] K.R. Sreenivasan and B. Dhruva, Prog. Theor. Phys. 130, 103 (1998).

[7] S.G. Saddoughi and S.V. Veeravalli, J. Fluid Mech. 268, 333 (1994).

[8] F. Anselmet, Y. Gagne, E.J. Hopfinger, and R.A. Antonia, J. Fluid Mech. 140, 63 (1984).

[9] E.A. Novikov, Phys. Rev. Lett. 71, 17 (1993).

[10] G. Zocchi, P. Tabeling, J. Maurer and H. Willaime, Phys. Rev. E 50, (5), 3693 (1994).

[11] P. Tabeling, G. Zocchi, F. Belin, J. Maurer and H. Willaime, Phys. Rev. E 53, 1613 (1996).

[12] F. Belin, J. Maurer, H. Willaime and P. Tabeling, Phys. Fluids 9,12 (1997).

[13] F. Belin, Ph.D. thesis, U. Paris 7, 1998.

[14] F. Belin, J. Maurer, P. Tabeling and H. Willaime, J. Phys. II France 6, 1 (1996).

[15] F. Belin, F. Moisy, P. Tabeling and H. Willaime, in Trends in Mathematics, Fundamental problematic issues in turbulence (to be published).
FIGURES

FIG. 1. \(J(r) = -S_3/r + 6\nu S_2'/r \) compared to a best fit given by the rhs of Eq. (3), for \(R_\lambda = 720 \). In the inset, we show the difference between the best fit and the experiment; the full scale is \(\pm 15\% \), and the dashed lines represent \(\pm 3\% \). For this file, \(u/U = 20.9\% \), \(\eta = 11.2 \mu m \), \(L_f = 964 \eta \), \(l_s = 147 \eta \) and \(\epsilon = 855 \text{ cm}^2 \text{ s}^{-3} \).

FIG. 2. The Kolmogorov function \(K(r) = -S_3/\epsilon r \) versus \(r/\eta \), for different Reynolds number \(R_\lambda \). The values of \(\epsilon \) are obtained by using best fits, as discussed in the text. \(\triangledown : R_\lambda = 120; \bigcirc : R_\lambda = 300; \triangle : R_\lambda = 1170 \). The solid lines show the expected curves, obtained from Eq. (1).

FIG. 3. Scale \(L_f \) and the ratio \(l_s/L_f \), where \(l_s \) defined by the extremum of \(K(r) \), versus the Taylor Reynolds number \(R_\lambda \). The solid line shows the best fit with an exponent -0.57 \(\pm 0.04 \).

FIG. 4. Evolution of the extremum of the Kolmogorov function, \(K(r) = -S_3/\epsilon r \), versus the Taylor Reynolds number \(R_\lambda \). The solid line shows the best fit given by Eq. (8), with \(R_{\lambda 0} \approx 30 \).
$J(r) \left(\text{cm}^2 \text{s}^{-3} \right)$

r / η
