Matrix Protein Gene Variants of Two Distinct Serotypes of rVSV Make Effective Viral Vectors for Prime-Boost Vaccination

Abstract
Recently, we developed attenuated VSV vectors by introducing temperature sensitive (ts) mutations in the M gene in both VSV Indiana and New Jersey serotypes. The newly generated M gene mutants of rVSV vectors are rVSV_{Ind}(GML) with mutations of G21E, M51R, and L110F, rVSV_{NJ}(GMM) with mutations of G22E, M48R, and M51R, and rVSV_{NJ}(GML) with mutations of G22E, M48R, M51R, and L110F. Our purpose was to examine the immunogenicity of the new M gene mutant of rVSV_{Ind} and attenuated M gene mutants of rVSV_{NJ} as vaccine vectors against HIV-1 proteins. We generated attenuated rVSVs carrying HIV-1 gag, pol, and env genes. We immunized mice with various prime-boost vaccination regimens. CDB⁺ T cell responses and humoral immune responses in the vaccinated mice were examined. Priming with rVSV_{Ind}(GML)-gag, pol, or env gene of HIV-1 and boosting with rVSV_{NJ}(GMM)-gag, pol, or env gene induced the strongest CDB⁺ cytotoxic T cell responses against the HIV-1 Gag, RT, and Env proteins. The same vaccination regimen also induced strong humoral immune responses against the HIV-1 Gag and Env proteins. We conclude that rVSV_{Ind}(GML) priming followed by rVSV_{NJ}(GMM) boosting is the best vaccination regimen for optimum B cell and T cell adaptive immune responses against inserted foreign gene products when the newly attenuated rVSV_{Ind} and rVSV_{NJ} are used.

Keywords: Vesicular stomatitis virus; Temperature sensitive mutants; HIV-1; Vaccine; Adaptive Immune Responses

Introduction
In addition to three conventional vaccine types, such as live attenuated virus vaccine, killed whole-virus vaccine, and subunit vaccines, scientists have developed vaccines using recombinant viral vectors. Many different types of viruses are employed to deliver genes of interest. These viral vectors include poxviruses [1], adenoviruses [2,3], herpes viruses [4], alphaviruses [5], retroviruses [6] and rhabdoviruses [7-9]. The ideal recombinant viral vector system should be able to carry large size exogenous gene(s) with high levels of the inserted gene expression. In addition, it should have a broad range of hosts and must be safe.

A boost immunization is often necessary in order to induce the highest adaptive immune responses. For a prime-boost immunization regimen, the priming recombinant viral vector should be antigenically distinct from the boost vaccine vector. The priming vaccine vector will most likely induce antibodies which will neutralize the boosting vaccine vector, should one use the same vector for prime-boost vaccination. Therefore, ideally one should use two different recombinant viral vectors, which are antigenically distinct.

The vesicular stomatitis virus (VSV) offers an ideal delivery system for prime-boost vaccines. VSV is the prototype rhabdovirus, which replicates rapidly and has a wide host range. Both humoral and cellular immune responses against VSV are elicited in the animal host, like any other viral vector [10-12]. VSV is neutralized by serotype specific antibodies against the viral surface glycoprotein G. VSV has two major serotypes; Indiana serotype (VSV_{Ind}) and New Jersey serotype (VSV_{NJ}). VSV_{Ind} and VSV_{NJ} show 50% amino acid homology in their glycoprotein G [13]. However, antibodies raised against VSV_{Ind} do not neutralize VSV_{NJ} [14]. Therefore, other investigators have used VSV_{NJ} as a vaccine vector in which the glycoprotein gene of VSV_{Ind} was replaced with that of VSV_{NJ} to minimize the problems arising from this immune response against the same viral vectors [8,15].

Although VSV_{Ind} carrying the G protein gene of the VSV_{NJ} serotype, or Chandipura as serologically distinct VSV, is useful in evading humoral immune response, it may not prevent cellular immune response which can be triggered by four other structural proteins: N, P, M, and L of VSV. Cellular immune responses against VSV proteins, other than the G protein, may result in incomplete immune responses against the antigen of interest. Our rVSV_{Ind} was generated from a cDNA clone of the HR strain of VSV_{Ind} [16] and rVSV_{NJ} was generated from a cDNA clone of the Hazeldhurst strain of VSV_{NJ} [17]. The two serotypes of VSV demonstrate different capacities for inducing type I interferons (IFN-α/β). Generally, VSV_{NJ} is a better inducer for type I interferons [18]. The type I interferons act as stimulatory factors to induce both cellular and humoral immune responses [19]. The generation of additional recombinant VSV from another serotype such as VSV_{NJ} may...
increase the efficacy of using VSV as a live viral vaccine vector. Using both recombinant VSV_{Ind} and VSV_{NJ} creates an effective viral vector system for the expression of foreign genes, which can be used to minimize problems associated with pre-existing immune responses against VSV itself.

Recently, we reported the attenuation of rVSV_{Ind} by introducing temperature-sensitive M gene mutations (G22E/L111F) and combining them with non-cytopathic M gene mutation (M51R). The newly generated rVSV_{Ind} is rVSV_{Ind}(G21E/M51R/L111F-GML), which is temperature-sensitive, assembly-defective rVSV_{Ind}. Similar mutations were introduced into the M gene of the New Jersey serotype of rVSV, and the resulting viruses were not temperature sensitive but were more attenuated from the non-cytopathic M gene mutant, rVSV_{NJ}(M48R/M51R). The newly generated rVSV_{NJ} are rVSV_{NJ}(G22E/M48R/M51R-GMM) and rVSV_{NJ}(G22E/M48R/M51R/L111F-GMLM) [16].

We examined the efficacy of these newly attenuated rVSVs as vaccine vectors by inserting three different HIV-1 genes, gag, pol, and env. Here we report the induction of both humoral and cellular immune responses against HIV structural proteins, Gag, Pol, and Env using the dual serotype rVSV vaccine vectors. Recombinant VSV_{Ind} and VSV_{NJ} carrying the gag, pol or env genes of HIV-1_{NL4-3} were constructed. Mice primed with rVSV_{Ind} carrying HIV structural protein genes followed by boost immunization with rVSV_{NJ} carrying the same set of HIV-1 structural protein genes showed robust adaptive immune responses.

Materials and Methods

Cells

Baby hamster kidney cells (BHK₂₁, ATCC®, CCL-104®) were grown in DMEM (Invitrogen) containing 5% fetal bovine serum (FBS). African green monkey kidney cells Vero E6 (ATCC®, CRL-1586®) were maintained in MEM (Invitrogen) containing 10% FBS and 1 mM sodium pyruvate. BSR T7/5 cell [20] was obtained from Dr. K.K. Conzelmann. The BHK₂₁ cells constitutively expressing the bacteriophage T7 RNA polymerase (BSR T7/5) were grown in DMEM containing 5% FBS and 500 µg/ml of G418 (Invitrogen). Splenocytes from vaccinated mice were isolated and were grown in DMEM containing 5% FBS and 500 µg/ml of G418 expressing the bacteriophage T7 RNA polymerase (BSR T7/5) obtained from Dr. K.K. Conzelmann. The BHK₂₁ cells were incubated at 31 °C for a large viral stock, BHK₂₁ cells were infected with an MOI of 0.1, incubated at 31 °C, and the culture media was harvested at 20 hours post-infection.

Construction of plasmids

The cDNA of the HIV-1 gag gene was synthesized by PCR using pUC19-gagWR27-TCE-EN [21] as a template and primers Gag(F): 5'-GGAGCGCTAGATGAAAGATGAAAGATGAAAGATTCTAAAAACAAAAAATTCTTTATGAGTTGAGAGCTCAATATTAA-3' and Gag(R): 5'-CGGCGGCCGCTTATAGCAAAATCCTTTTCACACCGTTG-3' andEnv-mss(2F): 5'-CGGCGGCCGCTTATAGCAAAATCCTTTTCACACCGTTG-3' and Env-mss(2R): 5'-CGGCGGCCGCTTATAGCAAAATCCTTTTCACACCGTTG-3' and a template pKS-Env-mss. The VSV-Env-mss genes showed robust adaptive immune responses.

The newly generated rVSVs were purified three consecutive times by plaque picking, and were amplified for a larger volume of stock viruses. The plaque picking was first amplified in a small-scale 2 ml culture of BHK₂₁ cells and the viruses were titrated using a monolayer culture of Vero E6 cells by plaque assay. The cells infected with the mutant viruses for the plaque assay were incubated in 31 °C. For a larger viral stock, BHK₂₁ cells were infected with an MOI of 0.1, incubated at 31 °C, and the culture media was harvested at 20 hours post-infection.

Determination of protein expression

In order to examine the expression of VSV proteins and inserted HIV-1 gene products, Gag, gp160, and reverse transcriptase (RT), proteins from 10 µg cell lysate of infected cells were separated by SDS-PAGE, and then transferred to the PVDF membrane (Immobilon, Millipore). The VSV proteins and HIV-1 proteins were detected by Western blot analysis using ECL Plus Western blotting Detection Reagents (Amersham Biosciences). VSV proteins were detected by using rabbit serum against the total protein of VSV [22]. The HIV-1 Gag protein was detected by using the HIV-1 p24 monoclonal antibody (183-H12-5C, NIH Cat#3537). The HIV-1 Env protein was detected by using the goat anti-HIV-1 gp120 polyclonal antibody (BIODESIGN). HIV-1 RT products were
detected by using the mouse anti-HIV-1 RT monoclonal antibody (5B2B2, NIH Cat#11338).

Vaccination of mice with rVSV

Animal care and procedures were compliant with the Animal Care and Use Committee Guidelines of the University of Western Ontario. Six-week old female Balb/C mice (Charles River Laboratories) were lightly anesthetized with isoflurane (Baxter Corp, Mississauga, Ontario, Canada). The mice were injected intramuscularly in the hind leg with 50 µl of rVSVs of appropriate viral titre, which was diluted in serum-free DMEM. The vaccinated mice were housed in microisolator cages (three mice/cage) with a ventilated rack system. The vaccinated mice were weighed weekly until the mice were euthanized at the end of the fourth week of the study. For the prime-boost vaccination studies, mice were boost immunized three weeks after the prime immunization. The mice were euthanized one week after the boost immunization to collect their spleens and serum.

Peptide specific CD8+ T cell activation

In order to stimulate T cells in splenocytes, 100µl of 2X concentrated mixture of costimulant, anti-mouse CD28 (2 µg/ml, BD Pharmingen) and an antigen specific peptide (20 µg/ml in dimethyl sulfoxide) were added to a 96-well culture plate. The HIV-1 Gag antigen specific peptide Gag: NH2-AMQMLKETI-COOH [23], gp160 specific peptide Env P18: NH2-RQRPGRFYTGKCOOH [24,25], RT specific peptides RT464: NH2-ILKEP VHGVYDPSKDLIA-COOH [26], and VSV nucleocapsid (N protein) antigen specific peptide N275: NH2-MPYLDFGFLCOOH [27] were synthesized at GenScript (Piscataway, NJ, USA). Isolated splenocytes from the vaccinated mice (100 µl of 1X10^6 cells) were added to a 96-well plate that contained virus-specific peptides and anti-CD28. The splenocytes were incubated for 37 °C for 2 hrs and 10 µl of 1:50 diluted protein transport inhibitor Brefeldin A (BD GolgiPlug™, BD Biosciences) was added to the 200 µl of splenocytes in stimulation. The plate was incubated for an additional three hours, and the splenocytes were washed once in PBS/1% BSA. CD8+ T cells were stained with anti-mouse CD8-FITC (BD Pharmingen) at 4 °C for 30 minutes. The CD8 stained cells were washed twice with PBS/1% BSA and permeabilized with 7.5 µl of fixation/Permeabilization solution (BD Cytofix/Cytoperm™ plus) at 4 °C for 20 minutes. The permeabilized cells were washed twice with BD Perm/Wash™ buffer and the cells were stained with anti-mouse IFN-γ-APC (BD Pharmingen™). The stained cells were washed twice in Perm/Wash™ buffer and were resuspended in 175 µl of PBS/1% BSA. The stained cells were identified using a FACS Calibur flow cytometer (BD Biosciences) and FlowJo software (Tree Star Inc., Ashland, OR). The data is expressed as an average % CD8+IFNy+ (+/− standard deviation of the mean) for each vaccine.

ELISA

For the ELISA against HIV-1 Gag, a 96-well ELISA plate (R and D systems; Part# 992427) was coated with recombinant p55 Gag protein (Thermo Scientific; Cat# RP4921) at a concentration of 125 ng/well in PBS. For the ELISA against HIV-1 gp120, 96-well ELISA plate (R and D systems; Part# 992427) was coated with the HIV-1 gp140 trimer (NIH AIDS Reagent program; Cat# 12026) at a concentration of 250 ng/well in PBS. The mouse sera were diluted either at 1:100 or 1:400 with a blocking buffer (R and D systems; Part# 840149). The antibody bound to the antigen p55 Gag protein or gp140 was detected with a secondary antibody, sheep anti-mouse IgG-HRP (Amersham Bioscience; Cat# NA931V). The enzymatic activity of HRP was detected by adding substrates, a mixture of hydrogen peroxide (R and D systems; Part# 895000) and tetramethylbenzidine (R and D systems; Part# 895001). The OD of each sample was read at a wavelength of 450 nm with the microplate reader (Bio-Rad; model 550).

Statistical Analysis

Sample group data were analyzed by a two-sided independent sample t test using the statistics software, GraphPad Prism version 6. A p value of <0.05 was considered as statistically significant.

Results

The attenuated rVSVs with the HIV-1 gag, pol, or env genes expressed proteins equally well at both 31 °C and 37 °C

The M gene mutants of rVSV vec [rVSVvec(GML)] and rVSVvec [rVSVvec(GMML)] showed increased safety of the rVSVs in mice [16]. In addition to safety of rVSVs for human use, the potency of rVSV to induce strong immune responses against inserted gene products is important for a vaccine vector. In order to examine the efficacy of the new M gene mutants of rVSV to induce both humoral and cellular immune responses in vivo, HIV-1 structural protein genes, gag, env, and pol were inserted into the G gene and L gene junction in the full-length cDNA clones of wild type and the mutants of rVSV: rVSVvec(GML), rVSVvec(GMML), and rVSVvec(GMML) (Figure 1(a)). When expressed in vitro, unprocessed HIV-1 Gag proteins form virus like particles (VLP) and the VLP are secreted from the cells [28]. Therefore, the HIV-1 Gag protein was a suitable protein to express from the new M gene mutants of rVSV to examine both cellular and humoral immune response. In addition, the full-length HIV-1 pol and env genes were inserted into both rVSVvec [rVSVvec(WT) and rVSVvec(GML)] and rVSVvec [rVSVvec(WT), rVSVvec(GMML), and rVSVvec(GMML)] in order to examine the induction of CD8+ T cell responses and humoral immune responses.

The expression of the Gag precursor protein P55, reverse transcriptase (RT) from pol gene, and gp160 from env gene were examined by Western blot analysis as described in Materials and Methods. In order to analyze the expression of HIV-1 proteins, BHK-21 cells were infected with an MOI of six of the rSVs and incubated at 31 °C and 37 °C, and cell lysates were prepared at six hours post-infection. rVSVvec(GML)-gag, rVSVvec(GMML)-gag, and rVSVvec(GMML)-gag expressed high levels of Gag protein at a permissive temperature of 31°C (Figure 1(b)) and at a semi-permissive temperature of 37 °C (Figure 1(c)), although Gag proteins from rVSVvec(GMML) were comparatively lower than that from the rVSVvec(GML) and rVSVvec(GMML). rVSVvec(GMML)-env expressed gp160 slightly better than rVSVvec(GML)-env did (Figure 1(d)) at both 31 °C and 37 °C. The RT dimer, P66 and F51, were detected similarly in cells infected with rVSVvec(GML)-pol and rVSVvec(GMML)-pol (Figure 1(e)). The expression levels of Gag, RT, and gp160 from these rVSVs were similar at both 31°C and 37°C.
Matrix Protein Gene Variants of Two Distinct Serotypes of rVSV Make Effective Viral Vectors for Prime-Boost Vaccination

Figure 1: Expression of HIV-1 gene from the rVSV_{Ind}(GML), rVSV_{NJ}(GMM), and rVSV_{NJ}(GMML). (a) Cloning of HIV-1 gag, pol, and env genes into the rVSV_{Ind} and rVSV_{NJ}. The HIV-1 gag, pol, and env genes were inserted into the junction of the G gene and L gene in the full-length cDNA clones of wild type and GML of rVSV_{Ind} and wild type, GMM, and GMML of rVSV_{NJ}. (b&c) Expression of HIV-1 Gag from the rVSVs at 31 °C and 37 °C. (d) Expression of HIV-1 gp160 from the rVSVs at 31 °C and 37 °C. (e) Detection of HIV-1 RT products from the rVSVs at 31 °C and 37 °C. The expression of Gag protein from the rVSVs was examined by Western blot analysis using monoclonal antibody against HIV-1 P24.

Citation: Kim GN, Wu K, An HY, Banasikowska E, Harding M, et al. (2016) Matrix Protein Gene Variants of Two Distinct Serotypes of rVSV Make Effective Viral Vectors for Prime-Boost Vaccination. J Hum Virol Retrovirol 4(1): 00125. DOI: 10.15406/jhvrv.2016.04.00125
Matrix Protein Gene Variants of Two Distinct Serotypes of rVSV Make Effective Viral Vectors for Prime-Boost Vaccination

The immunizations with the rVSV\textsubscript{Ind}(GML)-gag priming followed by rVSV\textsubscript{NJ}(GMML)-gag boosting induce better immune responses than vice versa.

It has been demonstrated that in the prime-boost vaccination regimen, avoiding neutralization of the boost virus by using the viral surface glycoprotein of another serotype is critical for the successful induction of strong immune responses [29,30]. We examined the cell-mediated and humoral immune responses against genes of interest induced by two completely separate serotypes of attenuated rVSV in the prime-boost vaccination regimen. We compared the immune responses between regimens of the same serotype vs. two different serotypes for prime-boost vaccination as well as the immune responses between regimens using wild type rVSV vs. the mutant rVSVs.

We examined the immune responses against the HIV-1 Gag protein expressed from rVSVs by vaccinating six Balb/c mice per group as described in Materials and Methods and Figure 2. Mice were grouped according to vaccine vector types (wild type vs. mutant) and regimen, e.g., priming and boosting with the same serotype of rVSV, or by alternating the two serotypes for priming and boosting (Figure 2). The mice were prime-vaccinated intramuscularly with \(5 \times 10^6\) PFU of rVSVs at the age of six weeks. Three weeks after priming, the mice were boost-vaccinated with the same dose of rVSVs. One week after boost vaccination, splenocytes and sera were collected for determination of the HIV-1 Gag-specific CD8\(^+\) T cell immune responses and anti-Gag antibody responses.

Figure 2: Determination of the best regimen for prime and boost immunization using rVSV\textsubscript{Ind} and rVSV\textsubscript{NJ}. (a) VSV N protein specific activation of CD8\(^+\) T cells. (b) HIV-1 Gag protein specific activation of CD8\(^+\) T cells. (c) Antibody production against HIV-1 Gag. Generation of HIV-1 Gag specific antibody was examined with the serum collected at one week after boost immunization. The Gag specific antibody titre was determined by the indirect enzyme-linked immunosorbent assay (ELISA) with recombinant p55 Gag protein at a concentration of 125 ng/well. The mouse serum was diluted 1:100. The error bar represents standard deviation of the mean. The \(P\) values (*, **, ***, ****) were computed by using a two-sided independent sample \(t\)-test.
CD8+ T cells stimulated by interacting with MHC I molecules loaded with peptides on the antigen presenting cells enhances the secretion of interferon-γ (IFN-γ) [31]. These peptide specific CD8+ T cells in splenocytes against VSV N proteins and HIV-1 Gag proteins were stimulated (Figure 2(a) and 2(b)). The splenic CD8+ T cells from groups 1 and 2, which were vaccinated with mutants of \(rVSV_{G(ML)} \) and \(rVSV_{G(GMML)} \), without the HIV-1 gag gene, were not stimulated by the HIV-1 Gag peptide, thereby demonstrating the specificity of CD8+ T cell stimulation with the HIV-1 Gag peptide. Prime and boost immunization by alternating two serotypes of wild type rVSV(WT) or two serotypes of rVSV mutants induced stronger CD8+ T cell immune responses against VSV N protein as well as HIV-1 Gag proteins, compared to a prime-boost vaccination with single serotype of rVSV as seen in groups 1, 2, 5, 6, 9, and 10 (Figure 2(a) and 2(b)). When vaccination regimens with the \(M \) mutants of rVSV were compared, priming with \(rVSV_{G(ML)} \)-gag and boosting with \(rVSV_{G(GMML)} \)-gag induced anti-HIV-1 Gag CD8+ T cell responses better than the regimen with \(rVSV_{G(GMML)} \)-gag priming followed by \(rVSV_{G(ML)} \)-gag boost (Figure 2(b), group 6 vs. group 10).

A humoral immune response against HIV-1 Gag was examined by ELISA using the serum collected a week after the boost immunization. The HIV-1 Gag protein specific antibody responses were induced in the best when two serotypes of rVSVs, either wild type or mutant rVSVs with HIV-1 gag were alternated for prime and boost immunization as it was shown in HIV-1 Gag specific CD8+ T cell responses (Figure 2(c), groups 5, 6, 9, and 10). When vaccinated with the \(M \) gene mutants, mice showed slightly better humoral immune responses against the HIV-1 Gag protein after priming with the \(rVSV_{G(ML)} \)-gag and boosting with \(rVSV_{G(GMML)} \)-gag than vice versa, but this difference was not statistically significant (Figure 2(c), group 6 vs. group 10). These results demonstrated that priming with \(rVSV_{G(ML)} \) and boosting with \(rVSV_{G(GMML)} \) induced better CD8+ T cell immune responses compared to \(rVSV_{G(GMML)} \) priming followed by \(rVSV_{G(ML)} \) boosting, and similar levels of humoral responses were induced by alternating \(rVSV_{G(ML)} \) and \(rVSV_{G(GMML)} \), regardless of the order of serotypes.

Immunization with \(rVSV_{G(ML)} \) and \(rVSV_{G(GMML)} \) vectors induces good adaptive immune responses against HIV-1 structural proteins

Testing various vaccination regimens with the new \(M \) gene mutants demonstrated that priming with \(rVSV_{G(ML)} \) and boosting with \(rVSV_{G(GMML)} \) worked best to induce HIV-1 Gag specific CD8+ T cell responses and antibody responses (Figure 2). However, the immune responses were not as good as with wild type \(rVSV_{G(ML)} \) and \(rVSV_{G(GMML)} \) as vaccine vectors. Therefore, we examined whether or not we could enhance the cellular and humoral immune responses by increasing infectious doses of the vaccine vectors.

The \(rVSV_{G(ML)} \) and another \(M \) gene mutant of \(rVSV_{G(GMML)} \) showed the same level of attenuation in vitro and in vivo [16], however the immunogenicity of \(rVSV_{G(GMML)} \) against the inserted gene product had not been determined. Therefore, we included \(rVSV_{G(GMML)} \) to examine and to compare the immunogenicity of these two \(rVSV_{G(GMML)} \) as boosting vectors. CD8+ T cell responses against HIV-1 Gag was better with the \(rVSV_{G(GMML)} \) as a boosting vector compared to that with \(rVSV_{G(GMML)} \) (Figure 3); therefore, we chose \(rVSV_{G(GMML)} \) as the boosting vector for a prime-boost vaccination regimen with our \(M \) gene mutants of rVSV.

A viral infectious dose of \(5 \times 10^8 \) PU did induce the best cellular and humoral immune responses (Figure 3(b) and 3(c)). Immunization with \(rVSV_{G(GMML)} \) as a boosting vector showed more dose dependant cellular immune responses. A dose of \(5 \times 10^8 \) PU showed clearly the enhanced cellular immune responses compared to the lower doses (Figure 3(b)). Therefore, for further experiments with rVSV expressing HIV-1 proteins, we immunized mice with \(5 \times 10^8 \) PU as a vaccine dose, which, we thought, would induce good immune responses.

With the optimized doses of immunization in mice, we examined immune responses against other HIV-1 proteins, such as gp160 and pol gene products, RT p51 and p66. Mice were prime-immunized with \(rVSV_{G(ML)} \) carrying HIV-1 genes and boost-immunized with \(rVSV_{G(GMML)} \) with the same HIV-1 genes as shown in Figure 4. Mice were immunized with \(5 \times 10^8 \) PU of single virus or total of \(1.5 \times 10^9 \) PU of three viruses (Figure 4). Splenocytes and sera were collected one week after the boost immunization. CD8+ T cell responses were peptide specific in all mice groups, as shown by the positive responses to peptides representing T cell epitopes of the HIV-1 proteins in groups 2, 3, 4, and 5 (Figure 4). Mice immunized with rVSVs expressing Gag, Env, and RT induced peptide specific CD8+ T cell immune responses in groups 2, 3, 4, and 5 with different degrees of CD8+ T cell stimulation. CD8+ T cells against peptide Env P18 was highly efficient with about 19% CD8+ T cell stimulation in group 3, although we used a single Env-specific peptide (Figure 4(c)). About 5% of CD8+ T cells were stimulated against the Gag protein (Figure 4(b)) and 2% of CD8+ T cells were stimulated against the RT (Figure 4(d)). Compared to the single virus immunization in groups 2, 3, and 4, the mixed immunization with three viruses induced weaker CD8+ T cell immune responses against Gag and RT. The results of immunization against HIV-1 Gag, Env, and RT demonstrated that our \(rVSV_{G(ML)} \) and \(rVSV_{G(GMML)} \) prime-boost immunization strategy could induce specific CD8+ T cell immune responses against various viral proteins.

The humoral immune responses against HIV-1 Gag and Env proteins were examined by ELISA (Figure 5). The Gag precursor protein P55 was used as an antigen to detect antibodies against the Gag protein, and gp140 trimer was also used as an antigen to detect antibodies against the Env protein, as described in Materials and Methods. The production of the Gag antibody was significantly higher in groups 2 and 5 than that of group 1 (Figure 5(a)). Immunization with a single recombinant virus (group 2) rather than mixed viruses (group 5) induced better immune responses.
Matrix Protein Gene Variants of Two Distinct Serotypes of rVSV Make Effective Viral Vectors for Prime-Boost Vaccination

responses. Similar antibody titres against the Gag between groups 1, 3, and 4, which were not immunized with rVSVs expressing the Gag protein, indicated a slight cross reactivity between VSV proteins and HIV-1 Gag proteins. Env protein specific antibodies were generated only in groups 3 and 5, which were immunized with a rVSV expressing Env protein alone, or together with rVSVs expressing Gag and rVSV expressing RT (Figure 5(b)). The results demonstrated that the proteins expressed from the rVSV\textsubscript{Ind}(GML) and rVSV\textsubscript{NJ}(GMM) and secreted from the infected cells could induce humoral immune responses in mice. Although it may not be statistically significant, it appeared that mice immunized with a single rVSV expressing Env protein (group 3) induced slightly better humoral immune responses than the mice immunized with mixed rVSVs (group 5). The results demonstrated that our new attenuated M gene mutants, rVSV\textsubscript{Ind}(GML) and rVSV\textsubscript{NJ}(GMM) could induce Gag, RT, and Env protein specific CD8\(^+\) T cell responses and Gag and Env protein specific humoral immune responses.

![Figure 3: Immunization studies with increasing doses of rVSV\textsubscript{Ind}(GML), rVSV\textsubscript{NJ}(GMM), and rVSV\textsubscript{NJ}(GMML) with HIV-1 gag. Six mice/group were prime and boost immunized with various doses ranging from 5X10\(^6\) PFU/dose to 5X10\(^9\) PFU/dose. The splenocytes and sera from the immunized mice were analysed as described in Figure 2. (a) VSV N protein-specific CD8\(^+\) T cell activation. (b) HIV-1 Gag protein-specific CD8\(^+\) T cell activation. (c) HIV-1 Gag protein specific antibody production measured by ELISA. The P values (*, **, ***,, ****) were computed by using a two-sided independent sample t test.](image)

Discussion

Our combined M gene mutants of rVSV are not deleted in any genes as compared to other known assembly-defective replication competent rVSV vectors. Our system uses rVSV with the full-length genome which assembly and release is reduced at a normal body temperature of 37 °C. Therefore, our rVSV system does not require any complementary cell lines to provide the function of missing genes. Here, we tested the immunogenicity of these rVSVs with various immunization regimens against the genes of interest, HIV-1 gag, pol, and env genes expressed from the rVSVs.

It is generally considered that a higher dose of antigen increases the chances of naïve B and T cells to contact the antigen for activation [32]. Higher doses of the live vaccine vector also affects CD8\(^+\) T cell immune responses by attracting a greater number of naïve CD8\(^+\) T cells to immune responses. This results in the activation of more antigen specific effector T cells.

Citation: Kim GN, Wu K, An HY, Banasikowska E, Harding M, et al. (2016) Matrix Protein Gene Variants of Two Distinct Serotypes of rVSV Make Effective Viral Vectors for Prime-Boost Vaccination. J Hum Virol Retrovirol 4(1): 00125. DOI: 10.15406/jhvrv.2016.04.00125
and differentiated memory CD8+ T cells [33]. The temperature sensitivity of rVSV
Ind (GML) for viral assembly should not affect the expression of VSV genes and genes of interest at a physiological temperature of 37 °C. Our rVSV vectors, the temperature-sensitive rVSV
Ind (GMM) and rVSV
NJ (GMML) expressed similar levels of VSV proteins and HIV-1 Gag protein at both 31 °C and at 37 °C (Figure 1).

It has been demonstrated that prime-immunization of mice with the rVSV
Ind and boosting with the G gene mutant of other serotypes, such as New Jersey or Chandipura, induced better humoral immune responses [8]. The results of our immunization studies with two antigenically distinct serotypes of VSV with the wild type M gene or mutant M gene of rVSV
Ind and rVSV
NJ showed that prime and boost immunization with either rVSV
Ind priming and rVSV
NJ boosting, or vice versa, worked better than the prime-boost with the same serotypes of rVSV. The order of the VSV serotypes for the prime-boost regimen to induce the best CD8+ T cell immune responses against the VSV N protein and HIV-1 Gag protein was not the same for both the wild type and M gene mutant rVSVs. HIV-1 Gag specific CD8+ T cell responses and humoral immune responses were better induced with the M gene mutants of rVSV
Ind and rVSV
NJ (Figures 2(b) & 2(c)). From our experience with expressing foreign genes from the rVSVs, the expression level of the inserted genes and replication ability of the viruses in vitro vary depending on the inserted genes of interest. These characteristics of the rVSV expressing foreign genes and order of the serotypes of rVSV for the prime-boost regimen would affect various degrees of immune response. Using two serotypes of VSV is crucial to induce the best immune responses, but the order of the serotypes for prime-boost immunization may need to be determined empirically whenever new vaccines using the rVSV vaccine vector are generated.

Figure 4: HIV-1 peptides specific CD8+ T cells induced by immunization with rVSV
Ind (GML) and rVSV
NJ (GMM) expressing HIV-1 proteins. Six mice/group were primed with 5X10^8 PFU/dose of rVSV
Ind (GML) expressing HIV-1 Gag (b), Env (c), or RT (d) and boost immunized with 5X10^8 PFU/dose of rVSV
NJ (GMM) expressing HIV-1 Gag, Env, or RT. The results were compared to those from mice immunized with rVSV
Ind (GML) and rVSV
NJ (GMM) without HIV genes (a) and to those from mice immunized with all three rVSVs expressing HIV-1 proteins. The splenocytes from the immunized mice were analysed as described in Figure 2.
Matrix Protein Gene Variants of Two Distinct Serotypes of rVSV Make Effective Viral Vectors for Prime-Boost Vaccination

The immunization dose of live vaccines may well influence the number of activated T cells and B cells against the antigen. In our study, we used rVSV\textsubscript{Ind}(GML)-gag as a priming vaccine and matched it, either with the rVSV\textsubscript{Ind}(GMM)-gag or with the rVSV\textsubscript{NJ}(GML)-gag, as a boosting vector to examine which M gene mutant of rVSV\textsubscript{Ind} vector stimulates better immune responses with the increasing doses. CD8+ T cell immune responses against the VSV N protein were not significantly different among all the groups with various doses of the rVSV vaccines, likely because of sufficient expression of VSV N proteins to activate a good number of naive CD8+ T cells with the lowest dose of 5 \times 106 PFU. Between the two M gene mutants of rVSV\textsubscript{Ind}, rVSV\textsubscript{Ind}(GMM)-gag and rVSV\textsubscript{Ind}(GML)-gag as a boosting vector, rVSV\textsubscript{Ind}(GMM)-gag was more dose dependent than the rVSV\textsubscript{Ind}(GML)-gag for the CD8+ T cell immune responses. The differences in the activation of the CD8+ T cells by the rVSV\textsubscript{Ind}(GMM)-gag and by the rVSV\textsubscript{Ind}(GML)-gag could be a result of the differences in Gag protein expression by these two rVSV\textsubscript{Ind}.

The CD8+ T cell immune responses against the immunodominant Env p18 peptide were strongly induced in mice (Figure 4(c)&4(e)). Because the Env p18 peptide specific CD8+ T cell stimulation occurs in humans as well as in mice [24,34], it is anticipated that our immunization regimen using rVSV\textsubscript{Ind}(GML)-env and rVSV\textsubscript{Ind}(GMM)-env could also induce strong CD8+ T cell immune responses in humans at the same region in the Env protein. Peptide specific CD8+ T cell responses against the Gag protein and RT were weaker when mice were immunized at the same site with mixed preparations of more than one rVSV\textsubscript{Ind}(GML) or rVSV\textsubscript{Ind}(GMM) with HIV-1 genes than when mice were immunized with a single virus (Figure 4, group 2 and 4 vs. group 5). If multiple rVSVs are to be used for multiple antigens by a single immunization, we may need to optimize the number of doses and distribution of injection sites on the vaccinee.

Our new attenuated rVSVs; rVSV\textsubscript{Ind}(GML), rVSV\textsubscript{Ind}(GMM), and rVSV\textsubscript{Ind}(GMML) demonstrated that they could be a safe vaccine vector with good expression of gene of interests. We will examine our rVSV with HIV-1 gag and env genes for the induction of human specific immune responses in humanized mice such as BLT mice [35]. Although we may need to optimize viral doses and order of the two serotypes of rVSVs for human again, we believe that these rVSV vectors will be effective vaccine vectors for preparation of vaccines against various human viral and bacterial infections, such as infections by Ebola virus, hepatitis C virus, MERS coronavirus, mycobacterium tuberculosis. We will test our new VSV vectors for these human viral and bacterial vaccines as well.

Conclusion

The attenuated rVSV vaccine vectors expressed HIV-1 Gag, RT, and gp160 well and the level of expression was similar at both 31 °C and 37 °C. Prime and boost immunization by alternating...
Matrix Protein Gene Variants of Two Distinct Serotypes of rVSV Make Effective Viral Vectors for Prime-Boost Vaccination

This study was partially supported by an IRAP grant from the National Research Council of Canada and by a research contract from Sumagen Canada Inc. BSR T7/5 cells constitutively expressing bacteriophage T7 RNA polymerase was a kind gift of Dr. K.K. Conzelmann. We thank the AIDS Research and Reagent Program of the US National Institute of Health (NIH) for their support. We are grateful to Rosanne Kang and Doris Hall for editing the manuscript.

Acknowledgements

The results demonstrated that our newly attenuated M gene mutants, rVSV_{ind}(GML) and rVSV_{ind}(GMM) could induce Gag, RT, and Env protein specific CD8⁺ T cell responses and Gag and Env protein specific humoral immune responses.

References

1. Chen X, Rock MT, Hammonds J, Tartaglia J, Shintani A, et al. (2005) Pseudovirus production by live poxvirus human immunodeficiency virus vector vaccine enhances humoral and cellular immune responses. J Virol 79(9): 5537-5547.

2. Patel A, Tikoo S, Kobinger G (2010) A porcine adenosivirus with low human seroprevalence is a promising alternative vaccine vector to human adenovirus S in an H5N1 virus disease model. PLoS One 5(12): e15301.

3. Kahl GA, Bonnell J, Hirajanna S, Fultz M, Nyberg-Hoffman C, et al. (2010) Potent immune responses and in vitro pro inflammatory cytokine suppression by a novel adenovirus vaccine vector based on rare human serotype 28. Vaccine 28(35): 5691-5702.

4. Bozac A, Berto E, Vasquez F, Grandi P, Caputo A, et al. (2006) Expression of human immunodeficiency virus type 1 tat from a replication-deficient herpes simplex type 1 vector induces antigen-specific T cell responses. Vaccine 24(49-50): 7148-7158.

5. Forsell MN, Mcinerney GM, Dosenovic P, Hidmark AS, Eriksson C, et al. (2007) Increased human immunodeficiency virus type 1 Env expression and antibody induction using an enhanced alphavirus vector. J Gen Virol 88(Pt 10): 2774-2779.

6. Okada H, Attanucci J, Tahara H, Pollack IF, Bozik ME, et al. (2000) Characterization and transduction of a retroviral vector encoding human interleukin-4 and herpes simplex virus-thymidine kinase for glioma tumor vaccine therapy. Cancer Gene Ther 7(3): 486-494.

7. Geisbert TW, Daddario-Dicaprio KM, Lewis MG, Geisbert JB, Grolla A, et al. (2008) Vesicular stomatitis virus-based ebola vaccine is well-tolerated and protects immunocompromised nonhuman primates. PLoS Pathog 4(11): e1000225.

8. Rose NF, Roberts A, Buonocore L, Rose JK (2000) Glycoprotein exchange vectors based on vesicular stomatitis virus allow effective boosting and generation of neutralizing antibodies to a primary isolate of human immunodeficiency virus type 1. J Virol 74(23): 10903-10910.

9. Mire CE, Miller AD, Carville A, Westmoreland SV, Geisbert JB, et al. (2012) Recombinant vesicular stomatitis virus vaccine vectors expressing filovirus glycoproteins lack neurovirulence in nonhuman primates. PLoS Negl Trop Dis 6(3): e1567.

10. Yewdell JW, Bennink JR, Mackett M, Lefrancois L, Ilyes DS, et al. (1986) Recognition of cloned vesicular stomatitis virus internal and external gene products by cytotoxic T lymphocytes. J Exp Med 163(5):1529-1538.

11. Puddington L, Bevan MJ, Rose JK, Lefrancois L (1986) N protein is the predominant antigen recognized by vesicular stomatitis virus-specific cytotoxic T cells. J Virol 60(2): 708-717.

12. Kalinke U, Buecher EM, Ernst B, Oexenius A, Roost HF, et al. (1996) The role of somatic mutation in the generation of the protective humoral immune response against vesicular stomatitis virus. Immunology 5(6): 639-652.

13. Gallione CJ, Rose JK (1983) Nucleotide sequence of a cDNA clone encoding the entire glycoprotein from the New Jersey serotype of vesicular stomatitis virus. J Virol 46(1): 163-169.

14. Cartwright B, Brown P (1972) Serological relationships between different strains of vesicular stomatitis virus. J Gen Virol 16(3): 391-398.

15. Rose NF, Marx PA, Luckay A, Nkon DF, Moreto WJ, et al. (2001) An effective AIDS vaccine based on live attenuated vesicular stomatitis virus recombinants. Cell 106(5): 539-549.

16. Kim GN, Wu K, Hong JP, Awamleh Z, Kang CY (2015) Creation of matrix protein gene variants of two serotypes of vesicular stomatitis virus as prime-boost vaccine vectors. J Virol 89(12): 6338-6351.

17. Kim GN, Kang CY (2007) Matrix protein of VSV New Jersey serotype containing methionine to arginine substitutions at positions 48 and 51 allows near-normal host cell gene expression. Virology 357(1): 41-53.

18. Marcus PL, Rodriguez LL, Sekellick MJ (1998) Interferon induction as a quasi-species marker of vesicular stomatitis virus populations. J Virol 72(1): 542-549.

19. Tough DF (2012) Modulation of T-cell function by type I interferon. ImmunoCell Biol 90(5): 492-497.

20. Buchholz UJ, Fink S, Conzelmann KK (1999) Generation of bovine respiratory syncytial virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter. J Virol 73(1): 251-259.

21. Kinkartz JD (2004) Systemic and Mucosal Immune Responses to Chimeric HIV Gag-Virus like Particles Expressed by Recombinant Adenovirus Type 5. The University of Western Ontario, Microbiology and Immunology.

22. Kim GN, Kang CY (2005) Utilization of homotypic and heterotypic proteins of vesicular stomatitis virus by defective interfering particle genomes for RNA replication and virion assembly: implications for the mechanism of homologous viral interference. J Virol 79(15): 9588-9596.

23. Mata M, Travers PJ, Liu Q, Frankel FR, Paterson Y (1999) The MHC class I-restricted immune response to HIV-gag in BALB/c mice selects a single epitope that does not have a predictable MHC-binding motif and binds to Kd through interactions between a glutenine at P3 and pocket D. J Immunol 161(6): 2985-2993.

Citation: Kim GN, Wu K, An HY, Banasikowska E, Harding M, et al. (2016) Matrix Protein Gene Variants of Two Distinct Serotypes of rVSV Make Effective Viral Vectors for Prime-Boost Vaccination. J Hum Virol Retrovirol 4(1): 00125. DOI: 10.11546/jhvrr.2016.04.00125
Matrix Protein Gene Variants of Two Distinct Serotypes of rVSV Make Effective Viral Vectors for Prime-Boost Vaccination

24. Takahashi H, Cohen J, Hosmalin A, Cease KB, Houghten R, et al. (1988) An immunodominant epitope of the human immunodeficiency virus envelope glycoprotein gp160 recognized by class I major histocompatibility complex molecule-restricted murine cytotoxic T lymphocytes. Proc Natl Acad Sci USA 85(9): 3105-3109.

25. Takahashi H, Houghten R, Putney SD, Margulies DH, Moss B, et al. (1989) Structural requirements for class I MHC molecule-mediated antigen presentation and cytotoxic T cell recognition of an immunodominant determinant of the human immunodeficiency virus envelope protein. J Exp Med 170(6): 2023-2035.

26. Casimiro DR, Tang A, Perry HC, Long RS, Chen M, et al. (2002) Vaccine-induced immune responses in rodents and nonhuman primates by use of a humanized human immunodeficiency virus type 1 pol gene. J Virol 76(1): 185-194.

27. Ramsburg EA, Publicover JM, Coppock D, Rose JK (2007) Requirement for CD4 T cell help in maintenance of memory CD8 T cell responses is epitope dependent. J Immunol 178(10): 6350-6358.

28. Kang CY, Luo L, Wainberg MA, Li Y (1999) Development of HIV/AIDS vaccine using chimeric gag-env virus-like particles. Biol Chem 380(3): 353-364.

29. Schwartz JA, Buoncore L, Roberts A, Suguitan A, Kobasa D, et al. (2007) Vesicular stomatitis virus vectors expressing avian influenza H5 HA induce cross-neutralizing antibodies and long-term protection. Virology 366(1): 166-173.

30. Rabinovich S, Powell RL, Lindsay RW, Yuan M, Carpov A, et al. (2014) A novel, live-attenuated vesicular stomatitis virus vector displaying conformationally intact, functional HIV-1 envelope trimers that elicits potent cellular and humoral responses in mice. PLoS One 9(9): e106597.

31. Scheibenbogen C, Lee KH, Mayer S, Stevanovic S, Moebius I, et al. (1997) A sensitive ELISPOT assay for detection of CD8+ T lymphocytes specific for HLA class I-binding peptide epitopes derived from influenza proteins in the blood of healthy donors and melanoma patients. Clin Cancer Res 3(2): 221-226.

32. Siegrist C-A (2013) Vaccine immunology. In: Vaccines (6th edn), W.B. Saunders, London, Canada, p. 14-32.

33. Kaech SM, Ahmed R (2001) Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naive cells. Nat Immunol 2(5): 415-422.

34. Clerici M, Lucey DR, Zajac RA, Boswell RN, Gebel HM, et al. (1991) Detection of cytotoxic T lymphocytes specific for synthetic peptides of gp160 in HIV-seropositive individuals. J Immunol 146(7): 2214-2219.

35. Akkina R (2013) New generation humanized mice for virus research: comparative aspects and future prospects. Virology 435(1): 14-28.