Genetic conflict and sex allocation in scale insects
Ross, Laura

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2010

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Ross, L. (2010). Genetic conflict and sex allocation in scale insects. [Thesis fully internal (DIV), University of Groningen]. s.n.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
References
Alstad, D. N. & Edmunds, G. F. (1983). Selection, outbreeding depression, and the sex ratio of scale insects. *Science* 220, 93–95.

Alstad, D. N. & Edmunds, G. F. (1989). Haploid and diploid survival differences demonstrate selection in scale insect demes. *Evolutionary Ecology* 3, 253–263.

Andersen, J. C. (2009). A phylogenetic analysis of armored scale insects, based upon nuclear, mitochondrial, and endosymbiont gene sequences. Master thesis, University of Massachusetts Amherst.

Arnqvist, G. & Rowe, L. (2005). *Sexual Conflict*. Princeton University Press.

Baer, B., Morgan, E. D. & Schmid-Hempel, P. (2001). A nonspecific fatty acid within the bumblebee mating plug prevents females from remating. *Proceedings of the National Academy of Sciences of the United States of America* 98, 3926–3928.

Baumann, L. & Baumann, P. (2005). Cospeciation between the primary endosymbionts of mealybugs and their hosts. *Current Microbiology* 50, 84–87.

Beardsley, J. W. & Gonzalez, R. H. (1975). Biology and Ecology of Armored Scales. *Annual Review of Entomology* 20, 47–73.

Beekman, M., Komdeur, J. & Ratnieks, F. L. W. (2003). Reproductive conflicts in social animals: who has power? *Trends in Ecology & Evolution* 18, 277–282.

Beekman, M. & Ratnieks, F. L. W. (2003). Power over reproduction in social Hymenoptera. *Philosophical Transactions of the Royal Society of London Series B-Biological Sciences* 358, 1741–1753.

Beig, D. (1972). The production of males in queenright colonies of *Trigona* (*Scaptotrigona*) *postica*. *Journal of Apicultural Research* 11, 33–39.

Ben-Dov, Y., Miller, D. R. & Gibson, G. A. P. (2009). ScaleNet, Economic Importance. 15-12-2009. http://www.sel.barc.usda.gov/SCALENET/economic.htm.

Bongiorni, S. & Prantera, G. (2003). Imprinted facultative heterochromatization in mealybugs. *Genetica* 117, 271–279.

Borges da Silva, E., Mendel, Z. & Franco, J. Can facultative parthenogenesis occur in biparental mealybug species? *Phytoparasitica* 38, 19–21.

Borsa, P. & Kjellberg, F. (1996). Experimental evidence for pseudo-arhenotoky in *Nasonia* *hampei* (Coleoptera: Scolytidae). *Heredity* 76, 130–135.

Bourke, A. F. G. (2009). The kin structure of sexual interactions. *Biology Letters* 5, 689–692.

Bourke, A. F. G. & Franks, N. R. (1995). Social Evolution in Ants. Princeton University Press, Princeton, New Jersey.
REFERENCES

Branco, M., Jactel, H., Franco, J. C. & Mendel, Z. (2006). Modelling response of insect trap captures to pheromone dose. Ecological Modelling 197, 247–257.

Breeuwer, J. A. J. & Werren, J. H. (1990). Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature 346, 558–560.

Breeuwer, J. A. J. & Werren, J. H. (1993). Effect of genotype on cytoplasmic incompatibility between two species of Nasonia. Heredity 70, 428–436.

Brockmann, H. J. & Grafen, A. (1989). Mate conflict and male behavior in a solitary wasp, Trypoxylon (Trypargilum politum) (Hymenoptera, Sphecidae). Animal Behaviour 37, 232–255.

Brown, S. W. (1957). Chromosome behavior in Comstockiella sabalis (comst) (Coccoidea, Diaspididae). Genetics 42, 362–363.

Brown, S. W. (1963). The Comstockiella system of chromosome behavior in the armored scale insects (Coccoidea: Diaspididae). Chromosoma 14, 360–406.

Brown, S. W. (1964). Automatic frequency response in evolution of male haploidy + other coccid chromosome systems. Genetics 49, 797–817.

Brown, S. W. (1965). Chromosomal survey of armored and palm scale insects (Coccoidea - Diaspididae and Phoenicococcidae). Hilgardia 36, 189–294.

Brown, S. W. (1967). Chromosome systems of Eriococcidae (Coccoidea-Homoptera) I. A survey of several genera. Chromosoma 22, 126–150.

Brown, S. W. & Bennett, F. D. (1957). On sex determination in the Diaspine scale Pseudaulacaspis pentagona (Targ) (Coccoidea). Genetics 42, 510–523.

Brown, S. W. & Cleveland, C. (1968). Meiosis in the male of Puto albicans (Coccoidea-Homoptera). Chromosoma 24, 210–232.

Brown, S. W. & Nelson-Rees, W. A. (1961). Radiation analysis of a Lecanoid genetic system. Genetics 46, 983–1006.

Brown, S. W. & Nur, U. (1964). Heterochromatic chromosomes in Coccids. Science 145, 130–136.

Buchner, P. (1965). Endosymbiosis of Animals with Plant Microorganisms. Interscience Publisher, New York.

Buglia, G. & Ferraro, M. (2004a). Germline cyst development and imprinting in male mealybug Planococcus citri. Chromosoma 113, 284–294.

Buglia, G. L., Dionisi, D. & Ferraro, M. (2009). The amount of heterochromatic proteins in the egg is correlated with sex determination in Planococcus citri (Homoptera, Coccoidea). Chromosoma 118, 737–746.

Buglia, G. L. & Ferraro, M. (2004b). Germline cyst development and imprinting in male mealybug Planococcus citri. Chromosoma 113, 284–294.

Bull, J. J. (1979). An advantage for the evolution of male haploidy and systems with similar genetic transmission. Heredity 43, 361–381.

Bull, J. J. (1983). The Evolution of Sex Determining Mechanisms. Benjamin Cummings, Menlo Park, CA.

Bullock, J. M., Kenward, R. E. & Hails, R. S. (2002). Dispersal Ecology: 42nd Symposium of the British Ecological Society. Cambridge University Press, Cambridge.

Bulmer, M. (1994). Theoretical Evolutionary Ecology. Sinauer Associates, Sunderland, Massachusetts.

Burt, A. & Trivers, R. L. (2006). Genes in Conflict. Harvard University Press, Cambridge.

Camacho, J. P. M., Sharbel, T. F. & Beukeboom, L. W. (2000). B-chromosome evolution. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 355, 163–178.

Carvalho, A. B. (2002). Origin and evolution of the Drosophila Y chromosome. Current Opinion in Genetics & Development 12, 664–668.

Carvalho, A. B., Koerich, L. B. & Clark, A. G. (2009). Origin and evolution of Y chromosomes: Drosophila tales. Trends in Genetics 25, 270–277.

Chandra, H. S. (1962). Inverse meiosis in triploid females of mealybug, Planococcus citri. Genetics 47, 1441–1454.

Chapman, T. (2006). Evolutionary conflicts of interest between males and females. Current Biology 16, R744–R754.

Chapman, T., Arnqvist, G., Bangham, J. & Rowe, L. (2003). Sexual conflict. Trends in Ecology & Evolution 18, 41–47.

Chapman, T., Pomiankowski, A. & Fowler, K. (2005). Stalk-eyed flies. Current Biology 15, R533–R535.
Charlat, S., Hurst, G. D. D. & Mercot, H. (2003). Evolutionary consequences of Wolbachia infections. *Trends in Genetics* 19, 217–223.

Charnov, E. L. (1982). *The theory of sex allocation*. Princeton University Press, Princeton.

Charnov, E. L., Losdenhartogh, R. L., Jones, W. T. & Van den Assem, J. (1981). Sex ratio evolution in a variable environment. *Nature* 289, 27–33.

Charnov, E. L., Smith, J. M. & Bull, J. J. (1976). Why be an Hermaphrodite. *Nature* 263, 125–126.

Chevrier, C. & Bressac, C. (2002). Sperm storage and use after multiple mating in *Dinarmus basalis* (Hymenoptera : Pteromalidae). *Journal of Insect Behavior* 15, 385–398.

Chow, A. & Mackauer, M. (1996). Sequential allocation of offspring sexes in the hyperparasitoid wasp, *Dendrocerus carpenteri*. *Animal Behaviour* 51, 859–870.

Clark, A. B. (1978). Sex ratio and local resource competition in a prosimian primate. *Science* 201, 163–165.

Cockburn, A., Legge, S. & Double, M. C. (2002). Sex ration in birds and mammals: can the hypotheses be disentangled? In *Sex ratios: concepts and research methods* (ed. I. C. W. Hardy). Cambridge University Press.

Comins, H. N., Hamilton, W. D. & May, R. M. (1980). Evolutionarily stable dispersal strategies. *Journal of Theoretical Biology* 82, 205–230.

Cook, L. G. (2000). Extraordinary and extensive karyotypic variation: A 48-fold range in chromosome number in the gall-inducing scale insect *Apiomorpha* (Hemiptera : Coccoidea : Eriococcidae). *Genome* 43, 255–263.

Cook, L. G. & Gullan, P. J. (2004). The gall-inducing habit has evolved multiple times among the eriococcid scale insects (Sternorrhyncha : Coccoidea : Eriococcidae). *Biological Journal of the Linnean Society* 83, 441–452.

Cook, L. G., Gullan, P. J. & Stewart, A. C. (2000). First-instar morphology and sexual dimorphism in the gall-inducing scale insect *Apiomorpha Rubsaamen* (Hemiptera : Coccoidea : Eriococcidae). *Journal of Natural History* 34, 879–894.

Cook, L. G., Gullan, P. J. & Trueman, H. E. (2002). A preliminary phylogeny of the scale insects (Hemiptera : Sternorrhyncha : Coccoidea) based on nuclear small-subunit ribosomal DNA. *Molecular Phylogenetics and Evolution* 25, 43–52.

Cook, L. G. & Rowell, D. M. (2007). Genetic diversity, host-specificity and unusual phylogeography of a cryptic, host-associated species complex of gall-inducing scale insects. *Ecological Entomology* 32, 506–515.

Cosmides, L. M. & Tooby, J. (1981). Cytoplasmic Inheritance and Intragenomic Conflict. *Journal of Theoretical Biology* 89, 83–129.

Cox, J. M. (1981). Identification of *Planococcus citri* (Homoptera, Pseudococcidae) and the Description of a New Species. *Systematic Entomology* 6, 47–53.

Crawley, M. J. (2007). *The R book*. John Wiley & Sons Ltd, New York.

Cruickshank, R. H. & Thomas, R. H. (1999). Evolution of haplodiploidy in dermanyssine mites (Acari: Mesostigmata). *Evolution* 53, 1796–1803.

Darlington, C. D. (1958). *The evolution of genetic systems*. Oliver and Boyd.

de Jong, T. J. & Klinkhamer, P. G. L. (2005). *Evolutionary Ecology of plant reproductive strategies*. Cambridge University Press.

Dorchin, N. & Freidberg, A. (2004). Sex ratio in relation to season and host plant quality in a monogenous stem-galling midge (Diptera : Cecidomyiidae). *Ecological Entomology* 29, 677–684.

Douglas, A. E. (1998). Nutritional interactions in insect-microbial symbioses: Aphids and their symbiotic bacteria *Buchnera*. In *Annual Review of Entomology*, vol. 43, pp. 17–37.

Downie, D. & Gullan, P. (2005). Phylogenetic congruence of mealybugs and their primary endosymbionts. *Journal of Evolutionary Biology* 18, 315–324.

Downie, D. A. & Gullan, P. J. (2004). Phylogenetic analysis of mealybugs (Hemiptera : Coccoidea : Pseudococcidae) based on DNA sequences from three nuclear genes, and a review of the higher classification. *Systematic Entomology* 29, 238–259.

Dubendorfer, A., Hediger, M., Burghardt, G. & Bopp, D. (2002). *Musca domestica*, a window on the evolution of sex-determining mechanisms in insects. *International Journal of Developmental Biology* 46, 75–79.
Duron, O., Bouchon, D., Boutin, S., Bellamy, L., Zhou, L., Engelstadter, J. & Hurst, G. (2008). The diversity of reproductive parasites among arthropods: *Wolbachia* do not walk alone. *BMC Biology* 6, 27.

Dyson, E. A. & Hurst, G. D. D. (2004). Persistence of an extreme sex-ratio bias in a natural population. *Proceedings of the National Academy of Sciences of the United States of America* 101, 6520–6523.

Eberhard, W. G. (1996). *Female control: sexual selection by cryptic female choice*. Princeton University Press, Princeton.

Edwards, A. W. F. (2000). Carl Dusing (1884) on The Regulation of the Sex-Ratio. *Theoretical Population Biology* 58, 255–257.

Engelstadter, J. & Hurst, G. D. D. (2006). Can maternally transmitted endosymbionts facilitate the evolution of haplodiploidy? *Journal of Evolutionary Biology* 19, 194–202.

Evans, J. (2004). Molecular basis of sex determination in haplodiploids. *Trends in Ecology & Evolution* 19, 1–3.

Ewen, J. G., Cassey, P. & Moller, A. P. (2004). Facultative primary a lack of evidence sex ratio variation: a lack of evidence in birds? *Proceedings of the Royal Society of London Series B-Biological Sciences* 271, 1277–1282.

Felsenstein, J. (1985). Phylogenies and the Comparative Method. *American Naturalist* 125, 1–15.

Fink, R. (1952). Morphologische und physiologische untersuchungen an den intrazellularen symbionten von *Pseudococcus citri*. Z.Morph.u.Okol.Tiers 41, 78–146.

Fisher, R. A. (1930). *The Genetical Theory of Natural Selection*. Clarendon Press, Oxford.

Frank, S. A. (1998). *Foundations of social evolution*. Princeton University Press.

Gardner, A., Hardy, I. C. W., Taylor, P. D. & West, S. A. (2007). Spiteful soldiers and sex ratio conflict in polyembryonic parasitoid wasps. *American Naturalist* 169, 519–533.

Gardner, A. & West, S. A. (2010). Greenbeards. *Evolution* 64, 25–38.

Gavrilo, I. (2007). A catalog of chromosome numbers and genetic systems of scale insects (Homoptera: Coccoidea) of the world. *Israel Journal of Entomology* 37, 1–45.

Ghiselin, M. T. (1969). Evolution of Hermaphroditism among Animals. *Quarterly Review of Biology* 44, 189–208.

Goday, C. & Esteban, M. R. (2001). Chromosome elimination in sciarid flies. *Bioessays* 23, 242–250.

Godfray, H. C. J. (1994). *Parasitoids. Behavioural and Evolutionary Ecology*. Princeton University Press, Princeton.

Godfray, H. C. J. (1995). Signaling of need between parents and young - Parent-offspring conflict and sibling rivalry. *American Naturalist* 146, 1–24.

Greathead, D. J. (1990). Crawler dispersal and behaviour. In *World Crop Pests, Vol. 4A, Armored Scale Insects: Their Biology, Natural Enemies and Control* (ed. D. Rosen), pp. 305–308. Elsevier, Amsterdam.

Greathead, D. J. (1997). Crawler behaviour and dispersal. In *World Crop Pests, Vol 7A, Soft Scale Insects: Their Biology, Natural Enemies and Control* (ed. Y. Ben-Dov and C. J. Hodgson). Elsevier, Amsterdam.

Gruwell, M. E., Morse, G. E. & Normark, B. B. (2007). Phylogenetic congruence of armored scale insects (Hemiptera : Diaspididae) and their primary endosymbionts from the phylum Bacteroidetes. *Molecular Phylogenetics and Evolution* 44, 267–280.

Gruwell, M. E., Von Dohlen, C., Patch, K. & Normark, B. (2004). Preliminary PCR survey of bacteria associated with scale insects (Hemiptera: Coccoidea) *Proceedings of ISSIS X*, 101–115.

Gruwell, M. E., Wu, J. & Normark, B. B. (2009). Diversity and Phylogeny of Cardinium (Bacteroidetes) in Armored Scale Insects (Hemiptera: Diaspididae). *Annals of the Entomological Society of America* 102, 1050–1061.

Gullan, P. J. & Cockburn, A. (1986). Sexual dichromism and intersexual phoresy in gall-forming coccoids. *Oecologia* 68, 632–634.

Gullan, P. J. & Cook, L. G. (2007). Phylogeny and higher classification of the scale insects (Hemiptera : Sternorrhyncha : Coccoidea). *Zootaxa* 1668, 413–425.

Gullan, P. J. & Kosztarab, M. (1997). Adaptations in scale insects. *Annual Review of Entomology* 42, 23–50.
Gullan, P. J., Miller, D. R. & Cook, L. G. (2005). Gall-inducing scale insects (Hemiptera: Sternorrhyncha: Coccoidea) In Biology, ecology, and evolution of gall-inducing Arthropods (ed. A. Raman, C. W. Schaefer and T. M. Withers), pp. 23. Science Publishers.

Hackstein, J. H. P., Hochstenbach, R., Hauschteck-Jungen, E. & Beukeboom, L. W. (1996). Is the Y chromosome of Drosophila an evolved supernumerary chromosome? Bioessays 18, 317–323.

Hadfield, J. D. (2010a). MCMC Methods for Multi-Response Generalized Linear Mixed Models: The MCMCglmm R Package. Journal of Statistical Software 33, 1–22.

Hadfield, J. D. (2010b). MCMCglmm CourseNotes. http://cran.r-project.org/web/packages/MCMCglmm/vignettes/CourseNotes.pdf.

Hadfield, J. D. & Nakagawa, S. (2010). General quantitative genetic methods for comparative biology: phylogenies, taxonomics and multi-trait models for continuous and categorical characters. Journal of Evolutionary Biology 23, 494–508.

Haig, D. (1986). Conflicts among Megasporcs. Journal of Theoretical Biology 123, 471–480.

Haig, D. (1993a). The evolution of unusual chromosomal systems in Coccoids - Extraordinary sex ratios revisited. Journal of Evolutionary Biology 6, 69–77.

Haig, D. (1993b). The evolution of unusual chromosomal systems in sciarid flies - Intragenomic conflict and the sex ratio. Journal of Evolutionary Biology 6, 249–261.

Haig, D. (2000). Genomic imprinting, sex-biased dispersal, and social behavior. Annals of the New York Academy of Sciences 907, 149–163.

Haig, D. & Grafen, A. (1991). Genetic Scrambling as a Defense against Meiotic Drive. Journal of Theoretical Biology 153, 531–558.

Haig, D. & Wilkins, J. F. (2000). Genomic imprinting, sibling solidarity and the logic of collective action. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 355, 1593–1597.

Hamilton, W. D. (1964). Genetical Evolution of Social Behaviour I. Journal of Theoretical Biology 7, 1–16.

Hamilton, W. D. (1967). Extraordinary sex ratios. Science 156, 477–488.

Hamilton, W. D. (1979). Wingless and fighting males in fig wasps and other insects. In Sexual Selection and Reproductive Competition in Insects (ed. M. S. Blum and N. A. Blum). Academic Press, New York.

Hamilton, W. D. (1993). Inbreeding in Egypt and in this book: a childish perspective. In The Natural History of Inbreeding and Outcrossing (ed. N. W. Thornhill), pp. 429–450. University of Chicago Press, Chicago.

Hamilton, W. D. & May, R. M. (1977). Dispersal in stable habitats. Nature 269, 578–581.

Hardy, I. C. W. (1992). Nonbinomial Sex Allocation and Brood Sex-Ratio Variances in the Parasitoid Hymenoptera. Oikos 65, 143–158.

Hardy, N. B., Gullan, P. J. & Hodgson, C. J. (2008). A subfamily-level classification of mealybugs (Hemiptera : Pseudococcidae) based on integrated molecular and morphological data. Systematic Entomology 33, 51–71.

Harvey, P. H. & Pagel, M. D. (1991). The Comparative Method in Evolutionary Biology. Oxford University Press, Oxford.

Hawkes, P. G. (1992). Sex ratio stability and male-female conflict over sex ratio control in Hymenopteran Parasitoids. South African Journal of Science 88, 423–430.

Hedrick, P. W. & Parker, J. D. (1997). Evolutionary genetics and genetic variation of haplodiploids and X-linked genes. Annual Review of Ecology and Systematics 28, 55–83.

Heimpel, G. E. & de Boer, J. G. (2008). Sex determination in the Hymenoptera. Annual Review of Entomology 53, 209–230.

Henter, H. J. (2003). Inbreeding depression and haplodiploidy: Experimental measures in a parasitoid and comparisons across diploid and haplodiploid insect taxa. In Evolution, vol. 57, pp. 1793–1803.

Herrick, G. & Seger, J. (1999). Imprinting and paternal genome elimination in insects. In Genomic Imprinting: An Interdisciplinary Approach (ed. R. Ohlsson), pp. 41–71. Springer-Verlag, New York.

Hodgson, C. & Foldi, I. (2006). A review of the Margarodidae sensu Morrison (Hemiptera : Coccoidea) and some related taxa based on the morphology of adult males. Zootaxa, 1–250.
Holland, B. & Rice, W. R. (1999). Experimental removal of sexual selection reverses intersexual antagonistic coevolution and removes a reproductive load. *Proceedings of the National Academy of Sciences of the United States of America* 96, 5083–5088.

Hornett, E., Charlat, S., Duplouy, A., Davies, N., Roderick, G., Wedell, N. & Hurst, G. (2006). Evolution of male-killer suppression in a natural population. *Plas Biology* 4, 1643–1648.

Hornett, E. A., Duplouy, A. M. R., Davies, N., Roderick, G. K., Wedell, N., Hurst, G. D. D. & Charlat, S. (2008). You can't keep a good parasite down: Evolution of a male-killer suppressor uncovers cytoplasmic incompatibility. *Evolution* 62, 1258–1263.

Hughes-Schrader, S. (1925). Cytology of hermaphroditism in *Icerya purchasi* (Coccidae). *Cell and Tissue Research* 2, 264–290.

Hughes-Schrader, S. (1930). The cytology of several species of iceryine coccids, with special reference to parthenogenesis and sperm formation. *Journal of Morphology* 50, 475–495.

Hughes-Schrader, S. (1948). Cytology of Coccids (Coccoidea, Homoptera). *Advances in Genetics* 2, 127–203.

Hughes-Schrader, S. (1955). The chromosomes of the giant scale *Aspidoproctus maximus* louns.(Coccoidea-Margarodidae) with special reference to asynapsis and sperm formation. *Chromosoma* 7, 420–438.

Hughes-Schrader, S. (1963). Hermaphroditism in an African coccid, with notes on other margarodids (Coccoidea -Homoptera). *Journal of Morphology* 113, 173–184.

Hughes-Schrader, S. & Monahan, D. F. (1966). Hermaphroditism in *Icerya zeteki* cockerell, and the mechanism of gonial reduction in Iceryine Coccids (coccoidea: Margarodidae morrison). *Chromosoma* 20, 15–31.

Hunter, M. S. & Woolley, J. B. (2001). Evolution and behavioral ecology of heteronomous aphelinid parasitoids. *Annual Review of Entomology* 46, 251–290.

Hurst, G. D. D. & Werren, J. H. (2001). The role of selfish genetic elements in eukaryotic evolution. *Nature Reviews Genetics* 2, 597–606.

Hurst, L. D. (1991). The incidences and evolution of cytoplasmic male killers. *Proceedings of the Royal Society of London Series B-Biological Sciences* 244, 91–99.

Hurst, L. D. (1992). Intragenomic Conflict as an Evolutionary Force. *Proceedings of the Royal Society of London Series B-Biological Sciences* 248, 135–140.

Hurst, L. D. (1995). Selfish genetic elements and their role in evolution - the evolution of sex and some of what that entails. *Philosophical Transactions of the Royal Society B-Biological Sciences* 349, 321–332.

Hurst, L. D., Atlan, A. & Bengtsson, B. O. (1996). Genetic conflicts. *Quarterly Review of Biology* 71, 317-364.

Hurst, L. D., Godfray, H. C. J. & Harvey, P. H. (1990). Antibiotics cure asexuality. *Nature* 346, 510.

Jaenike, J. (2001). Sex chromosome meiotic drive. *Annual Review of Ecology and Systematics* 32, 25–49.

James, H. C. (1937). Sex ratios and the status of the male in Pseudococcinae (Hem. Coccidae). *Bulletin of Entomological Research* 28, 429–461.

James, H. C. (1938). The effect of the humidity of the environment on sex ratios from over-aged ova of *Pseudococcus citri* (Risso) (Hemipt. Coccidae). *Proceedings of the Royal Entomological Society of London A* 13, 73–79.

Jarne, P. & Auld, J. R. (2006). Animals mix it up too: The distribution of self-fertilization among hermaphroditic animals. *Evolution* 60, 1816–1824.

Johnson, N. A. (2010). Hybrid incompatibility genes: remnants of a genomic battlefield? *Evolution* in press.

Jones, R. N. & Rees, H. (1982). *B Chromosomes*. Academic Press.

Kasuya, E. (2000). Kin-biased dispersal behaviour in the mango shield scale, *Milviscutulus mangiferae*. *Animal Behaviour* 59, 629–632.

Khosla, S., Mendiratta, G. & Brahmachari, V. (2006). Genomic imprinting in the mealybugs. *Cyto- genetic and Genome Research* 113, 41–52.

King, B. H. (1993). Sex ratio manipulation by parasitic wasps. In *Evolution and Diversity of Sex Ratio in Insects and Mites* (ed. D. L. Wrensch and M. A. Ebbert), pp. 418–441. Chapman & Hall, New York.
Koivisto, R. K. K. & Braig, H. R. (2003). Microorganisms and parthenogenesis. In *Biol J Linn Soc*, vol. 79, pp. 43–58.

Kokko, H. & Ots, I. (2006). When not to avoid inbreeding. *Evolution* 60, 467–475.

Kono, M., Kogo, R., Shimada, M. & Fukatsu, T. (2008). Infection dynamics of coexisting \(\beta \)- and \(\gamma \)-proteobacteria in the nested endosymbiotic system of mealybugs. *Applied and Environmental Microbiology* 74, 4175–4184.

Kozielska, M. (2008). Evolutionary dynamics of sex determination. Mechanistic theory and empirical investigations, University of Groningen.

Kozielska, M., Pen, I., Beukeboom, L. W. & Weissing, F. J. (2006). Sex ratio selection and multi-factorial sex determination in the housefly: a dynamic model. *Journal of Evolutionary Biology* 19, 879–888.

Kozielska, M., Weissing, F. J., Beukeboom, L. & Pen, I. (2009). Segregation distortion and the evolution of sex-determining mechanisms. *Heredity* 104, 100–112.

Kuijper, B. & Pen, I. (2010). Evolution of haplodiploidy by male-killing endosymbionts: importance of spatial population structure and endosymbiont mutualisms. *Journal of Evolutionary Biology* 23, 40–52.

Leigh, E. G. (1971). *Adaptation and Diversity*. Freeman, Cooper and Company, San Francisco.

Leigh, E. G. (1977). How does selection reconcile individual advantage with the good of the group? *Proceedings of the National Academy of Sciences* 74, 4542–4546.

Leturque, H. & Rousset, F. (2003). Joint evolution of sex ratio and dispersal: conditions for higher dispersal rates from good habitats. *Evolutionary Ecology* 17, 67–84.

Leturque, H. & Rousset, F. (2004). Intersexual competition as an explanation for sex-ratio and dispersal biases in polygynous species. *Evolution* 58, 2398–2408.

Lynch, M. (2008). *Origins of Genome Architecture*. Sinauer Associates, Inc.

Lyttle, T. W. (1991). Segregation Distorters. *Annual Review of Genetics* 25, 511–557.

Marin, I. & Baker, B. S. (1998). The evolutionary dynamics of sex determination. *Science* 281, 1990–1994.

Maryanska-Nadachowska, A. (2004). B chromosomes in Sternorrhyncha (Hemiptera, Insecta). *Cytogenetic and Genome Research* 106, 210–214.

Maynard Smith, J. (1978). *The evolution of sex*. Cambridge University Press, Cambridge.

Maynard-Smith, J. & Szathmary, E. (1995). The Major Transitions in Evolution. W.H. Freeman.

Moran, N. A. & Baumann, P. (2000). Bacterial endosymbionts in animals. *Current Opinion in Microbiology* 3, 270–275.

Moran, N. A. & Telang, A. (1998). Bacteriocyte-associated symbionts of insects - A variety of insect groups harbor ancient prokaryotic endosymbionts. *Bioscience* 48, 295–304.

Moran, V. C., Gunn, B. H. & Walter, G. H. (1982). Wind Dispersal and Settling of 1st-Instar Crawlers of the Cochineal Insect *Dactylopius austrinus* (Homoptera, Coccoidea, Dactylopiidae). *Ecological Entomology* 7, 409–419.

Morrey, Y. E. & Ydenberg, R. C. (2001). Protandrous arrival timing to breeding areas: a review. *Ecology Letters* 4, 663–673.

Morse, G. E. & Normark, B. B. (2006). A molecular phylogenetic study of armoured scale insects (Hemiptera: Diaspididae). *System Entomol* 31, 338–349.

Murdoch, W. W., Nisbet, R. M., Luck, R. F., Godfray, H. C. J. & Gurney, W. S. C. (1992). Size-Selective Sex-Allocation and Host Feeding in a Parasitoid Host Model. *Journal of Animal Ecology* 61, 533–541.

Nagelkerke, C. J. & Sabelis, M. W. (1998). Precise control of sex allocation in pseudo-arrenotokous phytoseid mites. *Journal of Evolutionary Biology* 11, 649–684.

Negri, I., Pellecchia, M., Mazzoglio, P. J., Patetta, A. & Alma, A. (2006). Feminizing *Wolbachia* in *Zyginaidae pullula* (Insecta, Hemiptera), a leafhopper with an XX/XO sex-determination system. *Proceedings of the Royal Society B-Biological Sciences* 273, 2409–2416.

Nelson-Rees, W. A. (1960). A study of sex predetermination in the mealy bug Planococcus citri (Risso). *Journal of Experimental Zoology* 144, 111–137.

Nelson-Rees, W. A. (1962). Effects of radiation damaged heterochromatic chromosomes on male fertility in mealy bug, *Planococcus citri* (Risso). *Genetics* 47, 661–683.
Nestel, D., Cohen, H., Saphir, N., Klein, M. & Mendel, Z. (1995). Spatial distribution of scale insects: comparative study using Taylors power law. *Environmental Entomology* 24, 506–512.

Normark, B. B. (2001). Genetic conflict and the dizygotic soma: on the adaptive significance of polar body transmission and the polyplody bacteriome in Pseudococcidae and Diaspididae. In *Bollettino del Laboratorio di Entomologia Agraria Filippo Silvestri, Portici* (ed. F. Silvestri), pp. 151–160, Milano.

Normark, B. B. (2003). The evolution of alternative genetic systems in insects. *Annual Review of Entomology* 48, 397–423.

Normark, B. B. (2004a). Haplodiploidy as an outcome of coevolution between male-killing cytoplasmic elements and their hosts. *Evolution* 58, 790–798.

Normark, B. B. (2004b). The strange case of the armored scale insect and its bacteriome. *Plos Biology* 2, 298–301.

Normark, B. B. (2006). Perspective: maternal kin groups and the origins of asymmetric genetic systems - Genomic imprinting, haplodiploidy, and parthenogenesis. *Evolution* 60, 631–642.

Normark, B. B. (2009). Unusual gametic and genetic systems. In *Sperm Biology: An Evolutionary Perspective* (ed. D. J. Hosken and T. Birkhead). Academic Press, Amsterdam.

Normark, B. B. & Johnson, N. A. (2010). The Evolution of Extreme Polyphagy. *Genetica* in press.

Norton, R. A., Kethley, J. B., Johnston, D. E. & O’Connor, B. M. (1993). Phylogenetic perspectives on genetic systems and reproductive modes of mites. In *Evolution and Diversity of Sex Ratio in Insects and Mites* (ed. D. L. Wrensch and M. A. Ebbert), pp. 8–99. Springer.

Nur, U. (1962a). A supernumerary chromosome with an accumulation mechanism in lecanoid genetic system. *Chromosoma* 13, 249–271.

Nur, U. (1962b). Sperms, sperm bundles and fertilization in a mealy bug, *Pseudococcus obscurus* Essig - (Homoptera - Coccoidea). *Journal of Morphology* 111, 173–199.

Nur, U. (1966a). Effect of Supernumerary Chromosomes on Development of Mealy Bugs. *Genetics* 54, 1239–&.

Nur, U. (1966b). Harmful supernumerary chromosomes in a mealy bug population. *Genetics* 54, 1225–1238.

Nur, U. (1966c). Nonreplication of heterochromatic chromosomes in a mealy bug *Planococcus citri* (Coccoidea - Homoptera). *Chromosoma* 19, 439–448.

Nur, U. (1967). Reversal of heterochromatization and activity of paternal chromosome set in male mealy bug. *Genetics* 56, 375–389.

Nur, U. (1970). Translocations between euchromatic and heterochromatic chromosomes, and spermatocytes lacking a heterochromatic set in male mealy bugs. *Chromosoma* 29, 42–61.

Nur, U. (1971). Parthenogenesis in Coccids (Homoptera). *American Zoologist* 11, 301–308.

Nur, U. (1972). Diploid arrhenotoky and automictic thelytoky in soft scale insects - (Lecaniidae-Coccoidea-Homoptera). *Chromosoma* 39, 381–401.

Nur, U. (1980). Evolution of unusual chromosome systems in scale insects (Coccoidea: Homoptera). In *Insect Cytogenetics* (ed. R. L. Blackman, G. M. Hewitt and M. Ashburner), pp. 97–118. Blackwell, Oxford.

Nur, U. (1989). Reproductive biology and genetics. Chromosomes, sex ratios and sex determination. In *Armoured Scale Insects, Their Biology, Natural enemies and Control* (ed. D. Rosen), pp. 179–190. Elsevier, Amsterdam.

Nur, U. (1990). Heterochromatization and euchromatization of whole genomes in scale insects (Coccoidea, Homoptera). *Development Supplement*, 29–34.

Nur, U., Brown, S. W. & Beardsley, J. W. (1987). Evolution of Chromosome-Number in Mealybugs (Pseudococcidae, Homoptera). *Genetica* 74, 53–60.

Nur, U., Wrenn, J. H., Eickbush, D. G., Burke, W. D. & Eickbush, T. H. (1988). A Selfish B-Chromosome That Enhances Its Transmission by Eliminating the Paternal Genome. *Science* 240, 512–514.

O’Neill, S. L., Hoffmann, A. A. & Werren, J. H. (1997). *Influential passengers: inherited microorganisms and arthropod reproduction*. Oxford University Press, Oxford.

Oliver, K. M., Russell, J. A., Moran, N. A. & Hunter, M. S. (2003). Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. *Proceedings of the National Academy of Sciences of the United States of America* 100, 1803–1807.
Saumitou-Laprade, P., Cuguen, J. & Vernet, P. (1994). Cytoplasmic male-sterility in plants - molecular evidence and the nucleocytoplasmic conflict. *Trends in Ecology & Evolution* 9, 431–435.

Scarborough, C. L., Ferrari, J. & Godfray, H. C. J. (2005). Aphid protected from pathogen by endosymbiont. *Science* 310, 1781–1781.

Schärer, L. (2009). Tests of sex allocation theory in simultaneously hermaphroditic animals. *Evolution* 63, 1377–1405.

Schrader, F. (1921). The chromosomes of *Pseudococcus nipae*. *Biological Bulletin* 40, 259–270.

Schrader, F. (1922). The sex ratio and oogenesis of *Pseudococcus citri*. *Molecular and General Genetics* 30, 163–182.

Schrader, F. & Hughes-Schrader, S. (1931). Haploidy in Metazoa. *Quarterly Review of Biology* 6, 411–438.

Sheldon, B. C. & West, S. A. (2004). Maternal dominance, maternal condition, and offspring sex ratio in ungulate mammals. *American Naturalist* 163, 40–54.

Shuker, D. M., Moynihan, A. M. & Ross, L. (2009). Sexual conflict, sex allocation and the genetic system. *Biology Letters* 5, 682–685.

Shuker, D. M., Reece, S. E., Taylor, J. A. L. & West, S. A. (2004a). Wasp sex ratios when females on a patch are related. *Animal Behaviour* 68, 331–336.

Shuker, D. M., Reece, S. E., Whitehorn, P. R. & West, S. A. (2004b). Sib-mating does not lead to facultative sex ratio adjustment in the parasitoid wasp, *Nasonia vitripennis*. *Evolutionary Ecology Research* 6, 473–480.

Shuker, D. M., Sykes, E. M., Browning, L. E., Beukeboom, L. W. & West, S. A. (2006). Male influence on sex allocation in the parasitoid wasp *Nasonia vitripennis*. *Behavioral Ecology and Sociobiology* 59, 829–835.

Shuker, D. M. & West, S. A. (2004). Information constraints and the precision of adaptation: Sex ratio manipulation in wasps. *Proceedings of the National Academy of Sciences of the United States of America* 101, 10363–10367.

Skibinski, D. O. F., Gallagher, C. & Beynon, C. M. (1994). Sex-Limited Mitochondrial-DNA Transmission in the Marine Mussel *Mytilus-Edulis*. *Genetics* 138, 801–809.

Smith, N. G. C. (2000). The evolution of haplodiploidy under inbreeding. In *Hereditity*, vol. 84, pp. 186–192.

Spiegelhalter, D. J., Thomas, A., Best, N. G., Gilks & W. R., a. L., D. (2003). BUGS: Bayesian inference using Gibbs sampling. www.mrc-bsu.cam.ac.uk/bugs/.

Stouthamer, R., Luck, R. F. & Hamilton, W. D. (1990). Antibiotics cause parthenogenetic Trichogramma (Hymenoptera/Trichogrammatidae) to revert to sex. *Proceedings of the National Academy of Sciences* 87, 2424–2427.

Sundstrom, L. & Boomsma, J. J. (2001). Conflicts and alliances in insect families. *Heredity* 86, 515–521.

Sutherland, J. R. G. (1932). Some observations on the common mealy bug *Pseudococcus citri* (Risso). *Quebec Soc. Prot. Plants. Ann. Rpts*.

Sykes, E. M., Innocent, T. M., Pen, I., Shuker, D. M. & West, S. A. (2007). Asymmetric larval competition in the parasitoid wasp *Nasonia vitripennis*: a role in sex allocation? *Behavioral Ecology and Sociobiology* 61, 1751–1758.

Taylor, P. D. (1988). Inclusive Fitness Models with 2 Sexes. *Theoretical Population Biology* 34, 145–168.

Taylor, P. D. & Frank, S. A. (1996). How to make a kin selection model. *Journal of Theoretical Biology* 180, 27–37.

Teixeira, L., Ferreira, A. & Ashburner, M. (2008). The Bacterial Symbiont Wolbachia Induces Resistance to RNA Viral Infections in *Drosophila melanogaster*. *Plos Biology* 6, 2753–2763.

Terry, R. S., Dunn, A. M. & Smith, J. E. (1997). Cellular distribution of a feminizing microsporidian parasite: A strategy for transovarial transmission. *Parasitology* 115, 157–163.

Thao, M. L., Gullan, P. J. & Baumann, P. (2002). Secondary (gamma-Proteobacteria) endosymbionts infect the primary (beta-Proteobacteria) endosymbionts of mealybugs multiple times and coevolve with their hosts. *Applied and Environmental Microbiology* 68, 3190–3197.

Thornhill, R. & Alcock, J. (1983). *The evolution of insect mating systems*. Harvard University Press, Harvard.
REFERENCES

Tregenza, T. & Wedell, N. (2000). Genetic compatibility, mate choice and patterns of parentage: Invited Review. Molecular Ecology 9, 1013–1027.

Tremblay, E. (1989). Coccoidea endocytobiosis. In Insect endocytobiosis: Morphology, physiology, genetics, evolution (ed. W. Schwemmler and G. Gassner), pp. 145–173. CRC Press, Boca Raton, Florida.

Tremblay, E. (1997). Endosymbionts. In World Crop Pests, Vol 7A, Soft Scale Insects: Their Biology, Natural Enemies and Control (ed. Y. Ben-Dov and C. J. Hodgson). Elsevier, Amsterdam.

Tremblay, E. & Caltagirone, L. E. (1973). Fate of polar bodies in insects. Annual Review of Entomology 18, 421–444.

Trivers, R. L. (1974). Parent-offspring conflict. American Zoologist 14, 249–264.

Trivers, R. L. & Hare, H. (1976). Haploidy and the evolution of the social insects. Science 191, 249–263.

Trivers, R. L. & Willard, D. E. (1973). Natural selection of parental ability to vary sex-ratio of offspring. Science 179, 90–92.

Tsuchida, T. (2004). Host plant specialization governed by facultative symbiont. Science 303, 1989–1989.

U

Ubeda, F. & Normark, B. B. (2006). Male killers and the origins of paternal genome elimination. Theoretical Population Biology 70, 511–526.

Uller, T., Pen, I., Wapstra, E., Beukeboom, L. & Komdeur, J. (2007). The evolution of sex ratios and sex-determining systems. Trends in Ecology & Evolution 22, 292–297.

Unruh, C. & Gullan, P. (2008). Molecular data reveal convergent reproductive strategies in iceryine scale insects (Hemiptera: Coccoidea: Monophlebidae), allowing the re-interpretation of morphology and a revised generic classification. System Entomol 33, 8–50.

V

Van Doorn, G. & Kirkpatrick, M. (2007). Turnover of sex chromosomes induced by sexual conflict. Nature 449, 909–912.

Varndell, N. P. (1995). Reproductive strategies in insects, Unpublished Phd Thesis, Imperial College, University Of London.

Varndell, N. P. & Godfray, H. C. J. (1996). Facultative adjustment of the sex ratio in an insect (Planococcus citri, Pseudococcidae) with paternal genome loss. Evolution 50, 2100–2105.

von Dohlen, C. D., Kohler, S., Alsop, S. T. & McManus, W. R. (2001). Mealybug beta-proteobacterial endosymbionts contain gamma-proteobacterial symbionts. Proceedings of the Royal Society B: Biological Sciences 270, 1857–1865.

W

Washburn, J. O. & Washburn, L. (1984). Active aerial dispersal of minute wingless arthropods: exploitation of boundary-layer velocity gradients. Science 223, 1084–1089.

Wernegreen, J. J. (2004). Endosymbiosis: Lessons in conflict resolution. Plos Biology 2, 307–311.

Werren, J. H. (1997). Biology of Wolbachia. Annual Reviews in Entomology 42, 587–609.
Werren, J. H., Baldo, L. & Clark, M. E. (2008). Wolbachia: master manipulators of invertebrate biology. *Nature Reviews Microbiology* 6, 741–751.

Werren, J. H. & Beukeboom, L. W. (1998). Sex determination, sex ratios, and genetic conflict. *Annual Review of Ecology and Systematics* 29, 233–261.

Werren, J. H. & Charnov, E. L. (1978). Facultative sex-ratios and population-dynamics. *Nature* 272, 349–350.

Werren, J. H. & Hatcher, M. J. (2000). Maternal-zygotic gene conflict over sex determination: Effects of inbreeding. *Genetics* 155, 1469–1479.

Werren, J. H., Nur, U. & Eickbush, D. (1987). An Extrachromosomal Factor Causing Loss of Paternal Chromosomes. *Nature* 327, 75–76.

Werren, J. H., Nur, U. & Wu, C. I. (1988). Selfish genetic elements. *Trends in Ecology & Evolution* 3, 297–302.

West, S. A. (2009). *Sex Allocation*. Princeton University Press (Monographs in Population Biology Series), Princeton.

West, S. A., Herre, E. A. & Sheldon, B. C. (2000). The benefits of allocating sex. *Science* 290, 288–290.

West, S. A. & Sheldon, B. C. (2002). Constraints in the evolution of sex ratio adjustment. *Science* 295, 1685–1688.

Wild, G. & West, S. A. (2007). A sex allocation theory for vertebrates: Combining local resource competition and condition-dependent allocation. *American Naturalist* 170, E112–E128.

Wild, G. & West, S. A. (2009). Genomic Imprinting and Sex Allocation. *American Naturalist* 173, E1–E14.

Willard, J. R. (1973). Wandering Time of the Crawlers of California Red Scale, Aonidiella Aurantii (Mask.) (Homoptera: Diaspididae), on Citrus. *Australian Journal of Zoology* 21, 217 – 229.

Wilson, A. C. C., Sunnucks, P. & Hales, D. F. (1997). Random loss of X chromosome at male determination in an aphid, Sitobion near fragariae, detected using an X-linked polymorphic microsatellite marker. *Genetical Research* 69, 233–236.

Wolfner, M. F. (2002). The gifts that keep on giving: physiological functions and evolutionary dynamics of male seminal proteins in *Drosophila*. *Heredity* 88, 85–93.

Wrensch, D. L., Kethley, J. B. & Norton, R. A. (1994). Cytogenetics of holokinetic chromosomes and inverted meiosis: keys to the evolutionary success of Mites. In *Mites: Ecological and Evolutionary Analyses of Life-history patterns* (ed. M. A. Houck), pp. 282–345. Springer.

Z

Zchori-Fein, E. & Perlman, S. J. (2004). Distribution of the bacterial symbiont *Cardinium* in arthropods. *Molecular Ecology* 13, 2009–2016.

Zeh, J. A. & Zeh, D. W. (1996). The evolution of polyandry I: Intragenomic conflict and genetic incompatibility. *Proceedings of the Royal Society B-Biological Sciences* 263, 1711–1717.

Zouros, E., Freeman, K. R., Ball, A. O. & Pogson, G. H. (1992). Direct evidence for extensive paternal mitochondrial DNA inheritance in the marine mussel *Mytilus*. *Nature* 359, 412–414.
