Roughness of 1.0721 steel after corrosion tests in 20% NaCl

Tomasz Lipiński

1 University of Warmia and Mazury in Olsztyn, The Faculty of Technical Sciences, St. Oczapowskiego 11, 10-957 Olsztyn, Poland, e-mail: tomaszlipinski.tl@gmail.com

Abstract
Non-alloy quality case-hardening steels are used for low-load components made on automatic machining centers (automatic lines). Because of the widespread use of these steel in open constructions, they are exposed to atmospheric corrosion. The study attempted to analyze the effect of 20% aqueous NaCl solution on the roughness of the steel as a result of corrosion. The steel roughness and corrosion wear were determined according to corrosion time.

Keywords
steel corrosion corrosion rare roughness NaCl solution

1. Introduction
Non-alloy quality case-hardening steels designed for processing on automatic machining centers have an increased sulfur and phosphorus content. The introduction of these elements affects the properties of steel. During machining, short brittle chips are formed to allow machining of steel on automatic machining centers. Unfortunately, the elevated sulfur and phosphorus content also lowers the mechanical, physical and chemical properties of steel. It does not have high strength or physical properties. Also, it is expected to lower its resistance to aggressive agents, including corrosive agents. Equally important is choosing the right quality material for your product (Kocaña D. et al. 2014, Selejdak J. et al. 2014, Ulewicz R., 2003, Ulewicz R. et al. 2014).

Due to its property, automated steel is, widely used in everyday life. It is used wherever low production prices matter, with no endurance requirements. In ordinary circumstances, constructions are not particularly protected against the effects of aggressive agents in this corrosive environment (Bohni H. 2005, Chandramouli R. et al. 2007, Dosch H. et al. 2001, El-etre A.Y. et al. 2000, Naveen E. et al. 2017, Santana Rodriguez J.J. et al. 2006).

Corrosion mechanism of such steel is not as complex as steel with increased corrosion resistance. Its chemical composition and microstructure indicate susceptibility to surface corrosion. Corrosion, though the least dangerous of known corrosion types, causes systematic material destruction by oxidation. Material loses its volume and, therefore, strength and stiffness.

Although it does not need to carry special loads, it ultimately leads to corrosive wear of the component (Alizadeh M. et al. 2013, Al-Duheisat S.A. et al. 2016, Lipiński T. 2016, Machuca L.L. et al. 2016, Scendo M. et al. 2013, Thompson N.G. et al. 2007, Uhlig H. H. et al. 1985, Zatkalikova V. et al. 2016).

Non-alloy quality case-hardening steel, due to low mechanical and physical properties, was not particularly investigated. There are also few publications presenting the results of corrosion resistance tests of this steel. In practice, the problem of changing its surface condition due to corrosion and corrosion resistance is serious, because of its wide application, and seems to be significant. It is also useful to evaluate steel according to the standard for the assessment of corrosion resistant steel (Dudek A. et al. 2014, Lipiński T. 2015, Pradityana A. et al. 2013, Szabracki P. et al. 2013, 2014).

From the foregoing considerations, it is necessary to carry out corrosion resistance testing of non-alloy quality case-hardening steels in NaCl environment.

2. Experimental
The experiment was performed on low carbon 1.0721 (10S20) steel designation according to EN 10277-3-2016, with diameter Ø6.00 mm and 40 mm long.
Before the experiments, samples were successively polished with water paper to $R_a = 0.32 \, \mu m$, and next cleaned with water and next with 95% alcohol.

Samples with ferritic and a small perlitic microstructure were tested in accordance with standards dedicated for stainless steel PN EN ISO 3651-1 corrosive media were represented by 20% NaCl.

The corrosion rate of the 1.0721 steel measured in mm/year was calculated with the use of the below formula (1), measured in g/m² were calculated with the use the below formula (2):

$$R_{corm} = \frac{0760 \, m}{S \cdot p}$$

$$R_{cor} = \frac{10000 \, m}{S \cdot t}$$

where:

- t – time of soaking in a corrosive solution of boiling 20% NaCl [hours],
- S – surface area of the sample [cm²],
- m – average mass loss in boiling solution [g],
- p - sample density [g/cm³].

The corrosion resistance of the 1.0721 steel was tested for time range: 48, 96, 144, 192, 240, 288, 336, 384 and 432 hours using laboratory weight loss. The mass of samples was measured by Kern ALT 3104AM digital laboratory precision scales with accuracy of measurement 0.0001 g.

Profile roughness parameters were analyzed according to the PN-EN 10049:2014-03 standard (Measurement of roughness average R_a and peak count R_{Pc} on metallic flat products) by the Diavite DH5 profilometer.

3. Results and discussion

The real chemical composition of the tested steel is presented in Table 1.

Table 1. Chemical composition of the 1.0721 (10S20): EN 10277-3-2008 steel

Mean chemical compositions [wt. %]
C
0.08

Mean real mechanical properties at ambient temperature of the 1.0721 steel, manufacturing according to EN 10027-1:2016-12 are presented in Table 2.

Table 2. Mechanical properties at ambient temperature of the 1.0721 steel

Mechanical properties
R_{mH}
MPa
393

Arithmetical mean roughness value R_a of 1.0721 steel after corrosion tests in 20% NaCl is presented in Figure 1. The regression equations and its determination coefficients r^2 is presented in (3).

$$R_a = 0.0016t + 0.1742 \quad r^2 = 0.9555$$

Mean peak width R_q of 1.0721 steel after corrosion tests in 20% NaCl is presented in Figure 2. The regression equations and its correlation coefficients r^2 is presented in (4).

$$R_q = 0.0026t + 0.2456 \quad r^2 = 0.9933$$

Maximum roughness depth R_p of 1.0721 steel after corrosion tests in 20% NaCl is presented in Figure 3. The regression equations and its determination coefficients r^2 is presented in (5).

$$R_p = 0.0012t + 1.1306 \quad r^2 = 0.9811$$
Total height of the roughness profile R_t of 1.0721 steel after corrosion tests in 20% NaCl is presented in Figure 4. The regression equations and its determination coefficients r^2 is presented in (6).

$$R_t = 0.0074t + 1.0583 \text{ and } r^2 = 0.9744 \quad (6)$$

Relative mass loss RML of 1.0721 steel after corrosion tests in 20% NaCl is presented in Figure 5. The regression equations and its determination coefficients r^2 is presented in (7).

$$RML = 0.0036t + 0.0659 \text{ and } r^2 = 0.9927 \quad (7)$$

Corrosion rate measured in mm per year of 1.0721 steel after corrosion tests in 20% NaCl is presented in Figure 6. The regression equations and its determination coefficients r^2 is presented in (8).

$$r_{\text{cor}} = 2 \times 10^{-6} t - 0.001 t + 0.468 \text{ and } r^2 = 0.9083 \quad (8)$$

Corrosion rate measured in gram per m² of 1.0721 steel after corrosion tests in 20% NaCl is presented in Figure 7. The regression equations and its determination coefficients r^2 is presented in (9).

$$r_{\text{cor}} = 0.6343 t^{-0.135} \text{ and } r^2 = 0.8056 \quad (9)$$

4. Summary and conclusion

All analyzed surface condition parameters represented by roughness can be represented with a sufficiently accurate first-order function. This fact confirms that this steel corrodes as a result of uniform corrosion. Evenly increasing roughness parameters show that during the experiment the maximum effect was not reached, after which the corrosion parameters oscillate around a constant size. Corrosion rates measured in mm/year and g/m² indicate an increase in the rate of corrosion in the first period. This growth is typical for any material treated with corrosive agents. Taking corrosion time to zero, the corrosion rate tends to infinity, the process starts to reach a constant value over time. In the second period, the process is stabilized and the corrosion rate oscillates around 0.32 mm/year and 0.28 g/m², which also confirms the uniform corrosion course.
Reference

1. AL-DUHEISAT S.A., EL-AMOUSH A.S. 2016. Effect of deformation conditions on the corrosion behavior of the low alloy structural steel girders. Materials and Design vol. 89, 342–347.

2. ALIZADEH M., BORDBAR S. 2013. The influence of microstructure on the protective properties of the corrosion product layer generated on the welded API X70 steel in chloride solution. Corrosion Science 70, 170–179.

3. BOSNI H. 2005. Corrosion in reinforced concrete structures. CCR Press England 247 p.

4. CHANDRAMOULI R., KANDAVEL T.K., SHANMUGHA SUNDARAM D., ASHOK KUMAR T. 2007. Deformation, densification and corrosion studies on sintered P/M plain carbon steel preforms. Material Science 28, 2260-2264.

5. DOSCH H., MITTEMEIJER E., RUHLE M., VAN DE VOORDE M.H. 2001. European White Book of Fundamental Research. Material Sciences. Max-Planck-Institut für Metallforschung Stuttgart, Germany.

6. DUDEK A., WROŃSKA A., ADAMCZYK L. 2014. Surface remelting of 316 L + 434 L sintered microstructure and corrosion resistance. Journal Solid State Electrochemistry 18(11), 2973-2981.

7. EL-ETRE A.Y., ABDALLAH M. 2000. Corrosion resistance of stainless steel and 2% Cu alloyed C45 steel inhibitors on pickling corrosion behaviour of sinter-forged C45 castings from spheroid cast iron. Ostrava: TANGER 476-481.

8. EN 10025-2:2004.

9. KOCANDA D., MIERZYŃSKI J., MRZOŃSKI S., TORZEWSKI J. 2014. Fatigue Behaviour of S235JR Steel after Surface Frictional-Mechanical Treatment in Corrosive Environment. Key Engineering Materials 598, 105-112.

10. LIPIŃSKI T. 2015. Corrosion Rate of the X2CrNiMoN22-5-3 Duplex Stainless Steel Annealed at 500 degrees C. Acta Physica Polonica A, 130(4), 993-995.

11. LIPIŃSKI T. 2016. Corrosion Resistance of 1.4362 Steel in Boiling 65% Nitric Acid. Manufacturing Technology 16(5), 1004-1009.

12. MACHUCA L.L., JEFFREY R., MELCHERS R. E. 2016. Microorganisms associated with corrosion of structural steel in diverse atmospheres. International Biodeterioration & Biodegradation 114, 234-243.

13. NAZIRUDNIN S.S. 2017. Influence of organic corrosion inhibitors on pickling corrosion behavior of sinter-forged C45 steel and 2% Cu alloyed C45 steel. Journal of Alloys and Compounds 695, 3299-3309.

14. PN EN ISO 3651-1, Determination of resistance to intergranular corrosion of stainless steels. Part 1: Austenitic and ferritic-austenitic (duplex) stainless steels. Corrosion test in nitric acid medium by measurement of loss in mass (Huey test).

15. PN EN ISO 3651-1. Determination of resistance to intergranular corrosion of stainless steels. Part 1: Austenitic and ferritic-austenitic (duplex) stainless steels.

16. PN-EN 10027-1:2016-12 Designations systems for steels – part 1 steel names.

17. PRAĐIYANA A., SULISTIYONO S., SHAHAB A. 2013. Effectiveness of myrmecodia pendans extract as eco-friendly corrosion inhibitor for material API 5L grade B in 3.5% NaCl solution. Advanced Material Research 789, 484-491.

18. SANTANA RODRIGUEZ J. J., GONZALEZ GONZALEZ J. E. 2006. Identification and formation of green rust 2 as an atmospheric corrosion product of carbon steel in marine atmospheres. Materials and Corrosion 57(5), 411-417.

19. SCENDO M., RADEK N., TRELJ J. 2013. Influence of laser treatment on the corrosive resistance of We-Cu coating produced by electrospark deposition. Int. J. Electrochem. Sc 8, 9264-9277.

20. SELIDJAK J., ULEWICZ R., INGALDI M. 2014. The evaluation of the use of a device for producing metal elements applied in civil Engineering. In 23rd International Conference on Metallurgy and Materials. Ostrava: TANGER 1882-1888.

21. SZABRACKI P., LIPIŃSKI T. 2013. Effect of aging on the microstructure and the intergranular corrosion resistance of X2CrNiMoN25-7-4 duplex stainless steel. Solid State Phenomena 203-204, 59-62.

22. SZABRACKI P., LIPIŃSKI T. 2014. Influence of sigma phase precipitation on the intergranular corrosion resistance of X2CrNiMoN25-7-4 super duplex stainless steel. In: METAL 2014: 23rd International Conference on Metallurgy and Materials. Ostrava: TANGER 476-481.

23. THOMPSON N. G., YUNOVICH M., DUNMIRE D. 2007. Cost of corrosion and corrosion maintenance strategies. Corrosion Reviews 25, 247-262.

24. UHLIG H. H., REVIE R.W. 1985. Corrosion and corrosion control. 3rd Edition, John Wiley and Sons.

25. ULEWICZ R. 2003. Quality control system in production of the castings from sphroid cast iron. Metalurgija 42(1), 61-63.

26. ULEWICZ R., NOVÝ F., SELIDJAK J. 2014. Fatigue Strength of Ductile Iron in Ultra-High Cycle Regime. Advanced Materials Research 874, 43-48.

27. ZAHLKALOVÁ V., MARKOVIČOVÁ L., CHALUPOVÁ M. 2016. Corrosion resistance of Cr-Ni-Mo Stainless Steel in Chloride and Fluoride Containing Environment. Manufacturing Technology 16(5), 1193 – 1198.

在20%NaCl中腐蚀试验后，1.0721钢的粗糙度

关键词	钢	腐蚀	腐蚀罕见	粗糙度	NaCl溶液
抽象	非合金质量表面硬化钢用于自动生产线（自动生产线）制造的低负荷组件。由于这些钢在开放式结构中得到广泛应用，因此受到大气腐蚀。该研究试图对20%NaCl水溶液对腐蚀导致的钢的粗糙度的影响。根据腐蚀时间确定钢的粗糙度和腐蚀磨损。				