Autosomal dominant osteopetrosis type II resulting from a de novo mutation in the CLCN7 gene: A case report

Xiu-Li Song, Li-Yuan Peng, Dao-Wen Wang, Hong Wang

BACKGROUND
Osteopetrosis is a family of extremely rare diseases caused by failure of osteoclasts and impaired bone resorption. Among them, autosomal dominant osteopetrosis type II (ADO II), related to the chloride channel 7 (CLCN7) gene, is the most frequent form of osteopetrosis. In this study, we report a de novo mutation of CLCN7 in a patient without the family history of ADO II.

CASE SUMMARY
A 5-year-old Chinese boy with ADO II was found to have a de novo mutation in the CLCN7 gene [c.746C>T (p.P249L)]. Typical clinical manifestations, including thickening of the cortex of spinal bones and long bones, non-traumatic fracture of the femoral neck, and femoral head necrosis, were found in this patient. The patient is the first reported case of ADO II with the missense mutation c.746C>T (p.P249L) of the CLCN7 gene reported in China. We also review the available literature on ADO II-related CLCN7 mutations, including baseline patient clinical features, special clinical significance, and common mutations.

CONCLUSION
Our report will enrich the understanding of mutations in ADO II patients. The possibility of a de novo mutation should be considered in individuals who have no family history of osteopetrosis.

Key Words: Osteopetrosis; Chloride channel 7 gene; Autosomal dominant osteopetrosis type II; Whole exome sequencing; Case report

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.
Core Tip: Osteopetrosis is a family of extremely rare diseases caused by failure of osteoclast and impaired bone resorption. The 5-year-old Chinese boy presented here is the first reported case of autosomal dominant osteopetrosis type II (ADO II) with the missense mutation c.746C>T (p.P249L) of the chloride channel 7 (CLCN7) gene in China. CLCN7 mutations can be due to de novo variants or due to inherited variants. The possibility of a de novo mutation should be considered in individuals who have no osteopetrosis family history. Our study systematically reviews the mutations of CLCN7 in ADO II, thus expanding the thoughts of diagnosis and treatment of osteopetrosis.

Citation: Song XL, Peng LY, Wang DW, Wang H. Autosomal dominant osteopetrosis type II resulting from a de novo mutation in the CLCN7 gene: A case report. World J Clin Cases 2022; 10(20): 6936-6943
URL: https://www.wjgnet.com/2307-8960/full/v10/i20/6936.htm
DOI: https://dx.doi.org/10.12998/wjcc.v10.i20.6936

INTRODUCTION

Osteopetrosis, a genetic disorder caused by osteoclast failure, is an extremely rare bone disease with an incidence of 1 in 250000 births[1,2]. According to the classification of the Nosology Group of the International Skeletal Dysplasia Society, osteopetrosis is divided into various types by their inheritance pattern and characteristics with various clinical features[3]. Among them, autosomal dominant osteopetrosis type II (ADO II) caused by mutations of the chloride channel 7 (CLCN7) gene, also called Albers-Schönberg disease, is considered the most heterogeneous and frequent form of osteopetrosis[2,4]. Despite most ADO patients having no symptoms, the increased density of bones may be discovered by coincidental radiographic examination for other reasons, such as fracture[5]. The major clinical features of this type of osteopetrosis include non-traumatic fractures, especially in long bones, abnormal side-to-side curvature of the spine, and osteomyelitis in late childhood or adolescence[6].

Here we report a 5-year-old Chinese boy with ADO II who was found to have a de novo mutation in the CLCN7 gene [c.746C>T (p.P249L)]. The patient showed typical clinical manifestations including a thickened cortex of spinal bones and long bones, non-traumatic fracture of the femoral neck, and femoral head necrosis. We also performed a comprehensive literature review to systematically review the CLCN7 gene mutation features of ADO II.

CASE PRESENTATION

Chief complaints
A 5-year-old boy complained of painless claudication for 1 mo.

History of present illness
The patient started to experience painless claudication without any trauma about 1 mo prior to attending our clinic. He had no symptoms of fever, nausea, or vomiting.

History of past illness
The patient had no history of hormone treatment or any chronic disease, such as hepatitis, diabetes, or hypertension. His parents had no history of bone fractures or other special family histories.

Personal and family history
The patient had no special personal and family history.

Physical examination
The joint activity of the right hip was limited, especially rotating action. The length of the two lower limbs was equal. In addition, the liver was slightly enlarged, extending 4.0 cm below the right costal margin. Spleen size was normal. On neurological examination, no specific findings were noted.

Laboratory examinations
There was no remarkable abnormality in serum biochemistry, other than elevated concentrations of creatine kinase, lactate dehydrogenase (LDH), and aspartate aminotransferase (AST) (Supplementary Table 1).
Imaging examinations
X-rays in a local clinic revealed a generalized increase in bone density. Pelvis X-rays, computed tomography, and magnetic resonance imaging scans revealed that thickening of the cortex and narrowing of the medullary cavity were found in the pelvis and bilateral femora, consistent with osteopetrosis. In addition, suspected bilateral femoral head necrosis and an old fracture of the right femoral neck were also found (Figure 1A-C). A chest X-ray showed increased bone density in the thoracic vertebrae, lumbar vertebrae, bilateral ribs, and bilateral humeri, with no obvious abnormalities in the lungs, heart, or septum (Figure 1D).

FINAL DIAGNOSIS
The final diagnosis of the presented case was ADO II (Figure 1E and F).

TREATMENT
After admission, the patient was treated by percutaneous traction and fixation of both lower limbs for 1 mo, and then discharged from our hospital.

OUTCOME AND FOLLOW-UP
No significant change was found in the pelvic X-ray at 1 mo after discharge. At the 2-year follow-up, a pelvic X-ray showed that the patient had recovered from a fracture of the right femoral neck, but widespread sclerosis of the right femur, thickened cortex, narrowed medullary cavity, and short femoral neck were still present, consistent with osteopetrosis (Figure 1G). Further follow-up is needed for a long-term prognosis.

DISCUSSION
Osteopetrosis is a disorder with symptoms including failure of osteoclasts and impaired bone resorption. The disorder is caused by mutations in at least 10 genes in humans[1,7]. The patient described in this report is the first case of ADO II with the missense mutation c.746C>T (p.P249L) of the CLCN7 gene reported in China. The genotype of the parents was wild-type, indicating that a de novo mutation was highly likely to affect protein function in this 5-year-old boy. The CLCN7 gene encodes chloride channel 7 (CLC-7), which plays a central role in the normal function of osteoclasts, and takes part in bone remodeling to ensure strong and healthy bones[8]. Mutations in the CLCN7 gene lead to the abnormal function of osteoclast-mediated extracellular acidification and disturb dissolution of the bone inorganic matrix, thus resulting in ADO II[1,9]. Among them, more than 70 different mutations in CLCN7 have been reported to be associated with ADO II[10].

CLCN7 is also regarded as the genetic basis of ADO II[1]. The symptoms and signs of osteopetrosis range widely in severity. In addition to the manifestations of ADO II, the boy reported in our study showed increased bone density, pathological fractures of bilateral femora, and modeling defects at the metaphyses, but no symptoms of osteomyelitis, diffuse or focal sclerosis, or dental abnormalities (including tooth eruption defects and dental caries). Besides, there was no hematological failure or cranial nerve compression in this boy.

We also conducted a literature search of PubMed, MedlinePlus, Embase, and Ovid databases from January 2004 to February 2021 using the following search terms: “CLCN7 gene” and “osteopetrosis” and “autosomal dominant osteopetrosis type II” without language restrictions. Finally, 21 published studies were identified as meeting the search criteria (Supplementary Figure 1). A summary of previous reported cases of ADO II patients as well as our case is provided in Table 1. In addition, several series of family studies are included[11-24]. Based on our summary of the literature, we found more female patients (53% of total) than males. There have been increasingly more studies on the gene mutations in ADO II since the year 2012. To date, nearly 40 mutations in CLCN7 have been identified linked to ADO II. As the gene expression profiles and characteristics of mutations are related to ethnic background, there have been more reports of CLCN7 mutations causing cases of ADO II in the Asian population than in Western countries over the last decades. These results help provide some clue to the analysis of the phenotype-genotype relationship.

Another reported de novo mutation, c.2144A>G (p.Tyr715Cys) change in CLCN7, appeared to be a gain-of-function variant[25]. In that case, both patients manifested developmental delay, organomegaly, and hypopigmentation resulting from lysosomal hyperacidity, abnormal storage, and enlarged
in intracellular vacuoles, but the patients were osteopetrosis-free. Functional study showed that p.Tyr715Cys was a gain-of-function CLCN7 variant. In our case, the patient manifested osteopetrosis which indicated the inactivating effect of the c.746C>T (p.P249L). However, further study is still needed to prove the loss-of-function mechanism caused by the mutation.

Due to the low incidence of osteopetrosis, it is often overlooked in daily clinical diagnosis. Most ADO II patients are diagnosed based on the typical clinical manifestations and presence of special radiological appearance, including thickening of the cortex and narrowing of the medullary cavity of vertebrae, ribs, and humerus[1,5,26], especially the presence of “sandwich vertebrae” and the “bone-within-bone” appearance of the iliac spine[26]. Almost 80% of osteopetrosis patients experience fractures, while 30%
Ref.	Year	Country	Sex	Age (yr)	SNP property	Function change	Nucleotide change	Symptoms
Letizia et al [11]	2004	Italy	M	16	Exon 25 missense	A262D (p.Ala262Asp)	788 C>A	Lumbar spine and pelvis pain; right ear deafness
Zhang et al [12]	2009	China	F	32	Exon 24 nonsense	R767W (p.Arg767Trp)	2337C>T	Back pain
			M	17	Exon 25 frameshift	E798 FS (p.Glu798FS)	60, 61→/G	Back pain
Xue et al [13]	2012	China	M	28	Exon 16 missense	F470 L (p.Pro470Leu)	1409 C>T	Recurrent swelling in the right face; fractures of the legs; unerupted teeth with root dysplasia
			M	38	Exon 10 missense	R286 W (p.Arg286Trp)	856C>T	Osteomyelitis; nonunion of a femur fracture; unerupted teeth with root dysplasia
Rashid et al [14]	2013	Iraqi-Kurdish	F	12	Exon 15 missense	R409 W (p.Arg409Trp)	1225C>T	Anemia; diffuse cutaneous ecchymosis with gum bleeding; recurrent epistaxis; chest infections; right-sided conductive deafness; back pain
			M	16	Exon 15 nonsense	R409W (p.Arg409Trp)	c.1225C>T	Decline in visual acuity
Zhang et al [15]	2014	China	M	51	Exon 7 missense	G215 R (p.Gly215Arg)	643 G>A	Femur fracture
			M	12	Exon 10 missense	A299V (p.Ala299Val)	896C>T	Pain in the left foot
			F	75	Exon 11 missense	W319R (p.Trp319Arg)	953T>A	Anemia; diffuse cutaneous ecchymosis with gum bleeding; recurrent epistaxis; chest infections; right-sided conductive deafness; back pain
Orkan et al [16]	2015	Turkey	F	46	Na	NA	NA	Back pain
Chen et al [17]	2016	China	M	43	Exon 20 missense	P619 L (p.Pro619Leu)	c.1856C>T	Discomfort in lower extremities
Piret et al [18]	2016	United Kingdom	F	49	Exon 20 missense	G215 R (p.Gly215Arg)	c.643G>A	Fractures (tibia, ankle)
Zheng et al [19]	2016	China	M	5	Exon 4 missense	Tyr99 Cys (p.Y99C)	c.296 A>G	Fracture of the right clavicle
			F	35	Exon 10 missense	V289L (p.Val289Leu)	c.865G>C	NA
			F	8-month-	Exon 17 missense	A542V (p.Ala542Val)	c.1625C>T	Flexion and abduction of the left hip was restricted
				old	Exon 24 nonsense	R767W (p.Arg767Trp)	c.2299C>T	Neck discomfort
Zhang et al [20]	2017	China	M	2	Exon 9 missense	G240E (p.Gly240Glu)	c.791G>A	Completely blind in his right eye
			F	5	Exon 11 missense	F318S (p.Phe318Ser)	c.953T>C	Pneumonia
			F	62	Exon 24 nonsense	S753W (p.Ser753Trp)	c.2258C>G	Back pain
Kim et al [21]	2018	Korea	F	68	Exon 4 missense	Y99C (p.Tyr99Cys)	c.296A>G	Pain in hip joint; unable to walk independently
Kang et al [22]	2019	Korea	M	18	Exon 9 missense	P249 L (p.Pro249Leu)	c.746C>T	Pain in the right shin
Li et al [23]	2019	China	F	15	Exon 9 missense	R286W (p.Arg286Trp)	c.856C>T	Back pain
			F	42	Exon 22 missense	Y746D (p.Try746Asp)	c.2236T>G	Anemia
			M	10	Exon 3 missense	Y99C (p.Tyr99Cys)	c.296A>G	Recurrent influenza; fractures in the left tibia
			F	32	Exon 10	E311K	c.937G>A	Blind; fractures; tinnitus; splenomegaly
have hip osteoarthritis. However, ADO II patients might attend hospital just because of low back pain without any familial penetrance of the disease. Some special characteristics have been reported previously, including severe anemia, mild malocclusion with hypodontia, enamel dysplasia, right femur osteomyelitis, proximal renal tubular acidosis, renal stones, epilepsy, and blindness [18]. Biochemical markers have been considered for the diagnosis of osteopetroses, such as elevated creatine kinase MB isoenzyme (CK-MB), LDH, and AST [27, 28]. However, considering the genetic heterogeneity of ADO II, next-generation sequencing (NGS) technology should be preferred during diagnostic examination.

By now, genetic testing has become widely used in the screening, diagnosis, and prognosis prediction of various diseases. In combination with clinical information, high-throughput DNA analysis according to whole-exome sequencing using NGS methods have been used to identify Mendelian disorders related to diseases and even to guide drug therapy [29]. In this case, even without the family history of ADO II, the possibility of a *de novo* mutation in the *CLCN7* gene and subsequent ADO II cannot be ruled out. In addition to the conventional neurological, imaging, and biochemical examinations, whole-exome sequencing is critical for final diagnosis.

CONCLUSION

In summary, we describe the case of a 5-year-old Chinese boy with ADO II with a *de novo* mutation in the *CLCN7* gene [c.746C>T (p.P249L)] and review the literature of *CLCN7* gene related osteopetrosis cases reported before. To our knowledge, this is the first study that systematically reviews the mutations of *CLCN7* in ADO II, which not only enriches the understanding of the pathogenesis of osteopetrosis but also expands the ideas on its diagnosis and treatment.

ACKNOWLEDGEMENTS

The authors thank the patient’s family for their cooperation.

FOOTNOTES

Author contributions: Song XL and Peng LY reviewed the literature and drafted the manuscript; Song XL and Wang H performed the whole-exome sequencing; Wang DW and Wang H were responsible for the revision of the manuscript for important intellectual content; all authors issued final approval for the version to be submitted.

Informed consent statement: Written informed consent was obtained from the patient’s legal guardian(s) for publication of this case report and any accompanying images.

Conflict-of-interest statement: All the authors report no relevant conflicts of interest for this article.

CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
REFERENCES

1. Stark Z, Savarirayan R. Osteopetrosis. Orphanet J Rare Dis 2009; 4: 5 [PMID: 19232111 DOI: 10.1186/1750-1172-4-5]

2. Del Fattore A, Cappariello A, Teti A. Genetics, pathogenesis and complications of osteopetrosis. Bone 2008; 42: 19-29 [PMID: 17936908 DOI: 10.1016/j.bone.2007.08.029]

3. Superti-Furga A, Unger S. Nosology and classification of genetic skeletal disorders: 2006 revision. Am J Med Genet A 2007; 143A: 1-18 [PMID: 1710245 DOI: 10.1002/ajmg.a.31483]

4. Bollerslev J. Autosomal dominant osteopetrosis: bone metabolism and epidemiological, clinical, and hormonal aspects. Endocr Rev 1989; 10: 45-67 [DOI: 10.1210/edrv-10-1-45]

5. Cleiren E, Bénichou O, Van Hul E, Gram J, Bollerslev J, Singer FR, Beaverson K, Aledo A, Whyte MP, Yoneyama T, deVernejoul MC, Van Hul W. Albers-Schönberg disease (autosomal dominant osteopetrosis, type II) results from mutations in the CLCN7 chloride channel gene. Hum Mol Genet 2001; 10: 2861-2867 [PMID: 11741829 DOI: 10.1093/hmg/10.25.2861]

6. Bollerslev J. Osteopetrosis. A genetic and epidemiological study. Clin Genet 1987; 31: 86-90 [PMID: 3829443]

7. Wada K, Harada D, Michigami T, Tachikawa K, Nakano Y, Kashiwagi H, Yamashita S, Sano T, Seino Y. A case of autosomal dominant osteopetrosis type II with a novel TCI RG1 gene mutation. J Pediatr Endocrinol Metabol 2013; 26: 575-577 [PMID: 23412864 DOI: 10.1515/jpem-2013-0007]

8. Schaller S, Henriksen K, Sørensen MG, Karsdal MA. The role of chloride channels in osteoclasts: CIC-7 as a target for osteoporosis treatment. Drug News Perspect 2005; 18: 489-495 [PMID: 16391718 DOI: 10.1358/dnp.2005.18.8.944546]

9. Balemans W, Van Wesenbeeck L, Van Hul W. A clinical and molecular overview of the human osteopetroses. Calcif Tissue Int 2005; 77: 263-274 [PMID: 16307387 DOI: 10.1007/s00223-005-0027-6]

10. Bénichou O, Cleiren E, Gram J, Bollerslev J, de Vernejoul MC, Van Hul W. Mapping of autosomal dominant osteopetrosis type II (Albers-Schönberg disease) to chromosome 16p13.3. Am J Hum Genet 2001; 69: 647-654 [PMID: 11468688 DOI: 10.1086/323132]

11. Letizia C, Taranta A, Migliaccio S, Caliumi C, Diacinti D, Delfini E, D’Erasmo E, Tachikawa K, Nakano Y, Kishi T, Seino Y. A novel mutation of CLCN7 gene in an Old Female Patient with Type II Autosomal Dominant Osteopetrosis. AM J MED GENET A 2016; 279A; 19288050 [PMID: 28975865 DOI: 10.1002/ajmg.a.37755]

12. Zhang XL, He JW, Zhang H, Hu W, Fu W, Gu M, Yu JB, Gao G, Hu Q, Li M, Liu YJ. Identification of the CLCN7 gene mutations in two Chinese families with autosomal dominant osteopetrosis (type II). J Bone Miner Res 2009; 24: 444-451 [PMID: 19288050 DOI: 10.1385/jbmr:2009.0774:009-0051-0]

13. Xue Y, Wang W, Mao T, Duan X. Report of two Chinese patients suffering from CLCN7-related osteopetrosis and root dysplasia. J Craniofac Surg 2012; 40: 416-420 [PMID: 21962762 DOI: 10.1016/j.jcsm.2011.07.014]

14. Rashid BM, Rashid NG, Schulz A, Lahr G, Nore BF. A novel missense mutation in the CLCN7 gene linked to benign autosomal dominant osteopetrosis: a case series. J Med Case Rep 2013; 7: 7 [PMID: 23302420 DOI: 10.1186/1752-1947-7-7]

15. Zheng H, Zhang Z, He JW, Fu WZ, Wang C, Zhang ZL. Identification of two novel CLCN7 gene mutations in three Chinese families with autosomal dominant osteopetrosis type II. Joint Bone Spine 2014; 81: 188-189 [PMID: 23953223 DOI: 10.1016/j.jbspin.2013.06.014]

16. Ozkam AK, Doruk P, Adam M, Celik ZY, Leblebici B. Autosomal Dominant Osteopetrosis Type II. J Back Musculoskelet Rehabil 2015; 28: 197-200 [PMID: 24988412 DOI: 10.3233/bmr-140486]

17. Chen X, Zhang K, Hock J, Wang C, Yu X. Enhanced but hypofunctional osteoclastogenesis in an autosomal dominant osteopetrosis type II case carrying a c.1856C>T mutation in CLCN7. Bone Res 2016; 4: 16035 [PMID: 27990316 DOI: 10.1038/boneres.2016.35]

18. Pirot SE, Gortzin CM, Trinh A, Taylor J, Lise S, Taylor JC, Ebeling PR, Thakker RV. Autosomal dominant osteopetrosis associated with renal tubular acidosis is due to a CLCN7 mutation. Am J Med Genet A 2016; 170: 2988-2992 [PMID: 27540713 DOI: 10.1002/ajmg.a.37755]

19. Zheng H, Shao C, Zheng Y, He JW, Fu WZ, Wang C, Zhang ZL. Two novel mutations of CLCN7 gene in Chinese families with autosomal dominant osteopetrosis type II. J Bone Miner Res 2016; 34: 440-446 [PMID: 26056022 DOI: 10.1007/s00774-015-0682-2]

20. Zhang X, Wei Z, He J, Wang C, Zhang Z. Novel mutations of CLCN7 cause autosomal dominant osteopetrosis type II (ADOII) and intermediate autosomal recessive osteopetrosis (ARO) in seven Chinese families. Postgrad Med 2017; 129: 934-942 [PMID: 28975865 DOI: 10.1080/00325481.2017.1368529]

21. Kim SY, Lee Y, Kang YE, Kim JM, Jeong KH, Lee JH, Kim KS, Kim HJ, Ku BJ, Song M, Yi HS. Genetic Analysis of CLCN7 in an Old Female Patient with Type II Autosomal Dominant Osteopetrosis. Endocrinol Metab (Seoul) 2018; 33: 380-386 [PMID: 30229577 DOI: 10.3803/EnM.2018.33.3.380]

22. Kang S, Kang YK, Lee JA, Kim DH, Lim JS. A Case of Autosomal Dominant Osteopetrosis Type 2 with a CLCN7 Gene
Mutation. J Clin Res Pediatr Endocrinol 2019; 11: 439-443 [PMID: 30759959 DOI: 10.4274/jcrpe.galenos.2019.2018.0229]

23 Li L, Lv SS, Wang C, Yue H, Zhang ZL. Novel CLCN7 mutations cause autosomal dominant osteopetrosis type II and intermediate autosomal recessive osteopetrosis. Mol Med Rep 2019; 19: 5030-5038 [PMID: 30942407 DOI: 10.3892/mmr.2019.10123]

24 Peng H, He HB, Wen T. A Novel Variant in CLCN7 Regulates the Coupling of Angiogenesis and Osteogenesis. Front Cell Dev Biol 2020; 8: 599826 [PMID: 33304905 DOI: 10.3389/fcell.2020.599826]

25 Nicoli ER, Weston MB, Hackbarth M, Becerril A, Larson A, Zein WM, Baker PR, 2nd, Burke JD, Dorward H, Davids M, Huang Y, Adams DR, Zerfas PM, Chen D, Markello TC, Toro C, Wood T, Elliott G, Vu M, Zheng W, Garrett LJ, Tifft CJ, Gahl WA, Day-Salvatore DL, Mindell JA, Malicdan MCV. Lysosomal Storage and Albinism Due to Effects of a De Novo CLCN7 Variant on Lysosomal Acidification. Am J Hum Genet 2019; 104: 1127-1138 [PMID: 31155284 DOI: 10.1016/j.ajhg.2019.04.008]

26 Wu CC, Econs MJ, DiMeglio LA, Insgna KL, Levine MA, Orchard PJ, Miller WP, Petryk A, Rush ET, Shoback DM, Ward LM, Polgreen LE. Diagnosis and Management of Osteopetrosis: Consensus Guidelines From the Osteopetrosis Working Group. J Clin Endocrinol Metab 2017; 102: 3111-3123 [PMID: 28655174 DOI: 10.1210/jc.2017-01127]

27 Wang C, Zhang H, He JW, Gu JM, Hu WW, Hu YQ, Li M, Liu YJ, Fu WZ, Yue H, Ke YH, Zhang ZL. The virulence gene and clinical phenotypes of osteopetrosis in the Chinese population: six novel mutations of the CLCN7 gene in twelve osteopetrosis families. J Bone Miner Metab 2012; 30: 338-348 [PMID: 21947783 DOI: 10.1007/s00774-011-0319-z]

28 Whyte MP, Chines A, Silva DP, Jr., Landt Y, Ladenson JH. Creatine kinase brain isoenzyme (BB-CK) presence in serum distinguishes osteopetroses among the sclerosing bone disorders. J Bone Miner Res 2011; 16: 1438-1443 [PMID: 8889843 DOI: 10.1002/jbm.55011010]

29 Franceschini N, Frick A, Kopp IB. Genetic Testing in Clinical Settings. Am J Kidney Dis 2018; 72: 569-581 [PMID: 29655499 DOI: 10.1053/j.ajkd.2018.02.351]
