GUTIERREZ–SOTOMAYOR FLOWS ON SINGULAR SURFACES

Ketty A. de Rezende — Nivaldo G. Grulha Jr.
Dahisy V.S. Lima — Murilo A.J. Zigart

Dedicated to the memory of Professor Jorge Sotomayor

Abstract. In this work, we consider the collection of necessary homological conditions previously obtained via Conley index theory for a Lyapunov semi-graph to be associated to a Gutierrez–Sotomayor flow on an isolating block and address their sufficiency. These singular flows include regular \mathcal{R}, cone \mathcal{C}, Whitney \mathcal{W}, double \mathcal{D} and triple \mathcal{T} crossing singularities. Local sufficiency of these conditions are proved in the case of Lyapunov semi-graphs along with a complete characterization of the branched 1-manifolds that make up the boundary of the block. As a consequence, global sufficient conditions are determined for Lyapunov graphs labelled with \mathcal{R}, \mathcal{C}, \mathcal{W}, \mathcal{D} and \mathcal{T} and with minimal weights to be associated to Gutierrez–Sotomayor flows on closed singular 2-manifolds. By removing the minimality condition, we prove other global realizability results by requiring that the Lyapunov graph be labelled with \mathcal{R}, \mathcal{C} and \mathcal{W} singularities or that it be linear.

2020 Mathematics Subject Classification. Primary: 14J17, 37B30, 58K45; Secondary: 57N80.

Key words and phrases. Conley index; isolating blocks; Lyapunov graph; Poincaré–Hopf inequalities; cone, cross caps, double, triple singularities.

K.A. de Rezende was supported in part by São Paulo Research Foundation (FAPESP) under Grant 2018/13481-0 and by CNPq under grant 305649/2018-3.

N.G. Grulha Jr. was supported in part by São Paulo Research Foundation (FAPESP) under Grant 19/21181-0.

D.V.S. Lima was supported in part by São Paulo Research Foundation (FAPESP) under Grant 2020/11326-8.

M.A.J. Zigart was partially financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brazil (CAPES) – Finance Code 001.