The two primary molecular regulators of lifespan identified to date are sirtuin-1 (SIRT1) and mammalian target of rapamycin complex 1 (mTORC1). Each plays a central role in two highly interconnected pathways that modulate the balance between cellular growth and survival. The activation of SIRT1 [along with peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α) and adenosine monophosphate-activated protein kinase (AMPK)] and the suppression of mTORC1 (along with its upstream regulator, Akt) act to prolong organismal longevity and retard cardiac ageing. Both activation of SIRT1/PGC-1α and inhibition of mTORC1 shifts the balance of cellular priorities so as to promote cardiomyocyte survival over growth, leading to cardioprotective effects in experimental models. These benefits may be related to direct actions to modulate oxidative stress, organelar function, proinflammatory pathways, and maladaptive hypertrophy. In addition, a primary shared benefit of both SIRT1/PGC-1α/AMPK activation and Akt/mTORC1 inhibition is the enhancement of autophagy, a lysosome-dependent degradative pathway, which clears the cytosol of dysfunctional organelles and misfolded proteins that drive the ageing process by increasing oxidative and endoplasmic reticulum stress. Autophagy underlies the ability of SIRT1/PGC-1α/AMPK activation and Akt/mTORC1 suppression to extend lifespan, mitigate cardiac ageing, alleviate cellular stress, and ameliorate the development and progression of cardiomyopathy; silencing of autophagy genes abolishes these benefits. Loss of SIRT1/PGC-1α/AMPK function or hyperactivation of Akt/mTORC1 is a consistent feature of experimental cardiomyopathy, and reversal of these abnormalities mitigates the development of heart failure. Interestingly, most treatments that have been shown to be clinically effective in the treatment of chronic heart failure with a reduced ejection fraction have been reported experimentally to exert favourable effects to activate SIRT1/PGC-1α/AMPK and/or suppress Akt/mTORC1, and thereby, to promote autophagic flux. Therefore, the impairment of autophagy resulting from derangements in longevity gene signalling is likely to represent a seminal event in the evolution and progression of cardiomyopathy.

Keywords
- Heart failure
- Sirtuin-1
- Akt/mTOR pathway
- Adenosine monophosphate-activated protein kinase
- Cardiac ageing

The two primary molecular regulators of lifespan identified to date are sirtuin-1 (SIRT1) and mammalian target of rapamycin (mTOR). Each gene represents the cornerstone of two interconnected pathways that regulate the balance between cellular growth and survival. When nutrients are plentiful, organisms prioritize the utilization of fuels to expand the cell mass, and mTOR signalling is central to this process. In contrast, when nutrients are in short supply, organisms minimize the utilization of anabolic pathways and adopt a safe and sheltered set of biological conditions that preserve the structural and functional integrity of existing cells; SIRT1 is critical to this response.
SIRT1 and Akt/mTOR signalling in the regulation of organismal longevity, cardiac ageing, and cardiomyocyte survival

The counterbalancing effects of SIRT1 and mTOR control the set point between cellular growth and cellular homeostasis. The positioning of this set point is exquisitely sensitive to the environmental energy supply and the redox state.\(^2,3\)

Role of SIRT1 in organismal longevity and cardiac ageing

SIRT1 is one of a family of redox-sensitive nicotinamide adenine dinucleotide-dependent deacetylases that catalyse the post-translational modification of hundreds of proteins that are involved in metabolism and cellular homeostasis. The yeast orthologue of SIRT1 is Sir2 (silent information regulator 2). Overexpression of Sir2 extends lifespan,\(^6\) and the ability of caloric restriction to prolong survival in yeast is dependent on the action of Sir2 to produce cytoprotective effects.\(^7\) Interestingly, in mammals, the organ that is critically involved in the longevity effects of Sir2 is the heart. The mammalian orthologue of Sir2 plays an essential role in mediating cell survival in cardiac myocytes,\(^8\) and mice that are deficient in Sir2 (the murine orthologue of Sir2) exhibit developmental abnormalities in the heart\(^9\) and develop early-onset heart failure.\(^8,9\)

The expression of SIRT1 in most organs diminishes following birth, but it normally persists at high levels in the healthy heart,\(^10\) unless the myocardium exhibits the effects of ageing or shows evidence of a cardiomyopathic process.\(^11,12\) Mild-to-moderate up-regulation of SIRT1 in the myocardium exhibits the effects of ageing or shows evidence of a cytotoxic phenotype that is associated with increased reactive oxygen species, mitochondrial abnormalities, and reduced telomerase activity.\(^11\) Suppression of PGC-1α recapitulates age-related changes in mitochondrial gene expression, whereas up-regulation prevents senescence-related changes in the myocardium.\(^41\)

These experimental observations supporting an important cardioprotective effect of SIRT1/PGC-1α signalling are consistent with studies showing a linkage between SIRT1/PGC-1α activity and cardiac disorders (including heart failure) in the clinical setting. Polymorphisms of SIRT1 in humans are associated with cardiac developmental abnormalities\(^44\) and an increased predisposition to cardiac injury\(^45,46\) and cardiac hypoperfusion syndromes.\(^47\) Conversely, gain of function polymorphisms in the gene for PGC-1α have been linked with longer lifespans in clinical cohorts.\(^48\) Down-regulation of SIRT1 is accompanied by increase in oxidative stress and inflammatory signalling in human cardiomyocytes.\(^49\) Circulating levels of SIRT1 are inversely related to levels of proinflammatory cytokines in patients with coronary artery disease; low SIRT1 levels are accompanied by increased telomere attrition.\(^49\) SIRT1 expression is decreased in peripheral blood monocytes in patients with Type 2 diabetes\(^50\) and in patients with obesity with increased epicardial adipose tissue volume.\(^51\) The expression of SIRT1 is suppressed both in peripheral...
leucocytes and cardiomyocytes of patients with chronic cardiomyopathy.52,53 Similarly, the expression of PGC-1α is depressed in the myocardium of patients with heart failure and a reduced ejection fraction54–56 and is accompanied by defective mitochondrial replication and antioxidant defence mechanisms.57

Role of Akt/mTOR in organismal longevity and cardiac ageing

Both Akt and mTOR are serine/threonine protein kinases that function as critical promoters of cell growth and proliferation. mTOR exists in two complexes, mTOR complex 1 (mTORC1) and mTOR complex 2, and Akt potentiates the activation of mTORC1, which is preferentially inhibited by rapamycin.1 Akt/mTORC1 signalling influences hundreds of downstream effectors that promote anabolic pathways, drives mitochondrial production of reactive oxygen species to facilitate cellular replication and innate immunity, and enhances the expression of the senescence-associated secretory phenotype that is essential to the cellular disposal required for effective organ growth.58 Inhibition of mTOR redirects the priorities of the cell away from growth towards homeostasis and survival. mTOR suppression in yeast extends lifespan and is critical to the ability of caloric restriction to prolong survival in model organisms59–61; interestingly, the effect of mTOR on longevity in yeast is independent of the effects of Sir2. Mice with genetically-driven hypomorphic mTOR expression have an increased lifespan, an effect that is mimicked when mTOR activity is suppressed by rapamycin.62

The action of mTOR activity to promote anabolic pathways is required for cardiomyocyte replication during foetal development and adaptive hypertrophy during pressure overload.63 but it contributes to maladaptive cardiac hypertrophy when hearts are stressed or injured in adulthood.64,65 Specifically, complete cardiac-specific deletion of mTOR during embryonic development promotes lethality66 and undermines the ability of the heart to tolerate states of rapid-onset pressure overload.64,65 In contrast, partial mTORC1 suppression (produced by heterozygous deletion of mTORC1 or by rapamycin) in states of cardiac stress or injury ameliorates maladaptive hypertrophy and fibrosis and retards the development of heart failure (Figure 1).56,67 The cardiac ageing that results from inflammasome activation is related to activation of the Akt/mTOR pathway,68 and inhibition of the immunoproteasome system in the heart by rapamycin attenuates both inflammation and sympathetically-mediated hypertrophy.68 Increases in oxidative stress in cardiomyocytes may cause premature senescence as a result of aberrantly increased Akt/mTOR signalling.69 Sustained activation of Akt disrupts mitochondrial energetics and accentuates ageing-induced cardiac hypertrophy and myocardial contractile dysfunction70–71; mitochondrial function is normalized following mTOR inhibition.72 The totality of these experimental observations explains why cardiac-specific overactivation of the Akt/mTOR pathway induces heart failure,73 whereas suppression of Akt signalling ameliorates heart failure in experimental models.74

These findings supporting an effect of Akt/mTOR to promote cardiomyopathy are consistent with similar observations in the clinical setting. The myocardium in patients with a non-ischaemic cardiomyopathy shows aberrant activation of mTORC1; the intensity of this activation is associated with the severity of cardiac fibrosis and a poor prognosis.75 In hypertensive patients with heart failure, there is an inverse relation between the degree of Akt activation and measures of cardiomyocyte senescence.76 Akt activation may help to explain the insulin resistance that is characteristic of patients with chronic heart failure,77 and mTORC1 up-regulation impairs cardiac function in obesity-related heart failure.78 Activation of Akt in the human myocardium distinguishes the transition from well-compensated left ventricular hypertrophy to decompensated heart failure.79

Interplay of SIRT1/PGC-1α and Akt/mTOR and the intermediary role of adenosine monophosphate-activated protein kinase in modulating cardiomyocyte survival

The SIRT1/PGC-1α and Akt/mTOR pathways are highly interconnected, both at a molecular and physiological level (Figure 2). SIRT1 can modulate the transcription of Akt and mTOR as a result of its deacetylase activity,80 and additionally, SIRT1 and PGC-1α can negatively regulate the transcription of Akt and directly interfere with Akt and mTOR.81–84 At the same time, up-regulation of Akt leads to suppression of PGC-1α,85 whereas inhibition of mTOR by rapamycin or Akt down-regulation leads to activation of SIRT1 and PGC-1α.86–90 Interventions that retard organ-level ageing (e.g. glucose deprivation, cytoprotective drugs and genetic suppression of inflammasome activity) act to simultaneously up-regulate SIRT1/PGC-1α and suppresses the Akt/mTOR pathway.20,91–93 Furthermore, drugs that act to directly up-regulate SIRT1 (e.g. resveratrol and SIRT1 activators) also serve to inhibit Akt/mTOR,85,94–99 and conversely, suppression of SIRT1 leads to up-regulation of Akt/mTOR.98 The interplay between SIRT1/PGC-1α and Akt/mTOR is greatly enhanced by the fact that both SIRT1 and Akt/mTOR influence common downstream targets.99,100 Activators of SIRT1/PGC-1α and suppressors of Akt/mTOR can act synergistically or competitively to influence both lifespan as well as the cardiac response to ageing.71,101 The set point for

Figure 1 Mutual enhancement and antagonism of nutrient sensor signalling in the regulation of autophagic flux in cardiomyocytes. Nutrient deprivation sensors that promote autophagic flux are shown in blue, whereas the nutrient surplus sensors that suppress autophagy are shown in red. Akt, protein kinase B; AMPK, adenosine monophosphate-activated protein kinase; mTORC1, mammalian target of rapamycin complex 1; PGC-1α, peroxisome proliferator-activated receptor-gamma coactivator-1 alpha; SIRT1, sirtuin-1.

Figure 2 Mutual enhancement and antagonism of nutrient sensor signalling in the regulation of autophagic flux in cardiomyocytes. Nutrient deprivation sensors that promote autophagic flux are shown in blue, whereas the nutrient surplus sensors that suppress autophagy are shown in red. Akt, protein kinase B; AMPK, adenosine monophosphate-activated protein kinase; mTORC1, mammalian target of rapamycin complex 1; PGC-1α, peroxisome proliferator-activated receptor-gamma coactivator-1 alpha; SIRT1, sirtuin-1.
the interplay of pathways that regulate growth and survival in cardiomyocytes is sensitive to both nutrients and the redox state.2,3

An important mediator of the interconnectivity between SIRT1 and Akt/mTOR is adenosine monophosphate-activated protein kinase (AMPK). AMPK discerns the balance between cytosolic levels of ATP and AMP, and it acts to promote ATP synthesis. Ageing is accompanied by suppression of AMPK,120 and in turn, up-regulation of AMPK ameliorates the effects of cardiac ageing by mitigating fibrosis,121 promoting ischaemic tolerance in the myocardium,104,105 and reversing ageing-related impairment of angiogenesis and regenerative repair.106,107 In general, caloric restriction activates both SIRT1, PGC-1α, and AMPK in parallel, and the molecular actions of AMPK support those of SIRT1/PGC-1α and oppose those of Akt/mTOR with respect to cellular homeostasis and survival (Figure 2). In addition, the actions of AMPK and SIRT1/PGC-1α reinforce each other93; the effect of AMPK to promote NAD+ leads to SIRT1 activation,108,109 and AMPK can activate PGC-1α by phosphorylation.110 Simultaneously, SIRT1 can augment the activity of upstream regulators of AMPK,110 while inhibition of AMPK leads to suppression of PGC-1α.93 In addition, AMPK can inhibit mTOR by an action on its upstream regulators as well as through a direct effect on components of the mTORC1 complex.111,112 As a result of the interplay of these effects, AMPK augments the ability of SIRT1/PGC-1α signalling to oppose the actions of the Akt/mTOR pathway.

Mechanisms underlying the effects of SIRT1, AMPK, and Akt/mTOR on longevity and cardiac ageing and their role in the development of cardiomyopathy

What cellular mechanism underlies the ability of SIRT1/AMPK activation and Akt/mTORC1 suppression to prolong lifespan, slow cardiac ageing and mitigate the development of cardiomyopathy and heart failure? The accumulation of dysfunctional organelles and misfolded proteins drives the ageing process by increasing oxidative and endoplasmic reticulum stress, typically with secondary activation of proinflammatory pathways.113,114 SIRT1/PGC-1α and AMPK signalling and Akt/mTORC1 inhibition can act directly to maintain organelar integrity, to promote antioxidant mechanisms and to interfere with activation of the inflammasome.20,72,115–119 Akt/mTORC1 can also directly modulate the functions of the senescence-associated secretory phenotype.58

Role of autophagy in promoting longevity and cardiomyocyte survival

Yet, the most important mechanism by which SIRT1/PGC-1α/AMPK and Akt/mTORC1 prevents cellular stress and ageing is the disposal and neutralization of unwanted and injurious cytosolic constituents by the cellular housekeeping process of autophagy. Autophagy is an evolutionarily-conserved degradative pathway, which involves the encircling of dangerous cellular components by a double-membrane vesicle; its fusion with the lysosome allows degradative enzymes to destroy the vesicle’s contents.120 The process not only negates the effects of the injurious constituent, but it allows for recycling of the breakdown products, thus boosting cellular ATP. Autophagic flux is the most important determinant of lifespan and cardiac ageing36,121–123 Normal and pathological ageing is accompanied by a reduced capacity for autophagy,122,124–126 Mutation of essential autophagy genes induces degenerative changes in tissues that closely resemble those of ageing,127 and inhibition of autophagy compromises the longevity effects of caloric restriction.122,127,128 Loss of autophagy allows for the accumulation of deranged organelles and misfolded proteins, which are the major source of oxidative and endoplasmic reticulum stress in cardiomyocytes.114,129 Conversely, enhancement of autophagic flux prevents the molecular and cellular features of ageing in the myocardium.130 Pharmacological or genetic interventions that increase lifespan in model organisms act through stimulation of autophagy.122,127

How does autophagy delay ageing and promote cellular survival? The formation of autophagic vacuoles and their fusion with lysosomes disposes of misfolded proteins (as well as glucose and lipid intermediates), thus reducing endoplasmic reticulum stress. Furthermore, the autophagic clearance of deranged mitochondria and peroxisomes (referred to as mitophagy and pexophagy, respectively) is critical to the mitigation of oxidative stress.131 (Cardiomyocytes are replete with mitochondria and peroxisomes, which underlie their enormous capacity to consume oxygen and generate reactive oxygen species.) Amelioration of oxidative and endoplasmic reticulum stress is essential to cardiomyocytes, since non-proliferating cells cannot utilize cell division to mediate dilution of intracellular debris or replace cells that have died.122

Role of SIRT1/AMPK and Akt/mTOR signalling in the modulation of autophagy

SIRT1/PGC-1α/AMPK and Akt/mTORC1 are the primary mediators of the ability of autophagy to prolong organismal longevity (Figure 1). The most important inducer of autophagy is caloric restriction, which acts to prolong organismal survival by signalling through both SIRT1/PGC-1α/AMPK as well as Akt/mTORC1122,123.

In states of glucose deprivation, AMPK promotes autophagy by directly activating several autophagy genes, including Ulk1,133–136 whereas in states of nutrient surplus, mTOR prevents Ulk1 activation and disrupts the interaction between Ulk1 and AMPK.108 Starvation does not prolong longevity if mTOR signalling is already suppressed,128 and conversely, mTOR inhibition with rapamycin does not favourably affect survival if autophagy genes are already knocked down or out.136 Conversely, SIRT1 deacetylases (and thereby activates) several autophagy genes;132 SIRT1-mediated deacetylation of beclin 1 promotes autophagic flux;133 and PGC-1α interacts with the E3 ubiquitin ligase Parkin to mediate mitophagy.139,140 Importantly, the longevity effects of SIRT1 are mediated by its actions to promote autophagy,141 and caloric restriction does not induce mitochondrial autophagy in aged animals if SIRT1 is absent.142 The actions of SIRT1 to extend lifespan by promoting autophagy can be attenuated by activation of Akt.111 Knockdown or knockout of autophagy genes abolishes the lifespan-prolonging effects of caloric restriction, resveratrol, or SIRT2 overexpression.143 These observations, when considered
collectively, strongly support the critical role of autophagy in mediating the ability of SIRT1/PGC-1α/AMPK and Akt/mTORC1 signalling to influence organismal survival. SIRT1/PGC-1α/AMPK and Akt/mTORC1 are also the primary mediators of the ability of autophagy to retard cardiac ageing (Figure 1). The effects of inflammasome suppression to retard age-related deleterious changes in the heart are related to inhibition of Akt/mTORC1 and activation of SIRT1, leading to enhanced autophagic flux.20 Ageing-related cardiomyocyte contractile dysfunction and loss of mitophagy are accompanied by suppression of PGC-1α and are ameliorated by mTORC1 inhibition with rapamycin and with direct Sirt1 activators.71,102 AMPK activation restores autophagy in aged hearts,145 and knockout of AMPK promotes cardiac ageing by suppressing autophagy, an action that is not alleviated by concurrent inhibition of Akt.102 The effects of Akt to exacerbate cardiac ageing are dependent on its actions to suppress autophagy,126,127 and the effects of mTORC1 inhibition with rapamycin to mitigate oxidative stress and ageing are mediated through enhanced mitophagy.131 Similarly, the actions of caloric restriction to mitigate cardiac ageing are accompanied by simultaneous suppression of mTOR and enhanced autophagic flux.146 These findings demonstrate the importance of autophagy in mediating the effects of SIRT1/PGC-1α/AMPK and Akt/mTORC1 on cardiomyocyte senescence. Importance of longevity gene signalling and autophagy modulation in the development and treatment of chronic heart failure

As a result of its critical role in maintaining cardiomyocyte health, autophagy plays a major role in the evolution and progression of heart failure. Diseases that lead to heart failure (as well as the heart failure state itself) mimic the ageing process, in that they are characterized by an increase in oxidative and endoplasmic reticulum stress, which is exacerbated by a striking impairment in the capacity of the heart to stimulate autophagy. Autophagic flux of cardiomyocytes is markedly impaired in cardiomyocytes derived from injured or failing hearts;147–149; in return, pharmacological stimulation of autophagic flux can directly ameliorate oxidative stress and organellar dysfunction, therefore preventing or reversing cardiomyocyte dysfunction and mitigating the development of cardiomyopathy.150–152 This deficiency in autophagic capacity in heart failure is related to the simultaneous impairment of SIRT1/PGC-1α and AMPK signalling52,153 and enhanced activation of the Akt/mTORC1 pathway in cardiomyocytes.147,151,154 These derangements in longevity gene signalling is seen both experimentally and clinically. Interestingly, most treatments for heart failure and a reduced ejection fraction have been reported to exert favourable effects on SIRT1/AMPK and Akt/mTORC1 signalling, thereby, on autophagic flux. The action of angiotensin-converting enzyme inhibitors to mitigate the effects of angiotensin II may involve signalling through SIRT1155,156 and enhancement of PGC-1α.157 Angiotensin receptor blockers have been noted to promote autophagy,158 effects that have been attributed to their effects to activate AMPK and inhibit Akt/mTOR.159,160 Beta-blockade is accompanied by up-regulation of AMPK161,162 and carvedilol up-regulates PGC-1α163 and appears to enhance autophagic flux through SIRT1 stimulation164 and by mTOR inhibition.165 Spironolactone activates SIRT1/AMPK in the heart,166 and its action to inhibit Akt/mTOR signalling has been linked to its effect to promote autophagic flux.167,168 PGC-1α activation can interfere with the deleterious actions of mineralocorticoid receptor activation.169 Natriuretic peptides may activate AMPK170,171 and norepyslin may stimulate Akt/mTOR signalling and suppress PGC-1α.172–174 Hydralazine up-regulates both AMPK and SIRT1, and thus, prolongs longevity in model organisms.175 Digitalis glycosides induce autophagy (potentially by activating AMPK)176 but they also activate Akt, which may limit the positive inotropic effect of these drugs.177–180 The effect of cardiac resynchronization to effect reverse remodelling is accompanied by activation of autophagic flux and improvement in mitochondrial function.181 Therefore, currently available treatments for heart failure appear to exert a consistently favourable influence on the interplay of SIRT1/AMPK and Akt/mTORC1 in a manner that promotes autophagy.

SGLT2 inhibitors have recently been shown to have favourable effects on the evolution and progression of heart failure in the presence and absence of Type 2 diabetes.182 When the actions of SGLT2 are inhibited, the urinary loss of calories triggers systemic transcriptional reprogramming that closely mimics that seen during states of nutrient deprivation.183,184 The depletion of tissue nutrients that follows glycosuria leads to activation of SIRT1 and AMPK and the suppression of Akt and mTOR.183,184 It is therefore noteworthy that several SGLT2 inhibitors up-regulate SIRT1, PGC-1α and AMPK, while simultaneously inhibiting the Akt/mTOR pathway,188,193–191 thus potentially explaining the action of these drugs to promote autophagy in diverse organs, including the heart.192,193 The induction of autophagy may underlies the ability of SGLT2 inhibitors to mute oxidative stress, promote organellar integrity, suppress proinflammatory pathways, and ameliorate the course of experimental cardiomyopathy.182,186,193–197 Importantly, because nutrient deprivation elicits a system-wide response, SGLT2 inhibitors can exert cardioprotective effects, even though SGLT2 is not expressed in the heart.183,184 In addition, SGLT2 inhibitors may be able to bind directly to SIRT1 to activate its functions (Figure 1).198 Drugs that are well-characterized agonists and antagonists of SIRT1/AMPK and Akt/mTOR signalling may also prove to have favourable effects in the treatment of chronic heart failure. Metformin is an established agonist of AMPK (which also up-regulates PGC-1α), and it promotes autophagy and ameliorates the development of experimental diabetic and non-diabetic cardiomyopathy.26,199–201 Epidemiological studies have suggested that the use of metformin may be accompanied by a reduced risk of heart failure, but these reports have been difficult to interpret, given the observational nature of these analyses and concerns that the reported benefits may have been related to an adverse effect of the comparator drugs rather than a favourable action of metformin.202 Resveratrol (an activator of SIRT1)18,29,45,203–208 and rapamycin and its analogues (inhibitors of mTORC1)151,209–211 have also been shown to enhance autophagic flux and to ameliorate cardiomyopathy in experimental models. However, clinical trial evidence to support a benefit of
metformin, resveratrol and rapamycin in patients with chronic heart failure is lacking.

Conclusions

Genes that modulate lifespan in model organisms play a crucial role in the regulation of cellular growth and survival as a result of their effects on the cellular housekeeping process of autophagy. Autophagic flux is exquisitely controlled by the interplay of the SIRT1/AMPK and Akt/mTOR pathways, which underlies the ability of caloric restriction and the redox state to modulate ageing (SIRT1/AMPK and Akt/mTORC1, mammalian target of rapamycin complex 1; PGC-1α, peroxisome proliferator-activated receptor-gamma coactivator-1 alpha; SIRT1, sirtuin-1).

References

1. Pan H, Finke T. Key proteins and pathways that regulate lifespan. J Biol Chem 2017;292:6452–6460.
2. Ma L, Dong W, Wang R, Li Y, Xu B, Zhang J, Zhao Z, Wang Y. Effect of caloric restriction on the SIRT1/mTORC1 signaling pathways in senile mice. Brain Res Bull 2015;116:67–72.
3. Mesjes DN, Zoumpoulidou G, Markou T, Rostron KA, Patel R, Lay K, Hanna BS, Wong B, Sugden PH, Clerk A. The cardiomyocyte “redox cheatkit”: redox signalling via the AMPK-mTOR axis and regulation of gene and protein expression balancing survival and death. J Mol Cell Cardiol 2019;129:118–129.
4. Kaebeler M, McVey M, Guarante L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by different two different mechanisms. Genes Dev 1999;13:2570–2580.
5. Lin SJ, Delfosse PA, Guarante L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 2000;289:2126–2128.
6. Alcendor RR, Kirshenbaum LA, Imai S, Vatner SF, Sadoshima J. Silent informa
tion regulator 2alpha, a longevity factor and class III histone deacetylase, is an essential endogenous apoptosis inhibitor in cardiac myocytes. Circ Res 2004;95:971–980.
7. Cheng HL, Mostoslavsky R, Saito S, Manis JP, Gu Y, Patel P, Bronson R, Appella E, Alt FW, Chua KF. Developmental defects and p53 hyperacetylation in Sirt1 homozygous (SIRT1)-deficient mice. Proc Natl Acad Sci USA 2003;100:10794–10799.
8. Mu W, Zhang Q, Tang X, Fu W, Zheng W, Lu Y, Li H, Wei Y, Li S, She Z, Chen H, Liu D. Overexpression of a dominant-negative mutant of SIRT1 in mouse heart causes cardiomyocyte apoptosis and early-onset heart failure. Sci Chino Life Sci 2014;57:915–924.
9. Pillai JB, Isbatan A, Imai S, Gupta MP. Poly(ADP-ribos)e-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sirt2alpha deacetylase activity. J Biol Chem 2005;280:43121–43130.
10. Ogawa T, Walai C, Saito T, Murayama A, Minuma Y, Youfu S, Nakamachi T, Kuwagata M, Satoh K, Shioda S. Distribution of the longevity gene product, SIRT1, in developing mouse organs. Ceregint Aonm (Kyoto) 2011;51:63–70.
11. Barzana de Arellano MJ, Pozdniakova S, Kuhl A, Baczek L, Ladlov Y, Rezgzaev S. Sex differences in the aging human heart: decreased sirtuins, pro-
imflammatory shift and reduced anti-oxidative defense. Aging (Albany NY) 2019;11:1918–1933.
12. Tong C, Morrison A, Mattsson S, Qian S, Brynias R, Rankin B, Wang J, Thomas DP, Li J. Impaired SIRT1 nuclear-cytoplasmic shuttling in the senescent heart during ischemic stress. FASEB J 2013;27:4312–4316.
13. Alcendor RR, Gao S, Zhai P, Zablocki D, Holle E, Yu X, Tian B, Wagner T, Vatner SF, Sadoshima J. Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ Res 2007;100:1512–1521.
14. Ruan Y, Dong C, Patel J, Duan C, Wang X, Wu X, Cao Y, Pu L, Lu D, Shen T, Li J. SIRT1 suppresses doxorubicin-induced cardiotoxicity by regulating the oxidative stress and p38 MAPK pathways. Cell Physiol Biochem 2015;35:1116–1124.
15. Yuan YP, Ma ZG, Zhang X, Xu SC, Zeng XF, Yang Z, Deng W, Tang QZ. CTRP3 protects against doxorubicin-induced cardiac dysfunction, inflammation, and cell death via activation of Sirt1. J Mol Cell Cardiol 2018;114:38–47.
16. Tanno M, Kuno A, Tano T, Miura T, Hisahara S, Ishikawa S, Shimamoto K, Horiyo Y. Induction of manganese superoxide dismutase by nuclear transloca
tion and activation of SIRT1 promotes cell survival in chronic heart failure. J Biol Chem 2010;285:8375–8382.
17. Pillai VB, Sundaresan NR, Kim G, Gupta M, Rajanobah SD, Pilli JB, Samant S, Ravindra PV, Isbatan A, Gupta MP. Exogenous NAD blocks cardiac hypertroph-
yc response via activation of the SIRT3-LKB1-AMP-activated kinase pathway. J Biol Chem 2010;285:3133–3144.
18. Marin-Aguilar F, Lechuga-Vieco AV, Alcocer-Gómez E, Castejón-Vega B, Lucas E, Mericskay M, Veksler V, Ventura-Clapier R, Garnier A, Piquereau J. Inducible sirtuin 5 expression rescues loss of mitochondrial respiratory function in the heart during ischemic stress. Proc Natl Acad Sci USA 2003;100:10794–10799.
19. Francois J, Davodeau F, Piqué E, Alt FW, Chua KF. Developmental defects and p53 hyperacetylation in Sirt1 homozygous (SIRT1)-deficient mice. Proc Natl Acad Sci USA 2003;100:10794–10799.
20. Marín-Aguilar F, Lechuga-Vieco AV, Alcocer-Gómez E, Castejón-Vega B, Lucas E, Mericskay M, Veksler V, Ventura-Clapier R, Garnier A, Piquereau J. Inducible sirtuin 5 expression rescues loss of mitochondrial respiratory function in the heart during ischemic stress. Proc Natl Acad Sci USA 2003;100:10794–10799.
hearts with large, old myocardial infarctions through enhanced autophagy-activating AMPK pathway. Am J Pathol 2013; 182:701–713.

24. Prola A, Pires Da Silva J, Guilbert A, Lecru L, Piquereau J, Ribeiro M, Mateo P, Gorski PA, Jang SP, Jeong D, Lee P, Oh JG, Chepurko V, Yang DK, Kwak EJ, Bugyei-Twum A, Ford C, Civitarese R, Seegobin J, Advani SL, Desjardins JF, Bugos JK, Panesar S, Prasad T, Amoresano J, Kusumoto Y, Baccarani U, Kozlov N, Pepe S, Lucassen J, Griend F, Panepinto J, Parrella P, Drury HE, Sorrentino A, Sur club M, Giannattasio P, Saba M, Maizel J, Xavier S, Chen J, Lin CH, Vasko R, Goligorsky MS. Sirtuin 1 ablation in mice reproduces diastolic dysfunction in human aging and is associated with impaired angiogenesis and diastolic dysfunction. Circ Res 2014; 115:323–335.

25. Wang Y, Lian X, Chen Y, Zhao X. Screening SIRT1 activators from medicinal plants as bioactive compounds against oxidative damage in mitochondrial function. Oxid Med Cell Longev 2016; 2016:420715.

26. Ma S, Feng J, Zhang R, Chen J, Han D, Li X, Yang B, Li X, Fan M, Li C, Tian Z, Wang Y, Cao F. SIRT1 activation by resveratrol alleviates cardiac dysfunction via mitochondrial regulation in diabetic cardiomyopathy mice. Oxid Med Cell Longev 2016; 2016:462075.

27. Gressette M, Fortin D, Boursier C, Gallerne C, Chauvet A, François P, Calleja E, Mateo P, Wang Y, Liang X, Chen Y, Zhao X. Screening SIRT1 activators from medicinal plants as bioactive compounds against oxidative damage in mitochondrial function. Oxid Med Cell Longev 2016; 2016:420715.

28. Gorski PA, Jang SP, Jeong D, Lee P, Oh JG, Chepurko V, Yang DK, Kwak EJ, Bugyei-Twum A, Ford C, Civitarese R, Seegobin J, Advani SL, Desjardins JF, Bugos JK, Panesar S, Prasad T, Amoresano J, Kusumoto Y, Baccarani U, Kozlov N, Pepe S, Lucassen J, Griend F, Panepinto J, Parrella P, Drury HE, Sorrentino A, Sur club M, Giannattasio P, Saba M, Maizel J, Xavier S, Chen J, Lin CH, Vasko R, Goligorsky MS. Sirtuin 1 ablation in mice reproduces diastolic dysfunction in human aging and is associated with impaired angiogenesis and diastolic dysfunction. Circ Res 2014; 115:323–335.

29. Bugyei-Twum A, Ford C, Civitarese R, Seegobin J, Advani SL, Desjardins JF, Bugos JK, Panesar S, Prasad T, Amoresano J, Kusumoto Y, Baccarani U, Kozlov N, Pepe S, Lucassen J, Griend F, Panepinto J, Parrella P, Drury HE, Sorrentino A, Sur club M, Giannattasio P, Saba M, Maizel J, Xavier S, Chen J, Lin CH, Vasko R, Goligorsky MS. Sirtuin 1 ablation in mice reproduces diastolic dysfunction in human aging and is associated with impaired angiogenesis and diastolic dysfunction. Circ Res 2014; 115:323–335.

30. Maizel J, Xavier S, Chen J, Lin CH, Vasko R, Goligorsky MS. Sirtuin 1 activation cooperates with cardiac fibrosis in a rodent pressure overload model by modifying Smad2/3 transcription. Circ Res 2018; 123:169–173.

31. Gressette M, Fortin D, Boursier C, Gallerne C, Chauvet A, François P, Calleja E, Mateo P, Wang Y, Liang X, Chen Y, Zhao X. Screening SIRT1 activators from medicinal plants as bioactive compounds against oxidative damage in mitochondrial function. Oxid Med Cell Longev 2016; 2016:420715.

32. Geng T, Li P, Yin X, Yan Z. PGC-1α promotes nitric oxide antioxidant defenses and inhibits FOXO signaling against cardiac cachexia in mice. Am J Physiol 2011; 300:H1741–H1748.

33. Waldman M, Nudelman V, Shainberg A, Abraham NG, Kornwoski R, Aravot D, Arany Z, Novikov M, Chin S, Ma Y, Rosenzweig A, Spiegelman BM. Sirtuin 1 mediates the protective effects of exercise training in female mice. Proc Natl Acad Sci USA 2013; 110:669–679.

34. Arany Z, Novikov M, Chin S, Ma Y, Rosenzweig A, Spiegelman BM. Sirtuin 1 mediates the protective effects of exercise training in female mice. Proc Natl Acad Sci USA 2013; 110:669–679.

35. Whitehead N, Gill JF, Brink M, Handschin C. Moderate modulation of cardiac fibrosis in a rodent pressure overload model by modifying Smad2/3 transcription. Cell Rep 2014; 7:913–920.

36. Gangloff YG, Mueller M, Dann SG, Svoboda P, Sticher M, Spetz JF, Um SH, Brown EJ, Cereghini S, Thomas G, Kozma SC. Disruption of the mouse mTOR gene leads to early postimplantation lethality and prohibits embryonic stem cell development. Mol Cell Biol 2004; 24:9508–9516.

37. Zhang D, Contro R, Latronico MV, Zhang J, Rizzi R, Catalucci D, Miyamoto S, Huang R, Cici M, Guo Y. Yuan ND, Peterson KL, Guan KL, Brown JH, Chen J, Sonenberg N, Cordelloli G. MTOCR1 regulates cardiac function and myocyte survival through 4E-BP1 inhibition in mice. J Clin Invest 2010; 120:2805–2816.

38. Wang Y, Lian X, Chen Y, Zhao X. Screening SIRT1 activators from medicinal plants as bioactive compounds against oxidative damage in mitochondrial function. Oxid Med Cell Longev 2016; 2016:420715.

39. Wang Y, Lian X, Chen Y, Zhao X. Screening SIRT1 activators from medicinal plants as bioactive compounds against oxidative damage in mitochondrial function. Oxid Med Cell Longev 2016; 2016:420715.

40. Wang Y, Lian X, Chen Y, Zhao X. Screening SIRT1 activators from medicinal plants as bioactive compounds against oxidative damage in mitochondrial function. Oxid Med Cell Longev 2016; 2016:420715.

41. Wang Y, Lian X, Chen Y, Zhao X. Screening SIRT1 activators from medicinal plants as bioactive compounds against oxidative damage in mitochondrial function. Oxid Med Cell Longev 2016; 2016:420715.

42. Wang Y, Lian X, Chen Y, Zhao X. Screening SIRT1 activators from medicinal plants as bioactive compounds against oxidative damage in mitochondrial function. Oxid Med Cell Longev 2016; 2016:420715.

43. Wang Y, Lian X, Chen Y, Zhao X. Screening SIRT1 activators from medicinal plants as bioactive compounds against oxidative damage in mitochondrial function. Oxid Med Cell Longev 2016; 2016:420715.

44. Wang Y, Lian X, Chen Y, Zhao X. Screening SIRT1 activators from medicinal plants as bioactive compounds against oxidative damage in mitochondrial function. Oxid Med Cell Longev 2016; 2016:420715.
Longevity genes, cardiac ageing, and the pathogenesis of cardiomyopathy

85. Alayev A, Berger SM, Holz MK. Resveratrol as a novel treatment for diseases

84. Brown EL, Foletta VC, Wright CR, Sepulveda PV, Konstantopoulos N,

65. Shende P, Plaisance I, Morandi C, Pellieux C, Berthonneche C, Zorzato F,

86. Zheng H, Fu Y, Huang Y, Zheng X, Yu W, Wang W. mTOR signaling promotes

67. Dai DF, Liu Y, Basisty N, Karunadharma P, Dastidar SG, Chiao YA, Chen T,

86. Zheng H, Fu Y, Huang Y, Zheng X, Yu W, Wang W. mTOR signaling promotes

68. Zhang HM, Fu J, Hamilton R, Diaz V, Zhang Y. The mammalian target of rapa-

73. Su M, Chen Z, Wang C, Song L, Zou Y, Zhang L, Hui R, Wang J. Cardiac-specif-

83. Su M, Chen Z, Wang C, Song L, Zou Y, Zhang L, Hui R, Wang J. Cardiac-specific

69. Alayev T, Azar A, Sell C. Averant mTOR activation in senescence and aging

104. Sla´mova´ K, Papou... 2015;104:279–287.

88. Zhang XM, Li L, Xu JJ, Wang N, Liu WJ, Lin XH, Fu YC, Luo LL. Rapamycin pre-

70. Hua Y, Zhang Y, Ceylan-Isik AF, Wold LE, Nunn JM, Ren J. Chronic Akt activa-

62. Volkers M, Doroudgar S, Nguyen N, Konstandin MH, Quidja P, Din S, Ornelas L,

89. Houde VP, Bru ˆle´ S, Festuccia WT, Blanchard PG, Bellmann K, Deshaies Y,

48. Xiao GM, Gong W, Binaizis H, Moore XL, Su TD, Dart A, Du XJ. Inhibition of mTOR

71. Dai DF, Liu Y, Basisty N, Karunadharma P, Dastidar SG, Chiao YA, Chen T,

51. Beyer RP, Chin MT, Maccoss M, La Spada AR, Ravinbott PS. Differential effects

56. Shende P, Plaisance I, Morandi C, Pellieux C, Berthonneche C, Zorzato F.

72. Wang L, Goh S, Hui R, Wang J. Cardiac-specific overexpression of miR-222 induces

30. Puigserver P, Auwerx J. AMPK regulates energy expenditure by modulating

59. Shende P, Plaisance I, Morandi C, Pellieux C, Berthonneche C, Zorzato F.

94. Alayev T, Azar A, Sell C. Averant mTOR activation in senescence and aging

63. Wang L, Goh S, Hui R, Wang J. Cardiac-specific overexpression of miR-222 induces

81. Perez-Boado S, Ireland S, Scott CE, Hatzoglou M, Sanghera AK, Tres-5, Desnoyers S,

78. Xiong W, Gao J, Dong J, Tang Z, Wang L, Puigserver P, Auwerx J. AMPK regulates

95. Ma L, Wang R, Wang H, Zhang Y, Zhao Z. Long-term caloric restriction activa-

32. Wang L, Goh S, Hui R, Wang J. Cardiac-specific overexpression of miR-222 induces

87. Perez-Boado S, Ireland S, Scott CE, Hatzoglou M, Sanghera AK, Tres-5, Desnoyers S,

92. Guan P, Sun ZM, Wang N, Zhang Y, Zhao Z, Zhang TM, Wang J, Li Y, Wang X, Chen

82. Puigserver P, Auwerx J. AMPK regulates energy expenditure by modulating

33. Puigserver P, Auwerx J. AMPK regulates energy expenditure by modulating

52. Wang L, Goh S, Hui R, Wang J. Cardiac-specific overexpression of miR-222 induces

93. Ma L, Wang R, Wang H, Zhang Y, Zhao Z. Long-term caloric restriction acti-

54. Wang L, Goh S, Hui R, Wang J. Cardiac-specific overexpression of miR-222 induces

49. Brown EL, Goletta VC, Wright CR, Sepulveda PV, Konstantopoulos N,

75. Knapainen J, Tschida H, Stolin K, Karlsson H, Björnholm M, Heinonen Oj,

51. Beyer RP, Chin MT, Maccoss M, La Spada AR, Ravinbott PS. Differential effects

83. Su M, Chen Z, Wang C, Song L, Zou Y, Zhang L, Hui R, Wang J. Cardiac-specific

77. Perez-Boado S, Ireland S, Scott CE, Hatzoglou M, Sanghera AK, Tres-5, Desnoyers S,

31. Knapainen J, Tschida H, Stolin K, Karlsson H, Björnholm M, Heinonen Oj,

57. Perez-Boado S, Ireland S, Scott CE, Hatzoglou M, Sanghera AK, Tres-5, Desnoyers S,

79. Perez-Boado S, Ireland S, Scott CE, Hatzoglou M, Sanghera AK, Tres-5, Desnoyers S,

37. Perez-Boado S, Ireland S, Scott CE, Hatzoglou M, Sanghera AK, Tres-5, Desnoyers S,

74. Perez-Boado S, Ireland S, Scott CE, Hatzoglou M, Sanghera AK, Tres-5, Desnoyers S,

80. Puigserver P, Auwerx J. AMPK regulates energy expenditure by modulating

90. Guan P, Sun ZM, Wang N, Zou J, Luo LF, Zhao YS. Resveratrol inhibits mTOR

105. Edwards AG, Donato AJ, Lesniewski LA, Gioscia RA, Seals DR, Moore RL. Life-

61. Wang L, Goh S, Hui R, Wang J. Cardiac-specific overexpression of miR-222 induces

97. Perez-Boado S, Ireland S, Scott CE, Hatzoglou M, Sanghera AK, Tres-5, Desnoyers S,

76. Perez-Boado S, Ireland S, Scott CE, Hatzoglou M, Sanghera AK, Tres-5, Desnoyers S,

85. Alayev A, Berger SM, Holz MK. Resveratrol as a novel treatment for diseases

66. Shende P, Plaisance I, Morandi C, Pellieux C, Berthonneche C, Zorzato F.

79. Perez-Boado S, Ireland S, Scott CE, Hatzoglou M, Sanghera AK, Tres-5, Desnoyers S,

35. Perez-Boado S, Ireland S, Scott CE, Hatzoglou M, Sanghera AK, Tres-5, Desnoyers S,
110. Lan F, Ciccedo JM, Ruderman N, Idso Y. SIRT1 modulation of the acetylation status, cytotoxic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. J Biol Chem 2008;283:27628–27635.

111. Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y, Zhang X, Yang Q, Bennett C, Harada Y, Stankunas K, Wang CT, He X, MacDougall OA, You M, Williams BO, Guan KL. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and S6K1 to regulate cell growth. Cell 2006;126:95–96.

112. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasque...
induced skeletal muscle mitochondrial dysfunction. J Appl Physiol (1985) 2006; 101:385–391.

158. Wu X, He L, Cai Y, Zhang G, He Y, Zhang Z, He X, He Y, Zhang G, Luo J. Induction of autophagy contributes to the myocardial protection of valsartan against ischemia-reperfusion injury. Mol Med Rep 2018;13:1824–1830.

159. Hernández JS, Barreto-Torres G, Kuznetsov AV, Khachour Z, Javadov S. Cotranslational activation and angiotensin II-induced hypertrophy in cardiomyocytes: the role of mitochondria. J Cell Mol Med 2014;18:709–720.

160. Mavroedi V, Petakis I, Stylanou K, Katsarou T, Giannakalis K, Perakis K, Vardali E, Stratiotis S, Gantakou E, Papavasiliou S, Daphnis E. Lossartan affects glomerular AKT and mTOR phosphorylation in an experimental model of type 2 diabetic nephropathy. J Histochem Cytochem 2016;64:433–443.

161. Ma L, Gul R, Habs J, Yang M, Pulakat L, Whalley-Connell A, Ferrario FM. Sowers JR. Neobilol improves diastolic dysfunction and myocardial remodeling through reductions in oxidative stress in the transgenic (mRen2)2 rats. Am J Physiol Heart Circ Physiol 2012;302:H2331–H2351.

162. Hu H, Li X, Ren D, Tan Y, Chen J, Yang L, Chen R, Li J, Zhu P. The cardioprotective effects of carvedilol on ischemia and reperfusion injury by AMPK signaling pathway. BioMed Research International 2015;2015:1–10.

163. Yao K, Zhang W, Yao L, Yang S, Nie W, Huang F. Carvedilol promotes mitochondrial biogenesis by regulating the PGC-1/TFAM pathway in human umbilical vein endothelial cells (HUVECs). Biochem Biophys Res Commun 2016;470:961–966.

164. Wong WT, Li LH, Rao YK, Yang SP, Cheng SM, Lin WY, Cheng CC, Chen A. The anti-diabetic effects of valsartan against ischemia-reperfusion injury. Mol Med Rep 2018;15:258–264.

165. Allen SA, Tomilov A, Cortassa PA. Small molecules bind human mTOR protein and inhibit mTORC1 specifically. Biochem Pharmacol 2018;155:298–304.

166. Liu GZ, Zhang S, Li Y, Liu WY, Zhang Y, Zhao XB, Yuan Y, Zhang JW, Khananov A, Li Y. Aldosterone stimulation mediates cardiac metabolism remodeling via Sirt1/AMPK signaling in canine model. Naunyn Schmiedebergs Arch Pharmacol 2019;392:851–863.

167. Long HD, Lin YE, Liu MJ, Liang LY, Zeng ZH. Spirolonolactone prevents dietary-induced metabolic syndrome by inhibiting PI3-K/Akt and p38MAPK signaling pathways. J Endocrinol Invest 2019;36:923–930.

168. Li D, Lu D, Xu Z, Li J, Zhang Z, Lin S, Yan T. Spirolonolactone promotes autophagy via inhibiting P38MAPK and mTORC1 signaling pathway and reduce adhesive cell activity in podocytes under mechanical stress. BioSci Rep 2016;36:e003355.

169. Yuan Y, Chen Y, Zhang P, Huang S, Zhu C, Ding G, Liu B, Yang B, Zhang A. Mitochondrial dysfunction accounts for aldosterone-induced epithelial-to-mesenchymal transition of renal proximal tubular epithelial cells. Free Radic Biol Med 2012;53:30–43.

170. Plante E, Menouar A, Danalache BA, Broderick TL, Jankowski M, Gutzowka J. Treatment with brain natriuretic peptide prevents the development of cardiac dysfunction in obese diabetic db/db mice. Diabetologia 2014;57:1257–1267.

171. Ruiz-Ojeda FJ, Aguilera CM, Rupe´rez AI, Gil A´, Gomez-Llorente C. An analogue of N-terminal proglucagon: a tool to evaluate the activity of the N-terminal proglucagon promoter in immune cells. Diabetologia 2007;50:155–164.

172. Schoener W, Scheiner-Bobis G. Endogenous and exogenous cardiac glycosides: their roles in hypertension, salt metabolism, and cell growth. Am J Physiol Heart Circ Physiol 2008;295:C509–C536.

173. Liu Z, Zhao X, Pierre VS, Askian A. Association of P37K-Akt signaling pathway with digitalis-induced hypertrophy of cardiac myocytes. Am J Physiol Cell Physiol 2007;293:C1489–C1497.

174. Yiu Z, Geng X, Yu Y, Li M, Liang Y, Qin S, Fulati Z, Zhou N, Shu X, Nie Z, Dai S, Chen X, Wang J, Chen R, Su Y, Ge J. The mechanical effects of CRT promoting autophagy via mitochondrial calcium unipporter down-regulation and mitochondrial dynamics alteration. J Cell Mol Med 2019;23:3833–3842.

175. McMurray JFV, Solomon SD, Docherty KF, Jhund PS. The Dapagliflozin And Prevention of Adverse Outcomes in Heart Failure trial (DAPA-HF) in context. Eur Heart J 2020;doi:10.1093/eurheartj/ehz916.

176. Ostapshan S, Machi C, Singhal G, Chimene-Weiss J, Sales V, Kozuka C, Dreyfuss JM, Pan H, Changhaeroepaisan Y, Morningstar J, Gersten R, Pati ME. SGLT2 inhibition reprograms systemic metabolism via FGF21-dependent and - independent mechanisms. JCI Insight 2019;4:e123130.

177. Khannanova Z, Li Y. Aldosterone stimulation mediates cardiac remodeling via Sirt1/AMPK signaling in canine model. Physiol Rep 2018;6:e13741.

178. Wei D, Luo L, Wang H, Zhang W, Wang T, Xu Z. Canagliflozin ameliorates obesity by improving mitochondrial function and fatty acid oxidation via PPARα in vivo and in vitro. Life Sci 2020;247:117414.

179. Kim JH, Ko HY, Wang HJ, Lee H, Yun M, Kang ES. Effect of dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, on glucagon-like peptide-1 (GLP-1) receptor expression in non-diabetic rats with left ventricular dysfunction after myocardial infarction. Diabetes Metab Syndr Obes 2020;13:373–383.

180. Zhou S, Meng L, Lee S, Tse G, Gang M, Zhang Z, Zhao J, Zhao Y, Li G, Liu T. Dapagliflozin not only improves hepatic injury and pancreatic islet damages, but also attenuates the development of diabetic cardiomyopathy in mice with type 2 diabetes. Mol Med Rep 2019;19:2822–2835.

181. Ying Y, Jiang C, Zhang M, Jin J, Ge S, Wang X. Phloretin protects against cardiac oxidative stress and fibrosis in diabetic mice heart. Cardiovasc Diabetol 2019;18:165.

182. Xu C, Wang W, Zhang J, Lei F, Xu N, Zhang Y, Xie W. Canagliflozin exerts anti-inflammatory effects by inhibiting intracellular glucose metabolism and promoting autophagy in immune cells. BioMed Research International 2018;2018:5245–539.

183. Arráñez-Herrera A, Fajardo-Bandin S, Otero Santiago M, Barral L, Campos-Toimil M, Gil-Longo J, Costa Pereira TM, Garcia-Caballero T, Rodriguez-Segade S, Rodríguez J, Tarazoén E, Roseléi-Lieti E, Portoles M, Guialillo O, González-Juanatey R, Lago F. Empagliflozin reduces the levels of CD36 and cardiotoxic lipids while improving autophagy in the hearts of Zucker diabetic fatty rats. Diabetes Metab Syndr Obes 2019;12:45–59.

184. Li C, Zhang J, Xue M, Li X, Han F, Li X, Xu L, Yu L, Cheng Y, Li J, Li Y, Xu X, Chen B, Chen L. SGLT2 inhibition with empagliflozin ameliorates myocardial oxidative stress and fibrosis in diabetic mice heart. Cardiovasc Diabetol 2019;18:15.

185. Ye Y, Bajaj M, Yang HC, Perez-Polo JR, Birnbaum Y. SGLT-2 inhibition with dapagliflozin reduces the activation of the Nlrp3/ASC inflammasome and attenuates the development of diabetic cardiomyopathy in mice with type 2 diabetes. Further augmentation of the effects with saxagliptin, a DPP4 inhibitor. Cardiovasc Drugs Ther 2017;31:119–132.

186. Yurista SR, Sillie HHW, Oberdort-Maass SU, Schouten EM, Pavez G, Hilbrands LB, van Goor H, Veldhuisen DJ, van Veldhuisen DJ, de Boer RA, Westerink BD. Sodium-glucose co-transporter-2 inhibitor, on glucagon-like peptide-1 receptor expression in non-diabetic rats with left ventricular dysfunction after myocardial infarction. Eur J Heart Fail 2019;21:862–873.

187. Lee TM, Chang NC, Lin SZ. Dapagliflozin, a selective SGLT2 inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts. Free Radic Biol Med 2017;104:298–310.

188. Ying Y, Jiang C, Zhang M, Jin J, Ge S, Wang X. Pioglitazone protects against cardiac dysfunction and remodeling via restoring SIRT1 and anti-inflammatory effects in the streptozotocin-induced diabetic mouse model. Aging (Albany NY) 2019;11:2822–2835.

189. Xie Z, Lau K, Eby B, Lozano P, He C, Pemberton NG, Li H, Rathi S, Dong Y, Tian R, Kem D, Zou MH. Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes 2011;60:675–687.

190. Sun D, Yang F. Metformin improves cardiac function in mice with heart failure by regulating mitochondrial energy metabolism. Biochem Biophys Res Commun 2017;486:329–335.
201. Yin M, van der Horst IC, van Melle JP, Qian C, van Gilst WH, Siljé HH, de Boer RA. Metformin improves cardiac function in a non-diabetic rat model of post-MI heart failure. *Am J Physiol Heart Circ Physiol* 2011;301:H459–H468.

202. Packer M. Is metformin beneficial for heart failure in patients with type 2 diabetes? *Diabetes Res Clin Pract* 2018;136:168–170.

203. Wang G, Song X, Zhao L, Li Z, Liu B. Resveratrol prevents diabetic cardiomyopathy by increasing Nrf2 expression and transcriptional activity. *Biomed Res Int* 2018;2018:2150218.

204. Das SK, Zhabyeyev P, Basu R, Patel VB, Dyck JRB, Kassiri Z, Oudit GY. Advanced iron-overload cardiomyopathy in a genetic murine model is rescued by resveratrol therapy. *Biosci Rep* 2018;38. pii: BSR20171302. doi: 10.1042/BSR20171302.

205. Lu Y, Lu X, Wang L, Yang W. Resveratrol attenuates high fat diet-induced mouse cardiomyopathy through upregulation of estrogen related receptor-α. *Eur J Pharmacol* 2019;843:88–95.

206. Wan X, Wen JJ, Koo SJ, Liang LY, Garg NJ. SIRT1-PGC1α-NFκB pathway of oxidative and inflammatory stress during Trypanosoma cruzi infection: benefits of SIRT1-targeted therapy in improving heart function in Chagas disease. *PLoS Pathog* 2016;12:e1005954.

207. Kuno A, Hori YS, Hosoda R, Tanno M, Miura T, Shimamoto K, Horigo Y. Resveratrol improves cardiomyopathy in dystrophin-deficient mice through SIRT1 protein-mediated modulation of p300 protein. *J Biol Chem* 2013;288:5963–5972.

208. Riba A, Dieres L, Sunegi B, Toth K, Szabados E, Halmosi R. Cardioprotective effect of resveratrol in a postinfarction heart failure model. *Oxid Med Cell Longev* 2017;2017:6819281.

209. Pei Z, Deng Q, Babcock SA, He EY, Ren J, Zhang Y. Inhibition of advanced glycation endproduct (AGE) rescues against streptozotocin-induced diabetic cardiomyopathy: role of autophagy and ER stress. *Toxicon Let* 2018;284:10–20.

210. Flynn JM, O’Leary MN, Zambataro CA, Academia EC, Presley MP, Garrett BJ, Zykovich A, Mooney SD, Strong R, Rosen CJ, Kapahi P, Nelson MD, Kennedy BK, Melov S. Late-life rapamycin treatment reverses age-related heart dysfunction. *Aging Cell* 2013;12:851–862.

211. Choi JC, Worman HJ. Reactivation of autophagy ameliorates LMNA cardiomyopathy. *Autophagy* 2013;9:110–111.