The ability of *Pseudomonas aeruginosa* to adopt a Small Colony Variant (SCV) phenotype is conserved, and not restricted to clinical isolates.

Alison Besse, Mylène Trottier, Marie-Christine Groleau, Eric Déziel#

Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Québec, H7V 1B7, Canada

Running Head: Emergence of SCVs in *Pseudomonas aeruginosa*

#Address correspondence to Eric Déziel, eric.deziel@inrs.ca
ABSTRACT

A subpopulation of Small Colony Variants (SCVs) is a frequently observed feature of *Pseudomonas aeruginosa* isolated from cystic fibrosis (CF) lungs biofilms. SCVs have almost exclusively been reported from infected hosts, essentially CF individuals or, by extension, from laboratory cultivation of strains originated from infected hosts. We previously reported the identification of *P. aeruginosa* SCVs emerging from a non-clinical strain and displaying features shared with clinical SCVs. In the present work, we investigated the ability of 22 *P. aeruginosa* isolates from various environmental origins to, under laboratory culture conditions, spontaneously adopt a SCV-like smaller alternative morphotype distinguishable from the ancestral parent strain. Unexpectedly, we found that all the *P. aeruginosa* strains tested have the ability to adopt a SCV morphotype, regardless of their origin. Based on the phenotypes already described for SCVs, the SCV-like morphotypes obtained were clustered in two groups displaying various phenotypic profiles, including one characteristic of already described SCVs. We conclude that the ability to switch to a SCV phenotype is a conserved feature in *Pseudomonas aeruginosa*.
IMPORTANCE

P. aeruginosa is an opportunistic pathogen that thrives in many environments. It is a significant public health concern, notably because it is the most prevalent pathogen found in the lungs of people with cystic fibrosis (CF). In infected hosts, its persistence is believed to be related to the emergence of an alternative small colony variant (SCV) phenotype. By reporting the distribution of *P. aeruginosa* SCVs in various non-clinical environments, this work contributes to understanding a conserved adaptation mechanism used by *P. aeruginosa* to rapidly adapt in all environments. Counteraction of this strategy could prevent *P. aeruginosa* persistent infection in the future.
INTRODUCTION

The high genomic and metabolic diversity of *Pseudomonas aeruginosa* allows this bacterium to thrive in diverse environments, such as aquatic habitats, soil, food, and even built environments, such as hospital premise plumbing systems (1-3). This opportunistic pathogen, frequently identified as a causative agent of nosocomial infections, is a major cause of infections in immunocompromised individuals. Notably, *P. aeruginosa* is the most prevalent pathogen found in the lungs of people with cystic fibrosis (CF) (4-6).

P. aeruginosa expresses a broad range of virulence determinants that counteract the host immunity and promote survival (7). One of these factors is the ability to form biofilms. These organized communities largely contribute to evade host immunity and antimicrobial treatments. For instance, the biofilm matrix delays penetration of antibiotics and host defense effectors (8-10). *P. aeruginosa* typically persists in the lungs of CF individuals as a biofilm (11, 12).

The emergence of a subpopulation of Small Colony Variants (SCVs) is a frequently observed feature of *P. aeruginosa* isolates from CF lungs biofilms (13, 14). SCVs are characterized by circular opaque dwarf colonies with a diameter about three-time smaller than wild-type colonies (WT) (14-17). Shortly after their first report, we proposed that SCVs are phenotypic variants (18). Phenotypic variants arise from a phase variation mechanism, traditionally defined as a high-frequency ON/OFF switch between phenotypes in a heritable and reversible manner (19-21). Indeed, spontaneous reversion to the wildtype-like morphotype has been observed for SCVs (18, 22).

SCVs exhibit cell surface hyperpiliation and adherence to abiotic surfaces (16, 18, 23). These properties promote biofilm formation (24). Consistent with enhanced biofilm formation, a motility deficiency, notably flagellar, has also been observed for SCVs (16, 18, 25).
Additionally, SCVs exhibit autoaggregative properties (16, 23). Many of these phenotypes are linked to an overproduction of exopolysaccharides (EPS) (alginate, Pel and Psl) by SCVs (14, 26). These phenotypes have in common to be regulated by the intracellular second messenger c-di-GMP though binding to specific receptors. For instance, high c-di-GMP levels activate the expression of the pel operon, leading to production of the EPS Pel, and repress flagellar motility (27-29).

It is striking that SCVs have almost exclusively been isolated from infected hosts, essentially CF individuals; or by extension, from laboratory cultivation of strains sampled from infected hosts (13). For instance, several studies have recovered SCVs from lung, sputum or deep throat swabs of CF individuals (12, 16, 17, 30). CF is not the only pathology associated with the emergence of *P. aeruginosa* SCVs. These variants have also been isolated from urine, feces, endotracheal secretion and pleural effusion of patients suffering from meningioma, anoxic encephalopathy, hepatocellular carcinoma, lung carcinoma or grave asphyxia neonatorum (31).

While SCVs have been generated under *in vitro* and *in vivo* laboratory conditions, their emergence seems always associated with a clinical infection environment. For instance, SCVs have been generated *in vitro* in tube biofilms from the prototypic clinical strain *P. aeruginosa* PAO1 (23). SCVs have also been obtained *in vivo* from *P. aeruginosa* strains during infections in burn wound porcine models and murine models (32, 33).

Intriguingly, 20 years ago we reported one of the first identification of *P. aeruginosa* SCVs, that quickly emerged when a soil isolate was grown on a non-aqueous phase liquid, hexadecane, as sole substrate (18). The SCV morphotype of strain 57RP predominates when biofilm growth conditions are preferable and displays features shared with clinical SCVs: high adherence, efficient biofilm formation, hyperpiliation and reduced motility (18).
Since most SCVs have until now been isolated from clinical samples, it remains unclear how widespread is the ability of *P. aeruginosa* to exploit phase variation and develop this phenotype. In this work, we investigated the ability of *P. aeruginosa* isolates from various environmental origins to spontaneously adopt, under laboratory culture conditions, a SCV-like smaller colony morphotype readily distinguishable from their ancestral parent. We tested 22 *P. aeruginosa* strains from four different categories of environments: soil, food, hospital water systems and clinical. We found that all the *P. aeruginosa* strains have the ability to adopt the SCV phenotype, regardless of their origin.

RESULTS

The ability to form SCV-like morphotype colonies is a conserved feature in *Pseudomonas aeruginosa*

A few SCVs of *P. aeruginosa* have been reported under various culture conditions promoting biofilm formation (16, 18, 23). In order to more broadly investigate the ability of *P. aeruginosa* to adopt a SCV-like morphotype, we cultured 22 isolates from various origins in static liquid medium for 65 h then spread onto TSA plates to obtain isolated colonies. Six strains were from food samples (meat and fish from markets), six from clinical samples (5 from CF patients and the clinical prototypic strain PA14 from a burn patient), five from petroleum oil-contaminated soil and five from hospital sinks (drain, splash area and tap) (Table 1, columns 1 and 2). To cover the variety of temperatures relevant to these various habitats, the cultures were incubated in a temperature range varying from 30 to 40°C. At the onset, none of the strains were displaying a SCV phenotype (data not shown), but after 65 h of incubation all isolates diversified in a range of colony morphotypes, including small colonies that appear typical of SCVs (Fig. 1,
for selected strain from each origins). Small colonies emerged in the cultures incubated at all tested temperatures (data not shown).

Reported SCVs have an average diameter two to four times smaller than WT colonies. Colonies correspondingly smaller than the parental strains emerged from all 22 strains (Table 1). This result strongly suggests that the ability to produce variant colonies displaying an SCV-like morphotype is a conserved feature of *P. aeruginosa*, regardless of the origin of the strains.

Isolated SCV-like morphotype colonies are separated in two distinct clusters

By taking a closer look at the emerged SCV-like morphotypes, we observed that their sizes (Table 1) and overall appearance (Fig. 1) differ. Some colonies were denser, with well-defined round edges and others were more translucent with undefined edges (Fig. 1). We then asked whether these different types of SCV-like morphotypes are indeed *bona fide* SCVs, and if a distinction can be made between them. We focused on five strains representing the different origins, (Table 1, strains indicated by an asterisk) and isolated the various distinct morphotypic small colonies produced by each following static incubation and plating. Besides their sizes, we looked at several phenotypes typically associated with SCVs: swimming motility, biofilm formation and production of EPS, cell aggregation and production of c-di-GMP. Because cell aggregation induces the production of pyoverdine, the fluorescent siderophore of *P. aeruginosa*, while loss of the EPS coding genes, *pel* and *psl*, leads to inhibition of pyoverdine production (34), we used the production of pyoverdine as an indirect measurement of cell aggregation and EPS production. We compiled the phenotypical data for each distinct SCV-like morphotypes (SMs) (Table S1) and performed a principal coordinates analysis (PCoA) based on their colony size, auto-aggregation properties (pyoverdine production), their ability to perform swimming
motility, timing of biofilm formation and density of biofilms. We found that the various distinct SMs generated by the five parental strains clustered in two separate groups (named Cluster 1 and Cluster 2) (Fig. 2). Members of both clusters for the SMs of soil strain 57RP, the sink hospital strain CL-511, the food strain PB PFR11 C2, and the clinical strain FC-AMT0134-9 had phenotypic features that distinguished them from their parental strain (Fig. 2). Cluster 2 of strain PA14 contained only one isolated SM, but we believe that this is only the result of lower abundance of this form when sampling was performed. These results indicate that two distinct phenotypic types of SCV-like morphotypes emerged in our culture conditions.

SMs from Cluster 1 are typical SCVs with a reversible state

SMs belonging to Cluster 1 of each strain share some common features: a reduced swimming motility, and/or a promoted biofilm formation, and/or enhanced auto-aggregation properties (pyoverdine production) compare with their parental strain (Table S1 and Fig. S1). These features are typical of SCVs described in the literature. Since these phenotypes are regulated by c-di-GMP, we assessed intracellular c-di-GMP levels in selected SMs of Cluster 1. As expected, higher c-di-GMP levels were measured in Cluster 1 SMs than in their parental counterparts, again indicating that Cluster 1 SMs are typical SCVs (Fig. 3). In addition to quantitative PCoA data, we looked at rugosity of SM colonies, a qualitative phenotype traditionally associated with SCVs. While Cluster 1 SMs colonies display a very distinctive rugose surface compared with their parental counterparts, rugosity appearance was diverse among the strains (Fig. 4).

Finally, to further confirm that Cluster 1 SMs are indeed SCVs, we observed the expression of spontaneous reversion to a larger, parental-like phenotype, a property traditionally
associated with phase variation. As stated above, SMs were readily obtained after a unique 65 h incubation under static culture conditions, suggesting that their emergence rate is high (Fig. 1). In addition, on agar plates, reversion to a parental-like morphotype was observed after a 48 h incubation at 30°C for SMs belonging to Cluster 1 (Fig. 5). Reversion was revealed as an outgrow from the original colony but sometimes observation was less evident, for instance in isolate PB PFR11 C2 reversion was revealed by an appearance change at the colony surface (Fig. 5). This reversibility, in addition to their phenotypical characterisation confirms that SMs from Cluster 1 are SCVs.

SMs from Cluster 2 display phenotypical heterogeneity

Unlike Cluster 1 SMs, SMs included in Cluster 2 display inter-strain diversity considering the phenotypes used for the PCoA (Table S1 and Fig. S1). For instance, Cluster 2 SMs swimming motility was intermediate between the parental strain and Cluster 1 SMs for strains 57RP and PB PFR11 C2 (Table S1 and Fig. S1, A). However, for strains CL-511 and FC-AMT0134-9 the swimming motility was increased compared to both Cluster 1 SMs and the parental strains (Table S1 and Fig. S1, A). In addition to PCoA data, c-di-GMP production in Cluster 2 SMs was also variable depending on the parental strain: 57RP Cluster 2 SMs showed higher levels of c-di-GMP compared with both parental strain and Cluster 1 SMs but CL-511 Cluster 2 SMs showed higher production of c-di-GMP only compared to the parental strain (Fig. 3). Also, Cluster 2 SMs in the food strain PB PFR11 C2 showed similar production of c-di-GMP and Cluster 2 SMs in the clinical strain FC-AMT0134-9 even lower production of c-di-GMP compare to their parental strain (Fig. 3). Thus, c-di-GMP levels are not a driving feature for SMs of Cluster 2. Colony surface aspects of Cluster 2 SMs on Congo Red plates was also distinct,
once again depending on the parental strain. Colonies of SM3 and SM4 from 57RP displayed a rugose surface, however less pronounced than for Cluster 1 morphotypes (SM1, SM2, SM5 and SM6), in accordance with the reduced autoaggregative properties (Fig. 4 and Fig. S1, D). For the other strains (PA14, PB PFR11 C2, CL-511 and FC-AMT0134-9), SMs from Cluster 2 displayed a smoother surface on Congo Red, closer to the parental strain (Fig. 4). While we consider that Cluster 2 SMs are phase variants because of their rapid emergence to reproducible phenotypes, reversion to a larger colonial morphotype akin to WT was only observed for 57RP Cluster 2 SMs and not for the other strains, after 96 h (Fig. 5). All together, these results indicate that, apart from strain 57RP, SMs from Cluster 2 do not exhibit the majority of the traditionally described SCVs features.

DISCUSSION

Ability to switch to the SCV phenotype is a conserved feature among P. aeruginosa strains, regardless of their origin

SCVs have been reported several times in the context of human infections, notably in CF individuals. A correlation between the emergence of P. aeruginosa SCVs and infection persistence in animal models was established, supporting the idea that the SCV phenotype confers a fitness advantage under chronic infection conditions (35-37). Switch towards the SCV morphotype may represent an adaptation strategy to the hostile environment of the host by increasing resistance to host immunity and antimicrobial treatments (36, 38). However, the emergence of SCVs cannot be exclusively related to a clinical context. For instance, in 2001 Déziel et. al. (18) reported the emergence of SCVs in laboratory cultures of a soil P. aeruginosa isolate. However, since then, no SCVs have been reported from a non-clinical context, so the
question of prevalence remained open: is the ability to adopt a SCV phenotype mostly restricted to clinical isolates, from chronic infections including a biofilm aspect, - or not?

Here, we investigated the distribution of a SCV-based adaptative strategy in *P. aeruginosa* by screening 22 strains from various origins. Screening was performed in static cultures, a growth condition that generates different microenvironments, as seen by the formation of a pellicle biofilm at the air-liquid interface. For all 22 strains, small colonies emerged in static cultures, with colonies isolated on agar plates with sizes similar to SCVs described in other studies (16, 18). However, SCVs are not exclusively defined by the smaller size of their colonies. SCVs are also often identified based on the rugosity of the colony formed on Congo Red agar plates. Indeed, SCVs are often referred as RSCVs for *Rugose Small Colony Variant* (14, 32, 36). Nevertheless, rugosity is a subjective feature, and its description may vary according to the observer and culture conditions. Indeed, we have observed that the rugosity level changes according to strains. This might be especially true for strains originating from various environments, as in the present study. Thus, we decided to take advantage of the various additional phenotypes described for SCVs to ascertain their identity. To this end, we focused on five strains representing diverse environmental origins. Based on their phenotypic features, the small colonies obtained from each parental strain were clustered into two distinct groups. Small colonies classified in Cluster 1 shared several inter-strain phenotypic features, including reversion after 48h. Based on what is already known on SCV characterisation, these small colonies can be defined as SCVs. This reveals that SCVs emerge from *P. aeruginosa* isolates from various origins. Thus, the ability to switch to the SCV phenotype is an intrinsic feature of the species.
Switch to SCV is a reversible mechanism, likely to be regulated by phase variation through modulation of c-di-GMP

Phenotypic switching refers to a reversible interchange of states. Several studies suggest that phenotypic switching could be regulated by a reversible adaptation mechanism: phase variation (18, 39). Unlike reversible adaptation mechanism, genetic diversity generated by random mutations leads to a microbial subpopulation adapted to specific conditions. However, the acquired benefit will disappear when the environmental conditions fluctuate since genomes have been mutated irreversibly (19). Reversible adaptation mechanisms are based on DNA rearrangements and lead to variation in gene expression (19). Phase variation mechanisms lead to emergence of a heterogeneous population in which the best suitable phenotype will multiply until the conditions fluctuate again and the selected phenotypes revert to another phenotype. Phase variation is a common phenomenon in Gram-negative bacteria and is typical of bacteria thriving in heterogeneous ecological niches (20, 21, 40), notably P. aeruginosa (39). Indeed, phase variation mechanism represents a significant advantage for the rapid adaptation to sudden changes in the environment (41, 42). Interestingly, phenotypes traditionally related to SCV (motility, aggregation) are regulated by phase variation mechanisms (20). In addition, one recent study reports a large genomic inversion in P. aeruginosa SCVs (43). Thus, we hypothesize that the reversible switch to SCVs could be regulated by a phase variation mechanism. However, SCVs reversion can occur toward a phenotype likely different from the parental morphotype (22), suggesting that regulation is not necessarily an ON/OFF switch on a particular locus. It would be interested to investigate the ability of a revertant to switch again to the SCV phenotype under appropriate conditions. It should be emphasized here that colonies referred to as SCVs have been isolated from CF individuals and infected animals who actually had wspF- mutations.
(32), demonstrating that small colonies akin to SCVs can result from mutations and not phase variation.

Intracellular c-di-GMP levels regulate all of the phenotypes associated with SCVs: EPS production, motility, adherence, etc. (27-29). The c-di-GMP pool is regulated by diguanylate cyclases (DGC, synthesis of c-di-GMP) and phosphodiesterases (PDE, degradation of c-di-GMP) (44). In addition, emergence of SCVs can be “artificially” stimulated by introducing mutations in key genes involved in c-di-GMP regulation, such as the inhibitors coding genes \textit{wspF} or \textit{yfibNR} (14, 36, 45) or by overexpressing the DGC coding gene \textit{wspR} (38). The phase variation mechanism at play to generate SCVs could function through regulation of c-di-GMP.

\begin{center}
\textbf{Phase variation represents a conserved mechanism for rapid adaptation and persistence of a \textit{P. aeruginosa} population}
\end{center}

To readily observe the rapid adaptive benefit of phase variation, we need culture conditions where there is a strong selective pressure to form a biofilm. Déziel et al. (18) grew \textit{P. aeruginosa} on an extremely hydrophobic source of carbon, hexadecane, so that the only way to thrive was to grow directly attached to the substrate, thus the need for rapid biofilm formation. However, this selection method is restricted to strains expressing the potential for aliphatic alkane catabolism (46). Here, we needed a selective condition more widely amenable to a general screen. When growing in a standing culture, oxygen is rapidly depleted and forming a biofilm at the air-liquid interface becomes the best solution, readily available to any strain able to produce a biofilm. Accordingly, we found that SCVs emerged spontaneously in a static (standing) liquid culture. Supporting this model, supplementing cultures with an alternative electron acceptor, such as KNO$_3$, reduced the emergence of SCVs in PA14 (Fig. S2).
SCVs have always been isolated in biofilm-promoting conditions or from environments where biofilms thrive (16, 31, 33). SCVs are especially prone at adherence and biofilm formation (18, 23, 31). The attached mode of growth (biofilm) is a widespread lifestyle in all types of environments (47-49). Biofilms are protective barriers for their bacterial components in the environment: they increase tolerance to antimicrobials such as antibiotics, disinfectants, toxic metals compared with free-living bacterial cells and they enhanced ability to survive in extreme conditions as instance desiccation (50-52). Thus, one can easily conceive that the switch to the SCV phenotype confers a significant advantage for colonization of various ecological niches, accounting for the conservation of the SCV phenotypic switch mechanism in all the tested strains. However, the exact link between SCVs and biofilm formation remains unclear; it is likely mostly relevant for the initial attachment to the surface/interface.

Small colonies are not necessarily SCVs, nor variants

During our experiments with static cultures, we observed several small colony morphotypes Based on our PCoA analysis a proportion of them were clustered in two distinct groups (Fig. 2). Except for strain 57RP, the SMs from Cluster 2 did not display clear reversion after 48 h on solid medium (data not shown). However, SMs from Cluster 2 could still be able to revert in conditions outside the ones tested in our study. Also, their frequency of emergence seemed too high for mutants. Thus, we wonder if cluster 2 SMs should be identified as variants based on our criteria.

In contrast with SMs from Cluster 1, SMs from Cluster 2 showed inter-strain heterogeneous features. One hypothesis is that they represent intermediate forms between a SCV-like phenotype and reversion. Supporting this hypothesis, we observed a large diversity of
Among them, large colonies also displayed features similar to revertants (16). This observation supports our hypothesis that reversion could have occurred in the static liquid cultures, and intermediate forms could consequently be isolated. Maybe several mechanisms can act in parallel to induce the phenotypic diversity we observed, thus increasing the likelihood that the best adapted subpopulation would be readily available to allow survival of the group.

The SCV phenotype has been linked to the persistence of *P. aeruginosa* in the context of infections in a human host, notably linked to its increased resistance against antimicrobials and host immunity. However, we have demonstrated that strains isolated from soil, food and hospital environments can also adopt a SCVs phenotype. This indicates that the ability of *P. aeruginosa* to form SCVs is naturally widespread, and SCVs emergence is not exclusively related to the pressure of the clinical environment. This is the first report of high prevalence of SCVs among *P. aeruginosa* strains, regardless of the origin of the isolates. The SCVs that were identified showed reversion after 48 hours on solid media. This result supports the hypothesis that *P. aeruginosa* uses a reversible adaptation strategy, generating phenotypic diversity, to rapidly adapt and persist into diverse environmental conditions, accounting for its versatility and persistence in a lot of environments. A deeper comprehension of the adaptation strategy used by *P. aeruginosa* could ultimately provide innovative strategies for eradication of this opportunistic multiresistant pathogen of public concern.

MATERIALS AND METHODS

Bacterial strains and growth conditions
Bacterial strains are listed in Table 1 and their specific origin are listed in Table S2. In this study, the term “parental strain” designs the original strain used to evolve other morphotypes in static cultures, including SCVs. Strains were grown in tryptic soy broth (TSB; BD), at 37°C in a TC-7 roller drum (NB) at 240 rpm for the parental strains and at 30°C in an Infors incubator (Multitron Pro) at 180 rpm (angled tubes) for the isolated evolved morphotypes. Static cultures were inoculated with the parental strain at an initial OD$_{600}$ of 0.05 and incubated at 30, 30.9, 32.2, 33.9, 36.3, 38, or 40°C for 65 hours. Cultures were then spread on tryptic soy agar 2% plates (TS-Agar; AlphaBiosciences) unless stated otherwise. Two percent agar were added to limit expansion of colonies and improve isolation of the distinct morphotypes.

Bradford protein assay

Due to the highly aggregative properties of SCVs, OD$_{600}$ measurements were not appropriate to evaluate growth of some of the isolated evolved morphotypes. The Bradford protein assay was used to quantify the concentration of total proteins in all our samples. Pellets from 1 ml of culture were resuspended in 1 ml 0.1 N NaOH and incubated 1 h at 70°C. Protein concentrations were measured on samples according to the manufacturer guidelines for the Bradford reagent (Alfa Aesar).

Phenotypic tests

Overnight (O/N) cultures of parental strains and their isolated morphotypes were grown at 30°C in an Infors incubator (Multitron Pro) at 180 rpm in angled tubes. Since biofilms formation occurred in cultures, they were transferred to clean tubes before using to perform experiments or
Bradford protein quantifications. Statistical analyses were achieved using Ordinary one-way analysis of variance (ANOVA). Each phenotypic test was performed in technical triplicates.

Morphology on Congo red plates

A 1% Congo red solution in water (Fisher scientific) was added to TS-Agar 2% to a final concentration of 0.1%. Ten µL of culture were spotted on the plates. Plates were incubated at 30°C and observed after 24 h, 48 h and 96 h. Plates were observed with a binocular StemiDV4 (Zeiss) and photos were taken with the camera DMC-ZS60 (Panasonic Lumix).

Swimming motility tests

Swim plates were prepared and dried for 15 min under the flow of a Biosafety Cabinet (20 mM NH₄Cl, 12 mM Na₂HPO₄, 22 mM KH₂PO₄, 8.6 mM NaCl, 0.5% Casamino acids (CAA), 0.3% Bacto-Agar (BD), supplemented with 1 mM MgSO₄, 1 mM CaCl₂ and 11 mM dextrose). A volume of 2.5 µL of culture was inoculated in the agar. Plates were incubated 20 hours at 30°C. Swimming ability was assessed by measuring the area (mm²) of the turbid circular zone using ImageJ. All experiments were performed in triplicates.

Biofilm formation

Microtiter (96-well) plates containing 1/10 TSB supplemented with 0.5% CAA were inoculated from a transferred overnight culture in order to obtain a starting concentration of 70 mM proteins. Each sample was inoculated in five different wells. Plates were incubated at 30°C without agitation. After 6 and 24 h, plates were rinsed thoroughly with distilled water and 200 µL of a 1% Crystal violet solution was added to each well. After 15 minutes of incubation at
room temperature, plates were rinsed thoroughly with distilled water and the dye was solubilized
in 300 µL in 30% acetic acid. The absorbance was measured at 595 nm with a microplate reader
(Cytation3, Biotek). Bovine serum albumin (BSA) was used to generate a standard curve.
Earliness of biofilm formation was calculated as the % of biofilm formed after 6 h of incubation
compared with total biofilm formed after 24 h incubation. Density of the biofilm was calculated
as the amount of biofilm formed after 24h.

Pyoverdine production
Overproduction of pyoverdine was previously noted as a feature of strain 57RP SCVs (18). We
confirmed that a SCV from PA14 showed high fluorescence level at pyoverdine wavelength,
likely to account for cell aggregation and EPS overproduction. An SCV isolated from a PA14
pvdD mutant, which is no longer able to produce pyoverdine, showed lower fluorescence levels,
similar to parental colonies, confirming that (1) pyoverdine production is responsible for the
fluorescence detected and (2) measured fluorescence is correlated with SCV aggregation
properties (Fig. S3). To measure pyoverdine production, black 96-well plates (Greiner) were
filled with 200 µL of culture. Fluorescence was measured at wavelengths 390nm/530nm
excitation/emission using a microplate reader (Cytation3, Biotek).

C-di-GMP quantification
C-di-GMP levels were assessed with the fluorescence-based biosensor pCdrA-gfpC (53, 54).
pCdrA-gfpC was constructed by Tim Tolker-Nielsen (addgene plasmid #111614;
http://n2t.net/addgene:111614 ; RRID:Addgene_111614). Purified plasmids were transformed by
electroporation in evolved morphotypes obtained from static cultures (55). Transformants were
selected on TS-Agar 2% supplemented with 100 µg/ml gentamycin. Three clones for each transformed morphotypes were cultured in TSB supplemented with gentamycin 100 µg/ml. Cultures were washed twice in fresh TSB to get rid of a potential non-specific fluorescence due to secreted fluorescent pigments as pyoverdine. Fluorescence was measured using a Cytation3 microplate reader (BioTek) at 490nm/515nm (excitation/emission) in black 96-well plates (Greiner). The non-transformed strain was used as a control. Fluorescence from the control was subtracted to the fluorescence signal for the transformed strains.

PCoA analysis

Colonies identified as SMs compared with their parental isolate (cf. results) were used to perform a principal coordinate analysis (PCoA). Statistical analyses were performed using RStudio software version 1.3.1093 (56) with normalised data showed in Table S1. A Euclidean distance matrix was used to generate a clustering of the bacterial isolates according to their phenotypical profile. A Similarity Profile Analysis (simprof) was performed to determine the number of significant clusters produced using hclust with the assumption of no a priori groups. Significant clusters were considerate when at least two evolved morphotypes constituted it.

ACKNOWLEDGMENTS

We thank Cynthia Bérubé for her help with the c-di-GMP biosensor preliminary experiments, and Thays de Oliveira Pereira for critical reading of the manuscript. This work was supported by grant MOP-142466 from the Canadian Institutes of Health Research (CIHR). Dr. Alison Besse is a Fellow of the postdoctoral grant Calmette and Yersin from the Institut Pasteur.
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

AB, MCG, ED conceived the project, contributed to experimental design and interpreted results. AB and MT contributed to data acquisition. AB, MCG and ED wrote, reviewed and edited the manuscript.

REFERENCES

1. Bédard E, Prévost M, Déziel E. 2016. *Pseudomonas aeruginosa* in premise plumbing of large buildings. MicrobiologyOpen 5:937-956.

2. Diggle SP, Whiteley M. 2020. Microbe Profile: *Pseudomonas aeruginosa*: opportunistic pathogen and lab rat. Microbiology 166:30-33.

3. Crone S, Vives-Flórez M, Kvich L, Saunders AM, Malone M, Nicolaisen MH, Martínez-García E, Rojas-Acosta C, Catalina Gomez-Puerto M, Calum H, Whiteley M, Kolter R, Bjarnsholt T. 2020. The environmental occurrence of *Pseudomonas aeruginosa*. APMIS 128:220-231.

4. Folkesson A, Jelsbak L, Yang L, Johansen HK, Ciofu O, Hoiby N, Molin S. 2012. Adaptation of *Pseudomonas aeruginosa* to the cystic fibrosis airway: an evolutionary perspective. Nat Rev Microbiol 10:841-51.

5. Malhotra S, Hayes D, Jr., Wozniak DJ. 2019. Cystic Fibrosis and *Pseudomonas aeruginosa*: the Host-Microbe Interface. Clin Microbiol Rev 32.
6. López-Causapé C, Cabot G, Del Barrio-Tofiño E, Oliver A. 2018. The Versatile Mutational Resistome of *Pseudomonas aeruginosa*. Front Microbiol 9:685.

7. Gellatly SL, Hancock RE. 2013. *Pseudomonas aeruginosa*: new insights into pathogenesis and host defenses. Pathog Dis 67:159-73.

8. Williams BJ, Dehnbostel J, Blackwell TS. 2010. *Pseudomonas aeruginosa*: host defence in lung diseases. Respirology 15:1037-56.

9. Alhede M, Bjarnsholt T, Givskov M, Alhede M. 2014. *Pseudomonas aeruginosa* biofilms: mechanisms of immune evasion. Adv Appl Microbiol 86:1-40.

10. Ciofu O, Tolker-Nielsen T. 2019. Tolerance and Resistance of *Pseudomonas aeruginosa* Biofilms to Antimicrobial Agents-How *P. aeruginosa* Can Escape Antibiotics. Front Microbiol 10:913.

11. Hoiby N, Ciofu O, Bjarnsholt T. 2010. *Pseudomonas aeruginosa* biofilms in cystic fibrosis. Future Microbiol 5:1663-74.

12. Costerton JW, Stewart PS, Greenberg EP. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284:1318-22.

13. von Götz F, Häussler S, Jordan D, Saravanamuthu SS, Wehmhoner D, Strussmann A, Lauber J, Attree I, Buer J, Tümmler B, Steinmetz I. 2004. Expression analysis of a highly adherent and cytotoxic small colony variant of *Pseudomonas aeruginosa* isolated from a lung of a patient with cystic fibrosis. J Bacteriol 186:3837-47.
14. Starkey M, Hickman JH, Ma L, Zhang N, De Long S, Hinz A, Palacios S, Manoil C, Kirisits MJ, Starner TD, Wozniak DJ, Harwood CS, Parsek MR. 2009. *Pseudomonas aeruginosa* rugose small-colony variants have adaptations that likely promote persistence in the cystic fibrosis lung. Journal of Bacteriology 191:3492-3503.

15. Häussler S, Tümmler B, Weissbrodt H, Rohde M, Steinmetz I. 1999. Small-colony variants of *Pseudomonas aeruginosa* in cystic fibrosis. Clin Infect Dis 29:621-5.

16. Häussler S, Ziegler I, Lottel A, Götz FV, Rohde M, Wehmohner D, Saravanamuthu S, Tümmler B, Steinmetz I. 2003. Highly adherent small-colony variants of *Pseudomonas aeruginosa* in cystic fibrosis lung infection. J Med Microbiol 52:295-301.

17. Lozano C, Azcona-Gutiérrez JM, Van Bambeke F, Sáenz Y. 2018. Great phenotypic and genetic variation among successive chronic *Pseudomonas aeruginosa* from a cystic fibrosis patient. PLoS One 13:e0204167.

18. Déziel E, Comeau Y, Villemur R. 2001. Initiation of biofilm formation by *Pseudomonas aeruginosa* 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilities. J Bacteriol 183:1195-204.

19. Villemur R, Déziel E. 2005. Phase variation and antigenic variation, p 277-322. In Mullany P (ed). The Dynamic Bacterial Genome doi:DOI: 10.1017/CBO9780511541544.008. Cambridge University Press, Cambridge.
20. van der Woude MW, Bäumler AJ. 2004. Phase and antigenic variation in bacteria. Clin Microbiol Rev 17:581-611.

21. Henderson IR, Owen P, Nataro JP. 1999. Molecular switches--the ON and OFF of bacterial phase variation. Mol Microbiol 33:919-32.

22. Häussler S. 2004. Biofilm formation by the small colony variant phenotype of *Pseudomonas aeruginosa*. Environ Microbiol 6:546-51.

23. Kirisits MJ, Prost L, Starkey M, Parsek MR. 2005. Characterization of colony morphology variants isolated from *Pseudomonas aeruginosa* biofilms. Appl Environ Microbiol 71:4809-21.

24. Chiang P, Burrows LL. 2003. Biofilm formation by hyperpiliated mutants of *Pseudomonas aeruginosa*. J Bacteriol 185:2374-8.

25. Wei Q, Tarighi S, Dotsch A, Haussler S, Musken M, Wright VJ, Camara M, Williams P, Haenen S, Boerjan B, Bogaerts A, Vierstraete E, Verleyen P, Schoofs L, Willaert R, De Groote VN, Michiels J, Vercammen K, Crabbe A, Cornelis P. 2011. Phenotypic and genome-wide analysis of an antibiotic-resistant small colony variant (SCV) of *Pseudomonas aeruginosa*. PLoS One 6:e29276.

26. Malone JG, Jaeger T, Manfredi P, Dotsch A, Blanka A, Bos R, Cornelis GR, Häussler S, Jenal U. 2012. The YfiBNR signal transduction mechanism reveals novel targets for the
evolution of persistent *Pseudomonas aeruginosa* in cystic fibrosis airways. PLoS Pathog 8:e1002760.

27. Baker AE, Diepold A, Kuchma SL, Scott JE, Ha DG, Orazi G, Armitage JP, O'Toole GA. 2016. PilZ Domain Protein FlgZ Mediates Cyclic Di-GMP-Dependent Swarming Motility Control in *Pseudomonas aeruginosa*. J Bacteriol 198:1837-46.

28. Hickman JW, Harwood CS. 2008. Identification of FleQ from *Pseudomonas aeruginosa* as a c-di-GMP-responsive transcription factor. Mol Microbiol 69:376-89.

29. Lee VT, Matewish JM, Kessler JL, Hyodo M, Hayakawa Y, Lory S. 2007. A cyclic-di-GMP receptor required for bacterial exopolysaccharide production. Mol Microbiol 65:1474-84.

30. Schneider M, Muhlemann K, Droz S, Couzinet S, Casaulta C, Zimmerli S. 2008. Clinical characteristics associated with isolation of small-colony variants of *Staphylococcus aureus* and *Pseudomonas aeruginosa* from respiratory secretions of patients with cystic fibrosis. J Clin Microbiol 46:1832-4.

31. Ikeno T, Fukuda K, Ogawa M, Honda M, Tanabe T, Taniguchi H. 2007. Small and rough colony *Pseudomonas aeruginosa* with elevated biofilm formation ability isolated in hospitalized patients. Microbiol Immunol 51:929-38.

32. Gloag ES, Marshall CW, Snyder D, Lewin GR, Harris JS, Santos-Lopez A, Chaney SB, Whiteley M, Cooper VS, Wozniak DJ. 2019. *Pseudomonas aeruginosa* Interstrain
Dynamics and Selection of Hyperbiofilm Mutants during a Chronic Infection. mBio 10:e01698-19

Bayes HK, Ritchie N, Irvine S, Evans TJ. 2016. A murine model of early Pseudomonas aeruginosa lung disease with transition to chronic infection. Sci Rep 6:35838.

Visaggio D, Pasqua M, Bonchi C, Kaever V, Visca P, Imperi F. 2015. Cell aggregation promotes pyoverdine-dependent iron uptake and virulence in Pseudomonas aeruginosa. Front Microbiol 6:902.

Mulcahy H, O'Callaghan J, O'Grady EP, Maciá MD, Borrell N, Gómez C, Casey PG, Hill C, Adams C, Gahan CG, Oliver A, O'Gara F. 2008. Pseudomonas aeruginosa RsmA plays an important role during murine infection by influencing colonization, virulence, persistence, and pulmonary inflammation. Infect Immun 76:632-8.

Malone JG, Jaeger T, Spangler C, Ritz D, Spang A, Arrieumerlou C, Kaever V, Landmann R, Jenal U. 2010. YfiBNR mediates cyclic di-GMP dependent small colony variant formation and persistence in Pseudomonas aeruginosa. PLoS Pathog 6:e1000804.

Byrd MS, Pang B, Hong W, Waligora EA, Juneau RA, Armbruster CE, Weimer KE, Murrah K, Mann EE, Lu H, Sprinkle A, Parsek MR, Kock ND, Wozniak DJ, Swords WE. 2011. Direct evaluation of Pseudomonas aeruginosa biofilm mediators in a chronic infection model. Infect Immun 79:3087-95.
38. Malone JG. 2015. Role of small colony variants in persistence of *Pseudomonas aeruginosa* infections in cystic fibrosis lungs. Infect Drug Resist 8:237-47.

39. Drenkard E, Ausubel FM. 2002. *Pseudomonas* biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416:740-3.

40. Sánchez-Contreras M, Martín M, Villacieros M, O’Gara F, Bonilla I, Rivilla R. 2002. Phenotypic selection and phase variation occur during alfalfa root colonization by *Pseudomonas fluorescens* F113. J Bacteriol 184:1587-96.

41. Leoni L, Orsi N, de Lorenzo V, Visca P. 2000. Functional analysis of PvdS, an iron starvation sigma factor of *Pseudomonas aeruginosa*. J Bacteriol 182:1481-91.

42. Dybvig K. 1993. DNA rearrangements and phenotypic switching in prokaryotes. Mol Microbiol 10:465-71.

43. Irvine S, Bunk B, Bayes HK, Spröer C, Connolly JPR, Six A, Evans TJ, Roe AJ, Overmann J, Walker D. 2019. Genomic and transcriptomic characterization of *Pseudomonas aeruginosa* small colony variants derived from a chronic infection model. Microbial Genomics 5:e000262.

44. Valentini M, Filloux A. 2016. Biofilms and Cyclic di-GMP (c-di-GMP) Signaling: Lessons from *Pseudomonas aeruginosa* and Other Bacteria. J Biol Chem 291:12547-55.

45. Davies JA, Harrison JJ, Marques LL, Foglia GR, Stremick CA, Storey DG, Turner RJ, Olson ME, Ceri H. 2007. The GacS sensor kinase controls phenotypic reversion of small
colony variants isolated from biofilms of *Pseudomonas aeruginosa* PA14. FEMS Microbiol Ecol 59:32-46.

46. Brzeszcz J, Kaszycki P. 2018. Aerobic bacteria degrading both n-alkanes and aromatic hydrocarbons: an undervalued strategy for metabolic diversity and flexibility. Biodegradation 29:359-407.

47. Chiellini CC, S.; Vassallo, A.; Mocali, S.; Miceli, E.; Fagorzi, C.; Bacci, G.; Coppini, E.; Fibbi, D.; Bianconi, G.; Canganella, F.; Fani, R. 2019. Exploring the Bacterial Communities of Infernaccio Waterfalls: A Phenotypic and Molecular Characterization of *Acinetobacter* and *Pseudomonas* Strains Living in a Red Epilithic Biofilm. Diversity 11:175.

48. Wingender J, Flemming HC. 2011. Biofilms in drinking water and their role as reservoir for pathogens. Int J Hyg Environ Health 214:417-23.

49. McBain AJ, Bartolo RG, Catrenich CE, Charbonneau D, Ledder RG, Rickard AH, Symmons SA, Gilbert P. 2003. Microbial characterization of biofilms in domestic drains and the establishment of stable biofilm microcosms. Appl Environ Microbiol 69:177-85.

50. Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. 2016. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14:563-75.

51. Lee K, Yoon SS. 2017. *Pseudomonas aeruginosa* Biofilm, a Programmed Bacterial Life for Fitness. J Microbiol Biotechnol 27:1053-1064.
52. Soares A, Alexandre K, Etienne M. 2020. Tolerance and Persistence of *Pseudomonas aeruginosa* in Biofilms Exposed to Antibiotics: Molecular Mechanisms, Antibiotic Strategies and Therapeutic Perspectives. Front Microbiol 11:2057.

53. Rybtke M, Chua SL, Yam JKH, Givskov M, Yang L, Tolker-Nielsen T. 2017. Gauging and Visualizing c-di-GMP Levels in *Pseudomonas aeruginosa* Using Fluorescence-Based Biosensors. Methods Mol Biol 1657:87-98.

54. Rybtke MT, Borlee BR, Murakami K, Irie Y, Hentzer M, Nielsen TE, Givskov M, Parsek MR, Tolker-Nielsen T. 2012. Fluorescence-based reporter for gauging cyclic di-GMP levels in *Pseudomonas aeruginosa*. Appl Environ Microbiol 78:5060-9.

55. Choi KH, Kumar A, Schweizer HP. 2006. A 10-min method for preparation of highly electrocompetent *Pseudomonas aeruginosa* cells: application for DNA fragment transfer between chromosomes and plasmid transformation. J Microbiol Methods 64:391-7.

56. Team R. 2020. RStudio: Integrated Development Environment for R, v1.3.1093. http://www.rstudio.com/.

57. Wolter DJ, Emerson JC, McNamara S, Buccat AM, Qin X, Cochrane E, Houston LS, Rogers GB, Marsh P, Prehar K, Pope CE, Blackledge M, Déziel E, Bruce KD, Ramsey BW, Gibson RL, Burns JL, Hoffman LR. 2013. *Staphylococcus aureus* small-colony variants are independently associated with worse lung disease in children with cystic fibrosis. Clin Infect Dis 57:384-91.
581 58. Rahme LG, Stevens EJ, Wolford SF, Shao J, Tompkins RG, Ausubel FM. 1995. Common
582 virulence factors for bacterial pathogenicity in plants and animals. Science 268:1899-902.
583 59. Benie CK, Dadié A, Guessennd N, N’Gbesss-Kouadio NA, Kouame ND, N’Golo D C,
584 Aka S, Dako E, Dje KM, Dosso M. 2017. Characterization of Virulence Potential of
585 Pseudomonas Aeruginosa Isolated from Bovine Meat, Fresh Fish, and Smoked Fish. Eur
586 J Microbiol Immunol (Bp) 7:55-64.
587 60. Déziel E, Paquette G, Villemur R, Lépine F, Bisaillon J. 1996. Biosurfactant production
588 by a soil Pseudomonas strain growing on polycyclic aromatic hydrocarbons. Appl
589 Environ Microbiol 62:1908-12.
589 61. Guerra-Santos L, Käppeli O, Fiechter A. 1984. Pseudomonas aeruginosa biosurfactant
590 production in continuous culture with glucose as carbon source. Appl Environ Microbiol
591 48:301-5.
592 62. Lalancette C, Charron D, Laferrière C, Dolcé P, Déziel E, Prévost M, Bédard E. 2017.
593 Hospital Drains as Reservoirs of Pseudomonas aeruginosa: Multiple-Locus Variable-
594 Number of Tandem Repeats Analysis Genotypes Recovered from Faucets, Sink Surfaces
595 and Patients. Pathogens 6:36.
596 63. Pemberton JM, Holloway BW. 1972. Chromosome mapping in Pseudomonas
597 aeruginosa. Genet Res 19:251-60.
599
FIGURE LEGENDS

Fig. 1. Small colonies of *Pseudomonas aeruginosa* emerge in static cultures from strains isolated from various origins.

Parental strains were inoculated under static liquid conditions in TSB for 65 hours and spread onto TS-Agar 2% plates. Black arrows indicate smaller colonies. White arrows indicate parent-like colony.

Fig. 2. Small colonies isolated from static cultures are clustered in two separate groups according to their phenotypic features.

PCoA analysis were performed with a matrix composed of data obtained from the phenotypic tests (swimming, biofilm formation, and pyoverdine production) for the parental strain and distinct small colonies isolated from static cultures with a diameter at least two times smaller than parental strain (Table S1). Each point represents a small colony isolated from the static cultures and have a name code composed of SMx standing for Small Morphotype where x is an arbitrary number attributed during the isolation of the colonies. The identification of statistically distinctive clusters was performed using simprof tests and hclust.

Fig. 3. c-di-GMP production is altered for SMs from Cluster 1 and 2 compared with their respective parental strain. c-di-GMP production was measured with the fluorescent-based
biosensor pCdrA-gfp on overnight washed cultures. The values are means ± standard deviations (error bars) for three transformants. Transformed morphotypes were SM2 and SM6 (cluster 1) and SM4 (cluster 2) for strain 57RP; SM4 and SM5 (cluster 1) for strain PA14; SM8 and SM9 (cluster 1) and SM10 (cluster 2) for strain CL-511; SM1 and SM2 (cluster 1) and SM3 and SM6 (cluster 2) for strain PB PFRC11 2; SM9 (cluster 1) and SM5 and SM7 (cluster 2) for strain FC-AMT0134-9. Stars represents the statistical significance of the results calculated by an Ordinary one-way analysis of variance (ANOVA), ****, P Value ≤ 0.0001; ***, P Value ≤ 0.001; **, P Value ≤ 0.01; *, P Value ≤ 0.05; ns, not significant. Data are normalized between them based on their parental strain.

Fig. 4. Appearance of colonies for the parental isolates and SMs from Cluster 1 and Cluster 2 on Congo Red plates. The SM showed for each cluster is representative of all the SMs included in one cluster since they have a similar appearance. Plates were observed with a binocular StemiDV4 (Zeiss) and photos were taken with a DMC-ZS60 camera (Panasonic Lumix), after 24 h of incubation at 30°C.

Fig. 5. Reversion occurs on solid media for specific morphotypes after 48 h incubation. Ten µl of a culture of parental strain or a cluster representative morphotype (SMs) was dropped on 0.1% congo red TS-Agar 2% plates. Plates were observed with a binocular StemiDV4 (Zeiss)
and photos were taken with the camera DMC-ZS60 (Panasonic Lumix), after 24 h, 48 h and 96 h of incubation at 30°C. Scale bars represent 5 mm.
Table 1. Colony diameters and phenotypes of parental isolates and their static liquid culture evolved small morphotypes.
Strain	P. aeruginosa	Morphotype\(^a\)	Colony diameter (mm)\(^b\)	Reference
Clinical strains				
FC-AMT 0102-8	Parental isolate	SCV-like morphotypes	1.57 ±0.65	(57)
FC-AMT 0127-13	Parental isolate	SCV-like morphotypes	2.24 ±0.63	(57)
FC-AMT 0134-9*\(^c\)	Parental isolate	SCV-like morphotypes	4.21 ±0.83	(57)
FC-AMT 0127-2	Parental isolate	SCV-like morphotypes	2.19 ±0.73	(57)
FC-AMT 0166-22	Parental isolate	SCV-like morphotypes	2.27 ±0.74	(57)
ED14/PA14*	Parental isolate	SCV-like morphotypes	3.16 ±0.82	(58)
Food strains				
ABO VB50 C1	Parental isolate	SCV-like morphotypes	4.50 ±0.63	(59)
BG VB5 C2	Parental isolate	SCV-like morphotypes	4.53 ±0.63	(59)
PB PFR11 C2\(^*\)	Parental isolate	SCV-like morphotypes	2.96 ±0.68	(59)
ABO PF5 C1	Parental isolate	SCV-like morphotypes	2.38 ±0.67	(59)
BG VB11 C1	Parental isolate	SCV-like morphotypes	2.28 ±0.67	(59)
ADJ VB12 C1	Parental isolate	SCV-like morphotypes	2.30 ±0.72	(59)
Soil strains				
19SJV	Parental isolate	SCV-like morphotypes	3.55 ±0.65	(60)
34JR	Parental isolate	SCV-like morphotypes	7.20 ±1.08	(60)
57RP*	Parental isolate	SCV-like morphotypes	2.61 ±0.70	(60)
18G	Parental isolate	SCV-like morphotypes	10.14 ±1.45	(60)
PG201	Parental isolate	SCV-like morphotypes	6.08 ±1.40	(61)
Hospital sink strains				
CL-511*	Parental isolate	SCV-like morphotypes	7.97 ±1.56	(62)
CL-542a	Parental isolate	SCV-like morphotypes	2.47 ±0.82	(62)
CL-5434a	Parental isolate	SCV-like morphotypes	2.52 ±0.83	(62)
CL-547b	Parental isolate	SCV-like morphotypes	3.32 ±1.41	(62)
PAO303	Parental isolate	SCV-like morphotypes	3.63 ±1.41	(63)
colonies were considered as SCV-like morphotype when their diameter was at least half that of the parental isolate.

\[\text{average diameters of the small colonies} \]

strains marked with an asterisk were selected for further phenotypic study.
Fig. 1. Small colonies of *Pseudomonas aeruginosa* emerge in static cultures from strains isolated from various origins. Parental strains were inoculated under static liquid conditions in TSB for 65 hours and spread onto TS-Agar 2% plates. Black arrows indicate smaller colonies. White arrows indicate parent-like colony.
Fig. 2. Small colonies isolated from static cultures are clustered in 2 separate groups according to their phenotypic features. PCoA analysis were performed with a matrix composed of data obtained from the phenotypic tests (swimming, biofilm formation, and pyoverdine production) for the parental strain and distinct small colonies isolated from static cultures with a diameter at least two times smaller than parental strain (Table S1). Each point represents a small colony isolated from the static cultures and have a name code composed of SMx standing for Small Morphotype where x is an arbitrary number attributed during the isolation of the colonies. The identification of statistically distinctive clusters was performed using simprof tests and hclust.
Fig. 3. c-di-GMP production is altered for SMs from Cluster 1 and 2 compared with their respective parental strain. c-di-GMP production was measured with the fluorescent-based biosensor pCdrA-gfp on overnight washed cultures. The values are means ± standard deviations (error bars) for three transformants. Transformed morphotypes were SM2 and SM6 (cluster 1) and SM4 (cluster 2) for strain 57RP; SM4 and SM5 (cluster 1) for strain PA14; SM8 and SM9 (cluster 1) and SM10 (cluster 2) for strain CL-511; SM1 and SM2 (cluster 1) and SM3 and SM6 (cluster 2) for strain PB PFR11 C2; SM9 (cluster 1) and SM5 and SM7 (cluster 2) for strain FC-AMT0134-9. Stars represents the statistical significance of the results calculated by an Ordinary one-way analysis of variance (ANOVA), ****, P Value ≤ 0.0001; ***, P Value ≤ 0.001; **, P Value ≤ 0.01; *, P Value ≤ 0.05; ns, not significant. Data are normalized between them based on their parental strain.
Fig. 4. Appearance of colonies for the parental isolates and SMs from Cluster 1 and Cluster 2 on Congo Red plates. The SM showed for each cluster is representative of all the SMs included in one cluster since they have a similar appearance. Plates were observed with a binocular StemiDV4 (Zeiss) and photos were taken with a DMC-ZS60 camera (Panasonic Lumix), after 24h of incubation at 30°C.
Fig. 5. Reversion occurs on solid media for specific morphotypes after 48h incubation. Ten µl of a culture of parental strain or a cluster representative morphotype (SMs) was dropped on 0.1% congo red TS-Agar 2% plates. Plates were observed with a binocular StemiDV4 (Zeiss) and photos were taken with the camera DMC-ZS60 (Panasonic Lumix), after 24H, 48H and 4 days (4D) of incubation at 30°C. Scale bars represent 5 mm.