Lipid Mediator Regulation of Group 2 Innate Lymphoid Cells

Karta MR, Doherty TA and Broide DH

Department of Medicine, University of California San Diego, La Jolla, California, USA

*Corresponding author: David H Broide, Biomedical Sciences Building, Room 5090, 9500 Gilman Drive, La Jolla, CA-92093-0635, USA, Tel: 858-534-2234; Fax: 858-534-2110; E-mail: dbroide@ucsd.edu

Received date: June 24, 2016; Accepted date: July 18, 2016; Published date: July 20, 2016

Copyright: © 2016 Karta MR, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

ILC2s were originally found to be activated by epithelial cell derived cytokines to induce the secretion of Th2 cytokines, IL-5 and IL-13. Recent research has shown that lipid mediators play a large role in the activation and inhibition of ILC2 function. Unlike the traditional epithelial cell derived cytokines IL-33 and IL-25, lipid mediators have been shown to promote ILC2 secretion of not only IL-5 and IL-13, but the secretion of IL-4 as well. Prostaglandin D2 has been shown to be a potent chemoattractant of ILC2s as well as a potent activator of ILC2s to release Th2 cytokines. In addition to prostaglandin D2, cysteinyl leukotrienes also activate ILC2s to secrete Th2 cytokines during inflammation. Notably, lipid mediators have been shown to work in concert with epithelial cell derived cytokines to increase IL-5 and IL-13 secretion from ILC2s. On the other hand, lipid mediators prostaglandin I2 and lipoxin A4 are the first identified lipid mediator inhibitors of ILC2 function, and thus limit ILC2 contribution to Th2 inflammation. ILC2s play a potential significant role in Th2 mediated inflammation in a variety of allergic disease states, such as asthma, atopic dermatitis, and chronic rhinosinusitis. The identification of lipid mediators as activators and inhibitors of ILC2 function provides additional therapeutic targets for altering ILC2 function during disease states.

Keywords: ILC2; Lipid mediators; Prostaglandin D2; Prostaglandin I2; Prostacyclin; Cysteinyl leukotrienes; Lipoxin A4

Introduction

Group 2 innate lymphoid cells (ILC2) represent a group of cells that lack conventional lineage markers associated with well-established immune and inflammatory cells, such as T and B cells, mast cells, basophils, myeloid cells, and erythroid cells. Despite lacking lineage markers, ILC2s have been shown to express CD127 (IL-7Rα), CD25 (IL-2Rα), inducible T-cell costimulatory (ICOS), Sca-1, and the receptors for IL-25 (IL-17RB) and IL-33 (T1/ST2) [1]. One of the defining characteristics of ILC2s is the production of large amounts of Th2 cytokines upon stimulation. ILC2s have been shown to produce IL-5 and IL-13 in response to IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) and produce IL-4 in response to lipid mediators [2-4]. Specifically, ILC2s have been shown to have a larger capacity to produce Th2 cytokines compared to other cell types on a per cell basis [5]. Compared to other ILC group members, the secretion of Th2 cytokines is specific to ILC2s compared to Th1 cytokines secreted by ILC1, and Th17 cytokines released by ILC3. ILC2s also secrete other inflammatory mediators including IL-9 which can regulate immune cell survival, and amphiregulin which can regulate tissue repair [6-10].

There are increasing numbers of studies demonstrating an association between ILC2s and allergic inflammation, despite ILC2s not directly responding to allergen exposure, as they do not express antigen recognition receptors. Patients with chronic rhinosinusitis (CRS) and atopic dermatitis show increased levels of ILC2s in nasal polyps and skin lesions respectively [11-13]. Recent studies show elevated ILC2 levels in both the sputum and blood of adult severe asthmatics compared to mild asthmatics, as well as in the BAL, induced sputum, and blood of children with severe asthma compared to children without [14,15].

In addition, in mice, ILC2s have been shown to directly influence and contribute to the development of airway hyperresponsiveness (AHR). In the absence of IL-13-producing CD4 T cells, ILC2s are sufficient for induction of AHR and IL-13 production in response to either allergen or glycolipids when wildtype ILC2s are transferred to IL-13 deficient mice [16,17]. Additionally, during influenza infection in mice, ILC2s can induce AHR through the IL-33-IL-13 axis, which is independent of Th2 cells and adaptive immunity [18].

Despite ILC2 involvement in Th2 inflammation, an initial innate stimulation of epithelial cells, mast cells, eosinophils, and/or myeloid cells is required for ILC2 activation. ILC2s do not express antigen recognition receptors and thus do not directly interact with an antigen. However they are activated through either secreted mediators or direct cell contact with activated cells. Initially ILC2s were shown to be activated by IL-25, IL-33, and TSLP which are epithelial cell-derived cytokines. In the past few years, studies have shown ILC2 activation by tumor necrosis factor (TNF)-like ligand 1A (TL1A) and modulation by prostaglandin and leukotriene lipid mediators [19,20].

Lipid Mediator Activation of ILC2

Several cell types have been known to rapidly produce lipid mediators, such as activated mast cells, macrophages, dendritic cells, and eosinophils [21]. A study by Roediger et al. found that mast cells and ILC2s interact in vivo [22]. This study demonstrated that mouse dermal ILC2s migrated closely to resident mast cells and formed stable interactions between the dermal ILC2s and resident mast cells [22]. In patients with CRS, it has been shown that the percentage of ILC2s found in eosinophilic nasal polyps was significantly higher compared to the percentage of ILC2s found in non-eosinophilic nasal polyps, and that an overall positive correlation existed between the percentages of eosinophils and ILC2s in nasal polyps [23]. This was also confirmed by a recent study by Bal et al., which determined that in patients with CRS, ILC2s were present in the majority of nasal polyps with
eosinophils, however in nasal polyps with few or lacking eosinophils ILC2s were not detected [24]. Within the nasal polyps, ILC2s and eosinophils co-localized spatially such that areas with high ILC2 density also had high eosinophil density [24]. In addition, this study showed ILC2 distribution in the nasal polyp was not random but was embedded in areas of the nasal polyp with higher eosinophil density. Together these studies provide evidence of ILC2 interactions with both mast cells and eosinophils in vivo, which suggests crosstalk between the cell types and a mechanism by which these cells can lead to ILC2 activation potentially through lipid mediator release from mast cells and/or eosinophils.

Lipid mediators is a broader term for a class of bioactive lipids that includes eicosanoids, such as prostaglandins (PG) and leukotrienes (LT). Eicosanoids have long since been associated with Th2 inflammatory diseases and share a common origin, from arachidonic acid [25–27]. Arachidonic acid can be metabolized into downstream prostaglandins by the cyclooxygenase enzymes, COX-1 and COX-2, and to leukotrienes by the 5-lipoxygenase enzyme. Specifically, prostaglandin D₂ (PGD₂) and cysteinyl leukotrienes (CysLTs) have been shown to promote ILC2 responses [4,28], while PGD₂ and LXA₄ have been shown to dampen ILC2 responses [29,30]. This review focuses on the regulation of ILC2s by these lipid mediators.

Prostaglandin D₂ (PGD₂)

PGD₂ is strongly correlated to a variety of allergic disorders, as it is generated by eosinophils and in large quantities by IgE-activated mast cells [26]. Therefore, it is not surprising that studies have shown the PGD₂ signaling pathway plays a role in allergic rhinitis, asthma [31,32], atopic dermatitis [33,34] CRS and nasal polyposis [35–37], and aspirin exacerbated respiratory disease (AERD) [38]. PGD₂ has also been found to be a more potent bronchoconstrictor than histamine in normal and atopic individuals [39]. This long standing strong correlation between PGD₂ and allergic inflammation makes PGD₂ a potential important mediator in ILC2 activation, especially as ILC2s express CRTH2, a receptor for PGD₂.

PGD₂ binds to two receptors DP1 and CRTH2 (also known as DP2) [40]. CRTH2 is highly expressed on the surface of ILC2s and is a commonly used phenotypic ILC2 marker in humans [41]. CRTH2 is a G protein coupled receptor involved in the chemotaxis of cells toward PGD₂ [40]. PGD₂ induces the chemotaxis of human peripheral blood ILC2s from both allergic and nonallergic individuals, however allergic ILC2s showed enhanced chemotaxis compared to nonallergic [42]. In addition, the chemotactic effect of PGD₂ was dependent on CRTH2, as incubation of human peripheral blood cells with a pharmacologic CRTH2 antagonist inhibited PGD₂-induced ILC2 chemotaxis [42]. In addition to the chemotactic effect of PGD₂, PGD₂ has been shown to induce IL-13 secretion from human peripheral blood ILC2s [30]. Notably, PGD₂ induction of IL-13 secretion from ILC2s was significantly reduced when ILC2s were also treated with a CRTH2 receptor antagonist, however the DP1 antagonist diminished PGD₂ induced ILC2, IL-13 secretion but not enough to achieve statistical significance. In addition, the stimulation of peripheral blood ILC2s with a CRTH2 agonist, but not a DP1 agonist, significantly increased IL-13 secretion [30]. This study suggests that while PGD₂ can signal through both the DP1 and CRTH2 receptors, CRTH2 plays a larger role in PGD₂ induced IL-13 secretion from ILC2s.

ILC2s are enriched in nasal polyps of patients with eosinophilic CRS and systemic corticosteroids are associated with reduced ILC2 levels in nasal polyps [23]. Prednisone like other corticosteroids have been shown to inhibit the prostaglandin metabolic pathway. Therefore, it is possible that administration of corticosteroids could influence PGD₂-induced ILC2 responses. A recent study demonstrated that IL-33 and TSLP stimulate mast cells to produce PGD₂, and that TSLP expression in nasal polyps of AERD patients correlates with PGD₂-generating enzymes [43]. The potential of both TSLP and PGD₂ to activate ILC2s and TSLP to further induce PGD₂ generation suggests a network of signals that can occur during Th2 inflammation that results in synergistic ILC2 responses.

Similarly to human blood ILC2s, Tait Wojno et al. showed that murine ILC2s also express CRTH2 and exposure to PGD₂ causes ILC2 accumulation in the mouse lung in vivo [28]. Mice infected with *N. brasiliensis* had increased lung inflammation and ILC2 accumulation [28]. However when utilizing mice lacking CRTH2 or using a specific CRTH2 inhibitor, there was decreased ILC2 levels in the airways and decreased inflammation following *N. brasiliensis* infection. Therefore, *N. brasiliensis*-induced lung inflammation and airway ILC2 accumulation is CRTH2 dependent [28]. In addition, another study by Xue et al. showed that CRTH2 mediates the chemotaxis of ILC2s isolated from human skin, as well as peripheral blood, as PGD₂ induced migration of ILC2s was reduced by a CRTH2 specific inhibitor, TM30089 [3]. PGD₂ signaling through CRTH2 induces the activation of human ILC2s and the production of Th2 cytokines IL-4, IL-5, and IL-13 [3]. In addition, stimulation of ILC2s with PGD₂ in combination with IL-33 and IL-25 had increased induction of IL-4, IL-5, IL-13, as well as IL-9, when compared to IL-33 and IL-25 stimulation alone. PGD₂ also upregulates the expression of the IL-33 receptor, while it downregulates CRTH2 expression in human ILC2s [3]. Thus, PGD₂ can potentiate IL-33 and IL-25 responses and increase IL-33/IL-25 induced Th2 cytokine production [3,30]. Together these studies demonstrate the role of PGD₂ not only as a major chemoattractant for ILC2s to the site of inflammation, but also as a potent ILC2 activator to express Th2 cytokines.

Cysteinyl Leukotrienes (CysLTs)

CysLTs comprise of LTC₄, LTD₄, and LTE₄, which are generated by cell types important to allergic inflammation including eosinophils, mast cells, basophils, and macrophages [44]. LTC₄ is the parent LT that is metabolized into LTD₄ and LTE₄ [21]. The main receptors for CysLTs are CysLT₁R and CysLT₂R. LTD₄ can bind both receptors, however it binds CysLT₁R with higher affinity than CysLT₂R. CysLT₁R binds both LTC₄ and LTD₄ with equal affinity [45]. CysLTs have a variety of proinflammatory activities which are associated with allergic inflammation during innate immune responses, such as increased eosinophil migration, and activation of mast cells, macrophages, dendritic cells, and neutrophils [46]. Due to the proinflammatory nature of CysLTs, CysLTs have been associated with several allergic diseases such as asthma, allergic rhinitis, and AERD, as well as other diseases such as COPD [45–48]. Therefore, it is possible that CysLT production activates ILC2s during allergic inflammation, as CysLTs affect a wide array of cells and are strongly correlated to allergic inflammation.

Mouse lung and bone marrow ILC2s have been shown to express CysLT₁R [4]. Additionally mouse lung ILC2s produce the Th2 cytokines IL-5 and IL-13 after stimulation with LTD₄. Unlike IL-33 and IL-25, LTD₄ has been shown to also induce the secretion of
another Th2 cytokine, IL-4, from ILC2s [4]. LTB4-induced Th2 cytokine production was dependent on the CysLT1R receptor, as pretreatment of ILC2s with montelukast, a CysLT1R antagonist, significantly reduced LTB4-induced Th2 cytokine production. In addition, this study demonstrated that mice challenged intranasally with LTCa, LTD4, and LTE4 had significantly higher levels of IL-5 producing ILC2s in the lung compared to control challenged mice. This study highlights a significant role of CysLTs in ILC2 activation and more importantly that the profile of ILC2 Th2 cytokine secretion (IL-5 and IL-13 vs. IL-4, IL-5, and IL-13) is dependent on the nature of the stimulus of ILC2 activation. Similarly, a recent study, by Pelly et al. also demonstrated that LTD4 induces IL-4 secretion from mouse ILC2s [49]. Mouse ILC2s produce IL-4 in response to H. polygyrus infection and ILC2-derived IL-4 was required for Th2 differentiation during H. polygyrus infection [49]. This study demonstrates a potential role for the ILC2–IL-4 axis in Th2 differentiation and provides a previously unidentified role for ILC2s in immunity which may be regulated by leukotrienes.

Prostaglandin I2 (PGI2)

Similarly to other prostaglandins, PGI2 is generated from arachidonic acid metabolism through the cyclooxygenase enzymes, however it also requires downstream conversion by PGI synthase (PGIS) [26]. PGI2 is also known as prostacyclin, and signals through the prostacyclin receptor, IP. PGI2 functions in both the innate and adaptive immune systems as mainly an immunosuppressive mediator. PGI2-IP activation of downstream protein kinase A leads to several effects of lipoxins, the dysregulation of lipoxin synthesis has a role in a variety of diseases, including respiratory inflammation, renal diseases, and cancer [55]. Specifically, LXA4 has a variety of pro-resolution actions that inhibit AHR and pulmonary inflammation, and if unregulated can lead to allergic and asthmatic symptoms [57]. Therefore, it is not surprising that several studies have shown lower levels of LXA4 correlate with the degree of airflow obstruction in asthmatics, and diminished LXA4 levels are found in patients with asthma [58-61].

A study by Barnig et al. found that human peripheral blood ILC2s from both healthy and asthmatic individuals express the natural receptor for LXA4, ALX/FPR2, as well as the receptor for an additional pro-resolving mediator, CMKLRI [30]. In addition, the authors found that PGD2 potentiates IL-2/IL-25/IL-33 induced IL-13 secretion from ILC2 which is reduced when pretreated with equimolar amounts of LXA4. This reduction in ILC2 IL-13 production by LXA4 was dependent on ALX/FPR2, as incubation with the receptor antagonist, WRW4, lowered LXA4 inhibition of ILC2 secretion of IL-13. These findings are in agreement with the well-established role of lipoxins as anti-inflammatory and pro-resolution mediators.

Summary

While ILC2s were originally characterized as innate lymphoid cells that respond to epithelial-derived cytokines, IL-33, TSLP, and IL-25, an increasing amount of studies are demonstrating lipid mediators as significant regulators of ILC2 function. ILC2s are a significant source of Th2 cytokines, including IL-13, IL-5, and IL-4. In addition, PGD2 has been shown to promote ILC2 recruitment and amplify ILC2 cytokine responses, as well as work with epithelial cell-derived cytokines to promote a more robust activation of ILC2s. Importantly, PGI1 and LXA4 have been shown to dampen ILC2 responses, demonstrating the role of lipid mediators as both positive and negative regulators of ILC2 function. Due to the increasing understanding of the role of ILC2 in Th2 inflammation, targeting of lipid mediators, both activating and inhibiting, provide attractive potential targets for a variety of allergic disorders.
Acknowledgement

This work was supported by NIH grants T32 AI 007469 to MK, NIH AI 107779, AI 38425, AI 70535, and AI 72115 to DB, and NIH AI 114585 to TD.

References

1. Walker JA, McKenzie AN (2013) Development and function of group 2 innate lymphoid cells. Curr Opin Immunol 25: 148-155.
2. Price AE, Liang HE, Sullivan BM, Reinhardt RL, Eisley CJ, et al. (2010) Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc Natl Acad USA 107: 11489-11494.
3. Xue L, Salimi M, Panse I, Mjosberg JM, McKenzie AN, et al. (2014) Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells. J Allergy Clin Immunol 133: 1184-1194.
4. Doherty TA, Khorram N, Lund S, Mehta AK, Bal SM, Bernink JH, Nagasawa M, Groot J, Shikhaghaie MM, et al. (2016) IL-1β, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs. Nat Immunol 17: 636-645.
5. Zelensk SE (1997) Arachidonic acid metabolites: mediators of inflammation in asthma. Pharmacotherapy 17: 35-125.
6. Peters-Golden M (2008) Expanding roles for leukotrienes in airway inflammation. Curr Allergy Asthma Rep 8: 367-373.
7. Fujita ML, Gelhaus SL, Freeman B, Uvalle CE, Trudeau JB, et al. (2013) Prostaglandin D2 pathway upregulation: relation to asthma severity, control, and TH2 inflammation. J Allergy Clin Immunol 131: 1504-1512.
8. Murray JJ, Tonnel AB, Brash AB, Roberts LJ, Gosset P, et al. (1986) Release of prostanoid D2 into human airways during acute antigen challenge. N Engl J Med 315: 801-804.
9. He R, Oyoshi MK, Wang JY, Hodge MR, Jin H, et al. (2010) The prostanoid D(2) receptor CRTH2 is important for allergic skin inflammation after epicutaneous antigen challenge. J Allergy Clin Immunol 126: 784-790.
10. Satoh T, Morii R, Aritake K, Urade Y, Kanai Y, et al. (2006) Prostaglandin D2 plays an essential role in chronic allergic inflammation of the skin via CRTH2 receptor. J Immunol 177: 2621-2629.
11. Okano M, Fujitava T, Yamamoto M, Suga H, Matsumoto R, et al. (2006) Role of prostaglandin D2 and E2 terminal syntheses in chronic rhinosinusitis. Clin Exp Allergy 36: 1028-1038.
12. Yamamoto M, Okano M, Fujitava T, Kariya S, Higaki T, et al. (2009) Expression and characterization of PGD2 receptors in chronic rhinosinusitis: modulation of DP and CRTH2 by PGD2. Int Arch Allergy Immunol 148: 127-136.
13. Perez-Novo CA, Holtappels G, Vinall SL, Xue L, Zhang N, et al. (2010) CRTH2 mediates the activation of human TH2 cells in response to PGD(2) released from IgE-anti-IgE treated nasal polyp tissue. Allergy 65: 304-310.
14. Cahill KN, Benisko JC, Boyle JA, Laidlaw TM (2015) Prostaglandin D2: a dominant mediator of aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 135: 245-252.
15. Sampson SE, Sampson AP, Costello JF (1997) Effect of inhaled prostaglandin D2 in normal and atopic subjects, and of pretreatment with leukotriene D4. Thorax 52: 513-518.
40. Smith WL, Urade Y, Jakobsson PJ (2011) Enzymes of the cyclooxygenase pathways of prostanoid biosynthesis. Chem Rev 111: 5821-5865.

41. Mjosberg JM, Trifari S, Credlin NK, Peters CP, van Drunen CM, et al. (2011) Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat Immunol 12: 1053-1062.

42. Chang JE, Doherty TA, Baum R, Broide D (2014) Prostaglandin D2 regulates human type 2 innate lymphoid cell chemotaxis. J Allergy Clin Immunol 133: 899-901.

43. Buchheit KM, Cahill KN, Katz HR, Murphy KC, Feng C, et al. (2016) Thymic stromal lymphopoietin controls prostaglandin D2 generation in patients with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 137: 1566-1576.

44. Peters-Golden M, Henderson WR (2007) Leukotrienes. N Engl J Med 357: 1841-1854.

45. Kanaoka Y, Boyce JA (2014) Cysteinyl leukotrienes and their receptors; emerging concepts. Allergy Asthma Immunol Res 6: 288-295.

46. Theron AJ, Steel HC, Tintinger GR, Gravett CM, Anderson R, et al. (2014) Cysteinyl leukotriene receptor-1 antagonists as modulators of innate immune cell function. J Immunol Res 2014: 608930.

47. Figueiroa DJ, Borish L, Baramki D, Philip G, Austin CP, et al. (2003) Expression of cysteinyl leukotriene synthetic and signalling proteins in inflammatory cells in active seasonal allergic rhinitis. Clin Exp Allergy 33: 1380-1388.

48. Laidlaw TM, Boyce JA (2012) Cysteinyl leukotriene receptors, old and new; implications for asthma. Clin Exp Allergy 42: 1313-1320.

49. Pelly VS, Kannan Y, Coomes SM, Entwistle LJ, Ruckerli D, et al. (2016) IL-4-producing ILC2s are required for the differentiation of T2 cells following Heligmosomoides polygyrus infection. Mucosal Immunol.

50. Dorris SL, Peebles RS (2012) PGJ2 as a regulator of inflammatory diseases. Mediators Inflamm 2012: 926968.

51. Idzko M, Hammad H, van Nimwegen M, Kool M, Vos N, et al. (2007) Inhaled iloprost suppresses the cardinal features of asthma via inhibition of airway dendritic cell function. J Clin Invest 117: 464-472.

52. Jaffar Z, Ferrini ME, Buford MC, Fitzgerald GA, Roberts K (2007) Prostaglandin I2-IP signaling blocks allergic pulmonary inflammation by preventing recruitment of CD4+ Th2 cells into the airways in a mouse model of asthma. J Immunol 179: 6193-6203.

53. Takahashi Y, Tokuoka S, Masuda T, Hirano Y, Nagao M, et al. (2002) Augmentation of allergic inflammation in prostanoid IP receptor deficient mice. Br J Pharmacol 137: 315-322.

54. Nagao K, Tanaka H, Komai M, Masuda T, Narumiya S, et al. (2003) Role of prostaglandin I2 in airway remodeling induced by repeated allergen challenge in mice. Am J Respir Cell Mol Biol 29: 314-320.

55. Chandrasekharan JA, Sharma-Walia N (2015) Lipoxins: nature's way to resolve inflammation. J Inflamm Res 8: 181-192.

56. Maderna P, Godson C (2009) Lipoxins: resolutionary road. Br J Pharmacol 158: 947-959.

57. Levy BD, Bonnans C, Silverman ES, Palmer LJ, Marigowda G, et al. (2005) Diminished lipoxin biosynthesis in severe asthma. Am J Respir Crit Care Med 172: 824-830.

58. Kazani S, Planagumà A, Marigowda G, Haworth O, Mariani TJ, et al. (2008) Airway lipoxin A4 generation and lipoxin A4 receptor expression are decreased in severe asthma. Am J Respir Crit Care Med 178: 574-582.

59. Kazani S, Planagumà A, Ono E, Bonini M, Zahid M, et al. (2013) Exhaled breath condensate eicosanoid levels associate with asthma and its severity. J Allergy Clin Immunol 132: 547-553.

60. Eke Gunog H, Tahan F, Gokahmetoglu S, Saraymen B (2014) Decreased levels of lipoxin A4 and annexin A1 in wheezy infants. Int Arch Allergy Immunol 163: 193-197.