The bottleneck network flow problem (BNFP) is a generalization of several well-studied bottleneck problems such as the bottleneck transportation problem (BTP), bottleneck assignment problem (BAP), bottleneck path problem (BPP), and so on. In this paper we provide a review of important results on this topic and its various special cases. We observe that the BNFP can be solved as a sequence of $O(\log n)$ maximum flow problems. However, special augmenting path based algorithms for the maximum flow problem can be modified to obtain algorithms for the BNFP with the property that these variations and the corresponding maximum flow algorithms have identical worst case time complexity. On unit capacity network we show that BNFP can be solved in $O(\min\{m(n \log n)^2, m^2 \sqrt{\log n}\})$. This improves the best available algorithm by a factor of $\sqrt{\log n}$. On unit capacity simple graphs, we show that BNFP can be solved in $O(m \sqrt{n \log n})$ time. As a consequence we have an $O(m \sqrt{n \log n})$ algorithm for the BTP with unit arc capacities.

1. Introduction

Let $G(V, E)$ be a directed graph such that $|V| = n$ and $|E| = m$. For each arc $(i, j) \in E$, a weight c_{ij} and a capacity u_{ij} are prescribed. Also, for each node $i \in V$ an integer b_i is associated. Then the bottleneck network flow problem (BNFP) can be formulated mathematically as follows:

\[
\text{BNFP: } \text{Minimize } \max\{c_{ij} : x_{ij} > 0\} \\
\text{Subject to } \\
\sum_{\{j : (i,j) \in E\}} x_{ij} - \sum_{\{j : (j,i) \in E\}} x_{ji} = b_i \quad \forall i \in V \\
0 \leq x_{ij} \leq u_{ij} \quad \forall (i,j) \in E
\]

Here x_{ij} is the flow on arc (i, j). We assume that c_{ij} and u_{ij} are integers for all $(i,j) \in E$ and there are no multiple arcs in G. The integer number b_i associated with node i represents the supply or demand at the node. A node i is called a supply node if $b_i > 0$ and a demand node if $b_i < 0$. If $b_i = 0$, then i is a transshipment node. We assume that $\sum_{i \in V} b_i = 0$.

An interpretation of the bottleneck network flow problem can be given as follows: Suppose that perishable goods are shipped from the supply nodes to the demand nodes. The goods can be stored without damage at the nodes but are perishable in time on transit. Assume that x_{ij} is the amount of goods shipped along the arc (i,j) and c_{ij} is the shipment time along the arc (i,j). Then the BNFP objective function measures the largest time a shipment is in transit and we want to minimize this time.
To the best of our knowledge, the general form of the bottleneck network flow problem has not been studied in literature except the a generalization on algebraic flows [6]. However, many special cases of this problem are well-studied. One of the most well studied special cases of BNFP is the bottleneck transportation problem (BTP). In this case, the graph G is bipartite with the generic bipartition of \(V \) as \(V = V_1 \cup V_2 \), such that \(i \in V_1 \) implies \(b_i \geq 0 \) and \(i \in V_2 \) implies \(b_i \leq 0 \). Most of the literature on bottleneck transportation problem assumes that the arcs are without capacities (i.e. \(u_{ij} = \infty \)) [8, 11, 13, 21, 24, 30, 33, 34, 36, 37, 38, 42, 44, 51, 56, 59, 61] although some papers admit finite capacities.

In BTP, if \(b_i = 1 \) for \(i \in V_1 \), \(b_i = -1 \) for \(i \in V_2 \), \(|V_1| = |V_2| \) and \(u_{ij} = 1 \) for all \((i, j) \in E \), then the BTP reduces to the well known bottleneck assignment problem (BAP) [4, 5, 10, 12, 17, 18, 41, 45, 46, 50, 53, 57, 60].

Another well studied special case of BNFP is the bottleneck path problem (BPP). Let \(s \) and \(t \) be two specified vertices in \(G \). If \(b(s) = 1, b(t) = -1, b_i = 0 \) for \(i \in V \setminus \{s, t\} \) and \(u_{ij} = 1 \) for every \((i, j) \in E \), the resulting bottleneck network flow problem is called bottleneck path problem (BPP) [2, 39, 52, 41, 45, 48, 49, 52]. Further, BNFP is a special case of the bottleneck linear programming problem (BLP) [22, 55, 62].

The paper is organized as follows. In section 2 we provide a literature survey on existing algorithms for various special cases of BNFP. In section 3 we discuss some basic algorithms for solving the BNFP. We first observe that BNFP can be solved as an \(O(\log n) \) sequence of maximum flow problems. We then identify special maximum flow algorithms that can be modified to solve BNFP with the same worst complexity as that of solving just one maximum flow problem by these algorithms. Section 4 deals with the unit capacity networks. We first observe that the best known maximum flow algorithm for unit capacity networks can be extended to handle arbitrary capacities on arcs incident on source and sink nodes. We then show that BNFP on unit capacity graphs can be solved in \(O(\min\{(n \cdot \log n)^{\frac{2}{3}} \cdot m, m \cdot \log n, \cdot \sqrt{\log n}) \). This improves the best known algorithm for BNFP on unit capacity networks by a factor of \(\sqrt{\log n} \). For unit capacity simple networks, we obtain a complexity bound \(O(m \sqrt{n \log n}) \). This algorithm can be viewed as a generalization of the algorithm of Gabow and Tarjan for the BAP [60] and also provides an \(O(m \sqrt{n \log n}) \) time bound for the bottleneck transportation problem with unit capacities.

2. Literature Review

In this section we provide a review of known results on BTP, BAP and BPP which are special cases of BNFP. To the best of our knowledge no review papers on the topic is available. We keep the review section brief, highlighting only important results. For details, the reader is referred to the original papers. Let us first consider the BTP. Most of the known algorithms for this problem can generally be categorized into three groups: (1) primal algorithms (2) augmenting path algorithms and (3) threshold algorithm. Primal algorithms start with a feasible solution and try to find a better solution. Since the different objective function values of BTP solutions are at most \(m = |V_1| \times |V_2| \), the number of improvement steps is \(O(m) \). Algorithms discussed by Hammer [33, 34], Garfinkel and Rao [24], Bhatia, Swaroop and Puri [38] etc. falls in this category. Another class of algorithms build a solution by means of augmenting paths. Algorithm proposed by Derigs and Zimmermann [13] is an example of such an algorithm. The algorithm augments flows along bottleneck paths until a feasible (and hence optimal) solution is obtained. The complexity of this algorithm can be verified to be \(O(S \cdot f(m, n)) \) where \(S = \sum_{i \in V_1} |b_i| \) and \(f(m, n) \) is the complexity of BPP. The threshold algorithm sets a threshold for the optimal objective function value and checks the existence of a
solution satisfying this threshold value. Depending on the outcome, the threshold value is adjusted and the process is continued. Some of the primal algorithms can also be viewed as a threshold algorithm. For a discussion on threshold algorithms for general combinatorial bottleneck problems we refer to the paper by Edmonds and Fulkerson [15]. When the number of supply (demand) nodes are fixed, say k, Hochbaum and Woeginger [36] showed that the BTP can be solved in $O(n)$ time. A Special case of this problem when $k = 2$ has been studied by Varadarajan [61] who gave an $O(n)$ algorithm and Szwarc [59] who proposed an $O(n \cdot \log n)$ algorithm. Many of the works on BTP are relatively old and these papers do not discuss complexity results. It is easy to obtain a binary search version of the threshold algorithm to solve BTP as a sequence of $O(\log n)$ maximum flows in a bipartite graph. This result extends in a straightforward way to obtain a threshold algorithm for the BNFP which also solves $O(\log n)$ maximum flows.

Most of the algorithms known for the bottleneck assignment problem (BAP) can also be categorized as primal algorithms [31], augmenting path algorithms [12] and threshold algorithms [23]. These algorithms can be viewed as specializations of the corresponding algorithms for BTP. The best known algorithm for BAP is a hybrid algorithm that uses a binary search based threshold algorithm together with an augmenting path algorithm. Using this approach, Garbow and Tarjan [60] obtained an algorithm of complexity $O(m \sqrt{n \log n})$ to solve BAP. In the threshold phase of this algorithm, a “relaxed” feasibility problem is considered to obtain a partial solution, which is extended into a full solution by means of augmenting paths. It is the best known time bound for BAP on sparse graphs. Using a similar approach, Punnen and Nair [50] proposed an $O(n \sqrt{mn})$ algorithm by considering a slightly different “relaxed” problem. This bound is the best known for solving BAP on dense graphs. When the arc weights are Euclidian distances, Efrat, Itai and Katz [4] proposed an $O(m)$ algorithm. When $V \subset \mathbb{R}^d$, Efrat and Katz [17] proposed an $O(n^{1.5} \log n)$ time algorithm for $d \leq 6$, and a subquadratic time algorithm for $d > 6$. If the underlying norm is L_∞, then the complexity bound is $O(n^{1.5} \log^{0.5} n)$ for $d > 2$. When $c_{ij} = a_i \cdot b_j$, Eiselt and Gerchak [18] proposed a simple non-iterative scheme. Probabilistic results on BAP are discussed by Pferschy [47] and specially structured cost matrices are considered by Čeclárová [10], Eiselt and Gerchak [18].

A natural approach to solve the bottleneck path problem (BPP) is to consider modifications of the shortest path algorithms. Many authors considered modifications of the Dijkstra’s algorithm for shortest path [14] to solve BPP [41]. The complexity of such an algorithm is $O(n^2)$ for a straightforward implementation. Using Fibonacci heaps, the method can be implemented in $O(m + n \log n)$ time [3]. Listrovio and Khrin [41] also proposed a related algorithm explained using $s - t$ cuts. Their algorithm starts from an $s - t$ cut $K = [S, \bar{S}]$, where $S = \{s\}$, $\bar{S} = V - \{s\}$. The maximum capacity of this cut is set to be a lower bound of the objective function value, and K is iteratively modified by increasing S and decreasing \bar{S} until the sink node $t \in S$. Fernandez, Garfinkel and Arbiol [52] presented a binary search based threshold algorithm [52] for BPP. This paper also discusses an application of BPP in the context of combining (mosaicking) two or more aerial photographs into a single image in the production of photographic maps. Inspired by an algorithm of Gabow and Tarjan for bottleneck arborescence problem, Punnen [49] showed that if a bottleneck combinatorial optimization problem of size m with ordered weights can be solved in $O(\xi(m))$ time, then the problem with arbitrary weights can be solved in $O(\xi(m) \log^* (m))$ time, where $\log^* n$ is the iterated logarithm of m. As a consequence, the BPP can be solved in $O(m \log^* m)$ time. Combining this approach with modification of Dijkstra’s algorithm discussed earlier, which uses Fibonacci heaps, the best known complexity for BPP on a directed graph is $O(\min\{m + n \log n, m \log^* m\})$. Georgiadis [25] showed that BPP can be solved in $O(T(m))$ time where $T(m)$ is the time for sorting the edge costs of the underlying graph. BPP on an undirected graph is simpler and can be solved in linear time using a binary search based threshold algorithm coupled with subgraph contractions.
Optimal solution to BNFP can be recovered from the path algorithm for maximum flows, the complexity of this algorithm is $O(m\delta + \varphi \log \varphi) = O(mnB)$. Sensitivity analysis for BPP have been investigated by Ramaswamy, Orlin and Chakravarty. It is easy to show that all pair bottleneck path problem on an undirected graph can be obtained by computing just one minimum spanning tree.

3. Basic algorithms for BNFP

The BNFP can be formulated as a minimum cost flow problem with exponentially large arc costs. However, this is not a practical approach to solve the problem. We now consider some basic algorithms to solve BNFP, which are generalizations of the corresponding algorithms for the bottleneck transportation problem (BTP).

For any real number α, let $G(\alpha) = (V_\alpha, E_\alpha)$ denote the spanning subgraph of G with $V_\alpha = V$ and $E_\alpha = \{(i, j) \in E : c_{ij} \leq \alpha\}$. Let $c_{\sigma(1)} < c_{\sigma(2)} < \cdots < c_{\sigma(\varphi)}$ be an ascending arrangement of all distinct arc weights of G. Let $\delta = \sum_{i \in S} b_i = \sum_{i \in T} -b_i$, where S is the collection of supply nodes and T is the collection of demand nodes.

The auxiliary graph $G^* = (V^*, E^*)$ corresponding to any graph $G(V, E)$ is defined as $V^* = V \cup \{s, t\}$, $E^* = E \cup \{(s, i) : i \in S\} \cup \{(j, t) : j \in T\}$, and $s \notin V$, $t \notin V$. Here s is called a source node and t is called a sink node in G^*. The capacity u_{si} of arc (s, i) is b_i for all $i \in S$ and the capacity u_{jt} of arc (j, t) is $-b_j$ for all $j \in T$. The weights c_{si} of arc (s, i) for all $i \in S$ and c_{jt} of (j, t) for all $j \in T$ are set to be 0. Clearly BNFP is feasible if and only if G^* has an $s - t$ flow of value δ.

Theorem 3.1. Assume that the BNFP is feasible. Let $k \in \{1, 2, \ldots, \varphi\}$ be the smallest index such that the maximum flow in $G^*(c_{\sigma(k)})$ is δ. Then any flow x^0 in $G^*(c_{\sigma(k)})$ of value δ provides an optimal solution \bar{x} to BNFP.

The straightforward proof of Theorem 3.1 is omitted. Note that the solution \bar{x} in the above theorem is obtained by simply dropping the flow values on arcs incident on s and t from x^0.

Based on Theorem 3.1, we see that if we get the value of k, then we can get an optimal solution for BNFP. In fact, k can be identified by using different search strategies. Using binary search over the set $\{c_{\sigma(1)}, c_{\sigma(2)}, \ldots, c_{\sigma(\varphi)}\}$, by Theorem 3.1, it can be verified that BNFP can be solved by solving $O(\log \varphi) = O(\log n)$ maximum flows. We call this algorithm the binary search threshold algorithm. This observation raises an interesting question: “Is it possible to solve BNFP using less than $O(\log n)$ maximum flow computations?” We do not have an answer to this. Later in section 4 we will see that for unit capacity networks, we can solve BNFP using $O(\sqrt{\log n})$ approximate maximum flow computations. For the general BNFP, let us consider a closely related question: “Is it possible to modify a maximum flow algorithm to solve the BNFP within the same time bound as that of solving the maximum flow problem with the original algorithm?” As we show below, this is doable in some cases and the question is open for other cases.

Perhaps, the simplest such example is the generic augmenting path algorithm for maximum flows. Here, we start with the graph $G^*(c_{\sigma(1)})$ and augment flows from s to t by augmenting paths. If a flow value of δ is reached, we have an optimal solution to BNFP. Otherwise we add to $G^*(c_{\sigma(2)})$ all arcs of weight $c_{\sigma(2)}$ to obtain the graph $G^*(c_{\sigma(2)})$ and search for augmenting path is continued. Continuing this process by adding new classes of arcs in the increasing order of weights and the algorithm terminates when a flow x^0 of value δ is identified. By Theorem 3.1, an optimal solution to BNFP can be recovered from x^0. As in the case of the generic augmenting path algorithm for maximum flows, the complexity of this algorithm is $O(m\delta + \varphi \log \varphi) = O(mnB)$.
where $B = \max_{i \in V} |b_i|$. This algorithm is a variation of the augmenting path algorithm of Derigs and Zimmerman [13] designed for BTP. One major difference is that we do not use bottleneck path computations to identify augmenting paths which results in slightly improved complexity for this more general problem. Further the algorithm provides a natural linkage with the generic augmenting path algorithm for maximum flows. We call this algorithm the BNFP augmenting path algorithm.

Let us now consider the maximum capacity augmenting path algorithm for maximum flows [16]. This algorithm has polynomial complexity and we show that the algorithm can be easily modified to solve BNFP without increasing the complexity bound. Rather than considering maximum capacity augmentations, we augment flows along paths with large enough residual capacity to avoid maximum capacity path computations. This is possible because our target the maximum flow value δ is known a priori. We call the resulting algorithm for BNFP the large capacity augmenting path algorithm.

Let $\bar{G} = (\bar{V}, \bar{E})$ be a subgraph of G^* containing s and t and $\bar{G}_r(x)$ be the residual graph [3] with respect to an $s - t$ flow x in \bar{G}.

Lemma 3.2. If \bar{G} has a maximum flow from s to t of value δ, then for any flow x in \bar{G}, there exists an augmenting path in $\bar{G}_r(x)$ with residual capacity at least $\frac{\delta - v(x)}{m^*}$, where $m^* = |E^*|$ and $v(x)$ is the value of flow x.

Proof. Since $\bar{G}_r(x)$ is the residual graph of \bar{G} with respect to flow x, then in $\bar{G}_r(x)$, a flow of value $\delta - v(x)$ can be represented as path flows. By the Flows Decomposition Theorem [3] (pp 79-81), at most \bar{m} s-t paths have non-zero flow, therefore there must be an augmenting path in $\bar{G}_r(x)$ with residual capacity at least $\frac{\delta - v(x)}{m}$. Since $m^* > \bar{m}$, $\frac{\delta - v(x)}{m} \geq \frac{\delta - v(x)}{m^*}$ and the result follows. \square

Lemma 3.2 implies that we can modify the augmenting path algorithm by performing each augmentation along a path with capacity at least $\frac{\delta - v(x)}{m^*}$. If no such path exits, we can safely conclude that \bar{G} does not have a maximum $s - t$ flow of value δ. Based on this idea, we present the large capacity augmenting path algorithm below:

Algorithm large capacity augmenting path

begin

construct G^* from G and solve a maximum flow problem on G^*;

if the maximum flow value $< \delta$ then stop. BNFP is infeasible;

else do

let $c_{\sigma(1)} < c_{\sigma(2)} < \cdots < c_{\sigma(\varphi)}$ be an ascending arrangement of all distinct arc weights of G;

$k = 0$, $x^0 =$ zero flow, $v(x^0) = 0$;

repeat

$k = k + 1$;

let $x^k := x^{k-1}$, $v(x^k) := v(x^{k-1})$;

begin

obtain the residual graph $G^*_r(c_{\sigma(k)})$ with respect to the flow x^{k-1} from $G^*_r(c_{\sigma(k-1)})$ by adding the arcs (i, j) whose weight $c_{ij} = c_{\sigma(k)}$;

while ($G^*_r(c_{\sigma(k)})$ contains an augmenting path P of residual capacity at least $\frac{\delta - v(x^{k-1})}{m^*}$) do
let ε be the residual capacity of P;
augment ε units of flow along P;
$v(x^k) = v(x^k) + \varepsilon$;
update x^k and $G^*_r(c_{\sigma(k)})$;
end while;
end if;
until $(v(x^k) = \delta)$
compute and output the optimal BNFP solution corresponding to x^k;
end;
end;

To test the conditions of the while loop of the above algorithm, we can construct a graph $\hat{G}^*_r(c_{\sigma(k)})$ by removing all the arcs in $G^*_r(c_{\sigma(k)})$ whose residual capacity is less than $\frac{\delta - v(x^{k-1})}{m^*}$. Then $G^*_r(c_{\sigma(k)})$ has an augmenting path of capacity at least $\frac{\delta - v(x^{k-1})}{m^*}$ if and only if $\hat{G}^*_r(c_{\sigma(k)})$ has an $s-t$ path.

To establish the complexity of the large capacity augmenting path algorithm, we prove the following theorem, which is a variation of a result by Edmonds and Karp [16] and Goldfarb and Chen [28] for the maximum capacity augmenting path algorithm for the maximum flow problem.

Theorem 3.3. In the large capacity augmenting path algorithm, the number of augmentations is $O(m \log \delta) = O(m \log (nB))$, where $B = \max_{i \in V} |b_i|$.

Proof. Let $v(x^1), v(x^2), \ldots, v(x^k) = \delta$ be a sequence of flow values generated by the large capacity augmenting path algorithm. Thus k is the total number of augmentations performed. Assume $d_i = v(x^{i+1}) - v(x^i)$ and $\Delta_i = \delta - v(x^i)$, then

$$d_i = v(x^{i+1}) - v(x^i) = \Delta_i - \Delta_{i+1}$$

(1)

Since the augmenting paths have capacity at least $\frac{\delta - v(x^i)}{m^*}$, we have

$$d_i \geq \frac{\delta - v(x^i)}{m^*},$$

and hence

$$\Delta_i \leq m^* d_i$$

(2)

From (1) and (2),

$$\Delta_{i+1} \leq \Delta_i (1 - \frac{1}{m^*})$$

Therefore

$$\Delta_p \leq \Delta_1 (1 - \frac{1}{m^*})^p \leq \delta (1 - \frac{1}{m^*})^p \leq \delta e^{-p/m^*}$$

We want the largest p such that

$$\Delta_p \geq 1.$$

Thus $p \leq m \log \delta$

Since $v(x^k) = \delta$, we have $k \leq p + 1$. Therefore $k = O(m^* \log \delta) = O(m \log (nB))$. \hfill \square

Theorem 3.4. The large capacity augmenting path algorithm correctly solves BNFP in $O(m^2 \log (nB))$ time.

Proof. Starting with a zero flow in $G^*(c_{\sigma(1)})$, the algorithm looks for the smallest index k such that $G^*(c_{\sigma(k)})$ has a flow of value δ. At a typical iteration we have a flow x^r in $G^*(c_{\sigma(r)})$ for some r with value $v(x^r)$ and $v(x^r) < \delta$. Then introduce arcs $c_{\sigma(r+1)}$ to obtain the graph $G^*(c_{\sigma(r+1)})$. Clearly x^r is a feasible flow in $G^*(c_{\sigma(r+1)})$. If the residual graph of $G^*(c_{\sigma(r+1)})$ does not have an augmenting path of value at least $\frac{\delta - v(x^r)}{m^*}$, by Lemma 3.2, $G^*(c_{\sigma(r+1)})$ does not contain a flow of value δ and the arc $c_{\sigma(r+2)}$ is added to $G^*(c_{\sigma(r+1)})$ to obtain $G^*(c_{\sigma(r+2)})$ and $c_{\sigma(r+2)}$ becomes a new lower bound for the optimal objective function value of BNFP. Otherwise the flow is improved by using an
augmenting path of capacity at least \(\frac{\delta - v(x)}{m} \). By Theorem 3.3 the number of augmentations is bounded by \(O(m \log(nB)) \). The complexity of performing the augmentation step is \(O(m) \), so the overall complexity of the algorithm is \(O(m^2 \log(nB)) \).

It may be noted that we could not obtain a variation of the shortest augmenting path algorithm for maximum flows that solves BNFP with in the same time bound as the corresponding maximum flow algorithm.

4. BNFP in Unit Capacity Networks

On a unit capacity graph, it is well known that the maximum flow problem can be solved in \(O(\min\{m^{3/2}, n^{2/3}m\}) \) time \([20]\). Suppose \(G \) is a unit capacity graph on which a BNFP is defined. Then the corresponding auxiliary graph \(G^* = (V, E^*) \) will be of unit capacity except for the arcs incident on the source node \(s \) and sink node \(t \). We first observe that the maximum flow problem in such a graph can also be solved in \(O(\min\{m^{3/2}, n^{2/3}m\}) \) time.

A graph \(G \) with a source node \(s \) and a sink node \(t \) is called an almost unit capacity graph if (1) arcs incident on \(s \) or \(t \) or both have arbitrary capacities (2) all other arcs are of unit capacity and (3) any \(s-t \) path in \(G \) contains at least one arc which does not incident on \(s \) or \(t \). The maximum flow problem restricted to an almost unit capacity graph is called almost unit capacity maximum flow problem (AMFP). An almost unit capacity graph \(G \) is simple if every node in \(G \) has at most one incoming arc or at most one outgoing arc. The corresponding maximum flow problem is called almost unit capacity simple maximum flow problem (ASMFP).

4.1. Flows in Almost Unit Capacity Graphs. Let us now discuss the maximum flow problem in almost unit capacity graphs and almost unit capacity simple graphs. Our algorithms are similar to the unit capacity maximum flow algorithm of Edmonds and Karp \([16]\) as discussed in Ahuja and Orlin \([3]\). We only discuss the primary results without proof. An interested reader could construct the proofs with appropriate modifications of the corresponding unit capacity case or can find it in the thesis \([63]\) where details of the algorithms of this paper are given.

It is well known that the shortest augmenting path algorithm \([3]\) solves the maximum flow problem in \(O(mn^2) \) time. On unit capacity graphs, the complexity can be reduced to \(O(mn) \) \([3]\). The shortest augmenting path algorithm maintains distance labels that are non-decreasing and terminates when the distance label \(d(s) \) of node \(s \) satisfies \(d(s) \geq n \). Let \(D \leq n \) be a parameter. In the shortest augmenting path algorithm, if we discard all nodes \(i \) with distance label \(d(i) \geq D \) from further consideration, we get an approximate version of the shortest augmenting path algorithm. We refer to this algorithm the \(D \)-shortest augmenting path algorithm.

Theorem 4.1. In an almost unit capacity graph, the \(D \)-shortest augmenting path algorithm terminates in \(O(Dm) \) time.

The proof of this theorem can be constructed from similar results for the unit capacity case and hence omitted. The following theorem provides an approximation bound for the solution produced by the \(D \)-shortest augmenting path algorithm.

Theorem 4.2. Let \(G(V, E) \) be an almost unit capacity graph with no parallel arcs. Suppose \(x \) is a flow generated by the \(D \)-shortest augmenting path algorithm and \(x^* \) be a maximum \(s-t \) flow in \(G \). Then \((i) \ v(x^*) - v(x) \leq \frac{|E|}{D-2}. \ (ii) \ v(x^*) - v(x) \leq \frac{2|V|^2}{D-2}. \ (iii) \) If \(G \) is a simple almost unit capacity graph, then \(v(x^*) - v(x) \leq \frac{|V|}{D-2} \).
Again the proof of this theorem can be constructed by modifying arguments in the proof of corresponding results for the unit capacity maximum flow algorithms. Detailed proof is available in the thesis [63].

Let \(x^0 \) be a flow produced by the \(D \)-shortest path algorithm in \(G \). Extend \(x^0 \) into a maximum flow in \(G \) using the labeling algorithm [3]. Note that the labeling algorithm performs at most \(v(x^*) - v(x^0) \) flow augmentations where \(x^* \) is a maximum flow in \(G \). Thus this labeling phase can be implemented in \(O((v(x^*) - v(x^0))m) \) time. Combining this with theorems [1,1] and [1,2](i), we get a complexity bound of \(O(m^2 + Dm) \). Choosing \(D = \lceil \sqrt{m} \rceil \), we get a bound of \(O(m^{3/2}) \). Likewise, Combining with theorems [1,1] and [1,2](ii), we get a complexity bound of \(O(n^{2/3} + Dm) \). Choosing \(D = \lceil n^{2/3} \rceil \), we get a complexity bound of \(O(n^{2/3}m) \). For simple graphs, we get a complexity bound on \(O(\frac{nm}{D} + Dm) \). Choosing \(D = \sqrt{n} \) we get a complexity bound of \(O(m\sqrt{n}) \). Summarizing the foregoing discussion,

Theorem 4.3. The maximum flow problem in almost unit capacity network can be solved in \(O(\min\{m^{3/2}, n^{2/3}m\}) \) time. For an almost unit capacity simple graph, the problem can be solved in \(O(m\sqrt{n}) \) time.

Note that Theorem 4.3 generalizes corresponding results on unit capacity networks to almost unit capacity graphs. The discussions of this section are crucial to our improved algorithm for BNFP on unit capacity networks.

4.2. Algorithm for BNFP in unit capacity networks

Let \(G(V, E) \) be a unit capacity graph on which a BNFP is defined. Then, as noted earlier, its auxiliary graph \(G^*(V^*, E^*) \) is an almost unit capacity graph. Thus combining Theorem 4.3 with the binary search threshold algorithm for BNFP discussed in Section 3, it can be seen that BNFP on unit capacity graphs can be solved in \(O(\min\{m^{3/2}, n^{2/3}m\}) \) log \(n \) time and in \(O(m \log n\sqrt{n}) \) time on unit capacity simple graphs. We now show that we can improve these bounds by a factor of \(O(\sqrt{\log n}) \).

Our algorithm first computes a lower bound on the optimal objective function value of BNFP using an approximate version of the binary search threshold algorithm. This also generates a flow in \(G^* \) which is a partial solution to BNFP. This partial solution is then extended to a solution to BNFP using our BNFP augmenting path algorithm.

Let \(c_{\sigma(1)} < c_{\sigma(2)} < \cdots < c_{\sigma(\varphi)} \) be an ascending arrangement of all distinct arc weights of \(G \). Note that the optimal objective function value of BNFP is one of these \(c_j \) values. Consider the graph \(G^*(c_{\sigma(k)}) \) for some \(k \) with edge set, say \(E^k \). Let \(x^k \) be the flow produced by the \(D \)-shortest augmenting path algorithm on \(G^*(c_{\sigma(k)}) \). If \(\delta - v(x^k) > \frac{|E^k|}{D} \), then by Theorem 4.2(i), we can conclude that the maximum flow in \(G^*(c_{\sigma(k)}) \) is strictly less than \(\delta \) and hence \(c_{\sigma(k)} \) is a lower bound. If \(\delta - v(x^k) \leq \frac{|E^k|}{D} \), then the maximum flow value in \(G^*(c_{\sigma(k)}) \) may or may not be equal to \(\delta \). In this case, we make a heuristic decision to set \(c_{\sigma(k)} \) as an approximate upper bound on the optimal objective function value. Using this search strategy we present our approximate binary search threshold algorithm (Algorithm ABST) below. Without loss of generality assume \(G^* \) contains a maximum flow of value \(\delta \).

Algorithm ABST

begin

- construct \(G^* \) from \(G \)
- let \(c_{\sigma(1)} < c_{\sigma(2)} < \cdots < c_{\sigma(\varphi)} \) be an ascending arrangement of all
Let \(\bar{c}_x \) be the flow produced by Algorithm ABST and \(\bar{c} = \max \{c_{ij} : \bar{x}_{ij} > 0\} = c(\sigma_\rho) \). Then \(\bar{c} \) is a lower bound for the optimal objective function value of BNFP. Further, \(\delta - v(\bar{x}) \leq \frac{2|E|}{D} \).

Proof. Obviously the starting lower bound \(c(\sigma(1)) \leq c^* \). The index \(l \) of the lower bound value is updated only when we are guaranteed that \(G^*(c_{\sigma(l)}) \) contains no flow of value \(\delta \) and hence \(c_{\sigma(l+1)} \leq c^* \). Thus by Theorem 3.1, \(\bar{c} \leq c^* \). From the algorithm it can be easily verified that \(\delta - v(\bar{x}) \leq \frac{|E^*|}{D} \leq \frac{2|E|}{D} \).

The complexity of Algorithm ABST is \(O(Dm \log n) \). If \(v(\bar{x}) = \delta \) then an optimal solution to BNFP can be constructed from \(\bar{x} \). Otherwise we perform the following **extension phase**. Starting with \(\bar{x} \) and \(G^*(\bar{c}) \), the BNFP augmenting path algorithm can be used to compute an optimal solution to BNFP by performing at most \(O\left(\frac{m^2}{D}\right) \) flow augmentations. This can be done in \(O\left(\frac{m^2}{D}\right) \) time. Thus BNFP can be solved in \(O(Dm \log n + \frac{m^2}{D}) \) time. Choosing \(D = \sqrt{\frac{m}{\log n}} \) we get the complexity bound \(O(m^3 \sqrt{\log n}) \) to solve BNFP on unit capacity graphs.

A similar algorithm can be obtained if we replace the condition \(\delta - v(x) \leq \frac{|E^*|}{D} \) by \(\delta - v(x) \leq \left(\frac{2|V^*|}{D}\right)^{\frac{1}{2}} \) in Algorithm ABST. In this case the number of flow augmentation steps in the extension phase is at most \(\left(\frac{4n}{D}\right)^2 \). This leads to a complexity bound of \(O\left(\frac{n^2}{mD}m + Dm \log n\right) \) time. Choosing \(D = \left(\frac{n}{\log n}\right)^{\frac{1}{4}} \), we get the bound \(O(m(n \log n)^{\frac{4}{3}}) \). The foregoing discussions can be summarized as

Theorem 4.4. The BNFP on a unit capacity graph can be solved in \(O(\min\{m(n \log n)^{\frac{2}{3}}, m^3 \sqrt{\log n}\}) \) time.

Note that this bound is better than the bound obtained in the beginning of this section by a factor of \(\sqrt{\log n} \).

For the case of the bottleneck flows in unit capacity simple graphs, we replace the condition “if \(\delta - v(x) \leq \frac{|E^*|}{D} \)” by “if \(\delta - v(x) \leq \frac{|V^*|}{D} \),” in algorithm ABST and then as in the previous discussions, at the end of Algorithm ABST the extension phase performs at most \(\frac{|V|}{D} \) flow augmentations. Since each augmentation takes \(O(m) \) time, it takes \(O\left(\frac{mn}{D}\right) \) time to complete the extension phase. Thus
the problem can be solved in $O(\frac{mp}{\Delta p} + Dm \log n)$ time. Choosing $D = \sqrt{\frac{n}{\log n}}$, we get the complexity bound $O(m \sqrt{n \log n})$. Summarizing these discussions,"

Theorem 4.6. The BNFP on a unit capacity simple graph can be solved in $O(m \sqrt{n \log n})$ time.

Note that the bottleneck assignment problem and the bottleneck transportation problem with unit capacities are special cases of the BNFP on unit capacity simple networks. Thus we have $O(m \sqrt{n \log n})$ bounds for these problems as well. This algorithm can be viewed as an extension of the algorithm of Gabow and Tarjan [60] for the BAP.

5. Conclusion

In this paper we have considered the Bottleneck Network Flow Problem (BNFP), which is a generalization of several well studied Bottleneck problems including the Bottleneck Transportation Problem (BTP), Bottleneck Assignment Problem (BAP) and Bottleneck Path Problem (BPP). Some basic algorithms have been discussed. It is observed that BNFP can be solved as an $O(\log n)$ sequence of maximum flow problems. Special maximum flow algorithms are identified that can easily be modified to solve BNFP in the same worst case time bound as that of solving one maximum flow problem by these algorithms. The class of such maximum flow algorithms include generic augmenting path algorithms and maximum capacity augmenting path algorithm. We could not establish a similar property for the shortest augmenting path algorithm and we haven’t investigated preflow push algorithms in this context.

We have also considered a special case where the arc capacities are unity. It is well known that [20] the maximum flow problem on unit capacity graphs can be solved in $O(\min\{m^{\frac{3}{2}}, n^{\frac{5}{2}}m\})$ time. We showed that the same time bound can be achieved for solving the maximum flow problem on an almost unit capacity graph, where the capacities of arcs incident on source and sink nodes are allowed to be arbitrary. This together with the binary search threshold algorithms shows that BNFP on unit capacity networks can be solved in $O(\min\{m^{\frac{3}{2}}, n^{\frac{5}{2}}m\} \log n)$ time. We also proposed another algorithm to solve the problem with an improved complexity of $O(\min\{m(n \log n)^{\frac{3}{2}}, m^{\frac{3}{2}} \sqrt{\log n}\})$. For the bottleneck flow problems in unit capacity simple graphs, we proposed an $O(m \sqrt{n \log n})$ algorithm. As a byproduct, we get an $O(n \sqrt{m \log n})$ algorithm for the bottleneck transportation problem with unit capacities.

An obvious question is if these algorithms can be improved? For the general BNFP, it would be interesting to examine what are the maximum flow algorithms that can be modified to solve BNFP without increasing the worst case complexity. As noted earlier, BNFP can be solved as a sequence of $O(\log n)$ maximum flows. Likewise, the maximum flow problem can be solved as an $O(\log(nU))$ sequence of the BNFPs, where $U = \max\{u_{ij} : (i,j) \in E\}$. It would be interesting to investigate further complexity relationships between these problems.

References

[1] A. Itai A. Efrat and M. J. Katz. Geometry helps in bottleneck matching and related problems. *Algorithmica*, 1:1–28, 2001.
[2] É. N. Gordeev and K. Kh. Mamutov. Stability in bottleneck path problems. *Moscow*, 1:45–52, 1988. Alma-Ata. Translated from Avtomatika i Telemekhanika.
[3] T. L. Magnanti Ahuja R. K and J. B. Orlin. *Network Flows-Theory, Algorithms and Applications*. Prentice-Hall Inc., 1993.
[4] R. D. Armstrong and Z. Jin. Solving linear bottleneck assignment problems via strong spanning trees. *Operations Research Letters*, 12(3):179–180, 1992.

[5] S. M. Borodkin. The minimax assignment problem. *Automation and Remote Control*, 35:1633–1642, 1974.

[6] P. Brucker and W. Papenjohanni. An out-of-kilter method for the algebraic circulation problem. *Discrete Applied Mathematics*, 10(1):1–18, 1985.

[7] R. E. Burkard and U. Zimmermann. The solution of algebraic assignment and transportation problems. *Optimization and operations research (Proc. Workshop, Univ. Bonn)*, pages 55–65, 1977.

[8] R. E. Burkard and U. Zimmermann. Weakly admissible transportations for solving algebraic assignment and transportation problems. *Mathematical Programming Study*, 12:1–18, 1980.

[9] P. Carraresi and G. Gallo. A multilevel bottleneck assignment approach to the bus drivers’ rostering problem. *European Journal of Operations Research*, 16:163–173, 1984.

[10] K. Cechlárová. Trapezoidal matrices and the bottleneck assignment problem. *Discrete Applied Mathematics*, 58:111–116, 1995.

[11] U. Derigs. On three basic methods for solving bottleneck transportation problems. *Naval Research Logistics Quarterly*, 29(3):505–515, 1982.

[12] U. Derigs and U. Zimmermann. An augmenting path method for solving linear bottleneck assignment problem. *Computing*, 22:1–15, 1979.

[13] U. Derigs and U. Zimmermann. An augmenting path method for solving linear bottleneck transportation problem. *Computing*, 22:1–15, 1979.

[14] E. W. Dijkstra. A note on two problems in connexion with graphs. *Numerische Mathematik*, 1:269–271, 1959.

[15] J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic efficiency for network flow problems. *Journal of ACM*, 19:248–264, 1972.

[16] A. Efrat and M. J. Katz. Computing euclidean bottleneck matchings in higher dimensions. *Information Processing Letters*, 4:169–174, 2000.

[17] H. A. Eiselt and Y. Gerchak. Solution structures and sensitivity of special assignment problems. *Computers & Operations Research*, 11(4):397–399, 1984.

[18] M. Eley. A bottleneck assignment approach to the multiple container loading problem. *OR Spectrum*, 25(1):45–60, 2003.

[19] S. Even and R. E. Tarjan. Network flow and testing graph connectivity. *SIAM Journal of Computing*, 4:507–518, 1973.

[20] G. Finke and P. A. Smith. Primal equivalentes to the threshold algorithm. *Operations Research Verfahren*, 31:185–198, 1979.

[21] A. M. Frieze. Bottleneck linear programming. *Operational Research Quarterly*, 26(4):871–874, 1975.

[22] R. S. Garfinkel. An improved algorithm for the bottleneck assignment problem. *Operations Research*, 19:1747–1751, 1971.

[23] R. S. Garfinkel and M. R. Rao. The bottleneck transportation problem. *Naval Research Logistics Quarterly*, 18:465–472, 1971.

[24] L. Georgiadis. Bottleneck multicast trees in linear time. *IEEE Communications Letters*, 7:564–566, 2003.

[25] A. V. Goldberg. A new max-flow algorithm. Technical Report MIT/LCS/TM-291, Laboratory for Computer Science, MIT, Cambridge, MA., 1985.

[26] A. V. Goldberg and S. Rao. Flows in undirected unit capacity networks. *SIAM Journal of discrete mathematics*, 12:1–5, 1999.

[27] D. Goldfarb and W. Chen. On strongly polynomial dual simplex algorithms for the maximum flow problem. *Mathematical Programming*, 77:149–158, 1997.

[28] D. Goldfarb and J. Hao. A primal simplex algorithm that solves the maximum flow problem in at most nm pivots and o(n^2m) time. *Mathematical Programming*, 47:353–365, 1990.

[29] W. Grabowski. Problem of transportation in minimum time. *Bulletin de L’ Academie Polonaise des Science*, 12:107–108, 1991.

[30] O. Gross. The bottleneck assignment problem. page 1630, 1959. The Rand Corporation, Santa Monica, California.

[31] S. K. Gupta and A. K. Mittal. A minmax problem as a linear programming problem. *Operation Research*, 26(4):871–874, 1975.

[32] P. L. Hammer. Time minimizing transportation problems. *Naval Research Logistics Quarterly*, 16:345–357, 1969.

[33] P. L. Hammer. Communication on "the bottleneck transportation problem" and some remarks on "the time transportation problems". *Naval Research Logistics Quarterly*, 18:487–490, 1971.

[34] R. G. Hinkle and J. J. Jarvis. Time minimizing flows in directed networks. *Naval Research Logistics Quarterly*, 29(2):247–256, 1982.

[35] D. S. Hochbaum and G. J. Woeginger. A linear time algorithm for the bottleneck transportaion problem with a fixed number of sources. *Operations Research Letters*, 24:25–28, 1999.
[37] H. Isermann. Linear bottleneck transportation problems. *Asia-Pacific Journal of Operational Research*, 1:38–52, 1984.

[38] H. L. Bhatia K. Swaroop and M. C. Puri. A procedure for time minimization transportation problem. *Indian Journal of Pure and Applied Mathematics*, 8(8):920–929, 1977.

[39] V. Kaibel and M.A.F. Peinhardt. On the bottleneck shortest path problem. Technical report, ZIB-Report, May 2006.

[40] H. Kellerer and G. Wirsching. Bottleneck quadratic assignment problems and the bandwidth problem. *Asia-Pacific Journal of Operational Research*, 15(2):169–177, 1998.

[41] S. V. Listrovio and V. I. Khrin. Parallel algorithm to find maximum capacity paths. *Cybernetics and Systems Analysis*, 34(2):261–268, 1998.

[42] R. Malhotra. On hammer’s method of finding a least cost optimal solution to a time minimization transportation problem. *Cahiers du C. E. R. O.*, 25:75–80, 1983.

[43] A. A. Mironov and V. I. Tsyrkov. Transport and network problems with the minimax criterion. *Comp. Math. Math. Phys.*, 35(1):15–30, 1995.

[44] A. A. Mironov and V. I. Tsyrkov. Transportation problems with a minimax criterion. *Doklady Mathematics*, 53(1):119–122, 1996.

[45] J. Monnot and O. Spanjaad. Bottleneck shortest path on a partially ordered scale. *4OR*, 1(3), 2003.

[46] U. Pferschy. The random linear bottleneck assignment problem. *RAIRO Operations Research*, 30:127–142, 1996.

[47] U. Pferschy. Solution methods and computational investigations for the linear bottleneck assignment problem. *Computing*, 59:237–258, 1997.

[48] A. P. Punnen. A linear time algorithm for the maximum capacity path problem. *European Journal of Operations Research*, 53:402–404, 1991.

[49] A. P. Punnen. A fast algorithm for a class of bottleneck problems. *Computing*, 56:397–401, 1996.

[50] A. P. Punnen and K. P. K. Nair. Improved complexity bound for the maximum cardinality bottleneck bipartite matching problem. *Discrete Applied Mathematics*, 55:91–93, 1994.

[51] D. D. Klingman R. A. Russell and P. P. Navid. An efficient primal approach to bottleneck transportation problems. *Naval Research Logistics Quarterly*, 30:13–35, 1983.

[52] A. Ravindran and V. Ramaswami. On the bottleneck assignment problem. *Journal of Optimization Theory and Applications*, 21:451–458, 1977.

[53] S. M. Shvartin. An algorithm for planning transport in minimum time. *Zh. vychisl. Mat. mat. Fiz.*, 15(2):321–329, 1975.

[54] L. Slominski. Bottleneck assignment problem: an efficient algorithm. *Arch. Automat. Telemeh.*, 24:469–482, 1979.

[55] L. Slominski. On existence of assignments in zero-one matrices. *System modelling and optimization (Budapest)*, pages 838–844, 1985.

[56] W. Szwarc. Some remarks on the time transportation problem. *Naval Research Logistics Quarterly*, 18:473–485, 1971.

[57] R. Varadarajan. An optimal algorithm for 2*n bottleneck transportation problems. *Operations Research Letters*, 10:525–529, 1991.

[58] S. Vejmola. Bottleneck linear programming problems and methods for their solution. *Ekonom. -Mat. Obzor*, 17(2):158–179, 1981.

[59] Ruonan Zhang. Bottleneck flows in networks. Master’s thesis, University of New Brunswick, 2005.