Seed-chain-extend alignment is accurate and runs in close to $O(m \log n)$ time for similar sequences: a rigorous average-case analysis

Jim Shaw1 and Yun William Yu1,2

1 Department of Mathematics, University of Toronto
2 Computer and Mathematical Sciences, University of Toronto at Scarborough

jshaw@math.toronto.edu, ywyu@math.toronto.edu

Abstract. Seed-chain-extend with k-mer seeds is a powerful heuristic technique for sequence alignment employed by modern sequence aligners. While effective in practice for both runtime and accuracy, theoretical guarantees on the resulting alignment do not exist for seed-chain-extend. In this work, we give the first rigorous bounds for the efficacy of seed-chain-extend with k-mers in expectation. Assume we are given a random nucleotide sequence of length $\sim n$ that is indexed (or seeded) and a mutated substring of length $\sim m \leq n$ with mutation rate $\theta < 0.206$. We prove that we can find a $k = \Theta(\log n)$ for the k-mer size such that the expected runtime of seed-chain-extend under optimal linear gap cost chaining and quadratic time gap extension is $O(mn^{f(\theta)} \log n)$ where $f(\theta) < 2.43 \cdot \theta$ holds as a loose bound. In fact, for reasonable $\theta = 0.05$, $f(\theta) < 0.08$, indicating nearly quasilinear running time in practice. The alignment also turns out to be good; we prove that more than $1 - O(\sqrt{\frac{1}{m}})$ fraction of the homologous bases are recoverable under an optimal chain. We also show that our bounds work when k-mers are sketched, i.e. only a subset of all k-mers is selected. Under the open syncmer sketching method, one can sketch with decreasing density as a function of n and achieve asymptotically smaller chaining time, yet the same bounds for extension time and recoverability hold. In other words, sketching reduces chaining time without increasing alignment time or decreasing accuracy too much, justifying the effectiveness of sketching as a practical speedup in sequence alignment. We verify our results in simulation and conjecture that $f(\theta)$ can be further reduced.

Keywords: Average-case analysis, sketching, k-mers, alignment, seed-chain-extend, chaining, random mutations, read-alignment

* J.S. was supported by an NSERC CGS-D scholarship. This work was supported by Natural Sciences and Engineering Research Council of Canada (NSERC) grant RGPIN-2022-03074.
Table of Contents

Seed-chain-extend alignment is accurate and runs in close to $O(m \log n)$ time for similar sequences:

a rigorous average-case analysis .. 1

Jim Shaw and Yun William Yu

1 Introduction .. 3
 1.1 Our contribution ... 3

2 Assumptions and models .. 4
 2.1 Mutation model ... 4
 2.2 Modelling seed-chain-extend .. 4
 2.3 Extension and chaining runtimes ... 4

3 Results ... 5

4 Homology and recoverability ... 6

5 Fundamental tools and bounds .. 7
 5.1 Bounding sums of k-mer random variables ... 7

6 Proof of non-sketched main result ... 8

7 Sketching and local k-mer selection .. 9

8 Empirical results ... 11
 8.1 Accuracy of asymptotic extension runtime predictions ... 11
 8.2 Sketching with $\Theta(\frac{1}{\log n})$ density gives favourable runtime tradeoffs 11

9 Conclusion ... 12

A Mathematical conventions and reminders .. 16

B Missing proofs and definitions from Section 4 .. 16
 B.1 Recoverability and definition of \textit{Align(C)} .. 16
 B.2 Proof of Lemma 11 ... 16

C Missing proofs from Section 5 .. 18
 C.1 Proof of Theorem 3 ... 18
 C.2 Proof of Corollary 1 ... 19
 C.3 Proof of Lemma 2 ... 19
 C.4 Proof of Lemma 3 ... 20

D Missing proofs from Section 6 .. 21
 D.1 Proof of Theorem 6 ... 21
 D.2 Proof of Lemma 6 ... 22
 D.3 Proof of Lemma 7 ... 22
 D.4 Proof of Corollary 3 ... 25
 D.5 Proof of Lemma 8 ... 26
 D.6 Proof of Lemma 9 ... 29

E Missing proofs from Section 7 .. 29
 E.1 Proof of Lemma 11 ... 29
 E.2 Proof of Theorem 8 ... 30
 E.3 Sketched concentration bounds and gap sizes .. 30
 E.4 Proving Lemma 13 ... 31
 E.5 Re-proving sketched bounds .. 33

F Additional plots ... 34
1 Introduction

Since the earliest years of bioinformatics, one primitive task has been sequence alignment [164], which plays a major role in genomic sequencing and phylogenetics. Intuitively, alignment matches together similar parts of two strings, inserting gaps where needed. More formally, alignment is defined by a set of allowed edit operations (e.g. single-character substitutions, insertions, deletions) with associated costs; an alignment is a sequence of those operations transforming one string into another string (or for local alignment, transforming one string into a substring of the other), and the alignment score is the summed cost of those operations [8].

Unfortunately, the best guaranteed algorithms for computing alignment [63,64] are quadratic in time-complexity; worse, this bound appears to be tight [5]. Thus, to deal with large volumes of sequencing data [15,17], sequence alignment programs employ heuristics [13,14,29,35,40] without performance guarantees [16] for computational efficiency. All these heuristic algorithms are by necessity fast, achieving empirically sub-quadratic runtimes on real problems. They fail for adversarial examples, but aligners perform well in practice because the sequences being aligned are similar and not pathological examples [63,64].

Phylogenetics often makes use of comparative genomics, where aligning together multiple whole genomes allows annotating the ways in which two species have diverged over evolutionary time [33]. In genomic sequencing, the alignment task manifests because the sequencing machines are only able to read a small portion of a chromosome at a time, producing short snippets known as reads [3]. It is then incumbent on read-mapping software to determine the likely origin location of that read in the genome, and for already sequenced species, this is usually performed by aligning the read to a known reference genome [54].

Historically, different types of heuristics were used for the two tasks, because aligning a very small substring to a longer string is easier than aligning comparable-size strings. Indeed, the seed-and-extend heuristic, as seen in BWA and Bowtie 2, is only applicable to NGS short-reads. However, as 3rd-generation long-read sequencing becomes more prominent, the two tasks become more similar and the same heuristics can be used for both [60]—in this manuscript, we address the seed-chain-extend heuristic used in modern software for both read mapping and whole genome alignment.

1.1 Our contribution

Our goal in this manuscript is to close the gap between theory and practice, rigorously justifying the heuristics used in some of the most widely used alignment software. To this end, we turn to the methods of average-case analysis [67], which gives us a way of breaking through the quadratic barrier of alignment [17]. Given a random string, we define a substitution model giving rise to a distribution on pairs of inputs and then average our analysis on pairs of strings over this distribution.

Recently, Ganesh and Sy [21] also used probabilistic analysis to show that a heuristic algorithm based on banded alignment can run in $O(n \log n)$ time for two length n sequences and is optimal with high probability. However, their banded alignment heuristic has not yet seen any usage in practical software, and their analysis is invalid in the case of read mapping as it only pertains to two nearly equal length strings. Thus we turn instead to the analysis of an empirically battle-tested heuristic for sequence alignment: seed-chain-extend. Seed-chain-extend is a well-established technique for comparative genomics [11,49], and recently the addition of sketching (or subsampling) has made it popular for long-read aligners [58,11,65] including minimap2 [37], the primary algorithm our model of seed-chain-extend is based on.

We provide, to the best of our knowledge, the first average-case bounds on runtime and optimality for the sketched k-mer seed-chain-extend alignment heuristic under a pairwise mutation model. Our optimality result shows that for large enough k-mer size k, the alignment is mostly constrained to be near the correct diagonal of the alignment matrix and that runtime is close to linear when the mutation or error rate is reasonably small. We also show that subsampling $\Theta(\frac{1}{\log n})$ of k-mers asymptotically reduces our bounds on chaining time but not for extension time. Our results give a theoretical justification for both the empirical accuracy and sub-quadratic runtime of seed-chain-extend. A simplified version of our theorem follows.

Simplified Theorem 1 (Informal main result; no sketching). Suppose we are given a uniformly random DNA string of length n and a mutated substring of length m where each base is substituted with probability θ. If $\theta < 0.206$ and the longer string is already seeded, then we can choose $k = \Theta(\log n)$ such that the expected runtime of k-mer seed-chain-extend is $O(mn^{1/(\theta \log n)}) = O(mn^{2.43-\theta \log n})$, and in expectation $\geq 1 - O(\frac{1}{\sqrt{m}})$ of the homologous bases can be recovered from this alignment.
We will state our models and definitions precisely in Sections 2 and 6. Our main result, Theorem 1, precisely defines the function $f(\theta) < 2.43 \cdot \theta$ in the exponent, but $2.43 \cdot \theta$ is a convenient upper bound. We can quickly see from this bound that for modest mutation rates, $n^{2.43 \theta}$ is not too large.

2 Assumptions and models

2.1 Mutation model

Let $S = x_1 x_2 \ldots x_{n+k-1}$ be a random uniform string with $n + k - 1$ i.i.d letters on an alphabet of size σ for some $k = \Theta(\log n)$. Let $S' = y_{p+1} y_{p+2} \ldots y_{p+m+k-1}$ be a substring of S of length $m + k - 1$ starting at a fixed position $p + 1$ with each character independently mutated to a different letter with probability θ. Although notationally a little confusing at first, the $k-1$ term ensures S, S' contain exactly n and m k-mers respectively—k-mers are in many ways the natural unit of measurement, rather than individual characters.

We model only point substitutions here and not indels. Independent substitution models have been considered in theoretical work \cite{51,25,1,56}. Since our gap costs are linear, we use quadratic time extension between gaps based on any alignment score (e.g. edit distance, affine gap costs \cite{15}) as our optimality criterion only depends on the chain (Section 4). We do not use banded alignment \cite{12} in this step, unlike minimap2 \cite{37}.

2.2 Modelling seed-chain-extend

A brief overview of seed-chain-extend based alignment is given as follows: first a subset of k-mers in both S, S' are taken as seeds and exact seed matches between S, S' called anchors are obtained. We only use k-mer seeds in this study, although other types of seeds are possible \cite{28,29}. An optimal increasing subsequence of possibly overlapping anchors based on some score is then collected into a chain, where increasing is defined with the standard precedence relationship \cite{25} between k-mer anchors (See Figure 1a and Chaining below). The chain is extended into a full alignment by aligning between anchor gaps in the chain.

Model overview: our model of seed-chain-extend is primarily inspired by minimap2 with a few key differences. It captures the following steps: seeding the query S', matching the k-mers to obtain anchors, sorting the anchors, chaining, and extending. We assume the reference S has already been seeded and only the query needs seeding, as in the case of read alignment. For comparing two similar length genomes, the seeding time of either genome is comparable, so the asymptotics will be the same for comparative genomics.

Runtimes: non-sketched seeding runtime with a hash table is $O(m)$, whereas sketched seeding runtime is $O(mk)$ (discussed in Section 7). Letting N be a random variable for the number of anchors, matching is $O(N + m)$ by iterating through a hash table, sorting is $O(N \log N)$, and (optimal) chaining is $O(N \log N)$ (see Section 2.3). Extension is the only step with unknown time complexity. It will turn out that extension and $N \log N$ are the dominating asymptotic terms, so our goal is to bound these terms in expectation. Empirically, it has been shown that chaining and alignment usually take the most time \cite{27} for read mapping.

Chaining: a chain is a sequence of tuples $C = ((i_1, j_1), \ldots, (i_u, j_u))$ where i_ℓ and j_ℓ are the starting positions of the anchoring k-mers on S and S' respectively, under the convention that $S' = y_{p+1} \ldots$ so the k-mers labelled $(p+1)$ on S' is actually the first k-mer. The precedence relation $i_\ell > i_{\ell-1}$ and $j_\ell > j_{\ell-1}$ must hold for all ℓ, and k-mers can overlap. Our chaining score is the L1 or linear gap cost \cite{13,39} of the form $u - \zeta((i_u - i_1) + (j_u - j_1))$ for $\zeta > 0$, which penalizes long chains from distant spurious anchors and is necessary for our proofs when $n > m$. The score is sometimes defined equivalently as $u - \sum_{\ell=2}^{u} \zeta((i_\ell - i_{\ell-1}) + (j_\ell - j_{\ell-1}))$. In the language of \cite{1}, we let our anchor fragments have length 1, so the k-mers can overlap. While minimap2 v2.22’s default chaining score is different and uses a heuristic banded chaining approach, it does use a linear gap cost (without overlaps) in certain situations, e.g. mapping long contigs \cite{38}.

Extension: we use quadratic time extension between gaps based on any alignment score (e.g. edit distance, affine gap costs \cite{15}) as our optimality criterion only depends on the chain (Section 4). We do not extend past the ends of the chain and do not use banded alignment \cite{12} in this step, unlike minimap2 \cite{37}.

2.3 Extension and chaining runtimes

Given sorted anchors, let T_{chain} be the time spent finding an optimal chain. T_{chain} depends on the objective function \cite{51,25,15}. Since our gap costs are linear, $T_{\text{chain}} = O(N \log N)$ where N is the number of anchors \cite{1}. For extension time T_{ext}, let $(G_1, G'_1), \ldots, (G_{u-1}, G'_{u-1})$ be the size of the gaps for an optimal
chain. \(G_t \) indicates the length of the substring between the k-mers \(i_t, i_{t+1} \) on \(S \) and \(G'_t \) similarly for \(S' \); \(G_t, G'_t \) can be zero. The extension time is \(T_{\text{Ext}} = \sum_{t=1}^{n-1} O(G_tG'_t) \). Using the fact that \(\sum G_t \leq n, G'_t \leq \sum G'_t \leq m \), one can get that \(T_{\text{Ext}} = \sum_{t=1}^{n-1} O(G_tG'_t) = O(nm) \). We will show that the expected runtime is better than this upper bound, but it serves as a useful worst case. Since \(S, S' \) are random strings, \(T_{\text{Chain}}, T_{\text{Ext}}, N \), and the alignment itself all become random variables. Our goal will be to bound \(\mathbb{E}[T_{\text{Chain}}] \) and \(\mathbb{E}[T_{\text{Ext}}] \).

3 Results

First, a few definitions are in order. Recall that \(|S| = n + k - 1 \sim n \), and \(|S'| = m + k - 1 \sim m \) are our string lengths. We define \(\sigma > 1 \) to be the size of the alphabet and \(0 < \theta < 1 \) to be the probability a base mutates. Our theory holds for any alphabet size, but we use \(\sigma = 4 \) for specifying numerical constants. Let \(\log = \log_\sigma \) with base \(\sigma \) and \(\ln \) be the natural logarithm. Let \(k = C\log n \) for a fixed \(C > 0 \) so that key quantities can be expressed interchangeably as \(\sigma^k = n^C \) and \((1 - \theta)^k = n^{-C\alpha} \) where \(\alpha = -\log_\sigma (1 - \theta) > 0 \). We define the actual goodness of the chain in terms of recoverability in Section 4; it measures the fraction of homologous bases under our mutation model that could potentially be recovered by extending through an optimal chain and only depends on the chain, not the actual alignment.

Theorem 1 (Main result; no sketching). Under our model of seed-chain-extend in Section 2.2, assume \(\theta < 0.206 \), let \(\alpha = -\log_\sigma (1 - \theta) \), and pick any \(C > \frac{1}{1 - 2\theta} \). If \(m = \Omega(n^{2C\alpha + \epsilon}) < n \) for some arbitrary \(\epsilon > 0 \), letting \(k = C\log n \) and \(\zeta = \frac{1}{6g(n)} \) where \(g(n) = C\frac{50}{3}\log(n)\ln(n)n^C \), the expected running time is \(O(mn^{C\alpha}\log(n)) \) for extension and \(O(mn^{-C\alpha}\log m) \) for (optimal) chaining. \(C\alpha \) can always be chosen to be \(< \frac{1}{2} \) and the expected recoverability of any optimal chain is \(\geq 1 - O\left(\frac{1}{\sqrt{m}}\right) \).

Equivalently, \(C\alpha = \frac{2\alpha}{1 - 2\theta} + \delta \) for any \(\delta > 0 \). \(\frac{2\alpha}{1 - 2\theta} \) is plotted in Supplementary Figure 7; it is convex and thus leads to the bound \(C\alpha < 2.43 \cdot \theta \) stated in Section 1.1. E.g., if \(|S| = |S'| \) and \(\theta = 0.05 \), which is approximately the level of divergence seen between chimpanzee and chimpanzee genomes [10], \(2\log_\sigma (0.95)/1 + 2\log_\sigma (0.93) < 0.08 \), so for \(C\alpha = 0.08 \) the running time is \(O(n^{1.08}\log(n)) \). Even for relatively large values of \(n \), say the entire human genome which has size of approximately 3 billion, \(n^{1.08} \) is essentially linear as \((3,000,000,000)^{0.08} \sim 5.73 \).

Our proof follows in three main steps. First, we bound the first and second moments of the random variable \(N \), which denotes the number of anchors, implying that chaining is fast. Second, we use concentration inequalities for sums of dependent random variables and exploit the structure of chaining to show that with high probability, an optimal chain does not deviate much from the chain with only “homologous anchors” (Figure 1a). The failure probabilities will be on the order of \(\Theta\left(\frac{1}{\sqrt{m}}\right) \), allowing us to also bound everything in expectation. Lastly, we bound the expected runtime of extension through gaps between homologous anchors.

Asymptotically, the chaining runtime is smaller than extension runtime. However, the implied constants can be much smaller for the extension term [27], so it is practically useful to reduce the runtime of chaining via sketching. Let \(0 < \frac{1}{c} \leq 1 \) be the expected fraction of selected k-mers for a sketching method. We use the open syncmer k-mer seeding method [16] which has a useful mathematical property (Theorem 7), giving:

Theorem 2 (Sketched result). In addition to the hypotheses outlined in Theorem 1, let \(c = O(\log(n)) < k \) and \(\zeta = \frac{1}{6g(n)} \) instead where \(g(n) = C\frac{50}{3}\log(n)\ln(n)(\frac{1}{2}n^{C\alpha} + 2) \). For open syncmer sketched seed-chain-extend, the expected running time is \(O\left(\min\left(\frac{1}{c}mn^{C\alpha}\log^3(n), c\cdot mn^{-C\alpha}\log n\right)\right) \) for extension and \(O\left(\frac{1}{c}mn^{-C\alpha}\log m\right) \) for chaining. The expected recoverability of any optimal chain is \(\geq 1 - O\left(\frac{1}{\sqrt{m}}\right) \).

This shows that the asymptotic upper bound on extension runtime is the same even if we let \(c \) grow with \(n \) like \(c = \Theta(\log(n)) < k \), leading to the following conclusion: sketching can reduce chaining time without increasing extension time much. Other seeding schemes used, e.g. minimizers [63,57,37,14] or FracMinHash [23] behave differently, but our techniques provide intuition and in some cases can be extended (See Section 7).

We validate our results with simulations in Section 8. We show that our expected time bounds predict runtimes well for large enough \(n \). We then show that when sketching with \(\Theta(\log(n)) \) density, the multiplicative slow-down in extension time plateaus, which is in accordance with our theory. However, the multiplicative speed-up in chaining time increases asymptotically. Thus sketching is extremely effective at producing favourable runtime trade-offs between chaining and extension.
4 Homology and recoverability

Let the interval \([a, b]\) be the discrete interval \(\{a, a+1, \ldots, b\}\) and \(S[a..b]\) be the substring indexed by \([a..b]\). \(S'\) is a mutated version of the substring \(S[p+1..p+m]\) of length \(m\) starting at \(p+1\), so the optimal alignment should map \(S'\) to the homologous indices \([p+1..p+m]\). We now define recoverability as the number of homologous bases one can possibly recover by seed-chain-extend; a visual example is shown in Figure 1.

Definition 1. Let an alignment matrix be given as \([1..|S|] \times [p+1..p+|S'|]\). Define the homologous diagonal \(D_H = \{(p+1, p+1), \ldots, (p+|S'|, p+|S'|)\}\). Given a chain \(C\), let \(\text{Align}(C)\) be the set of possible alignments obtained by extending through gaps and k-mer matching where \((x,y) \in \text{Align}(C)\) indicates \(x\) and \(y\) can be aligned. Then the set of recoverable bases is \(\text{Align}(C) \cap D_H\) and \(R(C) = \frac{|\text{Align}(C) \cap D_H|}{|S'|}\).

We define \(\text{Align}(C)\) carefully in the appendix. Note that an optimal chain with respect to our linear gap cost objective \(u - \zeta((i_u - i_1) + (j_u - j_1))\) does not directly optimize for recoverability. We provably find the chain with the optimal linear gap cost, and then we will argue that it leads to good recoverability.

Traditionally, alignment optimality is defined using a generalized edit distance [70]. However, these distances are only used as a proxy for detecting sequence homology [66][61]. We know the true underlying sequence ancestry in our model, so defining optimality with respect to sequence homology suits the actual goal of sequence alignment. The reason for the name “recoverability” is that extension could potentially recover all recoverable bases, but this depends on the extension algorithm and is not guaranteed [42].

Under our model, the trivial \(O(1)\) alignment that aligns \(S'\) back to the originating substring of \(S\) without indels is the most homologous. This may seem to make our results superfluous; however, remember that the algorithm does not know where \(S'\) “begins” if \(m < n\). Also, while we do not attempt the case with indels, seed-chain-extend is still valid when indels are present whereas the trivial solution does not allow for indels.

We will lower bound \(\mathbb{E}[R(C)]\). To do this, we will work with a more natural object called a break.

Definition 2 (inspired by [21]). We call matching bases and anchors of the form \((x, x)\) homologous and spurious otherwise. Given a chain \(((i_1, j_1), \ldots, (i_u, j_u))\) and a maximal interval \([p..q]\) such that \((i_p, j_p), \ldots, (i_q, j_q)\) are all spurious anchors, define the break \(B\) as \(B = \min(i_p, j_p) - \max(i_q, j_q) + k - 1\). Let the length or size of a break be \(L(B) = \max(i_q, j_q) - \min(i_p, j_p) + k\) and \(L(C) = \sum B(L(B))\) be the total length over all breaks. \(L(C)\) is the length of all breaks in \(C\).

Lemma 1. Given any chain \(C = ((i_1, j_1), \ldots, (i_u, j_u))\), we have that \((j_u - j_1 - L(C)) / |S'| \leq R(C)\).

We prove Lemma 1 in the appendix. The concept of a break is illustrated in Figure 1. Breaks cover non-recoverable regions, so subtracting the breaks from the span of the anchors lower bounds the recoverability.
5 Fundamental tools and bounds

In this section, we describe some fundamental tools for dealing with pairs of random mutating strings. We first need to give a careful probabilistic exploration of random k-mer anchors on \(S = x_1 x_2 \ldots \) and \(S' = y_{p+1} y_{p+2} \ldots \). This requires a bit of work due to the dependence between the random strings \(S, S' \). For the rest of the paper, missing proofs can be found in the appendix.

Definition 3. Let \(M(i, j) \) be random variables such that \(M(i, j) = 1 \) if \(x_i = y_j \) and 0 otherwise. Let \(A(i, j) \) be a random variable \(\prod_{k=0}^{p-1} M(i+k, j+k) \). \(A(i, j) \) is an indicator random variable for the presence of a k-mer anchor at positions \((i, j)\). We will also refer to \(A(i, j) \) variables as "anchors".

We would like for \(M(i, j), M(i+1, j+1), \ldots \) to be independent, so finding the probability of k-mer matches is easy. However, in our model, it is not actually obvious a priori that \(M(i, j), M(i+1, j+1) \) are independent when \(j \neq i \). Consider \(M(1, 2) \) and \(M(2, 3) \). The former is a function of \(x_1, y_2 \), and the latter \(x_2, y_3 \). However, \(x_2 \) and \(y_2 \) are dependent in our model, so more work is needed. A convenient graphical representation of independence of the \(M \) random variables is the match graph, which we define below.

Definition 4. The match graph of a set of random variables of the form \(M = \{ M(i_1, j_1), M(i_2, j_2), \ldots \} \) is a graph \(G(M) = (V, E) \) where the vertices \(V \) are the letters \(x_1, x_2, \ldots, x_{n+k-1}, y_{p+1}, \ldots, y_{p+m+k-1} \), and the edges

\[
E = \{(x_i, y_j) : i \in [p+1..p+m+k-1]\} \cup \{(x_h, y_l) : M(h, l) \in M\}.
\]

In particular, the match graph is bipartite for the sets \(\{x_1, \ldots, x_{n+k-1}\} \) and \(\{y_{p+1}, \ldots, y_{p+m+k-1}\} \).

A match graph is shown in Supplementary Figure 1. The main reason for defining the match graph is the following theorem, which allows us to graphically determine independence of the \(A \) variables.

Theorem 3. The random variables \(M = \{ M(i_1, j_1), M(i_2, j_2), \ldots \} \) where \(i_\ell \neq j_\ell \) for all \(M(i_\ell, j_\ell) \in M \) are independent if the induced match graph has no cycles.

Corollary 1. If \(i \neq j \), \(\Pr(A(i, j) = 1) = 1/\sigma^2 \). Otherwise, \(\Pr(A(i, i) = 1) = (1 - \theta)^k \).

We will denote the random variables \(\sum_{i=1}^{p+m} A(i, i) = \sum_i A(i, i) = N_H(n, m) = N_H + \sum_{i \neq j} A(i, j) = N_S(n, m) = N_S \) respectively as the number of homologous anchors and spurious anchors; we will drop the dependence on \(n, m \) to simplify notation. These are key random variables that we wish to bound later on. The below theorem follows directly from Corollary 1 by linearity of expectation.

Theorem 4. \(\mathbb{E} \left[\sum_i A(i, i) \right] = \mathbb{E} [N_H] = m(1 - \theta)^k \), and \(\mathbb{E} [\sum_{i \neq j} A(i, j)] = \mathbb{E} [N_S] = m(n-1) \frac{1}{\sigma^2} \). In particular, \(\mathbb{E} [N] = \mathbb{E} [N_H + N_S] = m(1 - \theta)^k + m(n-1) \frac{1}{\sigma^2} \).

5.1 Bounding sums of k-mer random variables

We proceed to bound the distribution of the random variables \(N_S \) and \(N_H \), which are sums of dependent random variables. We first bound \(N_S \) by computing the second moments and using variance based bounds. To do this, we need to examine the independence structure of the \(A(i, j) \) random variables.

Lemma 2. For \(A(i, j) \) and \(A(h, l) \), if both of the following conditions hold:

1. \(|i - h| \geq k \) or \(|j - l| \geq k \) and
2. \(|i - l| \geq k \) or \(|j - h| \geq k \),

then the induced match graph on the \(M \) variables for \(A(i, j) \) and \(A(h, l) \) has no cycles.

Intuitively, the first condition states that two anchors do not overlap too much, e.g. \(A(1, 1) \) and \(A(2, 2) \) are not independent when \(k = 3 \). The intuition behind the second condition can be illustrated by the following situation where \(k = 1 \) and \(\theta \sim 0 \); consider the anchors \(A(1, 5), A(5, 1) \). Since it is likely that \(x_1 = y_1 \) and \(x_5 = y_5 \), if \(x_1 = y_1 \) then \(x_5 = y_5 \) with high probability, so \(x_1 = y_1 \) is not independent of \(x_5 = y_5 \).
Corollary 2. If $A(i, j)$ and $A(h, l)$ satisfy Lemma 2 they are independent.

Proof. By condition (1) in Lemma 2, $A(i, j)$ and $A(h, l)$ do not share any M variables i.e. $A(i, j) = M(i, j)M(i + 1, j + 1) \ldots$ similarly for (h, l), but no product shares a variable with the others. Since the match graph has no cycles under these conditions, by Theorem 3, all M variables are independent so $\Pr(A(i, j)A(h, l) = 1) = \frac{1}{\sigma^2} = \Pr(A(i, j) = 1)\Pr(A(h, l) = 1)$ as desired.

Lemma 3. $E[N_S^2] \leq 8k^2mn\frac{1}{\sigma^2} + E[N_S]^2$. Thus the variance $Var(N_S)$ can be upper bounded by $8k^2mn\frac{1}{\sigma^2}$. Furthermore, $E[N_H^2] \leq 2mk(1 - \theta)^k + m^2(1 - \theta)^{2k} + E[N_H N_S] \leq 4k^2mn\frac{1}{\sigma^2} + m^2n(1 - \theta)^k \frac{1}{\sigma^2}$.

Now we can use the variance bound and Chebyshev’s inequality to get the result below. Note the bound uses $k = C \log n$; we will prefer this form for quantities directly used for proving the main result. The label $F1$ in the theorem refers to the particular event space for which the bound always holds. We will label each proposition that holds with high probability with the event space that we are operating in. We will continue this convention for the rest of the paper as this will be useful when computing our final bounds.

Lemma 4 (F1). With probability $\geq 1 - \frac{1}{n}$, the number of spurious anchors is $\leq n^{2-C} + \sqrt{8mC \log(n)}n^{1-C/2}$ where we used $\frac{2^{n(n-1)}}{\sigma^2} < n^{2-C}$. That is,

$$\Pr(N_S \geq n^{2-C} + \sqrt{8mC \log(n)}n^{1-C/2}) \leq \frac{1}{n}.$$

If $C > 3$, then for large n, $N_S = 0$ with high probability, and our analysis would be easy. But, we want C as small as possible. It turns out we can make $C \sim 2$ for reasonable θ, significantly tightening our bounds.

For N_H we can get a stronger exponential bound because of its independence structure. $A(i, i)$s, which we call homologous anchors, are only dependent in a small neighbourhood around i of size k because k-mers on non-overlapping substrings are independent. This is called $k-$dependence (not to be confused with k-independence) and is used in [9] to show N_H is asymptotically normal. Concentration bounds can also be translated in the $k-$dependent scenario [26].

Theorem 5 (Dependent Chernoff-Hoeffding bound - Corollary 2.4 from Janson [26] reworded and simplified). Suppose we have $X = \sum_{a \in A} \text{Bernoulli}_a(q)$ for some $0 < q < 1$. A proper cover of A is a family of subsets $\{A_i\}_{i \in I}$ such that all random variables in $A_i \subset A$ are independent and $\bigcup_{i \in I} A_i = A$. Let $\chi(A)$ be the minimum size of the cover, $|I|$, over all possible proper covers. Then for $t \geq 0$,

$$\Pr(X \leq EX - t) \leq \exp \left(- \frac{8t^2}{25|A|\chi(A)q} \right).$$

Lemma 5.

$$\Pr(N_H \leq m(1 - \theta)^k - t) \leq \exp \left(- \frac{8t^2}{25mk(1 - \theta)^k} \right).$$

Proof. We simply use Theorem 5 with $q = (1 - \theta)^k$. By k-dependence, we can easily see that $A = \{A_1, \ldots, A_k\}$ where $A_j = \{A(j, j), A(j + k, j + k), A(j + 2k, j + 2k) \ldots\}$ is a partition satisfying the independence condition, and we will have at most k sets. Thus $\chi(A) \leq k$, and we’re done.

6 Proof of non-sketched main result

To prove the main result on seed-chain-extend without sketching, we will need to bound three quantities in expectation: the runtime of chaining, the recoverability of chaining, and the runtime of extension.

We first bound $O(\mathbb{E}[N \log N])$, the expected runtime of chaining (and also anchor sorting). Note that $\mathbb{E}[N] \leq \frac{1}{\sqrt{\epsilon}} + mn^{-C\alpha}$. We would like $O(\mathbb{E}[N \log \mathbb{E}[N]]) = O(mn^{-C\alpha} \log m)$ to hold. Unfortunately, Jensen’s inequality only gives $\mathbb{E}[N \log N] \geq \mathbb{E}[N] \log \mathbb{E}[N]$ because $x \log x$ is convex. However, with a bit more work:

Theorem 6. Assume $m = \Omega(n^{2C\alpha + \epsilon})$ for some $\epsilon > 0$, and $C > \frac{1}{1 - \alpha}$. Letting N be the total number of k-mer anchors, $\mathbb{E}[N \log N] = O(\mathbb{E}[N] \log \mathbb{E}[N]) = O(mn^{-C\alpha} \log m)$. Thus the runtime of chaining is $O(mn^{-C\alpha} \log m)$.
Now we bound the expected recoverability of the chain. Given \(S \) and \(S' \), let a homologous gap of size \(\ell + k - 1 \) bases be an interval of \(\ell \) consecutive k-mers for which no homologous anchors exist (i.e. the k-mers are mutated). In the context of a chain, a homologous gap will refer to a gap flanked by two homologous anchors. Technically, if \(\ell \) consecutive k-mers are uncovered but are flanked by two homologous anchors, this gives \(\ell + k - 1 \) uncovered bases. We will ignore these factors of \(k \) as we will show that they are asymptotically small. It turns out homologous gaps grow relatively slowly in \(n \) with high probability.

Lemma 6 (F2). With probability \(\geq 1 - 1/n \), no homologous gap has size greater than

\[
g(n) = \frac{50k}{8(1-\theta)^k} \ln(n) = \frac{C \cdot 50}{8} \log(n) \ln(n) \cdot n^{C_\alpha}
\]

plus a small \(C \log n \) term we will ignore because it is small asymptotically.

In a chain, gaps may also be flanked by one or two spurious anchors. We call these non-homologous gaps. We first bound break lengths, will imply good recoverability, and bound non-homologous gaps later on.

Lemma 7 (F1 + F2). Take any \(C > \min(3, \frac{2}{1-2\theta}) \) and let \(\zeta = \frac{1}{\log(n)} \) where \(g(n) = C \frac{50}{8} \log(n) \ln(n) n^{C_\alpha} \). Assume \(m = \Omega(n^{2C_\alpha+\epsilon}) \) for some \(\epsilon > 0 \). Then for large enough \(n \), there are no breaks of length \(\geq m^{1/2} \) with probability greater than \(1 - 2/n \) in an optimal chain.

Corollary 3. Under the same assumptions as in Lemma 6, the expected recoverability of any optimal chain is \(\geq 1 - O\left(\frac{1}{\sqrt{m}}\right) \).

The idea behind proving the above propositions is to work in a space of events \(F_1 \cap F_2 \) where “bad events” do not occur and any optimal chain is recoverable. Because this space of bad events is small, they do not contribute to our expected value too much. This finishes the recoverability result for the main theorem.

The last step is to bound extension running time, and this comes down to separately bounding the size of the homologous and non-homologous gaps in any optimal chain. We bound the runtime of extension through homologous gaps by directly calculating the expectation through all possible homologous gaps. We then show that the runtime through non-homologous gaps is small and does not contribute to the asymptotic term.

Lemma 8. Let \(T_{E,ext}^H \) be the time of extension over only the homologous gaps of any optimal chain. \(\mathbb{E}[T_{E,ext}^H] = O(mn^{C_\alpha} \log n) \).

Lemma 9. Let \(T_{E,ext}^S \) be the runtime of extension through only the non-homologous gaps of an optimal chain. Under the same assumptions as in Lemma 7, \(\mathbb{E}[T_{E,ext}^S] = O(m) \).

Proof (Theorem 4). The expected runtime of chaining follows from Theorem 6. The recoverability result follows from Corollary 3. The expected runtime of extension is \(\mathbb{E}[T_{E,ext}^S] = \mathbb{E}[T_{E,ext}^H] + \mathbb{E}[T_{E,ext}^S] \), and \(\mathbb{E}[T_{E,ext}^H], \mathbb{E}[T_{E,ext}^S] \) are both \(O(mn^{C_\alpha} \log n) \) by Lemmas 8 and 9. This completes the proof as long as we satisfy the assumptions of Lemma 7 and Theorem 6 on \(C, \alpha \). To satisfy the assumptions, we require \(C > \frac{1}{1-\theta} \), \(C > \min(3, \frac{2}{1-2\theta}) \), and \(C_\alpha < 1/2 \) otherwise \(m = \Omega(n^{2C_\alpha+\epsilon}) > n \) for large enough \(n \). It’s not hard to check that the limiting condition is \(\alpha < 1/6 \), so we require \(-\log_2(1-\theta) < 1/6 \). This works out to be \(\theta < 1 - 4^{-\frac{1}{6}} < 0.2063 \). We can also remove the minimum condition on \(C \) because \(\alpha < 1/6 \) implies \(\frac{4}{1-2\theta} < 3 \).

7 Sketching and local k-mer selection

Now consider not selecting all of the k-mers in a string, but only a subset of them during the initial seeding step. This allows one to chain only a subset of the k-mers, potentially providing runtime savings.

We use the open syncmer method \cite{10}. Given a string, we take all k-mers of the string and break the k-mer into s-mers with \(s < k \). There are \(k - s + 1 \) s-mers in the k-mer. We select or seed the k-mer if the smallest s-mer (subject to some ordering, which we choose as uniform random) is in the \(k - s + 1 \)-th 1-indexed position; we call a selected k-mer an open syncmer. Given repeated smallest s-mers, we take the rightmost one to be the smallest. Finding the smallest s-mer among the \(k - s + 1 \) s-mers in a k-mer takes \(k - s + 1 \) iterations, so finding all open syncmer seeds in \(S' \) takes \(O((k-s+1)m) = O(mk) = O(m \log n) \) time.
The expected fraction of selected k-mers over a string with i.i.d uniform letters is called the density, and it is $1/c$ for the open syncmer method (up to a small error term $O((k-s-1)\theta^s)$ which we will ignore; see \cite{1} or \cite{24}). We will let c be the reciprocal of the density, so $c = (k-s+1)$.

The original open syncmer definition in \cite{16} had a parameter t where a k-mer was selected if the smallest s-mer was in the t-th position; we proved in \cite{22} that the optimal t is $\lceil\frac{k-s+1}{2}\rceil$ with respect to maximizing the number of conserved bases from k-mer matching. The reason we choose open syncmers is primarily to the following fact which was shown in \cite{14}:

Theorem 7. Define $t = \lceil\frac{s}{2}\rceil = \lceil\frac{k-s+1}{2}\rceil$. If $k-s+1$ is odd, two consecutive open syncmers must have starting positions $\geq t$ bases apart. If even, they must have starting positions $\geq t+1$ bases apart.

Theorem 7 follows by examining the smallest s-mer in a k-mer and noticing that in the next overlapping k-mer, the locations for the new smallest s-mer are restricted. This theorem is the reason we use open syncmers and is crucial to our proofs. The spacing property makes selected open syncmers a polar set \cite{22}; other methods also give rise to polar sets \cite{19,20} but open syncmers seem to perform well empirically \cite{62,20} and are easy to describe. For the rest of the section, we will assume $c = (k-s+1)$ is odd, so $\lceil\frac{s}{2}\rceil = \frac{c+1}{2}$.

Let $A(i,j)$ be the random variables as defined before. Let $J(i)$ be the indicator random variable for if the ith k-mer is selected on S as an open anchor, and $J'(j)$ similarly for the j-th k-mer on S'. We now wish to calculate $E[J(i)J'(j)A(i,j)]$, the probability that a k-mer match exists and the k-mer is an open anchor.

Lemma 10. If $i = j$, then $E[J(i)J'(j)A(i,j)] = \frac{(1-\theta)^k}{c}$. Otherwise, $E[J(i)J'(j)A(i,j)] = \frac{1}{c\pi^2}$.

Proof. If $A(i,j) = 1$, then the i-th k-mer and j-th k-mer are the same. If a k-mer is selected as an open anchor on S, it must also be selected on S', so $E[J(i)J'(j)A(i,j)]A(i,j) = 1 = E[J(i)] = \frac{1}{2}$. $A(i,j)$ and $J(i)$ are independent because we assume the random ordering for the s-mers is independent of the random mutations. Using the law of total expectation and Theorem 4 gives the result for both cases.

Definition 5. We will replace all random variables involving anchors and matches with a superscript $*$ to indicate sketched seeds, e.g. $A(i,j)^* = A(i,j)J(i)J'(j)$, M^*, N^*_S, N^*_H, etc.

Corollary 4. The expected total number of anchors after applying open syncmer seeds with density $\frac{1}{c}$ is

$$E[\sum_{i,j} A(i,j)^*] = \frac{1}{c} \left(n(1-\theta)^k + m(n-1)\frac{1}{\sigma^2} \right).$$

The above follows directly from Lemma 10. As expected, subsampling to a $\frac{1}{c}$ fraction of the k-mers gives $\frac{1}{c}$ expected hits. Note the important property of context independence used in the proofs: if $A(i,j) = 1$, then $J(i) = J'(j)$. This property is not satisfied if one were sampling k-mers randomly or using minimizers \cite{20}. We now deduce the sketched moment bounds on N^*.

Lemma 11. The variance $Var(N^*_S)$ can be upper bounded by $\frac{1}{4}k^2mn^1-C$. Furthermore, $E[N^*_S^2] \leq \frac{1}{4}2mk(1-\theta)^k + \frac{1}{c^2}m^2(1-\theta)^{2k}$ and $E[N^*_H N^*_S] \leq \frac{1}{2}4k\frac{mn}{\sigma^2} + \frac{1}{c}m^2n(1-\theta)^k \frac{1}{\sigma^2}$.

Lemma 12 (F1*). $Pr\left(N^*_S \geq \frac{1}{2}mn^1-C + \sqrt{\frac{8}{e} km^{1/2} n^{1-C/2}} \right) \leq \frac{1}{n}$

The sketched moment bounds allow us to start re-analyzing the crucial propositions in Section 6 in the context of sketching. The first main result is that sketching reduces the chaining time as one would expect.

Theorem 8. Under the same assumptions as in Theorem 6, letting N^* be the total number of sketched k-mer anchors, the expected chaining time is $O(E[N^* \log N^*]) = O(\frac{1}{c}mn^{-C_0} \log n)$.

The second result we wish to highlight is the new bound on extension runtime through homologous gaps.

Lemma 13. The expected runtime of sketched extension through the homologous gaps in an optimal chain is $E[T_{Ex}^{H*}] = O \left(\min \left(\frac{1}{c} m n^{-C_0} \log^3 n, c \cdot m n^{-C_0} \log n \right) \right)$. If $c = \Theta(\log n)$ then $E[T_{Ex}^{H*}] = O(m n^{-C_0} \log n)$.

\[\text{bioRxiv preprint doi: https://doi.org/10.1101/2022.10.14.512303; this version posted October 18, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.} \]
It will turn out that in the sketched case, extension over homologous gaps also dominates runtime. Since we sketch with density \(\frac{1}{2} \), this result states that we can sketch with decreasing density and have the same asymptotic extension time as without sketching, which is surprising. The crucial fact we use in the proof of Lemma 13 is Theorem 7, which shows that open syncmer seeding weakens the k-dependence of the seeds since they are now at least \((c + 1)/2\) bases apart. This tightens the bound in Theorem 5 and also shows that the sketched maximum homologous gap size is \(\Theta(g(n))\), with \(g(n)\) as in Lemma 6. If we used other methods such as closed syncmers \([16]\) or FracMinHash \([23,22]\), then we would recover the \(O(c \cdot mn^{Cα} \log n)\) result in Lemma 13 but not the \(O(\sqrt[k]{mn^{Cα}} \log^3(n))\) result. Thus, we have saved a log factor by using open syncmers when we let \(c = Θ(\log n)\). The bulk of Section 9 in the appendix is dedicated to proving Lemma 13.

The key quantities used for the rest of the proofs are \(N_s^2\) and \(g'(n)\), the new maximum homologous gap size. We will prove \(g'(n) = Θ(g(n))\) with \(g(n)\) as in Lemma 6, so the only asymptotic difference in these bounds is a factor of \(\frac{1}{\sqrt[n]{\sqrt[n]{n}}\}}\) in \(N_s^2\). Since we want \(N_s^2\) to be small, this does not affect downstream analysis. It follows that the proofs of the rest of the lemmas in Section 9 can be replicated almost verbatim. We give a sketch of these proofs in the appendix.

8 Empirical results

We implemented a basic version of sketched seed-chain-extend and tested it on simulated random sequences. For the chaining step, we implemented an AVL tree based max-range-query method as described in [30,39]. For the extension step, we used a standard dynamic programming (DP) algorithm implemented in rust-bio [34]. Our code is available at https://github.com/bluenote-1577/basic_seed_chainer/

We let \(k = C\log n\) where \(C = \frac{1}{1 + 2α}\), and do seed-chain-extend on two length \(n\) sequences. As \(k\) cannot be fractional, we let \(n_k = 4^\frac{k}{2}\) for varying integer values of \(k\). We will set \(c = k − 6 = C\log(n) − 6\) which grows with \(n\). The constant 6 is arbitrary but chosen sufficiently large that so \(s\)-mers in the open syncmer method are not so small as to make the method degenerate. We found that recoverability was always quite high and that breaks did not occur very often in actual simulations; we show this in Supplementary Figure 9. Thus the empirical extension runtime ratios slope downwards, which is in agreement with the prediction.

8.1 Accuracy of asymptotic extension runtime predictions

We first empirically investigate our upper bound on expected extension runtime, which is \(O(n^{1+Cα} \log(n))\) for both sketched and non-sketched extension when \(c = Θ(\log n)\). Assuming that the runtime is simply \(\lambda n^{1+Cα} \log(n_k)\) for some fixed constant \(λ\), we can predict the ratio of the runtimes as \(\frac{n^{1+Cα} \log(n_k+1)}{n^{1+Cα} \log(n_k)}\). Of course, this is incorrect for small \(n\), as smaller terms may dominate runtime, but we expect it to be reasonably accurate for large \(n\). We plot the empirical and predicted ratios of extension runtimes in Figure 2 (a).

Figure 2 (a) shows that our upper bound looks reasonable for both sketched and non-sketched cases for \(θ = 0.10\). In Supplementary Figure 8 we show the same plots for \(θ = 0.05\). The empirical results never cross the predicted ratio, but this is not too surprising as the predicted ratio is only approximate. Importantly, the empirical extension runtime ratios slope downwards, which is in agreement with the prediction.

8.2 Sketching with \(Θ(\frac{1}{\log n})\) density gives favourable runtime tradeoffs

One of our key results in Theorem 2 is that the upper bound on asymptotic runtime of extension does not depend on the density as long as \(1/c < k\), but chaining speed-up scales multiplicatively with \(c\). In Figure 2 (b), we plot the multiplicative speed-up and slow-down of chaining and extension runtimes. This figure shows why sketching is so effective in practice with respect to runtimes; the maximal extension slow-down plateaus to \(≤ 3\) times in this case, whereas the chaining speed up is linear as the string grows exponentially. Therefore it is worth sketching aggressively to reduce runtime if chaining is slow. One should however still be careful of the sensitivity loss due to sketching in practice [62].

In practice, because extension is heavily optimized [43,17,66] and repetitive \(k\)-mers lead to more anchors, chaining can be a bottleneck even though it is asymptotically faster in runtime. In fact, we tried using WFA [43], a highly optimized algorithm for extension instead of the generic DP algorithm and found it was \(\sim 60\) times faster than chaining without sketching for \(n \sim 2,800,000, k = 23, θ = 0.05\) in our implementation.
Runtime ratio

(a) Runtime analysis of extension. The y-axis shows the runtime ratios (with 95% confidence intervals) for iteration i divided by runtime for iteration $i-1$ where the sequence length n_i is plotted on the x-axis. As n grows, the ratio seems to asymptotically approach our conjectured bound.

(b) Multiplicative speed-up for sketched versus non-sketched alignment when sketching with density $\frac{1}{c} = \frac{1}{k} = \frac{1}{\log(n)}$ where $k = C \log n$. The slow-down for extension flattens out, whereas the chaining speed-up is almost linear on the log scaled x-axis.

9 Conclusion

In this work, we are able to rigorously justify the empirical results seen by the seed-chain-extend heuristic through average case analysis under a simple mutation model. We showed the alignment is both accurate and fast: $\geq 1 - O\left(\frac{1}{\sqrt{m}}\right)$ fraction of the sequence homology is recoverable from the chain while only running in $O(mn^{\alpha}\log(n))$ time, where for even a moderate mutation rate $\theta = 0.05$, $C\alpha < 0.08$. Interestingly, a recent aligner [31] empirically achieved this predicted $n^{1.08}$ runtime for $\theta = 0.05$ on two length n sequences using similar but distinct techniques. In addition, we also proved that one can sketch to arbitrary densities $1/c$ where $c < k = O(\log n)$ while asymptotically decreasing runtime and without asymptotically decreasing recoverability, justifying the effectiveness of sketching. Because our set-up is modeled by techniques used by practical software such as minimap2, our results provide a theoretical backing for why modern sequence alignment software actually performs so well in practice.

In terms of improving our bounds, it seems unlikely that the expected runtime is truly quasilinear due to the fundamental quantity $(1-\theta)^{C\log n} = n^{-C\alpha}$, the likelihood of a k-mer match, decreasing faster than logarithmically in n. In spite of this, we believe there can be significant improvements on our bounds in Theorems 1 and 2. In the term $n^{C\alpha}$, C is required to be $> 1 - 2^{-c}$, which seems unsatisfactory. This is because our analysis of spurious anchors relied on a relatively weak variance bound. The variance bound also leads to a $1 - O\left(\frac{1}{\sqrt{m}}\right)$ bound for recoverability, which we also believe can be tightened. To surpass these bounds, a deeper understanding of spurious anchor subsequences must be developed. Tighter analysis of spurious anchors would also allow repeats, a major source of complexity in real genomes [32], to be modelled more accurately. Spurious subsequences of anchors is a very similar problem to common subsequences in random strings for extremely large alphabets, a topic that has had much theoretical attention [33,34,35,36,37]. It seems to us that this is only a first step in exploring the probabilistic theory of seed-chain-extend, and there are many more interesting problems to tackle.
Theoretical bounds on seed-chain-extend alignment

References

1. Abouelhoda, M.I., Ohlebusch, E.: Chaining algorithms for multiple genome comparison. Journal of Discrete Algorithms 3(2-4), 321–341 (2005). https://doi.org/10.1016/j.jda.2004.08.011
2. Alon, N., Spencer, J.H.: The Probabilistic Method. John Wiley & Sons (2015)
3. Alser, M., Rotman, J., Deshpande, D., Taraszkva, K., Shi, H., Baykal, P.I., Yang, H.T., Xue, V., Knyazev, S., Singer, B.D., Balliu, B., Koslicki, D., Skums, P., Zelikovsky, A., Allkan, C., Mutlu, O., Mangul, S.: Technology dictates algorithms: recent developments in read alignment. Genome Biology 22(1), 249 (2021).
4. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. Journal of Molecular Biology 215(3), 403–410 (1990). https://doi.org/10.1016/S0022-2836(05)80360-2
5. Backurs, A., Indyk, P.: Edit Distance Cannot Be Computed in Strongly Subquadratic Time (Unless SETH is False). SIAM Journal on Computing 47(3), 1087–1097 (2018). https://doi.org/10.1137/15M1053128
6. Batzoglou, S.: The many faces of sequence alignment. Briefings in Bioinformatics 6(1), 6–22 (2005). https://doi.org/10.1093/bib/bih616
7. Berger, B., Daniels, N.M., Yu, Y.W.: Computational Biology in the 21st Century: Scaling with Compressive Algorithms. Communications of the ACM 59(8), 72–80 (2016). https://doi.org/10.1145/2957324
8. Berger, B., Waterman, M.S., Yu, Y.W.: Levenshtein Distance, Sequence Comparison and Biological Database Search. IEEE transactions on information theory 67(6), 3287–3294 (2021). https://doi.org/10.1109/TIT.2020.2996543
9. Blanca, A., Harris, R.S., Koslicki, D., Medvedev, P.: The statistics of k-mers from a sequence undergoing a simple mutation process without spurious matches. bioRxiv (2021). https://doi.org/10.1101/2021.01.15.426881
10. Britten, R.J.: Divergence between samples of chimpanzee and human DNA sequences is 5%, counting indels. Proceedings of the National Academy of Sciences 99(21), 13633–13635 (2002). https://doi.org/10.1073/pnas.172510699
11. Chaisson, M.J., Tesler, G.: Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory. BMC Bioinformatics 13(1), 238 (2012). https://doi.org/10.1186/1471-2105-13-238
12. Chao, K.M., Pearson, W.R., Miller, W.: Aligning two sequences within a specified diagonal band. Bioinformatics 8(5), 481–487 (1992). https://doi.org/10.1093/bioinformatics/8.5.481
13. Chvátal, V., Sankoff, D.: Longest Common Subsequences of Two Random Sequences. Journal of Applied Probability 12(2), 306–315 (1975). https://doi.org/10.2307/3212444
14. Colquhoun, R.M., Hall, M.B., Lima, L., Roberts, L.W., Malone, K.M., Hunt, M., Letcher, B., Hawkey, J., George, S., Pankhurst, L., Iqbal, Z.: Pandora: nucleotide-resolution bacterial pan-genomics with reference graphs. Genome Biology 22(1), 267 (2021). https://doi.org/10.1186/s13059-021-02473-1
15. Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press (1998)
16. Edgar, R.: Syncmers are more sensitive than minimizers for selecting conserved k-mers in biological sequences. PeerJ 9, e10805 (2021). https://doi.org/10.7717/peerj.10805
17. Farrar, M.: Striped Smith–Waterman speeds database searches six times over other SIMD implementations. Bioinformatics 23(2), 156–161 (2007). https://doi.org/10.1093/bioinformatics/btl582
18. Fofanov, Y., Luo, Y., Katili, C., Wang, J., Beloshudtsev, Y., Powdrill, T., Belapurkar, C., Fofanov, V., Li, T.B., Chumakov, S., Pettitt, B.M.: How independent are the appearances of n-mers in different genomes? Bioinformatics 20(15), 2421–2428 (2004). https://doi.org/10.1093/bioinformatics/bth266
19. Frith, M.C., Noé, L., Kucherov, G.: Minimally-overlapping words for sequence similarity search. Bioinformatics (Oxford, England) (2020). https://doi.org/10.1093/bioinformatics/btaa1054
20. Frith, M.C., Shaw, J., Spouge, J.L.: How to optimally sample a sequence for rapid analysis (2022). https://doi.org/10.1186/1471-2105-13-238
21. Ganesh, A., Sy, A.: Near-Linear Time Edit Distance for Indel Channels. arXiv:2007.03040 [cs, q-bio] (2020)
22. Hera, M.R., Pierce-Ward, N.T., Koslicki, D.: Debiasing FracMinHash and deriving confidence intervals for mutation rates across a wide range of evolutionary distances. preprint, Bioinformatics (2022). https://doi.org/10.1093/bioinformatics/btaa1054
23. Irber, L., Brooks, P.T., Reiter, T., Pierce-Ward, N.T., Hera, M.R., Koslicki, D., Brown, C.T.: Lightweight compositional analysis of metagenomes with FracMinHash and minimal metagenome covers. preprint, Bioinformatics (2022). https://doi.org/10.1093/bioinformatics/btaa1054
24. Ivanov, P., Bichsel, B., Vecch, M.: Fast and optimal sequence-to-graph alignment guided by seeds. Tech. rep., bioRxiv (2022). https://doi.org/10.1186/s13059-022-011.475838
25. Jain, C., Gibney, D., Thanikachan, S.V.: Co-linear chaining with overlaps and gap costs. preprint, Bioinformatics (2021). https://doi.org/10.1186/s13059-021-02473-1
26. Jain, C., Gibney, D., Thanikachan, S.V.: Co-linear chaining with overlaps and gap costs. preprint, Bioinformatics (2021). https://doi.org/10.1186/s13059-021-02473-1
27. Kucherov, G., Noé, L., Blin, D., Vingron, M.: The statistics of k-mers from a sequence undergoing a simple mutation process without spurious matches. bioRxiv (2021). https://doi.org/10.1101/2021.01.15.426881
28. Koza, J.R.: The Genetic Algorithm: A Cohen Itai, M., McHugh, T., Waterman, M.S.: Linear time method for comparing two DNA sequences. Journal of Molecular Biology 193(3), 955–970 (1987). https://doi.org/10.1016/S0022-2836(05)80360-2
29. Lascu, T., Gog, S., Kucherov, G.: Near-Linear Time Edit Distance for Indel Channels. arXiv:2007.03040 [cs, q-bio] (2020)
30. Li, T.B., Chumakov, S., Pettitt, B.M.: How independent are the appearances of n-mers in different genomes? Bioinformatics 20(15), 2421–2428 (2004). https://doi.org/10.1093/bioinformatics/bth266
31. Liao, Y., Huang, Y., Westover, M., Mitra, S., Liu, D.: Large-scale haplotype reconstruction using social networks. Bioinformatics 31(16), 2210–2217 (2015). https://doi.org/10.1093/bioinformatics/btv061
26. Janson, S.: Large deviations for sums of partly dependent random variables: Large Deviations for Dependent Random Variables. Random Structures & Algorithms 24(3), 234–248 (2004). https://doi.org/10.1002/rsa.20008
27. Kalikar, S., Jain, C., Vasimuddin, M., Misra, S.: Accelerating minimap2 for long-read sequencing applications on modern CPUs. Nature Computational Science 2(2), 78–83 (2022). https://doi.org/10.1007/s43588-022-00201-8
28. Keich, U., Li, M., Ma, B., Tromp, J.: On spaced seeds for similarity search. Discrete Applied Mathematics 138(3), 253–263 (2004). https://doi.org/10.1016/S0166-218X(03)00382-2
29. Kiełbasa, S.M., Wan, R., Sato, K., Horton, P., Frith, M.C.: Adaptive seeds tame genomic sequence comparison. Genome Research 21(3), 487–493 (2011). https://doi.org/10.1101/gr.113985.110
30. Koerkamp, R.G., Ivanov, P.: Exact global alignment using A* with seed heuristic and match pruning (2022). https://doi.org/10.1101/2022.09.19.508631
31. Koning, A.P.J.d., Gu, W., Castoe, T.A., Batzer, M.A., Pollock, D.D.: Repetitive Elements May Comprise Over Two-Thirds of the Human Genome. PLOS Genetics 7(12), e1002384 (2011). https://doi.org/10.1371/journal.pgen.1002384
32. Koohi, E.V., Aravind, L., Kondrashov, A.S.: The Impact of Comparative Genomics on Our Understanding of Evolution. Cell 101(6), 573–576 (2000). https://doi.org/10.1016/S0092-8674(00)80867-3
33. Küster, J.: Rust-Bio: a fast and safe bioinformatics library. Bioinformatics 32(3), 444–446 (2016). https://doi.org/10.1093/bioinformatics/btv573
34. Langmead, B., Salzberg, S.L.: Fast gapped-read alignment with Bowtie 2. Nature Methods 9(4), 357–359 (2012). https://doi.org/10.1038/nmeth.1923
35. Lember, J., Matzinger, H.: Standard deviation of the longest common subsequence. The Annals of Probability 37(3) (2009). https://doi.org/10.1214/08-AOP436
36. Li, H.: Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34(18), 3094–3100 (2018). https://doi.org/10.1093/bioinformatics/bty191
37. Li, H.: New strategies to improve minimap2 alignment accuracy. Bioinformatics 37(23), 4572–4574 (2021). https://doi.org/10.1093/bioinformatics/btab705
38. Li, H., Feng, X., Chu, C.: The design and construction of reference pangenome graphs with minigraph. Genome Biology 21(1), 265 (2020). https://doi.org/10.1186/s13059-020-02168-z
39. Lipman, D.J., Pearson, W.R.: Rapid and Sensitive Protein Similarity Searches. Science 227(4693), 1435–1441 (1985). https://doi.org/10.1126/science.2983426
40. Lunter, G., Drummond, A.J., Miklós, I., Hein, J.: Statistical Alignment: Recent Progress, New Applications, and Challenges. In: Statistical Methods in Molecular Evolution, pp. 375–405. Springer-Verlag, New York (2005). https://doi.org/10.1016/S0092-8674(00)80867-3
41. Lunter, G., Rocco, A., Mimouni, N., Heger, A., Caldeira, A., Hein, J.: Uncertainty in homology inferences: Assessing and improving genomic sequence alignment. Genome Research 18(2), 298–309 (2008). https://doi.org/10.1101/gr.6725608
42. Marco-Sola, S., Moret, J.C., Moreto, M., Espinosa, A.: Fast gap-affine pairwise alignment using the wavefront algorithm. Bioinformatics 37(4), 456–463 (2021). https://doi.org/10.1093/bioinformatics/btaa777
43. Marçais, G., Delcher, A.L., Phillippy, A.M., Coston, R., Salzberg, S.L., Zimin, A.: MUMmer4: A fast and versatile genome alignment system. PLOS Computational Biology 14(1), e1005944 (2018). https://doi.org/10.1371/journal.pcbi.1005944
44. Marçais, G., Solomon, B., Patro, R., Kingsford, C.: Sketching and Sublinear Data Structures in Genomics. Annual Review of Biomedical Data Science 2(1), 93–118 (2019). https://doi.org/10.1146/annurev-biodatasci-072018-021156
45. Medvedev, P.: The limitations of the theoretical analysis of applied algorithms (2022). https://doi.org/10.48550/arXiv.2205.01785
46. Medvedev, P.: Theoretical analysis of edit distance algorithms: an applied perspective (2022). https://doi.org/10.48550/arXiv.2204.09535
47. Myers, E.W.: AnO(ND) difference algorithm and its variations. Algorithmica 1(1), 251–266 (1986). https://doi.org/10.1007/BF01840446
48. Myers, G., Miller, W.: Chaining multiple-alignment fragments in sub-quadratic time. In: Proceedings of the sixth annual ACM-SIAM symposium on Discrete algorithms. pp. 38–47. SODA ’95, Society for Industrial and Applied Mathematics, USA (1995).
49. Nakamura, Y., Belazougui, D., Cunial, F., Tomescu, A.I.: Genome-Scale Algorithm Design: Biological Sequence Analysis in the Era of High-Throughput Sequencing. Cambridge University Press, Cambridge (2015). https://doi.org/10.1017/CBO9781139940523
50. Nakamura, Y., Sahlin, K.: Chaining with overlaps revisited. Tech. Rep. arXiv:2001.06864, arXiv (2020)
51. Navarro, G.: A guided tour to approximate string matching. ACM Computing Surveys 33(1), 31–88 (2001). https://doi.org/10.1145/375360.375365
Theoretical bounds on seed-chain-extend alignment

53. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology 48(3), 443–453 (1970). https://doi.org/10.1016/0022-2836(70)90057-4

54. Nurk, S., Koren, S., Raučína, M., Bizkadze, A.V., Mikheenko, A., Vollger, M.R., Altemose, N., Urbatsky, L., Gershman, A., Aganezov, S., Hoyt, S.J., Diekhans, M., Logsdon, G.A., Alonge, M., Antonarakis, S.E., Borchers, M., Bouffard, G.G., Brooks, S.Y., Caldas, G.V., Chen, N.C., Cheng, H., Chin, C.S., Chow, W., de Lima, L.G., Dishick, P.C., Durbin, R., Dvorkina, T., Fiddes, I.T., Formenti, G., Fulton, R.S., Fungtammasan, A., Garrison, E., Grady, P.S.G., Graves-Lindsay, T.A., Hall, I.M., Hansen, N.F., Hartley, G.A., Hawkness, M., Howe, K., Huntkapiller, M.W., Jain, C., Jain, M., Jarvis, E.D., Kerpedjiev, P., Kirschke, M., Kolmogorov, M., Korlach, J., Kretmitzki, M., Li, H., Maduro, V.V., Marschall, T., McCartney, A.M., McDaniell, J., Miller, D.E., Mullikin, J.C., Myers, E.W., Olson, N.D., Paten, B., Peluso, P., Pevzner, P.A., Porubsky, D., Potapova, T., Rogoev, E.I., Rosenfeld, J.A., Salberg, S.L., Schneider, V.A., Sedlazeck, F.J., Shafin, K., Shew, C.J., Shumate, A., Sims, Y., Smit, A.F.A., Soto, D.C., Sović, I., Storer, J.M., Streets, A., Sullivan, B.A., Thibaud-Nissen, F., Torrance, J., Wagner, J., Walenz, B.P., Wenger, A., Wood, J.M.D., Xiao, C., Yan, S.M., Young, A.C., Zarate, S., Surti, U., McCoy, R.C., Dennis, M.Y., Alexandrov, I.A., Gerton, J.L., O’Neill, R.J., Timp, W., Zook, J.M., Schatz, M.C., Eichler, E.E., Miga, K.H., Phillippy, A.M.: The complete sequence of a human genome. Science 376(6588), 44–53 (2022). https://doi.org/10.1126/science.abb9687

Otto, C., Hoffmann, S., Gorodkin, J., Studler, P.F.: Fast local fragment chaining using sum-of-pair gap costs. Algorithms for Molecular Biology 6(1), 4 (2011). https://doi.org/10.1186/1748-7188-6-4

56. Rautiainen, M., Marschall, T.: GraphAligner: Rapid and Versatile Sequence-to-Graph Alignment. preprint, Bioinformatics (2019). https://doi.org/10.1093/bioinformatics/btaa472

57. Rautiainen, M., Marschall, T.: GraphAligner: Rapid and Versatile Sequence-to-Graph Alignment. preprint, Bioinformatics (2019). https://doi.org/10.1093/bioinformatics/btaa472

58. Roberts, M., Hayes, W., Hunt, B.R., Mount, S.M., Yorke, J.A.: Reducing storage requirements for biological sequence comparison. Bioinformatics 20(18), 3363–3369 (2004). https://doi.org/10.1093/bioinformatics/bth408

59. Roberts, M., Hayes, W., Hunt, B.R., Mount, S.M., Yorke, J.A.: Reducing storage requirements for biological sequence comparison. Bioinformatics 20(18), 3363–3369 (2004). https://doi.org/10.1093/bioinformatics/bth408

60. Sahlin, K., Baudeau, T., Cazaux, B., Marchet, C.: A survey of mapping algorithms in the long-reads era (2022). https://doi.org/10.1093/bioinformatics/abb9687

61. Sarmashghi, S., Bohmann, K., P. Gilbert, M.T., Bafna, V., Mirarab, S.: Skmer: assembly-free and alignment-free sample identification using genome skims. Genome Biology 20(1), 34 (2019). https://doi.org/10.1186/s13059-019-1632-4

62. Shaw, J., Yu, Y.W.: Theory of local k-mer selection with applications to long-read alignment. Tech. rep. (2021). https://doi.org/10.1093/s13059-016-0997-x

63. Sireng, J., Monlong, J., Chang, X., Novak, A.M., Eizenga, J.M., Markello, C., Sibbsen, J.A., Hickey, G., Chang, P.C., Carroll, A., Gupta, N., Gabriel, S., Blackwell, T.W., Ratan, A., Taylor, K.D., Rich, S.S., Rotter, J.J., Haussler, D., Garrison, E., Paten, B.: Pan genomics enables genotyping of known structural variants in 5202 diverse genomes. Science (2021). https://doi.org/10.1126/science.abc8871

Smith, T., Waterman, M.: Identification of common molecular subsequences. Journal of Molecular Biology 147(1), 195–197 (1981). https://doi.org/10.1016/0022-2836(81)90087-5

68. Thorne, J.L., Kishino, H., Felsenstein, J.: An evolutionary model for maximum likelihood alignment of DNA sequences. Journal of Molecular Evolution 33(2), 114–124 (1991). https://doi.org/10.1007/BF02193629

69. Ukkonen, E.: On approximate string matching. In: Karpinski, M. (ed.) Foundations of Computation Theory. pp. 487–495. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg (1983). https://doi.org/10.1007/3-540-12689-9-129

70. Vingron, M., Waterman, M.S.: Sequence alignment and penalty choice: Review of concepts, case studies and implications. Journal of Molecular Biology 235(1), 1–12 (1994). https://doi.org/10.1016/S0022-2836(05)80006-3

Zheng, H., Kingsford, C., Marçais, G.: Improved design and analysis of practical minimizers. Bioinformatics 36(Supplement_1), i119–i127 (2020). https://doi.org/10.1093/bioinformatics/btaa472

Zheng, H., Kingsford, C., Marçais, G.: Sequence-specific minimizers via polar sets. bioRxiv p. 2021.02.01.429246 (2021). https://doi.org/10.1101/2021.02.01.429246
A Mathematical conventions and reminders

We list a few reminders and conventions that will be useful for the technical parts of our work. \(\gg \) will mean asymptotically dominates, i.e. \(f(n) \gg g(n) \) if and only if \(\lim_{n \to \infty} f(n)/g(n) = 0 \). \(|S| \sim n \) and \(|S'| \sim m \), where \(S, S' \) are our pairs of strings and \(\sim \) ignores small factors of \(k \) present. This is because \(k = C \log n \) for a constant \(C > 0 \) and \(m = \Omega(n^{2C+\epsilon}) \) for the assumptions of our main theorems, and these terms dominate \(k = O(\log n). \) \((1 - \theta)^k = n^{-C\alpha} \) where \(\alpha = -\log_k(1 - \theta) > 0 \) is a function of \(0 < \theta < 1 \), the mutation rate, and \(\sigma \) is our alphabet size which is \(> 1 \). Our results are general, but we will use \(\sigma = 4 \) for specific numerical results. When we use the assumption \(C > \frac{1}{2}\sigma \), \(C \) is also greater than 2, a useful fact we will use repeatedly.

A chain \(C \) is a sequence of anchors (exact matches of k-mers), represented by tuples \(((i_1, j_1), \ldots, (i_u, j_u)) \) where \(i_\ell \) is the starting position of the \(\ell \)-th k-mer on \(S \) and \(j_\ell \) is the starting position of the \(\ell \)-th k-mer on \(S' \). Anchors can overlap. The cost for a chain \(C \) is \(u - \zeta[(u - u_1) + (j_u - j_1)] \) where \(\zeta = \zeta(n) > 0 \) will eventually be considered as a (decreasing) function of \(n \).

B Missing proofs and definitions from Section 4

We note that technically, the alignment matrix in Definition[1] is slightly different than the standard dynamic programming matrix[15] which can be thought of a directed graph with a path representing an alignment. Our representation does not include the graphical information; it only captures information pertaining to the possibility of matching bases, which is sufficient for us.

B.1 Recoverability and definition of \textit{Align}(C)

Figure[16] will serve as a helpful guide for our definitions. Let \(C \) be a chain of anchors \(((i_1, j_1), \ldots, (i_u, j_u)) \). Below we define carefully define recoverability and set up our proof of Lemma[1].

A chain gives a set of k-mer matches and a set of possible alignments by extending through bases, constraining the full alignment matrix between \(S \) and \(S' \). We can formalize this as follows. Given two consecutive anchors \((i_\ell, j_\ell) \) and \((i_{\ell+1}, j_{\ell+1}) \), extending allows for possible matches between the gaps given by the following set of possible matches

\[\text{Ext}(\ell) = [i_\ell + k \cdots i_{\ell+1} - 1] \times [j_\ell + k \cdots j_{\ell+1} - 1]. \]

The factor of \(+k\) and \(-1\) is because \(i_\ell \) is the start of the \(\ell \)-th anchor, and extension starts after the end of the first k-mer and goes until 1 base before the start of the second k-mer. \(\text{Ext}(\ell) \) corresponds to the green boxes in Figure[16]. The set \(\text{Ext}(\ell) \) is empty if \(i_\ell + k > i_{\ell+1} - 1 \) and similarly for \(j_\ell \) i.e. there are no gaps between possibly overlapping anchors. \textit{Align}(C) also takes into account the k-mer matches given by \(C \). Thus we define \textit{Align}(C) formally as

\[
\text{Align}(C) = \left(\bigcup_{\ell=1}^{u} \{ (i_\ell, j_\ell), \ldots, (i_\ell + k - 1, j_\ell + k - 1) \} \right) \cup \left(\bigcup_{\ell=1}^{u-1} \text{Ext}(\ell) \right)
\]

where the first term corresponds to the k-mer matches in the alignment matrix.

B.2 Proof of Lemma[1]

Since we care about the intersection of \textit{Align}(C) with the homologous diagonal, we can manipulate the expression for \textit{Align}(C) to get something more tractable. Let \(\text{Diag}[a..b] = \{ (x, x) : x \in [a..b] \} \), \(C_H \) be the set of homologous anchors in \(C \), and \(C_S \) be the set of spurious anchors. The homologous anchors give rise to the homologous matches in the alignment matrix

\[
M_H = \bigcup_{(i_\ell, j_\ell) \in C_H} \text{Diag}[i_\ell, i_\ell + k - 1].
\]
The spurious anchors give no matches on the homologous diagonal, so it contributes nothing to the \(\text{Align}(C) \cap D_H \) term. Therefore,

\[
\text{Align}(C) \cap D_H = M_H \cup \left(\bigcup_{\ell=1}^{u-1} \text{Ext}(\ell) \cap D_H \right).
\]

We define

\[
NR = \bigcup_{(i_k, j_k) \in C_S} \text{Diag}[\min(i_k, j_k), \max(i_k, j_k) + k - 1] \cap D_H.
\]

NR represents the parts of the diagonal in Figure [I]B that are not recoverable or accessible by extension through anchors, although it may technically intersect \(\text{Align}(C) \) in our mathematical definition. The following identity then holds after rewriting \(M_H \):

\[
M_H \cup NR = \bigcup_{\ell=1}^{u} \text{Diag}[\min(i_\ell, j_\ell), \max(i_\ell, j_\ell) + k - 1] \cap D_H
\]

because the min-max condition is redundant for homologous anchors where \(i_\ell = j_\ell \). We can fill in the gaps between \(M_H \cup NR \) along the diagonal with \(\text{Ext}(\ell) \) after noticing that we can rewrite

\[
\text{Ext}(\ell) \cap D_H = \text{Diag}[\max(i_\ell, j_\ell) + k, \min(i_{\ell+1}, j_{\ell+1}) - 1]
\]

using the fact that \((x, x) \in \text{Ext}(\ell) \iff i_\ell + k \leq x \leq i_{\ell+1} - 1 \) and \(j_\ell + k \leq x \leq j_{\ell+1} - 1 \). Finally,

\[
(\text{Align}(C) \cap D_H) \cup NR = \left(M_H \cup NR \cup \bigcup_{\ell=1}^{u-1} \text{Ext}(\ell) \cap D_H \right)
\]

\[
= \left(\bigcup_{\ell=1}^{u} \text{Diag}[\min(i_\ell, j_\ell), \max(i_\ell, j_\ell) + k - 1] \cap D_H \right) \cup \left(\bigcup_{\ell=1}^{u-1} \text{Diag}[\max(i_\ell, j_\ell) + k, \min(i_{\ell+1}, j_{\ell+1}) - 1] \right)
\]

\[
= \text{Diag}[\min(i_1, j_1), \max(i_u, j_u) + k - 1] \cap D_H.
\]

This result follows because the union over all sets covers the entire diagonal between the first and last anchor. After bounding the diagonal to lie within \(D_H \) and removing \(NR \) from both sides of the equation, we obtain the following result.

Supplementary Lemma 1.

\[|\text{Align}(C) \cap D_H| \geq k + \min(p + m, \max(i_u, j_u)) - \max(p + 1, \min(i_1, j_1)) - |NR|.|\]

Proof. The following inequality holds by simple set theoretic arguments:

\[|\text{Align}(C) \cap D_H| \geq |\text{Align}(C) \cap D_H \cup NR| - |NR|.|\]

Now notice that the term \(\text{Diag}[\min(i_1, j_1), \max(i_u, j_u) + k - 1] \) may technically lie outside the diagonal \([p + 1..m] \times [p + 1..m]\), so to constrain it to lie on the diagonal after intersecting with \(D_H \), we must make \(\max(i_u, j_u) = p + m \) if \(i_1 > p + m \) and \(\min(i_1, j_1) = p + 1 \) if \(i_1 < p + 1 \). Thus the cardinality of the set \(\text{Diag}[\min(i_1, j_1), \max(i_u, j_u) + k - 1] \cap D_H \) is \(k + \min(p + m, \max(i_u, j_u)) - \max(p + 1, \min(i_1, j_1)) \), which finishes the proof.

Lemma 1 Given any chain \(C = ((i_1, j_1), \ldots, (i_u, j_u)) \), we have that \(|j_u - j_1 - L(C)|/|S'| \leq R(C) \).

Proof. Using the supplementary lemma above, we note that \(j_u \leq p + m \) and \(j_1 \geq p + 1 \) since the anchors must lie between \([p + 1..p + m]\), so after ignoring the \(k \) term we get

\[|S'| \cdot R(C) = |\text{Align}(C) \cap D_H| \geq j_u - j_1 - |NR|.|\]

We now prove that the breaks “cover” \(NR \), so \(|NR| \leq L \) where \(L \) is the total length of the breaks, proving the result. Let \(\pi(NR) \) be the projection of the set onto one of the coordinate axes (it doesn’t matter which one). Let \(x \in \pi(NR) \). Then for some spurious anchor \((i, j)\), \(\min(i, j) \leq x \leq \max(i, j) + k - 1 \). But every spurious anchor is contained in exactly one break, since breaks partition the set of spurious anchors. This break \(B = [a..b + k - 1] \supseteq [\min(i, j), \max(i, j) + k - 1] \) since the break takes the minimum and maximum coordinates over all spurious anchors in the break. Thus \(x \in B \) for some break \(B \) and the set of breaks \(\bigcup \text{breaks } B \text{ in } \subset B \supseteq \pi(NR), L(C) \geq |\pi(NR)| = |NR|, \) and we’re done.
C Missing proofs from Section 5

C.1 Proof of Theorem 3

Intuitively, a match graph encodes dependencies between random letters after conditioning on $\mathcal{M} = \{M(1, j_1), M(2, j_2), \ldots\}$. The main idea is that for such a graph, the connected components should be mutually independent of everything not in the component because all of the dependencies lie only in that connected component. The match graph is an example of a dependency graph; see Chapter 5 in [2].

Supplementary Lemma 2. Consider a set of random variables of the form $\{M(i_1, j_1), \ldots\} = \mathcal{M}$. If two vertices x, y are in separate connected components in $G(\mathcal{M})$ then they are conditionally independent of \mathcal{M}.

Proof. Consider the connected components G_1, \ldots, G_q of $G(\mathcal{M})$ and the edges within the connected components corresponding to the random variables in \mathcal{M}; call this partition of edges $\{E_1, \ldots, E_q\}$ where $\bigcup_{i=1}^q E_i = \mathcal{M}$.

First, we claim that G_1, \ldots, G_q, considered as random letters in S and S', are mutually independent (without considering additional \mathcal{M} variables). Indeed, each G_i can be considered as just a set of pairs (x_i, y_i) random variables because the edges (x_i, y_i) always exist in the original graph and so the connected component must leave no x_i or y_i unpaired. All pairs of (x_i, y_i) random variables are mutually independent by definition of our original mutation model. Thus all G_is are mutually independent.

Now we consider the E_is. The random variables in E_i are functions of G_i, the letters in the connected component. It follows that the E_is are functions of mutually independent G_is, and are themselves mutually independent. Now let $x \in G_x$ and $y \in G_y$ be two letters in different connected components. x, E_x are both functions of G_x and similarly for y, E_y, and G_y. Thus $\Pr(x, y, E_1, \ldots, E_q) = \Pr(x, E_x) \Pr(y, E_y) \prod_{i \neq x, y} \Pr(E_i)$ which shows conditional independence of x, y with respect to $\{E_1, \ldots, E_t\} = \mathcal{M}$.

Theorem 3 The random variables $\mathcal{M} = \{M(i_1, j_1), M(i_2, j_2), \ldots\}$ where $i_\ell \neq j_\ell$ for all $M(i_\ell, j_\ell) \in \mathcal{M}$ are independent if the induced match graph has no cycles.

Proof. We shorten $M(i_\ell, j_\ell) = M_{\ell}$. We will proceed by induction on the size of \mathcal{M}. The case $|\mathcal{M}| = 0$ is vacuously true. If $|\mathcal{M}| = q$, We want to show that $\Pr(M_1, \ldots, M_q) = \Pr(M_1, \ldots, M_{q-1}) \Pr(M_q)$; the first term is $\frac{1}{\sigma}$ because M_1, \ldots, M_{q-1} must also be cyle free and by the induction assumption. Let $\mathcal{M}^- = \{M_1, \ldots, M_{q-1}\}$. Let $M_q = M(\alpha, \beta)$. We need to calculate $\Pr(M_q = 1 \mid \mathcal{M}^-)$ and show that it is equal to $\frac{1}{\sigma}$.

By definition, we have that

$$\Pr(M_q = 1 \mid \mathcal{M}^-) = \sum_{a \in \Sigma} \Pr(x_\alpha = a, y_\beta = a \mid \mathcal{M}^-).$$

Since $G(\mathcal{M})$ has no cycles, x_α and y_β lie on two different connected components of $G(\mathcal{M}^-)$ after removing the edge induced by $M(\alpha, \beta)$ (we use the $\alpha \neq \beta$ assumption here). Therefore x_α, y_β are conditionally independent by the above Supplementary Lemma [2] so we can write the above sum as

$$\sum_{a \in \Sigma} \Pr(x_\alpha = a \mid \mathcal{M}^-) \Pr(y_\beta = a \mid \mathcal{M}^-).$$

We claim that both terms in the sum are $\frac{1}{\sigma}$. To show this, let the permutation C_σ be a cyclic permutation of order σ on letters in Σ (e.g. C_4 sends $A \rightarrow C \rightarrow T \rightarrow G$) and apply it to every letter on both strings when

Supplementary Figure 1: A match graph $G(\mathcal{M})$ where $\mathcal{M} = \{M(2, 4), M(3, 5), M(4, 6)\}$ and $|\mathcal{S}'| = |\mathcal{S}|$.

The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.
we write \(C_\sigma(S, S')\). It’s not hard to see that this is a measure (or probability) preserving transformation for \(\Pr(\cdot | \mathcal{M}^-)\) because it preserves matches between \(S\) and \(S'\) and letters are distributed uniformly.

Let \(A\) be the set of strings \((S, S')\) for which \(x_\alpha = a\), and we can see that \(\Pr(x_\alpha = a | \mathcal{M}^-) = \Pr(A | \mathcal{M}^-)\). Now applying \(C_\sigma\) \(\sigma\) times and using measure preservation gets that

\[
\Pr(A | \mathcal{M}^-) = \Pr(C_\sigma(A) | \mathcal{M}^-) = \Pr(C_\sigma^2(A) | \mathcal{M}^-) = \ldots
\]

Finally, all \(C_\sigma^n(A), n = 1, \ldots, \sigma - 1\) are clearly disjoint and partitions the space of strings. Thus, we see that \(\Pr(x_\alpha = a | \mathcal{M}^-) = \frac{1}{\sigma}\) as desired. The argument works exactly the same for \(\Pr(y_\beta = a | \mathcal{M}^-)\), so

\[
\Pr(M_q = 1 | \mathcal{M}^-) = \sum_{a \in \Sigma} \Pr(x_\alpha = a | \mathcal{M}^-) \Pr(y_\beta = a | \mathcal{M}) = \sigma \cdot \frac{1}{\sigma^2} = \frac{1}{\sigma} = \Pr(M_q = 1)
\]

and our induction step is complete.

C.2 Proof of Corollary 1

Corollary 1 If \(i \neq j\), \(\Pr(A(i, j) = 1) = \frac{1}{\sigma^k}\). Otherwise, \(\Pr(A(i, i) = 1) = (1 - \theta)^k\).

Proof. If the match graph induced by \(A(i, j)\), i.e. induced by \(M(i, j), M(i+1, j+1), \ldots, M(i+k-1, j+k-1)\) has no cycles, using Theorem 3 gives the result. This is easy to see from drawing out the match graph which has edges \((x, y)\) for all \(x, y\) and \((x_i, y_j), \ldots, (x_{i+k-1}, y_{j+k-1})\) but we give a rigorous argument below. See Supplementary Figure 1 for an example of such a match graph.

First, suppose \(j > i\) and suppose \(x_{i+\ell}\) is the vertex with a cycle and with the smallest possible \(\ell \in [0..k-1]\). We can assume the cycle touches some \(x\) because the match graph is bipartite. Since \(x_{i+\ell}\) has degree at most two and therefore equal to two, we can traverse the edge \((x_{i+\ell}, y_{i+\ell})\) as the first edge in the cycle. If \(y_{i+\ell}\) has degree one, then \(x_{i+\ell}\) has no cycle so suppose the degree is two. Then we have an edge \((y_{i+\ell}, x_{i+\alpha})\) which is in the cycle. However, this implies \(x_{i+\alpha}\) also has a cycle and \(\alpha < \ell\) because \(j > i\); the edges from \(x_i\) to \(y_j\) have increasing positions. This creates a contradiction as \(\ell\) was the smallest index with a cycle, so no cycles exist. Now if we have \(j < i\), we repeat the same argument but with \(\ell\) the largest in \([0..k-1]\) and the same contradiction arises.

The second result follows easily since clearly \(M(i, i), M(i + 1, i + 1), \ldots\) are functions of sets of mutually independent random variables, and \(\Pr(M(i, i) = 1) = (1 - \theta)\).

C.3 Proof of Lemma 2

Supplementary Figure 2: Match graph of the \(M\) variables induced by two anchors and pictorial representation of the setting of Lemma 2. The two anchors here generate no cycles in the match graph because \(|i - h| \geq k\), and \(|i - l| \geq k\), even though \(|j - l| < k\) where \(k = 3\).
Lemma 2. For $A(i, j)$ and $A(h, l)$, if both of the following conditions hold:

1. $|i - h| \geq k$ or $|j - l| \geq k$ and
2. $|i - l| \geq k$ or $|j - h| \geq k$,

then the induced match graph on the M variables for $A(i, j)$ and $A(h, l)$ has no cycles.

The intuition for the conditions of Lemma 2 is that the first condition prevents both anchors from overlapping too much, while the second condition prevents the condition where, for example, two variables $M(1, 5), M(5, 1)$ can cause a cycle to form in the match graph by $x_1 \rightarrow y_5 \rightarrow x_5 \rightarrow y_5 \rightarrow x_1$.

Proof. If $|i - h| \geq k$ or $|j - l| \geq k$, then without loss of generality, assume $|i - h| \geq k$. Then we can find a set of $\{x_1, \ldots, x_{i+k-1}\} = X_i$ and $X_h = \{x_h, \ldots, x_{h+k-1}\} = X_h$ disjoint. See Supplementary Figure 2 for a pictorial representation. It will turn out that if $|j - l| \geq k$, then the xs become ys and the argument doesn’t change.

Now we claim two facts.

1. The degree of every $x \in X_i$ or X_h must be at most two: each A variable induces one new edge for the xs covered by some k-mer, but these are disjoint sets of k-mers.
2. If a cycle exists, the cycle must touch some $x \in X_i$ and also a $x' \in X_h$: if it did not, a cycle must exist for some $x \in X_i$ or X_h (the graph is bipartite, so must include a x) and would not use induced edges on the match graph for one of $A(i, j)$ or $A(h, l)$. This implies the match graph for just one of $A(i, j)$ or $A(h, l)$ would have a cycle, which is impossible by the proof of Corollary 1.

To complete the proof, we proceed with an argument similar to the proof of Corollary 1. We need four different cases corresponding to either $|i - l| \geq k$ or $|h - j| \geq k$ and our previous assumption of $|i - h| \geq k$ or $|j - l| \geq k$. We prove only one case but it is easy to translate the argument to the other three.

Let’s assume $|i - l| \geq k$. By the second fact above, if a cycle were present, we can assume it touches $x_l \in X_i$. If $j > i$, let x_l be the leftmost $x_l \in X_i$ with a cycle, and if $j < i$, let x_l be the rightmost. Because the degree of x_l is at most two (by the first fact above) and thus must be exactly two, we can assume the cycle starts with the edge (x_l, y_l). Now, y_l has degree at most two since $|i - l| \geq k$, i.e. the k-mer starting at l on S' doesn’t overlap y_l, therefore the only other edges adjacent to y_l from $x_a \in X_i$. Therefore x_a is either to the left of x_l if $j > i$ or to the right if $j < i$ and must also have a cycle. However, because x was the leftmost or rightmost such x, this is impossible, so we are done.

If $|j - l| \geq k$, we use ys instead of xs and we switch “rightmost” with “leftmost”. If we have $|j - h| \geq k$, we switch X_i or Y_i with X_h or Y_h instead. Repeating the same argument verbatim gives the conclusion.

C.4 Proof of Lemma 3

Lemma 3. $E[N_S^2] \leq 8k^2mn^{1 + \frac{1}{\sigma^2}} + E[N_S]^2$. Thus the variance $Var(N_S)$ can be upper bounded by $8k^2\frac{m}{\sigma^2}$. Furthermore, $E[N_S^2] \leq 2mk(1 - \theta)^k + m^2(1 - \theta)^{2k}$ and $E[N_H N_S] \leq 4k\frac{m}{\sigma^2} + m^2n(1 - \theta)^k\frac{1}{\sigma^2}$.

Proof. We will frequently use $(m - 1) < m$ and $(n - 1) < n$ to simplify the bounds. With $N_S = \sum_{i \neq j} A(i, j)$, we get

$$N_S^2 = \sum_{h \neq j} A(i, j)A(h, l).$$

Now we try to bound $E[N_S^2]$, where we already know $E[N_S] = m(n - 1)\frac{1}{\sigma^2}$. Let $B_k(i, j) = \{(h, l) : |h - i| < k \text{ and } |l - j| < k\}$. We can separate the sum into three different parts,

$$S_1 = \sum_{(h, l) \notin B_k(i, j) \cup B_k(j, i) \neq j} A(i, j)A(h, l)$$

$$S_2 = \sum_{(h, l) \in B_k(i, j) \neq j} A(i, j)A(h, l)$$

$$S_3 = \sum_{(h, l) \in B_k(j, i) \neq j} A(i, j)A(h, l)$$

$$E[N_S^2] \leq S_1 + S_2 + S_3.$$
Theoretical bounds on seed-chain-extend alignment

and $N_S^2 = S_1 + S_2 + S_3$. Let us bound the expectation of each sum separately. Firstly, we get

$$\mathbb{E}[S_1] \leq m^2(n - 1)^2 \frac{1}{\sigma^2} = \mathbb{E}[N_S]^2$$

because $A(i, j)A(h, l)$ are independent when (h, l) is not in the set $B_k(i, j) \cup B(j, i)$ by Corollary 2 and there are at most $m^2(n - 1)^2$ possible $A(h, l)A(i, j)$ tuples.

$$\mathbb{E}[S_2] \leq 4k^2 \frac{mn}{\sigma^2}$$

because $|B_k(i, j)| \leq 4k^2$ and $\mathbb{E}[A(i, j)A(h, l)] \leq \mathbb{E}[A(i, j)] = \frac{1}{\sigma^2}$. $\mathbb{E}[S_3] \leq 4k^2 \frac{mn}{\sigma^2}$ follows similarly. Thus,

$$\text{Var}(N_S) = \mathbb{E}[N_S^2] - \mathbb{E}[N_S]^2 \leq 8k^2 \frac{mn}{\sigma^2}$$

The variance of N_H was calculated in [9] for the variable $N_{\text{mut}} = n - N_H$, but we can use a simpler approximate bound. $\mathbb{E}[N_H^2] = \sum_{j=1}^{n} \sum_{i=1}^{n} \mathbb{E}[A(i, i)A(j, j)]$; notice that if $|i - j| < k$ then there is obviously dependence between $A(i, i)$ and $A(j, j)$ because the anchors have overlapping bases, but otherwise the variables are independent. Thus

$$\mathbb{E}[N_H^2] = \sum_{|j - i| < k} \sum_i \mathbb{E}[A(i, i)A(j, j)] + \sum_{|j - i| \geq k} \sum_i \mathbb{E}[A(i, i)\mathbb{E}[A(j, j)] \leq 2km(1 - \theta)^k + m^2(1 - \theta)^{2k}$$

where we use the trivial bound $\mathbb{E}[A(i, i)A(j, j)] \leq \mathbb{E}[A(i, i)]$ in the first bound and independence in the second.

For the bound $\mathbb{E}[N_H N_S]$, we can write this as

$$\mathbb{E}[N_H N_S] = \sum_{i \neq j} \mathbb{E}[A(i, i)A(h, l)].$$

The only indices where dependence may be an issue is when either $|h - i| < k$ or $|l - i| < k$. Thus for each pair h, l, there are at most $4k$ choices for i which may not be independent. We can use the same idea as the previous bound to show that

$$\mathbb{E}[N_H N_S] \leq 4km \frac{1}{\sigma^2} + m^2 n(1 - \theta)^k \frac{1}{\sigma^2}.$$

D Missing proofs from Section 6

D.1 Proof of Theorem 6

Theorem 6 Assume $m = \Omega(n^{2C\alpha+\epsilon})$ for some $\epsilon > 0$, and $C > \frac{1}{1 - \alpha}$. Letting N be the total number of k-mer anchors, $\mathbb{E}[N \log N] = O(\mathbb{E}[N] \log \mathbb{E}[N]) = O(mn^{-C\alpha} \log m)$. It follows that the runtime of chaining is $O(mn^{-C\alpha} \log m)$.

Proof. For all $x > 0$, we have the inequality $\ln(x/u) \leq x/u - 1$ for any $u > 0$. Substituting this into $N \ln N$ we have

$$N \ln N = N \ln(N/u) + N \ln(u) \leq \frac{N^2}{u} - N + N \ln(u).$$

Now let $u = \mathbb{E}[N]$ and we get $\mathbb{E}[N \ln N] \leq \frac{\mathbb{E}[N^2]}{\mathbb{E}[N]} - \mathbb{E}[N] + \mathbb{E}[N] \ln \mathbb{E}[N]$. Thus if we are able to show $\mathbb{E}[N^2]/\mathbb{E}[N] = O(\mathbb{E}[N] \log \mathbb{E}[N]) = O(mn^{-C\alpha} \log m)$ then we are done. Since $N^2 = (N_S + N_H)^2 = N_S^2 + 2N_S N_H + N_H^2$, we can just use the moment bounds in Lemma 3. Plugging in the bounds yields

$$\mathbb{E}[N^2] \leq (8k^2mn^{1-C} + m^2n^{2-2C}) + (2kmn^{-C} + m^2n^{-2C}) + (8kmn^{1-C} + 2m^2n^{1-C})$$

To simplify these terms, notice that $n^{-C\alpha} \gg n^{1-C}$ and $mn^{-C\alpha} \gg k^2$ where \gg means asymptotically dominates. This is because $-C\alpha > 1 - C$ follows from our assumption $C > \frac{1}{1 - \alpha}$. The second term is because $m = \Omega(n^{2C\alpha+\epsilon})$ so $mn^{-C\alpha} \gg n^{\epsilon} \gg k^2 = O(\log^{2}(n))$. This gives

$$\mathbb{E}[N^2] = O(m^2 n^{-2C\alpha}).$$

Remembering that $\mathbb{E}[N] = \Theta(m(1 - \theta)^k) = \Theta(mn^{-C\alpha})$, we get that $\mathbb{E}[N^2]/\mathbb{E}[N] = O(mn^{-C\alpha})$ as desired, so we are done.
D.2 Proof of Lemma 6

Supplementary Lemma 3. For any interval consisting of ℓ k-mers on S', the probability that all ℓ homologous anchors are 0 is upper bounded by

\[\exp\left(-\frac{8\ell(1 - \theta)^k}{25k}\right). \]

Proof. The letters on an interval on S, S' are distributed identically as a length ℓ + k − 1 version of S, S'. We can then use Lemma 5 for t = m(1 − θ)^k.

Lemma 6 (F2) With probability \(\geq 1 - 1/n \), no homologous gap has size greater than

\[g(n) = \frac{50k}{8(1 - \theta)^k} \ln(n) = \frac{C \cdot 50}{n} \log(n) \ln(n) \cdot n^{C\alpha} \]

plus a small \(C \log n \) term we will ignore because it is small asymptotically.

Proof. Using the above supplementary lemma, let \(\ell = (50/8)\frac{k}{(1 - \theta)^k} \ln(n) \). Then the probability that there are no homologous anchors in a segment of \(\ell \) k-mers is \(\leq \frac{1}{n^\ell} \).

Let \(HG_1, \ldots, HG_{m-\ell+1} \) be indicator random variables where \(HG_i = 1 \) if the next \(\ell \) k-mers from position \(i \) have no homologous anchors and 0 otherwise. It follows that \(\mathbb{E} [\sum_{i=1}^{m-\ell+1} HG_i] \leq \frac{m}{n^\ell} \leq 1/n \). Using Markov's inequality, we see that \(\Pr(\sum HG_i \geq 1) \leq \frac{1}{n^\ell} \). Thus with probability \(\geq 1 - 1/n \), no homologous gap is larger than \(50/8 \cdot \frac{k}{(1 - \theta)^k} \ln(n) \) k-mers as desired. \(\ell \) k-mers corresponds to a homologous gap of size \(\ell - k + 1 \), so need to add \(k - 1 \) to get an upper bound on the homologous gap size, but we will ignore this in the analysis because it is small asymptotically.

D.3 Proof of Lemma 7

Lemma 7 (F1 + F2) Take any \(C > \min(3, \frac{2}{1 - 2\alpha}) \) and let \(\zeta = \frac{1}{6g(n)} \) where \(g(n) = C \frac{50}{8} \log(n) \ln(n) n^{C\alpha} \). Assume \(m = \Omega(n^{2C\alpha + \epsilon}) \) for some \(\epsilon > 0 \). Then for large enough \(n \), there are no breaks of length \(\geq m^{1/2} \) with probability greater than \(1 - 2/n \) in an optimal chain.

If we assume \(C > 3 \), then Lemma 4 shows that with probability \(\geq 1 - 1/n \) and large enough \(n \), no spurious anchors exist at all. Of course, no breaks can occur so we are already done in this case. The rest of the section is for tackling the case \(C \leq 3 \). We will prove a series of supplementary lemmas, and then prove Lemma 7.

We will now assume the hypotheses of Lemma 7 for the rest of this section. That is, \(3 \geq C > \frac{2}{1 - 2\alpha} \), \(m = \Omega(n^{2C\alpha + \epsilon}) \) for some \(\epsilon > 0 \), and define \(\zeta = \frac{1}{6g(n)} \) as in the statement of Lemma 7. We will not be too careful with small additive constants of order \(O(\log n) \) due to indexing offsets from now on. For example, a length \(m^{1/2} \) interval of bases contains technically \(m^{1/2} - k + 1 \) k-mers, but since we work with asymptotics we'll treat this as \(\sim m^{1/2} \).

Supplementary Lemma 4 (F1 + F2). With probability \(\geq 1 - 2/n \), given an optimal chain \(((i_1, j_1), \ldots, (i_u, j_u)) \) at least one of the anchors is a homologous anchor for large enough \(n \).

Proof. We will show that no chain of only spurious anchors can be optimal, implying that any optimal chain must have at least one homologous anchor. By F2, there are no homologous gaps of length \(\geq g(n) \) where \(g(n) = \Theta(n^{C\alpha} \log^2(n)) \), so we can lower bound the number of homologous anchors \(N_H \) under the space F2 by

\[N_H \geq \frac{m}{g(n)} = \Omega\left(\frac{m}{n^{C\alpha} \log^2(n)}\right). \]

Let \(\text{score}(N_H) \) be the score of the chain with only homologous anchors. Then

\[\text{score}(N_H) \geq N_H - 2\zeta m \]
because the only homologous chain has a linear cost of at most $2\zeta m$. Now consider a chain without homologous anchors, i.e. only spurious anchors. Such a chain has maximum score

$$\text{score}(N_S) \leq N_S - 2N_S\zeta$$

because there are at most N_S such anchors, and the N_S in linear cost is assuming the smallest possible linear cost where there are no gaps between the anchors, i.e. $(i_u - i_1) + (j_u - j_1) \geq 2N_S$ if $u = N_S$. Using condition F1, $N_S \leq n^{1/2} + \sqrt{8C} \log(n)m^{1/2}n^{-C/2}$. Since $\zeta = \frac{1}{6g(n)},$

$$\text{score}(N_H) \geq N_H - 2\zeta m = \Omega\left(\frac{mn^{-C\alpha}}{\log^2(n)}\right)$$

holds and also

$$\text{score}(N_S) \leq N_S - 2N_S\zeta = O(m^{1/2}n^{1-C/2}\log(n)[1 - \zeta])$$

holds. We therefore we want the following asymptotic inequality to hold:

$$\frac{mn^{-C\alpha}}{\log^2(n)} \gg m^{1/2}n^{1-C/2}\log(n)[1 - \zeta].$$

This holds when $1 - C/2 + \alpha < 0$ which is equivalent to our assumed condition $C > \frac{2}{1 - 2\alpha}$, and thus the chain of only homologous anchors has asymptotically greater score than any chain with only spurious anchors. Therefore any optimal chain with high probability must contain at least one homologous anchor for large enough n.

Supplementary Figure 3: Circles are bases, grey circles are mutated bases, and boxes are k-mers. The red spurious anchor indicates a break. We can always remove a break flanked by two homologous anchors and then add in homologous anchors that may be present within the break. This idea is used in the proof of Supplementary Lemma 5 to show that for large enough breaks, such a procedure always improves the chaining score.

Supplementary Lemma 5 (F1 + F2). Suppose a break is flanked by two homologous anchors in an optimal chain. That is, homologous anchors exist on both sides of the break in the chain. Then with probability $\geq 1 - 2/n$ and large enough n, this break has size $< m^{1/2}$.

Proof. Suppose a break of length $\geq m^{1/2}$ is flanked by two homologous anchors. Then for the given chain $((i_1, j_1), \ldots, (i_u, j_u))$, the break occurs somewhere in the middle, say $((i_r, j_r), \ldots, (i_t, j_t))$ where $r > 1, t < u$. Let us construct a new chain by removing all spurious anchors $((i_r, j_r), \ldots, (i_t, j_t))$ within our chain that lie in this break, and then adding all homologous anchors that are present within the break to the chain. See Supplementary Figure 3.

This does not change the gap cost part of the chaining score which is still $\zeta[(i_u - i_1) + (j_u - j_1)]$, so if there are more homologous anchors after the switch, then this switch is more optimal. Assuming condition
F2, the number of homologous anchors contained within a break is lower bounded by \(m^{1/2}/g(n) \). Assuming the condition F1, the number of spurious anchors, and therefore the size of the break, is upper bounded by \(N_S = \Theta(\log(n)m^{1/2}n^{1-C/2}) \). Notice that

\[
\frac{m^{1/2}}{g(n)} = \frac{m^{1/2}}{\Theta(\log^2(n)n^{C\alpha})} \gg \Theta(\log(n)m^{1/2}n^{1-C/2}) = N_S
\]

again exactly when \(1 - C/2 + C\alpha < 0 \) which is equivalent to \(C > \frac{2}{1 - 2\alpha} \). Thus under the event space F1 \(\cap \) F2, switching to the homologous k-mers always improves our optimal chain for large enough \(n \).

Supplementary Lemma 6 (F1 + F2). Suppose a break is flanked by a single homologous anchor in an optimal chain. Then with probability \(\geq 1 - 2/n \) and large enough \(n \), this break has size \(< m^{1/2} \).

Proof. It follows easily from the definition of a break that a break flanked by one homologous anchor must occur at the start or end of the chain \(((i_1, j_1), \ldots, (i_u, j_u)) \). Let us assume that such a break occurs at the end of the chain at anchors \(((i_r, j_r), \ldots, (i_u, j_u)) \); the same argument works for the break occurring at the beginning of the chain.

We use a similar argument as above, but this time we must take into account the linear gap cost. Furthermore, instead of switching to the relative homologous anchors, we just remove the break from the chain and check if that improves the score. See Supplementary Figure 4 to show that large breaks can not appear near the ends of chains.

![Supplementary Figure 4](image-url)

Supplementary Figure 4: Removing a break (the red anchor of k-mers) at the end may increase the chaining score if the break is long enough. We use this idea in the proof of Supplementary Lemma 6 to show that large breaks can not appear near the ends of chains.

Proof (Lemma 7). Breaks are flanked by either one, two, or no homologous anchors. The last case can only occur if the entire chain is a break. By Supplementary Lemma 4 we always have at least one homologous anchor in any optimal chain (under F1 \(\cap \) F2), so any break is flanked by at least one homologous anchor. Therefore by the previous supplementary lemmas, no breaks of size \(m^{1/2} \) occur with probability \(\geq 1 - 2/n \) after using the conditions F1, F2 with the appropriate assumptions.
Supplementary Figure 5: Given an optimal chain (shown with k-mer anchors in red and blue), if the last k-mer on S' is $2\sqrt{m}$ distance away from the end, because the break size is $< \sqrt{m}$, there will remain at least \sqrt{m} bases left (shaded in blue) near the end of S', S. We use this geometry in the proof of Supplementary Lemma 7 and argue that adding in every possible homologous k-mer in the shaded region gives a more optimal score.

D.4 Proof of Corollary 3

Supplementary Lemma 7. Under the assumptions of Lemma 7, given any optimal chain $(i_1, j_1), \ldots, (i_u, j_u)$, $j_u - j_1 \geq m - 4\sqrt{m}$ with probability $\geq 1 - 2/n$ for large enough n.

Proof. Lemma 7 shows the max break size is $m^{1/2}$; we claim that $j_u \geq p + m - 2\sqrt{m}$, i.e. j_u is less than $2\sqrt{m}$ away from the end of S'. Suppose otherwise. The argument proceeds in two cases. The idea is to essentially show that adding on all of the homologous anchors near the end of S' always increases the score (under the event space $F_1 \cap F_2$).

If (i_u, j_u) is homologous, then $m^{1/2} \gg g(n)$: $g(n) = \Theta(n^{C_o \log^2(n)})$ is the maximum distance between homologous k-mers and $m = \Omega(n^{2C_o+c})$. Thus for large enough n, we can find another homologous k-mer near the edge of S'. Adding this homologous k-mer to the chain changes the score by at least $-2\zeta g(n) + 1$ where the $-2\zeta g(n)$ is the linear cost. Since $\zeta = \frac{1}{\sqrt{m}}$, this is positive, so the old chain was not optimal.

For the non-homologous case, refer to Supplementary Figure 5 for the geometry. Now if (i_u, j_u) is not homologous, then $i_u \in [j_u - \sqrt{m}, j_u + \sqrt{m}]$ because any spurious anchor is contained in a break, which has size $< \sqrt{m}$. Assume $j_u = p + m - L$ where $L > 2\sqrt{m}$ so j_u is L away from the end of S'.

We claim that adding in all homologous anchors in the interval $[\max(i_u, j_u) + 1, p + m]$ gives a more optimal chain. Indeed, since $\max(i_u, j_u) \leq j_u + \sqrt{m}$, $\max(i_u, j_u) < p + m - L + \sqrt{m}$, and thus there are at least $L - \sqrt{m}$ homologous positions to the right of $\max(i_u, j_u)$. Thus there are at least $(L - \sqrt{m})/g(n)$ additional homologous anchors.

The additional linear cost from adding on these homologous anchors near the end is at most $\zeta [(p + m) - (p + m - L)] = \zeta L$ on the side of S' by lengthening the chain from $p + m - L$ to $p + m$, and at most $\zeta [(p + m) - (p + m - L - \sqrt{m})] = \zeta (L + \sqrt{m})$ on the side of S for the same reason. Summing these two terms gives $-\zeta (2L + \sqrt{m})$ as the maximal linear cost penalty of adding these new anchors. However,

$$\# \text{new homologous anchors} \geq (L - \sqrt{m})/g(m) = \zeta (6L - 6\sqrt{m}) > \zeta (2L + 8\sqrt{m} - 6\sqrt{m}) > \zeta (2L + \sqrt{m})$$

after using the inequality $L > 2\sqrt{m}$. Therefore adding in these homologous k-mers makes the score bigger, contradicting the optimality of our chain. Thus $L \leq 2\sqrt{m}$, and the distance from j_u to the end of S' is at most $2\sqrt{m}$.

The argument works with directions flipped for j_1, so $j_u - j_1 \geq m - 4\sqrt{m}$ as desired.

Corollary 3. Under the same assumptions as in Lemma 7, the expected recoverability of any optimal chain is $\geq 1 - O(1/\sqrt{m})$ for large enough n.

Proof. Let $F = F_1 \cap F_2$, so all breaks have length $< m^{1/2}$; $Pr(F) \geq 1 − 2/n$. Letting $R(C) = R$ be the recoverability as before and letting $|S'| = m + k − 1 \sim m$ because our final result uses big O notation anyways, we get from Lemma 4 relating recoverability to breaks that
\[
E[R | F] \geq \frac{E[(j_u − j_1) | F]}{m} − \frac{E[\sum_{B \in \text{Breaks}} L(B) | F]}{m} \geq 1 − \frac{4}{\sqrt{m}} − \frac{E[C_S m^{1/2} | F]}{m}
\]
where we define C_S to be the number of spurious anchors in an optimal chain. The number of breaks is upper bounded by C_S, and we’ve used Lemma 2 and Supplementary Lemma 6 to bound $L(B)$ by $m^{1/2}$ and $j_u − j_1$ by $m − 4\sqrt{m}$ respectively. It is clear that $C_S \leq N_S$ so
\[
E[R | F] \geq 1 − \frac{4}{\sqrt{m}} − \frac{E[N_S m^{1/2} | F]}{m} - \frac{\sqrt{m} n^{1−c}}{(1−2/n)}
\]
Since $E[N_S] \leq mn^{1−c}$, we have that $E[N_S | F] \leq \frac{mn^{1−c}}{1−2/n}$ by the law of total expectation and non-negativity of N_S. Using this, we get that
\[
E[R] \geq E[R | F] Pr(F) \geq (1 − \frac{4}{\sqrt{m}})(1−2/n) − n^{1−c}\sqrt{m} = 1 − O(\frac{1}{\sqrt{m}}).
\]

Remark 1. In the proof of the intermediate lemmas associated with the proof of Corollary 3 we assumed that S' was not too close to the edges of S, i.e. quantities such as $p − \sqrt{m}$ were non-negative. It’s not hard to see that if p were close to the edges of S, the breaks would actually be smaller because by definition breaks can not go past the ends of S. One could in fact show that our upper bound still work after accounting for these edge cases, but for simplicity, we omit these edge cases from our proof.

D.5 Proof of Lemma 8

We prove Lemma 8 by proving a series of lemmas.

Supplementary Lemma 8. For a given instance of S, S', let C be any optimal chain. Let C_{only} be the chain consisting of only homologous anchors, in S, S'. Defining T_{Ext}^H to be the runtime of extension of C over only the homologous gaps in C and $T_{\text{Ext}}(C_{\text{only}})$ as the runtime of extension over the homologous gaps of C_{only}, we have that
\[
T_{\text{Ext}}^H \leq T_{\text{Ext}}(C_{\text{only}}).
\]

Proof. Let (i_ℓ, i_ℓ) and $(i_{\ell + 1}, i_{\ell + 1})$ be two consecutive homologous anchors in an optimal chain C. We can guarantee that no $A(i_{\ell + 1}, i_{\ell + 1})$, \ldots, $A(i_{\ell + 1} − 1, i_{\ell + 1} − 1)$ random variables are equal 1, otherwise adding such an anchor would improve an optimal chain (it does not incur a linear gap cost penalty due to being flanked by two anchors). Thus (i_ℓ, i_ℓ) and $(i_{\ell + 1}, i_{\ell + 1})$ are also consecutive anchors in C_{only}, and the homologous gap corresponding to those anchors is also present in C_{only}. Therefore, $T_{\text{Ext}}^H \leq T_{\text{Ext}}(C_{\text{only}})$ since all homologous gaps in C are also in C_{only}.

Definition 6. Define $K \subset C_{\text{only}}$ to be the subchain of homologous anchors for which the starting positions of the k-mers on S are in $\{p + 1, p + 1 + k, p + 1 + 2k, \ldots, p + 1 + \lceil \frac{|S'|}{k} \rceil \}$. That is, the subchain K consists of only homologous anchors restricted to k-mers that are spaced k bases apart starting from the first index. Since K is sparser than C_{only}, it should take longer to extend through K than C_{only}. We formalize this below.

Supplementary Lemma 9. Let G_{start} be the distance from the first anchor of K to the start of S' and similarly for G_{end} and the last anchor of K to the end of S'. Then
\[
T_{\text{Ext}}(C_{\text{only}}) = O(T_{\text{Ext}}(K) + G_{\text{start}}^2 + G_{\text{end}}^2).
\]
Supplementary Figure 6: A graphical proof of Supplementary Lemma 9. Given a subchain of homologous anchors, the extension time is longer because the square of the larger gaps in the subchain contains the square of the smaller gaps over all homologous anchors. The last gap on the right is not accounted for in the subchain, but adding G_{end}^2 and G_{start}^2 fixes this. Note: the second last orange square on the right is a gap for both chains, i.e. the square is both orange and blue.

Proof. See Supplementary Figure 6 for a visualization of the proof. Let $\{G^K_1, G^K_2, \ldots, G^K_r\}$ be the homologous gap sizes in K, where we think of G^K_1 as the gap size (possibly 0) between the first two anchors, and so forth. Similarly, let $\{G^C_1, G^C_2, \ldots, G^C_q\}$ be the homologous gap sizes in C_{only}. The extension runtime is

$$T_{\text{Ext}}(K) = \sum_{i=1}^{r} O\left((G^K_i)^2\right)$$

and similarly for $T_{\text{Ext}}(C_{\text{only}})$. Any two consecutive anchors in K give rise to a gap G^K_i. These two anchors also exist on C_{only}, but there may be intermediate anchors, so this gives rise to multiple gaps G^C_j, \ldots, G^C_{j+t} between these two anchors on C_{only}. Now $G^C_j + \ldots + G^C_{j+t} \leq G^K_i$ because the sum of all intermediate gaps is at most the size of the larger gap, so

$$(G^C_j)^2 + \ldots + (G^C_{j+t})^2 \leq (G^K_i)^2.$$

Let G^C_a be the leftmost gap on C_{only} to the right of the first anchor of K, and G^C_b be the gap to the left of the last anchor of K. Considering every pair of consecutive anchors on K, we get

$$\sum_{i=1}^{r} (G^K_i)^2 \geq \sum_{i=a}^{b} (G^C_i)^2$$

by the previous inequality. However, we’re not done yet because the leftmost gaps in C_{only} may not be contained by any gap in K. Using the definition of G_{start} as the “gap” on K containing all of the leftmost gaps on C_{only} and similarly for G_{end}, we get

$$G^2_{\text{start}} \geq \sum_{i=1}^{a-1} (G^C_i)^2, G^2_{\text{end}} \geq \sum_{i=b+1}^{q} (G^C_i)^2$$

by the same arguments as above. Combining both inequalities gives the result.

By the above results, we can bound T^H_{Ext} by either $T_{\text{Ext}}(C_{\text{only}})$ or $T_{\text{Ext}}(K)$. We will work with K in this section, but we will actually use C_{only} for the sketched version of the main theorem. Below we give a random variable to calculate these extension times.
Definition 7. Let Y_i be the random variable representing the number of uncovered bases between a homologous anchor starting at position i, if it exists, and the next homologous anchor. So $Y_i = \ell \geq 1$ if the bases $[i..i + k - 1]$ are unmutated, the bases at $[i + \ell + k..i + \ell + 2k - 1]$ are unmutated, and there are no homologous anchors covering any bases in $[i + k..i + \ell + k - 1]$. Otherwise, $Y_i = 0$. Let Y_i^K be the same random variable except only considering homologous anchors with starting positions in $\{p + 1, p + 1 + k, p + 1 + 2k, \ldots, p + 1 + \lceil \frac{|S'|}{k} \rceil \}$. Under our original definition, the extension time over C_{only} would be $\sum_{\ell=1}^{n-1} O(G_\ell^2)$ where G_ℓ is the size of the gap, but u is a random variable. It's clear that $\sum_{i=1}^{m} O(Y_i^2)$ is the runtime of extension over C_{only}, but it will be easier to handle for our proof now that the upper index is not a random variable. Similarly, $\sum_{i=1}^{m} O((Y_i^K)^2)$ is the runtime of extension over K.

We will now work with the chain K restricted to equally spaced k-mers and their unmutated homologous anchors. We upper bound this extension time in expectation, which will upper bound $\mathbb{E}[T_{\text{Ext}}^H]$ as well.

Lemma 8 Let T_{Ext}^H be the time of extension over only the homologous gaps of an optimal chain. $\mathbb{E}[T_{\text{Ext}}^H] = O(mn^{C_\alpha} \log n)$.

Proof. By Supplementary Lemmas 9 and 8 to bound $\mathbb{E}[T_{\text{Ext}}^H]$ we can bound $\mathbb{E}[G_{\text{start}}^2] + \mathbb{E}[G_{\text{end}}^2] + \sum_{i=1}^{m} \mathbb{E}[(Y_i^K)^2]$. The random variable $G_{\text{start}} = \ell \cdot k$ if for the first ℓ k-mers, $A(1,1) = 0, A(1+k,1+k) = 0, \ldots, A(1+(\ell - 1)k, 1+(\ell - 1)k) = 0$ but $A(1+\ell k, 1+\ell k) = 1$. In other words, the first ℓ k-mers that are spaced k bases apart are mutated, but the $\ell + 1$th such k-mer is not mutated. Thus

$$\Pr(G_{\text{start}} = \ell \cdot k) \leq (1 - (1 - \theta)^k)^{\ell} (1 - \theta)^k.$$

Importantly, we used the fact that k-mers spaced k distance apart are independent of each other. The \leq comes from the fact that G_{start} can not be larger than $|S'|$. It follows that

$$\mathbb{E}[G_{\text{start}}^2] \leq (1 - \theta)^k \sum_{\ell=1}^{\infty} (\ell k)^2 (1 - (1 - \theta)^k)^{\ell} = O\left(\frac{k^2 (1 - \theta)^k}{(1 - \theta)^{3k}}\right) = O(n^{2C_\alpha} \log^2 n)$$

by the formula

$$\sum_{i=1}^{\infty} i^2 x^i = \frac{x(x - 1)}{(1 - x)^3}$$

which follows from geometric series manipulations. Notice that $O(n^{2C_\alpha} \log^2 n) = O(m)$ because $m = \Omega(n^{2C_\alpha + \epsilon})$. It’s clear that the same argument holds for G_{end}^2, so both terms are $O(m)$.

Now for Y_i^K, we have that $Y_i^K = \ell \cdot k$ where $\ell > 0$ only if $i \in \{p + 1, p + 1 + k, p + 2 + k, \ldots\}$, the k-mer at i is unmutated, the k-mers that are $k, 2k, 3k, \ldots, \ell k$ bases ahead from i are mutated, and the k-mer $(\ell + 1) \cdot k$ bases ahead of i is unmutated. Thus

$$\Pr(Y_i^K = \ell \cdot k) \leq (1 - \theta)^{2\ell - (1 - \theta)^k} \ell^k (1 - \theta)^k$$

if $i \in \{1, 1 + k, \ldots\}$ and 0 otherwise.

We can compute the expectation over all Y_i^K and only pick out the non-zero random variables where $i \in \{1, 1 + k, \ldots\}$. There are at most m/k such random variables, so we get

$$\sum_{i=p+1}^{p+m} \mathbb{E}[(Y_i^K)^2] \leq \frac{m}{k} (1 - \theta)^{2k} \sum_{\ell=1}^{\infty} (\ell k)^2 (1 - (1 - \theta)^k)^{\ell}$$

$$= O\left(\frac{mk^2 (1 - \theta)^{2k}}{k(1 - \theta)^{3k}}\right) = O(mn^{C_\alpha} \log n).$$

The expectations in all the terms are $O(mn^{C_\alpha} \log n)$, so this finishes the proof.
D.6 Proof of Lemma 9

Supplementary Lemma 10 (F1 + F2). Under the same assumptions of Lemma 7 all non-homologous gaps in an optimal chain have size \(< \sqrt{m + \frac{50}{8} \log(n) \ln(n)} n^{C_\alpha} \) on both \(S \) and \(S' \) with probability \(\geq 1 - 2/n \) and large enough \(n \).

Proof. Let us be in the space \(\mathcal{F} = (F1) \cap (F2) \), which holds with probability \(\geq 1 - 2/n \). There are two types of non-homologous gaps: non-homologous gaps that are flanked by two spurious anchors and gaps that are flanked by only one.

If a non-homologous gap is flanked by two spurious anchors, then it is part of a break. The gap size must be smaller than the break, which has length less than \(\sqrt{m} \).

Suppose a non-homologous gap is flanked by one spurious anchor \(A(i, j) \) and one homologous anchor \(A(h, h) \). Suppose WLOG that \(|i - h| > |j - h| \). We know with high probability that \(|j - h| < g(n) = 50/8C \log(n) \ln(n) n^{C_\alpha} \) as otherwise there will be a homologous anchor between \(A(i, j) \) and \(A(h, h) \) (by property F2/Lemma 9) and the chain is not optimal as we could just insert the additional homologous anchor between \(j \) and \(h \). Furthermore, \(|i - j| < \sqrt{m} \) as \(|i - j| < \sqrt{m + 50/8C \log(n) \ln(n)} n^{C_\alpha} \) as desired.

Lemma 9 Let \(T_{\text{Ext}}^S \) be the runtime of extension through only the non-homologous gaps of an optimal chain. Under the same assumptions as in Lemma 7 \(E[T_{\text{Ext}}^S] = O(m) \).

Proof. Defining \(\gamma \) as the maximum non-homologous gap size as in Supplementary Lemma 10 conditional on \(\mathcal{F} = F1 \cap F2 \), \(\gamma = O(m^{1/2} + n^{C_\alpha} \log^2(n)) = O(m^{1/2}) \) when \(m = \Omega(n^{2C_\alpha + \epsilon}) \). We bound the expected value of the non-homologous gaps as follows.

\[
E[\sum_{G_j \text{ not homologous}} G_j G_j' \mid \mathcal{F}] \leq E[2C_S \cdot \gamma^2 \mid \mathcal{F}]
\]

The inequality uses \(\gamma > G_j \) and that the number of non-homologous gaps is at most \(2 \) times \(C_S \), which we define to be the number of spurious anchors in the chain (each anchor gives rise to at most two unique gaps). \(C_S \leq N_S \) follows trivially, so

\[
\leq E[2\gamma^2 \cdot N_S \mid \mathcal{F}] \leq \frac{2n^{2-C} \gamma^2}{1 - 2/n} = O(m^{n-C}).
\]

The first inequality follows from \(E[N_S \mid \mathcal{F}] \) \(\Pr(\mathcal{F}) \leq E[N_S] \) and non-negativity of \(N_S \), as well as \(\Pr(\mathcal{F}) \geq 1 - 2/n \). Finally, under \(\mathcal{F} \), the worst case extension through non-homologous gaps is just \(O(mn) \) as in Section 2.3 Since \(\Pr(\mathcal{F}) \leq 2/n \), the expected runtime is \(O(nm/n + nm^{2-C}) = O(m) \) as desired.

E Missing proofs from Section 7

E.1 Proof of Lemma 11

Lemma 11 The variance \(\text{Var}(N_h^2) \) can be upper bounded by \(\frac{1}{4}8k^2mn^{1-C} \). Furthermore, \(E[N_h^2] \leq \frac{1}{4}2mk(1-\theta)^k + \frac{1}{m}m^2(1-\theta)^{2k} \) and \(E[N_h^*N_h^2] \leq \frac{1}{4}4k\frac{m}{\sqrt{\pi}} + \frac{1}{m}m^2n(1-\theta)^k \frac{1}{\sqrt{\pi}} \).

Proof. The proof follows almost exactly the same as Lemma 3. We only do the variance bound as an example, and the other moment bounds follow exactly the same way.

We upper bound the three sums \(S_1, S_2, S_3 \) in the proof of Lemma 3 but now with the sketched versions \(S_1^*, S_2^*, S_3^* \). The bounds \(E[S_1^*] \) and \(E[S_2^*] \) \(\leq \frac{1}{4}4k^2 mn^{1-C} \) hold by a restatement of the argument using \(E[A(i,j)^*A(h,l)^*] \leq E[A(i,j)^*] = \frac{1}{2}m^2n(1-\theta)^k \) and the set \(|B_h(i,j)| \leq 4k^2 \).

The bound for \(E[S_3^*] \) \(\leq \frac{1}{m}m^2(n-1)^2n^{-2C} = E[N_h^2]^1 \) also holds as well; we just have to calculate \(E[A(i,j)^*A(h,l)^*] \) when \(A(i,j) \) and \(A(h,l) \) are independent. This is

\[
E[J(i)J'(j)J(h)J'(l) \mid A(i,j) = 1, A(h,l) = 1] \Pr(A(i,j) = 1, A(h,l) = 1).
\]
By independence of \(A(i, j), A(h, l) \) in \(S_1^* \), the second term is \(n^{-2C} \). Now notice that under the conditions of \(S_1 \), either \(|i \geq h| > k \) or \(|j - l| \geq k \) meaning that two of the k-mers along either \(S \) or \(S' \) are independent. WLOG we can assume it is \(i \) and \(h \); thus \(J(i) \) and \(J(h) \) are independent. The \(A(i, j) = 1 \) condition implies \(J(i) = J'(j) \) and similarly for \(h, l \), so

\[
\mathbb{E}[J(i)J'(j)J(h)J'(l) | A(i, j) = 1, A(h, l) = 1] = \mathbb{E}[J(i)J(h)] = \frac{1}{c^2}.
\]

E.2 Proof of Theorem 8

Theorem 8 Under the same assumptions as in Theorem 5 letting \(N^* \) be the total number of sketched k-mer anchors, the expected chaining time is \(O(\mathbb{E}[N^* \log N^*]) = O\left(\frac{1}{2}mn^{-C^* \log m}\right) \).

Proof. The argument follows in the same way as in the proof of Theorem 6 in Section D.1, only using the sketched moment bounds in Lemma 11. We still get that \(\mathbb{E}[(N^*)^2]/\mathbb{E}[N^*] = O(mn^{-C^* / c}) \) and the result follows.

E.3 Sketched concentration bounds and gap sizes

Supplementary Lemma 11. Let \(\tau = (c + 1)/2 \) and \(1 > \beta \geq 0 \). Given \(\ell + \tau - 1 \) k-mers indexed by the interval \([a..b] \) on a random string \(S \),

\[
\mathbb{P}\left(\sum_{i=a}^{b} J(i) \leq \frac{(1 - \beta)\ell}{c} \right) \leq \exp\left(-\frac{8\ell\beta^2}{(k + \tau)50} \right).
\]

Remark 2. The variables \(J(i) \) are k-dependent so we could use Theorem 5 for this sum. This however leads to a bound like \(\exp(-O(m/(kc))) \) instead of our bound which is \(\exp(-O(m/(k + c))) \) in the above lemma. While the former bound still leads to the same asymptotic behavior for Supplementary Lemma 13, which we are ultimately trying to prove, we believe it is enlightening to show how the dependence structure of the \(J(i)s \) can be used to obtain a better bound.

Proof. Define \(J(i, i + \tau) = J(i) + \ldots + J(i + \tau - 1) \). Then

\[
\sum_{i=a}^{b-\tau+1} J(i, i + \tau) \leq \tau \sum_{i=a}^{b} J(i).
\]

Let \(\min(J(i, i + \tau), 1) = I(i, i + \tau) \) and clearly \(\sum_{i=a}^{b-\tau+1} I(i, i + \tau) \leq \sum_{i=a}^{b-\tau+1} J(i, i + \tau) \).

We will show that \(\sum_{i=a}^{b-\tau+1} I(i, i + \tau) \) is large, implying that \(\tau \sum_{i=a}^{b} J(i) \) is also large. Notice that \(I(i, i + \tau) \) is the random variable which is 1 when some k-mer in \([i..i + \tau)\) is an open syncmer. By Theorem 5 only one of the \(J \) variables in \(J(i), \ldots, J(i + \tau - 1) \) can be equal to one. Using \(\mathbb{P}(J(i) = 1) = \frac{1}{k} \), we get that

\[
\mathbb{P}(I(i, i + \tau) = 1) = \mathbb{P} \left(\bigcup_{j=i,\ldots,i+\tau-1} J(j) = 1 \right) = \frac{\tau}{c}
\]

by disjointness. \(I(i, i + \tau) \) is \(k + \tau - 1 \)-dependent because it examines the \(k + \tau - 1 \) bases starting from position \(i \), so using Theorem 5 we get that

\[
\mathbb{P} \left(\sum_{i=a}^{b-\tau+1} I(i, i + \tau) \leq \frac{(1 - \beta)\ell}{c} \right) \leq \exp\left(-\frac{\beta^28\tau\ell}{c(k + \tau)25} \right).
\]

From our inequality \(\tau \sum_{i=a}^{b} J(i) \geq \sum_{i=a}^{b-\tau+1} 1(i, i + \tau) \) and using \(\tau = (c + 1)/2 \) we obtain

\[
\mathbb{P} \left(\sum_{i=a}^{b} J(i) \leq \frac{(1 - \beta)\ell}{c} \right) \leq \exp\left(-\frac{8\ell\beta^2}{[k + (c + 1)/2]50} \right)
\]
Supplementary Lemma 12. For any interval \([a..b]\) containing \(\ell + \frac{\ell + 1}{2} - 1\) \(k\)-mers and \(1 > \beta \geq 0\), the probability that all \(A^*(a,a), \ldots, A^*(b,b)\) are 0 is upper bounded by

\[
\Pr\left(\sum_{i=a}^{b} A^*(i,i) = 0 \right) \leq \exp\left(-\frac{8\ell\beta^2}{|k + (c + 1)/2|50}\right) + \exp\left(-\frac{8\ell(1-\beta)(1-\theta)^k}{50k + 25c}\right).
\]

Proof. Defining \(\mathcal{J} = \{i \in [a,b] : J(i) = 1\}\), we have \(\sum_{i=a}^{b} A^*(i,i) = \sum_{i \in \mathcal{J}} A(i,i)\) where we just sum only over syncmer anchors instead of all \(k\)-mer anchors in the range.

\[
\Pr\left(\sum_{i=a}^{b} A^*(i,i) \leq 0 \right) = \Pr\left(\sum_{i \in \mathcal{J}} A(i,i) \leq 0 \right)
\]

\[
\leq \Pr\left(\sum_{i \in \mathcal{J}} A(i,i) \leq 0 \mid |\mathcal{J}| > \frac{(1-\beta)\ell}{c}\right) + \Pr\left(|\mathcal{J}| \leq \frac{(1-\beta)\ell}{c}\right).
\]

Now by Theorem 7, the distance between consecutive positions in \(\mathcal{J}\) is at least \((c + 1)/2\) (remembering that we assume \(c\) is odd for simplicity), which means that given the \(i\)th open syncmer, the \((i + \frac{2k}{c+1})\)th open syncmer is more than \(k\) bases apart from the \(i\)th open syncmer and hence independent from each other. Thus the \(A(i,i)\)s in \(\mathcal{J}\) are now \(\frac{2k}{c+1} < \frac{2k}{c+1} + 1\) dependent. Conditioning on \(|\mathcal{J}| > \frac{(1-\beta)\ell}{c}\), we can bound the first term using Theorem 5 to get

\[
\Pr\left(\sum_{i \in \mathcal{J}} A(i,i) \leq 0 \mid |\mathcal{J}| > \frac{(1-\beta)\ell}{c}\right) \leq \exp\left(-\frac{8\ell(1-\theta)^2 |\mathcal{J}|^2}{25(\frac{2k}{c+1} + 1)|\mathcal{J}|(1-\theta)^k}\right) \leq \exp\left(-\frac{8\ell(1-\beta)(1-\theta)^k}{50k + 25c}\right).
\]

Where we substituted in \(|\mathcal{J}| = \frac{(1-\beta)\ell}{c}\) in the above equation and used \(\frac{c}{c+1} \leq 1\) to remove the term. To bound the second term, we just use Supplementary Lemma 11. This furnishes the final result

\[
\Pr\left(\sum_{i=a}^{b} A^*(i,i) = 0 \right) \leq \exp\left(-\frac{8\ell\beta^2}{|k + (c + 1)/2|50}\right) + \exp\left(-\frac{8\ell(1-\beta)(1-\theta)^k}{50k + 25c}\right).
\]

Supplementary Lemma 13. No homologous gap has size greater than

\[
g'(n) = \left(\frac{3}{2(1-\theta)} + 2\right)\frac{200k}{8} \ln(n) = \frac{200C}{8} \log(n) \ln(n) \cdot \left(\frac{3}{2}n^{C_{\alpha}} + 2\right)
\]

with probability \(\geq 1 - 2/n\) after ignoring an additive \((c + 1)/2 - 1 + C \log n\) term.

Proof. We use Supplementary Lemma 12 after plugging in the value of \(\ell = g'(n)\) and letting \(\beta = 1/2\). Algebraic manipulations show that the probability is less than \(\leq 2/n^2\) using \(k = C \log n\) and the inequality \(c < k\). Then as in the proof of Theorem 6 we can use indicator random variables and Markov’s inequality in the same way to get the result.

E.4 Proving Lemma 13

We use the same definitions and supplementary lemmas as in Section 4.5 for \(Y_i, C_{\text{only}}\) and \(K\), now considering the sketched versions \(Y^*_i, C^*_{\text{only}},\) and \(K^*\). We first note that the sketched version for Supplementary Lemmas 8 and 9 hold by the same arguments. The analogous version of Lemma 8 holds as well.

Supplementary Lemma 14. Let \(T_{Ext}^{H^*}\) be the time of sketched extension over only the homologous gaps of an optimal chain. \(E[T_{Ext}^{H^*}] = O(c \cdot mn^{C_{\alpha}} \log n)\).
Lemma 13. The expected runtime of sketched extension through the homologous gaps in an optimal chain is \(\mathbb{E}[T_{Ext}^*(K^*)] = O\left(\min\left(\frac{1}{\beta}mn^{C_\alpha}\log^3(n), c \cdot mn^{C_\alpha}\log n \right) \right) \). If \(c = \Theta(\log n) \) then \(\mathbb{E}[T_{Ext}^*] = O(mn^{C_\alpha}\log n) \).

Proof. By Supplementary Lemma 15 and our discussion that \(|\mathcal{H}_i(k, \ell)| \geq \ell - k + 1 \),

\[
\Pr(\mathcal{Y}^*_i = \ell) \leq \Pr(\mathcal{H}_i(k, \ell)) = \frac{(1 - \theta)^{2k}}{c^2} \cdot \Pr\left(\sum_{j \in \mathcal{H}_i(k, \ell)} A(j, j)^* = 0 \right)
\]

where \(\mathcal{H}_i(k, \ell) = [i + k \ldots i + \ell] \) if \(\ell \geq k \), and is empty otherwise. Thus \(|\mathcal{H}_i(k, \ell)| \geq \ell - k + 1 \).

Proof. \(\mathcal{Y}^*_i = \ell \) is equivalent to the k-mer covering \([i \ldots i + k - 1]\) being unmutated (i.e. no bases on the k-mer are mutated) and selected as an open synmer, all of the k-mers in between these two flanking k-mers not being present, and the k-mer covering \([i + \ell + k \ldots i + \ell + 2k - 1]\) being unmutated and selected as an open synmer. Calling these events \(H_1, H_2, \) and \(H_3 \) respectively, \(\Pr(\mathcal{Y}^*_i = \ell) = \Pr(H_1 \cap H_2 \cap H_3) \).

The k-mers considered in \(H_2 \) that lie in between the flanking k-mers overlap the flanking k-mers in \(H_1 \) and \(H_3 \), so these events are not independent. To upper bound \(H_2 \), let \(H'_2 \) be the event that the k-mers lying completely in the interval \([i + k \ldots i + \ell + k - 1]\) on \(S' \), and not just overlapping the interval, are mutated or not selected as an open synmer. \(H'_2 \supset H_2 \) as events. This set of k-mers is exactly the k-mers starting at positions in \(\mathcal{H}_i(k, \ell) \) after some examination. Now notice that \(H_1, H'_2, H_3 \) are all independent as the k-mers in each event lie on non-overlapping bases, so

\[
\Pr(\mathcal{Y}^*_i = \ell) \leq \Pr(H_1 \cap H'_2 \cap H_3) = \frac{(1 - \theta)^{2k}}{c^2} \cdot \Pr\left(\sum_{j \in \mathcal{H}_i(k, \ell)} A(j, j)^* = 0 \right).
\]

In the case that \([i + \ell + k \ldots i + \ell + 2k - 1]\) does not lie on \(S' \), i.e. \(i + \ell + k > p + m \), then \(\Pr(\mathcal{Y}^*_i = \ell) = 0 \) as a homologous gap of this length can not exist near the edges, so the upper bound still holds. The upper bound also holds if \(i - k < p + 1 \) by the same reason. This finishes the proof.
Theoretical bounds on seed-chain-extend alignment

holds by noticing that the first term in Supplementary Lemma 12 is dominated by the second term and using \(k > c \), where we also ignored the \(- \frac{c+1}{c^2} + 1\) in Supplementary Lemma 12 because it is asymptotically small. We can now bound the expected time of extension over homologous gaps by \(\mathbb{E}[T_{Ext}(C_{only}^*)] = \sum_{i=p+1}^{p+m} O(\mathbb{E}[Y_i^*]^2) \). Since the probability densities of each \(Y_i^* \) is upper bounded by Equation 1,

\[
\sum_{i=p+1}^{p+m} O(\mathbb{E}[Y_i^*]^2) = O\left(m \frac{(1-\theta)^2k}{c^2} \exp((k-1)D) \sum_{\ell=1}^{\infty} \ell^2 \exp(-D\ell) \right)
\]

where \(D = \frac{8(1-\beta)(1-\theta)^k}{\sqrt{5}k} \) and \(\beta \) is some constant. Now we use the fact that

\[
\sum_{\ell=1}^{\infty} \ell^2 \exp(-D\ell) \leq O\left(\frac{1}{(1-e^{-D})^3} \right) = O\left(\frac{1}{D^3} \right)
\]

after geometric series manipulations as before, using Taylor’s theorem for \(1-e^{-D} \), and noticing that \(D = o(1) \). Thus our final bound is

\[
\mathbb{E}[T_{Ext}^H] = O\left(m \frac{(1-\theta)^{-k}}{c^2} k^3 \exp((k-1)D) \right) = O\left(\frac{1}{c^2} m n C^{\alpha} \log^3 n \right).
\]

The other bound \(c \cdot mn C^{\alpha} \log n \) follows from Supplementary Lemma 14 so taking the minimum over both bounds yields the result.

Remark 3. Intuitively, what is happening here is that open syncmers have the same key property as \(K \); they are spaced at least \(\frac{c+1}{2} \sim \frac{k}{2} \) bases apart when \(c \sim k \), and are “almost independent” like the anchors in \(K \). \(C_{only}^* \) has similar properties to the non-sketched \(K \) chain, showing why they give the same bounds. Interestingly, if we to bound \(C_{only} \) to get a result for the non-sketched version \(\mathbb{E}[T_{Ext}^H] \) while using the same techniques as above (with the dependent Chernoff-Hoeffding bound), the result would be \(O(n C^{\alpha} \log^3 n) \), worse than bounding using \(K \) by \(\log^2(n) \).

Remark 4. If we were to use the FracMinHash method or another k-mer selection/sketching method without the distance guarantee provided by Theorem 7, Supplementary Lemma 12 would not hold, and therefore the above argument would fail. Supplementary Lemma 14 would however still hold.

E.5 Re-proving sketched bounds

**Supplementary Lemma 16 (F1* + F2*). Using the same assumptions as in Lemma 3 there are no breaks of length \(> m^{1/2} \) with probability greater than \(1 - 3/n \) in an optimal chain for large enough \(n \).

Proof. In Section D.3 the structure of the problem does not change. The only difference is the bounds on gap size and spurious k-mers. Asymptotically the homologous gap size is still the same, and both the number of spurious anchors and homologous anchors are smaller by a factor of \(\sqrt{c} \), which does not affect the inequalities. Thus all of the bounds in Section D.3 hold except with slightly different probabilities since \(F1^* \) holds with probability \(\geq 1 - 2/n \) instead of \(1 - 1/n \).

**Supplementary Lemma 17. Using the same assumptions as in Lemma 7 the expected recoverability of any optimal chain is \(\geq 1 - O(1/\sqrt{m}) \) for large enough \(n \).

Proof. The proof is the same as the proof of Corollary 3 in Section D.4 except we use \(\mathbb{E}[N_k^s] \leq \frac{1}{c} mn^{1-C} \) and the failure probability is \(\geq 1 - 3/n \). This doesn’t change the main \(1 - 4/\sqrt{m} \) term, so the same big \(O \) bound holds.

**Supplementary Lemma 18. Under the assumptions of Lemma 7 the expected value of runtime of extension through non-homologous gaps is \(\mathbb{E}[T_{Ext}^S] = O(m) \).

Proof. The proof is the same as the proof of Lemma 3 in Section D.6 except the sketched maximum non-homologous gap length is \(m^{1/2} + g'(n) \). This is still \(O(m^{1/2}) \), and \(N_k^s < N_s \), so the expected value of the non-homologous runtime does not change.
Theorem 2 In addition to the hypotheses outlined in Theorem 1, let \(c = O(\log n) < k \) and \(\zeta = \frac{1}{6g'(n)} \) instead where \(g'(n) = C_{200} \log(n) \ln(n) (\frac{3}{2}n^{\alpha} + 2) \). For open synmer sketched seed-chain-extend, the expected running time is \(O(\min(\frac{1}{2}mn^{\alpha} \log(n), c \cdot mn^{\alpha} \log n)) \) for extension and \(O(\frac{1}{2}mn^{-\alpha} \log m) \) for chaining. The expected recoverability of any optimal chain is \(\geq 1 - O(\frac{1}{\sqrt{m}}) \).

Proof. The expected runtime of chaining and recoverability follows from Theorem 8 and Supplementary Lemma 17. Lemma 13 and Supplementary Lemma 18 give the runtimes under our conditional event space \(F_1^*, F_2^* \), which occurs with probability \(\geq 1 - 3/n \), so the same argument as in the proof of Theorem 1 gives the result.

F Additional plots

Supplementary Figure 7: The function \(f(\theta) \) for the runtime \(O(mn^{f(\theta)} \log n) \). Technically, \(f(\theta) = \frac{2\alpha}{\theta - 2\alpha} + \delta \) for any \(\delta > 0 \), so we plot \(\frac{2\alpha}{\theta - 2\alpha} \) where \(\alpha \) is a function of \(\theta \) defined in Section 6. This function is convex on \([0,0.206]\) so \(f(\theta) < \frac{0.5 \cdot 0.206}{0.5} \theta < 2.43 \cdot \theta \).
Theoretical bounds on seed-chain-extend alignment

Supplementary Figure 8: The same experiment as in Figure 2 (a) but with $\theta = 0.05$.

Supplementary Figure 9: The recoverability of our alignments over 50,000 iterations as a function of sequence length n where $\theta = 0.10$ and k was chosen as described in Section 8. Breaks were uncommon and most of the recoverability loss is from the $(j_u - j_1)$ term due to homologous anchors not being near the edges.