EFFECT OF SOME SALINITY AND FERTILIZATION TREATMENTS ON BERMUDA: B. ROOT GROWTH AND SOME CHEMICAL COMPOSITION

M.A.H. Abdou; M.K.A. Aly and H.A.E.I. Ammar
Hort. Dept., Fac. Agric., Minia Univ., Egypt

ABSTRACT: This study was undertaken at the private Farm, Bani Mazar District, Minia governorate, during the two seasons of 2020 and 2021. The aim of this study was to investigate the effect of irrigation water salinity, mineral and biofertilization [effective microorganisms (EM) and Azotobacter chroococcum bacteria (AC)] treatments, as well as, their combinations on the root growth and some chemical constituents of bermudagrass (Cynodon dactylon, L.), grown in sandy soil. Results showed that the root growth parameters i.e., root length and fresh and dry weights/unit were enhanced with the low and medium levels of salinity (3000 and 6000 ppm), while, they decreased with the high level of salinity (9000 ppm) compared with control, in the third cut during both seasons. On the other hand, all salinity treatments increased Na, Cl, Ca (% in the dry herb) and proline content (in fresh weight), and decreased photosynthetic pigments as well as NPK %. All used mineral and/or biofertilization treatments significantly increased root length and fresh and dry weights/unit comparing with control treatment in 3rd cut, except AC for root length and EM and AC in case of fresh and dry weights/unit, with the highest values that were obtained due to 100% mineral NPK followed by EM + AC during both seasons. N, P, K and Ca % as well as photosynthetic pigments and proline content were increased due to application with any of the sub-plot treatments, while, Na and Cl were decreased. The best interaction treatments which mitigate the adverse effects of salinity (9000 ppm) were 100% mineral NPK followed by biofertilizer (EM + AC).

Keywords: Cynodon dactylon, L., salinity, mineral fertilization, biofertilization, root growth, chemical composition.

INTRODUCTION

Bermudagrass (Cynodon dactylon (L.) belongs to Family Poacea that acts as a ground cover (Uddin and Juraimi, 2013). Also, bermudagrass is native to Africa, widely distributed, and commonly found in tropical and sub temperate areas (Taliaferro et al., 2004).

Salinity stress is one of the main problems in turfgrass management (Keyikoglu et al., 2019). Many authors concluded that root growth was decreased by salinity at high levels such as Pessarakli et al. (2008), Uddin et al. (2009), Uddin et al. (2010) and Badawy et al. (2018) on bermudagrass.

bermudagrass was more responded to mineral NPK fertilization as found by Barton et al. (2006), Guertal and Evans (2006) and Ihtisham et al. (2018). Biofertilizers can produce biological nitrogen fixation. Biofertilizers play an important role in supplying nutrients essential for plants to produce agriculturally sustainable, economical, and environment-friendly
products, by improving the absorption of water and nutrients by the root system (Radnezhad et al., 2015). Many researchers mentioned that as Hussein and Mansour (2003) on kikuyu grass, Kumar and Nikhil (2016) on netiver grass, Sabry and Abdal-Latife (2017) on four varieties of lawn grasses, and Radnezhad et al. (2015) on Salvia officinalis.

Therefore, the purpose of this study was to examine the effect of irrigation water salinity and mineral and/or biofertilizers on root growth and some chemical composition of bermudagrass.

MATERIALS AND METHODS

This study was undertaken at the private Farm, Bani Mazar District, Minia governorate. during the two seasons of 2020 and 2021 to investigate the effect of irrigation water salinity and mineral and/or biofertilization treatments, as well as, their interaction on the root growth and some chemical composition of bermudagrass (*Cynodon dactylon*, L.), grown in sandy soil.

The seeds of bermudagrass were obtained from Hamza Co., El-Giza, Egypt. The experiment was arranged in a complete randomized block design in a split-plot design with three replicates.

The main plots (A) included four levels of salinity i.e. 0.0, 3000, 6000 and 9000 ppm, of NaCl:CaCl$_2$ at a rate of 1:1 w/w. While eight treatments of mineral NPK and/or biofertilizers, included control, mineral NPK at 100%, mineral NPK at 75%, effective microorganisms (EM), *Azotobacter chroococcum* bacteria (AC), mineral NPK at 75% + EM, mineral NPK at 75% + AC, and EM + AC occupied the subplots (B).

Therefore, the interaction treatments (A × B) performed 32 treatments. Each replicate area was 10×10 m, such area was dug out to 30 cm depth and separated into the experimental unit (plot) 1.5 × 1.0 m, to prevent seepage, a 1.0 m between the main plot and 0.25 m between sub-plots, using layers of wood, then refilled with sandy soil plus compost at 10 ton/fed for all treatments (3.6 kg/unit area). Seeds of bermudagrass were sown by broadcasting method on April, 28th for both growing seasons at the rate of 60 g/1.5 m2.

The physical and chemical analysis of the used soil is determined according to Jackson (1973) and is shown in Table (a).

The full dose of mineral NPK (100%) was 300 kg/fed of ammonia nitrate (33.5% N) + 200 kg/fed calcium super phosphate (15.5% P$_2$O$_5$) + 100 kg/fed potassium sulphate (48% K$_2$O), therefore, the NPK 100% = 112.5 + 75 + 37.5 g/1.5 m2 while 75% NPK = 84.4 + 56.3 + 28.1 g/1.5 m2.

All assigned calcium superphosphate fertilizer was applied to the sandy soil during soil preparation for bermuda cultivation, while the amounts of N and K fertilizers were divided into three equal doses and were applied in monthly intervals pattern, starting on the second day of June then 2nd July and 2nd August in both seasons.

Table a. Physical and chemical properties of the used soil before planting of bermudagrass during 2020 and 2021 seasons.

Soil character	2020 Values	2021 Values	Soil character	2020 Values	2021 Values
Physical properties			Nutrients		
Sand (%)	90.00	91.00	Total N (%)	0.01	0.01
Silt (%)	7.30	6.40	Available P (%)	2.81	2.96
Clay (%)	2.70	2.60	Na$^+$ (mg/100 g soil)	2.34	2.45
Soil type	Sandy	Sandy	K$^+$ (mg/100 g soil)	0.78	0.83
Chemical properties			DTPA-extractable nutrients		
pH (1:2.5)	8.15	8.22	Fe (ppm)	1.04	1.10
E.C. (dS/m)	1.11	1.13	Cu (ppm)	0.33	0.39
O.M.	0.03	0.04	Zn (ppm)	0.34	0.31
CaCO$_3$	13.70	13.85	Mn (ppm)	0.56	0.67
Fresh and active biofertilizer, Effective microorganisms containing lactic acid bacteria, photosynthetic bacteria and yeasts (EM) and *A. chroococcum* (AC) strain were obtained from Microbiology Department, Faculty of Agriculture, Mansoura University were sprayed by hand sprayer at the rate of 500 cm\(^3/1.5\) m\(^2\) (each 1.0 ml containing 10\(^7\) cells of bacteria) and (50 ml/1.5 m\(^2\)), respectively. The first dose for EM and AC was applied on 9\(^{th}\) June, second dose on 9\(^{th}\) July and the last spray was on 9\(^{th}\) August (after one week of the dose of mineral fertilizer), and then the plants were irrigated immediately.

Data recorded:

Root length (cm), root fresh and dry weights (g) as well as N, P, K, Na, Ca, Cl (% in dry herb) and proline content (\(\mu g/g\) in the fresh herb) during the third cut, and photosynthetic pigments (mg/g f.w.) during the three cuts, in both seasons.

Chemical analysis:

Photosynthetic pigments (mg/g f.w.), during the three cuts, in both seasons were determined according to Moran (1982). Total N was determined by using the modified micro-kjeldahl method (ICARDA, 2013), P (%) was determined according to Olsen method, K and Na were estimated using flame-photometry method, Ca was determined by versenate method and Cl was determined using silver chloride method. All previous determinations were performed according to ICARDA (2013), as well as proline content was determined according to Bates *et al.* (1973).

The obtained results were tabulated and statistically analyzed according to MSTAT–C (1986), and LSD test at 5% was followed to compare the means of treatments.

RESULTS AND DISCUSSION

Root growth measurements:

Root length (cm):

Data presented in Table (1), demonstrated that root length was augmented with the treatments of 3000 and 6000 ppm irrigation water salinity significantly increased compared with the control treatment. Furthermore, it was significantly decreased with the high level of salinity (9000 ppm) compared with (3000 ppm) irrigation water salinity during the third cut in both seasons.

These results were in agreement with those obtained by Adavi *et al.* (2006), Hameed and Ashraf (2008), Pessarakli *et al.* (2008), Uddin *et al.* (2009), Uddin *et al.* (2010) and Badawy *et al.* (2018) on bermudagrass.

Concerning the effect of mineral and/or biofertilization treatments, on the other side, data in Table (1) showed that all used seven treatments significantly increased root length compared with the control treatment during the third cut in the two seasons, except the treatment of AC. Among these treatments, mineral NPK 100%, followed by EM + AC, produced the tallest plants.

Fertilizing plants with mineral NPK produced an increase in root length as recorded by Rodriguez *et al.* (2002), Barton *et al.* (2006) and Ihtisham *et al.* (2018) on bermudagrass, as well as biofertilizers had positive effect on root length as mentioned by Kumar and Nikhil (2016) on netiver grass, Sabry and Abdal-Latife (2017) on four varieties of lawn grasses, and Radnezhad *et al.* (2015) on *Salvia officinalis*.

The interaction treatments were significant for root length during the third cut in both seasons. The effective interaction treatments which reduced the bad impacts of salinity (9000 ppm) were mineral NPK 100%, EM + AC, NPK 75% + EM, NPK 75% and NPK 75% + AC.

Root fresh and dry weights (g):

Data presented in Table (1), showed that root fresh and dry weights were increased due to the application of 3000 and 6000 ppm irrigation water salinity compared with the control, but the application of 9000 ppm decreased root fresh and dry weights.
Table 1. Effect of salinity concentration, mineral and biofertilization on root length, and root fresh and dry weights/unit of bermudagrass (3rd cut) during the two growing seasons (2020 and 2021).

Mineral and biofertilization treatments (B)	Salinity concentrations (ppm) (A)									
	0.0	3000	6000	9000	Mean (B)	0.0	3000	6000	9000	Mean (B)
The 1st season (2020)										
Control	13.06	18.23	16.93	11.06	14.82	14.13	19.13	18.23	12.20	15.92
Mineral NPK 100%	20.50	27.40	24.06	18.73	22.67	22.16	29.43	25.96	19.96	24.38
Mineral NPK 75%	16.73	21.96	20.30	15.03	18.51	17.10	22.10	21.13	15.90	18.81
EM (500 cm³/1.5 m²)	15.13	21.03	19.56	14.00	17.43	16.06	22.36	20.66	15.30	18.60
AC (50 ml/1.5 m²)	13.66	19.30	18.33	13.13	16.11	15.20	20.00	19.40	14.70	17.33
NPK 75% + EM	18.10	23.60	21.83	16.06	19.90	19.26	24.86	23.03	17.40	21.14
NPK 75% + AC	16.23	21.20	19.46	14.23	17.78	14.03	24.13	21.23	16.33	19.93
EM + AC	18.90	24.90	23.16	17.30	21.07	20.16	26.03	24.53	18.66	22.35
Mean (A)	16.54	22.20	20.45	14.94	17.76	23.51	21.77	16.18		
L.S.D. at 5 %	A: 2.50	B: 2.25	AB: 4.50	A: 2.61	B: 2.29	AB: 4.58				
The 2nd season (2021)										
Control	152.48	222.45	212.48	156.48	185.97	153	228	220.5	153.00	188.63
Mineral NPK 100%	219.98	300.00	279.98	218.95	254.73	222.98	300.45	285.45	225.45	258.58
Mineral NPK 75%	180.00	240.00	229.95	181.45	207.85	185.48	256	237.98	185.48	216.24
EM (500 cm³/1.5 m²)	177.45	234.98	225.00	176.50	203.48	177.98	243	230.48	177.98	207.36
AC (50 ml/1.5 m²)	169.95	229.95	219.98	171.48	197.84	170.48	232.95	225.45	170.48	199.84
NPK 75% + EM	199.95	262.50	244.95	191.50	224.73	200.48	267.98	247.95	192.98	227.35
NPK 75% + AC	184.95	252.45	237.45	184.00	214.71	180.45	245.48	235.5	183.00	211.11
EM + AC	230.20	292.68	272.65	219.20	253.68	229.19	301.71	276.66	221.69	257.31
Mean (A)	189.37	254.38	240.31	187.45	190.01	259.45	245.00	188.76		
L.S.D. at 5 %	A: 20.11	B: 18.25	AB: 37.50	A: 21.65	B: 21.23	AB: 42.46				

EM: Effective microorganisms and AC: *Azotobacter chroococcum* bacteria
compared to the control treatment during the third cut in both seasons.

Similar results were proved by Adavi et al. (2006), Hameed and Ashraf (2008), Pessarakli et al. (2008), Uddin et al. (2009), Uddin et al. (2010) and Badawy et al. (2018) on bermudagrass.

Regarding the effect of mineral and/or biofertilizers treatments, data in Table (1) stated that root fresh and dry weights were increased due to fertilizing plants with all used seven treatments compared with the control during the third cuts in both seasons, except the biofertilization treatments EM or AC in an individual manner. The heaviest weights overall were produced from mineral NPK 100%, followed by EM + AC treatments.

Fertilizing plants with mineral NPK produced an increase in (fresh and dry weights) of roots as recorded by Rodriguez et al. (2002), Barton et al. (2006), Guertal and Evans (2006) and Ihtisham et al. (2018) on bermudagrass, as well as biofertilizers had a positive effect on roots weights as mentioned by Also biofertilizers increased roots weights as mentioned by Hussein and Mansour (2003) on kikuyu grass, Kumar and Nikhil (2016) on netiver grass, Sabry and Abdal-Latife (2017) on four varieties of lawn grasses.

The interaction treatments were significant for root fresh and dry weights during the third cut in both seasons. The interaction between salinity at 9000 ppm with mineral NPK 100% or EM + AC or NPK 75% + EM or NPK 75% + AC and NPK 75% were suitable treatments to mitigate the adverse effects of salinity, as shown in Table (1).

Effect on chemical composition:

1. **Photosynthetic pigments (mg/g f.w.):**

Regardless of all the treatments, the chlorophyll a, b and carotenoids content (mg/g f.w.) were increased in the third cut than both of the first and second cuts during both seasons (Tables, 2 to 4).

The three used levels of salinity decreased photosynthetic pigments (chlorophyll a, b and carotenoids content) which reached a significant level starting from 6000 ppm compared with control in the three cuts during both seasons.

These results are in accordance with those clarified by Hameed and Ashraf (2008), Shahba et al. (2012), Karimi et al. (2018), Sharifiasl et al. (2019 and 2020) on bermudagrass.

On the other hand, data presented in Table (2) showed that all seven used treatments of mineral and/or biofertilization significantly increased the chlorophyll a, b and carotenoids content (mg/g f.w.) compared with the control. The treatments of mineral NPK 100% followed by EM + AC were superior in this concern.

Mineral NPK improved photosynthetic pigments as reported by Manoly et al. (2008), AbdelKader and Alhumaid (2012), Abd-Elgaber (2012), Ammar (2018), Ihtisham et al. (2018 and 2020) and Jena and Mohanty (2020) on *Cynodon dactylon*.

The augmentation of photosynthetic pigments content due to biofertilization was mentioned by Yuojen (2015) and Ali et al. (2018) on bermudagrass and Turgeon (2001) on turfgrass.

The interaction treatments were significant for chlorophyll a, b and carotenoids in both seasons during the three cuts. The best interaction treatments which produced more content of chlorophyll a, b and carotenoids due to plants grown under 3000 ppm and fertilized with mineral NPK 100%, EM + AC, mineral NPK 7% + EM or AC. Also, the best overall interaction treatments which mitigated the harmful effects of high salinity (9000 ppm) were fertilizing plants with mineral NPK 100% or EM + AC.

2. **Nitrogen, phosphorus and potassium contents (%):**

The percentages of nitrogen, phosphorus and potassium in dry herb were significantly
Table 2. Effect of salinity concentration, mineral and biofertilization on chlorophyll a (mg/g f.w.) of bermudagrass during the two growing seasons (2020 and 2021).

Mineral and biofertilization treatments (B)	Salinity concentrations (ppm) (A)	0.0	3000	6000	9000	Mean (B)	0.0	3000	6000	9000	Mean (B)	
	The 1st season (2020)											
Control		2.400	2.500	2.445	2.380	2.431	2.520	2.625	2.567	2.499	2.553	
Mineral NPK 100%		2.960	2.830	2.820	2.790	2.850	3.108	2.972	2.961	2.930	2.993	
Mineral NPK 75%		2.730	2.730	2.619	2.610	2.672	2.767	2.867	2.750	2.741	2.781	
EM (500 cm⁻³/1.5 m²)		2.690	2.700	2.600	2.550	2.635	2.725	2.835	2.730	2.678	2.742	
AC (50 ml/1.5 m²)		2.570	2.690	2.540	2.510	2.578	2.699	2.825	2.667	2.636	2.707	
NPK 75% + EM		2.810	2.800	2.780	2.700	2.773	2.951	2.940	2.919	2.835	2.911	
NPK 75% + AC		2.880	2.805	2.701	2.690	2.769	3.024	2.945	2.836	2.825	2.908	
EM + AC		2.900	2.815	2.790	2.740	2.811	3.045	2.956	2.930	2.877	2.952	
Mean (A)		2.743	2.734	2.662	2.621		2.880	2.870	2.795	2.752		
L.S.D. at 5 %		A: 0.040	B: 0.025	AB: 0.050	A: 0.045	B: 0.027	AB: 0.054					
	The 2nd season (2021)											
Control		2.496	2.575	2.518	2.451	2.510	2.667	2.769	2.708	2.636	2.695	
Mineral NPK 100%		3.073	2.915	2.905	2.874	2.942	3.287	3.135	3.124	3.091	3.159	
Mineral NPK 75%		2.836	2.812	2.698	2.688	2.759	3.033	3.024	2.901	2.891	2.962	
EM (500 cm⁻³/1.5 m²)		2.795	2.781	2.678	2.627	2.720	2.988	2.991	2.880	2.825	2.921	
AC (50 ml/1.5 m²)		2.671	2.771	2.616	2.585	2.661	2.855	2.980	2.814	2.780	2.857	
NPK 75% + EM		2.918	2.884	2.863	2.781	2.862	3.021	3.102	3.080	2.991	3.049	
NPK 75% + AC		2.990	2.889	2.782	2.771	2.858	3.099	3.107	2.992	2.980	3.045	
EM + AC		3.011	2.899	2.874	2.822	2.902	3.021	3.118	3.091	3.035	3.066	
Mean (A)		2.849	2.816	2.742	2.700		3.046	3.028	2.949	2.904		
L.S.D. at 5 %		A: 0.041	B: 0.027	AB: 0.054	A: 0.042	B: 0.030	AB: 0.060					
	Second cut											
Control		2.542	2.650	2.592	2.523	2.577	2.712	2.809	2.747	2.674	2.736	
Mineral NPK 100%		3.136	3.000	2.989	2.957	3.021	3.341	3.180	3.168	3.135	3.206	
Mineral NPK 75%		2.892	2.894	2.776	2.767	2.832	3.082	3.067	2.942	2.932	3.006	
EM (500 cm⁻³/1.5 m²)		2.749	2.862	2.756	2.703	2.768	3.038	3.033	2.921	2.865	2.964	
AC (50 ml/1.5 m²)		2.722	2.851	2.692	2.661	2.732	2.903	3.022	2.854	2.820	2.900	
NPK 75% + EM		2.977	2.968	2.947	2.862	2.939	3.072	3.146	3.123	3.033	3.094	
NPK 75% + AC		3.051	2.973	2.863	2.851	2.935	3.251	3.151	3.035	3.022	3.115	
EM + AC		3.072	2.984	2.957	2.904	2.979	3.273	3.163	3.135	3.078	3.162	
Mean (A)		2.893	2.898	2.822	2.779		3.084	3.071	2.991	2.945		
L.S.D. at 5 %		A: 0.042	B: 0.029	AB: 0.058	A: 0.045	B: 0.031	AB: 0.062					

EM: Effective microorganisms and AC: *Azotobacter chroococcum* bacteria
Table 3. Effect of salinity concentration, mineral and biofertilization on chlorophyll b (mg/g f.w.) of bermudagrass during the two growing seasons (2020 and 2021).

Mineral and biofertilization treatments (B)	Salinity concentrations (ppm) (A)	The 1st season (2020)	The 2nd season (2021)
		First cut	
		Control	
		0.793 0.813 0.795 0.773 0.794 0.830 0.855 0.836 0.813 0.834	
		Mineral NPK 100%	0.980 0.923 0.920 0.910 0.933 1.026 0.971 0.967 0.957 0.980
		Mineral NPK 75%	0.903 0.890 0.853 0.850 0.874 0.946 0.936 0.897 0.894 0.918
		EM (500 cm³/1.5 m²)	0.890 0.880 0.847 0.830 0.862 0.932 0.925 0.890 0.873 0.905
		AC (50 ml/1.5 m³)	0.850 0.877 0.827 0.817 0.843 0.890 0.922 0.869 0.859 0.885
		NPK 75% + EM	0.930 0.913 0.907 0.880 0.908 0.974 0.960 0.953 0.925 0.953
		NPK 75% + AC	0.953 0.915 0.880 0.877 0.906 0.998 0.962 0.925 0.922 0.952
		EM + AC	0.960 0.918 0.910 0.893 0.920 1.005 0.965 0.957 0.939 0.967
		Mean (A)	0.907 0.891 0.867 0.854 0.950 0.937 0.912 0.897
		L.S.D. at 5 %	A: 0.013 B: 0.009 AB: 0.018 A: 0.014 B: 0.010 AB: 0.020
		Second cut	
		Control	0.830 0.848 0.829 0.807 0.834 0.887 0.913 0.893 0.869 0.891
		Mineral NPK 100%	1.023 0.962 0.958 0.948 0.980 1.094 1.035 1.031 1.020 1.045
		Mineral NPK 75%	0.944 0.927 0.889 0.886 0.918 1.009 0.998 0.957 0.954 0.980
		EM (500 cm³/1.5 m²)	0.930 0.917 0.883 0.866 0.905 0.994 0.987 0.950 0.932 0.966
		AC (50 ml/1.5 m³)	0.889 0.914 0.862 0.852 0.885 0.950 0.983 0.928 0.917 0.945
		NPK 75% + EM	0.971 0.951 0.944 0.917 0.952 1.039 1.024 1.017 0.987 1.017
		NPK 75% + AC	0.995 0.953 0.917 0.914 0.951 1.065 1.026 0.987 0.983 1.015
		EM + AC	1.002 0.956 0.948 0.931 0.966 1.072 1.029 1.020 1.002 1.031
		Mean (A)	0.948 0.929 0.904 0.890 1.014 0.999 0.973 0.958
		L.S.D. at 5 %	A: 0.013 B: 0.010 AB: 0.020 A: 0.015 B: 0.009 AB: 0.018
		Third cut	
		Control	0.857 0.878 0.859 0.836 0.858 0.904 0.931 0.911 0.886 0.908
		Mineral NPK 100%	1.055 0.995 0.991 0.981 1.006 1.114 1.055 1.051 1.040 1.065
		Mineral NPK 75%	0.974 0.960 0.920 0.917 0.943 1.027 1.017 0.976 0.972 0.998
		EM (500 cm³/1.5 m²)	0.960 0.949 0.914 0.896 0.930 1.013 1.006 0.969 0.950 0.985
		AC (50 ml/1.5 m³)	0.917 0.945 0.892 0.882 0.909 0.968 1.002 0.946 0.935 0.963
		NPK 75% + EM	1.002 0.984 0.977 0.949 0.978 1.057 1.044 1.036 1.006 1.036
		NPK 75% + AC	1.027 0.986 0.949 0.945 0.977 1.084 1.045 1.007 1.002 1.035
		EM + AC	1.034 0.990 0.981 0.963 0.992 1.091 1.049 1.040 1.021 1.050
		Mean (A)	0.978 0.961 0.936 0.921 1.032 1.019 0.992 0.977
		L.S.D. at 5 %	A: 0.014 B: 0.011 AB: 0.022 A: 0.014 B: 0.010 AB: 0.020

EM: Effective microorganisms and AC: *Azotobacter chroococcum* bacteria
Table 4. Effect of salinity concentration, mineral and biofertilization on carotenoids (mg/g f.w.) of bermudagrass during the two growing seasons (2020 and 2021).

Mineral and biofertilization treatments (B)	Salinity concentrations (ppm) (A)	Mean (B)	Mean (B)										
	0.0	3000	6000	9000	0.0	3000	6000	9000	0.0	3000	6000	9000	
The 1st season (2020)													
Control	0.848	0.863	0.845	0.823	0.845	0.885	0.905	0.886	0.863	0.885			
Mineral NPK 100%	1.035	0.973	0.970	0.960	0.985	1.081	1.021	1.017	1.007	1.032			
Mineral NPK 75%	0.958	0.940	0.903	0.900	0.925	1.001	0.986	0.947	0.944	0.970			
EM (500 cm³/1.5 m²)	0.945	0.930	0.897	0.880	0.913	0.987	0.975	0.940	0.923	0.956			
AC (50 ml/1.5 m³)	0.905	0.927	0.877	0.867	0.894	0.945	0.972	0.919	0.909	0.936			
NPK 75% + EM	0.985	0.963	0.957	0.930	0.959	1.029	1.010	1.003	0.975	1.004			
NPK 75% + AC	1.008	0.965	0.930	0.927	0.958	1.053	1.012	0.975	0.972	1.003			
EM + AC	1.015	0.968	0.960	0.943	0.972	1.060	1.015	1.007	0.989	1.018			
Mean (A)	0.962	0.941	0.917	0.904	1.005	0.987	0.962	0.947					
L.S.D. at 5 %	A: 0.019	B: 0.009	AB: 0.018		A: 0.014	B: 0.010	AB: 0.020						
Second cut													
Control	0.885	0.903	0.884	0.862	0.884	0.942	0.968	0.948	0.924	0.946			
Mineral NPK 100%	1.078	1.017	1.013	1.003	1.028	1.149	1.090	1.086	1.075	1.100			
Mineral NPK 75%	0.999	0.982	0.944	0.941	0.967	1.064	1.053	1.012	1.009	1.035			
EM (500 cm³/1.5 m²)	0.985	0.972	0.938	0.921	0.954	1.049	1.042	1.005	0.987	1.021			
AC (50 ml/1.5 m³)	0.944	0.969	0.917	0.907	0.934	1.005	1.038	0.983	0.972	1.000			
NPK 75% + EM	1.026	1.006	0.999	0.941	0.972	1.001	1.094	1.079	1.072	1.072			
NPK 75% + AC	1.050	1.008	0.972	0.969	1.000	1.120	1.081	1.042	1.038	1.070			
EM + AC	1.057	1.011	1.003	0.986	1.014	1.127	1.084	1.075	1.057	1.086			
Mean (A)	1.003	0.984	0.959	0.945	1.069	1.054	1.028	1.013					
L.S.D. at 5 %	A: 0.013	B: 0.010	AB: 0.020		A: 0.014	B: 0.009	AB: 0.018						
Third cut													
Control	0.922	0.943	0.924	0.901	0.923	0.969	0.996	0.976	0.951	0.973			
Mineral NPK 100%	1.120	1.060	1.056	1.046	1.071	1.179	1.120	1.116	1.105	1.130			
Mineral NPK 75%	1.039	1.025	0.985	0.982	1.008	1.092	1.082	1.041	1.037	1.063			
EM (500 cm³/1.5 m²)	1.025	1.014	0.979	0.961	0.995	1.078	1.071	1.034	1.015	1.050			
AC (50 ml/1.5 m³)	0.982	1.010	0.957	0.947	0.974	1.033	1.067	1.011	1.000	1.028			
NPK 75% + EM	1.067	1.049	1.042	1.014	1.043	1.122	1.109	1.101	1.071	1.101			
NPK 75% + AC	1.092	1.051	1.014	1.010	1.042	1.149	1.110	1.072	1.067	1.100			
EM + AC	1.099	1.055	1.046	1.028	1.057	1.156	1.114	1.110	1.086	1.115			
Mean (A)	1.043	1.026	1.001	0.986	1.097	1.084	1.057	1.042					
L.S.D. at 5 %	A: 0.011	B: 0.011	AB: 0.022		A: 0.012	B: 0.012	AB: 0.024						

EM: Effective microorganisms and AC: *Azotobacter chroococcum* bacteria
decreased by all salinity levels (3000, 6000 and 9000 ppm) in the two growing seasons facing the control, except between control and the low salinity level treatments which failed to reach the level of significance as presented in Table (5).

The harmful impacts of salinity in N, P and K % were proved by several authors such as Hameed and Ashraf (2008) and Badawy et al. (2018) on bermudagrass, Shahin et al. (2014) on tall fescue, and Mohammed et al. (2019) on paspalum.

All used seven treatments significantly increased nitrogen, phosphorus and potassium (%) in dry herb in the two growing seasons facing the control. The treatments of mineral NPK 100% followed by EM + AC produced the highest values of N, P and K (%).

The enhancement of element (N, P and K %) due to mineral NPK appears in our results, also were detected by Manoly (2000), Manoly et al. (2008), AbdelKader and Alhumaid (2012), Abd-Elgaber (2012) and Ihtisham et al. (2020) on Cynodon dactylon.

The enhancing effects of biofertilization in improving element content (dry herb N, P and K %) were proved by Ali et al. (2018) on bermudagrass, Hussein and Mansour (2003) on kikuyu grass, Dwivedi et al. (2016) on kodo millet (Paspalum scrobiculatum, L.

The interaction treatments were significant for dry herb N, P and K % in both seasons. The best interaction treatments which recorded more percentage of N were control without salinity in combination with mineral NPK 100%, followed by EM + AC, then AC in the first season, while in the second season, the highest values of N % were enhanced with mineral NPK 100%, EM + AC, mineral NPK 75% + EM or + AC, and mineral NPK 75% in the 3rd cut. For P %, the highest values in both seasons were obtained with mineral NPK 100%, followed by EM + AC, then mineral NPK 75% + EM or + AC, without significant differences between such three treatments. For K, the interaction treatments of mineral NPK 100%, followed by EM + AC produced the highest values of K % in both seasons, without significant differences between such two superior treatments as shown in Table (5).

3. Sodium, calcium, chloride and proline contents (%):

Data presented in Tables (6 and 7) indicated that all salinity levels significantly increased Na, Ca and Cl (%) as well as proline (μg/g) content in bermuda herb in the two growing seasons facing the control. The percentages and content of previous parameters were increased by a gradual increase in irrigation water salinity. So, the maximum values were obtained with the high level of salinity (9000 ppm).

The effect of salinity in Na, Ca and Cl % as well as proline content were proved by Hameed and Ashraf (2008), Nadeem et al. (2012), Badawy et al. (2018), Karimi et al. (2018) and Sharifiasl et al. (2019 and 2020) on bermudagrass.

Concerning the effect of fertilization treatments, all used seven treatments differently affected the above-mentioned traits. Where sodium and chloride were reduced due to all used treatments facing the control. The highest percentages were obtained by control treatment, followed by AC, then EM without any significant differences between such three treatments for Na and Cl (%). Therefore, the lowest values were recorded with mineral treatment NPK 100%, followed by EM + AC treatments compared with control. Concerning the content of proline and calcium (%), they were significantly increased due to all used treatmentsocomparing with control, with the highest content obtained from mineral NPK 100%, followed by EM + AC treatments. The influences of biofertilization in element content were mentioned by Mirjalili et al. (2015) on Achillea millefolium, Kleiber et al. (2013) on lettuce.
Table 5. Effect of salinity concentration, mineral and biofertilization on N, P and K (%) in dry herb of bermudagrass (3rd cut) during the two growing seasons (2020 and 2021).

Mineral and biofertilization treatments (B)	Salinity concentrations (ppm) (A)									
	0.0	3000	6000	9000	Mean (B)	0.0	3000	6000	9000	Mean (B)
The 1st season (2020)										
Control	3.13	3.12	2.89	2.81	2.99	3.22	3.17	2.96	2.81	3.04
Mineral NPK 100%	3.43	3.32	3.21	3.06	3.26	3.60	3.44	3.33	3.18	3.39
Mineral NPK 75%	3.25	3.23	3.09	2.96	3.13	3.49	3.29	3.15	3.02	3.24
EM (500 cm³/1.5 m³)	3.24	3.23	3.00	2.94	3.10	3.44	3.29	3.05	3.00	3.20
AC (50 ml/1.5 m³)	3.32	3.21	3.01	2.86	3.10	3.42	3.28	3.05	2.97	3.18
NPK 75% + EM	3.29	3.24	3.10	2.97	3.15	3.50	3.30	3.16	3.03	3.25
NPK 75% + AC	3.26	3.24	3.10	2.99	3.15	3.49	3.30	3.16	3.04	3.25
EM + AC	3.38	3.24	3.15	3.02	3.20	3.60	3.38	3.29	3.16	3.36
Mean (A)	3.29	3.23	3.07	2.95	3.47	3.31	3.14	3.03		
L.S.D. at 5 %	A: 0.08	B: 0.06	AB: 0.12	A: 0.18	B: 0.07	AB: 0.14				
The 2nd season (2021)										
Control	3.51	0.34	0.322	0.301	0.329	0.351	0.34	0.322	0.301	0.329
Mineral NPK 100%	0.385	0.377	0.356	0.336	0.364	0.385	0.377	0.356	0.336	0.364
Mineral NPK 75%	0.365	0.360	0.345	0.320	0.348	0.365	0.360	0.345	0.320	0.348
EM (500 cm³/1.5 m³)	0.363	0.368	0.335	0.308	0.344	0.363	0.368	0.335	0.308	0.344
AC (50 ml/1.5 m³)	0.364	0.349	0.340	0.315	0.342	0.364	0.349	0.340	0.315	0.342
NPK 75% + EM	0.371	0.370	0.349	0.328	0.355	0.371	0.370	0.349	0.328	0.355
NPK 75% + AC	0.367	0.368	0.346	0.327	0.352	0.367	0.368	0.346	0.327	0.352
EM + AC	0.380	0.372	0.352	0.330	0.359	0.380	0.372	0.352	0.330	0.359
Mean (A)	0.368	0.363	0.343	0.321	0.368	0.363	0.343	0.321		
L.S.D. at 5 %	A: 0.009	B: 0.008	AB: 0.016	A: 0.016	B: 0.008	AB: 0.016				

EM: Effective microorganisms and **AC:** *Azotobacter chroococcum* bacteria
Table 6. Effect of salinity concentration, mineral and biofertilization on Na, Ca and Cl (%) in dry herb of bermudagrass (3rd cut) during the two growing seasons (2020 and 2021).

Mineral and biofertilization treatments (B)	Salinity concentrations (ppm) (A)	The 1st season (2020)	The 2nd season (2021)							
	0.0	3000	6000	9000	Mean	0.0	3000	6000	9000	Mean
Control	1.22	1.84	2.91	3.68	2.41	1.24	1.87	2.95	3.74	2.45
Mineral NPK 100%	0.95	1.19	2.05	2.79	1.75	0.97	1.21	2.09	2.85	1.78
Mineral NPK 75%	1.10	1.44	2.77	3.22	2.13	1.12	1.46	2.82	3.27	2.17
EM (500 cm³/1.5 m²)	1.14	1.59	2.68	3.38	2.20	1.16	1.62	2.73	3.44	2.23
AC (50 ml/1.5 m²)	1.19	1.73	2.59	3.49	2.25	1.21	1.76	2.63	3.55	2.29
NPK 75% + EM	1.03	1.31	2.34	3.01	1.92	1.05	1.33	2.38	3.06	1.96
NPK 75% + AC	1.06	1.38	2.53	3.10	2.02	1.08	1.40	2.58	3.16	2.05
EM + AC	0.99	1.26	2.18	2.93	1.84	1.01	1.29	2.22	2.99	1.88
Mean (A)	1.09	1.47	2.51	3.20	1.10	1.49	2.55	3.26		
L.S.D. at 5 %	A: 0.33	B: 0.21	AB: 0.42		A: 0.37	B: 0.23	AB: 0.46			

	Sodium (%) in dry herb	Calcium (%) in dry herb	Chloride (%) in dry herb						
	Control	Mineral NPK 100%	Mineral NPK 75%						
	1.08	1.62	2.11	1.76	1.10	1.64	2.14	2.27	1.79
	1.99	2.37	2.59	2.91	2.47	2.03	2.42	2.64	2.97
	1.50	1.81	2.27	2.52	2.03	1.53	1.84	2.31	2.56
	1.24	1.74	2.21	2.43	1.91	1.26	1.77	2.25	2.47
	1.17	1.71	2.17	2.35	1.85	1.19	1.74	2.21	2.39
	1.73	2.01	2.39	2.76	2.22	1.76	2.05	2.43	2.81
	1.62	1.88	2.33	2.69	2.13	1.65	1.91	2.37	2.74
	1.87	2.26	2.48	2.83	2.36	1.91	2.31	2.53	2.89
	1.53	1.93	2.32	2.59	1.55	1.96	2.36	2.64	
L.S.D. at 5 %	A: 0.21	B: 0.11	AB: 0.22		A: 0.25	B: 0.12	AB: 0.24		

EM: Effective microorganisms and AC: *Azotobacter chroococcum* bacteria
Table 7. Effect of salinity concentration, mineral and biofertilization on proline content (µg/g f.w.) of bermudagrass (3rd cut) during the two growing seasons (2020 and 2021).

Mineral and biofertilization treatments (B)	Salinity concentrations (ppm) (A)									
	0.0	3000	6000	9000	Mean (B)					
	0.0	3000	6000	9000	Mean (B)					
Control	218	254	274	312	265	221	258	278	317	268
Mineral NPK 100%	314	362	398	434	377	320	369	406	443	385
Mineral NPK 75%	252	293	319	355	305	256	298	324	361	310
EM (500 cm³/1.5 m²)	241	275	296	334	287	245	280	301	340	291
AC (50 ml/1.5 m²)	230	263	273	323	272	234	267	278	328	277
NPK 75% + EM	281	336	358	395	343	326	342	364	402	349
NPK 75% + AC	266	311	342	378	324	271	317	348	385	330
EM + AC	297	350	379	413	360	303	357	387	421	367
Mean (A)	262	306	330	368	267	311	336	375	367	367
L.S.D. at 5 %	A: 23	B: 16	AB: 32	A: 24	B: 18	AB: 36				

EM: Effective microorganisms and AC: *Azotobacter chroococcum* bacteria

The interaction treatments were significant for dry herb Na, Ca and Cl % as well as proline content in both seasons. The highest values of Na and Cl percentages were obtained from control under 9000 ppm, followed by 9000 ppm × AC or EM. While the best interaction treatments for Ca were recorded with 9000 ppm with mineral NPK 100%, 9000 ppm × AC + EM, mineral NPK 75% + EM or with AC in both seasons. The proline content was the highest with mineral NPK 100%, followed by EM or AC under 9000 ppm as shown in Tables (6 and 7).

CONCLUSION

From the previous results, it might be concluded that the beneficial and distinctive role of mineral NPK and biofertilization were responsible for alleviating the harmful effects of salinity led to different physiological processes, which reflect on stimulating the vegetative and root growth, and some chemical constituents (photosynthetic pigments, proline, Ca and NPK%) and reduced Na and Cl % of bermudagrass (*Cynodon dactylon*, L.).

REFERENCES

Abd-Elgaber, H.M.H. (2012). Effect of Some Soil Media Types and Growth Regulators on *Lolium perenne*, M.Sc. Thesis, Fac. Agric., Minia Univ., Egypt, 93 p.

AbdelKader, H.H., and Alhumaid, A.I. (2012). Effect of inorganic NPK fertilizer and bioorganic compost on growth and quality of numex sahara bermudagrass (*Cynodon dactylon*, L. Pers.) grown in a sandy soil. Journal of Plant Production, 3(11):2761-2780.

Adavi, Z.; Razmjoo, K. and Mobli, M. (2006). Salinity tolerance of bermudagrass (*Cynodon* spp. L.C. Rich) cultivars and shoot Na, K and Cl contents under a high saline environment, The Journal of Horticultural Science and Biotechnology, 81(6):1074-1078. https://10.1080/14620316.2006.11512174

Ali, A.F.; Abdou, M.A.H.; Amer, E.H. and Ammar, H.A.E.I. (2018). Influence of compost, mineral and effective microorganisms application on sandy soil-grown Bermuda turfgrass. Scientific Journal of Flowers and Ornamental Plants, 5(2):127-140. http://10.21608/sjfop.2018.18124

Ammar, H.A.E.I. (2018). Physiological Studies on Bermuda Plants. M.Sc. Thesis, Faculty of Agriculture, Al-Azhar University (Assiut branch), Egypt, 113 p.
Badawy, E.M.; El-Khateeb, M.A. and Salem, M.A.M. (2018). Physiological parameters and quality of bermuda grass (Cynodon dactylon L.) grown in different types of soil in response to salinity of irrigation water. Middle East J., 7(3):683-696.

Barton, L.; Wan, G.G.Y. and Colmer, T.D. (2006). Turfgrass (Cynodon dactylon L.) sod production on sandy soils, I. Effects of irrigation and fertiliser regimes on growth and quality. Plant and Soil, 284(1):129-145. http://10.1007/s11104-006-0037-9

Bates, L.S.; Waldren, R.P. and Teare, I.D. (1973). Rapid determination of free proline for water-stress studies. Plant and soil, 39(1):205-207.

Dwivedi, B.S.; Rawat, A.K.; Dixit, B.K. and Thakur, R.K. (2016). Effect of inputs integration on yield, uptake and economics of Kodo Millet (Paspalum scrobiculatum, L.). New Delhi Publishers J., 61(3):519-524.

Guertal, E.A. and Evans, D.L. (2006). Nitrogen rate and mowing height effects on TifEagle bermudagrass establishment. Crop Science, 46(4):1772-1778. http://10.2135/cropsci2006.01-0006

Hameed, M. and Ashraf, M. (2008). Physiological and biochemical adaptations of Cynodon dactylon (L.) Pers. from the Salt Range (Pakistan) to salinity stress. Flora-Morphology, Distribution, Functional Ecology of Plants, 203(8):683-694. http://10.1016/j.flora.2007.11.005

Hussein, M. and Mansour, H.A. (2003). Nitrogenous nutrition of kikuyu using chemical and biofertilizers. Journal of Plant Production, 28(6):4943-4957.

ICARDA (2013). Methods of Soil, Plant and Water Analysis: A Manual for the West Asia and North Africa Region, Third edition, International Center for Agricultural Research in the Dry Areas, Beirut, Lebanon, 243 p.

Ihtisham, M.; Fahad, S.; Luo, T.; Larkin, R.M.; Yin, S. and Chen, L. (2018). Optimization of nitrogen, phosphorus, and potassium fertilization rates for overseeded perennial ryegrass turf on dormant bermudagrass in a transitional climate. Front. Plant Sci., 9:1-14. https://doi.org/10.3389/fpls.2018.00487

Ihtisham, M.; Liu, S.; Shahid, M.O.; Khan, N.; Lv, B.; Sarraf, M.; Ali, S.; Chen, L.; Liu, Y. and Chen, Q. (2020). The optimized N, P, and K fertilization for bermudagrass integrated turf performance during the establishment and its importance for the sustainable management of urban green spaces. Sustainability, 12(24):1-16. http://doi:10.3390/su122410294

Jena, K. and Mohanty, C.R. (2020). Effect of nitrogen and phosphorus on growth and quality of bermuda lawn grass (Cynodon dactylon) cv. selection-1. The Pharma Innovation Journal, 9(3):56-60.

Karimi, I.Y.M.; Kurup, S.S.; Salem, M.A.M.A.; Cheruth, A.J.; Purayil, F.T. Subramaniam, S. and Pessarakli, M. (2018). Evaluation of bermuda and paspalum grass types for urban landscapes under saline water irrigation. Journal of Plant Nutrition, 41(7):888-902. https://doi.org/10.1080/01904167.2018.1431669

Keyikoglu, R., Aksu, E., and Arslan, M. (2019). Effects of salinity stress on the growth characteristics of four turfgrass species. Fresenius Environmental Bulletin, 28(4):2942-2948.

Kleiber, T.; Starzyk, J. and Bosiacki, M. (2013). Effect of nutrient solution, effective microorganisms (EM-A), and assimilation illumination of plants on the induction of the growth of lettuce (Lactuca sativa L.) in hydroponic cultivation. Acta Agrobotanica, 66(1):27-38. http://10.5586/aa.2013.004

Kumar, D. and Nikhil, K. (2016). Effect of FYM, NPK and algal fertilizers on the
growth and biomass of vetiver grass \((\text{Vetiveria zizanioides L. Nass})\). Int. J. Eng. Appl. Sci., 3(3):85-89.

Manoly, N.D. (2000). Effect of fertilization and growth retardants on growth of bermudagrass \((\text{Cynodon dactylon, L.})\). Egypt J. Appl. Sci., 15(12):730-745.

Manoly, N.D.; Hassanein, M.M. and Nasr, A.A. (2008). Response of bermudagrass \((\text{Cynodon dactylon, L.})\) to nitrogen fertilization on mowing dates. Minia J. of Agric. Res. and Dev., 28(4):755-765.

Mirjalili, A.; Pazoki, A. and Asl, A.R. (2015). Influence of different PGPR application methods on drought tolerance of yarrow \((\text{Achillea millefolium L.})\). International Journal of Advanced Life Sciences (IJALS), 8(4):456-463.

Mohammed, M.A.; Awad, A.E. and Gendy, A.S. (2019). Growth, root system, salt resistance index and leaf pigments of \(\text{Paspalum vaginatum}\) as affected by saline irrigation water level and amino acids type. Zagazig Journal of Agricultural Research, 46(6):1863-1875.

Moran, R. (1982). Formula determination of chlorophyllous pigment extracted with N-N-dimethyl-formamide. Plant Physiol., 69:1376-1381.

MSTAT-C (1986). A microcomputer program for the design management and analysis of Agronomic Research Experiments (version 4.0), Michigan State Univ., U.S.A.

Nadeem, M.; Younis, A.; Riaz, A.; Hameed, M.; Nawaz, T. and Qasim, M. (2012). Growth response of some cultivars of bermudagrass \((\text{Cyanodon dactylon L.})\) to salt stress. Pak. J. Bot., 44(4):1347-1350.

Pessarakli, M.; Kopec, D.M. and Gilbert, J.J. (2008). Growth responses of selected warm-season turfgrasses under salt stress. Turfgrass, Landscape and Urban IPM Research Summary, P-155:47-54.

Radnezhad, H.; Abari, M. F., and Sadeghi, M. (2015). Effect of biological and organic fertilizers on the growth parameters of \(\text{Salvia officinalis}\). Journal of Earth, Environment and Health Sciences, 1(2):71-75. http://10.4103/2423-7752.170591

Rodriguez, I.R.; Miller, G.L. and McCarty, L.B. (2002). Bermudagrass establishment on high sand-content soils using various NPK ratios. HortScience, 37(1):208-209.

Sabry, R.E. and Abdal-Latif, S.A. (2017). Effect of biofertilizers on growth of some turfgrass plants. Iraqi Journal of Agricultural Science, 48(6):1624-1633.

Shahba, M.A.; Alshammary, S.F. and Abbas, M.S. (2012). Effects of salinity on seashore paspalum cultivars at different mowing heights. Crop science, 52(3):1358-1370. www.http//:10.2135/cropsci2011.06.0337

Shahin, S.M.; El-Sayed, B.A. and El-Tayeb, H.F. (2014). Impact of irrigation with saline water on growth, quality and chemical composition of tall fescue turf \((\text{Festuca arundinacea Schreb. var. festorina})\). Scientific Journal of Flowers and Ornamental Plants, 1(2):137-144.

Sharifiasl, R.; Kafi, M.; Saidi, M. and Kalatejari, S. (2019). Influence of nanosilica and humic acid on physiological characteristics of bermudagrass \((\text{Cynodon dactylon L.})\) under salinity stress. Acta Scientiarum Polonorum. Hortorum Cultus, 18(4):203-212. http://doi:10.24326/asphc.2019.4.19

Sharifiasl, R.; Kafi, M.; Saidi, M. and Kalatejari, S. (2020). The effect of humic acid on growth and some physiological responses in bermudagrass subjected to salinity stress. Iranian Journal of Horticultural Science, 51 (2): 415-425.

Taliaferro, C.M.; Rouquette Jr, F.M. and Mislevy, P. (2004). Bermudagrass and stargrass. Warm-Season (C₄) grasses, 45: 417-475.

Turgeon, A.J. (2001). Turfgrass Management. 6th ed. Prentice-Hall Inc. New Jersey, U.S.A., 974 p.
Uddin, M.K. and Juraimi, A.S. (2013). Salinity tolerance turfgrass: history and prospects. The Scientific World Journal, 20131-6. http://dx.doi.org/10.1155/2013/409413

Uddin, M.K.; Juraimi, A.S.; Ismail, M.; Othman, R. and Rahim, A.A. (2009). Growth response of eight tropical turfgrass species to salinity. African Journal of Biotechnology, 8(21):5799-5806.

Yuojen, K. (2015). Effects of fertilizer type on chlorophyll content and plant biomass in common bermudagrass. African J. Agric. Res., 10(42):3997-4000.

تأثر بعض معاملات الملوحة والتساميد على نباتات البرمودا
ب نمو الجذر وبعض المكونات الكيميائية

محمود عبداللهادي حسن عبد حسن عبده محسن عبده إبراهيم حسن عمر
قسم الري، كلية الزراعة، جامعة المنية، مصر

أجرت هذه الدراسة بمزرعة خاصة بمركز بني مزار، محافظة المنية، مصر خلال موسم النمو 2020 و 2021، لبحث تأثير ملوحة مياه البترولية ومعاملات التسميد المعدني و/أو الحيوي، وكذلك التفاعل بينها على نمو الجذر وبعض المكونات الكيميائية للبرمودا (Cynodon dactylon, L.). أظهرت النتائج أن صفات نمو الجذر (طول الجذر والأوزان الطازجة والجافة وحيدة) قد تحسنت بمستويات الملوحة المنخفضة والوسطى (2000 جزء في المليون)، بينما انخفضت هذه الصفات مع ارتفاع مستوى الملوحة (6000 جزء في المليون) مقارنة بمعاملة الري المائي، في الثلاث حاشتات خلال الموسم. أدت جميع معاملات الملوحة إلى زيادة نسبة النموية للبرمودا، وكذلك وتشارك الكالسيوم والمغذيات الأخرى في الروتينيات والفوسيفسئ، إلا أن معاملات التسميد المعدني و/أو الحيوي المستخدمة إلى زيادة طول الجذر والأوزان الطازجة والجافة / الوحدة بشكل كبير مقارنة مع معاملة الري المائي، في الحاشات الثلاث، باستثناء معاملة EM + AC. لطول الجذر ومعاملات الـ EM و AC لطول الجذر ومعاملات الـ EM و AC لطول الجذر ومعاملات الـ EM + AC لطول الجذر مع معاملة الـ EM + AC. رصدت نسبة النموية للنيترنجين والفسفور والبوتاسيوم وكلاهما، وكذلك صفات التثبيت العميق، على ذلك النتيجة إضافة إلى أي من معاملات عامل الثانوي، بينما انخفض النصوديوم والكلوري.