A Study on the Consciousness of Landscape Planting Practitioner about the Measurement Criteria of the Root Diameter of Landscape Trees in the Landscape Planting Construction, in Korea

Han, Yong-Hee*, Min, Jong-I**, Kim, Do-Gyun***

*Ph.D. Course, Dept. of Landscape Architecture, Sunchon National University
**Professor, Dept. of Garden Culture Industry, Sunchon National University

ABSTRACT

This study was carried out for the description of the conflicts on the measurement of the root collar diameter of the landscape trees that are currently being produced, distributed, and planted in S. Korea, and for determination of the standard for root collar diameter measurement. The difference in consciousness of appropriate measurement of root collar diameter among different ages of landscape practitioners was statistically significant at p<0.05 level. It seemed to be due to the difference in the amount of field experiences among different age groups. On “the ambiguity of measuring the root collar diameter” of landscape trees, the consciousness was significantly different at p<0.05 level among job positions. On “Improvement of measurement criteria for landscape trees,” it was significantly different at p<0.05 level among job types. This was thought to be due to the disagreement between the client and the contractor. On “prevention of topsoil removal” when excavating landscape trees, the consciousness was significantly different at p<0.001 level among different age groups, and different at p<0.01 level among different occupations, and different at p<0.05 level among different working area. The consciousness on “removing top soil when excavating landscape trees and rooting after transplantation” was not significantly different. The consciousness on the conflict caused by “ambiguity in root collar diameter measurement criteria” was high with an average of 3.85 for job type, occupation, job position, and work experience. It was higher for landscape contractors than public institutions. The higher job positions and more experiences, the more conflicts. The consciousness on the appropriate position of root collar diameter measurement for landscape trees revealed that measuring at above-ground part (66.5%) was preferred to the underground part (33.0%). During the excavation of landscape trees for transplant, topsoil removal up to average depth of -2cm to -4cm was favored by 84.0%, and the purpose of removing topsoil was recognized as ‘to increase the size and unit cost’ by 59.7%.

Key Words: Tree Standard, Dispute over The Measurement of Landscaping Trees, Measuring Ambiguity of Landscaping Trees, Distribution of Fine Roots, The Problems of Topsoil Removal

* 본 논문은 순천대학교 대학원 조경학석사 학위논문 "조경수목 근원직경의 측정기준에 대한 기초 연구"에 수집된 자료를 수정・보완하여 더 발전시킨 것임.

Corresponding author: Do-Gyun Kim, Professor, Department of Landscape Architecture, Sunchon National University, Sunchon, Jeonnam Province 57922, Korea, Tel: +82-61-750-3871, E-mail: doahui@sunchon.ac.kr
본 연구는 현재 우리나라의 산림·수목·식물에 대한 조경수목의 근원직경 측정에 따른 실험자들의 분쟁실태와
합리적인 근원직경 측정지침 설정에 대하여 조사·분석하였다. 조경실무자들 인원에 따른 ‘근원직경 측정기준 적정성’에
대한 의식 차이는 통계학적으로 분산분석(Analysis of Variance, ANOVA)을 한 결과, 유의수준 p<0.05에서 차이가 있었다.
조경실무자들의 인원에 따라 조경수목의 근원직경 측정에 대하여 적정성에 대한 의식이 있는 차이가 있는 것은 나이가 적을수록
향상했으며 차이로 식물 및 배설에 따라 차이가 있는 것으로 생각되었다. 조경수목의 근원직경 측정의 목표에는 통계학적으로 분산분석
(Analysis of Variance, ANOVA) 결과, 유의수준 p<0.05에서 차이가 있는 것은 적정수목이었다. 조경수목 측정기준조정에 대하여 적정사이비
로 차이가 있는 것은 나이와 시공간 수직적 관계로 분명한 많이 때문에 생각되었다. 조경수목 국장시 ‘표표층
제거방법’에서 통계학적으로 유의수준 p<0.05에서 차이가 있는 것은 높았으며, 유의수준 p<0.01에서 차이가 있는 것은 적정수목이었다. 조경수목 국장시 ‘표표층 제거의 이식
후 활착’에 대한 의식은 유의미한 차이가 있는 없었다. 조경수목 ‘근원직경 측정기준 목표에 따른 분양 방법’은 적정판, 직권판,
직권판, 근원직경판 전체 평균이 3.85% 줄었고, 공공기관보다는 조경합체가 더 높았으며, 직권수록 높고 경계가 많은수목
분양 정도가 높았다. 조경수목 ‘근원직경 측정의 적정 높이에 대한 의식’은 지하부(33.0%)보다는 지상부(66.5%)의
적정층을 적절히 하는 것으로 나타났다. 이식을 위한 조경수목 국장시 표표층 제거는 지하 평균값이 2-4cm가 84.0%
정도로 많았으며, 표표 제거 목적은 ‘규격과 단가를 높이기 위하여’가 전체의 59.7%로 나타났다.

주제어: 수목규격, 조경수목 측정의 분양, 조경수목 측정의 모호성, 세관의 분포, 표표제거의 문제

I. 서론

최근 인간 생활환경과 자연환경이 개선되고 생태계 복구 및 비전을 위하여 조경실적 사례가 증가하여 왔다(Kim and Kwak, 2004).

우리나라 조경수목의 근원직경 측정에 대한 기준은 관련 서적, 연구자, 기관, 탁자에 다르다. 현재 우리나라 조경수목
의 근원직경 측정기준은 수목 관계자에 표표층과 접촉하는 높이 직경(Le, 2013: Ministry of Land, Infrastructure and Transport,
2016), 표표층에서 30cm 높이의 지름(Kim et al., 2009; Choi, 2016; Park et al., 2017) 등으로 되어 있다.

이처럼 조경실적 사례로는 전국의 조경수목의 근원직경 측정
위치에 대한 개념이 없이 모호하여(Kim, 2013; Kim, 2014;
Lafond, 2017) 조경수목 생산자와 시공자 그리고 반면의 유익
없는 논리와 분명히 많이 발생하고 있다(Procurement Service Country Marketplace, 2017: cafe/landscapeworld, 2018: cafe/teamnise, 2018).

또한 조경수목의 단가는 근원직경의 구역 차이로 작성되기
(Treestb, 2014) 때문에, 조경수목 생산업자들은 종일 수목에
서 근원직경만 크게 측정 받기 위하여 표표를 과도한 제거(Korea Policy Briefing 2014: Public Procurement Service Country
MarketPlace, 2017: cafe/landscapeworld, 2018) 등으로 조경수목
구역의 축소, 물질 빈약, 이후 환경 빈약과 고소로 이어져
결국 하지와 연결된다(Kim and Lee, 2007).

또한 조경수목 시공자와 부문의 최소(Commerce, 2016)
식물의 부자와 창업
생활 환경은 희망하게 작용하는 것도(Choi, 2016), 표표는 희망이 중심부적토록 표
상 생물들이 많이, 식물의 구분이 되는 토양은
(Roy,Ministry of Environment, 2016). 토양 질에 조경수목들의
대부분은 표표 Excm, 이내에 전체 세관의 90%가 집중되어(Le,
2017) 있어 수목 이식 시 표표층 제거하기 하면 수목의 이식
한의 확연이 쇠고 식물, 식물, 식물 등이 많이 발생하게 된다.

우리나라 조경실적공정 원가에서 조경수목 근원직경 측정에
대한 분양(Public Procurement Service Country Marketplace,
2017)과 표표제거의 수목 이식 이후 생산 불량이나 고소로
인한 하지 발생(Kim and Lee, 2007)과 분양이 많이 발생하고 있다. 그러나 조경수목 근원직경 측정에 대한 분양과 표표층
제거를 설치할 수 있는 실험과 가셋에 대한 연구는 찾아
어려운 상태이다.

그러므로 조경수목의 근원직경 측정에 있어서 발주처와 시공자
그리고 생산업자 간의 측정지침 분양을 줄이고, 조경수목 생산
 및 작장량을 미치는 표표제거를 근본시키기 위해서는 조경수목
근원직경 측정 위치에 대한 합리적인 기준 설정이 필요하다.

본 연구의 의문은 우리나라 조경수목산업은 현재의 조경수목
근원직경 측정에 대한 어떤 문제의식을 가지고 있으며, 이
문의 현상들이 있는가이다.
기존의 조경수목 측정 위치에 대한 연구는 조경수목의 규격 세분화와 품질평가의 재학방향(Lee, 2006; Kim, 2013; Korea Forest Service, 2014). 조경수목의 가격에 대한 현실적인 개선(Park, 2013; Kim, 2014). 조경공사 표준조사방식과 표준품목의 변한 및 개선(Lee and Yoon, 2009; Yun and Lee, 2011)에 관한 내용과 산업연(Korea Forest Service, 2007)의 합리적인 조경수목의 관리 및 생산에 관한 개념과 방안 등이 있다. 이들은 연구는 주로 품질평가, 가격, 시장에서 개선 등을 중점으로 연구되었으며, 조경수목 근원직경 부위 측정에 따른 분쟁과 합리적인 측정기준에 대한 자료는 발견되지 않는다.

이러한 조경수목 근원직경 측정에 따른 분쟁사태를 파악하는 데는 과학적으로 사람들의 의식을 하기 위한 면접조사, 전화조사, 우편조사, E-mail, 설문조사 방법 등이 있다. 사람들의 의식을 파악하는 방법으로는 설문조사법을 많이 이용하고 있다. 조경분야에서 Yun and Lee(2011)는 조경공사 표준품목의 측정 갱신에 관한 연구, Han et al.(2007)의 조경수목 근원직경의생성 평가요소 도출을 위한 전문가의식조사와 Kim and Shin(2007)와 Shin and Kim(2016)도 설문조사법으로 사용하였다. 따라서 조경수목들의 의식을 조사·분석하는 설문조사방법은 타당한 것으로 생각된다.

항후에도 조경수목의 식재 사업은 계속될 것이며, 이러한 조경수목 측정에 대한 분쟁도 계속 발생할 것으로 예상되기 때문에 조경수목 근원직경 측정 위치에 대한 문제점과 해결방안에 대한 연구가 시급한 실정이다.

따라서, 본 연구에서는 현재 생애·유형·식재되고 있는 조경수목의 근원직경에 대한 합리적인 측정위치 및 표준품목에 따른 문문을 설문조사, 문헌조사, 현장답사를 통해 조사·분석하였다.

본 연구는 현재 우리나라 조경수목 근원직경의 실태와 문제를 발견할 수 있을 것이며, 합리적인 조경수목 측정 기준 설정에 대한 기초자료로 활용될 수 있을 것으로 기대된다.

II. 이론적 고찰

1. 조경수목의 측정유형

조경수목의 품질을 평가하는 방법은 외형적으로 보이는 크기를 측정하여 얻는 방법과 생리학적인 측정을 측정하여 얻는 방법이 있다(Wakesley, 1954). '조경수목 측정'이란 외형적으로 보이는 조경수목의 크기를 측정하는 방법이다. Kim(2013)은 "수목의 품질을 결정하기 위한 기본적인 방식으로 형태와 생리의 측정에 의한다"라고 하며, "형태는 수목의 품질을 측정하기 위한 수요, 근원직경, 잎 색깔 등을 의외적인 규격의 측정이다"라고 하였다. 조경공사에서 일반적으로 측정하는 외형적인 규격 측정의 하나인 근원직경, 한문으로는 '根原直徑', 영어로는 'diameter at root collar', 'diameter at butt end' (Korea Forest Service, 2018)이다.

조경공사 표준조사방식(Ministry of Land, Infrastructure and Transport, 2016)에서 조경수목의 규격 표시와 측정방법을 규정하고 있다. 조경수목의 측정, 관리, 관리목으로 표기한 것으로, 원자료를 사용한다(Kim, 2013). 조목류는 수목(I)과 홍고직경(B) 또는 수목(H), 수목(2W)과 홍고직경(B)으로 표시한다(Figure 1 참조).

조경수목의 적정측정 기준에 있어서 근원직경(R)은 수목이 주로 측정된 표준기준과 접하는 줄기의 직경을 말한다. 홍고직경(B)은 지표면부터 1.2m 높이의 수간 직경을 말하고 있으며, 가장높이 이하에서 줄기의 일부 갈래로 갈라지는 생양이 있는 수목인 홍고직경 대신 근원직경으로 표시하고, 단위는 cm로 하고 있다(Ministry of Land, Infrastructure and Transport, 2016), (Table 1 참조).

2. 조경수목의 근원직경 측정위치의 국내외의 차이

우리나라에서는 조경수목 줄기의 근원직경은 표준품목으로부터 1.2m의 수간직경에서 홍고직경을 측정하고 있으며, 표준품목의 줄기의 접하는 줄기의 직경의 근원직경 측정하고 있다. 외국에서 조경수목 근원직경 측정을 살펴보면, 미국에서는 줄기의 직경(d)을 15cm 높이에서 측정하였을 때 10cm보다 작으면 그 위치에서 측정하고, 높으면 30cm 높이에서 측정한다. 또한 수목이 성장할 경우로 규모가 크다면 지표면에서 1.2m 높이에서 측정하며, 캐나다도 미국과 유사하다. 직경이 4cm보다 크고 10cm보다 작으면 15cm 높이에서 측정하고, 10cm보다 크고 15cm 높이에서 측정하고, 15cm보다 크고 18cm 높이에서 측정하고, 18cm보다 크고 20cm 높이에서 측정한다.
Table 1. Ministry of Land, Infrastructure and Transport(2016) standard specifications for landscaping construction standards and definitions

Division	Abbreviation	Unit	Definition
Tree height	H	m	It refers to the vertical distance from the surface to the top of the tree, excluding coating paper. However, for tropical and subtropical trees such as Cycas revoluta Thumb, and palms, the vertical height of the stem is the height of the tree.
With of crown	W	m	It refers to the diameter of the crown of a tree, and the crown of an oval tree is the width of the crown of the tree, divided by the sum of the widths of the shortest and the longest centered on the crown axis of the largest layer.
Diameter at breast height	B	cm	It refers to the diameter of the stem at a height of 1.2m from the ground. However, in the case of a tree with two or more split stems, it is as follows.
Diameter at root collar	R	cm	It refers to the diameter of the stem in contact with the ground surface of the cultivation area before trees are excavated. In the case of a tree that has the property of splitting the stem into several branches below the height of the chest, it is indicated by the root diameter instead of the chest height.
Stem length	L	m	It is the maximum length of a tree crown. In particular, the length of the tree crown is applied when the tree crown is a tree that has the characteristic of growing horizontally or a shaped tree crown.

d만 30cm 높이에서 직경을 측정한다.
영국은 표준에서 1m 높이에서 줄기의 둘레길이를 측정하고, 일본은 간은이라는 우리나라의 공고개념으로 표준에서 1.2m의 줄기둘레 길이를 측정하며, 근친직경과 유사한 개념의 근친주는 뿌리 상단 줄기의 둘레길이를 측정하고 있다. 하지만 근친주를 측정하고 있는 수종은 1개 수종에 지나지 않으며, 대부분 간은으로 측정하고 있다. (Table 2 참고).
조경수목의 근친직경은 근친직경보다 높고직경을 이용하는 이유에서도 다른 부위에 비교하여 상대적으로 방충해의 피해나 비정상적인 형태가 적기 때문이라고 한다. (Korea Forest Service, 2018). 이와 같이 외국 4개국의 기준을 비교하여 근친직경으로 근직경 측정하는 나는 우리나라 밖에 없는 점으로 보아 비효율적이며, 수목의 돌출, 생리 등의 관계성을 고려한다면 우리 나라도 근친직경의 합리적인 측정기준이 조속히 만들어져야 할 것으로 생각되었다.

![Table 2](attachment: table2.png)

3. 조경수목 근친직경 측정에 대한 식재 관리자들의 의외 조경수목 근친직경 측정에 대한 발주자와 일반업체의
분쟁이 많이 발생하고 있다. Lee(2017)는 “우리나라의 근원적
경 측정 기준은 상당히 모호하며, 사립하나 다르게 판단될 수
있으며 핵심도가 많지 않아야한다”(Lafent, 2017).
조경수목의 근원적 측정과 관련한 분쟁은 1) 조경수목의
근원적 근거 2) 조경수목의 근원적 측정에 대한 부정적
시각, 3) 조경수목 근원적 근거 불합리한 기준에 대한 불만 등
이 있다(Public Procurement Service Country MarketPlace,
2017; Lafent, 2017; cafe/Teamsis, 2018).
1) 조경수목의 근원적 근거
조달청 나라장터(Public procurement service country mar-
ketplace, 2017)의 정의에 따르면, “조경수목은 생산자 입주에서
근원직경 2~3cm 차이로 가격에 있어서 큰 차이 보이므로
라도한 시비나 간 전쟁을 동반하여 조기 성장시켜 근원적을 맞추고,
주변을 획득하기 위해서 근원직경 대조기까지도 한다”(Public
Procurement Service, 2017), “조경수목의 훼손단계를 올리고, 근원
을 크게 하여서 사계절을 위하여 근원적도 많고 적은 수
중에 따라서 하자의 원인이 되기도 한다”(Public Procure-
ment Service, 2017).
이처럼 조경수목 생산자들은 근원적 근거에 따라 단가차
가 발생하므로 근원적을 키우기 위해 표토부 제거 등을 하는
사례가 발생하고 있어 이를 해결하고 건강한 수목이 식재될 수
있도록 합리적인 측정기준의 설정이 필요함 것으로 보인다.
2) 조경수목의 근원적 측정에 대한 부정적 시각
Lee(2017)는 “근원적 근거는 없어요야 한다고 주장”했다
(Lafent, 2017). “현장에서는 품질보다는 금속 위주로 수목의
감소가 이루어지기 때문에 수목의 근원적 근거가 모호함
을 항상 느끼고 있다”(Kim, 2013). “근원적 측정 측정 위치에
제한 10cm 상단으로부터 해당 없이 명확한 근거는 없어 발생
자와 감독자의 측정 위치의 이견이 문제”이다(Baca/Landscape
world, 2018). “모뿐한 근원적 측정기준이 명확했으면 좋겠고
또두가 사서를 표준으로 삼고 있는데, 사서사서로 정확하
게 측정해야 할 것 같다”(cafe/Teamsis, 2018)하고 하였다.
따라서 조경수목 근원적 근거의 모호한 측정기준에 대한 소속
한 기준을 제정함으로써 보다 합리적이고 표준화된 측정기준을
만들어야 할 것으로 보인다.
3) 조경수목 근원적 근거 불합리한 기준에 대한 불만
조달청 나라장터(Public procurement service country market-
place, 2017) 조경수목 근원적 측정 시 “어느 부
위를 측정을 하느냐에 따라 1~3cm의 차이가 나고, 수목
의 감수 시 근원적 부위에 따른 발주자와 시공사와의
이견이 있다”(Public Procurement Service Country Mar-
ketPlace, 2017).
“근원적 측정 위치는 이익에 관한 문제에게 피같은 것
같고, 감수는 접대 사례 심감시 지표면과 접하는 부분을 고수
하며, 정확한 규정이 없는 상태에서 충돌성이 없어 알려가 아
프다”(cafe/Landscape world, 2018)고 하였다. “사방이나 노동
에 명확한 수치가 나와 있지 않아 훼손에 가깝게 사각되는 부
위가 맞다고 생각하는데, 강된 부위의 3cm 위로 제해야 한다고
한다”(cafe/Landscape world, 2018). “농업업자는 딥 관리가 자
가 가장 큰 부분을 제외하고, 감수자는 대중 맘에 맘의 부분
 culo”(cafe/Teamsis, 2018). “근원적 측정을 위해 저장공
서서 딩을 많이 잡은 데, 이달말의 경우 R3까지도 별로 크게
나간다”(cafe/Teamsis, 2018). “수목 구조에 대한 기준은 코에
결론 코인이처럼 감수자의 감수처리에 따라 장거리한다”
(cafe/Teamsis, 2018). “판공식의 경우에 근원적 측정과 관
련한 문제가 많다”(cafe/Teamsis, 2018).
이처럼 조경수목 식재 관련자들 사이에서도 “근원적 측정
은 모호하고 부정적인 문제가 많다”라는 이야기가 일반적인 의견으로 나
타났다. 그러므로 조경수목의 근원적 측정 위치에 대한 보편
적이고 타당한 합리적인 측정위치 샘플이 필요한 것으로 보인다.
4. 조경직사 관련 자료에 나타난 조경수목 근원적 측정
우리나라 조경직사공사에서 조경수목의 측정 위치에 대한
설명은 조경직사 관련 자료, 단계, 연구소, 식목자 등에 따라 다
르게 표기되었고 주장하고 있어서 조경수목 측정에 대한 분
쟁이 많이 발생하고 있다.
조경수목 근원적 측정 위치 기준과 관련하여 자료별로
근원부의 직경(Yun, 1980), 지표면의 줄기의 길이(Kim et al.,
1985), 지방부의 지하부가 마주하는 줄기의 길이(Shim et
al., 1990), 지표면에서 30cm 높이의 줄기의 길이(Kim et
al., 2009), 지표면의 줄기의 지방부의 길이(Kim et al., 2013), 수목
이 구취되기 전 측면에 저장법과 접하는 줄기의 직경(Lee,
2013), 근원직경이 10cm 이하인 것은 15cm 높이에서 측정하
고, 그 이상인 나무는 지방 30cm 높이에서 측정(Choi, 2016),
지방부의 지방부의 지방부의 지방부를 말하고 지표면으로부터
3cm 아내의 줄기 지름을 측정(Park et al., 2017)한다고 기술
하고 있다.
이처럼 학자나 저자, 기관에 따라서도 근원적 측정기준에
대한 서로 다른 견해로 기술이 되어 있어, 관련 서적을 사용하
여 수업을 하고 있는 조경전문 관련 학과의 학생들 및 기술자들
에게 많은 혼란이 가중되고 있다. 그러므로 조경직사에 있어서
도 동일한 기준을 설정하여 동일한 학습이 이루어져야 할 것으
로 생각된다.
5. 조경수목의 수간형태와 근원부위

나무수간은 수목의 지상부인 수관과 지하부인 뿌리 사이에 있는 목본식물의 줄기로 유관속 형상중에 의해 부피 성장이 이루어져서 단단하고 굳으며(Kim et al., 2009). 단일 줄기로 가지고 있으며, 뿌리에서 흩어진 수분과 무기질양분을 위쪽으로 이동시키고, 은행 도태 지상 기능을 가지고 있다(Lee, 2017).

수목의 줄기는 내부적으로 지표면과 접하는 부분에서 근원하게 굽어지고(Korean Society of Environmental Restoration and Rehabilitation Technology Translation, 2003), 골로 갈 수록 가늘어진다(Harris et al., 2004). 갈이에 따라 적경이 변하는 것은 초심(laper)이라고 하며(Harris et al., 2004), 수간의 하부와 상부의 적경의 차이를 초달도(Korea Forest Service, 2018)라고 한다.

임목의 적경은 근부부터 조금으로 이동함에 따라 완만하게 감소한다. 임목의 감소는 수중에 따라 수간부위별로 각기 다른 감소율을 가지며, 수간 형태는 위쪽에 따라 크게 포물선형(paraboloid), 원형(conoid) 및 나이로드형(neoid)의 3가지로 구분된다(Figure 2 참조). 수간의 각 부분은 이것 3부분이 결합되어 형성된다(Korea Forest Service, 2007). 임목의 근부는 나이로드형이며, 조금으로 갈수록 원형을 가지게 되며, 이를 제외한 임목의 대부분은 포물선형이 차지하게 된다(Korea Forest Service, 2007). 따라서 근원부는 나이로드형이기 때문에 지표면에서 초달도가 급격하게 커지게 되고, 근원부위 비대와 불균질한 다양한 형태로 나타난다.

6. 조경수목의 포토제어와 생장에 미치는 영향

포토란 지질 지표면을 이루는 홀로(Standard Specification for Landscape Construction, 2016) 식물의 뿌리가 활동하게 활용하는 곳이며(Choi, 2016), 유기물이 풍부하여 토양미생물이 많고, 식물의 양분, 수분을 공급원이 되는 토양이다.

토양 중에 조경수목들 대부분은 포동 15cm 이내에 전체 세균의 90%가 집중되어 있다(Lee, 2017). 본의 상층인 포토에는 조경수목의 생장에 매우 밀접한 양분과 물 흡수를 하는 잔뿌리가 밀접하게 분포하여 있다(Table 3 참조).

포도는 식물 생장에 필요한 많은 영양성분을 갖고 있으므로 토양층의 파괴는 식재된 수목의 하자와 적절 연결되며(Kim and Lee, 2007), 조경수의 성장, 건강과 시각적으로는 토양의 품질에 직접 관련이 있다(Koenig, 1997).

Researcher	Main content
Kwak and Kim (1994)	The reason that the roots of trees are concentrated in the topsoil layer is because nutrients, moisture, air conditions, and soil minerals are the most favorable in the upper layer.
Lee (1995)	In the case of oak and pine, 90% of all fine roots exist within 12cm of the topsoil.
Shim (2001)	The distribution of fine root surviving amount in the oak forest near Gongjì accounts for about 50% of the total at 0cm–10cm, about 27% at 10–20cm depth, and about 23% at 20–30cm depth.
Kim and Kwah (2004)	In the landscaping of landscaping trees in the coastal landfill, the amount of fine roots is distributed about 31% to 55% of the total amount from the topsoil to 20cm below the ground.
Yoon et al. (2007)	The density of mountain roots of aelëvora fine roots in the coastal landfill of Gwangyang Bay is distributed with a large concentration of fine roots 20 cm underground from the topsoil with an average of 433% to 718% of the total fine roots.
Heo (2011)	According to a survey on the vertical distribution of fine roots of 7 and 20 years old in cedar forests, 88% of 7 years old roots were distributed within 15cm of soil depth (1st floor), and 47% of 20 year old roots were distributed. The longer the tree, the deeper the soil. Had a lot of tendencies.
Kang (2010)	When looking at the distribution of fine roots by depth for the size of pine trees in Gangwon Natural University, about 50% of fine roots were distributed from 0cm to 10cm, and the size of while pine was 48% to 57%, and the size of red oak was 50%. Represents a range of −61%.
Song (1989)	In terms of the carbon biomass of fine roots for major planted tree species, the ratio at the soil depth of 0 cm to 30cm was 74.0% for pine forests, 66.9% for larch forests, 65.3% for oak forests, and 63.5% for pine forests. Net production of carbon is less with deeper soil.
표 도 제거는 표도부의 세근을 상당히 많이 제거하게 되므로 수목의 양, 수분 흡수도 불량할 수 있고, 수목으로 하여금 망설
업된 뒤를 내리도록 유도하여 많이 비추고 성장이 나쁜 곳
에 삽재 된다(Kwon et al., 2015). 이식하는 조경수목의 골무
시 표도를 제거하면 이식 이후 환경에 잘 적응하여 생장불
량이나 교사로 이어져 하자 발생에 따른 문제점이 발생
할 수 있다.

세근이란 수목의 뿌리 중에서 가는 부분으로 불리며, 일반적
으로 정경 2mm 이상의 뿌리로, 정의하는 경우가 많다(Kim,
2007). 토양중의 세근 분포는 수목으로 귀하 제한되어 있으며,
보통 나무들의 대부분이 15cm 이내의 표도에 전체 세근의
90%가 집중되어 있다(Lee, 2017). 수목의 뿌리가 표도중에 집
중 분포하는 것은 양분과 수분 그리고 공기의 상태, 토양양을
따르게 하고(Kwak and Kim, 1994)이고, 토양균이 커서 뿌
리가 흡수를 향상하게 할 수 있기 때문이다(Harris et al. 1977; Castellanos et al. 1991).

III. 연구내용 및 방법

1. 연구내용

본 연구는 우리나라 조경실험소에서 조경수목 수목적 정적
의 연구로 조경공사들의 연구 및 관리에 관한 의식과 조경수
목 분석의 시 표도제거 실험을 조사, 분석하였다. 주로 실무의
내용으로는 3개 카테고리 28개 항목으로 ① 조사 대상자의 인
구 통계학적 속성, ② 조경수목의 규격서류와 관련된 표도에
관한 정의정식의 근본적인 측정기준이 달
러 본 관행, 국토교통부 조경공사표준서부 작성정, 근본
적정의 동일한 측정위치 및 허용이, 현제의 흡수적
근본적인 측정위치 등 12개 항목에 대하여, ③ 조경수목의 본
뜨기 시 표도제거의 실험과 생상상황으로 조경수목의 분석기
중요성 및 표도제거의 측정, 표도제거의 간격의 유의미, 보수성
등 8개 항목으로 작성하였다. 응답의 형태는 리다_vehicle 5개 최
대 대상 중 1, 대상 응답 3, 보수적 5, 매우 보수적
(1)를 사용하였다.

2. 조사방법

설문조사는 우리나라 조경수목의 생산, 시공, 감리 및 감
독을 담당하는 실무자들로 하였다. 설문조사 여건은 전국으로
하였다. 발포수수 및 회수는 총 214부를 배포하여 대상 19부
물 제외한 195부 중에서 무작위하게 응답한 5부를 제외한 191
부를 유의 표본으로 하였다.

본 연구의 설문중목 등의 도출을 위하여 조경실무자로 급격
20년 이상의 경력자인 한국가 3명에게 사전 인터뷰를 실시하였
고, 예비 설문조사는 2018년 7월 13일에 강력 20년 이상의 조경
전문가 6명에게 직접답변으로 조사하였다.

본 설문기간은 2018년 8월 20일~2018년 9월 7일(20일간)간
하였다.

3. 분석방법

조사 결과를 토대로 먼저 응답자의 일반적인 특성을 파악하
기 위하여 가설 통계학적 분석 방법으로 분석분석을 하였다.
수관련 설문 자료의 통계분석은 SPSS Ver. 23.0, 통계 패키지
프로그램을 사용하여 분석하였다.

통제분석의 현상, 추세관찰, 원인 분석 등은 준정량적 방법
(Stepi, 2005) 중에 패리미트법(Namu, wiki, 2020)으로 조경사
공 및 감독 경력 20년 이상의 전문가 6명을 대상으로 하였다.

IV. 결과 및 고찰

1. 인구통계학적 속성

설문응답자의 성별은 남성 86.4%이었고, 여성은 13.6%이었
다. 설문응답자는 남성이 여성보다 상대적으로 많았다. 설문 응
답자의 연령대는 40대(38.5%), 50대(31.4%) 순으로 많았다.
직종은 크게 생산자(생산, 유통 등), 사무직(사무, 설계, 지시관
리 등), 발주자(관리, 감독 등) 등 3개의 관련 집단으로 분류되
었다. 본 연구의 직종 분류는 생산자 분류군이 21명(12.6%), 사
무직 분류군이 117명(61.2%), 발주자 분류군이 46명(24.1%),
기타가 4명(2.1%)으로 조경공사와 관련한 사람들로 분류된
분류군에 많은 것으로 나타났다.

직장은 사기업 39.3%, 자영업 30.4%이었고, 그 다음으로 공
무원, 공기업 순이었다. 직위에 있어서는 대표이사급 등 회사의
대표직을 하는 직위가 53명(27.7%)이었고, 그 뒤로 중간
직위에 있는 각 직위가 10~19% 내외의 비율을 차지하고 있었
다. 근무지역은 광주광역시, 전라남도지역이 146명(76.4%)으
로 가장 많았으며, 그 다음은 서울, 경기도, 경상도 순이었다.
경력은 6~10년(26.7%)이 가장 많았고, 전례적으로 6~20년
근무경력이 있는 이용자들 67.5%이었으며, 40~50대의 연령
대의 조경업체 근무경력이 유의하였다.

2. 조경수목 근본적정 측정기준에 대한 실무자들의

의식이어

1) 조경수목 근본적정 측정 위치의 정성에 대한 의식이어

언론조경공사표준서부 조경수목 근본적정 측정위

한국조경학회지 제 49권 2호(2021년 4월) 33
치 기준이 적절하다’를 통계학적으로 분산분석(Analysis of Variance, ANOVA)한 결과, 유의한 차이가 있는 것은 연령별 (p<0.05) 이었고, 유의성이 없는 것은 직종별, 직책별, 근무지역별, 근무경력별(p>0.05)이었다(Table 4 참조).

‘조경수목 근원직경 측정 위치의 의식’에 대한의식 차이가 있는 것은 연령별로 20대와 30대, 30대와 40대, 40대와 50대의 현장경험이 차이 등에 의한 세대 간에 나타나는 의식의 차이 때문으로 추정되었다.

‘국토교통부 조경공사조사지방에서 근원직경 측정기준의 적정성에 대한 직종별, 직책별, 근무지역별로 의식 차이가 있는지를 통계학적으로 분산분석(Analysis of Variance, ANOVA)한 결과, 유의한 차이가 있는 것은 직위별이 있고 (p<0.05), 유의성이 없는 것은 연령별, 직종별, 직책별, 근무지역별, 근무경력별(p>0.05)이었다(Table 5 참조).

이처럼 직위별로 ‘조경수목 근원직경 측정 모호성’에 대한 의식 차이가 있는 것은 현장에서 실무를 많이 맡당하는 직급의 직원이야 지방 또는 지역기업인 대비 또는 일반직과 비교하여 직책이 낮은 신입 사업자나 대리자 등은 아직 만만하게 생각하지 않는 것으로 추정되었다. 또한 ‘조경수목 근원직경 측정에 대한 모호성’에 대한 의식 차이가 직종별, 직장형성별, 근무지역별 등에서 유의한 차이가 있다(6).

Table 5. Differences in consciousness about the ambiguity of the measurement of the root diameter of landscape trees among the practitioner of planting construction, in s. Korea.(one-way, ANOVA)

Division	Average	Standard deviation	Significance probability
By age	3.86	0.788	0.834
By occupation	3.88	0.823	0.808
By job type	3.88	0.826	0.720
By job position	3.83	0.844	0.056*
By working area	3.58	0.846	0.186
By work experience	3.76	0.676	0.720

*: p<0.05

3) 조경수목 측정기준 개선에 대한 의식

‘조경수목 측정기준의 합리적 개선 필요성’에 대하여 통계학적으로 분산분석(Analysis of Variance, ANOVA)한 결과에서 유의한 차이가 있는 것은 직장 유형별이 있고 (p<0.05), 유의성이 없는 것은 연령별, 직종별, 직책별, 근무지역별, 근무경력별(p>0.05)이었다(Table 6 참조).

이처럼 직장 유형별로 ‘조경수목 근원직경의 동일된 측정위치 및 높이의 합리적인 개선 필요성’에 대한 의식 차이가 있는 것은 실무자와 발주자의 전향적인 수직적 관계로 발생하기 때문이다.

이와 같은 발주자와 공사자 간의 전향적인 수직적 관계는 Lee(2006)는 수직적 관계를 본질적으로 이해하는 데 있어 중추적이고, 수직의 근원직경 절차의 발주자와 시공사자의 이전이 있으며, 수직 관계의

Table 6. Differences in consciousness about improving the measurement standards for landscape trees among the practitioner of planting construction, in s. Korea.(one-way, ANOVA)

Division	Average	Standard deviation	Significance probability
By age	4.21	0.809	0.533
By occupation	4.15	0.818	0.060
By job type	4.32	0.798	0.000*
By job position	4.25	0.843	0.220
By working area	4.01	0.768	0.390
By work experience	4.35	0.847	0.356

*: p<0.05
자는 지하부 가장 큰 부분에서 감수자는 지상부 가장 큰 부분을 측정(caf'e/Teamsis, 2018)한다. 수목의 근원직경 측정과 관련한 문제는 관광자이자 많다(caf'e/Teamsis, 2018)하였다.

‘조경수목 근원직경의 통일성 측정 및 높이의 합리적 개선이 필요’ 하다고 언명, 직종별, 직위별, 근무지역별, 근무 경력별 차이가 없는 것으로 나타난 것은 받주자와 관계없이 기부를 위한 개선이 되었다.

따라서 시공자의 발주자의 결정을 없애기 위해서는 합리적인 조경수목 근원직경 측정 위치 개선이 필요할 것으로 생각되었다.

4) 조경수목 표토층 제거 방법에 대한 의식

‘조경수목의 표토층 제거 방법을 위한 기준설치의 중요성’에 대하여 통계학적으로 분산분석(Analysis of Variance, ANOVA) 결과, 유의수준 p<0.01에서 차이가 있는 것은 언명하였고, 유의수준 p<0.05에서 차이가 있는 것은 직종별이었으며, 유의수준 p<0.10에서 차이가 있는 것은 근무지역이었다(Table 7 참조).

이처럼 유형별로 조경수목의 표토층 제거 방법을 위한 기준설치의 중요성에 대한 의식 차이가 나는 것은 20대는 사회성 활1-5년차로 조경현장 경험이나 기술적 판단이 낮아 30대 이상의 언명과의 경험이 차이로 추진되었다. 직종별로 조경수목의 표토층 제거 방법을 위한 기준설치의 중요성에 대한 의식 차이가 나는 것은 실제 현장에서 수목식재 등을 다루는 시공, 생산, 감리 및 감독이 느끼는 인식이 높았다. 반면, 다른 직종은 수목식재를 잘 다루지 않아 경험이 많지 않거나, 수목 측정에 대한 합의와 불합의에 대한 민감성이 낮은 차이로 추정된다. 따라서 조경수목 근원직경 측정 및 제거 방법에 대한 명확한 시행서 등이 만들어져야 할 것으로 생각되었다.

5) 조경수목 표토제거와 이식 후 활과에 대한 의식

조경수목의 표토제거가 수목의 이식 이후 활과 생장에 영향을 미친다고 생각하는가에 대하여 통계학적으로 분산분석(Analysis of Variance, ANOVA) 결과 유의성이 없는 것으로 나타났다(Table 8 참조).

이처럼 모든 유형별로 조경수목의 표토 제거에서 이식 후 활과에 대한 의식에 대한 차이가 없는 것은 각의 모든 조경수목 자들이 '표토 제거가 수목의 이식 이후 활과 생장에 영향을 미친다고 생각하기 때문에 조경수목의 표토 제거와 이식 후 활과에 대한 현장조사 연구가 후속적으로 필요할 것으로 생각되었다.

3. 조경수목 근원직경 측정기준 모호에 따른 분산발생 차이

조경수목 '근원직경 측정기준이 달라 분쟁이 발생할'에 대한 직종별, 직위별, 근무경력별 분석 결과, 5명 직종에 대한 전체 평균은 3.85로 분쟁이 없는 것으로 나타났다. 조경수목 측정기준에 있어서 동상공단과 시공사간의 수목판단 기준의 주관적이라 수목 산정 시 이러한 점을 발생하기도 한다(Loe, 2006). 이와 같이 조경수목 근원직경 측정에 대한 분쟁 발생하는 것은 조경수목의 단가를 높게 받으려는 생산업체나 시공사와의 계약을 검수하는 받주자와의 대립 관계에서 비롯된 것으로 추정되었다.

조경수목 '근원직경 측정기준이 달라 분쟁이 발생해서 직위별, 근무경력별에서는 직위와 경력이 높은수목 분쟁정도가 높았고, 직위와 경력이 낮은수목 분쟁정도가 낮았다(Table 9 참조), 이러한 현상이 나타나는 것은 직위나 근무경력이 낮은 실무자들은 현장경험이나 전반적인 상황에 대한 판단성 부족 또는 책임성이 낮은 분쟁에 대한 인식이 낮은 것으로 추정되었다. 이와 같이 조경수목 근원직경 측정에 대한 분쟁의 소지 부재기 위해서는 모호한 현장의 측정기준에 대한 명확한 합리적인 측정기준이 필요할 것으로 생각되었다.

1) 직장 유형별

조경수목의 근원직경 측정기준이 달라서 직장 유형별 Table 8. Differences in awareness of landscaping tree topsis removal and survival after transplantation among, the practitioner of planting construction, in S. Korea (one-way, ANOVA)

Division	Average	Standard Deviation	Significance Probability
By age	4.29	0.798	0.000 "***"
By age	4.25	0.769	0.004 "*"
By job type	4.58	0.703	0.604
By job position	4.58	0.699	0.837
By working area	4.39	0.828	0.041 "*"
By work experience	4.59	0.555	0.209

*: p<0.05, **: p<0.01, ***: p<0.001
Table 9. Differences in disputes due to ambiguity in the measurement standard of the root diameter among the practitioner of planting construction, in S. Korea (One-Way, ANOVA)

Division	Average	Standard deviation	Significance probability
By job type	3.78	0.903	0.004 **
By occupation	3.84	0.983	0.088
By job position	3.83	0.858	0.003 **
By work experience	3.96	0.832	0.428

**: P < 0.01

별로 분쟁에 민감하게 반응하여 높게 나타난 것은 자영업> 사업(공)기업(공무원)기타 순으로 각각 4.24, 3.89, 3.68, 3.66, 3.43 순으로 나타났다(Figure 3 참조).

이처럼 조경수목 근원직경 측정 위치 기준에 대하여 자영업이나 사업(공)기업이나 공무원보다 민감하게 반응하는 것 은 조경수목 근원직경 측정 위치에 따라 조경수목 단가 차이가 크게 나기 때문으로 파악되었다. 즉, 조경수목의 지표부분의 근원직경은 초소직가 매수 거시 지표면이나 자하부로 내려갈수록 조경수목의 규격이 커져서 조경수목의 단가가 매우 높아지기 때문에 조경수목을 생산하는 자영업이나 사업(공)기업에서는 근원직경 측정 위치에 매우 민감하게 반응하는 것이다.

2) 직종 유형별

조경수목의 근원직경 측정기준이 달라서 직종 유형별 분쟁 이 높게 나타난 것은 조경식물생산(유통)개별 및 설계> 조경시설설립설계>시공>기술>관리> 기타 순으로 각각 4.25, 4.19, 4.00, 3.94, 3.74, 3.50, 3.25 순으로 나타났다 (Figure 4 참조). 이러한 원인은 직종별 분쟁 내용과 유사한 생 산자, 시공자가 미진화의 전형적인 수직적 관계로 추정되었다.

이와 같은 분야의 시공자에 대한 전형적인 수직적 관계는 (Lee, 2006)는 수목의 규격 등을 관련 시 공사감독관과 시공업자 간의 기준

3) 직위별

조경수목의 근원직경 측정기준이 달라서 직위별 분쟁이 높 게 나타난 것은 차장급(대표이사급)부(장급)(고상급)(대장급)사(장급)사원급 순으로 각각 4.32, 4.16, 3.97, 3.79, 3.75, 3.62, 3.20 순으로 나타났다(Figure 5 참조). 조경식물 현장에서 실무를 맡아당하는 직급이나 자영업자인 대표 또는 임원급과 비교 하여 직위가 낮은 실무자, 계장급(대리급) 등은 아직 민감하지 않은 것으로 추정되었다.

4) 근무경력별

조경수목의 근원직경 측정기준이 달라서 근무경력별 분쟁이 높게 나타난 것은 25년 이상 21~25년 16~20년 6~10년 11~
15년 1~5년 순으로 각각 4.17, 4.04, 4.03, 3.92, 3.84, 3.68 순으로 나타났다(Figure 6 참조). 이러한 원인은 근무경력이 낮은 실무자들은 현장경험이나 전반적인 상황에 대한 판단성 부족 또는 책임성이 낮아 분쟁에 대한 인식이 낮은 것으로 추정되었다.

4. 조경수목 근원직경 측정기준의 적정부위에 대한 의식

조경수목의 근원직경 측정기준은 어느 부위가 적정하다고 생각하는가에서 2cm~4cm(지표 0cm) 2cm~4cm 4cm~6cm 순으로 25.7%, 25.7%, 25.7%, 11.1%, 7.3%로 나타났다. 국토교통부 조경공사표준시범기준(지표 0cm)으로 지상부(사, 2회 부위)의 지하부(근원부 15cm)와 비교한 결과, 지하부(40.8%), 지하부(33.0%)로 지상부의 측정기준이 적정하다고 높게 나타났다(Table 10 참조).

직장별 조경수목 근원직경 측정기준의 적정 위치가 어느 부분인가에 대하여 생산자와 시공자는 근원직경이 큰 근원지하부위를 측정하기 원하고, 발주자는 규격 및 강도는 근원직경이 작은 수간부 지상부위를 측정하기 원하는 것으로 나타났다. 수목 근원부위는 수간의 하부와 상부의 표토부에서 불과 1cm~10cm 이내에서 적정의 초소다이어가 크게 발생하기 때문에 발주자와 공급자의 분쟁이 발생하는 것으로 보인다.

Table 10. Appropriate area based on the root diameter measurement

Division	Total	No 1 area (4~6cm)	No 2 area (2~4cm)	No 3 area (0cm)	No 4 area (2~4cm)	No 5 area (4~6cm)	Etc
Frequency (persons)	191	27	51	49	49	14	1
Ratio (%)	100	14.1	26.7	25.7	25.7	7.3	0.5

조경실무자들이 조경수목의 적정 측정 비율은 지상부 2cm~6cm을 신호하는 이유는 현재의 도로의 측정기준보다는 근원직경의 원자형이 현재의 적정 지식, 지상부의 노출되어 있어 육안 확인이 편리하고, 확실함으로 보아 조사되었다. 그러나 수중 조성의 크기가 다르기 때문에 수중의 측정 위치를 다르게 해야 한다는 의견도 많이 있었다.

이처럼 조경수목 근원직경의 적정적정이 측정기준에 대한 개선이 이루어지지 않으면 앞으로도 이러한 분쟁이 계속해서 이어질 것으로 보인다. 따라서 근원직경 측정기준에 대한 보다 적정한 적정적인 대안이 모색되어야 할 것이다.

5. 조경수목 표토 제거 길이에 대한 의식

'조경수목의 표토 제거 길이'는 지하 -kcm가 43.0%, 지하 -2cm가 40.8%었고, 전체의 약 84.0%가 지하 -2cm까지 표토를 제거하는 것으로 나타났다(Table 11 참조). 또한 조경 수목의 가장 많이 제거한 표토길이는 지하 -6cm 이상이 약 58.0%이었으며(Table 12 참조), 지하 -10cm~15cm까지 제거된 사례도 있었다. 이와 같이 조경수목의 표토제거를 하는 이유는 '규격을 단아하게 하여야' 114명(59.7%)이었고, '작업을 용이하게 하여' 63명(33.0%)이었다(Table 13 참조). 조경수목 근원직경의 크기에 따라 가격 차이가 많이 발생함에 따라 조경수목을 공급하는 생산자들은 표토제거, 수간의 측정, 과도한 시비 등을 하고 있는 것으로 나타났다(Figure 8 참조).

표토는 유기물이 풍부하여 토양 미생물이 많고, 식물의 양분, 수분의 공급원이 되는 토양으로(Ministry of Environment, 2011)
따라서 이 뿌리가 깊게 토에 체제되었다. 2016년도 조경수목의 조작 상태를 조사한 결과, 조경수목 근원직경 측정 시 주로 많이 이용하는 방법은 근원직경을 60.2%가 사용하고 있었으며, 다음으로 근원길이를 20%가 사용하였다. 그 외로 환경과 풍자승을 사용하는 경우가 7.8%이었다.

이와 같은 이유로 염리프레스를 사용한 근원직경 측정이 적정 데이프를 사용한 근원길이 측정보다 수치 확인의 용이성과 편리함 때문으로 생각되었다. 하지만 수목의 근원부위는 완전한 원형이 아니기 때문에 근원직경 측정은 장경과 단경을 두 번 측정하여야 하는 번거로움과 두 가지 중 하나의 방법만 측정할 경우 편차가 발생할 수 있다. 근원길이 측정은 수직방향과 같은 높이를 측정할 수 있어 편차는 다소 줄일 수 있으나, 지면과 밀착되어 수치 확인이 불편하다.

7. 조경수목 근원직경 측정 시 주요 발생 수증

조경수목 근원직경 측정 시 발생하는 주요 수증이 많은 수증은 느리함수(14.5%), 배송(10.4%), 위스(8.3%), 이동블(8.1%) 단종수(7.4%) 순이었으며, 다음으로는 상수요, 배송, 배송, 가시나무, 산나무 순이었다. 이와 같이 나타난 것은 조경경사에서 다른 수증들에 비하여 상대적으로 많이 식재하는 나무들이고, 나무의 특성상 근원부의 조정도가 커서 측정 편차가 심하기 때문으로 추정되었다.

V. 결론

본 연구는 현재 생산, 유통, 식재되고 있는 조경수목의 근원직경에 대한 핵심적인 근원직경 측정위치 및 표토 제거에 따른 문제점 등을 설문을 통하여 실증조사·분석하였다.

1. 우리나라 조경경사에서 조경수목의 근원직경 측정 위치에 따른 발생이 많은 것으로 나타났다. 조경수목 근원직경 측정 부위의 모호성에 대한 분쟁은 5% 이상으로 분석한 결과, 공공기관(36.6%)보다는 조경업체(42.4%) 가 높은 것으로 나타났다. 적외선·근원길이로는 적외선이 높고 근원길이의 많음수록 높게 나타났다.

2. 조경수목의 근원직경 측정 기준에 대한 의역은 조경수목 생산업체나 조경업체와의 진보·마련에 절도해 저하부분(33.0%)보다는 지표부터 지향부분(66.5%)에서 직경 측정하는 것을 선호하는 것으로 나타났다.
3. 이석을 위한 조경수목 근원직경 희토 제거를 많이 하는 것으로 나타났다. 이석을 위한 조경수목 근원직경 희토 제거는 저항 근원직경 2cm~4cm가 81.6% 정도로 많았으며, 희토 제거 목표는 근원직경 2cm에서 49.4%의 근원직경을 희토작업을 용이하게 하기위한 (53.3%) 하려는 의도로 이용되었다.
4. 조경수목 이석을 위한 근원직경 희토부를 저항 2cm~4cm 정도로 제거하게 되면 수목 규격의 축소에 따른 문제는 이후에 활달, 생장, 하재에 저한 부정적 영향을 미쳐게 되므로 서방의 개념 등 근원직경 희토제거 방식에 대체할 필요성으로 생각되었다.
5. 이와 같이 현재의 조경수목 근원직경의 규격 축소는 업계와 낙단 간의 문제 발생, 밀집 수목 규격의 축소, 이석 이후 상생물이나 하자 발생에 대한 영향을 미친으로 합리적인 측정 위치 설정이 필요한 것으로 생각되었다.

본 연구는 우리나라 조경공사 현장에서 발생하는 조경수목 근원직경 축소에 대한 분쟁과 희토제거에 대한 실태에 대한 조영수목, 이석 후 생장물이나 하자 발생에 저한 영향을 미친으로 합리적인 측정 위치 설정이 필요한 것으로 생각되었다.

References

1. British Standards Institution (1992) BS 3906:1-1992 Nursery Stock Specification for Trees and Shrubs.
2. Choi, S. B. (2016) Landscape Planting, Seoul: Kimchundang.
3. Han, S. H., W. T. Kim, S. H. Kim and J. H. Kang (2007) Expert consciousness survey for derivation of performance evaluation elements. Journal of the Korean Institute of Landscape Architecture 2007(): 31-35.
4. Harris, R. W., J. R. Clark and N. P. Matheny (2004). Integrated Management of Landscape Trees, Shrubs, Vines. 4th Ed. /Lee, G. H. (Translation) (2012) /Tree Management, Seoul: Corporation Bioscene Publishing.
5. Harris, W. F., R. S. Kimerson and N. T. Edwards (1977) Comparison of belowground biomass of natural deciduous forests and loblolly plantations. In J. K. Marshall (ed.). The Belowground Ecosystem: A Synthesis of Plant-Associated, Colorado State University, Fort Collins, Colorado.
6. Heo, U. Y. (2011) Fine Root Biomass and Production in a Pinus koraiensis–Quercus mongolica Mixed Forest, Master’s Thesis, Kangwon National University, Korea.
7. Kang, R. N. (2010) A Study on Carbon Storage in Above Ground, Root, and Fine Root of Major Afforestation Species of Korea-A Case Study of Pinus densiflora, Pinus koraiensis, Larix leptolepis and Quercus acutissima stands Gongju area, Chungnam Province - Ph. D. Dissertation, Chungnam National University, Korea.
8. Kim, B. S. and W. S. Shin (2007) The recognition of commercial business men and employers and pedestrian on the existence effect of Roadside Green Spaces in Local City - Changg City to - Journal of the Environmental Sciences 16(2): 159-169.
9. Kim, D. G (2007) Root growth characteristics of Zelkov tricolor after replanting in the reclaimed land from the sea - In the root structure and spatial distribution of fine root phytomass - Journal of the Korean Institute of Landscape Architecture 55(): 46-55.
10. Kim, D. G and Y.S. Kwak(2007) Growth characteristics of Phinus thunbergii Past after replanting in reclaimed from the sea I - On the spatial distribution of fine root phytomass - Journal of the Korean Institute of Landscape Architecture 3(6): 77-84.
11. Kim, I. Y. (2014) Issues and Improvement Schemes of Calculating Office Prices to Landscape Trees, Master’s Thesis, Chang-Ang University, Korea.
12. Kim, K. R., K. U. Lee and P. S. Yoon (1986) Landscape Architecture, Seoul: Moon Unlang.
13. Kim, S. M. and S. I. Lee (2007) The issues of topsoil preservation in land development projects, Journal of the Korean Institute of Landscape Architecture 28(2): 9-16.
14. Kim, T. Y. (2013) The Detailed Dimensions and Quality Assessment Standards in Korea, Landscape Woody Plants Ph. D. Dissertation, Seoul National University, Korea.
15. Kim, Y. S., H. C. Kim, K. D. Kim, D. Y. Kim, I. H. Kim, C. H. Kim, J. H. No, M. S. Byun, G. J. Song, H. T. Sin, Y. H. Ahn, G. G. Oh, K. J. Lee, Y. M. Lee, D. O. Im, B. G. Jang, S. H. Jeon, J. C. Jeong, M. C. Joo, S. H. Choi and B. H. Han (2009) New Landscape Botany, Seoul: Gwangil Cultural History.
16. Kim, Y. S., H. M. Kang, H. C. Kang, D. Y. Kim, M. S. Kim, I. H. Kim, C. H. Kim, J. H. No, S. G. Park, I. H. Park, M. S. Byun, G. J. Song, H. T. Sin, Y. H. Ahn, G. G. Oh, J. W. Yoon, K. J. Lee, Y. M. Lee, J. U. Lee, D. O. Im, B. G. Jang, S. H. Jeon, Y. M. Jeong, M. C. Joo, S. H. Choi and B. H. Han (2013) New Landscape Botany(No. 2) Revision, Seoul: Gwangil Cultural History.
17. Koenig, Rich (1997) Topsoil Quality Guidelines for Landscaping, AG/SO-02, MAY 1997.
18. Korea Forest Service(2007) Standard Textbook for Forest Care-Forest Management-.
19. Korea Forest Service(2007) Reasonable Landscape Tree Creation and Management and Production and Distribution Improvement Measures, Korea Landscaping Tree Association.
20. Korea Forest Service(2014) Measures to Foster Landscape and Fisheries Industry.
21. Korea Forest Service(2017) 2016 Forest Product Production Survey.
22. Korea Forest Service(2018) Forestry and Forestry Glossary.
23. Korea Policy Briefing(2014) Beautiful Urban Greenery, from Standardization of Landscape Tree Standards and Quality.
24. Korean Institute of Landscape Architecture(2003) Standard Specification for Landscape Construction.
25. Korean Institute of Landscape Architecture(2008) Standard Specification for Landscape Architecture.
26. Korean Institute of Landscape Architecture(2014) Standard Specification for Landscape Construction.
27. Korean Society of Environmental Restoration and Rehabilitation Technology Translation(2003) Planting Base for Revegetation Technology, Seoul: Book Publishing Kimchundang.
28. Kwak, Y. S. and J. H. Kim(1994) Spatial distribution of fine roots in Quercus mongolica and Quercus acutissima stands. The Korean Journal of Ecology 17(2): 113-119.
29. Kwon, O. J., K. S. Kim, D. G. Kim, D. P. Kim, S. C. Kim, Y. S. Kim, T. J. Kim, J. C. Nam, S. G. Park, Y. J. Park, Y. J. Park, S. Y. Sim, S.
W. Ahn, G. H. Lee, S. J. Lee, H. B. Lee, M. D. Jo, J. S. Choi and Y. M. Ha (2015). New Landscape Management. Seoul: Moon Undang.

30. Lafrentz (2017) Landscape News.

31. L. B. H. (2006) A Study on the Standardized Form and its Quality Assessment of some Landscape Plants in Korea. Master’s Thesis, Kyungpook National University, Korea.

32. Lee, K. J. (2017). Tree Physiology. Seoul: Seoul National University Press Center.

33. Lee, K. H. and J. C. Yoon (2009). Characteristics of periodical changes on standard of estimated unit manpower and material of landscape architectural construction. Journal of the Korean Institute of Landscape Architecture 37(1): 131-138.

34. Lee, K. J. and S. J. Lee (2007). Landscaping Tree Planting Management Technology. Seoul: Seoul National University Press Center.

35. Lee, S. S. (2013). Landscape Materials. Seoul: Bipag.

36. Ministry of Construction (1975) Standard Specification for Landscape Construction. Ministry of Construction (1987) Standard Specification for Landscape Construction.

38. Ministry of Construction and Transportation (1996) Standard Specification for Landscape Construction.

39. Ministry of Environment (2016) Topsoil Conservation and Environmental Impact Assessment.

40. Ministry of Land, Infrastructure and Transport (2016) Standard Specification for Landscape Construction.

41. National Rights Commission (2011) Press Release on How to Improve the Management Transparency of Trees.

42. Park, Y. J., H. K. Kang, I. H. Park, J. S. Baek, J. H. Yoo, J. S. Lee and M. C. Jo (2017). Sango Landscape Arboretum, Seoul: Hyangマンサ.

43. Park, W. K. (2013) An analysis of the price fluctuation of landscaping plants. Journal of the Korea Society of Environmental Restoration Technology 15(6): 63-75.

44. Public Procurement Service Country Marketplace (2017) Landscaping Tree Prices.

45. Shin, K. G. K. J. Lee, S. T. Choi, M. B. Choi, S. R. Shim, Y. S. Kim, S. B. Choi, H. S. Jin, Y. H. Jo, Y. B. Kim, J. C. Nam and W. K. Shim (1990) Landscape Arboretum(Landscape Architecture Range Plan II). Seoul: Moon Undang.

46. Shin, C. H. (2001) Production and Decomposition of Pine Root in an Oak Forest. Master’s Thesis, Konju National University, Korea.

47. Shin, K. S. and W. P. Kim (2016) An Expert opinion survey on three-dimensional greening system for eco-friendly indoor and outdoor space of buildings. Journal of the Architectural Institute of Korea 32(5): 13-22.

48. TreesB (2014) Landscape Tree Archives.

49. Yoo, K. B. (1980). Landscape Arboretum. Seoul: Bipag.

50. Yu, I. E., I. W. Jun and S. S. Lee (2013) A study on improvement and change properties of landscape construction standard specification - Focused on planting. – Journal of the Korean Institute of Landscape Architecture 41(1): 60-70.

51. Yun, J. C. and K. H. Lee (2011) A studies of amendment a standard of estimated unit manpower and material of landscape architectural construction work classification. Journal of the Korean Institute of Landscape Architecture 39(5): 119-126.

52. Wakeley, P. C. (1954) Planting the Southern Pines. Washington D.C.: USDA. Forest Service Agricultural Monograph No.18.

53. 今吉及雄, 武廷繪順, 岩倉五郎(1989) ヒノキ林における個別木の季節変動.

54. 菊地久(1979) 樹木根系観察 調査文献新社社.

55. 野口亨太郎, 阪田匡司, 高橋正, 岩倉五郎(2003) 樹木の根系は成長と枯死を繰り返す 森林総合研究所.

56. 菅拓雄(2006) ヒノキからみた樹木根系系内の生活周期における異常性と生態系機能 根の研究(Root Research) 15(1): 5-10.

57. 國土交通省(2008) 公共用植栽樹木の価格基準(案) 第5次改訂 国土交通省 第47号

58. https://www.drewo-nps.ru/userfiles/Canadian_Standards_For_Nursery_Shock__8th_Edition_2006.pdf 2006

59. https://www.slideshare.net/VivekSrivastava22/tree-forms. 2015

60. Cafe LandscapeWorld (2018) http://cafe.daum.net/landscapeWorld. I am a landscape.

61. Cafe TreesB (2018) http://cafe.naver.com/teamsi/45566, Landscape Communication.

62. http://www.nurseriescience.info/cultural-practices/pruning/other-references/american-nursery-landscape-asnc-standards-2004.pdf/View 2004.

63. https://stepi.re.kr (2005)

64. https://namu.wiki(2020)

Received : 16 Faburary 2021
Revised : 11 March 2021
Accepted : 11 March 2021

한국조경학회 제 49권 2호 (2021년 4월)