Second Main Theorem and Unicity of Meromorphic Mappings for Hypersurfaces in Projective Varieties

Si Duc Quang1 · Do Phuong An2

Received: 13 May 2016 / Revised: 25 July 2016 / Accepted: 28 July 2016 / Published online: 15 November 2016
© Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Science+Business Media Singapore 2016

Abstract Let V be a projective subvariety of $\mathbb{P}^n(\mathbb{C})$. A family of hypersurfaces $\{Q_i\}_{i=1}^q$ in $\mathbb{P}^n(\mathbb{C})$ is said to be in N-subgeneral position with respect to V if for any $1 \leq i_1 < \cdots < i_{N+1} \leq q$, $V \cap (\bigcap_{j=1}^{N+1} Q_{i_j}) = \emptyset$. In this paper, we will prove a second main theorem for meromorphic mappings of \mathbb{C}^m into V intersecting hypersurfaces in subgeneral position with truncated counting functions. As an application of the above theorem, we give a uniqueness theorem for meromorphic mappings of \mathbb{C}^m into V sharing a few hypersurfaces without counting multiplicity. In particular, we extend the uniqueness theorem for linearly nondegenerate meromorphic mappings of \mathbb{C}^m into $\mathbb{P}^n(\mathbb{C})$ sharing $2n + 3$ hyperplanes in general position to the case where the mappings may be linearly degenerated.

Keywords Holomorphic curves · Algebraic degeneracy · Defect relation · Nochka weight

Mathematics Subject Classification (2010) Primary 32H30 · Secondary 32H04 · 32H25 · 14J70

1 Introduction and Main Results

This article is a continuation of our studies in [2]. To formulate the main result in [2], we recall the following.
Let $N \geq n$ and $q \geq N + 1$. Let D_1, \ldots, D_q be hypersurfaces in $\mathbb{P}^n(\mathbb{C})$. The hypersurfaces D_1, \ldots, D_q are said to be in N-subgeneral position in $\mathbb{P}^n(\mathbb{C})$ if $D_{j_0} \cap \cdots \cap D_{j_N} = \emptyset$ for every $1 \leq j_0 < \cdots < j_N \leq q$.

Throughout this paper, sometimes we will identify a hypersurface in $\mathbb{P}^n(\mathbb{C})$ with one of its defining homogeneous polynomials if there is no confusion. In [2], the authors proved the following result.

Theorem 1 Let f be an algebraically nondegenerate meromorphic mapping of \mathbb{C}^m into $\mathbb{P}^n(\mathbb{C})$. Let $\{Q_i\}_{i=1}^q$ be hypersurfaces of $\mathbb{P}^n(\mathbb{C})$ in N-subgeneral position with $\deg Q_i = d_i$ $(1 \leq i \leq q)$. Let $d = \lcm(d_1, \ldots, d_q)$ and $M = \left(\frac{n+d}{n+1}\right) - 1$. Assume that $q > \left(\frac{(M+1)(2N-n+1)}{n+1}\right)$. Then, we have

$$\| \left(q - \frac{(M + 1)(2N - n + 1)}{n + 1} \right) T_f(r) \| \leq \sum_{i=1}^q \frac{1}{d_i} N_{Q_i(f)}(r) + o(T_f(r)).$$

Here, by the notation “$\| P \|$” we mean that the assertion P holds for all $r \in [0, \infty)$ excluding a Borel subset E of the interval $[0, \infty)$ with $\int_E dr < \infty$.

The first aim of this article is to generalize the above second main theorem to meromorphic mappings into projective varieties sharing hypersurfaces in subgeneral position.

We now give the following.

Definition 1 Let V be a complex projective subvariety of $\mathbb{P}^n(\mathbb{C})$ of dimension k $(k \leq n)$. Let Q_1, \ldots, Q_q $(q \geq k + 1)$ be q hypersurfaces in $\mathbb{P}^n(\mathbb{C})$. The family of hypersurfaces $\{Q_i\}_{i=1}^q$ is said to be in N-subgeneral position with respect to V if for any $1 \leq i_1 < \cdots < i_{N+1} \leq q$,

$$V \cap \left(\bigcap_{j=1}^{N+1} Q_{i_j} \right) = \emptyset.$$

If $\{D_i\}_{i=1}^q$ is in N-subgeneral position then we say that it is in general position with respect to V.

Now, let V be a complex projective subvariety of $\mathbb{P}^n(\mathbb{C})$ of dimension k $(k \leq n)$. Let d be a positive integer. We denote by $\mathcal{I}(V)$ the ideal of homogeneous polynomials in $\mathbb{C}[x_0, \ldots, x_n]$ defining V and by H_d the \mathbb{C}-vector space of all homogeneous polynomials in $\mathbb{C}[x_0, \ldots, x_n]$ of degree d. Define

$$\mathcal{I}_d(V) := \frac{H_d}{\mathcal{I}(V) \cap H_d} \quad \text{and} \quad H_V(d) := \dim \mathcal{I}_d(V).$$

Then $H_V(d)$ is called the Hilbert function of V. Each element of $\mathcal{I}_d(V)$ which is an equivalent class of an element $Q \in H_d$ will be denoted by $[Q]$.

Definition 2 Let $f : \mathbb{C}^m \rightarrow V$ be a meromorphic mapping. We say that f is degenerate over $\mathcal{I}_d(V)$ if there is $[Q] \in \mathcal{I}_d(V) \setminus \{0\}$ such that $Q(f) \equiv 0$. Otherwise, we say that f is nondegenerate over $\mathcal{I}_d(V)$. It is clear that if f is algebraically nondegenerate, then f is nondegenerate over $\mathcal{I}_d(V)$ for every $d \geq 1$.

Our main theorem is stated as follows.
Theorem 2 Let V be a complex projective subvariety of $\mathbb{P}^n(\mathbb{C})$ of dimension k ($k \leq n$). Let $\{Q_i\}_{i=1}^q$ be hypersurfaces of $\mathbb{P}^n(\mathbb{C})$ in N-subgeneral position with respect to V with $\deg Q_i = d_i$ ($1 \leq i \leq q$). Let d be the least common multiple of d_i, $d = \operatorname{lcm}(d_1, \ldots, d_q)$. Let f be a meromorphic mapping of \mathbb{C}^n into V such that f is nondegenerate over $I_d(V)$. Assume that $q > \frac{(2N - k + 1)H_V(d)}{k+1}$. Then, we have

$$\left\| \left(q - \frac{(2N - k + 1)H_V(d)}{k+1} \right) T_f(r) \right\| \leq \sum_{i=1}^q \frac{1}{d_i} N^{[H_V(d)-1]}(r) + o(T_f(r)).$$

We note that the second main theorem for algebraically nondegenerate meromorphic mappings into projective subvarieties was firstly given by Min Ru [9] in 2004. In his result, the family of hypersurfaces is assumed to be in general position and there is no truncation level for the counting functions, but the total defect is $n + 1$, which is the sharp number.

Remark (i) In the case where V is a linear space of dimension k and each H_i is a hyperplane, i.e., $d_i = 1$ ($1 \leq i \leq q$), then $H_V(d) = k + 1$ and Theorem 2 gives us the classical second main theorem of Cartan-Nochka (see [7] and [8]).

(ii) It is easy to see that $H_V(d) - 1 \leq \left(\frac{n + d}{n} \right) - 1$. Furthermore, the truncated level $(H_V(d) - 1)$ of the counting function in Theorem 2 is much smaller than the previous results of all other authors (cf. [1, 4]).

(iii) By a direct computation from Theorem 2, it is easy to see that the total defect is $\frac{(2N - k + 1)H_V(d)}{k+1}$. Unfortunately, this defect is $\geq n + 1$.

(iv) Also, the above notion of N-subgeneral position is a natural generalization of similar notion in the case of hyperplanes. Therefore, in order to prove Theorem 2, we give a generalization of Nochka weights for hypersurfaces in complex projective varieties.

(v) From Cartan-Nochka’s theorem, we may obtain a second main theorem by using Veronese embedding which embeds $\mathbb{P}^n(\mathbb{C})$ into $\mathbb{P}^{(n+d)}(\mathbb{C})$. But in that case, we need the condition that the family of hyperplanes corresponding to the initial family of hypersurfaces is still in subgeneral position in $\mathbb{P}^{(n+d)}(\mathbb{C})$, which is not satisfied if $N < \left(\frac{n + d}{n} \right)$.

As an application of Theorem 2, the second aim of this article is to give a uniqueness theorem for meromorphic mappings of \mathbb{C}^m into V sharing a few hypersurfaces without counting multiplicity.

Theorem 3 Let V be a complex projective subvariety of $\mathbb{P}^n(\mathbb{C})$ of dimension k ($k \leq n$). Let $\{Q_i\}_{i=1}^q$ be hypersurfaces in $\mathbb{P}^n(\mathbb{C})$ in N-subgeneral position with respect to V and $\deg Q_i = d_i$ ($1 \leq i \leq q$). Let d be the least common multiple of d_i, $d = \operatorname{lcm}(d_1, \ldots, d_q)$. Let f and g be meromorphic mappings of \mathbb{C}^m into V which are nondegenerate over $I_d(V)$. Assume that

(i) $\dim(\operatorname{Zero} Q_i(f) \cap \operatorname{Zero} Q_j(f)) \leq m - 2$ for every $1 \leq i < j \leq q$,

(ii) $f = g$ on $\bigcup_{i=1}^q (\operatorname{Zero} Q_i(f) \cup \operatorname{Zero} Q_i(g))$.

Then the following assertions hold:

a) If $q > \frac{2H_V(d) - 1}{d} + \frac{(2N - k + 1)H_V(d)}{k+1}$, then $f = g$.

b) If $q > \frac{2(2N - k + 1)H_V(d)}{k+1}$, then there exist $N + 1$ hypersurfaces Q_{i_0}, \ldots, Q_{i_N}, $1 \leq i_0 < \cdots < i_N \leq q$, such that

$$\frac{Q_{i_0}(f)}{Q_{i_0}(g)} = \cdots = \frac{Q_{i_N}(f)}{Q_{i_N}(g)}.$$
N.B. (i) Since the truncated level of the counting function in Theorem 2 is better, the number of hypersurfaces in Theorem 3 is much smaller than the previous results on unicity of meromorphic mappings sharing hypersurfaces (cf. [4, 5]).

(ii) In the case where \(d = 1 \), Theorem 3b) immediately gives us the following uniqueness theorem for meromorphic mappings into \(\mathbb{P}^n(\mathbb{C}) \), which may be linearly degenerated, sharing few hyperplanes in general position.

Corollary 1 Let \(\{H_i\}_{i=1}^q \) be hyperplanes in \(\mathbb{P}^n(\mathbb{C}) \) in general position. Let \(f \) and \(g \) be meromorphic mappings of \(\mathbb{C}^m \) into \(\mathbb{P}^n(\mathbb{C}) \). Assume that

(i) \(\dim(\operatorname{Zero} H_i(f) \cap \operatorname{Zero} H_j(f)) \leq m - 2 \) for every \(1 \leq i < j \leq q \).

(ii) \(f = g \) on \(\bigcup_{i=1}^q (\operatorname{Zero} H_i(f) \cup \operatorname{Zero} H_i(g)) \).

Let \(k \) be the dimension of the smallest linear subspace containing \(f(\mathbb{C}^m) \). If \(q > 2(2n - k + 1) \), then \(f = g \).

We see that if \(f \) is linear nondegenerate, i.e., \(k = n \), then the condition of the above corollary is satisfied with \(q = 2n + 3 \). Therefore, Corollary 1 is a natural extension of the uniqueness for linear nondegenerate meromorphic mappings sharing \(2n + 3 \) hyperplanes in \(\mathbb{P}^n(\mathbb{C}) \) in general position given by Yan-Chen [3].

Proof Let \(f = (f_0 : \cdots : f_n) \) and \(g = (g_0 : \cdots : g_n) \) be two reduced representations of \(f \) and \(g \), respectively. Let \(V(f) \) and \(V(g) \) be the smallest linear subspaces of \(\mathbb{P}^n(\mathbb{C}) \) containing \(f(\mathbb{C}^m) \) and \(g(\mathbb{C}^m) \), respectively. It is easy to see that \(V(f) \) (resp. \(V(g) \)) is the intersection of all hyperplanes which contain \(f(\mathbb{C}^m) \) (resp. \(g(\mathbb{C}^m) \)). We may consider \(f \) (resp. \(g \)) as a meromorphic mapping into \(V(f) \) (resp. \(V(g) \)) which is nondegenerate over \(I_1(V(f)) \) (resp. \(I_1(V(g)) \)). Of course, \(H_1, \ldots, H_q \) are in \(N \)-subgeneral position with respect to both \(V(f) \) and \(V(g) \).

Now let \(H \) be a hyperplane in \(\mathbb{P}^n(\mathbb{C}) \) such that \(f(\mathbb{C}^m) \subset H \). We denote again by \(H \) the homogeneous linear form defining the hyperplane \(H \). Suppose that \(g(\mathbb{C}^m) \not\subset H \), i.e., \(H(g) \neq 0 \). Then we have \(H(g) = H(f) = 0 \) on \(\bigcup_{i=1}^q \operatorname{Zero} H_i(g) \), and hence,

\[
T_g(r) \geq N_{H(g)}(r) \geq \sum_{i=1}^q N_{H_i(g)}^{[1]}(r) + o(T_g(r))
\]

\[
\geq \frac{1}{H_{V(g)}(1) - 1} \sum_{i=1}^q N_{H_i(g)}^{[H_{V(g)}(1) - 1]}(r) + o(T_g(r))
\]

\[
\geq \frac{1}{H_{V(g)}(1) - 1} (q - 2n + (H_{V(g)} - 1) - 1) T_g(r) + o(T_g(r))
\]

\[
\geq \frac{H_{V(g)} + 1}{H_{V(g)} - 1} T_g(r) + o(T_g(r))
\]

(here, note that \(H_{V(g)}(1) - 1 = \dim V(g) \) and \(q \geq 2n + 3 \). This is a contradiction. Therefore, \(g(\mathbb{C}^m) \subset H \). This implies that \(g(\mathbb{C}^m) \subset V(f) \), and hence, \(V(g) \subset V(f) \). Similarly, we have \(V(f) \subset V(g) \). Then \(V(f) = V(g) = V \).

We see that \(q > \frac{2(2n-k+1)}{H_1(1)} \), since \(H_1(1) = k + 1 \). Therefore, from Theorem 3b), there exist \(n + 1 \) hyperplanes \(H_{i_0}, \ldots, H_{i_n}, 1 \leq i_0 < \cdots < i_n \leq q \) such that

\[
\frac{H_{i_0}(f)}{H_{i_0}(g)} = \cdots = \frac{H_{i_n}(f)}{H_{i_n}(g)}.
\]

This implies that \(f = g \).
2 Basic Notions and Auxiliary Results from Nevanlinna Theory

2.1 Counting Function of Divisor

We set \(|||z|| = (|z_1|^2 + \cdots + |z_m|^2)^{1/2} \) for \(z = (z_1, \ldots, z_m) \in \mathbb{C}^m \) and define
\[
B(r) := \{ z \in \mathbb{C}^m : |||z|| < r \}, \quad S(r) := \{ z \in \mathbb{C}^m : |||z|| = r \} \quad (0 < r < \infty).
\]
Define
\[
v_{m-1}(z) := (dd^c|||z||^2)^{m-1} \quad \text{and} \quad \sigma_m(z) := d^c \log |||z||^2 \wedge (dd^c \log |||z||^2)^{m-1} \text{ on } \mathbb{C}^m \setminus \{0\}.
\]
For a divisor \(\nu \) on \(\mathbb{C}^m \) and for a positive integer \(M \) or \(M = \infty \), define the counting function of \(\nu \) by
\[
\nu^{[M]}(z) = \min\{M, \nu(z)\},
\]
\[
n(t) = \begin{cases} \int_{|z| \leq t} \nu(z)v_{m-1} & \text{if } m \geq 2, \\ \sum_{|z| \leq t} \nu(z) & \text{if } m = 1. \end{cases}
\]
Similarly, we define \(n^{[M]}(t) \).

Define
\[
N(r, \nu) = \int_1^r \frac{n(t)}{t^{2m-1}} dt \quad (1 < r < \infty).
\]
Similarly, define \(N(r, \nu^{[M]}) \) and denote it by \(N^{[M]}(r, \nu) \).

Let \(\varphi : \mathbb{C}^m \to \mathbb{C} \) be a meromorphic function. Denote by \(\nu_{\varphi} \) the zero divisor of \(\varphi \).

Define
\[
N_{\varphi}(r) = N(r, \nu_{\varphi}), \quad N_{\varphi}^{[M]}(r) = N^{[M]}(r, \nu_{\varphi}).
\]

For brevity, we will omit the character \([M]\) if \(M = \infty \).

2.2 Characteristic Function of Meromorphic Mapping

Let \(f : \mathbb{C}^m \to \mathbb{P}^n(\mathbb{C}) \) be a meromorphic mapping. For arbitrarily fixed homogeneous coordinates \((w_0 : \cdots : w_n) \) on \(\mathbb{P}^n(\mathbb{C}) \), we take a reduced representation \(f = (f_0 : \cdots : f_n) \), which means that each \(f_i \) is a holomorphic function on \(\mathbb{C}^m \) and \(f(z) = (f_0(z) : \cdots : f_n(z)) \) outside the analytic subset \{ \(f_0 = \cdots = f_n = 0 \) \} of codimension \(\geq 2 \). Set \(||f|| = (|f_0|^2 + \cdots + |f_n|^2)^{1/2} \).

The characteristic function of \(f \) is defined by
\[
T_f(r) = \int_{S(r)} \log ||f|| \sigma_m - \int_{S(1)} \log ||f|| \sigma_m.
\]

2.3 Proximity Function of Meromorphic Function

Let \(\varphi \) be a nonzero meromorphic function on \(\mathbb{C}^m \), which is occasionally regarded as a meromorphic map into \(\mathbb{P}^1(\mathbb{C}) \). The proximity function of \(\varphi \) is defined by
\[
m(r, \varphi) = \int_{S(r)} \log \max(|\varphi|, 1) \sigma_m.
\]
The Nevanlinna’s characteristic function of \(\varphi \) is defined as follows:

\[
T(r, \varphi) = N_{\varphi}(r) + m(r, \varphi).
\]

Then

\[
T_{\varphi}(r) = T(r, \varphi) + O(1).
\]

The function \(\varphi \) is said to be small (with respect to \(f \)) if \(||T_{\varphi}(r)|| = o(T_f(r)) \). Here, by the notation “\(||P|| \)” we mean the assertion \(P \) holds for all \(r \in [0, \infty) \) excluding a Borel subset \(E \) of the interval \([0, \infty) \) with \(\int_E dr < \infty \).

2.4 Lemma on Logarithmic Derivative (see [10, Lemma 3.11])

Let \(f \) be a nonzero meromorphic function on \(\mathbb{C}^m \). Then

\[
\left| m\left(r, \frac{D^{\alpha}(f)}{f} \right) \right| = O(\log^+ T(r, f)) \quad (\alpha \in \mathbb{Z}^m_+).
\]

Repeating the argument in [6, Proposition 4.5], we have the following.

2.5 Proposition

Let \(\Phi_0, \ldots, \Phi_k \) be meromorphic functions on \(\mathbb{C}^m \) such that \(\{\Phi_0, \ldots, \Phi_k\} \) are linearly independent over \(\mathbb{C} \). Then there exists an admissible set

\[
\{\alpha_i = (\alpha_{i1}, \ldots, \alpha_{im})\}_{i=0}^k \subset \mathbb{Z}^m_+
\]

with \(|\alpha_i| = \sum_{j=1}^m |\alpha_{ij}| \leq k \) \((0 \leq i \leq k)\) such that the following are satisfied:

(i) \(\{D^{\alpha_i}\Phi_0, \ldots, D^{\alpha_i}\Phi_k\}_{i=0}^k \) is linearly independent over \(\mathcal{M} \), i.e.,

\[
\det(D^{\alpha_i}\Phi_j) \neq 0.
\]

(ii) \(\det(D^{\alpha_i}(h\Phi_j)) = h^{k+1} \cdot \det(D^{\alpha_i}\Phi_j) \) for any nonzero meromorphic function \(h \) on \(\mathbb{C}^m \).

3 Generalization of Nochka Weights

Let \(V \) be a complex projective subvariety of \(\mathbb{P}^n(C) \) of dimension \(k \) \((k \leq n)\). Let \(\{Q_i\}_{i=1}^q \) be \(q \) hypersurfaces in \(\mathbb{P}^n(C) \) of the common degree \(d \), which are regarded as homogeneous polynomials in variables \((x_0, \ldots, x_n) \). We regard \(I_d(V) = \frac{H_d}{T(V) \cap H_d} \) as a complex vector space. It is easy to see that

\[
\text{rank}\{Q_i\}_{i \in R} \geq \dim V - \dim \left(\bigcap_{i \in R} Q_i \cap V \right).
\]

Set \(\dim(\emptyset) = -1 \). Then, if \(\{Q_i\}_{i=1}^q \) is in \(N \)-subgeneral position, we have

\[
\text{rank}\{Q_i\}_{i \in R} \geq \dim V - \dim \left(\bigcap_{i \in R} Q_i \cap V \right) = k + 1
\]

for any subset \(R \subset \{1, \ldots, q\} \) with \(|R| = N + 1 \).
Taking a \mathbb{C}-basis of $I_d(V)$, we may consider $I_d(V)$ as a \mathbb{C}-vector space \mathbb{C}^M with $M = H_Y(d)$.

Let $\{H_i\}_{i=1}^q$ be q hyperplanes in \mathbb{C}^M passing through the coordinate origin. Assume that each H_i is defined by the linear equation

$$a_{ij}z_1 + \cdots + a_{iM}z_M = 0,$$

where $a_{ij} \in \mathbb{C}$ ($j = 1, \ldots, M$), not all zeros. We define the vector associated with H_i by

$$v_i = (a_{i1}, \ldots, a_{iM}) \in \mathbb{C}^M.$$

For each subset $R \subset \{1, \ldots, q\}$, the rank of $\{H_i\}_{i \in R}$ is defined by

$$\text{rank}(\{H_i\}_{i \in R}) = \text{rank}(\{v_i\}_{i \in R}).$$

Recall that the family $\{H_i\}_{i=1}^q$ is said to be in N-subgeneral position if for any subset $R \subset \{1, \ldots, q\}$ with $|R| = N + 1$, $\bigcap_{i \in R} H_i = \{0\}$, i.e., $\text{rank}(\{H_i\}_{i \in R}) = M$.

By Lemmas 3.3 and 3.4 in [8], we have the following.

Lemma 1 Let $\{H_i\}_{i=1}^q$ be q hyperplanes in \mathbb{C}^{k+1} in N-subgeneral position and assume that $q > 2N - k + 1$. Then there are positive rational constants ω_i ($1 \leq i \leq q$) satisfying the following:

i) $0 < \omega_j \leq 1$ $\forall i \in \{1, \ldots, q\}$,

ii) Setting $\tilde{\omega} = \max_{j \in Q} \omega_j$, one gets

$$\sum_{j=1}^q \omega_j = \tilde{\omega}(q - 2N + k - 1) + k + 1.$$

iii) $\frac{k + 1}{2N - k + 1} \leq \frac{1}{\tilde{\omega}} \leq \frac{k}{N}$.

iv) For $R \subset Q$ with $0 < |R| \leq N + 1$, then $\sum_{i \in R} \omega_i \leq \text{rank}(\{H_i\}_{i \in R})$.

v) Let $E_i \geq 1$ ($1 \leq i \leq q$) be arbitrarily given numbers. For $R \subset Q$ with $0 < |R| \leq N + 1$, there is a subset $R^o \subset R$ such that $\sum_{i \in R^o} \omega_i \leq \text{rank}(\{H_i\}_{i \in R}) = \text{rank}(\{H_i\}_{i \in R})$ and

$$\prod_{i \in R} E_i^{\omega_i} \leq \prod_{i \in R^o} E_i.$$

The above ω_j are called Nochka weights and $\tilde{\omega}$ is called Nochka constant.

Lemma 2 (cf. [2, Lemma 3.2]) Let H_1, \ldots, H_q be q hyperplanes in \mathbb{C}^M ($M \geq 2$), passing through the coordinate origin. Let k be a positive integer such that $k \leq M$. Then there exists a linear subspace $L \subset \mathbb{C}^M$ of dimension k such that $L \nsubseteq H_i$ ($1 \leq i \leq q$) and

$$\text{rank}(H_{i_1} \cap L, \ldots, H_{i_l} \cap L) = \text{rank}(\{H_{i_1}, \ldots, H_{i_l}\})$$

for every $1 \leq l \leq k$, $1 \leq i_1 < \cdots < i_l \leq q$.
Lemma 3 Let V be a complex projective subvariety of $\mathbb{P}^n(\mathbb{C})$ of dimension k ($k \leq n$). Let Q_1, \ldots, Q_q be q ($q > 2N - k + 1$) hypersurfaces in $\mathbb{P}^n(\mathbb{C})$ in N-subgeneral position with respect to V of the common degree d. Then there are positive rational constants ω_i ($1 \leq i \leq q$) satisfying the following:

i) $0 < \omega_i \leq 1$, $\forall i \in \{1, \ldots, q\}$,

ii) Setting $\tilde{\omega} = \max_{j \in Q} \omega_j$, one gets

$$\sum_{j=1}^{q} \omega_j = \tilde{\omega}(q - 2N + k - 1) + k + 1.$$

iii) $\frac{k + 1}{2N - k + 1} \leq \tilde{\omega} \leq \frac{k}{N}$.

iv) For $R \subset \{1, \ldots, q\}$ with $\sharp R = N + 1$, then $\sum_{i \in R} \omega_i \leq k + 1$.

v) Let $E_i \geq 1$ ($1 \leq i \leq q$) be arbitrarily given numbers. For $R \subset \{1, \ldots, q\}$ with $\sharp R = N + 1$, there is a subset $R^o \subset R$ such that $\sharp R^o = \text{rank}[Q_i]_{i \in R^o} = k + 1$ and

$$\prod_{i \in R^o} E_i^{\omega_i} \leq \prod_{i \in R} E_i.$$

Proof We assume that each Q_i is given by

$$\sum_{I \in \mathcal{I}_d} a_{i1} x^I = 0,$$

where $\mathcal{I}_d = \{(i_0, \ldots, i_n) \in \mathbb{N}^{n+1}_0 : i_0 + \cdots + i_n = d\}$, $I = (i_0, \ldots, i_n) \in \mathcal{I}_d$, $x^I = x_0^{i_0} \cdots x_n^{i_n}$ and $a_{i1} \in \mathbb{C}$ ($1 \leq i \leq q$, $I \in \mathcal{I}_d$). Set $Q_i^+(x) = \sum_{I \in \mathcal{I}_d} a_{i1} x^I$. Then $Q_i^+ \in H_d$.

Taking a \mathbb{C}-basis of $I_d(V)$, we may identify $I_d(V)$ with the \mathbb{C}-vector space \mathbb{C}^M, where $M = H_V(d)$. For each Q_i, denote by v_i the vector in \mathbb{C}^M which corresponds to $[Q_i^+]$ by this identification. Denote by H_i the hyperplane in \mathbb{C}^M associated with the vector v_i.

Then for each arbitrary subset $R \subset \{1, \ldots, q\}$ with $\sharp R = N + 1$, we have

$$\dim \left(\bigcap_{i \in R} Q_i \cap V \right) \geq \dim V - \text{rank}[Q_i]_{i \in R} = k - \text{rank}[H_i]_{i \in R}.$$

Hence,

$$\text{rank}[H_i]_{i \in R} \geq k - \dim \left(\bigcap_{i \in R} Q_i \cap V \right) \geq k - (-1) = k + 1.$$

By Lemma 2, there exists a linear subspace $L \subset \mathbb{C}^M$ of dimension $k + 1$ such that $L \not\subset H_i$ ($1 \leq i \leq q$) and

$$\text{rank}[H_i \cap L, \ldots, H_i \cap L] = \text{rank}[H_i, \ldots, H_i]$$

for every $1 \leq l \leq k + 1$, $1 \leq i_1 < \cdots < i_l \leq q$. Since $\text{rank}[H_i]_{i \in R} \geq k + 1$, it implies that for any subset $R \subset \{1, \ldots, q\}$ with $\sharp R = N + 1$, there exists a subset $R' \subset R$ with $\sharp R' = k + 1$ and $\text{rank}[H_i]_{i \in R'} = k + 1$. Hence, we get

$$\text{rank}[H_i \cap L]_{i \in R} \geq \text{rank}[H_i \cap L]_{i \in R'} = \text{rank}[H_i]_{i \in R'} = k + 1.$$

This yields that $\text{rank}[H_i \cap L]_{i \in R} = k + 1$, since $\dim L = k + 1$. Therefore, $\{H_i \cap L\}_{i=1}^q$ is a family of q hyperplanes in L in N-subgeneral position.
By Lemma 1, there exist Nochka weights \(\{ \omega_i \}_{i=1}^q \) for the family \(\{ H_i \cap L \}_{i=1}^q \) in \(L \). It is clear that assertions (i)–(iv) are automatically satisfied. Now for \(R \subset \{ 1, \ldots, q \} \) with \#R = N + 1, by Lemma 1(v) we have
\[
\sum_{i \in R} \omega_i \leq \text{rank}\{ H_i \cap L \}_{i \in R} = k + 1
\]
and there is a subset \(R^0 \subset R \) such that:
\[
\#R^0 = \text{rank}\{ H_i \cap L \}_{i \in R^0} = k + 1,
\]
\[
\prod_{i \in R^0} E_i^{\omega_i} \leq \prod_{i \in R^0} E_i \forall E_i \geq 1 (1 \leq i \leq q),
\]
\[
\text{rank}\{ Q_i \}_{i \in R^0} = \text{rank}\{ H_i \cap L \}_{i \in R^0} = k + 1.
\]
Hence, the assertion (v) is also satisfied. The lemma is proved. \(\square \)

4 Second Main Theorems for Hypersurfaces

Let \(\{ Q_i \}_{i \in R} \) be a set of hypersurfaces in \(\mathbb{P}^n(\mathbb{C}) \) of the common degree \(d \). Assume that each \(Q_i \) is defined by
\[
\sum_{I \in \mathcal{I}_d} a_{I} x^I = 0,
\]
where \(\mathcal{I}_d = \{ (i_0, \ldots, i_n) \in \mathbb{N}_0^{n+1} : i_0 + \cdots + i_n = d \}, I = (i_0, \ldots, i_n) \in \mathcal{I}_d, x^I = x_0^{i_0} \cdots x_n^{i_n} \) and \((x_0 : \cdots : x_n)\) is homogeneous coordinates of \(\mathbb{P}^n(\mathbb{C}) \).

Let \(f : \mathbb{C}^m \longrightarrow V \subset \mathbb{P}^n(\mathbb{C}) \) be an algebraically nondegenerate meromorphic mapping into \(V \) with a reduced representation \(f = (f_0 : \cdots : f_n) \). We define
\[
Q_i(f) = \sum_{I \in \mathcal{I}_d} a_{I} f^I,
\]
where \(f^I = f_0^{i_0} \cdots f_n^{i_n} \) for \(I = (i_0, \ldots, i_n) \). Then we see that \(f^* Q_i = v_{Q_i(f)} \) as divisors.

Lemma 4 Let \(\{ Q_i \}_{i \in R} \) be a set of hypersurfaces in \(\mathbb{P}^n(\mathbb{C}) \) of the common degree \(d \) and let \(f \) be a meromorphic mapping of \(\mathbb{C}^m \) into \(\mathbb{P}^n(\mathbb{C}) \). Assume that \(\bigcap_{i \in R} Q_i \cap V = \emptyset \). Then there exist positive constants \(\alpha \) and \(\beta \) such that
\[
\alpha ||f||^d \leq \max_{i \in R} |Q_i(f)| \leq \beta ||f||^d.
\]

Proof Let \((x_0 : \cdots : x_n)\) be homogeneous coordinates of \(\mathbb{P}^n(\mathbb{C}) \). Assume that each \(Q_i \) is defined by
\[
\sum_{I \in \mathcal{I}_d} a_{I} x^I = 0.
\]
Set \(Q_i(x) = \sum_{I \in \mathcal{I}_d} a_{I} x^I \) and consider the following function
\[
h(x) = \frac{\max_{i \in R} |Q_i(x)|}{||x||^d},
\]
where \(||x|| = (\sum_{i=0}^{n} |x_i|^2)^{\frac{1}{2}} \).

Since the function \(h \) is positive continuous on \(V \), by the compactness of \(V \), there exist positive constants \(\alpha \) and \(\beta \) such that \(\alpha = \min_{x \in \mathbb{P}^n(\mathbb{C})} h(x) \) and \(\beta = \max_{x \in \mathbb{P}^n(\mathbb{C})} h(x) \). Thus,
\[
\alpha ||f||^d \leq \max_{i \in R} |Q_i(f)| \leq \beta ||f||^d.
\]
The lemma is proved. □

The following lemma is similar to Lemma 4.2 in [2] with a slight modification.

Lemma 5 (cf. [2, Lemma 4.2]) Let \(\{Q_i\}_{i=1}^{q} \) be a set of \(q \) hypersurfaces in \(\mathbb{P}^n(\mathbb{C}) \) of the common degree \(d \). Then there exist \((H_V(d) - k - 1)\) hypersurfaces \(\{T_i\}_{i=1}^{H_V(d)-k-1} \) in \(\mathbb{P}^n(\mathbb{C}) \) such that for any subset \(R \in \{1, \ldots, q\} \) with \(\sharp R = \text{rank}(\{Q_i\}_{i \in R} = k + 1 \), we get \(\text{rank}(\{Q_i\}_{i \in R} \cup \{T_i\}_{i=1}^{M-k}) = H_V(d) \).

Proof For each \(R \subset \{1, \ldots, q\} \) with \(\sharp R = \text{rank}(\{Q_i\}_{i \in R} = k + 1 \), denote by \(V_R \) the set of all vectors \(v = (v_1, \ldots, v_{H_V(d)-k-1}) \in (I_d(V))^{H_V(d)-k-1} \) such that \(\{(Q_i)_{|i \in R}, v_1, \ldots, v_{H_V(d)-k-1}\} \) is linearly dependent over \(\mathbb{C} \). Then \(V_R \) is an algebraic subset of \((I_d(V))^{H_V(d)-k-1}\). Since \(\dim I_d(V) = H_V(d) \) and \(\text{rank}(\{Q_i\}_{i \in R} = k + 1 \), there exists an element

\[
v = (v_1, \ldots, v_{H_V(d)-k-1}) \in (I_d(V))^{H_V(d)-k-1}
\]

such that the family of vectors \(\{(Q_i)_{|i \in R}, v_1, \ldots, v_{H_V(d)-k-1}\} \) is linearly independent over \(\mathbb{C} \), i.e., \(v \notin V_R \). Therefore, \(V_R \) is a proper algebraic subset of \((I_d(V))^{H_V(d)-k-1}\) for each \(R \). This implies that

\[
(I_d(V))^{H_V(d)-k-1} \setminus \bigcup_{R} V_R \neq \emptyset.
\]

Hence, there is \((T_1^+, \ldots, T_{H_V(d)-k-1}^+) \in (I_d(V))^{H_V(d)-k-1} \setminus \bigcup_{R} V_R \).

For each \(T_i^+ \), take a representation \(T_i \in H_d \) of \(T_i^+ \). Then

\[
\text{rank}(\{Q_i\}_{i \in R} \cup \{T_i\}_{i=1}^{H_V(d)-k-1}) = \text{rank}(\{Q_i\}_{i \in R} \cup \{T_i\}_{i=1}^{H_V(d)-k-1}) = H_V(d)
\]

for every subset \(R \in \{1, \ldots, q\} \) with \(\sharp R = \text{rank}(\{Q_i\}_{i \in R} = k + 1 \).

The lemma is proved. □

Proof of Theorem 2 We first prove the theorem in the case where all \(Q_i \) \((i = 1, \ldots, q) \) have the same degree \(d \). It is easy to see that there is a positive constant \(\beta \) such that \(\beta \|f\| \geq |Q_i(f)| \) for every \(1 \leq i \leq q \). Set \(Q := \{1, \ldots, q\} \). Let \(\{\omega_i\}_{i=1}^{q} \) be as in Lemma 3 for the family \(\{Q_i\}_{i=1}^{q} \). Let \(\{T_i\}_{i=1}^{M-k} \) be \((M - k)\) hypersurfaces in \(\mathbb{P}^n(\mathbb{C}) \), which satisfy Lemma 5.

Take a \(\mathbb{C} \)-basis \(\{(A_i)_{H_V(d)}\}_{i=1}^{M} \) of \(I_d(V) \), where \(A_i \in H_d \). Since \(f \) is nondegenerate over \(I_d(V) \), it implies that \(\{A_i(f) ; 1 \leq i \leq H_V(d)\} \) is linearly independent over \(\mathbb{C} \). Then there is an admissible set \(\{\alpha_1, \ldots, \alpha_{H_V(d)}\} \subset \mathbb{Z}^n_+ \) such that

\[
W \equiv \det((D^\alpha_j A_i(f)(1 \leq i \leq H_V(d)))_{1 \leq j \leq H_V(d)}) \not\equiv 0
\]

and \(|\alpha_j| \leq H_V(d) - 1 \) for all \(1 \leq j \leq H_V(d) \).

For each \(R^o = \{r_1^0, \ldots, r_{k+1}^0\} \subset \{1, \ldots, q\} \) with \(\text{rank}(\{Q_i\}_{i \in R^o} = \sharp R^o = k + 1 \), set

\[
W_{R^o} \equiv \det((D^\alpha_j Q_{r_i^0}(f)(1 \leq u \leq k + 1), D^\alpha_j T_i(f)(1 \leq l \leq H_V(d) - k - 1))_{1 \leq j \leq H_V(d)}.
\]

Since \(\text{rank}(\{Q_{r_i^0} \leq u \leq k + 1 \), \(T_i(1 \leq l \leq H_V(d) - k - 1)\) = \(H_V(d) \), there exists a nonzero constant \(C_{R^o} \) such that \(W_{R^o} = C_{R^o} \cdot W \).

We denote by \(R^o \) the family of all subsets \(R^o \) of \(\{1, \ldots, q\} \) satisfying

\[
\text{rank}(\{Q_i\}_{i \in R^o} = \sharp R^o = k + 1.
\]

Let \(z \) be a fixed point. For each \(R \subset Q \) with \(\sharp R = N + 1 \), we choose \(R^o \subset R \) such that \(R^o \in R^o \) and \(R^o \) satisfy Lemma 3(v) with respect to numbers \(\{\frac{\beta \|f(z)\|}{|Q_i(f)(z)|} \}_{i=1}^{q} \). On the
other hand, there exists $\bar{R} \subset Q$ with $\sharp\bar{R} = N + 1$ such that $|Q_i(f)(z)| \leq |Q_j(f)(z)| \forall i \in \bar{R}, j \notin \bar{R}$. Since $\bigcap_{i \in \bar{R}} Q_i = \emptyset$, by Lemma 4, there exists a positive constant $\alpha_{\bar{R}}$ such that

$$\alpha_{\bar{R}} ||f||^{d} (z) \leq \max_{i \in R} |Q_i(f)(z)|.$$

Then, we get

$$\frac{||f(z)||^{d(\sum_{i=1}^{q} \omega_i)} |W(z)|}{|Q_1^{\omega_1}(f)(z) \cdots Q_q^{\omega_q}(f)(z)|} \leq \frac{\alpha_{\bar{R}}^{-N-1} \beta^{N+1} \prod_{i \in R} (\beta ||f||^{d})^{\omega_i}}{A_R |W(z)| \cdot ||f||^{d(k+1)}(z)} \leq A_R |W(z)| \cdot ||f||^{dH_V(d)}(z) \leq B_R \prod_{i \in R_0} |Q_i(f)(z)| \prod_{i=1}^{\#R-\#\bar{R}-N+1} |T_i(f)(z)|,$$

where A_R, B_R are positive constants.

Put $S_R = B_R \prod_{i \in R_0} |Q_i(f)| \prod_{i=1}^{\#R-\#\bar{R}-N+1} |T_i(f)|$. By the lemma on logarithmic derivative, it is easy to see that

$$\int_{S(R)} \log^+ S_R(z) \sigma_m = o(T_f(r)).$$

Therefore, for each $z \in \mathbb{C}^m$, we have

$$\log \left(\frac{||f(z)||^{d(\sum_{i=1}^{q} \omega_i)} |W(z)|}{|Q_1^{\omega_1}(f)(z) \cdots Q_q^{\omega_q}(f)(z)|} \right) \leq \log \left(||f||^{dH_V(d)}(z) \right) + \sum_{R \subset Q, \sharp R = N+1} \log^+ S_R.$$

Since $\sum_{i=1}^{q} \omega_i = \sum_{i=1}^{q} \omega_i (q - 2N + k - 1) + k + 1$ and by integrating both sides of the above inequality over $S(r)$, we have

$$||d\left(q - 2N + k - 1 - \frac{H_V(d) - k - 1}{\omega} \right)T_f(r) \leq \sum_{i=1}^{q} \frac{\omega_i}{\omega} N_{Q_i(f)}(r) - \frac{1}{\omega} N_W(r) + o(T_f(r)).$$

Claim $\sum_{i=1}^{q} \omega_i N_{Q_i(f)}(r) - N_W(r) \leq \sum_{i=1}^{q} \omega_i N_{Q_i(f)}^{[H_V(d)-1]}(r)$.

Indeed, let z be a zero of some $Q_i(f)(z)$ and $z \notin I(f) = \{f_0 = \cdots = f_n = 0\}$. Since $\{Q_i\}_{i=1}^{q}$ is in N-subgeneral position, z is not zero of more than N functions $Q_i(f)$. Without loss of generality, we may assume that z is zero of $Q_i(f)$ for each $1 \leq i \leq k \leq N$ and z is not zero of $Q_i(f)$ for each $i > N$. Put $R = \{1, \ldots, N + 1\}$. Choose $R^1 \subset R$ such that $\sharp R^1 = \text{rank} \{Q_i\}_{i \in R^1} = k + 1$ and R^1 satisfies Lemma 3(v) with respect to numbers $\{e^{\max_{r \in R} (d - H_V(d) + 1.0)} \}_{i=1}^{q}$. Then we have

$$\sum_{i \in R^1} \omega_i \max_{r \in R^1} \{v_{Q_i(f)}(z) - H_V(d) + 1, 0 \} \leq \sum_{i \in R^1} \max_{r \in R^1} \{v_{Q_i(f)}(z) - H_V(d) + 1, 0 \}.$$

This yields that

$$v_W(z) = v_{W^l}(z) \geq \sum_{i \in R^1} \max_{r \in R^1} \{v_{Q_i(f)}(z) - H_V(d) + 1, 0 \} \geq \sum_{i \in R} \omega_i \max_{r \in R} \{v_{Q_i(f)}(z) - H_V(d) + 1, 0 \}.$$
Hence,
\[
\sum_{i=1}^{q} \omega_i v_{Q_i(f)}(z) - v_W(z) = \sum_{i \in R} \omega_i v_{Q_i(f)}(z) - v_W(z)
\]
\[
= \sum_{i \in R} \omega_i \min\{v_{Q_i(f)}(z), H_V(d) - 1\}
\]
\[
+ \sum_{i \in R} \omega_i \max\{v_{Q_i(f)}(z) - H_V(d) + 1, 0\} - v_W(z)
\]
\[
\leq \sum_{i \in R} \omega_i \min\{v_{Q_i(f)}(z), H_V(d) + 1\}
\]
\[
= \sum_{i=1}^{q} \omega_i \min\{v_{Q_i(f)}(z), M\}.
\]

Integrating both sides of this inequality, we get
\[
\sum_{i=1}^{q} \omega_i N_{Q_i(f)}(r) - N_W(r) \leq \sum_{i=1}^{q} \omega_i N^{[H_V(d) - 1]}_{Q_i(f)}(r).
\]

This proves the claim.

Combining the claim and (1), we obtain
\[
\| d(q - 2N + k - 1 - \frac{H_V(d) - k - 1}{\tilde{\omega}})T_f(r) \|
\]
\[
\leq \sum_{i=1}^{q} \frac{\omega_i}{\tilde{\omega}} N^{[H_V(d) - 1]}_{Q_i(f)}(r) + o(T_f(r))
\]
\[
\leq \sum_{i=1}^{q} N^{[H_V(d) - 1]}_{Q_i(f)}(r) + o(T_f(r)).
\]

Since \(\tilde{\omega} \geq \frac{k+1}{2N-k+1} \), the above inequality implies that
\[
\left\| d \left(q - \frac{(2N - k + 1)H_V(d)}{k + 1} \right) T_f(r) \right\| \leq \sum_{i=1}^{q} N^{[H_V(d) - 1]}_{Q_i(f)}(r) + o(T_f(r)).
\]

Hence, the theorem is proved in the case where all \(Q_i \) have the same degree.

We now prove the theorem in the general case where \(\deg Q_i = d_i \). Applying the above case for \(f \) and the hypersurfaces \(Q^d_{i,i} \) \((i = 1, \ldots, q) \) of the common degree \(d \), we have
\[
\left\| \left(q - \frac{(2N - k + 1)H_V(d)}{k + 1} \right) T_f(r) \right\| \leq \frac{1}{d} \sum_{i=1}^{q} N^{[H_V(d) - 1]}_{Q^d_{i,i}}(r) + o(T_f(r))
\]
\[
\leq \sum_{i=1}^{q} \frac{1}{d_i} N^{[H_V(d) - 1]}_{Q_i(f)}(r) + o(T_f(r))
\]
\[
= \sum_{i=1}^{q} \frac{1}{d_i} N^{[H_V(d) - 1]}_{Q_i(f)}(r) + o(T_f(r)).
\]

The theorem is proved.
5 Unicity of Meromorphic Mappings Sharing Hypersurfaces

Lemma 6 Let \(f \) and \(g \) be nonconstant meromorphic mappings of \(\mathbb{C}^m \) into a complex projective subvariety \(V \) of \(\mathbb{P}^n(\mathbb{C}) \), \(\dim V = k \) (\(k \leq n \)). Let \(Q_i \) (\(i = 1, \ldots, q \)) be moving hypersurfaces in \(\mathbb{P}^n(\mathbb{C}) \) in \(N \)-subgeneral position with respect to \(V \), \(\deg Q_i = d_i, N \geq n \).

Put \(d = \text{lcm}(d_1, \ldots, d_q) \) and \(M = \binom{n+d}{n} - 1 \). Assume that both \(f \) and \(g \) are nondegenerate over \(I_d(V) \). Then \(\| T_f(r) = O(T_g(r)) \) and \(\| T_g(r) = O(T_f(r)) \) if \(q > \frac{(2N-k+1)H_V(d)}{k+1} \).

Proof Using Theorem 2 for \(f \), we have

\[
\left\| f - \frac{(2N-k+1)H_V(d)}{k+1} \right\| T_f(r) \\
\leq \sum_{i=1}^{q} \frac{H_V(d)}{d_i} N^{[1]}_{Q_i(f)}(r) + o(T_f(r)) \\
\leq \sum_{i=1}^{q} \frac{H_V(d) - 1}{d_i} N^{[1]}_{Q_i(f)}(r) + o(T_f(r)) \\
= \sum_{i=1}^{q} \frac{H_V(d) - 1}{d_i} N^{[1]}_{Q_i(g)}(r) + o(T_f(r)) \\
\leq q(H_V(d) - 1) T_g(r) + o(T_f(r)).
\]

Hence, \(\| T_f(r) = O(T_g(r)) \). Similarly, we get \(\| T_g(r) = O(T_f(r)) \). \(\square \)

Proof of Theorem 3 Assume that \(f = (f_0 : \cdots : f_n) \) and \(g = (g_0 : \cdots : g_n) \) are reduced representations of \(f \) and \(g \), respectively. Replacing \(Q_i \) by \(Q_i^{d_i} \) if necessary, without loss of generality, we may assume that \(d_i = d \) for all \(1 \leq i \leq q \).

(a) By Lemma 6, we have \(\| T_f(r) = O(T_g(r)) \) and \(\| T_g(r) = O(T_f(r)) \). Suppose that \(f \neq g \). Then there exist two indices \(s, t \) with \(0 \leq s < t \leq n \) such that \(H := f_s g_t - f_t g_s \neq 0 \). By the assumption (ii) of the theorem, we have \(H = 0 \) on \(\bigcup_{i=1}^{d_i} (\text{Zero } Q_i(f) \cup \text{Zero } Q_i(g)) \). Therefore, we have

\[
\nu^0_H \geq \sum_{i=1}^{q} \min\{1, \nu^0_{Q_i(f)}\}
\]

outside an analytic subset of codimension at least two. It follows that

\[
N_H(r) \geq \sum_{i=1}^{q} N_{Q_i(f)}^{[1]}(r). \tag{2}
\]

On the other hand, by the definition of the characteristic function and by the Jensen formula, we have

\[
N_H(r) = \int_{S(r)} \log |f_s g_t - f_t g_s| \sigma_m \\
\leq \int_{S(r)} \log \| f \| \sigma_m + \int_{S(r)} \log \| g \| \sigma_m \\
= T_f(r) + T_g(r).
\]
Combining this and (2), we obtain
\[T_f(r) + T_g(r) \geq \sum_{i=1}^{q} N_{Q_i(f)}^{[1]}(r). \]

Similarly, we have
\[T_f(r) + T_g(r) \geq \sum_{i=1}^{q} N_{Q_i(g)}^{[1]}(r). \]

Summing up both sides of the above two inequalities, we have
\[2(T_f(r) + T_g(r)) \geq \sum_{i=1}^{q} N_{Q_i(f)}^{[1]}(r) + \sum_{i=1}^{q} N_{Q_i(g)}^{[1]}(r). \] (3)

From (3) and applying Theorem 2 for \(f \) and \(g \), we have
\[2(T_f(r) + T_g(r)) \geq d \left(q - \frac{(2N - k + 1)H_V(d)}{k + 1} \right) (T_f(r) + T_g(r)) + o(T_f(r) + T_g(r)). \]

Letting \(r \to +\infty \), we get
\[2 \geq d \left(q - \frac{(2N - k + 1)H_V(d)}{k + 1} \right), \]
i.e.,
\[q \leq \frac{2(H_V(d) - 1) + (2N - k + 1)H_V(d)}{d}. \]

This is a contradiction. Hence, \(f = g \). The assertion (a) is proved.

(b) Again, by Lemma 6, we have \(||T_f(r) = O(T_g(r)) \) and \(||T_g(r) = O(T_f(r)) \).

Suppose that the assertion (b) of the theorem does not hold.

By changing indices if necessary, we may assume that
\[\begin{align*}
\frac{Q_1(f)}{Q_1(g)} &= \cdots = \frac{Q_{k_1}(f)}{Q_{k_1}(g)} & \neq & \frac{Q_{k_1+1}(f)}{Q_{k_1+1}(g)} &= \cdots = \frac{Q_{k_2}(f)}{Q_{k_2}(g)} \\
\neq & \frac{Q_{k_2+1}(f)}{Q_{k_2+1}(g)} &= \cdots = \frac{Q_{k_3}(f)}{Q_{k_3}(g)} & \neq & \frac{Q_{k_3+1}(f)}{Q_{k_3+1}(g)} &= \cdots = \frac{Q_{k_4}(f)}{Q_{k_4}(g)},
\end{align*} \]

where \(k_s = q \).

Since the assertion (b) of the theorem does not hold, the number of elements of each group is at most \(N \). For each \(1 \leq i \leq q \), we set
\[\sigma(i) = \begin{cases}
i + N & \text{if } i + N \leq q, \\
i + N - q & \text{if } i + N > q
\end{cases} \]
and
\[P_i = Q_i(f)Q_{\sigma(i)}(g) - Q_i(g)Q_{\sigma(i)}(f). \]
Then $Q_i(f)$ and $Q_{\sigma(i)}(f)$ belong to two distinct groups, and hence, $P_i \neq 0$ for every $1 \leq i \leq q$. It is easy to see that

$$v_P(z) \geq \min\{v_{Q_i(f)}(z), v_{Q_i(g)}(z)\} + \min\{v_{Q_{\sigma(i)}(f)}(z), v_{Q_{\sigma(i)}(g)}(z)\}$$

$$+ \sum_{j=1}^{q} \min\{v_{Q_j(f)}(z), 1\}$$

$$\geq \sum_{j=1, \sigma(i)} \left(\min\{v_{Q_j(f)}(z), H_V(d) - 1\} + \min\{v_{Q_j(g)}(z), H_V(d) - 1\} \right)$$

$$- (H_V(d) - 1) \min\{v_{Q_j(f)}(z), 1\} + \sum_{j=1}^{q} \min\{v_{Q_j(f)}(z), 1\}$$

for all z in \mathbb{C}^m.

Integrating both sides of this inequality, we get

$$\| N_{P_i}(r) \| \geq \sum_{j=1, \sigma(i)} \left(N_{Q_j(f)}^{[H_V(d)-1]}(r) + N_{Q_j(g)}^{[H_V(d)-1]}(r) - (H_V(d) - 1)N_{Q_j(f)}^{[1]}(r) \right)$$

$$+ \sum_{j=1}^{q} N_{Q_j(f)}^{[1]}(r). \quad (4)$$

Repeating the same argument as in the proof of Theorem 3, by Jensen’s formula and by the definition of the characteristic function, we have

$$\| N_{P_i}(r) \| \leq d(T_f(r) + T_g(r)) \quad (5)$$

From (4) and (5), we get

$$\| d(T_f(r) + T_g(r)) \| \geq \sum_{j=1, \sigma(i)} \left(N_{Q_j(f)}^{[H_V(d)-1]}(r) + N_{Q_j(g)}^{[H_V(d)-1]}(r) - (H_V(d) - 1)N_{Q_j(f)}^{[1]}(r) \right)$$

$$\quad + \sum_{j=1}^{q} N_{Q_j(f)}^{[1]}(r).$$

Summing-up both sides of this inequality over all $1 \leq i \leq q$, we obtain

$$\| dq(T_f(r) + T_g(r)) \| \geq 2 \sum_{j=1}^{q} \left(N_{Q_j(f)}^{[H_V(d)-1]}(r) + N_{Q_j(g)}^{[H_V(d)-1]}(r) \right) + (q - 2H_V(d)) \sum_{j=1}^{q} N_{Q_j(f)}^{[1]}(r)$$

$$\quad \geq 2d \left(q - \frac{2N - k + 1}{k + 1} H_V(d) \right) \left(T_f(r) + T_g(r) \right) + o(T_f(r)).$$

Letting $r \rightarrow +\infty$, we get

$$dq \geq 2d \left(q - \frac{2N - k + 1}{k + 1} H_V(d) \right),$$

i.e.,

$$q \leq \frac{2(2N - k + 1) H_V(d)}{k + 1}.$$

This is a contradiction.

Hence, the assertion (b) holds. The theorem is proved. \qed
Acknowledgments This work was completed while the first author was staying at the Vietnam Institute for Advanced Study in Mathematics (VIASM). He would like to thank the Institute for the support.

This research is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.04-2015.03.

References

1. An, T.T.H., Phuong, H.T.: An explicit estimate on multiplicity truncation in the second main theorem for holomorphic curves encountering hypersurfaces in general position in projective space. Houston J. Math. 35, 775–786 (2009)
2. An, D.P., Quang, S.D., Thai, D.D.: The second main theorem for meromorphic mappings into a complex projective space. Acta. Math. Vietnam. 38(1), 187–205 (2013)
3. Chen, Z., Yan, Q.: Uniqueness theorem of meromorphic mappings into \(\mathbb{P}^n(C)\) sharing \(2N + 3\) hyperplanes regardless of multiplicities. Internat. J. Math. 20, 717–726 (2009)
4. Dulock, M., Ru, M.: A uniqueness theorem for holomorphic curves sharing hypersurfaces. Complex Var. Elliptic Equ. 53, 797–802 (2008)
5. Dethloff, G., Tan, T.V.: A uniqueness theorem for meromorphic maps with moving hypersurfaces. Publ. Math. Debrecen. 78, 347–357 (2011)
6. Fujimoto, H.: Non-integrated defect relation for meromorphic maps of complete Kähler manifolds into \(\mathbb{P}^{N_1}(C) \times \cdots \times \mathbb{P}^{N_k}(C)\). Jpn. J. Math. 11, 233–264 (1985)
7. Nochka, E.I.: On the theory of meromorphic functions. Sov. Math. Dokl. 27, 377–381 (1983)
8. Noguchi, J.: A note on entire pseudo-holomorphic curves and the proof of Cartan-Nochka’s theorem. Kodai Math. J. 28, 336–346 (2005)
9. Ru, M.: Holomorphic curves into algebraic varieties. Ann. Math. 169, 255–267 (2009)
10. Shiffman, B.: Introduction to the Carlson-Griffiths equidistribution theory. Lect. Notes Math. 981, 44–89 (1983)