Asymptotics of a vanishing period: the quotient themes of a given fresco.

Daniel Barlet

Abstract

In this paper we introduce the word ”fresco” to denote a $[\lambda]-$primitive monogenic geometric (a,b)-module. The study of this ”basic object” (generalized Brieskorn module with one generator) which corresponds to the minimal filtered (regular) differential equation satisfied by a relative de Rham cohomology class, began in [B.09] where the first structure theorems are proved. Then in [B.10] we introduced the notion of theme which corresponds in the $[\lambda]-$primitive case to frescos having a unique Jordan-Hölder sequence. Themes correspond to asymptotic expansion of a given vanishing period, so to the image of a fresco in the module of asymptotic expansions. For a fixed relative de Rham cohomology class (for instance given by a smooth differential form $d-$closed and $df-$closed) each choice of a vanishing cycle in the spectral eigenspace of the monodromy for the eigenvalue $\exp(-2i\pi.\lambda)$ produces a $[\lambda]-$primitive theme, which is a quotient of the fresco associated to the given relative de Rham class itself. So the problem to determine which theme is a quotient of a given fresco is important to deduce possible asymptotic expansions of the various vanishing period integrals associated to a given relative de Rham class when we change the choice of the vanishing cycle.

In the appendix we prove a general existence result which naturally associate a fresco to any relative de Rham cohomology class of a proper holomorphic function of a complex manifold onto a disc.

AMS Classification. 32 S 25, 32 S 40, 32 S 50.

Key words. Theme, fresco, (a,b)-module, asymptotic expansion, vanishing period.

*Barlet Daniel, Institut Elie Cartan UMR 7502 Nancy-Université, CNRS, INRIA et Institut Universitaire de France, BP 239 - F - 54506 Vandœuvre-lès-Nancy Cedex.France. e-mail : barlet@iecn.u-nancy.fr
1 Introduction

Let $f : X \to D$ be an holomorphic function on a connected complex manifold. Assume that $\{df = 0\} \subset \{f = 0\} := X_0$. We consider X as a degenerating family of complex manifolds parametrized by $D^* := D \setminus \{0\}$ with a singular member X_0 at the origin of D. Let ω be a smooth $(p + 1)$–differential form on X satisfying $d\omega = 0 = df \wedge \omega$. Then in many interesting cases (see for instance [JAG.08] , [B.III] for the case of a function with 1-dimensional singular set and the Appendix for the proper case) the relative family of de Rham cohomology classes induced on the fibers $X_s, s \in D^*$ of f by ω/df is solution of a minimal filtered differential equation defined from the Gauss-Manin connexion of f. This object, called a fresco is a monogenic regular (a,b)-module satisfying an extra condition, called ”geometric”, which encodes simultaneously the regularity at 0 of the Gauss-Manin connexion, the monodromy theorem and B. Malgrange’s positivity theorem.
We study the structure of such an object in order to determine the possible quotient themes of a given fresco. Such a theme corresponds to a possible asymptotic expansion of vanishing periods constructed from ω by choosing a vanishing cycle $\gamma \in H_p(X_{s_0}, \mathbb{C})$ and putting

$$F_\gamma(s) := \int_{\gamma_s} \omega/df$$

where γ_s is the (multivalued) horizontal family of cycles defined from γ in the fibers of f (see [M.74]).

We obtain a rather precise description of the themes of these vanishing periods in term of the structure of the fresco associated to ω.

We give in the Appendix the existence theorem of the fresco associated to a smooth d-closed and df-closed form in the case of a proper holomorphic function on a complex manifold. This key result was written in the preprint [B.08] and was not yet published.

It is also interesting to indicate to the reader that he may find some "algebraic" explicit computations in [B.09] of the fresco generated some monomial in the Brieskorn module of the isolated singularity $x^5 + y^5 + x^2.y^2$ which is one of the simplest example with a not semi-simple monodromy.

2 Some known facts.

2.1 Regular and geometric (a,b)-modules.

The main purpose of this paper is to give a precise description of the structure of a $[\lambda]-$primitive monogenic and geometric (a,b)-module ; we shall call such an object a $[\lambda]-$primitive fresco. It corresponds to the $[\lambda]-$primitive part of the minimal filtered differential equation satisfied by a relative de Rham cohomology class as indicate in the introduction.

Let us first recall the definition of an (a,b)-module1.

Définition 2.1.1 An (a,b)-module E is a free finite rank $\mathbb{C}[[b]]$-module endowed with an \mathbb{C}-linear map $a : E \rightarrow E$ which satisfies the following two conditions :

- The commutation relation $a.b - b.a = b^2$.
- The map a is continuous for the b-adic topology of E.

Remark that these two conditions imply that for any $S \in \mathbb{C}[[b]]$ we have

$$a.S(b) = S(b).a + b^2.S'(b)$$

1For more details on these basic facts, see [B.93]
where \(S' \) is defined via the usual derivation on \(\mathbb{C}[[b]] \). For a given free rank \(k \) \(\mathbb{C}[[b]] \)-module with basis \(e_1, \ldots, e_k \), to define a structure of \((a,b)\)-module it is enough to prescribe (arbitrarily) the values of \(a \) on \(e_1, \ldots, e_k \).

An alternative way to define \((a,b)\)-modules is to consider the \(\mathbb{C} \)-algebra

\[
\tilde{A} := \left\{ \sum_{\nu=0}^{\infty} P_\nu(a).b^\nu \right\}
\]

where the \(P_\nu \) are polynomials in \(\mathbb{C}[z] \) and where the product by \(a \) is left and right continuous for the \(b \)-adic filtration and satisfies the commutation relation \(a.b - b.a = b^2 \).

Then a left \(\tilde{A} \)-module which is free and finite rank on the subalgebra \(\mathbb{C}[[b]] \subset \tilde{A} \) is an \((a,b)\)-module and conversely.

An \((a,b)\)-module \(E \) has a **simple pole** when we have \(a.E \subset b.E \) and it is **regular** when it is contained in a simple pole \((a,b)\)-module. The regularity is equivalent to the finiteness on \(\mathbb{C}[[b]] \) of the saturation \(E^2 \) of \(E \) by \(b^{-1}.a \) in \(E \otimes_{\mathbb{C}[[b]]} \mathbb{C}[[b]][b^{-1}] \).

- Submodules and quotients of regular \((a,b)\)-modules are regular.

Another important property of regular \((a,b)\)-module is the existence of Jordan-Hölder sequences (J-H. sequences for short).

Recall first that any regular rank 1 \((a,b)\)-module is characterized up to isomorphism, by a complex number \(\lambda \) and the corresponding isomorphy class is represented by the \((a,b)\)-module \(E_\lambda := \mathbb{C}[[b]].e_\lambda \) where \(a.e_\lambda = \lambda.b.e_\lambda \), which is isomorphic to the \(\tilde{A} \)-module \(\tilde{A}/\tilde{A}.(a - \lambda.b) \).

Recall also that a submodule \(F \) of the \((a,b)\)-module \(E \) is called **normal** when \(F \cap b.E = b.F \). Normality is a necessary and sufficient condition in order that the quotient \(E/F \) is again an \((a,b)\)-module.

A **Jordan-Hölder sequence** for the rank \(k \) regular \((a,b)\)-module \(E \) is a sequence of normal submodules \(\{0\} = F_0 \subset F_1 \subset \ldots F_{k-1} \subset F_k = E \) such that the quotients \(F_j/F_{j-1} \) for \(j \in [1,k] \) are rank 1 \((a,b)\)-modules. So, to each J-H. sequence of \(E \), we may associate an ordered sequence of complex numbers \(\lambda_1, \ldots, \lambda_k \) such \(F_j/F_{j-1} \simeq E_{\lambda_j} \) for each \(j \in [1,k] \).

Existence of J-H. sequence for any regular \((a,b)\)-module and also the following lemma are proved in [B.93].

Lemma 2.1.2 Let \(E \) be a regular \((a,b)\)-module of rank \(k \). Up to a permutation, the set \(\{\exp(-2\pi.\lambda_j), j \in [1,k]\} \) is independant of the choice of the J-H. sequence of \(E \). Moreover, the sum \(\sum_{j=1}^{k} \lambda_j \) is also independant of the choice of the J-H. sequence of \(E \).

\(^2\)For \(G \subset F \subset E \) submodules with \(F \) normal in \(E \), the normality of \(G \) in \(F \) is equivalent to the normality of \(G \) in \(E \).
The Bernstein polynomial of a regular \((a, b)\)-module \(E\) of rank \(k\) is defined as the minimal polynomial of \(-b^{-1}.a\) acting on the \(k\)-dimensional \(\mathbb{C}\)-vector space \(E^2/b.E^2\). Of course, when \(E\) is the \(b\)-completion of the Brieskorn module of a non constant germ \(f : (\mathbb{C}^{n+1}, 0) \to (\mathbb{C}, 0)\) of holomorphic function with an isolated singularity, we find the "usual" (reduced) Bernstein polynomial of \(f\) (see for instance [K.76] or [Bj.93]).

We say that a regular \((a, b)\)-module \(E\) is geometric when all roots of its Bernstein polynomial are negative rational numbers. This condition which correspond to M. Kashiwara theorem [K.76], encodes the monodromy theorem and the positivity theorem of B. Malgrange (see [M.75] or the appendix of [B.84]) extending the situation of \((a, b)\)-modules deduced from the Gauss-Manin connection of an holomorphic function.

Recall that the tensor product of two \((a, b)\)-modules \(E\) and \(F\) (see [B.I]) is defined as the \(\mathbb{C}[[b]]\)-module \(E \otimes_{\mathbb{C}[[b]]} F\) with the \(\mathbb{C}\)-linear endomorphism defined by the rule \(a. (x \otimes y) = (a. x) \otimes y + x \otimes (a. y)\). The tensor product by a fix \((a, b)\)-module preserves short exact sequences of \((a, b)\)-modules and \(E_{\lambda} \otimes E_{\mu} \simeq E_{\lambda+\mu}\). So the tensor product of two regular \((a, b)\)-modules is again regular.

Définition 2.1.3 Let \(E\) be a regular \((a, b)\)-module. The dual \(E^*\) of \(E\) is defined as the \(\mathbb{C}[[b]]\)-module \(\text{Hom}_{\mathbb{C}[[b]]}(E, E_0)\) with the \(\mathbb{C}\)-linear map given by

\[
(a.\varphi)(x) = a.\varphi(x) - \varphi(a.x)
\]

where \(E_0 := \mathcal{A}/\mathcal{A}.a \simeq \mathbb{C}[[b]].e_0\) with \(a.e_0 = 0\).

It is an easy exercice to see that \(a\) acts and satisfies the identity \(a.b - b.a = b^2\) on \(E^*\) with the previous definition. We have \(E^*_\lambda \simeq E_{-\lambda}\) and the duality transforms a short exact sequence of \((a, b)\)-modules in a short exact sequence. So the dual of a regular \((a, b)\)-module is again regular. But the dual of a geometric \((a, b)\)-module is almost never geometric. To use duality in the geometric case we shall combine it with tensor product with \(E_N\) where \(N\) is a big enough rational number. Then \(E^* \otimes E_N\) is geometric and \((E^* \otimes E_N)^* \otimes E_N \simeq E\). We shall refer to this process as "twisted duality".

Define now the left \(\mathcal{A}\)-module of "formal multivalued expansions"

\[
\Xi := \bigoplus_{\lambda \in \mathbb{Q} \cap [0, 1]} \Xi_\lambda \quad \text{with} \quad \Xi_\lambda := \bigoplus_{j \in \mathbb{N}} \mathbb{C}[[b]].s^{\lambda-1}.\frac{(\text{Log } s)^j}{j!}
\]

with the action of \(a\) given by

\[
a. (s^{\lambda-1}.\frac{(\text{Log } s)^j}{j!}) = \lambda.b.s^{\lambda-1}.\frac{(\text{Log } s)^j}{j!} + b.s^{\lambda-1}.\frac{(\text{Log } s)^{j-1}}{(j-1)!}
\]

for \(j \geq 1\) and \(a.s^{\lambda-1} = \lambda.b(s^{\lambda-1})\), with, of course, the commutation relations \(a.S(b) = S(b).a + b^2.S'(b)\) for \(S \in \mathbb{C}[[b]]\).
For any geometric (a,b)-module of rank k, the vector space $\text{Hom}_{\tilde{A}}(E, \Xi)$ is of dimension k and this functor transforms short exact sequences of geometric (a,b)-modules in short exact sequences of finite dimensional vector spaces (see [B.05] for a proof).

In the case of the Brieskorn module of an isolated singularity germ of an holomorphic function f at the origin of C^{n+1} this vector space may be identified with the n-th homology group (with complex coefficients) of the Milnor’s fiber of f (see [B.05]). The correspondance is given by associating to a (vanishing) cycle γ the \tilde{A}-linear map $[\omega] \mapsto \left\lbrack \int_{\gamma_s} \omega / df \right\rbrack \in \Xi$ where $\omega \in \Omega^{n+1}_0$, γ_s is the multivalued horizontal family of n-cycles defined by γ in the fibers of f, and $[g]$ denotes the formal asymptotic expansion at $s = 0$ of the multivalued holomorphic function g.

Définition 2.1.4 A regular (a,b)-module is $[\lambda]$–primitive (resp. $[\Lambda]$–primitive), where $[\lambda]$ is an element (resp. a subset) in \mathbb{C}/\mathbb{Z}, if all roots of its Bernstein polynomial are in $[-\lambda]$ (resp. in $[-\Lambda]$).

If we have a short exact sequence of (a,b)-modules

$$0 \rightarrow F \rightarrow E \rightarrow G \rightarrow 0$$

with E regular (resp. geometric, resp. $[\lambda]$–primitive) then F and G are regular (resp. geometric, resp. $[\lambda]$–primitive).

Conversely if F and G are regular (resp. geometric, resp. $[\lambda]$–primitive) then E is regular (resp. geometric, resp. $[\lambda]$–primitive).

This implies that E is $[\lambda]$–primitive if and only if it admits a J-H. sequence such that all numbers $\lambda_1, \ldots, \lambda_k$ are in $[\lambda]$. And then any J-H. sequence of E has this property.

The following proposition is proved in [B.09] section 1.3.

Proposition 2.1.5 Let E be a regular (a,b)-module and fix a subset Λ in \mathbb{C}/\mathbb{Z}. Then there exists a maximal submodule $E[\Lambda]$ in E which is $[\Lambda]$–primitive. This submodule is normal in E.

If $\{[\lambda_1], \ldots, [\lambda_d]\}$ is the image in \mathbb{C}/\mathbb{Z} of the set of the opposite of roots of the Bernstein polynomial of E, given with an arbitrary order, there exists a unique sequence $0 = F_0 \subset F_1 \subset F_2 \subset F_d = E$ of normal submodules of E such that F_j/F_{j-1} is $[\lambda_j]$–primitive for each $j \in [1,d]$.

We call $E[\Lambda]$ the $[\Lambda]$–primitive part of E.
Thanks to this result, to understand what are the possible \([\lambda]\)–primitive themes which are quotient of a given fresco, it will be enough to work with \([\lambda]\)–primitive frescos.

Remark also that, in the geometric situation, the choice of a vanishing cycle which belongs to the generalized eigenspace of the monodromy for the eigenvalue \(\exp(-2i\pi.\lambda)\) produces vanishing periods with \([\lambda]\)–primitive themes.

2.2 Frescos and themes.

Here we recall some results from [B.09] and [B.10].

Définition 2.2.1
We shall call a fresco a geometric \((a,b)\)-module which is generated by one element as an \(\tilde{\mathbb{A}}\)–module.

Définition 2.2.2
We shall call a theme a fresco which is a submodule of \(\Xi\).

Recall that a normal submodule and a quotient by a normal submodule of a fresco (resp. of a theme) is a fresco (resp. is a theme).

A regular rank 1 \((a,b)\)-module is a fresco if and only if it is isomorphic to \(E_{\lambda}\) for some \(\lambda \in \mathbb{Q}^{+\ast}\). All rank 1 frescos are themes. The classification of rank 2 regular \((a,b)\)-modules given in [B.93] gives the list of \([\lambda]\)–primitive rank 2 frescos which is the following, where \(\lambda_1 > 1\) is a rational number:

\[
E = E \simeq \tilde{\mathbb{A}}/\tilde{\mathbb{A}}.(a-\lambda_1.b).(a-(\lambda_1-1).b) \quad (1)
\]
\[
E \simeq \tilde{\mathbb{A}}/\tilde{\mathbb{A}}.(a-\lambda_1.b).\left(1+\alpha.b^p\right)^{-1}.(a-(\lambda_1+p-1).b) \quad (2)
\]

where \(p \in \mathbb{N} \setminus \{0\}\) and \(\alpha \in \mathbb{C}\).

The themes in this list are these in (1) and these in (2) with \(\alpha \neq 0\). For a \([\lambda]\)–primitive theme in case (2) the number \(\alpha \neq 0\) will be called the parameter of the theme.

For frescos we have a more precise result on the numbers associated to a J-H. sequence:

Proposition 2.2.3
Let \(E\) be a \([\lambda]\)–primitive fresco and \(\lambda_1, \ldots, \lambda_k\) be the numbers associated to a J-H. sequence of \(E\). Then, up to a permutation, the numbers \(\lambda_j + j, j \in [1,k]\) are independent of the choice of the J-H. sequence.

The following structure theorem for frescos will be useful in the sequel.

Théorème 2.2.4
(see [B.09] th.3.4.1) Let \(E\) be a fresco of rank \(k\). Then there exists an element \(P \in \tilde{\mathbb{A}}\) which may be written as

\[
P := (a-\lambda_1.b)S_{-1}^{-1}.(a-\lambda_2.b) \ldots S_{k-1}^{-1}.(a-\lambda_k.b)
\]
such that E is isomorphic to $\bar{A}/\bar{A}.P$. Here S_1, \ldots, S_{k-1} are elements in $\mathbb{C}[b]$ such that $S_j(0) = 1$ for each $j \in [1, k-1]$. The element $P_E := (a - \lambda_1.b) \ldots (a - \lambda_k.b)$ of \bar{A} is homogeneous in (a,b) and gives the Bernstein polynomial B_E of E via the formula

$$(-b)^k.P_E = B_E(-b^{-1}.a).$$

So $P_E \in \bar{A}$ depends only on the isomorphism class of E.

Note that in the case of a fresco the Bernstein polynomial of E is equal to the characteristic polynomial of the action of $-b^{-1}.a$ on $E\sharp$. This allows a nice formula for a short exact sequence of frescos:

Proposition 2.2.5 (see [B.09] prop.3.4.4) Let $0 \to F \to E \to G \to 0$ be a short exact sequence of frescos. Then we have the equality in \bar{A}:

$$P_E = P_F.P_G$$

which is equivalent to $B_E(x) = B_F(x - rk(G)).B_G(x)$.

The situation for a $[\lambda]-$primitive theme is more rigid:

Proposition 2.2.6 A fresco E is a $[\lambda]-$primitive theme if and only if it admits a unique normal rank 1 submodule. In this case the J-H. sequence is unique and contains all normal submodules of E. The corresponding numbers $\lambda_1, \ldots, \lambda_k$ are such that the sequence $\lambda_j + j$ is increasing (may-be not strictly).

3 Commutation in Jordan-Hölder sequences.

In this section we shall study the possible different J-H. sequences of a given $[\lambda]-$primitive fresco. Thanks to proposition 2.1.5 it is easy to see that the $[\lambda]-$primitive assumption does not reduce the generality of this study.

3.1 The principal Jordan-Hölder sequence.

Définition 3.1.1 Let E be a $[\lambda]-$primitive fresco of rank k and let

$$0 = F_0 \subset F_1 \subset \cdots \subset F_k = E$$

be a J-H. sequence of E. Then for each $j \in [1, k]$ we have $F_j/F_{j-1} \simeq E_{\lambda_j}$, where $\lambda_1, \ldots, \lambda_k$ are in $\lambda + \mathbb{N}$. We shall say that such a J-H. sequence is **principal** when the sequence $[1, k] \ni j \mapsto \lambda_j + j$ is increasing.

It is proved in [B.09] prop. 3.5.2 that such a principal J-H. sequence exists for any $[\lambda]-$primitive fresco. Moreover, the corresponding sequence $\lambda_1, \ldots, \lambda_k$ is unique. The following proposition shows much more.
Proposition 3.1.2 Let E be a $[\lambda]$–primitive fresco. Then its principal J-H. sequence is unique.

We shall prove the uniqueness by induction on the rank k of E.

We begin by the case of rank 2.

Lemma 3.1.3 Let E be a rank 2 $[\lambda]$–primitive fresco and let λ_1, λ_2 the numbers corresponding to a principal J-H. sequence of E (so $\lambda_1 + 1 \leq \lambda_2 + 2$). Then the normal rank 1 submodule of E isomorphic to E_{λ_1} is unique.

Proof. The case $\lambda_1 + 1 = \lambda_2 + 2$ is obvious because then E is a $[\lambda]$–primitive theme (see [B.10] corollary 2.1.7). So we may assume that $\lambda_2 = \lambda_1 + p_1 - 1$ with $p_1 \geq 1$ and that E is the quotient $E \simeq \tilde{A}/\tilde{A}.(a - \lambda_1.b).(a - \lambda_2.b)$ (see the classification of rank 2 frescos with $e_2 = [1]$ and $e_1 = (a - \lambda_2.b).e_2$). Let look for $x := U.e_2 + V.e_1$ such that $(a - \lambda_1.b).x = 0$. Then we obtain

$$b^2.U'.e_2 + U.(a - \lambda_2.b).e_2 + (\lambda_2 - \lambda_1).b.U.e_2 + b^2.V'.e_1 = 0$$

which is equivalent to the two equations:

$$b^2.U' + (p_1 - 1).b.U = 0 \quad \text{and} \quad U + b^2.V' = 0$$

The first equation gives $U = 0$ for $p_1 \geq 2$ and $U \in \mathbb{C}$ for $p_1 = 1$. As the second equation implies $U(0) = 0$, in all cases $U = 0$ and $V \in \mathbb{C}$. So the solutions are in $\mathbb{C}.e_1$. ■

Remark that in the previous lemma, if we assume $p_1 \geq 1$ and E is not a theme, it may exist infinitely many different normal (rank 1) submodules isomorphic to E_{λ_2+1}. But then, $\lambda_2 + 2 > \lambda_1 + 1$. See remark 2 following 3.2.1.

Proof of Proposition 3.1.2. As the result is obvious for $k = 1$, we may assume $k \geq 2$ and the result proved in rank $\leq k - 1$. Let $F_j, j \in [1, k]$ and $G_j, j \in [1, k]$ two J-H. principal sequences for E. As the sequences $\lambda_j + j$ and $\mu_j + j$ coincide up to the order and are both increasing, they coincide. Now let j_0 be the first integer in $[1, k]$ such that $F_{j_0} \neq G_{j_0}$. If $j_0 \geq 2$ applying the induction hypothesis to E/F_{j_0-1} gives $F_{j_0}/F_{j_0-1} = G_{j_0}/F_{j_0-1}$ and so $F_{j_0} = G_{j_0}$.

So we may assume that $j_0 = 1$. Let H be the normalization of $F_1 + G_1$. As F_1 is the smallest normal submodule containing $F_1 + G_1$; it has the same rank than $F_1 + G_1$.\[\text{3}\]
and G_1 are normal rank 1 and distinct, then H is a rank 2 normal submodule. It is a $[\lambda]-$primitive fresco of rank 2 with two normal rank 1 sub-modules which are isomorphic as $\lambda_1 = \mu_1$. Moreover the principal J-H. sequence of H begins by a normal submodule isomorphic to E_{λ_1}. So the previous lemma implies $F_1 = G_1$. So for any $j \in [1, k]$ we have $F_j = G_j$. \hfill \blacksquare

Définition 3.1.4 Let E be a $[\lambda]-$primitive fresco and consider a J-H. sequence $F_j, j \in [1, k]$ of E. Put $F_j/F_{j-1} \simeq E_{\lambda_j}$ for $j \in [1, k]$ (with $F_0 = \{0\}$). We shall call fundamental invariants of E the (unordered) k-tuple $\{\lambda_j + j, j \in [1, k]\}$.

Of course this definition makes sens because we know that this (unordered) k-tuple is independant of the choice of the J-H. of E.

Note that when E is a theme, the uniqueness of the J-H. gives a natural order on this k-tuple. So in the case of a theme the fundamental invariants will be an ordered k-tuple. With this convention, this is compatible with the definition of the fundamental invariants of a $[\lambda]-$primitive theme given in [B.10], up to a shift.

In the opposite direction, when E is a semi-simple $[\lambda]-$primitive fresco we shall see (in section 4) that any order of this k-tuple may be realized by a J-H. sequence of E.

3.2 Commuting in \tilde{A}.

Let E be a $[\lambda]-$primitive fresco. Any isomorphism $E \simeq \tilde{A}/\tilde{A}P$ where $P \in \tilde{A}$ is given by

$$P := (a - \lambda_1.b)S_1^{-1}(a - \lambda_2.b)\ldots S_{k-1}^{-1}(a - \lambda_k.b)$$

determines a J-H. sequence for E associated to the $\mathbb{C}[[b]]$-basis e_1, \ldots, e_k such that the relations $(a - \lambda_j.b).e_j = S_{j-1}.e_{j-1}$ hold for $j \in [1, k]$ with the convention $e_0 = 0$, and the fact that e_k corresponds, via the prescribed isomorphism, to the class of 1 modulo $\tilde{A}P$.

Lemme 3.2.1 Let p_1 and p_2 be two positive integers and let $\lambda_1 \in \lambda + 2 + \mathbb{N}$, where $\lambda \in [0, 1] \cap \mathbb{Q}$. Define $P \in \tilde{A}$ as

$$P := (a - \lambda_1.b)S_1^{-1}(a - \lambda_2.b)S_2^{-1}(a - \lambda_3.b)$$

where $\lambda_{j+1} := \lambda_j + p_j - 1$ for $j = 1, 2$, and where S_1, S_2 lie in $\mathbb{C}[[b]]$ and satisfy $S_1(0) = S_2(0) = 1$. We assume that the coefficient of b^{p_1} in S_1 vanishes and that the coefficient of b^{p_2} of S_2 is $\alpha \neq 0$.

Then if $U \in \mathbb{C}[[b]]$ is any solution of the differential equation $b.U' = p_1.(U - S_1)$, we have

$$P = U^{-1}.(a - (\lambda_2 + 1).b).(S_1.U^{-2})^{-1}.(a - (\lambda_1 - 1).b).(U.S_2)^{-1}.(a - \lambda_3.b).$$

Moreover, there exists an unique choice of U such that the coefficient of $b^{p_1+p_2}$ in $U.S_2$ vanishes.
Moreover, the coefficient of \(b \) in the situation of the previous lemma choose Corollaire 3.2.2

\[
V \text{ denote by } P
\]

Then \(P \) is proved in [B.09] lemma 3.5.1. We use here the case \(\delta := \lambda - \mu = \lambda_2 + 1 - \lambda_1 = p_1 \) and the fact that the coefficient of \(b \) in \(S_1 \) vanishes.

As the solution \(U \) is unique up to \(\mathbb{C}.b^{p_1} \), to prove the second assertion let \(U_0 \) be the solution with no term in \(b^{p_1} \). Now the coefficient \(\beta(\rho) \) of \(b^{p_1+p_2} \) in \(S_2.U \) where \(U := U_0 + \rho.b^{p_1} \), is \(\beta(\rho) = \beta(0) + \rho.a. \) As we assumed that \(\alpha \neq 0 \) there exists an unique choice of \(\rho \) for which \(\beta(\rho) = 0. \)

Remarks.

1. In the situation of the previous lemma the rank 3 fresco \(E := \tilde{A}/\tilde{A}.P \) is an extension
\[
0 \to E_{\lambda_1} \to E \to T_{\lambda_2,p_2}(\alpha) \to 0
\]
where \(T_{\lambda_2,p_2}(\alpha) \) is the rank 2 theme with fundamental invariants \((\lambda_2, p_2) \) and parameter \(\alpha \) (see the definition [2.2.2]), so
\[
T_{\lambda_2,p_2}(\alpha) \simeq \tilde{A}/\tilde{A}.(a - \lambda_2,b).(1 + \alpha.b^{p_2})^{-1}.(a - (\lambda_2 + p_2 - 1).b).
\]

2. Let \(\xi \) be in \(\mathbb{C}^* \) and choose \(\rho := (\xi - \beta_0)/\alpha \) in the previous proof. Then \(E \) is a extension
\[
0 \to E_{\lambda_2+1} \to E \to T_{\lambda_1-1,p_1+p_2}(\xi) \to 0
\]
where \(T_{\lambda_1-1,p_1+p_2}(\xi) \) is the rank 2 theme with fundamental invariants \((\lambda_1-1, p_1+p_2) \) and parameter \(\xi \). This shows that we may have infinitely many non isomorphic rank 2 themes as quotients of a given rank 3 \([\lambda]\)-primitive fresco \(E \). We have also infinitely many different J-H. sequences with the same quotients: \((\lambda_2 + 1, \lambda_1 - 1, \lambda_3) \).

Note that in this situation we have\(^4\) \(\dim_{\mathbb{C}}[Ker(a - (\lambda_2 + 1).b)] = 2. \)

Corollaire 3.2.2 In the situation of the previous lemma choose \(\rho = -\beta(0).\alpha \) and denote by \(V \) a solution\(^5\) of the differential equation \(b.V' = (p_1 + p_2).V - U.S_2. \)
Then \(P \) is equal to
\[
U^{-1}.(a - (\lambda_2 + 1).b).S_1^{-1}.U^2.V^{-1}.(a - (\lambda_3 + 1).b).(US_2V^{-2})^{-1}.(a - (\lambda_1 - 2).b).V^{-1}. \quad(\@)
\]
Moreover, the coefficient of \(b^{p_2} \) in \(S_1.U^{-2}.V \) is \((p_1 + p_2).\alpha/p_1. \)

\(^4\)It is easy to see that if \(Z \) is a solution in \(\mathbb{C}[[b]] \) of the differential equation \(b.Z' - p_1.Z + S_1 = 0, \)
then
\[
Ker(a - (\lambda_2 + 1).b) = \{(r,s) \in \mathbb{C}^2 \mid r.(Z.e_1 + b.e_2) + s.b^{p_1}.e_1\}.\]

\(^5\)Note that as \(U.S_2 \) has no term in \(b^{p_1+p_2} \) with our choice of \(\rho \), such a solution exists in \(\mathbb{C}[[b]] \). Moreover \(V(0) = (U.S_2)(0) = 1 \) because \(U(0) = S_1(0) = 1 = S_2(0). \)
Proof. Of course the choice of ρ allows to apply again the lemma 3.5.1. of [B.09], with now $\delta = \lambda_3 + 1 - (\lambda_1 - 1) = p_1 + p_2$. This gives (\@). Using $b.U' = p_1.(U - S_1)$ we get
\[
\begin{align*}
b.U'.U^{-2} &= p_1.(U^{-1} - S_1.U^{-2}) \quad \text{and with } Z := U^{-1} \\
b.Z' &= -p_1.(Z - S_1.U^{-2}) \quad \text{and then} \\
b.Z'.V &= -p_1.(Z.V - S_1.U^{-2}.V) \quad (\@@)
\end{align*}
\]
But using also $b.V' = (p_1 + p_2).(V - U.S_2)$ we get
\[
b.V'.Z = (p_1 + p_2).(V.Z - S_2).
\]
Adding with (\@@) gives
\[
b.(V.Z)' - p_2.V.Z = p_1.S_1.U^{-2}.V - (p_1 + p_2).S_2
\]
which leads to the result, because the left handside has no term in b^{p_2}.
\[\blacksquare\]

An obvious consequence of this corollary is that there exists in E a normal sub-theme isomorphic to $T_{\lambda_2 + 1, p_2}((1 + p_2/p_1).\alpha)$, so with fundamental invariants $(\lambda_2 + 1, p_2)$ and with parameter $(1 + p_2/p_1).\alpha$.

Recall that $T_{\lambda_2, p_2}(\alpha)$ was the rank 2 quotient theme which appears in the principal J-H. of E.

3.3 Some examples.

We shall give here some examples, showing the complexity of the non commutative structure of the algebra \tilde{A}.

Lemme 3.3.1 Let x, y, z non zero complex numbers, λ_1 a rational number bigger than 3 and p_1, p_2, p_3 three positive distinct integers. Assume that p_3 is not a multiple of p_2, and define $\lambda_{j+1} := \lambda_j + p_j - 1$ for $j = 1, 2, 3$. Put
\[
\begin{align*}
R_1 &= 1 + x.b^{p_1}, \\
R_3 &= 1 + y.b^{p_3} + z.b^{p_2 + p_3}, \\
U &= 1 - \frac{z}{y}.b^{p_2},
\end{align*}
\]
\[
S := R_1.U \quad \text{and } T := U.R_3.
\]
Then T has no term in $b^{p_2 + p_3}$ and there exists a solution $V \in \mathbb{C}[[b]]$ of the differential equation $b.V' = (p_2 + p_3).(V - T)$.

Then the element $P := (a - \lambda_1.b).R_1^{-1}.(a - \lambda_2.b).(a - \lambda_3.b).R_3^{-1}.(a - \lambda_4.b)$ in \tilde{A} is equal to
\[
(a - \lambda_1.b).S^{-1}.(a - (\lambda_3 + 1).b).U^2.V^{-1}.(a - (\lambda_4 + 1).b).T^{-1}.V^2.(a - (\lambda_2 - 2).b).V^{-1}. \quad (1)
\]
\textbf{Proof.} A simple computation gives
\[T = 1 - \frac{z}{y} b^{p_2} + y b^{p_3} - \frac{z^2}{y} b^{2p_2+p_3} \]
and
\[V = 1 - \frac{z p_2 + p_3}{y} b^{p_2} + \frac{p_2 + p_3}{p_2} y b^{p_3} + \rho b^{p_2+p_3} + p_2 \frac{z^2}{y} b^{2p_2+p_3} \]
where \(\rho \) is an arbitrary complex number.

Using the lemma 3.5.1. of [B.09] and the fact that \(U \) satisfies \(b.U' = p_2(U - 1) \) we get
\[P = (a - \lambda_1 b).S^{-1}.(a - (\lambda_3 + 1) b).U^2.(a - (\lambda_2 - 1) b).T^{-1}.(a - \lambda_4 b). \]
As \(\lambda_4 = (\lambda_2 - 1) + p_2 + p_3 - 1 \) and \(T \) has no term in \(b^{p_2+p_3} \), we obtain, using again the lemma of \textit{loc. cit.}
\((a - (\lambda_2 - 1) b).T^{-1}.(a - \lambda_4 b) = V^{-1}.(a - (\lambda_4 + 1) b)T^{-1}.V^2.(a - (\lambda_2 - 2) b) \)
if \(V \) is a solution of \(b.V' = (p_2 + p_3).(V - T) \); this implies (1).

\textbf{Lemme 3.3.2} In the situation of the previous lemma the rank 4 fresco given by \(E := \tilde{\mathcal{A}} \backslash \mathcal{A}.P \) is not a theme, but we have the following exact sequences:
\[0 \rightarrow T_1 \rightarrow E \rightarrow T_2 \rightarrow 0 \]
\[0 \rightarrow T_3 \rightarrow E \rightarrow E_{\lambda_2-2} \rightarrow 0. \]
where \(T_1 \) and \(T_2 \) are rank 2 themes and \(T_3 \) a rank 3 theme.

\textbf{Proof.} The first exact sequence is consequence of the definition of \(P \), and the rank 2 theme \(T_1 \) has \((\lambda_1, p_1) \) as fundamental invariants and \(x \) as parameter; the rank 2 theme \(T_2 \) has \((\lambda_3, p_3) \) as fundamental invariants and \(y \) as parameter.
Let \(e \) be a generator of \(E \) whose annihilator is \(\tilde{\mathcal{A}}.P \). Then the relation (1) shows that \(\varepsilon := T^{-1}.V^2.(a - (\lambda_2 - 2) b).V^{-1}.e \) in \(E \) is annihilated by
\[Q := (a - \lambda_1 b).S^{-1}.(a - (\lambda_3 + 1) b).U^2.V^{-1}.(a - (\lambda_4 + 1) b). \]
So \(\tilde{\mathcal{A}}.\varepsilon \) has rank 3 and is normal because \(E \backslash \tilde{\mathcal{A}}.\varepsilon \simeq E_{\lambda_2-2} \). We shall prove that \(\tilde{\mathcal{A}}.\varepsilon \) is a theme. As \(\lambda_3 + 1 = \lambda_1 + p_1 + p_2 - 1 \) and \(\lambda_4 + 1 = (\lambda_3 + 1) + p_3 - 1 \), it is enough to check that the coefficient of \(b^{p_1+p_2} \) in \(S \) and the coefficient in \(b^{p_3} \) in \(U^{-2}V \) do not vanish. As we have
\[
\begin{align*}
\text{i)} & \quad S = 1 + x.b^{p_1} - \frac{z}{y} b^{p_2} - \frac{z^2}{y} b^{p_1+p_2} \\
\text{ii)} & \quad V = 1 - \frac{z}{y} \frac{p_2+p_3}{p_2} b^{p_2} + \frac{p_2+p_3}{p_2} y b^{p_3} + \rho b^{p_2+p_3} + p_2 \frac{z^2}{y} b^{2p_2+p_3} \\
\text{iii)} & \quad U^{-2} = \sum_{n=1}^{\infty} n.\left(\frac{z}{y} b^{p_2}\right)^{n-1}
\end{align*}
\]
these coefficients are respectively equal to \(-\frac{x}{z} \) and \(\frac{p_2+p_3}{p_2} y \) using the fact that \(p_3 \) is not a multiple of \(p_2 \).
Remark. Choosing for instance $U = 1$ gives

$$P = (a - \lambda_1.b).R_1^{-1} \cdot (a - (\lambda_3 + 1).b). (a - (\lambda_2 - 1).b). R_3^{-1}.(a - \lambda_4.b)$$

and then if W is a solution of the differential equation $b.W' = (p_1 + p_2).(W - R_1)$ we obtain

$$P = W^{-1}.(a-(\lambda_3+2).b). (R_1.W^{-2})^{-1}.(a-(\lambda_1-1).b).W^{-1}.(a-(\lambda_2-1).b).R_3^{-1}.(a-\lambda_4.b)$$

and we have an exact sequence

$$0 \to E_{\lambda_3+2} \to E \to T_4 \to 0$$

where T_4 is a rank 3 theme and where the corresponding J-H. sequence associated to this exact sequence satifies $F_2 = S_1(E)$ where $S_1(E)$ is the maximal semi-simple normal submodule of E (see section 4).

Note that the first exact sequence corresponds to the principal J-H. of E.

The second gives a J-H. sequence such that its quotients correspond to the order $\lambda_1 + 1, \lambda_3 + 3, \lambda_4 + 4, \lambda_2 + 2$ of the increasing sequence $\lambda_j + j, j \in [1, 4]$. The last sequence above corresponds to the order $\lambda_3 + 3, \lambda_1 + 1, \lambda_2 + 2, \lambda_4 + 4$. In this example the semi-simple depth $d(E)$ of E (see section 4) is equal to 3.

Exemple. We give here an example a $[\lambda]-$primitive fresco of rank 4 with a J-H. sequence having no non commuting index but which is not semi-simple (see the section 4 below).

Let $\lambda_1 > 4$ be a rational number and p_1, p_2, p_3 be strictly positive integers. Then consider the fresco

$$E := \tilde{A}/(a - \lambda_1.b).(a - \lambda_2.b).(1 + b^{p_2+p_3})^{-1}.(a - \lambda_3.b).(a - \lambda_4.b)$$

where we define $\lambda_{j+1} = \lambda_j + p_j - 1$ for $j = 1, 2, 3$. Then it is clear that all indices of the principal J-H. sequence of E are commuting indices: for $i = 1$ and $i = 3$ this is obvious, for $i = 2$ this results from the commuting lemma 3.5.1 of [B.09] and the fact that $p_2 + p_3 > p_3$ as we assume $p_2 \geq 1$. Now we have the equality in \tilde{A}:

$$(a - \lambda_1.b).(a - \lambda_2.b).(1 + b^{p_1+p_2})^{-1}.(a - \lambda_3.b).(a - \lambda_4.b) =$$

$$(a - \lambda_1.b).(a - \lambda_2.b).(1 + b^{p_1+p_2})^{-1}.(a - (\lambda_4 + 1).b).(a - (\lambda_3 - 1).b).$$

This shows, because $\lambda_4 + 1 = \lambda_2 + p_2 + p_3 - 1$, that there exists a subquotient of rank 2 of E which is a theme; so E is not semi-simple. In fact, we produce another J-H. sequence with one non commuting index!
4 Semi-simple frescos.

4.1 The semi-simple filtration.

Définition 4.1.1 We shall say that a fresco E is semi-simple if any quotient of E which is a $[\lambda]-$primitive theme for some $[\lambda] \in \mathbb{Q}/\mathbb{Z}$ is of rank ≤ 1.

Remarks.

1. A $[\lambda]-$primitive theme is semi-simple if and only if it has rank ≤ 1.

2. An equivalent definition of a semi-simple fresco is to ask that any \tilde{A}-linear map

$$\varphi : E \rightarrow \Xi_{\lambda}$$

for some $[\lambda] \in \mathbb{Q}/\mathbb{Z}$ has rank ≤ 1. This is a necessary condition because $\varphi(E)$ is a $[\lambda]-$primitive theme which is a quotient of E. The converse comes from the fact that any $[\lambda]-$primitive theme admits an injective \tilde{A}-linear map in Ξ_{λ}.

3. A fresco is semi-simple if and only if for each $[\lambda]$ its $[\lambda]-$primitive part (see the proposition 2.1.5) is semi-simple: if $E[\lambda]$ is the $[\lambda]-$primitive part of E the restriction map $\text{Hom}_{\tilde{A}}(E, \Xi_{\lambda}) \rightarrow \text{Hom}_{\tilde{A}}(E[\lambda], \Xi_{\lambda})$ is an isomorphism. For instance, a theme with only rank ≤ 1 $[\lambda]-$primitive part for each $[\lambda] \in \mathbb{C}/\mathbb{Z}$ is semi-simple.

Lemme 4.1.2 For any $F \subset E$ a normal submodule of a semi-simple fresco E, F and E/F are semi-simple frescos. So any sub-quotient6 and of a semi-simple fresco is again a semi-simple fresco.

Proof. As any \tilde{A}-linear map $\psi : F \rightarrow \Xi_{\lambda}$ extends to a \tilde{A}-linear map $\varphi : E \rightarrow \Xi_{\lambda}$ (see section 2 or [B.05]) the semi-simplicity of E implies the semi-simplicity of F. The semi-simplicity of E/F is obvious. \blacksquare

Corollaire 4.1.3 Let E be a semi-simple fresco with rank k and let $\lambda_1, \ldots, \lambda_k$ be the numbers associated to a J-H. sequence of E. Let μ_1, \ldots, μ_k be a twisted permutation7 of $\lambda_1, \ldots, \lambda_k$. Then there exists a J-H. sequence for E with quotients corresponding to μ_1, \ldots, μ_k.

6By a subquotient H we mean that there exists $G \subset F$ normal submodules in E such that $H := F/G$. Remark that H is a quotient of a normal submodule but also a submodule of a quotient of E, as $F/G \subset E/G$.

7This means that the sequence $\mu_j + j, j \in [1, k]$ is a permutation (in the usual sens) of $\lambda_j + j, j \in [1, k]$.

15
Proof. As the symmetric group \(\mathfrak{S}_k \) is generated by the transpositions \(t_{j,j+1} \) for \(j \in [1,k-1] \), it is enough to show that, if \(E \) has a J-H. sequence with quotients given by the numbers \(\lambda_1, \ldots, \lambda_k \) then there exists a J-H. sequence for \(E \) with quotients \(\lambda_1, \ldots, \lambda_{j-1}, \lambda_{j+1} + 1, \lambda_j - 1, \lambda_{j+2}, \ldots, \lambda_k \) for \(j \in [1,k-1] \). But \(G := F_{j+1}/F_{j-1} \) is a rank 2 sub-quotient of \(E \) with an exact sequence

\[
0 \to E_{\lambda_j} \to G \to E_{\lambda_{j+1}} \to 0.
\]

As \(G \) is a rank 2 semi-simple fresco, it admits also an exact sequence

\[
0 \to G_1 \to G \to G/G_1 \to 0
\]

with \(G_1 \simeq E_{\lambda_{j+1}} \) and \(G/G_1 \simeq E_{\lambda_j-1} \). Let \(q : F_{j+1} \to G \) be the quotient map. Now the J-H. sequence for \(E \) given by

\[
F_1, \ldots, F_{j-1}, q^{-1}(G_1), F_{j+1}, \ldots, F_k = E
\]

satisfies our requirement. \(\Box \)

Proposition 4.1.4 Let \(E \) be a \([\lambda]\)-primitive fresco. A necessary and sufficient condition in order that \(E \) is semi-simple is that it admits a J-H. sequence with quotient corresponding to \(\mu_1, \ldots, \mu_k \) such that the sequence \(\mu_j \) is strictly decreasing.

Remarks.

1. As a fresco is semi-simple if and only if for each \([\lambda]\) its \([\lambda]\)-primitive part is semi-simple, this proposition gives also a criterium to semi-simplicity for any fresco.

2. This criterium is a very efficient tool to produce easily examples of semi-simple frescos.

Proof. Remark first that if we have, for a \([\lambda]\)-primitive fresco \(E \), a J-H. sequence \(F_j, j \in [1,k] \) such that \(\lambda_j + j = \lambda_{j+1} + j + 1 \) for some \(j \in [1,k-1] \), then \(F_{j+1}/F_{j-1} \) is a sub-quotient of \(E \) which is a \([\lambda]\)-primitive theme of rank 2. So \(E \) is not semi-simple, thanks to the previous corollary. So when a \([\lambda]\)-primitive fresco \(E \) is semi-simple the principal J-H. sequence corresponds to a strictly increasing sequence \(\lambda_j + j \). Now, thanks again to the previous corollary we may find a J-H. sequence for \(E \) corresponding to the strictly decreasing order for the sequence \(\lambda_j + j \).

No let us prove the converse. We shall use the following lemma.

Lemme 4.1.5 Let \(F \) be a rank \(k \) semi-simple \([\lambda]\)-primitive fresco and let \(\lambda_j + j \) the strictly increasing sequence corresponding to its principal J-H. sequence. Let \(\mu \in [\lambda] \) such that \(0 < \mu + k + 1 < \lambda_1 + 1 \). Then any fresco \(E \) in an exact sequence

\[
0 \to F \to E \to E_\mu \to 0
\]

is semi-simple (and \([\lambda]\)-primitive).
PROOF. Assume that we have a rank 2 quotient \(\varphi : E \to T \) where \(T \) is a \([\lambda]-\)primitive theme. Then \(\text{Ker} \varphi \cap F \) is a normal submodule of \(F \) of rank \(k-2 \) or \(k-3 \). If \(\text{Ker} \varphi \cap F \) is of rank \(k-3 \), the rank of \(F/\text{Ker} \varphi \cap F \) is 2 and it injects in \(T \) via \(\varphi \). So \(F/\text{Ker} \varphi \cap F \) is a rank 2 \([\lambda]-\)primitive theme. As it is semi-simple, because \(F \) is semi-simple, we get a contradiction.

So the rank of \(F/\text{Ker} \varphi \cap F \) is 1 and we have an exact sequence

\[
0 \to F/\text{Ker} \varphi \cap F \to T \to E/F \to 0.
\]

Put \(F/\text{Ker} \varphi \cap F \simeq E_\lambda \). Because \(T \) is a \([\lambda]-\)primitive theme, we have the inequality \(\lambda + 1 \leq \mu + 2 \). But we know that \(\lambda_1 + 1 \leq \lambda + k \) because \(\lambda + k \) is in the set \(\{\lambda_j + j, j \in [1, k]\} \) and \(\lambda_1 + 1 \) is the infimum of this set. So \(\lambda_1 + 1 \leq \mu + k + 1 \) contradicting our assumption that \(\mu + k + 1 < \lambda_1 + 1 \).

END OF PROOF OF THE PROPOSITION [4.1.4]. Now we shall prove by induction on the rank of a \([\lambda]\)-primitive fresco \(E \) that if it admits a J-H. sequence corresponding to a strictly decreasing sequence \(\mu_j + j \), it is semi-simple. As the result is obvious in rank 1, we may assume \(k \geq 1 \) and the result proved for \(k \). So let \(E \) be a fresco of rank \(k + 1 \) and let \(F_j, j \in [1, k + 1] \) a J-H. sequence for \(E \) corresponding to the strictly decreasing sequence \(\mu_j + j, j \in [1, k + 1] \). Put \(F_j/F_{j-1} \simeq E_{\mu_j} \) for all \(j \in [1, k + 1] \), define \(F := F_k \), and \(\mu := \mu_{k+1} \); then the induction hypothesis gives that \(F \) is semi-simple and we may apply the previous lemma.

Proposition 4.1.6 Let \(E \) be a fresco. There exists a unique maximal normal semi-simple submodule \(S_1(E) \) in \(E \). It contains any (normal) submodule of rank 1 contained in \(E \). Moreover, if \(S_1(E) \) is of rank 1, then \(E \) is a \([\lambda]-\)primitive theme.

PROOF. For any \(\lambda \) and any non-zero \(\varphi \in \text{Hom}_A(E, \Xi_\lambda) \) let \(F_1(\varphi) \) be the rank 1 submodule of the \([\lambda]-\)primitive theme \(\varphi(E) \). Now put

\[
S_1(E) := \cap_\lambda \cap_{\varphi \in \text{Hom}_A(E, \Xi_\lambda) \setminus \{0\}} [\varphi^{-1}(F_1(\varphi))].
\]

Let us prove that \(S_1(E) \) is a normal semi-simple submodule. Normality is obvious as it is an intersection of normal submodules. To prove semi-simplicity, let \(\psi : S_1(E) \to \Xi_\lambda \) be a \(\mathcal{A} \)-linear map. Using the surjectivity of the restriction \(\varphi \in \text{Hom}_A(E, \Xi_\lambda) \to \varphi|_{S_1(E)} \in \text{Hom}_A(S_1(E), \Xi_\lambda) \), (see section 2.1 or [B.05]), we see immediately that \(\psi \) has rank \(\leq 1 \). So \(S_1(E) \) is semi-simple.

Now consider a semi-simple normal submodule \(S \) in \(E \). For any \(\varphi \in \text{Hom}_A(E, \Xi_\lambda) \) the restriction of \(\varphi \) to \(S \) has rank \(\leq 1 \). So \(\varphi(S) \) is contained in the normal rank 1 submodule \(F_1(\varphi) \) of the \([\lambda]-\)primitive theme \(\varphi(E) \). So \(S \) is contained in \(\varphi^{-1}(F_1(\varphi)) \) for each \(\varphi \). Then \(S \subset S_1(E) \), and this proves the maximality of \(S_1(E) \).

Consider now any rank 1 normal submodule \(F \) of \(E \). As \(F \) is semi-simple and
normal in E, we have $F \subset S_1(E)$. If $S_1(E)$ is rank 1, there exists an unique rank 1 normal submodule in E. Then E is a $[\lambda]$–primitive theme, thanks to [B.10] theorem 2.1.6.

The following interesting corollary is an obvious consequence of the previous proposition.

Corollaire 4.1.7 Let E be a fresco and let $\lambda_1, \ldots, \lambda_k$ be the numbers associated to any J-H. sequence of E. Let μ_1, \ldots, μ_d be the numbers associated to any J-H. sequence of $S_1(E)$. Then, for $j \in [1, k]$, there exists a rank 1 normal submodule of E isomorphic to $E_{\lambda_j + j - 1}$ if and only if there exists $i \in [1, d]$ such that we have $\lambda_j + j - 1 = \mu_i + i - 1$.

Of course, this gives the list of all isomorphy classes of rank 1 normal submodules contained in E. So, using shifted duality, we get also the list of all isomorphy classes of rank 1 quotients of E.

Définition 4.1.8 Let E be a fresco. Define inductively the increasing sequence $S_j(E), j \geq 0$ of normal submodules of E by putting $S_0(E) := \{0\}$ and for $j \geq 1$ $S_j(E)/S_{j-1}(E) := S_1(E/S_{j-1}(E))$. We shall call $S_j(E), j \geq 0$ the semi-simple filtration of E. We shall call semi-simple-depth of E (ss-depth for short) the first integer $d = d(E) \geq 0$ such that $E = S_d(E)$.

Example. In the example of lemma [3.2.1] let F_2 the second step of the principal J-H. sequence of E. Then $F_2 = S_1(E)$ is the maximal semi-simple normal submodule of E. This is a consequence of the fact that E is not semi-simple, F_2 admits a J-H. sequence with quotients $E_{\lambda_2 + 1}, E_{\lambda_1 - 1}$ with $\lambda_2 + 2 > \lambda_1 + 1$, so we may apply proposition [4.1.4].

Proposition 4.1.9 Let E be a fresco. Then we have the following properties :

i) Any $[\lambda]$–primitive sub-theme T in E of rank j is contained in $S_j(E)$.

ii) Any $[\lambda]$–primitive quotient theme T of $S_j(E)$ has rank $\leq j$.

iii) For any $j \in \mathbb{N}$ we have

$$S_j(E) = \bigcap_{\varphi \in \text{Hom}_J(E, \Xi_\lambda)} [\varphi^{-1}(F_j(\varphi))]$$

where $F_j(\varphi)$ is the normal submodule of rank j of the $[\lambda]$–primitive theme $\varphi(E)$, with the convention that $F_j(\varphi) = \varphi(E)$ when the rank of φ is $\leq j$.

iv) The ss-depth of E is equal to d if and only if d is the maximal rank of a $[\lambda]$–primitive quotient theme of E.

v) The ss-depth of E is equal to d if and only if d is the maximal rank of a normal $[\lambda]$–primitive sub-theme of E.

18
Remarks.

1. By definition of the ss-depth $d(E)$ of E the semi-simple filtration is strictly increasing for $j \in [0, d(E)]$.

2. Let E be a fresco and $N \in \mathbb{Z}$ such that $E \otimes E_N$ is geometric (so is again a fresco). Then E is semi-simple (resp. a theme) if and only if $E \otimes E_N$ is semi-simple (resp. a theme). Moreover, in this situation we have $d(E) = d(E \otimes E_N)$.

3. Let F be a submodule in a fresco E, and denote \tilde{F} its normalization. Then \tilde{F} is monogenic (being normal in a monogenic) and geometric. As there exists $N \in \mathbb{N}$ such that $b^N \tilde{F} \subset F$, \tilde{F} is a theme for F a theme. The analog result is also true for a semi-simple F: if $\varphi: \tilde{F} \rightarrow \Xi_\lambda$ has rank ≥ 2, as F has finite codimension in \tilde{F}, the restriction of φ to F has also rank ≥ 2 which contradicts the semi-simplicity of F.

So we have proved the following two assertions:

- If $T \subset E$ is a theme in a fresco E, its normalization is also a theme (of same rank than T).
- If $S \subset E$ is a semi-simple fresco in a fresco E, its normalization is also a semi-simple fresco.

Proof of proposition [4.1.9] Let us prove i) by induction on j. As the case $j = 1$ is obvious, let us assume that $j \geq 2$ and that the result is proved for $j - 1$.

Let T a $[\lambda]$–primitive theme in E, and let $F_{j-1}(T)$ be its normal submodule of rank $j - 1$ (equal to T if the rank of T is less than $j - 1$). Then by the induction hypothesis, we have $F_{j-1}(T) \subset S_{j-1}(E)$. Then we have a \mathcal{A}–linear map $T/F_{j-1}(T) \rightarrow E/S_{j-1}(E)$. If the rank of T is at most j, then $T/F_{j-1}(T)$ has rank at most 1 and its image is in $S_1(E/S_{j-1}(E))$. So $T \subset S_j(E)$.

To prove ii) we also make an induction on j. The case $j = 1$ is obvious. So we may assume $j \geq 2$ and the result proved for $j - 1$. Let $\varphi: S_j(E) \rightarrow T$ a surjective map on a $[\lambda]$–primitive theme T. By the inductive hypothesis we have $\varphi(S_{j-1}(E)) \subset F_{j-1}(T)$. So we have an induced surjective map

$$\tilde{\varphi}: S_j(E)/S_{j-1}(E) \rightarrow T/F_{j-1}(T).$$

As $S_j(E)/S_{j-1}(E)$ is semi-simple, the image of $\tilde{\varphi}$ has rank ≤ 1. It shows that T has rank $\leq j$.

To prove iii) consider first a \mathcal{A}–linear map $\varphi: E \rightarrow \Xi_\lambda$. As $\varphi(E)$ is a $[\lambda]$–primitive theme, $\varphi(S_j(E))$ is a $[\lambda]$–primitive theme quotient of $S_j(E)$. So its rank is $\leq j$ and we have $\varphi(S_j(E)) \subset F_j(\varphi)$.

Conversely, for any \mathcal{A}–linear map $\varphi: E \rightarrow \Xi_\lambda$, the image $\varphi(S_j(E))$ is a $[\lambda]$–primitive quotient theme of $S_j(E)$. So its rank is $\leq j$ and it is contained in $F_j(\varphi)$.

19
Let us prove iv). If \(S_d(E) = E \) then any \([\lambda]\)-primitive sub-theme in \(E \) has rank \(\leq d \) thanks to ii). Conversely, assume that for any \([\lambda]\) any \([\lambda]\)-primitive sub-theme of \(E \) has rank \(\leq d - 1 \) and \(S_{d-1}(E) \neq E \). Then choose a \(\mathcal{A}\)-linear map \(\varphi : E \to \Xi_{\lambda} \) such that \(\varphi^{-1}(F_{d-1}(\varphi)) \neq E \). Then \(\varphi(E) \) is a \([\lambda]\)-primitive theme of rank \(d \) which is a quotient of \(E \), thanks to the following lemma. To prove v) let us show that if \(E \) is a fresco and \(N \gg 1 \) an integer, then \(E^* \otimes E_N \) is again a fresco and that we have the inequality \(d(E^* \otimes E_N) \geq d(E) \).

The fact that for \(N \) a large enough integer \(E^* \otimes E_N \) is again a fresco is clear. Now, as \(E \) has a \([\lambda]\)-primitive quotient theme of rank \(d \), then \(E^* \otimes E_N \) has a \([-\lambda]\)-primitive sub-theme of rank \(d \).

So we obtain the inequality \(d(E^* \otimes E_N) \geq d(E) \) from i). Now, using again duality and the fact that \([\lambda]\)-primitive themes are preserved by \(\otimes E_N \) where \(N \) is a natural integer, we conclude that \(d(E) = d(E^* \otimes E_N) \). Then \(E \) admits a \([\lambda]\)-primitive normal sub-theme of rank \(d \).

Conversely, if \(d \) is the maximal rank of a (normal) \([\lambda]\)-primitive sub-theme of \(E \), then we have \(d(E^* \otimes E_N) = d \) and \(d(E) = d \).

Lemma 4.1.10 Let \(E \) be a rank \(k \) \([\lambda]\)-primitive theme and denote by \(F_j \) its normal rank \(j \) submodule. Let \(x \in E \setminus F_{k-1} \). Then the \((a,b)\)-module \(\tilde{A}.x \subset E \) is a rank \(k \) theme.

Proof. We may assume \(E \subset \Xi^{(k-1)}_{\lambda} \) and then (see [B.10]) we have the equality \(F_{k-1} = E \cap \Xi^{(k-2)}_{\lambda} \). So \(x \) contains a non zero term with \((\log s)^{k-1}\) and then the result is clear.

Our next lemma shows that the semi-simple filtration of a normal submodule of a fresco \(E \) is the trace on this submodule of the semi-simple filtration of \(E \).

Lemma 4.1.11 Let \(E \) be a fresco and \(F \) any normal submodule of \(E \). Then for any \(j \in \mathbb{N} \) we have \(S_j(E) \cap F = S_j(F) \).

Proof. By induction on \(j \geq 1 \). First \(S_1(E) \cap F \) is semi-simple in \(F \) so contained in \(S_1(F) \) by definition. But conversely, \(S_1(F) \) is semi-simple, so contained in \(S_1(E) \) and also in \(F \).

Let assume now that \(j \geq 2 \) and that the result is proved for \(j - 1 \). Consider now the quotient \(E/S_{j-1}(E) \). As \(S_{j-1}(E) \cap F = S_{j-1}(F) \), \(E/S_{j-1}(F) \) is a submodule of \(E/S_{j-1}(E) \). Now by the case \(j = 1 \) \(S_j(F)/S_{j-1}(F) \) which is, by definition, \(S_1(F/S_{j-1}(F)) \) is equal to \(S_1(E/S_{j-1}(E)) \cap (F/S_{j-1}(F)) \). So we obtain

\[
S_j(F)/S_{j-1}(F) = (S_j(E)/S_{j-1}(E)) \cap (F/S_{j-1}(F)).
\]

This implies the equality \(S_j(F) = S_j(E) \cap F \).
Lemma 4.1.12 Let \(0 \to F \to E \to G \to 0 \) be a short exact sequence of frescos. Then we have the inequalities
\[
\operatorname{sup}\{d(F), d(G)\} \leq d(E) \leq d(F) + d(G).
\]

Proof. The inequality \(d(F) \leq d(E) \) is obvious from the previous lemma. The inequality \(d(G) \leq d(E) \) is then a consequence of the property iv) in proposition 4.1.9.

Now let \(\varphi : E \to \Xi_{\lambda} \) be a \(\tilde{\mathcal{A}} \)-linear map with rank \(\delta \). Then the restriction of \(\varphi \) to \(F \) has rank \(\leq d(F) \). So \(\varphi(F) \) is contained in \(T_d \), the normal sub-theme of \(\varphi(E) \) of rank \(d = d(F) \). The map \(\tilde{\varphi} : E/F \to \Xi_{\lambda} \) defined by composition of \(\varphi \) with an injection of the theme \(\varphi(E)/T_d \) in \(\Xi_{\lambda} \) has rank \(\delta - d \leq d(E/F) \). So the inequality \(\delta \leq d(F) + d(E/F) \) is proved. \(\blacksquare \)

4.2 Co-semi-simple filtration.

Lemma 4.2.1 Let \(E \) be a fresco. Then there exists a normal submodule \(\Sigma^1(E) \) which is the minimal normal submodule \(\Sigma \) such that \(E/\Sigma \) is semi-simple.

Proof. First recall that if \(T \) is a theme and \(T \otimes E_{\delta} \) is geometric for some \(\delta \in \mathbb{Q} \), then \(T \otimes E_{\delta} \) is again a theme.

We shall prove that if \(E \) is a fresco and if \(N \in \mathbb{Z} \) is such that \(E \otimes E_N \) is again a fresco, we have the equality of submodules in \(E \otimes E_N \):
\[
S_1(E \otimes E_N) = S_1(E) \otimes E_N. \tag{\@}
\]

As \(S_1(E) \otimes E_N \) is a normal semi-simple submodule of \(E \otimes E_N \) the inclusion \(\supset \) in (\@) is clear.

Conversely, \(S_1(E \otimes E_N) \otimes E_{-N} \) is a semi-simple submodule of \(E \simeq E \otimes E_N \otimes E_{-N} \).

So we obtain \(S_1(E \otimes E_N) \otimes E_{-N} \subset S_1(E) \) and we conclude by tensoring by \(E_N \).

Now we shall prove that \(S_1(E^* \otimes E_N)^* \otimes E_N \) is a fresco and does not depend of \(N \), large enough.

Let \(\lambda_j + j \in [1, k] \) the sequence corresponding to the quotient of a J-H. of \(E \). Then let \(q \in \mathbb{N} \) such that \(\lambda_j + j \in]k, k+q[\) for all \(j \in [1, k] \). The corresponding J-H. for \(E^* \otimes E_N \) has quotients associated to the numbers \(-(\lambda_j + j) + k + N \) which are in \(]N-q, N[\cap]k, +\infty[\) for \(N > k+q \). So \(E^* \otimes E_N \) is a fresco. Then \(S_1(E^* \otimes E_N) \) is also a fresco and has a J-H. sequence corresponding to numbers in a subset of the previous ones. Dualizing again, we obtain that \(S_1(E^* \otimes E_N)^* \otimes E_N \) has a J-H. sequence with corresponding numbers \(-\mu_j + j + k + N \) with \(\mu_j + j \in]N-q, N[\).

So \(S_1(E^* \otimes E_N)^* \otimes E_N \) is a fresco which is a quotient of \(E \).

We want to show that this quotient is independant of the choice of \(N \) large enough. This is consequence of the fact that
\[
S_1(E \otimes E_{N+1})^* = (S_1(E \otimes E_N) \otimes E_1)^*
\]
\[
\quad = S_1(E \otimes E_N)^* \otimes E_{-1}
\]

21
and so
$$S_1(E \otimes E_{N+1})^* \otimes E_{N+1} = S_1(E \otimes E_N)^* \otimes E_N.$$
As $S_1(E^* \otimes E_N)$ is the maximal semi-simple submodule in $E^* \otimes E_N$, we conclude that $S_1(E^* \otimes E_N)^* \otimes E_N$ is the maximal quotient of E which is semi-simple. So we have $\Sigma^1(E) = \left(E^* \otimes E_N / S_1(E^* \otimes E_N) \right)^* \otimes E_N \subset E$.

Définition 4.2.2 Let E be a fresco and define inductively the normal submodules $\Sigma^j(E)$ as follows : $\Sigma^0(E) := E$ and $\Sigma^{j+1}(E) := \Sigma^j(E)$. We call $\Sigma^j(E), j \geq 0$ the co-semi-simple filtration of E.

Note that Σ^j/Σ^{j+1} is the maximal semi-simple quotient of Σ^j for each j.

Lemme 4.2.3 Let E be a fresco. The normal submodules $\Sigma^j(E)$ satisfies the following properties:

i) For any $j \in [0, d(E) - 1]$ we have $\Sigma^{j+1}(E) \subset \Sigma^j(E) \cap S_{d-j-1}(E)$ where $\nu := d(E)$ is the ss-depth of E.

ii) For any $[\lambda]$—primitive sub-theme T of rank t in $\Sigma^j(E)$ we have the inclusion $F_{t-p}(T) \subset \Sigma^{j+p}$, where $p \in [0, t]$ and $F_{t-p}(T)$ is the rank $t-p$ normal sub-theme of T.

iii) Put $\nu := d(E)$. Then we have $d(\Sigma^j(E)) = \nu - j$ for each $j \in [0, \nu]$. This implies that $\Sigma^\nu(E) = \{0\}$ and that $\Sigma^{\nu-1}(E) \neq \{0\}$ is semi-simple.

iv) For any normal submodule $F \subset E$ we have $\Sigma^j(F) \subset \Sigma^j(E) \cap \Sigma^{j-1}(F)$.

Remarks.

1. The inclusion in i) implies $\Sigma^j(E) \subset S_{d-j}(E)$ $\forall j \in [0, d(E)]$.

2. The filtration $\Sigma^j, j \in [0, \nu]$, is strictly decreasing because of iii).

Proof. Let us prove i) by induction on $j \in [0, d(E) - 1]$. As i) is obvious for $j = 0$ assume $j \geq 1$ and i) proved for $j-1$. So we know that $\Sigma^j(E) \subset S_{d-j}(E)$. The quotient $S_{d-j}(E)/S_{d-j-1}(E)$ is semi-simple, by definition of $S_{d-j}(E)$, and so is its submodule $\Sigma^j(E)/\Sigma^{j+1}(E) \cap S_{d-j-1}(E)$. The definition of $\Sigma^{j+1}(E)$ implies then that we have $\Sigma^{j+1}(E) \subset \Sigma^j(E) \cap S_{d-j-1}(E)$. So i) is proved.

To prove ii) it is enough to show it for $p = 1$, by an obvious iteration. By definition $\Sigma^j(E)/\Sigma^{j+1}(E)$ is semi-simple. So is the submodule $T/T \cap \Sigma^{j+1}(E)$. As it is also a $[\lambda]$—primitive theme, its rank is ≤ 1 showing that $T \cap \Sigma^{j+1}(E)$ contains the corank 1 normal submodule $F_{t-1}(T)$ of T.

To prove iii) let $\nu := d(E)$ and let T a sub-theme in E of rank ν. Then, thanks to ii) with $j = 0$, $\Sigma^1(E) \cap T$ contains a sub-theme of rank $\geq \nu - 1$. So $d(\Sigma^1(E)) \geq \nu - 1$. Assume that $d(\Sigma^1(E)) = \nu$, then we obtain, thanks to
iteration of the previous inequality, that \(d(\Sigma^{d-1}(E)) \geq 2\). But from i) we know that \(\Sigma^{d-1}(E) \subset S_1(E)\) is semi-simple. This is a contradiction. So we obtain \(d(\Sigma^{1}(E)) = d - 1\) and then \(d(\Sigma^{j}(E)) = d - j\) for each \(j \in [0, d]\).

To prove iv) we shall make an induction on \(j \in [0, d(E)]\). As the case \(j = 0\) is obvious, assume \(j \geq 1\) and the case \(j - 1\) proved. As \(\Sigma^{j}(E) \cap F/\Sigma^{j+1}(E) \cap F\) is a submodule of \(\Sigma^{j}(E)/\Sigma^{j+1}(E)\) which is semi-simple by definition, it is semi-simple and so we have \(\Sigma^{j}(\Sigma^{j}(E) \cap F) \subset \Sigma^{j+1}(E) \cap F\). Now to conclude, as we know that \(\Sigma^{j}(F) \subset \Sigma^{j}(E)\), it is enough to remark that for \(G \subset H\) we have \(\Sigma^{1}(G) \subset \Sigma^{1}(H) \cap G\): as \(H/\Sigma^{1}(H)\) is semi-simple, its submodule \(G/G \cap \Sigma^{1}(H)\) is also semi-simple, and so \(\Sigma^{1}(G)\) is contained in \(\Sigma^{1}(H) \cap G\).

\[\blacksquare\]

Remark. We shall prove in section 5 that \(E/S_1(E)\) and \(\Sigma^{1}(E)\) are rank \(d(E) - 1\) themes and that any normal rank \(d(E)\) theme in \(E\) contains \(\Sigma^{1}(E)\).

4.3 Computation of the ss-depth.

Définition 4.3.1 Let \(E\) be a rank \(k\) \([\lambda]\)-primitive fresco and consider \([F] := \{F_j, j \in [1, k]\}\) be any J.H. sequence of \(E\). We shall say that \(j \in [1, k - 1]\) is a non commuting index for \([F]\) if the quotient \(F_{j+1}/F_{j-1}\) is a theme. If it is not the case we shall say that \(j\) is a commuting index. Note that in this case the quotient \(F_{j+1}/F_{j-1}\) is semi-simple.

Lemme 4.3.2 Let \(E\) be a rank \(k \geq 2\) \([\lambda]\)-primitive fresco and let \(F_j, j \in [1, k]\) be a J.H. sequence of \(E\). Assume that the \(\mathcal{A}\)-linear map \(\varphi : F_{k-1} \rightarrow \Xi_\lambda\) has rank \(\delta \geq 1\) and that \(E/F_{k-2}\) is a theme. Then any \(\tilde{\varphi} : E \rightarrow \Xi_\lambda\) extending \(\varphi\) has rank \(\delta + 1\).

Proof. Let \(e\) be a generator of \(E\) such that \((a - \lambda_{k-1}b).S_{k-1}^{-1}.(a - \lambda_kb).e\) is in \(F_{k-2}\). So, if \(\lambda_k = \lambda_{k-1} + p_{k-1} - 1\) we have either \(p_{k-1} = 0\) or \(p_{k-1} \geq 1\) and the coefficient of \(b^{p_{k-1}}\) in \(S_{k-1}\) does not vanish. Put \(\varepsilon := S_{k-1}^{-1}.(a - \lambda_kb).e\); it is a generator of \(F_{k-1}\). Up to a non zero constant, we may assume that

\[
\varphi(\varepsilon) - s^{(k-1)} \cdot (\log s)^{(\delta-1)}/(\delta - 1)! \in \Xi^{(\delta-2)}_\lambda.
\]

Now we want to define \(\tilde{\varphi}(e) = x\) where \(x\) is a solution in \(\Xi_\lambda\) of the equation

\[(a - \lambda_kb).x = S_{k-1}.\varphi(\varepsilon).
\]

Then it is easy to find that, because the coefficient of \(b^{p_{k-1}}\) in \(S_{k-1}\) is not zero, we have

\[x - s^{(k-1)} \cdot (\log s)^\delta/\delta! \in \Xi^{(\delta-1)}_\lambda.
\]

Now the degree in \(\log s\) gives our assertion.

\(^{8}\)with the convention \(\Sigma^{-1}(G) := G\).
Corollaire 4.3.3 In the situation of the lemma 4.3.2 we have the equality \(d(E) = d(F_{k-1}) + 1 \).

Lemme 4.3.4 Let \(E \) be a rank \(k \) \([\lambda] \)-primitive fresco and \([F] := \{F_j, j \in [1, k]\} \), be any J-H. sequence of \(E \). Let \(nci(F) \) be the number of non commuting indices for the J-H. sequence \([F] \). Then we have the inequality \(d(E) \geq nci(F) + 1 \).

Proof. We shall prove this by induction on the rank of \(E \). The cases of rank 1 and 2 are clear. Let assume \(k \geq 3 \) and the inequality proved in rank \(\leq k - 1 \). Consider a J-H. sequence \(F_j, j \in [1, k] \), for \(E \) and assume first that \(E/F_{k-2} \) is semi-simple. Then we have, denoting \([G] \) the J-H. sequence \(\{F_j, j \in [1, k-1]\} \), for \(F_{k-1} \):

\[
nci(F) = nci(G) \leq d(F_{k-1}) - 1 \leq d(E) - 1
\]

using the induction hypothesis and lemma 4.1.2; it concludes this case. Assume now that \(E/F_{k-2} \) is a theme. Then using corollary 4.3.3 we have \(d(E) = d(F_{k-1}) + 1 \). So we get using again the inductive hypothesis:

\[
nci(F) = nci(G) + 1 \leq d(F_{k-1}) = d(E) - 1
\]

which concludes the proof.

Remarks.

1. This inequality may be strict for several J-H. sequences, including the principal one : there are examples of rank 3 fresco with a principal J-H. sequence \([F] \) such that \(nci(F) = 0 \) which are not semi-simple (see 3.3).

2. We shall see using the corollary of the theorem 4.4.1 (see the remark following 5.1.2) that for any fresco \(E \) there always exists a J-H. sequence \([F] \) for which we have the equality \(d(E) = nci(F) + 1 \).

4.4 Embedding for a semi-simple fresco.

The aim of this paragraph is to prove the following embedding theorem for semi-simple \([\lambda] \)-primitive frescos.

Proposition 4.4.1 Let \(E \) be a rank \(k \) semi-simple \([\lambda] \)-primitive fresco. Then there exists an \(\tilde{A} \)-linear injective map \(\varphi : E \rightarrow \Xi_\lambda \otimes \mathbb{C}^l \) if and only if \(l \geq k \).
Proof. To show that the existence of \(\varphi : E \to \Xi \otimes \mathbb{C}^l \) implies \(l \geq k \), remark that for any linear form \(\alpha : \mathbb{C}^l \to \mathbb{C} \) the composed map \((1 \otimes \alpha) \circ \varphi \) has rank at most 1. So the inequality \(l \geq k \) is clear. To prove that there exists an \(\mathcal{A} \)-linear injective map from \(E \) to \(\Xi \otimes \mathbb{C}^k \) we shall use the following lemma.

Lemme 4.4.2 Let \(\lambda_1, \ldots, \lambda_k, k \geq 2 \), be numbers in \([\lambda] \in \mathbb{Q}/\mathbb{Z} \) such that \(\lambda_{j+1} = \lambda_j + p_j - 1 \) for each \(j \in [1, k-1] \) with \(p_j < 0 \). Put

\[
Q := (a - \lambda_2.b).S_2^{-1} \ldots S_{k-1}^{-1}(a - \lambda_k.b) \quad \text{and} \quad P := (a - \lambda_1.b).S_1^{-1}.Q
\]

where \(S_j, j \in [1, k-1] \) are invertible elements in \(\mathbb{C}[[b]] \). Assume also that \(\lambda_1 > k - 1 \). Then there exists an unique element \(T \in \mathbb{C}[[b]] \) which satisfies

\[
Q.T.s^{\lambda_1-k} = S_1.s^{\lambda_1-1}.
\]

Moreover \(T \) is invertible in \(\mathbb{C}[[b]] \).

Proof. We begin by the proof of the case \(k = 2 \). Then we look for \(T \in \mathbb{C}[[b]] \) such that \((a - \lambda_2.b).T.s^{\lambda_1-2} = S_1.s^{\lambda_1-1} \). This equation is equivalent to the differential equation

\[
b.T' - p_1.T = (\lambda_1 - 1).S_1
\]

which has an unique solution in \(\mathbb{C}[[b]] \) for any \(S_1 \in \mathbb{C}[[b]] \) because \(p_1 < 0 \). Moreover, we have \(-p_1.T(0) = (\lambda_1 - 1).S_1(0) \), so \(T \) is invertible as \(S_1 \) is invertible.

Let now prove the lemma by induction on \(k \geq 2 \). We may assume \(k \geq 3 \) and the lemma proved for \(k - 1 \). Put \(Q = (a - \lambda_2.b).S_2^{-1}.R \). Our equation is

\[
(a - \lambda_2.b).S_2^{-1}.R.T.s^{\lambda_1-k} = S_1.s^{\lambda_1-1}.
\]

Remark that \(S_2^{-1}.R.T.s^{\lambda_1-k} = V.s^{\lambda_1-2} \) for some \(V \in \mathbb{C}[[b]] \). So, let \(U \in \mathbb{C}[[b]] \) the unique solution of the equation

\[
(a - \lambda_2.b).U.s^{\lambda_1-2} = S_1.s^{\lambda_1-1}
\]

and consider now the equation in \(T \in \mathbb{C}[[b]] : \)

\[
R.T.s^{\lambda_1-k} = S_2.U.s^{\lambda_1-2}.
\]

The inductive hypothesis shows that there exists an unique invertible \(T \in \mathbb{C}[[b]] \) which is solution of \((@@) \). Then it satisfies \((@) \). The uniqueness of the solution \(T \) of \((@) \) is consequence of the uniqueness of \(U \) and uniqueness in the inductive hypothesis.

\[\blacksquare\]
5 Quotient themes of a $[\lambda]-$primitive fresco.

5.1 Structure theorem for $[\lambda]-$primitive frescos.

Now we are ready to describe the precise structure of a $[\lambda]-$primitive fresco. We shall then deduce the possible ($[\lambda]-$primitive) quotient themes of a any given $[\lambda]-$primitive fresco.

Théorème 5.1.1 Let E be a $[\lambda]-$primitive fresco and let $d := d(E)$ be its ss-depth. Then there exists a J-H. sequence $G_j, j \in [1, k]$ for E with the following properties :

i) The quotient E/G_{k-d} is a theme (with rank d).

ii) We have the equality $G_{k-d+1} = S_1(E)$.

Remark. By twisted duality we obtain also a J-H. sequence $G'_j, j \in [1, k]$, such that $G'_{d-1} = \Sigma^1(E)$ and G'_d is a theme ; then E/G'_{d-1} is the maximal semi-simple quotient of E.

Proof. Let $\varphi : E \to \Xi_\lambda$ an \tilde{A}–linear map with rank d. Denote $F_j(\varphi)$ the J-H. sequence of the $[\lambda]-$primitive theme $\varphi(E)$. Put $H_j := \varphi^{-1}(F_j(\varphi))$ for $j \in [0, d]$. Note that $H_0 = \text{Ker} \varphi$. We shall show that $H_1 = S_1(E)$.
To show that H_1 is semi-simple, assume that we have a rank 2 \tilde{A}-linear map $	heta : H_1 \to \Xi$. Then $E / Ker \theta$ has the following J-H. sequence

$$0 \subset \theta^{-1}(F_1(\theta)) / Ker \theta \subset H_1 / Ker \theta \subset \cdots \subset H_d / Ker \theta.$$

As $H_1 / Ker \theta$ and $(H_{j+1} / Ker \theta) / (H_{j-1} / Ker \theta) \simeq H_{j+1} / H_{j-1}$ are $[\lambda]$-primitive rank 2 themes for j in $[1, d-1]$, this would imply that $E / Ker \theta$ is a rank $d+1$ $[\lambda]$-primitive theme, contradicting the definition of d.

Then H_1 is semi-simple. But as $S_1(E)$ is contained in $H_1 := \varphi^{-1}(F_1(\varphi))$ the equality $H_1 = S_1(E)$ is proved.

Define now $G_j := H_j$ for $j \in [0, d]$, and complete the J-H. sequence $G_j, j \in [1, k]$ of E by choosing a J-H. sequence $G_j, j \in [1, k-d]$, for H_0. ■

We have the following easy consequences of this theorem.

Corollaire 5.1.2 Let E be a $[\lambda]$-primitive fresco and let $d := d(E)$ be its ss-depth. Then $E / S_1(E)$ and $\Sigma^1(E)$ are $[\lambda]$-primitive themes of rank $d - 1$ and we have

$$rk(S_1(E)) + d(E) = rk(E) + 1. \quad \text{and} \quad rk(\Sigma^1(E)) = d(E) - 1.$$

For each $j \in [2, d]$ the rank of $S_j(E) / S_{j-1}(E)$ is 1. Moreover, any rank d quotient theme T of E satisfies $E / S_1(E) \simeq T / F_1(T)$. Dualy, any rank d theme contains $\Sigma^1(E)$.

Proof. With the notations of the theorem, let $T := E / G_{k-d}$. Then G_{k-d+1} / G_{k-d} is $F_1(T)$ the unique rank 1 normal submodule of the $[\lambda]$-primitive theme T. Then we obtain that $E / S_1(E) \simeq E / G_{k-d+1} \simeq T / F_1(T)$ proving our first assertion. The computation of the rank of $S_1(E)$ follows.

Consider now the exact sequence

$$0 \to S_1(E) \to E \to T(E) \to 0$$

where $T(E)$ is the $d - 1$ $[\lambda]$-primitive theme $E / S_1(E)$. Dualizing and tensoring by E_N for N a large enough integer gives the exact sequence

$$0 \to T(E)^* \otimes E_N \to E^* \otimes E_N \to S_1(E)^* \otimes E_N \to 0$$

where $S_1(E)^* \otimes E_N$ is semi-simple. This implies that $\Sigma^1(E^* \otimes E_N) \subset T(E)^* \otimes E_N$.

And we have equality because we know that $E^* \otimes E_N$ contains a rank d theme, so the dimension of $\Sigma^1(E^* \otimes E_N)$ is at most $d(E) - 1$. Then we conclude that $\Sigma^1(E)$ is a theme and that its rank is $d(E) - 1$.

We know that $E / S_1(E)$ is a theme, so $S_1(E / S_1(E)) = F_1(E / S_1(E))$ is rank 1 for $d(E) \geq 2$. A similar argument shows that $S_j(E) / S_{j-1}(E)$ for each $j \in [2, d]$. In fact it is naturally isomorphic to $F_{j-1}(T) / F_{j-2}(T)$ where $T := T(E)$. 27
Let T' any rank d quotient theme of E. As E is $[\lambda]$–primitive, so is T' and we may assume that $T' := \varphi(E)$ where $\varphi \in Hom_{\tilde{A}}(E, \Xi_{\lambda})$. But now $S_1(E)$ is in $\varphi^{-1}(F_1(T'))$, so we have a surjective map, induced by φ:

$$\tilde{\varphi} : E/S_1(E) \to T'/F_1(T')$$

between two $[\lambda]$–primitive themes of the same rank $d - 1$. This must be an isomorphism. ■

Remark. Building a J-H. sequence of E via the exact sequence

$$0 \to S_1(E) \to E \to T(E) \to 0$$

we find that the number of non commuting indices in such a J-H. sequence is exactly $d(E) - 1$. Of course we may put the non commuting indices at the beginning by using the exact sequence

$$0 \Sigma^1(E) \to E \to E/\Sigma^1(E) \to 0.$$

5.2 Embedding dimension for a $[\lambda]$–primitive fresco.

From the embedding result in the semi-simple case 4.1.1 and the structure theorem 5.1.1 we shall deduce precise embedding theorem for $[\lambda]$–primitive frescos.

Proposition 5.2.1 Let E be a $[\lambda]$–primitive fresco. Then there exists an injective \tilde{A}–linear map $\varphi : E \to \Xi_{\lambda} \otimes \mathbb{C}^d$ if and only if $l \geq rk(E) - d(E) + 1$.

Proof. If we have such a φ its restriction to $S_1(E)$ is an embedding and so $l \geq rk(S_1(E)) = rk(E) - d(E) + 1$.

Conversely, we shall prove that there exists and embedding of E in $\Xi_{\lambda} \otimes \mathbb{C}^d$ with $l = rk(E) - d(E) + 1$. By the proposition 4.1.1 we may begin with an injective \tilde{A}–linear map $\varphi : S_1(E) \to \Xi_{\lambda} \otimes \mathbb{C}^d$ with $l := rk(E) - d(E) + 1$. Put $\varphi := \bigoplus_{i=1}^l \varphi_i$ where $\varphi_i : S_1(E) \to \Xi_{\lambda}$. Now, for each $i \in [1, l]$ we may find an extension $\Phi_i : E \to \Xi_{\lambda}$ to φ_i thanks to the surjectivity of $Hom_{\tilde{A}}(E, \Xi_{\lambda}) \to Hom_{\tilde{A}}(S_1(E), \Xi_{\lambda})$ (see section 2.1). Then we may define $\Phi := \bigoplus_{i \in [1, l]} \Phi_i : E \to \Xi_{\lambda} \otimes \mathbb{C}^d$ which is an extension of φ to E. Moreover, such an extension is injective because its kernel cannot meet non trivially $S_1(E)$ and so does not contain any normal rank 1 submodule of E. So the kernel has to be $\{0\}$. ■

5.3 Quotient themes of a $[\lambda]$–primitive fresco.

Now we shall describe all quotient themes of a given $[\lambda]$–primitive fresco. We begin by the description of quotient themes of maximal rank.

28
Proposition 5.3.1 Let \(E \) be a \([\lambda]\)-primitive fresco of rank \(k \). Then any rank \(d := d(E) \) quotient theme of \(E \) is obtained as follows: let \(K \) be a corank 1 normal submodule of \(S_1(E) \) and assume that \(K \cap L(E) = \{0\} \) where \(L(E) := \Sigma^1(S_2(E)) \). Then \(E/K \) is a rank \(d \) theme.

Proof. Consider \(K \subset S_1(E) \) a corank 1 normal submodule in \(S_1(E) \) such that \(K \cap L(E) = \{0\} \). By definition of \(L(E) \) the quotient \(S_2(E)/K \) is rank 2 and not semi-simple. So it is a theme. We have the following Jordan-Hölder sequence for \(E/K \):

\[
0 \subset S_1(E)/K \subset S_2(E)/K \subset \cdots \subset S_d(E)/K = E/K \quad (\@)
\]

But \(S_2(E)/K \) and each \(S_{j+2}(E)/S_j(E) \) for \(j \in [1, d-2] \) is a theme of rank 2. So from [B.10] we conclude that \(E/K \) is a rank \(d \) theme.

Conversely, if \(E/K \) is a rank \(d \) theme, consider \(S_1(E)/S_1(E) \cap K \hookrightarrow E/K \). As \(S_1(E)/S_1(E) \cap K \) is semi-simple and \(E/K \) is a theme, the rank of \(S_1(E)/S_1(E) \cap K \) is at most 1. It is not 0 because \(K \) has rank \(k-d \) and \(S_1(E) \) has rank \(k-d+1 \). So \(K \) is contained in \(S_1(E) \) and has corank 1 in it. If \(K \) contains \(L(E) \) then \(S_2(E)/K \) is semi-simple and of rank 2, if we assume \(d \geq 2 \). But it is contained in \(E/K \) which is a theme, so we get a contradiction.

For \(d = 1 \) in the previous proposition (so \(E \) semi-simple) we have \(S_2(E) = E \) so \(L(E) = \{0\} \) and any corank 1 normal submodule of \(S_1(E) = E \) gives a rank 1 quotient which is, of course a rank 1 theme.

In the statement of the theorem we shall denote by \(L_j \) for \(j \in [1, d-1] \) the rank \(j \) theme defined as \(\Sigma^1(S_{j+1}(E)) \). So, by definition, \(S_{j+1}(E)/\Sigma_j \) is semi-simple, and \(L_j \) is a normal submodule which is minimal for this property. We have seen that \(L_j \) is then a theme with rank \(d(S_{j+1}(E)) - 1 \); as we know that \(d(S_{j+1}(E)) = j + 1 \), the rank of \(L_j \) is \(j \). In fact we have \(L_j = F_j(\Sigma^1(E)) \) for each \(j \in [0, d-1] \) and so \(L_1 = L(E) \).

Théorème 5.3.2 Let \(E \) be a \([\lambda]\)-primitive fresco of rank \(k \). Put \(d := d(E) \) and denote by \(S_{j, j} \in [1, d] \) the semi-simple filtration of \(E \). Assume that \(d \geq 2 \) and let \(\Sigma_j \) be the first term of the co-semi-simple filtration of \(S_{j+1} \).

Let \(K \subset E \) be a normal submodule such that \(E/K \) is a theme. Then we have the following possibilities:

1. If \(K \) contains \(S_1(E) \), then \(E/K \) is a quotient theme of the rank \(d - 1 \) theme \(E/S_1(E) \) and we have exactly one such quotient for each rank in \([1, d-1] \).

2. If \(K \cap L_1 = \{0\} \), then \(E/K \) is a quotient of the rank \(d \) theme \(E/K \cap S_1(E) \) which belongs to the quotient themes described in the previous proposition.

3. If \(K \) contains \(L_{j_0} \) but not \(L_{j_0 + 1} \) (so \(K \cap \Sigma^1(E) \) has rank \(j_0 \)), we may apply the previous case to \(E' := E/L_{j_0} \) and \(K' := K/L_{j_0} \) and find that \(E/K = E'/K' \) is a quotient of the rank \(d - j_0 \) quotient theme \(E'/K' \cap S_1(E') \).
In this situation we have $S_1(E') = S_{j_0+1}(E)/L_{j_0}$ and $d(E') = d - j_0$, with $\text{rk}(E') = \text{rk}(E) - j_0$. So the rank of E/K is at most $d - j_0$.

Remarks.

i) The case 2 of the previous theorem is the case 3 with $j_0 = 0$. We emphasis on this case because the rank d quotients themes is the most interesting case.

ii) Let $\varphi : E \rightarrow T$ be a surjective \mathbb{A}--linear map on a rank $\delta \geq 2$ theme T. Then $S_1(E) \subset \varphi^{-1}(F_1(T))$ and so the map φ induces a surjection $E/S_1(E) \rightarrow T/F_1(T)$. As $E/S_1(E)$ is a $[\lambda]-$primitive theme, it has an unique quotient of rank $\delta - 1$. So the quotient theme $T/F_1(T)$ depends only on δ and E, not on T. In the case $\delta = d(E)$ we find that $T/F_1(T) \simeq E/S_1(E)$ for any choice of T.

iii) The previous theorem gives very few information on the rank 1 quotients, because any corank 1 normal submodule contains $\Sigma^1(E)$. They will be described in the next proposition.

Proof. The first case is clear.

Assume that $L_1 \cap K = \{0\}$; then K does not contain S_1. But $S_1/K \cap S_1$ is semi-simple and is contained in the theme E/K. So it has rank ≤ 1. As we know that S_1 is not contained in K, the rank is exactly 1, and $K \cap S_1$ has corank 1 in S_1. As $K \cap L_1 = \{0\}$ the previous proposition shows that $E/K \cap S_1$ is a rank d theme. So the case 2 is proved.

For the proof of the case 3 it is enough to prove the equalities

$$S_1(E') = S_{j_0+1}(E)/L_{j_0}, \quad L_1(E') = L_{j_0+1}/L_{j_0}, \quad \text{and} \quad d(E') = d - j_0, \quad \text{rk}(E') = \text{rk}(E) - j_0.$$

As we know that L_j is a theme of rank j, because $d(S_{j+1}) = j + 1$, the rank of E' is $\text{rk}(E) - j_0$. The equality $d(L_{j_0}) = j_0$ is then clear.

As $S_{j_0+1}(E)/L_{j_0}$ is semi-simple, we have $S_{j_0+1}(E)/L_{j_0} \subset S_1(E')$. But now we know that they have same rank because

$$\text{rk}(S_1(E')) = \text{rk}(E') - d(E') + 1 = \text{rk}(E) - j_0 - (d - j_0) + 1 = \text{rk}(E) - d + 1.$$

Also $L_1(E')$ and L_{j_0+1}/L_{j_0} are rank 1 and normal submodules of E'. And as $S_2(E') = S_{j_0+2}/L_{j_0}$, we have $S_2(E')/\left[L_{j_0+1}/L_{j_0}\right] = S_{j_0+2}/S_{j_0+1}$ is semi-simple (rank 1), this gives the inclusion

$$L_1(E') := \Sigma^1(S_2(E')) \subset L_{j_0+1}/L_{j_0}$$

and so the equality $L_1(E') = L_{j_0+1}/L_{j_0}$ is proved. \[\blacksquare\]
Proposition 5.3.3 (The rank 1 quotients) Let E be a $[\lambda]-$primitive rank k fresco. Put $d := d(E)$. Then any rank 1 quotient of E is a rank 1 quotient of $E/\Sigma^1(E)$. As $E/\Sigma^1(E)$ is semi-simple of rank $k - d + 1$ it shows that there are exactly $k - d + 1$ isomorphism classes of such a rank 1 quotient and they correspond to the fundamental invariants of $E/\Sigma^1(E)$ as follows: if $\lambda_1, \ldots, \lambda_{k-d+1}$ are numbers associated to any J-H. sequence of $E/\Sigma^1(E)$, the isomorphism classes of rank 1 quotients of E are given by

$$\lambda_1 - k + d, \ldots, \lambda_2 - k + d - 1, \ldots, \lambda_{k+d-1}.$$

PROOF. Let H be a normal co-rank 1 submodule of E. As E/H is semi-simple, H contains $\Sigma^1(E)$ so E/H is a rank 1 quotient of $E/\Sigma^1(E)$. The converse is obvious.

REMARK. Assume $d(E) \geq 2$. With the exception of the (unique) rank 1 quotient of $E/S_1(E)$ which is $E/S_{d-1}(E)$, no rank 1 quotient of E may be the rank 1 quotient of a quotient theme of rank ≥ 2 of E. Another way to say that is the following: for any rank $r \geq 2$ quotient theme T of E we have $T/F_{r-1}(T) \simeq E/S_{d-1}(E)$.

Exemple. Let E a rank 3 $[\lambda]-$primitive fresco with $d(E) = 2$ (so E is not semi-simple and is not a theme). Then there exists $k - d + 1 = 2$ isomorphism classes of rank 1 quotients of E.

For instance assume that we have a J-H. sequence $0 \subset F_1 \subset F_2 \subset F_3 = E$, with $F_2 = S_1(E)$ and such E/F_1 is a rank 2 theme.

If $E \simeq (a - \lambda_1,b).S_1^{-1}.(a - \lambda_2,b).S_2^{-1}.(a - \lambda_3,b)$ this means, with $\lambda_{j+1} = \lambda_j + p_j - 1$ for $j = 1,2$, that $p_1 < 0$ or $p_1 \geq 1$ and no term in b^p in S_1 and $p_2 \geq 0$ with a non zero term in b^p in S_2.

So we put $F_j/F_{j-1} \simeq E_{\lambda_j}$ for $j \in [1,3]$; then the rank 1 quotients are isomorphic to $E_{\lambda_j} \simeq E/S_j(E)$ or $E_{\lambda_{j-2}}$, because using the computations of section 3.3 we see that $\Sigma^1(E) \simeq E_{\lambda_2+1}$, and so $E_{\lambda_{j-2}}$ is a rank 1 quotient of $E/\Sigma^1(E)$ and a fortiori of E.

To conclude we give a method to compute $L(E)$ in many cases.

Lemme 5.3.4 Let E be a $[\lambda]-$primitive fresco and assume that $E \simeq \tilde{A}/\tilde{A}.P$ where

$$P := (a - \lambda_1,b).S_1^{-1} \ldots S_{k-1}^{-1}.(a - \lambda_k,b)$$

where $\lambda_j + j$ is an increasing sequence. Assume that the first non commuting index is $h \in [1,k-1]$. Then E has a normal sub-theme of rank 2 with fundamental invariants $\lambda_1, \lambda_{h+1} + h$.

PROOF. It is a simple application of the corollary 3.2.3 which also allow to compute the parameter of the rank 2 obtain by commuting in P from the parameter of the rank 2 theme $Fh + 1/F_{h-1}$ and the integers p_1, \ldots, p_h. ■
Remarks.

i) The hypothesis of the lemma means that \(p_1, \ldots, p_{h-1} \) are positive and that for each \(j \in [1, h-1] \) the coefficient of \(b^{p_j} \) in \(S_j \) is zero. But the coefficient of \(b^{p_h} \) in \(S_h \) is not zero (and \(p_h = 0 \) is allowed).

ii) The lemma implies that \(L(E) \simeq E_{\lambda_1} \) is the first term of the principal J-H. sequence of \(E \).

6 Appendix : the existence theorem.

The aim of this appendix is to prove the following existence theorem for the fresco associated to a relative de Rham cohomology class:

Théorème 6.0.5 Let \(X \) be a connected complex manifold of dimension \(n+1 \) where \(n \) is a natural integer, and let \(f : X \to D \) be an non constant proper holomorphic function on an open disc \(D \) in \(\mathbb{C} \) with center 0. Let us assume that \(df \) is nowhere vanishing outside of \(X_0 := f^{-1}(0) \).

Let \(\omega \) be a \(C^\infty - (p+1) \)-differential form on \(X \) such that \(d\omega = 0 = df \wedge \omega \). Denote by \(E \) the geometric \(\mathcal{A}- \)module \(\mathbb{H}^{p+1}(X, (\hat{K}^\bullet, d^\bullet)) \) and \([\omega] \) the image of \(\omega \) in \(E/B(E) \). Then \(\hat{\mathcal{A}}[\omega] \subset E/B(E) \) is a fresco.

Note that this result is an obvious consequence of the finiteness theorem [6.3.4] that we shall prove below. It gives the fact that \(E \) is naturally an \(\hat{\mathcal{A}} \)-module which is of finite type over the subalgebra \(\mathbb{C}[[b]] \) of \(\hat{\mathcal{A}} \), and so its \(b \)-torsion \(B(E) \) is a finite dimensional \(\mathbb{C} \)-vector space. Moreover, the finiteness theorem asserts that \(E/B(E) \) is a geometric \((a,b) \)-module.

6.1 Preliminaries.

Here we shall complete and precise the results of the section 2 of [B.II]. The situation we shall consider is the following: let \(X \) be a connected complex manifold of dimension \(n+1 \) and \(f : X \to \mathbb{C} \) a non constant holomorphic function such that \(\{x \in X/ df = 0\} \subset f^{-1}(0) \). We introduce the following complexes of sheaves supported by \(X_0 := f^{-1}(0) \)

1. The formal completion ”in \(f \)” \((\hat{\Omega}^\bullet, d^\bullet)\) of the usual holomorphic de Rham complex of \(X \).

2. The sub-complexes \((\hat{K}^\bullet, d^\bullet)\) and \((\hat{I}^\bullet, d^\bullet)\) of \((\hat{\Omega}^\bullet, d^\bullet)\) where the subsheaves \(\hat{K}^p \) and \(\hat{I}^{p+1} \) are defined for each \(p \in \mathbb{N} \) respectively as the kernel and the image of the map

\[\wedge df : \hat{\Omega}^p \to \hat{\Omega}^{p+1} \]

given by exterior multiplication by \(df \). We have the exact sequence

\[0 \to (\hat{K}^\bullet, d^\bullet) \to (\hat{\Omega}^\bullet, d^\bullet) \to (\hat{I}^\bullet, d^\bullet)[+1] \to 0. \] (1)
Note that \hat{K}^0 and \hat{i}^0 are zero by definition.

3. The natural inclusions $\hat{I}^p \subset \hat{K}^p$ for all $p \geq 0$ are compatible with the differential d. This leads to an exact sequence of complexes

$$0 \to (\hat{I}^\bullet, d^\bullet) \to (\hat{K}^\bullet, d^\bullet) \to ([\hat{K}/\hat{I}]^\bullet, d^\bullet) \to 0. \quad (2)$$

4. We have a natural inclusion $f^*(\hat{\Omega}_C^1) \subset \hat{K}^1 \cap Ker d$, and this gives a subcomplex (with zero differential) of $(\hat{K}^\bullet, d^\bullet)$. As in [B.07], we shall consider also the complex $(\hat{K}^\bullet, d^\bullet)$ quotient. So we have the exact sequence

$$0 \to f^*(\hat{\Omega}_C^1) \to (\hat{K}^\bullet, d^\bullet) \to (\hat{K}^\bullet, d^\bullet) \to 0. \quad (3)$$

We do not make the assumption here that $f = 0$ is a reduced equation of X_0, and we do not assume that $n \geq 2$, so the cohomology sheaf in degree 1 of the complex $(\hat{K}^\bullet, d^\bullet)$, which is equal to $\hat{K}^1 \cap Ker d$ does not coincide, in general with $f^*(\hat{\Omega}_C^1)$. So the complex $(\hat{K}^\bullet, d^\bullet)$ may have a non zero cohomology sheaf in degree 1.

Recall now that we have on the cohomology sheaves of the following complexes $(\hat{K}^\bullet, d^\bullet), (\hat{I}^\bullet, d^\bullet), ([\hat{K}/\hat{I}]^\bullet, d^\bullet)$ and $f^*(\hat{\Omega}_C^1), (\hat{K}^\bullet, d^\bullet)$ natural operations a and b with the relation $a.b - b.a = b^2$. They are defined in a naïve way by

$$a := \times f \quad \text{and} \quad b := \wedge df \circ d^{-1}.$$

The definition of a makes sens obviously. Let me precise the definition of b first in the case of $H^p(\hat{K}^\bullet, d^\bullet)$ with $p \geq 2$: if $x \in \hat{K}^p \cap Ker d$ write $x = d\xi$ with $\xi \in \hat{\Omega}^{p-1}$ and let $b[x] := [df \wedge \xi]$. The reader will check easily that this makes sens. For $p = 1$ we shall choose $\xi \in \hat{\Omega}^0$ with the extra condition that $\xi = 0$ on the smooth part of X_0 (set theoretically). This is possible because the condition $df \wedge d\xi = 0$ allows such a choice : near a smooth point of X_0 we can choose coordinates such $f = x_0^k$ and the condition on ξ means independance of x_1, \ldots, x_n. Then ξ has to be (set theoretically) locally constant on X_0 which is locally connected. So we may kill the value of such a ξ along X_0.

The case of the complex $(\hat{I}^\bullet, d^\bullet)$ will be reduced to the previous one using the next lemma.

Lemma 6.1.1 For each $p \geq 0$ there is a natural injective map

$$\tilde{b} : H^p(\hat{K}^\bullet, d^\bullet) \to H^p(\hat{I}^\bullet, d^\bullet)$$

which satisfies the relation $a.\tilde{b} = \tilde{b} (b + a)$. For $p \neq 1$ this map is bijective.
Proof. Let \(x \in \hat{K}^p \cap \text{Ker} \, d \) and write \(x = d\xi \) where \(x \in \hat{\Omega}^{p-1} \) (with \(\xi = 0 \) on \(X_0 \) if \(p = 1 \), and set \(\tilde{b}([x]) := [df \wedge \xi] \in \mathcal{H}^p(\hat{I}^\bullet, d^\bullet) \). This is independent on the choice of \(\xi \) because, for \(p \geq 2 \), adding \(d\eta \) to \(\xi \) does not modify the result as \([df \wedge d\eta] = 0\). For \(p = 1 \) remark that our choice of \(\xi \) is unique.

This is also independent of the the choice of \(x \) in \([x] \in \mathcal{H}^p(\hat{K}^\bullet, d^\bullet)\) because adding \(\theta \in \hat{K}^{p-1} \) to \(\xi \) does not change \([df \wedge \xi]\).

Assume \(\tilde{b}([x]) = 0 \) in \(\mathcal{H}^p(\hat{I}^\bullet, d^\bullet) \); this means that we may find \(\alpha \in \hat{\Omega}^{p-2} \) such \(df \wedge \xi = df \wedge d\alpha \). But then, \(\xi - d\alpha \) lies in \(\hat{K}^{p-1} \) and \(x = d(\xi - d\alpha) \) shows that \([x] = 0\). So \(\tilde{b} \) is injective.

Assume now \(p \geq 2 \). If \(df \wedge \eta \) is in \(\hat{I}^p \cap \text{Ker} \, d \), then \(df \wedge d\eta = 0 \) and \(y := d\eta \) lies in \(\hat{K}^p \cap \text{Ker} \, d \) and defines a class \([y] \in \mathcal{H}^p(\hat{K}^\bullet, d^\bullet)\) whose image by \(\tilde{b} \) is \([df \wedge \eta]\).

This shows the surjectivity of \(\tilde{b} \) for \(p \geq 2 \).

For \(p = 1 \) the map \(\tilde{b} \) is not surjective (see the remark below).

To finish the proof let us compute \(\tilde{b}(a[x] + b[x]) \). Writing again \(x = d\xi \), we get
\[
a[x] + b[x] = [f.d\xi + df \wedge \xi] = [d(f.\xi)]
\]
and so
\[
\tilde{b}(a[x] + b[x]) = [df \wedge f.\xi] = a.\tilde{b}([x])
\]
which concludes the proof. \(\blacksquare \)

Denote by \(i : (\hat{I}^\bullet, d^\bullet) \to (\hat{K}^\bullet, d^\bullet) \) the natural inclusion and define the action of \(b \) on \(\mathcal{H}^p(\hat{I}^\bullet, d^\bullet) \) by \(b := \tilde{b} \circ \mathcal{H}^p(i) \). As \(i \) is \(a \)-linear, we deduce the relation \(a.b - b.a = b^2 \) on \(\mathcal{H}^p(\hat{I}^\bullet, d^\bullet) \) from the relation of the previous lemma.

The action of \(a \) on the complex \(([\hat{K}/\hat{I}^\bullet, d^\bullet]) \) is obvious and the action of \(b \) is zero.

The action of \(a \) and \(b \) on \(f^*(\hat{\Omega}^{\bullet}_\mathbb{C}) \simeq E_1 \otimes \mathbb{C}_{X_0} \) are the obvious one, where \(E_1 \) is the rank 1 \((a,b)\)-module with generator \(e_1 \) satisfying \(a.e_1 = b.e_1 \) (or, equivalently, \(E_1 := \mathbb{C}[[z]] \) with \(a := \times z \), \(b := \int_0^z \) and \(e_1 := 1 \)).

Remark that the natural inclusion \(f^*(\hat{\Omega}^{\bullet}_\mathbb{C}) \hookrightarrow (\hat{K}^\bullet, d^\bullet) \) is compatible with the actions of \(a \) and \(b \). The actions of \(a \) and \(b \) on \(\mathcal{H}^1(\hat{K}^\bullet, d^\bullet) \) are simply induced by the corresponding actions on \(\mathcal{H}^1(\hat{K}^\bullet, d^\bullet) \).

Remark. The exact sequence of complexes (1) induces for any \(p \geq 2 \) a bijection
\[
\partial^p : \mathcal{H}^p(\hat{I}^\bullet, d^\bullet) \to \mathcal{H}^p(\hat{K}^\bullet, d^\bullet)
\]
and a short exact sequence
\[
0 \to \mathbb{C}_{X_0} \to \mathcal{H}^1(\hat{I}^\bullet, d^\bullet) \to \mathcal{H}^1(\hat{K}^\bullet, d^\bullet) \to 0 \tag{\@}
\]
because of the de Rham lemma. Let us check that for \(p \geq 2 \) we have \(\partial^p = (\tilde{b})^{-1} \) and that for \(p = 1 \) we have \(\partial^1 \circ \tilde{b} = \text{Id} \). If \(x = d\xi \in \hat{K}^p \cap \text{Ker} \, d \) then \(\tilde{b}([x]) = [df \wedge \xi] \) and \(\partial^p[df \wedge \xi] = [d\xi] \). So \(\partial^p \circ \tilde{b} = \text{Id} \) \(\forall p \geq 0 \). For \(p \geq 2 \) and
df ∧ α ∈ \hat{I}^p ∩ Ker d we have ∂^p df ∧ α = [dα] and \tilde{b}[dα] = [df ∧ α], so \tilde{b} ∘ ∂^p = Id. For p = 1 we have \tilde{b}[dα] = [df ∧ (α - α_0)] where α_0 ∈ C is such that α|_X_0 = α_0. This shows that in degree 1 \tilde{b} gives a canonical splitting of the exact sequence (\@).

6.2 \tilde{A}–structures.

Let us consider now the C–algebra

\[\tilde{A} := \{ \sum_{\nu \geq 0} P_\nu(a) b^\nu \} \]

where \(P_\nu \in \mathbb{C}[z] \), and the commutation relation \(a.b - b.a = b^2 \), assuming that left and right multiplications by \(a \) are continuous for the \(b \)–adic topology of \(\tilde{A} \).

Define the following complexes of sheaves of left \(\tilde{A} \)–modules on \(X \):

\[(\Omega^{\bullet}[[b]], D^\bullet) \quad \text{and} \quad (\Omega'^{\bullet}[[b]], D^\bullet) \quad \text{where} \]

\[\Omega^{\bullet}[[b]] := \sum_{j=0}^{+\infty} b^j \omega_j \quad \text{with} \quad \omega_0 \in \hat{K}^p \]

\[\Omega'^{\bullet}[[b]] := \sum_{j=0}^{+\infty} b^j \omega_j \quad \text{with} \quad \omega_0 \in \hat{I}^p \]

\[D(\sum_{j=0}^{+\infty} b^j \omega_j) = \sum_{j=0}^{+\infty} b^j.(d\omega_j - df ∧ \omega_{j+1}) \]

\[a. \sum_{j=0}^{+\infty} b^j \omega_j = \sum_{j=0}^{+\infty} b^j.(f.\omega_j + (j - 1).\omega_{j-1}) \quad \text{with the convention} \quad \omega_{-1} = 0 \]

\[b. \sum_{j=0}^{+\infty} b^j \omega_j = \sum_{j=1}^{+\infty} b^j \omega_{j-1} \]

It is easy to check that \(D \) is \(\tilde{A} \)–linear and that \(D^2 = 0 \). We have a natural inclusion of complexes of left \(\tilde{A} \)–modules

\[\tilde{i} : (\Omega'^{\bullet}[[b]], D^\bullet) \to (\Omega^{\bullet}[[b]], D^\bullet). \]

Remark that we have natural morphisms of complexes

\[u : (\hat{I}^{\bullet}, d^\bullet) \to (\Omega'^{\bullet}[[b]], D^\bullet) \]
\[v : (\hat{K}^{\bullet}, d^\bullet) \to (\Omega^{\bullet}[[b]], D^\bullet) \]

and that these morphisms are compatible with \(\tilde{i} \). More precisely, this means that we have the commutative diagram of complexes

\[\begin{array}{ccc} (\hat{I}^{\bullet}, d^\bullet) & \xrightarrow{u} & (\Omega'^{\bullet}[[b]], D^\bullet) \\ \downarrow \tilde{i} & & \downarrow \tilde{i} \\ (\hat{K}^{\bullet}, d^\bullet) & \xrightarrow{v} & (\Omega^{\bullet}[[b]], D^\bullet) \end{array} \]
The following theorem is a variant of theorem 2.2.1. of [B.II].

Théorème 6.2.1 Let \(X \) be a connected complex manifold of dimension \(n + 1 \) and \(f : X \to \mathbb{C} \) a non constant holomorphic function such that

\[
\{x \in X/ \ df = 0\} \subset f^{-1}(0).
\]

Then the morphisms of complexes \(u \) and \(v \) introduced above are quasi-isomorphisms. Moreover, the isomorphisms that they induce on the cohomology sheaves of these complexes are equivalent to short exact sequences of complexes of left \(\hat{A}-\)modules on each of the complex \((\hat{K}^\bullet, d^\bullet), (\hat{I}^\bullet, d^\bullet), ([\hat{K}/\hat{I}]^\bullet, d^\bullet)\) and \(f^*(\hat{\Omega}_\mathbb{C}^1), (\hat{K}^\bullet, d^\bullet)\) in the derived category of bounded complexes of sheaves of \(\mathbb{C}-\)vector spaces on \(X \).

Moreover the short exact sequences

\[
0 \to (\hat{I}^\bullet, d^\bullet) \to (\hat{K}^\bullet, d^\bullet) \to ([\hat{K}/\hat{I}]^\bullet, d^\bullet) \to 0
\]

\[
0 \to f^*(\hat{\Omega}_\mathbb{C}^1) \to (\hat{K}^\bullet, d^\bullet), (\hat{I}^\bullet, d^\bullet) \to (\hat{K}^\bullet, d^\bullet) \to 0
\]

are equivalent to short exact sequences of complexes of left \(\hat{A}-\)modules in the derived category.

Proof. We have to prove that for any \(p \geq 0 \) the maps \(\mathcal{H}^p(u) \) and \(\mathcal{H}^p(v) \) are bijective and compatible with the actions of \(a \) and \(b \). The case of \(\mathcal{H}^p(v) \) is handled (at least for \(n \geq 2 \) and \(f \) reduced) in prop. 2.3.1. of [B.II]. To seek for completeness and for the convenience of the reader we shall treat here the case of \(\mathcal{H}^p(u) \).

First we shall prove the injectivity of \(\mathcal{H}^p(u) \). Let \(\alpha = df \wedge \beta \in \hat{I}^p \cap \ker d \) and assume that we can find \(U = \sum_{j=0}^{+\infty} b^j u_j \in \Omega^{p-1}[[b]] \) with \(\alpha = DU \). Then we have the following relations

\[
u_0 = df \wedge \zeta, \quad \alpha = du_0 - df \wedge u_1 \quad \text{and} \quad du_j = df \wedge u_{j+1} \forall j \geq 1.
\]

For \(j \geq 1 \) we have \([du_j] = b[du_{j+1}] \) in \(\mathcal{H}^p(\hat{K}^\bullet, d^\bullet) \); using corollary 2.2. of [B.II] which gives the \(b\)-separation of \(\mathcal{H}^p(\hat{K}^\bullet, d^\bullet) \), this implies \([du_j] = 0, \forall j \geq 1 \) in \(\mathcal{H}^p(\hat{K}^\bullet, d^\bullet) \). For instance we can find \(\beta_1 \in \hat{K}^{p-1} \) such that \(du_1 = d\beta_1 \). Now, by de Rham, we can write \(u_1 = \beta_1 + d\xi_1 \) for \(p \geq 2 \), where \(\xi_1 \in \hat{\Omega}^{p-2} \). Then we conclude that \(\alpha = -df \wedge d(\xi_1 + \zeta) \) and \(\alpha = 0 \) in \(\mathcal{H}^p(\hat{I}^\bullet, d^\bullet) \).

For \(p = 1 \) we have \(u_1 = 0 \) and \(\alpha = [-df \wedge d\xi_1] = 0 \) in \(\mathcal{H}^1(\hat{I}^\bullet, d^\bullet) \).

We shall show now that the image of \(\mathcal{H}^p(u) \) is dense in \(\mathcal{H}^p(\Omega^{\nu}[[b]], D^\bullet) \) for its \(b\)-adic topology. Let \(\Omega := \sum_{j=0}^{+\infty} b^j \omega_j \in \Omega^{p-1}[[b]] \) such that \(D\Omega = 0 \). The following relations holds \(d\omega_j = df \wedge \omega_{j+1} \forall j \geq 0 \) and \(\omega_0 \in \hat{I}^p \). The corollary 2.2. of [B.II] again allows to find \(\beta_j \in \hat{K}^{p-1} \) for any \(j \geq 0 \) such that \(d\omega_j = d\beta_j \). Fix \(N \in \mathbb{N}^* \).

We have

\[
D(\sum_{j=0}^{N} b^j \omega_j) = b^N d\omega_N = D(b^N \beta_N)
\]
and \(\Omega_N := \sum_{j=0}^{N} b^j \omega_j - b^N \beta_N \) is \(D \)-closed and in \(\Omega^{mp}[[b]] \). And we have
\(\Omega - \Omega_N \in b^N \mathcal{H}^p(\Omega''^*[b]), D^* \), so the sequence \((\Omega_N)_{N \geq 1} \) converges to \(\Omega \) in
\(\mathcal{H}^p(\Omega''^*[b]), D^* \) for its \(b \)-adic topology. Let us show that each \(\Omega_N \) is in the image of \(\mathcal{H}^p(u) \).

Write \(\Omega_N := \sum_{j=0}^{N} b^j w_j \). The condition \(D \Omega_N = 0 \) implies \(dw_N = 0 \) and
\(dw_{N-1} = df \wedge w_N = 0 \). If we write \(w_N = dv_N \) we obtain \(d(w_{N-1} + df \wedge v_N) = 0 \) and
\(\Omega_N - D(b^N, v_N) \) is of degree \(N-1 \) in \(b \). For \(N = 1 \) we are left with
\(w_0 + b.w_1 - (df \wedge v_1 + b.dv_1) = w_0 + df \wedge v_1 \) which is in \(\hat{I} \cap Ker \) because
\(dw_0 = df \wedge dv_1 \).

To conclude it is enough to know the following two facts

i) The fact that \(\mathcal{H}^p(\hat{I}, d^*) \) is complete for its \(b \)-adic topology.

ii) The fact that \(Im(\mathcal{H}^p(u)) \cap b^N \mathcal{H}^p(\Omega''^*[b]), D^* \) \(\subset Im(\mathcal{H}^p(u) \circ b^N) \) \(\forall N \geq 1 \).

Let us first conclude the proof of the surjectivity of \(\mathcal{H}^p(u) \) assuming i) and ii).

For any \([\Omega] \in \mathcal{H}^p(\Omega''^*[b]), D^* \) we know that there exists a sequence \((\alpha_N)_{N \geq 1} \) in
\(\mathcal{H}^p(\hat{I}, d^*) \) with \(\Omega - \mathcal{H}^p(u)(\alpha_N) \in b^N \mathcal{H}^p(\Omega''^*[b]), D^* \). Now the property ii) implies that we may choose the sequence \((\alpha_N)_{N \geq 1} \) such that \([\alpha_{N+1}] - [\alpha_N] \) lies in
\(b^N \mathcal{H}^p(\hat{I}, d^*) \). So the property i) implies that the Cauchy sequence \(([\alpha_N])_{N \geq 1} \) converges to \([\alpha] \in \mathcal{H}^p(\hat{I}, d^*) \). Then the continuity of \(\mathcal{H}^p(u) \) for the \(b \)-adic topologies coming from its \(b \)-linearity, implies \(\mathcal{H}^p(u)([\alpha]) = [\Omega] \).

The compatibility with \(a \) and \(b \) of the maps \(\mathcal{H}^p(u) \) and \(\mathcal{H}^p(v) \) is an easy exercise.

Let us now prove properties i) and ii).

The property i) is a direct consequence of the completion of \(\mathcal{H}^p(\hat{K}, d^*) \) for its
\(b \)-adic topology given by the corollary 2.2. of [B.II] and the \(b \)-linear isomorphism \(\tilde{b} \) between
\(\mathcal{H}^p(\hat{K}, d^*) \) and \(\mathcal{H}^p(\hat{I}, d^*) \) constructed in the lemma 2.1.1. above.

To prove ii) let \(\alpha \in \hat{I} \cap Ker d \) and \(N \geq 1 \) such that
\[
\alpha = b^N . \Omega + DU
\]
where \(\Omega \in \Omega^{mp}[[b]] \) satisfies \(D \Omega = 0 \) and where \(U \in \Omega^{mp-1}[[b]] \). With obvious notations we have
\[
\alpha = du_0 - df \wedge u_1 \\
\ldots \\
0 = du_j - df \wedge u_{j+1} \quad \forall j \in [1, N-1] \\
\ldots \\
0 = \omega_0 + du_N - df \wedge u_{N+1}
\]
which implies \(D(u_0 + b.u_1 + \cdots + b^N . u_N) = \alpha + b^N . du_N \) and the fact that \(du_N \) lies in \(\hat{I} \cap Ker d \). So we conclude that \([\alpha] + b^N.[du_N] \) is in the kernel of \(\mathcal{H}^p(u) \) which is \(0 \). Then \([\alpha] \in b^N \mathcal{H}^p(\hat{I}, d^*) \).\(\blacksquare \)
Remark. The map

$$\beta : (\Omega'[b]^*, D^*) \to (\Omega''[b]^*, D^*)$$

defined by $\beta(\Omega) = b.\Omega$ commutes to the differentials and with the action of b. It induces the isomorphism \tilde{b} of the lemma 6.1.1 on the cohomology sheaves. So it is a quasi-isomorphism of complexes of $C[[b]]$-modules.

To prove this fact, it is enough to verify that the diagram

$$
\begin{array}{ccc}
(K^*, d^*) & \xrightarrow{u} & (\Omega'[b]^*, D^*) \\
\downarrow{\tilde{b}} & & \downarrow{\beta} \\
(I^*, d^*) & \xrightarrow{u} & (\Omega''[b]^*, D^*)
\end{array}
$$

induces commutative diagrams on the cohomology sheaves.

But this is clear because if $\alpha = d\xi$ lies in $K^p \cap Ker d$ we have $D(b.\xi) = b.d\xi - df \wedge \xi$ so $H^p(\beta \circ H^p(v)([\alpha]) = H^p(u) \circ H^p(\tilde{b})([\alpha])$ in $H^p(\Omega''[[b]]^*, D^*)$.

6.3 The finiteness theorem.

Let us recall some basic definitions on the left modules over the algebra \tilde{A}.

Now let E be any left \tilde{A}–module, and define $B(E)$ as the b–torsion of E. that is to say

$$B(E) := \{ x \in E / \exists N \ b^N.x = 0 \}.$$

Define $A(E)$ as the a–torsion of E and

$$A(E) := \{ x \in E / C[[b]].x \subset A(E) \}.$$

Remark that $B(E)$ and $A(E)$ are sub-\tilde{A}–modules of E but that $A(E)$ is not stable by b.

Définition 6.3.1 A left \tilde{A}–module E is called small when the following conditions hold

1. E is a finite type $C[[b]]$–module;
2. $B(E) \subset A(E)$;
3. $\exists N / a^N.\tilde{A}(E) = 0$;

Recall that for E small we have always the equality $B(E) = A(E)$ (see [B.I] lemme 2.1.2) and that this complex vector space is finite dimensional. The quotient $E/B(E)$ is an (a,b)-module called the associate (a,b)-module to E.

Conversely, any left \tilde{A}–module E such that $B(E)$ is a finite dimensional C–vector space and such that $E/B(E)$ is an (a,b)-module is small.

The following easy criterium to be small will be used later:
Lemme 6.3.2 A left $\tilde{\mathbb{A}}$–module E is small if and only if the following conditions hold:

1. $\exists N / a^N \hat{\mathbb{A}}(E) = 0$;
2. $B(E) \subset \hat{\mathbb{A}}(E)$;
3. $\cap_{m \geq 0} b^m \cdot E \subset \hat{\mathbb{A}}(E)$;
4. $\text{Ker} \thinspace b$ and $\text{Coker} \thinspace b$ are finite dimensional complex vector spaces.

As the condition 3 in the previous lemma has been omitted in [B.II] (but this does not affect this article because this lemma was used only in a case were this condition 3 was satisfied, thanks to proposition 2.2.1. of loc. cit.), we shall give the (easy) proof.

Proof. First the conditions 1 to 4 are obviously necessary. Conversely, assume that E satisfies these four conditions. Then condition 2 implies that the action of b on $\hat{\mathbb{A}}(E)/B(E)$ is injective. But the condition 1 implies that $b^{2N} = 0$ on $\hat{\mathbb{A}}(E)$ (see [B.I]). So we conclude that $\hat{\mathbb{A}}(E) = B(E) \subset \text{Ker} \thinspace b^{2N}$ which is a finite dimensional complex vector space using condition 4 and an easy induction. Now $E/B(E)$ is a $\mathbb{C}[[b]]$–module which is separated for its b–adic topology. The finitness of $\text{Coker} \thinspace b$ now shows that it is a free finite type $\mathbb{C}[[b]]$–module concluding the proof. ■

Définition 6.3.3 We shall say that a left $\tilde{\mathbb{A}}$–module E is geometric when E is small and when it associated (a,b)–module $E/B(E)$ is geometric.

The main result of this section is the following theorem, which shows that the Gauss-Manin connection of a proper holomorphic function produces geometric $\tilde{\mathbb{A}}$–modules associated to vanishing cycles and nearby cycles.

Théorème 6.3.4 Let X be a connected complex manifold of dimension $n + 1$ where n is a natural integer, and let $f : X \to D$ be an non constant proper holomorphic function on an open disc D in \mathbb{C} with center 0. Let us assume that df is nowhere vanishing outside of $X_0 : = f^{-1}(0)$. Then the $\tilde{\mathbb{A}}$–modules

$$H^j(X, (\hat{K}^\bullet, d^\bullet))$$

and

$$H^j(X, (\hat{I}^\bullet, d^\bullet))$$

are geometric for any $j \geq 0$.

In the proof we shall use the \mathcal{C}^∞ version of the complex $(\hat{K}^\bullet, d^\bullet)$. We define K^p_∞ as the kernel of $\wedge df : \mathcal{C}^{\infty, p} \to \mathcal{C}^{\infty, p+1}$ where $\mathcal{C}^{\infty, j}$ denote the sheaf of \mathcal{C}^∞– forms on X of degree p, let \hat{K}^\bullet_∞ be the f–completion and $(\hat{K}^\bullet_\infty, d^\bullet)$ the corresponding de Rham complex.

The next lemma is proved in [B.II] (lemma 6.1.1.)
Lemme 6.3.5 The natural inclusion

\[(\hat{K}^\bullet, d^\bullet) \hookrightarrow (\hat{K}_\infty^\bullet, d^\bullet)\]

induce a quasi-isomorphism.

Remark. As the sheaves \(\hat{K}_\infty^\bullet\) are fine, we have a natural isomorphism

\[H^p(X, (\hat{K}^\bullet, d^\bullet)) \simeq H^p(\Gamma(X, \hat{K}_\infty^\bullet), d^\bullet).\]

Let us denote by \(X_1\) the generic fiber of \(f\). Then \(X_1\) is a smooth compact complex manifold of dimension \(n\) and the restriction of \(f\) to \(f^{-1}(D^*)\) is a locally trivial \(\mathcal{C}^\infty\) bundle with typical fiber \(X_1\) on \(D^* = D \setminus \{0\}\), if the disc \(D\) is small enough around \(0\). Fix now \(\gamma \in H_p(X_1, \mathbb{C})\) and let \((\gamma_s)_{s \in D^*}\) the corresponding multivalued horizontal family of \(p\)-cycles \(\gamma_s \in H_p(X_s, \mathbb{C})\). Then, for \(\omega \in \Gamma(X, \hat{K}_\infty^p \cap \text{Ker} \ d)\), define the multivalued holomorphic function

\[F_\omega(s) := \int_{\gamma_s} \frac{\omega}{df}.\]

Let now

\[\Xi := \bigoplus_{\alpha \in \mathbb{Q}\cap[-1,0], j \in [0,n]} \mathbb{C}[[s]] \cdot s^\alpha \cdot \frac{(\text{Logs})^j}{j!}.\]

This is an \(\hat{A}\)–modules with \(a\) acting as multiplication by \(s\) and \(b\) as the primitive in \(s\) without constant. Now if \(\hat{F}_\omega\) is the asymptotic expansion at \(0\) of \(F_\omega\), it is an element in \(\Xi\), and we obtain in this way an \(\hat{A}\)–linear map

\[\text{Int} : H^p(X, (\hat{K}^\bullet, d^\bullet)) \to H^p(X_1, \mathbb{C}) \otimes_{\mathbb{C}} \Xi.\]

To simplify notations, let \(E := H^p(X, (\hat{K}^\bullet, d^\bullet))\). Now using Grothendieck theorem \([G.65]\), there exists \(N \in \mathbb{N}\) such that \(\text{Int}(\omega) \equiv 0\), implies \(a^N \cdot [\omega] = 0\) in \(E\). As the converse is clear we conclude that \(\hat{A}(E) = \text{Ker}(\text{Int})\). It is also clear that \(B(E) \subset \text{Ker}(\text{Int})\) because \(\Xi\) has no \(b\)–torsion. So we conclude that \(E\) satisfies properties 1 and 2 of the lemma \([6.3.2]\). The property 3 is also true because of the regularity of the Gauss-Manin connection of \(f\).

End of the proof of theorem \([6.3.4]\). To show that \(E := H^p(X, (\hat{K}^\bullet, d^\bullet))\) is small, it is enough to prove that \(E\) satisfies the condition 4 of the lemma \([6.3.2]\). Consider now the long exact sequence of hypercohomology of the exact sequence of complexes

\[0 \to (\hat{I}^\bullet, d^\bullet) \to (\hat{K}^\bullet, d^\bullet) \to ([\hat{K} / \hat{I}]^\bullet, d^\bullet) \to 0.\]

It contains the exact sequence

\[H^{p-1}(X, ([\hat{K} / \hat{I}]^\bullet, d^\bullet)) \to H^p(X, (\hat{I}^\bullet, d^\bullet)) \xrightarrow{\text{Hyp}(i)} H^p(X, (\hat{K}^\bullet, d^\bullet)) \to H^p(X, ([\hat{K} / \hat{I}]^\bullet, d^\bullet)).\]
and we know that b is induced on the complex of \tilde{A}–modules quasi-isomorphic to $(\hat{K}^\bullet, d^\bullet)$ by the composition $i \circ \tilde{b}$ where \tilde{b} is a quasi-isomorphism of complexes of $\mathbb{C}[[b]]$–modules. This implies that the kernel and the cokernel of $H^p(i)$ are isomorphic (as \mathbb{C}–vector spaces) to $\ker b$ and $\text{Coker} b$ respectively. Now to prove that E satisfies condition 4 of the lemma [6.3.2] it is enough to prove finite dimensionality for the vector spaces $H^j(X, ([\hat{K}/\hat{I}]^\bullet, d^\bullet))$ for all $j \geq 0$.

But the sheaves $[\hat{K}/\hat{I}]^j \simeq \ker d \frac{df}{Im df}$ are coherent on X and supported in X_0. The spectral sequence $E_{pq}^2 := H^q(H^p(X, [\hat{K}/\hat{I}]^\bullet), d^\bullet)$ which converges to $H^j(X, ([\hat{K}/\hat{I}]^\bullet, d^\bullet))$ is a bounded complex of finite dimensional vector spaces by Cartan-Serre. This gives the desired finite dimensionality.

To conclude the proof, we want to show that $E/B(E)$ is geometric. But this is an easy consequence of the regularity of the Gauss-Manin connexion of f and of the Monodromy theorem, which are already coded in the definition of Ξ: the injectivity on $E/B(E)$ of the \tilde{A}–linear map Int implies that $E/B(E)$ is geometric.

Remark now that the piece of exact sequence above gives also the fact that $H^p(X, (\hat{I}^\bullet, d^\bullet))$ is geometric, because it is an exact sequence of \tilde{A}–modules.

Remark. It is easy to see that the properness assumption on f is only used for two purposes:

– To have a (global) C^∞ Milnor fibration on a small punctured disc around 0, with a finite dimensional cohomology for the Milnor fiber.

– To have compactness of the singular set $\{ df = 0 \}$.

This allows to give with the same proof an analogous finiteness result in many other situations.

Bibliography

• [Br.70] Brieskorn, E. Die Monodromie der Isolierten Singularitäten von Hypersflächen, Manuscripta Math. 2 (1970), p. 103-161.

• [B.84] Barlet, D. Contribution du cup-produit de la fibre de Milnor aux pôles de $|f|^{2\lambda}$, Ann. Inst. Fourier (Grenoble) t. 34, fasc. 4 (1984), p. 75-107.

• [B. 93] Barlet, D. Théorie des (a,b)-modules I, in Complex Analysis and Geometry, Plenum Press, (1993), p. 1-43.

• [B. 95] Barlet, D. Théorie des (a,b)-modules II. Extensions, in Complex Analysis and Geometry, Pitman Research Notes in Mathematics Series 366 Longman
(1997), p. 19-59.

- [B. 05] Barlet, D. *Module de Brieskorn et forme hermitiennes pour une singularité isolée d’hypersurface*, revue de l’Inst. E. Cartan (Nancy) 18 (2005), p. 19-46.

- [B.I] Barlet, D. *Sur certaines singularités non isolées d’hypersurfaces I*, Bull. Soc. math. France 134 (2), 2006, p.173-200.

- [B. II] Barlet, D. *Sur certaines singularités d’hypersurfaces II*, J. Alg. Geom. 17 (2008), p. 199-254.

- [B. 08] Barlet, D. *Two finiteness theorem for regular (a,b)-modules*, preprint Institut E. Cartan (Nancy) (2008) n°5, p. 1-38, arXiv:0801.4320 (math. AG and math. CV)

- [B.09] Barlet, D. *Périodes évanescentes et (a,b)-modules monogènes*, Bollettino U.M.I. (9) II (2009) p.651-697.

- [B.III] Barlet, D. *Sur les fonctions à lieu singulier de dimension 1*, Bull. Soc. math. France 137 (4), 2009, p.587-612.

- [B.10] Barlet, D. *Le thème d’une période évanescente*, preprint Institut E. Cartan (Nancy) (2009) n°33, p.1-57.

- [B.-S. 04] Barlet, D. et Saito, M. *Brieskorn modules and Gauss-Manin systems for non isolated hypersurface singularities*, J. Lond. Math. Soc. (2) 76 (2007) n°1 p. 211-224.

- [Bj.93] Björk, J-E, *Analytic D-modules and applications*, Kluwer Academic publishers (1993).

- [K.76] Kashiwara, M. *b-function and holonomic systems*, Inv. Math. 38 (1976) p. 33-53.

- [M.74] Malgrange, B. *Intégrale asymptotique et monodromie*, Ann. Sc. Ec. Norm. Sup. 7 (1974), p.405-430.
• [M. 75] Malgrange, B. *Le polynôme de Bernstein d’une singularité isolée*, in Lect. Notes in Math. 459, Springer (1975), p.98-119.

• [S. 89] Saito, M. *On the structure of Brieskorn lattices*, Ann. Inst. Fourier 39 (1989), p.27-72.