ON K3 SURFACES WHICH DOMINATE KUMMER SURFACES

SHOUHEI MA

(Communicated by Lev Borisov)

Abstract. We study isogeny relations between K3 surfaces and Kummer surfaces. Specifically, we prove a Torelli-type theorem for the existence of rational maps from K3 surfaces to Kummer surfaces, and a Kummer sandwich theorem for K3 surfaces with Shioda-Inose structure.

1. Introduction

In the present paper we study rational maps between K3 surfaces in terms of their periods. Let X be a complex algebraic K3 surface and T_X be the transcendental lattice of X, which is endowed with a natural Hodge structure. For a natural number $n > 0$ let $T_X(n)$ be the lattice obtained by multiplying the quadratic form on T_X by n. In [7] Shafarevich posed the following question.

Problem 1.1 ([7] Question 1.1). Let X and Y be complex algebraic K3 surfaces. Is it true that there exists a dominant rational map $X \rightarrow Y$ if and only if there exists a Hodge isometry $T_X \otimes \mathbb{Q} \simeq T_Y(n) \otimes \mathbb{Q}$ for some natural number n?

Shafarevich’s question is a variation of a Torelli-type problem. It proposes to consider the \mathbb{Q}-Hodge structures $T_X \otimes \mathbb{Q}$ (up to scaling) for the existence of rational maps. A recent paper of Chen [1] implies that the answer is in general negative. On the other hand, the problem has been solved affirmatively in certain cases: for K3 surfaces X with Picard number $\rho(X) = 20$ (“singular K3 surfaces”) by Inose and Shioda [9, 2] already before [7]; for K3 surfaces X with $\rho(X) = 19$ by Nikulin-Shafarevich [7]; Nikulin [7] studied rational maps obtained as compositions of double coverings. When both X and Y are Kummer surfaces, Problem 1.1 is obviously true by the corresponding property of Abelian surfaces. The first purpose of this paper is to answer Problem 1.1 affirmatively when the target Y is a Kummer surface.

Theorem 1.2. Let X and Y be complex algebraic K3 surfaces. Assume that Y is dominated by some Kummer surface; e.g., Y admits a Shioda-Inose structure or Y itself is a Kummer surface. Then there exists a dominant rational map $X \rightarrow Y$ if and only if there exists a Hodge isometry $T_X \otimes \mathbb{Q} \simeq T_Y(n) \otimes \mathbb{Q}$ for some natural number n.

In order to produce a desired map $X \rightarrow Y$, we will compose the following three types of rational maps: (1) double coverings, (2) rational maps between Kummer surfaces induced by isogenies of Abelian surfaces, and (3) multiplication maps from...
elliptic $K3$ surfaces to the associated Jacobian fibrations. The first two have been also used in [9], [2], and [7]. A new ingredient of this paper is a systematic use of the third type of rational maps. In the course of the proof, we shall characterize those $K3$ surfaces which dominate Kummer surfaces by their Hodge structures.

The approach of Inose and Shioda for Problem 1.1 was to use a Kummer sandwich theorem, which roughly says that a singular $K3$ surface is two-isogenous to a Kummer surface. Recently the Kummer sandwich theorem has been extended to a larger class of $K3$ surfaces by Shioda [8] and has found some arithmetic applications. The $K3$ surfaces studied in [8] are characterized by the existence of Shioda-Inose correspondences with products of elliptic curves. The second purpose of this paper is to prove a Kummer sandwich theorem for all complex algebraic $K3$ surfaces with Shioda-Inose structure (Theorem 2.5). It is independent of Theorem 1.2 and shows a more precise isogeny relation between Kummer surfaces and $K3$ surfaces with Shioda-Inose structure.

Throughout this paper, the varieties are assumed to be complex algebraic. The transcendental lattice of an algebraic surface X will be denoted by T_X. By U we denote the rank 2 even indefinite unimodular lattice. By E_8 we denote the rank 8 even negative-definite unimodular lattice. For a lattice $L = (L, (\cdot, \cdot)_L)$ and a natural number n, we denote by $L(n)$ the scaled lattice $(L, n(\cdot, \cdot)_L)$.

2. Kummer sandwich theorem

Let X be an algebraic $K3$ surface. Recall that a Nikulin involution of X is an involution $\iota : X \to X$ which acts trivially on $H^{2,0}(X)$. A Nikulin involution of X canonically corresponds to a double covering $X \dashrightarrow Y$ to another $K3$ surface Y. Indeed, if we have a double covering $\pi : X \dashrightarrow Y$, then the covering transformation of π is a Nikulin involution of X. Conversely, for a Nikulin involution ι of X, the minimal resolution $Y = X/\langle \iota \rangle$ of the quotient surface is a $K3$ surface ([6]), and we have the rational quotient map $\pi : X \dashrightarrow Y$ of degree 2. The transcendental lattices T_X and T_Y are related by the chain of inclusions

\begin{equation}
2T_Y \subseteq \pi_* T_X = T_X(2) \subseteq T_Y,
\end{equation}

which preserves the quadratic forms and the Hodge structures.

Nikulin [6], [7] and Morrison [5] developed the lattice-theoretic aspect of Nikulin involution. Let us denote

\begin{align*}
\Lambda_0 &:= E_8(2) \oplus U^3, \\
\Lambda_1 &:= \frac{1}{2} E_8(2) \oplus U^3.
\end{align*}

We regard Λ_0 as a submodule of Λ_1 in a natural way. Then Λ_1 is the dual lattice of Λ_0. The following proposition reduces the construction of a Nikulin involution to a purely arithmetic problem.

Proposition 2.1 ([7] Section 2.1 and Lemma 2.2.4). Let X be an algebraic $K3$ surface. Suppose that one is given a primitive embedding $T_X \subset \Lambda_0$ of lattices. Then there exists a Nikulin involution $\iota : X \to X$ such that if we denote $Y = X/\langle \iota \rangle$, then T_Y is Hodge isometric to the lattice

\begin{equation}
T := (T_X \otimes \mathbb{Q} \cap \Lambda_1)(2),
\end{equation}

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
where the Hodge structure of T is induced from T_X. Conversely, if one has a rational map $X \dasharrow Y$ of degree 2 to a K3 surface Y, then there exists a primitive embedding $T_X \subset \Lambda_0$ such that T_Y is Hodge isometric to the lattice T defined by (2.4).

The Shioda-Inose structure is a special kind of Nikulin involution.

Definition 2.2 ([5]). An algebraic K3 surface X admits a Shioda-Inose structure if there exists a Kummer surface $Y = \text{Km}A$ and a rational map $\pi : X \dasharrow Y$ of degree 2 such that π_* induces a Hodge isometry $T_X(2) \cong T_Y$.

There is a lattice-theoretic characterization of K3 surfaces admitting Shioda-Inose structures due to Morrison.

Theorem 2.3 ([5], Theorem 6.3). An algebraic K3 surface X admits a Shioda-Inose structure if and only if there exists a primitive embedding $T_X \hookrightarrow U^3$ of lattices.

Shioda [8], extending the work of Inose [2], proved a Kummer sandwich theorem for elliptic K3 surfaces with section and with two II*-fibers over an arbitrary algebraically closed field of characteristic $\neq 2, 3$. When the ground field is \mathbb{C}, one can characterize the K3 surfaces studied in [8] by the existence of Shioda-Inose structures such that the corresponding Abelian surfaces are products of elliptic curves. Here we shall derive in a transcendental way a Kummer sandwich theorem for all complex algebraic K3 surfaces with Shioda-Inose structure. We denote the Dynkin diagram of E_8 by

```
  v1  v2  v3  v4  v5  v6  v7
    \downarrow
  v8
```

We identify the \mathbb{Z}-modules underlying E_8 and $E_8(2)$ in a natural way and regard the above set $\{v_i\}_{i=1}^8$ as a basis of $E_8(2)$. Then we have $(v_i, v_j) = -4$ for $i = 1, \ldots, 8$, $(v_i, v_j) = 2$ if v_i and v_j are connected by an edge, and $(v_i, v_j) = 0$ otherwise. Let $\{e_i, f_j\}_{i=1}^3$ be the standard basis of U^3. We have $(e_i, e_j) = (f_i, f_j) = 0$ and $(e_i, f_j) = \delta_{ij}$. For $i = 1, 2, 3$, we define the vectors $l_i, m_i \in \Lambda_0 = E_8(2) \oplus U^3$ by

- $l_1 = -v_5 + v_7 + 2(e_1 + f_1)$,
- $m_1 = -v_4$,
- $l_2 = v_1 + v_8 + 2(e_2 + f_2)$,
- $m_2 = v_2$,
- $l_3 = v_7 + v_8 + 2(e_1 + e_2 + e_3 + f_3)$,
- $m_3 = v_6$.

and put $L := \langle l_1, m_1, l_2, m_2, l_3, m_3 \rangle$.

Lemma 2.4. The sublattice $L \subset \Lambda_0$ has the following properties:

1. $L \cong U(2)^3$.
2. $L \subset 2\Lambda_1$.
3. L is a primitive sublattice of Λ_0.

Proof. We can extend the set $\{l_i, m_i\}_{i=1}^3$ to a \mathbb{Z}-basis of Λ_0 by adding the set of vectors $\{v_3, v_5, e_1, f_1, e_2, f_2, e_3, f_3\}$. Thus L is primitive in Λ_0. The assertion (2) is obvious, and the assertion (1) is proved by direct calculations. \square
Theorem 2.5. Let X be an algebraic K3 surface admitting a Shioda-Inose structure $X \rightarrow Y = \text{Km}$. Then there exists a Nikulin involution ι on Y such that the minimal resolution of the quotient surface $Y/\langle \iota \rangle$ is isomorphic to X. In particular, one has the following sequence of rational maps of degree 2:

\[(2.5) \quad \text{Km} \rightarrow X \rightarrow \text{Km}.\]

Proof. By the definitions, we have the Hodge isometries

$T_Y \simeq T_A(2), \quad T_X \simeq T_A.$

Since T_A is embedded into $H^2(A, \mathbb{Z}) \simeq U^3$ primitively, there exists a primitive embedding $\varphi : T_Y \hookrightarrow U(2)^3$. By composing φ with an isometry $U(2)^3 \simeq L$, we obtain a primitive embedding $\psi : T_Y \hookrightarrow \Lambda_0$ such that $\psi(T_Y) \subset 2\Lambda_1$. We have

$\psi(T_Y) \otimes \mathbb{Q} \cap \Lambda_1 = \frac{1}{2} \psi(T_Y).$

By Proposition 2.1, there exists a Nikulin involution $\iota : Y \rightarrow Y$ such that for the minimal resolution Z of $Y/\langle \iota \rangle$ the transcendental lattice T_Z is Hodge isometric to

$\frac{1}{2} T_Y(2) \simeq \frac{1}{2} T_A(4) \simeq T_A \simeq T_X.$

Since a Hodge isometry $T_Z \simeq T_X$ can be extended to a Hodge isometry $H^2(Z, \mathbb{Z}) \simeq H^2(X, \mathbb{Z})$ (cf. [5], Corollary 2.10), we have $Z \simeq X$ by the Torelli theorem. □

The rational quotient map $\pi : \text{Km} \rightarrow X$ constructed in Theorem 2.5 induces a Hodge isometry $\pi^* : T_X(2) \rightarrow T_{\text{Km}}$. Thus a K3 surface X with Shioda-Inose structure can be defined not only as a double cover of a Kummer surface Km but also as a double quotient of Km, which exhibits an isogeny relation between X and Km. Unfortunately, as we rely on the Torelli theorem, our Kummer sandwich theorem is not explicit as in [2], [8], and our argument works only over \mathbb{C}.

K3 surfaces with Shioda-Inose structure are particular double covers of Kummer surfaces. Now, is it true in general that a double cover X of a Kummer surface Km admits a double covering Km $\rightarrow X$ of the opposite direction, as do isogenies of elliptic curves? Here is a negative example.

Example 2.6. Let A be an Abelian surface with $T_A \simeq U \oplus \langle 2 \rangle \oplus \langle -2 \rangle$ and X be the K3 surface with T_X Hodge isometric to $2T_A$. Then there exists a rational map $X \rightarrow \text{Km}$ of degree 2, but there does not exist a rational map Km $\rightarrow X$ of degree 2.

Proof. The existence of a double covering $X \rightarrow \text{Km}$ follows from Mehran’s criterion for double covers of Kummer surfaces ([4], Theorem 3.1). Suppose that we have a rational map Km $\rightarrow X$ of degree 2. By Proposition 2.1 there exists a primitive embedding $T_A(2) \hookrightarrow \Lambda_0$ such that

\[(2.6) \quad T_A(2) \otimes \mathbb{Q} \cap \Lambda_1 = T_A(2).\]

Via this embedding, we regard $T_A(2)$ as a primitive sublattice of Λ_0. Let $\pi : T_A(2) \rightarrow U^3$ be the orthogonal projection, which is injective by the condition (2.6). Let M be the lattice $\pi(T_A(2))$ and N be the primitive closure of M in U^3. By the condition (2.6) again, the Abelian group N/M has no 2-component. For an
even lattice \(L \), let \(L' \) be the dual lattice of \(L \), \(D_L = L'/L \) be the discriminant group of \(L \), and \((D_L)_2 \) be the 2-component of \(D_L \). We see from the inclusions \(M \subset N \subset N' \subset M' \) that
\[
(D_M)_2 \simeq (D_N)_2 \simeq (D_{N'\cap U^3})_2.
\]
The second isomorphism follows from the fact that \(N \) is a primitive sublattice of the unimodular lattice \(U^3 \). In particular, the length of \((D_M)_2 \) is less than or equal to 2. On the other hand, we have \((v, w) \in 2\mathbb{Z} \) for every \(v, w \in M \). Thus we have \(\frac{1}{2} M \subset M' \), which is absurd. \(\square \)

Remark 2.7. It follows from \([7] \), Theorem 1.3, that for \(X \) and \(A \) as in Example 2.6, there nevertheless exists a rational map \(\text{Km}A \to X \) of degree \(2^\mu \) for some \(\mu > 1 \).

3. Rational maps to Kummer surfaces

In this section we study rational maps from K3 surfaces to Kummer surfaces in general. We shall use the following.

Proposition 3.1 ([3], Section 4). Let \(X \) and \(Y \) be algebraic K3 surfaces with \(\text{rk}(T_X) = \text{rk}(T_Y) \leq 9 \) such that there exists an embedding \(T_X \to T_Y \) of lattices preserving the periods. Then there exists a sequence \(X_1 = X, X_2, \ldots, X_n = Y \) of K3 surfaces such that \(X_{i+1} \) is isomorphic to the surface underlying the Jacobian fibration of an elliptic fibration \(\pi_i : X_i \to \mathbb{P}^1 \). In particular, for a line bundle \(L \in \text{Pic}(X) \) we have a rational map \(X_i \to X_{i+1} \) defined by \(x \mapsto \mathcal{O}_F(dx) \otimes L^{-1} \), where \(F \) is the \(\pi_i \)-fiber containing \(x \in X_i \) and \(d = (L.F) \).

We shall characterize K3 surfaces \(X \) dominating Kummer surfaces by the lattices \(T_X \).

Proposition 3.2. For an algebraic K3 surface \(X \) the following conditions are equivalent.

(i) There exists a dominant rational map \(X \to \text{Km}A \) to some Kummer surface \(\text{Km}A \).

(ii) There exists an embedding \(T_X \otimes \mathbb{Q} \hookrightarrow U^3 \otimes \mathbb{Q} \) of quadratic spaces.

(iii) There exists an embedding \(T_X \hookrightarrow U^3 \) of lattices.

Proof. (i) \(\Rightarrow \) (ii): A rational map \(f : X \to \text{Km}A \) of finite degree \(d \) induces a Hodge isometry
\[
f_* : T_X(d) \otimes \mathbb{Q} \isom T_{\text{Km}A} \otimes \mathbb{Q} \simeq T_A(2) \otimes \mathbb{Q}.
\]
Then the quadratic space \(T_X \otimes \mathbb{Q} \) is isometric to \(T_A(2d) \otimes \mathbb{Q} \) and thus is embedded into \(H^2(A, \mathbb{Q})(2d) \simeq U^3(2d) \otimes \mathbb{Q} \). By the property \(U^3(2d) \otimes \mathbb{Q} \simeq U^3 \otimes \mathbb{Q} \) of the lattice \(U \), we obtain an embedding \(T_X \otimes \mathbb{Q} \hookrightarrow U^3 \otimes \mathbb{Q} \) of quadratic spaces.

(ii) \(\Rightarrow \) (iii): Recall that an even lattice of rank \(r \) can be embedded (primitively) into \(U^r \). In particular, we may assume that \(\text{rk}(T_X) = 4 \) or 5. When \(\text{rk}(T_X) = 4 \), the condition (ii) is equivalent to the existence of an embedding \(U \otimes \mathbb{Q} \to T_X \otimes \mathbb{Q} \) by Witt’s theorem for \((T_X \otimes \mathbb{Q})^\perp \cap U^3 \otimes \mathbb{Q} \). Thus we have an isotropic vector in \(T_X \). Let \(T \) be a maximal even overlattice of \(T_X \). A primitive isotropic vector \(v \in T \) induces an embedding \(U \to T \) because \((v, T) = 0 \). Hence \(T \simeq U \oplus L \) for some rank 2 lattice \(L \) so that \(T \) can be embedded into \(U^3 \). When \(\text{rk}(T_X) = 5 \), as in the case...
of \(\text{rk}(T_X) = 4 \), the condition (ii) is equivalent to the existence of a rank 2 totally isotropic sublattice of \(T_X \). Then every maximal even overlattice of \(T_X \) is of the form \(T = U^2 \oplus L \), \(\text{rk}(L) = 1 \), and thus can be embedded into \(U^3 \).

(iii) \(\Rightarrow \) (i): We fix an embedding \(T_X \subset U^3 \). Let \(T \) be the primitive closure of \(T_X \) in \(U^3 \) and endow \(T \) with the Hodge structure induced from \(T_X \). We regard \(T \) as a primitive sublattice of \(U^3 \oplus E^2_8 \). By the surjectivity of the period map, there exists a \(K3 \) surface \(Y \) with \(T_Y \) Hodge isometric to \(T \). We have an embedding \(T_X \hookrightarrow T_Y \) of finite index which preserves the periods. It follows from Proposition 3.1 that there exists a dominant rational map \(X \dashrightarrow Y \). Since the lattice \(T_Y \) can be embedded primitively into \(U^3 \), the \(K3 \) surface \(Y \) admits a Shioda-Inose structure \(Y \dashrightarrow \text{Km}A \) by Theorem 2.3. □

Proposition 3.2 is analogous to Theorem 2.3, replacing Shioda-Inose structures by general rational maps corresponds to replacing primitive embeddings of lattices by embeddings of rational quadratic spaces.

An Abelian surface \(A \) is a product of two elliptic curves if and only if \(T_A \) can be embedded primitively into \(U^2 \). Hence by a similar argument as in the above proof we have the following variant of Proposition 3.2.

Proposition 3.3. For an algebraic \(K3 \) surface \(X \) the following conditions are equivalent.

1. There exists a dominant rational map \(X \dashrightarrow \text{Km}A \) to some Kummer surface \(\text{Km}A \), where \(A \) is a product of two elliptic curves.
2. There exists an embedding \(T_X \otimes \mathbb{Q} \hookrightarrow U^2 \otimes \mathbb{Q} \) of quadratic spaces.
3. There exists an embedding \(T_X \hookrightarrow U^2 \) of lattices.

By using Proposition 3.2 we deduce the next theorem, from which Theorem 1.2 follows immediately.

Theorem 3.4. Let \(X \) be an algebraic \(K3 \) surface and \(\text{Km}B \) be an algebraic Kummer surface. Then there exists a dominant rational map \(X \dashrightarrow \text{Km}B \) if and only if there exists a Hodge isometry \(T_X \otimes \mathbb{Q} \simeq T_A(n) \otimes \mathbb{Q} \) for some natural number \(n \).

Proof. It suffices to prove the “if” part. Assume the existence of a Hodge isometry \(T_X \otimes \mathbb{Q} \simeq T_A(n) \otimes \mathbb{Q} \). As \(T_A \otimes \mathbb{Q} \) is embedded into \(U^3 \otimes \mathbb{Q} \), by Proposition 3.2 we can find a Kummer surface \(\text{Km}B \) and a finite rational map \(X \dashrightarrow \text{Km}B \). Since we have a Hodge isometry \(T_B(m) \otimes \mathbb{Q} \simeq T_A \otimes \mathbb{Q} \) for some natural number \(m \), the Abelian surface \(B \) is isogenous to the Abelian surface \(A \). Thus there exists a dominant rational map \(\text{Km}B \dashrightarrow \text{Km}A \). □

Corollary 3.5. Let \(X \) be an algebraic \(K3 \) surface and \(A \) be an Abelian surface. If we have a dominant rational map \(A \dashrightarrow X \), then there exists a dominant rational map \(X \dashrightarrow \text{Km}A \).

Corollary 3.6. Let \(X \) and \(Y \) be algebraic \(K3 \) surfaces dominated by some Kummer surfaces. Then there exists a dominant rational map \(X \dashrightarrow Y \) if and only if there exists a dominant rational map \(Y \dashrightarrow X \).

Thus, as in Inose’s paper [2], we are able to define a notion of isogeny for those \(K3 \) surfaces dominated by Kummer surfaces by the existence of a rational map.
Acknowledgements

The author wishes to express his gratitude to Professor Ken-Ichi Yoshikawa for his advice and encouragement. He also thanks A. Mehran and M. Schütt for their useful comments. He is grateful to the referee for reading the manuscript carefully and for pointing out the reference [1]. This work was supported by Grant-in-Aid for JSPS Fellows [21-978].

References

[1] Chen, X. Self rational maps of $K3$ surfaces. Preprint, arXiv:1008.1619.
[2] Inose, H. Defining equations of singular $K3$ surfaces and a notion of isogeny. Proceedings of the International Symposium on Algebraic Geometry, pp. 495–502, Kinokuniya Book Store, 1978. MR 578668 (81h:14021)
[3] Ma, S. On the 0-dimensional cusps of the Kähler moduli of a $K3$ surface. Math. Ann. 348 (2010), no. 1, 57–80. MR 2657434 (2011g:14094)
[4] Mehran, A. Double cover of Kummer surfaces. Manuscripta Math. 123 (2007), 205–235. MR 2306633 (2008c:14052)
[5] Morrison, D. R. On $K3$ surfaces with large Picard number. Invent. Math. 75 (1984), no. 1, 105–121. MR 728142 (85j:14071)
[6] Nikulin, V. V. Finite groups of automorphisms of Kahlerian $K3$ surfaces. Trudy Moskov. Mat. Obshch. 38 (1979), 75–137. MR 544937 (81e:32033)
[7] Nikulin, V. V. On rational maps between $K3$ surfaces. Constantin Carathéodory: An international tribute, 964–995, World Sci. Publ., 1991. MR 1130874 (92m:14049)
[8] Shioda, T. Kummer sandwich theorem of certain elliptic $K3$ surfaces. Proc. Japan Acad. Ser. A. 82 (2006), no. 8, 137–140. MR 2279280 (2008b:14064)
[9] Shioda, T.; Inose, H. On singular $K3$ surfaces. Complex analysis and algebraic geometry, pp. 119–136. Iwanami Shoten, 1977. MR 0411082 (54:371)

Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan
E-mail address: sma@ms.u-tokyo.ac.jp
Current address: Graduate School of Mathematics, Nagoya University, Furō-chō, Chikusa-ku, Nagoya 464-8602, Japan
E-mail address: ma@math.nagoya-u.ac.jp