A new decade for social changes
Migration Fears in the United States and the Geopolitical Risk Index

Christopher Olds
Department of Political Science, Fort Hays State University
chris@chrisolds.com

Abstract. This study contrasts a publicly available measure of migration fears in the United States with a publicly available measure of geopolitical risk, a barometer of concern about possible disruptions to peace in international relations. The time series analyses performed on information spanning between 1990 and 2019 suggest that a change in migration fears in the U.S. increases the level of geopolitical risk, such that the U.S. appears to perceive migrants as potentially threatening and responds with an aggressive posture in interactions with other nations. The findings of the study are aligned with theories in existing academic literature about fear-induced aggression and intergroup conflict.

Keywords. Migration, Migration Fears Index, Geopolitical Risk Index, International Relations

1. Introduction/Background
The intent of this project is to explore the connection between migration fears in the U.S. and a major indicator of tensions in international relations, the geopolitical risk index. Baker et al. (2015) developed measures of the intensity of migration fears in several countries: the United States, France, Germany, and Great Britain. These measures were developed to gauge the shift across time in the language used by news outlets within these respective countries about the issue of migration. If a country increasingly views migrants with fear, the language used in news coverage reflects that. Since the U.S. is a prominent figure in geopolitical affairs, this initial study explores whether migration fears within the U.S. can result in changes to the perceived level of geopolitical risk present in the world.

1.1 Defining Fear
Measuring the historical fluctuations about fears of a group can help us to learn more about the potential consequences of a rise in fear. Gross and Canteras (2012) define fear as a word that describes a feeling whereby people believe an impending threat to their survival exists. Fear can be the result of repeated exposure to threat-related stimuli. When individuals are repeatedly exposed to patterns of stimuli that are considered threatening, people will develop adaptive behaviors to avoid or cope with the perceived threat (Adolphs, 2013). One of these responses is aggressive behavior. Protective forms of aggression can be motivated by feelings of fear (Archer, 1988). If people are made to fear something, a potential reaction will be to confront or
attack the source of that fear. Fear-induced aggression has been listed as one of seven unique types of aggression in a review of the scholarly literature, with territorial, instrumental, maternal, intramale, predatory, and irritable forms of aggression being the other commonly seen types (Popova, 2006). In those instances where many within a country fear migrants and believe they are a threat to their personal survival and/or the survival of the country, a potential reaction is more aggressive behavior toward migrants, as well as the specific country or countries in which migrants are moving from.

Fear is something that can be evoked through stimuli that individuals are innately fearful of or by stimuli that have fearful characteristics tied to them because they are linked to events that individuals would prefer to avoid (Toyote et al., 2015). Individuals can be fearful of a perceived influx of migrants because of an aversion to those that look physically different, beliefs that migrants are to blame for problems like unemployment or wage stagnation, or perhaps even a combination of aspects like these.

1.2 Fear and Intergroup Conflict
Fears that result in aggressive behavior stimulate intergroup conflict. People tend to cooperate with those that they believe are a part of their group/team (those known as the ingroup) and will engage in aggressive behaviors against those that are not considered a part of their group or team (those known as the outgroup). This has been identified in the literature as an intergroup bias (Brewer, 1979). Due to this bias people are inclined to cooperate with those that are believed to be a part of the ingroup and be aggressive in interactions with those in the outgroup; being presented with information cues about who is a part of the ingroup and who is a part of the outgroup activates this behavior (Reimers & Diekhof, 2015). When people spend their social life as a part of a group in conflict with other groups, these other groups come to be seen as a threat; people develop a fear that they need to defend themselves from potential aggression from other groups. The fear of aggression from an outgroup results in aggression against perceived aggressors as a sort of self-defense mechanism. We should expect this to be more likely to occur when well-defined groups exist for an extended time and there have been prior disputes (Mifune et al., 2017). Residents of different countries are well-defined and long-standing groups; if there is a history of disagreements, disputes, and tensions between countries the prospect of migrants coming from a country perceived as a rival will induce fear. Fear of outgroups can stem from historical conflicts between groups (Yamagishi & Mifune, 2016). Incidents where aggressive behavior occur can derive from fear of what migrants from another country (the outgroup) will do to within one’s mother country (the ingroup).

1.3 The Geopolitical Context
Threats or actual acts of aggressive behavior between members of different countries will impact geopolitics. Geopolitics can be thought of as attempts by countries and organizations to compete for and control areas of land. Geopolitical risk is the risk tied to disagreements, terrorist acts, and military actions between nations and organizations involving territory. The concept of geopolitical risk involves the prospect that territory disputes cannot be resolved through peaceful means alone (Caldara & Iacoviello, 2019). When fears in the United States increase from migrants, this can result in the adoption of aggressive behavior as a defense mechanism. The U.S. has both significant military resources and a high gross domestic product. These two factors can lead the U.S. to have far-reaching involvement in the affairs of other countries. Any growth in aggressive behavior from the U.S. should foster an environment of higher geopolitical
With the prominent role of the United States on the global stage, it is necessary to assess the effect of migration fears in the U.S. on the level of geopolitical risk that exists.

2. Research Hypothesis and Methodology

2.1 Empirical Prediction

When a geopolitical actor experiences fear, the geopolitical actor will react aggressively through rhetoric, policy, and formal military actions in interactions with others. This can result in other geopolitical actors behaving aggressively as well, producing a possible chain reaction of volatility in international relations. Fear brought about by migrants will increase aggression, which will be exhibited by an increase in geopolitical risk. Due to the aforementioned considerations, the research project has the following research hypothesis: prior change in the level of migration fears positively predicts an increase in geopolitical risk.

2.2 Measurement of Concepts

To measure migration fears in the U.S., this project uses the measure made available from the work of Baker et al. (2015) that is consistently updated and freely available online. Using a computer-assisted analysis of newspaper articles, the U.S. migration fear index represents the number of times terms involving migration (e.g., ‘border control,’ ‘asylum,’ ‘refugee,’ ‘open borders,’ ‘assimilation,’ ‘human trafficking,’ etc.) and fear (e.g., ‘crime,’ ‘fear,’ ‘worry,’ ‘concern,’ ‘violent,’ etc.) are used in major U.S. newspapers that make up each year. The index is calculated by taking the number of published articles using migration and fear terms within a quarter and dividing this value by the total number of articles published overall within a quarter. The publications are U.S. newspapers that are made available by the Access World News Newsbank digital repository. When calculated, the migration fear index is a scaled quarterly count of the intensity of language that indicates fear of migration is present in the U.S. Multiple newspapers repeatedly using the same type of terms suggesting the presence of fear when writing about the issue area of migration suggests a climate exists within the country where migration is perceived as a potential threat to survival.

The migration fear index of the U.S. is used for this analysis instead of the migration economic policy uncertainty index that collects the number of news articles using terms involving the economy, policy, the presence of uncertainty, the existence of fear, and a focus on migrants. The reasoning is that Caldara and Iacoviello (2019) have already found that the geopolitical risk index is exogenous to economic uncertainty indices, such that any new research project where migration is studied needs to focus precisely on the fear of migration itself and not the fear of uncertainty about the makeup of economic policies related to migration. While geopolitical risk might not be shaped by specifics surrounding economic policy uncertainty that relate to migration, there is still a need to assess whether geopolitical risk is shaped by concerns about migration in general.

Caldara and Iacoviello (2019) adopt a similar approach to that of Baker et al. (2015) to construct their publicly available geopolitical risk index measure. An automated text search of eleven prominent newspapers available in the ProQuest News Archive (The Wall Street Journal, The Washington Post, The Times, The Guardian, The Daily Telegraph, The New York Times, The Los Angeles Times, The Chicago Tribune, The Boston Globe, The Financial Times, and The Globe and Mail) is conducted where the number of published articles using terms about geopolitical risk is divided by the total number of articles within these publications. While the benchmark geopolitical risk index measure is monthly, in order to compare the dynamics of
this measure to the quarterly migration fear index, the average of the geopolitical risk index within each quarter of the year is calculated for this current project. Examples of terms used to collect published articles covering geopolitical risk include the following: ‘geopolitical tensions,’ ‘nuclear conflict threat,’ ‘war risk,’ ‘terrorism threat,’ ‘start of the war,’ ‘military operation,’ and ‘military threat.’ Since the migration fear index data at the time of dataset construction was available for the quarters spanning between January 1990 and December 2019, this is the corresponding period analyzed in this project with the geopolitical risk index data.

For those concerned that the geopolitical risk index through an automated analysis of the ProQuest digital repository is not actually capturing the concept of geopolitical risk, Caldara and Iacoviello (2019) directed a human-based coding of newspaper articles and find the index scores based on articles coded by humans for geopolitical risk keyword terms closely matched the values collected through the geopolitical risk index derived from automated text analysis procedures. Caldara and Iacoviello (2019) also find that the geopolitical risk index calculated through an automated text analysis is highly correlated with survey responses collected from individual business firms. Given these attempts to verify the face validity and criterion validity of the automated geopolitical risk index, there is confidence that the measure is indeed measuring fluctuations in geopolitical risk across time and can be used to evaluate the relationship between migration fears in the U.S. and geopolitical risk. Since the overwhelming majority of papers used in calculating the geopolitical risk index derive from North American news media outlets, in conjunction with the previously mentioned observation of the prevalent role of the United States in geopolitical affairs, it is reasonable to perform the initial empirical analysis in this area of study by looking at the influence of the U.S. migration fear index on the geopolitical risk index. Adopting this approach allows us to see just how much U.S. migration fears can contribute to geopolitical strife. A substantial increase in geopolitical risk in response to growth in migration fears in the U.S. would reinforce just how influential contextual circumstances in the U.S. are in directing the trajectory of international relations.

To account for factors that could potentially influence the levels of either migration fear or geopolitical risk, there are three control variables studied in the project. The first of these variables are events that Caldara and Iacoviello (2019) find contribute to spikes in the geopolitical risk index during the time period studied, such as the September 11th terrorist attacks and the Boston Marathon bombings. In each quarter, the total number of prominent geopolitical events is tallied up. Some quarters have zero events, while other quarters are quite tumultuous and feature several events. The full event list is provided in Table 1 on the following page.

The second control variable is an indicator of elections. Uncertainty about election outcomes can introduce geopolitical risk, and the campaigning process could lead to the expression of rhetoric on migration that exacerbates migration fears. A dichotomous dummy variable is measured that is scored as a “1” for those quarters where a congressional midterm election takes place, or a combination of presidential and congressional elections occur. The third quarter in every even year studied is thus coded as a “1” given the timeline of elections in the United States, while all other quarters are coded as a “0.”

The last control variable is an indicator for recession periods in the United States. All quarters that the National Bureau of Economic Research identifies as a recession period is coded as a “1,” while those periods outside of a recession are scored as a “0.” Recessions need to be accounted for due to the possibility that economic strife can contribute to migration fears and/or
geopolitical risk. The recession periods for the timeframe studied are Quarter 3 in 1990 to Quarter 1 in 1991, Quarter 1 in 2001 to Quarter 4 in 2001, Quarter 4 in 2007 to Quarter 2 in 2009, and Quarter 4 in 2019 (current recession at time of dataset construction).

Table 1. List of Exogenous Events Accounted for in Events Variable

Event	Time	Event	Time
Invasion of Kuwait	Quarter 3, 1990	Invasion of Iraq/ Formal Start of Iraq War	Quarter 1, 2003
Gulf War	Quarter 1, 1991	Madrid train bombings	Quarter 1, 2004
August coup of Gorbachev	Quarter 3, 1991	Beslan school siege	Quarter 3, 2004
Limited air strike on Iraq	Quarter 1, 1993	7/7 London bombing attacks	Quarter 3, 2005
1st Markale Market Shelling/Bosnian War	Quarter 1, 1994	U.N. Security Council passes Iran resolution	Quarter 3, 2006
Oklahoma City bombing terrorist attack	Quarter 2, 1995	Transatlantic aircraft plot to detonate explosives	Quarter 3, 2006
1995-1996 Taiwan Strait Crisis aggravated	Quarter 1, 1996	President Obama announces surge in Afghanistan	Quarter 4, 2009
Iraq denies U.N. weapons inspector access	Quarter 1, 1996	Arab Spring/Mubarak resigns as Egyptian president	Quarter 1, 2011
U.N. inspector attempt at surprise inspections	Quarter 3, 1996	Syrian and Libyan civil wars	Quarter 1, 2011
Saddam Hussein negotiates with U.N. allowing weapon inspectors to return to Baghdad	Quarter 1, 1998	North Korean rocket launched aboard satellite explodes	Quarter 2, 2012
1998 U.S. Embassy bombing	Quarter 3, 1998	Boston Marathon bombings	Quarter 2, 2013
Escalation in Kosovo War	Quarter 2, 1999	Ghouta chemical attack/Syrian Civil War	Quarter 3, 2013
Apartment bombings in Russia	Quarter 3, 1999	Battle of Maaloula/Syrian Civil War	Quarter 3, 2013
Bombing of USS Cole	Quarter 4, 2000	Annexation of Crimea by the Russian Federation	Quarter 1, 2014
September 11th terrorist attacks	Quarter 3, 2001	MH17 Ukraine Plane Crash	Quarter 3, 2014
Invasion of Afghanistan	Quarter 4, 2001	Ukraine and ISIS	Quarter 3, 2014
Designation of foreign terrorist organizations	Quarter 1, 2002	U.S. airstrikes on ISIS targets in Syria	Quarter 3, 2014
India and Pakistan tensions	Quarter 2, 2002	ISIS spokesman announces expansion of caliphate	Quarter 1, 2015
Bush addresses U.N. and warns Iraq	Quarter 3, 2002	Paris terror attacks	Quarter 4, 2015
U.K. publishes dossier claiming Iraq has weapons of mass destruction	Quarter 3, 2002	San Bernardino, California terrorist attacks	Quarter 4, 2015
U.N. Security Resolution passes warning Iraq of disarmament	Quarter 4, 2002	Missile strikes against Syria	Quarter 2, 2018
U.S. Congress passes Iraq Resolution	Quarter 4, 2002	President Trump tweets threat to Iran	Quarter 3, 2018
Colin Powell testifies to U.N. that Iraq has unconventional weapons	Quarter 1, 2003	Iran shoots down U.S. drone	Quarter 2, 2019
Bush addresses nation that Saddam Hussein and sons have 48 hours to surrender and leave Iraq	Quarter 1, 2003	U.S.-China Trade War	Quarter 3, 2019

Note: For the Events exogenous control variable, it is a count of the number of major geopolitical events that occur within a quarter. If no events occur during a quarter, the variable is marked as a zero for that quarter in the dataset. If one event occurs during the quarter, the variable is marked as a one for that quarter in the dataset, marked as a two if two events occur, and so on.

To make sure that measurement of both migration fears and geopolitical risk are on the same metric to assist in the interpretation of results, each variable is standardized. Standardized variables are rescaled to have a mean of zero and a standard deviation of one. Placing migration
fears and geopolitical risk on the same metric allows us to see the magnitude of the relationship between the variables when analyzed through statistical research techniques. A failure to standardize migration fears and geopolitical risk would complicate efforts to determine the scope of the relationship between them across time.

2.3 Time Series Analytical Techniques
Since the variables in this project are dynamic in nature (the levels change over time), time series procedures need to be employed. The hypothesis of this project makes a prediction about the relationship between two variables that change across time, with the research hypothesis suggesting an increase in U.S. migration fears comes before an increase in the geopolitical risk index. To test this prediction, specific types of time series procedures need to be applied.

The first time series technique is called vector autoregression (or VAR for short). The advantage of using vector autoregression is that it can gauge whether prior change in a variable predicts current values in another variable being studied without imposing a theoretical restriction as to which variable does bring about any observed change (Enders, 1996). In other words, vector autoregression simultaneously tests for the possibility that prior change in migration fears predicts current values of geopolitical risk in addition to the possibility that prior change in geopolitical risk predicts current values of migration fears.

With vector autoregression, Granger-causality tests are performed in hypothesis testing (Granger, 1969). Through Granger-causality tests it is possible to learn if prior values of one variable can predict the current value of any other variable measured in the endogenous variable system (the endogenous variable system consists of those variables that are treated as a dependent variable at any point within the analysis). A benefit of vector autoregression is that it accounts for history by including lags (meaning prior values) for any variable in the endogenous system; this is helpful in deciphering whether any variable exhibits inertial qualities whereby prior change in a variable predicts current values of that exact same variable (Sims, 1980).

While vector autoregression assists in learning about the causal relationship between variables, it does not provide meaningful information about the polarity (direction) and magnitude of the relationship between variables. The reason for this is that the incorporation of lags in the statistical analysis introduces multicollinearity issues. The presence of multicollinearity within vector autoregression analysis leaves no choice but to look for an alternative means to get at the polarity and scale of how variables might relate to each other.

To get accurate information about the direction and magnitude of the relationship between variables, a second time series analytical technique known as moving average representation (or MAR for short) is applied. With moving average representation, a simulated shock is induced on each variable within the endogenous system and the reaction of other variables to this shock can be monitored for an extended timeframe (Wood, 2009). Put more simply, moving average representation allows us to test what happens over time to geopolitical risk when migration fears are increased.

Before performing either the vector autoregression or moving average representation analyses, it is necessary to determine whether the variables in the endogenous system are stationary. Stationary variables have major statistical properties that are constant over time. Stationary variables are random with respect to time, meaning there is no indication they display dynamics that follow a deterministic trend (which would make the effects of any shocks to the endogenous system entirely meaningless). According to the diagnostic tests presented in Table...
2 on the next page, there is no evidence to suggest either the migration fear index or the geopolitical risk index has a deterministic trend. Given the results of these diagnostic tests, it appears that standard vector autoregression and moving average representation analyses can be performed.

Table 2. Augmented Dickey-Fuller t-tests for Presence of Unit Roots

Variable	Migration Fear Index USA	Geopolitical Risk Index
Test Statistic	-3.58*	-4.74*
Critical value .01	-3.46	-3.46
Critical value .05	-2.88	-2.88
Critical value .10	-2.57	-2.57
Number of Lags	1	0

Note: Number of lags determined by Bayesian Information Criteria. For the test statistics of all variables at all critical values, the null hypothesis of a unit root present in the variable can be rejected. Every variable in the endogenous system happens to be stationary such that standard vector autoregression and moving average representation techniques can be applied.

3. Research Findings

The findings of the time series analysis confirm the research hypothesis that prior change in the migration fear index predicts an increase in the geopolitical risk index. Within the United States, rising concerns that migrants are a potential threat produces aggressive reactions that help to contribute to the increased possibility of disruptions to peace in geopolitical affairs. The prominent role of the United States in international affairs makes the country consequential in whether the level of geopolitical risk is high or low. Fear of migrants in the U.S. creates an aggressive response that heightens the level of geopolitical risk.

According to the results of the vector autoregression reported in Table 3 on the next page, prior levels of the migration fear index in the U.S. significantly predicts current levels of the geopolitical risk index (p = 0.04). Note that prior change in the geopolitical risk index does not significantly predict current levels of the migration fear index in the U.S. (p = 0.15). A reciprocal relationship where change in one variable brings about change in the other does not appear to exist given the statistical analysis performed here on information spanning across 29 years.

Evidence exists that each variable is inertial in nature, such that prior values of a variable significantly predicts current values of itself. Prior levels of the migration fear index in the U.S. will guide current levels of said index, and recent levels of the geopolitical risk index will shape current levels of that particular index. None of the three exogenous control variables appear to significantly predict levels of the migration fear index in the U.S.

The occurrence of global events (p = 0.00) and economic recessions in the U.S. (p = 0.01) have a significant and positive effect on the geopolitical risk index. The size of the positive effect cannot be stated with certainty given the estimation complications discussed in the methodology portion of this project. Regardless of that, we can be confident that the findings illustrate that there are events (e.g. terrorist attacks, initiation of wars, etc.) that can increase the risk that countries will approach and interact with each other in a way that makes global peace less likely. In addition, recession periods in the U.S. increase geopolitical risk, which speaks
again to the influence contextual circumstances in the U.S. have on global affairs. If migration fears in the U.S. or an economic malaise in the U.S. can contribute to change in geopolitical risk, global leaders and institutions should be consistently mindful of what conditions are like in the U.S. because how the U.S. responds to these conditions can have far reaching implications on geopolitical affairs. When conditions change in the United States in a way that the U.S. perceives as a risk to their survival, there will be consequences felt across the world.

Table 3. Vector Autoregression (VAR) Granger Test Results

Independent Variable	Dependent Variable	p-value	[F-statistic]
Migration Fear Index USA ➔	Migration Fear Index USA	0.00*	[28.7210]
Geopolitical Risk Index		0.15	[2.1376]
Exogenous Controls			
Events (ns, p = 0.57)			
Elections (ns, p = 0.44)			
Recessions (ns, p = 0.56)			
Migration Fear Index USA ➔	Geopolitical Risk Index	0.04*	[4.5390]
Geopolitical Risk Index ➔		0.00*	[93.1525]
Exogenous Controls			
Events (+, p = 0.00)			
Elections (ns, p = 0.69)			
Recessions (+, p = 0.01)			

Note: The arrows and * indicate Granger-causality from the block of coefficients for the independent variable to the designated dependent variable based on 0.05 significance levels. All p-values derive from F-tests for the null hypothesis of no Granger-causality. The system includes a deterministic constant. The results of the exogenous controls are based on t-test results using 0.05 significance levels. A “+” represents a positive significant relationship, a “−” represents a negative significant relationship, and “ns” represents not significant. Each of the independent variables in the system includes one quarterly lag to control for the inertia of the variables. Lag length is selected by Bayesian Information Criterion (BIC). VAR estimation with lags is performed with information on 119 quarterly usable observations (Quarter 2, 1990 to Quarter 4, 2019).

The consequences of increased migration fears in the U.S. are made clear when reviewing the results of the moving average representation analysis. Figure 1 on the next page provides the dynamic response of geopolitical risk over eleven quarters following a one standard deviation shock to the migration fear index in the United States. An increase in the migration fear index produces an instantaneous 0.15 standard deviation increase in the geopolitical risk index at the point of the shock. One quarter following the increase to the migration fear index, the geopolitical risk index still is clearly bounded away from the standardized mean of zero, suggesting that there is a positive relationship between the migration fear index in the U.S. and the geopolitical risk index. An increase in migration fears in the U.S. increases the geopolitical risk index. This increase in the geopolitical risk index following a one standard deviation
increase in the migration fear index in the U.S. persists for about two years (eight quarters) before returning to the standardized mean of zero in the ninth quarter after the shock. The extensive duration of the increase suggests that change in the level of migration fears within the U.S. has enduring consequences on geopolitical tensions in the world. The results here are the consequence of a one standard deviation increase in the U.S. migration fear index; the magnitude of the increase in the geopolitical risk index can potentially be much larger when looking at a higher standard deviation increase in the U.S. migration fear index. Future continued work in this area can shed light on the full scope of the relationship between these variables.

Figure 1. Moving Average Representation Response of Geopolitical Risk Index Following Simulated Shock to the U.S. Migration Fear Index

Note: Dashed lines represent 95% confidence intervals. The results suggest a statistically significant increase to the geopolitical risk index following an increase to the U.S. migration fear index.

4. Discussion and Conclusions
The contribution of this study is that it offers some initial evidence that migration fears within the United States have a bearing on international relations. As is seen in the empirical time series analyses, prior change in the U.S. migration fear index predicts a statistically significant increase in the geopolitical risk index that cannot be attributed to random chance alone. A result of this type is something that policy analysts, international organizations, and political officials around the globe should factor into their assessment of diplomatic engagement with the U.S. The issue of migration is a highly salient one in the United States if it shapes the response of the U.S. to other countries in such a meaningful way that the level of geopolitical risk in the world increases. Consistent monitoring of the climate within the United States regarding the issue of migration can assist other countries in predicting how the United States might behave in international affairs. If there is a high level of migration fear within the U.S. that makes the U.S. feel imperilled, this can elicit an aggressive response from the U.S. toward other countries.

The true extent of the relationship between migration fears in the U.S. and geopolitical risk can only be ascertained through continued study. One potential avenue for researchers to pursue is to expand the timeframe of analysis. The time period studied here is limited by the publicly
available measure from Baker et al. (2015) of the migration fear index, which currently looks at migration fear levels beginning in 1990. Have migration fears always been a salient issue historically in the U.S. that can influence geopolitical risk? Looking well before the year 1990 by developing a measure of the migration fear index dating back several decades and contrasting it with the historical geopolitical risk index that starts in 1899 will help to answer this question.

A second avenue for researchers to consider is whether the observed effects of migration fears in the U.S. on geopolitical risk are unique to the U.S. context. Creating a global measure of migration fears that simultaneously measures the level of migration fears within multiple nations and seeing whether this alters the level of geopolitical risk will clarify just how much influence the concept of migration fear has on the level of perceived risks that are present in international relations.

References
[1] Baker, S. R., Bloom, N., & Davis, S. J. (2015, December 15). Immigration fears and policy uncertainty. VOXEU-CEPR. https://voxeu.org/article/immigration-fears-and-policy-uncertainty
[2] Gross, C. T., & Canteras, N. S. (2012). The many paths to fear. *Nature Reviews Neuroscience, 13*(9), 651-658.
[3] Adolphs, R. (2013). The biology of fear. *Current Biology, 23*(2), R79-R93.
[4] Archer, J. (1988). *The behavioural biology of aggression* (Vol. 1). CUP Archive.
[5] Popova, N. K. (2006). From genes to aggressive behavior: the role of serotonergic system. *Bioessays, 28*(5), 495-503.
[6] Tovote, P., Fadok, J. P., & Lüthi, A. (2015). Neuronal circuits for fear and anxiety. *Nature Reviews Neuroscience, 16*(6), 317-331.
[7] Brewer, M. B. (1979). In-group bias in the minimal intergroup situation: A cognitive-motivational analysis. *Psychological Bulletin, 86*(2), 307-324.
[8] Reimers, L., & Diekhof, E. K. (2015). Testosterone is associated with cooperation during intergroup competition by enhancing parochial altruism. *Frontiers in Neuroscience, 9*, article 183.
[9] Mifune, N., Simunovic, D., & Yamagishi, T. (2017). Intergroup biases in fear-induced aggression. *Frontiers in Psychology, 8*, article 49.
[10] Yamagishi, T., & Mifune, N. (2016). Parochial altruism: Does it explain modern human group psychology? *Current Opinion in Psychology, 7*, 39-43.
[11] Caldara, D., & Iacoviello, M. (2019). *Measuring geopolitical risk*. Board of Governors of the Federal Reserve Board. https://www.matteoiacoviello.com/gpr.htm
[12] Enders, W. (1996). *RATS handbook for econometric time series*. New York: John Wiley & Sons.
[13] Granger, C. W. J. (1969). Investigating causal relations by econometric models and cross-spectral models. *Econometrica, 37*, 424-438.
[14] Sims, C. A. (1980). Macroeconomics and reality. *Econometrica, 48*, 1-48.
[15] Wood, B. D. (2009). *The myth of presidential representation*. Cambridge, UK: Cambridge University Press.