Process Mapping in Healthcare: A Systematic Review

Grazia Antonacci (g.antonacci@imperial.ac.uk)
Imperial College London https://orcid.org/0000-0001-7742-8003

Laura Lennox
Imperial College London

James Barlow
Imperial College London

Liz Evans
NIHR CLAHRC for Northwest London: NIHR Collaboration for Leadership in Applied Health Research and Care for Northwest London

Julie Reed
Imperial College London https://orcid.org/0000-0002-9974-2017

Research article

Keywords: process, mapping, health care, quality, improvement, methods, systematic review

DOI: https://doi.org/10.21203/rs.3.rs-80631/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Introduction

Process mapping (PM) supports better understanding of complex systems and adaptation of improvement interventions to their local context. However, there is little research on its use in healthcare. This study (i) proposes a conceptual framework outlining quality criteria to guide the effective implementation, evaluation and reporting of PM in healthcare; (ii) reviews published PM cases to identify context and quality of PM application, and the reported benefits of using PM in healthcare.

Methods

We developed the conceptual framework by reviewing methodological guidance on PM and empirical literature on its use in healthcare improvement interventions. We conducted a systematic review of empirical literature using PRISMA methodology. Inclusion criteria were: full text empirical study; describing the process through which PM has been applied in a healthcare setting; published in English. Databases searched are: Medline, Embase, HMIC–Health Management Information Consortium, CINAHL–Cumulative Index to Nursing and Allied Health Literature, Scopus. Two independent reviewers extracted and analyzed data. Each manuscript underwent line by line coding. The conceptual framework was used to evaluate adherence of empirical studies to the identified PM quality criteria. Context in which PM is used and benefits of using PM were coded using an inductive thematic analysis approach.

Results

The framework outlines quality criteria for each PM phase: (i) preparation, planning and process identification, (ii) data and information gathering, (iii) process map generation, (iv) analysis, (v) taking it forward.

PM is used in a variety of settings and approaches to improvement. None of the reviewed studies (N=105) met all ten quality criteria; 7% were compliant with 8/10 or 9/10 criteria. 45% studies reported that PM was generated through multi-professional meetings and 15% reported patient involvement. Studies highlighted the value of PM in navigating the complexity characterizing healthcare improvement interventions.

Conclusion

The full potential of PM is inhibited by variance in reporting and poor adherence to underpinning principles. Greater rigour in the application of the method is required. We encourage the use and further development of the proposed framework to support training, application and reporting of PM.

Prospero ID: CRD42017082140.

1. Introduction
There is a growing awareness that quality and safety failures in healthcare are attributable more to systems and processes than to human errors.\(^1\)–\(^4\) To address this, healthcare leaders are increasingly applying quality improvement (QI) and process-oriented management practices from industry including Lean, Six Sigma, Failure Mode Effects Analysis (FMEA), Failure Mode, Effects, Criticality Analysis (FMECA), and operational research and process-oriented costing approaches such as Time-Driven Activity-Based Costing (TDABC).\(^5\)–\(^8\)

Applying QI methodology is challenging as healthcare processes are highly variable, distributed and multidisciplinary, involving stakeholders with differing interests and motivations.\(^9\)–\(^15\) Research shows that the success of QI interventions is heavily influenced by their context of implementation.\(^16\)–\(^18\) Developing interventions that are adapted to the local context and setting is an essential component of successful QI,\(^19\)–\(^21\) along with engagement of stakeholders.\(^22\)–\(^24\) Process mapping has the potential to support QI projects in healthcare by engaging stakeholders to create a shared understanding of the systems they are trying to change.\(^25\)–\(^29\) However, there is little research on the use of PM in healthcare and whether it is achieving its full potential. The term ‘process mapping’ is used to describe several approaches and techniques. Here we refer to the “entire approach that leads to a holistic understanding of the process under review”.\(^30,31\)

Research shows that the full benefits of PM are accomplished when it is used throughout all the stages of a QI project to plan, implement, monitor and evaluate interventions.\(^29,31\)–\(^34\) However, the application of PM within QI initiatives has proved challenging due to the limited time clinicians can devote to it and their limited knowledge of PM methods.\(^35\)–\(^37\)

Although more informed and systematic use of PM in the design and management of healthcare delivery is advocated \(^38,39\), there is poor evidence on the use of PM and its effectiveness in healthcare.\(^40\)–\(^42\) To advance current knowledge on PM and improve its use in practice, we need greater insight into how it works in different contexts, the mechanisms underlying its successful use, and challenges to its implementation.\(^43,44\)

There is currently no systematic review of the use of PM in healthcare practice. Most published literature only describes empirical studies of individual interventions using PM. There is very limited information on the range and type of healthcare settings in which PM has been used or the benefits of its use. This problem is compounded by the lack of formal criteria to guide the implementation, evaluation and reporting of PM. Some methodological guides focus on PM in healthcare improvement initiatives;\(^29,32,33,45\) none are based on structured review of the research evidence. Scarce knowledge of PM’s use as a QI method in healthcare is an obstacle hindering its wider adoption.\(^46\) Therefore, increased awareness of its possible applications and benefits, as well as evidence-based quality criteria for its use, are needed.

This paper reviews the empirical literature and methodological guidance on PM to increase understanding of its use in healthcare to: (1) develop a conceptual framework identifying different phases in PM, with quality criteria for each, to guide the effective implementation, assessment and reporting of this method; (2) identify the context of use of PM in healthcare QI projects; (3) assess
adherence of the application of PM as described in empirical literature to the proposed conceptual framework quality criteria; (4) explore the reported evidence for the benefits of using PM in improvement work.

2. Methods

2.1 Conceptual framework development

We conducted a snowballing review of methodological literature on PM in both healthcare and non-healthcare settings (Fig. 1, online supplementary appendix 1). The objective was to identify recommended good practice methods for conducting PM.[47] We assessed methodological guidelines (online supplementary appendix 1) and empirical literature selected in the systematic review (2.2). Using a process of inductive and deductive analysis we developed a conceptual framework identifying overarching quality criteria for each phase of the PM process (3.2, Fig. 2). These criteria were discussed by all authors and selected if they could be applied to a wide range of PM approaches and QI project types. Iterative development of the framework continued as new ideas emerged through discussions and feedback from experts and practitioners.

2.2 Systematic literature review

A systematic literature review of empirical research reporting on the use of PM in healthcare was performed following PRISMA standards [48] and registered on PROSPERO (ID: CRD42017082140).

2.2.1 Search and information sources

The search was designed to identify English-language empirical studies describing the use of PM in healthcare. The definition of search strategies was supported by an expert medical librarian. Databases searched were Medline (from 1946), Embase (from 1974), HMIC–Health Management Information Consortium (from 1979), CINAHL–Cumulative Index to Nursing and Allied Health Literature (from 1937), Scopus (from 1960). The last search date was 9 November 2019. Search strategies are described in the online supplementary appendix 2. One author (GA) performed the search and extraction of articles references and abstracts.

2.2.2 Data collection process and study selection

Inclusion criteria were: full text empirical study; describing the process through which PM has been applied in a healthcare setting; published in English. Methodological studies, posters and conference proceedings were excluded. Articles were first screened for title and abstract by GA. Two reviewers (GA, LL) then independently assessed 20% of full-text articles to test the objectivity of selection criteria, which were then refined. GA and LL independently continued the selection process on the identified articles. Disagreements between reviewers occurred in 4% of cases and were resolved through discussion between all authors.
2.2.3 Data extraction

A data extraction form was designed to collect general study information alongside a set of features characterizing a PM exercise (e.g. adherence to main criteria for each phase of PM, way in which PM was created, software used to draw the process map, use of online supplements to report complete process maps), from a wide range of projects with different characteristics. Data were extracted from included studies independently by two authors (GA and LL). When disagreements occurred, the other reviewers were involved, and agreement was reached through consensus. A simplified version of the data extraction form, along with a description of its development and testing as well as full data extraction details are available in the online supplementary appendix 3 and online supplementary appendix 4.

2.2.4 Data synthesis and analysis

The analysis was performed independently by two authors (GA and LL) and discussed with the other reviewers. Each manuscript underwent line by line coding. Context in which PM is used (3.3) and benefits of using PM in improvement work (3.5) were identified from the selected studies and coded using an inductive thematic analysis approach.[49–51] Compliance of application of PM to the conceptual framework criteria (3.4) was assessed by coding empirical articles’ adherence to each of the quality criteria and counting the number of studies reporting on the presence of corresponding data item.[47] All of the stages of the analysis were progressively discussed by authors and various QI experts and practitioners (in particular from NIHR CLAHRC Northwest London)[52–56] to ensure accuracy and control for bias in the analysis. Results were summarized using descriptive summaries as well as ratios (for details on the analysis process see online supplementary appendix 3).

2.2.5 Quality assessment and risk of bias

The quality of each study and risk of bias were assessed using the Critical Appraisal Skills Programme (CASP) checklist.[57, 58] Two authors (GA, JB) rated the articles independently with disagreements resolved through consensus (see online supplementary appendix 5). CASP was selected because several of the articles included in the review were qualitative studies and covered a wide range of QI projects. Assessing the effectiveness of the projects in which PM has been used was not relevant for this review, therefore results of individual studies were not analyzed. As reported in other qualitative reviews, articles were not excluded or stratified by risk bias.[49, 50, 59–62] Rather, we considered the relative contribution of low/high quality studies in the analysis phase.[49, 60] Moreover, as the review is based on information reported in the selected empirical literature, publication bias as well as bias due to the reporter and the selection of studies may have affected the results of this study (see Limitation section).

3. Results

3.1 The conceptual framework
Six studies were identified in the snowballing literature review of methodological publications on PM, four from healthcare settings to develop the conceptual framework [29, 32, 33, 45] and two from other industries [30, 63] (online supplementary appendix 1). The conceptual framework (Fig. 2) provides quality criteria for each of the five phases characterizing the process of PM taken from the methodological literature (online supplementary appendix 1): (i) preparation, planning and process identification, (ii) data and information gathering, (iii) process map generation, (iv) analysis, (v) taking it forward.

3.2 General study characteristics

The study selection process for the systematic review of empirical studies using PM is reported in Fig. 3. A total of 105 articles met the inclusion criteria and were included in the review (online supplementary appendix 4). Study quality was moderate-high with 31% study scoring 10/10, 43% scoring 9/10, 20% scoring 8/10 and 6% scoring 6–7/10 (online supplementary appendix 5). 86% were published in or after 2010 and 65% were conducted in the USA and UK (online supplementary appendix 6).

3.3 Context in which PM is used

PM exercises were reported from a wide range of healthcare settings; the largest categories were in-patient services (32%) and multiple settings (29%). The most common type of projects reporting the use of PM in healthcare were process improvement/QI initiatives (68%), which include the use of FMEA/FMECA (11%) and Lean and Six-Sigma (12%) approaches. Use of PM in health information technologies (HIT) projects was reported in 10% of studies. A few studies outline its use to develop and share evidence-based recommendations and pathways (9%). Others reported using PM to identify care process steps within activity-based costing methodologies (6%) or to provide a visual representation of patient journeys (5%). Only 3% of papers described the use of PM in integrated care pathway (ICP) projects. (Fig. 4)

3.4 Compliance of application of PM to the conceptual framework criteria

We assessed all empirical studies against the conceptual framework quality criteria for each phase of PM. The key findings are displayed in Fig. 2.

No study reached overall compliance for all 10 the criteria. Only 7 studies (7%) adhered to either 9/10 (2%) criteria or 8/10 criteria (5%). For five of these seven studies the criteria about patient involvement was not met. Most studies adhered to 7/10 (15%), 6/10 (32%) and 5/10 (35%) criteria. The remaining 10% of studies were compliant to 4/10 criteria.

Phase 1

Most projects clearly identified a service family and the patient/service user group (91%), but patient representative involvement was only reported in a small number of projects (15%). Team member training in the technique prior the PM exercise was reported in only 15% of projects.
Phase 2

85% of the studies stated that data and information had been gathered to inform the PM exercise as a substitute for (55%), or in addition to (30%), the group knowledge generated in the facilitated process mapping sessions. This included evidence-based best practice recommendations [35–37], interviews [65–70], and more detailed approaches such as observations, operational data collection, time-and-motion studies, and video footage.[64, 71–74]

Phase 3

81% of studies included perspectives from diverse stakeholders. In less than half of the studies (45%) the maps were generated by multiple stakeholder groups; in the remaining studies maps were generated by researchers. Most projects using industrial engineering approaches created maps in multi-stakeholder meetings (69%).

Phase 4

All 105 studies reported that the process map was analysed. How and at what point the analysis was carried out varied significantly, depending on the type of project being reported. Most (91%) reported that the map was created to represent “as-is” practice. Four projects [75–78] reported both “as-is” and “to-be” maps, while 5 describe the “to-be” process.[79–83] For example, in TDABC projects the analysis is focused on process costs and is mainly completed after the “as-is” process map is created.[84–89] In projects implementing evidence-based recommendations, a process analysis was completed before the creation of the ideal or “to-be” process map.[83] Most studies (78%) reported that additional information gathered during the PM exercise—such as delays, safety problems, or flow of information, resources and activity—is represented on the final map. Only 48% of studies specified that the PM exercise had been reviewed for accuracy and confirmed by key stakeholders or external experts.

Phase 5

42% of studies reported on the implementation of actions following the PM exercise. The remainder identified process or system issues that needed improvement but did not report taking action.

3.5 Benefits of using PM in improvement work

We identified the benefits of using PM in improvement initiatives described in the reviewed empirical literature and grouped them in three areas: (i) understanding local systems, (ii) inform scope, design, development and evaluation of interventions, (iii) co-production and knowledge exchange. (Fig. 4).

(i) Understanding local systems

Studies reported that QI teams gained a more realistic understanding of current practice because PM allowed them to gather knowledge from people directly involved in the process under analysis and provided a visual representation of current or enhanced processes.[40, 76, 80, 90, 91] The studies show
that PM is a tool to break-down the complexity characterizing healthcare, by providing improvement
teams with a structured picture of complex processes, using information from process stakeholders
holding different roles and perspectives.[35, 82, 84, 90, 92–94] Diverse views elicited during PM help
improvement teams gain a shared understanding of local practices and underlying systemic issues. For
example, PM has been found particularly useful to disaggregate care process and identify costs for each
process step [84–89] as well as to understand interactions between different parts of healthcare systems.
For example, in ICP projects the use of PM to understand systems helped to improve coordination of care
across different settings and networks [79, 81, 95], while in FMEA projects it helped to identify potential
systems failures.[64, 94, 96–98, 98–104]

(ii) Inform scope, design, development and evaluation of interventions

The identification of actual constraints and opportunities within local systems helped assessment of
problem areas and development of improvement solutions grounded in research evidence and local
knowledge.[68, 72, 74, 80, 86, 90, 105–107] The use of PM before the implementation of information
systems (IS) to help project members with diverse backgrounds achieve a shared understanding of the
system has been reported as crucial for solving design challenges.[82, 108–112] Some studies describe
how PM has also been used to assess actual care processes against recognized evidence-based
standards.[72, 93] Reviewed studies also show how if used throughout the entire project, PM can play a
role in the success of improvement initiatives by supporting continuous improvement. In this respect PM
has been found to be particularly useful for clarifying the scope of projects, targeting the intervention and
planning improvement actions.[9, 72, 113, 114]

(iii) Co-production and knowledge exchange

PM was reported to be particularly useful to engage and motivate project stakeholders in designing and
implementing change. Some studies report that PM supported the effective design of HIT by enhancing
the involvement of process stakeholders.[108–112, 115] Studies also describe how greater understanding
of different perspectives provided by PM encouraged a culture of ownership and responsibility for
improvement work.[35, 74, 80, 86, 98, 116, 117] For example, within ICP projects, PM allowed the
clarification and reassessment of the roles and responsibilities within the team.[79, 81, 95] Other studies
highlight how participation in PM helped to establish sense of urgency in clinicians regarding patient
safety issues, thus enhancing their engagement.[74, 86, 114] Reviewed studies also show that the
capacity of PM to facilitate the dialogue between diverse stakeholders helps to smooth barriers and
tensions occurring during improvement projects or reach consensus on solutions.[65, 74, 80, 86, 97, 98,
117–119] For example, some studies reported how PM helped to promote the integration of health
services across different settings by developing clinical evidence-based recommendations agreed among
different healthcare professionals.[66, 79, 81, 83] Finally, studies describe how PM can be a valuable tool
for documenting a care process for further dissemination.[95] This is beneficial, for example, in helping to
inform patients and carers about their expected journey [67, 93, 120–122] or to support training and
education of healthcare professionals.[74, 95, 97]
4. Discussion

The use of PM within healthcare improvement projects helps to support understanding of complex healthcare systems and adaptation of improvement interventions to their local context. We reviewed methodological guidance on PM, peer-reviewed empirical literature, and developed a conceptual framework to guide effective implementation, assessment, and reporting of PM in healthcare. We assessed adherence of 105 empirical studies to quality criteria outlined in the conceptual framework. Comparison of methodological guidelines and empirical literature helped to identify common features characterizing the use of PM across the selected studies. We also identified reported context of use and benefits of using PM in improvement work.

To our knowledge, this is the first systematic literature review exploring the use of PM in healthcare improvement projects. The review demonstrates that PM is used in projects to improve the quality and safety in a wide range of healthcare settings. These projects focus on different QI tools and approaches, and use PM either as a standalone methodology or as a support for other QI methods.

Using the conceptual framework, we found inconsistencies in reporting and in adherence to PM quality criteria. None of the studies adhered to all the criteria and only 7% studies adhered to 8/10 or 9/10 criteria. Assessment of adherence was, however, challenging due to variation in reporting of PM exercises across studies. This is attributable both to the diversity of the contexts for using PM and lack of standardized reporting requirements. Analysis of the reviewed studies suggests that poor adherence with quality criteria reflects not just problems in the reporting of PM, but also the conduct of the method.

Although for most reviewed studies, views of different stakeholders were gathered, only 15% reported the involvement of patients. Moreover, less than half (45%) clearly reported that process maps were generated through multi-professional meetings. This suggests that some benefits of PM may not have been realized in these studies, as failure to engage all stakeholders is unlikely to produce realistic process maps or support successful patient-centred QI initiatives. If PM is conducted without appropriate stakeholder participation, some of the benefits derived from the social interactions, such as empathy between professional groups and agreement for shared solutions, are inhibited.[12] Two of the studies identified in the systematic review reported that the limited involvement of clinical staff was related to the difficulty of relieving them from their daily job,[96, 114] but reasons for poor patient involvement should be further investigated.[24]

Only 14 of the reviewed studies report training in PM techniques as part of the project. Limited training in PM techniques may explain the lack of discussion or consideration of the process modelling language used to draw the process map in the reviewed studies. This finding confirms previous research stating that most projects in healthcare only use flowchart diagrams, regardless the variety of process modelling techniques and tools available.[123] The choice of modelling language used is important in describing and understanding systems analysed with PM and overlooking these aspects can impact its effective use.[124] Furthermore, training project teams in QI is important not only to improve participants’ technical skills, but also to enhance their engagement in the project.[97, 125] We advocate further research on how
to make advanced modelling techniques and tools accessible to healthcare professionals, as well as how this enhanced knowledge affects the success and impact of PM.

Some studies reported that they had to balance the rigorous use of the PM method with resource and time constraints they had to face in practice.[64, 87, 97, 110, 114, 126] Despite reviewed studies demonstrating overall poor adherence to the identified PM quality criteria, they describe a number of benefits derived from its use in healthcare improvement projects, demonstrating the key role played by PM in addressing the challenge of designing and implementing change in complex systems. Using PM in improvement work helps to achieve the strategic principles identified by the Successful Healthcare Improvement from Translating Evidence in Complex Systems (SHIFT-evidence) framework (act scientifically and pragmatically, embrace complexity, engage and empower).[53] The capacity of PM to bring together diverse stakeholder perspectives and provide a visual representation of the system is key to address the complexity which characterizes healthcare processes. Within QI projects PM helped to provide a shared understanding of the reality of complex systems and facilitated dialogue between team members. This increased engagement of project participants and eased their agreement on common solutions to problems, thus supporting two levers recognized as important for successful improvement in complex systems: knowledge co-production and the definition of shared goals across stakeholders.[127, 128]

The use of PM as a monitoring and evaluation tool [9, 31, 70, 117, 129–131] appeared to be out of scope of application by many QI teams. Most of the articles we reviewed focus on use of PM to better understand systems only at the early stages of an improvement initiative or to visualize and disseminate process maps as the “output” of the project. Only 42% of the reviewed studies describe actions undertaken following the PM exercise, suggesting there is still more to know on how PM influences action and impact in overall improvement efforts.

Findings from this literature review show there is still much room for improvement in the use and reporting of PM as a QI method. Limited adherence to recommended practice for PM is a finding consistent with the assessment of fidelity reported for other QI methods.[47, 132]

We unpacked the black box of PM as a QI method and outlined quality criteria to guide its systematic use and reporting. Improving the quality of reporting of PM exercises would enhance transparency, encourage appropriate use of PM in practice, and support the definition of a common language to describe the process of PM.[24] We encourage practitioners and researchers to use and test the validity of our conceptual framework when implementing or reporting PM. We also suggest further development of reporting guidelines for PM exercises and their use as a starting point in the design of prospective studies exploring the effectiveness of the method. Our findings show that improvements in reporting are required not only to systematically describe the “process” of PM but also for representation of the process map, as we found that many articles report only a partial or sample representation of the process map developed. Online versions of published articles or online supplements [64, 84, 98, 104, 125, 133–137] could provide more detailed process maps as these are often difficult to display in printed versions of journals.
Previous studies also demonstrated that successful implementation of QI initiatives depends not only on the conformance to methodological guidelines, but is greatly influenced by contextual factors (leadership, organizational culture, etc.).[16, 138–140] Our study has not taken into account the influence of context on PM exercises, because these factors cannot be assessed by analysis of the literature. We partially addressed this issue, published elsewhere, by conducting an empirical study investigating benefits and success factors of PM in a sample of QI projects.[12] Further empirical research is needed to test whether our findings hold in QI projects developed by teams using different approaches to conduct the PM exercise, as identified in this literature review.

4.1 Limitations

There are some limitations due to the search process. The database search could have included other search terms such as “process model*”, “process design*” or “system design*”, but the authors agreed that the effort required to screen the resulting records was not justified by the purpose and boundaries of the present study.

A key limitation is due to the fact that the systematic review is based on PM exercises as described in the selected empirical literature and not on the analysis of actual practice. This implies that results might be affected by reporting bias and selection of studies, as well as publication bias. The content of publications heavily depends on what journals accept for publication and on the limited space allowed. Therefore, projects using specific approaches (e.g. TDABC, Lean or IS development) are less likely to present a detailed description of the PM process, compared to other process improvement projects. Successful projects are more likely to be published than studies reporting less successful interventions, which may be equally useful for knowledge generation. Bias could also arise because we only searched English-language papers. However, our objective was not to perform an exhaustive review of all the studies applying PM techniques in healthcare, nor to assess the effectiveness of PM, but to provide a representative overview of the use of PM as reported in empirical literature.

Another limitation is due to the fact that PM exercises were usually reported as a part of a wider project. Clearly distinguishing the component attributable to PM from that associated with the whole project was therefore not always straightforward. We addressed this limitation in the development of the data item sheet and the theoretical framework, as well as in the data collection and analysis phase. For example, we decided not to quantitatively assess the different roles involved in the PM exercise, because it was not always clear if and how all team members were involved in the PM exercise. Furthermore, we evaluated the actual implementation of the recommendations derived by the PM exercise, considering the improvement actions reported in respect of the whole project.

Finally, within the included studies we found three papers [120–122] which seemed to derive from the same project. We addressed this bias in the analysis and summary phase by discounting the patterns emerging from common characteristics of these three studies.
5. Conclusions

PM is at the heart of a range of different improvement projects in healthcare. Its effective use is often a fundamental component of successful QI initiatives. If appropriately used, PM brings together perspectives of diverse stakeholders to harness tacit knowledge and understand complex processes, as well as to find common solutions and enhance team engagement. However, variance in reporting and lack of compliance with guiding principles underpinning its effective use inhibit its full potential in healthcare improvement initiatives, and in sharing learning between initiatives. Greater scientific rigor in the application and reporting of PM is required to increase its effectiveness as a method for improvement and advance the field of improvement science.

The conceptual framework proposed in this paper provides generalizable quality criteria to help “unpack the black box” of PM across a variety of settings and problems in healthcare. We encourage the use and further development of these criteria to guide future adoption of PM and for reporting and evaluating its efficacy. A better understanding of the circumstances surrounding decisions about deployment of mechanisms supporting QI methods, such as PM, is needed in order to increase their effectiveness. Greater recognition of the benefits of PM, as well as training in this method for healthcare professionals and improvement leaders would also contribute to its more extensive and appropriate use in practice.

Abbreviations

- CASP: Critical Appraisal Skills Programme.
- CLAHRC: Collaboration for Leadership in Applied Health Research and Care.
- FMEA: Failure Mode Effects Analysis.
- FMECA: Failure Mode, Effects, Criticality Analysis.
- HIT: Health Information Technologies.
- ICP: integrated care pathway.
- NIHR: National Institute of Health Research.
- PM: Process Mapping.
- QI: Quality Improvement.
- TDABC: Time-Driven Activity-Based Costing.

Declarations

Ethics approval and consent to participate:

Not applicable.

Consent for publication:

Not applicable.
Availability of data and materials:

All data generated or analysed during this study are included in this published article [and its supplementary information files].

Competing interests:

The authors declare that they have no competing interests.

Funding:

This research was funded by the National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care Northwest London (CLAHRC NWL), now recommissioned as NIHR Applied Research Collaboration Northwest London (ARC NWL). The views expressed in this publication are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care.

Authors' contributions:

GA identified methodological guidance on Process Mapping and performed the search and extraction of articles references and abstracts for the systematic review. GA and LL defined the selection criteria, independently screened and selected the articles, designed the data extraction form and independently extracted data from included studies. GA and JB assessed quality of each study and risk of bias by rating articles included in the systematic review independently using the CASP checklist. JR and LE contributed to the development of themes for the analysis of benefits of Process Mapping. All authors read and approved the final manuscript and contributed to: the development of the research questions, the development and validation of the conceptual framework, the validation of the data extraction sheet, resolve discrepancies between reviewers occurring during the analysis phase.

Acknowledgements:

We acknowledge the National Institute of Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care (CLAHRC) Northwest London team for contributing to shape the scope of this systematic review and for supporting the development and validation of the conceptual framework.

References

1. Chassin MR, Becher EC. The Wrong Patient. Annals of Internal Medicine 2002;136:826. doi:10.7326/0003-4819-136-11-200206040-00012
2. Gaba DM, Singer SJ, Sinaiko AD, et al. Differences in Safety Climate between Hospital Personnel and Naval Aviators. Hum Factors 2003;45:173–85. doi:10.1518/hfes.45.2.175.27238
3. Klein JG. Five pitfalls in decisions about diagnosis and prescribing. BMJ 2005;330:781–3. doi:10.1136/bmj.330.7494.781
4. Reason J. Human Error. 1 edition. Cambridge England; New York: Cambridge University Press; 1991.
5. Kruskal JB, Reedy A, Pascal L, et al. Quality Initiatives: Lean Approach to Improving Performance and Efficiency in a Radiology Department. RadioGraphics 2012;32:573–87. doi:10.1148/rg.322115128
6. Colligan L, Anderson JE, Potts HW, et al. Does the process map influence the outcome of quality improvement work? A comparison of a sequential flow diagram and a hierarchical task analysis diagram. BMC Health Services Research 2010;10:7. doi:10.1186/1472-6963-10-7
7. Niemeijer GC, Trip A, de Jong LJ, et al. Impact of 5 Years of Lean Six Sigma in a University Medical Center: Quality Management in Health Care 2012;21:262–8. doi:10.1097/QMH.0b013e31826e74b7
8. Robbins J, Garman AN, Song PH, et al. How High-Performance Work Systems Drive Health Care Value: An Examination of Leading Process Improvement Strategies. Quality Management in Healthcare 2012;21:188. doi:10.1097/QMH.0b013e31825e88f6
9. Barach P, Johnson JK. Understanding the complexity of redesigning care around the clinical microsystem. BMJ Quality & Safety 2006;15:i10–6. doi:10.1136/qshc.2005.015859
10. Poulymenopoulou M, Malamateniou F, Vassilacopoulos G. Specifying Workflow Process Requirements for an Emergency Medical Service. Journal of Medical Systems 2003;27:325–35. doi:10.1023/A:1023701219563
11. Lenz R, Reichert M. IT support for healthcare processes – premises, challenges, perspectives. Data & Knowledge Engineering 2007;61:39–58. doi:10.1016/j.datak.2006.04.007
12. Antonacci G, Reed JE, Lennox L, et al. The use of process mapping in healthcare quality improvement projects. Health Serv Manage Res 2018;0951484818770411. doi:10.1177/0951484818770411
13. Rebuge Á, Ferreira DR. Business process analysis in healthcare environments: A methodology based on process mining. Information Systems 2012;37:99–116. doi:10.1016/j.is.2011.01.003
14. Bartz M. Patientenpfade: Ein Instrument zur Prozessoptimierung im Krankenhaus. Saarbrücken: VDM Verlag Dr. Müller; 2006.
15. Reinersdorff AB von. Strategische Krankenhausführung. Vom Lean Management zum Balanced Hospital Management. Bern: Huber; 2007.
16. Kaplan HC, Provost LP, Froehle CM, et al. The Model for Understanding Success in Quality (MUSIQ): building a theory of context in healthcare quality improvement. BMJ Quality & Safety 2011;bmjqs-2011-000010. doi:10.1136/bmjqs-2011-000010
17. McCormack B, Kitson A, Harvey G, et al. Getting evidence into practice: the meaning of `context’. Journal of Advanced Nursing 2002;38:94–104. doi:10.1046/j.1365-2648.2002.02150.x
18. Pfadenhauer LM, Gerhardus A, Mozygemba K, et al. Making sense of complexity in context and implementation: the Context and Implementation of Complex Interventions (CICI) framework. Implementation Sci 2017;12:21. doi:10.1186/s13012-017-0552-5
19. Plsek PE, Greenhalgh T. The challenge of complexity in health care. BMJ 2001;323:625–8. doi:10.1136/bmj.323.7313.625
20. Greenhalgh T, Robert G, Macfarlane F, et al. Diffusion of Innovations in Service Organizations: Systematic Review and Recommendations. The Milbank Quarterly 2004;82:581–629. doi:10.1111/j.0887-378X.2004.00325.x

21. Vos L, Chalmers SE, Dückers ML, et al. Towards an organisation-wide process-oriented organisation of care: a literature review. Implement Sci 2011;6:8. doi:10.1186/1748-5908-6-8

22. Alan Mitchell, Jones Daniel. Lean Thinking for the NHS. London: NHS confederation 2006.

23. Panella M, Marchisio S, Di Stanislao F. Reducing clinical variations with clinical pathways: do pathways work? Int J Qual Health Care 2003;15:509–21. doi:10.1093/intqhc/mzg057

24. Ocloo J, Matthews R. From tokenism to empowerment: progressing patient and public involvement in healthcare improvement. BMJ Qual Saf 2016;25:626–32. doi:10.1136/bmjqs-2015-004839

25. Hughes RG. Tools and Strategies for Quality Improvement and Patient Safety. In: Hughes RG, ed. Patient Safety and Quality: An Evidence-Based Handbook for Nurses. Rockville (MD): : Agency for Healthcare Research and Quality (US) 2008. http://www.ncbi.nlm.nih.gov/books/NBK2682/. Accessed 3 Feb 2018.

26. Taylor A.J., Randall C. Process mapping: enhancing the implementation of the Liverpool Care Pathway. Int J Palliat Nurs 2007;13:163–7. doi:10.12968/ijpn.2007.13.4.23489

27. Ben-Tovim D.I., Dougherty M.L., O’Connell T.J., et al. Patient journeys: the process of clinical redesign. Med J Aust 2008;188:S14-17. doi:10.5694/j.1326-5377.2008.tb01668.x

28. King D.L., Ben-Tovim D.I., Bassham J. Redesigning emergency department patient flows: Application of Lean Thinking to health care. EMA Emerg Med Australas 2006;18:391–7. doi:10.1111/j.1742-6723.2006.00872.x

29. NHS Institute for Innovation and Improvement. Improvement Leaders’ Guide. Process Mapping, analysis and redesign. General improvement skills. 2005.https://www.england.nhs.uk/improvement-hub/wp-content/uploads/sites/44/2017/11/ILG-1.2-Process-Mapping-Analysis-and-Redesign.pdf. Accessed 9 Jul 2020.

30. Jacka JM, Keller PJ. Business Process Mapping: Improving Customer Satisfaction. Hoboken: John Wiley & Sons; 2009.

31. Antonacci G, Reed JE, Lennox L, et al. The use of process mapping in healthcare quality improvement projects. Health Serv Manage Res 2018;0951484818770411. doi:10.1177/0951484818770411

32. Jackson TL. Mapping Clinical Value Streams. 1 edition. Boca Raton: Routledge; 2013.

33. Trebble TM, Jamso. Mavkupt, Hydes T. Process mapping the patient journey : an introduction . BMJ 2010;341:394–7. doi:10.1136/bmj.c4078

34. Wooldridge A.R., Carayon P, Hundt A.S., et al. SEIPS-based process modeling in primary care. Appl Ergon 2017;60:240–54. doi:10.1016/j.apergo.2016.11.010

35. Bonzo SM, McLain D, Avnet MS. Process Modeling in the Operating Room: A Socio-Technical Systems Perspective. Systems Engineering 2016;19:267–77. doi:10.1002/sys.21343
36. Kuljis J, Paul RJ, Stergioulas LK. Can health care benefit from modeling and simulation methods in the same way as business and manufacturing has? In: 2007 Winter Simulation Conference. 2007. 1449–53. doi:10.1109/WSC.2007.4419755

37. De Regge M, Gemmel P, Verhaeghe R, et al. Aligning service processes to the nature of care in hospitals: an exploratory study of the impact of variation. Oper Manag Res 2015;8:32–47. doi:10.1007/s12063-015-0098-0

38. Edwards N. Can quality improvement be used to change the wider healthcare system? BMJ Quality & Safety 2005;14:75–75. doi:10.1136/qshc.2005.013748

39. Clarkson PJ, Buckle P, Coleman R, et al. Design for patient safety: A review of the effectiveness of design in the UK health service. Journal of Engineering Design 2004;15:123–40. doi:10.1080/09544820310001617711

40. Santana S, Redondo P. Process mapping: A tool to foster intra- and inter-organizational coordination in primary care. Family Medicine and Primary Care Review 2018;20:41–6. doi:10.5114/fmpcr.2017.72150

41. Shojania KG, Grimshaw JM. Evidence-Based Quality Improvement: The State Of The Science. Health Affairs 2005;24:138–50. doi:10.1377/hlthaff.24.1.138

42. Auerbach AD, Landefeld CS, Shojania KG. The Tension between Needing to Improve Care and Knowing How to Do It. New England Journal of Medicine 2007;357:608–13. doi:10.1056/NEJMsb070738

43. Grol R, Baker R, Moss F. Quality improvement research: understanding the science of change in health care. BMJ Quality & Safety 2002;11:110–1. doi:10.1136/qhc.11.2.110

44. Walshe K. Pseudoinnovation: the development and spread of healthcare quality improvement methodologies. Int J Qual Health Care 2009;21:153–9. doi:10.1093/intqhc/mzp012

45. McLaughlin N, Rodstein J, Burke MA, et al. Demystifying process mapping: a key step in neurosurgical quality improvement initiatives. Neurosurgery 2014;75:99–109. doi:10.1227/NEU.0000000000000360

46. Jun GT, Ward J, Morris Z, et al. Health care process modelling: which method when? Int J Qual Health Care 2009;21:214–24. doi:10.1093/intqhc/mzp016

47. Taylor MJ, McNicholas C, Nicolay C, et al. Systematic review of the application of the plan–do–study–act method to improve quality in healthcare. BMJ Qual Saf 2013;.bmjqs-2013-001862. doi:10.1136/bmjqs-2013-001862

48. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 2009;339. doi:10.1136/bmj.b2700

49. Thomas J, Harden A. Methods for the thematic synthesis of qualitative research in systematic reviews. BMC Med Res Methodol 2008;8:45. doi:10.1186/1471-2288-8-45

50. Bergs J, Lambrechts F, Simons P, et al. Barriers and facilitators related to the implementation of surgical safety checklists: a systematic review of the qualitative evidence. BMJ Qual Saf
51. Creswell JW, Poth CN. Qualitative Inquiry and Research Design: Choosing Among Five Approaches. Thousand Oaks: SAGE Publications; 2016.

52. Caldwell SE, Mays N. Studying policy implementation using a macro, meso and micro frame analysis: the case of the Collaboration for Leadership in Applied Health Research & Care (CLAHRC) programme nationally and in North West London. Health Research Policy and Systems 2012;10:32. doi:10.1186/1478-4505-10-32

53. Reed JE, Howe C, Doyle C, et al. Simple rules for evidence translation in complex systems: A qualitative study. BMC Medicine 2018;16:92. doi:10.1186/s12916-018-1076-9

54. Evans S, Scarbrough H. Supporting knowledge translation through collaborative translational research initiatives: “bridging” versus “blurring” boundary-spanning approaches in the UK CLAHRC initiative. Soc Sci Med 2014;106:119–27. doi:10.1016/j.socscimed.2014.01.025

55. CLAHRC Northwest London. http://clahrc-northwestlondon.nihr.ac.uk/. Accessed 9 Jul 2020.

56. About | CLAHRC Partnership Programme. https://clahrcprojects.co.uk/about. Accessed 9 Jul 2020.

57. CASP-Qualitative-Checklist-2018.pdf. https://casp-uk.net/wp-content/uploads/2018/01/CASP-Qualitative-Checklist-2018.pdf. Accessed 9 Jul 2020.

58. Hannes K. Chapter 4: Critical appraisal of qualitative research. In: Noyes J, Booth A, Hannes K, Harden A, Harris J, Lewin S, Lockwood C. eds. Supplementary Guidance for Inclusion of Qualitative Research in Cochrane Systematic Reviews of Interventions. Version 1 (updated August 2011). 2011. http://cqrmg.cochrane.org/supplemental-handbook-guidance. Accessed 9 Jul 2020.

59. Taylor N, Clay-Williams R, Hogden E, et al. High performing hospitals: a qualitative systematic review of associated factors and practical strategies for improvement. BMC Health Services Research 2015;15:244. doi:10.1186/s12913-015-0879-z

60. Vaughn VM, Saint S, Krein SL, et al. Characteristics of healthcare organisations struggling to improve quality: results from a systematic review of qualitative studies. BMJ Qual Saf 2019;28:74–84. doi:10.1136/bmjqs-2017-007573

61. Dixon-Woods M, Bonas S, Booth A, et al. How can systematic reviews incorporate qualitative research? A critical perspective. Qualitative Research 2006;6:27–44. doi:10.1177/1468794106058867

62. Daly J, Willis K, Small R, et al. A hierarchy of evidence for assessing qualitative health research. Journal of Clinical Epidemiology 2007;60:43–9. doi:10.1016/j.jclinepi.2006.03.014

63. Prairie BA, Foster T. Improving prenatal HIV screening with tailored educational interventions: an approach to guideline implementation. Qual Saf Health Care 2010;19:e52. doi:10.1136/qshc.2008.031922

64. Prabhakaran S, Khorzad R, Brown A, et al. Academic-Community Hospital Comparison of Vulnerabilities in Door-to-Needle Process for Acute Ischemic Stroke. Circ Cardiovasc Qual Outcomes 2015;8:S148-54. doi:10.1161/CIRCOUTCOMES.115.002085
65. Alexander L, Moore S, Salter N, et al. Lean management in a liaison psychiatry department: implementation, benefits and pitfalls. BJPsych Bulletin 2020;44:18–25. doi:10.1192/bjb.2019.64
66. Jester B, Scherwitzmann J, Mustaquim D, Aden T, Brammer L, Humes R, Shult P, Shahangian S, Gubareva L, Xu X, Miller J. Mapping of the US domestic influenza virologic surveillance landscape. Emerging infectious diseases. 2018 Jul;24(7):1300.
67. Alkandari M, Ryan K, Hollywood A. The Experiences of People Living with Peripheral Neuropathy in Kuwait-A Process Map of the Patient Journey. Pharmacy (Basel) 2019;7. doi:10.3390/pharmacy7030127
68. Keen A, Thoele K, Newhouse R. Variation in SBIRT delivery among acute care facilities. Nurs Outlook 2020;68:162–8. doi:10.1016/j.outlook.2019.09.001
69. Jallon R, Imbeau D, de Marcellis-Warin N. A process mapping model for calculating indirect costs of workplace accidents. J Safety Res 2011;42:333–44. doi:10.1016/j.jsr.2011.06.008
70. Weingart B.S.N., Spencer J., Buia S., et al. Medication safety of five oral chemotherapies: A proactive risk assessment. J Oncol Pract 2011;7:2–6. doi:10.1200/JOP.2010.000064
71. Bhavsar NA, Bloom K, Nicolla J, et al. Delivery of Community-Based Palliative Care: Findings from a Time and Motion Study. J Palliat Med 2017;20:1120–6. doi:10.1089/jpm.2016.0433
72. Forrester JA, Koritsanszky LA, Amenu D, et al. Developing Process Maps as a Tool for a Surgical Infection Prevention Quality Improvement Initiative in Resource-Constrained Settings. Journal of the American College of Surgeons 2018;226:1103-1116.e3. doi:10.1016/j.jamcollsurg.2018.03.020
73. Vogelsmeier A.A., Halbesleben J.R.B., Scott-Cawiezell J.R. Technology Implementation and Workarounds in the Nursing Home. J Am Med Informatics Assoc 2008;15:114–9. doi:10.1197/jamia.M2378
74. Welch A. Process mapping occupational therapy activity within a medical admissions unit. British Journal of Occupational Therapy 2002;65:158–64. doi: 10.1177/030802260206500402
75. Yazici C, Abdelmalak H, Gupta S, et al. Sustainability and effectiveness of a quality improvement project to improve handoffs to night float residents in an internal medicine residency program. J Grad Med Educ 2013;5:303–8. doi:10.4300/JGME-D-12-00175.1
76. Black M, Singh V, Belostotsky V, et al. Process Mapping in a Pediatric Emergency Department to Minimize Missed Urinary Tract Infections. Int J Pediatr 2016;2016:2625870. doi: 10.1155/2016/2625870
77. Hutchison A-M, Laing H, Williams P, et al. The effects of a new Tendo-Achilles Pathway (TAP) on an orthopaedic department- A quality improvement study. Musculoskelet Sci Pract 2019;39:67–72. doi:10.1016/j.ms MPS.2018.11.002
78. Steckowych K, Smith M. Primary care workflow process mapping of medication-related activities performed by non-provider staff: A pilot project’s approach. Research in Social and Administrative Pharmacy 2019;15:1107–17. doi:10.1016/j.sapharm.2018.09.014
79. Simkiss D.E. Integrated care pathway to promote the health of looked after children. J Integr Care Pathways 2005;9:123–8. doi:10.1177/147322970500900307
80. de Bucourt M, Busse R, Guttler F, et al. Process mapping of PTA and stent placement in a university hospital interventional radiology department. Insights imaging 2012;3:329–36. doi: 10.1007/s13244-012-0147-2
81. Soe Aung. A bronchiolitis integrated care pathway for children. International Journal of Care Pathways, 2013;16. doi:10.1258/jicp.2012.011023
82. Ashley L. Integrating cancer survivors’ experiences into UK cancer registries: design and development of the ePOCS system (electronic patient-reported Outcomes from Cancer Survivors). British Journal of Cancer 2011;105. doi: 10.1038/bjc.2011.424
83. Oetgen ME, Martin BD, Gordish-Dressman H, et al. Effectiveness and Sustainability of a Standardized Care Pathway Developed with Use of Lean Process Mapping for the Treatment of Patients Undergoing Posterior Spinal Fusion for Adolescent Idiopathic Scoliosis. J Bone Joint Surg Am 2018;100:1864–70. doi:10.2106/JBJS.18.00079
84. Tseng P, Kaplan RS, Richman BD, et al. Administrative Costs Associated With Physician Billing and Insurance-Related Activities at an Academic Health Care System. JAMA 2018;319:691–7. doi:10.1001/jama.2017.19148
85. Laviana A.A., Ilg A.M., Veruttipong D., et al. Utilizing time-driven activity-based costing to understand the short- and long-term costs of treating localized, low-risk prostate cancer. Cancer 2016;122:447–55. doi:10.1002/cncr.29743
86. McLaughlin N, Burke MA, Setlur NP, et al. Time-driven activity-based costing: a driver for provider engagement in costing activities and redesign initiatives. Neurosurg focus 2014;37:E3. doi:10.3171/2014.8.FOCUS14381
87. Akhavan S, Ward L, Bozic K, et al. Time-driven Activity-based Costing More Accurately Reflects Costs in Arthroplasty Surgery. Clinical Orthopaedics & Related Research 2016;474:8-15 8p. doi:10.1007/s11999-015-4214-0
88. Erhun F, Mistry B, Platchek T, et al. Time-driven activity-based costing of multivessel coronary artery bypass grafting across national boundaries to identify improvement opportunities: study protocol. BMJ Open 2015;5:e008765. doi:10.1136/bmjopen-2015-008765
89. Inverso G, Lappi MD, Flath-Sporn SJ, et al. Increasing value in plagiocephaly care: a time-driven activity-based costing pilot study. Ann Plast Surg 2015;74:672–6. doi:10.1097/SAP.0000000000000002
90. Johnson JK, Farnan JM, Barach P, et al. Searching for the missing pieces between the hospital and primary care: mapping the patient process during care transitions. BMJ Qual Saf 2012;21 Suppl 1:i97-105. doi: 10.1136/bmjqs-2012-001215
91. Vandborg MP, Edwards K, Kragstrup J, et al. A new method for analyzing diagnostic delay in gynecological cancer. Int J Gynecol Cancer 2012;22:712–7. doi:10.1097/IGC.0b013e31824c6d0e
92. O’Mara MS, Ramaniuk A, Graymire V, et al. Lean methodology for performance improvement in the trauma discharge process. J Trauma Acute Care Surg 2014;77:137–42. doi:10.1097/TA.0000000000000261
93. Oliver S, Bosworth A. Exploring the healthcare journey of patients with rheumatoid arthritis: A mapping project - Implications for practice. Musculoskeletal Care 2008;6:247–66. doi:10.1002/msc.139

94. Kricke GS, Carson MB, Lee YJ, et al. Leveraging electronic health record documentation for Failure Mode and Effects Analysis team identification. Journal of the American Medical Informatics Association 2016;23:N.PAG-N.PAG. doi:10.1093/jamia/ocw083

95. Jones DEJ, Sutcliffe K, Pairman J, et al. An integrated care pathway improves quality of life in Primary Biliary Cirrhosis. QJM 2008;101:535–43. doi:10.1093/qjmed/hcn043

96. Teixeira FC, de Almeida CE, Saiful Huq M. Failure mode and effects analysis based risk profile assessment for stereotactic radiosurgery programs at three cancer centers in Brazil. Med Phys 2016;43:171. doi:10.1118/1.4938065

97. Sorrentino P. Use of Failure Mode and Effects Analysis to Improve Emergency Department Handoff Processes. Clin Nurse Spec 2016;30:28–37. doi:10.1097/NUR.0000000000000169

98. Walsh KE, Mazor KM, Roblin D, et al. Multisite parent-centered risk assessment to reduce pediatric oral chemotherapy errors. J Oncol Pract 2013;9:e1-7. doi:10.1200/JOP.2012.000601

99. Ibanez-Rosello B., Bautista J.A., Bonaque J., et al. Failure modes and effects analysis of total skin electron irradiation technique. Clin Transl Oncol 2018;20:330–65. doi:10.1007/s12094-017-1721-3

100. Schuller BW, Burns A, Ceilley EA, et al. Failure mode and effects analysis: A community practice perspective. J appl clin med phys 2017;18:258–67. doi:10.1002/acm2.12190

101. Manger RP, Paxton AB, Pawlicki T, et al. Failure mode and effects analysis and fault tree analysis of surface image guided cranial radiosurgery. Med Phys 2015;42:2449–61. doi: 10.1118/1.4918319

102. Howard I, Castle N, Al Shaikh LA. Application of a Healthcare Failure Modes and Effects Analysis to Identify and Mitigate Potential Risks in the Implementation of a National Prehospital Pediatric Rapid Sequence Intubation Program. J Patient Saf Published Online First: 2017. doi:10.1097/PTS.0000000000000454

103. Howard I, Castle N, Al Shaikh L, et al. Understanding system-focused barriers to the identification and reporting of medication errors and adverse drug events in emergency medical services. Drugs Ther Perspect 2019;35:285–95. doi:10.1007/s40267-019-00628-6

104. Mattsson TO, Lipczak H, Pottegård A. Patient Involvement in Evaluation of Safety in Oral Antineoplastic Treatment: A Failure Mode and Effects Analysis in Patients and Health Care Professionals. Qual Manag Health Care 2019;28:33–8. doi:10.1097/QMH.0000000000000199

105. Egan S, Murphy PG, Fennell JP, et al. Using Six Sigma to improve once daily gentamicin dosing and therapeutic drug monitoring performance. BMJ Quality & Safety 2012;21:1042-1051 10p. doi:10.1136/bmjqs-2012-000824

106. Sujan M, Chessum P, Rudd M. Managing competing organizational priorities in clinical handover across organizational boundaries. Journal of Health Services Research and Policy 2015;20:17–25

107. Arafeh M, Barghash MA, Haddad N, et al. Using Six Sigma DMAIC Methodology and Discrete Event Simulation to Reduce Patient Discharge Time in King Hussein Cancer Center. Journal of Healthcare
108. Patterson ES, Lowry SZ, Ramaiah M, et al. Improving Clinical Workflow in Ambulatory Care: Implemented Recommendations in an Innovation Prototype for the Veteran's Health Administration. EGEMS (Wash DC) 2015;3:1149. doi:10.13063/2327-9214.1149

109. Tyler A, Boyer A, Martin S, et al. Development of a discharge readiness report within the electronic health record-A discharge planning tool. Journal of Hospital Medicine 2014;9:533–9. doi:10.1002/jhm.2212

110. Jenkings KN. Implementation, change management and benefit realization: investigating the utility of ethnographically enriched process maps. HEALTH INFORM J 2007;13:57–69. doi:10.1177/1460458207073646

111. Staccini P, Joubert M, Quaranta J-F, et al. Mapping care processes within a hospital: From theory to a web-based proposal merging enterprise modelling and ISO normative principles. International Journal of Medical Informatics 2005;74:335–44. doi:10.1016/j.ijmedinf.2004.07.003

112. McDonald SA, Velasco E, Ilasi NT. Business process flow diagrams in tissue bank informatics system design, and identification and communication of best practices: The pharmaceutical industry experience. Biopreservation and Biobanking 2010;8:203–9. doi:10.1089/bio.2010.0020

113. Aaronson E., Mort E., Soghoian S. Mapping the process of emergency care at a teaching hospital in Ghana. Healthcare 2017;5:214–20. doi:10.1016/j.hjdsi.2016.12.001

114. McCreight MS, Gilmartin HM, Leonard CA, et al. Practical Use of Process Mapping to Guide Implementation of a Care Coordination Program for Rural Veterans. J Gen Intern Med 2019;34:67–74. doi:10.1007/s11606-019-04968-x

115. Ashley L., Jones H., Thomas J., et al. Integrating cancer survivors’ experiences into UK cancer registries: Design and development of the ePOCS system (electronic Patient-reported Outcomes from Cancer Survivors). Br J Cancer 2011;105:S74–81. doi:10.1038/bjc.2011.424

116. Shayesteh SG, Kliwer G, Morrin L. The integration of quality management into chronic disease health services. Qual Manag Health Care 2010;19:156–63. doi:10.1097/QMH.0b013e3181dafde7

117. Stans SE, Stevens JA, Beurskens AJ. Interprofessional practice in primary care: development of a tailored process model. J Multidiscip Healthc 2013;6:139–47. doi:10.2147/JMDH.S42594

118. Shayesteh SG, Kliwer G, Morrin L. The Integration of Quality Management Into Chronic Disease Health Services. Quality Management in Healthcare 2010;19:156. doi:10.1097/QMH.0b013e3181dafde7

119. Holleran L, Baker S, Cheng C, et al. Using Multisite Process Mapping to Aid Care Improvement: An Examination of Inpatient Suicide-Screening Procedures. J Healthc Qual 2019;41:110–7. doi:10.1097/JHQ.0000000000000182

120. Manchaiah VKC, Stephens D, Lunner T. Communication Partners’ Journey through Their Partner’s Hearing Impairment. Int J Otolaryngol 2013;2013:707910. doi:10.1155/2013/707910

121. Manchaiah VKC, Stephens D, Meredith R. The patient journey of adults with hearing impairment: The patients’ views. Clinical Otolaryngology 2011;36:227–34. doi:10.1111/j.1749-4486.2011.02320.x
122. Manchaiah VKC, Stephens D. The “patient journey” of adults with sudden-onset acquired hearing impairment: a pilot study. J Laryngol Otol 2012;126:475–81. doi:10.1017/S0022215111003197

123. Aguilar-Savén RS. Business process modelling: Review and framework. International Journal of Production Economics 2004;90:129–49. doi:10.1016/S0925-5273(03)00102-6

124. Biazzo S. Process mapping techniques and organisational analysis: Lessons from sociotechnical system theory. Business Process Management Journal 2002;8:42–52. doi:10.1108/14637150210418629

125. McDermott AM, Kidd P, Gately M, et al. Restructuring of the Diabetes Day Centre: a pilot lean project in a tertiary referral centre in the West of Ireland. BMJ Qual Saf 2013;22:681–8. doi:10.1136/bmjqs-2012-001676

126. Dean JE. Using a multi-method, user centred, prospective hazard analysis to assess care quality and patient safety in a care pathway. BMC Health Services Research 2007;7. doi:10.1186/1472-6963-7-89

127. Holmes B, Best A, Davies H, et al. Mobilising knowledge in complex health systems: a call to action. Evidence and policy 2016;13:539–60. doi:10.1332/174426416X14712553750311

128. Batalden P. Getting more health from healthcare: quality improvement must acknowledge patient coproduction—an essay by Paul Batalden. BMJ 2018;362. doi:10.1136/bmj.k3617

129. Chandra C., He J., Liu Z., et al. Some promising areas for IS research in the hospital industry: Implications from a case study of operating room scheduling. Health Technol 2013;3:65–72. doi:10.1007/s12553-013-0042-y

130. Persoon TJ, Zaleski MS, Cohen MB. Improving Pap test turnaround time using external benchmark data and engineering process improvement tools. Am J Clin Pathol 2002;118:527–33. doi:10.1309/20NX-VJUK-VADH-51T8

131. Simon RW, Canacari EG. A practical guide to applying lean tools and management principles to health care improvement projects. AORN J 2012;95:85–3. doi:10.1016/j.aorn.2011.05.021

132. Walshe K. Understanding what works—and why—in quality improvement: the need for theory-driven evaluation. Int J Qual Health Care 2007;19:57–9. doi:10.1093/intqhc/mzm004

133. Calder LA, Forster AJ, Stiell IG, et al. Mapping out the emergency department disposition decision for high-acuity patients. Ann Emerg Med 2012;60:567-576.e4. doi:10.1016/j.annemergmed.2012.04.013

134. Dilts D.M., Sandler A.B., Baker M., et al. Processes to activate phase III clinical trials in a cooperative oncology group: The case of cancer and leukemia group B. J Clin Oncol 2006;24:4553–7. doi:10.1200/JCO.2006.06.7819

135. Goodwin-Wilson C, Watkins M, Gardner-Elahi C. Developing evidence-based process maps for spinal cord injury rehabilitation. Spinal Cord 2010;48:122–7. doi:10.1038/sc.2009.94

136. Lyhne S, Georgiou A, Marks A, et al. Towards an understanding of the information dynamics of the handover process in aged care settings—a prerequisite for the safe and effective use of ICT. Int J Med Inf 2012;81:452–60. doi:10.1016/j.ijmedinf.2012.01.013
137. Lin SY, Gavney D, Ishman SL, et al. Use of lean sigma principles in a tertiary care otolaryngology clinic to improve efficiency. Laryngoscope 2013;123:2643–8. doi:10.1002/lary.24110

138. Croskerry P. Context is everything or how could I have been that stupid? Healthc Q 2009;12 Spec No Patient:e171-176. doi:10.12927/hcq.2009.20945

139. Øvretveit J. Understanding the conditions for improvement: research to discover which context influences affect improvement success. BMJ Quality & Safety 2011;20:i18–23. doi:10.1136/bmjqs.2010.045955

140. Dy SM, Taylor SL, Carr LH, et al. A framework for classifying patient safety practices: results from an expert consensus process. BMJ Qual Saf 2011;20:618–24. doi:10.1136/bmjqs.2010.049296