Contravariant symbol quantization on S^2

A.V.Karabegov
Joint Institute for Nuclear research, Dubna, Russia
March 28, 2022

Abstract

We define an algebra of contravariant symbols on S^2 and give an algebraic proof of the Correspondence Principle for that algebra.

§0. Introduction.

In [1] F.A.Berezin introduced a general concept of quantization on a symplectic manifold Ω. To define a quantization on Ω one needs the following data. Let F be a set of positive numbers with a limit point 0. For each $h \in F$ let $A_h \subset \mathcal{C}^\infty(\Omega)$ be an algebra with multiplication $*_h$ such that for $h < h'$, $A_h \supset A_{h'}$ as linear spaces. Denote $A = \cup A_h$. Assume that for each $h \in F$ there is given a representation of A_h in some Hilbert space H_h. These data define a quantization on Ω if the Correspondence Principle holds, i.e. for $f, g \in A$

$$\lim_{h \to 0} f *_h g = fg; \quad \lim_{h \to 0} h^{-1}(f *_h g - g *_h f) = i\{f, g\},$$

where $\{\cdot, \cdot\}$ denotes a Poisson bracket on Ω. If for $f \in A_h$ \hat{f} denotes a corresponding operator in H_h, the function f is called a symbol of \hat{f}.

Thus to define a quantization one may start from an appropriate construction of symbols. In [2] Berezin introduced covariant and contravariant operator symbols and extensively investigated their various properties. In [3] he applied covariant symbols to quantization of Kähler manifolds. A particular example of covariant symbol quantization on S^2 was considered in [4].
Therein Berezin described the algebra of covariant symbols and gave an analytic proof of the Correspondence Principle for covariant symbol quantization on S^2.

A more advanced approach to quantization as to deformation of classical mechanics was developed in [4].

In this paper we will define algebras of co- and contravariant symbols on S^2, two of them in the same framework and give an algebraic proof of the Correspondence Principle both for co- and contravariant symbol quantizations.

§1. Covariant and contravariant symbols on S^2.

Consider a Hilbert space $L^2(C, d\alpha_n)$, with a measure

$$d\alpha_n(z, \bar{z}) = \frac{n}{2\pi i} \frac{dz \wedge d\bar{z}}{(1 + z\bar{z})^{n+1}}$$

and with the scalar product denoted by (\cdot, \cdot). Let H_n be the n-dimensional subspace of $L^2(C, d\alpha_n)$ of all polynomials in z of degree $\leq n - 1$. For $v \in C$ the vectors $e_v(z) = (1 + z\bar{v})^{n-1} \in H_n$ have a following reproducing property, for $f \in H_n$ $f(v) = (f, e_v)$.

Definition. The covariant symbol of an operator $A \in H_n$ is the function $f(z, \bar{z}) = (Ae_{\bar{z}}, e_{\bar{z}})/(e_{\bar{z}}, e_{\bar{z}})$.

To define a contravariant symbol one needs a notion of the canonical measure μ_n on C,

$$d\mu_n(z, \bar{z}) = (e_{\bar{z}}, e_{\bar{z}})d\alpha_n(z, \bar{z}) = \frac{n}{2\pi i} \frac{dz \wedge d\bar{z}}{(1 + z\bar{z})^2}.$$

Let $P_{z,\bar{z}}$ denote the orthogonal projection operator on $e_{\bar{z}}$ in H_n.

Definition. A function $f(z, \bar{z})$ is a contravariant symbol of the operator A if

$$A = \int f(z, \bar{z}) P_{z,\bar{z}} d\mu_n(z, \bar{z}).$$

Let $G = SU(2)$ be the group of all unitary 2×2-matrices with the determinant 1. Let G act on C from the right by fractional-linear transformations, for

$$g = \left(\begin{array}{cc} a & b \\ \bar{b} & \bar{a} \end{array} \right) \in G,$$

(1)
\[z \in \mathbb{C} \colon zg = (az - \bar{b})/(bz + \bar{a}). \] Actually \(G \) acts on the widened complex plane, i.e. on the Riemann sphere \(S^2 \) by rigid rotations. The canonical measure \(\mu_n \), considered as a measure on \(S^2 \), is rotation-invariant.

For each natural \(n \) the group \(G \) has exactly one unitary \(n \)-dimensional representation up to unitary equivalence. Denote it by \(\pi_n \). There exists a realization of \(\pi_n \) in \(H_n \) as follows. For \(g \) given by (1) and \(f \in H_n \), one has \((\pi_n(g)f)(z) = (bz + \bar{a})^{n-1}f(zg) \). Since \(\pi_n(g)e_v = (\bar{a} - \bar{b}v)^{n-1}e_{\bar{v}}^{-1} \), one immediately finds that both for covariant and contravariant symbols, the symbol — operator correspondence is \(G \)-equivariant, i.e. if \(f(z, \bar{z}) \) is a symbol of an operator \(A \) in \(H_n \) then \(f(zg, \bar{z}g) \) is a symbol of \(\pi_n(g)A\pi_n(g^{-1}) \). Thus it is natural to consider both covariant and contravariant symbols as functions on \(S^2 \). In particular to define a covariant symbol at infinity one needs to replace \(e_v \) by \(e_{\infty} = z^{n-1} \) in the definition of a covariant symbol. A nice invariant way to introduce the so called coherent states \(\{e_v\} \) and covariant symbols in terms of line bundles can be found in [5].

\[\pi_n(X) = (-bz^2 + 2az + c)\frac{d}{dz} + (n-1)(bz - a). \] Thus for \(u \in U \) \(u_n = \pi_n(u) \) is a differential operator with polynomial coefficients in \(z \) and \(n \). Let \(s_n(u) \) denote the covariant symbol of \(u \in U \). It can be calculated as follows

\[s_n(u) = \frac{(u_ne_\bar{z}, e_\bar{z})}{(e_\bar{z}, e_\bar{z})} = \frac{(u_ne_\bar{z})(z)}{e_\bar{z}(z)} = \frac{u_n(1 + z\bar{z})^{n-1}}{(1 + z\bar{z})^{n-1}}. \]

Observe that the symbol \(s_n(u) \) is polynomial in \(n \).
The adjoint action Ad of G on $su(2)$ (by rotations) can be naturally extended to U. Then for $u \in U$, $g \in G$ one has $\pi_n(Ad(g)u) = \pi_n(g)\pi_n(u)\pi_n(g^{-1})$. Therefore, from G-equivariance of covariant symbols it follows that the mapping $u \mapsto s_n(u)$ is also G-equivariant, i.e., for $g \in G$ $s_n(Ad(g)u)(z, \bar{z}) = s_n(u)(gz, \bar{gz})$.

Now we will give an explicit description of the mapping s_n using a G-module structure of U under adjoint action.

Consider elements of $sl(2,\mathbb{C})$ as complex linear functionals on $su(2)$ with respect to Ad-invariant pairing $X, Y \mapsto -\frac{1}{2}trXY$ for $X \in sl(2,\mathbb{C})$ and $Y \in su(2)$. The symmetrization mapping Sym (see [6]) is a \mathbb{C}-linear isomorphism of the algebra Λ of all complex polynomials on $su(2)$ onto U such that if $f(Y) = -\frac{1}{2}trXY$ is a functional on $su(2)$ for an arbitrary $X \in sl(2,\mathbb{C})$ then $Sym(f^k) = X^k$ for all natural k. It is G-equivariant, i.e., Sym maps $f(Ad(g^{-1})Y)$ to $Ad(g)Sym(f)$ for $f \in \Lambda$. Let I, M denote the spaces of all rotation-invariant and harmonic polynomials in Λ respectively. Then $Z = Sym(I)$ is the center of U. Denote $E = Sym(M)$. It is known that $\Lambda = I \otimes M$ and $U = Z \otimes E$ (in the both tensor products $x \otimes y$ corresponds to the respective product xy, see [6]). Thus each element $u \in U$ can be written as $u = z_1v_1 + \ldots + z_kv_k$ for some $z_i \in Z, v_i \in E$.

Since π_n is irreducible for each $z \in Z$ the operator $\pi_n(z)$ is scalar. Denote that scalar by $\chi_n(z)$. The function χ_n is a homomorphism of Z into \mathbb{C} and is called a central character of U corresponding to π_n.

Lemma 1. For $z \in Z, u \in U$

(i) the symbol $s_n(z)$ is a constant equal to $\chi_n(z)$;

(ii) $s_n(zu) = s_n(z)s_n(u)$.

Proof. Since the covariant symbol of the identity operator is identically 1, the symbol of $\pi_n(z)$ is identically equal to $\chi_n(z)$, which proves (i). Now, (ii) is obvious.

In order to describe s_n on U it suffices to know the restrictions of s_n to Z and E.

The adjoint action of G on $su(2)$ keeps invariant a square of Euclidean radius, $(r(Y))^2 = -\frac{1}{2}trY^2$, $Y \in su(2)$, which is a quadratic polynomial on $su(2)$. It is known (see, e.g. [6]) that Z is a polynomial algebra in the Casimir element $z_0 = Sym(r^2)$. A direct calculation provides

Lemma 2. $s_n(z_0) = 1 - n^2$.

4
Let M_k denote the subspace of M of harmonic polynomials of degree k. It is known that with respect to the action of G on Λ, via a change of variables, M_k is a $(2k+1)$-dimensional irreducible subspace. Let v_0 denote the element of U corresponding to

$$V = \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right) \in \mathfrak{sl}(2, \mathbb{C}),$$

$f_0(Y) = -\frac{1}{2}trVY$. Then for each natural k $\text{Sym}(f_0^k) = v_0^k$. It is easy to check directly that f_0^k is harmonic, so $f_0^k \in M_k$. Using (2) one gets that $(v_0^k)_n = (\frac{d}{d\theta})^k$ for all n. Now from (3) follows

Lemma 3. $s_n(v_0^k) = (n-1)(n-2)\ldots(n-k)(\frac{\theta}{1+z\bar{z}})^k$.

Consider a G-equivariant embedding of S^2 in $\mathfrak{su}(2)$ given as follows

$$S^2 \supset \mathbb{C} \ni z \mapsto \left(\begin{array}{cc} i\frac{1-z\bar{z}}{1+z\bar{z}} & -2i\frac{z}{1+z\bar{z}} \\ -2i\frac{\bar{z}}{1+z\bar{z}} & -i\frac{1-z\bar{z}}{1+z\bar{z}} \end{array} \right) \in \mathfrak{su}(2).$$

The image of S^2 is the unit sphere with respect to the Euclidean scalar product $X, Y \mapsto -\frac{1}{2}trXY$ in $\mathfrak{su}(2)$. Then the pullback of $f_0(Y)$ to S^2 is $i\frac{\bar{z}}{1+z\bar{z}}$. Thus identifying S^2 with the unit sphere in $\mathfrak{su}(2)$ one gets

$$s_n(\text{Sym}(f_0^k)) = s_n(v_0^k) = \frac{1}{i^k}(n-1)(n-2)\ldots(n-k)f_0^k|_{S^2}. \quad (4)$$

Since all the ingredients of (4) are G-equivariant, one can replace f_0^k in (4) by a linear combination of its rotations by the elements of G. Since G acts irreducibly in M_k one thus obtains an arbitrary element of M_k.

Lemma 4. For all $f \in M_k$ $s_n(\text{Sym}(f)) = \frac{1}{i^k}(n-1)(n-2)\ldots(n-k)f|_{S^2}$.

Denote $E_k = \text{Sym}(M_k)$. Since $M = \oplus_k M_k$ then $E = \oplus_k E_k$. Therefore, an arbitrary element of U may be expressed as a sum of monomials of a form z_0^jv with $v \in E_k$. Combining Lemmas 1 - 4, one gets

Proposition 1. Let $v \in E_k, v = \text{Sym}(f)$ for some $f \in M_k$. Then

$$s_n(z_0^jv) = (\frac{1}{i})^{2j+k}(n^2-1)^j(n-1)(n-2)\ldots(n-k)f|_{S^2}.$$
§3. Symbol algebras.

Let R denote the space of restrictions of all polynomials from Λ to the unit sphere S^2. The elements of R are called regular functions on S^2. It is known (see, e.g. [3]) that the restriction of the space M of harmonic polynomials to S^2 is a bijection of M onto R. Therefore each regular function on S^2 is a restriction of a unique harmonic polynomial. Denote by R_k the restriction of M_k. Thus $R = \oplus_k R_k$.

Since for all $u \in U$ $s_n(u)$ is polynomial in n one can consider $s_t(u)$ for arbitrary $t \in C$. It is obvious that Lemma 2 is valid for $s_t(u)$ for all complex t. Namely the mapping $z \mapsto s_t(z)$ is a homomorphism of Z to C and for $z \in Z$, $u \in U$ $s_t(zu) = s_t(z)s_t(u)$.

Denote $A_{1/t} = s_t(U)$. In the sequel N^* will denote the set of all positive integers. From Proposition 1 immediately follows

Proposition 2. For $t = n \in N^*$ $A_{1/t} = \oplus_{k=0}^{k=n-1} R_k$. For all other values of t $A_{1/t}$ consists of all regular functions.

We are going to show that the kernel of the mapping s_t is a two-sided ideal in U, thus obtaining a quotient algebra structure in $A_{1/t}$.

Let J_t be the two-sided ideal in U generated by $Z \cap \text{Ker} s_t$.

Lemma 5. $U = E + J_t$.

Proof. For $u = zv$ with $z \in Z$, $v \in E$ one has $u = s_t(z)v + (z - s_t(z))v$ where $s_t(z)$ is identified with the respective constant in U. The assertion of Lemma follows from the fact that $z - s_t(z) \in Z \cap \text{Ker} s_t$.

Lemma 6. For $t \notin N^*$ Ker $s_t = J_t$.

Proof. From Lemma 5 follows that Ker $s_t = E \cap \text{Ker} s_t + J_t$. Since the restriction of the space of harmonic polynomials to a sphere is a bijection onto the space of regular functions, it follows from Lemma 4 that $E \cap \text{Ker} s_t$ is trivial for $t \notin N^*$.

Proposition 3. For all $t \in C$ Ker s_t is a two-sided ideal in U.

Proof. For $t = n \in N^*$ Ker $s_t = \text{Ker} \pi_n \subset U$. For the rest of t Lemma 6 is applied.
Now \(A_{1/t} \) carries a quotient algebra structure. Denote the corresponding multiplication in \(A_{1/t} \) by \(*_{1/t} \).

A following Lemma is obtained from direct calculations.

Lemma 7. The function \(f(z, \bar{z}) = (n+1)(n+2)\ldots(n+k)(\frac{z}{1+z\bar{z}})^k \) is a contravariant symbol of the operator \(\pi_n(v^k_0) = (\frac{d}{dz})^k \) in \(H_n \).

Proposition 4. For \(n \in \mathbb{N}^* \), \(u \in U \) the function \(s_{-n}(u)(-1/\bar{z}, -1/z) \) is a contravariant symbol of the operator \(\pi_n(u) \) in \(H_n \).

Proof. It follows from Lemma 2 that \(s_n \) coincides with \(s_{-n} \) on the center \(Z \) of \(U \). Therefore the ideals \(J_n \) and \(J_{-n} \) coincide as well. Since \(J_n \subset \text{Ker } \pi_n \) for each \(u \in J_{-n} \) both the symbol \(s_{-n}(u) \) and operator \(\pi_n(u) \) are zero. It follows from Lemma 5, that it remains to check the assertion of the Proposition for \(u \in E_k \), since \(E = \oplus E_k \). The rest follows from Lemma 7, the irreducibility of \(E_k \) with respect to the adjoint action of \(G \) and equivariance of contravariant symbols.

Thus the algebra \(A_{-1/n} \) consists of contravariant symbols of all operators in \(H_n \) up to the antipodal mapping \(z \mapsto -1/\bar{z} \) of the sphere \(S^2 \). Moreover, the mapping which maps the symbol \(s_{-n}(u) \) to the operator \(\pi_n(u) \) in \(H_n \) is a correctly defined homomorphism of \(A_{-1/n} \) onto \(\text{End } H_n \).

§4. The proof of the Correspondence Principle.

Recall now some basic facts about filtration in the universal enveloping algebra and Poisson structure in the symmetric algebra of a Lie algebra (see, e.g. [6]).

Let \(U_k \) denote the subspace of \(U \) spanned by monomials of degree \(\leq k \). Then \(\{U_k\} \) is a filtration, for \(u \in U_k \), \(v \in U_l \) both \(uv, vu \in U_{k+l} \) and \(uv-vu \in U_{k+l-1} \).

Let \(\Lambda_k \) denote the subspace of \(\Lambda \) of homogenous polynomials of degree \(k \). Then \(\text{Sym}(\Lambda_k) \subset U_k \). Moreover, \(\text{Sym} \) composed with the quotient mapping \(U_k \to U_k/U_{k-1} \) establishes an isomorphism of \(\Lambda_k \) onto \(U_k/U_{k-1} \). For \(u \in U_k \) let \(\underline{u} \) denote the unique element of \(\Lambda_k \) such that \(\text{Sym}(\underline{u}) \equiv u \mod U_{k-1} \).

There exists a natural Poisson structure on \(\Lambda \) such that if \(f_i(Y) = -\frac{1}{2} \text{tr } X_i Y \), \(i = 1, 2, 3 \) are linear functionals on \(su(2) \) corresponding to \(X_i \in sl(2, \mathbb{C}) \) with \([X_1, X_2] = X_3 \), then \(\{f_1, f_2\} = f_3 \). The symplectic leaves of that Poisson structure are the \(G \)-orbits in \(su(2) \), i.e. the spheres. Denote by
\{\cdot, \cdot\}_{S^2}$ the restriction of the Poisson bracket to the unit sphere S^2. Then for $f, g \in \Lambda \{f|_{S^2}, g|_{S^2}\}_{S^2} = \{f, g\}|_{S^2}$.

For $u \in U_k, v \in U_l$ $uv = vu = u \cdot v$ while $uv - vu = \{u, v\}$.

Proposition 5. Let $u \in U_k$. Then
\[
\lim_{t \to \infty} \frac{1}{tk} s_t(u) = \frac{1}{tk} u|_{S^2}.
\]

Proof. If $f \in \Lambda_k$ and $u = \text{Sym}(f) \in U_k$, then $u = f$. In particular $z_0 \in U_2$, $z_0 = r^2$ and the restriction of r^2 to the unit sphere S^2 is identically 1. Now the proof follows from Proposition 1.

Let f, g be regular functions on S^2. From Proposition 2 follows that for $t \notin \mathbb{N}^*$ or sufficiently big $t = n \in \mathbb{N}^*$ the product $f \ast_{1/t} g$ is defined.

Theorem. For any regular functions f, g on S^2 holds
\[
\lim_{t \to \infty} f \ast_{1/t} g = fg; \quad \lim_{t \to \infty} t(f \ast_{1/t} g - g \ast_{1/t} f) = i\{f, g\}_{S^2}.
\]

Proof. It is enough to consider $f \in R_k$, $g \in R_l$. Let $u \in E_k$, $v \in E_l$ be such that $\frac{1}{t} u|_{U_k}$ and $\frac{1}{t} v|_{U_l}$ are the harmonic extensions of f and g, respectively. Then, using Proposition 5 one gets
\[
f \cdot g = \frac{1}{tk} u|_{S^2}, \frac{1}{t} v|_{S^2}; \quad \frac{1}{tk+1} uv|_{S^2} = \lim_{t \to \infty} \frac{1}{tk+l} s_t(uv) = \lim_{t \to \infty} \frac{1}{tk+l} s_t(u|_{S^2}) = \lim_{t \to \infty} \frac{1}{tk+l} s_t(u|_{S^2}).
\]

Applying Lemma 4 to the last expression one finally obtains
\[
f \cdot g = \lim_{t \to \infty} \frac{(t-1) \ldots (t-k)(t-1) \ldots (t-l)}{tk+l} f \ast_{1/t} g = \lim_{t \to \infty} f \ast_{1/t} g.
\]

Proceeding in a similar manner one gets
\[
i\{f, g\}_{S^2} = \left\{ \frac{1}{tk} u|_{S^2}, \frac{1}{t} v|_{S^2} \right\}_{S^2} = \frac{1}{tk+l-1} \{u, v\}|_{S^2} = \frac{1}{tk+l-1} uv - vu|_{S^2} =
\]
\[
\lim_{t \to \infty} \frac{1}{tk+l-1} s_t(uv - vu) = \lim_{t \to \infty} \frac{(t-1) \ldots (t-k)(t-1) \ldots (t-l)}{tk+l} t(f \ast_{1/t} g - g \ast_{1/t} f) =
\]
\[
\lim_{t \to \infty} t(f \ast_{1/t} g - g \ast_{1/t} f).
\]
Let $F = \{1, 1/2, 1/3, \ldots\}$. According to the Theorem, for $h = 1/n \in F$ the algebras $A_{1/n}$ and $A_{-1/n}$ of covariant and contravariant symbols of operators in H_n form the data for covariant and contravariant quantization on S^2 respectively.

Acknowledgements

I wish to express my gratitude to Professors R.G.Airapetyan, B.V.Fedosov and M.S.Narasimhan for helpful discussions. I am pleased to thank for kind hospitality the ICTP, Trieste, where the work has been completed.

References

[1] F.A.Berezin, General Concept of Quantization, Commun. Math. Phys. 40, 153(1975).

[2] F.A.Berezin, Covariant and contravariant symbols of operators, Soviet Math. Izvestia, 36, n.5, 1134(1972).

[3] F.A.Berezin, Quantization, Soviet Math. Izvestia, 38, n.5(1974).

[4] F.Bayen, M.Flato, C.Fronsdal, A.Lichnerovicz and D.Sternheimer, Deformation theory and quantization, Ann. Phys.111, 1 (1978).

[5] J.Rawnsley, M.Cahen, S.Gutt, Quantization of Kähler manifolds I: geometric interpretation of Berezin’s quantization, Journ. of Geom. and Phys.7,n.1, 45(1990).

[6] J.Dixmier, Algèbres Enveloppantes, Paris, Gauthier - Villars, 1974.

[7] B.Kostant, Lie group representations on polynomial rings, Amer.J. Math.85, 327(1963).

[8] R.Courant, D.Hilbert, Methods of Mathematical Physics, Vol.I, New York, Interscience, 1953.