Mechanistic understanding of the role separators playing in advanced lithium-sulfur batteries

Zhaohuan Wei | Yaqi Ren | Joshua Sokolowski | Xiaodong Zhu | Gang Wu
1School of Physics, University of Electronic Science and Technology of China, Chengdu, China
2School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, China
3Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, New York
4State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China

Correspondence
Xiaodong Zhu, State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
Email: xiao-dong_zhu@qust.edu.cn
Gang Wu, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260.
Email: gangwu@buffalo.edu

Abstract
The lithium-sulfur battery is considered one of the most promising candidates for portable energy storage devices due to its low cost and high energy density. However, many critical issues, including polysulfide shuttling, self-discharge, lithium dendritic growth, and thermal hazards need to be addressed before the commercialization of lithium-sulfur batteries. To this end, tremendous efforts have been made to explore battery configurations and components, such as electrodes, electrolytes, and separators, among which the separator plays an especially critical role in addressing aforementioned issues. Thus, this review analyzes the mechanisms and interactions of these critical issues and summarizes both the function of separators and recent progress made towards remedying such issues. Additionally, promising directions for the development of separators in lithium-sulfur batteries are proposed.

KEYWORDS
lithium dendrite, lithium-sulfur batteries, self-discharge, separator, shuttle effect, thermal hazards

1 | INTRODUCTION

With merits of high energy density, low cost, and abundant reserves, lithium-sulfur batteries have garnered increasing attention for their potential in portable energy storage applications.1-4 However, many critical issues hinder the practical application (Figure 1A), including polysulfide shuttling,5-8 self-discharge,9-11 lithium dendrite formation,12-15 and thermal hazards.16-18 During discharge, cathodic sulfur is gradually reduced to polysulfides (Li$_2$S$_n$, 4 \leq n \leq 8) and low-order sulfides (Li$_2$S and Li$_2$S$_2$). These polysulfide intermediates dissolve in the electrolyte and shuttle between the cathode and anode, reacting spontaneously with the lithium anode, resulting in the loss of cathodic active components, passivation of the lithium electrode, and reduction in energy efficiency. Solvation

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2020 The Authors. InfoMat published by John Wiley & Sons Australia, Ltd on behalf of UESTC.
and migration of polysulfides also leads to self-discharge.19-21 Under the static state, solvated polysulfides are continuously consumed by the lithium electrode via chemical reactions, causing a low open-circuit voltage and a quick capacity degradation.

Lithium dendrite growth is inevitable on the lithium anode. During the charging process, the nonuniform electric field and/or lithium flux results in the uneven electrodeposition, which forms dendritic structures on the lithium electrode surface. After that, electrons tend to gather at peaks on the uneven surface, intensifying preferential electrodeposition, which leads to the self-propagating dendrite growth. The lithium dendrites then lead to uneven surfaces, which consumes more electrolyte through parasitic reactions, resulting in high internal resistance. Concurrently, dendrites can also penetrate the separator and cause an internal short-circuit, leading to capacity loss and safety hazards.

Thermal safety is also of critical concern. The internal heat accumulation will cause thermal shrinkage of commonly used polyolefin separators due to their limited deformation temperature. The severe deformation of the separator may lead to direct contact between the anode and cathode, which results in thermal runaway and even an explosion in some cases.22,23 Therefore, inhibiting the separator thermal shrinkage will be helpful to improve the thermal safety of the battery.

These above-mentioned issues plaguing lithium-sulfur batteries interact with each other to constitute a sophisticated battery system (Figure 1B). Meanwhile, they are all related to separators and thus the separators are crucial to solve these issues (Figure 1C). In the past few years, several constructive reviews have summarized the progress of separator in lithium-sulfur batteries but only focused on the shuttle effect.24-26 This review summarizes the functional mechanisms and major breakthroughs in separators for lithium-sulfur batteries on both inhibiting polysulfide shuttling, limiting self-discharge, suppressing lithium dendrites, and improving safety. Furthermore, the challenges of separators in achieving widespread applications of lithium-sulfur batteries are discussed.

2 | SEPARATORS TO RESTRAIN POLYSULFIDE SHUTTLE EFFECT

2.1 | Separators with trapping effect to polysulfide

2.1.1 | Working mechanism and material design principle

Polysulfide species are first adsorbed on the surface of the trapping material through physical/chemical interactions and then reduced and fixed on the surface. Therefore, an efficient polysulfide trapping separator should be constructed with the physical, chemical, and catalytic adsorption effects, as shown in Figure 2.

The physical trapping effect mainly depends on the nonselective Van der Waals force between the trapping material and the polysulfide molecules. There is a slight physical adsorption heat and a swift adsorption speed. However, the adsorption of polysulfides is also easy to reverse. Once a dynamic balance is established between
adsorption and desorption, the physical adsorption is disabled on a macroscopic level.

The chemical trapping effect mainly depends on the chemical bonding force created by the electron transfer and exchange or coexistence between polysulfide molecules and the surface atoms of adsorption materials. Compared to physical adsorption, chemical adsorption has a stronger adsorption force and greater selectivity.

The catalytic trapping effect can immobilize polysulfides on the trapping material's surface by facilitating the polysulfide electrochemical reduction reaction. Therefore, the catalytic adsorption occurs after physical/chemical adsorption and is positively correlated with the physical/chemical adsorption capability.

In conclusion, to capture polysulfides, trapping separators should have a high specific surface area, an appropriate porous structure, strong interaction with polysulfides, high conductivity, and high catalytic activity. Based on these specifications, different trapping separators have been developed and applied in lithium-sulfur batteries.

2.1.2 Separators with physical trapping effect

Key considerations for physical trapping materials are micropore volume and specific surface area. High micropore volume, with decent tortuosity, is favorable for inhibiting polysulfide migration, while a high surface area provides abundant trapping sites for polysulfides. Due to the naturally porous structure, most separators have strong or weak physical trapping effect.

Benefitting from its high specific surface area, tunable pore structure, and excellent electronic conductivity, porous carbon is a suitable physical barrier for polysulfides. Chang et al. coated single-wall carbon nanotubes (SWCNTs) as a polysulfide physical trapping material on a polypropylene (PP) separator via a simple vacuum-filtration method. SWCNTs have a high specific surface area (527 m² g⁻¹) and a large pore volume (1.30 cm³ g⁻¹), with the abundant micropores providing the total surface area of 189 m² g⁻¹ and the pore volume of 0.10 cm³ g⁻¹ (Figure 3A), allowing for an excellent polysulfide trapping efficiency (Figure 3B). With a SWCNT-coated separator, the lithium-sulfur battery exhibits a high discharge capacity of 1132 mAh g⁻¹ (0.2 C) and a low capacity decay rate of 0.18% per cycle (0.2 C, 300 cycles), showing much improvement over the commercial separator (630 mAh g⁻¹, 1.3% per cycle) (Figure 3C,D).

In addition to the nonpolar carbon trapping layer, the physical trapping effect also widely exists in the porous separators composed of other materials and coexists with chemical adsorption. Deng et al. prepared a porous F-doped poly-m-phenyleneisophthalamide (PMIA) separator via an electrospinning approach. By adding a certain amount of tetrabutylammonium chloride in the spinning solutions, a tree-like nanofiberal separator is formed with high porosity and good physically trapping effect to polysulfides. At the same time, the doped F endues the PMIA membranes with chemical binding force to polysulfides. With this novel separator, a lithium-sulfur battery can deliver an initial discharge capacity of 1222.5 mAh g⁻¹ at 0.5 C with a capacity fade rate of 0.049% per cycle over 800 cycles. He et al. modified the Celgard separator with hollow Co₉S₈ arrays through an in-situ conversion reaction. The Co₉S₈ arrays on the achieved separator work as both the physical and the chemical trapping layers, enabling the battery to provide an high initial discharge capacity of 1385 mAh g⁻¹ at 0.1 C and a capacity fade rate of 0.07% per cycle over 200 cycles.

Although the physical trapping effect exists in most porous separators, its trapping strength and trapping capability are not satisfactory. On the basis of the physical trapping effect, chemical adsorption is further developed to fix polysulfides through the chemical bond between polysulfides and trapping materials.

2.1.3 Separators with chemical trapping effect

Due to relatively weak trapping efficiency, the physical trapping effect is far from meeting the requirements of lithium-sulfur batteries. In order to improve the overall trapping effect, chemical trapping has been introduced to separators.
Surface functionalization, which generates surface functional groups on carbon materials, can enhance the trapping effect through chemical interactions with polysulfide species. Ponraj et al. prepared a hydroxyl functionalized-CNT (CNTOH)-coated separator via a vacuum filtration method. The hydroxyl groups generate a strong interaction with lithium polysulfides on the CNTOH surface, which is indicated by the color change of the Li$_2$S$_4$ solution (Figure 4A,C). On the contrary, the CNT shows weak adsorption with no changes in color (Figure 4B,D). The X-ray photoelectron spectroscopy (XPS) test of the CNTOH after the adsorption detects the thiosulfate and polythionate peaks (Figure 4E), further illustrating the strong chemical interaction between the CNTOH and S_4^{2-}. The binding energy for polysulfide adsorption onto CNT and CNTOH is also confirmed by the DFT calculations (Figure 4F). Polysulfides bind more tightly to CNTOH than to CNT, which is mainly attributed to the additional interactions between Li and O elements within the CNTOH. Consequently, the lithium-sulfur battery with the CNTOH-coated separator delivers a capacity of 1057.6 mAh g$^{-1}$ at the current density of 0.5 C with a capacity fade rate of 0.11% per cycle over 400 cycles.

Doping heteroatoms into carbons can create a non-uniform electron distribution on the carbon surface, therefore generate chemical adsorption sites for polysulfides and enhance the carbon-polysulfide interactions. For example, nitrogen doping can improve the trapping effect of carbon-based materials: pyridinic-N...
and pyrrolic-N enhance the polysulfides adsorption capacity while graphitic-N improves the electronic conductivity of the trapping layer. Pyridinic-N and pyrrolic-N show high polysulfide trapping efficiency on the N-doped carbon through Li-N interactions, which is proven by the detected N-Li bond (Figure 5A). Balach et al prepared an N-doped microporous carbon (NDMC) by a hard template method with resorcinol, melamine, and formaldehyde precursors. A UV-Vis absorption spectroscopy test was conducted to detect the polysulfide trapping capability of Super P (SP) carbon, mesoporous carbon, and NDMC. As the results shown in Figure 5B, in 0.1 M Li2S6 solution, SP carbon and mesoporous carbon can trap 21% to 65% of the Li2S6 while the NDMC can trap approximately 93% of the Li2S6. Thus, nitrogen doping greatly enhances the polysulfide trapping capability of carbon materials. A lithium-sulfur battery with an NDMC-coated Celgard separator delivers a discharge capacity of 1364 mAh g⁻¹ at 0.2 C with a higher capacity decay rate of 0.48% per cycle during 100 cycles. Hu et al prepared a porous Co–N–C decorated separator to confine the polysulfide. This Co–N–C material exhibits three characteristic XPS peaks of metallic Co, Co–N, and Co–O (Figure 5C). With electron donation from Co to N in the Co–N bond, the electron-rich N can efficiently trap Li⁺ and the neighboring Co can trap the polysulfide species through Co-S bonds (Figure 5D). With the strong synergy between S-Co and N-Li-S bonds, this hybrid separator boosts the battery performance to high capacities of 1406 and 1203 mAh g⁻¹ at 0.2 C and 1 C, respectively, with a capacity fading rate of 0.31% per cycle at 1 C during 100 cycles.

Although surface functionalization and heteroatom doping can introduce polar groups into carbon materials, this polarity change is relatively limited because of the nonpolar nature of carbon. Therefore, several kinds of noncarbon-based materials, including oxides, carbides, sulfides, nitrides, and conductive polymers are used for the polysulfide trapping layer in lithium-sulfur batteries. Lin et al reported a Ti3C2
nanosheet-coated glass fiber (GF) separator. Due to the strong interaction between surface Ti and S cations, Ti$_3$C$_2$ can trap polysulfides as well as S and Li$_2$S. The ab-initio calculation results suggest that Ti$_3$C$_2$ has much higher binding energy with S species compared to graphene (Figure 6A,B), but the binding energy will be severely weakened when replacing the surface Ti atoms with F/OH groups in the preparation of Ti$_3$C$_2$ nanosheets. The experimental results demonstrate that the Ti$_3$C$_2$ nanosheet-coated GF separator only allows 10.9% Li$_2$S penetration after 24 hours, while 86.5% of Li$_2$S penetrates through the GF separator, as shown in Figure 6C-E. With the Ti$_3$C$_2$ nanosheet-coated GF separator, the lithium-sulfur battery exhibits a discharge capacity of 820 mAh g$^{-1}$ at the current density of 0.5 A g$^{-1}$ and a capacity decay rate of 0.12% per cycle during 100 cycles.

Generally, noncarbon materials have strong interactions with polysulfides but low electronic conductivity and specific surface area, whereas carbon materials have weak interactions with polysulfide but high electronic conductivity and specific surface area. Knowing this, composite materials with carbon/noncarbon trapping materials are expected to cause strong interactions with polysulfides and possess high specific surface areas for polysulfide trapping. Numerous noncarbon trapping materials, including oxides, sulfides, nitrides, carbides, and phosphides have been used to form a carbon/noncarbon composite trapping layer. Ali et al. used WS$_2$/carbon as the trapping material to modify the Celgard separator, in which polythionate and thiosulfate were detected by XPS at the binding energy of 167.3 and 169.2 eV, respectively (Figure 7A). These polythionate/thiosulfate groups are projected to trap polysulfides and convert them to lower-order polysulfides. Polysulfide adsorption tests show that a WS$_2$/C modified Celgard separator is more effective than the bare Celgard or carbon-modified Celgard separators for adsorbing polysulfides (Figure 7B). In addition to the polysulfide adsorption, the highly conductive carbon in the composite layer can provide electron pathways to promote the cathodic reaction and reduce charge transfer impedance (Figure 7C). The combination of these two beneficial factors leads to enhanced battery performance, including a discharge capacity of 996 mAh g$^{-1}$ at 1 C and a capacity decay rate of 0.045% per cycle during 1000 cycles (Figure 7D).

Beside modified commercial separators, new types of separators have also been developed to block the polysulfide with the chemical trapping effect. Wang
FIGURE 6 Mechanism and polysulfides trapping performance of Ti$_3$C$_2$-coated separator: A, Calculated structures of different polysulfide adsorbed on Ti$_3$C$_2$. B, Comparison of calculated binding energies of different polysulfide with Ti$_3$C$_2$, Ti$_3$C$_2$(OH)$_2$, and graphene, respectively. C-E, Polysulfides penetration test of GF separator and Ti$_3$C$_2$ modified GF separator. Reproduced with permission: Copyright 2016, Royal Society of Chemistry.

FIGURE 7 Polysulfides trapping performance of WS$_2$/carbon modified Celgard separator and its battery performance: A, S 2p XPS spectrum of cycled WS$_2$/carbon layer. B, Polysulfide trapping test for different separators. C, Electrochemical impedance spectra of batteries with different separators after discharge process. D, Cycle performance of lithium-sulfur batteries contains different separators. Reproduced with permission: Copyright 2018, American Chemical Society.
et al. prepared a graphdiyne (GDY)/polyimide composite separator. With an electron-rich structure, the GDY can form a strong electrostatic attraction with Li\(^+\) and result in trapping polysulfides by chemical interaction. A lithium-sulfur battery using this composite separator exhibits a high initial discharge capacity of 1648.5 mAh g\(^{-1}\) at 0.1 C and a capacity decay rate of 0.25% per cycle after 200 cycles.

2.1.4 Separators with catalytic trapping effect

After being physically/chemically absorbed, polysulfides will be further reduced to insoluble sulfides and fixed in the trapping layer. On the basis of the physical/chemical adsorption effect, some trapping materials also exhibit good catalytic activity for the polysulfide reduction reaction. Metal sulfides like Co\(_9\)S\(_8\), MoS\(_2\), VS\(_4\), and WS\(_2\) were used in lithium-sulfur batteries as catalytic trapping materials. Yu et al. developed an ultrathin and compact MoS\(_2\) film that contains a large amount of flake edges with high catalytic activity, which could promote the reduction reaction of polysulfides and lead to an improved capacity (1010 mAh g\(^{-1}\) at 0.5 C) and a lower decay rate (0.11% per cycle). Wang et al. applied VS\(_4\) nanorod anchored 3-D graphene to modify the separator, which could adsorb polysulfides and accelerate polysulfide redox kinetics, enabling the battery to exhibit excellent cyclability and rate performance. Besides metal sulfides, metal oxides including In\(_2\)O\(_3\), MoO\(_x\), MnO\(_2\), and HfO\(_2\) also have high catalytic activity for the polysulfide reduction reaction. Song et al. prepared a MnO\(_2\)-coated PE separator in which the MnO\(_2\) not only adsorbed polysulfides but also promoted the formation of an insoluble mediator through the catalytic effect. As a result, the MnO\(_2@\)PE can greatly suppress the lithium polysulfide shuttle effect, leading to a high reversible capacity and superior cycling stability.

2.2 Separators with shield effect to polysulfide

2.2.1 Working mechanism and material design principle

Unlike the trapping effect, the charge-shield effect inhibits the polysulfide shuttle effect through electrostatic repulsion. The working mechanism of the charge-shield separator is illustrated in Figure 8. Because the polysulfide species carry negative charge, the same negatively charged functional groups (\(-\text{SO}_3\text{H}, \text{COOH}, \text{-OH}\) in the charge-shield separator can repel the polysulfide through electrostatic force, effectively inhibiting the shuttle effect. In addition, negatively charged functional groups can interact with positively charged Li\(^+\) through electrostatic attraction, improving Li\(^+\) transport. To realize the strong charge rejection to polysulfides, the adopted charge-shield separator should have high charge density, high electric field strength, and good chemical/electrochemical stability. With these working mechanisms and design principles, several kinds of separators have been developed and adopted in lithium-sulfur batteries.

2.2.2 Separators with shield effect to polysulfide

Efforts have been made to introduce negative charge into separators. Li et al. used O\(_2\) plasma to generate oxygen-containing groups on the surface of a commercial Celgard separator, which are expected to suppress the polysulfide shuttle effect and improve cycling stability. When applied in lithium-sulfur batteries, the raw and O\(_2\) plasma-treated separators induce the discharge capacities of 973.8 and 1028.2 mAh g\(^{-1}\) at 0.2 C, respectively, and the capacity decay rates are 0.72% and 0.49% per cycle during 105 cycles, respectively. Gu et al. prepared a poly(allylamine hydrochloride) (PAH)/poly(acrylic acid) (PAA)-modified separator through a layer-by-layer assembly method (Figure 9A). The charge density of the modified separator can be regulated easily by tuning the reaction solution pH value and the number of bilayers, leading to tunable polysulfide repulsion and Li\(^+\) selectivity. With a high negative charge density, the battery with a PAH/PAA modified separator delivers an increased discharge capacity from 1302 (bare PP separator) to 1418 mAh g\(^{-1}\) (modified PP separator), and the
cycle performance is also improved. Huang et al.130 modified Celgard separators with a Nafion thin layer, in which the sulfonate groups allow the hopping of Li+ and reject negatively charged polysulfide species. As a result, the Nafion layer on the Celgard separator builds a charge shield to completely suppress the polysulfide shuttle effect. However, a dense Nafion layer will decrease the battery performance due to relatively low Li+ conductivity.131 For lithium-sulfur batteries with commercial Celgard separators, the discharge capacity is 906 mAh g-1 at the current density of 1 C, with a capacity decay rate of 0.13% per cycle during 500 cycles. While for a Nafion-modified separator, although the discharge capacity is reduced to 781 mAh g-1 at the current density of 1 C, the capacity decay rate is reduced to 0.08% per cycle during 500 cycles at 1 C, suggesting the significant suppression of polysulfide effects. Unfortunately, the cost of Nafion greatly hinders its practical application. To decrease the cost, Babu et al.132 developed a thin sulfonated poly(ether-ether-ketone)/Nafion (SPEEK/Nafion) composite layer-coated Celgard separator. With the optimized SPEEK/Nafion (50:50) modified separator, the discharge capacity reaches 1300 mAh g-1 with a capacity decay rate of 0.1% during 500 cycles. Zhuang et al.133 prepared a PP/graphene oxide/Nafion ternary-layered separator for lithium-sulfur batteries (Figure 9B). In this separator, graphene oxide (GO) sheets can cover the macropores of PP separators as well as serve as a barrier for polysulfides. Therefore, the Nafion loading can be reduced to as low as 0.05 mg cm-2. With this novel separator, the capacity decay rate is reduced to 0.18% per cycle. Yu et al.134 attached carboxyl groups onto the PP backbone through facile hydroxylation-grafting-hydrolysis processes (Figure 9B). With strong electronic repulsion effects to negatively charged polysulfide species, a lithium-sulfur battery with the modified PP separator shows a discharge capacity of 1250 mAh g-1 at 0.1 C and a capacity decay rate of 0.11%, better than those with the PP separator (1220 mAh g-1, 0.30%). Yim et al.135 prepared a BaTiO\textsubscript{3} (BTO)-coated PE separator via a simple dip-coating process. After being placed in a 100 kV mm-1 electric field, permanent dipoles are generated in BTO particles to inhibit polysulfide shuttle effects through electrostatic repulsion (Figure 9C). As a result, a battery with the PE-poled BTO separator displays a discharge capacity of 1122.1 mAh g-1 at 0.5 C and a capacity decay rate of 0.34% during 50 cycles. By comparison, the batteries with

FIGURE 9 Schematic diagram of separators with shield effect constructed using different materials: A, PAH/PAA multilayer modified PE separator. Reproduced with permission: Copyright 2014, RSC Publishing.129 B, Carboxyl functional group decorated separator. Reproduced with permission: Copyright 2016, Royal Society of Chemistry.134 C, Poled BTO-coated separator. Reproduced with permission: Copyright 2016, Wiley-VCH.135 D, Negative charged rGO/SL for separator modification: Reproduced with permission. Copyright 2018, Elsevier137
PE-BTO and PE separators deliver discharge capacities of 1124.1 and 997.2 mAh g\(^{-1}\) with capacity decay rates of 0.56% and 0.81%, respectively. Zeng et al\(^{136}\) coated sulfonated acetylene black (AB-SO\(_3\)\(^{-}\)) on Celgard separators to promote Li\(^{+}\) transport and inhibit polysulfide crossover owing to the strong negative charges of the AB-SO\(_3\)\(^{-}\). With this selective effect, the Li\(^{+}\) transference number increases greatly from 0.39 to 0.96, suggesting the decent Li\(^{+}\) permeability. Consequently, the battery delivers a discharge capacity of 1262 mAh g\(^{-1}\) at 0.1 C with a capacity decay rate of 0.24% during 100 cycles. Lei et al\(^{137}\) developed a reduced graphene oxide (rGO)/sodium lignosulfonate (SL) composite layer-modified PP separator (Figure 9D). By combining highly negative charged SL with rGO, they created an rGO@SL layer to effectively retard the polysulfide shuttle effect, leading to an extraordinarily low capacity fading rate of <0.026% per cycle during 1000 cycles at 2 C.

Freitag et al\(^{138}\) prepared a polyvinylidene fluoride-hexafluoropropylene/polyvinylsulfate potassium salt (PVdF-HFP/PVSK)-blend separator for lithium-sulfur batteries. In this separator, the negatively charged PVSK generates electrostatic repulsion towards polysulfides and inhibits the shuttle effect via the charge-shield effect. Hence, porosity and charge density can be easily adjusted by controlling the PVSK concentration, both of which are important properties for inhibiting the polysulfide shuttle effect. Ma et al\(^{139}\) prepared a poly(ethylene glycol) dimethacrylate-vinylsulfonic acid salt copolymer (PV) separator through a simple UV-cross-linking process. In this separator, the SO\(_3\)\(^{-}\) groups lead to higher electrolyte uptake and dielectric constant, causing a higher conductivity (1.14 × 10\(^{-3}\) S cm\(^{-1}\)) and Li\(^{+}\) transfer number (0.98). To enhance the mechanical strength, a novel sandwich-type PV/Celgard/PV separator was developed, which led to a discharge capacity of ~1000 mAh g\(^{-1}\) at 0.5 C with a capacity decay rate of 0.08% per cycle during 100 cycles. Luo et al\(^{140}\) prepared a polyamide acid nanofiber separator via electrospinning. The negatively charged —COOH functional groups in PAA separators can promote Li\(^{+}\) transport while suppressing polysulfide migration. A battery with this porous separator delivers a discharge capacity of 1031 mAh g\(^{-1}\) at 0.2 C and a capacity decay rate of 0.12% per cycle during 200 cycles.

2.3 | Separators with sieve effect to polysulfide

2.3.1 | Working mechanism and material design principle

Although the above-mentioned method can effectively improve the battery performance, polysulfides can still permeate through pores in the separator and lead to the shuttle effect. To completely suppress the polysulfide shuttle effect, a dense Li\(^{+}\)-conductive separator is developed and used in lithium-sulfur batteries. This ion-sieve separator can conduct Li\(^{+}\) and completely block the shuttle effect of polysulfides due to its crystal structure and ionic conductivity (Figure 10). For this goal, ion-sieve materials should have high ionic conductivity, low porosity, and good film-forming properties. With these mechanisms and design principles, different ion-sieve materials are developed for separator modifications.

2.3.2 | Separators with sieve effect

Different solid-state Li\(^{+}\) conductive materials, such as V\(_2\)O\(_5\) and LiF, have been used to prepare ion-sieve separators. Li et al\(^{144}\) used dense V\(_2\)O\(_5\) ion-sieve layers to modify Celgard separators via spin-coating, which inhibits the polysulfide shuttle effect while permitting Li\(^{+}\) transportation. With this V\(_2\)O\(_5\) modified separator, a pouch cell can be cycled more than 300 times at a specific capacity of 800 mAh g\(^{-1}\) without any noticeable degradation. Li et al\(^{142}\) also used LiF as the ion-sieve layer for the PP separator modification. Interactions between LiF and the DME electrolyte lead to the formation of a dense and viscous sol-layer that acts as a physical barrier against the polysulfide shuttle effect. Simultaneously, the surface coating layer effectively migrates Li\(^{+}\) due to the low diffusion barrier energy of LiF. With this novel LiF modified separator, a lithium-sulfur battery exhibits a discharge capacity of 1064.6 mAh g\(^{-1}\) at a current density of 0.2 C with a remaining capacity of 69.3% after 200 cycles. Ni et al\(^{143}\) prepared a LiF-GO modified PP separator through a CaF\(_2\)-GO in-situ transformation process (Figure 11A), during which CaF\(_2\) reacts with Li\(^{+}\) to generate LiF (Figure 11B,C). In this ion-sieve layer, GO is adopted to overcome the brittleness of the LiF layer due to its good mechanical strength and high elastic modulus. A lithium-sulfur battery with this LiF/GO coated separator delivers a similar discharge capacity of 880 mAh g\(^{-1}\) at 1 C to that with a commercial separator, but demonstrates a dramatically decreased capacity decay rate of 0.09% per cycle (200 cycles, LiF/GO coated PP separator) compared to that of 0.59% per cycle (20 cycles, PP separator). Zeng et al\(^{144}\) prepared a graphite-modified separator in which a solid-electrolyte-interphase layer is formed to stabilize the graphite and sieve the polysulfides and Li\(^{+}\) ions after an in-situ generation process. With this novel ion-sieve layer, a lithium-sulfur battery retains 87% of its original capacity during 100 cycles at 0.2 C (Figure 11D).

Materials with proper pore sizes can also be used as the sieving layer for separators in lithium-sulfur batteries.
to block polysulfide shuttle effects. Du et al.145 used graphene as the polysulfide ion-sieve layer to modify Celgard PP separators (Figure 12A), in which graphene can selectively block polysulfides while maintaining Li+ conductivity (Figure 12B). With this graphene-modified PP separator, a capacity of 1035 mAh g-1 at 0.5 C with 11\% improvement and a decreased capacity decay rate of 0.026\% per cycle during 1500 cycles (Figure 12C,D) are obtained. Wu et al.146 prepared a Prussian blue (PB)-coated Celgard separator, through which the suitable lattice structure of PB permits Li+ transportation while hindering polysulfide migration. A battery with this PB-coated Celgard separator delivers a capacity of 1170.5 mAh g-1 at 0.2 C with a capacity decay rate of 0.3\% during 100 cycles, superior to those with commercial Celgard separators (1091.0 mAh g-1, 0.6\%).

Besides using the modified commercial separators, functional separators also have been developed. Jin et al.147 applied a lithiated Nafion separator to lithium-sulfur batteries. As a single ion conductor, the lithiated Nafion separator can conduct Li+ with a transfer number of 0.986 while preventing the polysulfide from traveling...
through it. However, the low Li+ conductivity (2.1×10^{-5} S cm$^{-1}$) hinders the performance of this Nafion separator. To address this issue, they synthesized a new lithium perfluorinated sulfonyl dicyanomethide (Li-PFSD) single ion conductor, which has Li+ conductivity of about 1.2×10^{-4} S cm$^{-1}$ and a transfer number of 0.958. With this new separator, a lithium-sulfur battery delivers a capacity of 1161 mAh g$^{-1}$ at 0.3 mA cm$^{-2}$ with a capacity decay rate of 0.285% during 100 cycles. Bai et al used MOF@GO as an ionic sieve separator. The pore size that is smaller than the diameter of polysulfides within the MOF can efficiently conduct Li+ and suppress the polysulfide shuttle effect. After compositing with GO, the mechanical strength of the as-prepared MOF@GO is enhanced greatly. From the polysulfide permeation measurements, the GO separators are unable to block polysulfides infiltration while the MOF@GO separator can block the polysulfides for at least 48 hours. Consequently, the separator delivers a high discharge capacity of 1207 mAh g$^{-1}$ at 1 C with a low capacity decay rate of 0.019% per cycle over 1500 cycles.

To maximize the inhibition effect of the separator on polysulfide migration, several materials have been developed with the combination of ion-trap, charge-shield, and ion-sieve effects. Huang et al prepared a GO-coated Celgard separator. In the GO layer, the nanocapillary network formed by carbon atoms works as the ion-sieve and the negatively charged surface group works as the charge-shield. With the combination of these two effects, a lithium-sulfur battery delivers a discharge capacity of 920 mAh g$^{-1}$ at 0.1 C, higher than that without the GO separator (860 mAh g$^{-1}$). Besides, the capacity decay rate is reduced from 0.49% to 0.23% per cycle during 100 cycles at 0.1 C, suggesting good suppression of the polysulfide shuttle effect. Abbas et al prepared a poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) coated Celgard separator, in which the large amount of sulfonate groups in PSS effectively suppresses the shuttle effect of the negatively charged polysulfide molecules through electrostatic repulsion, while the PEDOT provides strong chemical interactions with polysulfides. The batteries incorporating this PEDOT/PSS modified separator exhibit a discharge capacity of 985 mAh g$^{-1}$ with a capacity decay rate of 0.0364% per cycle during 1000 cycles at 0.25 C, superior to those with commercial separators (981 mAh g$^{-1}$, 0.0932%). Zhu et al prepared a polyacrylonitrile-silica/MWCNT separator via electrospinning. In this separator, —C≡N and SiO$_2$ trap the polysulfide through chemical interaction and MWCNT provides electrons for the polysulfide reduction reaction. This separator makes the initial discharge capacity reach 1182 mAh g$^{-1}$ at 0.2 C and leads to a capacity decay rate of 0.37% per cycle during 100 cycles.

Among recent works, the research on inhibition performance to polysulfides shuttle effect is the most extensive. However, there are still two points that should be paid attention to in the future. First, separators with trapping and sieve effects may increase the transport resistance of Li+. In contrast, separators with the shield effect can...
suppress the shuttle effect and promote the transport of Li⁺ simultaneously. Therefore, the research on the shield effect of separators should be strengthened. Second, the coating layer on the separator can inhibit the shuttle effect but increases the weight and thickness of the separator, reducing the practical energy density of the battery. Thus, it is necessary to optimize the thickness of the coating layer.

3 | SEPARATORS FOR SELF-DISCHARGE SUPPRESSION

The self-discharge phenomenon is directly related to the transmembrane migration of polysulfides, meaning that increasing the polysulfide diffusion resistance of separators can significantly reduce the self-discharge rate. The self-discharge suppression mechanisms of separators can also be divided into three types, including ion-trap, charge-shield, and ion-sieve, and many separators have been designed based on these mechanisms to inhibit the self-discharge phenomenon.²⁹,⁷¹,⁷²,⁹³,¹⁰⁰,¹²⁷,¹⁴⁵,¹⁵²,¹⁵⁵-¹⁶⁸

Chung et al.²⁹ first reported the inhibition effect of the polysulfide barrier separators on the self-discharge behavior. With a decent polysulfide trapping property, the carbon-coated separator effectively inhibits the self-discharge phenomenon. For example, the pure sulfur cathode with a carbon-modified separator maintains 81% of its original capacity after being stored for 3 months. For comparison, the same cathode with a raw Celgard separator only maintains 49% of its original capacity after 1 month of storage. Wu et al.¹⁶⁴ tested the anti-self-discharge performance of the boron-functionalized reduced graphene oxide (B-rGO) coated separator. With the separator’s adeptness at polysulfide trapping, this B-rGO coated separator can prevent the polysulfide transmembrane migration and thus inhibits the self-discharge process (Figure 13A). The open circuit voltage (OCV) of a lithium-sulfur battery with the B-rGO coated separator shows a stable curve at 2.37 V for 14 days. In contrast, the OCV of the battery with a raw separator falls gradually (Figure 13B). In the self-discharge evaluation experiment, batteries with raw and B-rGO-coated separators were allowed to rest for 48 hours after the third charge process, after which the fourth charge-discharge performance was tested and compared with the third one. Due its good polysulfide adsorption capacity, the B-rGO decorated separator induces the discharge capacity retention of 80%, while the raw Celgard separator only induces the capacity retention of 63.04% (Figure 13C). Wang et al.¹⁶⁵ prepared a lithium aluminum germanium phosphate (LAGP)-carbon coated separator and investigated the catalytic trapping effect of LAGP particles in lithium-sulfur batteries. The
self-discharge experiment shows that the batteries with LAGP-carbon-coated, carbon-coated, and pristine separators maintain the discharge capacities of 84.3%, 66.1%, and 55.2%, respectively in their 11th cycles compared with their 10th cycles after resting for 72 hours. Li et al. prepared a TiO/MWCNT coated separator with strong adsorption capacity to polysulfides. TiO has high oxygen and titanium vacancies density and is therefore considered to be beneficial for trapping polysulfides. With this novel separator, the capacity maintaining rate of 12.4% is achieved after resting for 96 hours.

In addition to the modified Celgard separator, new functional separators also have been developed and investigated. Huang et al. tested the self-discharge inhibition performance of GO modified separators. Due to the highly negative charge density of GO, the as-prepared separator inhibits the polysulfide penetration through the charge-shield effect and the capacity retention rate is improved from 60.7% to 93.3% after resting for 24 hours. Suriyakumar et al. suppressed the self-discharge by the ion-sieve effect of a MOF-SiO2 modified separator. With the MOF-SiO2 coating layers, the capacity retention rate is improved from 66.5% to 86% after resting for 40 hours, suggesting the excellent self-discharge suppression ability of the functional layers. Zhu et al. prepared a PAN/GO nanofiber separator via an electrospinning method, in which the -C≡N group provides strong chemical adsorption with polysulfide and GO provides the electrostatic rejection to negatively charged polysulfides. Using this composite separator, the capacity lost rate can be reduced to 5% after a resting time of 24 hours, indicating the excellent anti-self-discharge capability of the PAN/GO nanofiber separator.

The self-discharge behavior of lithium-sulfur batteries is directly related to the polysulfides shuttle effect. Therefore, the barrier effect on polysulfide will help to reduce the self-discharge rate. Presently, the self-discharge rate of lithium-sulfur batteries is still much higher than that of lithium-ion batteries (capacity retention rate is 94.1% after 2 months' resting). To achieve a commercial lithium-sulfur battery, more research work should be conducted on the battery structures and materials, especially on the separators.

Both good mechanical strength and small pore sizes are considered to be beneficial for suppressing lithium dendrites penetration. Qu et al. prepared a porous inorganic Li_{6.4}La_{3}Zr_{1.4}Ta_{0.6}O_{12} (LLZTO) separator for lithium-sulfur batteries. The good mechanical strength and high porosity of this inorganic separator help to maintain a low overpotential of ~25 mV for 100 hours in symmetrical lithium batteries. In comparison, a 6-layer PP separator exhibits a large overpotential of 45 mV for 75 hours, suggesting that LLZTO separators are effective at lithium dendrite suppression. Xu et al. coated PP separators with a thin TiO2-carbon black layer to establish a mechanical barrier against lithium dendrites. Figure 14A shows the effective blockage of lithium dendrites by the TiO2-carbon black layer contrasted with the penetration of lithium dendrites through the pores of the PP separator. Ni et al. prepared a LiF/GO modified PP separator through an in-situ Ca-Li replacement reaction. The LiF/GO layer not only inhibits the shuttle of polysulfides but also suppresses lithium dendrite penetration with its good mechanical properties. The combination of these two effects leads to a smooth lithium surface, which is free of dendrites, whereas several dendrites are observed on the lithium surface with a bare PP separator. Chen et al. coated PP separators with CNTs and Al2O3 double coating layers as the physical barrier for lithium dendrite growth. The conjugation between Al2O3 and CNTs possesses sufficient mechanical strength and flexibility to prevent lithium dendrite penetration during cycling.

Uniform electric field/ion flux achieved by the separator also contributes to uniform lithium electrodeposition. Thus, strenuous efforts have been made under the guidance of this purpose. Kim et al. used a polydopamine (PD)-modified separator to facilitate uniform Li⁺ flux and enhance the separator-lithium contraction to diminish lithium surface tension (Figure 14B). Kim et al. replaced PP/PE separators with cellulose-based separators. The cellulose-based separator has a nanosized porous structure that leads to a uniform current density for lithium electrodeposition. Stable voltage profiles were observed from the symmetric lithium battery containing the cellulose-based separator whereas early failure occurred with the commercial Celgard 2500 separator. Wang et al. deposited CNF layers on both sides of the PP separator. The CNF layer not only restrains the polysulfide shuttle effect but also eliminates the tip-charge effect by providing a 3D skeleton (Figure 14C). With the 3D CNF layers, the as-prepared separator effectively inhibits lithium dendrite growth even at a high current density of 2 mA cm⁻² (Figure 14D,E). Jiang et al. coated the commercial PP separator with N-doped and porous carbon-decorated MXene nanosheets. In this separator, the homogeneously distributed N heteroatoms

4 | SEPARATORS FOR LITHIUM DENDRITE SUPPRESSION

The suppression of Lithium dendrites by separators is achieved by two main methods: inhibiting dendrite penetration with strong mechanical strength and promoting uniform lithium deposition. With these two methods, several types of separators have been developed for lithium dendrite suppression in lithium-sulfur batteries.
perform as lithiophilic sites to regulate the Li\(^+\) flux, and the decorated carbon greatly reduces the local current density for Li plating. The synergy effects lead to good lithium-dendrite inhibition performance under a current density of 1 mA cm\(^{-2}\). Lu et al\(^{188}\) created an electronegative coating layer on a Celgard separator with liquid-phase delaminated birnessite (H\(_x\)MnO\(_{2+x}\)) nanosheets, graphene, and carbon nanotubes. Besides rejecting the polysulfides, this electronegative coating layer suppresses lithium dendrite growth by regulating uniform Li\(^+\) fluxes, leading to highly stable cycling performance of 1000 cycles with greatly reduced dendrite inhibition for 1000 hours. Xiang et al\(^{190}\) introduced a Li\(^+\) pump to the separator with \(\beta\)-phase poly(vinylidene fluoride) in which piezoelectric potential is established near the electrode surface and serves as a driving force to regulate the migration of Li\(^+\). With this pump effect, the Li\(^+\) transfer number was greatly increased from 0.19 of PP/PE to 0.59. Abbas et al\(^{191}\) coated the commercial Celgard separator with a thin layer of graphite by sputtering. Due to the high ionic conductivity and mechanical strength, the graphite coating layer can minimize the dendrite growth by providing uniform ionic flux and physical barrier for dendritic lithium penetration.

The separator provides the physical barrier effect to lithium dendrites penetration and promotes the uniform lithium deposition on the electrode/seperator interface. Such an effect is mainly based on the enhanced mechanical strength, decreased pore size, and increased tortuosity of the separators. However, the physical barrier effect also increases the Li\(^+\) transportation resistance, leading to an adverse effect on battery performance. The promotion effect to uniform lithium deposition is achieved by adjusting the Li\(^+\) flux and the current distribution with separators. Compared with the physical barrier effect, this promotion effect is more effective. For future work, the researchers are suggested to pay more attention to the homogenization effect of separators on the Li\(^+\) flux and the current distribution.

5 | SEPARATORS WITH HIGH THERMAL TOLERANCE

Polyolefin-based separators have been widely used lithium-sulfur batteries. However, due to the low melting points of PE and PP, the polyolefin separators suffer from large thermal shrinkage at high temperatures.\(^{192,193}\) The thermal shrinkage rate of PP separator is tested to be 33.3% at 150°C for 2 hours,\(^{64}\) which will further increase the risk of internal short-circuit, causing the battery thermal runaway or even explosion.
Composites of heat-resistant materials can significantly reduce the thermal shrinkage in polyolefin-based separators by providing additional mechanical supports. Based on this principle, several PP/PE-based composite separators with low thermal shrinkage were prepared. For example, BTO nanoparticles were used as the thermally resistant material, and the PE/BTO separator exhibits a low thermal deformation rate of 45% compared to the PE separator (91.8%) after annealing at 150°C for 1 hour. Yang et al coated the separator with a laponite nanosheet (LNS)/CB layer to enhance the overall thermal stability in two different ways. First, the LNS/CB surface layer provides additional mechanical support to resist thermal shrinkage. Second, the laponite particles penetrate into the pores of the Celgard separator to further strengthen the separator’s structure. Therefore, the LNS/CB-coated Celgard separator shows no obvious thermal shrinkage after being kept at 160°C for 1 hour, whereas the Celgard separator shows serious thermal shrinkage.

GF-based separators have excellent thermal stability due to the intrinsic thermal resistance of the borosilicate structure. Zhu et al tested the performance of GF separators in lithium-sulfur batteries. Their results show that the GF separator can withstand a high temperature of 150°C for 2 hours without any apparent dimensional change, while the PP separator shows significant thermal shrinkage under the same condition. Although GF-based separators exhibit good thermal stability and low thermal shrinkage rates, the low mechanical strength/flexibility greatly limits its application in lithium-sulfur batteries.

New heat-resistant separators have been developed with high melting points and low thermal shrinkage. Zhu et al prepared a rGO-PVDF/PVDF composite nanofiber separator via electrospinning. The as-prepared separator shows no dimensional changes after being soaked in liquid electrolytes at 80°C for 24 hours. Conversely, the PP separator experiences a severe crimping deformation. Yang et al. prepared a core-shell structured polyacrylonitrile (PAN)/PVDF-HFP separator via a co-axial electrospinning method. Due to the high melting point of PAN (~317°C), the achieved PAN@PVDF-HFP separators show no obvious changes until 150°C. Zhu et al prepared a porous polyetherimide(PEI)/Al2O3 separator via a nonsolvent
induced phase separation technique. Owing to the high glass temperature of 217°C, no obvious shrinkage (1.9%) is observed for PEI/Al2O3 separators after storing even at the temperature of 200°C.

Incorporating inorganic materials can also improve the thermal tolerance of the separator. However, inorganic particles agglomerate easily in the preparation process of the separators and can result in separator inhomogeneity, which limits the application of this method. To address this issue, Ali et al.207 first incorporated colloidal Al2O3 into the PVDF-HFP separator, and citric acid was utilized to stabilize Al2O3 colloid in the PVDF-HFP solution (Figure 15A). The as-prepared separator exhibits a small shrinkage of 4.5% under 150°C while the Celgard separator and the PVDF-HFP separator shrink more than 50% and 20%, respectively (Figure 15B). This research provides a new direction for improving the separator thermal tolerance by using inorganic material composites. Wang et al.113 prepared a polyimide separator through a simple electrospinning-hot press-imidization. This prepared separator can maintain its room-temperature shape at a high temperature of 250°C due to the excellent thermal tolerance of polyimide. Lei et al.208 used PAN and ammonium polyphosphate (APP) as the precursors to prepare a multifunctional PAN@APP separator via electrospinning. Refractory APP ensures good thermal tolerance and allows the separator to withstand a high temperature of 200°C without shrinkage (Figure 15C). More importantly, the flame-retardant property of APP also improves the flammability resistance of the separator (Figure 15D).

Battery safety is a complex problem and the research based on separator can partially improve battery safety. Although the surface coating layer can provide additional mechanical support to against thermal shrinkage, the low melting point determines that the PP/PE separator is not the best choice for high-temperature applications. In contrast, the new types of high-melting-point separators are more suitable for lithium-sulfur batteries under high temperatures.

6 | ADDITIONAL FUNCTIONS TO IMPROVE BATTERY PERFORMANCE

6.1 | Improve electrolyte-separator wettability

The electrolyte wettability of the separator is an important parameter for batteries since good wettability can effectively improve the electrolyte uptake and facilitate Li+ transport. In lithium-sulfur batteries, the existing commercial PP/PE separators show insufficient electrolyte wettability, which greatly hinders the transmission of Li+ and subsequently increases the internal resistance of the battery. To this end, the separators exhibit good electrolyte wettability and excellent liquid absorption should be used to remedy this problem.94,127-129,199,209 Li et al.128 used an O2 plasma treatment to produce oxygen containing surface groups on the surface of the commercial Celgard separator. After treatment, the water-separator contact angle decreased from 125.4° to 64.9°, suggesting that increased polarity in the treated separator. The enhanced polarity of a separator can improve electrolyte wettability and electrode-separator interfacial adhesion, consequently improving overall battery performance. SiO2 has been applied for separator decoration through an in-situ hydrolysis reaction.62 The results show that the PP-SiO2 separator can be completely infiltrated by electrolytes, whereas the PP separator shows a contact angle of about 35° to electrolytes (Figure 16A). At the same time, PP-SiO2 separators can absorb more electrolytes (149%) than PP separators (93%).
The superior wettability and higher electrolyte uptake are expected to be beneficial for battery performance.

6.2 Provides an additional electron pathway for cathode reaction

Due to the low conductivity of sulfur, conductive carbon skeletons are always used to assist electron transport. However, carbon makes up a large amount of the cathode by mass and more binder is needed to unite the loose carbon, thereby compromising the gravimetric and volumetric energy densities. Decorating the separator with a conductive layer as an additional current collector will mitigate this cathode insulation dilemma. Peng et al. applied a highly conductive (100 S cm\(^{-1}\)) cellular graphene framework (CGF) coated PP separator in a high sulfur loaded lithium-sulfur battery. Their results show that with the high conductivity of CGF, the PP-CGF separator can alleviate ~50% of the charge transfer resistance encountered by PP separators. With this highly conductive separator, a cathode containing 80% sulfur with the loading of 5.3 mg cm\(^{-2}\) was applied, delivering an outstanding practical capacity of 5.5 mAh cm\(^{-2}\) at 0.1 C (Figure 16B).

6.3 Provides a buffer zone for cathode volume change

In lithium-sulfur batteries, sulfur undergoes a volume expansion of 80% to form Li\(_2\)S, which deconstructs the conductive skeleton, insulates the sulfur from electrons and thus leads to a dramatic fade in capacity during cycling. More seriously, such a large volume expansion generates local pressure that deforms or damages both the separator and the electrode. The porous coating layers on the separator can provide a buffer zone for the cathodic volume expansion and improve the cycling performance of the cathode.54,211,214,215

7 RESEARCH PROSPECTS

Many researchers have focused on solving critical issues in lithium-sulfur batteries from the perspective of separators due to their unique functions. Extensive efforts have been made to enhance the selective polysulfide blocking effect, self-discharge inhibition effect, lithium dendrite inhibition effect, and thermal stability. However, existing methods, materials, and structures cannot fully meet the requirements of lithium-sulfur batteries and breakthroughs in several critical areas are needed for further development.

First, the performance of separators needs to be studied further at different operating temperatures. The operating temperature is a crucial variable that influences the separator’s resistance to polysulfides, the mobility of polysulfides, and the growth of lithium dendrites. However, limited research focuses on the performance of separators under different working temperatures. For future work, researchers are strongly recommended to evaluate the effect of operating temperature on separators.

Second, the inert weight of the separator needs to be further reduced. Loading a functional layer onto the separator by slurry coating and vacuum filtration will increase the weight of the separator and compromise the energy density of the battery. Although thin functional layers loaded by in-situ self-assembly or Langmuir-Blodgett-scoping add little weight to the separator, their applications are limited to very specific materials. A new method that loads decent functional materials onto a thin support structure is required. Recently, Han et al. loaded a thin polymer separator (10 μm) on the electrode to produce an integrated electrode-separator structure by electrophoretic deposition, which has potentials for the weight reduction of lithium-sulfur batteries.

Third, new battery systems need to be further developed. Two kinds of lithium-sulfur batteries are suggested here with good prospects, which are quasi-solid-state and hybrid-electrolyte lithium-sulfur batteries. In quasi-solid-state ones, the gel-polymer electrolyte consists of liquid electrolyte and polymer matrix is considered to have good electrochemical performance. Qu et al. prepared a novel sandwich-structured gel-polymer electrolyte, which contains nanocarbon as the physical trapping material and the additional current collector, cellulose as the chemically trapping material, and poly(ethylene glycol)-poly(propylene glycol)-poly(ethylene glycol) coating layer as the inhibition for lithium dendrite formation. This multifunctional gel-polymer electrolyte proposes novel research directions. Hybrid-electrolyte lithium-sulfur batteries, which use solid electrolyte to separate the electrodes and the liquid electrolyte to promote the polysulfide dissolution in the cathode electrode, can also eliminate both polysulfide shuttling and lithium dendrite growth. However, the development of hybrid-electrolyte lithium-sulfur batteries is still limited by the electrode-electrolyte interface, mechanical strength, and ionic conductivity of the solid electrolyte, which requires more research attention.

8 CONCLUSION

The separator is crucial for lithium-sulfur batteries to be viable for massive energy storage. Plenty of separators have been developed recently to address the perniciousness of...
polysulfide shuffling, self-discharge, lithium dendrite growth, and separator thermal shrinkage in lithium-sulfur batteries. This review analyzes these critical issues and their internal relationships in lithium-sulfur batteries, summarizes the functional mechanisms and recent progress of separators in addressing these issues, and proposes prospects in developing novel separators. According to the summarized achievements, it is strongly believed that all of the issues plaguing lithium-sulfur batteries can be solved by further development of separators.

ACKNOWLEDGEMENTS

The work was supported by the Fundamental Research Funds for the Chinese Central Universities (Grant No. ZYGX2017KYQD193), the National Natural Science Foundation of China (Grant No. 51702040, 21676064 and 21878063) and the Taishan Scholars Program of Shandong Province (Grant No. tsqn201909119).

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ORCID

Gang Wu https://orcid.org/0000-0003-0885-6172

REFERENCES

1. Fang RP, Zhao SY, Sun ZH, Wang W, Cheng HM, Li F. More reliable lithium-sulfur batteries: status, solutions and prospects. Adv Mater. 2017;29(48):1606823.
2. Fotouhi A, Auger DJ, O’Neill L, Cleaver T, Walus S. Lithium-sulfur battery technology readiness and applications-a review. Energies. 2017;10(12):1937.
3. Hagen M, Fanz P, Tubke J. Cell energy density and electrolyte/sulfur ratio in Li-S cells. J Power Sources. 2014;264:30-34.
4. Liu M, Jiang HR, Ren YX, Zhou D, Kang FY, Zhao TS. In-situ fabrication of a freestanding acrylate-based hierarchical electrolyte for lithium-sulfur batteries. Electrochim Acta. 2016;213:871-878.
5. Kumar R, Liu J, Hwang JY, Sun YK. Recent research trends in Li-S batteries. J Mater Chem A. 2018;6(25):11582-11605.
6. Xu Z, You HH, Zhang L, Yang QH. Recent development of polysulfide barriers for Li-S batteries. New Carbon Mater. 2017;32(2):97-105.
7. Zeng ZP, Liu XB. Sulfur immobilization by “chemical anchor” to suppress the diffusion of polysulfides in lithium-sulfur batteries. Adv Mater Interfaces. 2018;5(4):1701274.
8. Chen DJ, Wen KC, Lv WQ, Wei ZH, He WD. Separator modification and functionalization for inhibiting the shuttle effect in lithium-sulfur batteries. Phys Status Solidi-Rapid Res Lett. 2018;12(10):1800249.
9. Zhang X, Xie H, Kim CS, Zaghik B, Mauger A, Julien CM. Advances in lithium-sulfur batteries. Mater Sci Eng R-Rep. 2017;121:1-29.
10. Shen C, Xie JX, Zhang M, et al. Self-discharge behavior of lithium-sulfur batteries at different electrolyte/sulfur ratios. J Electrochem Soc. 2019;166(3):A5287-A5294.
11. Sun ML, Wang XF, Wang J, Yang H, Wang LN, Liu TX. Assessment on the self-discharge behavior of lithium-sulfur batteries with LiNO$_3$-possessing electrolytes. ACS Appl Mater Interfaces. 2018;10(41):35175-35183.
12. Wang Y, Sahadee E, Rubloff G, Lin CF, Lee SB. High-capacity lithium sulfur battery and beyond: a review of metal anode protection layers and perspective of solid-state electrolytes. J Mater Sci. 2019;54(5):3671-3693.
13. Zhao HJ, Deng NP, Yan J, et al. A review on anode for lithium-sulfur batteries: Progress and prospects. Chem Eng J. 2018;347:343-365.
14. Tao T, Lu SG, Fan Y, Lei WW, Huang SM, Chen Y. Anode improvement in rechargeable lithium-sulfur batteries. Adv Mater. 2017;29(48):1700542.
15. Cao RG, Xu W, Lv DP, Xiao J, Zhang JG. Anodes for rechargeable lithium-sulfur batteries. Adv Energy Mater. 2015;5(16):1402273.
16. Seo J, Sankarasubramanian S, Kim CS, Hovington P, Prakash J, Zaghib K. Thermal characterization of Li/sulfur, Li/S-LiFePO$_4$ and Li/S-Li$_2$V$_3$O$_8$ cells using isothermal microcalorimetry and accelerating rate calorimetry. J Power Sources. 2015;289:1-7.
17. Jia H, Wang JL, Lin FJ, Monroe CW, Yang J, NuLi YN. TPPI as a flame retardant for rechargeable lithium batteries with sulfur composite cathodes. Chem Commun. 2014;50(33):7011-7013.
18. Lin FJ, Wang JL, Jia H, Monroe CW, Yang J, NuLi YN. Non-flammable electrolyte for rechargeable lithium battery with sulfur based composite cathode materials. J Power Sources. 2013;223:18-22.
19. Zhang SS. Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J Power Sources. 2013;231:153-162.
20. Al-Mahmoud SM, Dibden JW, Owen JR, Denuaullt G, Garcia-Araez N. A simple, experiment-based model of the initial self-discharge of lithium-Sulphur batteries. J Power Sources. 2016;306:323-328.
21. Lacey MJ, Yalamanchili A, Maibach J, Tengstedt C, Edstrom K, Brandell D. The Li-S battery: an investigation of redox shuttle and self-discharge behaviour with LiNO$_3$-containing electrolytes. RSC Adv. 2016;6(5):3632-3641.
22. Love CT. Thermomechanical analysis and durability of commercial micro-porous polymer li-ion battery separators. J Power Sources. 2011;196(5):2905-2912.
23. Yan ST, Deng J, Bae C, Xiao XR. Thermal expansion/shrinkage measurement of battery separators using a dynamic mechanical analyzer. Polym Test. 2018;71:65-71.
24. Ren WC, Ma W, Zhang SF, Tang BT. Recent advances in shuttle effect inhibition for lithium sulfur batteries. Energy Storage Mater. 2019;23:707-732.
25. Deng NP, Kang WM, Liu YB, et al. A review on separators for lithium-sulfur battery: Progress and prospects. J Power Sources. 2016;331:132-155.
26. He YB, Qiao Y, Zhou HS. Recent advances in functional modification of separators in lithium-sulfur batteries. Small. 2016;12(2):174-179.
28. Zhu JD, Ge YQ, Kim D, et al. A novel separator coated by carbon for achieving exceptional high performance lithium-sulfur batteries. *Nano Energy*. 2016;20:176-184.

29. Chung SH, Manthiram A. Bifunctional separator with a lightweight carbon-coating for dynamically and statically stable lithium-sulfur batteries. *Adv Funct Mater*. 2014;24(33):5299-5306.

30. Yao HB, Yan K, Li WY, et al. Improved lithium-sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode-separator interface. *Energ Environ Sci*. 2014;7(10):3381-3390.

31. Zhang ZY, Lai YA, Zhang ZA, Li J. A functional carbon layer-coated separator for high performance lithium sulfur batteries. *Solid State Ion*. 2015;278:166-171.

32. Zhao D, Qian XY, Jin LN, et al. Separator modified by Ketjen black for enhanced electrochemical performance of lithium-sulfur batteries. *RSC Adv*. 2016;6(17):13680-13685.

33. Liao HY, Zhang HY, Hong HQ, Li ZH, Lin YX. Novel flower-like hierarchical carbon sphere with multi-scale pores coated on PP separator for high-performance lithium-sulfur batteries. *Electrochim Acta*. 2017;257:210-216.

34. Chung SH, Manthiram A. High-performance Li-S batteries with an ultra-lightweight MWCNT-coated separator. *J Phys Chem Lett*. 2014;5(11):1978-1983.

35. Liu B, Wu XM, Wang S, et al. Flexible carbon nanotube modified separator for high-performance lithium-sulfur batteries. *Nanomaterials*. 2017;7(8):196.

36. Li Y, Zhu JD, Zhu P, et al. Glass fiber separator coated by porous carbon nanofiber derived from immiscible PAN/PMMA for high-performance lithium-sulfur batteries. *J Membr Sci*. 2018;552:31-42.

37. Huang JQ, Chong WG, Zheng Q, et al. Understanding the roles of activated porous carbon nanotubes as sulfur support and separator coating for lithium-sulfur batteries. *Electrochim Acta*. 2018;268:1-9.

38. Lin W, Chen YF, Li PJ, et al. Enhanced performance of lithium sulfur battery with a reduced graphene oxide coating separator. *J Electrochem Soc*. 2015;162(8):A1624-A1629.

39. Deng N, Wang Y, Yan MJ, et al. A F-doped tree-like nanofiber structural poly-m-phenylenesophthalimide separator for high-performance lithium-sulfur batteries. *J Power Sources*. 2017;362:243-249.

40. Zhang ZA, Zhang ZY, Li J, Lai YQ. Polydopamine-coated separator for high-performance lithium-sulfur batteries. *J Solid State Electrochem*. 2015;19(6):1709-1715.

41. He JR, Chen YF, Manthiram A. Vertical Co9S8 hollow nanowall arrays grown on a Celgard separator as a multifunctional polysulfide barrier for high-performance Li-S batteries. *Energy Environ Sci*. 2018;11(9):2560-2568.

42. Zhang LL, Wan F, Wang XY, et al. Dual-functional graphene carbon as polysulfide trapper for high performance lithium sulfur batteries. *ACS Appl Mater Interfaces*. 2018;10(6):5594-5602.

43. Jiang Y, Chen F, Gao Y, et al. Inhibiting the shuttle effect of Li-S battery with a graphene oxide coating separator: performance improvement and mechanism study. *J Power Sources*. 2017;342:929-938.

44. Ponraj R, Kannan AG, Ahn JH, et al. Effective trapping of lithium polysulfides using a functionalized carbon nanotube-coated separator for lithium-sulfur cells with enhanced cycling stability. *ACS Appl Mater Interfaces*. 2017;9(44):38445-38454.

45. Cheng X, Wang WK, Wang AB, et al. Oxidized multwall carbon nanotube modified separator for high performance lithium-sulfur batteries with high sulfur loading. *RSC Adv*. 2016;6(92):89972-89978.

46. Zhou XY, Liao QC, Bai T, Yang J. Nitrogen-doped microporous carbon from polyaspartic acid bonding separator for high performance lithium-sulfur batteries. *J Power Sources*. 2017;300:157-163.

47. Zhang ZA, Wang GC, Lai YQ, Li J, Zhang ZY, Chen W. Nitrogen-doped porous hollow carbon sphere-decorated separators for advanced lithium-sulfur batteries. *J Power Sources*. 2015;15:300:157-163.

48. Ji QH, Hu CZ, Liu HJ, Qu JH. Development of nitrogen-doped carbon for selective metal ion capture. *Chem Eng J*. 2018;350:608-615.

49. Li WL, Ye YS, Qian J, et al. Oxygenated nitrogen-doped microporous nanocarbon as a permeselective interlayer for ultrastable lithium-sulfur batteries. *ChemElectroChem*. 2019;6(4):1094-1100.

50. Zhou XY, Liao QC, Bai T, Yang J. Rational design of graphene @ nitrogen and phosphorous dual-doped porous carbon sandwich-type layer for advanced lithium-sulfur batteries. *J Mater Sci*. 2017;52(13):7719-7732.

51. Zeng P, Huang LW, Zhang XL, Zhang RX, Wu L, Chen YG. Long-life and high-area-capacity lithium-sulfur batteries realized by a honeycomb-like N, P dual-doped carbon modified separator. *Chem Eng J*. 2018;349:327-337.

52. Chen GP, Song X, Wang SQ, et al. A multifunctional separator modified with cobalt and nitrogen co-doped porous carbon nanofibers for Li-S batteries. *J Membr Sci*. 2018;548:247-253.

53. Song X, Wang SQ, Chen GP, et al. Fe-N-doped carbon nanofiber and graphene modified separator for lithium-sulfur batteries. *Chem Eng J*. 2018;333:564-571.

54. Shao HY, Ai F, Wang WK, et al. Crab shell-derived nitrogen-doped micro-/mesoporous carbon as an effective separator coating for high energy lithium-sulfur batteries. *J Mater Chem A*. 2017;5(37):19892-19900.

55. Balach J, Jaumann T, Klose M, Oswald S, Eckert J, Giebeler L. Improved cycling stability of lithium-sulfur batteries using a polypropylene-supported nitrogen-doped mesoporous carbon hybrid separator as polysulfide adsorbent. *J Power Sources*. 2016;303:317-324.

56. Chen F, Ma LL, Ren JG, Liu BB, Zhou XY. Sandwich-type nitrogen and sulfur codoped graphene-backboned porous carbon coated separator for high performance lithium-sulfur batteries. *Nanomaterials*. 2018;8(4):191.

57. Balach J, Singh HK, Gomoll S, et al. Synergistically enhanced polysulfide chemisorption using a flexible hybrid separator with N and S dual-doped mesoporous carbon coating for advanced lithium-sulfur batteries. *ACS Appl Mater Interfaces*. 2016;8(23):14586-14595.

58. Hu W, Hirota Y, Zhu YX, et al. Separator decoration with cobalt/nitrogen co-doped carbon for highly efficient polysulfide confinement in lithium-sulfur batteries. *ChemSusChem*. 2017;10(18):3557-3564.

59. Yuan XQ, Wu LS, He XL, et al. Separator modified with N,S co-doped mesoporous carbon using egg shell as template for
high performance lithium-sulfur batteries. Chem Eng J. 2017;320:178-188.
60. Jiang SX, Chen MF, Wang XY, et al. Honeycomb-like nitrogen and sulfur dual-doped hierarchical porous biomass carbon bifunctional interlayer for advanced lithium-sulfur batteries. Chem Eng J. 2019;355:478-486.
61. Xiang YY, Wang Z, Qiu WJ, et al. Interfacing soluble polysulfides with a SnO2 functionalized separator: an efficient approach for improving performance of Li-S battery. J Membr Sci. 2018;563:380-387.
62. Li J, Huang YD, Zhang S, et al. Decoration of silica nanoparticles on polypropylene separator for lithium-sulfur batteries. ACS Appl Mater Interfaces. 2017;9(8):7499-7504.
63. Zhang ZY, Lai YQ, Zhang ZA, Zhang K, Li JE. Al2O3-coated porous separator for enhanced electrochemical performance of lithium sulfur batteries. Electrochim Acta. 2014;129:55-61.
64. Yan DX, Huang YD, Fan CW, et al. Entrapment of polysulfides by Al2O3 modified separator for high energy Li-S redox flow batteries. J Alloy Compd. 2019;770:1229-1236.
65. Song JJ, Su DW, Xie XQ, et al. Immobilizing polysulfides with MXene-functionalized separators for stable lithium-sulfur batteries. ACS Appl Mater Interfaces. 2016;8(43):29427-29433.
66. Lin C, Zhang WK, Wang L, et al. A few-layered Ti3C2 nanosheet/graphene composite separator as a lithium polysulphide reservoir for high-performance lithium-sulfur batteries. J Mater Chem A. 2016;4(16):5993-5998.
67. Ghazi ZA, He X, Khattak AM, et al. MoS2/Celgard separator as efficient polysulfide barrier for long-life lithium-sulfur batteries. Adv Mater. 2017;29(21):1606817.
68. Paolella A, Laul D, Timoshevskii V, et al. The role of metal disulfide interlayer in Li-S batteries. J Phys Chem C. 2018;122(2):1014-1023.
69. Wang XY, Ma LW, Yang JC, Sun JC. CoS2 impregnated in mesoporous carbon hollow spheres as polysulfide trapper for highly stable Li-S batteries. Mater Lett. 2019;254:312-315.
70. Qu HT, Ju JW, Chen BB, et al. Inorganic separators enable significantly suppressed polysulfide shuttling in high-performance lithium-sulfur batteries. J Mater Chem A. 2018;6(46):23720-23729.
71. Babu G, Sawas A, Thangavel NK, Arava LMR. Two-dimensional material-reinforced separator for li-sulfur battery. J Phys Chem C. 2018;122(20):10765-10772.
72. Huangfu YG, Zheng TT, Zhang K, et al. Facile fabrication of permselective g-C3N4 separator for improved lithium-sulfur batteries. Electrochim Acta. 2018;272:60-67.
73. Fan CY, Yuan HY, Li HH, et al. The effective design of a polysulfide-trapped separator at the molecular level for high energy density Li-S batteries. ACS Appl Mater Interfaces. 2016;8(25):16108-16115.
74. Zhang J, Ma WZ, Feng ZY, et al. P-doped BN nanosheets decorated graphene as the functional interlayer for Li-S batteries. J Energy Chem. 2019;39:54-60.
75. Ma GQ, Huang FF, Wen ZY, et al. Enhanced performance of lithium sulfur batteries with conductive polymer modified separators. J Mater Chem A. 2016;4(43):16968-16974.
76. Dong YC, Mallineni SSK, Malecki K, et al. Metallic MXenes: a new family of materials for flexible triboelectric nanogenerators. Nano Energy. 2018;44:103-110.
77. Hu T, Li ZJ, Hu MM, et al. Chemical origin of termination-functionalyzed MXenes: Ti3C2T2 as a case study. J Phys Chem C. 2017;121(35):19254-19261.
78. Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y. 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater. 2014;26(7):992-1005.
79. Qian XY, Zhao D, Jin LN, et al. A separator modified by spray-dried hollow spherical cerium oxide and its application in lithium sulfur batteries. RSC Adv. 2016;6(116):114989-114996.
80. Wang SW, Qian XY, Jin LN, et al. Separator modified by Y2O3 nanoparticles-Ketjen black hybrid and its application in lithium-sulfur battery. J Solid State Electrochem. 2017;21(11):3229-3236.
81. Hu NN, Lv XS, Dai Y, Fan LL, Xiong DB, Li XF. SnO2/reduced graphene oxide interlayer mitigating the shuttle effect of Li-S batteries. ACS Appl Mater Interfaces. 2018;10(22):18665-18674.
82. Xu G, Yan QB, Wang S, et al. A thin multifunctional coating on a separator improves the cyclability and safety of lithium sulfur batteries. Chem Sci. 2017;8(9):6619-6625.
83. Liu YM, Qin XY, Zhang SQ, et al. Fe3O4-decorated porous graphene interlayer for high-performance lithium-sulfur batteries. ACS Appl Mater Interfaces. 2018;10(31):26264-26273.
84. Luo LY, Qin XY, Wu JX, et al. An interwoven MoO3@CNT scaffold interlayer for high-performance lithium-sulfur batteries. J Mater Chem A. 2018;6(18):8612-8619.
85. Shao HY, Wang WK, Zhang H, Wang AB, Chen XN, Huang YQ. Nano-TiO2 decorated carbon coating on the separator to physically and chemically suppress the shuttle effect for lithium-sulfur battery. J Power Sources. 2018;378:537-545.
86. Pang Q, Shyamsunder A, Narayanan B, Kwok CY, Curtiss LA, Nazar LF. Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li-S batteries. Nat Energy. 2018;3(9):783-791.
87. Zhou TH, Lv W, Li J, et al. Twinborn TiO2-TIN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries. Energ Environ Sci. 2017;10(7):1694-1703.
88. Li FQ, Wang GC, Wang P, et al. High-performance lithium-sulfur batteries with a carbonized bacterial cellulose/TiO2 modified separator. J Electroanal Chem. 2017;788:150-155.
89. Balach J, Jaumann T, Muehlenhoff S, Eckert J, Giebeler L. A bifunctional interlayer for advanced lithium-Sulphur batteries. Nat Commun. 2016;5(2):8134-8137.
90. Liu J, Yuan LX, Yuan K, et al. SnO2 as a high-efficiency polysulfide trap in lithium-sulfur batteries. Nanoscale. 2016;8(28):13638-13645.
91. Zhao Y, Liu M, Lv W, et al. Dense coating of Li4Ti5O12 and graphene mixture on the separator to produce long cycle life of lithium-sulfur battery. Nano Energy. 2016;30:1-8.
92. Qian XY, Jin LN, Zhao D, et al. Ketjen black-MnO composite coated separator for high performance rechargeable lithium-sulfur battery. Electrochim Acta. 2016;192:346-356.
94. Liu B, Wang S, Wu XM, et al. Carbon nanotube/zirconia composite-coated separator for a high-performance rechargeable lithium-sulfur battery. *AIP Adv.* 2018;8(10):105315.

95. Wang YZ, Liu WH, Liu RQ, et al. Inhibiting polysulfide shuffling using dual-functional nanowire/nanotube modified layers for highly stable lithium-sulfur batteries. *New J Chem.* 2019;43(37):14708-14713.

96. Xiang XX, Wen XY, Hu J, et al. Rational fabrication of nitrogen and sulfur codoped carbon nanotubes/MoS2 for high-performance lithium-sulfur batteries. *ChemSusChem.* 2019;12(15):3602-3614.

97. Zeng P, Huang LW, Zhang XL, Han YM, Chen YG. Inhibiting polysulfides diffusion of lithium-sulfur batteries using an acetylene black-Co3S4 modified separator: mechanism research and performance improvement. *Appl Surf Sci.* 2018;427:242-252.

98. Jeong YC, Kim JH, Kwon SH, et al. Rational design of exfoliated 1T MoS2@CNT-based bifunctional separators for lithium-sulfur batteries. *J Mater Chem A.* 2017;5(45):23909-23918.

99. Yao SS, Cui J, Huang JQ, et al. Novel 2D SnS3 Nanosheet/CNT coupling layer for exceptional polysulfide recycling performance. *Adv Energy Mater.* 2018;8(24):1800710.

100. Yan LJ, Luo NN, Kong WB, et al. Enhanced performance of lithium-sulfur batteries with an ultrathin and lightweight MoS2/carbon nanotube interlayer. *J Power Sources.* 2018;389:169-177.

101. Ali S, Waqas M, Jing XP, et al. Carbon-tungsten disulfide composite bilayer separator for high-performance lithium-sulfur batteries. *ACS Appl Mater Interfaces.* 2018;10(46):39417-39421.

102. Kim PJH, Seo J, Fu K, et al. Synergistic protective effect of a BN-carbon separator for highly stable lithium sulfur batteries. *NPG Asia Mater.* 2017;9:375.

103. Qi B, Zhao XS, Wang SG, et al. Mesoporous TiN microspheres as an efficient polysulfide barrier for lithium-sulfur batteries. *J Mater Chem A.* 2018;6(29):14359-14366.

104. Zhang LL, Chen X, Wan F, et al. Enhanced electrochemical kinetics and polysulfide traps of indium nitride for highly stable lithium-sulfur batteries. *ACS Nano.* 2018;12(9):9578-9586.

105. Cai WL, Li GR, Zhang KL, et al. Conductive nanocrystalline niobium carbide as high-efficiency polysulfides tamer for lithium-sulfur batteries. *Adv Funct Mater.* 2018;28(2):1704865.

106. Zhou TH, Zhao Y, Zhou GM, et al. An in-plane heterostructure of graphene and titanium carbide for efficient polysulfide confinement. *Nano Energy.* 2017;39:291-296.

107. Chen XX, Ding XY, Wang CS, et al. A multi-shelled CoP nanosphere modified separator for highly efficient Li-S batteries. *Nanoscale.* 2018;10(28):13593-13598.

108. Luo YF, Luo NN, Kong WB, et al. Multifunctional interlayer based on molybdenum disphophine catalyst and carbon nanotube film for lithium-sulfur batteries. *Small.* 2018;14(8):1702853.

109. Liang X, Hart C, Pang Q, Garsuch A, Weiss T, Nazar LF. A highly efficient polysulfide mediator for lithium-sulfur batteries. *Nat Commun.* 2015;6:5682.
126. Song X, Chen GP, Wang SQ, et al. Self-assembled close-packed MnO₂ nanoparticles anchored on a polyethylene separator for lithium-sulfur batteries. ACS Appl Mater Interfaces. 2018;10(31):26274-26282.

127. Kong WB, Wang DT, Yan LJ, et al. Ultrathin HFO₂-modified carbon nanotube films as efficient polysulfide barriers for Li-S batteries. Carbon. 2018;139:896-905.

128. Li W, Hicks-Garner J, Wang J, et al. V₂O₅ polysulfide anion shield for polysulfides towards highly-stable lithium-sulfur batteries. Energy Environ Sci. 2014;7(1):347-353.

129. Gu M, Lee J, Kim Y, et al. Inhibiting the shuttle effect in lithium-sulfur batteries using a layer-by-layer assembled ionic-permselective separator. RSC Adv. 2014;4(87):46940-46946.

130. Huang JQ, Zhang Q, Peng HJ, Liu XY, Qian WZ, Wei F. Ionic liquid for lithium-sulfur batteries. Adv Mater Interfaces. 2016;3(23):1600660.

131. Babu DB, Giribabu K, Ramesha K. Permselective SPEEK/Nafion composite-coated separator as a potential polysulfide crossover barrier layer for Li-S batteries. ACS Appl Mater Interfaces. 2018;10(23):19721-19729.

132. Zhuang TZ, Huang JQ, Peng HJ, et al. Rational integration of polypropylene/graphene oxide/Nafion as ternary-layered separator to retard the shuttle of polysulfides for lithium-sulfur batteries. Small. 2016;12(3):381-389.

133. Yu XW, Joseph J, Manthiram A. Suppression of the polysulfide-shuttle behavior in Li-S batteries through the development of a facile functional group on the propylene separator. Mater Horizons. 2016;3(4):314-319.

134. Yim T, Han SH, Park NH, et al. Effective polysulfide rejection by dipole-aligned BaTiO₃ coated separator in lithium-sulfur batteries. Adv Funct Mater. 2016;26(43):7817-7823.

135. Zeng FL, Jin ZQ, Yuan KG, et al. High performance lithium-sulfur batteries with a permselective sulfonated acetylene black modified separator. J Mater Chem A. 2016;4(31):12319-12327.

136. Lei TY, Chen W, Lv WQ, et al. Inhibiting polysulfide shuttling with a graphene composite separator for highly robust lithium-sulfur batteries. Joule. 2018;2(10):2091-2104.

137. Freitag A, Stamm M, Ivanov L. Separator for lithium-sulfur battery based on polymer blend membrane. J Power Sources. 2017;363:384-391.

138. Ma L, Nath P, Tu ZY, Tikekar M, Archer LA. Highly conductive, sulfonated, UV-cross-linked separators for Li-S batteries. Chem Mat. 2016;28(14):5147-5154.

139. Luo XL, Lu XB, Zhou GY, et al. Ion-selective polyamide acid nanofiber separators for high-rate and stable lithium-sulfur batteries. ACS Appl Mater Interfaces. 2018;10(49):42198-42206.

140. Li W, Hicks-Garner J, Wang J, et al. V₂O₅ polysulfide anion barrier for long-lived Li-S batteries. Chem Mat. 2014;26(11):3403-3410.

141. Li C, Zhang P, Dai JH, et al. Rational method for improving the performance of lithium-sulfur batteries: coating the separator with lithium fluoride. ChemElectroChem. 2017;4(6):1535-1543.

142. Ni XY, Qian T, Liu XJ, Xu N, Liu J, Yan CL. High lithium ion conductivity LiF/GO solid electrolyte interphase inhibiting the shuttle of lithium polysulfides in long-life Li-S batteries. Adv Funct Mater. 2018;28(13):1706513.

143. Zeng P, Huang LW, Han YM, Zhang XL, Zhang RX, Chen YG. Reduced shuttle effect of lithium-sulfur batteries by using a simple graphite-modified separator with a preformed SEI film. ChemElectroChem. 2018;5(2):375-382.

144. Du ZZ, Guo CK, Wang LJ, et al. Atom-thick interlayer made of CVD-grown graphene, film on separator for advanced lithium-sulfur batteries. ACS Appl Mater Interfaces. 2017;9(50):43696-43703.

145. Wu X, Fan LS, Qi Y, et al. Ionic-selectivity prussian-blue-modified Celgard separator for high performance lithium-sulfur battery. ChemSusChem. 2018;11(18):3345-3351.

146. Jin ZQ, Xie K, Hong XB, Hu ZQ, Liu X. Application of lithiated Nafion ionomer film as functional separator for lithium-sulfur cells. J Power Sources. 2012;218:163-167.

147. Jin ZQ, Xie K, Hong XB. Electrochemical performance of lithium/sulfur batteries using perfluorinated ionomer electrolyte with lithium sulfonyl dicyanamide functional groups as functional separator. RSC Adv. 2013;3(23):8899-8988.

148. Bai SY, Liu XZ, Zhu K, Wu SC, Zhou HS. Metal-organic framework-based separator for lithium-sulfur batteries. Nat Energy. 2016;1:16094.

149. Guo YF, Jiang AH, Tao ZR, Yang ZY, Zeng YP, Xiao JR. High-performance lithium-sulfur batteries with an IPA/AC modified separator. Front Chem. 2018;6:222.

150. Shi L, Zeng FL, Cheng X, et al. Enhanced performance of lithium-sulfur batteries with high sulfur loading utilizing ion selective MWNT(SPANI) modified separator. Chem Eng J. 2018;334:305-312.

151. Huang JQ, Zhuang TZ, Zhang Q, Peng HJ, Chen CM, Wei F. Perselective graphene oxide membrane for highly stable and anti-self-discharge lithium-sulfur batteries. ACS Nano. 2015;9(3):3002-3011.

152. Abbas SA, Ibrahim MA, Hu L-H, et al. Bifunctional separator as a polysulfide mediator for highly stable Li-S batteries. J Mater Chem A. 2016;4(24):9661-9669.

153. Zhu JD, Yildirim E, Aly K, et al. Hierarchical multicomponent nanofiber separators for lithium polysulfide capture in lithium-sulfur batteries: an experimental and molecular modeling study. J Mater Chem A. 2016;4(35):13572-13581.

154. Zheng BB, Yu LW, Zhao Y, Xi JY. Ultrasilicon carbon flakes as efficient polysulfide barriers for Li-S batteries. Adv Mater Interfaces. 2018;5(49):1801778.

155. Wang L, He YB, Shen L, et al. Ultra-small self-discharge and stable lithium-sulfur batteries achieved by synergetic effects of multicomponent sandwich-type composite interlayer. Nano Energy. 2018;50:367-375.

156. Tu SB, Chen X, Zhao XX, et al. A polysulfide-immobilizing polymer retards the shuttling of polysulfide intermediates in lithium-sulfur batteries. Adv Mater. 2018;30(45):1804581.

157. Suryakumar S, Stephan AM, Angulalakshmi N, Hassan MH, Alkordi MH. Metal-organic framework@SiO₂ as...
172. Kim JS, Yoo DJ, Min J, Shakoor RA, Kahraman R, Choi JW. Xie KY, Yuan K, Zhang K, et al. Dual functionalities of carbon nanotube films for dendrite-free and high energy-high power lithium-sulfur batteries. *Electrochim Acta*. 2017;252:127-137.

173. Xie KY, Yuan K, Zhang K, et al. Two-dimensional Vermiculite separator for lithium-sulfur batteries. *Chin Chem Lett.* 2017;28(12):2235-2238.

174. Guan YP, Wang AB, Liu S, Li Q, Wang WK, Huang YQ. Protecting lithium anode with LiNO3/Al2O3/PVDF-coated separator for lithium-sulfur batteries. *J Alloy Compd.* 2018;765:544-550.

175. He YB, Chang Z, Wu SC, et al. Simultaneously inhibiting lithium dendrites growth and polysulfides shuttle by a flexible MOF-based membrane in Li-S batteries. *Adv Energy Mater.* 2018;8(34):1802130.

176. Xu R, Sun YZ, Wang YF, Huang JQ, Zhang Q. High performance lithium-sulfur batteries with bifunctional carbon nanofiber interlayers. *Adv Energy Mater.* 2016;6:1-20.

177. Chen GP, Song X, Wang SQ, Chen XZ, Wang HH. Engineering stable electrode-separator interfaces with ultrathin conductive polymer layer for high-energy-density Li-S batteries. *Energy Storage Mater.* 2019;23:261-268.

178. Wu F, Qian J, Chen RJ, et al. Light-weight functional layer on a separator as a polysulfide immobilizer to enhance cycling stability for lithium-sulfur batteries. *J Mater Chem A*. 2016;4(43):17033-17041.

179. Wang QS, Wen ZY, Yang JH, et al. Electronic and ionic co-conductive coating on the separator towards high-performance lithium-sulfur batteries. *J Power Sources*. 2016;306:347-353.

180. Wang L, Liu JY, Haller S, Wang YG, Xia YY. A scalable hybrid separator for a high performance lithium-sulfur battery. *Chem Commun*. 2015;51(32):6966-6969.

181. Zhu JD, Chen C, Lu Y, et al. Highly porous polyacrylonitrile/graphene oxide membrane separator exhibiting excellent anti-self-discharge feature for high-performance lithium-sulfur batteries. *Carbon*. 2016;101:272-280.

182. Shi QX, Pei HJ, You N, et al. Large-scaled covalent triazine framework modified separator as efficient inhibit polysulfide shuttling in Li-S batteries. *Chem Eng J*. 2019;375:121977.

183. Li Z, Tang LB, Liu XH, et al. A polar TiO2/MWCNT coating on a separator significantly suppress the shuttle effect in a lithium-sulfur battery. *Electrochim Acta*. 2019;310:1-12.

184. Wu PF, Shao GY, Guo CQ, et al. Long cycle life, low self-discharge carbon anode for Li-ion batteries with pores and dual-doping. *J Alloy Compd*. 2019;802:620-627.

185. Kim JS, Hwang TH, Kim BG, Min J, Choi JW. A lithium-sulfur battery with a high areal energy density. *Adv Funct Mater*. 2014;24(34):5359-5367.

186. Kim JS, Yoo DJ, Min J, Shakoar RA, Kahraman R, Choi JW. Poreless separator and electrolyte additive for lithium-sulfur batteries with high areal energy densities. *ChemNanoMat*. 2015;1(4):240-245.

187. Yu BC, Park K, Jang JH, Goodenough JB. Cellulose-based porous membrane for suppressing Li dendrite formation in lithium-sulfur battery. *ACS Energy Lett*. 2016;1(3):633-637.

188. Wang ZH, Wang XD, Sun W, Sun KN. Dendrite-free lithium metal anodes in high performance lithium-sulfur batteries with bifunctional carbon nanofiber interlayers. *Electrochim Acta*. 2017;252:127-137.

189. Jiang GY, Zheng N, Chen X, et al. In-situ decoration of MOF-derived carbon on nitrogen-doped ultrathin MXene nanosheets to multifunctionalize separators for stable Li-S batteries. *Chem Eng J*. 2019;373:1309-1318.

190. Xiang JW, Cheng ZX, Zhao Y, et al. A lithium-ion pump based on piezoelectric effect for improved rechargeability of lithium metal anode. *Adv Sci*. 2019;6:1901120.

191. Abbas SA, Kaisar N, Chen YT, et al. Modified separators with ultrathin graphite coating simultaneously mitigate the issues of metal dendrites and lithium polysulfides to provide stable
lithium-sulfur batteries. ACS Sustain Chem Eng. 2019;7(19):16604-16611.

192. Zheng H, Wang ZY, Shi LY, Zhao Y, Yuan S. Enhanced thermal stability and lithium ion conductivity of polyethylene separator by coating colloidal SiO$_2$ nanoparticles with porous shell. J Colloid Interface Sci. 2019;554:29-38.

193. Ma SS, Lin H, Yang LY, et al. High thermal stability and low impedance polypropylene separator coated with aluminum phosphate. Electrochim Acta. 2019;320:134528.

194. Choi JA, Kim SH, Kim DW. Enhancement of thermal stability and cycling performance in lithium-ion cells through the use of ceramic-coated separators. J Power Sources. 2010;195(18):6192-6196.

195. Fu D, Luan B, Argue S, Bureau MN, Davidson IJ. Nano SiO$_2$ particle formation and deposition on polypropylene separators for lithium-ion batteries. J Power Sources. 2012;206:325-333.

196. Kang SM, Ryou MH, Choi JW, Lee H. Mussel- and diatom-inspired silica coating on separators yields improved power and safety in Li-ion batteries. Chem Mater. 2012;24(17):3481-3485.

197. Fang LF, Shi JL, Jiang JH, Li H, Zhu BK, Zhu LP. Improving the wettability and thermal resistance of polypropylene separators with a thin inorganic-organic hybrid layer stabilized by polydopamine for lithium ion batteries. RSC Adv. 2014;4(43):22501-22508.

198. Shi C, Dai JH, Shen X, et al. A high-temperature stable ceramic-coated separator prepared with polyimide binder/Al$_2$O$_3$ particles for lithium-ion batteries. J Membr Sci. 2016;517:91-99.

199. Song RS, Fang RP, Wen L, Shi Y, Wang SG, Li F. A trilayer separator with dual function for high performance lithium-sulfur batteries. J Power Sources. 2016;301:179-186.

200. Ren YX, Zhao TS, Liu M, Jiang HR, Xiong C. A Li$_2$S-based sacrificial layer for stable operation of lithium-sulfur batteries. Energy Technol. 2018;6(11):2210-2219.

201. Zhu JD, Yanilmaz M, Fu K, et al. Understanding glass fiber membrane used as a novel separator for lithium-sulfur batteries. J Membr Sci. 2016;504:89-96.

202. Zhu XB, Ouyang Y, Chen JW, et al. In situ extracted poly(acrylic acid) contributing to electrosynthesized nanoporous separator with precisely tuned pore structures for ultra-stable lithium-sulfur batteries. J Mater Chem A. 2019;7(7):3253-3263.

203. Li RX, Tang WT, Huang YF, Ruan WH, Zhang MQ. Nanopore separator of cross-linked poly(propylene glycol)-co-pentaerythritol triacrylate for effectively suppressing polysulfide shuttling in Li-S batteries. Polym Chem. 2019;10(21):2697-2705.

204. Zhu FF, Liu JQ, Zhao HJ, et al. Preparation and performance of porous polyetherimide/Al$_2$O$_3$ separator for enhanced lithium-sulfur batteries. ChemElectroChem. 2019;6(11):2883-2890.

205. Zhu ZF, Li Y, Fang TT, et al. MOF-derived Co$_3$O$_4$ polyhedrons as efficient polysulfide barriers on polyimide separators for high temperature lithium-sulfur batteries. Nanomaterials. 2019;9(11):1574.

206. Zhu P, Zhu JD, Zang J, et al. A novel bi-functional double-layer rGO-PVDF/PVDF composite nanofiber membrane separator with enhanced thermal stability and effective polysulfide inhibition for high-performance lithium-sulfur batteries. J Mater Chem A. 2017;5(29):15096-15104.

207. Ali S, Tan C, Waqas M, et al. Highly efficient PVDF-HFP/colloidal alumina composite separator for high-temperature lithium-ion batteries. Adv Mater Interfaces. 2018;5(5):1701147.

208. Lei TY, Chen W, Hu Y, et al. A nonflammable and thermotolerant separator suppresses polysulfide dissolution for safe and long-cycle lithium-sulfur batteries. Adv Energy Mater. 2018;8(32):1802441.

209. Li CB, Yue HY, Wang QX, et al. A novel modified PP separator by grafting PAN for high-performance lithium-sulfur batteries. J Mater Chem A. 2019;5(2):1566-1579.

210. Li B, Sun ZH, Zhao Y, et al. Functional separator for Li/S batteries based on boron-doped graphene and activated carbon. J Nanopart Res. 2018;21(1):7.

211. Song JJ, Zhang CY, Guo X, et al. Entrapping polysulfides by using ultrathin hollow carbon sphere-functionalized separators in high-rate lithium-sulfur batteries. J Mater Chem A. 2018;6(34):16610-16616.

212. Tian WZ, Xi BJ, Mao HZ, Zhang JH, Feng JK, Xiong SL. Systematic exploration of the role of a modified layer on the separator in the electrochemistry of lithium-sulfur batteries. ACS Appl Mater Interfaces. 2018;10(36):30306-30313.

213. Peng HJ, Wang DW, Huang JQ, et al. Janus separator of polypropylene-supported cellulose graphene framework for sulfur cathodes with high utilization in lithium-sulfur batteries. Adv Sci. 2016;3(1):1500268.

214. Luo L, Chung SH, Manthiram A. A trifunctional multi-walled carbon nanotubes/polyethylene glycol (MWCNT/PEG)-coated separator through a layer-by-layer coating strategy for high-energy Li-S batteries. J Mater Chem A. 2016;4(43):16805-16811.

215. Chen MF, Zhao S, Jiang SX, et al. Suppressing the polysulfide shuttle effect by heteroatom-doping for high-performance lithium-sulfur batteries. ACS Sustain Chem Eng. 2018;6(6):7545-7557.

216. Kim MS, Ma L, Choudhury S, Moganyi SS, Wei S, Archer LA. Fabricating multifunctional nanoparticle membranes by a fast layer-by-layer Langmuir-Blodgett process: application in lithium-sulfur batteries. J Mater Chem A. 2016;4(38):14709-14719.

217. Han YP, Ye LH, Boateng B, et al. Direct electrophoretic deposition of an ultra-strong separator on an anode in a surfactant-free colloidal system for lithium ion batteries. J Mater Chem A. 2019;7(4):1410-1417.

218. Juez D, Martinez-Ibanez M, Santiago A, Armand M, Zhang H, Li CM. Quasi-solid-state electrolytes for lithium sulfur batteries: advances and perspectives. J Power Sources. 2019;438:226985.

219. Wang XL, Hao XJ, Xia Y, Liang YF, Xia XH, Tu JP. A polycarboxylate (PAN)-based double-layer multifunctional gel polymer electrolyte for lithium-sulfur batteries. J Membr Sci. 2018;582:37-47.

220. Zhu M, Wang Y, Long L, Fu X, Sui G, Yang XP. An optimal carbon fiber interlayer integrated with bio-based gel polymer electrolyte enabling trapping-diffusion-conversion of polysulfides in lithium-sulfur batteries. Chem Eng J. 2019;370:1068-1076.

221. Zhou JQ, Ji HQ, Liu J, Qian T, Yan CL. A new high ionic conductive gel polymer electrolyte enables highly stable quasi-solid-state lithium sulfur battery. Energy Storage Mater. 2019;22:256-264.
222. Hao XJ, Wenren HY, Wang XL, Xia XH, Tu JP. A gel polymer electrolyte based on PVDF-HFP modified double polymer matrices via ultraviolet polymerization for lithium-sulfur batteries. *J Colloid Interface Sci*. 2020;558:145-154.

223. Du HP, Li SZ, Qu HT, et al. Stable cycling of lithium-sulfur battery enabled by a reliable gel polymer electrolyte rich in ester groups. *J Membr Sci*. 2018;550:399-406.

224. Qu HT, Zhang JJ, Du AB, et al. Multifunctional sandwich-structured electrolyte for high-performance lithium-sulfur batteries. *Adv Sci*. 2018;5(3):1700503.

225. Wang QS, Jin J, Wu XW, Ma GQ, Yang JH, Wen ZY. A shuttle effect free lithium sulfur battery based on a hybrid electrolyte. *Phys Chem Chem Phys*. 2014;16(39):21225-21229.

226. Wang QS, Guo J, Wu T, Jin J, Yang JH, Wen ZY. Improved performance of Li-S battery with hybrid electrolyte by interface modification. *Solid State Ion*. 2017;300:67-72.

AUTHOR BIOGRAPHIES

Zhaohuan Wei received his PhD degree from The Hong Kong University of Science and Technology in 2016. He is now working in University of Electronic Science and Technology of China. His research interests include lithium-sulfur batteries, all-solid lithium-ion batteries and supercapacitors.

Xiaodong Zhu is the Young Taishan Scholars of Shandong Province. He received his Ph.D. degree at the Harbin Institute of Technology (HIT) in 2007 and then worked at HIT (2007-2019). Now he is the Distinguished Professor of the Qingdao University of Science and Technology. His scientific interest is focused on the novel energy storage and conversion as well as electrochemical energy technologies. He has published more than 80 papers to date.

Gang Wu is an associate professor in the Department of Chemical and Biological Engineering at the University at Buffalo, The State University of New York (SUNY-Buffalo). He completed his Ph.D. studies at the Harbin Institute of Technology in 2004 followed by extensive postdoctoral trainings at Tsinghua University (2004-2006), the University of South Carolina (2006-2008), and Los Alamos National Laboratory (LANL) (2008-2010). Then, he was promoted as a staff scientist at LANL. He joined SUNY-Buffalo as a tenure-track assistant professor in 2014 and was early promoted as a tenured associate professor in 2018. His research focuses on functional materials and catalysts for electrochemical energy technologies. He has published more than 210 papers with citation of 19,000 to date. He was ranked as a Highly Cited Researcher by Thomson Reuters, Clarivate Analytics in 2018 and 2019.

How to cite this article: Wei Z, Ren Y, Sokolowski J, Zhu X, Wu G. Mechanistic understanding of the role separators playing in advanced lithium-sulfur batteries. *InfoMat*. 2020; 1–26. https://doi.org/10.1002/inf2.12097