Enzymatic Resistance of Corneas Crosslinked Using Riboflavin in Conjunction With Low Energy, High Energy, and Pulsed UVA Irradiation Modes

Sally Hayes
Structural Biophysics Group
Cardiff University, UK
Within molecules (intra-
molecular)
Collagen molecule-collagen molecule at fibril
surface (inter-
molecular)
Proteoglycan-collagen molecule (fibril surface)
Within proteoglycan core proteins
Proteoglycan core protein-proteoglycan core protein

Schematic of three collagen fibrils showing the likely location of riboflavin/
UVA-induced cross-links

Hayes et al. 2013. PLoS One. 8 (1), e52860
Method

- Porcine eyes are obtained from the abattoir within ~ 4 hrs of death.
- Randomly divided into cross-linked and non-cross-linked treatment groups.
- After treatment, the cornea is removed and an 8mm disk trephined from the centre.

- Corneal disks are placed in 5ml pepsin digest solution (1g of 500 U/mg pepsin from porcine gastric mucosa in 10ml 0.1 M HCL at pH 1.4) and incubated at 23°C.
- Corneal disk diameter is measured daily until the point of complete digestion.
- Some corneal disks may be removed midway through the digestion process to obtain dry weight measurements.
| Total corneal disk diameter (mm) | Normalized digestion time |
|---------------------------------|--------------------------|
| Untreated | 0.04 – 1.00 |
| Dextran 20% | 0.04 – 1.00 |
| Riboflavin (with 20% dextran) | 0.04 – 1.00 |
| Riboflavin (with 20% dextran) + 3 mW UVA for 30 minutes (SCXL 3 mW) | 0.04 – 1.00 |

6 porcine eyes/group

Treatment	Average time for complete digestion to occur (days)	
Untreated	11	
Dextran 20%	11	
Riboflavin (with 20% dextran)	10	
Riboflavin (with 20% dextran) + 3 mW UVA for 30 minutes (SCXL 3 mW)	25	
11 porcine eyes/ group	Average time for complete digestion (days)	Average dry weight (undigested tissue mass) at day 12 (g)
-------------------------	---	--
Untreated	11	0
Riboflavin+ 3 mW UVA 30 mins (SCXL 3 mW)	25	0.0041
Riboflavin + 9 mW UVA for 10 mins (ACXL 9 mW)	25	0.0020
Riboflavin+ 18 mW UVA for 5 mins (ACXL 18 mW)	25	0.0008

Riboflavin+ 3 mW UVA 30 mins (SCXL 3 mW) > Riboflavin + 9 mW UVA for 10 mins (ACXL 9 mW) > Riboflavin+ 18 mW UVA for 5 mins (ACXL 18 mW)

Same diameter but lower undigested tissue mass suggests shallower depth of cross-linking after ACXL. Also see a shallower demarcation line after ACXL (Kymionis et al. 2014).

Aldahlawi et al. 2015 JCRS
During high intensity cross-linking the use of pulsed UVA increases the enzymatic resistance of the cornea. Also see a deeper demarcation line after pulsed high intensity cross-linking (Mazotta et al. 2014).
Conclusions

• The intensity and depth of cross-linking varies with different protocols.

• High intensity/same energy protocols result in a shallower depth of cross-linking, possibly due to a more rapid oxygen consumption.

• High intensity/high energy protocols result in more cross-linking in the anterior-most stroma but the depth of cross-linking may be shallower.

• Pulsing UVA during high intensity/high energy procedures can increase the enzymatic resistance of the cornea by increasing oxygen availability.

• The amount of cross-linking needed to stop keratoconus progression is not yet known.
Acknowledgements

Prof Keith Meek
Cardiff University

Nada Aldahlawi
Cardiff University

Prof David O'Brart
St Thomas’ Hospital, London

Medical Research Council (MRC)