Viral CpG Deficiency Provides No Evidence That Dogs Were Intermediate Hosts for SARS-CoV-2

David D. Pollock,†,1 Todd A. Castoe,†,2 Blair W. Perry,2 Spyros Lytras,3 Kristen J. Wade,1 David L. Robertson,3 Edward C. Holmes,4 Maćiej F. Boni,5 Sergey I. Kosakovsky Pond,6 Rhys Parry,7 Elizabeth J. Carlton,8 James L.N. Wood,9 Pleuni S. Pennings,10 and Richard A. Goldstein 11

1Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, CO
2Department of Biology, University of Texas Arlington, Arlington, TX
3MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, United Kingdom
4Marie Bashir Institute for Infectious Diseases & Biosecurity, School of Life & Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
5SCenter for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA
6Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA
7Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
8Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Anschutz, Aurora, CO
9Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
10Department of Biology, San Francisco State University, San Francisco, CA
11Division of Infection & Immunity, University College London, London, United Kingdom

†These authors contributed equally to this work.

*Correspondence to: E-mail: david.pollock@cuanschutz.edu.

Associate editor: Thomas Leitner

Abstract

Due to the scope and impact of the COVID-19 pandemic there exists a strong desire to understand where the SARS-CoV-2 virus came from and how it jumped species boundaries to humans. Molecular evolutionary analyses can trace viral origins by establishing relatedness and divergence times of viruses and identifying past selective pressures. However, we must uphold rigorous standards of inference and interpretation on this topic because of the ramifications of being wrong. Here, we dispute the conclusions of Xia (2020) that dogs are a likely intermediate host of a SARS-CoV-2 ancestor. We highlight major flaws in Xia’s inference process and his analysis of CpG deficiencies, and conclude that there is no direct evidence for the role of dogs as intermediate hosts. Bats and pangolins currently have the greatest support as ancestral hosts of SARS-CoV-2, with the strong caveat that sampling of wildlife species for coronaviruses has been limited.

Key words: COVID-19, CpG deficiency, dogs, bats, pangolin.

The COVID-19 pandemic began following a cross-species transmission event of the causative virus, SARS-CoV-2, sometime in late 2019 (Gorbalenya et al. 2020; Li et al. 2020; Lu et al. 2020; Zhang and Holmes 2020; Zhou, Yang, et al. 2020). As the scientific community works to understand the origins, biology, impacts, and treatment strategies for this virus, it is key that we avoid over interpretation of findings and speculation not well supported by available evidence. Otherwise, we risk diversion of time and resources from following more plausible and scientifically justified leads. Accordingly, there is a heightened urgency for the scientific community to diligently survey and critically evaluate new research findings before they are accepted as sound or actionable knowledge.

Understanding the prehuman origins of SARS-CoV-2 is important because it may provide insight into how and why it was able to jump into human populations, in turn better defining the risks of future pandemics. Molecular evolutionary studies have an important role to play in inferring the origins of the virus because they can confirm the relatedness of viruses, shed light on evolutionary time-scales, and potentially identify past selective pressures that allowed the virus to successfully infect and replicate in human hosts. A recent study by Xia (2020) used patterns of CpG deficiency in SARS-CoV-2 and related coronaviruses, and a series of compounding assumptions, to promote “the importance of monitoring SARS-like coronaviruses in feral dogs.” His conclusions...
rest upon the observation that values of CpG deficiency in SARS-CoV-2 (genus Betacoronavirus) resemble those observed in distantly related canine alphacoronaviruses that constitute a separate genus within the Coronaviridae. Here, we conduct a critical re-evaluation of the conclusions of Xia (2020), highlight key flaws in his underlying logic, and illustrate why his conclusion that dogs are likely intermediate hosts of SARS-CoV-2 is unjustified based on available data. We re-analyze viral CpG deficiency data to incorporate key pangolin viral genomes that were available but omitted from Xia’s study. These data further undermine the key inferences and conclusions of Xia (2020).

Clariﬁing the Uncertainty in SARS-CoV-2 Origins

To date, the closest known relative of SARS-CoV-2 across its genome as a whole is the RaTG13 virus that was isolated from a horseshoe bat, the established reservoir of the earlier SARS coronaviruses that emerged in 2002–2003 (Zhou, Chen, et al. 2020). Interestingly, RmYN02, isolated from another horse-shoe bat, is more closely related to SARS-CoV-2 in the long replicase 1a reading frame (orf1ab; Zhou, Yang, et al. 2020). The next closest relative of SARS-CoV-2, Pangolin-2019, was isolated from pangolins illegally smuggled into Guangdong province, China (Lam et al. 2020; Xiao et al. 2020). Thus, until a closer relative is identiﬁed, bats, followed by pangolins, are the most likely source of the originating or reservoir host species for SARS-CoV-2. However, all these viruses are divergent enough from SARS-CoV-2 on an evolutionary time-scale that their role is uncertain (Boni et al. 2020).

A potentially informative feature of the cluster of bat and pangolin coronaviruses similar to SARS-CoV-2 is a region of the Spike protein. This is a key viral feature that binds to the ACE2 receptor in SARS-CoV-2 to enter host cells, and shows strong signs of multiple past recombination events. The Spike binding regions of the Pangolin-2019 coronavirus, and that of the 2017 pangolin coronavirus sequence, are more similar to SARS-CoV-2 than that of RaTG13. This suggests that there were multiple recombination events between ancestral viruses related to the bat RaTG13, RmYN02, Pangolin-2019, and SARS-CoV-2 lineages (Boni et al. 2020). These ﬁndings suggest that such interviral recombination events occur commonly among coronaviruses in nature (Zhou, Chen, et al. 2020). Further, there was likely a recombination event in the past involving the variable loop region of the bat RaTG13 virus, although current sampling is insufﬁcient to determine what the parental and offspring sequences were in this recombination event (Boni et al. 2020). For these recombination events to have occurred, divergent viruses must have co-infected the same host. Although bats are the only group known to host both ancestral forms of SARS-CoV-2, the two recent host-jumping events indicate that other organisms are also possible candidate hosts. The timing of these events is inﬂuenced by the extent of divergence among these sequences and the viral mutation rate. Estimated divergence dates between SARS-CoV-2 and RaTG13, suggest that the coronavirus lineage that gave rise to SARS-CoV-2 circulated unnoticed for decades in bats or other intermediate hosts prior to infecting humans (Boni et al. 2020; Nielsen et al. 2020).

Genomic Nucleotide Content Is Not Good Evidence to Implicate Viral Hosts

A well-known feature of most RNA viruses is that they tend to have lower levels of CpG dinucleotides than expected based on the relative frequencies of C and G nucleotides independently (Karlin et al. 1994; Rima and McFerran 1997; Jenkins et al. 2001; Cheng et al. 2013). The SARS-CoV-2 viral genome is more depleted in CpGs than many related coronaviruses (ﬁg. 1), a trait shared with distantly related alphacoronaviruses in dogs. Based primarily on this observation, Xia (2020) concluded that canines are a likely intermediate (pre-human) host for SARS-CoV-2. The idea is founded on the assumption that CpG levels in SARS-CoV-2 and dog alphacoronavirus are notably low, requiring an unusual environment to evolve, and that the gastro-intestinal tract of dogs is the singular prime candidate to provide that environment. However, the basis of this argument is undermined by the observation that the most closely related sequences from bats and pangolins, several of which were omitted from Xia’s (2020) analysis, are also highly depleted in CpGs (ﬁg. 1 and supplementary table S1, Supplementary Material online). In addition, many other RNA viruses are far more depleted in CpGs than is SARS-CoV-2, including pestiviruses that also happen to be found in the pangolin (Gao et al. 2020; ﬁg. 1). Hence, CpG depletion is not a unique feature of dog viruses or SARS-CoV-2.

Many factors can influence the genomic composition of viruses, including random genetic drift, recombination, and underlying stochastic mutational bias, as well as natural selection (Jenkins et al. 2001; Dunham et al. 2009; Theyss et al. 2018). Normally in molecular evolutionary analyses, we assume mutation and drift as the null model, and inference of natural selection, adaptation, and recombination need to be demonstrated by obtaining strong evidence in their favor. Xia (2020), however, provided no compelling evidence for natural selection. It is reasonable to think that natural selection can play a role in viral CpG levels because viral CpG is a target for mammalian defense systems and viruses are likely to evolve to evade such host defense mechanisms. Nevertheless, the evolutionary reasons for low GC content are still debated in even exceptionally well-studied systems with unquestioned animal origins (e.g., HIV-1; Alinity-Rokny et al. 2016; Antzini-Anduetza et al. 2017; Wassen et al. 2017). As Xia (2020) points out, the mammalian zinc ﬁnger antiviral protein (ZAP) binds to CpG dinucleotides in viral RNA genomes and inhibits viral replication and mediates viral degradation (Takata et al. 2017; Ficarelli et al. 2019; Meagher et al. 2019; Ficarelli et al. 2020). Additionally, mammalian APOBEC3G is known to modify viral RNA, deaminating C to U (Sharma et al. 2015, 2016, 2019). Notably, bats show unusual and extensive adaptation of APOBEC3G, potentially driving their antiviral response and perhaps correlating with low CpG content in SARS-like coronaviruses in bats (Jebb et al. 2020). At any point in time, natural selection affecting CpG content may be in a rough balance with mutation and drift, but differences in CpG
Canines exhibited low susceptibility, and no traces of viral RNA were detectable in any dog organs (Shi et al. 2020). Further, it is notable that based on a study modeling ACE2 binding affinity with the Spike protein from SARS-CoV-2, it seems highly unlikely that dogs played an important role in the recent evolution of SARS-CoV-2 (Damas et al. 2020). These findings cast further doubt on the relevance of dogs as hosts of viruses related to SARS-CoV-2. Hence, there is no reason to conclude that dogs or dog digestive tracts are special in this respect.

Further Analysis Indicating That Viral CpG Depletion Levels Do Not Implicate Dogs

We reanalyzed the “SARS-related” subset of the data not only shown in figure 1 from Xia (2020), but also including seven betacoronaviruses from pangolins and a bat (RmYN02), four additional dog alphacoronaviruses, and two additional non-coronaviruses (pestiviruses) from pangolins, using the same indices (I_{CpG}—a measure of genomic CpG deficiency, and genomic GC content; fig. 1). The names of all viruses used in our analysis, along with estimated GC content and I_{CpG} estimates, are provided in supplementary table S1, Supplementary Material online. Multiple bat and pangolin betacoronaviruses have low I_{CpG} comparable to SARS-CoV-2, and the other pangolin viruses have even lower I_{CpG}. This nonexhaustive sample is sufficient to refute the claim by Xia (2020) that “no betacoronaviruses from their natural hosts have the genomic I_{CpG} and GC% combination close to SARS-CoV-2 and BatCoV RaTG13.” Notably, dog alphacoronaviruses are also not exceptional in terms of CpG deficiency. Furthermore, although humans and dogs have ZAP, which Xia (2020) hypothesizes targets and selects for CpG depletion, our analyses suggest ZAP is highly conserved in mammalian genomes. In particular, bat and pangolin genomes also appear to contain functional ZAP (supplementary table S2, Supplementary Material online). APOBEC3G may also be conserved across mammals, but the results are less clear, as similarity to human APOBEC3G is low in other mammals; however, human APOBEC3G is more similar to genes in bats and the pangolin than in dogs (supplementary table S3, Supplementary Material online). These results are relevant because they mean that bats and pangolins, the most likely prehuman hosts at present, have equal mechanistic potential to select against viral CpG content as dogs. Although there is no evidence that SARS-CoV-2 has a low CpG content due to the action or evasion of these mechanisms (or if such a process is responsible for any CpG patterns in any organisms), the distribution of these proteins provides no prior mechanistic basis to exclude bats and pangolins as either reservoirs or intermediate hosts, and provides no evidence to specifically implicate dogs.

In addition to being unsupported by positive evidence, Xia’s (2020) hypothesis for dogs as intermediate hosts of ancestral viruses giving rise to SARS-CoV-2 requires an unlikely history of cross-species viral transmission (see fig. 2 for potential hypotheses) for which there is no evidence. Specifically, this hypothesis minimally requires: 1) an ancestral SARS virus in bats (the main reservoir for SARS-lineage viruses) was
passed to dogs, which drove depletion of viral CpGs, 2) dogs passed this virus back to an unknown host or hosts that passed it to bats and pangolins (which gave rise to Pangolin2019, bat RmYN02, and bat RaTG13 observed coronavirus), and 3) descendant lineages of this virus were passed to humans via an unknown host (fig. 2). In addition to this primary hypothesis, Xia’s manuscript and subsequent online comments further imply dogs were a more recent host of SARS-CoV-2, and thus the need for monitoring “in feral dogs” (fig. 2). A simpler alternative to this improbable transmission hypothesis is that bats transferred this virus directly to humans or through a yet undetermined host (fig. 2). In our view, it is a problem that potential wild animal hosts have not yet been well sampled. Although it may be worthwhile to test dog samples as part of broader efforts to sample diverse potential hosts, a narrow focus on dogs is unjustified by existing evidence.

In summary, the proposition of Xia (2020) that dogs are a likely prehuman host for SARS-CoV-2 is not justified by available evidence. Xia (2020) did not demonstrate that the low CpG frequency in the SARS-CoV-2 genome was driven by a unique selective environment in dog digestive tracts. The SARS-CoV-2 is also less virulent than other human betacoronaviruses (SARS-CoV-1 and MERS-CoV; Chen 2020; Munster et al. 2020), contradicting his assertion that CpG-deficient viruses are more virulent. Furthermore, closely related betacoronaviruses from bats and pangolins have CpG-deficiencies similar to SARS-CoV-2. Dogs are not more plausible than most other potential host species, and based on current data, far less plausible than bats or pangolins. Still, we are missing ~20–70 years of the recent evolutionary history of the lineage leading to SARS-CoV-2, and we must broadly survey a wide range of wild and domestic species to uncover the origin of SARS-like coronaviruses.

Supplementary Material

Supplementary data are available at Molecular Biology and Evolution online.

Acknowledgments

D.D.P., T.A.C., and E.L.C. are funded by NIH (1R01AI134673); D.D.P. is also funded by NIH GM083127; T.A.C. is also funded by National Science Foundation (DEB-1655571, IOS-1655735); E.C.H. is funded by an ARC Australian Laureate Fellowship (FL170100022); S.L. and D.L.R. are funded by the MRC (MC_UU_12014/12); and J.W. is supported by The Alborada Trust.

Author Contributions

D.D.P. and T.A.C. wrote the manuscript; B.W.P. and S.L. analyzed data; all authors contributed concerns about the dog CpG paper and to editing the final manuscript.

References

Alinejad-Rokny H, Anwar F, Waters SA, Davenport MP, Ebrahimi D. 2016. Source of CpG depletion in the HIV-1 genome. Mol Biol Evol. 33(12):3205–3212.
Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. 2020. The proximal origin of SARSCoV-2. Nat Med. 26(4):450–452.
Antzin-Anduetza I, Mahiet C, Granger LA, Odendall C, Swanson CM. 2017. Increasing the CpG dinucleotide abundance in the HIV-1 genome inhibits viral replication. Retrovirology 14(1):49.
Boni MF, Lemey P, Jiang X, Lam TT, Perry BW, Castoe TA, Rambaut A, Robertson DL. 2020. Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. Nat Microbiol. Advance Access published July 28, 2020, doi: 10.1038/s41564-020-0771-4.
Chen J. 2020. Pathogenicity and transmissibility of 2019-nCoV—a quick overview and comparison with other emerging viruses. *Microb. Infect.* 22(2):69–71.

Cheng X, Virk N, Chen W, Ji S, Ji S, Sun Y, Wu X. 2013. CpG Usage in RNA viruses: data and heuristics. *PLoS One* 8(9):e74109.

Damas J, Hughes GM, Keough KC, Painter CA, Pensky NS, Corbo M, Hiller M, Koepfli K-P, Pfennig AR, Zuo H. 2020. Broad host range of SARS-CoV-2 predicted by comparative structural analysis of ACE2 in vertebrates. *BioRxiv*. doi:10.1101/2020.04.16.045302.

Di Giallonardo F, Schlub TE, Shi M, Holmes EC. 2017. Dinucleotide composition in animal RNA viruses is shaped more by virus family than by host species. *J Virol.* 91(8):e02381–16.

Dunham EJ, Dugan VG, Kaiser EK, Perkins SE, Brown IH, Holmes EC, Taubenberger JK. 2009. Different evolutionary trajectories of European avian-like and classical swine H1N1 influenza A viruses. *J Virol.* 83(11):5485–5494.

Gorbunova AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva AA, Di Giallonardo F, Schlub TE, Shi M, Holmes EC. 2017. CpG dinucleotide content of the HIV-1 envelope gene may predict disease progression. *J Virol.* 91(8):e02381–16.

Jebb D, Huang Z, Pippel M, Hughes GM, Lavrenchenko K, Devanna P, Lin XD, Chen YM, Xie CG, Tan Y-G, Ni X-B, Zhou Y, Ren R, Leung KSM, Lau EW, Waage ES, Segal BH, Baysal BE. 2015. APOBEC3A cytidine deaminase induces RNA editing in monocyes and macrophages. *Nat Commun.* 6:6881.

Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KSM, Lau EHY, Wong JY, et al. 2020. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. *N Engl J Med.* 382(13):1199–1207.

Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, et al. 2020. Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. *Lancet* 395(10224):565–574.

Ficarelli M, Antzin-Anduetza I, Hugh-White R, Firth AE, Sertkaya H, Marsh M, Firth AE, Sertkaya H, Marsh M, Neiman BS, Safi S, Thomas S, Chen YM, Xie CG, Tan Y-G, Ni X-B, Zhou Y, Ren R, Leung KSM, Lau EW, Waage ES, Segal BH, Baysal BE. 2015. APOBEC3A cytidine deaminase induces RNA editing in monocyes and macrophages. *Nat Commun.* 6:6881.

Wasson MK, Borkakoti J, Kumar A, Biswas B, Vivekanandan P. 2017. The CpG dinucleotide content of the HIV-1 envelope gene may predict disease progression. *Sci Rep.* 7(1):8162.

Xia A. 2020. Extreme genomic CpG deficiency in SARS-CoV-2 and drastic amino acid changes in HIV. *PLoS Genet.* 16(4):e1007420.

Wei W, Lam TT, Shum HHM, Zhu HC, Tong Y-G, Ni X-B, Liao YS, Wei W, Cheung WYM, Li WJ, Li LF, et al. 2020. Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins. *Nature* 583(7815):282–285.

Xu R, Wang Y, Pi S, Yang B, Li Y, Wang W, Li W, Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KSM, Lau EW, Waage ES, Segal BH, Baysal BE. 2015. APOBEC3A cytidine deaminase induces RNA editing in monocyes and macrophages. *Nat Commun.* 6:6881.

Zhang H, Chen Y, Hu T, Li J, Song H, Liu Y, Wang D, Liu D, Yang J, Holmes EC, et al. 2020. A novel bat coronavirus reveals natural insertions at the S1/S2 cleavage site of the Spike protein and a possible recombinant origin of HCoV-19. *BioRxiv*. doi:10.1101/2020.03.02.974139.

Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, et al. 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. *Nature* 579(7798):270–273.