Vertex Degree of Random Intersection Graph

by

Bhupendra Gupta
Faculty of Engineering and Sciences,
Indian Institute of Information Technology (DM)-Jabalpur, India.

Abstract

A random intersection graph is constructed by independently assigning a subset of a given set of objects W, to each vertex of the vertex set V of a simple graph G. There is an edge between two vertices of V, iff their respective subsets in W have at least one common element. The strong threshold for the connectivity between any two arbitrary vertices of vertex set V, is derived. Also we determine the almost sure probability bounds for the vertex degree of a typical vertex of graph G.

Keywords: Random intersection graphs, Vertex degree.

AMS 2000 subject classifications: 05C80, 91D30.
1 Introduction

The development in this paper is in continuation of Dudley Stark [2], in which distribution of the degree of a typical vertex is given. Dudley studied the model given in [3] defined as:

Let us consider a set \(V \) with \(n \) vertices and another set of objects \(W \) with \(m \) objects. Define a bipartite graph \(G^*(n, m, p) \) with independent vertex sets \(V \) and \(W \). Edges between \(v \in V \) and \(w \in W \) exists independently with probability \(p \). The random intersection graph \(G(n, m, p) \) derived from \(G^*(n, m, p) \) is defined on the vertex set \(V \) with vertices \(v_1, v_2 \in V \) are adjacent if and only if there exists some \(w \in W \) such that both \(v_1 \) and \(v_2 \) are adjacent to \(w \) in \(G^*(n, m, p) \). Also define \(W_v \) be a random subset of \(W \) such that each element of \(W_v \) is adjacent to \(v \in V \). Any two vertices \(v_1, v_2 \in V \) are adjacent if and only if \(W_{v_1} \cap W_{v_2} \neq \emptyset \), and edge set \(E(G) \) is defined as

\[
E(G) = \{ \{v_i, v_j\} : v_i, v_j \in V, W_{v_i} \cap W_{v_j} \neq \emptyset \}.
\]

2 Definitions and Supporting Results

Lemma 2.1 Let \(X \) be a random variable having binomial distribution with parameters \(n \) and \(p > 0 \), i.e., \(X \sim Bi(n, p) \). Then

\[
P[X \geq k] \leq \left(\frac{np}{k} \right)^k \exp(k - np), \quad k \geq np,
\]

and

\[
P[X \leq k] \leq \left(\frac{np}{k} \right)^k \exp(k - np), \quad 0 < k \leq np.
\]

For convenience, the bounds (2.1) and (2.2) can be expressed as

\[
\exp \left(npH \left(\frac{np}{k} \right) \right),
\]

where

\[
H(t) = \frac{1}{t} \log t + \frac{1}{t} - 1, \quad 0 < t < \infty,
\]
and \(H(\infty) = -1 \). Note that \(H(t) < 0, \forall t \in (0, \infty) \setminus \{1\} \); \(H \) is increasing on \((0, 1)\) and decreasing on \((1, \infty)\). (See Lemma 1.2 on page 25, Penrose [4].)

Let \(X = X(n, m, p) \) be the number of vertices of \(V - \{v\} \) adjacent in \(G(n, m, p) \) to a vertex \(v \in V \), i.e., \(X \) be the vertex degree of a vertex \(v \in V \) in \(G(n, m, p) \). Then \(X \) follows \(\text{Bi}(n-1, q_n) \), where \(q_n \) is the probability of \(v_1, v_2 \in V \) are adjacent.

Proposition 2.2 Let \(v_i, v_j \in V, i \neq j \) and \(i, j = 1, 2, \ldots, n \). Then \(v_i \) and \(v_j \) are adjacent with probability \(q_n \), such that

\[
q_n \sim mp^2,
\]

for sufficiently small \(p \).

Proof. Consider

\[
q_n = P[v_i, v_j \text{ are adjacent.}]
\]

\[
= P[W_{v_i} \cap W_{v_j} \neq \emptyset]
\]

\[
= P[|W_{v_i} \cap W_{v_j}| \geq 1]
\]

\[
= 1 - P[w \notin (W_{v_i} \cap W_{v_j})]^m
\]

\[
= 1 - [1 - P[w \in (W_{v_i} \cap W_{v_j})]^m
\]

\[
= 1 - [1 - P[w \in W_{v_i}, w \in W_{v_j}]]^m
\]

\[
= 1 - [1 - p^2]^m
\]

Using the Taylor’s series expansion up to second term, we get

\[
q_n = mp^2 - \zeta_m, \tag{2.3}
\]

where, \(\zeta_m = \frac{m(m-1)}{2!}(1 - c)^2 p^4 \), and \(c \in (0, p^2) \).

Now if we take \(p \) is sufficiently small. Then

\[
q_n \sim mp^2. \tag{2.4}
\]
This completes the proof.

Definition 1 Let graphs A and B share the same vertices and the edge set of A is a subset of the edge set of B, we write $A \leq B$. Also let Θ be a property of a random graphs such that if $A \leq B$ and $A \in \Theta$, then $B \in \Theta$. (Here $A \in \Theta$ is used to denote that graph A has property Θ.) Then Θ is called an upwards-closed property. If $B \in \Theta$ implies $A \in \Theta$, then Θ is said to be a downwards-closed property. If property Θ is upwards-closed or downwards-closed, then Θ is called monotone property.

Fix a monotone property Θ. For any two functions $\delta, \gamma : \mathbb{Z}^+ \rightarrow \mathbb{R}^+$, we write $\delta \ll \gamma$ (resp. $\delta \gg \gamma$) if $\delta(n)/\gamma(n) \rightarrow 0$, (resp. $\gamma(n)/\delta(n) \rightarrow 0$) as $n \rightarrow \infty$. We will write δ for $\delta(n)$. Let $G_n(r)$, be any random graph on n vertices.

Definition 2 A function $\delta_{\Theta} : \mathbb{Z}^+ \rightarrow \mathbb{R}^+$ is a weak threshold function for Θ if the following is true for every function $\delta : \mathbb{Z}^+ \rightarrow \mathbb{R}^+$,

- if $\delta(n) \ll \delta_{\Theta}(n)$, then $P[G_n(\delta) \in \Theta] = 1 - o(1)$, and
- if $\delta(n) \gg \delta_{\Theta}(n)$ then $P[G_n(\delta) \in \Theta] = o(1)$.

A function $\delta_{\Theta} : \mathbb{Z}^+ \rightarrow \mathbb{R}^+$ is a strong threshold function for Θ if the following is true for every fixed $\epsilon > 0$,

- if $P[G_n(\delta_{\Theta} - \epsilon) \in \Theta] = 1 - o(1)$, and
- if $P[G_n(\delta_{\Theta} + \epsilon) \in \Theta] = o(1)$.

3 Main Results

We now derive the threshold probability for the connectivity of graph $G(n,m,p)$.

Let Θ be the connectivity of graph $G(n, m, p)$ and define the probability that a vertex $v \in V$ is connected to $w \in W$, as follows

$$p := p(\alpha) = \frac{1}{(mn^\alpha)^{1/2}}.$$

Theorem 3.1 Let $G(n, m, p)$ be the random intersection graph with $p(\alpha) = \frac{1}{(mn^\alpha)^{1/2}}$ and $v_i, v_j \in V(G)$ for $i \neq j = 1, 2, \ldots, n$. Then $p(2) = \frac{1}{m^{1/2}n}$, is a strong threshold for the random intersection graph $G(n, m, p)$, i.e.,

$$P[G(n, m, p(2 - \epsilon)) \in \Theta] = 1 - o(1),$$

$$P[G(n, m, p(2 + \epsilon)) \in \Theta] = o(1). \quad (3.5)$$

Proof. Let $v_i, v_j \in V(G)$ for $i \neq j, i, j = 1, 2, \ldots, n$. Then from (2.3), we have

$$P[v_i, v_j \text{ are adjacent}] = q_n$$

$$\leq mp^2. \quad (3.6)$$

Since we have $p(\alpha) = \frac{1}{(mn^\alpha)^{1/2}}$. Then

$$P[v_i, v_j \text{ are adjacent}] \leq n^{-\frac{1}{2}}. \quad (3.7)$$

Hence, for $\alpha \leq 2$ the above probability (3.7) is not summable, i.e.,

$$\sum_{n=0}^{\infty} P[v_i, v_j \text{ are adjacent}] = \infty.$$

Since the adjacency between any pair of vertices is independent from the adjacency between any other pair of vertices. Then by the Borel-Cantelli Lemma, we have

$$P[v_i, v_j \text{ are adjacent}, \ i.o.] = 1.$$

Therefore, for $\alpha \leq 2$, any pair of vertices $v_i, v_j \in V, i \neq j, i, j = 1, 2, \ldots, n$, are adjacent almost surely. Hence,

$$P[G(n, m, p(2 - \epsilon)) \in \Theta] = 1 - o(1).$$
For $\alpha > 2$ the above probability is (3.7) summable, i.e.,

$$\sum_{n=0}^{\infty} P[v_i, v_j \text{ are adjacent}] < \infty.$$

Then by the Borel-Cantelli’s Lemma, we have

$$P[v_i, v_j \text{ are adjacent}, \ i.o.] = o.$$

Therefore, for $\alpha > 2$, any pair of vertices $v_i, v_j \in V$ are adjacent only finitely many times. Hence,

$$P[G(n, m, p(2 + \epsilon)) \in \Theta] = o(1).$$

This completes the proof. \[\square \]

We now state strong law results for vertex degree of a typical vertex.

Let $X = X(n, m, p)$ be the number of vertices of $V - \{v\}$ adjacent in $G(n, m, p)$ to a vertex $v \in V$, $i, j = 1, 2, \ldots, n$, $i \neq j$ i.e., X be the degree of vertex $v \in V$ in $G(n, m, p)$.

Theorem 3.2 Let $G(n, m, p)$ be the random intersection graph with $p = (mn^\alpha)^{-1/2}$, where $0 < \alpha < 1$. Also let X be the degree of a typical vertex $v \in V$ in $G(n, m, p)$. Then

$$\limsup_{n \to \infty} \frac{X}{n^\delta} \geq a(c), \quad a.s.,$$

where $\delta = 1 - \alpha$ and $a(c)$ is the root in $[1, \infty)$ of

$$a \log a - a + 1 = c,$$

with $a(\infty) = 1$.

Proof. We know that the vertex degree of a vertex in graph $G(n, m, p)$ is distributed according to $Bi(n - 1, q_n)$. Hence by Lemma 2.1, we have

$$P[X \leq K] \leq \exp \left((n-1)q_n H \left(\frac{(n-1)q_n}{K} \right) \right), \quad K \leq nq_n.$$

5
From Proposition 2.2, we have for sufficiently small p, we have $q_n \sim mp^2$. Then

$$P[X \leq K] \leq \exp \left((n-1)mp^2H \left(\frac{(n-1)mp^2}{K} \right) \right)$$

$$\sim \exp \left(n^{1-\alpha}H \left(\frac{n^{1-\alpha}}{K} \right) \right)$$

$$= \exp \left(-cn^{\delta} \right),$$

(3.11)

where $H((n/mK^2)^{1/2}) = -c$ and $\delta = 1 - \alpha$. The above expression is summable if $K = a(c)n^{\delta}$, where $a(c)$ is increasing in $[1, \infty)$ and defined as in (3.9). Then by the Borel-Cantelli Lemma we have

$$P \left[X \leq a(c)n^{\delta}, \ i.o. \right] = 0.$$

(3.12)

This implies that

$$\limsup_{n \to \infty} \frac{X}{n^{\delta}} \geq a(c), \quad a.s.$$

(3.13)

This completes the proof.

Theorem 3.3 Let $G(n, m, p)$ be the random intersection graph with $p = (mn^\alpha)^{-1/2}$, where $0 < \alpha < 1$. Also let X be the degree of a typical vertex $v \in V$ in $G(n, m, p)$. Then

$$\liminf_{n \to \infty} \frac{X}{n^{\delta}} \leq a(c), \quad a.s.,$$

(3.14)

where $\delta = 1 - \alpha$ and $a(c)$ is the root in $(0,1)$ of

$$a \log a - a + 1 = c,$$

(3.15)

with $a(\infty) = 1$.

Proof. We know that the vertex degree of a vertex in graph $G(n, m, p)$ is distributed according to $\text{Bi}(n - 1, q_n)$. Hence by Lemma 2.1 we have

$$P[X \geq K] \leq \exp \left((n-1)q_nH \left(\frac{(n-1)q_n}{K} \right) \right), \quad K \geq nq.$$

(3.16)
From Proposition 2.2, we have for sufficiently small p, we have $q_n \sim mp^2$. Then

$$P[X \geq K] \leq \exp \left((n-1)mp^2 H \left(\frac{(n-1)mp^2}{K} \right) \right)$$

$$\sim \exp \left(n^{1-\alpha} H \left(\frac{n^{1-\alpha}}{K} \right) \right)$$

$$= \exp \left(-cn^\delta \right), \quad (3.17)$$

where $H((n/mK^2)^{1/2}) = -c$ and $\delta = 1 - \alpha$. The above expression is summable if $K = a(c)n^\delta$, where $a(c)$ is decreasing in $(0, 1)$ and defined as in (3.15). Then by the Borel-Cantelli Lemma, we have

$$P \left[X \geq a(c)n^\delta, \quad i.o. \right] = 0. \quad (3.18)$$

This implies that

$$\liminf_{n \to \infty} \frac{X}{n^\delta} \leq a(c), \quad a.s. \quad (3.19)$$

This completes the proof. \[\square\]

References

[1] Y.S.Chow, H.Teicher. Probability Theory, thired edition, Springer Text in Statistics (2004).

[2] D. Stark. The vertex degree distribution of random intersection graphs, Random Structures and Algorithms, Vol. 24(3): 249 - 258 , (2004).

[3] M. Karonski, E.R.Scheinerman and K.B.Singer-Cohen. On random intersection graphs: the subgraph problem, Combinatorics, Probability and Computing, Vol. 8: 131-159 (1999).

[4] Penrose, M.D.(2003), Random Geometric Graphs, second edition, Oxford University Press.