Tri-skill variant Simplex and strongly polynomial-time algorithm for linear programming

P. Z. Wang\(^1\)*, J. He\(^2\), H. C. Lui\(^1\), Q. W. Kong\(^3\), Y. Shi\(^4\), S. Z. Guo\(^1\)

\(^1\)Institute of Intelligence Engineering and Math, Liaoning Technical University, Fuxin, Liaoning, China
\(^2\)School of Software and Electrical Engineering, Swinburne University of Technology, Hawthorn, Australia
\(^3\)Institute of Information Engineering, Nanjing University of Finance and Economics, Nanjing, China
\(^4\)Key Laboratory of Big Data, Chinese Academy of Sciences, Beijing, China

Abstract

The existence of strongly polynomial-time algorithm for linear programming is a cross-century international mathematical problem, whose breakthrough will solve a major theoretical crisis for the development of artificial intelligence. In order to make it happen, this paper proposes three solving techniques based on the cone-cutting theory: 1. The principle of Highest Selection; 2. The algorithm of column elimination, which is more convenient and effective than the Ye-column elimination theorem; 3. A step-down algorithm for a feasible point horizontally shifts to the center and then falls down to the bottom of the feasible region \(D\). There will be a nice work combining three techniques, the tri-skill is variant Simplex algorithm to be expected to help readers building the strong polynomial algorithms. Besides, a variable weight optimization method is proposed in the paper, which opens a new window to bring the linear programming into uncomplicated calculation.

Keywords: Linear programming, Strongly polynomial-time algorithm, Cone-cutting, Column elimination algorithm, Factor space.

1 Introduction

Linear programming is not only an indispensable computing tool for intelligent decision making and data science, but also a potential cornerstone of intelligent science with its causal interaction and the mathematical connotation of the dialectical relationship between Yin and Yang\(^1\). It is also an important subject concerned by the application of factor space\(^2, 3\). The Simplex algorithm proposed by G. B. Dantzig\(^4\) is a wonderful work in mathematics, which is not only beautiful in mathematical theory, but also has been widely used in practice. Although Klee-Minty counterexample\(^5\) points out that the deepest Simplex may appear exponential explosion, but people always hope to find generalized Simplex polynomial algorithm. Owing to distinguish it from the Karmarkar’s weak polynomial algorithm \(^6\). The researchers are still eager to find the strongly polynomial algorithm still. The breakthrough of the cross-century mathematical problem\(^7\), will save the development of artificial intelligence from an important theoretical crisis. In 1989, Y. Ye

*Liaoning Technical University, Fuxin, Liaoning, 123000, China. Email:peizhuangw@126.com
proposed the elimination theorem\[8\], which is of great significance. Under the influence of Zhang Zhongzhen \[9\], P. Z. Wang proposed the cone cutting theory\[10\] in 2014, which provided a clear geometric description for the Simplex algorithm in the dual space. On this basis, we proposed the gravity sliding algorithm\[11, 12, 13\]. The work of this paper is to continue to put forward three solving techniques for linear programming under the guidance of this geometric vision. Firstly, the highest principle for the selection of cutting plane from the special t-value tableau such that the elevation of the new cone tip is changed as higher as possible. The second is the new column elimination rule, which is more easy to use and more effective than Ye’s column elimination theorem. The third is making a feasible point to horizontally shifts to the feasible center and falls down to the bottom of the feasible region D. These three techniques all have the function of accelerating solution, and can be matched with each other to produce joint effect, the tri-skill is variant Simplex algorithm to be expected to help readers building the strong polynomial algorithms.

Structure of this paper is as follows: The second section introduces the theory of cone cutting, which is the theoretical basis of this paper. It is quoted from the paper \[11\], but it is updated. The third section introduces the highest principle for the selection of cutting plane, which is a discretization of the gradient method in the non smooth convex domain. Using this principle in the Klee-Minty counter example, the solution can be obtained in one step. Section 4 introduces a new column elimination theorem. The condition of column elimination is that the norm vector of the cutting plane must be non-negative or non-positive (homosymbolic). We provides a homosymbolic theorem to convert a column vector mixed with positive and negative coefficients into a homosymbolic vector, and into the new column elimination theorem. The fifth section introduces how to find a feasible interval on a ray, and conveniently solves the difficulty of horizontal edge: if 0 appears in the right column of the Simplex table, then the base row is fixed, the Simplex method will not work well here. In fact, as long as we find out a feasible point on this edge, it must be an optimal point, and then the problem is solved. If there is no point, the edge must be completely cut off. Instead of avoiding the meeting of horizontal edge, we should actively capture them. The sixth section is a statement for the third technique, which introduces the central falling problem. Firstly, it tells us how to find a feasible point and generate the supportor of the horizontal cover of the cone, and then it falls from the center of supportor along the gravity $g = -b$ to the bottom of the dual feasible region D. The seventh section is to emphasize that these three techniques can be used comprehensively, mutually effective, the reader is advised to break through the strongly polynomial-time algorithm. And the short conclusion is given in the eighth section.

2 Cone-cutting theory

2.1 Mathematical definition of cones

A non-empty set F in the space $Y = R^m$ is called an affine set, if for any two points $P, Q \in F$ and $t \in (-\infty, +\infty)$, there is $P + t(Q - P) \in F$. Two affine sets F and F' are called parallel, if there is $P \in F$ such that $P + Q \in F'$ is true for any $Q \in F'$, and there is $Q \in F$ such that $P + Q \in F'$ is true for any $P \in F$. An affine set is a subspace if and only if it contains the origin O. Any affine set is parallel to and only parallel to a subspace, so the dimension of affine sets can be determined. A $(m-1)$-dimensional affine set in Y is called a hyperplane, hereafter referred to as plane.

Linear inequality constraints in linear programming problems can be transformed into equality constraints in terms of boundary surface, but the direction of inequality must be defined: In the
Definition 2.1 Let \(y \tau_j = c_j (j = 1, \ldots, m) \) be a group of planes, the norm vector of them form the matrix \(B = (\tau_1, \ldots, \tau_m) \). If the rank \(r(B) = m \), then their common accepted area is called a cone, denoted as:

\[
C = \{ y \in \mathbb{Y} | y \tau_1 \geq c_1, \ldots, y \tau_m \geq c_m \}
\]

\(B = (\tau_1, \ldots, \tau_m) \) is called the face matrix of \(C \) and each plane \(y \tau_j = c_j \) is called a face of \(C \).

Note that \(y \) is a row vector, \(\tau_j \) is a column, therefore \(y \tau_j \) is the inner product \((y^T, \tau_j)\).

Since \(B \) is full rank, there must be a unique intersection point \(V = V_{1 \times m} \), called the tip of cone \(C \).

It is obvious that:

\[
V = c_B B^{-1}
\] (2.1)

Where \(c_B = (c_1, \ldots, c_m) \).

In the \(m \)-dimensional space, any \(m - 1 \) faces must yield a straight line as long as the rank of the matrix formed by their norm vectors is \(m - 1 \). Let \(L_i \) be the intersection line of all faces except the \(i \)-th face, which is called the \(i \)-th edge-line of \(C \). It is easy to prove that if \(r(B) = m \), then \(L_1, \ldots, L_m \) can not lie in a common face, so that the \(i \)-th edge-line can not lie in the \(i \)-th face. All edge-lines intersect in the tip \(V \). The ray being the half of \(L_i \) within the cone \(C \) is called the \(i \)-th edge of \(C \), denoted as \(L_i \). Its direction is denoted as \(e_i \), a row vector. Since a direction has no fixed length, set that:

\[
e_i^* = e_i/e_i \tau_i = e_i/(e_i^T, \tau_i) \quad (i = 1, \ldots, m),
\] (2.2)

\(E^* = (e_1^*, \ldots, e_m^*)^T \) is called the regular edge matrix. \(E^* \) can be determined directly by the basis matrix \(B \). Obviously we have that:

\[
e_i^* \tau_i = 1 \quad (i = 1, \ldots, m).
\] (2.3)

The position of face and edge is equal and they can be determined mutually. Since the \(i \)-th edge is the intersection of all except the \(i \)-th face, the \(i \)-th face should also be spanned by all except the \(i \)-th edge. We can define a cone in terms of edges:

Definition 2.1’ Given a point \(V \) and matrix \(E = (e_1, \ldots, e_m)^T \). If \(r(E) = m \), denote that:

\[
C = \{ y \in \mathbb{Y} | \exists (\lambda_1, \ldots, \lambda_m) \geq 0, \lambda_1 + \ldots + \lambda_m = 1, \text{ such that } \lambda_1 e_1 + \ldots, + \lambda_m e_m = y \}.
\]

Which is called an \(m \)-cone, \(V \) is called the tip of the cone, \(L_i = V + t e_i (t \geq 0) \) is called the \(i \)-th edge of \(C \).

We are going to prove the equivalence between definition 2.1 and definition 2.1’.
Theorem 2.1 The regular edge matrix E^* and face matrix B are incopical: $E^* = B^{-1}$.

Proof For any $i = 1, \ldots, m$, L_i is the intersection line of all faces except the i-th one. Since L_i is on all these faces, it is perpendicular to the norm vector of all these faces:

$$e_i^* \tau_j = 0 \ (j \neq i). \quad (2.4)$$

According to [2.3] and [2.4], we have that $E^* B = I$. **End**

Definition 2.2 If the face matrix of C_2 is the regular edge matrix of C_1, then, cone C_2 is called the anticone of cone C_1, denoted as $C_2 = C_1^{-1}$.

Antonicity is obviously symmetric:

Corollary 2.1 If cone C_2 is the anticone of cone C_1, then cone C_1 must also be the anticone of cone C_2.

Proof Assume that the face matrices of C_1 and C_1 are B_1 and B_2, and the edge matrices of them are E_1 and E_2 respectively. Since cone C_2 is the anticone of cone C_1, $B_2 = E_1$. Take the inverse of both ends of this equation, and it can be known from Theorem 2.1 that $E_2 = B_1$, the face matrix of C_1 is the regular edge matrix of C_2. Therefore, C_1 is anticone of cone C_2. **End**

It is obvious that:

$$(C^{-1})^{-1} = C. \quad (2.5)$$

2.2 Cone interpretation of Simplex table

Given a problem of linear programming:

$$(P) \ max \{ c x | A x \leq b \}$$

Where $x = x_{n \times 1}$ and $b = b_{m \times 1}$ are column vectors, $y = y_{1 \times m}$ and $c = c_{1 \times n}$ are row vectors, $A = A_{m \times n}$. The original Simplex tableau is given as follows:

Table 2.1 Original Simplex table
$x_1 \ldots x_n$ $y_1 \ldots y_m$
$\alpha_{11} \ldots \alpha_{1n}$ 1 \ldots 0 b_1
\vdots \vdots \vdots \ddots \vdots \vdots
α_{nm} \ldots α_{mn} 0 \ldots 1 b_m
$c_1 \ldots c_n$ 0 \ldots 0 0

Where $A^+ = (A, I)$ is called the main matrix, the header is $(x_1, \ldots, x_n; y_1, \ldots, y_m)$, or, unified to $(\tau_1, \ldots, \tau_n; \tau_{n+1}, \ldots, \tau_{n+m})$, τ_j stands for variable names and form vector both.

The unit square I represents the original cone C_o, whose tip is the origin $O = (0, \ldots, 0)$, the edges are the axes. The unit square I is the edge matrix, each row is the direction of an edge, and the row vector below I is the coordinate of the tip of the cone. Let A be the combining A with its lower row, then, I is called the cone matrix of tableau $[T_o]$. In this paper, we always assume that the dual target vector is non-negative, that is, $b \geq 0$. Under the assumption that tip O is in its bottom of C_o, if cone O is accepted by all constraint planes, it is the optimal point! Otherwise, there must be a constraint plane cut off O, and form a newer cone C containing the feasible region D. The algorithm of cone cutting ensures that the new cone must be regular, i.e. the tip of cone is
in its bottom. Repeat, once the cone tip cannot be cut, it is an optimal point, this is the thought of the cone cutting.

Set the index set of all constraint planes as $J = \{1, ..., n + m\}$, let B be a subset of J , containing m indices. If the indicated matrix B is full rank, then B is called a base index set. The Simplex theory rely on the base transformation:

$$y' = yB^{-1} + V, y = (y' - V)B. \quad (2.6)$$

Suppose that the cutting plane (τ_j) has equation $y\tau_j = c_j$. According to 2.6, its equation can be written as $(yB^{-1} + V)\tau_j = c_j$, i.e., $yB^{-1} = c_j - V\tau_j$. Set $c_j^\wedge = c_j - V\tau_j$; the authors have put the coefficient as $c_j^\wedge = c_j - V\tau_j$ before, but we have to change the usage for the convenience of this paper.

Definition 2.3 The constant c_j^\wedge is called the cutting degree of plane (τ_i) with respect to the tip V. Vector $c_j^\wedge = (c_1^\wedge, ..., c_{n+m}^\wedge)$ is called the cutting vector.

Cutting degree c_j^\wedge measures the norm distance from a cutting plane to cone tip; V is cut off by (τ_j), if and only if $c_j^\wedge > 0$. cut degree is the transformation of the constant term in the equation of (τ_j):

$$c_j^\wedge = c_j^+ - c_BB^{-1}A_j \quad (2.7)$$

where c_B is the subset of $c^+ = (c_1, ..., c_m, 0, ..., 0)$ with index set B.

Proof. For $c_j^\wedge = c_j^+ - V\tau_j$, 2.7 is true by means of 2.1. **End**

Corollary When $c_j^+ = 0$, We have that:

$$c_j^\wedge = -V\tau_j. \quad (2.8)$$

There are many papers use geometry to describe LP solution, but descriptions could not clearly stated in space X; Cone cutting theory describes pivoting in the dual space $Y = R^m$ for the dual problem:

$$(D) \min \{yb | yA \geq c, y \geq 0\}$$

There are $n + m$ constraint planes, the new usage of symbol τ_j now stands for the norm vector of the plane (τ_j)). Its initial vector is that $\tau_j^0 = A_j^+(j = 1, ..., n + m)$. After the basis transformation, the general Simplex matrix $T = (\tau_{ij})$ is written in the following tableau:

Table 2.2 Transformed Simplex tableau

$$\begin{pmatrix} B^{-1}A & B^{-1} & B^{-1}b \\ c - c_BB^{-1}A & -c_BB^{-1} & -c_BB^{-1}b \end{pmatrix} \quad (T)$$

When $B = \{n + 1, ..., n + m\}$, B returns to the original base $I : B = I$, then $c_B = 0$, so the tableau T returns to T_0 **Theorem 2.1** enables us to replace B^{-1} with E^* in Simplex tableau T thus obtain the cone interpretation of Simplex tableau:

Table 2.3 Cone-Simplex tableau

$$\begin{pmatrix} E^*A & E^* & s = E^*b \\ c - VA & -V & -h(V) \end{pmatrix} \quad (T)$$
Where \(s = E^*b \) is called the slop vector of edges: \(s_i = 0 \) means that the edge \(\underline{L_i} \) is horizontal with respect to \(b \); \(\underline{L_i} \) going up (down) when \(s_i > 0 \) (\(s_i < 0 \)).

We have to emphasize that the main matrix can be regarded as a couple:

\[
\left(\begin{array}{c}
E^* A \\
\hat{c}^T = c - VA
\end{array} \right) \rightarrow A' \quad \left(\begin{array}{c}
E^* \\
-V
\end{array} \right) \rightarrow C
\]

The matrix \(A' \) is transferred from \(A \) in table \(T_0 \) which is called the constraint matrix, the \(j \)-th column shows the new equation \(y^T \tau_j = c^\tau_j \) in stead of equation \(yA_j = c_j \). Note that \(A' = E^*A \). It means that for any \(\tau_{ij} \) in table \(T \) we have that

\[
\tau_{ij} = e^*_i A_j,
\]

(2.9)

The matrix \(C \) is transformation from \(I \), which is called the cone matrix since its rows indicate its edge directions of the cone, and the coordinate of cone tip is shown at the row under the square (remember times \(-1\)). Thus, each term in the table has a clear geometric interpretation in cone cutting theory. This is the new vision of the Simplex method brought by cone cutting theory.

2.3 Cone-cutting vs Pivoting

Whenever a tip \(V \) of cone \(C \) is cut by a plane \((\tau_{ij}^*) \). How do we generate a new cone \(C'' \)? Where is its tip \(V' \), and what are directions of new edges? There is an algorithm Cone-cutting to resolve these problems. This algorithm is not described in detail in this paper. Because, the significance of cone cutting lies not in the very algorithm but in its geometric description for Simplex. In a nutshell, Let \(Q_i = V + t_{ij} e_i \) be the intersection of plane \((\tau_i) \) and edge \(\underline{L_i} \), it must hold that

\[
t_{ij} = c_{ij}^*/\tau_{ij}(\tau_{ij} \neq 0)
\]

(2.10)

\(Q_i \) is called real, if \(t_{ij} \geq 0 \); it is called virtual, If \(t_{ij} < 0 \), a virtual \(Q_{ij} \) is located on the inversed ray of \(L_i \). The tip of the new cone is that:

\[
V' = Q_{i*}; \quad i^* = \arg \min_i \{t_{ij} e_i b | t_{ij} > 0\}
\]

(2.11)

Which is the lowest real intersection of edges with the cutter \((\tau_{ij}) \).

The edges’ directions of \(C'' \) are calculated as follows:

1. \(e_i^* = e_i^* \);
2. If \(i \neq i^* \), and \(t_{ij} > 0 \), then \(e_j' = Q_i - Q_i^* \);
3. If \(i \neq i^* \), and \(t_{ij} < 0 \), then \(e_i = Q_i^* - Q_i \);
4. If edge line \(\underline{L_i} \) parallels to plane \(\tau_{j*} \), then the \(e_i = e_i \).

Cone cutting intuitively describes pivoting process. the pivoting each Pivoting is a non-base plane \(\tau_{j*} \) grabs the \(i^* \)-th place in base and expels out the face member \(\tau_{i*} \). Pivoting takes at \((i^*, j^*)\), where \(i^* = i^*(j) \) is a function of \(j \):

\[
i^* = i^*(j) = \arg \min_i \{s_i/\tau_{ij}|\tau_{ij} > 0, i = 1, ..., m\}
\]

(2.12)

Since \(t_{ij} = c_{ij}^*/\tau_{ij} \), that \(\tau_{ij} = c_{ij}^*/t_{ij} \). While \(s_i = e_i b \), we have that \(s_i/\tau_{ij} = t_{ij} e_i b / c^\tau \). Note that \(c_{ij}^\tau \) is a positive number, which has no relation with the index \(i \), so that [2.11] equivalents to [2.12] It means that cone cutting is the very pivoting.
Adding a column to the leftest of the Simplex table to represent B^T. The initial base indices was $B_0 = \{n + 1, \ldots, n + m\}$ and the base faces was $(y_1), \ldots, (y_m)$. B changes a name during each pivoting; the name of expelled face can be find out from B at i^*-th row.

Example 2.1 Given a linear program problem:

$$\begin{align*}
Max & \quad 2x_1 + x_2 \\
\text{s.t.} & \quad x_1 - x_2 \leq 1; \\
& \quad x_1 + x_2 \geq 2, \\
& \quad -x_1 \leq 0, -x_2 \leq 0
\end{align*}$$

Its standard Simplex table T_o can be written as follow Table 2.4:

Table 2.4 Simplex table of example 2.1

	x_1	x_2	y_1	y_2
x_1	1	-1	1	0
y_2	1	1	0	1
c^\wedge	2	-1	0	0

We can see from 1, the original cone C_o is the first quadrant of $Y = R^2$ The tip of the cone is the origin O, and its two edges are the axis vectors $e_1 = (1, 0)$ and $e_2 = (0, 1)$, which are written in the cone matrix C of T_o respectively. The dual target vector is $b = (1, 2)$ and O is the lowest point of the first quadrant. Since the first number of c^\wedge is a positive number 2, it means that face $y_1 + y_2 = 2$ (the line (x_1) in the figure) can cut off the tip O.

![Figure 1: Cone C_1](image)

Taking $j^* = 1$, according to 2.12 we have $i^* = 1$; Doing pivot at (1,1) get table as follows:

	x_1	x_2	y_1	y_2	
B	1	-1	1	0	
x_1	0	2	-1	1	
y_2	0	1	-2	0	
c^\wedge	0	1	-2	0	-2

In the left column of the table, cutter (x_1) replaces face (y_1). The tip of the new cone is shown under the cone matrix: $V_1 = -(-2, 0) = (2, 0)$, and the new cone is angle $\angle BAC$. Two edge directions are listed in the second table: $e'_1 = (1, 0), e'_2 = (-1, 1)$. Since $c^\wedge_2 = 2 > 0$, V_1 can be cut by (x_2). Take $j^* = 2$, according to 2.12 $i^* = 2$, doing pivot at 2.2 and get the following table:
In the left column, the base variable indicates that plane \((x_2) \) replaces face \((y_2) \). In Figure 2, the tip of cone \(C_2 \) is \(V_2 = (1.5, 0.5) \), and the new cone is the angle \(\angle BEF \), two edges are listed in the above table: \(e_1' = (0.5, 0.5), e_2' = (-0.5, 0.5) \).

![Figure 2: Cone C2](image)

Since there’s no positive number in the \(c^\land \), \(V_2 \) has no cutter and then it is the dual optimum \(y^* = (y_1^*, y_2^*) = (1.5, 0.5) \); According to Simplex algorithm the prime optimal point is \(x^* = (x_1^*, x_2^*) = (1.5, 0.5) \); The optimal value is 2.5. **The example is end.**

3 The \(t \)-value table and highest cutting method

The theory of cone cutting provides a new perspective for Simplex methods, an important gift is the \(t \)-value table introduced as follows:

3.1 The \(t \)-value table

Definition 3.1 Given a Simplex table \(T_n \), the \(t \)-value table is the matrix \(t = (t_{ij})_{m \times (m+n)} \), where

\[
t_{ij} = c_j^\land / \tau_{ij}
\]

(3.1)

\(t_{ij} \) is vacancy if \(\tau_{ij} = 0 \). This table is easily constructed, with each row divides \(c_j^\land \) row item by item. \(Q_{ij} \) is called virtual if it locates on the inverse ray of an edge, for short, say it locates a virtual edge; when \(t_{ij} \) is vacancy, \(L_i \) parallels or lie in \((\tau_j) \). According to (2.8)

\[
t_{ij} = c_i^\land A_j
\]

(3.2)

Where \(t_{ij} \tau_{ij} = c_j^\land \). By means of the \(t \)-value table, we can quickly determine the location information around intersected points on each edge of a cone. The usage is not only for edge, but on more rays starting from any point \(P \) along any direction \(d \). Generally: Given a ray \(R : y = Q + td(t \geq 0) \), writing three vectors as follows:

\[
M = (M_1, ..., M_{m+n}) : M_j = c^+ - QA_j^+(j = 1, ..., n + m);
\]

\[
D = (D_1, ..., D_{m+n}) : D = dA_j^+(j = 1, ..., n + m);
\]

(3.3)

\[
t = (t_1, ..., t_{m+n}) : t_j = M_j/D_j(j = 1, ..., n + m);
\]
We call then the Molecular Denominator and t-value vectors respectively, and they form a matrix, called the Tri-rows.

3.2 Highest algorithm

The key problem of Simplex method is how to choose the base variable, i.e., how to choose the cutter. The principle of deepest algorithm is to maximize the cutting degree c^j:

$$j^* = \arg \max_j \{c^j | c^j \geq 0\}.$$ \hspace{1cm} (3.4)

When the norm vector τ_{j^*} of cutter deviates from the target vector b, the cutting will have little changing on the height of cone tip. In extreme cases, when τ_{j^*} is perpendicular to b, the height difference is zero. The Klee–Minty anti-example was designed with this in mind. We quote its simplest form as follows:

B	x_1	x_2	x_3	x_{\ldots}	y_1	y_2	y_3	s
y_1	1	0	0	1	0	9		1
y_2	20	1	0	0	1	0		100
y_3	200	20	1	0	0	1		10000
c^\wedge	100	10	1	0	0	0		0

The traditional algorithm, according to (3.4), should choose the first one as the basis, so that the optimal solution can be obtained by $7 = 2^3 - 1$ pivoting. By extension, the optimal solution can be obtained through $2^m - 1$ pivoting, so it is determined that the deepest algorithm is not got in polynomial time. Now, we write the t-value table of Table 3.1 as follows.

B	x_1	x_2	x_3	y_1	y_2	y_3	s
y_1	100	0		1		1	
y_2	5	10		0		100	
y_3	0.5	0.5		1		0	10000
c^\wedge	100	10	1	0	0	0	0

Where each value t_{ij} reflects the location information of Q_{ij} intersected by plane (τ_j) and edge $L_i : t_{ij} > 0$ imply that Q_{ij} is real, which locates on L_i; while $t_{ij} < 0$ implying that Q_{ij} is virtual, which is in the inversed ray of L_i. What we care about is the height of these intersections. We have that $Q_{ij}b = Vb + t_{ij}e_i$, since $Q_{ij} = V + t_{ij}e_i$, and we have that $s_i = c_i b$, which was emphasized in Theorem 2.1, so that $t_{ij}s_i = Q_{ij}b - Vb$. The right side of the equation is called the relative height of Q_{ij} with respect to the tip V. Times slop s_i to all real t—values t_{ij} in i—th row, we get the following tableau, called the intersected relative heights table.
What is the meaning of terms in the lowest row? For any \(j \in J\), denote that

\[
h_j = \min_j \{t_{ij}s_i | t_{ij} > 0\}
\]

which is called the lowest height with respect to column \(j\): For a strictly normal cone \(C\), the highest principle for the selection of cutter \((\tau_j^*)\) is that

\[
j^* = \arg\max_j \{h_j | c_j^* > 0\}
\]

If there is an index \(j \in J\), such that \(t_{ij} \leq 0\) hold for all indices \(i\), then \(\text{(3.5)}\) has no meaning; while in this case, \(c_j^* > 0\) implies that \((\tau_j)\) will cut the whole dual feasible region \(D\) to be empty, (readers can find out the reason in Section 4). So that, we can apply the highest principle perfectly.

After the cutter \((\tau_j^*)\) has been selected, we can get \(i^*\) by means of \(\text{(3.5)}\) as follows

\[
i^* = \arg\min_i \{t_{ij}s_i | t_{ij} > 0\}
\]

Since that \(C\) is strictly normal, \(s_i > 0\) hold for all \(i\). Hence \(\tau_{ij} > 0\) if and only if \(t_{ij} > 0\), so that:

\[
i^* = \arg\min_i \{t_{ij}s_i | t_{ij} > 0\} = \arg\min_i \{c_j^* s_i / \tau_{ij} | t_{ij} > 0\} = \arg\min_i \{s_i / \tau_{ij} | t_{ij} > 0\} = i(j^*),
\]

Which is the very formular \(2.12\) in simplex pivoting. It means that, the highest algorithm can be performed by pivoting after the selection of \(j^*\).

In the counter example of Klee Min ty we have \(j^* = 3\) and then \(i^* = 3\), then do pivoting at 3.3 in \(\text{(3.5)}\) we get the new table as follows:

\(\mathcal{B}\)	\(x_1\)	\(x_2\)	\(x_3\)	\(y_1\)	\(y_2\)	\(y_3\)	\(s\)
\(y_1\)	100	0	0	1	0	1	
\(y_2\)	500	100	0	0	100		
\(y_3\)	5000	5000	10000	0	0	10000	
\(c^\wedge\)	100	1000	0	0	0	0	0

Since that there is no positive number occurring in \(c^\wedge\), we get the dual optimal point is \(y^* = (0, 0, 1)\), with optimal height \(h^* = 10000\). The highest algorithm get the solution of Klee-Minty counter-example by only one time of pivoting.

In our papers \([13, 14]\), there was a gravity sliding algorithm, which is not a method of cone-cutting, but a method of feasible point falling and sliding along the wall of feasible region. The corresponding algorithm in cone-cutting can be described as follows:
The steepest principle for cutter selection:

\[j^* = \arg \max_j \{ s_i(j) \}. \] \hspace{1cm} (3.8)

The steepest principle can be used to solve the Klee-Minty counter example by one time of cone-cutting also, but we could not say that steepest is better than deepest principle absolutely. We can get counter example showing that deepest can be better than steepest principle. However, The highest principle is always better than deepest and steepest principles both.

4 Column elimination

4.1 Basic theorem of column elimination

In cone cutting, an expelled face can cut back into base cone frequently, this is the main obstacle for the searching of strong polynomial resolution. The column elimination theorem proposed by Y. Ye in article [9] has important significance, and we have advanced work stated in this section.

Definition 4.1 A constraint plane \((\tau_j)\) is called an redundant plane if it does not intersect the feasible region \(D\) and it accepts \(D\); \((\tau_j)\) is called a golden plane if it includes an optimal point; \((\tau_j)\) is called a defective plane if it neither the redundant, nor the golden plane. A cone is called a golden cone if all its faces are olden.

Definition 4.2 A constraint plane \((\tau_j)\) is called eliminatable if it is not golden.

How can the eliminatable planes be eliminated?

Theorem 4.1 (New elimination theorem) If \(\tau_j \geq 0\) and \(c_j^+ < 0\), then \((\tau_j)\) is eliminatable; If \(\tau_j \leq 0\) and \(c_j^- > 0\), then \((\tau_j)\) cuts off all feasible points.

Proof According to 3.1 If \(\tau_j \geq 0\) (i.e., for \(i=1,\ldots,m, \tau_{ij} \geq 0\)) and \(c_j^+ < 0\), then for \(i=1,\ldots,m\), we have that \(\tau_{ij} \leq 0\). For those index \(i\) who makes that \(\tau_{ij} = 0\), \(\tau_{ij}\) parallels to and accepts \(L_i\) since \(c_j^+ \leq 0\); The rest situation is that all intersected parameters are negative: \(\tau_{ij} \leq 0\). It means that all intersected points are virtual. Therefore, the whole cone \(C\) is located at one side of the plane \((\tau_j)\). Since \(c_j^+ < 0\), \((\tau_j)\) accepts the whole cone \(C\) but does not contain any optimal point. So that \((\tau_j)\) is eliminatable.

This theorem is similar to the Ye-column elimination theorem, but derived from different basis, more intuitive.

The condition of elimination theorem is that all coefficients in the norm vector must have a same symbol: non-negative or non-positive, we call such a property as symbol consistency. How do take a plane having symbol consistency? We need to introduce the following concepts.

4.2 Implantation of the reverse horizontal

Definition 4.3 A normal cone called a strictly normal cone, if for \(i = 1,\ldots,m, s_i > 0\).

A non-strict normal cone is a normal cone with horizontal edges.

The strictly normal cone is unbounded on top, in order to get a bounded enclosure, we put a lid on it.

Definition 4.4 For a given positive number \(u\), the \(u\)-reverse horizontal lid is a plane with equation in the original table \((T_o)\):

\[-b_1y_1 - \ldots - b_my_m = -u\] \hspace{1cm} (4.1)
Or, in the table T

$$-s_1y_1 - ... - s_my_m = -u \quad (4.1')$$

Which is called the reverse horizontal lit of a strictly normal cone C

Note that the norm vector of the lit is $-b$, or $-s = -B^{-1}b$.

Definition 4.5 Suppose that the C is a strictly normal cone, denote that

$$C_u = \{ y \in C | h(y) \leq u \}, \; D_u = \{ y \in D | h(y) = u \}. \quad (4.2)$$

C_u is called the u-frustum of C and D_u the u-feasible section of C.

Proposition 4.1 Given a Simplex table T as long as there is a feasible point whose height is equal to or lower than u, then, without affecting the solution of the programming problem, u-reverse horizontal plane can be added to the table and the feasible region D can be substituted by D_u.

Proof The set D_u is formed by deleting points higher than u from D. Let y^* be a lowest point, because it is the lowest point in D, and its height will not be higher than the height of any feasible point, so y^* will not be higher than u, and then will not be deleted by the u-reverse horizontal plane. Therefore, adding this lit to the table will not change the acquisition of the lowest point, and D_u can be used to replace $-D$. \textbf{End}

The proposition benefits us that a defective plane for D can be changed to a redundant plane for D_u, the later one is easier to be eliminated than the former.

Definition 4.6 Given a Simplex table T, add the reverse horizontal plane column with a column index, after the n-th column, the expanded table is called an expanded table, denoted as (T^+).

4.3 \textbf{Symbol consistent theorem}

Theorem 4.2 (Symbol consistency coefficient theorem) Given a strictly normal cone plus an u-lit written in the expanded table (T^+), Doing pivoting at (i^*, Δ) according to following t^*-values.

$$i^* = \arg \max_i \{ s_i / \tau_{ij} | \tau_{ij} < 0 \} \text{ (when } c_j^\wedge < 0 \}; \quad (4.3)$$

$$i^* = \arg \min_i \{ s_i / \tau_{ij} | \tau_{ij} > 0 \} \text{ (when } c_j^\wedge > 0 \). \quad (4.4)$$

Then, the norm vector of τ_j can become non-negative by 4.3 and non-positive by 4.4.

Proof Note that the norm coefficients of (x^Δ) is that $\tau_{i\Delta} = -s_i (i = 1, ..., m)$, After pivoting, we have that

$$\tau_{ij}^\prime = \tau_{ij} - \tau_{i\Delta} / \tau_{i\Delta} = \tau_{ij} - \tau_{i\Delta} (-s_i) / (-s_i*) = \tau_{ij} - \tau_{i\Delta} s_i / s_i*$$

Hence, according to 4.3 $s_i* / \tau_{i\Delta} \geq s_i / \tau_{ij}$, i.e., $\tau_{ij} / s_i \geq \tau_{i\Delta} / s_i*$, while $s_i > 0$, then we have that

$$\tau_{ij}^\prime = s_i (\tau_{ij} / s_i - \tau_{i\Delta} / s_i*) \geq 0$$

The new coefficients become non-negative by 4.3 \textbf{Similary proof can be got for the rest. \textbf{End}}

Example 4.1 Given the extended table (T^+), try to sign the coefficients of plane (x_5).

B	x_1	x_2	x_3	x_4	x_5	x^Δ	y_1	y_2	y_3	y_4	s
y_1	-2	-2	1	1	0	-1	1	0	0	0	1
y_2	-1	4	-1	2	-1	-2	0	1	0	0	2
y_3	3	2	0	-1	1	-6	0	0	1	0	6
y_4	1	-1	3	0	1	-3	0	0	0	1	3
c^\wedge	-1	2	1	2	-2	-u	0	0	0	0	0
Solve: Since that \(c^*_j = -2 < 0 \), according to 4.3 \(\hat{i}^* = \arg \max_i \{ \tau_{ij}/\tau_{ij*} | \tau_{ij} < 0 \} = 2 \). Doing pivoting at \((2, \Delta) = (2, 6)\), get new table as follows:

Table 4.2 \((x^\Delta)\) enters in to the base

\(B \)	\(x_1 \)	\(x_2 \)	\(x_3 \)	\(x_4 \)	\(x_5 \)	\(x^\Delta \)	\(y_1 \)	\(y_2 \)	\(y_3 \)	\(y_4 \)	\(s \)
\(y_1 \)	-3/2	-4	3/2	3/2	1/2	0	1	-1/2	0	0	0
\(x \)	1/2	-2	1/2	1/2	1/2	1	0	-1/2	0	0	-1
\(y_3 \)	6	-10	3	2	4	0	0	-3	1	0	0
\(y_4 \)	5/2	-7	9/2	3/2	5/2	0	0	3/2	0	1	0
\(c^\wedge \)	-2+u/2	-u	-u								

This pivoting is taken at a negative grid, which is a non classical Simplex. The approach is still to normalize the pivoting grid, times=2 to second row, and then continue to operate.

Note that a non-classic pivoting gets no longer a normal cone, the second edge slope of the edges is negative. The transformation brings the norm coefficients of plane \((x_5)\) in consistency: \(\tau_5 = \left(1/2, 1/2, 4, 5/2\right)^T \).

The intuitive idea of Theorem 4.2 is: Treating \(C_* \) as a cone with a flat top cover at height \(u \), there are \(m \) vertexes \(V_1(u), \ldots, V_m(u) \) on the cover. Let \(u \) began to rise from \(h(V) \). The whole body of the intersected cone \(C_u \) was located in the lower side of any given plane \((\tau_j)\). Once a vertex \(V_{i*}(u) \) contacts with the \(\tau_j \), firstly at \(u = u^* \), the plane then gets symbols consistency there: Let \(C_{i*} \) be the cone, which is got by doing pivot at \((i^*, \Delta)\), i.e., which is the original cone \(C \) cut by \((x^\Delta)\). It is obvious that \(V_{i*}(u) \) is the tip of \(C_{i*} \). If \(u = u^* - \epsilon \) then \(\tau_j \) cuts \(C_{i*} \) on real edges consistently; If \(u = u^* + \epsilon \), then \(\tau_j \) cuts \(C_{i*} \) on virtual edges consistently. The vertex \(V_{i*}(u) \) is so important for \(u \). How to get it? It is the lowest real intersection of \((\tau_j)\) with the older cone \(C \). This is what mean in 4.3 and 4.4.

Definition 4.8 The \(i \)-th edge is called the fishing edge with respect to \((x_j)\); the intersected point \(V_{i*} \) is called its critical point; \(u^* = h(V_{i*}) \) is called the critical height of \((x_j)\). \(u \) is called a feasible height if there is a feasible point \(Q \) with \(h(Q) \leq u \).

Without proof, we have the following proposition:

Proposition 4.2 Every constraint plane \((x_j)\) has at least has at least one fishing edge; each fishing edge has one and only one critical point \(V_{i*} \):

\[
V_{i*} = V + c^*_j e_{i*}/\tau_{i*j} \tag{4.5}
\]

with criticle height \(u^*_j \):

\[
u^*_j = h(V) + c^*_j s_{i*}/\tau_{i*j} \tag{4.6}
\]

The criticle point \(V_{i*} \) of plane \((x_j)\) implies that \((x_j)\) could be deletable provided its criticle height \(u^*_j \) is a feasible height; otherwise, if all feasible points exist above criticle height only, then no meaning for criticle point again. So far, we have following theorem:

Theorem 4.3 A plane \((x_j)\) with \(c^*_j < 0 \) can be deleted if and only if there is a dual feasible point being not higher than its criticle point; A plane \((x_j)\) with \(c^*_j > 0 \) can cut off the whole duafeasible region \(D \), if and only if there is a dual feasible point being not higher than its criticle point.

The theorem tells us that column deleting is not a independent process; which relies on the falling down of feasible height, we need to wait about feasible falling stated in Section 6.

Example 4.2 Critical height records.
Table 4.4 Records of critical heights

\(B \)	\(x_1 \)	\(x_2 \)	\(x_3 \)	\(x_4 \)	\(x_5 \)	\(y_1 \)	\(y_2 \)	\(y_3 \)	\(y_4 \)	\(y_5 \)	\(\Delta h \)	
\(x_1 \)	1	3.5	0.5	0	0	0	0.5	-0.5	0	0	0	1.5
\(x_4 \)	0	2.5	0.5	1	0	1	-0.5	1.5	0	1	0	1.5
\(y_3 \)	0	-2	-1	0	0	-1	1	-2	1	-2	0	2
\(x_5 \)	0	1.5	0.5	0	1	0	-0.5	0.5	0	1	0	0.5
\(y_5 \)	0	0.5	-1.5	0	0	1	-0.5	0.5	0	0	1	0.5
\(c^\top \)	0	-19	-2	0	0	0	-3	1	0	0	0	3.5

In theory, we need to use expanded table, but we can use table \(T \) directly according to proposition 4.2.

The cutting degrees of \((x_2), (x_3)\) and \((y_1)\) are negative, and their critical heights can be calculated according to 4.6 respectively:

- Fishing index of \((x_2)\): \(i^* = 3, u_{2*} = (V) + c^\top \cdot s_{3}/\tau_{32} = 30; \)
- Fishing index of \((x_3)\): \(i^* = 3, u_{3*} = (V) + c^\top \cdot s_{3}/\tau_{33} = 15; \)
- Fishing index of \((y_1)\): \(i^* = 3, u_{6*} = (V) + c^\top \cdot s_{4}/\tau_{46} = 14; \)

End of Example. 4.1

We only introduce how to record eliminatable information for negative cutting degree plans based on 4.3, but do not introduce how to treat cut off situation for positive cutting degree planes based on 4.4. Why? Because, an Assumption for strong polynomial problem in the paper is that: The dual feasible region \(D \) is not empty. So there is no necessary to consider the cut off situation. It is not no such desire, it is no enough ability.

The same plane can have positive, negative or zero cutting degree in different tables. Therefore, the critical height records of a plane may appear and disappear, and may contradicted each other, but the plane can be eliminated as long as one record is feasible.

5 Ray feasible interval and non-strict normal cone treatment

The horizontal upper cover of the cone requires that the cone is strictly normal, no edges with a zero slope. Otherwise, the horizontal intersected cone is not a bounded closed convex set, and the pivoting grid will stay on the horizontal edge, which causes the taboo of equal height cycle in the traditional Simplex algorithm. In fact, the appearance of the horizontal edge is exactly the information what we look for firstly If there is a feasible point on the horizontal edge, then all the points in the feasible interval are the dual optimal points.

5.1 Looking for feasible interval on a ray

Given the Simplex table \(T_0 \) rays are extracted from point \(P \) along direction \(d \), and we are looking for the feasible internal on the ray.

Theorem 5.1 Judgement of feasible interval on a ray Given a Simplex table \(T_0 \) According to Definition 3.1:

- **F1)** If there is a \(D_j = 0 \) with \(M_j > 0 \), Then there is no feasible point on the ray; **F2)** If \(M_j \leq 0 \) whenever \(D_j = 0 \), then set that \(t_a = \max \{ t_j | D_j > 0 \} \);

\[
(5.1)
\]
\[t_b = \min_j \{ t_j | D_j < 0 \}; \]

(5.2)

If \(t_a \leq t_b \) then there is a feasible interval \([Q_a, Q_b]\) on the ray:

\[Q_a = P + t_a d, Q_b = P + t_b d, \]

(5.3)

Proof is obvious

It is wrong that accepting a feasible interval by means of condition \(F2 \) only. We must check if the condition \(F1 \) is satisfied in the first.

When \(P = V \) is the tip of cone \(C \) with respect to Table (T) and \(d = c_i^e \) is the direction of edge \(L_i \) of \(C \) then the Molecular vector \(M \) is the lowest row \(e^\top \) in Table (T), and the Denominator vector \(D \) is the \(i \)-th row in Table (T).

It is wrong that calculating \(D_j = d\tau_j \) in stead of \(D_j = dA_j^+ \). Since that \(\tau_j \) is the variant of \(A_j^+ \), it is very easy to mix the usages of them. When you calculate the denominator \(D \), please turn back to the original table \(T_o \).

5.2 Treatment of non-strict normal cones

Example 5.1 Discover a horizontal edge from Tables 5.1.

Table 5.1 Original table \(T_o \)

\(B \)	\(B \)	\(x_1 \)	\(x_2 \)	\(x_3 \)	\(x_4 \)	\(x_5 \)	\(y_1 \)	\(y_2 \)	\(y_3 \)	\(y_4 \)	\(y_5 \)	\(\Delta h \)
\(y_1 \)	2	-2	1	1	0	1	1	0	0	0	0	4
\(y_2 \)	0	1	0	1	-1	1	0	1	0	0	0	1
\(y_3 \)	0	2	0	1	1	0	0	0	1	0	0	4
\(y_4 \)	1	1	1	0	1	0	0	0	0	1	0	2
\(y_5 \)	1	0	-1	0	0	1	0	0	0	0	1	6
\(\sigma \)	6	-20	1	-2	2	0	0	0	0	0	0	0

It is a criterion that if \(s_i/\tau_{ij} = s_k/\tau_{kj} \), then taking pivot at \((i, j)\) or at \((k, j)\), there must occur the horizontal edge in the next table. Now, do pivot at \((4, 1)\), get Table 5.2.

Table 5.2 Discover an horizontal edge

\(B \)	\(B \)	\(x_1 \)	\(x_2 \)	\(x_3 \)	\(x_4 \)	\(x_5 \)	\(x_6 \)	\(y_1 \)	\(y_2 \)	\(y_3 \)	\(y_4 \)	\(y_5 \)	\(s \)
\(y_1 \)	0	-4	-1	1	-2	1	1	0	0	-2	0	0	
\(y_2 \)	0	1	0	1	-1	1	0	1	0	0	0	1	
\(y_3 \)	0	2	0	1	1	0	0	0	1	0	0	4	
\(y_4 \)	1	1	1	0	1	0	0	0	0	1	0	2	
\(y_5 \)	0	-1	2	0	-1	1	0	0	0	-1	1	4	
\(\sigma \)	0	-26	-5	2	-8	2	0	0	0	-6	0	-12	

Since that \(s_1 = 0 \), the 1-th edge is a horizontal edge.

Then looking for the feasible interval on the edge \(L_1 \), according to Theorem 5.1:
F1. No positive cutting degree when D-value is zero, satisfied;
F2. $t_a = \max_j \{ t_j | \tau_j > 0 \} = 2 < 3 = \min_j \{ t_j | \tau_j < 0 \} = t_b$,
There is a feasible interval on the edge:
$Q_a = (0, 0, 0, 6, 0) + 2(1, 0, 0, 2, 0) = (2, 0, 0, 2, 0)$
$Q_b = (0, 0, 0, 6, 0) + 3(1, 0, 0, 2, 0) = (3, 0, 0, 0, 0)$
Conclusion: The dual optimal points are the interval $[Q_a, Q_b]$, the optimal value is $h(Q_a) = 12$.
Most optimal solutions in big data linear programming are company with horizontal edge problem. According to this paper’s idea, the most difficult problem bicones most easy task.

6 Horizontal feasible central falling

The elimination algorithm in Section 4 leaves a task to this section: Identify whither a height is feasible, then, let the feasible point fall down, the feasible height will be extended down also. In paper [13], the authors have put forward a feasible point falling along the gravity direction $g = -b$ until down to the wall of D, then, sliding along the projection of g in blocking planes until down to an optimal point, named the Gravity Sliding algorithm. Which realizes the maximal gradient principle on the convex polyhedrons. Despite its advantages, the idea to be updated in this section: When the feasible point hits the wall, instead of sliding in boundary planes, we move the point horizontally to the inner of D such that it falls down along the gravity g continuously, so to maintain as inner optimization.

6.1 Horizontal feasible outline

Given an expanded table (T^+). Let Q be a given feasible point.
Calculate $u^* = h(Q) = Qb$, assign that $u = u^* - h(V)$ in (T^+), which is relative height of Q with respect to the cone tip V.
For $i = 1, \ldots, m$,
1) Doing pivoting at (i, Δ), the i-th vertex V_i of the upper cover of C_{u^*} is got.
2) Set $P_i = V_i, \delta_i = Q - P_i$, and find out the feasible interval on the ray $y = P_i + t \delta_i$, Since that the ray starts from P_i and directs to Q we are looking for the start point of the feasible interval, which is nearer the vertex V_i Denote the first point by F_i.

Definition 6.1 Denote:

$$[F_\Delta] = \{ y | \exists (\lambda_1, \ldots, \lambda_m) \geq 0, \lambda_1 + \ldots, \lambda_m = 1; \lambda_1 F_1 + \ldots, \lambda_m F_m = y \} \quad (6.1)$$

Which is called the horizontal feasible outline on (x^Δ).

$[F_\Delta]$ may not includes all feasible points on (x^Δ), which is just an outline.

Example 6.1 Given a Simplex table (the same as Table 5.2), given a feasible point $F = (3.5, 0.2, 0, 0, 0, 0, 2, 0)$, try to find out the supportor of the upper cover containing F.
Step (0): Calculate the height of $F : h(F) = Fb = F(4, 1, 4, 2, 6)^T = 14.6$.
Calculate the height of $V = (0, 0, 0, 0, 6, 0)$, the tip of C in Table 5.2: $h(V) = 12$.
Assign $u = 14.612 = 2.6$ in the expanded table $(T^+):$
Table 6.1 Assign $u = 2.6$ in (T^+)

\vec{B}	x_1	x_2	x_3	x_4	x_5	x_6	x^Δ	y_1	y_2	y_3	y_4	y_5	s
y_1	0	-4	-1	1	-2	1	0	1	0	0	-2	0	0
y_2	0	1	0	1	-1	1	-1	0	1	0	0	0	1
y_3	0	2	0	1	1	0	-4	0	0	1	0	0	4
y_4	1	1	1	0	1	0	-2	0	0	0	1	0	2
y_5	0	-1	2	0	-1	1	-4	0	0	0	-1	1	4
σ	0	-26	-5	2	-8	2	-2.6	0	0	0	-6	0	-12

Note that the norm vector of (x^Δ) was $\tau_\Delta = -\binom{b}$ in the original table, but now, $\tau_\Delta = -B^{-1}b = -s$. For $i = 1, \ldots, 5$, calculating feasible start points on i-th ray (from V_i directs F), here we demo $i = 3$ only.

Step (1): Doing pivoting at $(3, \Delta)$, get Table 6.2:

Table 6.2 Doing pivot at $(3, \Delta)$ on table 6.1

\vec{B}	x_1	x_2	x_3	x_4	x_5	x_6	x^Δ	y_1	y_2	y_3	y_4	y_5	s
y_1	0	-4	-1	1	-2	1	0	1	0	0	-2	0	0
y_2	0	0.5	0	0.75	-1.25	1	0	0	1	0	-0.25	0	0
y_3	0	-0.5	0	-0.25	0	1	0	0	0	0	-0.25	0	0
x_1	1	1	0	1	-0.5	0.5	0	0	0	0	-0.5	1	0
y_5	0	-3	2	-1	-2	1	0	0	0	0	-1	-1	1
c^\wedge	0	-27.3	-5	1.35	-8.7	2	0	0	0	0	-0.65	-6	-14.6

Since the number on $(3, \Delta)$ is negative, this is a non-standard pivoting, by multiplying the third row by -4 and so on, operations will continue as usual.

The tip of the new cone is $V_3 = (0, 0, 0.65, 6, 0)$.
Step (2): Set $d_3 = F - V_3 = (3.5, 0.2, -0.65, -5.8, 0)$. Searching the feasible interval on the ray $y = V_3 + td_3$ on feasible interval, get the start point of feasible interval: $F_3 = (1.9, 0.1, 0.3, 2.85, 0)$.

Since the number in grid $(1, \Delta)$ is zero, we can’t do pivoting. we can rake the direction $d = e_1$ and calculating the first point of feasible interval on the ray and calculating the first point of feasible interval on the ray $y = V_1 + te_1$ and get the result. Finally we can get the horizontal feasible outline expanded by the following 5 vertices:

$$F_1 = (3.6, 0.2, 0.0);$$
$$F_2 = (0, 2.6, 0.6, 0);$$
$$F_4 = (1.9, 0.1, 0, 3.45, 0);$$
$$F_5 = (1.8, 0.2, 0, 2.7, 0.3);$$
$$F = (1.84, 0.64, 0.06, 3, 0.06);$$

6.2 Feasible point central falling

Definition 6.2 Let F be a feasible point, we call $y = F + tg = F - tb(t \geq 0)$ the falling ray from F. The end point of the feasible interval on the ray is called the foot of F, denoted as $F \downarrow$, inversely, we call F the lift of $F \downarrow$.

We are going to set F as the center of horizontal feasible outline the feasible central falling algorithm can be given as follows:
Input A strictly normal simplex table T_o with $b \geq 0$ and a feasible point F_o;
Step 1: $F := F_o$; calculating the center E of $[F\Delta]$;
Step 2: Calculating the landing point E' from the falling ray $y = E - tb$ ($t \geq 0$).
Step 3: Selecting a cutter passing through E' and doing cone cutting; If get the optimal point, then stop; Else, go back step 1.

In Example 5.1 we have that

$E = (F_1 + F_2 + F_3 + F_4 + F_5)/5 = (1.84, 0.64, 0.07, 3, 0.06)$.

And set $d = -b$, searching the feasible interval on the falling ray $y = E + td = E - tb$:

x_1	x_2	x_3	x_4	x_5	x_6	y_1	y_2	y_3	y_4	y_5
M:	0.06	6.67	0.07	0.9	0.05	0.48	0.6	0.03	1.5	0.01
D:	-16	-3	0	-9	-5	-11	-4	-1	-40	-2

Since the starting point is feasible, the t-value of landing point is the minimum of positive numbers in the t-vector, which is 0.01 now, and the landing point is

$E' = E - 0.01b = (1.8, 0.63, 0.03, 2.98, 0)$

We have that

$h(E') = 13.9, h(E) - h(E') = 14.6 - 13.9 = 0.7$.

while $h(E) - h(V) = 14.6 - 12 = 2.6$.

The effective rate of the central fall is $0.7/2.6 = 27\%$, it is not so good in the example, we can return to the Step 1 and get more lower feasible height, but we do not state in detail.

Review the Example 4.2, there are 3 critical points: The critical point of (x_2) with height 30 which is not lower than the feasible height 13.9 so that the plane (x_2) can be deleted similarly, since (x_3) has a critical point with height 15 and (y_1) has a critical point with height 14, they can be deleted both.

Significance of feasible central falling method: The falling velocity has nothing to rely on the dimension. For a two-dimensional feasible region, falling from a feasible center requires not hitting the lowest point but only falling close enough to the lowest point, which is a simple problem without complexity. We can start cone cutting from landing position as close as we want to the optimal point, that’s what we are fascinated.

6.3 Variable weight combinations

Definition 6.3 Let $w = (w_1, ..., w_m)$ be a vector with coefficients non-negative and summed 1, denote that

$F^* = w_1 F_1 + ... + w_m F_m$ \hspace{1cm} (6.2)

Called the convex combination of $F_1, ..., F_m$, w is called the weight vector. When w is variable, Q^* is called a variable weight combination.

Theorem 6.1 Homomorphic Theorem Let t_k be the falling t-vector from F_k, t^* is falling t-vector from $F^* = w_1 F_1 + ... w_m F_m$, we have that

$t^* = w_1 t_1 + ... + w_m t_m$ \hspace{1cm} (6.3)

Proof The denominator $D = F^* A^+ = (w_1 F_1 + ... + w_m F_m) A^+ = w_1 F_1 A^+ + ... + w_m F_m A^+$

Since $w_1 + ... + w_m = 1$, we have that
\[M = (w_1 + \ldots + w_m)c^+ = w_1c^+ + \ldots + w_m c^+, \]
\[M = c^+ - Q^*A^+ = w_1(c^+ - Q_1 A^+) + \ldots + w_m(c^+ - Q_m A^+) = w_1c_1^+ + \ldots + w_mc_m^+. \]

Since \(D \) is the same, (6.2) holds, \textbf{End}

It is obvious that

\[\textbf{Corollary 6.1} \text{ If } F^* = w_1 F_1 + \ldots + w_m F_m, \text{ then} \]
\[(F^*) \downarrow = w_1(F_1) \downarrow + \ldots + w_m(F_m) \downarrow. \quad (6.4) \]

Set that:
\[[F_1, \ldots, F_m]|b = \{y|\exists[F_1, \ldots, F_m]\}, \]
which is the column generated by \([F_1, \ldots, F_m]\), it is not difficult to prove that.

\[\textbf{Corollary 6.2} \text{ Let } P^* \text{ be the optimal point in } D, \text{ if } P^* \text{ belongs to } [F_1, \ldots, F_m]|b, \text{ then there is a weight vector } w^\ast \text{ such that} \]
\[(F^*) \downarrow = (w_1^* F_1 + \ldots + w_m^* F_m) \downarrow = P^*. \quad (6.5) \]

Thus, the solution of linear programming is transformed into an optimization problem of variable weight combination.

We have no ability to solve the problem in the paper but presents a brief idea as follows:

Set \(r = (b, b) \), called the falling rate of parameter \(t \). For example, if \(b = (4, 1, 4, 2, 6) \), then \(r = 73 \). It means that the \(t \)-value plus 1, the falling heighth will plus 73. Inversely, to make the falling height go down 1, the \(t \)-value should plus \(1/r \). In the example, to fall down 2.6 it needs \(t \) indecre 2.5/73 = 0.036. Without the rate \(r \), we can’t do good optimization on \(t \)-value tuning.

\[\textbf{Example 6.2} \text{ Based on the 5 feasible vertices in Example 6.1, the variable weight combination is} \]

\[\text{ sought to make its landing point as close to the optimal point as possible.} \]

Step 1 Writing \(t \)-value vectors of \(F_1 - F_5 \) and \(F \) as follows:

\(t_1 \)	\(t_2 \)	\(t_3 \)	\(t_4 \)	\(t_5 \)	\(t_6 \)
\(x_1 \)	0.08	0	0.05	0.08	0.08
\(x_2 \)	4.3	9.5	6.7	6.6	6.67
\(x_3 \)	0.2	0.07	0.03	0	0.02
\(x_4 \)	0.44	0.28	1.03	1.07	0.99
\(x_5 \)	0.16	0.54	0	0	0.02
\(x_6 \)	0.88	0	0.48	0.48	0.47
\(y_1 \)	0.2	2.6	0	0.1	0.05
\(y_2 \)	0	3	0	0.08	0.03
\(y_3 \)	0.08	1.43	0.43	0.43	1.72
\(y_4 \)	0	0	0	0.03	0.01
\(y_5 \)	0	0	0	1.5	0.01

In between the 6 vectors, \(t \) is best since it does not include zero. Then ask where are its minimum and second minimum The last one corresponding to \(y_5 \) is the minimum 0.01 the second minimum 0.018 corresponds to \(y_3 \). Which vector has biggest value corresponding to \(y_5 \)? The vector \(t_5 \) has 0.05 there, unfortunately, which has zero corresponding to \(y_3 \). There needs to do weight combination.

If we take weights \((0.8, 0.2)\): then \(0.01 \times 0.8 + 0.05 \times 0.2 = 0.018\), the minimum is increasing but \(0.018 \times 0.8 + 0 \times 0.2 = 0.0144\), the second minimum becomes minimum. So we can improve the weights as \((0.862, 0.138)\):
\[
0.01 \times 0.862 + 0.005 \times 0.138 = 0.0155, \\
0.018 \times 0.862 + 0 \times 0.138 = 0.0155.
\]
This is the better result. Then we get the weighted center of horizontal feasible outline:

\[
F^* = 0.862F_5 + 0.138F = 0.028(F_1 + F_2 + F_3 + F_4) + 0.89F_5 = (1.8, 0.2, 0.06, 2.7, 0.26),
\]

\[
F^* = 0.0155b = (1.74, 0.18, 0.267, 0.17) = 13.5.
\]

\[
h(F^*) - h(F^* \downarrow) = 14.6 - 13.5 = 1.1.
\]

The effective of variable weight combination falling is \(1.1/2.6 = 42\%\), which is better than the feasible central falling. However, it is not a good result in the example. Indeed, if the optimal point is within the falling region of \(F_\Delta\), then, we can make the landing point directly attach the optimal solution. However, we can return to the Step 1, but we do not state the process in detail.

7 Tri-Skill combination

Tri-skill stands for 1. Highest principle on cutter-selection; 2. New column elimination; 3. Horizontal feasible central falling/sliding. These three algorithms all have their own advantages, but the strong power is in the combination of the three skills:

Given a Simplex table \(T\) Assume \(b \geq 0\); And given a feasible point \(F_0\);
Input index set of constraint planes \(J := \{1, \ldots, n, n + 1, \ldots, n + m\}\);
Step 1: Check if the cutting degree \(c^\top\) is non-positive. If so, stop and set the cone tip as a dual optimal point.
Step 2 Check whether slope vector \(s = B^{-1}b\) has same terms If so, make transformation to occur horizontal edges, and check feasible intervals on each horizontal edge. The convex set spanned by these feasible intervals is the set of optimal points; If there are no feasible points on all horizontal edges, they can be all cut of \(f\), and maintains the strict normal cone;
Step 3 \(F^{k+1} := F^k \downarrow\) (doing on current table \(T\), check if the relative error \(\epsilon = (h(V) - h(F^{k+1}))/h(V)\) is enough small, you can tuning an error threshold value, \(\epsilon < 0.1\) for example, if it is not, calculate the supportor of horizontal cover, doing feasible central falling again and again; Else, go to Step 4;
Step 4 Do pivoting according to the highest algorithm, recording critical heights in the bottom of negative cutting degree columns. Deleting the eliminatable planes’ indices from index set \(J\). Repeat step 4 within \(m\) times. After \(m\) times, go back to step 1.

The contribution of the algorithm: 1. In big data LP, optimal points occur in horizontal edges always, the algorithm provides a fast way to face the new challenge. 2. Doing feasible falling in the first, by a few steps (within 10 times), attaching the golden cone or near by that, then employ the highest cutting plus column elimination, the linear programming is not a complex but a ordinary calculation.

8 Conclusions

Linear programming is of extreme significance to artificial intelligence and data science. It is not only an indispensable computing tool, but also a potential cornerstone of intelligent science with its mathematical connotation of cause-and-effect interaction and dialectical Yin and Yang. It is an important topic of concern to the theory of factor space. The realization of strong polynomial algorithm for linear programming has solved a major theoretical crisis for the development of artificial intelligence.
Acknowledgment

Thanks to Liaoning Technical University, Big Data center of CAS for their supports; thanks to Professors and scholars Yixin Zhong, Huacan He, Zhende Huang, Yingjie Tian, Yongyi Chen, Kaiqi Zou, Hongxing Le, He Ouyang, Liyan Han, Xuehai Yuan, Qing He, Fanhui Zeng, Tiejun Cui, Yanke Bao, Haitao Liu, Jianjun Li, Jianwei Guo and Doc. Linjie Pu, Runjun Wan for their Supports and helps with enthusiasm.

References

[1] P. Z. Wang, H. T. Liu, Factor Space, the Mathematical Bases of Artificial Intelligence, [M]Beijing, Beijing University of Posts and Telecommunications Press, 2021.

[2] L. J. Pu, F. H. Zeng, P. Z. Wang, classification of Basis pings in factor space. Journal of Intelligent Systems (accepted).

[3] Y. K. Bao, P. Z. Wang, S. Z. Guo, The structure of factor space and dual convolution theorem. Journal of Intelligent System, 2018, 13(1): 1-10.

[4] G.B. Dantzig, Linear Programming and Extensions, Princeton University Press, Princeton, New Jersey, 1963.

[5] V. Klee and G.J. Minty. How good is the Simplex method. In O. Shisha, ed., Inequalities III, Academic Press, New York, NY, 1972.

[6] N. Karmarkar. A new polynomial time algorithm for linear programming. combinatorics, 4:373 395, 1984.

[7] S. Smale. Mathematical problems for the next century, Mathematical Intelligence, 20 (2) (1998) 7-15.

[8] Y. Ye. Eliminating columns in the Simplex method for linear programming, J . of Optimal Theory and Applications, 1989 63(1):69-77.

[9] Z. Z. Zhang, New Algorithms for the System of Linear Equations and Linear Programming , (Hong Kong SinoTech Press, Hong Kong, 1992 . (In Chinese)

[10] P. Z. Wang, Cone-cutting: A variant representation of pivot in Simplex, in Information Technology & Decision Making 10(1): pp.65-82, 2011.

[11] P. Z. Wang, Discussions on Hirsch conjecture and the existence of strongly polynomial-time simplex variants, in Ann. Data. Sci., 1(1): pp. 41–71, 2014, //DOI 10.1007/s40745-014-0005-9.

[12] P. Z. Wang, H.C.Lui, H. T. liu, S.C. Guo, Gravity sliding algorithm for linear programming, in Ann. Data. Sci., 2017, 4(2):193–210.//DOI 10.1007/s40745-017-0108-1.

[13] H.C. Lui and P.Z. Wang, The Sliding Gradient Algorithm for Linear Programming, AJOR, 2018.
[14] B. Corte, J. Vygen, Combinatorial Optimization, Theory and Algorithms, Springer, Berlin, New York,

[15] J. He, Q. W. Kong, H. C. Lui, H. T. Liu, Y. M. Ji, H. C. Yao, M. Z. Liu, J. J. Chen. Linear Adjusting Programming in Factor Space, 2020; arXiv:2010.14970.

[16] J. He, G. Huang, J. Cao, Z. W. Zhang, H. Zheng, P. Zhang, R. Zarei, F. Sansoto, R Wang, Y. M. Ji, W. B. Fan, Z. J. Xie, X. C. Wang, M. J. Guo, C. H. Chi, J. K. Zhang, Y. Li, X. J Chen, Y. Shi, T. Kersi, A. V. Zundert, Polynomial-time Algorithm for Simple Undirected Graph Isomorphism, Concurrency and Computation Practice and Experience, https://doi.org/10.1002/cpe.5484.

[17] J. He, J. J. Chen, G. Y. Huang, M. J. Guo, Z. W. Zhang, H. Zheng, Y. Y. Li, R. C. Wang, W B Fan, C .H. Chi, W. P. Ding, P. Souza, B. Chen, R. W. Li, J. Shang, Z. Van, André. (2020). A Fuzzy Theory Based Topological Distance Measurement for Undirected Multigraphs. 1-10. 10.1109/FUZZ48607.2020.9177559.