Observational cohort study of changing trends in non-invasive ventilation in very preterm infants and associations with clinical outcomes

Authors

1. Laura Sand
 Laura.sand@nhs.net
 Population and Lifespan Sciences, School of Medicine, University of Nottingham, UK

2. Lisa Szatkowski
 Lisa.szatkowski@nottingham.ac.uk
 Population and Lifespan Sciences, School of Medicine, University of Nottingham, UK

3. T'ng Chang Kwok
 tkwok@nhs.ent
 Population and Lifespan Sciences, School of Medicine, University of Nottingham, UK

4. Don Sharkey
 Don.sharkey@nottingham.ac.uk
 Population and Lifespan Sciences, School of Medicine, University of Nottingham, UK

5. David Todd
 david.todd@act.gov.au
 Department Neonatology, Centenary Hospital, Canberra, ACT, Australia.

6. Helen Budge
 Helen.budge@nottingham.ac.uk
 Population and Lifespan Sciences, School of Medicine, University of Nottingham, UK

7. Shalini Ojha
 shalini.ojha@nottingham.ac.uk
Corresponding author: Dr Shalini Ojha, Academic Unit of Population and Lifespan Sciences, School of Medicine, University of Nottingham. Room 4117, Medical School Building, Royal Derby Hospital, Derby DE22 3NE; email: shalini.ojha@nottingham.ac.uk
Orchid ID: https://orcid.org/0000-0001-5668-4227

Short title: Non-invasive ventilation in very preterm infants

Funding: This study did not receive any external funding.

Acknowledgements
Electronic patient data recorded at participating neonatal units that collectively form the United Kingdom Neonatal Collaborative are transmitted to the Neonatal Data Analysis Unit to form the National Neonatal Research Database (NNRD).

We are grateful to all the families that agreed to the inclusion of their baby’s data in the NNRD, the health professionals who recorded data and the Neonatal Data Analysis Unit team.

Word count: 2624
Contributor statement:

Laura Sand: participated in the concept and design, performed the analysis of data, participated in interpretation of data, and drafted the manuscript.

Lisa Szatkowski: participated in the concept and design, performed the analysis of data, participated in interpretation of data, and drafted and revised the manuscript.

T’ng Chang Kwok: participated in the concept and design, analysis of data and interpretation of data, and revised the manuscript.

Don Sharkey: participated in the concept and design, analysis of data and interpretation of data, and revised the manuscript.

David Todd: participated in the concept and design, interpretation of data, and revised the manuscript.

Helen Budge: participated in the concept and design, analysis of data and interpretation of data, and revised the manuscript.

Shalini Ojha: designed and conceptualised the study, participated in analysis and interpretation of data, and drafted and revised the manuscript.

All authors approve the final manuscript as submitted and agree to be accountable for all aspects of the work.

Conflict of Interest Disclosures and funding sources: Laura Sand was funded by the Health Education England, Academic Foundation Training Programme. Shalini Ojha has received funds from the National Institute of Health Research, UK and the Medical Research Council, UK for other research. The authors have no other conflicts of interest relevant to this article to disclose.
Abstract (247 words)

Objective: To determine the change in non-invasive ventilation (NIV) use over time in infants born at <32 weeks’ gestation and the associated clinical outcomes.

Study design: Retrospective cohort study using routinely recorded data from the National Neonatal Research Database of infants born at <32 weeks admitted to neonatal units in England and Wales from 2010 to 2017.

Results: In 56,537 infants, NIV use increased significantly between 2010 and 2017 (Continuous Positive Airway Pressure (CPAP) from 68.5% to 80.2% in 2017 and high flow nasal cannula (HFNC) from 14% to 68% respectively) (p<0.001)). Use of NIV as the initial mode of respiratory support also increased (CPAP, 21.5% to 28.0%; HFNC, 1% to 7%; (p<0.001)).

HFNC was used earlier, and for longer, in those who received CPAP or mechanical ventilation. HFNC use was associated with decreased odds of death before discharge (aOR 0.19, 95% CI 0.17-0.22). Infants receiving CPAP but no HFNC died at an earlier median chronological age: CPAP group, 22 (IQR 10-39) days; HFNC group 40 (20-76) days (p<0.001). Among survivors, HFNC use was associated with increased odds of bronchopulmonary dysplasia (BPD) (aOR 2.98, 95% CI 2.81-3.15) and other adverse outcomes.

Conclusions: NIV use is increasing, particularly as initial respiratory support. HFNC use has increased significantly with a 7-fold increase soon after birth which was associated with higher rates of BPD. As more infants survive with BPD, we need robust clinical evidence, to improve outcomes with the use of NIV as initial and ongoing respiratory support.
Ethical approval

The dataset was created by the NDAU and this study was approved by Yorkshire & The Humber – Sheffield Research Ethics Committee (IRAS 259802).

Key words: nasal continuous positive pressure ventilation; high flow nasal cannula oxygen; bronchopulmonary dysplasia

Abbreviations: aOR, adjusted odds ratio; BPD, bronchopulmonary dysplasia; CPAP, continuous positive airway pressure; CI, confidence interval; GA, gestational age; HFNC, high flow nasal cannula oxygen; IQR, inter-quartile range; MD, median difference; NEC, necrotising enterocolitis; NIV, non-invasive ventilation; NNRD, National Neonatal Research Database; ROP, retinopathy of prematurity; SD, standard deviation.
What is already known on this topic

- Non-invasive ventilation (NIV) is being used increasingly to provide respiratory support to very preterm infants.
- While Continuous Positive Airway Pressure (CPAP) remains the mainstay of NIV, High flow nasal cannula oxygen (HFNC) is a popular mode of NIV and clinicians have reported increasing preference of using HFNC.

What this study adds

- NIV support, particularly HFNC, in very preterm infants increased significantly between 2010 and 2017 in England and Wales.
- HFNC is increasingly used as initial respiratory support in extremely preterm infants, although there is a high rate of such infants requiring CPAP or mechanical ventilation within 7 days.
Introduction

In very preterm infants, increased use of antenatal steroids, early surfactant, and attempts to minimise lung injury have encouraged increased use of non-invasive ventilation (NIV).[1] Modalities such as nasal continuous positive airway pressure (CPAP) that provide a set distending pressure prevent some adverse effects associated with mechanical ventilation.[2] Similarly, high flow nasal cannula oxygen (HFNC), which delivers a set gas flow, rather than a set distending pressure, has become increasingly popular.[3]

Continuous distending pressure directly, or generated via a continuous flow of oxygen-air mixture, stabilises the upper airway, maintains lung volumes, and stimulates upper airways to maintain a respiratory drive.[1] These mechanisms can reduce the need for prolonged invasive ventilation and may reduce the risk of bronchopulmonary dysplasia (BPD) and other ventilator-induced lung injuries.[4] Meta-analyses suggest that, when used for initial respiratory support or as respiratory support after extubation, HFNC and CPAP are not different when comparing the risks of BPD and death in preterm infants.[5] Both are now frequently used. Although UK clinicians’ report increased use of HFNC [6], there are no data quantifying the change in use of NIV in actual practice.

We aimed to quantify the change in use of NIV in infants born at <32 weeks’ gestation across England and Wales from 2010 to 2017 and analysed the association between these changes and clinical outcomes.

Methods

We performed a retrospective cohort study of infants born at <32 weeks’ gestation in England and Wales from 01 January 2010 to 31 December 2017 inclusive, whose data are held within the UK National Neonatal Research Database (NNRD).[7] [8]
Infants were excluded if there were missing data as described in Supplementary Figure 1 and Supplementary Table 1.[7].

Exposures
From variables that record types of respiratory support received (invasive ventilation, NIV, supplemental oxygen, type of NIV), we identified infants who received any NIV (Supplementary Table 1). Infants who received NIV were divided into two groups – those who received HFNC for any length of time (HFNC group) and those who received CPAP and had no record of receiving HFNC (CPAP only group). Infants in the HFNC group may have received CPAP also.

Outcomes
BPD was defined as requiring any supplementary oxygen or respiratory support at 36 weeks’ CGA (infants who died before 36 weeks were excluded) [9]. Other pre-planned outcomes and their definitions are given in Supplementary Table 1.

Statistical Analysis
All data management and analyses were performed using STATA, version 15.1 (StataCorp, College Station, Tx). After exclusions, we quantified the percentage of all admissions each year where HFNC was used, both for all infants and for two pre-specified subgroups: those born at <28 weeks’, and those born at 28-31 weeks’ gestation. We compared the study groups, including demographic, pregnancy and delivery and the NMR-2000 score to describe infants’ risk of in-hospital mortality.[10]

We quantified and described changes in the highest mode of respiratory support received on the first day after birth. We described the percentage who subsequently ‘failed’ on the initial mode as those who had escalation of respiratory support within 7 days i.e., for those on
HFNC initially, if they received CPAP and/or mechanical ventilation and for those on CPAP initially, if they received mechanical ventilation. Where HFNC was not the initial mode of respiratory support, we quantified subsequent exposure to HFNC. Change in use over the study period (2010-2017) was analysed using the Chi-squared test for trends.

We used logistic regression for binary variables and quantile regression for continuous variables to explore the association between study groups and the pre-specified outcomes. Odds ratios and median differences (MD) were adjusted for: GA group (<28 weeks’ gestation or 28-31 weeks’ gestation); sex; birth weight for age z-score (<-2SD or ≥-2SD or between <2SD and ≥-2SD); exposure to antenatal steroids; NMR-2000 category (low risk, medium risk or high risk)[10]; need for mechanical ventilation on day 1; and year of admission. Any missing data for confounding variables were treated as separate categories and infants retained in the models. We used a robust variance estimator to account for clustering of infants within units. All P values were 2-sided, significance was set at P<0.05, and we used a Bonferroni correction to account for multiple testing. A predefined subgroup analysis was performed for all outcomes for infants born at <28 weeks’ gestation and those born at 28-31 weeks’ gestation.

This study was approved by Yorkshire & The Humber – Sheffield Research Ethics Committee (IRAS 259802).
Results

From the population of 63,210 infants born at <32 weeks’ gestation, 56,537 infants were retained after exclusions (Supplementary Figure 1). Of these, 45,898 infants received NIV.

Non-invasive ventilation (CPAP or HFNC) on day of birth

On the day of birth, 16,308/56,537 (28.8%) infants received NIV, which included 1,065/17,061 (6.2%) infants <28 weeks and 15,243/39,476 (38.6%) infants of 28-31 weeks’ GA. During the study period, those who received NIV on the first day increased from 1,457/6,479 (22.5%) to 2,598/7401 (35.1%). This increase was larger among the 28-31 weeks’ GA group [(from 1,357/4,570 (29.7%) to 2,471/5,194 (46.5%)] as compared to that among infants <28 weeks’ GA [from 100/1,909 (5.2%) to 181/2,216 (8.2%)].

Figure 1 shows the respiratory support received by the infants on the first day (initial respiratory support) from 2010 to 2017. The percentage receiving CPAP increased 1.3-fold from 21.5% to 28.0% whilst HFNC use increased by 7-fold from 1.0% to 7.0%. This increase was seen both in infants born at <28 weeks’ and those born at 28-31 weeks’ GA, though the magnitude of increase was greater amongst the latter (Table 1).

CPAP was used as initial support in 14,312/56,537 infants (25.3% of all admissions) of whom 18.3% (n=2,623/14,312) went on to receive mechanical ventilation within 7 days (Table 1). The failure rate was higher among infants born at <28 weeks, of whom 263/836 (31.5%) were ventilated within 7 days compared to 2,360/13,476 (17.5%) infants born at 28-31 weeks.

HFNC was used as the initial respiratory support in 1,996/56,537 infants (3.5% of all admissions). 748/1,996 (37.5%) went onto receive CPAP (n=571/1,996 [28.6%]) or mechanical ventilation (n=347/1,996 [17.4%]) within 7 days, including 170/1,996 (8.5%) who
received both CPAP and mechanical ventilation. The failure rate was higher among the more immature infants [<28 weeks’ GA: 135/229 (59.0%), including 84/229 (36.7%) who were mechanically ventilated; 28-31 weeks’ GA: 613/1,767 (34.7%), including 263/1,767 (14.9%) who were mechanically ventilated]. Among the infants who received HFNC on the first day, those who “failed” included more infants who were extremely preterm i.e. <28 weeks’ (135/784 [18.0%] vs. 94/1248 [7.5%] p<0.001); of lower birth weight [1,285 (346) g vs. 1396 (318) g; p<0.001]; multiple births (35.2% vs. 28.2%; p=0.001); born by Caesarean section (64.7% vs. 55.4%; p<0.001); had prolonged rupture of membranes (17.8% vs. 28.6%; p<0.001); and who had not had surfactant (15.0% vs. 9.5%; p<0.001). There was no difference in the sex of the infants or receipt of antenatal steroids.

CPAP use during neonatal care

The use of CPAP at any point during an infant’s stay in neonatal care significantly increased from 68.5% infants in 2010 (n=4,439/6,479) to 80.2% in 2017 (n=5,941/7,410) (chi-squared test for trend p<0.001). Further data on the use of CPAP in infants who received mechanical ventilation as initial respiratory support are described in Table 2.

HFNC use during neonatal care

The use of HFNC at any point significantly increased from 14.3% of infants in 2010 (n=928/6,479) to 68.0% in 2017 (n=5,039/7,410) (Figure 2, p<0.001). The increase in percentage of infants who received mechanical ventilation or CPAP as their initial respiratory support and then went on to receive HFNC, and data demonstrating earlier and more prolonged use of HFNC, are described in Table 2.

Clinical outcomes associated with use of CPAP and HFNC

There were 18,926 infants who had CPAP only and 26,936 infants who received any HFNC (Supplementary Figure 1). Infants receiving HFNC were more immature and smaller at
birth, more were exposed to antenatal steroids and received surfactant while a smaller proportion were delivered by caesarean section, were multiple births, and were less likely to be born to mothers who had prolonged rupture of membranes (Supplementary Table 2).

The outcomes are shown in Table 3 and by sub-group in Supplementary Tables 3 and 4. The odds of death before discharge were significantly higher in infants who had CPAP only compared to those who had any HFNC (aOR, 0.19 [95% CI, 0.17 to 0.22]). Infants who had CPAP only died at an earlier chronological age than those who received HFNC (median [IQR] age of death: CPAP group, 22 [10 to 39] days; HFNC group, 40 [20 to 76] days; p< 0.001) (Supplementary Figure 2). Excluding deaths before 36 weeks CGA, 3,136/18,003 (17.4%) infants who had CPAP only developed BPD compared to 12,336/26,260 (47.0%) who received any HFNC. The odds of developing BPD were significantly higher in the HFNC group (adjusted odds ratio odds ratio [aOR], 2.98 [95% CI, 2.81-3.15]). Infants who had HFNC spent significantly longer on respiratory support, had longer hospital stay, higher odds of NEC and other complications as compared to those who had CPAP only (Table 3).
Discussion

We found that, in England and Wales, there have been significant changes in the use of NIV in very preterm infants with substantial increase in use of HFNC from <15% of all infants born at <32 weeks’ gestation in 2010 to 68% in 2017, both as initial respiratory support (from 1% to 7%) and as support received later (from 15.7% to 69.8%). This is similar to the trend seen in Australia and New Zealand.[11]

Use of NIV on the day of birth has increased from 22% to 35% over the study period although, overall, only 8% of those born <28 weeks’ gestation received NIV on this day. In an Australia-New Zealand cohort (2007-2013), 29% of infants <29 weeks’ gestation received CPAP for initial respiratory support, 43% of whom required mechanical ventilation within 72 hours. [12] The overall CPAP failure rate was lower in our cohort (31%) even though we measured failure over a longer 7-day period. Systematic reviews of RCTs comparing early prophylactic CPAP with mechanical ventilation show a nearly 50% reduction in need for mechanical ventilation [13]. Our data demonstrate a more conservative use of CPAP as the initial respiratory support in England and Wales.

The Cochrane systematic review did not find any study that investigated the use of HFNC as the initial mode of respiratory support in infants <28 weeks’ gestation while other reviews reported that HFNC has higher failure rates than CPAP when used as first-line support in <28 week infants [14][15]. We found that 60% of <28 weeks’ gestation infants who received HFNC as initial support subsequently required escalation of support within 7 days, compared to 31.5% of the CPAP group. In the sub-group of infants born at 28-31 weeks’ gestation, 34.7% who received HFNC as initial mode required escalation within 7 days. This is similar to the 32.9% failure rate for HFNC among 28-31 week infants reported by Roberts et al. [16] in an RCT that was stopped early due to the high rate of HFNC treatment failure. When CPAP was used as initial mode of respiratory support, we found that 17.5% were ventilated
within 7 days, similar to the rate reported by Roberts et al. (16.1%) although they measured rates of intubation up to 72 hours only. HFNC use as the initial respiratory mode is increasing in popularity particularly in more mature infants. In a two-centre study in the UK, Zivanovic et al., found that use of HFNC without the need for CPAP as “rescue” was successful in preventing intubation in infants between 28 and 36 weeks’ gestation.[17]

Similarly, we found an increase in the use of HFNC later in neonatal care with significant increases in the number of infants who received any HFNC and the number of days on HFNC per infant. In addition, we also found that HFNC was given increasingly earlier with 12 days difference in initiation between 2010 and 2017.

We analysed the associations of these changes in practice with clinical outcomes and found higher mortality among infants who never received HFNC. Among those who survived to 36 weeks CGA, we found that the adjusted odds of BPD were significantly higher among those who received HFNC compared to those who had CPAP only. Infants in the CPAP only group died significantly earlier than those in the HFNC group. It is possible that attending clinicians did not choose HFNC for infants with more disease in the first few weeks of life. Such infants remained on mechanical ventilation or CPAP and may have died before they were considered well enough to receive HFNC. The survivors, particularly those who required prolonged respiratory support, were then more likely to receive HFNC, resulting in a higher rate of both survival and BPD amongst them. This suggests an element of confounding by indication i.e. the differences in outcome are related to the way a particular intervention is used rather than the intervention itself, which may explain some of the relationship between HFNC and death and HFNC and BPD. However, the use of HFNC may also be a step in the causal pathway [18] of BPD. The variable and unregulated distending pressure generated by HFNC may cause uncontrollable overexpansion and/or atelectasis that aggravate lung injury
leading to higher risks of BPD. Meta-analysis of RCTs, showed no difference in BPD between HFNC and CPAP use although the studies did not include many infants born at <28 weeks’ gestation [5]. Our findings are similar to previous smaller observational studies.[19]

Other important clinical outcomes such as late onset sepsis, NEC, PDA, pneumothorax, and ROP were also more frequent in babies who received HFNC. Infants who received HFNC required respiratory support for longer and received in-hospital neonatal care for longer. Prolonged need for respiratory support with HFNC has been demonstrated in meta-analyses of RCTs [5] and observational studies. [19,20]. Our study, due to its retrospective, observational design, cannot show a direct link between choice of NIV and any of the clinical outcomes we report. It has been suggested that the increased perceived patient tolerance, and ease of application and maintenance, may result in less urgency to wean leading to longer lengths of respiratory support and hospital stay [21].

Our study of 56,537 infants, limited by observational design, cannot imply a causative link between HFNC and either reduced mortality or increased BPD as highlighted by Roberts et al.[22] RCTs remain the gold-standard for demonstrating causation and clinical trials suggest that HFNC does not increase the risk of death or BPD compared to CPAP at least in the more mature population [5]. However outcomes in research trials can be superior to the same practice in clinical situations, possibly due to the greater level of control over patient selection and better adherence to treatment protocols in trial settings [23]. The worse outcomes, such as increased odds of BPD, in observational studies may be a consequence of indication creep [24] and outcomes may also vary with experience and training of practitioners. Careful patient selection and individualised application of HFNC may improve outcomes.
With a database that covers almost the entire population of England and Wales, we achieved a large sample size that enabled us to quantify the changes comprehensively and account for several confounding variables. In addition, we have accounted for multiple testing and used a robust variance estimator to account for clustering of infants within units. These make a robust observational study but do not remove the inherent limitation that associations do not imply causation.

Conclusion

NIV use is increasing. CPAP use increased 1.3-fold while HFNC use increased by 7-fold as respiratory support soon after birth. As more infants survive with BPD, we need clinical evidence and ongoing monitoring to ensure practice evolves in keeping with the best evidence to support the use of NIV as initial and ongoing respiratory support.
References

1. Fischer HS, Bührer C. Avoiding endotracheal ventilation to prevent bronchopulmonary dysplasia: a meta-analysis. *Pediatrics* 2013;132:e1351-1360. doi:10.1542/peds.2013-1880

2. Soll RF. A review on noninvasive ventilation: The Cochrane Systematic Reviews 2006. *J Perinatol* 2007;27:S21–5. doi:10.1038/sj.jp.7211722

3. Ojha S, Gridley E, Dorling J. Use of heated humidified high-flow nasal cannula oxygen in neonates: a UK wide survey. *Acta Paediatr* 2013;102:249–53. doi:10.1111/apa.12090

4. Donn SM. Minimising ventilator induced lung injury in preterm infants. *Archives of Disease in Childhood - Fetal and Neonatal Edition* 2005;91:F226–30. doi:10.1136/adc.2005.082271

5. Wilkinson D, Andersen C, O'Donnell CP, et al. High flow nasal cannula for respiratory support in preterm infants. *Cochrane Database of Systematic Reviews* Published Online First: 22 February 2016. doi:10.1002/14651858.CD006405.pub3

6. Shetty S, Sundaresan A, Hunt K, et al. Changes in the use of humidified high flow nasal cannula oxygen. *Arch Dis Child Fetal Neonatal Ed* 2016;101:F371–2. doi:10.1136/archdischild-2016-310497

7. Battersby C, Statnikov Y, Santhakumaran S, et al. The United Kingdom National Neonatal Research Database: A validation study. *PLoS One* 2018;13. doi:10.1371/journal.pone.0201815

8. Gale C, Morris I. The UK National Neonatal Research Database: using neonatal data for research, quality improvement and more. *Archives of Disease in Childhood - Education and Practice* 2016;101:216–8. doi:10.1136/archdischild-2015-309928

9. Helenius K, Longford N, Lehtonen L, et al. Association of early postnatal transfer and birth outside a tertiary hospital with mortality and severe brain injury in extremely preterm infants: observational cohort study with propensity score matching. *BMJ* 2019;367. doi:10.1136/bmj.i5678

10. Medvedev MM, Brotherton H, Gai A, et al. Development and validation of a simplified score to predict neonatal mortality risk among neonates weighing 2000 g or less (NMR-2000): an analysis using data from the UK and The Gambia. *The Lancet Child & Adolescent Health* 2020;4:299–311. doi:10.1016/S2352-4642(20)30021-3

11. Roberts CT, Owen LS, Manley BJ, et al. High-flow support in very preterm infants in Australia and New Zealand. *Arch Dis Child Fetal Neonatal Ed* 2016;101:F401-403. doi:10.1136/archdischild-2015-309328

12. Dargaville PA, Gerber A, Johansson S, et al. Incidence and Outcome of CPAP Failure in Preterm Infants. *Pediatrics* 2016;138:e20153985–e20153985. doi:10.1542/peds.2015-3985
13 Subramaniam P, Ho JJ, Davis PG. Prophylactic nasal continuous positive airway pressure for preventing morbidity and mortality in very preterm infants. Cochrane Database Syst Rev 2016;:CD001243. doi:10.1002/14651858.CD001243.pub3

14 Conte F, Orfeo L, Gizzi C, et al. Rapid systematic review shows that using a high-flow nasal cannula is inferior to nasal continuous positive airway pressure as first-line support in preterm neonates. Acta Paediatr 2018;107:1684–96. doi:10.1111/apa.14396

15 Ramaswamy VV, More K, Roehr CC, et al. Efficacy of noninvasive respiratory support modes for primary respiratory support in preterm neonates with respiratory distress syndrome: Systematic review and network meta-analysis. Pediatr Pulmonol 2020;55:2940–63. doi:10.1002/ppul.25011

16 Roberts CT, Owen LS, Manley BJ, et al. Nasal High-Flow Therapy for Primary Respiratory Support in Preterm Infants. New England Journal of Medicine 2016;375:1142–51. doi:10.1056/NEJMo1603694

17 Zivanovic S, Scrivens A, Panza R, et al. Nasal High-Flow Therapy as Primary Respiratory Support for Preterm Infants without the Need for Rescue with Nasal Continuous Positive Airway Pressure. Neonatology 2019;115:175–81. doi:10.1159/000492930

18 Leon DA. Failed or misleading adjustment for confounding. The Lancet 1993;342:479–81. doi:10.1016/0140-6736(93)91599-H

19 Taha DK, Kornhauser M, Greenspan JS, et al. High Flow Nasal Cannula Use Is Associated with Increased Morbidity and Length of Hospitalization in Extremely Low Birth Weight Infants. The Journal of Pediatrics 2016;173:50-55.e1. doi:10.1016/j.jpeds.2016.02.051

20 Heath Jeffery RC, Broom M, Shadbolt B, et al. Increased use of heated humidified high flow nasal cannula is associated with longer oxygen requirements: High flow nasal cannula and longer oxygen requirements. J Paediatr Child Health 2017;53:1215–9. doi:10.1111/jpc.13605

21 Manley BJ, Owen L, Doyle LW, et al. High-flow nasal cannulae and nasal continuous positive airway pressure use in non-tertiary special care nurseries in Australia and New Zealand. Journal of Paediatrics and Child Health 2012;48:16–21. doi:10.1111/j.1440-1754.2011.02186.x

22 Roberts CT, Owen LS, Davis PG, et al. Chicken or egg? Dangers in the interpretation of retrospective studies. The Journal of Pediatrics 2016;178:309. doi:10.1016/j.jpeds.2016.07.033

23 Waller G. Evidence-based treatment and therapist drift. Behaviour Research and Therapy 2009;47:119–27. doi:10.1016/j.brat.2008.10.018

24 Djulbegovic B, Paul A. From Efficacy to Effectiveness in the Face of Uncertainty: Indication Creep and Prevention Creep. JAMA 2011;305. doi:10.1001/jama.2011.650
Tables

Table 1. NIV support use on day of birth and rates of requiring escalation in respiratory support within 7 days in infants born at <32 weeks' gestation from 2010 to 2017 in England and Wales.

Year	Total admissions n	Received HFNC as initial support* n (%)	Received CPAP and/or mechanical ventilation within 7 days n (%)	Received mechanical ventilation within 7 days n (%)	Total n (%)	Received CPAP as initial support* n (%)	Received mechanical ventilation within 7 days n (%)
		Total n (%)	Received CPAP and/or mechanical ventilation within 7 days n (%)	Received mechanical ventilation within 7 days n (%)	Total n (%)	Received CPAP and/or mechanical ventilation within 7 days n (%)	Received mechanical ventilation within 7 days n (%)
Infants born at <32 weeks' gestational age							
2010	6,479	63 (1.0)	16 (25.4)	11 (17.5)	1,394 (21.5)	203 (14.6)	
2011	6,929	97 (1.4)	42 (43.3)	17 (17.5)	1,660 (24.0)	302 (18.2)	
2012	6,981	113 (1.6)	49 (43.4)	22 (19.5)	1,685 (24.1)	298 (17.7)	
2013	7,081	183 (2.6)	78 (42.6)	36 (19.7)	1,730 (24.4)	325 (18.8)	
2014	6,963	248 (3.6)	102 (41.1)	47 (19.0)	1,831 (26.3)	354 (19.3)	
2015	7,317	356 (4.9)	149 (41.9)	67 (18.8)	1,950 (26.7)	377 (19.3)	
2016	7,377	415 (5.6)	146 (35.2)	64 (15.4)	1,985 (26.9)	374 (18.8)	
2017	7,410	521 (7.0)	166 (31.9)	83 (15.9)	2,077 (28.0)	390 (18.8)	
All	56,537	1,996 (3.5)	748 (37.5)	347 (17.4)	14,312 (25.3)	2,623	

Subgroup of infants born at <28 weeks' gestational age

Year	Total admissions n	Received HFNC as initial support* n (%)	Received CPAP and/or mechanical ventilation within 7 days n (%)	Received mechanical ventilation within 7 days n (%)	Total n (%)	Received CPAP as initial support* n (%)	Received mechanical ventilation within 7 days n (%)
2010	1,909	12 (0.6)	4 (33.3)	3 (25.0)	88 (4.6)	26 (29.5)	
2011	2,150	21 (1.0)	9 (42.9)	6 (28.6)	97 (4.5)	28 (28.9)	
2012	2,171	19 (0.9)	13 (68.4)	7 (36.8)	103 (4.7)	34 (33.0)	
2013	2,092	16 (0.8)	11 (68.8)	7 (43.8)	82 (3.9)	27 (32.9)	
2014	2,092	22 (1.1)	19 (86.4)	14 (63.6)	106 (5.1)	45 (42.5)	
2015	2,199	39 (1.8)	26 (66.7)	14 (35.9)	110 (5.0)	36 (32.7)	
2016	2,232	44 (2.0)	22 (50.0)	11 (25.0)	125 (5.6)	36 (28.8)	
2017	2,216	56 (2.5)	31 (55.4)	22 (39.3)	125 (5.6)	31 (24.8)	
All	17,061	(1.3)	(59.0)	(36.7)	836 (263)		

Subgroup of infants born at 28-31 weeks' gestational age

Year	Total admissions n	Received HFNC as initial support* n (%)	Received CPAP and/or mechanical ventilation within 7 days n (%)	Received mechanical ventilation within 7 days n (%)	Total n (%)	Received CPAP as initial support* n (%)	Received mechanical ventilation within 7 days n (%)
2010	4,570	51 (1.1)	12 (23.5)	8 (15.7)	1,306 (28.6)	177 (13.6)	
2011	4,779	76 (1.6)	33 (43.4)	11 (14.5)	1,563 (32.7)	274 (17.5)	
2012	4,810	94 (2.0)	36 (38.3)	15 (16.0)	1,582 (32.9)	264 (16.7)	
2013	4,989	167 (3.3)	67 (40.1)	29 (17.4)	1,648 (33.0)	298 (18.1)	
2014	4,871	226 (4.6)	83 (36.7)	33 (14.6)	1,725 (35.4)	309 (17.9)	
2015	5,118	317 (6.2)	123 (38.8)	53 (16.7)	1,840 (36.0)	341 (18.5)	
2016	5,145	371 (7.2)	124 (33.4)	53 (14.3)	1,860 (36.2)	338 (18.2)	
2017	5,194	465 (9.0)	135 (29.0)	61 (13.1)	1,952 (37.6)	359 (18.4)	
All	39,476	1,767 (4.5)	613 (34.7)	263 (14.9)	13,476 (34.1)	2,360	

*mode of respiratory support on day of birth
CPAP, continuous positive airway pressure; HFNC, high flow nasal cannula oxygen
Table 2. Use of HFNC and CPAP for respiratory support following support with mechanical ventilation and/or CPAP in infants born at <32 weeks’ gestation in England and Wales (2010-2017).

Year	Received invasive ventilation or CPAP as initial mode, n	Subsequently received HFNC, n (%)	Number of days of HFNC received, median (IQR)	Day of care HFNC first received, median (IQR)	Number of days of both HFNC and CPAP, median (IQR)
2010	5,030	792 (15.7)	6 (2-14)	17 (6-45)	1 (1-2)
2011	5,556	1,794 (32.3)	8 (2-20)	18 (5-40)	2 (1-4)
2012	5,741	2,269 (39.5)	9 (3-23)	14 (5-34)	2 (1-4)
2013	5,905	2,994 (50.7)	11 (4-25)	9 (3-27)	2 (1-5)
2014	5,870	3,494 (59.5)	12 (4-28)	7 (3-22)	3 (1-6)
2015	6,136	3,950 (64.4)	14 (5-29)	6 (3-19)	3 (1-7)
2016	6,222	4,255 (68.4)	13 (5-28)	5 (2-15)	3 (1-7)
2017	6,239	4,357 (69.8)	13 (5-29)	5 (2-14)	3 (1-7)
All	46,699	23,905 (51.2)	11 (4-27)	7 (3-23)	3 (1-6)

Year	Received invasive ventilation as initial mode, n	Subsequently received CPAP, n (%)	Number of days of CPAP received, median (IQR)	Day of care CPAP first received, median (IQR)
2010	3,636	2,708 (74.5)	13 (4-29)	3 (2-7)
2011	3,896	2,989 (76.7)	14 (4-31)	3 (2-6)
2012	4,056	3,202 (78.9)	14 (5-30)	3 (2-6)
2013	4,175	3,407 (81.6)	11 (4-26)	3 (2-6)
2014	4,039	3,331 (82.5)	12 (4-27)	3 (2-7)
2015	4,186	3,463 (82.7)	11 (4-26)	3 (2-7)
2016	4,237	3,542 (83.6)	11 (4-25)	3 (2-7)
2017	4,162	3,465 (83.3)	11 (3-25)	3 (1-7)
All	32,387	26,107 (80.6)	12 (4-27)	3 (2-7)

Abbreviations: CPAP, continuous positive airway pressure; HFNC, high flow nasal cannula oxygen; IQR, interquartile range
Table 3. Clinical outcomes in infants who received NIV from 2010 to 2017 in England and Wales: comparison between those who received any HFNC vs. those who had CPAP only.

Dichotomous outcomes, n (%)	All infants (n=45,862)	HFNC (n=26,936)	CPAP only (n=18,926)	aOR or median difference (95% CI)
BPD	15,472 (34.9)	12,336 (47.0)	3,136 (17.4)	(2.81 to 3.15)c
Death before discharge	1,598 (3.5)	678 (2.5)	920 (4.9)	(0.17 to 0.22)c
BPD or death before discharge	17,063 (37.2)	13,008 (48.3)	4,055 (21.4)	(2.33 to 2.60)c
Late onset sepsis	18,784 (41.0)	13,234 (49.1)	5,550 (29.3)	(1.72 to 1.90)c
NEC (confirmed)	8,111 (17.7)	5,670 (21.0)	2,441 (12.9)	(1.26 to 1.43)c
NEC requiring surgery	1,479 (3.2)	1,065 (4.0)	414 (2.2)	(1.03 to 1.36)
PDA requiring surgery	936 (2.0)	751 (2.8)	185 (1.0)	(1.73 to 2.50)c
IVH (Grade 3/4)	2,180 (4.7)	1,558 (5.8)	622 (3.3)	(0.84 to 1.06)
Periventricular leukomalacia	1,046 (2.3)	715 (2.7)	331 (1.7)	(1.06 to 1.44)
ROP requiring treatment	2,372 (5.2)	2,032 (7.5)	340 (1.8)	(1.52 to 1.96)c
Pneumothorax	1,915 (4.2)	1,337 (5.0)	578 (3.1)	(1.41 to 1.78)c
Received postnatal steroids	2,869 (6.3)	2,400 (8.9)	469 (2.5)	(1.71 to 2.18)c
Continuous outcomes, median (IQR)				
Number of days of invasive ventilationa	2 (0-6)	3 (1-9)	1 (0-3)	0.0 (-2.1 to 2.1)c
Number of days of NIVa	12 (4-36)	24 (8-46)	5 (2-13)	6.3 (5.7 to 6.9)c
Number of days of respiratory supporta	22 (6-61)	41 (11-77)	7 (3-25)	9.5 (9.1 to 9.9)c
Length of stay (days)a	55 (40-80)	66 (47-91)	44 (34-59)	8.7 (8.3 to 9.1)c

Abbreviations: CI, confidence interval; BPD, bronchopulmonary dysplasia; IVH, intraventricular haemorrhage; NEC, necrotising enterocolitis; ROP, retinopathy of prematurity; aOR, adjusted odds ratio, adjusted for gestational age <28 weeks, sex, birth weight z-score < -2, exposure to antenatal steroids, NMR-200 category, mechanical ventilation on day 1, year of admission.

a excluded infants who died before 36 weeks corrected gestational age
b missing observations: BPD, 8; Death before discharge, 17
c P<0.05 with Bonferroni correction
Figure Legends

Figure 1. Use of HFNC as the initial mode of respiratory support in infants born at <32 weeks’ gestational age in England and Wales (2010-2017)

Failure refers to escalation of respiratory support within 7 days i.e. HFNC failed refers to those infants who received HFNC as the initial mode of respiratory support but needed CPAP and/or mechanical ventilation within 7 days and CPAP failed refers to those who received CPAP as the initial mode of respiratory support but needed mechanical ventilation within 7 days. Image created by authors using STATA, version 15.1 (StataCorp, College Station, Tx)
Figure 2. Percentage of all infants born at <28 weeks’ gestational age and those born at 28-32 weeks’ gestational age in England and Wales (2010-2017) who received any HFNC during their neonatal care. Image created by authors using STATA, version 15.1 (StataCorp, College Station, Tx)
Observational cohort study of changing trends in non-invasive respiratory ventilation in very preterm infants and associations with clinical outcomes
Laura Sanda, BMBS, Lisa Szatkowskia PhD, T’ng Chang Kwoka, BMBS, Don Sharkeya, PhD, David Toddb, PhD, Helen Budgea, PhD, Shalini Ojhaa,c, PhD

Supplementary information Table 1 online only: List of variables extracted from the National Neonatal Research Database (NNRD) and the ICD-10 codes used to identify congenital anomaly exclusions and number of babies excluded and definitions of exposure and clinical outcomes

List of variables extracted from NNRD
Baseline Characteristics
- Gestational age was determined using the variables “GestationWeeks” and “GestationDays”
- Birth weight was determined using the variable “Birthweight”
- Female sex was determined using the variable “Gender”
- Multiplicity was determined using the variable “Fetus number”
- Any antenatal steroid given was determined using the variable “Antenatal steroids given” and “Steroids antenatal courses”
- Caesarean delivery was determined using the variable “Mode of delivery”, caesarean section being emergency caesarean section- not in labour, emergency caesarean section – in labour, elective section – not in labour, elective section – in labour
- Prolonged rupture of membranes (>18 hours) was determined using the variable “Rupture of membranes”
Surfactant given was determined using the variable “Surfactant given at resuscitation” and “Day surfactant given”

Outcomes
- CLD was determined using the variables “Respiratory support”, “AddedO2”, “Ventilation mode”, “NonInvasiveRespiratoryS” and “Daydateanon”
- Death before discharge was determined using the variables “Dateofdeath” and “Deathagemin”
- Composite Outcome was determined by CLD or death at 36 weeks’ gestation
- Sepsis was determined by use of antibiotics for \(\geq 5 \) consecutive days using the variables “drugsday” and searching for “penicillin, flucloxacillin, amoxicillin, gentamicin, metronidazole, meropenem, cephalosporin (cefotaxime, ceftazdime, cefradine, ceftriaxone) and vancomycin; determined that antibiotic was used for \(\geq 5 \) consecutive days by using the variable “dayoflife”
- Early sepsis was determined by the use of \(\geq 5 \) consecutive days antibiotics in the first seven days of life
- Late sepsis was determined by the use of \(\geq 5 \) consecutive days antibiotics after 7 days of life
- Medical NEC was determined by the variable “nectreatment” coded medically for \(\geq 5 \) consecutive days
- Surgical NEC was determined by the variable “nectreatment” coded as surgical
- Surgical PDA was determined using the variable “treatmentforpda” and searching for ‘ligation’ or ‘ligature’ or ‘closure of PDA/ patent ductus arteriosus’ or ‘open correction of PDA’ or ‘percutaneous transluminal prosthetic occlusion of PDA’ on “principleproceduresduringstay”, “principlediagnosisatdischarge” and “diagnosisisatadmission”
- IVH (Grade 3 or 4) was determined using data from cranial ultrasound variable “rightivh” and “leftivh” (looking for grade 3 and 4) and searching for ‘ivh grade 3’ and ‘ivh grade 4’ and ‘large intraventricular haemorrhage’ and ‘intraventricular haemorrhage/ parenchymal
haemorrhage’ in variables “diagnosisatadmission” and “principaldiagnosisatdischarge”
- PVL was determined using data from cranial ultrasound variable “pvl” and searching for ‘cystic periventricular leucomalacia’ and ‘pvl’ and ‘periventricular leucomalacia’ in variables “diagnosisatadmission” and “principaldiagnosisatdischarge”
- ROP was determined using variables “principleproceduresduringstay” and requiring VEGF and/or laser treatment
- Pneumothorax was determined by searching ‘pneumothorax’ in variables “diagnosisatadmission” and “principaldiagnosisatdischarge”
- Postnatal steroid was determined by the use of steroids (dexamethasone >3 days, hydrocortisone >7 days, methylprednisolone >3 days and prednisolone >7 days) using variables “drugsday” and “dayoflife”
- Invasive ventilation was determined by using variables “ventilationmode” and “respiratorysupport”
- Number of days of invasive ventilation was determined using variables “ventilationmode” and “respiratorysupport” and “dayoflife”
- Number of non-invasive ventilation days was determined using variables “respiratorysupport” and “noninvasiverespiratorysupport” and “dayoflife”
- Time to first oral feed given was determined using variables “dayenteralfeeds” and “formulaname” and “dayoflife”
- Number of days on the neonatal unit was determined using variables “dischtimeanon” and “admittimeanon”

Infants excluded due to missing information
Infants were excluded in there was missing information on gestational age (GA), birthweight or sex. Where contradictory data were recorded, the entry at the first admission was selected. Infants recorded as born at <22 weeks’ gestation, of birthweight for GA z-score >4, or < -4, standard deviations (SD), as admitted >12 hours after birth, had missing records of ≥1 days or had congenital anomalies that impact respiratory support listed below.

ICD-10 codes used to identify congenital anomaly exclusions and number of babies excluded

ICD-10 code	Anomaly	Number excludeda
Q00	Anencephaly and similar malformations	
Q01	Encephalocele and similar malformations	8
Q05	Spina bifida and similar malformations	27
Q20	Congenital malformations of cardiac chambers and connections	133
Q21.2	Atrioventricular septal defect (AVSD)	70
Q21.3	Tetralogy of Fallot	73
Q21.91	Single atrium	
Q21.92	Single ventricle	
Q22	Congenital malformations of pulmonary and tricuspid valves	236
Q23	Congenital malformations of aortic and mitral valves	80
Q25.1	Coarctation of aorta	109
Q25.2	Atresia of aorta	
Q25.3	Stenosis of aorta (AS)	5
Q25.4	Other congenital malformations of aorta	49
Q25.5	Atresia of pulmonary artery	9
Q25.6	Stenosis of pulmonary artery (PS)	362
Q25.8	Other congenital malformations of great arteries	2
Q26.2	Total anomalous pulmonary venous connection (TAPVD)	12
Q30.0	Choanal atresia	30
Q32 Congenital malformations of trachea and bronchus 102
Q33.0 Congenital cystic lung 45
Q33.2 Sequestration of lung 6
Q33.3 Agenesis of lung
Q33.4 Congenital bronchiectasis
Q33.5 Ectopic tissue in lung
Q33.6 Hypoplasia and dysplasia of lung 16
Q34.0 Anomaly of pleura
Q34.1 Congenital cyst of mediastinum
Q34.8 Other specified congenital malformations of respiratory system
Q35/Q36/Q37 Cleft lip and/or palate 202
Q39 Oesophageal atresia 104
Q41 Congenital absence, atresia and stenosis of small intestine 15
Q42 Congenital absence, atresia and stenosis of large intestine 41
Q60.1 Bilateral renal agenesis 3
Q60.6 Potter's syndrome 4
Q61.1 Polycystic kidney, infantile type 6
Q61.2 Polycystic kidney, adult type 1
Q64.1 Exstrophy of urinary bladder 2
Q64.2 Posterior urethral valves (PUV) 25
Q64.5 Congenital absence of bladder and urethra 1
Q77.1 Thanatophoric short stature
Q79.0 Congenital diaphragmatic hernia 75
Q79.1 Eventration of diaphragmatic hernia 18
Q79.2 Exomphalos 66
Q79.3 Gastrochisis 50
Q90 Down's syndrome 171
Q91 Edwards’ syndrome and Patau's syndrome 42

*Sum exceeds total number of exclusions as some infants had more than one anomaly

Definition of exposure to non-invasive ventilation (NIV)
From variables that record types of respiratory support received (invasive ventilation, NIV, supplemental oxygen, type of NIV), we first identified babies who received any NIV. Those who did not receive any respiratory support, had only mechanical ventilation and/or supplemental oxygen, or where information was not available to discern the type of NIV were excluded.

HFNC group: those who received HFNC for any length of time. Infants in the HFNC group may have received CPAP also.

CPAP group: those who received CPAP and had no record of receiving HFNC.

Definition of clinical outcomes

Condition	Description
Bronchopulmonary dysplasia (BPD)	Infant requiring any supplementary oxygen or respiratory support at 36 weeks’ CGA (infants who died before 36 weeks were excluded) [9]
Death before discharge	Infant death prior to discharge from neonatal care
Late onset sepsis (LOS)	Recorded diagnosis with either a positive blood culture or antibiotic given for ≥5 consecutive days) after 72 hours of life
Necrotising enterocolitis (NEC)	Recorded diagnosis of confirmed NEC; surgical NEC (NEC treatment coded as surgical
Patent ductus arteriosus (PDA)	Recorded diagnosis of PDA requiring surgical closure
Retinopathy of prematurity (ROP)	Recorded diagnosis of ROP requiring vascular endothelial growth factor or laser treatment
Pneumothorax	Recorded diagnosis of pneumothorax
Postnatal steroid administration	Record of infant having received dexamethasone > 3 days, hydrocortisone > 7 days, methylprednisolone > 3 days or prednisolone > 7 days);
-------------------------------------	--
Number of days of non-invasive ventilation	Number of days of care where infants was recorded as having received any form of NIV
Number of days of non-respiratory support	Number of days of care where infants was recorded as having received any respiratory support
Number of days spent in neonatal care	Total number of days infant remained in neonatal care including stay in all neonatal units they were cared for in.

*Code lists are available from the authors on request.
Supplementary information Table 2. Characteristics of infants who received NIV with HFNC or with CPAP only from 2010 to 2017 in England and Wales, by gestational age group.

	All infants	HFNC	CPAP only	P
Gestational age <28 weeks	n = 13,841	n = 10,734	n = 3,107	
Gestational age (weeks, median (IQR))	26 (25-27)	26 (25-27)	26 (25-27)	<0.001
Birth weight (grams, median (IQR))	850 (710-989)	842 (705-980)	860 (720-1000)	<0.001
Birth weight z-score (mean ± SD)	-0.11 (0.86)	-0.12 (0.86)	-0.07 (0.85)	0.002
Female sex, n (%)	6,543 (47.3)	5,068 (47.2)	1,475 (47.5)	0.799
Multiple birth, n (%)	3,339 (24.1)	2,542 (23.7)	797 (25.7)	0.024
Any antenatal steroid given, n (%)	12,497 (90.3)	9,731 (90.7)	2,766 (89.0)	0.002
Caesarean delivery, n (%)	5,605 (40.5)	4,404 (41.0)	873 (28.1)	0.436
Rupture of membranes (>18 hours), n (%)	12,203 (88.2)	9,311 (86.7)	2,892 (93.1)	<0.001
Surfactant given, n (%)	10,781 (77.9)	8,362 (77.9)	2,419 (77.9)	0.957
Mechanical ventilation prior to non-invasive ventilation, n (%)	10,781 (77.9)	8,362 (77.9)	2,419 (77.9)	0.957
NMR-2000 score, categorised as risk of in-hospital mortality, n (%)	0 (0)	0 (0)	0 (0)	
Low risk	4,047 (12.6)	1,677 (10.4)	2,370 (15.0)	<0.001
Medium risk	24,094 (75.2)	12,656 (78.1)	11,438 (72.3)	<0.001
High risk	533 (1.7)	378 (2.3)	155 (1.0)	

	All infants	HFNC	CPAP only	P
Gestational age 28-31 weeks	n = 32,021	n = 16,202	n = 15,819	
Gestational age (weeks, median (IQR))	30 (29-31)	29 (28-30)	30 (29-31)	<0.001
Birth weight (grams, median (IQR))	1,355 (1150-1570)	1,300 (1090-1518)	1,410 (1210-1615)	<0.001
Birth weight z-score (mean ± SD)	-0.04 (1.00)	-0.12 (1.05)	0.05 (0.94)	<0.001
Female sex, n (%)	14,340 (44.8)	7,103 (43.8)	7,237 (45.7)	0.001
Multiple birth, n (%)	9,041 (28.2)	4,511 (27.8)	4,530 (28.6)	0.114
Any antenatal steroid given, n (%)	28,612 (89.4)	14,585 (90.0)	14,027 (88.7)	<0.001
Caesarean delivery, n (%)	20,424 (63.8)	10,623 (65.6)	9,801 (62.0)	<0.001
Rupture of membranes (>18 hours), n (%)	7,083 (22.1)	3,374 (20.8)	3,709 (23.4)	<0.001
Surfactant given, n (%)	12,557 (39.2)	6,832 (42.2)	5,725 (36.2)	<0.001
Mechanical ventilation prior to non-invasive ventilation, n (%)	9,330 (29.1)	5,537 (34.2)	3,793 (24.0)	<0.001
NMR-2000 score, categorised as risk of in-hospital mortality n (%)	0 (0)	0 (0)	0 (0)	
Low risk	4,047 (12.6)	1,677 (10.4)	2,370 (15.0)	<0.001
Medium risk	24,094 (75.2)	12,656 (78.1)	11,438 (72.3)	<0.001
High risk	533 (1.7)	378 (2.3)	155 (1.0)	

*Missing data amongst babies <28 weeks: birth weight for age z-score, 18 (0.1%); exposure to antenatal steroids, 107 (0.8%); born by Caesarean delivery, 683 (4.9%); surfactant given, 513 (3.7%); NMR-2000 score, 1,442 (10.4%)
Supplementary information Table 3. Outcomes in infants born at <28 weeks' gestation who received NIV from 2010 to 2017 in England and Wales: comparison between those who received HFNC vs. those who received CPAP only.

Dichotomous outcomes, n (%)	All infants n (%)	HFNC n (%)	CPAP only n (%)	aOR (95% CI)
BPD n=12,694^{a,b}	9,086 (71.6)	7,651 (74.7)	1,435 (58.5)	2.10^c (1.88 to 2.35)^c
Death before discharge n=13,841	1,153 (8.3)	498 (4.6)	655 (21.1)	0.12^c (0.10 to 0.14)^c
BPD or death before discharge n = 13,841	10,233 (75.9)	8,144 (67.2)	2,089 (67.2)	1.51^c (1.37 to 1.67)^c
Late onset sepsis	10,060 (72.7)	7,889 (69.9)	2,171 (67.2)	0.12^c (0.10 to 0.14)
NEC (confirmed)	4,336 (31.3)	3,310 (30.8)	1,026 (33.0)	1.35^c (1.14 to 1.59)
NEC requiring surgery	1,031 (7.4)	765 (6.7)	266 (8.6)	0.91^c (0.69 to 0.96)
PDA requiring surgery	839 (6.1)	674 (6.3)	165 (5.3)	1.48^c (1.28 to 1.70)
IVH (Grade 3/4)	1,586 (11.5)	1,194 (11.1)	392 (12.6)	0.67^c (0.57 to 0.78)
Periventricular leukomalacia	512 (3.7)	392 (3.7)	120 (3.9)	1.00^c
ROP requiring treatment	2,025 (14.6)	1,802 (16.8)	223 (7.2)	1.66^c (1.46 to 1.90)
Pneumothorax	730 (5.3)	570 (5.3)	160 (5.1)	0.76^c (0.65 to 0.88)
Received postnatal steroids	2,481 (17.9)	2,087 (19.4)	394 (12.7)	1.59^c (1.30 to 1.95)

Continuous outcomes, median (IQR):

Continuous outcomes, median (IQR)	All infants	HFNC	CPAP only	aOR (95% CI)
Number of days of invasive ventilation^a	10 (3-25)	10 (3-26)	7 (2-19)	2.0 (1.3 to 2.7)^c
Number of days of NIV ventilation^a	45 (31-60)	47 (34-63)	35 (22-47)	11.0 (9.9 to 12.1)^c
Number of days of respiratory support^a	78 (53-103)	81 (57-105)	64 (41-89)	17.0 (15.1 to 18.9)^c
Length of stay (days)^a	92 (76-113)	94 (77-115)	84 (69-103)	11.0 (9.6 to 12.4)^c

Abbreviations: IQR, interquartile range; BPD, bronchopulmonary dysplasia; IVH, intraventricular haemorrhage; NEC, necrotising enterocolitis; ROP, retinopathy of prematurity

aOR, adjusted odds ratio, adjusted for sex, birth weight z-score < -2, exposure to antenatal steroids, NMR-200 category, mechanical ventilation on day 1, year of admission.

^a excluded infants who died before 36 weeks corrected gestational age

^b missing observations: BPD, 0; Death before discharge, 4

^cP< .05 with Bonferroni correction
Supplementary information Table 4. Outcomes in infants born at 28-31 weeks’ gestation who received NIV from 2010 to 2017 in England and Wales: comparison between those who received any HFNC and those who received CPAP only.

Dichotomous outcomes, n (%)	All infants n (%)	HFNC n (%)	CPAP n (%)	aOR (95% CI)
BPD^{a,b} n=31,577	6,386 (20.2)	4,685 (28.2)	1,701 (10.9)	3.42 (3.19 to 3.67)^c
Death before discharge n=32,021	445 (1.4)	180 (1.1)	265 (1.7)	0.51 (0.41 to 0.64)^c
BPD or death before discharge n=32,021	6,830 (21.3)	4,864 (30.0)	1,701 (10.9)	3.03 (2.83 to 3.24)^c
Late onset sepsis	8,724 (27.2)	5,345 (33.0)	3,379 (21.4)	1.88 (1.82 to 2.11)^c
NEC (confirmed) n=32,021	3,775 (11.8)	1,945 (12.0)	1,830 (11.3)	1.57 (1.49 to 1.65)^c
NEC requiring surgery n=32,021	448 (1.4)	200 (1.2)	248 (1.5)	1.73 (1.64 to 1.82)^c
PDA requiring surgery n=32,021	97 (0.3)	37 (0.3)	60 (0.3)	2.79 (2.69 to 2.89)^c
IVH (Grade 3/4) n=32,021	594 (1.9)	364 (2.2)	230 (1.4)	1.09 (1.03 to 1.15)^c
Periventricular leukomalacia n=32,021	534 (1.7)	323 (2.0)	211 (1.3)	1.16 (1.10 to 1.23)^c
ROP requiring treatment n=32,021	347 (1.1)	230 (1.4)	117 (0.7)	1.03 (1.00 to 1.06)^c
Pneumothorax n=32,021	1,185 (3.7)	767 (4.7)	418 (2.6)	1.72 (1.66 to 1.78)^c
Received postnatal steroids n=32,021	388 (1.2)	313 (1.9)	75 (0.5)	2.90 (2.82 to 3.00)^c

Continuous outcomes, median (IQR)
Number of days of invasive ventilation^a
Number of days of NIV^a
Number of days of respiratory support^b
Length of stay (days)^a

Abbreviations: IQR, interquartile range; BPD, bronchopulmonary dysplasia; IVH, intraventricular haemorrhage; NEC, necrotising enterocolitis; ROP, retinopathy of prematurity

aOR, adjusted odds ratio, adjusted for sex, birth weight z-score < -2, exposure to antenatal steroids, NMR-200 category, mechanical ventilation on day 1, year of admission.

^aexcluded infants who died before 36 weeks corrected gestational age

^bmissing observations: BPD, 8; Death before discharge, 13

^cP< .05 with Bonferroni correction
Supplementary information Figure 1. Very preterm infants who received NIV in neonatal units in England and Wales (2010-2017)

- Inclusion criteria:
 - Infants born at <32 weeks gestation
 - Between 01 Jan 2010 and 31 Dec 2017
 - Admitted to a neonatal unit in England or Wales
 - Routinely collected data in the National Neonatal Research Database

- Total number of eligible infants: n = 63,210

- Exclusions: n = 6,673 (10.6%)
 - 13 gestational age <22 weeks
 - 56 missing sex
 - 16 missing birth weight
 - 83 extreme birth weight for age z-score
 - 1,561 congenital anomalies
 - 1,676 admitted >12hrs after birth
 - 3,029 missing records for 1+ days of care

- Included infants: n = 56,537

- Infants who received non-invasive ventilation: n = 45,898

- Received HfNC: n = 26,936
 - <28 weeks gestation: n = 10,734
 - 28-31 weeks gestation: n = 16,202

- Received CPAP only: n = 18,929
 - <28 weeks gestation: n = 3,107
 - 28-31 weeks gestation: n = 15,819
Supplementary information Figure 2. Survival curve for infants born at <32 weeks’ who received any NIV during their neonatal care in England and Wales in 2010 to 2017: comparison between those who received HFNC and those who received CPAP