Mathematical Modeling of Microbial Fuel Cells in Wastewater Treatment - Homotopy Perturbation Method

S. ThamizhSuganya, P. Balaganesan, L. Rajendran

Abstract: Mathematical modeling of Microbial Fuel Cell (MFC), which accounts for the co-existence of methanogenic and anodophilic microbial populations for different operating modes and reactor configurations, is discussed. This model based on the system of non-linear rate equations, where the non-linear term is related to the rate of the reactions. The system of non-linear equations is solved by using homotopy perturbation method. In this paper closed form of analytical expression of the concentration of substrate, anodophilic, methanogenic, and the mediator is derived. The analytical expressions are compared with simulation results for the experimental values of parameters, and satisfactory agreement is noted. The influence of parameters on the concentration profiles are discussed.

Keywords: Microbial fuel cell, Mathematical modeling, Non-linear equation, Homotopy Perturbation Method, Cogeneration, Model-based design, Microbial Electrolysis Cell, Dynamic model.

I. INTRODUCTION

The MFCs are bioreactors with the ability to transform an oversized sort of extremely diluted natural thing of varied forms into electricity [1]. The main limitation of the application of MFC is its low power output [2]. Also, using the wastewater as a substrate indicates the presence of mixed microbial populations, enzymatic, methanogenic, and anodophilic microorganisms [3-5], which affects the MFC's performance. One way to understand the complex problems that MFCs present is to create a dynamic mathematical model that can clarify the behavior of several microbial populations contesting the same substratum [6]. This paper represents a steady-state study of a dynamic system designed to explain two microbial coexisting in MFC [7]. This model takes into account the struggle for substrates between anodophilic and methanogenic microorganisms. Apple (Malus pumila Mill.) is a prevalent arbor tree species in northern China, which makes China the most extensive area for apple fruit production [8]. Bioelectrochemical systems (BESs) are conventional technologies for the treatment of industrial wastewaters [9, 10]. Devinn et al. [11], explain the attempts that have been creating the mathematical illustrations of biofilters and bio-trickling filter. Kim and Deshusses [12], simulate this effect, using an earlier grown up the empirical relationship to assessments the fraction of load surface wetted. Recently, Kirthiga and Rajendran[13] have obtained analytical expression on the concentrations of the output of biomass and ethanol from industrial wastewater. Analytical expressions of the concentrations of a substrate, biomass, and ethanol derived for solid-state enzymatic of biofuel production [14]. This paper presented a steady-state analysis of the MFC and the analytical expression of a substrate, anodophilic, methanogenic, and oxidized mediators obtained in all parameters.

Figure 1: Microbial Fuel Cell in waster treatment[1]

Table 1: Nomenclature of the given parameters [15]

Parameters	Meaning	Experimental value	Unit
S	Substrate concentration	-	mg-S L$^{-1}$
x_a	Anodophilic concentration	-	mg-x L$^{-1}$
x_m	Methanogenic concentration	-	mg-x L$^{-1}$
M_o	Oxidized mediator	-	mg-M mg-x$^{-1}$
S_o	Influent concentration	-	mg-S L$^{-1}$
t	Time	-	day
T	MFC temperature	298.15	K
R	Ideal gas constant	8.314	J K$^{-1}$ mol$^{-1}$
F	Faraday constant	96485	A d mole$^{-1}$
D	Dilution rate	0.1	L d$^{-1}$
Y	Yield in Eqn.(7)	22.75	mg-M mg-S$^{-1}$
μ_{max}	Maximum methanogenic growth rate	0.1	d$^{-1}$
μ_{anod}	Maximum anodophilic growth rate	1.97	d$^{-1}$
The initial conditions are
\[S_0 - S_a = S_{0a} - S_{a0}, M_{ox} - M_{oxa} \text{ at } t = 0 \] (12)

The steady-state solution of (4) - (7) present the following possible solutions[15]:

Case (1): \(A = 0 \) and \(x_m = 0 \) (anodophilic microorganisms)

Case (2): \(A = 0 \) and \(B = 0 \) (coexistence)

Case (3): \(B = 0 \) and \(x_m = 0 \) (methanogenic microorganisms)

Case (4): \(x_m = 0 \) and \(x_a = 0 \) (wash-out solution)

where
\[A = \frac{\mu_{max,S}}{K_{S,a} + S + \alpha D}, B = \frac{\mu_{max,Y}}{K_{S,a} + S + \alpha D} \] (13)

III. Analytical Expressions of Substrate Concentration, the Concentration of Microorganisms and Oxidized Mediator

The homotopy perturbation method was proposed by He [16]. In most cases, this approach results in a very fast accumulation of the solution, with several iterations leading to definite answers. Several researchers used different methods to research the solution of nonlinear equations. The benefit of this technique, they don’t need a small parameter in the given system, leading to detailed application in nonlinear equations.

A. Case (1): Only anodophilic microorganisms:

In this case \(A = 0 \) and \(x_m = 0 \) in equations (4), (5) and (7) we get the following equations

\[
\frac{dS}{dt} = D(S_0 - S) - \frac{q_{max,S}}{q_{max,S} + S} \frac{M_{total}}{M_{total} - \alpha D} \quad (14)
\]

\[
\frac{dx_a}{dt} = -K_{d,a} x_a \quad (15)
\]

\[
\frac{dM}{dt} = \frac{mF V_a}{F} \frac{R_{ext} + R_{min} \frac{Y_{max} - Y_{min}}{Y_{max} - Y_{min}}}{M_{total}} \quad (16)
\]

Solving the above equations using HPM (Appendix-A) we get

\[
S(t) = S_0 e^{-\frac{D}{2}t} + S(t) e^{-\frac{D}{2}t} = \frac{q_{max,S}}{q_{max,S} + S} \frac{M_{total}}{M_{total} - \alpha D} \quad (17)
\]

\[
x_a(t) = x_{ain} e^{-K_{d,a}t} \quad (18)
\]

\[
M(t) = \frac{mF V_a}{F} \left(\frac{R_{ext} + R_{min}}{M_{total}} \right) \frac{Y_{max} - Y_{min}}{Y_{max} - Y_{min}} e^{-\frac{D}{2}t} \quad (19)
\]

B. Case (2): Coexistence:

In this case \(A = 0 \) and \(B = 0 \) in equations (4) - (7) we get the following equations

\[
\frac{dS}{dt} = D(S_0 - S) - \frac{q_{max,S}}{q_{max,S} + S} \frac{M_{total}}{M_{total} - \alpha D} \quad (20)
\]
Solving the above equation using HPM we get

\[s(t) = \frac{S_{\text{max}} - D t}{e^{\frac{t}{D}} - 1} \]

\[s_m(t) = \frac{S_{\text{max}} - D t}{e^{\frac{t}{D}} - 1} \]

By solving the above equations using new approach of HPM, the following concentration of the substrate, anodophilic, methanogenic, and mediator are obtained.

\[\frac{dx_a}{dt} = -K_{d,a} x_a \quad \text{(21)} \]

\[\frac{dx_m}{dt} = -K_{d,m} x_m \quad \text{(22)} \]

\[\frac{dM_{\text{ox}}}{dt} = \left[\frac{E_{\text{min}} (E_{\text{max}} - E_{\text{min}}) K_{x_a} \gamma}{RT F(M_{\text{total}} - M_{\text{ox}})} \right] \]

\[\frac{dM_{\text{in}}}{dt} = \left[\frac{m'F_{\text{in}} [R_{\text{in}} + (E_{\text{max}} - E_{\text{min}}) K_{x_a} \gamma]}{\rho_{\text{in}} \gamma (\rho_{\text{max}} - \rho_{\text{in}}) [1 + \tanh (K_{x_a}(x_a + x_m - x_{\text{max}}))]^2} \right] \]

\[\frac{dM_{\text{ext}}}{dt} = \left[\frac{R_{\text{ext}} + (E_{\text{max}} - E_{\text{min}}) K_{x_a} \gamma}{\rho_{\text{max}} \gamma [1 + \tanh (K_{x_a}(x_a + x_m - x_{\text{max}}))]^2} \right] \]

\[\frac{dM_{\text{total}}}{dt} = \left[\frac{M_{\text{total}}}{M_{\text{total}} - M_{\text{ox}}} \right] \]

\[\frac{dM_{\text{in}}}{dt} = \left[\frac{m'F_{\text{in}} [R_{\text{in}} + (E_{\text{max}} - E_{\text{min}}) K_{x_a} \gamma]}{\rho_{\text{in}} \gamma (\rho_{\text{max}} - \rho_{\text{in}}) [1 + \tanh (K_{x_a}(x_a + x_m - x_{\text{max}}))]^2} \right] \]

\[\frac{dM_{\text{ext}}}{dt} = \left[\frac{R_{\text{ext}} + (E_{\text{max}} - E_{\text{min}}) K_{x_a} \gamma}{\rho_{\text{max}} \gamma [1 + \tanh (K_{x_a}(x_a + x_m - x_{\text{max}}))]^2} \right] \]

\[\frac{dM_{\text{total}}}{dt} = \left[\frac{M_{\text{total}}}{M_{\text{total}} - M_{\text{ox}}} \right] \]

\[\frac{dM_{\text{in}}}{dt} = \left[\frac{m'F_{\text{in}} [R_{\text{in}} + (E_{\text{max}} - E_{\text{min}}) K_{x_a} \gamma]}{\rho_{\text{in}} \gamma (\rho_{\text{max}} - \rho_{\text{in}}) [1 + \tanh (K_{x_a}(x_a + x_m - x_{\text{max}}))]^2} \right] \]

\[\frac{dM_{\text{ext}}}{dt} = \left[\frac{R_{\text{ext}} + (E_{\text{max}} - E_{\text{min}}) K_{x_a} \gamma}{\rho_{\text{max}} \gamma [1 + \tanh (K_{x_a}(x_a + x_m - x_{\text{max}}))]^2} \right] \]

\[\frac{dM_{\text{total}}}{dt} = \left[\frac{M_{\text{total}}}{M_{\text{total}} - M_{\text{ox}}} \right] \]

\[\frac{dM_{\text{in}}}{dt} = \left[\frac{m'F_{\text{in}} [R_{\text{in}} + (E_{\text{max}} - E_{\text{min}}) K_{x_a} \gamma]}{\rho_{\text{in}} \gamma (\rho_{\text{max}} - \rho_{\text{in}}) [1 + \tanh (K_{x_a}(x_a + x_m - x_{\text{max}}))]^2} \right] \]

\[\frac{dM_{\text{ext}}}{dt} = \left[\frac{R_{\text{ext}} + (E_{\text{max}} - E_{\text{min}}) K_{x_a} \gamma}{\rho_{\text{max}} \gamma [1 + \tanh (K_{x_a}(x_a + x_m - x_{\text{max}}))]^2} \right] \]

\[\frac{dM_{\text{total}}}{dt} = \left[\frac{M_{\text{total}}}{M_{\text{total}} - M_{\text{ox}}} \right] \]

\[\frac{dM_{\text{in}}}{dt} = \left[\frac{m'F_{\text{in}} [R_{\text{in}} + (E_{\text{max}} - E_{\text{min}}) K_{x_a} \gamma]}{\rho_{\text{in}} \gamma (\rho_{\text{max}} - \rho_{\text{in}}) [1 + \tanh (K_{x_a}(x_a + x_m - x_{\text{max}}))]^2} \right] \]

\[\frac{dM_{\text{ext}}}{dt} = \left[\frac{R_{\text{ext}} + (E_{\text{max}} - E_{\text{min}}) K_{x_a} \gamma}{\rho_{\text{max}} \gamma [1 + \tanh (K_{x_a}(x_a + x_m - x_{\text{max}}))]^2} \right] \]

\[\frac{dM_{\text{total}}}{dt} = \left[\frac{M_{\text{total}}}{M_{\text{total}} - M_{\text{ox}}} \right] \]
Mathematical Modeling of Microbial Fuel Cells in Wastewater Treatment - Homotopy Perturbation Method

Figure 2: Comparison of analytical and simulation results for the substrate concentration using various values of the parameters

Figure 3: Comparison of analytical and simulation results for the anodophilic concentration using various values of the parameters
IV. NUMERICAL SIMULATION

For the given system of nonlinear differential equations (4)-(7) is solved numerically. To solve this equation, the function "ode45" in MATLAB software is used to solve the initial value issues for nonlinear differential equations. This program is given in the section of the Appendix.

V. RESULTS AND DISCUSSION

The above solutions represent the new approximate analytical expression for the substrate, anodophilic, methanogenic, and mediator concentration profiles using homotopy perturbation approach for all values of parameters. Itsatisfies the initial condition Eqn. (12). Figs. 2(a), 2(b) and 2(c), represents the substrate concentration for different values of D, $q_{\text{max,m}}$ and $\mu_{\text{max,a}}$. It is observed that an increase in the parametersleads to an increase in concentration. Figs. 2(d) and 2(e) that the substrate concentration decreases as the values of maximum anodophilic reaction rate $q_{\text{max,a}}$ and maximum methanogenic growth rate $\mu_{\text{max,m}}$ increases.Mathuriya and Sharma [17]
Mathematical Modeling of Microbial Fuel Cells in Wastewater Treatment - Homotopy Perturbation Method

was represented in the current generation decreases with reduce in wastewater organic material concentration. At less substrate concentration, the highest power generation is proportionally attached to substrate concentration [18].
The effects of the anodophilic K_{da} on the concentration profile shown in Fig. 3(a), where it is noticed that a decrease in K_{da} leads to an increase in the anodophilic concentration. Similarly, Fig. 4(a) represents the K_{da} on the concentration profile, where it is noticed that a decrease in K_{da} leads to an increase in the methanogenic concentration.
The mediator concentration profiles versus time expressed in Figures 5(a)-(d). From these Figures, it represented that the value of the mediator concentration reducing when the resistance increase. Lower or higher concentration leads to increased internal resistance and decreases efficiency. Increasing the operating temperature rises bacterial activity, reduces internal resistance, and improves efficiency. But the mediator concentration increases when the Mediator fraction M_{total}and minimum voltage E_{min} increases.

VI. CONCLUSION

A steady-state one-dimensional mathematical model for the prediction of the concentration of anodophilic and methanogenic microorganisms in microbial fuel cells is discussed. The system of non-linear equations is solved using the homotopy perturbation method for various limiting cases. The effects of various parameters on concentration profiles are explained. Our analytical results agree very well with numerical results. The presented theoretical model is a useful tool to improve MFC understanding and to optimize fuel cell design and operation.

APPENDIX – A

A. Analytical solutions of non-linear equations (14) and (16) using HPM

Equation (14) and (16) can be written as follows:

\[
\begin{align*}
\frac{dS}{dt} &= D(S_0-S) - \frac{\eta_{max}}{\eta_{max}} \left[\tanh(K_{ax}x_{aq}) - K_y \right] S_0 \quad \text{Eqn.} (A.1) \\
\frac{dM_{ax}}{dt} &= \frac{\eta_{max}}{mFV_{aq}} \left[\tanh(K_{ax}x_{aq}) - K_y \right] S_0 \quad \text{Eqn.} (A.2)
\end{align*}
\]

The initial conditions are:

\[
S = S_{in}, \quad M_{ax} = M_{oxin} \quad \text{at} \quad t = 0
\]

where

\[
\eta_{aq} = \eta_{max} - \eta_{min}, \quad \eta_{max} = \eta_{max} - \eta_{min} - \frac{K_y}{K_{eq}}, \quad \eta_{aq} = \eta_{aq} + \eta_{aq}
\]

\[
\text{(A.4)}
\]

Construct the homotopy for the equation (A.1) and (A.2) method as follows [19]:

\[
\begin{align*}
(i) - \frac{dS}{dt} &= \frac{D(S_0-S) - \frac{\eta_{max}}{\eta_{max}} \left[\tanh(K_{ax}x_{aq}) - K_y \right] S_0}{1 - \eta_{aq}(1)} \quad \text{Eqn.} (A.5) \\
\frac{dM_{ax}}{dt} &= \frac{\eta_{max}}{mFV_{aq}} \left[\tanh(K_{ax}x_{aq}) - K_y \right] S_0 \quad \text{Eqn.} (A.6)
\end{align*}
\]

The approximate solution of equations (A.1) and (A.2) are

\[
S = S_0 + \frac{pS_2 + p^2S_3}{1 + p^3S_3 + \ldots} \quad \text{Eqn.} (A.7)
\]

\[
M_{ax} = M_{ax0} + \frac{pM_{ax0} + p^2M_{ax0} + p^3M_{ax0}}{1 + p^3M_{ax0}} \quad \text{Eqn.} (A.8)
\]

Substituting equations (A.7) and (A.8) into equations (A.5) and (A.6), and equate the terms with the identical powers of p^k, we obtain

\[
\begin{align*}
\frac{dS}{dt} + (D(S_0-S) - \frac{\eta_{max}}{\eta_{max}} \left[\tanh(K_{ax}x_{aq}) - K_y \right] S_0) = 0 \quad \text{Eqn.} (A.9) \\
\frac{dM_{ax}}{dt} + \frac{\eta_{max}}{mFV_{aq}} \left[\tanh(K_{ax}x_{aq}) - K_y \right] S_0 = 0 \quad \text{Eqn.} (A.10)
\end{align*}
\]

The initial conditions for equations (A.9) and (A.10) are $S(0) = S_{in}$, and $M_{ax}(t = 0) = M_{oxin}$

\[
\text{(A.11)}
\]

Solving equations (A.9) and (A.10) for the above initial conditions, we can obtained $S(t)$ and $M_{ax}(t)$ as follows:

\[
S(t) = S_{in} - \frac{1}{K_{eq}} \left[\frac{M_{total}}{M_{total} - M_{oxin}} \right] e^{-K_{eq}t} \\
M_{ax}(t) = \frac{M_{oxin}}{M_{total} - M_{oxin}} \left[\frac{M_{total} - M_{oxin}}{M_{total}} \right] e^{-K_{eq}t}
\]

\[
\text{(A.12)}
\]

The same procedure is used to obtained the concentration profiles for other limiting cases.

Appendix – B: Numerical solution of non-linear differential equations (4) – (7) using MATLAB coding

function main1
options = odeset('RelTol',1e-6,'Stats','on');
xo = [1; 1; 1];
tspan = [0,100];
tic
[t,X] = ode45 (@TestFunction,tspan,xo,options);
toc
figure
hold on
plot (t,x(:,1))
plot (t,x(:,2))
plot (t,x(:,3))
return

function [dx_dt]= TestFunction(t,x)
D=0.1; S1=10; S2=1; q=9; K=1; a=1; b=10; N=0.1;
k=1;g=5;k1=1;E=1+9*exp(1);R=b=3.14;T=100;F=96485;M1=10;M=1;m=1;v=1;R1=10;
r1=1+19*exp(-1);
y=2;D=1;K=3.5a=1,b=10;q=1*N=1;
dx_d1=1-D*(S1-S)+((D*q^2*(1+tanh((K^a)-(K^b)))/2*N));
dx_d2(x)=k^x(2);
dx_d3=((g^exp(k^x))-(E*(1+R^T)*log(M1/(M1-M))/F))/((m^F*y^a)(R1+v1))-((y*D^q^x(1+tanh((K^a)-(K^b))))/2*N);
dx_dt = dx_dt;

Retrieved Number: D719118419/2019/BEIESP
DOI:10.35940/iijrte.7191.118419

5639

Published By:
Blue Eyes Intelligence Engineering & Sciences Publication
ACKNOWLEDGMENTS

The authors are also thankful to the administration of the Academy of Maritime Education and Training (AMET), Chennai, Tamil Nadu for their continuing support.

REFERENCES:

1. Logan, E. Bruce, Bert Hamelers, Rene Rozendal, Uwe Schroder, Jorg Keller, Stefano Freguia, Peter Aelterman, Willy Verstraeten and Korneel Rabaeys, “Microbial fuel cells: Methodology and technology”, Environmental Science and Technology, 40(17), 2006, pp. 5181-5192.

2. Logan, E. Bruce and M. John, Regan, “Microbial fuel cells - Challenges and applications”, Environmental Science and Technology, 40(17), 2006, pp. 5172-5180.

3. Y. Arcand, C. Chavarie and S. Guiot, “Dynamic modelling of the population distribution in the anaerobic granular biofilm”, Water Science and Technology, 30, 1994, pp. 63-73.

4. R. Moletta, D. Verrier and G. Albagnac, “Dynamic modeling of anaerobic digestion”, Water Research, 20, 1986, pp. 427-434.

5. J. Quarmby and C.F. Forster, “An examination of the structure of UASB granules”, Water Research, 29, 1995, pp. 2449-2454.

6. Piccioreau, Cristian, M. Ian Head, P. Krishna, Katuri, C. M. Mark, van Loosdrecht and Keith Scott, “A computational model for biokinetic-based microbial fuel cells”, Water Research, 41(13), 2007, pp. 2921-2940.

7. P.R Pinto, B. Srinivasan, M-F. Manuel and B. Tartakovsky, “A Two-Population Bio-Electrochemical Model of a Microbial Fuel Cell”, Bioresource Technology, 101(14), 2010, pp. 5043-5736.

8. H. Li, Y. Wan, M. Wang, M. Han, X. Huo, “History status and prospects of the apple industry in China”, J. Am. Pomol. Soc, 69, 2015, pp.174-185.

9. D. Pant, A.Singh, G.Van Bogaert, S.Irving Olsen, P.Singh Nigam, L.Diels, K.Vanbroekhoven, “Bio electrochemical systems(BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters RSC”, Adv., 2, 2012, pp. 1248–1263.

10. D.Cecconet, D.Molognoni, A.Callegari, A.G.Capodaglio, “Biological combination processes for efficient removal of pharmaceutically active compounds from wastewater are viewed and future perspectives”, J.Environ.Chem.Eng, 5, 2017, pp. 3590-3603.

11. Joseph, S. Devinny, J. Ramesh, “A phenomenological review of biofilter models”, Chem. Eng. Journal, 113, 2005, pp. 187-196.

12. S.Kim, M.A. Dehusses, “Development and experimental validation of a conceptual model for biotracking filtration of H2S”, Environ. Prog., 22(2), 2003, pp. 119-128.

13. O.M.Kirthiga, L.Rajendran, “Analytical expression pertaining to the concentrations of biomass, sugar and ethanol production from wastewaters of the soft drink industries”, International Journal of Modern Mathematical Sciences, 4(3), 2016, pp. 352-364.

14. O.M. Kirthiga, L.Rajendran, “Analytical expressions of the concentrations of Substrate, biomass, and ethanol for solid-state fermentation in biofuel production”, Energy Technology, 2, 2014, pp. 574-578.

15. R. P. Pinto, B. Tartakovsky, M. Perrier, and B. Srinivasan, “Performance analyses of microbial fuel cells operated in series”, International Symposium on Dynamics and Control of Process Systems, 2010, pp. 547-552.

16. J.H. He, “Homotopy perturbation technique”, Computer Methods in Applied Mechanics and Engineering, 178, 1999, pp. 257-262.

17. Mathuruya and Sharma, Mathuruya, A. S. and Sharma, “Bioelectricity production from various wastewaters through microbial fuel cell technology”, 2, 2009, pp. 133-137.

18. Cheng, S. Cheng, S. Member, Y. Jin, Y. Rao, D. P. Arnold, “An Active Voltage Doubling AC / DC Converter for Low-Voltage Energy Harvesting Applications Power”, 26(8), 2011, pp. 2258–2265.

19. K.P. V. Preethi, J. Visuvasam, T. Ishwarya, L. Rajendran, “New approach of homotopy perturbation method to solve the non-linear system in biosensor”, International Journal of Mathematics Archive (IJMA), 8(9), 2017, pp. 1-13.

AUTHORS PROFILE

S. Thamizh Suganya, born at Pavuppattu, Thiruvannamalai, Tamil Nadu, India on 11.05.1992. Obtained her M.Sc. in Mathematics from Government arts and Science College, Thiruvannamalai, Tamil Nadu, India during 2015. Also she is doing her Ph.D. in “Analysis, Computation and Mathematical modelling of reaction diffusion processes” at AMET Deemed to be university University under the guidance of Dr. P. Balaganesan, Assistant Professor in Mathematics, AMET Deemed to be University, Kanathur, Chennai, Tamil Nadu, India.

P. Balaganesan is an Associate Professor in the Department of Mathematics, AMET Deemed to be University, Chennai 603112. He has been serving in the field of academic for more than two decades. He obtained his Bachelor of Science and Master of Science in Bharathidasan University. He has completed his master of Philosophy in Mathematics in Madurai Kamaraj University. He has completed Ph.D in Mathematics at Hindustan University. He published 20 Research papers in reputed National and International Journals.

L. Rajendran is a Professor at the Department of Mathematics, Academy of Maritime Education and Training (Deemed to be University), Chennai, India. He has published 110 papers in international/SCI journals and 100 papers in national journals. He has also written four books. He serves as a reviewer in many International Journals. He completed 6 research projects from various funding agencies in India. More than 35 students completed the Ph.D under his guidance. He visited Germany and Poland under INSF fellowships.