\textbf{\LaTeX}xml 2012 – A Year of \LaTeX\xml

Deyan Ginev1 and Bruce R. Miller2

1 Computer Science, Jacobs University Bremen, Germany
2 National Institute of Standards and Technology, Gaithersburg, MD, USA

\textbf{Abstract.} \LaTeX\xml, a \TeX{} to XML converter, is being used in a wide range of MKM applications. In this paper, we present a progress report for the 2012 calendar year. Noteworthy enhancements include: increased coverage such as Wikipedia syntax; enhanced capabilities such as embeddable JavaScript and CSS resources and RDFa support; a web service for remote processing via web-sockets; along with general accuracy and reliability improvements. The outlook for an 0.8.0 release in mid-2013 is also discussed.

1 Introduction

\LaTeX\xml\ [Mil] is a \TeX{} to XML converter, bringing the well-known authoring syntax of \TeX{} and \LaTeX{} to the world of XML. Not a new face in the MKM crowd, \LaTeX\xml\ has been adopted in a wide range of MKM applications. Originally designed to support the development of NIST’s Digital Library of Mathematical Functions (DLMF), it is now employed in publishing frameworks, authoring suites and for the preparation of a number of large-scale \TeX{} corpora.

In this paper, we present a progress report for the 2012 calendar year of \LaTeX\xml’s master and development branches. In 2012, the \LaTeX\xml\ Subversion repository saw 30\% of the total project commits since 2006.

Currently, the two authors maintain a developer and master branch of \LaTeX\xml, respectively. The main branch contains all mature features of \LaTeX\xml.

2 Main Development Trunk

\LaTeX\xml’s processing model can be broken down into two phases: the basic conversion transforms the \TeX/\LaTeX\ markup into a \LaTeX\xml-like XML schema; a post-processing phase converts that XML into the target format, usually some format in the HTML family. The following sections highlight the progress made in support for these areas.

2.1 Document Conversion

There has been a great deal of general progress in \LaTeX\xml’s processing: the fidelity of \TeX{} and \LaTeX{} simulation is much improved; the set of control sequences covered is more complete. The I/O code has been reorganized to more
closely track \TeX's behavior and to use a more consistent path searching logic. It also provides opportunities for more security hardening, while allowing flexibility regarding the data sources, needed by the planned web-services. Together these changes allow the direct processing of many more ‘raw’ style files directly from the \TeX installation (i.e., not requiring a specific \LaTeXxml binding). This mechanism is, in fact, now used for loading input encoding definitions and multilanguage support (babel). Additionally, it provides a better infrastructure for sTeX.

The support for colors and graphics has been enhanced, with a more complete color model that captures the capabilities of the xcolor package and a move towards generation of native SVG [FFJ03]. A summer student, Silviu Oprrea, now at Oxford, developed a remarkable draft implementation supporting the conversion of pgf and tikz graphics markup into SVG; this code will be integrated into the 0.8 release.

Native support for RDFa has been added to the schema, along with an optional package, 1xRDFa, allowing the embedding of the semantic annotations within the \TeX document. Various other \LaTeX packages have also been implemented: cancel, epigraph. Additionally, the texvc package provides for the emulation of the texvc program used by Wikipedia for processing math markup; this allows \LaTeXxml to be used to generate MathML from the existing wiki markup.

2.2 Document Post-Processing

The conversion of the internal math representation to common external formats such as MathML and OpenMath has been improved. In particular, the framework fully supports parallel math markup with cross-referencing between the alternative formats. Thus presentation and content MathML can be enclosed within a m:semantics element, with the corresponding m:mi and m:ci tokens connected to each other via id and xref attributes.

The evolution of MathML version 3 has also been tracked, as well as the current trends in implementations. Thus, we have shifted towards generating SMP (Supplemental Multilingual Plane, or Plane 1) Unicode and avoiding the m:mfenced element. Content MathML generation has been improved, particularly to cover the common (with \LaTeXxml) situation where the true semantics are imperfectly recognized.

Finally, a comprehensive overhaul of the XSLT processing was carried out which avoids the divergence between generation of the various HTML family of markup. The stylesheets are highly parameterized so that they are both more general, and yet allow generation of HTML5 specific markup; they should allow extension to further HTML-like applications like ePub. Command-line options make these parameters available to the user.

While the stylesheets are much more consistent and modular, allowing easy extension and customization, other changes lessen the need to customize. The set of CSS class names have been made much more consistent and predictable, if somewhat verbose, so that it should be easier for users to style the generated
HTML as they wish. Additionally, a resource element has been defined which allows binding developers to request certain CSS or JavaScript files or fragments to be associated with the document. A converted AMS article, now finally looks (somewhat) like an AMS article!

2.3 Unification

Although the separation of the conversion and post-processing phases is a natural one from the developer’s document processing point of view, it is sometimes artificial to users. Moreover, keeping the phases too far separated inhibits interesting applications, such as envisioned by the Daemon (see section 3) and automated document processing systems such as the one used for arXMLiv. Thus, we have undertaken to bring all processing back under a single, consistent, umbrella, whether running in command-line mode, or in client/server mode. The goal is to simplify the common use-case of converting a single document to HTML, while still enabling the injection of intermediate processing.

Some steps in that direction include more consistent error reporting at all phases of processing, with embedded ‘locator’ information so that the original source of an error can (usually) be located in the source. Additionally, logs include the current SVN revision number to better enable tracking and fixing bugs.

3 Daemon Experimental Branch

The Daemon branch [Gina] hosts experimental developments, primarily the development of client/server modules that support web services, optimize processing and improve the integration with external applications. Since the last report in CICM’s S&P track [GSK11], the focus has fallen on increasing usability, security and robustness.

The daemonized processing matured into a pair of robust HTTP servers, one optimized for local batch conversion jobs, the other for a real-time web-service, and a turnkey client executable that incorporates all shapes and sizes of LATEX processing. Showing a commitment to maintaining prominent conversion scenarios, shorthand user-defined profiles were introduced in order to simplify complex LATEXML configurations, e.g. those of sTeX and PlanetMath[Pla]. An internal redesign of the configuration setup and option handling of LATEXML contributed to facilitating these changes and promises a consistent internal API for supporting both the core and post-processing conversion phases.

The RESTful [Fie00] web service offered via the Mojolicious [Rie] web framework now also supports multi-file LATEX manuscripts via a ZIP archive workflow, also facilitated by an upload interface. Furthermore, the built-in web editor and showcase [Ginb] is available through a websocket route and enjoys an expanded list of examples, such as a LATEX Turing machine and a PSTricks graphic.

A significant new experimental feature is the addition of an ambiguous grammar for mathematical formulas. Based on Marpa [Keg], an efficient Earley-style
parser, the grammar embraces the common cases of ambiguity in mathematical expressions, e.g. that induced by invisible operators and overloaded operator symbols, in an attempt to set the stage for disambiguation to a correct operator tree. The current grammar in the main development trunk is heuristically geared to unambiguously recognize the mathematical formulas commonly used in DLMF and parts of arXiv. The long-term goal is for the ambiguous grammar to meet parity in coverage and implement advanced semantic techniques in order to establish the correct operator trees in a large variety of scientific domains.

It is anticipated that the bulk of these developments will be merged back into the main trunk for the 0.8 release. The new ambiguous grammar and Mojolicious web service are two notable exceptions, which will not make master prior to the 0.9 release.

4 Outlook

Although development was never stagnated, an official release is long overdue; a \LaTeX/XML 0.8 release is planned for mid-2013. It will incorporate the enhancements presented here: support for several \LaTeX\ graphics packages, such as Tikz and Xypic; an overhauled XSLT and CSS styling framework; and a merge of daemonized processing to the master branch.

References

[FFJ03] Jon Ferraiolo, Jun Fujisawa, and Dean Jackson. Scalable Vector Graphics (SVG) 1.1 Specification. W3C Recommendation. World Wide Web Consortium (W3C), Jan. 14, 2003. URL: http://www.w3.org/TR/2008/REC-SVG11-20030114/.

[Fie00] Roy T. Fielding. “Architectural Styles and the Design of Network-based Software Architectures”. PhD thesis. University of California, Irvine, 2000. URL: http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

[Gina] Deyan Ginev. \LaTeX/XML: A \LaTeX\ to XML Converter, arXMLiv branch. URL: https://svn.mathweb.org/repos/LaTeXML/branches/arXMLiv (visited on Mar. 12, 2013).

[Ginb] Deyan Ginev. The \LaTeX/XML Web Showcase. URL: http://latexml.mathweb.org/editor (visited on Mar. 12, 2013).

[GSK11] Deyan Ginev, Heinrich Stamerjohanns, and Michael Kohlhase. “The \LaTeX/XML Daemon: Editable Math on the Collaborative Web”. In: Intelligent Computer Mathematics. Ed. by James Davenport et al. LNAI 6824. Springer Verlag, 2011, pp. 292–294. ISBN: 978-3-642-22672-4. URL: https://svn.kwarc.info/repos/arXMLiv/doc/cicm-systems11/paper.pdf.

[Keg] Jeffrey Kegler. Marpa, A Practical General Parser. System homepage at http://jeffreykegler.github.com/Marpa-web-site/.
[Mil] Bruce Miller. *LaTeXML: A \LaTeX{} to XML Converter*. URL: http://dlmf.nist.gov/LaTeXML/ (visited on Mar. 12, 2013).

[Pla] *PlanetMath.org – Math for the people*. http://www.planetmath.org. seen March 2013. URL: http://planetmath.org.

[Rie] Sebastian Riedel. *Mojolicious - Perl real-time web framework*. System homepage at http://mojolicio.us/.