Homological Mirror Symmetry for higher dimensional pairs-of-pants

Sasha Polishchuk

January 28, 2020
This is joint work with Yanki Lekili

The goal is to prove the equivalence of the wrapped Fukaya category of n dimensional pairs-of-pants with the derived category of coherent sheaves on $x_1x_2\ldots x_{n+1} = 0$.

Inspired by Auroux’s calculation of the partially wrapped Fukaya category of the symmetric powers of punctured surfaces.

Main idea: introduce stops to simplify the endomorphism algebra of the set of generators. Identify corresponding nc resolution of $x_1x_2\ldots x_{n+1} = 0$ on the B-side.

There exist other approaches (Gammage-Nadler, Auroux).
This is joint work with Yanki Lekili

The goal is to prove the equivalence of the wrapped Fukaya category of n dimensional pairs-of-pants with the derived category of coherent sheaves on $x_1 x_2 \ldots x_{n+1} = 0$.

Inspired by Auroux’s calculation of the partially wrapped Fukaya category of the symmetric powers of punctured surfaces.

Main idea: introduce stops to simplify the endomorphism algebra of the set of generators. Identify corresponding nc resolution of $x_1 x_2 \ldots x_{n+1} = 0$ on the B-side.

There exist other approaches (Gammage-Nadler, Auroux).
This is joint work with Yanki Lekili

The goal is to prove the equivalence of the wrapped Fukaya category of n dimensional pairs-of-pants with the derived category of coherent sheaves on $x_1 x_2 \ldots x_{n+1} = 0$.

Inspired by Auroux’s calculation of the partially wrapped Fukaya category of the symmetric powers of punctured surfaces.

Main idea: introduce stops to simplify the endomorphism algebra of the set of generators. Identify corresponding nc resolution of $x_1 x_2 \ldots x_{n+1} = 0$ on the B-side.

There exist other approaches (Gammage-Nadler, Auroux).
This is joint work with Yanki Lekili

The goal is to prove the equivalence of the wrapped Fukaya category of n dimensional pairs-of-pants with the derived category of coherent sheaves on $x_1x_2\ldots x_{n+1} = 0$.

Inspired by Auroux’s calculation of the partially wrapped Fukaya category of the symmetric powers of punctured surfaces.

Main idea: introduce stops to simplify the endomorphism algebra of the set of generators. Identify corresponding nc resolution of $x_1x_2\ldots x_{n+1} = 0$ on the B-side.

There exist other approaches (Gammage-Nadler, Auroux).
This is joint work with Yanki Lekili

The goal is to prove the equivalence of the wrapped Fukaya category of n dimensional pairs-of-pants with the derived category of coherent sheaves on $x_1 x_2 \ldots x_{n+1} = 0$.

Inspired by Auroux’s calculation of the partially wrapped Fukaya category of the symmetric powers of punctured surfaces.

Main idea: introduce stops to simplify the endomorphism algebra of the set of generators. Identify corresponding nc resolution of $x_1 x_2 \ldots x_{n+1} = 0$ on the B-side.

There exist other approaches (Gammage-Nadler, Auroux).
Pair-of-pants

Let Σ be the 3-punctured sphere with the set of two stops Λ.

The partially wrapped Fukaya category $\mathcal{W}(\Sigma, \Lambda)$ is generated by the Lagrangians L_0, L_1, L_2.

FIGURE 1. Pair-of-pants
There exists a unique grading structure (given by the line field on Σ) such that the endomorphism algebra is concentrated in degree 0.

FIGURE 2. Endomorphism algebra of a generating set
Endomorphism algebra

There exists a unique grading structure (given by the line field on Σ) such that the endomorphism algebra is concentrated in degree 0.
Auslander order

On the B-side, we consider the algebra of the node

\[R = k[x_1, x_2]/(x_1 x_2). \]

The Auslander order is given by

\[A = \text{End}_R(R/(x_1) \oplus R/(x_2) \oplus R). \]

It is easy to see that \(A \) is isomorphic to the algebra associated with the above quiver with relations, so we get an equivalence

\[\text{Perf}(A) \simeq \mathcal{W}(\Sigma, \Lambda). \]

In general, the Auslander order of a nodal curve \(C \) is \(\mathcal{E}nd(I \oplus \mathcal{O}_C) \), where \(I \) is the ideal sheaf of the nodes. The above equivalence generalizes to Auslander orders over nodal chains and rings.
On the B-side, we consider the algebra of the node

\[R = k[x_1, x_2]/(x_1 x_2). \]

The Auslander order is given by

\[A = \text{End}_R(R/(x_1) \oplus R/(x_2) \oplus R). \]

It is easy to see that \(A \) is isomorphic to the algebra associated with the above quiver with relations, so we get an equivalence

\[\text{Perf}(A) \cong \mathcal{W}(\Sigma, \Lambda). \]

In general, the Auslander order of a nodal curve \(C \) is \(\text{End}(\mathcal{I} \oplus \mathcal{O}_C) \), where \(\mathcal{I} \) is the ideal sheaf of the nodes. The above equivalence generalizes to Auslander orders over nodal chains and rings.
On the B-side, we consider the algebra of the node

\[R = k[x_1, x_2]/(x_1 x_2). \]

The Auslander order is given by

\[A = \text{End}_R(R/(x_1) \oplus R/(x_2) \oplus R). \]

It is easy to see that \(A \) is isomorphic to the algebra associated with the above quiver with relations, so we get an equivalence

\[\text{Perf}(A) \simeq \mathcal{W}(\Sigma, \Lambda). \]

In general, the Auslander order of a nodal curve \(C \) is \(\text{End}_d(I \oplus \mathcal{O}_C) \), where \(I \) is the ideal sheaf of the nodes. The above equivalence generalizes to Auslander orders over nodal chains and rings.
Localization

On the A-side, removing the stops corresponds to taking the quotient by the subcategory generated by the objects T_1, T_2 supported near the stops.

We can express them in terms of L_0, L_1, L_2 as follows:

$$T_1 \sim \{ L_0 \xrightarrow{u_1} L_1 \xrightarrow{u_2} L_2 \}$$

$$T_2 \sim \{ L_2 \xrightarrow{v_2} L_1 \xrightarrow{v_1} L_0 \}$$

Can identify corresponding objects on the B-side: we get simple modules at vertices L_0 and L_2 of the quiver. As a corollary, get an equivalence

$$\mathcal{W}(\Sigma) \sim D^b(R).$$
Localization

On the A-side, removing the stops corresponds to taking the quotient by the subcategory generated by the objects T_1, T_2 supported near the stops.

We can express them in terms of L_0, L_1, L_2 as follows:

\[T_1 \simeq \{ L_0 \xrightarrow{u_1} L_1 \xrightarrow{u_2} L_2 \} \]
\[T_2 \simeq \{ L_2 \xrightarrow{v_2} L_1 \xrightarrow{v_1} L_0 \} \]

Can identify corresponding objects on the B-side: we get simple modules at vertices L_0 and L_2 of the quiver. As a corollary, get an equivalence

\[\mathcal{W}(\Sigma) \simeq D^b(R). \]
Localization

On the A-side, removing the stops corresponds to taking the quotient by the subcategory generated by the objects T_1, T_2 supported near the stops.

We can express them in terms of L_0, L_1, L_2 as follows:

$$T_1 \cong \{ L_0 \xrightarrow{u_1} L_1 \xrightarrow{u_2} L_2 \}$$

$$T_2 \cong \{ L_2 \xrightarrow{v_2} L_1 \xrightarrow{v_1} L_0 \}$$

Can identify corresponding objects on the B-side: we get simple modules at vertices L_0 and L_2 of the quiver. As a corollary, get an equivalence

$$\mathcal{V}(\Sigma) \cong D^b(R).$$
Consider Π_n, the complement to $n + 2$ generic hyperplanes in \mathbb{P}^n, as an exact symplectic manifold. Since $\mathbb{P}^n = \text{Sym}^n(\mathbb{P}^1)$, have an identification

$$\Pi_n = \text{Sym}^n(\mathbb{P}^1 \setminus \{p_0, p_1, \ldots, p_{n+1}\}).$$

More generally, we consider

$$M_{n,k} = \text{Sym}^n(\Sigma_k), \text{ where } \Sigma_k = \mathbb{P}^1 \setminus \{p_0, p_1, \ldots, p_k\}$$

(for $k \geq n$). Away from a small neighborhood of the diagonal, the symplectic form can be arranged to be induced by one on the surface.

We fix two points q_1, q_2 on one of the boundary components of the punctured sphere, and consider the induced hypersurfaces $\Lambda_i = q_i \times \text{Sym}^{n-1}(\Sigma_k)$. We will use either Λ_1 or $\Lambda = \Lambda_1 \cup \Lambda_2$ as stops.
Symmetric products

Consider Π_n, the complement to $n + 2$ generic hyperplanes in \mathbb{P}^n, as an exact symplectic manifold. Since $\mathbb{P}^n = \text{Sym}^n(\mathbb{P}^1)$, have an identification

$$\Pi_n = \text{Sym}^n(\mathbb{P}^1 \setminus \{p_0, p_1, \ldots, p_{n+1}\}).$$

More generally, we consider

$$M_{n,k} = \text{Sym}^n(\Sigma_k), \text{ where } \Sigma_k = \mathbb{P}^1 \setminus \{p_0, p_1, \ldots, p_k\}$$

(for $k \geq n$). Away from a small neighborhood of the diagonal, the symplectic form can be arranged to be induced by one on the surface.

We fix two points q_1, q_2 on one of the boundary components of the punctured sphere, and consider the induced hypersurfaces $\Lambda_i = q_i \times \text{Sym}^{n-1}(\Sigma_k)$. We will use either Λ_1 or $\Lambda = \Lambda_1 \cup \Lambda_2$ as stops.
Consider Π_n, the complement to $n + 2$ generic hyperplanes in \mathbb{P}^n, as an exact symplectic manifold. Since $\mathbb{P}^n = \text{Sym}^n(\mathbb{P}^1)$, have an identification

$$
\Pi_n = \text{Sym}^n(\mathbb{P}^1 \setminus \{p_0, p_1, \ldots, p_{n+1}\}).
$$

More generally, we consider

$$
M_{n,k} = \text{Sym}^n(\Sigma_k), \text{ where } \Sigma_k = \mathbb{P}^1 \setminus \{p_0, p_1, \ldots, p_k\}
$$

(for $k \geq n$). Away from a small neighborhood of the diagonal, the symplectic form can be arranged to be induced by one on the surface.

We fix two points q_1, q_2 on one of the boundary components of the punctured sphere, and consider the induced hypersurfaces $\Lambda_i = q_i \times \text{Sym}^{n-1}(\Sigma_k)$. We will use either Λ_1 or $\Lambda = \Lambda_1 \cup \Lambda_2$ as stops.
Generating Lagrangians

We start with the same collection of Lagrangians on Σ_k as before:

By Auroux’s theorem, the products $L_S := L_{i_1} \times \cdots \times L_{i_n}$, for $S = \{i_1 < \ldots < i_n\} \subset [0, k]$, generate $\mathcal{W}(M_{n,k}, \Lambda)$.
Generating Lagrangians

We start with the same collection of Lagrangians on Σ_k as before:

By Auroux’s theorem, the products $L_S := L_{i_1} \times \ldots \times L_{i_n}$, for $S = \{i_1 < \ldots < i_n\} \subset [0, k]$, generate $\mathcal{W}(M_{n,k}, \Lambda)$.
Computation on the A-side. I

We can compute (cohomology of) morphism spaces between generating objects in \(\mathcal{W}(M_{n,k}, \Lambda) \).

For every proper subinterval \([i, j] \subset [0, k]\), set

\[
\mathcal{A}_{[i,j]} = \begin{cases}
\mathbf{k}[x_i, \ldots, x_{j+1}]/(x_i \ldots x_{j+1}) & \text{if } i > 0, j < k, \\
\mathbf{k}[x_1, \ldots, x_{j+1}] & \text{if } i = 0, j < k, \\
\mathbf{k}[x_i, \ldots, x_k] & \text{if } i > 0, j = k,
\end{cases}
\]

Proposition. For \(S = [i_1, j_1] \sqcup [i_2, j_2] \sqcup \ldots \sqcup [i_r, j_r] \) with \(j_s + 1 < i_{s+1} \), one has

\[
\text{End}(L_S) \simeq \mathcal{A}(S, S) := \mathcal{A}_{[i_1, j_1]} \otimes \mathcal{A}_{[i_2, j_2]} \otimes \ldots \otimes \mathcal{A}_{[i_r, j_r]},
\]
Computation on the A-side. I

We can compute (cohomology of) morphism spaces between generating objects in $\mathcal{W}(M_{n,k}, \Lambda)$.

For every proper subinterval $[i, j] \subset [0, k]$, set

$$A_{[i,j]} = \begin{cases} k[x_i, \ldots, x_{j+1}]/(x_i \ldots x_{j+1}) & \text{if } i > 0, j < k, \\ k[x_1, \ldots, x_{j+1}] & \text{if } i = 0, j < k, \\ k[x_i, \ldots, x_k] & \text{if } i > 0, j = k, \end{cases}$$

Proposition. For $S = [i_1, j_1] \sqcup [i_2, j_2] \sqcup \ldots \sqcup [i_r, j_r]$ with $j_s + 1 < i_{s+1}$, one has

$$\text{End}(L_S) \simeq A(S, S) := A_{[i_1,j_1]} \otimes A_{[i_2,j_2]} \otimes \ldots \otimes A_{[i_r,j_r]}.$$
Computation on the A-side. II

The subsets $S, S' \subset [0, k]$ are called close if there exists a bijection $g : S \rightarrow S'$ with $g(i) \in \{i - 1, i, i + 1\}$. In this case there exists a decomposition

$$S = S_0 \sqcup \bigsqcup_a I_a \sqcup \bigsqcup_b J_b,$$

where I_a and J_b are subintervals, such that

$$S' = S_0 \sqcup \bigsqcup_a (I_a + 1) \sqcup \bigsqcup_b (J_b - 1).$$

Proposition. One has

$$\text{Hom}(L_S, L_{S'}) \simeq \begin{cases} 0, & S, S' \text{ not close}, \\ \mathcal{A}(S_0, S_0) \otimes \bigotimes_a \mathcal{A}'_{I_a} \otimes \bigotimes_b \mathcal{A}'_{J_b}, & S, S' \text{ close}, \end{cases}$$

where $\mathcal{A}'_{[i, j]} = k[x_{i+1}, \ldots, x_j]$.
The subsets $S, S' \subset [0, k]$ are called close if there exists a bijection $g : S \to S'$ with $g(i) \in \{i - 1, i, i + 1\}$. In this case there exists a decomposition

$$S = S_0 \sqcup \bigsqcup_a I_a \sqcup \bigsqcup_b J_b,$$

where I_a and J_b are subintervals, such that

$$S' = S_0 \sqcup \bigsqcup_a (I_a + 1) \sqcup \bigsqcup_b (J_b - 1).$$

Proposition. One has

$$\text{Hom}(L_S, L_{S'}) \simeq \begin{cases} 0, & S, S' \text{ not close,} \\ \mathcal{A}(S_0, S_0) \otimes \bigotimes_a \mathcal{A}'_{I_a} \otimes \bigotimes_b \mathcal{A}'_{J_b}, & S, S' \text{ close,} \end{cases}$$

where $\mathcal{A}'_{[i,j]} = k[x_{i+1}, \ldots, x_j]$.
Can compute compositions as well.
Example: \(n = 2, \ k = 3 \) (Sym\(^2\) of 4-punctured sphere).
Get quiver with relations over \(R = \mathbb{k}[x_1, x_2, x_3]/(x_1 x_2 x_3) \)

Relations:
\[
\begin{align*}
 u_i v_i &= x_i = v_i u_i, \\
 u_3 u_2 &= v_2 v_3 = u_2 u_1 = v_1 v_2 = 0 \\
 u_3 u_1 &= u_1 u_3, \\
 v_3 v_1 &= v_1 v_3, \\
 u_3 v_1 &= v_1 u_3, \\
 u_1 v_3 &= v_3 u_1
\end{align*}
\]
Can compute compositions as well.
Example: $n = 2$, $k = 3$ (Sym2 of 4-punctured sphere).
Get quiver with relations over $R = k[x_1, x_2, x_3]/(x_1 x_2 x_3)$

Relations:

$$u_i v_i = x_i = v_i u_i, \quad u_3 u_2 = v_2 v_3 = u_2 u_1 = v_1 v_2 = 0$$

$$u_3 u_1 = u_1 u_3, \quad v_3 v_1 = v_1 v_3, \quad u_3 v_1 = v_1 u_3, \quad u_1 v_3 = v_3 u_1$$
Our algebra A of endomorphisms turns out to be the same as the algebra $B(k, n)$ defined combinatorially in [Ozsváth, Szabó], Kauffman states, bordered algebras and a bigraded knot invariant

They use bimodules over such algebras to define a categorification of the Alexander polynomial of a knot.

Auroux proved a similar connection with (different) bordered algebras involving symmetric powers of surfaces with one puncture.
Our algebra \mathcal{A} of endomorphisms turns out to be the same as the algebra $\mathcal{B}(k, n)$ defined combinatorially in [Ozsváth,Szabó], *Kauffman states, bordered algebras and a bigraded knot invariant*

They use bimodules over such algebras to define a categorification of the Alexander polynomial of a knot.

Auroux proved a similar connection with (different) bordered algebras involving symmetric powers of surfaces with one puncture.
Our algebra \mathcal{A} of endomorphisms turns out to be the same as the algebra $\mathcal{B}(k, n)$ defined combinatorially in [Ozsváth, Szabó], *Kauffman states, bordered algebras and a bigraded knot invariant*. They use bimodules over such algebras to define a categorification of the Alexander polynomial of a knot.

Auroux proved a similar connection with (different) bordered algebras involving symmetric powers of surfaces with one puncture.
Since $c_1(M_{n,k}) = 0$, the symplectic manifold $M_{n,k}$ can be equipped with a \mathbb{Z}-grading structure. The grading structures naturally form a torsor over $H^1(M_{n,k}, \mathbb{Z}) \cong \mathbb{Z}^k$.

All our Lagrangians L_S are contractible, so they can be graded (uniquely up to a shift by \mathbb{Z}).

Proposition. For any assignment of degrees, $\deg(x_i) = d_i \in \mathbb{Z}$, $i = 1, \ldots, k$, there is a unique \mathbb{Z}-grading on the algebra

$$\mathcal{A} = \bigoplus_{S,S'} \text{Hom}(L_S, L_{S'})$$

coming from some choices of $\deg(f_{S,S'}) = d_{S,S'} \in \mathbb{Z}$, for S, S' close, up to a transformation of the form $d_{S,S'} \mapsto d_{S,S'} + d_{S'} - d_S$.
Since $c_1(M_{n,k}) = 0$, the symplectic manifold $M_{n,k}$ can be equipped with a \mathbb{Z}-grading structure. The grading structures naturally form a torsor over $H^1(M_{n,k}, \mathbb{Z}) \simeq \mathbb{Z}^k$.

All our Lagrangians L_S are contractible, so they can be graded (uniquely up to a shift by \mathbb{Z}).

Proposition. For any assignment of degrees, $\deg(x_i) = d_i \in \mathbb{Z}$, $i = 1, \ldots, k$, there is a unique \mathbb{Z}-grading on the algebra

$$\mathcal{A} = \bigoplus_{S, S'} \text{Hom}(L_S, L_{S'})$$

coming from some choices of $\deg(f_{S, S'}) = d_{S, S'} \in \mathbb{Z}$, for S, S' close, up to a transformation of the form $d_{S, S'} \mapsto d_{S, S'} + d_{S'} - d_S$.
Since \(c_1(M_{n,k}) = 0 \), the symplectic manifold \(M_{n,k} \) can be equipped with a \(\mathbb{Z} \)-grading structure. The grading structures naturally form a torsor over \(H^1(M_{n,k}, \mathbb{Z}) \cong \mathbb{Z}^k \).

All our Lagrangians \(L_S \) are contractible, so they can be graded (uniquely up to a shift by \(\mathbb{Z} \)).

Proposition. For any assignment of degrees, \(\deg(x_i) = d_i \in \mathbb{Z}, \ i = 1, \ldots, k \), there is a unique \(\mathbb{Z} \)-grading on the algebra

\[
\mathcal{A} = \bigoplus_{S,S'} \text{Hom}(L_S, L_{S'})
\]

coming from some choices of \(\deg(f_{S,S'}) = d_{S,S'} \in \mathbb{Z} \), for \(S, S' \) close, up to a transformation of the form

\[
d_{S,S'} \mapsto d_{S,S'} + d_{S'} - d_S.
\]
Let $R = R_{[1,k]} = k[x_1, \ldots, x_k]/(x_1 \ldots x_k)$. We construct an nc-resolution of R.

$$B = B_{[1,k]} := \text{End}_R \left(\bigoplus_{I \subset [1,k], I \neq \emptyset} R/(x_I) \right),$$

where the summation is over all nonempty subintervals of $[1, k]$, $x_I = \prod_{i \in I} x_i$.

E.g, for $k = 2$, this is precisely the Auslander order.

For each subinterval $I \subset [1, k]$, denote by P_I the corresponding projective module over B. Note that $\text{End}_B(P_I) = R/(x_I)$. So we have a fully faithful embedding

$$i_B^R : \text{Perf}(R) \rightarrow \text{Perf}(B) : R \mapsto P_{[1,k]}$$
Let $R = R_{[1,k]} = k[x_1, \ldots, x_k]/(x_1 \ldots x_k)$. We construct an nc-resolution of R.

$$B = B_{[1,k]} := \text{End}_R \left(\bigoplus_{I \subset [1,k], I \neq \emptyset} R/(x_I) \right),$$

where the summation is over all nonempty subintervals of $[1, k]$, $x_I = \prod_{i \in I} x_i$.

E.g, for $k = 2$, this is precisely the Auslander order.

For each subinterval $I \subset [1, k]$, denote by P_I the corresponding projective module over B. Note that $\text{End}_B(P_I) = R/(x_I)$. So we have a fully faithful embedding

$$i^B_R : \text{Perf}(R) \rightarrow \text{Perf}(B) : R \mapsto P_{[1,k]}$$
Let \(R = R_{[1,k]} = \mathbf{k}[x_1, \ldots, x_k]/(x_1 \ldots x_k) \). We construct an nc-resolution of \(R \).

\[
\mathcal{B} = \mathcal{B}_{[1,k]} := \text{End}_R \left(\bigoplus_{I \subset [1,k], I \neq \emptyset} R/(x_I) \right),
\]

where the summation is over all nonempty subintervals of \([1, k]\), \(x_I = \prod_{i \in I} x_i \).

E.g, for \(k = 2 \), this is precisely the Auslander order.

For each subinterval \(I \subset [1, k] \), denote by \(P_I \) the corresponding projective module over \(\mathcal{B} \). Note that \(\text{End}_\mathcal{B}(P_I) = R/(x_I) \). So we have a fully faithful embedding

\[
i^B_R : \text{Perf}(R) \to \text{Perf}(\mathcal{B}) : R \mapsto P_{[1,k]}
\]
Localization on the B-side

We also have the right adjoint functor to i^B_R,

$$r^B_R : D^b(B) \to D^b(R) : M \mapsto \text{Hom}_B(P[1,k], M).$$

For a pair of nonempty disjoint subintervals $I, J \subset [1, k]$, such that $I \sqcup J$ is also a subinterval, can define a B-module $M\{I, J\}$, so that we have an exact sequence

$$0 \to P_I \to P_{I \sqcup J} \to P_J \to M\{I, J\} \to 0.$$

Proposition. Assume k is regular. Then r^B_R induces an equivalence

$$D^b(B)/ \ker(r^B_R) \simeq D^b(R),$$

and $\ker(r^B_R)$ is generated by the modules $(M\{[i], [i + 1, j]\}, M\{[j], [i, j - 1]\})_{i < j}$.
Localization on the B-side

We also have the right adjoint functor to i_R^B,

$$r_R^B : D^b(B) \to D^b(R) : M \mapsto \text{Hom}_B(P_{[1,k]}, M).$$

For a pair of nonempty disjoint subintervals $I, J \subset [1,k]$, such that $I \sqcup J$ is also a subinterval, can define a B-module $M\{I, J\}$, so that we have an exact sequence

$$0 \to P_I \to P_{I \sqcup J} \to P_J \to M\{I, J\} \to 0.$$

Proposition. Assume k is regular. Then r_R^B induces an equivalence

$$D^b(B)/\ker(r_R^B) \simeq D^b(R),$$

and $\ker(r_R^B)$ is generated by the modules

$$(M\{[i],[i+1,j]\}, M\{[j],[i,j-1]\}))_{i<j}.$$
Matching the A-side with the B-side

For $n = k - 1$ the Lagrangians L_S are numbered by subsets $S \subset [0, k]$ with $|S| = k - 1$. Now we define the correspondence between such L_S and subintervals $I \subset [1, k]$ by

$$L_{[0,k]\{i,j\}} \leftrightarrow [i + 1, j],$$

where $0 \leq i < j \leq k$.

Theorem. This extends to an isomorphism of algebras $A \simeq B$, so that we get an equivalence of categories

$$\mathcal{W}(\Pi_{k-1}, \Lambda) \simeq \text{Perf}(B_k).$$

The \mathbb{Z}-grading on the left is the unique one with $\deg(x_i) = 0$. Furthermore, the subcategory corresponding to stops matches with $\ker(r^B_R)$, so for k regular, we deduce

$$\mathcal{W}(\Pi_{k-1}) \simeq D^b(k[x_1, \ldots, x_k]/(x_1 \ldots x_k)).$$
Matching the A-side with the B-side

For $n = k - 1$ the Lagrangians L_S are numbered by subsets $S \subset [0, k]$ with $|S| = k - 1$. Now we define the correspondence between such L_S and subintervals $I \subset [1, k]$ by

$$L_{[0,k]\{i,j\}} \leftrightarrow [i + 1, j],$$

where $0 \leq i < j \leq k$.

Theorem. This extends to an isomorphism of algebras $A \simeq B$, so that we get an equivalence of categories

$$\mathcal{W}(\Pi_{k-1}, \Lambda) \simeq \text{Perf}(B_k).$$

The \mathbb{Z}-grading on the left is the unique one with $\deg(x_i) = 0$. Furthermore, the subcategory corresponding to stops matches with $\ker(r_B^\mathcal{B})$, so for k regular, we deduce

$$\mathcal{W}(\Pi_{k-1}) \simeq D^b(k[x_1, \ldots, x_k]/(x_1 \ldots x_k)).$$
Matching the A-side with the B-side

For $n = k - 1$ the Lagrangians L_S are numbered by subsets $S \subset [0, k]$ with $|S| = k - 1$. Now we define the correspondence between such L_S and subintervals $I \subset [1, k]$ by

$$L_{[0,k]\{i,j\}} \leftrightarrow [i+1,j],$$

where $0 \leq i < j \leq k$.

Theorem. This extends to an isomorphism of algebras $\mathcal{A} \simeq \mathcal{B}$, so that we get an equivalence of categories

$$\mathcal{W}(\Pi_{k-1}, \Lambda) \simeq \text{Perf}(\mathcal{B}_k).$$

The \mathbb{Z}-grading on the left is the unique one with $\deg(x_i) = 0$.

Furthermore, the subcategory corresponding to stops matches with $\ker(r^B_R)$, so for k regular, we deduce

$$\mathcal{W}(\Pi_{k-1}) \simeq D^b(\mathbb{k}[x_1, \ldots, x_k]/(x_1 \ldots x_k)).$$
Addional features

1. Can similarly identify the nc resolution of $R = \mathbf{k}[x_1, \ldots, x_k]/(x_1 \ldots x_k)$ corresponding to $\mathcal{W}(\Pi_{k-1}, \Lambda_1)$ (only one stop). It is given by

$$\mathcal{B}^\circ := \text{End}_R(R/(x_1) \oplus R/(x_{[1,2]}) \oplus \ldots \oplus R/(x_{[1,k-1]}) \oplus R).$$

2. There is a semiorthogonal decomposition

$$\text{Perf}(\mathcal{B}^\circ) = \langle \text{Perf}(R/(x_k)), \ldots, \text{Perf}(R/(x_2)), \text{Perf}(R/(x_1)) \rangle$$

and a semiorthogonal decomposition

$$\text{Perf}(\mathcal{B}) = \langle C_1, \ldots, C_N, \text{Perf}(\mathcal{B}^\circ) \rangle$$

where each C_i is of the form $\text{Perf}(R/(x_1, x_j))$ for some $j \geq 2$.

Additional features

1. Can similarly identify the nc resolution of
 \(R = k[x_1, \ldots, x_k]/(x_1 \ldots x_k) \) corresponding to \(\mathcal{W}(\Pi_{k-1}, \Lambda_1) \) (only one stop). It is given by

 \[\mathcal{B}^\circ := \text{End}_R(R/(x_1) \oplus R/(x_{[1,2]}) \oplus \ldots \oplus R/(x_{[1,k-1]}) \oplus R). \]

2. There is a semiorthogonal decomposition

 \[\text{Perf}(\mathcal{B}^\circ) = \langle \text{Perf}(R/(x_k)), \ldots, \text{Perf}(R/(x_2)), \text{Perf}(R/(x_1)) \rangle \]

 and a semiorthogonal decomposition

 \[\text{Perf}(\mathcal{B}) = \langle C_1, \ldots, C_N, \text{Perf}(\mathcal{B}^\circ) \rangle \]

 where each \(C_i \) is of the form \(\text{Perf}(R/(x_1, x_j)) \) for some \(j \geq 2 \).
Abelian covers

For $k > 2$ we have a natural isomorphism $\pi_1(\Pi_{k-1}) \cong \mathbb{Z}_k$. Fix a homomorphism

$$\phi : \pi_1(\Pi_{k-1}) \cong \mathbb{Z}_k \to \Gamma,$$

where Γ is a finite abelian group, and let

$$\pi : M \to \Pi_{k-1}$$

be the corresponding finite covering.

Let $G = \text{Hom}(\Gamma, \mathbb{G}_m)$ denote the dual abelian group scheme to Γ, and let

$$G \to \mathbb{G}_m^k$$

be the homomorphism corresponding to ϕ.

Theorem. For k regular, we have an equivalence

$$\mathcal{W}(M) \cong D^b_G(k[x_1, \ldots, x_k]/(x_1 \ldots x_k))$$
Abelian covers

For $k > 2$ we have a natural isomorphism $\pi_1(\Pi_{k-1}) \cong \mathbb{Z}_k$. Fix a homomorphism

$$\phi : \pi_1(\Pi_{k-1}) \cong \mathbb{Z}_k \to \Gamma,$$

where Γ is a finite abelian group, and let

$$\pi : M \to \Pi_{k-1}$$

be the corresponding finite covering.

Let $G = \text{Hom}(\Gamma, \mathbb{G}_m)$ denote the dual abelian group scheme to Γ, and let

$$G \to \mathbb{G}_m^k$$

be the homomorphism corresponding to ϕ.

Theorem. For k regular, we have an equivalence

$$\mathcal{W}(M) \cong D_G^b(k[x_1, \ldots, x_k] / (x_1 \ldots x_k))$$
Let \(w = \sum_{i=1}^{k} \prod_{j=1}^{k} x_j^{a_{ij}} \) be an invertible polynomial described by the matrix of exponents \((a_{ij})\).

Let

\[
M_w := \{ (x_1, \ldots, x_k) \in (\mathbb{C}^*)^k \mid w(x_1, \ldots, x_k) = 1 \}
\]

be the punctured Milnor fiber.

We have a covering map

\[
\pi : M_w \to \Pi_{k-1}
\]

given by \((x_1, x_2, \ldots, x_k) \to (\prod_{j=1}^{k} x_j^{a_{1j}}, \prod_{j=1}^{k} x_j^{a_{2j}}, \ldots, \prod_{j=1}^{k} x_j^{a_{kj}})\)

where we view \(\Pi_{k-1}\) as a hypersurface in \((\mathbb{C}^*)^k\) via the identification

\[
\Pi_{k-1} = \{ (x_1, \ldots, x_k) \in (\mathbb{C}^*)^k : x_1 + x_2 + \ldots + x_k = 1 \}.
\]
Punctured Milnor fibers for invertible polynomial

Let \(w = \sum_{i=1}^{k} \prod_{j=1}^{k} x_j^{a_{ij}} \) be an invertible polynomial described by the matrix of exponents \((a_{ij})\).

Let

\[
M_w := \{ (x_1, \ldots, x_k) \in (\mathbb{C}^*)^k \mid w(x_1, \ldots, x_k) = 1 \}
\]

be the punctured Milnor fiber.

We have a covering map

\[
\pi : M_w \to \Pi_{k-1}
\]
given by \((x_1, x_2, \ldots, x_k) \to (\prod_{j=1}^{k} x_j^{a_{1j}}, \prod_{j=1}^{k} x_j^{a_{2j}}, \ldots, \prod_{j=1}^{k} x_j^{a_{kj}})\)
where we view \(\Pi_{k-1}\) as a hypersurface in \((\mathbb{C}^*)^k\) via the identification

\[
\Pi_{k-1} = \{ (x_1, \ldots, x_k) \in (\mathbb{C}^*)^k : x_1 + x_2 + \ldots + x_k = 1 \}.
\]
Let \(w = \sum_{i=1}^{k} \prod_{j=1}^{k} x_j^{a_{ij}} \) be an invertible polynomial described by the matrix of exponents \((a_{ij})\).

Let

\[
M_w := \{ (x_1, \ldots, x_k) \in (\mathbb{C}^*)^k \mid w(x_1, \ldots, x_k) = 1 \}
\]

be the punctured Milnor fiber.

We have a covering map

\[
\pi : M_w \to \Pi_{k-1}
\]

given by \((x_1, x_2, \ldots, x_k) \to (\prod_{j=1}^{k} x_j^{a_{1j}}, \prod_{j=1}^{k} x_j^{a_{2j}}, \ldots, \prod_{j=1}^{k} x_j^{a_{kj}})\)

where we view \(\Pi_{k-1}\) as a hypersurface in \((\mathbb{C}^*)^k\) via the identification

\[
\Pi_{k-1} = \{ (x_1, \ldots, x_k) \in (\mathbb{C}^*)^k : x_1 + x_2 + \ldots + x_k = 1 \}.
\]
The group of deck transformations of this covering map is

\[\Gamma = \{(t_1, t_2, \ldots, t_k) \in G_m^k : \forall i, t_1^{a_{i1}} t_2^{a_{i2}} \ldots t_k^{a_{ik}} = 1 \}, \]

which is exactly the group of diagonal symmetries of \(w \).

Let \(G = \text{Hom}(\Gamma, G_m) \) be the dual abelian group.

Corollary. For \(k \) regular we have an equivalence

\[\mathcal{W}(M_w) \simeq D^b_G(k[x_1, \ldots, x_k]/(x_1 \ldots x_k)). \]
The group of deck transformations of this covering map is

$$\Gamma = \{(t_1, t_2, \ldots, t_k) \in \mathbb{G}_m^k : \forall i, t_1^{a_{i1}} t_2^{a_{i2}} \ldots t_k^{a_{ik}} = 1\},$$

which is exactly the group of diagonal symmetries of w. Let $G = \text{Hom}(\Gamma, \mathbb{G}_m)$ be the dual abelian group.

Corollary. For k regular we have an equivalence

$$\mathcal{W}(M_w) \simeq D^b_G(k[x_1, \ldots, x_k]/(x_1 \ldots x_k)).$$