ON MAXIMAL TORI IN THE CONTACTOMORPHISM GROUPS OF REGULAR CONTACT MANIFOLDS

EUGENE LERMAN

Abstract. By a theorem of Banyaga the group of diffeomorphisms of a manifold P preserving a regular contact form α is a central S^1 extension of the commutator of the group of symplectomorphisms of the base $B = P/S^1$. We show that if T is a Hamiltonian maximal torus in the group of symplectomorphism of B, then its preimage under the extension map is a maximal torus not only in the group $Diff(P, \alpha)$ of diffeomorphisms of P preserving α but also in the much bigger group of contactomorphisms $Diff(P, \xi)$, the group of diffeomorphism of P preserving the contact distribution $\xi = \ker \alpha$. We use this (and the work of Hausmann, and Tolman on polygon spaces) to give examples of contact manifolds $(P, \xi = \ker \alpha)$ with maximal tori of different dimensions in their group of contactomorphisms.

1. INTRODUCTION AND THE MAIN RESULT

Let (B, ω) be an integral symplectic manifold. Assume also that B is compact and simply connected. Since the class $[\omega] \in H^2(B, \mathbb{R})$ is integral, there exists a principal circle bundle $S^1 \to P \xrightarrow{\pi} B$ with Euler class $[\omega]$. Moreover there exists a connection 1-form α on P with $d\alpha = \pi^* \omega \ [BW]$. Consequently α is a contact form and $\xi := \ker \alpha$ is a contact distribution. In this note we exploit a relationship between the group $Diff(P, \xi)$ of diffeomorphisms of P preserving the contact distribution and the group $Diff(B, \omega)$ in order to translate statements about maximal tori in $Diff(B, \omega)$ into statements about maximal tori in $(Diff(P, \xi)$. By a theorem of Banyaga the group $Diff(P, \alpha)$ of strict contactomorphism is a central extension (possibly nontrivial) of $Diff(B, \omega)$ by S^1. However the group $Diff(P, \xi)$ is much bigger than $Diff(P, \alpha)$.

Remark 1. When one talks about “maximal tori” in $Diff(P, \xi)$ or in $Diff(B, \omega)$, one can mean two different things:

1. A torus T in a group G is maximal if for any torus $T' \subset G$ with $T \subset T'$ we have $T = T'$.
2. A torus $T \subset Diff(B, \omega)$ satisfies $\dim T \leq \frac{1}{2} \dim B$ so a torus $T \subset Diff(B, \omega)$ of dimension $\frac{1}{2} \dim B$ is maximal.
3. Similarly, a torus $T \subset Diff(P, \xi)$ satisfies $\dim T \leq \frac{1}{2}(\dim P + 1)$ so a torus $T \subset Diff(P, \xi)$ of dimension $\frac{1}{2}(\dim P + 1)$ is maximal.

Since there exist compact simply connected symplectic four-manifolds (B, ω) that admit no symplectic circle actions $[HK]$ (1) and (2a) are quite different. We will see that (1) and (2b) are different as well, so we will use (1) as our definition of a maximal torus.

The main result of the note is the following observation:

Theorem 1. Let (B, ω) be a compact simply connected integral symplectic manifold, $S^1 \to P \xrightarrow{\pi} B$ the principal circle bundle with Euler class $[\omega]$, $\alpha \in \Omega^1(P)$ a connection 1-form with $d\alpha = \pi^* \omega$ and $\xi = \ker \alpha$ the corresponding contact structure on P. If $T \subset Diff(B, \omega)$ is a maximal torus then its preimage T' under the surjection $\tau: Diff(P, \alpha) \to Diff(B, \omega)$ is a maximal torus in $Diff(P, \xi)$.

Remark 2. The fact that the map $\tau: Diff(P, \alpha) \to Diff(B, \omega)$ in Theorem 1 above exists and is a surjective homomorphism is a theorem of Banyaga $[B$, Theorem 1$]$. Our proof of Theorem 1 is a combination of two Lemmas below. Note that there is a distinct S^1 in $Diff(P, \alpha) \subset Diff(P, \xi) \subset Diff(P)$. It is the circle action that makes P a principal S^1 bundle over B. We will refer to this subgroup as the S^1 in $Diff(P)$.

Lemma 2. The preimage of a torus $T \subset Diff(B, \omega)$ in $Diff(P, \alpha)$ under τ is indeed a torus. In fact the action of T on B lifts to an action of T on P preserving α and commuting with the action of the S^1.

Supported by the Swiss NSF, US NSF grant DMS-980305 and by R. Kantorovitz.
Lemma 3. If \(H \subset \text{Diff}(P, \xi) \) is a torus containing the \(S^1 \) then \(H \subset \text{Diff}(P, \alpha) \).

Lemma 3 is almost certainly not new and must exist somewhere in the literature on pre-quantization of group actions. Unfortunately I have been unable to find a good reference for the result. It is also possible that one can deduce it from [Banyaga, Theorem 1], but I am not whether the group \(\tau^{-1}(T) \) inherits from \(\text{Diff}(P, \alpha) \) the structure of a Lie group making \(\tau : \tau^{-1}(T) \to T \) a surjective Lie group homomorphism (Banyaga is not very explicit about the topologies and smooth structures of the groups involved in [Banyaga, Theorem 1]). It is easy to prove that if a Lie group \(G \) is a central extension of a torus \(T \) by \(S^1 \) as a Lie group and not just as an abstract group, then \(G \) is \(S^1 \times T \). On the other hand, Lemma 3 has a very easy proof.

Proof of Lemma 3. Let \(R \) denote the vector field generating the \(S^1 \) action on \(P \). Then \(\alpha(R) = 1 \) and \(L_{BR} = 0 \) since \(\alpha \) is a connection. Since \(H \) contains the \(S^1 \), for any vector \(X \) in the Lie algebra \(\mathfrak{h} \) of \(H \) the vector field \(X_P \) induced by \(X \) on \(P \) commutes with \(R \). Also, since \(H \subset \text{Diff}(P, \xi = \ker \alpha) \), \(L_{X_P} \alpha = f\alpha \) for some function \(f \in C^\infty(P) \) that may depend on \(X \). We want to show that \(f \equiv 0 \). Now

\[
0 = L_{X_P} 1 = L_{X_P} (\iota(R)\alpha) = \iota(L_{X_P} R)\alpha + \iota(R) (L_{X_P} \alpha) = 0 + \iota(R) f\alpha = f.
\]

\[\square\]

Lemma 3 is a consequence of the following slightly more general proposition. We drop the assumption that \(B \) is simply connected and replace it with the assumption that the action of \(T \) is Hamiltonian. One may also drop the assumption that \(B \) is compact, but we won’t do it. I am grateful to Anton Alekseev for telling me how to prove the proposition.

Proposition 4. Let \((B, \omega) \) be a compact integral symplectic manifold. Let \(S^1 \to P \xrightarrow{\pi} B \) be the principal \(S^1 \) bundle with first Chern (Euler) class \(c_1(P) = [\omega] \). Let \(\alpha \) be the connection 1-form on \(P \) with \(d\alpha = \pi^* \omega \). Suppose there is a Hamiltonian action of a torus \(T \) on \(B \) with an associated moment map \(\Phi : B \to \mathfrak{t}^* \).

Then there is an action of \(T \) on \(P \) preserving \(\alpha \) and making \(\pi \) equivariant.

Proof. It is well known how to lift the action of the Lie algebra \(\mathfrak{t} \) of \(T \) on \(B \) to an action on \(P \) preserving \(\alpha \) (see, for example [S]): Given \(X \in \mathfrak{t} \) the induced vector field \(X_P \) on \(P \) is defined by

\[
(1.1) \quad X_P := X_B^h = (\pi^* \Phi X) R,
\]

where \(X_B \) is the vector field induced by \(X \) on \(B \), \(X_B^h \) denotes its horizontal lift to \(P \), \(\Phi^X = \langle \Phi, X \rangle \) is the \(X \)-component of the moment map \(\Phi \), and \(R \) is the vector field generating the action of \(S^1 = \mathbb{R}/\mathbb{Z} \). Thus we have an action of the universal cover \(\tilde{T} \) of \(T \) on \(P \). The point of the proposition is that for a suitable normalization of the moment map \(\Phi \), the action of \(\tilde{T} \) descends to an action of \(T \). Note that the proposition is false if the group in question is not a torus: there is no way to lift the standard action of \(SO(3) \) on \(S^2 \) to an action on \(S^3 \).

Our normalization is as follows. Since \(B \) is compact and the action of \(T \) is Hamiltonian, the set of \(T \)-fixed points \(B^T \) is non-empty. Pick a point \(b_0 \in B^T \) and normalize \(\Phi \) by requiring that \(\Phi(b_0) = 0 \). We claim for any vector \(X \) in the integral lattice \(\mathbb{Z}_T := \ker \{ \exp : \mathfrak{t} \to T \} \) the flow \(\{ \exp tX_P \} \) defined by (1.1) is periodic of period 1. Indeed, since the vector fields \(X_B^h \) and \((\pi^* \Phi^X) R \) commute,

\[
\exp tX_P = (\exp tX_B^h) \circ \exp (-t(\pi^* \Phi^X) R).
\]

For a point \(p \in P \),

\[
\exp(-t(\pi^* \Phi^X) R)(p) = e^{-2\pi i \Phi^X(b)},
\]

where \(b = \pi(p) \) and where we identified \(\mathbb{R}/\mathbb{Z} \) with \(U(1) \) by \(\theta \mod \mathbb{Z} \mapsto e^{2\pi i \theta} \).

The curve \(\gamma(t) = (\exp tX_B)(b) \) is a loop in \(B \) since \(X \in \mathbb{Z}_T \). Hence \(\exp tX_B^h(p) = H(\gamma) \cdot p \) where \(H(\gamma) \) denotes the holonomy of \(\gamma \). On the other hand,

\[
H(\gamma) = e^{2\pi i \int_D \omega}
\]

for any disk \(D \subset B \) with boundary \(\gamma \). (Note that if \(D' \) is another disk with boundary \(\gamma \), then \(\int_{D'} \omega = \int_D \omega \in \mathbb{Z} \), since \([\omega] \) is integral, and consequently \(e^{2\pi i \int_D \omega} \) is well-defined.)

The curve \(\gamma \) always bounds a disk: since \(B \) is connected, there is a path \(\tau : [0, 1] \to B \) with \(\tau(0) = b_0 \) and \(\tau(1) = b \). The disk

\[
D_\tau = \{ (\exp tX_B) \cdot \tau(s) \mid 0 \leq t \leq 1, \, 0 \leq s \leq 1 \}
\]
is a desired disk. Moreover,
\[
\int_{D_r} \omega = -\int_{\tau([0,1])} \langle \iota(X_B)\omega \rangle = \int_0^1 d\Phi^X(\tau(s))
\]
\[= \Phi^X(\tau(1)) - \Phi^X(\tau(0)) = \Phi^X(b).
\]
Thus \((\exp X_B^h) \cdot p = H(\gamma) \cdot p = e^{2\pi i \Phi^X(b)} \cdot p\), and therefore
\[
(\exp X_P)(p) = \exp X_B^h \cdot e^{-2\pi i \Phi^X(b)} \cdot p = e^{2\pi i \Phi^X(b)} e^{-2\pi i \Phi^X(b)} \cdot p = p.
\]

\section{Examples}

\textbf{Example 1.} Hausmann and Knutson [HK] constructed a symplectic form \(\omega\) on \(B = \mathbb{C}P\#3\mathbb{C}P^2\) which admits no Hamiltonian (hence symplectic) circle actions. The form \(\omega\) may be taken to be integral. The manifold \((B, \omega)\) is a pentagon space. Consider the corresponding contact manifold \((P, \xi = \ker \alpha)\), where as above \(\pi: P \to B\) is the principal \(S^1\) bundle with \(c_1(P) = [\omega]\) and \(\alpha\) is a connection 1-form with \(d\alpha = \pi^*\omega\). By Theorem 1 the \(S^1\) in the contactomorphism group \(\text{Diff}(P, \xi)\) is a maximal torus. Note that \(\dim P = 5\), so the maximal possible dimension of a maximal torus in \(\text{Diff}(P, \xi)\) is 3.

\textbf{Example 2.} Hausmann and Tolman [HT] constructed a number of polygon spaces \((B, \omega)\) with the property that the symplectomorphism group \(\text{Diff}(B, \omega)\) contains maximal tori of different dimensions. For example the group of symplectomorphisms of the heptagon space \(\text{Pol}(1,1,2,2,3,3,3)\) (we use the notation of [HT]) contains maximal tori of dimensions 2, 3 and 4. Hence the contactomorphism group \(\text{Diff}(P, \xi)\) of the corresponding principal circle bundle \(P \to \text{Pol}(1,1,2,2,3,3,3)\) contains maximal tori of dimension \(2 + 1, 3 + 1\) and \(4 + 1\).

\section*{Acknowledgments}

The work on this note was supported by the Swiss NSF at the University of Geneva in May 2002. I am grateful to the University for its hospitality. I thank J.-C. Hausmann and A. Alekseev for their help.

\section*{References}

[B] A. Banyaga, The group of diffeomorphisms preserving a regular contact form, \textit{Topology and algebra} (Proc. Colloq., Eidgenöss. Tech. Hochsch., Zurich, 1977), pp. 47–53, Monograph. Enseign. Math., 26, Univ. Genève, Geneva, 1978.

[BW] W. M. Boothby and H. C. Wang, On contact manifolds, \textit{Ann. of Math. (2)} 68 (1958), 721–734.

[S] J. Śniatycki, \textit{Geometric Quantization and Quantum Mechanics}, Springer-Verlag, New York, 1980.

[HK] J.-C. Hausmann and A. A. Knutson, A limit of toric symplectic forms that has no periodic Hamiltonians, \textit{Geom. Funct. Anal.} 10 (2000), no. 3, 556–562.

[HT] J.-C. Hausmann and S. Tolman, Maximal Hamiltonian tori for polygon spaces, preprint, Univ. Genève, 2002; \texttt{arXiv:math.SG/0207062}.

Department of Mathematics, University of Illinois, Urbana, IL 61801

E-mail address: lerman@math.uiuc.edu