Shore fishes of the Marquesas Islands, an updated checklist with new records and new percentage of endemic species

Erwan Delrieu-Trottin, J. T. Williams, Philippe Bacchet, Michel Kulbicki, Johann Mourier, René Galzin, Thierry Lison de Loma, Gérard Mou-Tham, Gilles Siu, Serge Planes

To cite this version:
Erwan Delrieu-Trottin, J. T. Williams, Philippe Bacchet, Michel Kulbicki, Johann Mourier, et al..
Shore fishes of the Marquesas Islands, an updated checklist with new records and new percentage of endemic species. Check List, 2015, 11 (5), 10.15560/11.5.1758 . hal-01223491

HAL Id: hal-01223491
https://hal-univ-perp.archives-ouvertes.fr/hal-01223491
Submitted on 2 Nov 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License
Shore fishes of the Marquesas Islands, an updated checklist with new records and new percentage of endemic species

Erwan Delrieu-Trottin1,2*, J. T. Williams3, Philippe Bacchet4, Michel Kulbicki5, Johann Mourier1, René Galzin1, Thierry Lison de Loma1, Gérard Mou-Tham5, Gilles Siu1 and Serge Planes1

1 Laboratoire d’Excellence "CORAIL", USR 3278 CNRS – EPHE – UPVD, Centre de Recherche Insulaire et Observatoire de l’Environnement (CRIOBE), Université de Perpignan, 58 Av. Paul Alduy – 66860 Perpignan cedex, France
2 Institut de Systématique, Évolution, Biodiversité, ISYEB – UMR 7205 – MNHN, CNRS, UPMC, EPHE; École Pratique des Hautes Études, 57 rue Cuvier, CP39; F-75005, Paris, France
3 Division of Fishes, Department of Vertebrate Zoology, National Museum of Natural History, 4210 Silver Hill Road, Suitland, MD 20746, USA
4 BP 2720 Papeete, Tahiti, PF
5 IRD – UR 227 CoReUs, LABEX "CORAIL", UPVD, 66000 Perpignan, France

* Corresponding author: E-mail: erwan.delrieu.trottin@gmail.com

Abstract: Expedition Pakaihi I Te Moana was conducted in 2011 to the Marquesas Islands, lying between 07°50’ S and 10°35’ S latitude and 138°25’ W and 140°50’ W longitude. The expedition combined extensive collections and visual censuses of the shore fish fauna. A total of 74 species are added as new records for the Marquesas Islands; the coastal fish fauna of the Marquesas Islands is increased from 415 to 495 species and the number of endemic species is increased from 48 to 68 species. This increases the percentage of species-level endemism for the Marquesas Islands to 13.7%, ranking as the third highest region of endemism for coral reef fishes in the Indo-Pacific. Only two other peripheral regions, the Hawai’ian Islands and Easter Island, have higher values.

Key words: Coral reef fishes; endemism; tropical reefs; species distribution; biodiversity, hotspot.

INTRODUCTION

Tropical reefs represent a high priority for conservation action among marine ecosystems (Roberts et al. 2002). They are known to host some of the most diverse communities in the world with nearly 6,500 species of coral reef fishes (Kulbicki et al. 2013), a diversity that reaches its maximum in the Indo-Malay-Philippine archipelago (Bellwood and Hughes 2001; Roberts et al. 2002; Mora et al. 2003; Reaka et al. 2008; Bellwood and Meyer 2009; Hubert et al. 2012), while peripheral areas of the Indo-Pacific basin host high percentages of endemism. Percentages of endemism change as our knowledge of the reef fish fauna improves and may also vary according to the sizes of the regions considered. The highest percentages of endemism for reef fish in the Indo-Pacific are: 1) Hawai’i with 25% endemism according to Randall (2007); 2) Easter Island with 21.7% (Randall and Cea 2011); 3) Red Sea third with 13.6% (Eschmeyer et al. 2010). The census of biodiversity constitutes the primary basis for conservation efforts and the establishment of protection measures, as indicated for instance by IUCN red lists. Endemism is often perceived as an important characteristic in species conservation (e.g., Parravicini et al. 2014). Although extensive databases for coral reef fishes are being developed with more accurate taxonomy and geographical distributions (e.g., Randall 2005, 2007; Randall and Cea 2011; Kulbicki et al. 2013), our knowledge of the reef fish fauna still has major gaps due to the isolation of some remote regions or the technical difficulty of studying the reef fish fauna in certain regions of the world. The Marquesas Islands are a prime example. Located in Northeastern French Polynesia between 07°50’ S and 10°35’ S latitude and 138°25’ W and 140°50’ W longitude, they are geographically isolated. To the east, the closest islands are the Galapagos (5 300 km), to the north-west they are 2,200 km from the Line Islands and 3,500 km from Hawai’i. The closest island is in the Tuamotu archipelago some 500 km away. The South Equatorial Current, flowing between 04° N and 17° S from east to west (Wyrtki and Kilonsky 1984; Bonjean and Lagerloef 2002; Gaither et al. 2010), seems to constitute a hydrographical barrier to dispersal leading to the genetic differentiation of some Marquesan populations of otherwise widespread species (Planes and Fauvelot 2002; Winters et al. 2010;
Gaither et al. 2010). In addition to the isolation of the Marquesas, their environmental conditions are unique compared to the remainder of French Polynesia. The high islands are not surrounded by lagoons, and coral cover is minimal compared with other parts of French Polynesia. Sea temperatures are unusually variable (26–30°C) for a locality this close to the equator (Randall and Earle 2000) and upwelling of cold enriched waters leads to a general low coral cover and major production of phyto- and zooplankton (Martinez and Maamaatuiahatapu 2004). All these features give to the archipelago its uniqueness not only within the French Polynesian landscape, but also among Pacific tropical reefs. Selection processes in such a contrasting environment have already been highlighted as a driver of speciation for a Marquesan endemic reef fish species (Gaither et al. 2015).

In 2000, Randall and Earle identified the archipelago as a major hotspot of endemism with 11.6% endemic fish species (Randall and Earle 2000) with only a relatively small portion of the islands having been explored. The present work is based on a compilation of all previous fish records in addition to a preliminary reef fish survey on one island (Mohotani) in 2008 and to the first reef fish survey, which explored all islands of the archipelago in 2011 (expedition Pakai I Te Moana – Nov. 2011).

MATERIALS AND METHODS
Sampling was carried out in 2008 in Mohotani and in 2011 for the first time at every island in the Marquesas (Clark Bank, Motu One, Hatutaa, Eiao, Motu Iti, Nuku-Hiva, Ua-Huka, Ua-Pou, Fatu-Huku, Hiva-Oa, Tahuata, Fatu-Hiva; Figure 1) during a three-week expedition in 2011, aboard the M.V. Braveheart. A diversity of habitats was explored with shallow and deep air dives (down to 50–55 m) for a total of 54 sampled sites. Extensive collections and visual censuses were combined to establish the species composition of shore fishes of the Marquesas Islands. The complementarity of these sampling methods (Williams et al. 2006) allowed us to target different components of the ichthyofauna. Rotenone (powdered root of the Derris plant) allowed us to sample the cryptic and small fish fauna while spear guns and visual censuses allowed us to sample and record larger specimens of species not susceptible to rotenone collecting.

Fishes were identified using identification keys and taxonomic references (Randall 2005; Bacchet et al. 2006) and representative specimens of all species collected were photographed while they had their fresh coloration, sampled for tissues, labeled, and preserved as voucher specimens for the sequences made for a COI Barcode library. Voucher specimens were preserved in 10% formalin (3.7% formaldehyde solution) and later transferred into 75% ethanol. Preserved specimens were cataloged into the fish collection at the Museum Support Center, National Museum of Natural History, Smithsonian Institution, Suitland, Maryland, USA. Underwater visual censuses and underwater photographs allowed us to complete the list of new records. Nomenclature follows Randall (2005) and we followed recent taxonomic changes tracked using the
RESULTS

A total of 495 shore fish species in 72 families is reported from Marquesan waters (Table 1) with 74 species reported as new geographic records for the archipelago. Muraenidae (42 species), Labridae (36), Gobiidae (33), Acanthuridae (26) and Serranidae (22) constitute the 5 most speciose families. Among the 495 species, 68 are reported as endemic to the Marquesas Islands, raising the percentage of endemism for the species, 68 are reported as endemic to the Marquesas Islands, to 13.7%. Randall and Earle (2000) reported from Marquesan waters (Table 1) with 74 undescribed new species collected during the oceanographic campaign have since been described and are endemic to the Marquesas: 1 - Trachinocephalus sp. reported as Trachinocephalus myops, is currently being described by Polenco et al.; 2 - Macrophyrynodon pakoko Delrieu-Trottin, Williams & Planes, 2014 was originally reported as an unusual looking Macrophyrynodon melaeagris (Valenciennes, 1839); 3 - Blemiella sp. reported as Blemiella gibbifrons (Quoy & Gaimard, 1824) is under study by Delrieu-Trottin, Williams and Planes; 4 - Istiblemius sp. reported as Istiblemius edentulus is under study by J.T Williams; 5 - Pseudogramma sp. reported as Pseudogramma polyacantha (Bleeker, 1856); 6 - Cymolutes sp. reported as Cymolutes torquatus with distinct color pattern for the Marquesan populations; 7 - Cantherines nukuhiva Randall, 2011 reported in Randall and Earle (2000) as Cantherines pardalis (Rüppell, 1837).

Due to recent taxonomic updates and revisions of several families, several species and records reported in Randall and Earle (2000) are here reported differently in this checklist: we report Aetobatus ocellatus (Kuhl, 1823) instead of A. narinari (Euphrasen, 1790) that is now restricted to the Atlantic. We report Albula argentea (Forster, 1801) instead of A. forsteri (Valenciennes, 1846), which is now a synonym. Kyphosus ocyurus (Jordan & Gilbert, 1882) was recorded as Sectator ocyurus (Jordan & Gilbert, 1882), which was transferred to Kyphosus (Knudsen and Clements 2013). Centropyge fisheri (Snyder, 1904) was reported as C. flavicauda Fraser-Brunner, 1933, which is a synonym. Bodiamus busellatus Gomon, 2006 replaces B. bilunulatus (Lacepède, 1802) in the Marquesas (Gomon 2006). Halichoeres claudia Randall & Rocha, 2009 was formerly reported as H. ornatissimus (Garrett, 1863) which is now restricted to Hawaii (Randall and Rocha 2009). Chlorurus spilurus (Forsskål, 1775) was previously reported as C. sordidus (Forsskål 1775). The Pacific populations previously reported as C. sordidus belong to the distinct species C. spilurus (Randall 2007; Choat et al. 2012). Randall and Myers (2002) found that the Pacific goatfish populations previously reported as Parupeneus bifasciatus (Lacepède, 1801) were an undescribed species that they named P. insularis Randall & Myers, 2002. We therefore report P. insularis instead of P. bifasciatus. Rhabdoblennius rhadbotracelhus (Fowler & Ball, 1924) was reported as R. ellipes (Jordan & Starks, 1906), which is considered now as a synonym. Fusigobius duospilus Hoese & Reader, 1985 were previously reported as Coryphopterus duospilus (Hoese & Reader, 1985). Acanthurus nigros Günther, 1861 was reported as Acanthurus nigros Valenciennes, 1835. Acanthurus nigros is now restricted to Hawaii (DiBattista et al. 2011; Randall et al. 2011). Acanthurus nigros...
Table 1. Checklist of the Marquesan shorefish fauna. New records based on captured specimens are designated by an asterisk (*), new records based on underwater visual census are designated by a superscript (1) while records based on the Catalog of Fishes are designated by a superscript (2). Records not counted in total number of species are designated by a superscript (3). Figure numbers in bold refer to photographs in this paper.

Family or Species	Distribution
Carcharhinidae	
Carcharhinus albimarginatus (Rüppell, 1837)	Non-Endemic
Carcharhinus ambylyrhynchos (Bleekeer, 1856)	Non-Endemic
Carcharhinus falciformis (Müller & Henle, 1839)	Non-Endemic
Carcharhinus limbatus (Müller & Henle, 1839)	Non-Endemic
Carcharhinus melanopterus (Quoy & Gaimard, 1824)	Non-Endemic
Galeocerdo cuvier (Péron & Lesueur, 1822)	Non-Endemic
Negaprion acutidens (Rüppell, 1837)	Non-Endemic
Triacodon obesus (Rüppell, 1837)	Non-Endemic
Family or Species	Distribution
Neotrygon kuhlii (Kuhl 1823)	Non-Endemic
*Gymnothorax fuscomaculatus (Schultz, 1953) [USNM 408496]	Non-Endemic
*Gymnothorax gracilicauda Jenkins, 1903	Non-Endemic

Family or Species	Distribution
Sphyridae	
Sphyra lewini (Griffith & Smith, 1834)	Non-Endemic
Sphyma mokarrani (Rüppell, 1837)	Non-Endemic

Family or Species	Distribution
Dasyatidae	
Himantura fai Jordan & Seale, 1906	Non-Endemic
Taeniura meyenii (Müller & Henle, 1841)	Non-Endemic
Myliobatidae	
Myliobatis californicus (Kuhl 1823)	Non-Endemic

Family or Species	Distribution
Mobulidae	
*Manta alfredi (Krefft, 1868)	Non-Endemic
Manta birostris (Wallbaum 1792)	Non-Endemic

Family or Species	Distribution
Megalopidae	
Megalops cyprinoides (Brousseton, 1752)	Non-Endemic

Family or Species	Distribution
Albulidae	
Albula argentea (Forster, 1801)	Non-Endemic
Albula glossodonta (Forsskål, 1775)	Non-Endemic

Family or Species	Distribution
Chondidae	
Chanos chanos (Forsskål, 1775)	Non-Endemic

Family or Species	Distribution
Muraenidae	
Anarchias leucurus (Snyder, 1904)	Non-Endemic
Anarchias seychellensis Smith, 1962	Non-Endemic
*Anarchias sp. [USNM 408488]	Endemic
Echidna leucotaenia (Schultz, 1943)	Non-Endemic
Echidna nebulosa (Ah, 1789)	Non-Endemic
Echidna polyzona (Richardson, 1844)	Non-Endemic
Echidna unicolor Schultz, 1953	Non-Endemic
Enchelycore bayeri (Schultz, 1953)	Non-Endemic
Enchelycore bikinisensis (Schultz, 1953)	Non-Endemic
Enchelycore pardalis (Temminck & Schlegel, 1846)	Non-Endemic
Enchelycore schismatophrynhus (Bleekeer, 1853)	Non-Endemic
Enchelycore canina (Quoy & Gaimard, 1824)	Non-Endemic
Gymnomuraena zebrata (Shaw, 1797)	Non-Endemic
Gymnothorax breedi Mccosker & Randall, 1977	Non-Endemic
Gymnothorax bunoensis (Bleekeer, 1857)	Non-Endemic
*Gymnothorax eurostus (Abbott, 1860)	Non-Endemic
Gymnothorax flavomarginatus (Rüppell, 1830)	Non-Endemic
*Gymnothorax formosus Bleeker, 1864 [USNM 409651]	Non-Endemic
*Gymnothorax fuscomaculatus (Schultz, 1953) [USNM 408496]	Non-Endemic
Gymnothorax gracilicauda Jenkins, 1903	Non-Endemic

Family or Species	Distribution
Congridae	
Ariosoma multivertebratum Karmovskaya, 2004	Endemic
Conger cinereus cinereus Rüppell, 1828	Non-Endemic
*Gnathophis sp. [USNM 409314, USNM 409315, USNM 409316]	Non-Endemic
*Gorgasia galzini Castle & Randall, 1999 [USNM 409324, USNM 409325, USNM 397394, USNM 405348, USNM 397906, USNM 409711]	Non-Endemic
Gorgasia sp.	Endemic
Heterocogner lentigonosus Böhke & Randall, 1981	Non-Endemic

Family or Species	Distribution
Ophichthidae	
Apterichthus mosei Jordan & Snyder, 1901	Non-Endemic
Apterichthus myri Mccosker & Hibino, 2015	Non-Endemic
*Apterichthus sp. [USNM 409323]	Endemic
Brachysemopsis crocodilinus (Bennett, 1831)	Non-Endemic
*Callechelys marmorata (Bleekeer, 1854) [USNM 409326, USNM 409713]	Endemic
Callechelys randalli Mccosker, 1998	Endemic
Carhinus xenarchus Günther, 1870	Non-Endemic
Ichthyopus vulturis (Weber & de Beaufort, 1816)	Non-Endemic
Lamnastoma orientalis (McClelland, 1844)	Non-Endemic
Leuronax semicinctus (Lay & Bennett, 1839)	Non-Endemic
Myctophichthys calathinus (Boddaert 1781)	Non-Endemic
Myctophichthys maculosus (Cuvier, 1816)	Non-Endemic
Phasemona cooperae Palmer, 1970	Non-Endemic
Phyllophichthys xenoanthus Gosline, 1951	Non-Endemic
Schultzia johnstonensis (Schultz & Woods, 1949)	Non-Endemic
*Myophis microchir (Bleekeer 1864) [USNM 409322, USNM 409715]	Non-Endemic
Xestochilus nebulosus (Smith, 1962)	Non-Endemic
Yinkaia moorei McCosker, 2006	Non-Endemic

Family or Species	Distribution
Clupeidae	
Sardinella marquesensis Berry & Whitehead, 1968	Endemic

Family or Species	Distribution
Saurida gracilis (Quoy & Gaimard, 1824)	Non-Endemic
*Saurida nebulosa Valenciennes, 1850 [USNM 409129, USNM 411412]	Non-Endemic
*Symodus binotatus Schultz, 1953 [USNM 409126, USNM 409321, USNM 411375, USNM 412475, USNM 411376]	Non-Endemic
Symodus jacksonii Russell & Cressey, 1978	Non-Endemic

Continued
Table 1. Continued.

Family or Species	Distribution
Synodus variegatus (Lacepède, 1803)	Non-Endemic
Trachinocirrhites sp.	Endemic

Antennariidae

| Antennarius nanus [USNM 409202, USNM 409252, USNM 409498, USNM 412034] | Non-Endemic |
| Antennarius striatus [USNM 399893, USNM 409507] | Non-Endemic |

Ophidiidae

| Ophidion exul [USNM 409285, USNM 409320] | Non-Endemic |

Carapidae	Non-Endemic
Carapinus	Non-Endemic

Belonidae	Non-Endemic
Platyeleotis argulus playtyma [Bennett, 1832]	Non-Endemic

Hemirhamphidae

| Hemirhamphus depuoporous Lay & Bennett, 1839 | Non-Endemic |
| Hyperhampus acutus acutus [Günther, 1872] | Non-Endemic |

Holocentridae

| Myripristis violacea [USNM 409335] | Non-Endemic |

Priacanthidae

Pseudanthias oumati [Randall & Pyle, 2001]	Endemic

Dactyloptoridae

Epinephelus macrochir [USNM 412001]	Non-Endemic
Family or Species	Distribution
------------------	--------------
Lutjanus haneri (Forsskål, 1775)	Non-Endemic
Cirrhitidae	
Cirrhichthys oxycephalus (Bleeker, 1855)	Non-Endemic
Cirrhipinnus pinnulatus (Forster in Bloch & Schneider, 1801)	Non-Endemic
Gypincirrhites polyactis (Bleeker, 1875)	Non-Endemic
*Oxyincirrhites typus Bleeker, 1857	Non-Endemic
Paracirrhites forsteri (Bloch & Schneider, 1801)	Non-Endemic
Paracirrhites hemisculus (Günther, 1874)	Non-Endemic
Paracirrhites xanthus Randall, 1963	Non-Endemic
Apogonidae	
Apogon caudicinctus Randall & Smith, 1988	Non-Endemic
Apogon lativittatus Randall, 2001	Endemic
Apogon marquesensis Greenfield, 2001	Endemic
Apogonichthys ocellatus (Weber, 1913)	Non-Endemic
*Apogonichthys pernix Bleeker, 1854 [USNM 409402, USNM 409406]	Non-Endemic
Cheilodipterus quinquelineatus Cuvier, 1828	Non-Endemic
Fowleria marromota (Allee & Macleay, 1876)	Non-Endemic
Gymnogobius sp.	Endemic
*Gymnogobius uropilus Lachner, 1953 [USNM 409278, USNM 409380, USNM 409381, USNM 405632]	Non-Endemic
*Gymnogobius vanderbilti (Fowler [1938] [USNM 404821, USNM 407188]	Non-Endemic
Lachneretus phasrmaticus Fraser & Struhsaker, 1991	Non-Endemic
Ostorhinchus apogonoides (Bleeker, 1856)	Non-Endemic
Ostorhinchus rotundatus (Randall, 2001) [Figure 4]	Endemic
Ostorhinchus sinuus (Randall, 2001) [Figure 5]	Endemic
Pristipogon kagai (Bleeker, 1856)	Non-Endemic
Pristipogon tenuirostris (Bennett, 1836)	Endemic
Pseudamia sp.	Non-Endemic
*Pseudamia gracilicauda (Lachner, 1953) [USNM 409275, USNM 410701]	Non-Endemic
Pseudamia phasma Randall, 2001	Endemic
Zapagoevermanni (Jordan & Snyder, 1904)	Non-Endemic
Malacanthidae	
Malacanthus brevirostris Guichenot, 1858	Non-Endemic
Echeneidae	
Echeneis naucrates Linnaeus, 1758	Non-Endemic
Remora remora (Linnaeus, 1758)	Non-Endemic
Remora remora (Linnaeus, 1758)	Non-Endemic
Remora remora (Linnaeus, 1758)	Non-Endemic
Carangidae	
Alecitis ciliaris (Bloch, 1787)	Non-Endemic
Carangoides orthogrammus (Jordan & Gilbert, 1881)	Non-Endemic
Caranx ignobilis (Forsskål, 1775)	Non-Endemic
Caranx lugubris Poey, 1860	Non-Endemic
Caranx melampygus (Cuvier, 1833)	Non-Endemic
Caranx papuensis Alleyne & Macleay, 1876	Non-Endemic
Caranx sexfasciatus Quoy & Gaimard, 1825	Non-Endemic
Decapterus macarellus (Valenciennes, 1833)	Non-Endemic
Elagatis bigarillum (Quoy & Gaimard, 1825)	Non-Endemic
Gnorhamnodon speciosus (Forsskål, 1775)	Non-Endemic
Scromberoides hyas (Forsskål, 1775)	Non-Endemic
*Scromberoides tol (Cuvier, 1832) [USNM 409332]	Non-Endemic
Selar cromenophthalmus (Bloch, 1793)	Non-Endemic
*Seriola lalandi Valenciennes, 1833	Non-Endemic
*Seriola rivoliana Valenciennes, 1833	Non-Endemic
Trachinotus sp.	Endemic
Utaspis secunda (Poey, 1860)	Non-Endemic
Lutjanidae	
Aethoeus furca (Lacepède, 1801)	Non-Endemic
Aprion virescens Valenciennes, 1830	Non-Endemic
Lutjanus bohar (Forsskål, 1775)	Non-Endemic

Continued
Table 1. Continued.

Family or Species	Distribution
Hemitarichthys thompsonii Fowler, 1923 [USNM 409368]	Non-Endemic
Hennichius acuminatus (Linnaeus, 1758) [USNM 409272]	Non-Endemic

Pomacanthidae

Centropyge fisheri (Snyder, 1904)	Non-Endemic
Centropyge flavissima (Cuvier, 1831)	Non-Endemic
Centropyge loricula (Günther, 1874)	Non-Endemic
Centropyge nigricolli Woods & Schultz, 1953 [USNM 409156, USNM 409157, USNM 409158] Figure 6	Non-Endemic
Paracenotropyge multispinosa (Smith & Radcliffe, 1911) [USNM 409443] Figure 6	Non-Endemic

Pomacentridae

Abudeufuda conformis Randall & Earle, 2000 Figure 7	Endemic
Abudeufuda sordidus (Forsskål, 1775)	Non-Endemic
Chromis abrupta Randall, 2001	Endemic
Chromis furtiva Randall, 2001	Endemic
Chromis leucura Gilbert, 1905	Non-Endemic
Chromis viridis (Cuvier, 1830)	Non-Endemic
Chromis xanthura (Bleeker, 1854)	Non-Endemic
Chrysiptera brownriggi (Bennett, 1828)	Non-Endemic
Dascyllus aruanus (Linnaeus, 1758)	Non-Endemic
Dascyllus straburgi Klauserwitz, 1960 Figure 8	Endemic
Lepidogalaxias tapeinocephalus (Bleeker, 1856)	Non-Endemic
Plectroglyphidodon dickii (Liénard, 1839)	Non-Endemic
Plectroglyphidodon johnstonianus Fowler & Ball, 1924	Non-Endemic
Plectroglyphidodon lacrymatus (Quoy & Gaimard, 1825)	Non-Endemic
Plectroglyphidodon leucouros (Bleeker, 1859)	Non-Endemic
Plectroglyphidodon phoenicenuis (Schultz, 1943)	Non-Endemic
Plectroglyphidodon sagamii Randall & Earle, 2000 Figure 9	Endemic

Labridae

Anampses caeruleopunctatus Ruppell, 1828	Non-Endemic
Anampses melanurus Bleeker, 1857	Non-Endemic
Bodianus busellatus Gomon, 2006	Non-Endemic
Bodianus axillaris (Bennett, 1831)	Non-Endemic
Cheilio inermis (Forsskål, 1775)	Non-Endemic
Cheilinus chlorourus (Bloch, 1791)	Non-Endemic
Cheilinus oxycephalus Bleeker, 1853	Non-Endemic
Cheilinus trilobatus Lacepède, 1801 [USNM 409210]	Non-Endemic
Coris hewetti Randall, 1999	Endemic
Coris marquesensis Randall, 1999	Endemic
Cymolutes sp.	Endemic
Gomphosus varius Lacepède, 1801	Non-Endemic
Halichoeres claudia Randall & Rocha, 2009	Non-Endemic
Halichoeres margaritaceus (Valenciennes, 1839)	Non-Endemic
Halichoeres melasmopomus Randall, 1980	Non-Endemic
Hemigymnus fasciatus (Bloch, 1792)	Non-Endemic
Inisitus auripunctatus Randall, Earle & Robertson, 2002	Endemic
Inisitus pavo (Valenciennes, 1840)	Endemic
Labroides bicolor Fowler & Bean, 1928	Non-Endemic
Labroides dimidiatus (Valenciennes, 1839)	Non-Endemic
Labroides rubralabiatissimus Randall, 1958	Non-Endemic
Macropharyngodon pavo Delrieu-Trottin, Williams & Planes, 2014 Figure 10	Endemic
Novaculichthys thaxtoni (Lacepède, 1801)	Non-Endemic
Oxycheilinus bimaculatus (Valenciennes, 1840)	Non-Endemic
Oxycheilinus unifasciatus Streets, 1877	Non-Endemic
Pseudochelina octotenia Jenkins, 1901	Non-Endemic
Pseudechidinae moluccanus (Valenciennes, 1839)	Non-Endemic
Pseudojuloides pyrpus Randall & Randall, 1981 Figure 11	Endemic

Callionymidae

Callionymus marquesensis Frick, 1989	Endemic
Callionymus simplicicornis Valenciennes, 1837	Non-Endemic
Synchirus ocellatus (Pallas, 1770)	Non-Endemic

Gobiidae

Amblyeleotris marquesas Mohlmann & Randall, 2002 Figure 15	Endemic
Amblygobius nocturnus (Herre, 1945)	Non-Endemic
Bathygobius coecitus (Bennett, 1832)	Non-Endemic
Bathygobius coccosensis (Bleeker, 1854)	Non-Endemic
Bathygobius coticeps (Steindachner, 1880)	Non-Endemic
Bryaninops yongei (Davie & Cohen, 1969)	Non-Endemic
Callogobius sp.	Non-Endemic
Discordipinna giessingeri/ Hoese & Fourmanoir, 1978	Endemic
Eviota deminuta Tornabene, Ahmadia & Williams, 2013	Endemic

Continued
Table 1. Continued.

Family or Species	Distribution		
Eviota dorsimaculata	Tornabene, Ahmadia & Williams, 2013	Endemic	
Eviota infundata	Smith, 1957	Non-Endemic	
Eviota lacrimosa	Tornabene, Ahmadia & Williams, 2013	Endemic	
Fusigobius duospilus	Hoese & Reader, 1985	Non-Endemic	
Fusigobius infammaculatus	Randall, 1994	USNM 409011, USNM 409012	Non-Endemic
Gnatholepis anjerensis	Bleeker, 1851	USNM 412070, USNM 412083, USNM 412256, USNM 412257	Non-Endemic
Gnatholepis cauerens	Bleeker, 1853	Non-Endemic	
Kelloggeoi triscopusida	Herre, 1935	Endemic	
Paragobiodon echiocoelus	Ruppell, 1828	Non-Endemic	
Pleurocyia mossambica	Smith, 1959	Non-Endemic	
Prolepis alina Winterbottom & Burrige, 1993	USNM 409428, USNM 411129, USNM 4111294	Non-Endemic	
Prolepis compita	Winterbottom, 1985	Non-Endemic	
Prolepis nocturna	Smith, 1957	Non-Endemic	
Prolepis semidoliata	Valenciennes, 1837	Non-Endemic	
Prolepis sp.	USNM 409437	Non-Endemic	
Prolepis squamogena	Winterbottom & Burrige, 1989	Non-Endemic	
Prolepis triops Winterbottom & Burrige, 1993	USNM 409362, USNM 409447, USNM 411059, USNM 411279, USNM 411280, USNM 411281	Non-Endemic	
Stonogobiops medon	Hoese & Reader, 1982	Figure 16	Non-Endemic
Trinma sp.	USNM 409435, USNM 409436, USNM 409438, USNM 409439, USNM 409440	Non-Endemic	
Trinma wouss	Winterbottom, 2002	Non-Endemic	
Trinmatom sp.	USNM 409434	Endemic	
Valenciennes helingden	Bleeker, 1858	Non-Endemic	
Valenciennes strigata	Broussonet, 1782	Non-Endemic	
Vanderhorstia ornatissima	Smith, 1959	Non-Endemic	

Xenithidae

Xenithorus polyzonatus (Klunzinger, 1871) | USNM 409131, USNM 409132, USNM 411054, USNM 412524, USNM 412525, USNM 412526 | Non-Endemic |

Microdesmidae

Gunnellichthys monostigma | Smith, 1958 | Non-Endemic |
Nematolepis magnifica	Fowler, 1938	Non-Endemic	
Ptereleotris heteroptera	Bleeker, 1855	Non-Endemic	
Ptereleotris melanopogon	Randall & Hoese, 1985	Figure 17	Endemic
Ptereleotris zebra	Fowler, 1938	Non-Endemic	

Sphyraenidae

Sphyraena barracuda (Edwards, 1771) | Non-Endemic |
Sphyraena forsteri Cuvier, 1829	Non-Endemic
Sphyraena helleri Jenkins, 1901	Non-Endemic
Sphyraena genie Klunzinger, 1870	Non-Endemic

Gymnolidae

Promethichthys prometheus | Cuvier, 1832 | Non-Endemic |

Scombridae

Acantochybius solandri | Cuvier, 1831 | Non-Endemic |
| Euthynnus affinis | Cantor, 1849 | Non-Endemic |
| Gymnosarda unicolor | Ruppell, 1838 | Non-Endemic |

Zanclidae

Zanclus cornutus | Linnaeus, 1758 | Non-Endemic |

Acanthuridae

Acantlinus achilles | Shaw, 1803 | Non-Endemic |
Acantlinus blochi	Valenciennes 1835	USNM 409483	Non-Endemic
Acantlinus guttarius	Forster, 1801	Non-Endemic	
Acantlinus leucopareius Jenkins, 1903	Non-Endemic		
Acantlinus linearis	Linnaeus, 1758	Non-Endemic	
Acantlinus muta	Cuvier, 1829	Non-Endemic	
Acantlinus nigriscus	Linnaeus, 1758	Non-Endemic	
Acantlinus nigros	1861	Non-Endemic	
Acantlinus nubius (Fowler & Bean, 1929)	USNM 409451	Non-Endemic	

### Family or Species	Distribution
Acantlinus pyroferus | Kittlitz, 1834 | Non-Endemic
Acantlinus reversus | Randall & Earle, 1999 | Endemic
Acantlinus thompsoni | Fowler, 1923 | Non-Endemic
Acantlinus triostegus | Linnaeus, 1758 | Non-Endemic
Acantlinus xanthopterus | Valenciennes, 1835 | Non-Endemic
Ctenochaetus flavicauda | Fowler, 1938 | Non-Endemic
Ctenochaetus hawaiiensis | Randall, 1955 | Endemic
Ctenochaetus marginalis | Valenciennes, 1835 | Non-Endemic
Naso annulatus | Quoy & Gaimard, 1823 | Non-Endemic
Naso brachynectus | Quoy & Gaimard, 1823 | Non-Endemic
Naso brevirostris | Valenciennes, 1835 | Non-Endemic
Naso hexacanthus | Bleeker, 1853 | Non-Endemic
Naso lituratus | Bloch & Schneider, 1801 | Non-Endemic
Naso unicornis | Forsskål, 1775 | Non-Endemic
Naso vlamini | Valenciennes, 1835 | Non-Endemic
Zebrasoma velifer | Bloch, 1979 | Non-Endemic
Zebrasoma nostratum | Günther, 1873 | Non-Endemic

Siganidae

Siganus argenteus | Quoy & Gaimard, 1823 | Non-Endemic

Bothidae

Amoglossus sp. | Endemic |
Bothus mancus | Broussonet, 1782 | Non-Endemic |
Bothus pantherinus | Ruppell, 1830 | Endemic |
Engyprosopon marquisensis | Amaoka & Séret, 2005 | Endemic |

Samaridae

Samariscus triacanthus | Woods, 1666 | Non-Endemic

Soleidae

Asieragogodes lateralis | Randall, 2005 | Endemic

Balistidae

Balistapus undulatus | Park, 1797 | Non-Endemic |
Balistes polylepis | Steindachner, 1877 | Non-Endemic |
Balistoides viridescens | Bloch & Schneider, 1801 | Non-Endemic |
Melichthys niger | Bloch, 1786 | Non-Endemic |
Melichthys vidua | Solander, 1844 | Non-Endemic |
Odorus niger | Ruppell, 1829 | Non-Endemic |
Rhinecanthus aculeatus | Linnaeus, 1758 | Non-Endemic |
Rhinecanthus rectangulus | Bloch & Schneider, 1801 | Non-Endemic |
Sufflamen bursa | Bloch & Schneider, 1801 | Non-Endemic |
Sufflamen fraenatus | Lateille, 1804 | Non-Endemic |
Zanichthys auramarginatus | Bennett, 1832 | USNM 409459 | Non-Endemic |
Xanthichthys caeruleolineatus | Linnaeus, 1758 | Non-Endemic |

Monacanthidae

Aluterus scriptus | Osbeck, 1765 | Non-Endemic |
Cantherines dumerilii | Holland, 1854 | Non-Endemic |
Cantherhines nukuhiva Randall, 2011 | Figure 18 | Endemic |
Pervagor marginalis | Hutchins, 1986 | Figure 19 | Endemic |

Ostraciidae

Lactoria cornuta | Linnaeus, 1758 | Non-Endemic |
Opraricus cubensis | Linnaeus, 1758 | Non-Endemic |
Ostracion meleagris | Bloch & Schneider, 1801 | Non-Endemic |
Ostracion whiteleyi | Fowler, 1931 | Non-Endemic |

Tetraodontidae

Arthron hispidus | Linnaeus, 1758 | Non-Endemic |
Arthron meleagris | Bloch & Schneider, 1801 | Non-Endemic |
Arthron stellatus | Bloch & Schneider, 1801 | Non-Endemic |
Canthigaster ambonensis | Bleeker, 1865 | Endemic |
Canthigaster criobe Williams, Delrieu-Trottin & Planes, 2012 | USNM 409168 | Figure 20 | Endemic |
Canthigaster janthineptera | Bleeker, 1855 | Non-Endemic |
Canthigaster marquiscensis | Allen & Randall, 1977 | Figure 21 | Endemic |

Diodontidae

Diodon hystrix | Linnaeus, 1758 | Non-Endemic |
triostegus (Linnaeus, 1758) was reported as *Acanthurus triostegus marquesensis* Schultz & Woods, 1948, which is now a synonym. *Coelonotus argulus* (Peters, 1855) was reported as *Microphis argulus* (Peters, 1855), which is now a synonym. The reports of *Apterichtus flavicaudus* (Snyder, 1904) and *A. moseri* (Jordan & Snyder, 1901) were based on misidentifications of *A. mysi* McCosker & Hibino, 2015 and *A. klazingai* (Weber, 1913) (J.E. McCosker, personal communication). *Apterichtus moseri* is now restricted to Japan while *A. flavicaudus* is restricted to Hawaii, Midway Island, and possibly Australia and Seychelles (McCosker and Hibino 2015). For Mugilidae, we followed Durand et al. (2012) and report *Planiliza macrolepis* (Smith, 1846) instead of *Chelon macrolepis* (Smith, 1846); *Planiliza melinopterus* (Valenciennes, 1836) instead of *Chelon melinopterus* (Valenciennes, 1836); *Planiliza alata* (Steindachner, 1892) instead of *Liza alata* (Steindachner, 1892); *Osteomugil engeli* (Bleeker, 1858) instead of *Moolgarda engeli* (Bleeker, 1858); *Crenimugil seheli* (Forsskål, 1775) instead of *Moolgarda seheli* (Forsskål, 1775).

Gobiidae (11 endemic species), Labridae (7), Pomacentridae (7), Serranidae (6), Apogonidae (6) and Blenniidae (6) are the families that possess the highest number of endemic species and among the highest percentage of endemism with respectively 33.3%, 20.0%, 33.3%, 27.3%, 30.0% and 31.6%. They are only surpassed by Clupeidae and Soleidae that have a single
Figure 7. Two endemic species to the Marquesas Islands: *Chromis flavapicis* (black) and *Abudelfuf conformis* (striped). *Chaetodon trichrous* (half black, half white and yellow tail) is endemic to French Polynesia. Photo: Yann Hubert

Figure 8. *Dascyllus strasburgi* finding shelter in a *Pocillopora* sp. colony. Photo: Yann Hubert.

Figure 9. *Plectroglyphidodon sagmarius*. Photo: Yann Hubert.

Figure 10. *Macropharyngodon pakoko* (male, 72 mm SL). Photo: Jeffrey T. Williams.

Figure 11. *Pseudojuloides pyrius* (32 mm SL). Photo: Jeffrey T. Williams.
represented species endemic from the Marquesas (100% of endemism), and Congridae, Bothidae, Chlopsidae, Pempheridae (50%), all of them represented by no more than six species in total in the Marquesas. Among the five most speciose families; the percentage of endemism observed is uneven with 5.0% for Muraenidae, 20.0% for Labridae, 33.3% for Gobiidae, 3.9% for Acanthuridae and 27.3% for Serranidae.

DISCUSSION

Percentage of endemism is dependant on our level of knowledge of the locality in question but also of the surrounding islands and archipelagos. While remote places like Hawaii tend to lose percentage of endemism due to new records of widespread fishes in their waters, the Marquesas constitutes one of the rare places where both the number of widespread and endemic fishes have grown despite continuous explorations of islands around it; with 10% of endemism in 1976, 1978 (Randall 1976, 1998); 11.6% in 2000 (Randall and Earle 2000), 12.3% (8.3% identified endemics + 4% unidentified) in 2007 (Kulbicki 2007), while Williams et al. (2013) evoked 12.9% of endemism based on a preliminary analysis of the collection presented in this study.

Fifteen years ago, the Marquesas were reported to be one of the few hotspots of endemism in the Indo-Pacific for shore reef fishes (Randall and Earle 2000). This percentage is presently at its highest level ever with 13.7%. This census of the Marquesan fish biodiversity constitutes a baseline that is essential to ensure the future protection of these islands. A plan to set up a
Marine Protected Area is in progress for the Marquesas Islands. Our study highlights the uniqueness of the Marquesan reef fish fauna and emphasizes the necessity to preserve the reef fish fauna of the archipelago, possessing the third highest percentage of endemism in the Indo-Pacific.

ACKNOWLEDGEMENTS

This study was part of the Pakaihi I Te Moana expedition organized and funded by the Agence des Aires Marines Protégées in France. We thank the Centre Plongée Marquises (Xavier (Pipapo) and Marie Curvat), l’Agence des Aires Marines Marine Protégées, the Fondation TOTAL, the Ministère de l’Environnement de Polynésie, the Délégation à la Recherche Polynésie, the Mairie of Nuku-Hiva, and the people of the Marquesas Islands for their kind and generous support of the project as we traveled throughout the islands. Particular thanks go to the Captain and crew of the M/V “Braveheart” for their invaluable assistance during the Marquesas Expedition. We thank Jerry Finan, Diane Pitassy, Erika Wilbur, Shirleen Smith, Kris Murphy, David Smith and Sandra Raredon of the Division of Fishes (National Museum of Natural History) for assistance in preparations for the trip and processing specimens. We are also grateful to Tom Cribb, and Pierre Sasal for their field assistance collecting fishes in the Marquesas. We thank the staff of the CRIOBE for logistical support, particularly Yannick Chancerelle for his assistance with arrangements for shipments into and out of French Polynesia. The second author’s travel to Moorea to participate in the expedition was funded by grants from the Leonard P. Schultz Fund (Division of Fishes, National Museum of Natural History). We thank Bruce Mundy and an anonymous reviewer for providing constructive reviews of an earlier version of the manuscript.

LITERATURE CITED

Bacchet, P., Y. Lefèvre, and T. Zysman. 2006. Guide des poissons de Tahiti et ses îles. Au Vent des Iles, Tahiti, 608 pp.

Bonjean, F. and G.S.E. Lagerloef. 2002. Diagnostic model and analysis of the surface currents in the Tropical Pacific Ocean. Journal of Physical Oceanography 32: 2938–2954. doi: 10.1175/1520-0485(2002)032<2938:DMAAOT>2.0.CO;2

Bellwood, D.R. and T.P. Hughes. 2001. Regional-scale assembly rules and biodiversity of coral reefs. Science 292: 1532–1535. doi: 10.1126/science.1058635

Bellwood, D.R. and C.P. Meyer. 2009. Searching for heat in a marine biodiversity hotspot. Journal of Biogeography, 36: 569–576. doi: 10.1111/j.1365-2699.2008.02039.x

Choat, J.H., O.S. Klanten, L.Van Herwerden, D.R. Robertson and K.D. Clements. 2012. Patterns and processes in the evolutionary history of parrotfishes (Family Labridae). Biological Journal of the Linnean Society 107: 529–557. doi: 10.1111/j.1095-8312.2012.01999.x

DiBattista J.D., C. Wilcox, M.T. Craig, L.A. Rocha and B. Bowen. 2011. Phylogeography of the Pacific blueline surgeonfish, Acanthurus nigroris, reveals high genetic connectivity and a cryptic endemic species in the Hawaiian archipelago. Journal of Marine Biology 2011: 1–17. doi: 10.1155/2011/839134

Durand, J.D., W.-J. Chen, K.-N. Shen, C. Fu and P. Borsa. 2012. Genus-level taxonomic changes implied by the mitochondrial phylogeny of grey mullets (Teleostei: Mugilidae). Comptes Rendus Biologies 335: 687–697. doi: 10.1016/j.crvi.2012.09.005

Eschmeyer, W.N. (ed). Catalog of fishes: genera, species, references. Accessed at: http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp, 27 August 2015.
Eschmeyer, W.N., R. Fricke, J.D. Fong, and D.A. Polack. 2010. Marine fish diversity: history of knowledge and discovery (Pisces). Zootaxa 2525: 19–50.

Gaither, M.R., R.J. Toonen, D.R. Robertson, S. Planes, and B.W. Bowen. 2010. Genetic evaluation of marine biogeographical barriers: perspectives from two widespread Indo-Pacific snappers (*Lutjanus kasmira* and *Lutjanus fulvus*). *Journal of Biogeography* 37: 133–147. doi: 10.1111/j.1365-2699.2009.02188.x

Gaither, M.R., M.A. Bernal, R.R. Coleman, B.W. Bowen, S.A. Jones, W.B. Simison, and L.A. Rocha. 2015. Genomic signatures of geographic isolation and natural selection in coral reef fishes, *Molecular Ecology* 24: 1543–1557. doi: 10.1111/mec.13129

Gomon, M.F. 2006. A revision of the labrid fish genus *Bodianus*. Records of the Australian Museum Supplement 30: 1–133. doi: 10.3853/j.0812-7387.30.2006.1460

Hubert, N., C.P. Meyer, H.J. Bruggemann, F. Guérin, R.J.L. Komeno, B. Espiau, R. Causse, J.T. Williams and S. Planes. 2012. Cryptic diversity in Indo-Pacific coral-reef fishes revealed by DNA-barcoding provides new support to the centre-of-overlap hypothesis. *PLoS ONE* 7: e29897. doi: 10.1371/journal.pone.0029897

Knudsen, S.W. and K.D. Clements. 2013. Revision of the fish family Kyphosidae (Teleostei: Perciformes). *Zootaxa* 3751: 1–101. doi: 10.11646/zootaxa.3751.1.1

Knudsen, S.W. and C. Fauvelot. 2002. Isolation by distance and vicariance by DNA-barcoding provides new support to the centre-of-overlap hypothesis. *PLoS ONE* 7: e28987. doi: 10.1371/journal.pone.0028987

Kulbicki, M. 2007. Biogeography of reef fishes of the French Territories in the South Pacific. *Cybium* 31: 275–288.

Kulbicki, M., V. Parravicini, D.R. Bellwood, E. Arias-González, P. Chabanet, S.R. Floeter, A. Friedlander, J. McPherson, R.E. Myers, L. Vigiola and D. Mouillot. 2013. Global biogeography of reef fishes: A hierarchical quantitative delineation of regions, *PLoS One* 8: e81847. doi: 10.1371/journal.pone.0081847

Martinez, E., and K. Maamaatuaiahutapu. 2004. Island mass effect on Indo-Pacific wrasse (*Perciformes*: *Labridae*), the fourth species of the *H. ornatusinus* complex. *Zoological Studies* 37: 133–147. doi: 10.1111/j.1365-2699.2009.02188.x

Martinez, E., and K. Maamaatuaiahutapu. 2004. Island mass effect on Indo-Pacific wrasse (*Perciformes*: *Labridae*), the fourth species of the *H. ornatusinus* complex. *Zoological Studies* 37: 133–147. doi: 10.1111/j.1365-2699.2009.02188.x

Randall, J.E. 2007. Reef and shore fishes of the Hawaiian Islands. Honolulu, HI: UH Sea Grant. 720 pp.

Randall, J.E. 2005. Reef and Shore fishes of the South Pacific. Honolulu, HI: UH Sea Grant. 720 pp.

Randall, J.E. 2007. Reef and shore fishes of the Hawaiian Islands. Honolulu, HI: UH Sea Grant. 560 pp.

Randall, J.E., and A. Cea. 2011. Shore fishes of Easter Island. Sea Grant College Program, University of Hawai‘i Press, Honolulu, Hawaii. 546 pp.

Randall, J.E., and J.L. Earle. 2000. Annotated checklist of the shore fishes of the Marquesas Islands. Bishop Museum Occasional Papers 66: 1–42. http://hbs.bishopmuseum.org/pubs-online/pdf/op66.pdf

Randall, J.E., and L.A. Rocha. 2000. *Halichoeres claudia* sp. nov., a new Indo-Pacific wrasse (*Perciformes*: *Labridae*), the fourth species of the *H. ornatusinus* complex. *Zoological Studies* 48: 709–718. http://zooldtud.sinica.edu.tw/Journals/48.5/709.pdf

Randall, J.E., and L.A. Rocha. 2000. *Halichoeres claudia* sp. nov., a new Indo-Pacific wrasse (*Perciformes*: *Labridae*), the fourth species of the *H. ornatusinus* complex. *Zoological Studies* 48: 709–718. http://zooldtud.sinica.edu.tw/Journals/48.5/709.pdf

Reaka, M., P. Rodgers and A. Kudla. 2008. Patterns of biodiversity and endemism on Indo-West Pacific coral reefs. *Proceedings of the National Academy of Sciences of the United States of America* 105: 11474–11481. doi: 10.1073/pnas.0802594105

Roberts, C.M., C.J. McLean, J.E.N. Veron, J.P. Hawkins, G.R. Allen, D.E. McAllister, C.G. Mittermeier, F.W. Schueler, M. Spalding, F. Wells, C. Vynne and T.B. Werner. 2002. Marine biodiversity hotspots and conservation priorities for tropical reefs. *Science* 295: 1280–1284. doi: 10.1126/science.1067728

Williams, J.T., L. Wantiez, C. Chauvet, R. Galzin, M. Harmelin-Vivien, E. Jobet, M. Juncker, G. Mou-Tham, S. Planes and P. Sasal. 2006. Checklist of the shorefishes of Wallis Islands (Wallis and Futuna French Territories, South–Central Pacific). *Cybium* 30: 247–260.

Williams, J.T., E. Delrieu-Trottin, S. Planes. 2015. Two new fish species of the subfamily Anthiinae (*Perciformes*, *Serranidae*) from the Marquesas. *Zootaxa* 3967: 167–180. doi: 10.11646/zootaxa.3967.1.8

Winters, K.L., L. van Herwerden, J.H. Choat and D.R. Robertson, 2010. Phylogeography of the Indo-Pacific parrotfish *Scarus psittacus*: isolation generates distinctive peripheral populations in two oceans. *Marine Biology* 157: 1679–1691. doi: 10.1007/s00227-010-1442-4

Wyruki, K., and B. Kilonsky. 1984. Mean water and current conditions of the subfamily Anthiinae (Perciformes, Serranidae) from the Hawaiian Islands. Bishop Museum Occasional Papers 66: 1–42. http://hbs.bishopmuseum.org/pubs-online/pdf/op66.pdf

Wyruki, K., and B. Kilonsky. 1984. Mean water and current conditions of the subfamily Anthiinae (Perciformes, Serranidae) from the Hawaiian Islands. Bishop Museum Occasional Papers 66: 1–42. http://hbs.bishopmuseum.org/pubs-online/pdf/op66.pdf

Authors’ contribution statement: ED-T, JTW, PB, MK, JM, RG, TLL, GM-T, GS, SP collected the data, ED-T, JTW, MK, JM, RG, GS, SP analyzed the data, ED-T, JTW, MK, JM, RG, GS, SP wrote and commented on the text.

Received: 29 May 2015

Accepted: 11 September 2015

Academic editor: Osmar J. Luiz