Copper- and cobalt-rich, ultrapotassic bittern brines responsible for the formation of the Nkana-Mindola deposits, Zambian Copperbelt

James Davey1,2,* and Stephen Roberts1 and Jamie J. Wilkinson2,3
1School of Ocean and Earth Science, National Oceanography Centre, University of Southampton, Southampton SO14 3ZH, UK
2London Centre for Ore Deposits and Exploration (LODE), Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
3Department of Earth Science and Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK

ABSTRACT

The Central African Copperbelt (CACB) is Earth’s largest repository of sediment-hosted copper and cobalt. The criticality of these elements in battery technology and electricity transmission establishes them as fundamental components of the carbon-free energy revolution, yet the nature and origin of the hydrothermal fluids responsible for ore formation in the CACB remain controversial. Here, we present microthermometric, scanning electron microscopy and laser ablation–inductively coupled plasma–mass spectrometry analyses of fluid inclusions from the Nkana-Mindola deposits in Zambia. We find that base metal concentrations vary by one to two orders of magnitude between “barren” and “ore” fluids, with concomitant distinctions in major salt chemistry. Primary fluid inclusions, hosted by pre- to synkinematic mineralized quartz veins, are characterized by high homogenization temperatures (200–300 °C) and salinities, with K/Na >0.8 and elevated metal concentrations (10^6 to 10^7 ppm Cu and Co). Conversely, barren, postkinematic vein quartz contains lower homogenization temperature (110–210 °C) and lower-salinity primary inclusions, characterized by K/Na <0.8 with low metal contents (<10^6 ppm Cu and Co). We propose a model in which high-temperature, sulfate-deficient, metalliferous, potassic residual brines, formed during advanced evaporation of CaCl$_2$-rich, mid-Neoproterozoic seawater, were responsible for ore formation. During basin closure, lower-temperature, haliteundersaturated fluids interacted with evaporites and formed structurally controlled, sodic metasomatism. Reconciliation of these fluid chemistries and base metal concentrations with reported alteration assemblages from a majority of Zambian Copperbelt deposits suggests highly evolved, residual brines were critical to the formation of this unique metallogenic province.

INTRODUCTION

Copper and cobalt are critical metals for carbon-free energy generation, yet we do not fully understand how they become concentrated in hydrothermal deposits in Earth’s crust. Metal concentrations in the fluids involved provide a key constraint on ore-forming processes, but, although measured in a variety of systems (e.g., Audétat et al., 1999; Wilkinson et al., 2009), such data are largely absent for sediment-hosted Cu ± Co deposits, one of the primary repositories of these metals. Here, we report evidence for ore formation in the Zambian Copperbelt (ZCB), reflecting the earliest stage of rifting, during periods of terrigenous and shallow-marine clastic deposition. The Zambian portion of the basin was inverted and metamorphosed to greenschist facies during the Lufluian orogeny, which peaked at 545–530 Ma (John et al., 2004).

The Nkana-Mindola deposits (containing >15 Mt Cu and >0.4 Mt Co; Taylor et al., 2013), which represent a typical style of ZCB mineralization, are located on the western flank of the Kafue anticline (Fig. 1) and on the northeastern limb of the Nkana Syncline. The Nkana South and Central orebodies are hosted by locally dolomitic shales, pyritic argillites, and schists, whereas the Mindola orebody is hosted by more arenaceous, dolomitic lithologies. Cu ± Co mineralization formed disseminated sulfides and coarser aggregates within veins, typically comprising bornite and chalcocite, with accessory carrollite, and minor chalcocite and pyrite (Bremé et al., 2009).

The presence of veins spanning pre-orogenic and Lufluian stages at Nkana-Mindola provides an excellent opportunity to assess the compositional evolution of fluids responsible for some of the vein-forming ± associated disseminated mineralizing events in the ZCB. Using relationships with the prevailing tectonic fabric, the veins can be subdivided into two end-member generations. Bedding-parallel, quartz-carbonate–sulfide veins are most abundant in the carbonate shales of the Nkana South and Central orebodies, and within dolomitic lithologies in the Mindola North open pit (Fig. 1B). These <1-cm-wide to ~25-cm-wide veins form planar or folded and boudinaged arrays (Fig. 1C), implying formation prior to peak orogenic conditions. In contrast, massive quartz veins with lesser...
carbonate and rare pyrite typically crosscut bedding and the Lufilian cleavage fabrics (Fig. 1D), indicating postorogenic timing. Such veins are typically 40–60 cm wide and often transgress both mineralized argillites and hanging-wall siliciclastic rocks.

METHODS

Fluid inclusions in 14 vein samples from Nkana-Mindola were categorized as either primary or secondary using conventional criteria (Roedder, 1984), and their spatial and textural relationships to zones of distinct cathodoluminescence response (see example images in the Supplemental Material) were determined.

Microthermometric analyses of ~190 fluid inclusions and 120 laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) analyses were completed for 23 fluid inclusion assemblages (Figs. 2 and 3). High-resolution element maps of daughter phases within fluid inclusion cavities were acquired using scanning electron microscope imaging. Sample descriptions, images, full analytical data, and methods are provided in the Supplemental Material.

RESULTS

Primary inclusions in vein quartz hosting Cu- and Co-sulfides in pre- to synkinematic veins contain KCl-enriched fluids with homogenization temperatures of ~200–300 °C and salinities of >40 wt% NaCl + KCl equivalent. These inclusions invariably contain chloride daughter minerals, which comprise unusual halite-sylvite intergrowths (Fig. 2). Primary inclusions hosted by barren, postkinematic veins, as well as secondary inclusions hosted in all vein types, trapped NaCl-dominant solutions (eutectic melting close to ~21 °C) with low to moderate homogenization temperature-salinity characteristics of ~110–210 °C and 8–21 wt% NaCl equiv.

LA-ICP-MS analyses of primary fluid inclusion assemblages in pre- to synkinematic veins (K/Na >0.8) contrast with those in postkinematic vein quartz (K/Na <0.8; Fig. 3). Cu, Co, Pb, and Zn concentrations are typically one to two orders of magnitude higher in the K-rich fluids; many of the later fluid inclusion populations with K/Na <0.8 and simpler NaCl-dominant chemistry did not return Cu or Co concentrations above their respective limits of detection. The metal-rich fluids also display a negative correlation between Cu and Co, as well as distinct Ba and Li enrichment, averaging 1.5 ± 0.9 wt% Ba (n = 26, 1σ) and 1100 ± 900 ppm Li (n = 26, 1σ).

DISCUSSION

Fluid inclusion homogenization temperatures, major-element chemistry and base metal budgets provide a clear distinction between the pre- to synkinematic fluids associated with mineralization and the postorogenic fluids in largely barren veins. Theoretical data suggesting that high-temperature chloride brines are capable of transporting appreciable quantities of Cu and Co (Liu and McPhail, 2005) are confirmed here with up to 1600 ppm Cu and 770 ppm Co at >250 °C and 40–60 wt% NaCl + KCl. These are the most Cu-Co–rich fluids recorded from a sedimentary basin environment and overlap with Cu concentrations reported from magmatic-hydrothermal systems (Audetat et al., 2008). Our results provide confidence that ore-forming fluids in the ZCB were significantly Cu-Co enriched compared to fluids described from most sedimentary basins (cf. Wilkinson et al., 2009). The negative correlation between Cu and Co in the primary potassic brines at Nkana-Mindola indicates a decoupling of metal budgets and therefore potentially more than one source of Cu-Co being exploited by these fluids.

Potassic Brine Origins

Most sedimentary basin fluids are low to moderate-temperature, moderate-salinity NaCl (∓CaCl₂) brines (e.g., Wilkinson, 2010). The distinctive high-temperature and metal-rich, potassic compositions of primary fluid inclusions reported here and hinted at elsewhere in the ZCB (Nowecki, 2014) indicate an atypical brine source or residence history in the basin. Fluids released from sulfide-hosted inclusions during crush-leach experiments from several CACB deposits exhibited distinct, low Cl/Br and Na/Br ratios, characteristic of bittern brines produced by extensive evaporation in a restricted environment (Selley et al., 2018). Experimental studies of modern seawater evaporation indicate
that such residual brines develop elevated K/Na ratios only at degrees of evaporation >65–70 (ratio of element concentration per kg H₂O relative to seawater), with K/Na ∼2 prior to carnallite and kainite precipitation (McCaffrey et al., 1987; Bachel and Schreiber, 2013). Although Neoproterozoic seawater compositions remain poorly constrained, halite-hosted fluid inclusions from the Amadeus and Officer Basins (Australia) and the Otavi Formation (Namibia) indicate a period of CaCl₂-rich and MgSO₄-poor seas for up to 200 m.y. during the middle Neoproterozoic (Kah et al., 2004; Kovalevych et al., 2006; Spear et al., 2014). Theoretical evapo-crystalline models of such sulfate-deficient ancient seawaters replicate evaporite sequences observed in the Bonneville Salt Flats (Utah, USA) where halite immediately follows halite, with the omission of significant MgSO₄ salts (Valyashko, 1962). This implies that high K/Na ratios can be developed from CaCl₂ seawater at lower degrees of evaporation when an initially low sulfate budget is almost entirely consumed through early gypsum precipitation. The abundance of Ba in the ore fluids from Nkana-Mindola, yet scarcity of barite in the basin successions, can be reconciled if these brines had low SO₄²⁻ concentrations, consistent with an origin from CaCl₂-rich, MgSO₄-poor seawater.

Potassium Exchange During Subsequent Fluid-Rock Interactions

Burial of the Lower Roan Subgroup clastic sequence with bittern brine pore waters by up to 11 km of Upper Roan Subgroup and Nguba/Kundelungu Group sediments (Selley et al., 2018) would permit elevated-temperature fluid-rock interactions (Fig. 4). The presence of 20%–30% detrital potassiumfeldspar in some Lower Roan Subgroup sediments (Selley et al., 2005) provides a potential source to account for further enrichment of K(-Ba) in the brines. Petrographic studies (Sutton and Maynard, 2005) indicate that partial breakdown and replacement of potassic minerals occurred in some Lower Roan Subgroup sequences. Potassium addition ± Na loss during this stage likely played an additional role in the generation of elevated K/Na ratios in the Nkana-Mindola brines.

The intimate spatial and temporal relationships between Cu-Co sulfides and secondary (often Ba-rich) potassiumfeldspars observed in Ore Shale units in Zambian deposits (Sutton and Maynard, 2005) reflect the importance of K-metasomatism during ore formation. This observation lends support to models invoking mineralization from unusually potassic fluids, as noted by Selley et al. (2005) and Sutton and Maynard (2005), and hinted at by Darnley (1960).

Ore Deposit Metasomatism in the CACB

Primary fluid inclusions from discordant veins and secondary inclusions from all vein types at Nkana-Mindola trapped moderate-temperature, metal-poor, NaCl-dominant fluids. Some fluids from postorogenic ZCB deposits have similar halogen chemistries, consistent with a halite dissolution origin (Heijlen et al., 2008; Selley et al., 2018). Extensive dissolution breccias in the Upper Roan Subgroup (Selley et al., 2018) imply that widespread exploitation of supersalts by halite-undersaturated fluids occurred (Fig. 4). The distinct chemistry of these lower-temperature fluids compared with earlier potassic brines suggests that minimal mixing with deeper basinal fluids occurred prior to removal of salt seals. The progressive penetration of halite-dissolution brines into the Lower Roan Subgroup during the onset of orogenesis is consistent with pervasive, structurally controlled, sodic-calcic (albite ± scapolite) alteration, which locally overprints stratiform mineralization and potassic alteration assemblages (Sweeney and Bindra, 1989; Selley et al., 2005).

Controls on Copper-Co- Cobalt Mineralization in Sedimentary Basins

We found that the fluids responsible for mineralization in the ZCB were high-K brines, anomalously enriched in Cu, Co, Ph, and Zn. Consequently, understanding the origin of these fluids is a key factor in the exploration for comparable, basin-hosted resources worldwide. Elevated base metal concentrations are attributed to enhanced leaching efficiencies of high-temperature, potentially sulfate-deficient, bittern brines that had long residence in the deep basin prior to Pan-African orogenesis. In addition to advanced evaporation, the evolution of brines into fertile ore fluids may have been linked to a primary sulfate-deficient chemistry related to Neoproterozoic CaCl₂-rich seawater. Such residual, CaCl₂-rich brines have been proposed as proto-ore fluids in the basin successions, can be reconciled if these
in other, lower-temperature, sediment-hosted base metal systems (Wilkinson, 2014), and so there may be a secular control on the development of globally significant basin-margin Cu-Co-(Pb-Zn) deposits. Low fluid pH is an unlikely factor in metal transport, given the carbonate-bearining host rocks and the fact that a dominance of divalent cations over monovalent alkali species is unfavorable for increasing fluid acidity as salinity increases (Yardley, 2005). Oxidized basin sequences are clearly important for limiting reduced sulfur availability, which would otherwise suppress metal solubility (e.g., Cooke et al., 2000). We conclude that the long residence time of sulfate-deficient, high-salinity, high-temperature fluids in deep, potentially thermally anomalous, settings is a critical characteristic for the generation of the most Cu-fertile basins.

ACKNOWLEDGMENTS

This work was supported by the Natural Environmental Research Council (grant NE/L002531/1), Rio Tinto (London, UK), and Mopani Copper Mines PLC (Kitwe, Zambia). We thank Anglo American (London, UK), Rio Tinto, and Quantum Pacific Exploration (Kitwe, Zambia). We thank Anglo American (London, UK), Rio Tinto (London, UK), and Mopani Copper Mines PLC (Kitwe, Zambia). We thank Anglo American (London, UK), Rio Tinto, and Quantum Pacific Exploration (Kitwe, Zambia). We thank Anglo American (London, UK), Rio Tinto, and Quantum Pacific Exploration (Kitwe, Zambia). We thank Anglo American (London, UK), Rio Tinto, and Quantum Pacific Exploration (Kitwe, Zambia).

REFERENCES CITED

Armstrong, R.A., Robb, L.J., Master, S., Kruger, F.J., and Mumba, P.A.C., 1999, New U-Pb age constraints on the Katangan sequence, Central African Copperbelt: Journal of African Earth Sciences, v. 28, Special Issue, p. 6–7.

Audetat, A., Petticke, T., Heinrich, C.A., and Bodnar, R.J., 2008, The composition of magmatic-hydrothermal fluids in barren and mineralized intrusions: Economic Geology and the Bulletin of the Society of Economic Geologists, v. 103, p. 877–908, https://doi.org/10.2113/gsecongeo.103.5.877.

Bąbel, M., and Schreiber, B.C., 2013, Geochemistry of evaporites and evolution of seawater, in Turekian, K., and Holland, H.D., eds., Treatise on Geochemistry (2nd ed.): Amsterdam, Netherlands, Elsevier, p. 483–560.

Brems, D., Muchez, P., Sikazwe, O., and Mukumba, W., 2009, Metallogenic of the Nkana copper-coal hers South orebody, Zambia: Journal of African Earth Sciences, v. 55, p. 185–196, https://doi.org/10.1016/j.jafrearc.2009.04.003.

Cooke, D.R., Bull, S.W., Large, R.R., and McGoldrick, P.J., 2000, The importance of oxidized brines for the formation of Australian Proterozoic stratiform sediment-hosted Pb-Zn (Sedex) deposits: Economic Geology and the Bulletin of the Society of Economic Geologists, v. 95, p. 1–18, https://doi.org/10.2113/gsecongeo.95.1.1.

Darney, A.G., 1960, Petrology of some Rhodesian Copperbelt orebodies and associated rocks: Institute of Mining and Metallurgy Transactions, v. 69, p. 137–173.

Heijlen, W., Banks, D.A., Muchez, P., Stensgaard, B.M., and Yardley, B.W.D., 2008, The nature of mineralizing fluids of the Kipushi Zn-Cu deposit, Katanga, Democratic Republic of Congo: Quantitative fluid inclusion analysis using laser ablation ICP-MS and bulk crush-leach methods: Economic Geology and the Bulletin of the Society of Economic Geologists, v. 103, p. 1459–1482, https://doi.org/10.2113/gsecongeo.103.7.1459.

Hitzman, M.W., Broughton, D., Selley, D., Woodhead, J., Wood, D., and Bull, S., 2012, The Central African Copperbelt: Diverse stratigraphic, structural, and temporal settings in the world’s largest sedimentary copper district, in Hedquist, J.W., Harris, M., and Camus, F., eds., Geology and Genesis of Major Copper Deposits and Districts of the World: A Tribute to Richard Sillitoe: Society of Economic Geologists Special Publication 16, p. 487–514, https://doi.org/10.5382/SP.16.19.

John, T., Schenk, V., Mezger, K., and Tembo, F., 2004, Timing and PT evolution of whiteschist metamorphism in the Lufulian arc–Zambezi belt orogen (Zambia): Implications for the assembly of Gondwana: The Journal of Geology, v. 112, p. 71–90, https://doi.org/10.1086/379093.

Kah, L.C., Lyons, T.W., and Frank, T.D., 2004, Low marine sulphate and protracted oxygenation of the Proterozoic biosphere: Nature, v. 431, p. 834–838, https://doi.org/10.1038/nature02974.

Kovalevych, V., Marshall, T., Peryt, T., Petrchenko, O., and Zhukova, S., 2006, Chemical composition of seawater in Neoproterozoic: Results of fluid inclusion study of halite from Salt Range (Pakistan) and Amadeus Basin (Australia): Precambrian Research, v. 144, p. 39–51, https://doi.org/10.1016/j.precamres.2005.10.004.

Liu, W., and McPhail, D.C., 2005, Thermodynamic properties of copper chloride complexes and copper transport in magmatic-hydrothermal systems: Chemical Geology, v. 221, p. 21–39, https://doi.org/10.1016/j.chemgeo.2005.04.009.

McCaffrey, M.A., Lazar, B., and Holland, H.D., 1987, The evaporation path of seawater and the coprecipitation of Br and K with halite: Journal of Sedimentary Petrology, v. 57, p. 926–937, https://doi.org/10.1306/212F8CAB-2B24-11D7-8648000102C1865D.

McGowan, R.R., Roberts, S., and Boyce, A.J., 2006, Origin of the Nchanga copper-coal deposits of the Zambian Copperbelt: Mineralium Deposita, v. 40, p. 617–638, https://doi.org/10.1007/s00126-005-0032-8.

Nowecki, J., 2014, Tracing Seawater Evaporation and its Role in the Formation of Sediment-Hosted
Simplified pre-orogenic basin configuration (~800 Ma)

- Gypsum & Halite Salts
- Dense bittner brines SO\textsubscript{4}-poor K-Na-(Mg)-rich

\[\text{+ K, Cu, Co, Pb, Zn} \]

\[\text{[Basement interaction]} \]

Breakdown of detrital potassic phases + K

Halokinesis through to onset of basin inversion (~745-550 Ma)

- Gypsum & Halite Salts
- Dense bittner brines SO\textsubscript{4}-poor K-Na-(Mg)-rich

\[\text{Pre-to syn-kinematic mineralized veins} \]

\[\text{+ Cu, Cu, Co, Pb, Zn} \]

\[\text{[Basement interaction]} \]

Post-peak-orogenic basin configuration (~530-500 Ma)

- Halite-undersaturated fluids
- Increased salt permeability

\[\text{NaCl brine overprint} \]

\[\text{Cu remobilization} \]

Stratiform Copper Deposits [Ph.D. thesis]: Southampton, UK, University of Southampton, 238 p.

Selley, D., 1984, Fluid Inclusions: An Introduction to Studies of All Types of Fluid Inclusions, Gas, Liquid, or Melt. Trapped in Materials from Earth and Space: Washington, D.C., Geological Society of America, 644 p., https://doi.org/10.1515/9781501508271.

Selley, D., Scott, R., Roedder, E., 1984, Fluid Inclusions: An Introduction to Studies of All Types of Fluid Inclusions, Gas, Liquid, or Melt. Trapped in Materials from Earth and Space: Washington, D.C., Geological Society of America, 644 p., https://doi.org/10.1515/9781501508271.

Sutton, S.J., and Maynard, J.B., 2005, A fluid mixing model for copper mineralization at Konkola North, Zambian Copperbelt. Journal of African Earth Sciences, v. 42, p. 95–118, https://doi.org/10.1016/j.jafrearsci.2005.08.008.

Sweeney, M.A., and Bindl, P.L., 1989, The role of diagenesis in the formation of the Konkola Cu-Co orebody of the Zambian Copperbelt, in Boyle, R.W., et al., eds., Sediment-Hosted Stratiform Copper Deposits: Geological Association of Canada Special Paper 36, p. 499–518.

Torremans, K., Muchez, P., and Sintubin, M., 2014, Mechanisms of flexural flow folding of competent single-layers as evidenced by folded fibrous dolomite veins: Journal of Structural Geology, v. 69, p. 75–90, https://doi.org/10.1016/j.jsg.2014.10.002.

Valyashko, M.G., 1962, Geochemical Rules of the Potassium Salt Deposits Formation [Ph.D. thesis]: Moscow, Russia, Izdatelstvo Moskovskovo Universiteta, 398 p.

Wilkinson, J.J., 2014, Sediment-Hosted Zinc-Lead Mineralization: Processes and Perspectives: Treatise on Geochemistry (Second Edition) Volume 13: Amsterdam, Elsevier Science, p. 219–249.

Wilkinson, J.J., Stoffell, B., Wilkinson, C.C., Jeffries, T.E., and Appold, M.S., 2009, Anomalously metal-rich fluids form hydrothermal ore deposits: Science, v. 323, p. 764–767, https://doi.org/10.1126/science.1164436.

Yardley, B.W.D., 2005, Metal concentrations in crustal fluids and their relationship to ore formation: Economic Geology and the Bulletin of the Society of Economic Geologists, v. 100, p. 613–632, https://doi.org/10.2113/gsecongeo.100.4.613.

Printed in USA