The use of a neural network model for the analysis of tourism development in the regions of the country

A N Kazak¹, N N Oleinikov¹, P V Chetyrbok¹, N P Shamaeva² and
E V Alexandrova³

¹V.I. Vernadsky Crimean Federal University, Prospekt Vernadskogo 4, Simferopol,
295007, Russia
²Udmurt State University, Universitetskaya St. 1, Izhevsk, 426034, Russia
³Izhevsk State Agricultural Academy, 426069, Izhevsk, Studencheskaya St., 11
426034, Russia

E-mail: kazak_a@mail.ru

Abstract. Neurocomputer and neural network technologies are one of the most effective artificial intelligence strategies. A neural network model has been developed, designed to assess the prospects of tourism development in certain regions of the Russian Federation. In particular, the Krasnodar Territory was chosen for analysis as one of the most popular resorts in terms of the level of domestic tourism development. Using the neural network model built in Matlab, the impact of individual economic indicators on the number of tourist visits to this resort was evaluated. This kind of analytical activity is important for adjusting regional policies in the field of tourism and recreational activities and will allow relevant experts to improve the quality of management decisions and strategies being developed. Thus, the competitiveness of the regions increases and a new approach to the development of the recreational sphere is introduced.

1. Introduction

Neurocomputer and neural network technologies are one of the most effective artificial intelligence strategies [1, 2, 3, 4, 5]. Neural networks are implemented according to the principles of construction and the functioning of the human brain. Knowledge in them is not laid down initially, but is acquired automatically during training on examples characterizing the subject area [6, 7, 8, 9, 10]. Neural networks and neurocomputers inherit from its prototype - the brain its useful properties: the ability to extract knowledge from statistical data, the ability to generalize them in the form of laws and patterns of subject areas, the property of intuition as the ability to make correct conclusions and make predictions in cases where ordinary logic is powerless [11, 12, 13, 14, 15].

2. Materials and methods

In the paper, there were used general scientific and special research methods to solve mentioned aim. There are graphical analysis, statistic, techno-economic, expert estimation method. It was studied theoretical and applied papers on the research topic [1-39], also official statistics data. For developing the neural network used Matlab and Nnstar module.
3. Results
As experience has convincingly shown, well-designed and properly trained neural networks are able to independently reveal the laws of nature and society, the laws of business processes, economic, political, social and other kinds of phenomena, to identify the relationships and patterns of subject areas and lay them in mathematical computer models [16, 17, 18, 19, 20]. Neural network mathematical models are able to take into account a large number of factors affecting the simulation result, which is just a characteristic feature of problems arising in the fields of recreation and service. At the same time, neural networks do not require large amounts of statistical information about subject areas, which is typical for alternative regression models [21, 22, 23, 24, 25].

When constructing a mathematical model of a neural network, designed to analyze the development of the recreational sphere of individual regions of the country, various data and statistics in this area were analyzed.

Table 1 presents indicators of the level of income of collective accommodation facilities, investments in fixed assets, the amount of cash income and the number of vacationers in the Krasnodar Territory for 2005-2019

Year	Revenues of collective accommodation facilities, thnd rub.	Investments in fixed assets, in actual prices, mln rub.	The total cash income of the population of the Russian Federation, mln rubl.	Per capita cash income of the population of the Russian Federation, rub.	Number of vacationers, mln
2005	18012084	113917,00	13818974	8088,3	10
2006	21267743	152080,00	17290064	10154,8	12
2007	25481043	229714,00	21311451	12540,2	13,3
2008	29494337	332532,00	25244046	14863,6	16
2009	29177075	377013,00	28697484	16895,0	12,1
2010	31030564	492733,00	32498283	18958,4	10,6
2011	32961127	676200,00	35648673	20780,0	11,1
2012	36329996	658081,10	39903672	23221,1	11,9
2013	38769019	791014,43	44650448	25928,2	11,8
2014	52027401	689854,12	47920651	27767,0	13,8
2015	47142475	540940,76	53202900	30311,0	14,1
2016	48184353	923477532	54325375	30539,5	16,2
2017	50853787	96237543	56205132	31325,0	16,2
2018	53384498	10074332	58458754	33511,5	16,9
2019	55953543	10486342	62080116	35115,2	17,3

The region has a favorable economic and geographical position, has favorable agro-climatic, natural and cultural-recreational resources, which provides a solid basis for the development of hotel-tourist and tourist-recreational activities [26, 27, 28, 29].

Among the opportunities it should be noted the possibility of the region joining international transport corridors, the use of innovative technologies, attracting investment in the economy, as well as the growing interest of Russian and foreign tourists in the resorts of the Krasnodar Territory. All these
advantages allow the region to use in the future a model of sustainable tourism development as an approach that ensures long-term growth and development of the economy, social sphere and ecology. At the same time, there are weaknesses that impede the development of its economy.

Among the unresolved issues that hinder the development of the sanatorium and resort complex of the region are:
- the need for investment in research and improving the environmental situation in resorts;
- improvement of beaches and surrounding areas;
- lack of efficiency in the use of natural resources;
- insufficient level of training and qualification of specialists of tourist and sanatorium complexes;
- seasonality of the enterprises of the tourist and sanatorium complex;
- underdeveloped engineering and transport infrastructure

To develop a neural network, the Nnstart tool of Matlab was used. For the neural network, the Bayesian regularization algorithm was used. Network learning results are presented in the figure.

Revenues of collective accommodation facilities, investments in fixed assets, the total cash income of the population of the Russian Federation, per capita cash income of the population of the Russian Federation were used as input data for the neural network [36, 37, 38, 39]. Number of vacationers was used as output data. To forecast the data, we used the sim command and indicated the data for 2020. A graphical analysis of the regression in Matlab is presented in the Figure 1 and 2.

sim (net,[58.753375;10.875642;65.755965;3.52493]). As a result of the forecast, we get the number of vacationers in the Krasnodar Territory for 2020. i.e. 17.4 mln.

![Figure 1. A graphical analysis of regression in Matlab (training the network).](image-url)
The annually increasing tourist flow indicates interest in the region. However, there are few natural resources to keep a modern tourist, who is constantly looking for new travel experiences. Krasnodar Territory is a multinational region with a rich culture and history, which may be interesting for tourists. Therefore, in order for the Russian tourist to give preference to domestic resorts, and for foreign tourists the region becomes attractive and competitive, it is necessary not only to expand the infrastructure, but also to support its historical and cultural fund.

It is necessary to ensure the integrated development of the sanatorium and resort and tourist complex of the Krasnodar Territory by solving the following tasks:
- increase the investment attractiveness of the resorts of the Krasnodar Territory;
- ensure the year-round functioning of tourist facilities;
- increase the competitiveness of the spa and tourist complex of the Krasnodar Territory;
- develop tourist-recreational and auto tourist clusters based on the rational use of natural healing resources;
- apply advanced advertising and information technologies in the promotion of tourist services.

4. Conclusions
A neural network model has been developed, designed to assess the prospects of tourism development in certain regions of the Russian Federation. In particular, the Krasnodar Territory was chosen for analysis as one of the most popular resorts in terms of the level of domestic tourism development. Using the neural network model built in Matlab, the impact of individual economic indicators on the number of tourist visits to this resort was evaluated. This kind of analytical activity is important for adjusting regional policies in the field of tourism and recreational activities and will allow relevant experts to improve the quality of management decisions and strategies being developed. Thus, the competitiveness of the regions increases and a new approach to the development of the recreational sphere is introduced.
References

[1] Auli M, Gao J 2014 Decoder Integration and Expected BLEU Training for Recurrent Neural Network Language Models 52nd Annual Meeting of the Association for Computational Linguistics 2 136–42

[2] Ballesteros M, Dyer C and Smith N A 2015 Improved Transition-based Parsing by Modeling Characters instead of Words with LSTMs Conference on Empirical Methods in Natural Language Processing 349–59

[3] Bansal M, Gimpel K and Livescu K 2014 Tailoring Continuous Word Representations for Dependency Parsing 52nd Annual Meeting of the Association for Computational Linguistics 2 809–15

[4] Baydin A G, Pearlmutter B A, Radul A A and Siskind J M 2015 Automatic differentiation in machine learning: a survey arXiv:1502.05767

[5] Bengio Y. 2012. Practical recommendations for gradient-based training of deep architectures arXiv:1206.5533

[6] Bengio Y, Ducharme R, Vincent P and Janvin C 2003 A Neural Probabilistic Language Model J. Mach. Learn. Res. 3 1137–55

[7] Chen D and Manning C 2014 A Fast and Accurate Dependency Parser using Neural Networks Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 740–50

[8] Chen Y, Xu L, Liu K., Zeng D and Zhao J 2015 Event Extraction via Dynamic Multi-Pooling Convolutional Neural Networks Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing 1 167–76

[9] Kazak A N, Chetyrbok P V and Oleinikov N N 2020 Artificial intelligence in the tourism sphere IOP Conference Series: Earth and Environmental Science 421

[10] Kazak A N, Gorobets D V and Samokhvalov D V 2020 Application of Simulink and SimEvents Tools in Modeling Marketing Activities in Tourism 2020 Lecture Notes in Electrical Engineering

[11] Kazak A N and Buchatskiy P 2018 Perspectives for smart city technologies in the resort region International Conference "Quality Management, Transport and Information Security, Information Technologies", IT and QM and IS 2018 845–52

[12] Ostaev G Ya, Kotlyachkov O V , Markovina E V, Kravchenko N A, Mironova M V, Nekrasova E V, Konina E A and Alexandrova E V 2019 Integrated budgeting at agricultural enterprises: functionality and management decision making Amazonia Investiga 8 593-601

[13] Ostaev G Y, Suetin S N , Frantsissko O Yu and Alexandrova E V 2020 Assessment of the effectiveness of the management of agricultural organizations in management Amazonia Investiga 9 260-71

[14] Oomes N, Dynnikova O 2006 The Utilization-Adjusted Output Gap: Is the Russian Economy Overheating? IMF Working Paper 68 1-46

[15] Kuboniva M 2011 The Russian Growth Path and TFP Changes in Light of Estimation of the Production Function Using Quarterly Data Post-Communist Economies 23(3) 311-25

[16] Mijwil M, Esen A and Alsaaadi A 2019 Overview of Neural Networks: https://www.researchgate.net/publication/323665827

[17] Grossi E, Buscema M 2008 Introduction to artificial neural networks European journal of gastroenterology & hepatology: http://dx.doi.org/10.1097/MEG.0b013e3282f198a0

[18] Dell’Aversana P 2019 Artificial neural networks and deep learning. A simple overview: https://www.researchgate.net/publication/333263211

[19] Cik I, Magyar J, Mach M and Ferenčík N 2020 Reinforcement learning as a service: https://ieeexplore.ieee.org/document/9108716

[20] Solow R M 1962 Technical Progress, Capital Formation, and Economic Papers Proceedings of the Seventy-Fourth Annual Meeting of the American Economic Association 52 76-86
[21] Okun A M Potential 1962 GNP: Its measurement and its significance *Proceedings of the Business and Economic Statistics: Section American Statistical Association* 98-103
[22] Entov R, Lugovoy O 1998 Growth Trends in Russia After 1998 *The Oxford Handbook of the Russian Economy* 132-61
[23] Zou J, Han Yi and Sung-Sau S 2009 Overview of Artificial Neural Networks *Methods in molecular biology* 14-22
[24] Yu H, Wilamowski B 2009 Efficient and reliable training of neural networks. NNT—neural network trainer *IEEE human system interaction conference* 109–15
[25] Lopes N, Ribeiro B 2009 GPU implementation of the multiple back-propagation algorithms *Proceedings of intelligent data engineering and automated learning* 449–56
[26] Zhao Y, Wang T 2019 *A Lightweight Neural Network Framework for Cross-Domain Road Matching* 2973-8
[27] Yu H, Wilamowski B 2009 Efficient and reliable training of neural networks *2nd Conference on Human System Interactions* 109 – 15
[28] Mussay B, Zhou S, Braverman V and Feldman D 2019 *On Activation Function Coresets for Network Pruning* https://arxiv.org/abs/1907.04018
[29] Zadeh L 2015 Fuzzy logic - a personal perspective *Fuzzy Sets and Systems* 281