A conceptual review of rhodanine: current applications of antiviral drugs, anticancer and antimicrobial activities

Seyyed Mojtaba Mousavia,b, Maryam Zareia,b, Seyyed Alireza Hashemia,b, Aziz Babapoorc and Ali Mohammad Amania,b

aDepartment of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; bPharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; cDepartment of Chemical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran

Abstract

Rhodanines are accepted as advantaged heterocycles in medicinal chemistry as one of the 4-thiazolidinones subtypes. The aim of this paper is to analyze the features of rhodanine and its application in pharmacy and medicine. Some of the properties of rhodanine such as antiviral, anticancer, antimicrobial, and drug discovery have recently been reported. Although there are still vague points in the structure and mechanism of polymerization of this substance, there is a significant increase in the use of rhodanine in medicine. In this review paper, it can be said that we have provided a general overview of the recent advances in the rhodanine-based material which its application is more in the field of drug discovery and anticancer activity. The review starts with a summary of the antiviral activity of rhodanine-based materials and nanocomposites in general. Then in the next step, the detailed description is followed on their applications in the fields of anticancer activity, drug discovery, and an innovative type of rhodanine (RH) and thiohydantoin (TH) derivatives were created and combined in order to recognize tau pathology in the brains of patients with Alzheimer’s disease (AD). Through this review, we hope to promote rhodanine and its role in medicine and pharmacy becomes more prominent.

Introduction

So far, many uses of heterocyclic compounds have been recognized, and these compounds are widely used in chemistry and biosciences. Also, heterocyclic compounds play an essential role in the biological system of humans. In addition, with a general look at drugs such as antibiotics, antiviruses, antidiabetes, and antifungal, it can be easily understood that heterocyclic compounds are present in a wide range of these drugs. Thiazolidinone is endlessly being used to synthesize and also to design new compounds. Because of the different biological activities of thiazolidinone, it has become one of the strongest and the most important heterocyclic ring [1]. In fact, due to the group of antiabetic drugs such as Rosiglitazone Pioglitazine, etc, thiazolidine-2,4-diones is considered to be a known category of active biological compounds [2]. Thiazolidine-2,4-diones have a wide range of biological activities consist of antioxidant [3], anti-inflammatory [4,5], antibacterial [2,6–14], antifungal [15,16], and the most important one is anticancer [17–19], because nowadays, cancer is one of the most important causes of death all over the world and also anticancer drugs can be very effective. In order to synthesis polyrhodanine (PRh) and phenylalanine, Rhodanine (C\textsubscript{3}H\textsubscript{3}NSO\textsubscript{2}) monomer which is derived from thiazolidine is widely used [20]. Recently, scientists have focused on synthesizing antimicrobial factors and improving their antimicrobial features [21–25]. Five-membered heterocycles, which establish an attractive point for the fabrication of diverse biotic energetic particles are rhodanines (2-thioxo-1,3-thiazolidin-4-ones). Figure 1 illustrates the chemical configuration of the rhodanine monomer.

Applicable properties such as antifungal effects [26], anti-diabetic effects [27], antibacterial effects [28], antimalarial effects [29] and anti-inflammatory effects [30], all belong to valuable derivatives of rhodanine which play a major role in pharmaceutical and medical materials and also they have the ability to prevent many organisms like hepatitis C virus NS5B polymerase [31], PMT1 mannosyl transferase [32], penicillin binding protein (PBP) [33], HIV-1 integrase [34], JSP-1 phosphatases [35] and RNA polymerase [36]. As an interesting point, it can be said that one of the reasons why rhodanine is used in solar cells and colours is that it can regulate and manipulate electrochemical and spectral features [37]. As shown in Figure 2, rhodanine is a five-membered heterocycle including thioether and amino groups at positions 1 and 3, respectively. It is structurally related to thiazolidine-2,4-dione and 2-iminothiazolidine-4-one that include an oxo or imino group, respectively, instead of the thioxo group at position 2. It is also related to 4-thioxothiazolidin-2-one, which bears oxo and thioxo groups at positions opposite to those in rhodanine (Figure 2). These heterocycles have different biological
functions although they manifest to be very indistinguishable at first quick look.

Given the needs of today’s developing and developed countries, antibacterial drugs have emerged and their rates of use have recently increased [38]. Based on research, drug-resistant bacteria like methicillin-resistant *Staphylococcus aureus* (MRSA), multi-drug resistant *Pseudomonas aeruginosa*, and multi-drug resistant *Escherichia coli* can create considerable problems and also cause fatal diseases [39–42], which, given the economic conditions, can seriously affect the general health of the community [43]. According to studies that have been done, it can be said that the use of pathogen can be an effective and suitable method for inhibiting antibiotic resistance. Therefore, in some studies, Gram-positive and Gram-negative pathogens have been utilized [44,45]. Although at first glance, using pathogen is appropriate but low evaluation efficiency is one of the drawbacks of this method and also some scientists have considered solutions to this problem. Recently, ceftolozane, daptomycin, Xifaxan®, telavancin, fosamil and ceftaroline as the novel antibiotics were subscribed and it can be said that dozens of antibiotics are currently in Phase 2 or Phase 3 clinical trials [46]. In fact, these kinds of drugs are not able to direct a wide range of bacterial resistance [47], so, developing novel antimicrobial factors, mainly drugs which can overcome drug resistance and also those with a novel drug target are very necessary. For example, indole is known as an intercellular signaling molecule and also it has the ability to control and adjust diverse features of bacterial physiology like plasmid strength, spore shaping, biofilm formation, and virulence and resistance to drugs. One of the main factors of the neurotransmitter serotonin and an indole derivative is amino acid tryptophan. So far, indoles have illustrated significant pharmacological functions and potent physiological activities like anti-HIV activity [48,49], anti-inflammatory and antioxidant [50], antiviral [51–53], antineoplastic [51,54,55] and antimicrobial [56,57]. Another derivative of indole is N-Arylsulfonylindoles, which can widely use for chemical drug studies and also act as anti-AIDS drugs [58], antifungal agents [59], 5-HT6 receptor antagonists [60]. But, based on research works, the antibacterial activity of N-arylsulfonylindoles has not been reported yet [61]. Previously, a certain group of rhodanine derivatives has been introduced which they demonstrated high inhibitory function against Gram-positive bacteria [62–67]. Other features of rhodanine derivatives are fully investigated in the following sections.

![Chemical structure of Rhodanine monomer](image1)

![Chemical structures of rhodanine and its analogues](image2)
Antiviral activity

In recent years, many activities of Rhodanine-containing compounds have been studied by scientists, mainly to control human immunodeficiency virus (HIV), hepatitis C virus (HCV) and dengue virus proteins. It can be said that, in order to reproduce HCV, non-structural protein 3 (NS3) obtained from HCV is a serine protease, which has an important role. Figure 3(1) shows the micromolar inhibitor of Rhodanine, which has been studied by numerous experiments. On the other hand, were not selective in contact with some of the relevant proteases such as trypsin, plasmin, chymotrypsin and elastase [68]. The interesting point in Figure 3(2) is that the bulkier hydrophobic classes based rhodanine also have the ability to cope with NS3 in the micromolar span but on the other hand, it has a suitable selective property against chymotrypsin [32].

Non-structural protein 5B (NS5B) polymerase is another HCV prey protein restrained through Rhodanines, which operates as a suitable catalytic subset of the viral condition. It can be said that through high-throughput operation [69] and also virtual covering (Figure 4(1)) [31], Low micromolar inhibitors of NS5B were recognized utterly. The compound shown in Figure 4(2) consists of controlling NS5B with an IC50 value of 200 nM which provides the next optimization.

In Figure 5, the specificity of the crystal structure of this type of controllers in cooperation with NS5B is illustrated, which is discussed covalent binding of the exocyclic double bond to the Cys366 thiol [69]. An important feature of rhodanine is that it has the ability to control HIV-1 integrase, this has a major role in speeding up the process of combination of viral cDNA into the human genome [70]. The researchers in their comprehensive study stated that one of the most effective inhibitors of the HIV virus is those that are found in their compounds, Rhodanine. Which, in addition to strong control has significant antiviral activity in the low micromolar range. For a better understanding of the topic, see Figure 6(1). On the other hand in Figure 6(2), low micromolar inhibition via Rhodanines of HIV-1 reproduction in MT-2 cells, that due to focus on the HIV-1 covering glycoprotein transmembrane subset gp41, has also been explained [71–73]. In addition, it can be said that Rhodanines have the ability to inhibit dengue virus protease NS2B-NS3 [74,75].

According to the tests, HIV-1 and HIV-2 can be considered as harmful viruses that became commonplace among humans in the 20th century and in fact they were introduced as almost new pathogens [76]. Chimpanzees have been the main cause for transmission of this virus to humans, although some other factors have not been affected by the emergence and transmission of this virus [77–79]. Implementing the ”prevention and treatment” plan in the world to deal with human immunodeficiency virus type 1 (HIV-1) epidemic has led to a negligible reduction in the amount of infection worldwide. It is worth mentioning that the sexually transmitted infections (STIs), including HIV-1, has caused concern throughout the world, especially in deprived areas [80].

Figure 3. Hepatitis C virus NS3 inhibitors [136].
the other hand, since 2010, there has been no significant reduction in the number of people with this new HIV infection in most countries. Which can be considered as a worrying report. This means that the current efforts including treatment methods and easy access to anti-virus to reduce mortality have not been effective enough.

Scientists in previous studies presented several methods for the treatment of HIV in the early stages to prevent entry into the cell [81–83]. In fact, this can be attributed to increasing the availability of antiviral agents in effective and important preparations. A common feature of all the ways in which intracellular prevention has so far been proposed is that available drugs should penetrate both the mucosa and the membrane as it improves its effectiveness. As shown in Figure 7, during experiments on infectious viruses, scientists encountered compounds whose properties were highly regarded. After the introduction of Rhodanine, the scientists prepared and synthesized a series of rhodanine derivatives for further investigation. Following advanced trials and biological evaluations, researchers have come to the conclusion that these derivatives have a very high ability to control HIV-1 and HSV-1 and 2 replication at nanomolar concentration. They also identified the interdependence of these molecules on human albumin. In the next step, the preliminary ADME evaluation was performed successfully by determining the water sensitivity, permeability of the inactive membrane and the metabolic stability of the selected compounds. The researchers have stated that factors such as high level of inappropriate drug reactions and resistance in different parts of patients at drug concentrations below the optimal limit have limited the treatment of HIV infection [84].

Figure 8 illustrates the synthetic method for the final compounds 9a–f, which requires the preparation of the desired acid 6. Methyl 4–(5-formylfuran-2-yl)-2-hydroxybenzoate (5) was obtained through Suzuki reaction between commercially available 3 (methyl 4-iodosalicylate) and compound 4 (5-formyl-2-furanylboronic acid), in the next step, the acid analogue was made by fundamental hydrolysis (6). Using the information provided in the published articles, the Derivatives 9a–f, were prepared and synthesized. This process contains nucleophilic shift between the opportune amine and trithiocarbonate (7) to provide the superseded rhodanine mediumship (8a–f), followed by Knoevenagel condensation with aldehyde (6) catalyzed through the surplus of predominant amine. According to the same concepts as shown in Figure 8.

Different species of rhodanine compounds were studied in the laboratory. Some of these tests are summarized in Table 1, which analyzes the solubility (thermodynamics solubility), membrane permeability and microsomal stability of the liver. Considering the amounts of water solubility provided, its range can be from 0.1 to 0.88 µg/mL, but the important point is that the low level does not have a significant effect on the performance of the gel formulation. In fact the data did not reveal this truth. It has been accepted that in the experiments of researchers, the concentration of compounds in pre-gel solution was equal to the control solution values. In PAMPA experiments, the permeability of the inactive membrane was investigated, hence the range of all compounds was from 0.4 to 2.32×10^{-6} cm/s. During the experiments, it was found that expansion of exposure time...
of the microbicide can cause the significant increase in local activity. In addition to all the points that have been mentioned so far, sustainability tests have indicated that all compounds exhibit favourable metabolic stability in human liver microsomes (>90%).

In their own experiments, researchers investigated the effect of rhodanine on two viruses. They described the effective factors for PrEP ways without the requirement of dual-factors production. They also found valuable facts about rhodanine, which proved the ability to control and restrain the viruses and prevent their entry into the cell by rhodanine. According to complex studies on primary samples, it has been found that the compounds can only affect certain species of viruses. In the end, scientists reported new ways

Figure 6. Representative inhibitors of (1) HIV-1 integrase and (2) gp41 [136].

Figure 7. 2D structures of HIV-1 inhibitors previously published [166].
Figure 8. Synthesis of aldehyde 6 and derivatives 9a–f. Synthesis scheme of aldehyde 6: (i) Pd (PPh3)2Cl2, Na2CO3, DMF/EtOH, RT, 1h; (ii) 1N NaOH (aq), MeOH/THF, reflux 2h. Synthesis scheme of derivatives 9a–f: (iii) DME, Et3N, MW(300 W), 90°C, 10 min. (iv) aldehyde 6, MW(300 W), 110°C, 5 min [166].

Table 1. Results of in vitro ADME analysis for selected rhodanine derivatives [166].

Compound	Water Solub. (µg/mL)	Papp (1·10⁻⁶ cm/sec)	Metabolic Stability (%)	Kd HSA (µM)	Kd BSA (µM)
1	0.88 ± 0.10	1.28	>90%	0.63 ± 0.1	0.68 ± 0.1
2	0.52 ± 0.13	1.26	>90%	0.96 ± 0.1	0.63 ± 0.1
9a	0.54 ± 0.08	0.4	>90%	1.51 ± 0.2	1.08 ± 0.2
9b	0.10 ± 0.08	2.32	>90%	1.57 ± 0.2	1.55 ± 0.3
9c	0.30 ± 0.07	1.23	>90%	1.19 ± 0.1	1.05 ± 0.1
9d	0.25 ± 0.09	1.50	>90%	1.09 ± 0.9	0.99 ± 0.9
9e	0.72 ± 0.12	0.92	>90%	2.19 ± 1.0	1.07 ± 0.9
9f	0.73 ± 0.14	0.87	>90%	2.23 ± 1.2	1.09 ± 0.9
to cope with the introduction of infection into the target cell, along with inhibition of cell toxicity, which can be used in future to improve the HIV prevention and treatment process.

Anticancer activity

One of the facts that are not covered today is the growth in the number of deaths among cancer patients, which is rising momentarily [85,86]. On the global scale, it can be said that each year, cancer can put to death many human beings in comparison with malaria, tuberculosis and AIDS. However, more effective treatments are needed in order to provide better efficacy and suitable treatment. The first point about the existing therapies is that their effectiveness is low, so it can be said that in this method of treatment it is only possible to focus on two cancer cells or their peers, which does not seem to be a very good feature. Then it can be noted that the toxicity of anticancer drugs, which have a significant degree of ability to constrain the treatment process and in the end, we must pay attention to various methods of chemotherapy, some of them are very hydrophobic and, therefore, have lost their importance [87]. Breast cancer can be considered as the second leading cause of female mortality among various types of cancers [88]. So far, techniques such as surgery or radiotherapy have been used most of the time. However, chemotherapy remains a commonly used treatment method for cancer. As mentioned above, in spite of endless efforts to develop new treatment of various types of cancer, cancer is still a major concern in today’s world. Therefore, in order to get better results, measures should be taken to find a new class of molecules with effective features against cancer cells. At this time, after a great deal of research on different molecules, five-membered heterocyclic molecules which have a thiazolidine nucleus with a carbonyl group on fourth carbon have been introduced, like rhodanine and its bioisostere 2,4-thiazolidinedione (TZD) derivatives that present unique cancer characteristics [89–96]. In this section, some of the interesting features of these very well-known substances are reviewed, for instance, cytotoxic activities [97] anti-diabetic [98], anti-oxidant [99], anti-microbial [7,100], anticonvulsant [101] anti-tubercular [100] and anti-inflammatory.

In Figure 9, the pyridyl quinoline derivative GSK1059615 is known as a new ATP controller and great inhibitor of the PI3kS groups. This kind of inhibitor showed a great ability to control breast cancer cells [102,103]. As shown in Figure 9, Moorhy et al., have investigated 5-benzilidene-3-ethyl rhodamine (BTR-1), 3-dimethyl-2-thio-hydantoin (ITH-1), 3-ethyl-2-thio-2,4-oxazolidinedione (ITO-1) and realized that all the mixtures instigated cytotoxicity in a time and concentration-dependent procedure with an IC50 value of <10 μM and affected cell division through inducing a block at S phase, which eventually caused the activation of apoptosis [104]. All the cases that have been mentioned so far have been a small part of the treatment process, but more comprehensive and better efforts to improve the quality of treatment are needed [105,106].

Antimicrobial activity

Due to the emergence of diseases and the complexity of treatment, in the last 50 years, many efforts have been made to develop effective antibiotics. Rhodamine is one of the most well-known and key materials. It can be said that these groups of molecules have the same chemical structure as penicillin and have shown a favourable antibacterial activity during several experiments, which could attract researcher’s attention [62,107–109]. Figure 9 illustrates the antibacterial feature of a type of rhodamine-3-alkanecarboxylic acid derivatives with p-N,N-benzilidenedialkyl (phenyl)amine moieties at the position A on the gram-positive strains of staphylococci, micrococci and streptococci [110].

Furthermore, a group of rhodanines bearing N-arylsulfonylindole fragment at the position B have been introduced that were dynamic to gram-positive strains, particularly Staphylococcus aureus, including multi drug-resistant strains (MRSA) [61]. Rhodanine compounds have been investigated to be able to cope with bacteria such as *Staphylococcus aureus* and moderately operative against *Escherichia coli* which provides a wide range of applications [28]. Various derivatives of N-carboxymethyl rhodamine have been prominent examples of attempts to find antimicrobial agents in the last decade, which have been considered by scientists and have been continuously investigated. It may be argued that their high ability against gram-positive species, such as several strong separators, has highlighted the specificity of this molecule [66]. Also, resistance to gram-positive bacteria in esters and amides of rhodanine-3-acetic acids (C) with the same structure was completely investigated, including methicillin-resistant *Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus aureus, Enterococcus sp.* and Mycobacteria.

It has been shown that with the development of molecules, the properties of inhibiting the growth of bacteria with low MIC and also the increasing effect of INH-resistant atypical myco bacteria can be mentioned [111]. In fact, based on extensive and fundamental studies on rhodanine derivatives, it can be seen that their activity against gram-positive bacteria is much more prominent than their function against gram-negative bacteria. Hence, the above comparison made it possible to guide the researchers to improve their properties. Integrating rhodanine grid with quinoline led in a line of compounds (D) demonstrating in vitro anti mycobacterial potency against MTB H37Ra and M. bovis BCG. During research in laboratories, the efficacy and high selectivity of
rhodanine-quinoline derivatives were carefully evaluated and tested. Based on these properties, it is possible to predict the presence of these compounds in antitubercular factors [112].

Since rhodanine (2-thioxothiazolidin-4-one) is one of the fundamental factors in the field of medicinal chemistry, it can be used for chemical modifications. Subsequently, materials such as N-3 and/or “active methylene” C-5 substitution can be found that are capable of generating potential new bioactive compounds and thus the new window has opened to medical science. As mentioned in previous sections, rhodanine has interesting properties which they can inhibit diverse enzymes, for instance deoxyxylulose 5-phosphate reductoisomerase [113], cholinesterases [114,115], 15-lipoxygenase [114], aldose reductase [116], dolicholphosphate mannose synthase [117], gyrase B [118], Mur ligases [119] and also augmentation of pathogenic protozoa [117], fungi [120], bacteria [31,113,121,122] and Mycobacterium tuberculosis [123] in whole-cell covering tests. It has been proven in the laboratory that rhodanines including those with C-5 substitution have the special ability to inhibit microbial enzymes and extensive anti-microbial activity. In the past, new antimicrobial agents have been identified and reported clearly [124–128]. They assessed antecedently reported N-phenylamides and phenyl esters of rhodanine-3-acetic acid, new salicylaldehyde-based C-5 arylmethyldene derivatives of the RAA and their reciprocal conjugates against Gram-positive and Gram-negative bacteria mycobacteria, and also eight fungal types. In fact, it could be said that a group of 20 microbes was introduced and all of them were major pathogens of the human body, this means that with intelligent screening, early detection of the antimicrobial activity of the compounds can be achieved successfully.

Drug discovery

So far, many compounds have been involved in drug discovery processes, which are discussed in detail in previous studies, the purpose of this section is to investigate the role of rhodanines (2-thioxo-1,3-thiazolidin-4-one) and related substances like 2,4-thiazolidinediones, 2-amino(imo)-4-thiazolidinones, 2-R- and 2-yldene-4-thiazolidinones derivatives in this field [96,129–134]. It has been accepted that rhodanine
core based molecules play an essential role in pharmacy because they are very rich in it [74,135,136]. Multiple ligand method is one of the new and effective ways in the emergence and development of new drugs, therefore according to the characteristics of rhodanine, it can be widely utilized. In addition, it can be said that the desirable feature of this method is more efficiency and also reduced costs and risks. There may be various benefits to this method, but the main advantage is that there are lower drug–drug interactions in comparison with drug cocktails or multicomponent drugs [137]. In pharmaceutical chemistry, we face some interesting and different approaches and one of them is the hybrid pharmacophore approach [138,139]. Finally, it can be said that since rhodanine is simply influenced by various chemical optimizations, it is considered a favourable factor [140,141]. An interesting example is PI3γ kinase inhibitor, containing chemically similar thiazolidinedione fragment, which means that rhodanine can be used as a basic ingredient in fragment-based drug design [142]. In fact, it can be said that effective and desirable methods have been presented so far in which the methods required for the synthesis of rhodanine core and its derivatives are fully described [66,129,134,143–146]. According to studies, it is possible to synthesize them in chemical methods that are used for other materials such as 4-thiazolidinone subtypes (2,4-thiazolidinediones, 2-amino(imino)-4-thiazolidinones, 2-R-4-thiazolidinones), they are thus divided into three main sections, as shown in Figure 11: (1) synthesis of the rhodanine core and

dithiocarbamate method

\[R - \text{NH}_2 + \text{CS}_2 + \text{HalCH}_2\text{COOH} \]

Holmberg method

\[R - \text{NH}_2 + \text{HOOC} \]

thiocyanate based method

\[\text{NH}_2\text{SCN} + \text{HalCH}_2\text{COOH} \]

Structure of the most referred sub-types

\(X = \text{various fragments} \) (alkyl, aryl, heteryl)

![Diagram of rhodanine synthesis and transformation](image-url)

Figure 11. General approaches to rhodanines synthesis and transformation [170].
its N3 substituted derivatives; (2) alternation of the main core; (3) synthesis of the rhodanine derivatives in the one-pot or multistage reactions.

So far, scientists have made many studies in the field of drug recognition and also they have proposed extensive activities titled pan assay interference compounds (PAINS) and periodic hitters in various screening. Rhodanine containing compounds are non-specialized collectors that deal with target proteins and also Michael receptors. Finally, it can be said that because of their colour, they have the ability to interact photometrically in biologic assessments [136].

Other types of activity

In today’s world, there are many therapeutic treatments for Alzheimer’s disease, so rhodanine derivatives have been investigated for this purpose. Several 5-arylidenerhodanine-3-carboxylic acids had the ability to control protein tau accumulation, whose natural task is to brace the microtubule lattice in order to convey organelles and vesicles in nerve cells, required for the interactions between cells and as a result for brain function [147]. Also it can be said that, in order to diagnosis tau pathology in the brains of patients with Alzheimer’s disease, a series of thiohydantoin and rhodanine (34) and derivatives can create and design [148]. In recent years, it has been proven that, rhodanine and thiohydantoin derivatives can affect destabilization, creation and augmentation of masses such as tau [147]. One of the most prominent features of these derivatives is their dependence on the dose and the ability to restrict the growth of tau accumulation and destabilize it, showing their direct effect on interactions and binding with the mass. As illustrated in Figure 12, some researchers created and combined three new radiiodinated rhodamine and thiohydantoins and derivatives and also they worked on their biotic features in vivo NFT screening factors and finally analyzed and developed them. It might be said that before these experiments, never rhodanine and thiohydantoins derivatives been used to identify tau pathology in the AD brain [148].

If we consider the sulphur atoms of 4-thiazolidinone as an effective agent for liver toxicity, then we have only referred to a hypothesis that is not certain because there are no fundamental studied and also it is clear that toxicity depends on the individual structure of each compound and cannot be detected and evaluated only by the presence of one factor [149]. With precursor studies on thiazolidinones, its anticancer activity can be recognized and also it was found that most active compounds do not have notable toxicity to normal cells. In addition, rhodanines are organized as non-mutagenic [150] and comprehensive work on the clinical results of the rhodanine-based Epalrestat indicated that it is well tolerated. The most important conclusions in the anti-inflammatory 4-thiazolidinones are connected with their capability to restrict isoforms of cyclooxygenase (COX) and lipooxygenase (LOX) and related operations associated with prostaglandine synthesis [108]. For instance Darbufelone (5-(3,5-diterbutyl-4-hydroxybenzylidene)-thiazol- 4-one can be mentioned as a prime sample [151]. Furthermore, this 3,5-disubstituted rhodanine derivative indicated the notable reduction in formalin-induced paw edema higher than that of celecoxib and gastrointestinal safety profile as celecoxib in gastric ulcerogenic operation analyze [152]. By studying many articles, we have proposed that, when ketones exist, advanced technique for the chemoselective reduction of aldehydes are very distinguished and gained notable consideration or even through usage of some additives materials such as thermoplastic thermoplastic, (PET, ABS, SAN) [153–155], nanotube [156,157] resins [158,159] graphene oxide in polymer composite for X-ray radiation shielding [160] and features of nanocomposites, linear low density polyethylene, ethylene-co-vinyl acetate and nano-clay particles through electron rays [161]. Due to the features mentioned, rhodanine may also be used to do this in the future. As a point, it can be said that if exocyclic sulphur is presented in the thioxo group of rhodanines, then interesting electronic features can be considered for this action, which can participate in many important interactions. Because rhodanines are usually high-throughput screening (HTS) hits that are difficult to modify to guide compounds, therefore they were identified as pan assay interference compounds (PAINS). Figure 13(A) illustrated that, rhodanines experienced simplistic reaction with nucleophiles through Michael addition to the exocyclic double bond [136].

As an essential point, it can be said that recently, 10 crystal structures of rhodanine derivatives in complex with proteins available in the RCSB Protein Data Bank have been recognized. The common feature of all these structures is they have an exocyclic double bond. As shown in Figure 13(B) there is a covalent bond between the inhibitor and a cysteine residue in the allosteric binding site which it relates to the crystal structure of 5-benzylidenerhodanine-containing controllers in complex with the HCV RNA polymerase NS5B. Finally, the reversibility of this inhibition process was proved [69].

The researchers, with long-term tests on rhodanine, found interesting electrical features and their positive performance in biological experiments. Rhodanine containing compounds

Figure 12. Chemical structure of rhodanine and thiohydantoins derivatives reported previously [148].
are non-specialized collectors that deal with target proteins and also Michael receptors. Finally, it can be said that because of their colour, they have the ability to interact with photo-metrically in biologic assessments [136].

Discussion

So far, many methods have been proposed for the synthesis of thiazolidinone derivatives, so initially, a series of compounds were introduced (Figure 14) and then synthesized. The researchers used α-chloroacetic acid (A) and thiourea (B) at first, in order to start the synthesis of thiazolidine-2,4-dione. Figure 15 illustrates the Synthesis of thiazolidine-2,4-dione(TZD) (D) by chloroacetic acid and thiourea [1]. Also, in some studies, it is recommended that, if the reaction is under cold conditions and after that irradiated with the microwave, it can lead to the simplicity of the process and also increase of efficiency [162]. A group of other researchers synthesized all compounds through Knoevenagel Condensation reaction (Figure 16) and in order to obtain the acidic compounds (A6, A12, A17, A23), some thiazolidinedione ester compounds (A3, A9, A15, A20) were hydrolyzed. This test was conducted to evaluate the anti-cancer properties of these compounds against two hepatocellular carcinoma (HCC) cell lines, Huh7 and Plc/Prf/5 (Plc) cell lines using sulforhodamine B assay. Also, it can be said that IC50 values were utilized for some candidates like A4, A15, A21, in five different HCC (Huh7, Plc, Snu449, HepG2, Hep3B) and one breast cancer (Mcf7) cell line. As a practical point, it can be stated that compounds A4, A15, and A21 may be used in the future to improve anticancer drugs [163]. In another experiment, a group of compounds was studied which had thiazole nucleus in their structure. Using the reactions of the thiosemicarbazones with a series of α-halo carbonyl compounds, these new compounds were prepared. Actually, it can be said that the thiosemicarbazones derivatives were reacted also with hydrazonyl chlorides to get the corresponding tri-substituted and tetra-substituted thiazoles. The structure of these novel compounds has been verified by numerous experiments and spectral data. In comparison with, the ketoconazole, as the reference drug, it is easy to say that some of these new compounds illustrated better function against two fungal strains, such as Aspergillus flavus, and Aspergillus niger in addition...
to three yeast strains, like Saccharomyces cerevisi, Candida albicans NRRL Y-477, and Candida Pathological specimen [164]. Then, we can refer to the Synthesis of Silver/Polyrhodanine Nanotubes. In an ordinary method, silver nitrate (5.9 × 10⁻³M) was dissolved by ethanol in 200 ml after that, rhodanine monomer (7.5 × 10⁻³M) was injected in the silver nitrate solution at 60 °C. Strong magnetic stirrer was utilized during the entire production process, in order to had high shear flow. Through centrifugal precipitation, after 24 h, polyrhodanine nanotubes modified with silver nanoparticles were precipitated and washed with ethyl alcohol to eliminate the remaining reagents. For about 72 h, the nanotubes

![Formula of the compounds A1–A23](image)

Figure 16. Formula of the compounds A₁–A₂₃ [163].
were under vacuum at 25°C for being dried. All steps of synthesis of silver/polyrhodanine nanotubes are shown in Figure 17 [165].

Conclusion

Much effort has been devoted to the shape control synthesis of Poly rhodanine because it provides an effective strategy for tuning the physical and chemical properties of a Polymer. Thiazolidione is an adaptable nucleus and its derivatives are very interesting materials that have been very prominent in medicine and pharmacy. Actually, the antiviral, anticancer, antimicrobial areas are the three main applications of thiazolidione derivatives like rhodanine. Due to the demanding for Poly rhodanine with specific properties for dedicated applications, developments of novel techniques for creating the functional method with desired morphologies and properties are constantly required. Therefore, the efficient and rapid approach for the fabrication of synthesis of Polyrhodanine using different methods were described. Several of the above methods proved to be extremely effective in detecting drug accumulation in cancer tissue, and effective against human immunodeficiency virus (HIV), hepatitis C virus (HCV), dengue virus proteins and Antimicrobial activity holding a great promise for application in image-guided cancer chemotherapy. It’s believed that Poly rhodanine provides interesting perspectives for applications in biomedical fields. Recent developments in applications ranging from diagnosis to treatment provide a mirror image of future horizons.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

[1] Kaur Manjal S, Kaur R, Bhatia R, et al. Synthetic and medicinal perspective of thiazolidinones: a review. *Bioorg Chem*. 2017;75: 406–423.

[2] Trotsko N, Kosikowska U, Paneth A, et al. Synthesis and antibacterial activity of new (2, 4-dioxothiazolidin-5-yl/ylidene) acetic acid derivatives with thiazolidine-2, 4-dione, rhodanine and 2-thiohydantoin moieties. *Saudi Pharmaceutical J.* 2018; 26: 568–577.

[3] Jeong TS, Kim JR, Kim KS, et al. Inhibitory effects of multi-substituted benzylidenethiazolidine-2, 4-diones on LDL oxidation. *Bioorg Med Chem*. 2004;12:4017–4023.

[4] Barros CD, Amato AA, de Oliveira TB, et al. Synthesis and anti-inflammatory activity of new arylidene-thiazolidine-2, 4-diones as PPAR γ ligands. *Bioorg Med Chem*. 2010;18:3805–3811.

[5] Koppireddi S, Komsani JR, Avula S, et al. Novel 2-(2,4-dioxo-1,3-thiazolidin-5-yl)acetamides as antioxidant and/or anti-inflammatory compounds. *Eur J Med Chem*. 2013;66:305–313.

[6] Heerding DA, Christmann LT, Clark TJ, et al. New benzylidene-thiazolidinediones as antibacterial agents. *Bioorganic & Medicinal Chemistry Letters*. 2003;13:3771–3773.

[7] Bozdağ-Dündar O, Ozgen O, Menteşe A, et al. Synthesis and antimicrobial activity of some new thiazolyl thiazolidine-2, 4-diones. *Bioorg Med Chem*. 2007;15:6012–6017.

[8] Aneja DK, Lohan P, Arora S, et al. Synthesis of new pyrazolyl-2, 4-thiazolidinediones as antibacterial and antifungal agents. *Org Med Chem Lett*. 2011;1:115.

[9] Ibrahim MA, Abdel-Hamed MA-M, El-Gohary NM. A new approach for the synthesis of bioactive heteroaryl thiazolidine-2, 4-diones. *J Braz Chem Soc*. 2011;22:1130–1139.
[10] Liu X-F, Zheng C-J, Sun L-P, et al. Synthesis of new chalcone derivatives bearing 2, 4-thiazolidinedione and benzoic acid moieties as potential anti-bacterial agents. Euro J Med Chem. 2011; 46:3469–3473.

[11] Purohit SS, Alman A, Shewale J. Synthesis and antimicrobial activity of a new series of 3, 5-disubstituted-thiazolidine-2, 4-diones. Int J Pharm Pharm Sci. 2012;4:272–276.

[12] ShaiﬁKM, Patel NB, Rajani D. Synthesis of new thiazolidine-2, 4-dione derivatives and their antimicrobial and antitubercular activity. Indian J Res Pharma Biotechnol. 2013;1:496.

[13] Desai NC, Satodiya HM, Kotadiya GM, et al. Synthesis and antibacterial activity of new 5-substituted thiazolidine-2, 4-dione derivatives bearing the pyrazole moiety. Arch Pharm Chem Life Sci. 2014;347:523–532.

[14] Desai NC, Satodiya HM, Rajpara KM, et al. Synthesis and evaluation of N-substituted thiazolidine-2, 4-dione containing pyrazole as a potent antimicrobial agents. Aia. 2014;12:85–94.

[15] Tuncbilek M, Altanlar N. Synthesis of New 3-(Substituted Phenacyl)-5′-[3′-(4H-4-oxo-1-benzopyran-2-yl)]-benzylidene]-2, 4-thiazolidinediones and their Antimicrobial Activity. Arch Pharm Chem Life Sci. 2006;339:213–226.

[16] Marc G, Ionut I, Pirmäu A, et al. Microwave Assisted Synthesis of 3,5-disubstituted Thiazolidine-2,4-diones with Antifungal Activity. Design, synthesis, virtual and in Vitro Antifungal Screening. FARMACIA. 2017;65:414–422.

[17] Liu X, Xie H, Luo C, et al. Discovery and SAR of thiazolidine-2, 4-dione analogues as insulin-like growth factor-1 receptor (IGF-1R) inhibitors via hierarchical virtual screening. J Med Chem. 2010;53:2661–2665.

[18] Patil V, Tilekar K, Mehendale-Munj S, et al. Synthesis and primary cytotoxicity evaluation of new 5-benzylidene-2, 4-thiazolidine-dione derivatives. Euro J Med Chem. 2010;45:4539–4544.

[19] Salamone S, Colin C, Griller-Vuissiez I, et al. Synthesis of new triglutazone derivatives: anti-proliferative activity in breast cancer cell lines and preliminary toxicological study. Euro J Med Chem. 2012;51:206–215.

[20] Rostam AB, Peyravi M, Ghorbani M, et al. Antibacterial surface modified of novel nanocomposite sulfonated polyethersulfone/polyrhodanine membrane. Appl Surf Sci. 2018;427:17–28.

[21] Hwang J-M, Yeom S-H, Jung K-Y. Synthesis of oxazolidinone phosphonates as antibacterial agents. J Ind and Eng Chem 2007;13:474–479.

[22] Bouloussa O, Rondelle F, Semetey V. A new, simple approach to confer permanent antimicrobial properties to hydroxylated surfaces by surface functionalization. Chem Commun. 2008;0:951–953.

[23] Guo-Dong F, Fang Y, Zhigang L, et al. Solvent-resistant antibacterial microfibrils of self-quaternized block copolymers from atom transfer radical polymerization and electrospinning. J Mater Chem. 2008;18:859–867.

[24] Jing J, Kim Y. Fabrication of monodisperse silica–polymer core–shell nanoparticles with excellent antimicrobial efficacy. Chem Commun. 2008;0;40:16–40.18.

[25] Waschinski CJ, Zimmermann J, Salz U, et al. Design of contact-active antimicrobial acrylate-based materials using biocidal macromers. Adv Mater. 2008;20:104–108.

[26] Inamori Y, Okamoto Y, Takegawa Y, et al. Insecticidal and antifungal activities of aminorhodanine derivatives. Biosci, Biotechnol, and Biochem. 1998;62:1025–1027.

[27] Terashima H, Hama K, Yamamoto R, et al. Effects of a new aldose reductase inhibitor on various tissues in vitro. J Pharmocol Exp Ther. 1984;229:226–230.

[28] Pardasani R, Pardasani P, Sherry D, et al. Synthetic and antibacterial studies of rhodanine derivatives with indol-2-3-diones. J. Org. Chem. 2001;40:1275–1278.

[29] Kumar G, Parasuraman P, Sharma SK, et al. Discovery of a rhodanine class of compounds as inhibitors of Plasmoluid falciparum enol-acyl carrier protein reductase. J Med Chem. 2007;50:2665–2675.

[30] Silva A, Silva Góes A, Lima W, et al. Antiedematogenic activity of two thiazolidine derivatives: N-tryptophyl-5-(3, 5-di-tet-4-buty-4-hydroxybenzylidine) rhodanine (GS26) and N-tryptophyl-5-(3, 5-di-tet-4-buty-4-hydroxybenzylidine)-2, 4-thiazolidinedione (GS28). Chem Pharm Bull. 2005;53:1351–1355.

[31] Talete TT, Arora P, Kulkarni SS, et al. Structure-based virtual screening, synthesis and SAR of novel inhibitors of hepatitis C virus NS5B polymerase. Bioorg Med Chem. 2010;18:4630–4638.

[32] Sing WT, Lee CL, Yeo SL, et al. Arylalkylidine rhodanine with bulky and hydrophobic functional group as selective HCV NS3 protease inhibitor. Bioorg Med Chem Lett. 2001;11:91–94.

[33] Zverosen A, Lu W-P, Chen Z, et al. Interactions between penicillin-binding proteins (PBPs) and two novel classes of PBP inhibitors, arylalkylidene rhodanines and arylalkylidene iminothiazolidine-4-ones. Antimicrobial Agents and Chemother. 2004;48:961–969.

[34] Dayam R, Sanchez T, Clement O, et al. β-Diketo acid pharmacophore hypothesis. 1. Discovery of a novel class of HIV-1 integrase inhibitors. J Med Chem. 2005;48:111–120.

[35] Grant EB, Guiadeen D, Baum EZ, et al. The synthesis and SAR of rhodanines as novel class C β-lactamase inhibitors. Bioorganic & Medicinal Chemistry Letters. 2000;10:2179–2182.

[36] Villain-Guillot P, Gualtieri M, Bastide L, et al. Structure – activity relationships of phenylfuranyl-rhodanines as inhibitors of RNA polymerase with antibacterial activity on biofilms. J Med Chem. 2007;50:4195–4204.

[37] Marydasan B, Nair AK, Ramiaha D. Optimization of triplet excited state and singlet oxygen quantum yields of picolylamine-porphyrin conjugates through zinc insertion. J Phys Chem B. 2013;117:13515–13522.

[38] Livermore DM. Has the era of untreatable infections arrived? J Antimicrobial Chemother. 2009;64:29–136.

[39] Hivistendahl M. China takes aim at rampant antibiotic resistance. PA, USA: American Association for the Advancement of Science; 2012.

[40] Yezli S, Li H. Antibiotic resistance amongst healthcare-associated pathogens in China. Int J Antimicrobial Agents 2012;40:389–397.

[41] Carrel M, Perencevich EN, David MZ, USA300 methicillin-resistant Staphylococcus aureus, United States, 2000–2013. Emerging Infectious Dis. 2015;21:1973.

[42] Bi Y, Liu X-X, Zhang H-Y, et al. Synthesis and antibacterial evaluation of novel 3-substituted octocoll-type derivatives as leads. Molecules 2017;22:590.

[43] Azeredo da Silvaie S, Perez A. Liposomesc as novel anti-infectives targeting bacterial virulence factors? Expert Rev Anti Infect Ther. 2015;13:531–533.

[44] Song B, Wen S. Development of quorum-based anti-virulence therapeutics targeting gram-negative pathogens. Int J Mol Sci. 2013;14:16570–16599.

[45] Cascalho R, Cusimano MG, Schillaci D. Antiadhesion agents against Gram-positive pathogens. Future Microbiology. 2014;9:1209–1220.

[46] Redmacher J, Welte T. New antibiotics-standstill or progress. Med Klin Intensivmed Notfmed. 2017;112:206–213.

[47] Boucher HW, Talbott GH, Benjamin DK, et al. 10×20 progress—development of new drugs active against gram-negative bacillii: an update from the Infectious Diseases Society of America. Clin Infectious Dis. 2013;56:1685–1694.

[48] Silvestri R, De Martino G, La Regina G, et al. Novel indolyl aryl sulfones active against HIV-1 carrying NNRTI resistance mutations: synthesis and SAR studies. J Med Chem. 2003;46:2482–2493.

[49] Che Z, Tian Y, Hu Z, et al. Synthesis and in vitro anti-HIV-1 activity of a series of N-arylalanyl-3-propionylindoles. Z Naturforsch, C, J Biosci. 2016;71:105–109.

[50] Bhale PS, Chavan HV, Dongare SB, et al. Synthesis of extended conjugated indolyl chalcones as potent anti-breast cancer, anti-inflammatory and antioxidant agents. Bioorg Med Chem Lett. 2017;27:1502–1507.

[51] Barbosa VA, Barfé P, Mavia RS, et al. Synthesis and evaluation of novel hybrids β-carboline-4-thiazolidinones as potential
antitumor and antiviral agents. Euro J Med Chem. 2016;124:1093–1104.

[52] Scuotto M, Abdelnabi R, Collarile S, et al. Discovery of novel multi-target indole-based derivatives as potent and selective inhibitors of chikungunya virus replication. Bioorg Med Chem Lett. 2017;27:327–337.

[53] Tan MC, Wong WY, Ng WL, et al. Identification of 5-Methoxy-2-(Diformylmethylidene)-3,3-Dimethylindole as an anti-influenza A virus agent. PLoS One. 2017;12:e0170352.

[54] Diao P-C, Li Q, Hu M-J, et al. Synthesis and biological evaluation of novel indole-pyrinidines hybrids bearing morpholine and thio-morpholine moieties. Euro J Med Chem. 2017;134:110–118.

[55] Manuel-Manresa P, Korrodi-Gregorio L, Hernando E, et al. Novel indole-based tambjamine-analogues induce apoptotic lung cancer cell death through p38 mitogen-activated protein kinase activation. Molecular Cancer Therapeutics, 2017;16:1224–1235.

[56] Kumar P, Renjitha J, Ashitha KT, et al. Antibacterial and antitumor evaluation of dihydronaphthalenone-indole hybrid analogs. Chem Biol Drug Pers. 2017;90:703–708.

[57] Patil SA, Patil SA, Patil R. Medicinal applications of (benz)imidazole-and indole-based macromolecules. Chem Biol Drug Des. 2017;89:639–649.

[58] Fan L-L, Liu W-Q, Xu H, et al. Anti human immunodeficiency virus-1 (HIV-1) agents 3. synthesis and in vitro anti-HIV-1 activity of some N-arylsulfonylindoles. Chem Cent J. 2009;57:797–800.

[59] Xu H, Wang Y-Y. Anti-human immunodeficiency virus-1 (HIV-1) agents 3. synthesis and in vitro anti-HIV-1 activity of some N-arylsulfonylindoles. Bioorg Med Chem Lett. 2010;20:7274–7277.

[60] Vera G, Lagos CF, Almendras S, et al. Extended N-arylsulfonylindoles as HIV-1 integrase inhibitors: a comparative study on rhodanines and related heteroaromatic compounds. J Med Chem. 2012;55:203–216.

[61] Song M-X, Zheng C-J, Deng X-Q, et al. Synthesis and biological evaluation of (Z)-3-(5-(3-benzyl-4-oxo-2-thioxothiazolidinylidenemethyl) furans as HIV-1 protease inhibitors. Bioorg Med Chem. 2012;20:7024–7028.

[62] Song M-X, Zheng C-J, Deng X-Q, et al. Synthesis and anti-inflammatory evaluation of rhodanine-based 5-aryloxy pyrazoles as HIV-1 protease inhibitors. Bioorg Med Chem. 2012;20:7024–7028.

[63] Zhang W, Li H, Li Y, et al. Synthesis and biological evaluation of 5-arylpyrazole derivatives bearing a rhodanine-3-acetic acid as potential antimalarial agents. Bioorg Med Chem. 2012;20:7024–7028.

[64] Song M-X, Zheng C-J, Deng X-Q, et al. Synthesis and antibacterial evaluation of rhodanine-based 5-arylpyrazole pyrazoles against selected methicillin resistant and quinolone-resistant Staphylococcus aureus (MRSA and QRSA). Bioorg Med Chem. 2013;60:376–385.

[65] Song M-X, Zheng C-J, Deng X-Q, et al. Synthesis and antibacterial activities of N-carboxymethyl rhodanines. Med Chem. 2014;4:441–448.

[66] Song M-X, Deng X-Q, Li Y-R, et al. Synthesis and biological evaluation of (E)-1-(substituted)-3-phenylprop-2-en-1-ones bearing rhodanines as potent anti-microbial agents. J Enz Inhibition Med Chem. 2014;29:647–653.

[67] Sudo K, Matsumoto Y, Matsushima M, et al. Novel hepatitis C virus protease inhibitors: thiazoline derivatives. Biochem Biophys Res Comm. 1997;238:643–647.

[68] Powers JP, Piper DE, Li Y, et al. SAR and mode of action of novel non-nucleoside inhibitors of hepatitis C NS5b RNA polymerase. J Med Chem. 2006;49:1034–1046.

[69] Long Y-Q, Jiang X-H, Dayam R, et al. Rational design and synthesis of novel dimeric diketoacid-containing inhibitors of HIV-1 integrase: implication for binding to two metal ions on the active site of integrase. J Med Chem. 2004;47:2561–2573.

[70] Katritzky AR, Tala SR, Lu H, et al. Design, synthesis, and structure – activity relationship of a novel series of 2-aryl 5-(4-oxo-3-phenylthiothiazolidinylidenemethyl) furans as HIV-1 entry inhibitors. J Med Chem. 2009;52:7631–7639.

[71] He XY, Zou P, Qiu J, et al. Design, synthesis and biological evaluation of 3-substituted 2, 5-dimethyl-N-(3-(1H-tetrazol-5-yl) phenyl) pyrroles as novel potential HIV-1 gp41 inhibitors. Bioorg Med Chem. 2011;19:6726–6734.

[72] He XY, Lu L, Qiu J, et al. Small molecule fusion inhibitors: design, synthesis and biological evaluation of (Z)-3-(5-(3-benzyl-4-oxo-2-thioxothiazolidinylidenemethyl)-(N-(3-carboxy-4-hydroxy) phenyl-2, 5-dimethylpyrroles and related derivatives targeting HIV-1 gp41. Bioorg Med Chem. 2013;21:7539–7548.

[73] Mendgen T, Steuer C, Klein CD. Privileged scaffolds or promiscuous binders: a comparative study on rhodanines and related heterocycles in medicinal chemistry. J Med Chem. 2012;55:743–753.

[74] Nitsche C, Schreier VN, Behnam MAM, et al. Thiazolidine–peptide hybrids as dengue virus protease inhibitors with antiviral activity in cell culture. J Med Chem. 2013;56:8389–8403.

[75] Baltes E, Gao F, Bibolet-Ruche F, et al. Hybrid origin of STLV in chimpanzees. Science. 2003;300:1713.

[76] Damond F, Worobey M, Campa P, et al. Identification of a highly divergent HIV type 2 and proposal for a change in HIV type 2 classification. AIDS Res Hum Retroviruses. 2004;20:666–672.

[77] Santiago ML, Range F, Keele BF, et al. Simian immunodeficiency virus infection in free-ranging sooty mangabeys (Cercocebus atys atys) from the Tai Forest, Cote d’Ivoire: implications for the origin of epidemic human immunodeficiency virus type 2. J Virol. 2005;79:12515–12527.

[78] Keele BF, Van Heuverswyn F, Li Y, et al. Chimpanzee reservoirs of pandemic and nonpandemic HIV-1. Science. 2006;313:523–526.

[79] Taylor M, Alonso-González M, Gómez B, et al. World health organization global health sector strategy on sexually transmitted infections: an evidence-to-action summary for Colombia. Rev Colomb Obstet Ginecol. 2017;68:193–201.

[80] Tintori C, Corradi V, Magnani M, et al. Targets looking for drugs: a multistep computational protocol for the development of structure-based pharmacophores and their applications for hit discovery. J Chem Inf Model. 2008;48:2166–2179.

[81] Rinaldi M, Tintori C, Franchi L, et al. A versatile and practical synthesis toward the development of novel HIV-1 integrase inhibitors. ChemMedChem 2011;6:343–352.

[82] Botta L, Macciari G, Calandro P, et al. One drug for two targets: biological evaluation of antiretroviral agents endowed with anti-proliferative activity. Bioorg Med Chem Lett. 2017;27:2502–2505.

[83] Michaud V, Bar-Magen T, Turgeon J, et al. The dual role of pharmacogenetics in HIV treatment: mutations and polymorphisms regulating antiretroviral drug resistance and disposition. Pharmacol Rev. 2012;64:803–833.

[84] Bajaj M, Suraamornkul S, Hardies LJ, et al. Effects of peroxisome proliferator-activated receptor (PPAR)-α and PPAR-γ agonists on glucose and lipid metabolism in patients with type 2 diabetes mellitus. Diabetologia 2007;50:1723–1731.

[85] Liebermann B, Lieberman DA, McFarland B, et al. Screening and surveillance for the early detection of colorectal cancer and adenomatous polyps. 2008: a joint guideline from the American Cancer Society, the US Multi-Society Task Force on Colorectal Cancer, and the American College of Radiology. CA: A Cancer J for Clinicians 2008;58:130–160.

[86] Yingchoncharooen P, Kalinowski DS, Richardson DR. Lipid-based drug delivery systems in cancer therapy: what is available and what is yet to come. Pharmacol Rev. 2016;68:701–787.

[87] Smith RA, Cokkinides V, Brawley OW. Cancer screening in the United States, 2009: a review of current American Cancer Society guidelines and issues in cancer screening. CA: A Cancer J for Clinicians 2009;59:27–41.

[88] Savory C. Targeted cancer therapy. Nature. 2004;432:294.

[89] Li Q, Xu W. Novel anticancer targets and drug discovery in post genetic age. Cmcca. 2005;5:53–63.
Chawla A, Kaur H, Chawla P, et al. A review on chemistry and synthesis and antiproliferative activity of thiazole analogs for melanoma. Bioorg Med Chem Lett. 2007;17:4113–4117.

Chandrappa S, Benaka Prasad SB, Vinaya K, et al. Synthesis and in vitro antiproliferative activity against human cancer cell lines of novel 5-(4-methyl-benzylidene)-thiazol-2, 4-diones. Invest New Drugs. 2008;26:437.

Havrylyuk D, Mosula L, Zimenkovsky B, et al. Synthesis and anti-cancer activity evaluation of 4-thiazolidinones containing benzo-thiazole moiety. Euro J Med Chem. 2010;45:5012–5021.

Pandey Y, Sharma PK, Kumar N, et al. Biological activities of thiazolidine-a review. Int J PharmTech Res. 2011;3:980–985.

Jain AK, Vaidya A, Ravichandran V, et al. Recent developments and biological activities of thiazolidinone derivatives: a review. Bioorg Med Chem. 2012;20:3378–3395.

Alegaon SG, Alagawadi KR. New thiazolidinedione-5-acetic acid amide derivatives: synthesis, characterization and investigation of antimicrobial and cytotoxic properties. Med Chem Res. 2012; 21:816–824.

Momose Y, Maekawa T, Yamano T, et al. Novel 5-substituted 2-, 4-thiazolidinedione and 2, 4-oxazolidinedione derivatives as insulin sensitizers with antidiabetic activities. J Med Chem. 2002;45: 1518–1534.

Sawthi N, Ramu Y, Subrahmanyam CV, et al. Synthesis, quantum mechanical calculation and biological evaluation of 5-(4-substituted aryl/hetero aryl methylidene)-1, 3-thiazolidine-2, 4-diones. Int. J. Pharm. Sci. 2012; 4:561–566.

Chawla A, Kaur H, Chawla P, et al. A review on chemistry and biological activities of thiazole derivatives. J. Global Trends in Pharma Sci. 2014;5:1641–1648.

Gupta A, Singh R, Sonar PK, et al. Novel 4-thiazolidinone derivatives as anti-infective agents: synthesis, characterization, and antimicrobial evaluation. Biochem Res Int. 2016;2016:1.

Knight SD, Adams ND, Burgess JL, et al. Discovery of GSK2126458, a highly potent inhibitor of P38K and the mammalian target of rapamycin. ACS Med Chem Lett. 2010;1:39–43.

Azzimomhammadhi K, Mobibi K, Ramazani A, et al. 2-Hchromene derivatives bearing thiazolidine-2,4-dione, rhodanine or hydantoin moieties as potential anticancer agents. Eur J Med Chem. 2013;59:15–22.

Moorthy BT, Ravi S, Srivastava M, et al. Novel rhodanine derivatives induce growth inhibition followed by apoptosis. Bioorg Med Chem Lett. 2010;20:6297–6301.

Meunier B. Hybrid molecules with a dual mode of action: dream or reality? Acc Chem Res. 2008;41:69–77.

Xu L, Vagner J, Josan J, et al. Enhanced targeting with heterobi-valent ligands. Mol Canc Therap. 2009;8:1535–7163. MCT-08-1183.

Ge X, Wakim B, Sem DS. Chemical proteomics-based drug design: target and antitarget fishing with a catechol – rhodanine privileged scaffold for NAD (P)H binding proteins. J Med Chem. 2008;51:4571–4580.

Tomasic T, Masic LP. Rhodanine as a privileged scaffold in drug discovery. Cmc. 2009;16:1596–1629.

Xu L-L, Zheng C-J, Sun L-P, et al. Synthesis of novel 1, 3-diaryl pyrazole derivatives bearing rhodanine-3-fatty acid moieties as potential antibacterial agents. Euro J Med Chem. 2012;48: 174–178.

Tejchman W, Korona-Glowniak I, Malm A, et al. Antibacterial properties of 5-substituted derivatives of rhodanine-3-carboxylic acids. Med Chem Res. 2017;26:1316–1324.

Krätky M, Vinsová J, Stolaríková J. Antimicrobial activity of rhodamine-3-acetic acid derivatives. Bioorg Med Chem. 2017;25: 1839–1845.

Subbedar DD, Shaihk MH, Shingate BB, et al. Quinolinedine-rhodamine conjugates: facile synthesis and biological evaluation. Euro J Med Chem. 2017;125:385–399.

Tomasic T, Masic LP. Chemistry and reactivity of rhodanes, Chap. 8.1. In: Brase S, editor. Privileged scaffolds in medicinal chemistry: design, synthesis, evaluation. Cambridge: Royal Society of Chemistry. 2015, p. 214.

Shafii N, Khoobi M, Amini M, et al. Synthesis and biological evaluation of 5-benzylidenenorhodamine-3-acetic acid derivatives as AChE and 15-LOX inhibitors. J Enz Inhib Med Chem. 2015;30: 389–395.

Krätky M, Štepánková S, Vorcáková K, et al. Synthesis and in vitro evaluation of novel rhodamine derivatives as potential cholesterolase inhibitors. Bioorg Chem. 2016;68:23–29.

Tanouchi T, Kawamura M, Ajima A, et al., Ono Pharmaceutical Co Ltd, assignee. Rhodamine derivatives, process for their preparation, and aldo reductase inhibitor containing the rhodamine derivatives as active ingredient. Google Patents, 1984.

Smith TK, Young BL, Denton H, et al. First small molecular inhibitors of T. brucei doliolophosphosphate mannosyl synthase (DPMS), a validated drug target in African sleeping sickness. Bioorg Med Chem Lett. 2009;19:1749–1752.

Brvar M, Perdih A, Hodnik V, et al. In silico discovery and bio-physical evaluation of novel 5-(2-hydroxybenzylidene) rhodanine derivatives of DNA gyrase B. Bioorg Med Chem. 2012;20: 2572–2580.

Tomasic T, Zidar N, Kovac A, et al. S-Benzylidenethiazolidin-4-ones as multitarget inhibitors of bacterial Mur ligases. ChemMedChem 2010;5:286–295.

Dolezel J, Hirsova P, Opletalova V, et al. Rhodanineacetic acid derivatives as potential drugs: preparation, hydrophobic properties and antifungal activity of (5-aryalkylidene-4-oxo-2-thioxo-1, 3-thiazolidin-3-yl) acetic acids. Molecules 2009;14:4197–4212.

Chen Z-H, Zheng C-J, Sun L-P, et al. Synthesis and in vitro biological evaluation of new polyanime conjugates as potential anticancer drugs. Eur J Med Chem. 2010;45:5739–5743.

Miao J, Zheng C-J, Sun L-P, et al. Synthesis and potential antibacterial activity of new rhodanine-3-acetic acid derivatives. Med Chem Res. 2013;22:4125–4132.

Alegaon SG, Alagawadi KR, Sonkusare PV, et al. Novel imidazo [2, 1-b][1, 3, 4] thiadiazole carrying rhodamine-3-acetic acid as potential antitubercurial agents. Bioorg Med Chem Lett. 2012;22: 1917–1921.

Krätky M, Vinsová J, Volková M, et al. Antimicrobial activity of sulfonamides containing 5-chloro-2-hydroxybenzaldehyde and 5-chloro-2-hydroxybenzoic acid scaffold. Euro J Med Chem. 2012; 50:433–440.

Krätky M, Volková M, Novotná E, et al. Synthesis and biological activity of new salicylanilide N, N-disubstituted carbamates and thiocarbamates. Bioorg Med Chem. 2014;22:4073–4082.

Krätky M, Bősz Z, Baranay Z, et al. Synthesis and in vitro biological evaluation of 2-(phenylcarbamoyl)phenyl 4-substituted benzoylos. Bioorg Med Chem. 2015;23:868–875.

Krätky M, Mandíková J, Trejtnar F, et al. Synthesis and antimicrobial activity of sulphamethoxazole-based ureas and imidazolidine-2-5-triones. Chem Pap. 2015;4:1108–1117.

Krätky M, Vinsová J. Salicylanilide N-monosubstituted carbamates: synthesis and in vitro antimicrobial activity. Bioorg Med Chem. 2016;24:1322–1330.

Lešyk R, Zimenkovsky B. 4-Thiazolidiones: centenarian history, current status and perspectives for modern organic and medicinal chemistry. Civ. 2004;8:1547–1577.

Jain VS, Vora DK, Ramaa C. Thiazolizidine-2, 4-diones: progression towards multifarious applications. Bioorg Med Chem. 2013;21: 1599–1620.

Stojanovic M, Dzambski Z, Bondzic B, et al. 4-Oxothiazolidines with exocyclic C=C double bond (s): synthesis, structure, reactions and biological activity. Civ. 2014;18:1108–1148.

Tripathi AC, Gupta SJ, Fatima GN, et al. 4-Thiazolidinones: the advances continue. Eur J Med Chem. 2014;72:52–77.
Ayati A, Emami S, Asadipour A, et al. Recent applications of 1, 3-thiazole core structure in the identification of new lead compounds and drug discovery. Euro J Med Chem. 2015;97:699–718.

Kaminskyy D, Kryshchyshyn A, Lesyk R. S-Ene-4-thiazolidinones—An efficient tool in medicinal chemistry. Euro J Med Chem. 2017;140:542–594.

Lesyk RB, Zimenkovsky BS, Kaminskyy DV, et al. Thiazolidinone motif in anticancer drug discovery. Experience of DH LNMU medicinal chemistry scientific group. Biopolym Cell. 2011;27:107–117.

Tomasić T, Peterlin Masic L. Rhodanine as a scaffold in drug discovery: a critical review of its biological activities and mechanisms of target modulation. Exp Op Drug Disc. 2012;7:549–560.

Morphy R, Rankovic Z. Designed multiple ligands. An emerging erocyclic chemistry. Elsevier; 1980. p. 83.

Newkome GR, Nayak A. 4-Thiazolidinones. In: Advances in het-

Amani AM, Hashemi SA, Mousavi SM, et al., Electric field induced alignment of carbon nanotubes: methodology and outcomes. In: Carbon nanotubes—recent progress. IntechOpen.

Shackleton L. Rhodanine as a scaffold in drug discovery: a critical review of its biological activities and mechanisms of target modulation. Exp Op Drug Disc. 2012;7:549–560.

Faye AL, Siva SR, Dutta B, et al. Rational design of thiazolidine derivatives as potent anti-HIV agents. J Pharm Pharm Sci. 2018;20:415–427.

Hashemi SA, Mousavi SM, Faghihi R, et al. Lead oxide-decorated graphene oxide/epoxy composite towards X-Ray radiation shielding. Rad Phys Chem. 2018;146:77–85.

Mousavi SM, Hashemi SA, Amani AM, et al. Polyethylene terephthalate/acryl butadiene styrene copolymer incorporated with oak shell, potassium sorbate and egg shell nanoparticles for food packaging applications: control of bacteria growth, physical and mechanical properties. Polym from Renewable Res. 2017;8:177–196.

Mousavi SM, Hashemi SA, Mousavi SM, et al. Novel thiazole derivatives. J Pharm Pharm Sci. 2018;20:415–427.

Ozen C, Unlusoy MC, Aliary N, et al. Thiazolidinedione or rhoda-

Ono M, Hayashi S, Matsumura K, et al. Rhodamine and thiohy-

dantoin derivatives for detecting tau pathology in Alzheimer’s brains. ACS Chem Neurosci. 2011;12:693–704.

Hajibabaei K. 2-Thioxothiazolidin-4-one (Rhodanine). Synlett 2011;25:2083–2084.

Bulic B, Pickhardt M, Khlistunova I, et al. Rhodanine-based tau aggregation inhibitors in cell models of tauopathy. Angew Chem. 2007;119:9375–9379.

Chadhra N, Bahia MS, Kaur M, et al. Rhodanine-2, 4-dione deriv-

Zeiger E, Anderson B, Haworth S, et al. Salmonella mutagenicity tests: III. Results from the testing of 255 chemicals. Environ Mutagen. 1987;9:61–109.

Song Y, Connor DT, Sercel AD, et al. Synthesis, structure — activity relationship, and in vivo evaluations of substituted Di tert-butyrophens as a novel class of potent, selective, and orally active cyclooxygenase-2 inhibitors. 2. 1, 3, 4-and 1, 2. 4-thiadia-

ezele series. J Med Chem. 2002;45:1161–1169.

El-Miligy MMM, Hazaa AA, El-Messmary H, et al. New hybrid molecules combining benzothephenone or benzofuran with rho-

danine as dual COX-1/2 and 5-LOX inhibitors: synthesis, bio-

cological evaluation and docking study. Bioorg Chem. 2017;72:102–115.

Mousavi SM, Arjmand O, Hashemi SA, et al. Modification of the epoxy resin mechanical and thermal properties with silicon acryl-

ete and montmorillonite nanoparticles. Polymers from Renewable Res. 2016;7:101–114.

Mousavi SM, Hashemi SA, Jahandideh S, et al. Modification of phenol novolac epoxy resin and unsaturated polyester using sasobit and silica nanoparticles. Polymers from Renewable Resources 2017;8:117–132.

Hashemi SA, Mousavi SM. Effect of bubble based degradation on the physical properties of single wall carbon nanotube/epoxy resin composite and new approach in bubbles reduction. Comp Part A: Appl Sci Manufacturing. 2016;90:457–469.

Hashemi SA, Mousavi SM, Arjmand M, et al. Electrified single-walled carbon nanotube/epoxy nanocomposite via vacuum shock technique: effect of alignment on electrical conductivity and electromagnetic interference shielding. Polym Compos. 2018;39;E1139–E1148.

Goudarzian N, Hashemi SA, Mirjalili M. Unsaturated polyester resins modified with cresol novolac epoxy and silica nanoparticles: processing and mechanical properties. Int J Chem Petroli Sci 2016;5:13–26.

Mousavi SM, Hashemi SA, Amani AM, et al. Polyethylene terephthalate/acryl butadiene styrene copolymer incorporated with oak shell, potassium sorbate and egg shell nanoparticles for food packaging applications: control of bacteria growth, physical and mechanical properties. Polym from Renewable Res. 2017;8:177–196.

Mousavi SM, Hashemi SA, Mousavi SM, et al. Improved morphology and properties of nanocomposites, linear low density polyethyl-

enone heterocycles. Chem Res Toxicol. 2015;28:2019–2033.

Tintori C, Iovenitti G, Ceresola ER, et al. Rhodanine derivatives as antioxidant and antitumoral agents. Eur J Med Chem. 2005;40:1161–1169.

Hashemi SA, Mousavi SM, Faghihi R, et al. Lead oxide-decorated graphene oxide/epoxy composite towards X-Ray radiation shielding. Rad Phys Chem. 2018;146:77–85.

Mousavi SM, Aghili A, Hashemi SA, et al. Improved morphology and properties of nanocomposites, linear low density polyethyl-
enone heterocycles. Chem Res Toxicol. 2015;28:2019–2033.

Chadhra N, Bahia MS, Kaur M, et al. Rhazoline-2, 4-dione deriv-

Zeiger E, Anderson B, Haworth S, et al. Salmonella mutagenicity tests: III. Results from the testing of 255 chemicals. Environ Mutagen. 1987;9:61–109.

Song Y, Connor DT, Sercel AD, et al. Synthesis, structure — activity relationship, and in vivo evaluations of substituted Di tert-butyrophens as a novel class of potent, selective, and orally active cyclooxygenase-2 inhibitors. 2. 1, 3, 4-and 1, 2. 4-thiadiazole series. J Med Chem. 1999;42:1161–1169.

El-Miligy MMM, Hazaa AA, El-Messmary H, et al. New hybrid molecules combining benzothephenone or benzofuran with rho-

danine as dual COX-1/2 and 5-LOX inhibitors: synthesis, bio-

cological evaluation and docking study. Bioorg Chem. 2017;72:102–115.