Terbium Oxalatophosphonate as Efficient Multiresponsive Luminescent Sensors for Chromate Anions and Tryptophan Molecules

Cheng-Qi Jiao,† Meng Sun,† Fang Liu,† Ya-Nan Zhou,† Yan-Yu Zhu,† Zhen-Gang Sun,*,† Da-Peng Dong,‡ and Jing Li‡

†School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
‡School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600, P. R. China

Abstract: A stable 2D terbium oxalatophosphonate with green luminescence, namely, [Tb2(H3L)(C2O4)3(H2O)]·2H2O (1), has been hydrothermally obtained using (4-carboxypiperidyl)-N-methylenephosphonic acid (H3L) and oxalate ligand. The luminescent investigation indicates that the emission behavior of compound 1 shows high water and pH stabilities. It can be applied as a multiresponsive luminescent probe with high selectivity, high sensitivity, recycling capability, and fast sensing of CrO4

INTRODUCTION

In recent years, luminescent metal−organic frameworks (MOFs) as a new type of sensor have attracted a great deal of interest because of their distinct advantages such as intense and visible emission by the naked eye, simplicity in operation, and high sensitivity and selectivity. A variety of luminescent MOFs have been explored for sensing of different cations, temperature, organic molecules, and nitroaromatic explosives.

CrO4

and Cr2O7

anions serve as oxidants, playing a crucial role in industry. Meanwhile, they are also toxic and easily soluble in water. Long-term exposure to these substances can result in pulmonary congestion, skin allergy, and several water-borne diseases. Therefore, it is very important and urgently required to develop luminescent sensors for CrO4

and Cr2O7

anions with high selectivity and sensitivity. However, some reported luminescent MOFs for detecting those ions are in nonaqueous solvents. The use of an organic solvent is disadvantageous for health and environmental protection. In addition, as there are more than one type of pollutant ions in waste water, high selective sensing is very important. However, the corresponding reports are rare. Thus, it remains a challenge to construct luminescent MOFs as probes to detect CrO4

and Cr2O7

anions in water, simultaneously, especially for excluding the interference of other mixed anions.

As is known, as the building blocks of proteins and enzymes, amino acids play vital roles in food, chemical, and pharmaceutical industries. Among them, tryptophan (Trp) is an essential amino acid and plays an important part in various physiological processes such as protein biosynthesis, animal growth, and plant development. An abnormal level of Trp is considered as a strong indicator for some diseases, including pellagra, delusions, chronic hepatitis, and parkinsonism. At present, the most used analytical strategies to detect Trp are based on capillary electrophoresis, gas chromatography, high-performance liquid chromatography, UV−vis spectrophotometry, and electrochemical methods. However, there are many drawbacks in these methods, such as high costs, complicated operation, and poor portability, which limit their widespread applications. Therefore, the development of cheap and easy detective methods for rapid and sensitive detection of Trp is still more imminently needed. Fortunately, luminescent MOF sensors can provide an alternative to solve these problems. However, compared to the ones for sensing ions and molecules, only a few investigations were reported for detecting Trp based on luminescent MOFs and coordination polymers, which did not achieve the visible sensor by the naked eye. Hence, it is very important and urgent from the point of view of security and practical considerations to exploit the luminescent sensors for Trp.

In order to achieve the aims, we focus on the construction of the lanthanide luminescent MOFs (Ln-MOFs). Compared with transition-metal-based luminescent MOFs, Ln-MOFs...
have been regarded as very promising luminescent-sensing materials because of their distinct optical advantages, such as large Stokes shift, high color purity, relatively long luminescent lifetimes, visible and very bright luminescent colors, especially for Eu- and Tb-MOFs.45–49 In previous reports, some Ln-MOFs have been made for the luminescent sensor; however, very few Ln-MOFs could be observed to show multiresponsive luminescent sensing for different analytes.32,33,50,51 In the assembly of structures and functions of Ln-MOFs, the choice of the organic ligand is very vital. Traditionally, organic carboxylic acid was mainly selected as the ligand to construct Ln-MOFs.45–49 Recently, the phosphonate ligands, especially, attaching additional functional groups to the phosphonic acid (such as $-\text{NH}_2$, $-\text{OH}$, $-\text{COOH}$, etc.), can also provide access to obtain Ln-MOFs. Compared with carboxylates, the introduction of the phosphonate groups can yield many different structural topologies and a fascinating luminescent property.52,53 Moreover, the uncoordinated functional groups can also serve as the recognition site to achieve luminescent detection. More importantly, metal phosphonates are generally prepared in hydrothermal conditions. Therefore, the as-synthesized compounds can exhibit high thermal and chemical stabilities,54 providing a chance to detect the analytes in the aqueous system. For example, several Cd/Pb phosphonates have been investigated in the detection of metal ions, anions, and amino acids by our group.45,55,56 However, these sensors cannot achieve visible sensors because of the near UV luminescent property. The introduction of luminescent lanthanide ions can solve this problem. Fu et al. prepared a luminescent terbium phosphonate, which achieved a rapid and recyclable sensing of CrO$_4^{2-}$/Cr$_2$O$_7^{2-}$ anions and Trp. Therefore, it is still a challenge to achieve multiresponsive and visible luminescent sensing for different ions and molecules based on these materials. Meanwhile, the preparation and characterization of lanthanide phosphonates is still difficult because these materials generally exhibit high insolubility and poor crystallinity.57,59 To resolve this problem, two types of synthetic strategies were employed: (1) modifying the phosphonic acid ligand with other functional groups can improve the solubility and crystallinity of these materials;59,60 (2) Introducing a second metal linker such as an organic carboxylic acid is also one of the effective approaches.61 It can not only solve the solubility and crystallinity problems but also enhance luminescent intensity and lifetime of the synthesized lanthanide phosphonates through the so-called “antenna effect”. By using these methods, more and more lanthanide phosphonates with luminescent property have been successfully obtained.57,59,60,62 As an expansion of our work, by using H$_2$O$_2$,PCH$_2$–NC$_3$H$_7$–COOH (H$_3$L) as the phosphonate ligand and oxalate (H$_2$C$_2$O$_4$) as the second ligand, we successfully obtained a 2D terbium oxalatophosphonate, namely, [Tb$_2$(H$_3$L)$_2$(C$_2$O$_4$)$_3$(H$_2$O)$_2$]·2H$_2$O (1). It shows high selective, visible, and recyclable sensing of CrO$_4^{2-}$/Cr$_2$O$_7^{2-}$ anions and Trp. Meanwhile, the probable mechanisms for the quenching behavior are also discussed.

RESULTS AND DISCUSSION

Crystal Structure of 1

X-ray crystallographic analysis indicated that compound 1 crystallized in a monoclinic space group $P2_1(1)/n$ (Table S1). The crystal structure consists of two TbIII ions, one H$_2$L ligand, three C$_2$O$_4^{2-}$ anions, four coordinated water molecules, and two lattice water molecules (Figure 1a). The TbIII ion adopts a nine-coordinated geometry with six oxygen atoms (O6, O7, O10, O11, O14, and O15) from three C$_2$O$_4^{2-}$ anions, one phosphate oxygen atom (O2) from one H$_2$L ligand, and two coordinated water molecules (O18 and O19). The TbII ion employs an eight-coordinated environment, consisting of six oxygen atoms (O8A, O9A, O12B, O13B, O16, and O17) from three C$_2$O$_4^{2-}$ anions and two coordinated water molecules (O20 and O21).

![Figure 1](image-url)
Bond distances of Tb–O are in the range of 2.260(4)–2.616(4) Å, in accordance with those reported for other TbIII oxalatophosphonates (Table S2).63 Using the program SHAPE 2.0,64,65 the continuous shape measures (CSHMs) of the Tb centers relative to the ideal spherical capped square antiprism for Tb1 and triangular dodecahedron for Tb2 are calculated to be 0.778 and 0.874, respectively. All C2O42− anions employ the same coordination mode, chelating to two TbIII ions forming two stable five-membered rings (Tb–O–C–C–O). On the basis of charge balances, the phosphonate oxygen atom (O1), the nitrogen atom (N1), and the carboxyl oxygen atom (O5) of the H3L ligand are protonated.

In compound 1, the interconnection of TbIII ions via cheating C2O42− anions to form a 2D layer structure (Figure 1b). The carboxyl groups of the H3L ligand are uncoordinated, distributing on the two sides of the layer (Figure S1). A 24-atom window is formed, including six TbIII ions, twelve O atoms, and six C atoms, and the approximate dimension is 5.97 Å (O11–O12) × 9.02 Å (O14–O15) (Figure 1c). From a topological perspective, each TbIII ion can be regarded as a three-connected node; thus, the 2D layer structure can be simplified as a unidonal three-connected network with the point Schlüff symbol of {63} (Figure 1d).

Luminescence Property. The luminescence spectrum of compound 1 was investigated in the solid state. First, the purity of bulk samples of compound 1 was verified by X-ray powder diffraction (Figure S2). Second, the UV–vis absorption spectrum of compound 1 consists of a broad band between 200 and 600 nm with a maximum absorption of 256 nm (Figure S3). The broad band may be assigned to the synergetic absorption strongly depends on the crystal field of the host matrix because of the low shielding of the 5d orbital.66 On the basis of the UV–vis absorption spectrum of compound 1, a 254 nm light was selected to induce the luminescent emission. Compound 1 shows four emission peaks at 491, 547, 587, and 623 nm, contributing to the 1D4f → 7Fj (J = 6, 5, 4, 3) transitions of the TbIII ion (Figure 2). Among them, the 1D4f → 7F5 transition is the strongest, which is assigned to magnetic-dipole-induced transitions. The room temperature lifetime of the TbIII ion in the 1D4f → 7Fj transition is measured to be 0.85 ms (Figure S4). Compound 1 displays strong green luminescence under UV irradiation of 254 nm (in the inset of Figure 2), which is visible by the naked eye. The strong visible emission provides the possibility for compound 1 acting as a luminescent sensor.

Thermal and Chemical Stabilities. Considering practical applications, the physical and chemical stabilities of compound 1 were investigated. First, the thermogravimetric analysis (TGA) indicates that all water molecules are removed upon heating to 167 °C; the resulting desolvated structure is stable up to 234 °C (Figure S5). Second, we examined the aqueous and pH stabilities of compound 1 in water. The luminescent intensities of this sample have almost no change after soaking in the water solution for 10 days or immersing into water solutions with different pH values from 3 to 13 for 24 h (Figures 3 and S6). In addition, powder X-ray diffraction (PXRD) patterns of the different pH-treated samples (pH = 3–13) completely overlap that of the simulated one (Figure S7), indicating that the framework is still retentive in a broad range of pH values. The results of thermal, luminescent, pH, and water stabilities indicate that compound 1 is stable and provides a suitable platform for further luminescent sensing.

Sensing of Anions. Compound 1 was first examined for the potential application of detecting anions. As shown in Figures 4a and S8, results indicate that CrO42− and Cr2O72− anions afford significant luminescence quenching effect compared with other anions. It reveals that most suspensions display green color, except for CrO42− and Cr2O72− suspensions that show dark color upon excitation at 254 nm (Figure 4b). Meanwhile, anti-interference experiments were carried out to verify the high selectivity for detection of CrO42− and Cr2O72− anions (Figure 4c). First, the mixture of anion suspensions except CrO42− and Cr2O72− anions was prepared, which shows green luminescence. Once CrO42− or Cr2O72− anions were added into the above suspension of compound 1 with other anions, the luminescence of suspension was significantly quenched from green to dark. The above results indicate that compound 1 can be regarded as a selective and sensitive luminescent sensor for detecting the CrO42− and Cr2O72− anions.

The sensing sensitivities of compound 1 toward CrO42− and Cr2O72− anions were measured by a series of titration experiments. As shown in Figure 5a,c, the luminescence intensities are gradually quenched, and the quenching efficiency can reach 78.9% for CrO42− and 82.7% for Cr2O72− anions as the concentration increases to 4.4 × 10−4 M for CrO42− and 3.3 × 10−4 M for Cr2O72− anions. To further investigate the relationship between the quenching efficiency and CrO42− or Cr2O72− concentration, the quenching curve was analyzed by the Stern–Volmer equation

$$I_0/I = K_{sv}[C] + 1 (I_0 and I are the luminescence intensities before and after the addition of CrO42− or Cr2O72− anions, respectively; [C] represents the molar concentration of CrO42− or Cr2O72− anions; K_{sv} is the quenching constant).$$

As shown in Figure 5b,d, the curves of Stern–Volmer display a good linear relationship at a low concentration, and the Ksv values are fitted to be 3.63 × 1010 M−1 for CrO42− and 7.78 × 109 M−1 for Cr2O72− anions. The LODs are calculated to be 3.7 μM for CrO42− and 4.2 μM for Cr2O72− anions (Figure S9), which are calculated using the equation: LOD = 3δ/s (δ is the standard deviation from 10 blank measurements and s is the slope of the calibration curve).15,16,51 Compared with the reported MOFs sensors for Cr3+ anions, this LOD is comparable and even lower (Table S3).13–17,32–36 Furthermore, the LODs are lower, comparing with the largest standard of Cr3+ in wastewater of 10 μM, defined by an integrated wastewater.
As is known, the luminescent sensors are not widely used in our actual life mainly because of their non-recoverable performance and high cost; thus, recyclable experiments were performed. After quenching, the luminescence intensity of compound 1 can recover by simply washing with water several times (Figure S10). As shown in Figure S11, the luminescence intensity of each recycle remains basically unchanged. Furthermore, the time of luminescence discharge standard of China. As is known, the luminescent sensors are not widely used in our actual life mainly because of their non-recoverable performance and high cost; thus, recyclable experiments were performed. After quenching, the luminescence intensity of compound 1 can recover by simply washing with water several times (Figure S10). As shown in Figure S11, the luminescence intensity of each recycle remains basically unchanged. Furthermore, the time of luminescence discharge standard of China. As is known, the luminescent sensors are not widely used in our actual life mainly because of their non-recoverable performance and high cost; thus, recyclable experiments were performed. After quenching, the luminescence intensity of compound 1 can recover by simply washing with water several times (Figure S10). As shown in Figure S11, the luminescence intensity of each recycle remains basically unchanged. Furthermore, the time of luminescence discharge standard of China. As is known, the luminescent sensors are not widely used in our actual life mainly because of their non-recoverable performance and high cost; thus, recyclable experiments were performed. After quenching, the luminescence intensity of compound 1 can recover by simply washing with water several times (Figure S10). As shown in Figure S11, the luminescence intensity of each recycle remains basically unchanged. Furthermore, the time of luminescence discharge standard of China.
intensity reaching the minimum value is estimated to be within 10 s with the addition of CrO$_4^{2-}$ or Cr$_2$O$_7^{2-}$ anions (Figure S12), which is obviously shorter than those of previously reported compounds (Table S3). The results indicate that compound 1 can realize the fast and recyclable luminescent sensor for detecting CrO$_4^{2-}$ and Cr$_2$O$_7^{2-}$ anions.

The mechanisms of detecting CrO$_4^{2-}$ and Cr$_2$O$_7^{2-}$ anions were also explored. PXRD patterns of compound 1 treated with different anions completely overlap those of the simulated one, ruling out the mechanism of collapse of the crystal structure (Figure S13). The solid particles of compound 1 with chromate anions were analyzed by inductively coupled plasma (ICP). The ICP results verify that the chromate anions in solution cannot be fixed into the channels of compound 1 (Table S4). In addition, the Cr peaks have not been observed by energy-dispersive X-ray spectroscopy of the sample treated with the chromate anion aqueous solution, which also further identifies that chromate anions do not combine with compound 1 (Figure S14). On the basis of these results, there are no direct interactions between the chromate anions and compound 1, which is not the primary factor in fluorescence quenching. The UV−vis absorption spectra of compound 1 and anions are shown in Figure S15. It is obvious that the absorption bands of CrO$_4^{2-}$ and Cr$_2$O$_7^{2-}$ anions are partly overlapped by the absorption band of compound 1; however, other anions have no obvious overlaps in the absorption range. Thus, CrO$_4^{2-}$ and Cr$_2$O$_7^{2-}$ anions can absorb the excitation energy and then hinder the absorption of compound 1, resulting in the decrease of the luminescence intensity. Therefore, the probable mechanisms for the quenching behavior can be mainly defined to the competitive absorption of excitation energy between compound 1 and CrO$_4^{2-}$ and Cr$_2$O$_7^{2-}$ anions, which accords with the previously reported compounds that sensing of the CrO$_4^{2-}$ and Cr$_2$O$_7^{2-}$ anions.

Sensing of Amino Acids. To further explore the potential application of compound 1 for detecting the amino acid molecules, the luminescence spectra were recorded with the addition of 20 different kinds of amino acids. As shown in Figures 6a and S16, different amino acids exhibit different quenching efficiencies toward the intensity of compound 1. Among them, Trp has a significant quenching effect. As shown in Figure 6b, the suspension with Trp displays an evident blue color, but the suspensions with other amino acids show bright green color upon excitation at 254 nm. Meanwhile, anti-interference experiments further prove that compound 1 has good selectivity for detecting Trp even in the presence of other amino acids (Figure 6c). The luminescence intensity is significantly quenched with the addition of Trp, which indicates that compound 1 can serve as a selective and sensitive luminescent probe for detecting Trp.

To check the selective sensing behavior of compound 1 toward Trp, titration experiments were performed. As anticipated, the luminescence intensity gradually decreases with increasing concentration of Trp (Figure 6d). The quenching efficiency reaches 95.4% with the concentration of Trp increasing to 2.5 × 10$^{-3}$ M. At a low concentration, the plot of Stern−Volmer shows a good line relationship, and the K_q is calculated to be 3.86 × 103 M$^{-1}$ (Figure 6e). The LOD value is estimated to be 25.2 μM (Figure S17). In addition, the luminescence intensity of each recycle can be recovered, indicating that it is a recyclable luminescent sensor for Trp (Figures S18 and S19). Meanwhile, the luminescence can also reach the most quenching efficiency within 10 s with the addition of Trp (Figure S20). To the best of our knowledge, compound 1 is the first metal phosphonate that can be used for the visible, fast, and recyclable luminescent probe for sensing Trp.

To date, the reasons for luminescent quenching caused by Trp may be due to three approaches: (1) weak intermolecular interactions (hydrogen bonds and/or π−π interactions); (2) chemical reaction between Trp and the parent compound; (3) resonance energy transfer. In compound 1, the carboxyl oxygen atom of the H$_2$L ligand is not coordinated, making it possible to form intermolecular hydrogen bonds between compound 1 and Trp. However, all of the amino acid molecules have the same access to form hydrogen bonds with the uncoordinated carboxyl groups; thus, it is difficult to conclude whether the hydrogen bond interaction is the main reason for the luminescence quenching. In addition, there is no
π−π interaction site in compound 1; the mechanism of π−π interactions can be ruled out. IR spectra of compound 1 have no changes before and after being immersed in Trp solution, indicating no chemical reaction between Trp and compound 1 (Figure S21). The UV−vis absorption spectra of compound 1 and amino acids are shown in Figure S22. Lys, Tyr, and Trp all show a wide absorption band in the absorption range of compound 1. Among them, Trp has the highest absorption intensity; thus, it can adsorb the most excitation energy and results in the strongest luminescence quenching. According to the above discussion, it can be speculated that competitive adsorption of excitation energy between compound 1 and Trp should be the main reason for the luminescence quenching.

■ CONCLUSIONS

In summary, a stable 2D terbium oxalatophosphonate with green emission has been prepared via hydrothermal reaction. This compound can be regarded as a high selectivity and sensitivity luminescent sensor for detecting the CrO₄²⁻, CrO₂⁻² ions and Trp through the luminescence quenching effect. Further study and speculation of the mechanism indicate that competitive adsorption of excitation energy between compound 1 and the analytes can be the main reason for the luminescence quenching. To the best of our knowledge, it is first observed that compound 1 can be used for the fast and recyclable luminescent probe for detecting Trp by the naked eye in metal phosphonates. This work has confirmed that luminescent metal phosphonates can be rationally designed to achieve multiresponsive luminescent sensors for detecting different ions and biomolecules.

■ EXPERIMENTAL SECTION

Materials and General Methods. The H₂O,PCH₃−
NC₃H₆−COOH (H₃L) was prepared according to a method described previously.⁶³ All other chemical reagents were obtained from commercial sources and directly used. The contents of C, H, and N were measured by employing a PE-2400 elemental analyzer. Contents of Tb and P were analyzed using an ICP atomic absorption spectrometer. IR spectra were measured on a Bruker AXS Smart APEX II CCD X-diﬀractometer equipped with graphite monochromated Mo Kα radiation (λ = 0.71073 Å) at 293 ± 2 K. An empirical absorption correction was applied using the SADAB program. The structure was resolved by direct methods and refined by full matrix least-squares fitting on F² by using SHELXS-2014.⁶⁹ All non-hydrogen atoms were refined anisotropically. The hydrogen atoms of organic ligands were located anisotropically. The hydrogen atoms for the solvent water molecules excepting O1W were disordered, which were split with partial occupancy. Crystal data and structure refinements of compound 1 are summarized in Table S1. Bond distances and angles of compound 1 are listed in Table S2.

■ ASSOCIATED CONTENT

 Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsomega.8b02486.

(CIF) Additional crystal structures, IR spectra, TG curves, PXRD curves, UV-vis spectra, and emission spectra (PDF)

Accession Codes

CCDC 1503486 contains the supplementary crystallographic data for this paper.

■ AUTHOR INFORMATION

Corresponding Author

E-mail: szg188@163.com.
This work was supported by the National Natural Science Foundation of China (grant no. 21371085).

ACKNOWLEDGMENTS

The authors declare no competing financial interest.

REFERENCES

(1) Chen, B.; Xiang, S.; Qian, G. Metal-Organic Frameworks with Functional Pores for Recognition of Small Molecules. Acc. Chem. Res. 2010, 43, 1115–1124.

(2) Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Metal-Organic Framework Materials as Chemical Sensors. Chem. Rev. 2012, 112, 1105–1125.

(3) Cui, Y.; Yue, Y.; Qian, G.; Chen, B. Luminescent Functional Metal-Organic Frameworks. Chem. Rev. 2012, 112, 1126–1162.

(4) Yi, F.-Y.; Chen, D.; Wu, M.-K.; Han, L.; Jiang, H.-L. Chemical Sensors Based on Metal–Organic Frameworks. ChemPlusChem 2016, 81, 675–690.

(5) Lustig, W. P.; Mukherjee, S.; Rudd, N. D.; Desai, A. V.; Li, J.; Ghosh, S. K. Metal–organic frameworks: functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 2017, 46, 3242–3285.

(6) Rudd, N. D.; Wang, H.; Fuentes-Fernandez, E. M. A.; Teat, S. J.; Chen, F.; Hall, G.; Chabal, Y. J.; Li, J. Highly Efficient Luminescent Metal–Organic Framework for the Simultaneous Detection and Removal of Heavy Metals from Water. ACS Appl. Mater. Interfaces 2016, 8, 30294–30303.

(7) Xing, K.; Fan, R.; Wang, J.; Zhang, S.; Feng, K.; Du, X.; Song, Y.; Wang, P.; Yang, Y. Highly Stable and Regenerative Metal–Organic Framework Designed by Multiwalled Divider Installation Strategy for Detection of Co(II) Ions and Organic Aromatics in Water. ACS Appl. Mater. Interfaces 2017, 9, 19881–19893.

(8) An, J.; Shade, C. M.; Chengelis-Czegan, D. A.; Petoud, S.; Rossi, N. L. Zinc-Adeninate Metal–Organic Framework for Aqueous Encapsulation and Sensitization of Near-infrared and Visible Emitting Lanthanide Cations. J. Am. Chem. Soc. 2011, 133, 1220–1223.

(9) Ye, J.; Bogale, R. F.; Shi, Y.; Chen, Y.; Liu, X.; Zhang, S.; Yang, Y.; Zhao, J.; Ning, G. A Water-Stable Dual-Channel Luminescence Sensor for UO22+ Ions Based on an Anionic Terbium(III) Metal–Organic Framework. Chem.—Eur. J. 2017, 23, 7657–7662.

(10) Das, A.; Biswas, S. A multi-responsive carbazole-functionalized Zr(IV)-based metal-organic framework for selective sensing of Fe(III), cyanide and p-nitrophenol. Sens. Actuators, B 2017, 250, 121–131.

(11) Wong, K.-L.; Law, G.-L.; Yang, Y.-Y.; Wong, W.-T. A Highly Porous Luminescent Terbium–Organic Framework for Reversible Anion Sensing. Adv. Mater. 2006, 18, 1051–1054.

(12) Chen, B.; Wang, L.; Zapata, F.; Qian, G.; Lobkovsky, E. B. A Luminescent Microporous Metal–Organic Framework for the Recognition and Sensing of Anions. J. Am. Chem. Soc. 2008, 130, 6718–6719.

(13) Yi, F.-Y.; Li, J.-P.; Wu, D.; Sun, Z.-M. A Series of Multifunctional Metal–Organic Frameworks Showing Excellent Luminescent Sensing, Sensitization, and Adsorbent Abilities. Chem.—Eur. J. 2015, 21, 11475–11482.

(14) Parmar, B.; Rachuri, Y.; Bisht, K. K.; Laiya, R.; Suresh, E. Mechanochemical and Conventional Synthesis of Zn(II)/Cd(II) Luminescent Coordination Polymers: Dual Sensing Probe for Selective Detection of Chromate Anions and TNP in Aqueous Phase. Inorg. Chem. 2017, 56, 2627–2638.

(15) Li, G.-P.; Liu, G.; Li, Y.-Z.; Hou, L.; Wang, Y.-Y.; Zhu, Z. Uncommon Pyrazolyl-Carboxyl Bifunctional Ligand-Based Microporous Lanthanide Systems: Sorption and Luminescent Sensing Properties. Inorg. Chem. 2016, 55, 3952–3959.

(16) Liu, J.; Ji, G.; Xiao, J.; Liu, Z. Ultrastable 1D Europium Complex for Simultaneous and Quantitative Sensing of Cr(III) and Cr(VI) Ions in Aqueous Solution with High Selectivity and Sensitivity. Inorg. Chem. 2017, 56, 4197–4205.

(17) Liu, Y.; Zhang, X.; Chen, W.; Shi, W.; Cheng, P. Three Cadmium Coordination Polymers with Carboxylate and Pyridine Mixed Ligands: Luminescent Sensors for Fe(III) and Cr(VI) Ions in an Aqueous Medium. Inorg. Chem. 2017, 56, 11768–11778.

(18) Cui, Y.; Xu, H.; Yue, Y.; Guo, Z.; Yu, J.; Chen, Z.; Gao, J.; Yang, Y.; Qian, G.; Chen, B. A Luminescent Mixed-Lanthanide Metal–Organic Framework Thermometer. J. Am. Chem. Soc. 2012, 134, 3979–3982.

(19) Wang, L.; Fan, G.; Xu, X.; Chen, D.; Wang, L.; Shi, W.; Cheng, P. Detection of polychlorinated benzenes (persistent organic pollutants) by a luminescent sensor based on a lanthanide metal–organic framework. J. Mater. Chem. A 2017, 5, 5541–5549.

(20) Shanmugaraju, S.; Babadie, C.; Byrne, K.; Savyasachi, A. J.; Umesh, Y.; Schmidt, M.; Kitchen, J. A.; Gunnlaugsson, T. A supramolecular Tröger’s base derived coordination zinc polymer for fluorescent sensing of phenolic-nitroaromatic explosives in water. Chem. Sci. 2017, 8, 1535–1546.

(21) Liu, X.-J.; Zhang, Y.-H.; Chang, Z.; Li, A.-L.; Tian, D.; Yao, Z.-Q.; Jia, Y.-Y.; Bu, X.-H. A Water-Stable Metal–Organic Framework with a Double-Helical Structure for Fluorescent Sensing. Inorg. Chem. 2016, 55, 7326–7328.

(22) Bhardwaj, N.; Bhardwaj, S.; Mehta, J.; Kim, K.-H.; Deep, A. Highly sensitive detection of dipicolinic acid with a water-dispersible terbium-metal organic framework. Biosens. Bioelectron. 2016, 86, 799–804.

(23) Gao, M.-L.; Wang, W.-J.; Liu, L.; Han, Z.-B.; Wei, N.; Cao, X.-M.; Yuan, D.-Q. Microporous Hexanuclear Ln(III) Cluster-Based Metal–Organic Frameworks: Color Tunability for Barcode Application and Selective Removal of Methylene Blue. Inorg. Chem. 2017, 56, 511–517.

(24) Sharma, S.; Ghosh, S. K. Metal–Organic Framework-Based Selective Sensing of Biothiols via Chemodosimetric Approach in Water. ACS Omega 2018, 3, 254–258.

(25) Liu, L.; Zhang, X.-N.; Han, Z.-B.; Gao, M.-L.; Cao, X.-M.; Wang, S.-M. An In(III)-based anionic metal–organic framework: sensitization of lanthanide (III) ions and selective absorption and separation of cationic dyes. J. Mater. Chem. A 2015, 3, 14157–14164.

(26) Hu, Z.; Deibert, B. J.; Li, J. Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 2014, 43, 5815–5840.

(27) Zhang, L.; Kang, Z.; Xin, X.; Sun, D. Metal–organic frameworks based luminescent materials for nitroaromatics sensing. CrystEngComm 2016, 18, 193–206.

(28) Nagaraka, S. S.; Desai, A. V.; Ghosh, S. K. Engineering metal–organic frameworks for aqueous phase 2,4,6-trinitrophenol (TNP) sensing. CrystEngComm 2016, 18, 2994–3007.

(29) Katayev, E. A.; Ustynyuk, Y. A.; Sessler, J. L. Receptors for tetraedral oxoanions. Coord. Chem. Rev. 2006, 250, 3004–3037.

(30) Reynolds, M.; Stoddard, L.; Bespalov, I.; Zhitkovich, A. Ascorbate acts as a highly potent inducer of chromosome mutagenesis and clastogenesis: linkage to DNA breaks in G2 phase by mismatch repair. Nucleic Acids Res. 2007, 35, 465–476.

(31) Dhal, B.; Thatoi, H. N.; Das, N. N.; Pandey, B. D. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: A review. J. Hazard. Mater. 2013, 250–251, 272–291.

(32) Liu, W.; Huang, X.; Xu, C.; Chen, C.; Yang, L.; Dou, W.; Chen, W.; Yang, H.; Liu, W. A Multi-responsive Regenerable Europium–Organic Framework Luminescent Sensor for Fe(III), Cr(VI) Anions, and Picric Acid. Chem.—Eur. J. 2016, 22, 18769–18776.
(33) Yang, Y.; Qiu, F.; Xu, C.; Feng, Y.; Zhang, G.; Liu, W. A multifunctional Eu-CP as a recyclable luminescent probe for the highly sensitive detection of Fe^{3+}/Fe^{2+}, CrO_4^{2-}, and nitroaromatic explosives. *Dalton Trans.* 2018, 47, 7480–7486.

(34) Zhang, C.; Sun, L.; Yan, Y.; Shi, H.; Wang, B.; Liang, Z.; Li, J. A novel photo- and hydrochromic europium metal–organic framework with good anion sensing properties. *J. Mater. Chem. C* 2017, 5, 8999–9004.

(35) Ly, R.; Wang, J.; Zhang, Y.; Li, H.; Yang, L.; Liao, S.; Gu, W.; Liu, X. An amino-decorated dual-functional metal–organic framework for highly selective sensing of Cr(III) and Cr(VI) ions and detection of nitroaromatic explosives. *J. Mater. Chem. A* 2016, 4, 15494–15500.

(36) Rapti, S.; Sarma, D.; Diamantis, S. A.; Skliri, E.; Armatas, G. S.; Tsipis, A. C.; Hassan, Y. S.; Alkordi, M.; Mallikas, C. D.; Kanatzidis, M. G.; Lazarides, T.; Plakatouras, J. C.; Manos, M. J. All in one porous material: exceptional sorption and selective sensing of hexavalent chromium by using a Zr/D MOF. *J. Mater. Chem. A* 2017, 5, 14707–14719.

(37) Zhou, Y.; Yoon, J. Recent progress in fluorescent and colorimetric chemosensors for detection of amino acids. *Chem. Soc. Rev.* 2012, 41, 52–67.

(38) Wang, J.; Liu, H.-B.; Tong, Z.; Ha, C.-S. Fluorescent/luminescent detection of natural amino acids by organometallic systems. *Coord. Chem. Rev.* 2015, 303, 139–184.

(39) Mackay, G. M.; Forrest, C. M.; Stoy, N.; Christofides, J.; Egerton, M.; Stone, T. W.; Darlington, L. G. Tryptophan metabolism and oxidative stress in patients with chronic brain injury. *Eur. J. Neurol.* 2006, 13, 30–42.

(40) Chen, K.; Schmittle, M. An iridium(III)-based lab-on-a-molecule for cystine/homocysteine and tryptophan using triple-channel interrogation. *Analyst* 2013, 138, 6742–6745.

(41) Wang, H.; Zhou, Y.; Guo, Y.; Liu, W.; Dong, C.; Wu, Y.; Li, S.; Shuang, S. β-Cyclodextrin/FeO_4 hybrid magnetic nano-composite modified glassy carbon electrode for tryptophan sensing. *Sens. Actuators B* 2012, 163, 171–178.

(42) He, C.; Wang, J.; Wu, P.; Jia, L.; Bai, Y.; Zhang, Z.; Duan, C. Fluorescent differentiation and quantificational detection of free tryptophan in serum within a confined metal–organic tetrahedron. *Chem. Commun.* 2012, 48, 11880–11882.

(43) Zhao, Z.; Yang, D.; Xing, B.; Ma, C.; Sun, Z.-G.; Zhu, Y.-Y.; Li, H.-Y.; Li, J. Cadmium(II) carboxyphosphonates based on mixed ligands: syntheses, crystal structures and recognition properties toward amino acids. *RSC Adv.* 2016, 6, 92175–92185.

(44) Tsukube, H.; Wada, M.; Shinoda, S.; Tamiaki, H. Porphyrinatoerbium–crown ether conjugate for synergistic binding and chirality sensing of zwitterionic amino acids. *Chem. Commun.* 1999, 1007–1008.

(45) Cui, Y.; Chen, B.; Qian, G. Lanthanide metal-organic frameworks for luminescent sensing and light-emitting applications. *Coor. Chem. Rev.* 2014, 273–274, 76–86.

(46) Xu, H.; Cao, C.-S.; Kang, X.-M.; Zhao, B. Lanthanide-based metal–organic frameworks as luminescent probes. *Dalton Trans.* 2016, 45, 18003–18017.

(47) Mahata, P.; Mondal, S. K.; Singha, D. K.; Majee, P. Luminescent rare-earth-based MOFs as optical sensors. *Dalton Trans.* 2017, 46, 301–328.

(48) Rocha, J.; Carlos, L. D.; Paz, F. A. A.; Ananias, D. Luminescent multifunctional lanthanides-based metal–organic frameworks. *Chem. Soc. Rev.* 2011, 40, 926–940.

(49) Shuvaev, S.; Starck, M.; Parker, D. Responsive, Water-Soluble Europium(III) Luminescent Probes. *Chem.—Eur. J.* 2017, 23, 9974–9989.

(50) Zhou, J.-M.; Shi, W.; Li, H.-M.; Li, H.; Cheng, P. Experimental Studies and Mechanism Analysis of High-Sensitivity Luminescence Sensing of Pollutant Small Molecules and Ions in LnO_4 Cluster Based Microporous Metal–Organic Frameworks. *J. Phys. Chem. C* 2014, 118, 416–426.

(51) Chen, M.; Xu, W.-M.; Tian, J.-Y.; Cui, H.; Zhang, J.-X.; Liu, C.; Du, M. A terbium (III) lanthanide–organic framework as a platform for a recyclable multi-responsive luminescent sensor. *J. Mater. Chem. C* 2017, 5, 2015–2021.

(52) Gagnon, K. J.; Perry, H. P.; Clearfield, A. Conventional and Unconventional Metal–Organic Frameworks Based on Phosphonate Ligands: MOFs and UMOFs. *Chem. Rev.* 2012, 112, 1034–1054.

(53) Bao, S.-S.; Zheng, L.-M. Magnetic materials based on 3d metal phosphonates. *Coord. Chem. Rev.* 2015, 319, 63–85.

(54) Mutelet, B.; Boudin, S.; Pérez, O.; Ruoff, J. M.; Labbé, C.; Jaffe, P. A. La, La₅(H₂O), P(CH₃COO). (Ln = Tb, Eu; 0 < x ≤ 1): an organic–inorganic hybrid with lanthanide chains and tunable luminescence properties. *Dalton Trans.* 2015, 44, 1186–1192.

(55) Dai, L.-L.; Zhu, Y.-Y.; Jiao, C.-Q.; Sun, Z.-G.; Shi, S.-P.; Zhou, W.; Li, W.-Z.; Sun, T.; Luo, H.; Ma, M.-X. Syntheses, structures, luminescence and molecular recognition properties of four new cadmium carboxyphosphonates with 2D layered and 3D supramolecular structures. *CrystEngComm* 2014, 16, 5050–5061.

(56) Xing, B.; Li, H.-Y.; Zhu, Y.-Y.; Zhao, Z.; Sun, Z.-G.; Yang, D.; Li, J. Two fluorescent lead phosphonates for highly selective sensing of nitroaromatics (NACs), Fe^{3+} and MnO_4^{-} ions. *RSC Adv.* 2016, 6, 110255–110265.

(57) Fu, R.; Hu, S.; Wu, X. Rapid and sensitive detection of nitroaromatic explosives by using new 3D lanthanide phosphonates. *J. Mater. Chem. A* 2017, 5, 1952–1956.

(58) Yang, W.; Tian, H.-R.; Li, J.-P.; Hui, Y.-F.; He, X.; Li, J.; Deng, X.; Xie, Z.; Sun, Z.-M. Photochromic Terbium Phosphonates with Photomodulated Luminescence and Metal Ion Sensitive Detection. *Chem.—Eur. J.* 2016, 22, 15451–15457.

(59) Mao, J. Structures with an Odd Number of Vertices: Nine-Coordinate Green Emitter Phosphor. *J. Mater. Chem. A* 2017, 5, 6742–6745.

(60) Araki, T.; Kondo, A.; Maeda, K. The first lanthanide organophosphonate nanosheet by exfoliation of layered compounds. *Chem. Commun.* 2013, 49, 552–554.

(61) Li, X.; Liu, T.; Lin, Q.; Cao, R. Rare Earth Metal Oxalate Phosphonates: Syntheses, Structure Diversity, and Photo-luminescence Properties. *Cryst. Growth Des.* 2010, 10, 608–617.

(62) Ren, M.; Bao, S.-S.; Wang, B.-W.; Ferreira, R. A. S.; Zheng, L.-M.; Carlos, L. D. Lanthanide phosphonates with pseudo-D₃₀ local symmetry exhibiting magnetic and luminescence bifunctional properties. *Inorg. Chem. Front.* 2015, 2, 558–566.

(63) Serre, C.; Stock, N.; Bein, T.; Féréy, G. Synthesis and Characterization of a New Three-Dimensional Lanthanide Carboxyphosphate: Ln(H₂O)₇[O₂C-C₅H₁₀N-CH₂-PO₃]₄(H₂O)₅. *Inorg. Chem.* 2004, 43, 3159–3163.

(64) Casanova, D.; Llunell, M.; Alemany, P.; Alvarez, S. The Rich Organic Frameworks Based on Phosphonate Ligands: MOFs and UMOFs. *Eur. J. Inorg. Chem.* 2017, 85, 1397–1402.

(65) Ruiz-Martínez, A.; Casanova, D.; Alvarez, S. Polyhedral Cadmium carboxyphosphonates with 2D layered and 3D supramolecular structures. *CrystEngComm* 2018, 3, 16735–16742.

(66) National Standard of the People’s Republic of China. *Integrated Wastewater Discharge Standard GB 8978-1996*.

(67) Sheldrick, G. M. Crystal structure refinement with SHELXL. *Acta Crystallogr., Sect. C: Struct. Chem.* 2015, 71, 3–8.