Bisfosfoniany a leczenie ortodontyczne – przegląd piśmiennictwa

Anna Marzec¹ ABE (ORCID ID: 0000-0002-9004-8790)
Liwia Elżbieta Minch¹ AEF (ORCID ID: 0000-0001-6080-771X)

Wkład autorów: A Plan badań B Zбиene danych C Analiza statystyczna D Interpretacja danych E Redagowanie pracy F Wyszukiwanie piśmiennictwa

Authors’ Contribution: A Study design B Data Collection C Statistical Analysis D Data Interpretation E Manuscript Preparation F Literature Search

Streszczenie
Coraz więcej dorosłych pacjentów decyduje się na podjęcie leczenia ortodontycznego. Stanowi to wyzwanie dla ortodontów, nie tylko ze względu na w większości interdyscyplinarny charakter leczenia, ale także z uwagi na schorzenia ogólnoustrojowe pacjentów. Wiele grup chemioterapeutycznych stosowanych powszechnie może mieć wpływ na leczenie ortodontyczne – jedną z nich są bisfosfoniany. Cel. Celem pracy jest przedstawienie na podstawie dostępnego piśmiennictwa wpływu terapii bisfosfonianami na leczenie ortodontyczne oraz ich potencjalnego zastosowania w przyszłości.

Materiał i metody. Do badań wykorzystano bazę danych PubMed oraz Medline, z użyciem słów kluczowych bisphosphonates, orthodontic treatment oraz tooth movement. Literaturę uzupełniono publikacjami z recenzowanych czasopism spoza bazy PubMed.

Wyniki. U pacjentów leczonych bisfosfonianami zaobserwowano zwolniony ruch zęba pod wpływem przyłożonej siły ortodontycznej, przewagę nachylenia koron (tipping) w porównaniu do przemieszczenia osiowego (bodily movement), a także

Abstract
More and more adult patients decide to start orthodontic treatment. Therefore, it poses a challenge to orthodontists, not only because such treatment is mostly interdisciplinary, but also because of patients’ systemic diseases. Many groups of commonly used chemotherapeutics can affect orthodontic treatment – and bisphosphonates are one of them. Aim. Based on the available literature, the paper aims to discuss the impact of bisphosphonate therapy on orthodontic treatment and its potential future use.

Material and methods. The PubMed and Medline databases and the following keywords: bisphosphonates, orthodontic treatment and tooth movement were used to prepare the review. Literature was supplemented with publications from reviewed journals not included in the PubMed database.

Results. It was observed that in patients treated with bisphosphonates tooth movements were slower under the influence of an applied orthodontic force, crown tipping was predominant compared to axial displacement (bodily movement) and; moreover, it was difficult to close
Wstęp

Według American Association of Orthodontists (AAO) w 2018 roku dorosłych stanowili 33% wszystkich pacjentów poddanych leczeniu ortodontycznemu i stosownie do prognoz oraz obecnych trendów ta liczba najprawdopodobniej będzie się sukcesywnie zwiększać. Niesie to ze sobą wiele implikacji klinicznych oraz nowych wyzwań, przed którymi będą musieli stanąć ortodonci. Pacjenci dorosłych, szczególnie ci po 50. r.ż., często są obciążeni chorobami ogólnoustrojowymi oraz liczebność grup oraz przeprowadzić badania na ssakach wyższych. (Marzec A, Minch LE. Bisfosfonany a leczenie ortodontyczne – przegląd piśmiennictwa. Forum Ortod 2020; 16 (3): 239-52).

Nadesłano: 23.06.2020
Przyjęto do druku: 30.09.2020
https://doi.org/10.5114/for.2020.100180

Słowa kluczowe: bisfosfonany, leczenie ortodontyczne, ruch zęba

Do leków mogących przyspieszyć ruch ortodontyczny ortodonci zaliczyli glukokortykosteroidy stosowane długotrwałym sposobem, witaminę D3, tyroksynę, prostaglandyny i prostacykliny. Spowolnienie przesunięcia zęba mogły zaś inhibitory NLFZ, inhibitory lipooksydazy oraz bisfosfonany (BP). Istotne jest tymczasem przeprowadzenie dokładnego wywiadu z pacjentem, a następnie jego aktualizowanie w toku leczenia, ponieważ lekarze ortodonci często nie są świadomi, jak wiele leków mogących mieć wpływ na efekty ich działania przyjmują pacjenci.

Z badań opublikowanych w 2012 r. przez Lotwala i wsp. wynika, że około 10% kobiet po 50. r.ż. leczonych ortodontycznie przyjmowało bisfosfonany (2).

Introduction

According to the American Association of Orthodontists (AAO), in 2018 adults accounted for 33% of all patients undergoing orthodontic treatment and, according to predictions and current trends, this number is likely to increase gradually. It is associated with many clinical implications and new challenges for orthodontists. Adult patients, especially those over 50 years of age, often suffer from systemic diseases and take various medications that can have a significant impact on orthodontic movements. The literature indicates that there are many groups of medications that in animal model studies or human observations have shown their potential to accelerate or slow down tooth movements under the influence of an applied orthodontic force (1).

According to the authors, long-term used glucocorticoids, vitamin D3, thyroxine, prostaglandins, and prostacyclins are among medications that can accelerate orthodontic movements. On the other hand, NSAIDs, lipoxygenase inhibitors and bisphosphonates (BP) may slow down tooth movements. It is therefore essential to conduct a thorough interview with a patient and then update it during the course of treatment. Unfortunately, orthodontists are often unaware of how many medications that may affect the outcomes of treatment are taken by patients.

A study published in 2012 by Lotwal et al. shows that about 10% of women over 50 years of age receiving orthodontic treatment were taking bisphosphonates (2).

As medications belonging to this group are administered in a non-standard way (injections are often done at
Bisphosphonates and orthodontic treatment – a literature review

Z uwagi na specyficzny schemat podawania tej grupy leków (niejednokrotnie iniekcje w odstępach kilkumiesięcznych) pacjenci nie zdają sobie sprawy z ich wpływu na przebieg terapii ortodontycznej. Opisano przypadki, gdy dopiero podczas utrudnionego ruchu żęba w czasie leczenia okazywało się, że jego bezpośrednią przyczyną była farmakoterapia bisfosfonianami, o której pacjent nie powiedział podczas zbierania wywiadu ogólnomedycznego (3, 4).

Aim
This paper aims to review the current state of knowledge on the effects of bisphosphonate therapy on orthodontic treatment and to present the potential use of this group of medications in the future, e.g. to enhance anchorage or for pharmacological retention.

Material and methods
A review of the literature from the years 1984–2020 was conducted using PubMed and Medline databases, using the following keywords: bisphosphonates, orthodontic treatment and tooth movement. Literature was supplemented with Polish and English publications from reviewed journals not included in PubMed and Medline databases.

Results
Characteristics of bisphosphonates
Structurally, bisphosphonates are derivatives of inorganic pyrophosphates that are present in living organisms and, like them, are similar to bone minerals and can accumulate in bone tissue. This is because of their high potential to bind to hydroxyapatite crystals. The main activity is attributed to hydroxyl and phosphate groups, but the main determinant responsible for the possibility of inhibiting bone tissue resorption is a group in the R₂ side chain (Fig. 1).

![Figure 1. Structure of bisphosphonate.](image_url)
Biorąc pod uwagę tę cechę, wyodrębniono trzy generacje BP:

- **Generacja I** – nie zawierają atomu azotu w swej budowie, należą tu pierwsze stosowane BP: etidronian, klodronian i tyludronian. Cechują się najniższą aktywnością antyresorpcyjną. Podstawą mechanizmu działania jest ich podobieństwo do pirosforanu, dlatego są wychwytywane do tworzenia analogów ATP (trójfosforanu adenozyny). Jednak z uwagi na różnice strukturalne nie podlegają hydrodylizie, zakładając procesy komórkowe zależne od ATP i prowadząc do apoptozy komórek (głównie osteoklastów, z uwagi na kumulację bisfosfonianów w obrębie tkanki kostnej).

- **Generacja II** – mają ugrupowanie akiłoaminowe w pozycji R2 (aminobisfosfoniany). Należą tu np. alendronian, pamidronian. Charakteryzują się wyższym potencjałem hamowania resorpcji kości.

- **Generacja III** – w pozycji R2 zawierają heterocykliczny pierścień z atomem azotu. Należą tu np. ryzedronian, zoledronian. Posiadają najwyższy potencjał antyresorpcyjny (5, 6).

Bisfosfoniany zawierające w swojej budowie azot (II i III generacja) hamują aktywność syntetyz pirosforanu farnezylu – enzymu mającego niebagatelną znaczenie w metabolizmie komórek, co powoduje apoptozę osteoklastu (7).

Leki te już od ponad 50 lat znajdują zastosowanie głównie w farmakoterapii chorób układu kostnego związanych z wzmożoną aktywnością resorpcyjną osteoklastów, m.in. w chorobie Pageta, osteoporozy, osteogenesis imperfecta, nowotworach złośliwych przerzutujących do kości (pierwszostronne rak piersi, gruczołu krokowego, nerek, płuc) oraz nowotworach pierwotnie rozwijających się w układzie kostnym (np. szpiczak mnogiej) (8).

Wyróżniamy dwie główne drogi podania bisfosfonianów – dożyną i dożylną. Biodostępność w farmakoterapii p.o. szacuje się na < 1%, a w przypadku łączenia BP z pokarmami, napojami bądź chemioterapeutykami zawierającymi magnezy lub wapń może obniżyć się do zera (9). Bisfosfoniany dożynne należy więc przyjmować w pozycji pionowej, popijając szklanką przegotowanej wody; dwie godziny przed i po godzinie przed oraz po przyjęciu leku pacjenci powinni wstrzymać się od jedzenia.

Do głównych działań niepożądanych dożynnej farmakoterapii BP zaliczamy zapalenie i nadżerki przełyku, utrudnienie połykania, bóle mięśniowo-szkieleto we, bóle brzuszne, niestrawność. Alendronian u pacjentów z osteoporozą przyjmowany jest codziennie lub w dawce równoważnej raz w tygodniu.

Z piśmiennictwa wynika, że jeden na czterech pacjentów nie spełnia się do zaleceń, a zazwyczaj 75% pacjentów przerywa leczenie w pierwszym roku trwania farmakoterapii dożynnej (10). Dla pacjentów zło tolerujących bisfosfoniany przyjmowane p.o. wygodniejszym rozwiązaniem okazało się dożynne podanie leku, które eliminuje podrażnienia błony żołądkowej, a także poprawia tolerancję leku, mimo że dawka połowa p.o. jest równoważna 1/10 dawki dożylnej.

Taking this feature into account, three generations of BPs were distinguished:

- **Generation I** – BPs that do not contain a nitrogen atom in their structure; the first BPs ever used: etidronate, clodronate and tiludronate. They are characterised by the lowest anti-resorption activity. Their mechanism of action is based on their similarity to pyrophosphate; therefore, they are captured to create ATP (adenosine triphosphate) analogues. However, due to structural differences, they are not hydrolysed; therefore, they disturb ATP-dependent cellular processes and lead to cell apoptosis (mainly of osteoclasts, due to the accumulation of bisphosphonates within the bone tissue).

- **Generation II** – have an alkylamine group in R2 (aminobisphosphonates). These include, for example, alendronate, pamidronate. They are characterised by a higher potential of bone resorption inhibition.

- **Generation III** – have a heterocyclic ring with a nitrogen atom in the R2 location. These include, for example, risedronate and zoledronate. They have the highest anti-resorption potential (5, 6).

Bisphosphonates containing nitrogen in their structure (generation II and III) inhibit the activity of farnesyl pyrophosphate synthase – an enzyme that is of considerable importance in cell metabolism, leading to osteoclast apoptosis (7).

For more than 50 years, these medications have been used mainly in the pharmacotherapy of skeletal diseases associated with increased resorption activity of osteoclasts, such as Paget’s disease, osteoporosis, osteogenesis imperfecta, metastatic bone malignancies (primary breast, prostate, kidney, and lung cancers) and primary cancers of the skeletal system (e.g. multiple myeloma) (8).

There are two main routes of bisphosphonate administration – oral and intravenous. The bioavailability in PO pharmacotherapy is estimated at <1%, and if BPs are taken with food, beverages or chemotherapeutics containing magnesium or calcium, it may be reduced to 0 (9). Oral bisphosphonates should therefore be taken when sitting upright with a glass of boiled water; two hours before and half an hour after taking the medication patients should refrain from eating.

Main side effects of oral BP pharmacotherapy include inflammation and erosion of the oesophagus, difficulty swallowing, musculoskeletal pain, abdominal pain, indigestion. Patients with osteoporosis take alendronate daily or at an equivalent dose once a week.

The literature reports that one in four patients does not comply with the recommendations, and as many as 75% of patients discontinue treatment in the first year of oral pharmacotherapy (10). In the case of patients with poor tolerance to PO bisphosphonates, intravenous administration of these medications proved to be more convenient because it eliminates the irritation of the oesophageal and gastric
Martwa kość szczęk w wyniku stosowania bisfosfonatów (BRONJ)

Kolejnym z możliwych działań niepożądanych jest ryzyko występowania martwicy kości szczęk. O ile wśród zabiegów indukujących występowanie BRONJ piśmiennictwo nie wymienia ruchu ortodontycznego ani wad zgryzu samych w sobie, o tyle ekstrakcje – które często są elementem planu leczenia – stanowią przyczynę aż 61,7% przypadków (13). Najbardziej podatną grupą są pacjenci onkologiczni – ryzyko występowania BRONJ wynosi u nich 1–28% i jest znacznie wyższe niż u pacjentów przyjmujących bisfosfonaty z powodu osteoporozu (0,001–3,44%) (14, 15).

Fliefel i wsp. po przeanalizowaniu dostępnych raportów dotyczących występowania BRONJ podają, że stosunek kobiet do mężczyzn dotkniętych tym powikłaniem wynosił 2 : 1, przy czym najczęściej lokalizacja dotyczyła żuchwy (65,1%) (16). Na podstawie analizy 89 prac badawczych autorzy wskazali, że 83,2% pacjentów u których wystąpiło powikła- wanie stanowili chore, którym bisfosfonaty były podawane dożylnie. Ryzyko występowania BRONJ wzrasta przy stosowaniu tej grupy leków przez ponad 3 lata, zależy jednak ścisłe od dawki oraz generacji (bisfosfonaty zawierające azot stosowano większe ryzyko występowania martwicy żuchwy). Częstość przyjmowania BP jest również nie bez znaczenia – Corso i wsp. w swoich badaniach odnotowali, że zmiana podawania leku z komisjowych infuzji na cootrzymywanie u chorych na szpiczaka zmniejszyła częstość występowania martwicy żuchwy indukowanej bisfosfonatami (17).

W badaniach na szczurach przyjmujących BP Senel i wsp. zaobserwowali występowanie znacznego zaniku w okolicy zębów trzonowych żuchwy u niektórych osobników, przy braku jakichkolwiek zmian w kościach udowych pobranych od badań- nych zwierząt (18). Wzniesienie badania wspierają hipotezę, że kości szczęk są obszarem największego poboru bisfosfonatów ze względu na znacznie wyższy niż w innych miejscach obrót kostny. Bezpośrednio przekładają się to na występowanie zmian histologicznych prowadzących do martwicy, przybraku induk- cji tego procesu w innych elementach układu kostnego (19).

Piśmiennictwo podaje, że leczenie ortodontyczne dodat- kowo przyspiesza bone turnover, co predysponuje do jeszcze większego pobierania bisfosfonatów przez te obszary (20). Może to doprowadzić do wzrostu ryzyka występowania BRONJ w przyszłości (21).

Bisphosphonate-related osteonecrosis of the jaw (BRONJ)

Bisphosphonate-related osteonecrosis of the jaw is another possible side effect. Although a group of procedures inducing BRONJ presented in the literature does not mention orthodontic movements or malocclusions alone, extractions – which are often part of the treatment plan – are the cause of as many as 61.7% of cases (13). Oncological patients are the most susceptible group – the risk of BRONJ is 1–28% in this group and is significantly higher than in patients taking bisphosphonates due to osteoporosis (0.001–3.44%) (14, 15).

Fliefel et al. analysed available reports on the occurrence of BRONJ and reported that the ratio of women to men affected by this complication was 2 : 1, and the mandible was the most common location (65.1%) (16). Based on the analysis of 89 research papers, the authors demonstrated that 83.2% of patients with this complication were patients who had been receiving intravenous bisphosphonates. The risk of BRONJ increases when medications belonging to this group are used for more than 3 years, but it depends strictly on the dose and generation (nitrogen-containing bisphosphonates pose a higher risk of mandibular osteonecrosis). The frequency of BP intake is also essential – in their studies, Corso et al. noted that the when drug administration had been changed from monthly infusions to infusions every three months in myeloma patients, the incidence of bisphosphonate-related osteonecrosis of the jaw was reduced (17).

In studies on rats taking BPs Senel et al. observed the presence of inflammatory lesions in near molars in the mandible in some animals, but there were no changes in femoral bones collected from examined animals (18). The study outcomes support the hypothesis that jaw bones are the area of the highest uptake of bisphosphonates due to a much higher bone turnover compared to other locations. This directly translates into the presence of histological lesions leading to necrosis, whereas this process is not induced in other parts of the skeletal system (19).

According to the literature, orthodontic treatment further accelerates bone turnover, and it predisposes to an even greater uptake of bisphosphonates in these areas (20). This may lead to an increased risk of BRONJ in the future (21).

Researchers believe that in patients at risk of BRONJ, planned extractions should be performed using sextants.
Badacze uważają, że u pacjentów z grupy ryzyka wystąpienia BRONJ planowane ekstrakcje powinny być wykonywane selektywnie. Pomiędzy zabiegami w poszczególnych sektorstach należy zachować przerwę czasową wynoszącą minimum dwa miesiące, aby w tym czasie móc ocenić, czy w poprzednim obszarze nie wystąpiły objawy BRONJ. Zabieg powinna to powstawaniu mnogich ognisk martwicy w wielu miejscach jednocześnie (22).

W celu oceny ryzyka wystąpienia BRONJ badany jest poziom C-końcowego usieciowanego telopeptydu łańcucha αła kollenagu typu I (CTX) uwalnianego podczas rozpadu kolagenu I. Jego zastosowanie jest jednak kontrowersyjne, z uwagi na fakt, że nie jest on bezwzględnie swoisty wyłącznie dla tkanki kostnej (23).

Wartość wskaźnika powyżej 150 pg/mL świadczy o minimalnym ryzyku, natomiast poniżej 100 pg/mL – o wysokim zagrożeniu wystąpienia BRONJ. Zahrowski i wsp. podają, że u pacjentów przyjmujących bisfosfoniany nieprzerwanie przez ponad 5 lat zaleca się zbadanie poziomu CTX przed wykonaniem procedur z zakresu chirurgii stomatologicznej (4). Marx i wsp. rekomendują, aby poziom CTX był określany u osób przyjmujących douszeń BP przez ponad 3 lata lub poniżej 3 lat, ale dodatkowo leczonych niskimi dawkami kortykosteroidów lub podczas chemioterapii (24). Zaoberwowało także, że odstawienie BP (drug holiday) na miesiąc powodowało wzrost CTX o 25,9–26,4 pg/mL. W niektórych badaniach wykazano jednak brak związku między markerem CTX a ryzykiem wystąpienia BRONJ (25).

Orthodontyczna ekstruzja w celu zmniejszenia ryzyka BRONJ

Pacjenci z wysokim ryzykiem wystąpienia BRONJ wymagają leczenia jak najbardziej dążącego do zachowania zębów własnych, bądź w przypadku konieczności ekstrakcji – wynikania jej maksymalnie atraumatycznie. Wdrożenie postępowania ortodontycznego niejednokrotnie może pomóc osiągnąć wskazane cele. W piśmiennictwie opisane są przypadki zastosowania ortodontycznej ekstruzji zęba w celu zwiększenia możliwości jego odbudowy, lub ułatwienia procesu ekstrakcji.

Smidt i wsp. przedstawili przypadek pacjentki przyjmującej douszeń bisfosfoniany przez 10 lat, u której konieczna była ekstrakcja zęba (26). Po przeprowadzeniu ekstruzji ortodontycznej usiemyne korzeni odbyło się bez trudności, z uwagi na ich znaczną ruchomość i duże wysunięcie z zębodoku. Gójenie przebiegło bez powikłań, nie odnotowano wystąpienia incedyentu BRONJ.

Morita et al. przeprowadzili ekstruzję ortodontyczną korzenia zęba, zapewniając odpowiednie warunki do jego odbudowy, a tym samym unikając jego ekstrakcji (27). Było to działanie o tyle znaczące, że pacjentka w przeszłości była leczona bisfosfonianami i przechodziła radioterapię obejmującą okolicę ekstrudowanego zęba.

An interval of at least two months should be maintained between procedures in individual sextants in order to assess whether there had been any symptoms of BRONJ in the previous area in that period. As a result, it prevents multiple necrosis foci in many places at once (22).

In order to assess the risk of BRONJ, the level of cross-linked C-terminal telopeptide of the alpha chain of type I collagen (CTX) released during collagen I breakdown is measured. However, its use is controversial as it is not absolutely specific to bone tissue alone (23).

The index value above 150 pg/mL indicates a minimum risk, while below 100 pg/mL – a high risk of BRONJ. Zahrowski et al. report that in patients taking bisphosphonates continuously for more than 5 years it is recommended to measure the CTX levels before performing any dental surgery procedures (4). Marx et al. recommend that the CTX levels should be measured in patients taking oral BPs for more than 3 years or less, but additionally treated with glucocorticoids or during chemotherapy (24). They also observed that the BP withdrawal (drug holiday) for one month resulted in increased CTX levels by 25.9–26.4 pg/mL. However, some studies have shown that there is no connection between CTX as a marker and the risk of BRONJ (25).

Orthodontic extrusion to reduce the risk of BRONJ

Patients with a high risk of BRONJ require treatment that is as much as possible aimed at preserving their own teeth, or, if extraction is necessary, it should be performed as atraumatically as possible. The implementation of orthodontic management can often help achieve these goals. The literature reports cases where orthodontic tooth extraction is used to increase the chance of its restoration, or to facilitate the extraction process.

Smidt et al. presented a case of a female patient taking oral bisphosphonates for 10 years, in whom tooth extraction was necessary (26). After orthodontic extraction, roots were removed without difficulty, because they were mobile and largely protruding from the alveolus. Healing was without complications, and no BRONJ incident was reported.

Morita et al. performed orthodontic extraction of a tooth root, while ensuring appropriate conditions for its reconstruction and thus avoiding its extraction (27). This was a significant case as the patient had been treated with bisphosphonates in the past and underwent radiotherapy covering the area of the tooth undergoing extrusion.

On the basis of the cited cases, it seems justified to state that orthodontic treatment, an example of which is orthodontic extraction, can be a method to minimise the risk of BRONJ.

Osteogenesis imperfecta

Bisphosphonates are widely used in the pharmacotherapy of osteogenesis imperfecta (OI) both in children and adults affected by a severe form of this disease. The literature...
Bisphosphonates and orthodontic treatment – a literature review

Na podstawie przytoczonych przypadków zasadnym wydaje się być stwierdzenie, że leczenie ortodontyczne, którego przykładem jest ekstuzja ortodontyczna, może stanowić metodę minimalizowania ryzyka wystąpienia BRONJ.

Osteogenesis imperfecta

Bisfosfoniany znajdują szerokie zastosowanie w farmakoterapii osteogenesis imperfecta (OI) zarówno u dzieci, jak i u osób dorosłych dotkniętych ciężką postacią tego schorzenia. Piśmiennictwo podaje, że ta terapia u dzieci może zmniejszać ryzyko wystąpienia złamań kości nawet o 100%, dlatego BP są często stosowane w tej grupie wiekowej (28).

Z uwagi na szczególne potrzeby lecznicze, wielu pacjentów z OI jest kierowanych do gabinetów ortodontycznych w celu zdiagnozowania nieprawidłowości zgryzu i podjęcia odpowiedniego leczenia. Obserwowana często tendencja do występowania szkieletowej klasy III (nawet 70–80% pacjentów z OI), zgryzu krzyżowego przedniego i bocznie oraz zgryzu otwartego powodują, że chorzy są często poddawani zarówno leczeniu ortodontycznemu, jak i ortodontyczno-chirurgicznemu (29, 30).

Według literatury terapia bisfosfonianami ma wpływ nie tylko na szybkość i zakres przesunięcia ortodontycznego, ale także może powodować opóźnienie ząbkowania u dzieci. Ma to szczególne znaczenie w przypadku najmłodszych objętych terapią BP w leczeniu osteogenesis imperfecta. Wyrzynanie zębów może być tu opóźnione nawet o 1,67 lat (31). U dzieci chorych na OI i nienależnych BP rzadko dochodzi do występowania tego typu zaburzeń, dlatego to zjawisko przysuwa się farmakoterapii (32). U dzieci przyjmujących wyższe dawki bisfosfonianów wyrzynanie zębów nastąpiło statystycznie istotnie później niż przy dawkach mniejszych, co podkreśla niebagatelną wpływ dawki na występowanie opóźnienia ząbkowania (31).

Badacze poruszają także inne problemy, z jakimi przyjrzeć zmierzyć się ortodoncie podczas leczenia dziecka z OI, a mianowicie z tendencją do infraokluzji (obserwowaną u 27% dzieci), ektoformowym wyrzynaniu się zębów, ich zatrzymaniem oraz opóźnioną eksfolacją (33, 34). W takich przypadkach wskazana jest interwencja chirurgiczna polegająca na ekstrekcji przetriczących zębów mlecznych, pomimo niecałkowitej resorpcji ich korzeni. Piśmiennictwo podaje, że w przypadku zabiegów chirurgii stomatologicznej u dzieci z OI, przyjmujących dożylnie bisfosfoniany w dawkach odpowiednich do leczenia tej jednostki chorobowej, ryzyko wystąpienia BRONJ – w przeciwieństwie do dorosłych – jest znikome (35–38).

Schwartz i wsp. w grupie pacjentów (najmłodszy miał 2 lata, najstarszy – 19 lat) przyjmujących dożylnie bisfosfoniany w leczeniu OI nie zaobserwowali powikłań po ekstrekcjach zębów zarówno mlecznych, jak i stałych. Autorzy rekomендują wykonanie zabiegu 8–15 dni po iniekcji leku, podanie dawki antybiotyków przed wykonaniem zabiegu, a także wykonanie diagnostyki radiologicznej w celu oceny
Zwolnienie ruchu ortodontycznego

U pacjentów poddawanych leczeniu ortodontycznemu jednym z czynników w znacznym stopniu wpływających na dynamikę ruchu ortodontycznego jest metabolizm kości wyrostka zębodołowatego. Niski bone turnover może utrudniać wykonywanie niektórych ruchów ortodontycznych, np. translacji na rzecz tippingu przy zamykanie przestrzeni poekstrakcyjnych. Verna i wsp. w swoich badaniach na szczurach, u których farmakologicznie zmieniono metabolizm kostny (wywołano hiper- i hipotryreozę), wykazały, że wysoki obrót kostny statystycznie istotnie wpływa na zwiększenie zakresu ruchu ortodontycznego, a niski powoduje jego redukcję, w porównaniu do grupy kontrolnej (41). Autorzy zaobserwowali także zmianę rozmieszczenia centrum rotacji w grupach badanych – przy wysokim bone turnover CR znajdowalo się bardziej w dół (dowierchołkowo), a przy niskim, až dokoronowo w stosunku do grupy kontrolnej. Przytoczone wyniki mają bezpośrednie przełożenie na dynamikę leczenia ortodontycznego podczas kuracji bisfosfonianami, ponieważ te leki prowadzą do znacznego obniżenia obrotu kostnego, powodując szereg związków z tym postępem.

Rozważając wpływ BP na zakres ruchu ortodontycznego, badacze są zgodni, że następuje jego istotne zmniejszenie w porównaniu do grupy kontrolnej wolnej od medykacji (42–44).

Kaipatur et al. i Rinchuse et al. w badaniach na szczurach przyjmujących alendronian otrzymali 86% redukcję przemieszczenia zęba po przyłożeniu siły ortodontycznej po 8 tygodniach (45). Autorzy doszli także do konkluzji, że przerwanie kuracji BP przed samym leczeniem ortodontycznym nie powodowało zwiększenia zakresu ruchu, a wręcz przeciwnie – był on mniejszy niż w grupie, która zaczęła przyjmować lek wraz z rozpoczęciem terapii i kontynuowała go przez cały okres obserwacji. Otrzymany wynik kwestionuje zasadność drug holiday, czyli przerwania farmakoterapii BP na czas leczenia ortodontycznego. Nie uzyskano jednak wartości istotnej statystycznie.

Pomimo że znaczną większość badań dotyczących wpływu bisfosfonianów na ruch ortodontyczny jest wykonana na materiale zwierzęcym, istnieją także prace oparte na podstawie obserwacji klinicznych. Zahrowski i wsp. zauważyli, że u pacjentów przyjmujących BP występuje zwolnienie ruchu ortodontycznego podczas leczenia, a także ograniczenie jego zakresu prowadzące do konieczności zastosowania kompromisu terapeutycznego (4).

Rinchuse et al. zauważyli, że tipping was predominant in women over 50 years of age taking bisphosphonates were 13 times more likely to achieve parallel roots of teeth undergo migration and; moreover, it was difficult to close post-extraction space (46). The literature also states that women over 50 years of age taking bisphosphonates were 13 times more likely to have incomplete closure of post-extraction spaces and 26.4 times less likely to achieve parallel roots of teeth undergoing movement in relation to women over 50 years of age who did not receive BPs (47).

Microimplants

Maintaining proper anchorage is a condition for effective orthodontic treatment. The introduction of microimplants has significantly expanded the possibilities of therapy, enabling the treatment of patients with multiple missing teeth or with loss of periodontal tissues. The mobility of a microimplant, its disintegration and loss may affect the success...
Piśmiennictwo podaje również, że kobiety po 50. r.ż., przyjmujące bisfosfoniany miały 13-krotnie większe prawdopodobieństwo niecałkowitego zamknięcia luk poekstrakcyjnych oraz 26,4 razy mniejszą szansę na uzyskanie równoleżkości korzeni przesuwanych zębów w stosunku do kobiet po 50. r.ż. nieleczonych BP (47).

Mikroimplanty
Warunkiem prowadzenia skutecznego leczenia ortodontycznego jest utrzymanie odpowiedniego zakotwienia. Pojawienie się mikroimplantów znacznie rozszerzyło możliwości terapii, umożliwiając leczenie pacjentów z licznymi brakami zębowymi czy z utratą tkanek przyzębia. Rachomość mikroimplantu, jego dezintegracja oraz wypadanie mogą wpływać na powodzenie leczenia ortodontycznego, być przyczyną dolegliwości bólowych, a także wskazywać na konieczność ponownego zabiegu. Przeprowadzono się więc próby farmakologicznego zwiększenia stabilizacji wtórnej mikroimplantu. Cuairán i wsp. w swoich badaniach na psach podjęli się sprawdzenia wpływu miejscowej aplikacji zale- dronianu do łody przegożonowej pod mikroimplant na jego stabilizację pierwotną i wtórną (48). Wykazano, że lokalne zastosowanie jednej dawki BP statystycznie istotnie wpły- nęło na ilość kości gąbczastej dookoła mikrośrub – jej zwiększenie korelowało ze wzrostem stabilizacji wtórnej i lepszymi wynikami niż w grupie kontrolnej, gdzie nie zastosowano BP. Do podobnych wniosków doszli Dewachi i wsp., wyka- zując istotnie większą stabilizację wtórną mikroimplantów oraz niższy poziom prozapalnej IL-1β w płynie dziąsłowym po miejscowej aplikacji zale- dronianu u płci przeciwnej pod mikroimplant na jego stabilizację pierwotną i wtórną (49). Należy jednak podkreślić, że liczba badań na temat wpływu lokalnej podaży BP na lepsze utrzy- manie mikrośrub nie jest wystarczająca, a poszczególnej autorzys podchodzą do stosowania mikroimplantów ortodontycznych u pacjentów przyjmujących bisfosfoniany w terapii choroby podstawowej (50, 51). Różnica poglądów badaczy i brak bezpośrednich wytycznych ukazuje złożo- ność problemu oraz konieczność indywidualnego rozpo- wiania każdego przypadku z uwzględnieniem ryzyka wystąpienia martwicy kości.

Zakotwienie farmalogiczne
Oprócz badań nad udoskonレンCandidates of microimplants or an- chorizing devices, researchers also conduct studies regarding pharmacological anchorage. Bisphosphonates are one of the groups of medications studied in relation to the effects on inhibiting unwanted movements during orthodontic treat- ment. Ortega et al. pointed out that after local, single admin- istration of zoledronate to the alveolus after the removal of a first molar and an attempt to close the post-extraction space in rats, mesialisation of the second molar was statisti- cally significant limited (52). In the control group, crown mesioinclination, extraction of a distal root and intrusion of a mesial root, loss of the alveolar bone around roots of the second molar and moderate root resorption were observed. Among individuals in the study group, the above phenom- ena did not occur, cement resorption was not present at all or only to a small extent. Furthermore, no bone necrosis caused by the supply of bisphosphonates has been reported. Inhibition of orthodontic movements can occur both after systemic and local administration of BPs and its range is dose-dependent. Igarashi et al. conducted studies on rats after SC administration of AHBuBP (4-amino-1-hydroxy- butylidene-1,1-bisphosphonate) and recorded tooth move- ments in the study group only on day one (53). In the following days, until the end of the study, namely 21 days later, there was no statistically significant change in the location. However, the movement during the first 24 hours was not so much related to bone resorption as to
Prace przeglądowe / Review article

A. Marzec et al.

mezjalnego, utratę kości wyrostka zębadodołowego wokół korzeni drugiego zęba trzonowego oraz średniozaawansowaną resorpcję korzeni. Wśród osób grupy badanej nie miały miejsca powyższe zjawiska, resorpcja cementu nie występowała wcale lub w jedynie niewielkim stopniu. Nie odnotowano także występowania martwicy kości spowodowanej podażą bisfosfonianów.

Inhibicja ruchu ortodontycznego może nastąpić zarówno po systemowym, jak i miejscowym podaniu BP i jej zakres jest zależny od dawki. Igarashi i wsp. w badaniach przeprowadzonych również na szczurach pod po podaniu s.c. AHBuBP (4-amino-1- hydroxybutyliend-1,1-bisphosphonate) odnotowali ruch zębą w grupie badanej tylko w pierwszej dobie (53). W kolejnych, aż do zakończenia badania, które miało miejsce po 21 dniach, nie występowała statystycznie istotna zmiana położenia. Przemieszczenie w ciągu pierwszych 24 godzin nie było jednak o tyle związane z resorpcją kości, co z kompresją włókien osiecznej i ugięciem kości wyrostka zębadodołowego. Podczas eksperymentu zbadano także wpływ miejscowej aplikacji AHBuBP na przesunięcie ortodontycznym – inhibicję ruchu zębą w oceniono na 69,8 ± 5,9%.

Różnica wielkości przemieszczenia pomiędzy stroną badaną a kontrolną była istotna statystycznie (p < 0,05).

Do podobnych wniosków doszli Liu i wsp., badając wpływ klonodronu podanego miejscowo na ruch ortodontyczny u szczurów (54). Oprócz statystycznie istotnego zmniejszenia liczby osteoklastów w grupie badanej w porównaniu do grupy kontrolnej, odpowiedzialnych za resorpcję kości wyrostka zębadodołowego, otrzymali także statystycznie istotny wpływ dawki na inhibicję przesunięcia pod wpływem siły wywołanej otwartą sprężyną coil.

Przytoczone badania prowadzą do wniosku, że efekt miejscowej podaży BP, począwszy od zwolnienia ruchu ortodontycznego, aż po całkowitą inhibicję, może być regulowany przez dawkowanie.

Resorpcja korzeni

W wielu pracach badawczych bazujących na modelach zwierzęcych autorzy dażą do opisania wpływu bisfosfonianów na resorpcję korzeni podczas aktywnej fazy leczenia ortodontycznego. Jest to o tyle istotne, gdyż zjawisko resorpcji powoduje wiele negatywnych implikacji klinicznych utrudniających leczenie, po utratę zęba włącznie. Skrócenie długości korony do korzenia, co może być przyczyną zmniejszenia stabilizacji zęba w żebodole (55). Przemieszczenie ulega także centrum oporu zęba – im krótszy korzeń, tym mniejsze siły należy użyć podczas nadania/zniesienia torku. Jeżeli u pacjenta zaobserwowano resorpcję korzeni, należy spodziewać się, że ten stan będzie się pogłębiać, co czyni leczenie trudniejszym i obarczonym większym ryzykiem.

Jednym z głównych wniosków badań przeprowadzonych przez Igarashi i wsp. na szczurach jest znaczne zmniejszenie liczby (p < 0,001) i wielkości (p < 0,01) lakun resorpcyjnych

the compression of periodontal fibres and bending of the alveolar process bone. During the experiment, the effects of local application of AHBuBP on orthodontic movements were also examined – inhibition of tooth movements was estimated at 69.8 ± 5.9%. The difference in movements between the study and control side was statistically significant (p < 0.05).

Similar conclusions were reached by Liu et al., who studied the effects of local administration of clodronate on orthodontic movements in rats (54). In addition to a statistically significant reduction in the number of osteoclasts – responsible for alveolar bone resorption – in the study group as compared to the control group, they also observed a statistically significant dose-related effect on the inhibition of movements under the influence of a force induced by an open coil spring.

These studies lead to the conclusion that the effects of local supply of BPs can be regulated by dosage: from the slowing down of orthodontic movement to total inhibition.

Root resorption

In many research papers based on animal models, the authors aim to describe the effects of bisphosphonates on root resorption during the active phase of orthodontic treatment. This is all the more important because the phenomenon of resorption causes many negative clinical implications that hinder the treatment, including even tooth loss. When a root has been shortened, it leads to an inappropriate ratio of the crown to root length, which may result in reduced tooth stability in the alveolus (55). The centre of the tooth resistance is also displaced – the shorter the root, the less force must be used to provide/change the torque. If root resorption has been observed in a patient, this condition is expected to worsen; therefore, treatment becomes more difficult and associated with a higher risk.

Regarding the main conclusions of studies conducted on rats by Igarashi et al., they observed a significant reduction in the number (p < 0.001) and size (p < 0.01) of resorption lacunae on the side of compression during orthodontic movements in a group receiving bisphosphonates compared to the control group (53). These results are supported by many other publications showing statistically significant outcomes in reducing the resorption of cement and root dentin (43, 44, 56). According to Igarashi et al., the effects of reducing root resorption can also be achieved after the local supply of BPs and are dose-dependent (56).

Alatli et al. had different conclusions when they studied the effects of orthodontic movements on molars in 12-day-old mice after a single SC administration of bisphosphonate (57). The formation of cell-free cement was inhibited contrary to that of atypical hyperplastic cement. After applying an orthodontic force this cement was quickly resorbed, and extraction of such a tooth was also easier. This shows inhibitory effects of BPs on the formation of cell-free cement
Bisphosphonates and orthodontic treatment – a literature review

po stronie uciśku podczas ruchu ortodontycznego w grupie przyjmującej bisfosfonian, w porównaniu do grupy kontrolnej (53). Te wyniki znajdują poparcie w wielu innych Publikacjach, w których badacze także osiągnęli statystycznie istotne wyniki ograniczenia resorpcji cementu i zębiny korzeniowej (43, 44, 56). Igarashi i wsp. uważają, że efekt ograniczenia resorpcji korzenia może być osiągnięty także po miejscowej podażi BP i jest zależny od dawki (56).

Do innych wniosków doszli Alatli i wsp., badając wpływ ruchu ortodontycznego na zęby trzonowe 12-dniowych myszy po jednorazowym podaniu bisfosfonianu s.c. (57). Odnotowano inhibicję formowania się cementu bezkomórkowego na rzecz atypowego cementu hiperplastycznego. Cement ten po przyłożeniu siły ortodontycznej łatwo ulegał resorpcji, ekstrakcja takiego zęba również była prostsza. Świadczą to o hamującym wpływie BP na formowanie się cementu bezkomórkowego w okresie rozwoju korzenia zęba. Może mieć to znaczenie w przypadku leczenia ortodontycznego dzieci, w których terapia bisfosfoniami została rozpoczęta w bardzo młodym wieku, np. w leczeniu już wcześniej przytoczonej jednostki chorobowej osteogenezis imperfecta. Obecnie brak jest doniesień na temat zmian strukturalnych cementu związanych z farmakoterapią BP wśród tej grupy pacjentów.

Należy też zwrócić uwagę, że u myszy czy szczurów rozwój zębów przebiega inaczej niż u człowieka i nie następuje wymiana uświężenia. Zwierzęta te mają jeden komplet zębów przez całe życie, a ich ścieranie jest rekompensowane stałym odkładaniem cementu w okolicy okołowierzchołkowej. Dlatego badania prowadzone na myszach bądź szczurach powinny być potwierdzone na ssakach wyższych, aby można było dokładnie oszacować efekt, jaki może wystąpić u homo sapiens (58).

Utrzymanie efektu leczenia

Adachi i wsp. badali wpływ lokalnej podaży bisfosfonianów na utrzymanie efektu dopoliczowego przesunięcia pierwszych zębów trzonowych u szczurów (44). Gdy zęby były już odpowiednio przemieszczone, usunięto źródło siły i rozpoczęto lokalne iniekcje risedronianu. Po stronie badanej przesunięcie było uważane tylko podczas pierwszych trzech dni. Autorzy uważają, że przemieszczenie po zaprzestaniu działania siły przez pierwsze 24 godziny nie ma podłoża w resorpcji kości wyrostka zbodłołowego, lecz jest efektem odbicia skompresowanych wcześniej więzadeł. Efekt inhibicji ruchu zęba do pozycji przed badaniem został potwierdzony na podstawie analizy pomiarów.

Inne potencjalne zastosowanie bisfosfonianów badali Lee i wsp., analizując wpływ tej grupy leków na przebudę szwu podniebieniowego po przeprowadzeniu metody szybkiej ekspansji szczęki (RME) (59). Autorzy wyodrębnili cztery grupy szczurów: pierwszą z nich stanowiły zwierzęta, którym zaraz po usunięciu aparatu do poszerzenia szczęki aplikowano s.c. roztwór soli fizjologicznej (S), drugiej grupie during the development of a tooth root. This may be relevant in the case of orthodontic treatment of children in whom bisphosphate therapy has been started at a very early age, e.g. in the treatment of osteogenesis imperfecta that has already been mentioned. There are currently no reports regarding structural changes in cement related to BP pharmacotherapy in this group of patients.

It should also be noted that in mice or rats, the development of teeth is different than in humans, and there is no tooth replacement. These animals have one set of teeth throughout their lives, and their wear and tear are compensated for by the permanent cement deposition in the periapical area. Therefore, the outcomes of studies on mice or rats should be confirmed by studies on higher mammals in order to provide a more accurate estimate of the effects that may be observed in homo sapiens (58).

Maintaining treatment effects

Adachi et al. studied the effects of local supply of bisphosphonates on the maintenance of the buccal shift of first molars in rats (44). Once the teeth had correctly been moved, the source of force was removed, and local injections of risedronate were initiated. On the study side, the movement was only noticeable during the first three days. The authors believe that for the first 24 hours after the force is no longer applied, the movement is not based on the alveolar bone resorption, but is an effect of the reflection of previously compressed ligaments. The effects of inhibition of tooth movements to a position before the study were confirmed by the analysis of measurements.

Lee et al. studied other potential uses of bisphosphonates and analysed the effects of this group of medications on palatal suture remodelling after rapid maxillary expansion (RME) (59). The authors identified four groups of rats: the first included animals that were treated with saline administered SC immediately after the removal of a maxillary expansion device (S), the second group was treated with SC etidronate (B), while in the third and fourth groups the maxillary expansion device was left in a passive form for 7 days as retention, and the injections of saline (SR) and etidronate (BR) were started after its removal. Seven days later, the maxillary width was measured and compared with the results obtained immediately after RME was completed. The least stable results were obtained in the S group, where the relapse rate was 54%. When saline was replaced with bisphosphate, it resulted in a decrease of a relapse rate to 32%. The best results were obtained in groups where weekly retention to maintain outcomes was applied after the completion of maxillary expansion – in the SR group, the relapse rate was 25% and in BR – 10%.

The results of conducted studies lead to the conclusion that during the treatment which is burdened with a high risk of a relapse, we should strive to support it with a chemical form of maintaining the effects of active therapy apart from mechanical retention.
podawano s.c. roztwór etidronianu (B), natomiast w grupach trzeciej i czwartej pozostawiono aparat poszerzający szczękę w formie biernej na 7 dni jako retencję i dopiero po jego usunięciu rozpoczęto iniekcje – odpowiednio soli fizjologicznej (SR) i etidronianu (BR). Po siedmiu dniach wykonano pomiary szerokości szczęki i porównano je z wynikami otrzymanymi zaraz po zakończeniu RME. Najmniej stabilne rezultaty otrzymano w grupie S, w której nawrót wyniósł 54%. Zamiana soli fizjologicznej na bisfosfonian spowodowała spadek recydwy do 32%. Najlepsze wyniki otrzymano w grupach, w których po zakończeniu poszerzania szczęki zastosowano tygodniową retencję utrzymaną wyników – w grupie SR nawrót wyniósł 25%, a w BR – 10%.

Rezultaty prowadzonych badań prowadzą do wniosku, że podczas leczenia, które jest obarczone dużym ryzykiem recydwy należy, oprócz retencji mechanicznej, dążyć do wspomagania jej chemiczną formą utrzymania efektu terapii aktywnej.

Wnioski

Lekarz ortodonta powinien mieć świadomość potencjalnych trudności podczas leczenia wady zgryzu u osób przyjmujących bisfosfoniany i odpowiednio zaplanować swoje działania, aby nie narazić pacjenta na możliwe powikłania. Należy kierować się szczególną ostrożnością przy podejmowaniu decyzji o ekstrakcjach ze wskazań ortodontycznych, z uwagi na ryzyko wystąpienia w tej grupie pacjentów szeroko opisanego w piśmiennictwie martwicy kości szczęk (BRONJ).

Odpowiednio wykorzystana wiedza na temat specyfiki bisfosfonianów może stanowić w rękach lekarza przydatne narzędzie mogące uchronić go od niezadowalających rezultatów leczenia, do których zalicza się niecałkowite zamknięcie luk poekstrakcyjnych, przewagę nachylenia koron w korzyści przemieszczenia osiowego zębów, zwolniony przebieg ruchu zęba pod wpływem siły ortodontycznej. Obowiązkiem ortodonty jest poinformowanie pacjenta o odmiennym charakterze leczenia oraz o jego ograniczeniach spowodowanych farmakoterapią bisfosphonianami.

Stosowanie BP miejscowo w celu osiągnięcia korzyści w terapii ortodontycznej jest obecnie na etapie badań na zwierzętach – głównie w małych grupach myszy i szczurek. Co oznacza, że dopóki rezultaty oraz dawkowanie nie zostaną w pełni przebadane, nie należy ich stosować w praktyce klinicznej. Aby zwiększyć przewidywalność i wiarygodność wyników trzeba prowadzić dłuższy okres obserwacji, zwiększyć liczebność grup oraz wdrożyć badania na ssakach wyższych.

Conclusions

Orthodontists should be aware of potential difficulties when treating malocclusions in people taking bisphosphonates and plan their actions accordingly so as not to expose patients to possible complications. Special care should be taken when deciding on extractions for orthodontic indications, because of the risk of bisphosphonate-related osteonecrosis of the jaw (BRONJ) in this group of patients, which is widely reported in the literature.

Properly used knowledge regarding the specificity of bisphosphonates can be a useful tool in the hands of a dentist because it can protect them from unsatisfactory treatment outcomes, such as incomplete closure of post-extraction spaces, predominant crown tipping in favour of axial displacement of teeth, slower course of tooth movement under the influence of an orthodontic force. The orthodontist must inform a patient about a different nature of treatment and its limitations due to bisphosphonate pharmacotherapy.

The use of topical BPs for the benefit of orthodontic therapy is currently at the stage of animal studies – mainly in small groups of mice and rats. This means that until the outcomes and dosage have been thoroughly studied, they should not be used in clinical practice. To increase the predictability and reliability of outcomes, a longer follow-up period should be introduced, the sample size should be increased, and studies on higher mammals are needed.
Bisphosphonates and orthodontic treatment – a literature review

Piśmiennictwo / References

1. Bartzela T, Türp JC, Motschall E, Maltha JC. Medication effects on the rate of orthodontic tooth movement: A systematic literature review. Am J Orthod Dentofacial Orthop 2009; 135: 16-26.

2. Lotwala RB, Greenlee GM, Ott SM, Hall SH, Huang GJ. Bisphosphonates as a risk factor for adverse orthodontic outcomes. A retrospective cohort study. Am J Orthod Dentofacial Orthop 2012; 142: 625-34.

3. Krieger E, d’Hoedt B, Scheller H, Jacobs C, Walter C, Wehrbein H. Orthodontic treatment of patients medicated with bisphosphonates - a clinical case report. J Orofac Orthop 2013; 74: 28-39.

4. Zahrowski JJ. Optimizing orthodontic treatment in patients taking bisphosphonates for osteoporosis. Am J Orthod Dentofacial Orthop 2009; 135: 36-74.

5. Czyżykowski R, Krakowska M, Potemski P. Bisphosphonates for the treatment of patients with cancer. Oncol Clin Pract 2017; 13: 268-74.

6. Watts NB. Treatment of osteoporosis with bisphosphonates. EMCNA 1998; 27: 419-39.

7. Putranto R, Obá Y, Kaneko K, Shiyaosono A, Moriyama K. Effects of bisphosphonates on root resorption and cytokine expression during experimental tooth movement in rats. Orthod Waves 2008; 67: 141-9.

8. Drake M, Clarke B, Khosla S. Bisphosphonates: Mechanism of Action and Role in Clinical Practice. Mayo Clinic 2008; 83: 1032-45.

9. Cremers S, Drake MT, Ebetino FH, Bilezikian JP, Russell RGG. Pharmacology of Bisphosphonates. Br J Clin Pharmacol 2019; 85: 1052-62.

10. Tosteson ANA, Grove MR, Hammond CS, Moncur MM, Ray T, Hebert GM, Pressman AR, Ettinger B. Early discontinuation of treatment for osteoporosis. Am J Med 2003; 115: 209-16.

11. Woszuk K, Lisowska B, Prusinowska A. Alendronian, ryzedronian i ibandronian w leczeniu osteoporozy. Geriatria 2012; 6: 1-10.

12. Drook M, Krzakowski M, Jaros J, Kraj M, Krzemieniecki K, Pieńkowski T, Utracka-Hutka B, Jassem J, Suchy A, Wojtukiewicz M, Ziobro M. Bisfosfoniany w zapobieganiu i kontroli zdarzeń kostnych u chorych z przerzutami nowotworowymi. Med Ortop 2007; 131: 311-20.

13. Corso A, Varettoni M, Zappasodi P, Kersy C, Mangiacavallo S, Pica G, Lazzarino M. A different schedule of zoledronic acid can reduce the risk of the osteonecrosis of the jaw in patients with multiple myeloma. Leukemia 2007; 21: 1545-8.

14. Senel FC, Kadioglu Duman M, Mucu E, Cankaya M, Pampu AA, Ersoz S, Gunhan O. Jaw bone changes in rats after treatment with zoledronate and pamidronate. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010; 109: 385-91.

15. Salvatore L. Ruggiero. Bisphosphate-related osteonecrosis of the jaw: an overview. Am N Y Acad Sci 2011; 1218: 38-46.

16. Zahrowski J. Bisphosphate treatment: An orthodontic concern calling for a proactive approach. Am J Orthod Dentofacial Orthop 2007; 131: 311-20.

17. Corso A, Varettoni M, Zappasodi P, Kersy C, Mangiacavallo S, Pica G, Lazzarino M. A different schedule of zoledronic acid can reduce the risk of the osteonecrosis of the jaw in patients with multiple myeloma. Leukemia 2007; 21: 1545-8.
34. Schwartz S, Tsipouras P. Oral findings in osteogenesis imperfec-
ta. Oral Surg Oral Med Oral Pathol 1984; 57: 161-7.
35. Bhatt RN, Hibbert SA, Munns CF. The use of bisphosphonates in
children: Review of the literature and guidelines for dental man-
agement. Aust Dent J 2014; 59: 9-19.
36. Lam DK, Sándor GKB, Holmes HI, Evans AW, Clokie CM. Bisphos-
phonate associated osteonecrosis of the jaws: a review for dent-
iststs. J Can Dent Assoc 2007; 73: 171-6.
37. Duarte NT, Rech BO, Martins IG, Franco JB, Ortega KL. Can chil-
dren be affected by bisphosphonate-related osteonecrosis of the
jaw? A systematic review. Int J Oral Maxillofac Surg 2019;
49: 183-91.
38. Ngan KK, Bowe J, Goodger N. The risk of bisphosphonate-related
osteonecrosis of the jaw in children. A case report and literature
review. Dent Update 2013; 40: 733-8.
39. Schwartz S, Joseph C, Iera D, Vu DD. Bisphosphonates, osteone-
crosis, osteogenesis imperfecta and dental extractions: A case
series. J Can Dent Assoc 2008; 74: 537-42.
40. Cheng A, Sambrook P, Goss A. Use of bisphosphonates in chil-
dren. Aust Dent J 2014; 59: 405.
41. Verna C, Dalstra M, Melsen B. The rate and the type of orthodon-
tic tooth movement is influenced by bone turnover in a rat mod-
el. Eur J Orthod 2000; 22: 343-52.
42. Choi J, Baek SH, Lee JI, Chang YI. Effects of clodronate on early
alveolar bone remodeling and root resorption related to ortho-
dontic forces: A histomorphometric analysis. Am J Orthod Den-
tofacial Orthop 2010; 138: 548e1-8.
43. Fujimura Y, Kitaura H, Yoshimatsu M, Eguchi T, Kohara H, Morita
Y, Yoshida N. Influence of bisphosphonates on orthodontic tooth
movement in mice. Eur J Orthod 2009; 31: 572-7.
44. Adachi H, Igarashi K, Mitani H, Shinoda H. Effects of Topical Ad-
ministration of a Bisphosphonate (Risedronate) on Orthodontic
Tooth Movements in Rats. J Dent Res 1994; 73: 1478-86.
45. Kaipatur N, Wu Y, Adeeb S, Stevenson T, Major P, Doschak M. Im-
pact of bisphosphonate drug burden in alveolar bone during
orthodontic tooth movement in a rat model: A pilot study. Am J
Orthod Dentofacial Orthop 2013; 144: 557-67.
46. Rinchuse DJ, Rinchuse DJ, Sosovicka MF, Robison JM, Pendleton
R. Orthodontic treatment of patients using bisphosphonates: A
report of 2 cases. Am J Orthod Dentofacial Orthop 2007; 131:
321-6.
47. Lotwala RB, Greenlee GM, Ott SM, Hall SH, Huang GJ. Bisphos-
phonates as a risk factor for adverse orthodontic outcomes: A
retrospective cohort study. Am J Orthod Dentofacial Orthop
2012; 142: 625-34.