INTRODUCTION

Cancer of the oral cavity is the fifth most common cancer in the world. The annual incidence of oral cancer is approximately 29,370 cases in the United States. Oral cancer was the fourth important cause of death among males and sixth among both sexes in various cancers. Leukoplakia, erythroplakia, oral submucosal fibrosis (OSMF), and lichen planus are common premalignant lesions of the oral cavity. The most frequent etiological factors are tobacco use, consumption of alcohol, chewing of betel quid containing areca nut and solar rays.

Objective: To study details of the premalignant lesions, including their incidence, etiological factors and management at a tertiary care teaching hospital.

Materials and Methods: This is a retrospective observational study conducted between December 2018 to January 2021. There were 652 patients with oral cavity premalignant lesions enrolled in this study.

Result: There were 383 male and 275 females patients with a male to female ratio of 1.39:1. The majority of the patients with oral cavity premalignant lesions are in the age group 50 to 60 years. Out of 658 patients, 262 had oral leukoplakia, 149 had OSMF, 48 erythroplakia, 52 oral candidiasis and 25 had oral erythroleukoplakia.

Conclusion: Early diagnosis and prompt treatment are important steps for managing the premalignant lesions of the oral cavity as late stages may progress into severe dysplasia and even carcinoma in situ and/or squamous cell carcinoma in the oral cavity.

Key Words: Premalignant lesions, Oral cavity, Leukoplakia, Erythroplakia, Oral submucosal fibrosis, Oral cancer
clinical presentations and histopathological reports. The premalignant lesions of the oral cavity may show changes such as squamous hyperplasia, mild dysplasia, moderate dysplasia, severe dysplasia and carcinoma in situ. Early detection of the oral cavity premalignant lesions is very important for getting a successful outcome. Therefore, different modalities such as oral cavity examination, supravital staining, cytology and optical technologies like spectroscopy, fluorescence spectroscopy, optical tomography, narrow-band imaging and multimodal optical imaging can be utilized.²

The treatment options include change of lifestyle factors like cessation of tobacco and alcohol, medication with retinoid or antimiycotics and surgical treatment like excision, cryosurgery and laser.⁴ The outcomes of the treatment options vary, and long-term follow-up studies are also few in the literature. After surgical excision, the chance of recurrence and cancer development at the excision sites has also been reported. However, in the case of low to moderate grade, premalignant lesions of the oral cavity are often treated observation as well as ablation. Although there is advancement in the surgical technique, resection of the tissue from the oral cavity may negatively affect the mechanisms of swallowing and speech. Beta-carotene and retinoids are commonly used antioxidants for chemoprevention of the oral cavity premalignant lesions.³ Chemoprevention should be advised if the premalignant lesions and their sites in the oral cavity or medical status would make difficult surgical removal.⁵ The incidence, etiological factors and management of the oral cavity premalignant lesions are less studied in this region of the world. So, this study attempts to evaluate the details of the premalignant lesions of the oral cavity.

**MATERIALS AND METHODS**

This is a single institutional prospective study from December 2018 to January 2021. This study was approved by our institutional ethics committee (IEC) with reference number IEC/IMS/SOA/112/2.12.2017. Patients with a clinical diagnosis of the premalignant lesions of the oral cavity of our tertiary care institute were enrolled in this study. There were 658 patients with oral cavity premalignant lesions who participated in this study. All the patients’ data with oral cavity premalignant lesions were collected about age, sex, site of involvement and history of addiction. Patient records were compiled from the department of otorhinolaryngology and were retrieved manually. In this study, all the procedures were done with the involvement of human participants as per ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its later amendments. Detailed clinical examination of the oral cavity was done in each participating patient of this study. The patient’s habits such as addiction to alcohol, smoking, betel nut chewing or tobacco chewing were evaluated. The exact locations of the premalignant lesions of the oral cavity were assessed, such as buccal mucosa, the floor of the mouth, tongue, retro-molar area, mandibular mucosa and sulcus and maxillary mucosa and sulcus.

Patients diagnosed histopathologically as malignancy of the oral cavity or those who underwent surgery or radiotherapy in the past were excluded from this study. All of the cases underwent treatment, both surgical and conservative. All the premalignant lesions were biopsied before confirmation of the diagnosis. The surgical treatment options included laser (Lumenis CO₂ laser, New York) and coblation (Smith Nephew, Watford, United Kingdom). The premalignant lesions of the oral cavity, such as leukoplakia (Fig.1), erythroplakia (Fig.2), erythroleukoplakia, were excised with surgical interventions such as laser and coblation. The conservative treatment included maintaining good oral hygiene with mouth antiseptic gargles, anti-oxidants and cessation of smoking, alcohol, betel nut chewing, spicy food, tea and coffee. After the immediate postoperative period, the patients were examined every three months for the first year and every six months in the next year.

**Statistical Analysis**

In this study, all the data were recorded and analyzed using Statistical Package for Social Science (SPSS) software, v20.

**RESULT**

There were 658 patients diagnosed with premalignant lesions in the oral cavity. Out of 658 cases, 383(58.20%) were males, and 275(41.79%) were female. The male to female ratio is 1.39:1. The mean age of the patients was 53.40 years and age ranged from 20 to 72 years. The majority of the patients who participated in this study belonged to the 51 to 60 years of age group(Table.1). Out of the 658 patients, 502 patients (76.29%) had no complaints, whereas 110(16.71%) had a burning sensation in the throat and 24(3.64%) had foreign body sensation in the throat and odynophagia in 22(3.34%) patients. The majority of the patients (76.29%) with premalignant lesions of the oral cavity were asymptomatic. Out of the 658 patients with premalignant lesions, leukoplakia constitutes 39.82%, OSMF (Fig.3) constitutes 22.64%, lichen planus constitutes 18.54%, and oral candidiasis constitutes 7.90%(Table 2). Leukoplakia is the most common premalignant lesion of the oral cavity in this study. The most common addictions or habits of the patients associated with premalignant lesions of the oral cavity was consumption of alcohol (29.17%) followed by smoking (17.62%) and then betel nut chewing (15.50%)(Table 3). The typical locations of the oral cavity premalignant lesions include buccal mucosa (31.30%), the floor of mouth (25.53%), tongue (17.93%) (Table.4). Out of 262 cases of leukoplakia, 144 cases under-
Oral lichen planus of the oral cavity may have a higher risk for malignant transformation and pain, which can be exacerbated by trauma, spicy, or thin, homogenous or thick, granular or verruciform and speckled or erythroleukoplakia. Each type of leukoplakia lesion has a different potential for malignant transformation. In this study, the most common premalignant lesion of the oral cavity was leukoplakia followed by OSMF and lichen planus.

Erythroplakia is defined as a red patch in the oral cavity that cannot be characterized clinically or pathologically as any other definable disease. Erythroplakia appears as red, discrete, velvety macule or plaque, <1.5cm in diameter on the floor of the oral cavity, soft palate or buccal mucosa. The prevalence of erythroplakia is lower than leukoplakia and constitutes 0.02% to 0.83%. Tobacco chewing and alcohol consumption are two strong risk factors for the development of erythroplakia in the oral cavity. A high prevalence of p53 mutations is reported for the origin of this oral erythroplakia. However, the erythroplakia has a higher risk for malignant transformation than oral leukoplakia. In this study, the patients with oral cavity erythroplakia include 7.29%.

Erythroleukoplakia carries a higher risk for malignant transformation in comparison to other potentially premalignant lesions such as leukoplakia, lichen planus and OSMF. The histopathological study of the erythroplakia or erythroleukoplakia often show squamous cell carcinoma in situ or invasive squamous cell carcinoma. OSMF is a condition that is characterized by alteration in the fibroelastic qualities of the submucosal soft tissues of the oral cavity. Acrea nut with or without tobacco chewing often acts as an etiological agent for OSMF. Betel quid and Gutkha are commonly available products in the market which contain areca nuts. OSMF is documented to malignant transformation at a rate of 7 to 30%. In this study, OSMF is the second most common premalignant lesion of the oral cavity, which constitutes 22.64% among all types of the premalignant lesions found in the oral cavity.

Oral lichen planus is a premalignant lesion with characteristic lacy, white, reticular, which is classically found in the buccal mucosa. Oral lichen planus of the oral cavity may be found clinically as six different subtypes such as popular, reticular, plaque-like, atrophic, erosive and bullous types. The most common type of oral lichen planus is a reticular pattern which shows as fine white striae called ‘Wickham’s striae’. Typically these lesions are asymptomatic and may present bilaterally and symmetrically. The erosive pattern is often found as irregular erosion or ulceration covered by a fibrinous plaque or pseudo-membrane. Both erosive and atrophic types are usually associated with a burning sensation and pain, which can be exacerbated by trauma, spicy, hot or acidic diet. The atrophic and erosive varieties of the oral lichen planus have a greater chance of malignant transformation in comparison to other types. In this study, oral lichen planus was the third most common oral cavity pre-
malignant lesion, which constitutes 18.54% of all varieties of premalignant lesions of the oral cavity. Oral candidiasis is an opportunistic infection of the oral cavity by Candida species, the commonest being *Candida albicans*. This lesion is considered a premalignant lesion of the oral cavity. There are three types of oral candidiasis such as acute candidiasis, chronic candidiasis and angular cheilitis. The risk factors for oral candidiasis include impaired salivary gland function, dentures, drugs, high carbohydrate diets, old age, smoking and diabetes mellitus. 17,18 In this study, patients with oral candidiasis include 7.90%.

The exact cause for the development of the premalignant lesions of the oral cavity is not well-known. 19 The risk factors associated with premalignant lesions of the oral cavity are tobacco chewing, cigarette smoking and alcohol. 20 Tobacco chewing is an important factor resulting in the OSMF and erythroplakia. Cigarette smoking may be a very important risk factor for leukoplakia. In this study, 17.62% of patients were addicted to cigarette smoking. Tobacco chewing is important to risk factors for the development of the oral premalignant lesions and may be a major source for transformation to the malignancy in the oral cavity in the Indian population. Betel nut chewing is an important aetiology for the development of the premalignant diseases of the oral cavity. 21 The important chemical components of the betel nut are polyphenols, tannins and alkaloids. Arecoline is the primary alkaloid present in the betel nut. 22 Regular chewing of the betel nut may induce chronic irritation and inflammation of the mucosal lining of the oral cavity. In this study, 15.50% of patients were addicted to betel nut chewing. Alcohol consumption may increase the risk by 1.5 fold for oral leukoplakia, by two folds for OSMF and three folds for erythroplakia. 23 In this study, tobacco chewing, cigarette smoking and alcohol were important risk factors for the development of the premalignant lesions of the oral cavity. The human papillomavirus (HPV) may also play a role in the etiopathogenesis of the premalignant lesions of the oral cavity. 24

Timely diagnosis and treatment of the premalignant lesions of the oral cavity help in the prevention of the development of squamous cell carcinoma in the oral cavity. 25 The diagnosis is usually confirmed by the biopsy for evaluation of the degree of dysplasia. The treatment modalities for oral cavity premalignant lesions are lifestyle factors like cessation of tobacco and alcohol, medical treatments with retinoid or antimycotics, surgical excision, laser surgery and cryosurgery. 26 The treatment outcomes of these treatment options appear to vary and require long-term follow up. After surgical treatment, the chances of recurrence and malignant transformation have been documented as 10-20% and 3-9%, respectively. 27 But there is no randomized clinical study reported so far. 28 The standard gold treatment for clinically high-grade premalignant lesions of the oral cavity includes surgical excision or laser ablation. However, the low-grade premalignant lesions may be treated with observation. Despite advancement in surgical techniques, the resection of the soft tissues of the oral cavity may cause a negative impact on deglutition, speech and swallowing.

The traditional treatment of the premalignant lesions of the oral cavity such as leukoplakia, erythroplakia, and erythro- leukoplakia is total surgical excision, which may cause a scar formation in case of the large lesion. 29 Another treatment option is photodynamic therapy which helps to excise the premalignant lesions of the oral cavity as it can be used repeatedly without cumulative side effects and cause little or no scar formation. 30 Currently, there are three treatment modalities for OSMF such as surgery, physical and medical. The surgical treatment is done to improve the mouth opening and movements. The physical treatment includes a physical exercise regimen, splints or different mouth opening devices and microwave diathermy. There are several medical treatments which include steroids, interferon-gamma, placental extracts, beta carotene, lycopene vitamins, immunized milk, collagenase, hyaluronidase, chymotrypsin and aloe vera. 31 In this study, out of 149 cases of OSMF, 32 cases underwent surgical treatment for mouth opening and the rest were treated with topical steroid injection, anti-oxidant vitamins and mouth opening exercises.

There is the possibility of recurrence of the premalignant lesions after its treatment, so monitoring of the patient should be needed. The important part of the treatment is always advise the patient to stop the habits of betel nut chewing, gutkha chewing, cigarette smoking and alcohol consumption. Mass screening of the oral cavity should be done for early detection of the premalignant lesions and prompt treatment. There should be intensive public education for changing the lifestyle for preventing such premalignant lesions of the oral cavity. The legislative measures like the control on the production or banning and restriction on the sale of tobacco products and alcohol should be strictly applied.

**CONCLUSION**

Premalignant lesions of the oral cavity often present with visibly abnormal areas on the mucosal lining and may result in significant anxiety of the patients. The diagnosis of the premalignant lesions is based on the clinical presentations and histopathological report. Clinicians should perform the oral cavity examination properly and alert for the patient’s addiction to smoking, alcohol consumption and betel nut chewing. The suspicious lesions in the oral cavity are usually biopsied to evaluate for dysplasia. The treatment of choice is surgery, and it should be initiated early for preventing malignant transformation. Oral cancer does not originate as an isolated cellular phenomenon, rather as an anaplastic tendency affecting many cells at once and leads to multifocal develop-
ment of cancer at various rates in response to carcinogen like tobacco. So, multiple primary cancers and recurrence can occur after the complete excision of oral cancer.

ACKNOWLEDGEMENT

All the authors are thankful to the founder president of the Siksha ‘O’ Anusandhan University, Prof. Manoj Ranjan Nayak for his constant encouragement towards research.

Funding: No funding resource

Conflict of Interest: Nil

Authors contributions:

SKS: Concept, data collection, critical revision, drafting; RA: Data collection, drafting; SS: Drafting, statistics; DK: Data collection, drafting.

REFERENCES

1. Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A, et al. Cancer statistics. 2005. CA Cancer J Clin. 2005;55(1):10-30.
2. Warnakulasuriya S. Clinical features and presentation of oral potentially malignant disorders. Oral Surg Oral Med Oral Pathol Oral Radiol. 2018;125(6):582-90.
3. Depta P, Swain SK, Sahu MC, Delta FM, Mohanty JN. A review on oral candida as commensals and opportunistic pathogen. Indian J Med Forensic Med Toxicol. 2020;14(4):8381-8.
4. Van der Waal I. Potentially malignant disorders of the oral and oropharyngeal mucosa; terminology, classification and present concepts of management. Oral Oncol. 2009;45(4-5):317-23.
5. Wu JH, Zhou Y, Luo XY. Role of narrow-band imaging in the diagnosis of premalignant and malignant lesions of the oral cavity. Chines J Otorhinolaryngol Head Neck Surg. 2020;55 (2):104-8.
6. Fitzpatrick SG, Cohen DM, Clark AN. Ulcerated lesions of the oral mucosa: clinical and histologic review. Head Neck Pathol. 2019;13(1):91-102.
7. Ahmad MS, Ali S A, Ali A S, Chaubey K K. Epidemiological and etiological study of oral submucous fibrosis among gutkha chewers of Patna, Bihar, India. J Indian Soc Pedod Prev Dent. 2006;24(2):84-9.
8. Petti S. Pooled estimate of world leukoplakia prevalence: a systematic review. Oral Oncol. 2003;39(8):770-80.
9. Gupta PC, Mehta FS, Dafftry DK, Pindborg JJ, Bhonsle RB, Jalnawalla PN, et al. Incidence rates of oral cancer and natural history of oral precancerous lesions in a 10-year follow-up study of Indian villagers. Community Dent Oral Epidemi. 1980;8(6):283-333.
10. Swain SK, Depta P. Nonsurgical treatment of oral cavity leukoplakia. Matrix Sci Med. 2020;4(4):91-5.
11. Mortazavi H, Baharvand M, Mehdipour M. Oral potentially malignant disorders: an overview of more than 20 entities. J Dent Res Dent Clin Dent Prospect. 2014;8 (1):6-14.
12. Reichart PA, Philipson HP. Oral erythroplakia. a review. Oral Oncol. 2005;41(6):551-61.
13. Qin GZ, Park JY, Chen SY, Lazarus P. A high prevalence of p53 mutations in premalignant oral erythroplakia. Int J Cancer. 1999;80(3):345-8.
14. Bouquet JE, Ephros H. Erythroleukoplakia: The dangerous red mucosa. Pract Periodontics Aesthet Dent. 1995;7(6):59-67.
15. Tilakaratne WM, Klinikowski MF, Saku T, Peter TJ, Warnakulasuriya S. Oral submucous fibrosis: Review on aetiology and pathogenesis. Oral Oncol. 2006;42(6):561-8.
16. Farhi D, Dupin N. Pathophysiology, etiologic factors, and clinical management of oral lichen planus, part I: facts and controversies. Clin Dermatol. 2010;28(1):100-8.
17. Akpan, Morgan R. Oral candidiasis. Postgrad Med J. 2002;78(922):455-9.
18. Swain SK, Nahak B, Sahu MC. Fungal laryngitis in asthmatic boy treated with inhalation corticosteroids: A case report. Pediatr Pol. 2017;92(4):453-6.
19. Vlková B, Stanko P, Minárik G, Tóthová L, Szemes T, Baňasová L, et al. Salivary markers of oxidative stress in patients with oral premalignant lesions. Arch Oral Biol. 2012;57(12):1651-6.
20. Swain SK, Behera IC, Mohanty JN. Laryngeal manifestation due to smoking among the pediatric age group-Our experiences at an Indian teaching hospital. Arch Med Health Sci. 2019;7(2):186-90.
21. Gupta PC, Warnakulasuriya S. Global epidemiology of areca nut usage. Addict Biol. 2002;7(1):77-83.
22. Chang YC, Hu CC, Tseng TH, Tai KW, Lii CK, Chou MY. Synergistic effects of nicotine on arecoline-induced cytotoxicity in human buccal mucosal fibroblasts. J Oral Pathol Med. 2001;30 (8):458-64.
23. Thomas G, Hashibe M, Jacob BJ, Ramadas K, Mathew B, Sankaranarayanan R, et al. Risk factors for multiple oral premalignant lesions. Int J Cancer. 2003;107(2):285-91.
24. Sciubba JJ. Oral leukoplakia. Crit Rev Oral Biol Med. 1995;6(1):147-60.
25. Swain SK, Sahu MC. Isolated vocal cord aspergillosis in a professional flute player–A case report. Polish Ann Med. 2019;23(2):161-4.
26. Holmstrup P, Vedtofte P, Reibel J, Stoltze K. Long-term treatment outcome of oral premalignant lesions. Oral Oncol. 2006;42(5):461-74.
27. Schoelch ML, Sekandari N, Regezi JA, Silverman Jr S. Laser management of oral leukoplakias: a follow-up study of 70 patients. Laryngosc. 1999;109(6):949-53.
28. Lodi G, Sardella A, Bez C, Demarosi F, Carrassi A. Interventions for treating oral leukoplakia. Cochrane Database Syst Rev. 2004;19(3):1-21.
29. Vedtofte P, Holmstrup P, Hjorting-Hansen E, Pindborg JJ. Surgical treatment of premalignant lesions of the oral mucosa. Int J Maxillofac Surg. 1987;16(6):656-64.
30. Dilmans DE, Fukumura D, Jain RK. Photodynamic therapy for oral lesions. Lasers Med Sci. 2002;17(5):330-7.
31. Alam S, Ali I, Giri KY, Gokkulakrishnan S, Natu SS, Faisal M, et al. Efficacy of aloe vera gel as an adjuvant treatment of oral submucous fibrosis. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;116(6):717-24.
**Premalignant lesions of the oral cavity: our experiences at a tertiary care teaching hospital of Eastern India**

**Table 1: Age wise distribution of patients along with symptoms with oral premalignant lesions**

| Age group | Male (%) | Female (%) | Total number | Percentage (%) |
|-----------|----------|------------|--------------|----------------|
| 20 to 30  | 66(58.92%) | 46(41.07%) | 112 | 17.02 |
| 31 to 40  | 82(55.40%) | 66(44.59%) | 148 | 22.49 |
| 41 to 50  | 62(57.40%) | 46(42.59%) | 108 | 16.41 |
| 51 to 60  | 112(58.33%) | 80(41.66%) | 192 | 29.17 |
| Above 60 years | 61(62.24%) | 37(37.75%) | 98 | 14.89 |

**Table 2: Different types of the premalignant lesions in the oral cavity**

| Premalignant lesions | Number of patients (n=658) | Percentage (%) |
|----------------------|-----------------------------|----------------|
| Leukoplakia          | 262                         | 39.82          |
| Oral submucous fibrosis (OSMF) | 149 | 22.64 |
| Lichen planus        | 122                         | 18.54          |
| Oral candidiasis     | 52                          | 7.90           |
| Erythroplakia        | 48                          | 7.29           |
| Erythroleukoplakia   | 25                          | 3.79           |

**Table 3: Distribution of habits of the patients with oral premalignant lesions**

| Habits                                | Number of patients | Percentage (%) |
|---------------------------------------|--------------------|----------------|
| Betel nut chewing                     | 102                | 15.50          |
| Smokers                               | 116                | 17.62          |
| Alcohol consumption                   | 192                | 29.17          |
| Both tobacco chewing and smoking      | 78                 | 11.85          |
| Both tobacco chewing and alcohol consumption | 56 | 8.51 |
| All three habits tobacco, smoking and alcohol consumption | 46 | 6.99 |
| No addiction to tobacco chewing, smoking and alcohol | 68 | 10.33 |

**Table 4: Location of the oral premalignant lesions**

| Location                              | Number of cases | Percentage (%) |
|---------------------------------------|-----------------|----------------|
| Buccal mucosa                         | 206             | 31.30          |
| Floor of mouth                        | 168             | 25.83          |
| Tongue                                | 118             | 17.93          |
| Mandibular mucosa and sulcus          | 55              | 8.35           |
| Maxillary mucosa and sulcus           | 34              | 5.16           |
| Retromolar region                     | 22              | 3.34           |
| Palate                                | 20              | 3.03           |
| Lip                                   | 12              | 1.82           |
| Bilateral involvement                 | 23              | 3.49           |

**Figure 1:** Oral cavity showing leukoplakia on the tongue.

**Figure 2:** Buccal mucosa of the oral cavity showing erythroplakia.

**Figure 3:** Oral cavity showing OSMF with trismus.