Ellagic acid (EA), a tannin was isolated from *Eucalyptus citriodora* leaves and its anti-inflammatory activity

Yu Qiujian¹ · Feng Zongcai² · Huang Liping²·³ · He Jingwei¹ · Zhou Zhongliu²·³ · Liu Fang¹

Received: 27 August 2021 / Accepted: 4 October 2021 / Published online: 23 October 2021 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract

A tannin, EA (1), and other nine non-tannins compounds, gallic acid (2), quercetin (3), myricetin (4), 3-O-methylellagic acid-4′-O-\(\alpha\)-L-rhamnopyranoside (5), quercetin-3-O-\(\beta\)-D-galactopyranoside (6), kaempferol-3-O-\(\beta\)-D-glucoside (7), quercetin-3-O-\(\beta\)-D-glucuronide (8), quercetin-3-O-rutinoside (9), 3,3′,4-tri-O-methylellagic acid-4′-O-\(\beta\)-D-glucopyranosyl (10) were isolated from a valuable medicinal plant, *Eucalyptus citriodora*. Structural identification of these compounds was conducted using \(^1\)H NMR and \(^{13}\)C NMR spectroscopy and comparing their spectral data with those previously reported in literatures. The anti-inflammatory effects of EA were evaluated in ethanol-induced acute gastric ulcer mice models in our study. The result demonstrated that the intragastric administration of EA significantly prevented the gastric ulceration caused by ethanol treatments. Especially, the gastric tissue in the middle-dose EA (100 mg/kg) showed few ulcerations with only slight focal congestion which indicated that it has a significant protective effect on gastric ulcer by increasing the IL-10 and PGE2 levels, and reducing the IL-6, TNF-\(\alpha\), GAS and COX-2 levels. In addition, the middle-dose EA has no adverse effect on liver and kidney. These findings imply that EA exerts gastroprotective effects by means of its anti-inflammatory effects and may be a potential drug for anti-ulcer treatment.

Graphical Abstract

Keywords *Eucalyptus Citriodora* · Ellagic acid · Anti-inflammatory · Anti-gastric ulcer

Supplementary information The online version contains supplementary material available at https://doi.org/10.1007/s00044-021-02806-6.

Zhou Zhongliu
zlzhou@hotmail.com

Liu Fang
mcliu@126.com

¹ School of Material Science and Engineering, South China University of Technology, 510641 Guangzhou, China

² School of Chemistry and Chemical Engineering, Lingnan Normal University, 524048 Zhanjiang, China

³ Western Guangdong Characteristic Biology and Medicine Engineering and Research Center, 524048 Zhanjiang, China
Introduction

The gastric ulcer is a common disorder with multiple causes including the infection from *Helicobacter pylori*, indiscriminate use of nonsteroidal anti-inflammatory drugs, irregular diet, excessive alcohol consumption and pepsin and gastric acid secretion and is mainly occurs in the stomach and duodenum [1]. Nowadays, it is commonly believed that gastric ulcer therapy is generally focused on inhibiting gastric acid secretion involved in suppressing the secretion of interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and stimulate mucosal defense mechanism [2]. However, many of existed medicines have side effects and limitations, including the antibiotics used to eradicate Helicobacter pylori and the proton pump inhibitors [3].

In recent years, a lot of research has been accomplished to develop natural products with anti-ulcer activity, which may provide a rich source of new anti-ulcer drugs [4]. A few plant extracts and plant-derived compounds have been identified and confirmed to have powerful anti-ulcer activity with safety [5]. Among a broad reach of natural molecules, dietary polyphenols have a variety of biological mechanisms and play a pivotal role in the treatment of gastric and duodenal ulcers.

Eucalyptus citriodora is a medicinal plant that belongs to the Myrtle family and is found in Australia and some oriental countries, especially China. *Eucalyptus citriodora* leaves extract has a variety of biological activities such as anti-bacterial, anti-fungal, anti-hyperglycemia, anti-inflammatory, and antioxidation for it contains a rich resource of health-promoting bio-active compounds such as flavonoids and polyphenol [6]. Therefore, *Eucalyptus citriodora* is used in many herbal preparations to treat a range of diseases, including colds, fever, flu and inflammations [7]. Dharawal people are Indigenous Australians and they traditionally used *Eucalyptus citriodora* leaves to treat inflammatory, wounds and fungal infections. Among the polyphenol compounds extracted from *Eucalyptus citriodora*, Ellagic acid (EA), a phenolic lactone compound, exhibits anti-inflammatory, antioxidant, hepatoprotective, and anti-mutagenic effects. EA could decrease gastric ulcer and bleeding induced by ethanol in which attributing to the enhancement of NO production [8]. Furthermore, EA have abilities to reduce stress gastric injury and inhibit gastric acid secretion significantly [9]. In the present study, we evaluated the antulcerogenic effects of different doses of EA extracted from *Eucalyptus citriodora* against ethanol-induced gastric ulcer and to investigate its effects on inflammatory cytokines, including IL-6, IL-10, TNF-α, GAS, COX-2, and PGE2. In parallel, we evaluated the effect of EA on the hepatic and nephridial by the activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and creatinine (Cr) in serum.

Results

Identification of isolated compounds

Ten compounds were isolated and identified in the 95% EtOH extracts of the *Eucalyptus citriodora* leaves (Fig. 1). These compounds were identified by spectroscopic analyses, including MS and NMR spectroscopy and comparing their spectral data with those previously reported in literature.

- **Compound 1**: Pale yellow powder. 1H NMR (400 MHz, DMSO-d6): δ 7.90 (1H, s, H-5”), 7.70 (1H, s, H-5), 5.61–5.21 (4H, m, Glu-2”, 3”, 4”, 5”), 5.17 (1H, d, J = 5.4 Hz, Glu-1”), 4.17 (3H s, 3’-OCH3), 4.11 (3H, s, 3-OCH3), 4.07 (3H, s, 4-OCH3). 13C NMR (100 MHz, DMSO-d6): δ 112.43 (C-1), 142.18 (C-2), 141.67 (C-3,3′), 152.36 (C-4), 112.79 (C-5), 113.32 (C-6), 158.89 (C-7), 113.10 (C-1′), 141.36 (C-2′), 154.79 (C-4′), 108.03 (C-5′), 114.12 (C-6′), 158.65 (C-7′), 101.71 (C-1′), 73.78 (C-2”), 77.73 (C-3”), 60.99 (C-4”), 76.93 (C-5”), 69.33 (C-6”), 60.99 (C-6”), 61.81 (3-OCH3), 62.16 (3’-OCH3), 57.25 (4-OCH3). By comparison with literature data [10], compound 1 was determined to be 3’,4-tri-O-methylellagic acid-4’-O-β-D-glucopyranosyl.

- **Compound 2**: White needle crystals. 1H NMR (400 MHz, DMSO-d6): δ 7.72 (1H, s, H-5”), 7.51 (1H, s, H-5), 5.48 (1H, s, Glu-1”), 4.94 (1H, d, J = 5.6 Hz, H-3′), 4.72 (1H, d, J = 6.1 Hz, H-4), 4.05 (3H, s, 3-OCH3), 1.15 (3H, d, J = 6.2 Hz, Glu-5”-CH3). 13C NMR (100 MHz, DMSO-d6): δ 114.67 (C-1), 136.54 (C-2), 140.53 (C-3), 153.11(C-4), 111.98 (C-5), 117.70 (C-6), 159.12 (C-7), 107.50 (C-1′), 141.74 (C-2′), 142.21 (C-3′), 146.89 (C-4′), 111.91 (C-5′), 113.40 (C-6′), 159.08 (C-7′), 100.57 (C-1′), 70.40 (C-2′), 70.53 (C-3′), 72.24 (C-4′), 70.33 (C-5′), 18.33 (C-6′), 61.40 (3-OCH3). From the comparison of these data with those reported in the literature [11], compound 2 was identified as 3-O-methyllellagic acid-4’-O-β-L-rhamnopyanoside.

- **Compound 3**: White powder. 1H NMR (400 MHz, DMSO-d6): δ 12.23 (1H, s, COOH), 9.18 (2H, s, 3,5-OH), 8.83 (1H, s, 4-OH), 6.92 (2H, s, H-2,6). 13C NMR (100 MHz, DMSO-d6) δ 167.91 (C=O), 145.86 (C-3,5), 138.44 (C-4), 120.89 (C-1), 109.17 (C-2,6). By comparison with literature data [12], compound 3 was determined to be gallic acid.

- **Compound 4**: Pale yellow powder. 1H NMR (400 MHz, DMSO-d6): δ 7.47 (2H, s, H-5,5’). 13C NMR (100 MHz, DMSO-d6): δ 108.02 (C-1,1’), 140.17 (C-2,2’), 136.84 (C-3,3’), 148.60 (C-4,4’), 110.66 (C-5,5’), 112.81 (C-6,6’), 159.63 (C-7,7’). By comparison with literature data [13], compound 4 was identified as EA.

- **Compound 5**: Yellow powder. 1H NMR (400 MHz, DMSO-d6): δ 6.45 (1H, d, J = 2.1 Hz, H-8), 6.24 (1H, d, J = 2.1 Hz, H-6), 7.59 (1H, d, J = 2.2 Hz, H-2’), 6.88 (1H,
d, J = 8.5 Hz, H-5′), 7.73 (1H, dd, J = 8.5, 2.3 Hz, H-6′), 5.43 (1H, d, J = 7.7 Hz, H-1″), 3.83–3.24 (4H, protons of galactopyranoside) 1.29 (2H, s, H-6″). 13C NMR (100 MHz, DMSO-d6): δ 156.82 (C-2), 133.89 (C-3), 177.84 (C-4), 161.66 (C-5), 99.32 (C-6), 165.33 (C-7), 94.06 (C-8), 156.58 (C-9), 104.11 (C-10), 121.51 (C-1′), 115.65 (C-2′), 149.01 (C-3′), 145.33 (C-4′), 116.35 (C-5′), 122.43 (C-6′), 102.32 (C-1″), 71.67 (C-2″), 73.65 (C-3″), 68.37 (C-4″), 76.29 (C-5″), 60.58 (C-6″). From the comparison of these data with those reported in the literature [14], compound 5 was identified as quercetin-3-O-β-D-galactopyranoside.

Compound 6: Yellow powder. 1H NMR (400 MHz, DMSO-d6): δ 12.50 (1H, s, 5-OH), 10.79 (1H, s, 7-OH), 9.60 (1H, s, 3′-OH), 9.37 (1H, s, 3-OH), 9.32 (1H, s, 4′-OH), 7.69 (1H, d, J = 2.3 Hz, H-2′), 7.55 (1H, dd, J = 8.5, 2.2 Hz, H-6′), 6.89 (1H, d, J = 8.5 Hz, H-5′), 6.42 (1H, d, J = 2.1 Hz, H-8), 6.20 (1H, d, J = 2.1 Hz, H-6). 13C NMR (100 MHz, DMSO-d6): δ 147.26 (C-2), 136.19 (C-3), 176.30 (C-4), 161.18 (C-5), 98.64 (C-6), 164.34 (C-7), 93.80 (C-8), 156.59 (C-9), 103.47 (C-10), 122.41 (C-1′), 115.52 (C-2′), 145.51 (C-3′), 148.16 (C-4′), 116.06 (C-5′), 120.43 (C-6′). By comparison with literature data [15], compound 6 was identified as quercetin.

Compound 7: Yellow powder. 1H NMR (400 MHz, Methanol-d4): δ 7.67 (1H, d, J = 2.2 Hz, H-2′), 7.65–7.61 (1H, m, H-6′), 6.87 (1H, d, J = 8.4 Hz, H-5′), 6.40 (1H, d,
J = 2.1 Hz, H-8), 6.21 (1H, d, J = 2.1 Hz, H-6), 5.10 (1H, d, J = 7.6 Hz, H-1″), 4.52 (1H, d, J = 1.7 Hz, H-1″), 1.12 (3H, d, J = 6.2 Hz, H-6″), 3.84–3.30 (10H, protons of rutinoside).

13C NMR (100 MHz, Methanol-d4): δ 157.93 (C-2), 134.21 (C-3), 177.52 (C-4), 161.78 (C-5), 98.66 (C-6), 164.96 (C-7), 93.54 (C-8), 157.14 (C-9), 104.06 (C-10), 121.79 (C-1″), 114.66 (C-2″), 144.45 (C-3″), 148.44 (C-4″), 116.27 (C-5″), 122.15 (C-6″), 103.34 (C-1″″), 75.76 (C-3″″), 70.82 (C-4″″), 76.78 (C-5″″), 67.16 (C-6″″), 101.02 (C-1″″″), 74.31 (C-2″″″), 69.99 (C-3″″″), 72.52 (C-4″″″), 68.31 (C-5″″″), 16.48 (C-6″″″). By comparison with literature data [16], compound 7 was determined to be quercetin-3-O-rutinoside.

Compounds 8: Brown yellow powder. 1H NMR (400 MHz, DMSO-d6): δ 12.51 (1H, s, H-5), 10.80 (1H, s, H-7), 9.35 (1H, s, H-4′), 9.23 (2H, s, H-3′,5′), 8.82 (1H, s, H-3), 7.25 (2H, s, H-2′,6′), 6.38 (1H, d, J = 2.1 Hz, H-8), 6.19 (1H, d, J = 2.1 Hz, H-6). 13C NMR (100 MHz, DMSO-d6): δ 147.30 (C-2), 136.33 (C-3,4′), 176.23 (C-4′), 161.19 (C-5), 98.61 (C-6), 164.33 (C-7), 93.65 (C-8), 156.54 (C-9), 103.44 (C-10), 121.24 (C-1′), 107.62 (C-2′,6′), 146.18 (C-3′,5′). By comparison with literature data [17], compound 8 was identified as myricetin.

Compounds 9: Yellow powder. 1H NMR (400 MHz, DMSO-d6): δ 12.51 (1H, s, 5-OH), 8.04 (2H, d, J = 8.9 Hz, H-2′, 6′), 6.87 (2H, d, J = 8.9 Hz, H-3′, 5′), 6.41 (1H, d, J = 2.1 Hz, H-8), 6.19 (1H, d, J = 2.0 Hz, H-6), 5.45 (1H, d, J = 8.0 Hz, H-1″), 3.45–3.23 (4H, m, Glu-H-1″, 2″, 3″, 4″, 5″). 13C NMR (100 MHz, DMSO-d6): δ 156.84 (C-2), 133.61 (C-3), 177.80 (C-4), 161.57 (C-5), 99.26 (C-6), 164.85 (C-7), 94.21 (C-8), 160.54 (C-9), 104.30 (C-10), 121.10 (C-1″), 131.44 (C-2″, 6″), 76.47 (C-4″), 75.76 (C-5″), 72.15 (C-6″), 74.36 (C-5″′), 171.05 (C-6″′). From the comparison of these data with those reported in the literature [18], compound 9 was identified as kaempferol-3-O-β-D-glucoside.

Compounds 10: Yellow powder. 1H NMR (400 MHz, DMSO-d6): δ 12.51 (1H, s, 5-OH), 7.86 (1H, s, H-2′), 7.70–7.46 (1H, m, H-6′), 6.86 (1H, d, J = 8.5 Hz, H-5′), 6.41 (1H, d, J = 2.0 Hz, H-8), 6.19 (1H, d, J = 2.1 Hz, H-6), 5.46 (1H, d, J = 8 Hz, Glu-H-1″″), 3.90–3.18 (4H, m, Glu-H-2″″, 3″″, 4″″, 5″″). 13C NMR (100 MHz, DMSO-d6): δ 157.28 (C-2″″″), 133.98 (C-3″″″), 177.84 (C-4″″″), 161.51 (C-5″″″), 99.31 (C-6″″″), 163.91 (C-7″″″), 94.33 (C-8″″″), 156.83 (C-9″″″), 104.24 (C-10″″″), 121.74 (C-1″″″), 115.78 (C-2″″″), 145.34 (C-3″″″), 149.02 (C-4″″″), 117.35 (C-5″″″), 121.15 (C-6″″″), 102.36 (C-1″″″″), 75.4 (C-2″″″″), 75.58 (C-3″″″″), 72.03 (C-4″″″″), 76.68 (C-5″″″″), 171.59 (C-6″″″″). By comparison with literature data [19], compound 10 was identified as quercetin-3-O-β-D-glucuronide.

Among the ten compounds, EA is a plant-derived polyphenol with anti-inflammatory, antioxidant, gastroprotective, hepatoprotective and anti-mutagenic effects. Its gastroprotective mechanisms in ethanol-induced acute gastric ulcers have not been specifically elucidated and described. Therefore, the anti-ulcer activities of EA were evaluated in ethanol-induced acute gastric ulcer models in KM mice.

Effect of EA on inflammatory factors in gastric ulcer tissues of mice

After administration with anhydrous ethanol, the IL-10 level in gastric tissues was significantly decreased while the IL-6 and TNF-α levels were on the contrary (P < 0.05). In addition, the IL-10 level in the gastric tissues of EA was markedly increased in comparison to that of the model group (P < 0.05 or P < 0.01), while the IL-6 and TNF-α levels were significantly reduced (P < 0.05). Obviously, the reduction of TNF-α in the middle-dose of EA was more significant than that in the low-dose and high-dose EA groups (Fig. 2).

Effects of EA on GAS, COX-2 and PGE2 in gastric ulcer tissues of mice

The serum GAS contents of model group were significantly higher than those of the normal control group, however, the COX-2 and PGE2 contents were on the contrary (P < 0.05). Additionally, the administration of middle-dose and high-dose EA showed a noticeable reduction in the GAS levels of serum (P < 0.05), while the PGE2 levels were significantly elevated compared with that of model group (P < 0.01) (Fig. 3).

Effects of EA on ALT, AST and Cr in gastric ulcer tissues of mice

The ALT, AST, and Cr activities were significantly elevated in the model group in comparison to the normal control group (P < 0.05). The ALT and AST levels in the high-dose EA group were significantly lower than that of the normal control group, model group and omeprazole group (P < 0.01). Moreover, the ALT, AST, and Cr levels in the middle-dose EA group were close to the positive control omeprazole group (P < 0.05) (Fig. 4).

Gross appearance of the gastric mucosa

The gastric mucosal membrane surface of the normal control group (Fig. 5A) was smooth and intact with no hyperemia. In model group (Fig. 5B), a number of punctual ulcers distributed in mucosa were observed. There were some hyperemia points and a small ulcer area can be found in the omeprazole group (Fig. 5C). In the EA administration group (Fig. 5D, E, F), the degree of punctual bleeding, damage of gastric mucosa, and the area of gastric ulcers in mice were attenuated, suggesting that the EA has a protective effect on ethanol-induced acute gastric ulcer in the mice.
Effects of EA on gastric lesions histology

In order to evaluate the status of gastric mucosa in ulcer mice, H&E staining was performed on stomach sections of different groups. The gastric tissue of the normal control group (Fig. 6A, a) is dense and well-structured, the mucosal layer and muscular layer are clearly visible, and there are no apparent pathological changes such as tissue hemorrhage or inflammatory cell infiltration. The model group mice (Fig. 6B, b) administrated absolute ethanol without medical therapy produced several necrotic cell fragments and a large number of infiltrated inflammatory cells. Besides, the smooth muscle structure in the model group was disordered, the superficial gastric epithelium was disrupted and exfoliated and there were vacuoles and cell damage appear in the local gastric glands. In the omeprazole group (Fig. 6C, c), the glands were arranged consistently and there is a small amount of inflammatory cell infiltration. The mice that administrated pretreatment with EA displayed significant protection of the gastric mucosa (Fig. 6D, d, e, F, f), most areas of the stomach tissue of the mice are clearly structured, the cells are arranged neatly, and the degree of gland damage is less, which is significantly enhanced versus with the model group. Among them, the gastric tissues of mice in the low-dose EA group have no difference from the normal group and the mucosal and muscle layer are clearly visible and textured, and only a few inflammatory cells were infiltrated.

Effects of EA on hepatic histology

Figure 7 shows the results of H & E staining of liver tissue in ulcer mice. The liver tissue structure of the mice in normal group (Fig. 7A, a) was complete with clear layout,
round and full hepatocytes, and obvious boundary between the liver sinusoid and liver plate. In the model group (Fig. 7B, b), the liver tissue structure of mice was still clear, however, the liver cells were loose, the liver sinusoids were narrowed, and there were significant inflammatory cell infiltration and inflammatory response. The liver tissue of the mice in the omeprazole group (Fig. 7C, c) were arranged neatly, and a small number of vacuoles could be seen, but no obvious inflammatory cell infiltration was observed. Compared with the model group, the liver tissue of mice in the EA group was intact, with no obvious liver damage, and the degree of inflammatory cell infiltration was improved in a dose-dependent manner. The low dose of EA had a significant protective effect on the liver.
Fig. 6 Effects of compound on histopathological gastric lesions in mice (HE × 100, ×200). A Normal group HE × 100, (a) Normal group HE × 200; (B) Model group HE × 100, (b) Model group HE × 200; (C) Omeprazole group HE × 100, (c) Omeprazole group HE × 200; (D) Low dose of EA HE × 100, (d) Low dose of Ellagic acid HE × 200. E Medium dose of EA HE × 100, (e) Medium dose of EA HE × 200; (F) High dose of EA HE × 100, (f) High dose of EA HE × 200. Mucosa desquamation (black arrows); Edematous mucosa (red arrows); Local disruption of gastric mucosa (yellow arrows).

Fig. 7 Effects of compound on histopathological liver lesions in mice (HE × 100, ×200). A Normal group HE × 100, (a) Normal group HE × 200; (B) Model group HE × 100, (b) Model group HE × 200; (C) Omeprazole group HE × 100, (c) Omeprazole group HE × 200; (D) Low dose of EA HE × 100, (d) Low dose of EA HE × 200. E Medium dose of EA HE × 100, (e) Medium dose of EA HE × 200; (F) High dose of EA HE × 200.
Effects of EA on nephridial histology

As shown in Fig. 8, no significant histological changes were observed in the kidney of mice in the normal group, the omeprazole group and the groups administrated with different doses of EA. The kidneys of the model group had a larger glomerulus and wider lumen of the renal tubules, and the epithelial cells of renal tubulars were markedly damaged. Therefore, EA administered to mice was safe and no drug-related toxicity was detected even at the highest doses investigated.

Discussion

It has been reported that the natural secondary metabolites found in ethno-medicinal plants have antioxidants, especially polyphenols, which have a variety of functions to counteract the free radicals and regulate oxidative stress in cells [20]. And there is growing evidence that the use of medicinal plants is an alternative for the treatment of several gastrointestinal disorders, including gastric ulcers. The bio-active natural products with gastroprotective properties and a few side effects could substitute existing synthetic drugs. EA is a common polyphenol metabolite present in many medicinal plants, fruits and vegetables. EA has been reported to have antioxidant, anti-inflammatory, anti-proliferative, anti-diabetic and anti-viral properties. Therefore, it is a very promising agent for the treatment of ulcerative colitis, cancer and diabetes [21]. Notably, EA its antioxidant property is related to most of its pharmacological activities, including reducing the lipid metabolism and altering inflammatory mediators (IL-6, IL-1β, and TNF-α) [22].

In this study, we have isolated and identified ten compounds from Eucalyptus citriodora leaves and investigated the protective effects of EA extracted from Eucalyptus citriodora leaves on ethanol-induced acute gastric ulcer in mice. The mice administrated anhydrous ethanol (0.1 mL/10 g) had produced acute gastric ulcers and inflammatory responses, such as bleeding, edema, and erosion in the gastric tissues. However, the mice pretreated with various concentrations of EA significantly caused a reduction in the gastric injury, and the pathological changes of gastric ulcer were improved considerably, especially in the middle-dose group.

Inflammation is an important pathogenesis of gastric ulcers. The inflammatory cells will be affected to overreact and produce inflammatory factors (TNF-α, IL-6, and IL-10) when the gastrointestinal tract is stimulated by alcohol [23]. The pro-inflammatory cytokine TNF-α is associated with inflammation and injury of various tissues, and it will be secreted at the onset of gastric ulcer [24]. It is reported that increasing TNF-α will lead to severe damage to gastrointestinal mucosal by stimulating the neutrophil accumulation [25]. IL-6 is a multifunctional cytokine and is a direct immune response to inflammation caused by infection and...
tissue damage [26]. During gastric ulcer, elevated IL-6 level will stimulate lymphocytes and neutrophils which result in damages [27]. IL-10 is a counter-regulatory cytokine in inflammatory responses, and it can slow down the production of pro-inflammatory cytokines to damp down inflammation [28]. In this study, the TNF-α and IL-6 levels in the gastric tissues of the absolute ethanol group significantly increased, while the IL-10 level were considerably reduced. The increased levels of TNF-α and IL-6, and the decreased level of the IL-10 indicated injury and inflammation in the gastrointestinal tissues. Reversely, the TNF-α and IL-6 levels were significantly reduced, and the level of the IL-10 were expressively increased in the gastric tissues of the ellagic acid groups. These results are concordant with those from a study carried out by Beserra et al. [29] who reported that EA reduced the pro-inflammatory cytokine IL-6 and increased the anti-inflammatory cytokine IL-10 in the ethanol-initiated acute gastric ulcer. Furthermore, the mice pretreated with EA showed a significant reduction in the degree of hemorrhagic damage and infiltration of inflammatory cells, which manifested EA has a good anti-inflammatory effect and protective effect on ethanol-induced acute gastric ulcer in the mice, especially in the middle-dose (100 mg/kg) EA group. The anti-inflammation effect of EA was more significant at the middle dose; however, the high-dose EA (200 mg/kg) showed a more positive effect on reducing the IL-6 level and increasing the IL-10 level. The exact mechanism of this effect has not figure out yet. Therefore, we proposed various hypotheses to explain this phenomenon. Firstly, EA exhibited protective effects against free radical damage in gastric ulcers, which may account for its antioxidant activity [30]. EA has the antioxidant activity of scavenging free radicals and inhibiting lipid peroxidation, which depends on EA concentration. Secondly, the high-dose EA may stimulate physiological response mechanism which can lead to the changes in many physiological pathways, thus may have adverse effects on the anti-ulcer activity [31]. Thirdly, EA is known as a good chelator, and the chelating ability is positive correlated with its concentration. So that, high-dose EA can more chelate with calcium ion in the extracellular or cytoplasm to change net concentration of free calcium. Meanwhile, the calcium gradient is associated with many signaling cascades, it means that high-dose EA can more significantly stimulate these signaling cascades to affect the potency on gastric ulcer [32].

Gastrin (GAS) is a polypeptide hormone with an important role in stimulating gastric acid secretion, intensifying cellular metabolism and increase the proliferative activity of cells in the gastrointestinal tract [33], but excessive gastric acid secretion will lead to changes in gastric mucosal permeability and accelerate the formation of gastric ulcers [34]. In this research, the level of GAS significantly increased in the anhydrous ethanol group while GAS level decreased significantly in the middle-dose EA group, and it is shown that middle-dose EA has an ability on protecting gastric mucosa by decreasing GAS level. This may be a negative feedback mechanism and we speculate that the observed decrease in plasma circulating gastrin may help to explain the protective activity of EA in the stomach injured by ethanol.

COX-2 is an important inducing enzyme triggered by a number of cytokines and inflammatory mediators present in various inflammatory cells. In the inflammatory states, induced COX-2 is primarily responsible for the synthesis of prostaglandin E2 (PGE2) [35]. PGE2 is a bio-active lipid and plays a critical role in guiding and governing various aspects of the inflammatory response. In the initial phase of the inflammatory response, PGE2 participates in the pro-inflammatory process, but in the latter phases, PGE2 exerts control over a number of mechanisms that lead to the resolution of inflammation [36]. In parallel, PGE2 is established clearly the important contributions in the protection of gastric mucosa [37]. In this study, the COX-2 contents of the model group were significantly higher than those of the normal control group while the PGE2 contents were significantly lower than those of the normal group. These data are consistent with a previous study conducted by Tu et al. [38] where absolute ethanol, administration stimulate the expressions of COX-2 and inhibit the secretion of PGE2. However, pretreated with EA in our study, the COX-2 level significantly decreased while the PGE2 level significantly increased, and both were dose-dependent. Consistent with these results, H&E staining showed that absolute alcohol induced gastric mucosal damage and inflammatory cell infiltration, while the cells in stomach tissue are arranged neatly after pre-treat with EA. These results confirmed that EA has a beneficial effect against ethanol-induced gastric injury and inflammation.

Drug toxicity is the most common cause of acute liver and kidney failure; thus, it is necessary to identify and monitor the toxicity signals during clinical practice. ALT and AST are found mainly in the liver. When the liver is damaged, ALT and AST are released into the blood, which increases serum ALT and AST concentration [39]. Therefore, the levels of ALT and AST in serum are predictive of the likelihood of drug-induced liver injury [40]. Creatinine is a cyclic anhydride of creatine and serum creatinine is the most reliable indicator of nephropathy [41–43]. In this study, the ALT, AST, and Cr activities in the low-dose and middle-dose of EA group were close to the normal control group and positive control omeprazole group. The results showed that the low-dose and middle-dose of EA has no effects on the hepatic and nephridial.
Conclusions

Eucalyptus citriodora leaves are the rich source of polyphenol and flavonoid compounds and exhibit strong antioxidant and anti-inflammatory properties, which have potential to develop the drugs of antioxidant, gastro-protective and anti-inflammatory. We have extracted and identified ten compounds from *Eucalyptus citriodora* leaves and investigated the effects on anti-ulcer and anti-inflammatory against ethanol-induced acute gastric ulcer of ellagic acid that is a polyphenol compound of extraction. The present findings evidence that middle-dose (100 mg/kg) EA have significant effect on anti-gastric ulcer and anti-inflammatory through increase the IL-10 and PGE2 levels, and reduce the IL-6, TNF-α, GAS, and COX-2 levels. Furthermore, the ALT, AST, and Cr contents in the middle-dose EA have few differences from the normal group, which indicate that it has no adverse effect on liver and kidney. These results uncover that ellagic acid may be a good candidate for development as an anti-ulcer drug.

Materials and methods

Chemical and reagent

Ethanol, petroleum ether, ethyl acetate, chloroform, Methanol and acetone were procured from Guangdong Guanghua Technology Co. Ltd. (Guangdong, China). N-BuOH was obtained from Tianjin DaMao Chemical Reagent Factory. (Tianjin, China). DIAION HP2MGL Macroporous resin was obtained from Mitsubishi. (Japan). Sephadex LH-20 was obtained from Cytiva. (America). Omeprazole (OME) was obtained from CSPC Ouyi Pharmaceutical Co. Ltd. (Hebei, China). The enzyme-linked immunosorbent assay (ELISA) kits for determination of IL-6, IL-10, TNF-α, ALT, AST, GAS, PGE2, COX-2, and Cr were obtained from Shanghai MLBIO Biotechnology Co. Ltd. (Shanghai, China). All other chemicals and reagents used were of analytical grade.

Plant material

Eucalyptus citriodora leaves was collected at the Lingnan Normal University, Guangdong, China. It was authenticated by one of the authors (Zhongliu Zhou) and a voucher specimen (EC 2020/9) was deposited at the Natural Medicinal Chemistry Lab of the university.

Extraction of plant material

The *Eucalyptus citriodora* leaves (12 kg) was dried, ground and extracted with 95% EtOH (5 × 10 L). The solution collected was concentrated under reduced pressure and then dispersed into distilled water. The solution obtained successively extracted with petroleum ether, ethyl acetate and water-saturated n-BuOH. The water-saturated n-BuOH fraction (160 g) was fractionated using DIAION HP2MGL macroporous resin column chromatography eluting with H2O/EtOH (1:0, 7:3, 5:5, 3:7, 1:19) to acquired five fractions (Fraction 1: without weighing, Fraction 2: 18 g, Fraction 3: 40 g, Fraction 4: 12 g, Fraction 5: 10 g). Fraction 3 was separated using silica gel column eluting with chloroform/MeOH/H2O (9:1:0.1, 8:2:0.2, 7:3:0.5, 6:4:1), and then was purified by Sephadex LH-20 column eluting with MeOH and LC-100 semi-preparative HPLC (C18, 10.0 × 250 mm, 5 μm) using MeOH/H2O (60:30 to 100:0) to obtain ten compounds.

Animals

The animal experiments were conducted according to the rules of animal experiment and the protocol also followed the rules of the local Animal Ethics Committee (Ethic Permit TCMF1-2014025). Forty-eight male mice (20–25 g) were purchased from the Guangdong Medical Laboratory Animal Center (Guangdong, China). The mice were placed in suitable cages with inert husk materials as bedding and were maintained under controlled environment conditions of light and dark cycle (light 12 h, dark 12 h, temperature 23 ± 2 °C and relative humidity 55 ± 10%) for a period of 1 week before starting the experiments. The animals were provided free access to water and standard chow pellets.

Experimental design

The mice were randomly assigned to six groups, containing normal group, model group, omeprazole group and high/middle/low dose of Ellagic acid. All groups successively received corresponding drugs once a day (0.1 mL/10 g) for 14 days by a gastric gavage. (Normal group and model group administrated normal saline).

Induction of acute gastric ulcer and sample collection

On the last day of giving drugs, 60 min after drug administration, the mice were not in normal group received absolute ethanol (0.2 mL/10 g) by a gastric gavage, while normal group received normal saline [44]. After 1 h, removed the eyeballs of the mice and the blood was collected under 4 °C and centrifuged at 4000 rpm for 10 min to obtain serum preserving at –20 °C for biochemical estimation. The mice were sacrificed by cervical dislocation, the stomach was removed, opened along the
greater curvature and rinsed gently in normal saline. The stomach, kidney and liver tissues were collected and rinsed with normal saline and then fixed into 4% paraformaldehyde solution, processed for histological, immunohistochemical, and biochemical assessments.

Histopathological evaluation

After the stomach, kidney and liver tissues were fixed in 4% paraformaldehyde solution for 24 h, these tissues were dehydrated using a series of alcohol, cleared in xylene and then treated with paraffin imbedding. Tissues were cut into 5 µm thickness, stained with Hematoxylin-eosin and were then treated with paraffin sections. Samples under a light microscope. The histological changes of these samples were observed using light microscopy.

Liver tissue levels in mice

The livers from the mice were processed into piece and added pre-cooled saline (5 mL/10 g) and then homogenate in the ice-bath and centrifuged under 4 °C for 10 min to obtain serum. The levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in the liver tissue were determined according to the kit instructions (Shanghai MLBIO Biotechnology Co. Ltd.).

Serum levels in mice

The level of IL-6, IL-10, TNF-α, GAS, COX-2, PGE2 and Cr in the serum were determined according to the kit instructions (Shanghai MLBIO Biotechnology Co. Ltd.).

Statistical analysis

The results from each group were calculated as mean ± standard error of mean (S.E.M.). They were analyzed by one-way analysis of variance, and the statistical evaluation between two groups was determined by LSD on SPSS 20.0. Probability (P) values < 0.05 (P < 0.05) were considered to be statistically significant.

Acknowledgements This research was financially supported by the following projects:

Funding This work was financed by the National Natural Science Foundation of China (grant nos. 11904104 and 31900297); the Lingnan Normal University-level talent project (grant no. ZL1801 and QL1401); the Natural Science Foundation of Guangdong province of China (grant no. 2018A030307037); the Yanling excellent young teacher program of Lingnan Normal University (grant no. YL20200210); the Guangdong Provincial key discipline scientific research project (2019-GDXX-0025); National Training Program of Innovation and Entrepreneurship for Undergraduates (grant no. 202010579006); the Scientific Research Project of the Administration of Traditional Chinese Medicine of Guangdong Province, China (grant no. 20211203); and the China Postdoctoral Science Foundation (grant no. 2021M690759).

Compliance with ethical standards

Conflict of interest The authors declare no competing interests.

Ethical approval All applicable international, national, or institutional guidelines for the care and use of animals were followed.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

1. Makola D, Peura DA, Crowe SE. *Helicobacter pylori* infection and related gastrointestinal diseases. J Clin Gastroenterol. 2007;41:548–58. https://doi.org/10.1097/MCG.0b013e3180303e3c.
2. Tuorkey M, Karolin K. Anti-ulcer activity of *Curcumin* on experimental gastric ulcer in rats and its effect on oxidative stress/antioxidant, IL-6 and enzyme activities. Biomed Environ Sci. 2009;22:488–95. https://doi.org/10.1016/S0895-3988(10)60006-2.
3. Lodato F, Azzaroli F, Turco L, Mazzella N, Buonfiglioli F, Zoli M, et al. Adverse effects of proton pump inhibitors. Best Pract Res Clin Gastroenterol. 2010;24:193–201. https://doi.org/10.1016/j.bpc.2009.11.004.
4. Falcao HS, Mariath IR, Diniz MF, Barbosa-Filho JM. Plants of the American continent with antulcer activity. Phytomedicine. 2008;15:132–46. https://doi.org/10.1016/j.phymed.2007.07.057.
5. Jesus NZ, Falcao HS, Lima GR, Caldas Filho MR, Sales IR, Gomes IF, et al. *Hyptis suaveolens* (L.) Poit (Lamiaceae), a medicinal plant protects the stomach against several gastric ulcer models. J Ethnopharmacol. 2013;150:982–8. https://doi.org/10.1016/j.jep.2013.10.010.
6. Takahashi T, Kokubo R, Sakaino M. Antimicrobial activities of Eucalyptus leaf extracts and flavonoids from *Eucalyptus maculata*. Lett Appl Microbiol. 2004;39:60–4. https://doi.org/10.1111/j.1472-765X.2004.01538.x.
7. Vuong QV, Chalmers AC, Bhuyan DJ, Bowyer MC, Scarlett CJ. Botanical, phytochemical, and anticancer properties of the *Eucalyptus species*. Chem Biodivers. 2015;12:907–24. https://doi.org/10.1002/cbdv.201400327.
8. Beserra AMSes, Calegari PL, Souza MDC, dos Santos RAN, Lima JCDS, Silva RM, et al. Gastroprotective and ulcer-healing mechanisms of ellagic acid in experimental rats. J Ethnopharmacol. 2018;210:305–8. https://doi.org/10.1016/j.jep.2018.05.020.
9. Murakami S, Isobe Y, Kijima H, Nagai H, Muramatu M, Otomo S. Inhibition of gastric H+-K+ ATPase and acid secretion by ellagic acid. Planta Med. 1991;57:305–8. https://doi.org/10.1055-s-2006-960103.
10. Dan C, Jiao W. Chemical constituents of *Caryophylli Flos*. Chinese Medicinal. Materials. 2018;41:1108–13. https://doi.org/10.13863j.isnn1001-4454.2018.05.020.
11. Ye G, Fan MS, Huang CG. Ellagic acid glycosides from the stem bark of *Aphananthas aspera*. Chem Nat Compd. 2007;43:558–9. https://doi.org/10.1007/s10010-007-0191-1.
12. Guo WJ, Yu J, Zhu DW, Chen XH, Hou WZ. Chemical constituents of the artificial fruit body of *Antrodia cinnamomea*. Chem Nat Compd. 2020;56:777–8. https://doi.org/10.1007/s10010-020-03148-2.
13. Wu L, Wu J, Chen SP, Li ZJ, Zhang J, Yuan E, et al. Chemical constituents of the twigs of Elaeocarpus sylvestris. Chem Nat Compd. 2019;55:324–6. https://doi.org/10.1007/s10600-019-02679-7.

14. Gao LM, Wu LJ, Huang J, Sun BH, Gao HY. Chemical constituents from the flowers of Castanea mollissima Blume. J Shen-nyang Pharm Univ. 2010;27:544–7. https://doi.org/10.14066/j.cnki.cn21-1349/r.2010.07.004.

15. Wu T, Abdulla R, Yang Y, Aisa HA. Flavonoids from Gossypium hirsutum flowers. Chem Nat Compd. 2008;44:370–1. https://doi.org/10.1007/100600-008-0967-2.

16. Benkiniouar R, Rhouati S, Touil A, Seguin E, Chosson E. Flavonoids from Thymus algeriensis. Chem Nat Compd. 2007;43:321–2. https://doi.org/10.1007/s10600-007-0118-x.

17. Zhuang JY, Li BS, Wang SY. Study on the anti-diabetic activities of Tamarindus pericarp. Mod Food Sci Technol. 2011;27:773–6. https://doi.org/10.13982/j.mfstd.1673-9078.2011.07.004.

18. Jung MJ, Jung HA, Kang SS, Hwang GS, Choi JS. A new abietic acid-type diterpene glucoside from the needles of Pinus densi-flora. Arch Pharmacal Res. 2009;32:1699–704. https://doi.org/10.1007/s10020-009-02206-x.

19. Vijayalakshmi A, Geetha M. Anti-psoriatic activity of flavonoids from Cassia tora leaves using the rat ultraviolet B ray photo-dermatitis model. Rev Brasileira De Farmacogn-Braz J Pharma-cogn. 2014;24:322–9. https://doi.org/10.1016/j.bjp.2014.07.010.

20. Tresserra-Rimbau A, Lamuela-Raventos RM, Moreno JJ. Polyphenols, food and pharma. Current knowledge and directions for future research. Biochemical Pharmacol. 2018;156:185–95. https://doi.org/10.1016/j.bcp.2018.07.050.

21. Derosa G; Maffioti P, Sahebkar A. Ellagic acid and its role in chronic diseases. In: Gupta SC, Prasad S, Aggarwal BB, editors. Inflammatory Nutraceuticals and Chronic Diseases. Cham: Springer International Publishing; 2016. p. 473–9.

22. Rios JL, Giner RM, Marin M, Recio MC. A pharmacological update of ellagic acid. Planta Med. 2018;84:1068–93. https://doi.org/10.1055/a-0633-9492.

23. Patel S, Behara R, Swanson GR, Forsyth CB, Voigt RM, Keshavarzian A. Alcohol and the intestine. Biomolecules. 2015;5:2573–88. https://doi.org/10.3390/biom5042573.

24. Hamaguchi M, Watanabe T, Higuchi K, Tominaga K, Fujiwara Y, et al. Gastrin enhances gastric mucosal integrity through cyclooxygenase-2 upregulation in rats. Physiology-Gastrointestinal and Liver Physiology. 2002;283.https://doi.org/10.1152/ajpgi.00006.2001.

25. Kishimoto T. IL-6: from its discovery to clinical applications. Int Immunopharmacol. 2010;22:347–53. https://doi.org/10.1016/j.intimp.2010.07.008.

26. Keshavarzian A. Alcohol and the intestine. Biomolecules. 2018;8:https://doi.org/10.1016/j.biomol.2018.09.012.

27. Navaei-Alipour N, Mastali M, Ferns GA, Saberi-Karimian M, et al. Effect of ellagic acid on gastric damage induced in ischemic rat stomachs following ammonia or reperfusion. Life Sci. 2002;70:1139–50. https://doi.org/10.1016/s0022-3205(01)01493-x.

28. Ou HC, Lee WJ, Lee SD, Huang CY, Chiu TH, Tsai KL, et al. Ellagic acid protects endothelial cells from oxidized low-density lipoprotein-induced apoptosis by modulating the PI3K/Akt/eNOS pathway. Toxicol Appl Pharmacol. 2010;248:134–43. https://doi.org/10.1016/j.taap.2010.07.025.

29. Vattem DA, Shetty K. Biological functionality of ellagic acid: a review. J Food Biochem. 2005;29:234–66. https://doi.org/10.1111/j.1745-4514.2005.00031.x.

30. Iino T, Tashima K, Umeda M, Ogawa Y, Takeeda M, Takata K, et al. Effect of ellagic acid on gastric damage induced in ischemic rat stomachs following ammonia or reperfusion. Clin Pharmacol. 1979;4:200–22. https://doi.org/10.2165/00002018-197904000-00003.

31. Kashani K, Shingo T, WeiHao S, Masahiko T, Naoki K, Masakazu Y, et al. Gastrin enhances gastric mucosal integrity through cyclooxygenase-2 upregulation in rats. Physiology-Gastrointestinal and Liver Physiology. 2002;283. https://doi.org/10.1152/jappl.00006.2002.

32. Vattem M, Drasigos B. Pathophysiology of Helicobacter pylori infection. Acta Med Austriaca. 2000;27:117–21. https://doi.org/10.1046/j.1567-5769.2000.00028.x.

33. Samad TA, Moore KA, Sapirstein A, Billet S, Allchorne A, Poole S, et al. Interleukin-1β-mediated induction of COX-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature. 2001;410:471–5. https://doi.org/10.1038/35068566.

34. Nakanishi M, Rosenberg DW. Multifaceted roles of PGÉ(2) in inflammation and cancer. Semin Immunopathol. 2013;35:123–37. https://doi.org/10.1007/s00701-013-0389-y.

35. Wallace JL, Prostaglandins, NSAIDs, and gastric mucosal protection: why doesn´t the stomach digest itself? Physiological Rev. 2008;88:1547–65. https://doi.org/10.1152/physrev.00004.2008.

36. Tu PS, Tung YT, Lee WT, Yen GC. Protective effect of camellia oil (Camellia oleifera Abel.) against ethanol-induced acute oxidative injury of the gastric mucosa in mice. Agric Food Chem. 2017;65:4932–41. https://doi.org/10.1021/acs.jafc.7b01135.

37. Chen S, Zhang CL, Zhou XF, Gao Y, Chen H, Fu BD, et al. Anti-inflammatory and antioxidative properties of helicid protect against CCl4 induced acute liver injury in mice. Biotech Histochem. 2020;95:483–9. https://doi.org/10.1080/10520295.2020.1718210.

38. Abbad G, Kaplowitz N. Drug-induced liver injury. Drug Saf. 2007;30:277–94. https://doi.org/10.2165/00002008-200703000-00001.

39. Andreu E, Koopman M, Arisz L. A rise in plasma creatinine that is not a sign of renal failure: which drugs can be responsible? Intern Med. 1999;246:247–52. https://doi.org/10.1046/j.1365-2796.1999.00515.x.

40. Bjornsson TD. Use of serum creatinine concentrations to determine renal function. Clin Pharmacokinetics. 1979;4:200–22. https://doi.org/10.2165/00002018-197904030-00003.

41. Kashani K, Rosner MH, Ostermann M. Creatinine: from physiology to clinical application. Eur J Intern Med. 2020;72:9–14. https://doi.org/10.1016/j.ejim.2019.10.025.

42. Olutunji OJ, Chen HX, Zhou YF. Anti-ulcerogenic properties of Lycium chinense mill extracts against ethanol-induced acute gastric lesion in animal models and its active constituents. Molecules. 2015;20:22553–64. https://doi.org/10.3390/molecules201219867.