NARROW SIEVES FOR
PARAMETERIZED PATHS AND PACKINGS

ANDREAS BJÖRLUND1, THORE HUSFELDT2, PETERI KASKI3, AND MIKKO KOIVISTO4

ABSTRACT. We present randomized algorithms for some well-studied, hard combinatorial problems: the \(k\)-path problem, the \(p\)-packing of \(q\)-sets problem, and the \(q\)-dimensional \(p\)-matching problem. Our algorithms solve these problems with high probability in time exponential only in the parameter \((k, p, q)\) and using polynomial space; the constant bases of the exponentials are significantly smaller than in previous works. For example, for the \(k\)-path problem the improvement is from 2 to 1.66. We also show how to detect if a \(d\)-regular graph admits an edge coloring with \(d\) colors in time within a polynomial factor of \(O(2^{(d−1)n/2})\).

Our techniques build upon and generalize some recently published ideas by I. Koutis (ICALP 2009), R. Williams (IPL 2009), and A. Björklund (STACS 2010, FOCS 2010).

1. Introduction

Combinatorial problems such as finding a long simple path in a graph or disjointly packing many members of a set of subsets are well-studied and hard. In fact, under standard complexity-theoretic assumptions, algorithms for these problems must either be inexact, or require running times of super-polynomial or maybe even exponential time.

It has been observed that the complexity of the problems studied in the present paper depends exponentially on the output size \(k\) instead of the input size \(n\), i.e., they admit running times of the form \(\exp(poly(k)\cdot poly(n))\) rather than, say, \(\exp(O(n))\). A number of papers have improved the exponential dependencies dramatically over the past decade, arriving at exponential factors of size \(2^k\). We further improve this dependency, reducing the exponent base below the constant 2, sometimes significantly.

To express our results in the terminology of parameterized computational complexity theory, we improve the running time of several canonical fixed parameter tractable problems. In particular, we claim the ephemeral lead in the highly competitive “FPT races” for path finding, uniform set packing, and multidimensional matching.

Our techniques also allow us to report progress on an unparameterized problem: we show a nontrivial upper bound on the complexity of edge coloring for regular graphs.

We adopt the notational convention from parameterized and exponential time algorithms, letting \(O^*(f(k))\) denote \(f(k)n^{O(1)}\), where typically \(n\) is some aspect of the input size such as number of vertices, and \(k\) is a parameter such as path length. Our parameters are all polynomially bounded by \(n\), so \(O^*\) also hides factors that are polynomial in the parameter size. We
present our results in terms of decision problems, they can be turned into optimization or search problems by self-reductions in the obvious way.

All our algorithms are randomized. The error is one-sided in the sense that they never report a false positive. The error probability is constant and can be made exponentially small by a polynomial number of repetitions, which would again be hidden in the O^* notation.

1.1. Finding a path. Given an undirected graph G on n vertices, the k-path problem asks whether G contains a simple path on k vertices.

Theorem 1. The undirected k-path problem can be solved in time $O^*(1.66^k)$ by a randomized algorithm with constant, one-sided error.

The proof is in §2. For $k = n$, the result matches the running time of the recent algorithm for Hamiltonian path of Björklund [3].

Previous work. Naively, the k-path problem can be solved in time $O^*(n^k)$, but Monien [29] and Bodlaender [5] showed that the problem can be solved in time $O^*(f(k))$, leading Papadimitriou and Yannakakis [30] to conjecture that the problem was polynomial-time solvable for $k = O(\log n)$. This was confirmed in a strong sense by Alon, Yuster, and Zwick, with a beautiful $O^*(c^k)$ algorithm. A number of paper have since reduced the base c of the exponent using different techniques, see Table 1. (In the following tables, we mark randomized algorithms with ‘r’.)

$k!$	Monien [29]	12.6k	Chen et al. [6]
$k!2^k$	Bodlaender [5]	4^k r	Chen et al. [6]
5.44k	r Alon et al. [1]	2.83k r	Koutis (2008) [21]
c^k	$c > 8000$, Alon et al. [1]	2^k r	Williams [37]
16k	Kneis et al. [25]	1.66k r	this paper

Our result is yet another improvement of the exponent base, notable perhaps mostly because it breaks the psychological barrier of $c = 2$. We fully expect this development to continue. On the other hand, computational complexity informs us that an even more ambitious goal may be quixotic: An algorithm for k-path with running time $\exp(o(k))$ would solve the Hamiltonian path problem in time $\exp(o(n))$, which is known to contradict the exponential time hypothesis [18].

1.2. Packing disjoint triples. Let \mathcal{F} be a family of subsets of an n-element ground set. A subset $A \subseteq \mathcal{F}$ is a p-packing if $|A| = p$ and the sets in A are pairwise disjoint. Given input set \mathcal{F} of size-3 subsets, the p-packing of 3-sets problem asks whether \mathcal{F} contains a p-packing. This problem includes a number of well-studied problems in which the ground set consists of the vertices of an input graph $G = (V, E)$. In the vertex-disjoint triangle p-packing problem, the set \mathcal{F} consists of the subsets of V that form a triangle K_3. In the edge-disjoint triangle p-packing problem, the set \mathcal{F} consists of the subsets of E that form the edges of a triangle. In the vertex-disjoint P_3 p-packing problem, the set \mathcal{F} consists of the vertex subsets $\{u, v, w\} \subseteq V$ for which $uv, vw \in E$.
Theorem 2. The p-packing of 3-sets problem can be solved by a randomized algorithm in time $O^*(1.493^p)$ with constant one-sided error.

The proof is in [11] For $p = n$, the result matches the running time of the recent algorithm for exact cover by 3-sets of Bj"orklund [2].

Previous work. The naive algorithm for p-packing considers all $\binom{|F|}{p}$ ways of selecting p sets from F. Results of the form $O^*(\ell(p))$ go back to Downey and Fellows [7], and the dependency on p has been improved dramatically in a series of papers, see Table 2. Remarkably, the best previous running time is given by Koutis’s algorithm for the more general problem of p-packing sets of size q, specialized to the case $q = 3$. (We return to the performance of our own algorithm in the case $q > 3$ in §1.3.)

Table 2: p-packings of 3-sets in time $O^*(f(p))$

$f(p)$	Author(s)
$2^{O(p)}(3p)!$	Downey and Fellows [7]
$(5.7p)^p$	Jia, Zhang, and Chen [19]
$2^{O(p)}$	Koutis (2005) [20]
$(12.7c)^p$	Fellows, Heggernes, et al. [11]
10.88^p	Koutis (2005) [20]
4.68^p	Kneis et al. [25]
$4^{p+o(p)}$	Chen et al. [6]
2.52^p	Chen et al. [6]
$2^{2p\log p + 1.869p}$	vertex-disjoint triangles K_3, Fellows, Heggernes, et al. [11]†
$22.62^{p\log p + p}$	edge-disjoint triangles K_3, Mathieson et al. [28]
4.61^p	Liu et al. [27]
3.523^p	Wang and Feng [35]
3.404^p	vertex-disjoint paths P_3, Prieto and Sloper [31]
2.604^p	vertex-disjoint paths P_3, Wang et al. [36]
2.482^p	vertex-disjoint paths P_3, Fernau and Raible [13]
3^p	Koutis [21]
1.493^p	this paper

† The precise time bound can be seen to be $O(2^{2p\log p + 1.869p} n^3)$.

It is known that packing vertex-disjoint copies of H into G is NP-complete as soon as H is connected and has more than 2 vertices [15]. Fellows et al. [11] raised the question of how hard the parameterized problem is, and we observe here that this can be answered under the exponential time hypothesis [18], which is equivalent to the parameterized complexity hypothesis $\text{FPT} \neq \text{M}[1]$.

Proposition 3. There is no algorithm for vertex-disjoint triangle p-packing in time $\exp(o(p))$ unless the satisfiability of 3-CNF formulas in n variables can be decided in time $\exp(o(n))$.

The proof of the proposition is routine and we omit a detailed presentation. Briefly, a 3-CNF instance to satisfiability is transformed to a 3-dimensional matching instance; the standard reduction results in a graph of size $O(n + m)$, and the sparsification lemma of Impagliazzo, Paturi, and Zane [15] is used to remove the dependency on m. A subexponential time (in $p \leq n$) algorithm for this problem would solve the original instance in time $\exp(o(p)) = \exp(o(n))$.

1.3. Uniform set packing. As before, let \mathcal{F} be a set of subsets of an n-element ground set. A subset $A \subseteq \mathcal{F}$ is a p-packing if $|A| = p$ and the sets in A are pairwise disjoint. Given as input a family \mathcal{F} of size-q subsets, the p-packing of q-sets problem asks us to determine whether \mathcal{F} contains a p-packing.

This is a generalization of the triple p-packing problem described in §1.2, and the algorithm we advertised in that section is merely a specialization of a more general result.

Theorem 4. The p-packing of q-sets problem can be solved by a randomized algorithm in time $O^*(f(p, q))$ with constant, one-sided error, where

$$f(p, q) = \left\{ \frac{0.108157 \cdot 2^q (1 - 1.64074/q)^{1.64076 - q/0.679625}}{(q - 1)^{0.679623}} \right\}^p.$$

Potentially, \mathcal{F} can have size $\binom{n}{q}$, so reading in the input alone can take super-polynomial time in n. Thus we adopt the convention that $|\mathcal{F}|$ is polynomial in n. Thus, the O^* notation suppresses polynomial factors in n (and hence in $p, q \leq n$) and also in $|\mathcal{F}|$; a more careful (and even less readable) bound on the running time is given in §2.13.

Still, the above expression is difficult to parse. The previous best bound is Koutis’s [21] much cleaner $O^*(2^{qp})$, and our bound is not $O^*((2 - \epsilon)^{qp})$ for any ϵ. Instead, our algorithm behaves well on small q; for comparison, we can express bounds on f of the form $O^*(\epsilon^{qp})$ for small $q \geq 3$.

q	3	4	5	6	7	8
$f(p, q)$	1.4953^{3p}	1.6413^{4p}	1.7205^{5p}	1.7707^{6p}	1.8055^{7p}	1.8311^{8p}

q	10	20	50	100	500
$f(p, q)$	1.8663^{10p}	1.9345^{20p}	1.9741^{50p}	1.9871^{100p}	1.9975^{500p}

The proof is in §4. For $p = n$, the result matches the running time of the recent algorithm for exact cover by q-sets of Björklund [2].

Previous work. Most of the work on p-packing of q-sets has been done for the special case $q = 3$, described in §1.2. For general q, the first algorithm with running time of the form $O^*(f(p, q))$ is due to Jia et al. [19]; the subsequent improvements are shown in Table 4.

$\exp(O(pq))$	Fellows, Knauer, et al. [12]
5.44^{qp}	r Koutis [20]
2^{qp}	r Koutis [21]

For the special graph packing case where \mathcal{F} consists of isomorphic copies of a fixed graph H of size q, an earlier result established $O(2^{pq \log p + 2pq \log q} n^q)$ [11]. The only specific packing problem we are aware of that our general algorithm does not seem to improve is the problem of packing vertex-disjoint stars into a given graph. A star $K_{1,q-1}$ consists of a center vertex connected to $q - 1$ other vertices. Prieto and Sloper [31] exhibit a kernel of polynomial size $s(p, q) = p(q^3 + pq^2 + pq + 1)$ for this problem. They do not express
running times in terms of \(q \), but their “brute force” algorithm can be seen to run in time within a polynomial factor of \(\binom{s^{(p,q)}}{p} = \exp(p \log pq) \).

Significant improvements for \(p \)-packing of \(q \)-sets, such as a general \(\exp(q \cdot o(p)) \) algorithm, are ruled out by Proposition 3. For the nonuniform \(p \)-packing problem, when there is no bound on the size of the packed sets, we are unlikely to find an algorithm with running time \(O^*(f(p)) \) for any function \(f \); the main evidence is provided in terms of parameterized complexity, where the more specific problem of finding an independent set of size \(p \) (equivalently, packing \(p \) subsets of \(q \)-sets) is \(W[1] \)-hard [7].

1.4. Multidimensional matching. Let \(U_1, U_2, \ldots, U_q \) be pairwise disjoint sets, each of size \(r \). Let \(F \) be a set of subsets of \(U_1 \cup U_2 \cup \cdots \cup U_q \) such that each \(A \in F \) satisfies \(|A \cap U_j| = 1 \) for each \(j = 1, 2, \ldots, q \). Given \(F \) as input, the \(q \)-dimensional \(p \)-packing problem asks whether \(F \) contains a \(p \)-packing. One often views this problem as \(q \)-dimensional \(p \)-matching, in which case \(F \) is thought of as the edge set of a \(q \)-uniform \(q \)-partite hypergraph over \(U_1 \times U_2 \times \cdots \times U_q \).

Again, \(F \) itself can have size up to \(r^q \), so reading the input alone would take time super-polynomial in the size \(n = qr \) of the universe already. Thus, we adopt the convention that \(|F| \) is polynomial in \(n \) (and hence \(p, q \leq n \)) and \(|F| \).

Theorem 5. The \(q \)-dimensional \(p \)-packing problem can be solved in time \(O^*(2^{(q-2)p}) \) by a randomized algorithm with constant, one-sided error.

The proof is in [3]. For \(p = r \), the result matches the running time of the recent algorithm for \(q \)-dimensional perfect matching of Björklund [2].

Previous work. The first parameterized multi-dimensional matching algorithm appears to be Downey, Fellows, and Koblitz’s [8] application of the color-coding technique. Some of the ensuing improvements apply only to the 3-dimensional case. See Table 3.

\((qp)!/(qp)^{2pr+1} \)	Downey, Fellows, Koblitz [8]
\(\exp(O(pq)) \)	Fellows, Knauer, et al. [12]
\(\exp(O(pq)) \)	Koutis (2005) [20]
\((4e)^pq \)	Koutis (2005) [20]
\(2.80^{3p} \)	\(q = 3 \), Chen et al. [6]
\(2.77^{3p} \)	\(q = 3 \), Liu et al. [27]
\(2.52^{3p} \)	\(q = 3 \), Chen et al. [6]
\(2^{2p} \)	Koutis (2008) [21]
\(2^{(q-1)p} \)	Koutis and Williams [22]
\(2^{(q-2)p} \)	this paper

1.5. Edge coloring. Finally, we turn to an unparameterized problem.

Let \(G \) be an undirected loopless \(n \)-vertex \(d \)-regular graph without parallel edges. The edge-coloring problem asks whether the edges of \(G \) can be colored
so that no two edges that share an endvertex have the same color. It is well known that the number of colors required is either d or $d + 1$.

Theorem 6. The d-edge coloring problem for d-regular graphs can be solved in time $O^*(2^{(d-1)n/2})$ and polynomial space by a randomized algorithm with constant, one-sided error.

The proof is in [45].

Previous work. The naive algorithm for edge coloring tests all d^m assignments of d colors to m edges. To the best of our knowledge, the only other known exact algorithm is to look for a vertex d-coloring of the line graph $L(G)$ of G. The line graph $L(G)$ has m vertices, so the algorithm of Björklund, Husfeldt, and Koivisto [3] solves the problem in time (and space) $O^*(2^m)$, which is $O^*(2^{dn/2})$ for d-regular graphs. For 3-coloring, the current best bound is $O(1.344^n)$ [24]; very recently, exponential space enumeration algorithms for 3, 4, and 5-edge colouring were announced [14], with running time $O(1.201^n)$, $O(1.8172^n)$, and $O(3.6626^n)$, respectively.

It is known that for each $d \geq 3$ it is an NP-complete problem to decide whether d colors suffice [17, 26]. However, the exponential time complexity of edge coloring remains wide open [23]. Curiously, we do not know how to apply these ideas to vertex coloring; a polynomial space algorithm with running time $O^*(2^n)$ has not yet been found.

1.6. **Methods.** Our methods follow the idea introduced by Koutis [21] of expressing a parameterized problem in an algebraic framework by associating multilinear monomials with the combinatorial structures we are looking for, ultimately arriving at a polynomial identity testing problem. Various ideas are used for sieving through these monomials by canceling unwanted contributions.

Some of our results are the parameterized analogues of recent work by the first author [2, 3], all using a determinant summation idea that essentially goes back to Tutte. To make these ideas work in the parameterized setting is not straightforward. In particular, while the Hamiltonian path algorithm [3] uses determinants to cancel the contribution of unwanted labeled cycle covers, our k-path algorithm from Theorem 1 uses a combinatorial argument to pair unwanted labeled walks of k vertices. With $k = n$ we recover a $O^*(1.66^n)$ Hamiltonian path algorithm, but using a different (and arguably more natural) approach. On the other hand, the parameterized packing and matching results of Theorems 2, 4, and 5 and also the edge colouring result in Theorem 6 all use determinants.

Our algorithm for k-path seems to be subtle in the sense that we see no way of extending it to other natural combinatorial structures, even directed paths. In contrast, the ideas of Koutis [21] and Williams [37] work directed graphs, and for detecting k-vertex trees and k-leaf spanning trees [22] in time $O^*(2^k)$.

It seems to be difficult to achieve our results using previous techniques. In particular, the limitations of the group algebra framework [21, 37] were studied by Koutis and Williams [22]; they show that multilinear polynomials of degree k cannot be detected in time faster than $O^*(2^k)$ in their model.
Koutis [21] has argued that the color coding method [1] and the randomized divide-and-conquer approach [6]) also cannot achieve running times whose exponent base is better than $O^*(2^k)$.

2. A Projection Sieve for k-Paths

This section establishes Theorem 1.

2.1. Overview. In this section, we develop an inclusion–exclusion sieve over multivariate polynomials for the k-path problem.

The input graph is randomly partitioned into two sets V_1, V_2 of roughly equal size. Central to our analysis is the family of labeled walks, defined relative to such a random partition as follows: Each occurrence on the walk of a vertex in $G[V_1]$ and of an edge in $G[V_2]$ receives a unique label. We call this a bijective labeling. The labels need not correspond to the order in which the objects are visited, and the same object can incur more than one label. For example, with $V_1 = \{a, b, c\}, V_2 = \{d, e, f\},$

Note the asymmetry between what is labeled in $G[V_1]$ and $G[V_2]$; indeed, with good probability a path of length k has roughly $k/2$ vertex labels in $G[V_1]$ but only $k/4$ edge labels in $G[V_2]$. Very roughly speaking, the running time of our algorithm is around $2^{k/2+k/4}$ for that reason.

With each such labeled walk we associate a monomial consisting of variables x_e for every edge e on the walk, variables $y_{v,i}$ for every vertex $v \in G[V_1]$ labeled i, and variables $z_{e,i}$ for every edge $e \in G[V_2]$ labeled i. For example, the monomial associated with leftmost labeled walk above is

$$x_{ab} \cdot x_{ad} \cdot x_{bc} \cdot x_{de} \cdot x_{ef} \cdot y_{a,1} \cdot y_{b,2} \cdot y_{c,3} \cdot z_{de,2} \cdot z_{ef,1};$$

the monomial associated with the middle labeled walk contains the same xs, but the remaining factors are $y_{a,3} \cdot y_{b,1} \cdot y_{c,2} \cdot z_{de,1} \cdot z_{ef,2}.$

If the labeled walk is a path (i.e., it has no repeated vertices), then it can be uniquely recovered, including the labels, from its associated monomial and knowledge of the source vertex. On the other hand, two different labeled walks that are not paths can have the same monomial, for example,

are both associated with

$$x_{ab} \cdot x_{bc} \cdot x_{cf} \cdot x_{ef}^2 \cdot y_{a,3} \cdot y_{b,2} \cdot y_{c,1} \cdot z_{ef,1} \cdot z_{ef,2};$$
\(R_1: \) label transposition

\[\begin{array}{c}
\text{a} \\
\text{d} \\
\text{b} \\
\text{2} \\
\text{e} \\
\text{c} \\
\text{3} \\
\text{f} \\
\end{array} \]

\(R_2: \) labeled reversal

\[\begin{array}{c}
\text{a} \\
\text{d} \\
\text{b} \\
\text{2} \\
\text{e} \\
\text{c} \\
\text{1} \\
\text{f} \\
\end{array} \]

Figure 1. Representative examples of the pairing of labeled walks. Left: if the walk’s first closed subwalk starts at a vertex in \(V_1 = \{a, b, c\} \) (here, vertex \(c \)), then the labels at this vertex are transposed, while the walk remains unchanged. Right: if the walk’s first closed subwalk starts at a vertex in \(V_2 = \{d, e, f\} \) (here, vertex \(f \)), then the subwalk and its labels are reversed.

In fact, we will set up a pairing such that every labeled non-path has exactly one such partner. In particular, their (identical) monomials will cancel each other when added in a field of characteristic 2, and only the monomials corresponding to labeled paths will remain. Representative examples of this pairing are given in Figure 1. A good part of our exposition is devoted to a very careful description of this pairing; to appreciate why such caution is necessary, note that walks like

\[\begin{array}{c}
\text{a} \\
\text{d} \\
\text{b} \\
\text{2} \\
\text{e} \\
\text{c} \\
\text{3} \\
\text{f} \\
\end{array} \]

are not correctly handled by our set-up and indeed will require an exception in the definition.

In summary, there are four key ingredients. First, the labeled \(k \)-walks that are paths will be associated with monomials that have distinct variable supports. Second, the monomials associated with bijectively labeled \(k \)-walks that are not paths will cancel over a field of characteristic 2, establish by a pairing argument. Third, an inclusion–exclusion sieve will be used to cancel all walks that are not bijectively labeled. The sieve requires at most \(3k/4 \) labels (with high probability) if we are careful about the walks we consider. Fourth, the polynomial of \(k \)-walks that avoid a given set of labels can be evaluated in time polynomial in \(n \).

2.2. **Preliminaries on strings.** From a technical perspective it will be convenient to view a walk in a graph as a string. To this end, let us review some basic terminology on strings.
Let A be a set whose elements we view as the symbols of an alphabet. A string of length ℓ over A is a sequence $S = s_1s_2\cdots s_\ell$ with $s_i \in A$ for each $i = 1, 2, \ldots, \ell$. We say that s_i is the symbol at position i of the string. The reverse of a string $S = s_1s_2\cdots s_\ell$ is $\overline{S} = s_\ell s_{\ell-1} \cdots s_1$. The concatenation of two strings $S = s_1s_2\cdots s_\ell$ and $T = t_1t_2\cdots t_k$ is $ST = s_1s_2\cdots s_\ell t_1t_2\cdots t_k$. A string $T = t_1t_2\cdots t_k$ is a substring of a string $S = s_1s_2\cdots s_\ell$ if there exists a $j = 1, 2, \ldots, \ell - k + 1$ such that $t_i = s_{i+j-1}$ for all $i = 1, 2, \ldots, k$. A palindrome is a string that is identical to its reverse and has length at least 2. For $A_1, A_2, \ldots, A_\ell \subseteq A$, we say that a string $s_1s_2\cdots s_\ell$ is an $A_1A_2\cdots A_\ell$-string if $s_i \in A_i$ holds for every $i = 1, 2, \ldots, \ell$.

2.3. Walks in graphs. We assume that all graphs are undirected and contain neither loops nor parallel edges. For a graph G, we denote the vertex set of G by $V = V(G)$, and the edge set of G by $E = E(G)$. For convenience, we assume that V and E are disjoint sets.

A k-walk in G is a string of length $2k - 1$ such that
(a) each odd position contains a vertex of G;
(b) each even position contains an edge of G; and
(c) for every $i = 1, 2, \ldots, k - 1$, the edge at position $2i$ joins in G the vertex at positions $2i - 1$ and $2i + 1$.

The first and last positions of a walk are the ends of the walk.

A walk is a path if each vertex of G appears in at most one position of the walk. A k-walk is closed if its ends are identical and $k \geq 2$. A walk that is not a path always contains at least one closed subwalk.

Let W be a walk. A subwalk of W is a substring of W that is in itself a walk. Put otherwise, a subwalk of W is a substring with ends at odd positions of W.

2.4. Representing strings as sets. Let $a_1a_2\cdots a_\ell$ be a string over an alphabet A. It will be convenient to view a string as a set consisting of pairs $(a, i) \subseteq A \times \{1, 2, \ldots, \ell\}$, where the pair (a, i) indicates that the symbol a occurs at position i, that is, $a_i = a$.

For a subset $B \subseteq A$ and a string $a_1a_2\cdots a_\ell$, introduce the notation
$$B\{a_1a_2\cdots a_\ell\} = \{(a_i, i) : a_i \in B\} \subseteq A \times \{1, 2, \ldots, \ell\}.$$

In particular, we can recover the string $a_1a_2\cdots a_\ell$ from the set $A\{a_1a_2\cdots a_\ell\}$.

2.5. Admissible walks. To reduce the number of labels in the sieve, we will focus on a somewhat technical subset of k-walks that we will call admissible walks.

Let G be a graph with vertex set V and let s be a fixed vertex of G.

Partition the vertex set into two disjoint sets $V = V_1 \cup V_2$. Denote by E_1 the set of edges of G with both ends in V_1. Denote by E_2 the set of edges of G with both ends in V_2. Let k, k_1, ℓ_2 be nonnegative integers.

Let us say that a k-walk W in G is admissible if
(a) W starts at s;
(b) $|V_1\{W\}| = k_1$;
(c) $|E_2\{W\}| = \ell_2$; and
(d) W is $V_2E_1V_2$-palindromeless.
versely, for fixed parameters \(k \) lack of palindromes that are also palindromeless and hence palindromeless we refer to the property that a string has no palindromeless. By \(V_2EV_1EV_2 \)-palindromeless we refer to the lack of palindromes that are also \(V_2EV_1EV_2 \)-strings. Observe that paths are palindromeless and hence \(V_2EV_1EV_2 \)-palindromeless.

2.6. Random projection. For a fixed ordered partition \((V_1,V_2)\), every \(k \)-path \(P \) in \(G \) that starts at \(s \) is admissible for some parameters \(k_1, \ell_2 \). Conversely, for fixed parameters \(k_1, \ell_2 \) and a fixed \(k \)-path \(P \) that starts at \(s \), if we select \((V_1,V_2)\) uniformly at random, then \(P \) is admissible with probability given by the following lemma.

Lemma 7 (Admissibility). Let \(k_1, \ell_2 \) be nonnegative integers and let \(P \) be a \(k \)-path in \(G \). For \((V_1,V_2)\) selected uniformly at random, we have

\[
\Pr \left(|V_1\{P\}| = k_1 \text{ and } |E_2\{P\}| \leq \ell_2 \right) = 2^{-k} \binom{k_1 + 1}{k - k_1 - \ell_2} \frac{k - k_1 - 1}{\ell_2 - 1}.
\]

Proof. There are \(2^k \) strings of length \(k \) over the alphabet \(\{1, 2\} \). The probability in question is exactly the fraction of such strings that have exactly \(k_1 \) 1-positions and exactly \(\ell_2 \) 22-substrings. There are exactly \(k_1 + 1 \) positions where to interleave the \(k_1 \) 1s with substrings of 2s. Each such substring of length \(j \) contributes exactly \(j - 1 \) 22-substrings. The total number of 2s is \(k - k_1 \), so there must be \(k - k_1 - \ell_2 \) substrings of 2s. The positions where the substrings interleave the 1s are allocated by the first binomial coefficient. It remains to allocate the lengths of the strings. The total length is \(k - k_1 \), and each of the \(k - k_1 - \ell_2 \) strings must have length at least 1. Thus there are \(k - k_1 - (k - k_1 - \ell_2) = \ell_2 \) free 2s to allocate to \(k - k_1 - \ell_2 \) distinct bins. The second binomial coefficient carries out this allocation. \(\square \)

In particular, a fixed \(k \)-path starting at \(s \) is admissible with positive probability if and only if either \(k_1 = k \) and \(\ell_2 = 0 \) or \(k_1 < k \) and \(k_1 + \ell_2 \leq k - 1 \leq 2k_1 + \ell_2 \).
Let us now derive an asymptotic approximation for the probability in Lemma [7]. We employ the following variant of Stirling’s formula due to Robbins [32]. For all $j = 1, 2, \ldots$ it holds that
\[
j! = \sqrt{2\pi j} \left(\frac{j}{e} \right)^j e^{\varepsilon_j} \quad \text{where} \quad \frac{1}{12j + 1} < \varepsilon_j < \frac{1}{12j}. \tag{1}
\]
Let us abbreviate
\[
\langle a \rangle_b = \left(\frac{b}{a} \right)^{-b} \left(1 - \frac{b}{a} \right)^{-a+b}.
\]
From Stirling’s formula (1) it follows that $\langle a \rangle_b = \Theta^* \left(\langle a \rangle_b \right)$ holds uniformly for all $0 < b < a \leq n$. We can thus approximate the probability in Lemma [7] uniformly for $0 < \ell_2, k_1 < k$ such that $k_1 + \ell_2 \leq k - 1 \leq 2k_1 + \ell_2$, with
\[
\Pr \left(|V_1| = k_1 \text{ and } |E_2| = \ell_2 \right) = \Theta^* \left(2^{-k} \left(\frac{k}{k-k_1-\ell_2} \right)^{k-k_1} \left(\frac{k}{\ell_2} \right) \right). \tag{2}
\]

2.7. Labeled admissible walks. The following labeling scheme for admissible walks serves two purposes. First, labeling enables us to “decouple” the sieve from the graphical domain (that is, vertices and edges) into a set of abstract labels whose number depends only on the parameters k_1, ℓ_2 and not on the size of the graph. Second, the labeling facilitates cancellation of non-paths in the sieve.

Let K_1 be a set of k_1 labels. Let L_2 be a set of ℓ_2 labels. For example, let $K_1 = \{1, 2, \ldots, k_1\}$ and $L_2 = \{1, 2, \ldots, \ell_2\}$.

Let W be an admissible walk. Let $\kappa_1 : V_1 \rightarrow K_1$ and $\lambda_2 : E_2 \rightarrow L_2$ be arbitrary functions. The three-tuple (W, κ_1, λ_2) is a labeled admissible walk. Intuitively, each position in W that contains a vertex in V_1 gets assigned a label in K_1 by κ_1. Similarly, each position in W that contains an edge in E_2 gets assigned a label in L_2 by λ_2. Let us say that the labeling is bijective if both κ_1 and λ_2 are bijections.

Example. Consider two labelings of the same walk W,

\[
\begin{array}{c}
\begin{array}{c}
\text{a} \\
\text{d}
\end{array} \\
\begin{array}{c}
\text{1} \quad \text{2} \\
\text{e} \quad \text{f}
\end{array}
\end{array}
\quad \quad
\begin{array}{c}
\begin{array}{c}
\text{a} \\
\text{d}
\end{array} \\
\begin{array}{c}
\text{1 \quad 3} \\
\text{e} \quad \text{f}
\end{array}
\end{array}
\]

The walk is admissible with parameters $s = c, k = 6, k_1 = 3$, and $\ell_2 = 2$. Both labelings associate a label with each position of W that contains a symbol from $V_1 = \{a, b, c\}$ or $E_2 = \{de, ef\}$. We have $V_1 = \{(b, 3), (b, 11), (c, 1)\}$, that is, there are three occurrences of symbols from V_1 in W; in particular the symbol b occurs at the 3rd and the 11th position. Similarly, we have $E_2 = \{(de, 6), (de, 8)\}$. The labeling on the left is
\[
\lambda_1(b, 3) = 2, \quad \lambda_1(b, 11) = 1, \quad \lambda_1(b, 1) = 3, \quad \kappa_2(de, 6) = 2, \quad \kappa_2(de, 8) = 1.
\]
We observe that this labeling is bijective since λ_1 and κ_2 are bijections.
The labeling on the right is
\[\lambda_1(b, 3) = 3, \lambda_1(b, 11) = \lambda_1(c, 1) = 1, \kappa_2(ef, 6) = \kappa_2(de, 8) = 2, \]
and not bijective. In fact, \(\lambda_1 \) avoids the label 2, and \(\kappa_2 \) avoids the label 1.

2.8. **Fingerprinting and identifiability.** We associate with each labeled admissible walk an algebraic object (or “fingerprint”) that we use to represent the labeled admissible walk in sieving. Here it is important to observe that while we are careful to design the fingerprint so that each labeled path has a unique fingerprint, the fingerprints of labeled non-paths are by design not unique—we will explicitly take advantage of this property when canceling labeled non-paths in §2.10.

The sieve operates over a multivariate polynomial ring with the coefficient field \(\mathbb{F}_{2^b} \) (the finite field of order \(2^b \)) and the following indeterminates. Introduce one indeterminate \(x_e \) for each edge \(e \in E \). Introduce one indeterminate \(y_{v,i} \) for each pair \((v, i) \in V_1 \times K_1 \). Introduce one indeterminate \(z_{e,i} \) for each pair \((e, i) \in E_2 \times L_2 \).

Let \((W, \kappa_1, \lambda_2) \) be a labeled admissible walk. Associate with \((W, \kappa_1, \lambda_2) \) the monomial (fingerprint)
\[m(W, \kappa_1, \lambda_2) = \prod_{(e,j) \in E(W)} x_{e,j} \prod_{(v,i) \in V_1} y_{v,i} \prod_{(e,i) \in E_2} z_{e,i}. \]

The following lemma is immediate.

Lemma 8 (Identifiability). The monomial \(m(W, \kappa_1, \lambda_2) \) of a labeled admissible walk \((W, \kappa_1, \lambda_2) \) uniquely determines the edges and their multiplicities of occurrence in \(W \). In particular, any path is uniquely identified. Furthermore, if \(W \) is a path and \(\kappa_1, \lambda_2 \) are bijections, then \(m(W, \kappa_1, \lambda_2) \) uniquely identifies \((W, \kappa_1, \lambda_2) \).

Example. We presented some example monomials already in §2.1. We can also consider a bijectively labeled walk that repeats an edge in \(E_2 \):
\[a \quad b \quad c \quad d \quad e \quad f \]
\[x_{bc} \cdot x_{bf} \cdot x_{ef} \cdot y_{b,1} \cdot y_{b,2} \cdot z_{ef,1} \cdot z_{ef,2}, \]
and a non-bijectively labeled walk,
\[a \quad b \quad c \quad d \quad e \quad f \]
\[x_{bc} \cdot x_{bd} \cdot x_{bf} \cdot x_{de} \cdot x_{ef} \cdot y_{b,1} \cdot y_{b,3} \cdot y_{c,1} \cdot z_{de,2} \cdot z_{ef,2}. \]

In all these examples observe that if the walk is a path, we can reconstruct it from the \(x \)-variables and knowledge of the start vertex. Because a path has neither repeated vertices nor edges, the \(y \)- and \(z \)-variables in the monomial enable us to reconstruct the labeling.
2.9. Sieving for bijective labelings. Let us denote by \mathcal{L} the set of all labeled admissible walks. For $I_1 \subseteq K_1$ and $J_2 \subseteq L_2$, denote by $\mathcal{L}[I_1, J_2]$ the set of all labeled admissible walks that avoid the labels in I_1 and J_2. Let us denote by \mathcal{B} the set of all bijectively labeled admissible walks.

By the principle of inclusion–exclusion, we have

\[
\sum_{(W, \kappa_1, \lambda_2) \in \mathcal{B}} m(W, \kappa_1, \lambda_2) = \sum_{I_1 \subseteq K_1} \sum_{J_2 \subseteq L_2} (-1)^{|I_1|+|J_2|} \sum_{(W, \kappa_1, \lambda_2) \in \mathcal{L}[I_1, J_2]} m(W, \kappa_1, \lambda_2).
\]

2.10. Bijectively labeled non-path fingerprints cancel. Let us partition \mathcal{B} into $\mathcal{B} = \mathcal{P} \cup \mathcal{R}$, where \mathcal{P} consists of bijectively labeled admissible paths, and \mathcal{R} consists of bijectively labeled admissible non-paths. Accordingly, the left-hand side of (3) splits into

\[
\sum_{(W, \kappa_1, \lambda_2) \in \mathcal{B}} m(W, \kappa_1, \lambda_2) = \sum_{(W, \kappa_1, \lambda_2) \in \mathcal{P}} m(W, \kappa_1, \lambda_2) + \sum_{(W, \kappa_1, \lambda_2) \in \mathcal{R}} m(W, \kappa_1, \lambda_2).
\]

We show that the rightmost sum vanishes. To this end, let us first recall that an involution is a permutation that is its own inverse. We claim that it suffices to construct a fixed-point-free involution $\phi : \mathcal{R} \rightarrow \mathcal{R}$ with $m(W, \kappa_1, \lambda_2) = m(\phi(W, \kappa_1, \lambda_2))$ for all $(W, \kappa_1, \lambda_2) \in \mathcal{R}.$ Indeed, introduce an arbitrary total order to \mathcal{R} and observe that in characteristic 2, we have

\[
\sum_{(W, \kappa_1, \lambda_2) \in \mathcal{R}} m(W, \kappa_1, \lambda_2) = \sum_{(W, \kappa_1, \lambda_2) \in \mathcal{R}} m(W, \kappa_1, \lambda_2) + m(\phi(W, \kappa_1, \lambda_2)) = \sum_{(W, \kappa_1, \lambda_2) \in \mathcal{R}} 2m(W, \kappa_1, \lambda_2) = 0.
\]

To construct a fixed-point-free involution $\phi : \mathcal{R} \rightarrow \mathcal{R}$ with $m(W, \kappa_1, \lambda_2) = m(\phi(W, \kappa_1, \lambda_2))$ for all $(W, \kappa_1, \lambda_2) \in \mathcal{R},$ we observe that every walk W that is not a path contains at least one closed subwalk. In particular, W contains a first closed subwalk, that is, the closed subwalk C with the property that C is the unique closed subwalk in the prefix SC of $W = SCT$.

We denote the first closed subwalk of W by $C(W)$ and by $c(W)$ the first (and hence also the last) vertex of $C(W)$.

Let us partition \mathcal{R} into two disjoint sets, \mathcal{R}_1 and \mathcal{R}_2, where

\[
\mathcal{R}_1 = \{(W, \kappa_1, \lambda_2) \in \mathcal{R} : c(W) \in V_1\}, \\
\mathcal{R}_2 = \{(W, \kappa_1, \lambda_2) \in \mathcal{R} : c(W) \in V_2\}.
\]

We proceed to construct the pairing ϕ on these two sets. See Figure 1 for examples.

2.11. The pairing on \mathcal{R}_1 – label transposition. Select an arbitrary $(W, \kappa_1, \lambda_2) \in \mathcal{R}_1$. Let j and ℓ be the positions of W that contain the symbol $c(W)$ and constitute the ends of $C(W)$. For brevity, let us write c for $c(W)$. Because $c \in V_1$, we have $(c, j), (c, \ell) \in V_1\{W\}$. Define κ'_1 to be identical to κ_1 except that

\[
\kappa'_1(c, j) = \kappa_1(c, \ell), \quad \kappa'_1(c, \ell) = \kappa_1(c, j).
\]

Observe that $\kappa_1(c, j) \neq \kappa_1(c, \ell)$ because (W, κ_1, λ_2) is bijectively labeled. Thus, $\kappa'_1 \neq \kappa_1$ and $(W, \kappa'_1, \lambda_2) \in \mathcal{R}_1$. Furthermore, we have $m(W, \kappa_1, \lambda_2) = m(W, \kappa'_1, \lambda_2)$.
\(m(W, \kappa_1', \lambda_2).\) Thus, we can set \(\phi(W, \kappa_1, \lambda_2) = (W, \kappa_1', \lambda_2)\) to obtain the desired fixed-point-free involution on \(\mathcal{R}_1.\) Indeed, \(\phi(W, \kappa_1, \lambda_2) = (W, \kappa_1', \lambda_2) \neq (W, \kappa_1, \lambda_2)\) and \(\phi^2(W, \kappa_1, \lambda_2) = (W, \kappa_1, \lambda_2).\)

2.12. The pairing on \(\mathcal{R}_2 - \text{labeled reversal of first closed subwalk.}\)

Select an arbitrary \((W, \kappa_1, \lambda_2) \in \mathcal{R}_2.\) Let \(C = C(W)\) and let \(S, T\) be strings such that

\[W = SCT.\]

Let us define the string \(W'\) by reversing \(C\) in \(W,\) that is,

\[W' = \overline{SCT}.\]

We observe that the strings \(C\) and \(\overline{C}\) have identical ends because \(C\) is a closed walk, implying that \(W'\) is a walk in \(G.\) We also observe that \(W'\) is admissible. Indeed, because \(c(W') = c(W) \in V_2,\) any \(V_2EV_1EV_2\)-palindrome \(ueveu\) in \(W'\) can either (a) occur as a subwalk of \(\overline{C}\) in \(W',\) or (b) have at most one position in \(W'\) common with \(\overline{C}.\) But in both cases we have that \(ueveu\) occurs in \(W,\) which is a contradiction since \(W\) is admissible. Thus, \(W'\) is admissible.

We observe that \(W = W'\) if and only if \(C\) is a palindrome. Furthermore, if we reverse \(C(W') = \overline{C}\) in \(W',\) we obtain back \(W.\) That is, \(W'' = W.\)

In terms of string positions, we can characterize the reversal \(W \mapsto W'\) using the following permutation of positions. Let \(j\) and \(\ell\) be the positions of \(W\) that constitute the ends of \(C.\) Define the permutation \(\rho : \{1, 2, \ldots, k\} \to \{1, 2, \ldots, k\}\) by

\[\rho(i) = \begin{cases}
 i & \text{if } i < j \text{ or } i > \ell; \\
 \ell - i + j & \text{if } j \leq i \leq \ell.
\end{cases}\]

Let us denote the symbol at the \(i\)th position of \(W\) by \(w_i.\) The reversal \(W \mapsto W'\) can now be characterized by observing that \(w'_{\rho(i)} = w_i\) holds for each \(i = 1, 2, \ldots, k.\)

We now introduce a labeling \(\kappa_1', \lambda_2\) of \(W'\) using the labeling \(\kappa_1, \lambda_2\) of \(W.\) In particular, let us label \(W'\) so that each position of \(W'\) is labeled using the label of the \(\rho\)-corresponding position in \(W,\) if any. In precise terms, using the labeling \(\kappa_1 : V_1\{W\} \to K_1,\) define the labeling \(\kappa_1' : V_1\{W'\} \to K_1\) for each \((w'_{\rho(i)}, \rho(i)) \in V_1\{W'\}\) by setting \(\kappa_1'(w'_{\rho(i)}, \rho(i)) = \kappa_1(w_i, i).\) Similarly, using \(\lambda_2 : E_2\{W\} \to L_2,\) define \(\lambda_2' : E_2\{W'\} \to L_2\) by setting \(\lambda_2'(w'_{\rho(i)}, \rho(i)) = \lambda_2(w_i, i)\) for each \((w'_{\rho(i)}, \rho(i)) \in E_2\{W'\}.)

Now set \(\phi(W, \kappa_1, \lambda_2) = (W', \kappa_1', \lambda_2')\) and observe that \(\phi(W, \kappa_1, \lambda_2) \in \mathcal{R}_2,\)

\(\phi^2(W, \kappa_1, \lambda_2) = (W, \kappa_1, \lambda_2),\) and \(m(W, \kappa_1, \lambda_2) = m(\phi(W, \kappa_1, \lambda_2)).\)

What is not immediate, however, is that \(\phi(W, \kappa_1, \lambda_2) \neq (W, \kappa_1, \lambda_2).\) There are two cases to consider, depending on \(C.\)

In the first case, \(C\) is not a palindrome, that is, \(C \neq \overline{C}.\) Thus, \(W' \neq W\) and hence \((W', \kappa_1', \lambda_2') \neq (W, \kappa_1, \lambda_2).\)

In the second case, \(C\) is a palindrome. Since \(C\) is a closed walk, the string \(C\) has odd length at least 3. In particular, the length 3 (that is, a palindrome of the form \(ueu\) with \(u \in V_2\) and \(e \in E\) cannot occur because \(G\) has no loop edges. For palindromes of length 5, the only possibility is
that C is a $V_2E_2V_2E_2V_2$-palindrome. Indeed, C can neither be a $V_1EV_1EV_1$-palindrome nor a $V_1EV_2EV_1$-palindrome because $c(W) \in V_2$. Furthermore, C cannot be a $V_2EV_1EV_2$-palindrome because such palindromes by definition do not occur in the admissible W. Thus, for length 5 the only possibility is a $V_2EV_2EV_2$-palindrome, that is, a $V_2E_2V_2E_2V_2$-palindrome. Such a palindrome contains two occurrences of an edge in E_2 that are in ρ-corresponding positions. These occurrences get different labels under λ_2 and λ_2'. Thus, $(W', \kappa_1', \lambda_2') \neq (W, \kappa_1, \lambda_2)$. Finally, we observe that C cannot have length more than 5, because a palindrome of length 7 or more must include a palindrome of length 5, which would contradict the assumption that C is the first closed subwalk in W.

2.13. The algorithm. First, we recall the following result:

Lemma 9 (DeMillo–Lipton–Schwartz–Zippel [9, 33]). Let $p(x_1, x_2, \ldots, x_n)$ be a nonzero polynomial of total degree at most d over the finite field \mathbb{F}_q. Then, for $a_1, a_2, \ldots, a_n \in \mathbb{F}_q$ selected independently and uniformly at random,

$$\Pr(p(a_1, a_2, \ldots, a_n) \neq 0) \geq 1 - \frac{d}{q}.$$

Let us assume the parameters k, k_1, ℓ_2 have been fixed so that $k + \ell_2 \leq k - 1 \leq 2k_1 + \ell_2$. (We will set the precise values of k_1, ℓ_2 in what follows.)

To decide the existence of a k-path starting at s, we repeat the following randomized procedure.

First, the procedure selects an ordered partition (V_1, V_2) uniformly at random among all the 2^n such partitions. Lemma 7 implies that a fixed k-path P that starts at s is admissible with positive probability.

Next, the procedure makes use of Lemma 9 to witness a nonzero evaluation of a multivariate generating function for labeled admissible k-paths starting at s. In particular, from (3) and (2.10) we have that

\[
(4) \quad \sum_{(W, \kappa_1, \lambda_2) \in \mathcal{P}} m(W, \kappa_1, \lambda_2) = \sum_{I_1 \subseteq K_1} \sum_{|J_2| \leq L_2} (-1)^{|I_1|+|J_2|} \sum_{(W, \kappa_1, \lambda_2) \in \mathcal{L}[I_1, J_2]} m(W, \kappa_1, \lambda_2).
\]

The left-hand side of (4) is a multivariate polynomial of degree at most $k-1+k_1+\ell_2$. It follows from Lemma 8 that the polynomial is not identically zero if and only if G has an admissible k-path starting at s.

It remains to evaluate the right-hand side of (4) for a random assignment of values in \mathbb{F}_{q^b} to the indeterminates. To this end, the procedure iterates over each $I_1 \subseteq K_1$ and $J_2 \subseteq L_2$ and employs dynamic programming to evaluate the rightmost sum in (4).

Without loss of generality we can assume $k \geq 3$. For parameters k, k_1, ℓ_2 and a string $T = t_1t_2t_3t_4t_5$ over the alphabet $V \cup E$, our objective is to compute

\[
(5) \quad M(k, k_1, \ell_2, T) = \sum_{(W, \kappa_1, \lambda_2) \in \mathcal{L}[I_1, J_2]} m(W, \kappa_1, \lambda_2).
\]

In particular, taking the sum over all T, we obtain the rightmost sum in (4).

The recursion for (5) is as follows. For a logical proposition P, let us define $|P|$ to be 1 if P is true and 0 otherwise. For $k > 3$, we observe by
induction on k that
\[M(k, k_1, \ell_2, t_1 t_2 t_3 t_4 t_5) = \\
= [t_1 t_2 t_3 t_4 t_5 \text{ is not a } V_2 E V_1 E V_2 \text{-palindrome}] \]
\[
\times \sum_{e \in E} \left([v \notin V_1] + [v \in V_1] \sum_{j \in K_1 \setminus I_1} y_{v,j} \right) \left([e \notin E_2] + [e \in E_2] \sum_{j \in L_2 \setminus J_2} z_{e,j} \right) \]
\[
\times M(k-1, k_1 - [v \in V_1], \ell_2 - [e \in E_2], \text{vec}_1 t_2 t_3) .
\]

To set up the base cases for the recursion, we observe that $M(k, k_1, \ell_2, T)$ can be computed for all $0 \leq k_1, \ell_2 \leq k = 3$ and all $T = t_1 t_2 t_3 t_4 t_5$ in time polynomial in n. Furthermore, $M(k, k_1, \ell_2, T) = 0$ whenever $k_1 > k$ or $\ell_2 \geq k$ or $k_1 < 0$ or $\ell_2 < 0$.

Consequently, for any given assignment of values in F_{2^n} to the indeterminates $x_v, y_{v,\ell}, z_{e,\ell}$, the procedure evaluates the right-hand side of (6) via (3) in $O(2^{k_1 + \ell_2} k^3 n^4)$ arithmetic operations over F_{2^n}.

Let us now complete the algorithm by optimizing the parameters for running time and $\Omega(1)$ probability of success. Denoting the probability that a k-path P starting at s is admissible by $P(k, k_1, \ell_2)$, we have that in r repetitions of the procedure at least one repetition finds P admissible with probability $1 - (1 - P(k, k_1, \ell_2))^r \geq 1 - e^{-P(k, k_1, \ell_2) r}$. Setting $r = \lceil 1/P(k, k_1, \ell_2) \rceil$ and $b = \lceil \log_2 6k \rceil$, it follows from Lemma 7 that any fixed k-path starting at s in G is witnessed with probability at least $(1 - e^{-1})/2$ in time $O(2^{k_1 + \ell_2} k^3 n^4 / P(k, k_1, \ell_2))$. Setting $k_1 = \lceil \gamma_1 k \rceil$, $\ell_2 = \lceil \gamma_2 k \rceil$, and employing (2) to approximate $P(k, k_1, \ell_2)$, we obtain $O^*(1.6569^k)$ time for $\gamma_1 = 0.5$ and $\gamma_2 = 0.207107$.

3. A Determinant Sieve for q-Dimensional p-Packings

This section establishes Theorem 5.

3.1. Prepackings and Edmonds’s symbolic determinant. Let us say that a subset $A \subseteq \mathcal{F}$ is a j-prepacking if $|A| = j$ and the sets in A are pairwise disjoint when projected to $U_1 \cup U_2$.

Observe that each $A \in \mathcal{A}$ in a j-prepacking identifies both a unique $u_1(A) \in A \cap U_1$ and a unique $u_2(A) \in A \cap U_2$.

For a bijection $\sigma : U_1 \to U_2$, let us say that a j-prepacking A is compatible with σ if for all $A \in \mathcal{A}$ it holds that $\sigma(u_1(A)) = u_2(A)$. Note that each j-prepacking is compatible with at least one σ.

Edmonds [10] made the algorithmically seminal observation that the determinant of a symbolic $r \times r$ matrix $E = (e_{u_1,u_2})_{u_1 \in U_1, u_2 \in U_2}$ is a signed generating function over partitions of $U_1 \cup U_2$ into 2-subsets with exactly one element from U_1 and exactly one element from U_2. Indeed, identifying each such partition with a bijection $\sigma : U_1 \to U_2$, we have

\[
\text{det } E = \sum_{\sigma : U_1 \to U_2} \text{sgn}_r(\sigma) \prod_{u_1 \in U_1} e_{u_1, \sigma(u_1)} ,
\]

where the sign $\text{sgn}_r(\sigma)$ is the sign of the permutation $\sigma \tau$ for an arbitrary fixed bijection $\tau : U_2 \to U_1$.

Our strategy is to leverage Edmonds’s observation from the dimensions U_1 and U_2 into q dimensions U_1, U_2, \ldots, U_q with sieving. In particular, Edmonds’s observation forces the packing constraint in the first two dimensions, which allows us to restrict the sieve to the remaining $q - 2$ dimensions.

3.2. **Fingerprinting and identifiability.** Consider a j-prepacking $A \subseteq \mathcal{F}$. The domain of the prepacking is the set

$$(8) \quad d(A) = \{(u, A) : u \in A \in \mathcal{A}\} \subseteq (U_3 \cup U_4 \cup \cdots \cup U_q) \times \mathcal{F}.$$

Observe that $|d(A)| = j(q - 2)$.

Let L be a set of $(q - 2)$ labels. A labeling of A is a pair (σ, λ), where $\sigma : U_1 \rightarrow U_2$ is a bijection compatible with A and $\lambda : d(A) \rightarrow L$ is an arbitrary mapping. The labeling is bijective if λ is a bijection. We say that a triple (A, σ, λ) is a labeled j-prepacking.

The sieve operates over a multivariate polynomial ring with the coefficient field \mathbb{F}_{q^2} and the following indeterminates. Introduce the indeterminate x_A. Associate with each pair $(u_1, u_2) \in U_1 \times U_2$ an indeterminate y_{u_1, u_2}. Associate with each pair $(u, \ell) \in (U_3 \cup U_4 \cup \cdots \cup U_q) \times L$ an indeterminate $z_{u, \ell}$.

The signed monomial of a labeled j-prepacking (A, σ, λ) is

$$(9) \quad m(A, \sigma, \lambda) = \text{sgn}_r(\sigma) w^j \prod_{A \in A} x_A \prod_{u_1 \in U} y_{u_1, \sigma(u_1)} \prod_{(u, \ell) \in d(A)} z_{u, \lambda(u, A)}.$$

Lemma 10 (Identifiability). The monomial $m(A, \sigma, \lambda)$ uniquely determines both A and σ. Furthermore, if A is a p-packing and λ is bijective, then $m(A, \sigma, \lambda)$ uniquely determines λ.

3.3. **Sieving for bijective labelings.** Denote by \mathcal{L} the set of all labeled p-prepackings. For $J \subseteq L$, denote by $\mathcal{L}[J]$ the subset of labeled p-prepackings whose labeling avoids each label in J. Denote by \mathcal{B} the set of all bijectively labeled p-prepackings.

By the principle of inclusion-exclusion,

$$(10) \quad \sum_{(A, \sigma, \lambda) \in \mathcal{B}} m(A, \sigma, \lambda) = \sum_{J \subseteq L} (-1)^{|J|} \sum_{(A, \sigma, \lambda) \in \mathcal{L}[J]} m(A, \sigma, \lambda).$$

3.4. **Fingerprints of bijectively labeled non-p-packings cancel.** Partition \mathcal{B} into $\mathcal{B} = \mathcal{P} \cup \mathcal{R}$, where \mathcal{P} is the set of bijectively labeled p-packings, and \mathcal{R} is the set of bijectively labeled p-prepackings that are not packings. Accordingly, the left-hand side of (10) splits into

$$\sum_{(A, \sigma, \lambda) \in \mathcal{B}} m(A, \sigma, \lambda) = \sum_{(A, \sigma, \lambda) \in \mathcal{P}} m(A, \sigma, \lambda) + \sum_{(A, \sigma, \lambda) \in \mathcal{R}} m(A, \sigma, \lambda).$$

We show that the rightmost sum vanishes in characteristic 2. To this end, it suffices to construct a fixed-point-free involution $\phi : \mathcal{R} \rightarrow \mathcal{R}$ such that $m(\phi(A, \sigma, \lambda)) = m(A, \sigma, \lambda)$ holds for all $(A, \sigma, \lambda) \in \mathcal{R}$. Consider an arbitrary $(A, \sigma, \lambda) \in \mathcal{R}$. Since A is a p-preparing but not a packing, there is a minimum (with respect to e.g. lexicographic order) three-tuple $(u_0, A_1, A_2) \in$
\((U_3 \cup U_4 \cup \cdots \cup U_q) \times A \times A \) such that \(u_0 \in A_1 \cap A_2 \) and \(A_1 \neq A_2 \). Define a labeling \(\lambda' : d(A) \to L \) of \(A \) by setting, for each \((u, A) \in d(A)\),

\[
\lambda'(u, A) = \begin{cases}
\lambda(u, A) & \text{if } u \neq u_0 \text{ or } A \notin \{A_1, A_2\}; \\
\lambda(u_0, A_2) & \text{if } u = u_0 \text{ and } A = A_1; \text{ and} \\
\lambda(u_0, A_1) & \text{if } u = u_0 \text{ and } A = A_2.
\end{cases}
\]

Note that \(\lambda' \) is bijective and that \(\lambda' \neq \lambda \). From (18) and (11) it follows that \(m(A, \sigma, \lambda') = m(A, \sigma, \lambda) \) holds for all \((A, \sigma, \lambda) \in R\). We can now set \(\phi(A, \sigma, \lambda) = (A, \sigma, \lambda') \) and observe that \(\phi(A, \sigma, \lambda) \in R\), \(\phi(A, \sigma, \lambda) \neq (A, \sigma, \lambda) \), and \(\phi^2(A, \sigma, \lambda) = (A, \sigma, \lambda) \) for all \((A, \sigma, \lambda) \in R\). Thus, \(\phi \) is a fixed-point-free involution on \(R \).

3.5. The algorithm. From (10) and (3.4) we have

\[
\sum_{(A, \sigma, \lambda) \in \mathcal{F}} m(A, \sigma, \lambda) = \sum_{J \subseteq L} (-1)^{|J|} \sum_{(\bar{A}, \bar{\lambda}) \in \mathcal{L}[J]} m(A, \sigma, \lambda).
\]

From (9) we observe that the left-hand side of (12) is a multivariate polynomial of degree at most \(pq + r \). It follows from Lemma 10 that the polynomial is not identically zero if and only if \(\mathcal{F} \) contains a \(p \)-packing. It remains to evaluate (12) for an assignment of values to the indeterminates.

Let \(J \subseteq L \) be fixed. Introduce an \(r \times r \) matrix \(E(J) \) as follows. Index the rows with \(U_1 \) and the columns with \(U_2 \). Define the entry at row \(u_1 \in U_1 \), column \(u_2 \in U_2 \) by

\[
e_{u_1, u_2}(J) = y_{u_1, u_2} \left(1 + w \sum_{A \in \mathcal{F}(\{u_1, u_2\})} x_A \prod_{u \in A \setminus \{u_1, u_2\}} \sum_{t \in \mathcal{L}[J]} z_{u,t} \right).
\]

Denote by \(\mathcal{L}_j[J] \) the subset of labeled \(j \)-prepackings whose labeling avoids each label in \(J \). From (7), (8), and (9) it immediately follows that we have

\[
\det E(J) = \sum_{j=0}^{r} \sum_{(A, \sigma, \lambda) \in \mathcal{L}_j[J]} m(A, \sigma, \lambda).
\]

Consequently, for any given assignment of values in \(\mathbb{F}_{2^b} \) to the indeterminates \(x_A, y_{u_1, u_2}, \) and \(z_{u,t} \), we can evaluate the left-hand side of (13) as a polynomial in the indeterminate \(w \) via (13). Taking the sum over all \(J \subseteq L \) and extracting the coefficient of the monomial \(w^T \), we obtain an evaluation of the right-hand side of (12) in total \(O(2^{p(q-2)}|\mathcal{F}|pq^2r^4) \) arithmetic operations in \(\mathbb{F}_{2^b} \). Taking \(b = \lceil \log_2 2(pq + r) \rceil \), Lemma 4 implies that we witness a \(p \)-packing in \(\mathcal{F} \) (as a nonzero evaluation of the left-hand side of (12)) with probability at least \(1/2 \) in time \(O^*(2^{p(q-2)}) \) for polynomial size families \(\mathcal{F} \).

4. A Projection–Determinant Sieve for \(p \)-Packings of \(q \)-Sets

This section establishes Theorems 2 and 4.
4.1. Tutte’s observation. Let us recall that an involution is a permutation that is identical to its inverse. In particular, the cycle decomposition of an involution consists of fixed points and transpositions (cycles of length 2). It follows that the involutions on a set I are in a one-to-one correspondence with the set partitions of I into sets of cardinality 1 and 2. The following lemma is essentially due to Tutte [34].

Lemma 11 (Tutte’s Determinant–Partition Lemma). *Let T be an $m \times m$ matrix with entries in a multivariate polynomial ring over a field of characteristic 2. Index the rows and columns of T by the elements of a set I and suppose that T is symmetric so that

$$
t_{ij} = \begin{cases}
\sum_k s_{\{i\},k} & \text{if } i = j; \\
\sum_k s_{\{i,j\},k} & \text{if } i \neq j
\end{cases}
$$

holds for all $i, j \in I$. Then,

$$
\det T = \sum_{i: I \to I} \prod_{i \in \text{involution}} \sum_{i \leq i(i)} s_{\{i,i(i)\},k}.
$$

Proof. Denote the set of all permutations of I by P_I. Observe that a permutation $\sigma \in P_I$ is not an involution if and only if the cycle decomposition of σ contains a cycle of length at least 3. Suppose that $\nu \in P_I$ is a permutation that is not an involution. Introduce an arbitrary total order on I, and order the cycles of length at least 3 in ν based on the least point in I moved by each such cycle. Denote by ν' the permutation obtained from ν by inverting the first cycle of length at least 3 in ν based on the least point in I moved by each such cycle. Denote by ν'' the permutation obtained from ν' by inverting the first cycle of length at least 3 in ν'. Clearly, $\nu' \neq \nu$ and $(\nu'')' = \nu'$. Now observe that because T is a symmetric matrix, for a cyclic permutation $(i_1 i_2 \cdots i_j)$ and its inverse $(i_j i_{j-1} \cdots i_1)$, we have

$$t_{i_1,i_2}t_{i_2,i_3}\cdots t_{i_{j-1},i_j}t_{i_j,i_1} = t_{i_j,i_{j-1}}t_{i_{j-1},i_{j-2}}\cdots t_{i_2,i_1}t_{i_1,i_j}$$

It follows that

$$\prod_{i \in I} t_{i,\nu(i)} = \prod_{i \in I} t_{i,\nu''(i)}.$$

Partition P_I into $P_I = Q_I \cup R_I$, where Q_I consists of the involutions and R_I consists of the non-involutions. Introduce an arbitrary total order on R_I. Because the determinant of T is equal to the permanent of T in
characteristic 2, we have
\[
\det T = \sum_{\sigma \in \mathcal{P}_I} \prod_{i \in I} t_{i,\sigma(i)} = \sum_{\nu \in \mathcal{R}_I} \prod_{i \in I} t_{i,\nu(i)} + \sum_{\nu \in \mathcal{R}_I} \prod_{i \in I} t_{i,\nu'(i)}
\]
\[
= \sum_{\nu \in \mathcal{R}_I} \prod_{i \in I} t_{i,\nu(i)} + \sum_{\nu \in \mathcal{R}_I} \left(\prod_{i \in I} t_{i,\nu(i)} + \prod_{i \in I} t_{i,\nu'(i)} \right)
\]
\[
= \sum_{\nu \in \mathcal{R}_I} \prod_{i \in I} t_{i,\nu(i)} + 2 \prod_{i \in I} t_{i,\nu(i)}
\]
\[
= \sum_{\nu \in \mathcal{R}_I} \prod_{i \in I} t_{i,\nu(i)}
\]

Thus, splitting the product over fixed and moved points of \(\iota\), and using the symmetry of \(T\), we have
\[
\det T = \sum_{\iota \in \mathcal{Q}_I} \prod_{i \in I} t_{i,\iota(i)} \prod_{i \notin \iota(i)} t_{i,\iota(i)}
\]
\[
= \sum_{\iota \in \mathcal{Q}_I} \prod_{i \in I} \sum_k s^2_{\{i,\iota\},k} \prod_{i \in I} \left(\sum_k s_{\{i,\iota\},k} \right)^2
\]
\[
= \sum_{\iota \in \mathcal{Q}_I} \prod_{i \in I} \sum_k s^2_{\{i,\iota\},k} \prod_{i \in I} \left(\sum_k s_{\{i,\iota\},k} + 2 \sum_{k<k'} s_{\{i,\iota\},k} s_{\{i,\iota\},k'} \right)
\]
\[
= \sum_{\iota \in \mathcal{Q}_I} \prod_{i \in I} \sum_k s^2_{\{i,\iota\},k} \prod_{i \in I} \sum_k s^2_{\{i,\iota\},k}
\]
\[
= \sum_{\iota \in \mathcal{Q}_I} \prod_{i \leq \iota(i)} \sum_k s^2_{\{i,\iota\},k}
\]

The claim follows. \(\square\)

Our strategy is to leverage Tutte’s observation with random projection and sieving. In particular, we witness a \(p\)-packing by randomly projecting it to a set \(U_1 \subseteq U\) where Tutte’s observation forces the packing constraint with positive probability, which allows us to restrict sieving to the complementary projection into \(U_2 = U \setminus U_1\).

4.2. Admissible packings and prepackings. Let \(\mathcal{F}\) be a set of \(q\)-subsets of an \(n\)-element universe \(U\). Partition \(U\) into two disjoint sets \(U = U_1 \cup U_2\) with \(|U_1| = n_1\) and \(|U_2| = n_2 = n - n_1\). We say that such an ordered partition \((U_1, U_2)\) of \(U\) is an \((n_1, n_2)\)-partition.

A subset \(A \subseteq \mathcal{F}\) is a \(p\)-packing if \(|A| = p\) and the sets in \(A\) are pairwise disjoint. We say that \(A\) is admissible if every set \(A \in A\) satisfies \(|A \cap U_1| \leq 2\). We say that \(A\) is a \((p_0, p_1, p_2)\)-prepacking if

(a) \(|A| = p_0 + p_1 + p_2;\)
bijection. We say that a triple \((A, \iota, \lambda)\) is a \((p_0, p_1, p_2)\)-prepacking for some parameters \(p_0 + p_1 + p_2 = p\). In this case we say that the \(p\)-packing is a \((p_0, p_1, p_2)\)-packing.

Let us say that a \((p_0, p_1, p_2)\)-prepacking \(A\) is compatible with an involution \(\iota: U_1 \to U_1\) if for every \(A \in \mathcal{A}\) it holds that

(a) \(\iota\) fixes the point in \(A \cap U_1\) if \(|A \cap U_1| = 1\); and

(b) \(\iota\) transposes the two points in \(A \cap U_1\) if \(|A \cap U_1| = 2\).

Note that every prepacking is compatible with at least one involution.

4.3. Random projection. We analyze the probability that a given \(p\)-packing projects under a random \((U_1, U_2)\) into a \((p_0, p_1, p_2)\)-packing.

Lemma 12 (Admissibility). Let \(A\) be a \(p\)-packing. For an \((n_1, n_2)\)-partition \((U_1, U_2)\) of \(U\) selected uniformly at random, we have

\[
\Pr(A \text{ is a } (p_0, p_1, p_2)\text{-packing}) = \\
\left(\frac{p}{p_1 + p_2} \right) \left(\frac{p_1 + p_2}{p_2} \right) \left(\frac{q}{1} \right) \left(\frac{q}{2} \right) \left(\frac{n - pq}{n_1 - p_1 - 2p_2} \right) \left(\frac{n}{n_1} \right)^{-1}.
\]

Proof. Among the \(p\) pairwise disjoint sets in \(A\), there are \(\binom{p_1 + p_2}{p}\) ways to select the sets that intersect \(U_1\) in 1 or 2 points, and \(\binom{p_1 + p_2}{2}\) ways to select among these the \(p_2\) sets that intersect in 2 points. There are \(\binom{q}{1} \binom{q}{2} \binom{n - pq}{n_1 - p_1 - 2p_2} \binom{n}{n_1}^{-1}\) possible intersection patterns with \(U_1\) in these selected \(p_1 + p_2\) sets. There are \(\binom{n_1 - p_1 - 2p_2}{pq}\) ways to select the remaining \(n_1 - p_1 - 2p_2\) points of \(U_1\) outside the \(pq\) points of \(A\).

Remark. A nonzero probability is allocated if and only if \(pq \leq n, p_0 + p_1 + p_2 = p, p_1 + 2p_2 \leq n_1, \text{ and } n_1 - p_1 - 2p_2 \leq n - pq\).

Using techniques similar to [2,6] let us derive an asymptotic approximation for (15). One verifies by direct calculation that for \(\delta = (p_1 + 2p_2)/(pq)\),

\[
\left\langle \frac{n - pq}{\delta n - p_1 - 2p_2} \right\rangle \left\langle \frac{n}{\delta n} \right\rangle^{-1} = \left\langle \frac{pq}{p_1 + 2p_2} \right\rangle^{-1}.
\]

For \(n_1 = \lfloor \delta n \rfloor\) thus, uniformly for all \(0 < p_0, p_1, p_2 < p\) with \(p_0 + p_1 + p_2 = p\),

\[
\Pr(A \text{ is a } (p_0, p_1, p_2)\text{-packing}) = \\
\Theta^* \left(\left\langle \frac{p}{p_1 + p_2} \right\rangle \left\langle \frac{p_1 + p_2}{p_2} \right\rangle \left\langle \frac{q}{1} \right\rangle \left(\frac{q}{2} \right) \left\langle \frac{pq}{p_1 + 2p_2} \right\rangle^{-1} \right).
\]

4.4. Fingerprinting and identifiability. Let \(A \subseteq \mathcal{F}\) be a \((p_0, p_1, p_2)\)-prepacking. The domain of the prepacking is the set

\[
d(A) = \{(u, A) : u \in A \in \mathcal{A}\} \subseteq U_2 \times \mathcal{F}.
\]

Observe that \(|d(A)| = qp_0 + (q - 1)p_1 + (q - 2)p_2\).

Let \(L\) be a set of \(qp_0 + (q - 1)p_1 + (q - 2)p_2\) labels. A labeling of \(A\) is a pair \((\iota, \lambda)\), where \(\iota: U_1 \to U_1\) is an involution compatible with \(A\) and \(\lambda: d(A) \to L\) is an arbitrary mapping. The labeling is bijective if \(\lambda\) is a bijective. We say that a triple \((A, \iota, \lambda)\) is a labeled \((p_0, p_1, p_2)\)-prepacking.
The sieve operates over a multivariate polynomial ring with the coefficient field \(\mathbb{F}_2 \) and the following indeterminates. Introduce the indeterminates \(w_0, w_1, \) and \(w_2 \) for tracking the parameters \(p_0, p_1, p_2 \) of \(A \). Associate with each \(A \in \mathcal{F} \) an indeterminate \(x_A \). Associate with each set \(K \subseteq U_1 \) of size \(1 \leq |K| \leq 2 \) an indeterminate \(y_K \). Associate with each pair \((u, \ell) \in U_2 \times L \) an indeterminate \(z_{u,\ell} \).

The monomial of a labeled \((p_0, p_1, p_2)\)-prepacking \((A, \iota, \lambda)\) is

\[
m(A, \iota, \lambda) = w_0^{2p_0} w_1^{2p_1} w_2^{2p_2} \prod_{A \in \mathcal{A}} x_A^2 \prod_{i \in U_1, \ell \leq (i)} y_{i,\iota(i)}^2 \prod_{(u, A) \in d(A)} z_{u,\lambda(u, A)}^2.
\]

Lemma 13 (Identifiability). The monomial \(m(A, \iota, \lambda) \) uniquely determines both \(A \) and \(\iota \). Furthermore, if \(A \) is a \(p \)-packing and \(\lambda \) is bijective, then \(m(A, \iota, \lambda) \) uniquely determines \(\lambda \).

4.5. Sieving for bijective labelings

Denote by \(\mathcal{L}_{p_0, p_1, p_2} \) the set of all labeled \((p_0, p_1, p_2)\)-prepackings. For \(J \subseteq L \), denote by \(\mathcal{L}_{p_0, p_1, p_2}[J] \) the sub-set of labeled \((p_0, p_1, p_2)\)-prepackings whose labeling avoids each label in \(J \). Denote by \(\mathcal{B}_{p_0, p_1, p_2} \) the set of all bijectively labeled \((p_0, p_1, p_2)\)-prepackings.

By the principle of inclusion-exclusion,

\[
\sum_{(A, \iota, \lambda) \in \mathcal{B}_{p_0, p_1, p_2}} m(A, \iota, \lambda) = \sum_{J \subseteq L} (-1)^{|J|} \sum_{(A, \iota, \lambda) \in \mathcal{L}_{p_0, p_1, p_2}[J]} m(A, \iota, \lambda).
\]

4.6. Fingerprints of bijectively labeled non-\((p_0, p_1, p_2)\)-packings cancel.

Let \(\mathcal{B}_{p_0, p_1, p_2} \) be the set of bijectively labeled \((p_0, p_1, p_2)\)-prepackings. Partition \(\mathcal{B}_{p_0, p_1, p_2} \) into \(\mathcal{B}_{p_0, p_1, p_2} = \mathcal{P}_{p_0, p_1, p_2} \cup \mathcal{R}_{p_0, p_1, p_2} \), where \(\mathcal{P}_{p_0, p_1, p_2} \) is the set of bijectively labeled \((p_0, p_1, p_2)\)-packings, and \(\mathcal{R}_{p_0, p_1, p_2} \) is the set of bijectively labeled \((p_0, p_1, p_2)\)-prepackings that are not \((p_0, p_1, p_2)\)-packings. Accordingly, we have

\[
\sum_{(A, \iota, \lambda) \in \mathcal{B}_{p_0, p_1, p_2}} m(A, \iota, \lambda) = \sum_{(A, \iota, \lambda) \in \mathcal{P}_{p_0, p_1, p_2}} m(A, \iota, \lambda) + \sum_{(A, \iota, \lambda) \in \mathcal{R}_{p_0, p_1, p_2}} m(A, \iota, \lambda).
\]

By a pairing argument essentially identical to the one given in [3.4], the rightmost sum vanishes in characteristic 2.

4.7. The algorithm

Let us assume that the parameters \(0 < p_0, p_1, p_2 < p \) and \(n_1, n_2 \) have been fixed so that any given \(p \)-packing is a \((p_0, p_1, p_2)\)-packing with positive probability. (We will set the precise values in what follows.) The algorithm repeats the following randomized procedure.

First, the procedure selects an ordered \((n_1, n_2)\)-partition \((U_1, U_2)\) uniformly at random among all the \(\binom{n_1}{n_2} \) such partitions.

Next, the procedure evaluates the following generating function for a random assignment of values to the indeterminates. From [19] and [1.6] we have

\[
\sum_{(A, \iota, \lambda) \in \mathcal{P}_{p_0, p_1, p_2}} m(A, \iota, \lambda) = \sum_{J \subseteq L} (-1)^{|J|} \sum_{(A, \iota, \lambda) \in \mathcal{L}_{p_0, p_1, p_2}[J]} m(A, \iota, \lambda).
\]

The left-hand side of [20] is a multivariate polynomial of degree at most \(2n_1 + (2q + 4)p_0 + (2q + 3)p_1 + (2q + 2)p_2 \). It follows from Lemma [13] that...
the polynomial is not identically zero if and only if \(\mathcal{F} \) contains a \((p_0,p_1,p_2)\)-packing.

It remains to evaluate the right-hand side of (20). Let \(J \subseteq L \) be fixed. The procedure relies on the following observation that a sum over labeled prepackings factors into a product of two independent expressions. The first expression, \(S(J) \), generates the sets that do not intersect \(U_1 \) with a simple product. The second expression, \(\det T(J) \), generates the sets that intersect \(U_1 \) with Lemma 11.

In precise terms, let

\[
(21) \quad S(J) = \prod_{A \in \mathcal{F}} \left(1 + w_0^2 x_A^2 \prod_{u_2 \in A \cap L \setminus J} z_{u_2,\ell}^2 \right).
\]

Define the symmetric \(n_1 \times n_1 \) matrix \(T(J) \) as follows. Index the rows and columns by elements of \(U_1 \). For \(u_1 \in U_1 \), define the diagonal entries by

\[
(22) \quad t_{u_1,u_1}(J) = y_{\{u_1\}}^2 \left(1 + w_2^2 \sum_{A \in \mathcal{F}} x_A^2 \prod_{u_2 \in A \cap U_2} \sum_{\ell \in L \setminus J} z_{u_2,\ell}^2 \right).
\]

For \(u_1, v_1 \in U_1 \) with \(u_1 \neq v_1 \), define the off-diagonal entries by

\[
(23) \quad t_{u_1,v_1}(J) = y_{\{u_1,v_1\}} \left(1 + w_2 \sum_{A \in \mathcal{F}} x_A \prod_{u_2 \in A \cap U_2} \sum_{\ell \in L \setminus J} z_{u_2,\ell} \right).
\]

Let us now observe that

\[
(24) \quad \sum_{0 \leq p_0 \leq |J|} \sum_{0 \leq p_1 + 2p_2 \leq n_1} \sum_{(A,\ell,\lambda) \in \mathcal{L}(p_0,p_1,p_2)[J]} \tilde{m}(A,\ell,\lambda) = S(J) \det T(J).
\]

To this end, first recall (15) and the notion of compatibility between a prepacking and an involution (12). Next, expand (22) and (23) to sums of monomials and apply Lemma 11 to conclude that \(\det T(J) \) is exactly the left-hand side of (24) restricted to \(p_0 = 0 \). Finally, expand (21) to conclude that (24) holds.

Consequently, for any given assignment of values in \(\mathbb{F}_2^3 \) to the indeterminates \(x_A, y_K, \) and \(z_{u,\ell} \), the procedure evaluates the left-hand side of (24) as a polynomial in the indeterminates \(w_0, w_1, w_2 \) using a total of \(O(|\mathcal{F}|^6 q^4 |L| n_1^3) \) arithmetic operations in \(\mathbb{F}_2^3 \). From such an evaluation we can recover the coefficient of the monomial \(w_0^{p_0} w_1^{p_1} w_2^{p_2} \). This coefficient corresponds to an evaluation of the inner sum in the right-hand side of (21). Taking the sum over \(J \subseteq L \) (and multiplying by \(w_0^{p_0} w_1^{p_1} w_2^{p_2} \)), we obtain an evaluation of the right-hand side of (21).

Denoting the probability that a \(p \)-packing \(A \) is a \((p_0,p_1,p_2)\)-packing with \(P(n,n_1,p_0,p_1,p_2) \), and taking \(r = \lceil 1/P(n,n_1,p_0,p_1,p_2) \rceil \) repetitions of the procedure with \(b = \lceil \log_2 16n \rceil \), Lemma 9 implies that at least one repetition of the procedure witnesses any fixed \(p \)-packing \(A \) (as a nonzero evaluation of (21)) with probability at least \((1 - e^{-1})/2\) in time

\[
O\left(2^{p_0+(q-1)p_1+(q-2)p_2}|\mathcal{F}|^6 q^4 n_1 b^2 / P(n,n_1,p_0,p_1,p_2)\right).
\]
Setting \(n_1 = \lfloor \delta n \rfloor, p_1 = \lfloor \beta_1 p \rfloor, p_2 = \lfloor \beta_2 p \rfloor, \) and \(p_0 = p - p_1 - p_2, \) we obtain from (16) the running time

\[
O^*\left(\left(\frac{2q(1-\beta_1-\beta_2)+(q-1)\beta_1+(q-2)\beta_2}{\beta_1+\beta_2}\right) \left(\frac{q}{\beta_1+\beta_2}\right)^{p_1} \left(\frac{2}{q}\right)^{p_2}\right)
\]

for polynomial size families \(\mathcal{F}. \) In particular, we obtain time \(O^*(3.3432^p) \) for \(q = 3 \) with \(\beta_1 = 0.281509 \) and \(\beta_2 = 0.679622, \) time \(O^*(7.2562^p) \) for \(q = 4 \) with \(\beta_1 = 0.323262 \) and \(\beta_2 = 0.612790, \) time \(O^*(15.072^p) \) for \(q = 5 \) with \(\beta_1 = 0.338614 \) and \(\beta_2 = 0.582673. \)

5. A Determinant Sieve for Edge-Coloring

This section establishes Theorem 6.

5.1. Tutte’s observation revisited. The edges of \(G \) can be colored with \(d \) colors if and only if there exists a set of \(d-1 \) pairwise edge-disjoint perfect matchings in \(G. \) Indeed, because the graph is \(d \)-regular, each color class must be a perfect matching.

Let us now return to Lemma 14. We observe that (14) in effect gives us a multivariate generating function for the perfect matchings in \(G. \) Our strategy is to introduce \(d-1 \) independent copies of this generating function and sieve for edge-disjointness.

5.2. Fingerprinting and identifiability. Let \(\vec{M} = (M_1, M_2, \ldots, M_p) \) be an ordered \(p \)-tuple of perfect matchings in \(G. \) The domain of \(\vec{M} \) is the set

\[
d(\vec{M}) = \{(e, i) : e \in M_i \subseteq E \times \{1, 2, \ldots, p\}\}.
\]

Observe that \(|d(\vec{M})| = pm/2. \) Let \(L \) be a set of \(pm/2 \) labels. A labeling of \(\vec{M} \) is a mapping \(\lambda : d(\vec{M}) \to L. \) The labeling is bijective if \(\lambda \) is a bijection.

The sieve operates over a multivariate polynomial ring with the coefficient field \(\mathbb{F}_{2^h} \) and the following indeterminates. Associate with each pair \((e, i) \in E \times \{1, 2, \ldots, p\} \) an indeterminate \(x_{e,i}. \) Associate with each pair \((e, \ell) \in E \times L \) an indeterminate \(y_{e,\ell}. \)

The monomial of a labeled \(p \)-tuple \((\vec{M}, \lambda) \) is

\[
m(\vec{M}, \lambda) = \prod_{(e, i) \in d(\vec{M})} x_{e,i}^2 y_{e,\lambda(e,i)}^2.
\]

Lemma 14 (Identifiability). The monomial \(m(\vec{M}, \lambda) \) uniquely determines \(\vec{M}. \) Furthermore, if \(\vec{M} \) consists of pairwise edge-disjoint perfect matchings and \(\lambda \) is bijective, then \(m(\vec{M}, \lambda) \) uniquely determines \(\lambda. \)

5.3. Sieving for bijective labelings. Denote by \(\mathcal{L} \) the set of all labeled \(p \)-tuples of perfect matchings of \(G. \) For \(J \subseteq L, \) denote by \(\mathcal{L}[J] \) the subset of labeled \(p \)-tuples of perfect matchings of \(G \) whose labeling avoids each label in \(J. \) Denote by \(\mathcal{B} \) the set of all bijectively labeled \(p \)-tuples of perfect matchings of \(G. \)

By the principle of inclusion-exclusion,

\[
\sum_{(\vec{M}, \lambda) \in \mathcal{B}} m(\vec{M}, \lambda) = \sum_{J \subseteq L} (-1)^{|J|} \sum_{(\vec{M}, \lambda) \in \mathcal{L}[J]} m(\vec{M}, \lambda).
\]
5.4. **Fingerprints of bijectively labeled non-disjoint \(p \)-tuples cancel.**

Let \(\mathcal{B} \) be the set of all bijectively labeled \(p \)-tuples of perfect matchings of \(G \). Partition \(\mathcal{B} \) into \(\mathcal{B} = \mathcal{P} \cup \mathcal{R} \), where \(\mathcal{P} \) is the set of bijectively labeled \(p \)-tuples of perfect matchings that are pairwise edge-disjoint, and \(\mathcal{R} \) is the set of bijectively labeled \(p \)-tuples of perfect matchings for which there exists at least one edge that occurs in at least two matchings in the tuple. Accordingly, we have

\[
\sum_{(\tilde{M}, \lambda) \in \mathcal{B}} m(A, \iota, \lambda) = \sum_{(\tilde{M}, \lambda) \in \mathcal{P}} m(\tilde{M}, \lambda) + \sum_{(\tilde{M}, \lambda) \in \mathcal{R}} m(\tilde{M}, \lambda).
\]

By a pairing argument essentially identical to the one given in §3.4, the rightmost sum vanishes in characteristic 2.

5.5. **The algorithm.** First, the procedure evaluates the following generating function for a random assignment of values to the indeterminates. From (27) and §5.4 we have

\[
\sum_{(\tilde{M}, \lambda) \in \mathcal{P}} m(\tilde{M}, \lambda) = \sum_{J \subseteq L} (-1)^{|J|} \sum_{(\tilde{M}, \lambda) \in \mathcal{L}[J]} m(\tilde{M}, \lambda).
\]

The left-hand side of (28) is a multivariate polynomial of degree at most \(2pn \). It follows from Lemma 14 that the polynomial is not identically zero if and only if \(G \) has a set of \(p \) pairwise edge-disjoint perfect matchings.

It remains to evaluate the right-hand side of (28). Let \(J \subseteq L \) be fixed. The procedure relies on Tutte’s Lemma (Lemma 11). For \(i = 1, 2, \ldots, p \) define the symmetric \(n \times n \) matrix \(T^{(i)}(J) \) as follows. Index the rows and columns by the vertices \(V \) of \(G \). Define the entries of \(T^{(i)}(J) \) for all \(u, v \in V \) by

\[
t^{(i)}_{u,v}(J) = \begin{cases} 0 & \text{if } u = v \text{ or } \{u, v\} \notin E; \\ x_{\{u,v\},i} \sum_{\ell \in L \setminus J} y_{\{u,v\}, \ell} & \text{if } \{u, v\} \in E. \end{cases}
\]

From Lemma 11 we have

\[
\sum_{(\tilde{M}, \lambda) \in \mathcal{L}[J]} m(\tilde{M}, \lambda) = \prod_{i=1}^{p} \det T^{(i)}(J).
\]

Consequently, for any given assignment of values in \(\mathbb{F}_2b \) to the indeterminates \(x_{e,i} \) and \(y_{e,\ell} \), the procedure evaluates the left-hand side of (30) using a total of \(O(pm^3) \) arithmetic operations in \(\mathbb{F}_2b \). Taking the sum over \(J \subseteq L \), we obtain an evaluation of the right-hand side of (28). Taking \(b = \lceil \log_2 4pn \rceil \), we witness a set of \(p \) pairwise edge-disjoint perfect matchings in \(G \) as a nonzero evaluation of the left-hand side of (28) with probability \(\Omega(1) \) in time \(O^*(2^{pm/2}) \) and space polynomial in \(n \). Taking \(p = d - 1 \), we obtain a polynomial-space randomized algorithm for deciding whether a \(d \)-regular graph admits a coloring of its edges with \(d \) colors in \(O^*(2^{(d-1)n/2}) \) time.

5.6. **Graphs that are not regular.** Let \(m = |E| \). We can modify the previous algorithm to run in time \(O^*(2^m) \) and space polynomial in \(n \) on graphs that are not regular. In particular, instead of perfect matchings consider matchings, set \(|L| = m \), in (29) set the diagonal entries equal to 1, and set \(p = \Delta \), where \(\Delta \) is the maximum degree of a vertex in \(G \).
References

[1] N. Alon, R. Yuster, and U. Zwick, Color-coding, J. Assoc. Comput. Mach. 42:844–856, 1995.
[2] A. Björklund, Exact covers via determinants, in Proc. 27th International Symposium on Theoretical Aspects of Computer Science, STACS 2010 (Nancy, France, March 4–6, 2010), LIPIcs 5 Schloss Dagstuhl – Leibniz-Zentrum für Informatik, pages 95–106, 2010.
[3] A. Björklund, Determinant sums for undirected Hamiltonicity, in Proc. 51st Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010 (Las Vegas, USA, October 23–26, 2010).
[4] A. Björklund, T. Husfeldt, and M. Koivisto, Set partitioning via inclusion–exclusion. SIAM J. Comput. 39(2):546–563, 2009.
[5] H. L. Bodlaender, On linear time minor tests with depth-first search, J. Algorithm. 14(1):1–23, 1993.
[6] J. Chen, S. Lu, S.-H. Sze, and F. Zhang, Improved algorithms for path, matching, and packing problems, in Proc. 18th Annual ACM–SIAM Symposium on Discrete Algorithms, SODA 2007 (Philadelphia, PA, USA, 2007), pages 298–307.
[7] R. G. Downey and M. R. Fellows, Parameterized Complexity, Springer, 1999.
[8] R. G. Downey, M. R. Fellows, and M. Koblitz, Techniques for exponential parameterized reductions in vertex set problems, unpublished, reported in [7, §8.3].
[9] R. A. DeMillo and R. J. Lipton, A probabilistic remark on algebraic program testing, Inform. Process Lett. 7:193–195, 1978.
[10] J. Edmonds, Systems of distinct representatives and linear algebra, J. Res. Nat. Bur. Standards Sect. B 71B:241–245, 1967.
[11] M. R. Fellows, P. Heggernes, F. A. Rosamond, C. Sloper, and J. A. Telle, Exact algorithms for finding k disjoint triangles in an arbitrary graph, in Proc. 30th International Workshop on Graph-Theoretic Concepts in Computer Science, WG 2004 (Bad Honnef, Germany, June 21–23, 2004), Springer LNCS 3353, pages 257–269, 2004.
[12] M. R. Fellows, C. Knauer, N. Nishimura, P. Ragde, F. Rosamond, U. Stege, D. M. Thilikos, S. Whitesides, Faster fixed-parameter tractable algorithms for matching and packing problems, Algorithmica 52(2):167–176, 2008
[13] H. Fernau and D. Raible, A parameterized perspective on packing paths of length two, J. Comb. Optim. 18(4):319–341, 2009.
[14] P. Golovac, D. Kratsch, and J.-F. Couturier, Colorings with few colors: Counting, enumeration and combinatorial bounds, in Proc. 36th International Workshop on Graph-Theoretic Concepts in Computer Science, WG 2010 (Zaros, Crete, Greece, June 28–30, 2010).
[15] P. Hell and D. Kirkpatrick, On the complexity of a generalized matching problem, in Proc. 10th ACM Symposium on Theory of Computing, STOC (San Diego, CA, USA, May 1–3, 1978), pages 309–318, 1978.
[16] I. Holyer, The NP-completeness of some edge-partition problems, SIAM J. Comput. 10(4):713–717, 1981.
[17] I. Holyer, The NP-completeness of edge-coloring, SIAM J. Comput. 10:718–720, 1981.
[18] R. Impagliazzo, R. Paturi, F. Zane, Which problems have strongly exponential complexity?, J. Comput. Syst. Sci. 63:512–530. 2001.
[19] W. Jia, C. Zhang, and J. Chen, An efficient parameterized algorithm for m-set packing, J. Algoritm. 50(1):106–117, 2004.
[20] I. Koutis, A faster parameterized algorithm for set packing, Inform. Process Lett. 94:7–9, 2005.
[21] I. Koutis, Faster algebraic algorithms for path and packing problems, in Proc. 35th International Colloquium on Automata, Languages and Programming, ICALP (Reykjavik, Iceland, July 7–11, 2008), Springer LNCS 5125, pages 575–586, 2008.
[22] I. Koutis and R. Williams, Limits and applications of group algebras for parameterized problems, in Proc. 36th International Colloquium on Automata, Languages...
References

[23] L. Kowalik, Edge colouring, in F. Fomin et al. (eds.), Open Problems: Moderately Exponential Time Algorithms, Dagstuhl Seminar Proceedings 08431, 2008.
[24] L. Kowalik, Improved edge-coloring with three colors, Theor. Comput. Sci. 410(38–40):3733–3742, 2009.
[25] J. Kneis, D. Mölle, S. Richter, and P. Rossmanith, Divide-and-color, in Proc. 32nd International Workshop on Graph-Theoretic Concepts in Computer Science, WG (Bergen, Norway, June 22–24, 2006), Springer LNCS 4271, pages 58–67, 2006.
[26] D. Leven and Z. Galil, NP-completeness of finding the chromatic index of regular graphs, J. Algorithm. 4(1):35–44, 1983.
[27] Y. Liu, S. Lu, J. Chen, and S.-H. Sze, Greedy localization and color-coding: improved matching and packing algorithms, in Proc. 2nd International Workshop on Parameterized and Exact Computation, IWPEC (Zürich, Switzerland, September 13–15, 2006), Springer LNCS 4169, pages 84–95, 2006.
[28] L. Mathieson, E. Prieto, and P. Shaw, Packing edge disjoint triangles: a parameterized view, in Proc. 1st International Workshop on Parameterized and Exact Computation, IWPEC (Bergen, Norway, September 14–17, 2004) Springer LNCS 3162, pages 127–137, 2004.
[29] B. Monien, How to find long paths efficiently, Annals of Discrete Mathematics 25 (1985), 239–254.
[30] C. Papadimitriou and M. Yannakakis, On limited nondeterminism and the complexity of the V-C dimension, J. Comput. Syst. Sci. 53:161–170, 1996.
[31] E. Prieto and C. Sloper, Looking at the stars, Theor. Comp. Sc. 351(3):437–445, 2006.
[32] H. Robbins, A remark on Stirling’s formula, Amer. Math. Monthly 62:26–29, 1955.
[33] J. T. Schwartz, Fast probabilistic algorithms for verification of polynomial identities, J. Assoc. Comput. Mach. 27:701–717, 1980.
[34] W. T. Tutte, The factorization of linear graphs, J. London Math. Soc. 22:107–111, 1947.
[35] J. Wang and Q. Feng, An $O^*(3.523^k)$ parameterized algorithm for 3-set packing, in Proc. 5th International Conference on Theory and Applications of Models of Computation, TAMC (Xi’an, China, April 25–29, 2008), Springer LNCS 4978, pages 82–93, 2008.
[36] J. Wang, D. Ning, Q. Feng, and J. Chen, Improved parameterized algorithm for P_2-packing problem (in Chinese), Journal of Software 19(11):2879–2886, 2008.
[37] R. Williams, Finding paths of length k in $O^*(2^k)$, Inform. Process. Lett. 109(6):301–338, 2009.

1LUND UNIVERSITY, DEPARTMENT OF COMPUTER SCIENCE, P.O.Box 118, SE-22100 LUND, SWEDEN
E-mail address: andreas.bjorklund@yahoo.se

2IT UNIVERSITY OF COPENHAGEN, 2300 COPENHAGEN S, DENMARK AND LUND UNIVERSITY, DEPARTMENT OF COMPUTER SCIENCE, P.O.Box 118, SE-22100 LUND, SWEDEN. PARTIALLY SUPPORTED BY SWEDISH RESEARCH COUNCIL GRANT 2007-6595.
E-mail address: thore@itu.dk

3Helsinki Institute for Information Technology HIIT, Aalto University, Department of Information and Computer Science PO Box 15400, FI-00076 AALTO, FINLAND
E-mail address: petteri.kaski@tkk.fi

4Helsinki Institute for Information Technology HIIT, Department of Computer Science, University of Helsinki, P.O.Box 68, FI-00014 University of Helsinki, Finland. PARTIALLY SUPPORTED BY ACADEMY OF FINLAND GRANT 125637.
E-mail address: mikko.koivisto@cs.helsinki.fi