Original Research

Ecological Characteristics of Habitats Suitable for Solidago × niederederi Khek (Asteraceae) Establishment

Artur Pliszko¹*, Kinga Kostrakiewicz-Gierałt², Tomasz Wójcik³

¹Department of Taxonomy, Phytogeography and Palaeobotany, Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387 Kraków, Poland
²Department of Tourism Geography and Ecology, Institute of Tourism, Faculty of Tourism and Recreation, University of Physical Education in Cracow, 31-571 Kraków, Poland
³Department of Nature Conservation and Landscape Ecology, College of Natural Sciences, University of Rzeszów, Zelwerowicza 4, 35-601 Rzeszów, Poland

Received: 23 March 2020
Accepted: 18 July 2020

Abstract

In this study, phytosociological plots are used to describe species composition and ecological conditions of habitats in which Solidago × niederederi, a natural hybrid between the North American S. canadensis and the European S. virgaurea, was found as established in Poland. Four groups of phytosociological plots have been distinguished based on the unweighted pair group method with arithmetic mean. The groups did not differ significantly in the mean number of species per plot and in the species evenness, in contrast to the mean values of Shannon-Wiener index and Simpson index. In each group of phytosociological plots, S. × niederederi and S. virgaurea had the highest value of constancy degree. Meadow species of the class Molinio-Arrhenatheretea had the highest share in all groups of phytosociological plots. Considering the Ellenberg’s indicators, the groups of phytosociological plots differed significantly in the mean values of the light and thermal conditions, soil moisture, soil reaction, and nutrients. The results suggested that S. × niederederi can be established in well light places with partial shade and temperate conditions, on moist, moderately acidic to almost neutral soils with average fertility and is strongly associated with S. virgaurea and meadow species of Molinio-Arrhenatheretea.

Keywords: alien species, ecological indicators, hybrid, phytosociological plots

Introduction

Natural hybridization between alien and native plant species reflects the consequences of introduction, establishment and invasion of alien plants [1-8]. According to recommendation by Pyšek et al. [9], hybrids between alien and native plant species should be treated as alien species and they can pose a threat to native biodiversity [1-4]. In extreme cases, when hybridization between alien and native species is common in the wild and the hybrids are fully vigorous
and fertile, pure native species cannot be recovered by removing the alien, resulting in replacement or local extinction of native species by introgressive hybridization [10]. It is commonly known that plant hybrids are usually found in disturbed habitats, as disturbance creates intermediate conditions in which hybrids can survive [2, 5]. However, the persistence of many plant hybrids is often limited by their sterility and non-fitness [11-12]. Phytosociological studies on habitat preferences of hybrids between alien and native plants are rarely undertaken [13]. Considering the need for nature conservation, it is important to determine the species composition of habitats in which such hybrids can occur and, what is more important, to evaluate their impacts on native biodiversity.

Solidago ×niederederi Khek (Asteraceae), a natural hybrid between the North American _S. canadensis_ L. and the European _S. virgaurea_ L., has been reported from several countries in Europe [14-19]. It is a perennial plant which spreads by wind-dispersed fruits (cypselas). However, the fruit set in the hybrid can be negatively affected by its reduced pollen viability [17, 20]. _Solidago ×niederederi_ is considered as an established alien in Austria, Poland, Lithuania, and Latvia [19, 21]. According to Pliszko and Kostrakiewicz-Gierałt [22], the hybrid can pose a threat to native _S. virgaurea_ by competing for pollinators. Moreover, there is a probability that the hybrid can cause genetic erosion of _S. virgaurea_ populations by introgressive hybridization. As currently known, _S. ×niederederi_ occurs in anthropogenic habitats such as abandoned fields, roadsides, railway embankments, disused quarries, tree plantations, forest clearings, and arable fields with grass-legume mixtures, usually together with its parental species [7, 13-15, 23-25]. Moreover, Pliszko and Kostrakiewicz-Gierałt [23] evidenced that the most abundant populations of the hybrid in Poland were found on abandoned fields. Unfortunately, phytosociological studies on the habitats occupied by the hybrids have not been undertaken so far. Moreover, in the context of its establishment habitat requirements of _S. ×niederederi_ are insufficiently recognized [17]. In this paper, we aimed to describe the conditions of habitats suitable for _S. ×niederederi_ establishment, using phytosociological data.

Materials and Methods

Phytosociological Survey

The study was based on 90 phytosociological plots (relevés) of 25 m² made in agricultural landscape, at the altitude from 104 to 567 m above sea level, in north-eastern, central and southern parts of Poland, in 2013-2016 (Table 1), including vascular plant species

Plot number	Name of Location	GPS coordinates	Altitude [m a.s.l.]	Habitat	Date of sampling
1	Wysieka near Bartoszyce	54º17.631’N/20º43.481’E	104	Abandoned field	17 Aug 2013
2	Kraków	50º05.297’N/19º50.601’E	241	Disused limestone quarry	24 Aug 2013
3	Kraków	50º05.391’N/19º50.440’E	226	Disused limestone quarry	24 Aug 2013
4	Kraków	50º05.420’N/19º50.473’E	229	Disused limestone quarry	24 Aug 2013
5	Kraków	50º05.414’N/19º50.473’E	230	Disused limestone quarry	24 Aug 2013
6	Kraków	50º05.443’N/19º50.444’E	228	Disused limestone quarry	24 Aug 2013
7	Izdebnik	49º51.972’N/19º43.986’E	350	Abandoned field	29 Aug 2013
8	Izdebnik	49º51.974’N/19º43.982’E	350	Abandoned field	29 Aug 2013
9	Izdebnik	49º51.995’N/19º44.156’E	363	Abandoned field	29 Aug 2013
10	Głogoczów	49º54.689’N/19º52.338’E	241	Abandoned field	7 Sep 2013
11	Wrzosy	50º03.648’N/19º36.800’E	308	Abandoned field	15 Sep 2013
12	Wrzosy	50º03.585’N/19º37.035’E	331	Abandoned field	15 Sep 2013
13	Suwałki	54º04.528’N/22º57.068’E	165	Abandoned field	18 Aug 2014
14	Suwałki	54º04.534’N/22º57.065’E	165	Abandoned field	18 Aug 2014
15	Suwałki	54º04.529’N/22º57.076’E	164	Abandoned field	18 Aug 2014
16	Suwałki	54º04.515’N/22º57.026’E	165	Abandoned field	18 Aug 2014
17	Suwałki	54º04.505’N/22º56.998’E	166	Abandoned field	18 Aug 2014
18	Karasiewo	54º03.744’N/22º40.526’E	163	Abandoned field	19 Aug 2014
	Location	Coordinates		Habitant Type	Date
---	---------------------------	------------------------------	----	---------------------------	------------
19	Bakalarzewo	54°06.004′N/22°39.489′E	169	Abandoned field	19 Aug 2014
20	Bakalarzewo	54°05.964′N/22°39.560′E	169	Abandoned field	19 Aug 2014
21	Bakalarzewo	54°05.962′N/22°39.558′E	168	Abandoned field	19 Aug 2014
22	Bakalarzewo	54°05.958′N/22°39.538′E	169	Abandoned field	19 Aug 2014
23	Bakalarzewo	54°05.981′N/22°39.525′E	169	Abandoned field	19 Aug 2014
24	Mieruniszki	54°10.788′N/22°33.522′E	191	Abandoned field	20 Aug 2014
25	Taciewo	54°09.287′N/22°48.435′E	202	Abandoned field	21 Aug 2014
26	Taciewo	54°09.289′N/22°48.429′E	203	Abandoned field	21 Aug 2014
27	Czajowice	50°11.444′N/19°48.554′E	438	Abandoned field	29 Aug 2014
28	Czajowice	50°11.467′N/19°48.529′E	440	Abandoned field	29 Aug 2014
29	Czajowice	50°11.487′N/19°48.507′E	442	Abandoned field	29 Aug 2014
30	Czajowice	50°11.538′N/19°48.470′E	443	Abandoned field	29 Aug 2014
31	Czajowice	50°11.461′N/19°48.403′E	445	Abandoned field	29 Aug 2014
32	Czajowice	50°11.429′N/19°48.395′E	448	Abandoned field	29 Aug 2014
33	Czajowice	50°11.128′N/19°48.421′E	436	Abandoned field	29 Aug 2014
34	Czajowice	50°11.136′N/19°48.438′E	436	Abandoned field	29 Aug 2014
35	Czajowice	50°11.142′N/19°48.433′E	435	Abandoned field	29 Aug 2014
36	Suwałki	54°07.409′N/22°57.129′E	178	Abandoned field	2 Sep 2014
37	Suwałki	54°07.398′N/22°57.132′E	180	Abandoned field	2 Sep 2014
38	Suwałki	54°07.392′N/22°57.124′E	179	Abandoned field	2 Sep 2014
39	Suwałki	54°07.392′N/22°57.124′E	179	Abandoned field	2 Sep 2014
40	Suwałki	54°07.389′N/22°57.122′E	179	Abandoned field	2 Sep 2014
41	Kociołki near Pluszkiejny	54°17.415′N/22°27.762′E	198	Abandoned field	7 Sep 2014
42	Kociołki near Pluszkiejny	54°17.445′N/22°27.740′E	193	Abandoned field	7 Sep 2014
43	Kociołki near Pluszkiejny	54°17.451′N/22°27.804′E	192	Abandoned field	7 Sep 2014
44	Kociołki near Pluszkiejny	54°17.444′N/22°27.831′E	194	Abandoned field	7 Sep 2014
45	Kociołki near Pluszkiejny	54°17.442′N/22°27.835′E	193	Abandoned field	7 Sep 2014
46	Kociołki near Pluszkiejny	54°17.436′N/22°27.830′E	194	Abandoned field	7 Sep 2014
47	Kociołki near Pluszkiejny	54°17.448′N/22°27.887′E	197	Abandoned field	7 Sep 2014
48	Kociołki near Pluszkiejny	54°17.458′N/22°27.933′E	198	Abandoned field	7 Sep 2014
49	Kociołki near Pluszkiejny	54°17.398′N/22°27.926′E	200	Abandoned field	7 Sep 2014
50	Kociołki near Pluszkiejny	54°17.394′N/22°27.734′E	196	Abandoned field	7 Sep 2014
51	Łapczyca	49°58.070′N/20°21.432′E	282	Abandoned field	13 Sep 2014
52	Warszawa Jeziorki	52°06.883′N/20°59.524′E	106	Abandoned field	16 Sep 2014
53	Warszawa Jeziorki	52°06.885′N/20°59.524′E	106	Abandoned field	16 Sep 2014
54	Warszawa Jeziorki	52°06.888′N/20°59.505′E	106	Abandoned field	16 Sep 2014
55	Warszawa Jeziorki	52°06.933′N/20°59.526′E	106	Abandoned field	16 Sep 2014
56	Warszawa Jeziorki	52°06.946′N/20°59.536′E	106	Abandoned field	16 Sep 2014
57	Zalesie Górne	52°01.483′N/21°00.685′E	109	Abandoned field	17 Sep 2014
58	Zalesie Górne	52°01.415′N/21°00.659′E	109	Abandoned field	17 Sep 2014
59	Zalesie Górne	52°01.412′N/21°00.664′E	110	Abandoned field	17 Sep 2014
in accordance with the Braun-Blanquet method [26]. Initially, the hierarchical-numerical classification of phytosociological plots was performed using two methods, namely unweighted group pair method with arithmetic means (UPGMA) and weighted pair method with arithmetic means (WPGMA). The grouping of plots for each method was based on the presence/absence of species (0, 1 binary scale) and cover-abundance degree. In this way four dendrograms were obtained. However, only one dendrogram by the UPGMA method based on the presence/absence of species [27] was used in this study. This classification allowed us to separate four groups of phytosociological plots that were the most consistent with field observations. The classification was performed using a SYN-TAX 2000 package [28]. The constancy degree and the cover coefficient were calculated for species occurring in the plots. Habitat conditions within the plots were characterized by the Ellenberg’s indicator values [29, 30], using a JUICE package [31]. The mean values of indicators of light
conditions (L), thermal conditions (T), continentality (K), soil moisture (F), soil reaction (R), and nutrients (N) were calculated for the groups of phytosociological plots. To evaluate the diversity and quantitative relationships between the species in vegetation developed in different habitat conditions, the Shannon-Wiener index of diversity [32], species evenness [33], and Simpson index [34] were calculated as well. The affiliation of the species to syntaxonomic units followed Matuszkiewicz [35].

Statistical Analysis

The normality of the untransformed data was tested using the Kolmogorov-Smirnov test, while the homogeneity of variance was checked using the Levene test at the significance level of $P<0.05$. As the data in some groups were not consistent with the normal distribution and/or the variance was not homogeneous, the non-parametric Kruskal-Wallis H test was applied to check the statistical significance of differences in: (i) the number of species per plot, Shannon-Wiener index (H'), species evenness (J'), and Simpson index (SIMP) among particular groups of phytosociological plots and (ii) the values of Ellenberg’s indicators among particular groups of phytosociological plots. The statistical analysis was performed using a STATISTICA 13 software.

Results and Discussion

Based on the UPGMA method, four groups of phytosociological plots (1-4) were established, excluding the plots number 80, 79, 78, 64 and 65, in which floristic composition differed significantly from the others and which were not uniform in comparison to all data (Fig. 1). The groups consisted of 26, 23, 21 and 15 plots with 109, 118, 114 and 103 vascular plant species, respectively. The groups did not differ significantly in the mean number of species per plot and in the species evenness (Table 2). On the other hand, the differences in the mean values of Shannon-Wiener index and Simpson index between the groups were statistically significant (Table 2). The highest value of Shannon-Wiener index was evidenced in group 4, while the lowest was in group 3, whereas the highest value of Simpson index was evidenced in group 1, and the lowest in group 3 (Table 2).

Species having a value of constancy degree equal to III or higher for at least one of the four groups of plots are presented in Table 3. In each group of plots, Solidago ×niederederi and S. virgaurea had the highest value of constancy degree, whereas S. canadensis had the highest value of constancy degree only in groups 3 and 4 (Table 3). The values of the cover coefficient of S. ×niederederi were higher in groups 1 and 2 than in groups 3 and 4. Moreover, S. virgaurea had the highest
values of the cover coefficient in groups 1 and 4, whereas S. canadensis had the highest values of the cover coefficient in groups 3 and 4 (Table 3). Meadow species of the class Molinio-Arrhenatheretea had the highest share in all groups of plots. Floristic composition in groups 1 and 2 suggested more mesic soil habitats than those of groups 3 and 4. In group 1, Dactylis glomerata L. predominated together with other species of the class Molinio-Arrhenatheretea (i.e., Arrhenatherum elatius (L.) P. Beauv. ex J. & C. Presl and Phleum pratense L.).

Also, some ruderal species of the class Artemisietea vulgaris (i.e., Artemisia vulgaris L. and Picris hieracioides L.) and Agrostis capillaris L. of the class Trifolio-Geranietea had a high cover coefficient value in this group. Moreover, a thermophilic character of some phytosociological plots of group 1 was indicated by the presence of Trifolium arvense L. and Senecio jacobaea L. Similarly, in group 2, Arrhenatherum elatius and Dactylis glomerata predominated with a high share of two ruderal species of the class Artemisietea vulgaris.

Table 2. Mean number of species per plot (±SD), Shannon-Wiener index (H’), species evenness (J’), and Simpson index (SIMP) in four groups of phytosociological plots with Solidago ×niederederi.

Group of phytosociological plots	Mean number of species per plot	H’	J’	SIMP
1	21.7 (±4.3)	2.43	0.79	0.85
2	22.2 (±4.6)	2.36	0.76	0.81
3	19.8 (±3.5)	2.21	0.74	0.79
4	23.3 (±6.0)	2.44	0.78	0.84
The Kruskal-Wallis H test; P value	H=5.6; P=0.13**	H=9.2; P≤0.05	H=5.5; P≤0.05	H=8.0; P≤0.05

Table 3. Constancy degree (Cd) and cover coefficient (Cc) values of selected species in four groups of phytosociological plots with Solidago ×niederederi. Species having a value of constancy degree equal to III or higher for at least one of the four groups of plots are presented in this table.

Group of phytosociological plots	1	2	3	4				
Constancy degree (Cd) and cover coefficient (Cc)	Cd	Cc	Cd	Cc	Cd	Cc	Cd	Cc
Solidago ×niederederi Khek	V	250.0	V	241.3	V	71.4	V	80.0
Solidago virgaurea L.	V	1084.6	V	717.4	V	754.8	V	1493.3
Solidago canadensis L.	III	592.3	III	497.8	V	1109.5	V	1360.0

ChCl. Molinio-Arrhenatheretea

Species	Group	Cd	Cc					
Achillea millefolium L.	V	244.2	IV	39.1	V	195.2	V	216.7
Dactylis glomerata L.	IV	1394.2	IV	1297.8	II	278.6	III	773.3
Arrhenatherum elatius (L.) P. Beauv. ex J. Presl & C. Presl	II	701.9	IV	2978.3	III	1454.7	I	150.0
Festuca rubra L. s.l.	II	242.3	II	532.6	III	1133.3	II	666.7
Rumex thyrsiflorus Fingerh.	IV	221.1	III	47.8	III	45.2	II	13.3
Phleum pratense L.	III	655.8	II	47.8	I	154.8	I	150.0
Taraxacum F.H. Wigg. sp.	III	290.4	II	34.8	I	83.3	II	76.7
Poa pratensis L.	III	101.9	I	45.6	I	285.7	I	3.3
Galium mollugo L.	II	94.2	III	376.1	I	47.6	II	303.3
Knautia arvensis (L.) J.M. Coult.	I	5.8	III	26.1	I	2.4	I	10.0
Vicia cracca L.	I	19.2	II	284.8	II	33.3	I	123.3
Holcus lanatus L.	I	19.2	-	-	III	492.8	I	3.3
Ranunculus repens L.	-	-	-	-	I	47.6	IV	296.7
Lysimachia vulgaris L.	-	-	I	2.2	-	-	IV	263.3
Angelica sylvestris L.	-	-	-	-	I	23.8	III	86.7
Ecological Characteristics of Habitats Suitable...

(i.e., *Artemisia vulgaris* and *Tanacetum vulgare* L.). In contrast, a high share of *Holcus lanatus* L., *Ranunculus repens* L. and *Lysimachia vulgaris* L. in groups 3 and 4 suggested a more moist environment than in groups 1 and 2. In group 3, *Festuca rubra* L. and *Arrhenatherum elatius* predominated, whereas in group 4 *Dactylis glomerata* and *Festuca rubra* were the dominant species. Moreover, in groups 3 and 4 there was also a high share of *Tanacetum vulgare* (Table 3).

Considering the Ellenberg’s indicators, the groups of phytosociological plots significantly differed in the mean values of the light and thermal conditions, soil moisture, soil reaction, and nutrients, while the differences in the mean value of continentality were non-significant (Table 4). In general, the results suggest that habitats occupied by the plants of the groups 3 and 4 were moister and less nutrient rich than those of the groups 1 and 2, and habitats

Table 3. Continued.

ChCl. Trifolio-Geranietea
Agrostis capillaris L.
IV 1298.1 I 43.4 III 692.8 V 2320.0
Galium verum L.
I 3.8 III 102.2 II 38.1 I 36.7

ChCl. Koelerio glaucae-Corynephoretea canescens
Trifolium arvense L.
IV 355.8 II 89.1 - - I 33.3

ChCl. Artemisietea vulgaris
Artemisia vulgaris L.
V 328.8 V 293.5 II 11.9 I 70.0
Tanacetum vulgare L.
I 67.3 II 395.6 IV 511.9 II 523.3
Picris hieracioides L.
IV 523.1 III 156.5 I 26.2 - -
Epilobium montanum L.
III 21.1 I 6.5 I 4.8 II 46.7

ChCl. Agropyretea intermedio-repentis
Convolvulus arvensis L.
I 26.9 IV 54.3 I 9.5 I 10.0
Equisetum arvense L.
I 25.0 III 115.2 II 40.5 III 83.3

ChCl. Nardo-Callunetea
Hieracium umbellatum L.
II 225.0 I 82.6 V 902.4 II 246.7

ChCl. Epilobietea angustifolii
Holcus mollis L.
I 133.3 IV 640.0

Others
Erigeron annuus (L.) Desf. s. str.
IV 367.3 IV 302.2 II 123.8 II 73.3
Hypericum perforatum L.
III 107.7 II 10.9 IV 97.6 IV 383.3
Senecio jacobaea L.
IV 126.9 III 43.5 II 14.3 - -
Pimpinella saxifraga L.
I 1.9 IV 223.9 II 33.3 I 10.0

Table 4. Mean values (±SD) of Ellenberg’s indicators in four groups of phytosociological plots with *Solidago ×niederederi*.

Group of phytosociological plots	Ellenberg’s indicator values					
	L	T	K	F	R	N
1	7.00 (±0.3)	5.79 (±0.2)	3.90 (±0.5)	4.64 (±0.3)	5.70 (±0.9)	5.00 (±0.9)
2	7.20 (±0.3)	5.51 (±0.2)	4.07 (±0.6)	4.65 (±0.4)	6.81 (±0.3)	5.55 (±0.7)
3	7.03 (±0.4)	5.67 (±0.3)	4.24 (±0.7)	4.83 (±0.4)	5.81 (±0.9)	4.86 (±0.9)
4	6.78 (±0.4)	5.68 (±0.2)	3.98 (±0.4)	5.29 (±0.4)	4.99 (±0.7)	4.88 (±0.7)

Explanations: L – light conditions, T – thermal conditions, K – continentality, F – soil moisture, R – soil reaction, N – soil fertility (nutrients). The diverse letters in superscript indicate the significant differences between the samples.
occupied by the plants of group 4 were the most acidic (Table 4).

In Europe, habitat preferences of Solidago canadensis seem to be very different from those of S. virgaurea; however, both species can be found in close proximity in disturbed habitats, where their hybrid also occurs. According to Mucina [36], S. canadensis is a diagnostic species of nitrophilous synanthropic herb-rich communities of shaded woodland and riparian fringes of Galio-Urticetum. It is also known from ruderal communities of Artemisietae vulgaris [37]. In contrast, S. virgaurea occurs in conifer and mixed forests (e.g., Poleckedano-Pinetum, Betulo-Quercetum, Carici fritschii-Quercetum roboris, Galio odorati-Fagenion), on fringes of temperate woodlands (Trifolion medii), in woodland clearings (Epilobietea angustifolii), as well as in meadow and grassland vegetation (e.g., Arrhenatheretum elatioris, Scabioso canescensis-Genistetum, Koelerion glaucae) [35, 37-39]. Moreover, Szymura and Szymura [40] demonstrated that in south-western Poland, S. virgaurea was associated with typical forest and acidophilous species such as Vaccinium myrtillus L., Oxalis acetosella L., and Hieracium murorum L., whereas S. canadensis occurred mostly with ruderal species such as Artemisia vulgaris and Tanacetum vulgare.

In this study, we showed that S. ×niederederi and S. virgaurea occur equally in all observed moisture levels whereas the abundance of S. canadensis is shifted towards more moist environment and the hybrid is mostly associated with meadow plant species of Molinio-Arrhenatheretea. It should be mentioned that the majority of phytosociological plots with S. ×niederederi were taken on abandoned fields (Table 1) and they mainly represented the early stages of secondary succession. The vegetation in such places is difficult to classify and usually has a temporary character. During the early stages of secondary succession on abandoned fields, many segetal, ruderal, meadow, and grassland species find suitable conditions for their growth [e.g., 41, 42]. The occurrence of S. canadensis and S. virgaurea on abandoned fields has been well documented in Poland and other European countries [40, 43-45]. Moreover, Rola and Rola [46] pointed out that Solidago species are bioindicators of fallow lands and they usually achieved a high cover on abandoned fields after 5-10 years from the abandonment.

Studies of many authors confirmed that plant communities dominated by alien Solidago species are characterized by much lower species richness and a decline in biodiversity [44, 47-48]. In our study, the values of Shannon-Wiener index (Table 1) were similar to those observed in segetal plant communities of Stellarietalia mediae in Central Pomerania [49] and Lower Silesia [50]. It should be emphasized that the general biodiversity of plant communities with S. canadensis depends on the extent of its invasion – the greater the share of S. canadensis, the lower the value of Shannon-Wiener index [44, 48]. In our study, the species evenness and Simpson index achieved the higher values compared to the results obtained for abandoned meadows [51], segetal plant communities of Stellarietalia mediae and ruderal plant communities of Artemisietae vulgaris [49-50]. Generally, the values of Ellenberg's indicators in habitats with S. ×niederederi were similar to those evidenced on fallow lands with S. canadensis and S. gigantea Aiton [49, 51]. However, Bielecka et al. [52] noticed that S. canadensis grows on diverse habitats from strongly acidic to alkaline. Moreover, field studies in Lithuania revealed that S. canadensis, S. gigantea and S. ×niederederi can occupy similar soils with slightly lower pH [17]. Since the hybrid is on the early stage of its establishment and spread in Poland a further research is needed to confirm its association with meadow communities.

Conclusions

Solidago ×niederederi can be established in well light places with partial shade and temperate conditions, on moist, moderately acidic to almost neutral soils with average fertility. It is strongly associated with S. virgaurea and meadow species of Molinio-Arrhenatheretea.

Acknowledgements

We would like to thank the Reviewer for valuable comments and suggestions. The study was financially supported by the Institute of Botany of the Jagiellonian University in Kraków (DS/MND/WBiNoZ/IB/19/2013 and K/DSC/004607).

Conflict of Interest

The authors declare no conflict of interest.

References

1. VILÀ M., WEBER E., D'ANTONIO C.M. Conservation implications of invasion by plant hybridization. Biol. Invasions 2, 207, 2000.
2. DAEHLER C.C., CARINO D.A. Hybridization between native and alien plants and its consequences. In Biotic homogenization; Lockwood J.L., McKinney M.L., Eds., Kluwer Academic/Plenum Publishers: New York, 81, 2001.
3. BLEEKER W., SCHMITZ U., RISTOW M. Interspecific hybridisation between alien and native plant species in Germany and its consequences for native biodiversity. Biol. Conserv. 137, 248, 2007.
4. BLAIR A.C., HUFBAUER R.A. Hybridization and invasion: one of North America’s most devastating invasive plants shows evidence for a history of interspecific hybridization. Evol. Appl. 3, 40, 2010.
5. GUO Q.F. Plant hybridization: the role of human disturbance and biological invasion. Divers. Distrib. 20, 1345, 2014.

6. LEHMAN A., PENDER R., MORDEN C., WIECZOREK A.M. Assessment of persistence of hybrids between alien Pima cotton, Gossypium barbadense (Malvaceae), and endemic Hawaiian cotton, G. tomentosum, in Hawai’i. Pac. Sci. 68, 85, 2014.

7. STACE C.A., PRESTON C.D., PEARMAN D.A. Hybrid flora of the British Isles, Botanical Society of Britain and Ireland: Bristol, 2015.

8. WANG J.Y., WANG J.-C. Emerging natural hybrid between invasive species and native congener of Emilia (Asteraceae) found in northern Taiwan. Phytotaxa 382, 204, 2018.

9. PYŠEK P., RICHARDSON D.M., REJMÁNEK M., WEBSTER G.L., WILLIAMSON M., KIRSCHNER J. Alien plants in checklists and floras: towards better communication between taxonomists and ecologists. Taxon 53, 131, 2004.

10. BLACKBURN T.M., ESSL F., EVANS T., HULME P.E., JESCHKE J.M., KÜHN I., KUMSCHICK S., MARKOVÁ Z., MRUGALA A., NENTWIG W., PERGL J., PYŠEK P., RABITSCH W., RICCIARDI A., RICHARDSON D.M., SENDEK A., VILÁ M., WILSON J.R.U., WINTER M., GENOVESE P., BACHER S. A unified classification of alien species based on the magnitude of their environmental impacts. PLoS Biol. 12, e1001850, 2014.

11. STACE C.A. Plant taxonomy and biosystematics, 2nd edn., Cambridge University Press: Cambridge, 1989.

12. PLISZKO A., KOSTRAKIEWICZ-GIERALT K. The morphological intermediacy of Erigeron ×huelsenii (Asteraceae) and hybrid between E. acris and E. canadensis. Turk. J. Bot. 42, 543, 2018.

13. PLISZKO A., JAZWA M. Floristic composition of vegetation in habitats suitable for Erigeron ×huelsenii (Asteraceae). Acta Bot. Croat. 76 (1), 9, 2017.

14. NILSSON A. Spontana gullrishhybrider (Solidago canadensis × virgaurea) i Sverige och Danmark. Svensk Bot. Tidskr. 70, 7, 1976.

15. BURTON R. Solidago ×niedereideri Khec in Britain. Watsonia 13, 123, 1980.

16. PLISZKO A. Neotypification of Solidago ×niedereideri (Asteraceae). Phytotaxa 230, 297, 2015.

17. KARPAVIČIENĖ B., RADUŠIENĖ J. Morphological and anatomical characterization of Solidago ×niedereideri and other sympatric Solidago species. Weed Sci. 64, 61, 2016.

18. PLISZKO A., ZALEWSKA-GALOSZ J. Molecular evidence for hybridization between invasive Solidago canadensis and native S. virgaurea. Biol. Invasions 18, 3103, 2016.

19. JAJZWA M., JĘDRZEJCZAK E., KŁUCHOWSKA E., PLISZKO A. Predicting the potential distribution area of Solidago ×niedereideri (Asteraceae). Turk. J. Bot. 42, 51, 2018.

20. MIGDALEK G., KOLCZYK J., PLISZKO A., KOŚCINSKA-PAJAK M., SLOMKA A. Reduced pollen viability and achene development in Solidago ×niedereideri Khec from Poland. Acta Soc. Bot. Pol. 83 (3), 251, 2014.

21. GUDŽINSKAS Z., PETRULAITIS L. New alien plant species recorded in the southern regions of Latvia. Bot. L ith. 22 (2), 153, 2016.

22. PLISZKO A., KOSTRAKIEWICZ-GIERALT K. Flower-visiting insects on Solidago ×niedereideri (Asteraceae): an observation from a domestic garden. Botanica 24 (2), 162, 2018.

23. PLISZKO A., KOSTRAKIEWICZ-GIERALT K. Resolving the naturalization strategy of Solidago × niederederi (Asteraceae) by the production of generative ramets and seedlings. Plant Ecol. 218, 1243, 2017.

24. PLISZKO A., ŁAZARSKI G., KALINOWSKI P., ADAMOWSKI W., RUTKOWSKI L., PUCHALKA R. An updated distribution of Solidago × niederederi (Asteraceae) in Poland. Acta Mus. Siles. Sci. Natur. 66 (3), 253, 2017.

25. PLISZKO A., ADAMOWSKI W., PAGITZ K. New distribution records of Solidago × niederederi (Asteraceae) in Austria, Italy, and Poland. Acta Mus. Siles. Sci. Natur. 68 (3), 195, 2019.

26. BRAUN-BLANQUET J. Plant sociology, Basics of vegetation science, Springer Verlag: Wien, New York, 1964 [In German].

27. DZWONKO Z. Guidebook for phytosociological studies. Vadecemum Botanicum 2, Sorus, Institute of Botany of Jagiellonian University: Poznań, Kraków, 2007 [In Polish].

28. PODANI J. SYN-TAX 2000. Computer Programs for Data Analysis in Ecology and Systematics, Scientia Publishing: Budapest, 2001.

29. PIGNATTI S. Bioindicator values of vascular plants of the flora of Italy. Braun-Blanqueta 39, 2005 [In Italian].

30. ELLENBERG H., LEUSCHNER C. Vegetation of Central Europe with the Alps: from an ecological, dynamic and historical perspective, 6th edn., Ulmer UTB: Stuttgart, 2010 [In German].

31. TICHÝ L. JUICE, software for vegetation classification. J. Veg. Sci. 13, 451, 2002.

32. PIELOU E.C. Population and community ecology: principles and methods, CRC Press: New York, 1974.

33. PIELOU E.C. Indices of diversity and evenness. Ecological Diversity, John Wiley and Sons: New York, 1975.

34. SIMPSON E.H. Measurement of diversity. Nature 163, 688, 1949.

35. MATUSZKIEWICZ W. Guidebook for identification of plant communities in Poland, Wydawnictwo Naukowe PWN: Warszawa, 2001 [In Polish].

36. MUCINA L. Conspectus of classes of European vegetation. Folia Geobot. Phytotax. 32 (2), 117, 1997.

37. SLAVÍK B. Solidago L. In Flora of the Czech Republic; Slavík B., Štěpánková J., Eds.; Academia: Praha, 7, 114, 2004 [In Czech].

38. PASZKIEWICZ-JASIŃSKA A., STEINHOFF-WRZEŚNIEWSKA A. Natural and utility values of meadow communities of the order Arrhenathereta in Walbrzych county in relation to habitat conditions. J. Res. Appl. Agric. Eng. 60, 55, 2015.

39. LEUSCHNER C., ELLENBERG H. Ecology of Central European forests: vegetation ecology of Central Europe; Springer International Publishing: Cham, Switzerland, 1, 2017.

40. SZYMURA M., SZYMURA T.H. Soil preferences and morphological diversity of goldenrods (Solidago L.) from south-western Poland. Acta Soc. Bot. Pol. 82 (2), 107, 2013.

41. RUPRECHT E. Secondary succession in old-fields in the Transylvanian Lowland (Romania). Preslia 77, 145, 2005.

42. ADAMOWSKI W., BOMANOWSKA A. Forest return on an abandoned field – secondary succession under monitored conditions. Acta Univ. Lodz., Folia Biol. Oecol. 7, 49, 2011.

43. KABUCE N., PRIEDE N. NOBANIS – Invasive Alien Species Fact Sheet – Solidago canadensis, 2010. Available
online: https://www.nobanis.org/globalassets/speciesinfo/s/solidago-canadensis/solidago-canadensis.pdf (accessed 28 January 2019).

44. SZYMURA M., Szymura T.H. Distribution of goldenrods (Solidago spp.) in Lower Silesia and their impact on biodiversity of invaded vegetation. Acta Bot. Siles. 6, 195, 2011 [In Polish].

45. KARPAVIČIENĖ B., RADUŠIENĖ J., Viltrakytė J. Distribution of two invasive goldenrod species Solidago canadensis and S. gigantea in Lithuania. Bot. Lith. 21 (2), 125, 2015.

46. ROLA J., ROLA H. Solidago spp. as bioindicator of fallow occurrence on arable area. Fragm. Agron. 27 (3), 122, 2010 [In Polish].

47. GUO-QI C., CHAO-BIN Z., LING M., SHENG Q., SILANDER J.A., Qi L.L. Biotic homogenization caused by the invasion of Solidago canadensis in China. J. Integr. Agric. 12, 835, 2013.

48. WANG C., JIANG K., LIU J., ZHOU J., WU B. Moderate and heavy Solidago canadensis L. invasion are associated with decreased taxonomic diversity but increased functional diversity of plant communities in East China. Ecol. Eng. 112, 55, 2018.

49. SOBISZ Z., PARZYCH A. Participation of Solidago gigantea Aiton in plant communities of chosen midfield biotypes on Central Pomerania. Zesz. Nauk. UP Wrocław., Rol. C, 584, 113, 2012 [In Polish].

50. SEKUTOWSKI T.R., WLODEK S., BISKUPSKI A., Sienkiewicz-Cholewa U. Comparison of the content of seeds and plants of the Goldenrod (Solidago sp.) in the fallow and adjacent field. Zesz. Nauk. UP Wrocław., Rol. C, 584, 99, 2012 [In Polish].

51. PRUCHNIEWSKI D. Abandonment of traditionally managed mesic mountain meadows affects plant species composition and diversity. Basic Appl. Ecol. 20, 10, 2017.

52. BIELECKA A., KROLAK E., BIRADZKA E. Habitat conditions of Canadian goldenrod in a selected region of eastern Poland. J. Ecol. Eng. 18 (4), 76, 2017.