Does Blood Glucose Monitoring Increase Prior to Clinic Visits in Children With Type 1 Diabetes?

Kimberly A. Driscoll, PhD1
Suzanne Bennett Johnson, PhD1
Yuanyuan Tang, MS1
Fang Yang, PhD1
Larry C. Deeb, MD1
Janet H. Silverstein, MD2

OBJECTIVE—To assess the occurrence of white coat adherence in families with children who have type 1 diabetes.

RESEARCH DESIGN AND METHODS—Blood glucose data were downloaded from meters of 72 children, aged 2–11 years, with type 1 diabetes at four consecutive clinic visits. Generalized estimating equations were used to analyze patterns of blood glucose monitoring (BGM) during the 28 days before each clinic visit.

RESULTS—More frequent BGM was associated with better glycemic control. Evidence of a white coat adherence effect, with BGM frequency increasing before a clinic visit, was found only among children with low A1C levels.

CONCLUSIONS—Highly motivated families who frequently monitor their child’s blood glucose increased the frequency of BGM before the child’s clinic visit. The additional monitoring may benefit the child by providing the physician with a wealth of blood glucose information to guide recommendations.

From the 1Department of Medical Humanities and Social Sciences, Florida State University College of Medicine, Tallahassee, Florida; and 2Pediatric Endocrinology, University of Florida Health Science Center, Gainesville, Florida.

Corresponding author: Kimberly A. Driscoll, kimberly.driscoll@med.fsu.edu.

Received 26 February 2011 and accepted 15 July 2011.

DOI: 10.2337/dc11-0388

© 2011 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

Glycemic control
Hemoglobin A1c (A1C), representing the average glucose level during the past 2.5 to 3 months (12), was obtained at each clinic visit using a Siemens Healthcare Diagnostics DCA Vantage (reference range 4.2–6.5%), which is certified by the National Glycohemoglobin Standardization Program (NGSP) as having documented traceability to the Diabetes Control and Complications Trial (DCCT) Reference Method. A1C was temporally aligned with blood glucose meter downloads; A1C represented the same period of time as the blood glucose meter reading downloads.

Blood glucose meter readings
Blood glucose readings and their corresponding dates and times were downloaded from each patient’s meter during the clinic visit. At the time this study was conducted (2000–2007), many blood glucose meters had limited data downloading and storage capacity. Therefore, patients’ blood glucose meter data were included for analysis only if the patient’s meter...
had a storage capacity of ≥28 days. We further restricted our data selection to those downloaded records with sufficient data for analysis defined as 1) containing at least 20 days of blood glucose readings and 2) at least one reading within 5 days of the clinic visit at which the meter was downloaded.

Statistical analysis

Descriptive statistics, including means, SDs, and ranges were conducted for demographic and BGM variables. Demographic differences between participants who were and were not included in the analyses were determined by t tests. The dependent variable was the average number of blood glucose readings performed per day. Generalized estimating equations (GEE) (13) were used to evaluate predictors of daily BGM frequency downloaded at four consecutive clinic visits. GEE adjusts within-subject dependence in repeated-measures and longitudinal designs in which data from the same subject are intrindividually related, resulting in violation of the assumption of independence in multiple regression (14). Stata SE 9.0 software (StataCorp, College Station, TX) was used for all analyses.

RESULTS—The 72 patients (41 girls, 31 boys) whose downloaded BGM data were used for this study were aged 2 to 11 years (mean 8.0 [SD 2.6]) with a disease duration of 0.7 to 11.0 years (4.0 [2.6]). We examined whether the 72 children whose data were used differed from the 36 children from the HANDling Diabetes project whose blood glucose meter data were insufficient for inclusion; no significant differences in A1C, child sex, age, or disease duration emerged. Table 1 provides A1C results and data obtained from downloaded meters at each of four consecutive clinic visits. The number of children whose data were used varied across clinic visits due to failure to bring a meter to the clinic or to technical difficulties with downloading the data. Although these children’s mean A1C values across the four clinic visits were in the target range for this age group (i.e., 8.0 for children aged 6 to 12 years; 8.5 for children aged <6 years) (15), there was great variability, with A1C values as low as 5.9 and as high as 13.7. Similarly, although mean BGM frequency was ≥4 readings performed per day across the four clinic visits, daily BGM frequency also exhibited great variability, ranging from <1 reading per day to >11 readings per day.

GEE regression models were used to test linear and nonlinear models of BGM frequency in the 28 days before each clinic visit; a linear model provided the best fit with the data. The best model was the same at each clinic visit. The number of days before the clinic visit, child A1C, and A1C × day interaction significantly predicted the number of blood glucose readings performed per day (Table 2). There was a trend toward younger age being associated with more frequent BGM. Figure 1 illustrates the A1C main effect; at all four clinic visits, children with lower A1Cs showed higher BGM frequency regardless of the number of days before the clinic visit. Figure 1 also illustrates the interaction between A1C and the number of days before the clinic visit. On three of the four clinic visits, children with low A1Cs (i.e., A1C = 6) showed an increase in BGM as the date of the clinic visit approached, from less than five readings per day to more than seven readings per day. In contrast, patients with A1Cs in the target range (i.e., A1C = 8.0) and those with high A1Cs (i.e., A1C = 10) showed a flat or slightly declining BGM pattern of approximately three or four readings per day. As a consequence, the largest differences in BGM frequency between children with low and high A1Cs occurred in the days immediately preceding the clinic visit. Only clinic visit 3 failed to display this pattern; at this visit the main effect for A1C is most apparent—children with low A1Cs averaged more than six BGM readings per day throughout the 28-day window.

CONCLUSIONS—This study clearly replicates the link between BGM frequency and A1C across four clinic visits in a sample of children with type 1 diabetes. Surprisingly few published studies exist demonstrating a link between BGM frequency from downloaded meters and glycemic control (1,16,17); most have used nonobjective methods of assessing BGM adherence (e.g., physician notes, patient self-report, logbooks) (18,19). Our findings are consistent with two other recent studies that found a significant association between downloaded blood glucose meter data and glycemic control (17,20). Importantly, the data in the current

Variable	Mean ± SD	Range
Time 1 (n = 59)		
A1C (%)	8.32 ± 1.16	5.9–11.2
Blood glucose (mg/dL)	202.05 ± 52.27	116.16–363.21
Blood glucose readings (n)		
Per day	4.57 ± 1.67	0.86–9.57
28 Days before clinic visit	4.36 ± 2.22	1–12
1 Day before clinic visit	4.75 ± 2.19	1–11
Time 2 (n = 61)		
A1C (%)	8.28 ± 0.88	5.9–10.5
Blood glucose (mg/dL)	209.1 ± 39.38	113.62–277.09
Blood glucose readings (n)		
Per day	4.51 ± 1.40	1.25–10.68
28 Days before clinic visit	3.82 ± 1.78	1–10
1 Day before clinic visit	4.48 ± 1.87	0–11
Time 3 (n = 67)		
A1C (%)	8.40 ± 1.07	5.9–11
Blood glucose (mg/dL)	210.65 ± 44.21	125.03–321.96
Blood glucose readings (n)		
Per day	4.52 ± 1.97	1.07–11.89
28 Days before clinic visit	4.24 ± 2.25	1–12
1 Day before clinic visit	4.72 ± 2.76	0–13
Time 4 (n = 56)		
A1C (%)	8.30 ± 1.13	6.4–13.7
Blood glucose (mg/dL)	206.99 ± 43.79	124.07–312.29
Blood glucose readings (n)		
Per day	4.53 ± 1.46	1.57–8.57
28 Days before clinic visit	4.29 ± 2.25	1–10
1 Day before clinic visit	4.38 ± 2.26	0–11
study highlight the stability of the association between A1C and BGM across four clinic visits occurring within a 12-month period.

Our findings also demonstrated a white coat adherence effect for those families whose children had low A1Cs. These families increased their BGM immediately before the clinic visit. In contrast, children with high A1Cs showed lower, more stable, or even declining BGM across the 28 days before the child’s clinic visit. As a consequence, the largest differences in BGM frequency between children with low and high A1Cs occurred immediately before the clinic visit. Families who increased their monitoring before the visit may have benefited from the additional information they were able to provide their child’s physician, resulting in a wealth of information on which to base treatment recommendations.

Parents of these children appeared to be highly motivated to manage their child’s diabetes. They may have viewed the clinic visit as an opportunity to capitalize on the information provided by the physician, or they may have been invested in gaining physician approval. Certainly, the diabetes clinic visit may serve as an opportunity to reinforce families who monitor frequently, and the increased amount of BGM data they provide the physician may result in better clinical recommendations that ultimately lead to better glycemic control.

The pattern of white coat adherence among children with low A1Cs was replicated in three of four clinic visits. Although we found a large main effect for glycemic control at the third clinic visit, BGM frequency was high throughout the 28 days before the clinic visit for children with low A1Cs and increased slightly for those with higher A1Cs. We suspect that a study-wide intervention that occurred at that time may explain this finding. The study protocol required all families to be enrolled in Germany and Austria. Exp Clin Endocrinol Diabetes 2006;114:384–388

Acknowledgments—This work was supported by grant R01-HL-069736 from the National Heart, Lung, and Blood Institute. No potential conflicts of interest relevant to this article were reported.

K.A.D. and S.B.J. researched data, contributed to discussion, wrote the manuscript, and reviewed and edited the manuscript. Y.T. researched data, contributed to discussion, and reviewed and edited the manuscript. F.Y. researched data and reviewed and edited the manuscript. L.C.D. researched data, contributed to discussion, and reviewed and edited the manuscript. J.H.S. researched data and reviewed and edited the manuscript. The authors thank the families who participated in this research.

References

1. Anderson B, Ho J, Brackett J, Finkelstein D, Lafe L. Parental involvement in diabetes management tasks: relationships to blood glucose monitoring adherence and metabolic control in young adolescents with insulin-dependent diabetes mellitus. J Pediatr 1997;130:257–265

2. Peyrot M, Rubin RR. Insulin self-regulation predicts better glycemic control. Diabetes Educ 1988;14(3):53A

3. Schütt M, Kern W, Krause U, et al.; DPV Initiative. Is the frequency of self-monitoring of blood glucose related to long-term metabolic control? Multicenter analysis including 24,500 patients from 191 centers in Germany and Austria. Exp Clin Endocrinol Diabetes 2006;114:384–388

4. Feinstein AR. On white-coat effects and the electronic monitoring of compliance. Arch Intern Med 1990;150:1377–1378

5. Urruhr J. Role of patient compliance in clinical pharmacokinetics. A review of recent research. Clin Pharmacokinet 1994;27:202–215

6. Cramer JA. Microelectronic systems for monitoring and enhancing patient compliance with medication regimens. Drugs 1995;49:321–327

7. Krejci-Manwaring J, Tusa MG, Carroll C, et al. Stealth monitoring of adherence to...
topical medication: adherence is very poor in children with atopic dermatitis. J Am Acad Dermatol 2007;56:211–216
8. Podsadecki TJ, Vrijens BC, Tousset EP, Rode RA, Hanna GJ. “White coat compliance” limits the reliability of therapeutic drug monitoring in HIV-1-infected patients. HIV Clin Trials 2008;9:238–246
9. Modi AC, Morita DA, Glauser TA. One-month adherence in children with new-onset epilepsy: white-coat compliance does not occur. Pediatrics 2008;121:e961–e966
10. Feldman SR, Camacho FT, Krejci-Manwaring J, Carroll CL, Ballerishman R. Adherence to topical therapy increases around the time of office visits. J Am Acad Dermatol 2007;57:81–83
11. Driscoll KA, Killian M, Johnson SB, Silverstein JH, Deeb LC. Predictors of study completion and withdrawal in a randomized clinical trial of a pediatric diabetes adherence intervention. Contemp Clin Trials 2009;30:212–220
12. Blanc MH, Barnett DM, Gleason RE, Dunn PJ, Soeldner JS. Hemoglobin A1c compared with three conventional measures of diabetes control. Diabetes Care 1981;4:349–353
13. Zeger SL, Liang KY. Longitudinal data analysis for discrete and continuous outcomes. Biometrics 1986;42:121–130
14. Lin SK, Chen CH, Pan CH. Venlafaxine for acute heroin detoxification: a double-blind, randomized, control trial. J Clin Psychopharmacol 2008;28:189–194
15. American Diabetes Association. Standards of medical care in diabetes—2010. Diabetes Care 2010;33(Suppl. 1):S11–S61
16. Moreland EC, Tovar A, Zuehlke JB, Butler DA, Milaszewski K, Laffel LM. The impact of physiological, therapeutic and psychosocial variables on glycemic control in youth with type 1 diabetes mellitus. J Pediatr Endocrinol Metab 2004;17:1533–1544
17. Helgeson VS, Honcharuk E, Becker D, Escobar O, Siminerio L. A focus on blood glucose monitoring: relation to glycemic control and determinants of frequency. Pediatr Diabetes 2011;12:25–30
18. Levine BS, Anderson BJ, Butler DA, Antisdel JE, Brackett J, Laffel LM. Predictors of glycemic control and short-term adverse outcomes in youth with type 1 diabetes. J Pediatr 2001;139:197–203
19. Haller MJ, Stalvey MS, Silverstein JH. Predictors of control of diabetes: monitoring may be the key. J Pediatr 2004;144:660–661
20. Ziegler R, Heidtmann B, Hilgard D, Hofer S, Rosenbauer J, Holl R, DPV-Wiss-Initiative. Frequency of SMBG correlates with HbA1c and acute complications in children and adolescents with type 1 diabetes. Pediatr Diabetes 2011;12:11–17
21. Ingerski LM, Anderson BJ, Dolan LM, Hood KK. Blood glucose monitoring and glycemic control in adolescence: contribution of diabetes-specific responsibility and family conflict. J Adolesc Health 2010;47:191–197

Figure 1—A1C main effects and interactions with the number of days before clinic visits 1 (A), 2 (B), 3 (C), and 4 (D). BG, blood glucose.