THE SIGMA INVARIANTS OF THOMPSON’S GROUP F

ROBERT BIERI, ROSS GEOGHEGAN, DESSISLAVA H. KOCHLOUKOVA

Abstract. Thompson’s group F is the group of all increasing dyadic PL homeomorphisms of the closed unit interval. We compute $\Sigma^m(F)$ and $\Sigma^m(F;\mathbb{Z})$, the homotopical and homological Bieri-Neumann-Strebel-Renz invariants of F, and show that $\Sigma^m(F) = \Sigma^m(F;\mathbb{Z})$. As an application, we show that, for every m, F has subgroups of type F_{m-1} which are not of type FP_m (thus certainly not of type F_m).

1. INTRODUCTION

1.1. The group F. Let F denote the group of all increasing piecewise linear (PL) homeomorphisms whose points of non-differentiability $\in [0, 1]$ are dyadic rational numbers, and whose derivatives are integer powers of 2. This is known as Thompson’s Group F; it first appeared in [22].

The group F has an infinite presentation

\[
\langle x_0, x_1, x_2, \ldots | x^{-1}_ix_{i+1} = x_{i+1} \text{ for } 0 \leq i < n \rangle
\]

Let $F(i)$ denote the subgroup $\langle x_i, x_{i+1}, \ldots \rangle$. The presentation (1.1) displays F as an HNN extension with base group $F(1)$, associated subgroups $F(1)$ and $F(2)$, and stable letter x_0; see [17, Prop. 9.2.5] or [13] for a proof. Thus F is an ascending HNN-extension whose base and associated subgroups are isomorphic to F.

The correspondence between the generators x_i in the presentation (1.1) and PL homeomorphisms is as in [18]. For example, the generator x_0 corresponds to the PL homeomorphism with slope $\frac{1}{2}$ on $[0, \frac{1}{2}]$, slope 1 on $[\frac{1}{2}, \frac{3}{4}]$, and slope 2 on $[\frac{3}{4}, 1]$.

The group F has type F_∞ i.e. there is a $K(F, 1)$-complex with a finite number of cells in each dimension [13]. Therefore F is finitely presented and has type FP_∞. Furthermore, F has infinite cohomological dimension [13], $H^*(F;\mathbb{Z})$ is trivial [14], F does not contain a free subgroup of rank 2 [11], and the commutator subgroup F' is simple [11, 15]. It is known that F has quadratic Dehn function [18]. The group of automorphisms of F was calculated in [9].

\begin{flushright}
\textit{Date:} February, 2008.
\textit{2000 Mathematics Subject Classification.} Primary 20J05; Secondary 55U10.
\textit{Key words and phrases.} Thompson’s group, homological and homotopical Sigma invariants.
\end{flushright}

The third author is partially supported by “bolsa de produtividade de pesquisa” from CNPq, Brazil.

\footnote{Here, PL homeomorphisms are understood to act on $[0, 1]$ on the left as in [15] rather than on the right as in [13].}

\footnote{See Subsection 2.1 for the definition.}

1
1.2. The Sigma invariants of a group. By a (real) character on G we mean a homomorphism $\chi : G \to \mathbb{R}$ to the additive group of real numbers. For a finitely generated group G the character sphere $S(G)$ of G is the set of equivalence classes of non-zero characters modulo positive multiplication. This is best thought of as the “sphere at infinity” of the real vector space $\text{Hom}(G, \mathbb{R})$. The dimension d of that vector space is the torsion-free rank of G/G', and the sphere at infinity has dimension $d - 1$. We denote by $[\chi]$ the point of $S(G)$ corresponding to χ.

We recall the Bieri-Neumann-Strebel-Renz (or Sigma) invariants of a group G. Let R denote a commutative ring\footnote{Only the rings \mathbb{Z} and \mathbb{Q} will play a role in this paper.} with $1 \neq 0$, and let $m \geq 0$ be an integer. When G is of type F_m (resp. $FP_m(R)$) the homotopical invariant $\Sigma^m(G)$ (resp. the homological invariant $\Sigma^m(G; R)$), is a subset of $S(G)$. In both cases we have $\Sigma^{m+1} \subseteq \Sigma^m$. We refer the reader to [7] for the precise definition, confining ourselves here to a brief recollection:

1.2.1. $m = 0$. All groups have type F_0 and type $FP_0(R)$. By definition $\Sigma^0(G) = \Sigma^0(G; R) = S(G)$. This will only be of interest when we consider subgroups of F in Section 2.

1.2.2. $m = 1$. Let X be a finite set of generators of G and let Γ^1 be the corresponding Cayley graph, with G acting freely on Γ^1 on the left. The vertices of Γ^1 are the elements of G and there is an edge joining the vertex g to the vertex gx for each $x \in X$.

For any non-zero character $\chi : G \to \mathbb{R}$, and for any real number i define $\Gamma^1_{\chi \geq i}$ to be the subgraph of Γ spanned by the vertices

$$G_{\chi \geq i} = \{ g \in G \mid \chi(g) \geq i \}.$$

By definition, $[\chi] \in \Sigma^1(G)$ if and only if $\Gamma^1_{\chi \geq 0}$ is connected. For a detailed treatment of Σ^1 from a topological point of view, see [17], Sec. 16.3.

1.2.3. $m = 2$. Let $\langle X \mid T \rangle$ be a finite presentation of G. Choose a G-invariant orientation for each edge of Γ^1 and then form the corresponding Cayley complex Γ^2 by attaching 2-cells equivariantly to Γ^1 using attaching maps indicated by the relations in T. Define $\Gamma^2_{\chi \geq i}$ to be the subcomplex of Γ^2 consisting of $\Gamma^1_{\chi \geq i}$ together with all the 2-cells which are attached to it.

By definition, $[\chi] \in \Sigma^2(G)$ if and only if $[\chi] \in \Sigma^1(G)$ and there is a nonpositive d such that the map

$$(1.2) \quad \pi_1(\Gamma^2_{\chi \geq 0}) \to \pi_1(\Gamma^2_{\chi \geq d}),$$

induced by the inclusion of spaces $\Gamma^2_{\chi \geq 0} \subseteq \Gamma^2_{\chi \geq d}$ is zero (and $\Gamma^1_{\chi \geq 0}$ is connected). See, for example, [28]. Note that Γ^2 is the 2-skeleton of the universal cover of a $K(G, 1)$-complex which has finite 2-skeleton.

1.2.4. $m > 2$. The higher $\Sigma^m(G)$ are defined similarly, for groups of type F_m, using the m-skeleton, Γ^m, of the universal cover of a $K(G, 1)$-complex having finite m-skeleton. See [7].
1.2.5. The homological case. For a commutative ring R, the homological Sigma invariants $\Sigma^m(G; R)$ are defined similarly when the group G is of type $FP_m(R)$, using a free resolution of the trivial (left) RG-module R which is finitely generated in dimensions $\leq m$; see [7] for details. Among the basic facts to be used below, which hold for all rings R, are: $\Sigma^1(G) = \Sigma^1(G; R)$; and $\Sigma^m(G) \subseteq \Sigma^m(G; R)$ when both are defined (i.e. when G has type F_m). If G is finitely presented then “type F_m” and “type $FP_m(\mathbb{Z})$” coincide. In that case, $\Sigma^m(G; \mathbb{Z})$ can also be understood from the above topological definition of $\Sigma^m(G)$, replacing statements about homotopy groups by the analogous statements about reduced \mathbb{Z}-homology groups; more precisely, one requires
\begin{equation}
\hat{H}_{k-1}(\Gamma_{k \geq 0}) \to \hat{H}_{k-1}(\Gamma_{k \geq d}),
\end{equation}
to be trivial for all $k \leq m$.

Remark: The definition of Σ^1 given here agrees with the now-established conventions followed, for example, in [7] and in [2]. It differs by a sign from the Σ^1-invariant defined in [6]. This arises from our convention that RG-modules are left modules, while in [6] they are right modules.

1.3. Some facts about Sigma invariants. It is convenient to write $\{\chi \in \Sigma^\infty\}$ as an abbreviation for “$\{\chi \in \Sigma^m$ for all $m\}$.

Among the principal results of Σ-theory for a group G of type F_m (resp. type $FP_m(R)$) are: (1) $\Sigma^m(G)$ (resp. $\Sigma^m(G; R)$) is an open subset of the character sphere $S(G)$, and (2) $\Sigma^m(G)$ (resp. $\Sigma^m(G; R)$) classifies all normal subgroups N of G containing the commutator subgroup G' by their finiteness properties in the following sense:

Theorem 1.1. [7], [27], [28] Let G be a group of type F_m (resp. type $FP_m(R)$) with a normal subgroup N such that G/N is abelian. Then N is of type F_m (resp. FP_m) if and only if for every non-zero character χ of G such that $\chi(N) = 0$ we have $[\chi] \in \Sigma^m(G)$ (resp. $[\chi] \in \Sigma^m(G; R)$).

A non-zero character is discrete if its image in \mathbb{R} is an infinite cyclic subgroup. A special case of Theorem 1.1 (the only one we will use) is:

Corollary 1.2. If the non-zero character χ is discrete then its kernel has type F_m (resp. type $FP_m(R)$) if and only if $[\chi]$ and $[-\chi]$ lie in $\Sigma^m(G)$ (resp. $\Sigma^m(G; R)$).

The invariants $\Sigma^m(G)$ and $\Sigma^m(G; R)$ have been calculated for only a few families of groups G, even fewer when $m > 1$. For metabelian groups G of type F_m there is the still-open Σ^m-Conjecture: $\Sigma^m(G)^c = \Sigma^m(G; \mathbb{Z})^c = conv_{\leq m} \Sigma^1(G)^c$, where $conv_{\leq m}$ denotes the union of the (spherical) convex hulls of all $\leq m$-tuples; this is known for $m = 2$ [20] but only for larger m under strong restrictions on G [21], [24]. A complete description of $\Sigma^m(G)$ and $\Sigma^m(G; \mathbb{Z})$ for any right angled Artin group G is given in [23]. Recently the homotopical invariant $\Sigma^m(G)$ has been generalized to an invariant of group actions on proper CAT(0) metric spaces [2]; the corresponding invariants for the natural action of $SL_n(\mathbb{R})$ on its symmetric space have been calculated: for $n = 2$ (action by Möbius transformations on the hyperbolic plane) in [3], and for $n > 2$ in [26]. A similar generalization of the homological case, $\Sigma^m(G; R)$, to the CAT(0) setting will appear in [4].

\footnote{It is customary to use the notation A^c for the complement of the set A in a character sphere; e.g. $\Sigma^m(G)^c$ or $\Sigma^m(G; R)^c$.}
1.4. Sigma invariants of F. In this paper we calculate the Sigma invariants \(\Sigma^m(F) \) and \(\Sigma^m(F; R) \) of the group F. For $x \in F$ and $i = 0$ or 1 let $\chi_i(x) := \log_2 x^i(1)$, i.e. the (right) derivative of the map x at 0 is $2^\chi_0(x)$ and the (left) derivative of x at 1 is $2^\chi_1(x)$. In terms of the presentation (1.1) $\chi_0(x_0) = -1$ and $\chi_0(x_i) = 0$ for $i \geq 1$, while $\chi_1(x_i) = 1$ for all $i \geq 0$. These two characters are linearly independent. Thus $[\chi_0]$ and $[\chi_1]$ are not antipodal points of the circle $S(F)$. From (1.1) we see that the real vector space $\text{Hom}(F, \mathbb{R})$ has dimension 2, so these two characters span $\text{Hom}(F, \mathbb{R})$. It follows that the convex sum of $[\chi_0]$ and $[\chi_1]$ is a well-defined interval in the circle $S(F)$; it members are the points \(\{ [a\chi_0 + b\chi_1] | a, b > 0 \} \). We call it the “shorter interval”. We call χ_0 and χ_1 the “special” characters.

There is a useful automorphism ν of F which is most easily expressed when F is regarded as a group of PL homeomorphisms as above: it is conjugation by the linearly independent. Thus $\Sigma^m(F; R)$ and $\Sigma^m(F)$ are in $S(F)$; it members are the points \(\{ [a\chi_0 + b\chi_1] | a, b > 0 \} \). We call it the “shorter interval”. We call χ_0 and χ_1 the “special” characters.

The Theorems of this paper can now be stated:

Theorem A. $\Sigma^1(F)$ consists of all points of $S(F)$ except $[\chi_0]$ and $[\chi_1]$. The points of $S(F)$ lying in the open convex hull of $[\chi_0]$ and $[\chi_1]$, i.e. in the shorter interval, are in $\Sigma^1(F)$ but are not in $\Sigma^2(F)$. The other (longer) open interval between $[\chi_0]$ and $[\chi_1]$ is the set $\Sigma^\infty(F)$. The sets $\Sigma^m(F; R)$ and $\Sigma^m(F)$ coincide for all m and any ring R.

One part of this is not new: $\Sigma^1(F)$ was computed in [6].

Theorem B. For every $m \geq 1$, F contains subgroups of type F_{m-1} which are not of type $FP_m(\mathbb{Z})$ (thus certainly not of type F_m).

Theorem A is proved in Section 2 and Theorem B is proved (using [5]) in Section 3.

Acknowledgment We thank Dan Farley who asked about the possibility of embedding powers of F in F to get non-normal subgroups of F with more interesting finiteness properties than can be found among the kernels of characters on F itself. His question led to the writing of the paper [5] and thus to our Theorem B.

2. Proof of Theorem A

2.1. Σ_0 and Σ_1. By an ascending HNN extension we mean a group presented by\(\langle H, t | t^{-1}ht = \phi(h) \rangle \) for $h \in H$ where $\phi : H \to H$ is a monomorphism. Such a group is denoted by $H_{*\phi,t}$.

We begin by citing:

Theorem 2.1. Let G decompose as an ascending HNN extension $H_{*\phi,t}$. Let $\chi : G \to \mathbb{R}$ be the character given by $\chi(H) = 0$ and $\chi(t) = 1$.

1. If H is of type F_m (resp. $FP_m(R)$) then $[\chi] \in \Sigma^m(G)$ (resp. $[\chi] \in \Sigma^m(G; R)$).
(2) If H is finitely generated and ϕ is not onto H then $[-\chi] \in \Sigma^1(G)^c$.

Proof. The homological case of (1) for all m is [24 Prop. 4.2] and the homotopical case for $m = 2$ is a special case of [25 Thm. 4.3]. The homotopical case of (1) for all m then follows.

(2) is elementary: we recall the argument. Let N be the kernel of χ. By (1) and Corollary 1.2 (2) is equivalent to claiming that the group N is not finitely generated. The hypothesis that ϕ is not onto implies $t^{-1}Ht$ is a proper subgroup of H. Thus $N = \cup_{n \geq 1}t^nHt^{-n}$ is a proper ascending union, so it cannot be finitely generated. \hfill \Box

Applying Theorem 2.1 together with “ν-symmetry” to the group F, i.e. $G = F$, $t = x_0$, $H = F(1)$, and $\chi = -\chi_0$, we get part of Theorem A:

Corollary 2.2. $\{[-\chi_0], [-\chi_1]\} \subseteq \Sigma^\infty(F)$ and $\{[\chi_0], [\chi_1]\} \subseteq \Sigma^1(F)^c$.

Theorem 8.1 of [6] is the assertion that the complement of the two-point set $\{[\chi_0], [\chi_1]\}$ is precisely $\Sigma^1(F)$.

2.2. The “longer” interval. The following is proved by combining two theorems of H. Meinert, namely [24 Prop. 4.1] and [25 Thm. B]:

Theorem 2.3. Let G decompose as an ascending HNN extension $H*_{\phi,t}$. Let $\chi : G \to \mathbb{R}$ be a character such that $\chi|H \neq 0$. If H is of type F_∞ and if $[\chi|H] \in \Sigma^\infty(H)$ then $[\chi] \in \Sigma^\infty(G)$.

We use this to show that whenever $\chi : F \to \mathbb{R}$ is such that $\chi(x_1) < 0$ we always have $[\chi] \in \Sigma^\infty(F)$. Recall that F is an HNN extension with base group $F(1) = \langle x_1, x_2, \ldots \rangle$, associated subgroups $F(1)$ and $F(2)$ and with stable letter x_0, where $F(i) = \langle x_i, x_{i+1}, \ldots \rangle$. As $\{x_i\}_{i \geq 1}$ are conjugate in F we see that $\chi(x_1) = \chi(x_i) < 0$ for all $i \geq 1$. Let $\tilde{\chi}$ be the restriction of χ to $F(1)$. If we identify $F(1)$ with F via the isomorphism that sends x_i to x_{i-1} for $i \geq 1$, then $\tilde{\chi}$ gets identified with $-\chi_1$ and, by Corollary 2.2 $[-\chi_1] \in \Sigma^\infty(F)$. Thus we have:

Corollary 2.4. (2.1) $\{[\chi] \in S(F) \mid \chi(x_1) < 0\} \subseteq \Sigma^\infty(F)$.

This shows that the open interval in the circle $S(F)$ from $[\chi_0]$ to $[-\chi_0]$ which contains $[-\chi_1]$ lies in $\Sigma^\infty(F)$. By ν-symmetry its image under ν has the same property, and this enlarges the interval in question to cover the whole “long” open interval between $[\chi_0]$ and $[\chi_1]$. In summary:

Proposition 2.5. All of $S(F)$ except possibly the closed convex sum of the points $[\chi_0]$ and $[\chi_1]$ lies in $\Sigma^\infty(F)$.

5But note the change of conventions explained in the Remark at the end of Subsection 1.2.
2.3. The “shorter” interval. For the homotopical version of Theorem A we could simply apply the following:

Theorem 2.6. [19] Let G be a finitely presented group which has no free non-abelian subgroup. Then $\text{conv}_{\leq 2} \Sigma^2(G)^c \subseteq \Sigma^2(G)^c$.

However, the homological version of Theorem 2.6 is only known under restrictive conditions, so we proceed in a manner which handles the homotopical and homological versions at the same time. We begin by citing:

Theorem 2.7. Let G have no non-abelian free subgroups and have type $FP_2(R)$. Let $\tilde{\chi}: G \to \mathbb{R}$ be a non-zero discrete character. Then G decomposes as an ascending HNN extension $H_{*p,t}$ where H is a finitely generated subgroup of $\ker(\tilde{\chi})$, and $\tilde{\chi}(t)$ generates the image of $\tilde{\chi}$.

This is an immediate consequence of [8, Thm. A]. That theorem yields an HNN extension and the hypothesis about free subgroups ensures it is an ascending HNN extension.6

We apply Theorem 2.7 to understand $\Sigma^2(F;R)$. Consider the non-zero character $a\chi_0 + b\chi_1$ where $a,b \in \mathbb{Q}$. Let $G := \ker(a\chi_0 + b\chi_1)$. Since F/F' is a free abelian group of rank 2, it is not hard to see that $G = \langle F', t \rangle$ for some $t \in F$. For the same reason, there is a non-zero discrete character $\tilde{\chi}: G \to \mathbb{R}$ whose kernel is F' such that $\tilde{\chi}(t)$ generates $\text{im}(\tilde{\chi})$. We assume that G has type $FP_2(R)$ and we consider what this implies. By Theorem 2.7 the existence of $\tilde{\chi}$ implies that G decomposes as $H_{*p,t}$ where H is a finitely generated subgroup of F'. The group F' consists of all PL homeomorphisms whose left and right slopes are 1. Since H is finitely generated, there must exist $\epsilon > 0$ such that all elements of H are supported in the interval $[\epsilon, 1 - \epsilon]$. We may assume ϵ is so small that the PL homeomorphism t is linear on $[0, \epsilon]$ and on $[1 - \epsilon, 1]$.

The character $\tilde{\chi}$ expresses G as a semidirect product of F' and \mathbb{Z}. Thus we have $F' = \bigcup_{n \geq 1} t^n H t^{-n}$. So for each $x \in F'$ there is some $n > 0$ such that $t^{-n} x t^n \in H$, and hence the support of $t^{-n} x t^n$ lies in $[\epsilon, 1 - \epsilon]$.

This implies that the support of x lies in $[t^n(\epsilon), t^n(1 - \epsilon)]$, and hence these end points have subsequences converging to 0 and 1 respectively as x varies in F'. If t has slope ≥ 1 on $[0, \epsilon]$ then $t(\epsilon) \geq \epsilon$ so $t^n(\epsilon) \geq \epsilon$ for all $n > 0$. Therefore t must have slope < 1 near 0. Similarly t must have slope < 1 near 1. Since $a\chi_0(t) + b\chi_1(t) = 0$ it follows that (still assuming G has type $FP_2(R)$) $ab < 0$.

Expressing the contrapositive, we have

Proposition 2.8. If $ab > 0$ then $\ker(a\chi_0 + b\chi_1)$ does not have type $FP_2(R)$. □

Now assume a and b are positive and rational. Write $\chi = a\chi_0 + b\chi_1$; thus χ is discrete. By Corollary 1.2 $\ker(\chi)$ has type $FP_2(R)$ if and only if both $[\chi]$ and $[-\chi]$ lie in $\Sigma^2(F;R)$. But by Proposition 2.5 $[-\chi] \notin \Sigma^2(F;R)$. So $[\chi]$ cannot lie in $\Sigma^2(F;R)$.

Proposition 2.9. No point in the open convex sum of $[\chi_0]$ and $[\chi_1]$ (i.e. the shorter open interval) lies in $\Sigma^2(F;R)$.

6See Sec. 1.3 for the definition of $\text{conv}_{\leq 2}$.
7The equivalence of “almost finitely presented” with respect to R, the term actually used in [9], and $FP_2(R)$ is well-known: see, for example, Exercise 3 of [14] VIII 5.
Proof. We have just shown that a dense subset of the open convex sum lies in $$\Sigma^2(F; R)^c$$, and since $$\Sigma^2(F; R)$$ is open in $$S(F)$$ this is enough. □

The proof of Theorem A is completed by recalling that for any ring $$R$$

1. $$\Sigma^1(F; R) = \Sigma^1(F)$$, and
2. $$\Sigma^m(F) \subseteq \Sigma^m(F; R)$$.

3. Subgroups of $$F$$ with different finiteness properties

As before, we denote the complement of any subset $$A$$ of a sphere by $$A^c$$. The Direct Product Formula for homological Sigma invariants (which is not always true) reads as follows:

$$\Sigma^n(G \times H; R)^c = \bigcup_{p=0}^n \Sigma^p(G; R)^c \ast \Sigma^{n-p}(H; R)^c$$

Here, * refers to “join” of subsets of the spheres $$S(G)$$ and $$S(H)$$ which are considered to be subspheres of the sphere $$S(G \times H)$$. In particular, when $$p = 0$$ or $$n$$ one of these sets is empty, and then the join is treated in the usual way: e.g., $$A \ast \emptyset = A$$.

It has been known for many years that one inclusion of the Direct Product Formula is always true:

Theorem 3.1. (Meinert’s Inequality)

$$\Sigma^n(G \times H; R)^c \subseteq \bigcup_{p=0}^n \Sigma^p(G; R)^c \ast \Sigma^{n-p}(H; R)^c$$

and

$$\Sigma^n(G \times H)^c \subseteq \bigcup_{p=0}^n \Sigma^p(G)^c \ast \Sigma^{n-p}(H)^c$$

Meinert did not publish this, but a proof can be found in [16, Section 9]. The paper [11] also contains a proof of the homotopy version.

It is proved in [5] that the Direct Product Formula holds when $$R$$ is a field. On the other hand, an example in [29] shows that the Formula does not always hold when $$R = \mathbb{Z}$$. However, it is shown in [5] that when $$\Sigma^n(G; \mathbb{Z}) = \Sigma^n(G; \mathbb{Q})$$ for all $$n$$ then the Direct Product Formula does hold when $$R = \mathbb{Z}$$. Writing $$F^r$$ for the $$r$$-fold direct product of copies of $$F$$, one concludes (by induction on $$r$$) that the Formula holds for $$F^r$$ when $$R = \mathbb{Z}$$. More precisely, we have:

Theorem 3.2. Let $$r \geq 2$$. Then for all $$n$$

$$\Sigma^n(F^r; \mathbb{Z})^c = \bigcup_{p=0}^n \Sigma^p(F; \mathbb{Z})^c \ast \Sigma^{n-p}(F^{r-1}; \mathbb{Z})^c$$

and $$\Sigma^n(F^r) = \Sigma^n(F^r; \mathbb{Z})$$.

Proof. Only the last sentence requires some explanation. It follows from Meinert’s Inequality (Theorem 3.1) together with the fact that for any group $$G$$ we have $$\Sigma^m(G) \subseteq \Sigma^m(G; R)$$. □
Theorem A implies that $\Sigma^m(F)^c$ is a (spherical) 1-simplex if $m \geq 2$, is the 0-skeleton of that 1-simplex when $m = 1$, and is empty (i.e., the (-1)-skeleton of the 1-simplex) when $m = 0$. And that 1-simplex has the property that it is disjoint from its negative. It follows from Theorem 3.2 that $\Sigma^m(F)^c$ is the $(m-1)$-skeleton of a spherical $(2r-1)$-simplex in the $(2r-1)$-sphere $S(F^r)$, a simplex which is disjoint from its negative.

We now prove Theorem B. Consider $[\chi]$ in $S(F^r)$ which lies in the $(m-1)$-skeleton but not in the $(m-2)$-skeleton of the $(2r-1)$-simplex. Since the discrete characters are dense we can always choose χ discrete. Then $[\chi]$ lies in $\Sigma^m(F)^c \cap \Sigma^{m-1}(F^r)$ while $[-\chi]$ lies in $\Sigma^m(F^r)$. Thus, by Corollary 1.2 the kernel of χ has type F_{m-1} but not type $FP_m(\mathbb{Z})$ when $m < 2r - 1$. Now, F contains copies of F^r for all r; for example, let $0 < t_1 < \cdots < t_r < 1$ be a subdivision of $[0,1]$ into r segments where the subdivision points are dyadic rationals. The subgroup of F which fixes all the points t_i is a copy of F^r. Thus Theorem B is proved.

Example: Here is an explicitly described subgroup $G_r \leq F$ which has type F_{2r-1} but does not type $FP_{2r}(\mathbb{Z})$. Fix a dyadic subdivision of $[0,1]$ into r subintervals as above. Let G_r denote the subgroup of F consisting of all elements x for which the product of the numbers in the following set D_r equals 1. The members of D_r are: the left and right derivatives of x at the $(r-1)$ subdivision points t_i, the right derivative of x at 0, and the left derivative of x at 1. This subgroup of F (we consider F^r embedded in F as above) corresponds to the barycenter of the $(2r-1)$-simplex, and thus has the claimed properties.

Remark 3.3. This example is “structurally stable” in the following sense: The interior of the $(2r-1)$-simplex is open in the sphere $S(F^r)$. Thus all the points in that open set which correspond to discrete characters on F^r (they are dense) give rise to groups \hat{G}_r with exactly the finiteness properties possessed by G_r. These groups \hat{G}_r should be thought of as all the normal subgroups of F^r “near” G_r which have infinite cyclic quotients.

References

1. R. Bieri, Finiteness length and connectivity length for groups. Geometric group theory down under (Canberra, 1996), 9–22, de Gruyter, Berlin, 1999.
2. R. Bieri, R. Geoghegan, Connectivity properties of group actions on non-positively curved spaces, Mem. Amer. Math. Soc. 161 (2003), no. 765
3. R. Bieri, R. Geoghegan, Topological properties of SL_2 actions on the hyperbolic plane, Geom. Dedicata 99 (2003), 137–166
4. R. Bieri, R. Geoghegan, (paper in preparation)
5. R. Bieri, R. Geoghegan, Sigma invariants of direct products of groups Preprint, Frankfurt and Binghamton.
6. R. Bieri, W. D. Neumann, R. Strebel, A geometric invariant of discrete groups, Invent. Math. 90 (1987), no. 3, 451–477
7. R. Bieri, B. Renz, Valuations on free resolutions and higher geometric invariants of groups, Comment. Math. Helv. 63 (1988), no. 3, 464–497
8. R. Bieri, R. Strebel, Almost finitely presented soluble groups, Comment. Math. Helv. 53 (1978), no. 2, 258–278
9. M. G. Brin, The chameleon groups of Richard J. Thompson: automorphisms and dynamics, Inst. Hautes Études Sci. Publ. Math. No. 84 (1996), 5–33 (1997)
10. M. G. Brin, C. C. Squier, Groups of piecewise linear homeomorphisms of the real line, Invent. Math. 79 (1985), no. 3, 485–498
11. K. S. Brown, Finiteness properties of groups, J. Pure Appl. Algebra 44 (1987), no. 1-3, 45–75
12. K. S. Brown, *Cohomology of groups*. Graduate Texts in Mathematics, 87. Springer-Verlag, New York-Berlin, 1982. x+306 pp.
13. K. S. Brown, R. Geoghegan, *An infinite-dimensional torsion-free \(\text{FP}_\infty \) group*, Invent. Math. 77 (1984), no. 2, 367–381
14. K. S. Brown, R. Geoghegan, *Cohomology with free coefficients of the fundamental group of a graph of groups*. Comment. Math. Helv. 60 (1985), no. 1, 31–45.
15. J. W. Cannon, W. J. Floyd, W. R. Parry, *Introductory notes on Richard Thompson’s groups*, Enseign. Math. (2) 42 (1996), no. 3-4, 215–256
16. R. Gehrke, *The higher geometric invariants for groups with sufficient commutativity*, Comm. Algebra 26 (1998), no. 4, 1097
17. R. Geoghegan, *Topological Methods in Group Theory*, Graduate Texts in Mathematics, 243. Springer-Verlag, New York-Berlin, 2008. xiv+473 pp.
18. V. S. Guba, *The Dehn function of Richard Thompson’s group \(F \) is quadratic*, Invent. Math. 163 (2006), 313-342.
19. D. H. Kochloukova, *Subgroups of constructible nilpotent-by-abelian groups and a generalization of a result of Bieri, Neumann and Strehel*, J. Group Theory 5 (2002), no. 2, 219–231
20. D. H. Kochloukova, *The \(\Sigma^2 \)-conjecture for metabelian groups and some new conjectures: the split extension case*, J. Algebra 222 (1999), no. 2, 357–375
21. D. H. Kochloukova, *The \(\Sigma^m \)-conjecture for a class of metabelian groups*, Groups St. Andrews 1997 in Bath, II, 492–502, LMS Lecture Note Ser., 261, CUP, 1999
22. R. McKenzie, R. J. Thompson, *An elementary construction of unsolvable word problems in group theory*, Studies in Logic and the Foundations of Math., 71, pp. 457–478, North-Holland, Amsterdam, 1973
23. J. Meier, H. Meinert, L. VanWyk, *Higher generation subgroup sets and the \(\Sigma \)-invariants of graph groups*, Comment. Math. Helv. 73 (1998), no. 1, 22–44
24. H. Meinert, *The homological invariants for metabelian groups of finite Prufer rank: a proof of the \(\Sigma^m \)-conjecture*, Proc. London Math. Soc. (3) 72 (1996), no. 2, 385–424
25. H. Meinert, *Actions on 2-complexes and the homotopical invariant \(\Sigma^2 \) of a group*, J. Pure Appl. Algebra 119 (1997), no. 3, 297–317
26. H. Rehm, Dissertation, Universität Frankfurt a.M., 2008
27. B. Renz, *Geometrische Invarianten und Endlichkeitseigenschaften von Gruppen*, Dissertation, Universität Frankfurt a.M., 1988
28. B. Renz, *Geometric invariants and \(\mathbb{HNN} \)-extensions*. Group theory (Singapore, 1987), 465–484, de Gruyter, Berlin, 1989.
29. D. Schütz, *On the direct product conjecture for sigma invariants*, to appear in Bull. London Math. Soc.

DEPARTMENT OF MATHEMATICS, JOHANN WOLFGANG GOETHE-UNIVERSITÄT FRANKFURT, D-60054 FRANKFURT AM MAIN, GERMANY

DEPARTMENT OF MATHEMATICAL SCIENCES, BINGHAMTON UNIVERSITY (SUNY), BINGHAMTON, NY 13902-6000, USA

DEPARTMENT OF MATHEMATICS, STATE UNIVERSITY OF CAMPINAS, Cx. P. 6065, 13083-970 CAMPINAS, SP, BRAZIL

E-mail address: bieri@math.uni-frankfurt.de, ross@math.binghamton.edu, desi@ime.unicamp.br