Molecular and Morphological Characterization of *Aphelenchoides fuchsi* sp. n. (Nematoda: Aphelenchoideidae) Isolated from *Pinus eldarica* in Western Iran

MEHRAB ESMAEILI, RAMIN HEYDARI, MOZHGAN ZIAIE, and JIANFENG GU

Abstract: *Aphelenchoides fuchsi* sp. n. is described and illustrated from bark and wood samples of a weakened Mondell pine in Kermanshah Province, western Iran. The new species has body length of 332 to 400 μm (females) and 365 to 395 μm (males). Lip region set off from body contour. The cuticle is weakly annulated, and there are four lines in the lateral field. The stylet is 8 to 10 μm long and has small basal swellings. The excretory pore is located ca one body diam. posterior to metacorpus valve or 51 to 62 μm from the head. The postuterine sac well developed (60–90 μm). Spicules are relatively short (15–16 μm in dorsal limb) with apex and rostrum rounded, well developed, and the end of the dorsal limb clearly curved ventrad like a hook. The male tail has usual three pairs of caudal papillae (2+2+2) and a well-developed macro. The female tail is conical, terminating in a complicated step-like projection, usually with many tiny nodular protuberances. The new species belongs to the Group 2 sensu Shainina, category of *Aphelenchoides* species. Phylogenetic analysis based on small subunit (SSU) and partial large subunit (LSU) sequences of rRNA supported the morphological results.

Key words: Aphelenchoides, LSU, molecular, morphology, morphometrics, new species, phylogeny, SSU, taxonomy.

To find and prevent the spread of pests comprising pine wood nematode *Bursaphelenchus xylophilus* (Steiner and Buhrer, 1934) Nickle, 1970 in Iran, bark and wood samples must be sampled and inspected. So, during the past few years, a wide survey on dead or weakening pine trees in northern Iran was conducted and several species belonging to Aphelenchoideidae Skarbilovich, 1947 were recovered and described: two new species of the genus *Ek tagaphelenchus* Baujard, 1984 (Pedram et al., 2012; Aliarajai et al., 2014); a new species of the genus *Bursaphelenchus* Fuchs, 1937 (Pedram et al., 2011); and a new species of the genus *Laimaphelenchus* Fuchs, 1937 (Asghari et al., 2012). Up to now, *B. xylophilus*, which has caused serious damage to the coniferous forests, has not been found in Iran.

The genus *Aphelenchoides* Fischer, 1894 contains at present more than 150 nominal species (Hunt, 2008) and tends to be greatly conserved in gross morphology, making species identification a very difficult task. Also, many of the description fall below modern standards. Currently, species discrimination in Aphelenchoides is mainly based on morphology and morphometrics. In recent years, several species of the genus were described related to the pine trees in different countries, e.g., China (Cheng et al., 2009; Zhuo et al., 2010) and the United States (Kaisa, 2000), and some species isolated from packaging wood in South Korea (Cui et al., 2011; Fang et al., 2014b), India (Bina Chanu et al., 2013), South Africa (Wang et al., 2013), and Japan (Fang et al., 2014a). Recently a new species of *Aphelenchoides, Aphelenchoides huntensis* Esmaeili, Fang, Li, and Heydari, 2016 is described in association with pine trees in Iran. It would be likely to find more *Aphelenchoides* species if other substrates (e.g., bark beetles) were examined with such attention.

During 2013 and 2014, we conducted some inspections on wood and bark samples from dead or weakened pine trees in western Iran. As a result, a new species of *Aphelenchoides* was isolated from a weakened Mondell pine tree (*Pinus eldarica* L.), which is described and figured in this paper as *Aphelenchoides fuchsi* sp. n. It is the second new species of *Aphelenchoides* that is described from Iran.

Materials and Methods

Sampling, extraction, mounting, and drawing

Several bark and wood samples from weakened pine trees were collected from western Iran, which yielded an aphelenchid nematode belonging to the genus *Aphelenchoides*. The nematodes were recovered from the wood samples by soaking a small amount of wood in water for 48 hr and handpicked under a stereomicroscope model Olympus SZH (Japan). The nematodes were heat killed by adding boiling 4% formalin solution and then transferred to anhydrous glycerin and mounted in permanent slides according to the method by De Grisse (1969). Permanent slides were prepared and studied using a light microscope (Nikon E200). Drawings were made using a drawing tube attached to the same microscope, and photographs of live nematodes were taken by a digital camera attached to the microscope.

DNA extraction, polymerase chain reaction, and sequencing

A single live nematode specimen of *A. fuchsi* sp. n. was picked out, examined on a temporary slide, and then transferred to a small drop of AE buffer (10 mM Tris-Cl, 0.5 mM EDTA, pH 9.0; Qiagen Inc., Valencia, CA) on a clean slide and squashed using a clean cover slip. The
sequenced directly for both strands using the same forward and reverse primers solution (5 pM), 8 μl distilled water, and 2 μl of a 100 times-diluted crude DNA extract. The following PCR profile was used: 94°C for 5 min; 5 × (94°C, 30 sec; 45°C, 30 sec; and 72°C, 70 sec) followed by 35 × (94°C, 30 sec; 54°C, 30 sec; 72°C, 70 sec) and 72°C, 5 min. The PCR products were purified and sequenced directly for both strands using the same primers with an ABI 3730XL sequencer (Macrogen Corporation, Seoul, South Korea). The newly obtained sequences was submitted to GenBank database under accession numbers KT003986 (18S) and KT003987 (28S).

The obtained sequences of the partial 18S and partial 28S D2-D3 region ribosomal DNA (rDNA) gene of *A. fuchsi* were compared with those of other aphanelenchids species available in GenBank (see Table 1 for selected sequences of SSU and Table 2 for LSU D2-D3) using BLAST homology search program. Outgroup was chosen according to previous published data (Fang et al., 2014a, 2014b; Esmaeili et al., 2016). The newly obtained and published sequences were aligned using MAFFT ver. 7 (Katoh et al., 2002) with default parameters. Sequence alignment was edited using BioEdit (Hall, 1999). The best fitted model of DNA evolution was obtained using jModelTest2 (Darriba et al., 2012) with the Akaike information criterion. The Akaike-supported model, the base frequency, the proportion of invariable sites, and the gamma distribution shape parameters and substitution rates in the Akaike information criterion were then used in phylogenetic analyses. The tree topology was confirmed using MrBayes 3.2.3 (Ronquist and Huelsenbeck, 2003) with four chains (three heated and one cold). The number of generations for the total analysis was set to 10 million, with the chain sampled every 100 generations.

### Table 1. Species used for analysis of phylogenetic relationships and the accession numbers for SSU sequences deposited in GenBank.

| Species                     | Accession number | Authors                      | Species                     | Accession number | Authors                      |
|-----------------------------|------------------|------------------------------|-----------------------------|------------------|------------------------------|
| *Aphelenchoides fuchsi* sp. n. | KT003986         | Present paper                | *Aphelenchoides* sp.        | DK901553         | Subbotin et al., 2006        |
| *Aphelenchoides besseyi*    | AY508035         | Ye et al., 2007              | *Aphelenchoides* sp.        | EU287591         | Zhao et al., 2008            |
| *Aphelenchoides bicaudatus* | HQ283351         | Huang et al., 2012           | *Aphelenchoides* sp.        | GU337995         | Cui et al., 2011             |
| *Aphelenchoides blastophitoris* | JQ957879     | Rybarczyk-Mydłowska et al., 2012 | *Aphelenchoides* sp.        | GU337994         | Cui et al., 2011             |
| *Aphelenchoides blastophitoris* | AY284646      | Holtermann et al., 2006      | *Aphelenchus* avenae         | AB368918         | Unpublished                  |
| *Aphelenchoides fragarinae* | DQ901551         | Subbotin et al., 2006        | *Aphelenchus* avenae         | KJ636424         | Unpublished                  |
| *Aphelenchoides fragarinae* | AB967755         | Unpublished                  | *Ficophagus* avenae          | DQ912922         | Davies et al., 2015          |
| *Aphelenchoides fujianensis* | FJ529227         | Zhuo et al., 2010            | *Ficophagus* benjamina       | KJ638552         | Davies et al., 2015          |
| *Aphelenchoides huntensis*  | KR856483         | Esmaeili et al., 2016        | *Ficophagus* cenerina        | DQ912923         | Davies et al., 2015          |
| *Aphelenchoides macronucleatus* | FJ253883       | Unpublished                  | *Ficophagus* sp.            | KJ638366         | Davies et al., 2015          |
| *Aphelenchoides paradialisans* | GU337993     | Cui et al., 2011             | *Ficophagus* sp.            | KJ638358         | Davies et al., 2015          |
| *Aphelenchoides rizemabosi* | DQ901554         | Subbotin et al., 2006        | *Ficophagus* sp.            | KJ638361         | Davies et al., 2015          |
| *Aphelenchoides rotundicaudatus* | KFF772858      | Fang et al., 2014a           | *Ficophagus* sp.            | KJ638364         | Davies et al., 2015          |
| *Aphelenchoides saprophilus* | FJ040408         | Holtermann et al., 2006      | *Ficophagus* sp.            | KJ638370         | Davies et al., 2015          |
| *Aphelenchoides subteniensis* | JQ957891        | Rybarczyk-Mydłowska et al., 2012 | *Ficophagus* sp.            | EU038299         | Davies et al., 2015          |
| *Aphelenchoides vacuicadatus* | HQ283351         | Huang et al., 2012           | *Ficophagus* sp.            | KJ638360         | Davies et al., 2015          |
| *Aphelenchoides xui*         | FJ643487         | Wang et al., 2013            | *Ficophagus* sp.            | KJ638357         | Davies et al., 2015          |
| *Aphelenchoides* sp.         | JQ957884         | Rybarczyk-Mydłowska et al., 2012 | *Ficophagus* sp.            | KM817192         | Davies et al., 2015          |
| *Aphelenchoides* sp.         | AY284646         | Holtermann et al., 2006      | *Ficophagus* sp.            | KG269928         | Davies et al., 2015          |
| *Aphelenchoides* sp.         | FJ040409         | Holtermann et al., 2006      | *Ficophagus* sp.            | KJ638354         | Davies et al., 2015          |
| *Aphelenchoides* sp.         | FJ040410         | Holtermann et al., 2006      | *Ficophagus* sp.            | KJ638354         | Davies et al., 2015          |
| *Aphelenchoides* sp.         | JQ957885         | Huang et al., 2012           | *Laimaphelenchus heidelbergi* | EU287587     | Zhao et al., 2008             |
| *Aphelenchoides* sp.         | GU337997         | Cui et al., 2011             | *Laimaphelenchus helgolandensis* | KJ881745     | Holtermann et al., 2006      |
| *Aphelenchoides* sp.         | GU337999         | Cui et al., 2011             | *Laimaphelenchus penardii*  | AT509318         | Holtermann et al., 2006      |
| *Aphelenchoides* sp.         | GU337998         | Cui et al., 2011             | *Laimaphelenchus perissii*  | EU287590         | Zhao et al., 2008             |
| *Aphelenchoides* sp.         | JQ957883         | Huang et al., 2012           | *Martinserotia granzaghesensis* | DK912924     | Davies et al., 2015          |
| *Aphelenchoides* sp.         | AB601626         | Unpublished                  | *Robustodoris megadurus*    | KG687094         | Unpublished                  |
| *Aphelenchoides* sp.         | GU337996         | Cui et al., 2011             | *Schistochus capriflic*      | GU190764         | Davies et al., 2015          |
| *Aphelenchoides* sp.         | EU287589         | Zhao et al., 2008             | *Schistochus* sp.           | HM151003         | Davies et al., 2015          |
| *Aphelenchoides* sp.         | DQ901550         | Subbotin et al., 2006        | –                           | –               | –                           |
Table 2. Species used for analysis of phylogenetic relationships and the accession numbers for LSU D2-D3 sequences deposited in GenBank.

| Species                          | Accession number | Authors                  | Species                          | Accession number | Authors                  |
|----------------------------------|------------------|--------------------------|----------------------------------|------------------|--------------------------|
| Aphelenchoides fuchsi sp. n.      | KT003987         | Present paper            | Ficophagus sp.                   | AB355556         | Davies et al., 2015      |
| Aphelenchoides besseyi           | EU325682         | Zhao et al., 2008        | Ficophagus sp.                   | AB355565         | Davies et al., 2015      |
| Aphelenchoides fragariae         | EU325684         | Zhao et al., 2008        | Ficophagus sp.                   | KC326929         | Davies et al., 2015      |
| Aphelenchoides huntesensis       | KR864682         | Esmaeili et al., 2016    | Ficophagus sp.                   | KM817193         | Davies et al., 2015      |
| Aphelenchoides rotundicaudatus    | KF772809         | Fang et al., 2014        | Ficophagus sp.                   | KJ683872         | Davies et al., 2015      |
| Aphelenchoides stellatus         | KF683651         | Fang et al., 2014        | Ficophagus sp.                   | KJ683876         | Davies et al., 2015      |
| Aphelenchoides stammeri          | AM306982         | Unpublished              | Ficophagus sp.                   | KJ683877         | Davies et al., 2015      |
| Aphelenchoides variicaudatus      | HQ283333         | Huang et al., 2012       | Ficophagus sp.                   | KJ683878         | Davies et al., 2015      |
| Aphelenchoides xai               | FJ643488         | Wang et al., 2013        | Ficophagus sp.                   | KJ683884         | Davies et al., 2015      |
| Aphelenchoides xyloceae          | AB434933         | Kanzaki et al., 2008     | Laimaphelenchus australis        | EU287600         | Zhao et al., 2008        |
| Aphelenchoides sp.               | DQ328682         | Subbotin et al., 2006    | Laimaphelenchus belgradensis     | KF881746         | Oro, 2015                |
| Aphelenchoides sp.               | EU287597         | Zhao et al., 2008        | Laimaphelenchus deconinchi       | KF998578         | Unpublished              |
| Aphelenchoides sp.               | EU287599         | Zhao et al., 2008        | Laimaphelenchus heidelbergi      | EU287595         | Zhao et al., 2008        |
| Aphelenchoides sp.               | EU084037         | Unpublished              | Laimaphelenchus persicus         | JN006987         | Asghari et al., 2012     |
| Aphelenchus avenae               | AB368536         | Kanzaki et al., 2008     | Laimaphelenchus persici          | EU287598         | Zhao et al., 2008        |
| Ficophagus alternmacrophyllica    | AB355554         | Davies et al., 2015      | Laimaphelenchus sp.              | AB368539         | Kanzaki et al., 2008     |
| Ficophagus aureus                | DQ912926         | Davies et al., 2015      | Laimaphelenchus sp.              | KJ472144         | Unpublished              |
| Ficophagus benjamina             | AB355558         | Davies et al., 2015      | Laimaphelenchus sp.              | KJ567061         | Miraiez et al., 2015     |
| Ficophagus benjamina             | AB355553         | Davies et al., 2015      | Martininema fistulosus           | KC250363         | Davies et al., 2015      |
| Ficophagus centrae               | DQ912928         | Davies et al., 2015      | Martininema guanzhouchiensis     | DQ912927         | Davies et al., 2015      |
| Ficophagus microcapus            | GU392234         | Davies et al., 2015      | Martininema sp.                  | KM817190         | Davies et al., 2015      |
| Ficophagus lueginitus            | DQ912926         | Davies et al., 2015      | Schistochus capnifici            | GU190765         | Davies et al., 2015      |
| Ficophagus listeri               | AB355565         | Davies et al., 2015      | Schistochus hirtus               | GC849473         | Davies et al., 2015      |
| Ficophagus sp.                   | AB355555         | Davies et al., 2015      | Schistochus macrophyllica        | AB355531         | Davies et al., 2015      |

Results and discussion

Aphelenchoides fuchsi * sp. n.
(Figs. 1, 2).

Measurements
See Table 3.

Description

Females: Body is cylindrical, straight, somewhat ventrally arcuate when heat relaxed. Cuticle weakly annulated, lateral field with four incisures (i.e., three ridges). Lip region is rounded, offset, ca 3 to 3.5 μm high, and 6 to 7 μm broad. Stylet with small basal swellings, procorpus cylindrical. Median bulb is strongly developed, end of dorsal limb is clearly curved ventrally. Spicules are arcuate, relatively short, and apex and rostrum are rounded and well developed, end of dorsal limb is clearly curved ventrally. Nerve ring is situated at ca half metacorpus (median bulb) length posterior to it. Pharyngointestinal junction is immediately posterior to metacorpus. Pharyngeal gland lobe is slender, ca five to six body diam, long, overlapping intestine dorsally. Excretory pore is at level of nerve ring or opposite the posterior level of the nerve ring, the position varying from 1/2 to 2/3 metacorpus length behind metacorpus. Hemizonid is faint, situated ca two to three times metacorpus diam. posterior to excretory pore. Monodelphic, ovary is outstretched anteriorly, developing oocytes in single row. Oviduct connecting ovary and spermatheca. Spermatheca is elongate, containing compressed disklike or oblong sperm in single row. Vagina is directed anteriad. Vulva is transverse, with slightly raised lips, and vulval flap is absent. Postuterine sac is well developed, extending for about 71% to 90% of vulva to anus distance, often containing sperm. Rectum and anus are visible. Tail is conical, terminating in a complicated step-like projection, usually with many tiny nodular protuberances.

Males: They are much less common than females; body slender, cylindrical, and J-shaped when heat relaxed. AnTERIOR region and cuticle are similar to female. Testis is single, anteriorly outstretched, locating left of intestine, occupying 53.4% to 66.2% of body length. Lips of cloacal opening protruding slightly. Spicules are arcuate, relatively short, and apex and rostrum are rounded and well developed, end of dorsal limb is clearly curved ventrally. Gubernaculum is absent. Tail is conical, bearing a short sharp mucro ca 1.5 to 2 μm long. Three pairs of subventral caudal papillae are present: first pair located just posterior to cloacal aperture, second pair in mid-tail region, and third pair just anterior to tail end. Bursa is absent.

Diagnosis and relationships

Aphelenchoides fuchsi * sp. n. is characterized by body length of 332 to 400 μm (females) and 365 to 395 μm (males). Lip region with distinct constriction from the
rest body. Cuticle with four lateral lines. Medium sized (8–10 μm) stylet with small basal swellings. The excretory pore is located ca one body diam. to posterior of metacorpus valve. The female tail is conical and terminates in a complicated step-like projection, usually with many tiny nodular protuberances. Spicules are relatively short (15–16 μm in dorsal limb) with the apex and rostrum rounded and well developed, the end of the dorsal limb is clearly curved ventrally like a hook (Fig. 2G,F).

*Aphelenchoides fuchsi* sp. n. has a tail terminus with tiny nodular protuberances in female. According to the category of *Aphelenchoides* species sensu Shahina (1996), the new species belongs to Group 2, which is defined as having the female tail terminus with “one or sometimes two mucronate structures.” On the basis of the four lateral lines, stylet length, conical female tail, and shape of spicules, the new species appears morphologically most similar to four species from Group 2 including *Aphelenchoides arcticus* Sanwal, 1965, *Aphelenchoides blastophthorus* Franklin, 1952, *Aphelenchoides saprophilus* Franklin, 1957, and *Aphelenchoides xui* Wang, Wang, Gu, Wang, and Li, 2013. It is also similar to three species from Group 4 including *Aphelenchoides franklini* Singh, 1969, *Aphelenchoides gynotylurus* Timm and Franklin, 1969, and *Aphelenchoides marinus* Timm and Franklin, 1969.

*Aphelenchoides fuchsi* sp. n. differs from *A. arcticus*, *A. blastophthorus*, *A. franklini*, *A. gynotylurus*, *A. marinus*, and
A. saprophilus by the female tail terminus, i.e., ending of a step-like projection/or offset mucro with many tiny nodular protuberances in A. fuchsi sp. n. vs. a shallow constriction narrowed sharply with a very fine mucro at the tip (A. arcticus), tapering to a simple conspicuous mucro (A. blastophthorus), a simple pointed ventral mucro (A. franklini), ending in a digitate to blunt/or sometimes sickle-shaped mucro (A. gynotylurus), acutely conical tapering to a point that is sometimes truncate/or subacute (A. marinus), and a short ventral mucro (A. saprophilus).

Moreover, A. fuchsi sp. n. differs from A. arcticus by having a longer postuterine sac (5.5 vs. 2.5 times the body width), the shorter body length of female (320–400 vs. 556 μm), the male spicule length and shape in dorsal limb (15–16 μm with clearly curved ventrad like a hook vs. 23 μm long, with slightly curved and rounded tip). It differs from A. blastophthorus by having the shorter body length of female (320–400 vs. 680–900 μm), the shorter stylet length (8–10 vs. 14–19 μm), lower a ratio (25–32 vs. 40–41), and the male spicule length in dorsal limb (15–16 vs. 24–31 μm). It differs from A. franklini by having a longer postuterine sac (5.5 vs. 2.5 times the body width), the shorter body length of female (320–400 vs. 556 μm), and the male

FIG. 2. Light micrographs of Aphelenchoides fuchsi sp. n. A: Female posterior body showing post-uterine sac by arrow; B: Female head and stylet in detail; C: Female pharynx region showing excretory pore and hemizonoid by arrow; D: Metacorpus and position of excretory system; E: Female genital tract; F: Spicules in detail; G: Male posterior body showing spicules and papillae arrangement by arrows; H: Lateral field; I,J: Female tail. (A,C–E = 20 μm; B,F–J = 10 μm.)

38 Journal of Nematology, Volume 48, No. 1, March 2016
spicule length in dorsal limb (15–16 μm long, with clearly curved ventral like a hook vs. 21–24 μm, smoothly rounded tip). It differs from *A. marinus* by having the shorter body length of female (332–400 vs. 570–860 μm), the shorter stylet length (8–10 vs. 13–14 μm), and the male spicule length in dorsal limb (15–16 vs. 24–25 μm). It differs from *A. saprophilus* by the shorter body length of female (332–400 vs. 454–623 μm), the shorter stylet length (8–10 vs. 11.1–13.2 μm), and the male spicule length in dorsal limb (15–16 vs. 21.7–33.4 μm).

The female tail of *A. fuchi* sp. n. is also similar to some *Laimaphelenchus* species. *Laimaphelenchus* contains two groups of species: one with a vulval flap and one without (Hunt, 1993). Moreover, *Laimaphelenchus* is also characterized by the vagina either having a cuticular annulus at the point where it joins the uterus or is surrounded by a relatively thick refractive tube or strong musculature (Zhao et al., 2007). Considering these two morphological characters (absence of vulval flap and vagina structure in new species), the new species was far from *Laimaphelenchus* and therefore placed in *Aphelenchoïdes*. In addition, the entire *Aphelenchoïdes* and *Laimaphelenchus* groups are in urgent need of revision based on sequences of full-length SSU rRNA sequences or other informative loci combined with detailed morphological diagnostic characters.

**Type habitat and locality**

The type population was recovered from bark and wood samples of a weakened Mondell pine tree (*P. eldarica*) in vicinity of Cheshmehe-Nezamei, city of Gilan-e-Gharb, Kermanshah Province, western Iran (GPS coordinates: N 33°59`, E 46°12`; 1,248 m above sea level).

**Remark**

*Aphelenchoïdes fuchi* sp. n. was successfully cultured on *Botryotinia fuckeliana* growing on Potato Dextrose Agar. The nematode was not culturable on *Botrytis cinerea*.

**Type material**

Holotype female, two paratype females, and two paratype males (Slides AAF002 and AAF003) were deposited in nematode collection of the Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Iran. Three paratype females were deposited at each of the following collections: CABI, Egham, United Kingdom; USDA

---

**Table 3. Morphometrics of *Aphelenchoïdes fuchi* sp. n.**

| Character | Holotype | Male | Paratypes | Female | Paratypes |
|-----------|----------|------|-----------|--------|-----------|
| n         | –        | –    | 15        | –      | –         |
| L         | 367      | 377.8 ± 12.2 (365–395) | –        | 382.3 ± 20.3 (332–400) |
| a         | 30.6     | 30.5 ± 0.8 (29.4–31.7) | –        | 28.3 ± 2.3 (25.1–32.9) |
| b         | 6.6      | 6.6 ± 0.2 (6.5–6.9)    | –        | 6.8 ± 0.3 (6.4–7.3)    |
| b'        | 2.8      | 2.8 ± 0.1 (2.7–3.0)    | –        | 3.4 ± 0.3 (3.0–3.8)    |
| c         | 15.3     | 13.7 ± 1.1 (12.7–15.3) | –        | 12.8 ± 0.8 (11.8–14.3) |
| c'        | 1        | 1.1 ± 0.1 (1.0–1.2)    | –        | 1.6 ± 0.5 (1.8–3.5)    |
| V or T    | 66.2     | 53.9 ± 5.4 (53.4–66.2) | –        | 68.1 ± 2.6 (54.4–74.5) |
| Lip region height | 3 | 3.1 ± 0.2 (3.0–3.5) | – | 3.1 ± 0.2 (3.0–3.5) |
| Lip region width | 5 | 4.2 ± 0.4 (4.0–5.0) | – | 6.2 ± 0.4 (4.0–7.0) |
| Styllet length | 9 | 9.0 ± 0.4 (8.5–9.5) | – | 9.2 ± 0.7 (8.0–10.0) |
| Conus length | 4 | 3.9 ± 0.2 (3.5–4.0) | – | 3.9 ± 0.3 (3.5–4.5) |
| m"       | 44.4     | 43.3 ± 1.6 (41.2–44.4) | –        | 42.7 ± 1.9 (40–45)    |
| Body diam. | 12      | 12.4 ± 0.5 (12.0–13.0) | –        | 13.6 ± 1.3 (11.0–15.0) |
| Body diam. at median bulb | 11 | 11.1 ± 0.2 (11.5–11.5) | – | 11.7 ± 1.0 (10.0–13.0) |
| Median bulb width | 6 | 6.5 ± 0.9 (6.0–8.0) | – | 7.7 ± 0.6 (7.0–8.0) |
| Median bulb length | 12 | 11.2 ± 0.4 (11.0–12.0) | – | 11.8 ± 0.8 (11.0–12.5) |
| Median bulb length/diam. ratio | 2 | 1.7 ± 0.2 (1.4–2.0) | – | 1.5 ± 0.0 (1.5–1.6) |
| Excretory pore from anterior end | 57 | 58.8 ± 3.4 (55–64) | – | 58.5 ± 3.6 (51–62) |
| Hemizonid from anterior end | 95 | 88 ± 6.1 (84–95) | – | 76 ± 1.6 (74–78) |
| Ovary length or testis | 243 | 224 ± 19.2 (195–243) | – | 162.6 ± 25 (128–210) |
| Postuterine sac | – | – | – | 74 ± 8.6 (60–90) |
| Vulva to anus distance | – | – | – | 91.8 ± 8.8 (69–100) |
| Postuterine sac length/vulva to anus (%) | – | – | – | 80.7 ± 6.9 (74.7–90.0) |
| Anal (cloacal) body diameter | 8 | 9.0 ± 0.7 (8.0–10.0) | – | 5.5 ± 0.5 (6.0–7.0) |
| Tail length | 24 | 27.8 ± 2.3 (24–30) | – | 29.9 ± 2.1 (25.0–33.0) |
| Spicule (dorsal limb) | 16 | 15.6 ± 0.5 (15.0–16.0) | – | – |
| Spicule (ventral limb) | 9 | 8.7 ± 0.4 (8.0–9.0) | – | – |
| Spicule (curved median line) | 11 | 10.7 ± 0.4 (10.0–11.0) | – | – |
| Spicule (chord) | 10 | 9.4 ± 0.4 (9.0–10.0) | – | – |
| Mucro | – | – | – | 1.8 ± 0.4 (1.5–2.0) |

*All measurements are in μm and in the form: mean ± SD (range). a Length of conus as percentage of total stylet length.*
Nematode Collection, Beltsville, MD, and Department of Nematology, WANECO Collection, Wageningen, the Netherlands.

Molecular phylogenetic status

Amplification of the D2-D3 expansion segment of 28S rDNA and partial 18S sequences from *A. fuchsi* sp. n. specimens yielded a single fragment of 750 and 1,700 bp based on gel size, respectively. Alignment of the sequences with MAFFT resulted in datasets of 1,752 characters for 18S and 869 characters for 28S D2-D3. The partial 18S alignment contained 59 in-group and 1 out-group taxon and was 1,685 bp in length after removing ambiguously aligned regions. The 50% majority rule consensus phylogenetic tree generated from the partial 18S rRNA alignment using Bayesian inference analysis under the GTR + I + G model is presented in Figure 3. The D2-D3 expansion segment of 28S rDNA alignment contained 47 in-group and 1 out-group taxon and was 771 bp in length after removing ambiguously aligned regions. The 50% majority rule consensus phylogenetic tree generated from the D2-D3 alignment using Bayesian inference analysis under the TIM3 + I + G model is presented in Figure 4. According to our phylogenetic trees, *A. fuchsi* sp. n. occupied a basal position in a strongly supported clade with a posterior probabilities support of 100% (D2-D3) and 64% (18S) with some other *Aphelenchoides* spp. as well as several species of other Aphelenchoidea such as *Schistonchus* s.l. and *Laimaphelenchus*. It clearly differs genetically from all members of Aphelenchoidea with available LSU and SSU sequence in GeneBank.

In the phylograms, *Aphelenchoides* appears to be polyphyletic, a finding that agrees with previous studies (Zhao et al., 2008; Rybarczyk-Mydlowska et al., 2012; Wang et al., 2013; Fang et al., 2014a, 2014b; Esmaeili et al., 2016). *Aphelenchoides, Laimaphelenchus*, and *Schistonchus* s.l. (see clades 1–3 given in the work of Davies et al., 2015) cannot be clearly separated, possibly implying that all three genera share a recent common ancestor (Zeng et al., 2007).

**DISCUSSION**

The genus *Aphelenchoides* is rich in species and has a world-wide distribution. Correct identification of *Aphelenchoides* species is not easy due to the inaccessibility of some references, poor literatures, inadequate description of several species, and lack of reliable detail.
Moreover, this genus has few morphologically diagnostic taxonomic characters (Kanzaki, 2006).

In general, the morphology of the tail tip of A. fuchsi sp. n. is similar to some described species of the genus in Group 2, according to the category of Aphelenchoides species sensu Shahina (1996), which is defined as having the female tail terminus with “one or sometimes two mucronate structures” but this structure, in the new species, is not simple and the female tail terminus have a step-like projection with many tiny nodular protuberances. Moreover, the male spicule shape (dorsal limb with a hook-like tip) is a diagnostic character between similar species of the genus. Recently, several species of the genus were described and molecularly studied (Cui et al., 2011; Wang et al., 2013; Fang et al., 2014a, 2014b; Esmaeili et al., 2016). Molecular characterization and phylogenetic analyses based on rDNA region sequences including 18S, internal transcribed spacer regions, and the D2-D3 expansion segments of 28S can assist in accurate identification of the species, although with the important proviso that most nominal Aphelenchoides species lack such reliable information.

Small subunit of rDNA contains sufficient phylogenetic signal for the identification of Aphelenchoides species (De Ley et al., 2006; Zhao et al., 2008; Van Megen et al., 2009) and have been shown to be more useful for species identification compared to D2-D3 expansion segments of 28S rRNA and internal transcribed spacer rRNA, as both of these markers showed more species variability than did partial 18S rDNA (Zhao et al 2008; Esmaeili et al., 2016). This is the second new species of the genus from Iran to be described and sequenced. Aphelenchoides fuchsi sp. n. was found in bark of a weakened pine tree but not in its wood. Therefore, the new species appears to be feeding on fungi or lichens growing on the bark of the tree.

**Literature Cited**

Aliramaji, F., Pourjam, E., Atighi, M. R., Ye, W., Roshan-Bakhsh, A., and Pedram, M. 2014. Description of Ektaphelenchoides poinari sp. n. (Nematoda: Ektaphelenchinae) from Iran with compendium of the valid species of the genus Ektaphelenchoides Baujard, 1984. Russian Journal of Nematology 22:11–22.

Asghari, R., Pourjam, E., Heydari, R., and Zhao, Z. 2012. Laimaphelenchus persicus n. sp. (Nematoda: Aphelenchoididae) from Iran. Zootaxa 3325:59–67.

Bina Chanu, L., Mohilal, N., Victoria, L., and Shah, M. M. 2013. Eight known species of Aphelenchoides nematodes with description of a new species from Manipur, India. Journal of Parasitic Diseases 39:225–233.

Cheng, W., Hou, H., and Lin, M. S. 2009. Aphelenchoides dalianensis nov. sp. (Nematoda, Aphelenchoididae) from Pinus thunbergii from China. Acta Zootaxonomica Sinica 34:401–406.

Cui, R., Zhuo, K., Wang, X., and Liao, J. 2011. Aphelenchoides para-dalianensis n. sp. (Nematoda: Aphelenchoididae) isolated at Guangzhou, China, in packaging wood from South Korea. Zootaxa 2864:57–64.

Darriba, D., Taboada, G. L., Doallo, R., and Posada, D. 2012. jModelTest 2: More models, new heuristics and parallel computing. Nature Methods 9:772.

De Grisse, A. T. 1969. Redescription ou modifications de quelques techniques utilisées dans l'étude de némátodes phytoparasitaires. Mededelingen Rijksfaculteit LandbouwWetenschappen Gent 34:315–350.
De Ley, P., Decraemer, W., and Abebe, E. 2006. Introduction: Summary of present knowledge and research addressing the ecology and taxonomy of freshwater nematodes. Pp. 3–30 in E. Abebe, I. Andressy, and W. Traunspurger, eds. Freshwater nematodes, ecology and taxonomy. Wallingford, United Kingdom: CAB Publishing.

Esmaeili, M., Fang, Y., Li, H., and Heydari, R. 2016. Description of Aphelenchoides huntensis n. sp. (Nematoda: Aphelenchoididae) isolated from Pinus sylvestris in western Iran. Nematology (in press). http://dx.doi.org/10.1163/15685411-00002963.

Fang, Y., Gu, J., Wang, X., and Li, H. 2014a. Description of Aphelenchoides stellatus n. sp. (Nematoda: Aphelenchoididae) found in packaging wood from Japan. Nematology 16:621–630.

Fang, Y., Gu, J., Wang, X., and Li, H. 2014b. Description of Aphelenchoides rotundicaudatus n. sp. (Nematoda: Aphelenchoididae) found in packaging wood from South Korea. Nematology 16:751–760.

Food and Agriculture Organization of the United Nations (FAO). 2003. Guidelines for regulating wood packaging material in international trade. International Standards for Phytosanitary Measures (ISPM), No. 15. Rome, Italy: FAO.

Franklin, M. T. 1952. A disease of Scabies causa causta caused by the nematode Aphelenchoides blastophthorus n. sp. Annals of Applied Biology 39:54–60.

Franklin, M. T. 1957. Aphelenchoides compostodei n. sp. and A. saprophilus n. sp. from mushroom compost and rotting plant tissues. Nematologica 2:306–313.

Hall, T. A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symposium Series 41:95–98.

Holterman, M., van der Wurff, A., van den Elsen, S., van Megen, H., Holovachov, T. M. O., Bakker, J., and Helder, J. 2006. Phyllum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown clades. Molecular Biology and Evolution 23:1792–1800.

Huang, R. E., Ye, W., Liang, J., Lu, Q., and Zhang, X. Y. 2012. Tylenchellinae n. sp. and Aphelenchoides varicavusatus (Nematoda: Aphelenchoididae) from Simao pine in Yunnan Province, China. Nematology 14:103–108.

Hunt, D. J. 1993. Aphelenchida, longidoridae and trichodoridae: Their systematic and bionomics. Pp. 352. Wallingford, United Kingdom: CAB International.

Hunt, D. J. 2008. A checklist of the Aphelenchoidea (Nematoda: Tylenchina). Journal of Nematode Morphology and Systematics 10:99–135.

Kaisa, T. R. 2000. Aphelenchoides microstylus n. sp. and Senuria onodagensis n. sp. (Nematoda: Aphelenchoididae) from New York. Journal of Nematology 32:396–402.

Kanazaki, N. 2006. Description of Aphelenchoides xyloporae n. sp. (Nematoda: Aphelenchoididae), the first observed association between nematodes and carpenter bees. Nematology 8:555–562.

Kanazaki, N., Glibin-Davis, R. M., Cardozo, Y. J., Ye, W., Raffa, K. F., and Center, B. J. 2008. Bursaphelenchus rufipes n. sp. (Nematoda: Parasitaphelenchinae) and redescription of Ektaphelenchus obtusus (Nematoda: Ektaphelenchinae), associates from nematangia on the hind wings of Dendroctonus rufipes (Coleoptera: Scolytidae). Nematology 10(6):925–955.

Katoh, K., Misawa, K., Kuma, K., and Miyata, T. 2002. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30:3052–3060.

Larget, B., and Simon, D. L. 1999. Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Molecular Biology and Evolution 16:750–759.

Miraziz, E., Heydari, R., Tanha Maafi, Z., and Bert, W. 2015. Laimaphelenchus kyrensis n. sp. (Nematoda: Aphelenchoididae), a new species from northern Iran. Zootaxa 3915(4):591–600.

Nunn, G. B. 1992. Nematode molecular evolution. Ph.D. dissertation, University of Nottingham, United Kingdom.

Oro, V. 2015. Description of Laimaphelenchus belgradiensis sp. nov. (Nematoda: Aphelenchoididae) and its phylogenetic and systematic position within Aphelenchoidoidea. European Journal of Plant Pathology 142(1):13–23.

Pedram, M., Pourjam, E., Atighi, M. R., Ye, W., and Houssamand, A. 2012. Ektaphelenchoides sylvestris sp. nov. (Nematoda: Ektaphelenchidae) from Iran. Annales Zoologici 62:325–329.

Pedram, M., Pourjam, E., Ye, W., Atighi, M. R., Robbins, R. T., and Ryss, A. 2011. Description of Bursaphelenchus mazandaranensis sp. n. (Nematoda: Parasitaphelenchidae) from Iran. Russian Journal of Nematology 19:121–129.

Ronquist, F., and Huelsenbeck, J. P. 2003. MrBayes: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574.

Rybarczyk-Mydlowska, K., Moomen, P., van Megen, H., van den Elsen, S., Vervoort, M., Veenhuizen, P., van Doorn, J., Dees, R., Karssen, G., Bakker, J., and Helder, J. 2012. Small subunit ribosomal DNA-based phylogenetic analysis of foliar nematodes (Aphelenchoids sp.) and their quantitative detection in complex DNA backgrounds. Phytopathology 102:1153–1160.

Saneel, K. C. 1965. Two new species of the genus Aphelenchoids. Fischer, 1894 (Nematoda: Aphelenchoididae) from the Canadian Arctic. Canadian Journal of Zoology 43:939–940.

Shahina, F. 1996. A diagnostic compendium of the genus Aphelenchoids. Fischer, 1894 (Nematoda: Aphelenchida) with some new records of the group from Pakistan. Pakistan Journal of Nematology 14:1–32.

Singh, S. P. 1969. A new species of the genus Aphelenchoidea Fischer, 1894 (Nematoda: Aphelenchoididae) from roodlets of radish (Raphanus sativus) in Lucknow. Journal of Helminthology 43:195–196.

Steiner, G., and Buhrer, E. M. 1954. Aphelenchoides xylophilus, n. sp. a nematode associated with blue-stain and other fungi in timber. Journal of Agricultural Research 48:949–951.

Stöver, B. C., and Müller, K. F. 2010. TreeGraph 2: Combining and visualizing evidence from different phylogenetic analyses. BMC Bioinformatics 11:7.

Subbotin, S. A., Sturhan, D., Chizhov, V. N., Vovlas, N., and Baldwin, J. G. 2006. Phylogenetic analysis of Tylenchida Thorne, 1949 as inferred from D2 and D3 expansion fragments of the 28S rRNA gene sequences. Nematology 8(3):435–474.

Timm, R. W., and Franklin, M. T. 1969. Two marine species of Aphelenchoids. Nematologica 15:370–375.

Van Megen, H., van den Elsen, S., Holterman, M., Karssen, G., Moomen, P., Bongers, T., Holovachov, O., Bakker, J., and Helder, J. 2009. A phylogenetic tree of nematodes based on about 1200 full-length small subunit ribosomal DNA sequences. Nematology 11:927–950.

Wang, X., Wang, P., Gu, J., Wang, J., and Li, H. 2013. Description of Aphelenchoides xui n. sp. (Nematoda: Aphelenchoididae) in packaging wood from South Africa. Nematology 15:279–289.

Ye, W., Glibin-Davis, R. M., B Raasch, H., Morris, K., and Thomas, W. K. 2007. Phylogenetic relationships among Bursaphelenchus species (Nematoda: Parasitaphelenchinae) inferred from nuclear ribosomal and mitochondrial DNA sequence data. Molecular Phylogenetics and Evolution 43:1185–1197.

Zeng, Y., Glibin-Davis, R. M., and Ye, W. 2007. Two new species of Schistonchus (Nematoda: Aphelenchoididae) associated with Ficus hispida in China. Nematology 9:169–187.

Zhao, Z. Q., Ye, W. M., Glibin-Davis, R. M., Li, D. M., Thomas, W. K., Davies, K. A., and Riley, I. T. 2008. Morphological and molecular analysis of six Aphelenchoidea from Australian conifers and their relationship to Bursaphelenchus (Fuchs, 1887). Nematology 10:663–678.

Zhuo, K., Cui, R. Q., Ye, W. M., Luo, M., Wang, H. H., Hu, X. N., and Liao, J. L. 2010. Morphological and molecular characterization of Aphelenchoides fujianensis n. sp. (Nematoda: Aphelenchoididae) from Pinus massoniana in China. Zootaxa 2509:39–52.