Parallels between Metal-Ligand Cooperativity and Frustrated Lewis Pairs

Habraken, E.R.M.; Jupp, A.R.; Brands, M.B.; Nieger, M.; Ehlers, A.W.; Slootweg, J.C.

DOI
10.1002/ejic.201900169

Publication date
2019

Document Version
Final published version

Published in
European Journal of Inorganic Chemistry

License
CC BY-NC-ND

Citation for published version (APA):
Habraken, E. R. M., Jupp, A. R., Brands, M. B., Nieger, M., Ehlers, A. W., & Slootweg, J. C. (2019). Parallels between Metal-Ligand Cooperativity and Frustrated Lewis Pairs. European Journal of Inorganic Chemistry, 2019(19), 2436-2442. https://doi.org/10.1002/ejic.201900169
Lewis Acids and Lewis Bases

Parallels between Metal-Ligand Cooperativity and Frustrated Lewis Pairs

Evi R. M. Habraken,[a] Andrew R. Jupp,[a] Maria B. Brands,[a] Martin Nieger,[b] Andreas W. Ehlers,[a,c] and J. Chris Slootweg*[a]

Abstract: Metal ligand cooperativity (MLC) and frustrated Lewis pair (FLP) chemistry both feature the cooperative action of a Lewis acidic and a Lewis basic site on a substrate. A lot of work has been carried out in the field of FLPs to prevent Lewis adduct formation, which often reduces the FLP reactivity. Parallels are drawn between the two systems by looking at their reactivity with CO2, and we explore the role of steric bulk in preventing dimer formation in MLC systems.

Introduction

Over the past decades catalysis has been dominated by transition metal complexes. The partially filled d-orbitals grant the metal centre both donor and acceptor orbitals on a single atom and allow prototypical transition metal reactivity such as oxidative addition of dihydrogen, shown in Scheme 1.i, which involves an increase on the formal oxidation state of the metal by +2. In these cases, the surrounding ligands are crucial for tuning the electronic and steric properties of the metal centre, but they are not directly involved in the reactions. Separating the donor and acceptor site has led to new reaction pathways for catalysis. This reactivity occurs when the ligand actively participates in substrate activation together with the metal centre, and has been termed bifunctionality or metal-ligand cooperativity (MLC), shown in Scheme 1.ii. Noyori first demonstrated this concept with a ruthenium-phosphine complex bearing an ethylenediamine ligand, where the amine functionality cooperates with the metal.[1] In these reactions the formal oxidation state of the metal is unchanged on activation of the substrate. This topic has grown rapidly and been reviewed on many occasions,[2] and has important ramifications for catalyst design.

Another form of cooperation can be found in transition metal-free frustrated Lewis pairs (FLPs), where the acceptor and donor site are also on separate sites.[3] Lewis acids and bases typically form Lewis adducts, however incorporation of bulky groups on the donor and/or acceptor sites can induce frustration and prevent adduct formation. The unquenched reactivity of the Lewis acid and base has been exploited for the activation of small molecules, such as H2 and CO2, and for the subsequent catalytic hydrogenation of unsaturated substrates.[4] The Lewis acid and base can be tethered to afford an intramolecular FLP (Scheme 1.iii), which allows for preorganization of the reactive site and can reduce the (entropic) energy barrier for such activation reactions.[5,6] The interplay between the electronic and steric properties of the Lewis acids and bases is of paramount importance in determining the activity of the FLP system.

The fields of FLP and MLC chemistry have both grown rapidly and, in general, separately. However, it is clear that the underlying cooperativity for the activation of substrates is similar in both cases. The distinction was further blurred by the advent of transition metal-based FLPS, where a transition metal centre is used as one of the Lewis acidic or basic sites in an FLP.[7] Wass and co-workers introduced a cationic zirconocene-phosphinoaryl oxide complex, with the zirconium centre acting as a Lewis acid and a pendant phosphine acting as a Lewis base for the activation of dihydrogen (Scheme 2.i).[8] Just as with
traditional main-group FLPs, the balance of sterics and electronicis important, as simply switching the \([\text{C}_{5}\text{Me}_{5}]^–\) (Cp*) ligands for \([\text{C}_{5}\text{H}_{5}]^–\) (Cp) resulted in a strong Zr–P interaction, and shut down the FLP reactivity. This reactivity could be equally well described as FLP or MLC chemistry, and Wass noted this insight in subsequent articles.\(^9\text{a, b}\) The analogy has also been noted elsewhere, especially with the transition metal-based FLPs.\(^9\text{b, c}\) and recently Bullock and co-workers cited guiding principles from main-group and transition metal-based FLPs in the design of bifunctional Mo complexes for the controlled heterolytic cleavage of dihydrogen (Scheme 2,ii).\(^1\text{1}\) Herein we further explore the relationships between archetypal MLC and FLP systems, and in particular investigate the dimerization of the active MLC-monomer by Lewis adduct formation, and to consolidate the knowledge garnered from the two topics.

Scheme 2. Transition metal-based FLP reactivity, and/or MLC reactivity: activation of dihydrogen by i) Wass’s Zr complex\(^8\) and ii) Bullock’s Mo complex.\(^1\text{1}\) Blue: Lewis acid; red: Lewis base.

Results and Discussion

We chose to investigate the quintessential Ru-based PNP pincer systems developed by Milstein, as it is well established that these species can undergo an MLC pathway via dearomatization/earomatization of the pyridine ring.\(^2\text{a}\). Treatment of the precursors 1 and 2, which differ by the R group on the phosphine, with base leads to deprotonation of one of the methylene arms and loss of chloride to afford 3 and 4, respectively (Figure 1).\(^1\text{2, 13}\) These compounds feature a Lewis basic site on the carbon and a Lewis acidic site on the Ru centre. This notion was confirmed by our DFT calculations of the frontier molecular orbitals of 3 at the ωB97X-D/6-311G(d,p) level of theory, which showed that the highest occupied molecular orbital (HOMO) is principally located on the deprotonated carbon, and the lowest unoccupied molecular orbital (LUMO) is centred on the ruthenium. In this case the “frustration” of the Lewis acidic and basic sites is enforced by the rigid ligand framework. Otten and co-workers have previously demonstrated the FLP-like reactivity of a related Ru-based PNN system with nitriles,\(^1\text{4}\) in which the Ru/C combination added in a cooperative fashion across the CN triple bond. Milstein has also noted that the cooperative addition of CO\(_2\) across these pincer systems bears a resemblance to FLPs.\(^1\text{0, 15}\)

![Figure 1](http://example.com/figure1.png)

Figure 1. Top: Milstein system, activation of precursor by deprotonation with a base resulting in the dearomatized species. Bottom: molecular orbital diagram of MLC 3 (isopropyl groups omitted for clarity) and FLP 5 (left: HOMO, right: LUMO) calculated at the ωB97X-D/6-311G(d,p) level of theory. Blue: Lewis acid; red: Lewis base.

To compare this traditional MLC system with a main-group FLP, we opted to study the intramolecular FLP, 5 (Figure 1). The acidic and basic components are preorganised by the methylene bridge in the ideal orientation to activate a range of small molecule substrates, including dihydrogen, carbon dioxide and isocyanates, despite the lack of strong electron-withdrawing groups on the boron centre.\(^6\) The HOMO is the lone pair on phosphorus, and the LUMO is predominantly the formally vacant p orbital on boron. The parallels between the orbitals of 3 and 5 should bear out in their reactivity, so we resorted to DFT calculations to provide detailed mechanistic insight into the mode of activation of carbon dioxide of the two systems.

Milstein and co-workers already partially elaborated on the activation of CO\(_2\) for 4,\(^1\text{6}\) which we extended to 3 to investigate the influence of the steric bulk, and this was compared to the geminal FLP system 5 (Figure 2). The latter was also investigated in the original publication, but at a different level of theory, so all calculations herein were carried out using ωB97X-D/6-311G(d,p) for ease and relevance of comparison. Pertinent bond metric data are included in Table 1, including the bond lengths and angle within the CO\(_2\) moiety. For both MLC systems, first a van der Waals complex is formed with long distances between the MLC and CO\(_2\), and the CO\(_2\) moiety has barely deviated from linearity. The complex is energetically favourable, but the ΔG values are slightly uphill due to a decrease in entropy. This initial complexation is followed by a nucleophilic attack by the ligand-based carbon to the carbon of CO\(_2\) in an asynchronous concerted transition state (3 ΔG* = 3.3; 4 ΔG* = 3.8 kcal mol\(^{-1}\)). In both cases the Ru–O and C–C bonds are still relatively long, indicating an early transition state. Ring closure affords the product with an overall energy
difference of $\Delta G = 12.1$ and 10.4 kcal mol$^{-1}$ for 3 and 4, respectively. There is little energetic difference between the isopropyl or tert-butyl groups during the reaction profile, and the bond lengths (largest difference 0.03 Å) and angles (largest difference 0.6°) are similar in all cases.

The reaction profile for 5 is similar (Figure 3). First a van der Waals complex is formed with long distances between the FLP and CO$_2$ with an almost linear CO$_2$. The reaction proceeds via an asynchronous concerted transition state ($\Delta^\ddagger = 12.5$ kcal mol$^{-1}$), where the Lewis basic phosphorus centre attacks the electrophilic carbon of CO$_2$, and the O1 is stabilised by the varying electronic nature of the Lewis acidic and basic sites in the complex. For example, the dearomatic Ru-PNS system dimerizes as shown in Figure 4, and subsequently undergoes a decomposition pathway involving C-S cleavage and loss of isobutene.[18]

On examination of the crystal structure of 3, as reported in Milstein’s original publication,[12] we noted that this species is also a dimer in the solid state. The ruthenium–carbon interatomic distance between the two monomers in the X-ray structure (Ru1–C7′ 2.409(7), Ru1′–C7 2.403(7), P2–Cu 1.797(6), C6–C7 1.456(8), C1–C2′ 1.489(9), C1–P1 1.842(6), P2′–C7′ 1.803(6), C6′–C7′ 1.449(8), C1′–C2′ 1.55(1), C1′–P1′ 1.843(6)). Right: Milstein’s Ru(PNS) dimer.[18] Blue: Lewis acid; red: Lewis base.

The reaction profile for 5 is similar (Figure 3). First a van der Waals complex is formed with long distances between the FLP and CO$_2$ with an almost linear CO$_2$. The reaction proceeds via an asynchronous concerted transition state ($\Delta^\ddagger = 12.5$ kcal mol$^{-1}$), where the Lewis basic phosphorus centre attacks the electrophilic carbon of CO$_2$, and the O1 is stabilised by the varying electronic nature of the Lewis acidic and basic sites in the complex. For example, the dearomatic Ru-PNS system dimerizes as shown in Figure 4, and subsequently undergoes a decomposition pathway involving C-S cleavage and loss of isobutene.[18]

On examination of the crystal structure of 3, as reported in Milstein’s original publication,[12] we noted that this species is also a dimer in the solid state. The ruthenium–carbon interatomic distance between the two monomers in the X-ray structure (Ru1–C7′ 2.409(7), Ru1′–C7 2.403(7), P2–Cu 1.797(6), C6–C7 1.456(8), C1–C2′ 1.489(9), C1–P1 1.842(6), P2′–C7′ 1.803(6), C6′–C7′ 1.449(8), C1′–C2′ 1.55(1), C1′–P1′ 1.843(6)). Right: Milstein’s Ru(PNS) dimer.[18] Blue: Lewis acid; red: Lewis base.

The reaction profile for 5 is similar (Figure 3). First a van der Waals complex is formed with long distances between the FLP and CO$_2$ with an almost linear CO$_2$. The reaction proceeds via an asynchronous concerted transition state ($\Delta^\ddagger = 12.5$ kcal mol$^{-1}$), where the Lewis basic phosphorus centre attacks the electrophilic carbon of CO$_2$, and the O1 is stabilised by the varying electronic nature of the Lewis acidic and basic sites in the complex. For example, the dearomatic Ru-PNS system dimerizes as shown in Figure 4, and subsequently undergoes a decomposition pathway involving C-S cleavage and loss of isobutene.[18]

On examination of the crystal structure of 3, as reported in Milstein’s original publication,[12] we noted that this species is also a dimer in the solid state. The ruthenium–carbon interatomic distance between the two monomers in the X-ray structure (Ru1–C7′ 2.409(7), Ru1′–C7 2.403(7), P2–Cu 1.797(6), C6–C7 1.456(8), C1–C2′ 1.489(9), C1–P1 1.842(6), P2′–C7′ 1.803(6), C6′–C7′ 1.449(8), C1′–C2′ 1.55(1), C1′–P1′ 1.843(6)). Right: Milstein’s Ru(PNS) dimer.[18] Blue: Lewis acid; red: Lewis base.

The reaction profile for 5 is similar (Figure 3). First a van der Waals complex is formed with long distances between the FLP and CO$_2$ with an almost linear CO$_2$. The reaction proceeds via an asynchronous concerted transition state ($\Delta^\ddagger = 12.5$ kcal mol$^{-1}$), where the Lewis basic phosphorus centre attacks the electrophilic carbon of CO$_2$, and the O1 is stabilised by the varying electronic nature of the Lewis acidic and basic sites in the complex. For example, the dearomatic Ru-PNS system dimerizes as shown in Figure 4, and subsequently undergoes a decomposition pathway involving C-S cleavage and loss of isobutene.[18]

On examination of the crystal structure of 3, as reported in Milstein’s original publication,[12] we noted that this species is also a dimer in the solid state. The ruthenium–carbon interatomic distance between the two monomers in the X-ray structure (Ru1–C7′ 2.409(7), Ru1′–C7 2.403(7), P2–Cu 1.797(6), C6–C7 1.456(8), C1–C2′ 1.489(9), C1–P1 1.842(6), P2′–C7′ 1.803(6), C6′–C7′ 1.449(8), C1′–C2′ 1.55(1), C1′–P1′ 1.843(6)). Right: Milstein’s Ru(PNS) dimer.[18] Blue: Lewis acid; red: Lewis base.
To probe the structural changes that occur during dimerization, we examined the aromaticity of the pyridine ring of the compounds using NICS(0) calculations.20,21 As expected, the unactivated precursors feature an aromatic ring (1: -6.4 ppm, 2: -6.5 ppm), whereas in the activated species dearomatization has occurred (3: 2.0 ppm, 4: 1.3 ppm). These values are consistent with previous studies by Gonçalves and Huang on similar organometallic pincer complexes.22,23 Interestingly, the dimer \([\text{I}]_2\) has a value (-4.7 ppm) between that of 1 and 3, indicating partial rearomatization of the pyridine ring and a contributing factor to the stability of the dimer.

The bonding situation in \([\text{I}]_2\) was further analysed using AIM analyses,24-25 which revealed a bond critical point (BCP) between the Lewis acidic Ru site of one monomer and the Lewis basic C7 site of the other monomer (Figure 5, \(\rho = 0.047\) a.u. \((\zeta = 0.21)\), Ru–C7 2.499 Å), indicative of a weak interaction. Furthermore, a ring critical point (RCP) is found in the dimer between the two monomers. The examination of the Laplacian of the electron densities \((\nabla^2 \rho)\) in the C6–C7 bond reveals a weaker interaction for the dimer than the monomer, yet still stronger than for 1 (\([\text{I}]_2\): -0.66 a.u., 3: -0.83 a.u., 1: -0.58 a.u.). ETS-NOCV26 analyses of the dimer, which we have used to assess donor–acceptor interactions, concur with these observations and revealed an interaction between ruthenium and the carbon in the backbone of both monomers, showing orbital interactions and specifically \(\sigma\) donations of 24.4 and 20.7 kcal mol\(^{-1}\) from C7 to Ru.

Figure 5. Computed AIM bond paths of \([\text{I}]_2\), a simplified framework is depicted (isopropyl groups on P and all H atoms omitted for clarity); bond critical points (BCP) in red, ring critical points (RCP) in green.

The monomeric pincer complexes are the active species in catalysis, therefore the dimer must first be broken before it can react (Figure 6). DFT calculations at the \(\omega\)B97X-D/6-311G(d,p) level of theory reveal it costs \(\Delta G = 15.4\) kcal mol\(^{-1}\) (\(\Delta E = 29.7\) kcal mol\(^{-1}\)) to break up dimer \([\text{I}]_2\) (Table 2; all values given per monomer). To give a better reflection of the thermodynamics of this equilibrium in solution, we augmented our computational method by including implicit solvation effects (benzene and THF). As expected, this lowers the amount of energy required to break the dimer, the more polar solvent THF does this to a greater extent (benzene: \(\Delta G = 13.6\) kcal mol\(^{-1}\), THF: \(\Delta G = 12.4\) kcal mol\(^{-1}\)). Explicit solvent interactions are also important, especially for monomeric species such as 3 where the Ru centre has a vacant coordination site that can be stabilised by solvent.

Including one benzene molecule per monomer in the calculations lowered the energy required very slightly (\(\Delta G = 12.8\) kcal mol\(^{-1}\)), as benzene only weakly coordinates to the Ru centre in an \(\eta^2\) fashion. Once again, the more coordinating THF stabilises the monomer to a greater extent, making it easier to cleave the dimer (\(\Delta G = 5.5\) kcal mol\(^{-1}\)); we anticipate that coordinating substrates will have a similar effect.

Figure 6. Top: cleavage of dimer \([\text{I}]_2\) into monomer 3. Bottom: optimized structures of 3-THF (left, oxygen coordinates to ruthenium) and 3-C\(_6\)H\(_6\) (right, coordination in an \(\eta^2\) fashion to ruthenium).

Table 2. Energy (\(\Delta E\)) and Gibbs free energy (\(\Delta G\)) required to break dimer \([\text{I}]_2\) in kcal mol\(^{-1}\) (all values given per monomer).

	\(\Delta G\) [kcal mol\(^{-1}\)]	\(\Delta E\) [kcal mol\(^{-1}\)]
No solvent added	15.4	29.7
Implicit THF	12.4	26.4
Implicit benzene	13.6	28.1
Explicit THF	5.5	14.1
Explicit benzene	12.8	22.6

Interestingly, and reminiscent of the tenets of FLP chemistry, increasing the steric bulk of the alkyl substituents on phosphorus from isopropyl to tert-butyl (i.e. going from 3 to 4) destabilises these Lewis acid/Lewis base interactions and precludes dimer formation. It was not possible to locate a minimum on the potential energy surface corresponding to the structure of \([\text{II}]_2\), and all attempts led to regeneration of the two monomers during the optimization process.

To corroborate these insights on the dimerization of 3 and 4 in different solvents, we analysed the diagnostic \(^1\)H NMR chemical shift of the Ru-bound hydride, both computationally and experimentally (Table 3). The computed shift for monomer 3 is approximately –20 ppm, while the corresponding shift for \([\text{I}]_2\) is relatively deshielded and is computed to be approximately –10 ppm, with little dependence on the identity of the solvent. Experimentally, the hydride in benzene solutions of 3 was found to resonate at \(\delta = -13.04\) ppm,12 while in THF it is at \(\delta = -20.05\) ppm. The latter is a very good match with the predicted monomeric structure, while the former is closer to the dimeric species, and suggests the existence of a monomer/dimer equilibrium. These data follow the trends predicted by the computa-
tions above, in that the quenching of the MLC is more likely to occur in less coordinating solvents such as benzene. These data are further supported by the fact that the analogous hydride in A (Figure 4), which is known to rapidly dimerise, resonates relatively downfield at δ –11.83 ppm in the non-coordinating solvent CD2Cl2.[18]

Table 3. Experimental and computational data of the hydride shift of various compounds.

Compound	Experimental data [ppm]	Computational data [ppm][a]	THF[b]	Benzene[c]
3	–20.23	–20.05	–20.23	–19.90
3 in [D8]THF	–13.04	–10.16	–10.16	–10.19
[3]t	–18.58	–18.36	–21.66	–21.36
4	–26.17	–25.78	–25.78	–25.48
4 in [D8]THF	–25.78	n.a.	n.a.	n.a.

(a) Calculations were performed using ωB97X-D/6-311G(dp) level of theory. [b] Calculated using implicit solvent interactions; n.a. = not applicable, as the dimeric structure could not be obtained computationally. [c] Both hydrides have the same shift (–10.16 or –10.19).

The notion that the difference in the experimental chemical shift of the hydride of 3 in THF and benzene is related to dimerization is reinforced by the fact that the analogous experimental values for 4, a system where dimerization is not possible, are very similar in the two solvents (benzene: δ –25.78 ppm; THF: δ –26.17 ppm, implicit solvent added). It should be noted that the computed values in this case are not very accurate, as they predict the resonance at approximately –18.5 ppm, depending on the solvent, and thus caution is advised in analysing the close correlation between the computed and observed values for 3 in THF above. However, the fact that the experimental values of 3 are significantly different in the two solvents, while the corresponding values for 4 are almost identical, is evidence for the presence of monomer/dimer equilibrium effects.

Finally, we wanted to show that consideration of steric bulk is important for regulating the quenching of the Lewis acid/Lewis base components in other organometallic pincer systems. Kirchner[27] and Huang[28] have replaced the methylene bridges in Milstein’s PNP pincer system with the more acidic NH moiety (Figure 7).[29] Calculations at the ωB97X-D/6-311G(dp) level of theory (with no solvent modelled) reveal a dimer is feasible for [(iPrPNNNP)RuH(CO)], and it costs ΔG = 11.3 kcal mol⁻¹ to break up the dimer (per monomer), which is slightly lower than for the t-butyl complex [(tBuPNNNP)RuH(CO)], the added steric protection around the acidic and basic sites prevents dimerization. However, the altered electronics of the Lewis base site in these complexes compared to 3 and 4 have drastic consequences, as the activation of CO2 is no longer feasible (ΔG = 15.3 and ΔG = 23.7 kcal mol⁻¹ for [(iPrPNNNP)RuH(CO)] and [(tBuPNNNP)RuH(CO)], respectively).

Conclusions

We have shown that FLP and MLC chemistry both involve the cooperative action of a Lewis acid and a Lewis base, and that steric control to prevent quenching of the reactive sites is just as important in both paradigms. There are many reactions in the literature that have been given one label or the other on a fairly arbitrary basis, and we believe both schools of thought should be united so that lessons from one field can be used to benefit the other – whether that is using principles and reactions from main-group FLPs to broaden the scope of MLC reactivity, or using the wealth of knowledge on ligand design and properties to rationally construct new backbones for preorganised intramolecular main-group FLPs.

Experimental Section

All manipulations regarding the preparation of air-sensitive compounds were carried out under an atmosphere of dry nitrogen using standard Schlenk and drybox techniques. Solvents were purified, dried and degassed according to standard procedures. 1H NMR spectra were recorded on a Bruker AV 400 or on a Bruker AV300-II and internally referenced to the residual solvent resonances ([D8]THF: 1H δ 3.58, 1.72 ppm; CD2Cl2: 1H δ 7.16 ppm; [D8]Tol: 1H δ 2.08, 6.97, 7.01, 7.09 ppm). 31P{1H} NMR spectra were recorded on a Bruker AV400 or on a Bruker AV300-II and externally referenced (85% H3PO4). Chemical shifts are reported in ppm. High resolution mass spectra were recorded on a Bruker MicroTOF with ESI nebulizer (ESI) at –45 °C.

Synthesis of Diisopropylphosphine: Diisopropylphosphine was prepared according to a modified literature procedure of A. S. Glod et al.[30] A solution of CIPr2 (4.92 g, 0.032 mol, 1.0 equiv.) diethyl ether (55 mL) was added dropwise to a slurry of LiAlH4 (0.37 g, 0.01 mol, 0.3 equiv.) in diethyl ether (30 mL) in an ice/water bath. The mixture was stirred overnight and conversion was checked by 31P{1H} NMR. Degassed H2O (20 mL) was added slowly and the organic layer was dried with MgSO4. The water layer was extracted with diethyl ether (3 × 15 mL) and dried with the same MgSO4. The MgSO4 was filtered off (with a cannula filter) and rinsed with diethyl ether (3 × 15 mL). All volatiles were removed in vacuo while the Schlenk vessel was cooled in an ice/water bath to afford diisopropylphosphine as a colourless clear liquid in 81% (3.08 g, 0.026 mol). If some phosphine was oxidized a Schlenk to Schlenk distillation was performed. Note, the presence of some diethyl ether does not influence the next step. 1H NMR (400.1 MHz, CD2Cl2, 291 K): δ = 2.93 (dt, JH,P = 192.3 Hz, 3JH,P = 5.9 Hz, 1H; PH), 1.77 (m, 2H; CH(CH3)), 1.01 (m, 12H; CH(CH3)), 31P{1H} NMR (162.0 MHz, CD2Cl2, 295 K): δ = –16.5 (s).

Lithiation of Diisopropylphosphine: Lithium diisopropylphosphide was prepared according to a modified literature procedure of A. Jansen and S. Pitter.[31] n-Butyllithium (1.6 M in hexanes, 5.2 mL, 8.347 mmol, 1.4 equiv.) was added dropwise to a solution of diisopropylphosphine (7.045 mg, 0.026 mol, 1.0 equiv.) in n-pentane
(15 mL) at 0 °C with a glass stirring bead and stirred for an additional 30 min, after which the solution was warmed to room temperature. The resulting colourless/pale yellow solution was stirred for 16 hours during which an off-white solid precipitated. The solids were collected by filtration, subsequently washed with n-pentane (2 × 15 mL) and the solvents evaporated to dryness to give lithium diisopropylphosphide as an off-white solid in 76 % (562.7 mg, 4,535 mmol). 1H NMR (400.1 MHz, [D8]THF, 297 K): δ = 2.25 (dsept, 2JHP = 6.8 Hz, 2JCH = 4.7 Hz, 2H; CH(CH3)2), 1.07 (dd, 2JCH = 11.3 Hz, 2JCH = 6.8 Hz, 12H; CH(CH3)2). 13C NMR (100.6 MHz, [D8]THF, 297 K): 23.4 (d, 2JCP = 25.3 Hz; CH(CH3)2). 31P{1H} NMR (162.0 MHz, [D8]THF, 297 K): δ = 26.93 (d, 2JCP = 14.2 Hz; CH(CH3)2). 23.4 (d, 2JCP = 25.3 Hz; CH(CH3)2). 31P{1H} NMR (162.0 MHz, [D8]THF, 297 K): δ = 1.5 (s).

Preparation of 2,6-Bis(diisopropylphosphino-methyl)-pyridine: 2,6-Bis(diisopropylphosphino-methyl)-pyridine was prepared according to a modified literature procedure of A. Jansen and S. Pitter.[31] A solution of 2,6-bis(chloromethyl)pyridine (0.26 g, 1.477 mmol, 1.0 equiv.) in THF (2.0 mL) as added slowly to a solution of the lithiated phosphine (0.40 g, 3.233 mmol, 2.2 equiv.), using a solution of 2,6-bis(diisopropylphosphino-methyl)-pyridine (162.0 MHz, [D8]THF, 297 K): δ = 26.93 (d, 2JCP = 14.2 Hz; CH(CH3)2). 23.4 (d, 2JCP = 25.3 Hz; CH(CH3)2). 31P{1H} NMR (162.0 MHz, [D8]THF, 297 K): δ = 1.5 (s).

Synthesis of 1. ([iPrPNP]RuHCl(CO)) was prepared according to a literature procedure.[12] X-ray quality crystals were grown at –20 °C from a saturated solution of ([iPrPNP]RuHCl(CO)) in THF layered with n-pentane.

Synthesis of 2. ([BuPNP]RuHCl(CO)) was prepared according to a slightly modified literature procedure.[12] To a solution of complex ([iPrPNP]RuHCl(CO)) (50 mg, 0.099 mmol) in THF (5 mL) was added KOtBu (11.1 mg, 0.099 mmol) at –30 to –35 °C. Subsequently, the mixture was stirred at room temperature for 4 h, then filtered. The orange filtrate was dried under vacuum and washed with n-pentane (3 × 3 mL) and dried under vacuum to afford a yellowish powder in 56 % yield (26 mg, 0.055 mmol).

Synthesis of 4. ([BuPNP]RuH(CO)) was prepared according to a literature procedure.[13]

X-ray Crystal Structure Determination: The single-crystal X-ray diffraction study (see Figure 8) was carried out on a Bruker D8 Venture diffractometer with Photon100 detector at 123(2) K using Mo-Kα radiation (λ = 0.71073 Å). Dual space (intrinsic) methods (SHELXT)[33] were used for structure solution and refinement was carried out using SHELXL-2014 (full-matrix least-squares on F2).[34] Hydrogen atoms were localized by difference electron density determination and refined using a riding model (H(Ru) free). A semi-empirical absorption correction and an extinction correction were applied.
in Cooperative Catalysis: Designing Efficient Catalysts for Synthesis (Ed.: R. Peters), Wiley-VCH, Weinheim, 2015, p. 67–110; c) H. Valdés, M. A. García-Eleno, D. Cansisco-González, D. Morales-Morales, ChemCatChem 2018, 10, 3136–3137; d) C. Gunanathan, D. Milstein, Acc. Chem. Res. 2011, 44, 588–602; e) H. Grüttmacher, Angew. Chem. Int. Ed. 2008, 47, 1814–1818; Angew. Chem. 2008, 120, 1838; f) C. Gunanathan, D. Milstein, Chem. Rev. 2014, 114, 12024–12087.

[3] G. C. Welch, R. R. San Juan, J. D. Masuda, D. W. Stephan, Science 2006, 313, 1124–1126.

[4] a) F.-G. Fontaine, D. W. Stephan, Phil. Trans. R. Soc. A 2017, 375, 20170004; b) G. Kehr, S. Schwendemen, G. Erker, Top. Cur. Chem. 2013, 322, 45–84; c) D. J. Scott, M. J. Fuchter, A. E. Ashley, Chem. Soc. Rev. 2017, 46, 5689–5700; d) D. W. Stephan, J. Am. Chem. Soc. 2015, 137, 10018–10032.

[5] a) P. Spies, G. Erker, G. Kehr, K. Bergander, R. Frohlich, S. Grimmke, D. W. Stephan, Chemun. 2007, 5072–5074; b) C. M. Mønning, E. Otten, G. Kehr, R. Frohlich, S. Grimmke, D. W. Stephan, G. Erker, Angew. Chem. Int. Ed. 2009, 48, 6643–6646; Angew. Chem. 2009, 121, 6770.

[6] F. Bertini, V. Lyaskovsky, B. J. J. Timmer, F. J. J. de Kanter, M. Lutz, A. W. Ehlers, J. C. Slootweg, K. Lammertsma, J. Am. Chem. Soc. 2012, 134, 201–204.

[7] Examples of complexes where the metal is the Lewis base: a) J. Campos, J. Am. Chem. Soc. 2017, 139, 2944–2947; b) W. H. Harman, J. C. Peters, J. Am. Chem. Soc. 2014, 136, 5080–5082; c) S. J. K. Forrest, J. Clifton, N. Fey, P. G. Pringle, H. A. Sparkes, D. F. Wass, Angew. Chem. Int. Ed. 2015, 54, 2223–2227; Angew. Chem. 2015, 127, 2251.

[8] a) A. M. Chapman, M. F. Haddow, D. F. Wass, J. Am. Chem. Soc. 2011, 133, 8826–8829; b) A. M. Chapman, M. F. Haddow, D. F. Wass, J. Am. Chem. Soc. 2011, 133, 18463–18478.

[9] a) S. R. Flynn, D. F. Wass, ACS Catal. 2013, 3, 2574–2581; b) D. F. Wass, A. M. Chapman, Top. Cur. Chem. 2013, 334, 261–280; c) D. W. Stephan, G. Erker, Angew. Chem. Int. Ed. 2015, 54, 6400–6441; Angew. Chem. 2015, 127, 6498; d) D. W. Stephan, Science 2016, 354, aaf7229; e) M. T. Whited, Beilstein J. Org. Chem. 2012, 8, 1554–1563; f) R. M. Bullock, G. M. Chambers, Phil. Trans. R. Soc. A 2017, 375, 20170002.

[10] For more papers drawing an analogy between MLCs and TM-FLPs, see: a) T. Simler, G. Frison, P. Braunstein, A. A. Danopoulos, Dalton Trans. 2016, 45, 2800–2804; b) M. Feller, E. Ben-Ari, M. A. Iron, Y. Diskin-Posner, G. Leitus, L. J. W. Shimon, L. Konstantinovski, D. Milstein, Inorg. Chem. 2010, 49, 1615–1625.

[11] For more aromatization/dearomatization of PNP pincer ligands, see: a) T. Normand, C. G. Daniliuc, B. Wibbeling, G. Kehr, P. L. Gendre, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D.01, Gaussian Inc., Wallingford CT, 2013.

[12] a) A. D. McLean, G. S. Chandler, J. Chem. Phys. 1980, 72, 5639–5648; b) K. Raghavachari, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 1980, 72, 650–654; c) J.-P. Blaudeau, M. P. McGrath, L. A. Curtiss, L. Radom, J. Chem. Phys. 1997, 107, 5016–5021; d) A. J. W. Hachtman, J. Chem. Phys. 1970, 52, 1033–1036; e) P. J. Hay, J. Chem. Phys. 1977, 66, 4377–4384; f) K. Raghavachari, G. W. Trucks, J. Chem. Phys. 1989, 91, 1062–1065; g) R. C. Binning Jr., L. A. Curtiss, J. Comput. Chem. 1990, 11, 1206–1216; h) M. P. McGrath, L. Radom, J. Chem. Phys. 1991, 94, 511–516; i) L. A. Curtiss, M. P. McGrath, J.-P. Blaudeau, N. E. Davis, R. C. Binning Jr., L. Radom, J. Chem. Phys. 1995, 103, 6104–6113.

[13] a) F. Weigend, R. Ahrlich, Phys. Chem. Chem. Phys. 2005, 7, 3297–3305; b) F. Weigend, Phys. Chem. Chem. Phys. 2006, 8, 1057–1065.

[14] a) J. Gauss, Chem. Phys. Lett. 1992, 191, 614–620.

[15] a) A. D. Becker, J. Chem. Phys. 1993, 98, 5648–5652.

[16] a) J. I. Rodríguez, R. F. W. Bader, P. W. Ayers, C. Michel, A. W. Götz, C. Bo, Chem. Phys. Lett. 2009, 472, 149–152; b) J. I. Rodríguez, J. Comput. Chem. 2013, 34, 681–686.

[17] a) G. te Velde, F. M. Bickelhaupt, S. A. J. van Iersel, G. Conesa Guerra, E. J. Baerends, G. J. Snijders, T. Ziegler, J. Comput. Chem. 2001, 22, 931–967; b) G. Conesa Guerra, G. J. Snijders, G. te Velde, E. J. Baerends, Theor. Chem. Acc. 1998, 99, 391–403; c) PDF2016, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com.

[18] a) J. R. Cheeseman, G. W. Trucks, T. A. Keith, M. J. Frisch, J. Chem. Phys. 1996, 104, 5497–5509.

[19] a) F. London, J. Phys. Radium 1937, 8, 397–409; b) R. McWeeny, Phys. Rev. 1962, 126, 1028–1034; c) R. Ditchfield, Mol. Phys. 1974, 27, 789–807; d) K. Wollinski, J. F. Hilton, P. Pulav, J. Am. Chem. Soc. 1990, 112, 8251–8260; e) Ref. [3].

Received: February 13, 2019