Near-UV spectroscopy with the VLT

Chris Evans (UKATC)

Barbuy, Bawden de Arruda, Bianco, Bonifacio, Castilho, Christlieb, Cristiani, Dekker, Dias, Di Marcantonio, Ernandes, Henry, Melendez, Japelj, Morris, Parr-Burman, Puech, Quirrenbach, Smiljanic, Snodgrass, Wells, Zanutta
From ELT to VLT...
CUBES: cassegrain U-band Brazil-ESO spectrograph

B. Barbuy · V. Bawden Macanhan · P. Bristow · B. Castilho · H. Dekker · B. Delabre · M. Diaz · C. Gneiding · F. Kerber · H. Kuntschner · G. La Mura · W. Maciel · J. Meléndez · L. Pasquini · C.B. Pereira · P. Petitjean · R. Reiss · C. Siqueira-Mello · R. Smiljanic · J. Vernet

ESO/NUVA/IAG Workshop on Challenges in UV Astronomy, ESO Garching, 7-11 October 2013

Scientific Rationale

ESO/NUVA/IAG Workshop on Challenges in UV Astronomy
ESO Garching, 7-11 October 2013
CUBES Phase A

Table 4 Key CUBES parameters

Parameter	Specification
Slicer	No. slices ≥ 7
	slitlet widths ≤ 0.3"
Transmission grating	~3200 mm\(^{-1}\)
	1st order
	Ruled width ~260 mm
	Transmission > 80% @ 320 nm
Detector array	4 × 4 K × 2 K × 15 μm × 15 μm
	250 mm × 30 mm
	QE > 85% @ 320 nm
	Dark current < 0.001e-/pix/s
	RON < 2.5e-
Wavelength range	302–390 nm (TBC)
Resolving power	≥20,000

Grating was key technical area needing further study/R&D

Barbuy et al. (2014)
Cassegrain U-Band Efficient Spectrograph

Instrument Requirements

The two key requirements for the Phase A conceptual design were a spectral resolving power of $R \geq 20,000$ spanning 302-380 nm, with extension to 400 nm as a goal (ensuring good overlap with ESPRESSO). After revisiting the scientific case these are still valid, and will open-up unique discovery space cf. the latest plans for Paranal and the future instrument suite of the ELT.
The Origin of the Solar System Elements

Element	Origin
H	big bang fusion
He	cosmic ray fission
Li	merging neutron stars
Be	exploding massive stars
Na	dying low mass stars
Mg	exploding white dwarfs
K	
Ca	
Sc	
Ti	
V	
Cr	
Mn	
Fe	
Co	
Ni	
Cu	
Zn	
Ga	
Ge	
As	
Se	
Br	
Kr	
Rb	
Sr	
Y	
Zr	
Nb	
Mo	
Tc	
Ru	
Rh	
Pd	
Ag	
Cd	
In	
Sn	
Sb	
Te	
I	
Xe	
Cs	
Ba	
Hf	
Ta	
W	
Re	
Os	
Ir	
Pt	
Au	
Hg	
Tl	
Pb	
Bi	
Po	
At	
Rn	
La	
Ce	
Pr	
Nd	
Pm	
Sm	
Eu	
Gd	
Tb	
Dy	
Ho	
Er	
Tm	
Yb	
Lu	

Graphic created by Jennifer Johnson

Astronomical Image Credits: ESA/NASA/AASNova
CUBES: Galactic science

Barbuy et al. (2012)
CUBES: Galactic science

Testing predictions of different channels for r-process nucleosynthesis

Binary NS mergers:

Magneto-rotational Sne:

Near-UV essential: YII, ZrII, NbII, PdI, AgI, Ball, Lall, Cell, NdII, EuII, GdII, TblII, DyII, Holl, ErII, TmII, OsI, IrI, PbI, Bil, ThII, UII
• Be abundances: Limited to 10s of stars with UVES/Keck-HIRES
• Increased efficiency of ~3 magnitudes
 ➔ samples of 100s in ambitious large programme
The Origin of the Solar System Elements

Graphic created by...

AASNova
CUBES: Galactic science

Searching for water in the asteroid belt...

Credit: ESO

Snodgrass et al. (2017)
CUBES: Extra-galactic science

CUBES: Extra-galactic science

Credit: Jure Japelj

CUBES

MOSAIC – VIS(BV)
CUBES: Extra-galactic science

Contribution of galaxies (cf. QSOs) to cosmic UV background

Need greater near-UV sensitivity to probe f_{esc}

KLCS sample @ z~3 (Steidel et al. 2018)
CUBES: Phase A optical concept

Updated Phase A concept (kindly provided by B. Delabre)
Philosophy: manufacturability (slices/lenses) and optical transmission

Image slicer:
- 6 slices x 0.25” on-sky
- Tot. width: 1.5” ➔ minimal slit losses

ADC:
- Greater observational flexibility
- Minimal offset to slit viewing λ

Spectrograph:
- 3 bands: 305-335, 328-361, 355-390 nm
- Can optimise each band
- One detector for all 3 bands

KCWI: Morrissey et al. (2018)
CUBES: ADC & Image slicer

ADC: silica prisms
- Greater observational flexibility
- Minimal offset to slit viewing \(\lambda \)
- Deviation corrected via TT mirror

FOV 10x1.5arcsec imaged @ 0.25arcsec=0.5mm onto 6 slices each 0.5x20mm
Reimaged slices @ 0.25arcsec=0.2mm

40mm collimated beam
2 mirror reimager
Telescope focus
2 mirror collimator
Tip-tilt fold mirror
6 Slice reimaging mirrors
100 mm
CUBES: ADC & Image slicer

Image slicer: 6 slices x 0.25” on-sky
- Total width: 1.5” - minimal slit losses
- 0.5mm slices feasible (cf. KCWI)
- Smaller beam at grating
- Allows pupil to be reimaged on grating

FOV 10x1.5 arcsec imaged
@ 0.25 arcsec=0.5mm
onto 6 slices each 0.5x20mm

Reimaged slices @ 0.25 arcsec=0.2mm
Spectrograph: 3 bands
- Separate collimator, gratings, cameras ➔ can optimise each band
- Spherical lenses (bar one conic)
- Bands have 6nm overlap, no gaps

3 spectra imaged onto one detector
CUBES: Efficiency

	Band 1 305-335 nm	Band 2 328-361 nm	Band 3 355-390 nm
ADC (3MIR, 4AR)	0.95	0.95	0.95
Slicer(4MIR)	0.98	0.98	0.98
Dichroics	0.94	0.91	0.94
Camera (3MIR, 11AR)	0.89	0.91	0.90
Optics total	**0.78**	**0.77**	**0.79**
Grating	0.90	0.90	0.90
CCD	0.85	0.85	0.85
Instrument intrinsic DQE	**0.59**	**0.59**	**0.60**
Telescope	0.72	0.72	0.72
Overall DQE	**0.43**	**0.42**	**0.43**

Assumes:
- **AR coatings** \(R \leq 0.6\% \) (POG BBAR 280-450)
- **Mirror** \(R \geq 99\% \) (Thorlabs standard coating)
- **Dichroics** \(T \geq 97\% \), \(R \geq 97\% \) (Based on measured dichroics)
CUBES: Grating

- Prototype manufactured by Fraunhofer IOF
- e-beam lithography & atomic layer deposition

See Burmeister et al. (2018) SPIE/10706-74

3448 lines/mm, 250 x 130 mm
CUBES: Grating efficiency (PTB)
Minimal ghosts \(10^{-5}\) cf. expected on-axis counts

Ghost spectra (spatial direction) linked to e-beam mask

IOF have developed further techniques to minimise ghosts
CUBES: Next steps

- Consortium: depth in relevant expertise

WP1: Management
WP2: Pre-optics
WP3: Spectrograph
WP4: Detector system
WP5: Science (incl. DRS)
WP6: EICS
WP7: AIT/Handling

Order-of-mag estimates:
- Effort: 30-35 FTE
- Costs: ~€2M
- 4-year schedule
CUBES: Take-home points

- Broad range of cases that demand near-UV spectra
- Modest instrument development (effort/hw)
- Prototype grating has excellent performance
- Opportunity to build on Brazil’s past investment
- Exploits a powerful strength of the VLT in the ELT era