Introduction

Cardiovascular diseases (CVDs) are major causes of morbidity and mortality across developed countries [1]. Various guidelines are published that provide information on health care in the prevention and treatment of CVD [2–5]. A time gap between publication and implementation in clinical practice may evolve. In a recent systematic review, we found that using implementation strategies (versus not using implementation strategies) improved the adherence of physicians to guidelines on primary care of patients with CVDs [6]. We also found a considerable variability of treatment effects among the two evaluated groups.

This heterogeneity may be an artifact of methodological factors [7–9]. These factors may include differences in study design features such as predefined primary outcomes, unit of randomization [10], duration of follow-up [11], and risk of bias. High risk of bias may change the magnitude and even the direction of treatment effects [12–16]. On the other hand, heterogenic effects of implementation strategies may result from a wide range of clinical factors such as variations in the patients with CVD in primary care, types and timing in the measurement of adherence, and special characteristics of investigated strategies [7–9,17,18]. Implementation strategies may be characterized as unimodal or multimodal or by their distinct quality improvement components (e.g. Shojania 2004 [19]). Strategies to improve physician adherence are complex interventions and an understanding of the effectiveness of these interventions is based on the assessment of what works best in different populations, circumstances and contexts [9,20,21]. These conditions may cause variations in treatment effects across different studies included in the review and provide an opportunity to identify clinical factors that may modify the treatment effect on physician adherence and increase scientific understanding [7]. Discordance between recommended and observed behaviour of physicians in the treatment of cardiovascular diseases is influenced by modifiable context-specific barriers as providers’ and patients’ knowledge of and attitudes towards adherence to health care recommendations and by external factors.
related to the health system including lack of policy support for chronic care and prevention or limited access to health-care resources [22].

Primary care frequently occurs in small health care organizations with a team of professionals consisting of physicians, nurses, and other professionals in the primary, secondary, and tertiary prevention of CVD with a variety of symptoms and other diseases. The differences among professionals and/or professions involved in the care of patients with different indications and severity of CVD may influence the quality of dissemination and implementation of guidelines [23].

Statistical heterogeneity describes the variability in treatment effect estimates between studies and may arise from methodological or clinical heterogeneity, from other unknown, unrecorded or unreported study characteristics, or may be due to chance [17]. The causes and the extent of heterogeneity should be evaluated as they may compromise the implications of systematic reviews [24]. Statistical heterogeneity between treatment effects estimated by individual studies can be visually assessed in forest plots, tested for statistical significance, and quantified using the percentage of total variation across studies I² [25,26], or the between-study variance τ² [27,28]. Heterogeneity may be explored by conducting subgroup analyses or weighted meta-regression in complex interventions [29,30]. Meta-regression analysis can be used for a simultaneous exploration of potential methodological and clinical effect modifiers. One way of dealing with statistical heterogeneity in meta-analyses and meta-regression analyses is to incorporate a term to account for it in a random-effects model.

This study is a workup of a previously published systematic review [6]. The main aim is to explain the heterogeneity of findings from the original review to identify possible methodological and clinical heterogeneity factors that may have influenced estimated treatment effects of guideline implementation strategies on physician adherence in primary care of patients with CVD.

Methods
Study design
The design of this systematic review and the efficacy results of different implementation strategies in comparison to usual care have been previously published [6]. In brief, searches included Medline, Embase, the Cochrane Library, references of included studies, conference proceedings, register of ongoing trials and references of all included studies published between 1990 and 2012. The review considered all randomized studies that investigated guideline dissemination and their implementation into treatment of patients with CVD in primary care practices. Trials had to report guideline adherence of physicians over a minimum period of 3 months after initiating the implementation strategies. We extracted information on design, indication of patients according to the International Classification of Diseases-10 (ICD-10), implementation strategies and outcomes from all eligible trials into standardized data extraction tables. Implementation strategies were categorized as provider reminder systems, provider education, facilitated relay to data, audit and feedback, promotion of self-management, patient education, patient reminder, and organizational change [31]. The internal validity of trials was judged according to the Cochrane Collaboration risk of bias tool [10] with extension to cluster randomized trials (c-RCTs) [32–34] as high, unclear or low in six specific domains including bias in random sequence generation, allocation concealment, blinded outcome assessment, documentation of incomplete outcome data and selective reporting. Furthermore, baseline comparability between treatment groups and the use of adjustment methods to cope with potential imbalances in both cluster and individual characteristics were summarized as other sources of bias. All steps were done by two independent authors, disagreements were resolved by discussion until consensus was obtained. All treatment effect measures for the primary endpoint (physician adherence) were presented as odds ratios (OR) with 95% confidence intervals (CI) and recoded so that an OR higher than 1 indicates a beneficial effect with higher physician adherence in the experimental implementation strategy. Multiple endpoints were summarized using the mean of logarithmic ORs and ORs were recalculated from relative risks [10], standardized mean difference with standard deviation [35], and absolute frequencies of physician adherence in different groups. Results of c-RCTs without hierarchical modelling were corrected with the reported intra-cluster correlation coefficient and the mean number of patients per cluster [10]. Effect sizes were interpreted in categories of small to describe effect sizes ≤20%, moderate to describe effect sizes>20 and ≤50%, and large to describe effect sizes of >50% increase of physician adherence in comparison to passive implementation.

Investigation of heterogeneity
In our first publication we explored treatment effects in subgroups of unimodal interventions, graphically displayed them in forest plots, and quantified the remaining heterogeneity of treatment effects using the I² and τ² values [6]. Due to the high heterogeneity between included trials we used the random-effects model for meta-analysis of the relevant comparisons of implementation strategies to usual care. This study adds a simultaneous assessment of the influence of multimodal implementation strategies and different effect modifiers on physician adherence in six random effects meta-regression models. We separately added six single sources of heterogeneity to binary variables describing the components of multimodal implementation strategies and investigated their influence on the treatment effect. Sources of heterogeneity included the staff responsible for implementation, level of prevention, definition of the primary outcome, unit of randomization, duration of follow-up and risk of bias domains.

We quantified the influence of all investigated sources of heterogeneity with ratios of odds ratios (ROR) comparing OR of studies with different values of the sources of heterogeneity (e.g. studies in secondary prevention with those in tertiary prevention of CVD). ROR with 95% confidence intervals (95%CI) not containing the null value (ROR=1) will be interpreted as significant. Heterogeneity was measured using the τ² statistics which estimates the between-trial variability. The amount of heterogeneity explained by different effect modifiers was described by the relative reduction of τ². All modifiers were investigated as binary traits. Categorical traits (staff responsible for implementation, type of prevention) were recoded into dummy variables. We conducted the statistical analyses using RevMan5 for the systematic review and SAS 9.2 (PROC MIXED statement) for this study.

Results
Meta-analyses of treatment effects on physician adherence revealed considerable heterogeneity in all subgroups of unimodal interventions [6]. In this study, altogether 75 trials were pooled in 84 comparisons between unimodal or multimodal active and passive implementation strategies (Table S1). Of these comparisons, 13 indicated a negative treatment effect with an OR<1, 17 a small effect size, 22 a moderate effect size, and 32 a large effect size of physician adherence to guidelines.
In the majority of trials the implementation strategies were directed at physicians (70 trials). Physicians were supported by nurses in 19 trials or other non-medical professionals such as pharmacists (12 trials), (study-)assistants (3 trials), health workers (2 trials), (peer-) supervisors, praxis managers, or other specialists (1 trial). In four trials, strategies were exclusively implemented by specialized nurses and in one trial by a team of nurses, Asian link (health-) workers, and community diabetes specialists. Most trials concentrated on patients in the secondary prevention of CVD. 10 trials additionally included patients in primary prevention, and 6 trials included patients in tertiary prevention. Only 6 trials were limited to primary prevention and 12 trials to tertiary prevention. The most successful based on patient education and organizational change regularly included nurses (46 and 41% of trials) or other professionals (31 and 71% of trials) in the implementation process (Table 1).

Approximately half of the trials were pre-planned with physician adherence as the primary outcome (36 trials) and the other half of trials reported adherence as the secondary outcome or parameter describing the process of care (39 trials). Units of analyses were individual patients in 23 RCTs and practices in 52 c-RCTs. Implementation strategies that were directed to the staff of general practices, such as provider reminder systems, audit and feedback, provider education, and organizational change, were frequently investigated in c-RCTs with physician adherence as the primary outcome. On the other hand, trials on strategies directed to patients such as patient education, promotion of self-management, and patient reminders predominantly concentrated on patient-related outcomes and reported physician adherence to the implementation process mostly as a secondary outcome. Follow-up periods between 3 and 36 months were used to investigate the efficacy of the intervention with a median length of follow-up of 12 months. Of the 75 trials, 61 trials had follow-up periods of between 3 and 12 months and 14 had longer follow-up periods of up to 36 months (Table 1).

Of the 75 trials, 48 reported the method of randomization in the text. The treatment allocation of clusters or patients was described as concealed in 63 trials. Physician adherence was assessed on objective criteria (such as number of medications, or by external monitors) and/or blinded in 63 trials. In 61 trials, the analyses were done by intention-to-treat, both at the individual and at the cluster levels. Total numbers of dropouts were low (<10%) and their causes were given by group. Primary endpoints were pre-specified in sample-size calculations and were adequately reported in 47 trials. Other sources of bias were evident in 28 trials that made no use of appropriate methods for the adjustment of treatment effects on physician adherence to cope with potential imbalances in cluster and individual characteristics. Summarizing these results, only 15 trials had low risk of bias in all the investigated domains.

Association between heterogeneity factors and estimated treatment effects

We calculated relative frequencies of negative, small, moderate, and large treatment effects depending on subgroups with special clinical and methodological characteristics. These characteristics were correlated with special implementation strategies, as shown in Table 2.

In general, the inclusion of other non-medical professionals seems to be most successful in improving physician adherence to guidelines. Large treatment effects are indicated in 57% of comparisons where non-medical professionals were included in the implementation process, compared to 38% if exclusively physicians were included, and 42% if nurses were included. Furthermore, large treatment effects are more frequently found in trials on

Table 1. Investigated sources of heterogeneity in 75 trials.

Implementation strategies	Data source	Odds ratios	95% CI	Direction of physician/nurse/other professionals	Follow-up	Design	Level of prevention	Design						
Provider reminder systems	[49–70]	1.07; 0.93 to 1.23	10.7 CI	Physician/nurse/other professions	RCT/c-RCT	Primary Secondary/ Tertiary	Provider reminder systems	Facilitated relay to data	Audit and feedback	Provider education	Patient education	Promotion of self-management	Organizational change	Abbreviations: CI: confidence interval; c-RCT: cluster randomized controlled trial; RCT: randomized controlled trial.
primary or secondary prevention (48 or 40% of trials) compared to tertiary prevention (24%) of CVD.

Comparisons of trials investigating the process of implementation with physician adherence as a primary outcome less frequently showed a negative direction of effect (12% vs. 19%) and more frequently a moderate or large effect size with OR > 1.2 (71% vs. 58%). Finally, RCTs were more frequently successful with a moderate or large effect size compared to c-RCTs (79 vs. 58%), and studies with longer follow-up periods of at least 12 months more frequently showed a large effect size (50% vs. 35%) compared to shorter trials.

Table 3 summarizes the ratios of odds ratios (ROR) for the influence of all investigated clinical and methodological heterogeneity factors on treatment effect. Between-trial variability and the relative reduction of between-trial variability by single effect modifiers compared to the variability of the original model describe the reduction of statistical heterogeneity.

These results showed that the treatment effect varied depending on clinical heterogeneity factors. The receiver (i.e., person/profession responsible for implementation) of the implementation seems especially to influence the efficiency of implementation strategies on physician adherence. The inclusion of the receiver of the implementation into the meta-regression reduced between-trial variability (τ^2) by 27%. Physician adherence was improved by 62% (ROR 1.62; 95% CI 1.29 to 2.04) in trials where other non-medical professionals were included in the process of implementation, and expanding the role of nurses in the curative process was

Table 2. Association between trial characteristics and treatment effect in 84 comparisons.

Potential effect modifier	Negative direction of effect	Small size	Moderate effect size	Large effect size
	OR ≤ 1.0	OR > 1.0 and OR ≤ 1.2	OR > 1.2 and OR ≤ 1.5	OR > 1.5
Implementation received by physician	12 (16%)	15 (19%)	21 (27%)	29 (38%)
Implementation received by nurse	4 (17%)	4 (17%)	6 (25%)	10 (42%)
Implementation received by other professionals	1 (4%)	6 (21%)	5 (18%)	16 (57%)
Primary prevention	2 (9%)	5 (24%)	4 (19%)	10 (48%)
Secondary prevention	11 (18%)	9 (15%)	17 (27%)	25 (40%)
Tertiary prevention	3 (14%)	7 (33%)	6 (29%)	5 (24%)
Design: c-RCT	10 (17%)	15 (25%)	14 (23%)	21 (35%)
Design: RCT	3 (12%)	2 (8%)	8 (33%)	11 (46%)
Adherence as primary outcome	5 (12%)	7 (17%)	13 (32%)	16 (39%)
Adherence as secondary outcome	8 (19%)	10 (23%)	9 (21%)	16 (37%)
Follow-up < 12 months	12 (18%)	12 (18%)	19 (29%)	23 (35%)
Follow-up ≥12 months	1 (6%)	5 (28%)	3 (17%)	9 (50%)

Table 3. Association of different effect modifiers on treatment effect.

Potential effect modifier	Comparisons	ROR; 95% CI	Between-trial variability (τ^2); relative reduction
No effect modifier		0.1899	
Staff	Nurse as receiver vs. others	1.29; 1.05 to 1.60	0.1389; 26.9%
	Other professionals as receiver vs. others	1.62; 1.29 to 2.04	
Level of prevention	Primary prevention vs. others	1.30; 0.98 to 1.71	0.1692; 10.9%
	Secondary prevention vs. others	1.31; 1.09 to 1.57	
Unit of randomization	c-RCT vs. RCT	1.28; 1.03 to 1.60	0.1871; 1.5%
Outcome definition	Adherence as primary vs. secondary outcome	1.38; 1.12 to 1.70	0.1719; 9.5%
Duration of follow-up	Long (≥12 months) vs. short follow-up periods	1.38; 1.04 to 1.83	0.1741; 8.3%
Risk of bias	Risk of bias (high or unclear vs. low):	0.88; 0.77 to 1.27	0.1488; 21.6%
	Sequence generation	0.93; 0.64 to 1.33	
	Allocation concealment	1.11; 0.80 to 1.53	
	Blinding	1.04; 0.77 to 1.40	
	Incomplete outcome data addressed	1.58; 0.96 to 2.60	
	Selective outcome reporting	0.94; 0.74 to 1.20	

Abbreviations: RCT: randomized controlled trial; c-RCT: cluster randomized controlled trial; OR: odds ratio.

doi:10.1371/journal.pone.0110619.002
successful in improving physician adherence by 29% (ROR 1.29; 95% CI 1.05 to 1.60).

Inclusion of level of prevention as a clinical effect modifier reduced τ^2 by 11%. Improvement of physician adherence was most successful in the treatment of patients in primary and secondary prevention of CVD (ROR 1.50; 95% CI 0.98 to 1.71 and 1.31; 95% CI 1.09 to 1.57) compared to patients in tertiary prevention.

However, methodological issues seem to have a smaller influence on the investigated association. We found an association between the definition of the primary endpoint as a quantitative measure of the main objective of a trial and the estimated implementation effect. The inclusion of this effect modifier was able to reduce τ^2 by 10%. The implementation effect on the primary outcome in process optimization studies with the primary endpoint of physician adherence was increased by 30% (ROR 1.38; 95% CI 1.12 to 1.70) compared to outcome optimization studies where physician adherence was investigated as a secondary or process of care parameter. Moreover, we also found an increased implementation effect in RCTs compared to c-RCTs by 28% (ROR 1.29; 95% CI 1.02 to 1.60) and with longer duration of follow-up (ROR 1.38; 95% CI 1.03 to 1.83), with only small reductions of τ^2 by 2 and 8%, respectively.

Inclusion of six risk of bias domains reduced between-trial variability by 22%, but no single component was associated with a significant overestimation of implementation effect. We found a tendency to an overestimation of implementation effects in trials with potential bias by selective reporting of the primary outcome by 50% (ROR 1.58; 95% CI 0.96 to 2.60).

Discussion

This study is based on an analysis of 75 trials and on eight classes of implementation strategies to improve physician’s guideline adherence. It investigates the influence of six possible effect modifiers on estimated implementation effects and remaining statistical heterogeneity. These influences are quantified by RORs and the relative change of between-trial variability. Our investigations revealed a substantial reduction of statistical heterogeneity explained by five of the investigated effect modifiers.

We found that clinical effect modifiers such as the cooperation of physicians with non-medical health professionals, the setting of the primary care of patients in early prevention of CVD, and the duration of implementation were especially associated with the improvement of physicians’ adherence to guidelines. We have found a considerable reduction of statistical heterogeneity by these factors of 27, 11, and 8%, respectively. Furthermore, the inclusion of methodological effect modifiers as different sources of bias or the definition of the primary endpoint was able to reduce statistical heterogeneity by 22 and 8%, respectively.

A considerable amount of statistical heterogeneity is explained by organizational structures in the primary care practices. Improvement of adherence could be achieved if physicians accepted support from non-medical health professionals such as pharmacists, health workers, qualified nurses, or nurse practitioners in improving their professional and organizational performance. Such cooperation could take place within team or (smaller) teamlet structures in single practices or networks of care [36]. Teamwork among different professions and/or professionals aimed at implementing guidelines explains the different estimated treatment effects on the adherence of primary care physicians. Our results are in line with the conclusions of Grol and Grimshaw (2003) [37] and Unverzagt et al. (2015) [6] which suggest that the whole primary care team (or network) is important for the implementation success.

We have further showed that different levels of prevention may cause heterogeneous treatment effects with greater improvements in physician adherence in the primary care of patients in the early prevention of CVD. Guidelines are more difficult to implement in tertiary prevention, where patients frequently suffer from complex co-morbidities and guidance on interventions and information on risks of specific interventions is missed [38]. This observation reflects the problem how far results from RCTs can be generalized due to selection in patients included in RCTs and narrow inclusion/exclusion criteria [39]. Especially patients with complex comorbidities should be well represented in RCTs and guidelines should provide guidance for the often complex need of these patients including information on risks of specific interventions [38].

Moreover, our explorations revealed artificial sources of variation resulting from the inclusion of two different types of study with different main aims, although both types reported physician adherence. Physician adherence summarizes the degree of conformity between knowledge, cognition, and action in a primary physician center with evidence-based recommendations from guidelines on different aspects of quality of care [40].

The primary aim of the first type of study is to improve the care process by implementing guidelines and the primary aim of the second type is to improve the health outcomes of patients. A “change” to a more evidence-based treatment aimed at improving health outcomes is a stepwise complex process in which several individual and organizational barriers have to be removed and intermediate outcomes (such as adherence) and final outcomes (such as health outcomes) may be improved. First, different strategies should be used to implement evidence-based guidelines in the care process and to enhance the adherence of physicians. Secondly, patients must be adherent to evidence-based recommendations, and finally, the health outcomes for patients might change. The benefit they receive from guideline-oriented treatment by reduced hospital admissions and prolonged survival has been shown in several studies [41–43]. In trials designed to improve the implementation of guidelines, physician adherence was regularly chosen as a primary endpoint and measured by multiple indicators, which were summarized to adherence scores or described by different frequencies.

The second type of study concentrates on the improvement of health outcomes of patients and describes physician adherence as a step towards improving mortality, morbidity, health-related quality of life, or surrogate parameters such as the achievement of targets for blood-pressure, cholesterol concentrations, physical activity, body mass index, smoking cessation or reduced smoking, or the reduction of cardiovascular risk score. Some statistical heterogeneity of treatment effects can be explained by these different types of studies.

In addition, we stated an increased treatment effect in studies with longer follow-up periods where implementation strategies were used over a longer period with a potentially better chance to improve providers knowledge, to integrate guidelines recommendation into organizational structures and processes and to overcome as well as negative staff attitudes and beliefs and time and resource constraints in primary care centers.

Furthermore, we identified an influence of risk of bias on the variability of treatment effect and were able to reduce statistical heterogeneity, but we were not able to identify one single source of bias causing biased treatment effects. However, different additional factors show divergent influences on the process of implementation and health outcomes and may influence both the process of...
implementation and the efficacy of the recommended intervention for the patient. These factors include concerns about the quality of guidelines such as the quality of evidence on which they are based, lack of agreement, differences in strength of recommendations, practicality of guidelines and recommended interventions, and the benefit/harm ratio of the intervention [44,45]. Finally, financial constraints and organizational structures (e.g., health systems) may modify the process of care [46].

Strengths and limitations

We are aware that our research may have some limitations. The conclusions of our systematic review [6] were limited by a large amount of imprecision and inconsistency of reported results [24,47,48]. Unexplained heterogeneity was caused by different methodological and clinical effect modifiers and some of them were investigated in this study. Other, not investigated potential effect modifiers are differences in health care systems, stability, attitudes and resource constraints of health care teams, types of guideline-recommended interventions, patient decisions and treatment. This study contributes an improved insight into the processes and elements of successful change and shows the environment in which implementation strategies work best, but all these ideas are exploratory and should be considered as hypotheses for evaluation in future studies [17]. Developing of precise definitions of effect modifiers for complex definitions of participants, intervention and outcomes was problematic because our priori definitions were influenced from our growing knowledge on existing evidence. To reduce the dependence on the results of data syntheses, we discussed these potential effect modifiers and tried to find the best classifications on the basis of diverse extracted clinical and methodological characteristics before we started data synthesis. Moreover, we are assured that the investigated heterogeneity factors are unlikely to influence the pathway from implementation strategy to an improved physician adherence and patient outcome independently and may reflect associations with other correlated but not investigated factors [25]. Furthermore, it is possible that especially in studies with inclusion of patients in early and late prevention relationships across trials may not be the same as relationships for patients within trials [29].

Conclusions

We recommend a careful discussion of the pathway from the intervention to the outcomes and pre-definition of potential effect modifiers at an early time point when conducting a systematic review. This seems to be especially important in a review of complex interventions with a broad range of participants, interventions, comparators, and definitions of outcomes. Our work has explained some statistical heterogeneity by clinical and methodological effect modifiers. These effect modifiers cause variability in estimated treatment effects, and taking them into account reduced statistical heterogeneity.

The results of this study provide some evidence that the incorporation of different health professionals in the practice can change professional and organizational performance in a primary care practice. This study properly investigated the role of implementation strategies in the treatment of patients in primary and secondary prevention of CVD and provides some evidence of promising results. However, the implementation of guidelines into primary prevention of CVD in general practice requires improved guidance for this patient group. Finally, we propose choosing the process parameter of physician adherence as the primary outcome parameter only in cases where a theoretical model explains the route from the intervention to the anticipated health outcomes for patients. Nevertheless, the health outcomes for patients should always be measured and reported additionally to process parameters (e.g., physician adherence) to ensure the association between the process parameter and improved health outcomes and to improve understanding of the pathway from implementation over physician adherence to improved health outcomes.

Supporting Information

Table S1 Included studies and comparisons with treatment effect, implementation strategies in the intervention group, risk of bias and effect modifiers. Abbreviation: lnOR: logarithmic Odds Ratio, SELnOR: standard error of logarithmic Odds Ratio.

Acknowledgments

We thank Roland Prondzinsky for his constructive comments and providing clinical background.

Author Contributions

Conceived and designed the experiments: SU. Performed the experiments: SU. Analyzed the data: SU. Contributed reagents/materials/analysis tools: SU. Wrote the paper: SU FP MO KB AK.

References

1. Murray CJL, Lopez AD (1996) Evidence-based health policy - lessons from the global burden of disease study. Science 274: 780–783.
2. AHA (2014) ACC/AHA Joint Guidelines. Dallas: American Heart Association.
3. CDC (2014) Prevention. Guidelines and Recommendations. Atlanta: Centers for Disease Control and Prevention.
4. ESC (2014) ESC Clinical Practice Guidelines section. Sophia Antipolis: European Society of Cardiology.
5. WHO (2014) Prevention of cardiovascular disease (CVDs). Geneva: World Health Organization.
6. Unverzagut S, Oemler M, Braun K, Klement A (2015) Strategies for guideline implementation in primary care focusing on patients with cardiovascular disease: a systematic review. Fam Pract 31: 247–266.
7. Thompson SG (1994) Why sources of heterogeneity in meta-analysis should be investigated. BMJ 309: 1351–1355.
8. Glasziou PP, Sanders SL, (2002) Investigating causes of heterogeneity in systematic reviews. Stat Med 21: 1503–1511.
9. Pigott T, Shepherd S (2013) Identifying, documenting, and examining heterogeneity in systematic reviews of complex interventions. J Clin Epidemiol 66: 1244–1250.
10. Cochrane Collaboration (2011) Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]; Higgins JPT, Green S, editors. Oxford: The Cochrane Collaboration.
11. Rosén M (2009) The aprotinin saga and the risks of conducting meta-analyses on small randomised controlled trials - a critique of a Cochrane review. BMC Health Serv Res 9: 34.
12. SchulzeKF, Chalmers I, Hayes RJ, Altman DG (1995) Empirical evidence of bias. Dimensions of methodological quality associated with estimates of treatment effects in controlled trials. JAMA 273: 401–412.
13. Mohr D, Pham B, Jones A, Cook DJ, Jadad AR, et al. (1998) Does quality of reports of randomised trials affect estimates of intervention efficacy reported in meta-analyses? Lancet 352: 609–613.
14. Balk EM, Bonis PA, Moskowitz H, Schmidt CH, Ioannidis JP, et al. (2002) Correlation of quality measures with estimates of treatment effect in meta-analyses of randomized controlled trials. JAMA 287: 2973–2982.
15. Wood L, Egger M, Glaud LL, SchulzKF, Juni P, et al. (2008) Empirical evidence of bias in treatment effect estimates in controlled trials with different interventions and outcomes: meta-epidemiological study. BMJ 336: 601–605.
16. Egger M, Juni P, Bartlett C, Hohnenst F, Sterne J (2005) How important are comprehensive literature searches and the assessment of trial quality in systematic reviews? Empirical study. Health Technol Assess 7: 1–76.
17. Gagnier JJ MH, Altman DG, Berlin J, Chang S, McColloch P, et al. (2013) Consensus-based recommendations for investigating clinical heterogeneity in systematic reviews. BMC Med Res Methodol 13.
46. SIGN (2008) SIGN 50: A guideline developer’s handbook. Edinburgh: Scottish
Healthcare and Research.

44. Ploeg J, Davies B, Edwards N, Gifford W, Miller PE (2007) Factors influencing
implementation and variation in research and practice: a systematic review and
meta-analysis. Int J Technol Assess Health Care 23: 489–499.

43. Komajda M, Lapuerta P, Hermans N, Gonzalez-Juanatey JR, van Veldhuisen
JPM, and the EPHOR Investigators (2010) Long-term use of telmisartan in
patients with moderate-tosevere hypertension: the EPHOR randomized controlled
trial. J Card Fail 16: 191–198.

41. Kuepper-Nybelen J, Hellmich M, Abbas S, Ihle P, Griebenow R, et al. (2012)
Meta-analysis of randomized trials of computerized reminders to improve quality of
care for diabetes and coronary artery disease. J Gen Intern Med 27: 1954–1962.

40. Hulshoff Pol HE, de Boer A, van den Akker M, and the PALLIAD research
team (2007) Effectiveness of a clinical decision support system based on the
recommendations of the European Society of Cardiology and other societies for
the management of hypercholesterolemia. Report of a cluster-randomized trial. Dis
Manag Health Out 13: 421–432.

38. Francke AL, Smit MC, de Veer AJ, Mistiaen P (2008) Factors influencing the
uptake and variation in research and practice: a systematic review and
meta-analysis. Int J Technol Assess Health Care 23: 489–499.

36. Chen EH, Thom DH, Hessler DM, Phengrasamy L, Hammer H, et al. (2010)
GRADE guidelines: 7. Rating the quality of evidence—Consistency. J Clin
Epidemiol 65: 1294–1299.

34. Campbell MK, Piaggio G, Elbourne DR, Altman DG, Group C (2012)
Consort 2010 statement: extension to cluster randomised trials. BMJ 345: c2177.

33. Giraudeau B, Ravaud P (2009) Preventing bias in cluster randomised trials.
J Eval Clin Pract 14: 888–897.

32. Puffer S, Torgerson D, Watson J (2003) Evidence for risk of bias in cluster
clinical trials. J Eval Clin Pract 9: 177–188.

31. AHRQ (2004) Closing the Quality Gap: A Critical Analysis of Quality
Improvement Strategies, Volume 1—Series Overview and Methodology. Technical
Review 9 (Contract No. 290-02-0017 to the Stanford University—UCSF Evidence-based
Practice Center). AHRQ Publication No. 04-0051-1. Rockville: Agency for
Healthcare Research and Quality.

30. Bower P, Gilbody S, Richards D, Fletcher J, Sutton A (2006) Collaborative care
for depression in primary care. Making sense of a complex intervention: systematic
review and meta-regression. Br J Psychiatry 190: 484–493.

29. Thompson SG, Higgins JP (2002) How should meta-regression analyses be
undertaken and interpreted? Stat Med 21: 1539–1573.

28. Rucker G, Schwarzer G, Carpenter JR, Schumacher M (2008) Uneque reliance
in the use of the I(2) test in assessment of heterogeneity may mislead. BMC Med
Res Methodol 8: 79.

27. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin
Trials 7: 177–188.

26. Higgins JP, Thompson SG (2005) Measuring heterogeneity in a meta-analysis.
Stat Med 24: 1585–1626.

25. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-
analysis. Stat Med 21: 1539–1558.

24. Guyatt GH, Oxman AD, Kunz R, Schaad N, Brozek J, et al. (2011) GRADE
guidelines: 11. Rating the quality of evidence—Imprecision. J Clin Epidemiol 65:
1294–1299.

23. Greenland S, Longnecker MP (1989) Methods for trend estimation from
summary data. Control Clin Trials 10: 142–158.

22. Nieuwlaat R, Schwalm JD, Khatib R, Yusuf S (2013) Why are we failing to
implement effective therapies in cardiovascular disease? Eur Heart J 34: 1262–
1269.

21. Wensing M, van der Weijden T, Groel R (1996) Implementing guidelines and
innovations in general practice: which interventions are effective? Br J Gen Pract
48: 991–997.

20. Guyatt GH, Oxman AD, Kunz R, Woodcock J, Brozek J, et al. (2011) GRADE
guidelines: 7. Rating the quality of evidence— inconsistency. J Clin Epidemiol 64:
1294–1299.

19. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-
analysis. Stat Med 21: 1539–1558.

18. Higgins J, Thompson S, Deeks J, Altman D (2002) Statistical heterogeneity in
treatment effects across similar trials: investigation, description, and
meta-regression analyses to explain statistical heterogeneity. J Epidemiol
Community Health 56: 484–494.

17. Baselmans H, Helfand M, Schunemann HJ, Oxman AD, Kunz R, et al. (2011)
GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol 64: 401–
406.

16. Guyatt GH, Oxman AD, Kunz R, Brozek J, Alonso-Coello P, et al. (2011)
GRADE guidelines: 6. Rating the quality of evidence–imprecision. J Clin Epidemiol
65: 1293–1298.

15. Beaulieu MD, Brophy J, Jacques A, Blais R, Battista R, et al. (2004) Drug
treatment of stable angina pectoris and mass dissemination of therapeutic
guidelines: a randomized controlled trial. QJM 97: 21–31.

14. Bebb C, Kendrick D, Coupland C, Madeley R, Stewart J, et al. (2007) A cluster
randomised controlled trial of the effect of a treatment algorithm for hypertension
in patients with type 2 diabetes. Br J Gen Pract 57: 156–163.

13. Calverley PM, Lipkow JC, Stafford MA, Rezk M, et al. (1999) An intervention to
increase physicians’ use of adherence-enhancing strategies in managing
hypercholesterolemic patients. Acad Med 74: 1334–1339.

12. Cobos A, Vilaesca J, Azenjo C, Pedro-Botet J, Sanchez E, et al. (2005) Cost
effectiveness of a clinical decision support system based on the recommenda-
tions of the European Society of Cardiology and other societies for the
management of hypercholesterolemia: Report of a cluster-randomized trial. Dis
Manag Health Out 13: 421–432.

11. Eccles M, McColl E, Steer N, Rousseau N, Grimshaw J, et al. (2002) Effect of
computerised evidence based guidelines on management of asthma and anuina in
adults in primary care: Cluster randomised controlled trial. BMJ 325: 941–
944.

10. Francis CD, Alperin P, Adler JS, Grady D (2001) Does a fixed physician
riderfriend system improve the care of patients with coronary artery disease?
a randomized controlled trial. West J Med 175: 165–166.

9. Freidheim A, Oxman AD, Haveralud K, Treweek S, Kristoffersen DT, et al. (2006)
Rational prescribing in primary care (RaPP): A cluster randomised trial of a
tailored intervention. PLoS Med 3: 785–791.

8. Frijling BJ, Lobo CM, Hulscher ME, Akkermans RP, van Drenth BB, et al. (2003)
Intensive support to improve clinical decision making in cardiovascular
care: a randomised controlled trial in general practice. Qual Saf Health Care 12:
181–187.

7. Gill JM, Chen YX, Glutting JJ, Diamond J, Lieberman MI (2009) Impact of
decision support in electronic medical records on lipid management in primary
care. J Clin Epidemiol 62: 1221–1226.

6. Gilhuz E, Novack L, Shvartzman P, Zeliginer J, Boumeh DY, et al. (2009)
Computerized community cholesterol control (4C): Meeting the challenge of
secondary prevention. Isr Med Assoc J 11: 23–29.

5. Greve D, Kjaer I, Gientz C, Gentz A, Cohen JI (2003) Quality of care for secondary
prevention for patients with coronary heart disease: results of the Hastening the
Effective Application of Research through Technology (HEART) trial. Am Heart J
146: 1054–1061.

4. Heidenreich PA, Gholami P, Sahay A, Massie B, Goldstein MK (2007) Clinical
reminders attached to echocardiography reports of patients with reduced left
ventricular ejection fraction increase use of beta-blockers: A randomized trial.
Circulation 115: 2029–2034.

3. Hicks LS, Sequent TD, Acayan JV, Shankovich S, Fairchild DG, et al. (2008)
Impact of computerized decision support on blood pressure management and
care: a randomized controlled trial. J Gen Intern Med 23: 429–441.

2. Hung CS, Lin JW, Huang CJ, Tsai RL, Li AT (2008) Using chart paper based
clinical guidelines to improve guideline adherence to lipid management. J Eval
Clin Pract 14: 801–806.

1. Bailey KR (1994) Generalising the results of randomized clinical trials. Control
Clin Trials 15: 15–23.

0. Hasenbein U, Wallesch CW (2007) What is “adherence to guidelines”? Theoretical
and methodological considerations on a new concept for health system
research and quality management. Gesundheitswesen 69: 427–437.
72. Benner JS, Erhardt I, Flammer M, Moller RA, Rajicic N, et al. (2008) A novel programme to evaluate and communicate 10-year risk of CVD reduces predicted risk and improves patients’ modifiable risk factor profile. Int J Clin Pract 62: 1484–1490.

73. Boudal DE, Pfeiffer PD, Beroni AG, Chen H, Clinch GR, et al. (2009) A multifaceted intervention to improve blood pressure control: The Guideline Adherence for Heart Health (GLAD) study. Am Heart J 157: 278–284.

74. Ficarra V, Volpe E, Winters P, Brown M, Idris A, et al. (2010) A novel approach to quality improvement in a safety-net practices: concurrent pre- and post-review visits. Journal of the National Medical Association 102: 1231–1236.

75. Kogan JR, Reynolds EE, Shea JA (2005) Effectiveness of report cards based on chart audits of residents’ adherence to practice guidelines on practice performance: a randomized controlled trial. Teach Learn Med 17: 30–39.

76. Luers S, Schrader J, Schmieder RE, Smolka W, Wegscheider K, et al. (2010) Improvement of hypertension management by structured physician education and feedback system: cluster randomized trial. Eur J Cardiovasc Prev Rehabil 17: 271–275.

77. Mitchell E, Sullivan F, Watt G, Grimshaw JM, Donnan PT (2004) Using electronic patient records to inform strategic decision making in primary care. Stud Health Technol Inform 107: 2–61.

78. Sondag-Zaal J, Hamsen DG, Aarden P, Munck AP (2006) A multifaceted intervention according to the Audit Project Odense method improved secondary prevention of ischemic heart disease: A randomized controlled trial. Fam Pract 23: 198–202.

79. van den Boogaard WHJM, van der Weijden T, Sijthoff J, Smelee I, Hermens J, et al. (2005) Effect of a Practice-Based Strategy on Test Ordering Performance of Primary Care Physicians: A Randomized Trial. JAMA 298: 2407–2412.

80. Amado GE, Pujol RE, Pacheco HV, Borras JM, Group A (2011) Knowledge and adherence to secondary preventative cardiovascular care: results of a randomized trial. Gaceta Sanitaria 25: 62–67.

81. Anguita Sanchez M, Jimenez-Navarro M, Crespo M, Alonso-Pulpon L, de Teresa E, et al. (2010) Using the Teamlet Model to Improve Chronic Care in an Academic Primary Care Practice. Revista espanola de cardiologia 63: 677–683.

82. De Muylder R, Tonglet R, Nackers F, Boland B (2005) Randomised evaluation of a multifaceted intervention to improve blood pressure control in a developing country: a cluster randomized trial. Ann Intern Med 143: 650–661.

83. Feder G, Griffiths C, Eldridge S, Spence M (1999) Effect of postal prompts to patients and general practitioners on the quality of primary care after a corona event (POST). Randomised controlled trial. BMJ 318: 1522–1526.

84. Feldman RD, Zou GY, Vandervoort MK, Wong CJ, Nelson SA, et al. (2009) A community pharmacy medicines management project evaluation team: cluster randomized controlled trial. Clin Pract 12: 613–621.

85. Kaczorowski J, Chambers LW, Dolovich L, Paterson JM, Karwalajtys T, et al. (2008) Enhanced access to primary care for patients with congestive heart failure. Veterans Affairs Cooperative Study Group on Primary Care and Hospital Readmission. Eff Clin Pract 2: 201–209.

86. Langham J, Tucker H, Sloan D, Pettifer J, Thom S, et al. (2002) Secondary prevention of ischemic heart disease: A randomised controlled trial. Lancet 319: 319–320.

87. Ledingham J, Connolly S, Jennings C, Mead A, et al. (2008) Nurse-coordinated multidisciplinary, physician-based cardiovascular disease prevention programme (EUROACTION) for patients with coronary heart disease and asymptomatic individuals at high risk of cardiovascular disease: a paired, cluster-randomised controlled trial. Lancet 371: 1999–2002.

88. Levine DA, Funkhouser EM, Houston TK, Gerald JK, Johnson-Roe N, et al. (2011) Improving care after myocardial infarction using a 2-year internet-based intervention. Am J Med 129: 105–112.

89. McBride P, Underbakke G, Plane MB, Massoth K, Brown RL, et al. (2000) Evaluation of a structured treatment and teaching programme on the secondary prevention of cardiovascular disease: A randomised controlled trial. Telch, Teach Learn Med 15: 30–39.

90. McAlister FA, Fradette M, Majumdar SR, Williams R, Graham M, et al. (2011) Improving prevention systems in primary care practices: the Health Education Collaborative intervention. CMAJ 181: 897–904.

91. Mitchell E, Sullivan F, Watt G, Grimshaw JM, Donnan PT (2004) Using electronic patient records to inform strategic decision making in primary care. Stud Health Technol Inform 107: 2–61.

92. Morgan MP, Mayes P, Tanser V, Eckersley R (2008) Improving consultation quality in general practice: a cluster-randomised controlled trial of the TeleBPCare study. J Hypertens 27: 198–203.

93. Parati G, Omboni S, Albini F, Pianoni I, Giuliano A, et al. (2009) Home blood pressure telemonitoring improves hypertension control in general practice. The TeleBPCare study. J Hypertens 27: 198–203.

94. Perreault L, Kaaschke M, Giobbi-Hurder A, Landman P, Henderson W (1999) Enhanced access to primary care with patients with congestive heart failure. Veterans Affairs Cooperative Study Group on Primary Care and Hospital Readmission. Eff Clin Pract 2: 201–209.

95. Poulter N, Islam M, Hashmi S, et al. (2009) Community pharmacies and feedback system: cluster randomized trial. Eur J Cardiovasc Prev Rehabil 16: 671–676.

96. Sondergaard J, Hansen DG, Aarslev P, Munck AP (2006) A multifaceted intervention to improve blood pressure control in a developing country: a cluster randomized trial. Ann Intern Med 143: 650–661.

97. Wood DA, Kotseva K, Connolly S, Jennings C, Mead A, et al. (2008) Nurse-coordinated multidisciplinary, physician-based cardiovascular disease prevention programme (EUROACTION) for patients with coronary heart disease and asymptomatic individuals at high risk of cardiovascular disease: a paired, cluster-randomised controlled trial. Lancet 371: 1999–2002.

98. Wood DA, Kotseva K, Connolly S, Jennings C, Mead A, et al. (2008) Nurse-coordinated multidisciplinary, physician-based cardiovascular disease prevention programme (EUROACTION) for patients with coronary heart disease and asymptomatic individuals at high risk of cardiovascular disease: a paired, cluster-randomised controlled trial. Lancet 371: 1999–2002.

99. Wood DA, Kotseva K, Connolly S, Jennings C, Mead A, et al. (2008) Nurse-coordinated multidisciplinary, physician-based cardiovascular disease prevention programme (EUROACTION) for patients with coronary heart disease and asymptomatic individuals at high risk of cardiovascular disease: a paired, cluster-randomised controlled trial. Lancet 371: 1999–2002.
121. Lobo CM, Frijling BD, Hulscher ME, Bernsen RM, Braspenning JC, et al. (2002) Improving quality of organizing cardiovascular preventive care in general practice by outreach visitors: a randomized controlled trial. Prev Med 35: 422–429.

122. McInnes GT, McGhee SM (1995) Delivery of care for hypertension. J Hum Hypertens 9: 429–433.

123. Simpson SH, Majumdar SR, Tsuyuki RT, Lewanczuk RZ, Spooner R, et al. (2011) Effect of adding pharmacists to primary care teams on blood pressure control in patients with type 2 diabetes: A randomized controlled trial. Diabetes Care 34: 20–26.