Protected Cultivation of Horticultural Crops in Uttarakhand: An Economic Analysis

Pramod Kumar 1, Amit Kar 1, Dharam Raj Singh 1, Anbukkani Perumal 1, Satish Gowda Chirathahalli Shivamurthy 2, Krishna Viswanatha Reddy 3,*, Prakash Singh Badal 4, Ankush Lala Kamble 5, Virendra Kamalvanshi 6, Girish Kumar Jha 1, Manjeet Singh Nain 1, Prakash Pachiyappan 6, Abed Alataway 7, Ahmed Dewidar 7 and Hosam O. Elansary 8,9,10,*

Abstract: In recent times, with the globalization of markets, shrinking of land and climate change, food basket diversification, increase in demand for nutrient-rich food, the protected cultivation of high-value crops (HVCs) have assumed a pivotal role in augmenting higher crop productivity and profitability and enhancing nutritional security of the growing population. In this context, a study was undertaken to analyze the impact of protected cultivation in horticultural crops in the districts of Almora and Dehradun in the Uttarakhand state. It was mainly based on primary data obtained through a primary survey and focus group discussion with the 96 farmers practicing protected cultivation by using a well-structured and pre-tested questionnaire. In economic analysis, the project analysis tools were used to assess the feasibility of the protected cultivation. The study clearly demonstrated that the cultivation of vegetables and flowers under protected cultivation is a highly profitable enterprise. However, the findings of the study indicated that the subsidy scheme needs to be continued to encourage maximum farmers to adopt protected cultivation and farmers need to be encouraged to form farmers producers organizations (FPOs), which would help them in seeking better quality of inputs and enhancing negotiating power in the market to realize maximum returns for their farm produce.

Keywords: high value crops; protected cultivation; subsidy; nutrient-rich food; Uttarakhand; profitability

1. Introduction

Indian agriculture is constrained by shrinking land resources, growing population, increasing urbanization and industrialization, leading to changing food demand patterns. The Government of India has initiated a number of schemes and programs like e-Mandi...
(scheme to digitally link markets), soil health card, national horticulture mission, per drop more crop, Parmaparagat Krishi Vikas Yojana (intended towards promoting organic farming), PMKISAN (Pradhan Mantri Kisan Samman Nidhi -Supporting farmers through income support of Rs 6000/- per year), PMFBY (Prime Minister Fasal Bheema Yojana- an insurance service for farmers for their yields), digitization of land records, etc. [1]. These schemes are intended towards meeting SDG (Sustainable Development Goals) by way of enhancing sustainability, mitigating risk and uncertainty, bringing more transparency and efficiency in governance in rural development in general and farmers’ welfare in particular. The agriculture and horticulture sectors are climate-sensitive, although hills and mountainous regions offer a great opportunity for farmers to cultivate off-season vegetables and a variety of flowers. However, growing vegetables in open conditions is subject to vagaries of weather and attack of diseases and insect pests, which could be mitigated largely through protected cultivation. With the globalization of markets, shrinking land and climate change, the protected cultivation of high-value crops has emerged as one of the most important technologies for ensuring high productivity, improved technology and profitability. Uttarakhand is primarily a mountainous state with only about 10% of its total geographical area in plains and more than three-fourth (78%) of its total population dependent on agriculture for its livelihood. The yield from the field crops is not very high in the hilly areas of the state. The productivity of vegetable crops is unable to reach its optimum level. Low productivity may be attributed to poor infrastructure, poor irrigation, small and fragmented land holdings, low investment capacity of the farmers, fragile ecosystem and inaccessibility of technology. The migration of farmers is another major issue plaguing the farming sector. Landholdings in Uttarakhand are typically small (0.68 ha) and segmented. Uttarakhand is most vulnerable to climate-mediated risks. The net increase in temperature of the state has ranged from 1.70 °C to 2.20 °C and rainfall from 5% to 13% with respect to the 1970s [2]. Some of the reported climate-change-induced changes in the Uttarakhand Himalayas include receding glaciers and changes in snowline, depleting erratic rainfall, irregular winter rains, rise in temperature, increasing intensity and frequency of flash floods, drying up of perennial streams, etc. Promotion of protected cultivation of vegetables and flowers augers very well for the mountainous state like Uttarakhand to mitigate climate-mediated risks and also to enhance the productivity of crops. The protected cultivation of vegetables leads to higher yields, ranging from 40% to 955% as compared to open cultivation (Appendix A). A number of schemes have been implemented by the state in cooperation with the center, like the State Horticulture Mission Scheme, Schemes of National Horticulture Board, etc., to promote protected cultivation in the state. ICAR (Indian Council of Agricultural Research) institutes like Vivekanand Institute of Parvatiya Krishi AnusandhanSansthan (VIPKAS), Almora, have specially trained the farmers in their adopted villages to erect low-cost wooden-based polyhouses and to raise vegetable crops [3]. Similarly, in Dehradun district of Uttarakhand, the farmers received the NHB (National Horticulture Board) fund support to construct polyhouses and to cultivate flower crops, especially Gerbera. However, small and marginal farmers still do not appreciate such efforts, and they are still largely deprived of their benefits [4,5]. It is important to understand the feasibility of polyhouse cultivation of vegetables and flowers as the other factors hindering the growth and adoption of protected cultivation. Therefore, the study was undertaken in the Uttarakhand state of India with the following specific objectives:

(a) To analyze the growth performance of the protected cultivation in Uttarakhand;
(b) To evaluate the feasibility of the protected cultivation of vegetables and flowers and implication of climate change on the same; an
(c) To assess the constraints faced by the farmers and implementing agencies in up-scaling technology of protected cultivation in the state of Uttarakhand.
2. Materials and Methods

The study pertains to the Almora and Dehradun districts of Uttarakhand, which represent diverse regions based on physiography. Almora district has steep mountains, while Dehradun is located in Doon Valley. In Almora, terrace farming is practiced, wherein smaller polyhouses are successful, while in Dehradun, which has plain lands, larger polyhouses are more common. The source of irrigation in Almora is by way of development of water resources from harvesting runoff and perennial hill streams in Low-Density Poly Ethylene (LDPE)-lined water tanks [6], while in Dehradun, the source of irrigation is groundwater [3]. The proximity to the Delhi market makes the Dehradun polyhouses to cultivate flowers while Almora being away from such major markets cultivation of vegetables is more common.

The study is based on both secondary and primary data. The secondary data were compiled from diverse sources. The data on physical and financial progress of various governments scheme to promote horticulture in general and the protected cultivation in particular were compiled from the Horticulture Mission for Northeast and Himalayan states and National Horticulture Mission, published by the Department of Agriculture and Cooperation, Ministry of Agriculture and Farmers Welfare, Government of India. A multilevel stratified sampling was used to collect the primary data. Two blocks of the Almora district and two blocks of Dehradun district of Uttarakhand were selected based on higher adoption of protected cultivation. In subsequent stratification, eight villages from four blocks were selected randomly. The primary data were collected from sample farmers by the personal interview method using a pre-tested structured schedule. These farmers were interviewed to collect the information on adoption pattern of protected cultivation, cost involved in crop production and the return from the crop under protected cultivation. The respondents were selected from the villages based on proportion to the population. Thus, 96 protected cultivation farmers were interviewed. This protected cultivation data were analyzed through simple descriptive statistics and project analysis tools, namely benefit–cost ratio, net present value and internal rate of return were computed to assess the feasibility of the protected cultivation.

The protected cultivation involves huge investment and the returns spread over a number of years. The investment decision of farmers is guided by cumulative returns from the life of the protected structure. Therefore, the project evaluation techniques, namely benefit-cost ratio (BC ratio), net present value (NPV) and internal rate of return (IRR), were employed to assess the feasibility of the protected cultivation. The formulas of the project evaluation techniques used are [7,8]:

\[
NPV = \sum_{j=1}^{n} \frac{B}{(1+r)^j} - \sum_{j=1}^{n} \frac{C}{(1+r)^j}
\]

\[
B : C \text{ ratio} = \frac{\sum_{j=1}^{n} \frac{B}{(1+r)^j}}{\sum_{j=1}^{n} \frac{C}{(1+r)^j}}
\]

\[
IRR = \sum_{j=1}^{n} \frac{B}{(1+i)^j} - \sum_{j=1}^{n} \frac{C}{(1+i)^j} = 0
\]

where, \(B\) is benefit stream from protected cultivation, \(C\) is cost stream which comprises of fixed cost and operational cost involved in protected cultivation, \(r\) is discount rates for bringing benefit and cost stream to present level for comparison, \(i\) is that discount rate at which benefit stream is equal to cost stream and it gives the IRR, \(n\) is total life of the protected cultivation structure, \(j\) is life of protected cultivation in years, which ranges from 1 to \(n\).

The fixed cost remains the same for different crop combinations practiced by farmers. The crop sequence adopted by farmers in a year is considered to be one unit for the purpose of assessment of operational costs and returns.
The project life of the flower-based polyhouses of Dehradun district was assumed to be of 20 years, while that of the vegetable production in low-cost polyhouses of Almora district was assumed to be 15 years. The life of polysheets was assumed to be five years and was replaced in the sixth year. In the case of gerbera cultivation, it was found that most of the farmers planted the crop once and continued to reap the harvest for four years, and the production was highest during the first two years, after which it fell by 10%. The study also internalized the effect of climate change on protected cultivation of vegetables and flowers. It was assumed that the major climatic factor influencing the polyhouse was the occurrence of strong wind, which damages the polysheets of the polyhouses. It was assumed that such events occur once in ten years, and the first event happens to be on the third year of the project life, which demands additional investment to replace the polyhouse, and there is also a reduction in the production by half of the usual production. The farmers’ perceptions were also recorded on constraints in the adoption and marketing of vegetables and flowers produced under protected cultivation.

3. Results

3.1. Status of Horticulture in Uttarakhand

In Uttarakhand, the area under fruits, vegetables and flowers is 1.75 lakh ha, 0.89 lakh ha and 0.02 lakh ha respectively in 2015–2016 (Table 1). The productivity of fruit is 3.76 t/ha, which is 26.34% of the national average. Similarly, the productivity of vegetables is 10.52 t/ha, which is 62.9% of the national average. The production of fruits has recorded marginal improvement over a period of 16 years, while that of vegetables has almost remained the same [9–11]. Thus, it is observed that there is great scope to enhance the production of horticultural crops and one of the ways is to go for protected cultivation. District-wise area and production of fruits, vegetables and flowers in Uttarakhand are displayed in Table 2. The total area under vegetables and fruits in Uttarakhand has remained almost the same at 2.39 lakh hectare.

The area under vegetables is 0.64 lakh ha while that under fruits was 1.75 lakh ha accounting for 73.27% and 26.73% of the total area under fruits and vegetables. The fruits and vegetables together account for just 4.6% of the total geographical area of the state. The Almora and Dehradun districts account for 6.94% and 15.12% of the total area under vegetables while they account for 13.78% and 15.1% of the total area under fruits.

Table 1. Area and production of horticultural crops in Uttarakhand.

	Fruits	Vegetables	Flowers							
	Area ('000 ha)	Production ('000t)	Productivity (t/ha)	Area ('000 ha)	Production ('000t)	Productivity (t/ha)	Area ('000 ha)	Production Loose ('000t)	Production Cut (Lakh no)	
Uttarakhand	1991–1992	150.5 (5.2)	428.7 (1.5)	2.8 (28.0)	57.1 (1.02)	617.6 (1.06)	10.8 (102.9)			
	2001–2002	197.5 (4.9)	376.1 (0.87)	1.9 (17.75)	93.8 (1.52)	737.3 (0.83)	7.9 (54.8)			
	2011–2012	200.7 (2.99)	802.1 (1.04)	4.0 (35.09)	89.3 (0.99)	1066.7 (0.68)	11.9 (68.4)	1.5 (0.59)	1.81 (0.11)	3567.6 (4.75)
	2015–2016	175.33 (2.79)	659.1 (0.73)	3.76 (26.3)	89.84 (0.89)	945.36 (0.56)	10.52 (62.9)	1.5 (0.54)	1.75 (0.11)	13.52 * (2.56)
India	1991–1992	2874.5	28,632	10	5592.4	58,520.9	10.5			
	2001–2002	4010.2	43,000.9	10.7	6155.6	88,620.3	14.4			
	2011–2012	6704.2	76,424.2	11.4	8989.6	156,325.5	17.4	253.6	1650.87	75,066.0
	2015–2016	6300.67	90,183.04	14.3	10,106.29	169,063.93	16.7	277.57	1656.24	527.67

* indicates production of cut flowers in tons. Source: [9–11].
Table 2. District-wise area and production of fruits, vegetables, and flowers in Uttarakhand, 2015–2016.

District	Area ('000 ha)	Production ('000 tons)	Yield (tonsha−1)	Area ('000 ha)	Production ('000 tons)	Yield (tonsha−1)	Area ('000 ha)	Production ('000 tons)	Yield (tonsha−1)
Nanital	10.83	109.39	10.1	10.83	109.39	10.1	10.83	109.39	10.1
Udham singhnagar	7.56	53.14	7.03	7.56	53.14	7.03	7.56	53.14	7.03
Almora	24.16	175.65	7.27	24.16	175.65	7.27	24.16	175.65	7.27
Bageswar	3.54	12.63	3.57	5.88	12.63	3.57	5.88	12.63	3.57
Pithoragarh	15.72	46.03	2.93	5.36	46.03	2.93	5.36	46.03	2.93
Champawat	8.18	13.47	1.65	3.10	13.47	1.65	3.10	13.47	1.65
Dehradun	26.41	40.06	1.52	9.67	40.06	1.52	9.67	40.06	1.52
Paudi	20.78	33.33	1.6	4.77	33.33	1.6	4.77	33.33	1.6
Tihri	20.94	28.51	1.36	8.22	28.51	1.36	8.22	28.51	1.36
Chamoli	3.63	15.21	4.19	2.04	15.21	4.19	2.04	15.21	4.19
Rudraprayag	3.11	2.37	0.76	1.01	2.37	0.76	1.01	2.37	0.76
Uttarkashi	15.13	30.63	2.02	6.30	30.63	2.02	6.30	30.63	2.02
Haridwar	15.34	98.68	6.43	6.43	98.68	6.43	6.43	98.68	6.43
Total	175.33	659.09	3.76	63.95	659.09	3.76	63.95	659.09	3.76

Source: [12].

3.2. Programs and Policies for Promotion of Protected Cultivation

The Horticulture Mission for North East and Himalayan states (HMNEH) is a major program under which the funds have been allocated for the purpose of development of horticulture sector in the state of Uttarakhand [13]. The amount of funds allocated for the state increased from Rs 988 lakhs in TE 2005–2006 to Rs 3366 lakhs by the year TE 2015–2016 are given Table 3. The fund allotted under the HMNEH program has grown at an annual growth rate of 11% during 2003–2004 to 2015–2016. Similarly, the share of funds utilized by state government decreased at the rate of −0.3% per annum. The point of concern is the low level of fund utilization by the state which ranges from 45.0% to 72.5%. Efforts need to be made to utilize maximum of available funds in order to have a larger impact.

Table 3. Funds allocated under the Horticulture Mission for North East and Himalayan states (HMNEH) program, Uttarakhand.

Year (TE)	Funds Allocated in Lakhs (Rs.)	Funds Available in Lakhs (Rs.)	Funds Utilized Amount in Lakhs (Rs.)	% to Funds Utilized
TE 2005–2006	988.3	955.3	692.4	72.5
TE 2008–2009	3213.3	4286	2532.8	59
TE 2011–2012	2990	4596	2069.5	45
TE 2015–2016	3366.7	4639.2	3200.4	68.9
CAGR (2003–2016)	11	18.2	17.8	−0.3

Source: [14]. Rs-Rupees, CAGR=Compound annual growth rate; TE = Triennium ending.

The state has made significant progress in the horticulture sector with the use of the funds under the HMNEH program. There are 107 nurseries that have been established in the state. An area of 75.78 ha is brought under greenhouse cultivation and 4.97 ha under shade net. To improve the transportation of fruits and vegetables from remote and inaccessible areas, 31 ropeways have been established (Table 4).

The scheme promotes the development of the horticulture sector by providing fund support in the form of subsidies. The scheme provides a 50% subsidy for the setting up of protected cultivation structures. The cost norms vary for various size of polyhouse structures and by type of structures. The fund support for protected cultivation of fruits and vegetables under fan and pad polyhouse is up to 32.2 lakh, and that under tubular structures is up to 19.41 lakhs.
Table 4. Physical progress under HMNEH program, Uttarakhand, 2015-16.

Nurseries Set Up	107
Area expansion under Horticultural crops	65,282 ha
Fruits	34,483 ha (52.8%)
Vegetables	21,340 ha (32.7%)
Spices	7369 ha (11.3%)
Flowers	2090 ha (3.2%)
Rejuvenation of old and senile orchards	13,880 ha
Organic farming	2970 ha
INM/IPM area	1928 ha
Water harvesting tanks/ponds (No)	1060
Tube wells/bore wells (No)	2440
Protected cultivation	
Greenhouse	75.78 ha
Shade net house	4.97 ha
Anti hail nets	194.93 ha
Mulching	0.35 ha
Farm handling/packhouses (No)	1111
Wholesale markets (No)	3
Ropeways (No)	31
Mechanization—distribution of machines (No)	4695

Source: [15].

The number of beneficiaries covered under the HMNEH program has been very low, at just 36 and 51 for the years of 2014–2015 and 2015–2016, as given in Table 5. The average amount of subsidy disbursed was Rs 3.44 lakh and 2.28 lakhs during the years 2014–2015 and 2015–2016. This also reveals that the program’s ability to promote small polyhouses may be due to paucity of funds and also due to the nature of the topography of the state. This is also obvious from the fact that in recent years i.e., 2015–2016, the majority of the polyhouses were size 200 m2 in size (Figure 1).

Table 5. Performance of HMNEH program.

Year	No of Beneficiaries	Area Covered (m2)	Subsidy Disbursed (Rs lakh)	Average Area Covered (m2)	Average Subsidy Disbursed (Rs lakh)
2014–2015	36	25,000	123.89	694.5	3.44
2015–2016	51	22,390	116.16	439.02	2.28

Source: [16].

Figure 1. Number of polyhouses created during 2014–2015 (a) and 2015–2016 (b).
3.3. Performance of Mission for Integrated Development of Horticulture (MIDH)

The Mission for Integrated Development of Horticulture (MIDH) scheme provides assistance for the promotion of horticulture in general and protected cultivation in particular. The program supports large sizes of polyhouse units. The fund support for greenhouse structure ranges from Rs 5.63 lakhs to Rs 20.13 lakhs, depending upon the nature of polyhouse and also on the size of the polyhouse. The scheme also provides support in the form of 50% subsidy for purchase of planting material. The MIDH scheme fund flows through the National Horticulture Board. The scheme took off very well in the state with 124 beneficiaries receiving support in the year 2010–2011; however, the scheme slowed down in its performance. The revealed slackness in performance could be due to cost escalation of the polyhouses due to which only a few beneficiaries could be supported with the given amount of scheme fund. The performance of the NHB scheme in Uttarakhand is displayed in Table 6.

Table 6. Performance of National Horticulture Board scheme in Uttarakhand.

Year	No of Beneficiaries	Project Cost (in Rs lakh)	Amount Released (in Rs lakh)	Amount Released Per Beneficiary (Rs lakh)
2010–2011	124	1469.49	299.12	2.41
2011–2012	65	11,050.88	327.86	5.04
2012–2013	26	660.08	130.44	5.01
2013–2014	41	1376.11	363.03	8.85
2014–2015	14	647.71	128.10	9.15
2015–2016	33	1542.73	622.46	18.86
Total	303	16,747.00	1871.01	6.17

Source: [17].

3.4. Economics of Protected Cultivation

This section presents the results of analysis of the field data pertaining to the general information of the farmers practicing protected cultivation in Almora and Dehradun districts of Uttarakhand. Out of the surveyed sample of 36, 18 farmers i.e., 50% of the farmers who adopted protected cultivation technique are more than 45 years of age (Table 7). Only 11% of the farmers are less than 30 years of age. The remaining 39% of the farmers are between 30 years and 45 years of age. On the basis of caste, it can be seen that 89% of the farmer belong to the general category, only 11% are Other Backward Classes and none of the farmers belong to the schedule caste or scheduled tribe. Education plays an important role in the adoption of modern technology. However, out of the sample surveyed, 50% of the farmers only passed high school. Lack of knowledge and education also affects the production of the crop. Only 22% of the farmers are either graduates or postgraduates. Thus, they have better knowledge and understanding of using the new and advanced technology. Of the sample of 18 farmers surveyed, 44% of the farmers belong to Bhagertala village in Almora district, and 33% belong to Todra village. Farmers belonging to Dudoli and Shahi Devi villages formed a small portion. Only four farmers out of 36 have more than five polyhouses, i.e., just 11%, and 16 farmers have less than 2 polyhouses or between 2 and 5 polyhouses.

Having experience in a particular field adds to productivity. Three-fifths of the farmers have 4 to 8 of experience years in protected cultivation. Eleven percent of farmers have more than 8 years of experience, and 27.7% of the farmers have less than 4 years of experience. The total population of Almora district was 1.35 lakh as per the 2001 census. The majority of the population surveyed is engaged in agriculture. Only 11% of the total surveyed are engaged in business/service.
Table 7. Classification of farmers based on various socio-economic characteristics (N = 96).

Socio-Economic Features	Classification	Almora Farmers	Dehradun Farmers		
	Number of Farmers	%age (%)	Number of Farmers	%age (%)	
Age (Years)	0–30	4	11.1	8	13
	30–45	14	38.9	30	50
	More than 45	18	50	22	37
Caste	General	32	88.89	40	66.7
	OBC	4	11.11	20	33.3
	SC/ST	0	0	0	0
Education	Intermediate	10	27.78	10	16.7
	High	18	50	35	58.3
	Graduation & Above	8	22.22	15	25
Ownership of polyhouses	No				
	Less than 2	16	44.44	28	46.7
	2 to 5	16	44.44	22	36.7
	More than 5	4	11.12	10	16.7
Experience (Years)	Less than 4	10	27.78	25	41.7
	4 to 8	22	61.11	33	55
	More than 8	4	11.11	2	3.3
Occupation	Agriculture	32	88.89	27	45
	Business/service	4	11.11	33	55

OBC—Other Backward Class, SC—Scheduled Castes and ST—Schedule Tribes. Source: Authors calculations based on field survey (2017).

3.5. Establishment Cost of Polyhouse in Uttarakhand

The types of polyhouses prevalent in the two districts of Uttarakhand are different. In Almora district, the smaller polyhouses are popular, while in Dehradun, larger polyhouses are popular. The nature of crops taken also varied with the cultivators of Almora district cultivated vegetables under polyhouse, while in Dehradun it was the flowers and mainly the Gerbera. The establishment cost of smaller (100 m²) polyhouses as practiced in Almora district under wooden-based and GI (Galvonised Iron)-framed structures is presented in Table 8. The wooden-based structure is much cheaper and works out to Rs 71,000. The highest proportion of this cost is accounted for by angle iron, which accounts for 26.5% (Rs.18000) of the total establishment cost. While the irrigation structure cost constitutes about 21.16%, pollysheet constitutes 21.12% of the total establishment cost. Other costs like wooden poles, land preparation, water tank sheet, labour and nutbolt constitute 10.36%, 7.11%, 7.04%, 5.66%, and 0.96% of the total establishment cost, respectively. Own contribution is 71.83% (Rs.51000) of the total cost. The polythese sheets were provided by VIPKAS and thereby amount for a net subsidy of Rs 20,000.

Further, Table 8 shows that about 40% of the sample farmers of the Almora district had adopted GI frame polyhouses, which were funded under the HMNEM scheme. The scheme provides an 80% subsidy to the farmers, and the remaining 20% of the cost of the polyhouses is contributed by the farmers. The average cost of the polyhouse with a tank is Rs 141,900/-. The farmers’ investment is Rs 52,900/-, and the rest is provided by the state government (Rs 28,050/-) and the HMNEM scheme (Rs 60950/-). The cost of establishment of polyhouse in Dehradun district of Uttarakhand has also been computed and is presented in Table 9. The polyhouses were classified into four categories based on the area of polyhouses, i.e., 1000 m², 2000 m², 4000 m² and 10000 m². The fixed cost of construction of the polyhouses is Rs 10.13 lakhs, Rs 19.70 lakhs, Rs 38.5 lakhs and Rs 95.57 lakhs for the polyhouses of the sizes 1000 m², 2000 m², 4000 m² and 10,000 m², respectively. The polyhouses used different levels of technology. The smaller size polyhouses were naturally ventilation-based polyhouses. These lacked investment for artificially managing the temperature and humidity.
Table 8. Cost of establishment of Polyhouse in Almora district of Uttarakhand.

Particulars	Cost of Construction of Polyhouse (Rs/100 m²)	
	Amount (Rs)	Share in Total Cost (%)
(A) Wooden pole polyhouse (VIPKS promoted)		
(i) Land preparation	5056	7.1
(ii) Irrigation structure	15,028	21.2
(iii) Water tank sheet	5000	7.0
(iv) Polysheet	15,000	21.1
(v) Angle	18,861	26.6
(vi) Nutbolt	686	1.0
(vii) Wooden pole	736	10.4
(viii) Labour	4022	5.7
Total cost	71,014	100.0
Own contribution	51,014	71.8
VIPKAS (polythene)	20,000	28.2
Total cost	71,014	100

(B) Angle iron/GI pipe polyhouse

(a) Construction of polyhouse (funded under CM sanrakshitKhetiprogram)

(i) HMNEH contribution	60,950	42.9
(ii) State government contribution	28,050	19.8
(iii) Farmer contribution	32,900	23.2
(b) Construction of tank		
(i) Digging of tank	15,000	10.6
(ii) Polythene cover	5000	3.5
Total cost	141,900	100

Source: Authors calculations based on field survey, 2017.

Table 9. Cost of establishment of Polyhouse in Dehradun district of Uttarakhand (Rs).

Particulars	1000 m²	2000 m²	4000 m²	10,000 m²
Cost of polyhouse	907,200	1,800,000	3,600,000	8,750,000
Sprayers	5000	5000	-	12,000
Generators	-	-	-	67,500
Coolers	-	-	-	25,000
Fencing	-	-	-	87,500
Electricity line	15,000	15,000	15,000	15,000
Floggers	-	-	-	15,000
Tullupump	-	-	-	10,000
Drip irrigation	50,400	100,000	200,000	500,000
Bore well motor	35,000	50,000	35,000	75,000
Total Fixed Cost	1,012,600	1,970,000	3,850,000	9,557,000

Source: Authors calculations based on field survey, 2017.

3.6. Cost of Cultivation of Crops under Protected Cultivation

The farmers of Almora district were cultivating the vegetables in small polyhouses. A diverse array of vegetables were taken up by the farmers, important among them being nine different types of vegetables namely, tomato, both early and long duration; cucumber; cauliflower; cabbage; capsicum; green pea; brinjal; and potato. The costs and returns of these major vegetables are illustrated in Table 10.
Table 10. Cost of cultivation of major vegetable crops cultivated under polyhouse in Almora district of Uttarakhand (size 100 m²; Amount in Rs).

Particulars	Long Duration Tomato	Short Duration Tomato	Cucumber	Cauliflower	Cabbage	Capsicum	Green Pea	Brinjal	Potato
Field preparation	833.3	833.3	908.3	1175.0	1154.2	1175.0	758.3	758.3	1050.0
Sowing	516.7	516.7	525.0	516.7	516.7	516.7	420.8	575.0	875.0
Fertilizer and manure	108.3	108.3	104.2	116.7	116.7	116.7	116.7	116.7	116.7
Weeding (women)	511.1	511.1	533.3	475.0	475.0	600.0	455.2	455.2	463.9
PPC	100.0	100.0	116.7	116.7	116.7	116.7	116.7	116.7	116.7
Irrigation	600.0	525.0	395.8	412.5	412.5	779.2	575.0	575.0	583.3
Harvesting cost (female)	833.3	700.0	594.4	344.4	365.6	558.3	558.3	558.3	498.0
Total male labour (man days)	7.2	6.9	5.5	6.4	6.3	6.4	4.7	5.2	7.2
Total female labour (man days)	6.7	6.1	5.6	4.1	4.2	5.8	5.1	5.1	5.1
Male Labour charges	2158.3	2083.3	1654.2	1925.0	1904.2	1925.0	1412.5	1566.7	2158.3
Female Labour charges	1344.4	1211.1	1127.8	819.4	840.6	1158.3	1013.6	1013.6	1022.2
total labour charges	3502.8	3294.4	2781.9	2744.4	2744.7	3083.3	2426.1	2580.2	3180.6
Input costs	719.4	719.4	195.6	486.1	479.2	554.2	554.2	554.2	495.8
Seeds	861.1	750	850.0	650.0	0.0	625.0	550.0	686.1	725.0
FYM	250.0	175	250.0	388.9	381.9	415.3	415.3	415.3	415.3
NPK	447.2	350	228.9	311.1	298.6	346.1	346.1	546.1	625.3
Picking	750.0	650	1000.0	0.0	0.0	436.1	0.0	0.0	0.0
Marketing cost	1866.7	1545	1827.8	991.7	1025.0	991.7	991.7	991.7	991.7
Total cost	8397	7484	7134	5572	4929	6016	5719	5774	6434
Production	737.5	515	1041.7	366.7	424.4	409.7	250.0	374.7	891.7
Average Price	31.6	31.6	20.0	32.2	20.0	32.2	40.0	40.0	20.0
Gross Return	22,125	16,274	20,833	11,000	8489	12,292	10,000	14,989	17,833
Net Return	13,803	8790	14,624	6078	3559	6901	4831	9215	11,461

Source: Authors calculations based on field survey, 2017.
The farmers cultivated mainly nine different types of vegetables in the polyhouses. The cost and returns of each of these crops are presented in Table 10. The cost incurred in raising these crops ranges from Rs 4929/- for cabbage to Rs 8397/- for tomato. The variable cost involved in cultivation of the vegetable crops is one of the important considerations for choice of the crops. It is observed that the net return ranges from Rs. 3559/- for cabbage to Rs 14624/- for cucumber. One of the major advantages of polyhouse cultivation of vegetables is that it is gender-neutral and even the females get equal opportunity to work and manage the cultivation.

Further, the table sheds light on the average production and returns from the cultivation of tomato under protected cultivation. The total cost of cultivation of tomato only under protected cultivation was Rs.8397. The average production was 738 quintals. The average price realized in the market was Rs.32 per kg. As revealed from the table, a net return of Rs.13,803 per 100 m² was realized from the cultivation of tomato.

The farmers cultivated a combination of crops under polyhouse based on resources, convenience and training. The majority of the farmers raised tomato and tomato-based cropping sequences. Tomato gave regular income on every alternate day, and there is well-developed marketing channel by which the harvest reaches the market. However, a few farmers did cultivate diversified crops on a 100 m² area generally to overcome market risk and to meet the home requirement of vegetables. This is revealed from Table 11, that the combination of three crops, namely brinjal–pea–potato, gives higher net returns per year of Rs. 25,507 and was followed by that from tomato–pea–potato, which resulted in a net return of Rs.25,082. Thus it is revealed that the farmers should cultivate more crops in a crop sequence to realize a higher return. Of course, this would involve a higher investment to meet out the variable cost of cultivation of more number of crops. If a farmer has four such playhouses then they can get a net return of Rs 102,028/-, which is more than sufficient to sustain a family in the villages of the mountainous district of Almora. It would also generate 128 man-days of productive employment. Thus promotion of polyhouse could be one of the solutions for preventing migration and also doubling the farmers income [4].

Table 11. The cropping pattern practiced under polyhouse cultivation in Almora district of Uttarakhand.

Cropping Pattern	Net Return Per Year (Rs)
Tomato (Pacheti)	13,803
Capsicum–Pea	11,732
Capsicum–Tomato	15,691
Cucumber–Pea	19,455
Cucumber–Tomato	23,414
Tomato–Pea	13,621
Tomato–Pea–Potato	25,082
Tomato–Cabbage	12,349
Brinjal–Pea–Potato	25,507
Cucumber–cauliflower	20,702

Source: Authors calculations based on field survey, 2017.

The costs of cultivation of gerbera under polyhouse in Dehradun district of Uttarakhand are displayed in Table 12. The polyhouses were classified based on the area of polyhouses, i.e., 1000 m², 2000 m², 4000 m², 10,000 m². The total cost of cultivation of gerbera under polyhouses was Rs. 3.42 lakhs, 5.98 lakhs, 13.22 lakhs, 33.57 lakhs for the polyhouses sizes of 1000 m², 2000 m², 4000 m², 10,000 m². The cost of bulbs forms the major cost, forming 60% to 65% of the total variable cost. The other major cost is the land preparation, application of farm yard manure (FYM), use of plant protection chemicals (PPC), packaging and transport of produce. The gerbera crop involves a huge investment in first year and remains in field for four years and it involves only maintenance cost.
Table 12. Cost of cultivation of gerbera for different size category of the polyhouses in Dehradun district of Uttarakhand (Rs).

Particulars	1000 m²	% to Total	2000 m²	% to Total	4000 m²	% to Total	10,000 m²	% to Total
Amount (Rs)	211,680	61.8	360,000	60.2	840,000	63.5	2,187,500	65.1
Bulb	500	0.1	833	0.1	16,000	1.2	68,333.3	0.2
Land preparation	10,080	2.9	20,000	3.3	40,000	3.0	100,000	3.0
Sowing	6720	2.0	13,333	2.2	26,667.2	2.0	66,666.7	2.0
Farm Yard Manure (FYM)	8571.4	2.5	16,667	2.8	88,524.6	6.7	100,000	3.0
FYM Labour	300	0.1	933	0.2	6300	0.5	4666.7	0.1
Rice Husk	2857.1	0.8	8000	1.3	9263.2	0.7	28,666.7	0.9
Rice Husk labour	300	0.1	800	0.1	583.3	0.0	4666.7	0.1
Neem khali	2857.1	0.8	3333	1.0	10,000	0.8	10,000	0.3
Inter-culture	3000	0.9	6250	1.0	15,789.5	1.2	28,000	0.8
Fertiliser	7056	2.1	28,000	4.7	29,473.7	2.2	105,000	3.1
Plant protection chemicals (PPC)	25,000	7.3	20,000	3.3	36,000	2.7	73,000	2.2
PPC labour	1200	0.4	2500	0.4	2800	0.2	7500	0.2
Irrigation labour	1200	0.4	3600	0.6	14,000	1.1	10,850	0.3
Irrigation electricity	10,000	2.9	12,000	2.0	18,000	1.4	21,000	0.6
Harvesting	2400	0.7	5000	0.8	10,500	0.8	36,000	1.1
Packaging	12,600	3.7	25,000	4.2	45,000	3.4	190,000	5.7
Transport	30,240	8.8	60,000	10.0	100,000	7.6	330,000	9.8
Rent	6000	1.8	12,000	2.0	13,333.3	1.0	47,500	1.4
Total Variable Cost	342,561.7	598,250	1,322,234	3,357,850				

Source: Authors’ calculations based on field survey, 2017

3.7. Feasibility of Protected Cultivation in Uttarakhand

The feasibility of the protected cultivation of vegetables in Almora under the wood-based and GI frame polyhouses and the feasibility of protected cultivation of flowers in Dehradun has been systematically evaluated. For this purpose, the project analysis tools were employed to estimate the B:C ratio (benefit–cost ratio), NPV (Net Present Value) and IRR (Internal Rate of Return) under three sets of scenarios viz.,

(a) With and without subsidy;
(b) Under three sets of discount i.e., 5%, 7.5% and 10%, which are comparable to the prevailing rate of interest for short term and term loans for agriculture from financial institutions [18,19]; and
(c) Different combinations of vegetable crops.

In cases without the subsidy for setting up of wood-based polyhouses and with discount rate of 5%, the IRR was found to range from 9.5% (capsicum–pea) to 32.6% (brinjal–pea–potato), depending on the crops raised by the farmers. The NPV ranged from Rs 22,135 to Rs 165,114/- and B:C ratio ranged from 1.22 to 2.66. Thus, on all three project analysis measures the protected cultivation of vegetables under the wood-based polyhouse is observed to be feasible. However, under the higher discount rate scenario, the feasibility is affected. This means that if one is not receiving any subsidy it is advisable to resort to low rate of fund raising for setting up of wood based polyhouse and to continue with the cultivation. Under the scenario with a subsidy along with a 5% discount rate, the wood-based protected cultivation of vegetables in Almora district is observed to be very profitable, with the IRR ranging from 16% (capsicum–pea) to 46.5% (brinjal–pea–potato). The NPV ranged from Rs 42,135/- to Rs 185,114/- and B:C ratio from 1.53 to 3.32 (Table 13). Thus, by all three evaluation measures, the protected cultivation of vegetables under wood-based polyhouse is found to be highly rewarding as the farmers receive the subsidy for setting up the polyhouse. The evaluation of protected cultivation of vegetables in Almora district with subsidy and at higher discount rate also the values of NPV, B:C ratio do not fall much and reveal the profitability of vegetable cultivation.
Table 13. Feasibility analysis of protected cultivation of vegetables under wood-based polyhouse in Almora district of Uttarakhand.

Crop Combination	Feasibility Criteria	without Subsidy			with Subsidy		
		5%	7.50%	10%	5%	7.50%	10%
NPV (Rs)							
Tomato		43,632	27,048	14,002	63,632	47,048	34,002
B:C ratio		1.44	1.29	1.15	1.80	1.63	1.48
IRR		13.5			21.2		
Capsicum–pea		22,135	8767	–1751	42,135	28,767	18,249
B:C ratio		1.22	1.09	0.98	1.53	1.38	1.26
IRR		9.5			16		
Capsicum–tomato		63,233	43,718	28,365	83,233	63,718	48,365
B:C ratio		1.63	1.46	1.31	2.05	1.85	1.68
IRR		16.9			25.6		
Cucumber–pea		96,589	72,084	52,808	116,589	92,084	72,808
B:C ratio		1.97	1.76	1.58	2.46	2.23	2.03
IRR		22			32.6		
Cucumber–tomato		143,396	111,890	87,107	163,396	131,890	107,107
B:C ratio		2.44	2.18	1.96	3.05	2.76	2.51
IRR		29			42		
Tomato–pea		41,742	25,441	12,617	61,742	45,441	32,617
B:C ratio		1.42	1.27	1.14	1.78	1.61	1.46
IRR		13.2			20.8		
Tomato–pea–potato		160,701	126,607	99,788	180,701	146,607	119,788
B:C ratio		2.61	2.34	2.10	3.27	2.96	2.69
IRR		31.9			45.6		
Tomato–cabbage		28,547	14,220	2948	48,547	34,220	22,948
B:C ratio		1.29	1.15	1.03	1.61	1.46	1.32
IRR		10.8			17.8		
Brinjal–pea–potato		165,114	130,360	103,022	185,114	150,360	123,022
B:C ratio		2.66	2.38	2.13	3.32	3.01	2.73
IRR		32.6			46.5		
Cucumber–cauliflower		115,243	87,948	66,478	135,243	107,948	86,478
B:C ratio		2.16	1.93	1.73	2.70	2.44	2.22
IRR		25.2			36.5		

Source: Authors calculations based on field survey, 2017.

The evaluation of GI frame polyhouses for cultivation of vegetables in Almoradistrict without subsidy at a lower discount rate of 5% reveals that very few crop combinations appear to be rewarding. Thus the farmer, has to be very enterprising and always on toe to be able to sustain himself. The profitability of vegetable cultivation deteriorates drastically with an increase in discount rate to 7.5% and 10%. However, the situation under the with subsidy and at 5% discount rate the IRR ranges from 15.5 to 44.7, the B:C ratio ranges from 1.45 to 3.25 and the NPV ranges from Rs 40,249/- to Rs 183,229/-. Thus, it is revealed that it is quite rewarding to cultivate vegetables under GI frame polyhouse setup with the help of subsidy.

Thus, it can be stated that the farmers should adopt multiple crops in order to maximize their returns. Secondly, provisioning of the subsidy would encourage more farmers to adopt polyhouse cultivation of vegetables in the hilly terrain of Uttarakhand (Table 14). Any public sector institution has limitations in granting subsidies on a long-term basis. It is therefore desired that the state government should further take up this initiative and help in the promotion of polyhouse cultivation of vegetables in the district of Almora with technical help from ICAR-VIPKAS. It was observed that in the sample region, only 20% of the farmers had adopted the state-government-promoted polyhouse. The state
government should take this initiative on a mass scale looking at the profitability and sustenance demonstrated by the ICAR-VIPKAS promoted polyhouses.

The feasibility of polyhouse cultivation of gerbera was evaluated and is presented in Table 15. It is observed that without subsidy, the cultivation of gerbera across different sizes of polyhouse is feasible with realizable IRR ranging from 24% to 39% across the various sizes of polyhouses. The B:C ratio even at the higher discount rates of 15% is observed to range from 1.22 to 1.41, revealing high profitability of cultivation of flowers in Dehradun under polyhouse. The IRR of gerbera cultivation with subsidy on playhouse ranges from 48% to 75%, while with subsidy on polyhouse and planting material, it ranges from 57% to 99%. Thus, it reveals that the protected cultivation of gerbera is a very attractive enterprise and it needs to be further promoted. It therefore reinforces the belief that the subsidy needs to be continued to further promote the adoption of polyhouse cultivation.

Table 14. Feasibility analysis of protected cultivation of vegetables under GI frame polyhouse in Almora district of Uttarakhand.

Crop Combination	Feasibility Criteria	without Subsidy	with Subsidy				
		5%	7.50%	10%	5%	7.50%	10%
Tomato	NPV (Rs)	−27,254	−43,838	−56,884	61,746	45,162	32,116
	B:C ratio	0.84	0.74	0.65	1.76	1.59	1.44
	IRR (%)	1.9	20.3				
Capsicum–pea	NPV (Rs)	−48,751	−62,119	−72,637	40,249	26,881	16,363
	B:C ratio	0.71	0.63	0.55	1.49	1.35	1.22
	IRR	−1%					
Capsicum–tomato	NPV (Rs)	−7653	−27,168	−42,521	81,347	61,832	46,479
	B:C ratio	0.96	0.84	0.74	2.00	1.81	1.64
	IRR	4.2					
Cucumber–pea	NPV (Rs)	25,703	1198	−18,078	114,703	90,198	70,922
	B:C ratio	1.15	1.01	0.89	2.41	2.18	1.97
	IRR	7.6					
Cucumber–tomato	NPV (Rs)	72,510	41,004	16,221	161,510	130,004	105,221
	B:C ratio	1.43	1.25	1.10	2.98	2.70	2.44
	IRR	12					
Tomato–pea	NPV (Rs)	−29,144	−45,445	−58,269	59,856	43,555	30,731
	B:C ratio	0.83	0.73	0.64	1.73	1.57	1.42
	IRR	1.70					
Tomato–pea–potato	NPV (Rs)	89,815	55,721	28,902	178,815	144,721	117,902
	B:C ratio	1.53	1.34	1.18	3.19	2.89	2.62
	IRR	13.50					
Tomato–cabbage	NPV (Rs)	−42,339	−56,666	−67,938	46,661	32,334	21,062
	B:C ratio	0.75	0.66	0.58	1.57	1.42	1.29
	IRR	0					
Brinjal–pea–potato	NPV (Rs)	94,228	59,474	32,136	183,228	148,474	121,136
	B:C ratio	1.55	1.36	1.20	3.25	2.94	2.66
	IRR	13.9					
Cucumber with	NPV (Rs)	44,357	17,062	−4408	133,357	106,062	84,592
cauliflower	B:C ratio	1.26	1.10	0.97	2.64	2.38	2.16
	IRR	9.4					

Source: Authors calculations based on field survey, 2017.
Table 15. Feasibility of polyhouse cultivation of Gerbera in Dehradun district of Uttarakhand, India.

	Benefit–Cost Ratio	Net Present Value (Lakh Rs)	IRR (%)					
	5%	7.50%	10%	15%	5%	7.50%	10%	15%
Without subsidy on polyhouses								
1000 m²	1.52	1.46	1.36	1.22	20	15	10	5
2000 m²	1.76	1.68	1.56	1.39	55	40	29	16
4000 m²	1.89	1.81	1.68	1.49	129	95	70	40
10,000 m²	1.83	1.74	1.60	1.41	308	223	158	85
With subsidy on polyhouse								
1000 m²	1.75	1.69	1.63	1.52	24	19	15	9
2000 m²	2.03	1.97	1.90	1.76	61	48	38	25
4000 m²	2.37	2.28	2.20	2.04	158	124	99	66
10,000 m²	2.27	2.19	2.12	1.97	384	301	240	159
With subsidy on polyhouse and planting material								
1000 m²	1.81	1.76	1.71	1.61	25	20	16	10
2000 m²	2.10	2.04	1.98	1.85	63	50	40	26
4000 m²	2.47	2.39	2.32	2.17	163	129	103	70
10,000 m²	3.04	2.93	2.82	2.61	460	364	293	199

Source: Authors calculation based on field survey, 2017.

3.8. Feasibility of Polyhouse Cultivation under the Climate Change Scenario

The cultivation of vegetables and flowers under polyhouses protects the crops from many of the aspects of climate change, like temperature, relative humidity, rainfall, etc. However, one such climate change event is the occurrence of storms, which damages the polyhouse structure itself. One such event had occurred in the recent past, and during the survey, it was observed that about 10% of farmers had left their polyhouses in damaged condition, where they were still practicing cultivation of vegetables. Most of the farmers had made temporary arrangements by way of repairing themselves with the help of adhesive tapes. A few farmers were lucky to have been granted with polysheets through local-level elected members. The recurrence of a storm is damaging the polyhouse structure, and this particular climatic event is quantified and has been used for simulating its impact on the feasibility of the polyhouse cultivation of vegetables and flowers. The analysis presumes that (i) storms occur once every five years, (ii) it damages the polysheets of the polyhouse and, finally, (iii) it brings down the production of vegetables and flowers to 50% of its potential in that year.

(a) Feasibility of wood-based polyhouses for vegetable cultivation: The vegetable cultivation under wood-based polyhouses reveals that under subsidy-based polyhouses, it remains feasible (Table 16). Thus, the farmer is better able to absorb the risk and continue with cultivation year after year. However, under the without subsidy scenario, it is observed that in very few crop combinations, the feasibility is observed and in most of the crop combinations, it is observed that the farmer suffers losses, and in many others, the return is not very attractive. It is this very reason of risk due to climatic factors that explains the behavior of the farmers to continue to look for the government subsidy to be able to adopt even such low-cost technology.

(b) Feasibility of GI frame polyhouses for vegetable cultivation: The feasibility of GI frame polyhouses for vegetable cultivation was also assessed under the situation of having faced a climatic risk (Table 17). It is observed that the number of crop combinations for which it remains feasible is further reduced, and very few crop combinations reveal feasibility. It is thus construed that it is not feasible to opt for GI-frame polyhouses for vegetable cultivation, and therefore, it calls for continuance of the subsidy to make it attractive for the farmers to adopt the technology of protected cultivation of vegetables.
Table 16. Feasibility analysis of protected cultivation of vegetables under wood-based polyhouse in Almora district of Uttarakhand under climate change situations.

Crop Combination	without Subsidy	with Subsidy				
	5%	7.5%	10%	5%	7.5%	10%
NPV (Rs)						
Tomato	23,710	9708	−1330	43,710	29,708	18,670
Capsicum with pea	3657	−7336	−16,005	23,657	12,664	3995
Capsicum with tomato	41,995	25,248	12,050	61,995	45,248	32,050
Cucumber with pea	73,111	51,694	34,821	93,111	71,694	54,821
Cucumber with tomato	116,774	88,804	66,773	136,774	108,804	86,773
Tomato with pea	21,947	8209	−2620	41,947	28,209	17,380
Tomato pea potato	132,917	102,524	78,586	152,917	122,524	98,586
Tomato with cabbage	9639	−2252	−11,638	29,639	17,748	8372
Brinjal pea potato	137,034	106,023	81,599	157,034	126,023	101,599
Cucumber with cauliflower	90,512	66,484	47,555	110,512	86,484	67,555
B:C ratio						
Tomato	1.22	1.09	0.99	1.49	1.35	1.24
Capsicum with pea	1.03	0.93	0.84	1.26	1.15	1.05
Capsicum with tomato	1.38	1.24	1.12	1.69	1.54	1.41
Cucumber with pea	1.67	1.5	1.35	2.04	1.85	1.69
Cucumber with tomato	2.06	1.85	1.67	2.52	2.3	2.1
Tomato with pea	1.2	1.08	0.97	1.47	1.34	1.22
Tomato pea potato	2.21	1.99	1.79	2.7	2.46	2.25
Tomato with cabbage	1.09	0.98	0.88	1.33	1.21	1.11
Brinjal pea potato	2.25	2.02	1.82	2.75	2.5	2.28
Cucumber with cauliflower	1.82	1.64	1.48	2.23	2.03	1.85
IRR (%)						
Tomato	10					
Capsicum with pea	6					
Capsicum with tomato	13					
Cucumber with pea	18					
Cucumber with tomato	25					
Tomato with Pea	9					
Tomato, Pea, Potato	27					
Tomato with Cabbage	7					
Brinjal pea potato	28					
Cucumber with cauliflower	21					

(c) Feasibility of GI frame polyhouses for flower cultivation: The cultivation of gerbera with protected cultivation under larger polyhouses has been estimated (Table 18). It is observed that the protected cultivation of gerbera is sustainable and viable even with the climatic risk. The reason is that the damage caused due to the climatic risk is much less in proportion to the total investment involved in such polyhouses. However, the feasibility of polyhouse cultivation of gerbera under the without subsidy scenario does not seem to be very attractive and thus entails the continuance of the subsidy scheme to further promote the adoption of the protected cultivation of gerbera.

3.9. Marketing Channel Followed by the Poly House Cultivators

The majority of the farmers are following marketing channel I and marketing channel III (Table 19). The reason being the vegetables are harvested almost every day and so the volume of production is small which is not feasible for individual polyhouse farmers to take it to the market on their own. Thus, they harvest the produce, pack it in plastic bags and transport it through the aggregator to the local wholesaler. These two channels are longer, such that the greater the number of intermediaries the lower the producers’ share in consumers’ share.

The gerbera cultivators follow three types of marketing channels (Table 20). Marketing channel I involves the sale of produce in the Dehradun market itself, which is consumed
locally. Those producers who have little volume of production or whose production cycle is in the third or fourth year follow marketing channel I. Marketing channel II is mainly followed by large-scale and professionally managed producers who directly sell their produce to the Delhi market. Marketing channel III is the most widely followed channel, especially by the new entrants in the field and those who are not able to devote more time in the farming business. Marketing channel I is followed by 10% of total producers, marketing channel II is followed by 15% of the total producer and the remaining 75% of producers follow marketing channel III. The price realization in marketing channel II is the highest, and therefore, the aim of all the producers should be to ultimately follow marketing channel II. This is possible by forming a farmer Producer Company, which would assist the farmers in seeking better-quality inputs and also help in accessing better markets for the produce.

Table 17. Feasibility analysis of protected cultivation of vegetables under GI-frame polyhouse in Almora district of Uttarakhand under climate change conditions.

Crop Combination	without Subsidy	with Subsidy				
	5%	7.50%	10%	5%	7.50%	10%
NPV (Rs)						
Tomato	−47,176	−61,178	−72,216	41,824	27,822	16,784
Capsicum with Pea	−67,229	−78,222	−86,891	21,771	10,778	2109
Capsicum with tomato	−28,891	−45,638	−58,836	60,109	43,362	30,164
Cucumber with pea	2225	−19,192	−36,065	91,225	69,808	52,935
Cucumber with tomato	45,888	17,918	−4113	134,888	106,918	84,887
Tomato with pea	−48,939	−62,677	−73,506	40,061	26,323	15,494
Tomato pea potato	62,031	31,638	7700	151,031	120,638	96,700
Tomato with cabbage	−61,247	−73,138	−82,514	27,753	15,862	6486
Brinjal pea potato	66,148	35,137	10,713	155,148	124,137	99,713
Cucumber with cauliflower	19,626	−4402	−23,331	108,626	84,598	65,669
B:C ratio						
Tomato	0.74	0.65	0.58	1.46	1.32	1.21
Capsicum with pea	0.63	0.55	0.49	1.24	1.13	1.03
Capsicum with tomato	0.84	0.74	0.65	1.65	1.51	1.37
Cucumber with pea	1.01	0.89	0.79	1.99	1.81	1.65
Cucumber with tomato	1.25	1.1	0.98	2.47	2.25	2.05
Tomato with pea	0.73	0.64	0.57	1.44	1.31	1.19
Tomato pea potato	1.34	1.18	1.05	2.64	2.41	2.19
Tomato with cabbage	0.66	0.58	0.51	1.3	1.18	1.08
Brinjal pea potato	1.37	1.2	1.06	2.69	2.45	2.23
Cucumber with cauliflower	1.11	0.97	0.86	2.18	1.99	1.81
IRR (%)						
Tomato	−1				15	
Capsicum with pea	−3				11	
Capsicum with tomato	2				19	
Cucumber with pea	5				26	
Cucumber with tomato	9				34	
Tomato with pea	−1				15	
Tomato pea potato	11				37	
Tomato with cabbage	−2				12	
Brinjal pea potato	11				38	
Cucumber with cauliflower	7				29	
Table 18. Feasibility of polyhouse cultivation of Gerbera under climate change conditions.

Sl. No.	Size of Polyhouse	Benefit–Cost Ratio	Net Present Value (Lakh Rs)	IRR (%)
		5%	7.5%	10%
A.	Without subsidy on polyhouse			
1000 m²	1.40	1.34	1.25	1.11
2000 m²	1.56	1.49	1.38	1.22
4000 m²	1.89	1.81	1.68	1.49
10,000 m²	1.83	1.74	1.60	1.41
B.	With subsidy on polyhouse			
1000 m²	1.55	1.49	1.43	1.32
2000 m²	1.86	1.79	1.73	1.60
4000 m²	2.16	2.08	2.00	1.85
10,000 m²	2.02	1.94	1.86	1.71
C.	With subsidy on polyhouse and planting material			
1000 m²	1.66	1.61	1.55	1.46
2000 m²	1.92	1.86	1.80	1.68
4000 m²	2.44	2.40	2.35	2.26
10,000 m²	2.93	2.79	2.66	2.42

Source: Authors calculation based on field survey, 2017.

Table 19. Marketing channel followed by the farmers of Almora for cultivation and sale of vegetables under polyhouses.

Marketing channel I	Producer ➔ Aggregator ➔ Wholesaler at Almora ➔ Retailer ➔ Consumer
Marketing channel II	Producer ➔ Wholesaler at Almora ➔ Retailer ➔ Consumer
Marketing channel III	Producer ➔ Aggregator ➔ Wholesaler at Haldwani ➔ Wholesaler at Delhi, Lucknow etc. ➔ Retailer ➔ Consumer
Marketing channel IV	Producer ➔ Wholesaler at Almora ➔ Wholesaler at Haldwani ➔ Retailer ➔ Consumer

Arrows indicate the channels of vegetables sold by the farmers.

Table 20. Marketing channel followed by the farmers of Dehradun for cultivation and sale of Gerbera under polyhouses.

Marketing channel I	Producer ➔ Wholesaler at Dehradun ➔ Retailer ➔ Consumer at Dehradun
Marketing channel II	Producer ➔ Wholesaler at Delhi ➔ Retailer ➔ Consumer at Delhi
Marketing channel III	Producer ➔ Aggregator ➔ Wholesaler at Delhi ➔ Retailer ➔ Consumer at Delhi

3.10. Constraints and Training Needs of Polyhouse Cultivators

(a) Constraints in Almora district for cultivation of vegetables under protected cultivation

The Garrett ranking technique was used to identify the constraints under protected cultivation. The results from Table 21 indicated that the polyhouse cultivators faced a number of constraints like non-availability of a proper market, poor price received,
unavailability of quality inputs, lack of transportation facility and non-availability of skilled labor. It was observed during the survey that about 50% of the farmers had reported damage in polythene sheets due to the heavy storm. The poor farmers did not resort to replacement of the polysheet of the polyhouse; rather, they were managing with it by repairing the sheets. In one village, the local Member of Legislative Assembly came forward to replace the damaged polythene sheets. Therefore, it is necessary to insure the polythene sheets, for which some insurance agencies should come forward to do the same. The Almora district lacks organized mandi for vegetables. The farmers are forced to sell their produce to the local wholesalers who donot pay the right price for their produce. The lack of connectivity from villages to the road and to the market is another major challenge the farmers face. The farmers need to organize themselves in the form of self-help groups/farmers producer organizations in order to be able to pool their resources and produce and enhance their bargaining power.

Table 21. Constraints faced by polyhouse farmers.

Particulars	% of Farmers Reported the Constraints	Rank
Non-availability of proper market	93.33	1
Poor price received	91.67	2
Non-availability of inputs	86.67	3
Transportation problems	83.33	4
Non-availability of skilled labor	80.00	5
Difficulty in getting subsidy	76.67	6
Difficulty in getting credit	75.00	7
Higher risk	75.00	7
High wages of labor	73.33	8
Lack of local technical expertise	71.67	9
Poor storage facilities	68.33	10
Lack of pack houses	66.67	11
Lack of processing facility	58.33	12
Lack of support from Govt./institution	53.33	13
High incidence of insect pest or diseases	50.00	14

Source: Authors calculations based on field survey, 2017.

The polyhouse cultivation being capital and knowledge-intensive the farmers expressed a need for training in a number of areas to improve their skill and knowledge. The major areas are vegetable cultivation, agronomic practices, nursery raising, and repairs and maintenance of the structures as shown in Table 22. The funds available under the HMNEH scheme are difficult to access by the poor farmers. The scope of the scheme and quantity of funds need to be enhanced so that the benefit of the scheme can be realized by the farmers. The Krishi Vigyan Kendra (Farm Science Centre) located in the Almora district comes under the GBPUAT (GovindBallabh Pant University of Agriculture And Technology), Pantnagar, Uttarakhand. It suffers from a lack of adequate funds for undertaking training sessions and demonstrations. There is a lack of polyhouses on farms, which could be used for the training and skill enhancement of the farmers of the region. The Uttarakhand government has created Mobile Horticulture units, which are located at block level. The people have high expectations from such units for provisioning of seeds, high-quality planting material, plant protection chemicals, etc. However, the people are not satisfied with these institutions for meeting the input requirements related to protected cultivation. There is no organized mandi in the Almora for vegetables. It is the presence of a few Arathias in the town to which the villagers and commission agents bring their produce. The buyers of the vegetables from the Arathias are the local vendors who often collude with each other while the auction is going on by these Arathias. Thus, the desired price is not realized by the producers in Almora market. The vegetable produce is also taken to the Haldwani market. These Arathias in these markets have developed contact with the producers of different districts of Uttarakhand. The farmer producers of Almorato
take the produce to Haldwani market. The Arathias provide credit for purchase of seeds, pesticide and fertilizers at the beginning of the season. They also provide credit to such producers during social functions like the marriage of children, death ceremony, festivals, etc. In this way, a long-term relationship is maintained between the producer and the Arathias. The farmers with the polyhouses developed by VIPKAS were very much satisfied with the scientific and technical advice they receive from scientists.

Table 22. Training needs of polyhouse cultivators.

Particulars	% of Farmers Reported the Need for Training	Rank
Vegetable cultivation	83.33	1
Agronomic practices	80.00	2
Nursery raising	75.00	3
Repair and maintenance of structures	66.67	4
Fertigation unit	61.67	5
Flower cultivation	50.00	6
Processing	48.33	7
Trainings on export aspects	45.00	8
Packaging	41.67	9

Source: Authors calculations based on field survey, 2017.

They have the phone numbers of the scientists and often call them to seek advice about the control for the pest and diseases. VIPKAS has adopted these villages under the MeraGaon and Mera Gaurav, and thus their scientists frequently visit these villages and offer advisory services.

(b) Constraints in Dehradun for cultivation of Gerbera under protected cultivation

The polyhouse cultivators of gerbera expressed a number of constraints, which demands the attention of policymakers. The high incidence of pests and diseases is one of the important constraints (Table 23). Lack of technical help is another constraint. The successful cultivators were totally dependent on the private planting material suppliers, who also provided the advisory services from time to time. The Krishi VignanKendrais located in Dehradun but is unable to cater to the needs of such highly skill-oriented enterprises that are dispersed all through the district. Though a few of the cultivators did report getting technical help, it needs to be further expanded. Marketing of the produce is another major challenge; as a result, the farmers had to sell the produce to the Delhi market to get a good price. Dehradun does not have flower mandi, which forces farmers to look for other markets. The small amount of produce that is harvested almost every day is aggregated by the transporter who collects from each of the polyhouses and then takes it to the Delhi market. The small volume and distant market add to the marketing cost of the flowers. At Dehradun, the polyhouses were also seen to have been ripped off by the storm. A few had repaired them and were managing with the polyhouse. A few others had replaced the polythene sheet. The farmers desired that the insurance firms should come forward to insure the structure against natural calamities. However, it was observed that the banks in their own interest were getting those insured, which was valid for the first few years till the loan amount was recovered, after which the insurance firms were not agreeing to insure the polyhouse structure. There should be policy-level decision to force the insurance firm to insure the structures of the polyhouses if the farmer wishes to do so.

Table 24 shows that the polyhouses cultivators of gerbera also expressed a need for training and skill development on various aspects of cultivation. The most important was for agronomic practices of cultivation of various flowers and vegetables under protected cultivation. Raising nurseries of flowers and vegetables was another aspect where the farmers felt the need for training. Application of liquid fertilizer is also a skillful task and demands a thorough understanding of the right dose and quantity of fertilizer to be applied. The control of pests and diseases is also a concern: once they attack the polyhouse, they are difficult to control unless the right kind of pesticide/fungicide is applied.
Table 23. Constraints in the adoption of polyhouse cultivation in Dehradun district of Uttaranchal.

Particulars	Rank
High incidence of insect pest or diseases	I
Lack of local technical expertise	II
Non-availability of skilled labor	III
Lack of support from government institutions	IV
Non-availability of proper market	VI
High wages of labor	VII
Poor price received	VIII
Difficulty in getting credit	VIII
High cost of planting material	IX
Difficulty in getting subsidy	IX
Transportation problems	X

Source: Authors calculations based on field survey, 2017.

Table 24. Training needs of polyhouse cultivators.

Particulars	Rank
Agronomic practices	I
Flower cultivation	II
Nursery raising	III
Vegetable cultivation	IV
Control of pest and diseases	IV
Fertigation unit	V
Repair and maintenance structure	VI
Export process and market identification	VII
Packaging	VIII

Source: Authors calculations based on field survey, 2017.

3.11. Reason for Discontinuation

About 20% of the sample polyhouses were observed to be abandoned by the cultivators. The higher risk associated with the polyhouse cultivation is one of the prime reasons for abandoning the cultivation under polyhouse (Table 25). This high risk is due to many factors. The use of poor quality of planting material emerged as the most important reason for higher risk. The cost of planting material in the case of gerbera is very high. The quality of planting material is very crucial to getting the right kind and quality of flowers. The polyhouse cultivation of gerbera demands the use of liquid fertilizer, which is again a very costly input and adds to the overall cost of cultivation of gerbera. Inadequate technical help is another major problem, which results in farmers not knowing how to control pests and diseases, leading to an increase in the cost of pesticide/fungicide used to control them. This adds to the cost and often loss of crops. The KVKs could come to the rescue of such specialized and highly knowledge-intensive enterprises. Lack of personal supervision has been another major cause for incurring loss leading to the abandonment of the polyhouse, since the businessmen/service personnel who already owned most of the previously occupied polyhouses left the polyhouses under the supervision of hired laborers/supervisors.
Table 25. Reasons for discontinuation of protected cultivation.

Particulars	Rank
Poor quality seeds/planting material	1
Costly seeds/planting material	2
Higher risk	2
Poor returns due to low price	2
Costly liquid fertilizer	3
Marketing problems	3
High maintenance cost	3
Inadequate technical help	3
Poor returns due to low yield	4
Nematode infestation	5
Lack of supervision	6
Poor cold chain facility	7
Lack of trainings	7
Subsidy on planting material/seed/fertilizer is not available	7
Natural calamities	8

Source: Authors calculations based on field survey, 2017.

4. Conclusions and Policy Implications

Uttarakhand is primarily a mountainous state, with only about 10% of its total geographical area in plains being intended for cultivation, and the productivity of vegetables is low. In addition, the migration of farmers is a growing concern, faced with climate-mediated risks. Therefore, the promotion of protected cultivation of vegetables and flowers offers one of the better solutions to overcome the problem. However, a number of schemes have been implemented by the state in cooperation with the center like State Horticulture Mission Scheme, Schemes of National Horticulture Board, etc. to promote the protected cultivation in the state. The polyhouse cultivation of vegetables and flowers in Almora and Dehradun districts, respectively, is a very profitable enterprise. The polyhouse cultivation prevalent in the region ranged from very low-cost wood-based polyhouses of size 100 m2 to a high-cost GI framed polyhouses of 10,000 m2 in size. However, there are some limitations of the study such; for example, (i) it is based on a medium sample size (number of farmers who practice protected cultivation); (ii) the extent of coverage was low, as small geographical regions were covered; and (iii) there were time and resource constraints in carrying out the project.

The Policy Implications Emerging from the Study Are as Follows

Polyhouse cultivation of vegetables and flowers in the region needs to be further promoted on a larger scale. However, the profitability of polyhouse cultivation under risk due to climatic events like heavy storm is reduced. However, it stills remains rewarding when taken up under a subsidy scheme. Hence, the policy on subsidy needs to be continued to encourage a large number of farmers to adopt the protected cultivation, which has already witnessed tremendous potential in the region and mitigates the risk involved in polyhouse cultivation. Further, the insurance agencies should be encouraged to insure the polyhouse structure against natural calamities. With regard to market development, flower mandi needs to be opened in the Dehradun region so that farmers get a better price for their produce in the nearest market. Start-ups or the agriclinic agencies should be founded in the region to provide advisory services to polyhouse cultivators of the region. Finally, the polyhouse cultivators should organize themselves and form farmer producer organizations so that they can better service themselves, be it the input delivery or the marketing of the produce. Several intentions will emerge from this study for future research studies; viz., (i) a large number of samples can be selected with adequate time and resources, (ii) comparative evaluation studies can be taken up with the crops grown under polyhouses versus crops taken up in open field conditions and (iii) different economic tools/indicators may be used to assess such the techno-economic feasibility of such projects.
Author Contributions: All authors contributed in preparation, analyses, writing, editing and approved the final version of the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: The research project was funded by the ICAR Extra Mural Project of Agricultural Extension Division. This research publication was financially supported by Vice Deanship of Research Chairs at King Saud University.

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are openly available in the public domain given in the references.

Acknowledgments: The authors express gratitude to the financial support of Vice Deanship of Research Chairs at King Saud University and ICAR-Indian Agricultural Research Institute, New Delhi for providing necessary facilities and support.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Crop yield in open field and protected cultivation in Uttarakhand.

Vegetables	Average Yield (Kg/ha)	% Increase Over Open	
	Open	Polyhouse	
Tomato	33,500	57,200	70.7
Capsicum	7500	37,700	402.7
Cucumber	67,300	67,300	0
Cauliflower (sown in August)	21,000	29,400	40
Garden pea (sown in August)		14,773	
Tomato [20]	11,000	52,500	377.3
Tomato [21]	6000	20,300	238.3
Brinjal [21]	4500	30,700	582.2
Cabbage [21]	65,800	139,600	112.2
Cauliflower [21]	38,500	125,500	225.9
Capsicum [21]	2000	21,100	955
Beans [21]	50,000	191,000	282
Pea [21]	17,000	130,000	664.7
Coriander [21]	12,000	50,000	316.7

References

1. GoI. *Agricultural Statistics at a Glance,* 2019; Ministry of Agriculture and Farmers Welfare, Government of India: New Delhi, India, 2020.
2. GoUK. *Uttarakhand Action Plan on Climate Change-Transforming Crisis into Opportunity;* Government of Uttarakhand: Dehradun, India, 2014. Available online: http://www.moef.gov.in/sites/default/files/Uttarakhand%20SAPCC.pdf (accessed on 8 May 2018).
3. *Annual Report 2011–2012;* Vivekananda Parvatiya Krishi AnusandhanSansthan (VIPKAS): Almora, India, 2012; pp. 72–73.
4. Bhatnagar, P.R. Strategies for Protected Cultivation for Small and Marginal Farmers in India. In *Agriculture: Towards a New Paradigm of Sustainability;* Excellent Publishing House: New Delhi, India, 2015; pp. 158–166. ISBN 978-93-83083-64-0. Available online: http://www.krishisanskriti.org/vol_image/07Sep201505091128.pdf (accessed on 8 May 2018).
5. Singh, V.P.; Singh, P.K.; Bhatt, L.; Maurya, S.K.; Jeena, A.S. Low cost protected structures for enhancing productivity and livelihood security of farming community of Uttarakhand hills-An Overview. *Progress. Res.* 2013, 8, 155–159.
6. *Annual Report, 2006–2007;* Department of Agriculture and Education and Indian Council of Agricultural Research, Ministry of Agriculture: New Delhi, India, 2007; Available online: https://icar.org.in/files/art0607/11-Tribal-and-hill.pdf (accessed on 8 May 2018).
7. Varkey, L.M.; Kumar, P. Price risk management and access to finance for rubber growers: The case of price stabilization fund in Kerala. *Indian J. Agric. Econ.* 2012, 66, 65–88.

8. Viswanatha Reddy, K.; Kumar, P. An Economic Appraisal of Mango Processing Plants of Chittoor District in Andhra Pradesh. *Indian J. Agric. Econ.* 2010, 65, 277–297.

9. GOI. *Horticulture Database-2010-11*; National Horticulture Board, Ministry of Agriculture, GOI: New Delhi, India, 2010.

10. GOI. *Horticulture Database-2014-15*; National Horticulture Board, Ministry of Agriculture, GOI: New Delhi, India, 2014.

11. NHB (Various issues). In *Indian Horticulture Database*; National Horticulture Board, Ministry of Agriculture and Farmers Welfare, GoI: New Delhi, India, 2020.

12. Government of India. *Directorate of Horticulture and Food Processing*; Government of Uttarakhand: Chaubatiya, India, 2017.

13. GOI. *Horticulture Mission for North East and Himalayan States, Operational Guidelines-2010*; GoI: New Delhi, India, 2010.

14. Mission for Integrated Development of Horticulture (MIDH); Ministry of Agriculture and Farmers Welfare; Government of India. Available online: http://midh.gov.in (accessed on 12 July 2017).

15. Official Records of State Horticulture Department, Uttarakhand. Available online: https://shm.uk.gov.in/ (accessed on 15 July 2017).

16. Impact Evaluation of National Horticulture Mission (NHM) and Horticulture Mission for North East and Himalayan States (HMNEH). Available online: http://midh.gov.in (accessed on 20 July 2017).

17. Available online: http://nhb.gov.in/nhb_beneficiaries.aspx (accessed on 20 July 2017).

18. Bishta, D.R.; Kumar, P.; Mathur, V.C. Progress and performance of kisan credit card scheme with a case study of Bihar. *Agric. Econ. Res. Rev.* 2012, 25, 125–135.

19. Prakash, P.; Kumar, P. Performance of kisan credit card scheme in Tamil Nadu. *Indian J. Agric. Econ.* 2016, 71, 191–211.

20. Jethi, R.; Srinivas, K.; Bisht, J.K. Economics of production of tomato under open and protected field conditions in hills of Uttarakhand. *Indian J. Agric. Econ.* 2012, 48, 13–16.

21. Negi, V.S.; Maikhuri, R.K.; Rawat, L.S.; Parshwan, D. Protected Cultivation as An Option of Livelihood in Mountain region of Central Himalaya, India. *Int. J. Sustain. Dev. World Ecol.* 2013, 20, 416–425. Available online: https://www.researchgate.net/publication/263215235_Protected_cultivation_as_an_option_of_livelihood_in_mountain_region_of_central_Himalaya_India (accessed on 3 May 2018). [CrossRef]