Interactions Among lncRNA/circRNA, miRNA, and mRNA in Musculoskeletal Degenerative Diseases

Yi-Li Zheng1†, Ge Song1†, Jia-Bao Guo2, Xuan Su1, Yu-Meng Chen1, Zheng Yang1, Pei-Jie Chen1* and Xue-Qiang Wang1,3*

1 Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China, 2 The Second School of Clinical Medicine, Xuzhou Medical University, Xuzhou, China, 3 Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China

Musculoskeletal degenerative diseases (MSDDs) are pathological conditions that affect muscle, bone, cartilage, joint and connective tissue, leading to physical and functional impairments in patients, mainly consist of osteoarthritis (OA), intervertebral disc degeneration (IDD), rheumatoid arthritis (RA) and ankylosing spondylitis (AS). Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) are novel regulators of gene expression that play an important role in biological regulation, involving in chondrocyte proliferation and apoptosis, extracellular matrix degradation and peripheral blood mononuclear cell inflammation. Research on MSDD pathogenesis, especially on RA and AS, is still in its infancy and major knowledge gaps remain to be filled. The effects of lncRNA/circRNA-miRNA-mRNA axis on MSDD progression help us to fully understand their contribution to the dynamic cellular processes, provide the potential OA, IDD, RA and AS therapeutic strategies. Further studies are needed to explore the mutual regulatory mechanisms between lncRNA/circRNA regulation and effective therapeutic interventions in the pathology of MSDD.

Keywords: degenerative musculoskeletal disorders, aging, age-related disease, non-coding RNAs, miRNA, circRNA, lncRNA

INTRODUCTION

Musculoskeletal degenerative diseases (MSDDs) are pathological conditions that affect muscle, bone, cartilage, joint and connective tissue, leading to physical and functional impairment in patients (Chen Y. et al., 2017; Huo et al., 2018). With the acceleration of the global aging process, the prevalence of MSDD is increasing. This is a huge challenge for patients and healthcare workers, and adds to the global healthcare burden (Li and Chen, 2019). The main MSDD consists of osteoarthritis (OA), intervertebral disc degeneration (IDD), rheumatoid arthritis (RA), and ankylosing spondylitis (AS) (Vinatier et al., 2016; Huo et al., 2018; Loef et al., 2018). OA is a chronic age-related MSDD, featuring for subchondral bone thickening, articular cartilage degradation, and osteophyte formation (Loeser et al., 2012; Hunter and Biema-Zeinstra, 2019). IDD is also age-related and is caused by progressive degeneration of the disk (Yang S. et al., 2020), causing loss of disk height, reduced hydration and decreased potential to absorb load (Samartzis et al., 2011; Cooper et al., 2016). RA is an autoimmune disease characterized by aggressive arthritis that can...
lead to joint deformities and loss of function (Smolen et al., 2016). AS, a rare but clear cause of chronic back pain, is an inflammatory disease involving the spine, sacroiliac joints and other joints (Taurog et al., 2016). OA and IDD became mainly responsible for MSDD. Their common character is the broken dynamic equilibrium between catabolism and anabolism in the extracellular matrix (ECM). On the one hand, chondrocytes is only resident cells in the articular system, the ECM degeneration in OA is led by chondrocytes' catabolic and abnormal differentiation (Zhou Z.B. et al., 2019). Cartilage cellularity is reduced in OA because of chondrocyte death. On the other hand, ECM breakdown and abnormal matrix synthesis in IDD is responsible by nucleus pulposus (NP) cells, which are predominant cells in the NP tissue (Fontana et al., 2015). Excessive apoptosis of NP cells could accelerate IDD progression (Zhao et al., 2006). Meanwhile, endplate cartilage degeneration is another risk factor of IDD (Iwakura et al., 2013) due to its irreplaceable nutrition supplement of intervertebral disk (Yuan et al., 2015). Although multiple factors are involved in the pathogenesis of MSDD (Li and Chen, 2019), the development of molecular mechanism of MSDD is still poor. Thus, it is urgent to discover new biomarkers to optimize MSDD early diagnosis and treatment.

With the development of sequencing technology, recent advances have shown that about 98% of the human genome is composed of non-coding RNAs (ncRNAs). In the past, ncRNAs were thought to act as ‘evolutionary junk.’ However, an increasing amount of evidence reported that ncRNAs play an important role in biological regulation (Beermann et al., 2016; Vieira et al., 2018). The main types of ncRNAs include long non-coding RNA (lncRNA), circular RNA (circRNA) and microRNA (miRNA) (Beermann et al., 2016). Recently, extensive evidence suggested that ncRNAs play a vital role in the development of MSDD (Chen W.K. et al., 2017; Yu and Sun, 2018; Wang J. et al., 2019). Moreover, circRNA and lncRNA can interact with miRNA to further regulate downstream target mRNA in the MSDD and play regulatory roles in numerous biological functions, such as proliferation, apoptosis and inflammation. In this review, we focused on the role of lncRNA/circRNA-miRNA-mRNA axis in the development of MSDD and further explored related molecular mechanism of MSDD.

INTERACTIONS BETWEEN IncRNA/circRNA and miRNA

Interactions Between IncRNA and miRNA

MicroRNAs are encoded by endogenous genes, are approximately 20 nucleotides in length and are non-coding single-stranded RNA molecules (Beermann et al., 2016). Since they were first described in Caenorhabditis elegans, the number of miRNAs that have been found in mammals increased (Lee et al., 1993). miRNA is evolutionarily conserved and regulates gene expression at the post-transcriptional level by interfering with mRNA translation and degradation (Zhang et al., 2020b). With

Interactions Between circRNA and miRNA

As endogenous RNAs, circRNAs are characterized by covalent loop structures without 5′–3′ polarity nor a polya-adenylated tail (Zhou et al., 2018). Different from linear RNA, circRNAs are inherently conserved due to their closed covalent structure and resistance to exonucleases; they are considered to be stable in exosomes (Haque and Harries, 2017). circRNAs are classified into four...
types according to their origin, namely, exonic circRNAs, exon-intron circRNAs, intronic circRNAs and intergenic circRNAs (Deng et al., 2016). A growing number of studies indicate that circRNAs exist miRNA complementary binding sites to interact with miRNAs, thereby playing regulatory roles in diseases and effecting in many biological processes, such as inflammation, apoptosis and ECM degradation, by participating in the modulation of transcriptional and post-transcriptional levels (Rong et al., 2017; Verduci et al., 2019). The mechanisms included circRNAs acting as miRNAs sponges and miRNAs regulating circRNAs (Kulcheski et al., 2016). For instance, the circAnks1a could regulate VEGFB (vascular endothelial growth factor-B) expression to suppress the excitability of spinal cord by sponging miR-324-3p in neuropathic pain (Zhang S.B. et al., 2019). Pan et al. (2019) elucidated that the miR-1224 could mediate circRNA-Filip1 expression through regulating Ubr5 in the spinal cord of chronic inflammatory pain mice. Although circRNAs are generally considered as ncRNAs because of non-linear structure, several circRNAs, such as CircFBXW7 (Ye et al., 2019) and Circ-EGFR (Liu et al., 2021), are proved to have translation functions due to its translatable open reading frame containing a start codon. The cap-independent translation pathway is thought to be the main mechanism of circRNA translation to encode protein (He et al., 2021). Combined with the above explanation, currently known that circRNAs can interact with proteins or act as miRNA sponges and regulate the expression of upstream gene to participate in the process of diseases development. In recent years, circRNAs have become a research hotspot in MSDD and showed great potential as biomarkers and therapeutic targets (Li H.Z. et al., 2018; Lei B. et al., 2019; Wu et al., 2019).

INTERACTIONS AMONG IncRNA, miRNA, AND mRNA IN DEGENERATIVE MUSCULOSKELETAL DISEASES

Osteoarthritis

In the past decade, quite number of studies have shown that the interaction between lncRNAs and miRNAs is involved in the multiple biological processes of OA, such as inflammation, proliferation, apoptosis, autophagy, cell viability and ECM degradation (Table 1). The major interaction mechanism between IncRNA and miRNA in OA was that IncRNAs as ciRNAs acts as miRNAs sponges. Wang Q. et al. (2017) reported that the expressions of IncRNA OPN and NEAT1 significantly increased, whereas that of miR-181c decreased. According to luciferase assays, mir-181c could combine with NEAT1 and 3'UTR of OPN in synoviocytes, leading to NEAT1 competing with OPN for binding with miR-181c and further enhancing the level of OPN. Chen Y. et al. (2020) showed that IncRNA HOTAIR (HOX transcript antisense intergenic RNA) and mRNA PTEN (phosphatase and tensin homolog) was significantly increased in the OA mice, whereas miR-20b decreased. HOTAIR was involved in the process of apoptosis and ECM degradation by sponging miR-20b and regulating the downstream target PTEN. Lu and Zhou (2020) revealed that IncRNA00662 was downregulated in the cartilage of OA rats. The expression of miR-15b-5p was negative with IncRNA00662, whereas the expression of GPR120 was positively correlated with IncRNA00662. IncRNA00662 regulated GPR120 in apoptosis by serving as a sponge for miR-15b-5p. Sun P. et al. (2020) also studied the effect of XIST on OA patients and showed that XIST upregulated SGTB and inhibited the depression on SGTB induced by miR-142-5p through sponging miR-142-5p. Another study reported that the level of Inc00623 and HRAS was downregulated, whereas miR-101 was increased in OA tissues compared with normal tissues (Lü et al., 2020). Based on luciferase reporter, miR-101 could combine with Inc00623 and HRAS. Inc00623 sponges miR-101 through competing with HRAS, thereby preventing the miR-101-induced depression on HRAS. Some other IncRNAs act as miRNA sponges in OA and more detailed information is presented in Table 1.

Intervertebral Disk Degeneration

The mechanism by which IncRNA and miRNA act on IDD that has been most studied is as follows: IncRNA acts as the sponge of miRNA to modulate target genes (Figure 1). Xi et al. (2017) demonstrated that IncRNA HCG18 was upregulated in the IDD and plays the sponge roles of miR-146a-5p in NP cells. HCG18 is involved in the progression of cell proliferation and apoptosis in NP cells via the miR-146a-5p/TARF6/NF-kB axis. Compared with normal NP tissues, IncRNA SNHG1 (small nucleolar RNA host gene 1) expression was boosted and miR-326, a target gene of SNHG1, was reduced in IDD samples (Tan et al., 2018). Moreover, miR-326 could directly bind with Cyclin D1 (CCND1), and the level of CCND1 in the NP cells markedly increased. Thus, Tan et al. (2018) observed that SNHG1 modulates NP cells proliferation via sponging miR-326 and further regulating CCND1. Another study reported that IncRNA H19 was upregulated in the IDD tissues and could activate Wnt/β-catenin signaling pathway (Wang et al., 2018d). Moreover, miR-326 could directly bind with Cyclin D1 (CCND1), and the level of CCND1 in the NP cells markedly increased. Thus, Tan et al. (2018) observed that SNHG1 modulates NP cells proliferation via sponging miR-326 and further regulating CCND1. Another study reported that IncRNA H19 was upregulated in the IDD tissues and could activate Wnt/β-catenin signaling pathway (Shao et al., 2019). Another research suggested that LINC00641 level increased in NP tissues, whereas miR-153-3p level decreased. ATG5 (autophagy-related gene 5) was a downstream gene of miR-153-3p and upregulated in NP cells (Wang J. et al., 2019). Moreover, LINC00641 could sponge miR-153-3p, and thereby regulate the level of ATG5, cell death and the progression of IDD. Yang Y. et al. (2019) elucidated that IncRNA lincRNA-SLC20A1 (SLC20A1) was overexpressed in IDD patients, and SLC20A1 could induce ECM degradation via sponging miR-31-5p and further modulating the downstream target gene MMP3. Another study established that the level of IncRNA PART1 and mRNA matrix metallopeptidase 2 (MMP2) in NP tissues were significantly higher than those in the control groups, whereas
TABLE 1 | lncRNA/miRNA/mRNA networks in osteoarthritis.

Species	Diseases	Region	InCRNA	Change	miRNA	Expression	Target gene	Change	Functions	References
Human	OA	Cartilage	H19	Up	miR-675	Up	COL2A1	Up	Inflammation	Steck et al., 2012
Human, mice	OA	Cartilage, chondrocyte	GAS5	Up	miR-21	Down	MMPs, ADAMTS-4	Up	Cell apoptosis and autophagy	Song et al., 2014
Human	OA	Cartilage, chondrocyte	IncRNA-MSR	Up	miRNA-152	Down	TMSB4	Up	ECM degradation	Liu et al., 2016a
Human	OA	Cartilage, chondrocyte	UFC1	Down	miR-34a	Up –	–	–	Cell proliferation and apoptosis	Zhang et al., 2016
Human	OA, C28/I2 cells	Cartilage	HOTAIR	Up	miR-17-3p	Down	ETV1	Up	Cell apoptosis and inflammation	Chen H. et al., 2017
Human	OA	Cartilage	IncRNA PVT1	Up	miR-488-3p	Down	–	–	Cell apoptosis	Li Y. et al., 2017
Human	OA	Cartilage, chondrocyte	IncRNA CiR	Up	miR-27	Down	MMP13	Up	ECM degradation	Li Y.F. et al., 2017
Human	OA	Cartilage, chondrocyte	IncRNA -UCA1	Up	miR-204-5p	Down	MMP13	Up	Cell proliferation	Wang G. et al., 2017
Human	Synovium tissues	synoviocytes	NEAT1	Up	miR-181c	Down	OPN	Up	Cell proliferation	Wang Q. et al., 2017
Rats	OA	Cartilage, chondrocyte	IncRNA MEG3	Down	miR-16	Up	SMAD7	Down	Cell proliferation and apoptosis	Xu and Xu, 2017
Human	OA	Cartilage, chondrocyte	IncRNA FOXD2-AS1	Up	miR-206	Down	CCND1	Up	Cell proliferation and apoptosis	Cao et al., 2018
Human	OA	Cartilage, chondrocyte	DANCR	Up	miR-577	Down	SphK2	Up	Cell proliferation and apoptosis	Fan et al., 2018
Human	OA, C28/I2 cells	Cartilage	HOTAIR	Up	miR-17-5p	Down	FUT2	Up	Cell proliferation, apoptosis and ECM degradation	Hu et al., 2018
Human	OA	Cartilage, chondrocyte	XIST	Up	miR-211	Down	CXCR4	Up	Cell proliferation and apoptosis	Mohammad et al., 2018
Human	OA	Cartilage, chondrocyte	MALAT1	Up	miR-127-5p	Down	P38K/Akt	Up	Cell proliferation	Liang et al., 2018
Mice	OA	Cartilage, chondrocyte	IncRNA-KLF3-AS1	Up	miR-206	Down	Git1	Up	Cell proliferation and apoptosis	Liu et al., 2018
Human	OA	Cartilage, chondrocyte	IncRNA CiR	Up	miR-130a	Down	Bim	Up	Cell apoptosis and inflammation	Lu Z. et al., 2019
Murine	OA, Chondrogenic ATDC5 cells	Chondrocyte	MALAT1	Up	miR-19b	Down	Wnt/b-catenin and NF-kB pathways	Up	Cell apoptosis and inflammation	Pan et al., 2018
Human	OA	Cartilage, chondrocyte	IncRNA SNHG5	Down	miR-26a	Up	SOX2	Down	Cell proliferation	Shen et al., 2018
Human	OA, cartilage ATDCS cells	Cartilage	IncRNA RP11-445H22.4	Up	miR-301a	Down	CXCR4	Up	Cell viability, apoptosis and inflammation	Sun et al., 2018
Human	OA	Cartilage, chondrocyte	IncRNA -p21	Up	miR-451	Down –	–	–	Cell apoptosis	Tang L. et al., 2018
Human	OA, ATDCS cell	Cartilage	IncRNA TUG3	Up	miR-195	Down	MMP13	Up	ECM degradation	Tang L.P. et al., 2018
Human	OA	Cartilage, chondrocyte	MEG3	Down	miR-203	Up	Sirt1	Up	Cell viability, apoptosis and inflammation	Wang et al., 2018e
Human	OA	Cartilage, chondrocyte	IncRNA DANCR	Up	miR-216a-5p	Down	JAK2/STAT3 signal pathway	Up	Cell proliferation, apoptosis and inflammation	Zhang et al., 2018
Human	OA	Cartilage, chondrocyte	PVT1	Up	miR-149	Down –	–	–	Inflammation	Zhao et al., 2018
Human	OA	Cartilage, chondrocyte	IncRNA DNM3OS	Down	miR-126	Up	IGF1	Down	Cell proliferation and apoptosis	Ai and Yu, 2019
Rats	OA	Cartilage, chondrocyte	MEG3	Down	miR-93	Up	TGFBR2	Down	Cell proliferation, apoptosis and ECM degradation	Chen et al., 2019

(Continued)
Species	Diseases	Region	IncRNA	Change	miRNA	Expression	Target gene	Change	Functions	References
Human	OA	Cartilage, ATDCS cells	lncRNA-HULC	Down	miR-101	Up	NF-κB and p38MAPK signaling pathways	Down	Inflammation	Chu et al., 2019
Human	OA	Synovial fluid, chondrocytes	MCM3AP-AS1	Up	miR-142-3p	Down	HMG1B	Up	Cell apoptosis	Gao et al., 2019
Human	OA	LPS-treated C28/I2 cells	H19	Up	miR-130a	Down	–	–	Cell viability, apoptosis, and inflammation	Hu et al., 2019
Human	OA	Cartilage, chondrocyte	TNFSF10	Up	miR-376-3p	Down	FGFR1	Up	Cell proliferation, apoptosis, and inflammation	Huang et al., 2019
Human	OA	Cartilage, chondrocyte	IncRNA SNHG1	Down	miR-16-5p	Up	p38MAPK and NF-κB signaling pathways	Down	Inflammation	Lei J. et al., 2019
Human	OA	LPS-treated ATDCS cells	MIAT	Up	miR-132	Down	NF-κB and JNK pathways	Up	Cell apoptosis and inflammation	Li et al., 2019a
Rats	OA	LPS-treated chondrocytes	MALAT1	Down	miR-146a	Up	PI3K	Down	ECM degradation, inflammation and apoptosis	Li et al., 2019b
Human	OA	Cartilage, synoviocytes	IncRNA-ANRIL	Up	miR-122-5p	Down	DUSP4	Up	Cell proliferation and apoptosis	Li et al., 2019c
Human	OA	LPS-treated ATDCS cells	PMS2L2	Down	miR-203	Up	MCL-1	Down	Cell viability, apoptosis, and inflammation	Li et al., 2019d
Human	OA	Cartilage, chondrocyte	IncRNA-TM1P3	Down	miR-22	Up	ALK1	Up	ECM degradation	Li et al., 2019e
Human	OA	IL-1β-induced chondrocytes	MALAT1	Up	miR-145	Down	ADAMTS5	Up	ECM degradation	Liu C. et al., 2019
Murine	OA	LPS-induced ATDCS cells	THRIL	Up	miR-125b	Down	JAK1/STAT3 and NF-κB pathways	Up	Inflammation	Liu G. et al., 2019
Human	OA	Cartilages, chondrocytes	PART-1	Down	miR-590-3p	Up	TGFBR2, Smad3	Down	Cell viability and apoptosis	Lu C. et al., 2019
Human	OA	hMSC, cartilage, chondrocytes	HOTTIP	Up	miR-455-3p	Down	CCL3	Up	Cartilage degradation	Mao et al., 2019
Human	OA	Chondrocytes	Nespas	Up	miR-291a-3p, miR-196a-5p, miR-23a-3p, miR-24-3p, miR-let-7a-5p	Down	ACSL6	Up	Lipid metabolism	Park et al., 2019
Human	OA	Synovial fluid, chondrogenic cell line ChOND-001	CAIF	Down	miR-1246	Up	IL-6	Up	Cell apoptosis	Qi et al., 2019
Human	OA	Cartilage, chondrocyte	MEG3	Down	miR-361-5p	Up	FOXO1	Down	Cell proliferation, apoptosis and ECM degradation	Wang A. et al., 2019
Human, rats	OA	Chondrocyte (Human) cartilage (rat)	XIST	Up	miR-1277-5p	Down	MMP-13, ADAMTS5	Up	ECM degradation	Wang T. et al., 2019
Human	OA	Cartilage, chondrocyte	FOXD2-A31	Up	miR-27a-3p	Down	TLR4	Up	Cell proliferation, inflammation and ECM degradation	Wang Y. et al., 2019
Human	OA	Synovium, chondrocyte	NEAT1	Down	miR-181a	Up	GPD1L	Down	Cell proliferation, apoptosis and inflammation	Wang Z. et al., 2019
Human	OA	Cartilages, mesenchymal stem cells (MSCs)	HOTAIRM1-1	Down	miR-125b	Up	BMPR2	Down	Cell viability, apoptosis and differentiation	Xiao et al., 2019
Species	Diseases	Region	IncRNA	Change	miRNA	Expression	Target gene	Change	Functions	References
---------	----------	--------	--------	--------	--------	------------	-------------	--------	-----------	------------
(49) Human	OA Cartilages, chondrocyte	LINC00341	Down	miR-141	Up	YAF2	Down	Cell apoptosis	Yang Q. et al., 2019	
(50) Murine	OA LPS-induced ATDC5 cells	IncRNA-ATB	Down	miR-223	Up	MyD88/NF-kB and p38 MAPK pathways	Up	Cell viability, apoptosis and inflammation	Ying et al., 2019	
(51) Mice	OA IL-6-induced ATDC5 cells	CHRF	Up	miR-146a	Down	/	/	Cell viability, apoptosis and inflammation	Yu et al., 2019	
(52) Human	OA Cartilage, chondrocyte	H19	Up	miR-106a-5p	Down	/	/	Cell proliferation and apoptosis	Zhang X. et al., 2019	
(53) Human	OA Cartilage, chondrocyte	MALAT1	Up	miR-150-5p	Down	AKT3	Up	Cell proliferation, apoptosis and ECM degradation	Zhang Y. et al., 2019	
(54) Human	OA Cartilage, chondrocyte	PART1	Up	miR-373-3p	Down	SOX4	Up	Cell proliferation, apoptosis and ECM degradation	Zhu and Jiang, 2019	
(55) Mice	OA Cartilage, chondrocytes	HOTAIR	Up	miR-20b	Down	PTEN	Up	Cell apoptosis and ECM degradation	Chen Y. et al., 2020	
(56) Human	OA Cartilage, chondrocytes	HOTAIR	Up	miR-130A-3p	Down	–	–	Cell apoptosis	He and Jiang, 2020	
(57) Human	OA Cartilage, chondrocyte	GAS5	Up	miR-34a	Down	Bcl-2	Up	Cell apoptosis	Ji Q. et al., 2020	
(58) Rat	OA BMSCs	BLACAT1	Up	miR-142-5p	Down	–	–	Cell proliferation and differentiation	Ji Y. et al., 2020	
(59) Human	OA Cartilage, chondrocyte	NEAT1	Up	miR-16-5p	Down	–	–	Cell proliferation and apoptosis	Li D. et al., 2020	
(60) Human	OA Cartilage, chondrocyte	XIST	Up	miR-376c-5p	Down	OPN	Up	Cell apoptosis	Li L. et al., 2020	
(61) Human	OA Cartilage, chondrocyte	NEAT1	Up	miR-193a-3p	Down	SOX5	Up	Cell apoptosis, inflammation and ECM degradation	Liu et al., 2020	
(62) Human	OA Cartilage, chondrocyte	LINC00623	Down	miR-101	Up	HRAS	Down	Cell apoptosis, senescence and ECM degradation	Lü et al., 2020	
(63) Rat	OA Cartilage, chondrocyte	LINC00662	Down	miR-15b-5p	Up	GPR120	Down	Cell apoptosis	Lu and Zhou, 2020	
(64) Human	OA Cartilage, LPS-treated C28/I2 cells	MIR2-AS1	Up	miR-130a-3p	Down	TCF4	Up	Cell viability, apoptosis, inflammation and ECM degradation	Luo et al., 2020	
(65) Human	OA Cartilage, chondrocyte	XIST	Up	miR-142-5p	Down	SGTB	Up	Cell growth, proliferation and apoptosis	Sun P. et al., 2020	
(66) Human	OA Synovial fluid, chondrocyte	CASC2	Up	miR-93-5p	Down	–	–	Cell apoptosis	Sun Y. et al., 2020	
(67) Human, Rats	OA Cartilage (human), chondrocyte (rats)	H19	Down	miR-100b-5p	Up	TIMP2	Down	Cell proliferation, migration and ECM degradation	Tan et al., 2020	
(68) Human	OA Cartilage, chondrocyte	SNHG7	Down	miR-34a-5p	Up	SYVN1	Down	Cell proliferation, apoptosis and autophagy	Tian et al., 2020	
(69) Human	OA Cartilage, chondrocyte	NIKILA	Down	miR-145	Up	SP1	Down	Cell proliferation, apoptosis and inflammation	Xue et al., 2020	
(70) Human	OA Synovial fluid, chondrocytes	CTBP1-AS2	Up	miR-130A	Down	–	–	Cell proliferation	Zhang et al., 2020a	
(71) Human	OA Peripheral Blood, THP-1 cell	IGHCy1	Up	miR-6891-3p	Down	TLR4	Up	Inflammation	Zhang et al., 2020c	
TABLE 1 (Continued)

Species	Diseases	Region	lncRNA	Change	miRNA	Expression	Target gene	Change	Functions	References
Human	OA	Cartilage, chondrocyte	SNHG15	Down	miR-141-3p	Up	BCL2L13	Down	Cell proliferation, apoptosis and ECM degradation	Zhang et al., 2020e
Human	OA	Cartilage, chondrocyte	LINC00461	Up	miR-30a-5p	Down	–	–	Cell proliferation, cell cycle progression, inflammation, and ECM degradation	Zhang et al., 2020g
Human	OA	Cartilage, chondrocyte	OIP5-AS1	Down	miR-29b-3p	Up	PGRN	Down	Cell proliferation, migration, apoptosis and inflammation	Zhi et al., 2020

ACSLS6, acyl-CoA synthetase 6; ADAMTSs, a disintegrin and metalloprotease with thrombospondin motifs; ALK1, activin receptor-like kinase 1; ANRIL, antisense non-coding RNA in the INK4 locus; ATB, activated by transforming growth factor beta; BCL2L13, Bcl2-like 13; Bim, B-cell lymphoma 2 interacting mediators of cell death; BMPR2, bone morphogenetic protein receptor 2; BMSCs, bone marrow stromal stem cells; CASC2, Cancer Susceptibility 2; CCND1, Cyclin D1; CHRF, cardiac hypertrophy-related factor; CIR, cartilage injury-related; CXCR4, C-X-C chemokine receptor-4; DANCER, differentiation antagonizing non-protein coding RNA; DNM3OS, dynamin 3 opposite strand; ECM, extracellular matrix; ET1, Erythropoiesis transformation-specific translocation variant 1; FGFR1, fibroblast growth factor receptor 1; FUT2, fucosyltransferase 2; GASS, Growth Arrest-Specific 5; G1T1, G-protein- coupled receptor kinase interacting protein-1; GP1D1L, glycerol-3-phosphate dehydrogenase 1-like; GPR120, G protein-coupled receptor 120; HMGB1, high mobility group protein B1; hMSC, human mesenchymal stem cell; HOTAIR1, HOX antisense intergenic RNA myeloid 1 variant 1; HULC, highly up-regulated in liver cancer; IGFI, insulin-like growth factor-1; JAK1, J- Jun-N terminal kinase 1; LPS, lipopolysaccharide; MALAT1, metastasis associated lung adenocarcinoma transcript 1; MCM3AP1-S1, Minichromosome Maintenance Complex Component 3 Associated Protein Antisense RNA 1; MECS, maternally expressed gene 3; MEG3, maternally expressed gene 3; MEG3, maternally expressed gene 3; MPF21, MAPK-associated protein 2; MEG3, maternally expressed gene 3; MMP, matrix metalloproteinase; MSCs, mesenchymal stem cells; mSR, mechanical stress; NEAT1, nuclear enriched abundant transcript 1; NF-κB, nuclear factor kappa B; OA, osteoarthritis; OPN, osteoponitin; PART1, prostate androgen-regulated transcript-1; PGRN, progranulin; PI3K, Phosphoinositide 3-kinase; PMS2L2, PMS1 Homolog 2, Mismatch Repair System Component Pseudogene 2; PTEN, phosphatase and tensin homolog; PVT1, plasmacytoma variant translocation 1; SGTB, small glutamine rich tetratricopeptide repeat containing beta; SNHG, small nucleolar RNA host gene; SOX4, SRY-related high-mobility group box 4; SOX5, Sex-determining region Y-box protein 5; STAT3, signal transducer and activator of transcription 3; TCF4, transcription factor 4; TGFB2, Transforming growth factor-beta receptor type 2; THRL, TNF and hnrRNP related immune-regulatory IncRNA; TMSB4, Thymosin 6-4; TUG1, taurine upregulated gene 1; UCA1, urothelial carcinoma associated 1; XIST, X-inactive-specific transcript; YAF2, YY1-Associated factor 2.

FIGURE 1 | Example of altered lncRNA expression patterns and their biological effects in intervertebral disk degeneration. lncRNA, long non-coding RNA; ECM, extracellular matrix; MMP, matrix metalloproteinase; MAPK, mitogen-activated protein kinase; SMAD3, SMAD family member 3; LEF1, lymphoid enhancing factor-1; CCND1, cyclin D1; ADAMTS4, a disintegrin and metalloproteinase with thrombospondin motifs 4; TRAF6, tumor necrosis factor receptor-associated factor 6; Notch1, Notch Receptor 1; Bcl-2, B cell lymphoma 2; ATG5, autophagy-related gene 5.

the levels of miR-93 were lower (Gao et al., 2020). Through dual-luciferase reporter assay, they proved that PART1 acts as miR-93 sponge in NP tissues and cells to suppress the expression of miR-93 and to further regulate MMP2. Zheng et al. (2020) showed that MALAT1 was reduced in NP cells, and upregulation of MALAT1 could relieve cell proliferation and apoptosis in vitro and inhibit the degree of INN in vivo. Moreover, they found that MALAT1 plays pivotal roles in IDD through sponging miR-503, and thereby modulate downstream MAPK signaling pathways.
Several studies indicated that IncRNAs plays roles in IDD by modulating miRNA and their target genes. Wang et al. (2018b) showed that the level of IncRNA-RMRP in degenerated NP tissues was higher than that in normal NP tissues, whereas the expression of miR-206 was lower. They indicated that IncRNA-RMRP could promote cell proliferation via modulating miR-206, thereby regulating downstream target gene MMP13 and ADAMTS4. IncRNA HOTAIR was downregulated in NP tissues and cells, whereas miR-34a expression was negatively correlated with HOTAIR and the expression of Bcl-2 was positively connected with HOTAIR (Yu et al., 2018). HOTAIR could inhibit NP cell apoptosis through regulating miR-34a/Bcl-2 axis. A study found that LINCO0958 and mRNA SMAD3 were upregulated in NP tissues, whereas miR-203 was downregulated. Ectopic expression of miR-203 could suppress cell growth and ECM degradation (Zhao et al., 2019). Therefore, LINCO0958 participates in the cell process by regulating miR-203 and SMAD3. Another study reported that the expression levels of LINCO1121 and MMP-16 significantly increased in NP cells, whereas the level of miR-150-5p decreased (Chen X. et al., 2020). They demonstrated that LINCO1121 could enhance the cell process of IDD, such as cell growth, ECM degradation and inflammation by regulating miR-150-5p and MMP-16.

Rheumatoid Arthritis
In RA disease, the most studied mechanism of IncRNA and miRNA is that IncRNA acts as the miRNA sponge to modulate downstream genes (Table 2). IncRNA PVT1 (plasmacytoma variant translocation 1) and SCUBE2 (signal peptide-CUB-EGF-like containing protein 2) were upregulated, whereas miR-543 was downregulated in synovial tissues of RA rats and patients (Wang et al., 2020). Wang et al. (2020) found that the overexpression of PVT1 or the suppression of miR-543 elevated the level of SCUBE2. Moreover, the knockdown of PVT1 could suppress proliferation and induce apoptosis of RA through hindering the expression of SCUBE2 by sponging miR-543 (Wang et al., 2020). IncRNA LINC-PINT (long intergenic non-protein encoding long-chain RNA p53-induced transcript) was reduced in RA tissues and cells (Wang and Zhao, 2020). Through bioinformatics techniques and RNA Binding Protein Immunoprecipitation (RIP) assay, they found that miR-155-5p could interact with LINC-PINT, and SOCS1 was the target mRNA of miR-155-5p. LINC-PINT could inhibit cell proliferation and invasion via sponging miR-155-5p and regulating the level of SOCS1. Yan et al. (2019) revealed that the level of IncRNA HIX003209 in the peripheral blood mononuclear cells (PBMCs) and macrophages of RA samples and the expression of TLR4 was positively correlated with HIX003209. IncRNA HIX003209 directly targeted miR-6089 and was involved in the regulation of inflammation through acting as miR-6089 sponge via the TLR4/NF-κB signaling pathway.

Ankylosing Spondylitis
That IncRNA acts as the sponge of miRNA to modulate target genes is the most studied mechanism of IncRNA and miRNA acting on AS (Table 2). Li Y. et al. (2020) reported the role of MEG3 (maternally expressed gene 3) in the inflammation of AS. They observed that the expression level of MEG3 in the serum of AS patients was significantly downregulated compared with that in normal people, and MEG3 could inhibit inflammatory responses. However, the expression of miR-146a was upregulated in the AS patients and miR-146a could directly bind with MEG3 (Li Y. et al., 2020). Li Y. et al. (2020) assumed that MEG3 may played a vital role in the repression of inflammation factors in AS through sponging miR-146a, thereby exploring a novel potential treatment target for AS patients. Zhang et al. (2020f) found that IncRNA H19 was highly expressed in the AS patients and elevated the expression level of IL-17A and IL-23 inflammation factors. H19 could directly modulate miR-22-5p and miR-675-5p, and VDR (vitamin D receptor) was the target miRNAs of these two miRNAs. Among them, the level of miR-22-5p was negatively correlated with H19, while miR-675-5p and VDR was positively with H19 in AS patients. H19 plays regulatory roles in inflammatory reaction in AS through binding with VDR by sponging miR-22-5p and interacting with miR-675-5p (Zhang et al., 2020f).

INTERACTIONS AMONG circRNA, miRNA, AND mRNA IN DEGENERATIVE MUSCULOSKELETAL DISEASES
Osteoarthritis
Circular RNAs acting as miRNA sponges is the one of the most studied mechanisms (Figure 2). Compared with normal cartilage, circRNA-CER (circRNA_100876) was overexpressed and increased with IL-1 (interleukin-1) and TNF-α (tumor necrosis factor-alpha) in OA chondrocytes. circRNA-CER regulated matrix-degrading matrix metalloproteinase (MMP)-13 expression to participated in the process of chondrocyte ECM degradation by sponging miR-136 (Liu et al., 2016b). According to the research of Zhou et al. (2018), overexpressed circRNA_Atp9b sponge miR-138-5p and then mediate ECM catabolism and inflammation to regulates OA progression in chondrocytes by targeting MMP13. circ_0136474 was also verified by the research of Li et al. (2019f) to sponging miR-127-5p to regulate MMP13 in human OA chondrocytes, then, it suppressed cell proliferation and enhanced cell apoptosis during OA progression. The results were in line with those obtained in a study performed by Zhou Z.B. et al. (2019), who found that circRNA_33186/miR-127-5p/MMP13 axis contributes to OA pathogenesis. Furthermore, circSERPINE2 overexpression could slow down the pace of human chondrocytes apoptosis and promote ECM anabolism by sponging miR-1271-5p and thereby targeting ERG (E26 transformation-specific-related gene) to alleviate OA (Shen et al., 2019). In OA blood samples, the downregulation of ciRS-7 and the upregulation of miR-7 were observed (Zhou X. et al., 2019). ciRS-7 was verified to act as a miR-7 sponge to mediate OA progression. Increased circM3 expression in OA cartilage tissue and cells could serve as a sponge of miR-296-5p to slow down the proliferation and differentiation of OA chondrocytes, thus involving in regulating the occurrence
TABLE 2 | lncRNA/miRNA/mRNA networks in rheumatoid arthritis and ankylosing spondylitis.

Species	Diseases	Region	lncRNA	Change	miRNA	Expression	Target gene	Change	Functions	References
Human	RA	Synovial tissues	LINC-PINT	Down	miR-155-5p	Up	SOCS1	Down	Cell proliferation and invasion	Wang and Zhao, 2020
Human	AS	Synovial tissues	IncRNA MEG3	Down	miR-6089	Up	TLR4	Up	Inflammation	Yan et al., 2019
Human	AS	Serum, fibroblast-like synovial cells	H19	Up	miR675-5p/miR22-5p	miR675-5p up; miR22-5p down	VDR	Up	Inflammation	Li Y. et al., 2020f

AS, ankylosing spondylitis; MEG3, maternally expressed gene 3; PINT, p53-induced transcript; PVT1, plasmacytoma variant translocation 1; RA, rheumatoid arthritis; SCUBE2, signal peptide-CUB-EGF-like containing protein 2; SOCS1, cytokine signaling 1.

FIGURE 2 | Example of altered circRNA expression patterns and their biological effects in osteoarthritis. circRNA, circular RNA; ECM, extracellular matrix; MMP, matrix metallopeptidase; NAMPT, Nicotinamide phosphoribosyltransferase; COX-2, cyclooxygenase-2; IL-6, interleukin-6; Col II, type II collagen; ERG, E26 transformation-specific-related gene; BAX, BCL2 associated X, apoptosis regulator; Bcl-2, B cell lymphoma 2; IGF1R, insulin-like growth factor 1 receptor; HIF, hypoxia inducible factor; BMP, bone morphogenetic protein.

and development of OA chondrocytes (Ni et al., 2020). The overexpression of circRNA-CDR1as regulated OA progression via reducing Col II level but increased IL-6 and MMP13 contents to modulate inflammation and ECM metabolism by sponging miR-641 (Zhang et al., 2020d).

Several circRNA studies showed that circRNAs act as ceRNAs to competitively bind to miRNAs in OA. Hsa_circ_0045714 expression was downregulated (Liu et al., 2016b; Li B.F. et al., 2017). Furthermore, Li B.F. et al. (2017) determined that hsa_circ_0045714 promoted the expression of miR-193b target gene IGF1R (insulin-like growth factor 1 receptor) to regulate chondrocytes proliferation, apoptosis and ECM synthesis. Otherwise, hsa_circ_0005105 expression is significantly enhanced in OA chondrocytes and can promote ECM degradation by mediating the expression of miR-26a target NAMPT (Nicotinamide phosphoribosyltransferase) (Wu et al., 2017). In the lipopolysaccharide (LPS)-induced OA cell model, the expression levels of circRNA-UBE2G1 was significantly increased and bound to miR-373 as ceRNAs to aggravate the OA progression by targeting hypoxia-inducible factor (HIF)-1a (Chen G. et al., 2020).

Intervertebral Disk Degeneration

Over the past years, some circRNAs have merged as molecular drivers to serve as miRNA sponges or ceRNAs in circRNA/miRNA/mRNA networks in the pathogenesis of IDD (Figure 3). Compared with normal NP tissues, circVMA21 (hsa_circ_0091702) was downregulated in NP tissues and NP
cells in IDD and alleviated NP cell apoptosis by targeting miR-200c and XIAP (X linked inhibitor-of-apoptosis protein) (Cheng et al., 2018). Similarly, circ-GRB10 was downregulated during IDD progression, and competitively bound to miR-328-5p to regulate NP cell apoptosis by targeting erb-b2 receptor tyrosine kinase 2 (ERBB2) in the ErbB signaling pathway (Guo et al., 2018). circRNA_104670 was selected via microarray analysis because of its large multiplier expression in IDD tissues (Song et al., 2018). A study reported that circRNA_104670 acted as a ceRNA that binds to miR-17-3p, downregulated circRNA_104670-suppressed MMP-2 expression through circRNA_104670/miR-17-3p/MMP-2 axis, reduced cell apoptosis.
and increased ECM formation. According to another microarray assay made by Wang et al. (2018a), they selected circ-4099 among 72 upregulated circRNAs in degenerated NP tissues for further analysis. They demonstrated that circ-4099 competitively sponged miR-616-5p, which reversed the suppression of Sox9 by miR-616-5p. Wang et al. (2018c) verified that circSEMA4B was downregulated in IDD specimens, and circSEMA4B served as a miR-431 sponge to compete with SFRP1 or GSK-3β. Wang et al. (2018c) verified that circSEMA4B.

further analysis. They demonstrated that circ-4099 competitively sponged miR-616-5p, which reversed the suppression of Sox9 by miR-616-5p. Wang et al. (2018c) verified that circSEMA4B was downregulated in IDD specimens, and circSEMA4B served as a miR-431 sponge to compete with SFRP1 or GSK-3β.

RA was conducted by Yang J. et al. (2020), They reported that circRNA_09505 is upregulated in PBMCs from RA patients and mice. The knockdown of circRNA_09505 inhibits macrophage proliferation and alleviates arthritis and inflammation. miR-6089 functions as a ceRNA that is being competitively sponged by circRNA_09505 to regulated macrophage inflammatory response. Furthermore, circRNA_09505 was detected to promote AKT1 expression, which is a direct target of miR-6089, to mediate 1kBa/NF-κB signaling pathway. To sum up, circRNA_09505 can sponge miR-6089 and regulate inflammation via miR-6089/AKT1/NF-κB axis in arthritis mice model. Combined with RNA-seq data and RT-qPCR validation of PBMCs from RA patients, the results of Ouyang et al. (2017) showed several upregulated circRNAs (circRNA_101873, circRNA_003524, circRNA_104871, and circRNA_103047), and Wen et al. (2020) proved three upregulated hsa-circRNAs (hsa_circ_0001200, hsa_circ_0001566, and hsa_circ_0003972) and one downregulated hsa_circRNAs (hsa_circ_0008360), but without downstream gene detection to establish circRNA/miRNA/mRNA networks.

At present, studies on circRNA and miRNA interaction mechanism on AS are lacking. The roles of circRNAs in AS remain unclear. Only one profiling and bioinformatics analysis showed differentially expressed circRNAs in AS patients (sampled form spinal ligament tissues), reported the presence of 57 upregulated circRNAs and 66 downregulated circRNAs in AS spinal ligament tissues (Kou et al., 2020).

Taken together, the study about the interactions among circRNA, miRNA and mRNA in RA and AS may have a great clinical prospect.

CONCLUSION AND FUTURE PROSPECT

Recent advances in gene expression of lncRNAs and circRNAs, coupled with the ability to interact with the miRNA, mRNA or signaling pathway, have started to expose the different molecular consequence associated with RNA transcriptions and the roles they play in the development of MSDDs (including OA, IDD, RA, and AS) that involve chondrocyte proliferation and apoptosis, ECM degradation and PBMCs inflammation. The effects of ncRNA/circRNA-miRNA-mRNA axis on MSDD progression elucidated their contribution to the dynamic cellular processes and provided the potential OA, IDD, RA and AS therapeutic strategies. The altered expression of IncRNAs or circRNAs refers to diverse biological processes of MSDD, thereby indicating that IncRNAs/circRNAs may be developed as biomarkers and therapeutic targets. Despite the large numbers of ncRNAs, including IncRNAs and circRNAs, determined to be differentially expressed during these pathogenic processes, only a small portion of them has been elucidated. Research on MSDD pathogenesis, especially on RA and AS, is still in its infancy and major knowledge gaps remain to be filled. Therefore, the interactions among IncRNA/circRNA, miRNA and mRNA in MSDD to present the potential pathogenesis is required. Further studies are needed to explore the mutual regulatory mechanisms...
between lncRNA/circRNA regulation and effective therapeutic interventions in the pathology of MSDD.

AUTHOR CONTRIBUTIONS

X-QW and P-JC: conceptualization and methodology. J-BG, XS, Y-MC, and ZY: investigation. Y-LZ and GS: writing – original draft preparation and writing – review and editing. All authors contributed to the article and approved the submitted version.

REFERENCES

Abbasifard, M., Kamiazi, Z., Bagher-Hosseinabadi, Z., and Sadeghi, I. (2020). The role and function of long non-coding RNAs in osteoarthritis. Exp. Mol. Pathol. 114:104407. doi: 10.1016/j.yexmp.2020.104407

Ai, D., and Yu, F. (2019). LncRNA DNM3OS promotes proliferation and inhibits apoptosis through modulating IGF1 expression by sponging MiR-126 in CHON-001 cells. Diagn. Pathol. 14:106.

Beermann, J., Piccoli, M. T., Viereck, J., and Thum, T. (2016). Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol. Rev. 96, 1297–1325. doi: 10.1152/physrev.00041.2015

Cao, L., Wang, Y., Wang, Q., and Huang, J. (2018). LncRNA FOXD2-AS1 regulates chondrocyte proliferation in osteoarthritis by acting as a sponge of miR-206 to modulate CCND1 expression. Biomed. Pharmacother. 106, 1220–1226. doi: 10.1016/j.biopharm.2018.07.048

Chen, G., Liu, T., Yu, B., Wang, B., and Peng, Q. (2020). CircRNA-UBE2G1 regulates LPS-induced osteoarthritis through miR-373-HIF-1a axis. Cell Cycle 19, 1696–1705. doi: 10.18932/ccc.181772545

Chen, H., Qi, J., Bi, Q., and Zhang, S. (2017). Expression profile of long non-coding RNA (HOTAIR) and its predicted target miR-17-5p in LPS-induced inflammatory injury in human articular chondrocyte C28/I2 cells. Int. J. Clin. Exp. Pathol. 10, 9146–9157.

Chen, K., Zhu, H., Zheng, M. Q., and Dong, Q. (2019). LncRNA MEG3 inhibits the degradation of the extracellular matrix of chondrocytes in osteoarthritis via targeting miR-193b/TGFBR2 axis. Cartilage 194760351985759. [Published online ahead of print]

Chen, W. K., Yu, X. H., Yang, W., Wang, C., He, W. S., Yan, Y. G., et al. (2017). LncRNAs: novel players in intervertebral disc degeneration and osteoarthritis. Cell Prolif. 50:e12313. doi: 10.1111/cpr.12313

Chen, X., Li, Z., Xu, D., and Li, S. (2020). LINC01121 induced intervertebral disc degeneration via modulating miR-150-5p/MMP16 axis. J. Gene Med. 22:e2321.

Chen, Y., Huang, J., Tang, C., Chen, X., Yin, Z., Heng, B. C., et al. (2017). Small molecular therapeutics for inflammation-associated chronic musculoskeletal degenerative diseases: past, present and future. Exp. Cell Res. 359, 1–9. doi: 10.1016/j.yexcr.2017.07.027

Chen, Y., Zhang, L., Li, E., Zhang, G., Hou, Y., Yuan, W., et al. (2020). Long-chain non-coding RNA HOTAIR promotes the progression of osteoarthritis via sponging miR-20b/PTEN axis. Life Sci. 253:117685. doi: 10.1016/j.lfs.2020.117685

Chen, X., Zhang, L., Zhang, K., Zhang, G., Hu, Y., Sun, X., et al. (2018). Circular RNA VMA21 protects against intervertebral disc degeneration through targeting miR-200c and X linked inhibitor-of-apoptosis protein. Ann. Rheum. Dis. 77, 770–779. doi: 10.1136/annrheumdis-2017-212056

Chu, P., Wang, Q., Wang, Z., and Gao, C. (2019). Long non-coding RNA highly up-regulated in liver cancer protects tumor necrosis factor-alpha-induced inflammatory injury by down-regulation of microRNA-101 in ATDC5 cells. Int. Immunopharmacol. 72, 148–158. doi: 10.1016/j.intimp.2019.04.004

Cooper, N. A., Scavo, K. M., Strickland, K. J., Tipayamongkol, N., Nicholson, J. D., Bewyer, D. C., et al. (2016). Prevalence of gluten medius weakness in people with chronic low back pain compared to healthy controls. Eur. Spine J. 25, 1258–1265. doi: 10.1007/s00586-015-4027-6

Cui, S., and Zhang, L. (2020). circ_001653 silencing promotes the proliferation and ECM synthesis of NPCs in IDD by downregulating miR-486-3p-mediated CEMIP. Mol. Ther. Nucleic Acids 20, 385–399. doi: 10.1016/j.omtn.2020.01.026

Deng, K. Y., Wang, H., Guo, X. Q., and Xia, J. Z. (2016). The cross talk between long, non-coding RNAs and microRNAs in gastric cancer. Acta Biochim. Biophys. Sin. 48, 111–116. doi: 10.1093/abbs/gmv120

Faghihi, M. A., Zhang, M., Huang, J., Modarresi, F., Van Der Brug, M. P., Nalls, M. A., et al. (2010). Evidence for natural antisense transcript-mediated inhibition of microRNA function. Genome Biol. 11:R56.

Fan, X., Yuan, J., Xie, J., Pan, Z., Yao, X., Sun, X., et al. (2018). Long non-coding RNA PARN1 promotes intervertebral disc degeneration through regulating the miR-93/MMP2 pathway in nucleus pulposus cells. Int. J. Mol. Med. 46, 289–299.

Gao, Y., Zhao, H., and Li, Y. (2019). LncRNA MCM3AP-AS1 regulates miR-142-3p/HEML1 to promote LPS-induced chondrocyte apoptosis. BMC Musculoskelet. Disord. 20:605. doi: 10.1186/s12891-019-2967-4

Guo, W., Mu, K., Zhang, B., Sun, C., Zhao, L., Dong, Z. Y., et al. (2020). Circular RNA FAM169A functions as a competitive endogenous RNA and regulates intervertebral disc degeneration by targeting miR-583 and BTRC. Cell Death Dis. 11:315.

Guo, W., Zhang, B., Mu, K., Feng, S. Q., Dong, Z. Y., Ning, G. Z., et al. (2018). Circular RNA RB10B as a competitive endogenous RNA regulating nucleus pulposus cells death in degenerative intervertebral disk. Cell Death Dis. 9:319.

Haque, S., and Harries, L. W. (2017). Circular RNAs (circRNAs) in health and disease. Genes 8:353. doi: 10.3390/genes8120353

He, B., and Jiang, D. (2020). HOTAIR-induced apoptosis is mediated by sponging miR-130a-3p to repress chondrocyte autophagy in knee osteoarthritis. Cell Biol. Int. 44, 524–535. doi: 10.1002/cbin.11253

He, L., Man, C., Xiang, S., Yao, L., Wang, X., and Fan, Y. (2021). Circular RNAs’ cap-independent translation protein and its roles in carcinomas. Mol. Cancer 20:119.

Hu, J., Wang, Z., Shan, Y., Pan, Y., Ma, J., and Jia, L. (2018). Long non-coding RNA HOTAIR promotes osteoarthritis progression via miR-17-5p/FUT2/b-catenin axis. Cell Death Dis. 9:711.

Hu, Y., Li, S., and Zou, Y. (2019). Knockdown of LncRNA H19 relieves LPS-induced damage by modulating miR-130a in osteoarthritis. Yonsei. Med. J. 60, 381–388. doi: 10.3349/jymj.2019.60.4.381

Huang, B., Yu, H., Li, Y., Zhang, W., and Liu, X. (2019). Upregulation of long noncoding TNFSF10 contributes to osteoarthritis progression through the miR-376-3p/FGFRI axis. J. Cell Biochem. 120, 19610–19620. doi: 10.1002/jcb.29267

Huang, Y. (2018). The novel regulatory role of lncRNA-miRNA-mRNA axis in cardiovascular diseases. J. Cell Mol. Med. 22, 5768–5775. doi: 10.1111/jcmm.13866

Hunter, D. J., and Bierma-Zeinstra, S. (2019). Osteoarthritis. Lancet 393, 1745–1759.

Huo, J. Z., Ji, X. H., Su, Z. Y., Shang, P., and Gao, F. (2018). Association of ADAMTS4 and ADAMTS5 polymorphisms with musculoskeletal degenerative diseases: a systematic review and meta-analysis. Biosci. Rep. 38:BRS20181619.
Iwakura, T., Inui, A., and Reddi, A. H. (2013). Stimulation of superficial zone protein accumulation by hedgehog and Wnt signaling in surface zone bovine articular chondrocytes. *Arthritis Rheum.* 65, 408–417.

Ji, Q., Qiao, X., Liu, Y., Wang, D., and Yan, J. (2020). Silencing of long-chain non-coding RNA GAS5 in osteoarthritic chondrocytes is mediated by targeting the miR-146a-5p/Bcl-2 axis. *Mol. Rep.* 13, 1310–1319.

Ji, Y., Fang, Q. Y., Wang, S. N., Zhang, Z. W., Hou, Z. J., Li, J. N., et al. (2020). LncRNA BLACAT1 regulates differentiation of bone marrow stromal stem cells by targeting miR-142-5p in osteoarthritis. *Eur. Rev. Med. Pharmacol. Sci.* 24, 2893–2901.

Jiang, S. D., Lu, J., Deng, Z. H., Li, Y. S., and Lei, G. H. (2017). Long noncoding RNAs in osteoarthritis. *Joint Bone Spine* 84, 553–556.

Kou, J., Liu, G., Liu, X., Li, T., Wei, Y., Sun, Y., et al. (2020). Profiling and bioinformatics analysis of differentially expressed circRNAs in spinal ligament tissues of patients with ankylosing spondylitis. *BioMed Res. Int.* 2020:7156893. Kulcheski, F. R., Christoff, A. P., and Margis, R. (2016). Circular RNAs are mRNA sponges and can be used as a new class of biomarker. *J. Biotechnol.* 238, 42–51. doi: 10.1016/j.jbiotec.2016.09.011

Lee, R. C., Feinbaum, R. L., and Ambros, V. (1993). The *C. elegans* heterochronic gene *lin-4* encodes small RNAs with antisense complementarity to *lin-14*. *Cell* 75, 843–854. doi: 10.1016/0092-8674(93)90529-y

Lei, J., Fu, Y., Zhuang, Y., Zhang, K., and Lu, D. (2019). LncRNA SNHG1 alleviates IL-1β-induced osteoarthritis by inhibiting miR-16-5p-mediated p38 MAPK and NF-κB signaling pathways. *Biosci. Rep.* 39:BSR20191523.

Li, B., and Chen, D. (2019). Degenerative musculoskeletal diseases: pathology and treatments. *J. Orthop. Translat.* 17, 1–2. doi: 10.1016/j.jot.2019.05.001

Li, B., Li, N., Zhang, L., Li, K., Xie, Y., Xue, M., et al. (2018). Hsa_circ_0001859 regulates ATDC5 cells against lipopolysaccharides challenge via up-regulating miR-132. *J. Gene Med.* 20, 12:e2203. doi: 10.1002/jgm.27997

Li, L., Sun, Y., Wan, Y., Wu, X., and Yang, W. (2020). LncRNA NEAT1 regulates differentiation of adipose-derived stem cells by targeting the miR-376c-5p/OPN axis. *Cell Physiol. Biochem.* 43, 602–610. doi: 10.1002/cbin.11291

Li, Y., Zhang, S., Zhang, C., and Wang, M. (2020). LncRNA MEG3 inhibits the inflammatory response of ankyloing spondylitis by targeting miR-146a. *Cell Biochem.* 46, 17–24. doi: 10.1016/s1101-019-03568-1

Li, Y. F., Li, S. H., Liu, Y., and Luo, Y. T. (2017). Long noncoding RNA CIR promotes chondrocyte extracellular matrix degradation in osteoarthritis by acting as a sponge for MiR-27b. *Cell Physiol. Biochem.* 43, 602–610. doi: 10.1159/000480532

Li, Z., Li, X., Jiang, C., Qian, W., Tse, G., Chan, M. T. V., et al. (2018). Long non-coding RNAs in rheumatoid arthritis. *Cell Prog.* 51:e12404.

Li, Z., Yuan, B., Pei, Z., Zhang, K., Ding, Z., Zhu, S., et al. (2019). Circ_0316474 and MMP-13 suppressed cell proliferation by competitive binding to miR-127-5p in osteoarthritis. *J. Cell Mol. Med.* 23, 6554–6564. doi: 10.1111/jcm.14400

Liang, J., Xu, L., Zhou, F., Liu, A. M., Ge, H. X., Chen, Y. Y., et al. (2018). MALAT1/miR-127-5p regulates osteopontin (OPN)-mediated proliferation of human chondrocytes through PI3K/Akt pathway. *J. Cell Biochem.* 119, 431–439. doi: 10.1002/jcb.26200

Liu, C., Ren, S., Zhao, S., and Wang, Y. (2019). LncRNA MALAT1/MiR-145 adjusts IL-1β-induced chondrocytes viability and cartilage matrix degradation by regulating ADAMTS5 in human osteoarthritis. *Yonsei Med. J.* 60, 1081–1092. doi: 10.3349/yjm.2019.60.11.1081

Liu, F., Liu, X., Yang, Y., Sun, Z., Deng, S., Jiang, Z., et al. (2020). NEAT1/miR-193a-3p/SOX3 axis regulates cartilage matrix degradation in human osteoarthritis. *Cell Biol Int* 44, 947–957. doi: 10.1002/cbi.11291

Liu, G., Wang, Y., Zhang, M., and Zhang, Q. (2019). Long non-coding RNA THRIL promotes LPS-induced inflammatory injury by down-regulating microRNA-125b in ATDC5 cells. *Int. Immunopharmacol.* 66, 354–361. doi: 10.1016/j.intimp.2018.11.038

Liu, Q., Hu, X., Zhang, X., Dai, L., Duan, X., Zhou, C., et al. (2016a). The TMSB4Y pseudogene LncRNA functions as a competing endogenous RNA to promote cartilage degradation in human osteoarthritis. *Mol. Ther.* 24, 1726–1733. doi: 10.1038/mt.2016.151

Liu, Q., Zhang, X., Hu, X., Dai, L., Fu, X., Zhang, J., et al. (2016b). Circular RNA related to the chondrocyte ECM regulates MMP13 expression by function as a MiR-136 'Sponge' in human cartilage degradation. *Sci. Rep.* 6:22572

Liu, Y., Li, Z., Zhang, M., Zhou, H., Wu, X., Zhong, J., et al. (2021). Rolling-transported EGFR variants sustain EGFR signaling and promote gobliostoma tumorigenicity. *Neuro. Oncol.* 23, 743–756. doi: 10.1093/neuonc/noa279

Liu, Y., Lin, L., Zou, R., Wen, C., Wang, Z., and Lin, F. (2018). MSC-derived exosomes promote proliferation and inhibit apoptosis of chondrocytes via LncRNA-KLF3-AS1/miR-206/GIT1 axis in osteoarthritis. *Cell Physiol. Biochem.* 44, 947–957. doi: 10.1002/cbin.11291

Loef, M., Van Beest, S., Kroon, F. P. B., Bloem, J. L., Dekkers, O. M., Reijneirse, M., et al. (2018). Comparison of histological and morphometrical changes underlying subchondral bone abnormalities in inflammatory and degenerative musculoskeletal disorders: a systematic review. *Osteoarthritis Cartilage* 26, 992–1002. doi: 10.1016/j.joca.2018.05.007

Loser, R. F., Goldring, S. R., Sanchello, C. R., and Goldring, M. B. (2012). Osteoarthritis: a disease of the joint as an organ. *Arthritis Rheum.* 64, 1697–1707. doi: 10.1002/art.34453

Lu, C., Li, Z., Hu, S., Cai, Y., and Peng, K. (2019). LncRNA PAKT-1 targets TGFBR2/Smad3 to regulate cell viability and apoptosis of chondrocytes via acting as miR-590-3p sponge in osteoarthritis. *J. Cell Mol. Med.* 23, 8196–8205. doi: 10.1111/jcmm.14409

Luo, X., Wang, J., Wei, X., Wang, S., and Wang, A. (2020). Knockdown of lncRNA MFI2-AS1 inhibits lipopolysaccharide-induced osteoarthritis progression by targeting miR-130a-3p/TCF4. *Life Sci.* 240:117019. doi: 10.1016/j.lfs.2019.117019
Mao, G., Kang, Y., Lin, R., Hu, S., Zhang, Z., Li, H., et al. (2019). Long non-coding RNA HOTTP promotes CCL3 expression and induces cartilage degradation by sponging miR-455-3p. Front. Cell Dev. Biol. 7:161. doi: 10.3389/fcel.2019.00161

Mathy, N. W., and Chen, X. M. (2017). Long non-coding RNAs (lncRNAs) and their transcriptional control of inflammatory responses. J. Biol. Chem. 292, 12375–12382. doi: 10.1074/jbc.e116.760884

Mohammadi, A., Kelly, O. B., Filice, M., Kabakchiev, B., Smith, M. L., and Silverberg, M. S. (2018). Differential expression of microRNAs in peripheral blood mononuclear cells identifies autoagopy and TGF-β-related signatures aberrantly expressed in inflammatory bowel disease. J. Crohns Colitis 12, 568–581. doi: 10.1093/ccc/cci070

Moran-Moguel, M. C., Petarra-Del Rio, S., Mayorquin-Galvan, E. V., and Zavalacerna, M. G. (2018). Rheumatoid arthritis and miRNAs: a critical review through a functional view. J. Immunol. Res. 2018:474529.

Ni, J. L., Dang, X. Q., and Shi, Z. B. (2020). CircPMS3 inhibits the proliferation and differentiation of OA chondrocytes by targeting miRNA-296-5p. Eur. Rev. Med. Pharmacol. Sci. 24, 3467–3475.

Ouyang, Q., Wu, J., Jiang, Z., Zhao, J., Wang, R., Lou, A., et al. (2017). Microarray functional status. Its association with overweight and obesity, low back pain, and diminished functioning as a ceRNA. Exp. Mol. Med.

Pan, L., Liu, D., Zhao, W., Wang, L., Xin, M., and Li, X. (2018). Long noncoding RNA MALAT1 alleviates lipopolysaccharide-induced inflammatory injury by upregulating microRNA-19b in murine chondrogenic ATDC5 cells. J. Cell Physiol. 233, 10165–10175.

Pan, Z., Li, G. F., Sun, M. L., Xie, L., Liu, D., Zhang, Q., et al. (2019). MicroRNA-1224 splicing circular RNA-Filip1l in an Ago2-dependent manner regulates chronic inflammatory pain via targeting UBr6. J. Neurosci. 39, 2125–2143. doi: 10.1523/jneurosci.1631-18.2018

Park, S., Lee, M., Chun, C. H., and Jin, E. J. (2019). The lncRNA, Nespas, plays a critical role in the regulation of miR-21 during osteoarthritis.

Pereira, A. S., Dogini, D. B., and Lopes-Cendes, I. (2018). Role of non-coding RNAs in non-aging-related neurological disorders. Braz. J. Med. Biol. Res. 51, e7566.

Silverberg, M. S. (2018). Differential expression of microRNAs in peripheral blood mononuclear cells identifies autoagopy and TGF-β-related signatures aberrantly expressed in inflammatory bowel disease. J. Crohns Colitis 12, 568–581. doi: 10.1093/ccc/cci070

Stief, E., Boeuf, S., Gabler, J., Werth, N., Schnatzer, P., Diederichs, S., et al. (2012). Regulation of H19 and its encoded microRNA-675 in osteoarthritis and under anabolic and catabolic in vitro conditions. J. Mol. Med. (Berl) 90, 1185–1195. doi: 10.1007/s00109-012-0985-9

Sun, P., Wu, Y., Li, X., and Jia, Y. (2020). miR-142-5p protects against osteoarthritis through competing with lncRNA XIST. J. Gene Med. 22:e3358.

Sun, T., Yu, J., Han, L., Tian, S., Xu, B., Gong, X., et al. (2018). Knockdown of long non-coding RNA RP11-445H22.4 alleviates LPS-induced injuries by regulation of MiR-301a in osteoarthritis. Cell Physiol. Biochem. 45, 832–843. doi: 10.1159/000487175

Sun, Y., Kang, S., Pei, S., Sang, C., and Huang, Y. (2020). MiR93-5p inhibits chondrocyte apoptosis in osteoarthritis by targeting lncRNA CASMC2. BMC Musculoskelet. Disord. 21:26. doi: 10.1186/s12891-019-3025-y

Tan, F., Wang, D., and Yuan, Z. (2020). The fibroblast-like synoviocyte derived exosomal long non-coding RNA H19 alleviates osteoarthritis progression through the miR-106b-5p/TIMP2 axis. Inflammation 43, 1498–1509. doi: 10.1007/s10753-020-01227-8

Tan, H., Zhao, L., Song, R., Liu, Y., and Wang, L. (2018). The long noncoding RNA SNHG1 promotes nucleus pulposus cell proliferation through regulating miR-326 and CCND1. Am. J. Physiol. Cell Physiol. 315, C21–C27.

Tang, L., Ding, J., Zhou, G., and Liu, Z. (2018). LncRNA-p21 promotes chondrocyte apoptosis in osteoarthritis by acting as a sponge for miR-451. Mol. Med. Rep. 18, 5295–5301.

Tang, L. P., Ding, J. B., Liu, Z. H., and Zhou, G. J. (2018). LncRNA TUG1 promotes osteoarthritis-induced degradation of chondrocyte extracellular matrix via miR-195/MMP-13 axis. Eur. Rev. Med. Pharmacol. Sci. 22, 8574–8581.

Tang, F., Wang, J., Zhang, Z., and Yang, J. (2020). LncRNA SNHG7/miR-34a-5p/SYVN1 axis plays a vital role in proliferation, apoptosis and autophagy in osteoarthritis. Birol. Res. 53:9.

van der Heide, D., Braun, J., Deodhar, A., Baraliakos, X., Landewé, R., Richards, H. B., et al. (2019). Modified stoke ankylosing spondylitis spinal score as an outcome measure to assess the impact of treatment on structural progression in ankylosing spondylitis. Rheumatology (Oxford, England) 58, 388–400.

Verdúci, L., Strano, S., Yarden, Y., and Blandino, G. (2019). The circRNA-miRNA code: emerging implications for cancer diagnosis and treatment. Mol. Oncol. 13, 669–680. doi: 10.1002/1878-0261.12468

Vieira, A. S., Dogini, D. B., and Lopes-Cendes, I. (2018). Role of non-coding RNAs in non-aging-related neurological disorders. Braz. J. Med. Biol. Res. 51, e7566.

Vinatier, C., Merceron, C., and Guicheux, J. (2016). Osteoarthritis: from pathogenic mechanisms and recent clinical developments to novel prospective therapeutic options. Drug Discov. Today 21, 1952–1957. doi: 10.1016/j.drudis.2016.08.011

Wang, A., Hu, N., Zhang, Y., Chen, Y., Su, C., Li, Y., et al. (2019). MEG3 promotes proliferation and inhibits apoptosis in osteoarthritis cartilage by miR-361-5p/FOXO1 axis. BMC Med. Genomics 12:201. doi: 10.1186/s12920-019-0496-9

Wang, G., Bu, X., Zhang, Y., Zhao, X., Kong, Y., Ma, L., et al. (2017). LncRNA-UCA1 enhances MMP-3 expression by inhibiting miR-204-5p in human chondrocytes. Osteoarthritis Cartilage 19, 12981–12990. doi: 10.1016/j.ostcart.2015.04.008

Wang, H., He, P., Pan, H., Long, J., Wang, J., Li, Z., et al. (2018a). Circular RNA circ-4099 is induced by TNF-α and regulates ECM synthesis by blocking miR-616-5p inhibition of Sox9 in intervertebral disc degeneration. Exp. Mol. Med. 50:27

Wang, J., Kong, X., Hu, H., and Shi, S. (2020). Knockdown of long non-coding RNA PVT1 induces apoptosis of fibroblast-like synoviocytes through modulating miR-543-dependent SCUBE2 in rheumatoid arthritis. J. Orthop. Surg. Res. 15:142.

Wang, J., Yan, S., Yang, J., Lu, H., Xu, D., and Wang, Z. (2019). Non-coding RNAs in rheumatoid arthritis: from bench to bedside. Front. Immunol. 10:3129.

Wang, J., and Zhao, Q. (2020). LncRNA LINC-PINT increases SOCS1 expression by sponging miR-155-5p to inhibit the activation of ERK signaling pathway in rheumatoid arthritis synovial fibroblasts induced by TNF-α. Int. Immunopharmacol. 84, 106497. doi: 10.1016/j.intimp.2019.03129

Wang, Q., Wang, W., Zhang, F., Deng, Y., and Long, Z. (2017). NEAT1/miR-181c regulates osteopontin (OPN)-mediated synoviocyte proliferation in osteoarthritis. J. Cell Biochem. 118, 3775–3784. doi: 10.1002/jcb.26025
Wang, T., Liu, Y., Wang, Y., Huang, X., Zhao, W., and Zhao, Z. (2019). Long non-coding RNA XIST promotes extracellular matrix degradation by functioning as a competing endogenous RNA of miR-1277-5p in osteoarthritis. *Int. J. Mol. Med.* 44, 630–642.

Wang, X., Peng, L., Gong, X., Zhang, X., Sun, R., and Du, J. (2018b). lncRNA-RMRP promotes nucleus pulposus cell proliferation through regulating miR-206 expression. *J. Cell Mol. Med.* 22, 5468–5476. doi: 10.1111/jcmm.13817

Wang, X., Wang, B., Zou, M., Li, J., Lu, G., Zhang, Q., et al. (2018c). CircSEMA4B targets miR-431 modulating IL-1β-induced degradative changes in nucleus pulposus cells in intervertebral disc degeneration via Wnt pathway. *Biochem. Biophys. Acta Mol. Basis Dis.* 1864, 3754–3768. doi: 10.1016/j.bbadis.2018.08.033

Wang, X., Zou, M., Li, J., Wang, B., Zhang, Q., Liu, F., et al. (2018d). LncRNA H19 targets miR-22 to modulate H(2)O(2) -induced deregulation in nucleus pulposus cell senescence, proliferation, and ECM synthesis through Wnt signaling. *J. Cell Biochem.* 119, 4990–5002. doi: 10.1002/jcb.26738

Wang, Y., Cao, L., Wang, Q., Huang, J., and Xu, S. (2019). LncRNA FOXD2-AS1 induces chondrocyte proliferation through sponging miR-27a-3p in osteoarthritis. *Artif. Cells Nanomed. Biotechnol.* 47, 1241–1247. doi: 10.1080/21691401.2019.1596940

Wang, Z., Chi, X., Liu, L., Wang, Y., Mei, X., Yang, Y., et al. (2018e). Long noncoding RNA maternally expressed gene 3 knockdown alleviates intervertebral disc degeneration and inflammation of chondrocytes via miR-181a/glycerol-3-phosphate dehydrogenase 1-Like (GPD1L) axis. *Med. Sci. Monit.* 24, 535–548. doi: 10.12659/msm.918416

Wang, T., Liu, Y., Wang, Y., Huang, X., Zhao, W., and Zhao, Z. (2019). Long noncoding RNA H19 targets miR-22 to modulate H(2)O(2) -induced deregulation in nucleus pulposus cell senescence, proliferation, and ECM synthesis through Wnt signaling. *J. Cell Biochem.* 119, 4990–5002. doi: 10.1002/jcb.26738

Wang, Z., Hao, J., and Chen, D. (2019). Downregulation of HCG18 promotes proliferation, apoptosis, and inflammation of chondrocytes via the miR-181a/glycerol-3-phosphate dehydrogenase 1-Like (GPD1L) axis. *Med. Sci. Monit.* 25, 8084–8094. doi: 10.12659/msn.918416

Wang, J., Jiang, T., Wang, W., Yu, J., Wang, Y., Wu, X., et al. (2017). Long non-coding RNA XIST promotes extracellular matrix degradation in nucleus pulposus cells via miR-6089 via TLR4/NF-κB signaling pathway in rheumatoid arthritis. *Front. Immunol.* 10:2218. doi: 10.3389/fimmu.2019.02218

Wang, J., Cheng, M., Gu, B., Wang, J., Yan, S., and Xu, D. (2020). CircRNA_09505 aggravates inflammation and joint damage in collagen-induced arthritis mice via miR-6089/AKT1/NEF-κB axis. *Cell Death Dis.* 11:833.

Yang, Q., Li, Zhou, Y., Fu, W., Wang, J., and Wei, Q. (2019). A LINC00341-mediated regulatory pathway supports chondrocyte survival and may prevent osteoarthritis progression. *J. Cell Biochem.* 120, 10812–10820. doi: 10.1002/jcb.28372

Yang, S., Zhang, F., Ma, J., and Ding, W. (2020). Intervertebral disc ageing and degeneration: The antiapoptotic effect of oestrogen. *Aging Res. Rev.* 57:1000978. doi: 10.1016/j.arr.2019.100978

Yang, Y., Zhang, Z., Zhao, Y., Ren, K., and Li, N. (2019). LincRNA-SLC20A1 (SLC20A1) promotes extracellular matrix degradation in nucleus pulposus cells in human intervertebral disc degeneration by targeting the miR-31-5p/MMP3 axis. *Int. J. Clin. Exp. Pathol.* 12, 3632–3643.

Ye, F., Gao, G., Zou, Y., Zheng, S., Zhang, L., Xu, O., et al. (2019). circFBXW7 inhibits malignant progression by sponging miR-197-3p and encoding a 185 aa protein in triple-negative breast cancer. *Mol. Ther. Nucleic Acids* 18, 88–98. doi: 10.1038/s47763-019-0156-2

Ying, H., Wang, Y., Gao, Z., and Zhang, Q. (2019). Long non-coding RNA activated by transforming growth factor beta alleviates lipopolysaccharide-induced inflammatory injury via regulating microRNA-223 in ATDC5 cells. *Int. Immunopharmacol.* 69, 313–320. doi: 10.1016/j.intimp.2019.01.056

Yu, C., Shi, D., Li, Z., Wan, G., and Shi, X. (2019). Long non-coding RNA CHRF exacerbates IL-6-induced inflammatory damages by downregulating microRNA-146a in ATDC5 cells. *J. Cell Physiol.* 234, 21851–21859. doi: 10.1002/jcp.28749

Yu, C. X., and Sun, S. (2018). An emerging role for circular RNAs in osteoarthritis. *Yonsei Med. J.* 59, 349–355. doi: 10.3349/ymj.2018.59.3.349

Yu, Y., Zhang, X., Li, Z., Kong, L., and Huang, Y. (2018). LncRNA HOTAIR suppresses TNF-α induced apoptosis of nucleus pulposus cells by regulating miR-34a/Bcad 2 axis. *Biosci. Rep.* 38:BSR20181228.

Zhang, W., Zhang, C., Hu, C., Luo, C., Zhong, B., and Yu, X. (2020d). Circular RNA HIX003209 promotes inflammation by sponging miR-6089 via TLR4/NEF-κB signaling pathway in rheumatoid arthritis. *Front. Immunol.* 10:2218. doi: 10.3389/fimmu.2019.02218

Zheng, et al. lncRNA/circRNA-miRNA-mRNA Axis in MSDDs

Zhang, P., Sun, J., Liang, C., Gu, B., Xu, Y., Lu, H., et al. (2020c). lncRNA CTBP1-AS2 is upregulated in osteoarthritis and increases the methylation of miR-130a gene promoter. *Int. Immunopharmacol.* 7:13234.
Zheng, Z., Ji, S., Cai, G., Pan, Z., Han, R., Yuan, Y., et al. (2020f). H19 Increases IL-17A/IL-23 releases via regulating VDR by interacting with miR675-5p/miR22-5p in ankylosing spondylitis. *Mol. Ther. Nucleic Acids* 19, 393–404. doi: 10.1016/j.omtn.2019.11.023

Zhang, X., Li, S., Xu, N., Xie, F., and Wang, Y. (2019). Long non-coding RNA H19 modulates proliferation and apoptosis in osteoarthritis via regulating miR-106a-5p. *J. Biosci.* 44:128.

Zhang, Y., Ma, L., Wang, C., Wang, L., Guo, Y., and Wang, G. (2020g). Long noncoding RNA LINC00461 induced osteoarthritis progression by inhibiting miR-30a-5p. *Aging (Albany NY)* 11, 4111–4123. doi: 10.18632/aging.102839

Zhao, C. Q., Jiang, L. S., and Dai, L. Y. (2006). Programmed cell death in intervertebral disc degeneration. *Apoptosis* 11, 2079–2088. doi: 10.1007/s10495-006-0290-7

Zhao, K., Zhang, Y., Yuan, H., Zhao, M., and Zhao, D. (2019). Long noncoding RNA LINC00958 accelerates the proliferation and matrix degradation of the nucleus pulposus by regulating miR-203/SMAD3. *Aging (Albany NY)* 11, 10814–10825. doi: 10.18632/aging.102436

Zhu, Y. J., and Jiang, D. M. (2019). LncRNA PART1 modulates chondrocyte proliferation, apoptosis, and extracellular matrix degradation in osteoarthritis via regulating miR-373-3p/SOX4 axis. *Eur. Rev. Med. Pharmacol. Sci.* 23, 8175–8185.

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Zheng, Song, Guo, Su, Chen, Yang, Chen and Wang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.