Methanol expression regulator 1 (Mxr1p) promotes xylulose 5-phosphate recycle via increasing transketolase activity in *Pichia pastoris*

CURRENT STATUS: POSTED

Chunjun Zhan
Jiangnan University

ORCiD: https://orcid.org/0000-0001-9504-6439

Yingyue Pan
Jiangnan University

Xiuxia Liu
Jiangnan University

Chunli Liu
Jiangnan University

Jinling Zhan
Jiangnan University

Dinghua Xu
Sinosbio Biomedical Technologies

Zhonghu Bai
Jiangnan University

Yankun Yang
Jiangnan University

yangyankun@jiangnan.edu.cn
Corresponding Author

ORCiD: https://orcid.org/0000-0003-4815-6832

DOI: 10.21203/rs.2.23470/v1

SUBJECT AREAS
Applied & Industrial Microbiology

KEYWORDS
Mxr1p, Tk1lp, interaction, Pichia pastoris, MUT regulation, xylulokinase
Abstract

Background Methanol expression regulator 1 (Mxr1p) is a key transcription factor that plays a vital role in the methanol utilization pathway in Pichia pastoris (P. pastoris). Most genes referred to the methanol utilization pathway were regulated by Mxr1p. However, some genes did not show a significant difference between methanol and glycerol even though they play an important role in the methanol utilization pathway. So far, the regulation mechanism about these genes and the relationship with Mxr1p are still unknown.

Results Methanol metabolic pathway analysis revealed that most of the methanol-induced genes were upregulated in transcriptional level when cultured in methanol. Whereas some genes like tkl1 (transketolase 1) did not show significant up-regulation in methanol even though it plays a very important role in Xu5P recycle, the reason is still not clear. To clarify this point, firstly, pull-down and MS experiments were performed. The result shows that Tk1p protein combined with Mxr1p in vitro. Subsequently, this result was further confirmed by yeast two-hybrid in vivo, and the binding region mainly located from 150AA to 400AA. Moreover, Ser215 phosphorylation did not affect this interaction. In addition, Mxr1p-400AA integration into Δmxr1 could rescue cell growth in methanol. All the above results proved that Mxr1p played a post-translational role in the methanol utilization pathway and Mxr1p-400AA may achieved most of Mxr1p functions. Secondly, the function of Mxr1p-Tk1p complex was expounded by detecting formaldehyde consumption and xylulose production in cell-free systems. Results showed that Mxr1p-Tk1p mixture could promote formaldehyde consumption and xylulose production in vitro.

Conclusion Mxr1p promotes methanol utilization via combining with Tk1p to accelerate Xu5P recycle and this interaction was not affected by Ser215 phosphorylation.

Background

As an important heterologous protein expression system, more than 1,000 proteins have been successfully expressed via P. pastoris, including angiostatin, a-glucosidase [1] and Anti-CEACAM5 nanobody [2, 3]. Moreover, as the rare methylotrophic microbes, detailed methanol metabolic pathway especially important intermediates recycle pathway not only significantly promotes other
methylotrophic microbes construction but also promotes autotrophic microorganism design [4]. Many results showed that the robust alcohol oxidase 1 promoter (P_{AOX1}) contributes most to this successful expression system [5]. Data showed that methanol expression regulation 1 protein (Mxr1p) plays a key role in $aox1$ and other methanol-induced genes transcription [6]. For example, $aox1$ was repressed in $Dmxr1$ mutant even though cells were cultured in methanol [7, 8]. The reason is that Mxr1p binds to methanol-induced promoter e.g., $aox1$, das and $pex8$ [7, 9] to promote transcription. Our previous results also revealed that Mxr1p promotes $aox1$ transcription via binding on P_{GT1} to inhibit $gt1$ transcription [10, 11]. All of the above results proved that Mxr1p could regulate methanol metabolic pathway by transcription level. Recently, Parua et al. demonstrated that a 14-3-3 protein (GenBank accession no. CCA38880) regulates Mxr1p activity in a carbon source-dependent manner. The mechanism is that 14-3-3 protein binds on Mxr1p between residues 212–225. Ser215 phosphorylation promotes the interaction between Mxr1p and the 14-3-3 protein and subsequently leads to methanol metabolic pathway repression [12, 13]. However, although phosphorylation of Ser215 is similar in methanol and glucose, cells showed a significant difference in methanol utilization ability. Thus, there may be other proteins interact with Mxr1p to regulate MUT pathway. Based on that, several transcription factors such as Trm1, Prm1 and Mit1 have been identified [14-17]. Disappointedly, there is no interaction among these transcription factors even though some of them, e.g., Mxr1 and Rop1, shared the same binding site in methanol-induced genes[18].

In this report, methanol-induced genes were identified by methanol metabolic pathway analysis based on transcription level. Furthermore, potential proteins (e.g., Tkl1p) interacting with Mxr1p in vitro were identified via pull-down analysis and Mass spectrometry (MS). Yeast two-hybrid screening showed that Tkl1p interacted with Mxr1p in vivo, the interaction region mainly located between 150AA to 400AA and Ser215 phosphorylation did not affect this interaction. Finally, formaldehyde consumption and xylulose production assay proved that the complex formed by Tkl1p and Mxr1p could promote methanol utilization by accelerating xylulose recycle. All of the above results not only be benefit for clarifying Xu5P recycle route but also would help enrich Mxr1p regulation system.

Results
Transcription level referred to methanol utilization pathway in *P. pastoris*

Fig. 1.

Transcriptional levels referred to MUT genes in different media (methanol and glycerol) were detected after 48h. Hierarchical clustering analysis provides a holistic view about MUT genes expression level in methanol or glycerol media (Fig. 1). Results showed that compared with glycerol, *aox1* and *das1/2* were significantly upregulated in methanol. Moreover, *das2* upregulation was more significant than *das1*, which indicated that the regulation mechanism between *das1* and *das2* might be different [19].

As the key intermediate, *Xu5P* plays a crucial role in formaldehyde fixation and degradation, which means genes related to *Xu5P* recycle could be promoted in methanol. Results showed that most genes referred to *Xu5P* recycle route, such as *rep1* and *tal*, were upregulated in methanol. Surprisingly, *tkl1* gene did not show significantly improved as other MUT genes, even though it plays a very important role in *Xu5P* recycle route (Fig. 1).

Detection *tkl1* expression levels in different cells

Fig. 2

According to transcriptome analysis, many genes related to MUT pathway and non-oxidative pentose phosphate pathway (NOP) were up-regulated in methanol medium. However, *tkl1* did not show significant up-regulated like *das* even though it plays a key role in the carbon rearrangement process, which indicates that maybe some other unrevealed regulation pathways participate in *tkl1* regulation. To clarify this hypothesis, firstly, the transcriptional and translational level of *tkl1* were measured. Results showed that *tkl1* did not show a significant difference between methanol and glycerol medium (Fig.2a). It has been reported that many genes were promoted by Mxr1p in MUT and NOP pathway[9], which inspired us that Mxr1p may promote *tkl1* expression. To verify this hypothesis, *tkl1* expression level and methanol consumption in *Dmxr1* mutant and *mxr1* over-expression strains were detected. Unfortunately, results showed that Mxr1p did not show obvious improvement for *tkl1* both in RNA and protein level (Fig.2b) even though it promotes methanol utilization (Fig.2a).

Excavation Mxr1p-interaction protein via pull-down assay and Yeast two-hybrid assay

Fig. 3
The above results indicated that although Tkl1p participates in Xu5P recycle, its transcriptional and translational level did not improve a lot in methanol, which indicated that Tkl1p might be involved in post-transcriptional modification. Based on that, M1 and M2 proteins were purified and pull-down assay was performed in this research to find some candidate proteins (Fig.3a,b), which may interact with Mxr1p in vitro. Results proved that some proteins could combine with Mxr1p in vitro (Fig.3). Each candidate band was collected and sent for MS analysis, results showed the interesting protein is Tkl1p. This result was further confirmed in vivo by yeast two-hybrid assay (Fig.3b). Moreover, we found the diploid containing M1 and Tkl1p did not grow on selection plate, whereas the diploid containing M2 and Tkl1p grew on selection plate, this result indicated that the region Mxr1p interacting with Tkl1p mainly located between 150AA to 400AA. Our previous results showed that M1 plays a crucial role in the process of binding on P_{GT1} and P_{AOX1}[10]. Some other researchers showed that N400 of Mxr1p play the main function between protein interaction [12, 13]. Considering all these results, Mxr1p was divided into two parts; the first part contains a DNA binding domain (mainly 1-150AA), which mainly regulates gene transcription. The second is protein interaction domain (mainly 150-400AA), which may be involved in different metabolic pathways via interacting with different proteins.

Tk11p interact with Mxr1p did not via phosphorylation of Ser215

Fig. 4

It has been proved that 14-3-3 protein interacted with Mxr1p via phosphorylation of Ser215. In order to examine whether Ser215 phosphorylation would affect the interaction between M2 and Tkl1p. M2-Ser215 was mutant to M2-Asp215 (M3). Tkl1p-His and M3-Flag protein were purified and used for pull-down assay. The targeted band was recognized by Western blotting (Fig.4a), which indicates that phosphorylation of Ser215 or not did not affect the interaction between Tkl1p and Mxr1p. Meanwhile, different strains growth curve were measured in methanol medium (Fig.4b). Results showed that mxr1 deletion (Dmnr1) affect cell grew. Moreover, when M2 or M3 was integrated back into genome respectively, cell grew would be rescued. This indicated that Mxr1p N-400AA take main function of Mxr1p.
Functions of the Mxr1-TKL1 complex

Fig. 5

Based on Fig.1, it could be inferred that Tkl1p mainly promotes Xu5P recycle in the carbon rearrangement route. Considering all results, one hypothesis is that the complex formed by Mxr1p and Tkl1p may participate in Xu5P recycle route. In order to test this hypothesis, xylulose production was measured *in vitro* using crude total protein. Results (Fig.5) showed that xylulose production in *tkl1* overexpression strain (32.7 mM, 1% formaldehyde) is much higher (P <0.01) than that in wild type (12.6 mM, 1% formaldehyde), which confirmed that Tkl1p promote Xu5P production. Moreover, when the purified M2 protein was added into this reaction system, higher production of xylulose (36.2 mM, 1% formaldehyde) was detected (P = 0.0009 < 0.01), the above results proved that the complex formed by Mxr1p and Tkl1p promotes xylulose production. In order to further confirm this result, formaldehyde consumption in different reaction systems were detected, results showed that (Fig.5a) more formaldehyde consumption was detected in Tkl1p-Mxr1p reaction system than others. Based on the above results, it concluded that Mxr1p could combine with Tkl1p to promote Xu5P recycle and further accelerate formaldehyde consumption.

Many intermediates, especially formaldehyde, in methanol utilization are toxic for cells, therefore, how to convert these toxic intermediates into useable substrates is very important for cell to survive. It has been proved that high efficient Xu5P recycle route would promote formaldehyde degradation and rescue cells[10]. However, no definite results illustrate Xu5P recycle route in methylotrophic microbes. Based on the above results, it showed that complex formed by Mxr1p and Tkl1p participate in Xu5P recycle route. It has been proved that xylulose production increased *in vitro* experiments. The reason may be that excessive Xu5P was converted into xylulose by some enzyme. To verify this hypothesis, xylulokinase (XK) expression level was measured *in vivo*, the result showed that XK expression level was promoted in Tkl1-Mxr1 over-expression cells, meanwhile, methanol consumption was also improved (Fig.5b).

Discussion

As an important renewable carbon source, methanol has drawn lots of attention during the past few
years due to its low energy cost, liquid form [20-22] and other advantages. Moreover, compared with other one-carbon sources like CO₂, methanol could be high efficiency used by native methylotrophic microbes[23]. Besides, both CO₂ fixation pathway and formaldehyde degradation pathway share similar intermediate such as Xu5P and Ru5P [24, 25]. Based on the above reasons, lots of attention has been paid to engineer non-native methylotrophic microbes. Unfortunately, most of the recombinant cells did not grow well in methanol. Many reasons may lead to this problem, but inefficiency intermediates supplement may be an important reason. Therefore, Clarify intermediates recycle regulation mechanism in methanol utilization pathway maybe not only beneficial for other non-native methylotrophic microbes construction but also would promote other one-carbon source utilization [4, 26]. In Saccharomyces cerevisiae, Tk1 has been shown as the rate-limiting factor in NOP pathway [27]. Moreover, in P. pastoris Tk1p showed similar conserved domain structure with Das1p and Das2p. Some results indicated that cells losing das1 and das2 are still able to grow in methanol [28], which indicated that Tk1p may be involved in some other pathways. However, Tk1 did not showed significant difference between methanol and glycerol as DAS1/2, which also indicated that tkl1 and das1/2 regulation mechanism might be different [29].

In this paper, our results showed that Tk1p interacted with M2, and the interaction region mainly located between 150AA to 400AA. In addition, the function of Tk1p-Mxr1p was confirmed to promote Xu5P recycle. However, when we detected XK transcriptional level in different cells, we found that there is no significant difference between Tk1p overexpression strain and Tk1p-Mxr1p double overexpression strains (Fig.4), the reason may be that Xu5P could be highly recycled in vivo to support formaldehyde fixation. As a critical transcription factor, Mxr1p is inextricably linked with the methanol utilization pathway both in transcriptional and post-translational [8], which indicated that Mxr1p may be the core of methanol regulation system in P. pastoris. In this study, many efforts have been tried to purify integral Mxr1p protein, unfortunately, all of them were failed (Fig.S1/2). Some researchers have indicated that overexpressed Mxr1p is toxic to cells [30], but the reason is not clear now. Our results also indicated that Mxr1p overexpression would significantly inhibit cell growth
Based on our results, it inferred that Mxr1p might be involved in many different metabolic pathways besides MUT pathway. Therefore, Mxr1p overexpression may inhibit other important metabolic pathways, not ‘toxic’ for cells.

Conclusion

In this paper, Tkl1p regulation mechanism was clarified via different experiments, results showed that Tkl1p could bind on Mxr1p specific region (mainly located from 150AA to 400AA), and the complex would promote Xu5P recycle then further promote methanol utilization.

Materials And Methods

Medium, strain and plasmid

P. pastoris was cultured in YPD broth and BMY medium along with its derivatives, BMMY, BMGY, BMGMY and BMMGY. *Saccharomyces cerevisiae* (*S. cerevisiae*) was incubated in YPD broth andYPDA medium, Y2HGold in SD/Try (TAKARA) and Y187 in SD/Leu medium (TAKARA). Constructed plasmids were transformed into *Escherichia coli* (*E. coli*) DH5α and Trans110 (Trans Gen) cells, and these cells were cultured at 37 °C in Luria-Bertani (LB) medium. All formulas used are listed below. YPD (1% yeast extract, 2% tryptone, 2% glucose), BMY (1 L: 10 g yeast extract, 20 g tryptone, 3 g K2HPO4, 11.8 g KH2PO4, 13.4 g YNB, 4 x 10^-4 g biotin, 10 mL glycerol), BMMY (1 L: 10 g yeast extract, 20 g tryptone, 3 g K2HPO4, 11.8 g KH2PO4, 13.4 g YNB, 4 x 10^-4 g biotin, 5 mL methanol), BMGY (BMGY plus 0.5% methanol) and BMMGY medium (BMGY plus 0.5% methanol). YPDA (YPD with the addition of 15 mL 0.2% adenine), LB (0.5% yeast extract, 1% tryptone, 1% NaCl), TB/SB (2.6 g peptone, 4.8 g yeast extract, 0.462 g KH2PO4, 2.51 g K2HPO4, 2 g glycerol). SD/Try and SD/Leu medium was purchased from TAKARA. The solid medium was prepared by adding 2 % agar powder.

Electroporation was used to transform *P. pastoris*. Transformation and recombinant DNA operations were performed as described previously[11]. Selection of marker-resistant colonies was performed using LB with 50 µg/mL ampicillin or kanamycin, and YPD with 0.3 mg/mL G418 or 0.1 mg/mL zeocin.

Strains, plasmids and primers

See Tables 1, 2 and 3.

Plasmid and strain construction
M1/2 expression plasmid and strain construction

Initially, the *P. pastoris* genome was extracted. The sequences of Mxr1-150AA (M1) and Mxr1-400AA (M2) were amplified by PCR using *Pfu* DNA polymerase (Thermo Scientific, Waltham, MA, USA) and the *P. pastoris* genome. These two sequences vary in the number of N-terminal residues: 150 amino acids (M1) and 400 amino acids (M2), respectively. Subsequently, the PCR products were digested with *NdeI/XhoI*, and the digested fragments were inserted into the pSVT7 plasmid. The recombinant plasmid was chemically transformed into *E. coli* BL21(DE3) cells.

M1/2-pGBK7 recombinant plasmid construction

M1/2 were amplified with *Pfu* DNA polymerase and the *P. pastoris* genome was used as the template. The *NdeI/XhoI*-digested PCR products were ligated into the pGBK7 plasmid. Recombinant plasmids M1-pGBK7 and M2-pGBK7 were transformed into *S. cerevisiae* following the protocol provided by TAKARA.

AD-pGADT7 recombinant plasmid construction

The general procedure was the same as above. Target genes (like *tkl1*) were amplification and the PCR products were double-digested with the same restriction enzymes, and the digested fragments were ligated into the appropriate plasmid. Recombinant plasmid AD-pGADT7 was transformed into *S. cerevisiae* using the protocol provided by TAKARA.

Gene expression studies in *E. coli* BL21 (DE3) cells

E. coli BL21(DE3) cells were inoculated into LB medium and grown at 30 °C, 230 rpm for 16 h. The cells were then transferred to TB/SB and cultured at 30 °C, 230 rpm for 5 h. IPTG at a final concentration of 0.5 mmol/L was added to the culture to induce protein expression. Cells were harvested 20 h later by centrifugation at 4 °C and 4000 × g. Then recombinant protein was extracted from the cells.

Protein extraction and purification

One hundred microliters of culture (OD₆₀₀ = 3) was collected by centrifugation (4000 × g, 5 min, 4 °C) and resuspended in 400 mL lysis buffer (50 mM sodium phosphate, 300 mM NaCl, 0.01% Tween-20, 1 mM PMSF, pH 8.0). Cell disruption was achieved by ultrasonic vibration with 20 % power (SONIC
uibra cell). The supernatant containing the recombinant protein was collected following centrifugation (4000 \(\times \) g, 5 min, 4 °C). The target protein was isolated using an ÄKTA purifier™ UPC10 system.

M1/2/3 pull-down assay

His-M1/2 and His-M3 fusion proteins were immobilized to beads (Dynabeads® His-Tag Isolation) and washed four times with washing buffer (50 mM sodium phosphate, 300 mM NaCl, 0.01% Tween-20, pH 8.0). A total protein (or purified Tkl1p-His protein) from a yeast culture in BMMY or BMGY medium was added (Reaction solution). The mixture was incubated for 30 min and the beads washed four times with A solution (3.25 mM sodium phosphate, 70 mM NaCl, 0.01% Tween-20, pH 7.4) (Washing solution). Finally, 50 mL His elution buffer (300 mM imidazole, 50 mM sodium phosphate, 300 mM NaCl, 0.01% Tween-20, pH 7.4) was added to the samples and these were stirred for 2 min. The His-tagged protein was eluted (Elution solution), and proteins that interacted with the His-tag protein were transferred to sample tubes. All mixtures were subjected to SDS-PAGE and MS analysis.

M1/2 yeast two-hybrid

The protocol from TAKARA was used. Y2HGold cells transformed with the M1 or M2-pGBK7 recombinant plasmids (SD) were cultured in YPD medium. Y187 with the AD-pGADT7 recombinant plasmid (AD) were also cultured in YPD medium. Equal volumes of the cultures containing SD and AD were then mixed and added to 0.5 mL 2´ YPDA. The resuspended cells were mixed thoroughly. This mixture was incubated overnight (20–24 h) at 30 °C, 200 rpm. Finally, a 100 mL aliquot of the incubated mating culture was incubated in SD/Try/Leu/His/Ade medium at 30 °C for 3–5 d until visible single colonies appeared.

Dmxr1 mutant construction

The *P. pastoris* strain carrying the *mxr1* gene deletion was constructed by homologous recombination using *kan* as a marker. The upstream region of the *mxr1* gene was amplified initially by PCR using *Pfu* DNA polymerase (Thermo Scientific) and the *P. pastoris* genome as the template. The primers for this PCR, mxr1s-1 and mxr1s-2, included *SphI* and *BamHI* restriction sites, respectively. The 0.6-kb PCR-amplified fragment was inserted into *SphI/BamHI*-digested pMD™19-T plasmid (TAKARA) to create the
pMXR1UP plasmid. The downstream region of the mxr1 gene was also amplified with primers mxr1x-1 and mxr1x-2, carrying restriction sites for KpnI and EcoRI, respectively. This 0.5-kb PCR fragment was inserted into pMD19-T to yield the pMXR1Down plasmid. Next, the G418 resistance gene with its own promoter and terminator (1556 bp) was amplified by PCR, using pFA6a-KanMX6 as the template and primers kan-1 and kan-2, which carried BamHI and KpnI restriction sites, respectively, and the fragment was cloned into the SphI/BamHI-digested plasmid pMXR1UP to give the pMXR1UP-Kan plasmid. This plasmid was digested with KpnI/EcoRI to generate a 2.2-kb fragment that was then inserted into KpnI/EcoRI-digested pMXR1Down plasmid, yielding a P. pastoris mxr1 deletion plasmid, pMD19-T-MXR1-del. The deletion cassette was released from pMD19-T-MXR1-del as a 2.7-kb EcoRI/SphI-digested fragment and transformed by electroporation into wild-type P. pastoris (strain X-33). G418-resistant transformants were isolated on YPD supplemented with 1 mg/mL G418. The correct integration of the deletion cassette into the genome and replacement of the mxr1 open reading frame (ORF) in the transformants was confirmed by PCR analysis and Sanger sequencing.

mxr1 and tkl overexpression strain construction

The mxr1 gene and tkl were amplified by PCR using genomic DNA as the template, and different primers. The fragment was ligated into the pMD™19-T plasmid (TAKARA) and sequenced. The recombinant plasmid and pGAPZB plasmid (Invitrogen) were then digested with PmlI/Xhol, and the mxr1 fragment was inserted into pGAPZB to yield pGM. Finally, pGM was digested with AvrII and electro-transformed into the P. pastoris X-33 Dmxr1 mutant and P. pastoris X-33 wild-type, yielding Mxr1 overexpression strains mxr1-Dmxr1 and mxr1-wt, respectively. tkl1 were amplified by PCR using genomic DNA as the template. Purified PCR products were PmlI/KpnI-digested. This was followed by ligation into pGAPZB to create pGAPZB-tkl1. Then all the above plasmids were transformed into X-33 respectively by electro-transformation.

Real-time PCR

Total RNA extraction was carried out according to the standard procedure described in the Quantscrip TR kit (TAKARA). The reaction consisted of 5´ gDNA Eraser Buffer (2 μL), gDNA Eraser (1.0 μL), total RNA (4 μL, 500 ng) and RNase-Free ddH₂O (3 μL). Samples were incubated at 42 °C for 2 min. cDNA
served as the template for real-time PCR. The reverse transcription system contained 5 μL of the SYBR Premix Ex Taq II (2´), both forward and reverse primers (10 μM, 0.5 μL), cDNA (1 μL) and dH2O (3 mL). Each experiment was carried out in triplicate. The transcription level was normalized to an endogenous reference gene, glyceraldehyde-3-phosphate dehydrogenase (gapdh). The data processing method was 2-\Delta\Delta CT [31].

Western blotting detection

Total protein samples were taken from cells cultured in YPD. Cultivating *E. coli BL21* cells were transferred from 1× YPD after 16 h to 2× YPD. Cells were harvested ~6 h later and the cell pellet washed twice with ice-cold 50 mM potassium phosphate buffer (pH 7.0). An electronic oscillator was used to disrupt cells to obtain soluble proteins. Before oscillation, 200 μL of ice-cold PEBF (0.7882% Tris-HCl, 0.0585% EDTA and 2 μL of 100 mM PMSF) and glass beads were also added to ensure efficient cell disruption. The lysed cells were centrifuged at 10,000 g for 1 min, and the supernatant was collected and used for SDS-PAGE analysis.

Xylulose detection

Wild-type (X-33) cells and Tkl1p over-expression strain cells were harvested when the OD600 reached ~6.0. The harvested cells were transferred from YPD to BMMY and incubated overnight at 30 ºC and 230 rpm. Total protein extraction was the same as described above. The reaction system included formaldehyde (1–7%), xylulose (20 mM), and PEB and Mxr1 proteins (25 mL). The reaction was initiated by the addition of the crude cell extract (70 mL) and terminated with 20 mL H2SO4-Na2SO3 (2 M, pH 2.0). High-performance liquid chromatography (HPLC) was performed to quantify the xylulose level. The HPLC parameters were as follows: an Aminexâ HPX-87H ion exclusion column, column temperature 60 ºC, the flow rate of 0.6 mL/min and 5 mM H2SO4 as eluent [32, 33].

Formaldehyde and Methanol detection

Cells were incubated overnight in BMGY medium (0.5% methanol) and then transformed into fresh BMMY medium incubate for 12h, 30ºC. Cells were centrifuged and supernatant was collected for methanol and formaldehyde detection. HPLC was used for detection followed by Zhan[11].
Formaldehyde concentration was determined via Nash [34].

Declarations

Funding

This work was supported by the National Natural Science Foundation of China (21908077, 31570034), the national first-class discipline program of Light Industry Technology and Engineering (LITE2018-24), the Opening Project of the Key Laboratory of Industrial Biotechnology, Ministry of Education [], the fifteenth batch of the “Six Talent Peaks Project in Jiangsu Province” (SWYY-180), the Collaborative Innovation Center of Jiangsu Modern Industrial Fermentation, the 111 Project (111-2-06).

Author contributions

Chunjun Zhan and Yankun Yang designed the research; Chunjun Zhan and Yingyue Pan performed most of the experiments; Xiuxia Liu, Chunli Liu, Jinling Zhan, and Dinghua Xu analysed the data; Chunjun Zhan wrote the paper and Zhonghu Bai edited the manuscript.

Corresponding author

Correspondence to Yankun Yang

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Consent for publication

Not applicable.

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. Wu D, Zhu H, Chu J, Wu J: N-acetyltransferase co-expression increases alpha-glucosidase expression level in Pichia pastoris. Journal of biotechnology 2018.

2. Chen Q, Zhou Y, Yu J, Liu W, Li F, Xian M, Nian R, Song H, Feng D: An efficient constitutive expression system for Anti-CEACAM5 nanobody production in the yeast Pichia pastoris. Protein expression and purification 2018.
3. Yang Y, Fan FF, Zhuo R, Ma FY, Gong YM, Wan X, Jiang ML, Zhang XY: **Expression of the Laccase Gene from a White Rot Fungus in *Pichia pastoris* Can Enhance the Resistance of This Yeast to H2O2-Mediated Oxidative Stress by Stimulating the Glutathione-Based Antioxidative System.** *Applied and Environmental Microbiology* 2012, 78:5845-5854.

4. Gassler T, Sauer M, Gasser B, Egermeier M, Troyer C, Causon T, Hann S, Mattanovich D, Steiger MG: **The industrial yeast *Pichia pastoris* is converted from a heterotroph into an autotroph capable of growth on CO2.** *Nature Biotechnology* 2019:1-7.

5. Cereghino JL, Cregg JM: **Heterologous protein expression in the methylotrophic yeast *Pichia pastoris*.** *FEMS Microbiol Rev* 2000, 24:45-66.

6. Johnson MA, Waterham HR, Ksheminska GP, Fayura LR, Cereghino JL, Stasyk OV, Veenhuis M, Kulachkovsky AR, Sibirny AA, Cregg JM: **Positive selection of novel peroxisome biogenesis-defective mutants of the yeast *Pichia pastoris*.** *Genetics* 1999, 151:1379-1391.

7. Kranthi BV, Kumar R, Kumar NV, Rao DN, Rangarajan PN: **Identification of key DNA elements involved in promoter recognition by Mxr1p, a master regulator of methanol utilization pathway in *Pichia pastoris*.** *Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms* 2009, 1789:460-468.

8. Lin-Cereghino GP, Godfrey L, de la Cruz BJ, Johnson S, Khuongsathiene S, Tolstorukov I, Yan M, Lin-Cereghino J, Veenhuis M, Subramani S, Cregg JM: **Mxr1p, a Key Regulator of the Methanol Utilization Pathway and Peroxisomal Genes in *Pichia pastoris*.** *Molecular and Cellular Biology* 2006, 26:883-897.

9. Kranthi BV, Kumar HRV, Rangarajan PN: **Identification of Mxr1p-binding sites in the promoters of genes encoding dihydroxyacetone synthase and peroxin 8**
of the methylotrophic yeast *Pichia pastoris*. *Yeast* 2010, **27**:705-711.

10. Zhan C, Yang Y, Zhang Z, Li X, Liu X, Bai Z: *Transcription factor Mxr1 promotes the expression of Aox1 by repressing glycerol transporter 1 in Pichia pastoris*. *FEMS Yeast Research* 2017, **17**:fox015.

11. Zhan C, Wang S, Sun Y, Dai X, Liu X, Harvey L, McNeil B, Yang Y, Bai Z: The *Pichia pastoris* transmembrane protein GT1 is a glycerol transporter and relieves the repression of glycerol on AOX1 expression. *FEMS Yeast Research* 2016, **16**:fow033.

12. Parua PK, Ryan PM, Trang K, Young ET: *Pichia pastoris* 14-3-3 regulates transcriptional activity of the methanol inducible transcription factor Mxr1 by direct interaction. *Molecular microbiology* 2012, **85**:282-298.

13. Parua PK, Ratnakumar S, Braun KA, Dombek KM, Arms E, Ryan PM, Young ET: 14-3-3 (Bmh) Proteins Inhibit Transcription Activation by Adr1 through Direct Binding to Its Regulatory Domain. *Molecular and Cellular Biology* 2010, **30**:5273-5283.

14. Wang X, Wang Q, Wang J, Bai P, Shi L, Shen W, Zhou M, Zhou X, Zhang Y, Cai M: *Mit1 Transcription Factor Mediates Methanol Signaling and Regulates the Alcohol Oxidase 1 (AOX1) Promoter in Pichia pastoris*. *The Journal of Biological Chemistry* 2016, **291**:6245-6261.

15. Wang X, Cai M, Shi L, Wang Q, Zhu J, Wang J, Zhou M, Zhou X, Zhang Y: *PpNrg1 is a transcriptional repressor for glucose and glycerol repression of AOX1 promoter in methylotrophic yeast Pichia pastoris*. *Biotechnology Letters* 2016, **38**:291-298.

16. Sasano Y, Yurimoto H, Kuriyama M, Sakai Y: *Trm2p-dependent derepression is essential for methanol-specific gene activation in the methylotrophic yeast*
Candida boidinii. *Fems Yeast Research* 2010, **10:**535-544.

17. Sasano Y, Yurimoto H, Yanaka M, Sakai Y: **Trm1p, a Zn(II)(2)Cys(6)-type transcription factor, is a master regulator of methanol-specific gene activation in the methylotrophic yeast Candida boidinii.** *Eukaryotic Cell* 2008, **7:**527-536.

18. Kumar NV, Rangarajan PN: **The Zinc Finger Proteins Mxr1p and Repressor of Phosphoenolpyruvate Carboxykinase (ROP) Have the Same DNA Binding Specificity but Regulate Methanol Metabolism Antagonistically in Pichia pastoris.** *Journal of Biological Chemistry* 2012, **287:**34465-34473.

19. De Schutter K, Lin Y-C, Tiels P, Van Hecke A, Glinka S, Weber-Lehmann J, Rouzé P, Van de Peer Y, Callewaert N: **Genome sequence of the recombinant protein production host Pichia pastoris.** *Nature biotechnology* 2009, **27:**561.

20. Yu H, Liao JC: **A modified serine cycle in Escherichia coli coverts methanol and CO₂ to two-carbon compounds.** *Nature Communications* 2018, **9**.

21. Woolston BM, King JR, Reiter M, Van Hove B, Stephanopoulos G: **Improving formaldehyde consumption drives methanol assimilation in engineered E. coli.** *Nature communications* 2018, **9:**2387.

22. Witthoff S, Schmitz K, Niedenführ S, Nöh K, Noack S, Bott M, Marienhagen J: **Metabolic engineering of Corynebacterium glutamicum for methanol metabolism.** *Appl Environ Microbiol* 2015, **81:**2215-2225.

23. Zhang W, Zhang T, Wu S, Wu M, Xin F, Dong W, Ma J, Zhang M, Jiang M: **Guidance for engineering of synthetic methylotrophy based on methanol metabolism in methylotrophy.** *RSC Advances* 2017, **7:**4083-4091.

24. Savakis P, Hellingwerf KJ: **Engineering cyanobacteria for direct biofuel production from CO₂.** *Curr Opin Biotechnol* 2015, **33:**8-14.
25. Hu G, Li Y, Ye C, Liu L, Chen X: Engineering Microorganisms for Enhanced CO$_2$ Sequestration. Trends in biotechnology 2018.

26. Gleizer S, Ben-Nissan R, Bar-On YM, Antonovsky N, Noor E, Zohar Y, Jona G, Krieger E, Shamshoum M, Bar-Even A: Conversion of Escherichia coli to generate all biomass carbon from CO$_2$. Cell 2019, 179:1255-1263. e1212.

27. Slekar KH, Kosman DJ, Culotta VC: The yeast copper/zinc superoxide dismutase and the pentose phosphate pathway play overlapping roles in oxidative stress protection. Journal of Biological Chemistry 1996, 271:28831-28836.

28. Krainer FW, Dietzsch C, Hajek T, Herwig C, Spadiut O, Glieder A: Recombinant protein expression in Pichia pastoris strains with an engineered methanol utilization pathway. Microbial cell factories 2012, 11:22.

29. Fukuoka H, Kawase T, Oku M, Yurimoto H, Sakai Y, Hayakawa T, Nakagawa T: Peroxisomal Fba2p and Tal2p complementally function in the rearrangement pathway for xylulose 5-phosphate in the methylotrophic yeast Pichia pastoris. Journal of bioscience and bioengineering 2019.

30. Singh K: Isolation of Multicopy Beta Lactamase Expression Strains of Pichia pastoris. 2007.

31. Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 2001, 25:402-408.

32. Li H, Fan HC, Li YR, Shi GY, Ding ZY, Gu ZH, Zhang L: Construction and application of multi-host integrative vector system for xylose-fermenting yeast. Fems Yeast Research 2017, 17:fox055.

33. Sanchez-Moreno I, Garcia-Junceda E, Hermida C, Fernandez-Mayoralas A: Development of a new method for D-xylose detection and quantification in
urine, based on the use of recombinant xylose dehydrogenase from

Caulobacter crescentus. Journal of Biotechnology 2016, 234:50-57.

34. Nash T: The colorimetric estimation of formaldehyde by means of the

Hantzsch reaction. Biochemical Journal 1953, 55:416.

Tables

Table 1 Strains used in this study

Strain	GenotypeR	Source of reference
E.coli		
Trans5α	F-φ80d lacZΔM15 Δ(lacZYA-argF) U169 end A1 recA1 hsdR17 (rk-,mk+)	TransGen
	supE44λ- thi-1 gyrA96 relA1 phoA	Biotech
Trans110	rpsL (StrR) thr leu thi-1 lacY galK galT ara tonA tsx dam dcm supE44	TransGen
	Δ(lac-proAB) /F [traD36 proAB lacIq lacZΔM15]	Biotech
Mxr1-BL21(DE3)	Recombinant plasmid (Mxr-pSVT7) transformed into X-33	This study
Pichia pastoris		
X-33	Wide type Mut+,His+	Invitrogen
Dmxr1	X-33 mxr1:: Kan	This study
Mxr1	Recombinant plasmid (Mxr-pGAPZB) transformed into X-33	This study
overexpression strain		
TKL1-X-33	Recombinant plasmid (TKL1-pGAPZB) transformed into X-33	This study
Tk1-mxr1p double		This study
Saccharomyces cerevisias		
Y2HGgold	MATa, trp1-901, leu2-3, 112, ura3-52, his3-200, gal4Δ, gal80Δ,	TAKARA
	LYS2 :: GAL1 UAS –Gal1 TATA –His3, GAL2 UAS –Gal2 TATA –Ade2	
	URA3 :: MEL1 UAS –Mel1 TATA AUR1-C MEL1	
Mxr1-1-Y2HGgold	Recombinant plasmid (Mxr1-1- pGBK7T) transformed into Y187	This study
Mxr1-2-Y2HGgold	Recombinant plasmid (Mxr1-2 pGBK7T) transformed into Y187	This study
Y187	MATa, ura3-52, his3-200, ade2-101, trp1-901, leu2-3, 112,	TAKARA
	gal4Δ, gal80Δ, met-,URA3 :: GAL1 UAS –Gal1 TATA –LacZ,MEL1	
TKL1-Y187	Recombinant plasmid (DAS1- pGADT7)transformed into Y187	This study
IMD-Y187	Recombinant plasmid (IMD- pGADT7) transformed into Y187	This study
UDP-187	Recombinant plasmid (UDP- pGADT7) transformed into Y187	This study

ZeocinR: Zeocin resistance
Table 2 Primers used in this study

Primer	Sequence
mxr150-F(M1-F)	CC CATATG ATGAGCAATCTACCCCAAC
mxr150-R(M1-R)	CC GGATCC TCA GTGGTGTTGGTGGTG ATTTGAGTCGCCGCGCC
mxr-400-F(M2-F)	GGAATTC CATATG AGCAACTTCGCCCTACCTTTG
mxr-400-R(M2-R)	CGC GGATCC TTACGGTGGTATCTTTTCGCG
mxr400B-F	CG GGATCC ATGAGCAACCTTACCCTACCTTTG
mxr400B-R	TTACGGTGATATCTTTTCGCG
Mxr1-1-F	ATGAGCAATCTACCCCCAAC
Mxr1-1-R	TCA GTGGTGTTGGTGGTG ATTTGAGTCGCCGCGCC
Mxr1-2-F	ATGAGCAACCTTACCCCTACCTTTG
Mxr1-2-R	TTACGGTGATATCTTTTCGCG
G1-F	TCAGAAAAGAACACCCCTTCGACTTTG ATGAGCCCTATCAATTCCTA
G1-R	TCAGAAAAGAACACCCCTTCGACTTTG CTAAATGCTTCAATTCCTA
G2-F	TCAGAAAAGAACACCCCTTCGACTTTG ATGAGCCCTATCAATTCCTA
G2-R	TCAGAAAAGAACACCCCTTCGACTTTG TTACCCCTTGGTATCTTTTC
G3-F	TCAGAAAAGAACACCCCTTCGACTTTG ATGACAGAAAAACATAACGGATC
G3-R	TCAGAAAAGAACACCCCTTCGACTTTG ATGAGAAAAACAAACGGATC

Table 3 Plasmids used in this study

Plasmid	Genotypea	Source or reference
pMD19-T Simple	AmpicillinR; E. coli subcloning vector	This study
pGBK7	KanamycinR; PTRP, 1 c-Myc epitope tag, GAL4(1-147) -based expression vector	TAKARA
mxr1-1-pGBK7	KanamycinR; PTRP, 1 c-Myc epitope tag, GAL4(1-147) -based expression vector containing M1 gene	This study
mxr1-2-pGBK7	KanamycinR; PTRP, 1 c-Myc epitope tag, GAL4(1-147) -based expression vector containing M2 gene	This study
mxr1-3-pGBK7	KanamycinR; PTRP, 1 c-Myc epitope tag, GAL4(1-147) -based expression vector containing mxr150-400 gene	This study
pGAD7	AmpicillinR; PTRP, 1 HA epitope tag, GAL4(768-881) -based expression vector	TAKARA
DAS1-pGAD7	AmpicillinR; PTRP, 1 HA epitope tag, GAL4(1-147) -based expression vector containing DAS1 gene	This study
pGAD7-M2	AmpicillinR; PTRP, 1 HA epitope tag, GAL4(1-147) -based expression vector containing IMD gene	This study
pGAD7-M3	AmpicillinR; PTRP, 1 HA epitope tag, GAL4(1-147) -based expression vector containing UDP gene	This study
M2-pGAPZB	ZeocinR; P GAP-M2, -based expression vector PGAPZB-based expression vector	This study
M3-pGAPZB	ZeocinR; P GAP-M3, -based expression vector PGAPZB-based expression vector	This study
Figures

Genes	Induction	Regulation
AOX1	Methanol	Mxr1p
AOX2	Methanol	----
DAS1	Methanol	Mxr1p
DAS2	Methanol	Mxr1p
FLD	Methanol	----
FDH	Methanol	----
PEX8	Methanol	----
CTA1	----	----
DAK	Constitutive	----
FBA	Constitutive	----
FBP	Constitutive	----
TAL	Methanol	----
TKL	----	----
REP1	----	----
RKI1	----	----

Figure 1

Schematic diagram of important genes related to methanol metabolic pathway (assimilation pathway). AOX1/2: alcohol oxidase1/2. DAS1/2: CTA1: catalase. DAK: dihydroxyacetone kinase. TPI: triosephosphate isomerase. FBA1/2: fructose-1,6-bisphosphate aldolase1/2. FBP: fructose-1,6-bisphosphate. TKL: transketolase. RPE1: ribulose-phosphate 3-epimerase. RPIA1: ribose 5-phosphate. TAL: transldolase. DHA: dihydroxyacetone. DHAP: dihydroxyacetone phosphate. GAP: glyceraldehyde-3-phosphate. FBP: fructose-1,6-bisphosphate. F6P: fructose-6-phosphate. E4P: S7P: sedoheptulose-7-phosphate. Xu5P: xylulose-5-phosphate. Ru5P: ribulose-5-phosphate. R5P: ribose-5-phosphate.
Figure 2

tkl1 expression levels in different conditions. (a) tkl1 transcriptional level and methanol consumption in different strains. (b) tkl1 translational level in different cells.
Mxr1p interacting protein diggnation. (a) Proteins interacted with M1 (Mxr1p-150AA). (b) Proteins interacted with M2 (Mxr1p-400AA). BMKY: Total proteins using for pull-down comes from BMKY medium. Total proteins using for pull-down comes from BMGY medium. †:M1. : M2. : Targeted band.
Interaction site studies between Mxr1p mutant and Tk1l. (a) pull-down assay using Tk1l-His and M3-Flag purified protein. (b) Different strains growth curve in methanol. mxr1: mxr1 deletion. M2: integrate M2 into mxr1 mutant. M3: integrate M3 into mxr1 mutant.

Figure 5
Evaluation Mxr1p-Tk1lp complex function. (a) Xylulose production and formaldehyde consumption in different reaction system. (b) Measurement of XK transcriptional level and methanol consumption in different reaction system

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.
