Segmentation of compacted and non compacted left ventricular mass with a semi-automatic method

Stéphanie Bricq1*, Julien Frandon3, Daniel Fagret5, Alexandre Cochet1,2, Alexis Jacquier4, Alain Lalande1,2

From 18th Annual SCMR Scientific Sessions
Nice, France. 4-7 February 2015

Background
The diagnostic of left ventricular (LV) non compaction is still a challenge in clinical practice. There is a lack of reference method able to automatically quantify the total amount of LV trabeculations. Many algorithms have been proposed to determine endocardium and epicardium borders ranging from semi-automated to fully automated methods. However most of the methods were not designed to take into account papillary muscles and trabeculae. Here we propose a global framework to detect non-compacted, endocardium and epicardium contours with minimal user interaction, taking into account papillary muscles and trabeculae. Preliminary results on the normal non-compacted mass obtained from 20 healthy volunteers are presented.

Methods
Proposed method is a semi-automatic one. The user has to click in the LV cavity on one slice. Using this seed, the non-compacted contour which is a homogeneous area in term of intensity, is obtained using a region growing algorithm. This non-compacted contour is then used for the initialization of a variational B-spline level-set to determine the endocardium border. This border is used

Figure 1 Example of the left ventricular segmentation from base to apex (top): epicardial border in blue, endocardial border in red, trabeculae border in green. Papillary muscles were segmented and included into the compacted mass (yellow line). For the calculation of the non compacted mass (bottom), trabeculae (grey) were segmented using a semi-automatic threshold tool to suppress blood (white).

1Le2i UMR CNRS 6306, Dijon, France
Full list of author information is available at the end of the article

© 2015 Bricq et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
as initialization for a region growing algorithm to obtain the epicardial border. Papillary muscles and trabeculations are then segmented using a semi-automatic threshold tool. Finally, compacted (C) mass, non-compacted (NC) mass, end-diastolic volume (EDV) and NC/C ratio are computed.

Analysis was performed on MR examinations obtained from twenty healthy subjects (mean age 46 ± 17 years, 8 men). All subjects were completely asymptomatic with no known risk factors or history of cardiac disease. Segmentation was performed by two independent observers on the diastolic frame from contiguous short axis cine-MR images covering the LV. Inter-observer measurement reproducibility was assessed thanks to Bland-Altman analysis and to the correlation coefficient calculation between the different volumes obtained by the two observers.

Results
Total processing time is less than 20 min for each patient. Figure 1 shows an example of the segmentation. Absolute values of all the parameters for normal subjects are presented in Table 1, as the inter-observer evaluation. The compacted mass is around 58 g/m² and the non-compacted around 7 g/m². Correlation coefficient between the 2 observers is high, from 0.81 to 0.99 (p<10^{-4}).

Conclusions
This semi-automatic method is highly reproducible and can be used to help diagnosis in LVNC patient and probably in first degree relative of patient with hypertrophic cardiomyopathy. Our first results show that the non-compacted mass in normal subjects is widely less than 10 g/m² and the ratio between non compacted and compacted mass is always less than 15 %.

Funding
N/A.

Authors’ details
1Le2i UMR CNRS 6306, Dijon, France. 2Service d’IRM, CHU Dijon, Dijon, France. 3Service de radiologie, CHU Grenoble, Grenoble, France. 4Service de radiologie, CHU La Timone, Marseille, France. 5Médecine Nucléaire, CHU Grenoble, Grenoble, France.

Table 1 Data as inter-observer reproducibility of measurements from 20 subjects

Measurement	Observer 1 Mean ± SD	Observer 2 Mean ± SD	R	p Value	Bland-Altman Mean ± SD
NC [g]	13.8 ± 3.3	11.7 ± 3.5	0.88	<10^{-5}	-2.11 ± 1.68
C [g]	104.6 ± 21	103.7 ± 21	0.98	<10^{-5}	-0.93 ± 4.48
NC/BSA [g/m²]	7.8 ± 1.7	6.6 ± 1.6	0.84	<10^{-5}	-1.23 ± 0.95
C/BSA [g/m²]	58.9 ± 8.4	58.4 ± 8.8	0.96	<10^{-5}	-0.46 ± 2.48
EDV [mL/m²]	73 ± 15	72 ± 15	0.99	<10^{-5}	-0.65 ± 1.12
Ratio NC/C [%]	13 ± 3	11 ± 3	0.81	<10^{-4}	2.02 ± 1.7

Published: 3 February 2015

doi:10.1186/1532-429X-17-S1-P55

Cite this article as: Bricq et al. Segmentation of compacted and non compacted left ventricular mass with a semi-automatic method. Journal of Cardiovascular Magnetic Resonance 2015, 17(Suppl 1):P55.