A spin foam model for general Lorentzian 4-geometries

Florian Conrady and Jeff Hnybida

1 Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada
2 Department of Physics, University of Waterloo, Waterloo, Ontario, Canada

E-mail: fconrady@perimeterinstitute.ca and jhnybida@perimeterinstitute.ca

Received 2 March 2010, in final form 6 July 2010
Published 29 July 2010
Online at stacks.iop.org/CQG/27/185011

Abstract

We derive simplicity constraints for the quantization of general Lorentzian 4-geometries. Our method is based on the correspondence between coherent states and classical bivectors and the minimization of associated uncertainties. For triangulations with spacelike triangles, this scheme agrees with the master constraint method of the model by Engle, Pereira, Rovelli and Livine (EPRL). When it is applied to general triangulations of Lorentzian geometries, we obtain new constraints that include the EPRL constraints as a special case. They imply a discrete area spectrum for both spacelike and timelike surfaces. We use these constraints to define a spin foam model for general Lorentzian 4-geometries.

PACS numbers: 04.60.Pp, 04.60.Gw

1. Introduction

What happens if one describes geometry as a degree of freedom of quantum theory? Does geometry remain continuous or does it come in quanta? Are the singularities of classical general relativity resolved? Loop quantum gravity originates from the attempt to answer such questions. In the Hamiltonian framework, this led to canonical loop quantum gravity and, in the path integral picture, it brought forth the notion of spin foam models [4]. A central result of both approaches is the discreteness of the area spectrum: it suggests that there is a minimal unit of area and that quantum geometry is indeed discrete.

The basic idea behind spin foam models is to divide spacetime into 4-simplices and to study how the geometry of these simplices can be quantized. More precisely, bivectors B are used to describe triangles and constraints are imposed, so that four bivectors are equivalent to a tetrahedron. The bivectors and constraints are then translated in a suitable way to the quantum theory. The main elements of this procedure were introduced by Barrett and Crane [5].

See [1, 2] and [3] for reviews.
the language of field theory, this corresponds to the transition from topological BF theory to
gravity: the B in BF is constrained to be simple, so that it becomes the wedge product of two
tetrads. For this reason, the constraints are called simplicity constraints.

In recent years, considerable progress was made in improving and clarifying this
quantization process. The key to this progress were two new developments: firstly, Engle,
Pereira, Rovelli and Livine (EPRL) defined a new model that resolves certain longstanding
problems with the Barrett–Crane model and establishes a link with canonical loop quantum
gravity [6]. The quantization is based on a so-called master constraint, which is the sum of the
squares of all simplicity constraints. The second important innovation was the coherent state
technique introduced by Livine and Speziale [7]. It provides a better geometric understanding
of quantum states, and led to the construction of the Freidel–Krasnov (FK) model [8, 9]. In
this model, simplicity is imposed on expectation values of coherent states.

Both of these developments spurred further results. The FK model was reexpressed as
a path integral with a simple action [10]. The semiclassical limit of the new models was
analyzed [11–13], likewise the graviton propagator [14]. It was found that intertwiner states
can be understood in geometric terms [15]. Recently, coherent states were constructed for
entire 3-geometries [16, 17].

This paper is motivated by two questions. The first question concerns the relation between
the EPRL and coherent state approach. What is the connection between these two lines of
thought? Is there a way to understand the master constraint in terms of coherent states? In
the Riemannian case, we know from explicit comparison that the EPRL and FK model are
closely related [10]. To this extent, the coherent state ideas also apply to the EPRL model.
In the Lorentzian case, however, it is not clear how a derivation from coherent states should
look like\(^4\). It could be very useful to have one, since coherent states provide a particularly
transparent quantization of simplicity constraints.

The second motivation for this paper comes from the fact that the EPRL model is only
defined for spacelike area bivectors. That is, it can only describe geometries in which all
surfaces are spacelike. The obvious question is therefore: how can one specify a model that
covers realistic Lorentzian geometries, where bivectors can be both spacelike and timelike?

In this paper, we obtain an answer to our first question, and it turns out that we can also
resolve the second question with this knowledge. What we find is a coherent state method that
reproduces the EPRL constraints and applies at the same time to the cases which were not yet
covered in this model. On the one hand, we recover the EPRL constraints for tetrahedra with
timelike normals. Thus, the method gives the desired coherent state derivation of the EPRL
spin foams. The same scheme, however, works also for tetrahedra with spacelike normals. In
this case, it results in two new sets of constraints that pertain to spacelike and timelike triangles
within such tetrahedra.

Our method is inspired by the Riemannian FK model and extends its logic by an additional
condition. We demand that there are quantum states for which

1. the expectation value of the bivector operator is simple and
2. the uncertainty in the bivector is minimal\(^5\).

With this, we enforce the existence of coherent states that correspond to classical simple
bivectors. Such states can only exist in certain irreducible representations of \(SL(2, \mathbb{C})\) and
its subgroups. This determines constraints on irreps and we interpret them as the quantum
version of the simplicity constraints.

\(^4\) A proposal was made in [8].

\(^5\) The precise meaning of ‘minimal’ is stated in sections 2 and 3.
Based on this, we define a new spin foam model that gives a quantization of tetrahedra with spacelike and timelike normals, and hence a quantization of general Lorentzian geometries. In addition, a coherent state vertex amplitude is specified. We should remark that coherent states are not necessary, and, in fact, not used, when defining the spin foam sum. In this work, the coherent states are only essential in the derivation of the simplicity constraints.

The paper is organized as follows: in section 2 we introduce our coherent state method. It is applied to tetrahedra with a timelike normal and the constraints of the EPRL model are reproduced. In section 3, we treat tetrahedra with a spacelike normal and obtain two new constraints that refer to spacelike and timelike triangles respectively. Section 4 summarizes the constraints for the different cases. In section 5, we use these constraints to define a spin foam model for general Lorentzian 4-geometries.

1.1. Conventions

At the outset, we make a few remarks on notation to avoid confusion due to differing conventions in the literature.

Our sign convention for the spacetime metric is \((+, -, -, -)\) and \((+, -, -)\) for 3D Minkowski spacetime. Moreover, \(\epsilon^{0123} = +1\). The Immirzi parameter is \(\gamma\) and we assume that \(\gamma > 0\). Unit normal vectors of tetrahedra are denoted by \(U\). The letter \(N\) stands for unit normal vectors of triangles. We have the Hodge dual operator \(\star\) and \(\star B\) is the area bivector of triangles.

Unitary irreducible representations of \(SL(2, \mathbb{C})\) are labeled by pairs \((\rho, n)\), where \(\rho \in \mathbb{R}\) and \(n \in \mathbb{Z}_+\). With regard to irreducible representations of subgroups, we follow the notation in [18]: \(D_j\) stands for \(SU(2)\) irreps. The discrete and continuous series of \(SU(1, 1)\) are designated by \(D_j^+\) and \(C^s\) respectively. Representation matrices are symbolized by \(D(\rho, n)(g)\) in the \(SL(2, \mathbb{C})\) case and by \(D^j(g)\) for subgroups.

2. Simplicity constraints for the \(SU(2)\) reduction

In this section, we introduce our procedure for deriving the simplicity constraints on representations of the Lorentz group. We do so by applying it to a situation that has been already treated in the EPRL model [6].

As explained below, the simplicity constraints split into two main categories, depending on whether normal vectors \(U\) of tetrahedra are timelike or spacelike. The case considered in [6] is the one for timelike \(U\). At the quantum level, this choice of a timelike normal is reflected by the fact that unitary irreps of \(SL(2, \mathbb{C})\) are analyzed in terms of irreps of the subgroup \(SU(2)\). For this case, we will find that our method produces the same simplicity constraints as the master constraint employed in the EPRL paper.

Encouraged by this agreement, we will then proceed to section 3, where we apply our technique to the case when \(U\) is spacelike. Then, irreps of \(SL(2, \mathbb{C})\) will be decomposed into irreps of \(SU(1, 1)\) and we will obtain a new set of simplicity constraints.

2.1. Classical variables

Our starting point is the \(SO(1, 3)\) bivector

\[
J = B + \frac{1}{\gamma} \star B, \tag{1}
\]
which is used when defining gravity as a constrained BF theory with the Immirzi parameter γ. The idea is to constrain B in such a way that B becomes $B = \star (E \wedge E)$, where E is a co-tetrad. Under this constraint, the action

$$S = \int J \wedge F = \int \left(B \wedge F + \frac{1}{\gamma} \star B \wedge F \right)$$

reduces to the Hilbert–Palatini action with an Immirzi term.

Like in [6], we denote the total bivector by the letter J. This choice is convenient, since J will be closely related to the generators of the Lorentz group. After quantization, the classical bivector JIJ will arise from expectation values of $SO(1, 3)$ generators.

At the classical level, the derivation of the simplicity constraints proceeds as follows: first, we state the simplicity constraints for B, which ensure that $B = \star (E \wedge E)$. These constraints involve a vector U which is normal to the dual bivector $\star B$. Since U can be either timelike or spacelike, one obtains two classes of simplicity constraints. In the present section, we treat the case where U is timelike, as in the EPRL model. These constraints are then expressed as constraints on J—ready to be translated to the quantum theory.

In full generality, the simplicity constraint reads

$$U \cdot \star B = 0,$$

where U is a Lorentz vector of unit norm, i.e. $U^2 = \pm 1$. This constraint implies that the dual $\star B$ is simple and of the form

$$\star B = E_1 \wedge E_2,$$

where E_1 and E_2 are two 4-vectors orthogonal to U (for a derivation see e.g. [8]). Moreover, B is simple and given by

$$B = AU \wedge N,$$

where N is a unit norm 4-vector such that $U \cdot N = 0$ and $N \cdot E_1 = N \cdot E_2 = 0$. The coefficient A in (5) is equal to the area

$$A = \sqrt{\left| E_1^2 E_2^2 - (E_1 \cdot E_2)^2 \right|}$$

of the parallelogram spanned by E_1 and E_2.

Equations (4) and (5) elucidate the geometric meaning of the 4-vectors U and N. E_1 and E_2 correspond to the tetrad and in a discrete setting they can be regarded as the two edges of a triangle. The dual $\star B$ is the so-called area bivector of this triangle, and it is orthogonal to both U and N. To obtain a tetrahedron, one starts from four bivectors B_a, $a = 1, \ldots, 4$, and imposes the simplicity constraint (3) on each of them:

$$U \cdot \star B_a = 0, \quad a = 1, \ldots, 4.$$

This means that all four bivectors are simple and that they span a 3D subspace orthogonal to U. When the closure constraint

$$\sum_{a=1}^{4} B_a = 0$$

is supplemented, it follows that the bivectors B_a are equivalent to a tetrahedron. The vector U is the normal of this tetrahedron, the four vectors N_a (associated with the bivectors B_a) are the normals to the four triangles, and the E’s are the edges of the triangles. In this way, geometry results from constraints on bivectors. In spin foam models the analog of (7) is imposed on representations of the gauge group, while the closure constraint arises dynamically.

\quad

6 $V \wedge W$ stands for the bivector $(V \wedge W)^{ij} = v^i w^j - w^i v^j$.

Let us assume now that U is timelike and gauge-fixed to $U = (1, 0, 0, 0)$. Then, the simplicity constraint becomes $(\star B)^H = 0$ and $\star B$ has to be spacelike. Next we express this constraint in terms of the bivector J. Solving for J in (1) gives
\[B = \frac{\gamma^2}{\gamma^2 + 1} \left(J - \frac{1}{\gamma} \star J \right). \] (9)

It follows that the gauge-fixed simplicity constraint is equivalent to
\[J^i + \frac{1}{\gamma} K^i = 0 \] (10)

where we use the usual definitions
\[J^i = \frac{1}{2} \epsilon^{0i} jk J^j J^k \quad \text{and} \quad K^i = J^0_i. \] (11)

Equation (10) will be the central equation for the derivation of the simplicity constraints in the quantum theory.

It is also useful to express the normal vector N in terms of J^i and K^i. On the one hand, we have that
\[B_{0i} = A N^i, \] (12)

On the other hand,
\[B_{0i} = \frac{\gamma^2}{\gamma^2 + 1} \left(J^0_i - \frac{1}{2\gamma} \epsilon^{0i} jk J^j J^k \right) \] (13)

\[= \frac{\gamma^2}{\gamma^2 + 1} \left(K^i - \frac{1}{\gamma} J^i \right). \] (14)

Using the simplicity constraint (10) this yields
\[A N^i = -\gamma J^i. \] (15)

Therefore, $N = (0, \vec{N})$, where $A \vec{N} = -\gamma \vec{J}$. Observe also that the vector \vec{N} is a point in the 2-sphere
\[S^2 \simeq SU(2)/U(1). \] (16)

and hence a point in the coadjoint orbit (or phase space) of spin $j = 1$.

2.2. Quantum states

Next we will describe our way of translating the simplicity constraint to quantum states. As in the EPRL model, we will not do this in a manifestly covariant way. We will start from equation (10), which is the simplicity constraint after gauge-fixing U to $(1, 0, 0, 0)$.

The quantum analog of the bivectors are states in unitary irreducible representations of $SL(2, C)$. The latter are labeled by pairs (ρ, n), where $\rho \in \mathbb{R}$ and $n \in \mathbb{Z}_+$. Since $U = (1, 0, 0, 0)$ singles out $SU(2)$ as a little group of $SL(2, \mathbb{C})$, it is convenient to express everything in an ‘$SU(2)$ friendly’ way. This can be done by using the decomposition of $SL(2, \mathbb{C})$ irreps into $SU(2)$ irreps: namely,
\[\mathcal{H}(\rho, n) \simeq \bigoplus_{j=n/2}^{\infty} \mathcal{D}_j, \] (17)
where \(\mathcal{H}_{(\rho, n)} \) denotes the Hilbert space of the irrep \((\rho, n)\) and \(\mathcal{D}_j \) stands for the spin \(j\) irrep of \(SU(2)\) (see e.g. [23]). The corresponding completeness relation reads

\[
\mathbb{I}_{(\rho, n)} = \sum_{j=n/2}^{\infty} \sum_{m=-j}^{j} |\Psi_{jm}\rangle \langle \Psi_{jm}|.
\]

(18)

The states \(|\Psi_{jm}\rangle, m = -j, \ldots, j \), span a subspace of \(\mathcal{H}_{(\rho, n)} \) that is isomorphic to \(\mathcal{D}_j \), so we identify them with states \(|jm\rangle \) of \(\mathcal{D}_j \).

Our recipe for quantizing the simplicity constraints is formulated as follows. We require the existence of quantum states for which the expectation value of the bivector \(JIJ\) satisfies the simplicity constraints. Moreover, the quantum uncertainty in this bivector should be small.

Here, we work with a gauge-fixing, so the components of \(JIJ\) are organized in terms of \(\vec{J}\) and \(\vec{K}\). Let us define associated lengths \(|\vec{J}|\equiv|\langle \vec{J} \rangle|\) and \(|\vec{K}|\equiv|\langle \vec{K} \rangle|\), where \(\langle \rangle\) stands for the expectation value w.r.t. the quantum state. We then demand that

\[
\Delta J \over |J| = O \left(\frac{1}{\sqrt{|J|}} \right).
\]

(19)

\[
\langle \vec{J} \rangle + \frac{1}{\gamma} \langle \vec{K} \rangle = O(1),
\]

(20)

\[
\Delta K \over |K| = O \left(\frac{1}{\sqrt{|K|}} \right).
\]

(21)

Through these three conditions we establish a correspondence between classical variables and semiclassical states: the first requirement says that the states should be peaked around classical values of \(\vec{J}\). The second condition states that their expectation values fulfill the simplicity constraint. The last point adds that the states should be peaked not only in \(\vec{J}\) but also in the remaining components \(\vec{K}\).

The first condition is easily met by using \(SU(2)\) coherent states [19]: these states have the form

\[
|jg\rangle \equiv D^j(g)|jj\rangle
\]

(22)

and arise from \(SU(2)\) rotations of the ‘reference’ coherent state \(|jj\rangle\). From such states we get

\[
\Delta J \over |J| = \sqrt{J} = \frac{1}{\sqrt{J}} = O \left(\frac{1}{\sqrt{|J|}} \right).
\]

(23)

Equation (20) is more subtle, as it involves \(SL(2, \mathbb{C})\) generators outside of \(SU(2)\). Since both \(\vec{J}\) and \(\vec{K}\) transform as vectors under \(SU(2)\), it is sufficient to impose (20) on the reference state \(|jj\rangle\). If it is satisfied for \(|jj\rangle\), then it will be true for all coherent states \(|jg\rangle\). Therefore, we require\(^7\)

\[
\langle jj|\vec{J}|jj\rangle = -\frac{1}{\gamma} \langle jj|\vec{K}|jj\rangle.
\]

(24)

It is clear from commutation relations that \(J^1, J^2, K^1\) and \(K^2\) change the eigenvalue of \(J^3\), so their expectation values will be zero. We therefore only need to consider \(J^3\) and \(K^3\). The action

\(^7\) For the next couple of lines we omit the order symbol \(O(1)\).
of K^3 is given by\(^8\)

\[
K^3_{\langle jm \rangle} = -\sqrt{(j+m+1)(j-m+1)}C_{j+1\langle j+1 \rangle m} \\
- mA_{\langle jm \rangle} + \sqrt{(j-m)(j+m)}C_{\langle j-1 \rangle m},
\]

where

\[
A_{\langle jm \rangle} = -\frac{\rho n}{4j(j+1)}
\]

and

\[
C_j = \frac{i}{\sqrt{j}} \sqrt{\frac{(j^2 - n^2)(j^2 + \rho^2)}{4j^2 - 1}}.
\]

Hence, equation (24) leads to

\[
j = -\frac{1}{\gamma}(-jA_{\langle jm \rangle}) \quad \text{or} \quad \gamma = A_{\langle jm \rangle} = \frac{\rho n}{4j(j+1)}.
\]

In order to deal with the variance in \hat{K}, we recall the Casimirs of $SL(2, \mathbb{C})$:

\[
C_1 = 2(\hat{J}^2 - \hat{K}^2) = \frac{1}{2}(n^2 - \rho^2 - 4)
\]

\[
C_2 = -4\hat{J} \cdot \hat{K} = n\rho.
\]

As a result, one gets

\[
(\Delta K)^2 = (\hat{K}^2) - (\hat{K})^2
\]

\[
= (\hat{J}^2 - \frac{1}{4}(n^2 - \rho^2 - 4)) - (\hat{K})^2
\]

\[
= j(j+1) - \frac{1}{4}(n^2 - \rho^2 - 4) - j^2A_{\langle jm \rangle}^2.
\]

By inserting the simplicity constraint $A_{\langle jm \rangle} = \gamma$, we obtain furthermore

\[
(\Delta K)^2 = \frac{1}{4\gamma}\rho n - \frac{1}{4}(n^2 - \rho^2 - 4) - j^2\gamma^2
\]

\[
= \frac{1}{4\gamma}\rho n - \frac{1}{4}(n^2 - \rho^2) - \gamma^2 j(j+1) + \gamma^2 j + 1
\]

\[
= \frac{1}{4\gamma}\rho n - \frac{1}{4}(n^2 - \rho^2) - \gamma^2 j + \frac{\gamma}{4}\rho n + \gamma^2 j + 1
\]

\[
= \frac{1}{4}(\rho - \gamma n)(\rho + \frac{n}{\gamma}) + \gamma^2 j + 1.
\]

If one sets

\[
\rho = \gamma n
\]

or

\[
\rho = -\frac{n}{\gamma},
\]

\(^8\) See, for instance, [20].
the first term vanishes, and
\[\frac{\Delta K}{|K|} = O\left(\frac{\gamma^2 j + 1}{\gamma j} \right) = \frac{1}{\gamma \sqrt{|K|}}. \] (40)

However, when plugging back (38) into the simplicity constraint (28), we obtain
\[n^2 = 4 j (j + 1). \] (41)

Since this cannot be solved for generic values of \(n \) and \(j \), we proceed like in [6] and adopt the approximate solution
\[j = n/2. \] (42)

One can check that (38) and (42) fulfill conditions (20) and (21). When (39) is inserted into (28), on the other hand, we get
\[n^2 = -4 \gamma^2 j (j + 1). \] (43)

This has no solution. Thus, our final results are the constraints \(\rho = \gamma n \) and \(j = n/2 \), which are the same constraints as in the EPRL model!

The area spectrum can be derived by squaring the classical equation (15) and setting the right-hand side equal to the expectation value of the coherent state. This gives us the quantum area
\[A = \gamma \sqrt{\langle J^2 \rangle} = \gamma \sqrt{J(j + 1)}. \] (44)

Up to this point, we have just used a new perspective to obtain something that was already known, i.e. the constraints of the EPRL model. This shows that the EPRL master constraint is equivalent to a set of semiclassical constraints, namely to the requirement that there exist quantum states that are peaked in \(J \) and \(K \), and that their expectation values satisfy the classical simplicity constraint.

In the next section, we will apply our procedure to derive something new: we will provide a prescription for spacelike \(U \), and hence for bivectors \(\star B \) that can be both spacelike and timelike.

3. Simplicity constraints for the SU(1, 1) reduction

3.1. Classical variables

In this section, the normal vector \(U \) is assumed to be spacelike, and we gauge-fix it to \(U = (0, 0, 0, 1) \). Then, the classical simplicity constraint is \((\star B)^i = 0 \), where \(i = 0, 1, 2 \). A short calculation shows that this is equivalent to
\[K^1 - \frac{1}{\gamma} J^1 = 0, \] (45)
\[K^2 - \frac{1}{\gamma} J^2 = 0, \] (46)
\[J^3 + \frac{1}{\gamma} K^3 = 0. \] (47)

By defining the quantities
\[F^0 = J^3, \quad F^1 = K^1, \quad F^2 = K^2, \]
\[G^0 = K^3, \quad G^1 = -J^1, \quad G^2 = -J^2, \]
one can write these constraints in the more symmetric form
\[F^i + \frac{1}{\gamma} G^i = 0, \quad i = 0, 1, 2. \]
(48)

Here and below we use the indices \(i, j \) to denote vectors in three-dimensional Minkowski spacetime, in the same way that indices \(i, j \) were used for vectors of three-dimensional Euclidean space in the previous section. Inspection of the commutation relations reveals, in fact, that \(F \) and \(G \) transform like 3D Minkowski vectors under \(SU(1, 1) \) [21]:

\[
[F^i, F^j] = i C^{ij} F^k,
\]
(49)
\[
[F^i, G^j] = i C^{ij} G^k,
\]
(50)

where
\[
C^{01} = -C^{10} = C^{20} = -C^{02} = C^{21} = -C^{12} = 1.
\]
(51)

Thus, equation (48) has a similar structure as equation (10): it relates two vectors that have the same transformation property under the little group, and one of the vectors is the generator of the little group.

As before, we determine the relation between the vector \(N \) and the generators. On the one hand,
\[
B^{ij} = 0, \quad B^{3i} = AN^i, \quad \text{where} \quad i, j = 0, 1, 2.
\]
(52)

On the other hand, we also have
\[
B^{3i} = \frac{\gamma^2}{\gamma^2 + 1} \left(J^{3i} - \frac{1}{2 \gamma} \epsilon^{3i}_{\ jk} J^{jk} \right).
\]
(53)

For \(i = 0 \), this gives
\[
B^{30} = \frac{\gamma^2}{\gamma^2 + 1} \left(J^{30} - \frac{1}{\gamma} \epsilon^{30}_{\ 12} J^{12} \right)
\]
(54)
\[
= \frac{\gamma^2}{\gamma^2 + 1} \left(-K + \frac{1}{\gamma} J^3 \right).
\]
(55)

On account of the simplicity constraint this reduces to
\[
AN^0 = \gamma J^3.
\]
(56)

Similarly, we obtain
\[
AN^1 = \gamma K^2 \quad \text{and} \quad AN^2 = -\gamma K^1
\]
(57)

for the cases \(i = 1 \) and \(i = 2 \). Altogether we get
\[
A \begin{pmatrix} N^0 \\ N^1 \\ N^2 \end{pmatrix} = \gamma \begin{pmatrix} J^3 \\ K^2 \\ -K^1 \end{pmatrix} = \gamma \begin{pmatrix} F^0 \\ F^2 \\ -F^1 \end{pmatrix}.
\]
(58)

Like in the \(SU(2) \) case, the vector \(\tilde{N} = (N^0, N^1, N^2) \) is related to quotient spaces of \(SU(1, 1) \): timelike vectors \(\tilde{N} \) coordinatize the two-sheeted hyperboloid
\[
\mathbb{H}_+ \cup \mathbb{H}_-, \quad \mathbb{H}_{\pm} = \{ \tilde{N} \mid \tilde{N}^2 = 1, N^0 \geq 0 \},
\]
(59)

and each sheet is isomorphic to the quotient \(SU(1, 1)/U(1) \). Spacelike \(\tilde{N} \) parametrize the spacelike single-sheeted hyperboloid \(\mathbb{H}_{sp} = \{ \tilde{N} \mid \tilde{N}^2 = -1 \} \). This hyperboloid is isomorphic to the quotient \(SU(1, 1)/(G_1 \otimes \mathbb{Z}_2) \), where \(G_1 \) is the one-parameter subgroup of \(SU(1, 1) \) generated by \(K_1 \) [22]. The appendix describes the details of these isomorphisms.
3.2. Quantum states

Since we have set U equal to $(0, 0, 0, 1)$, the little group is $SU(1, 1)$. Accordingly, we should work with unitary irreducible representations of $SU(1, 1)$. These come in a discrete and a continuous series. In both cases, the irreps can be built from eigenstates $|jm\rangle$ of J^3, satisfying

$$
\langle jm|jm'\rangle = \delta_{m'm},
$$

$$
J^3|jm\rangle = m|jm\rangle.
$$

Combinations of K^i and K^j act as raising and lowering operators. The Casimir is given by

$$
Q = (J^3)^2 - (K^1)^2 - (K^2)^2.
$$

In irreps of the discrete series, one has

$$
Q|jm\rangle = j(j - 1)|jm\rangle,
$$

where $j = \frac{1}{2}, 1, \frac{3}{2}, \ldots$. (62)

The eigenvalue m can take the values

$$
m = j, j + 1, j + 2, \ldots \quad \text{or} \quad m = -j, -j - 1, -j - 2, \ldots
$$

We use the same notation as in [18] and denote the irrep consisting of states $|jm\rangle$ with $m \geq 0$ by D^+_m. The fact that $Q = j(j - 1)$ is positive for $j \geq 3/2$ suggests that the discrete series contains coherent states corresponding to timelike 3-vectors.

For the continuous series,

$$
Q|jm\rangle = j(j + 1)|jm\rangle,
$$

where $j = -\frac{1}{2} + is$, $0 < s < \infty$, (64)

and

$$
m = 0, \pm 1, \pm 2, \ldots \quad \text{or} \quad m = \pm \frac{1}{2}, \pm \frac{3}{2}, \ldots
$$

(65)

Irreps of this series are denoted by C^α_s. The label $\epsilon = 0, \frac{1}{2}$ designates the irreps with integer m and half-integer m respectively. In this case, the Casimir $Q = j(j + 1) = -s^2 - \frac{1}{4}$ is always negative, so we expect coherent states to be associated with spacelike 3-vectors. Similarly as for $SU(2)$, the $SL(2, \mathbb{C})$ irrep (ρ, n) can be expanded in an $SU(1, 1)$-adapted basis (see [21, 23] and also [24]). The resulting completeness relation involves states $|\Psi^{\pm}_{jm}\rangle$ and $|\Psi^{(\alpha)}_{jm}\rangle$, $\alpha = 1, 2$, that correspond to states $|jm\rangle$ in the discrete and continuous series respectively:

$$
|_{(\rho, n)} = \sum_{j=1,2} \sum_{m=-j}^{+j} |\Psi^{\pm}_{jm}\rangle\langle\Psi^{\pm}_{jm}| + \int_0^\infty ds \mu_\epsilon(s) \sum_{m=-j}^{+j} |\Psi^{(1)}_{jm}\rangle\langle\Psi^{(1)}_{jm}| + \int_0^\infty ds \mu_\epsilon(s) \sum_{m=-j}^{+j} |\Psi^{(2)}_{jm}\rangle\langle\Psi^{(2)}_{jm}|.
$$

(66)

The sum over j extends over values such that $j - n/2$ is an integer. Moreover, ϵ has a value such that $\epsilon - n/2$ is an integer. Note that the irrep $j = 1/2$ does not appear in the expansion.

The measure factors are given by

$$
\mu_\epsilon(s) = \begin{cases}
2s \tanh(\pi s), & \epsilon = 0, \\
2s \coth(\pi s), & \epsilon = 1/2.
\end{cases}
$$

(67)

When $SL(2, \mathbb{C})$ is restricted to $SU(1, 1)$, the states $|\Psi^{\pm}_{jm}\rangle$ furnish irreducible representations that are isomorphic to those of the discrete series:

$$
|\Psi^{\pm}_{jm}\rangle\langle\Psi^{\pm}_{jm}| = \delta_{m'm},
$$

$$
|\Psi^{\pm}_{jm}\rangle\langle D^{(\rho, n)}(g)|\Psi^{\pm}_{jm}\rangle = \langle jm'|D^J(g)|jm\rangle
$$

for $g \in SU(1, 1)$. (69)

We therefore identify $|\Psi^{\pm}_{jm}\rangle$ with $|jm\rangle$ in D^+_m.

With regard to the continuous series, the situation is more subtle. Firstly, the continuous series states $|\Psi_1^{(\alpha)}\rangle_{sm}$ appear twice, which is indicated by the index $\alpha = 1, 2$. Moreover, these states are not normalizable:

$$\langle \Psi_1^{(\alpha')}_{s'm'} | \Psi_1^{(\alpha)}_{sm} \rangle = \delta(s' - s) \frac{\mu_{s'}}{\mu_s} \delta_{\alpha \alpha'},$$

(70)

As a result, the analog of equation (69) requires an integration over s:

$$\int_0^\infty ds' \mu_{s'} \langle \Psi_1^{(\alpha)}_{s'm'} | D^{(0,n)}(g) | \Psi_1^{(\alpha')}_{sm} \rangle = \langle jm' | D_j(g) | jm \rangle, \quad j = -\frac{1}{2} + is.$$

(71)

With this qualification in mind, we can say that

$$H^{(\rho,n)} \simeq \left(\bigoplus_{j>1/2} D_j^{+} \oplus \int_0^\infty ds \ C^s \bigoplus_{j>1/2} D_j^{-} \oplus \int_0^\infty ds \ C^s \right).$$

(72)

3.3. Constraints for the discrete series

Let us begin by deriving the simplicity constraints of the discrete series. The main difference to the $SU(2)$ case is that we are now dealing with Minkowski 3-vectors. How can one generalize the notions of minimal uncertainty and coherent states to a relativistic setting?

In a relativistic theory physical quantities are Lorentz invariant. Thus, it seems natural to define the uncertainty in the Minkowski vector F by

$$\langle (F - \langle F \rangle)^2 \rangle = \langle F^2 \rangle - \langle F \rangle^2$$

(73)

$$= j(j - 1) - m^2 = j^2 - j - m^2.$$

(74)

Since $j > 0$, and $|m| \geq j$, we see that $\langle (\Delta F)^2 \rangle$ is always negative.

Our semiclassical conditions can be easily adapted to this new situation: to accommodate for minus signs, we define $\Delta F \equiv \sqrt{\langle (\Delta F)^2 \rangle}$ and $|\vec{F}| \equiv \sqrt{\langle |\vec{F}|^2 \rangle}$, and demand that

$$\frac{\Delta F}{|\vec{F}|} = O \left(\frac{1}{\sqrt{|\vec{F}|}} \right),$$

(76)

where $g \in SU(1, 1)$.

3.3. Constraints for the discrete series
\[
\langle \vec{F} \rangle + \frac{1}{\gamma} \langle \vec{G} \rangle = O(1),
\]
\(\tag{77}\)

\[
\frac{\Delta G}{|G|} = O\left(\frac{1}{\sqrt{|G|}}\right).
\]
\(\tag{78}\)

The first equation can be solved by choosing states with \(m = \pm j\). More generally, we can use any state of the form
\[
|jg\rangle = D_j^\dagger(g)|jj\rangle,
\]
\(\tag{79}\)

\[
|jg\rangle^- = D_j^\dagger(g)|j-j\rangle,
\]
\(\tag{80}\)

where \(g \in SU(1,1)\). The states \(|jg\rangle_+\) are the coherent states defined by Perelomov for \(SU(1,1)\) \[19\]. Observe that the expectation value of \(F\) w.r.t. \(|j\rangle \rangle_+\) gives the vector \(\vec{N} = (1,0,0)\), while \(|j\rangle \rangle_-\) produces \(\vec{N} = (-1,0,0)\).

These states exhibit a nice relation with the hyperboloids \(H_+\) and \(H_-\) mentioned above: every element \(g \in SU(1,1)\) can be written as
\[
g = g_0 h,
\]
\(\tag{81}\)

where \(h \in U(1)\). We see therefore that a representative \(g_0\) of the coset \(H_+ \approx SU(1,1)/U(1)\) is sufficient to determine the coherent states \(|jg\rangle_\pm\) up to a phase. Moreover, in a completeness relation the coherent states appear both as a bra and a ket, so that the phase cancels. Thus, it is sufficient to consider states
\[
|j\vec{N}\rangle \equiv |jg(\vec{N})\rangle_\pm,
\]
\(\tag{82}\)

where \(\vec{N} \in H_\pm\) and \(g(\vec{N})\) is a representative in the coset defined by \(\vec{N}\) (see the appendix).

The treatment of conditions (77) and (78) is in many ways analogous to what we did in the previous section. Consider first the simplicity constraint (77): since \(F\) and \(G\) transform in the same way under \(SU(1,1)\), it suffices to compute the expectation values of the reference coherent states \(|j-j\rangle\) and \(|jj\rangle\). Due to the commutation relations, \(K^3, K^2, J^1\) and \(J^2\) change the eigenvalue of \(J_3\), so their expectation values will be zero. It remains to evaluate the expectation values of \(J^3\) and \(K^3\). According to [21] the action of \(K^3\) is given by
\[
K^3|jm\rangle = (\cdots)|j + 1\rangle \pm m\hat{A}_j|jm\rangle + (\cdots)|j - 1\rangle, \quad \hat{A}_j = \frac{\rho n}{4j(j - 1)},
\]
\(\tag{83}\)

(\cdots) stands for factors that we do not need below, since we are only interested in expectation values. Therefore, for both \(|jj\rangle\) and \(|j-j\rangle\), the simplicity constraint leads to
\[
j + \frac{1}{\gamma}(-j\hat{A}_j) = 0 \quad \tag{84}\)

or
\[
\gamma = \hat{A}_j = \frac{\rho n}{4j(j - 1)}, \quad \tag{85}\)

in analogy to the \(SU(2)\) case. Consider next the variance of \(G\):
\[
(\Delta G)^2 \equiv (\Delta G)^2|G_i\rangle = \langle G_i'|G_i\rangle - \langle G_i'|G_i\rangle.
\]
\(\tag{86}\)

Noting that
\[
\frac{1}{2}C_1 = \vec{J}^2 - \vec{K}^2 = Q - \vec{G},
\]
we get
\[
\langle \vec{G}^2 \rangle = j(j+1) - \frac{1}{3}(n^2 - \rho^2 - 4) \quad \tag{87}\)

\[
\langle \vec{G}^2 \rangle = j(j-1) - \frac{1}{3}(n^2 - \rho^2 - 4)
\]
\(\tag{88}\)
and for a state $|j\ m\rangle$

$$
(\Delta G)^2 = j(j - 1) - \frac{1}{4}(n^2 - \rho^2 - 4) - (mA_j)^2.
$$

(89)

Interestingly, this satisfies, like $(\Delta F)^2$, a negativity property9:

$$
(\Delta G)^2 = j(j - 1) - \frac{1}{4}(n^2 - \rho^2 - 4) - (mA_j)^2
$$

(90)

$$
= j^2 - j - \left(\frac{n}{2}\right)^2 + \frac{\rho^2}{4} + 1 - \left(\frac{m\rho n}{4j(j - 1)}\right)^2
$$

(91)

$$
= j^2 - \left(\frac{n}{2}\right)^2 - j + 1 - \frac{\rho^2}{4} \left[\left(\frac{m n/2}{j} - 1\right)^2 - 1\right]
$$

(92)

$$
< 0 \ \text{for} \ j > 1.
$$

(93)

When applied to coherent states that are subject to the simplicity constraint, the first line gives

$$
(\Delta G)^2 = j(j - 1) - \frac{1}{4}(n^2 - \rho^2 - 4) - (j \tilde{A}_j)^2
$$

(94)

$$
= \frac{1}{4}(\rho - \gamma n)\left(\rho + \frac{n}{\gamma}\right) - \gamma^2 j + 1.
$$

(95)

The expressions are almost the same as in the $SU(2)$ case. By going through analogous arguments we arrive again at the conditions $\rho = \gamma n$ and $j = n/2$. These are the same equations as before, but $j = n/2$ refers now to irreps of $SU(1, 1)$. Moreover, n has to be restricted to $n \geq 2$, since $j \geq 1$ for the states in the Plancherel decomposition.

The quantum area can be obtained from relation (58). By squaring this equation and setting the right-hand side equal to the expectation value of the coherent state, we find that

$$
A^2 = \gamma^2 \langle Q \rangle = \gamma^2 j(j - 1)
$$

(96)

or

$$
A = \gamma \sqrt{j(j - 1)}.
$$

(97)

This area is always a non-negative real number, since $j \geq 1$. Alternatively, we could start from

$$
A^2 = \frac{1}{2}(\star B)^{IJ} (\star B)_{IJ}
$$

(98)

for timelike N and compute

$$
\frac{1}{2}(\star B)^{IJ} (\star B)_{IJ} = \frac{1}{2}(\star B)^{ij} (\star B)_{ij} = \gamma^2 Q, \quad i, j = 0, 1, 2.
$$

(99)

using the simplicity constraints. This gives again equation (96).

Clearly, the results for the discrete series are very similar to those for the $SU(2)$ irreps.

This makes sense when we consider the corresponding classical quantities: the coherent states correspond to spacelike U and timelike N, so the area bivector $\star B$ is spacelike, like in the $SU(2)$ case. Thus, we have described the same classical object in two different gauges: first for timelike U and then for spacelike U.

That we have these two possibilities is important: if the normals U of tetrahedra were always timelike, we could never have timelike triangles. By allowing also spacelike normals U we permit tetrahedra to contain both spacelike and timelike triangles. The discrete series deals with the spacelike triangles in such tetrahedra. In the next subsection, we will provide the formalism for the timelike triangles.

9 Thanks to Laurent Freidel for pointing this out.
3.4. Constraints for the continuous series

When we come to the continuous series, the most important question is: what are the appropriate coherent states? Since now \(Q < 0 \), the classical vectors \(N \) should be spacelike. For the continuous series, Perelomov uses the state \(| jm \rangle\) and its \(SU(1,1) \) transformations \[19\]. This is not the state we are looking for, since it has zero expectation value with regard to \(J^3 \) and \(K^1 \) and \(K^2 \). It produces the zero vector \(N = 0 \) classically.

What we need is a spacelike vector: eigenstates of \(J^3 \) are not suited for this, since they lead to vectors \((\pm 1, 0, 0)\). This suggests that we use eigenstates of \(K^1 \) or \(K^2 \) instead. Such states have been studied by Mukunda \[25\], Barut and Phillips \[26\] and Lindblad and Nagel \[27\]. We adopt the notation of \[27\] and write

\[
K^1| j \lambda \sigma \rangle = \lambda | j \lambda \sigma \rangle.
\]

The spectrum of \(K^1 \) is the real line and it is twofold degenerate. For this reason, eigenstates carry an additional label \(\sigma = \pm \) which denotes two orthogonal states with the same eigenvalue \(\lambda \). Due to the non-compactness of the \(K^1 \) subgroup, the states \(| j \lambda \sigma \rangle \) are not normalizable:

\[
\langle j \lambda' \sigma' | j \lambda \sigma \rangle = \delta(\lambda' - \lambda) \delta\sigma\sigma'.
\]

In this respect, they are similar to eigenstates of momentum and a rigorous definition can be given by using rigged Hilbert space techniques (see \[27\] for details).

In the following, we will construct coherent states that are based on eigenstates of \(K^1 \), with the aim of satisfying the semiclassical conditions (76), (77) and (78). When doing so, we have to take into account that the states are not normalizable. This non-normalizability appears at two independent levels: first, we are using eigenstates of \(K^1 \), so they are not normalizable due to equation (101). Second, the states \(| j \lambda \sigma \rangle \) correspond to states in \(\mathcal{H}(\rho,n) \)—let us denote them by \(| \Psi_{sl,\sigma}^{(\alpha)} \rangle \)—and these are not normalizable because of equation (70).

We deal with this by smearing the states suitably with a Gaussian wavefunction in \(\lambda \) and \(s \). The smearing comes with a parameter \(\delta \) that we will send to zero in the end\[10\]. For the smearing we use the Gaussian

\[
f_\delta(s) = \frac{1}{(2\pi)^{1/4}\delta^{1/2}} e^{-s^2/4\delta^2}.
\]

The smeared states are defined by

\[
| \Psi_{sl,\sigma}^{(\alpha)}(\delta) \rangle = \int_0^\infty ds' \sqrt{\mu_{\epsilon}(s')} f_\delta(s' - s) \int_{-\infty}^\infty d\lambda' f_\delta(\lambda' - \lambda) | \Psi_{sl,\sigma}^{(\alpha)} \rangle,
\]

and have norm 1. Their variance in \(F \) is

\[
(\Delta F)^2 = \left| \langle \Psi_{sl,\sigma}^{(\alpha)}(\delta) | F^1 F^1 | \Psi_{sl,\sigma}^{(\alpha)}(\delta) \rangle - \left(\langle \Psi_{sl,\sigma}^{(\alpha)}(\delta) | F^1 | \Psi_{sl,\sigma}^{(\alpha)}(\delta) \rangle \right) \left(\langle \Psi_{sl,\sigma}^{(\alpha)}(\delta) | F^1 | \Psi_{sl,\sigma}^{(\alpha)}(\delta) \rangle \right) \right|.
\]

This looks more complicated than it is, since in the limit \(\delta \to 0 \) the result reduces to a simple analog of equation (75). For instance,

\[
\left| \langle \Psi_{sl,\sigma}^{(\alpha)}(\delta) | K^1 | \Psi_{sl,\sigma}^{(\alpha)}(\delta) \rangle \right| = \int_0^\infty ds' f_\delta^2(s' - s) \int_{-\infty}^\infty d\lambda' \frac{\lambda'}{\delta} f_\delta^2(\lambda' - \lambda) \to \lambda.
\]

Thus, the variance becomes

\[
(\Delta F)^2 = -s^2 - \frac{1}{2} + \lambda^2.
\]

Clearly, the variance can now take on arbitrary positive and negative values, if we choose \(s \) and \(\lambda \) suitably.

\[10\] Compare this with the use of momentum wavefunctions in scattering amplitudes.
Condition (76) requires us to bring this uncertainty close to zero, so we should choose \(\lambda = \sqrt{s^2 + 1/4} \) or \(\lambda = s \), for instance. For simplicity, we will select \(\lambda = s \) in the following. The difference between these two choices will not make any difference in the final simplicity constraints.

Our new coherent states are therefore given by
\[
|jg\rangle_{sp} \equiv D^j(g)|js+\rangle, \quad g \in SU(1,1),
\]
for states in \(C^s \), or
\[
|\psi^{(\omega)}\rangle \equiv D^{(\omega,n)}(g)|\psi^{(\omega)}\rangle, \quad g \in SU(1,1),
\]
for states in \(H_{(\rho,n)} \). The choice of \(\sigma = + \) is a convention, but not necessary. The subscript \(sp \) indicates that expectation values of these states correspond to points of the spacelike one-sheeted hyperboloid \(\mathbb{H}_{sp} \). Modulo phase and action of \(\mathbb{Z}_2 \), the coherent states can be parametrized by vectors \(\vec{N} \in \mathbb{H}_{sp} \cong SU(1,1)/(G_1 \otimes \mathbb{Z}_2) \), i.e.
\[
|j\vec{N}\rangle \equiv |jg(\vec{N})\rangle_{sp},
\]
where \(g(\vec{N}) \) is a representative in the coset defined by \(\vec{N} \in \mathbb{H}_{sp} \).

When dealing with the simplicity constraint (77), we restrict our attention to the reference vectors \(|js+\rangle \), since the other states are covered by \(SU(1,1) \) covariance. \(K^2, J^2, J^3 \) and \(K^3 \) do not commute with \(K^1 \) and change the eigenvalue of \(\lambda \), so their expectation values vanish. Hence we only need to analyze the \(F^1 \) and \(G^1 \) components of equation (77).

In another paper [28], we derive the action of \(SL(2,\mathbb{C}) \) generators on eigenstates of \(K^1 \) and obtain
\[
J^1|j\lambda\sigma\rangle = (\cdots)|j+1\lambda\sigma\rangle + \lambda A_j|j\lambda\sigma\rangle + (\cdots)|j-1\lambda\sigma\rangle.
\]
This equation holds for each of the two continuous series in the decomposition (72). The simplicity constraint yields therefore
\[
s - \frac{1}{\gamma} s A_j = 0
\]
or
\[
\gamma = A_j = \frac{\rho n}{4j(j+1)}.
\]
The final step comes from the variance of \(G \):
\[
(\Delta G)^2 \overset{\delta = 0}{=} j(j+1) - \frac{1}{4}(n^2 - \rho^2 - 4) + (s A_j)^2.
\]
This gives us
\[
(\Delta G)^2 = \frac{1}{4}(\rho - \gamma n)(\rho + \frac{n}{\gamma}) - \frac{1}{4}\gamma^2 + 1.
\]
The first term vanishes when
\[
\rho = \gamma n
\]
or
\[
\rho = -\frac{n}{\gamma}.
\]
Plugging back (115) into (112) results in a contradiction:
\[
\frac{n^2}{4j(j+1)} = -\frac{n^2}{4(s^2 + 1/4)} = 1.
\]
When inserting (116) into (112), on the other hand, one obtains
\[-\frac{\rho^2}{4j(j+1)} = \frac{\rho^2}{4(s^2 + 1/4)} = 1 \quad \text{or} \quad \frac{\rho}{2} = -\sqrt{s^2 + 1/4}. \quad (118) \]

We therefore arrive at the constraints \(n = -\gamma \rho \) and \(\rho/2 = -\sqrt{s^2 + 1/4} \), which is qualitatively different from the \(SU(2) \) case and the discrete series of \(SU(1,1) \). The second condition implies \(\rho < -1 \) and hence \(n > \gamma \). The area becomes
\[A = \gamma \sqrt{-\langle Q \rangle} = \gamma \sqrt{s^2 + 1/4} = -\gamma \frac{\rho}{2} = -\frac{n}{2}, \quad (119) \]
leading to the conclusion that the area of timelike surfaces is quantized!

4. Summary of constraints

In this section, we summarize the simplicity constraints and area spectra that we have obtained. Recall that \(U \) is, roughly speaking, the normal vector of a tetrahedron and \(N \) is the normal to a triangle in this tetrahedron. The associated bivector is given by \(B = A U \wedge N \). In our analysis, several irreducible representations played a role: the unitary irreps \(\mathcal{H}_{(\rho,n)} \) of \(SL(2,\mathbb{C}) \), the unitary irrep \(D_j \) of \(SU(2) \) and irreps \(D_j^\pm \) and \(C_s \) of the discrete and continuous series of \(SU(1,1) \).

Table 1 lists our results for the different choices of \(U \) and \(N \). The constraints of the EPRL model correspond to the first column.

5. A spin foam model for general Lorentzian 4-geometries

We now dispose of constraints for the quantization of spacelike and timelike simple bivectors. This allows us to define a new spin foam model that extends the EPRL model and describes realistic Lorentzian 4-geometries, where both spacelike and timelike surfaces appear.

11 Note that we could have also chosen \(s = -\rho/2 \) and nevertheless satisfied our semiclassical conditions. We have picked \(\rho^2/4 = s^2 + 1/4 \), since it leads to a particularly simple expression for the area spectrum.
5.1. Configurations

The spin foam model is defined on a four-dimensional simplicial complex Δ and its dual complex Δ^*. We denote edges, triangles, tetrahedra and 4-simplices of Δ by l, t, τ and σ respectively. For dual vertices, edges and faces we use v, e and f respectively.

Let us start by explaining the way geometrical data are assigned to cells of these complexes.

If we speak in terms of classical variables, we have the following assignments: there is a normal vector U for each tetrahedron τ, a normal vector N for each triangle t inside a tetrahedron τ (i.e. for each pair τt) and a bivector B or $\ast B$ for each triangle t. In terms of the dual Δ^*, this means that we assign a vector U_τ to each edge e, a vector N_τ to each pair ef, where f contains e, and a bivector B_τ to each face f. Since we fix the gauge, the value of U_τ amounts to a choice between $(1, 0, 0, 0)$ and $(0, 0, 0, 1)$.

At the quantum level, these degrees of freedom translate to the following data: we choose a little group for each edge e, either $SU(2)$ or $SU(1, 1)$, and an irrep of this little group for each pair ef, which can be D_j, D_j^\pm or C^i_j. Furthermore, there is an $SL(2, \mathbb{C})$ irrep (ρ_τ, n_f) for each face f.

These data are subject to the simplicity constraints: the allowed configurations are given by the three columns in table 1. The first thing to note is that we cannot assign the three possibilities freely to each edge. The $SL(2, \mathbb{C})$ irrep (ρ, n) is chosen for an entire face f, so if one selects the first column and $\rho = \gamma n$ for one edge e of this face, one cannot pick the third column and $n = -\gamma \rho$ for another edge e' in it. Classically, this corresponds to the fact that the bivector $\ast B$ for a face f is either spacelike or timelike, and this affects all edges of the face.

An admissible configuration can be obtained by first assigning a representation $(\pm \gamma^\pm_1 p_f, n_f)$ to each face of the dual complex, where ± 1 corresponds to spacelike/timelike $\ast B$. This is followed by an assignment of a normal vector U_τ (and hence the little group) to each edge e that is consistent with the given choice of constraints on (ρ_f, n_f). Finally, one selects an irrep of this little group for each pair ef, $f \supset e$, according to the following scheme:

\begin{align*}
D_{n_f/2}^\pm: & \quad \ast B \text{ spacelike, } U \text{ spacelike } \rightarrow N \text{ spacelike}, \\
D_{n_f/2}^\pm: & \quad \ast B \text{ spacelike, } U \text{ timelike } \rightarrow N \text{ timelike future/past}, \\
C_i^j & \quad \sqrt{-n_f/n_f^{-1}} \ast B \text{ timelike, } U \text{ spacelike } \rightarrow N \text{ spacelike}.
\end{align*}

A second set of variables comes from the connection. It is implemented as an assignment of $SL(2, \mathbb{C})$ elements $g_{\epsilon e}$ to each edge e of the dual complex Δ^*. More precisely, we split each edge e into two half-edges $e v$ and $e v'$, where v and v' are the endpoints of the edge. To these half-edges, we assign group elements $g_{ve} = g_{e v}^{-1}$ and $g_{ve'} = g_{ve'}^{-1}$.

5.2. Partition function

Next we specify the partition function of the model. We first state the definition and then explain how it arises from BF theory by imposition of the simplicity constraints.

For the definition, we will use projectors from the $SL(2, \mathbb{C})$ irrep $\mathcal{P}_{(\rho,n)}$ to the little group irreps D_j, D_j^\pm and C^i_j:

\begin{align*}
P_{(\rho,n),j}^{\pm} & = \sum_{m=-j}^{j} |\Psi_{jm}\rangle \langle \Psi_{jm}| \\
P_{(\rho,n),j}^\pm & = \sum_{\pm m=j}^{\infty} |\Psi_{jm}\rangle \langle \Psi_{jm}|.
\end{align*}
$P^{e}_{(\rho, n), x}(\delta) = \sum_{q=1,2} \sum_{m=0}^{\infty} |\Psi_{sm}^{(q)}(\delta)| |\Psi_{sm}^{(a)}(\delta)|$. \hfill (122)

In the case of the continuous series, we project onto the smeared states

$|\Psi_{sm}^{(q)}(\delta)| = \int_0^{\infty} ds' \sqrt{\mu_{e}(s')} f_s(s' - s)|\Psi_{sm}^{(a)}(s)|$, \hfill (123)

in accordance with our discussion on normalizability (see section 3). Matrix elements are defined in the limit, where the smearing parameter δ goes to zero.

The partition function is given by the sum

$Z = \int_{\text{SL}(2, \mathbb{C})} \prod_{e \in f} d_{gev} \sum_{n_f, \zeta_f = \pm 1} \sum_{f} \left(1 + \gamma^{2\zeta_f} n_f^2\right) A_f((\zeta_f \gamma | n_f, n_f), \zeta_f; U_e; g_{ev})$. \hfill (124)

Let us explain the different elements of this formula. The $\text{SL}(2, \mathbb{C})$ group elements g_{ev} are integrated over with the Haar measure. For each face, we sum over the positive integers n_f. Furthermore, there is a variable $\zeta_f = \pm 1$ that indicates whether the area bivector of a face is spacelike or timelike respectively. The normal vector U_e is summed over the two possibilities $(1, 0, 0, 0)$ and $(0, 0, 1, 0)$. Each face f carries an amplitude A_f which arises from a contraction of parallel transports and projectors from the edges e of the face (see figure 1):

$A_f((\rho, n), \zeta; U_e; g_{ev}) = \lim_{\delta \to 0} \text{tr} \left[\prod_{e \subset f} D^{(\rho, n)}(g_{ev}) P_{(\rho, n), \zeta, U_e}(\delta) D^{(\rho, n)}(g_{ev}) \right]$. \hfill (125)

Here, v and v' denote the vertices at the beginning and end of each edge. The projector $P_{(\rho, n), \zeta, U_e}(\delta)$ depends on ζ and the U_e’s and implements the simplicity constraints on irreps of the little group:

$P_{(\rho, n), \zeta, U}(\delta) = \begin{cases} P_{(\rho, n), n/2}, & \text{if } \zeta = 1, \ U = (1, 0, 0, 0), \\ \theta(n - 2)(P_{(\rho, n), n/2}^+ + P_{(\rho, n), n/2}^-), & \text{if } \zeta = 1, \ U = (0, 0, 0, 1), \\ (1 - \theta(\gamma - n))P_{(\rho, n), \gamma | n_f}^\pm(\delta), & \text{if } \zeta = -1, \ U = (0, 0, 0, 1), \\ 0, & \text{if } \zeta = -1, \ U = (1, 0, 0, 0). \end{cases}$ \hfill (126)

Formulas (124) and (125) are the result of imposing simplicity constraints on quantum BF theory. The spin foam model of $\text{SL}(2, \mathbb{C})$ BF theory has the partition function

$Z_{BF} = \int_{\text{SL}(2, \mathbb{C})} \prod_{e \in f} d_{gev} \sum_{n_f} \int_{-\infty}^{\infty} d\rho_f \prod_f \left(\rho_f^2 + \rho_f^2\right) A_f((\rho_f, n_f); g_{ev})$. \hfill (127)
where
\[
A_f((\rho, n); g_{ee}) = \text{tr} \left[\prod_{e \in f} D^{(\rho, n)}(g_{ee}) \Phi_{(\rho, n)} D^{(\rho, n)}(g_{ee}^{-1}) \right].
\] (128)

The transition to (124) consists of the following steps: first we impose the simplicity constraint on \((\rho_f, n_f)\), so we introduce the variable \(\zeta_f = \pm 1\) for encoding space or timelikeness of a face and set \((\zeta_f \gamma^{(\nu)} n_f, n_f)\). Then, we include a sum over normal vectors \(U_e\) for each edge \(e\), taking the values \((1, 0, 0, 0)\) or \((0, 0, 0, 1)\). The identity operators \(11^{(\rho, n)}\) in the contraction (128) decompose into irreps of \(SU(2)\) or \(SU(1, 1)\) according to formulas (18) and (66). Depending on the value of \(\zeta_f\) and \(U_e\) we impose simplicity constraints on these irreps. This is done by the replacement
\[
\Phi_{(\rho, n)} \rightarrow P_{(\rho, n), \zeta, U}(\delta).
\] (129)

5.3. Coherent state vertex amplitude

There are several equivalent ways in which a spin foam sum can be written down. One possibility is to express the total amplitude as a product of vertex amplitudes. Each vertex amplitude can be interpreted as the amplitude for a single 4-simplex. Furthermore, there are different definitions of the vertex amplitude, depending on the choice of boundary data for the 4-simplex. In references [12, 13, 15] vertex amplitudes were defined in terms of coherent states that encode the geometry of boundary tetrahedra.

Below we specify this type of vertex amplitude for the present model. For this we use the coherent states
\[
|jg\rangle \equiv D_{j}(g)|jj\rangle \in D_{j},
\]
\[
|jg\rangle_{\pm} \equiv D_{j}(g)|j \pm j\rangle \in D_{j}^{\pm},
\]
\[
|jg\rangle_{sp} \equiv D_{j}(g)|js\rangle \in C_{\epsilon s},
\]
which already appeared in the derivation of the simplicity constraint in sections 2 and 3. More precisely, we work with the corresponding coherent states in the Hilbert space \(\mathcal{H}_{(\rho, n)}\), i.e.

\[
|\Psi_{jg}\rangle \equiv D^{(\rho, n)}(g)|\Psi_{jj}\rangle, \quad g \in SU(2),
\]
\[
|\Psi_{jg}\rangle_{\pm} \equiv D^{(\rho, n)}(g)|\Psi_{\pm j}\rangle, \quad g \in SU(1, 1),
\]
\[
|\Psi_{jg}\rangle_{sp} \equiv D^{(\rho, n)}(g)|\Psi_{ss\epsilon}\rangle, \quad g \in SU(1, 1).
\]

With the parametrization in terms of quotient spaces (see the appendix) one can write such states in a uniform way as\(^{12}\)
\[
|\Psi_{j\vec{N}}\rangle, \quad \text{where} \quad \vec{N} \in S^{2}, H_{+}, H_{-} \text{ or } H_{sp}. \quad (130)
\]

Consider a single vertex \(v\) of the dual complex, and number the edges \(a = 1, \ldots, 5\). Accordingly, faces \(f\) are labeled by unordered pairs \(ab\) and pairs \(ef\) of edges and faces are encoded by ordered pairs \(ab\). The vertex amplitude is given by the product
\[
A_{v} = \int_{SL(2, \mathbb{C})} \prod_{a} dg_{a} \prod_{a \prec b} A_{ab}, \quad (131)
\]
where
\[
A_{ab} = \langle \Psi_{j_{ab}N_{ab}} | D^{(\rho_{ab}, n_{ab})}(g_{ab}^{-1} S_{ab}) | \Psi_{j_{ab}N_{ab}} \rangle. \quad (132)
\]

\(^{12}\)To be precise, there is the additional label \(\omega = 1, 2\) for states of the continuous series. For simplicity, we omit this label in the following formula.
The variables \(g_e \in SL(2, \mathbb{C}) \) represent the connection on half-edges adjacent to the vertex. \(\rho_{ab} \) and \(n_{ab} \) are subject to the constraint \(\rho_{ab} = \pm \gamma \pm 1 n_{ab} \) for spacelike/timelike triangles. The coherent states \(|\psi_{j_{ab} N_{ab}}\rangle \) are states of type (130) and the allowed choices for \(j_{ab} \) and \(N_{ab} \) follow from table 1.

6. Discussion

Let us summarize our results. We derived simplicity constraints for the quantization of general Lorentzian 4-geometries. The method for this derivation was based on coherent states. The constraints operate at two levels\(^{13}\): on irreps of \(SL(2, \mathbb{C}) \) and on irreps of subgroups of \(SL(2, \mathbb{C}) \). First, there arise two possible restrictions on unitary irreps of \(SL(2, \mathbb{C}) \), one for spacelike triangles and one for timelike triangles. Second, we have constraints on unitary irreps of \(SU(2) \) and \(SU(1, 1) \). These irreps appear in the decomposition of irreps of \(SL(2, \mathbb{C}) \) and encode the geometry of triangles. Irreps of \(SU(2) \) correspond to triangles in tetrahedra with a timelike normal, while irreps of \(SU(1, 1) \) refer to triangles in tetrahedra with a spacelike normal. In the latter case, spacelike and timelike triangles are described by states in the discrete and continuous series of \(SU(1, 1) \) respectively\(^{14}\).

The constraints of the EPRL model were reproduced in the special case, when tetrahedra have only timelike normals. In all cases, we obtained a discrete area spectrum. Thus, the discreteness of area in loop quantum gravity is extended to timelike surfaces.

The derivation of the constraints rested on the idea that coherent states should mimic classical simple bivectors as closely as possible. For this reason, we constructed coherent states with the following properties.

(1) Expectation values of bivectors satisfy the classical simplicity constraint.
(2) The uncertainty in bivectors is minimal.

It turned out that such states can only exist in certain irreps of \(SL(2, \mathbb{C}), SU(2) \) and \(SU(1, 1) \), and this is what determined the conditions on irreps.

Based on these constraints, we defined a new spin foam model that provides a quantization of general Lorentzian 4-geometries. The geometries are general in the sense that they admit both spacelike and timelike triangles, whereas in the EPRL model only spacelike triangles were permitted. The timelike triangles may appear, in particular, in the boundary of the simplicial complex, so one can now consider regions with timelike boundaries.

In regard to future work, there is a whole range of results that apply to the EPRL model and could be extended to the new model: for instance, the semiclassical limit, given by the asymptotics in the large area limit \([11–13]\), the derivation of graviton propagators \([14]\) and the description of intertwiners in terms of tetrahedra \([15]\). This will require the use of new techniques, since \(SU(2) \) will be replaced by the less familiar \(SU(1, 1) \) and its representation theory.

Since we were dealing with timelike surfaces and their area spectrum, our results should be compared to previous work in this direction, e.g. \([30]\) and \([31, 32]\).

So far our method has been only applied to the Lorentzian case, so it would be interesting to see what it will give in the Euclidean regime. For this, one will have to use coherent states in the \(SU(2) \) decomposition of \(SU(2) \times SU(2) \) irreps and compute their expectation values. Will this reproduce the Euclidean EPRL model? If it does, this will shed further light on the relation between the Euclidean FK and EPRL model, since then the construction of the two models can be directly compared.

\(^{13}\) See also table 1.
\(^{14}\) In the context of 3D gravity, the relation between geometry and irreps of \(SU(1, 1) \) was analyzed in \([18]\) and \([29]\).
A point that we left open is the definition of the spin foam model as an integral over coherent states. We did specify a vertex amplitude with coherent states as boundary data, but we did not use it to define the spin foam sum as a whole. For this, we would need a completeness relation for all three types of coherent states that appear in our construction. For SU(2) and for the discrete series of SU(1,1) such completeness relations were given by Perelomov [19]. For the continuous series, however, we have introduced a new type of coherent state and we have not yet provided an associated completeness relation.

Acknowledgments

We thank Laurent Freidel for discussions. Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Research and Innovation.

Appendix. Parametrization of coherent states

In this appendix, we explain the parametrization of coherent states in terms of hyperboloids. Consider first the discrete series and the coherent states

$$|j \pm \rangle \equiv |j \pm \rangle \in \mathcal{D}_j^\pm.$$ \hspace{1cm} (A.1)

Up to phase, the states are determined by cosets in SU(1,1)/U(1). Elements $g \in SU(1,1)$ can be parametrized by

$$g = e^{-i\psi J^3} e^{-iu K^1}, \quad -\pi < \psi \leq \pi, \quad -2\pi < \psi < 2\pi, \quad 0 < u < \infty, \quad (A.2)$$

so the cosets have representatives

$$g = e^{-i\psi J^3} e^{-iu K^1}. \quad (A.3)$$

The parameters ψ and u coordinatize the upper/lower hyperboloid via

$$\vec{N} = \pm (\cosh u, \sinh u \sin \psi, \sinh u \cos \psi), \quad \vec{N}^2 = 1,$$ \hspace{1cm} (A.4)

giving the isomorphism $SU(1,1)/U(1) \simeq \mathbb{H}_\pm$. Thus, the representatives (A.3) can be expressed as functions $g(\vec{N})$ of $\vec{N} \in \mathbb{H}_\pm$, and the coherent states may be defined by

$$|j \vec{N}\rangle \equiv |j g(\vec{N})\rangle. \quad (A.5)$$

Formula (A.4) was chosen such that

$$\langle j \vec{N} | \hat{F} | j \vec{N} \rangle = j \vec{N}. \quad (A.6)$$

For the continuous series, we employ coherent states

$$|j \pm \rangle_{sp} \equiv D^j (g) |j \pm \rangle \in C_i$$ \hspace{1cm} (A.7)

In this case, we consider the quotient $SU(1,1)/(G_1 \otimes \mathbb{Z}_2)$, where G_1 is the one-parameter subgroup generated by K_1. Now, it is convenient to choose the following parametrization [22]:

$$g = e^{-i\psi J^3} e^{-iu K^1} e^{iu K^2}, \quad -2\pi < \psi \leq 2\pi, \quad -\infty < \psi < 2\pi, \quad 0 < u < \infty. \quad (A.8)$$

Representatives of cosets are given by elements

$$g = e^{-i\psi J^3} e^{-iu K^2}, \quad -\pi < \psi \leq \pi, \quad -\infty < \psi < \infty. \quad (A.9)$$
Using
\[\vec{N} = (-\sinh t, \cosh t \cos \varphi, \cosh t \sin \varphi), \quad \vec{N}^2 = -1, \]
we parametrize the single-sheeted hyperboloid \mathbb{H}_{sp} by (φ, t), and it follows that $SU(1, 1)/(G_1 \otimes \mathbb{Z}_2) \simeq \mathbb{H}_{sp}$. Hence, we write representatives $\langle A.9 \rangle$ as functions $g(\vec{N})$ of $\vec{N} \in \mathbb{H}_{sp}$. The corresponding coherent states are specified by
\[|j \vec{N}\rangle \equiv |j g(\vec{N})\rangle_{sp}, \]
where
\[\langle j \vec{N} | \vec{F} | j \vec{N}\rangle = s \vec{N}. \]

References
[1] Thiemann T 2007 Modern Canonical Quantum General Relativity (Cambridge: Cambridge University Press)
[2] Rovelli C 2004 Quantum Gravity (Cambridge: Cambridge University Press)
[3] Perez A 2003 Spin foam models for quantum gravity Class. Quantum Grav. 20 R43 (arXiv:gr-qc/0301113)
[4] Baez J C 1998 Spin foam models Class. Quantum Grav. 15 1827 (arXiv:gr-qc/9709052)
[5] Barrett J W and Crane L 1998 Relativistic spin networks and quantum gravity J. Math. Phys. 39 3296 (arXiv:gr-qc/9709028)
[6] Engle J, Livine E, Pereira R and Rovelli C 2008 LQG vertex with finite Immirzi parameter Nucl. Phys. B 799 136 (arXiv:0711.0146 [gr-qc])
[7] Livine E R and Speziale S 2007 A new spinfoam vertex for quantum gravity Phys. Rev. D 76 084028 (arXiv:0705.0674 [gr-qc])
[8] Freidel L and Krasnov K 2008 A new spin foam model for 4D gravity Class. Quantum Grav. 25 125018 (arXiv:0708.1595 [gr-qc])
[9] Livine E R and Speziale S 2008 Consistently solving the simplicity constraints for spinfoam quantum gravity Europhys. Lett. 81 50004 (arXiv:0708.1915 [gr-qc])
[10] Conrady F and Freidel L 2008 Path integral representation of spin foam models of 4D gravity Class. Quantum Grav. 25 245010 (arXiv:0806.4640 [gr-qc])
[11] Conrady F and Freidel L 2008 On the semiclassical limit of 4d spin foam models Phys. Rev. D 78 104023 (arXiv:0809.2280 [gr-qc])
[12] Barrett J W, Dowdall R J, Fairbairn W J, Gomes H and Hellmann F 2009 Asymptotic analysis of the EPRL four-simplex amplitude J. Math. Phys. 50 112504 (arXiv:0902.1170 [gr-qc])
[13] Barrett J W, Dowdall R J, Fairbairn W J, Hellmann F and Pereira R 2009 Lorentzian spin foam amplitudes: graphical calculus and asymptotics arXiv:0907.2440 [gr-qc]
[14] Bianchi E, Magliaro E and Perini C 2009 LQG propagator from the new spin foams Nucl. Phys. B 822 245 (arXiv:0905.4082 [gr-qc])
[15] Conrady F and Freidel L 2009 Quantum geometry from phase space reduction J. Math. Phys. 50 123510 (arXiv:0902.0351 [gr-qc])
[16] Freidel L and Speziale S 2010 Twisted geometries: a geometric parametrisation of SU(2) phase space arXiv:1001.2748 [gr-qc]
[17] Bianchi E, Magliaro E and Perini C 2009 Coherent spin-networks arXiv:0912.4054 [gr-qc]
[18] Davids S 2000 A state sum model for (2+1) Lorentzian quantum gravity PhD Thesis University of Nottingham (arXiv:gr-qc/0310114)
[19] Perelomov A M 1986 Generalized Coherent States and Their Applications (Berlin: Springer)
[20] Carmeli M 1977 Group Theory and General Relativity (New York: McGraw-Hill)
[21] Mukunda N 1968 Unitary representations of the homogeneous Lorentz group in an O(2, 1) basis J. Math. Phys. 9 50
[22] Lindblad G 1970 Eigenfunction expansions associated with unitary irreducible representations of su(1, 1) Phys. Scr. 1 201
[23] Ruhl W 1970 Lorentz Group and Harmonic Analysis (New York: Benjamin)
[24] Bargmann V 1947 Irreducible unitary representations of the Lorentz group Ann. Math. 48 668–640
[25] Mukunda N 1967 Unitary representations of the group O(2, 1) in an O(1, 1) basis J. Math. Phys. 8 2210
[26] Barut A O and Phillips E C 1968 Matrix elements of representations of non-compact groups in a continuous basis Commun. Math. Phys. 8 52–65
[27] Lindblad G and Nagel B 1970 Continuous bases for unitary irreducible representations of SU(1, 1) *Ann. Inst. Henri Poincaré* A **13** 27–56

[28] Conrady F and Hnybida J 2010 Unitary irreducible representations of SL(2, C) in discrete and continuous SU(1, 1) bases arXiv:1007.0937 [gr-qc]

[29] Freidel L, Livine E R and Rovelli C 2003 Spectra of length and area in (2+1) Lorentzian loop quantum gravity *Class. Quantum Grav.* **20** 1463 (arXiv:gr-qc/0212077)

[30] Perez A and Rovelli C 2001 3+1 spinfoam model of quantum gravity with spacelike and timelike components *Phys. Rev.* D **64** 064002 (arXiv:gr-qc/0011037)

[31] Alexandrov S and Vassilevich D 2001 Area spectrum in Lorentz covariant loop gravity *Phys. Rev.* D **64** 044023 (arXiv:gr-qc/00103105)

[32] Alexandrov S and Kadar Z 2005 Timelike surfaces in Lorentz covariant loop gravity and spin foam models *Class. Quantum Grav.* **22** 3491 (arXiv:gr-qc/0501093)