Magnetic Penetration Depth Measurements of Pr$_{2-x}$Ce$_x$CuO$_4$–δ Films on Buffered Substrates: Evidence for a Nodeless Gap

Mun-Seog Kim, John A. Skinta, and Thomas R. Lemberger
Department of Physics, Ohio State University, Columbus, OH 43210-1106

A. Tsukada and M. Naito
NTT Basic Research Laboratories, 3-1 Morinosato Wakamiya, Atsugi-shi, Kanagawa 243, Japan

We report measurements of the inverse squared magnetic penetration depth, $\lambda^{-2}(T)$, in Pr$_{2-x}$Ce$_x$CuO$_4$–δ (0.115 ≤ x ≤ 0.152) superconducting films grown on SrTiO$_3$ (001) substrates coated with a buffer layer of insulating Pr$_2$CuO$_4$. $\lambda^{-2}(0)$, T_c and normal-state resistivities of these films indicate that they are clean and homogeneous. Over a wide range of Ce doping, 0.124 ≤ x ≤ 0.144, $\lambda^{-2}(T)$ at low T is flat: it changes by less than 0.15% over a factor of 3 change in T, indicating a gap in the superconducting density of states. Fits to the first 5% decrease in $\lambda^{-2}(T)$ produce values of the minimum superconducting gap in the range of 0.29 ≤ Δ_{min}/k_BT_c ≤ 1.01.

It is still a puzzle whether pairing symmetry in n-type cuprates is d wave or not. Recently, novel concepts on pairing symmetry of n- and p-type cuprates have come forward: a possible transition in pairing symmetry[12, 13, 14] and/or a mixed symmetry order parameter[15]. Our previous work[10] in-
drive current. The absolute accuracy of λ^{-2} is limited by $\pm 10\%$ uncertainty in d. The T dependence of λ^{-2} is unaffected by this uncertainty.

Except for differences in the flatness of λ^{-2} at low T, which is the focal point of this paper, buffered films are very much like unbuffered films reported earlier. Fig. 1 shows in-plane resistivity, $\rho_{ab}(T)$, for buffered PCCO films. ρ_{ab} in the normal state decreases smoothly and monotonically with Ce doping, x, even for small changes in x, implying that the main difference among films is Ce content. If there were random variations in degree of epitaxy, structural defects, etc., then resistivity would not be such a smooth function of x. These resistivities are slightly smaller than for PCCO films without buffer layers, and significantly lower than for NCCO and PCCO crystals. The inset of Fig. 1 shows that resistive transitions are reasonably sharp, and that T_c is a weak function of Ce concentration, although resistivity is not. Table I summarizes properties of the films.

Fluctuations cause $\sigma_1(T)$ to peak at the superconducting transition. Hence, $\sigma_1(T)$ is a much more stringent test of film quality than resistivity. For example, if T_c varies through the film thickness, resistivity reveals only the highest T_c. Because our probing magnetic field passes through the film, $\sigma_1(T)$ has a peak at the T_c of every layer. Transitions associated with small bad spots in the film, as opposed to an entire film layer, are distinguished by their having essentially no effect on the superfluid response, σ_2. When a layer goes superconducting there is a distinct change in the slope of $\lambda^{-2}(T)$.

$\sigma_1(T)$’s of buffered PCCO films (Fig. 2) show that several of them have a double transition, reflected as shoulder ($x = 0.115, 0.124$, and 0.137) or satellite ($x = 0.144$ and 0.152) structure of peaks. We define two transition temperatures, T_{c1} and T_{c2}, from peaks in $\sigma_1(T)$, where $T_{c1} > T_{c2}$. The resistive T_c is always at the onset of the T_{c1}-peak. For the films most important to the conclusions of this paper, $0.124 \leq x \leq 0.144$, the width of the T_{c1} peak, ΔT_{c1}, is ≤ 1 K, indicating excellent film homogeneity. The peak at T_{c2} most likely involves a bad spot in the film, since there is no corresponding feature in the slope of $\lambda^{-2}(T)$, (see Fig. 3). Accordingly, the lower transition is neglected in our analysis. Films with highest and lowest Ce concentrations ($x = 0.115$ and 0.152) have broader transition widths ($\Delta T_{c2} = 2.4 \sim 3.9$ K) than other films, perhaps because T_c is more sensitive to x.

Figure 3 shows $\lambda^{-2}(T)$ for all films. $\lambda^{-2}(0)$ vs. x increases rapidly for $x \leq 0.133$, and it is constant or decreases slowly for $x > 0.133$. Values of $\lambda^{-2}(0)$ are slightly higher than for unbuffered films. The surprising upward curvature that develops in $\lambda^{-2}(T)$ near T_c at high Ce concentrations was also observed in unbuffered LCCO and PCCO films.

In our previous work on unbuffered PCCO films,
films with low Ce concentrations showed quadratic (T^2) behavior in $\lambda^{-2}(T)$ at low T. Films with high Ce concentrations showed gap-like behavior:

$$\lambda^{-2}(T) \approx \lambda^{-2}(0)[1 - C_\infty \exp(-D/t)],$$

(1)

where C_∞ and D are adjustable parameters, and $t = T/T_c$. In the clean limit, D is approximately the minimum gap on the Fermi surface, normalized to k_BT_c, and C_∞ is roughly twice the average superconducting density of states (DOS) over energies within k_BT of the gap edge. For isotropic BCS superconductors, the best-fit value of $C_\infty/2$ is about 2.2. The change in low-T behavior of $\lambda^{-2}(T)$ near optimal doping suggested a transition in pairing symmetry.

We now turn to the low-T behavior of $\lambda^{-2}(T)$ for buffered PCCO films, shown on a greatly expanded scale in Fig. 4. The most important thing to notice is that $\lambda^{-2}(T)$ is flat to better than 0.15% over a factor of 3 or more change in T. Residual variations in $\lambda^{-2}(T)$ at the 0.1% level are due, at least in part, to slow drift in the gain of the lock-in amplifiers used to measure current and voltage. These data are incompatible with simple d-wave models with nodes in the gap. Thus, except for the most underdoped and overdoped films ($x = 0.115$ and 0.152), $\lambda^{-2}(T)$ shows gapped behavior. Recent angle-resolved photoemission spectroscopy measurements indicate well-defined quasiparticle states on the Fermi surface where the $d_{x^2-y^2}$ node would be, so the gapped behavior that we observed could not be ascribed to a Fermi surface effect.

To estimate the gap, we fit Eq. (1) to the first ~5% drop in $\lambda^{-2}(T)$, (thin solid lines in Fig. 4). It comes as no surprise that quadratic fits over the same temperature range are unacceptable (dashed lines). For films with $x = 0.115$ and 0.152, data at $T < 0.5$ K are needed to distinguish between T^2 and $e^{-D/t}$. Values of the minimum gap, $\Delta_{\min} = Dk_BT_c$ and average DOS, $C_\infty/2$, extracted from the above exponential fits are presented in Table I. D values are significantly lower than the BCS weak-coupling-limit value, 1.76, for s-wave superconductors (2.14 for d-wave superconductors). D is largest, $D \sim 1$, for x near 0.13. A similar value, $D \approx 0.85$, was found for unbuffered PCCO films with the same Ce concentration. Values of $C_\infty/2$ ($\ll 1$) are also much smaller than for weak-coupling isotropic s wave. This implies existence of a peak in the DOS for a certain E ($> \Delta_{\min}$), because the states should be conserved.

The next question is: where is the peak in the DOS, i.e., how big is the maximum gap, Δ_{\max}, on the Fermi surface? To answer this question, we employ a model anisotropic gap function and the clean-limit result that $1 - \lambda^{-2}(T)/\lambda^{-2}(0)$ is an integral of quasiparticle DOS times the derivative of the Fermi function with respect to energy λ. Fig. 4 shows a good fit to $\lambda^{-2}(T)$ for film with $x = 0.131$ using the DOS in the inset. In this fit, the minimum gap was fixed at the value found by fitting the low-T data, i.e., $\Delta_{\min}/k_BT_c = 0.99$. Then, as one can see in inset of Fig. 4, the average DOS within $\sim k_BT$ of the minimum gap edge agrees well with $C_\infty/2 = 0.5$ from Table I. For film with $x = 0.131$, Δ_{\max} is about 2.6k_BT_c ($\pm 15\%$).

We emphasize that we cannot say anything about the shape of the peak in the DOS, only its location. An equally acceptable fit, with a similar peak energy, is obtained even when the sharp narrow peak in the inset of Fig. 4 is replaced by a rectangular peak.

In summary, we measured the inverse squared magnetic penetration depth, $\lambda^{-2}(T)$, of several Pr$_{2−δ}$Ce$_x$CuO$_{4−δ}$ films on buffered Pr$_2$CuO$_4$/SrTiO$_3$ substrates down to $T/T_c < 0.03$. Overall, the resistivities and penetration depths were similar to films grown directly on SrTiO$_3$. However, for PCCO films on buffered substrates, $\lambda^{-2}(T)$ at low T exhibits gapped behavior over a wide range of Ce doping, including underdoping. This implies a superconducting gap without nodes on the Fermi surface. Values of the minimum superconducting gap for the films are in range of 0.3 $\leq \Delta_{\min}/k_BT_c \leq 1.0$. We cannot distinguish among models with various gap symmetries, e.g., anisotropic s, $s + id$, or $d + id$.

The research at OSU was supported by NSF Grant No. DMR-0203739.
Buffered Pr$_{2-x}$Ce$_x$CuO$_4$ ($x = 0.131$)

FIG. 5: $\lambda^{-2}(T)$ for Pr$_{1.869}$Ce$_{0.131}$CuO$_4-\delta$ film. Gray line shows an excellent fit obtained with density of states shown in the inset. Inset: Quasiparticle density of states in $s + id_{x^2-y^2}$ gap symmetry.

TABLE I: Properties of eight MBE-grown Pr$_{2-x}$Ce$_x$CuO$_4-\delta$ films on Pr$_2$CuO$_4$/SrTiO$_3$. T_c (or T_{c1}) and T_{c2} are locations of main and secondary peaks in $\sigma_1(T)$, respectively. ΔT_c is full width of the (main) peak in $\sigma_1(T)$. $\rho_{ab}(25\text{ K})$ is the ab-plane resistivity at $T = 25\text{ K}$. $\lambda^{-2}(0)$, $C_{\infty}/2$, and $D = \Delta_{\text{min}}/k_B T_c$ are fit parameters, in Eq. (1).

x	T_c (T_{c1})	T_{c2}	ΔT_c	$\rho_{ab}(25\text{ K})$	$\lambda^{-2}(0)$	$C_{\infty}/2$	D
	(K)	(K)	(K)	($\mu\Omega\text{cm}$)	(μm^{-2})		
0.115	13.0	11.8	3.9	51.0	6.6	0.21	0.29
0.124	21.3	20.7	1.3	30.1	19.1	0.28	0.56
0.127	23.1	23.1	0.5	18.4	25.8	0.60	1.01
0.132	23.5	23.6	0.5	18.3	27.9	0.50	0.99
0.133	23.3	23.3	0.5	15.3	27.9	0.50	0.99
0.137	23.2	22.9	0.7	10.8	41.2	0.38	0.83
0.144	21.2	20.2	0.9	9.5	38.6	0.30	0.72
0.152	19.8	16.6	2.4	7.7	35.1	0.17	0.37

[1] C. C. Tsuei and J. R. Kirtley, Phys. Rev. Lett. 85, 182 (2000).
[2] N. P. Armitage et al., Phys. Rev. Lett. 86, 1126 (2001).
[3] J. D. Kokales et al., Phys. Rev. Lett. 85, 3696 (2000).
[4] R. Prozorov, R. W. Giannetta, P. Fournier, and R. L. Greene, Phys. Rev. Lett. 85, 3700 (2000).
[5] L. Alff et al., Phys. Rev. B 58, 11197 (1998).
[6] S. Kashiwaya et al., Phys. Rev. B 57, 8680 (1998).
[7] C.-T. Chen et al., Phys. Rev. Lett. 88, 227002 (2002).
[8] L. Alff et al., Phys. Rev. Lett. 83, 2644 (1999).
[9] J. A. Skinta, T. R. Lemberger, T. Greibe, and M. Naito, Phys. Rev. Lett. 88, 207003 (2002).
[10] J. A. Skinta et al., Phys. Rev. Lett. 88, 207005 (2002).
[11] A. Biswas et al., Phys. Rev. Lett. 88, 207004 (2002).
[12] A. Kohen and G. Deutscher, cond-mat/0207382 (2002).
[13] K. A. Müller, Phil. Mag. Lett. 82, 279 (2002).
[14] D. Daghero, R. S. Gonnelli, G. A. Ummarino, and V. A. Stepanov, cond-mat/0207411 (2002).
[15] M. Naito, H. Sato, and H. Yamamoto, Physica C 293, 36 (1997).
[16] S. J. Turneaure, E. R. Ulm, and T. R. Lemberger, J. Appl. Phys. 79, 4221 (1996).
[17] S. J. Turneaure, A. A. Pesetek, and T. R. Lemberger, J. Appl. Phys. 83, 4334 (1998).
[18] J. D. Kokales et al., Physica C 341-348, 1655 (2001).
[19] M. Tinkham, Introduction to Superconductivity, 2nd ed. (McGraw-Hill, New York, 1996).
[20] J. A. Skinta et al., cond-mat/0301174 (2003).