Availability of secondary healthcare data for conducting pharmacoepidemiology studies in Colombia: A systematic review

Juan-Sebastian Franco1 | David Vizcaya2

1 Medical Affairs, Bayer S.A, Bogotá, Colombia
2 Epidemiology, Bayer Hispania, Barcelona, Spain

Abstract
Real-world evidence (RWE) is emerging as a fundamental component of the post-marketing evaluation of medicinal products. Even though the focus on RWE studies has increased in Colombia, the availability of secondary data sources to perform this type of research is not well documented. Thus, we aimed at identifying and characterizing secondary data sources available in Colombia. We performed a systematic literature review on PubMed, EMBASE, and VHL using a combination of controlled vocabulary and keywords for the concepts of electronic health records, epidemiologic studies and Colombia. A total of 323 publications were included. These comprised 123 identified secondary data sources including pharmacy dispensing databases, government datasets, disease registries, insurance databases, and electronic health records, among others. These data sources were mostly used for cross-sectional studies focused on disease epidemiology in a specific population. Almost all databases (95%) contained demographic information, followed by pharmacological treatment (44%) and diagnostic tests (39%). Even though the database owner was identifiable in 94%, access information was only available in 44% of the articles. Only a pharmacy-dispensing database, local cancer registries, and government databases included a description regarding the quality of the information available. The diversity of databases identified shows that Colombia has a high potential to continue enhancing its RWE strategy. Greater efforts are required to improve data quality and accessibility. The linkage between databases will expand data pooling and integration to boost the translational potential of RWE.

Keywords
Colombia, drug utilization, electronic health records, pharmacoepidemiology

1 | INTRODUCTION

Real-world evidence (RWE) is a fundamental component of the long-term evaluation of medicinal products being increasingly requested by regulatory agencies, healthcare professional (HCPs) and payers to demonstrate the safe and appropriate use of these therapies, their effectiveness in every-day treatment, and the cost-effectiveness of the treatment strategies.1 RWE research using secondary
data sources has multiple applications on therapeutics, including drug utilization studies, post-authorization safety studies, comparative effectiveness, and cost of interventions.

Initiatives related with RWE across the world have highlighted its role as a valuable complement to the evidence generated in randomized controlled trials (RCTs). United States (US) and Europe have the highest number of healthcare-related data sources, probably due to the structure of healthcare systems and the legal framework which facilitates the electronic collection of routine clinical care. In Latin America, there is an increasing demand for effective and innovative treatments that drives the requirement for the continuous evaluation of their safety and effectiveness. A previous assessment of the status of RWE in Latin America has shown that, even though there are patient-level data resources available, their quality varies and are locally managed without standardizing coding and practices.

In Colombia, the situation is very similar. Even though there are government-led information systems and a single-payer healthcare system, the collection of data is not always complete. The Colombian health system includes a social security system with public funding and a less preeminent private sector. The affiliation to a healthcare system is mandatory and is done through the health insurance companies (EPS—entidades promotoras de la salud, in Spanish) which manage the healthcare provision given by the healthcare settings. The goal of the Colombian healthcare system is to provide healthcare access to the entire of its population through a list of regimes that cover workers, low-income population, and special populations such as armed forces. Hence, the system management in Colombia is somewhat centralized although healthcare provision is scattered in various public and private entities. In order to improve and enhance the use of RWE in Colombia, it is important to have more information on the resources that could be used for such purposes. Hence, the objective of this study was to perform a systematic literature review to identify and describe the characteristics of the secondary healthcare data sources available in Colombia that have been used to date for conducting overall epidemiology and pharmacoepidemiology studies.

2 | MATERIALS AND METHODS

2.1 | Search strategy

A systematic literature review was carried out following the PRISMA guidelines. A comprehensive search strategy for peer-reviewed articles was performed in three databases: PubMed, EMBASE, and Virtual Health Library, which includes Latin American sources. The search was conducted by the authors on December 2018. A combination of controlled vocabulary and keywords was used for the concepts of electronic health records (EHR), epidemiologic studies and Colombia; the Boolean operators “AND” and “OR” were used to combine these concepts (Supplementary Material 1). Given that, to the best of our knowledge, this is the first review of these characteristics conducted in Colombia, the search was not limited by publication date or language other than the date when we conducted the search: December 2018. All citations were imported into a citation management system and duplicates were removed.

2.2 | Eligibility criteria

Analytical studies performed on secondary data sources originating from Colombia were considered for inclusion into the study; these include pharmacoepidemiological studies, pharmacoeconomic studies, and safety studies, among others. Secondary data sources were considered as articles that analyzed data already collected for other purposes, including healthcare records, administrative and commercial databases, and disease and drug registries. Finally, databases covering several countries and multi-databases were also considered if they included information from Colombian patients.

The following articles were excluded from the review: studies performed under a “primary data collection” approach, defined as collection of data specifically for a particular study, studies that focused on single-patient information (eg case reports, case series), pharmacoeconomic models, review articles, policy-related articles, and studies not involving Colombian data.

An external qualified organization (PGA Farma) performed an initial screening of titles to select the eligible articles for abstract review and full-text data extraction by the authors. Subsequently, the abstracts of all potentially relevant studies were reviewed by the authors to determine final inclusion.

2.3 | Data extraction and analysis

Data were extracted using a standardized collection form, taking into account a template used in similar studies and adapted from the methodological framework of the European Surveillance of Antimicrobial Consumption (ESAC) project and the Big Data for Better Outcomes project from the Innovative Medicines Initiatives.

The format was structured into three parts. The first part described the general characteristics of the study, including main author, year of publication, type of publication (full article or poster), and whether additional countries were involved. The second section was relative to the study design, including variables such as type of study, purpose of the study, population included, and geographical level of analysis (ie national, regional or local). The third part addressed the variables related with the database, including data source (eg distributor, health insurance company, pharmacy, prescription, healthcare institution, government, and non-government agencies), database design (ie administrative, commercial, EHR, disease registry, drug registry), database owner, health sector coverage, type of population coverage, therapeutic area according to the Medical Dictionary for Regulatory Activities (MedDRA) system-organ classification (SOC), and patient-level data information available.
The authors performed the data extraction on Microsoft Excel. In order to increase data quality, all the non-free text cells were blocked for data entry to decrease the likelihood of entry errors and a subsequent quality assurance was performed by reviewing a sample of 50% of the extraction.

3 | RESULTS

The PubMed, EMBASE, and VHL searches yielded a total of 1294 publications. Of these, 159 corresponded to duplicates, and thus, the titles of 1135 articles were screened. Among these, 351 articles were excluded after title screening and the abstract of the 784 remaining papers was assessed. Finally, 461 publications were excluded following the eligibility criteria and thus, 323 articles that had interpretable data and fulfilled the eligibility criteria were used for data extraction.20-342 (Figure 1).

Until December 2018, 323 publications reported using secondary data sources to conduct epidemiology studies in Colombia.26-348 Since we had no limits set with regards to publication date, the first study identified in this SLR was published in 1967 and corresponds to a mortality study in children from Cali based on the death certificates of the local vital statistics office.92 The number of publications remained low until the 2010s, after which a total of 296 articles were published, corresponding to approximately 92% of the articles identified. Two articles were accepted for publication in 2018 but the journal published them in 2019 (Figure 2). Most publications were full-text articles (71%), and 29% were posters, mainly from scientific conferences. Only 34 articles (10%) included information of additional countries besides Colombia.23,50,54,59,61,62,80-83,85,86,159,160,169,178,181,198,206,241,260,265,267,278,292,304,305,307,326,331,333,334,337

The majority of the studies were cross-sectional (61.6%), followed by cohort studies (11.5%). The main objective was often related with the description of disease epidemiology (70%), followed by drug utilization studies (20%). The proportion of drug effectiveness and safety studies was low, accounting for 3% and 6%, respectively.

A total of 123 databases were identified as the data source (Supplementary Material 2). The most frequently used database was from a pharmacy dispensing company, in 52 publications. This was followed by government databases (vital statistics in 29 publications and Ministry of Health datasets in 15). Finally, a local oncology disease registry was used in seven (7) publications. The main characteristics of the 123 databases identified are described in Table 1. The most common therapeutic areas were infections and neoplasms, both in 12%, followed by cardiac and neurologic disorders in 8% and endocrine disorders in 6% (Supplementary Material 3). Furthermore, even though the database owner was identifiable in 94%, access information and/or requirements were only available in 44% of the articles.

3.1 | Global and regional data sources

A total of 18 databases with global or Latin American regional scope were identified (Table 2), including the World Health Organization's mortality database and the International Agency for Research on Cancer (IARC) report,82,159,267,278,279 as well as several Latin American disease registries and healthcare intervention data sets.

3.2 | Government Databases

The government databases were secondary data sources commonly used in the articles identified. A total of 88 articles (27%) reported data from a government agency. The most frequently used data source was the vital statistics information, mainly on mortality, from the National Administrative Department of Statistics (DANE),28,30,31,38,39,45,66,69,71,74,78,89,93,165,171,199,200,210,221,225,228,229,252,262,268,269,274,287,303,317,321,339

The DANE collects the information through births and death certificates (classified using International Statistical Classification of Diseases and Related Health Problems version 10 (ICD-10) codes, as well as through surveys and census of the population.343

SISPRO (Integrated Information System on Social Protection) integrates more than 10 primary sources of health-related information in a single query system.38,39,200,266,344 Access to SISPRO requires a client access server, which allows the information to be on a local computer. Within this information system, the RIPS (Individual Registry of Health Services), contains data on age, gender, and medical diagnosis by ICD-10 for patients treated by the health system (public and private providers).64,79,87,147,154,170,197,216,217,219,229,262,275,314,338

The High Cost Account (CAC), which was created by the government in 2007 and is administered by insurers, collects healthcare data on high-cost diseases (eg cancer, diabetes, hemophilia, rheumatic diseases, etc).21,22,132,212,234,243,248,250,251,277 This database has a quality control process (audit through a validation mesh and verification against the medical record) and contains demographic data, diagnosis by ICD-10 and prescriptions.

3.3 | Administrative and Claims Datasets

A pharmacy dispensing company (Audifarma SA) was identified in the SLR as the most commonly used database for RWE.34,42,61,63,72,73,94-98,100-109,111-115,117,118,120,122,131,134-141,163,168,242,301,310 It contains demographic data, diagnosis by ICD-10, and drug dispensation records coded by the Anatomical Therapeutic Chemical (ATC) classification, which can be used to identify comorbidities, drug-to-drug interactions, medication errors, adverse events, and calculate adherence rates. The company has its own pharmacoepidemiology department that performs quality control measures and the records are updated daily. The most common therapeutic areas explored with this database are cardiac (23%), neurological (21%) and endocrine (15%) disorders, with a focus on drug utilization (77%) and drug safety (17%) studies.

Regarding health insurance companies, a total of 27 articles reported the use of claims data as the source of data.26,27,33,44,46-48,53,55,58,78,116,140,149,175,205,226,227,231,258,270,281,284,288,289,324,325 In
most of the articles (75%), the specific health insurance company was not identifiable.

3.4 | Local Disease and Drug Registries

There were 19 local disease and drug registries identified in 36 publications (Table 3). The most commonly used local registry was the population-based cancer registry (PBCR) in Cali. The collection of the data is performed through active search and notification from hospitals, public and private laboratories, and the DANE. This database contains patient’s demographic information and clinical diagnosis by ICD-10, used to assess cancer morbidity and mortality. Additional PBCRs were created in Bucaramanga, Manizales, Pasto, and Barranquilla, with a coverage of 12% of the population. Furthermore, the Cali, Bucaramanga, Manizales, and Pasto PBCRs follow IARCs standards and are sources of their worldwide cancer incidence report.
In addition to the oncology databases, there were registries identified in diseases including heart failure (RECODEC290,291 and ROCI308 registries), trauma,180,183,184,208,309 infectious diseases (GREBO90,311,312 healthcare workers occupational exposure registry192), and glomerulonephritis (Nefrored174,177,188), among others.37,146,185,187,192,220,238,255,264

3.5 Local single institution datasets

A total 84 articles included data from EHR of 49 healthcare institutions around Colombia. In 41 articles (84%), the healthcare institution was identifiable and included a mix of public and private institutions. The healthcare institutions with the greater amount of publications are located in Colombia’s three major cities: Bogota (Hospital Universitario San Ignacio57,91,176,247 and Instituto Nacional de Cancerologia43,158,195,313), Medellin (Hospital Pablo Tobon Uribe172,201,261,297,328) and Cali (Fundacion Valle de Lili60,196,330,335,336,340).

3.6 Commercial and Miscellaneous Databases

IMS health was among the commercial databases identified in the SLR with a total of two (2) publications involving Colombian patient’s data206,260 on drug utilization using retail prescription sales data. Among the miscellaneous data sources (ie databases not fitting any of the earlier sections), we found the Healing the Children (HTC) organization database that include data on patients with cleft disease,143, a database on genetic diseases29; and a
Data source name	Database summary	Population	Data type	Therapeutic Area (by MedDRA SOC)	Variables available in data source	Database owner/holder	Access possibility	Access requirements, including costs
International Agency for Research on Cancer (IARC)	Epidemiology of cancer and the study of potential carcinogens in the human environment	No Data	Disease specific	Neoplasms benign, malignant and unspecified (incl cysts and polyps)	Patient demographic information Disease diagnosis by ICD-10	International Agency for Research on Cancer (IARC)	Yes	Free access through IARC’s website
World Health Organization mortality database	Certified deaths for 20 selected cancer sites and total cancer mortality for the calendar period 1980-2010	No Data	General Population	Neoplasms benign, malignant and unspecified (incl cysts and polyps)	Patient demographic information Disease diagnosis by ICD-10	World Health Organization (WHO)	Yes	Accessible through WHO website
United Nations High Commissioner for Refugees (UNHCR)	Number of forcibly displaced persons (ie the sum of the number of refugees, IDPs, and asylum seekers)	No Data	General Population	Social circumstances	Patient demographic information	United Nations	Yes	UNHCR website
ACute Coronary Events—a multinational Survey of current management Strategies (ACCESS Registry)	Registry performed in developing countries that enrolled patients hospitalized with a diagnosis of Acute Coronary Syndrome	11,731	Disease specific	Cardiac disorders	Patient demographic information Specific diagnosis test Pharmacological treatment prescribed	ACCESS Registry investigators	No Data	No Data
Carotid body tumors (CBTs) database	All patients who underwent CBT resection in the years between 2004 and 2014 at 16 institutions	356	Disease specific	Neoplasms benign, malignant and unspecified (incl cysts and polyps)	Patient demographic information Disease diagnosis by ICD-10 Pharmacological treatment prescribed	Article’s authors	No Data	No Data
Hemato-Oncology Latin America Observational Registry (HOLA)	Registry of selected hematological malignancies	Multiple Myeloma: 1,103 Chronic lymphocytic leukemia: 472 Non-Hodgkin lymphoma: 1,975	Disease specific	Neoplasms benign, malignant and unspecified (incl cysts and polyps)	Patient demographic information Specific diagnosis test Pharmacological treatment prescribed	Hemato-Oncology Latin America Observational Registry (HOLA)	No Data	No Data

(Continues)
Data source name	Database summary	Population	Data type	Therapeutic Area (by MedDRA SOC)	Variables available in data source	Database owner/holder	Access possibility	Access requirements, including costs
QUALIDIAB database	QUALIDIAB is a program that evaluates the quality of care provided to people with diabetes in Latin America	3,099	Disease specific	Endocrine disorders	Patient demographic information Specific diagnosis tests Pharmacological treatment prescribed Quality of Life (QoL) information	Centro de Endocrinología Experimental y Aplicada (CENEXA)	No Data	No Data
Primary immunodeficiency (PIDs) Registry	Study prevalence and to promote awareness about Primary immunodeficiency (PIDs) in Mexico, and Central and South America	1,888	Disease specific	Immune system disorders	Patient demographic information Specific diagnosis test	Latin American Society for Immunodeficiencies (LASID)	No Data	No Data
Latin-American Collaborative Study of Congenital Malformations (ECLAMC)	Epidemiological investigation of developmental congenital anomalies in Latin American hospital births	46,850	Disease specific	Pregnancy, puerperium and perinatal condition	Patient demographic information Specific diagnosis test	Latin-American surveillance program (ECLAMC)	Yes	Information available at ECLAMC website (http://www.eclamc.org/eng/index.php)
Registry on the Management of Acute Diarrhea in Children (REMAD)	Infants/children (6 mo. to 6 y of age) presenting with community acquired acute diarrhea at onset	1,439	Disease specific	Infections and infestations	Patient demographic information Specific diagnosis test Pharmacological treatment prescribed	Registry on the Management of Acute Diarrhea in Children (REMAD)	No Data	No Data
Fresenius Medical Care Latin America database (EuCiD)	Database of hemodialysis patients	21,672	Disease specific	Renal and urinary disorders	Patient demographic information Specific diagnosis test	Fresenius Medical Care	No Data	No Data
Global Registry and Surveillance System for Diabetes (GRAND)	GRAND is a web-based, centralized database designed to track individuals with diabetes and monitor their clinical information over time	1,742	Disease specific	Endocrine disorders	Patient demographic information Specific diagnosis test Pharmacological treatment prescribed	Global Registry and Surveillance System for Diabetes (GRAND)	No Data	No Data

(Continues)
Data source name	Database summary	Population	Data type	Therapeutic Area (by MedDRA SOC)	Variables available in data source	Database owner/holder	Access possibility	Access requirements, including costs
Sistema de Redes de Vigilancia de los Agentes Responsables de Neumonías y Meningitis Bacterianas (SIREVA II)	Regional Vaccine System, which reports the isolated serotypes of S. pneumoniae, H. influenzae and N. meningitidis that causes bacterial pneumonia and meningitis	466	Disease specific	Infections and infestations	Patient demographic information Specific diagnosis test	Pan American Health Organization (PAHO)	Yes	Reports are available in PAHO website.
Pfizer International Growth Database. (KIGS)	Registry of patients under treatment with recombinant growth hormone (rhGH)	1,175	Disease specific	Endocrine disorders	Patient demographic information Specific diagnosis test Pharmacological treatment prescribed Adverse event information	Pfizer	No Data	No Data
Per-oral endoscopic myotomy (POEM) registry	Patients with diagnosis of achalasia who underwent per-oral endoscopic myotomy (POEM)	89	Disease specific	Gastrointestinal disorders	Patient demographic information Specific diagnosis test	Per-oral endoscopic myotomy (POEM) registry	No Data	No Data
Latin-American Catheter Ablation Registry	Analyze all ablations, either first time or re-do procedures, performed in 2012	14,349	Disease specific	Cardiac disorders	Patient demographic information Specific diagnosis test	Latin American Society of Electrophysiology and Cardiac Stimulation (SOLAECE)	No Data	No Data
Product Surveillance Registry (PSR) for InterStim therapy	Patients under treatment with InterStim therapy for urinary incontinence, frequency and incomplete bladder emptying	910	Disease specific	Nervous system disorders	Patient demographic information	InterStim device owners	No Data	No Data
Medtronic Implantable Cardioverter Device (ICD) registry	Electronic database of patients with ICD in Latin America	42	Disease specific	Cardiac disorders	Patient demographic information	Medtronic	No Data	No Data
National databases	Direct and indirect costs of GI and CV events associated with common pain relievers for Rheumatoid Arthritis and Osteoarthritis patients	No Data	Disease specific	Musculoskeletal and connective tissue disorders	Disease/ Drug costs	No Data	No Data	No Data

Abbreviations: MedDRA: Medical Dictionary for Regulatory Activities; SOC: system-organ classification; ICD-10: International Statistical Classification of Diseases and Related Health Problems version 10; GI: gastrointestinal; CV: cardiovascular.
4 | DISCUSSION

Secondary data sources correspond to a rich source of information that have become extensively used over the recent years. This SLR highlights the main characteristics of the 123 databases used for secondary research in Colombia identified in 323 articles. The databases identified constitute a mix of administrative data, EHR and registries originating from government agencies, healthcare institutions and pharmacy dispensing companies. These data sources were particularly used for cross-sectional studies focused on portraying disease epidemiology in a particular population.

Colombia has a long-standing tradition of systematically collecting data from different sources and utilize it to perform epidemiologic research, as shown in this review. Moreover the country has been keeping up with global and regional trends on capturing and using secondary data sources since the first publication using local vital statistics was in 1967 and Cal’s PBCR was set-up in 1962, similar to global (IARC was created in 1965) and regional databases (ECLAMC on congenital malformations was established in 1967). A recent analysis of RWE in Latin America published by Justo et al, shows that the landscape of Colombia is similar to Chile, with well-established national systems and registries, and ahead of Argentina, where there’s still fragmented data source management and sporadic use of RWE data for decision-making. Moreover the structure of Colombian health system including but not limited to the structure of EPS groups, government owned electronic infrastructures such as the High-Cost Account, electronic registers availability, and a pressing demand for more evidence-based decision-making among regulators, HTA and HMO bodies, and drug manufacturers or distributors should facilitate future developments in RWE in the near future. The fact that only a small part of the interactions with the health system happens outside of the general system of social security in health (SGSSS—Sistema General de Seguridad Social en Salud, in Spanish) makes it even more appealing to further explore the capabilities of using secondary data sources from Colombian structures related to health.

A single pharmacy dispensing company (Audifarma SA) was the most frequently used source of secondary data, corresponding to 16% of the total articles identified. This is the largest pharmacy dispensing company in Colombia (ie logistics operator), covering approximately 6.5 million affiliates that corresponds to 13.2% of the country’s population. The sample size and the consistent use of identifiers (eg ICD-10, ATC) are the main advantages that allows to study drug utilization patterns and even drug safety in routine clinical practice. Its major disadvantage is the current unavailability of linkage with clinical data to create more robust datasets to study specific health and drug outcomes.

Government databases were also commonly used as secondary data sources. For many decades, the country has been implementing information systems that allows the government to capture diverse health-related data at a population level. The access to these databases is readily available and includes a great amount of patient-level data. Taking into account that in Colombia the access to healthcare is universal, the entire population is covered by the data collection and non-participation should be minimal. However, those without access to care or who failed to encounter the health system (eg geographical location) will not be captured. Additionally, being a passive reporting system, these databases relies on the appropriate reporting behaviors and thus, there is a risk for underreporting.

In contrast to passive government databases, disease registries are based on active finding of all new cases of disease from a well-defined demographic area, which could improve the data reliability. In Colombia, several local disease registries were identified, mainly in oncology. While these registries currently focus on cancer incidence and mortality, it would be ideal if in the future they include data on cancer treatment to expand the scope of the endpoints analyzed.

The main challenge with secondary data sources is that many of the available data currently rely in separate silos. The absence of shared identifiers between the different types of databases prevents information linkage among heterogeneous data sources, which can be attributable not only to technical difficulties, but also to privacy concerns. Moreover interpretations of results coming from studies using secondary data sources will continue to encounter distrust, mainly due to data quality that could incorporate bias originating from confounding, missing data and misclassification. A knowledge gap related to data quality was identified in this study, since only a pharmacy dispensing company, the PBCRs and the government databases included a description of quality control measures or of the overall quality of the information available.

The present SLR had some limitations that need to be accounted for when interpreting its results. First, the analyses were made at the article-level and not the database-level, given the methodology of the SLR. This means that only the data sources that have been used for publication purposes were included in the SLR and there can be other data sources not reported in the literature. Furthermore, the same sources produced several articles, leading to a potential over-representation of these databases originated from research groups with high productivity in terms of publications. This also assures that databases with enough quality for epidemiological research had higher chances of being detected. Second, some details on the databases used in some of these studies are not available in the published article but only available on websites. This depended mainly on the author’s description of the data source or on the specificities of each database, which may not be extensively described in each study. Finally, we reported an increase in the number of publications during the last decade, which could be because the search...
TABLE 3 Description of local disease and drug registries

Data source name	Database Summary	Population	Data type	Therapeutic area (by MedDRA SOC)	Variables available in Data Source	Database owner/holder	Access possibility	Access requirements, including costs
Cali population-based cancer registry (PBCR)	Cancer cases reports actively captured by linkage of different sources of information	9,804	Disease specific	Neoplasms benign, malignant and unspecified	Patient demographic information Disease diagnosis by ICD-10	Cali population-based cancer registry (PBCR)	No Data	No Data
Childhood Cancer Outcomes Surveillance System (VIGICANCER)	Patients younger than 19 years of age, registered at any of the five Pediatric Oncology Units in Cali, with a new diagnosis of a malignant neoplasm	1,711	Disease specific	Neoplasms benign, malignant and unspecified	Patient demographic information Disease diagnosis by ICD-10	Cali population-based cancer registry (PBCR)	No Data	No Data
Bucaramanga Cancer Registry	The registry actively identifies, collects, and registers cancer cases by making regular visits to the primary information sources since 2000	1,039	Disease specific	Neoplasms benign, malignant and unspecified	Patient demographic information Disease diagnosis by ICD-10	Bucaramanga Cancer Registry	No Data	No Data
Manizales Cancer Registry	Population-based cancer registry in the city of Manizales up to IARC standards since 2003	1,482	Disease specific	Neoplasms benign, malignant and unspecified	Patient demographic information Disease diagnosis by ICD-10	Manizales Cancer Registry	No Data	No Data
Pasto Cancer Registry	Population-based cancer registry in the city of Pasto, with the inclusion of all malignant tumors diagnosed in individuals during the 1998-2007 period	4,986	Disease specific	Neoplasms benign, malignant and unspecified	Patient demographic information Disease diagnosis by ICD-10	Pasto Cancer Registry	No Data	No Data
Barranquilla Cancer Registry	Population-based cancer registry in the city of Barranquilla, with the inclusion of all malignant tumors diagnosed in individuals since 2007	8,182	Disease specific	Neoplasms benign, malignant and unspecified	Patient demographic information Disease diagnosis by ICD-10	Barranquilla Cancer Registry	No Data	No Data
Colombian Registry of Cardiovascular Disease (RECODEC)	Patients diagnosed with acute heart failure between 2011 and 2015	736	Disease specific	Cardiac disorders	Patient demographic information Disease diagnosis by ICD-10	Fundación Santa Fe de Bogotá (FSFB)	No Data	No Data
ROCI Registry	Patients with heart failure, treated according to the Optimize Colombia Program	436	Disease specific	Cardiac disorders	Patient demographic information Disease diagnosis by ICD-10	ROCI Registry	No Data	No Data
Surveillance Program of Congenital Malformations	Registry of congenital malformations in newborns from Bogota and Cali	76,155	Disease specific	Congenital, familial and genetic disorders	Patient demographic information Specific diagnosis test	Programa de Vigilancia de Anomalías Congénitas	No Data	No Data

(Continues)
Data source name	Database Summary	Population	Data type	Therapeutic area (by MedDRA SOC)	Variables available in Data Source	Database owner/holder	Access possibility	Access requirements, including costs
GenPE (Genetics and Pre-eclampsia) Colombian registry	Primigravid women included at the time of delivery between December 2000 and February 2012.	2,028	Disease specific	Pregnancy, puerperium and perinatal condition	Patient demographic information Specific diagnosis test	GenPE (Genetics and Pre-eclampsia) Colombian registry	Yes	Author information and/or website (www.genpe.org)
Bogota Congenital Malformations Surveillance Program (BCMSP)	Data on malformations from 2 sources: National Public Health Surveillance System (SIVIGILA), and electronic health records	431,670	Disease specific	Congenital, familial and genetic disorders	Patient demographic information Disease diagnosis by ICD-10	Bogotá Congenital Malformations Surveillance Program (BCMSP)	No Data	No Data
Trauma Registry of the Pan American Society of Trauma	Contains information on trauma patients from two healthcare institutions: Hospital Universitario del Valle (HUV) and Fundacion Valle del Lili (FVL)	18,995	Disease specific	Injury, poisoning and procedural complications	Patient demographic information	Pan-American Trauma Registry (PATR)	No Data	No Data
Grupo para el Control de la Resistencia Bacteriana de Bogotá (GREBO)	Microbiological surveillance network including 27 reference hospitals in the following Colombian cities	84,664	Disease specific	Infections and infestations	Specific diagnosis test	Grupo para el Control de la Resistencia Bacteriana de Bogotá (GREBO)	No Data	Contact information with the infectologists available at www.grupo grebo.org
Registry of Juvenile Patients with Polyautoimmunity	Disease registry of patients with polyautoimmunity documented at pediatric rheumatology clinics (17 centers on 5 Colombian cities)	313	Disease specific	Musculoskeletal and connective tissue disorders	Patient demographic information Specific diagnosis test	Pediatric Rheumatologists group	No Data	No Data
Nefrored	Multicenter registry of patients with confirmed diagnosis of lupus nephritis and primary glomerulonephritis through renal biopsy	763	Disease specific	Renal and urinary disorders	Patient demographic information Specific diagnosis test	NEFRORED	No Data	Project information in http://www.nefrored.org/
RedLANO (Latin American Neuro-Oncology Network)	A bidirectional registry of glioblastoma patients treated in various institutions from Colombia throughout the last 5 years	213	Disease specific	Nervous system disorders	Patient demographic information Specific diagnosis test Pharmacological treatment prescribed	RedLANO (Latin American Neuro-Oncology Network)	No Data	No Data
Colombian Health Care Workers (HCW) registry	HCWs who presented an episode of exposure to blood borne pathogens caused by percutaneous injuries or mucous membranes contamination	2,403	Disease specific	Infections and infestations	Patient demographic information Specific diagnosis test Pharmacological treatment prescribed	Servicios y Asesorías en Infectología (SAI)	No Data	No Data

(Continues)
strategy was not able to capture earlier studies that did not properly described the data source used, which could lead to an under-representation of some databases. Nonetheless, this could also be a representation of an actual increase in research productivity using secondary data sources, following the trend observed in other relevant countries (e.g., US).

5 | CONCLUSIONS

With the increasing access and use of these data sources, it is crucial that the evidence generated is made publicly available and that access to the data is granted to a larger research community, to the extent that this is possible, and assured through governance processes and ethics standards. A greater focus on expanding the use of these databases is required to increase their visibility in order to boost the translational potential of RWE in Colombia. The governance process to access most of the databases identified was poorly described or not described at all. Moreover, replicating this SLR in other Latin American countries would contribute to the exploration of the status-quo of RWE in the region that is required to further define and describe the databases available for pharmacoepidemiology research.

ACKNOWLEDGEMENTS

This work was supported by Bayer. The funder (Bayer AG) had no role in the study design, the collection, analysis and interpretation of data, the writing of the report or the decision to submit the article for publication. The authors thank the colleagues from Medical Affairs and Epidemiology at Bayer for their fruitful discussions and contributions. This research was the MPH Capstone Project at Johns Hopkins University for Juan-Sebastian Franco and he wishes to thank Dr. Caleb Alexander for his continuous guidance MPH Capstone Advisor during the conduct of this research.

CONFLICT OF INTEREST

Juan-Sebastian Franco and David Vizcaya are full-time employees of Bayer Colombia and Hispania (Spain), respectively.

AUTHOR CONTRIBUTIONS

All authors conceptualized, designed the study, analyzed the data, interpreted the data, reviewed and revised the manuscript. Dr. Franco drafted the initial manuscript. All authors approved the final manuscript as submitted and agree to be accountable for all aspects of the work.

ETHIC STATEMENT

The authors state that no ethical approval was needed.

DATA AVAILABILITY STATEMENT

Research data are not available for sharing.

ORCID

Juan-Sebastian Franco https://orcid.org/0000-0001-7776-9270
David Vizcaya https://orcid.org/0000-0003-0248-7636
95. Machado Alba JE, Moncada Escobar JC, Mesa EG. Anti-diabetic drugs prescription patterns among a group of patients in Colombia. Rev Panam Salud Publica. 2007;22:124-131.

96. Machado Alba JE, Moreno Gutiérrez PA, Moncada Escobar JC. Hospital medication errors in a pharmacovigilance system in Colombia. Farm Hosp. 2015;39:338-343.

97. Machado J, Machado-Duque M, Giraldo C. Results of an intervention in prescription of conventional release verapamil in patients with hypertension in Colombia. Value Heal. 2015;18:A147.

98. Machado-Alba JE, Moncada JC, Moreno-Gutiérrez PA. Medication errors in outpatient care in Colombia, 2005–2013. Biomedica. 2016;36:251-257.

99. Alvis-Miranda HR, Navas-Marrugo SZ, Velasquez-Loperena RA, et al. Effects of glycemic level on outcome of patients with traumatic brain injury: a retrospective cohort study. Bull Emerg Trauma. 2014;2:65-71.

100. Machado-Alba JE, Ruiz AF, Machado-Duque ME. Adverse drug reactions associated with the use of disease-modifying anti-rheumatic drugs in patients with rheumatoid arthritis. Rev Panam Salud Publica. 2014;36:396-401.

101. Machado J, Moncada JC, Pineda R. Profile of use of anti tumor necrosis factor in Colombian patients. Biomedica. 2011;31:250-257.

102. Machado JE, Moncada JC, Mesa G. Prescription patterns for antilipidemic drugs in a group of Colombian patients. Rev Panam Salud Publica. 2008;23:179-187.

103. Machado-Alba JE, Garcia S, Calvo-Torres LF, Bañiol-Giraldo AM. Patrones de prescripción del ácido acetilsalicílico. Rev Colomb Cardiol. 2015;22:127-285.

104. Machado-Alba JE, García-Betancur S, Villegas-Cardona F, Medina-Morales DA. Patrones de prescripción de los nuevos anticoagulantes orales y sus costos económicos en Colombia. Rev Colomb Cardiol. 2016;23:277-285.

105. Machado-Alba JE, Giraldo-Giraldo C, Urbano-Garzón SF. Prescripciones de diuréticos de asa potencialmente inapropiadas en ancianos. Rev Colomb Cardiol. 2017;24:217-222.

106. Machado-Alba J, Machado-Duque M, Granada S. AB0403 Adherence and access to biological therapy and tocitabin in a cohort of colombian patients with rheumatological diseases. Ann Rheum Dis. BMJ Publishing Group Ltd and European League Against Rheumatism. 2017;1190.1

107. Machado-Alba JE, Medina-Morales DA, Echeverri-Caño LF. Comparison of medication adherence in diabetes mellitus patients on human versus analogue insulins. Expert Opin Drug Saf. 2017;16:133-137.

108. Machado-Alba JE, Medina-Morales DA, Echeverri-Caño LF. Evaluation of the quality of life of patients with diabetes mellitus treated with conventional or analogue insulins. Diabetes Res Clin Pract. 2016;116:237-243.

109. Machado-Alba JE, Morales-Plaza CD. Prevalence of avoidable potential interactions between antidepressants and other drugs in colombian patients. Rev Colomb Psiquiatr. 2013;42:162-166.

110. Alvis-Guzman N, Diaz-Jimenez D, Castaneda-Ojuela C, et al. Socioeconomic determinants of undernutrition among under-fives in the guajira Colombia. Value Heal. 2017;20:A290.

111. Machado-Alba J, Alzate-Carvajal V, Mondragón-Cardona A, Jiménez-Canizales CE. Low frequency of prophylaxis prescription for osteoporosis in patients receiving chronic treatment with corticosteroids in Colombia. Rev Perú Med Exp Salud Publica. 2013;30:26-30.

112. Machado-Alba JE, Fernández A, Castrillón JD, et al. Prescribing patterns and economic costs of proton pump inhibitors in Colombia. Colomb Medica (Cali, Colomb.). 2013;44:13-18.

113. Machado Alba J, Valencia-Marulanda J, Jiménez-Canizales C, Salazar V,Romero D. Thyroid hormone prescription patterns in a Colombian population. Rev Panam Salud Publica. 2014;36:80-86.

114. Machado-Alba J, Alzate-Carvajal V, Echeverri-Caño L. Pharmacopeidemiological study of the use of non-steroid antiinflammatory drugs in high-risk cardiovascular patients. Rev Perú Med Exp Salud Publica. 2013;30:626-629.
115. Machado-Alba JE, Alzate-Carvajal V, Jimenez-Canizales CE. Trends in the consumption of anxiolytic and hypnotic drugs in a Colombian population. Rev Colomb Psiquiatr. 2015;44:93-99.

116. Machado-Alba JE, Calvo-Torres LF, García-Betancur S, Aguirre-Novoa A, Bañol-Giraldo AM. Drug utilisation study in patients receiving antiepileptic drugs in Colombia. Neurología. 2016;31:89-96.

117. Machado-Alba JE, Calvo-Torres LF, Gaviria-Mendoza A, Augusto M-Vélez C. Prescription profile of pyridostigmine use in a population of patients with myasthenia gravis. Muscle Nerve. 2017;56:1041-1046.

118. Machado-Alba JE, Calvo-Torres LF, Gaviria-Mendoza A, Castrillón-Spitia JD, Londoño-Builes MJ, et al. An economic analysis of inadequate prescription of antinfective medications for in-hospital patients at a third level institution in Colombia. Rev Esp Enferm Dig. 2014;106:77-85.

119. Machado-Alba JE, Castrillón-Spitia JD, Londoño-Builes MJ, et al. Prescription of paroxetine in Colombian adolescents. Rev Salud Publica (Bogota). 2018;20:243-244.

120. Machado-Alba JE, Gaviria-Mendoza A, Vargas-Mosquera CA, Gil-Restrepo AF, Romero-Zapata LC. Opioid prescribing patterns and costs in a large group of patients in colombia. J Pain Palliat Care Pharmacoother. 2017;31:57-65.

121. Arboleda M, Pérez MF, Fernández D, Usuga LY, Meza M. Clinical and laboratory profile of Plasmodium vivax malaria patients hospitalized in Apartadó, Colombia. Biomedica. 2012;32(Suppl 1):58-67.

122. Machado-Alba JE, Giraldo-Giraldo C, Aguirre NA. Results of an intervention to reduce potentially inappropriate prescriptions of beta blockers and calcium channel blockers. Rev Calid Asist. 2016;31:134-140.

123. Machado-Alba JE, Giraldo-Giraldo C, Machado-Duque ME. Quality of conventional release verapamil prescription in patients with arterial hypertension. Rev Calid Asist. 2015;30:72-78.

124. Machado-Alba JE, Giraldo-Giraldo C, Moncada-Escobar JC. Active pharmacosurveillance of patients affiliated to the Colombian general social security/health system. Rev Salud Publica (Bogota). 2010;12:580-588.

125. Machado-Alba JE, Castro-Rodríguez A, Álzate-Piedrahita JA, Hoyos-Pulgarín JA, Medina-Morales DA. Anticholinergic risk and frequency of anticholinergic drug prescriptions in a population older than 65. J Am Med Dir Assoc. 2016;17:275.e1-275.e4.

126. Machado-Alba JE, Londoño-Bulles MJ, Echeverri-Cataño LF, Ochoa-Muscoya A. Adverse drug reactions in Colombian patients, 2007-2013: analysis of population databases. Biomedica. 2016;36:59-66.

127. Machado-Alba JE, Machado-Duque ME. Prescription patterns of long-acting somatostatin analogues. SAGE Open Med. 2017;5:2050311217694795.

128. Machado-Alba JE, Machado-Duque ME. Use patterns of first-line inhibitors of tyrosine kinase and time to change to second-line therapy in chronic myeloid leukemia. Int J Clin Pharm. 2017;39:851-859.

129. Machado-Alba JE, Machado-Duque ME. Cardiovascular risk factors prevalence among patients with dyslipidemia in Colombia. Rev Peru Med Exp Salud Publica. 2013;30:205-211.

130. Machado-Alba JE, Machado-Duque ME, Moreno-Gutierrez PA. Time to and factors associated with insulin initiation in patients with type 2 diabetes mellitus. Diabetes Res Clin Pract. 2015;107:332-337.

131. Machado-Alba JE, Martínez-Pulgarín DF, Gómez-Suta D. Prevalence of potential drug interactions with azithromycin in Colombia, 2012–2013. Rev Salud Publica (Bogota). 2015;17:463-469.

132. Acuna L, Byrion A, Aschner P, et al. Prevalence of complications in patients with diabetes mellitus in Colombia. Value Heal. 2017;20:A350.

133. Arenas H. Thyroid ultrasound, fine needle aspiration biopsy and histopathological concordance in patients with thyroid nodules in a health center in pereira (Colombia) from 2009 to 2012. Endocr Rev. 2013;34:i.
191. Ossa Gomez CA, Herazo F, Gil M, et al. Phyloides tumor of the breast: a clinicopathologic study of 77 cases in a Hispanic cohort. *Colomb Medica (Cali, Colomb).* 2015;46:104-108.

192. Pérez-Diaz C, Calixto O-J, Faccini-Martínez AA, et al. Occupational exposure to blood borne pathogens among healthcare workers: a cross-sectional study of a registry in Colombia. *J Occup Med Toxicol.* 2015;10:45.

193. Palmezano-Díaz JM, Figueroa C, Rodríguez R, et al. Clinical and socio-demographic characteristics of patients with diabetes mellitus type 1 in a University Hospital in Colombia. *Med Interna Mex.* 2018;34:46-56.

194. Pardo C, de Vries E, Duarte JM, Piñeros M. Cancer in the Unidad de Cáncer del Hospital Departamental de Villavicencio, Colombia, 2006–2008. *Rev Colomb Cancerol.* 2015;19:125-132.

195. Parrado Sánchez L, Gómez C, Valderrama Chaparro JA, et al. Results from equity and its impact in childhood cancer survival: Initial results. *Int Psychogeriatrics.* 2017;29:1835-1840.

196. Parrado Sánchez L, Gómez C, Valderrama Chaparro JA, et al. Results from equity and its impact in childhood cancer survival: Initial results. *Int Psychogeriatrics.* 2017;29:1835-1840.

197. Pavlovsky MA, Fogliatto L, Agreda Vásquez GP, et al. Results from equity and its impact in childhood cancer survival: Initial results. *Int Psychogeriatrics.* 2017;29:1835-1840.

198. Pavlovsky MA, Fogliatto L, Agreda Vásquez GP, et al. Results from equity and its impact in childhood cancer survival: Initial results. *Int Psychogeriatrics.* 2017;29:1835-1840.

199. Pavlovsky MA, Fogliatto L, Agreda Vásquez GP, et al. Results from equity and its impact in childhood cancer survival: Initial results. *Int Psychogeriatrics.* 2017;29:1835-1840.

200. Peña-Torres E, Osorio-Cuevas DI, Gamboa-Garay O, et al. Burden of disease attributable to smoking in Colombia. *Value Heal.* 2014;17:A74-A75.

201. Pineda-Paterrina M, Mejía-Arboleda L, Serna-Patiño L, et al. Use adecuado de antibióticos en pacientes con exacerbaciones de EPOC atendidos en un hospital de Medellín, Colombia. *IATREIA.* 2016;29:270-279.

202. Pineda-Tamayo R, Arcila G, Restrepo P, Anaya JM. Impact of cardiovascular illness on hospitalization costs in patients with rheumatoid arthritis. *Biomedica.* 2004;24:366-374.

203. Pinilla G, Ascencio-Mantilla L, Pineda-Aguilero L. Potential drug interactions with antiepileptic agents in neurosurgical patients. *Pharmactother J Hum Pharmacol Drug Ther.* 2017;37:124-238.

204. Pinilla A, Cano N, Granados C, Paez-Canro C, Eslava-Schmalbach J. Inequalities in prescription of hydrochlorothiazide for diabetic patients in Colombia. *Rev Salud Publica (Bogota).* 2011;13:27-40.

205. Pinilla A, Cano N, Granados C, Paez-Canro C, Eslava-Schmalbach J. Inequalities in prescription of hydrochlorothiazide for diabetic patients in Colombia. *Rev Salud Publica (Bogota).* 2011;13:27-40.

206. Pinilla A, Cano N, Granados C, Paez-Canro C, Eslava-Schmalbach J. Inequalities in prescription of hydrochlorothiazide for diabetic patients in Colombia. *Rev Salud Publica (Bogota).* 2011;13:27-40.

207. Pinilla A, Cano N, Granados C, Paez-Canro C, Eslava-Schmalbach J. Inequalities in prescription of hydrochlorothiazide for diabetic patients in Colombia. *Rev Salud Publica (Bogota).* 2011;13:27-40.

208. Pinilla A, Cano N, Granados C, Paez-Canro C, Eslava-Schmalbach J. Inequalities in prescription of hydrochlorothiazide for diabetic patients in Colombia. *Rev Salud Publica (Bogota).* 2011;13:27-40.

209. Pinilla A, Cano N, Granados C, Paez-Canro C, Eslava-Schmalbach J. Inequalities in prescription of hydrochlorothiazide for diabetic patients in Colombia. *Rev Salud Publica (Bogota).* 2011;13:27-40.
228. Rosselli D, Carlier JC, Arango Lozano M, Hernando Murcia L, Amaya AF, Del Río-McMahon R. Death from external causes in infants in Colombia 2005–2013. Rev Chil Pediatr. 2017;88:465-469.

229. Rosselli D, Rueda J-D. Burden of pneumococcal infection in adults in Colombia. J Infect Public Health. 2012;5:354-359.

230. Ruiz L, Maya MA, Rueda ZV, López L, Vélez LA. Current characteristics of tuberculosis and human immunodeficiency virus co-infection in a cohort of hospitalized patients in Medellín, Colombia. Biomedica. 2018;38:59-67.

231. Saldarriaga AM, Rodríguez AC, Florez FA, et al. Effect of cholesterol-lowering treatment discontinuation in patients affiliated with a health insurance company. Vitas. 2011;18:S63-S64.

232. Atehortúa SC, Palacio-Mejía LS. The impact of subsidized healthcare insurance on access to cervical cytology in Medellín, Colombia. Rev Salud Publica (Bogotá). 2014;16:522-533.

233. Saldarriaga-Cantillo A, Bravo LE, Londoño O, García LS, Collazos P. Epidemiological surveillance of the HIV/AIDS complex through the analysis of trends in the incidence of Kaposi’s sarcoma in Cali, Colombia. Colomb Medica (Cali, Colombia). 2012;43:273-280.

234. Sanchez P, Acuña L, Alvis L. Results of a national registry for hemophilia A and B: Situation of the disease in Colombia. Haemophilia. 2016;22:25.

235. Bautista-Molano W, Fernández-Avila D, Jiménez R, et al. Perfil epidemiológico de pacientes colombianos con artritis reumatoide evaluados en una clínica especializada de atención integral. Reumatol Clínica. 2016;12:313-318.

236. Santos-Moreno P, Villarreal L, Aza A, et al. Real-world costs of rheumatoid arthritis in a specialized center in Bogota Colombia: results of a registry during five years. Value Heal. 2017;20:A154.

237. Santos-Moreno P, Villarreal L, Ballesteros G, et al. Drug usage analysis and medication expenses in patients with rheumatoid arthritis using biological therapy in Colombia. Value Heal. 2016;19:A232.

238. Serrano NC, Guio E, Quintero-Lesmes DC, et al. Vitamin D deficiency and pre-eclampsia in Colombia: PREViTD study. Pregnancy Hypertens. 2018;14:240-244.

239. Tocancipa DR. Pleuropulmonary pediatric surgery mortality at the high complexity general hospitalcenter of Neiva - Colombia -2010. Br J Anaesth. 2012;108(ii):292.

240. Tocancipa D. Thorax surgery mortality at the high complexity general hospitalcenter of Neiva - Colombia -2010. Br J Anaesthesia. 2012;108(ii):232–3.

241. De La Torre A, Nikolski Z, Mossialos E. Equity of access to maternal health interventions in Brazil and Colombia: a retrospective study. Int J Equity Health. 2018;17:43.

242. Torres DR, Portilla A, Machado-Duque ME, Machado-Alba JE. Trends in the use and cost of human and analogue insulin in a cohort of patients in a tertiary care hospital in Medellín, Colombia: an increasing trend. BMC Infect Dis. 2016;16:463.

243. Atehortúa SC, Palacio-Mejía LS. The impact of subsidized healthcare insurance on access to cervical cytology in Medellín, Colombia. Rev Salud Publica (Bogotá). 2014;16:522-533.

244. Bautista-Molano W, Fernández-Avila D, Jiménez R, et al. Perfil epidemiológico de pacientes colombianos con artritis reumatoide evaluados en una clínica especializada de atención integral. Reumatol Clínica. 2016;12:313-318.

245. Santos-Moreno P, Villarreal L, Aza A, et al. Real-world costs of rheumatoid arthritis in a specialized center in Bogota Colombia: results of a registry during five years. Value Heal. 2017;20:A154.

246. Santos-Moreno P, Villarreal L, Ballesteros G, et al. Drug usage analysis and medication expenses in patients with rheumatoid arthritis using biological therapy in Colombia. Value Heal. 2016;19:A232.

247. Serrano NC, Guio E, Quintero-Lesmes DC, et al. Vitamin D deficiency and pre-eclampsia in Colombia: PREViTD study. Pregnancy Hypertens. 2018;14:240-244.

248. Tocancipa DR. Pleuropulmonary pediatric surgery mortality at the high complexity general hospitalcenter of Neiva - Colombia -2010. Br J Anaesth. 2012;108(ii):292.

249. Tocancipa D. Thorax surgery mortality at the high complexity general hospitalcenter of Neiva - Colombia -2010. Br J Anaesthesia. 2012;108(ii):232–3.

250. De La Torre A, Nikolski Z, Mossialos E. Equity of access to maternal health interventions in Brazil and Colombia: a retrospective study. Int J Equity Health. 2018;17:43.

251. Torres DR, Portilla A, Machado-Duque ME, Machado-Alba JE. Trends in the use and cost of human and analogue insulin in a cohort of patients in a tertiary care hospital in Medellín, Colombia: an increasing trend. BMC Infect Dis. 2016;16:463.

252. Bautista-Molano W, Fernández-Avila D, Jiménez R, et al. Perfil epidemiológico de pacientes colombianos con artritis reumatoide evaluados en una clínica especializada de atención integral. Reumatol Clínica. 2016;12:313-318.

253. Santos-Moreno P, Villarreal L, Aza A, et al. Real-world costs of rheumatoid arthritis in a specialized center in Bogota Colombia: results of a registry during five years. Value Heal. 2017;20:A154.

254. Santos-Moreno P, Villarreal L, Ballesteros G, et al. Drug usage analysis and medication expenses in patients with rheumatoid arthritis using biological therapy in Colombia. Value Heal. 2016;19:A232.

255. Serrano NC, Guio E, Quintero-Lesmes DC, et al. Vitamin D deficiency and pre-eclampsia in Colombia: PREViTD study. Pregnancy Hypertens. 2018;14:240-244.

256. Tocancipa DR. Pleuropulmonary pediatric surgery mortality at the high complexity general hospitalcenter of Neiva - Colombia -2010. Br J Anaesth. 2012;108(ii):292.

257. Tocancipa D. Thorax surgery mortality at the high complexity general hospitalcenter of Neiva - Colombia -2010. Br J Anaesthesia. 2012;108(ii):232–3.

258. De La Torre A, Nikolski Z, Mossialos E. Equity of access to maternal health interventions in Brazil and Colombia: a retrospective study. Int J Equity Health. 2018;17:43.

259. Torres DR, Portilla A, Machado-Duque ME, Machado-Alba JE. Trends in the use and cost of human and analogue insulin in a cohort of patients in a tertiary care hospital in Medellín, Colombia: an increasing trend. BMC Infect Dis. 2016;16:463.

260. Bautista-Molano W, Fernández-Avila D, Jiménez R, et al. Perfil epidemiológico de pacientes colombianos con artritis reumatoide evaluados en una clínica especializada de atención integral. Reumatol Clínica. 2016;12:313-318.

261. Santos-Moreno P, Villarreal L, Aza A, et al. Real-world costs of rheumatoid arthritis in a specialized center in Bogota Colombia: results of a registry during five years. Value Heal. 2017;20:A154.

262. Santos-Moreno P, Villarreal L, Ballesteros G, et al. Drug usage analysis and medication expenses in patients with rheumatoid arthritis using biological therapy in Colombia. Value Heal. 2016;19:A232.

263. Serrano NC, Guio E, Quintero-Lesmes DC, et al. Vitamin D deficiency and pre-eclampsia in Colombia: PREViTD study. Pregnancy Hypertens. 2018;14:240-244.

264. Atehortúa SC, Palacio-Mejía LS. The impact of subsidized healthcare insurance on access to cervical cytology in Medellín, Colombia. Rev Salud Publica (Bogotá). 2014;16:522-533.

265. Bautista-Molano W, Fernández-Avila D, Jiménez R, et al. Perfil epidemiológico de pacientes colombianos con artritis reumatoide evaluados en una clínica especializada de atención integral. Reumatol Clínica. 2016;12:313-318.

266. Santos-Moreno P, Villarreal L, Aza A, et al. Real-world costs of rheumatoid arthritis in a specialized center in Bogota Colombia: results of a registry during five years. Value Heal. 2017;20:A154.

267. Atehortúa SC, Palacio-Mejía LS. The impact of subsidized healthcare insurance on access to cervical cytology in Medellín, Colombia. Rev Salud Publica (Bogotá). 2014;16:522-533.
344. Sistema Integrado de Información de la Protección Social (SISPRO). https://www.sispro.gov.co/Pages/Home.aspx
345. Murakami Y. Secondary data analysis of epidemiology in Asia. J Epidemiol. 2014;24:345-346.
346. Cohen S, Gilutz H, Marelli AJ, et al. Administrative health databases for addressing emerging issues in adults with CHD: a systematic review. Cardiol Young. 2018;28:844-853.
347. Valera Antequera D, Pacheco García O, Huguett Aragón C, Solarte Agredo I. Viabilidad y factibilidad del uso de los RIPS como fuente de información para la vigilancia en salud. Instituto Nacional del Salud. 2012; Bogots.
348. Rodríguez-García J. Estimation of cause-specific hospital discharges from hospital lethality and population mortality in Colombia, 2006–07. Lancet. 2011;377:969-970.
349. Schneeweiss S. Learning from big health care data. N Engl J Med. 2014;370:2161-2163.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Franco J-S, Vizcaya D. Availability of secondary healthcare data for conducting pharmacoepidemiology studies in Colombia: A systematic review. Pharmacol Res Perspect. 2020;e00661. https://doi.org/10.1002/prp2.661