Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
SARS-CoV-2 infection and outcomes were rather reassuring. A total of 11 patients had either suspected (n=5; 5.3%) or proven (n=6; 6.1%) SARS-CoV-2 infection. Only one 74 years old patient died of COVID-19, another 51 years old patient died of progressive disease but presented also suspicion of SARS-CoV-2 infection at the time of death.

Conclusions: Analysis of our data for patients treated in March 2020 in the day-care unit are reassuring and suggest higher risk related to under-treatment compared to risk related to continuation of systemic therapy at time of COVID-19 outbreak. Patients’ followup will be updated and additional analyses and data in particular for April 2020, when the infection rate was still extremely high in Belgium, will be presented.

Legal entity responsible for the study: The authors.

Funding: Fondation Léon Fredericq.

Disclosure: A. Borive: Travel/ Accommodation/ Expenses: BMS, MSD. B. Saulot: Advisory/ Consultancy, Travel/ Accommodation/ Expenses: Janssen; Advisory/ Consultancy: Clovis; Sanofi; Astellas. J. Gonzalez: Advisory/ Consultancy, Travel/ Accommodation/ Expenses: Roche; Amgen; Pfizer; Advisory/ Consultancy: Servier; Bayer; Merck; Lilly; Sanofi; Sirtex; Celgene; Ipsen; Novartis. P. Freres: Advisory/ Consultancy: Ipsen; Merck; BMS. C. Gennings: Advisory/ Consultancy, Research grant/ Funding (institution): AstraZeneca; Advisory/ Consultancy: BMS; GSK; Lilly; MSD; Advisory/ Consultancy, Travel/ Accommodation/ Expenses: Ipsen; Pfizer; Pharmamar; Roche. G. Jerusalem: Advisory/ Consultancy, Research grant/ Funding (institution), Travel/ Accommodation/ Expenses: Novartis; Roche; Pfizer; Speaker Bureau/ Expert testimony, Travel/ Accommodation/ Expenses: Lilly; Advisory/ Consultancy, Research grant/ Funding (institution): Amgen; Advisory/ Consultancy, Travel/ Accommodation/ Expenses: BMS; AstaRenza; Daichichi Sankey; Advisory/ Consultancy: Abbvie; Travel/ Accommodation/ Expenses; MedImmune; MerckKgaA. All other authors have declared no conflicts of interest.

https://doi.org/10.1016/j.anonc.2020.08.1776

Active smoking and severity of COVID-19 infection in cancer patients

G.D.H. Marti1, E. Auclini1, N. Saoudi González1, D. Casadevall Aguilar1, M. Rodríguez Castells1, N. Epallard2, M. Tagliamonti3, S. Pilotto3, R. López-Castro3, A. Palma Rubo1, C. Urbania Centella6, E. Pineda7, F. M. Lai8, D. Micellas9, M.V. Bluthgen1, L. Masfarré1, J.N. Minatta10, C.A. Cruz1, L. Mezquita11

1Medical Oncology, Hospital Clinic y Provincial de Barcelona, Barcelona, Spain; 2Medical Oncology, Hôpital Européen George Pompidou, AP-HP, Paris, France; 3Medical Oncology, Vall d’Hebron University Hospital - Vall d’Hebron Institute of Oncology VHI, Barcelona, Spain; 4Medical Oncology, Hospital del Mar, Barcelona, Spain; 5Medical Oncology, Parc Taulí University Hospital, Sabadell, Spain; 6Medical Oncology, University of Genova and IRCCS Ospedale Policlinico San Martino, Genoa, Italy; 7Medical Oncology, University of Verona and Verona University Hospital Trust, Verona, Italy; 8Medical Oncology, Hospital Clinic Universitario de Valladolid, Valladolid, Spain; 9Medical Oncology, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain; 10Medical Oncology, Hospital General de Granollers, Granollers, Spain; 11Medical Oncology, Hospital Alemán, Buenos Aires, Argentina; 12Medical Oncology, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina

Background: Smoking is the leading cause of cancer worldwide. Active smoking alters the inflammatory environment of the respiratory epithelium, increasing the production of potent pro-inflammatory cytokines that promote the recruitment of macrophages and neutrophils, leading to lung damage. We hypothesize that smoking-induced inflammation can impact on COVID-19 infection severity and mortality related to the proinflammatory cascade.

Methods: Multicenter retrospective cohort of cancer patients (pts) with COVID-19 infection diagnosed by PCR/Ag detection (n=274) and CT-scan (N=13) in Mar/Apr/2020 in 12 centers. Clinical and biological data were collected. Smoker was defined as active tobacco consumption and heavy smoker as >30 pack-year (PY). Primary end-points were 30-day mortality rate and the rate of severe acute respiratory failure (SARF), defined by oxygen requirements ≥15 l/min.

Results: A total of 287 pts were enrolled: 25 (9%) were active smokers, 127 (47%) were former and 116 (43%) never smoker. Among active smokers: 73% were heavy smokers, median age was 62y, 60% were male and median body mass index was 22. Regarding their comorbidities: 25% had hypertension, 8% cardiovascular disease, 28% chronic obstructive pulmonary disease and 24% diabetes. Thoracic tumors were the most common (52%), 72% had advanced disease and 56% were under systemic therapy. 92% of active smokers required hospitalization, 68% developed pneumonia and 58% required oxygen. Only 4% were escalated to the intensive care unit. Active smokers received treatment with hydroxychloroquine (91%), azithromycin (61%), antiviral therapy (33%) and steroids (29%). Only 4% received immunomodulatory drugs. SARF was the most common complication (25%) and no thromboembolic events were observed. A pro-inflammatory status was observed at COVID-19 diagnosis in active smokers, e.g. median of absolute neutrophil count was 6.35 (vs. 5.4), mean ferritin was 1269 (vs. 991) and D-Dimer was 2422 (vs. 1816); but with no significant differences. Overall mortality rate was 27%. Mortality rate was higher in active smokers (40% vs. 24% in non-smokers; p=0.08).

Conclusions: Active smoking might be associated with severe COVID-19 infection and early death in cancer patients. Smoking-induced inflammation should be further explored.
Change of circulating pro-inflammatory markers between pre-COVID-19 condition and COVID-19 diagnosis predicts early death in cancer patients: The FLARE score

E. Seguí1, E. Auclin2, D. Casadevall3, J. Aguilar-Company4, M. Rodríguez5, N. Epallard6, M. Tagliamento7, S. Piloto8, R. López-Castro9, X. Miélo10, C. Urbano11, A. Rodríguez12, D. García-Illéscas13, M.V. Bluthgen11, L. Masfarré3, H. Oliveres1, J.N. Minatta1, J. Marco-Hernández1, A. Prat1, L. Mezquita1

1Medical Oncology, Hospital Clinic de Barcelona, Barcelona, Spain; 2Medical Oncology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; 3Medical Oncology, Hospital del Valles, Gavà; 4Medical Oncology, Voll d’Hebron University Hospital and Institute of Oncology VIHIO, Barcelona, Spain; 5Medical Oncology, Parc Taulí Hospital Universitari, Sabadell, Spain; 6Medical Oncology, University of Genova and IRCCS Ospedale Policlinico San Martino, Genova, Italy; 7Medical Oncology, University of Verona and Verona University Hospital Trust, Verona, Italy; 8Medical Oncology, Hospital Universitari Clínico Universitario de Valladolid, Valladolid, Spain; 9Medical Oncology, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain; 10Medical Oncology, Hospital General de Granollers, Granollers, Spain; 11Medical Oncology, Hospital Almenar, Burjassot, Valencia, Spain; 12Medical Oncology, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina

Background: Inflammation plays a central role in severe COVID-19 disease. Likewise, in cancer patients (pts), a circulating pro-inflammatory status (proinflamm-status) is associated with poor outcomes. We aimed to assess if a proinflamm-status induced by cancer can negatively impact on COVID-19 outcomes.

Methods: Multicenter retrospective cohort of cancer pts with SARS-CoV-2 infection across 12 international centers. Circulating inflammatory markers were collected at two timepoints: pre-COVID condition (-15 to -45d before COVID-19 diagnosis) and COVID-19 diagnosis. Tumor-induced proinflamm-status was defined by high derived neutrophil to lymphocyte ratio (dNLR$>$3) at pre COVID-19 condition. COVID-induced proinflamm-status was defined by $>$100% increase of dNLR between both timepoints. We evaluated the combined effect of both Infection and Immunomodulation on dNLR: T+I+/+ (poor), if both proinflamm-status; T+/I- (only inflammation if only due to COVID; and T+/I- (favorable), if no inflam-status. Primary endpoint was 30-day mortality.

Results: 287 pts were enrolled with a median follow-up of 23d (95%CI 22-26). Median age was 69 (range 35-98), 52% were male and 49% had hypertension. As per cancer characteristics: 68% had active disease, 52% advanced stage and 79% had a baseline PS=1. Thoracic cancers were the most common (26%) and 61% of pts were under systemic therapy. The dNLR was high in 24% at pre-COVID condition vs. 55% at COVID-19 diagnosis. Median change between both timepoints was $+67%$ ($Q_0%$: $+153%$); 40% had $+100%$ increase of dNLR. Pts distribution across FLARE groups were: 5% in poor group; 40% in I-only, if no cancer am-status; 35% for I-only (n=35) from 2 different phase II CIN studies over 4 cycles: 1. 106 in NSCLC pts given Intermediate FN Risk Docetaxel 75 mg/m2 (Doc) pts with risk factors), and 2. Study 106 in Breast cancer pts given High FN Risk Docetaxel 80mg/m2 + Cyclophosphamide 50mg/m2 (TAC). Plin was given as a single IV infusion on Day (D)1, 30 min after the last Chemo, and Peg 6mg given on D2 by SC injection. Grade 4 Neutropenia (GR 4 N), Hospitalizations (Hosp), Infection rate (Inf), Sepsis (Sep), All Grade Thrombocytopenia (T) or G-CSF/GR 2/3 T and Bone Pain (Bop) is summarized for SA Plin and SA Peg. NS = non-significant.

Conclusions: Plin requires at least 50% fewer touches to the health care system and is equally effective as Peg for prevention of CIN and its clinical sequelae. Plin causes less thrombocytopenia. Plin (given as a 40 mg fixed dose) is currently in two phase III trials for CIN.

Clinical trial identification: NCT03120626, NCT03294577.

Legal entity responsible for the study: BeyondSpring Pharma, Inc.

Funding: BeyondSpring Pharma, Inc.

Disclosure: D. Blayney: Research grant (Funding) (institution), Travel/Accommodation/Expenses: BeyondSpring. R. Mohanlal: Leadership role, Full/Part-time employment, Officer/Board of Directors: BeyondSpring. L. Huang: Leadership role, Shareholder/Stockholder/Stock options, Officer/Board of Directors: BeyondSpring.

https://doi.org/10.1016/j.annonc.2020.08.1779

Table: 1715P

Pegfilgrastim	Plinabulin
42.9%	44.8%
11.4%	13.8%
5.71%	6.30%
0%	3.40%
85.7%	14.9%
20%	24.1%
68.6%	3.4%

p-value NS NS NS NS 0.0002 0.025 0.06 -

Plinabulin (Plin) is a more favorable option for the prevention of chemotherapy induced neutropenia (CIN) than pegfilgrastim (Peg) during the COVID-19 pandemic

D. Blayney1, R. Mohanlal1, L. Huang1

1Medical Oncology, Stanford Cancer Institute, Stanford, CA, USA; 2BeyondSpring Pharmaceuticals, New York, NY, USA; 3BeyondSpring Pharmaceuticals, New York, NY, USA

Background: Due to COVID-19, the NCCN Myeloid Growth Factor Panel expanded prophylactic G-CSF use to chemotherapy with Intermediate Risk (10%-20%) risk of Febrile Neutropenia (FN), and to Low Risk FN patients (pts) who previously developed FN. Preservation of resources for COVID-19 pts by reducing hospitalizations and emergency room visits by cancer chemotherapy pts is the intent of these changed recommendations. Other recommendations include use of self-injecting or on-body injector Peg, to minimize COVID-19 exposure at outpatient center by cancer pts and limiting prophylactic platelet transfusion to preserve blood product supply. Plin is an attractive alternative: it is a novel, non-G-CSF small molecule with CIN protection comparable to Peg, is given once 30 minutes after Chemo, and avoids the need for healthcare system touch on Day 1-3 for G-CSF administration. In contrast to Peg, Plin does not cause bone pain and thrombocytopenia and maintains quality of life.

Methods: We compared the combined CIN data with single agent [SA] Plin 20 mg/m2 (n=29) vs. SA Peg 6mg (n=35) from 2 different phase II CIN studies over 4 cycles: 1. 106 in NSCLC pts given Intermediate FN Risk Docetaxel 75 mg/m2 (Doc) pts with risk factors), and 2. Study 106 in Breast cancer pts given High FN Risk Docetaxel 80mg/m2 + Cyclophosphamide 50mg/m2 (TAC). Plin was given as a single IV infusion on Day (D)1, 30 min after the last Chemo, and Peg 6mg given on D2 by SC injection. Grade 4 Neutropenia (GR 4 N), Hospitalizations (Hosp), Infection rate (Inf), Sepsis (Sep), All Grade Thrombocytopenia (T) or G-CSF/GR 2/3 T and Bone Pain (Bop) is summarized for SA Plin and SA Peg. NS = non-significant.

Results: .