International Scientific Journal
Theoretical & Applied Science

Founder: International Academy of Theoretical & Applied Sciences
Published since 2013 year. Issued Monthly.

International scientific journal «Theoretical & Applied Science», registered in France, and indexed more than 45 international scientific bases.

Editorial office: http://T-Science.org Phone: +777727-606-81
E-mail: T-Science@mail.ru

Editor-in Chief: Alexandr Shevtsov

Editorial Board:
Prof. Vladimir Kestelman USA h Index RISC = 1 (65)
Prof. Arne Jönsson Sweden h Index Scopus = 3 (38)
Prof. Sagat Zhunisbekov KZ h Index Scopus = 4 (21)
Assistant Prof. Boselin Prabhu India -
Lecturer Denis Chemezov Russia h Index RISC = 2 (61)
Senior specialist Elnur Hasanov Azerbaijan h Index Scopus = 1 (4)
Associate Prof. Christo Ananth India h Index Scopus = - (1)

ISSN 2308-4944
© Collective of Authors
© «Theoretical & Applied Science»
The scientific Journal is published monthly 30 number, according to the results of scientific and practical conferences held in different countries and cities. Each conference, the scientific journal, with articles in the shortest time (for 1 day) is placed on the Internet site: http://T-Science.org

Each participant of the scientific conference will receive your own copy of a scientific journal to published reports, as well as the certificate of the participant of conference

The information in the journal can be used by scientists, graduate students and students in research, teaching and practical work.
ISPC Technology and Innovation, Philadelphia, USA
ISJ Theoretical & Applied Science, 08 (52): 132.

Impact Factor ICV = 6.630

Impact Factor ISI = 0.829
based on International Citation Report (ICR)

The percentage of rejected articles:

55% 45%
Accepted Rejected

ISSN 2308-4944
SECTION 2. Applied mathematics. Mathematical modeling.

DEVELOPMENT OF AN AUTOMATIC DUST COLLECTION SYSTEM IN MINES

Abstract: The proposed automated system designed on the microcontroller for sampling dust in mines.

Key words: microcontroller, dust, mine.

Language: English

Citation: Shevtsov A (2017) DEVELOPMENT OF AN AUTOMATIC DUST COLLECTION SYSTEM IN MINES. ISJ Theoretical & Applied Science, 08 (52): 1-4.

Introduction

In the study of blasting in mines the use of automatic data collection systems relevant and justified. It uses a different blasting technology [1-6]. The studied coal mine dust as a collection of fine mineral particles produced from fossil coal and gangue and are suspended or settled status in mine workings. The size of the dust particles in the diameter range from 1 mm to fractions of a micron [7-9]. According to the size of the dust is divided into three classes. The first class includes the dust with particle size more than 10 microns. Such particles are deposited relatively rapidly on the soil and sides of the development and comprise the bulk of the settled dust. The second class includes the dust with a particle size of from 10 to 0.1 µm. These particles are a long time in suspension and are transported long distances by ventilation air flows in mine workings. To the third class carry dust with particle sizes less than 0.1 µm, which practically does not settle out of the air. Dust second and third class in the air in a suspended state, called soaring.

Materials and Methods

Develop an automatic system for the analysis of dust concentration. And with a sharp increase will trigger the device dust extraction from the air at a certain specified time.

Picture 1 - Dust Sensor with microcontroller.
Impact Factor:

Journal	Impact Factor
ISRA (India)	1.344
ISI (Dubai, UAE)	0.829
GIF (Australia)	0.564
JIF	1.500
SIS (USA)	0.912
ICV (Poland)	6.630
РИНЦ (Russia)	0.234
ESJI (KZ)	3.860
IBI (India)	4.260
SJIF (Morocco)	2.031

Equipment and cost

Title	The cost of components (tg.)
1 The Microcontroller Attiny85	500
2 Relay module	300
3 Fee	150
4 Sensor dust	1400
5 Voltage stabilizer	100
6 Connectors:	
1x6 – 1pc.	15
1x4 – 3pcs	45
Connecting wire, shrink and connectors	500
7 Cooler	1000
8 Li-ion battery	2 PCs*3.7 V
9 Holder battery	300
	Total
	5310

The program for the microcontroller

```c
int Time=10; //секунд
int DatState,b;
void setup() {
    pinMode(1, INPUT);
    pinMode(0, OUTPUT);
b=1;
digitalWrite(0, HIGH);
}

void loop() {
    if (b==1) {
        int DatState = digitalRead(1);
        if (DatState==HIGH) {b=0;
            digitalWrite(0,LOW);
            delay(Time*1000);
            digitalWrite(0,HIGH);
        }
    }
}
```

Description of Dust Sensor- Model:DSM501ADS

This sensor is consist of light emitting diode lamp, detector, signal amplifier circuit and heater, it can be used in applications such as the air cleaner or air purifier, users can used this sensor easily with sensor PWM output.

The program for the microcontroller with sensor dust, temperature, humidity and concentration of carbon monoxide.

```c
#include <dht11.h>
dht11 DHT;
#define DHT11_PIN 8
#include<string.h>
byte buff[2];
int pin = 9;//DSM501A input D9
unsigned long duration;
unsigned long starttime;
```
Impact Factor:	ISRA (India) = 1.344	SIS (USA) = 0.912	ICV (Poland) = 6.630
ISI (Dubai, UAE) = 0.829	PPHHI (Russia) = 0.234	PIF (India) = 1.940	
GIF (Australia) = 0.564	ESJ1 (KZ) = 3.860	IBI (India) = 4.260	
JIF = 1.500	SJIF (Morocco) = 2.031		

unsigned long endtime;
unsigned long sampletime_ms = 5000;
unsigned long lowpulseoccupancy = 0;
float ratio = 0;
float concentration = 0;
int i = 0;
float MQ, MQ0;

void setup() {
 // put your setup code here, to run once:
 Serial.begin(115200);
 Serial.println("DHT TEST PROGRAM ");
 Serial.println("LIBRARY VERSION: ");
 Serial.println(DHT11LIB_VERSION);
 Serial.println("Type,\tstatus,\tHumidity (%),\tTemperature (C)");
 pinMode(9, INPUT);
 starttime = millis();
 pinMode(A0, INPUT);
}

void loop() {
 // put your main code here, to run repeatedly:
 int chk;
 Serial.print("DHT11, \n");
 chk = DHT.read(DHT11_PIN); // READ DATA
 switch (chk) {
 case DHTLIB_OK:
 Serial.print("OK,\t");
 break;
 case DHTLIB_ERROR_CHECKSUM:
 Serial.print("Checksum error,\t");
 break;
 case DHTLIB_ERROR_TIMEOUT:
 Serial.print("Time out error,\t");
 break;
 default:
 Serial.print("Unknown error,\t");
 break;
 }
 // DISPLAY DATA
 Serial.print(DHT.humidity,1);
 Serial.print(\t);
 Serial.print(DHT.temperature,1);

 MQ0 = analogRead(A0);
 MQ = map(MQ0, 0, 1023, 0, 100)/100;
 Serial.print(" MQ : ");
 Serial.println(MQ);
 Serial.print(" % ");
 Serial.println(MQ0);

 duration = pulseIn(pin, LOW);
 lowpulseoccupancy += duration;
 endtime = millis();
 if ((endtime - starttime) > sampletime_ms) {
 ratio = (lowpulseoccupancy-endtime+starttime + sampletime_ms)/(sampletime_ms*10.0); // Integer percentage
 0=>100
 }
}
concentration = 1.1*\text{pow}(\text{ratio},3)-3.8*\text{pow}(\text{ratio},2)+520*\text{ratio}+0.62; // using spec sheet curve
Serial.print(\text{"lowpulseoccupancy:"});
Serial.print(\text{lowpulseoccupancy});
Serial.print(\text{" ratio:"});
Serial.print(\text{ratio});
Serial.print(\text{" DSM501A concentration:"});
Serial.println(\text{concentration});

concentration = 1.1*\text{pow}(\text{ratio},3)-3.8*\text{pow}(\text{ratio},2)+520*\text{ratio}+0.62; // using spec sheet curve

lowpulseoccupancy = 0;
starttime = millis();
}
delay(1000);
}

Conclusion
The developed device was tested and can be used for dust extraction in automatic mode. The developed algorithms and the device will be used in research works in the Karaganda coal mines.

References:

1. (2015) About approval of Rules of industrial safety of hazardous production facilities, conducting explosive works. Order of the Minister of investments and development of Republic of Kazakhstan dated 30 December 2014 No. 343. Registered in Ministry of justice of the Republic of Kazakhstan February 12 2015 No. 10244

2. Rublev O.I., Kupenko I.V. (2017) The USE OF EXPLOSIVE TECHNOLOGIES IN AUTOMATIC SYSTEMS VZRYVOPODAVLENIJA. Available: http://ea.donntu.org:8080/ispui/bitstream/123456789/32029/1/Применение%20взрывных%20технологий%20в%20автоматических%20системах%20взрывоподавления.pdf (Accessed: 10.08.2017).

3. (1992) The fight against coal dust explosions in mines / M. I. Nacalai, A. I. Lyubimov, P. M. Petrukhin and others - M.: Nedra, 1992. – 298 p.: II.

4. (2017) Security measures blasting in mines, hazardous gas or dust. Available: http://ohrana-bgd.ru/gornyi/gornyi2_46.html (Accessed: 10.08.2017).

5. (2017) Features of blasting in mines, which is developing oil shale hazardous dust explosions. Available: http://studopedia.ru/2-22750.html (Accessed: 10.08.2017).

6. (1992) UNIFORM RULES SAFETY IN EXPLOSIVE WORKS. Kiev, Normativ.

7. (2017) Dust Sensor- DSM501A. Available: https://www.elecrow.com/wiki/index.php?title=Dust_Sensor-DSM501A (Accessed: 1.08.2017)

8. (2014) Use Dust Sensor DSM501 with Arduino. Posted by: admin, May 1, 2014 Available: http://learn.linksprite.com/arduino/shields/use-dust-sensor-dsm501-with-arduino/ (Accessed: 1.08.2017).

9. (2014) Mine dust, magazine Technology News, the Author of the translation Pashchenko A.S. Available: http://masters.donntu.org/2014/igz/buzhor/library/article9.htm (Accessed: 10.08.2017).
SECTION 7. Mechanics and machine construction.

STRESS-STRAIN STATE OF METALLIC ALLOYS AT DIFFERENT TEMPERATURES

Abstract: The dependencies of stress from deformation of steels, irons and non-ferrous alloys in conditions of exposure to thermal loads are presented in the article.

Key words: stress, deformation, alloy, temperature, dependence.

Language: English

Citation: Chemezov D (2017) STRESS-STRAIN STATE OF METALLIC ALLOYS AT DIFFERENT TEMPERATURES. ISIJ Theoretical & Applied Science, 08 (52): 5-11.

Soi: http://s-o-i.org/1.1/TAS-08-52-2 Doi: https://dx.doi.org/10.15863/TAS.2017.08.52.2

Introduction

Under the exposure of external loads different materials (in particular metallic alloys) of the machine parts are exposed to elastic or plastic deformations [1]. Stresses occur in the materials which under sustained static or imposed dynamic loads lead toward partial fracture of the part [2; 3; 4; 5; 6; 7]. Since most machine parts are mated among themselves by the surfaces and are operated at high speeds, then it is necessary to identify stress-strain state of the materials taking into account the existing thermal loads on them.

Materials and methods

Calculation of the stress value in different structural alloys from deformation was implemented in the computer program LVMFlow. Following metallic alloys were taken for the research [8]: carbon steel 16MnCr5 (NBN), alloy steel SCMnCr3 (JIS), corrosion-resistant steel X10CrNiTi18-9 (DIN), grey cast iron EN-GJL-200 (EN), malleable cast iron EN-GJS-700 (EN), brass CuZn38Pb1,5 (DIN), without tin bronze CC330G (EN), aluminium foundry alloy G-ALSi11 (DIN) and zinc alloy ZA-12. Young's modulus of researched alloys at different temperatures: carbon steel 16MnCr5 – 211.4 GPa/1 °C; 206.9 GPa/100 °C; 199.6 GPa/200 °C; 191.7 GPa/300 °C; 183.4 GPa/400 °C; 174.9 GPa/500 °C; 166.1 GPa/600 °C; 157.7 GPa/1428 °C; alloy steel SCMnCr3 – 207.5 GPa/25 °C, 181.29 GPa/390 °C, 159.56 GPa/670 °C, 149.52 GPa/713.52 °C, 138.14 GPa/773.86 °C, 135.97 GPa/800 °C, 119.31 GPa/1000 °C; 111.78 GPa/1090 °C; corrosion-resistant steel X10CrNiTi18-9 – 209 GPa/20 °C; 196.49 GPa/200 °C; 181.47 GPa/400 °C; 165.16 GPa/600 °C; 150.09 GPa/800 °C; 116.99 GPa/1200 °C; 104.6 GPa/1310 °C; 0.5 GPa/1455 °C; grey cast iron EN-GJL-200 – 100 GPa/1 °C, 84 GPa/100 °C; 82.1 GPa/200 °C; 80 GPa/300 °C; 78 GPa/400 °C; 75.7 GPa/500 °C; 50 GPa/1145 °C; 0.5 GPa/1168 °C; malleable cast iron EN-GJS-700 – 164 GPa/50 °C; 159 GPa/150 °C; 154 GPa/250 °C; 148 GPa/350 °C; 139 GPa/500 °C; 82.5 GPa/1153 °C; 0.5 GPa/1180 °C; brass CuZn38Pb1,5 – 97 GPa/100 °C; 0.5 GPa/925 °C; without tin bronze CC330G – 110 GPa/100 °C; 0.5 GPa/1045 °C; aluminium foundry alloy G-ALSi11 – 70 GPa/100 °C; 0.5 GPa/590 °C; zinc alloy ZA12 – 133 GPa/100 °C; 0.5 GPa/435 °C. Maximum deformation of all alloys was taken as value of 0.2.

Results and discussion

The dependencies of stresses in considered alloys from deformation when exposed to temperature are presented in Figs. 1 – 9. All metal alloys are characterized by decrease of stress when the temperature is increased. Given the same value of deformation, carbon steel 16MnCr5 in solid state and at small temperatures may be exposed by significant stresses.
Impact Factor:

Journal	Impact Factor
ISRA (India)	1.344
ISI (Dubai, UAE)	0.829
GIF (Australia)	0.564
JIF	1.500
ISI (Dubai, UAE)	0.829
GIF (Australia)	0.564
JIF	1.500
ISRA (India)	1.344
ISI (Dubai, UAE)	0.829
GIF (Australia)	0.564
JIF	1.500
ISRA (India)	1.344
ISI (Dubai, UAE)	0.829
GIF (Australia)	0.564
JIF	1.500
ICV (Poland)	6.630
PIF (India)	1.940
IBI (India)	4.260

Figure 1 – The dependencies of stress in carbon steel 16MnCr5 from deformation: 1) T (temperature) = 1 °C, 2) T = 100 °C, 3) T = 600 °C, 4) T = 1000 °C, 5) T = 1450 °C.

Figure 2 – The dependencies of stress in alloy steel SCmCr3 from deformation: 1) T = 25 °C, 2) T = 200 °C, 3) T = 400 °C, 4) T = 600 °C, 5) T = 800 °C, 6) T = 1090 °C.
	ISRA (India)	SIS (USA)	ICV (Poland)	PIF (India)	SIS (USA)	ICV (Poland)	PIF (India)
Impact Factor:	1.344	0.912	6.630	1.940	1.500	2.031	4.260
ISI (Dubai, UAE)	0.829						
GIF (Australia)	0.564	0.860			0.912		
JIF	1.500	3.860			0.912		
ICV (Poland)	6.630						
PIF (India)	1.940						
SJIF (Morocco)	2.031						

Figure 3 – The dependencies of stress in corrosion-resistant steel X10CrNiTi18-9 from deformation: 1) $T = 20 \degree C$, 2) $T = 200 \degree C$, 3) $T = 400 \degree C$, 4) $T = 600 \degree C$, 5) $T = 800 \degree C$, 6) $T = 1000 \degree C$, 7) $T = 1200 \degree C$, 8) $T = 1310 \degree C$, 9) $T = 1455 \degree C$.

Figure 4 – The dependencies of stress in grey cast iron EN-GJL-200 from deformation: 1) $T = 20 \degree C$, 2) $T = 100 \degree C$, 3) $T = 200 \degree C$, 4) $T = 300 \degree C$, 5) $T = 400 \degree C$, 6) $T = 500 \degree C$, 7) $T = 1000 \degree C$, 8) $T = 1168 \degree C$.
Impact Factor:

Journal	Impact Factor
ISRA (India)	1.344
ISI (Dubai, UAE)	0.829
GIF (Australia)	0.564
JIF	1.500
ISPC (Poland)	6.630
PIF (India)	1.940
ESJI (KZ)	3.860
IBI (India)	4.260

Figure 5 – The dependencies of stress in malleable cast iron EN-GJS-700 from deformation: 1) $T = 20 \, ^\circ\text{C}$, 2) $T = 100 \, ^\circ\text{C}$, 3) $T = 200 \, ^\circ\text{C}$, 4) $T = 300 \, ^\circ\text{C}$, 5) $T = 400 \, ^\circ\text{C}$, 6) $T = 500 \, ^\circ\text{C}$, 7) $T = 1153 \, ^\circ\text{C}$.

Figure 6 – The dependencies of stress in brass CuZn38Pb1.5 from deformation: 1) $T = 100 \, ^\circ\text{C}$, 2) $T = 300 \, ^\circ\text{C}$, 3) $T = 925 \, ^\circ\text{C}$.
ISRA (India) = 1.344 SIS (USA) = 0.912 ICV (Poland) = 6.630
ISI (Dubai, UAE) = 0.829 РИНЦ (Russia) = 0.207 PIF (India) = 1.940
GIF (Australia) = 0.564 ESJI (KZ) = 3.860 IBI (India) = 4.260
JIF = 1.500 SJIF (Morocco) = 2.031

Figure 7 – The dependencies of stress in without tin bronze CC330G from deformation: 1) $T = 100 \degree C$, 2) $T = 300 \degree C$, 3) $T = 800 \degree C$.

Figure 8 – The dependencies of stress in aluminium foundry alloy G-AlSi11 from deformation: 1) $T = 100 \degree C$, 2) $T = 590 \degree C$.
Impact Factor:

Publication	Impact Factor
ISRA (India)	1.344
ISI (Dubai, UAE)	0.829
GIF (Australia)	0.564
JIF	1.500
SIS (USA)	0.912
PHHII (Russia)	0.207
ESJI (KZ)	3.860
IBI (India)	4.260
ICV (Poland)	6.630
SJIF (Morocco)	2.031
RIIN (Russia)	0.207
ESJI (KZ)	3.860

Figure 9 – The dependencies of stress in zinc alloy ZA-12 from deformation: 1) T = 100 °C, 2) T = 200 °C.

It is defined that alloy steel SCMnCr3 and corrosion-resistant steel X10CrNiTi18-9 are exposed to less stress than carbon steel 16MnCr5 at appropriate temperatures. Deformation of malleable cast iron EN-GJS-700 at a temperature of 100 °C is accompanied by the appearance of the stress value of 380 MPa. This is two times more than stress for corrosion-resistant steel X10CrNiTi18-9, and three times more than stress for gray cast iron EN-GJL-200. For non-ferrous alloys same stress at a temperature of 100 °C is observed in brass CuZn38Pb1.5 and aluminum foundry alloy G-AlSi11. In zinc alloy ZA-12 in conditions of plastic deformation occurs stress which exceeds stresses of all non-ferrous alloys. Maximum stress in carbon steel 16MnCr5 has been calculated when deformation is more than 0.07. Maximum value of stress for all other alloys is observed when deformation is less than 0.05.

Conclusion
Given the results of the research, highest stress occurs in the deformed machine parts made of carbon steel 16MnCr5. With increasing of thermal load, stress of alloy reaches maximum at a higher value of the coefficient of plastic deformation. The least stress occurs in the deformed machine parts made of grey cast iron EN-GJL-200.

References:

1. (2017) Elastic/Plastic Deformation. Available: http://www.nde-ed.org/EducationResources/CommunityCollege/ Materials/Structure/deformation.php (Accessed: 16.08.2017).
2. Volegov PS, Gribov DS, Trusov PV (2015) Damage and fracture: review of experimental studies. Physical Mesomechanics, №3. – pp. 11 – 24.
3. Sangid MD (2013) The physics of fatigue crack initiation. Int. J. Fatigue, V. 57. – pp. 58 – 72.
4. Yoshida S, Toyoooka S (2001) Field theoretical interpretation on dynamic of plastic deformation. J. Phys. Condens. Matter, V. 13. – pp. 6741 – 6757.
Impact Factor:

	ISRA (India)	SIS (USA)	ICV (Poland)
ISI (Dubai, UAE)	0.829		
GIF (Australia)	0.564	0.912	
JIF	1.500		6.630
PII (Russia)	0.234		1.940
ESJi (KZ)	3.860	0.912	
SJIF (Morocco)	2.031		4.260

5. Tasan CC, Hoefnagels JPM, Diehl M, Yan D, Roters F, Raabe D (2014) Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments and crystal plasticity simulations. Int. J. Plasticity, V. 63. – pp. 198 – 210.

6. Lapovok R (2002) Damage evolution under severe plastic deformation. Int. J. Fract, V. 115. – pp. 159 – 172.

7. Taheri S, Vincent L, Le-Roux J-C (2015) Classification of metallic alloys for fatigue damage accumulation: A conservative model under strain control for 304 stainless steels. Int. J. Fatigue, V. 70. – pp. 73 – 84.

8. Chemezov D (2017) Shrinkage of some metal alloys after solidification. ISJ Theoretical & Applied Science, 06 (50): 87 – 89. Soi: http://s-o-i.org/1.1/TAS-06-50-10 Doi: https://dx.doi.org/10.15863/TAS.2017.06.50.10
THE INDUSTRIALIZATION PROCESS AND ITS PERSPECTIVES IN THE REPUBLIC OF UZBEKISTAN

Abstract: The article deals with the process of industrialization of the Republic of Uzbekistan and its prospects. There is reviewed the issues of export-oriented industries on the basis of import-substituting industrialization and the stages of its development. The main factors of industrial development in the past period are considered. Finally, the ability to reflect the efficient implementation of foreign economic relations in the country's industrialization process is analyzed.

Key words: Industry, social security, technical development, light industry, export, import, investment, diversification, production efficiency.

Language: English

Citation: Botirova NS (2017) THE INDUSTRIALIZATION PROCESS AND ITS PERSPECTIVES IN THE REPUBLIC OF UZBEKISTAN. ISJ Theoretical & Applied Science, 08 (52): 12-18.

Introduction

Having a high industrial level is a reason of the stable economic basis, abundant life for citizens, scientific and technical development in any country. Realization of the industrialization processes has a special importance in the solution of the economic problems. The industrialization process is one of the main criterions of the economic development. The industrial level of a country indicates how much it is developed. According to our first President I.A. Karimov’s saying that “Realization of high technologic projects directed to develop the total basis of industry which ensures our economic independence and to produce finished goods on the basis of rich raw materials and resources is an important task for our country”[1,5], it was paid a special attention to the industrialization process in our country. This process was carried out according to the macroeconomic condition and formation of market relations, description of component changes and strategy of industrialization. Its first stage included the period of 1991-1995 and it was described as that in which measures for saving of the existent industrial capacity was realized. The second stage was carried out in 1995-2000 for development of the important fields of industry and realization of the strategy of industrialization, which replaces import on a large scale, multiplying investments into the fields of industry and, especially, for increase of the capital deposits in sectors of motor, light, chemistry and food industries. In the third stage of industrialization (after 2000) the main attention was paid to the formation and development of industrial fields directed to export on the basis of industrialization that replaces import.

Materials and Methods

Creation of new technologies and innovations is considered as a new step in industrialization and this process demands many cash resources. In modern economy, the problem of industrial production depends on the changes that occur in the world economy, and besides, at that it is very important to take into consideration objective changes in the geopolitical and geo-economic conditions of the world and benefits of certain countries in foreign economic relations as well as benefits of the national and transnational companies and the national factories which are taking active part in the international industrial cooperation. At the same time, it is necessary to take into account scientific and technical opportunities of each sector and to pay a special attention to the production of goods which can have their own position in the world market.

In the period after 2000, a special attention was paid to the development of textile and light industries. The purpose of that is a formation of a single technical and financial branch of this industry.
as well as an increase its part in the gross domestic product. To achieve this purpose, a special attention was paid to adoption of a concerted investment policy in the field and involving of foreign investments directly as well as to realization of modern industrial technologies and modernization of companies and equipment of them with technics for productions of goods intended for export. Especially, deepening of economic reform processes and formation of joint-stock companies on a large scale, taking of a control over acceleration of the qualitative component changing processes and reproduction of a cotton fiber, equipment of companies with necessary materials and technical resources and development of social aspects of the formation of needs and necessity of the population as well as organization of manufacturing of public consumption goods were carried out in the sector.

The part of industry in GDP is also being increased due to these actions.

Table 1

The role of industry in the national economy [2, 111]
2000
The share of industry in GDP, %

Nevertheless the part of industry in GDP was decreased in the intervening years, but it can be observed that its part in GDP was increased in general (table 1). Although the part of industry in GDP was not changed in 1998-2000, its part in GDP has begun to increase year by year since 2003. This indicator made up 17.5% in 2004 and it could increase more than 20% from 2005. Due to many attempts done for realization of component change in industry and modernization of its branches, involving of investments for implementation of projects on technic and technological upgrade, the part of industry in GDP is being increased year by year. In 2014, investment into industry was increased up to 16.3% than that of 2013. 36.3% of all involving investments was intended for industry. (This indicator made up 32.6% in 2005, 30.4% in 2010, 33.8% in 2011, 34.2% in 2012 and 34.2% in 2013).

In particular, 67.1% of investments was intended for the formation of new industrial production forces in 2015. In turn, it enabled to complete building of 158 big industrial objects which costs 7 billion 400 million dollar and put them into operation in 2015. As a result of it, the part of industry in GDP made up 33.5% in 2015 [3,2]. But the part of industry in the whole employment was not changed in the last 10 years.

Figure 1 - Industrial production growth compared to last year (%) [4, 12]
Between 2000 and 2014, the average annual additional growth rate of industrial production volume made up 8.6% (table 2). New types of many goods were created in the industrial companies. Industrial production volume is changing dynamically in the large fields of the national industry in the subsequent period. Of course, these changes are considered as a result of reforms carried out in the fields of industry and conjectural changes in the component policy, domestic and international market.

Impact Factor:	ISRA (India) = 1.344	SIS (USA) = 0.912	ICV (Poland) = 6.630	ISI (Dubai, UAE) = 0.829	PIIII (Russia) = 0.234	PIF (India) = 1.940	GIF (Australia) = 0.564	ESJI (KZ) = 3.860	IBI (India) = 4.260
JIF	1.500	SJIF (Morocco) = 2.031							

Table 2
The dynamics of the index of industrial production compared to last year % [5, 50; 2, 113]

	2001	2004	2005	2006	2008	2009	2010	2011	2012	2013	2014
GDP	104.2	107.7	107.0	107.3	109.0	108.1	108.5	108.3	108.2	108	108.1
industry	107.6	109.4	107.2	110.8	112.7	109	108.3	106.3	107.9	109.6	108.3
electro energy	95.8	99.1	97.8	106.4	97.7	101.2	104.5	101.0	101.8	101.3	102.2
fuel	96.4	106	99.1	105.1	125.9	110.3	103.5	100.3	105.5	101.5	98.1
heavy metallurgy	110.6	131.6	105.3	111.6	105.4	108.4	105.8	106.3	107.2	102.8	116.5
light metallurgy	101.8	104.9	97.6	99.2	94.9	102.6	99.1	102.4	102.7	103.5	101.7
Chemistry and oil chemistry	106.8	103.3	108.1	117.1	108.2	111	115.4	107.9	111.9	104.1	108.9
Automobile industry	124.8	132.1	131.1	124.2	124.2	117.4	111.6	112.2	116.3	124.2	113.5
Wood and paper industry	108.6	119.1	125.7	122.7	128.9	119.1	107.0	107.1	110.1	123.4	-
Construction materials	105.9	112.3	110.4	114.9	111.6	108.7	108.7	111.9	113.6	115.6	110.7
Light industry	112.4	106.4	111.9	108	105.6	106	117.3	104.7	112.9	111.9	116.1
Food industry	109.4	104.4	111.8	130.2	126.2	108.2	113.1	113.1	106.7	109.3	107.6

Industrial sector is considered as a field in which the rate of industrial production is grown very fast. Light, food, motor, metal recycling, chemistry, ferrous and nonferrous metallurgy industries are grown very fast. Production of industrial goods was increased 2.3 times in 2005-2014 (table 2). The coefficient of diversification (production of various goods) was grown 2 times. In 2005-2014, the average additional growth rate in the fields of industry made up different percentage. In particular, it made up 1.6% in power industry, 5.9% in fuel industry, 8.0% in ferrous metallurgy, 0.5% in nonferrous metallurgy, 11.2% in chemistry and oil industries, 20.4% in motor and metal recycling industries, 11.7% in building materials industry, 9% in woodworking and paperwork industries, 10.2% in light industry, 14.3% in food industry. In general, the average annual additional growth rate of industrial production volume made up 8.1% in this period. In subsequent years, the main fields of our economy such as motor, chemistry and oil, food, building materials industries, pharmaceutical and furniture industry were grown with high rates. Adoption of new technologies in the industrial sector and building of new companies indicates that labor productivity was grown in this field. Acceleration of the modernization processes, technic and technological upgrade, and diversification of production have led to the realization of qualitative component changes in industry. The main directions of industrial policy were directed at the growth of competitive ability as well as at modernization and diversification of the industrial production. Some measures carried out have led to the growth of the qualitative index in the
Industrial production. An increase of the industrial production in the branches which were directed at the production of finished goods in 2005-2014 was a positive factor in industrial development. Due to measures intended for localization of the production in the main economic fields and development of industrial cooperation, a volume of the consumption from the domestic market has been grown. Cooperation set with companies such as “MAN”, “CLASS”, “Toshiba”, “Candy”, “LG” and “Samsung” has played an important role in this regard.

Table 3

Effects of industrial development indicators, % [6,50]
Indicators
Fuel and raw materials sectors contribution to the industry (Fuel and energy, metallurgical, construction, cotton ginning)
Processing sector contribution to the industry (Chemicals, machinery, light industry, food processing)
The contribution of sectors ensuring the technological development of the economy on the industry
The contribution of in industry
The growth rate of fuel sector
The growth rate of manufacturing sector

The average annual growth in motor and metal recycling industries made up 120.4% and, in turn, it has caused the average growth in recycling industry to made up to 115.8%. The average growth in food, chemistry, oil and light industries also made up high rates. The growth of diversification in the fields of power, fuel, ferrous and nonferrous, motor and light industries has influenced on the growth diversification rate in industry. While recycling industry made up 38.5% in general industry in 2005, this indicator made up 57.1% in 2014 (table 3). Positive trends in the structure of industry have been observed in the sectors which supplies the technical development in economy (this indicator was 29.5% in 2005 and it was grown up to 32.3% in 2014). A volume of consumer goods production was grown up to 39.6% (2014). A stimulation of the domestic demand and improvement of living conditions of the population has impacted on the growth of this indicator. From 2005 to 2014, a production efficiency in industry was grown 1.4 times. The field in which the production efficiency has increased with the highest rate is motor industry and this indicator made up 3.3 times in 2014 than that of 2005. During the period of 2005-2014 the growth of a volume of industrial good production 2.2 times indicates that industrial companies were fully accommodated to conditions of a new market. In this regard, consumer goods production has grown with high rates. While fuel raw industry was grown 1.5 times in 2014 than that of 2005, this indicator made up 3.8 times in recycling industry.

Table 4

The share of sectors in the industry (%) [5, 50; 6, 114]
Industry, including
electro energy
fuel
heavy metallurgy
non-ferrous metals
The table given above indicates that power, fuel, motor, light and food industries, nonferrous metallurgy have an important place in the industrial sector. If we have a look at component changes in the sector in 2000-2014, then we will see that the part of power field in industry made up 7,1%; fuel industry was decreased from 15,3% to 13,1%, but it was grown at average by 5% annually, fuel-power independence was obtained and recycling ability in the sector was increased. The part of motor industry was grown from 9,9% to 19,7% and the part of metallurgy was not changed. In turn, it shows that modern companies run productively. Although the part of chemistry, oil, paper and building materials industries in total industrial production was not almost changed, economic reforms in these fields too were undertaken (table 4).

Privatization of 127 companies by “Uzneftgaz” and 19 companies by “Uzkimyosanoat” indicates the development of these fields. During this period, high growth rates in the industrial sector was undertaken through a simulation of the production of finished goods in motor, metal recycling, ferrous metallurgy, chemistry, light and food industries. In the production of goods of motor, metal recycling, chemistry, oil, building materials, power, ginning, hosiery, sewing, food, flour, grain, glass, white ware, medicine and printing industries could be achieved high growth rates.

As a result of an increase to use the industrial potential, a volume of the production of gas, power, coal, steel, cement, motor industries goods was grown. In this period, as a result of an increase of food goods production by the national industrial companies, import of tinned meat, clothes, cement, concrete and fireproof protective means was considerably decreased.

High results were achieved in the fields such as motor, chemistry, oil, food and building materials industries. An intensive growth of motor industry was observed. It is considered as a result of the growth of a physical volume of motor production. Production of cars that are in high demand in both international and domestic markets was grown: large investment projects on the production of new models of automobiles in the class of “Optima”, “Gentra”, “Cobalt” and “Spark” besides “Matiz”, “Damas”, “Nexia” and “Lacetti” were realized.

Founding of a new complex for the production of 3,000 trucks and trailers per year in Samarkand region (of which cost is 69,38 million dollar), founding of a company for the production of 900,000 wheels and 123,000 undercarriages per year for automobiles of “General Motors Uzbekistan” CC in Andijan region, founding of a company for the production of 120,000 kits of welding parts per year for abovementioned automobiles in Fergana city as well as founding of companies for the production of car seats, windows, accumulators, jacks, bumpers, plastic parts, door panels, radiators, ventilation and heating systems have played an important role in stabilization of the industrial goods production as well as in providing of their competitive ability in international markets.

Growth rates of electrical engineering and motor industry of national economy were increased. The part of freezers, refrigerators, TV sets and other goods in the volume of electrical engineering field has been saved in low rates. Furthermore, the production of transformers and cable goods was considerably grown, the elevator production was recovered.

Although a production of spare parts in motor industry of national economy, machineries for light and textile industries, tractor trailers, new types of trailer equipment for machineries of national economy could be considerably grown, but in the production of tractors high results were not achieved. Stable demand for ferrous and nonferrous metals in the international market, necessity of replenishment of the domestic market with the national goods and development of localized industry were important factors for the growth that gained in the metallurgy complex. Industrial production of goods in fields of the chemistry complex also is being developed stably. Besides, wide production of goods of oil and chemistry industry, which has a “narrow place” in the structure of the main chemistry industry as well

Impact Factor:	ISRA (India) = 1.344	SIS (USA) = 0.912	ICV (Poland) = 6.630
ISI (Dubai, UAE) = 0.829	PHHII (Russia) = 0.234	PIF (India) = 1.940	
GIF (Australia) = 0.564	ESJI (KZ) = 3.860	IBI (India) = 4.260	
JIF = 1.500	SJIF (Morocco) = 2.031		

Sector	% of Total Industrial Production
Chemistry and oil chemistry	5.7
Automobile industry and metalworking industry	9.9
Construction materials	5.4
Wood and paper industry	1.4
Light industry	19.1
Food industry	13.3
others	10.0

Sector	% of Total Industrial Production
Chemistry	5.7
Automobile	9.9
Construction	5.4
Wood	1.4
Light	19.1
Food	13.3
others	10.0

ISPC Technology and Innovation,
Philadelphia, USA

16
as production of potash fertilizers and chemistry means for protection of plants, has developed mainly.

Approximation of the rate of inner prices to the rate of import prices in condition of the growth of demand, which has payment ability, has been one of the factors of the development of stable dynamics in the development of food industry. A volume of production of sugar, flour and flour goods was decreased. Stable demand in the domestic market for providing of industrial production and founding of social infrastructure objects as well as the growth of export rate was the main factor that have caused the growth of building materials production. The part of building materials industry in industrial production of the country included a low rate and made up 6,1% (2014). Some factors, such as the growth of prices, a conjecture of inner and outer demands have impacted on the development of the fields.

In our country, the following are the main factors of the development of industry in last periods:
- Realization of the target programs;
- Development of the infrastructure (water, gas, power industry, transport and others);
- Founding of new companies in the field of light industry and adoption of production of finished goods;
- Founding of new companies in the field of recycling of leather raw materials and adoption of production of new goods;
- Founding of new companies in the field of recycling of agrarian goods and providing of the market with the national goods;
- Production of consumer goods and fully providing of markets with these goods;
- Development of building materials industry;
- Increase of importance of bank credits in the development of industry;
- Increase of parts of joint stock companies in the development of industry;
- Recycling of the national raw materials;
- Wide use of privileges and preferences that created on the localization program, international industrial fair and exchange of cooperation;
- Increase of export rate of produced goods and help small companies to export their goods [7, 16].

The growth rate of industry in the different regions made up different percentage. The growth of industrial goods production made up the biggest percentage (4,68%) in Tashkent in 2014. Besides, in Samarkand, Andijan, Khorange and Namangan regions also, this indicator made up considerable percentage. The main part of investments also was directed at these regions. During this period, large objects, such as Kungirot Company for production of bicarbonate and “Tupalang” hydroelectric power station, production of coil of copper and its floating in “Uznetkombinat” APO, the first stage of utilization of gas in “Kukdumalak” joint stock Company were put into service, building of a gas-fractionation plant in Fergana Oil recycling factory and of Gazli-sarimay gas delivery system was finished, a project of investments in textile industry was finished and realization of large projects of investments in the main fields of industry was started.

As a result of measures on the stimulation of production of consumer goods and supporting of business, production of refrigerators, freezers, washing machines, TV sets, soft drinks, juice, sugar, macaroni foods, vegetable oil, carpets and white wares was grown. The growth of industrial goods production was carried out on account of detailed thought policy that carried out sequentially in condition of systematic market economy, involving of foreign investments, deep systematic changes in economy, modernization and upgrade of industrial production, founding of new fields and companies intended for export and development of private business, not on account of increase of extensive factors for economic development of Uzbekistan.

High developed fields, such as motor and chemistry industries are considered as leading links of modern economy. These fields have played a role of the main generator of economy. Development of leading fields is based on potential industrial production and a technic, human resources and scientific base. Wide use of new technics and technologies, increase of production of goods safe for the ozone layer, realization of new technology of nitrobenzene gaining for aniline and laquer-paint industry, production of medicine means that allow the efficiently growth of industrial production, decrease of industrial wastes, use of industrial wastes efficiently, financing of the main branches, complex implementation of mineral and hydro carbonic raw materials in the development of chemistry and oil industries are very important.

Conclusion

As a conclusion, our country has an opportunity to use the efficiency of international economic relations in realization of the industrialization process. To use this opportunity and comforts efficiently and in due time allows to increase the efficiency of industrial production. At that, some factors, such as an acceleration of the modernization process and improvement their financial status is important for supply of implementation of measures on an increase of the production rate of competitive able industrial goods, efficient use service of institutions that intended for informing the public qualities of industrial goods, development of relations between industrial production and trade companies and industrial and recycling companies to produce modern and competitive able goods.
Impact Factor:

Journal	Impact Factor
ISRA (India)	1.344
ISI (Dubai, UAE)	0.829
GIF (Australia)	0.564
JIF	1.500
SIS (USA)	0.912
JIF (Poland)	6.630
GIF (Russia)	0.234
ESJI (KZ)	3.860
IB (India)	4.260

References:

1. Karimov I.A. (1996) Bizdan ozod va obod Vatan qolsin. V.2. – T.: Uzbekistan.
2. (2014) The quick typography and service department of the State Statistical Committee of the Republic of Uzbekistan. – p. 212.
3. (2015) A speech of the first President of the Republic of Uzbekistan, Islam Karimov, at the meeting of the Cabinet of Ministers dedicated to the results of social and economic development of our country in 2015 as well as to the highest directions of the economic program.
4. (2016) A textbook on the study of a speech of the first President of the Republic of Uzbekistan, Islam Karimov, “Our main goal is to sharply deepen the reforms and structural transformations in our economy, to open up opportunities for private ownership, small business and entrepreneurship”. – T.: Ma’naviyat, 2016.
5. (2010) An almanac Uzbekistan on information of the State Statistical Committee of the Republic of Uzbekistan 2010. – T.: Niso poligraf.
6. (2015) Tendensii sotsialno-ekonomicheskogo razvitiya Uzbekistana (2005-2014) edited by D. Sc. on economy A.M. Sadikov/Tashkent. IFMR.
7. (2012) A textbook on the study of a speech of the first President of the Republic of Uzbekistan, Islam Karimov, at the meeting of the Cabinet of Ministers of the Republic of Uzbekistan devoted to the main results of of 2011 and the highest directions of the social and economic development of Uzbekistan in 2012, on the theme of “2012 will become a year for raising of the development of our country to a new stage”. – T.: Iqtisodiyot.
A MODEL OF CALCULATION RISK CHANGING OF THE INTEREST RATE "YIELD TO MATURITY DATE" FOR FOREIGN CURRENCY BONDS OF THE REPUBLIC OF KAZAKHSTAN

Abstract: The work is devoted to analysis of real data on yields of foreign currency government securities (GS) of the Republic of Kazakhstan: a fixed interest rate type - "yield to maturity date", developed a model using degrees of volatility and risk changes yield GS are calculated (in%) interest rate risk values of the form "risk of changes in the yield to maturity date" for high-risk (for Criteria 1 and 2) financial instruments (FI). Table "object property" X̆, yield values of the nodes 6 intervals yield curve temporal structure is interpreted as a multidimensional sample of the general population with an unknown probability distribution. Using principal component analysis in process performance for multivariate data solved the problem of allocation of 6 independent combinations of new financial instruments (NFI). Resolves an almost essential for banks to task allocation (by the Diekmann-Kaiser criterion) 3 local high-risk portfolios: NFI №1, NFI №2, NFI №3, each marked by the NFI Criteria 1 and 2, and calculated almost "visible" changes the values of yield risk to the date of maturity" for high-risk FI.

Key words: yield curve, yield to maturity date, time structure of interest rates, principal component analysis.

Language: Russian

Citation: Zhanatauov SU (2017) A MODEL OF CALCULATION RISK CHANGING OF THE INTEREST RATE "YIELD TO MATURITY DATE" FOR FOREIGN CURRENCY BONDS OF THE REPUBLIC OF KAZAKHSTAN. ISJ Theoretical & Applied Science, 08 (52): 19-36.

SOI: 1.1/TAS DOI: 10.15863/TAS.2017.08.52.4

МОДЕЛЬ РАСЧЕТА РИСКА ИЗМЕНЕНИЯ ПРОЦЕНТНОЙ СТАВКИ "ДОХОДНОСТЬ К ДАТЕ ПОГАШЕНИЯ" ДЛЯ ВАЛЮТНЫХ ОБЛИГАЦИЙ РЕСПУБЛИКИ КАЗАХСТАН

Anнотация: Работа посвящена анализу реальных данных по доходностям валютных ГЦБ Республики Казахстан: при фиксированном типе процентной ставки – "доходность к дате погашения", разработана модель с использованием измерителей степеней волатильности и рисковости изменения доходностей ГЦБ вычислены в %-ах значения процентного риска вида "риска изменения доходности к дате погашения" для высокорисковых (по Критериям 1 и 2) финансовых инструментов (ФИ). Таблица "объект-свойство" X̆, из значений доходностей в узлах 6 интервалов временной структуры кривой доходности интерпретируется как многомерная выборка из генеральной совокупности с неизвестным законом распределения вероятностей. С применением модели анализа главных компонент решена задача выделения 6 комбинаций независимых новых финансовых инструментов (НФИ). Решена практически важная для банков задача выделения (по критерию Диэкмана-Кайзера) 3 высокорисковых локальных портфелей: НФИ №1, НФИ №2, НФИ №3, для каждого НФИ выделены по Критериям 1 и 2 и вычислены практически "заметные" значения рисков изменения доходности к дате погашения" для высокорисковых ФИ.

Ключевые слова: кривая доходности, доходность к дате погашения, временная структура процентных ставок, анализ главных компонент.
извлечение из этих реальных данных конкретных «цифровых» знаний, практически полезных владельцу валютоного портфеля ГЦБ. В ситуациях быстро изменяющихся курсов валют, цен на акции и цен за 1 баррель нефти актуальны «узкие» интервалы изменения указанных ниже «числа дней до даты погашения». Хотя на бирже регистрируются доходности ГЦБ по международным стандартам, т.е. по частым и коротким интервалам времени, коммерческие банки вынуждены агрегировать (объединять) соседние временные интервалы, чтобы как-то сопоставлять их со сроками возврата краткосрочных кредитов. Одним из подходящих иллюстраций ответов на наш вопрос являются результаты анализа данных развивающегося фондового рынка РК за 1999 год на примере долларовых ГЦБ. В 1999 году положение долларовых ГЦБ в экономике РК аналогично статусу ГЦБ в валюте азиатской страны, которую (ГЦБ) Казахстан стремится выпустить в настоящем и в будущем. Ситуации на фондовом рынке РК в 90-ые годы и в настоящее время в рассматриваемом нами аспекте схожи.

Применяемая нами прямая модель главных компонент (ПМ ГК [1]), в основе которой лежит прямая задача анализа главных компонент (ПЗ АГК [2-4]) разработана Г.Хотеллингом [1]. ПМ ГК применялась успешно для выявления особенностей рынков ЦБ разных стран: Норвегия и ЕС [5], США, Германия, Япония, [6], Нидерланды [7,8,9]. В инвестиционной политике европейских банков [8] возросли их интересы к валютным (в $) ГЦБ: число участников на их торгах возросли в разы. В активной политике банков их менеджеры применяют методы, основанные на манипулировании кривой доходности и на операции «swap» с ценными бумагами [10]. Банки особенно агрессивно настроены, когда возвраты по кредитам малы, но продажи ценных бумаг, рыночные цены которых возросли, увеличивают чистый доход и прибыль акционеров. Издержки по работе с ГЦБ снижают [11] чистый доход банка, хотя доходы от ГЦБ, купленных на торговой площадке Казахстанской фондовой биржи методом открытых торгов не облагаются налогом. Поэтому менеджеры не боятся на подобные потери, пока не докажут Совету директоров, что издержки будут компенсированы более высоким ожидаемым доходом по каким-либо новым активам, приобретенным за счет поступлений от продаж валютных ГЦБ - весьма ценных финансовых инструментов (ФИ). Она - дисконтная облигация (ее цена меньше номинала) и на бирже эмитентом к аукциону вычленяются spot-ставки типа «доходность к дате погашения», а продажные цены повышаются с уменьшением spot-ставок [11-13].

Кривая доходности.

Функция зависимости вычисленных значений x_j доходности (типа «доходность к дате погашения») от номера j временного интервала изображается в виде графика и ее называют «кривая доходности». Номера интервалов упорядочены в порядке возрастания «сроков жизни ГЦБ». Упорядоченная цепочка интервалов «времен жизни до даты погашения ГЦБ» образует в нашей статье конкретную совокупность из 6 временных интервалов и называется «временной структурой процентных ставок» («доходности к дате погашения») в день инвестирования (в момент времени t). В один интервал «времени жизни» отбирают ГЦБ со схожими и практически идентичными характеристиками [14,15].

Тип процентных ставок определяет тип временной структуры, и в зависимости от типа ставок могут быть построены различные типы кривой доходности: кривая доходности к дате погашения, кривая бескупонной доходности, кривая форвардной ставки и мгновенной форвардной ставки. Преимущества выбранных нами типов ставки и риска состоят в их возможности сопоставлять (сравнивать) по степени рисковости и доходности ГЦБ, имеющих разные сроки до даты погашения. Это - очень важное преимущество. Кроме того, используемые нами интервалы временной структуры применимы для вычисления изменения цены ГЦБ, выраженной в процентах, приблизительно равной скорректированной длительности (дюрации) ГЦБ, умноженной на изменение ее доходности к сроку погашения, зависящей от номера интервала. Мы ниже анализируем изменения доходностей, а не изменения цен ГЦБ [12,13].

Анализ кривой доходности [9] дает возможность составить прогноз будущих изменений процентных ставок, а форма кривой доходности в «краткосрочных» интервалах их изменения дает банкову ключ для выявления заниженной или завышенной оценки цены ГЦБ [12-14]. Если на графике кривой доходности поставить точку, характеризующую доходность новой ГЦБ, выше кривой, то эта ГЦБ представляет собой «привлекательный объект покупки», ибо значение ее доходности к дате погашения выше, а если эта точка лежит ниже кривой, то новая ГЦБ представляет собой возможный объект продажи или отказа от покупки. Мы не анализируем цены покупок и продаж ГЦБ, зависящих от кривой доходности. Но кривые доходности активно применяются при ценообразовании в методе процентных ожиданий: в операции «swap» - в обмене одних облигаций на другие при ожиданиях изменения

Impact Factor:	ISRA (India) = 1.344	SIS (USA) = 0.912	ICV (Poland) = 6.630
ISI (Dubai, UAE) = 0.829	РННЦ (Russia) = 0.207	РИФ (India) = 1.940	
GIF (Australia) = 0.564	ESJI (KZ) = 3.860	IBI (India) = 4.260	
JIF = 1.500	SJIF (Morocco) = 2.031		

ISPC Technology and Innovation, Philadelphia, USA

20

Indexed in Thomson Reuters
процентных ставок или просто для обеспечения синомнутного более высокого дохода. При этом учитывается как выигрыш от процентных платежей, так и разница курсов продавцов и покупателей. Еще одна разновидность «swap» - обмен облигаций с неодинаковым риском изменения процентных ставок. Для проведения таких операций требуется, чтобы на рынке преобладали ненормально низкие или ненормально высокие ставки. Такая ситуация наблюдается, например, на вторичном рынке продаж негосударственных облигаций, когда покупатель использует ее, например, для включения в уставной фонд.

Используя кривую доходности нашего типа и вычисленные ниже риски ГЦБ, банк будет продавать (покупать) ценные бумаги, которые переоценены из-за низких процентных ставок, и ценные бумаги, которые недооценены из-за высоких ставок, а затем будет покупать (продавать) на вторичном рынке ценные бумаги, правильно оцененные рынком. Когда же на рынке наступит равновесие, банк осуществит обратные покупки (продажи) и получит прибыль.

Кривая доходности позволяет по некоторым признаком оценить величины будущих процентных ставок, показать изменения или тренды (вверх или вниз) доходностей ГЦБ в зависимости от сроков погашения. Например, рассмотрим ГЦБ, которая на предыдущем аукционе (срок к дате погашения равен 1 году, временной интервал №4) продавалась по цене, соответствующей «доходности к дате погашения», равной 6%, а другая ГЦБ (со сроком погашения 2 года, временной интервал №5) продавалась по цене, соответствующей «доходности к дате погашения», равной 8%. Такой разрыв по доходности может помочь инвестору узнать увеличение новой (будущей) величины «доходности к сроку погашения» на следующем, 2-ом году жизни ГЦБ. Такой разрыв по доходности может быть представлен кривой, имеющей положительный угол наклона. Такая уверенность инвестора относительно угла наклона кривой доходности приведет его к покупке «2-годичной» ГЦБ. При этом $100 начальных инвестиций возрастут за 2 года до $116.64: $100(1+0.08)(1+0.08)=$116.64. Эта прибыль в $16.64 будет достигнута через 2 года, если 1-годичная ГЦБ будет продана после накопленной цены: $100(1+0.08)=$106. Во 2-ом году при процентной ставке, равной 10.4%. Доход этой ГЦБ ($106), который будет reinvestирован (через продажу ГЦБ) с доходностью в 10.4%, дает дополнительный доход, что в итоге составит $116.64:$100(1+0.08)(1+0.08)=$116.64. Это значение 10.4% представляет собой форвардную ставку (forward rate), которую увидел инвестор, используя спот-ставки (spot rate) 6%, 8%, и кривую доходности. Данный пример иллюстрирует «метод процентных ожиданий» в активной политике банка. Другие применения кривой доходности имеют в [5-13].

Интервалы временной структуры кривой доходности.

В статье рассмотрен один тип процентных ставок - «доходность к дате погашения» и рассчитаны значения процентных рисков изменения «доходности к дате погашения». Зависящих от сроков до даты погашения. Временных интервалов 6:
1) «количество дней до даты погашения меняется в интервале [8 дней - 30 дней];
2) «количество дней до даты погашения меняется в интервале [31 дней - 90 дней];
3) «количество дней до даты погашения меняется в интервале [91 дня - 180 дней];
4) «количество дней до даты погашения меняется в интервале [181 дня - 360 дней];
5) «количество дней до даты погашения меняется в интервале [361 день - 1080 дней];
6) «количество дней до даты погашения меняется в интервале [1081 и более дней].

Приведенная классификация ГЦБ (активов банка) по «времени жизни» ГЦБ соответствует банкам стран с развивающейся экономикой.

В мировой практике принята следующая классификация фикция по степени срочности актива: «короткие» (до 30 дней), краткосрочные (от 1 месяца до 1 года); среднесрочные (от 1 года до 3 лет); долгосрочные (от 3-х лет и выше). В соответствии с этой классификацией приводимые в нашей статье интервалы временной структуры доходности типа «доходность к дате погашения» не соответствуют классификации активов по срочности. Обоснованным отличием является разбиение на 3 части краткосрочных активов: (от 1 месяца до 3 месяцев) + (от 3 месяцев до полугода) + (от полугода до 1 года). Краткосрочные активы весьма привлекательны по доходности для банка и такое разбиение позволяет банку Республики Казахстан иметь очевидную выгоду: 3-кратная капитализация дохода выше 1-кратной капитализации. Например, получение дохода в 20% лучше проводить в 3 этапа по времени: если доходность в 20% распределена на 3 даты их получения: 9+5+6=20, то $100 к 1-ой дате даст доход в $109, ко 2-ой - $109*(0.5)= $114.45, к 3-ей - $121.317=$114.45+$6,867. Доход в $121,317 превышает доход в $120 при одноразовой капитализации.

Описание исходных данных.
Были предоставлены данные в виде таблицы (ЭТ EXCELS) из 14 столбцов, 5000 строк. Эта база данных формировалась из таблиц, отображающих результаты дневных торгов ГЦБ на вторичном рынке Биржи Республики Казахстан (KASE) за дни проведения аукционов. Число аукционов в неделю зависит от числа рабочих дней в неделю. Из этой таблицы годовых процентных ставок типа «доходность к дате погашения» валютных ГЦБ РК на фондовом рынке, классифицированных по ее столбцам по количеству дней до даты погашения, была сформирована полная таблица «объект-свойство» X0_{131,6} размерностью 131 на 6. Для i-го объекта свойством Неj является значение X0_{i,j} процентной ставки типа «доходность к дате погашения» у ГЦБ, срок жизни которой принадлежит j-ому интервалу временной структуры. Если j-ому интервалу в i-й день аукциона соответствуют несколько значений X0_{i,j}, то в качестве элемента X0_{i,j} таблицы X0_{131,6} берется значение средневзвешенного от этих нескольких значений. Такое усреднение необходимо из-за наличия нескольких однородных ГЦБ разных выпусков со сходными параметрами из 14 приведенных в БД. Объектом является набор доходностей однородных ГЦБ. Каждая строка такой таблицы относится к определенной дате проведения аукциона. Объект характеризуется значениями его 6 показателей. Временной ряд доходностей с заданным сроком до даты погашения называется изотермическим рядом. Изотермическому ряду из j-го интервала поставлен в соответствие гипотетический финансовый инструмент Nej (ФИ Nej) с доходностью указанного вида. Любое значение доходности ГЦБ, принадлежащее по значению показателя «количество дней до даты погашения» к j-ому интервалу участвует в процессе формирования изотермического ряда из j-го столбца матрицы X0_{131,6}. Оценка степени риска ФИ Nej является оценкой риска изменения значения доходности указанной ГЦБ. Элементы матрицы X0_{131,6} определены на момент времени t, в другие моменты времени ее крайний правый столбец может исчезнуть. Например, если временная структура состоит из 5 интервалов, где 5-й интервал «дата погашения» ГЦБ соответствует интервалу [181 дней - 360 дней] в течение 1 года не было ни одной эмиссии валютного ГЦБ, то через 360 (365 календарных) банковских дней «временная структура процентных ставок» сокращается (время жизни ГЦБ уменьшается) и будет состоять из 4-х интервалов. На валютных аукционах ГЦБ РК, проходивших с 26.06.99 г. по 29.12.99 г. проводились продажи ГЦБ типов ГКВО-3, Валютные ноты, СВГО-60, KASAKHSTAN-02, KASAKHSTAN-99. Число характеристик (параметров ГЦБ), как именных встроенных по умолчанию, так и появившихся после перерасчетов, равно 14: 3-даты, 5-числовые, 4-наименования, 2-порядковые номера. Для визуализации предпочтительности одних ГЦБ перед другими (в фиксированной временной структуре процентных ставок) применяют «кривые доходности». С течением времени «процентные доходы» (%-ты от номинальной цены ГЦБ), получаемые от инвестиций в ГЦБ менялись и это явление привело к другому явлению - изменению «доходности к дате погашения». Эту зависимость от времени жизни ГЦБ (от временной структуры процентных ставок) представляют графически, и называется она «кривая доходности». Если кривая параллельна оси абсцисс, то это указывает на тот факт, что абсолютно для всех ГЦБ процентная ставка остается одинаковой.

Таблица «объект-свойство».

В базе данных для определения кривой доходности фиксированных 6 финансовых инструментов (ФИ) использовалась только 4 показателя из 5: дата операции (продажи), «количество дней до даты погашения»; вид сделки, «доходность к дате погашения» (%-ах), тип ГЦБ. Из БД формируем таблицу "объект-свойство" X0_{131,6}, состоящую из 131 строк-объектов X_{i,j} = (X_{i,1},...,X_{i,6}), i=1,..., 131. Столбцы (изотермические ряды) образуют коррелированную систему свойств объектов. Предлагаемый нами многомерный анализ таких данных имеет другую визуализации предпочтительности, так и появившихся после перерасчетов, равно 14: 3-даты, 5-числовые, 4-наименования, 2-порядковые номера. Для визуализации предпочтительности одних ГЦБ перед другими (в фиксированной временной структуре процентных ставок) применяют "кривые доходности". С течением времени "процентные доходы" (%-ты от номинальной цены ГЦБ), получаемые от инвестиций в ГЦБ менялись и это явление привело к другому явлению - изменению "доходности к дате погашения". Эту зависимость от времени жизни ГЦБ (от временной структуры процентных ставок) представляют графически, и называется она "кривая доходности". Если кривая параллельна оси абсцисс, то это указывает на тот факт, что абсолютно для всех ГЦБ процентная ставка остается одинаковой.

ISRA (India)	ISI (Dubai, UAE)	SIS (USA)	РИНЦ (Russia)	ICV (Poland)	ПИФ (India)	ИБИ (India)
1.344	0.829	0.912	0.207	6.630	1.940	4.260
погашения» на графике «кривой доходности» переходит из (1+1)-го узла в i-ий узел, или интересные для покупателя по этому виду доходности ГЦБ «располагаются» в первых 2-x, или 3-x интервалах. Чем меньше номер интервала, тем выше доходность ГЦБ. Любое изменение временной структуры процентных ставок ГЦБ влияет на цену того или иного ГЦБ. Самой неопределенной является рыночная цена ГЦБ, зависящая от многих и разнородных рыночных и нерыночных факторов. Эти факторы порождают причины возникновения риска изменения доходностей ГЦБ. В [13] объясняется применение ПМ ГК[1] для решения задачи определения значений в узлах кривой доходности (погасительного профиля временной структуры процентных ставок). Дан алгоритм сведения (свертки) изотермных рядов в некоррелированные временные ряды значений доходностей в узлах кривой доходности.

Рассматриваемый в статье вид процентного риска связан с неопределенностью изменения значений «доходности к дате погашения» на кривой доходности конкретной ГЦБ при переходе «срок жизни» этой ГЦБ из j-го интервала в (j-1)-ый интервал, j=2,..,6. Неопределенность изменений значений процентных ставок абстрагируется в реализациях 6 зависимых 1-мерных теоретических случайных величин ξ1,..,ξ6 с неизвестными законами распределения, поставленных в соответствие 6 интервалам нашей временной структуры. Статистические взаимосвязи значений процентных ставок из интервалов №j, j=1,..,6, временной структуры измеряются значениями парных коэффициентов корреляции Пирсона между парами рассматриваемых ниже переменных. С учетом 3-x видов коэффициентов корреляции и дисперсий переменных ниже вычислены значения процентного риска изменения доходности к дате погашения для валютных ГЦБ Республики Казахстан. В расчетах приводим цифры в долларах, но цифры соответствуют и другим видам валют, ибо наши формулы применимы при любом линейном преобразовании элементов анализируемой таблицы.

Неопределенность и риски изменения доходностей.

Поставим в соответствие процентным ставкам (доходностям) x[1],..,x[6] теоретические случайные величины ξ[1],..,ξ[6], а оцени стандартных отклонений их реализаций (изотермные ряды из элементов столбцов с номерами 1,2,3,4,5,6) используем в качестве измерителей степени волатильности (рисковости) изменения соответствующих доходностей ФИ. Квадрат значения стандартного отклонения - дисперсия, измеряет степень поиска изменения процентной ставки типа «доходность к дате погашения». Так как доходность ГЦБ - это результат как нестохастического процесса (приближение даты погашения происходит постуциально), так и случайных изменений процентных ставок (избыточных доходностей) из-за конъюнктурных изменений ситуации на рынке ГЦБ, то необходимо в данных из БД удалить нестохастическую составляющую. Полной доходности ГЦБ мы поставим в соответствие случайную величину ξ, реализацию которой считаем равными значениям x[1],..,x[6] процентных ставок на валютных аукционах ГЦБ РК. Далее мы работаем не с полной доходностью, а с избыточной доходностью и определяем риск изменения доходности ГЦБ как дисперсию избыточной доходности ГЦБ. Кратко поясним это, опираясь на работу [13]. Избыточная доходность равна доходности ГЦБ с нулевым купоном минус (-) безрисковая доходность. Безрисковая доходность - это доходность данной облигации с нулевым купоном, меняющаяся только за счет приближения даты погашения. Отсюда следует, что мы должны начать с определения доходности ГЦБ и безрисковой доходности. Чтобы понять определение доходности, рассмотрим однолетний период владения ГЦБ. Пусть в текущий момент время t период владения ГЦБ до продажи ее на аукционе равен Δt, а срок до погашения в j-ом интервале равен w[j], j=1,2,3,4,5,6. Тогда срок жизни ГЦБ в момент времени t равен Δt+w[j]. Рассмотрим инвестирование 1$ в момент времени t в ГЦБ со сроком до погашения t+Δt+w[j] и продажу в момент времени t+Δt. Случайное изменение стоимости инвестиций за время Δt+w[j] (Δt≥0, w[j]≥0) обладания ГЦБ и будет доходностью за этот период. Изменение доходности будет определяться как с приближением даты погашения (с изменением временной структуры ГЦБ, номер j интервала жизни для фиксированного вида ГЦБ перемещается влево на оси интервалов, что видно в Таблице 4, где стрелки, направлены справа налево), так и в связи с восприятием участниками рынка характеристик ГЦБ. Тем самым за время Δt+w[j] жизни на бирже ГЦБ меняет свой дисконтный тип на рисковый тип.

Для иллюстрации одного из деталей этого процесса рассмотрим инвестирование в ГЦБ 1$ в момент времени t в дисконтный период (тип ГЦБ дисконтный) со сроком до даты погашения t+Δt. Доходность этой инвестиции будет абсолютно определенной (неслучайной, ибо ее значение вычислено и зафиксировано в базе данных KASE), и, следовательно, безрисковой. Тогда доходности ГЦБ рискового типа с датой
погашения \(t+\Delta t+w_j \) (\(j=1,\ldots,6 \)) минус их безрисковые доходности равны избыточным доходностям ГЦБ рисковых типов. Мы рассматриваем денежные потоки этих избыточных доходностей ГЦБ, погашаемых в узлах \(t+\Delta t+w_j \) (время жизни равно \(\Delta t+w_j \)) временной структуры процентных ставок. Далее мы рассматриваем только избыточные доходности. При вычислении безрисковой доходности по формуле вычисления доходности ГЦБ с датой погашения \(t+\Delta t+w_j \) любое случайное изменение стоимости ГЦБ (изменение цены мы не рассматриваем), из-за приближения даты погашения будет удалено. Для ГЦБ рискового типа имеем значение процентных ставок (годовых) по 6 интервалам \(\Delta t+w_j, j=1,\ldots,6 \), временной структуры, которым мы для упрощения изложения, поставим в соответствие случайную величину, ставится в соответствие случайная величина, поставленная в соответствие с переменным «доходностью». Оценивая риск изменения процентных ставок типа «доходность к дате погашения» мы понимаем отклонение действительного значения процентной ставки на аукционе от ожидаемой процентной ставки (в вероятностных терминах - от математического ожидания генеральной совокупности процентных ставок). Оценкой математического ожидания (наиболее вероятного значения - служит выборочная средняя), вычисленная у нас по выборке из 131 значений процентных ставок, зафиксированных на аукционах, проходивших с 26.06.1999 по 29.12.1999г. В 2-ом полугодии 1999 года проходили 131 аукциона на Казахстанской фондовой бирже (KASE) по видам ГЦБ, классифицированных по 6 рассматриваемым нами срокам до даты погашения. Степень рисковости изменения процентной ставки будем измерять степенью отклонения фактических значений процентной ставки ФИ на аукционах от ожидаемой процентной ставки ФИ. Из многих измерителей степени рисковости процентной ставки будем использовать один - квадрат выборочного стандартного отклонения \(s_j^2 \) - дисперсию, вычисленную нами по той же выборке из 131 значений процентных ставок. Значение \(s_j \) измеряет степень волатильности. Чем выше разброс значений процентных ставок, тем выше вероятность получения большего дохода владельцем ГЦБ, купившего ее на аукционе эмитентов. Для портфеля ГЦБ существует ожидаемый доход и ожидаемый риск (это - термины финансового анализа). В терминах количественных методов финансового анализа эта фраза формулируется в виде гипотезы: «для генеральной совокупности значений процентной ставки типа «доходность к дате погашения» существуют математическое ожидание доходности и дисперсия (меры риска изменения доходности)». Предполагается существование теоретической функции распределения случайной величины, поставленной в соответствие с переменным «доходностью». Предполагается также, что существует неизвестная нам функциональная связь между «доходностью» и «риском». Если значениям показателя «доходность» ГЦБ поставлен в соответствие реализа ции теоретической случайной величины \(\xi \), то теоретическая «доходность» ГЦБ есть линейная функция от математического ожидания случайной величины \(\xi \), т.е. является функцией от теоретической дисперсии случайной величины \(\xi \), реализации которой равны доходностям ГЦБ, входящих в

Impact Factor:

Journal	Impact Factor
ISRA (India)	1.344
ISI (Dubai, UAE)	0.829
GIF (Australia)	0.564
JIF	1.500
SIF (Morocco)	2.031
SIS (USA)	0.912
RHНН (Russia)	0.207
ESJ (KZ)	3.860
ICV (Poland)	6.630
PIF (India)	1.940
IBI (India)	4.260

ISPC Technology and Innovation, Philadelphia, USA

24
портфель инвестора. Вид функциональной связи между «доходностью» и «риском» портфеля из нескольких ГЦБ, будучи изображенной на диаграмме, имеет сложный вид. Особенно по-это-нисметризуемой нами кривой является соответствие одному значению «доходности» многим значениям «риска», и соответствие одному значению «риска» многим значениям «доходности». Имеется много исследований анализа типов кривой доходности [5-9,14,16-18].

Возможная комбинация ФИ (ФИ №j) состоит из ГЦБ, срок жизни которых принадлежит интервалу №j временной структуры), входящих в портфель, зависит от нескольких функций полезности доходности или другой характеристики для инвестора. Другое дело, что она - функция полезности, как правило, решает одну задачу. Но мы ниже решаем задачу сохранения суммы рисков при преобразовании доходностей 6 ФИ, дополнив ее з

Возможная комбинация ФИ (ФИ №j) состоит из ГЦБ, срок жизни которых принадлежит интервалу №j временной структуры), входящих в портфель, зависит от нескольких функций полезности доходности или другой характеристики для инвестора. Другое дело, что она - функция полезности, как правило, решает одну задачу. Но мы ниже решаем задачу сохранения суммы рисков при преобразовании доходностей 6 ФИ, дополнив ее задачей минимизации условной упущенной выгоды, например, в шкале измерения рисков: если вычисленный риск равен 70%, то упущенная выгода равна 30%. Решаемая задача перехода к независимым ФИ при 2 дополнительных критериях (смотрите ниже) вычисляет упущенную выгоду так, как показано в Таблице 3 в виде выявления и показа игнорируемых дилером значений рисков ФИ из НФИ №4, НФИ №5, НФИ №6.

Рассмотрим парные связи между доходностями 6 ФИ, меры тесноты связи между ними отражены в выборочной корреляционной матрице (Таблица 1). Решим задачу выделения комбинаций видов ФИ, образующих высокорисковые (по значениям дисперсий λ1,λ2, λ3) новые ФИ - новые локальные портфели (НФИ №1, НФИ №2, НФИ №3) «заметных» ФИ (по критерию 2), значимые риски которых мы вычисляем и фиксируем на момент времени t. Величины указанных рисков зависят от степени коррелированности рассматриваемых ниже парных коэффициентов корреляций Пирсона

Величины указанных рисков зависят от степени коррелированности рассматриваемых ниже парных коэффициентов корреляций Пирсона

Из таблицы "объект-свойство" Х0136 рассчитываем усредненные характеристики 6 ФИ такими, как они сложились под влиянием всех рыночных факторов. Если бы инвестор знал эти характеристики, то старался бы формировать оптимальный портфель (с минимальной упущенной выгодой), дл

Из таблицы "объект-свойство" Х0136 рассчитываем усредненные характеристики 6 ФИ такими, как они сложились под влиянием всех рыночных факторов. Если бы инвестор знал эти характеристики, то старался бы формировать оптимальный портфель (с минимальной упущен

Оценки ожидаемых значений процентных ставок 6 ФИ оказались примерно одинаковыми (≈ 10% годовых): 11.0496%, 10.2170%, 9.7309%, 10.9450%, 10.7122%, 11.7651%. Но оценки s3 волatility и оценки риска s3 изменения процентных ставок для 6 наших ФИ (интервалов) оказались разными (Рисунок 1):

s1=5.7072%, s2=4.1082%, s3=2.4496%, s4=1.3742%, s5=0.6732%, s6=1.4664%

s3=32.572%, s2=16.8773%, s2=6.00054%, s2=1.8884%, s3=0.4532%, s6=2.15%.
Параметр стандартного отклонения σ совокупности, $s^2=x^2-x^2_0$ - выборочное стандартное отклонение (оценка σ) характеризует степень изменчивости (волатильности) x-переменной $X=x-x_0$, а значение z-параметра равно $z=(x-x_0)/s$. Формула $x^2=x^2+z^2$ показывает структуру разложения измеренного значения x на слагаемые. Первое слагаемое (x_0) назвывается ожидаемым значением, оно является главной частью значения x реального показателя ФИ и имеет единицу измерения: $x_0=10\%$. Второе слагаемое (z) показывает число $z^2=(x^2-x^2_0)/s$ отклонений (стандартных) в отклонении исходного значения x_{ij} от значения выборочного среднего: $x_{ij}=(x_{ij}-x_{ij}^0)$, $z_{ij}=x_{ij}/s$, где $x_{ij}^0=(x_{ij}-x_{ij}^0)=z_{ij}$. Если $x_{ij}=12\%$, $x_{ij}^0=8\%$, $s_{ij}=4\%$, то x_{ij} отделен от своего ожидаемого значения x_{ij}^0 на 8% расстоянием в 1 стандартное отклонение: $z_{ij}=(12-8)/4=1$.

Убывающая динамика значений волатильности (Рисунок 1) по мере увеличения сроков жизни практически отражает тенденцию снижения рисков изменения процентных ставок выбранного нами типа. Но их значения не учитывают различные степени взаимосвязей между изотермическими рядами. Из-за наличия взаимозависимости друг от друга величины доходностей в разных интервалах временной структуры приведенные значения s_1,s_2,s_3,s_4,s_5,s_6 степени волатильности не пригодны для оценки значений риска изменения доходностей наших ФИ. ГЦБ различаются также условиями досрочного погашения, условиями обмена на другую ЦБ, разными степенями риска обладают ценами продаж коротких, краткосрочных, долгосрочных ГЦБ. Эти и другие свойства влияют на оценки рисков изменения доходностей в ij-ых интервалах (ij-ых ФИ) временной структуры. Приведенные выше значения степени рисковости доходностей 6 ФИ разные, но они не учитывают значений степени коррелированности между парами ФИ, приведенных в матрице парных коэффициентов корреляций (таблица 1).

В формулах [3], определяющих значения рисков, должен присутствовать ненулевой коэффициент корреляции r_{ij} зависящий от элементов z_{ij}, стандартной выборки Z_{ij}, каждый элемент которой получен преобразованием элемента x_{ij}^0 в безразмерный элемент матрицы $Z_{ij}=z_{ij}, i=1,131, j=1,6$, где $z_{ij}=(x_{ij}-x_{ij}^0)/s$, $x_{ij}^0=(x_{ij}-x_{ij}^0)=z_{ij}$, $s_{ij}=(x_{ij}-x_{ij})/s_{ij}$, $k=1,131, i=1,6$. Здесь $Z_{ij}=Z_{ij}^0$, входной элемент решаемой ниже ПЗ АГК [1,3]: $Z_{ij} = (R_{0j} C_{ij} A_{ij} Y_{ij} A_{ij})$.

Степень рисковости портфеля из доходностей 6 ФИ вычисляем с учетом значений степеней рисковости доходностей 6 ФИ и значений парных коэффициентов корреляций между парами z-переменных, число которых равно $(6*1)*6/2=15$. Но нам нужны ФИ с достаточно высокими значениями рисков изменения значений процентных ставок типа доходность к дате погашения, а им соответствуют только несколько коэффициентов корреляции, удовлетворяющих Критерию 1 (см. ниже). Эти коэффициенты корреляции
Формулы вычисления значений процентных рисков изменения доходности к дате погашения для высокорисковых ГЦБ. Практически важные характеристики портфеля ГЦБ не ограничиваются только этими параметрами. Наиболее важными являются риски изменения процентных ставок типа «доходность к дате погашения». Риск изменения рассматриваемого нами типа процентной ставки для портфеля независимых ФИ измеряется суммой дисперсий соответствующих некоррелированных нормированных значений процентных ставок времененых рядов. Для определения риска портфеля зависимых ФИ необходимо вычислить значения парных коэффициентов корреляции Пирсона, как показано ниже, двух видов: \(r_{ij} = \text{corr}(z_i, z_j) \), и одну дисперсию \(\lambda_i = \text{corr}(y_i, y_i) \). Интересно то, что формула риска портфеля зависимых ФИ, которым соответствуют z-переменные, не содержит формулу дисперсии x-переменной: \(\text{corr}(z_i, z_j) = 1 \), \(j = 1, \ldots, 6 \). Формулы вычисления рисков портфелей ФИ с заметно высокими рисками будут обоснованы и вычислены ниже для реальных данных.

Чтобы обеспечить высокую доходность, «зависящей от воспринимаемого инвестором риска, и, следовательно, не зависящей от уровня цены актива» [12], инвестор должен иметь портфель с высоким риском: покупать ГЦБ, входящие в высокорисковые ФИ, формировать новые независимые высокорисковые портфели из входящих в высокорисковые ФИ, портфель с высоким риском: риск, и, следовательно, не зависящей от уровня доходности, поскольку риски, которые будут обнаружены и вычислены ниже для реальных данных.

Корреляционная матрица \(R_{66} \) равна 1 диагонали \(R_{66} = \text{diag}(z_1, z_2, \ldots, z_6) \). Сумма их равна 6: \(\text{tr}(R_{66}) = 1 + 1 + 1 + 1 + 1 + 1 = \lambda_1 + \ldots + \lambda_6 = 6 \).

Как преобразовать z-переменные в у-переменные? В работах [5-10, 13-18] применяли успешно ортогонализованную матрицу собственных векторов. Мы применяем матрицу \(C_{66} \) собственных векторов корреляционной матрицы \(R_{66} \) такую, что выполняются условия нормированности и ортогональности: \(C_{131}^T C_{66} = C_{66} C_{131}^T = I_{66} \). Она вычисляется по известной корреляционной матрице \(R_{66} = \text{diag}(z_1, z_2, \ldots, z_6) \) при решении прямой спектральной задачи (ПСЗ) [3] решается через \((C_{66}, \Lambda_{66}) \). ПСЗ - это прямая задача диагонализации известной выборочной корреляционной матрицы \(R_{66} \), решаемая для сингулярной матрицы \(R_{66} = \text{diag}(z_1, z_2, \ldots, z_6) \) в результате решения которой вычисляются 2 матрицы: ортогональная матрица \(C_{66} \) собственных векторов \(v_1 = (c_{11}, c_{12}, \ldots, c_{16})^T \), расположенные по её столбцам: \(C_{66} = [v_1, v_2, \ldots, v_6] \) и согласованная со спектром \(\lambda_1 = \lambda_2 = \ldots = \lambda_6 = \delta \) таким образом, что выполняются соотношения
\[
\text{diag}(C_{66}) = C_{66} C_{131,6} = C_{66} C_{66}^T = \delta I_{66},
\]
\[
\text{tr}(R_{66}) = \text{tr}(C_{66}) = (\lambda_1 + \ldots + \lambda_6) = 6,
\]
\[
\lambda_1 \geq \ldots \geq \lambda_6 \geq 0.
\]

Решениями ПСЗ являются 2 матрицы \(C_{66} \) и \(\Lambda_{66} \), ортогональное преобразование - матрица \(C_{66} \), применимое к матрице z-переменных \(z_1, z_2, \ldots, z_6 \), не изменяет сумму дисперсий z-переменных: \(\text{tr}(z_1, z_2, \ldots, z_6) = \text{tr}(C_{66} z_1, C_{66} z_2, \ldots, C_{66} z_6) = \text{tr}(C_{66} C_{66}^T) = \text{tr}(C_{66} C_{66}^T) = \delta I_{66} = \delta I_{66} \).

Выборка \(Y_{131,6} \) называется единственным решением вышеупомянутой ПЗ АГК. А выборка \(Z_{131,6} \) называется ассоциированным решением ПЗ АГК[3]. Ортогональное преобразование \(C_{66} \), применимое к \(Z_{131,6} \) не изменяет сумму дисперсий z-переменных: \(\text{tr}(Z_{131,6}) = \text{tr}(C_{66} Z_{131,6}) = \text{tr}(C_{66} C_{66}^T) = \delta I_{66} = \delta I_{66} \).

Поняется назет то почему переменные случайны в матрицах \(Z_{131,6} \) и \(\Lambda_{66} \) потому неизвестны их законы распределения вероятностей изложены в [3, 19]. Единственное решение \(Y_{131,6} \) ПЗ АГК является одним бесконечного множества решений обратной задачи анализа главных компонент (ОЗ АГК) [3, стр.70-79] согласно теореме 2.3 [3, стр.109-111, 20, 21]. Так как \(Y_{131,6} \) является решением (одним из бесконечного множества) ПЗ АГК, то согласно ОМ ГК [3], где известна входной параметр \(\Delta \), выполняется равенство \(\Delta = (1/m) \) Y_{131,6}, и тем самым, решена обратная спектральная задача (ОСЗ): \(\Delta = (C_0^T) \) Z_{131,6}, \(\ell = 1, \ldots, \infty \). Далее мы можем вычислить (С,У)-выборки \(Z_{131,6}^1, Y_{131,6}^1, C_0^T \), \(\ell = 1, \ldots, \infty \), адекватные нашей реальной выборке \(Z_{131,6} \). Выборка

Impact Factor:	ISRA (India) = 1.344	SIS (USA) = 0.912	ICV (Poland) = 6.630
ISI (Dubai, UAE) = 0.829	ПИИНН (Россия) = 0.207	РФ (India) = 1.940	
GIF (Australia) = 0.564	ESJI (KZ) = 3.860	IBI (India) = 4.260	
JIF = 1.500	SJIF (Morocco) = 2.031		

ISPC Technology and Innovation, Philadelphia, USA
$Z^{(t)}_{131,6} = Y_{131,6}^{C}$ имеют выборочные корреляционные матрицы $R_{166}^{(t)} = (1/m)Z^{(t)}_{131,6}Z^{(t)}_{131,6}$. Как показали вычислительные эксперименты с применением программ из ППП «Спектр» [22] пары индексов (1,2), (4,5), (5,6) высоких коэффициентов корреляции из матрицы R_{66} удовлетворяющих Критерию 1, сохраняли это качество и в большинстве из 100 матриц $R_{166}^{(t)}$, $t=1,\ldots,1000$. Эти эксперименты проводились для нашего уже известного спектра $A_{66}=(1/m)Y_{131,6}^{(t)}Y_{131,6}^{(t)}$. Решалась ОСЗ $A_{66}=(C^{(t)}_{66}, R_{66}^{(t)}, Y_{131,6}^{(t)}, Z_{131,6}^{(t)}), t=1,\ldots,1000$, реализующая алгоритм Чалмерса (Chalmers C.P. [23]). Соответствующие решение $Y_{131,6}$ ассоцированные решения $Z_{131,6}^{(t)}=Y_{131,6}^{C_{131,6}}$, $(C^{(t)}, A, Y)$-выборки $Z_{131,6}^{(t)}$, генерировались в ОМ АГК [3,22]: $A_{66}=(C^{(t)}_{66}, R_{66}^{(t)}, Y_{131,6}^{(t)}, Z_{131,6}^{(t)}), t=1,\ldots,1000$, модели адекватные нашей выборке $Z_{131,6}$ как (А, Y)-выборки. (А, Y)-выборки [25] и (C, A)-выборки [19] мы не рассматриваем, ибо нас интересуют вариабельности выделенных выше элементов $r_{12}=0.6654$, $r_{26}=0.6221$, $r_{56}=0.4980$, расположенных в тех же строках и столбцах матриц $R_{166}^{(t)}, t=1,\ldots,1000$, где неравенство вида $r_{166}^{(1)} > 0.5$ выполнялось при многих значениях номера t. Из теоремы 2.3 [3,20,21] следует, что один и те же решения существуют, и их можно без каких-либо оговорок выделять не только из анализа одной рассматриваемой здесь реальной (C, A)-выборки, но и из анализов других модельных $(C^{(t)},(A)$-выборок, являющихся решениями ОЗ АГК [3]. ПЗ АГК решена в [1], ОЗ АГК решена в [2,3], а обратная модель главных компонент (ОМ ГК) и ее применения описаны в [3]. ПМ ГК является неотъемлемой частью ОМ ГК, но единственный путь решения ПЗ АГК содержится среди бесконечного множества решений ОЗ АГК, из этих решений, т.e.(C, A)-выборок) ОЗ АГК после анализа описывают одинаковые «цифровые» знания, приведенные ниже.

Мы пользуемся дисперсией в качестве меры риска. Будем вычислять дисперсию д n независимых у-переменных и использовать значения долей z-переменных в каждой выделенной (по критерию Кайзера-Дикмана [25]) у-переменной, вычислив долю дисперсий выделенных по Критерию 2 z-переменных. Критерий Кайзера-Дикмана [25] формулируется так: Выделять только у-переменные с дисперсиями, большими 1.

Квадратная корреляционная матрица C_{66} симметричная: $r_{ij}=r_{ji}$. Имеет достаточно простую структуру (Таблица 1), что говорит о специфичности развития фондового рынка валютных ГЦБ РК. Здесь рассмотрены коэффициенты парной корреляции, вычисленные по реальным данным за анализируемый период. В другие периоды времени они будут другие, но зависимость значений доминирующих f (из всех 6) собственных чисел $A_{66}={\text{diag}}(\lambda_1,\ldots,\lambda_6)$ от небольшого числа доминирующих элементов корреляционной матрицы $R_{66}=(1/131)Z_{131,6}Z_{131,6}$ выражена всегда. Можно было бы ограничиться только анализом коэффициентов корреляции доходностей ФИ, но это был бы плохой анализ, не выявляющий (не учитывающий рыночных факторов) скрытых закономерностей конкретного рынка валютных ГЦБ за анализируемый период времени.

Отсутствие ФИ №3 при анализе корреляционной матрицы вынуждает нас, как показано ниже, проводить более углубленный поиск коэффициентов корреляции.

Финансовая интерпретация собственных чисел.

Вычисленные по идентифицированной инструментарий числе числа $\lambda_i, i=1,\ldots,6$, важно тем, что зависит от коэффициентов корреляции, а значение наибольшего элемента λ_1 тем больше, чем больше в наддиагональной части матрицы R_{66} число коэффициентов корреляции с доминирующими абсолютными значениями. Геометрическая интерпретация этого факта наглядно видна при $n=2$. Если известна симметричная матрица R_{22}, то по известной теории решается некоторая оптимизационная задача, которая сводится к решению уравнения относительно λ: $\det(R-(\lambda)I)=0$, где λ означает определитель матрицы $(R_{22}-\lambda)I)$. В прямой спектральной задаче (ПСЗ) диагонализации матрицы R_{22} (так называется в [3] задача вычисления элементов спектра A_{22} для известной матрицы R_{22}) решения λ_1, λ_2 находятся из условия равенства определителя нулю: $\det(R_{22}-\lambda)I)_{22}=0$. Данное равенство преобразуется в уравнение вида $(1-\lambda)(1-\lambda)\ r_{12}(r_{12})=0$. Решениями являются 2 значения для λ. Раскрывая скобки и группируя члены, получим квадратное уравнение $\lambda^2-2\lambda r_{12}+(1-r_{12})=0$. Собственные числа λ_1, λ_2 явно выражаются через коэффициенты корреляции $r_{12}=r_{12}$: $\lambda_1=1+r_{12}$, $\lambda_2=1-r_{12}$, при этом $\lambda_1, \lambda_2>0$. Если $r_{12}=1$, то $\lambda_1=2$, если $r_{12}=0$, то $\lambda_1=1, \lambda_2=0$. Система из 2 уравнений вида $R_{22}c_{ij}=\lambda c_{ij} \lambda$ при $\lambda_1+\lambda_2=1+r_{12}$, имеет собственные векторы $c_{ij}=(c_{ij},c_{ij})$ i = 1,2, такие, что $c_{1j}c_{1j}^{T} = (\cos(\alpha) -\sin(\alpha))^{2}$, $c_{2j}c_{2j}^{T} = (\sin(\alpha) +\cos(\alpha))^{2}$ с координатами $(\cos(\alpha), -\sin(\alpha))$, $(\sin(\alpha), \cos(\alpha))$. Единичные векторы нормированы: $c_{1j}^{T}c_{1j}=\cos^{2}(\alpha)+\sin^{2}(\alpha)=1$, $c_{2j}^{T}c_{2j}=\sin^{2}(\alpha)+\cos^{2}(\alpha)=1$, и ортогональны (взаимно перпендикулярны): $c_{1j}^{T}c_{2j}=\cos(\alpha)\sin(\alpha)-(\sin(\alpha)\cos(\alpha))=0$.

Здесь α - угол, на который приподнята большая полусь эллипса (с длинами полуосей λ_1, λ_2) над 1-ой осью. Эту интерпретацию компонент собственных чисел и собственных векторов мы используем ниже при описании случайных ортогональных преобразований и при моделировании f-отклонений в z-переменных.
Гиперэллипсоид при n>2 важен тем, что внутри него находятся все б-мерные точки с координатами (z_{1,i},...,z_{b,j}), k=1,...,131. В общем случае n>2 гиперэллипсоид [3,22,23] расположен наклонно по отношению к осям своей координатной системы. Финансовая интерпретация столбцов матрицы Z_{131,6} - нормированные изотермические ряды.

Таблица 1

Матрица коэффициентов корреляции R_{ij}	COLUMN	1	2	3	4	5	6
ROW 1	1.000	0.665	0.298	0.071	0.0552	0.1607	
ROW 2	0.665	1.000	0.117	0.0867	0.0988	0.1385	
ROW 3	0.298	0.1165	1.000	0.1334	0.0457	0.1838	
ROW 4	0.071	0.0867	0.133	1.000	0.6221	-0.1165	
ROW 5	0.055	0.0988	0.046	0.6221	1.000	0.4980	
ROW 6	0.161	0.1385	0.184	-0.117	0.498	1.0000	

При формулировке Критерия 1 будем опираться на известные применяемые факты. По определению формулы коэффициентов парной корреляции r_{ij}=corr(z_{i,j}), с_{ij}=corr(z_{i,j}) представляют собой косинусы углов между 131-мерными векторами z=(z_{1,i},...,z_{131,i})^T, z=(z_{1,j},...,z_{131,j})^T, y=(y_{1,i},...,y_{131,i})^T, i=1,...,6. Равенство r_{1,2}=0.6221 выражает заметную степень выраженности линейной связи, но она не выявляет причин связи. Из-за воздействий макроэкономических факторов оба показателя (№1 и №4) возрастают или уменьшаются на протяжении коротких периодов времени, но рост одного из них не является причиной роста другого. Всюду ниже при формулировке фраз относительно ФИ (НФИ) для упрощения текста вместо фразы «риск изменения процентной ставки типа «доходность к дате погашения» ФИ №j» будем писать «риск ФИ №j».

Для выявления номеров интервалов, содержащих значения доходностей ГЦБ с высокими рисками мы используем вывод, приведенный выше: наибольшее собственное число \lambda_1=1+\lambda_{12} тем больше, чем больше коэффициент корреляции r_{12}. Содержательно это соответствует утверждению «большое значение риска НФИ обеспечивается большими значениями коэффициентов корреляции между доходностями ФИ». По их оценке связи коэффициентов корреляции обычно используется шкала Чеддока (Chad-dock scale). По этой шкале количественная мера тесноты связи: абсолютное значение коэффициента, принадлежащее интервалу от 0 до 0.3 - качественно интерпретируется как «слабая», интервалу от 0.3 до 0.5 - «средняя», интервалу от 0.5 до 0.7 - «высокая», интервалу от 0.7 до 0.9 - «очень высокая».
Сферируем критерий вычисления пар (i,j) номеров интервалов временной структуры, для которых i-ые и j-ые временные ряды $z=(z_{1i},\ldots,z_{1i})$, $z=(z_{1j},\ldots,z_{1j})$ определяют значения коэффициентов корреляций $r_{ij}=corr(z_{1i},z_{1j})$, удовлетворяют критерию «заметной» связи по шкале Чеддока, т.е. соответствуют доходностям ГЦБ с высокими рисками.

Критерий 1. Пары индексов (k,j), k=|j|, доминирующих по абсолютной величине коэффициентов корреляции удовлетворяют условию $|\{max\{j:abs(r_{ij})=abs(corr(z_{1i},z_{1j}))\}>r_{0j},
k\in\{1,\ldots,6\}, R_{66}(r_{ij})|>0.5000|$.

Фиксируем пороговое значение: $r_{0j}=0.5000$. Оно соответствует выбору силы связи коэффициентов корреляции по шкале Чеддока: от 0.5 до 0.7 (заметная, средняя). Это – результат анализа доминирующих значений парных коэффициентов корреляций $r_{ij}=corr(z_{1i},z_{1j})$. При $r_{0j}=0.5000$ число доминирующих по абсолютной величине коэффициентов корреляции, расположенных выше диагонали матрицы R_{66} равно 3.

Финансовая интерпретация собственных векторов. Далее мы проведем анализ элементов матрицы собственных векторов C_{66}, вычисленных для проанализированной нами матрицы коэффициентов корреляций R_{66}. Для этого имеются следующие существенные основания. Для портфеля независимых ФИ риск изменения рассматриваемого нами типа процентной ставки измеряется суммарной дисперсией соответствующих некоррелированных нормированных значений процентных ставок временных рядов. Но наши временные ряды $z_{1i},z_{1j},\ldots,z_{11i}$, $i=1,\ldots,6$, нормированных значений процентных ставок заметно корренированы между собой по Критерию 1.

При этом все z-переменные имеют одинаковые дисперсии, равные 1. Такие z-переменные нас не устраивают, ибо мы знаем, что существуют какие-то множества ФИ-ов, у которых риски будут большими, средними, малыми. Мы выбрали в качестве измерителя степени риска дисперсии временного ряда, состоящего из значений избыточных доходностей ГЦБ к дате погашения. Применяя ортогональное преобразование - матрицу C_{66}, такую, что $C_{ij}C_{66}=I_{66}$, $C_{66}C_{66}^{T}=I_{66}$, к матрице z-переменных $Z_{131,6}$: $Y_{131,6}=Z_{131,6}C_{66}$. Ортогональное преобразование C_{66} не изменяет сумму дисперсий z-переменных:

$$R_{66}=(1/131)Z_{131,6}^{T}Z_{131,6}, R_{66}=(1/131)Z_{131,6}^{T}Z_{131,6},$$

Как найти матрицу C_{66}? Одним из типов матриц C_{66}, обладающих нужными нам свойствами, является матрица собственных векторов $c_{ij}=(c_{1i},c_{2i},\ldots,c_{6i})^{T}$, образующих ортогональную матрицу $C_{66}=[c_{1i}|c_{2i} \ldots |c_{6i}]$, согласованную с матрицей собственных чисел $\Lambda_{66}=(\lambda_{16},\lambda_{26},\ldots,\lambda_{66})$, таким образом, что $R_{66}C_{66}=C_{66}^{T}C_{66}^{T}=I_{66}$, где $diag(R_{66})=(1,\ldots,1),tr(R_{66})=1+1+1+1+1+1$, $tr(\Lambda_{66})=\lambda_{16}+\ldots+\lambda_{66}=6$. Матрицы C_{66} и C_{66} вычисляются одновременно по известной корреляционной матрице R_{66}. Матрица R_{66} вычисляется по стандартизованной выборке $Z_{131,6}, R_{66}=(1/131)Z_{131,6}^{T}Z_{131,6}.$

Докажем, что матрица C_{66} является корреляционной матрицей и, аналогично матрице $R_{66}=(1/131)Z_{131,6}^{T}Z_{131,6}$, вычисляется в виде матрицы, равной произведению транспонированной матрицы $Z_{131,6}$ стандартизованных z-переменных на матрицу стандартизованных у-переменных $Y_{131,6}$. По этому определению $(1/m)Z_{131,6}^{T}(Y_{131,6})^{T}(1/66) = (1/m)Z_{131,6}^{T}Z_{131,6}C_{66}^{T}(1/66) = R_{66}CA^{T}(1/66).$

Так как матрица C_{66} является матрицей собственных векторов, то верно равенство $R_{66}C_{66}=C_{66}^{T}C_{66}$. Подстановка это равенство в нашу формулу имеем:

$$R_{66}C_{66}A^{T}(1/66) = C_{66}^{T}C_{66}A^{T}(1/66) = C_{66}^{T}I_{66} = C_{66}.$$

Мы доказали равенство

$$R_{66}C_{66}^{T}(1/66) = C_{66}.$$

Аналогично вычисляем матрицу $C_{131,6}$ корреляций, матрице C_{66} корреляций между 2-мя множествами переменных, умножив число (1/m) на произведение одной матрицы $Y_{131,6}^{T}$ стандартизованных у-переменных на матрицу $Z_{131,6}$ стандартизованных z-переменных:

$$(1/m)Y_{131,6}^{T}(Z_{131,6})^{T}(1/66) = (1/m)Z_{131,6}^{T}Z_{131,6}C_{66}^{T}(1/66).$$

Даже обратное утверждение, если ортогональная матрица C_{66} является корреляционной матрицей пар (y, з)-переменных: $C_{66}=(1/131)Z_{131,6}^{T}Y_{131,6}A^{T}(1/66)$, то она-матрица

Impact Factor: ISRA (India) = 1.344 ISIS (USA) = 0.912 ICV (Poland) = 6.630 ISI (Dubai, UAE) = 0.829 PII (India) = 1.940 GIP (Australia) = 0.564 PIF (India) = 4.260 JIF = 1.500 SIF (Morocco) = 2.031
собственных векторах для корреляционной матрицы \(R_{66} \). Пусть верно равенство
\[C_{66} = (1/131)Z_{131,6}^T \cdot \lambda_{131,6} \cdot \Lambda_{66}^{-1} \]
где у-переменные стандартизируются для корректного вычисления коэффициентов корреляции Пирсона. Докажем, что так определенная матрица \(C_{66} \) является матрицей собственных векторов для корреляционной матрицы \(R_{66} \) и сохраняет свойство ортогональности:
\[C_{66}^T \cdot C_{66} = I_{66}, \]
\[C_{66}^T \cdot R_{66} \cdot C_{66} = I_{66} \]. Подставляя в эти формулы вышеприведенное значение \(C_{66} \) и имеем:
\[C_{66}^T \cdot C_{66} = (1/131) (Z_T \cdot Z) - 1 = (1/131) \cdot \lambda_{131,6} \cdot \Lambda_{66}^{-1} = \Lambda^{-1} \cdot (Y \times Y) \cdot \Lambda^{-1} = \Lambda^{-1} \cdot (C_{66} \cdot Y) \cdot \Lambda^{-1} = \Lambda^{-1} \cdot (C_{66} \cdot C_{66}^T) \cdot \Lambda^{-1} = \Lambda^{-1} \cdot Y \cdot Y^T \cdot \Lambda^{-1} = (C_{66} \cdot Y) \cdot (C_{66} \cdot Y)^T = C_{66}^T \cdot C_{66} \]. Аналогично доказывается равенство \(R_{66} = C_{66}^T \cdot C_{66} \). Формула \(C_{66} = (1/131) (Z_T \cdot Z) - 1 \) не нарушает свойство согласованности собственных чисел (из столбцов матрицы \(C_{66} = (1/131) (Z_T \cdot Z) - 1 \)) и собственных векторов \(\Lambda_{66} = diag(\lambda_1, \ldots, \lambda_6) \).

Соблюдение этого свойства видно из соотношений:
\[R_{66} = C_{66}^T \cdot C_{66} = (1/131) (Z_T \cdot Z) - 1 = \Lambda^{-1} \cdot R_{66} = C_{66}^T \cdot C_{66} = C_{66} \cdot C_{66} = C_{66} \cdot C_{66} = C_{66} \cdot C_{66} = C_{66} \cdot C_{66} \]
Аналогично, подставляя значения \(R_{66} = C_{66}^T \cdot C_{66} = C_{66} \cdot C_{66} \)
Новые у-переменные равны линейной комбинации 6 равномерно и не коррелируют друг с другом. При этом сумма дисперсий всех у-переменных равна 6, т.е. след матрицы \(R_{66} \) равен 6.

Критерий выделения числа некоррелированных высокорисковых НФИ. Аналогично ФИ №3, который по Критерию 1 не был включен в число высокорисковых ФИ, среди 6 НФИ могут встретиться низкорисковые НФИ. Измерителем степени рисковости НФИ является его дисперсия \(\lambda_j = \ldots, \ldots, \lambda_j \).

Вычислив эти и другие распределенные в порядке убывания их величины: \(\lambda_1 > \ldots, \ldots, \lambda_6 \). Как собственные числа корреляционной матрицы \(R_{66} \) упорядочены в порядке убывания их величины: \(\lambda_1 > 1.8076, \lambda_2 > 1.7936, \lambda_3 > 1.1509, \lambda_4 > 0.8555, \lambda_5 > 0.2887, \lambda_6 > 0.1037 \), в сумме равных 6, то выбором доминирующего количество \(L=1 \) собственных чисел, соответствующих L у-переменным (мы поставили им в соответствие НФИ). В других, различных от нашей, задачах для определения числа L обоснованно применяются критерии Кайзера-Дикмана [25], Гарстона [25], Кателла [25], Хорна [26], Дюккиффа [27]. Эти критерии используются для определения числа L существенных в том или ином смысле у-переменных, доля которых превышает некоторое фиксированное пороговое значение. По критерию высокорисковость значение дисперсии у-переменных \(\lambda_1, \lambda_2, \ldots, \lambda_L \) должно быть как можно большим, а меньшее из доминирующих значений \(\lambda_1, \ldots, \lambda_L \) должно быть таковым, что в соответствующем ему собственном векторе \(c_1, c_2, \ldots, c_{131} \) присутствовал бы коэффициент корреляции
\[c_1 = corr(z_1, y_1) \geq 0.4631 = 0.5, \]
с высоким значением коэффициента корреляции при \(L=3 \)
\[c_3 = corr(z_3, y_1) \geq 0.4631 = 0.5 > 0.5 > 0.5, \]
показывая на наличие высокорисковых ГЦБ со значениями процентных ставок типо доходности дат погашения, принадлежащих интервалу №3 временной структуры.

Значение \(c_{131} = corr(z_1, y_1) \geq 0.4631 = 0.5 \) для \(L=3 \) оказалось редким в множестве значений элементов \(c_{131} \) сгенерированных выше матриц \(C_{66}^{(1)} \).

Таким образом, коэффициент корреляции \(c_{131} = corr(z_1, y_1) \geq 0.4631 = 0.5 \), причем неравенство \(c_{131} \leq 0.5 \) выполнялось много раз, что подтверждает статистическую достоверность неравенства \(c_{131} \geq 0.5 \).

Критерий 2. Число собственных векторов \(f_{ev} \) равно числу пар индексов \(k, c_{ev} \) доминирующих по абсолютной величине компонентов \(c_{131} = corr(z_1, y_1) \), \(f_{ev} \), собственных векторов(f-eigen- векторов), расположенных в столбцах матрицы \(C_{66} \), и соответствующих \(f_{ev} \)-ому собственному числу (из матрицы собственных чисел \(\Lambda_{66} = \{\lambda_1, \ldots, \lambda_6\} \), у которых хотя бы одна \(\lambda_{c_{ev}} \)-компонента удовлетворяет условию
\[\lambda_{c_{ev}} \leq \max \{\lambda_{ev}(k) \} \]

Такое положение \(\lambda_{ev}(k) \) приводит ко второму \(c_{131} = corr(z_1, y_1) \), удовлетворяющему Критерию 2 (значения \(r_{135} = 0.1534, r_{235} = 0.0457, r_{380} = 0.1838 \) не удовлетворяют Критерию 1), ибо выделена его пара индексов (3, 3). Доминирующих по абсолютной величине квадрат коэффициента
корреляции $c_{i3}^2=\text{corr}(z_{i},y_3)$ отражает «заметную» степень рисковости ФИ №3, характеризуемого доходностями из интервала №3, и включен по Критерию 2 в НФИ №3. Таким правым индексом $L=3$ компоненты c_{IL} собственного вектора номер L, $c_{IL}=(c_{1L},c_{2L},c_{3L},...,c_{6L})^T$ в нашем случае является собственный вектор №3: $c_i=(c_{1i},c_{2i},c_{3i},...,c_{6i})^T=(0.1233,-0.0859,0.4631, -0.5614, -0.0852,0.6637)^T$. При наличии нескольких интервалов, номеров которых обладают таким же свойством, что и приведенный выше индекс 3 компоненты вектора №3 находим их аналогичным образом.

Таблица 2
Матрица собственных векторов C_{66}

COLUMN	1	2	3	4	5	6
ROW 1	0.6529	-0.1771	0.1233	0.1204	-0.6983	0.1585
ROW 2	0.6379	0.0606	-0.0859	0.3787	0.6622	0.0014
ROW 3	0.3378	0.1535	0.4631	-0.7574	0.1822	-0.2023
ROW 4	0.1643	0.5142	-0.5614	-0.3126	-0.0064	0.5438
ROW 5	0.1037	0.6940	-0.0852	0.2567	-0.1930	-0.6302
ROW 6	-0.1222	0.4420	0.6637	0.3237	0.0581	0.4910

Выделим только «заметные» значения рисков ФИ из левой части и «замыкающих» их в будущем «заметные» значения рисков ФИ из правой части интервалов временной структуры (таблица 4). Анализ таблицы 4 показывает настоящую и перспективную привлекательность для инвесторов не только «заметных» в данный момент ФИ, но всех остальных ФИ. Остающая часть риска НФИ №2, а именно 100%-74.6038%≈25.39%, состоит из рисков ГЦБ (например, $c_{22}=0.6622^2=0.4385$ для ФИ №2), которые возрастут потом при изменении (из 5-го к 1-ому) интервала временной структуры в последующие моменты времени, при уменьшении их сроков до даты погашения. Для НФИ №1 доля рисков таких «заметных» ГЦБ равна 100%-83.32%=16.68%, для НФИ №3-100%-65.496%=34.504%. Доля «заметных» рисков 83.32%-74.6038%-65.496% трех НФИ объяснены.

ФИ №1	0.4263	0.0314	0.0152	0.0145	0.4876	0.0251
ФИ №2	0.4069	0.0037	0.0074	0.1434	0.4385	0.0000
ФИ №3	0.1141	0.0236	0.2145	0.5737	0.0332	0.0409
ФИ №4	0.0270	0.2644	0.3152	0.0977	0.0000	0.2957
ФИ №5	0.0108	0.4816	0.0073	0.0659	0.0372	0.3972
ФИ №6	0.0149	0.1954	0.4405	0.1048	0.0034	0.2411

Распространение приемлемых для дилеров и игнорируемых значений долей рисков ФИ в долях НФИ

Σ 83.32% 74.60% 97.01% 71.71% 92.61% 93.40%

$100-\Sigma$ 16.68% 25.40% 2.99% 28.29% 7.39% 6.60%

и пригодны для практического применения дилерами банка, а риски: 16.68%, 25.39%, 34.504%, - относятся к ГЦБ с низкими доходностями, в данный момент времени t не привлекательных для инвесторов. Но как показывают строки 1 и 2 Таблицы 4 ФИ №1, ФИ №2 с значениями рисков 0.4876,0.4385 (в них направления концы стрелок) входят в НФИ №5, а значения рисков ФИ №1, ФИ №2 (0.4263 и 0.4069 - из них исходят стрелки) в НФИ №1 заменятся на новые, ибо их вновь вычисленные в будущем по отношению к текущему моменту времени t изотермические ряды будут находиться в столбцах №1, №2 будущей матрицы X_{1316}^t. Аналогично

ISPC Technology and Innovation, Philadelphia, USA
32
интерпретируются стрелки в других строках
Таблицы 4. Это - наглядная иллюстрация повышенной привлекательности реального портфеля ГЦБ, наблюдаемой на практике. Приведенные иллюстрации убедительно демонстрируют соответствие ситуациям на практике.

Заметим: матрица собственных векторов C_{66} и диагональная матрица $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_6)$ собственных чисел (пара матриц) являются решением однородной спектральной задачи $RC=\Sigma \Lambda$, обладающих свойствами $C^T \Sigma = I, C \Sigma^T = I$, $\Lambda_{66}=\text{diag}(\lambda_1, \ldots, \lambda_6)$, $\text{trace}(R_{66}) = \text{trace}(\Lambda_{66}) = (1.8076+1.7936+1.1509+0.8555+0.2887+0.1037) = 6$.

В работах [2,3] эта задача формулируется как прямая спектральная задача (ПСЗ): $R_{66} = \Sigma (C_{66}, \Lambda_{66})$ - прямая задача диагонализации известной выборочной корреляционной матрицы $R_{66} = R^{66}$, решаемая для известной симметрической матрицы R_{66}, в результате решения которой вычисляются 2 матрицы: ортogonalная матрица C_{66} собственных векторов $c_i = (c_{i1}, c_{i2}, \ldots, c_{i6})^T$, расположенных по её столбцам: $C_{66} = [c_1, c_2, \ldots, c_6]$, согласованная со спектром $\Lambda_{66} = \text{diag}(\lambda_1, \ldots, \lambda_6)$ таким образом, что $RC=\Sigma A$, $C^T \Sigma = C \Sigma^T = I_{66}$, $\text{diag}(R_{66}) = (1, 1, 1, \text{trace}(R_{66}) = 1 + 1 + \ldots + 1 = \text{trace}(\Lambda_{66}) = 6, \lambda_i \geq 0, \lambda_i \geq \lambda_j \geq 0$.

Если ПСЗ имеет одно решение C_{66}, то ОСЗ (орбитальная спектральная задача): $\Lambda = \Sigma (C_{66}, R^{66})$, имеет бесконечное множество решений $C^{(i)}_{66}$ таких, что $R^{(i)}_{66} C^{(i)}_{66} = C^{(i)}_{66} \Sigma^{(i)}_{66} \Sigma^{(i)}_{66} C^{(i)}_{66} = C^{(i)}_{66} C^{(i)}_{66} = I_{66}$. Среди бесконечного множества матриц $C^{(i)}_{66}$ существуют такие, у которых компоненты $c^{(i)}_{61}$, $c^{(i)}_{62}$ 1-го собственного вектора близки к значениям $c_{61} = 0.6529$, $c_{62} = 0.6379$, компоненты $c^{(i)}_{60}$, $c^{(i)}_{62}$ 2-го собственного вектора доминируют и близки к значениям $c_{62} = 0.514$, $c_{60} = 0.6940$, компоненты $c^{(i)}_{63}$, $c^{(i)}_{63}$, $c^{(i)}_{63}$ 3-го собственного вектора доминируют и близки к значениям $c_{63} = 0.4631$, $c_{62} = -0.5614, c_{63} = 0.6637$, т.е. по абсолютному значению принадлежат интервалу [0.5,0.7] «заметных» значений коэффициентов корреляций (по критерию Чеддока), а остальные компоненты по своим значениям принадлежат интервалам пренебрежимо малых значений коэффициентов корреляций. Это служит подтверждением статистической достоверности вычисленных значений рисков. Компьютерное моделирование с применением программы CORMAP [22] требует сотен миллионов обращений к ней за несколько десятков часов машинного времени – необходимо отдельное исследование.
Impact Factor:	ISRA (India) = 1.344	SIS (USA) = 0.912	ICV (Poland) = 6.630
	ISI (Dubai, UAE) = 0.829	PIF (India) = 1.940	
	GIF (Australia) = 0.564	ESJI (KZ) = 3.860	
	JIF = 1.500	SIF (Morocco) = 2.031	

Таблица «заметных» значений рисков ФИ и их «заменяющих» в 6 НФИ

ФИ №1	ФИ №2	ФИ №3	ФИ №4	ФИ №5	ФИ №6	ФИ №7	ФИ №8
λ1=1.8076	λ2=1.7936	λ3=1.1509	λ4=0.8555	λ5=0.2887	λ6=0.1037	λ7=1.8076	λ8=1.7936
НФИ №1	НФИ №2	НФИ %3	НФИ %4	НФИ %5	НФИ %6	НФИ №3	НФИ №4
0.4263	0.4069	0.21446	0.57365	-0.4876	0.4385	0.4263	0.4069
Сумма значений рисков	0.8332	0.7460	0.33976				

Применяемая модель анализа главных компонент [1,2,3] адекватно моделирует случайные переменные, корреляционные связи, особенности изотермических рядов процентных ставок типа «доходность к дате погашения». Сравнение величин рисков ФИ и НФИ (до и после перехода к некоррелированным у-переменным) показывает (Рисунок 2) меньшую крутизну уменьшения значений λj/6, j=1,…,6, рисков НФИ (на Рисунке 2 изображены значения λj) по сравнению с крутизной уменьшения значений рисков ФИ при удлинении сроков жизни ФИ. Переход к НФИ увеличивает значения и доли рисков более коротких ФИ. Не меняя сумму рисков ФИ. Степень рисковости НФИ №1 равна λ1/6=1.8076/6=30.13%, НФИ №2 - λ2/6=1.7936/6=29.89%, НФИ №3 - λ3/6=1.1509/6=19.18%.

Степень рисковости НФИ № 1 и № 2 практически равны. Это были риски каждого из НФИ в отдельности.
Заключение.
С применением модели главных компонент получены новые кластеры (локальные портфели) высокорисковых (с относительно высокими доходностями) валютных ГЦБ имеющих распределение этих активов по степени рисковости изменения процентных ставок типа «доходность к дате погашения». Это позволило вычислить значения рисков изменения значений доходностей типа «доходность к дате погашения» НФИ №1 30.13%, НФИ №2- 29.89%, НФИ №3-49.18%. Высокие степени извлекаемости значений рисков из коррелированной системы процентных ставок являются практически критериями адекватности разработанной нами модели. В зависимости от склонности восприятия рисков дилеры банка будут покупать высокорисковые ГЦБ из НФИ №1: в нём выявлено (отражено в формулах) 83.32% рисков ФИ №1, ФИ №2, (и) или из НФИ №2: выявлено 74.60% рисков ФИ №4, ФИ №5, и (или) из НФИ №3: в нём выявлено 33.976% рисков ФИ №3, ФИ №4, НФИ №6. Все активы, независимо от уровня степени срочности были представлены в выделенных кластерах (НФИ). Это - новое «цифровое» доказательство типичности ажиотажа среди дилеров банков перед аукционами дневных торгов ГЦБ на фондовой бирже Республики Казахстан. Разработанная модель по новому классифицирует виды ГЦБ как активы банка: интервал №1 нашей временной структуры характеризует «короткие» ГЦБ, интервалы №2, №3, №4 - «краткосрочные» ГЦБ, интервал №5 - «среднесрочные» ГЦБ, №6-«долгосрочные» ГЦБ. Это требует разработки нового приложения к бухгалтерскому балансу банка.

References:

1. Hotelling H. (1933) Analysis of a complex of statistical variables into principal components. – J. Educ.Psychol., 1933, vol.24, pp.417-441, pp.498-520.
2. Zhanatauov S.U. (1987) The inverse problem of the principal component analysis// Proc.of the 1-st World Congress of Soc. Math. Statist. and
| Impact Factor | ISRA (India) | SIS (USA) | ICV (Poland) |
|--------------|-------------|-----------|--------------|
| | 1.344 | 0.912 | 6.630 |
| ISI (Dubai, UAE) | 0.829 | PIIHH (Russia) | 0.234 |
| GIF (Australia) | 0.564 | PIF (India) | 1.940 |
| JIF | 1.500 | ESJI (KZ) | 3.860 |
| | | SJIF (Morocco) | 2.031 |

Pro babillity Theory of Bernoulli.-Utrecht,1987. - pp.116-119.

3. Zhanatauov S.U. (2013) Obratnaya modelʹ glavnuykh komponent.-Almaty:Kazstatinform, 2013. - 201 p.

4. Fursov.V.G. (2013) Innovatsionnaya napravlen nosť nauchnogo issledovaniya (retsensiy na monografii Zhanatauova 6.630 S.U. «Obratnaya modelʹ glavnuykh komponent».-Almaty: Kazstatinform, 2013.-201p.). Vestnik KazNTU, №1, p.370-373.

5. (2015) Principal Component Analysis of Swap Curve Movements in Two Different Swap Markets: The Norwegian and Euro swap market. Norwe gian University of Life Sciences. Nordal, Simen Christoffer (Master thesis, 2015-08-06).

6. Pérignon,C., Smith,D.R.,Villa,C. (2007) Why common factors in international bond returns are not so common. Journal of International Money and Finance 26 (2007), 284-304.

7. Fase, M.G. (1973) A principal components analysis of market interest rates in the Netherlands, 1962–1970. European Economic Review,1973. Vol. 4, pp. 107–134.

8. Stelmach, J. (2010) Testing the homogeneous Interest Rates assumption by Principal Component Analysis:The Euro area case. Ekonomika, 2010. Vol. 89(3).

9. Lardic, S., Priaullet, P., Priaullet, S. (2003) PCA of yield curve dynamics: questions of methodologies. Journal of Bond Trading and Management 1, 2003. 327-349.

10. Lekkos, I. (2017) A critique of factor analysis of interest rates. Journal of Derivatives 8, 72-73.

11. (1998) Finansy. Per. s angl. B. S. Pinskera – «ZAO Olimp-Biznes», 1998.–560 p.: ill. Seriya «masterstvo».

12. (1996) Kolichestvennye metody finansovogo anna liza.(Professionalʹnaya biblioteka, seriya «Finansy»)/pod red.BraunaS.,Kritsменa M. - M.: INFRA-M,1996. – 336 p.

13. WatshamT.,ParramoreK. (2017) QuantitativeMethods in Finance.Thomson Learning,1-st Edition.

14. Drobyshevskiy M.P. (2006) Obzor teorii vremennoy struktury. M.: IEPP, 2006.–416 p.

15. Surkov.G. (1999) Granitsy primeneniya metodologii Price-at Risk dlya otsenki rynchnykh riskov: zarubezhnyy opyt i rossiiyskaya praktika.Finansy,№10(1999), 1999, p.59-65.

16. Kahn R.H. (1989) Risk and return in the US bond market: a multifactor approach. In F.J. Fabozzi (td.) Advances and innovations in the bond and Mortgage Markets. Probus publishing , Chicago, 1989.

17. Kahn R.H. (1990) Estimating the US treasury term structure of interest rates. In F.J.Fabozzi (ed.). The Handbook of treasury and Goverment Agency securities: Instruments, Strategies and Analysis. Probus publishing , Chicago, 1990.

18. Kahn R.H., Guljarani D. (1993) Risk and return in the Canadian Bond Market. Journal of portfoljo Management., Spring 1993, Vol. 19, No. 3: pp. 86-93.

19. Zhanatauov S.U. (2016) Model and histogram to adequacy of variables (C, Λ) samples and real multidimensional sample. International Scientific Journal Theoretical & Applied Science. 2016, № 11, vol. 43, pp. 53-61. Doi: http://dx.doi.org/10.15863/TAS.2016.11.43.11

20. Zhanatauov S.U. (2014) Teorema-kriteriy ravens-tva resheniy priamoy i obratnoy zadach analiza glavnuykh komponent. Evraziyskiy soyuzy uchenykh.X mezhd.konf.«Sovrem. Kontsept tsi nauchnykh issled.».

21. Zhanatauov S.U. (2013) The criterion of equality of solutions of the direct and inverse problems of the principal component analysis.«Seattle-2013 :4th International Academic Research Confe rence on Business, Education,Nature and Tech nology». 4-5 November 2013, p.447-449.

22. Zhanatauov S.U. (1988) O funktsionalnom napol nenii PPP “Spektr”./Sistemnoe modelirovanie - 13.- Novosibirsk , 1988, p.3-11.

23. ChalmersC.P. (1975) Generation of correlation matrices with a given eigen-structure. – J. Stat. Comp. Simul., 1975, vol.4, p.133-139.

24. Zhanatauov S.U. (2014) The (C,Λ,Y)-sample is adequate to real multidimensional sample/ Marep.Mezhdun.Konf. “Leadership in Educa tion, Business and Culture“. 25 april 2014, Almaty-Seattle, ICET USA. Leadership Interna tional Conference “Leadership on Education, Business and Culture“. p.151-155.

25. Überla K. (1977) Factoren analyse. Eine systematische Einführung in Psychologien. Mediziner, Wirtschafts-, und Socialwissenschaftler. 2 Auf lage. Berlin: Springer. Last edition 1977.

26. Horn J.L. (1965) A rationale and test for the number of factors in factor analysis. - Psychometrika, 1965, vol.30, No 2, p. 179-185.

27. Jollif I.T. (1972) Discarding variables in a principal component analysis. 1. Artificial data. –Appl. Stat., 1972, vol.21, p.160-173.
UZBEKISTAN-TURKMENISTAN: CURRENT STATE OF BILATERAL RELATIONS

Abstract: This article describes the relationship between the two brotherly peoples-Uzbek and Turkmen people, the political, socio-economic cooperation in this days. We have provided materials about are mutually beneficial relationship for the scientific community.

Key words: Uzbekistan, Turkmenistan, Central Asia, UN, the Strategic Partnership.

Language: English

Citation: Mirzaev GR (2017) UZBEKISTAN-TURKMENISTAN: CURRENT STATE OF BILATERAL RELATIONS. ISJ Theoretical & Applied Science, 08 (52): 37-42.

Introduction

The Uzbek and Turkmen peoples connect the commonality of history, that the similarity of languages, culture, traditions and customs. The scientific, literary and spiritual heritage of our ancestors is the common property of our peoples.

In the years of independence, relations between countries have risen to a qualitatively new, even higher level. Mutual support is one of the main components in our relations, as was concluded in the Treaty about Friendship, Cooperation and Mutual Assistance between the Republic of Uzbekistan and Turkmenistan of January 16, 1996 [1]. By the way, this document is a "crown" of a solid base of bilateral agreements, which today is about 200. In addition, Uzbek-Turkmen relations are developing dynamically in the spirit of the Interstate Agreement on the Further Strengthening of Friendly Relations and Comprehensive Cooperation signed in 2007.

Uzbekistan and Turkmenistan connected historical, during ages have been relationships, common cultural and spiritual values and the proximity of the languages, traditions and customs that have always connected our peoples [2]. Constructivism and focus on the future, focus on achieving real results, taking into account the potentials of both sides have become a hallmark of the dialogue between the two neighboring states.

Relations between Uzbekistan and Turkmenistan are developing based on the principles of mutual trust, respect for interests, and mutual support in the international arena. The positions of the sides on all actual issues of a global and regional nature are similar. The foreign policy of the Republic of Uzbekistan have based on the principles of the sovereign equality of states, the nonuse of force or threat of force, the inviolability less of borders, the peaceful settlement of disputes, non-interference in the internal affairs of other states and other universally recognized principles and norms of international law [16].

President Shavkat Mirziyoyev noted that the main priority of Uzbekistan's foreign policy is the Central Asian region, which connected with the country's national interests. “We invariably remain committed to an open, benevolent and pragmatic policy towards our closest neighbors - Turkmenistan, Kazakhstan, Kyrgyzstan, Tajikistan. ...” [7].

As such, Turkmenistan's relations with the neighbors in the region have received new content. The development of fraternal, friendly ties with the immediate neighbors - Uzbekistan, Afghanistan, Iran, Azerbaijan and Kazakhstan - will remain the most important direction of the foreign policy of neutral Turkmenistan.

Materials and Methods

Tashkent and Ashgabat have similar views on issues of strengthening regional security and stability, intensify the negotiation process to resolve the Afghan crisis with the participation of international structures and neighboring states, joint struggle against such threats as international
terrorism and extremism, drug trafficking, organized Transnational crime [4].

An example of constructive and fruitful partnership in the world arena is cooperation between Uzbekistan and Turkmenistan within the framework of international organizations, in particular, the United Nations, the Organization of Islamic Cooperation, the International Fund for Saving the Aral Sea and others [9].

Special mention should be made of common approaches to strengthening and maintaining regional security, in particular, to resolve the situation in Afghanistan. Uzbekistan and Turkmenistan assist the neighboring country in implementing a number of projects aimed at the restoration of important infrastructure facilities.

Uzbekistan and Turkmenistan have compatible positions on the issue of rational use of Trans boundary water resources in Central Asia. Thus, during the high-level talks in Ashgabat in October 2014, it was emphasized that when solving problems related to the water and energy sector, including the construction of large hydropower facilities on Trans Boundary Rivers, it is necessary to comply with international norms defined in the UN conventions and conduct an independent international examination of such projects [11].

Hold a common position on water and energy issues in Central Asia, which consists in their consideration because of universally recognized norms and principles of international law, taking into account the interests and agreement of all countries in the region [9].

One of the priorities trend of the interstate partnership is the fuel and energy sector. Uzbekistan as a co-author supported the UN Resolution "Reliable and stable transit of energy carriers and its role in ensuring sustainable development and international cooperation" initiated by Turkmenistan. Here, a vivid example of effective cooperation is the largest project on the construction of the Turkmenistan-Uzbekistan-Kazakhstan-China gas pipeline, put into practice in December 2009, jointly implemented [10]. On the agenda is the construction of another branch of the gas main along the route Turkmenistan-Uzbekistan-Tajikistan-Kyrgyzstan-China with an annual capacity of up to 25 billion cubic meters of “blue fuel” [17].

Evidence of the growing dynamics of bilateral relations was another meeting of the President of Turkmenistan with members of our government. Gurbanguly Berdymukhammedov received the Uzbek delegation on the margins of the UN Global Conference on Sustainable Transport, happened in Ashgabat on November 26-27 in the last year. During the spiritual conversation, the prospects of bilateral cooperation had discussed, including in the transport and communication field.

In this context, it is important to note that our countries are unconditional support for each other within the frame of multilateral formats. The last vivid example of mutual favor was the support of Uzbekistan for the initiative of the head of Turkmenistan on the establishment of the International Day of Neutrality. As a result, on February 2 of this year, at the 71st session of the UN General Assembly, a resolution had adopted on the proclamation of December 12 as the International Day of Neutrality, co-authored by our country [18].

On March 6-7, 2017, President of the Republic of Uzbekistan Shavkat Mirziyoyev paid a state visit to Turkmenistan at the invitation of the President of Turkmenistan Gurbanguly Berdymukhammedov.

During the talks, which took place in a traditionally friendly and confidential atmosphere, the heads of state exchanged views on the entire range of bilateral multifaceted cooperation, as well as on the areas of interaction in the international arena. The parties noted the similarity of positions on all the issues discussed.

It should note that this is Shavkat Mirziyoyev’s first visit to a foreign country as the President of the Republic of Uzbekistan. Shavkat Mirziyoyev in his election program, speech at the inauguration ceremony of the President of the Republic of Uzbekistan, stressed that Uzbekistan will carry out mutually beneficial cooperation with all states, first of all with neighboring countries. This state visit of the President of our country has vividly confirmed that Uzbekistan in foreign policy attaches special importance to good-neighborly relations.

The results of the talks President of the Republic of Uzbekistan Shavkat Mirziyoyev and President of Turkmenistan Gurbanguly Berdymukhammedov signed the Joint Statement, the Strategic Partnership Agreement between the Republic of Uzbekistan and Turkmenistan. Between the relevant ministries and departments of the two countries signed the Agreement on Economic Cooperation for 2018-2020. Also the Memorandum on the Further Development of Cooperation in the Field of Railway Transport, the Program for Cooperation in the Cultural and Humanitarian Sphere for 2017-2019, the Program of Cooperation between the Ministries of Foreign Affairs for 2017-2018, contracts for the supply of agricultural machinery and chemical products from Uzbekistan to Turkmenistan. Between mayor’s offices of Khorezm region and Dashoguz province, Bukhara region and Lebap province had signed agreements on cooperation in trade, economic and cultural-humanitarian spheres [19].

The strategic partnership agreement signed by the presidents within the framework of the talks was a solid foundation for expanding and deepening between the two states, said Shavkat Mirziyoyev [20].

Impact Factor:

Journal	Impact Factor
ISRA (India)	1.344
ISI (Dubai, UAE)	0.829
GIF (Australia)	0.564
JIF	1.500
SIS (USA)	0.912
PII (India)	1.940
ICV (Poland)	6.630
ESJI (KZ)	3.860
IBI (India)	4.260
SJIF (Morocco)	2.031
An important area of economic cooperation is transport communications. Regular transportation of goods to Turkmenistan through the territory of Uzbekistan and to Uzbekistan through the territory of Turkmenistan. Two states are transit countries for third countries.

As noted, Uzbekistan and Turkmenistan have great opportunities in terms of international transit freight. Thanks to close cooperation in this direction, the volume of export-import goods of the two states transported through the territories of our countries reaches almost 2.5 million tons per year [8].

Naturally, Uzbekistan and Turkmenistan are important transit points at busy intersections of trade routes; practical mutually beneficial use has already begun with the opening of the Tejen-Serakhsk-Mashhad railway line in May 1996. The first cargo served by this railway line was the composition with Uzbek cotton, directed through the Turkmen-Iranian border by transit to the ports of the Persian Gulf [10].

The undisputed priority of Turkmen-Uzbek cooperation today have been transport are. Speaking about this, President of Turkmenistan Berdymuhamedov stressed that the efforts of our states can and should be aimed at achieving the main goal - the creation of a powerful and modern infrastructure that would ensure the unification of transport systems in Central Asia, Europe and the Middle East. In particular, our country is ready for joint work on the transport route Uzbekistan-Turkmenistan-Caspian Sea-South Caucasus with access to the Black Sea ports of Georgia, Turkey, Romania and other countries [11].

The roads and railways of the two countries are a well-integrated system and fulfill the task of an advantageous transit complex not only for Uzbekistan and Turkmenistan, but also for third countries. In January-September 2013, through the territory of Uzbekistan, 304.9 thousand tons of Turkmen cargos which were transited, from territory of this state - 283.8 thousand tons of Uzbek cargos. Expansion of cooperation and implementation of mutually agreed tariff policy in the field of transport communications and transit will not only allow the full realization of the potential of Uzbekistan and Turkmenistan, but will also increase their attractiveness for third countries.

In the opinion of the Uzbek side, it is expedient to optimize tariffs, introduce flexible preferences to increase the competitiveness and attractiveness of Turkmenistan's communications towards the ports of Bandar Abbas in Iran and Mersin in Turkey [6].

The Turkmen side highly appreciates Uzbekistan's willingness to actively participate in the creation of the transport and transit corridor "Central Asia-Middle East" (Uzbekistan-Turkmenistan-Iran-Oman), which was signed in April 2011 in Ashgabat. Its implementation aimed at diversifying and increasing the volume of transit traffic from our region to world markets. In this connection, President Gurbanguly Berdymukhamedov spoke about the need to start discussing the immediate aspects of the practical implementation of this promising project. The principle position of Turkmenistan and Uzbekistan on its terms and parameters is very important.

This witness to that there is a high transit potential in the two countries. In this context, it is necessary to note the historical significance of the agreement signed in Ashgabat on the formation of the new international transport and communication corridor "Uzbekistan-Turkmenistan-Iran-Oman". The agreement on the creation of this transport corridor was achieved on the initiative of the First President of the Republic of Uzbekistan Islam Karimov during his official visit to Turkmenistan in October 2010 [4]. The implementation of this project will allow us to use the shortest route to the ports in the Middle East, actively develop cargoes among the participating countries, give a new impetus to the inflow of investments into Central Asia and will strengthen the interest of other countries in using this corridor. Under the above-mentioned agreement, a legal meeting of the Coordinating Council took place in Tehran in February 2015, following which a protocol was signed providing for the adoption of concrete measures for the speedy implementation of the project [11].

Over the years of effective and constructive cooperation based on the principles of equality and mutual benefit, more than 200 documents regulating the mutual relations of the two states in all spheres of life were signed [15].

The volume of mutual trade turnover between Uzbekistan and Turkmenistan in 2013 amounted to 353.9 million US dollars [21], and in 2014 reached 413 million dollars. However, as noted, the parties have even more potential in this area.

The economic potential of Uzbekistan and Turkmenistan creates an opportunity for further expansion of the scope of cooperation. According to the intergovernmental agreement on mutual deliveries signed in 2012 and the agreement on economic cooperation for 2013-2017, consistent work is carried out to further diversify the structure and increase the volume of trade [12].

It is also noteworthy that mutual visits at the level of representatives of various departments have recently become more frequent. This testifies to a mutual understanding of the need to intensify bilateral trade and economic ties, to give them a qualitatively new content and character. During the 13th meeting of the Joint Turkmen-Uzbek Commission held in Ashgabat on January 24-25 this year, interest and readiness to diversify mutual trade turnover and search for new directions for cooperation taking into account the needs and

Impact Factor:	ISRA (India) = 1.344	SIS (USA) = 0.912	ICV (Poland) = 6.630
	ISI (Dubai, UAE) = 0.829	PIIH (Russia) = 0.207	PIF (India) = 1.940
	GIF (Australia) = 0.564	ESJI (KZ) = 3.860	IBI (India) = 4.260
	JIF = 1.500	SJIF (Morocco) = 2.031	
opportunities of the two countries were ascertain by the commission [17].

It was a good tradition to organize the National Exhibition of Turkmenistan in Tashkent and the National Exhibition of Uzbekistan in Ashgabat. At the same time, in the development of trade between Uzbekistan and Turkmenistan, the establishment of the most favored nation treatment is of great importance [6].

In particular, on February 24, 2017, in Ashgabat, took place the presentation of the cars of the new brand Ravon, the successor of the brand Uz-Daewoo [23]. The event was organized by the Economic Association "Turkmen-UzAVTO", the State Trade Center "Turkmenistan" of the Ministry of Trade and Foreign Economic Relations. The official representatives of a number of factories for the production of cars of various modifications took part in the celebration. Among them, there is the joint-stock company GM Uzbekistan for the production of passenger cars, SamAvto, which specializes in the production of buses and trucks of medium-capacity under the Isuzu brand, a joint Uzbek-German enterprise for the production of trucks and special equipment, trailers of MAN brand etc.

As is known, Turkmenistan successfully implements programs aimed at the creation of new high-tech industries, modernization of fixed assets and technical re-equipment of enterprises, through the introduction of management, marketing, expertise achievements. At the same time, great importance is attached to studying the positive experience of foreign countries and applying it taking into account the priorities of the Turkmen economy.

On March 3, 2017, in Ashgabat, Uzarogetkhansanoatholding opened the technical center of Uzbek agricultural equipment producer [24].

The delegation from Uzbekistan took part in the celebration, which included representatives of machine-building, service and leasing companies. Among the participants were representatives of the Ministry of Agriculture and Water Management of Turkmenistan, agricultural producers of our country, the Ayykal Velayat, the Dakhlan associations, the private sector of the economy and the Agrarian Party.

Minister of Foreign Economic Relations, Investments and Trade of the Republic of Uzbekistan Elyor Ganiev noted that the establishment of the Technical Center for the Sale and Maintenance of Agricultural Machinery would be another step in strengthening the fruitful cooperation between the two countries with significant growth potential.

Within the framework of trade and economic cooperation over the past ten years, agricultural machinery and attachments general coast USD 43 million were delivered to Turkmenistan from Uzbekistan. These are cotton seeders, cultivators, sprayers, tractor-trailers and spare parts for them. As noted at the presentation, the creation of the Technical Center will strengthen and expand the fruitful partnership [24].

The participants of the event got acquainted with the training center on the training of Turkmen machine operators and repair specialists of Uzbek equipment, opened on the basis of "Turkmen-UzAVTO". Here everything is ready for the beginning of the educational process - visual aids and samples showing individual units and aggregates of agricultural machines, interactive training equipment.

There had been also an exhibition of spare parts and consumables necessary for servicing agricultural machinery.

Various models of agricultural machinery were presented at the site in front of the Technical Center. It was noted that in the tests conducted in 2014-2016, the Uzbek cotton picker showed itself well in the field conditions of Turkmenistan.

In addition to the samples presented at the exhibition, Uzbek machine-builders offer a range of models of garden, tilled and arable tractors from 40 to 215 horsepower, combine harvesters, mounted and trailed equipment [24].

Cultural and humanitarian cooperation

An important factor in the development of bilateral relations is cultural and humanitarian cooperation. Since ancient times, Uzbekistan and Turkmenistan have supported and are developing bilateral ties in the cultural and humanitarian sphere. Speaking of this, it is necessary to note the Program of Cultural and Humanitarian Cooperation for 2011-2013, signed during the official visit of the First President Islam Karimov to Turkmenistan in October 2010 [13].

The interaction between the ministries of culture of the two countries, which together in the framework of the Program of Cooperation for the last years, hold exhibitions of works by famous artists, craftsmen and craftsmen come to artisans' fairs, tours of musical and theatrical groups are carried out. In December 2012, an exhibition of artists of Turkmenistan was successfully held in Tashkent. In August 2013, in the city of Turkmenbashiy, the delegation of Uzbekistan took part in the international festival of gifted children "Avaza - the Territory of Friendship", in September 2013 in Khiva, the Republican Turkmen Cultural Center organized anniversary events dedicated to the 290th anniversary of the Turkmen poet Makhtumkuli [5]. Turkmen masters of arts regularly take part in the international music festival "Shark Taronalar" and take prizes. At the international music festival Shark Taronalar in 2009, the singer from Turkmenistan Lale Begnazarova won the Grand Prix, and at the 2011 festival the Turkmen creative group Galakynyst took the third place [6]. To this we should add the bright and memorable Uzbek-Turkmen friendship festival held in October 2010 in Dashoguz. His
logical continuation was the joint concert of art masters of the two countries that was held on May 6, 2011 in Bukhara with great success [13].

During the official visit of President of Turkmenistan G. Berdimuhamedov to Uzbekistan in November 2013, the Program of Cooperation between the Governments of the two countries in the cultural and humanitarian sphere for 2014-2016 was signed, which facilitates the activation of cooperation between our states in these areas. In the summer of 2015, various events that positively affect the Uzbek-Turkmen good-neighborly relations were held in the cities of Turtkul, Karshi, Termez, Bukhara, Tashkent and in the Tashkent region by the Republican Turkmen Cultural Center and the Uzbekistan-Turkmenistan Friendship Society [11].

Another proof of this is the Days of Uzbek Cinema, which took place on September 26-28 last year in Ashgabat, within the framework of which eight feature films of Russian film directors were demonstrated. Including, "Parizod", "Unutma Meni", "Sehril qalpocha", "Toza", "Zarb", "Ota", "Hayotda..." and "Hazonzregi" [25].

With the rich traditions and customs of the fraternal people, the inhabitants of our republic could see November 7-11, 2016 during the Days of Culture of Turkmenistan in Uzbekistan. In Tashkent and Bukhara, with the participation of artists and masters of the arts of a friendly country, exhibitions, creative meetings with writers and poets, concerts and screenings of films took place [14].

Cooperation in the scientific sphere is developing. Our scientists conduct joint research in agriculture, petrochemical and other industries. In particular, the representatives of the Institute of Genetics and Experimental Biology of the Academy of Sciences of Uzbekistan, together with their Turkmen counterparts, are working to remove seed cotton and wheat varieties corresponding to the climatic conditions of Turkmenistan. Scientists conduct scientific and practical research in the petrochemical sector [6].

The Memorandum of Understanding signed between the National Library of Uzbekistan named after Alisher Navoi and the National Library of Turkmenistan in 2011 opened new opportunities for strengthening ties in the international book exchange, studying and practical implementation of modern library technologies, mutual exchange of experience and scientific developments [3].

Our countries have great potential in the tourism sector. In the framework of the Great Silk Road project, combined trips are organized. In other words, it is possible to establish the departure of the tourist who arrived in Uzbekistan through Turkmenistan and the arrival of the arriving in Turkmenistan through Uzbekistan. Thus, a favorable basis will be created to expand the cooperation of national airlines [6].

In the international exhibition and conference "Tourism and Travel" held in September in the city of Turkmenbash, representatives of our country took part. In October 5-7, in Uzbekistan, the 21st Tashkent International Tourism Fair "Tourism on the Silk Road", the companies and companies of Turkmenistan reached an agreement with the Uzbek partners to expand ties in this direction, and organize joint tours. With the participants of the fair, manager of the state travel company Maryssyahat from Turkmenistan Ilyas Zhumayev said: "Close proximity and partnership of our countries, integration of the transport system allow organizing combined tours, in particular, by returning tourists who arrived to Uzbekistan through Turkmenistan, and arrived in Turkmenistan - through Uzbekistan. At the Tashkent International Tourism Fair, we intend to get more acquainted with the opportunities of your country in the field of tourism, strengthen ties with travel companies and companies of Uzbekistan" [12].

On March 6-7, 2017, the state visit of the President of the Republic of Uzbekistan Shavkat Mirziyoyev to Turkmenistan took place. They discussed the coordination of the two countries' steps in the field of international tourism and the possibility of creating in the future a common tourist space with agreed programs and routes. The President of Turkmenistan invited the Uzbek partners to implement joint investment projects in the Avaza National Tourism Zone.

Conclusion

Thus, the Republic of Uzbekistan and Turkmenistan, realizing their historical responsibility for preserving and strengthening centuries-old ties of friendship, brotherhood and cooperation between the peoples of the two countries, reaffirmed their commitment to further deepening and strengthening bilateral economic ties, transport communications, culture, science, art, Sports and other spheres. And so, the confidence that the fruitful negotiations held, as well as the bilateral documents signed during the visit, will contribute to the further strengthening of the traditionally friendly and good-neighborly relations between the Republic of Uzbekistan and Turkmenistan on the basis of equality and mutual benefit.

A serious problem for the region is its geographical isolation and isolation. In this regard, Uzbekistan will continue to make comprehensive efforts to "de-colonize" Central Asia through the creation of alternative transport and communication corridors. The most promising is the trans-Afghan route leading to sea communications in the Indian Ocean.

The implementation of this project in cooperation with neighboring and other interested countries, with the assistance of donor countries and
international financial structures, will contribute not only to the sustainable development of the states of the region, but will also fundamentally change the geo-economic map of Central Asia.

Certainly, the historically established friendly relations between the peoples of the two countries, based on a common culture, mutual understanding and trust, ensure stability and peace in the Central Asian region.

JIF	SIS (USA)	ISRA (India)	GIF (Australia)	IS (Dubai, UAE)	PIF (India)	ICV (Poland)
1.500	0.912	1.344	0.564	0.829	1.940	6.630

References:

1. (2017) CSA RU. F. M-37, i-2, o-81, p. 122-129. http://www.narodnoeslovo.uz/index.php/homepage/rasmij/item/9086-uzbekistan-i-turkmenistan-strategicheskie-partnery (Accessed: 10.08.2017).
2. (2012) The concepts of foreign policy activities of the Republic of Uzbekistan. 10 September, 2012. // The bulletins of Chambers of Oliy Majlis of the Republic of Uzbekistan. 2012/№9/1 (1437).
3. (2011) «People's words», 6 May, 2011. http://www.narodnoeslovo.uz/index.php/homepage/rasmij/item/9086-uzbekistan-i-turkmenistan-strategicheskie-partnery (Accessed: 10.08.2017).
4. (2012) «People's words», 29 September, 2012. http://cemc.uz/article/2133/ (Accessed: 10.08.2017).
5. (2013) «People's words», 23 November, 2013. http://cemc.uz/article/2133/ (Accessed: 10.08.2017).
6. (2013) «People's words», 26 November, 2013. http://cemc.uz/article/2133/ (Accessed: 10.08.2017).
7. (2016) «People's words», 9 September, 2016. http://cemc.uz/article/2133/ (Accessed: 10.08.2017).
8. (2010) «The True of the East», 20 October, 2010. http://cemc.uz/article/2133/ (Accessed: 10.08.2017).
9. (2011) «The True of the East», «Pravda Vostoka», 26 October, 2011. http://cemc.uz/article/2133/ (Accessed: 10.08.2017).
10. (2013) «The True of the East», «Pravda Vostoka», 26 October, 2011. http://cemc.uz/article/2133/ (Accessed: 10.08.2017).
11. (2015) «The True of the East», «Pravda Vostoka», 6 October, 2015. http://cemc.uz/article/2133/ (Accessed: 10.08.2017).
12. (2015) «The True of the East», «Pravda Vostoka», 6 October, 2015. http://cemc.uz/article/2133/ (Accessed: 10.08.2017).
13. (2011) «The evening of the Tashkent», 26 October 2011. http://cemc.uz/article/2133/ (Accessed: 10.08.2017).
14. (2016) The materials of personal archives. November 11, 2016. http://cemc.uz/article/2133/ (Accessed: 10.08.2017).
15. (2017) The materials of personal archives. May 29, 2017. http://cemc.uz/article/2133/ (Accessed: 10.08.2017).
16. (2015) Uzbekistan – Turkmenistan – new vistas, time-tested friendship and collaboration. Available: http://uza.ru/politics/uzbekistan-turkmenistan-novye-gorizonty-proverennykh-vremene-08-10-2015 (Accessed: 10.08.2017).
17. (2017) Turkmenistan and Uzbekistan to a new level of cooperation: the talks between Presidents Gurbanguly Berdimuhamedov and Shavkat Mirzieev. Available: http://tdh.gov.tm/news/articles.aspx&article5484&cat11 (Accessed: 10.08.2017).
18. (2017) The first meeting of the newly elected President. Available: http://www.narodnoeslovo.uz/index.php/homepage/sijosat/item/9076-pervaya-vstrecha-vnov-izbrannykh-prezidentov/ (Accessed: 10.08.2017).
19. (2017) Uzbekistan and Turkmenistan are strategic partners. Available: http://www.narodnoeslovo.uz/index.php/homepage/rasmij/item/9086-uzbekistan-i-turkmenistan-strategicheskie-partnery (Accessed: 10.08.2017).
20. (2017) Uzbekistan and Turkmenistan started a new stage of relations. Available: https://www.gazeta.uz/ru/2017/03/07/talks/ (Accessed: 10.08.2017).
21. (2017) Uzbekistan – Turkmenistan: new stage of mutually beneficial cooperation. Available: http://cemc.uz/article/2133/ (Accessed: 10.08.2017).
22. (2017) Turkmenistan and Uzbekistan to a new level of cooperation: the talks between Presidents Gurbanguly Berdimuhamedov and Shavkat Mirzieev. Available: http://tdh.gov.tm/news/articles.aspx&article5484&cat11 (Accessed: 10.08.2017).
23. (2017) In Ashgabat, the presentation of the cars of the new brand Ravon – the successor to the brand of Uz-Daewoo. Available: http://turkmenistan.gov.tm/?id=13009 (Accessed: 10.08.2017).
24. (2017) In Ashgabat has opened a technical center of the Uzbek manufacturer of agricultural equipment - "Uzagromashservis". Available: http://www.turkmenistan.gov.tm/?id=13097 (Accessed: 10.08.2017).
25. (2016) Ashgabat hosted the Days of Uzbek cinema. Available: http://gundogar-news.com/index.php?category_id=5&news_id=9423 (Accessed: 10.08.2017).
26. (2017) Available: http://www.uzbekistan.nsk.ru/index.php?option=com_content&view=article&id=55:2010-04-13-14-17-46&catid=24:2010-04-13-14-07-27&Itemid=33 (Accessed: 10.08.2017).
VALIDATION OF THE METHODIC OF QUANTITATIVE DETERMINATION OF QUERCITIN IN THE MEDICINE “LIPOPHLAVONE, LIOPHILIZATE FOR EYE DROPS PREPARATION”

Abstract: Validation of methodic of HPLC quantitative determination of quercitin in the medicine “Lipophlavone, liophilizate for eye drops preparation” was carried out. The methodic was developed at first and is a part of analytical normative documentation. The obtained data for parameters, demanded for validation of quantitative determination, show us, that the methodic can be used for analytical investigation of the medicine. To treat obtained data “Chemcalc” program was used.

Key words: methodic, validation, nanotechnological liposomal medicine, Chemcalc program.

Language: English

Citation: Bida DS, Yurchenko OI, Chernozhuk TV, Kravchenko OA (2017) VALIDATION OF THE METHODIC OF QUANTITATIVE DETERMINATION OF QUERCITIN IN THE MEDICINE “LIPOPHLAVONE, LIOPHILIZATE FOR EYE DROPS PREPARATION”. ISJ Theoretical & Applied Science, 08 (52): 43-51.

Soi: http://s-o-i.org/1.1/TAS-08-52-6 Doi: https://dx.doi.org/10.15863/TAS.2017.08.52.6

Introduction
At the modern stage of pharmacy development the new brunch of creation of the new medicines with antioxidant and inflammation activity is developed too. The most important natural antioxidants are bioflavonoids (rutine, quercitin, flacumine), which possess good antioxidant and anti inflammation activity due to catching of endorgenic radicals. On the base of such biflavonoid nanotechnological liposomal medicine “Lipophlavone, liophilizate for eye drops preparation” was created. The medicine consists of quercitin, phosphatidylycholine (active substances) and lactose like crioprotector. [1.p.5050;2.p.20;3.p.15;4.p.20;5.p.17;6.p.7].

Development of methods of control of quality is part of pharmaceutical creation of medicines. To control the composition of the medicine the new methodic of qualitative determination of one of the active substance-querctin, using high performance liquid chromatography (HPLC) method was developed. HPLC is universal and high effective method in analytical chemistry, because of it is widely used in modern analytical methodic. [7.p.75; 8.p.30].

HPLC method except of selectivity, is different from TLC and spectrophotometry in its sensibility. Because of we have small amount of quercitin in our medicine, we should use HPLC method. We can not use big samples of the medicine because of...
nonhomogeneous distribution of quercitin in the samples. In this case we should use sample of the medicine from one vessel because at low concentrations an error of measurement makes contribution in the obtained results.

According to demands SPU 2.0 (State Pharmacopoeia of Ukraine) to carry out validation of methodic of quantitative determination in medicines forms we should estimate the next characteristics: accuracy, that included convergence and intralaboratory accuracy, selectivity (specify), linearity, diapason of use, robustness (stability of the methodic to changes) [10,p.20;12,p 5].

The purpose of the work is: to determine use of developed methodic to analytical investigation of the medicine, with use of “Chemcalc” program.

Experimental

Liquid chromatography HPLC Shimadzu LC 20AD, detector LT-ELSD SEDEX 85; dozen pipettes Vitlab from 100 to 1000 ml; laboratory scale Kern 82 g; volumetric flasks Simax, of 10 and 100 ml volume; device to obtain high purified water Millipore/Millipore Direct-Q SUV were used for analysis.

Conditions of chromatography were: column Waters Xbridge Shield RP18 5 mkm × 250 mm × 4.6 mm; temperature of column was 55°C; mobile phase B: metanole-acetonitrile, phase A 1% water solution of acetic acid; flows rate is 1 ml/min; volume of injected sample is 10 ml; detection; wave lengths of detection is 371 nm. An algorithm of carrying out chromatography is in the Table 1.

Investigated solution: to the vessel with the medicine, that consists of lipophilized powder with contain of quercitin 0.75 mg, phosphatidylcholine 27.5 mg and lactose 40 mg, was added 2 ml of phase B, mixed up to total dissolution. The contain of the vessel is placed into volumetric flack of 10 ml volume, brought up to the mark by B phase and mixed. The solution is filtered through PTFE membrane with porous diameter of 0.45 mkm.

Compensation solution: the sample of 0.1126 g of standard quercitin dihydrate (Quercitin dihydrate CRS batch2, 90.5% C_{15}H_{10}O_{7}, EC no 204-187-1, RTECS No LK8950000) was placed into volumetric flack of 100 ml volume, dissolved in 70 ml of B phase and brought up to the mark by B phase and mixed. 0.75 ml of quercitin dihydrate solution is placed into volumetric flack of 10 ml volume and dissolved in B phase. [9,p.30;11,p.10]

Results and discussion

At the first stage of our work an availability of chromatography system was estimated.

The results of availability of chromatography system are in the Table 2 (data by Shimadzu LCsolution Analysis Report).

According to demands of SPU 2.0 the results from table 2 approve an availability of chromatography system.

At the second stage of our work selectivity of methodic was estimated. There are only peak of quercitin is observed in this system. Peaks of phosphatidylcholine and lactose are not observed. It was proved by absence of phosphatidylcholine and lactose peaks on placebo chromatogram (and phosphatidylcholine and lactose solution in phase B).

Spectral purification of the quercitin peak, obtained with use of diode-matrix detector for investigated and comparison solutions was checked up. An example of placebo chromatogram is on 1(a) Figure. Examples of chromatograms and peaks spectra for compensation and investigated solutions are on Fig. 1(b). And Fig. 1(c) respectively. Peak cleanness of quercitin in compensation solutions is observed at wave lengths 370.57 nm (Fig. 1(b)). Peak cleanness of quercitin in investigated solutions is observed at wave lengths 370.50 nm (Fig. 1(c)).

At the third stage of our work an accuracy of the methodic was estimated. An accuracy of the methodic was checked by establishing of comparison between well known true value (external international standard) and obtained value (an average value), using the methodic in a number of parallel measurements. An analysis of a number of samples, prepared according to external international standard Quercitin dihydrate CRS with well known concentrations of quercitin in three parallels of every sample. Five standard samples with well known concentration of quercitin were prepared by solution of standard quercitin sample. Also an analysis of samples, prepared from quercitin dihydrate with the same concentrations was carried out. Five standard samples with well known quercitin concentration were prepared from compensation solution. Five investigated samples were prepared from quercitin solution with concentration 1 mg/ml.

The results of an accuracy of the methodic are in Table 3.

Result: The obtained result 98.2±0.1 is not exceed an error of the methodic, described in analytical documentation in the diapason of use “Lipoflavone-nano” medicine, like 100±10% (from 0.67 up to 0.83 mg in the vessel).

At the fourth stage of our work linearity of the methodic was estimated.

To prove linear dependence of peak square from concentration in the solution were prepared 5 solutions with quercitin concentrations 0.6 mg/ml, 0.7 mg/ml, 0.8 mg/ml, 0.9 mg/ml, 1 mg/ml. To do it, 5 precise samples of Quercitin standard (Quercitin dihydrate CRS batch 2, 90.5% C_{15}H_{10}O_{7}, EC no 204-187-1, RTECS No LK8950000) in the diapason from 75% to 125% from contain in the medicine were taken and solutions in the B phase were prepared.
Impact Factor:

Country/Region	Impact Factor
ISRA (India)	1.344
IS (Dubai, UAE)	0.829
GIF (Australia)	0.564
JIF (Poland)	1.500
SIS (USA)	0.912
PHHII (Russia)	0.234
GIF (Australia)	0.564
ESJ (KZ)	3.860
SJIF (Morocco)	2.031

Every solution was analyzed trice and coefficients of linear regression were determined.

The results of linearity of the methodic are on pic. 2 and table 4.

At the fifth stage of our work the diapason of use of the methodic was estimated. Diapason of use of the methodic at quantitative determination in medicines is from 80 up to 120% from nominal content of active substance. Content of quercitin, according to analytical normative documentation of the medicine, is in diapason from 0.67 up to 0.83 mg in the vessel or 0.75 mg ±10% (100%±10%), what is conformed with demands according to medicines.

At the sixth stage of our work an accuracy of the methodic was estimated. To determine accuracy of the method of quantitative determination, the investigated solution was chromatographed 5 times in one day according to the methodic. The criteria of accuracy is relative standard deviation. The results of accuracy estimation of the methodic are in the Table 4.

Relative standard deviation is Sr,% = 0,145. At the step of validation, laboratory accuracy according to the given conditions (equipment, climate, reagents, etc.) was determined.

At the seventh stage convergence of the methodic was estimated. To determine convergence of the results of analysis (as index of stability of the used HPLC method) 3 solutions with 2 parallel samples with concentrations of quercitin in diapason from 80 up to 120% were chromatographed. The results of estimation of convergence of the methodic are in the Table 5.

At the eighth stage of our work robustness (stability of the methodic to changes) was estimated. To check robustness of chromatography we should determine stability of solutions with time, and an influence of subjective factors should be determined.

An influence of subjective factors was not proved by our investigation of laboratory accuracy.

Using developed by us software «ChemCalc», calculations of quantitative determination of quercitin in the medicine “Lipophlavone, liophilizate for eye drops preparation” were done. The software was developed on C# programming language with use Windows Forms и Entity Framework Code First technologies.

At first were created three templates to carry out calculations:
- Parametrical, contained all of the parameters of chromatography.
- Template, contained all of information about sample preparation.
- General template, contained all information about sample and connect all of templates into one.

After we put our samples in the general database and with created template did treatment of the obtained experimental data.

As a result we obtained quantitative content of quercitin in the samples and statistic information about it. Use these results we can make an account, included all information about carried out analysis.

Conclusions

Validation of developed by us methodic of quantitative determination of quercitin in the medicine “Lipophlavone, liophilizate for eye drops preparation” was carried out. The methodic was done with use of HTML on chromatograph of Shimadzu company and diode-matrix detector Waters Xbridge Shield RP18 5 × 250 mm × 4.6 mkm. It was shown that the methodic can be used for analytical investigations of “Lipophlavone, liophilizate for eye drops preparation. It was proved by using developed by us a “Chemcalc” software.

An algorithm of carrying out chromatography

Table 1

Time (min)	Flow (ml/min)	Mobile phase A (% vol.)	Mobile phase B (% vol.)
0	1.0	40	60
19.0	1.0	40	60
20.0	1.0	10	90
27.0	1.0	10	90
28.0	1.0	40	60
Impact Factor:

Journal	Impact Factor
ISRA (India)	1.344
ISI (Dubai, UAE)	0.829
GIF (Australia)	0.564
JIF	1.500
SIS (USA)	0.912
PHII (Russia)	0.234
ESJI (KZ)	3.860
ICV (Poland)	6.630
PIF (India)	1.940
IBJ (India)	4.260
GIF (Australia)	0.564
JIF	1.500
SIS (USA)	0.912
PHII (Russia)	0.234
ESJI (KZ)	3.860
ICV (Poland)	6.630
PIF (India)	1.940
IBJ (India)	4.260

Table 2

Compensation solution №1	Retention time, min	Peak square	Peak height	Tailing factor	Number of theoretical plates
1	9.030	2788725	107146	6.848	11.445
2	9.034	2776390	106326	6.731	11.232
3	9.034	2775399	106380	6.624	11.360

Mean values: 2780171

Investigated solution № 1,

Retention time, min	Peak square	Peak height	Tailing factor	Number of theoretical plates	
1	9.060	2693526	103435	6.773	11.008
2	9.056	2677276	101939	6.816	11.072
3	9.038	2681352	102094	6.735	11.012

Mean values: 2684051

Table 3

The results of an accuracy of the methodic ($n = 9$, $P = 0.95$, $S_r = 0.36\%$).

№ of sample	Quercitin content in standard solution mg/ml «injected»	Quercitin substansion content in investigated solution mg/ml «found out»	Quercitin content «found out» from «injected»,%
1	0.068	0.066	98.18
2	0.079	0.077	98.13
3	0.090	0.088	98.15
4	0.101	0.099	98.09
5	0.113	0.111	98.37

Mean value: 98.184

Table 4

The results of estimation of linearity and accuracy.

C (of standard solution), mg/ml	An average peak square	№	Content of quercitin, mg in the vessel
0.61	2049968.67	1	0.75
0.71	2441709.67	2	0.76
0.82	2800191.33	3	0.76
0.92	3158978.33	4	0.77
1.02	3560322	5	0.75

Table 5

The results of estimation of convergence of the methodic

№ of injection	Peak square	An average peak square	Quercitin content , mg	Quercitin content from nominal, %
Content of quercitin 80% from nominal one ($S_r = 1.17\%$)			0.61	81.3
1	2135727	2135989	2135989	81.3
2	2136251	2136251	2136251	81.3

| Content of quercitin 100% from nominal one ($S_r = 1.77\%$) | | | 0.77 | 102.5 |
| 1 | 2693526 | 2685401 | 2685401 | 102.5 |

Bi(%) 2 (USP38/NF33 Dietary Suplements: Quercitin) [13].
Impact Factor:

Journal	Impact Factor
ISRA (India)	1.344
ISI (Dubai, UAE)	0.829
GIF (Australia)	0.564
JIF	1.500
SIS (USA)	0.912
ICV (Poland)	6.630
RINCS (Russia)	0.234
PIIF (India)	1.940
ESJI (KZ)	3.860
IBJ (India)	4.260
SJIF (Morocco)	2.031

Table

| Content of quercitin 120% from nominal one (S_r = 0.79%) |
|-----------------------------|-----------------------------|
| 1 | 3176012 | 311484.5 | 0.89 | 118.7 |
| 2 | 3046957 | | | |

An average relative standard deviation of peaks squares is 1.24%.

Chromatogram

a

![Chromatogram a](image1.png)

b

![Chromatogram b](image2.png)
Impact Factor:

Journal	Impact Factor
ISRA (India)	1.344
ISI (Dubai, UAE)	0.829
GIF (Australia)	0.564
JIF	1.500
SIS (USA)	0.912
PHHI (Russia)	0.234
ESJI (KZ)	3.860
SIS (USA)	0.912
PIIF (India)	4.260
ESJI (KZ)	3.860
ICV (Poland)	0.912

<Chromatogram>

![Image of Chromatogram A](C:\LabSolutions\Data\Project1\quercetine_qc\200110\querc_100_2.lcd)

Peak	Ret. Time	Area	Height	Area%	Tailing Factor (10%)	Theoretical Peak
		1077776	101938	100.00	0.87%	412.656

Specimen

206.371/255285/486.203

Peak 1
Retention Time: 9.656 mAU

<Chromatogram>

![Image of Chromatogram B](C:\LabSolutions\Data\Project1\lipids\220117\valid\placebo.lcd)

a

b
Figure 1 - Chromatogram of placebo (a), chromatogramme and spectra of quercitin peak of compensation solution (b), of investigated solution (c).
Impact Factor:

Journal	Impact Factor
ISRA (India)	1.344
ISI (Dubai, UAE)	0.829
GIF (Australia)	0.564
JIF	1.500
SIS (USA)	0.912
PIIH (Russia)	0.234
ESJI (KZ)	3.860
ISPC (USA)	0.912
ICV (Poland)	6.630
IBI (India)	4.260
PIF (India)	1.940
GIF (Australia)	0.564
JIF	1.500
SIS (USA)	0.912
ICV (Poland)	6.630
PIF (India)	1.940
GIF (Australia)	0.564
JIF	1.500
SIS (USA)	0.912
ICV (Poland)	6.630
PIF (India)	1.940

Figure 2 - Dependence of the average peak square from standard solution concentration to estimate linearity of the methodic.

\[y = (3.668 \pm 56.814.23) \times - (192.150.25 \pm 47.033.06) \]
\[R^2 = 0.9993 \]

References:

1. Gholam A. (2005) Advanced Drug Delivery Reviews. 2005, V. 57, pp. 2047–2052.
2. Shulg'ya S.M. (2013) Biotechnologia acta. 2013, V. 6, pp. 19–40.
3. Krasnopol'skiy Yu. M., Stepnov A. E., Shvec V. I. (2011) Ukr. biofarm. jurn. 2011, V. 3, pp. 10–18.
4. Shvec V.I., Krasnopol'skiy Yu.M. (2008) Provisor. 2008, V. 3, pp. 18-24.
5. (2009) Reestr lekarstvenny'h sredstv RLS ® 2.3.5. Antioksidanty': spravochnik. Moscow, 2009, 275 p.
6. (2017) AND Lipoit flavon UA/3581/01/01
7. Yashin Ya., Vedenin A., Yashin A. (2015) Analitika. 2015, V 2.- pp. 70-84.
8. (2011) Analiticheskaya himiya v sozdaniia, standartizacji i kontrole kachestva lekarstvenny'h sredstv: v 3-h tomah na russkom yazy'ke. T. 2. / [Pod red. chlen-kor. NAN Ukrainy' V.P. Georgievskogo], Har'kov: «NTMT», 2011, 474 p.
9. Beregovyh V.V. (2008) Validaciya analiticheskih metodik dlya proizvoditeley lekarstv. Moscow, Litterra, 2008, 132 p.
10. Er'mer Y., Miller D.H. (2013) Validaciya metodik v farmacevticheskem analize.- Moscow: gr. kom. VIALEK, 2013, 350 p.
11. (2015) Derjavna Farmakopeya Ukrai'ni / Derjavne p'dprie'mstvo «Naukovo-eksperntniy farmakopeyniy centr». - 2-e vid. T.1. - Harkiv: DP «Ukrai'ns'kiy naukoviy farmakopeyniy centr yakosti' li'kars'kih zasobi'v», 2015, 131 p.
| Source | Impact Factor |
|------------------------|---------------|
| ISRA (India) | 1.344 |
| ISI (Dubai, UAE) | 0.829 |
| GIF (Australia) | 0.564 |
| JIF | 1.500 |
| SIS (USA) | 0.912 |
| PII (Russia) | 0.234 |
| ESJI (KZ) | 3.860 |
| SJIF (Morocco) | 2.031 |
| ICV (Poland) | 6.630 |
| PIF (India) | 1.940 |
| IBI (India) | 4.260 |

12. (2015) Derjavna Farmakopeya Ukrai`ni / Derjavne pri`dpriv`mnstvo «Naukovo-ekspertniy farmakopeyniy centr». - 2-e vid. T.1. - Harki`v: DP «Ukrai`ns`kiy naukoviy farmakopeyniy centr yakosti` li`kars`kh zasobi`v», 2015, 1128 p.

13. (2016) U.S. Pharmacopeia National Formulary, USP38/NF33, through Second Supplement, Official Dec.1, 2015 to Apr.30, 2016, Dietary Supplements: Quercitin.
THE NATURE AND CONTENTS OF THE STRATEGY OF RUSSIAN INNOVATIVE DEVELOPMENT AND ITS FEATURES

Abstract: The relevance of the subject of the current article is caused by the fact that this stage of development is characterized by an essential growth of innovative activity worldwide. One of the reasons of this process is explained by a special role of innovations in the development of modern society. The countries with market economy introduce innovations into the number of those main tools which promote increase and strengthening of competitiveness of economic entities. For developing countries, the countries with formed post-industrial economy, innovations are accelerators of economic growth as well as a source of formation of qualitatively new knowledge.

Key words: innovation, innovative activity, economic growth, development strategy.

Language: English

Citation: Chistilin AV (2017) THE NATURE AND CONTENTS OF THE STRATEGY OF RUSSIAN INNOVATIVE DEVELOPMENT AND ITS FEATURES. ISJ Theoretical & Applied Science, 08 (52): 52-55.

Introduction
Innovation is the final result of introduction of human intellectual activity, their imagination, creative process, discoveries, inventions and rationalization.

The concept "innovation" (Latin) means change, updating. Innovation itself has two aspects: an innovation and introduction of this innovation in a certain process.

In the work we use a definition of the concept "innovation" which is offered by professor's pupil Chan Kim Gábor Byurt. According to him, innovation is a fight against "painful points" and a mix of non-standard approaches to effective business. Such definition characterize substantial and customer-oriented innovations.

Materials and Methods
Innovations in a broad sense are understood as profitable use of novelties as in the form of introduction of new technologies as well as new types of production or certain services along with organizational and technical and social and economic solutions of financial, commercial, administrative or other character.

The innovation means using the results of intellectual work as well as the technological developments directed to improvement of social and economic activity in that or in other sphere of public work. Innovations have the following three functions: recovering, investing, stimulating.

Transition of modern society to global informatization demands broad application of information technologies at the modern enterprises as the information and communicative technologies (ICT) allow the enterprises to apply for receiving the innovative status.

At the present stage of social development the implementation of economic processes at a high level is impossible without introduction of innovative technologies as they make the industry more effective and capable to draw attention of the real experts. Rapid development of innovations in the sphere of science and technology does not allow the Russian economy to stand apart either. Innovative technologies help not only to increase economic efficiency of production, but also to create optimum conditions for increase in profitability of production in the economic plan.

Innovative activity is capable to come up with the highest economic results.

The problems of effective usage of innovative potential, scientific justification of their role in public and economic transformations are of special value and importance. [4, p. 76] The following questions are still debatable: the principles and mechanisms of introduction and management of innovations; tasks of developing the approaches of management of...
innovations and their creation through different projects; determination of efficiency and effectiveness of a managerial system of innovations in the context of achieving steady competitive advantages by the enterprise. In this regard there is a necessity of a competent research of the questions connected with the processes of management of innovations and providing practical tools on adoption of administrative decisions in management of organizations.

So, the value of the term "innovation" depends on a specific goal of a particular research. In the work we consider the principles of introduction of innovative projects and their management.

An innovative project is an object of innovative activity. The concept "innovation" is interpreted by the vast majority of authors from two sides: an innovation as the certain process directed to achievement of result and an innovation as result. The definition of an innovation shows that it without fail has to:

1) be characterized by essentially qualitative novelty;
2) support groups of objects according its extension;
3) have practical focus, to be introduced (that is capable to satisfy market demand) and to have the direction on achievement of a certain effect (to be profitable);
4) to contain a concept of final results.

All this predetermines the maintenance of the main object of innovative activity - an innovative project.

An innovative project is called the planned complex on introduction of production, technical, organizational and economic actions which are united by one general (main) purpose.

An investment project consists of several stages of carrying out the research which are coordinated in resources, performers and on terms, and is carried out by management.

Other definition says that it is a system of interconnected programs along with the purposes of their achievement making a complex of developmental, research, production, organizational and commercial, financial and some other actions organized and issued by means of project documentation which provides an effective solution of concrete scientific and technical tasks (problems) in quantitative indices whose aim is to promote an innovation.

M.A. Yokhna and V.V. Stadnik consider that the innovative project is a complex of the interconnected actions developed for the purpose of creation, production and introduction of new hi-tech products with resource restrictions.

Thus, the concept "an innovative project" can be considered somewhat as set of measures for achievement of the innovative purposes; as a process of implementation of innovative activity; as a package of the documents causing and describing these actions. [10, p. 213]

It should be noted that development of the innovative project is a long and very expensive process that, in turn, causes the necessity of studying and accounting of a technique of effective project management.

The basis the concept of project management is the view on the project as on the change of any system connected with time expenses and resources, and the process of changes which is carried out by developed rules and procedures is a basis of management of innovative projects as well.

For successful development of the state creation of conditions and methods for effective transformation of human intellectual potential to the intellectual capital is among the main priorities. Such tendency can be tracked both at the level of a separate organization, and at the level of the state.

The main goal of assessment of the intellectual capital is ensuring sustainable development of an organization. The process of introduction of an innovation to the market turns internal innovations into external ones, but there are also such ones which are used in project indicators. One of opportunities of an innovative project are internal innovations of the project which are characterized by motivation of employees, flexibility and constant improvement of the project.

This developed concept of application of innovations in projects can provide to managers the opportunities to make reasonable decisions on project-oriented development both at the enterprise, and in scales of the whole state.

Thus, change of forms of manifestation of a particular system element means economic system transformation.

Globalization becomes a new essential line of international relations. This concept is interpreted in different ways: according to the point of view which prevails, it is impossible to consider any process in society, any action (economic, social, legal, political, military, etc.) in our life only restrictedly, whatever large-scale or private they were. The interdependence and interrelation of separate processes, the phenomena and actions amplify that demands account and assessment of a boomerang effect, both more remote and distant consequences in directly adjacent spheres.

If to talk about innovative politics at the present stage of the Russian Federation, it is necessary to define, first of all, the standard and legal base which regulates an order of realization of this policy. The main document regulating this sphere is the "Strategy of innovative development of the Russian Federation up to 2020" as this strategy sets the main vector in the formation of a political thought of development of innovations in the Russian Federation.
This Strategy was developed on the basis of the Concept of long-term social and economic development of the Russian Federation for the period till 2020, besides, - according to the Federal Law "About Science and the State Scientific and Technical Policy". The strategy describes both calls, and threats which Russia faces at the moment in the sphere of its innovative development and also defines priorities and purposes in this matter, specifying tools in carrying out state innovative policy. This Concept is based on the results of full comprehensive assessment in the country of its innovative potential and drawing up the scientific and technical long-term forecast.

Key external calls are defined by acceleration of technological development of processes of world economy as well as strengthening competition on a global scale for investments and highly qualified personnel and also for climate changes.

The strategy gives a full assessment of the state in the innovative sphere for the historical modern moment (moderately critical), including all branches of the economy. [5, p. 362] This document is a backbone for all strategic subsequent documents as well as for development of state programs.

Conclusion
The main objective of the Strategy is the transition of the Russian economy to a new, innovative way of its development up to 2020. It is possible to achieve these objectives according to the following indicators: increase in a share in innovative productions with all total enterprises of innovative plan up to 40-50% (in relation to a present indicator - 10%); increase in a share of the Russian Federation in the world markets extending hi-tech goods and services up to 5-10% approximately in five or even more sectors of economy; increase in an export share for hi-tech Russian goods by 4 times; increase in a share of innovative services and goods in GDP by about 7 times; increase in costs of carrying out the research and development twice and so on. There are also some other documents which belong to innovative policy of the Russian Federation.

Thus, the standard and legal base which regulates an order of implementing the innovative strategy of the Russian Federation, determine by such documents:
- The concept of long-term social and economic development of the Russian Federation up to 2020;
- The strategy of innovative development of the Russian Federation up to 2030;
- Fundamental directions of The Russian policy in the field of development of technologies and science for the period up to 2010 as well as on further prospect;
- The main activities of the Government of the Russian Federation till 2018;
- Priority directions of development of technologies, science and technology of the Russian Federation;
- The strategy of developing the innovations and science in the Russian Federation until 2015;
- The doctrine of development of the Russian science;
- Federal Law "About Science and the State Scientific and Technical Policy".

Thus, the principles of the standard mechanism define realization of innovation policies. The main mission of bodies of the Russian government is the research of subjects of the legislation regarding full implementation of all innovative tasks. As it is noted in legal literature at present time the legislation of the Russian Federation concerning the innovative sphere in many respects has declarative character, and instructive documents quite often contradict with acts.

The essential activization of innovative activity and creation of a civilized market of intellectual property items will be possible only if the coordinated system changes and additions directed to stimulation of innovative activity are made to the regulations of various branches of the legislation.

It is well-known that now various organizations and departments are involved in development of separate aspects of the innovative legislation in tightly departmental interests. The deficiency of the qualified specialists having necessary theoretical knowledge and practical experience of work in the innovative sphere is noted; there are no common basic innovative concepts either.

In Russia two opinions regarding a legislative process in the innovative sphere prevail: creation of common basic innovative law or development of separate laws on various aspects of the innovative activity.

For this purpose, first of all, it is necessary:
- to work out an accurate strategy of innovative policy of the state;
- to formulate the most important innovative projects;
- to develop actions for involvement of the innovative-focused foreign investors;
- to create some mechanisms of legal stimulation of innovative activity.

At the present stage, there are changes in contents and in the nature of the state activity in the connection with the process of world globalization. States more and more deal with such global problems as crime, climate change, approach of deserts, epidemics, poverty and also rational use by various countries of their natural resources.
References:

1. Chernikova A.E. (2016) Osobennosti upravlenija innovacionnymi proektami // Molodoj uchenyj. — 2016. — №24. — p. 256-258.

2. Hotjasheva O.M. (2016) Innovacionnyj menedzhment: Uchebnik i praktikum dlja akademicheskogo bakalavriata / O.M. Hotjasheva, M.A. Slesarev. - Ljubercy: Jurajt, 2016. - 326 p.

3. Jakobson A.Ja. (2013) Innovacionnyj menedzhment: Uchebnoe posobie / A.Ja. Jakobson. - M.: Omega-L, 2013. - 176 c.

4. Jejhler L.V. (2015) Planirovanie konechnyh rezultatov hozjajstvennoj dejatelnosti gruzovyh avtobusnyh predprijatij [Elektronnyj resurs] / L. V. Jejhler, A. E. Chernikova. — Omsk: SibADI, 2015. — 98 p. — Available: http://elibrary.ru/item.asp?id=25637337 (Accessed: 10.08.2017).

5. Kiseleva V.V., Kolosnicyna M.G. (2016) Gosudarstvennoe regulirovanie innovacionnoj sfery; GU VShJe - Moskva, 2016. - 408 p.

6. Kotljarov N.I., Levchenko L.V. (2013) Globalizacija i regional'naja integracija stran - chlenov Tamozhennogo sojuza. // Jekonomicheskie nauki. –2013. –№7(104). – p. 109.

7. Medynskij V.G. (2013) Innovacionnyj menedzhment: Uchebnik / V.G. Medynskij. - M.: NIC INFRA-M, 2013. - 295 p.

8. Rengol'd O.V. (2016) Upravlenie zatratami gruzovogo avtobusnogo predprijatija s ispol'zovaniem nalogovogo menedzhmenta [Elektronnyj resurs] / O. V. Rengol'd // Mezhdunarodnyj nauchnyj zhurnal = International Scientific Journal: sbornik nauch. trudov. — Kiev: [B. i.], 2016. — p. 131–133 — Available: http://www.inter-nauka.com/uploads/public/14612388706493.pdf (Accessed: 10.08.2017).

9. Rumjancev A.A. (2012) Kommercializacija nauchnoj razrabotki; Nauka - Moscow, 2012. - 112 p.

10. Tovb A.S. (2010) Upravlenie proektami: standarty, metody, opyt [Tekst] / A. S. Tovb, G. L. Cipes. — 2-e izd. — M.: ZAO «Olimp-Biznes», 2010. — 240 p.
ANALYSIS OF FACTORS COMPLEX RADON INDEX BY EXAMPLE OF GOMEL REGION

Abstract: The article deals with problem of natural radon radioactivity gas radon. It is shown that with an increase number of factors, affecting the volume activity of radon, increases correlation coefficient of complex radon index and volume activity of radon in residential buildings on territory of Gomel region. Presented complex radon index can be used to map the territory in a large-scale version.

Key words: radon, volume activity, complex radon index, Gomel region, mapping the territory.

Language: Russian

Citation: Chekhovskiy AL (2017) ANALYSIS OF FACTORS COMPLEX RADON INDEX BY EXAMPLE OF GOMEL REGION. ISJ Theoretical & Applied Science, 08 (52): 56-60.

Soi: http://s-o-i.org/1.1/TAS-08-52-8 Doi: https://dx.doi.org/10.15863/TAS.2017.08.52.8

 ANALИЗ ФАКТОРОВ КОМПЛЕКСНОГО РАДОНОВОГО ПОКАЗАТЕЛЯ НА ПРИМЕРЕ ГОМЕЛЬСКОЙ ОБЛАСТИ

Аннотация: В статье затрагивается проблема естественного радиоактивного газа радона. Показано, что при увеличении числа факторов, оказывающих влияние на объемную активность радона, повышается коэффициент корреляционной связи комплексного радонового показателя и объемной активности радона в жилых зданиях на территории Гомельской области. Представленный комплексный радоновый показатель может использоваться для картирования территории в крупномасштабном варианте.

Ключевые слова: радон, объемная активность, комплексный радоновый показатель, Гомельская область, картирование территории.

Введение

Радон – радиоактивный газ, образующийся в процессе радиоактивного распада в цепочке естественных радионуклидов семейств урана и тория. Согласно оценке НКДАР ООН, радон и его дочерние продукты распада (ДПР) определяют примерно 3/4 годовой индивидуальной эффективной дозы облучения, получаемой населением от земных источников радиации [1]. Радон, являясь компонентом воздуха, попадает в легкие человека при дыхании. Воздействие на организм человека вышестоящих клеток дыхательной системы – одна из причин возникновения рака легких. По оценкам экспертов МКРЗ облучение населения за счет радона обусловливает до 15% общего количества заболеваний раком легких [2]. Естественный изотоп радона 222Rn, являющийся наиболее долгоживущим (период полураспада 3,82 дня), вместе с его ДПР вносят наиболее существенный вклад в облучение человека.

Одним из основных тезисов Публикации № 65 МКРЗ [3] является необходимость введение понятия и критериев для оценки радоноопасных зон, что является очень важным в случаях недостатка ресурсов для проведения полномасштабных исследований, как, например, в Беларуси. Известно, что основным источником поступления радона в воздух жилых зданий является почва [4]. Учитывая это, можно провести картирование территории по радоновой опасности с использованием геологических показателей, определяющих объемную активность (ОА) радона, выделить наиболее радоноопасные зоны и предложить необходимые противорадоновые мероприятия.

Целью настоящей работы являлся анализ изменения характера корреляционной связи при...
увеличении количества факторов, оказывающих влияние на объемную активность радона, сочетание которых выступает в качестве комплексного радонового показателя (КРИ).

Материалы и методы исследований
Материалами для настоящей работы являлись результаты измерения ОА радона в жилых зданиях 21 района Гомельской области, которые были получены при широкомасштабных обследованиях, представленных в работах [5; 6; 7]. ОА радона определялась по методике МВИ. МН. 1111-99 «Методики определения объемной активности радона в воздухе жилых и производственных помещений с использованием интегральных радонометров на основе твердотельных трековых детекторов альфа-частиц» [8]. Для определения значений показателей, оказывающих влияние на ОА радона, использовались следующие материалы: картосхема мощности дозы дочернобыльского фона (МЭД) [9; 10]; картосхема концентрации урана в почвах [11]; картосхема коэффициента фильтрации почв для радона [12]; гидрогеологическая карта с глубинами залегания водоносного горизонта [13].

Результаты и их обсуждение
Исходя из эколого-географической характеристики и почвенного состава территории Гомельской области, были предложены некоторые показатели, которые могут оказывать влияние на ОА радона. Для обоснования возможности их применения для оценки потенциальной радоновой опасности территории рассмотрен характер связи ОА радона с представляемыми факторами при увеличении их количества.

По результатам измерений ОА радона на территории Гомельской области были определены среднерайонные значения ОА радона по формуле (1):

\[C = \frac{\sum^n_i C_i}{n} \] \hspace{1cm} (1)

где \(C_i \) – измеренная \(i \)-я ОА в районе, Бк/м³;
\(n \) – количество измерений ОА в районе.

Поступление радона в жилые здания определяется свойствами подстилающей почвы. Исходя из этого, можно предложить в качестве КРИ величину, равную произведению факторов, оказывающих влияние на ОА радона, в относительных единицах: МЭД, концентрация урана в почвах, коэффициент фильтрации почвы для радона и глубина залегания водоносного горизонта. При добавлении каждого из перечисленных показателей к предыдущим ожидается увеличение коэффициента корреляции между КРИ и ОА радона. Общая концепция КРИ представлена в работах [7; 14; 15].

Первый фактор, который связан с ОА радона, является МЭД. Известно, что гамма-фон на территории определяется радонуклидами трех естественных радиоактивных рядов уранов и тория, а также \(^{40}\)К (мощность дозы от которого принята постоянной). С увеличением концентрации урана и тория в почве увеличивается концентрация и их ДПР, в том числе и радона. Таким образом, колебания МЭД будут указывать на изменение ОА радона (как напряженно, через вклад \(\gamma \)-излучателей из состава ДПР радона, так и опосредованно, через различные концентрации радонуклидов естественных радиоактивных рядов, в которые входит радон).

Для того чтобы исключить влияние искусственных радонуклидов, выпавших на территории Республики Беларусь после аварии на Чернобыльской АЭС в исследованиях использовались дочернобыльские значения МЭД. По данным [9; 10] были определены средневзвешенные значения МЭД для исследуемых районов Гомельской области, которые были нормированы на максимальную величину – 12 мкР/час, принятую за 1 (формула 2):

\[M = \frac{\sum_i^n M_i \cdot S_i}{S_{\text{района}}} \] \hspace{1cm} (2)

где \(M \) – средневзвешенное значение относительной МЭД, отн. ед.;
\(M_i \) – значение относительной МЭД на \(i \)-ой площади района, отн. ед.;
\(S_i \) – площадь района со значением \(M_i \), км²;
\(n \) – количество территорий района с различными значениями \(M_i \).

Был проведен корреляционный анализ данных для определения степени и характера связи получившихся относительных значений МЭД и ОА радона в жилых зданиях. Коэффициент линейной корреляции, указывающий на связь относительного показателя МЭД для исследуемых районов Гомельской области и среднерайонных значений ОА радона, составил \(r = 0,49 \pm 0,17 \). Имеет место средняя по силе, прямая связь показателя МЭД и ОА радона. Корреляция является не достоверной: \(t_{\text{мнн}} = 2,51 < t_{\text{крит}} = \text{при } r > 0,05 \). Таким образом, при использовании только одного показателя можно давать лишь приближительную, недостоверную оценку ОА радона в жилых зданиях.

Следующим показателем, определяющим ОА радона, является концентрация урана в
почвах. Учитывая, что уран является родоначальником естественного радиоактивного ряда, в котором образуется радон – концентрации урана в почвах будут определять содержание района и как следствие его ОА.

По данным [11] были получены средневзвешенные значения концентрации урана в почвах исследуемых районов Гомельской области, которые были нормированы на максимальную величину 2,5·10^{-4} %, принятую за 1 (формула 3):

\[U = \frac{\sum_i^n U_i \cdot S_i}{S_{\text{района}}} \] (3)

где \(U \) – средневзвешенное значение относительной концентрации урана для выбранного района, отн. ед.; \(U_i \) – значение относительной концентрации урана на i-ой площади района, отн. ед.; \(S_i \) – площадь района со значением \(U_i \), км²; \(n \) – количество почв района с различными значениями \(U_i \).

Полученный массив данных был добавлен в качестве сомножителя к значениям относительного показателя МЭД и концентрации урана в почвах. После этого проведен корреляционный анализ данных для определения степени и характера связи получившихся значений КРП (состоящего из средневзвешенных значений относительных показателей МЭД и концентрации урана в почвах) и ОА радона в жилых зданиях.

Коэффициент линейной корреляции, указывающий на связь полученного КРП для исследуемых районов Гомельской области, и среднерайонных значений ОА радона, составил \(r = 0.71 \pm 0.11 \). Имеет место средняя по силе, прямая связь КРП и ОА радона. Корреляция является достоверной: \(r_{\text{эмп}} = 3.74 > r_{\text{крит}} = 4.22 \) при \(p < 0.05 \).

Необходимо учитывать, что эксклавация района зависит от проницаемости почвы, которая определяется коэффициентом фильтрации. Исходя из того факта, что период полураспада радона \(^{222}\text{Ra} \) составляет 3,82 суток – скорость его прохождения через слой почвы имеет важное значение, и обуславливает конечную ОА радона в жилых зданиях.

По данным [12] были получены средневзвешенные значения коэффициента фильтрации почв исследуемых районов Гомельской области, которые были нормированы на максимальную величину 30 м/сут, принятую за 1 (формула 4):

\[F = \frac{\sum_i^n F_i \cdot S_i}{S_{\text{района}}} \] (4)

где \(F \) – средневзвешенное значение относительного коэффициента фильтрации почвы для выбранного района, отн. ед.; \(F_i \) – значение относительного коэффициента фильтрации почвы на i-ой площади района, отн. ед.; \(S_i \) – площадь района со значением \(F_i \), км²; \(n \) – количество почв района с различными значениями \(F_i \).

Полученный массив данных был добавлен в качестве сомножителя к значениям относительного показателя МЭД и концентрации урана в почвах. После этого проведен корреляционный анализ данных для определения степени и характера связи получившихся значений КРП (состоящего из средневзвешенных значений относительных показателей МЭД и концентрации урана в почвах, коэффициента фильтрации почвы) и ОА радона в жилых зданиях.

Коэффициент линейной корреляции, указывающий на связь полученного КРП для исследуемых районов Гомельской области, и среднерайонных значений ОА радона, составил \(r = 0.71 \pm 0.11 \). Имеет место средняя по силе, прямая связь КРП и ОА радона. Корреляция является достоверной: \(r_{\text{эмп}} = 4.22 > r_{\text{крит}} = 3.74 \) при \(p < 0.05 \).

Также, важным фактором, определяющим ОА радона, является глубина залегания водоносного горизонта. При уровне в 1-2 м от поверхности почвенный радон почти полностью поглощается, а при уровне более 10 м весь радон остается в почвенном воздухе.

Пос данным [13] были определены средневзвешенные значения глубины залегания водоносного горизонта для исследуемых районов Гомельской области, которые были нормированы на максимальную величину – 10 м, принятую за 1.

\[W = \frac{\sum_i^n W_i \cdot S_i}{S_{\text{района}}} \] (5)

где \(W \) – средневзвешенное значение относительной глубины залегания водоносного горизонта, отн. ед.; \(W_i \) – значение относительной глубины залегания водоносного горизонта на i-ой площади района, отн. ед.; \(S_i \) – площадь района со значением \(W_i \), км²; \(n \) – количество территорий района с различными значениями \(W_i \).
Полученный массив данных был добавлен в качестве сомножителя к значениям относительного показателя МЭД, концентрации урана в почвах, коэффициента фильтрации почвы. После этого проведен корреляционный анализ данных для определения степени и характера связи получившихся значений КРП (состоящего из средневзвешенных значений относительных показателей МЭД, концентрации урана в почвах, коэффициента фильтрации почвы, глубины залегания водоносного горизонта) и ОА радона в жилых зданиях. Итоговый график данной корреляционной связи, образованной четырьмя компонентами радонового показателя, представлен на (рис. 1).

Коэффициент линейной корреляции, указывающий на связь полученного КРП для исследуемых районов Гомельской области, и среднерайонных значений ОА радона, составил \(r = 0.83 \pm 0.07 \). Имеет место сильная, прямая связь КРП и ОА радона. Корреляция является достоверной: \(t_{эмп} = 5.58 > t_{крит} = при p < 0.05 \).

Таким образом, КРП является произведением значений факторов (в относительных величинах), оказывающих влияние на ОА радона в жилых зданиях, и рассчитывается по формуле (6):

\[
R = M \cdot U \cdot F \cdot W \tag{6}
\]

где \(R \) – значение комплексного радонового показателя, отн. ед.;
\(M \) – средневзвешенное значение относительной мощности экспозиционной дозы для выбранного района, отн. ед.;
\(U \) – средневзвешенное значение относительной концентрации урана для выбранного района, отн. ед.;
\(F \) – средневзвешенное значение относительного коэффициента фильтрации почвы для выбранного района, отн. ед.;
\(W \) – средневзвешенное значение относительной глубины залегания водоносного горизонта для выбранного района, отн. ед.

Рисунок 1 – Зависимость среднерайонных значений ОА радона в жилых зданиях от комплексного радонового показателя \((M \cdot U \cdot F \cdot W)\).

Заключение

Предложенный комплексный радоновый показатель имеет достаточно сильную и достоверную связь со значениями ОА радона в жилых зданиях. Приведенные корреляционные зависимости показывают, что увеличение числа факторов, оказывающих влияние на ОА радона, значительно повышает коэффициент корреляции КРП и способствует более точной оценке ОА радона в жилых зданиях. КРП служит основой для определения потенциальной радонопасности территории – с его помощью можно определить географическое положение критических зон радонопасности и составить тематические карты данных территорий.
Impact Factor:

Journal	Impact Factor
ISRA (India)	1.344
ISI (Dubai, UAE)	0.829
GIF (Australia)	0.564
JIF	1.500
SIS (USA)	0.912
PIIIH (Russia)	0.207
ESJI (KZ)	3.860
SJIF (Morocco)	2.031
ICB (Poland)	6.630
PIF (India)	1.940
IBI (India)	4.260

References:

1. (1990) Radiaciya. Dozy, ehffikty, risk: per s angl. Yu.A. Bannikova. – M.: Mir, 1990. – 79 p.
2. (2013) Risk vozniknoveniya raka legkogo pri obluchenii radionom i produktami ego raspada. Zayavlennye po radonu / pod red. M.V. Zhukovskogo, S.M. Kiseleva, A.T. Gubina // Perevod publikacii № 115 MKRZ. – M.: FGBU GNC FMBC im. A.I. Burnazyana FMBA Rossii, 2013. – 92 p.
3. (1995) Zashchita ot radona-222 v zhilyh zdanijah i na rabochih mestah / Publikaciya № 65 MKRZ. – M.: Ehnergoatomizdat, 1995. – 78 p.
4. Bekman, I.N. (2000) Radon: vrag, vrach i pomoshchnik / I.N. Bekman. – M.: MGU, 2000. – 205 p.
5. (2015) Radon i dochernie produkty ego raspada v vozduhe zdanij na territorii Belarusi / A.K. Karabanov, L.A. Chunihin, A.L. Chehovskij, D.N. Drozdov, O.Ja. Jaroshevich, I.V. Zhuk, M.V. Konopelko, A.V. Matveev // Prirodopol'zovanie. – Vyp. 27. – Minsk: Institut prirodopol'zovaniya NAN Belarusi, 2015. – p. 49-53.
6. (2015) Karta radonovogo riska Respubliki Belarus' / A.K. Karabanov, L.A. Chunihin, A.L. Chehovskij, D.N. Drozdov, O.Ja. Jaroshevich, I.V. Zhuk, M.V. Konopelko // Prirodnye resursy. – №2. – Minsk: RUP «NPC po geologii, 2015. – p. 73-78.
7. Chehovskiy, A.L. (2016) Kartirovanie territorii Gomel'skogo, Mogilevskoj i Vitebskoj oblastej po kompleksnomu radonovomu pokazatelyu i ob'emoj aktivnosti radona v zhilyh zdanijah / A.L. Chehovskij, D.N. Drozdov // Radiaciya i risk. – T.25. – № 4. – M.: MRNC, 2016. – p. 126–133.
8. (2002) Metodika opredeleniya ob'emoj aktivnosti radona v vozduhe zhilyh i proizvodstvennyh pomeshheniy s ispol'zovaniem integral'nyh radonometrov na osnove tverdote'l'nyh trekovych detektorov al'fa-chastic. – MVI. MN 1111-99. – Minsk, 2002. – 19 p.
9. Belyashov, A.V. (2008) Ocenka gidrogeologicheskikh parametrov po dannym geofizicheskikh issledovaniy v skvazhineni: Metodicheskoe rukovodstvo / A.V. Belyashov. – Minsk: Fondy geofizicheskoy ehkspedicion, 2008. – 43 p.
10. Bulygin, B.P. (1982) Instrukciya po gamma-karotazu pri massovym poiskah urana: utv. Min. Geologii SSSR 01.09.81 g. / B.P. Bulygin, Je.D. Karpov, A.A. Kushytsev, M.M. Maksimov, V.I. Sokolov, I.V. Shkrabo. – SPb: Ministerstvo Geologii SSSR, 1982. – 101 p.
11. Shagalova, Eh.D. (1986) Soderzhanie urana-238 v pochvah Belarusi / Eh.D. Shagalova // Pochvovedenie. – Minsk: Institut pochvovedeniya i agrohimii, 1986. – №2. – p. 140-145.
12. Adushkin, V.V. (2005) Polya pochvennogo radona v Vostochnoj chasti Baltijskogo shchita / V.V. Adushkin, I.I. Divkova, S.A. Kozhuhov // Dinamicheskie processy v sisteme vnutrennix i vneshnih vzaimodejstvuyushchix geosfer / V.V. Adushkin, I.I. Divkova, S.A. Kozhuhov. – M.: Geos, 2005. – p. 173-178.
13. (1963) Gidrogeologicheskaja karta chetvertichnyh otlozhen Belorussskoj SSR [karta] / G.V. Bogomolov, N.M. Grippinskij, M.F. Kralev, G.G. Maljar, A.N. Sverinskij; pod. red. G.V. Bogomo洛lova. – 1:1000000. – Minsk: Institut geologicheskix nauk. – 1963.
14. Chehovskii, A.L. (2014) Obosnovanie primeneniya komponentov radonovogo pokazatelya dlya kartirovaniya radonovogo potenciala / A.L. Chehovskii // Izvestiya Gomel'skogo gosudarstvennogo universiteta imeni F. Skoriny. – № 6 (87). – M.: GGU im. F. Skoriny, 2014. – p. 100-106.
15. Chehovskii, A.L. (2015) Kartirovanie i ocenka radonovoj obstanovki Gomel'skogo, Mogilevskoj i Vitebskoj oblastej / A.L. Chehovskii, L.A. Chunihin, D.N. Drozdov // Izvestiya Gomel'skogo gosudarstvennogo universiteta imeni F. Skoriny. – № 3 (90). – M.: GGU im. F. Skoriny, 2015. – p. 71-76.
The possibility of using persimmon doshab in the production of bakery products is investigated in this article. Indicators of quality of grain grades of bread wheat Азаметли 95 and Qirmizi Gul are analyzed. Recipes of wheat bread mold is considered in brew method. Bakery quality of grain without adding, and then with the addition of persimmon doshab are researched too. Detail indicators such as the acidity of the bread with the addition of persimmon doshab, as well as increase bread laced with compared with the standard are shown in the article. Further evaluated the beneficial properties of Japanese persimmon for use as an additive in the production of bread and bakery products are given also.

Research has shown that good performance was distinguished by the sample bread with the addition of 5% persimmon doshab. The expediency of additives in baking bread and bakery products with the aim of improving the quality of bread for the population living in regions with unfavorable environmental conditions, etc. are explained in the end of the article.

Key words: bakery goods, natural supplements, baking properties of grain, soft wheat grades, methods of dough preparation, preparation of bakery products, properties of bakery products with additives.

Language: Russian

Citation: Akperova FA (2017) STUDY THE POSSIBILITY OF USING PERSIMMON DOSHAB IN THE PRODUCTION OF BAKERY PRODUCTS. ISJ Theoretical & Applied Science, 08 (52): 61-66.

Soi: http://s-o-i.org/1.1/TAS-08-52-9 Doi: https://dx.doi.org/10.15863/TAS.2017.08.52.9

ИССЛЕДОВАНИЕ ВОЗМОЖНОСТЕЙ ИСПОЛЬЗОВАНИЯ ДОШАБА ИЗ ХУРМЫ В ПРОИЗВОДСТВЕ ХЛЕБОБУЛОЧНЫХ ИЗДЕЛИЙ

Аннотация: В статье исследована возможность использования дошаба из хурмы в производстве хлебобулочных изделий. Анализированы показатели качества зерна сортов мягкой пшеницы Азаметли 95 и Гырмызы гюль. Рассмотрена рецептура формового пшеничного хлеба опарным способом. Исследованы хлебопекарные показатели зерна сначала без добавления, а далее с добавлением дошаба из хурмы. Подробно рассмотрены такие показатели как кислотность хлеба с добавлением дошаба из хурмы, а также показатели увеличения объема хлеба с добавкой по сравнению со стандартом. Далее оценены полезные свойства хурмы японской для использования в качестве добавки при производстве хлеба и хлебобулочных изделий.

Результаты исследований показали, что хорошими показателями отличалась проба хлеба с добавлением 5% дошаба из хурмы. В конце статьи обоснована целесообразность добавок при выпечке хлеба и хлебобулочных изделий с целью улучшения качества хлеба для населения, проживающему в регионах с неблагополучной экологической обстановкой и др.

Ключевые слова: хлебобулочные изделия, натуральные добавки, хлебопекарные свойства зерна, сорта мягкой пшеницы, способы приготовления теста, стадии приготовления хлебобулочных изделий, свойства хлебобулочных изделий с добавками.

Introduction
Хлеб – один из наиболее употребляемых населением продуктов питания. Хлебопекарные свойства зерна исследуемых сортов (Азаметли-95 и Гырмызы гюль-1) различны. Как видно из таблицы все показатели второго образца выше показателей первого.
Impact Factor:

Страна	Impact Factor
ISRA (India)	1.344
ISI (Dubai, UAE)	0.829
GIF (Australia)	0.564
JIF	1.500
SIS (USA)	0.912
РИНЦ (Russia)	0.207
ESJI (KZ)	3.860
SJIF (Morocco)	2.031
ICV (Poland)	6.630
PIF (India)	1.940
IBI (India)	4.260

Показатели качества зерна сортов мягкой пшеницы АЗНИИ Земледелия

Сорта	Масса 1000 зерен, г	Стекловидность	Содержание клейковины, %	ИДК	Влажность, %	Число падения	Натуральность, м/л	Белок, %
Азаметли – 95	30	46,0	28,0	77,8	13,2	265	760	13,0
Гырмызы гюль-1	36,1	46,5	30,0	79	13,7	334	788	12,4

Materials and Methods

В последние годы большое внимание уделяется обогащению хлеба различными полезными растительными добавками. Введение рецептуру компонентов, придающих лечебные и профилактические свойства, позволяет решить проблему профилактики и лечения различных заболеваний, связанных с дефицитом тех или иных веществ. Первоочередным направлением в профилактике заболеваемости является укрепление иммунной системы.

Одним из путей решения этой проблемы, является использование экологически безопасных, нетрадиционных сыровых ресурсов растительного происхождения. Значительный интерес представляет для нас введение их в состав традиционных пищевых продуктов, в частности в хлебобулочном производстве, и создание на их основе продуктов для детского, диетического питания и других групп населения, испытывающих нехватку витаминов [1]. В качестве перспективных ингредиентов для создания функциональных пищевых продуктов целевой интерес представляют продукты переработки нерастительного растительного сырья, а именно дюшаб из японской хурмы.

В Научно-Исследовательском Институте Земледелия нами проводились исследования возможностей использования натуральных добавок в производстве хлебобулочных изделий. Целью изобретения является разработка массовых сортов хлебобулочных изделий с выраженной иммунотропной активностью, используемого для профилактики ряда заболеваний, в том числе предраковых [2]. При этом изделия должны обладать хорошими вкусовыми и потребительскими свойствами, иметь привлекательный внешний вид. Получаемые изделия должны быть доступны по цене широким слоям населения [3].

Поставленная цель достигается тем, что в способе производства хлебобулочных изделий профилактической направленности, включающем приготовление опары и теста из муки, воды, соли с внесением растительного сырья, брожение, формование, расстойку тестовых заготовок и выпечку хлеба, согласно изобретению в качестве растительного сырья используют дюшаб из японской хурмы.

Таблица 2.

Рецептура формового пшеничного хлеба

Ингредиенты	Количество
Мука пшеничная	100,0 г
Дрожжи хлебопекарные	1,5 г
Соль поваренная	1,5 г
Сахар	4,0 г
Добавки	5-15 %
Вода	По расчёту

Этот способ приготовления хлеба является основным. Однако он менее экономичен и длителен (общая продолжительность приготовления хлеба – 6-8 часов); требует много рабочей силы, большая трудоёмкость, большее количество операций по дозировке и замесу, приводит к довольно большому расходу на брожение сухих веществ и т.д. Но решающим его преимуществом более высокое качество хлеба и большая технологическая гибкость [4].
Impact Factor:

	ISRA (India) = 1.344	SIS (USA) = 0.912	ICV (Poland) = 6.630
ISI (Dubai, UAE) = 0.829	РИНЦ (Russia) = 0.207	PIF (India) = 1.940	
GIF (Australia) = 0.564	ESJI (KZ) = 3.860	IBI (India) = 4.260	
JIF = 1.500	SJIF (Morocco) = 2.031		

Режим приготовления теста опарным способом

Наименование сырья и показателей процесса	Расход сырья и параметры процесса	
	опара	тесто
Мука пшеничная (Азаметли-95, Гырмызы Голь), г	100	
Дрожжи, г	1.5	
Соль поваренная пищевая, г	1.5	
Вода	60	
Сахар, г	4	
Натуральные добавки, мл	5 – 15	
Температура брожения, 0 С	25-33	
Продолжительность брожения, мин	60 120 и 60	
Замес, мин	15	
Обминка, мин	5	
Выпекка, мин	12-20	
Выпекка, 0 С	212-220	
Охлаждение, мин	20	

У готовых формовых хлебцов мы произвели органолептическую оценку по стандарту на простой хлеб данных сортов муки (без добавок).

Таблица 4.

Сорта	Объем хлеба, см³	Оценка объема	Поверхность	Форма	Цвет корки	Характеристика мякиша	Пористость	Цвет мякиша	Общий балл
Азаметли -95(стандарт)	550	4.0	5	5	5	5	5	4.8	
Гырмызы голь-1 (стан)	600	4.6	5	5	5	5	5	4.9	

С целью определения влияния натуральных добавок, и их дозировки на процесс брожения и кислотонакопления, при замесе теста дошаб из хурмы вносили в дозировках: 5, 10 и 15% к массе муки.

Подъемная сила хлебопекарных дрожжей с добавлением дошаба усилилась с повышением процентного его содержания. Найденными вариантами повышения подъемной силы и ускорения процесса созревания теста, является использование дошаба в количестве 5 и 10% к массе муки, но с точки зрения функциональности была принята дозировка 10%.

Хлебобулочные изделия с добавлением дошаба, в сравнении со стандартом имели лучший удельный объем и пористость мякиша [5]. Влажность в процессе хранения хлебобулочных изделий практически не изменилась. С точки зрения полезности хлебобулочных изделий и использования их в качестве профилактического средства для групп населения, работающих и проживающих в зонах с экологически неблагоприятной обстановкой, они необходимы [6]. Целесообразно было изучить, как изменяются свойства теста и качество готовых изделий в зависимости от количества вносимой добавки.

Свойства хлеба, полученного из предлагаемой композиции для хлебобулочных изделий из пшеничной муки, приготовленного опарным способом, сведены в таблицу 5.

Таблица 5.

[5]: Влажность в процессе хранения хлебобулочных изделий практически не изменилась. С точки зрения полезности хлебобулочных изделий и использования их в качестве профилактического средства для групп населения, работающих и проживающих в зонах с экологически неблагоприятной обстановкой, они необходимы [6]. Целесообразно было изучить, как изменяются свойства теста и качество готовых изделий в зависимости от количества вносимой добавки.

Свойства хлеба, полученного из предлагаемой композиции для хлебобулочных изделий из пшеничной муки, приготовленного опарным способом, сведены в таблицу 5.
Impact Factor:

Метрика	ISRA (India)	SIS (USA)	ICV (Poland)	ISI (Dubai, UAE)	ESJI (KZ)	РИНЦ (Russia)	ПИФ (India)	GIF (Australia)	SJIF (Morocco)	IBI (India)
1.344	0.912	6.630	0.829	0.207	3.860	0.564	1.940	0.564	2.031	4.260

Таблица 5.

Сорта	Объем хлеба, см³	Оценка объема	Поверхность	Форма	Цвет корки	Характеристика мякиша	Пористость	Цвет мякиша	Общий балл
Азаметли 95									
+ 5% дошаб из хурмы	620	4,6	5	5	5	5	3	5,4	
+ 10%	610	4,6	5	5	5	5	1	5,1	
+ 15%	600	4,6	5	5	3	4	1	4,9	
Гырмызы гюль									
+ 5% дошаб из хурмы	550	4,0	5	5	5	5	4	3	4,4
+ 10%	600	4,6	5	5	5	5	3	1	4,0
+ 15%	500	3,3	5	5	4	4	1	3,9	

Результаты исследований показали, что хорошими показателями отличалась проба хлеба, приготовленная с внесением дошаба из хурмы в количестве 5 и 10% к массе муки (Азаметли – 95). Формоустойчивость, удельный объем и пористость данного образца хлеба увеличивались по сравнению со стандартом. Внесение добавки в количестве 15% к массе муки ухудшало некоторые органолептические показатели готовых хлебобулочных изделий, а именно наблюдалось сильное потемнение мякиша, но он становится более мягким, разрыхленным, а также появлялся приятный сладковатый привкус.

Рисунок 1 - Объем хлеба из муки сорта «Азаметли 95», см³

Рисунок 2 - Объем хлеба из муки сорта «Гырмызы гюль», см³
Рисунок 3 - Другие характеристики хлеба из муки сорта "Азаметли 95", в баллах

Результаты исследования влияния добавки на свойства теста показали, что кислотность хлеба с внесением добавки в исследуемых дозах увеличивалась.

Таблица 6.

№	Наименование хлеба	Кислотность в градусах
1	Азаметли 95 + 5% дошаб из хурмы	2,6
2	+ 10% дошаб из хурмы	3,2
3	+ 15% дошаб из хурмы	3,6
4	Гырызы гюль + 5% дошаб из хурмы	2,2
5	+ 10% дошаб из хурмы	2,4
6	+ 15% дошаб из хурмы	3,0

Таблица 7.

Наименование хлеба	Увеличение объема в %
Азаметли 95 + 5% дошаб из хурмы	+12,7
+ 10% дошаб из хурмы	+10,9
+ 15% дошаб из хурмы	+9,0
Гырызы гюль + 5% дошаб из хурмы	-8,3
+ 10% дошаб из хурмы	0
+ 15% дошаб из хурмы	-16,6

При введении добавок в рецептуру хлеба в количестве 5 - 10 % к массе основного сырья обеспечивается увеличение продолжительности хранения готовой продукции без плесневения, а также предотвращением черствения хлеба [7].

Использование добавок позволяет сократить длительность процесса брожения теста, улучшить газообразование, повысить качество готовой продукции, которое заключается в улучшении пористости хлеба, и придает специфический вкус, аромат и профилактические свойства. А также позволяет достичь ускорения процесса созревания теста по сравнению со стандартом, ускорения процесса расстойки тестовых заготовок, ускорения процесса выпечки, увеличения срока хранения хлеба, улучшения реологических свойств теста; увеличение формустойчивости тестовой заготовки при брожении, отсутствие эффекта расплывчатости, снижение комковатости мякиша, повышение
активности работы дрожжей за счёт обеспечения необходимым для жизнедеятельности количеством сахаров.

Уменьшение производственно-эксплуатационных расходов складываются из следующих позиций: сокращение продолжительности технологического процесса, сокращение использования трудовых ресурсов, уменьшение расхода электроэнергии, снижение времени эксплуатации производственных помещений и коммунальных расходов.

Conclusion

Предлагаемая новая рецептура позволяет обогатить продукт функциональными ингредиентами, необходимыми для нормального функционирования организма человека, удлиняет срок сохранения свежести, а также эти хлебобулочные изделия можно рекомендовать как функциональный продукт питания для людей, проживающих в регионах с неблагополучной экологической обстановкой в качестве продукта детоксикационного назначения.

Хурма японская. Хурма обладает мочегонным действием и тонизирующими свойствами. Она улучшает аппетит, повышает работоспособность, успокаивает нервную систему укрепляет сердечно-сосудистую систему в качествe продукта детоксикационного назначения.

Содержащийся в хурме магний снижает вероятность образования камней в почках, а железо активно участвует в кровотворных процессах и препятствует развитию анемии.

Белки – 0,5 г, углеводы – 15,3 г, жиры – 0,4 г, органические кислоты – 0,1 г, пищевые волокна – 1,6 г, вода – 81, 5 г. дисахарины, моносахарины – 15,3 г, жирные кислоты (насыщенные) – 0,1 г, зола – 0,6 г. Наряду с моносахаридами в ней также имеются витамины (B1, B2, B6, В, РР и др.), фенольные соединения (катехины, лейкоантоцианы, флаваноиды и др.), азотистые соединения (аминоискось, полипептиды, белки и др.) макроэлементы (натрий, калий, кальций, железо, медь, марганец, йод, бром и др.) и богата другими элементами [10]

Дошаб получают путём выжимания из из японской хурмы японской хурмы сока и выпаривания. Его применяют при малокровии у ослабленных больных, при гиповитаминозах С и А, катарах верхних дыхательных путей, как отхаркивающее средство.

References:

1. Trojanova T.L. (2005) Razrabotka tekhnologii pishchevyh dobavok iz rastitel'nogo syr'ya. Diss. kand. tekh. nauk. Krasnodar. 2005. - 144 p.
2. Goroshchenko L. (2006) Hleb i hlebobulochnye izdeliya // Prodovol'stvennyj biznes. – 2006– № 8.
3. Shepelev A.F., Kozhuhova O.I., Turov A.S. (2001) Tovarovedenie i ehkspertiza zernomuchnyh tovarov. Mart. Rostov na Donu 2001.
4. (2012) Tovarovedenie i ehkspertiza prodovol'stvennyh tovarov. pod red V.I.Krishhtafovich. Laboratornyj praktikum M.
5. (2004) Tovarovedenie zernomuchnyh i konditerskih tovarov: Uchebnik dlya vuzov/ N.A. Smirnova, L.A. Nadezhnova. – M.: EHkonomika.
6. Ahmedov A.I., Kurbanova A.A. (2010) Azerbajdzhanskiy hleb. «Gyandzhlik», Baku.
7. Ivanova T.N. (2005) Biologicheski aktivnye dobavki i ih primenenie: uchebnoe posobie. Orel GTU.
8. Ahundov F.G. (1998) Tovarovedenie, hranenie i pererabotka plodov i ovoshchey. Baku, 1998. - 140 p.
9. Bumba G.CH. (1970) Himicheskij sostav plodov vosstochnoj hurmy i ih dieticheskoe znachenie. Sbornik nauchnyh trudov aspirentov i molodyh nauchnyh sotrudnikov. Moscow, VNII rastenievodstva.
10. Dostiyari EH. N., Nabiev A.A. (2011) Issledovanie tekhnologii proizvodstva shirokogo assortimenta pishchevyh produktov iz plodov hurmy. Monografiya. Baku, «Elmo», 180 p.
PECULIARITIES OF HISTORICAL DEVELOPMENT AND CONTEMPORARY ASPECTS OF THE ECONOMY OF AZERBAIJAN

Abstract: The features of historical development and modern aspects of the economy of Azerbaijan are explored in the article. The history of the development of the Azerbaijani economy, including during its period of being in the Russian Empire, as an independent Azerbaijan Democratic Republic and in the status of one of the 15 republics of the former USSR is analyzed. The main phases of development of the Azerbaijani economy, primarily the evolution of the oil industry, are considered. The development and role of the oil industry in meeting the needs of the former USSR with fuel, lubricants and gasoline is especially emphasized, especially during the Great Patriotic War to meet the needs of the advanced front. Features of the development of the economy of Azerbaijan after the Great Patriotic War - during the second half of the twentieth century are considered. The special success of the economy of the Azerbaijan SSR during the period 1970-1985 is noted. The peculiarities of the economy of independent Azerbaijan after the restoration of independence in connection with the fall of the former USSR are analyzed. The essence of the ongoing economic reforms, formation and implementation of the model of economic development of Azerbaijan over the past decades is revealed. The reasons for the instability of the Azerbaijani economy in the conditions of falling oil prices in world markets and the expansion of the negative consequences of financial crises in the world are indicated. A number of recommendations and proposals on modernization and strategic development of the national economy of the Republic of Azerbaijan in the near and long term in the context of the growth of global economic threats are generalized and given.

Key words: Azerbaijan, the historical development of the Azerbaijani economy, the evolution and formation of the Azerbaijani economy, the features of the national economy of Azerbaijan, the model of Azerbaijan’s economic development, modern aspects of the development of the Azerbaijani economy, the economy of Azerbaijan in the face of growing global economic threats.

Language: Russian

Citation: Aliyev ST (2017) PECULIARITIES OF HISTORICAL DEVELOPMENT AND CONTEMPORARY ASPECTS OF THE ECONOMY OF AZERBAIJAN. ISJ Theoretical & Applied Science, 08 (52): 67-74.

DOI: https://dx.doi.org/10.15863/TAS.2017.08.52.10

ОСОБЕННОСТИ ИСТОРИЧЕСКОГО РАЗВИТИЯ И СОВРЕМЕННЫЕ АСПЕКТЫ ЭКОНОМИКИ АЗЕРБАЙДЖАНА

Аннотация: В статье исследованны особенности исторического развития и современные аспекты экономики Азербайджана. Анализирована история развития экономики Азербайджана, в том числе в период бытности его в составе Российской империи, в качестве независимой Азербайджанской Демократической Республики и в статусе одной из 15-ти республик бывшего СССР. Рассмотрены основные фазы развития экономики Азербайджана, прежде всего нефтяной промышленности. Особо подчеркнута роль и роль нефтяной промышленности в обеспечении потребностей бывшего СССР горючим, смазочными маслами и бензином, особенно в период Великой Отечественной Войны для обеспечения потребностей передового фронта. Рассмотрены особенности развития экономики Азербайджана после Великой Отечественной войны – в период второй половины XX века. Отмечен особый успех экономики Азербайджанской ССР в период 1970-1985 годов. Анализирована особенности экономики уже самостоятельного Азербайджана после восстановления независимости в связи с падением бывшего СССР. Раскрыта сущность проводимых экономических реформ, формирования и осуществления моделей...
экономического развития Азербайджана за последние десятилетия. Указаны причины нестабильности экономики Азербайджана в условиях падения цен на нефть на мировых рынках и расширения негативных последствий финансовых кризисов в мире. Обобщен и дан ряд рекомендаций и предложений по модернизации и стратегическому развитию национальной экономики Азербайджанской Республики в ближайшей и долгосрочной перспективе в контексте роста глобальных экономических угроз.

Ключевые слова: Азербайджан, историческое развитие экономики Азербайджана, экономика и формирование экономики Азербайджана, особенности национальной экономики Азербайджана, модель экономического развития Азербайджана, стратегические аспекты развития экономики Азербайджана, экономика Азербайджана в условиях роста глобальных экономических угроз.

Introduction
Экономика Азербайджана в настоящее время испытывает исторические экзамены в условиях роста негативных последствий глобальных экономических процессов и глобальных угроз. Азербайджан, имея в наличии достаточно природных богатств и экономических ресурсов, поставил перед собой стратегические задачи и цели по вхождению в число экономически развитых и конкурентоспособных стран мира[1; 2]. Отметим, что для этого в Азербайджане имеются все основания, в том числе исторические предпосылки, традиции умения совершенствовать модели экономического развития, универсальные и в то же время конкурентоспособные механизмы нынешней экономической системы страны.

Materials and Methods
История экономики Азербайджана еще в период бытности Российской империи испытывала серьезные трудности и не имела возможность формирования самостоятельной экономической мысли и подхода[3]. Дело в том, что Азербайджан считался одной из главных сырьевых баз Российской империи. Начиная с середины XIX века, в России, в том числе в Азербайджане стала развиваться капиталистическая система хозяйственной деятельности, и началось строительство фабрик, заводов[4]. В Азербайджане началось интенсивное развитие нефтяной отрасли, где в 1859 году вблизи города Баку – в Сураханах был построен первый нефтеперерабатывающий завод. В последующие годы одни за другими были введены в эксплуатацию парафиновый завод (1861) в Пираллаки, медеплавильный завод в Гедабеке и кобальтовые (1861) в Пираллахи, медеплавильный завод в Шуша, Шеки и прочее) были построены десятки заводов и фабрик[5]. Кроме того, стали увеличиваться капитальные вложения в различные сферы промышленности, особенно в пищевую и легкую промышленность, открывались торговые дома. Более того, национальный меценат и предприниматель Гаджи Зейналабдин Тагиев вложил огромные средства в развитие виноделия и виноградарства.

В первое 20-тилетие XX века в Азербайджане постепенно сформировалось национальное мышление и появление национальных экономических интересов. Развивалась национальная буржуазия и капиталистическое общество. Более всего осозналась необходимость развития потенциальных сфер национальной экономики наряду с нефтяной отраслью. После падения Российской империи, на волне изменений государственного строя и границ в мире, впервые на Востоке, а именно в Азербайджане, образовались Азербайджанская Демократическая Республика. В период создания самостоятельной Республики в Азербайджане серьезно активизировались процессы национального самосознания, в том числе развития экономических мышлений и подходов. К сожалению, сформированная и созданная независимая Азербайджанская Демократическая Республика просуществовала недолго,
Только под конец начала Великой Отечественной Войны было осознана необходимость развития других отраслей экономики Азербайджана наряду с нефтяной промышленностью и начались созидательные работы по развитию металлургической, химической и энергетической отрасли экономики Азербайджанской Республики. Были созданы в эксплуатацию крупные предприятия союзного значения. А в 1949 году была добыта первая нефть в открытом море Каспийского шельфа Азербайджана. Стали развиваться тяжелые промышленные сектора, и в результате в последующие десятилетия были образованы два крупных промышленных и энергетических центров в Азербайджане. Город Сумгаイト стал одним из крупных химических и нефтехимических, одновременно промышленных центров не только в Азербайджане, но и в целом в СССР. А город Мингечаур стал энергетическим центром, где была создана мощная инфраструктура и производственная база для выработки электроэнергии и т.д. Однако рассвет интенсивное развитие нефтяных секторов экономики Азербайджана наступил в период 1970-1985 годов. В это период, благодаря титаническим усилиям руководства Азербайджана – общенационального лидера Гейдара Алиева были полностью модернизированы основные фонды промышленности Республики[7]. Построены новые крупные заводы, в том числе нефтеперерабатывающие, газоперерабатывающие крупные установки, кондиционерный завод (в те времена являлся единственным в СССР), предприятия химии и нефтехимии, металлургические отрасли, приборостроения, электромеханики, легкой и пищевой промышленности, аграрного и т.д. Отметим, что до 1970 годов в Азербайджане были построены 146 крупных промышленных предприятий, и все они считались союзного значения. Доля города Баку за это период в промышленности была примерно 73 %. А в период с 1970 по 1985 годы в Азербайджане по всем основным видам объем производимой промышленной продукции, сельскохозяйственных культур, технических растений выросли в несколько раз. Общий объем промышленной продукции вырос в 2,9 раз, машиностроение в 5,9 раз, химия и нефтехимия 3,1 раза и пищевая период в экономику Азербайджанской Республики промышленность в 4 раза[8; 9]. За это было вложено свыше 40 млрд. долл. США. Все эти крупномасштабные мероприятия способствовали созданию многоотраслевой структуры экономики Республики и доведения до минимума его
удельный вес общего объема продукции промышленных сфер Азербайджанской ССР, в
%, 01.01.1980 г.

Если обратить внимание на Рисунок 1, то ясно видно, что самая большая доля в общем объеме продукции промышленных сфер Азербайджанской Республики на 01.01.1980 года принадлежала пищевой промышленности – 29,9
%, далее легкая промышленность – 23,4 % и только после этого следовала топливная промышленность (куда входит нефть и газ) – 14,6
%, машиностроение и переработка металла – 13,5
% и т.д.

К большому сожалению, в дальнейшем экономика Азербайджана испытывала огромные трудности и после падения СССР основные базовые отрасли экономики Республики подвергались серьезному кризису, краху и хаосу. Уже в начале 1990-х годов, в первые годы после восстановления независимости в Азербайджанской Республике, экономике страны потребовалась фундаментальное преобразование и создание новой экономической системы и механизмов с учетом независимости и перехода на рыночную экономику. Долгие годы экономика Азербайджана испытывала трудности из-за недостаточных финансовых средств для проведения основных фаз экономических реформ и создание инфраструктуры национальной экономики. Только с реализацией нефтяной стратегии и обновлением современных технологий нефтяная отрасль страны началась развиваться с проведением экономической реформы. За период с 1994 по 2003 годы были полностью завершены основные процессы экономических реформ и институциональных преобразований, построены сотни современных инфраструктурных объектов и сооружений, обновлены механизмы экономической политики[10; 11; 12; 13; 14]. Из-за роста нефтяных цен на мировом рынке за 2003 по 2008 годы Азербайджану удалось выручить немалые валютные средства и довести свои валютные резервы до 50 млрд. долл. США. Обеспечение финансовой стабильности и макроэкономического благополучия помогло молодому государству проводить активную экономическую политику по улучшению благостояния населения страны и модернизации своей модели экономического развития с учетом требований нынешнего времени. Однако с началом финансового кризиса в мире Азербайджан снова стал перед экзаменом под влиянием глобальных экономических тенденций и экономических угроз[15; 16]. Молодая экономика Азербайджана во многом выдержала негативные последствия глобальных изменений, но после неоднократных падений цен на нефть на мировом рынке в 2014-2015 годы...
страна испытывала серьезные трудности и в начале 2015 года подверглась девальвации и в течение года национальная валюта страны потеряла свою стоимость почти в 2 раза. В связи с этим, Азербайджану потребовалась глубокая модернизация модели экономического развития, разработка и внедрение более продуктивных и прочих механизмов развития национальной экономики, отвечающих требованиям антикризисных условий. Определилась и началась реализация стратегических целей и задач в рамках стратегической карты Азербайджана по перспективам развития национальной экономики в ближайшей и долгосрочной перспективе[17; 18; 19]. На Рисунке 2 дана динамика объема ВВП Азербайджанской Республики за 2011-2016 годы.

Рисунок 2 - Динамика объема ВВП Азербайджанской Республики за 2011-2016 годы, млрд. $.
(подготовлено автором).

Если анализировать Рисунок 2 и экономические показатели Азербайджана, то видно, что за 2015 и 2016 годы ВВП Азербайджана в долларной стоимости резко упал и в 2016 году падения уровня ВВП по отношению к 2014 году составила разницу почти в 2 раза[20; 21]. Это связано, как было отмечено ранее, с падением курса национальной валюты Азербайджана за последние годы. На Рисунке 3 приведена динамика роста ВВП в Азербайджане в %-тах уже к предыдущему году.

Рисунок 3 - Динамика роста ВВП Азербайджана, в %, к предыдущему году (подготовлено автором).
Анализ Рисунка 2 и 3 обуславливает необходимость обеспечения устойчивого и продуктивного развития национальной экономики Азербайджана, обеспечения его динамичного роста и формирования новых надежных источников по созданию добавочной стоимости экономики страны. На Рисунке 4 дана динамика ВВП на душу населения в Азербайджанской Республике за 2011-2016 годы.

Рисунок 4 - ВВП на душу населения в Азербайджанской Республике за 2011-2016 годы (подготовлено автором).

Анализ Рисунка 4 показывает, что падение общего объема ВВП в долларовой стоимости за последние два года оказало аналогичное отрицательное влияние и на динамику ВВП на душу населения. В 2016 году объем ВВП на душу населения составил почти 3927 долл. США и это в 2 раза меньше, чем показатели в 2013 и 2014 годах.

Для роста экономики Азербайджана и минимизации его развития от нефтяного сектора требуется ускорение расширения деятельности ненефтяных секторов экономики и особенно обеспечения роста ВВП ненефтяного сектора и тем самым создать благоприятные условия роста национальной экономики. За период 2006-2014 годов рост ВВП ненефтяного сектора Азербайджана вырос почти в 5 раз, однако начиная с 2015 года, динамика ВВП ненефтяного сектора страны в долларовой стоимости демонстрирует тенденцию снижения[22]. Данные, отраженные на Рисунке 5 показывают снижение ВВП нефтяного сектора более конкретно, уже начиная с 2015 года (см. Рис. 5.).
Проблемы макроэкономической стабильности и замедление темпа роста национальной экономики требуют ускоренного развития, прежде всего, промышленного сектора страны, который играет важное значение в обеспечении роста экономики и создания добавочной стоимости для национальной экономики. На Рисунке 6 дан объем промышленной продукции в Азербайджане за период 2006-2016 годов.

Анализ Рисунка 6 показывает, что начиная с 2011 года в долларовой стоимости, объем промышленной продукции Азербайджана демонстрирует тенденцию снижения. И в 2016 году уровень снижения общего объема промышленной продукции по отношению к 2011 году составил 2,18 раз.

Conclusion
Обобщая вышеприведенные анализы современное состояние экономики Азербайджана

Impact Factor:

Источник	Фактор влияния
ISRA (India)	1.344
ISI (Dubai, UAE)	0.829
РИНЦ (Russia)	0.207
GIF (Australia)	0.564
ESJI (KZ)	3.860
JIF	1.500
SIS (USA)	0.912
JIF (Poland)	6.630
РИНЦ (Russia)	0.207
GIF (Australia)	0.564
ESJI (KZ)	3.860
JIF	1.500
SIS (USA)	0.912
JIF (Poland)	6.630
РИНЦ (Russia)	0.207
GIF (Australia)	0.564
ESJI (KZ)	3.860
JIF	1.500
SIS (USA)	0.912
JIF (Poland)	6.630
РИНЦ (Russia)	0.207
GIF (Australia)	0.564
ESJI (KZ)	3.860
JIF	1.500
SIS (USA)	0.912
JIF (Poland)	6.630
РИНЦ (Russia)	0.207
GIF (Australia)	0.564
ESJI (KZ)	3.860
JIF	1.500
SIS (USA)	0.912
можно прийти к выводу, что в ближайшей перспективе необходимо принимать кардинальные изменения в структуре и механизмах модели экономического развития Азербайджана. Современные аспекты и особенности макроэкономических проблем, проблемы роста экономики и повышения его устойчивости в условиях антикризисных влияний и роста негативных последствий глобальных экономических угроз обуславливают максимальное совершенствования структуры национальной экономики, обеспечивают его саморазвитие, обновление основных механизмов и практических инструментариев по созданию продуктивной добавочной стоимости национальной экономики и повышению конкурентоспособности и т.д.

1. (2016) Strategicheskiye dorozhnye karty po perspektivam natsional'nyy ekonomiki Azerbaiydzhanskoj Respubliki.Utverzhdeno Ukazom Prezidenta Azerbaiydzhanskoj Republikiet 6 dekabrya 2016 goda.
2. (2012) Kontseptsiiirazvitiya "Azerbaiydzhan-2020: vzglyad v budushchee” (29.12.2012).
3. (2008) Istoriya Azerbaiydzhana. V 7-mi tomaх.V tom (1900-1920 gg.). Baku, «Nauka», 2008.-696 p.
4. Sumbatzate A.S. (1964) Promyslennost’ Azerbaiydzhana v XIX v. Baku.
5. (2017) Ekonomika Azerbaiydzhana s periodaserediny XIX veka do padeniyabyvshego SSSR. Prezidsckaya biblioteka. www.files.preslib.az
6. Samedzade Z.A. (1980) Struktura i effektivnost’ obschestvennogo proizvodstva (na materialakh Azerbaiydzhanskoj SSR). Baku, Izdatel’stvo «Eln», 1980.-208 p.
7. Akhundova E. (2007) GeydarAliyev. Lichnost’ i epokha.Chast’ II.(1969-1982). «Ozan», 2007.-840 p.
8. Aliyev SH.T. (2012) Otseki khimicheskogo i nftekhimicheskogo kompleksa Azerbaiydzhana i napravleniyi modernizatsii Baku, «Nauka i obrazovaniye», 2012.-156 p.
9. Aliyev SH.T. (2012) Sumgaytskiy promyslennyy sentr: ispol’zovanie sushchestvuyushcheho potentsiala. prioritety modernizatsii Baku, «Nauka i obrazovaniye», 2012.-196 p.
10. Mekhtiyyev R.A. (2005) Azerbaiydzhan: trebovaniya v period globalizshchatsi. Baku: XXI vek. Dom Noyvkhldaniy, 2005.-464 p.
11. Nuriyev A.KH. (2013) Kontseptual’nyye osnovy politiki modernizatsii i ekonomicheskogo razvitiya v Azerbaiydzhanе. Baku, «AVORRA», 2013.-422 p.
12. Shakaraliyev A., Shakaraliyev G. (2016) Ekonomika Azerbaiydzhana: realii i perspektivy. Baku, «Turkhan», NPV, 2016.-536 p.
13. Aliyev U.G. (2008) Natsional’nye ekonomicheskiye problemi perekhodnogo perioda. Monografiya.Baku: Azerneshr, 2008.-358 p.
14. Gasanov R.T. (2012) Osobennosti sotsial’nogo ekonomicheskogo razvitiya sovmennogo Azerbaiydzhana // Nahologovy zhurnal Azerbaiydzhana, №2, 2012.-p.103-108.
15. Gambarov F.A. (2014) Vneshneekonomicheskiye factory obespecheniya ekonomicheskogo rosta v Azerbaiydzhanе v usloviyakh globalizatsii Avtoreferat diss. D-raekon.nauk. Baku, 2014.-60 p.
16. Guseynov T. (2015) Natsional’naya model’ ekonomicheskogorazvitiyaAzerbaiydzhanah: teoriya i praktika. Monografiya.Baku, 2015.-460 p.
17. Aliyev SH.T. (2017) Puti povysheniya eksportnogo potentsiala v realizatsii Srtayegicheskikh dorozhnykh kart v Azerbaiydzhanе // Zhurnal Audit № 1, 2017. -p. 60-66.
18. Aliyev SH.T. (2015) Vneshne ekonomicheskaya politika Azerbaydzhanah. Izdatel’stvo Sumgaytskogo Gosudartsvennogo Universiteta 2015.-185 p.
19. Aliyev SH.T. (2015) Tekhnoparki budut usilivyapromyslennyy i eksportnyy potentsial Azerbaydzhanah. Azerbaydzhan–2015.–12 aprelya.-p.9. http://www.anl.az.
20. Natsional’nyye scheta Azerbaydzhana. Statisticheskiye izdaniye.Baku, 2016.-181 s.
21. Ekonomicheskiye pokazateli Azerbaydzhana. Baku, 2016.-824 s.
22. Azerbaydzhan v tsifrakh, 2017. Baku, 2017.-286 s. http://www.azstat.org.

Impact Factor:
- ISRA (India) = 1.344
- SIS (USA) = 0.912
- ICV (Poland) = 6.630
- ISI (Dubai, UAE) = 0.829
- РННЦ (Russia) = 0.207
- PIF (India) = 1.940
- GIF (Australia) = 0.564
- ESJ (KZ) = 3.860
- IBI (India) = 4.260
- JIF = 1.500
- SJIF (Morocco) = 2.031
INTERNAL AUDIT STRUCTURE AT OIL AND GAS INDUSTRY ENTERPRISES

Abstract: The article is based on the study and generalization of the regulatory framework on the use of natural and energy resources, as well as relevant literature in the field of organization of internal audit; The main blocks of the audit, types and stages of the audit; in the methodological aspect their contents are disclosed and recommendations are offered on their use in the oil and gas industry of the republic.

Key words: internal audit, audit control, oil and gas production industry.

Language: Russian

Citation: Aliyeva LA (2017) INTERNAL AUDIT STRUCTURE AT OIL AND GAS INDUSTRY ENTERPRISES. ISJ Theoretical & Applied Science, 08 (52): 75-79.

СТРУКТУРА ВНУТРЕННЕЙ АУДИТОРСКОЙ ПРОВЕРКИ НА ПРЕДПРИЯТИЯХ НЕФТЕГАЗОДОБЫВАЮЩЕЙ ПРОМЫШЛЕННОСТИ

Аннотация: В статье на основе изучения и обобщения нормативно-правовой базы об использовании природных и энергетических ресурсов, а также соответствующей литературы в области организации проведения внутреннего аудита; указаны основные блоки аудиторской проверки, виды и этапы проведения аудиторского контроля; в методологическом аспекте раскрыто их содержание и предложения рекомендации по их использованию в системе нефтегазовой промышленности республики.

Ключевые слова: внутренний аудит, аудиторский контроль, нефтегазодобывающая промышленность.

Введение.
Нефтегазодобывающая промышленность Азербайджана своей сложной организационно-экологической, управленческой и технокомплексной системой отличается от других отраслей промышленности. Ныне большинство месторождений, как на суше, так и в море, находятся в поздней стадии разработки и истощения. Именно для таких месторождений характерно не только снижение добычи нефти и газа, но и высокая обводненность продукции, частые ремонты и т.д., что приводит к увеличению себестоимости одной тонны нефти и 1000 куб. м газа. Для решения этих проблем в системе SOCAR разработан комплексный план по стратегическому развитию отрасли на период до 2025 года, где в частности предусмотрены: оптимизация добычи нефти на суше; рост добычи нефти на морских месторождениях; осуществление эффективных проектов по добыче газа; развитие транспортировки и транзитных возможностей углеводородов, а также обрабатывающей отрасли; расширение деятельности компаний на внешних рынках и т.д.

Для своевременной и качественной реализации этих стратегических направлений, рационального управления затратами на всех уровнях, изыскания резервов снижения себестоимости, налаживания внутреннего учета и отчетности, раскрытия фактов хищения и злоупотребления роль и значение внутренней аудиторской проверки неоспоримы[1]. В этой связи руководители нефтегазодобывающих предприятий уже приходят к правильному выводу, что успех в бизнесе возможен только при наличии четко выстроеной и эффективной системы внутреннего контроля. Изучение и обобщение теоретико-методологических аспектов организации и управления аудита...
показали, что методология аудита, с учетом вышеперечисленных специфических особенностей, разработана крайне недостаточно, что и обуславливает актуальность рассматриваемого вопроса.

Основные блоки аудиторской проверки. Аудиторская проверка является не только инструментом измерения достоверности бухгалтерской отчетности, но и средством повышения достоверности и эффективности деятельности нефтегазодобывающего предприятия. Аудит – это, прежде всего сложный процесс снижения уровня информационного риска[2]. В этом процессе аудит использует различные технологические приемы и методы, которые в целом составляют методологию самого контроля. Основными задачами аудиторской проверки являются: раскрытие ошибок, проникших в проверяемый отчет; защита собственности владельцев предприятия; проверка и улучшение внутреннего контроля на предприятии; анализ эффективности работы предприятия и его менеджеров с вытекающими из этого анализа рекомендациями собственников[3; 4].

Исходя из этих задач, основные блоки аудиторской проверки предприятия нефтегазодобычи, можно схематично отразить следующим образом (рис.1).

![Diagram](image)

Рисунок 1 - Содержание основных блоков при осуществлении аудиторской проверки предприятия нефтегазодобычи

Теперь кратко раскроем содержание блоков. Прежде всего, следует отметить, что проведение аудиторских проверок предприятий нефтегазодобычи базируется на соответствующих нормативно-правовых актах, которые во многом определяют доходно-расходную часть предприятия и финансовые отношения с фискальными органами и потребителями.

В целом нефтяное законодательство в Азербайджане можно охарактеризовать как достаточно развитое. Отношение в сфере поиска, разведки, добычи и использования нефти и газа регламентируется Законом Азербайджанской Республики «О недрах», Законом «Об использовании энергетических ресурсов» от 30 мая 1996 г. Кроме того, в 2007 г. принят Закон АР «О внутреннем аудите»[5]. Наряду с этими нормативными актами, еще в 1994 году разработана Нефтяная Стратегия; в 2005 году – Государственная Программа по развитию ТЭК на 2005-2015 гг.; в 2015 году – Государственная Программа по развитию промышленности в Азербайджанской Республике на 2015-2020 гг. и другие, которые успешно осуществляются. Предметную область проведения аудиторских проверок можно разделить на две группы: необходимые документации для организации осуществления аудиторской проверки и материалы, связанные с разделом и счетам бухгалтерского учета.
Важным видом сферы деятельности аудиторских компаний в нефтяной отрасли может стать проведение в организации анализа производственно-хозяйственной и финансовой деятельности с целью прогнозирования эффективности развития, принятия оперативных управленческих решений и разработки различных рекомендаций, видов программ[6]. При осуществлении аудиторских проверок и в целях обработки систематизированных материалов (данных информаций, оценки результатов деятельности, расчета соответствующих индикаторов, анализа структуры себестоимости, отклонения норм расхода материалов, электроэнергии, труда и т.д.) необходимо применить возможности ИКТ, что будет способствовать точности и оперативности ожидаемых результатов.

Виды проведения аудиторского контроля. При осуществлении аудиторской проверки, прежде всего, необходимо предварительно определить предмет и выбор объекта проверки по степени их важности (т.е. какие объекты предприятия должны исследоваться в первую очередь, а какие – во вторую и т.д.). На рисунке 2 отражены основные источники контрольных информаций для проведения аудиторского контроля и выбранные способы и приемы проведения аудиторского контроля.

Рисунок 2 - Основные формы и признаки осуществления внутреннего контроля.

В аудиторской практике, в зависимости от времени проведения аудита, различают следующие виды (рис.3).

Рисунок 3 - Виды проведения аудиторского контроля в зависимости от времени.

Предварительный контроль чаще всего проводится внутренними аудиторами и специалистами организации. Нефтедобывающие предприятия активно практикуют формирование в своей структуре подразделений, выполняющих функции внутреннего аудита[7]. Подобная превентивная мера способствует снижению риска обнаружения аудиторами нарушений и искажений в бухгалтерской отчетности, поскольку осуществляет постоянный контроль за состоянием учета хозяйственных операций на предприятии. С помощью предварительного обследования и контроля отдельных систем хозяйственного механизма организации,
аудиторы оценивают их эффективность и устанавливают уровень аудиторского риска[8; 9]. Основные этапы аудиторской проверки требуют пристального внимания по оптимальности выбранных методов проверки и подходы к организационный период перед осуществлением аудиторских проверок. В экономической литературе, посвященной проблемам аудита[10; 11] выделяют следующие основные этапы аудиторской проверки:

- предварительное изучение документов, объем проводимых работ и оценка риска;
- сбор аудиторских доказательств (тестирование средств контроля и проведение аудиторских процедур по существу);
- завершение аудита (подготовка рабочей документации, формирование мнения аудитора и оформление итоговых документов).

Последний из перечисленных вариантов выделения этапов аудиторской проверки применим и к предприятию нефтедобычи (рис.4).

Рисунок 4 - Взаимосвязь этапов проведения аудиторской проверки на нефтедобывающем предприятии

Для качественного проведения аудиторской проверки к числу основных процедур ознакомления аудиторов с производственно-хозяйственной и финансовой деятельностью следует отнести:

- правильное формулирование и определение цели проверки на выбранном объекте (предприятие);
- определение специфической особенности предприятия и его организационно-
управленческого устройства (наличие филиалов, дочерних предприятий и т.д.);
– проведение осмотриительных работ в производственных участках и хозяйственных помещениях, также на складах;
– анализ ранее имеющихся материалов прежних аудиторских проверок и прочих контрольно-ревизионных органов;
– уровень работы и сотрудничества с налоговыми службами, банковскими учреждениями и другими ответственными лицами, учреждениями, акционерами и учредителями;
– благовременная оценка уровня ведения отчетности, финансовых документов и организации учета и т.д.

Наряду с вышеизложенными процедурами аудитор должен получить дополнительную информацию от работников управляющей системы и при необходимости проводить опрос среди персонала по тем или иным вопросам, а также собрать другую дополнительную информацию для разработки рекомендаций по корректировке отчетности нефтегазодобывающего предприятия.

Заключение.
Нормативно-правовая база, регламентирующая отношение в сфере использования энергетических ресурсов внутреннего аудита и аудиторской службы, представляется более системной и комплексной. В ходе аудиторской проверки предприятия нефтегазодобычи следует использовать комплекс приемов и методов осуществления контроля за достоверностью и эффективностью ведения отчетности, а также руководствоваться методическим положением, изложенным в аналитической части статьи по основным блокам, видам и этапам проведения аудиторской проверки. На наш взгляд, подобный методический подход позволит выявить значительные резервы в производственно-хозяйственной и финансовой деятельности, а также в области рационального управления затратами.

References:

1. Abbasov I.M. (2013) Audit. Baku, Bakinskiy Universitet Biznesa 2013, 544 p.
2. Sonin A. (2017) Zachem kompanii nuzhen vnutrenniy audit? Institut vnutrennikh auditorov. Available: http://www.iaa-ru.ru. (Accessed: 10.08.2017).
3. Danilevskiy YU.A. et al. (2002) Audit. M,FBK –Press, 2002, 360 p.
4. Kovaleva O.V, Konstantinov YU.P. (2003) Audit. M: PRIOR, 2003, 375 p.
5. (2007) Zakon Azerbaydzhanskoj Respubliki «O vnutrennem audite». Baku, 2007, 6 p.
6. Burkovskaya A.YU. (2017) Sovremennyye aspekty vnutrennego audita- rol' i metody. Available: http://www.gaap.ru. (Accessed: 10.08.2017).
7. Yenin Ye.P. (2017) Formirovaniye effektivnoy sluzhby vnutrennego audita kak klyuchevoiy komponent sovremennoy sistemy korporativnogo upravleniya. Available: http://www.rusconsult.ru. (Accessed: 10.08.2017).
8. Sakenova Z.M., Sakenov N.A. (2017) Vnuntnyiy audt predpriyatiya i puti yego sovershenstvovaniya. Available: http://www.group-global.org. (Accessed: 10.08.2017).
9. Artem'yeva M.N., Rakhlin K.M. (2017) Analiz rezul'tativnosti protsessa vnutrennego audita. Available: http://www.quality.eup.ru. (Accessed: 10.08.2017).
10. Voronova Ye.YU. (2008) Planirovaniye audita kak sistemnyy protsess // Auditorskiye vedomosti №3, M, 2008, p. 36–43;
11. Ovsiychuk M.F. (2008) Audit: Organizatsiya metodika provedeniya. M: «Inteltekh» 2008, 410 p.
MODERN PROBLEMS AND ASPECTS OF DEVELOPMENT OF LOGISTIC SYSTEM IN CHEMICAL ENTERPRISES OF AZERBAIJAN

Abstract: This modern problems and aspects of the development of the logistics system in chemical enterprises in Azerbaijan are discusses in this article. The existing problems are being studied that hamper the development of the logistics system and the logistical structure in the country's chemical enterprises are examined on the basis of the analysis. Potential opportunities for the development of the chemical industry and its production network are revealed by modeling the expansion of logistics activities in chemical enterprises in Azerbaijan in the short term. The importance of creating 5 key chemical logistics centers in the country is substantiated.

A number of proposals and recommendations on modern problems and aspects of the logistics system development in chemical enterprises of Azerbaijan are given.

Key words: Azerbaijan, strategic road maps, logistics system, chemical enterprises, logistics system, chemical enterprises of Azerbaijan, the efficiency of the logistics system of Azerbaijan, the development of the chemical industry of Azerbaijan.

Language: Russian

Citation: Gamidova AM (2017) MODERN PROBLEMS AND ASPECTS OF DEVELOPMENT OF LOGISTIC SYSTEM IN CHEMICAL ENTERPRISES OF AZERBAIJAN. ISJ Theoretical & Applied Science, 08 (52): 80-84.

Introduction

In modern conditions, the development of the chemical industry in Azerbaijan has important significance, since after the oil era, the country has needed to intensively develop non-oil sectors, which are competitive and capable of creating additional value for the growth of the national economy in the conditions of expansion of global economic influences and a reduction in oil prices. Furthermore, the problems of efficient organization of the oil refining network in Azerbaijan have become more relevant each year.
необходимостью расширения мощностей сети перерабатывающих предприятий в сфере химии и нефтехимии. Рассматривается, что путём расширения нефтепереработки в стране появятся реальные сырьевые ресурсы, которые пойдут на увеличение мощности крупных технологических установок химических и нефтехимических предприятий страны[1]. В связи с этим особо требуется комплексный и системный подход по мобилизации ресурсного потенциала для загрузки мощностей химических и нефтехимических предприятий стран, где особое место принадлежит эффективности организации логистической системы. Более того, инновационное развитие промышленности Азербайджана предусматривает комплексное взаимодействие и взаимное решение проблемы консолидации сырьевых ресурсов путём расширения нефтепереработки и перерабатывающей возможности химии и нефтехимического комплекса[2].

Materials and Methods
Для решения подобных крупных мероприятий по интенсификации развития химических и нефтехимических предприятий, в том числе развития в этой отрасли предпринимательской и инновационной деятельности малых и средних предприятий требуется более упрощённый доступ к основным видам химического сырья и материалам. Отмечается, что организационно-экономические аспекты инновационной деятельности малых и средних предприятий в Азербайджане больше всего зависят от обеспеченности ими важными видами химического сырья и реагентов[3]. Более того, современные аспекты и направления развития нефтехимического комплекса в Азербайджане обуславливают расширение источников сырьевых ресурсов, в том числе привоза и комплектации их извне. При этом, считается, что без решения основных сырьевых вопросов и организации эффективной логистической системы представляется невозможным успешная финансово-хозяйственная деятельность нефтехимического комплекса в нынешних условиях[4]. Вопросы развития химической промышленности имеют мощный потенциал, однако эффективность использования подобного ресурсного и инфраструктурного потенциала за последние десятилетия реализуется в недостаточном количестве. Проблемы развития химической промышленности больше всего связаны с не проблемами сбытовых рынков, а именно с необеспеченностью загрузки основных технологических установок предприятий химической промышленности страны[5]. Поэтому, логистическая система способна исправить подобные недостатки и может обеспечить сбалансированность обеспечения основными видами сырьевых ресурсов и материалами предприятий химической отрасли. Логистическая система способна обеспечить взаимодействие поставщиков и конечных потребителей основных видов сырьевых ресурсов, контролировать движение сырьевых потоков, их использование, процесс переработки, доставки готовой продукции покупателям, осуществление управления и контроль за финансовыми и информационными потоками в данных процессах[6]. Отметим, что в международной практике имеется ряд прогрессивных форм и методов освоения и применения прогрессивных логистических систем во многих крупных компаниях и корпорациях мира. Логистическая система обеспечивает стабильное планирование, прогнозирование, использование и анализ сырьевых, информационных и финансовых потоков для сбалансирования успешной деятельности предприятия[7]. Как показывает практическая деятельность в бизнес-сфере, без эффективной организации логистической системы невозможно добиться больших успехов и хороших результатов в той или иной сфере бизнес деятельности. Необходимо детально изучить и разработать более адекватные механизмы с созданием соответствующей инфраструктуры логистической системы предприятий для обеспечения успешности бизнес деятельности[8]. Создание и применение подходящего варианта и модели логистической системы для химических и нефтехимических предприятий требует учесть ряд важных факторов, связанных со спецификой отрасли. Определение и применение логистической политики в нефтехимических предприятиях должно находится под пристальным вниманием руководителя и в целом топ-менеджерского состава предприятия[9]. На Рисунке 1 дан авторский подход по основным направлениям прогрессивной логистической системы в химических предприятиях.
Рисунок 1 - Основные направления деятельности прогрессивной логистической системы химических предприятий (разработано автором).

Как видно из Рисунка 1 в число основных направлений деятельности прогрессивной логистической системы химических предприятий входит по экономической направленности, прежде всего, оценка эффективности логистической деятельности, анализ себестоимости услуг и затрат на перевозку, оптимизация себестоимости логистической услуги; по организационной деятельности организация управленческой системы логистической деятельности, организация процессов оказания логистических услуг и совершенствования деятельности логистической деятельности; по перевозке сервисных услуг выбор оптимальных вариантов перевозки, обеспечение эффективности перевозок и использование транспортных средств и прочее.

Исследователи Л.Алексеева и Т.Алесинская отмечают, что для обеспечения устойчивого функционирования и развития логистической системы необходимо оптимально и адекватно определить основные направления деятельности логистической системы предприятия[10; 11]. Более того, современные проблемы и аспекты экономико-организационных вопросов логистической системы в химических предприятиях требуют тщательного изучения существующих барьеров по расширению источников основного вида сырья и повышению мобильности логистической системы предприятия. Логистическая система в...
Impact Factor:

	ISRA (India)	ISI (Dubai, UAE)	GIF (Australia)	JIF	SIS (USA)	ICV (Poland)
	1.344	0.829	0.564	1.500	0.912	6.630
	ISRI (Dubai, UAE)	0.829	0.564	1.500	0.912	
	ESJI (KZ)	3.860	0.564	1.500	0.912	
	SIS (USA)	0.912	0.564	1.500	0.912	
	РИНЦ (Russia)	0.207	0.564	1.500	0.912	
	ICV (Poland)	6.630	0.564	1.500	0.912	
	PIF (India)	1.940	0.564	1.500	0.912	
	IBI (India)	4.260	0.564	1.500	0.912	
	SJIF (Morocco)	2.031	0.564	1.500	0.912	

предприятиях должна быть адекватной, с производственным планом и стратегическими целями химического предприятия[12]. Отметим, что в Азербайджане имеются стратегических подходы и механизмы по обеспечению развития логистики и логистической системы[13]. С целью выполнения намеченных стратегических задач в той или иной области экономики страны обуславливается расширение деятельности логистической системы и повышение её роли в нынешних условиях. Важность логистической системы в реализации стратегических дорожных карт обуславливает и повышение роли логистики в обеспечении основными видами материальных ресурсов химических предприятий Азербайджана[14]. На Рисунке 2 дано моделирование логистики обеспеченностью материальных ресурсов химической предприятии Азербайджана в ближайшей перспективе.

Conclusion

Таким образом, в ближайшей перспективе с целью моделирования логистики обеспеченностью материальными ресурсами химических предприятий в Азербайджане предлагается создание и развитие пяти крупных логистических центров, которые могут существенно способствовать повышению обеспеченности основного вида сырья и материалов химических предприятий, развития...
предпринимательской деятельности в химической отрасли, повышению привлекательности для вложения инвестиций иностранных инвесторов и в целом обеспечить эффективную деятельность химических и нефтехимических предприятий в условиях роста глобальных экономических тенденций.

References:

1. Aliyev T.N., Babayev M.T. (2011) Aktual'nyye ekonomicheskiye problemy sfery: neftepererabotki i neftekhimii. Baku, «Nauka i obrazovaniye», 2011.-246 p.
2. Aliyev T.N. (2016) Innovatsionnyye razvitiye promyshlennosti Azerbaydzhan: neftepererabotka, khimiya i neftekhimiya. Moskva-Berlin, «Palmarium», 2016.-232 p.
3. Aliyev T.N. (2014) Organizatsionno-ekonomicheskiye aspekty innovatsionnykh deyatel'nostii malych i srednikh predpriyatiy v Azerbaydzhan // Informatsiya i innovatsii, №3-4. Moscow, 2014.-S. 106-116.
4. Aliyev SH.T. (2016) Sovremennyye aspekty i napravleniya razvitiya neftekhimicheskogo kompleksa v Azerbaydzhan // Zhurnal Audit, №3, 2016.-p. 41-45.
5. Aliyev SH.T. (2010) Voprosy razvitiya khimicheskogo promyshlennosti Azerbaydzhanskoy Respubliki // Zhurnal «Khimicheskaya promyshlennost' Rossii segodnya», №8, Moscow, 2010. -p. 5.
6. Imanov T.I. (2005) Osnovy logistiki. Baku, TSIP «Prosveshcheniye», 2005.-474 p.
7. Panakhaliyeva M.O., Aliyev SH.T. (2015) Mezhdunarodnyye transportnyye operatsii. Sumgayyt: Izdatel'stvo Sumgayytskogo Gosudarstvennogo Universiteta, 2015.-176 p.
8. Gasyanova Z.M. (2016) Organizatsionnyye problemy logistiki v biznes deyatel'nosti. Materialy Mezhdunarodnoy nauchnoy konferentsii na temy «Ustoychivyye razvitiye ekonomiki: problemy, perspektivy». Ministerstvo Obrazovaniya Azerbaydzhanskoy Respubliki. Sumgayytskiy Gosudarstvennyye Universitet, Azerbaydzhanskiy Gosudarstvennyy Ekonomicheskiy Universitet. Chast' I, 27-28 aprelya 2016 god. Sumgayyt, 2016.-406 p. -p. 65-67.
9. Amiraslanova D.E. (2016) Opredeleniye i primenenie logisticheskoy politiki v neftekhimicheskikh predpriyatiyakh // Izvestiya NANA, Seriya Ekonomika, 2016 (sentyabr'-oktyabr'). Regional'naya i otrасlevaya ekonomika. Baku, 2016.-p. 137-143.
10. Alekseyeva L.D. (2008) Obespecheniye ustoychivogo funktsionirovaniya i razvitiya logisticheskoy sistemy. Diss. kand. ekon. nauk. Sankt Peterburg, 2008.-155 p.
11. Alesinskaya T.V. (2005) Osnovy logistiki. Obshchiye voprosy logisticheskogo upravleniya. Taganrog: Izd-vo TRTU, 2005.-121 p.
12. Gamidova A.M. (2011) Sovremennyye aspekty ekonomichesko-organizatsionnykh problemy logisticheskoy sistemy v khimicheskikh predpriyatiyakh // Zhurnal Audit, №2, 2017.-p. 126-135.
13. (2016) Strategicheskiye dorozhnyye karty po razvitiyu logistiki i togovoi v Azerbaydzhanskoy Respublike. Utverzhdeno Ukazom Prezidenta Azerbaydzhanskoy Respubliki ot 6 dekabrya 2016 goda.
14. Gamidova A.M. (2017) Vazhnost' logisticheskoy sistemy v realizatsii strategicheskikh dorozhnykh kart v usloviyakh global'nykh ekonomicheskikh vzvozov // Zhurnal Geostrategiya, №3 (39), 2017. -p. 72-73.

Impact Factor	ISRA (India) = 1.344	SIS (USA) = 0.912	ICV (Poland) = 6.630
ISI (Dubai, UAE) = 0.829	PII (Russia) = 0.207	PIF (India) = 1.940	
GIF (Australia) = 0.564	ESJI (KZ) = 3.860	IBI (India) = 4.260	
JIF = 1.500	SJIF (Morocco) = 2.031		
Theoretical & Applied Science

International Scientific Journal

Theoretical & Applied Science

Impact Factor: ISRA (India) = 1.344 SIS (USA) = 0.912 ICV (Poland) = 6.630
ISI (Dubai, UAE) = 0.829 РИНЦ (Russia) = 0.207 PIF (India) = 1.940
GIF (Australia) = 0.564 ESJI (KZ) = 3.860 IBI (India) = 4.260
JIF = 1.500 SJIF (Morocco) = 2.031

SOI: 1.1/TAS DOI: 10.15863/TAS

Asli Khanguseyn Kazymova
Doctor of Philosophy in Economics, Senior lecturer of the department "Regulation of Economics"
Azerbaijan State Economic University, Azerbaijan Republic
nauka-xxi@mail.ru

SECTION 19. Management. Marketing. Public administration.

MODELING OF RAW MATERIAL SECURITY OF NON-PERFECT SECTORS OF THE ECONOMY OF AZERBAIJAN IN THE CONDITIONS OF GLOBAL CHANGES

Abstract: The modeling of raw materials supply of the non-oil sectors of the Azerbaijani economy in the conditions of global changes are studied in the article. The level and main trends of development of the non-oil sector of the country's economy in the current conditions are analyzed. The problems of resource availability and the level of adequacy of natural reserves of a number of non-oil sectors of the country's economy are considered. The importance of developing the quality of competitive and powerful sectors of the non-oil sector, such as the chemical and petrochemical, metallurgical and construction sectors of the national economy are noted. The views that modernization and updating of the basic mechanisms and practical tools of the non-oil sector of the country's economy are required in the context of the growth of global threats and changes are generalized.

Key words: the non-oil sector of the economy of Azerbaijan, the modeling of the raw materials supply of the non-oil sector, global economic threats, the metallurgical complex of Azerbaijan, the chemical and petrochemical complex of Azerbaijan, the construction sector and the production of building materials of Azerbaijan.

Language: Russian

Citation: Kazymova AK (2017) MODELING OF RAW MATERIAL SECURITY OF NON-PERFECT SECTORS OF THE ECONOMY OF AZERBAIJAN IN THE CONDITIONS OF GLOBAL CHANGES. ISJ Theoretical & Applied Science, 08 (52): 85-88

Soi: http://s-o-i.org/1.1/TAS-08-52-13 Doi: https://dx.doi.org/10.15863/TAS.2017.08.52.13

МОДЕЛИРОВАНИЕ СЫРЬЕВОЙ ОБЕСПЕЧЕННОСТИ НЕНЕФТЯНЫХ СЕКТОРОВ ЭКОНОМИКИ АЗЕРБАЙДЖАНА В УСЛОВИЯХ ГЛОБАЛЬНЫХ ИЗМЕНЕНИЙ

Аннотация: В статье исследовано моделирование сырьевой обеспеченности ненефтяных секторов экономики Азербайджана в условиях глобальных изменений. Анализированы уровни и основные тенденции развития нефтяного сектора экономики страны в нынешних условиях. Рассмотрены проблемы ресурсообеспеченности и уровень адекватности природных запасов ряда ненефтяных секторов экономики страны. Отмечена важность развития качества конкурентоспособных и мощных отраслей ненефтяного сектора, таких как химического и нефтехимического, металлургического и строительного сектора национальной экономики. Обобщены мнения в том, что требуется модернизация и обновление основных механизмов и практических инструментариев нефтяного сектора экономики страны в контексте роста глобальных угроз и изменений.

Ключевые слова: нефтяной сектор экономики Азербайджана, моделирование сырьевой обеспеченности ненефтяного сектора, глобальные экономические угрозы, металлургический комплекс Азербайджана, химические и нефтехимические комплексы Азербайджана, строительный сектор и производство строительных материалов Азербайджана.

Introduction

В связи с интенсификацией трансформации основных механизмов национальной экономики и отдельных ее секторов Азербайджана в условиях глобальных изменений и глобальных экономических угроз постоянно идет давление на существующие механизмы и практические инструментарии развития ненефтяных секторов экономики страны. Вопрос очень актуальный и даже болезненный, дело в том, что, в связи с падением цен на нефть на мировых рынках за последние годы резко снизился валютный доход...
Азербайджана, что отрицательно повлияло на рост национальной экономики. Исходя из этих соображений, руководство страны взяло серьезный и ускоренный курс на перевод тяжести экономики страны именно на плюс нефтяного сектора экономики, тем самым обеспечило минимизацию негативных последствий финансовых и экономических кризисов в последние годы, и как было отмечено, отрицательных действий после падения цен на нефть, которая является локомотивом экономики Азербайджана после восстановления независимости страны с распадом бывшего СССР. У Азербайджана на это имеются все основания, так как, по мнению ведущих ученых страны, во главе с академиком А.Надировым, который считает, что Азербайджан имеет достаточные природные богатства и экономические ресурсы для диверсификации своей национальной экономики и ускоренного развития нефтяных секторов экономики страны в вынужденных условиях[1]. Более того, моделирование развития нефтяных секторов экономики страны безусловно, больше всего зависит от адекватности ресурсообеспеченности основными видами сырьевых ресурсов для развития того или иного сектора экономики страны, особенно нефтяных секторов, прежде всего, конкурентоспособных секторов экономики (металлургический, химический и нефтехимический, строительный и прочие сектора). Дело в том, что Азербайджан имея достаточный ресурсный потенциал для диверсификации структуры национальной экономики, обладает реальной возможностью для осуществления модернизации и интенсификации отдельных секторов экономики страны, но и безусловно, важных сфер нефтяного сектора, которые способны производить достаточно конкурентоспособную национальную продукцию и внести серийный вклад в рост экономики страны. Профессора Ш.Гаджиева, Р.Гасанова, А.Аллахвердиев, Т.Алиев и Ш.Алиев справедливо отмечают, что у Азербайджана, наряду с сырьевой обеспеченностью и ресурсным потенциалом, есть реальные шансы успешной преодоления макроэкономических трудностей в новых условиях и сформировать более устойчивые, прочные, иммунизированные механизмы модели экономического развития в условиях роста глобальных экономических угроз и трансформаций мировой экономической системы[2; 3; 4; 5; 6]. Однако, к большому сожалению, в последние годы, несмотря на проводимые полномасштабные работы и мероприятия по повышению роли и удельного веса нефтяного сектора экономики страны в общем объеме национальных продуктов, рост ожидаемых результатов не обеспечивает динамичность развития национальной экономики и не может компенсировать потерянные валютные средства от понижения цен на нефть. Кроме того, несмотря на имеющийся экспортный потенциал, основные нефтяные секторы экономики Азербайджана в общей доли экспорта имеют низкие показатели. Например, металлургическая и химическая промышленность в общем объеме экспорта не имеют даже одной доли процента. В наличии мощного экспортного потенциала сельскохозяйственной продукции и агрессектора пока не обеспечена их реализация на прогнозируемом уровне[7].

Materials and Methods

Мы хотели бы обратить внимание на проблемы обеспеченности ряда нефтяных секторов экономики, которые, на наш взгляд, имеют реальные возможности для оказания положительного влияния на диверсификацию и рост национальной экономики в ближайшей перспективе. Одним из важных нефтяных секторов экономики страны является химическая и нефтехимическая промышленность страны, которая способна выработать более продуктивную, различных видов, инновационную продукцию и обеспечить серьезный рост экономики страны[8; 9]. Химический и нефтехимический сектор страны имеет огромный потенциал по обеспечению основными видами сырьевых ресурсов и их запасами[10]. Дело в том, что с ростом добычи нефти и природного газа, безусловно, повышаются возможности увеличения с необходимыми первичными сырьевыми компонентами нефтегазоперерабатывающих предприятий и в дальнейшем для адекватного обеспечения основных технологических установок крупных химических и нефтехимических предприятий. В Азербайджане имеется 71 нефтегазовых залежей, из них 43 находится на суше и 28 в шельфе Каспийского моря. Подтверждённые запасы нефти с учетом различных прогнозов международных организаций, институтов и в том числе официальных структур Азербайджана запасы нефти в шельфовой зоне национального сектора Каспийского моря находятся примерно в количестве 4 млрд. тонн. Более того, запасы природного газа считаются довольно серьезно перспективными и выгодными с учетом реализации международных энергетических проектов, в том числе поставки азербайджанского природного газа в европейские страны[11]. Запасы природного газа с учетом прогнозов оцениваются на уровне 7 трлн. куб. метров. Запасы отдельных основных морских газовых месторождений и запасов, например «Шахдендез»

Impact Factor:	ISRA (India) = 1.344	SIS (USA) = 0.912	ICV (Poland) = 6.630
ISI (Dubai, UAE) = 0.829	РИНЦ (Russia) = 0.207	PIF (India) = 1.940	
GIF (Australia) = 0.564	ESJI (KZ) = 3.860	IBI (India) = 4.260	
JIF = 1.500	SJIF (Morocco) = 2.031		
оцениваются на уровне 1,2 трлн. куб. метров, «Банка Дарвина» - 400 млрд. куб. метров, «Умида» - 200 млрд. куб метров, «Абшерон» - 350 млрд. куб. метров и так далее. В связи с ростом добычи природного газа появляются реальные возможности для направления части добьтого газового сыра на перерабатывающую сеть и создать мощную, конкурентоспособную и в то же время крупные производственные газоперерабатывающие предприятия, которые в свою очередь будут способны обеспечить крупными и бесперебойными потоками сырьевых ресурсов предприятий химической и нефтехимической промышленности страны. Кроме минеральных угледородных ресурсов и запасов в Азербайджане, для развития химической и нефтехимической промышленности имеются мощные запасы по производству йода и кальцинированной соли.[12].

Дело в том, что территории Абшеронского полуострова и Нефтячалинского района населена горными нерудными месторождениями, которые являются сырьем для производства йода. Кроме того, на территории Нахчыванской Автономной Республики находятся крупные соляные запасы, в количестве 730 млн. тонн промышленного значения, которые являются исходным сырьем для организации производства кальцинированной соли[13].

Следующая более продуктивная и перспективная отрасль национальной экономики Азербайджана связана с развитием металлургического производства. Эта отрасль имеет традиционную историю и стала важным направлением индустриального развития. В Азербайджане и в целом в регионе Россия, существуют большие рудные запасы в Азербайджане и прочие природные ресурсы для развития металлургической промышленности. Краеугольными элементами развития и благоприятным фактором является высокий уровень развития стальных и цветных металлургических предприятий в стране. Для успешного развития металлургической отрасли в Азербайджане за последние десятилетия насчитывается более 240 строительных объектов с общим объемом более 240 строительных зданий, которые являются сырьем для производства кальцинированной соли[13].

Следующая более продуктивная и перспективная отрасль национальной экономики Азербайджана – металлургическая отрасль. Этот комплекс имеет традиционную историю и традиционное развитие индустриального развития. В Азербайджане и в целом в регионе Россия, существуют большие рудные запасы в Азербайджане и прочие природные ресурсы для развития металлургической промышленности. Краеугольными элементами развития и благоприятным фактором является высокий уровень развития стальных и цветных металлургических предприятий в стране. Для успешного развития металлургической отрасли в Азербайджане за последние десятилетия насчитывается более 240 строительных объектов с общим объемом более 240 строительных зданий, которые являются сырьем для производства кальцинированной соли[13].

Одним из важных направлений развития национальной экономики Азербайджана является строительный сектор. В последние десятилетия в Азербайджане происходил процесс строительного бум. Было построено сотни крупных заводов, промышленных объектов, тысячи инфраструктурных объектов и сооружений, дорог, мостов и жилых массивов. Все эти процессы потребовали интенсификации развития всех отраслей национальной экономики Азербайджана. Строительная отрасль является важным направлением экономики страны и является основным источником развития экономики Азербайджана. За последние десятилетия в Азербайджане было построено более 240 строительных объектов с общим объемом более 240 строительных зданий, которые являются сырьем для производства кальцинированной соли[13].
природные запасы и сырьевые залежи, которые имеются практически во многих регионах страны, в том числе в Абшеронском полуострове, Гянджа-Гахском экономическом районе и в Нахчыванской Аутономной Республике.

Conclusion

Отметим, что в ближайшей перспективе, ожидается модернизация и обновление основных механизмов и практических инструментов поведения деятельности ненефтяных секторов экономики страны, так как они не отвечают основным критериям прироста глобальных последствий последнего времени. В Азербайджане необходимо обеспечить адекватность развития ненефтяных секторов экономики страны, с учетом опережения негативных последствий известных глобальных отрицательных влияний в том или ином секторе экономики страны. Уровень и развитие деятельности ненефтяного сектора экономики страны должен способствовать обеспечению макроэкономической стабильности в стране, устойчивости и динамичному роста экономики Азербайджана в контексте роста глобальных экономических угроз и основных глобальных изменений в нынешних условиях.

References:

1. Надиров А., Мурадов SH., Алексеров А., Нуриев А., Гусейнов Т. Экономика Азербайджана. Баку, «Эль», -344 р.
2. Гаджиев И.А. (2017) Идентификация модели экономического развития Азербайджана. «Гейдар Алиев и стратегия модернизации Азербайджана». Баку: Азerneshr, 2011. -708 р.
3. Гасанов Р.Т. (2012) Особенности сотовых экономических взаимосвязей Азербайджана // Налоговый журнал Азербайджана, №2, 2012. -p.103-108.
4. Алахвердиев А.Г. (2004) Проблемы совершенствования макроэкономического развития и структурных изменений в процессе формирования ряночных экономик. Азербайджан, Институт Экономики. Баку, 2004. -45 р.
5. Алиев Т.Н. (2016) Инновационные разрешения промышленности Азербайджана: нефтепереработка, химия и нефтехимия. Маска-Берлин, «Палмариум», 2016.-232 р.
6. Алиев SH.T. (2016) Современные аспекты и развитии разрешения нефтехимического комплекса в Азербайджане // Журнал Аудит, 2016, №3.- p. 41-45.
7. (2017) Азербайджан в цифрах, Баку.- 286 р.
8. Алиев Т.Н., Бабаев М.Т. (2011) Актуальные экономические проблемы отраслей: нефтепереработка и нефтехимия. Баку, «Нauka i obrazovaniye».-346 р.
9. Алиев T.N. (2014) Организационно-экономические аспекты инновационного развития Азербайджана // Имплементация и инновации, №3-4, Москва, 2014.-p. 106-116.
10. (2017) Полезные ископаемые Азербайджана. Общественно-география Азербайджана. Available: http://az.strategiya.az. (Accessed: 10.08.2017).
11. Гасанов А. (2017) Учastiye energeticheskikh resurov Kaspiyskogo basseyna i Yuzhnogo Kavkaza v energeticheskoy bezopasnosti Yevropy. Available: http://az.strategiya.az. (Accessed: 10.08.2017).
12. (2017) Природные запасы Азербайджана. Available: http://kayzen.az
13. (2017) Природные богатства Азербайджана. Available: http://azecology.az/az/elaqe (Accessed: 10.08.2017).
14. Шукюров А. (2017) Сектора минерального сырья: ресурсы стоят в тенетре изменений, промышленные ресурсы в виртуальной экономике. Available: http://az.strategiya.az/old/?m=xeer&id=13955 (Accessed: 10.08.2017).
15. (2017) Strategicheskiye tseli v tayzheloy promyshlennosti i mashinostroyeni. Available: http://www.marja.az. (Accessed: 10.08.2017).
16. (2016) Strategicheskiye dorozhnuye karty po perspektivam natsional'noy ekonomiki Azerbaydzhanskoj Respubliki. Utverzhdeno Uzakom Prezidenta Azerbaydzhanskoj Respubliki ot 6 dekabrya 2016 goda.
SECTION 3. Nanotechnology. Physics.

ESTIMATION THE ULTIMATE SIZE OF THE ANTIFRICTIONAL PROTECTIVE LAYER CONTAINING MINERAL FRICTION MODIFIERS

Abstract: Algorithm is proposed of estimation the ultimate size of lubricating-protective layer arising at presence of mineral friction modifiers. This algorithm is based on quantum-mechanical approach to study the formation of protective antifriction films of dielectric materials on metal surface.

Key words: models of friction, lubricating-protective layer, mineral modifier, wave function, quantum-mechanical approach

Language: Russian

Citation: Lyubimov D, Goldade V, Dunaev A, Pustovoi I (2017) ESTIMATION THE ULTIMATE SIZE OF THE ANTIFRICTIONAL PROTECTIVE LAYER CONTAINING MINERAL FRICTION MODIFIERS. ISJ Theoretical & Applied Science, 08 (52): 89-94.

СОИ: 1.1/TAS DOI: 10.15863/TAS.2017.08.52.14

ОЦЕНКА ПРЕДЕЛЬНОГО ЗНАЧЕНИЯ ТОЛЩИНЫ АНТИФРИКЦИОННОГО ЗАЩИТНОГО СЛОЯ, СОДЕРЖАЩЕГО МИНЕРАЛЬНЫЕ МОДИФИКАТОРЫ ТРЕНИЯ

Аннотация: Предложен алгоритм оценки предельного значения толщины смазочно-защитного слоя, возникающего в присутствии минеральных модификаторов трения. Алгоритм основан на квантово-механическом подходе к изучению формирования защитных антифрикционных пленок из диэлектрического материала на металлической поверхности.

Ключевые слова: модели трения, смазочно-защитный слой, минеральный модификатор, волновая функция, квантово-механический подход

1. Введение

За более чем 25-летнюю историю использования минеральных добавок к смазочным материалам был достигнут значительный прогресс, как в прикладном плане их использования, так и в раскрытии механизмов их антифрикционного и защитного воздействия на материалы узлов трения [1].

Однако, как показывает анализ, приведенный в недавно опубликованных работах [1, 2], достаточно ясными с теоретической точки зрения являются только представления о самом начальном этапе образования смазочно-защитного слоя. Дальнейшая его эволюция и связанные с ней механизмы представлены слабо. В частности, совершенно не ясен вопрос о порядке предельных значений толщины такого слоя, хотя данный параметр может оказаться ключевым для оценки износостойкости трибосистем в целом [3, 4].

2. Постановка задачи

Как следует из наиболее общих моделей трения, формирование поверхностных структур
является результатом коллективного действия множества факторов, раскрывающихся в физико-химических механизмах взаимодействия поверхностных слоев трибосопряжений [5, 6]. Именно чрезвычайная сложность подобных процессов не позволяет до настоящего времени создать достаточно корректную модель формирования смазочных слоев в области фрикционного контакта. Тем не менее, весьма обнадеживающие выглядят попытки рассмотрения фрикционного взаимодействия с позиции наиболее фундаментальной физической теории – квантовой механики [7-10].

В этих моделях процессы фрикционного взаимодействия представляются как последовательность актов пассивации и активации поверхностей трения, происходящих вследствие их фрикционного взаимодействия [8, 10]. Эти процессы прекрасно моделируются посредством таких квантовых систем, как потенциальные барьеры и ямы, изменение «размеров» которых отражает способность поверхности твердого тела вступать в химические взаимодействия. Другим важным условием активации поверхности является наличие и постоянное воспроизводство активного вещества, например, находящегося в электрически активном состоянии [5, 11, 12].

В квантовой механике, в частности в теории химической связи [13-15], эти состояния вещества описываются с помощью волновых функций Ψ, являющихся носителями информации о состоянии физических систем. Волновая функция – это величина, лишенная определенного физического смысла, представляющая собой некоторое информационное поле. По утверждению одного из классиков квантовой физики Э. Шредингера, волновая функция определяет плотность вещества или его заряда. Значение волновой функции изменяется при взаимодействии компонентов твердого тела с потенциальными барьерами, и по этим изменениям можно судить, в частности, и об изменениях реакционно способных состояний веществ, так как уменьшение величины волновой функции, квадрат модуля которой характеризует плотность вещества (или заряда), свидетельствует о пассивации поверхности трения, в то время как увеличение – об активации последней и увеличении вероятности образования химических связей. В связи с этим возникает вопрос: как оценить изменение волновой функции в условиях трения в среде, содержащей минеральные модификаторы трения?

3. Квантово-механическая модель оценки толщины защитного слоя

В работе [16] рассматривалось изменение волновой функции, описывающей электронную плотность при прохождении электронной волн потенциальных барьеров. Волновая функция имела вид плоской гармонической волны, что упрощало математический аппарат, используемый в данной модели. Однако данный подход слабо применим к поставленной задаче, поскольку неизменность параметров потенциальных барьеров не выполняется в условиях активирующего действия на материал со стороны сил трения.

Для решения поставленной задачи воспользуемся методом, предложенным в работах [17, 18], в котором постулируется возникновение в диэлектрической среде связанных электрически активных состояний, описываемых плосковолновой функцией Ψ и имеющих энтропийно-подобный характер. Процесс этот в достаточно упрощенном виде заключается в появлении напряжения электрического заряда +q, рожденного в процессе контактной электризации (или трибоактивации) поверхности фрикционного контакта его «негативного» отражения –q, создающего с исходным зарядом систему экситона. В свою очередь, индуцированный заряд –q проецирует свой антизаряд +q, образующие уже второй экситон, и т.д. Как было показано в работах [17, 18], если первый экситон описывается волновой функцией Ψ₀, то второй экситон должен описываться волновой функцией Ψ₁, получаемой из унитарного преобразования, состоящего в двух поворотах на угол π/2 волнового вектора Ψ₀, что дает следующее значение для Ψ₁:

$$Ψ_1 = \frac{1}{2} Ψ_0.$$ (1)

Абсолютно аналогично получается и волновая функция Ψ₂:

$$Ψ_2 = \frac{1}{2} Ψ_0 = \frac{1}{4} Ψ_0.$$ (2)

Из соотношений (1) и (2) легко построить общую формулу для оценки изменения значения волновой функции в различных слоях структуры:

$$Ψ_n = (\frac{1}{2})^n Ψ_0,$$ (3)

где n = 0, 1, 2, …

Если основываться на шредингеровском представлении о волновой функции, то плотность зарядовых состояний (т.е. квадрат волновой функции) должна уменьшаться по закону:

$$|Ψ_n|^2 = (\frac{1}{2})^{2n}|Ψ_0|^2.$$ (4)

Согответственным образом происходит и снижение химической активности, а также
адгезионной способности каждого последующего слоя.

Рост слоя прекращается, когда значение плотности его активных состояний в поверхности становится столь незначительным, что даже самые слабые сдвиговые усилия отходят материал поверхности защитной пленки от ее основной массы. С точки зрения квантовой физики, величина волновой функции Ψ_n, описывающей состояние данного слоя, должна быть много меньше исходной величины Ψ_σ, что может быть записано в следующей форме:

$$\Psi_\sigma - \Psi_n \leq \Psi_n$$

или с учетом соотношений (1-3)

$$(\frac{1}{2})^n \geq 0.$$

Ноль в правой части неравенства (6) означает очень малую величину, а не полное отсутствие чего-либо, поэтому его вполне можно заменить на некоторое малое значение $\varepsilon > 0$:

$$(\frac{1}{2})^n \geq \varepsilon$$

или

$$2^n \geq \varepsilon^{-1} = E,$$

где E – какая-то постоянная величина.

Допущение (7) абсолютно корректно, так как в описании роста пленок в условиях динамического контакта поверхностей трения сохраняетсяится раньше, чем обусловлена величина Ψ_n. Соотношение же (7) легко привести к простейшему логарифмическому уравнению:

$$\log_2 E \geq n.$$

Величина n в уравнениях (3, 6-8) – это целое число, равное количеству слоев, образующихся при трении с участием минеральных модификаторов трения, т.е.

$$n = H/h,$$

где H – минимальная толщина защитного антифрикционного слоя, h – толщина единичного элементарного слоя.

4. Максимальная толщина защитного слоя с минеральной добавкой

Для нахождения порядка величины H, являющейся предметом настоящей работы, необходимо сделать ряд предположений. Во-первых, в соответствии с предлагаемой моделью, толщина h должна равняться характерному размеру экситона, который в приближении Ванье-Мотта равен [19]:

$$h = \varepsilon \varepsilon_0 \frac{\hbar^2}{\mu e^2},$$

где ε_0 – электрическая постоянная, ε – диэлектрическая проницаемость среды, \hbar – постоянная Планка, μ – приведенная масса экситона, близка к массе электрона, e – заряд электрона.

Диэлектрическая проницаемость серпентиновых пород, которые наиболее часто встречаются в минеральных модификаторах трения, равна 3 [20], поэтому значение h оказывается равным 300 Å, что совпадает с расчетными значениями характерных размеров экситонов Ванье-Мотта.

Во-вторых, нам необходимо определить порядок очень большей величины E. Это можно сделать только в рамках некоторых физических допущений, часто составляющих «сердцевину» физической модели, и справедливость которых определяется соответствием получаемых результатов данным эксперимента. Поскольку E характеризует степень «пассивации» внешнего слоя по отношению к первому слою, то следует положить этой величине порядок, соответствующий превышению, которым обладает сильная химическая связь, например, ковалентная, над слабой Ван-дер-Ваальсовской, что в среднем составляет 106 раз.

Если величина $E = 10^6$, то логарифм из неравенства (8) от этой величины будет равен 20 и, следовательно, максимальное значение толщины H составляет 6000 Å или 600 нм. Это значение предельно точно совпало с результатами, полученными с помощью атомно-силовой микроскопии поверхностей и приведенными в работах [1, 23].

Рассмотрим особенности структуры сформированного таким образом поверхностного слоя. Во-первых, всякое явление переноса с той или иной степенью точно описывается при помощи уравнения нерепрывности, которое в приложении к квантовой теории имеет вид [22]:

$$\frac{\partial n}{\partial t} + \text{div} \ j = 0.$$

где

$$j = \frac{i\hbar}{2m} \left(\frac{\partial \psi^*}{\partial x} - \frac{\partial \psi}{\partial x} \right)$$

– поток частиц, n – плотность, m – масса, \hbar – постоянная Планка, i – минимум единица, ψ – волновая функция, ψ^* – сопряжённая волновая функция.

Как было показано в работе [18], для данной системы должно выполняться требование $\partial n/\partial t = 0$ или $n = const$, что соответствует требованию постоянства содержания вещества в рассматриваемой области фрикционного контакта, которому в квантово-механических расчётах сопоставляется некоторый объём фазового пространства Ω. Кинетика...
формирования защитного слоя на поверхности трения при помощи минеральных модификаторов может описываться путём воздействия на волновую функцию $\psi(t)$, характеризующую фрикционный перенос частиц минерального модификатора трения на поверхность тробосопряжения, унитарного оператора $u(t) = \exp(-iHt/\hbar)$ [22]. В тоже время, поскольку волновые функции ψ имеют вид сферической вовны [18], то в силу присущей им симметрии, в течение некоторого промежутка времени t их пересечение образуют на поверхности объёма фазового пространства Ω, которое, в конечном счёте можно связать с фрикционным контактом, области пересечения $\psi(t)$, формирующие упорядоченную поверхностную систему областей максимальных значений величин $\psi(t)$, которым на Рис. 1 соответствуют заштрихованные сектора.

Рисунок 1 - Области перекрытия волновых функций.

В соответствии с физическими свойствами волновой функции, можно сделать весьма обоснованное предположение, что заштрихованным секторам фазового пространства волновой функции $\psi(t)$ соответствуют реальные участки поверхности трения, на которых происходит очаговое формирование создаваемого минеральным модификатором трения защитного слоя. При этом высота каждого такого участка лимитируется уравнением (9) и, как было показано, может достигать значения 6000 Å (рис.2а).

Необходимо отметить, что «фрагментальность» при образовании плёнок фрикционного переноса фиксировалась и в металлоолимерных тробосистемах, что было отмечено в работе [17] и возможно является фундаментальной закономерностью образования подобных структур.

Идеальный теоретический вид поверхности защитного слоя, формируемого при помощи минеральных модификаторов трения, полученный при анализе квантово-механических уравнений применительно к фрикционному переносу, передаёт все основные особенности строения аналогичной структуры, обнаруженной при исследовании поверхности трения, обработанной минеральным модификатором, с помощью атомно-силового микроскопа [1] (Рис. 2б). Некоторые отличия в морфологии поверхностей на Рис. 2а и 2б по сути являются несущественными и связаны в первую очередь с двумя факторами: вероятностным характером квантовых процессов и различием условий взаимодействия частиц минерального модификатора с разными участками поверхности трения, к которым можно отнести не только отличие в физико-механическом и химическом состоянии этих участков, но и закономерно имеющиеся различия в размерах и формах частиц минеральных модификаторов трения и соответственно – их различное взаимодействие с поверхностью трения.
The second important result, which follows from the discussed quantum-mechanical model of the formation of the protective layer, is that the developed system of pores, which ensures the adsorption activity of this structure, creating the conditions for the formation of a stable "oil film" and ensuring high anti-friction properties [1, 23], is the result of the formation process. This is due to the quantum-mechanical nature of these processes [10] and not connected with the formation of a system of cracks, as a factor of the instability of the friction process, discussed, for example, in the monograph [1].

Conclusion

The proposed algorithm for estimating the maximum thickness of the anti-friction film is mathematically simple, although it is based on the principles of quantum mechanics. The number of assumptions used in it is significantly less than that of most models developed to describe the micromechanical mechanisms of friction, which makes this approach more preferable compared to the previously used. Its peculiarity consists in a certain "quasimacroscopic" approach and the absence of the need to deal with concepts of electronic densities, mechanisms of polarization, and the like, i.e., the type of detailing, to which, as a rule, assignments to the micromechanical mechanism of friction are reduced.

However, as Feynman wrote, "There is no secret mechanism behind analysis, no mechanisms and gears. If you want to understand it, you must accept this... Nature allows us to calculate only probabilities. But this is not a loss."

Based on what was said by Feynman, the proposed algorithm can be considered as a correct quantum-mechanical approach to studying the process of formation of protective anti-friction coatings from dielectric material on the metal surface. The developed quantum-mechanical model of the formation of the protective layer serves as confirmation of the thesis that the developed system of pores, which ensures this structure high anti-friction properties, is the result of a purely structural process, having a quantum-mechanical nature and not connected with the formation of a system of cracks as a factor of the instability of the friction process.
Impact Factor:

Journal	ISRA (India)	SIS (USA)	ICV (Poland)
	1.344	0.912	6.630
	0.829	0.234	1.940
	0.564	3.860	4.260
	1.500	2.031	

References:

1. Dolgopolov K.N., Potekha V.L., Lyubimov D.N. (2013) Tribologiya geomodifitsirovannykh smazchnykh materialov. – Grodno: GGAU, 2013. – 430 p.
2. Dunaev A.V., Sharifullin S.N. (2013) Modernizatsiya iznosshennoi tehniki s primeneniem tribopreparatov. Kazan: Isd-vo Kazanskogo universiteta, 2013. – 272 p.
3. Sysoev P.V., Bliznets M.M., Pogosyan A.K. (1990) Antifriktsionnye epoksidnye komposity v stankostoerii. Minsk: Nauka i tekhnika, 1990. – 241 p.
4. Lyubimov D.N., Ryzhikov V.A. (2001) Osnovy teorii treniya. Novocherkassk: Izd-vo YuRGTU, 2001. – 87 p.
5. Bakli D. (1986) Poverkhnostnye yavleniya pri adgesii i friktsionnom vzaimodeistvii. M.: Mashinostroenie, 1986. – 360 p.
6. Khainike G. (1989) Tribokhimiya. M.: Mir, 1989. – 635 p.
7. Lyubimov D.N., Dolgopolov K.N., Pinchuk L.S. (2013) Kvantonaya paradigma tribologii. Rostov-na-Donu: Izd-vo YuFU, 2013. – 206 p.
8. Mikhailova O.V., Vorontsova A.S., Liopo V.A. (2012) Osobennosti energeticheskogo sostoyaniya komponentov metallopolimernykh system. Vestnik Grodenskogo universiteta im. Yanki Kupaly, 2012, № 3 (141). – P. 6-19.
9. Myshkin N.K., Sviridenok A.I., Grigor’ev A.Ya. (2013) Mashtabnyi factor v tribologii. “Polocontirib-2013”. Tezisy dokladov Mezhduunar. nauchno-tekhnich. conf. Gomel: IMMS NAN Belarysi, 2013. – P. 8
10. Lyubimov D.N., Pinchuk L.S., Dolgopolov K.N. (2012) Kvantonaya tribofizika. Rostov-na-Donu: Izd-vo YuFU, 2012. – 294 p.
11. Zenguil E. (1990) Fizika poverkhnosti. M.: Mir, 1990. – 536 p.
12. Marrel D., Kettl S., Tedder D. (1980) Khimicheskaya svyaz’. M.: Mir, 1980. – 382 p.
13. Kartmell E., Fous G. (1979) Valentnost’ i stroenie molekul. M.: Khimiya, 1978. – 360 p.
14. Kittel’ Ch. (1978) Vvedenie v fiziku tverdogo tela. M.: Nauka, 1978. – 769 p.
15. Ashcroft N., Mermin M. (1979) Fizika tverdogo tela. V 2-kh tomakh. M.: Mir.
16. Mott N. (1969) Elektryny v neuporyadochennykh strukturakh. M.: Mir, 1969. – 271 p.
17. Lubimov D.N., Goldade V.A., Kolesnikov I.V., (2016) Mel’nikov E.L. Model’ obrazovaniya psevdokristallicheskih struktur pri perenose ionov metallov v metallopolimernom tribosopryazhenii. Remont, vosstanovleniyi, modernizatsiya. 2016. – № 4. – P. 14-20.
18. Goldade V., Lubimov D., Dolgopolov K. (2016) Quantum Model of Charge Transfer in Metal-polymer Electrets / ISJ Theoretical & Applied Science, 2016, 06 (38). – p. 10-15.
19. Belyavskii V.I. (1997) Eskityny v nizkorazmernykh sistemakh. Sorosovskii obrazovatel’nyi zhurnal. Fizika. 1997, № 5. – P. 93-99.
20. Mas’lennikov G.M. Kharitonov F.Ya., Kostyukov N.S., Pirogov K.S. (1974) Tekhnologiia elektrokemikiki. M.: Energiiya, 1974. – 224 p.
21. Feinman R. (2012) Strannaya teoriya sveta I veschestva. M.: Astral’, 2012. – 191 p.
22. Landaau L.D., Livshits E.M. (1978) Teoreticheskaya fizika. T. 3. Kvantonaya mehanika. Nerelyatevistskaya teoriya. M.: Mir, 1978. – 520 p.
23. Lubimov D.N., Dolgopolov K.N. Kozhemyachenko A.V. (2008) Mehanizm formirovaniya pokrytiy v protsesse petrotribokhimicheskogo metoda obrabotki metallov treniemi. Vesen’ Skhidnoukrainskogo natsional’nogo universitetu im. V. Dalya. – Lugansk, 2008, № 2. – P. 197-201
MODELLING A PERSONAL POTENTIAL OF THE SPORTS INDUSTRY

Abstract: The article shows that the development of sports industry, improving the competitiveness in the international arena is due, primarily human resources. In the study, the analysis of staffing of the sports industry. By means of regression analysis the models developed personnel potential in the sports industry with a high degree of reliability and prognostic value. Models allow to predict the need of sports organizations in frames.

Key words: human resources, sports industry, modeling, and regression analysis.

Language: Russian

Citation: Izaak SI, Yudin AI (2017) MODELLING A PERSONAL POTENTIAL OF THE SPORTS INDUSTRY. ISJ Theoretical & Applied Science, 08 (52); 95-101.

Спорт в современном мире стал неотъемлемой частью международных отношений [12]. Спортивная деятельность способствует обеспечению национальных интересов и реализации стратегических национальных приоритетов России; упрочению позиций России на международной арене как одного из влиятельных центров современного мира [10, 11]. Развитие индустрии спорта, повышение конкурентоспособности на международной арене обуслаливается в первую очередь, трудовыми ресурсами. В ходе исследования проведен анализ кадрового обеспечения спортивной отрасли. Построму процедуры регрессионного анализа разработаны модели кадрового потенциала спортивной отрасли, обладающие высокой степенью достоверности и прогностической значимости. Модели позволяют прогнозировать потребность физкультурно-спортивных организаций в кадрах.

Ключевые слова: кадровый потенциал, индустрия спорта, моделирование, регрессионный анализ.

Introduction

Спорт в современном мире стал неотъемлемой частью международных отношений [12]. Спортивная деятельность способствует обеспечению национальных интересов и реализации стратегических национальных приоритетов России; упрочению позиций России на международной арене как одного из влиятельных центров современного мира [10, 11]. Развитие индустрии спорта, повышение конкурентоспособности на международной арене обуслаливается в первую очередь, трудовыми ресурсами. Анализ кадрового потенциала в области физической культуры и спорта на современном этапе общественного развития следует проводить в тесной взаимосвязи с финансовыми, нормативно-правовыми, научно-техническим и др. потенциалами, которые оказывают существенной влияние на количественные и качественные характеристики кадрового обеспечения, закономерности его развития и эффективного использования [8, 14]. Моделирование, как направление формализации закономерностей развития спортивной индустрии, активно применяется в различных направлениях [4, 1]. Немаловажное значение в процессе разработки моделей отводится качественной статистической обработке медико-биологической, психофизиологической, педагогической, управленческой информации [13, 9, 7]. Качественное проведение статистической обработки спортивной информации требует использования большого объема сложных и трудоемких математических расчетов, а также работы с различными по своей структуре показателями [5, 6]. Разработка моделей кадрового обеспечения отрасли проводится на основе изучения массивов данных и анализа кадрового потенциала.
Materials and Methods

В кадровом менеджменте основополагающей категорией, характеризующей трудовые ресурсы организации, региона, страны, являются кадры. Это понятие включает в себя постоянный (штатный) состав работников различных профессионально-квалификационных групп, состоящих в трудовых отношениях с организациями независимо от их формы собственности, целевой направленности, отраслевой принадлежности. Кадры можно классифицировать по основным сферам организации общества и основным уровням управления (рис. 1).

Кадровый потенциал в спортивной отрасли включает не только кадры, но и уровень их совместных возможностей, направленных на достижение уставных целей организации с наименьшими затратами труда и ресурсов [3]. Кадровый потенциал отражает ресурсный аспект развития организации, региона, страны. Кадровый потенциал заложен в тех функциях, которые исполняют квалифицированные, специально подготовленные для той или иной деятельности работники, и в силу своих способностей, квалификации, знаний опыта могут обеспечить эффективное функционирование организации. Развитие спортивной индустрии обеспечивается, прежде всего, кадровым обеспечением отрасли [2].

Рисунок 1 - Классификация кадров по основным сферам организации общества и основным уровням управления.

В ходе исследования проведен анализ положения, существующего в области кадрового обеспечения спортивной отрасли. Анализ осуществлялся по материалам федерального статистического наблюдения № 1-ФК «Сведения о физической культуре и спорте (региональный и федеральный аспект) за 2015-2016 гг.

В 2016 году количество штатных работников физкультурно-спортивных организаций, осуществляющих физкультурно-спортивную, педагогическую и административную работу, увеличилось на 2% по сравнению с предыдущим отчетным периодом (в 2015 году - 361741 человек) и составило 368644 человек. В возрастном аспекте наблюдаются следующие тенденции: увеличение численности работников возрастной группы до 30 лет на 2% (с 95659 в 2015 году до 97706 в 2016 году); рост численности работников возрастной группы до 31-60 лет на 1% (236850 и 240284 соответственно); возрастание значения
Показателя на 5% в возрастной категории старше 60 лет (29232 и 30654 соответственно).

В зависимости от вида образовательной организации кадровый потенциал варьирует от 86223 и 25439 человек в общеобразовательных и дошкольных образовательных учреждениях до 17461 и 11911 человек в организациях высшего и среднего профессионального образования (по данным 2016 года). Кадровый потенциал спортивной сферы включает также следующие кадры, имеющие установленную законодательством профессиональную квалификацию (по данным 2016 года):
- работников организаций дополнительного образования детей, осуществляющих работу по физической культуре и спорту (105209 человек);
- работников физической культуры и спорта предприятий, организаций и учреждений (24452 человека);
- работников физической культуры и спорта спортивных сооружений (26591 человек);
- работников физической культуры и спорта фитнес-клубов (25448 человек);
- работников физической культуры и спорта по месту жительства (14844 человек);
- работников физической культуры и спорта аппаратов физико-спортивных организаций всех уровней (5984 человек);
- работников физической культуры и спорта органов управления физической культурой и спортом всех уровней (7342 человек).

С учетом анализа кадрового потенциала спортивной отрасли проведено построение и изучение моделей его развития. Моделирование связано с выяснением и воспроизведением свойств реального объекта или процесса с помощью математического описания. Необходимость моделирования связана со сложностью реальных объектов, на которые влияет большое количество различных причин. Построенные модели позволяют изучить сущность объекта или процесса и прогнозировать развитие.

Модель – упрощенное подобие объекта, которое воспроизводит его рассматриваемые свойства и характеристики. Наряду с физическими, графическими, семантическими моделями широко используются статистические модели, которые разработаны в настоящем исследовании.

С целью изучения зависимостей показателей кадрового обеспечения и расчета потребностей в кадрах разработаны регрессионные модели, позволяющие рассчитать значение одного (зависимого) показателя (Y_i) при изменении значения другого (независимого) показателя (X_i). Модели построены на основе статистических данных, в качестве объектов которого – значения показателей кадрового потенциала спортивной индустрии 85 субъектов Российской Федерации (форма № 1-ФК за 2015 год).

Одним из значимых целевых показателей развития физической культуры и спорта, определенных в Стратегии развития физической культуры и спорта до 2020 года, является «доля граждан Российской Федерации, систематически занимающихся физической культурой и спортом, в общей численности населения». В регрессионной модели в качестве независимых переменных были выбраны градации показателя численности занимающихся физической культурой и спортом (человек) (X_i); в качестве зависимых переменных (Y_i) – градации показателя общей численности штатных работников физической культуры и спорта (табл. 1, рис. 2-3).

Таблица 1

Регрессионные модели кадрового обеспечения индустрии спорта

№	ЗАВИСИМАЯ ПЕРЕМЕННАЯ (Y_i)	НЕЗАВИСИМАЯ ПЕРЕМЕННАЯ (X_i)	Регрессионные модели (Y_i = aX_i+b)	R^2	F
1.	Общая численность штатных работников физической культуры и спорта (человек) (Y_1), в том числе:	Численность занимающихся физической культурой и спортом (человек) (X_1), в том числе:	Y_1 = 0,008X_1 - 64,982	0,943	1387,1
2.	Работники дошкольных образовательных учреждений, осуществляющих работу по физической культуре и спорту (Y_2)	Численность занимающихся в дошкольных образовательных учреждениях (X_2)	Y_2 = 0,0061X_2 + 36,437	0,63	142,9
Impact Factor:

Impact Factor	ISRA (India) = 1.344	SIS (USA) = 0.912	ICV (Poland) = 6.630
	ISI (Dubai, UAE) = 0.829	RINSC (Russia) = 0.207	PIF (India) = 1.940
	GIF (Australia) = 0.564	ESJ (KZ) = 3.860	IB (India) = 4.260
	JIF = 1.500	SJIF (Morocco) = 2.031	

| 3. | Работники общеобразовательных учреждений, осуществляющие работу по физической культуре и спорту (Y₃) | Численность занимающихся в общеобразовательных организациях (X₃) | \(Y₃ = 0.0069X₃ + 274.32 \) | 0.804 | 340.9 |

| 4. | Работники организаций среднего профессионального образования, осуществляющих работу по физической культуре и спорту (Y₄) | Численность занимающихся в образовательных организациях среднего профессионального образования (X₄) | \(Y₄ = 0.0069X₄ + 15.984 \) | 0.74 | 234.2 |

| 5. | Работники организаций высшего образования, осуществляющих работу по физической культуре и спорту (Y₅) | Численность занимающихся в образовательных организациях высшего образования (X₅) | \(Y₅ = 0.0082X₅ + 26.095 \) | 0.935 | 1206.7 |

| 6. | Работники организаций дополнительного образования детей, осуществляющих работу по физической культуре и спорту (Y₆) | Численность занимающихся в образовательных организациях дополнительного образования детей (X₆) | \(Y₆ = 0.0194X₆ + 246.14 \) | 0.84 | 448.9 |

| 7. | Работники фитнес-клубов (Y₇) | Численность занимающихся в фитнес-клубах (X₇) | \(Y₇ = 0.0063X₇ + 4.4885 \) | 0.97 | 2259.8 |

| 8. | Работники по месту жительства (Y₈) | Численность занимающихся в учреждениях и организациях по месту жительства (X₈) | \(Y₈ = 0.0044X₈ - 5.1852 \) | 0.74 | 233.2 |

Разработанные регрессионные модели имеют различную прогностическую значимость, определяемую с помощью коэффициента детерминации \(R^2 \) и F-критерия Фишера.
Рисунок 2 - Регрессионные модели кадрового обеспечения дошкольных образовательных организаций, общеобразовательных организаций и организаций среднего профессионального образования (СПО) с учетом численности занимающихся физической культурой и спортом (ФКиС)
(Y₁ - Y₄).

Наибольшую достоверность имеет уравнение регрессии, в котором в качестве зависимой переменной определен показатель «работники фитнес-клубов» (Y₇), в качестве независимой переменной – «численность занимающихся в фитнес-клубах» (X₇) (R² =0,97).

Высокую достоверность имеет также модель для прогноза общей численности штатных работников (Y₁) в зависимости от числа занимающихся физической культурой и спортом, что позволяет прогнозировать в целом потребность в кадрах при увеличении численности занимающихся (R² =0,943). Практически идентичными прогнозными свойствами обладает и модель кадрового обеспечения в сфере высшего образования (R² =0,935).
Рисунок 3 - Регрессионные модели кадрового обеспечения организаций высшего образования (BO), организаций дополнительного образования детей, фитнес-клубов и учреждений и организаций по месту жительства с учетом численности занимающихся физической культурой и спортом (ФКиС) \((Y_5 - Y_4) \).

Conclusion

1. В ходе исследования проведен анализ кадрового потенциала спортивной отрасли. Несмотря на неоднородность регионов России по темпам роста показателей в период с 2015 по 2016 гг., характеризующих развитие отраслевого кадрового обеспечения, наблюдается в целом стабильный рост численности штатных работников различных по виду деятельности физкультурно-спортивных организаций.

2. Моделирование кадрового потенциала индустрии спорта проводилось с помощью статистических методов посредством процедуры регрессионного анализа. Разработанные модели обладают высокой степенью достоверности, что подтверждается высокими показателями коэффициента детерминации \(R^2 \) и \(F \)-критерия Фишера. Наибольшую прогностическую значимость имеют модели развития кадрового обеспечения в фитнес-клубах, в высших учебных заведениях, а также всей отрасли в целом. Разработанные модели позволяют прогнозировать потребность в кадрах при увеличении численности занимающихся.

References:

1. Izaak S.I. (1997) Statisticheskie modeli differencirovannoj ocenki dvigateľnych vozmozhnostej detej i molodeži: Diss. ... kand. ped. nauk; VNIIFK. M., 1997. -184 p.
2. Izaak S.I. (2013) Kadrovoe obespechenie organizacionno-upravlencheskogo mehanizma realizacii sistemy monitoringa fizicheskogo sostojanija uchashhihsja obrazovatel'nyh uchebnyh zavedenij: Sbornik nauchnyh trudov Mezhdun. naučno-prakt. konf. «Prioriteti i perspektivy fizicheskoj kul'tury i massovogo sporta v usloviyah industrial'no-innovacionnogo
ISRA (India) = 1.344 SIS (USA) = 0.912 ICV (Poland) = 6.630
ISI (Dubai, UAE) = 0.829 РИНЦ (Russia) = 0.234 PIF (India) = 1.940
GIF (Australia) = 0.564 ESJI (KZ) = 3.860 IB (India) = 4.260
JIF = 1.500 SJIF (Morocco) = 2.031
ICV (Poland) = 6.630

3. Izaak S.I. (2014) Analiz kadrovogo potenciala fizicheskoy kultury i sporta v praktike gosudarstvennogo i municipal'nogo upravleniya v Rossii: Sbornik statej Mezhdunarodnoy nauchno-prakticheskoj konferencii MIGSU RANHIGS pri Prezidente Rossijskoj Federacii «Effektivnoe gosudarstvennoe i municipal'noe upravlenie kak faktor social'nogo-jekonomicheskogo razvitija Rossii». M.: Prospekt, 2014. p. 234 – 238.

4. Izaak S.I. (2016) Ispol'zovanie statisticheskikh metodov v obrabotke dannyh dlja kompleksnogo analiza mediko-biologicheskoy, psihofiziologicheskoy, pedagogicheskoy informacii: materialy Vserossijskoy nauchno-prakticheskoj konferencii po voprosam sportivnogo nauki v detsko-junosheskom sporte i sporte vysshikh dostizhenij. M.: CSTiSK, 2016. p. 168-177.

5. Izaak S.I. (2016) Sostoyanie fizicheskogo razvitija i fizicheskoy podgotovlennyosti detej, podrostkov, molodezhi na osnove tehnologii populacionnogo monitoringa (na primere Rossijskoj Federacii) // Izvestija VUZov Kyrgyzstana. 2016. №. 9. p. 153-156.

6. Izaak S.I., Panasjuk T.V., Indreeva A.M. (2007) Vozrastnaya dinamika fizicheskogo razvitija shkol'nikov Kabardino-Balkarii, prozhivayushih na razlichnoy vysote nad urovnom morja // Gigiena i sanitarija. 2007. № 2. p. 50-51.

7. Izaak S.I., Piskova D.M. (2009) Faktornyj analiz v sistematizacii i strukturizacii informacii o biologicheskix obektah: Materialy mezhvuz. Nauchno-prakticheskoy konferencii «Jekonomika, upravlenie i pravo». – M., 2009. Vyp. 14. p. 9-12.

8. Parshikova N.V. (2015) Menedzhment, pravo, normativy // Doshkol'nyi i shkol'niki fizkul'tura. Fizkul'tura i sport. M.: Sovetskij Sport, 2015. p. 5-6.

9. Parshikova N.V., Izaak S.I. (2016) Razrabotka strategicheskoy prognoza razvitija fizicheskoy kultury i massovogo sporta na period do 2030 goda // Chelovecheskij kapital. 2016. № 4 (88). p. 10-12.

10. Parshikova N.V., Izaak S.I., Kovalenko G.V. (2017) Sport v mezhdunarodnoy sisteme koordinat: novye vyzovy i vozmozhnosti // Teorija i praktika fizicheskoy kultury. 2017. № 7. p. 94-96.

11. Parshikova N.V., Izaak S.I., Malik V.N. (2017) Strategicheskie prioritety gosudarstvennoy politiki v oblasti massovogo sporta // Uchenye zapiski Universiteta im. P.F. Lesgafta. 2017. № 6 (148). p. 167-171.

12. Pel'menev V.K., Izaak S.I., Nikitin N.S., et al. (2016) Organizacionnye osnovy fizicheskoy kultury, sporta i turizma: monografija. – Kaliningrad: Izd-vo BFU im. I. Kanta, 2016. 304 p.

13. Son'kin V.D., Izaak S.I. (1996) Opredelenie konstitucional'noy prinadlezhnosti junoshey 17-20 let metodom raspoznavanija obrazov // Teorija i praktika fizicheskoy kultury. M., 1996. 9. p. 40-44.

14. Shahraj S.M., Izaak S.I. (2013) Analiz realizacii Strategii razvitija fizicheskoy kultury i sporta v Rossijskoj Federacii na period do 2020 g. v regionah i municipal'nyh obrazovaniyakh // Sport: jekonomika, pravo, upravlenie. 2013. № 4. p. 11-14.
SECTION 21. Pedagogy. Psychology. Innovation in Education

SYSTEMIC PROBLEMS ELECTRICITY SEA AND OCEAN OF APPLIED PHYSICS MARITIME FLOT OF PEDAGOGOMETRIC ANALYSIS

Abstract: The basic principles of the system of problems electricity sea and ocean in applied physics Navy pedagogometric analysis of the formation of mathematical models of learning activities about the nature of achieving the criteria of life, cycling, systemness and phasing, which form a basic cell of the educational space, as well as prima nenie twelve pointed star Erzgammy relatively presentation ertsgamming principle which determines the foundations pedagogometric through forming substantive methods of hyper-space professional life, psychological and educational activity theory, psycho-pedagogical system analysis and the theory of the formation of mental actions.

Key words: pedagogometric, vital activity, cyclicity, system, phase, star Erzgammy, electricity sea and ocean, applied physics, marine fleet.

Language: Russian

Citation: Mishchik SA (2017) SYSTEMIC PROBLEMS ELECTRICITY SEA AND OCEAN OF APPLIED PHYSICS MARITIME FLOT OF PEDAGOGOMETRIC ANALYSIS. ISJ Theoretical & Applied Science, 08 (52): 102-107.

Soi: http://s-o-i.org/1.1/TAS-08-52-16 Doi: https://dx.doi.org/10.15863/TAS.2017.08.52.16

UDC 372.851

СИСТЕМНЫЕ ЗАДАЧИ ЭЛЕКТРИЧЕСТВА МОРЯ И ОКЕАНА ПРИКЛАДНОЙ ФИЗИКИ МОРСКОГО ФЛОТА ПЕДАГОГОМЕТРИЧЕСКОГО АНАЛИЗА

Annotation: Rассмотрены основные принципы построения системных задач электричества моря и океана прикладной физики морского флота педагогометрического анализа при формировании математических моделей учебной деятельности относительно характера достижения критериев жизнедеятельности, цикличности, системности и этапности, которые образуют базовую ячейку образовательного пространства, а также применение двенадцати конечной звезды Эрцгаммы относительно представления принципа эрцгаммности, который определяет основы педагогометрики через формирование предметными методами гиперпространства профессиональной жизнедеятельности, психолого-педагогической теории деятельности, психолого-педагогического системного анализа и теории формирования умственных действий.

Ключевые слова: педагогометрика, жизнедеятельность, цикличность, системность, этанность, звезда Эрцгаммы, электричество моря и океана, прикладная физика, морской флот.

Introduction

Формирование системных задач электричества моря и океана прикладной физики морского флота педагогометрического анализа ориентируется на реализацию общей задачи педагогометрии — формирование математических моделей учебной деятельности на основе базисных представлений методологии педагогометрического анализа, выражающего особенности структуры и формы жизнедеятельности, цикличности, системности и этапности. В процессе педагогометрического анализа формируется базисная ячейка образовательного пространства, которая выражает принцип эрцгаммности через всеобщую структуру двенадцати конечной звезды Эрцгаммы. Реализованная зависимость устанавливает основы педагогометрики через...
представление предметных методов гиперпространства профессиональной жизнедеятельности, психолого-педагогической теории деятельности, психолого-педагогического системного анализа и теории формирования умственных действий [1,2,3]. Полученные условия подготовки инновационных широкопрофильных специалистов направлены на совершенствование базы предметных прикладных профессиональных задач электричества моря и океана прикладной физики морского флота педагогометрического анализа, через целостную профессиональную деятельность на морском флоте. Формирование математических моделей учебно-профессиональной деятельности специалистов инновационного мышления связываются с: базисной звездой Эрцгаммы гиперпространства жизнедеятельности (E1); базисным целостно-системным циклом жизнедеятельности (E2); базисной звездой Эрцгаммы системного анализа (E3); базисным проявлением двенадцати этапов и форм познавательного гиперпространства жизнедеятельности относительно образовательного процесса (E4) [4,5,6]. Проектирование системных задач электричества моря и океана прикладной физики морского флота педагогометрического анализа и адаптивной базы предметных педагогометрических моделей эрцгаммного анализа образовательных объектов с признаком базисно-нормативной эрцгаммности, отражают их обобщённые структуры. В данном случае реализуется собственная функция психолого-математического представления профессионально-значимых объектов системных задач электричества моря и океана прикладной физики морского флота педагогометрического анализа через единство признаков силообразования учебно-профессионального действия, его принятия, ориентировочно-исполнительно-контрольных признаков и прогноза совершенствования анализа объектов педагогометрического содержания [7,8,9].

Materials and Methods
Системные задачи электричества моря и океана прикладной физики морского флота педагогометрического анализа отражают целостно-системное моделирование основных элементов транспортных объектов. При этом возникает ориентация на единство базисных характеристик предметных и исполнительных условий относительно предмета содержания и способа его реализации через представление базисной ячейки образовательного пространства, которая отражает принцип эрцгаммности адекватного структуры двенадцати конечной звезды Эрцгаммы. Рассматриваются: плотность тока смещения в атмосфере океана; максимальная удельная электропроводность области E ионосферы; напряженность поля, создаваемого биполярным грозовым облаком; плотность тока проводимости зимой в акватории моря на морском флоте [10,11]. В процессе решения системных задач электричества моря и океана прикладной физики морского флота необходимо применять основные положения теории деятельности, системного анализа и теории формирования интеллекта через построение математических моделей учебно-профессиональной активности отражающей структуру: базисной звездой Эрцгаммы гиперпространства жизнедеятельности (E1); базисного целостно-системного циклом жизнедеятельности (E2); базисной звездой Эрцгаммы системного анализа (E3); базисного проявления двенадцати этапов и форм познавательного гиперпространства жизнедеятельности относительно образовательного процесса (E4). Системный анализ предполагает выполнение последовательности системных аналитических действий: выделить объект анализа — задачу электричества моря и океана прикладной физики морского флота (ЭЭМОПФМФ) как систему; установить порождающую среду ЭЭМОПФМФ; определить уровни анализа ЭЭМОПФМФ; представить целостные свойства ЭЭМОПФМФ относительно пространственных, и временных характеристик и их комбинаций; выделить структуру уровня анализа ЭЭМОПФМФ; установить структурные элементы уровня анализа ЭЭМОПФМФ; определить системообразующие связи данного уровня анализа ЭЭМОПФМФ; представить межфункциональные связи анализа ЭЭМОПФМФ; выделить форму организации ЭЭМОПФМФ; установить системные свойства и поведение ЭЭМОПФМФ.

Задача 1
Вычислить плотность тока смещения в атмосфере океана, если за \(t = 10 \text{ мин} \), электрическое поле изменилось от \(E_1 = 76 \text{ В/м} \) до \(E_2 = 198 \text{ В/м} \). Сравнить с типичным значением плотности тока проводимости.
Ответ: \(J = 1,78 \times 10^{-12} \text{ А/м}^2 \).

Задача 2
Определить максимальную удельную электропроводность области E ионосферы, если критическая частота для этой области \(v = 4,82 \times 10^6 \text{ Гц} \), а число столкновений электронов составляет \(N = 10^8 \text{ с}^{-1} \). Во сколько раз удельная электропроводность в области E больше, чем у поверхности Земли, где она равна в среднем \(\lambda = 2,2 \times 10^{14} \text{ См/м} \)?
Ответ: \(\lambda_{\text{max}} = 1,22 \cdot 10^{-14} \text{ См/м; } k = 5,5 \cdot 10^7 \) раз.

Задача 3
Тяжелый атмосферный ион массой \(m = 5 \cdot 10^{-19} \) г находится в вертикальном электрическом поле над морем с напряженностью \(E = 120 \) В/м. В каком соотношении находятся сила тяжести иона и кулоновская сила, действующая на ион со стороны электрического поля?
Ответ: \(mg/E k = 1:4000. \)

Задача 4
Какой должна быть интенсивность ионизации над поверхностью океана, чтобы обеспечить постоянную концентрацию легких ионов обеих знаков, равную \(n = 500 \) см\(^{-3}\)? Прилипанием ионов к нейтральным частицам пренебречь.
Ответ: \(n/t = 0,35 \) см\(^{-3}\) \cdot с\(^{-1}\).

Задача 5
Вычислить напряженность поля, создаваемого биполярным грозовым облаком Сб у поверхности океана, под облаком и на расстоянии \(r = 10 \) км. Центр тяжести нижнего отрицательного заряда (—20 Кл) находится на высоте 3 км, центр тяжести верхнего положительного заряда (+ 20 Кл)—на высоте 7 км.
Вычислить напряженности, создаваемые отдельно положительным (а) и отрицательным (б) зарядами, а также суммарную напряженность (в).
Ответ: а) 150 В/м и 0,2 В/м; б) 40 000 В/м и 130 В/м;
в) 40 150 В/м и 130,2 В/м.

Задача 6
Вычислить энергию электрического поля нижнего 100-метрового слоя атмосферы над поверхностью океана, приняв среднюю интенсивность равной 100 В/м. Сравнить эту энергию с кинетической энергией, атмосферы, составляющей 4 \cdot 10^{20} \text{ Дж.}
Ответ: 2,3 \cdot 10^8 \text{ Дж.}

Задача 7
Определить величину электрического заряда, который индуцируется на поверхности паруса яхты. Площадь поверхности паруса равна 17 м². Напряженность электрического поля атмосферы над морем 200 В/м.
Ответ: 3 \cdot 10^{-8} \text{ Кл.}

Задача 8
Определить плотность тока проводимости зимой в акватории Балтийского моря, если среднее значение напряженности поля у поверхности моря равно 250 В/м, а проводимость атмосферного воздуха 1,1 \cdot 10^{-14} \text{ Ом}^{-1} \cdot \text{м}^{-1}. Электричество какого знака доставляет земной поверхности ток проводимости?
Ответ: 2,7 \cdot 10^{-19} \text{ Кл} \cdot \text{А/см}^2.

Задача 9
При разряде молнии за 0,2 с напряженность электрического поля над поверхностью моря изменилась от - 600 до +15 000 В/м. Определить ток смещения, который возникнет на металлической крыше судовой надстройки площадью 40 м²?
Ответ: 2,76 \cdot 10^{-5} \text{ А.}

Задача 10
Определить плотности горизонтальных токов: проводимости и тока адвекции. Среднее значение проводимости атмосферного воздуха над поверхностью моря равно 1,1 \cdot 10^{-14} \text{ Ом}^{-1} \cdot \text{м}^{-1}, вертикальная составляющая напряженности поля 130 В/м, горизонтальная составляющая на 2 порядка меньше вертикальной; скорость ветра 10 м/с и средний объемный заряд у поверхности моря равен 10^{-11} \text{ Кл/м}^2.
Ответ: 2,6 \cdot 10^{-18} \text{ A/м}^2; 10^{-13} \text{ A/м}^2.

Задача 11
Определить время релаксации атмосферы у поверхности океана и на высоте 50 км, если электропроводность воздуха на этих уровнях равна 2 \cdot 10^{-14} \text{ Ом}^{-1} \cdot \text{м}^{-1} и 34 \cdot 10^{-14} \text{ Ом}^{-1} \cdot \text{м}^{-1}.
Ответ: 400 с; 2,4 \cdot 10^{-3} с.

Задача 12
Вертикальный профиль проводимости воздуха над поверхностью океана можно представить экспоненциальным законом \(I(z) = I_0 \exp(-az) \), где \(I_0 = 2 \cdot 10^{-14} \text{ Ом}^{-1} \cdot \text{м}^{-1}, z \) — высота в километрах, \(a = 0,4 \) км\(^{-1}\). Определить удельное сопротивление всей тропосферы. Средняя высота тропосферы 11 километров.
Ответ: 3 \cdot 10^{12} \text{ Ом} \cdot \text{м}.

Задача 13
Определить концентрацию нейтральных ядер атомов атмосферы над поверхностью океана, чтобы обеспечить постоянную концентрацию легких ионов равную 300 см\(^{-3}\) при интенсивности ионизации 10 см\(^{-3}\) \cdot \text{с}^{-1}?
Ответ: 2,74 \cdot 10^4 \text{ см}^3.

Задача 14
Определить уменьшение числа пар легких ионов в 1 м³ воздуха над поверхностью океана через 5 мин после прекращения ионизации атмосферы в идеально чистом воздухе над океанской поверхностью, если в начальный момент имелось по 5 \cdot 10^8 пар ионов каждого знака.
Ответ: 97 \cdot 10^6 пар ионов.
Conclusion
Условия формирования и развития инновационного широкопрофильного профессионального мышления ориентируются на организацию всестороннего развития педагогометрической эргаммности. Выделенные системные задачи электричества моря и океана прикладной физики морского флота педагогометрического анализа устанавливают основные направления развития и совершенствования базы прикладных предметных педагогометрических моделей образовательных объектов относительно педагогометрического математического моделирования учебного процесса. Возникающая образовательная деятельность связывается с процессами совершенствования программируемых математических моделей учебной активности относительно характера достижения критериев жизнедеятельности, цикличности, системности и этапности.

Различные содержательные задачи педагогометрического анализа ориентируются на специальные статистические выборки данных учебного процесса, характеризующих исследуемые образовательные явления и представленных во времени в форме временных рядов. При этом можно одни и те же временные ряды применить для решения разных содержательных педагогометрических задач для анализа параметров субъекта учебной деятельности, методов теоретического и практического анализа, содержательной структуры учебного материала, характера достигнутых результатов, отвечающих ФГОСам соответствующего уровня. Это позволяет анализировать содержание и структуру обобщённой учебной деятельности; особенности технологической познавательной деятельности, отражающей структуру системного анализа через обобщённые учебные действия: выделить объект анализа – задачу как систему; установить порождающую среду; определить уровни анализа; представить целостные свойства предмета анализа относительно пространственных, и временных характеристик и их комбинаций; выделить структуру уровня анализа задачи; установить структурные элементы уровня анализа задачи; определить системообразующие связи данного уровня анализа задачи; представить межуровневые связи анализа задачи; выделить форму организации условий задачи; установить системные свойства по параметрам сложности, разнообразия и упорядоченности содержания учебной задачи; представить поведение условий задачи на базисных фазовых состояниях; статической статики, статистической динамики, динамической статики и динамической динамики [12, 13].

Общий результат педагогометрического анализа временных рядов отражает динамику развития основных макропедагогических показателей, характеризующих состояние образовательного процесса как вектора педагогометрического математического моделирования учебной деятельности, которая задаётся установлением критериев эффективного функционирования образовательной системы относительно качества, как многомерной эргаммной совокупности. При этом текущее состояние образовательного процесса определяется конечным набором определенных числовых показателей.

В процессе построения многофазного образовательного пространства эргаммного типа временной ряд педагогометрических показателей формируется под воздействием набора случайных и неслучайных факторов, которые задают анализ отдельных временных рядов, как результирующих, так и факторных. Это необходимо для формирования адекватной идентификации образовательных моделей, которые строятся по информации об исследуемых процессах – векторные авторегрессии, модели коррекции ошибок, динамические модели с распределенными запаздываниями.

При анализе педагогометрических временных рядов главное внимание связывается с исследованием, описанием и моделированием их структуры. Это позволяет расширить моделирование педагогометрического исследования образовательных процессов. Построенная математическая модель используется для экстраполяции или прогнозирования педагогометрического временного ряда, что повышает качество прогноза развития образовательного процесса, формированию критериев инновационной широкопрофильности при выборе нескольких альтернативных моделей учебной деятельности.

Построение базисной звезды Эрцгаммы гиперпространства жизнедеятельности (Е1); базисного целостно-системным цикла жизнедеятельности (Е2); базисной звездой Эрцгаммы системного анализа (Е3); базисного проявления двенадцати этапов и форм познавательного гиперпространства жизнедеятельности относительно образовательного процесса (Е4) связывается с моделями временных педагогометрических рядов, которые требуют корректировки сезонных эффектов и сглаживания. Построенные модели временных педагогометрических рядов применяются для статистического моделирования длинных рядов.
педагогометрических наблюдений при исследовании больших образовательных систем, для которых временной ряд рассматривается как входная информация об организации эффективной учебно-профессиональной деятельности [14,15].

В связи с наличием ошибок измерения педагогометрических показателей, наличием случайных флуктуаций в образовательных системах, при исследовании временных педагогометрических рядов применяется вероятностно-статистический подход. Наблюдаемый педагогометрический временной ряд понимается как реализация некоторого случайного процесса. При этом предполагается, что временной педагогометрический ряд имеет структуру, отличающую его от последовательности независимых случайных величин и элементы наблюдения не являются набором совершенно независимых числовых значений.

Элементы структуры педагогометрического ряда можно выявить на основании визуального анализа графика педагогометрического ряда. Это относится к таким компонентам ряда, как тренд и циклы. Структура педагогометрического ряда представляется моделью, содержащей большое число параметров по сравнению с количеством наблюдений. Это применяют при использовании педагогометрической модели для прогнозирования образовательного пространства. Примерами таких моделей служат модели авторегрессии, скользящего среднего и их комбинации – модели AR(p), MA(q), ARMA(p, q), ARIMA(p, d, q).

При построении педагогометрических моделей связей в долгосрочной образовательной перспективе важно учитывать факт наличия или отсутствия у анализируемых макропедагогометрических рядов стохастического, недетерминированного тренда. Рассматриваемые педагогометрические ряды относятся к классу рядов, стационарных относительно детерминированного тренда, стационарных - TS (trend stationary) ряды, или к классу рядов, имеющих стохастический тренд и приводящихся к стационарному ряду только путем однократного или k-кратного дифференцирования ряда – DS (difference stationary) ряды.

Существенное различие между этими классами педагогометрических рядов выражается в том, что в случае TS (trend stationary) ряды вычитание из ряда соответствующего детерминированного педагогометрического тренда приводит к стационарному педагогометрическому ряду. В случае DS (difference stationary) педагогометрического ряда вычитание детерминированной составляющей ряда оставляет педагогометрический ряд нестационарным из-за наличия у него стохастического образовательного тренда.

Отделение принадлежности рядов классам TS или DS необходимо для адекватного построения долгосрочных регрессионных образовательных моделей, в которых объясняемыми и объясняющими переменными являются макропедагогометрические временные ряды (модели контингенции, модели коррекции ошибок, векторные авторегрессии). Построение педагогометрической регрессии DS-ряда на TS-ряд (с детерминированным трендом) приводит к фиктивным результатам – параллельной (spurious) линейной связи. Параллельная линейная связь возникает при построении регрессионных образовательных моделей между двумя статистически независимыми стохастическими образовательными трендами. Если выделяется группа педагогометрических рядов, принадлежащих классу DS-рядов, то между этими рядами возможна контингенционная связь, анализ которой позволяет проверять гипотезу эффективности образовательных услуг; устанавливать выполнение на практике теории паритета образовательной необходимости; анализировать выполнение в долгосрочной перспективе устранения спроса на профессиональные способности.

Связь между DS-рядами строится комбинацией краткосрочной и долгосрочной динамических регрессионных образовательных моделей в форме модели коррекции ошибок учебной деятельности, что открывает возможность построения на основании подобранной педагогометрической модели краткосрочных и долгосрочных прогнозов развития эргамигского образовательного пространства.

Выделенные процессы образуют базисную ячейку образовательного пространства и отражают смысл двенадцати конечной звезды Эргамиг обратно относительно представления принципа эргамигности. Установленные структуры определяют основы педагогометрики через формообразование предметными методами гиперпространства профессиональной жизнедеятельности, психолого-педагогической теории деятельности, психолого-педагогического системного анализа и теории формирования умственных действий. Выделенные критерии жизнедеятельности, цикличности, системности и этапности, которые формируют базисную ячейку образовательного пространства, создают условия развития абсолютного инновационного образовательного цикла, отражающего специфическую структуру подготовки широкопрофильно-инновационных специалистов при реализации международных образовательных
Impact Factor:
ISRA (India)	1.344	SIS (USA)	0.912	ICV (Poland)	6.630
ISI (Dubai, UAE)	0.829	РННЦ (Russia)	0.207	PIF (India)	1.940
GIF (Australia)	0.564	ESJI (KZ)	3.860	IBI (India)	4.260
JIF	1.500	SJIF (Morocco)	2.031		

стандартов алигограмной формы эревнометрического содержания.

References:

1. Mishchik SA (2014) Pedagogometrika and mathematical modeling educational activity. Materialy Mezhdunarodnoy nauchnoy konferencii “Modern mathematics in science” – 30.06.2014. ISJ Theoretical & Applied Science 6(14): 54-56 Caracas, Venezuela. doi: http://dx.doi.org/10.15863/TAS.2014.06.14.10

2. Mishchik SA (2014) Simulation training activity methods of mathematical logic. Materialy Mezhdunarodnoy nauchnoy konferencii “European Science and Education” – 30.07.2014. ISJ Theoretical & Applied Science 6(15): 72-74 Marseille, France. doi: http://dx.doi.org/10.15863/TAS.2014.07.15.13

3. Mishchik SA (2014) Mathematical modeling system integrity-cycle of life activity – first goal pedagogometriki. Materialy Mezhdunarodnoy nauchnoy konferencii “European Applied Sciences” – 30.08.2014. ISJ Theoretical & Applied Science 8(16): 77-79. Aix-en-Provence, France. doi: http://dx.doi.org/10.15863/TAS.2014.08.16.13

4. Mishchik SA (2014) Mathematical modeling system integrity-curricular activities – the second problem pedagogometriki. Materialy Mezhdunarodnoy nauchnoy konferencii “European Innovation” – 30.09.2014. ISJ Theoretical & Applied Science 9(17): 126-128 Martigues, France. doi: http://dx.doi.org/10.15863/TAS.2014.09.17.21

5. Mishchik SA (2014) Mathematical modeling holistic-systemic communicative activity – the third task pedagogometriki. Materialy Mezhdunarodnoy nauchnoy konferencii “European Scientific Achievements” – 30.10.2014. ISJ Theoretical & Applied Science 10(18): 45-47 Brighton, UK. doi: http://dx.doi.org/10.15863/TAS.2014.10.18.11

6. Mishchik SA (2014) Mathematical modeling integrity - system performance subject – fourth task pedagogometriki. Materialy Mezhdunarodnoy nauchnoy konferencii “European Science and Technology” – 30.11.2014. ISJ Theoretical & Applied Science 11(19): 51-54 Southampton, UK. doi: http://dx.doi.org/10.15863/TAS.2014.11.19.10

7. Mishchik SA (2015) Pedagogometrik - science and academic subject. Materialy Mezhdunarodnoy nauchnoy konferencii “European Technology in Science” – 28.02.2015. ISJ Theoretical & Applied Science 02 (22): 103-106 Malmö, Sweden. doi: http://dx.doi.org/10.15863/TAS.2015.02.22.17

8. Zvereva S.V. (1980) Zadachnik po obshhej meteorologii. L.: Gidrometeoizdat 1980 - p.124

9. Tokmazov GV (2014) Matematicheskoe modelirovanie v uchebno-professional'noy deyatelnosti. Materialy Mezhdunarodnoy nauchnoy konferencii «Modern mathematics in science» - 30.06.2014. ISJ Theoretical & Applied Science 6(14): 44-46. - Caracas, Venezuela. doi: http://dx.doi.org/10.15863/TAS.2014.06.14.8

10. Tokmazov GV (2014) Mathematical modeling research skills in educational activity methods of probability theory. Materialy Mezhdunarodnoy nauchnoy konferencii “European Science and Technology” - 30.11.2014. ISJ Theoretical & Applied Science 11(20): 66-69 Southampton, United Kingdom. doi: http://dx.doi.org/10.15863/TAS.2014.11.19.13

11. Mishhik N.A. (2016) Pravovye osnovy francuzskoj si-stemy’ bor’by’ s zagryazneniem morya / Nauchnye issledovaniya: Informaciya, analiz, prognoz [Tekst]: monografiya / [V.E’.Lebedev, A.A.Sviridenko, V.M.Sokolinskij i dr.]; pod obshhej red. prof. O.I.Kirkova – Kniga 51.- Voronezh-Moskva, 2016.

12. Mishchik NA (2014) The practice of french justice article 228 of the UN convention on the law of the sea. Materialy Mezhdunarodnoy nauchnoy konferencii “The European Science and Education”- 30.07.2014. ISJ Theoretical & Applied Science 07 (15): 93-97. - Marseille, France. doi: http://dx.doi.org/10.15863/TAS.2014.07.15.19

13. Mishhik N.A., Antonenko G.A. (2013) Liniya gorizonta kak gradientnyj perepad v fotograficheskih izmeneniya dlya celej morexodnoj astronomii/EKspluatacija morskogo transporta. 2013. № 2 (72). – Novorossijskij, p. 23-28.

14. Mishhik N.A. (2000) Optimizaciya metodov morexodnoj astronomii [Tekst]: avto-ref.dis. ... kand. tex. nauk: 05.22.16 / N.A.Mishhik. – Novorossijskij, 2000. – 24 p.

15. Mishhik N.A. (2000) Optimizaciya metodov morexodnoj astronomii [Tekst]: dis. ... kand. tex. nauk: 05.22.16 / N.A.Mishhik. – Novorossijskij, 2000. – 188 p.
Impact Factor:

Country	Impact Factor
ISRA (India)	1.344
ISI (Dubai, UAE)	0.829
GIF (Australia)	0.564
JIF	1.500
SIS (USA)	0.912
РННЦ (Russia)	0.207
ESJI (KZ)	3.860
SJIF (Morocco)	2.031
ICV (Poland)	6.630
PIF (India)	1.940
IBI (India)	4.260
РИНЦ (Russia)	0.207
ESJI (KZ)	3.860
SJIF (Morocco)	2.031

SOI: 1.1/TAS DOI: 10.15863/TAS

International Scientific Journal

Theoretical & Applied Science

p-ISSN: 2308-4944 (print) e-ISSN: 2409-0085 (online)

Year: 2017 **Issue:** 08 **Volume:** 52

Published: 30.08.2017 http://T-Science.org

SECTION 21. Pedagogy. Psychology. Innovation in Education

YACHTING - DEVELOPMENT OF THE GENERALIZED PROFESSIONAL ACTIVITY OF STUDENTS

Abstract: The basic principles of building an educational system of students engaged in yachting are considered; reveals the increasing role of students in yachting in the system of maritime vocational education and the lack of development of their practical organizations; analysis of the need for modern society in students with highly developed professional qualities and insufficient use of educational opportunities for yachting; shows the need to develop the professional qualities of students and the insufficiently developed scientific and methodological support of the basics of practical yachting.

Key words: forming of the personality, students, yachting, professional education, practical organization, naval fleet.

Language: Russian

Citation: Medvedev VN (2017) YACHTING - DEVELOPMENT OF THE GENERALIZED PROFESSIONAL ACTIVITY OF STUDENTS. ISJ Theoretical & Applied Science, 08 (52): 108-114.

Soi: http://s-o-i.org/1.1/TAS-08-52-17 **Doi:** https://dx.doi.org/10.15863/TAS.2017.08.52.17

УДК 372.851

ЯХТИНГ - ПРОЦЕСС РАЗВИТИЯ ОБОБЫЩЁННОЙ ПРОФЕССИОНАЛЬНОЙ ДЕЯТЕЛЬНОСТИ СТУДЕНТОВ

Аннотация: Рассмотрены основные принципы построения воспитательной системы студентов, занимающихся яхтингом; раскрывается возрастаящая роль занятий студентов яхтингом в системе морского профессионального образования и недостаточная разработанность их практических организаций; анализируется потребность современного общества в студентах с высоко развитыми профессиональными качествами и недостаточное использование воспитательных возможностей занятий яхтингом; показывается необходимость развития профессиональных качеств студентов и недостаточная разработанность научно-методического обеспечения основ практических занятий яхтингом.

Ключевые слова: формирование личности, студенты, яхтинг, профессиональное образование, практическая организация, морской флот.

Introduction

Обществу нужны специалисты, готовые к самостоятельному включению в производственные процессы, способные практически решать встающие перед ними жизненные и профессиональные задачи. А это во многом зависит не только от полученных знаний, умений, навыков, но и от дополнительных качеств, для обозначения которых в настоящее время и употребляются понятия «компетенция» и «компетентность», более соответствующие требованиям, предъявляемым в реальных условиях работодателями. В учебных заведениях реализуется традиционная модель обучения, основанная на знаниевой парадигме образования, переход на компетентностный подход в системе образования требует обновления содержательно-технологического обеспечения учебно-воспитательного процесса.

Таким образом, формирование востребованных современным рынком труда профессиональных компетенций у студентов является актуальной образовательной задачей, что подтверждается тем, что именно
компетентностный подход заложен сегодня в основу нового федерального государственного образовательного стандарта (ФГОС).

Формирование обобщённой профессиональной деятельности студента - процесс, в ходе которого он приобретает профессионально важные знания, навыки, качества. Условием успешного формирования обобщённой профессиональной деятельности студента является его положительное отношение к учебе, установленным порядкам в вузе, научно оправданная организация его деятельности, выполнение задач, упражнений, создание обстоятельств для наиболее интенсивного проявления и совершенствования профессионально важных знаний, навыков, умений, психических процессов, личных качеств.

Общепризнано, что при формировании профессиональной деятельности студентов в вузе: со стороны студентов; со стороны преподавателей, руководителей; со стороны их совместной деятельности. Студент как личность формирует всю сумму влияний, которым он подвергается: организация учебы, занятия по различным предметам, личный пример преподавателя, руководителя, отношение товарищей. Будучи взаимно связанными, все качества формируются в органическом единстве.

Непрерывное самообразование, повышение профессиональной компетентности студентов, независимо от уровня получаемого образования, выступают как метод сопровождения их деловой карьеры, как способ творческой самореализации. Для общества непрерывное совершенствование профкомпетентности студентов становится механизмом воспроизводства и развития рабочей силы, также ориентированной на непрерывное расширение «горизонталей» своей квалификации, возможности которого безграничны.

В последнее время ведется активный поиск способов и средств подготовки специалистов нового поколения практически по всем специальностям высшего профессионального образования, обладающих необходимыми личностно-профессиональными качествами. Однако опыт работы в профессиональном образовании показывает, что развитие таких качеств не является приоритетной задачей высших учебных заведений, а происходит стихийно. Ключевой проблемой современной высшей школы является личностное и профессиональное развитие студента, его самоопределение в профессии, поиск и нахождение смысла своего профессионального бития, отношение к истине, которые воплощаются в практической деятельности.

Проблема обобщённого профессионального развития будущих специалистов весьма актуальна в условиях модернизации системы высшего профессионального образования.

Развитие профессиональной компетентности студента в гуманистическом пространстве личностью ориентированного подхода дает возможность преподавателям и студентам искать и находить такие отношения, которые стимулируют расширение сферы сознания, способствуют повышению мотивации образования с целью приобретения в профессиональной деятельности собственного индивидуального смысла.

Несмотря на достаточно широкий спектр исследований, посвященных поиску наиболее эффективных способов психологического-педагогических ресурсов развития обобщённой профессиональной деятельности студентов, ученые не рассматривали в качестве одного из них студенческий яхтинг как вид факультативной деятельности в вузе.

Materials and Methods

Яхтинг можно рассматривать как важный психолого-педагогический ресурс для приобретения студентами определенного жизненного и практического опыта, создания инновационно-творческой образовательной среды, усиления профессиональной мотивации, овладения способами самоуправления и самообразования, создания атмосферы сотрудничества, а также воспитания профессионально значимых качеств: умение работать в коллективе, где важно понимание «чувства локтя»; уметь подчиняться и руководить коллективом в разных обстоятельствах; а также системного восприятия будущей профессиональной деятельности, которое способствует развитию мотивации углубления знаний в профессиональной деятельности.

Аналлиз научной литературы и социально-педагогической работы современных образовательных учреждений позволил выявить следующие противоречия: между постоянно растущими требованиями социума к личностно-профессиональному уровню студентов – специалистов и их традиционной подготовкой, ориентированной на развитие предметных компетенций данной отрасли; между необходимостью приобретения студентами – специалистами таких качеств, как умение работать в коллективе, уметь подчиняться и руководить коллективом в разных обстоятельствах, а также системного восприятия будущей профессиональной деятельности и их ограниченным использованием в профессиональной подготовке, которые являются

ISRA (India)	SIS (USA)	ICV (Poland)
1.344	0.912	6.630
IISI (Dubai, UAE)	РИНЦ (Russia)	PIF (India)
0.829	0.234	1.940
GIF (Australia)	ESJI (KZ)	IBI (India)
0.564	3.860	4.260
JIF	SJIF (Morocco)	
1.500	2.031	

ISPC Technology and Innovation,
Philadelphia, USA
психолого-педагогическим ресурсом для развития личности. Выявленные противоречия позволяют сформулировать проблему в виде следующего вопроса: при каких психолого-педагогических условиях яхтинг может быть ресурсом развития обобщённой профессиональной деятельности будущего специалиста?

Актуальность проблемы определила тему исследования «яхтинг - процесс развития обобщённой профессиональной деятельности студентов».

Объект исследования: профессиональная подготовка специалистов в высшей школе.

Предмет исследования: занятия яхтингом в вузе как ресурс развития обобщённой профессиональной деятельности будущих студентов – специалистов.

Цель исследования состоит в теоретическом обосновании и экспериментальной проверке эффективности модели занятий яхтингом для развития обобщённой профессиональной деятельности будущих студентов – специалистов.

Задачи исследования:
1. Обосновать методологическую ценность антропологического, аксиологического и деятельностного подходов для исследования и организации занятий яхтингом в вузе;
2. Раскрыть сущность учебно-профессиональной деятельности студентов;
3. Раскрыть понятие «занятия яхтингом в вузе» с точки зрения его значимости для студентов и определить условия, позволяющие ему быть ресурсом для «запуска» психологических механизмов личностного развития профессиональной деятельности будущих студентов – специалистов;
4. Разработать модель занятий яхтингом в вузе и экспериментально проверить эффективность влияния предлагаемой модели на развитие профессиональной деятельности будущих студентов – специалистов;
5. Вывести основные тенденции развития учебно-профессиональной деятельности студентов ВУЗов высшего профессионального образования (ВПО).

Для решения поставленный задач и проверки гипотетических положений применялись методы: теоретико-педагогический анализ (историографический, системный, логический, моделирование, обобщение опыта); опросно-диагностические (анкетирование, беседа, обобщение независимых характеристик); обсервационные (прямое, косвенное, включённое наблюдение); праксиметрические (анализ деятельности студентов и преподавателей); экспериментальные (констатирующий, формирующий); количественной и качественной характеристики полученных результатов (компьютерная обработка данных, их оформление в виде таблиц, схем, рисунков).

Активная включенность студентов в занятия яхтингом способствует развитию таких значимых профессиональных качеств, как умение работать в коллективе, где важно понимание «чувства локтя»; уметь подчиняться и руководить коллективом в разных обстоятельствах; а также системного восприятия будущей профессиональной деятельности, которое способствует развитию мотивации углубления знаний в профессиональной деятельности; профессиональная самоидентификация; планирование профессиональной перспективы.

Занятия яхтингом в вузе могут быть эффективным ресурсом развития обобщённой профессиональной деятельности студентов при условии:
- психолого-педагогической подготовленностью преподавателей;
- отбором средств и методов педагогического воздействия на студентов;
- личностным отношением студентов к познавательной деятельности, их собственной активностью;
- насыщения предметов блока специальных и общепрофессиональных дисциплин смыслами яхтинга;
- изменения характера содержания и организации учебных практик студентов плавательных специальностей морских вузов;
- организации яхтенного сообщества единомышленников, объединенного общим смыслом, возможностью осуществлять социально значимую деятельность в вузе.

Таким образом, проведенное исследование позволило в ходе конструирующего эксперимента обнаружить, что студенты, занимающиеся яхтингом в обязательном порядке, имея общее представление о хождении под парусами, не осознавали той ценности и значимости, которую предоставляют эти занятия. Кроме того, эти занятия не являлись для них профессионально – значимыми. В связи с тем, что для большинства студентов была свойственна социально – психологическая установка, направленная на «ингилизм», можно было констатировать, что у них отсутствовало желание и готовность полноценно и, как говорят, «с душой» заниматься яхтингом.

В ходе конструирующего эксперимента выяснилось, что знания студентов о будущей профессиональной деятельности неточны и поверхностны, не отражают всей полноты и гуманистической направленности. Важные профессионально – значимые качества...
будущего специалиста, такие как умение работать в коллективе, где важно понимание «чувства локтя»; уметь подчиняться и руководить коллективом в разных обстоятельствах; а также системное восприятие будущей профессиональной деятельности, которое способствует развитию мотивации углубления знаний в профессиональной деятельности; профессиональная самодиагностика; планирование профессиональной перспективы, развиты слабо. Диагностика этих качеств на констатирующем этапе эксперимента показала, что большинство студентов имели низкие уровни их развития.

В связи с вышесказанным необходимо так построить учебно-воспитательный процесс в вузе, который способствовал бы актуализации студентов к их профессиональной деятельности, развитию личности и побуждал их к профессиональному саморазвитию на этапе начального приобретения профессиональных навыков. [6,7].

Актуализация внутреннего мира студентов, определение ими личностной значимости и ценности занятий яхтингом стало возможным благодаря активным методам обучения. Дискуссии, круглые столы, тренинги, социальное проектирование способствовали активизации учебного процесса. Участие студентов в ретатах, крейсерских походах, реализации социально-значимых проектов, подготовке и проведении мероприятий морской направленности для различных категорий населения дало возможность студентам приобрести профессиональный и личностный опыт работы с различными категориями и типами людей, апробировать технологии работы, проявлять поддержку и взаимопомощь в реальных жизненных ситуациях. [2,4].

Изменение характера содержания и организации учебных практик дало возможность студентам активно включиться в занятия яхтингом в различных его формах, расширив и углубив теоретические знания студентов в практической деятельности, позволяя целенаправленно осуществлять социально-значимую деятельность. Участие студентов в яхтенном движении запустило работу новой позитивной доминанты, направленной на преобразование их внутреннего мира и ценностных ориентаций.

Полученные в ходе эксперимента результаты подтвердили гипотезу о том, что модель студенческого яхтинга будет способствовать развитию профессиональной деятельности будущих специалистов как плавательных, так и гуманитарных специальностей, стимулировать актуализацию их личностных качеств, таких как поддержка, чувство локтя, взаимопомощь, дружба.

Для оценки эффективности занятий студентами яхтингом была разработана система критериев и эмпирических показателей, позволивших увидеть позитивную динамику изменений, происходящих со студентами, включенными в занятия под парусами, доказать условия гипотезы и убедиться в эффективности модели занятий студенческим яхтингом.

Conclusion

Выполненное исследование вносит определенный вклад в изучение проблемы личностного развития студентов, одним из ресурсов которого являются занятия яхтингом. Данная деятельность по своей природе и сущности близка профессиональной работе студентов – курсантов плавательных специальностей морских вузов и требует от ее участников проявления целеустремленности, мотивированности, самоорганизации и контроля, со принятием на себя ответственности за результат выполнения заданий.

Выделение антропоориентированного, аксиологического и деятельностного подходов в качестве методологических оснований исследования позволило определить важные положения, связанные с осознанием человека как сознательного, активно действующего участника социальных процессов, ответственного за результаты своей деятельности, как основы полноценного развития личности. [3].

Анализ философских подходов к яхтингу помог определить его педагогическую сущность. Он является квазипрофессиональной, общественно-полезной деятельностью и рассматривается как «антропологический, аксиологический и деятельностный ресурс» для развития у будущих специалистов нравственных ценностей и профессионально-значимых качеств, таких как умение работать в коллективе, где важно понимание «чувства локтя»; уметь подчиняться и руководить коллективом в разных обстоятельствах; а также системного восприятия будущей профессиональной деятельности, которое способствует развитию мотивации углубления знаний в профессиональной деятельности; профессиональная самодиагностика; планирование профессиональной перспективы. Анализ психологических трудов помог выявить внутренние механизмы процесса личностного развития студентов, наиболее адекватны у занимающихся яхтингом: интериоризация, доминанта, самоопознание и рефлексия. [8].

На основе философских и психолого-педагогических исследований разработана
модель занятий яхтингом в вузе. Данная модель учитывает совокупность факторов, условий, предпосылок, закономерностей и принципов профессионального развития будущих студентов – специалистов, а также выявляет критерии и эмпирические показатели его эффективности.

Как показало исследование, успешность позитивного влияния яхтинга на личностное развитие студентов зависит от следующих факторов: взаимодействия преподавателей и студентов; активной включенности студентов и преподавателей в яхтинг; приобретаемых студентами позитивного субъективного опыта. [5,10].

В рамках теоретического исследования выявлены педагогические условия, при которых занятия яхтингом будут являться ресурсом развития профессиональной деятельности. Таковыми являются: психологиа готовности студента к восприятию высшего образования и профессиональному обучению; создание рефлексивной среды, включение студентов в ситуации, требующие многовариантного решения, а также моделирующие возможные нестандартные производственные ситуации; соотнесенность учебно-профессиональной деятельности с реальной практикой профессиональной работы; использование коллективных форм деятельности, в которых благодаря групповой апперцепции происходит коррекция индивидуальных способов работы, а также усвоение профессиональных эталонов и образцов; снятие психологических барьеров у студентов при самоанализе своей учебно-профессиональной деятельности, организация переосмысления прошлого опыта; мотивационно-ценностное отношение к профессиональному выбору, адекватной личностной и профессиональной самооценки, самоконтроля и саморегуляции собственных действий и психических состояний; включение студентов в поисково-исследовательскую деятельность.

В ходе исследования было доказано, что наиболее важными предпосылками занятий яхтингом являются следующие: ценностно – смысловое сходство яхтинга и профессиональной деятельности будущих студентов – специалистов морских плавательных специальностей, социальная активность студентов; наличие в вузе лидера, способного увидеть профессиональные смыслы в яхтенном движении, организовать и возглавить его.

Для выявления эффективности названных условий теоретически обоснованы и выведены следующие критерии: ценностные ориентации студентов, личностные установки, развитие профессионально важных качеств.

Анализ эмпирических данных определил конкретную связь между факторами, условиями, предпосылками личностного развития студентов и их практической деятельностью. В результате был выделен ряд существенных закономерностей: чем глубже осмысление и принятие педагогических, психологических и профессиональных смыслов яхтинга, тем выше активная включенность студентов в эту деятельность; чем шире и разнообразнее поле занятий яхтингом, тем больше у студента возможностей приобретения субъектного профессионального опыта; чем дольше пребывание студента на борту парусной яхты, тем чаще он испытывает потребность в спонтанном проявлении навыков умения работать в коллективе, умения подчиняться и руководить коллективом в разных обстоятельствах, а также системного восприятия будущей профессиональной деятельности, которое способствует развитию мотивации углубления знаний. [11].

Проведенное экспериментальное исследование подтвердило необходимость использования ряда педагогических принципов: принцип добровольности, педагогической поддержки, педагогической преемственности.

Таким образом, теоретически обосновав модель яхтенной деятельности в вузе, важно было экспериментально проверить степень эффективности её влияния на развитие профессиональной деятельности будущих специалистов.

Констатирующий эксперимент позволил выявить, что знания студентов о профессии поверхностны, не отражают всей глубины понимания значимости и ценности. У студентов преобладает личностная направленность и социально-психологическая установка на «ингилизм». Личностные качества характера, такие как интерперсонализация, доминант, самопознание и рефлексивность развиты слабо. Результаты констатирующего эксперимента говорят о возможности организации в вузе такой среды, которая способствовала бы развитию профессиональной деятельности студентов, их готовности и потребности оказывать помощь коллегам-студентам младших курсов, побуждая их к занятия яхтингом и парусным спортом.

Опытно-экспериментальное исследование подтвердило, что наполнение предметов блока специальных и общепрофессиональных дисциплин смыслами яхтинга, а также введение спецкурса «Факультативные занятия яхтингом» и «Азбука яхтинга» для начинающих помогают студентам осознать и принять ценности яхтинга, его гуманистическую сущность; приобрести новый социальный, эмоциональный, жизненный и профессиональный
опыт взаимодействия в различных ситуациях имитирующих будущую профессиональную деятельность.

Включая в педагогический процесс занятия яхтингом на факультативной основе, мы создаем развивающую среду, которая помогает студентам освоить новые способы поведения, изменить отношение к сверстникам, к своему образовательному учреждению, к своей стране. Яхтинг также развивает продуктивное творческое мышление, коммуникативную компетентность. Участие студентов в крейсерских походах и различных «морских» проектах помогает им приобрести опыт, связанный с организацией коллективной творческой деятельности. Это способствовало практическому проявлению и развитию таких профессионально необходимых качеств личности, как толерантность, эмпатия, рефлексивность. Проведенная работа подтверждает, что изменение характера содержания и организации учебных практик студентов углубляет и расширяет их знания в области технологии общения с различными типами личности и характера сверстников, способствует приобретению и развитию нового субъектного опыта профессиональной деятельности, формирует новую доминанту социального поведения и отношения к людям, нуждающимся в помощи. [13].

Проведенная опытно-экспериментальная работа доказала справедливость выдвинутых нами и теоретически обоснованных положений гипотезы.

Анализ результатов показал, что реализация всех трех педагогических условий (насыщение предметов блока специальных и общепрофессиональных дисциплин смыслами яхтинга; изменение характера содержания и организации учебных практик студентов; организация яхтенного сообщества единомышленников, объединенного общим смыслом, возможностью осуществлять социально значимую деятельность в вузе), приводит к позитивной динамике. Происходят изменения в ценностных ориентациях студентов, проявляющиеся в принятии ими социальных и личностных ценностей яхтинга, готовности и осознанной включенности в них. [12].

Позитивные изменения показателей второго критерия эффективности занятий яхтингом - профессиональные установки - позволяют говорить об устойчивом интересе студентов к своей будущей профессиональной деятельности, изменении мотивации этой деятельности (преобладание альтруистических мотивов), изменении смысловых, целевых установок.

Число студентов, не понимающих смысл занятий яхтингом, сокращается и увеличивается количество студентов, обладающих пониманием необходимости занятий факультативно в целях личностно – профессионального роста. У студентов старшего курса, углубленно занимающихся яхтингом, проявляется желание полнopravno руководить студентами младших курсов в вопросах развития навыков управления яхтой и настройкой парусов, счисления и обсервации своего места положения и прокладкой курса на бумажных картах, что развивает их будущие профессиональные навыки руководителя и офицера торгового флота. Значительно сокращается число студентов с высоким уровнем «ингибизма».

Такие показатели критериев личностного развития студентов объясняются успешной реализацией педагогических условий, активизирующих процесс влияния яхтинга на личностное развитие будущих специалистов.

Таким образом, результаты, полученные в ходе опытно-экспериментальной работы, подтверждают, что яхтинг является одним из эффективных ресурсов развития профессиональной деятельности студентов. Следовательно, мы отмечаем, что целек установка достигнута, задачи выполнены.

Исследование не претендует на окончательное решение проблемы поиска путей и средств, способствующих личностному развитию студентов, но актуализирует проблему подготовки специалиста, используя для этого ресурс занятий яхтингом в вузе. Дальнейшее углубленное исследование данной проблемы может осуществляться в направлении изучения влияния яхтинга на студентов, обучающихся по специальностям гуманитарного профиля.

Возможен научный поиск, направленный на разработку проблемы воспитания школьников, студенческой молодежи средних и специальных учебных заведений, а также учащихся профтехобразования по вовлечению их в занятия яхтингом, формированию у них активной гражданской позиции, любви к своему учебному заведению, к своей стране.

Impact Factor:	ISRA (India) = 1.344	SIS (USA) = 0.912	ICV (Poland) = 6.630
ISI (Dubai, UAE) = 0.829	РИНЦ (Russia) = 0.234	PIF (India) = 1.940	
GIF (Australia) = 0.564	ESJI (KZ) = 3.860	IBI (India) = 4.260	
JIF = 1.500	SJIF (Morocco) = 2.031		
Impact Factor:

Journal	Impact Factor
ISRA (India)	1.344
ISI (Dubai, UAE)	0.829
GIF (Australia)	0.564
JIF	1.500
SIS (USA)	0.912
PIIH (Russia)	0.234
ESJI (KZ)	3.860
SJIF (Morocco)	2.031
ICV (Poland)	6.630
PIF (India)	1.940
IB (India)	4.260

References:

1. A.N. Leontev (1975) Deyatelnost. Soznanie. Lichnost. M.: Politizdat, 1975 – 130 p.
2. L.S. Vygotskij (1934) Myshhlenie i rech. M.-L.: Socekgiz,1934 – 323 p.
3. P.Ya. Galperin (1999) Vведение в психология. М.: Knizhnyj dom «Universitet», 1999 – 150 p.
4. Z.A. Reshetova (1985) Psихологические основы профессионального обучения. М.: Iz-vo MGU, 1985 – 207 p.
5. N.F. Talyzina (1998) Pedagogicheskaya psixologiya. M.: Akademiya, 1998 – 288 p.
6. V.V. Davydov (1992) Psихологические теория ученой деятельности и методов начального обучения, осноvannyx на soderzhatelnom obobshhenii. T.: Peleng, 1992 – 113 p.
7. I.I. Ilyasov (1981) Organizaciya sovmestnoj raboty studentov. (v soavt.). M.: 1981 – 145 p.
8. O.K. Tixomirov (1975) Psixologicheskie issledovaniya tvorcheskoy deyatelnosti. M.: Nauka, 1975 – 252 p.
9. A.G. Asmolov (1984) Lichnost kak predmet psixologicheskogo issledovaniya. M.: Iz-vo MGU, 1984 – 104 p.
10. Samonenko Yu.A. (2001) Psixologiya i pedagogika. M.: Yuniti-Dana, 2001 – 277 p.
11. Mishchik S.A. (2015) Pedagogometrik - science and academic subject. Materialy Mezhdunarodnoy nauchnoy konferencii “European Technology in Science” – 28.02.2015. ISJ Theoretical & Applied Science 02 (22): 103-106 Malmö, Sweden. doi: http://dx.doi.org/10.15863/TAS.2015.02.22.17
12. Medvedev V.N. (2017) Yachting - is the factor of development of social activity of students. Materialy Mezhdunarodnoy nauchnoy konferencii “Technology and Education” – 30.06.2017. ISJ Theoretical & Applied Science 06 (50): 133-138. Philadelphia, USA. doi: https://dx.doi.org/10.15863/TAS.2017.06.50.18
13. Medvedev V.N. (2017) Yachting – the condition of forming of the identity of the student. Materialy Mezhdunarodnoy nauchnoy konferencii “Materials and Technologies” – 30.07.2017. ISJ Theoretical & Applied Science 07 (51): 117-122. doi: https://dx.doi.org/10.15863/TAS.2017.07.51.20
THE WAYS OF MODELING SAFETY OF NATIONAL ECONOMY IN CONDITIONS OF IMPLEMENTATION OF STRATEGIC ROAD MAPS

Abstract: The ways of modeling the safety of the national economy in the context of implementing strategic road maps based on modern thinking and approaches, are considered in the article. The main criteria and methods, the necessary mechanisms for ensuring the security of the national economy in the context of growing global influences, are analyzed. The important details and principles of modeling individual mechanisms and branches of the national economy in the framework of implementing strategic road maps, taking into account their economic security are revealed. A number of recommendations and proposals on strengthening mechanisms and ways of modeling the security of the national economy of Azerbaijan in the context of implementing strategic road maps are generalized and given.

Key words: economic security of Azerbaijan, strategic road maps of Azerbaijan, national security of Azerbaijan, economic security and globalization, modern model of economic development of Azerbaijan.

Language: Russian

Citation: Bayramov RD (2017) THE WAYS OF MODELING SAFETY OF NATIONAL ECONOMY IN CONDITIONS OF IMPLEMENTATION OF STRATEGIC ROAD MAPS. ISJ Theoretical & Applied Science, 08 (52): 115-121.

Soi: http://s-o-i.org/1.1/TAS-08-52-18 Doi: https://dx.doi.org/10.15863/TAS.2017.08.52.18

Introduction

Azerbaijan long time – over 70 years, had been in the Soviet Union, the country did not have independent economic decision-making. After the collapse of the USSR, Azerbaijan began to take the first steps towards a market economy. The country began to develop economic policies and strategies. The process of implementing these strategies is ongoing. The main goal of this process is to ensure the economic security of the country. The ways of modeling the safety of the national economy in the context of implementing strategic road maps, taking into account their economic security, are revealed. A number of recommendations and proposals on strengthening mechanisms and ways of modeling the security of the national economy of Azerbaijan in the context of implementing strategic road maps are generalized and given.
национальной экономики, Азербайджану было необходимо формировать свою собственную систему экономической безопасности страны. Все эти стратегические вопросы рассмотрены в рамках закона Азербайджанской Республики О Национальной Безопасности, который был принят 24 июня 2004 года и в задачах и целях Концепции Национальной Безопасности Азербайджанской Республики, Утвержденной Распоряжением Президента Азербайджанской Республики от 23 мая 2007 года[1;2]. В этих документах рассмотрены стратегические цели и задачи развития национальной экономики и обеспечение ее безопасности. Экономика страны должна обеспечить улучшение благосостояния населения и в то же время обеспечить диверсификацию национальной экономики и, тем самым, снизить ее зависимость от нефтяного сектора. Аналогичный подход не был случайным, о чем свидетельствуют негативные последствия финансового кризиса мира и других прочих негативных последствий глобальных изменений в последние годы. Руководство Азербайджана, объективно оценив негативные последствия глобальных влияний и снижение цен на нефть на мировых рынках, приняло самое верное решение о переходе на режим строгой экономики и реализации стратегических целей в ближайшей перспективе[3;4]. Учитывая уменьшение нефтяных доходов и необходимость определения новых продуктовых источников подпитки и развития национальной экономики в условиях роста глобальных угроз в Азербайджане, вопросы экономической безопасности национальной экономики и всей экономической системы страны обуславливают модернизацию и обновление существующих механизмов и практичных инструментариев данной системы. Дело в том, что в последние годы в Азербайджане, из-за снижения валютных поступлений извне, финансово-кредитная система испытывала серьезное давление и трудности и, в какой-то мере, не выдержала оказанное давление на нее. В результате осуществленной девальвации национальной валюты, Азербайджанский манат потерял свою стоимость по отношению к доллару США свыше 2 раз и в стране появились элементы финансовой нестабильности. Правительство и правительственная структура Азербайджана приняли комплексные и системные меры по стабилизации финансово-кредитной системы и в целом для уменьшения негативных последствий макроэкономических проблем национальной экономики. Однако пришлось принять непопулярные меры, снизить бюджетное финансирование отдельных крупных проектов, в том числе инфраструктурных объектов. Более того, были закрыты несколько крупных банков страны, население поспешно либо забрало свои депозиты из коммерческих банков, либо их переводило в долларовые депозиты. Серьёзно ограничились кредитные ресурсы на финансирование реального сектора экономики и потребительских нужд населения. Попросту закрывались кредитные и финансовые организации небанковского характера, которые раньше активно работали в регионах страны и тем самым обеспечивали финансирование малых и средних субъектов предпринимательства, физических предпринимателей и местных жителей.

Materials and Methods

В условиях глобализации государство обязательно должно реагировать на происходящие изменения и обеспечить модернизацию экономической системы страны[5]. Азербайджан, наряду с нефтью и газом, имеет достаточные природы богатства и экономические ресурсы для моделирования своей национальной экономики в антикризисных условиях и в условиях роста глобальных экономических тенденций. За последние 50-70 лет особенности развития экономики Азербайджана свидетельствуют о потенциале отдельных секторов экономики страны: металлургии, химии и нефтехимии, нефтехимического машиностроения, приборостроения, пищевой и легкой промышленности, сельского хозяйства и агросектора[6]. Уроки глобализации и негативных последствий финансовых кризисов мира показали серьезность и опасность замедления роста национальной экономики Азербайджана и стали сигналом для проведения масштабных работ и осуществления системных последовательных мероприятий по обновлению и в то же время оперативной реализации новых механизмов экономики страны в нынешних непростых условиях. Все эти вопросы требуют концептуального подхода и обеспечения поэтапной реализации стратегических задач для модернизации экономической модели экономического развития Азербайджана в ближайшей перспективе[7;8]. Страна нуждается в новых механизмах и устройствах развития экономической системы, которая может способствовать созданию добавочной стоимости и расширению ненефтяного потенциала экономики страны, формированию и развитию конкурентоспособных и экспортно-ориентированных сетей предприятий. Вопросы повышения экспортного потенциала ненефтяного сектора экономики являются одним из главных критериев по укреплению национальной экономической безопасности Азербайджана в нынешних условиях[9]. Более того, требуется

Impact Factor:

Journal	Impact Factor
SIS (USA)	0.912
ICV (Poland)	6.630
GIF (Australia)	0.564
IBI (India)	4.260
JIF	1.500
ESJI (KZ)	3.860
SJIF (Morocco)	2.031
PII (India)	1.940
РИНЦ (Russia)	0.207
ISRA (India)	1.344
ISI (Dubai, UAE)	0.829

Уроки глобализации и негативных последствий финансовых кризисов мира:

1. В условиях глобализации государство обязательно должно реагировать на происходящие изменения и обеспечить модернизацию экономической системы страны[5]. Азербайджан, наряду с нефтью и газом, имеет достаточные природы богатства и экономические ресурсы для моделирования своей национальной экономики в антикризисных условиях и в условиях роста глобальных экономических тенденций. За последние 50-70 лет особенности развития экономики Азербайджана свидетельствуют о потенциале отдельных секторов экономики страны: металлургии, химии и нефтехимии, нефтехимического машиностроения, приборостроения, пищевой и легкой промышленности, сельского хозяйства и агросектора[6]. Уроки глобализации и негативных последствий финансовых кризисов мира показали серьезность и опасность замедления роста национальной экономики Азербайджана и стали сигналом для проведения масштабных работ и осуществления системных последовательных мероприятий по обновлению и в то же время оперативной реализации новых механизмов экономики страны в нынешних непростых условиях. Все эти вопросы требуют концептуального подхода и обеспечения поэтапной реализации стратегических задач для модернизации экономической модели экономического развития Азербайджана в ближайшей перспективе[7;8]. Страна нуждается в новых механизмах и устройствах развития экономической системы, которая может способствовать созданию добавочной стоимости и расширению ненефтяного потенциала экономики страны, формированию и развитию конкурентоспособных и экспортно-ориентированных сетей предприятий. Вопросы повышения экспортного потенциала ненефтяного сектора экономики являются одним из главных критериев по укреплению национальной экономической безопасности Азербайджана в нынешних условиях[9]. Более того, требуется

Уроки глобализации и негативных последствий финансовых кризисов мира:

1. В условиях глобализации государство обязательно должно реагировать на происходящие изменения и обеспечить модернизацию экономической системы страны[5]. Азербайджан, наряду с нефтью и газом, имеет достаточные природы богатства и экономические ресурсы для моделирования своей национальной экономики в антикризисных условиях и в условиях роста глобальных экономических тенденций. За последние 50-70 лет особенности развития экономики Азербайджана свидетельствуют о потенциале отдельных секторов экономики страны: металлургии, химии и нефтехимии, нефтехимического машиностроения, приборостроения, пищевой и легкой промышленности, сельского хозяйства и агросектора[6]. Уроки глобализации и негативных последствий финансовых кризисов мира показали серьезность и опасность замедления роста национальной экономики Азербайджана и стали сигналом для проведения масштабных работ и осуществления системных последовательных мероприятий по обновлению и в то же время оперативной реализации новых механизмов экономики страны в нынешних непростых условиях. Все эти вопросы требуют концептуального подхода и обеспечения поэтапной реализации стратегических задач для модернизации экономической модели экономического развития Азербайджана в ближайшей перспективе[7;8]. Страна нуждается в новых механизмах и устройствах развития экономической системы, которая может способствовать созданию добавочной стоимости и расширению ненефтяного потенциала экономики страны, формированию и развитию конкурентоспособных и экспортно-ориентированных сетей предприятий. Вопросы повышения экспортного потенциала ненефтяного сектора экономики являются одним из главных критериев по укреплению национальной экономической безопасности Азербайджана в нынешних условиях[9]. Более того, требуется
совершенствовать и обновить традиционные подходы и механизмы внешнекономической политики Азербайджана с учетом стратегических задач дорожных карт, в которых на данный момент идет интенсификация исполнительных мероприятий[10]. Стране необходимо более конкурентоспособными продуктами выходить на мировые рынки и укрепиться в них, тем самым обеспечить стабильный приток валютных средств[11]. Правда, Азербайджану удалось успешно закончить переходные процессы с учетом национальных интересов и укрепить свою хрупкую модель экономического развития. Далее страна, воспользовавшись вырученными нефтяными доходами, смогла обеспечить создание мощной инфраструктуры национальной экономики, в регионах страны и создание рыночной инфраструктуры. Таким образом, Азербайджан смог смягчить проблемы экономической безопасности с учетом национальных интересов и добился успешного завершения переходного периода[12]. А в последние годы, несмотря на негативные последствия нефтяного фактора и финансового кризиса в мире, Азербайджан смог укрепить свою позицию в числе конкурентоспособных стран мира и занял 37 место и опередил все страны СНГ, в том числе Россию и Казахстан[13].

Отметим, что в последние годы динамика основных индикаторов экономической безопасности Азербайджана обуславливает принятие более продуктивных и оптимальных механизмов по обеспечению динамичности роста ВВП и минимизации экономики страны от нефтяных факторов. За 2006-2010 годы динамика ВВП страны продемонстрировала рост в 3,2 раза. Однако за 2010-2016 годы рост составил 42,1 %, за 2012-2016 годы лишь 10,4 %, а за 2014-2016 годы всего 2,4 %. На Рисунке 1 дана динамика роста ВВП Азербайджана по отношению к предыдущему году за 2005-2016 годы.

![Рисунок 1 - Динамика роста ВВП Азербайджана, в %-ах к предыдущему году, 2005-2016 гг.](http://www.stat.gov.az)

Тенденция замедления роста ВВП требует максимального снижения зависимости экономики страны от нефтяного фактора, в целом от нефтяно-газового сектора (см.: Рисунок 1). А на Рисунке 2 дана динамика ВВП ненефтяного сектора Азербайджана за 2006-2015 годы.
Изображение 2 - Динамика ВВП ненефтяного сектора Азербайджанской Республики в 2006-2015 гг., млн. манат, (разработано автором на материалах Государственного Статистического Комитета Азербайджанской Республики. http://www.stat.gov.az).

За период 2006-2015 годов динамика ВВП ненефтяного сектора Азербайджана выросла 4,5 раза, однако за 2011-2015 годы рост составил 1,8 раза, за 2013-2015 годы рост ненефтяного сектора замедлился и в итоге в 2015 году рост по отношению к 2014 году составил лишь 3,9 % (см.: Изображение 2). Очень важно, что интенсифицировалось развитие ненефтяного сектора, который отличается особенностью продуктивного создания добавочной стоимости для роста ВВП и в целом национальной экономики. На Изображении 3 отражены показатели распределения созданной добавочной стоимости в 2016 году в ненефтяном секторе экономики Азербайджана.
Распределение созданной добавочной стоимости в ненефтяном секторе Азербайджана, в %-ах (всего = 100 %)

Сектор	%
Чистые налоги на продукт и импорт (по ненефтяному сектору)	9,2
Сельское, лесные и рыбные хозяйство	8,6
Ненефтяной промышленностью	7,1
Социальные и другие услуги	27,5
Информация и связь	2,7
Размещение туристов и общественного питания	3,6
Транспорт и складская хозяйство	10,4
Строительство	15,2
Торговля; ремонт транспортных средств	15,6

Рисунок 3 - Распределение созданной добавочной стоимости в ненефтяном секторе Азербайджанской Республики по итогам 2016-го года, в %-ах (разработано автором на материалах Государственный Статистический Комитет Азербайджанской Республики. http://www.stat.gov.az).

Как видно (см.: Рисунок 3), в ненефтяном секторе экономики добавочной стоимости больше всего сконцентрировано в социальных и прочих услугах – 27,5 %, в торговле и ремонте транспортных средств – 15,6 %, в строительстве – 15,2 %, в транспорте и складском хозяйстве – 10,4 % и прочее. К сожалению, в ведущих отраслях ненефтяной промышленности, таких как химия, металлургия, а также в сельском хозяйстве создание добавочной стоимости значительно ниже, чем существующие потенциалы и возможности расширения перечня и объема конкурентоспособных промышленных и сельскохозяйственных продуктов.

Проблемы обеспечения экономической безопасности требуют рассмотрения и реализации комплексных мероприятий по развитию экономической системы и основных механизмов системы экономической безопасности. Государство должно определить с выбором конкретных и более адекватных методов и форм развития системы экономической безопасности и экономической стратегии страны[14;15]. Экономическая безопасность страны обусловливает интенсификацию роста экономики и ее устойчивости, повышение конкурентоспособности отдельных секторов национальной экономики и обеспечение стабильного функционирования главных производственных предприятий промышленного сектора. Государство должно обеспечить формирование и развитие сети стратегических предприятий для производства стратегических товаров, удовлетворяющих государственные нужды и государственные потребности[16;17]. Кроме того, государству необходимо объективно оценить ситуацию и положение в экономике страны и его отдельных секторов, в социально-экономической сфере, в сфере предпринимательства и бизнеса и особенно серьезно разобраться с ситуацией сектора услуг с обеспечением его прозрачности и отчетности. Иначе, элементы «теневой экономики» могут, как паразиты нанести изнутри непоправимый ущерб по развитию и стабильности национальной
экономики, тем самым свести к нулю проводимые экономические реформы и работы по модернизации системы национальной экономики[18;19;20].

Как известно, в условиях глобализации одним из главных факторов обеспечения экономической безопасности страны является ускорение инновации национальной экономики и переход ее деятельности на основе современных технологий, инновационных функций. Обеспечение инновации национальной экономики может нанести весомый вклад на укрепление системы экономической безопасности страны[21;22]. Наряду с инновациями национальной экономики необходимо обеспечить стабильный рост основных секторов экономики страны, особенно промышленных секторов, где вырабатывается стратегически важная продукция и прочих секторов, которые вырабатываются стратегически важная продукция и обеспечивается рост национальной экономики.

Регулирование и обеспечение продуктивности экономических рычагов и экономическими аспектами усиления национальной экономической безопасности страны требуют стратегического подхода и комплексного экономико-политического механизма в данной сфере[23]. Глобальные угрозы обуславливают нетрадиционные методы построения механизмов системы экономической безопасности, требуется разработка и осуществление более иммунитетных и прочих механизмов деятельности различных секторов экономики и страны и в целом конкурентоспособной системы национальной экономики. При этом механизмы обеспечения экономической безопасности в условиях глобализации должны быть адекватны к угрозам глобальных тенденций и происходящих изменений в мировой экономической системе[24].

Conclusion
В связи с углублением глобальных изменений и влияний в мирохозяйственной системе почти все ведущие страны мира вынуждены были скорректировать и урегулировать свою систему экономической безопасности. Исходя из сложившейся ситуации, Азербайджану требуется объективная оценка всех возможных вариантов моделирования своей экономической системы и системы экономической безопасности страны в контексте глобальных изменений[25;26;27]. Считаем, что подходы по моделированию безопасности национальной экономики и совершенствованию основных механизмов экономической системы страны должны быть тщательно продуманы и оценены. Только после этого необходимо применить и реализовать адекватные механизмы с применением более продуктивных инструментариев по обеспечению экономической безопасности страны. Стратегические задачи и цели стратегических дорожных карт в Азербайджане обуславливают безусловную реализуемость намеченных мероприятий по модернизации и созданию более сильной экономической системы страны с обеспечением расширения сектора экономики с добавочной стоимостью. В ближайшей перспективе в условиях реализации стратегических дорожных карт у Азербайджана имеются исторические шансы безупречно укрепиться в числе конкурентоспособных стран мира и, тем самым сделать серьезный шаг на путь получения статуса экономически развитой страны в долгосрочной перспективе.

References:

1. (2004) Zakon Azerbaydzhanskoy Respubliki o Natsional'noy bezopasnosti. Gorod Baku, 29 iyunya 2004 god, №71-2- I1Q.
2. (2007) Kontseptsii natsional'noy bezopasnosti Azerbaydzhanskoy Respubliki. Utverzhdena Rasporyazheniem Prezidenta Azerbaydzhanskoy Respubliki 23 maya 2007 goda, №2198, gorod Baku.
3. (2017) Neftyanykh krizis: Azerbaydzhan perekhodit na rezhim strogoy ekonomii. Snizhniye tsen na neft' udarilo po strane. Available: http://www.neskuchno-news.com. (Accessed: 10.08.2017).
4. (2017) Prezident Azerbaydzhana: Krizis neftyanykh tsen nas dazhe chut' ozdorovil. Available: http://www.report.az. (Accessed: 10.08.2017).
5. Mekhtiyev R.A. (2005) Azerbaydzhan: trebovanija v period globalizshchatsi. Baku: XXI vek, Dom Novykh Izdaniy, 2005. – 464 p.
6. Samedzade Z.A. (2004) Etapy bol'shogo puti – ekonomika Azerbaydzhana za polveka, yeye novyxe realii i perspektivy. Baku, IPTS «Nurlar», 2004. – 936 p.
7. Nuriyev A.KH. (2013) Kontseptual'nyye osnovy politiki modernizatsii i
ekonomicheskogo razvitiya v Azerbaydzhanе. Baku, «AVRORA», 2013.-422 p.
8. Gasanov A. (2013) Sovremennyye mezhdunarodnyye otmosheniya i vneshnyaya politika Azerbaydzhana (vtoroye izdaniye, dopolneniye). Baku, “Zardabi LTD” MMC, 2013.-1008 p.
9. Aliyev SH.T. (2017) Puti povysheniya eksportnogo potentsiala v realizatsii Strategeicheskikh dorozhnykh kart v Azerbaydzhanе // Zhurnal Audit № 1, 2017. -p. 60-66.
10. (2016) Strategicheskiye dorozhnyye karty po perspektivam natsional'noy ekonomiki Azerbaydzhanskoj Respubliki. Utverzhdeno Ukazom Prezidenta Azerbaydzhanskoj Respubliki ot 6 dekabrya 2016 года.
11. Aliyev Sh.T. (2015) Vneshnie ekonomicheskaya politika Azerbaydzhana. Izdatel'stvo Sumgayyyskoj Gosudarstvennogo Universiteta 2015.-185 p.
12. Mikailova S.M. (2010) Problemy ekonomicheskoy bezopasnosti i natsional'nyye interesы v perekhodnom periodе Azerbaydzhana. Avtoreферat diss. d-ra ekon. nauk. Baku, 2010. -48 p.
13. (2017) Doing Business 2017. Equal Opportunity for All. The World Bank. Available: http://www.doingbusiness.org/reports/global-reports/doing-business-2017. (Accessed: 10.08.2017).
14. Kuznetsova Ye.I. (2010) Metodologiya formirovaniya ekonomicheskoy strategii gosudarstva: ekonomicheskaya bezopasnost' i konkurentosposobnost'. Diss. d-ra ekon. nauk, Moskva, 2010.-350 p.
15. Gerasimov A.P. (2001) Teoretiко-pravovyye problemy stanovleniya i razvitiya ekonomicheskoy bezopasnosti rossiyskoy gosudarstvennosti: Metodologicheskiye i istoriko-pravovoye issledovaniye. Diss. d-ra yurid. nauk. Sankt-Peterburg, 2001.-420 p.
16. Senchagov V.K. (2005) Ekonomicheskaya bezopasnost' Rossii. «Delo», M.: 2005.-896 p.
17. Romashenko T.D. (2003) Ekonomicheskaya bezopasnost' khozyaystva: teoriya, metodologiya, vosproizvodstvo. Avtoreферat diss. d-ra ekon. nauk. Voronezh, 2003.-327 p.
18. Kvitchuk M.A. (2009) Metody monitoringa mashtabov tenevoy ekonomiki kak ugrozy ekonomicheskoy bezopasnosti gosudarstva. Diss. kand. ekon. nauk, Sankt-Peterburg, 2009.-125 p.
19. Petrenko I.N. (2004) Osobennosti obespecheniya bezopasnosti ekonomicheskogo prostranstva natsional'noy ekonomiky makro-mikrourovnyakh. Diss. d-ra ekon. nauk. Moskva, 2004.-390 p.
20. Shkvarok V.M. (2009) Teoreticheskiye osnovy i klassifikatsiya ugroz ekonomicheskoy bezopasnosti strany. Diss. kand. ekon. nauk, Sankt-Peterburg, 2009.-185 p.
21. Bart A.A. (2012) Obespecheniye ekonomicheskoy bezopasnosti Rossi v usloviyah formirovaniya innovatsionnoy ekonomiki. Avtoreферat dis. kand. ekon. nauk. Uf'yanovsk, 2012.-24 p.
22. Listopad M.Ye. (2011) Ekonomicheskaya bezopasnost' Rossi: konseptual'nyye osnovy funktsionirovaniya i razvitiya. Diss. d-ra ekon nauk, Sankt-Peterburg, 2011.-380 p.
23. Klimenkov R.V. (2005) Ekonomicheskiye aspekty obespecheniya natsional'noy bezopasnosti Rossi. Diss. kand. ekon. nauk. Sankt-Peterburg, 2005.-184 p.
24. Shevchenko M.A. (2005) Mekhanizm obespecheniya ekonomicheskoy bezopasnosti v usloviyah globalizatsii // Mirovaya ekonomika, № 2.
25. Dzhabiyev R. (2017) Ekonomicheskaya bezopasnost'. Available: http://www.3view.az. (Accessed: 10.08.2017).
26. Aliyev A.B. (2014) Formirovaniye i razvitiye ekonomicheskoy i natsional'noy bezopasnosti Azerbaydzhanskoj Respubliki v sovremennykh usloviyahakh. Avtoreферат diss. d-ra ekon. nauk. Baku, 2014.-58 p.
27. Khudiyev A.I. (2012) Osnovnyye napravleniya obespecheniya natsional'noy bezopasnosti v usloviyahakh globalizatsii. Baku, 2012.
THE USE OF MULTIMEDIA TECHNOLOGIES FOR PRODUCING THREE-DIMENSIONAL IMAGES

Abstract: The article discusses the theoretical and practical aspects of the relevance of the application possibilities of holography with the purpose of obtaining three-dimensional images of real objects. Was created and described in the basic technology of holographic photolithography. Based on already obtained experience in this field, the analysis and visually reduced the time of receiving a holographic image on the photographic plate. Created a simulation model of the operation for obtaining a holographic image. Next, a scheme for the entry and the restoration of holographic images of the maximum allowable size without losing the quality of the portable real world object on a photographic plate, was formulated and scientifically substantiated requirements to the main parameters of the holograms; it is also experimentally shown the necessity of using this scheme to solve the projection task.

Key words: simulation; Holography; simulation models; multimedia; dynamic flow processing; photolithography.

Language: English

Citation: Shardakov VM (2017) THE USE OF MULTIMEDIA TECHNOLOGIES FOR PRODUCING THREE-DIMENSIONAL IMAGES. ISJ Theoretical & Applied Science, 08 (52): 122-124.

Introduction

Currently, much attention is given to 3D modeling in various fields of science, technology, the arts, including when you create a holography. Holography is a new and significant achievements of modern science and technology, this method contributes to obtaining three-dimensional image, by capturing and playback of the light wave. Standard projection photolithography method, based on the use of expensive projection lens, and also has a large area at the same time limit the exhibited portion of the photosensitive film. Here, if the wavelength decreases the radiation used, with decreasing size of the display characteristics of the structure can be seen a steady trend towards a decrease in area of the field of the projection lenses. Such devices are used with radiation of a wavelength, with fields $10^{-2} - 15 \times 10^{-3}$ m in diameter. Devices which work purpose laser radiation with wavelengths 193×10^{-9} and 1157×10^{-9}, fields have no more units of millimeters. [1]

Using the principles of holography has previously been considered by some authors in the earlier stages of the development of holography. [7, 8, 9] But, the results needed for practical use was not obtained.

Task definition

For use in short-wavelength photolithography holographic most perspective are suitable recording medium based on glassy chalcogenide semiconductor (GCS) [7]. The use of such media to obtain relief-phase reflection holograms has been demonstrated and held at Vavilov State Optical Institute in 2000-2005. [2, 11, 12]. But, the results obtained in practical tests still far from ideal. Based on this technology projection holographic submicron photolithography conduct development recording scheme and the reconstruction of holograms, characterized minimum request for temporal coherence of the radiation source.

The scheme of recording and reconstruction of holograms-projectors, providing the minimum requirements for the coherence length of the used radiation sources. The laser, with sufficiently high accuracy, can be regarded as spatially coherent, which is not true of temporal coherence, which establishes a limit on the height holographic scene. Light which is incident on the photosensitive layer from the proximal portion of the object passes the smaller distance than from the more remote. If the path difference of the rays will be greater than the
length of the temporal coherence of the laser
radiation, the interference pattern will not work. [5]

Experimental verification of the suitability of
the scheme and obtained by means of a hologram for
use in a real process. Experimental verification of the
suitability of the scheme simulation was conducted
by us using the software CINEMA 4D.[4]

In the proposal work for holography Denisyuk
object method has been applied, which consists in the
preparation of holographic images in
counterpropagating beams. At the base of the method
is that the interference field in the region of overlap
of the reference and object waves distributed around
the crossing space. Applying the optimum light-
sensitive materials, a three-dimensional interference
pattern may fix. For this purpose, glass photographic
plate is used watered layer of gelatin, wherein the
silver halide microcrystals distributed. These
photographic plate must have full transparency to
display. To create an adequate model must be clear
physical basis of phenomena. The principle of the
creation of the physical fundamentals of holography
to produce a holographic image is as follows. A
certain perception of the object occurs when light
falls on it. In other words, the object itself is not seen
directly, but its light image, or in other words, the
wave field, which creates the object bouncing off
him.

![Image 1](image1.png)

Image 1 – Shows the design scheme developed by the laser system.

Conclusion

Despite the fact that the concept of holography
was invented in 1949, it has received only spread
since the early 60's, after the invention of the laser.
This development of the holographic model is one of
the main directions in the optical research. It will
accelerate the receipt of holographic data in
medicine. For example, to obtain an optical hologram
eyes, providing a single three-dimensional image of
the lens and retina, or acoustical holograms body,
which has the important advantage compared with
radiographs. Also, the holographic model will be
useful in the defense industry for the development
and testing of weapons, as well as the topography, to
surround the display relief schemes.

So, in the near future, holographic
photolithography has all chances to come into our
lives and firmly to gain a foothold in it.

References:

1. Maynard J.D. (1985) Nearfield Acoustic
 Holography: Theory of Generalized
 Holography and the Development of NAH /
 J.D. Maynard, E.G. Williams, Y. Lee // The
 Journal of the Acoustical Society of America. –
 1985. – Vol. 78. – №. 4. – P. 1395–1413
2. Koreshev S.N. (2004) Holographic method for
 obtaining images with limiting high resolution
| ISRA (India) = 1.344 | SIS (USA) = 0.912 | ICV (Poland) = 6.630 |
|-------------------|----------------|-------------------|
| ISI (Dubai, UAE) = 0.829 | PIIH (Russia) = 0.207 | PIF (India) = 1.940 |
| GIF (Australia) = 0.564 | ESJI (KZ) = 3.860 | IBJ (India) = 4.260 |
| JIF = 1.500 | SJIF (Morocco) = 2.031 | |

for extreme shot-wave lithography problems / S.N. Koreshev, V.P. Ratushnyj // Proc. SPIE. – 2004. – Vol. 5290. – P. 221–232.

3. Fon Kenigsmark, A. (2008) Masterskaja CINEMA 4D 10. / A. fon Kenigsmark. – M. : MK-Press, 2008. – p. 448.

4. Bykov V.P. (2004) Lazernye rezonatory / V.P. Bykov, O.O. Silichev. – M. : FIZMATLIT, 2004. – p. 320.

5. Denisjuk Ju.N. (1979) Principy golografii / Ju.N. Denisjuk. – L. : Optitcheskij institut imeni S.I. Vavilova, 1979. – p. 65.

6. Zhiglinskij A.G. (1983) Reaľnýj interferomet / A.G. Zhiglinskij, V.V. Kuchinskij. – L. : Mashinostroenie, 1983. – p. 176.

7. Ishhenko E.F. (1980) Otkryte opticheskie rezonatory / E.F Ishhenko. – M. : Sovetskoe radio, 1980. – 208 p.

8. Kartuzhanskij A.L. (1987) Himija i fizika fotograficheskikh processov / A.L. Kartuzhanskij, L.V. Krasnyj-Admoni. – L. : Himija, 1987. – p. 137.

9. Koreshev S.N. (2004) Ispol'zovanie metoda golografii dlja poluchenija izobrazhenij dvurnyemyh objektov pri reshenii zadach fotolitografii voskogo razreshenija / S.N. Koreshev, V.P. Ratushnyj // Opticheskij zhurnal. – 2004. – T. 71. – № 10. – pp. 32–39.

10. Ivanov V.M. (2011) Opyt ispol'zovaniia i perspektivy razvitija informacionnyh tehnologij v dizajne / V.M. Ivanov, P.A. Orlov, A.A. Holina // Dizajn. Materialy. Tehnologija. – 2011. – № 2(17). – pp. 108–112.

11. Koreshev S.N. (2003) Poluchenie besspeklovyh izobrazhenij dvurnyemyh objektov mikroskopicheskogo masshtaba metodom golografii / S.N. Koreshev, V.P. Ratushnyj // Optika i spektroskopija. – 2003. – T. 94. – № 1. – pp. 139–142.

12. Pokrovskaja L.L. (2010) Malye predpriyatiya v sfere informacionnyh tehnologij kak sub'ekty innovacionnyh proissessov / L.L. Pokrovskaja // Mir jekonomiki i prava. – 2010. – № 12. – pp. 18–22.

13. Bolodurina I., Parfenov D., Shukhman A. (2013) Efficient access to multimedia resources in distributed systems of distance learning: IEEE Global Engineering Education Conference EDUCON, March 13-15, 2013, Berlin, Germany, pp.1228-1231.

14. Parfenov D., Zaporozhko V., Parfenov I. (2017) Approaches to the description of model massive open online course based on the cloud platform in the educational environment of the university. 4th International KES conference on Smart Education and Smart e-Learning, June 21-23, 2017, Vilamoura, Portugal, pp. 177-191.

15. Stuijks, V., Bumbaite, R., Bospelava, K. (2015) The LO Sequencing Problem and Its Solution Using Meta-Programming-Based Approach: 21st International Conference on Information and Software Technologies (ICIST 2015), October 15-16, 2015, Druskinkinkai, Lithuania, pp. 151-164.

16. Parfenov D.I. (2012) Sravnienie effektivnosti algoritmov dinamicheskogo raspredeleniya dannih v oblashnyh hranilishch s sistemy distansionnogo obuchenija / D.I. Parfenov // Voronezh: ООО “Izdatelstvo “Nauchnaya kniga”, - 2012. T. 50. – № 4.1. – pp. 163-168.

17. Parfenov D.I. (2015) Approaches to the effective use of limited computing resources in multimedia applications in the educational institutions / D.I. Parfenov, I.P. Bolodurina // 2015 5th international workshop on computer science and engineering: information processing and control engineering, wcse 2015-ipc. M.: Information Processing and Control Engineering, Programme, - 15-17 April 2015
Impact Factor:

ISRA (India)	SIS (USA)	ICV (Poland)
1.344	0.912	6.630

ISI (Dubai, UAE)	PIIHII (Russia)	PIF (India)
0.829	0.207	1.940

GIF (Australia)	ESJI (KZ)	IBI (India)
0.564	3.860	4.260

JIF	SJIF (Morocco)
1.500	2.031

Contents

1. Shevtsov A
DEVELOPMENT OF AN AUTOMATIC DUST COLLECTION SYSTEM IN MINES. 1-4

2. Chemezov D
STRESS-STRAIN STATE OF METALLIC ALLOYS AT DIFFERENT TEMPERATURES. 5-11

3. Botirova NS
THE INDUSTRIALIZATION PROCESS AND ITS PERSPECTIVES IN THE REPUBLIC OF UZBEKISTAN. ... 12-18

4. Zhanatauov SU
A MODEL OF CALCULATION RISK CHANGING OF THE INTEREST RATE "YIELD TO MATURITY DATE" FOR FOREIGN CURRENCY BONDS OF THE REPUBLIC OF KAZAKHSTAN. ... 19-36

5. Mirzaev GR
UZBEKISTAN-TURKMENISTAN: CURRENT STATE OF BILATERAL RELATIONS. 37-42

6. Bida DS, Yurchenko OL, Chernozhuk TV, Kravchenko OA
VALIDATION OF THE METHODIC OF QUANTITATIVE DETERMINATION OF QUERCITIN IN THE MEDICINE «LIPOPHILAVONE, LIOPHILIZATE FOR EYE DROPS PREPARATION». ... 43-51

7. Chistilin AV
THE NATURE AND CONTENTS OF THE STRATEGY OF RUSSIAN INNOVATIVE DEVELOPMENT AND ITS FEATURES. .. 52-55

8. Chekhovskiy AL
ANALYSIS OF FACTORS COMPLEX RADON INDEX BY EXAMPLE OF GOMEL REGION. ... 56-60

9. Akperova FA
STUDY THE POSSIBILITY OF USING PERSIMMON DOSHAB IN THE PRODUCTION OF BAKERY PRODUCTS. .. 61-66

10. Aliyev ST
PECULIARITIES OF HISTORICAL DEVELOPMENT AND CONTEMPORARY ASPECTS OF THE ECONOMY OF AZERBAIJAN. .. 67-74

11. Aliyeva LA
INTERNAL AUDIT STRUCTURE AT OIL AND GAS INDUSTRY ENTERPRISES. 75-79

12. Gamidova AM
MODERN PROBLEMS AND ASPECTS OF DEVELOPMENT OF LOGISTIC SYSTEM IN CHEMICAL ENTERPRISES OF AZERBAIJAN. .. 80-84

13. Kazymova AK
MODELING OF RAW MATERIAL SECURITY OF NON-PERFECT SECTORS OF THE ECONOMY OF AZERBAIJAN IN THE CONDITIONS OF GLOBAL CHANGES. 85-88
Impact Factor:

Journal	Impact Factor
ISRA (India)	1.344
ISI (Dubai, UAE)	0.829
GIF (Australia)	0.564
JIF	1.500
SIS (USA)	0.912
PII (Russia)	0.207
ESJ (KZ)	3.860
IBI (India)	4.260
ICV (Poland)	6.630
PIF (India)	1.940
SJIF (Morocco)	2.031

14. Lyubimov D, Goldade V, Dunaev A, Pustovoi I
ESTIMATION THE ULTIMATE SIZE OF THE ANTIFRICTIONAL PROTECTIVE LAYER CONTAINING MINERAL FRICTION MODIFIERS. 89-94

15. Izaak SI, Yudin AI
MODELING A PERSONAL POTENTIAL OF THE SPORTS INDUSTRII. 95-101

16. Mishchik SA
SYSTEMIC PROBLEMS ELECTRICITY SEA AND OCEAN OF APPLIED PHYSICS MARITIME FLOT OF PEDAGOGOMETRIC ANALYSIS. 102-107

17. Medvedev VN
YACHTING - DEVELOPMENT OF THE GENERALIZED PROFESSIONAL ACTIVITY OF STUDENTS. 108-114

18. Bayramov RD
THE WAYS OF MODELING SAFETY OF NATIONAL ECONOMY IN CONDITIONS OF IMPLEMENTATION OF STRATEGIC ROAD MAPS. 115-121

19. Shardakov VM
THE USE OF MULTIMEDIA TECHNOLOGIES FOR PRODUCING THREE-DIMENSIONAL IMAGES. 122-124
Impact Factor:

Country/Database	2013	2014	2015	2016
ISRA (India)	1.344			
ISI (Dubai, UAE)	0.829			
GIF (Australia)	0.564			
JIF	1.500			
SIS (USA)	0.912			
PIF (India)	0.912			
РИНЦ (Russia)	0.207			
ESJI (KZ)	3.860			
SJIF (Morocco)	2.031			
ICV (Poland)	6.630			
IBI (India)	4.260			

International Scientific Journal

Theoretical & Applied Science

www.T-Science.org

Scientific publication

«Theoretical & Applied Science» - Международный научный журнал зарегистрированный во Франции, и выходящий в формате Международных научно-практических интернет конференций. Конференции проводятся ежемесячно – 30 числа в разных городах и странах.

Препринт журнала публикуется на сайте за день до конференции. Все желающие могут участвовать в "Обмене мнениями" по представленным статьям.

Все поданные авторами статьи в течении 1-го дня размещаются на сайте http://T-Science.org. Печатный экземпляр рассылается авторам в течение 2-4 дней, сразу после проведения конференции.

Импакт фактор журнала

Impact Factor	2013	2014	2015	2016
Impact Factor JIF	1.500			
Impact Factor ISRA (India)	1.344			
Impact Factor ISI (Dubai, UAE) based on International Citation Report (ICR)	0.307	0.829		
Impact Factor GIF (Australia)	0.356	0.453	0.564	
Impact Factor SIS (USA)	0.438	0.912		
Impact Factor РИНЦ (Russia)	0.179	0.224	0.207	
Impact Factor ESJI (KZ) based on Eurasian Citation Report (ECR)	1.042	1.950	3.860	
Impact Factor SJIF (Morocco)	2.031			
Impact Factor ICV (Poland)	6.630			
Impact Factor PIF (India)	1.619	1.940		
Impact Factor IBI (India)	4.260			
Impact Factor:

Journal	Impact Factor
ISRA (India)	1.344
ISI (Dubai, UAE)	0.829
GIP (Australia)	0.564
JIF	1.500
SIS (USA)	0.912
PIF (India)	1.940
GIF (Russia)	0.207
ESJI (KZ)	3.860
SJIF (Morocco)	2.031
ICV (Poland)	6.630

THE SCIENTIFIC JOURNAL IS INDEXED IN SCIENTOMETRIC BASES:

International Scientific Indexing ISI (Dubai, UAE)
http://isindexing.com/isi/journaldetails.php?id=327

THOMSON REUTERS, EndNote (USA)
https://www.myendnoteweb.com/EndNoteWeb.html

Research Bible (Japan)
http://journalseeker.researchbib.com/?action=viewJournalDetails&issn=23084944&uid=rd1775

Scientific Object Identifier (SOI)
http://s-o-i.org/

РИНЦ (Russia)
http://elibrary.ru/contents.asp?issueid=1246197

Google Scholar (USA)
http://scholar.google.ru/scholar?q=Theoretical+science.org&btnG=&hl=ru&as_sdt=0%2C5

Turk Egitim Indeksi (Turkey)
http://www.turkegitimindeksi.com/Journals.aspx?ID=149

Open Access Journals
http://www.oajournals.info/

Advanced Sciences Index (Germany)
http://journal-index.org/

SCIENTIFIC INDEXING SERVICE (USA)
http://sindexs.org/JournalList.aspx?ID=202

International Society for Research Activity (India)
http://www.israjif.org/single.php?did=23084944

Sherpa Romeo (United Kingdom)
http://www.sherpa.ac.uk/romeo/search.php?source=journal&sourceid=28772
Impact Factor:

Journal	Impact Factor
ISRA (India)	1.344
ISI (Dubai, UAE)	0.829
GIF (Australia)	0.564
JIF	1.500
SIS (USA)	0.912
PHHH (Russia)	0.207
ESJI (KZ)	3.860
SJIF (Morocco)	2.031
ICV (Poland)	6.630
PIF (India)	1.940
IBI (India)	4.260

CiteFactor (USA) Directory Indexing of International Research Journals

http://www.citefactor.org/journal/index/11362/theoretical-applied-science

DOI (USA)

http://www.doi.org

JIFACTOR

http://www.jifactor.org/journal_view.php?journal_id=2073

PFTS Europe/Rebus:List (United Kingdom)

http://www.rebuslist.com

Kudos Innovations, Ltd. (USA)

https://www.growkudos.com

Japan Link Center (Japan)

https://japanlinkcenter.org

Eurasian Scientific Journal Index (Kazakhstan)

http://esjindex.org/search.php?id=1

Collective IP (USA)

https://www.collectiveip.com/

International Institute of Organized Research (India)

http://www.i2or.com/indexed-journals.html

CrossRef (USA)

http://doi.crossref.org

Open Academic Journals Index (Russia)

http://oaji.net/journal-detail.html?number=679

ESJI.net

Eurasian Scientific Journal Index

http://esjindex.org/search.php?id=1
Impact Factor:

Metric	ISRA (India)	ISI (Dubai, UAE)	GIF (Australia)	JIF	SIS (USA)	ICV (Poland)	PIF (India)	IBI (India)	SJIF (Morocco)
Value	1.344	0.829	0.564	1.500	0.912	6.630	1.940	4.260	2.031

THOMSON REUTERS, ResearcherID (USA)

http://www.researcherid.com/rid/N-7988-2013

Stratified Medical Ltd. (London, United Kingdom)

http://www.stratifiedmedical.com/

Indian Citation Index

Indian citation index (India)

http://www.indiancitationindex.com/

SJIF Impact Factor (Morocco)

http://sjifactor.inno-space.net/passport.php?id=18062

InfoBase Index (India)

http://infobaseindex.com

Index Copernicus International (Warsaw, Poland)

http://journals.indexcopernicus.com/masterlist.php?q=2308-4944

RedLink (Canada)

https://www.redlink.com/

THOMSON REUTERS, ORCID (USA)

http://orcid.org/0000-0002-7689-4157

TDNet

Library & Information Center Solutions (USA)

http://www.tdnet.io/

Yewno (USA & UK)

http://yewno.com/

RefME (USA & UK)

https://www.refme.com
Impact Factor:
ISRA (India) = 1.344
ISI (Dubai, UAE) = 0.829
GIF (Australia) = 0.564
JIF = 1.500

ISPC Technology and Innovation, Philadelphia, USA
Impact Factor:

ISRA (India)	ISRA (India)	SIS (USA)	SIS (USA)
ISI (Dubai, UAE)	ISI (Dubai, UAE)	PHHH (Russia)	PHHH (Russia)
GIF (Australia)	GIF (Australia)	ESJ (KZ)	ESJ (KZ)
JIF	JIF	SJIF (Morocco)	SJIF (Morocco)
1.344	0.829	0.912	0.829
0.564	3.860	2.031	2.031
1.500	0.564	1.500	0.564
ICV (Poland)	ICV (Poland)	PIF (India)	PIF (India)
GIF (Australia)	SIS (USA)	ICV (Poland)	ICV (Poland)
	ICV (Poland)	PIF (India)	PIF (India)
	0.564	1.940	1.940
	2.031	4.260	4.260
	0.829	1.344	1.344

Signed in print: 30.08.2017. Size 60x84 1/8

«Theoretical & Applied Science» (USA, Sweden, KZ)
Scientific publication, p.sh. 8.25. Edition of 90 copies.
http://T-Science.org E-mail: T-Science@mail.ru

Printed «Theoretical & Applied Science»