Occurrence of arbuscular mycorrhizal fungi spores in soils of some legumes and their response to varying concentrations of phosphorus application

Abstract: A potted experiment arranged in a 5×3 factorial in a randomized complete block design was undertaken to investigate the occurrence of arbuscular mycorrhizal fungi (AMF) in the soil of five leguminous plants: Cajanus cajan (L.) Huth, Centrosema pascuorum Martius ex Benth, Crotalaria ochroleuca G. Don, Lablab purpureus (L.) Sweet and Mucuna pruriens (L.) DC. The effects of varying phosphorus concentrations (P0 ($0 \text{ kg/ha of single superphosphate}$), P1 ($100 \text{ kg/ha of single superphosphate}$) and P2 ($200 \text{ kg/ha of single superphosphate}$) on the population of AMF spores under these legumes were also carried out. The AMF spores in soil samples were extracted at 19 weeks after planting, using the wet sieving and decanting method, and enumerated with the aid of a stereoscopic microscope. Spores of different species of genera Glomus and Gigaspora were encountered in the soils of the five leguminous plants. Spores of Glomus species predominated while the spores of Gigaspora species were found in lower numbers. The total AMF population was significantly affected by legume species ($p \leq 0.05$). The total AMF spore counts were higher in the soils of Mucuna pruriens and Crotalaria ochroleuca ($p \leq 0.05$). The populations of Glomus mossae in soils decreased with increasing level of applied phosphorus ($p \leq 0.05$). A positive correlation was recorded between the total AMF spores, the predominant AMF spores and soil pH, while the organic matter content and the available phosphorus were negatively correlated with both the total AM spores and the predominant AMF spores.

Keywords: AMF spore, forage, Glomus species, Gigaspora species and soil

1 Introduction

The Leguminosae family is the second largest among worldwide food crops after cereals. Legumes are second to Poaceae (the grasses) in agricultural and economic importance (Curiel et al. 2015). Legumes have an important place in crop rotation, provide protein-rich food for man and livestock, are used in admixture with grasses in hay and pastures and are also used as cover crops and green manures. The growth of legumes on soils improves the nutrient status of soil by increasing the nitrogen content of soil. This also has a profound effect on soil characteristics, such as soil structure, soil texture and water content (Peoples et al. 2009; Kopke and Nemecek 2010; Chianu et al. 2011; Lupwayi et al. 2011).

Arbuscular mycorrhiza fungi (AMF) enhanced the uptake of relatively immobile soil ions such as phosphorus (P), magnesium (Mg), calcium (Ca), copper (Cu), manganese (Mn), iron (Fe), potassium (K), zinc (Zn), sulfur (S) and mobile nitrogen (N) ion (Cameron 2010; Smith et al. 2011). They protect crops from the soil-borne pathogens such as nematode (Cavallazzi et al. 2007) and weed (Rinaudo et al. 2010). They improve soil structure development and aggregate stabilization (Gianinazzi et al. 2010). AMF are essential for ecosystem sustainability, plant development and maintenance of biological diversity (Smith et al. 2011).

The major soils of Southern Guinea Savanna of Nigeria have coarse-textured surface and are low in organic matter and chemical fertility (Alori et al. 2012). The productivity of these soils is generally low in most of the existing farming systems. These soil problems have necessitated the intensification of research in this geographical zone. This includes research into biological nitrogen fixing systems as an alternative to chemically produced fertilizer. Certain forage leguminous plants have been considered for integration into Southern Guinea Savanna by a team of scientists (Lupwayi et al. 2011; Okwori and Abdulsalam 2017). It is therefore very important to investigate if forage leguminous plants support this important soil life, i.e., the AMF in Southern Guinea Savanna soil. There is, therefore, a need to obtain more information on the occurrence and distribution of spores of...
different AMF species in soils cropped with forage legumes. Hence, this research has aimed to investigate the occurrence of AMF spore in the soil of Southern Guinea Savanna under different forage legumes and also the effects of soil treatment with varying phosphorus concentrations on the distribution of AM spores.

2 Materials and methods

2.1 Experimental layout and collection of soil samples

A 5 × 3 factorial experiment in a randomized block design with two replicates to make a total of 30 pots was laid out in the screen house at the Faculty of Agriculture University of Ilorin, Ilorin, Nigeria. Water-soluble single super phosphate with 14.5% P₂O₅, with additional nutrients of 11% sulfur and 21% calcium was used. The 30 experimental pots were filled with 10 kg each of soil presieved with 2 mm sieve size. These pots were treated with three phosphorus levels: P₀ (0 kg/ha single superphosphate), P₁ (100 kg/ha of single superphosphate) and P₂ (200 kg/ha of single superphosphate) in two replicates. Seeds of Cajanus cajan (L.) Millsp., Centrosema pascuorum Martius ex Benth, Crotalaria ochroleuca (G.) Don, Lablab purpureus (L.) Sweet. and Mucuna pruriens (L.) DC were sown at 2 per pot, and this was thinned to 1 per pot 10 days after germination. Crops were irrigated to soil moisture capacity at 6.00 and 18.00 h daily using a watering can. These crops were allowed to grow to maturity (19 weeks). Soil samples were collected from the soil from these pots cropped with different legumes: C. cajan, C. pascuorum, C. ochroleuca, L. purpureus and M. pruriens with the aid of small hoe blade and transported to the laboratory in the well-labeled polythene bags for analysis.

2.2 Determination of some selected soil chemical properties

The chemical properties determined include pH using Kent pH meter model 7020, soil organic matter (SOM), using wet oxidation method as described by Shamshuddin et al. (1994). Available phosphorus in soil samples was determined using the modified No. 1 method of Bray and Kurtz (1945).

2.3 Extraction and morphological characterization of isolates of AMF spores in soils

The wet sieving and decanting technique for the extraction of AMF spores developed by Brundrett et al. (1996) was employed for the extraction of AMF spores. The isolated spores were then picked up with a needle under a dissecting microscope and were mounted in both polyvinyl alcohol lactic acid-glycerol (PVLG), Meltzer’s reagent and PVLG mixed with Meltzer’s reagent (1:1 v/v). All spores were examined using a compound microscope. The morphological properties of these spores were determined according to the key proposed by Trappe (1982). The characteristics used include shape, size, color, distinct wall layer, attached hyphae, sporocarps, bulbous attachment, clustering and surface ornamentation of spores. Characterization was made by using the description provided by the international collection of vesicular and AMF (INVAM 2001).

3 Statistical analysis

The percentage frequency of occurrence of AMF spores in each legume soil was calculated using the formula below:

\[
\frac{\text{No of an AMF sp}}{\text{Total no AMF spores}} \times 100
\]

The correlation between the AMF spore counts and variables such as pH, organic matter content and available phosphorus in soil of each legume was analyzed.

Data collected were subjected to analysis of variance using Genstat statistical package. Means were separated using Duncan’s multiple range test.

4 Results

4.1 The percentage frequencies of occurrence of the predominant AMF spores under different legumes

The percentage frequencies of occurrence of the predominant AMF spores under different legumes are
shown in Figure 1. The spores of *Glomus fasciculatus* were predominant in soils of the legumes except *M. pruriens* in which the spores of *Glomus macrocarpus* var. *macrocarpus* were predominant. The spores of *Glomus macrocarpus* var. *macrocarpus* were the next in abundance to *Glomus fasciculatus* in soils of *C. pascuorum*, *C. ochroleuca* and *L. purpurens*, respectively. The spores of *Gigaspora coralloidae*, however, had lowest counts in all the five legumes soils.

4.2 Total AMF spore count and some chemical properties of soil under different leguminous plants

The total AMF spore count and some chemical properties of soil under different leguminous plants as reported in Table 1 show that most of the soils at different levels of applied phosphorus were slightly acidic, with the soils under *C. ochroleuca* at 200 kg/ha of applied phosphorous level having the lowest pH (5.0). The soils of *C. cajan* at 200 kg/ha level of applied phosphorus and *M. pruriens* at zero (0 kg/ha) level of applied phosphorus were, however, neutral (7.0 and 7.1).

There were also variations in the level of available phosphorus of the soils of the five legumes 19 weeks after planting. *C. cajan* at zero (0 kg/ha) level of applied phosphorus had the highest available phosphorus of 32 ppm, while *M. pruriens* at the same level of applied phosphorus had the lowest available phosphorus of 3.16 ppm.

4.3 Effect of the applied phosphorus levels and different legumes on the total AMF spores

Table 2 shows the effect of the applied phosphorus levels and legume types on the total AM spores. The population of AMF spores was significantly higher in the soils of *M. pruriens* and *C. ochroleuca* than the soils of other legumes. The lowest AM spore count was recorded in the soils of *L. purpurens*.

Higher AMF counts were recorded in the soil of *M. pruriens* when no phosphorus was applied than with applied phosphorus. A decline in the spore count was recorded with increase in the applied phosphorus. On the other hand, *C. ochroleuca* had lower AM counts in soils with no applied phosphorus, whereas an increase in AMF count was observed with increasing level of applied phosphorus.

![Figure 1: Percentage frequency of occurrence of predominant AMF spores in the soil of studied legume species. Bars are % error bars.](image)
4.4 Effects of different legumes and varying phosphorus levels on the population of Glomus mossae

The population of G. mossae spores was significantly higher in the soil of M. pruriens than in the soils of the other legumes. G. mossae spores were more numerous in soils with zero (0 kg/ha) level of applied phosphorus. The number of spores in soils when phosphorus was not applied was in fact significantly higher than the number of spores in soils of 100 and 200 kg/ha levels of applied phosphorus (Table 3).

4.5 Effects of different legumes and varying phosphorus levels on the population of Glomus macrocarpus var. geosporus and Glomus macrocarpus var. macrocarpus spores

As revealed by Tables 4 and 5, the populations of G. macrocarpus var. geosporus and G. macrocarpus var. macrocarpus spores were significantly higher in the soil of M. pruriens than in the soils of the other legumes. However, the varying P levels have no significant effect on the spore population of both AMF species.
4.6 Effects of different legume species at varying P levels on *Glomus fasciculatus* spore population

G. fasciculatus spores in soils of the different legumes at varying P levels in Table 6 reveal that the population of *G. fasciculatus* spores encountered at the different legume species was not significantly different from one another at \(p \leq 0.05 \). However, the application of 0 kg/ha of P resulted in a significantly higher *G. fasciculatus* spore compared to the application of 200 kg/ha of P at \(p \leq 0.05 \).

Table 6: Effect of phosphorus levels and studied legume species on spores of *G. fasciculatus*

Legumes	P treatment level/pot (kg/ha)	Mean legume			
	P0	P1	P2	No of *G. fasciculatus* spores (g soil\(^{-1}\))	
C. cajan	7.5	7.5	11.0	8.67a	
C. pascuorum	17.0	9.5	11.0	12.5a	
C. ochroleuca	7.50	15.0	10.5	11.17a	
L. purpureus	12.0	18.0	10.5	13.5a	
M. pruriens	14.5	22.0	12.0	16.17b	
Mean P level	11.7a	14.5a	11.0a		

Means with the same alphabets in the same column for mean legume and in the same row for mean P. level are not significantly different by Duncan's multiple range test at \(p \leq 0.05 \).

Note: P0 = 0, P1 = 100 and P1 = 200 kg/ha.

4.7 Effects of different legumes at varying P levels on *Gigaspora coralloidea* spore population

G. coralloidea spore count in soils under different legumes at varying levels of applied P in Table 7 shows that the population of *G. coralloidea* spores was not affected significantly either by the legume species or by the P level \((p \leq 0.05) \).

Table 7: Effect of phosphorus levels and studied legume species on spores of *G. coralloidea*

Legumes	P treatment level/pot (kg/ha)	Mean legume			
	P0	P1	P2	No of *G. coralloidea* spores (g soil\(^{-1}\))	
C. cajan	7.0	17.0	7.0	10.33a	
C. pascuorum	18.5	9.5	8.5	12.17a	
C. ochroleuca	22.5	24.5	26.0	24.33a	
L. purpureus	8.0	15.5	17.0	13.5a	
M. pruriens	75.0	24.5	31.5	43.67b	
Mean P level	26.2a	18.2a	18.0a		

Means with the same alphabets in the same column for mean legume and in the same row for mean P. level are not significantly different by Duncan's multiple range test at \(p \leq 0.05 \).

Note: P0 = 0, P1 = 100 and P1 = 200 (kg/ha).

4.8 Correlations between some soil properties and AMF spore population in soil

Table 8 shows the correlations between some soil properties and AMF spore population in soil. Significant negative correlations were observed between AMF spore population and available P and between AMF spore population and SOM content.

Table 8: Correlations between soil properties and AMF spore population

Soil property	No of *G. macrocarpus* var. *geosporus* spores (g soil\(^{-1}\))	No of *G. macrocarpus* var. *macrocarpus* spores (g soil\(^{-1}\))	No of *G. fasciculatus* spores (g soil\(^{-1}\))
Available P	-0.73a	-0.74a	-0.81a
SOM	-0.72a	-0.73a	-0.80a
pH	-0.68a	-0.69a	-0.78a
Organic C	-0.70a	-0.71a	-0.80a

5 Discussion

5.1 The percentage frequencies of occurrence of the predominant AM spores under different legumes

The occurrence of *Glomus* spores reported in this research (Figure 1) was also reported by Alori et al.
Table 7: Effect of phosphorus levels and studied legume species on
spores of G. coralloidea

Legumes	P treatment level/pot (kg/ha)	Mean legume		
	P0	P1	P2	No. of G. coralloidea spores (g soil⁻¹)
C. cajan	2.5	2.0	8.5	4.33a
C. pascuorum	6.0	1.5	3.0	3.5a
C. ochroleuca	2.5	3.0	2.0	2.17a
L. purpureus	3.5	8.0	8.0	6.5a
M. pruriens	10.5	4.0	8.0	7.33a
Mean P level	4.8a	3.7a	5.8a	

Means with the same alphabets in the same column for mean legume and in the same row for mean P level are not significantly different by Duncan’s multiple range test at $p \leq 0.05$.

Note: P0 = 0, P1 = 100 and P1 = 200 kg/ha.

(2012) from the soils of Ilorin. Invam database (INVAM 2001) reported the genus Glomus to be the most diverse in Glomales order. Hindumathi and Reddy (2011) also reported abundance of Glomus sp. accompanied with a fewer species of Gigaspora.

5.2 Total AMF spore count and some chemical properties of soil under different leguminous plants

Alori et al. (2012) reported a marked variation between the abundance of mycorrhizal spores and the physicochemical characteristics of soils among species of mycorrhizal fungi. The difference in the available phosphorus under different legumes could probably be due to varying abilities of legumes to produce phosphates. According to Amba et al. (2013), some plant species are known to produce more extracellular phosphates in response to low levels of available phosphorus. The total AMF spores count in the soils of M. pruriens was higher than that of the soils of C. cajan. There are slight variations in the quantity of the organic matter of the soils studied. This probably had an effect on the level of available phosphorus in the soils. A soil with high organic matter content will likely have a higher microbial population. Immobilization of phosphorus by these organisms will cause reduction in the available phosphorus of that particular soil. The reduction in pH in soils under Crotalaria ochroleuca at 200 kg is most likely due to the extrusion of H⁺, following the uptake of ammonium by the fungal hyphae.

5.3 Effect of the applied phosphorus levels and different legumes on the total AMF spores

Variation in the abundance of AMF under different legumes and varying P levels could probably be due to the differences in morphological structures, growth characteristics and nitrogen-fixing ability of the legumes. Hindumathi and Reddy (2011) also reported a significantly varying population of AM spore under different legumes. The ability of some crop types to support high AMF population may be attributed to the root exudates of these plants, which stimulate the germination of mycorrhizal spores and increase the infection percentage. Some crop root exudates may also encourage growth and activity of other beneficial microbes such as the sulfur-oxidizing bacteria. Mohamed et al. (2014) reported increased AMF spores count by dual inoculation with AMF and sulfur-oxidizing bacteria. Mathimaran et al. (2007) discovered that spore densities of AM fungi were significantly affected by plant species identity. Mahesh and Selvaraj (2008) reported

Table 8: Correlation of some soil variables with total number of AMF spores and predominant AMF spores extracted from soils of studied legume species

Variable	Total AMF spores	G. mossea	G. fasciculatus	G. macrocarpus var. geosporus	G. coralloidea	G. macrocarpus var. macrocarpus
pH	0.038	0.344	0.190	0.214	0.650	0.213
Available P	−0.230	−0.262	−0.218	0.027	0.458	−0.210
Organic matter	−0.463	−0.483	−1.199	−0.107	−0.091	−0.388

*a Correlation was significant at $p \leq 0.05$.
82% AM colonization in Sorghum compared to 20% in Saccharum. Saif (1987) observed a great variation in dependence on mycorrhiza among forage species. Crotalaria ochroleuca enhanced the multiplication of mycorrhizal propagule in soil (Benkhoua et al. 2017). Khakpour and Khara (2012) also reported negative correlation between soil P and AMF spore population of soil.

5.4 Effects of different legumes and varying phosphorus levels on the population of *Glomus mossae*

Glomus mossae in soils of different legumes at varying phosphorus levels (Table 3) shows that *Glomus mossae* spores were significantly affected by the legume species and the phosphorus level ($p \leq 0.05$). This agrees with the observations of Ghorbani et al. (2012) who reported that soil chemical treatment may directly influence the occurrence of AMF and that low P favored spore production in soils. According to Yang et al. (2014), increasing soil nutrient reduces the effectiveness of AMF.

5.5 Effects of different legumes and varying phosphorus levels on the spore population of *Glomus macrocarpus* var. geosporus and *Glomus macrocarpus* var. macrocarpus

G. macrocarpus var. geosporus and *G. macrocarpus* var. macrocarpus spore populations were significantly influenced by legume species but not by the varying P levels. This implies that all the varying P contents of the soil support the mycorrhizae. This agrees with the report of Emmanuel et al. (2012) that fertilizer application did not influence AMF spore abundance in the maize/Centrosema soil.

5.6 Effects of different legumes at varying P levels on *Glomus fasciculatus* spore population

The lack of significant difference in the spore population of *G. fasciculatus* under different legumes implies that exudate from the legumes studied favors the growth of *G. fasciculatus*. The significant decline in *G. fasciculatus* spore population observed with increasing level of the applied P is consistent with the report of the study by Johnson et al. (2013). Increased phosphorus supply has previously been reported to exert strong inhibition of arbuscular mycorrhizal development (Nouri et al. 2015).

5.7 Effects of different legumes at varying P levels on *Gigaspora coralloidea* spore population

Metabolites from all the legumes and the existing soil factors in this ecological zone probably have a positive influence on the *G. coralloidea* spore population. These probably accounts for an insignificant difference in the spore population of *G. coralloidea* under different legumes and varying P levels. Plant roots excrete quite a number of organic compounds to attract and select microorganisms in the rhizosphere (Huang et al. 2014).

5.8 Correlations between some soil factors and AMF spore population in soil

Isobe et al. (2007) reported a negative correlation between soil P and AMF population of soil and between SOM and AMF spore population, respectively. The positive correlation observed between soil pH and AMF spore count corresponds to the findings of Isobe et al. (2007).

6 Conclusion

This study has revealed that spores of *Glomus* sp. and *Gigaspora* sp. occur in the soils of Southern Guinea Savanna, ecological zone of Nigeria. However, spores of *Glomus* sp. are abundant than spores of *Gigaspora* sp. in soils of this zone.

The occurrence of AMF spores in soils under leguminous plant – *C. cajan*, *C. pascuorum*, *C. ochroleuca*, *L. purpureus*, and *M. pruriens* was also established. *M. pruriens* soil was observed to have more AMF spores than the other legume soils. The use of *M. pruriens* in crop rotation could help to improve soil fertility in the study area. The mere presence of mycorrhizal spores does not necessarily reflect the abundance of mycorrhizal infection. There is, therefore, the need for further
studies on the rate of infection of these legumes with the existing mycorrhizal spores.

This study has also shown that soil properties such as pH, organic matter content, and the available P do have effects on the AMF population. Further work is required to observe the correlation between the presence of AMF and the amount of P and N in tissues of different legumes. This information will enable the manipulation of AMF symbiosis for the benefit of a minimum input agricultural system in Southern Guinea Savanna Zone of Nigeria.

Conflict of interest: The authors declare no conflict of interest.

References

[1] Alori E, Fawole O, Afolayan A. Characterization of arbuscular mycorrhizal spores isolated from Southern Guinea Savanna of Nigeria. J Agric Sci. 2012;4(7):13–9.
[2] Amba AA, Agbo EB, Garba A. Effect of nitrogen and phosphorus fertilizers on nodulation of some selected grain legumes at Bauchi, Northern GuineaSavanna of Nigeria. Int J Biosci. 2013;3:1–7.
[3] Benkhoua N, Hafidi M, Badri W, Baudoin E, Thioulouse J, Prin Y. Management of the mycorrhizal soil infectivity with Crotalaria ochroleuca, an indigenous wild legume in the tropics: Impacts on microbial functional diversity involved in phosphorus mobilization processes in a sahelian soil. Ecol Eng. 2017;101:130–6.
[4] Bray RH, Kurtz LT. Determination of total, organic and available forms of phosphorus in soils. Soil Sci. 1945;59:39–45.
[5] Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N. Working system engineers. Plant Soil. 2010;333:1–81.
[6] Cavallazzi JRP, Filho OK, Stuermer SL, Rygiewicz PT, de Mendonca MM. Screening and selecting arbuscular mycorrhizal fungi for inoculating micropropagated apple rootstocks in acid soils. Plant Cell Tiss Org Cult. 2007;90:117–29.
[7] Chianu JN, Nkonya EM, Mirura FS, Chianu JN, Akinnifesi K. Biological nitrogen fixation and socioeconomic factors for legume production in sub-Saharan Africa: a review. Agron Sustainable Dev. 2011;31:139–54.
[8] Curiel JA, Coda R, Isabella CI, Summo C, Gobbetti M, Rizzello CG. Exploitation of the nutritional and functional characteristics of traditional Italian legumes: the potential of sourdough fermentation. Int J Food Microbiol. 2015;196:51–61.
[9] Emmanuel B, Fagbola O, Osonubi O. Influence of fertiliser application on the occurrence and colonisation of arbuscular mycorrhizal fungi (AMF) under maize/Centrosema and sole maize systems. Soil Res. 2012;50(1):76–81.
[10] Ghorbani M, khara J, Abaspoor N. Vesicular-arbuscular mycorrhizal symbioses in seven plants and its relationship with soil factors and seasons. Iran J Plant Physiol. 2012;3(1):589–94.
[11] Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redeker D. Wipf D. Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza. 2010;20:519–30.
[12] Hindumathia A, Reddy BN. Occurrence and distribution of arbuscular mycorrhizal fungi and microbial flora in the rhizosphere soils of mungbean [Vigna radiata (L.) wilczek] and soybean [Glycine max (L.) Merr.] from Adilabad, Nizamabad and Karimnagar districts of Andhra Pradesh State, India. Adv Biosci Biotechnol. 2011;2:275–86.
[13] INVAM. 2001. http://invam.caf.wvu.edu/fungi/taxonomy/speciesID.htm.
[14] Isebe K, Alizawa I, Eguchi Y, Ishii R. Distribution of arbuscular mycorrhizal fungi in upland field soil of Japan: (1) relationship between spore density and soil environmental factor. Plant Product Sci. 2007;10:122–8.
[15] Johnson J, Hounnandan P, Kane A, Sanon KB, Neyra M. Diversity patterns of indigenous arbuscular mycorrhizal fungi associated with rhizosphere of cowpea (Vigna unguiculata (L.) Walp.) in Benin, West Africa. Pedobiologia. 2013;56:121–8.
[16] Khakpour O, Khara J. Spore density and root colonization by arbuscular mycorrhizal fungi in some species in Northwest of Iran. Int Res J Appl Basic Sci. 2012;3:977–82.
[17] Kopke U, Nemecek T. Ecological services of faba bean. Field Crop Res. 2010;115:217–33.
[18] Lupwayi NZ, Kennedy AC, Chirwa RM. Grain legume impacts soil biological processes in sub-Saharan Africa. Afr J Plant Sci. 2011;5:1–7.
[19] Mahesh V, Selvaraj T. Occurrence and distribution VA–Mycorrhizal fungi in the soils polluted with Tannery effluent. Adv Biotech. 2008;34–6.
[20] Mathimaran N, Ruh R, Jama B, Verchot L, Frossard E, Jansa J. Impact of agricultural management on arbuscular mycorrhizal fungal communities in Kenyan Ferralsols. Agric Ecosys. 2007;11:22–32.
[21] Mohammed AA, Eweda WEE, Heggo AM, Hassan EA. Effect of dual inoculation with arbuscular mycorrhizal fungi and sulphur-oxidising bacteria on onion (Allium cepa L.) and maize (Zea mays L.) grown in sandy soil under green house conditions. Ann Agric Sci. 2014;59(1):109–18.
[22] Nouri E, Breuillin-Sessoms F, Feller U, Reinhardt D. Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in petunia hybrida. PloS One. 2015;10(4):e0127472.
[23] Oworri AI, Abdulsalam M. Performance of some forage rass species in the Southern Guinea Savanna agro-ecological zone in Nasarawa State of Nigeria. World Sci News. 2017;83:92–118.
[24] Peoples MB, Brockwell J, Herridge DF, Rochester II, Alves BJ, Urquiaga S, et al. The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis. 2009;48:1–17.
[25] Rinaudo V, Bärberi B, Giovannetti M, van der Heijden M. Mycorrhizal fungi suppress aggressive agricultural weeds. Plant Soil. 2010;333:1–5.
[26] Saif SR. Growth responses of tropical forage plant species to vesicular-arbuscular mycorrhizae. 1. Growth, mineral uptake
and mycorrhizal dependency. CGSpaceA Repository of Agricultural Research Outputs; 1987.

[28] Shamshuddin J, Jamilah I, Ogunwale JA. Organic carbon determination in acid sulphate soils. Pertanika J Trop Agric Sci. 1994;17:197–200.

[29] Smith SE, Jakobsen I, Groenlund M, Smith FA. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol. 2011;156:1050–7.

[30] Trappe JM. Synoptic keys to the genera and species of zygomycetous mycorrhizal fungi. Phytopathol. 1982;72:1102–8.

[31] Yang G, Liu N, Lu W, Wang S, Kan H, Zhang Y, et al. The interaction between arbuscular mycorrhizal fungi and soil phosphorus availability influences plant community productivity and ecosystem stability. J Ecol. 2014;102(4):1072–82.