patient – identified and not included – was on KD < 3 months due to disease progression). Further feasibility analyses showed a duration of the KD of ≥ 3 months and less than 7 months (n=2), > 7 months and less than 1 year (n=2), and two years (n=1), respectively. CONCLUSION: These results – based on a small patient population – suggest that the KD appears to be a feasible treatment option for children with DIPG. The potential duration of the KD is limited by the aggressive clinical behavior of DIPG. The safety analyses, retrospective and post hoc, should encourage further studies on a larger scale; ideally assessing the impact of the KD in DIPG patients in a randomized controlled trial.

DIPG-26. THERAPEUTIC EFFECTS OF RADIOTHERAPY WITH CONCOMITANT AND ADJUVANT TEMOZOLOMIDE VERSUS RADIOTHERAPY WITH CONCOMITANT TEMOZOLOMIDE ALONE IN CHILDREN WITH DIPG: A SINGLE-CENTER EXPERIENCE WITH 82 CASES

Mingyao Liu, Juan Li, Qingxin Hu, Jiafeng Zhou, Shaoqun Li, Lei Wei, Zhaoming Zhou, Cheng Zhou, Lichao Wang, Changguo Shan, Yangqiong Zhang, Rishuo Luo, and Limbo Cai; Guangdong Sanjiu Brain Hospital, Guangzhou, Guangdong, China

OBJECTIVE: To retrospectively analyze the therapeutic effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy with concomitant temozolomide alone for children with diffuse intrinsic pontine gliomas (DIPG) and to evaluate the value of temozolomide in the treatment of pediatric DIPG. METHODS: The clinical data of children with confirmed DIPG in Guangdong Sanjiu Brain Hospital between January 1, 2010 and December 31, 2019 were collected. The inclusive criteria included: (1) receiving a total radiotherapy dose of 54 Gy in 27 fractions, (2) treated with concomitant temozolomide chemotherapy, and (3) with or without adjuvant temozolomide chemotherapy. RESULTS: A total of 82 pediatric patients were eligible for the study, with a median age of 7 years (range 7 months – 16 years). The median follow-up was 8.6 months (range 2–28 months) and the median survival time was 9.4 months. The median survival time of 66 patients treated with radiotherapy with concomitant and adjuvant temozolomide was 9.8 months, longer than 7.5 months of the other 16 patients treated with radiotherapy with concomitant temozolomide alone, with statistical differences (P<0.010). Moreover, bevacizumab and nimotuzumab didn’t bring survival benefits to patients with disease recurrence or progression. From (Grade IV) was not found. CONCLUSION: Radiotherapy with concomitant and adjuvant temozolomide prolongs the survival time of children with DIPG.

DIPG-27. TARGETING FACILITATES CHROMATIN TRANSCRIPTION (FACT) AS A NOVEL STRATEGY FOR DIFFUSE INTRINSIC PONTINE GLIOMA (DIPG) THAT ENHANCES RESPONSE TO HISTONE DEACETYLASE (HDAC) INHIBITION

Angel Andreu de Freig, William E. Lehmann, de Barcelo, Spain, de Department of Neurology, de University of Michigan, de Ann Arbor, MI, USA, de Department of Pediatrics, de University of Michigan, and de Department of Neurosurgery, de University of Michigan, de Ann Arbor, MI, USA, de 2Department of Neurology, de University of Michigan, de Ann Arbor, MI, USA, de Children’s Cancer Institute, de Sydney, NSW, Australia, de Children’s Hospital at Westmead, de Sydney, NSW, Australia, de 4Department of Radiation Oncology, de University of Texas Southwestern Medical Center, de Dallas, TX, USA, de 5Department of Neurosurgery, de Children’s Hospital Boston, de Boston, MA, USA, de 6Department of Pharmaceutical and Pharmaceutical Sciences, de The University of Texas, de Houston, TX, USA, de 7Department of Cancer Biology, de Dana-Farber Cancer Institute, de Boston, MA, USA, de 8Department of Neurology, de University of California, Los Angeles, de Los Angeles, CA, USA

Diffuse intrinsic pontine glioma (DIPG) is an aggressive and incurable childhood brain tumor for which new treatments are needed. A high throughput drug screen of 3500 pharmaceutical compounds identified anti-malarials, including quinacrine as having potent activity against DIPG neuropheres. CBL0137, a compound modelled on quinacrine, is an anti-cancer compound which targets Facilitates Chromatin Transcription (FACT), a complex involved in transcription, and DNA repair. CBL0137 effectively crosses the blood-brain barrier and is currently in Phase I trials in adult cancer. CBL0137 induced apoptosis in DIPG neuropheres in vitro and had profound cytotoxic activity against a panel of DIPG cultures. In a DIPG orthotopic model, treatment with CBL0137 significantly improved survival. We found that treatment with CBL0137 up-regulated TP53 and increased histone H3.3 acetylation and tri-methylation in DIPG cells. We therefore examined the interaction between CBL0137 and the HDAC inhibitor, panobinostat. In vitro experiments showed that the two agents had profound synergistic activity against DIPG neuropheres in clonogenic assays and enhanced apoptosis. Transcriptomics analysis and immunoblotting indicated that combination treatment activated signalling pathways controlled by Retinoblastoma (RB)/E2F1 and subsequently increased phosphorylation and enzymatic activity of enhancer of zeste homolog 2 (EZH2). Consistent with the in vitro results, the CBL0137 and panobinostat significantly prolonged the survival of two orthotopic models of DIPG, while histological analysis showed increased CBL0137 and decreased K67 positive cells. Given these promising results, a paediatric trial of CBL0137 is planned to open through the Children’s Oncology Group with an expansion cohort for DIPG patients.

DIPG-28. REPEATED LOW DOSE RT FOR PEDIATRIC DIPG – LESS DISEASE BURDEN WITH COMPARABLE OUTCOMES

Yao Yu Wu, and Chen Kan Tseng; Chang Gung Children Hospital at Linkou, Taoyuan, Taiwan

PURPOSE: Pediatric diffuse intrinsic pontine glioma (DIPG) is the most dismal prognostic pediatric brain tumor. Six weeks radiation therapy (RT) remains the mainstay of treatment. The aim of the current study was to compare the results of firstly reported repeated low dose RT (rLRT) with conventional RT (CRT). METHODS AND MATERIALS: This retrospective review included 24 children with DIPG, aged 3 - 18 years, underwent CRT (p=0.121). Also, the mean cumulative progression-free survival in the CRT group (m=0.252) was significantly longer than that of 18 - 30 Gy in 1.5-2.0 Gy per fraction (m=0.209). CONCLUSION: For children with newly diagnosed DIPG, repeated low dose RT, given over 3 to 4 weeks for 1 to 3 cycles, offers comparable survival outcome with less disease burden compared with conventional RT.

DIPG-29. PHOSPHATIDYLINOSITOL-4,5-BISPHOSPHATE 3-KINASE (PI3K) INHIBITION DRIVES PROTEIN KINASE C ACTIVATION (PKC) IN DIFFUSE INTRINSIC PONTINE GLIOMA (DIPG)

Rajiv J. Khanal,1,2 Abdul Mannan1,2, Evangeline M. Jackson1,2, Dallan Nakatani1,2, David A. Skofic,1,2 M. Farkas1,2,4,5, Jamaluddin1,2, Esther Hulleman1,2, Angel M. Carcaboso1,2, Michelle Monje1,2, Frank Alvaro3, Maria Tsoi3, David S. Ziegler1,2,3, and Matthew D. Dun1,2,3

Cancer Signalling Research Group, School of Biomedical Science and Pharmacy, Faculty of Health and Medical Sciences, University of Newcastle, Callaghan, NSW, Australia, 1Priority Research Centre for Cancer Research Innovation and Translation, Hunter Medical Research Institute, Lambton, NSW, Australia, 2Priority Research Centre for Reproduction, Faculty of Health Sciences, Flinders University, Bedford Park, South Australia, Australia, 3Department of Pharmaceutical and Pharmaceutical Sciences, The University of Texas, Houston, TX, USA, 4Children’s Cancer Institute, Sydney, NSW, Australia, 5Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA

Recurring somatic mutations and gene amplifications to members of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) signaling axis are overarching contributors to the aggressive growth and survival of diffuse intrinsic pontine gliomas (DIPG). However, targeting PI3K has thus far failed to improve outcomes for patients in the clinic. To identify the mechanisms underpinning PI3K/AKT/mTOR treatment failure in DIPG, we have employed high-resolution quantitative phosphoproteomic profiling in patient-derived DIPG cell lines harboring H3K27M and PI3K mutations, +/- the blood-brain barrier permeable PI3K inhibitor, panaxilis (previously “GDC-0084”, currently in Phase I trials - NCT03696355) and rapamycin. Paxalisib was significantly more potent than rapamycin at inducing PI3K/AKT/mTOR inhibition, however, both simultaneously activated protein kinase C signaling (PKCα and PKCζ) following panaxilis (3.8 and 4.5 fold, respectively). PKC α is directly upstream of myristoylated alanine-rich C-kinase substrate (MARCKs), which was phosphorylated at Ser170 by +9.4 and +4.7 fold, respectively; promoting actin cytoskeletal remodeling and cellular migration. Indeed, activation of PKC signaling using phorbol 12-myristate 13-acetate (PMA), increased DIPG cell growth and migration by >3 fold. Targeting PKC using midostaurin (FDA-approved for acute myeloid leukemia), and enzastaurin (blood-brain barrier penetrant inhibitor of PKCζ), in combination with panaxilis was highly synergistic (Cl<0.9), reducing proliferation and driving apoptosis. Mechanistically, compensatory activation of PKC signaling following PI3K inhibition was regulated by the accumulation of Ca2+ ions, as chelation using

neuro-oncology • December 2020

iii292
DIFFUSE INTRINSIC PONTINE GLIOMA (DIPG) targets for DMG tumors. We observed transcriptome-wide AS (9,805 differential splicing variations in 4,734 genes), and identified a DMG-specific splicing signature, that included known cancer genes. We hypothesize that AS of cancer genes play a role in DMG tumor formation. Assessing whether splicing factor dysregulation impacted known cancer transcripts, we discovered several splicing factors, including SRRM4, SRRM3 and RBFOX3 to be down-regulated in DMG. Additionally, we found an enrichment of binding motifs of splicing factors with regions of these spliced exons. We also observed recurrent significant exon inclusion in tumor suppressor SMARCA4, an integral member of the SWI/SNF family of proteins involved in chromatin remodeling. Further, we identified # AS in 16/18 (89%) of the 27 members of the SWI/SNF complex, including increased skipping of exon 7 in DP2F2, representing a complete mRNA transcript switch in DMG. Since SRRM4, SRRM3 and RBFOX3 are known regulators for neural-specific microexons, we focused on microexon splicing changes. In this study, we showed that these regulations of binding motif based splicing in these tumors. We identified 245 known microexons lost or gained in DMG. Moreover, a quarter of which were observed in known cancer genes, with the most frequent splicing change causing gain of a clathrin-binding site in the tumor suppressor BIN1 with a concurrent loss of an out-of-frame microexon in the oncogene BAK1, potentially activating it. Altogether, our results suggest that aberrant splicing may be an alternative mechanism driving DMG tumorigenesis and we are currently molecularly validating a subset of these events with the overall goal of identifying novel therapeutic targets for DMG tumors.

CHARACTERIZING THE NEURO-VASCULAR UNIT IN DIFFUSE INTRINSIC PONTINE GLIOMA

Diffuse intrinsic pontine glioma (DIPG) is a childhood brainstem tumor with a median overall survival of eleven months. Lack of chemotherapy efficacy may be related to an intact blood-brain-barrier (BBB). In this study we aim to compare the neuro-vascular unit (NVU) of DIPG to healthy pons tissue. End-stage DIPG autopsy samples (n=5) and age-matched healthy pons samples (n=22), obtained from the NIH NeuroBioBank, were used for RNA-seq and immunohistochemical stains for proteins with zonula occludens-1 (ZO-1), basement membrane component laminin, and pericyte marker PDGFRβ. Claudin-5 stains were also used to determine vascular density and diameters. In DIPG, expression of claudin-5 and ZO-1 was reduced, and subunit 5 was distributed to the abluminal side of endothelial cells. Laminin expression at the gla limitans was reduced in both pre-existent vessels and neovascular proliferation. In contrast to healthy pons, no PDGFRβ expression was detected. The number of blood vessels was increased compared to healthy pons. Claudin-5 expression was significantly lower (P<0.01). The number of larger blood vessels (>10µm) did not differ between groups (P=0.223). Mean vascular diameter was 3.9±9.9µm for DIPG versus 7.7±5.0µm in healthy pons (P=0.016). Our study demonstrates evidence of structural changes in the NVU in end-stage DIPG. Chemotherapeutic inefficacy could be the result of reduced vascular density. However, further research is needed to determine meaning and extent of these changes and to determine whether these observations are caused by the tumor or the result of treatment.

MUTATIONS IN THE HISTONE 3 GENE (H3K27M) ARE THE EPIGENOMIC DRIVER IN AGGRESSIVE DIFFUSE INTRINSIC PONTINE GLIOMAS

Mutations in the histone 3 gene (H3K27M) are the eponymous driver in aggressive diffuse intrinsic pontine gliomas (DIPGs) and other diffuse midline gliomas (DMGs), aggressive pediatric brain tumors for which no curative therapy currently exists. To identify specific epigenetic dependencies within the context of the H3K27M mutation, we performed an shRNA screen targeting 4,080 genes classified as epigenetic/chromatin-associated molecules in patient-derived DMG cultures. This identified AFF4, a component of the super elongation complex (SEC), as necessary for DMG cells to maintain growth and self-renewal. We hypothesized that aberrant SEC expression occurs as a consequence of the H3K27M mutation and that this deregulated SEC signaling overcomes repressive transcriptional regulation in order to suppress differentiation and promote self-renewal of DMG tumorstem cells. We interrogated the role of AFF4 in DMG using an shRNA lentiviral approach. We demonstrate a significant decrease in p-ezrin and ezrin expression in SEC knockdown cell lines, and in DMG patient-derived xenograft models. These studies present a biologic rationale for the translational exploration of CDK9 inhibition as a promising therapeutic approach.