A bound to kill the ramification over function fields

Alena Pirutka

January 21, 2013

Abstract

Let k be a field of characteristic zero, let X be a geometrically integral k-variety of dimension n and let K be its field of fractions. Under the assumption that K contains all rth roots of unity for an integer r, we prove that, given an element $\alpha \in H^m(K, \mathbb{Z}/r)$, there exist n^2 functions $\{f_i\}_{i=1,\ldots,n^2}$ such that α becomes unramified in $L = K(f_1^{1/r}, \ldots, f_{n^2}^{1/r})$.

1. Introduction. Let K be a field and let $\alpha \in Br K$ be an element of order r. In [3, 5], Saltman proved that if K is the function field of a p-adic curve and $(r, p) = 1$, then α becomes trivial over an extension of K of degree r^2. As a motivation for the question we consider in this paper, let us give a brief sketch of his arguments. Let us assume that r is prime and that K contains all rth roots of unity. In fact, one can see that this case implies the general case. We view K as a function field of a regular, integral two-dimensional scheme X, projective over the spectrum of the ring of integers of a p-adic field. Saltman then proved that one can find two functions $f_1, f_2 \in K$ such that α becomes unramified in $L = K(f_1^{1/r}, f_2^{1/r})$ with respect to any rank one discrete valuation ring centered on X. This is sufficient to conclude, using the classical result that the Brauer group of a regular flat proper (relative) curve over the ring of integers of a p-adic field is trivial (cf. [3, 6]).

Let us consider the case of higher dimensions, that is, assume that K is the field of fractions of an n-dimensional variety X, defined over a field k. Following Saltman’s work, given a class $\alpha \in Br K$, one may wonder if there is a bound N depending only on K, such that we can kill the ramification of α with N functions. Our main result (cf. theorem [3]) gives an affirmative answer $N = n^2$ for α of order r under the assumption that K contains all rth roots of unity. Our method also works for elements of $H^m(K, \mathbb{Z}/r)$ and not only for $m = 2$.

Acknowledgements. This work is a continuation of a discussion during the AIM workshop «Deformation theory, patching, quadratic forms, and the Brauer group» (Palo Alto, January 17-21, 2011). The author would like to thank the American Institute of Mathematics, Daniel Krashen and Max Lieblich for the organisation of this workshop and for their generous support.
2. Statement of the main result. Let k be a field of characteristic zero. For L a function field over k containing all r^{th} roots of unity we fix an isomorphism $\mu_r \cong \mathbb{Z}/r$ of $\text{Gal}(\bar{K}/K)$-modules and we write

$$H^m_{nr}(L/k, \mathbb{Z}/r) = \bigcap_{A} \ker[H^m(L, \mathbb{Z}/r) \xrightarrow{\partial_A} H^{m-1}(k_A, \mathbb{Z}/r)],$$

where A runs through all discrete valuation rings of rank one with $k \subset A$ and fraction field L. We denote by k_A the residue field of A and by ∂_A the residue map.

Theorem 1. Let k be a field of characteristic zero. Let X be an integral k-variety of dimension n and let K be its field of fractions. Let r be an integer and assume that K contains all r^{th} roots of unity. Let α be an element of $H^m(K, \mathbb{Z}/r)$. There exist n^2 functions $\{f_i\}_{i=1}^{n^2}$ such that α becomes unramified over $L = K(f_1^{1/r}, \ldots, f_{n^2}^{1/r})$, that is, we have $\alpha_L \in H^m_{nr}(L/k, \mathbb{Z}/r)$.

We first prove two lemmas.

3. Local description. In the case of dimension two, the following statement is due to Saltman (cf. [1] 1.2).

Lemma 2. Let k be an infinite field. Let A be a local ring of a smooth k-variety and let K be its field of fractions. Let r be an integer prime to characteristic of k. Assume that K contains all r^{th} roots of unity and fix an isomorphism $\mu_r \cong \mathbb{Z}/r$ of $\text{Gal}(\bar{K}/K)$-modules. Let α be an element of $H^m(K, \mathbb{Z}/r)$ ramified only at s_1, \ldots, s_h forming a regular subsystem of parameters of the maximal ideal of A. Then

$$\alpha = \alpha_0 + \sum_{\emptyset \neq I \subset \{1, \ldots, h\}} \alpha_I \cup s_I,$$

with $\alpha_0 \in H^m(A, \mathbb{Z}/r)$, $\alpha_I \in H^{m-|I|}(A, \mathbb{Z}/r)$, and $s_I = \cup_{i \in I}(s_i)$, where we denote by (s_i) the class of s_i in $H^1(K, \mathbb{Z}/r) \cong K^*/K^{**}$.

Proof. We proceed by induction on h and m. Assume first $h = 1$. For A a local ring of a smooth k-variety, with field of fractions K and for $Y = \text{Spec } A$, we have an exact sequence due to Bloch and Ogus (cf. [1] 2.2.2)

$$0 \to H^m(A, \mathbb{Z}/r) \to H^m(K, \mathbb{Z}/r) \to \bigoplus_{x \in Y^{(1)}} H^{m-1}(k(x), \mathbb{Z}/r) \to \bigoplus_{x \in Y^{(2)}} H^{m-2}(k(x), \mathbb{Z}/r) \to \ldots$$

(1)

where the maps are induced by the residues. Denote by $K(A/s_1)$ the field of fractions of A/s_1. As α is ramified only at s_1, we see from the sequence (1) that $\partial_{s_1}(\alpha) \in H^{m-1}(K(A/s_1), \mathbb{Z}/r)$ is unramified. Hence, from the sequence (1) for A/s_1, it comes from an element of $H^{m-1}(A/s_1, \mathbb{Z}/r)$. From Levine’s conjecture (generalizing Bloch-Kato’s conjecture proved by Rost and Voevodsky), proved by Kerz [2] 1.2, any element of $H^{m-1}(A/s_1, \mathbb{Z}/r)$ is a sum of cup products of units in A/s_1. In particular, any element of $H^{m-1}(A/s_1, \mathbb{Z}/r)$ lifts to A: there exists an element $\alpha_1 \in H^{m-1}(A, \mathbb{Z}/r)$ such that $\partial_1 = \partial_{s_1}(\alpha)$. Hence $\alpha - \alpha_1 \cup (s_1)$ is unramified, so it comes from $\alpha_0 \in H^m(A, \mathbb{Z}/r)$, by (1) again.
If $m = 1$, we have $\alpha = (s)$ for s a function in K and the result follows from the decomposition $s = u \prod s_i^t$ with $t_i \in \mathbb{Z}$ and $u \in A^*$.

Next, we assume the assertion for $(m - 1, h - 1)$ and $(m, h - 1)$ and we prove it for (m, h). From the sequence $[1]$, $\partial_{s_i}(\alpha) \in H^{m-1}(K(A/s_1), \mathbb{Z}/r)$ is ramified only at s_2, \ldots, s_h where we denote by \bar{s}_i the image of s_i in A/s_1. By induction, $\partial_{s_i}(\alpha) = \bar{\alpha}_1 + \sum_{\emptyset \neq I \subseteq \{2, \ldots, h\}} \bar{\alpha}_I \cup \bar{s}_I$, where $\bar{\alpha}_1 \in H^{m-1}(A/s_1, \mathbb{Z}/r)$, $\bar{\alpha}_I \in H^{m-1-|I|}(A/s_1, \mathbb{Z}/r)$, and $\bar{s}_I = \cup_{i \in I}(\bar{s}_i)$. As before, we deduce from [2] 1.2 that all the $\bar{\alpha}_I$ and $\bar{\alpha}_1$ are sums of cup products of units in A/s_1 and so we can lift them to α_I (resp. to α_1) on A. Now the element $\alpha - (\alpha_1 + \sum_{\emptyset \neq I \subseteq \{2, \ldots, h\}} \alpha_I \cup s_I) \cup (s_1)$ is ramified only at s_2, \ldots, s_h and the lemma follows by induction.

4. Divisor decomposition.

Lemma 3. Let k be a field of characteristic zero and let X be a smooth projective k-variety of dimension n. Let D be a divisor on X. There exists a sequence of blowing-ups $f : X' \to X$ such that the support of the total transform f^*D is a simple normal crossing divisor which can be expressed a union of n regular (but not necessarily connected) divisors of X'.

Proof. By Hironaka, we may assume that $\text{Supp}(D)$ is a simple normal crossing divisor, which means that any irreducible component of $\text{Supp}(D)$ is smooth and that the fiber product over X of any c components of $\text{Supp}(D)$ is smooth and of codimension c. Let $G = (V, E)$ be the dual graph of D:

- the vertices of V correspond to irreducible components D_1, \ldots, D_N of D
- the edge (D_i, D_j) is in E if the intersection $D_i \cap D_j$ is nonempty.

We say that we blow-up the edge (D_i, D_j) if we change X by the blow-up of the intersection $D_i \cap D_j$ (with reduced structure) and we change G by the dual graph of the total transform of D, i.e. we add a vertex and corresponding edges. We write again $G = (V, E)$ for the modified graph.

We will show that after a finite sequence of blowing-ups $f : X' \to X$ of some edges we may color the vertices of G in n colors so that for any edge $AB \in E$ the vertices A and B are of different colors. Then $\text{Supp}(f^*D)$ is a simple normal crossing divisor and we have $\text{Supp}(f^*D) = \bigcup_{i=1}^n F_i$ where F_i is the (disjoint) union of components of f^*D such that the corresponding vertex is of the i^{th} color. Hence F_i are regular and the lemma follows.

If $n = 2$ we may assume, after blowing-ups of some edges, that any cycle in G has even number of edges, which is sufficient to conclude.

Let us now assume that $n \geq 3$. We proceed by induction on the number N of irreducible components of D. If $N \leq n$ the statement is clear. Assume it holds for N. Let D be a divisor with $N + 1$ components. By the induction hypothesis, after
blowing-ups of some edges, we may assume that we may color all but the vertex
D_{N+1} of G in n colors as desired. We have $\text{Supp}(D) = \bigcup_{i=1}^{n} F_i \cup D_{N+1}$ where F_i
is the union of components of D of the i^{th} color. If D_{N+1} doesn’t intersect F_i
for some i we color D_{N+1} in i^{th} color. Hence we may assume that all the intersections
$D_{N+1} \cap F_i$ are nonempty. By the same reason, we may assume that the intersection
$F_2 \cap F_3$ is nonempty. On the other hand, note that the intersection $\bigcap_i F_i \cap D_{N+1}$ is
empty as $\text{Supp}(D)$ is a simple normal crossing divisor. We proceed by the following
algorithm:

1. We first blow up all the edges $D_i D_{N+1}$ for all the components D_j of F_1. Let us
denote E_i the union of all the exceptional divisors. This union is disjoint as the
components of F_1 do not intersect. Note that $E_1 \cap F_2 \cap \ldots \cap F_n = \emptyset$. Otherwise,
we get a point in the intersection $\bigcap_i F_i \cap D_{N+1}$ by projection. Moreover, there
are no more edges between (the components of) F_1 and D_{N+1} as the strict transforms
of the corresponding divisors do not intersect.

2. Next, we blow up all the edges between F_2 and F_3 and we call E_2 the (disjoint)
union of all new exceptional divisors. Again, we have no more edges between
F_2 and F_3 and also $E_2 \cap E_1 \cap F_3 \cap \ldots \cap F_n = \emptyset$ (or $E_2 \cap E_1$ is empty if $n = 3$).

3. If $n = 3$ we have the following picture:

Here and in what follows the punctured line (for example, $F_2 F_3$) means that
there are no edges between components of corresponding groups (e.g. no edges
between elements of $F_2 \cup F_3$).

We color (all the vertices from) F_1 and D_{N+1} in red, E_1 and E_2 in green and
F_2 and F_3 in blue and this terminates the algorithm.

4. Assume that $n \geq 4$. We proceed until we get the group of exceptional divisors
E_{n-1} and then we go to step 6. Suppose $3 \leq i \leq n - 1$ and we constructed
E_{i-2} and E_{i-1} but no E_i. Suppose there are some edges between E_{i-2} and
F_{i+1}, otherwise we go to step 5. We blow up all these edges and we call E_i
the (disjoint) union of all new exceptional divisors. We get no more edges
between E_{i-2} and F_{i+1} and also $E_i \cap E_{i-1} \cap F_{i+2} \cap \ldots \cap F_n = \emptyset$.

5. If there are no edges between E_{i-2} and F_{i+1}, we have the following picture:
We color F_1 and D_{N+1} in the first color, F_2 and F_3 in the second color, E_1 and F_4 in the third, \ldots, E_{i-2} and F_{i+1} in the i^{th}-color, E_{i-1} in color $i+1$, and, finally, $F_{i+2}, \ldots F_n$ in colors $i+2, \ldots n$ respectively.

6. At this step, we have the following picture:

![Diagram]

Moreover, $E_{n-1} \cap E_{n-2} = \emptyset$ by construction. We color F_1 and D_{N+1} in the first color, F_2 and F_3 in the second color, E_1 and F_4 in the third, \ldots, E_{n-3} and F_n in color $n-1$, E_{n-1} and E_{n-2} in color n. This terminates the algorithm.

5. Proof of theorem [1] By resolution of singularities, we may assume that X is smooth. By lemma [3] we may assume that the ramification divisor $D = \text{ram}(\alpha)$ is a simple normal crossing divisor whose support is a union of n regular divisors: $\text{Supp } D = \bigcup_{i=1}^n D_i$.

For two divisors G and G' on X, with $G = \sum_{i=1}^q G_i$ where the G_i are irreducible divisors, we say that G' is in general position with G if the support of G' contains no generic point of any intersection $\bigcap_{i \in I} G_i$ for $I \subset \{1, \ldots, q\}$.

By a semilocal argument, we successively choose functions $f^j_i \in K$, $j = 1, \ldots, n$, then $f^j_i \in K$, $j = 1, \ldots, n$, and then $f^j_i \in K$, $j = 1, \ldots, n$, such that

$$\text{div}_{X}(f^j_i) = D_i + E^j_i$$

where E^j_i are in general position with $D \cup \bigcup_{j' < j} \text{Supp}(E^j_i)$.

We claim that with this choice of n^2 functions α_L is unramified. Let v be a discrete valuation on L and let $x \in X$ be the point where the discrete valuation ring R of v is centered. We may assume that $x \in \text{Supp } D$, otherwise α is already unramified at v. From the construction, for any i, $D \cap \bigcap_{j=1}^n E^j_i = \emptyset$. Hence for any $1 \leq i \leq n$ we can find j_i such that $x \notin E^j_i$, which means that the corresponding local parameter s_i of D_i at x is an r^{th} power in $K((f^j_i)^{1/r})$. Now the theorem follows from lemma [2] as any s_I from the lemma is a cup product of r^{th} powers on L. \qed
Remark 4. The bound n^2 is not sharp. For example, for $n = 3$ one can kill all the ramification with four functions. Let us write $\text{ram}(\alpha) = D_1 \cup D_2 \cup D_3$ as in lemma 3. As in the proof of the theorem above, we take $f_i \in K$, $i = 1, \ldots, 4$, such that

$$\text{div}(f_1) = D_1 + D_2 + D_3 + E_1;$$
$$\text{div}(f_2) = D_1 + D_2 + E_2;$$
$$\text{div}(f_3) = D_2 + D_3 + E_3;$$
$$\text{div}(f_4) = D_1 + 2D_2 + D_3 + E_4.$$

and each E_i is in general position with $\text{ram}(\alpha) \cup \bigcup_{i' < i} \text{Supp}(E_{i'})$. Let x be a center of a valuation v on $L = K(f_1^{1/r})_{i = 1, \ldots, 4}$. We may assume that $x \in \text{ram}(\alpha)$. It is sufficient to see that if $x \in D_i$ then a local parameter of D_i at x can be expressed as a product of powers of the functions f_i.

1. If $x \in X^{(1)}$ then x lies on only one component D_i, which is thus defined by f_1.

2. If $x \in X^{(2)}$ and if x lies on two components D_i and D_j, then $\frac{f_i}{f_j}$ defines D_1, $\frac{f_i f_j}{f_k}$ defines D_2, $\frac{f_i f_j}{f_k}$ defines D_3. If x lies on only one component D_i, then, by construction, $x \notin E_{i_1} \cup E_{i_2}$ for at least two indexes $1 \leq i_1 < i_2 \leq 3$. By construction, D_i is then defined at x by at least one among the functions f_{i_1} and f_{i_2}.

3. Suppose that x is a closed point of X. If $x \in D_1 \cap D_2 \cap D_3$, we use the same formulas as in the previous case. Next, suppose that x lies on only two components of $\text{ram}(\alpha)$. Consider the case $x \in D_1 \cap D_2$, the other cases are similar. By construction, x lies on at most one component among E_1, E_2, E_3. Hence we see that if $x \notin E_2 \cup E_3$ (resp. $x \notin E_1 \cup E_3$, resp. $x \notin E_1 \cup E_2$) then D_1 is defined by $\frac{f_i}{f_j}$ and D_2 is defined by f_3 (resp. by $\frac{f_i}{f_3}$ and by f_3, resp. by $\frac{f_i}{f_j}$ and by $\frac{f_i}{f_j}$).

The last case is when x lies on only one component of $\text{ram}(\alpha)$. Consider the case $x \in D_1$, the other cases are similar. Then $x \notin E_1 \cap E_2 \cap E_4$ by construction. Then D_1 is defined by f_1 (resp. by f_2, f_4) if x does not lie on E_1 (resp. on E_2, E_4).

Remark 5. By the same arguments as in the previous remark, if r is prime to 2 and 3 and if $n = 3$, one can kill all the ramification with three functions f_1, f_2, f_3, such that

$$\text{div}(f_1) = D_1 + 3D_2 + 3D_3 + E_1;$$
$$\text{div}(f_2) = D_1 + 2D_2 + D_3 + E_2;$$
$$\text{div}(f_3) = D_1 + D_2 + 2D_3 + E_3.$$

and each E_i is in general position with $\text{ram}(\alpha) \cup \bigcup_{i' < i} \text{Supp}(E_{i'})$.

6
References

[1] J.-L. Colliot-Thélène, R.T. Hoobler, B. Kahn, The Bloch-Ogus-Gabber theorem, Algebraic K-theory (Toronto, ON, 1996), 31–94, Fields Inst. Commun., 16, Amer. Math. Soc., Providence, RI, 1997.

[2] M. Kerz, The Gersten conjecture for Milnor K-theory, Invent. math. 175 (2009), no.1, 1–33.

[3] S. Lichtenbaum, Duality theorems for curves over p-adic fields, Invent. Math. 7 1969, 120–136.

[4] D.J. Saltman, Division algebras over p-adic curves, J. Ramanujan Math. Soc. 12 (1997), no. 1, 25–47.

[5] D.J. Saltman, Correction to: "Division algebras over p-adic curves", J. Ramanujan Math. Soc. 13 (1998), no. 2, 125–129.

[6] J. Tate, WC-groups over p-adic fields, Séminaire Bourbaki 156, 1957.