Relations Between Performance Enhancement Drugs and Health-defining Parameters During the Competition Preparation Period of World-class Bodybuilders

Magdalena Wiacek (m.wiacek@uthrad.pl)
Kazimierz Pułaski University of Technology and Humanities in Radom

Bartosz Trabka
PROFI FITNESS SCHOOL

Leszek Markuszewski
Kazimierz Pułaski University of Technology and Humanities in Radom

Ruszard Tomasiuk
Kazimierz Pułaski University of Technology and Humanities in Radom

Igor Z. Zubrzycki
Kazimierz Pułaski University of Technology and Humanities in Radom

Research Article

Keywords: Fluctuations, performance enhancement drugs, health-defining parameters, competition preparation, world-class bodybuilders

DOI: https://doi.org/10.21203/rs.3.rs-779161/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Fluctuations in biochemical parameters defining cardiovascular, liver and muscoskeletal health were analyzed to evaluate the health status of world class bodybuilders using performance enhancement drugs such as anabolic-androgenic steroids (AAS) [testosterone propionate, drostanolone propionate (Masteron), trenbolone acetate (Finajet), oxandrolone (Anavar), stanozolol (Winstrol) and boldenone undecylenate], human growth hormone (HGH) and “fat-burning drugs” [triiodothyronine (t3), clenbuterol, mesterolone (Proviron), tamoxifen citrate (Nolvadex) and 2,4-Dinitrophenol (2,4-DNP)], and a 6-month preparation period. Changes in serum levels of total cholesterol (TC), triglyceride (TG), high-density lipoprotein (HDL-C), low-density lipoprotein (LDL-C), aspartate aminotransferase (AST), alanine transaminase (ALT), and bilirubin, as well as body mass (BM) and total body fat percentage (BF%), were measured as a function of the competition preparation period. The study shows a continuous increase in BM, accompanied by a decrease in BF% to the physiologically optimal level. TC levels varied significantly within the desired concentration range (TC < 5.18 mmol / L), and TG fluctuated between the ranges of concentrations borderline high (1.69 mmol / L ≤ TG < 2.26 mmol / L) and high (2.26 mmol / L ≤ TG < 5.65 mmol / L) concentration ranges. HDL-C levels remained within the low range (TG < 1.03 mmol / L), whereas LDL-C fluctuated across all physiologically important ranges, that is, near-optimal / above optimal (2.59 mmol / L ≤ LDL-C < 3.34 mmol / L), borderline high (3.35 mmol / L ≤ LDL-C < 4.11 mmol / L), and high (4.14 mmol / L ≤ LDL-C < 4.91 mmol / L). AST and ALT concentrations remained within the high-concentration region, i.e., > 0.58 mkat / L and > 0.91 mkat / L. Bilirubin concentration fluctuated within the desirable limits (3.42 mmol / L ≤ Bilirubin < 2.53 mmol / L), and urea concentration were between desirable (3.2 mmol / L ≤ Urea < 7.9 mmol / L) and high values (Urea ≥ 7.9 mmol / L). Although most of the changes are within physiologically acceptable ranges, there are evident disturbances in LDL-C and Urea levels induced by performance-enhancing drugs. To our knowledge, this study is among the few, if not the only, that discloses the physiological changes associated with doping-assisted preparations for an international bodybuilding contest.

Introduction

A PubMed search for sports doping reports revealed ~ 3000 documents, nearly half of which focused on anabolic androgenic steroids (AAS). AAS are derivatives of the human hormone testosterone and are responsible for stimulating cellular protein biosynthesis. Their effectiveness depends on the number of metabolically available nutrients and genetic control of muscle growth. Despite its illegality and possible health-related risks, AAS helps individuals achieve increased lean body mass and strength for various recreational and professional sports. In particular, most competitors, besides Olympic and well-paid professionals, use AAS on a trial-and-error basis.

To date, some scientific reports suggest that AAS are responsible for adverse health effects; however, the previous literature review did not confirm this. Moreover, Hargens et al., in a study on the effects of AAS on strength-training athletes, pointed to the practical shortcomings of many study methods,
indicating that most focus on athletes using only one or two types of AAS. While such a method is justified from a clinical perspective, it has shortcomings from practical viewpoints and is irrelevant in professional sports practice.

We previously showed that competitive bodybuilders experiment with various AAS, which, in their judgment, allow them to obtain better musculature and vascularization and concomitantly decrease their level of adipose tissue to a physiological minimum. Thus, a simplistic approach does not provide an accurate picture of the influence of AAS on human physiology in contemporary sports, especially in sports such as bodybuilding, weightlifting, and wrestling.

This study is an explicit analysis of the health-defining parameters of world-class bodybuilders as a function of self-administration doping, including AAS [testosterone propionate, drostanolone propionate (Masteron), trenbolone acetate, oxandrolone (Anavar), stanozolol (Winstrol), and boldenone undecylenate], human growth hormone (HGH) and ‘fat burning drugs’ [triiodothyronine (t3), clenbuterol, mester olone (Proviron), tamoxifen citrate (Nolvadex), and 2,4-Dinitrophenol (2,4-DNP)], performed on a group of eight top amateur/professional bodybuilders during the competition preparation period. It is also an attempt to establish the extent to which AAS are used in competitive sports. Because of the lack of readily available scientific reports on the topic, most use YouTube and other unsaturated Internet sources to learn about the topic. Furthermore, some scientific reports also provide misleading information on the physiological implications of AAS without specific evidence. Some also duplicate specific health-related comments without proper substantiation of the given statements. Our study stresses that the data presented in this report should not be associated with any particular bodybuilding organization or sports event. To our knowledge, this study is the first to analyze the competitive use of sports doping and its relationship to basic physiological parameters that define the health of competitors in a real-life scenario.

Methods

The study was carried out by gaining access to competitor notes and medical examination results encompassing the time, amount, and brand of self-administered specific drugs used during 6 months of preparation for international competition.

Study Subjects. All experiments and methods were performed in accordance with the relevant guidelines and regulations. All experimental protocols were approved by the Medical Chamber Licensing Committee, Gdansk, Poland: KB-20/14. Informed consent was obtained from all subjects. The study was conducted with the funds of the participants and the authors. The study was carried out in a group (N = 8) of top European male bodybuilders from different countries and nationalities in Europe who used sports doping drugs during the preparation period for the contest. Due to the extreme difficulty in collecting the data, the presented data was collected with the underlying objective of studying a group of at least five competitors for a comparable competition preparation period. The ages of the study subjects ranged from 30 to 35 years (M = 32.49, SD = 1.47). Competitors' BM was between 97.2 and 110.4 (M = 104.4, SD
Doping information is presented as ranges (minimum-maximum) of specific drug amounts and is shown in Table 1.

An analysis of the competitors’ notes exposed a specific diet for the competition preparation period consisting of specific protein-fat-carbohydrate ratios. Thus, until the fifth month of preparation, the dietary regime consisted of six meals between 7:00 and 23:00 containing ~40% protein, ~20% fat, and ~40% carbohydrates. Competitors consumed 3.8–4.2 g of protein/kg of body mass/day, 1–1.2 g of fat/kg of body mass/day, and 3–4 g of carbs/day/kg of body mass. This ratio provided ~200% Cal of the calculated basal metabolic rate (BMR) for each competitor. During the final 5 and 6 months of the preparation period, carbohydrate and fat levels gradually decreased to zero, decreasing total caloric consumption to ~150% and ~100% of BMR, respectively.

Study protocol: In this study, the following biochemical parameters were analyzed: 1) cardiovascular health (serum cholesterol levels [total cholesterol (TC), triglyceride (TG), high-density lipoprotein (HDL-C) and low-density lipoprotein (LDL-C)]); 2) liver health (aspartate aminotransferase (AST), alanine transaminase (ALT), and bilirubin levels; 3) bone mineral density (BMD); and 4) total body fat (tissue) (BF%).

To avoid direct contact between study competitors and the research team, all subjects were asked to perform a blood biochemical analysis in an accredited laboratory. All laboratory measurements were made in the morning hours after a fast of 12 hours (no food or drink, except water). The analytical procedure provided in the following is derived by the analysis of laboratory-accredited protocols.

4.5 ml of blood was collected in Mint Green Top (Lithium Heparin Gel) and centrifuged within 2 hours from sample collection for 10 minutes at 2800 rpm. Plasma TC level was measured enzymatically in a series of conjugated reactions that hydrolyze cholesterol esters and oxidize the 3-OH group in cholesterol. The product of these reactions, 4-(p-benzoquinone-monoimino)-phenazone, is quantified by measuring the absorbance at $\lambda = 500$ nm. HDL-C cholesterol levels were analyzed using four reaction procedures, resulting in quinone-imine dye, whose concentration is directly proportional to HDL-C levels and measured at $\lambda = 600$ nm. Serum TG levels are measured enzymatically via a series of coupled reactions in which TGs are hydrolyzed to produce glycerol. Glycerol is oxidized to 4-(p-benzoquinone-monoimino)-phenazone, whose absorbance is measured at 500 nm. LDL-C levels were calculated using the following formula: LDL-C = TC - HDL-C-(TG/5). AST and ALT activities were assessed by means of the kinetics of a set of enzymatic reactions in which the final step (i.e., oxidation of NADH to NAD$^+$), directly proportional to the activity of ALT or AST, can be measured colorimetrically at $\lambda = 340$ nm.

Standing height was measured using a stadiometer with a fixed vertical backboard and an adjustable headpiece with an accuracy of 0.1 cm. Body mass was determined using a digital weight with an accuracy of 0.1 kg.

For the analysis of bone mineral density (BMD) and body fat percentage (BF%), dual-energy X-ray absorptiometry (DXA), a standard for clinical diagnosis, was used. All BMD and BF% measurements
were performed using the Lunar Prodigy Primo GE Healthcare.

Statistical Analysis: The normality of the distribution of the samples was verified using the Shapiro-Wilk test\(^{32}\). The equality variances for the response variables as a function of sampling were analyzed using Level's test\(^{33}\). In case the Level's test showed variance heterogeneity across all measured parameters, Welch's procedure (Welch ANOVA) was used for a time-dependent analysis\(^{34,35}\). Post hoc analysis was performed using the Games-Howell test for multiple pairwise comparisons with unequal variances\(^{36}\). The null hypothesis for the statistical tests was verified at \(P < 0.05\).

Results

Descriptive statistics including mean, standard deviation (SD), median, interquartile range (IQR), minimum, and maximum values of study parameters are compiled in Table 2.
Table 2
Changes in the health-defining parameters of world-class bodybuilders as a function of the preparation period for competition. *Triglyceride levels – TG (mmol / L); Total Cholesterol – TC (mmol / L); High-density Lipoprotein levels – HDL-C (mmol / L); Low-density Lipoprotein levels – LDL-C (mmol / L); Aspartate Aminotransferase – AST (mkat / L); Alanine Transaminase – ALT (mkat / L); Bilirubin (mmol / L); Urea (mmol / L); Total Body Fat Percentage – BF%; Bone Mineral Density – BMD (g / cm³).*

Descriptive statistics	Month: 1 (N = 8)	Month: 2 (N = 8)	Month: 3 (N = 8)	Month: 4 (N = 8)	Month: 5 (N = 8)	Month: 6 (N = 8)
TC	min 3.83	4.37	3.68	3.45	4.16	4.51
	max 4.53	5.03	4.15	3.77	4.5	5.54
	Mean (SD) 4.15	(0.22)	4.64	(0.26)	3.87	(0.17)
	Median (IQR) 4.13	(4.01, 4.29)	4.60	(4.42, 4.84)	3.80	(3.77, 3.99)
TG	min 2.11	2.07	2.08	1.9	2.02	2.06
	max 2.42	2.44	2.28	2.16	2.27	2.38
	Mean (SD) 2.22	(0.11)	2.28	(0.16)	2.20	(0.06)
	Median (IQR) 2.18	(2.13, 2.26)	2.33	(2.12, 2.42)	2.19	(2.18, 2.24)
HDL	min 0.49	0.55	0.58	0.53	0.59	0.56
	max 0.56	0.65	0.7	0.62	0.7	0.64
	Mean (SD) 0.52	(0.02)	0.60	(0.03)	0.63	(0.04)
	Median (IQR) 0.52	(0.51, 0.53)	0.60	(0.60, 0.62)	0.62	(0.61, 0.65)
LDL	min 3.39	3.62	2.95	2.77	3.47	4.08
	max 3.74	4.02	3.7	3.46	3.85	4.95
	Mean (SD) 3.59	(0.12)	3.88	(0.15)	3.37	(0.22)
	Median (IQR) 3.64	(3.52, 3.66)	3.93	(3.77, 4.00)	3.41	(3.31, 3.47)
AST	min 1.38	0.97	1.44	1.7	0.8	1.15
	max 1.73	1.09	1.6	1.9	0.91	1.39
Descriptive statistics	Month: 1 (N = 8)	Month: 2 (N = 8)	Month: 3 (N = 8)	Month: 4 (N = 8)	Month: 5 (N = 8)	Month: 6 (N = 8)
------------------------	------------------	------------------	------------------	------------------	------------------	------------------
Mean (SD)	1.60 (0.12)	1.04 (0.04)	1.50 (0.06)	1.84 (0.07)	0.88 (0.04)	1.27 (0.08)
Median (IQR)	1.59 (1.55, 1.71)	1.05 (1.03, 1.05)	1.50 (1.46, 1.53)	1.85 (1.83, 1.89)	0.88 (0.86, 0.90)	1.27 (1.21, 1.32)
ALT	min 1.82	1.19	2.04	2.09	1.12	1.44
	max 2.1	1.39	2.35	2.41	1.3	1.68
Mean (SD)	1.99 (0.09)	1.28 (0.07)	2.18 (0.10)	2.26 (0.11)	1.21 (0.06)	1.58 (0.09)
Median (IQR)	2.00 (1.94, 2.04)	1.27 (1.23, 1.31)	2.15 (2.12, 2.25)	2.27 (2.18, 2.33)	1.21 (1.18, 1.24)	1.60 (1.51, 1.66)
Bilirubin	min 6.27	6.2	6.83	5.56	7.52	7.07
	max 7.49	7.33	7.75	6.63	9.24	8.26
Mean (SD)	6.83 (0.44)	6.92 (0.37)	7.29 (0.39)	6.14 (0.40)	8.29 (0.61)	7.84 (0.45)
Median (IQR)	6.75 (6.55, 7.18)	6.96 (6.81, 7.16)	7.30 (6.90, 7.66)	6.20 (5.95, 6.40)	8.11 (7.94, 8.70)	8.07 (7.48, 8.13)
Urea	min 7.18	6.47	9	9.6	4.85	4.43
	max 8.94	7.46	10.29	10.66	5.82	4.85
Mean (SD)	8.29 (0.57)	6.99 (0.36)	9.52 (0.40)	10.02 (0.35)	5.40 (0.31)	4.61 (0.14)
Median (IQR)	8.40 (8.11, 8.59)	7.08 (6.75, 7.22)	9.39 (9.30, 9.68)	10.07 (9.75, 10.16)	5.42 (5.21, 5.63)	4.62 (4.49, 4.67)
BMD	min 1.14	1.28	1.28	1.32	1.38	1.35
	max 1.46	1.51	1.57	1.52	1.5	1.5
Mean (SD)	1.34 (0.11)	1.40 (0.07)	1.44 (0.09)	1.44 (0.07)	1.43 (0.05)	1.44 (0.05)
Median (IQR)	1.38 (1.31, 1.41)	1.40 (1.37, 1.44)	1.44 (1.39, 1.49)	1.44 (1.41, 1.49)	1.42 (1.39, 1.45)	1.44 (1.42, 1.48)
BF%	min 6.81	6.10	5.72	4.81	4.07	4.31
	max 8.39	7.35	6.82	6.28	5.63	5.79
Descriptive Statistics

	Month: 1 (N = 8)	Month: 2 (N = 8)	Month: 3 (N = 8)	Month: 4 (N = 8)	Month: 5 (N = 8)	Month: 6 (N = 8)
Mean (SD)	7.62 (0.48)	6.71 (0.44)	6.50 (0.37)	5.83 (0.44)	4.60 (0.46)	4.77 (0.45)
Median (IQR)	7.49 (7.45, 7.94)	6.56 (6.48, 7.02)	6.59 (6.41, 6.77)	5.94 (5.85, 5.99)	4.48 (4.37, 4.68)	4.70 (4.52, 4.82)

Changes in body mass (BM) and percentage of total body fat (BF%): BM continuously increases during the training period from a mean value of 105 kg to 109 kg (Fig. 1A). Simultaneously, BF% decreases from the percentage that defines athletes (5 ≤ BF% < 11) to the optimal level of body fat (BF% < 5) \(^{37}\) (Fig. 1B). Since discussing monthly changes in bone mineral density (BMD) is meaningless, we scrutinize only the mean BMD values for the first and final months of the competition preparation period (Table 2). Thus, in the first month, the BMD is equal to 1.34 ± 0.11 g/cm², whereas in the last it equals 1.44 ± 0.5 g/cm².

Changes in Serum Total Cholesterol: Serum TC levels vary significantly within the desirable range (Fig. 2A, Table 2), reaching a minimum in the fourth month and a maximum in the sixth month. In the sixth month of the preparation period, only three of the eight competitors were found to have borderline high levels of TC (5.18 mmol/L ≤ TC < 6.19 mmol/L) \(^{38}\). In contrast, the values for five competitors fell within the desirable range (TC < 5.18 mmol/L) \(^{38}\).

Changes in serum triglycerides: Serum TG concentration fluctuates on the border of borderline high (1.69 mmol/L ≤ TG < 2.26 mmol/L) and high values (2.26 ≤ TG < 5.65) \(^{38}\) (Fig. 2B, Table 2).

Changes in Serum High-density lipoprotein cholesterol: HDL-C levels vary significantly during the preparation period (Fig. 2C, Table 2), with three distinct motifs, that is, an increase during months one to two and four to five and a decrease between months five and six. Although HDL-C levels fluctuate substantially, their values remain within the low range concentrations (TG < 1.03 mmol/L) \(^{38}\).

Changes in serum low-density lipoprotein cholesterol: LDL-C levels fluctuate within the near-optimal/above optimal (2.59 mmol/L ≤ LDL-C < 3.34 mmol/L), borderline high (3.35 mmol/L ≤ LDL-C < 4.11 mmol/L), and high (4.14 mmol/L ≤ LDL-C < 4.91 mmol/L) \(^{38}\) levels (Fig. 2D, Table 2). It attains a minimum in the fourth month and a maximum in the sixth month of the competition preparation period.

Changes in Aspartate Aminotransferase: AST levels fluctuate during the preparation period and are in the high concentration region (AST > 0.58 mkat/L) \(^{39}\), reaching a minimum in the second and fifth months of the preparation period (Fig. 3A, Table 2). AST activity decreases significantly during the first to second and fourth to fifth months and increases during the second to fourth and fifth to sixth months.
Changes in Alanine Aminotransferase: The pattern of changes in ALT is analogous, although more pronounced, to that observed for AST. ALT levels fluctuate during the competition preparation period, adopting values in the high concentration region (AST > 0.91 mkat / L)\(^{39}\), reaching a minimum in the second and sixth months (Fig. 3B, Table 2). There is a substantial decrease in ALT activity during the 1st to 2nd and 4th to 5th months interspaced with an increase during the 2nd to 4th and 5th to 6th months of the contest preparation period.

Changes in Bilirubin: Bilirubin concentration fluctuates significantly during the entire preparation period, adopting values within the desirable range (3.42 mmol / L \(\leq\) Bilirubin < 2.53 mmol / L)\(^{40}\) (Fig. 3C, Table 2). Bilirubin concentration reaches a minimum in the fourth month and a maximum throughout the fifth and sixth months of the preparation period. A minuscule increase in bilirubin concentration spanning months one to three is followed by a substantial decrease between the third and fourth months and a considerable increase between the fourth and fifth months.

Changes in Urea Concentration: The concentration of urea changes significantly during all competition preparation months from the desirable (3.2 mmol / L \(\leq\) Urea < 7.9 mmol / L) to high values (Urea \(\geq\) 7.9 mmol / L)\(^{40}\), reaching a maximum in the fourth month and a minimum during the fifth and sixth months (Fig. 3D, Table 2).

Discussion

To our knowledge, this is the only report that discloses the extent of doping used in preparation for a bodybuilding competition. Although a general overview of the results presented does not reveal obvious changes that lead to health-related problems, they indicate possible homeostatic disturbances.

The study shows that self-administration of AAS increases serum testosterone levels to concentrations greater than 52.05 nm / L, that is, double that of the analogous 'normal' male age group (20.5 nm/L)\(^{41-44}\).

Administration of AAS administration leads to an increase in BMD and confirms previous studies that revealed similar findings, ie, an increase in BMD in response to testosterone administration\(^{45,46}\). Furthermore, the reported values are significantly higher than those observed for similarly aged European men\(^{47}\). BF% decreases in response to drug administration.

An analysis of the literature on testosterone propionate intake reveals that it may cause mild myocyte hypertrophy of the heart muscle\(^{16}\). In addition, it may be accompanied by myocardial dysfunction and accelerated coronary atherosclerosis\(^{17}\). This study method cannot confirm or disprove these observations. However, the cross-correlation of our observations with the correlations between coronary heart disease and serum lipid levels\(^{48}\) indicates that the development of such a medical condition is probable. We cannot confirm the previous observations that indicate Winstrol\(^{21}\), Anavar and other AAS\(^{49,50}\) as potent hepatotoxic agents\(^{21}\). Although the observed changes in AST, ALT, and bilirubin levels may
indicate a hepatotoxic response, the observed elevation of AST and ALT may also be the product of micromuscular injuries51,52 occurring during heavy-load training. Since, at the time of the survey, all competitors had been doping for more than 5 years, the expected changes in AST, ALT, and bilirubin levels should be greater in magnitude and predictably fall into the adversity brackets defined by the ‘Common Toxicity Criteria for Adverse Events’53, i.e. between 1×ULN and 1.5×ULN to 3×ULN to 8×ULN, for AST and ALT, respectively.

We cannot confirm or disprove health-related adversity54,55 of boldenone undecylenate, a veterinary steroid known for its propensity to increase body mass and appetite56 as well as reproductive function54. Furthermore, this study method does not confirm the adverse correlations between T3 and TC, HDL-C, and LDL-C concentrations57–59. Although indirectly, through a decrease in body fat tissue, we confirmed the previous study indicating an increase in lipid metabolism22 attributed to T3 intake. The study also confirms previously reported alterations in AST and ALT levels60 as a function of T3 administration.

An animal model study shows that clenbuterol decreases TC levels and leads to fluctuations in TG levels61. When administered orally, clenbuterol can also affect kidney62 and liver23 functions. Although our study does not confirm these observations, there are noticeable fluctuations in serum lipid levels, indicating impairment of lipid metabolism. Furthermore, we were unable to confirm the reported correlations between AST, ALT, and bilirubin levels in response to oral administration of clenbuterol23,24. However, this report confirms a moderate increase in AST and ALT levels in response to AAS intake, described by previously by Abdulredha23. In particular, the magnitude of the increase in AST and ALT levels may be masked by the physiological properties of clenbuterol, decreasing AST, ALT and bilirubin levels24.

This study indirectly confirmed reports indicating Proviron as a prominent body mass increasing agent25,63.

Although, Nolvadex, a hepatotoxic64 selective estrogen receptor modulator65, is a potent drug against gynecomastia26, this study did not confirm Nolvadex-induced hyperlipidemia66 and hepatotoxicity67. Most likely, it is due to the action of clenbuterol, resulting in decreased levels of hepatotoxicity markers.

However, this report confirms previous findings that HGH increases lean muscle mass and decreases body fat tissue by approximately 2 kg and 0.9 kg27, respectively, in a few weeks. Despite this fact, we could not confirm reports indicating that HGH use/abuse might cause health problems68–70.

A previous study reported that extreme abuse of 2,4-DNP by bodybuilders for fat burning purposes resulted in death when taken in excessive amounts, that is, 3–46 mg of 2,4-DNP per kg of body weight per day71,72. This report shows that competitive bodybuilders consume, on average, between 0.9 mg and 1.9 mg of 2,4-DNP per day/kg of body mass, which amounts to \(\sim 40\% \) of the lowest lethal dose73.
Conclusions

Some reports indicated that AAS and other sports-doping drugs, such as HGH, clenbuterol, tamoxifen-citrate and 2,4-DNP, are serious health risk factors. However, contrary to this study, they did not reflect real-life scenarios, ie, the administration of sports doping drugs during the preparation of competition. The results presented in this report neither unambiguously confirm nor disprove the observation indicating the detrimental influence of performance enhancement on human health. Although there are evident statistically significant changes in LDL-C and Urea levels induced by performance-enhancing drugs, this study showed that most changes are within physiologically acceptable ranges. However, to uncover the relationships between competitive sport, AAS use and health, more studies reporting ‘field-related’ data are required.

Declarations

Authors’ Contributions

Significant manuscript writers: IZZ and MW. Concept and design: IZZ, MW, BT, MG, LM, RT. Data Analysis and Interpretation: IZZ and MW. Statistical expertise: IZZ. All authors read and approved the final manuscript.

References

1. Celotti, F. & Negri Cesi, P. Anabolic steroids: a review of their effects on the muscles, of their possible mechanisms of action and of their use in athletics. *The Journal of steroid biochemistry and molecular biology* **43**, 469-477, doi:10.1016/0960-0760(92)90085-w (1992).
2. Phillips, S. M. & Van Loon, L. J. Dietary protein for athletes: from requirements to optimum adaptation. *J Sports Sci* **29 Suppl 1**, S29-38, doi:10.1080/02640414.2011.619204 (2011).
3. Tipton, K. D. & Wolfe, R. R. Exercise, protein metabolism, and muscle growth. *International journal of sport nutrition and exercise metabolism* **11**, 109-132, doi:10.1123/ijsnem.11.1.109 (2001).
4. Brand-Saberi, B. Genetic and epigenetic control of skeletal muscle development. *Ann Anat* **187**, 199-207, doi:10.1016/j.aanat.2004.12.018 (2005).
5. Simon, P., Striegel, H., Aust, F., Dietz, K. & Ulrich, R. Doping in fitness sports: estimated number of unreported cases and individual probability of doping. *Addiction* **101**, 1640-1644, doi:10.1111/j.1360-0443.2006.01568.x (2006).
6. Havnes, I. A., Jørstad, M. L. & Wisløff, C. Anabolic-androgenic steroid users receiving health-related information; health problems, motivations to quit and treatment desires. *Substance abuse treatment, prevention, and policy* **14**, 20-20, doi:10.1186/s13011-019-0206-5 (2019).
7. Win-May, M. & Mya-Tu, M. The effect of anabolic steroids on physical fitness. *The Journal of sports medicine and physical fitness* **15**, 266-271 (1975).
8. Hoffman, J. R. & Ratamess, N. A. Medical issues associated with anabolic steroid use: are they exaggerated? *J Sports Sci Med* **5**, 182-193 (2006).

9. Kienbacher, G., Maurer-Ertl, W., Glehr, M., Feierl, G. & Leithner, A. [A case of a tumorsimulating expansion caused by anabolic androgen steroids in body building]. *Sportverletz Sportschaden* **21**, 195-198, doi:10.1055/s-2007-963708 (2007).

10. Voelcker, V., Sticherling, M. & Bauerschmitz, J. Severe ulcerated 'bodybuilding acne' caused by anabolic steroid use and exacerbated by isotretinoin. *International wound journal* **7**, 199-201, doi:10.1111/j.1742-481X.2010.00676.x (2010).

11. Geraci, M. J., Cole, M. & Davis, P. New onset diabetes associated with bovine growth hormone and testosterone abuse in a young body builder. *Human & experimental toxicology* **30**, 2007-2012, doi:10.1177/0960327111408152 (2011).

12. Boregowda, K., Joels, L., Stephens, J. W. & Price, D. E. Persistent primary hypogonadism associated with anabolic steroid abuse. *Fertil Steril* **96**, e7-8, doi:10.1016/j.fertnstert.2011.04.029 (2011).

13. Vorona, E. & Nieschlag, E. Adverse effects of doping with anabolic androgenic steroids in competitive athletics, recreational sports and bodybuilding. *Minerva endocrinologica* **43**, 476-488, doi:10.23736/s0391-1977.18.02810-9 (2018).

14. Zubrzycki, I. Z. & Wiacek, M. *White book on steroids*. (Independently published, 29017).

15. Hartgens, F. & Kuipers, H. Effects of androgenic-anabolic steroids in athletes. *Sports Med* **34**, 513-554, doi:10.2165/00007256-200434080-00003 (2004).

16. Tagarakis, C. V., Bloch, W., Hartmann, G., Hollmann, W. & Addicks, K. Testosterone-propionate impairs the response of the cardiac capillary bed to exercise. *Med Sci Sports Exerc* **32**, 946-953, doi:10.1097/00005768-200005000-00011 (2000).

17. Baggish, A. L. *et al.* Cardiovascular Toxicity of Illicit Anabolic-Androgenic Steroid Use. *Circulation* **135**, 1991-2002, doi:10.1161/CIRCULATIONAHA.116.026945 (2017).

18. Sheffield-Moore, M. *et al.* Short-term oxandrolone administration stimulates net muscle protein synthesis in young men. *J Clin Endocrinol Metab* **84**, 2705-2711, doi:10.1210/jcem.84.8.5923 (1999).

19. Fox, M., Minot, A. S. & Liddle, G. W. Oxandrolone: a potent anabolic steroid of novel chemical configuration. *J Clin Endocrinol Metab* **22**, 921-924, doi:10.1210/jcem-22-9-921 (1962).

20. Karim, A., Ranney, R. E., Zagarella, J. & Maibach, H. I. Oxandrolone disposition and metabolism in man. *Clin Pharmacol Ther* **14**, 862-869, doi:10.1002/cpt1973145862 (1973).

21. Buttner, A. & Thieme, D. Side effects of anabolic androgenic steroids: pathological findings and structure-activity relationships. *Handbook of experimental pharmacology*, 459-484, doi:10.1007/978-3-540-79088-4_19 (2010).

22. Ribeiro, M. O. Effects of Thyroid Hormone Analogs on Lipid Metabolism and Thermogenesis. *Thyroid* **18**, 197-203, doi:10.1089/thy.2007.0288 (2008).

23. Abdurledha, W. S. Effect of Clenbuterol using as weight lose on liver enzymes and lipids profile. *Iraq Medical Journal* **3** (2019).
24. Izeboud, C. A. et al. Endotoxin-induced liver damage in rats is minimized by beta 2-adrenoceptor stimulation. *Inflammation research: official journal of the European Histamine Research Society* [et al.] 53, 93-99, doi:10.1007/s00011-003-1228-y (2004).

25. Stromme, S. B., Meen, H. D. & Aakvaag, A. Effects of an androgenic-anabolic steroid on strength development and plasma testosterone levels in normal males. *Med Sci Sports* 6, 203-208 (1974).

26. Johnson, R. E. & Murad, M. H. Gynecomastia: pathophysiology, evaluation, and management. *Mayo Clin Proc* 84, 1010-1015, doi:10.1016/S0005-6678(11)60671-X (2009).

27. Liu, H. et al. Systematic review: the effects of growth hormone on athletic performance. *Ann Intern Med* 148, 747-758, doi:10.7326/0003-4819-148-10-200805200-00215 (2008).

28. Petroczi, A. et al. Russian roulette with unlicensed fat-burner drug 2,4-dinitrophenol (DNP): evidence from a multidisciplinary study of the internet, bodybuilding supplements and DNP users. *Substance abuse treatment, prevention, and policy* 10, 39, doi:10.1186/s13011-015-0034-1 (2015).

29. Bachorik, P. S. & Kwiterovich, P. O., Jr. Apolipoprotein measurements in clinical biochemistry and their utility vis-a-vis conventional assays. *Clin Chim Acta* 178, 1-34, doi:10.1016/0003-4819(88)90265-3 (1988).

30. Bachorik, P. S. et al. Measurement of apolipoproteins A-I and B during the National Health and Nutrition Examination Survey (NHANES) III. *Clin Chem* 40, 1915-1920 (1994).

31. Baim, S. et al. Precision assessment and radiation safety for dual-energy X-ray absorptiometry: position paper of the International Society for Clinical Densitometry. *J Clin Densitom* 8, 371-378, doi:10.1385/jcd:8:4:371 (2005).

32. Shapiro, S. S., Wilk, M. B. & Chen, H. J. A comparative study of various tests of normality. *J Am Stat Assoc* 63, 1343-1372 (1968).

33. Hotelling, H. *Contributions to probability and statistics: essays in honor of Harold Hotelling*. (Stanford University Press, 1960).

34. Reed, J. F. & Stark, D. B. Robust alternatives to traditional analysis of variance: Welch W*, James JI*, James JII*, Brown-Forsythe BF*. *Computer methods and programs in biomedicine* 26, 233-237, doi:https://doi.org/10.1016/0169-2607(88)90003-X (1988).

35. Welch, B. L. On Linear Combinations of Several Variances. *Journal of the American Statistical Association* 51, 132-148, doi:10.2307/2280809 (1956).

36. Games, P. A. & Howell, J. F. Pairwise Multiple Comparison Procedures with Unequal N’s and/or Variances: A Monte Carlo Study. *Journal of Educational Statistics* 1, 113-125, doi:10.2307/1164979 (1976).

37. Manore, M., Meyer, N. L. & Thompson, J. *Sport nutrition for health and performance*. 2nd edn, (Human Kinetics, 2009).

38. National Cholesterol Education Program. Third Report of the Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (ATP III Final Report). (Bethesda, MD, 2002).
39. Siest, G. et al. Aspartate aminotransferase and alanine aminotransferase activities in plasma: statistical distributions, individual variations, and reference values. *Clin Chem* **21**, 1077-1087 (1975).

40. Barone, M. *The Harriet Lane handbook: a manual for pediatric house officers.*, (Mosby, 1996).

41. Simon, D. et al. The influence of aging on plasma sex hormones in men: the Telecom Study. *American Journal of Epidemiology* **135**, 783-791 (1992).

42. Gapstur, S. M. et al. Serum androgen concentrations in young men: a longitudinal analysis of associations with age, obesity, and race. The CARDIA male hormone study. *Cancer Epidemiol Biomarkers Prev* **11**, 1041-1047 (2002).

43. Leifke, E. et al. Age-related changes of serum sex hormones, insulin-like growth factor-1 and sex-hormone binding globulin levels in men: cross-sectional data from a healthy male cohort. *Clin Endocrinol (Oxf)* **53**, 689-695, doi:10.1046/j.1365-2265.2000.01159.x (2000).

44. Gorenoi, V. *Age-related changes in serum concentrations of SHBG, testosterone, estrogens and IGF-I in men: results from cross-sectional investigation on healthy subjects and calculations from previously reported studies*. Doktorat thesis, Medizinischen Hochschule Hannover, (2002).

45. Ng Tang Fui, M. et al. Effect of testosterone treatment on bone remodelling markers and mineral density in obese dieting men in a randomized clinical trial. *Sci Rep* **8**, 9099, doi:10.1038/s41598-018-27481-3 (2018).

46. Snyder, P. J. et al. Effect of testosterone treatment on bone mineral density in men over 65 years of age. *J Clin Endocrinol Metab* **84**, 1966-1972, doi:10.1210/jcem.84.6.5741 (1999).

47. Lunt, M. et al. Population-based geographic variations in DXA bone density in Europe: the EVOS Study. *European Vertebral Osteoporosis Foundation International: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA* **7**, 175-189, doi:10.1007/bf01622286 (1997).

48. Tarchalski, J., Guzik, P. & Wysocki, H. Correlation between the extent of coronary atherosclerosis and lipid profile. *Molecular and cellular biochemistry* **246**, 25-30 (2003).

49. Stimac, D., Milic, S., Dintinjana, R. D., Kovac, D. & Ristic, S. Androgenic/Anabolic steroid-induced toxic hepatitis. *Journal of clinical gastroenterology* **35**, 350-352, doi:10.1097/00004836-200210000-00013 (2002).

50. Kafrouni, M. I., Anders, R. A. & Verma, S. Hepatotoxicity associated with dietary supplements containing anabolic steroids. *Clin Gastroenterol Hepatol* **5**, 809-812, doi:10.1016/j.cgh.2007.02.036 (2007).

51. Baird, M. F., Graham, S. M., Baker, J. S. & Bickerstaff, G. F. Creatine-Kinase- and Exercise-Related Muscle Damage Implications for Muscle Performance and Recovery. *Journal of Nutrition and Metabolism* **2012**, 960363, doi:10.1155/2012/960363 (2012).

52. Blanck, J., Smettan, G., Janig, G. R. & Ruckpaul, K. Kinetics of elementary steps in the cytochrome P-450 reaction sequence. I. Substrate binding to cytochrome P-450 LM. *Acta Biol Med Ger* **35**, 1445-1463 (1976).

53. Diagnosis, D. D. o. C. T. a. *Cancer Therapy Evaluation Program*, 2020.
54. Oda, S. S. & El-Ashmawy, I. M. Adverse effects of the anabolic steroid, boldenone undecylenate, on reproductive functions of male rabbits. *Int J Exp Pathol* **93**, 172-178, doi:10.1111/j.1365-2613.2012.00814.x (2012).

55. Tousson, E. *et al.* Physiological and biochemical changes after boldenone injection in adult rabbits. *Toxicology and industrial health* **32**, 177-182, doi:10.1177/0748233713501365 (2016).

56. O’Connor, J., Stillions, M., Reynolds, W., Linkenheimer, W. & Maplesden, D. Evaluation of boldenone undecylenate as an anabolic agent in horses. *The Canadian Veterinary Journal* **14**, 154 (1973).

57. Kung, A. W., Pang, R. W., Lauder, I., Lam, K. S. & Janus, E. D. Changes in serum lipoprotein(a) and lipids during treatment of hyperthyroidism. *Clin Chem* **41**, 226-231 (1995).

58. Aviram, M., Luboshitzky, R. & Brook, J. G. Lipid and lipoprotein pattern in thyroid dysfunction and the effect of therapy. *Clin Biochem* **15**, 62-66, doi:10.1016/s0009-9120(82)90529-x (1982).

59. Dullaart, R. P., van Doormaal, J. J., Hoogenberg, K. & Sluiter, W. J. Triiodothyronine rapidly lowers plasma lipoprotein(a) in hypothryroid subjects. *The Netherlands journal of medicine* **46**, 179-184, doi:10.1016/0300-2977(94)00116-q (1995).

60. Ajala, M. O., Ogunro, P. S. & Fasanmade, O. A. Relationship between liver function tests and thyroid hormones in thyroid disorders. *Niger Postgrad Med J* **20**, 188-192 (2013).

61. Sharma, S. & Garg, A. Clenbuterol induced changes in cholesterol and triglyceride levels of gastrocnemius, pectoralis and heart of rat under work induced stress. *Indian J Exp Biol* **41**, 1452-1455 (2003).

62. Hartung, R., Gerth, J., Fünfstück, R., Grüne, H. J. & Stein, G. End-stage renal disease in a bodybuilder: a multifactorial process or simply doping? *Nephrology Dialysis Transplantation* **16**, 163-165, doi:10.1093/ndt/16.1.163 (2001).

63. Fontana, K., Campos, G. E., Staron, R. S. & da Cruz-Hoing, M. A. Effects of anabolic steroids and high-intensity aerobic exercise on skeletal muscle of transgenic mice. *PloS one* **8**, e80909, doi:10.1371/journal.pone.0080909 (2013).

64. Jordan, V. C. Tamoxifen (ICI46, 474) as a targeted therapy to treat and prevent breast cancer. *British journal of pharmacology* **147**, S269-S276 (2006).

65. Gutman, M. *et al.* Comparison of the effects of EM-652 (SCH57068), tamoxifen, toremifene, droloxifene, idoxifene, GW-5638 and raloxifene on the growth of human ZR-75-1 breast tumors in nude mice. *International journal of cancer* **99**, 273-278, doi:10.1002/ijc.10302 (2002).

66. Milionis, H., Liberopoulos, E. & Elisaf, M. Tamoxifen-induced hypertriglyceridemia in association with diabetes mellitus. *Diabetes & metabolism* **27**, 160-163 (2001).

67. Gao, F.-F. *et al.* Tamoxifen induces hepatotoxicity and changes to hepatocyte morphology at the early stage of endocrinotherapy in mice. *Biomed Rep* **4**, 102-106, doi:10.3892/br.2015.536 (2016).

68. Colao, A. The GH–IGF-I axis and the cardiovascular system: clinical implications. *Clinical endocrinology* **69**, 347-358 (2008).
69. Colao, A. et al. The heart: an end-organ of GH action. European journal of endocrinology 151, S93-101 (2004).

70. Jørgensen, J. O., Møller, L., Krag, M., Billestrup, N. & Christiansen, J. S. Effects of growth hormone on glucose and fat metabolism in human subjects. Endocrinology and Metabolism Clinics 36, 75-87 (2007).

71. Miranda, E. J., McIntyre, I. M., Parker, D. R., Gary, R. D. & Logan, B. K. Two deaths attributed to the use of 2, 4-dinitrophenol. Journal of analytical toxicology 30, 219-222 (2006).

72. Agency for Toxic Substances and Disease Registry, U. Toxic Substances Portal - Dinitrophenols, 2020).

73. Grundlingh, J., Dargan, P. I., El-Zanfaly, M. & Wood, D. M. 2,4-dinitrophenol (DNP): a weight loss agent with significant acute toxicity and risk of death. J Med Toxicol 7, 205-212, doi:10.1007/s13181-011-0162-6 (2011).

Table

Due to technical limitations, table 1 docx is only available as a download in the Supplemental Files section.

Figures

Fig 1 A-B

Figure 1
Changes in body mass (BM) and total body fat percentage (BF%), resulting from the administration of sport-doping drugs as a function of a competition preparation period.

Figure 2

Changes in serum levels of A) Total Cholesterol (TC), B) Triglyceride (TG), C) High-density Lipo-protein Cholesterol (HDL-C), and D) Low-density Lipoprotein Cholesterol (LDL-C), rendered by administration of...
sport-doping drugs as a function of a competition preparation period. * p < 0.5, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

Fig 3

Changes in serum levels of A) Aspartate Aminotransferase (AST), B) Ala-nine Aminotransferase (ALT), C) Bilirubin, and D) Urea, rendered by administration of sport-doping drugs as a function of the competition preparation period. * p < 0.5, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Table1.docx