Positive operator valued measures covariant with respect to an irreducible representation

G. Cassinelli, E. De Vito, A. Toigo

February 26, 2003

Abstract

Given an irreducible representation of a group G, we show that all the covariant positive operator valued measures based on G/Z, where Z is a central subgroup, are described by trace class, trace one positive operators.

1 Introduction

It is well known [2, 6] that, given a square-integrable representation π of a unimodular group G and a trace class, trace one positive operator T, the family of operators

$$Q(X) = \int_X \pi(g)T\pi(g^{-1})d\mu_G(g),$$

defines a positive operator valued measure (POVM) on G covariant with respect to π (μ_G is a Haar measure on G). In this paper, we prove that all the covariant POVMs are of the above form for some T. More precisely, we show this result for non-unimodular groups and for POVMs based on the quotient space G/Z, where Z is a central subgroup.
Let G be a locally compact second countable topological group and Z be a central closed subgroup. We denote by G/Z the quotient group and by $\dot{g} \in G/Z$ the equivalence class of $g \in G$. If $a \in G$ and $\dot{g} \in G/Z$, we let $a \left[\dot{g} \right] = \dot{a} \dot{g}$ be the natural action of a on the point \dot{g}.

Let $\mathcal{B}(G/Z)$ be the Borel σ-algebra of G/Z. We fix a left Haar measure $\mu_{G/Z}$ on G/Z. Moreover, we denote by Δ the modular function of G and of G/Z.

By representation we mean a strongly continuous unitary representation of G acting on a complex and separable Hilbert space, with scalar product $\langle \cdot , \cdot \rangle$ linear in the first argument.

Let (π, \mathcal{H}) be a representation of G. A positive operator valued measure Q defined on G/Z and such that

1. $Q(G/Z) = I$;
2. for all $X \in \mathcal{B}(G/Z)$,
 \[\pi(g)Q(X)\pi(g^{-1}) = Q(g[X]) \quad \forall g \in G \]

is called π-covariant POVM on G/Z.

Given a representation (σ, \mathcal{K}) of Z, we denote by $(\lambda^\sigma, P^\sigma, \mathcal{H}^\sigma)$ the imprimitivity system unitarily induced by σ. We recall that \mathcal{H}^σ is the Hilbert space of (μ_G-equivalence classes of) functions $f : G \rightarrow \mathcal{K}$ such that

1. f is weakly measurable;
2. for all $z \in Z$,
 \[f(\sigma(z^{-1})g) = f(g) \quad \forall g \in G; \]
3. \[
 \int_{G/Z} \|f(g)\|^2_K \, d\mu_{G/Z}(\dot{g}) < +\infty
\]

with scalar product
\[
 \langle f_1, f_2 \rangle_{\mathcal{H}^\sigma} = \int_{G/Z} \langle f_1(g), f_2(g) \rangle_K \, d\mu_{G/Z}(\dot{g}).
\]

The representation λ^σ acts on \mathcal{H}^σ as
\[
 (\lambda^\sigma(a)f)(g) := f(a^{-1}g) \quad g \in G
\]
for all $a \in G$. The projection valued measure P^σ is given by
\[
 (P^\sigma(X)f)(g) := \chi_X(\dot{g})f(g) \quad g \in G.
\]
for all $X \in \mathcal{B}(G/Z)$, where χ_X is the characteristic function of the set X.

We recall some basic properties of square integrable representations modulo a central subgroup. We refer to Ref. [1] for G unimodular and Z arbitrary and to Ref. [4] for G non-unimodular and $Z = \{e\}$. Combining these proofs, one obtains the following result.

Proposition 1 Let (π, \mathcal{H}) be an irreducible representation of G and γ be the character of Z such that

$$\pi(z) = \gamma(z) I_{\mathcal{H}} \quad \forall z \in Z.$$

The following facts are equivalent:

1. there exists a vector $u \in \mathcal{H}$ such that

$$0 < \int_{G/Z} |\langle u, \pi(g) u \rangle_{\mathcal{H}}|^2 \, d\mu_{G/Z}(\dot{g}) < +\infty; \quad (1)$$

2. (π, \mathcal{H}) is a subrepresentation of $(\lambda^\gamma, \mathcal{H}^\gamma)$.

If any of the above conditions is satisfied, there exists a selfadjoint injective positive operator C with dense range such that

$$\pi(g) C = \Delta(g)^{-\frac{1}{2}} C \pi(g) \quad \forall g \in G,$$

and an isometry $\Sigma : \mathcal{H} \otimes \mathcal{H}^* \rightarrow \mathcal{H}^\gamma$ such that

1. for all $u \in \mathcal{H}$ and $v \in \text{dom} C$

$$\Sigma(u \otimes v^*)(g) = \langle u, \pi(g) Cv \rangle_{\mathcal{H}} \quad g \in G,$$

2. for all $g \in G$

$$\Sigma(\pi(g) \otimes I_{\mathcal{H}^*}) = \lambda(g) \Sigma,$$

3. the range of Σ is the isotypic space of π in \mathcal{H}^γ.

If Eq. (1) is satisfied, (π, \mathcal{H}) is called square-integrable modulo Z. The square root of C is called formal degree of π (see Ref. [4]). In particular, when G is unimodular, C is a multiple of the identity.
2 Characterization of Q

We fix an irreducible representation (π, \mathcal{H}) of G and let γ be the character such that $\pi|_Z = \gamma I_{\mathcal{H}}$. The following theorem characterizes all the POVM on G/Z covariant with respect to π in terms of positive trace one operators on \mathcal{H}.

Theorem 2 The irreducible representation π admits a covariant POVM based on G/Z if and only if π is square-integrable modulo Z.

In this case, let C be the square root of the formal degree of π. There exists a one-to-one correspondence between covariant POVMs Q on G/Z and positive trace one operators T on \mathcal{H} given by

$$\langle Q_T(X)v, u \rangle_{\mathcal{H}} = \int_X \langle TC\pi(g^{-1})v, C\pi(g^{-1})u \rangle_{\mathcal{H}} d\mu_{G/Z}(g)$$

for all $u, v \in \text{dom} C$ and $X \in \mathcal{B}(G/Z)$.

Proof. Let Q be a π-covariant POVM. According to the generalized imprimitivity theorem there exists a representation (σ, \mathcal{K}) of Z and an isometry $W : \mathcal{H} \to \mathcal{H}^\sigma$ intertwining π with λ^σ such that

$$Q(X) = W^* P^\sigma(X) W$$

for all $X \in \mathcal{B}(G/Z)$.

Define the following closed invariant subspace of \mathcal{K}

$$\mathcal{K}_\gamma = \{ v \in \mathcal{K} \mid \sigma(z)v = \gamma(z)v \}.$$

Let σ_1 and σ_2 be the restrictions of σ to \mathcal{K}_γ and \mathcal{K}_γ^\perp respectively. The induced imprimitivity system $(\lambda^\sigma, P^\sigma, \mathcal{H}^\sigma)$ decomposes into the orthogonal sum

$$\mathcal{H}^\sigma = \mathcal{H}^{\sigma_1} \oplus \mathcal{H}^{\sigma_2}.$$

If $f \in \mathcal{H}^\sigma$ and $z \in Z$, then

$$(\lambda^\sigma(z)f)(g) = f(z^{-1}g) = f(gz^{-1}) = \sigma(z)f(g) \quad g \in G.$$

On the other hand, if $u \in \mathcal{H}$ and $z \in Z$, we have

$$(\lambda^\sigma(z)Wu)(g) = (W\pi(z)u)(g) = \gamma(z)(Wu)(g) \quad g \in G.$$

It follows that $(Wu)(g) \in \mathcal{K}_\gamma$ for μ_G-almost every $g \in G$, that is, $Wu \in \mathcal{H}^{\sigma_1}$. So it is not restrictive to assume that

$$\sigma = \gamma I_{\mathcal{K}}$$
for some Hilbert space \mathcal{K}. Clearly, we have

$$\mathcal{H}^\sigma = \mathcal{H}^\gamma \otimes \mathcal{K}, \quad \lambda^\sigma = \lambda^\gamma \otimes I_{\mathcal{K}}.$$

In particular, π is a subrepresentation of λ^γ, hence it is square-integrable modulo Z.

Due to Prop. 1, the operator $W' = (\Sigma^* \otimes I_{\mathcal{K}})W$ is an isometry from \mathcal{H} to $\mathcal{H} \otimes \mathcal{H}^* \otimes \mathcal{K}$ such that

$$W'\pi(g) = \pi(g) \otimes I_{\mathcal{H}^* \otimes \mathcal{K}} \quad g \in G.$$

Since π is irreducible, there is a unit vector $B \in \mathcal{H}^* \otimes \mathcal{K}$ such that

$$W' u = u \otimes B \quad \forall u \in \mathcal{H}.$$

Let $(e_i)_{i \geq 1}$ be an orthonormal basis of \mathcal{H} such that $e_i \in \text{dom} C$, then

$$B = \sum_i e_i^* \otimes k_i,$$

where $k_i \in \mathcal{K}$ and $\sum_i \|k_i\|^2_{\mathcal{K}} = 1$.

If $u \in \text{dom} C$, one has that

$$(Wu)(g) = [(\Sigma \otimes I_{\mathcal{K}})(u \otimes B)](g)$$

$$= \sum_i \Sigma(u \otimes e_i^*)(g) \otimes k_i$$

$$= \sum_i \langle u, \pi(g)Ce_i \rangle_{\mathcal{H}} \otimes k_i$$

$$= \sum_i \langle Ce_i \rangle_{\mathcal{H}} \otimes k_i$$

$$= \sum_i (e_i^* \otimes k_i)(C\pi (g^{-1}) u),$$

where the series converges in \mathcal{H}^σ. On the other hand, for all $g \in G$ the series $\sum_i (e_i^* \otimes k_i)(C\pi (g^{-1}) u)$ converges to $BC\pi (g^{-1}) u$, where we identify $\mathcal{H}^* \otimes \mathcal{K}$ with the space of Hilbert-Schmidt operators. By unicity of the limit

$$(Wu)(g) = BC\pi (g^{-1}) u \quad g \in G.$$

If $u, v \in \text{dom} C$, the corresponding covariant POVM is given by

$$\langle Q(X)v, u \rangle_{\mathcal{H}} = \langle P^\sigma(X)Wv, Wu \rangle_{\mathcal{H}^\sigma}$$

$$= \int_{G/Z} \chi_X(\hat{g}) \langle BC\pi (g^{-1}) v, BC\pi (g^{-1}) u \rangle_{\mathcal{H}} d\mu_{G/Z}(\hat{g})$$

$$= \int_X \langle TC\pi (g^{-1}) v, C\pi (g^{-1}) u \rangle_{\mathcal{H}} d\mu_{G/Z}(\hat{g}),$$

5
where
\[T := B^*B \]
is a positive trace class trace one operator on \(\mathcal{H} \).

Conversely, assume that \(\pi \) is square integrable and let \(T \) be a positive trace class trace one operator on \(\mathcal{H} \). Then
\[B := \sqrt{T} \]
is a (positive) operator belonging to \(\mathcal{H}^* \otimes \mathcal{H} \) such that \(B^*B = T \) and \(\|B\|_{\mathcal{H}^* \otimes \mathcal{H}} = 1 \). The operator \(W \) defined by
\[Wv := (\Sigma \otimes I_{\mathcal{H}})(v \otimes B) \quad \forall v \in \mathcal{H} \]
is an isometry intertwining \((\pi, \mathcal{H}) \) with the representation \((\lambda^\sigma, \mathcal{H}^\sigma) \), where \(\sigma = \gamma I_{\mathcal{H}} \).

Define \(Q_T \) by
\[Q_T(X) = W^*P^\sigma(X)W \quad X \in \mathcal{B}(G/Z). \]

With the same computation as above, one has that
\[\langle Q_T(X)u, v \rangle_{\mathcal{H}} = \int_X \langle TC\pi(g^{-1})v, C\pi(g^{-1})u \rangle_{\mathcal{H}} d\mu_{G/Z}(\dot{g}) \]
for all \(u, v \in \text{dom} \mathcal{C} \).

Finally, we show that the correspondence \(T \mapsto Q_T \) is injective. Let \(T_1 \) and \(T_2 \) be positive trace one operators on \(\mathcal{H} \), with \(Q_{T_1} = Q_{T_2} \). Set \(T = T_1 - T_2 \).
Since \(\pi \) is strongly continuous, for all \(u, v \in \text{dom} \mathcal{C} \) the map
\[G/Z \ni \dot{g} \mapsto \langle TC\pi(g^{-1})v, C\pi(g^{-1})u \rangle_{\mathcal{H}} = \Delta(\dot{g})^{-1} \langle T\pi(g^{-1})Cv, \pi(g^{-1})Cu \rangle_{\mathcal{H}} \in \mathbb{C} \]
is continuous. Since
\[\int_X \langle TC\pi(g^{-1})v, C\pi(g^{-1})u \rangle_{\mathcal{H}} d\mu_{G/Z}(\dot{g}) = \langle [Q_{T_1}(X) - Q_{T_2}(X)]v, u \rangle_{\mathcal{H}} = 0 \]
for all \(X \in \mathcal{B}(G/Z) \), we have
\[\langle TC\pi(g^{-1})v, C\pi(g^{-1})u \rangle_{\mathcal{H}} = 0 \quad \forall \dot{g} \in G/Z. \]

In particular,
\[\langle TCv, Cu \rangle_{\mathcal{H}} = 0, \]
so that, since \(\mathcal{C} \) has dense range, \(T = 0 \). \(\blacksquare \)
Remark 3 Scutaru shows in Ref. [6] that there exists a one-to-one correspondence between positive trace one operators on \mathcal{H} and covariant POVMs Q based on G/Z with the property

$$\text{tr } Q(K) < +\infty$$

for all compact sets $K \subset G/Z$. Theorem 2 shows that every covariant POVM Q based on G/Z shares property (3).

Remark 4 If G is unimodular, then $K = \lambda I$, with $\lambda > 0$, and one can normalize $\mu_{G/Z}$ so that $\lambda = 1$. Hence,

$$Q_T(X) = \int_X \pi(g) T \pi(g^{-1}) \, d\mu_{G/Z}(\dot{g}) \quad \forall X \in \mathcal{B}(G/Z),$$

the integral being understood in the weak sense.

Remark 5 If $T = \eta^* \otimes \eta$, with $\eta \in \text{dom } C$ and $\|\eta\|_{\mathcal{H}} = 1$, we observe that

$$\langle Q_T(X) v, u \rangle_{\mathcal{H}} = \int_X \langle C \pi(g^{-1}) v, \eta \rangle_{\mathcal{H}} \langle \eta, C \pi(g^{-1}) u \rangle_{\mathcal{H}} \, d\mu_{G/Z}(\dot{g})$$

$$= \int_X \langle v, \pi(g) C\eta \rangle_{\mathcal{H}} \langle \pi(g) C\eta, u \rangle_{\mathcal{H}} \, d\mu_{G/Z}(\dot{g})$$

$$= \int_X (W_{C\eta}v)(g) (W_{C\eta}u)(g) \, d\mu_{G/Z}(\dot{g})$$

for all $v, u \in \text{dom } C$, where $W_{C\eta} : \mathcal{H} \rightarrow \mathcal{H}^\gamma$ is the wavelet operator associated to the vector $C\eta$. In particular,

$$Q_T(X) = W_{C\eta}^* P^\gamma(X) W_{C\eta}.$$

3 Two examples

3.1 The Heisenberg group

The Heisenberg group H is \mathbb{R}^3 with composition law

$$(p, q, t) (p', q', t') = \left(p + p', q + q', t + t' + \frac{pq' - qp'}{2} \right).$$

The centre of H is

$$Z = \{(0, 0, t) \mid t \in \mathbb{R}\},$$
and the quotient group G/Z is isomorphic to the Abelian group \mathbb{R}^2, with projection

$$q(p, q, t) = (p, q).$$

The Heisenberg group is unimodular with Haar measure

$$d\mu_{G/Z}(p, q) = \frac{1}{2\pi} dpdq.$$

Given an infinite dimensional Hilbert space \mathcal{H} and an orthonormal basis $(e_n)_{n \geq 1}$, let a, a^* be the corresponding ladder operators. Define

$$Q = \frac{1}{\sqrt{2}}(a + a^*)$$
$$P = \frac{1}{\sqrt{2i}}(a - a^*)$$

It is known [2, 5] that the representation

$$\pi(p, q, t) = e^{i(t+pQ+qP)}$$

is square-integrable modulo Z and $C = 1$.

It follows from Theorem 2 that any π-covariant POVM Q based on \mathbb{R}^2 is of the form

$$Q(X) = \frac{1}{2\pi} \int_X e^{i(pQ+qP)}Te^{-i(pQ+qP)}dpdq, \quad X \in \mathcal{B}(\mathbb{R}^2)$$

for some positive trace one operator on \mathcal{H}. Up to our knowledge, the complete classification of the POVMs on \mathbb{R}^2 covariant with respect to the Heisenberg group has been an open problem till now.

3.2 The $ax + b$ group

The $ax + b$ group is the semidirect product $G = \mathbb{R} \times \mathbb{R}_+$, where we regard \mathbb{R} as additive group and \mathbb{R}_+ as multiplicative group. The composition law is

$$(b, a)(b', a') = (b + ab', a a').$$

The group G is nonunimodular with left Haar measure

$$d\mu_G(b, a) = a^{-2} dbda$$

and modular function

$$\Delta(b, a) = \frac{1}{a}.$$
Let $\mathcal{H} = L^2((0, +\infty), dx)$ and (π^+, \mathcal{H}) be the representation of G given by
\[
[\pi^+ (b, a) f](x) = a^\frac{1}{2} e^{i2\pi bx} f(ax) \quad x \in (0, +\infty).
\]
It is known [5] that π is square-integrable, and the square root of its formal degree is
\[
(Cf)(x) = \Delta (0, x)^{\frac{1}{2}} f(x) = x^{-\frac{1}{2}} f(x) \quad x \in (0, +\infty)
\]
acting on its natural domain.

By means of Theorem 2 every POVM based on G and covariant with respect to π^+ is described by a positive trace one operator T according to Eq. 2. Explicitely, let $(e_i)_{i \geq 1}$ be an orthonormal basis of eigenvectors of T and $\lambda_i \geq 0$ be the corresponding eigenvalues. If $u \in L^2((0, +\infty), dx)$ is such that $x^{-\frac{1}{2}} u \in L^2((0, +\infty), dx)$, the π^+-covariant POVM corresponding to T is given by
\[
\langle Q_T (X) u, u \rangle_{\mathcal{H}} = \int_X \langle TC\pi^+ (g^{-1}) u, C\pi^+ (g^{-1}) u \rangle_{\mathcal{H}} d\mu_G (g)
\]
\[
= \int_X \sum_i \lambda_i \left| \langle C\pi^+ (g^{-1}) u, e_i \rangle_{\mathcal{H}} \right|^2 d\mu_G (g)
\]
\[
= \sum_i \lambda_i \int_X \left| \int_{\mathbb{R}_+} x^{-\frac{1}{4}} a^{-\frac{1}{4}} e^{-\frac{2\pi ibx}{a}} u \left(\frac{x}{a} \right) e_i(x) dx \right|^2 a^{-2} db da.
\]

References

[1] A. Borel., Representations de groupes localement compact, Lecture Notes in Mathematics, Vol. 276, Springer, Berlin (1972).

[2] G. Cassinelli, E. De Vito, P. Lahti and A. Levrero, "Phase space observables and isotypic spaces", J. Math. Phys. 41, 5883-5896 (2000).

[3] U. Cattaneo, "On Mackey’s imprimitivity theorem", Comm. Math. Helvetici 54, 629-641 (1979).

[4] M. Duflo and C. C. Moore, "On the regular representation of a nonunimodular locally compact group", J. Funct. Anal. 21, 209-243 (1976).

[5] G. B. Folland, A Course in Abstract Armonic Analysis, CRC Press, Boca Raton, 1995.

[6] H. Scutaru, "Coherent states and induced representations", Lett. Math. Phys. 2, 101-107 (1977).