A comparison between on-demand usage of rFVIIa vs prophylaxis use of emicizumab in high titer inhibitory hemophilia A patients in Iran
A cost–utility analysis
Parisa Saiyarsarai, PhDa,b, Atefeh Robabpour Derakhshan, Pharm.Da, Jamaleddin Khedmati, MD, PhDa, Peyman Eshghi, MDc, Meysam Seyedifar, PhDb,∗

Abstract
Background: Hemophilia A (HA) is an inherited X-linked bleeding disease with costly treatment, especially for high titer inhibitory patients. Emicizumab, a new humanized bispecific antibody, has been approved for use to prevent or reduce the frequency of bleeding episodes in HA patients with inhibitors. This study evaluated the cost-utility of emicizumab prophylaxis (EP) in comparison with recombinant factor VII activated on-demand treatment in HA patients with inhibitors.

Methods: A life-time Markov model with payer and societal perspectives was developed in different age groups with different annual bleeding rates (ABR). Efficacy of treatments were extracted from HAVEN trials. Utilities were retrieved from published evidence. Costs were calculated based on Iran food and drug administration official website, national tariff book for medical services and hospital data. One-way deterministic sensitivity analysis was performed.

Results: EP was dominant choice in comparison with on-demand administration of recombinant factor VII activated in all age groups with ABR 20 and 25, and it remained dominant in patients with age 2 and age 12 at start point with ABR 16 and 17. The reported incremental cost-effectiveness ratio for the group with ABR 18 at the age 20, was 12,936 United States Dollars which is lower than the acceptable threshold of cost-effectiveness in Iran (1–3 gross domestic product per capita) and EP can be considered as cost-effective choice in this scenario.

Conclusion: EP was found to be a dominant and cost-effective choice for Iranian HA patients with factor VIII inhibitors with ABR 18 and above with considerable cost saving.

Abbreviations: ABR = annual bleeding rate, BPAs = bypassing agents, CUA = cost–utility analysis, EP = emicizumab prophylaxis, FDA = Food and Drug Administration, FVIII = factor VIII, HA = hemophilia A, ICER = Incremental Cost-effectiveness Ratio, IFDA = Iran Food and Drug Administration, MCCH = Moﬁd Comprehensive Care Center for Children with Hemophilia, OD = on-demand, QALY = quality-adjusted life-years, rFVIIa = recombinant factor VII activated, RR = risk ratio, SV/RSV = synovectomy/radio-synovectomy, TJ = target joint, USD = United States dollars.

Keywords: antibodies, anti-inhibitor coagulant complex, bispecific, emicizumab, Hemlibra, hemophilia A, recombinant recombinant factor VII activated

Editor: Jorddy Neves Cruz.
The authors would like to thank the funding support provided by Roche Pharma Services.
The sponsors had no role in the design, execution, interpretation, or writing of the study.
The authors have no conﬂicts of interest to disclose.
The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.
a Department of Pharmacoeconomics and Pharmaceutical Administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran, b Pharmaceutical Management and Economics Research Center (PMERC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran,
c Pediatric Congenital Hematologic Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
∗ Correspondence: Meysam Seyedifar, Pharmaceutical Management and Economics Research Center (PMERC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, 16 Azar St, Enqelab Sq, Tehran, Iran (e-mail: seyedifar@gmail.com)

Copyright © 2021 the Author(s). Published by Wolters Kluwer Health, Inc.
This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial License 4.0 (CCBY-NC), where it is permissible to download, share, remix, transform, and buildup the work provided it is properly cited. The work cannot be used commercially without permission from the journal.
How to cite this article: Saiyarsarai P, Derakhshan AR, Khedmati J, Eshghi P, Seyedifar M. A comparison between on-demand usage of rFVIIa vs prophylaxis use of emicizumab in high titer inhibitory hemophilia A patients in Iran: a cost–utility analysis. Medicine 2021;100:40(e27303).
Received: 3 May 2021 / Received in ﬁnal form: 14 August 2021 / Accepted: 2 September 2021
http://dx.doi.org/10.1097/MD.0000000000027303
1. Introduction

Hemophilia A (HA) is an X-chromosome-related congenital defect that disrupts the production of coagulation factor VIII (FVIII) and affects the coagulation cascade, which is seen in men with a prevalence of 1 in 5000 male births.[1] Patients with a severe type of hemophilia who have 1% or less clotting factor in their blood are more likely to have recurrent spontaneous and post-traumatic bleeding in joints and muscles.[1,2]

The treatment strategies in HA management, are on-demand (OD) FVIII infusion to manage bleeding, or prophylactic treatment to prevent bleeding.[3] However, FVIII replacement therapy is less effective in patients who produce FVIII antibodies, also known as inhibitors. Inhibitors develop in up to one-third of patients with severe HA, complicating management and leading to considerable morbidity and mortality.[1-3] Management of bleeding in these patients is based on OD or prophylaxis therapy with bypassing agents (BPAs) including, activated prothrombin complex concentrates and recombinant factor VII activated (rFVIIa).[6,7] Despite the use of BPAs, the risk of uncontrolled bleeding, subsequent disability, and devastating damage is high in patients with high titer inhibitors, leading to poor quality of life.[8,9] In most healthcare systems, the main costs of management of HA patients with inhibitors are attributable to the direct costs of clotting factor concentrates, which constitute more than 98% of costs.[10] The high cost and low quality of life of these hemophiliacs have made it a substantial issue for healthcare systems.[11]

In 2017, the U.S. Food and Drug Administration (FDA) approved emicizumab (Hemlibra, Genentech, Inc.) prophylaxis to prevent or reduce the frequency of bleeding episodes in adult and pediatric HA patients (ages newborn and older) with FVIII inhibitors.[12] An additional indication was approved in October 2018 for prophylactic treatment of HA patients without FVIII inhibitors.[13] Promising results of trials have drawn the attention of medical staff in field and health sectors to emicizumab. The clinical trials in adolescents and adults (HAVEN1) and pediatrics (HAVEN2) have shown a decrease in the annual bleeding rate (ABR) in patients treated with a weekly emicizumab prophylaxis (EP), compared with OD or prophylactic treatment with BPAs.[14,15]

Current standard of care for high titer HA patients with inhibitors in Iran primarily involves OD administration of BPAs.[16] By introducing emicizumab prophylactic treatment for HA patients with inhibitors, comparative studies should be performed that can evaluate the clinical and economic value of this method with existing standard of care. So far, no economic evaluation study has been conducted in Iran to compare OD use of rFVIIa as standard care of healthcare vs newer therapeutic option (prophylaxis therapy with emicizumab) in high titer inhibitory HA patients.

The aim of this study was to evaluate the cost-utility of emicizumab (Hemlibra, Genentech, Inc.) compared with locally manufactured rFVIIa (AryoSeven, Aryogen Co. Iran) in high titer HA patients with inhibitors from societal and payer perspective, in the Iran healthcare system. The similar efficacy and lower price of AryoSeven vs original brand of rFVIIa, makes this study challenging to evaluate emicizumab cost-effectiveness. The study designed based on Iran Food and Drug Administration (IFDA) request.

2. Methods

A Markov state transition model was designed in Excel-2010 based on different ABRs for different age categories to perform a cost-utility analysis (CUA) of EP compared to rFVIIa OD administration in HA patients with inhibitors. The CUA was performed using payer and societal perspectives, in the Iran healthcare system. The incremental cost per quality-adjusted life-years (QALY) was considered as an outcome of the analysis.

2.1. Model description and inputs

All details about the construction of Markov model were considered in terms of defining states, transition probabilities, time horizon, discount rate, etc.[20]

A lifetime Markov model has been run for 3 different hypothetical cohorts of patients with different age groups. The cost and clinical outcomes of treating the cohort patients were followed using model through 3 states, EP, OD rFVIIa, and death. Each cycle was 1 year. At the end of every cycle each patient either remained in the states OD and EP or was moved to the absorbable state “Death”. The model was re-run multiple times (9 times for 3 age group and 3 ABRs) to simulate different scenarios. Model diagram is summarized in Figure 1.

The age categorization was designed based on patient pools in HAVEN 1 & 2 as starting from 2 to 12, 12 to 20, and >20 years-old.[14,15] The clinical information for base-case was taken from MoFid Comprehensive Care Center for Children with Hemophilia (MCCH) in Tehran. Based on IFDA Pharmacoeconomics Committee Guideline, the discount rate of 5% and 3% was applied for cost and outcomes, respectively. Clinical efficacy, safety, route of administration, and dosage considerations were extracted from literature for both EP and rFVIIa. Locally manufactured form of rFVIIa selected as the comparison arm claimed to have the same efficacy with the original brand at a lower cost.[21] The Iranian adjusted life table was used to calculate the age-dependent weight.

The model was run based on the following assumptions

- Individuals were entered at the ages of 2, 12, and 20-year-old.
- Surgical events rate and costs were assumed the same in both arms.
- No target joint (TJ) bleedings in EP arm starts from 2-year-old (in the designed model, due to the significant effectiveness of emicizumab in children, it was assumed that children who receive this medication from the age of 2 do not get involved in the TJ, and their few bleeds were considered as maximum joint bleeding).
- No arthroplasties were included in EP arm according to the hemophilia treatment guideline and the high effectiveness of this drug, which leads to a 95% reduction in bleeding of the TJs.
- Base case utility was assumed constant in all ages (no decrease for elderly patients).
- After age 20, the weight was supposed to be constant.
- Two arthroplasties and 2 revisions were calculated for patients with TJs.
- No transportation fees were supposed for spontaneous bleedings (managed at home).
- It was assumed that there was no waste in dosing in both arms.
- Compliance was considered to be 100% for both arms.
- Adverse effects were not included in costs and utility calculation for both arms.

2.2. Mortality rate

The probability of death in each year for individuals treated OD or as EP was based on WHO life-table of Iranian male which was
The RR for individuals in OD treatment was considered 2.69 and for those in EP arm, was considered 1.16. Also, for individuals who entered EP arm with the age range from 12 to 20, we assumed direct relationship between duration of treatment method until about 40 years and death RR (if a patient receives OD treatment for about 40 years his death RR would be 2.69), then for age 12 the RR was calculated relatively 67% for EP and 33% for the OD ratio (0.67 / 1.16 + 0.33 / 2.69 = 1.67). Subsequently, for individuals who entered EP arm from age 20, the RR was calculated relatively 50% as the EP and 50% as the OD (0.50 / 1.16 + 0.50 / 2.69 = 1.92).

2.3. Dosing

EP was defined as 3 mg/kg/wk for the first 4 weeks and 1.5 mg/kg/wk for the maintenance therapy based on HAVEN1 and HAVEN2 studies. On the other hand, the required dose of rFVIIa OD treatment was defined for those types of bleeding mentioned in the HAVEN1 study. Different dose of rFVIIa was calculated for patients suffering from TJ bleedings with or without synovectomy (SV) or radio-synovectomy (RSV). In addition, based on literature the rFVIIa dose needed for general operations or arthroplasty was considered 9.24 mg/kg.

2.4. Effectiveness and bleeding rate

Based on HAVEN1/2 results, in the EP arm 99% reduction was considered for all types of bleedings (including joint, TJ and, spontaneous bleedings) for start age 2-year-old group. The effectiveness of emicizumab in reducing bleeding in the age group of 12-year-old and above in HAVEN1 study was 92%, 85%, and 95% for spontaneous, joint and, TJ bleedings, respectively.

2.5. Utilities

The utility of different states was adapted from Noone et al which is a multinational study calculated utilities in 3 basic states adjusted by risk ratio (RR) extracted from published literature. The RR for individuals in OD treatment was considered 2.69 and for those in EP arm, was considered 1.16. Also, for individuals who entered EP arm with the age range from 12 to 20, we assumed direct relationship between duration of treatment method until about 40 years and death RR (if a patient receives OD treatment for about 40 years his death RR would be 2.69), then for age 12 the RR was calculated relatively 67% for EP and 33% for the OD ratio (0.67 / 1.16 + 0.33 / 2.69 = 1.67). Subsequently, for individuals who entered EP arm from age 20, the RR was calculated relatively 50% as the EP and 50% as the OD (0.50 / 1.16 + 0.50 / 2.69 = 1.92).

2.6. Costs analysis

To analyze costs, direct medical, direct non-medical and indirect expenses were considered with a societal perspective; however, with a payer perspective just direct medical costs were calculated. In both arms, the patients’ weight was the main factor in calculating the cost of treatment as dosing is based on weight, which was calculated based on the average male weight of different ages. Available data were used only to estimate the paradigms and proportions of patients’ bleedings and the number of visits. According to the information collected from Mofid hospital, the ABR was considered 25 for base-case, which was close to 23, the ABR calculated in the HAVEN1 study; however, in this study, the Markov model was run for other hypothetical ABRs, and the results were reported. The proportion of each type of bleeding was reported in Table 1. Based on the official IFDA website, AryoSeven was 208.3 United States dollars (USD) per milligram. Also, based on the Roche product price list, Hemlibra was 1835 Euros/30 mg, which was calculated 97.39 USD/mg (based on the Euro exchange rate of Iran central bank website at February 5, 2020). To calculate other direct medical costs, the official national tariff price list of the year 2020, and the 80:20 ratio for the public–private sector was administered (Table 1).

The costs of durable medical equipment such as walking aid and wheelchairs were omitted due to the low likelihood of consumption and low price. In accordance to Knight et al and based on the data from Imam Khomeini Hospital complex in Tehran, the number of arthroplasties and revision arthroplasties for patients with ABR > 20 were considered 2 (for each one) first one at the age of 30 and second at 40 years. Due to the temporary
elimination of the problem of a TJ in patients undergoing joint replacement, a 10-year linear model was considered to take the joint problem of these patients into consideration. According to HAVEN 1/2 study, the average ABR per TJ was considered 3 times a year.\cite{12} It was also assumed that 50% of the extensive TJ bleedings have been reduced after joint replacement.

Another assumption was to consider 9.1% re-bleedings probability in patients with mild to moderate bleedings treated by rFVIIa.\cite{29} Also, SV/RSV costs were considered the same. According to the data from MCCH, the SV/RSV rate was calculated 30%; however, it was considered 25% in Iran, due to limited access to radioisotope medicines. The number of annual physiotherapy sessions was estimated at 10 (Table 1).

The transportation costs were calculated as 3.5 USD for each visit. The number of visits for each joint bledding was considered 1, and for patients with TJ bleedings was estimated at 10. The indirect costs included the productivity loss of patients (or one of their parents) for the visit days; which was calculated based on the minimum annual wage at 2020.\cite{30} According to Iran central bank statistics, currency exchange rate was considered 42,000 Iranian Rial/1 USD.

Model inputs are presented at Table 1.

Table 1

Parameters	Values	Ref.
Costs (USD)		
Emicizumab price per mg	97	Company data on file
rFVIIa (local manufactured) price per mg	208	IFDA
Arthroplasty	3438	Calculated
Revision arthroplasty	7010	Calculated
Synovectomy	635	Calculated
Other surgeries	687	Calculated
Annual physiotherapy cost	100	Calculated
Transportation costs	3.5	Estimated
Each day productivity lost	14.5	Official salary
Emicizumab efficacy		
Bleeding categories (age > 12)	ABR reduction (RR)	Ref.
Treated spontaneous bleeds	0.92 (0.08)	\cite{14}
Treated joint bleeds	0.89 (0.11)	\cite{14}
Treated target joint bleeds	0.95 (0.05)	\cite{14}
Bleeding categories (age 2–12)	ABR reduction (RR)	Ref.
All bleeds	0.99 (0.01)	\cite{16}
Utility	QALY	
State	0.619	\cite{27,33}
On-demand	0.866	\cite{27,33}
Prophylaxis		
Whole life	0.812	\cite{27,33}
>50% life on prophylaxis		
Mortality rate	HR	
State	2.69	\cite{21}
On-demand	1.66	\cite{21}
Prophylaxis whole life	2.06	Calculated
Prophylaxis from 12 years old	1.6	Calculated
Prophylaxis from 20 years old	1.9	Calculated
rFVIIa (AryoSeven) dosing	mg/kg	
Spontaneous bleeding (other than joint bleeding)	0.18	Local guidelines
Joint bleeding	0.45	\cite{20},specialist
Target joint bleeding without RSV/SV	8.1	Specialists
Target joint bleeding with RSV/SV	3.94	Specialists
Surgical events (arthroplasty, routine surgery)	9.24	\cite{25},calculation
Emicizumab dosing	mg/kg/week	
Time	3	\cite{14}
First month	1.5	\cite{14}
The second month onwards		
Bleeding rate in complicated patients	%	
ABR	Vary (base-case 25)	Different scenarios
Treated spontaneous bleeding	21.6%	MCCH data
Treated joint bleeding	43.9%	MCCH data
Treated target joint bleeding	34.5%	MCCH data
Re-bleeding	9%	\cite{31}

ABR = annualized bleeding rate, IFDA = Iran food and drug administration, rFVIIa = recombinant activated factor VII, RR = risk ratio, HR = hazard ratio, SV/RSV = synovectomy, radio synovectomy, USD = United States Dollar, MCCH = Moeld Comprehensive Care Center for Children with Hemophilia.

2.7. Sensitivity analysis

One-way sensitivity analysis performed to investigate the effect of main variables changes. The variables selected include the medications acquisition cost, discount rate for cost and utility, percentage of patients with TJ bleedings who have an SV/RSV procedure, physician visits, re-bleeding incidence, patients’ weight, utility, effectiveness and therapeutic dose of each treatment strategy, and public/private share for cost calculation.

2.8. Budget impact

To calculate the budgetary impact of EP in management of hemophilia, it is necessary to estimate the number of patients consume this medication. This number can be estimated according to the ABR threshold. However, since the reliable
statistics on the condition of patients in the country were not available, to maintain the accuracy of the results, the budgetary impact of using emicizumab in a patient with different ABRs and different weight was calculated. By multiplying the number of eligible people to the estimated impact on a patient, the policymaker can achieve the overall budget impact.

2.9. Ethical approval

The study was done according to the IFDA pharmacoeconomic committee request and the ethical approval was gotten from this committee.

3. Results

3.1. Incremental cost effectiveness ratio for different categories

The Markov model was run using the inputs mentioned in Table 1. The results of CUA were reported for the societal and payer perspective in Table 2. EP was dominant choice in comparison with OD administration of rFVIIa in all age groups with ABR 20 and 25, and it remained dominant in patients with age 2 and age 12 at start point with ABR 16 and 17. Also, the EP arm was cost-effective option for the group with ABR 18 at start age of 20-year-old based on the reported incremental cost effectiveness ratio; 12,936 USD, which was lower than the 3 gross domestic product (GDP) per capita (3 × 5520 = 16,560 USD) as acceptable threshold of cost-effectiveness in Iran.

3.2. Sensitivity analysis

Sensitivity analysis was performed for all age groups. At the start age 2- and 12-year-old, with changing of the mentioned variables, EP was dominant; with the exception of a 20% decrease in the price of AryoSeven, which indicates dominancy of OD.

The results of the sensitivity analysis in all ages by applying the changes were provided in Tables 2–5.

Based on the results of sensitivity analysis, change in dominancy were mostly reported as the result of assuming a decrease in the price of AryoSeven, an increase in the price of Hemlibra, a decrease in the effectiveness of Hemlibra, no application of RSV, and reduction in the discount rate.

Changes in variables, including weight, 100% calculation of the public-sector tariff, the assumption of no re-bleeding, a wide range of rFVIIa dosing (0.09 mg/kg–0.27 mg/kg), or reduction in the utility of the emicizumab arm up to 15%, could not significantly affect the results of the analysis.

3.3. Budget impact

The difference between the average cost for a patient in the case of EP or OD treatment of AryoSeven provides a budgetary impact for a patient per year. The results of the budget impact for each patient in ABR 16, 20, and 25 showed the cost saving of 8253, 80,934, and 130,036 USD, respectively. This amount in each ABR is equal to 2%, 16%, and 23% annual cost saving of treatment with emicizumab for each patient, respectively.

4. Discussion

Based on the results, EP in HA patients with high titer inhibitor with ABR more than 18, is the dominant option for all ages from both societal and payer perspectives.
	ABR25/age 2	ABR25/age 12	ABR25/age 20	ABR20/age 2	ABR20/age 12	ABR18/age 2	ABR18/age 12	ABR18/age 20							
	Cost	QALY	Cost	QALY	Cost	QALY	Cost	QALY							
Emicizumab															
(Hemlibra)	Societal perspective	6.6E + 8	2290.5	8.7E + 8	1893.4	8.9E + 8	1589.3	6.5E + 8	2290.4	8.7E + 8	1589.3	6.5E + 8	2290.4	8.7E + 8	1589.3
OD rFVIIa	Payer perspective	6.6E + 08	2290.44	8.7E + 08	1893.42	8.9E + 08	1593.29	6.5E + 08	2290.44	8.7E + 08	1893.42	8.9E + 08	1593.29		
(AryoSeven)	Societal perspective	7.9E + 8	1428.2	1.1E + 9	1268.4	1.0E + 9	1104.1	7.3E + 8	1428.2	9.6E + 8	1268.4	9.3E + 8	1104.1	7.3E + 8	1428.19
ΔCost & ΔQALY	Payer perspective	7.9E + 08	1428.19	1.0E + 09	1268.43	1.0E + 09	1104.12	7.3E + 08	1428.19	9.6E + 08	1268.43	9.3E + 08	1104.13	7.3E + 08	1428.19
ICER	Dominant	12936													
Each patient	Dominant	16413													
saving in life	1,409,115	1,808,599	1,426,022	768,511	977,322	558,644	408,781	467,867	1,376,115	1,780,662	1,493,312	741,801	384,825	447,416	

ABR = annualized bleeding rate, ICER = incremental cost effectiveness ratio, OD = on-demand, QALY = quality adjusted life years, USD = United States Dollar.
for OD treatment arm, the results of this study was shown the dominance of PE strategy in both societal and payer perspectives. As an example, the cheapest type of arthroplasty was 30,000 USD for inpatient in 2019, while the calculated arthroplasty cost was 3438 USD in Iran. Also, there are some other assumptions in this study that could benefit the OD arm, for example, the omission of other costs due to low probability, like the expenses of wheelchair, hand sticks, and other probable costs.

As we used local manufactured rFVIIa which has lower price than Novoseven and FEIBA, the result could be supportive for comparing emicizumab with Novoseven and FEIBA too.

Limitations of the study included the lack of comprehensive information about the controlled trials of efficacy and side effects of studied medications in Iran. Also, the utility of various states were not measured in Iranian HA patients.
Table 5

The results of the sensitivity analysis from 20 years old for ABR 25 in 100 patients.

Parameters	ΔCost (USD)	ΔUtility	ICER	ΔCost changes	ΔUtility changes
20% Hemlibra price up	2.02E+7	485.24	41726	1.6E+8	0
20% Hemlibra price down	−3.0E+8	485.24	Dominant	−1.6E+8	0
20% AryoSeven price up	−3.3E+8	485.24	Dominant	−1.9E+8	0
20% AryoSeven price down	4.7E+7	485.24	98,566	1.9E+8	0
Utility discount 0%	−135,168,075.1	861.33	Dominant	0	376.1
Utility discount 6%	−135,168,075.1	316.95	Dominant	0	−168.3
Cost discount 0%	−1.7E+8	485.24	Dominant	−3.3E+7	0
Cost discount 7%	−1.3E+8	485.24	Dominant	−1.6E+7	0
50% TJ with RSV	−1.6E+8	485.24	Dominant	−1.8E+7	0
None of TJ with RSV	−3.6E+7	485.24	Dominant	1.0E+8	0
No transportation in JB	−1.3E+8	485.24	Dominant	123,410.6	0
No re-bleeding	−1.32E+8	485.24	Dominant	1.1E+7	0
30% weight increase	−1.8E+8	485.24	Dominant	−4.1E+7	0
EP surgery preparation cost 50%	−1.4E+8	485.24	Dominant	−1.4E+6	0
Prophylaxis utility – 10%	−135,168,075.1	326.31	Dominant	0	−158.9
Prophylaxis utility – 15%	−135,168,075.1	246.84	Dominant	0	−238.4
EP 15% lower efficacy	1.7E+7	485.24	36051	1.6E+8	0
100% public share for costs	−1.4E+8	485.24	Dominant	2.5E5	0
8.16 mg/kg dosing AryoSeven in surgery	−1.4E+8	485.24	Dominant	2.9E+6	0
SB management dose 90 μg/kg	−1.3E+8	485.24	Dominant	1.0E+7	0
SB management dose 270 μg/kg	−1.5E+8	485.24	Dominant	−1.0E+7	0

EP = emicizumab prophylaxis, ICER = incremental cost effectiveness ratio, JB = joint bleeding, RSV = radio synovectomy, SB = spontaneous bleeding, TJ = target joint, USD = United States Dollar.

5. Conclusion

To our knowledge, this is the first attempt to undertake a CUA on HA patients with inhibitors considering EP versus OD treatment with rFVIIa in the Iranian healthcare system. The results of our analysis showed that EP is a cost-effective treatment strategy compared with OD rFVIIa for HA patients with inhibitors and ABR more than 18, as demonstrated by the QALY values obtained.

Author contributions

All authors contributed in the design and preparation of the manuscript. PS reviewed the analyzed data and drafted the paper and finalized the manuscript. ARD drafted the paper. PE reassess the results and apply his expert perspective on the method. MS designed the method, data analysis, and supervised the project. All authors read and approved the final manuscript.

Conceptualization: Atefeh Robabpour Derakhrshian, Peyman Eshghi, Meysam Seyedifar.

Data curation: Atefeh Robabpour Derakhrshian, Meysam Seyedifar.

Formal analysis: Parisa Saiyarsarai.

Investigation: Peyman Eshghi, Meysam Seyedifar.

Methodology: Meysam Seyedifar.

Project administration: Meysam Seyedifar.

Resources: Peyman Eshghi.

Software: Parisa Saiyarsarai, Atefeh Robabpour Derakhrshian.

Supervision: Peyman Eshghi.

Validation: Parisa Saiyarsarai, Peyman Eshghi.

Writing – original draft: Parisa Saiyarsarai, Jameleddin Khedmati, Atefeh Robabpour Derakhrshian.

Writing – review & editing: Peyman Eshghi, Meysam Seyedifar.

References

[1] Escobar M, Sallah S. Hemophilia A and hemophilia B: focus on arthopathy and variables affecting bleeding severity and prophylaxis. J Thromb Haemost 2013;11:1449–53.

[2] Kreuz W, Ettingshausen CE. Inhibitors in patients with haemophilia A. Thromb Res 2014;134:522–6.

[3] Witmer C, Young G. Factor VIII inhibitors in hemophilia A: rationale and latest evidence. Ther Adv Hematol 2013;4:59–72.

[4] Gringeri A, Mantovani LG, Scalone L, Mannucci PM. Cost of care and quality of life for patients with hemophilia complicated by inhibitors: the COCB Study Group. Blood 2003;102:2358–63.

[5] White GCI, Rosendaal F, Aledort LM, Lusher JM, Rothschild G, Ingerslev J. Definitions in hemophilia. Thromb Haemost 2001;85:1560–60.

[6] Astemark J, Donfield SM, DiMichele DM, et al. A randomized comparison of bypassing agents in hemophilia complicated by an inhibitor: the FEIBA NovoSeven Comparative (FENOC) Study. Blood 2007;109:546–51.

[7] Carcao MD. The diagnosis and management of congenital hemophilia. Semin Thromb Hemost 2012;38:727–34.

[8] Dimichele DM, Hoots W, Pipe SW, Rivard G, Santagostino E. International workshop on immune tolerance induction: consensus recommendations 1. Haemophilia 2007;13:1–22.

[9] Scalone L, Mantovani LG, Mannucci PM, Gringeri A, Investigators CS. Quality of life is associated to the orthopaedic status in haemophilic patients with inhibitors. Haemophilia 2006;12:154–62.

[10] Rasekh HR, Imani A, Karimi M, Golestani M. Cost-utility analysis of prophylaxis with factor VIII inhibitors. 2018. Available at: https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-emicizumab-kxwh-hemophilia-or-without-factor-viii-inhibitors. Access date: 4 October 2018.

[11] Oldenburg J, Mahlangu JN, Kim B, et al. Emicizumab prophylaxis in hemophilia A with inhibitors. N Engl J Med 2017;377:809–18.

[12] FDA approves emicizumab-kxwh for hemophilia A with or without factor VIII inhibitors. 2018. Available at: https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-emicizumab-kxwh-hemophilia-or-without-factor-viii-inhibitors. Access date: 4 October 2018.

[13] Oldenburg J, Mahlangu JN, Bujan W, et al. The effect of emicizumab prophylaxis on health-related outcomes in persons with haemophilia A with inhibitors: HAVEN I Study. Haemophilia 2019;25:33–44.
[15] Young G, Sidonio RF, Liesner R, et al. HAVEN 2 updated analysis: multicenter, open-label, phase 3 study to evaluate efficacy, safety and pharmacokinetics of subcutaneous administration of emicizumab prophylaxis in pediatric patients with hemophilia A with inhibitors. Blood 2017;130(Supplement 1):185–183.

[16] DiMichele DM, Hoots WK, Pipe SW, Rivard GE, Santagostino E. International workshop on immune tolerance induction: consensus recommendations. Haemophilia 2007;13(Suppl 1):1–12.

[17] Faranoush M, Abolghasemi H, Mahboudi F, et al. A comparison of efficacy between recombinant activated factor VII (Aryosvene) and Novoseven in patients with hereditary FVIII deficiency with inhibitor. Clin Appl Thromb Hemost 2016;22:184–90.

[18] Faranoush M, Abolghasemi H, Toogeh G, et al. A comparison between recombinant activated factor VII (Aryosvene) and Novoseven in patients with congenital factor VII deficiency. Clin Appl Thromb Hemost 2015;21:724–8.

[19] Sadeghi N, Kahn D, Hoppensteadt D, Eshraghi R, Fareed J. Recombinant Factor VIIa (rFVIIa) Mediated Activation of Prothrombin Complex Concentrates (PCCs): Studies on the Comparison of Novoseven with a Biosimilar Product. American Society of Hematology Washington, DC; 2014.

[20] Siebert U, Alagöz O, Bayoumi AM, et al. State-transition modeling: a report of the ISPOR-SMDM modeling good research practices task force-3. Med Decis Making 2012;32:690–700.

[21] Darby SC, Kan SW, Spooner RJ, et al. Mortality rates, life expectancy, and causes of death in people with hemophilia A or B in the United Kingdom who were not infected with HIV. Blood 2007;110:815–25.

[22] Borgna-Pignatti C. The life of patients with thalassemia major. Haematologica 2010;95:345.

[23] Golestani M, Eshghi P, Rasekh HR, Cheraghal AM, Salamzadeh J, Imani A. Comparison of bypassing agents in bleeding reduction in treatment of bleeding episodes in patients with haemophilia and inhibitors. Iran Red Crescent Med J 2014;16:e24551.

[24] Cheraghal AM, Eshghi P. Cost assessment of implementation of immune tolerance induction in Iran. Value Health Reg Issues 2012;1:54–8.

[25] Noone D, O’Mahony B, van Dijk JP, Prihodova L. A survey of the outcome of prophylaxis, on-demand treatment or combined treatment in 18–35-year old men with severe haemophilia in six countries. Haemophilia 2013;19:44–50.

[26] Chalmers AW, Shamoo JM. Evaluation of a new tablet formulation of deferasirox to reduce chronic iron overload after long-term blood transfusions. Ther Clin Risk Manag 2016;12:201–8.

[27] Delea TE, Sofrygin O, Thomas SK, Baladi JF, Phatak PD, Coates TD. Cost effectiveness of once-daily oral chelation therapy with deferasirox versus infusional deferoxamine in transfusion-dependent thalassaemia patients: US healthcare system perspective. Pharmacoeconomics 2007;25:129–42.

[28] Knight C, Paisley S, Wight J, Jones M. Economic modelling of different treatment strategies for haemophilia A with high-responding inhibitors. Haemophilia 2003;9:521–40.

[29] Huth-Kuehne A, Lages P, Zimmermann R. The impact of rebleeds in cost modelling of treatment strategies in patients with hemophilia A and inhibitors. Blood 2006;108:4046.

[30] Luangasanatip N, Chaiyakunapruk N, Upakdee N, Wong P. Iron-chelating therapies in a transfusion-dependent thalassaemia population in Thailand. Clin Drug Invest 2011;31:493–505.

[31] Ljung R. Prophylactic therapy in haemophilia. Blood Rev 2009;23:267–74.

[32] Geraghty S, Dunkley T, Harrington C, Lindvall K, Maahs J, Sek J. Practice patterns in haemophilia A therapy – global progress towards optimal care. Haemophilia 2006;12:75–81.

[33] Colombo GL, Di Matteo S, Mancuso ME, Santagostino E. Cost-utility analysis of prophylaxis versus treatment on demand in severe hemophilia A. Clinicoecon Outcomes Res 2011;3:55–61.

[34] Farrugia A, Cassar J, Kimber MC, et al. Treatment for life for severe haemophilia A – a cost utility model for prophylaxis vs. on-demand treatment. Haemophilia 2013;19:e228–38.

[35] Zhou Z-Y, Raimundo K, Patel AM, et al. Model of short-and long-term outcomes of emicizumab prophylaxis treatment for persons with hemophilia A. J Manag Care Spec Pharm 2020;26:1109–20.

[36] Cortesi PA, Castaman G, Trifirò G, et al. Cost-effectiveness and budget impact of emicizumab prophylaxis in haemophilia A patients with inhibitors. Thromb Haemost 2020;120:216–28.

[37] Sullivan D. Understanding Knee Replacement Costs: What’s the Bill? 2020. Available at: https://www.healthline.com/health/total-knee-replacement-surgery/understanding-costs. Accessed 13 April 13, 2020.