The Convergence Analysis of Parallel Alternating Two-stage Iterative Algorithm for Linear Complementarity Problem

Banxiang Duan and Aimin Yu

ABSTRACT

In this paper, the authors first present parallel alternating two-stage iterative Algorithm some new relaxation algorithms for solving the linear complementarity problem. And then, when the coefficient matrices are monotone or H-matrices, they establish the global convergence theory of the algorithm. The algorithm has less computational complexity and quicker velocity and is especially suitable for parallel computation of large-scale problem.

KEYWORDS

linear complementarity problem; alternating two-stage method; parallel computation; two-stage iterative; convergence

INTRODUCTION

This paper focuses on the linear complementarity problem, which is to find a pair of real vectors \(r \) and \(z \in \mathbb{R}^n \) such that

\[
0 = \begin{pmatrix} r^T \end{pmatrix} = \begin{pmatrix} q + Az \end{pmatrix} \geq 0, \quad z \geq 0, \quad z^T(q + Az) = 0.
\] (1)

Where \(A \in \mathbb{R}^{n \times n} \) and \(q \in \mathbb{R}^n \) are given real matrix and vector, respectively.

With the fast development of computing technology, parallel computation technology of numeric calculation has gradually become a hot research direction of scientific computing. Much attention has recently been paid on a class of iterative methods called the matrix-splitting methods.

In this article we will make a further promotion of these methods. And also consider about the multi-splitting two-stage relaxation algorithm, alternating iterative algorithm and parallel iterative algorithm.

Banxiang Duan, Aimin Yu, Computer Engineering Technical College, Guangdong Polytechnic of Science and Technology, Zhuhai, Guangdong 519090, China.
 Constructed a parallel alternating two-stage method to solve linear complementarity problem, and received a convergence theorems when coefficient matrix are monotone or H-matrices. Finally we introduced relaxing factor, presented relaxation iterative algorithms and convergence theorem.

Define 1.1 Given A is a non-singular real matrix as: $n \times n$, $M_i, N_i, P_i, Q_i, R_i, S_i, E_i \in \mathbb{R}^{n \times n}$, $i = 1, 2, \ldots, \alpha$, To satisfy:
1. $M_i = M_i - N_i$, $M_i(i = 1, 2, \ldots \alpha)$ Non-singular;
2. $M_i = P_i - Q_i = R_i - S_i$, $P_i, R_i(i = 1, 2, \ldots, \alpha)$ Non-singular;
3. $\sum_{i=1}^{\alpha} E_i = I$
($n \times n$ is unique matrix) Called these splittings are two-stage multi-splitting of A-matrix.

Lemma 1.1 Suppose A is H-matrix when Diagonal element is positive. For any given $q \in \mathbb{R}^n$, linear complementarity problem has a unique solution.

Lemma 1.2 Suppose $G_1, G_2, \ldots, G_k, \ldots$ is a non-negative matrix sequence $n \times n$, $B_1, B_2, \ldots, B_k, \ldots$ is another non-negative matrix sequence $n \times n$, IF there is a vector $x > 0$ and a constant $0 \leq \beta < 1$, to make $G_k x \leq \beta x, k = 1, 2, 3, \ldots$ And also there is a non-singular matrix $(n \times n) S$, to make $G_k = SB_k S^{-1}$. Then we have

\[\lim_{k \to \infty} (B_k \cdots B_2 B_1) = 0. \]

PARALLEL ALTERNATING TWO-STAGE ITERATIVE ALGORITHM

We definite the parallel alternating two-stage iterative algorithm for the linear complementarity problem as follows:

Algorithm 2.1 (parallel alternating two-stage iterative algorithm)

Step 1. Initialization. Let $z^0, y^{0,0} \in \mathbb{R}^n$ be any given initial value, set $k = 0$.

Step 2. General iteration. Given $z^k, y^{k,0} \in \mathbb{R}^n$, For the multi-splitting of $A, A = M_i - N_i$, $M_i = P_i - Q_i = R_i - S_i$ ($i = 1, 2, \ldots, \alpha$), Parallel and alternating solving, Created Sequence:

\[
\begin{align*}
y^{k,0}, y^{k,1}, \ldots, y^{k,1/2}, y^{k,3}, \ldots, y^{k,1/2,1}, y^{k,1,1}, y^{k,1+1/2}, y^{k,1+1} \\
y^{k,1+1/2} &\geq 0, \\
q - N_i z^k + P_i y^{k,1+1/2} - Q_i y^{k,1} &\geq 0, \\
(y^{k,1+1/2})^T (q - N_i z^k + P_i y^{k,1+1/2} - Q_i y^{k,1}) &= 0, \\
y^{k,1+1} &\geq 0, \\
q - N_i z^k + R_i y^{k,1+1} - S_i y^{k,1+1/2} &\geq 0, \\
(y^{k,1+1})^T (q - N_i z^k + R_i y^{k,1+1} - S_i y^{k,1+1/2}) &= 0.
\end{align*}
\]

After $s(k)$ times of inner iterative, Let $z^{k,i} := y^{k,i+1}$,
Step 3. Let $z^{k+1} = \sum_{i=1}^{g} E_i z^{k,i}$. \hfill (4)

Step 4. Test for termination. If z^{k+1} satisfies a prescribed stopping rule, terminate. Otherwise, return to Step 2 with k replaced by $k + 1$.

Notice 2.1 Let $S = \{1, 2, \cdots, n\}$ as some subsets union: $S_i \subseteq S(i = 1, 2, \cdots, \alpha)$, $S=S_i \cup S_j \cup \cdots \cup S_k$, those subsets can be overlap or non-overlap, Define $M_i = (m_{ij}^i), P_i = (p_{ij}^i), R_i = (r_{ij}^i), E_i = \text{diag}(e_i)$:

\[
e_j = \begin{cases} \alpha, & j \in S_i \\ 0, & \text{others} \end{cases}, \quad m_{ij}^k = \begin{cases} a_{ik} I_{jk}, & j, \alpha x, j \in S_i \\ 0, & \text{others} \end{cases},
\]

\[
p_{ij}^k = \begin{cases} a_{ij} I_{jk}, & j, \alpha x, j \in S_i \\ 0, & \text{others} \end{cases}, \quad r_{ij}^k = \begin{cases} a_{ij} I_{jk}, & j, \alpha x, j \in S_i \\ 0, & \text{others} \end{cases}
\]

In computing, $\alpha_j > 0, \sum_{i=1}^{g} E_i = I$, we only need to compute corresponding the component $(z^{k,i})_j$ of $(E_i)_j \neq 0$, And because this algorithm is suitable for parallel computation, It will have a higher efficient.

Notice 2.2 Generally, To any Outer iteration k, If inside iteration $(s(k))$ is along with Outer iteration k, then this method is unsteady. So use SPATS and NSPATS to define multi-splitting parallel iterative algorithm. And unsteady multi-splitting parallel iterative algorithm.

THE CONVERGENCE OF PARALLEL ALTERNATING TWO-STAGE ITERATIVE ALGORITHM

In this section, we establish the convergence theory for algorithm 2.1.

Lemma 3.1 Suppose $A = M_j - N_j$, $M_i = P_i - Q_i = R_i - S_i (i = 1, 2, \cdots, \alpha)$ is the two-stage multiple division of $A, A, M_j, P_i, R_i (i = 1, 2, \cdots, \alpha)$ are H-matrix which has a positive diagonal elements. z^* is the only solution of question (1), Then to any vector $q \in R^n$ and any initial vector, $z^0, y^{0,0} \in R^n, z^0 \geq 0, \text{Series } \{y^{k,i+1/2}\}$ and \{yr^{k,i+1}\} created by algorithm 3.1 will respectively satisfy

\[
< P_i \gg |y^{k,i+1/2} - z^*| \\
\leq N_j \quad |z^k - z^*| + |Q_j| \quad |y^{k,i} - z^*|
\]

\[
< R_i \gg |y^{k,i+1} - z^*| \\
\leq N_j \quad |z^k - z^*| + |S_j| \quad |y^{k,i+1/2} - z^*|
\] \hfill (5)

Prove. Since $P_i (i = 1, 2, \cdots, \alpha)$ is a diagonal element for positive H-matrix. From Lemma 1.1: branch question (2) has only solution that $y^{k,i+1/2}$ is unique defined. We will prove inequation (5) by each component.

To any j, Suppose $|y^{k,i+1/2} - z^*| = (y^{k,i+1/2} - z^*). Under the above assumptions, If $y_j^{k,i+1/2} = 0$, Then because the j-th component of the left-hand vector in (5) is then nonpositive and the right-hand component is always nonnegative. equation (5) is right. Now suppose $y_j^{k,i+1/2} > 0$, Then according to algorithm 2.1, can have
\((q - N_j z^k + P_i y^{k,i+1/2} - Q_i y^{k,i})_j = 0\). On the other hand, \((q - N_j z^* + P_i z^* - Q_i z^*)_j \geq 0\), subtraction, we have
\[
(q - N_j z^k + P_i y^{k,i+1/2} - Q_i y^{k,i})_j - (q - N_j z^* + P_i z^* - Q_i z^*)_j \leq 0
\]
(Cause the first equation is 0, and the second is greater than or equal to 0).

To put in short, \((P_j(y^{k,i+1/2} - z^*)_j \leq (N_j(z^k - z^*) + Q_j(y^{k,i} - z^*)_j\), Then \(< P_j \rangle \parallel y^{k,i+1/2} - z^* \rangle_j \leq (\parallel N_j \parallel \parallel z^k - z^* \parallel + \parallel Q_j \parallel \parallel y^{k,i} - z^* \parallel)_j\).

(Cause the diagonal element of \(P_j\) is positive. \(|y^{k,i+1/2} - z^*_j| = (y^{k,i+1/2} - z^*)_j\).

Same as when \(|y^{k,i+1/2} - z^*_j| = (z^* - y^{k,i+1/2})_j\), then we can get equation (5).

Same as equation (6). So Lemma 3.1 has been proved.

Theorem 3.1

Suppose \(A > \alpha \geq 0\), \(A = M_j - N_j\), \(M_j = P_i - Q_i = R_i - S_i\) \((i = 1, 2, \cdots, \alpha)\) is the two-stage multiple division of \(A\), \(A, M_j, P_i, R_i\) \((i = 1, 2, \cdots, \alpha)\) are diagonal element for positive H-matrix. and \(<A> = \langle d_j \rangle > \parallel N_j \parallel < M_j > = \langle d_j \rangle > \parallel Q_j \parallel \langle R_j \parallel \parallel S_j \parallel \). then any initial value \(z^0 \in R^\alpha\), According to the unique solution \(z^*\) of series \(\{z^k\}\) which is created by algorithm 2.1.

Prove. Since \(A\) is a diagonal element for positive H-matrix, so \(z^*\) is the unique solution of the linear complementarity problem. According to equation (5) from Lemma 4.1:
\[
|y^{k,i+1/2} - z^*| \leq < P_i >^{-1} \parallel Q_i \parallel \parallel y^{k,i} - z^* \parallel + < P_i >^{-1} \parallel N_i \parallel \parallel z^k - z^* \parallel
\]
And according to equation (6),
\[
|y^{k,i+1} - z^*| \leq < R_i >^{-1} \parallel S_i \parallel \parallel y^{k,i+1/2} - z^* \parallel + < R_i >^{-1} \parallel N_i \parallel \parallel z^k - z^* \parallel
\]
\< R_i >^{-1} \parallel Q_i \parallel \parallel y^{k,i} - z^* \parallel + < R_i >^{-1} \parallel S_i \parallel \parallel z^k - z^* \parallel
\]
\(\square\)

2.1 After \(s(k)\) times of inner iteration,
\[
|Q_i| \parallel y^{k,0} - z^* \parallel + \sum_{j=0}^{s(k)-1} (< R_i >^{-1} \parallel P_i >^{-1} | \parallel S_i \parallel \parallel Q_i \parallel) \]
\[
\sum_{j=0}^{s(k)-1} (< R_i >^{-1} \parallel S_i < P_i >^{-1} \parallel Q_i \parallel) \]
\< R_i >^{-1} \parallel S_i \parallel \parallel Q_i \parallel \]
\[
|z^k - z^*|
\]

199
Suppose
\[T(k) = |< R_i >^{-1} | S_j |< P_i >^{-1} | Q_j | x^{(k)} \]
+ \[\sum_{j=0}^{x^{(k)}-1} |< R_i >^{-1} | S_j |< P_i >^{-1} | Q_j | j < R_i >^{-1} \]
\[(| S_j |< P_i >^{-1} + I) | N_j | \]

According to the third step of algorithm 2.1,
\[| z^{k,i} - z^* | \leq | z^{k, i+1} - z | \leq T(k) | z^k - z^* | \quad (7) \]

According to equation (4) from algorithm, \[z^{k+1} = \sum_{i=1}^{d} E_i z^{k,i} \]

Then \[T(k) \geq 0, H(k) \geq 0 \]

By the known conditions
\[< A ><< M_i > - | N_j |, < M_i >== P_i > - | Q_j | == R_i > - | S_j |, \]

\[T(k) = |< R_i >^{-1} | S_j |< P_i >^{-1} | Q_j | x^{(k)} \]
+ \[\sum_{j=0}^{x^{(k)}-1} |< R_i >^{-1} | S_j |< P_i >^{-1} | Q_j | j \]
\[< R_i >^{-1} (| S_j || \]
\[< P_i >^{-1} + I) | N_j | = (| R_i >^{-1} S_j |< P_i >^{-1} \]
\[| Q_j | x^{(k)} + \sum_{j=0}^{x^{(k)}-1} (| R_i >^{-1} S_j |< P_i >^{-1} | Q_j | j \]
\[< R_i >^{-1} (| S_j |< P_i >^{-1} + I) (| P_i | - | Q_i |) \]
\[< M_i >^{-1} | N_j | = (| R_i >^{-1} S_j |< P_i >^{-1} | Q_j | x^{(k)} \]
+ \[\sum_{j=0}^{x^{(k)}-1} (| R_i >^{-1} S_j |< P_i >^{-1} | Q_j | j \]
\[< R_i >^{-1} | S_j | (I - | P_i >^{-1} | Q_j |) < M_i >^{-1} \]
\[N_j | \]
+ \[\sum_{j=0}^{x^{(k)}-1} (| R_i >^{-1} S_j |< P_i >^{-1} | Q_j | j \]
\[(I - | R_i >^{-1} S_j |< M_i >^{-1} \]
\[N_j | \]
\[= (| R_i >^{-1} S_j |< P_i >^{-1} | Q_j | x^{(k)} + (I - | R_i >^{-1} \]
\[| S_j |< P_i >^{-1} | Q_j | x^{(k)}) < M_i >^{-1} | N_j | \]

Consider Vector \(e = (1, \ldots, 1) \), Given \(x = < A >^{-1} e \), Cause \(< A >^{-1} \geq 0 \), and \(< A >^{-1} \)
not all is 0, then \(x > 0 \). Same we can get \(< R_i >^{-1} (| S_j |< P_i >^{-1} + I) > 0 \).
Through

\[(I - < M_i >^2 | N)_x = < M_i >^2, Ax = < M_i >^2 e \]

\[T(k)x = \sum_{j=0}^{s(k)-1} (\langle R_j >^{-1} | S_j < P_j >^{-1} | Q_j^k) \]

\[+ \sum_{j=0}^{s(k)-1} (\langle R_j >^{-1} | S_j < P_j >^{-1} | Q_j^k)j < R_j >^{-1} \]

\[(\langle S_j < P_j >^{-1} + I > | N_j | x = \sum_{j=0}^{s(k)-1} (\langle R_j >^{-1} | S_j < P_j >^{-1} | Q_j^k + (I - < R_j >^{-1} | S_j < P_j >^{-1} | Q_j^k)j < R_j >^{-1} \]

\[(\langle S_j < P_j >^{-1} | N_j | x = \sum_{j=0}^{s(k)-1} (\langle R_j >^{-1} | S_j < P_j >^{-1} | Q_j^k) + (I - < R_j >^{-1} | N_j | x = [I - (I - < M_i >^{-1} | N_i | x = \sum_{j=0}^{s(k)-1} (\langle R_j >^{-1} | S_j < P_j >^{-1} | Q_j^k)j < R_j >^{-1} \]

\[\sum_{j=0}^{s(k)-1} (\langle R_j >^{-1} | S_j < P_j >^{-1} | Q_j^k)j < R_j >^{-1} \]

\[\sum_{j=0}^{s(k)-1} (\langle R_j >^{-1} | S_j < P_j >^{-1} | Q_j^k)j < R_j >^{-1} \]

\[\sum_{j=0}^{s(k)-1} (\langle R_j >^{-1} | S_j < P_j >^{-1} | Q_j^k)j < R_j >^{-1} \]

\[\sum_{j=0}^{s(k)-1} (\langle R_j >^{-1} | S_j < P_j >^{-1} | Q_j^k)j < R_j >^{-1} \]

\[\sum_{j=0}^{s(k)-1} (\langle R_j >^{-1} | S_j < P_j >^{-1} | Q_j^k)j < R_j >^{-1} \]

\[\sum_{j=0}^{s(k)-1} (\langle R_j >^{-1} | S_j < P_j >^{-1} | Q_j^k)j < R_j >^{-1} \]

\[\sum_{j=0}^{s(k)-1} (\langle R_j >^{-1} | S_j < P_j >^{-1} | Q_j^k)j < R_j >^{-1} \]

\[\sum_{j=0}^{s(k)-1} (\langle R_j >^{-1} | S_j < P_j >^{-1} | Q_j^k)j < R_j >^{-1} \]

\[\sum_{j=0}^{s(k)-1} (\langle R_j >^{-1} | S_j < P_j >^{-1} | Q_j^k)j < R_j >^{-1} \]

\[\sum_{j=0}^{s(k)-1} (\langle R_j >^{-1} | S_j < P_j >^{-1} | Q_j^k)j < R_j >^{-1} \]

\[\sum_{j=0}^{s(k)-1} (\langle R_j >^{-1} | S_j < P_j >^{-1} | Q_j^k)j < R_j >^{-1} \]

So

\[H(k)x = \sum_{j=1}^{n} E_jT(k)x \]

\[= x - \sum_{j=1}^{n} E_j < R_j >^{-1} (\langle S_j < P_j >^{-1} + I > e \]

\[- \sum_{j=1}^{n} E_j \sum_{j=0}^{s(k)-1} (\langle R_j >^{-1} | S_j < P_j >^{-1} | Q_j^k)j < R_j >^{-1} e \]

\[< R_j >^{-1} (\langle S_j < P_j >^{-1} + I > e \]

\[< x - \sum_{j=1}^{n} E_j < R_j >^{-1} (\langle S_j < P_j >^{-1} + I > e \]

Since

\[T(k)x \geq 0, \text{ then} \]

\[x - \sum_{j=1}^{n} E_j < R_j >^{-1} (\langle S_j < P_j >^{-1} + I > e \]

\[x - \sum_{j=1}^{n} E_j < R_j >^{-1} (\langle S_j < P_j >^{-1} + I > e \]

\[\lim_{k \to \infty} H(k) = H(0) = 0. \]

Then this lemma have been proved.

Now we talk about the convergence of the parallel alternating two-stage iterative algorithm.

Theorem 3.2 Given \(A = M_i - N_i, M_i = P_i - Q_i = R_i - S_i (i = 1, 2, \cdots, \alpha) \) as a two-stage multiple division of \(A, A, M_i, P_i, R_i \) are diagonal element for positive H-matrix. and \(< A > < M_i > < N_i >, < M_i > < Q_i > < R_i > < S_i > \), Then for any initial value \(z^0 \in R^n \), Series \(\{z^k\} \) created by (NPATS) 2.1 is convergent \(z^* \). Which is the unique solution of linear complementarity problem.

Prove. \(P_i \) and \(R_i \) are H-matrix by lemma 1.2, then,
Since $\overline{H}(k)$ is a iterative matrix of a method of the parallel alternating two-stage iterative algorithm about the matrix $<M_i> << P_j > - |Q_j | << R_i > - |S_i |$, $i = 1, 2, \ldots, \alpha$ are all positive splitting, we have

$$\lim_{k \to \infty} |H(k)| \leq \lim_{k \to \infty} |\overline{H}(k)| = 0$$

This completes the proof.

RELAXED PARALLEL ALTERNATING TWO-STAGE ITERATIVE ALGORITHM

Now we introduce the relaxation factor in algorithm 3.1, then we can get a new algorithm below.

Algorithm 4.1 (Relaxed parallel alternating two-stage iterative algorithm)

Step 1. Initialization. Let $z_0, y_0^0 \in R^n$ be any given initial value, set $k = 0$.

Step 2. General iteration. Set $z^k, y_0^k \in R^n$, For the multi-splitting of A, $A = M_i - N_i$, $M_i = P_i - Q_i = R_i - S_i$ ($i = 1, 2, \ldots, \alpha$), Parallel and alternating solving, Created Sequence: $y_0^{k,0}, y_0^{k,1/2}, y_0^{k,1}, \ldots, y_0^{k,1/2}, y_0^{k,1}$, and $y_i^{k,1/2}, y_i^{k,1}$ is the solution of complement subset question (2) and (3), After $s(k)$ times of inner iterative, Let $z_i^{k,i} := y_i^{k,i+1}$.

Step 3. Let

$$z^{k+1} = \omega \sum_{i=1}^n E_i z^{k,i} + (1 - \omega)z^k.$$

Step 4. Test for termination. If z^{k+1} satisfies a prescribed stopping rule, terminate. Otherwise, return to Step 2 with k replaced by $k + 1$. is relaxation factor.

On relaxed Parallel Multi-splitting alternating two stage iterative method, we have the following two convergence theorem:

Theorem 4.1 Given $< A >^{-1} \geq 0$, $A = M_i - N_i$, $M_i = P_i - Q_i = R_i - S_i$ ($i = 1, 2, \ldots, \alpha$) as a two-stage multiple division of A, A, M_i, P_i, R_i are diagonal element for positive H-matrix respectively. and $< A > << M_i > - |N_i |, < M_i > << Q_i > - |R_i |, < Q_i > - |S_i |, 0 < \omega < 1$. For any initial value $z_0 \in R^n$, According to the unique solution z^* of series $\{z^k\}$ which is created by algorithm 4.1 of (PATS).
ACKNOWLEDGMENT
This work is supported by the Key Educational Reform Projects of the Guangdong Polytechnic of Science and Technology (No. JG201210).

REFERENCES
1. R.W. Cottle, J.S. Pang and R.E. Stone, The Linear Complementarity Problem. Academic Press, San Diego, 1992.
2. B.X. Duan, C.L. Li, A.N. Xu, Relaxed parallel multisplitting iterative algorithm for linear complementarity problems, OR Transactions, 2006, 10(3).
3. Zhang L.-T., Zuo X.-Y., Gu T.-X., Liu X.-P. (2014) Improved convergence theorems of multisplitting methods for the linear complementarity problem. Appl Math Comput 243: 982–987.
4. R.P. Wen, G.Y. Meng and C.L. Wang. Multisplitting iterative methods with general weighting matrices for solving symmetric positive linear systems. Mathematica Numerica Sinica, 2014, 36(1): 27-34.
5. L.-L. Zhang, Two-step modulus based matrix splitting iteration for linear complementarity problems, Numer. Algorithms 57 (2011) 83–99.
6. A.Frommer and D.B Szyld. H-splittings and two stage iterative methods [J]. Numer Math, 1992, (63): 345-356.
7. D.-J. Yuan, Y.-Z. Song. Modified AOR methods for linear complementarity problem. Appl. Math.Comput. 140, 53–67 (2003).
8. Z.Z. Bai and T.Z Huang. Accelerated overrelaxation methods for solving linear complementarity problem [J]. JUEST China 23, 428-432(1994).
9. W.W. Xu and H. Liu, A modified general modulus-based matrix splitting method for linear complementarity problems of H-matrices. Linear Algebraandits Applications, 458(2014)626–637.
10. N. Zheng, J.-F. Yin, On the convergence of projected triangular decomposition methods for pricing American options with stochastic volatility, Appl. Math. Comput. 223 (2013) 411–422.