Disjoint axis-parallel segments without a circumscribing polygon

Rain Jiang Kai Jiang Minghui Jiang *
Home School, USA

Abstract

We construct a family of 17 disjoint axis-parallel line segments in the plane that do not admit a circumscribing polygon.

1 Introduction

For any family S of closed segments in the plane, denote by $V(S)$ the set of endpoints of the segments in S. A simple polygon P is a circumscribing polygon of S if the vertex set of P is $V(S)$, and every segment in S is either an edge or an internal diagonal in P.

Grünebaum [3] constructed a family S_1 of six disjoint segments with four distinct slopes that do not admit a circumscribing polygon. Recently, Akitaya et al. [1] constructed a family S_3 of nine disjoint segments with three distinct slopes that do not admit a circumscribing polygon, and asked whether every family of disjoint axis-parallel segments in the plane, not all in a line, admit a circumscribing polygon. In this note, we show that the family S_2 of 17 disjoint axis-parallel segments illustrated in Figure 1 do not admit a circumscribing polygon.

Figure 1: 17 disjoint axis-parallel segments in a centrally symmetric configuration inside a $[-11, 11] \times [-8, 8]$ grid.

* dr.minghui.jiang at gmail.com
2 The proof

To prove that \(S_2 \) does not admit a circumscribing polygon, our main tool is the following proposition [2, Lemma 2.1] which is repeatedly used by Akitaya et al. [1] in proving that the family \(S_3 \) they constructed does not admit a circumscribing polygon. For any polygon \(P \), denote by \(\text{conv}(P) \) the convex hull of \(P \).

Proposition 1. For any simple polygon \(P \), the vertices in \(\text{conv}(P) \) must appear in the same circular order in both \(P \) and \(\text{conv}(P) \).

Refer to Figure 2 for a magnified illustration of \(S_2 \) with labels. Suppose for contradiction that \(S_2 \) admits a circumscribing polygon \(P \).

Since the eight vertices \(a, b, c, d, e, f, g, h \) are on the convex hull of \(P \), it follows by Proposition 1 that the four segments \(ha, bc, de, fg \) must be edges in \(P \). Then \(P \) is the alternating concatenation of these four edges and four paths \(a \rightarrow b, c \rightarrow d, e \rightarrow f, g \rightarrow h \).

We say that a path visits a segment if it goes through at least one endpoint of the segment. Since the segments in \(S \) are in a centrally symmetric configuration, we can assume without loss of generality that at least one of the two paths \(a \rightarrow b \) and \(c \rightarrow d \) visits the segment \(mn \). In the following we assume that this path is \(a \rightarrow b \). The other case, that this path is \(c \rightarrow d \), is similar.

Let \(P_{ab} \) be the simple polygon obtained by closing the path \(a \rightarrow b \) with the edge \(ba \). Suppose that \(a \rightarrow b \) does not visit any segment to the right of \(mn \). Then it must visit both endpoints of \(ij \). Note that \(a, b, i, j \) and \(\{m, n\} \cap V(P_{ab}) \) are all on \(\text{conv}(P_{ab}) \). Thus it follows by Proposition 1 that \(ij \) must be an internal diagonal of \(P_{ab} \) and hence an external diagonal of \(P \). Since \(ij \) cannot be an external diagonal of the circumscribing polygon \(P \), \(a \rightarrow b \) must visit at least one other segment to the right of \(mn \). Indeed, due to the strategic position of \(kl \), \(a \rightarrow b \) must visit either \(k \) or \(l \) or both.

We claim that \(a \rightarrow b \) must visit \(l \). Suppose the contrary. Then \(a \rightarrow b \) must visit \(i, j, k, l \), and cannot visit any segment to the right of \(kl \). Then \(a, b, j, k, i \) are on \(\text{conv}(P_{ab}) \), and it again follows by Proposition 1 that...
ij is external, a contradiction.

We have shown that $a \rightarrow b$ visits l. We claim that $a \rightarrow b$ must not visit any segment to the right of kl. Suppose the contrary, and let $z \in \{p, q, r, s, t, u, v, w, x, y\}$ be the rightmost endpoint that $a \rightarrow b$ visits, breaking ties arbitrarily. Then $a \rightarrow b$ must visit both k and l, and a, b, k, z, l are on $\text{conv}(P_{ab})$. Then by Proposition 1, kl is external, a contradiction. Also, since $a \rightarrow b$ visits l, $c \rightarrow d$ cannot visit any segment to the right of kl either.

In summary, the endpoints $\{p, q, r, s, t, u, v, w, x, y\}$ must be visited by $e \rightarrow f$ and $g \rightarrow h$. We claim that $g \rightarrow h$ does not visit xy. Suppose the contrary. Let $z \in \{x, y, w, v, k\}$ be the lowest endpoint that $g \rightarrow h$ visits. Let P_{gh} be the simple polygon obtained by closing the path $g \rightarrow h$ with the edge hg. Then $g \rightarrow h$ must visit both endpoints u and t, and g, u, z, t, h are all on $\text{conv}(P_{gh})$. Then by Proposition 1, ut is external, a contradiction.

Since $g \rightarrow h$ does not visit xy, $e \rightarrow f$ must visit xy. Let P_{ef} be the simple polygon obtained by closing the path $e \rightarrow f$ with the edge fe.

We claim that $e \rightarrow f$ must visit u. Suppose the contrary. Then $e \rightarrow f$ may still visit t but not any segment above tu. Let $z \in \{x, y, t\}$ be the highest endpoint that $e \rightarrow f$ visits. Then $e \rightarrow f$ must visit both endpoints w and v, and e, w, z, v, f are all on $\text{conv}(P_{ef})$. Then by Proposition 1, wv is external, a contradiction.

We have shown that $e \rightarrow f$ must not visit any segment above u. Suppose the contrary, and let $z \in \{p, q, r, s\}$ be the highest endpoint that $e \rightarrow f$ visits. Then $e \rightarrow f$ must visit both t and u, and e, t, z, u, f are on $\text{conv}(P_{ef})$. Then by Proposition 1, tu is external, a contradiction.

In summary, the endpoints $\{p, q, r, s\}$ must be visited by $g \rightarrow h$. In addition, the endpoint t may or may not be visited by $g \rightarrow h$.

Finally, let $z \in \{r, s, t\}$ be the leftmost endpoint that $g \rightarrow h$ visits. Then $g \rightarrow h$ must visit both p and q, and g, q, z, p, h are on $\text{conv}(P_{gh})$. Then by Proposition 1, pq is external, a contradiction.

Therefore, our initial assumption that S_2 admits a circumscribing polygon P does not hold. The proof is now complete.

3 An open question

Akitaya et al. [1] proved that it is NP-hard to decide whether a given family of disjoint segments admit a circumscribing polygon. Is this decision problem still NP-hard on disjoint axis-parallel segments?

References

[1] H. A. Akitaya, M. Korman, M. Rudoy, D. L. Souvaine, C. D. Tóth. Circumscribing polygons and polygonizations for disjoint line segments. Proceeding of the 35th International Symposium on Computational Geometry, 9:1–9:17, 2019.

[2] P. Bose, M. E. Houle, and G. T. Toussaint. Every set of disjoint line segments admits a binary tree. Discrete and Computational Geometry, 26:387–410, 2001.

[3] B. Grünbaum. Hamiltonian polygons and polyhedra. Geombinatorics, 3:83–89, 1994.