Solving two-dimensional density classification problem with two probabilistic cellular automata

HENRYK FUKŚ

Brock University
Department of Mathematics and Statistics
St. Catharines, ON, Canada
Email: hfuks@brocku.ca

The density classification problem is one of the simplest yet non-trivial computing tasks which seem to be ideally suitable for cellular automata (CA). Unfortunately, there exists no one-dimensional two-state CA which classifies binary strings according to their densities. If, however, in place of simple cells one uses agents which change their behaviour from one rule to another after a fixed number of iterations, the classification can be performed by the traffic rule 184 and the majority rule 232. This two-rule solution cannot be easily generalized to two (or higher) dimensions, because it critically depends on a kinetic phase transition occurring in the rule 184. No rule exhibiting analogous transition is known in two dimensions, most likely because no such rule exists. We propose, therefore, to approach this problem from a slightly different angle, namely by introducing a stochastic component into each of the two rules. If one precedes each iteration of rule 184 by the stochastic “lane changing rule”, and each iteration of rule 232 by the stochastic “crowd avoidance” rule, in the limit of infinitely many iterations the classification can be performed correctly with probability 1. This solution can be described either in the language of CA, or using the paradigm of agents which move and proliferate on the 2D lattice, following probabilistic rules.
1 INTRODUCTION

The density classification problem (DCP) asks for a construction of a cellular automaton rule which, when applied to a binary string of density ρ, converges to all ones when $\rho > 1/2$ and all zeros when $\rho < 1/2$. From the time when Gacs, Kurdyumov and Levin proposed this problem and its first approximate solution \cite{10}, a lot of research effort went into studying of this topic. After it has been proved by Land and Belew \cite{11} that the perfect two-state rule performing this task does not exist, approximate solutions have been constructed using a variety of methods. The best currently known solutions, found by evolutionary algorithms, are described in \cite{14}. For a good review of the density classification problem and its various modifications the reader may consult \cite{3} and references therein.

Here we shall concentrate on a two-dimensional version of DCP. For an infinite two-dimensional array, the so-called Toom’s rule is know to be a solution \cite{2}, but its performance on finite lattices is unsatisfactory \cite{5}. Approximate solutions do exist, and similarly as in the one-dimensional case, they have been obtained by evolutionary algorithms \cite{13, 14}.

Since no single rule solving DCP in one dimension exists, the author proposed a generalized version of the problem involving two rules and found its exact solution \cite{6}. Later, other two-rule solutions have been found as well \cite{12}. The purpose of this paper is to explore a generalization of the two-rule solution to two dimensions. As we will shortly see, although a direct and naive generalization does not work, it can be fixed by adding stochastic components to both rules.

2 SOLUTION IN ONE DIMENSION

In one dimension, in order to classify a binary string of length L, one needs to apply rule 184 for a number of time steps, and then switch to rule 232. To be more precise, let us define $s = \{s_0, s_1, \ldots, s_{L-1}\}$ to be a string of binary numbers. We impose periodic boundary conditions on it, so that all indices are taken modulo L. Density of s is defined as $\rho = \sum_{i=0}^{L-1} s_i/L$. We further define $R_{184} : \{0, 1\}^L \rightarrow \{0, 1\}^L$ as

$$[R_{184}(s)]_i = s_{i-1} + s_i s_{i+1} - s_{i-1}s_i,$$

and $R_{232} : \{0, 1\}^L \rightarrow \{0, 1\}^L$ as

$$[R_{232}(s)]_i = \text{majority} \{s_{i-1}, s_i, s_{i+1}\}.$$
In [6], the following proposition is proved.

Proposition 1 Let \(s \) be a binary string of length \(L \) and density \(\rho \), and let
\[
\begin{align*}
&n = \lfloor (L - 2)/2 \rfloor, \\
&m = \lfloor (L - 1)/2 \rfloor.
\end{align*}
\]
Then \(R_{232}^n R_{184}^m(s) \) consists of only 0’s if \(\rho < 1/2 \) and of only 1’s if \(\rho > 1/2 \). If \(\rho = 1/2 \), \(R_{232}^n R_{184}^m(s) \) is an alternating sequence of 0’s and 1’s, i.e., \(\ldots 01010101 \ldots \).

What makes this scheme work is a specific property of rule 184. First of all, this rule is known to be number-conserving, that is, it does not change the number of zeros or ones in the string to which it is applied. Moreover, if the initial string has more zeros than ones, after sufficiently many iterations of rule 184 all pairs 00 disappear. Conversely, if there is more zeros than ones in the initial string, all pairs 11 eventually disappear. Rule 232, on the other hand, has the property of growing continuous clusters of zeros in the absence of 11 pairs, and growing continuous clusters of ones in the absence of 00 pairs.

In the light of the above, it is not hard to see that the combination of rules 184 and 232 performs perfect density classification, as described in Proposition 1. Could the same scheme be applied to two-dimensional binary arrays?

Before we answer this question, let us remark that rule 184, being number-conserving, can be described using the paradigm of particles or agents, if one assumes that a site in state 1 corresponds to a cell occupied by an agent, and site in state 0 denotes empty cell. One can then show [7] that rule 184 is equivalent to the following behaviour of agents: if an agent has an empty cell on the right hand side, it moves there, otherwise it does not move. All agents move at the same time. Since this is the simplest model of road traffic with agents being cars, rule 184 is also known as the “traffic rule”. It is obvious that the number of agents in this rule will always be preserved.

The second rule, rule 232, can also be described in terms of agents, as follows. If an agent has two empty neighbouring cells, it disappears, otherwise it remains. Moreover, if an empty cell is surrounded by two agents, a new agent is born there. Birth and deaths of agents happen simultaneously on the entire lattice.

The density classification problem can be now rephrased in the language of agents. We start with a lattice where a certain unknown number of cells is occupied by agents. We want to equip the agents with a local rule governing their behaviour such that if more than 50% of initial cells are occupied, in the end all cells are occupied. If less than 50% of cells are occupied by agents, then in the end all cells become empty. Proposition 1 tells us that if we let the agents move following the traffic rule for \(\lfloor (L - 2)/2 \rfloor \) steps and then we let
them proliferate or die following rule 232 for \(\lfloor (L - 1)/2 \rfloor\) time steps, in the end we will obtain the desired configuration.

3 RULES 184 AND 232 IN TWO DIMENSIONS

Let us now consider binary arrays \(L \times L\), with entries \(s_{i,j}\), where \(i, j \in \{0, 1, \ldots L - 1\}\). Set of all such arrays will be denoted by \(S\). As before, we will impose periodic boundary conditions, taking all indices \(i, j\) modulo \(L\).

A simple and naive generalization of Proposition 1 could involve rules 184 and 232 “lifted” to two dimensions, by defining \(R_{184}: S \rightarrow S\) and \(R_{232}: S \rightarrow S\) as

\[
\begin{align*}
\left[R_{184}(s)\right]_{i,j} &= s_{i-1,j} + s_{i,j}s_{i+1,j} - s_{i-1,j}s_{i,j}, \quad (3) \\
\left[R_{232}(s)\right]_{i,j} &= \text{majority}\{s_{i-1,j}, s_{i,j}, s_{i+1,j}\}. \quad (4)
\end{align*}
\]

Unfortunately, one cannot classify densities by applying \(R_{184}\) for a number of steps and then switching to rule 232, as it was done in one dimension. If we apply \(R_{184}\) to a two-dimensional array, each row will remain independent of all other rows. In particular, it may happen that in some rows all 00 pairs are eliminated, and in other rows all 11 pairs are eliminated. As a result, both 00 and 11 will still be present when one switches to rule 232, leading to (possibly) incorrect classification. One needs to introduce some sort of interaction between rows which would allow for transfer of 00 and 11 pairs between rows.

The author experimented with various possibilities of inter-row interactions, but all of them turned out to be unsatisfactory. It seems that there exists no deterministic CA rule in two dimensions which would have properties analogous to rule 184 in 1D. However, having in mind recent progress on one-dimensional DCP using probabilistic rules \([8, 4]\), injection of some stochasticity into dynamics presents itself as a promising possibility. Indeed, as it turns out, if one allows probabilistic CA, two-dimensional analog of rule 184 can be constructed rather easily.

4 RANDOMIZATION OF RULE 184

Let us first describe a rule which will be called “lane changing rule”, illustrated in Figure 1. We will call this rule \(F_X\) (the meaning of the subscript \(X\) will be explained later). According to the rule \(F_X\), agents move simultaneously in such a way that every agent which has another agent on the right
hand side and empty site above, moves up with probability $1/2$ and stays in the same place with probability $1/2$. All other agents do not move. If agents were cars moving to the right, one could say that cars which are blocked (have another car directly ahead) change lane if possible (move to the next row) – hence the name “lane changing rule”.

Rule F_X can of course be described formally using the language of cellular automata. Let X denote an array of independent and identically distributed random variables $X_{i,j}$, where $i, j \in \{0, 1, \ldots L - 1\}$, such that

$$\Pr(X_{i,j} = 0) = \Pr(X_{i,j} = 1) = \frac{1}{2}. \tag{5}$$

Furthermore, let us define $u_{i,j} = \begin{pmatrix} s_{i-1,j+1} & s_{i,j+1} & s_{i+1,j+1} \\ s_{i-1,j} & s_{i,j} & s_{i+1,j} \\ s_{i-1,j-1} & s_{i,j-1} & s_{i+1,j-1} \end{pmatrix}$. \tag{6}

Using the above notation, we define $F_X : \mathcal{S} \rightarrow \mathcal{S}$ as

$$[F_X(s)]_{i,j} = \begin{cases} 1 & \text{if } u_{i,j} = \begin{pmatrix} * & * & * \\ * & 1 & 1 \end{pmatrix} \text{ and } X_{i,j-1} = 1, \\ 0 & \text{if } u_{i,j} = \begin{pmatrix} * & 0 & * \\ * & 1 & 1 \end{pmatrix} \text{ and } X_{i,j} = 1, \\ s_{i,j} & \text{otherwise.} \end{cases} \tag{7}$$
This can be written in a more compact form as

\[
[F_X(s)]_{i,j} = s_{i,j} + (1 - s_{i,j}) s_{i,j-1} s_{i+1,j-1} X_{i,j-1} - s_{i,j} (1 - s_{i,j+1}) s_{i+1,j} X_{i,j-1}.
\] (8)

Using the above, one can compute the sum of array’s entries after the application of \(F_X \),

\[
\sum_{(i,j)} [F_X(s)]_{i,j} = \sum_{(i,j)} s_{i,j} + \sum_{(i,j)} (1 - s_{i,j}) s_{i,j-1} s_{i+1,j-1} X_{i,j-1} - \sum_{(i,j)} s_{i,j} (1 - s_{i,j+1}) s_{i+1,j} X_{i,j}.
\] (9)

If one replaces \(j \) by \(j + 1 \) in the second sum on the right hand side, it becomes the same as the third sum, meaning that the second and the third sum cancel each other. This leaves

\[
\sum_{(i,j)} [F_X(s)]_{i,j} = \sum_{(i,j)} s_{i,j},
\] (10)

proving that \(F \) is number-conserving.

The effect of application of \(F_X \) is a “diffusion” of pairs 11 between rows. Figure 2 illustrates this using an initial array with two rows only (Figure 2a). In the top row, there are two 00 pairs, and in the bottom row, two 11 pairs. If one applied \(R_{184} \) to this configuration, pairs 00 and 11 would change position in their respective rows, but they would remain in the same row. Multiple iterations of \(R_{184} \) would have a similar effect – pairs 00 and 11 would never be eliminated. Now, suppose that we apply \(F_X \) first. A possible outcome of this is a configuration shown in Figure 2b. One of the agents from the lower row (the one located at 7th position from the right) jumped up to the upper row. Now, in the upper row we have one 00 pair and one 11 pair, and in the bottom row neither one of them. If one now applies \(R_{184} \), 00 and 11 in the top row will “annihilate” each other, and the resulting configuration will be as shown in Figure 2c.

This means that instead of \(R_{184} \), we need to use \(F_X R_{184} \). Rule \(F_X R_{184} \) is a probabilistic CA rule, and by combining eqs. (8) and (3), one can obtain...
FIGURE 2
Illustration of properties of rule F_X: (a) initial configuration s, (b) $F_X(s)$, (c) $R_{184}F_X(s)$

its explicit definition,

$$
F_X R_{184}(s) = s_{i-1,j} + s_{i,j}s_{i+1,j} - s_{i-1,j}s_{i,j} \\
+ (1 - s_{i-1,j} - s_{i,j}s_{i+1,j} + s_{i-1,j}s_{i,j}) \\
\times (s_{i-1,j-1} + s_{i,j-1}s_{i+1,j-1} - s_{i-1,j-1}s_{i,j-1}) \\
\times (s_{i,j-1} + s_{i+1,j-1}s_{i+2,j-1} - s_{i,j-1}s_{i+1,j-1}) X_{i,j-1} \\
- (s_{i-1,j} + s_{i,j}s_{i+1,j} - s_{i-1,j}s_{i,j}) \\
\times (1 - s_{i-1,j+1} - s_{i,j+1}s_{i+1,j+1} + s_{i-1,j+1}s_{i,j+1}) \\
\times (s_{i,j} + s_{i+1,j}s_{i+2,j} - s_{i,j}s_{i+1,j}) X_{i,j}. \quad (11)
$$

Note that $[F_X R_{184}(s)]_{i,j}$ depends not only on nearest neighbours of $s_{i,j}$, but also on second nearest neighbours. $F_X R_{184}$ is thus a probabilistic CA rule with Moore neighbourhood of range 2.

After sufficiently many iterations of this rule, the binary array will have no 00 pairs (if it had more zeros than ones at the beginning), or no 11 pairs (if it had more ones than zeros at the beginning). This is precisely what is needed for rule 232 to do its job.
Once the pairs 00 or 11 are eliminated (depending on the initial density), we need to grow clusters of zeros or ones, in order to reach the final configuration of all all zeros or all ones.

If, after multiple iterations of $F_X R_{184}$, every row included some 00 pairs (or some 11 pairs), iterating R_{232} would produce the desired final configuration of all zeros (or all ones). However, it is entirely possible that after iterations of $F_X R_{184}$ we will obtain some rows which are made of alternating zeros and ones. . .010101. . . Such rows after one iteration of rule 232 become . . .101010. . . , and after another iteration become again . . .010101. . . , thus they are periodic points of rule 232 (with period 2). This means that the desired final configuration of all zeros or all ones may never be reached if the “plain” R_{232} is iterated. We need a way to move 00 and 11 pairs between rows, just like before.

This will be done using a probabilistic rule G_X, slightly different that previously defined F_X. Using again the agent paradigm, we will construct a rule in which an agent having 000 above itself will jump up with probability 50% or stay in the same place with probability 50%. Similarly, an empty site which has 111 below will become occupied with probability 50% (the central agent from 111 below will jump to it), and will remain unchanged with probability 50%. This is illustrated in Figure 3, G_X could be called a “crowd avoidance” rule, since agents tend to avoid being surrounded by other agents, and tend to move into cells which have empty neighbours.
Using the notation introduced earlier, we can define $G_X : S \rightarrow S$ as

$$[G_X(s)]_{i,j} = \begin{cases}
1 & \text{if } u_{i,j} = \begin{pmatrix} * & * & * \\ 0 & 0 & 0 \\ * & 1 & * \end{pmatrix} \text{ and } X_{i,j-1} = 1, \\
0 & \text{if } u_{i,j} = \begin{pmatrix} * & 1 & * \\ 0 & 0 & 0 \\ * & * & * \end{pmatrix} \text{ and } X_{i,j} = 1, \\
1 & \text{if } u_{i,j} = \begin{pmatrix} * & * & * \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix} \text{ and } X_{i,j-1} = 1, \\
0 & \text{if } u_{i,j} = \begin{pmatrix} * & * & * \\ * & 0 & * \\ 1 & 1 & 1 \end{pmatrix} \text{ and } X_{i,j} = 1, \\
s_{i,j} & \text{otherwise.}
\end{cases}$$

(12)

The above rule can be written in an algebraic form similarly as done for rule F_X in eq. (8). Then one can write equation analogous to eq. (9) and show that G_X is number-conserving, by shifting dummy indices in the same fashion as we did for rule F_X. We omit these details since they are rather straightforward but tedious. Moreover, Figure 3 makes it clear that the number of agents must stay constant.

Rule $G_X R_{232}$ does exactly what is needed: it grows clusters of zeros or ones, but it also eliminates rows of the type \ldots 01010101 \ldots

6 CLASSIFICATION OF DENSITIES

The density classification can now be performed by

$$(G_X R_{232})^{T_2} (F_X R_{184})^{T_1},$$

(13)

where, obviously, we need to use different random field X each time step. More precisely, we define

$$(G_X R_{232})^{T_2} (F_X R_{184})^{T_1} = (F_X^{(T_1+T_2)} R_{232}) \ldots (F_X^{(T_1)} R_{184}) (F_X^{(T_1+T_2)} R_{232})$$

$$= (F_X^{(T_1+T_2)} R_{232}) (F_X^{(T_1)} R_{184}) \ldots (F_X^{(T_2)} R_{184})$$

(14)

where $X^{(1)}, X^{(2)}, \ldots, X^{(T_1+T_2)}$ are independent identically distributed random arrays, each consisting of random variables $X_{i,j}^{(t)}$ with probability distribution described by eq. (5). To simplify our classification scheme, we will
take $T_1 = T_2$, even though this is not the most efficient choice (typically, T_2 does not need to be as large as T_1).

Let $\bf{0}$ denote an $L \times L$ array of zeros, and $\bf{1}$ an $L \times L$ array of ones. We propose the following conjecture.

Conjecture. Let \bf{s} be an $L \times L$ array of binary numbers. If the number of ones in \bf{s} is greater than the number of zeros, then, with probability 1,

$$\lim_{T \to \infty} (G_X R_{232})^T (F_X R_{184})^T(\bf{s}) = 1.$$

(15)

Similarly, if the number of ones in \bf{s} is smaller than the number of zeros, then, with probability 1,

$$\lim_{T \to \infty} (G_X R_{232})^T (F_X R_{184})^T(\bf{s}) = 0.$$

(16)

In order to provide numerical evidence supporting this conjecture, we will evaluate performance of the rule $(G_X R_{232})^T (F_X R_{184})^T$ in classifying densities. Of course, we won’t be able to perform infinitely many iterations. Nevertheless, as we will see in the next section, the performance can be very good even if a finite T is used.

7 PERFORMANCE

Performance of a given rule Ψ in performing the density classification is typically defined as follows. Let I denotes the number of random initial configurations consisting of N cells each, drawn from a symmetric Bernoulli distribution. This means that each initial configuration is generated by setting each of its cells independently to 0 or 1, with the same probability $1/2$. If the resulting configuration has exactly the same number of zeros and ones, we flip one randomly selected bit to break the symmetry.

Suppose that we iterate the rule Ψ on each of those initial configurations. If a configuration with initial density less than 0.5 converges to 0, we consider it a successful classification, similarly as when a configuration with initial density greater than 0.5 converges to 1. In all other cases we consider the classification unsuccessful. The percentage of successful classifications among all I initial conditions will be called **performance** of the rule Ψ. In Table 1, we show the performance for $I = 1000$ and for two array sizes, $N = 50 \times 50$ and $N = 100 \times 100$. In order to show how the performance depends on T, we used different values of T ranging from 250 to 16000. One can see that for $L = 50$, 4000 iterations of each rule suffice to obtain the perfect performance. For $L = 100$, 16000 iterations are needed. This means that one needs
TABLE 1
Performance of \((G_X R_{232})^T(F_X R_{184})^T\) for \(I = 100\) and for lattices \(50 \times 50\) and \(100 \times 100\) for different values of \(T\).

\(T\)	\(L = 50\)	\(L = 100\)
250	85.5%	39.9%
500	96.1%	75.9%
1000	99.4%	90.3%
2000	99.7%	97.5%
4000	100%	99.7%
8000	100%	99.9%
16000	100%	100%

only slightly more than three iterations per bit in both of those cases. This is understandable if one considers the “diffusive” nature of \(F_X\) and \(G_X\). In \(F_X R_{184}\), for example, pairs 00 perform a sort of random walk until they hit a pair 11. The required number of iterations of \(F_X R_{184}\), therefore, should be strongly correlated with the average hitting time for random walk. It is known that the average hitting time for a random walk on 2D periodic lattice roughly scales as \(L^2\) \(^9\), and, since the number of bits in the lattice also scales as \(L^2\), we expect the number of iterations per bit should remain roughly constant as \(L\) increases.

We should also remark that although we took the number of iterations to be the same for both rules \(F_X R_{184}\) and \(G_X R_{232}\), this is not really necessary. In fact, the largest number of iterations of \(G_X R_{232}\) needed to converge to 0 or 1 observed in our numerical simulations was 611 for \(100 \times 100\) lattice and 265 for \(50 \times 50\) lattice. Since clusters of zeros or ones in rule 232 grow linearly with time, and they grow only in horizontal direction, one can expect that the number of required iterations of \(G_X R_{232}\) grows linearly with \(L\).

8 CONCLUSIONS AND FURTHER WORK

We presented construction of a probabilistic two-rule scheme which performs density classification in two dimensions with increasing accuracy as the number of iterations increases. Although right now this scheme remains a conjecture, numerical evidence strongly supports it. Moreover, since the dynamics
of the classification process is rather well understood, it is quite likely that a
formal proof of this conjecture may be within reach. It should also be possible
to obtain some rigorous bounds on the expected number of iterations needed
for classification.

A crucial feature of the proposed solution is that the agents at some point
of time change their behaviour from traffic coupled with lane changing to
proliferation/death coupled with crowd avoidance. Could one devise a sin-
gle rule achieving similar performance? In the one-dimensional case, this
has been achieved, as the probabilistic solution proposed in [4] is actually a
stochastic “mixture” of rules 184 and 232. The author plans to pursue this
idea in the near future.

One should also add that if one follows the spirit of the “classical” DCP,
the agents should have no access to any global information. Since in the
proposed solution they change their behaviour after \(T\) iterations, one could
argue that they have access to a global timer. At the same time, the agents
follow very simple rules, which makes it possible to describe their dynamics
as CA. This brings an interesting question: if one denied the agents the access
to the global timer, but instead equipped them with more sophisticated rules
of behaviour (e.g., giving them local memory, making them “smarter”, etc.),
could the DCP be solved? A recent progress on solving DCP using CA with
memory [1] indicates that this could be a promising avenue to pursue. On
might, therefore, ask a broader and more general question: what are the least-
complex agents which could solve the DCP? The author hopes that this article
stimulates further research in this direction.

ACKNOWLEDGMENTS

The author acknowledges financial support from the Natural Sciences and
Engineering Research Council of Canada (NSERC) in the form of Discovery
Grant. This work was made possible by the facilities of the Shared Hierarchi-
cal Academic Research Computing Network (SHARCNET:www.sharcnet.ca)
and Compute/Calcul Canada.

REFERENCES

[1] Ramón Alonso-Sanz and Larry Bull. (2009). A very effective density classifier two-
dimensional cellular automaton with memory. Journal of Physics A: Mathematical and
Theoretical, 42(48):485101.

[2] Ana Bušić, Nazim Fatès, Jean Mairesse, and Irène Marcovici. (2013). Density classifica-
tion on infinite lattices and trees. Electron. J. Probab., 18:no. 51, 1–22.
[3] Pedro P.B de Oliveira. (2013). Conceptual connections around density determination in cellular automata. In Jarkko Kari, Martin Kutrib, and Andreas Malcher, editors, *Cellular Automata and Discrete Complex Systems*, volume 8155, pages 1–14. Springer Berlin Heidelberg.

[4] N. Fates. (2011). Stochastic Cellular Automata Solve the Density Classification Problem with an Arbitrary Precision. In Thomas Schwentick and Christoph Dürr, editors, *28th International Symposium on Theoretical Aspects of Computer Science (STACS 2011)*, volume 9, pages 284–295, Dagstuhl, Germany. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[5] N. Fates. (2012). A note on the density classification problem in two dimensions. In E. Formenti, editor, *Proc. of the 18th International Workshop on Cellular Automata and Discrete Complex Systems: Exploratory Papers Proceedings*, pages 11–18. Rapport de Recherche I3S - ISRN: I3S/RR-2012-04-FR.

[6] H. Fukš. (1997). Solution of the density classification problem with two cellular automata rules. *Phys. Rev. E.*, 55:2081R–2084R.

[7] H. Fukš. (2000). A class of cellular automata equivalent to deterministic particle systems. In A. T. Lawniczak S. Feng and R. S. Varadhan, editors, *Hydrodynamic Limits and Related Topics*, Fields Institute Communications Series, Providence, RI. AMS.

[8] H. Fukš. (2002). Non-deterministic density classification with diffusive probabilistic cellular automata. *Phys. Rev. E.*, 66:066106.

[9] H. Fukš, A. T. Lawniczak, and S. Volkov. (2001). Packet delay in models of data networks. *ACM Transactions on Modelling and Simulations*, 11:233–250.

[10] P. Gacs, G. L. Kurdyumov, and L. A. Levin. (1987). One-dimensional uniform array that wash out finite islands. *Probl. Peredachi Inform.*, 14:92–98.

[11] M. Land and R. K. Belew. (1995). No perfect two-state cellular automata for density classification exists. *Phys. Rev. Lett.*, 74(25):5148–5150.

[12] ClaudioL.M. Martins and PedroP.B. Oliveira. (2005). Evolving sequential combinations of elementary cellular automata rules. In MathieuS. Capcarrère, AlexA. Freitas, PeterJ. Bentley, ColinG. Johnson, and Jon Timmis, editors, *Advances in Artificial Life*, volume 3630, pages 461–470. Springer Berlin Heidelberg.

[13] F. Jiménez Morales, J.P. Crutchfield, and M. Mitchell. (2001). Evolving two-dimensional cellular automata to perform density classification: A report on work in progress. *Parallel Computing*, 27(5):571–585.

[14] D. Wolz and P. P. B. de Oliveira. (2008). Very effective evolutionary techniques for searching cellular automata rule spaces. *Journal of Cellular Automata*, 3(4):289–312.