Association between smoking and non-alcoholic fatty liver disease: A systematic review and meta-analysis

Arash Akhavan Rezayat1,2, Malihe Dadgar Moghadam2, Mohammad Ghasemi Nour1,2, Matin Shirazinia1,2, Hamidreza Ghods1,2, Mohammad Reza Rouhbachsh Zahmatkesh1,2, Mitra Tavakolizadeh Noghabi3, Benyamin Hoseini1 and Kambiz Akhavan Rezayat1

Abstract

Background/aims: Non-alcoholic fatty liver disease is one of the most common chronic liver diseases. Some risk factors are known to influence the development of non-alcoholic fatty liver disease, but the effect of tobacco smoking on the progression of non-alcoholic fatty liver disease is controversial. The main goal of this systematic review and meta-analysis is to investigate the association between smoking and non-alcoholic fatty liver disease.

Method: Electronic databases (PubMed, Scopus, and ISI Web of Science) were searched to find published articles on non-alcoholic fatty liver disease and smoking until December 2016. All relevant studies were screened by inclusion and exclusion criteria and compatible studies were chosen. The Newcastle–Ottawa Scale was used to assess the methodological quality of eligible articles. Subsequently, information was gathered based on the following: author, publication year, keywords, country, inclusion and exclusion criteria, main results, study design, conclusion, and confounder variables (age, body mass index, gender, ethnicity, and diabetes). Finally, analyses were performed using Comprehensive Meta-Analysis Software.

Results: Data were extracted from 20 observational studies (9 cross-sectional, 6 case-control, 4 cohort studies, and 1 retrospective cohort study). A significant association was observed between smoking and non-alcoholic fatty liver disease with a pooled odds ratio of 1.110 (95% confidence interval, 1.028–1.199), p-value = 0.008. The statistical heterogeneity was medium with an I2 of 40.012%, p-heterogeneity = 0.074. Also there was a significant relation between non-alcoholic fatty liver disease and passive smoking with a pooled odds ratio of 1.380 (95% confidence interval, 1.199–1.588; p-value = 0.001; I2 = 59.41; p-heterogeneity = 0.117).

Conclusion: Our meta-analysis demonstrated that smoking is significantly associated with non-alcoholic fatty liver disease. Further prospective studies exploring the underlying mechanisms of this association should be pursued. Also passive smoking increases the risk of non-alcoholic fatty liver disease about 1.38-fold. The effects of smoking cigarettes on active smokers (current smoker, former smoker, and total smoker) are less than passive smokers. Further studies are needed to compare the effects of passive and active smoking on non-alcoholic fatty liver disease.

Keywords

Smoking, non-alcoholic liver disease, liver, fatty liver

Date received: 4 June 2017; accepted: 16 October 2017

Introduction

Non-alcoholic fatty liver disease (NAFLD) is characterized by accumulation of fat (steatosis) within liver cells due to causes other than alcohol.1 NAFLD is the most common chronic liver disease which includes a wide range of medical conditions from simple steatosis to hepatic fibrosis and hepatocellular carcinoma (HCC).2,3 Some risk factors have been

1Gastroenterology and Hepatology Research Center, Emam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
2Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
3Clinical Research Development Unit, 22 Bahman Hospital, Gonabad, Iran

Corresponding author:
Kambiz Akhavan Rezayat, Gastroenterology and Hepatology Research Center, Emam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran.

Email: Akhavanrk@mums.ac.ir
proved to have a relationship with NAFLD. Obesity, based on the measure of body mass index (BMI), is an important risk factor for the pathogenesis and progression of NAFLD. However, some factors like lifestyle correction and regular caffeine consumption can decrease fibrosis of liver in patient with NAFLD. The prevalence of NAFLD shows a 4.6-fold increase among obese individuals. Other risk factors associated with NAFLD are waist circumference (more than 102 and 88 cm for males and females, respectively), hyperinsulinemia, hypertriglyceridemia, impaired glucose tolerance or type 2 diabetes, and smoking.

According to a study in 2017, the prevalence of daily smoking in men and women are 25.0% and 5.4%, respectively. In 2015, smoking was the cause of death in 6.4 million (11.5%) of people. In Europe, where approximately half of the adult males are regular smokers, the prevalence varies from 63% in Russia to 17% in Sweden. In women, the pattern of the prevalence of tobacco smoking is different and the prevalence of smoking in developed countries and developing countries for women are 24% and 7%, respectively. In the last decade, smoking has become more common in many countries.

Tobacco smoking is one of the major risk factors for chronic diseases such as cardiovascular disease, cancer, and type 2 diabetes. Several studies show that smoking is also associated with liver diseases such as neoplasm of liver and chronic liver disease. Basic and clinical research indicates that smoking affects some of the physiological pathways in the liver. Some studies on both humans and rats indicate that smoking has an association with the progression of NAFLD. However, the clinical correlation of these findings has been controversial. A cross-sectional study reported that active smoking was related to fibrosis in patients with NAFLD, while another study expresses a lack of significant relationships between active smoking and NAFLD.

Regarding this controversy, no systematic review and meta-analysis of the literature were found demonstrating an “association between smoking and NAFLD.” Furthermore, because of the high prevalence of smoking in different populations and the importance of NAFLD in the progression of chronic liver disease, this study was designed in order to determine the association between smoking and NAFLD. Also, in this study, an effort was made to investigate the association between current, former, and passive smoking and NAFLD in observational studies.

Methods

Literature search

Electronic databases (Scopus, PubMed, and ISI Web of Science) were searched (until June 2016) by two independent investigators (B.H. and M.G.N.) for studies that provided information on the relationship between NAFLD and smoking in English literature. We improved our search strategy by hand-searching the reference lists of included papers to identify additional relevant studies.

Our search terms included variations of the concept of smoking (smoking, tobacco smoking, hookah smoking, water pipe smoking, pipe smoking, tobacco smoke pollution, environmental tobacco smoke pollution, passive smoking, secondhand smoking, involuntary smoking, cigarette smoking, and cigar smoking) and “fatty liver” concepts (fatty liver, steatohepatitis, steatohepatitides, steatosis of liver, visceral steatosis, visceral steatoses, liver steatosis, liver steatoses, NAFLD, non-alcoholic steatohepatitis (NASH), toxicant-associated steatohepatitis (TASH), and toxicant-associated fatty liver disease (TAFLD)). The strategy of search in ISI Web of Science is “(TS = (fatty liver) OR TS = (Steatohepatitis) OR TS = (Steatohepatitides) OR TS = (Steatosis of Liver) OR TS = (Visceral Steatosis) OR TS = (Visceral Steatoses) OR TS = (Liver Steatosis) OR TS = (Liver Steatoses) OR TS = (NAFLD) OR TS = (NASH) OR TS = (NASH) OR TS = (TASH) OR TS = (Liver Steatosis) AND (TS = (smoking) OR TS = (Tobacco Smoking) OR TS = (Hookah Smoking) OR TS = (Waterpipe Smoking) OR TS = (Pipe Smoking) OR TS = (Tobacco Smoke Pollutions) OR TS = (Environmental Tobacco Smoke Pollution) OR TS = (Passive Smokings) OR TS = (Secondhand Smoking) OR TS = (Involuntary Smoking) OR TS = (Cigarette Smoking)).”

Inclusion and exclusion criteria

Studies were included in systematic review and meta-analysis if they met the following criteria: (1) observational studies with a comparison (case-control and retrospective/prospective cohort studies). (2) Prevalence of smoking individuals in NAFLD patients and control group or Odds ratios are reported. (3) NAFLD patients were diagnosed by abdominal ultrasound or pathological report of liver biopsies. (4) The reported amount of cigarette smoking can be transformed to pack-year (Brinkman Index). The studies in which their NAFLD patients were under 18 years old and animal studies and non-available full-text articles were excluded. Other exclusion criteria were lacking information on cigarette smoking. Letter to editors, comments, position papers, unstructured papers, proceeding papers, thesis, and dissertation were also excluded. After checking for eligibility, the full text of qualified studies was obtained. The finally selected papers were read, tagged, and hand-noted by two reviewers (A.A.R.) and (M.T.N.) then verified by the second reviewer (K.A.R.). A brief flow diagram of the strategy is depicted in Figure 1.

Search strategy development and study screening

After developing methods of study identification, source selection, and search combinations, two reviewers (A.A.R. and M.S.) performed the search for the literature. All search
results were exported into the reference manager software, EndNote X7 (Thomson Reuters, New York, NY, USA). These studies were screened and compared to meet inclusion and exclusion criteria by two independent reviewers (A.A.R. and M.T.N.). Any disagreement was reconciled with the third reviewer (B.H.) who was also responsible for the supervision of the research.

Data extraction, quality assessment, and risk of bias assessment
Total of 1273 studies were identified and reviewed. Reference lists of all the final articles (20 articles) were hand-searched for any additional studies.

Quantitative papers selected for retrieval will be assessed by two independent reviewers for methodological validity prior to inclusion in the review using Newcastle–Ottawa Scale. Methological quality assessment using the newcastle ottawa scale (NOS) is based on the selection of study groups, comparability of study groups, and the ascertainment of the exposure/outcome of interest. Any discrepancy between two reviewers was evaluated by B.H.

NOS scores of 1–3, 4–6, and 7–10 show low-, intermediate-, and high-quality studies, respectively. Also publication bias was assessed with funnel plot.

Primary data extraction form was designed and used to extract data. Information was gathered for the following terms: author, publication year, keywords, country main results, confounder variables, study design, number of passive and active smokers, current and formers smokers, and light and heavy smokers. The main outcome measurement was the prevalence of smoking in patients with and without NAFLD.

Figure 1. Flow diagram of included and excluded studies.
Quality scores were assigned by two reviewers (A.A.R.) and (M.T.N.) and verified by K.A.R. The summary of our quality assessment approach has been outlined in Table 1.

Data synthesis

To assess the association, summary data from individual studies were pooled using a fixed effect model. All continuous data are summarized as odds ratio (OR) along with 95% confidence intervals (CIs). The inconsistency index (I²) was used to measure heterogeneity, with values of I² > 50% indicating substantial heterogeneity. All analyses were performed using comprehensive meta-analysis with a p-value < 0.05 considered statistically significant.

Result

Characteristics of the studies

We initially identified a total of 1273 studies that met our search criteria. After performing a title and abstract review, 1135 studies were excluded, which resulted in 138 studies that underwent full-text review. Finally, 20 (9 cross-sectional, 6 case-control, 4 cohort, and 1 retrospective cohort) studies and 12 (7 cross-sectional, 3 case-control, and 2 cohort) studies were included in the systematic review and meta-analysis, respectively. Characteristics of the studies included in this meta-analysis are described in Table 2.

Systematic review and meta-analysis studies that were included generated a total study population of 92,125 and 20,149 subjects, respectively. Among these, four studies with 6699 subjects were included in the analysis for prevalence of former smoking, current smoking, and non-smoking among patients with and without NAFLD. “Former smoker” is defined as those who had not smoked in the 6 months leading to the study, while “current smoker” refers to those who had smoked in the 6 months prior to the study (Table 3). The other two studies with 2730 subjects were used for the analysis of the prevalence of passive smoking between patients with and without NAFLD (Table 3).

Meta-analysis results

Among 20 studies, 12 observational studies involving 20,149 people were included in the data analysis with cumulative meta-analysis. There was a significant association between Smoking and NAFLD with pooled OR of 1.110 (95% CI, 1.028–1.199), p value = 0.008. The statistical heterogeneity was medium with I² of 40.012%, p heterogeneity = 0.074 (Figure 2) and funnel plot show publication bias in study (Figure 3).

Subgroup analysis

Classification of smoking varies between studies, which may impact the overall estimates. We, therefore, stratified the risk of NAFLD based on the study’s classification of smoking. Four studies classify smoking into a current subgroup and a former subgroup. There was a significant association between former smoking and NAFLD with pooled OR of 1.316 (95% CI, 1.158–1.496; I² = 0.001; p-heterogeneity = 0.007), p-value = 0.768. However, in the current subgroup, no significant association between smoking and NAFLD was observed (pooled OR 1.034; 95% CI, 0.899–1.188; I² = 49.618; p-heterogeneity = 0.114), p-value = 0.642 (Figure 3). Also, a subgroup analysis for passive smokers was performed including two studies yielding a significant relation between NAFLD and passive smoking with a pooled OR of 1.380 (95% CI, 1.199–1.588; p-value = 0.001; I² = 59.41; p-heterogeneity = 0.117) (Figures 4). Also, an analysis was performed according to study design (cross-sectional studies, case-control studies, and cohort studies) for the risk of non-alcoholic fatty liver disease in included studies (Figure 5).

Discussion

There are controversial data on the association between smoking and NAFLD. In this study, we systematically reviewed 20 studies and meta-analyzed 12 studies, to further evaluate the association. Although our results supported a putative relationship between NAFLD and smoking, exhibiting a stronger relation in cohort studies (OR = 2.97) and in case-control studies (OR = 1.451), there was no significant association between smoking and NAFLD in current smokers. However, this
Author, publication year, country	Sample size	NAFLD, n (%)	Non-NAFLD, n (%)	Odds ratio	Adjusting	Diagnostic methods	Study design		
Hamabe et al., 2011, Japan²³	1553	93 (5.99)	216 (13.90)	2.683	A, R, CC	Abdominal ultrasonography	Retrospective cohort		
Total smoker	93 (5.99)	216 (13.90)	2.683 (2.00–3.59)						
Light	24 (1.55)	57 (3.67)	0.94 (0.59–1.48)						
Heavy	69 (4.44)	159 (10.24)	2.7 (1.95–3.74)						
Non-smoker	172 (11.1)	1072 (69)							
Liu et al., 2013, China²³	2426	420 (17.31)	962 (39.65)	1.047	A, I, R, Z, AA, BB, CC, DD, EE, FF	Ultrasonography	Cross-sectional		
Total smoker	420 (17.31)	962 (39.65)	1.047 (0.88–1.25)						
Light	162 (6.67)	421 (17.35)	0.92 (1.39–1.30)						
Heavy	258 (10.63)	541 (22.30)	1.14 (3.98–7.98)						
Current	420 (17.31)	962 (39.65)	1.05 (0.87–1.25)						
Former	106 (4.36)	204 (8.40)	1.25 (0.95–1.63)						
Passive	5	70	1.364						
Non passive smokers	4	225							
Non-smoker	294 (12.12)	705 (29.06)							
Zhang et al., 2015, China²⁶	800	408 (51)	55 (6.87)	5.602	A, B, D, E, G, I, L, M, N, O, P, Q, T, U, W, Y	Ultrasonography	Case-control		
Total smoker	408 (51)	55 (6.87)	5.602 (3.93–7.98)						
Light	171 (21.38)	31 (3.87)	4.24 (2.68–6.46)						
Heavy	237 (29.63)	24 (3.00)	7.71 (4.66–11.95)						
Current	39 (5.09)	150 (19.58)	0.104 (0.80–1.53)						
Former	53 (6.91)	398 (49.47)							
Chavez-Tapia et al., 2006, Mexico²⁰	885	87 (9.83)	232 (26.21)	0.888	Not mention	Ultrasonography	Cross-sectional		
Total smoker	87 (9.83)	232 (26.21)	0.888 (0.66–1.21)						
Non-smoker	168 (18.98)	398 (44.97)							
Caballeria et al., 2010, Spain²²	766	92 (12.01)	250 (32.63)	0.104	A, E, G (male), S	Ultrasonography	Cross-sectional		
Total smoker	92 (12.01)	250 (32.63)	0.104 (0.80–1.53)						
Current	39 (5.09)	150 (19.58)	0.78 (0.40–0.93)						
Former	53 (6.91)	100 (13.05)	1.59 (0.83–1.87)						
Non-smoker	106 (13.83)	318 (41.51)							
Oniki et al., 2013, Japan²⁴	696	61 (8.76)	221 (31.75)	1.38	A, G, B, EE, DD, R	Ultrasonography	Cross-sectional case-control		
Total smoker	61 (8.76)	221 (31.75)	1.38 (0.94–2.02)						
Current	21 (3.01)	57 (8.18)	1.84 (0.86–1.18)						
Former	40 (5.74)	164 (23.56)	1.22 (0.79–1.87)						
Non-smoker	69 (9.91)	345 (49.56)							
Author, publication year, country	Sample size	NAFLD, n (%)	Non-NAFLD, n (%)	Odds ratio	Confidence interval	Adjusting	Diagnostic methods	Study design	
---------------------------------	-------------	--------------	------------------	------------	--------------------	----------	-------------------	-------------	
Zatu et al., 2014, South Africa	195					A, G	Not mentioned	Cross-sectional	
Total smoker	17	44	0.629	(0.33–1.22)					
Non-smoker	51	83							
Zhang et al., 2015, China	1800					A, G, HH	Based on guidelines for the diagnosis and treatment of NAFLD revised by the Fatty Liver and Alcoholic Liver Disease Study Group of the Chinese Liver Disease Association in 2010	Case-control	
Total smoker	447 (49.67)	207 (23)	3.03	(2.70–4.05)					
Light	144 (16.00)	116 (12.89)	1.899	(1.37–2.55)					
Heavy	303 (33.67)	91 (10.11)	5.0937	(3.02–8.35)					
Non-smoker	453 (50.33)	693 (77.00)							
Wu et al., 2015, China	587					H, J, Q, X	Diagnosis of NAFLD was made according to criteria proposed by the fatty liver and alcoholic liver disease study group of the Chinese Liver Disease Association	Case-control	
Total smoker	129 (52.43)	124 (36.47)	1.275	(0.93–1.75)					
Non-smoker	177 (49.57)	217 (63.53)							
Koeehler et al., 2012, Netherland	2811					Not mention	Ultrasonography	Cross-sectional	
Total smoker	660 (23.48)	1123 (40.00)	1.266	(1.08–1.49)					
Current	75 (2.67)	165 (2.31)							
Former	585 (20.81)	958 (34.08)							
Non-smoker	326 (11.60)	702 (24.97)							
Chang et al., 2013, Korea	43,166					G, AA, BB, HH	Abdominal ultrasonography	Cohort	
Smoker	5133 (44)	8068 (25.6)	2.288	(2.19–2.39)					
Non-smoker	6519 (56)	23,446 (74.4)							
Hung et al., 2013, Taiwan	521						B-mode ultrasonography	Cross-sectional	
Smoker	32 (12.3)	54 (20.8)	0.533	(0.33–0.86)					
Non-smoker	229 (87.7)	206 (79.2)							
Yang et al., 2012, China	903					A, B, G	B-mode ultrasonography	Case-control	
Smoker	82 (19.2)	55 (11.8)	1.735	(1.20–2.51)					
Non-smoker	354 (80.8)	412 (88.2)							
Arslan et al., 2014, Turkey	145					G, HH	Based on biochemical, radiological, and histological criteria	Cohort	
Smoker	29 (29)	20 (44.4)	0.511	(0.25–1.06)					
Non-smoker	71 (71)	25 (55.6)							
Koch et al., 2015, Germany	354					A, G	MRI	Cohort	
Smoker	95 (50.8)	91 (54.5)	0.862	(0.57–1.31)					
Non-smoker	92 (49.2)	76 (45.5)							
Author, publication year, country	Sample size	NAFLD, n (%)	Non-NAFLD, n (%)	Odds ratio	Confidence interval	Adjusting	Diagnostic methods	Study design	
----------------------------------	-------------	--------------	------------------	------------	--------------------	-----------	-------------------	-------------	
Singh et al., 2015, India	645	Smoker	49 (10.6)	12 (6.6)	1.663	(0.86–3.20)	Not mentioned	Ultrasonography and histological confirmation whenever possible	Case–Control
		Non-smoker	415 (89.4)	169 (93.4)					
Zhang et al., 2014, China	17,920	Smoker	2178 (66.4)	11,716 (80)	0.494	(0.46–54)	Confounding factors	Abdominal ultrasonography	Prospective cohort
		Non-smoker	1101 (33.6)	2925 (20)					
Otgonsuren et al., 2013, United States	10,565	Total smoker	2241 (89.3)	7137 (88.6)	1.072	(0.93–1.24)		Ultrasonography	Cross-sectional
		Heavy/moderate smoker	733 (29.2)	2658 (33)					
		Light smoker	1508 (60.1)	4479 (55.6)					
		Never smoker	269 (10.7)	918 (11.4)					
Lin et al., 2014, United States	304	Smoking exposure	5 (55.6)	70 (23.7)	4.018	(1.05–15.07)		Abdominal ultrasonography	Cross-sectional
		No smoking exposure	4 (44.4)	225 (76.3)					
Ozturk et al., 2016, Turkey	74	Smoker	20 (27.03)	4 (5.40)	2.353	(0.69–8.03)			Cross-sectional
		Non-smokers	34 (45.45)	16 (21.62)					

NAFLD: non-alcoholic fatty liver disease; MRI: magnetic resonance imaging.

A: age; B: body mass index; C: uric acid; D: aspartate transaminase; E: alanine transaminase; F: alkaline phosphatase; G: gender; H: high-density lipoprotein cholesterol; I: fasting serum insulin; J: white blood cell; K: glucose; L: waist circumference; M: hip circumference; N: waist-to-hip ratio; O: systolic blood pressure; P: diastolic blood pressure; Q: fasting blood glucose; R: dyslipidemia; S: metabolic syndrome; T: triglyceride; U: total cholesterol; V: low-density lipoprotein cholesterol; W: homeostatic model assessment (HOMA-IR); X: high-sensitivity C-reactive protein; Z: education status; AA: alcohol consumption; BB: physical activity; CC: obesity; DD: hypertension; EE: diabetes; FF: use of anti-diabetic medication; HH: smoking status; II: race/ethnicity; MM: ferritin; NN: 2-h oral glucose tolerance test; OO: lipids.
association was considerable in former smokers. In addition, in passive smokers, NAFLD and smoking showed a significant relation.

Several studies demonstrated different conclusions about the association between smoking and NAFLD. Liu et al. observed a positive association between heavy active smoking and NAFLD in the Chinese population. These results may be due to the fast deposition of fat in the liver after using tobacco. Besides, although higher Brinkman Index is associated with NAFLD, cessation of smoking may lead to NAFLD by increasing BMI. As a result, a clear history of previous smoking habits is crucial to prevent NAFLD development.

Another possible mechanism that may play a role in sex-related NAFLD is the possible influence of sex hormones on smoking-induced NAFLD. The amount of body fat can change as a result of smoking cigarettes due to the anti-estrogenic properties of cigarette smoke, which could potentially explain the independent role of BMI in the association between active smoking and NAFLD.

Glucose oxidative metabolism can be induced by long-term smoking, which causes the inhibition of the non-oxidative reactions and ultimately leads to higher levels of plasma free fatty acid (FFA). Hepatocytes and adipose tissue absorb these FFAs and turn them into triglycerides causing insulin resistance (IR). IR frequently occurs in patients with NAFLD and mostly results from deposition of fat, FFAs production in skeletal muscle, decreased glucose absorption, and suppressed gluconeogenesis in liver cells.

A study did not find any association between smoking, smoking intensity (number of packs/year), and the prevalence of NAFLD. However, univariate regression analysis showed that NAFLD and smoking were not associated with

Table 3. Main results of the subgroups and total analysis included in this meta-analysis.

Subgroup	Studies, n	Heterogeneity	Model of meta-analysis	Pooled OR (95% CI)	Z analysis	p-value
		% p	Fixed			
Current smokers	4	49.618 0.114	Fixed	1.034 (0.899–1.188)	0.465	0.642
Former smokers	4	0.00 0.768	Fixed	1.316 (1.158–1.496)	4.211	0.001
Passive smokers	2	59.41 0.117	Fixed	1.380 (1.199–1.588)	4.503	0.001
Light smoker	3	20.924 0.282	Fixed	1.074 (0.991–1.332)	1.262	0.207
Heavy smoker	2	54.98 0.136	Fixed	1.014 (0.895–1.149)	0.219	0.826
Study design						
Cohort	2	10.81 0.29	Fixed	2.97 (2.2–2.4)	37.066	0.001
Case-control	4	0.00 0.622	Fixed	1.451 (1.94–1.762)	3.748	0.001
Cross-sectional	9	43.83 0.001	Fixed	1.113 (1.025–1.208)	2.545	0.011
Total	12	40.012 0.074	Fixed	1.110 (1.029–1.199)	2.672	0.008

OR: odds ratio; CI: confidence interval.

Figure 2. (a) Forest plot of the included studies assessing the association between smoking and non-alcoholic fatty liver disease; a diamond data marker represents the overall OR, 95% CI, and relative weight for the outcome of interest. (b) Funnel plot of the included studies represents the tau score = –0.075, z-value for tau = 0.34, and p-value (two-tailed) = 0.73 in Begg and Mazumdar rank correlation test that show publication bias does not exist in this study.
Each other. In these studies, the samples were very similar, and the primary variable of these studies (smoking) did not influence the prevalence of NAFLD. Limitations of these studies should be considered, which could explain the absence of an association between smoking and NAFLD. First, the studies did not evaluate IR, which can partially affect the results. The other factor that helps explain this discrepancy is the fact that physical activity was not evaluated in these studies, which is another factor related to IR and can possibly be affected by smoking.

In our study, current smoking did not have any association with NAFLD. A possible explanation for this finding could be unknown confounding factors (period of smoking, amount of smoking, etc.) which were not considered.
Another explanation is that because NAFLD is a chronic liver disease; having a history of smoking for a period of time could be a risk factor for NAFLD. An increase in body weight and BMI as a consequence of cessation of smoking may be another explanation for the development of NAFLD in former smokers.

In this study, we discovered that passive smoking has a significant relation with NAFLD. We also found that passive smoking increases the risk of NAFLD about 1.38-fold. However, the effects of smoking cigarettes on active smokers (current smoker, former smoker, and total smoker) are less than passive smokers. This result may be due to a factor which is discussed in a study which showed side stream smoke has higher concentration of harmful chemicals than mainstream smoke. A study performed by Liu et al. demonstrated that passive smokers have more liver steatosis than light and moderate active smokers. Further study is needed to compare the effects of passive and active smoking on NAFLD.

This systematic review has several limitations. First, the included studies were all case-control, cross-sectional, or cohort studies using questionnaires to evaluate smoking habits in participants, so our results are based on self-reported data until laboratory and clinical data are collected. Second, some studies only investigated the association between smoking and NAFLD in male participants. Several of our studies diagnosed NAFLD based on ultrasonography without the requirement for a pathologic confirmation after liver biopsy. Some factors such as physical activity, diet, caffeine consumption, or socioeconomic factors may play the role of

Figure 5. Analysis assessing according to study design (a) cross-sectional studies, (b) case-control studies, and (c) cohort studies) for the risk of non-alcoholic fatty liver disease in included studies; a diamond data marker represents the overall OR and 95% CI for the outcome of interest.
confounders; however, more studies were needed to determine the exact place of smoking in NAFLD; nevertheless in this study, these confounder variables were not included. The inclusion of over 92,125 patients was a significant strength of this meta-analysis. While cross-sectional, case-controlled, and cohort studies have their inherent limitations, with the utilization of 12 studies in meta-analysis, we were able to generate a much greater statistical power compared with a single study.

In conclusion, our results show that smoking is significantly associated with NAFLD. While we concluded that there was an association between smoking and NAFLD in former smokers, there was not any correlation in current smokers.

For clinicians, it is obvious that smoking is correlated with NAFLD, which is one of the most common chronic liver diseases. Physicians should warn their patients based on the potential effects of smoking on the pathogenesis and progression of NAFLD and the high prevalence of smoking in different populations. This study enables researchers to investigate the mechanisms of smoking-related NAFLD and run cohort studies considering confounders such as physical activity, diet, and socioeconomic factors.

Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethical approval
Ethical approval for this study was obtained from Mashhad University of Medical Science.

Funding
The author(s) received the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Research Council of Mashhad University of Medical Science, Dr Azita Ganji and Gastrology and Enterology Research Center, Emam Reza Hospital of Mashhad.

References
1. Ludwig J, Viggiano TR, Mcgill DB, et al. Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease. Mayo Clin Proc 1980; 55: 434–438.
2. Clark JM, Brancati FL and Diehl AM. The prevalence and etiology of elevated aminotransferase levels in the United States. Am J Gastroenterol 2003; 98: 960–967.
3. Chen S, Teoh NC, Chitturi S, et al. Coffee and non-alcoholic fatty liver disease: brewing evidence for hepatoprotection? J Gastroen Hepat 2014; 29: 435–441.
4. Shen H, Rodriguez AC, Shiani A, et al. Association between caffeine consumption and nonalcoholic fatty liver disease: a systemic review and meta-analysis. Ther Adv Gastroenter 2016; 9: 113–120.
5. Kissebah AH and Krakower GR. Regional adiposity and morbidity. Physiol Rev 1994; 74: 761–811.
6. Day CP and James OF. Hepatic steatosis: innocent bystander or guilty party? Hepatology 1998; 27: 1463–1466.
7. Goldstein BJ and Scalia R. Adiponectin: a novel adipokine linking adipocytes and vascular function. J Clin Endoer Metab 2004; 89: 2563–2568.
8. Hotamisligil GS, Arner P, Caro JF, et al. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 1995; 95: 2409–2415.
9. Uysal KT, Wiesbrock S, Marino M, et al. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature 1997; 389: 610–614.
10. Ali R and Hay S. Smoking prevalence and attributable disease burden in 195 countries and territories, 1990–2015: a systematic analysis from the Global Burden of Disease Study. Lancet 2015; 389: 1885–1906.
11. World Health Organization. The European report on tobacco control policy. In: WHO European ministerial conference for a tobacco-free Europe, Warsaw, 18–19 February 2002, pp. 18–19. Geneva: World Health Organization.
12. Botteri E, Iodice S, Bagnardi V, et al. Smoking and colorectal cancer: a meta-analysis. JAMA 2008; 300: 2765–2778.
13. Jatoi NA, Jerrard-Dunne P, Feely J, et al. Impact of smoking and smoking cessation on arterial stiffness and aortic wave reflection in hypertension. Hypertension 2007; 49: 981–985.
14. Willi C, Bodenmann P, Ghali WA, et al. Active smoking and the risk of type 2 diabetes: a systematic review and meta-analysis. JAMA 2007; 298: 2654–2664.
15. Avti PK, Kumar S, Pathak CM, et al. Smokeless tobacco impairs the antioxidant defense in liver, lung, and kidney of rats. Toxicol Sci 2006; 89: 547–553.
16. Chen ZM, Liu BQ, Boreham J, et al. Smoking and liver cancer in China: case-control comparison of 36,000 liver cancer deaths vs. 17,000 cirrhosis deaths. Int J Cancer 2003; 107: 106–112.
17. Marrero JA, Fontana RJ, Fu S, et al. Alcohol, tobacco and obesity are synergistic risk factors for hepatocellular carcinoma. J Hepato 2005; 42: 218–224.
18. Zhang J, Liu Y, Shi J, et al. Side-stream cigarette smoke induces dose-responsiveness in systemic inflammatory cytokine production and oxidative stress. Exp Biol M 2002; 227: 823–829.
19. Azzalini L, Ferrer E, Ramalho LN, et al. Cigarette smoking exacerbates nonalcoholic fatty liver disease in obese rats. Hepatology 2010; 51: 1567–1576.
20. Chavez-Tapia NC, Lizardi-Cervera J, Perez-Bautista O, et al. Smoking is not associated with nonalcoholic fatty liver disease. World J Gastroenterol 2006; 12: 5196–5200.
21. Wells G, Shea B, O’Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses, 2000, https://www.medicine.mcgill.ca/rtamblyn/Readings/The%20Newcastle%20-%20Scale%20for%20assessing%20the%20quality%20of%20nonrandomised%20studies%20in%20meta-analyses.pdf
22. Caballeria L, Pera G, Auladell MA, et al. Prevalence and factors associated with the presence of nonalcoholic fatty liver disease in an adult population in Spain. Eur J Gastroen Hepat 2010; 22: 24–32.
23. Liu Y, Dai M, Bi Y, et al. Active smoking, passive smoking, and risk of nonalcoholic fatty liver disease (NAFLD): a population-based study in China. J Epidemiol 2013; 23: 115–121.
24. Oniki K, Hori M, Saruwatari J, et al. Interactive effects of caffeine consumption and nonalcoholic fatty liver disease: brewing evidence for hepatoprotection. J Gastroen Hepat 2014; 29: 435–441.
25. Hamabe A, Uto H, Imamura Y, et al. Impact of cigarette smoking on onset of nonalcoholic fatty liver disease over a 10-year period. *J Gastroenterol* 2011; 46: 769–778.

26. Zhang C-X, Guo L-K, Qin Y-M, et al. Association of polymorphisms of adiponectin gene promoter-11377C/G, glutathione peroxidase-1 gene C594T, and cigarette smoking in nonalcoholic fatty liver disease. *J Chin Med Assoc* 2016; 79: 195–204.

27. Otgonsuren M, Stepanova M, Gerber L, et al. Anthropometric and clinical factors associated with mortality in subjects with nonalcoholic fatty liver disease. *Digest Dis Sci* 2013; 58: 1132–1140.

28. Ozturk K, Kurt O, Dogan T, et al. Pentraxin 3 is a predictor for fibrosis and arterial stiffness in patients with nonalcoholic fatty liver disease. *Gastroenterol Rep Pract* 2016; 2016: 1417962.

29. Lin C, Rountree CB, Methratta S, et al. Secondhand tobacco exposure is associated with nonalcoholic fatty liver disease in children. *Environ Res* 2014; 132: 264–268.

30. Koch M, Borggreve J, Schlesinger S, et al. Association of a lifestyle index with MRI-determined liver fat content in a general population study. *J Epidemiol Commun H* 2015; 69: 732–737.

31. Zhang T, Zhang Y, Zhang C, et al. Prediction of metabolic syndrome by non-alcoholic fatty liver disease in northern urban Han Chinese population: a prospective cohort study. *PLoS ONE* 2014; 9: e96651.

32. Singh SP, Singh A, Misra D, et al. Risk factors associated with non-alcoholic fatty liver disease in Indians: a case-control study. *J Clin Exp Hepatol* 2015; 5: 295–302.

33. Koeher EM, Schouten JN, Hansen BE, et al. Prevalence and risk factors of non-alcoholic fatty liver disease in the elderly: results from the Rotterdam study. *J Hepatol* 2012; 57: 1305–1311.

34. Zhang CX, Guo LK, Qin YM, et al. Interaction of polymorphisms of resistin gene promoter -420C/G, glutathione peroxidase-1 Gene Pro198Leu and cigarette smoking in nonalcoholic fatty liver disease. *Chin Med J* 2015; 128: 2467–2473.

35. Wu P, Hua Y, Tan S, et al. Interactions of smoking with rs833061 polymorphism on the risk of non-alcoholic fat liver disease in Hubei Han population: a preliminary case-control study. *Iran J Basic Med Sci* 2015; 18: 1112–1117.

36. Chang Y, Jung H-S, Yun KE, et al. Cohort study of non-alcoholic fatty liver disease, NAFLD fibrosis score, and the risk of incident diabetes in a Korean population. *Am J Gastroenterol* 2013; 108: 1861–1868.

37. Hung S-C, Lai S-W, Chen M-C, et al. Prevalence and related factors of non-alcoholic fatty liver disease among the elderly in Taiwan. *Eur Geriatr Med* 2013; 4: 78–81.

38. Yang Z, Wen J, Li Q, et al. PPARγ gene Pro12Ala variant contributes to the development of non-alcoholic fatty liver in middle-aged and older Chinese population. *Mol Cell Endocrinol* 2012; 348: 255–259.

39. Arslan MS, Turhan S, Dincer I, et al. A potential link between endothelial function, cardiovascular risk, and metabolic syndrome in patients with Non-alcoholic fatty liver disease. *Diabetol Metab Syndr* 2014; 6: 109.

40. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ: *British Medical Journal*. 2003 Sep 6;327(7414):557.

41. Zatu MC, van Rooyen JM, Greeff M, et al. A comparison of the cardiometabolic profile of black South Africans with suspected non-alcoholic fatty liver disease (NAFLD) and excessive alcohol use. *Alcohol* 2015; 49: 165–172.

42. Fatty Liver and Alcoholic Liver Disease Study Group of the Chinese Liver Disease Association. Guidelines for diagnosis and treatment of nonalcoholic fatty liver diseases. *Chin J Hepatol* 2006; 3: 917–923.

43. Fatty Liver and Alcoholic Liver Disease Study Group of the Chinese Liver Disease Association. Diagnostic criteria of non-alcoholic fatty liver disease. *Chin J Hepatol* 2003; 11: 71.

44. Jiang L-L, Li L, Hong X-F, et al. Patients with nonalcoholic fatty liver disease display increased serum resistin levels and decreased adiponectin levels. *Eur J Gastroen Hepat* 2009; 21: 662–666.

45. Manjer J, Johansson R and Lenner P. Smoking as a determinant for plasma levels of testosterone, androstenedione, and DHEAs in postmenopausal women. *Eur J Epidemiol* 2005; 20: 331–337.

46. Economou F, Xyrafis X, Livadas S, et al. In overweight/obese but not in normal-weight women, polycystic ovary syndrome is associated with elevated liver enzymes compared to controls. *Hormones* 2009; 8: 199–206.

47. Shimokata H, Muller DC and Andres R. Studies in the distribution of body fat: III. Effects of cigarette smoking. *JAMA* 1989; 261: 1169–1173.

48. Tánkó LB and Christiansen C. An update on the antiestrogenic effect of smoking: a literature review with implications for researchers and practitioners. *Menopause* 2004; 11: 104–109.

49. Windham GC, Mitchell P, Anderson M, et al. Cigarette smoking and effects on hormone function in premenopausal women. *Environ Health Perspect* 2005; 113: 1285–1290.

50. Facchini FS, Hollenbeck CB, Jeppesen J, et al. Insulin resistance and cigarette smoking. *Lancet* 1992; 339: 1128–1130.

51. Schick S and Glantz S. Philip Morris toxicological experiments with fresh sidestream smoke: more toxic than mainstream smoke. *Tob Control* 2005; 14: 396–404.