Seeking Public Values of Digital Energy Platforms

Citation for published version (APA):
Niet, I. A., Dekker, R., & van Est, R. (2022). Seeking Public Values of Digital Energy Platforms. Science, Technology, & Human Values, 47(3), 380-403. Advance online publication. https://doi.org/10.1177/01622439211054430

Document license:
CC BY

DOI:
10.1177/01622439211054430

Document status and date:
Published: 01/05/2022

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 02. Nov. 2023
Thematic Collection Article

Seeking Public Values of Digital Energy Platforms

Irene A. Niet¹, Romy Dekker² and Rinie van Est¹,²

Abstract
Digital energy platforms play a central role in the transition toward a more sustainable energy system. This research explores the (potential) effect of digital energy platforms on public values. We developed and tested a novel public value framework, combining values already embedded in energy and digitalization regulations and emerging values that have become more relevant in recent debates. We analyzed value changes and potential value tensions. We found that sustainability is prioritized, security is broadened to include cybersecurity, and values relevant for digital technologies, such as control over technology, have also become relevant for the energy system. This has resulted in three value tensions: preserving a well-functioning energy system, self-determination, and ensuring a level playing field and public control. A sustainable energy system requires governments to address these value changes, value tensions, and connected societal and political challenges related to the implementation of digital energy platforms.

Keywords
digital energy platforms, public values, value change, electricity system

¹Eindhoven University of Technology, the Netherlands
²Rathenau Institute, The Hague, the Netherlands

Corresponding Author:
Irene A. Niet, Eindhoven University of Technology, 5612 AE Eindhoven, the Netherlands.
Email: i.a.niet@tue.nl
In recent years, we have seen increasing attempts to apply the economic, social, and technological model of the digital platform to energy provision- ing (Duch-Brown and Rossetti 2020; Kloppenburg and Boekelo 2019; Küfeoğlu et al. 2019; Terroso-Saenz et al. 2019). “Platformization” of the electricity system is one of the outcomes of the digitalization of the energy system (Dekker and Van Est 2020; International Energy Agency 2017). Digital energy platforms promise to solve emerging problems of the energy transition, such as unpredictability of renewable electricity generation and variations in electricity demand, both leading to problems with grid capac- ity and grid balance (Terroso-Saenz et al. 2019; Xu et al. 2019).

A variety of digital energy platforms is emerging. Their common denominator is that they digitally connect users to “communicate and inter- act with each other and get (temporary or permanent) access to products, services or more broadly ‘resources’ provided by peers or organisations” (Kloppenburg and Boekelo 2019, 68). The platforms differ in the aspect of the electricity system on which they focus, for example, supporting the transmission system operator (TSO) or distribution system operator (DSO) in preventing congestion in the network or using aggregation to offer flexibility services and optimize energy generation and demand within a community or household (Jabłon´ska 2014; Kloppenburg and Boekelo 2019; Smale and Kloppenburg 2020). As a result, an ecosystem of platforms is developing, with new interdependencies, roles, actors, and business models (Van Dijck, Poell, and de Waal 2016; Poplavskaya and De Vries 2020).

The emergence of digital energy platforms is driven by and results in changes in public values. Digital platforms introduce a data-driven way of working and organizing in the energy sector, causing other values to become relevant in the energy system (Van den Hoven, Lokhorst, and van de Poel 2012). For example, recent history has shown that platformization in other sectors raises many ethical and political issues, as it can lead to concentration of (market) power and challenge human rights, such as privacy and autonomy (Van Dijck, Nieborg, and Poell 2019; Frenken et al. 2019; Vélez and Grunewald 2018). It is plausible that this also applies to the energy sector; however, research on this is limited.

Therefore, this research explores public values that could be affected by increased digitization, including platformization, in the electricity sector. Whereas other research focuses on public values related to either energy systems or digital technologies, we combine the two fields of research in a newly developed public value framework. With this framework, we aim to gain a better understanding of how digital energy platforms support or pressure various public values. After developing our framework of relevant
public values in the second section, we briefly elaborate on our method and data in the third section. In the fourth section, we analyze how and to what extent the three digital energy platforms under analysis in this research—(1) Equigy, (2) Tesla’s Virtual Power Plant (VPP), and (3) Gridflex Heeten (hereafter Gridflex)—support or pressure public values, using the framework of the second section. Based thereon, we discuss in the fifth section various value changes and value tensions that arise due to the platformization in the electricity sector. The sixth section closes with several suggestions on how to deal with these value changes and value tensions.

Public Value Framework

Public values refer to the collective societal aspirations regarding what is right and wrong and what are appropriate courses of action. Milchram, van de Kaa, et al. (2018, 2) define public values as “abstract principles and general convictions that people should hold paramount if society is to be good.” They are shaped, constructed, and defined in democratic processes (Dahl 2015; Moore 1995; Susskind 2020) and are embedded in institutions, such as laws, standards, and regulations (Dekker and Van Est 2020; Royakkers et al. 2018; Werff and Steg 2016). What we understand by a certain public value can change in these democratic processes. We see this “change of interpretation” as one of the ways in which value change can take place.

Technological developments also affect public values and vice versa. These values, and the institutions in which they are embedded, set directions and boundaries for technological developments (Van de Poel 2020; Schmidt et al. 2012; De Wildt et al. 2019). At the same time, technological innovations, such as digital energy platforms, can support or pressure certain public values and also result in “new” values to become relevant in the public debate (Van den Hoven, Lokhorst, and van de Poel 2012; Larson 1997; Van de Poel 2020). The latter is another example of value change.

Value changes can contribute to (new) value tensions. Democratic processes can “solve” value tensions and value incommensurability (temporarily) by prioritizing particular public values over other public values (Van den Hoven, Lokhorst, and van de Poel 2012; Umbrello 2020). Understanding what it encompasses when values change allows stakeholders such as technology developers and policymakers to anticipate on potential value tensions, which can provide the basis for improved democratic decision-making and a more just (energy) system (Correljé et al. 2015; Demski et al. 2015; Guston 2014; Kooiman and Jentoft 2009; Moore 1995).
Digital energy platforms exemplify the convergence of the digital technologies sector and the energy sector; two sociotechnical systems with their own specific set of actors, technologies, interests, institutions, and thus public values (Dekker and Van Est 2020; Grin, Rotmans, and Schot 2010; May and Jochim 2013). To understand how digital energy platforms support or pressure public values and what value changes and value tensions are arising, we developed a framework using overarching public values, based on energy system, energy transition, energy justice, and digital technologies theories. An overview of these overarching values and their interpretation can be found in Table 1. In total, we have identified nine overarching values that can be divided into two types: entrenched and emerging.

The first type applies to public values that are already anchored, often for a long period, in energy or digitalization regulation, and are thus “institutionalized.” These entrenched values have consistently given direction to institutions, but they are not static and their interpretation is subject to change. These are the values: (1) sustainability (Eurostat 2021; Milchram, Hillerbrand, et al. 2018; Sovacool and Brown 2010), (2) reliability (Demski et al. 2015; Eurostat 2021; Milchram, Hillerbrand, et al. 2018), (3) affordability (Demski et al. 2015; Eurostat 2021; Sovacool and Mukherjee 2011), (4) privacy (Atlam and Wills 2019; Royakkers et al. 2018), and (5) (cyber)-security (Christen, Gordijn, and Loi 2020; Royakkers et al. 2018).

In contrast, the emerging values are public values that have become more relevant in recent debates related to the convergence of the energy sector and the digital technologies sector, such as energy democracy, value-sensitive design, energy communities, control over technology (individual) autonomy, and equity and equality. Although they are sometimes institutionalized, this is often to a lesser extent than entrenched values. Based on an analysis of the public values put forward in the recent scientific literature, we identified four overarching (clusters of) emerging public values: (1) balances of power (Kloppenburg and Boekelo 2019; Milchram, Hillerbrand, et al. 2018), (2) equity and equality (Jenkins et al. 2016, 2020; Pellegrini-Masini, Pirni, and Maran 2020; Sovacool and Dworkin 2014), (3) control over technology (Milchram et al. 2020; Royakkers et al. 2018), and (4) autonomy (Demski et al. 2015; Royakkers et al. 2018; Van Summeren et al. 2020).

Our assumption in this paper is that digital energy platforms relate to all these identified values. We are aware that we may not do justice to all values we have encountered in the literature, but this framework is used
Table 1. Overview of the Public Values That Are Expected to Play a Role in the Field of Digital Energy Platforms.

Overarching Public Values	Description
Entrenched overarching public values	
Sustainability	Development meeting the needs of the present without compromising the ability of future generations to meet their own needs. This includes life of dignity for all within the planet's limits, reconciling economic efficiency, and environmental responsibility
Reliability	Security of supply; relative independence and diversification of energy fuels and services and stability of the energy system
Affordability	People can afford energy services, prices are stable, and there is equitable access to energy services. It includes lack of energy poverty and fuel poverty and has been one of the reasons to encourage liberalization and privatization of the energy market
Security	Information security, identity fraud prevention, physical safety, and cybersecurity
Privacy	Data protection, mental privacy, spatial privacy, surveillance, and function creep including using data for other purposes
Emerging overarching public values	
Balances of power	Shifting relations between government, consumers, and businesses including fairness of competition (a fair market), nondiscriminatory access, and terminating exploitation
Equity and equality	Preventing discrimination and exclusion, ensuring equal treatment, preventing unfair bias and stigmatization, and aiming for due process and inclusiveness
Control over technology	Control and transparency of algorithms, clear accountability, predictability, and giving both consumers and other market actors enough information
Autonomy	Freedom of choice, freedom of expression, preventing manipulation and paternalism, and self-direction. This is also related to self-enhancement, such as building individual and community skills and capacity, and enhancing pride

Note: Based on definitions by Atlam and Wills (2019), Christen, Gordijn, and Loi (2020), Demski et al. (2015), Eurostat (2021), Jenkins et al. (2016, 2020), Kloppenburg and Boekelo (2019), Milchram, Hillerbrand, et al. (2018), Milchram, van de Kaa, et al. (2018), Pellegrini-Masini, Pirni, and Maran (2020), Royakkers et al. (2018), Sovacool and Brown (2010), Sovacool and Dworkin (2014), Sovacool and Mukherjee (2011), and Van Summeren et al. (2020).
Methods

To understand the effect of the rise of digital energy platforms, we use a qualitative multiple-case study approach. We apply Table 1 as a framework to analyze how public values play a role in and are supported or pressured by the developments of three digital energy platforms, using plans and policies by the platforms and in-depth interviews with administrators of the platforms. In addition, we reflect on the relationship between public values and future platform developments, using literature on the social impact of digital platforms and digitalization of the energy sector in recent history. Here, we follow Moore (1995, 21) who claims that society needs “value-seeking imaginations” to set the tone for future developments as to what is and is not legitimate, and weigh the costs and benefits of innovations, in order to provide a basis for improved democratic decision-making (Guston 2014).

The three platforms we analyze, Equigy, Tesla’s VPP, and Gridflex, differ in their function and place in the energy system (see Figure 1, Table 2, and Three Energy Platforms section). Given the diversity of these three platforms, we assume they provide a complete picture of the public values that are being supported or pressured by the rise of digital energy platforms.
At the same time, we acknowledge that not all public values identified in Table 1 will apply to all three platforms equally.

Results

Three Energy Platforms

The three energy platforms studied in this paper operate within different parts of the electricity system, as shown in Figure 1, and have different functions and methods of operating, as described in Table 2. First, Equigy was launched by the publicly owned TSOs of the Netherlands, Switzerland, and Italy. Its main goal is to support TSOs with balancing supply and demand through the integration of small-scale flexibility (Equigy 2020a). The blockchain platform registers and validates the flexibility services provided to the electricity grid by aggregators through different consumer-based devices (such as batteries and heat pumps; Equigy 2020b). Albeit with different goals, TSOs, DSOs, and via aggregators, small-scale prosumers can make use of this platform.

Second, Tesla’s VPP projects, such as the Tesla Energy Plan in the United Kingdom, use multiple software systems to create a network of distributed energy resources, such as solar panels and batteries (Breck and Link 2020; Lambert 2021). The real-time energy trading and control platform uses algorithms to optimize the generation and use of renewable energy and to offer flexibility services by steering the charging and discharging of Tesla batteries (Tesla 2019). Operating at what Jabłońska (2014) termed the aggregation layer, the software continuously retrieves data, predicts prices, and decides and acts on optimal electricity bids (Breck and Link 2020).

Table 2. Overview of the Different Characteristics of the Three Platforms.

Platform	Operational Function	Ownership	Ownership Type
Equigy	Grid balancing	Public	
Tesla Virtual Power Plant	Aggregation and (large scale) optimization	Private (commercial)	
Gridflex	(Local) optimization	Private (cooperative)	
Third, the consortium of Gridflex Heeten developed an algorithm-based microgrid to optimize local production, storage, and consumption. This pilot in the neighborhood Veldegge (in the village Heeten) consists of several rooftop solar panels, batteries, and an app that allowed people to monitor their electricity consumption (Nieuwe Energie Overijssel 2018). The project was initiated by a local energy cooperation and an entrepreneurial company that wanted to develop and test a local, sustainable energy market. As such, it is a private, yet cooperative, energy platform, focused on reducing the stress on the local distribution network.

The Role of Public Values

Entrenched values. The three digital energy platforms relate in various ways to the five entrenched public values (see Table 3). All functions of these platforms (Table 2) focus on dealing with problems related to the energy transition such as congestion or grid balancing and with energy-use optimization, thus supporting the sustainability, affordability, and reliability of the electricity system. First, regarding sustainability, all platforms support the integration of renewable energy (Gridflex Heeten 2020a; TenneT 2020a; Tesla 2019). Additionally, Tesla’s VPPs and Gridflex can increase energy efficiency by offering flexibility services (Gridflex Heeten 2020b; Tesla 2019).

Second, all platforms have the potential to increase the reliability and affordability of the electricity system, by helping to enable and integrate more flexibility in supply, storage, and demand. Equigy, for example, is focused on making grid balancing more affordable and reliable by lowering the threshold for small-scale flexibility assets (TenneT 2020a). While on the market side, a Tesla VPP can decide to store electricity during peaks of renewable energy generation and sell electricity during peaks of electricity demand (Nhede 2021; Tesla 2019).

It is not self-evident, however, that platforms act in the public interest and thus support public values. Aggregators, for example, can potentially manipulate the energy market, pressuring the affordability of the energy system (Poplavskaya and De Vries 2020; De Vries 2019). Furthermore, any miscommunication or malfunctioning can lead to congestion, imbalance, and even outages. This forms a new pressure on the reliability of the energy system and a potential safety risk. This leads to the first public value also entrenched in the digital technologies sector: security. Although this value is not new for the energy sector, digital energy platforms bring a new set of
Public Values	Equigy	Tesla Virtual Power Plant	Gridflex
Support			
Sustainability	Supports integration of renewable energy sources	Supports integration of renewable energy sources and increases energy efficiency	Supports integration of renewable energy sources and increases energy efficiency
Affordability	Increased competition on balancing energy market	Provides flexibility services and users can yield profits or lower electricity costs	Users can yield profits or lower electricity costs
Pressure	Increased competition on balancing energy market	Provides flexibility services and users can yield profits or lower electricity costs	Users can yield profits or lower electricity costs
Reliability	Provides balance support, increases grid stability, validates transactions, and increases transparency	Provides flexibility services, preventing congestions	Provides flexibility services, preventing congestions
Security	Blockchain technology for digital safety and works parallel to other markets	Digital twins, representing physical and virtual relationships	Connected to grid for backup energy supply
Pressure	Risk of congestion by coordination failure	Risk of congestion by coordination failure	Risk of congestion by coordination failure
Support	Blockchain technology for digital safety and works parallel to other markets	Digital twins, representing physical and virtual relationships	Connected to grid for backup energy supply
Pressure	Depends on Internet of Things (IoT) devices, miscommunication could happen, and cybersecurity risk	Depends on IoT devices, miscommunication could happen, and cybersecurity risk	Depends on IoT devices, miscommunication could happen, and cybersecurity risk

(continued)
Table 3. (continued)

Public Values	Equigy	Tesla Virtual Power Plant	Gridflex
Entrenched overarching public values			
Privacy	Support	GDPR proof, requires customer consent	GDPR proof and followed privacy by design
	Privacy	GDPR proof, requires customer consent	GDPR proof and followed privacy by design
Emerging overarching public values			
Balances of power	Support	Empowers prosumers to individually act on energy market	Empowers energy community with local focus
Equity and equality	Support	Benefits are distributed on individual basis	Equal share of burdens and benefits in community
	Pressure	Excludes actors without assets	Excludes non-Veldegge citizens, benefits and burdens are equally shared regardless of energy use

(continued)
Public Values	Equigy	Tesla Virtual Power Plant	Gridflex
Emerging overarching public values	Allow for basic control over assets	Black box, risk of responsibility issues	Black box, risk of responsibility issues
Control over technology	Support	Pressure	Support
	Blockchain platform for validation of	Risk of responsibility	Increases control for prosumers over their
	transactions	issues	renewable energy assets
Autonomy	Support	Risk of responsibility	Risk of nudging/manipulation to adjust energy
	Increases control for prosumers over their	issues	usage, control is outsourced, and risk of
	renewable energy assets		deskilling
	Pressure	Risk of manipulation to	Attempted nudging manipulation to adjust energy
		adjust energy usage,	usage, risk of manipulation to adjust energy
		nudge of prosumers	usage, control is outsourced, and risk of
			deskilling
(cyber)security risks, broadening the scope of security and making it a more pressing issue.

Some of the new (cyber)security risks have been incorporated in the designs of the platforms. Equigy has chosen to develop a platform that can coexist with the current markets in case the platform malfunctions (TenneT 2020a). Alternatively, Tesla is continuously working with digital twins and edge computing to deal with uncertainties and test the results of decisions before they are made (Breck and Link 2020). Still, all three platforms rely on a multitude of connected devices, gathering and sharing data (Hossein Motlagh et al. 2020; Jabłońska 2014; Royakkers et al. 2018). This effectively poses three security risk: (1) unauthorized access to the data, (2) malfunctioning devices, and (3) miscommunications between different devices (Lin and Bergmann 2016). The scope of security is thus broadened to also include cybersecurity and a well-functioning ecosystem of platforms.

The value of privacy is another important entrenched public value because digital energy platforms gather, share, and analyze personalized data (Kalogirou 2007; Kloppenburg and Boekelo 2019). This type of data collection already raised concerns before the introduction of energy platforms, for example, with the implementation of smart meters (Cuijpers and Koops 2012). In order to be allowed to be implemented, digital energy platforms need to adhere to the EU General Data Protection Regulation (GDPR; Van Aubel et al. 2018; TenneT 2020a). It is in general, however, not always clear how well-informed the consent is that users are giving for this data gathering, which puts privacy under pressure. Contracts, including the consent forms, are often lengthy, complex, and contain much jargon, resulting in many users giving ill-informed consent (Böhme and Köpsell 2010; Nissenbaum 2011).

Emerging values. The emergent public values derived from current debates also seem to have become more relevant with regard to the rise of energy platforms. First, regarding the value of balances of power, it is unclear how it will be influenced by digital energy platforms. Consumers and small-scale digital energy platforms often do not have the technical expertise and business acumen to manage their assets or show an interest in doing this (Poplavskaya and De Vries 2020). Commercial digital energy platforms often do have the technical expertise, business acumen, and interest to manage their assets, thus having a competitive advantage on energy markets. Furthermore, digital platforms in general are associated with unequal power relations and following a winner takes all principle, where larger platforms outprice smaller platforms. So even though energy platforms
stimulate the emergence of prosumers,5 it has not automatically led to their empowerment (Endona and Escozon 2020; Reijnders, van der Laan, and Dijkstra 2020).

Second, all energy platforms also relate to the public value of equity and equality. This value has two components: (1) inclusiveness and (2) an equal distribution of benefits and burdens. Starting with inclusiveness, typically, platforms excludes nonmembers from reaping its benefits. Sometimes, this exclusion has practical reasons: for example, Gridflex is a local experiment, and thus only the community of Veldegge joined (Gridflex Heeten 2020b; Verkade and Höffken 2019). Most digital energy platforms, such as Tesla’s VPP and Equigy, however, have another requirement for inclusion: the possession of flexibility assets (Powells and Fell 2019). Exclusion is thus based on social and financial capital. Added to this is the inequality in the distribution of benefits and burdens. The costs incurred by grid operators for grid expansion to integrate renewables and flexibility assets, necessities for digital energy platforms, are relayed on all users of the electricity grid, including those not benefiting from the platforms (Smale and Kloppenburg 2020; Enexis 2020). On the other hand, the benefits that digital energy platforms bring to the public energy system sometimes benefit everyone—for example, a more efficient electricity grid resulting in lower grid costs.

Third, whether the public value of control over technology is supported or pressured depends on multiple facets, such as the ownership of the platform, the technological design, and the capabilities of users. For example, Equigy uses open source blockchain technology allowing users to understand the platform and validate transactions (TenneT 2020b). Tesla and Gridflex are, however, less transparent regarding the algorithms used for the platforms but do offer users basic control over self-owned assets (Tesla 2019; Endona and Escozon 2020). Users often lack skills and knowledge to fully understand how the digital platforms work, although the question is whether that is necessary (Milchram et al. 2020; Lyytinen, Nickerson, and King 2020).

This leads to the fourth and closely related public value: autonomy. All three platforms support users with the generation, gathering, and analysis of energy data (Reijnders, van der Laan, and Dijkstra 2020; TenneT 2020a; Verkade and Höffken 2019). As such, users could gain new insights and skills and be empowered to play a more active role in the energy transition (Cossy and Goodson 2020). In practice, however, it is mainly platforms that use insights from energy data. A growing number of examples, such as Gridflex, show that consumers rarely act on the insights generated from
energy data (Gridflex 2020c; Smale and Kloppenburg 2020). What local
digital energy platforms as Gridflex do entice is community building and
pride. Members are often proud of working together on sustainability and
feel more connected (Endona and Escozon 2020; Gridflex Heeten 2020b;
Van Summeren et al. 2020). This increases their community autonomy.

Discussion

As explained in the second section, the results indicate several, potential
value changes. Values that were previously less relevant have become
highly debated with the growing implementation of energy platforms. In
the second section, we also hinted that value changes can result in new
value tensions, as different values become prioritized or pressured. Based
on our findings, we can identify three overarching, interrelated value ten-
sions (see Figure 2), which relate to (1) preserving a well-functioning
energy system, (2) ensuring a level playing field and public control, and
(3) stimulating self-determination.

The first value tension we identified concerns preserving a
well-functioning energy system. The entrenched public values have been
reprioritized: sustainability has risen in priority, and consequently, reliabil-
ity and affordability have come under pressure. This led to the emergence of
digital energy platforms that try to solve the problems that arise because of
the prioritization of sustainability. Additionally, the value of security has
broadened in scope to include cybersecurity. Together, the values of sus-
tainability, affordability, reliability, and security form the basis of preser-
ving a well-functioning energy system. Regulations could guide both public
and private companies to prioritize sustainability without taking too many
risks in terms of affordability, reliability, or security.

The second value tension concerns self-determination. Most digital
energy platforms promise “optimization” of the energy system; users of
the platform are often unaware this optimization could have an impact on
their privacy, autonomy, and control over technology, as explained in The
Role of Public Values section. Control over their data is for users not
self-evident but important, also from the point of view of acceptability.
However, privacy consent forms are often difficult to understand for
nonexperts.

The third value tension relates to a level playing field and public control.
With the emergence of new actors and activities in the energy system, issues
emerge regarding the (shifts in) balances of power on the energy market.
For their success on the energy markets, digital energy platforms are
dependent on knowledge of digital technologies, business acumen, and scale (Van Dijck, Nieborg, and Poell 2019; Langley and Leyshon 2017; Poplavskaya and De Vries 2020). These capacities are often unequally distributed; digital corporations, in contrast to small, local energy communities, often possess these competitive advantages allowing for faster scale-up, taking in a large market share and benefiting from the network effects of their platform. This conflicts with ensuring a level playing field on the electricity market. This could also lead to a less affordable energy system. Publicly owned platforms such as Equigy play an essential role in the energy platform ecosystem because of their ability to help safeguard a well-functioning energy system and facilitate the market and thereby ensuring public control. It is advisable to establish energy policies supporting

![Figure 2. The three value tensions occurring with the emerging digital energy platforms. Source: Authors.](image-url)
grid operators in their innovation and investment activities, to ensure a good knowledge and skills base for digital technologies.

Conclusion

This paper analyzed the rise of platforms in the energy sector to see to what extent this platformization supports or pressures relevant public values. Insight into important public values at stake enables us to consider to what extent entrenched and emerging values raise new social issues and how these issues are addressed in the design of various platforms and public policies. For this analysis, we first developed a framework (Table 1) including five entrenched overarching public values and four emerging overarching public values. Next, using this framework, we analyzed how three types of digital energy platforms, each with a different role in the energy system (Table 2), pressure or support public values (Table 3).

The rise of digital energy platforms relates to various value changes. First, it is stimulated by the prioritization of sustainability as a core driver of the energy transition. Secondly, since digital platforms illustrate the ongoing convergence of the energy and digital technologies sector, public values that have been central to digital technologies policy for years, such as privacy and (cyber)security, will play a stronger role in energy policy. Thirdly, more recent discussions about the convergence of the digital technologies sector and the energy sector also bring to the fore emerging public values and related societal and political challenges.

These value changes can be characterized by three value tensions related to (1) preserving a well-functioning energy system, (2) ensuring a level playing field and public control, and (3) stimulating self-determination. It was outside of the scope of this research to analyze in-depth how current regulations address these three tensions; further research is needed for this. Without adequate regulation and steering of the development, the potential of digital platforms for the energy transition cannot be exploited in a manner beneficial to society.

Acknowledgments

The authors would like to give special thanks to the TU Delft Design for Changing Values team, who organized the workshop “Energy Systems and Changing Values,” where an earlier version of this paper was presented, and who made this Thematic Collection possible. They also thank all participants of this workshop and the reviewers for their constructive feedback.
Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research is part of the project Governance van artificiële intelligentie in de energietransitie (Governance of Artificial Intelligence in the Energy Transition) funded by the Eindhoven University Fund (Stichting Universiteitsfonds Eindhoven). This research is also supported by the Rathenau Instituut.

ORCID iD

Irene A. Niet https://orcid.org/0000-0001-6805-0205

Notes

1. This refers to a situation in which multiple energy platforms are active in the electricity system and require information from each other and connected devices to function properly. Such an interdependent, platform-based infrastructure has already emerged in the digital sector for social interaction (Van Dijck, Poell, and de Waal 2016). For a well-functioning ecosystem of platforms, platforms need to be able to communicate correctly and safely with other platforms and connected devices (Poplavskaya and De Vries 2020).

2. Autonomy has previously been included in the value dimension of energy systems, for example, when discussing the autonomy of countries related to their energy mix (energy independence; Chalvatzis and Hooper 2009). As the review study by Juntunen and Martiskainen (2021) pointed out, this value has recently become more relevant on an individual and community level. Developments in renewable energy technology, flexibility assets, and (digital) energy platforms have changed the possibilities for energy autonomy on a technical, social, and economy level, both for communities and individual. This is what we focus on in this article.

3. Flexibility assets include batteries, electric vehicles, and renewable energy generators (often rooftop solar panels; Powells and Fell 2019).

4. Platforms often follow this principle, as larger platforms are able to offer better services at lower prices, due to economies of scale (Van Dijck, Poell, and de Waal 2016; Langley and Leyshon 2017). This results in a limited number of dominant platforms (e.g., Google is the major search engine), with smaller platforms unable to compete in the electricity system (Moore and Tambini 2018; Kloppenburg and Boekelo 2019).
5. Prosumers are energy consumers who have started to produce energy themselves on a small scale, mostly based on renewable energy. For further information and explanation, see, for example, Bhatti (1993) and Pitt, Diaconescu, and Bourazeri (2017).

References

Atlam, H. F., and G. B. Wills. 2019. “IoT Security, Privacy, Safety and Ethics.” In Internet of Things. Springer International Publishing. doi:10.1007/978-3-030-18732-3_8.

Aubel, P. van, M. Colesky, J. Hoepman, E. Poll, and C. Montes Portela. 2018. “Privacy by Design for Local Energy Communities.” CIRED Workshop—Ljubljana, June 7–8, 2018, Paper No 0319. https://www.cired-repository.org/handle/20.500.12455/1070. doi:10.34890/41.

Bhatti, M. 1993. “From Consumers to Prosumers: Housing for a Sustainable Future.” Housing Studies 8 (2): 98-108. doi:10.1080/02673039308720753.

Böhme, R., and S. Köpsell. 2010. “Trained to Accept? A Field Experiment on Consent Dialogs.” In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 2403-06. CHI ‘10. New York: Association for Computing Machinery. doi:10.1145/1753326.1753689.

Breck, C., and P. Link. 2020. “Tesla Virtual Power Plant.” Presented at the QCon, London, March 23. Accessed August 27, 2020. https://www.infoq.com/presentations/tesla-vpp/.

Chalvatzis, Konstantinos J., and Elizabeth Hooper. 2009. “Energy Security vs. Climate Change: Theoretical Framework Development and Experience in Selected EU Electricity Markets.” Renewable and Sustainable Energy Reviews 13 (9): 2703-09. doi:10.1016/j.rser.2009.07.013.

Christen, M., B. Gordijn, and M. Loi. 2020. The Ethics of Cybersecurity. Cham, Switzerland: Springer Nature. doi:10.1007/978-3-030-29053-5

Correljé, A., E. Cuppen, M. Dignum, U. Pesch, and B. Taebi. 2015. “Responsible Innovation in Energy Projects: Values in the Design of Technologies, Institutions and Stakeholder Interactions.” In Responsible Innovation 2: Concepts, Approaches, and Applications, edited by B. J. Koops, I. Oosterlaken, H. Romijn, T. Swierstra, and J. van den Hoven, 183-200. Cham, Switzerland: Springer International Publishing. doi:10.1007/978-3-319-17308-5_10

Cossy, L., and T. Goodson. 2020. “Empowering Electricity Consumers to Lower Their Carbon Footprint.” Commentary. International Energy Agency. January 15. Accessed January 27, 2020. https://www.iea.org/commentaries/empower-用电-消费者-降低-碳-足迹。

Cuijpers, C. M. K. C., and E. J. Koops. 2012. “Smart Metering and Privacy in Europe: Lessons from the Dutch Case.” In European Data Protection: Coming
Dahl, R. A. 2015. *On Democracy*, 2nd ed. London, UK: Yale University Press.

Dekker, R., and R. van Est. 2020. “The Convergence of Electricity and Digitalization in the Netherlands.” *Journal for Technology Assessment in Theory and Practice* 29 (2): 31-37. doi:10.14512/tatup.29.2.3.

Demska, C., C. Butler, K. A. Parkhill, A. Spence, and N. F. Pidgeon. 2015. “Public Values for Energy System Change.” *Global Environmental Change* 34 (September): 59-69. doi:10.1016/j.gloenvcha.2015.06.014.

Dijck, J. van, D. Nieborg, and T. Poell. 2019. “Reframing Platform Power.” *Internet Policy Review* 8 (2): 1-18. doi:10.14763/2019.2.1414.

Dijck, J. Van, T. Poell, and M. De Waal. 2016. *De Platformsamenleving: Strijd Om Publieke Waarden in Een Online Wereld*. Amsterdam, the Netherlands: Amsterdam University Press.

Duch-Brown, N., and F. Rossetti. 2020. “Digital Platforms across the European Regional Energy Markets.” *Energy Policy* 144 (September): 111612. doi:10.1016/j.enpol.2020.111612.

Edens, M. 2017. “Public Value Tensions for Dutch DSOs in Times of Energy Transition: A Legal Approach.” *Competition and Regulation in Network Industries* 18 (1-2): 132-49. doi:10.1177/1783591717734807.

Endona and Escozon. 2020. “Interview GridFlex Heeten”, Interview by R. Dekker and E. Mason. July 14, 2020.

Enexis. 2020. *Jaarverslag 2019*. Den Bosch, the Netherlands: Enexis.

Equigy. 2020a. “How It Works.” Equigy. Accessed August 27, 2020. https://equigy.com/how-it-works/.

Equigy. 2020b. “The Platform.” Equigy. Accessed August 25, 2020. https://equigy.com/the-platform/.

Eurostat. 2021. “SDG 7—Affordable and Clean Energy.” Eurostat. June 9. Accessed June 16, 2021. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=SDG_7_-_Affordable_and_clean_energy.

Frenken, K., A. van Waes, P. Pelzer, M. Smink, and R. van Est. 2019. “Safeguarding Public Interests in the Platform Economy.” *Policy & Internet* 10 (2): 1-26. doi:10.1002/poi3.217.

Gridflex, Heeten. 2020a. “Duurzamer Dan Duurzaam.” Gridflex Heeten. Accessed July 19, 2020. https://gridflex.nl/.

Gridflex, Heeten. 2020b. “Samen energie steken in de buurt.” Gridflex Heeten. Accessed July 27, 2020. https://gridflex.nl/deelnemers/.

Gridflex, Heeten. 2020c. *Whitepaper. Gridflex Heeten: Naar nul op de wijktransformator*. Heeten, the Netherlands: Gridflex Heeten.
Grin, J., J. Rotmans, and J. Schot. 2010. Transitions to Sustainable Development: New Directions in the Study of Long Term Transformative Change. New York: Routledge.

Guston, D. H. 2014. “Understanding ‘Anticipatory Governance’.” Social Studies of Science 44 (2): 218-42. doi:10.1177/0306312713508669.

Hossein Motlagh, N., M. Mohammadrezaei, J. Hunt, and B. Zakeri. 2020. “Internet of Things (IoT) and the Energy Sector.” Energies 13 (2): 494. doi:10.3390/en13020494.

Hoven, J. van den, G. J. Lokhorst, and I. Van de Poel. 2012. “Engineering and the Problem of Moral Overload.” Science and Engineering Ethics 18 (1): 143-55. doi:10.1007/s11948-011-9277-z.

International Energy Agency. 2017. Digitalization & Energy. Paris, France: International Energy Agency.

Jabłońska, M. 2014. “Internet of Things in Smart Grid Deployment.” Rynek Energii 2014 (2): 121-26.

Jenkins, K. E. H., D. McCauley, R. Heffron, H. Stephan, and R. Rehner. 2016. “Energy Justice: A Conceptual Review.” Energy Research and Social Science 11 (2016): 174-82. doi:10.1016/j.erss.2015.10.004.

Jenkins, K. E. H., S. Spruit, C. Milchram, J. Höffken, and B. Taebi. 2020. “Synthesizing Value Sensitive Design, Responsible Research and Innovation, and Energy Justice: A Conceptual Review.” Energy Research & Social Science 69 (August): 101727. doi:10.1016/j.erss.2020.101727.

Junutnen, J. K., and M. Martiskainen. 2021. “Improving Understanding of Energy Autonomy: A Systematic Review.” Renewable and Sustainable Energy Reviews 141 (May): 110797. doi:10.1016/j.rser.2021.110797.

Kalogirou, S. A. 2007. “Introduction to Artificial Intelligence Technology.” In Artificial Intelligence in Energy and Renewable Energy Systems, edited by S. A. Kalogirou, 1-46. New York: Nova Science Publishers.

Kloppenburg, S., and M. Boekelo. 2019. “Digital Platforms and the Future of Energy Provisioning: Promises and Perils for the next Phase of the Energy Transition.” Energy Research and Social Science 49 (2019): 68-73. doi:10.1016/j.erss.2018.10.016.

Kooiman, J., and S. Jentoft. 2009. “Meta-governance: Values, Norms and Principles, and the Making of Hard Choices.” Public Administration 87 (4): 818-36. doi:10.1111/j.1467-9299.2009.01780.x.

Küfeoğlu, S., G. Liu, K. Anaya, and M. G. Pollitt. 2019. “Digitalisation and New Business Models in Energy Sector.” EPRG Working Paper (1920): 39. Cambridge, MA: Energy Policy Research Group. doi:10.17863/CAM.41226.

Lambert, F. 2021. “Tesla Energy Plan launches in Australia to Lower Electricity Rates with Virtual Power Plant.” electrek, March 23. Accessed July 15, 2021.
https://electrek.co/2021/03/23/tesla-energy-plan-launches-in-australia-to-lower-electricity-rates-with-virtual-power-plant/.

Langley, P., and A. Leyshon. 2017. “Platform Capitalism: The Intermediation and Capitalization of Digital Economic Circulation.” *Finance and Society* 3 (1): 11-31. doi:10.2218/finsoc.v3i1.1936.

Larson, P. 1997. “Public and Private Values at Odds: Can Private Sector Values Be Transplanted into Public Sector Institutions?” *Public Administration and Development* 17 (1): 131-39. doi:10.1002/(sici)1099-162x(199702)17:13.0.co;2-d.

Lin, H., and N. W. Bergmann. 2016. “IoT Privacy and Security Challenges for Smart Home Environments.” *Information* 7 (3): 44. doi:10.3390/info7030044.

Lyrytinen, K., J. V. Nickerson, and J. L. King. 2020. “Metahuman Systems = Humans + Machines That Learn.” *Journal of Information Technology*. Published online May, 2020. doi:10.1177/0268396220915917.

May, P. J., and A. E. Jochim. 2013. “Policy Regime Perspectives: Policies, Politics, and Governing.” *Policy Studies Journal* 41 (3): 426-52. doi:10.1111/psj.12024.

Milchram, C., R. Hillerbrand, G. Van de Kaa, N. Doorn, and R. Künneke. 2018a. “Energy Justice and Smart Grid Systems: Evidence from the Netherlands and the United Kingdom.” *Applied Energy* 229 (November): 1244-59. doi:10.1016/j.apenergy.2018.08.053.

Milchram, C., R. Künneke, N. Doorn, G. Van de Kaa, and R. Hillerbrand. 2020. “Designing for Justice in Electricity Systems: A Comparison of Smart Grid Experiments in the Netherlands.” *Energy Policy* 147 (December): 111720. doi:10.1016/j.enpol.2020.111720.

Milchram, C., G. Van de Kaa, N. Doorn, and R. Künneke. 2018b. “Moral Values as Factors for Social Acceptance of Smart Grid Technologies.” *Sustainability* 10 (8): 2703. doi:10.3390/su10082703.

Moore, M. H. 1995. *Creating Public Value: Strategic Management in Government*. Cambridge, MA: Harvard University Press.

Moore, M. H., and D. Tambini. 2018. *Digital Dominance: The Power of Google, Amazon, Facebook, and Apple*. Oxford, UK: Oxford University Press.

Nhede, N. 2021. “Vermont Utility Balances Regional Grid with Consumers’ Tesla Batteries.” *Smart Energy International*, May 18. Accessed July 15, 2020. https://www.smart-energy.com/industry-sectors/storage/vermont-utility-balances-regional-grid-with-consumers-tesla-batteries/.

Nieuwe Energie Overijssel. 2018. “Zonne-Energiepark Kan Half Heeten van Stroom Voorzien.” *Nieuwe Energie Overijssel*, September 21. Accessed July 21, 2020. https://www.nieuweenergieoverijssel.nl/zonne-energiepark-kan-half-heeten-van-stroom-voorzien/.

Nissenbaum, H. 2011. “A Contextual Approach to Privacy Online.” *Daedalus* 140 (4): 32-48. doi:10.1162/DAED_a_00113.
Pellegrini-Masini, G., A. Pirni, and S. Maran. 2020. “Energy Justice Revisited: A Critical Review on the Philosophical and Political Origins of Equality.” Energy Research & Social Science 59 (January): 101310. doi:10.1016/j.erss.2019.101310.

Pitt, J., A. Diaconescu, and A. Bourazeri. 2017. “Democratisation of the SmartGrid and the Active Participation of Prosumers.” In 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE), 1707-14. doi:10.1109/ISIE.2017.8001505.

Poel, I. Van de. 2020. “Embedding Values in Artificial Intelligence (AI) Systems.” Minds and Machines 30 (3): 385-409. doi:10.1007/s11023-020-09537-4.

Poplavskaya, K., and L. de Vries. 2020. “Chapter 5—Aggregators Today and Tomorrow: From Intermediaries to Local Orchestrators?” In Behind and Beyond the Meter, edited by F. P. Sioshansi, 105-35. San Francisco, CA: Academic Press. doi:10.1016/B978-0-12-819951-0.00005-0.

Powells, G., and M. J. Fell. 2019. “Flexibility Capital and Flexibility Justice in Smart Energy Systems.” Energy Research and Social Science 54 (2019): 56-59. doi:10.1016/j.erss.2019.03.015.

Reijnders, V. M. J. J., M. D. Van der Laan, and R. Dijkstra. 2020. “Energy Communities: A Dutch Case Study.” In Behind and beyond the Meter: Digitalization, Aggregation, Optimization, Monetization, edited by F. P. Sioshansi, 137-56. San Francisco, CA: Academic Press. doi:https://doi.org/10.1016/B978-0-12-819951-0.00006-2.

Royakkers, L., J. Timmer, L. Kool, and R. van Est. 2018. “Societal and Ethical Issues of Digitization.” Ethics and Information Technology 20 (2): 127-42. doi:10.1007/s10676-018-9452-x.

Schmidt, T. S., M. Schneider, K. S. Rogge, M. J. A. Schuetz, and V. H. Hoffmann. 2012. “The Effects of Climate Policy on the Rate and Direction of Innovation: A Survey of the EU ETS and the Electricity Sector.” Environmental Innovation and Societal Transitions 2 (March): 23-48. doi:10.1016/j.eist.2011.12.002.

Smale, R., and S. Kloppenburg. 2020. “Platforms in Power: Householder Perspectives on the Social, Environmental and Economic Challenges of Energy Platforms.” Sustainability 12 (2): 692. doi:10.3390/su12020692.

Sovacool, B. K., and M. A. Brown. 2010. “Competing Dimensions of Energy Security: An International Perspective.” Annual Review of Environment and Resources 35 (1): 77-108. doi:10.1146/annurev-environ-042509-143035.

Sovacool, B. K., and M. H. Dworkin. 2014. Global Energy Justice: Problems, Principles and Practices. Cambridge, MA: Cambridge University Press.

Sovacool, B. K., and I. Mukherjee. 2011. “Conceptualizing and Measuring Energy Security: A Synthesized Approach.” Energy, PRES 2010 36 (8): 5343-55. doi:10.1016/j.energy.2011.06.043.
Summeren, L. F. M. van, A. J. Wieczorek, G. J. T. Bombaerts, and G. P. J. Verbong. 2020. “Community Energy Meets Smart Grids: Reviewing Goals, Structure, and Roles in Virtual Power Plants in Ireland, Belgium and the Netherlands.” *Energy Research & Social Science* 63 (May): 101415. doi:10.1016/j.erss.2019.101415.

Susskind, J. 2020. *Future Politics*, 1st ed. Oxford, UK: Oxford University Press.

TenneT. 2020a. “Equigy Platform Gives European Consumers Access to Tomorrow’s Sustainable Energy Market.” *TenneT*, April 23. Accessed April 23, 2020. https://www.tennet.eu/news/detail/equigy-platform-gives-european-consumers-access-to-tomorrows-sustainable-energy-market/.

TenneT. 2020b. “Interview TenneT,” Interview by R. Dekker, R. de Jong, and E. Mason. June 16, 2020.

Terroso-Saenz, F., A. González-Vidal, A. P. Ramallo-González, and A. F. Skarmeta. 2019. “An Open IoT Platform for the Management and Analysis of Energy Data.” *Future Generation Computer Systems* 92 (March): 1066-79. doi:10.1016/j.future.2017.08.046.

Tesla. 2019. “Autobidder.” *Tesla*, September 18. Accessed August 25, 2020. https://www.tesla.com/nl_NL/support/autobidder.

Umbrello, S. 2020. “Conceptualizing Policy in Value Sensitive Design: A Machine Ethics Approach.” In *Machine Law, Ethics, and Morality in the Age of Artificial Intelligence*, edited by S. J. Thompson, 108-25. Hershey, PA: Engineering Science Reference. doi:10.4018/978-1-7998-4894-3.ch007.

Véliz, C., and P. Grunewald. 2018. “Protecting Data Privacy Is Key to a Smart Energy Future.” *Nature Energy* 3 (9): 702-04. doi:10.1038/s41560-018-0203-3.

Verkade, N., and J. Höffken. 2019. “Collective Energy Practices: A Practice-based Approach to Civic Energy Communities and the Energy System.” *Sustainability* 11 (11): 1-15. doi:10.3390/su11113230.

Vries, L. de. 2019. “De Problemen Rondom Netcapaciteit.” *Rondetafelgesprek, Den Haag*, November 28. Accessed September 4, 2020. https://debatgemist.tweedekamer.nl/debatten/de-problemen-rondom-netcapaciteit.

Werff, E. van der, and L. Steg. 2016. “The Psychology of Participation and Interest in Smart Energy Systems: Comparing the Value-belief-norm Theory and the Value-identity-personal Norm Model.” *Energy Research & Social Science* 22 (December): 107-14. doi:10.1016/j.erss.2016.08.022.

Wildt, T. E. de, E. J. L. Chappin, G. Van de Kaa, P. M. Herder, and I. R. Van de Poel. 2019. “Conflicting Values in the Smart Electricity Grid a Comprehensive Overview.” *Renewable and Sustainable Energy Reviews* 111 (September): 184-96. doi:10.1016/j.rser.2019.05.005.

Xu, Y., P. Ahokangas, J. N. Louis, and E. Pongrácz. 2019. “Electricity Market Empowered by Artificial Intelligence: A Platform Approach.” *Energies* 12 (21): 4128. doi:10.3390/en12214128.
Author Biographies

Irene A. Niet joined the Eindhoven University of Technology in 2019 as a PhD student. Her research concerns the governance of artificial intelligence in the energy transition, with a special interest in the Dutch electricity system.

Romy Dekker has been working as a researcher at the Rathenau Instituut since 2018. She is currently working on a project about the convergence of digitalization and clean energy. She completed a bachelor and masters in cultural anthropology and development sociology.

Rinie van Est joined the Rathenau Instituut in 1997, where he coordinates research in the field of energy transition and digital transition. Since 2000, he also works part-time at the Eindhoven University of Technology, where he currently holds the chair of technology assessment and governance.