Smart electric vehicle charging strategies for sectoral coupling in a city energy system

Downloaded from: https://research.chalmers.se, 2021-08-24 02:04 UTC

Citation for the original published paper (version of record):
Heinisch, V., Göransson, L., Erlandsson, R. et al (2021)
Smart electric vehicle charging strategies for sectoral coupling in a city energy system
Applied Energy, 288
http://dx.doi.org/10.1016/j.apenergy.2021.116640

N.B. When citing this work, cite the original published paper.
Smart electric vehicle charging strategies for sectoral coupling in a city energy system

Verena Heinisch*, Lisa Göransson, Rasmus Erlandsson, Henrik Hodel, Filip Johnsson, Mikael Odenberger

Department of Space, Earth and Environment, Energy Technology, Chalmers University of Technology, Gothenburg, Sweden

HIGHLIGHTS

- We model the integration of electric transport, electricity and district heating.
- Smart charging and V2G for electric cars foster the uptake of solar PV in cities.
- Communicating local value of electricity in cities unlocks flexibility from cars.
- Electric bus transport profiles match solar PV generation profiles.
- Sectoral coupling can enhance energy autonomy in Smart Cities.

ARTICLE INFO

Keywords:
Electric vehicles
Smart city
Electric buses
Vehicle-to-grid
Sectoral coupling
Energy system modeling

ABSTRACT

The decarbonization of city energy systems plays an important role to meet climate targets. We examine the consequences of integrating electric cars and buses into the city energy system (60% of private cars and 100% of public buses), using three different charging strategies in a modelling tool that considers local generation and storage of electricity and heat, electricity import to the city, and investments to achieve net-zero emissions from local electricity and heating in 2050. We find that up to 85% of the demand for the charging of electric cars is flexible and that smart charging strategies can facilitate 62% solar PV in the charging electricity mix, compared to 24% when cars are charged directly when parked. Electric buses are less flexible, but the timing of charging enables up to 32% to be supplied by solar PV. The benefit from smart charging to the city energy system can be exploited when charging is aligned with the local value of electricity in the city. Smart charging for cars reduces the need for investments in stationary batteries and peak units in the city electricity and heating sectors. Thus, our results point to the importance of sectoral coupling to exploit flexibility options in the city electricity, district heating and transport sectors.

1. Introduction

Cities are home to an increasing share of the growing global population [1]. As a consequence of this development, the demands for electricity, heating and cooling, as well as for private and public transport occur predominantly in cities and the local supply of these energy carriers will play an important role. A major challenge for city planning in the upcoming decades will be, therefore, to ensure that strategies for meeting these growing demands in the urban system are in line with efficient long-term targets to limit global warming [2]. A greater independence from electricity imports from the national power grid enables cities with rising demand for electricity to grow and expand over time in a way that puts less pressure on dependency of the long lead times typically associated with construction of new power lines connecting to the national power grid. Thus, the utilization of flexibility from storage systems, flexible demands and sectoral coupling on city scale in combination with local supply of electricity and heat is expected to be an important part of a fully decarbonized energy system. The integration between sectors and actors in the city, aided by communication technologies and infrastructure, with the overall aim to improve environmental, societal or economic performance, are collectively referred to as the Smart City [3–5].

* Corresponding author.
 E-mail address: verena.heinisch@chalmers.se (V. Heinisch).
Sectoral coupling has been proposed as key components of a sustainable energy system on the national and European scales [6–8]. Considering the synergies between sectors and technologies applicable to the city scale allows for the creation of efficient decarbonization pathways and scenarios for the urban energy transition [9–11]. The modularity of solar and wind power allows these technologies to be installed locally within the city energy system for the supply of carbon-neutral electricity and to increase the energy autonomy of the city. Solar PV experiences higher levels of acceptance than wind power in high-population areas due to fewer disturbances being caused. The local utilization of electricity from varying renewable electricity (VRE) technologies within the city can be increased when being integrated with battery electricity storage units or the charging of electric vehicle batteries [12–15]. High shares of VRE will result in variations in the marginal costs for electricity generation, which in turn can affect the operation of city district heating systems with combined heat and power (CHP) or heat pumps, thereby increasing the value of flexible operation of the heat supply [16,17]. Power-to-heat by means of low-cost electricity can displace heating fuels in district heating systems or households [18]. The utilization of power-to-heat technologies (PH), such as heat pumps and electric boilers, as well as thermal energy storage systems (TES), such as tank or pit storage units, has been shown to increase system flexibility to self-consume electricity from VRE [19–21].

To achieve decarbonization of the transport sector, electrification is considered as an essential step [22]. The term ‘electric vehicle’ (EV) includes a wide range of vehicle types for road, rail, water and air transport. This work studies pure battery electric vehicles (BEVs), in the forms of passenger battery electric cars (BECs) and electric public buses powered by on-board batteries (BEBs). The increased demand for electricity from emerging loads within the transport sector will have to be integrated into existing power systems. The integration of EVs has been studied on national scale [23–27], however, the integration into city energy systems is less well studied. Various strategies for the charging of BEVs have different implications for the power system, e.g., inflexible charging directly when being parked, smart charging that responds to incentives such as price signals or is governed by an aggregating actor, and including the option of discharging of electricity back to the grid, i.e. ‘vehicle-to-grid’ (V2G) [28]. Flexible charging strategies and V2G can offer services such as peak-shaving and valley-filling to the power system, thereby contributing to better integration of VRE [29–31]. Different market set-ups and pricing schemes are required to provide economic incentives to vehicle owners for using smart charging strategies and V2G [28,32] and thus stimulate flexibility from this sector coupling.

The synergies between solar generation patterns and the charging of BECs have been studied previously [33–35]. A temporal load match between charging times of BECs and solar PV generation and the possibility to import electricity from the national power grid limited by the connection capacity, the investment and operation of local electricity and heating generation and storage and electrification of the city transport sector. Figure adapted from [42].
scenarios and sectoral coupling at the city level. Here, we develop and apply such a modeling tool, using the city energy system optimization model first introduced in [42] as a starting point, to study the interactions between BECs and BEBs and the city energy system. We model and compare BECs and BEBs in terms of the charging patterns within the city, considering three different charging strategies for BECs: i) Inflexible charging, whereby cars are charged directly upon arrival; ii) Smart charging, whereby charging is adapted to the city energy system; and iii) Smart charging with V2G. For BEBs, we apply Inflexible and Smart charging strategies. As the BEC fleet has larger electricity demand and battery capacity than the BEB fleet, the impact from a large-scale integration of BECs on the planning and operation of the city electricity and district heating sectors is delineated in more detail. Thus, this study contributes to improving current understanding of:

- The implications of integrating the Smart and Inflexible charging strategies for BECs and BEBs into the city energy system and the potential for flexibility in the different charging strategies;
- The ability of BEBs and BECs to exploit locally generated, low-carbon electricity and how this depends on charging strategies; and
- The impact from different BEC charging strategies, combined with sector-coupling in the city energy system, on the optimal operation and design of the electricity and district heating sectors.

The focus of this work is to investigate potential synergies between electric transport and the district heating and electricity systems in the city and to study the potential to utilize local generation and storage technologies in combination with flexible charging of electric cars and buses. Thus, we do not aim to represent current energy markets but model the cost-optimized operation of the city energy system.

2. Methodology

2.1. City energy system optimization including BEC and BEB charging

Sectoral coupling in the city energy system and the flexibility options from electric city transport are analyzed using a linear optimization model that considers investments and dispatch within the electricity and heating sectors for one year with hourly time resolution. The model has first been introduced in [42] and is expanded in this work to include charging strategies for electric cars and buses. Fig. 1 gives an overview of the inputs and outputs of the modeling. The modeling considers the operational and investment costs for the electricity and heating sectors, whereas the investment costs for electric cars and buses are not included in the optimization. The objective function is the minimization of annualized investment and running costs over one year, as given in Eq. (1). Electricity and heat balances, Eqs. (2) and (3), ensure that the demands of electricity and heat are met at all time steps. Electricity can be imported to the city according to an electricity price profile. The modeling includes power-to-heat technologies and combined heat and power plants, which both link the electricity and heating sectors, as well as electricity and thermal storage systems. A detailed description of the full original model set-up is given in [42].

To include electrified transport, the model is complemented with a set of equations that describe the energy balance over the vehicle batteries in the BECs and BEBs and additional constraints on the technical limitations to vehicle charging. Three charging strategies for BECs and BEBs are modeled:

- **Inflexible charging**: A charging strategy, whereby the vehicles are charged at each stop longer than one hour, until the battery is full, or the vehicle leaves for the next drive, which offers no flexibility.
- **Smart charging**: Charging can be postponed according to the energy system optimization, such that the total city energy system cost is minimized, while the vehicle driving demand is fulfilled at each time step.
- **Smart charging with Vehicle-to-Grid (V2G)**: Smart charging with the possibility to discharge vehicle batteries back to the city energy system, i.e. V2G. V2G is scheduled such that the city energy system cost is minimized, while the vehicle driving demand is fulfilled at each time step.

The Smart and Smart with V2G charging strategies thereby model the maximum flexibility that can be provided from BECs and BEBs, while fulfilling the driving demand and taking into consideration the times that the vehicles are parked and connected to charging infrastructure.

The electricity demand for BEC and BEB charging is included in the city electricity balance (Eq. (2)) as a fixed hourly profile for the Inflexible charging strategy, which is given exogenously to the model and is based on the vehicle driving demand and parking times. Smart charging and the possibility for V2G are included in the electricity balance as variables. Additionally, a set of constraints is added to represent the technical limitations to Smart charging and V2G (Eqs. (4)–(7)). Eq. (4) is the energy balance over vehicle batteries, which ensures that batteries are charged enough to fulfill the driving demand at each time step. Eqs. (5) and (6) restrict Smart charging and V2G by the maximum charging power and the number of vehicles being parked at each hour. Eq. (7) limits the maximum storage level in the vehicle batteries.

We model the driving demand as an aggregate for different vehicle categories, one category for BECs and four BEB categories (for details, see Section 2.5). Thereby, in each category a share of the vehicle fleet is driving and a share is parked. The impact from aggregating vehicle profiles as compared to modeling individual profiles has been investigated in [43], where an aggregated profile has been found to be sufficient when charging possibilities are not restricted to home-charging.

We investigate the local marginal cost of electricity in the city energy system, i.e. the marginal value of the electricity balance (Eq. (2)) at each time step as an indicator of the value of electricity over time in the city energy system. Today’s retail prices usually do not reflect a time-varying electricity price nor any geographical variations within the established price areas (there are four price areas in Sweden). Thus, the local marginal costs are used here to study how the value of electricity within the city energy system differs at times from the wholesale market price due to local generation in the city and congestion to the surrounding system, and are not meant to represent today’s market set-ups. However, retail prices that reflect the local marginal cost of electricity can incentivize a city energy system operation that makes use of sectoral coupling and flexibility similar to our modeling. The price profile on imported electricity is given as an input to the model and represents the wholesale market price in the market region. The local marginal cost can differ from the wholesale market price in cases where there is an abundance of low-cost, local generation of electricity within the city or because of congestion in the grid infrastructure for the import of electricity to the city energy system.

\[
\text{MIN : } C_{\text{tot}} = \sum_{n \in J} \left(C_{\text{run}}^{\text{EV}} + \sum_{t \in T} \left(C_{\text{char}}^{\text{BEV}} + C_{\text{char}}^{\text{BEZ}} + C_{\text{char}}^{\text{V2G}} \right) + \sum_{t \in T} w_{t} \right) \quad (1)
\]

\[
\begin{align*}
D_{i}^{t} & = \sum_{n \in \text{EV}} C_{\text{EV}}^{n} + \sum_{n \in \text{EV}} q_{t}^{n} + \sum_{n \in C} (E_{i}^{\text{EV}} + E_{i}^{\text{BEZ}} + E_{i}^{\text{V2G}}) \left(p_{t} + w_{t} \right) + \sum_{n \in \text{EV}} p_{t}^{n} \quad \forall i, t \in T
\end{align*}
\]
\[
D_T^f + \sum_{i=\text{bus}} q_{i,T} \leq \sum_{i=\text{bus}} q_{i,T} + \sum_{i=\text{bus}} q_{i,T}^\text{b} + X_i, \forall t \in T \tag{3}
\]

\[
EV_{i,T}^\text{dis} = EV_{i,T}^\text{in} - EV_{i,T}^\text{dem} - EV_{i,T}^\text{V2G}, \forall t \in T, \forall \omega \in C \tag{4}
\]

\[
EV_{i,T}^\text{Ch} \leq CP_i \cdot NC_{i,T}^\text{cap}, \forall t \in T, \forall \omega \in C \tag{5}
\]

\[
EV_{i,T}^\text{V2G} \leq CP_i \cdot NC_{i,T}^\text{cap}, \forall t \in T, \forall \omega \in C \tag{6}
\]

\[
EV_{i,T}^\text{Ch} \leq EV_{i,T}^\text{Cap}, \forall t \in T, \forall \omega \in C \tag{7}
\]

where

- \(T\) is the set of all time steps
- \(i\) is the set of all technologies in the city energy system
- \(C\) is the set of EV categories (private car, peak/intermediated/base/uncategorized bus)
- \(l_{\text{bus}}\) is the subset to \(l\) for all power-to-heat technologies, i.e., heat pumps and electric boilers
- \(l_{\text{ele}}\) is the subset to \(l\) for all electricity storage technologies
- \(l_{\text{th}}\) is the subset to \(l\) for all thermal storage technologies
- \(C_{\text{tot}}\) is the total system cost to be minimized
- \(C_{\text{inv}}\) is the investment cost (annualized) including the fixed O&M cost for each technology \(t\)
- \(C_{\text{run}}\) is the running cost for each technology \(t\) (including fuel cost)
- \(C_{\text{cap}}\) is the cost to import electricity to the city from the national grid
- \(\epsilon_i\) is the capacity of technology \(i\) invested in
- \(p_i\) is the electricity generation by technology \(i\) at time step \(t\)
- \(w_i\) is the electricity imported to the city at time step \(t\)
- \(d_i^\text{PM}\) is the electricity demand at time step \(t\)
- \(d_i^\text{CH}\) is the heat demand at time step \(t\)
- \(d_i^\text{DE}\) is the electricity charged to storage units at time step \(t\)
- \(d_i^\text{DS}\) is the heat charged to storage units at time step \(t\)
- \(X_i\) is the heat production profile for industrial excess heat per time step \(t\)
- \(\eta_i\) is the efficiency (or COP) for each technology \(i\)
- \(EV_{i,T}^\text{Ch}\) is the fixed profile of flexible charging to EV batteries per time step \(t\) and vehicle category \(c\)
- \(EV_{i,T}^\text{Ch}\) is the EV charging at time step \(t\) per vehicle category with smart charging
- \(EV_{i,T}^\text{V2G}\) is the EV discharging to the city energy system through V2G at each time step \(t\)
- \(n\) is the charging and discharging efficiency
- \(CP_i\) is the charging power for each vehicle category
- \(NC_{i,T}^\text{cap}\) is the number of EVs connected at each time step \(t\) per vehicle category
- \(EV_{i,T}^\text{Ch}\) is the storage level in vehicle batteries at each time step \(t\) and vehicle category \(c\)
- \(EV_{i,T}^\text{Cap}\) is the battery capacity for the aggregate of all electric vehicles per vehicle category

\[EV_{i,T}^\text{Ch}\] is set to zero for model runs not involving the Inflexible charging strategy, the \(EV_{i,T}^\text{Ch}\) and \(EV_{i,T}^\text{V2G}\) are fixed to zero in in model runs without Smart charging and V2G, respectively.

2.2. Indicators for electrified transport

We formulate three results indicators: i) The average number of full battery cycles; ii) The amount of postponed charging; and iii) The amount of V2G. These are utilized to compare the different charging strategies for electrified transport and their interactions with the city energy system. The number of annual full battery cycles (FC\(_C\)), which gives an indication of how heavily the car and bus batteries are utilized over one year, is given by:

\[
FC_C = \frac{\sum_{t=1}^{\text{years}} EV_{i,T}^\text{Ch}}{EV_{i,T}^\text{Cap}}, \forall t \in T, \forall \omega \in C \tag{8}
\]

where \(EV_{i,T}^\text{Ch}\) is the sum of the annual charging, and \(EV_{i,T}^\text{Cap}\) is the total battery capacity. A high number of full battery cycles causes cycling-dependent battery degradation, which in turn can influence the useful lifespan of the vehicle battery. With the method applied in this study to model the aggregated BEC and BEB fleets we can calculate FC\(_C\) for the average vehicle of the fleet. Within the categories for BEBs, individual vehicles are expected to experience very similar cycling patterns (given that they are not employed in different categories with different driving intensities on different days). Within the BEC fleet, the individual travel patterns are much more diverse and the deviation from the average FC\(_C\) value is expected to be larger for individual vehicles in the BEC fleet than in the BEB fleet (see [44] for a comparison of the FC\(_C\) values of individual cars).

The share of postponed charging (PC\(_C\)) indicates how flexible the BECs and BEBs are in terms of adapting their charging patterns to the city energy system, with a Smart charging strategy as compared to an Inflexible charging strategy and is calculated as follows:

\[
PC_C = \frac{\sum_{t=1}^{\text{years}} PC_{C,t} \cdot EV_{i,T}^\text{Ch}}{\sum_{t=1}^{\text{years}} EV_{i,T}^\text{Ch}}, \forall \omega \in C \tag{9}
\]

where \(PC_{C,t}\) is the postponed charging each hour \(t\), \(EV_{i,T}^\text{Ch}\) is the Inflexible charging profile, and \(EV_{i,T}^\text{Ch}\) is the Smart charging profile, which is scheduled after city energy system optimization. This indicator considers only how much of the charging is postponed, and not the time period over which it is postponed.

V2G is defined as discharging from the EV batteries electricity that is not used to fulfill the vehicle driving demand and that instead can be discharged to the city energy system. We calculate the V2G discharge (\(V2G_C\)) as the share of the total electric discharge (both to the driving and the grid) from the vehicle battery that is allocated to V2G as follows:

\[
V2G_C = \frac{\sum_{t=1}^{\text{years}} EV_{i,T}^\text{V2G}}{\sum_{t=1}^{\text{years}} EV_{i,T}^\text{Ch}}, \forall t \in T, \forall \omega \in C \tag{10}
\]

where \(EV_{i,T}^\text{V2G}\) is the electricity discharged through V2G and \(EV_{i,T}^\text{Ch}\) is the vehicle driving demand.

2.3. Input data for the case study Gothenburg

The model is applied to the energy system of the city of Gothenburg, Sweden. We use the existing electricity and district heating systems as a starting point and model a scenario with net-zero CO\(_2\) emissions from the electricity and heating supplies within the city in Year 2050. We assume that BECs comprise 60% of today’s private car fleet and that electrification of the inner-city bus traffic in Gothenburg is 100%. These assumptions are in line with estimations on the future carbon neutral private car fleet in Sweden [45] and the measures designed to meet the City of Gothenburg’s goals to reduce carbon emissions from road transport by at least 80% up to Year 2030, as compared to the corresponding levels in Year 2010 [46]. Table 1 summarizes the annual electricity and heating demands, as well as the assumptions applied to the additional demand from electrified transport, and provides an overview of the different technologies that are available for dispatch and investment in the electricity and heating sectors in the model. We approximate the city boundaries within the modeling to the area covered by the Gothenburg distribution grid and assume a 50% increase in the city electricity and heating demand as compared to the Year 2012 levels. The increase in demand is to
Table 1
Overview of the Gothenburg energy system, including the modeling assumptions for increased demand and electrification of the transport sector, as well as the technologies considered in the modeling of the city electricity and heating sectors.

Energy system data and technology options	6.1 TWh (incl. an assumed 50% increase)	6.2 TWh (incl. an assumed 50% increase)	294 GWh	53 GWh
Annual electricity demand (excl. demand for electric cars and buses)	Solar PV, Peak power gas turbines	Heat-only boilers (HOB) run on different fuels	Heat pumps, Electric HOBs	CHP plants
Annual district heating demand	Stationary batteries (Li-Ion), Tank storages (TTES), Pit storages (PTES)	3	2	
Annual electricity demand for electric cars	Combined heat and power (CHP)	1	2	
Annual electricity demand for electric buses	Heat only	1	2	
Technology options considered within the city energy system	Power-to-heat (PtH)	1	2	
Electric only	Stationary storage systems	1	2	

1. assuming the electrification of 60% of the private car fleet.
2. assuming the electrification of all inner-city buses.
3. considering PTES with and without connected heat pumps, i.e., suitable for medium and seasonal storage.

represent growth of the city through urbanization and the electrification of industrial processes; population growth in Gothenburg is expected to accelerate over the upcoming decades [47]. We maintain the connection capacity to the national power grid for electricity import at the Year 2019 level, with no investments in new connection capacity (for details, see [42]). Thus, the assumptions on demand growth and connection capacity are to investigate how an increased demand for electricity can be met within the city borders using the technologies listed in Table 1, and we examine the impacts that BECs and BEBs can have on the city energy system. The hourly price profile for electricity import is based on the output from the dispatch modeling of the national power system in Sweden in [27].

2.4. Private passenger electric vehicle data

The travel patterns for BECs in this study originate from a GPS measurement campaign [48,49] conducted in the western Sweden region (Västra Götaland region), in which the City of Gothenburg is located. The campaign monitored 770 randomly selected gasoline- and diesel-powered cars, each for a different period of 1–3 months between the years 2010 and 2012. The traveling pattern and distance driven by the measured cars are used to calculate the corresponding electricity demands, if provided by electric cars. The preparation of electricity demand profiles for driving, as well as the extrapolation of the demand profiles and the times that the vehicles are parked, to represent a full modeling year, have been performed as described in [43]. Fig. 2 shows the aggregated profiles for the driving demand of BECs corresponding to 60% of today’s car fleet (Fig. 2a) and the share of the fleet that is parked and connected to the charging infrastructure at each hour (Fig. 2b), both for the first 6 weeks of the modeled year. We assume that vehicles are connected to the charging infrastructure at all stops longer than one hour. Under this assumption, more than 70% of the BEC fleet is connected during most of the hours. Technical assumptions made regarding the electrification of private passenger vehicles are summarized in Table 2.

A profile for Inflexible charging, which corresponds to immediate charging at all stops longer than 1 h until the battery is full or until the start of the next trip, is calculated for each car in the dataset and subsequently aggregated and scaled up to represent the BEC fleet in the whole city. Since the original driving data are acquired from non-electric vehicles, not all the original driving can fully be covered by BECs with the assumptions made in this study. Due to the driving distances, lengths of intermediate parking periods, battery sizes, and assumptions made regarding charging power, only about 96% of the driving demand can be supplied through the Inflexible charging profile. This difference between driving demand and charging profile is not evident in the modeling of smart charging and V2G, owing to the aggregated electricity balance for BEC batteries (Eq. (4)) used for these charging strategies. The aggregation implies that there is always sufficient total battery capacity to cover all of the driving demand.

2.5. Public bus load profiles

The BEB driving demand is based on the Year 2016 timetables of the public, inner-city bus-lines in Gothenburg. The technical assumptions regarding electrification of the bus system are listed in Table 2, and it is assumed that high-power charging infrastructure exists at the turnaround stop for each bus. In contrast to BECs, the number of vehicles is calculated for the BEB fleet so as to fulfill the entire driving demand for both the Inflexible and Smart charging strategies. We consider buses of 18 m in length for lines with high passenger travel intensities, and 12-m buses for less heavily trafficked lines; the 18-m buses are characterized by larger battery capacity and higher charging power than the 12-m buses (Table 3). The vehicle sizes are based on the vehicle sizes in the current bus-lines. Thus, for both the Inflexible and Smart modeling cases, 47.2% of the fleet is 18-m buses and 52.8% is 12-m buses (for more details on the calculation of the BEB load profile, see Appendix D).

In contrast to the BECs, a large share of the BEB fleet is on the road and driving at the same time during traffic rush hours. In the bus fleet, some of the vehicles also drive for long time periods with only a short time slot for charging. So as not to overestimate the flexibility for postponing charging with the BEB Smart charging strategy in the model with aggregated vehicle profiles, we categorize the BEB fleet according...
to driving intensity into: Peak (BEBs that operate only during day-time peak hours); Intermediate (BEBs that have at least a 4-h break between end-of-day and start-of-day operation); and Base buses (BEBs with close to constant operation and breaks of less than 4 h between end-of-day and start-of-day operation). Table 3 gives the electricity demand for BEB charging in each of these categories. Some bus-lines are not amenable to categorization, as some individual buses would be scheduled in multiple lines to create an efficient bus network. As this is not possible in the method used to create the bus load profiles (see Appendix D) and in order not to overestimate the flexibility for postponing charging in the BEB fleet, the charging in these lines is listed as ‘Uncategorized’ in Table 3 and is modeled as an inflexible charging load without the option for smart charging. Buses in the Base category are also modeled with an inflexible charging profile and are not considered for smart charging, due to their almost constant operation and, consequently, their low potential for charging flexibility.

Fig. 3 shows the driving demands for the BEB categories and the shares of buses in the Peak and Intermediate categories that are connected to the charging infrastructure over a period of 1 week. We assume the same weekly profiles for the BEB driving demand during all the weeks of the modeled year. The driving demand for Base buses increases slightly during the weekend, as more buses fulfill the criteria for the Base category during this period, whereas buses in the Peak category are idle over the weekend. The total driving demand of the BEB fleet decreases during the weekend.

2.6. Modeling cases

Table 4 provides details on the modeling cases. We model one case without EVs, three cases for BECs with Inflexible and Smart charging with and without V2G, respectively, and two cases for Inflexible and Smart charging of BEBs, respectively. Table 1 reveals that BECs impose a larger...
7 additional demand for electricity on the city energy system than do BEBs, and they introduce a larger storage capacity through vehicle batteries. As BECs, therefore, have a stronger impact on the city energy system, we chose to model BECs and BEBs in separate cases, so as to investigate their respective linkages to the city energy system in detail.

3. Results

We first present the charging patterns of the BECs and BEBs, modeled separately and taking into consideration the different charging strategies, and their integration into the city energy system with respect to the electricity mix and costs for charging. As BECs add a much larger electricity demand and larger battery capacity to the city than BEBs, their impact on the city energy system is much stronger, therefore Sections 3.2 to 3.4 focus on the interactions between BECs and the city electricity and heating sectors.

3.1. BEC and BEB charging

Fig. 4 shows a comparison of the charging duration curves of BECs and BEBs for the two charging strategies Inflexible and Smart, and the charging duration curve in the BEC V2G case, all of which were obtained from modeling the BEC and BEB cases separately. We plot each charging event of the modeling year and sort them by amount of electricity charged. As can be seen, there is a substantial difference in the electricity demands for charging for BECs and BEBs (y-axes in Fig. 4), which explains the stronger impact that the BEC fleet has on the city energy system. This is due to the higher number of vehicles in the BEC fleet than in the BEB fleet. The total level of electricity charged in the BEC V2G case is around 3-fold higher than in the other BEC cases, since electricity is not only used for driving but also for V2G discharge to the grid. Fig. 5 shows the Smart and Inflexible charging patterns for BECs and BEBs for one modeling week and the battery storage levels of the aggregated BEC and BEB fleets with Smart charging. In Fig. 4 and Fig. 5, it becomes clear that the difference between the Inflexible and Smart charging strategies is much smaller for BECs than for BEBs. This is because the bus fleet is utilized more efficiently and fewer vehicles are idle at each time step. Consequently, buses have a low potential, limited by the time available for grid connection, to provide flexibility in postponing charging with a Smart charging strategy while still meeting the timetable and the driving demand. Given the applied categorization of the BEB fleet, only the Peak and Intermediate categories, which account for about 34% of the annual driving, can postpone their charging.

The possibility to charge less frequently when using a BEC Smart charging strategy, as compared to BEBs, is also evident from the battery storage levels (Fig. 5, b and d). BEBs can only postpone their charging within the same day, while the comparatively large battery capacity and low utilization times enable the aggregated BEC fleet to postpone charging for up to a week and to concentrate a large fraction of the smart charging to certain hours. Modeling individual car batteries, as compared to the aggregated BEC fleet considered in this study, could result in a need for additional charging within the same week for some vehicles with high driving demands. Fig. 5 exemplifies the ability of the BEC fleet to postpone charging over several days. During other periods of the year, the BEC fleet charges more frequently, especially during the summer in connection with the availability of surplus electricity from local solar PV. The pattern for postponed charging and the aggregated storage level of BEC batteries in Fig. 5b are in line with results from the modeling of the Swedish electricity system using individual driving patterns by [26]).

Peaks from smart charging reach much higher absolute values for the BECs than for the BEBs (Fig. 4), due to the large number of private passenger cars in the city. An uncoordinated smart charging of BECs can, therefore, create unwanted peaks in the electricity demand from charging and these peaks are sufficiently large to influence the marginal value of electricity in the city energy system. It should be noted that even...
though the **BEC Smart** charging peaks are up to 7-fold higher than the **BEC Inflexible** charging peaks, the **Smart** charging pattern is a result from the city energy system optimization and thereby represents the charging pattern that best matches electricity supply and demand in the energy system.

Table 5 presents the indicators for electrified transport (described in 2.3) as applied to the modeling results. BECs with and without the option for V2G cycle their batteries noticeably less frequently than all the BEB categories, due to their lower average driving distance in relation to their battery size. Buses in the Peak category experience the lowest number of full cycles in the BEB fleet and show the highest level of postponed charging. We do not assume any V2G for the BEBs. For the BEC fleet, the level of V2G discharge corresponds to 67.6% of its total discharge in the **BEC V2G** case. Thus, BECs charge 3-times more electricity over a year in the **BEC V2G** case than in the **BEC Smart** case. The aggregated modeling method is likely to overestimate somewhat the potential for V2G in the BEC fleet, due to limitations associated with individual car travelling patterns, which are not represented in the aggregated profile. The number of annual full cycles is an average for the fleet; individual vehicles in the BEC fleet are likely to experience diverse cycling patterns, reflecting differences in individual driving demands. **Smart** charging of BECs results in almost 62% solar PV in the
material costs of electricity often coincide with high levels of the BEC battery capacity available in the BEC fleet within the city fosters charging of BEBs than of BECs, which is seen in, for example, Segment II in Fig. 6, b and c). However, in the BEC Smart case, the electricity can only be used to fulfill the driving demand in the BECs and it cannot be discharged back to the city energy system. Therefore, less electricity is charged at once in the BEC Smart as compared to the BEC V2G case.

The differences in the profiles of marginal costs of electricity in Fig. 6c indicate that charging and V2G in the BEC fleet can affect the marginal value of electricity within the city. For this to affect the actual prices, time-varying electricity pricing has to be implemented. The modeling reveals examples of how high electricity demand for charging in the BEC V2G case leads to higher marginal costs within the city, as compared to the Smart or NoEV cases (Segment IV in Fig. 6, b and c). Likewise, there are examples of time steps during which the V2G discharge coincides with lower local marginal costs, as compared to the Smart and NoEV cases, which often coincide with hours of lower levels of electricity import (e.g., Segment V in Fig. 6). Fig. 7 shows that V2G leads to an overall lower level of electricity import to the city energy system and a higher number of hours with zero imports, as compared to the other modeling cases.

3.2. BEC charging strategies and the operation of the city energy system

The electrification of private passenger cars and the choice of charging strategy affect the profitability of investments in the electricity and district heating sectors and, thereby, influence the energy system composition. Fig. 8 shows the new investments in electricity and heat generation technologies and in the stationary short-term and mid/long-term storage within the city energy system, as obtained from the modeling of the NoEV case and the three BEC cases. Regardless of the charging strategy used, the increased electricity demand from BECs
results in higher investments in solar PV compared to the NoEV case. However, as inflexible charging offers no flexibility to exploit the added electricity from solar generation, additional stationary battery systems are required. In the BEC Smart case, the need for stationary batteries is instead reduced compared to the NoEV case, and in the BEC V2G case the need for stationary batteries is completely eliminated. Solar PV employment is greatest in the BEC V2G case, where the BEC battery capacity can facilitate the highest levels of local PV generation.

3.4. Synergies with the district heating sector

A clear connection between the electricity and district heating

Fig. 6. Details of the operation of the city energy system for 200 h in the summer, with a) the electricity utilized from PV and the operation of stationary batteries and PtH, and b) the storage level in the BEC batteries, all for the BEC Smart and V2G cases. Shown for the NoEV and BEC Smart and V2G cases are: c) the prices to import electricity to the city and the marginal costs for electricity generation within the city; and d) the electricity demands (excluding the charging of BECs and BEBs and PtH) inside and electricity imports to the city. The price of imported electricity and the electricity demand in the city are inputs to the modeling. All other parameters in the figure are results acquired from the modeling. The segments marked with Roman numerals are explained further in the text.

Fig. 7. Import duration curves for the electricity imported to the city in the NoEV and the three BEC cases.
A substantial electrification of the private passenger vehicle fleet introduces a large amount of battery capacity and new electricity demand for charging to the city energy system. We have shown that charging profiles for BECs offer a significant potential to be operated in a flexible way that is beneficial to the city energy system and that fosters the utilization of local electricity generation. We assume the availability of smart charging infrastructure with the possibility for V2G at all charging locations, and thus, our study gives an indication on the potential flexibility that electric transportation can provide to city energy systems and at which times flexibility from charging is most valuable to the system. The placement of charging infrastructure should also consider the location of the electricity demands for EV charging and the capacity restrictions within the local grid need, which has not been the focus of the present study. Charging that is geographically and temporally close to the peaks in residential, commercial or industrial electricity demand could increase capacity-related strain within the local grid. Nonetheless, controlled smart charging of EVs and charging geographically close to sources of local electricity generation, such as solar PV, can reduce the stress on the local distribution grid. Therefore, both the geographic and temporal distributions of charging should be considered during the planning of charging infrastructures in cities.

We model BECs connected to the charging infrastructure for all parking periods longer than 1 h. A comparison of charging at all parking events longer than 1 h and BEC charging that is limited to only the home location has been carried out on the national scale in [43]. That work has concluded that especially in connection with a high share of generation from solar PV, the possibility to charge outside the vehicle’s home location, i.e., often during day-time hours concomitant with solar PV generation, increases V2G in BECs, and decreases the investment in stationary batteries. This is in line with findings in the present work and highlights the importance of placing charging infrastructure with the possibility for V2G in proximity to solar PV installations and at locations where private vehicles are parked during day-time hours.

Our study demonstrates a clear difference in battery cycling between electric car and bus batteries and between charging strategies that allow for V2G and those that do not (Inflexible or Smart charging without V2G). This illustrates the expected differences in the choice of battery size and charging infrastructure for the different applications. Bus batteries are adapted to shorter driving distances between charging, and the charging infrastructure is widespread in the city, while private passenger car batteries are often sized for longer travel distances, and thus, can continue without charging for longer periods in the daily use case. However, the usage of private passenger cars in the future is highly uncertain. Increased deployment of car-sharing systems and the introduction of autonomous vehicles may alter decisively the car driving demand profiles and should, therefore, be discussed for long-term decarbonization plans for city transport.
4.2. Benefits through cooperation in the city energy system

The method to model decarbonization strategies in several energy system sectors in the present study demonstrates the benefits from a cooperation between electricity, heating and transport sectors in cities. Thus, such sector coupling should be of importance as a means to establish Smart Cities. While the coordinated planning of decarbonization strategies in different sectors of the city energy system can increase cost- and resource efficiency, a functioning communication and collaboration between various stakeholders is a requirement. Cities and municipalities have the opportunity to take on a key role in joining expertise and ideas from different actors and different sectors to facilitate an efficient urban energy transition. The implementation of local technologies for generation and storage present a swift option to supply growing cities with electricity and heat and increase local energy autonomy - thus, an alternative to expanding the connection capacity to the national grid, projects that often involve long planning horizons.

We have modeled the interactions between BECs and BEBs and the electricity and district heating sectors using the example of Gothenburg, Sweden. Similar conclusions can be drawn for other cities that have a comparable technology mix and that have or aim for considerable solar PV generation capacities in the city energy system. Our findings on the synergies with the district heating system are only translatable to cities with similar seasonality patterns for their heating demand.

Economic incentives such as time-varying retail prices that take into account the local value of electricity in the city energy system should be easiest to realize if there is only one local energy utility that covers a large part of or the whole area of the city, as is the case in the city of Gothenburg.

5. Conclusions

We model the integration of passenger battery electric cars (BECs) and battery electric public buses (BEBs) into a city energy system through three different charging strategies and analyze their potential for charging flexibility. In the BEC fleet, we find that there is potential to postpone 85% of the charging when using a Smart charging strategy coordinated with the city energy system, as compared to an Inflexible charging strategy in which cars are charged directly upon arrival. With respect to the electricity generation mix for charging, the combination of a Smart charging strategy and local large-scale employment of solar PV can allow for a more than doubling of the share of solar PV in the charging electricity mix for BECs, as compared to an Inflexible charging strategy. To unlock this potential benefit from flexibility in BEC charging to the city energy system and facilitate the uptake of local generation, it is essential to provide charging infrastructure that allows for smart charging and V2G, and to communicate to car owners/users the times of the day when charging of EVs is advantageous for or detrimental to the city energy system. Our modeling shows a difference between the local marginal cost for electricity within the city energy system, i.e. a result of the energy balance in the model, and the price of electricity imported to the city, which is explained by: i) periods of surplus local electricity generation in the city; and ii) congestion in the connection from the national grid into the city, an issue that several Swedish cities have identified as crucial to be resolved in the near future. Our modeling also shows that BEC Smart charging often occurs around hours with high generation from local solar PV, especially when the option for V2G exists for electric cars. This indicates that there is much to win from scheduling flexible BEC charging so it matches the local marginal costs of electricity (rather than matching prices on the electricity spot market) or the forecasted generation profile for solar PV.

Comparing the Inflexible and Smart charging strategies for BEBs, we find that there is limited potential to postpone charging, as they are associated with long periods of operation and short stops for charging. In a categorization of the public bus fleet, we identify buses that are operated during times of peak and intermediate transport demand (accounting for about 34% of the demand for electricity in BEBs) as being suitable for a smart charging strategy. However, we show the daily peaks in public transport demand correlate well with the pattern of local generation from solar PV, as expected due to their day-time operation, which leads to a 32% share of PV in the electricity mix for both Inflexible and Smart charging of BEBs. Electrification as a decarbonization strategy for the public bus system, therefore, is particularly suited to cities that aim to increase simultaneously local generation of electricity through the installation of solar PV.

Our findings indicate that electrification of the private car fleet and the prevailing charging strategy for BECs can influence both the operation of and the investments in the city electricity and district heating sectors. We show a reduced or even eliminated need for stationary batteries in the city energy system when a charging infrastructure exists that allows for V2G in a large share of the BEC fleet. Smart charging of BECs with and without the option for V2G reduces the capacity requirements for peaking units in the electricity and the district heating systems. Thus, an energy strategy that coordinates measures in the electricity, heating and transport sectors of the city energy system is essential for resource- and cost-efficient decarbonization at the city scale.

CRediT authorship contribution statement

Verena Heinisch: Conceptualization, Methodology, Formal analysis, Investigation, Visualization, Writing - original draft, Writing - review & editing. Lisa Göransson: Conceptualization, Methodology, Writing - review & editing, Supervision. Rasmus Erlendsson: Formal analysis, Investigation, Visualization, Writing - review & editing. Henrik Hodel: Formal analysis, Investigation, Visualization, Writing - review & editing. Filip Johnsson: Writing - review & editing, Supervision. Mikael Odenberger: Writing - review & editing, Supervision, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors thank Maria Taljegård for valuable inputs and discussions on the modeling of electric cars, Sten Karlsson and Lars Henrik Björnsson for important data input on car traveling patterns, and Joakim Nyman and Johan Östling for access to the tool to create the demand profiles of the electrified bus fleet in Gothenburg.
Appendix A. Additional results

The frequencies and magnitudes of the charging (and V2G) events in the aggregated BEC fleet differ between the three charging strategies investigated, as shown in Fig. A1 for the BEC Inflexible, Smart and V2G cases. The peaks for charging in the BEC Smart and V2G cases are up to 7-times higher than the peaks for an Inflexible charging strategy; V2G is utilized more during summer-time than winter-time, and this occurs concomitant with higher levels of generation from solar PV.

In Fig. A2 the annual generation from the different technology groups and modeling cases is given.

Fig. A1. Charging (and V2G) pattern from the modeling of the BEC Inflexible, Smart and V2G cases for the whole modeling year.

Fig. A2. Annual generation of electricity and heating by different technology groups for the NoEV case and the three BEC cases.
The annual operations of short-term TTES, medium-term PTES, and seasonal PTES are plotted for the BEC V2G case in Fig. A3.

Appendix B. Sensitivity analysis: assumptions made regarding demand growth in relation to connection capacity

In a sensitivity analysis, we test the assumptions related to growth in the city electricity and heating demand made in the modeling of the BEC cases. We compare the 50% increase in electricity and heating demand from the 2012 levels that have been presented in the Results section of the paper (here called the Base: 1.5 Growth case) to cases that assume a 20% increase in demand (1.2 Growth) and cases with no increase in demand (ZeroGrowth), for the modeling of NoEV, BEC Smart and BEC V2G. The connection capacity to the national power grid is considered to be identical in all the modeling cases. The sensitivity analysis allows us to assess the impacts on the results of the assumptions made regarding the relationships between import capacity to the city and inner-city electricity and heating demand, and make the results generalizable to other cities.

We find the same trends for investment in electricity, heating and storage technologies as presented in the Results section, as presented in Fig. A4. For the 1.2 Growth and Zero Growth cases, seasonal PTES is cost-efficient also for the NoEV and BEC Smart cases. The largest seasonal PTES investments are found in the V2G cases. The BEC indicators on postponed charging and V2G discharge are similar in all cases with different assumptions made regarding growth. We calculate the relationship between PTES and TTES and find it to be highest in the V2G cases for all the different assumptions made regarding growth.
Fig. A4. Results of the sensitivity analysis assessing the impacts of the assumptions made regarding growth in the city electricity and heating demands, with new investments in electricity and heating (a), short-term storage, (b) and mid-/long-term storage technologies (c), and indicators for the ratio between pit and tank thermal storage, PTES/TTES, the share of V2G of the total discharge and the share of postponed charging, PC (d).
Appendix C. Cost and input data

Table A1 gives the investment and variable costs as well as technical input data for electricity and heat generation technologies and for electricity storages, assumed for the modeling year 2050. Cost and technical assumptions are based on data from the Danish Energy Agency [50,51] and on the International Energy Agency World Energy Outlook 2019 [52].

Table A1
Cost and technical data for local electricity and heat generation and electricity storages in the city modeling, Year 2050, (S, M and L correspond to small, medium and large units).

Energy Source	Investment cost [€/kW]	Fixed O&M cost [€/kW]	Variable O&M cost [€/MWh]	Life-time [Years]	Efficiency [%]	Power-to-heat ratio
Electricity generation						
Solar PV	450	7.8	1.1	25	8	
Natural gas GT	466	15.65	0.4	30	42	
Biogas GT	466	7.92	0.7	30	42	
CHP						
CHP bio (S/L)	5900/3000	273/84	9.7/4.6	40	14.3/28.3	0.14/0.3
CHP biogas(M/L)	1100/900	26/20	4/3	30	55	1.6
CHP gas	950	20	1.6	30	52.5	1.3
CHP waste (M/L)	7500/6500	209/148	23.3/23.3	40	23.2/23.5	0.3
Heat production						
Electric boiler						
Heat pump (S/L)	800/530	1.5/1	2/1.6	25	3 (COP)	
Heat boiler (S/M/L)	580/540/490	29/29.3/29.3	1.19/0.85/0.7	25/20/20	115	
Electricity storage						
Li-ion batteries (energy)	79	–	–	15	98	
Li-ion batteries (capacity)	68	0.54	–	30	–	

* For the PV generation, a solar profile based on the geographical area limits the output per kW installed for each hour.

For the energy content in the fuel, lower heating value has been used, which is matched with a higher value for the efficiency.

* Variable costs for electricity charged into and discharged from Li-Ion batteries are captured by integrating charge and discharge into the electricity balance in the optimization.

Table A2 gives costs and technical data for thermal storages, based on [19, 51, 53, 54]. Fuel costs per MWh and emissions associated to each fuel type in the modeling tool are presented in Table A3.

Table A2
Cost and technical data for the different thermal storage systems.

Thermal storage	Investment cost [€/kWh]	Life-time [Years]	Efficiency [%]	C-factor	Loss [%/h]	Constant Loss [%/h]
Pit storage	1.25	25	98	1/6	1/240	4.6/240
Pit with heat pump	0.268	25	98	1/6	1/240	–
Tank storage	8.9	25	98	1/168	1/240	4.6/240
Tank with heat pump	5.7	25	98	1/168	1/240	–

* Data only for storage, not the corresponding heat pump.

Table A3
Fuel cost and emission data.

Fuel type	Fuel cost [€/MWh]	Emissions [kgCO₂ eq/MWh fuel]
Natural gas	34.27	207
Biomass	40	0
Biogas	77	0
Waste	1	132
Oil	66.18	264

Fig. A5 gives the profiles of electricity and heating demand used in the modeling for the City of Gothenburg and the electricity price assumed for electricity imported to the city. Electricity and heating demands are based on data for Gothenburg for Year 2012 including assumptions made on a 50% demand increase to represent city growth through urbanization and the electrification of industrial processes in the city (see Section 2.3). The electricity price profile for imported electricity stems from the dispatch modeling of the national power system including a high share of VRE and BECs.
Applied Energy 288 (2021) 116640

Appendix D. Electrification of the Gothenburg inner-city public bus system

The demand profiles for electrification of the public bus-lines in Gothenburg have been created with a tool that builds electrified bus networks, as first presented in [54] and developed further in [55]. In this tool, buses are assigned to the given timetable for Gothenburg, while accommodating BEB charging between trips at each line’s turnaround stops. The tool is designed to estimate the driving and charging demand when electrifying the city bus network given a current timetable. Thus, it does not consider the efficient allocation of buses to multiple lines in order to reduce the total number of buses. So as not to overestimate the flexibility to postpone charging in lines where buses are used only a short period of the day and might otherwise be employed in more than on line, charging for these buses has been added as an Inflexible charging profile only in all the modeling cases and they have not been categorized into Peak, Intermediate and Base categories. To calculate the electricity demand for charging, an electricity balance of the battery of each bus is considered in the tool, according to Eq. A(1). Since BEBs are heavier than BECs, considering the elevation gain for driving is more important for buses than for cars. Furthermore, the battery energy balance considers a constant baseline consumption per distance driven and power consumption from auxiliaries such as space heating.

\[\Delta E \text{bus} = C_s \Delta s + P_{aux} \Delta t + m_{bus} g \Delta h_{gain} + n_{bus} g \Delta h_{loss} n \]

where \(E_{bus} \) is the electricity demand in each bus, \(C_s \Delta s \) is the consumption per distance travelled, \(P_{aux} \Delta t \) is the electricity consumed for auxiliaries over time \(t \), \(m_{bus} \) is the total mass of the bus, \(\Delta h_{gain} \) and \(\Delta h_{loss} \) are the elevation gain and loss, respectively, \(g \) is the gravitational acceleration of the Earth and \(n \) is the conversion efficiency in the bus powertrain.

The electricity demand for inner-city bus transport is utilized in aggregated form in the city energy optimization model. The categorization for BEBs has been chosen so as to account for the heterogeneity of the driving demand in the bus network. The categorization creates increased homogeneity within each category. This homogeneity is encouraged, since it reduces the risk for unwanted electricity transfer between idle buses and buses that are in operation, when aggregated demand profiles are utilized in the city energy system optimization (see Section 2.1).

References

[1] United Nations, Department of Economic and Social Affairs, Population Division. World urbanization prospects: 2018 : highlights; 2019.
[2] IPCC. Summary for Policymakers. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty; 2018.
[3] Albino V, Berardi U, Dangelico RM. Smart cities: definitions, dimensions, performance, and initiatives. J Urban Technol 2015;22:3-21. https://doi.org/10.1080/10600732.2014.942092.
[4] Calvillo CF, Sánchez-Smirales A, Villar J. Energy management and planning in smart cities. Renew Sustain Energy Rev 2016;55:273–87. https://doi.org/10.1016/j.rser.2015.10.133.
[5] Masera M, Bonnard EF, Profumo F, Hadiani N. Smart (electricity) grids for smart cities: assessing roles and societal impacts. Proc IEEE 2018;106:613–25. https://doi.org/10.1109/JPROC.2018.2812212.
[6] Lund H, Østergaard PA, Connolly D, Mathiesen BV. Smart energy and smart energy systems. Energy 2017;137:556–65. https://doi.org/10.1016/j.energy.2017.05.123.
[7] Mathiesen BV, Lund H, Connolly D, Wenzel H, Østergaard PA, Møller B, et al. Smart Energy Systems for coherent 100% renewable energy and transport solutions. Appl Energy 2015;145:139–54. https://doi.org/10.1016/j.apenergy.2015.01.075.
[8] Bernath C, Deac G, Sensfuß F. Impact of sector coupling on the market value of renewable energies – A model-based scenario analysis. Appl Energy 2021;281:115985. https://doi.org/10.1016/j.apenergy.2020.115985.
[9] Aribzonade V, Mikkola J, Jasinskas J, Lund PD. Deep decarbonization of urban energy systems through renewable energy and sector-coupling flexibility strategies. J Environ Manage 2020;266:110090. https://doi.org/10.1016/j.jenvman.2020.110090.
[10] Bačeković I, Østergaard PA. A smart energy system approach vs a non-integrated renewable energy system approach to designing a future energy system in Zagreb. Energy 2018;155:424–37. https://doi.org/10.1016/j.energy.2018.05.075.
V. Heinisch et al.

[25] Taljegard M, G. Hedegaard K, Ravn H, Juul N, Meibom P. Effects of electric vehicles on power systems in Northern Europe. Energy 2012;48:356–68. https://doi.org/10.1016/j.energy.2012.06.012.

[26] Taljegard M, Goransson L, Odenberger M, Johnsson F. Electric vehicles as flexibility management strategy for the electricity system—a comparison between different regions of Europe. Energies 2019;12:2597. https://doi.org/10.3390/en12122597.

[27] Taljegard M, Goransson L, Odenberger M, Johnsson F. Impacts of electric vehicles on the electricity generation portfolio – A Scandinavian-German case study. Appl Energy 2019;235:1637–50. https://doi.org/10.1016/j.apenergy.2018.10.133.

[28] Kempot W, Tomić J. Vehicle-to-grid power fundamentals: calculating capacity and net revenue. J Power Sources 2005;144:268–79. https://doi.org/10.1016/j.jpowsour.2004.12.025.

[29] Calvillo CF, Turner K. Analysing the impacts of a large-scale EV rollout in the UK – How can we better inform environmental and climate policy? Energy Strategy Rev 2020;30:100497. https://doi.org/10.1016/j.esr.2020.100497.

[30] García-Villahoros J, Zamora I, San Martín JJ, Aneuins EJ, Aperibay J. Plug-in electric vehicles in electric distribution networks: a review of smart charging approaches. Renew Sustain Energy Rev 2014;38:717–31. https://doi.org/10.1016/j.rser.2014.07.040.

[31] Peäre NS, Riberink H. Review of research on V2X technologies, strategies, and operations. Renew Sustain Energy Rev 2019;105:61–70. https://doi.org/10.1016/j.rser.2019.01.047.

[32] Noel L, McCormack R. A cost benefit analysis of a V2G-capable electric school bus compared to a traditional diesel school bus. Appl Energy 2014;126:246–55. https://doi.org/10.1016/j.apenergy.2014.04.005.

[33] Fachbriaz R, Shepero M, van der Meer D, Munkhammar J, Widén J. Smart charging of electric vehicles considering photovoltaic power production and electricity consumption: a review. 100056 ETTransportation 2020. https://doi.org/10.1016/j.etxtran.2020.100056.

[34] Fachbriaz R, Munkhammar J. Improved photovoltaic self-consumption in residential buildings with distributed and centralized smart charging of electric vehicles. Energies 2020;13:1153. https://doi.org/10.3390/en13051153.

[35] Houraou Q, Perez Y. Interactions between electric mobility and photovoltaic generation: a review. Renew Sustain Energy Rev 2018;84:510–22. https://doi.org/10.1016/j.rser.2018.02.034.

[36] Fernandes C, Frías P, Latorre JM. Impact of vehicle-to-grid on power system flexibility management strategy for the electricity system. Energies 2019;12:939. https://doi.org/10.3390/energies12050939.

[37] Ajanovic A, Hass R. Dissemination of electric vehicles in urban areas: major factors for success. Energy 2016;115:1451–8. https://doi.org/10.1016/j.energy.2016.05.040.

[38] Egan F, Tirovsk L. Electric vehicle adoption in Sweden and the impact of local policy instruments. Energy Policy 2018;121:584–96. https://doi.org/10.1016/j.enpol.2018.06.040.

[39] Kim JD, Rahimi M. Future energy loads for a large-scale adoption of electric vehicles in the city of Los Angeles: impacts on greenhouse gas (GHG) emissions. Energy Policy 2014;73:620–30. https://doi.org/10.1016/j.enpol.2014.06.004.

[40] Zheng G-H, Lin C-W, Opricovic S. Multi-criteria analysis of alternative-fuel buses for public transportation. Energy Policy 2005;33:1737–83. https://doi.org/10.1016/j.enpol.2003.12.014.

[41] Rogge M, Wollny S, Sauer D. Fast charging battery buses for the electrification of urban public transport—a feasibility study focusing on charging infrastructure and energy storage requirements. Energies 2015;8:4587–606. https://doi.org/10.3390/en8054587.

[42] Heinisch V, Goransson L, Odenberger M, Johnsson F. Interconnection of the electricity and heating sectors to support the energy transition in cities. J Sustain Energy Plan Manage 2019;24:57–66. https://doi.org/10.5278/jsepm.3328.

[43] Taljegard M. Electrification of road transportation – implications for the electricity system. Chalmers University of Technology; 2010.

[44] Taljegard M, Walter V, Goransson L, Odenberger M, Johnsson F. Impact of electric vehicles on the cost-competitiveness of generation and storage technologies in the electricity system. Environ Res Lett 2019;14:120407. https://doi.org/10.1088/1748-9326/ab2e9b.

[45] Ministry of the Environment. Fossilfrethet på väg, SOU 2013:84 2013.

[46] City of Gothenburg. Climate program for Gothenburg. Gothenburg: 2014.

[47] Gothenburg Region. Hållbar tillväxt mål och strategier med fokus på regional struktur; 2015.

[48] Karlsson S, Kullingjar J-LH. GPS measurement of Swedish car movements for assessment of possible electrification. In: 2013 World Electric Vehicle Symposium and Exhibition (EVS27); 2013. p. 1–14. https://doi.org/10.1109/ijsem.2013.70.

[49] Kullingjar J-LH, Karlsson S. The Swedish car movement data project; 2012.

[50] Danish Energy Agency. Technology Data for Energy Storage, V007, Update 2013. https://doi.org/10.1016/j.apenergy.2014.04.111.

[51] Taljegard M, Goransson L, Odenberger M, Johnsson F. Interconnection of the electricity and heating sectors to support the energy transition in cities. J Sustain Energy Plan Manage 2019;24:57–66. https://doi.org/10.5278/jsepm.3328.

[52] Taljegard M. Electrification of road transportation – implications for the electricity system. Chalmers University of Technology; 2010.

[53] Taljegard M, Walter V, Goransson L, Odenberger M, Johnsson F. Impact of electric vehicles on the cost-competitiveness of generation and storage technologies in the electricity system. Environ Res Lett 2019;14:120407. https://doi.org/10.1088/1748-9326/ab2e9b.

[54] Ministry of the Environment. Fossilfrethet på väg, SOU 2013:84 2013.

[55] City of Gothenburg. Climate program for Gothenburg. Gothenburg: 2014.

[56] Gothenburg Region. Hållbar tillväxt mål och strategier med fokus på regional struktur; 2015.

[57] Karlsson S, Kullingjar J-LH. GPS measurement of Swedish car movements for assessment of possible electrification. In: 2013 World Electric Vehicle Symposium and Exhibition (EVS27); 2013. p. 1–14. https://doi.org/10.1109/ijsem.2013.70.

[58] Kullingjar J-LH, Karlsson S. The Swedish car movement data project; 2012.

[59] Danish Energy Agency. Technology Data for Energy Storage, V007, Update January 2020; 2020.

[60] Danish Energy Agency and Energinet. Technology Data - Energy Plants for Electricity and District heating generation, V0007, Update January 2020; 2020.

[61] International Energy Agency. World Energy Outlook 2019, Paris, France: 2019.

[62] Mangold D, Miedaner O, Tziggili EP, Schmidt T, Unterberger M, Zeh B. Technisch-struktur; 2013.

[63] Mangold D, Miedaner O, Tziggili EP, Schmidt T, Unterberger M, Zeh B. Technisch-struktur; 2013.

[64] Mangold D, Miedaner O, Tziggili EP, Schmidt T, Unterberger M, Zeh B. Technisch-struktur; 2013.

[65] Mangold D, Miedaner O, Tziggili EP, Schmidt T, Unterberger M, Zeh B. Technisch-struktur; 2013.

[66] Mangold D, Miedaner O, Tziggili EP, Schmidt T, Unterberger M, Zeh B. Technisch-struktur; 2013.

[67] Mangold D, Miedaner O, Tziggili EP, Schmidt T, Unterberger M, Zeh B. Technisch-struktur; 2013.

[68] Mangold D, Miedaner O, Tziggili EP, Schmidt T, Unterberger M, Zeh B. Technisch-struktur; 2013.

[69] Mangold D, Miedaner O, Tziggili EP, Schmidt T, Unterberger M, Zeh B. Technisch-struktur; 2013.

[70] Mangold D, Miedaner O, Tziggili EP, Schmidt T, Unterberger M, Zeh B. Technisch-struktur; 2013.