Original Article

Audiological evaluation in geriatric age group

S. Sateesh, K. P Sunil Kumar and S. Muneeruddin Ahmed*

Ear Nose and Throat Department, Khammam Medical College, Khammam, Telangana, India

*Corresponding Author
Dr. S. Muneeruddin Ahmed
Professor and HOD of ENT,
Ear Nose and Throat Department,
Khammam Medical College,
Khammam, Telangana, India
E-mail: ahmedmuneent@gmail.com

Abstract

Introduction: Age Related Hearing Loss (ARHL) is defined as loss of hearing in elderly persons not influenced by the extraneous factors like noise trauma etc or intrinsic like CVS related diseases or endocrinal diseases. It is the loss of hearing due to age related changes taking place in the auditory system starting from the pinna to the cortical centers in the brain. It does not include any other factor contributing or initiating the pathological changes in the auditory system resulting in hearing loss. All these changes in the tissues are not pathological but truly age related. The study also includes the review of the literature on ARHL.

Materials and Methods: 185 individuals aged above 65 years are evaluated for hearing thresholds with the help of pure tone audiometry and speech audiometry. Among the 185 individuals 102 are patients attending the Department of ENT for the complaints of loss of hearing. The remaining 83 individuals are from the survey conducted to screen for hearing loss in the city of Thiruvananthapuram for the population aged above 65 years. Demographic data about the 185 individuals is collected. Pure tone audiogram and speech audiometry is done in all the patients.

Conclusions: PTA and SRT values are similar in both the groups. Early old age groups presented with mild to severe types of deafness and loss in lower frequencies. Late old aged people showed profound hearing loss and increased thresholds in higher frequencies. SRT estimation seemed more sensitive than calculating PTA in the persons above 85 years. Females showed 5 to 10 dB lower PTA values than males in all ages.

1. Introduction

The incidence of Hearing Loss in Geriatric population is found to be increasing in all the strata of the society in India. This incidence is more so evident in the states of India where the longevity of the population is beyond 80 years like in Kerala. The effects of ageing on the auditory system are multifocal. Age related Hearing Loss (ARHL) or presbycusis is one among the commonly reported health problems in India and a commonest cause of Hearing Loss. Auditory system being the important link to communication, its loss is detrimental to inter personal relationships among the family members, social contacts and quality of life in many aged persons. Audiometric features of ARHL vary from pure conductive deafness to symmetrical, high frequency sensorineural hearing loss. In few the pure tone audiograms show a relatively flat graph over all the frequencies. Most of the aged persons may have a well preserved hearing. [1] One of the most important factor causing impaired speech reception and detection is peripheral hearing loss. [2,3] In a small group of individuals the cause of severe hearing loss may be due to Central auditory dysfunction and cognitive problems. [4,5] It is difficult to identify and separate the cognitive and perceptual processes in elderly people. Epidemiological studies on hearing (calculated from PTA across the frequencies of 0.5-4 KHZ) from different developed, post-industrialized western countries showed that younger age groups had no evidence of hearing loss; middle age groups showed mild hearing loss and elderly age groups showed severe hearing loss. The studies from these counties had a reasonable coincidence in findings. The studies include few from Nordic countries [6-11], European countries [12, 13], North America [14, 15] and Australia [16]. Even though India, China and Brazil contribute the major chunk of world’s population epidemiological studies related to hearing loss are not worth mentioning. [17] In a study by Liu et al from China it was found that the prevalence of hearing loss in aged persons was lower than the Swedish and other European countries. [18] Similar studies from Brazil showed equal to or even better hearing in elderly people than the Swedish study. The present study is a attempt to evaluate the hearing thresholds in patients coming to the department of ENT with complaints of HL and assess HL in the elderly persons by conducting a screening survey.

2. Materials and Methods

Out of 185 persons, 102 are patients aged above 65 years attending the department of ENT with the complaints of loss of hearing to the Government General Hospital attached to Government Medical College, Thiruvananthapuram, Kerala between 2007 and 2010. The remaining 83 are the persons screened for hearing loss in the city of Warangal during a survey. These patients did not complain of impaired hearing, but are screened during the survey for assessment of hearing in elderly. Pure Tone Average and Speech Reception Threshold are assessed for these patients. Patients are included in the study based on inclusion and exclusion criteria.

2.1 Inclusion criteria

Patients aged above 65 years with or without impaired hearing; Patients with history of impaired speech reception; Patients with associated symptoms of tinnitus.

2.2 Exclusion Criteria

Patients aged below 65 years. Patients with impaired hearing associated with professional noise trauma and diabetes mellitus. Patients with impaired hearing associated with active or healed middle ear disease. Patients with impaired hearing associated with CVA or TIA. After recording the demographic data all the patients are subjected to ENT examination. All the patients are classified into separate age groups with a class interval of 10 years. Pure tone audiometry is done in all patients with frequencies from 500 KHZ to 8000 KHZ. Pure tone average (PTA) is calculated for three consequent speech frequencies (550, 1000, and 1500). Hearing impairment is graded as mild: hearing loss: 25-40 dB HL, Moderate hearing loss: 41-55 dB HL, moderate to severe hearing loss: 56-70 dB, severe hearing loss: 71-90 dB and profound hearing loss: 91 dB and above. Speech audiometry is done with 25 phonetically balanced words with 2 consonants and one vowel. Speech reception thresholds above 90% are taken as normal. 80 to 90% of SRT is taken as mild hearing loss, 60 to 80% is taken as moderate hearing loss and less than 60% is taken as profound hearing loss. All the data is analyzed using standard statistical methods to know the significance of the study.
3. Observations

Totally 185 persons out of whom 102 patients attending the ENT OPD of Government Hospital attached to Medical College, Thrissur, Kerala and 83 persons from the survey for screening the hearing loss in elderly are included in the present study. The selection of the patients is done according to the inclusion and exclusion criteria. Among the 185 persons 105 are male and 80 are female, with male to female ratio of 1.31:1 with a male preponderance (Table 1). The youngest patient is 65 years and the oldest patient is 92 years with a mean age of 76.79 years, the median is 75 and the mode is 68. Taking the hypothetical mean of age as 75, single sample T test is applied to know the statistical significance of the data and found that the sample of the present study is significant with T value 2.763 and P-value 0.00315 which is significant at P<0.05. That means whether the auditory assessment is done in a Hospital setting where the patients approach for a remedy for HL or assessment done in a survey reaching out to the elderly, the results from the sample is similar. The T value calculated for the SRT results in group A and B is 0.736 and the P value is 0.489 which is not significant (Table 4, 5).

Table 4: Showing the incidence of hearing loss (PTA) in different age groups in group A (n=102).

Age Interval	Mild HL: 26-40 dB.	Mod HL: 41-55 dB.	Mod-Severe HL: 56-70 dB.	Severe HL: 71-90 dB	Profound HL: 91-91 db					
Sex: M56 F46	M	F	M	F	M	F	M	F	M	F
65-74 Yrs	06	04	05	03	05	03	05	04	01	01
75-84 Yrs	05	03	05	03	04	03	05	04	03	02
85-94 Yrs	03	03	02	02	03	02	03	02	02	02

When the two groups are compared based on the PTA values for the different grades of HL, applying student T test it is found to be not significant with T value 1.344 and P value 0.144 (predicted P-value 0.05). That means whether the auditory assessment is done in a Hospital setting where the patients approach for a remedy for HL or assessment done in a survey reaching out to the elderly, the results from the sample is similar. The T value calculated for the SRT results in group A and B is 0.736 and the P value is 0.489 which is not significant (Table 4, 5).

Table 5: Showing the incidence of hearing loss (PTA) in different age groups in group B (n=83).

Age Interval	Mild HL: 26-40 dB.	Mod HL: 41-55 dB.	Mod-Severe HL: 56-70 dB.	Severe HL: 71-90 dB	Profound HL: 91-91 db					
Sex: M49 F34	M	F	M	F	M	F	M	F	M	F
65-74 Yrs	03	05	03	02	05	04	02	01	01	
75-84 Yrs	03	02	05	04	03	03	04	03	02	
85-94 Yrs	02	02	03	02	03	02	04	02	01	

In group A SRT between 60-80% to less than 60% is seen in 63 (61.76%) patients, among them 15 (14.70%) belonged to the age group of 65-74, 21 (20.58%) to age of 75-84 and 27 (26.47%) to the age group of 85-94. In group B similarly 57 (68.67%) out of 83 patients showed SRT between 60-80% to less than 60% among them 13 (16.66%) belonged to the age group of 65-74, 20 (24.04%) belonged to the age group of 75-84 age group and 24 (28.91%) belonged to the age of 85-94 (Table 6, 7).

Table 6: Showing the incidence of speech reception thresholds in group A (n=102).

Age and Sex Interval	Normal SRT >0% (14)	Mild HL SRT 80-90% (25)	Moderate HL SRT 60-80% (31)	Profound HL SRT <60% (32)				
Sex: M56 F46	M	F	M	F	M	F	M	F
65-74 Yrs	01	01	03	03	04	03	05	03
75-84 Yrs	02	03	03	05	07	03	08	03
85-94 Yrs	02	05	04	07	08	06	09	04
Audiological assessment in both the group A and B showed no significant difference in the outcome of results in terms of PTA or SRT thresholds both age wise and sex wise. Pure tone thresholds of higher frequencies 3KHz to 8KHz increased with the increase in age in both the groups. Pure tone thresholds in females are 5 to 10 dB less than the males in all higher frequencies (Table 8).

Table 8: Showing the percentage of High frequency Pure tone audiogram HL in both A&B groups (n=185).

Frequencies	Groups	Age	A	B	A	B	A	B	A	B	A	B
3000KHZ	65-74 Yrs	Male	35	30	45	50	60	65	75	75		
	Female	30	25	50	50	70	75	65	70			
4000KHZ	75-84 Yrs	Male	50	40	55	55	85	80	90	90		
	Female	50	45	55	50	80	75	75	80			
6000KHZ	85-94 Yrs	Male	60	45	60	65	80	80	95	95		
	Female	45	35	65	65	85	75	80	85			

Discussion

The phenomenon of increase in elderly populations is observed worldwide. As there is a vast information regarding hearing in geriatric age groups in western countries, very little is available in the eastern countries. A majority of the world's population lives in countries that are in a process of rapid industrialization and economical development. Some of these countries have very large populations, like China, India and Brazil. In spite of the fact that a large proportion of the world's population lives in these countries, information of many health sectors, like audiology services, is not forthcoming. [20] Hearing thresholds when compared between males and females aged 70-80 years, it is found in a study by Jerger et al that in males the loss is more in higher frequencies (4KHz) than females by 10-20dB. In the present study the thresholds of hearing in higher frequencies from 3KHz to 8KHz is comparatively 5 to 10dB more in males than in females. But after the age of 80 years the difference is smaller than 5-10 dB. In low frequency range females showed poorer thresholds than men. [21]

In animal studies there was no gender difference found. [22] In a study by Goycoolea et al there was no gender difference in hearing thresholds of aged people in Easter Island and their hearing was well preserved. [23] There was less of loss in hearing in the countries of Surinam and Amerindians' just like industrial societies. Age related changes in the micro structure of the auditory system especially cochlea are reported in animals and human beings in the literature. [24] The brunt of the degeneration is seen in the two type's hair cells of the basal turn of the cochlea. [25] It is described as Patchy degeneration of outer Hair cells (OHC) of both cochlear apical and basal turns. Whereas degeneration of Inner hair cells, cochlear nerve fibres are mostly confined to basal turn of the cochlea. After 50 years as the age progresses the degenerative changes occur in a severe form in OHCs rather than IHCs. Similar changes are seen in the spiral ganglion in the form of atrophy and osseous spiral lamina. Electron microscopic pictures show formation of giant cilia and derangement of micro cilia are reported from the aged human inner ears. In the present study mild to moderate HI with PTA ranging from 26 to 55dB are seen in early stage (65 to 74 years) of old age and Higher frequency HL is seen in later stages (75 to 94 years) of old age. [27]

Degenerative changes in the form of loss of loss of neurons especially in cochlear nerve nuclei and central neuronal pathway of auditory system with increasing age is reported in the literature, but this is challenged, hence the HPE changes in inner ear are now given importance. SRT values below 60 to 80% and below 60% seen in the age groups of 75-84 and 85-94 seen in the present study can be explained to loss of neurons in the auditory pathway. Similarly increase 1 the PTA seen in age groups of 65-74 and 75-84 can be explained due to loss of hair cells in the peripheral part of the auditory system. [28] Six types of ARHL based on HPE findings correlated to audiological assessment are described by Schuknecht and Gacek[26]: 1. Loss of sensory hair cells, supporting cells and neuronal cells of the basal turn of the cochlea; audiological assessment showing high frequency loss with relatively normal speech perception is termed as Sensory Presbycusis. 2. Loss of neurons more than the sensory hair cells in the entire spiral ganglion, but severe in basal turn; audiological assessment showing reduced speech recognition in relation to pure tone audiogram termed as Neuronal Presbycusis. 3. The entire Cochlea showing patchy atrophy of stria vascularis, but more damage in middle and apical turns; audiology assessment showing flat audiogram with slow progression of hearing loss and good speech recognition ability is termed as strial Presbycusis. 4. A combination of the above described pathological changes is termed as mixed type of Presbycusis.5. A hypothetical distortion of the mechanics of the spiral ligament is termed as conductive Presbycusis. 6. No morphological changes detectable by light microscopy are termed as indeterminate Presbycusis.

Studies related to find the causes of ARHL show that the process is a multifactorial one and not possible to separate the different constituents from one another. One of the obvious causes is biological ageing resulting in degeneration of hair cells and neurons which is not reversible and is called as intrinsic factor. As this process starts late in the age; can be used to explain the hearing loss ARHL. In the present study PTA and SRT values are similar in both the groups irrespective of the sex and age groups. It is proposed that the term Presbycusis should be used only to denote the normal ageing process not influenced by hormonal, noise or drug induced hearing loss. General neuronal degeneration of the brain is one more factor related to ARHL and not entirely too central auditory degeneration. [30] As few people have reasonably well preserved hearing in advanced age compared to others, it is proposed that a genetic factor might be determining the hearing ability. While others have a sloping air conduction curves 1 audiogram even during middle age. Genetic factors are usually run in families and result in early onset of HL and affect many members of the same family. [31] These familial aggregations are correlated to sensory and strial ARHL phenotypes, but the hereditary nature is more for strial type than sensory type of degeneration. This study also reported that females have more pronounced genetic factor in the multifactorial ARHL. [18] In a study by Liu et al in China the genetic cause was seen in 8% of the total 4164 persons evaluated for their hearing. [32] Abl (Age related hearing loss gene) genes in mice located on chromosome 10 and [33] a gene on chromosome 3q in humans are linked to ARHL. [34] Recently mitochondrial DNA deletions (mt DNA) gene is proposed to be associated with ARHL. A majority of them showed a 4977 bp deletion. Presbycusis precludes hearing loss only due to organic changes in the auditory system due to aging process, but nois exposure acts as an external factor which affects hearing in the elderly more so in men. The
the interaction of these two factors are a complex mechanism causing HL and difficult to understand. Presbycusis may add up to permanent threshold shift seen in Noise induced hearing loss. [35]

ARHL is also influenced by many other factors like ototoxic drugs, smoking, head injury, CVS disorders and ontological diseases. [36] Demographic factors like socio-economic state, education and state of health interfere with ARHL. Prevention of ARHLK is possible if there is early control of noise exposure in one’s life. Suggestion of good diets, antioxidants, change in lifestyle e.g. smoking and prevention of CVS diseases play an important role in prevention of SARHL. Further studies are required in India to evaluate hearing loss in elderly persons on a larger scale to understand the causes, its progression and modes of rehabilitation.

5. Conclusions

A small sample survey of hearing assessment among the elderly shows HL more than 56dB of PTA and SRT below 60%-80% is seen in more than 50% of the male persons and more than 40% of the females. It shows the population at risk of developing HL and requires treatment and re-habilitation. There is no statistical significant difference in the assessment results in Hospital patients or survey persons. Female persons tend to have lower threshold levels in speech frequencies when compared to males. Higher frequency losses more in individuals are in the age groups of 85 to 94 years. Larger survey samples are required to pin point the causes of HL in geriatric age and its correlation with the Histopathological findings.

References

[1] Humes LE, Watson BJ, Christensen LA, Cokely CG, Halling DC, Lee L. Factors associated with individual differences in clinical measures of speech recognition among the elderly. J Speech Hear Res. 1994; 37: 465-474.

[2] Humes LE. Speech understanding in the elderly. J Am Acad Audiol 1996; 7: 161-167.

[3] Frisina DR, Frisina RD. Speech recognition in noise and presbyacusis; relations to possible neural mechanisms. Hear Res. 1997; 106: 95-104.

[4] Jerger J. Can age-related decline in speech understanding be explained by peripheral hearing loss? J Am Acad Audiol. 1992; 3: 33-38.

[5] Willott JF. Neurogerontology: Aging of the Nervous System. New York: Springer. 1999.

[6] Parving A, Biering-Sorensen M, Bech B, Christiansen B, Sorensen MS. Hearing in the elderly>80 years of age. Prevalence and sensitivity. Scand Audiol. 1997; 26:99-106.

[7] Uimonen S, Maki-Torkko E, Jounio-Erastai K, Sorri M. Hearing in 55 to 75 year old people in northern Finland - a comparison of two classifications of hearing impairment. Acta Otolaryngol. 1997; 529:69-70.

[8] Jönsson R, Rosenhall U. Hearing in advanced age. A study of presbyacusis in 85-, 88- and 90-year-old people. Audiology 1998; 37: 207-218.

[9] Johansson MSK, Arlinger SD. Hearing threshold levels for an otologically unscreened, non-occupationally noise-exposed population in Sweden. Int J Audiol 2002. 41: 180-194.

[10] Hietanen A, Era P, Sorri M, Heikkinen E. Changes in hearing in 80-year-old people: a 10 year follow-up study. Int J Audiol. 2004; 43: 126-135.

[11] Engdahl B, Tambs K, Borchgrevink HM, Hoffman HJ. Screened and unscreened hearing threshold levels for the adult population: results from the nord-Trondelag Hearing Loss Study. Int J Audiol 2005; 44: 213-230.

[12] Davis A. Hearing in adults. The prevalence and distribution of hearing impairment and reported hearing disability in the MRC Institute of Hearing Research’s National Study of Hearing. MRC Institute of Hearing Research. London: Whurr Publishers Ltd. 1995.

[13] Quaranta A, Assennato G, Sallustio V. Epidemiology of hearing problems among adults in Italy. Scand Audiol. 1996; 42: 9-13.

[14] Pearson J, Morrell CH, Gordon-Salant S, Brant LJ, Metter EJ, Klein LL, Fozard JL. Gender differences in a longitudinal study of age-associated hearing loss. J Acoust Soc Amer. 1995; 97: 1196-1205.

[15] Crichtshanks KJ, Wiley TL, Tweed TS, Klein BE, Klein R, Mares-Perlman JA, Mondahl DM. Prevalence of hearing loss in older adults in Beaver Dam, Wisconsin. The epidemiology of hearing loss. Am J Epidemiol 1998; 148: 879-886.

[16] Wilson DH, Walsh PG, Sanchez L, Davis AC, Taylor AW, Tucker G, Meager I. The epidemiology of hearing impairment in an Australian adult population. Int J Epidemiol. 1999; 28: 247-252.

[17] Liu XZ, Xu LX, Hu Y, Nance WE, Simonan A, et al. Epidemiological studies on hearing impairment with reference to genetic factors in Sichuan, China. Ann Otol Rhinol. 2001; 110: 356-363.

[18] Gusto Mattos L, Rosenhall U, Peioto Veras R. Auditory function in a Brazilian elderly population - a cross-sectional study of pure tone thresholds. Int J Audiol, submitted 2006.

[19] Jerger J, Chmiel R, Stach B, Spretnjak M. Gender effects audiometric shape in presbycusis. J Am Acad Audiol, 1993; 4: 42-49.

[20] Hunter KP, Willott JF. Aging and the auditory brainstem response in mice with severe or minimal presbycusis. Hear Res. 1987; 30:207-218.

[21] Goyoolea M, Coyoolea HG, Farfan CR, Rodriguez LG, Martinez GC, Vidal R. Effect of life in industrialized societies on hearing in natives of Easter Island. Laryngoscope. 1986; 96: 1391-1396.

[22] Counter SA. Audiological screening of Amerindians of the Suriname rainforest. Scand Audiol. 1986; 15: 57-64.

[23] Sorcek S, Michaels L, Frohlich A. Pathological changes in the organ of Corti in presbycusis as revealed by microslicing and staining. Acta Otolaryngol. 1987; 436: 93-102.

[24] Willott JF. Anatomic and physiologic aging: a behavioral neuroscience perspective. J Am Acad Audiol. 1996; 7: 141-151.

[25] Bredberg G. Cellular pattern and nerve supply of the human organ of Corti. Acta Otolaryngol. 1968; 236: 1-135.

[26] Schuknecht HF, Gacek MR. Cochlear pathology in presbycusis. Ann Otol Rhinol Laryngol. 1993; 102: 1-16.

[27] Bates GA, Mills JL. Presbycusis. Lancet 2005. 366. 1111-1120.

[28] Bates GA, Couroumpitree NN, Myers RH. Genetic association in age-related hearing thresholds. Arch Otolaryngol Head Neck Surg. 1999; 125:654-659.

[29] Erway LC, Willott JF, Archer JR, Harrison D. Genetics of age-related hearing loss in mice. 1. Inbred and F1 hybrid strains. Hear Res. 1993; 65: 125-132.

[30] Johnson KR, Zheng QY, Erway LC. A major gene affecting age-related hearing loss is common to at least ten inbred strains of mice. Genomics. 2000; 70:171-180.

[31] Garringer HJ, Pankratz ND, Nichols WC, Reed T. Hearing impairment susceptibility in elderly men and the DFNA18 locus. Arch Otolaryngol Head Neck Surg. 2006; 132: 506-510.

[32] Seidman MD, Ahmad N, Bai U. Molecular mechanisms of age-related hearing loss. Ageing Research Review. 2002; 1: 333-343.

[33] Mills JH, Dubno JR, Boettcher FA. Interaction of noise-induced hearing loss and presbycusis. Scand Audiol. 1998; 48: 117-122.

[34] Miller JM, Dolan DF, Raphael Y, Altschuler RA. Interactive effects of ageing with noise induced hearing loss. Scand Audiol. 1998; 27: 48-53-56.

[35] Gates, GA, Cobb JL, D'Agostino RB, Wolf PA. The relation of hearing in the elderly to the presence of cardiovascular disease and cardiovascular risk factors. Arch Otolaryngol Head Neck Surg. 1993; 119: 156-161.

[36] Rosenhall U, Sixt E, Sundh V, Svanborg A. Correlations between presbycusis and extrinsic noisx factors. Audiology 1993; 32: 234-243.