A new deformed Schiöberg-type potential and ro-vibrational energies for some diatomic molecules

Omar Mustafa

Department of Physics, Eastern Mediterranean University, G. Magusa, North Cyprus, Mersin 10, Turkey

E-mail: omar.mustafa@emu.edu.tr

Received 16 December 2014, revised 9 April 2015
Accepted for publication 22 April 2015
Published 21 May 2015

Abstract
We suggest a new deformed Schiöberg-type potential for diatomic molecules. We show that it is equivalent to Tietz–Hua oscillator potential. We discuss how to relate our deformed Schiöberg potential to Morse, to Deng–Fan, to the improved Manning–Rosen, and to the deformed modified Rosen–Morse potential models. We transform our potential into a proper form and use the supersymmetric quantization to find a closed form analytical solution for the ro-vibrational energy levels that are highly accurate over a wide range of vibrational and rotational quantum numbers. We discuss our results using four-diatomic molecules $\Pi^0(X^2\Pi_g^1), \Sigma^-(0 \Sigma_g^2 \to \Sigma^+23\Pi_g^2)$, and $\Pi^0(X^2\Pi_g^1), \Sigma^-(0 \Sigma_g^2 \to \Sigma^+23\Pi_g^2)$. Our results turn out to compare excellently with those from a generalized pseudospectral numerical method.

Keywords: diatomic molecular potentials, deformed Schiöberg-type potential, ro-vibrational energies

1. Introduction
An empirical diatomic potential energy function provides a quantitative description of the energy–distance relation that encodes within the relevant information about a diatomic molecule. Consequently, a large number of empirical potential models has been suggested [1–10]. Improved, extended and/or deformed forms of these potentials were investigated in the literature [11–28]. For example, an extended Lennard-Jones potential is tested by Hajigeorgiou [13], a deformed and shifted-by-a-constant Rosen–Morse potential [13, 17] is studied and found to be equivalent to the known Tietz [7] and Wei [10] potentials, Wang et al [12] have shown the equivalence of three potential models (Manning–Rosen [3], Schiöberg [9], and Deng–Fan [5]), an improved Schiöberg potential energy model is studied by Wang et al [15], etc. Nevertheless, the dependence of the transition probabilities on the rotational–vibrational (ro-vibrational hereinafter) energy levels has inspired the search for closed-form analytical energy expressions that are accurate over a broad range of rotational and vibrational quantum numbers. Such closed-form expressions provide a substantial simplification of the derivations of the transition probabilities and are of great advantage in the studies of molecular transitions in gases, where different collision systems would identify the gas properties [19].

However, the main challenge in finding the ro-vibrational energy levels lies in dealing with the central rotational core, $J(J + 1)/2\mu r^2$ with $J \neq 0$, of the radial spherically symmetric Schrödinger equation

$$\frac{-\hbar^2}{2\mu} \frac{d^2 R_{\nu,J}(r)}{dr^2} + \left[\frac{J(J + 1)\hbar^2}{2\mu r^2} + U(r) \right] R_{\nu,J}(r) = E_{\nu,J} R_{\nu,J}(r),$$

(1)

where ν denotes the vibrational and J denotes the rotational quantum numbers. This equation is known to be exactly solvable in a closed form for $J = 0$. Whereas, for $J \neq 0$ one needs to use an approximation for the central rotational core term and obtain a closed form analytical solution (cf, e.g., [22, 23]). Hereby, using the Deng–Fan potential [5]

$$U(r) = D \left[1 - \frac{e^{\beta r} - 1}{e^{\beta r} + 1} \right]^2 = A_1 + A_2 \left(e^{\alpha r} - 1 \right) + \frac{A_3}{(e^{\alpha r} - 1)^2},$$

(2)
where
\[A_1 = D_e; \quad A_2 = -2D_e \left(e^{\alpha r} - 1 \right); \quad A_3 = D_e \left(e^{\alpha r} - 1 \right)^2. \]

Mustafa [20] has very recently shown (through a quantitative brute-force numerical test) that the factorization recipe
\[\frac{r^2}{r^2} = C_0 + \frac{C_i}{e^{ir} - 1} + \frac{C_2}{\left(e^{ir} - 1 \right)^2}, \]
(3)
of Badawi et al [21], for the central rotational core \(J(j + 1)/\mu r^2 \), is a more reliable approximation than that of the improved Greene-Aldrich approximation [22, 23]
\[\frac{1}{r^2} \approx \lambda^2 \left(\frac{1}{12} + \frac{e^{ir}}{\left(e^{ir} - 1 \right)^2} \right). \]
(4)

It has been observed that the larger the rotational quantum number \(J \), the larger are the ro-vibrational energy shifts/deviations, from the numerically predicted ones, for a given vibrational quantum number \(\nu \) (for more details on this issue see Mustafa [20]). In short, the factorization recipe of Badawi et al [21] is based on writing the potential and the central rotational term in homogeneous forms and then determine the coefficients \(C_i \)'s in terms of the potential parameters.

In the current methodical proposal, we shall use the factorization recipe of Badawi et al’s [21] and focus on the derivation of an analytical expression for the diatomic molecular ro-vibrational energy levels, that has a sufficiently high accuracy over a relatively broad range of rotational and vibrational quantum numbers. In so doing, we propose a new (to the best of our knowledge, of course) four-parametric deformed Schöenberg-type [9, 12, 15, 16] potential
\[U(r) = A \left(B + \tanh \alpha \mu r \right)^2, \]
(5)
where the \(q \)-deformation of the usual hyperbolic functions is defined through
\[\tanh_q x = \frac{\sinh x + q \cosh x}{\cosh x}; \quad \sinh_q x = \frac{e^x - q e^{-x}}{2}, \]
\[\cosh_q x = \frac{e^x + q e^{-x}}{2}. \]
(6)

Here, \(A > 0, B, q, \) and the screening parameter \(\alpha > 0 \) (which is related to the potential range) are real adjustable parameters to be determined. Nevertheless, a diatomic molecular potential, necessarily and desirably, should satisfy the conditions (usually called Varshni’s [6] conditions)
\[\frac{dU(r)}{dr} \bigg|_{r=r_e} = 0, \quad U(\infty) = U(r_e) = D_e, \quad \text{and} \quad \frac{d^2U(r)}{dr^2} \bigg|_{r=r_e} = K_e = (2\pi c)^2 \mu \omega_e^2, \]
(7)
where \(D_e \) is the dissociation energy, \(r_e \) is the equilibrium bond length, \(c \) is the speed of light, \(\mu \) is the reduced mass, and \(\omega_e \) is the equilibrium harmonic oscillator vibrational frequency. Moreover, the introduction of a fourth condition \(U(r_e) = 0 \) would only introduce a constant shift (up or down) of the potential curve at the equilibrium bond length, but never violates the three conditions above [11, 12, 14–17]. Therefore, the satisfaction of Varshni’s conditions would determine the adjustable parameters \(A, B, \) and \(q \) of our new deformed Schöenberg potential (5).

On the other hand, the Tietz–Hua oscillator potential [18, 19]
\[U(r) = D_e \left[\frac{1 - e^{-b_h(r-r_c)}}{1 - c_h e^{-b_h(r-r_c)}} \right]^2; \]
\[b_h = \beta (1 - c_h), \quad \beta = \frac{K_e}{\sqrt{2D_e}}, \]
(8)
is known to be one of the very best analytical potentials in the description of molecular dynamics at moderate and high vibrational and rotational quantum numbers. Here, \(c_h \) represents an optimization parameter obtained from ab initio or Rydberg–Klein–Rees (RKR) intermolecular potentials and \(\beta \) is known as the Morse constant (cf., e.g., [18]). Obviously, in the limit of the optimization parameter \(c_h \rightarrow 0 \), the Tietz–Hua oscillator potential reduces to the well known Morse oscillator potential [1]. Moreover, when \(c_h = e^{-b_h} \) it reduces to Deng–Fan potential (2) (which is shown to be equivalent to the improved Manning–Rosen potential [3, 12, 27]) with \(\lambda = b_h \), it is also a straightforward manner to show that the Tietz–Hua oscillator potential is equivalent to the deformed modified Rosen–Morse potential [14, 17, 24, 25].

The organization of current work is in order. In section 2, we use Varshni’s conditions (7) to show that our new deformed Schöenberg-type potential (5) and the Tietz–Hua oscillator potential (8) are in fact equivalent. In section 3, we transform our potential (5) into a proper form to be able to use/recycle the supersymmetric quantization recipe of [24] and obtain a closed form solution for the ro-vibrational energy levels. We shall, therefore, only cast the necessary formulae to make the current work self-contained. We discuss our results, in section 4, using four-diatomic molecules \(\text{NO} \left(X^1\Sigma^+_g \right), \text{O}_2 \left(X^3\Sigma^+_g \right), \text{C}_2 \left(X^2\Pi^0 \right), \) and \(\text{Ni} \left(X^1\Sigma^+_u^+ \right) \). We compare our results with those of Roy [18], who have used a generalized pseudospectral (GPS) numerical method, whenever possible. We give our concluding remarks in section 5.

2. Equivalence of the new deformed Schöenberg potential and the Tietz–Hua oscillator

In this section, we shall use Varshni’s [6] conditions (7) and show that our new deformed Schöenberg-type potential (5) is equivalent to the Tietz–Hua oscillator potential (8). We start with the application of the first two conditions, in (7), on our potential (5), i.e.
\[\frac{dU(r)}{dr} \bigg|_{r=r_e} = 0 \implies B = \frac{e^{2\alpha r_e} - q}{e^{2\alpha r_e} + q}, \]
(9)
and

\[U(\infty) - U(r_e) = D_e \implies A = \frac{D_e}{4q^2}(e^{2q} + q)^2. \] (10)

Which when substituted in (5) would yield

\[U(r) = D_r \left[1 - \frac{e^{2q} + q}{e^{2q} + q} \right]^2. \] (11)

Obviously, the result in (10) implies that the adjustable parameter \(A \) is positive whereas the value of \(B \) in (9) can be positive or negative, depending on the values of the deformation parameter \(q \). However, applying the third condition, \(d^2U(r)/dr^2\big|_{r=r_e} = K_e \), would imply

\[\beta = \frac{2ae^{2q}}{e^{2q} + q} \implies q = -\left(1 - \frac{b}{\beta}\right)e^{bq}; \]

\[b = 2\alpha, \text{ and } \beta = \frac{K_e}{2D_e}. \] (12)

This would immediately suggest that the deformation parameter \(q \) may very well be defined as

\[q = -\eta e^{bq}; \eta = \left(1 - \frac{b}{\beta}\right), \] (13)

where the positivity or negativity of the values of \(q \) is determined by the negativity or positivity of the values of the optimization parameter \(\eta \), respectively. Moreover, it is clear that the deformation parameter \(q \) is not an \(\alpha \)-independent but rather a deformation function that depends on the spectroscopic parameters \(b, \beta \), and \(r_e \), i.e., \(q \equiv q(b, \beta, r_e) \equiv q(\alpha, \beta, r_e) \). This is the only conclusion one can draw form the third condition of (7).

Under such conditional settings, our new deformed Schrödinger-type potential (5) (hence equivalently (11)) collapses into the Tietz–Hua oscillator potential (8)

\[U(r) = D_r \left[1 - \frac{e^{-b(r-r_e)}}{1 - \eta e^{-b(r-r_e)}} \right]^2. \] (14)

where our \(\eta = c_3 \) and \(b = 2\alpha = b_3 \) of Kunc et al’s [19] and Roy’s [18]. The equivalence of our new deformed Schrödinger-type potential (5) and the Tietz–Hua oscillator potential (8) is established, therefore. Yet, the very result of our \(q \)-deformation in (13) only documents consistency with the known Tietz–Hua oscillator potential [18, 19], where the spectroscopic parameters of the diatomic molecules (listed in Table 1 below) studied by Kunc et al [19] and used by Roy [18] are readily known and shall be used here as well.

3. Supersymmetric quantization and ro-vibrational energy levels

Let us rewrite our new four-parametric deformed Schrödinger-type potential (5) (which is in fact equivalent to that in (11)) as

\[U(r) = P_1 + \frac{P_2}{e^{br} + q} + \frac{P_3}{(e^{br} + q)^2}; b = 2\alpha, \] (15)

where

\[P_1 = D_e; P_2 = -2D_e(e^{br} + q); \]

\[P_3 = D_e(e^{br} + q)^2. \] (16)

At this point, one should notice that Badawi et al [21] have shown that the Morse–Pekeris, Rosen–Morse, Manning–Rosen, and Tietz potential functions are particular cases of the general expression (15). Obviously, moreover, this potential form (15) represents the first three terms of equation (15) in Jia et al’s [24] work on a six-parametric exponential-type one-dimensional potential. Where we take \(P_1 = P_2 = 0 \) of equation (15) in [24] and interchange the places of \(P_2 \) and \(P_3 \). Hence, the parametric mapping between Jia et al’s [24] work and our current methodical proposal is made clear. As such, we recycle the supersymmetric quantization recipe of [24] and cast only the necessary formulae to make the current work self-contained.

Next, we incorporate (15) and (16) into (1) and write the effective potential as

\[U_{\text{eff}}(r) = \frac{J(J + 1)\hbar^2}{2\mu r^2} + U(r) \]

\[= \tilde{P}_1 + \frac{\tilde{P}_2}{e^{br} + q} + \frac{\tilde{P}_3}{(e^{br} + q)^2}, \] (17)

with

\[\tilde{P}_1 = P_1 + \gamma C_3; \]

\[\tilde{P}_2 = P_2 + \gamma C_3; \]

\[\tilde{P}_3 = P_3 + \gamma C_3; \]

\[\gamma = \frac{J(J + 1)\hbar^2}{2\mu r^2}. \] (18)

Whilst the values of \(\tilde{P}_i \)'s are given in (16), the values of \(C_i \)'s are obtained using the factorization recipe of Badawi et al [21] in the following manner. Let \(y = b(r - r_e) \), then with \(br = y + u \) and \(u = br \), one implies that

\[\frac{r_e^2}{r^2} = \frac{1}{(y/u + 1)^2} \text{ and } \frac{r_e^2}{r^2} = C_1 + \frac{C_2}{e^{y/u} + q} + \frac{C_3}{(e^{y/u} + q)^2}. \] (19)

Retaining the first three terms of the Taylor’s expansion near the equilibrium internuclear distance \(y \to 0 \) (i.e., \(r \to r_e \)) of both expressions in (19) and equating coefficients of same power of \(y \), one obtains (with \(q = -\eta e^{br} = -\eta e^{bq} \))

\[C_1 = 1 - \left(1 - \frac{1 - \eta}{u}\right)^2 \left[\frac{4u}{1 - \eta} - (3 + u) \right], \] (20)

\[C_2 = 2e^{bq}(1 - \eta) \left[3\left(1 - \frac{1 - \eta}{u}\right) - (3 + u)\left(1 - \frac{1 - \eta}{u}\right)^2 \right]. \] (21)
and becomes
\[\psi(r) = N \exp \left(-\frac{\sqrt{2\mu}}{\hbar} \int \tilde{W}(r) \, dr \right). \] (24)

Which, when substituted in (1) along with (17), would result in

\[\tilde{Q}_2^2 + bq \tilde{Q}_2 = \frac{2\mu}{\hbar^2} \tilde{P}_2 \implies \tilde{Q}_2 \]

\[= -\frac{bq}{2} \pm \sqrt{\left(\frac{bq}{2} \right)^2 + \frac{2\mu}{\hbar^2} \tilde{P}_2}, \] (25)

\[2\tilde{Q}_2 \tilde{Q}_2 - b\tilde{Q}_2 = \frac{2\mu}{\hbar^2} \tilde{P}_2 \implies \tilde{Q}_1 = a + \frac{\mu \tilde{P}_2}{\hbar^2 \tilde{Q}_2}, \]

\[= \frac{1}{2q\tilde{Q}_2} \left[\frac{2\mu}{\hbar^2} (q\tilde{P}_2 + \tilde{P}_1) - \tilde{Q}_2^2 \right], \] (26)

and

\[\tilde{Q}_1^2 = \frac{2\mu}{\hbar^2} (\tilde{P}_1 - E_0) \implies E_0 \]

\[= \tilde{P}_1 - \frac{\hbar^2}{2\mu} \left[\frac{1}{2q\tilde{Q}_2} \left(\frac{2\mu}{\hbar^2} (q\tilde{P}_2 + \tilde{P}_1) - \tilde{Q}_2^2 \right) \right]^2. \] (27)

Hence, the wave function reads

\[\psi(r) = N e^{\tilde{Q}_1 \left(\frac{e^{br}}{e^{br} + q} \right)} \tilde{Q}_2, \] (28)

and the corresponding ro-vibrational energy levels (with \(b = 2\alpha \)) are

\[E_{v,J} = \frac{\hbar^2 b^2}{2\mu} \left[\frac{2\mu}{\hbar^2 q^2 b^2} (\tilde{P}_1 + q\tilde{P}_2) \right] \]

\[- \left(1 - 2\nu \pm \frac{\sqrt{1 + \frac{8\mu}{\hbar^2 q^2 b^2}} \tilde{P}_3}{4} \right)^2. \] (29)

The positive and negative signs (±), however, correspond to positive and negative values of \(q \), respectively. That is, one takes the positive sign for \(q > 0 \) and the negative sign for \(q < 0 \). This would, in turn, ensure that the wavefunction (28) vanishes as \(r \to \infty \) and becomes finite as \(r \to 0 \). For more details on this issue the reader may refer to Jia et al [24].

4. Results and discussion

The spectroscopic parameters for four-diatomic molecules NO\((X^2\Pi_b) \), \(O_2 (X^2\Sigma^+_g) \), \(O_2 (X^2\Pi_g) \) and \(N_2 (X^2\Sigma^+_g) \) as reported by Kunc and Gordillo-Vázquez [19] are summarized in table 1. We now use our result in (29) and calculate the ro-vibrational energy levels listed in table 2 for NO\((X^2\Pi_b) \), \(O_2 (X^2\Sigma^+_g) \), \(O_2 (X^2\Pi_g) \) molecules, and the vibrational energies for the \(N_2 (X^2\Sigma^+_g) \) molecule in table 3. For each of the given diatomic molecules above we have tested the sign of \(q \) and accordingly used the proper sign of the square root in (29).

In table 2, we compare our results with those of Roy [18], who have used a GPS numerical method. Roy’s results compared excellently with the results of the Nikiforov–Uvarov formalism of Hamzavi et al [28]. Moreover, in the conversion of the (eV)-units used by Roy [18] into \((\text{cm}^{-1}) \)-units, we have used the relation

\[E_{v,J} (\text{cm}^{-1}) = D_1 (\text{cm}^{-1}) + \frac{\text{Roy’s(eV)}}{1.23941188 \times 10^{-4} (eV \text{ cm}^{-2})}. \]

It is obvious that our results obtained form (29) are in excellent agreement with those from the GPS numerical
method [18] (hence, with the results of the Nikiforov–Uvarov formalism of Hamzavi et al [28]), whenever available, of course. Yet, in the search for any connection between the accuracy of our results reported in table 2 and the potential parameters listed in table 1, we observe a general trend that the heavier/larger the reduced mass the more accurate our result are compared to GPS ones. This is very much related to the semiclassical limit nature (similar recipes were used early on, like the known large-ℓ expansion technique, cf. e.g., [29–31]) of the Taylor’s expansion near the equilibrium internuclear distance, \(r \rightarrow r_e \), used in the factorization recipe (19) of Badawi et al [21]. It is also obvious that the larger the reduced mass, in the central core term \(\mu_J^2 \left(r \right)^2 \), the less the effect of the rotational quantum number \(J \). The factorization recipe (19) of Badawi et al [21] is indeed an excellent approximation for the ro-vibrational energy levels.

Furthermore, the authors of [14, 17] have used the common potential (11) (i.e., their equation (11) in both [14, 17]) as an equivalent form for their deformed modified Rosen–Morse potential. Therefore, the introduction of table 3 is unavoidably in the process. In this table we compare our results with those reported by Lino da Silva et al [26] (who have used the RKR method to construct the potential curve of the \(\Sigma^+ \left(X^1 \Sigma^+ \right) \)) along with the results reported by Sun et al [26] (i.e., for \(\eta = c_0 \rightarrow 0 \)). The comparison between our results and those of Lino da Silva et al [26] shows that the accuracy is still high (i.e., the accuracy is \(\sim 99.1\% \) and is better than that from the Morse, especially for large vibrational quantum numbers \(\nu \)). However, when we compare our results with those of Sun et al [17], we observe small discrepancies. These discrepancies are very much related to the improper mathematical argument.

Table 2. Ro-vibrational energies \(E_{\nu J} \) (in cm\(^{-1}\) units) for three-diatomic molecules with \(\nu = 0, 3, 5 \) and different value of \(J \). Our results in (29) are compared with those of Roy’s [18] (GPS) whenever possible.

\(\nu \)	J	NO \(\chi^2 \Pi \)	O\(_2\) \(\chi^1 \Sigma^+ \)	O\(_3\) \(\chi^2 \Pi^+ \)
0	0	947.759	947.756	977.089
1	951.123	951.121	977.863	934.601
2	957.849	957.847	973.410	944.341
3	967.937	967.930	802.823	954.094
4	988.205	816.688	967.079	
5	1132.686	1132.686	983.310	
10	10	1351.069	1351.072	1113.112
15	1351.069	1351.072	1113.112	
20	1653.146	1653.153	1615.541	

Table 3. Vibrational energies \(E_{\nu J} \) (in cm\(^{-1}\) units) for \(N_2 \left(\Sigma^+ \right) \). Our results (29) are compared with those of RKR [26], DMRM [17], and Morse [17].

\(\nu \)	RKR [26]	DMRM [17]	Equation (29)	Morse [17]
0	1184.4539	1174.9971	1174.9477	
1	3526.3576	3499.8409	3499.7340	
2	5833.4516	5790.8755	5790.7601	
3	8107.0460	8048.0809	8047.9316	
4	10348.312	10271.387	10271.210	
5	12558.287	12460.549	12445.666	
6	14737.876	14615.901	14595.353	
7	16887.859	16737.473	16710.222	
8	19008.895	18824.747	18790.272	
9	21101.519	20877.869	20835.503	

\(\nu \)	Equation (29)	Morse [17]	
0	1184.4539	1174.9971	
1	3526.3576	3499.8409	
2	5833.4516	5790.8755	
3	8107.0460	8048.0809	
4	10348.312	10271.387	
5	12558.287	12460.549	
6	14737.876	14615.901	
7	16887.859	16737.473	
8	19008.895	18824.747	
9	21101.519	20877.869	20835.503
used by Sun et al [17] (more details on this issue are discussed in the appendix below). Moreover, it is a straightforward manner to show that our energy expression (29) is in exact accord with that of equation (14) of Sun et al [17] for the case $J = 0$ they have considered.

5. Concluding remarks

In this work, we have introduced a new (to the best of our knowledge) deformed Schiöberg-type potential (5). We have shown that upon the application of Varshni’s [6] conditions (7), our deformed potential (5) collapses into a general/common form (11) shared by a number of well known diatomic potential models. For example, for the Tietz–Hua oscillator potential $q = -\eta e^{\alpha r}$, $\eta = \alpha h$, and $2\alpha = b = b_h$ [18, 19], for the Morse oscillator potential [1] $\eta \rightarrow 0$ (i.e., the deformation parameter $q \rightarrow 0$), for the Deng–Fan potential (2) and the improved Manning–Rosen potential [3, 12, 27] $q = -1$ (i.e., $\eta = e^{\alpha r}$, etc.

To find a highly accurate (over a wide range of vibrational and rotational quantum numbers) analytical expression for the ro-vibrational energy levels, we have adopted/favoured Badawi et al.’s [21] factorization recipe (to deal with the central rotational core $J(J + 1)/2\mu r^2$) and recycled the supersymmetric quantization approach used by Jia et al [24] for a six-parametric exponential potential model. Our strategy was inspired by Badawi et al.’s [21] work on writing the potential and the central rotational term in homogeneous forms (i.e., (17) and (19)) and then determine the coefficients C_i’s in terms of the potential parameters to workout an analytical expression (29) for the ro-vibrational energy levels. For the three-diatomic molecules NO($X^-\Pi$), O$_2$($X^3\Sigma_g^+$), and O$_2$(X$^2\Pi_g^-$) we have used, our results turned out to be highly accurate compared with the numerically predicted ones of Roy [18], who have used a GPS method (documented in table 2).

Appendix. Improper determination of the spectroscopic parameter α

For the sake of mathematical correctness and scientific honesty, it is deemed unavoidable to introduce table 3 and to pinpoint the mathematical mismanagement in the determination of the spectroscopic parameter α committed by the authors of [14, 17].

In their attempt to determine the spectroscopic parameter α, the authors of [14, 17] have, mathematical wise, mishandled equation (12). They have considered that the deformation parameter q is α-independent and used α values in table 1 to obtain q in (12) (as documented in their q values listed in their table 1 of [14] and used again in [17]). That is, they admit that $q = -\eta e^{\alpha r} = -c_h e^{\alpha}c_r; \alpha = b/2$ as given by (12) but again they have used the very same values of α in table 1 to find $\alpha = \alpha_{DMRM}$ (below). This is an odd and/or improper mathematical treatment. Yet, their result (as documented in their equation (23) of [17] and equation (26) of [14])

$$\alpha_{DMRM} = \frac{1}{2} \beta + \frac{1}{2}\frac{1}{2\pi c} W(r_c q_f e^{-\epsilon/\beta^2});$$

should be corrected into

$$\alpha_{DMRM} = \frac{1}{2} \beta + \frac{1}{2}\frac{1}{2\pi c} W(r_c q_f e^{-\epsilon/\beta}).$$

where W is the Lambert function. However, their approach would remain improper.

References

[1] Morse P M 1929 Phys. Rev. 34 57
[2] Rosen N and Morse P M 1932 Phys. Rev. 42 210
[3] Manning M F and Rosen N 1933 Phys. Rev. 44 951
[4] Frost A A and Musulin B 1954 J. Chem. Phys. 22 1017
[5] Deng Z H and Fan Y P 1957 Shandong Univ. J. 7 162
[6] Varshni Y P 1957 Rev. Mod. Phys. 29 664
[7] Noorizadeh S and Pourrshams G R 2004 J. Mol. Struct. (Theochem) 678 207
[8] Tietz T 1963 J. Chem. Phys. 38 3036
[9] Murrell J M and Sorbie K S 1974 J. Chem. Soc. Faraday Trans. 70 1552
[10] Schrödel D 1986 Mol. Phys. 59 1123
[11] Wei H 1990 Phys. Rev. A 42 2524
[12] Jia C-S et al 2012 J. Chem. Phys. 137 014101
[13] Wang P-Q, Zhang L-H, Jia C-S and Liu J-Y 2012 J. Mol. Spectrosc. 274 5
[14] Hajigeorgiou P G 2010 J. Mol. Spectrosc. 263 101
[15] Jia C-S, Chen T, Yi L-Z and Lin S-R 2013 J. Math. Chem. 51 2165
[16] Wang P-Q et al 2012 J. Mol. Spectrosc. 278 23
[17] Lu J 2005 Phys. Scr. 72 349
[18] Ortakaya S 2013 Few-Body Syst. 54 1901
[19] Sun Y, He S and Jia C-S 2013 Phys. Scr. 87 025301
[20] Roy A K 2014 J. Math. Chem. 52 1405
[21] Kunc J A and Gordillo-Vázquez F J 1997 J. Phys. Chem. 101 1595
[22] Mustafa O 2015 J. Phys. B: At. Mol. Opt. Phys. 48 065101
[23] Badawi M, Bessis N and Bessis G 1972 J. Phys. B: At. Mol. Phys. 5 L157
[24] Greene R L and Aldrich C 1976 Phys. Rev. A 14 2363
[25] Liu J-Y, Zhang G-D and Jia C-S 2013 Phys. Lett. A 377 1444
[26] Jia C-S et al 2002 Commun. Theor. Phys. 37 523
[27] Egrikes H, Demirhan D and Buyukkilic F 1999 Phys. Scr. 60 195
[28] Lino da Silva M, Guerra V, Loureiro J and Sa P A 2008 Chem. Phys. 348 187
[29] Hu X-T, Zhang L-H and Jia C-S 2014 J. Mol. Spectrosc. 297 21
[30] Hamzavi M, Rajabi A A and Thylwe K-E 2012 Int. J. Quantum Chem. 112 2701
[31] Mustafa O and Odeh M 2000 J. Phys. A: Math. Gen. 33 5207
[32] Znojil M, Genperle F and Mustafa O 2002 J. Phys. A: Math. Gen. 35 5781
[33] Mustafa O and Znojil M 2002 J. Phys. A: Math. Gen. 35 8929