Toxicity of mercury on the brain: ability of extract of *Pistacia atlantica* regulated effect

Benahmed Fatih*a,1,2, Belhouari Hayet Fatima Zohra2, Bounoura Radja2,1, Mehrab Elazhari2, Kharioubi Omar 1

1 Laboratory of Experimental Biotoxicology, Department of Biology, Faculty of Life and Natural Sciences, University of Oran 1, Ahmed Ben Bella, 1524 EL M Naouer 31000 Oran, Algeria
2 Department of Biology, University Echahid Ahmed Zabana, Relizane 48000, Algeria

ABSTRACT

Objective: The purpose of this study was to evaluate the neuroprotective effect of 150 mg / kg extract of the plant *Pistacia atlantica* against mercury-induced oxidative stress.

Methods: Hg was administered intraperitoneally (2.5 mg/kg body weight, one time a week), and *P. atlantica* and were given orally by gavage at a daily dose (150 mg/kg body weight) to rats for 32 days. 24 male adult Albino Wistar rats were divided into four groups: group 1 Control, group 2 (HgCl2) group 3 (Hg + *P. atlantica*), and group 4 (*P. atlantica*). Parametrical tests of oxidative stress and histological sections of the cerebral parenchyma. Results: Our results showed that the intraperitoneal injection of mercury chloride HgCl2 causes deleterious effects in the brain resulting in: a failure of redox status by disrupting the antioxidant defense system by a significant decrease in the activity of catalase glutathione peroxidase, glutathione-s-transferase and superoxide dismutase acetylcholinesterase and increase of the activity of the enzyme lactate dehydrogenase. The levels of lipid peroxidation markers were high in TBARS intoxicated rats with protein oxidation in cerebral parenchyma. Results: Our results showed that the intraperitoneal injection of mercury chloride HgCl2 causes deleterious effects in the brain resulting in: a failure of redox status by disrupting the antioxidant defense system by a significant decrease in the activity of catalase glutathione peroxidase, glutathione-s-transferase and superoxide dismutase acetylcholinesterase and increase of the activity of the enzyme lactate dehydrogenase. The levels of lipid peroxidation markers were high in TBARS intoxicated rats with protein oxidation in cerebral parenchyma.

Keywords: mercury, *Pistacia atlantica*, Wistar rat, brain, antioxidant, neurotoxicity.

Article Info: Received 09 June 2020; Review Completed 11 July 2020; Accepted 17 July 2020; Available online 15 August 2020

Cite this article as:

Benahmed F, Belhouari HFZ, Bounoura R, Mehrab E, Kharioubi O. Toxicity of mercury on the brain: ability of extract of *Pistacia atlantica* regulated effect. Journal of Drug Delivery and Therapeutics. 2020; 10(4-s):17-24

http://dx.doi.org/10.22270/jddt.v10i4.s.4269

Address for Correspondence:

Benahmed Fatih, Laboratory of Experimental Biotoxicology, Department of Biology, Faculty of Life and Natural Sciences, University of Oran 1, Ahmed Ben Bella, 1524 EL M Naouer 31000 Oran, Algeria

1. INTRODUCTION

Mercury is a highly toxic, redox-active element which represents one of the main agents responsible for environmental pollution. Mercury was recorded as the third most dangerous heavy metal after arsenic and lead, according to the Agency for Toxic Substance and Disease Registry Agency (ATSDR). It can be found in three different chemical forms; elemental mercury (Hg0), organic mercury (mainly methylmercury), and inorganic mercury (mainly mercuric chloride). The mercurial exposure is a reality faced by several people around the world, due the routes of exposure to the metal be associated with the used in pharmaceuticals products, use of cosmetics. Mercury is used in various chemical industries. In chlorine production plants, it is widely used for the synthesis of chlorinated compounds and also used in the production of sodium hydroxide. Mercury has various applications including to control weeds, fungi, bacteria and insects.

Mercury adversely affects the cellular, pulmonary, haematological, cardiovascular, immunological, neurological and endocrine systems. The central nervous system, kidney, liver and gastrointestinal system are the main target sites of mercury toxicity. In addition, symptoms such as headache, impaired coordination, tremor, diarrhea, abdominal cramps, dermatitis, proteinuria, polyneuropathy and hepatic dysfunction occur as a result of mercury toxicity. The toxicity of mercury can be stopped by using an antioxidant defense mechanism including reducing or eliminating active oxygen species, free radicals, and heavy metals.
The herbal medicines are widely used in traditional methods to treat various diseases. Specifically, in recent years, the therapeutic and antioxidant effects of some herbal drugs are taken into account for clinical settings. The genus Pistacia (Anacardiaceae) comprising more than 11 species is widely distributed from south-west Asia to north-west Africa. Pistacia atlantica is one of the most widely distributed wild species, which is called “Butom” in Algeria, and is the most characteristic plant species of the arid and semi-arid regions of the country, it is a high-altitude tree with a height of 2–7 m. The plant has been naturally spread to the Canary Islands, Mediterranean countries, Syria, the Caucasus, Iran, Afghanistan and Pakistan. This medicinal plant has been used since Pistacia ancient times for treatment of gastrointestinal, liver, and kidney diseases. Various biological effects are reported for species, including antioxidant, antinflammatory, antithromogenic, anesthetic, antinociceptive, antitumor, and especially antidiabetic properties. In our present study, we evaluated the protective effect of the leaves aqueous extract of *P. atlantica* against mercuric chloride-induced neurotoxicity in rats by assessing some antioxidant enzyme activities.

2. MATERIALS AND METHODS

2.1. Plant Material and Preparation of Aqueous Extract

Leaves of *P. atlantica* Desf used in this study were collected from Oran (Algeria) in October 2018. The plant material was authenticated in the botanic laboratory, University of Oran. After the leaves were cleaned and air-dried, they ground to a fine powder and extracted with distilled water (1:10, w/v) under the heat conditions (60°C) during 60 min. The mixture was filtered. The obtained decoction was frozen and then lyophilized (freeze-dryer christalpha 2-4 lsc d 37520, Germany).

2.2. Animals and experimental design

For our study, a total of 24 rats (55 ± 10 g) were divided into 4 groups that met the following criteria:

- **Group 1**: Control group (Control) consisting of 6 rats receiving daily drinking water by gavage and intraperitoneal injection of 0.9% NaCl 3 times per week for 4 weeks, i.e., 32 days.
- **Group 2**: Intoxicated group (HgCl₂) treated with Mercury Chloride 2.5 mg/kg bw administered once per week by intraperitoneal injection for 4 weeks; the number of subjects was also of the order of 6 rats.
- **Group 3**: Group intoxicated with Mercury Chloride 2.5 mg/kg bw injected into the peritoneum once a week, treated with the plant 150 mg/Kg (HgCl₂ + P. atlantica) administered by daily gavage to 6 animals over a period of 32 days and
- **Group 4**: treated with *P. atlantica* 150 mg/Kg.

2.3. Tissue simple preparation

At the end of each treatment period the groups of rats are sacrificed by intraperitoneal injection of 10% chloral solution (Pentobarbital) at a rate of 3 mL/kg body weight (bw). The animals were weighed before sacrifice, once sacrificed, the cranial cavity is opened. The brain was freed of adipose tissue, rinsed with a fresh 0.9% NaCl solution, weighed and then stored in the freezer at -80°C. By producing the yellow solution (Penthobarbital) at a rate of 3 mL/kg, 24 rats (55 ± 10) g were weighed and then stored in the freezer at -80°C. The brains of the different groups studied were used after grinding and homogenizing the tissue (0.5g) in a phosphate buffer (PBS 0.1 mol/l pH=7.4) to which 0.3 mol/l sucrose and 0.08 mol/l potassium chloride (KCl) (5ml) were added using a WiseTis® homogenizer (H&G-15A) while maintaining a temperature of 4°C, the homogenate obtained is centrifuged at 7600 rpm for 10 min at 4°C, once the supernatant is recovered, it is in turn centrifuged at 12000 rpm for 10 min to remove cellular debris. Then, aliquots of the supernatant obtained are collected in Eppendorf tubes and stored at -80°C while waiting to determine the oxidative stress parameters.

2.3.2. Measurement of lipid peroxidation (LPO), Glutathione reduced GSH and antioxidant enzyme activity

2.3.2.1. Lipid peroxidation (LPO) levels, reduced GSH and antioxidant enzyme activities

2.3.2.2. LPO levels [thiobarbituric acid reactive substances (TBARS)]

Lipid peroxidation was assessed by TBARS assay using the Ohlawa et al. method. MDA is one of the end products formed during the decomposition of polyunsaturated fatty acids (PUFA) mediated by free radicals. The level of lipid peroxidation was evaluated with the TBARS (Thiobarbituric reactive species) test.

2.3.2.3. Reduced GSH levels

Reduced GSH was determined using a colorimetric technique as described by Sedlak and Lindsay. The high solubility of the tris buffer provides a favourable medium for the GSH reaction to proceed which reduces the DTNB (also called Ellman’s reagent) by producing the yellow chromophore TNB (2-nitro-5 thiobenzoic acid), which has a maximum absorbance at 412 nm, and an oxidized glutathione-TNB adduct (GS-TNB). The rate of formation of TNB is proportional to the concentration of GSH in the sample. In brief, 1 mL of cerebral supernatant (homogenate) is prepared after treatment with 1 mL of 50% trichloroacetic acid-distilled water (1:4), and the supernatant obtained after centrifugation at 2400 r/min for 15 min was mixed with 0.02 mL of 0.01 mmol/L DTNB and an amount of Tris buffer (0.4 mol/L, pH 8.5). Total GSH content was expressed as nanomoles of GSH per milligram of protein.

2.4. Effect of treatment on antioxidant enzymes activities in brain

2.4.1. Determination of CAT (EC 1.11.16) levels

CAT was assayed by the method of Aebi, 250 µL of cerebral homogenates and 250 µL of 0.03 mol/L H₂O₂ (prepared in phosphate buffer, 0.066 mol/ L, pH 7.0) were added in a cuvette. After incubation for 5 min, TiOSO₄ was added to the mixture and absorbance was directly measured against phosphate buffer as a blank. The absorbance at 402 nm, and one unit of CAT is equal to 1 mmol H₂O₂ degraded/ mg of protein.

2.4.2. Activity of GPx (EC 1.11.1.9)

GPx activity in brain tissues was assessed by the method of Rotrucco et al. Glutathione peroxidase (GPx) present in the homogenate catalysed the reduction of a hydrogen.
peroxide (H2O2) by oxidising reduced glutathione (GSH) added at known concentration to form glutathione disulphide (GSSG). The reaction is stopped at a fixed time (t) by addition of TCA the strong acid causing denaturation and aggregation of the GPx and the thiol group (R-SH) of the remaining GSH cysteine is detected by the Ellman reagent giving the chromogenic product TNB which is measured at a wavelength of 340 nm allowing determination of the peroxidase activity. Briefly the reaction mixture contained 0.2 mL of Tris–HCl buffer (0.4 mol/L, pH 7.0), 0.2 mL of reduced GSH (1 mmol/L), 0.1 mL of sodium azide.

2.4.3. Superoxide dismutase (EC 1.15.1.1)

The assay technique of the Marklund and Marklund is performed in a buffer (Tris HCl 50mM and EDTA 10 mM) at pH 8.2, with a cerebrum homogenate fraction and pyrogallol (15 mM) and the change in absorbance is monitored for three minutes at a wavelength of 440 nm. Results are expressed in U of SOD / mg protein.

2.4.4. Determination of lactate dehydrogenase (LDH)

We used kits (BioOak, French). The decrease in absorbance due to the conversion of NADH to NAD+ in the presence of pyruvate is directly proportional to the LDH activity in the brain homogenate, absorbance is measured at 340 nm.

2.4.5. Estimation of tissue AChE

AChE The method for the determination of acetylcholinesterase (AChE) according to the method Ellman's et al. consists of providing the enzyme with a substrate acetylthiocholine, the hydrolysis of which by acetylcholinesterase in the homogenate releases acetic acid and thiocholine, the latter having an SH thiol group capable of easily cleaving the DTNB which gives the yellow TNB absorbed at 410 nm.

2.4.6. Determination of total tissue protein contents

The determination of total protein at the brain tissue level was performed using the method of Lowry et al., using bovine serum albumin as a standard, and necessary dilutions were realized to get the correct concentrations of the proteins present in tissues.

2.5. Histopathological studies [haematoxylin and eosin (H&E) staining]

Samples (brain) from each group were selected, transversely cut and fixed in 10% buffered formaldehyde solution, then conserved in paraffin. Four micrometre tissue sections were realized and dried at adequate temperature to get Paraffin removed from the glass slides. The next step was to rehydrate sections then stain them with haematoxylin and eosin as nuclear and cytoplasmic stains. The sections were analyzed using Leica®DM500B microscope and photographed with Leica EC3 digital camera.

3 STATISTICAL ANALYSIS

The results were represented as mean values ± standard error (Means ± ES). Data were analyzed by SPSS (Statistical Packages for Social Science, version 23.0, IBM Corporation, New York, USA) using one-way analysis of variance (ANOVA) followed by Least Significant Difference test (LSD) with α = 0.05, for comparison of various treatments. A student’s t-test was used to determine the significant difference among two different.

4. RESULTS

4.1. Effect of treatment on lipid peroxidation and GSH contents in cerebrum

Changes in TBARS and GSH levels were illustrated in Figures 1, and a significant increase in TBARS levels by +66.85% in cerebrum of intoxicated rats was noted when compared to controls. A highly significant (P <0.001) increase was also noted in cerebellum of exposed rats, and these results were accompanied by a reduction in GSH levels in cerebrum of Hg treated rats (-32.43%) in comparison with those of controls. The co-administration of P. atlantica and HgCl2 decreased the TBARS production by a rate of -56.36%. This treatment alleviated significantly GSH levels in brain regions (+167.46%) when compared to intoxicated rats. The plant extract showed more efficient results in term of restoring normal values of some altered parameters than the chelation strategy did.

![Graph 1](image1.png)

Figure 1: Effects of P. atlantica on TBARS level (nmol/mg of proteins) and GSH (nmol /mg proteins) level. The results are represented by the mean ± standard deviation (Means ± SD). P <0.001 (**) indicates a significant difference in the poisoned rats compared to controls. (###) = indicates a significant difference in mercury-poisoned rats treated with the aqueous extract of P. at compared to mercury-poisoned rats. (*) = indicates a significant difference in the poisoned rats treated with the aqueous extract of P. at compared to the control rats p>0.01
4.2. Effect of treatment on antioxidant enzymes activities in cerebrum

Exposure to HgCl₂ produced significant changes in the cerebrum redox status. A very significant decrease (P < 0.01) in CAT, GPx, GST and SOD activity, activities was recorded in intoxicated group compared to controls (Figures 2). Oral administration of aqueous *P. atlantica* extract during mercury exposure showed an amelioration in CAT, GPx, GST, and SOD, by significantly increasing their values (65.98%, 100.35%, 100.48% and 85.71%) respectively.

Figure 2: Effects of *P. atlantica* on CAT activity (mmol H₂O₂/mg of protein), GPx activity (nmol/mn/mg proteins), GST activity (µmol /mn/mg proteins) SOD activity (U/mg of proteins) The results are represented by the mean ± standard deviation. P <0.001 (⁂) = indicates a significant difference in the poisoned rats compared to controls. (###) = indicates a significant difference in mercury-poisoned rats treated with the aqueous extract of *P. at* compared to mercury-poisoned rats. (#) = indicates a significant difference in the poisoned rats treated with the aqueous extract of *P. at* compared to the control rats p<0.01
4.2. Effect of treatment on LDH activities in cerebrum

The increase in LDH level in brains poisoned by HgCl₂ (349.51 ± 24.71 IU / g) compared to the control and decrease by HgCl₂ + P. atlantica in brain when compared to those in Hg treated group. (Figure 3).

Figure 3: Effects of P. atlantica on LDH activity (U/g of proteins). The results are represented by the mean ± standard deviation. P <0.001 (⁎) = indicates a significant difference in the poisoned rats compared to controls. (###) = indicates a significant difference in mercury-poisoned rats treated with the aqueous extract of P. atlantica compared to mercury-poisoned rats. (#) = indicates a significant difference in the poisoned rats treated with the aqueous extract of P. atlantica compared to mercury-poisoned rats.

4.3. Effect of treatment on AChE activity

Administration of mercuric chloride to rats produced a significant (P<0.05) decrease in AChE brain activity of (76.51%) compared to control rats. However, treatment with (HgCl₂ + P. atlantica) (150 mg/kg) improved the increase of AChE compared to intoxicated rats. (Figure 4).

Figure 4: Effects of P. atlantica on AChE activity (µmol/min/mg of proteins). The results are represented by the mean ± standard deviation. P <0.001 (⁎) = indicates a significant difference in the poisoned rats compared to controls. (###) = indicates a significant difference in mercury-poisoned rats treated with the aqueous extract of P. atlantica compared to mercury-poisoned rats. (#) = indicates a significant difference in the poisoned rats treated with the aqueous extract of P. atlantica compared to mercury-poisoned rats.
4.4 Effect of treatment on brain histopathological changes

Pathological changes in the brain of rats intoxicated by HgCl₂ degeneration neuronal necrosis, gliosis, fragmentation of myelene and axonal degeneration on cuts located intact in the control group. These changes were reduced to a minimum in the + HgCl₂ + P. atlantica (Figure 9).

Figure 5: Effects of P. atlantica on HgCl₂-induced histological changes in brain of control and experimental rats. A (control): section of cerebral (A) showing normal histo-architecture (H&E, 20×); B (HgCl₂ + P. atlantica) showing very reduced neuronal necrosis; C and D (HgCl₂ 2.5mg/Kg) Sections of cerebral showing neuronal necrosis gliosis, oedema, fragmentation of myelene and axonal degeneration. Gl: gliose, Om: Oedeme, Nn: neuronale Necrosis, Fl: fragmentation of myelene, Da: axonal degeneration.

5. DISCUSSION

Nerve cells and especially astrocytes are sensitive to damage caused by an excess of ROS such as O₂ -, H₂O₂, NO et HO. These ROS responsible for cellular dysfunction, thereby for the disruption of nerve functions and the occurrence of neurodegenerative diseases. The present results corroborate the previous results which demonstrated that exposition to mercury stimulated the generation of ROS. Our results agree with previous studies. The combination of Hg and the P. atlantica extract in our study showed a reduction in TBARS levels in the brain. The GSH antioxidant system is an important target in mediating the neurotoxicity of mercury. In this study, the administration of mercury led to the depletion of glutathione (GSH) content in the brain. From a molecular point of view, the decrease in GSH levels, which can occur following the formation of the GS-HgCH3 complex will lead to an increase in the generation of reactive species and oxidative damage in a plethora of biomolecules (acids nucleic acids, lipids and proteins). The evaluation of GSH levels in the brain tissue recorded a significant decrease in rats poisoned by HgCl₂. Our result is in agreement with several studies. The extract of P. atlantica administered in group 3 poisoned by Hg (Hg + P. atlantica) reveals an increase in the level of GSH comparing to the HgCl₂. We have demonstrated a decrease in antioxidant enzymes (SOD, GPx, GST and catalase) in the brain intoxicated by mercury chloride HgCl₂. The decrease in enzyme activity was a consequence of direct inhibitory effects, probably linked to Hg-selenol interactions. Several researchers have approved the inhibitory and reducing effect of antioxidant enzymes during mercury chloride HgCl₂ intoxication in the brain. The significant increase in the level of glutathione s transferase, catalase, superoxide dismutase and peroxidase in the brain treated with the extract of P. atlantica compared to the HgCl₂ is carried out thanks to the presence of phenolic compounds in general and the flavonoids which could directly neutralize reactive oxygen metabolites due to the presence of different antioxidant substances. Our result agrees with work on burned rats receiving 300 μL / kg / day of P. atlantica oil for 14 days marked a significant increase in the levels of antioxidant enzymes SOD, GPX, and VEGF (Vascular Endothelial Growth Factor). AChE is a complex protein that has an active center; it belongs to the family of hydrolases and it is expressed in the central nervous system and muscles, its role is to hydrolyze the neurotransmitter acetylcholine in order to complete the transmission of the nerve impulse and thus restore the excitability of the cholinergic synapses. The administration of HgCl₂ leads to a reduction in acetylcholine esterase levels in the brain of the rats of the second group compared to the rats of the first group controls, which confirms the study of Dahalan and al., It was found that all the metal ions that Ag²⁺, Cd ²⁺, Cu ²⁺, Hg²⁺ + Pb²⁺ and Zn²⁺ significantly inhibited the activity of AChE but with different percentages of inhibition. Inhibition of acetylcholine esterase activity in the brain treated with P. atlantica (HgCl₂ + P. atlantica) comparing to the addict what is consistent with the work of Nadeem et al., P. atlantica is mainly characterized by monoterpenoids such as α-pinene which have AChE.
inhibitory and antioxidant activities. In addition, previous studies have shown that limonene is a potent inhibitor of AChE as well as β-phellandrene[33].

As a result, lactate dehydrogenase (LDH) is a cytosolic enzyme, which will be released and its activity is measured to assess cell death in particular primary necrosis and secondary necrosis (necrosis following apoptosis). The increase in LDH level in brains poisoned by HgCl2 ([349.51 ± 24.71 IU / g]) compared to the control, which confirms studies showing a high LDH level in the brain tissue[34]. From the observation of the histological sections at the level of the cerebral parenchyma that we carried out reveals that the toxicity of mercury was manifested by unequivocal tissue damage. Neurodegenerations have been characterized by morphological changes such as neuronal loss and vacuolation[35] these neurodegenerative changes in the brain could invariably affect the learning memory and hearing capacities associated with its functions. Our results also agree with Akintunde and Babaita[35]. The protective effect against brain bonds induced by mercury was approved by the Pistacia extract which reduced neuronal necrosis and prevented other pathologies such as gliosis degenerate axon which is consistent with the work of Liu et al.[35]. This reduction in ROS is due to secondary metabolites such as: flavonoids and tannins which is found in the extracts of the leaves of P. atlantica.

In conclusion, the results of the present study indicate that P. atlantica demonstrated significantly higher levels of rescue of HgCl2-induced neurotoxicity and oxidative damage, histopathological changes and inhibition of AChE.

Acknowledgments

This research was supported by the Algerian Ministry of Higher Education and Scientific Research and DGRSDT

Conflict of interest statement

The authors report no conflict of interest.

REFERENCES

1. Officioso, A., Panzella, L., Tortora, F., Alfieri, M. L., Napolitano, A., & Manna, C. (2018). Comparative analysis of the effects of olive oil hydroxytyrosol and its S-lipoyl conjugate in protecting human erythrocytes from mercury toxicity. Oxid Med Cell Longev., 2018: 9042192.

2. Caglayan C, Kandemir FM, Yildirim S, Kucukler S, Eser G. Rutil protexcs mercuri chloride-induced nephrotoxicity via targeting of aquaporin 1 level, oxidative stress, apoptosis and inflammation in rats. J Trace Elem Med Bio. 2019; 54:69-78.

3. Esdaile, L. J., & Chalker, J. M. The Mercury Problem in Artisanal and Small-Scale Gold Mining. Chem. Eur. J, 2018; 24(27):6905-6916.

4. Chan, Thomas YK. Inorganic mercury poisoning associated with skin-lightening cosmetic products. Clinical toxicology. 2011; 49(10):886-891.

5. Copan, L., Fowles, J., Xu, K., Lu, S., Liu, X., & Yang, Y. Effect of soil mercury pollution on ginger (Zingiber officinale Roscoe): Growth, product quality, health risks and silicon mitigation. Ecotox Environ Safe., 2020; 195:110472.

6. Barghout N, Chebata N, Mounme S, Kenounf S, Gharbi A, Gharbi A, El Hadi D, Antioxidant and antinflammatory effect of alkaloid bulbs extract of Polianthes tuberosa L. (Amaryllidaceae) cultivated in Algeria. Journal of Drug Delivery and Therapeutics 2020; 10(4):44-48.

7. Ben Ahmed, Z., Yousfi, M., Valene, J., Dejaegher, B., Demeyer, K., Mangelings, D., & Vander Heyden, Y. Seasonal, gender and regional variations in total phenolic, flavonoid, and condensed tannins contents in corydalis plants from Pistacia atlantica spp. leaves. Pharm. Biol., 2017; 55(1):1185-1194.

8. Hasheminya, S. M., & Dehghannya, J. Composition, phenolic content, antioxidant and antimicrobial activity of Pistacia atlantica subspp. kurdica hulls’ essential oil. Food Bioesscience. 2020; 34:100510.

9. Bagheri, M., Mostafavinia, A., Abdullahi, M. A., Amini, A., Ghoreishi, S. K., Chien, S., & Bayat, M. Combined effects of metformin and photobiomodulation improve the proliferation phase of wound healing in type 2 diabetic rats. Biomedicine & Pharmacotherapy, 2020; 123:109776.

10. Alkawa, H., Ohishi, N., & Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 1979; 95(2):351-358.

11. Sedlak, J., & Lindsay, R. H. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal. Biochem., 1968; 25:192–205.

12. Aebi H. Catalase. In: Berg Meyer H., editor. Methods of enzymatic analysis. 2nd ed. Weinheim: Verlag Chemie; 1974. p. 673-84.

13. Rotruck, J. T., Pope, A. L., Ganther, H. E., Swanson, A. B., Hafeman, D. G., & Hoekstra, W. G. Selenium. Biochemical Role as a Component of Glutathione Peroxidase. Science, 1973; 179:588-590.

14. Marklund, S., & Marklund, G. A simple assay for superoxide dismutase using auto oxidation of pyrogallol. Eur J Biochem., 1974; 47:469-72.

15. Ellman, G. L., Courtney, K. D., Andres Jr, V., & Featherstone, R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical pharmacology, 1961; 7(2):88-95.

16. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem., 1951; 193(1):265-75.

17. Lourie S, Timothy J. Oxidative damage to macromolecules in human Parkinson disease and the rotenone model. Free Radical Bio Med., 2013; 62:111-120.

18. Makhiu H, Anarghoh H, Ouardi F, Ouasmi N, Najimi M, Chigr Lzurie. Comparative Neurobehavioral and Physiological Parameters in Mice. J Mol Neurosci, 2018; 60(2):291-305.

19. Sudo K, Van Dao C, Miyamoto A, Shiraishi M. Comparative analysis of in vitro neurotoxicity of methylmercury, mercury, cadmium, and hydrogen peroxide on SH-SY5Y cells. J Vet Med Sci., 2019; 68:828-837.

20. Stringari J, Nunes A, Franco L, Boher D, Garcia S, Dafer L, Farina M. Prenatal methylmercury exposure hampers glutathione antioxidant system ontogenesis and causes long-lasting oxidative stress in the mouse brain. Toxicol Appl Pharm., 2008; 227:147-154.

21. Salum KS, Zalups. A Study on Prooxidative and Neurotoxic Effects of Mercury Chloride in Rats. EC Pharmacology and Toxicology., 2019; 7:112-124.

22. Moneim, A. E. A. The neuroprotective effect of berberine in mercury-induced neurotoxicity in rats. Metab Brain Dis., 2015; 30(4):93-94.

23. Zeffirino R, Piccoli C, Ricciardi N, Scrima R, Capitano N. Possible Mechanisms of Mercury Toxicity and Cancer Promotion: Involvement of Gap Junction Intercellular Communications and Inflammatory Cytokines. Oxid Med Cell Longev., 2017; 2017:702858
29. Shahouzehi, B., Sepehri, G., Sadeghiyan, S., & Masoomi-Ardakani, Y. Effect of Pistacia atlantica resin oil on antioxidant, hydroxyprolin and VEGF changes in experimentally-induced skin burn in rat. World J. Plast. Surg., 2018; 7(3):357.
30. Gendrel, M., Atlas, E. G., & Hobert, O. A cellular and regulatory map of the GABAergic nervous system of C. elegans. E life, 2016; 5:e17686.
31. Dahalan A., Khalid K., Khalil M., Shukor Y., Syed N., Shamaa A. Characterisation of cholinesterase from kidney tissue of Asian seabass (Lates calcarifer) and its inhibition in presence of metal ions J. Environ. Biol., 2017; 38:383-388
32. Nadeem S., Kabouche A., Kabouche Z. Essential Oils Composition, Anticholinesterase and Antioxidant Activities of Pistacia atlantica Desf. Rec. Nat. Prod., 2017; 11:411-41.
33. Zerrad K., Benhamouda A., Chaib L., Larrif A., Mediouni J. Chemical composition, fumigant and anti-acetylcholinesterase activity of the Tunisian Citrus aurantium Lessential oils. Ind. Corps Prod., 2015; 76:121-127.
34. Agarwal R., Goel K., Chandra R., Behari R. Role of vitamin E in preventing acute mercury toxicity in rat. Environ toxicol phar., 2010; 29:70–78.
35. Akintunde, J. K., & Babaita, A. K. Effect of PUFAs from Pteleopsis suberosa stem bark on androgenic enzymes, cellular ATP and prostatic acid phosphatase in mercury chloride–exposed rat. Middle East Fertil. Soc., 2017; 22(3):211-218.
36. Liu C., Peng J., Zhang L., Wang S., Ju S., Liu C. Mercury adsorption from aqueous solution by regenerated activated carbon produced from depleted mercury-containing catalyst by microwave-assisted decontamination. J. Clean. Prod., 2018; 196:109–121.